

Prepared in cooperation with the Colorado Water Conservation Board and the Colorado Division of Water Resources

MODFLOW-2000, THE U.S. GEOLOGICAL SURVEY MODULAR GROUND-WATER MODEL—DOCUMENTATION OF PACKAGES FOR SIMULATING EVAPOTRANSPIRATION WITH A SEGMENTED FUNCTION (ETS1) AND DRAINS WITH RETURN FLOW (DRT1)

Open-File Report 00-466

MODFLOW-2000, THE U.S. GEOLOGICAL SURVEY MODULAR GROUND-WATER MODEL—DOCUMENTATION OF PACKAGES FOR SIMULATING EVAPOTRANSPIRATION WITH A SEGMENTED FUNCTION (ETS1) AND DRAINS WITH RETURN FLOW (DRT1)

By Edward R. Banta

U.S. GEOLOGICAL SURVEY

Open-File Report 00-466

Prepared in cooperation with the Colorado Water Conservation Board and the Colorado Division of Water Resources

Denver, Colorado 2000

U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary

U.S. GEOLOGICAL SURVEY Charles G. Groat, Director

The use of firm, tra	de, and brand nam	es in this report i	is for identification	purposes only	and does
not constitute endorse	ment by the U.S. Geo	logical Survey.			

For additional information write to:

District Chief U.S. Geological Survey Box 25046, Mail Stop 415 Denver Federal Center Denver, CO 80225–0046 Copies of this report can be purchased from:

U.S. Geological Survey Information Services Box 25286 Federal Center Denver, CO 80225

PREFACE

This report documents two computer-program packages designed to work with the U.S. Geological Survey modular ground-water-flow model, MODFLOW-2000. The packages are designed to simulate (1) evapotranspiration using a segmented-line relation of evapotranspiration rate to hydraulic head, and (2) drainage of water from a ground-water system, with an option to simulate return flow of some of the drained water.

The code for the packages is contained in this report and is included in MODFLOW-2000, which is available for downloading over the Internet from a U.S. Geological Survey software repository. The repository is accessible on the World Wide Web from the U.S. Geological Survey Water Resources web page at the Universal Resource Locator (URL) http://water.usgs.gov/. The URL for the software repository is http://water.usgs.gov/software/. If revisions are made to the packages, the revised code will be made available from the software repository.

CONTENTS

PREFACE	III
ABSTRACT	1
INTRODUCTION	
EVAPOTRANSPIRATION SEGMENTS PACKAGE	2
Conceptualization of Evapotranspiration Segments	
Input Instructions for the Evapotranspiration Segments Package	
Explanation of Variables Read by the Evapotranspiration Segments Package	7
ETS1 Example Problem	9
Module Documentation for the Evapotranspiration Segments Package	
Module GWF1ETS1AL	
Module GWF1ETS1RQ	
Module GWF1ETS1RP	
Module GWF1ETS1FM	
Module GWF1ETS1BD	
Module SEN1ETS1FM	
DRAIN RETURN PACKAGE	
Conceptualization of Drains with Return Flow	
Input Instructions for the Drain Return Package	
Explanation of Variables Read by the Drain Return Package	
Flow Observations Using the Drain Return Package	
Input Instructions for Flow Observations	
Explanation of Variables for Flow Observations	
DRT1 Example Problem	
Module Documentation for the Drain Return Package	
Module GWF1DRT1AL	
Module GWF1DRT1RQ	
Module GWF1DRT1RP	
Module GWF1DRT1FM	
Module GWF1DRT1BD	
Module SGWF1DRT1LR	
Module SGWF1DRT1LS	
Module OBS1DRT1AL	
Module OBS1DRT1RP	
Module OBS1DRT1FM	
Module OBS1DRT1DR	
Module SOBS1DRT1OH	
Module SOBS1DRT1QC	
Module SEN1DRT1FM	
PARAMETER-ESTIMATION EXAMPLE PROBLEM	
MODFLOW-2000 MODIFICATIONS NEEDED TO USE ETS1 AND DRT1	
File mf2k.f	
File obs1bas6.f	
File sen1bas6.f	
File pes1bas6.f	
File pes1gau1.f	
A DENDLY A Linguit and Output Edge for the ETS1 Eventule Brokleys	
APPENDIX A—Input and Output Files for the ETS1 Example Problem	
APPENDIX B—Input and Output Files for the DRT1 Example Problem	
AND LONG OF A COUNTY OF A COUN	

FIGURES

1.	Diagram showing conceptual surfaces used in simulating evapotranspiration	. 3
2.	Graph showing volumetric evapotranspiration rate, Q _{ET} , as a function of head for a situation	
	in which the function in the variable interval is defined using three segments	, 4
3.	Diagram showing hypothetical field situation showing cells from which evapotranspiration can	
	be extracted under the two options available in the ETS1 Package	. 6
4.	Graph showing segmented relation of volumetric evapotranspiration rate to head for one cell	
	in the ETS1 example problem	9
5.	Diagram showing conceptual model of the use of the DRT1 Package to simulate the return	
	flow of a portion of discharge from a flowing well	. 32
6.	Diagram showing location of features simulated in the DRT1 example problem	. 38
TABL	_E	
1	Parameters defined by parameter-estimation example problem and starting, estimated, and	
	true parameter values	80

CONVERSION FACTORS AND ABBREVIATIONS

Multiply	Ву	To obtain
foot (ft)	0.3048	meter
foot per day (ft/d)	0.3048	meter per day
square foot per day (ft^2/d)	0.09290	square meter per day

Other abbreviations, terms, and symbols used in this report:

length (L) time (T)

MODFLOW-2000, The U.S. Geological Survey Modular Ground-Water Model—Documentation of Packages for Simulating Evapotranspiration with a Segmented Function (ETS1) and Drains with Return Flow (DRT1)

By Edward R. Banta

ABSTRACT

Two new packages for the U.S. Geological Survey modular finite-difference ground-water-flow model MODFLOW-2000 are documented. The new packages provide flexibility in simulating evapotranspiration and drain features not provided by the MODFLOW-2000 Evapotranspiration (EVT) and Drain (DRN) Packages. The report describes conceptualization of the packages, input instructions, listings and explanations of the source code, and example simulations.

The new Evapotranspiration Segments (ETS1) Package allows simulation of evapotranspiration with a user-defined relation between evapotranspiration rate and hydraulic head. This capability provides a degree of flexibility not supported by the EVT Package, which has been available in MODFLOW since its initial release. In the ETS1 Package, the relation of evapotranspiration rate to hydraulic head is conceptualized as a segmented line between an evaporation surface, defined as the elevation where the evapotranspiration rate reaches a maximum, and an elevation located at an extinction depth below the evaporation surface, where the evapotranspiration rate reaches zero. The user supplies input to define as many intermediate segment endpoints as desired to define the relation of evapotranspiration rate to head between these two elevations. The EVT Package, in contrast, simulates evapotranspiration with a single linear function.

The new Drain Return (DRT1) Package can be used to simulate the return flow of water discharged from a drain feature back into the ground-water system. The DRN Package, which has been available in MODFLOW since its initial release, does not have the capability to simulate return of flow. If the return-flow option of the DRT1 Package is selected, for each cell designated as a drain-return cell, the user has the option of specifying a proportion of the water simulated as leaving the ground-water system through the drain feature that is to be simulated as returning simultaneously to one other cell in the model.

INTRODUCTION

The U.S. Geological Survey (USGS) modular three-dimensional finite-difference ground-water-flow model (McDonald and Harbaugh, 1988; Harbaugh and McDonald, 1996a, 1996b), commonly known as MODFLOW, has included support for simulating evapotranspiration and flow to drains since its initial release. In the modular design of MODFLOW, such stresses to a ground-water system are simulated by using groups of subroutines called packages. In previous versions of MODFLOW, evapotranspiration can be simulated using the Evapotranspiration (EVT) Package, and flow to drain features—for example, springs or agricultural drains—can be simulated using the Drain (DRN) Package. However, the conceptual models underlying these capabilities are not sufficiently complex to simulate certain field situations. The U.S. Geological Survey, in cooperation with the Colorado Water Conservation Board and the Colorado Division of Water Resources, developed two new MODFLOW-2000 packages to allow simulation of more complex field situations.

This report documents two new MODFLOW packages. The Evapotranspiration Segments (ETS1) Package allows the user to specify a complex relation between evapotranspiration rate and hydraulic head. The Drain Return (DRT1) Package allows the user to specify that a certain proportion of the simulated flow out of the ground-water system at a drain cell be returned as simulated flow into any cell in the model. The report presents the conceptualization for each package, input instructions, listings and explanations of the source code, and example simulations.

The modular design of MODFLOW was enhanced with the release of MODFLOW-2000 by the addition of the concept of processes (Harbaugh and others, 2000). In MODFLOW-2000, the simulation of ground-water flow, which earlier versions of MODFLOW performed, is handled by the Ground-Water Flow Process. In addition, MODFLOW-2000 includes the Observation, Sensitivity, and Parameter-Estimation Processes (Hill and others, 2000). The ETS1 Package includes support for the Ground-Water Flow, Sensitivity, and Parameter-Estimation Processes. The DRT1 Package includes support for the Ground-Water Flow, Observation, Sensitivity, and Parameter-Estimation Processes. This report assumes the user is familiar with MODFLOW-2000 and its Ground-Water Flow, Observation, Sensitivity, and Parameter-Estimation Processes. Familiarity with the GLOBAL and LIST output files (Harbaugh and others, 2000) also is assumed.

The source code for the subroutines of the ETS1 and DRT1 Packages generally conforms to FORTRAN 77 (American National Standards Institute, 1978), with the exception that some symbolic names exceed the 6-character length limit. In addition, MODFLOW-2000 uses Fortran 90 (American National Standards Institute, 1992) statements for dynamic memory allocation. The source code can be converted to use only static memory allocation by following the instructions in Appendix B of Hill and others (2000). The program can be used on any computer or operating system for which an appropriate Fortran compiler is available.

EVAPOTRANSPIRATION SEGMENTS PACKAGE

Evapotranspiration can account for a substantial fraction of the water budget for a ground-water system. When modeling flow in a ground-water system where a large fraction of the water budget is lost through evapotranspiration, the method by which evapotranspiration is simulated can affect calculated hydraulic heads, and thus interpretations regarding the system dynamics. The Evapotranspiration (EVT) Package (McDonald and Harbaugh, 1988) provides a useful method for simulating evapotranspiration that may be based on a more simplified conceptual model of evapotranspiration than is warranted by knowledge of actual field conditions. The method of simulating evapotranspiration used in the ETS1 Package documented in this report provides the flexibility to represent a complex relation of evapotranspiration rate to hydraulic head.

In the EVT Package, which has always been in MODFLOW, the evapotranspiration rate for a particular cell is calculated based on the simulated hydraulic head in the cell, an "ET surface," an "extinction depth" (fig. 1), and a maximum evapotranspiration flux rate. If the elevation of the calculated hydraulic head (head) in the cell is at or above the ET surface, the evapotranspiration rate is the maximum evapotranspiration rate. If the depth of the head below the ET surface equals or exceeds the extinction depth, the evapotranspiration rate is zero. When the head is below the ET surface but the depth of the head below the surface is less than the extinction depth, the evapotranspiration rate is variable and depends on the depth of the head below the ET surface. This interval, between the ET surface and the elevation defined as the ET surface minus the extinction depth, is referred to as the "variable interval" in this report. In the EVT Package, when the head is in the variable interval, the evapotranspiration rate is a simple linear function of depth of the head below the ET surface, such that the evapotranspiration rate is the maximum evapotranspiration rate when the depth is zero, and the evapotranspiration rate is zero when the depth equals the extinction depth. This relation is defined by equation (1):

$$Q = Q_{ETM} \times \left(1 - \frac{D}{X}\right) \tag{1}$$

Figure 1.-- Conceptual surfaces used in simulating evapotranspiration. In the ETS1 Package, segments are defined in the variable interval.

where

Q is the volumetric evapotranspiration rate for the cell (L^3/T),

 Q_{ETM} is the maximum evapotranspiration flux rate times the area of the cell (L³/T),

D is the depth of the head below the ET surface (L), and

X is the extinction depth (L).

The ETS1 Package differs from the EVT Package in that the ETS1 Package allows the user to specify a segmented function for the relation of evapotranspiration rate to depth of head below the ET surface in the variable interval (fig. 1). The user can specify as many segments as desired to approximate a curve or other type of relation.

Conceptualization of Evapotranspiration Segments

In the ETS1 Package, the functional relation of evapotranspiration rate to head is conceptualized as a segmented line in the variable interval. The segments that determine the shape of the function in the variable interval are defined by intermediate points where adjacent segments join. The ends of the segments at the top and bottom of the variable interval are defined by the ET surface, the maximum evapotranspiration rate, and the extinction depth. The number of intermediate points that must be defined is one less than the number of segments in the variable interval. For each intermediate point, two values, PXDP and PETM, are entered to define the point. PXDP is a proportion (between zero and one) of the extinction depth, and PETM is a proportion of the maximum evapotranspiration rate. PXDP is 0.0 at the ET surface and is 1.0 at the bottom of the variable interval. PETM is 1.0 at the ET surface and is 0.0 at the bottom of the variable interval. Segments are numbered such that segment one is the segment with its upper endpoint at the ET surface, and segment numbers increase downward. The relation of evapotranspiration rate to head is defined over the model grid by a series of two-dimensional arrays; therefore, PXDP and PETM also are specified as arrays.

When MODFLOW-2000 solves for heads, the ETS1 Package calculates an evapotranspiration rate for each cell where evapotranspiration is simulated by first determining which segment should be used based on the head, then calculating the evapotranspiration rate by interpolation. The interpolated evapotranspiration rate for a cell is defined by equation (2):

$$Q = PETM_{n-1} \times Q_{ETM} - \frac{(PETM_{n-1} - PETM_n)}{(PXDP_n - PXDP_{n-1})} \times \frac{Q_{ETM}}{X} \times (D - PXDP_{n-1} \times X)$$
 (2)

where n is the segment number of the applicable segment and refers to the point at the bottom of the segment, and other symbols are as defined above or for equation (1). When n is 1, n-1 refers to the upper end of the first segment, where PXDP = 0.0 and PETM = 1.0. Similarly, for the last segment, n is the total number of segments, $PXDP_n = 1.0$, and $PETM_n = 0.0$. The maximum evapotranspiration flux rate may be defined in program input either directly, by entering an array of numeric values, or indirectly, by using parameters. The concept of using parameters to define model input is described by Harbaugh and others (2000). When a parameter is used to define the maximum evapotranspiration flux rate, Q_{ETM} is the product of the parameter value, the multiplier from the multiplier array (if defined for the parameter), and the cell area. As with any head-dependent flow boundary, the head used in the calculation, in this case the calculation of D, is the head that resulted from the previous solver iteration. For this reason, to obtain an accurate head solution, solver input must specify that an iterative method be used.

Figure 2 illustrates a possible function relating volumetric evapotranspiration rate to head for a situation where three segments are used. The function in the variable interval is defined by the segments AB, BC, and CD. Points A and D are determined by the ET surface (ETSS), the product of the maximum evapotranspiration flux rate and the cell area (Q_{ETM}), and the extinction depth (ETSX). Points B and C are intermediate segment endpoints. The user inputs PXDP and PETM to define each intermediate endpoint. For the cell corresponding to figure 2, PXDP_B equals 0.2, PETM_B equals 0.3, PXDP_C equals 0.5, and PETM_C equals 0.1.

In some cases a segmented relation between evapotranspiration rate and head in one part of the model area and a simple linear relation in another part may be desired. The simple linear relation can be modeled by specifying PXDP and PETM such that PETM = (1 - PXDP) for each intermediate endpoint. To use a simple linear relation everywhere in the model area, the modeler can specify that only one segment is to be used; use of this approach results in evapotranspiration being simulated using the methodology of the EVT Package.

Figure 2.-- Volumetric evapotranspiration rate, Q_{ET} , as a function of head for a situation in which the function in the variable interval is defined using three segments. ETSX is the extinction depth, ETSS is the ET surface, and Q_{ETM} is the product of the maximum evapotranspiration flux rate and the cell area. $PETM_B$ and $PXDP_B$ define the location of point B.

As for the EVT Package, the ETS1 Package provides two options for specifying the layer from which evapotranspiration is to be extracted. Figure 3 shows a hypothetical field situation. Figure 3a shows a hydrogeologic section of the situation under study, and figure 3b shows the distribution of variable-head, constant-head, and inactive (no-flow) cells. When option 1 (fig. 3c) is used, evapotranspiration is drawn only from the uppermost model layer; in the problem shown, the presence of no-flow-cells in this layer eliminates evapotranspiration from the right side of the model. Figure 3d illustrates the use of option 2, where the user specifies layer numbers to indicate which layer is allowed to have evapotranspiration in each vertical column of cells.

Input Instructions for the Evapotranspiration Segments Package

Input to the ETS1 Package is read from the file that is type "ETS" in the name file. All single-valued variables are free format if the option "FREE" is specified in the Basic Package input file; otherwise, the variables have 10-character fields. Arrays are read by an array-reading utility module, either U2DREL or U2DINT (Harbaugh and others, 2000), as indicated. Optional variables are shown in brackets.

FOR EACH SIMULATION

0. [#Text]

Item 0 is optional—"#" must be in column 1. Item 0 can be repeated as many times as desired.

- 1. NETSOP IETSCB NPETS NETSEG
- 2. [PARNAM PARTYP Parval NCLU]
- 3. [Mltarr Zonarr IZ]

Each repetition of Item 3 record is called a parameter cluster. Repeat Item 3 NCLU times. Repeat Items 2 and 3 for each parameter to be defined (that is, NPETS times). Items 2 and 3 are omitted if NPETS = 0.

FOR EACH STRESS PERIOD

- 4. INETSS INETSR INETSX [INIETS [INSGDF]]
- 5. [ETSS(NCOL, NROW)] U2DREL If INETSS ≥ 0
- 6. [ETSR(NCOL, NROW)] U2DREL If NPETS = 0 and if INETSR ≥ 0
- 7. [Pname [IETSPF]] If NPETS > 0 and if INETSR > 0

Either Item 6 or Item 7 may be read, but not both. If Item 7 is read, it is repeated INETSR times.

- 8. $[ETSX(NCOL,NROW)] U2DREL If INETSX \ge 0$
- 9. [IETS(NCOL, NROW)] U2DINT If NETSOP = 2 and if INIETS ≥ 0
- 10. [PXDP(NCOL, NROW)] U2DREL If NETSEG > 1 and INSGDF \geq 0
- 11. [PETM(NCOL, NROW)] U2DREL If NETSEG > 1 and INSGDF ≥ 0

If NETSEG > 1, (NETSEG - 1) repetitions of items 10 and 11 are read. If NETSEG > 2, items 10 and 11 are read for the uppermost segment intersection, followed by repetitions of items 10 and 11 for successively lower intersections.

Figure 3.-- Hypothetical field situation showing cells from which evapotranspiration can be extracted under the two options available in the ETS1 Package.

Explanation of Variables Read by the Evapotranspiration Segments Package

Text—is a character variable (79 characters) that starts in column 2. Any characters can be included in Text. The "#" character must be in column 1. Lines beginning with "#" are restricted to these first lines of the input file. Text is written to the LIST output file when the input file is read and provides an opportunity for the user to include information about the model both in the input file and the associated output file.

NETSOP—is the evapotranspiration (ET) option code. ET variables (ET surface, maximum ET rate, and extinction depth) are specified in layer variables, ETSS, ETSR, and ETSX, with one value for each vertical column of cells in the model grid. Accordingly, ET is calculated for one cell in each vertical column. The option codes determine the cell within a column for which ET will be calculated.

If NETSOP = 1, ET is calculated only for cells in the top grid layer.

If NETSOP = 2, the cell for each vertical column is specified by the user in variable IETS.

IETSCB—is a flag and a unit number.

If IETSCB > 0, it is the unit number to which ETS1-Package cell-by-cell flow terms will be written when "SAVE BUDGET" or a non-zero value for ICBCFL is specified in Output Control (Harbaugh and others, 2000). IETSCB must be a unit number associated with a file listed with type "DATA(BINARY)" or "DATAGLO(BINARY)" in the name file.

If IETSCB \leq 0, ETS1-Package cell-by-cell flow terms will not be written.

NPETS—is the number of evapotranspiration-segments parameters.

NETSEG—is the number of segments used to define the relation of evapotranspiration rate to hydraulic head in the interval where the evapotranspiration rate is variable.

PARNAM—is the name of a parameter to be defined. This name can consist of 1 to 10 characters and is not case sensitive. That is, any combination of the same characters with different case will be equivalent.

PARTYP—is the type of parameter to be defined. For the ETS1 Package, the only allowed parameter type is "ETS," which defines values of the maximum ET flux.

Parval—is the parameter value. The units of Parval times Mltarr (if used) must be (LT⁻¹). This parameter value may be overridden by a value in the Sensitivity Process input file or by a value generated by the Parameter-Estimation Process.

NCLU—is the number of clusters required to define a parameter. Each repetition of Item 3 record is a cluster (variables Mltarr, Zonarr, and IZ). Usually only one cluster is needed to define an ETS parameter; however, more than one cluster may be listed.

Mltarr—is the name of the multiplier array to be used to define the values determined by a parameter. The units of Parval times Mltarr must be (LT^{-1}) . The name "NONE" means there is no multiplier array, and the values will be set equal to Parval.

Zonarr—is the name of the zone array to be used to define the cells associated with a parameter. The name "ALL" means there is no zone array, and all cells are associated with the parameter.

IZ—is up to 10 zone numbers (separated by spaces) that define the cells associated with a parameter. These values are not used if Zonarr is specified as "ALL." Values can be positive or negative, but 0 is not allowed. The end of the line, a zero value, or a non-numeric entry terminates the list of values.

INETSS—is the ET surface (ETSS) read flag.

If INETSS ≥ 0 , a layer variable containing the ET surface (ETSS) will be read from item 5 in the ETS1 input file.

If INETSS < 0, the ET surface from the preceding stress period will be reused.

INETSR—is the ETSR read flag. Its function depends on whether or not parameters are being used.

If no parameters are being used (NPETS = 0):

If INETSR ≥ 0 , a layer variable containing the maximum ET rate (ETSR) will be read from item 6 in the ETS1 input file.

If INETSR < 0, the maximum ET rate from the preceding stress period will be reused.

If parameters are being used (NPETS > 0):

If INETSR > 0, INETSR is the number of parameters used to define ETSR in the current stress period. Item 7 defines the names of the parameters.

If INETSR < 0, ETS parameters from the preceding stress period are used.

INETSR = 0 is not allowed. That is, when parameters are used, at least one parameter must be specified for each stress period.

INETSX—is the extinction depth (ETSX) read flag.

If INETSX ≥ 0 , a layer variable containing the extinction depth (ETSX) will be read from item 8 in the ETS1 input file.

If INETSX < 0, the extinction depth from the preceding stress period will be reused.

INIETS—is the layer indicator (IETS) read flag. It is read if the ET option (NETSOP) is equal to two or if NETSEG > 1. If NETSEG > 1 and NETSOP is not equal to two, INIETS is ignored and IETS is not read.

If INIETS ≥ 0 , a layer variable containing the layer indicators (IETS) will be read from item 9 in the ETS1 input file.

If INIETS < 0, layer indicators used during the preceding stress period will be reused.

INSGDF—is the segment definition read flag. It is read only if NETSEG > 1.

If INSGDF ≥ 0 , two layer variables to define PXDP and PETM for each of (NETSEG -1) segment intersections are read from items 10 and 11, respectively, of the ETS1 input file.

If INSGDF < 0, PXDP and PETM from the preceding stress period will be reused.

ETSS—is the elevation of the ET surface (L).

ETSR—is the maximum ET flux (volumetric flow rate per unit area, LT⁻¹).

Pname—is the name of a parameter that will be used to define the ETSR variable in the current stress period.

IETSPF—is an optional format code for printing the ETSR variable after it has been defined by parameters. The format codes are the same as those used in the U2DREL array reading utility module (Harbaugh and others, 2000).

ETSX—is the ET extinction depth (L). This variable is read only if INETSX ≥ 0 .

IETS—is the layer indicator variable. For each horizontal location, IETS indicates the layer from which ET is removed. It is read only if the ET option (NETSOP) is equal to two and if INIETS ≥ 0 .

PXDP—is a proportion of the extinction depth (dimensionless), measured downward from the ET surface, which, with PETM, defines the shape of the relation between the evapotranspiration rate and head. The value of PXDP must be between 0.0 and 1.0, inclusive. Repetitions of PXDP and PETM are read in sequence such that the first occurrence represents the bottom of the first segment, and subsequent repetitions represent the bottom of successively lower segments. Accordingly, PXDP values for later repetitions (representing lower segments) should be greater than PXDP values for earlier repetitions.

PETM—is a proportion of the maximum evapotranspiration rate (dimensionless) which, with PXDP, defines the shape of the relation between the evapotranspiration rate and head. The value of PETM should be between 0.0 and 1.0, inclusive. Repetitions of PXDP and PETM are read in sequence such that the first occurrence represents the bottom of the first segment, and subsequent repetitions represent the bottoms of successively lower segments. Accordingly, PETM values for later repetitions (representing lower segments) generally would be less than PETM values for earlier repetitions.

ETS1 Example Problem

A simple example problem was devised to demonstrate that the ETS1 Package correctly calculates evapotranspiration when the relation of evapotranspiration rate to head is segmented. For this problem a grid of 11 rows by 11 columns in one layer was used to simulate an unconfined aquifer with a uniform base elevation of 0 ft. All row and column widths were 100 ft. All cells in column 1 had a specified head of 50 ft, and all cells in column 11 had a specified head of 100 ft. Hydraulic conductivity of the aquifer material was 0.05 ft/d, and the system was modeled in steady state. Evapotranspiration was the only stress, and it was simulated with the ETS1 Package for one simulation and with the EVT Package (Harbaugh and others, 2000) for a second simulation. The input files for these simulations are listed in Appendix A.

A two-segment function was assumed to relate evapotranspiration rate to head for both simulations (fig. 4). The ET surface for the modeled area was defined as 100 ft, and the maximum evapotranspiration rate at the ET surface was 0.01 ft/d. Each cell in the model had an area of $10,000 \text{ ft}^2$, so the maximum evapotranspiration rate over the area of one cell was 100 ft^3 /d. Segment 1 applies where the head is between 82 and 100 ft, and segment 2 applies where the head is between 64 and 82 ft. The two segments intersect at a depth below the ET surface of 18 ft, which corresponds to an elevation of 82 ft. At the intersection of the two segments, the evapotranspiration rate is 0.001 ft/d (10 ft^3 /d over the cell area). The evapotranspiration rate is zero where the head is at or below 64 ft, which represents an extinction depth of 36 ft.

Figure 4.-- Segmented relation of volumetric evapotranspiration rate to head for one cell in the ETS1 example problem.

For the simulation using the ETS1 Package, the two-segment relation of evapotranspiration rate to head was specified uniformly over the model domain. The extinction depth was specified as 36 ft, and the maximum evapotranspiration rate was specified as 0.01 ft/d. The two-segment function requires definition of one PXDP array and one PETM array. PXDP was specified as 0.5 (18 ft / 36 ft) everywhere, and PETM was specified as 0.1 [(0.01 ft/d) / (0.01 ft/d)] everywhere. Appendix A lists the output file for this simulation. When evapotranspiration is simulated with the ETS1 Package, as calculated head changes with changing stresses, the correct segment is applied at each cell without the need for intervention by the modeler.

For the simulation using the EVT Package, the model domain was divided into two zones such that segment 1 would apply in zone 1 (columns 1 through 9) and segment 2 would apply in zone 2 (columns 10 and 11). Segment 1 was simulated in zone 1 by specifying an extinction depth of 20 ft and a maximum evapotranspiration rate of 0.01 ft/d. Segment 2 was simulated in zone 2 by specifying an extinction depth of 36 ft and a maximum evapotranspiration rate of 0.002 ft/d. Appendix A includes the calculated head distribution and volumetric water budget for this simulation. The calculated head distribution was identical to that obtained with the ETS1 Package, and the volumetric budgets were identical within round-off error. Note that if head at a particular cell changes as a result of changing stresses, the function that applies at the cell does not change, even if the head change causes the head to become less than or greater than the intersection elevation of 82 ft. To ensure that each cell is simulated with the appropriate function, the modeler would need to adjust the zone distribution manually.

Module Documentation for the Evapotranspiration Segments Package

The ETS1 Package is composed of six modules. Five of these are primary modules that are part of the Ground-Water Flow Process (Harbaugh and others, 2000). Primary modules are called directly from the main MODFLOW-2000 program unit. The sixth module is a primary module that is part of the Sensitivity Process (Hill and others, 2000). The six modules are:

GWF1ETS1AL—Reads options and allocates memory for data arrays. GWF1ETS1AL is part of the Ground-Water Flow Process and is in source-code file gwf1ets1.f.

GWF1ETS1RQ—Reads parameter definitions. GWF1ETS1RQ is part of the Ground-Water Flow Process and is in source-code file gwf1ets1.f.

GWF1ETS1RP—Reads ETS1 data arrays and, if ETS parameters are defined, performs substitution using parameter values. GWF1ETS1RP is part of the Ground-Water Flow Process and is in source-code file gwf1ets1.f.

GWF1ETS1FM—Formulates terms needed to solve the ground-water flow equation and adds them to the head-coefficient array (HCOF) and to the right-hand side array (RHS). GWF1ETS1FM is part of the Ground-Water Flow Process and is in source-code file gwf1ets1.f.

GWF1ETS1BD—Computes flow rates simulated as evapotranspiration and writes cell-by-cell flow rates if that option is selected. GWF1ETS1BD is part of the Ground-Water Flow Process and is in source-code file gwf1ets1.f.

SEN1ETS1FM—Formulates terms needed to solve the sensitivity equation and adds them to the right-hand side array (RHS). SEN1ETS1FM is part of the Sensitivity Process and is in source-code file sen1ets1.f.

Module GWF1ETS1AL

Narrative for Module GWF1ETS1AL

This module reads package options from item 1 of the ETS1 input file and allocates space in the RX and IR arrays (Harbaugh and others, 2000). Output is written to the LIST file.

- 1. Print a message identifying the ETS1 Package.
- 2. Read and print comment lines (item 0) introduced with the "#" character.
- 3. Read values for the option indicator (NETSOP), the unit number for cell-by-cell flow terms (IETSCB), the number of parameters (NPETS), and number of segments (NETSEG). Ensure option is valid and print messages showing option and, if IETSCB is greater than zero, the unit number. Print numbers of parameters and segments.
- 4. Allocate space in the RX array for the ETSR, ETSX, and ETSS arrays and for the PXDP and PETM arrays if needed. Allocate space in the IR array for the IETS array.
- 5. Print a message showing amount of storage required by the ETS1 Package.

Listing for Module GWF1ETS1AL

```
SUBROUTINE GWF1ETS1AL(ISUM, ISUMI, LCIETS, LCETSR, LCETSX, LCETSS, NCOL,
                        NROW, NETSOP, IN, IOUT, IETSCB, IFREFM, NPETS,
                        IETSPF,NETSEG,LCPXDP,LCPETM,NSEGAR)
C
C----VERSION 20000620 ERB
     ALLOCATE ARRAY STORAGE FOR EVAPOTRANSPIRATION SEGMENTS
     *******************
C
C
C
       SPECIFICATIONS:
С
     CHARACTER*200 LINE
     ______
 500 FORMAT(1X,/
    &1X,'ETS1 -- EVAPOTRANSPIRATION SEGMENTS PACKAGE, VERSION 1,',
    & '5/2/2000',/,9X,'INPUT READ FROM UNIT',I3)
  510 FORMAT(
    &1X, I5, ' SEGMENTS DEFINE EVAPOTRANSPIRATION RATE FUNCTION')
 520 FORMAT(' EVAPOTRANSPIRATION RATE FUNCTION IS LINEAR')
 530 FORMAT(
    &' ERROR: EVAPOTRANSPIRATION RATE FUNCTION MUST CONTAIN AT',/,
    &' LEAST ONE SEGMENT -- STOP EXECUTION (GWF1ETS1AL)')
 540 FORMAT(1X, 'ILLEGAL ET OPTION CODE. SIMULATION ABORTING')
 550 FORMAT(1X, 'OPTION 1 -- EVAPOTRANSPIRATION FROM TOP LAYER')
 560 FORMAT(1X,'OPTION 2 -- EVAPOTRANSPIRATION FROM ONE SPECIFIED',
    & ' NODE IN EACH VERTICAL COLUMN')
 570 FORMAT(1X, 'CELL-BY-CELL FLOWS WILL BE SAVED ON UNIT', I3)
 580 FORMAT(1X, I10, ' ELEMENTS IN RX ARRAY ARE USED BY ETS')
 590 FORMAT(1X,110,' ELEMENTS IN IR ARRAY ARE USED BY ETS')
C
C1-----IDENTIFY PACKAGE.
     IETSPF=20
     WRITE(IOUT,500)IN
C
     READ COMMENT LINE(S) (ITEM 0)
     CALL URDCOM(IN, IOUT, LINE)
```

```
C2----READ ET OPTION (NETSOP), UNIT OR FLAG FOR CELL-BY-CELL FLOW
С
       TERMS (IETSCB), NUMBER OF PARAMETERS (NPETS), AND NUMBER OF
C
       SEGMENTS (NETSEG) (ITEM 1)
      IF (IFREFM.EQ.0) THEN
        READ(LINE, '(4110)') NETSOP, IETSCB, NPETS, NETSEG
      ELSE
        LLOC=1
        CALL URWORD(LINE, LLOC, ISTART, ISTOP, 2, NETSOP, R, IOUT, IN)
        CALL URWORD(LINE, LLOC, ISTART, ISTOP, 2, IETSCB, R, IOUT, IN)
        CALL URWORD(LINE, LLOC, ISTART, ISTOP, 2, NPETS, R, IOUT, IN)
        CALL URWORD(LINE, LLOC, ISTART, ISTOP, 2, NETSEG, R, IOUT, IN)
      ENDIF
С
C3-----CHECK TO SEE THAT ET OPTION IS LEGAL.
      IF (NETSOP.GE.1.AND.NETSOP.LE.2) GO TO 10
C
C3A----OPTION IS ILLEGAL -- PRINT A MESSAGE & ABORT SIMULATION.
      WRITE(IOUT,540)
      STOP
C
C4----OPTION IS LEGAL -- PRINT THE OPTION CODE.
   10 CONTINUE
      IF (NETSOP.EQ.1) WRITE(IOUT,550)
      IF (NETSOP.EQ.2) WRITE(IOUT,560)
C5-----IF CELL-BY-CELL FLOWS ARE TO BE SAVED, THEN PRINT UNIT NUMBER.
      IF (IETSCB.GT.0) WRITE(IOUT,570) IETSCB
C
C----PRINT NUMBER OF PARAMETERS TO BE USED
      CALL UPARARRAL(-1, IOUT, LINE, NPETS)
С
      PRINT MESSAGE IDENTIFYING NUMBER OF SEGMENTS IN ET VS. HEAD CURVE
C
      IF(NETSEG.GT.1) THEN
        WRITE(IOUT,510) NETSEG
       NSEGAR = NETSEG - 1
      ELSEIF (NETSEG.EQ.1) THEN
        WRITE(IOUT,520)
        NSEGAR = 1
      ELSE
        WRITE(IOUT,530)
        STOP
      ENDIF
C6-----ALLOCATE SPACE FOR THE ARRAYS ETSR, ETSX, ETSS, PXDP, AND PETM.
      IRK=ISUM
      LCETSR=ISUM
      ISUM=ISUM+NCOL*NROW
      LCETSX=ISUM
      ISUM=ISUM+NCOL*NROW
      LCETSS=ISUM
      ISUM=ISUM+NCOL*NROW
      IF (NETSEG.GT.1) THEN
        LCPXDP=ISUM
        ISUM=ISUM+NCOL*NROW*(NETSEG-1)
        LCPETM=ISUM
        ISUM=ISUM+NCOL*NROW*(NETSEG-1)
      ELSE
        LCPXDP=1
        LCPETM=1
      ENDIF
C
```

List of Variables for Module GWF1ETS1AL

Variable	Range	Definition
IETSCB	Package	Cell-by-cell flag and unit number
IETSPF	Package	Format code for printing the ETSR array when defined by parameters
IFREFM	Process	Flag indicating if variables are to be read in free format
IN	Module	Unit number of input file
IOUT	Global	Unit number of LIST output file
IRK	Module	Number of array elements required
ISTART	Module	Starting position of parsed word
ISTOP	Module	Ending position of parsed word
ISUM	Module	Pointer used to keep track of position in RX
ISUMI	Module	Pointer used to keep track of position in IR
LCETSR	Package	Position in RX of first element of ETSR
LCETSS	Package	Position in RX of first element of ETSS
LCETSX	Package	Position in RX of first element of ETSX
LCIETS	Package	Position in IR of first element of IETS
LCPETM	Package	Position in RX of first element of PETM
LCPXDP	Package	Position in RX of first element of PXDP
LINE	Module	Contents of one line read from input file
LLOC	Module	Pointer used to keep track of position in LINE
NCOL	Global	Number of columns in model grid
NETSEG	Package	Number of segments used to relate evapotranspiration rate to head
NETSOP	Package	Flag identifying layer distribution method for simulating evapotranspiration
NPETS	Package	Number of evapotranspiration parameters
NROW	Global	Number of rows in model grid
NSEGAR	Package	Dimensioning variable for PXDP and PETM
R	Module	Dummy real variable

Module GWF1ETS1RQ

Narrative for Module GWF1ETS1RQ

This module reads parameter definitions from items 2 and 3 of the ETS1 input file. Output is written to the GLOBAL file.

- 1. Print a message indicating how many evapotranspiration-segments parameters are being used.
- 2. For each evapotranspiration-segments parameter, call a utility that reads the parameter definition. The utility reads a record containing the parameter name, type, value, and number of clusters used to define the parameter, then reads one or more records containing a multiplier array name, zone array name, and a list of zone numbers.

Listing for Module GWF1ETS1RQ

```
SUBROUTINE GWF1ETS1RQ(IN, IOUT, NPETS, ITERP)
С
C-
  ---VERSION 20000620 ERB
С
    ******************
С
    READ EVAPOTRANSPIRATION SEGMENTS PARAMETER DEFINITIONS
С
     *****************
C
С
      SPECIFICATIONS:
C
     ______
    CHARACTER*4 PTYP
С
C
C----READ NAMED PARAMETERS
    IF (ITERP.EQ.1) WRITE(IOUT,5) NPETS
   5 FORMAT(1X,//1X,I5,' Evapotranspiration segments parameters')
    IF (NPETS.GT.0) THEN
      DO 20 K=1,NPETS
C
       UPARARRRP READS PARAMETER NAME AND DEFINITION (ITEMS 2 AND 3)
        CALL UPARARRRP(IN,IOUT,N,0,PTYP,ITERP)
       IF(PTYP.NE.'ETS') THEN
         WRITE(IOUT, 7)
   7
         FORMAT(1X, 'Parameter type must be ETS')
        ENDIF
  20 CONTINUE
    ENDIF
C8----RETURN
  60 RETURN
    END
```

List of Variables for Module GWF1ETS1RQ

Variable	Range	Definition
IN	Module	Unit number of input file
IOUT	Global	Unit number of GLOBAL output file
ITERP	Global	Parameter-estimation iteration number
K	Module	Counter for parameters
N	Module	Dummy integer variable
NPETS	Package	Number of evapotranspiration-segments parameters
PTYP	Global	Parameter type

Module GWF1ETS1RP

Narrative for Module GWF1ETS1RP

This module is called each stress period to read items 4 through 11 of the ETS1 input file. Output is written to the LIST file.

- 1. Read INETSS, INETSR, INETSX, INIETS, and INSGDF or a subset of these, depending on the option selected and the number of segments. These flags indicate which arrays need to be defined (or redefined) for the stress period.
- 2. If INETSS ≥ 0, call a utility to read data into ETSS; otherwise, print a message indicating that ETSS used in the previous stress period will be reused.
- 3. If INETSR ≥ 0, define ETSR either by reading directly (if NPETS = 0) or by calling a utility that generates the array by substitution, using evapotranspiration-segments parameters and their definitions. Multiply ETSR by the cell area to get a volumetric rate. If INETSR < 0, print a message indicating that ETSR used in the previous stress period will be reused.
- 4. If INETSX ≥ 0, call a utility to read data into ETSX; otherwise, print a message indicating that ETSX used in the previous stress period will be reused.
- 5. If NETSOP = 2 and INIETS \geq 0, call a utility to read data into IETS. If NETSOP = 2 and INIETS < 0, print a message indicating that IETS used in the previous stress period will be reused.
- 6. If NETSEG > 1 and INSGDF ≥ 0, make calls to a utility to read data into PXDP and PETM for (NETSEG 1) segment intersections. If NETSEG > 1 and INSGDF < 0, print a message indicating that PXDP and PETM used in the previous stress period will be reused.

Listing for Module GWF1ETS1RP

```
SUBROUTINE GWF1ETS1RP(NETSOP, IETS, ETSR, ETSX, ETSS, DELR, DELC, NCOL,
               NROW, IN, IOUT, IFREFM, NPETS, RMLT, IZON, NMLTAR,
     δ
     ۶
                           NZONAR, IETSPF, NETSEG, PXDP, PETM, NSEGAR)
C
C
     VERSION 20000620 ERB
      ****************
C
C
     READ EVAPOTRANSPIRATION DATA, AND PERFORM SUBSTITUTION USING
C
     PARAMETER VALUES IF ETS PARAMETERS ARE DEFINED
C
C
C
        SPECIFICATIONS:
      CHARACTER*24 ANAME(6)
     DIMENSION IETS(NCOL, NROW), ETSR(NCOL, NROW), ETSX(NCOL, NROW),
              ETSS(NCOL, NROW), DELR(NCOL), DELC(NROW),
              RMLT(NCOL, NROW, NMLTAR), IZON(NCOL, NROW, NZONAR),
              PXDP(NCOL, NROW, NSEGAR), PETM(NCOL, NROW, NSEGAR)
C
     DATA ANAME(1) /' ET LAYER INDEX (IETS)'/
DATA ANAME(2) /' ET SURFACE (ETSS)'/
      DATA ANAME(3) /' EVAPOTRANS. RATE (ETSR)'/
      DATA ANAME(4) /' EXTINCTION DEPTH (ETSX)'/
     DATA ANAME(5) /'EXTINCT. DEP. PROPORTION'/
     DATA ANAME(6) /' ET RATE PROPORTION'/
C
С
C1-----READ FLAGS SHOWING WHETHER DATA FROM PREVIOUS STRESS PERIOD ARE
      TO BE REUSED.
```

```
IF (NETSEG.GT.1) THEN
        IF(IFREFM.EQ.0) THEN
          READ(IN, '(5110)') INETSS, INETSR, INETSX, INIETS, INSGDF
          READ(IN,*) INETSS, INETSR, INETSX, INIETS, INSGDF
        ENDIF
      ELSE
        IF(NETSOP.EQ.2) THEN
          IF(IFREFM.EO.0) THEN
            READ(IN, '(4110)') INETSS, INETSR, INETSX, INIETS
            READ(IN,*) INETSS, INETSR, INETSX, INIETS
          ENDIF
        ELSE
          IF(IFREFM.EQ.0) THEN
            READ(IN, '(3110)') INETSS, INETSR, INETSX
            READ(IN,*) INETSS, INETSR, INETSX
          ENDIF
        ENDIF
      ENDIF
\overline{C}
C2----TEST INETSS TO SEE WHERE SURFACE ELEVATION COMES FROM.
     IF (INETSS.LT.0) THEN
C2A----IF INETSS<0 THEN REUSE SURFACE ARRAY FROM LAST STRESS PERIOD
        WRITE(IOUT, 10)
   10
       FORMAT(1X,/1X,'REUSING ETSS FROM LAST STRESS PERIOD')
      ELSE
C3-----IF INETSS=>0 THEN CALL MODULE U2DREL TO READ SURFACE.
        CALL U2DREL(ETSS, ANAME(2), NROW, NCOL, 0, IN, IOUT)
      ENDIF
C4----TEST INETSR TO SEE WHERE MAX ET RATE COMES FROM.
      IF (INETSR.LT.0) THEN
C4A----IF INETSR<0 THEN REUSE MAX ET RATE.
       WRITE(IOUT,20)
   2.0
       FORMAT(1X,/1X,'REUSING ETSR FROM LAST STRESS PERIOD')
     ELSE
C5-----IF INETSR=>0 CALL MODULE U2DREL TO READ MAX ET RATE.
        IF(NPETS.EQ.0) THEN
          CALL U2DREL(ETSR, ANAME(3), NROW, NCOL, 0, IN, IOUT)
        ELSE
     INETSR is the number of parameters to use this stress period
         CALL PRESET('ETS')
          WRITE(IOUT, 30)
   30
          FORMAT(1X,///1X,
     &
              'ETSR array defined by the following parameters:')
          IF (INETSR.EQ.0) THEN
            WRITE(IOUT, 35)
   35
            FORMAT(' ERROR: When parameters are defined for the ETS',
            ' Package, at least one parameter',/,' must be specified',
            ' each stress period -- STOP EXECUTION (GWF1ETS1RP)')
     &
            STOP
          ENDIF
          CALL UPARARRSUB2(ETSR, NCOL, NROW, 0, INETSR, IN, IOUT, 'ETS',
                           ANAME(3),'ETS', IETSPF, RMLT, IZON, NMLTAR,
     &
                           NZONAR)
        ENDIF
C6-----MULTIPLY MAX ET RATE BY CELL AREA TO GET VOLUMETRIC RATE
        DO 50 IR=1,NROW
          DO 40 IC=1,NCOL
            ETSR(IC, IR) = ETSR(IC, IR) * DELR(IC) * DELC(IR)
   40
         CONTINUE
   50
       CONTINUE
      ENDIF
```

```
C7----TEST INETSX TO SEE WHERE EXTINCTION DEPTH COMES FROM
     IF (INETSX.LT.0) THEN
C7A----IF INETSX<0 REUSE EXTINCTION DEPTH FROM LAST STRESS PERIOD
       WRITE(IOUT,60)
   60 FORMAT(1X,/1X,'REUSING ETSX FROM LAST STRESS PERIOD')
C8-----IF INETSX=>0 CALL MODULE U2DREL TO READ EXTINCTION DEPTH
       CALL U2DREL(ETSX, ANAME(4), NROW, NCOL, 0, IN, IOUT)
      ENDIF
С
C9----IF OPTION(NETSOP) IS 2 THEN WE NEED AN INDICATOR ARRAY.
     IF (NETSOP.EQ.2) THEN
C10----IF INIETS<0 THEN REUSE LAYER INDICATOR ARRAY.
       IF (INIETS.LT.0) THEN
         WRITE(IOUT,70)
        FORMAT(1X,/1X,'REUSING IETS FROM LAST STRESS PERIOD')
C11-----IF INIETS=>0 THEN CALL MODULE U2DINT TO READ INDICATOR ARRAY.
         CALL U2DINT(IETS, ANAME(1), NROW, NCOL, 0, IN, IOUT)
       ENDIF
     ENDIF
С
C12----IF ET FUNCTION IS SEGMENTED PXDP AND PETM ARRAYS ARE NEEDED.
     IF (NETSEG.GT.1) THEN
C13----IF INSGDF<0 THEN REUSE PXDP AND PETM ARRAYS.
      IF (INSGDF.LT.0) THEN
         WRITE(IOUT,80)
   80
        FORMAT(1X,/1X,
                'REUSING PXDP AND PETM FROM LAST STRESS PERIOD')
C14-----IF INSGDF=>0 THEN CALL MODULE U2DREL TO READ PXDP AND PETM
        ARRAYS.
       ELSE
          DO 90 I = 1, NETSEG-1
            WRITE(IOUT, 100) I
           CALL U2DREL(PXDP(1,1,1),ANAME(5),NROW,NCOL,0,IN,IOUT)
           CALL U2DREL(PETM(1,1,1),ANAME(6),NROW,NCOL,0,IN,IOUT)
  90
         CONTINUE
       ENDIF
     ENDIF
  100 FORMAT(/,' PXDP AND PETM ARRAYS FOR INTERSECTION ',14,
     &' OF HEAD/ET RELATION:')
C
C15----RETURN
     RETURN
      END
```

List of Variables for Module GWF1ETS1RP

Variable	Range	Definition
ANAME	Module	Array content label
DELC	Global	Cell dimension in the column direction
DELR	Global	Cell dimension in the row direction
ETSR	Package	Maximum evapotranspiration rate
ETSS	Package	Evapotranspiration (ET) surface
ETSX	Package	Extinction depth
I	Module	Counter for segments
IC	Module	Column index

Variable	Range	Definition
IETS	Package	Layer indicator
IETSPF	Package	Format code for printing the ETSR array when defined by parameters
IFREFM	Process	Flag indicating if variables are to be read in free format
IN	Module	Unit number of input file
INETSR	Module	Flag indicating if ETSR is to be defined or redefined
INETSS	Module	Flag indicating if ETSS is to be read
INETSX	Module	Flag indicating if ETSX is to be read
INIETS	Module	Flag indicating if IETS is to be read
INSGDF	Module	Flag indicating if PXDP and PETM are to be read
IOUT	Global	Unit number of LIST output file
IR	Module	Row index
IZON	Global	Zone arrays
NCOL	Global	Number of columns in model grid
NETSEG	Package	Number of segments used to relate evapotranspiration rate to head
NETSOP	Package	Flag identifying layer distribution method for simulating evapotranspiration
NMLTAR	Global	Dimensioning variable for RMLT
NPETS	Package	Number of evapotranspiration parameters
NROW	Global	Number of rows in model grid
NSEGAR	Package	Dimensioning variable for PXDP and PETM
NZONAR	Global	Dimensioning variable for IZON
PETM	Package	Proportion of maximum evapotranspiration rate
PXDP	Package	Proportion of extinction depth
RMLT	Global	Multiplier arrays

Module GWF1ETS1FM

Narrative for Module GWF1ETS1FM

This module adds terms to the finite-difference equations to account for loss of water from the ground-water system by evapotranspiration.

- 1. For each cell in the horizontal model grid, determine the layer in which evapotranspiration is simulated and add the terms to the equation for the cell. Do steps 2 through 10 for each cell in the horizontal model grid.
- 2. Set the layer index to 1.
- 3. If NETSOP = 2, get the layer index from the layer indicator array (IETS).
- 4. If the cell is inactive or constant-head, skip steps 5 through 10.
- 5. If the head in the cell is greater than or equal to the ET surface, add ETSR to the right-hand side array (RHS) and move on to the next cell location. Skip steps 6 through 10.

- 6. If the head in the cell is less than the extinction elevation (ET surface minus extinction depth), no terms need to be added to the finite-difference equation. Move on to the next cell location. Skip steps 7 through 10.
- 7. If NETSEG = 1, add the term [-ETSR/ETSX] to HCOF and subtract the term [-ETSR*(ETSX ETSS)/ETSX] from RHS. Skip steps 8 through 10.
- 8. If NETSEG > 1, set the proportion of extinction depth to 0.0 and the proportion of maximum ET rate to 1.0 to correspond to the top of the first segment, which is at the ET surface.
- 9. Find the segment that applies to the head elevation by comparing the head with the bottom of successively lower segments until the head is at or above the bottom of a segment. For the bottom of the final segment, set the proportion of extinction depth to 1.0 and the proportion of maximum ET rate to 0.0.
- 10. Add the term [-(PETM₁-PETM₂)*ETSR/((PXDP₂-PXDP₁)*ETSX)] to HCOF and subtract the term [(PETM₁-PETM₂)*ETSR/((PXDP₂-PXDP₁)*ETSX)*(ETSS-PXDP₁*ETSX) PETM₁*ETSR] from RHS, where the subscript 1 refers to the point at the top of the segment, and subscript 2 refers to the point at the bottom of the segment.

Listing for Module GWF1ETS1FM

```
SUBROUTINE GWF1ETS1FM(NETSOP, IETS, ETSR, ETSX, ETSS, RHS, HCOF, IBOUND,
                         HNEW, NCOL, NROW, NLAY, NETSEG, PXDP, PETM,
    &
                         NSEGAR)
C
C----VERSION 20000620 ERB
     *****************
C
C
        ADD EVAPOTRANSPIRATION TO RHS AND HCOF
     *******************
C
С
        SPECIFICATIONS:
C
     DOUBLE PRECISION HNEW, HH, SS, XX, DD, PXDP1, PXDP2
     DIMENSION IETS(NCOL, NROW), ETSR(NCOL, NROW), ETSX(NCOL, NROW),
          ETSS(NCOL, NROW), RHS(NCOL, NROW, NLAY),
             HCOF(NCOL,NROW,NLAY), IBOUND(NCOL,NROW,NLAY),
             HNEW(NCOL, NROW, NLAY), PXDP(NCOL, NROW, NSEGAR),
             PETM(NCOL, NROW, NSEGAR)
C1----PROCESS EACH HORIZONTAL CELL LOCATION
     DO 30 IR=1,NROW
      DO 20 IC=1,NCOL
C2----SET THE LAYER INDEX EOUAL TO 1
         IL=1
C3-----IF OPTION 2 IS SPECIFIED THEN GET LAYER INDEX FROM IETS ARRAY
         IF (NETSOP.EQ.2) IL=IETS(IC,IR)
C4----IF THE CELL IS EXTERNAL IGNORE IT.
         IF (IBOUND(IC, IR, IL).GT.0) THEN
           C=ETSR(IC, IR)
           S=ETSS(IC, IR)
           SS=S
           HH=HNEW(IC, IR, IL)
C5-----IF HEAD IN CELL IS GREATER THAN OR EQUAL TO ETSS, ET IS CONSTANT
          IF(HH.GE.SS) THEN
С
```

```
C5A----SUBTRACT -ETSR FROM RHS
              RHS(IC,IR,IL)=RHS(IC,IR,IL) + C
            ELSE
C6----IF DEPTH TO WATER>=EXTINCTION DEPTH THEN ET IS 0
              DD=SS-HH
              X=ETSX(IC,IR)
              XX=X
              IF (DD.LT.XX) THEN
C7-----VARIABLE RANGE. ADD ET TERMS TO BOTH RHS AND HCOF.
С
                IF (NETSEG.GT.1) THEN
С
                  DETERMINE WHICH SEGMENT APPLIES BASED ON HEAD, AND
С
                  CALCULATE TERMS TO ADD TO RHS AND HCOF
С
C
                  SET PROPORTIONS CORRESPONDING TO ETSS ELEVATION
                  PXDP1 = 0.0
                  PETM1 = 1.0
                  DO 10 ISEG = 1,NETSEG
С
                    SET PROPORTIONS CORRESPONDING TO LOWER END OF
C
                    SEGMENT
                    IF (ISEG.LT.NETSEG) THEN
                      PXDP2 = PXDP(IC, IR, ISEG)
                      PETM2 = PETM(IC, IR, ISEG)
                    ELSE
                      PXDP2 = 1.0
                      PETM2 = 0.0
                    ENDIF
                    IF (DD.LE.PXDP2*XX) THEN
С
                      HEAD IS IN DOMAIN OF THIS SEGMENT
                      GOTO 15
C
                    PROPORTIONS AT LOWER END OF SEGMENT WILL BE FOR
C
                    UPPER END OF SEGMENT NEXT TIME THROUGH LOOP
                    PXDP1 = PXDP2
                    PETM1 = PETM2
   10
                  CONTINUE
   15
                  CONTINUE
С
                  CALCULATE TERMS TO ADD TO RHS AND HCOF BASED ON
С
                  SEGMENT THAT APPLIES AT HEAD ELEVATION
                  THCOF = -(PETM1-PETM2)*C/((PXDP2-PXDP1)*X)
                  TRHS = THCOF*(S-PXDP1*X) + PETM1*C
                  CALCULATE TERMS TO ADD TO RHS AND HCOF BASED ON SIMPLE
C
С
                  LINEAR RELATION OF ET VS. HEAD
                  TRHS = C-C*S/X
                  THCOF = -C/X
                RHS(IC, IR, IL)=RHS(IC, IR, IL)+TRHS
                HCOF(IC,IR,IL)=HCOF(IC,IR,IL)+THCOF
              ENDIF
            ENDIF
          ENDIF
   20
       CONTINUE
   30 CONTINUE
C8----RETURN
      RETURN
      END
```

List of Variables for Module GWF1ETS1FM

Variable	Range	Definition
С	Module	Maximum evapotranspiration rate for a cell
DD	Module	Depth of head below ET surface
ETSR	Package	Maximum evapotranspiration rate
ETSS	Package	ET surface
ETSX	Package	Extinction depth
HCOF	Global	Head-coefficient array
НН	Module	Head in a cell
HNEW	Global	Head
IBOUND	Global	Boundary-status indicator
IC	Module	Column index
IETS	Package	Layer indicator
IL	Module	Layer index
IR	Module	Row index
ISEG	Module	Counter for segments
NCOL	Global	Number of columns in model grid
NETSEG	Package	Number of segments used to relate evapotranspiration rate to head
NETSOP	Package	Flag identifying layer distribution method for simulating evapotranspiration
NLAY	Global	Number of layers in model grid
NROW	Global	Number of rows in model grid
NSEGAR	Package	Dimensioning variable for PXDP and PETM
PETM	Package	Proportion of maximum evapotranspiration rate
PETM1	Module	Proportion of maximum evapotranspiration rate at the top of a segment
PETM2	Module	Proportion of maximum evapotranspiration rate at the bottom of a segment
PXDP	Package	Proportion of extinction depth
PXDP1	Module	Proportion of extinction depth at the top of a segment
PXDP2	Module	Proportion of extinction depth at the bottom of a segment
RHS	Global	Right-hand side
S	Module	ET surface for a cell
SS	Module	ET surface for a cell
THCOF	Module	Term to be added to HCOF
TRHS	Module	Term to be added to RHS
X	Module	Extinction depth for a cell
XX	Module	Extinction depth for a cell

Module GWF1ETS1BD

Narrative for Module GWF1ETS1BD

This module calculates rates and volumes of water removed from the simulated system by evapotranspiration. Output is written to the LIST file and, optionally, to the unformatted file associated with unit IETSCB.

- 1. Set the rate accumulator RATOUT to zero.
- 2. If budget terms will be saved, clear the buffer (BUFF) in which the budget terms will be accumulated.
- 3. For each cell in the horizontal model grid calculate flow to evapotranspiration (steps 4 through 14).
- 4. Set the layer index (IL) equal to 1.
- 5. If NETSOP = 2, get the layer indicator (IETS).
- 6. If the cell is inactive or constant-head, skip steps 7 through 14.
- 7. If the head in the cell is greater than the elevation of the ET surface, set the ET rate for the cell equal to the maximum ET rate. Skip steps 8 through 12.
- 8. If the depth of the head in the cell below the ET surface is greater than the extinction depth, skip steps 9 through 12.
- 9. If NETSEG = 1, calculate the evapotranspiration rate for the cell using the linear relation defined by equation (1). Skip steps 10 through 12.
- 10. If NETSEG > 1, set the proportion of extinction depth to 0.0 and the proportion of maximum ET rate to 1.0 to correspond to the top of the first segment, which is at the ET surface.
- 11. Find the segment that applies to the head elevation by comparing the head with the bottom of successively lower segments until the head is at or above the bottom of a segment. For the bottom of the final segment, set the proportion of extinction depth to 1.0 and the proportion of maximum ET rate to 0.0.
- 12. Using the end points of the applicable segment and equation (2), calculate the evapotranspiration rate for the cell.
- 13. Subtract the ET flow rate from the accumulator (RATOUT).
- 14. If the cell-by-cell flow terms are to be saved, add the ET flow rate to the buffer (BUFF).
- 15. If the cell-by-cell flow terms are to be saved, call a utility to write the flow rates to the unformatted file associated with unit IETSCB.
- 16. Move RATOUT into the VBVL array for printing.
- 17. Add RATOUT multiplied by the time-step length to the volume accumulators in VBVL for printing.
- 18. Move the ET budget-term labels to VBNM for printing.
- 19. Increment the budget-term counter.
- 22 MODFLOW-2000—Documentation of Packages for Simulating Evapotranspiration with a Segmented Function (ETS1) and Drains with Return Flow (DRT1)

Listing for Module GWF1ETS1BD

```
SUBROUTINE GWF1ETS1BD(NETSOP, IETS, ETSR, ETSX, ETSS, IBOUND, HNEW, NCOL,
                          NROW, NLAY, DELT, VBVL, VBNM, MSUM, KSTP, KPER,
     &
                           IETSCB, ICBCFL, BUFF, IOUT, PERTIM, TOTIM, NETSEG,
     &
     &
                           PXDP, PETM, NSEGAR)
C----VERSION 20000620 ERB
     ******************
     CALCULATE VOLUMETRIC BUDGET FOR EVAPOTRANSPIRATION SEGMENTS
C
С
C
       SPECIFICATIONS:
     CHARACTER*16 VBNM(MSUM), TEXT
     DOUBLE PRECISION HNEW, RATOUT, QQ, HH, SS, DD, XX, HHCOF, RRHS,
                      PXDP1, PXDP2
     DIMENSION IETS(NCOL, NROW), ETSR(NCOL, NROW), ETSX(NCOL, NROW),
               ETSS(NCOL,NROW), IBOUND(NCOL,NROW,NLAY),
     &
               VBVL(4,MSUM), HNEW(NCOL,NROW,NLAY),
               BUFF(NCOL,NROW,NLAY), PXDP(NCOL,NROW,NSEGAR),
               PETM(NCOL,NROW,NSEGAR)
C
     DATA TEXT /'
                    ET SEGMENTS'/
С
C
C1-----CLEAR THE RATE ACCUMULATOR.
     ZERO=0.
     RATOUT=ZERO
С
C2----SET CELL-BY-CELL BUDGET SAVE FLAG (IBD) AND CLEAR THE BUFFER.
     IF(IETSCB.GT.0) IBD=ICBCFL
     DO 30 IL=1,NLAY
       DO 20 IR=1,NROW
         DO 10 IC=1,NCOL
           BUFF(IC, IR, IL) = ZERO
  10
        CONTINUE
   20 CONTINUE
  30 CONTINUE
C3----PROCESS EACH HORIZONTAL CELL LOCATION.
     DO 70 IR=1,NROW
       DO 60 IC=1,NCOL
C4----SET THE LAYER INDEX EQUAL TO 1.
         IL=1
C
C5-----IF OPTION 2 IS SPECIFIED THEN GET LAYER INDEX FROM IETS ARRAY.
         IF (NETSOP.EQ.2) IL=IETS(IC,IR)
C6----IF CELL IS EXTERNAL THEN IGNORE IT.
         IF (IBOUND(IC,IR,IL).GT.0) THEN
           C=ETSR(IC,IR)
           S=ETSS(IC, IR)
           SS=S
           HH=HNEW(IC,IR,IL)
C7-----IF AQUIFER HEAD => ETSS, SET Q=MAX ET RATE.
           IF (HH.GE.SS) THEN
            QQ=-C
           ELSE
C8-----IF DEPTH=>EXTINCTION DEPTH, ET IS 0.
```

```
X=ETSX(IC,IR)
              XX=X
              DD=SS-HH
              IF (DD.LT.XX) THEN
C9-----VARIABLE RANGE. CALCULATE Q DEPENDING ON NUMBER OF SEGMENTS
С
                IF (NETSEG.GT.1) THEN
C
                  DETERMINE WHICH SEGMENT APPLIES BASED ON HEAD, AND
С
                  CALCULATE TERMS TO ADD TO RHS AND HCOF
С
С
                  SET PROPORTIONS CORRESPONDING TO ETSS ELEVATION
                  PXDP1 = 0.0
                  PETM1 = 1.0
                  DO 40 ISEG = 1, NETSEG
C
                    SET PROPORTIONS CORRESPONDING TO LOWER END OF
C
                    SEGMENT
                    IF (ISEG.LT.NETSEG) THEN
                      PXDP2 = PXDP(IC, IR, ISEG)
                      PETM2 = PETM(IC, IR, ISEG)
                    ELSE
                      PXDP2 = 1.0
                     PETM2 = 0.0
                    ENDIF
                    IF (DD.LE.PXDP2*XX) THEN
C
                      HEAD IS IN DOMAIN OF THIS SEGMENT
                      GOTO 50
                    ENDIF
                    PROPORTIONS AT LOWER END OF SEGMENT WILL BE FOR
C
                    UPPER END OF SEGMENT NEXT TIME THROUGH LOOP
                    PXDP1 = PXDP2
                    PETM1 = PETM2
   40
                  CONTINUE
   50
                  CONTINUE
C9-----CALCULATE ET RATE BASED ON SEGMENT THAT APPLIES AT HEAD
C9----ELEVATION
                  HHCOF = -(PETM1-PETM2)*C/((PXDP2-PXDP1)*X)
                  RRHS = -HHCOF*(S-PXDP1*X) - PETM1*C
                ELSE
C10----SIMPLE LINEAR RELATION. Q=-ETSR*(HNEW-(ETSS-ETSX))/ETSX, WHICH
C10----IS FORMULATED AS Q= -HNEW*ETSR/ETSX + (ETSR*ETSS/ETSX -ETSR).
                  HHCOF = -C/X
                  RRHS = (C*S/X) - C
                ENDIF
                QQ = HH*HHCOF + RRHS
              ELSE
                QQ = 0.0
              ENDIF
            ENDIF
C10----ACCUMULATE TOTAL FLOW RATE.
            Q=QQ
            RATOUT=RATOUT-QQ
C11----ADD Q TO BUFFER.
           BUFF(IC, IR, IL)=Q
          ENDIF
   60 CONTINUE
   70 CONTINUE
C12----IF CELL-BY-CELL FLOW TO BE SAVED, CALL APPROPRIATE UTILITY
C12----MODULE SAVE THEM.
     IF(IBD.EQ.1) CALL UBUDSV(KSTP, KPER, TEXT, IETSCB, BUFF, NCOL, NROW,
     &
                               NLAY, IOUT)
```

```
IF(IBD.EQ.2) CALL UBDSV3(KSTP, KPER, TEXT, IETSCB, BUFF, IETS, NETSOP,
                       NCOL, NROW, NLAY, IOUT, DELT, PERTIM, TOTIM, IBOUND)
С
C13----MOVE TOTAL ET RATE INTO VBVL FOR PRINTING BY BAS1OT.
     ROUT=RATOUT
      VBVL(3,MSUM)=ZERO
     VBVL(4,MSUM)=ROUT
С
C14----ADD ET(ET_RATE TIMES STEP LENGTH) TO VBVL.
     VBVL(2,MSUM)=VBVL(2,MSUM)+ROUT*DELT
С
C15----MOVE BUDGET TERM LABELS TO VBNM FOR PRINT BY MODULE BAS1OT.
     VBNM(MSUM)=TEXT
С
C16----INCREMENT BUDGET TERM COUNTER.
     MSUM=MSUM+1
С
C17----RETURN.
     RETURN
      END
```

List of Variables for Module GWF1ETS1BD

Variable	Range	Definition
BUFF	Global	Buffer used to accumulate information before printing or recording it
С	Module	Maximum evapotranspiration rate at a cell
DD	Module	Depth of head below the ET surface
DELT	Global	Length of the current time step
ETSR	Package	Maximum evapotranspiration rate
ETSS	Package	Elevation of the ET surface
ETSX	Package	Extinction depth
НН	Module	Head in a cell
HHCOF	Module	Coefficient of head in expression to calculate ET rate
HNEW	Global	Head
IBD	Module	Cell-by-cell budget save flag
IBOUND	Global	Boundary-status indicator
IC	Module	Column index
ICBCFL	Process	Cell-by-cell flow-term write flag
IETS	Package	Layer indicator
IETSCB	Package	Cell-by-cell flow-term write flag for evapotranspiration package
IL	Module	Layer index
IOUT	Global	Unit number of LIST output file
IR	Module	Row index
ISEG	Module	Counter for segments
KPER	Global	Stress period counter
KSTP	Global	Time step counter

Variable	Range	Definition
MSUM	Global	Counter for budget entries and labels in VBVL and VBNM
NCOL	Global	Number of columns in model grid
NETSEG	Package	Number of segments used to relate evapotranspiration rate to head
NETSOP	Package	Flag identifying layer distribution method for simulating evapotranspiration
NLAY	Global	Number of layers in model grid
NROW	Global	Number of rows in model grid
NSEGAR	Package	Dimensioning variable for PXDP and PETM
PERTIM	Global	Elapsed time since beginning of stress period
PETM	Package	Proportion of maximum evapotranspiration rate
PETM1	Module	Proportion of maximum evapotranspiration rate at the top of a segment
PETM2	Module	Proportion of maximum evapotranspiration rate at the bottom of a segment
PXDP	Package	Proportion of extinction depth
PXDP1	Module	Proportion of extinction depth at the top of a segment
PXDP2	Module	Proportion of extinction depth at the bottom of a segment
Q	Module	Flow from ET into the cell. (Reverse the sign to get the flow to ET.)
QQ	Module	Flow from ET into the cell. (Reverse the sign to get the flow to ET.)
RATOUT	Module	Accumulator for the total flow out of ground-water system to evapotranspiration
ROUT	Module	Total flow out of ground-water system to evapotranspiration
RRHS	Module	Constant term in expression to calculate ET rate
S	Module	Elevation of the ET surface for a cell
SS	Module	Elevation of the ET surface for a cell
TEXT	Module	Label to be printed or recorded with the array data
TOTIM	Global	Elapsed time since beginning of simulation
VBNM	Global	Labels for entries in the volumetric budget
VBVL	Global	Entries for the volumetric budget
X	Module	Extinction depth for a cell
XX	Module	Extinction depth for a cell
ZERO	Module	0.0

Module SEN1ETS1FM

Narrative for Module SEN1ETS1FM

This module formulates a derivative needed to solve the sensitivity equation for one evapotranspiration-segments parameter and adds the derivative to the RHS array.

- 1. If the parameter is not active during current time step, return.
- 2. For each cluster in the parameter definition, do steps 3 through 13.
- 3. Get the multiplier array number, zone array number, and index of the last zone number for this cluster.

- 4. For each cell in the horizontal model grid, do steps 5 through 13.
- 5. Set a multiplication factor equal to the value in the multiplier array, or set the factor to one if no multiplier array applies.
- 6. If a zone array applies, check to see if the current cell is in a zone to which this parameter applies. If not, set the multiplication factor to zero.
- 7. If the multiplication factor equals zero, skip steps 8 through 13.
- 8. Set a variable that accumulates contributions to the derivative equal to the negative of the product of the multiplication factor and the cell area. Based on the NETSOP option selected, determine the layer index of the cell to which evapotranspiration applies.
- 9. If the head in the cell is at or above the ET surface, skip steps 10 through 12.
- 10. If the depth of head in the cell below the ET surface is greater than or equal to the extinction depth, skip steps 11 through 13.
- 11. If NETSEG = 1, calculate the contribution to RHS as the accumulator variable, adjusted by the ratio of the depth of the head below the ET surface to the extinction depth. Skip step 12.
- 12. If NETSEG > 1, determine which segment contains the head elevation and determine the endpoints of the segment. Calculate the contribution to RHS as the accumulator variable, with an adjustment based on the segment and the head elevation.
- 13. Subtract the contribution from RHS.

Listing for Module SEN1ETS1FM

```
SUBROUTINE SEN1ETS1FM(NCOL, NROW, NLAY, DELR, DELC, RMLT, NETSOP, IETS,
               IBOUND, RHS, ETSS, ETSX, HNEW, IZON, NMLTAR,
                        NZONAR, IP, NETSEG, PXDP, PETM, NSEGAR)
C----VERSION 20000328 ERB
     ******************
C
     CALCILLATE FORCING FUNCTION DERIVATIVE FOR ETS AND ADD TO RHS.
С
C
       SPECIFICATIONS:
     ______
     REAL DDD, DELC, DELR, ETSX, H, RHS, S, SM, RMLT, ETSS, XXX, ZERO
     INTEGER IBOUND, IC, IFL, NETSOP, IETS, IR, IZ, K, KK, IZON, NCOL,
           NLAY, NROW, NZ
     DOUBLE PRECISION RO, HNEW(NCOL, NROW, NLAY), PXDP1, PXDP2
     DIMENSION DELR(NCOL), DELC(NROW), IETS(NCOL, NROW),
             RMLT(NCOL,NROW,NMLTAR), IBOUND(NCOL,NROW,NLAY),
             RHS(NCOL, NROW, NLAY), ETSS(NCOL, NROW),
             ETSX(NCOL, NROW), IZON(NCOL, NROW, NZONAR),
            PXDP(NCOL, NROW, NSEGAR), PETM(NCOL, NROW, NSEGAR)
     INCLUDE 'param.inc'
C
     ______
     IF (IACTIVE(IP).EO.0) RETURN
     ZERO = 0.0
     ICL1 = IPLOC(1, IP)
     ICL2 = IPLOC(2, IP)
C----LOOP THROUGH CLUSTERS
     DO 70 K = ICL1, ICL2
      M = IPCLST(2,K)
      LZ1 = IPCLST(3,K)
      LASTZ = IPCLST(4,K)
C----LOOP THROUGH CELLS
```

```
DO 60 IR = 1, NROW
         DO 50 IC = 1, NCOL
            SM = 1.
            IF (M.GT.0) SM = RMLT(IC, IR, M)
            IF (LZ1.GT.0) THEN
              IFL = 0
              DO 10 IZ = 5, LASTZ
                NZ = IPCLST(IZ,K)
                IF (NZ.EQ.0 .OR. IFL.EQ.1) GOTO 20
                IF (NZ.EQ.IZON(IC,IR,LZ1)) IFL = 1
   10
              CONTINUE
   20
             IF (IFL.EQ.0) SM = ZERO
            ENDIF
            IF (SM.EQ.ZERO) GOTO 50
C-----NETSOP=1
            IF (NETSOP.EQ.1 .AND. IBOUND(IC,IR,1).LT.1) GOTO 50
            IF (NETSOP.EQ.1 .AND. IBOUND(IC, IR, 1).GT.0) THEN
              RO = SM*DELR(IC)*DELC(IR)
              KK = 1
            ENDIF
C-----NETSOP=2
            IF (NETSOP.EQ.2) THEN
              IF (IBOUND(IC,IR,(IETS(IC,IR))).LT.1) GOTO 50
              IF (IBOUND(IC,IR,(IETS(IC,IR))).GT.0) THEN
                RO = SM*DELR(IC)*DELC(IR)
                KK = IETS(IC,IR)
              ENDIF
            ENDIF
C----ADJUST
            RO = -RO
            S = ETSS(IC,IR)
            H = HNEW(IC, IR, KK)
            IF (H.LT.S) THEN
              DDD = S - H
              XXX = ETSX(IC,IR)
              IF (DDD.GE.XXX) GOTO 50
C-----VARIABLE RANGE. CALCULATE DERIVATIVE AND ADD TO RHS
C
              IF (NETSEG.GT.1) THEN
C
                DETERMINE WHICH SEGMENT APPLIES BASED ON HEAD
С
C
                SET PROPORTIONS CORRESPONDING TO ETSS ELEVATION
                PXDP1 = 0.0
                PETM1 = 1.0
                DO 30 ISEG = 1, NETSEG
C
                  SET PROPORTIONS CORRESPONDING TO LOWER END OF
C
                  SEGMENT
                  IF (ISEG.LT.NETSEG) THEN
                    PXDP2 = PXDP(IC,IR,ISEG)
                    PETM2 = PETM(IC,IR,ISEG)
                  ELSE
                    PXDP2 = 1.0
                    PETM2 = 0.0
                  ENDIF
                  IF (DDD.LE.PXDP2*XXX) THEN
C
                    HEAD IS IN DOMAIN OF THIS SEGMENT
                    GOTO 40
                  ENDIF
                  PROPORTIONS AT LOWER END OF SEGMENT WILL BE FOR
C
С
                  UPPER END OF SEGMENT NEXT TIME THROUGH LOOP
                  PXDP1 = PXDP2
                  PETM1 = PETM2
   30
                CONTINUE
```

```
CONTINUE
  40
С
              CALCULATE FORCING FUNCTION DERIVATIVE BASED ON
              SEGMENT THAT APPLIES AT HEAD ELEVATION
С
              PSLOPE = (PETM1-PETM2)/(PXDP2-PXDP1)
               RO = RO*(PETM1+PSLOPE*(PXDP1-DDD/XXX))
             ELSE
               RO = RO*(1.-(DDD/XXX))
             ENDIF
           ENDIF
C-----CONTRIBUTIONS TO RHS.
           RHS(IC,IR,KK) = RHS(IC,IR,KK) - RO
  50
        CONTINUE
  60 CONTINUE
  70 CONTINUE
С
     RETURN
     END
```

List of Variables for Module SEN1ETS1FM

Variable	Range	Definition
DDD	Module	Depth of head below ET surface in a cell
DELC	Global	Cell dimension in the column direction
DELR	Global	Cell dimension in the row direction
ETSS	Package	Elevation of the ET surface
ETSX	Package	Extinction depth
Н	Module	Head in a cell
HNEW	Global	Head
IACTIVE	Global	Flag indicating if a parameter is active
IBOUND	Global	Boundary-status indicator
IC	Module	Column index
ICL1	Module	Location in IPCLST array of first cluster in a parameter definition
ICL2	Module	Location in IPCLST array of last cluster in a parameter definition
IETS	Package	Layer indicator
IFL	Module	Indicator that cell is in zone included in a cluster of a parameter definition
IP	Module	Parameter number
IPCLST	Global	Array of parameter clusters
IPLOC	Global	First and last locations in IPCLST of clusters associated with each parameter
IR	Module	Row index
ISEG	Module	Segment index
IZ	Module	Zone-number index
IZON	Global	Zone arrays
K	Module	Cluster index
KK	Module	Layer number where ET may be simulated

Variable	Range	Definition
LASTZ	Module	Index of last zone number for cluster
LZ1	Module	Zone-array number
M	Module	Multiplier-array number
NCOL	Global	Number of columns in model grid
NETSEG	Package	Number of segments used to relate evapotranspiration rate to head
NETSOP	Package	Flag identifying layer distribution method for simulating evapotranspiration
NLAY	Global	Number of layers in model grid
NMLTAR	Global	Dimensioning variable for RMLT
NROW	Global	Number of rows in model grid
NSEGAR	Package	Dimensioning variable for PXDP and PETM
NZ	Module	Zone number
NZONAR	Global	Dimensioning variable for IZON
PETM	Package	Proportion of maximum evapotranspiration rate
PETM1	Module	Proportion of maximum evapotranspiration rate at the top of a segment
PETM2	Module	Proportion of maximum evapotranspiration rate at the bottom of a segment
PSLOPE	Module	Normalized slope of a segment
PXDP	Package	Proportion of extinction depth
PXDP1	Module	Proportion of extinction depth at the top of a segment
PXDP2	Module	Proportion of extinction depth at the bottom of a segment
RHS	Global	Right hand side
RMLT	Global	Multiplier arrays
RO	Module	Derivative of volumetric ET rate with respect to an ETS parameter
S	Module	ET surface at a cell
SM	Module	Parameter multiplier
XXX	Module	Extinction depth at a cell
ZERO	Module	0.0

DRAIN RETURN PACKAGE

In the Drain (DRN) Package, which has been included in MODFLOW since its initial release, ground water simulated as exiting the ground-water system by way of drain cells is accounted for in the volumetric budget, but otherwise is removed from the system. In the Drain Return (DRT1) Package documented in this report, the user can specify that a certain fraction of the simulated drain flow be returned simultaneously to any cell in the system. One use for this capability would be to simulate a situation where water discharging from a well, which is completed in a confined aquifer and has a hydraulic head above land surface, flows onto the land surface and may infiltrate and recharge a shallow aquifer. Flowing wells can be simulated with either the DRN Package or the DRT1 Package. If the fraction of well discharge recharging the shallow aquifer can be estimated, the DRT1 Package can be used effectively to more accurately simulate the ground-water system.

Conceptualization of Drains with Return Flow

When the DRT1 Package is used, activation of the return-flow capability is optional. If the return-flow capability is not selected, the internal functioning of the DRT1 Package is identical to the DRN Package (Harbaugh and others, 2000; Hill and others, 2000), although the formats of the first few lines of the input files differ.

When the return-flow option of the DRT1 Package is selected, each cell designated as having a drain may have either zero or one associated cell where some portion of the flow simulated as exiting the system at the drain may be simulated as returning to the system. In the context of the DRT1 Package, the cell where the drain is located is referred to as the drain-return cell. The cell where flow returns to the system is referred to as the recipient cell.

To help distinguish the DRT1 Package from the DRN Package, the cell where the drain is located will be referred to as the drain-return cell in this documentation, even if the return-flow option is not selected. In some cases, to conserve space in the model output, "drain cell" or "drain" is used to refer to drain-return cells. In these cases, additional text (for example, "DRT") is printed to avoid possible confusion with output of the DRN Package.

The functioning of drain-return cells and the return-flow capability is conceptually simple. For each drain-return cell, the user identifies a recipient cell and a return-flow proportion in the range 0.0 to 1.0. Flow out of the ground-water system at the drain-return cell is governed by one of two equations, depending on the head in the cell relative to the drain elevation:

$$QD_{i, j, k} = CD_{i, j, k}(h_{i, j, k} - d_{i, j, k})$$
(3)

$$QD_{i,j,k} = 0 (4)$$

where

 $QD_{i,j,k}$ is the volumetric flow rate (L³/T) computed from cell i,j,k for the drain-return feature,

 $CD_{i,j,k}$ is the drain conductance (L²/T) for the drain-return feature in cell i,j,k,

 $h_{i,j,k}$ is the hydraulic head (L) computed for cell i,j,k, and

 $d_{i,j,k}$ is the drain elevation (L) for the drain-return feature in cell i,j,k.

When the head in the drain-return cell is higher than the drain elevation, equation (3) applies. Otherwise, equation (4) applies.

Return flow into the ground-water system at an associated recipient cell is governed by the following equation:

$$QRF_{ir, jr, kr} = RFPROP_{i, j, k} \times QD_{i, j, k}$$
(5)

where

 $QRF_{ir,jr,kr}$ is the volumetric flow rate (L³/T) into the recipient cell associated with the drain-return feature in cell i,j,k, and

 $RFPROP_{i,i,k}$ is the return-flow proportion (dimensionless) specified for the drain-return feature in cell i,j,k.

If the return-flow proportion is greater than 0.0, water is simulated as entering the ground-water system at the recipient cell at a rate equal to the product of the rate of flow exiting the system at the drain-return cell and the return-flow proportion. Figure 5 illustrates a conceptual model for one possible application of the DRT1 Package; however, other applications and conceptual models are possible.

Figure 5.-- Conceptual model of the use of the DRT1 Package to simulate the return flow of a portion of discharge from a flowing well. When the head in the drain-return cell is higher than the drain elevation, water discharges from the ground-water system; a user-specified proportion of this discharge returns to the ground-water system at the recipient cell.

When the DRT1 Package is used, the volumetric budget written to the LIST output file includes DRT1-Package entries in both the "IN" and "OUT" sections. The volume and rate of flow listed for the DRT1 Package in the "IN" section include the return flow to all recipient cells. The volume and rate of flow listed in the "OUT" section include all water flowing out of all drain-return cells, and so include both the water permanently removed from the ground-water system and the water returned to the ground-water system as return flow.

The DRT1 Package supports the use of parameters as discussed in Harbaugh and others (2000) and Hill and others (2000). Drain-return parameters control the hydraulic conductance of drain-return features. Drain-return features can be specified using parameters, without using parameters, or using a combination of the two methods.

More than one drain-return feature may be specified at a single cell for the same stress period, with or without the use of parameters. The need for more than one such feature could arise if multiple flowing wells with differing well-head elevations are located in a cell or if return flow is to be directed to more than one recipient cell. Hill and others (2000) describe how to construct input files so that flow observations for different features in the same cell are interpreted by the program as intended by the user.

Input Instructions for the Drain Return Package

Input to the DRT1 Package is read from the file that has type "DRT" in the name file. Optional variables are shown in brackets. All variables are free format if the option "FREE" is specified in the Basic Package input file; otherwise, the non-optional variables have 10-character fields and the optional variables are free format.

FOR EACH SIMULATION

- 0. [#Text]
 - Item 0 is optional -- "#" must be in column 1. Item 0 can be repeated as many times as desired.
- 1. MXADRT IDRTCB NPDRT MXL [Option]
- 2. [PARNAM PARTYP Parval NLST]
- 3. Layer Row Column Elevation Condfact [LayR RowR ColR Rfprop] [xyz]

NLST repetitions of Item 3 records are required; they are read by module ULSTRD (Harbaugh and others, 2000). (SFAC of the ULSTRD utility module applies to Condfact.)

Repeat Items 2 and 3 for each parameter to be defined (that is, NPDRT times). Items 2 and 3 are omitted if NPDRT = 0.

FOR EACH STRESS PERIOD

- 4. ITMP NP
- 5. Layer Row Column Elevation Cond [LayR RowR ColR Rfprop] [xyz] ITMP repetitions of Item 5 records are read by module ULSTRD (Harbaugh and others, 2000) if ITMP > 0. (SFAC of the ULSTRD utility module applies to Cond). Item 5 is not read if ITMP ≤ 0.
- 6. Pname

(Item 6 is repeated NP times. It is not read if $NP \le 0$.)

Explanation of Variables Read by the Drain Return Package

Text—is a character variable (79 characters) that starts in column 2. Any characters can be included in Text. The "#" character must be in column 1. Lines beginning with "#" are restricted to these first lines of the input file. Text is written to the LIST output file when the input file is read.

MXADRT—is the maximum number of drain-return cells in use during any stress period, including those defined using parameters. **Recipient cells are not included in MXADRT**.

IDRTCB—is a flag and a unit number.

If IDRTCB > 0, it is the unit number to which DRT1-Package cell-by-cell flow terms will be written when "SAVE BUDGET" or a non-zero value for ICBCFL is specified in Output Control (Harbaugh and others, 2000). IDRTCB must be a unit number associated with a file listed with type "DATA(BINARY)" or "DATAGLO(BINARY)" in the name file.

If IDRTCB = 0, DRT1-Package cell-by-cell flow terms will not be written.

If IDRTCB < 0, drain leakage for each drain-return cell and return flow to each recipient cell will be written to the LIST file when "SAVE BUDGET" or a non-zero value for ICBCFL is specified in Output Control.

NPDRT—is the number of drain-return parameters.

MXL—is the maximum number of drain-return cells that will be defined using parameters. Recipient cells are not included in MXL.

Option—is an optional list of character values.

"AUXILIARY abc" or "AUX abc"—defines an auxiliary variable (Harbaugh and McDonald, 1996a, p. 9, item 4), named "abc," which will be read for each drain as part of items 3 and 5. Up to five variables can be specified, each of which must be preceded by "AUXILIARY" or "AUX." These variables will not be used by the Ground-Water Flow Process, but they will be available for use by other processes. The auxiliary variable values will be read after the Cond variable.

"CBCALLOCATE" or "CBC"—indicates that memory should be allocated to store cell-by-cell flow for each drain in order to make these flows available for use in other packages.

"RETURNFLOW"—activates the return-flow option of the DRT1 Package. If "RETURNFLOW" is listed as an option, LayR, and, optionally, RowR, ColR, and Rfprop are read from items 3 and(or) 5.

PARNAM—is the name of a parameter to be defined. This name can consist of 1 to 10 characters and is not case sensitive. That is, any combination of the same characters with different case will be equivalent.

PARTYP—is the type of parameter to be defined. For the DRT1 Package, the only allowed parameter type is "DRT," which defines values of the drain hydraulic conductance.

Parval—is the parameter value. This parameter value may be overridden by a value in the Sensitivity Process input file or by a value generated by the Parameter-Estimation Process.

NLST—is the number of drain-return cells included in the parameter.

Layer—is the layer number of the cell containing the drain.

Row—is the row number of the cell containing the drain.

Column—is the column number of the cell containing the drain.

Elevation—is the elevation of the drain.

Condfact—is the factor used to calculate drain hydraulic conductance from the parameter value. The conductance (L^2/T) is the product of Condfact and the parameter value.

LayR—is a flag and, if greater than 0, a layer number. If auxiliary variables are being read, LayR must be greater than zero, so that RowR, ColR, and Rfprop are read. LayR is not read if "RETURNFLOW" is not listed as an option in item 1.

If LayR > 0, it is the layer number of the recipient cell.

If LayR = 0, there is no return flow for the drain cell, and RowR, ColR, and Rfprop are not read.

RowR—is the row number of the recipient cell. RowR is not read if "RETURNFLOW" is not listed as an option in item 1.

ColR—is the column number of the recipient cell. ColR is not read if "RETURNFLOW" is not listed as an option in item 1.

Rfprop—is the return-flow proportion. Valid values are in the range 0.0 to 1.0, inclusive. Rfprop is the proportion of the drain flow, if any, calculated for the drain-return cell simulated as returning to the recipient cell. If Rfprop equals 0.0, the return-flow capability is deactivated for the cell. Rfprop is not read if "RETURNFLOW" is not listed as an option in item 1.

[xyz]—is up to five auxiliary variables for a drain-return cell that have been defined in item 1. The auxiliary variables must be present in each repetition of items 3 and 5 record if they are defined in item 1.

ITMP—is a flag and a counter.

If ITMP < 0, non-parameter drain-return data from the last stress period will be reused.

If ITMP \geq 0, ITMP will be the number of non-parameter drain-return cells read for the current stress period.

NP—is the number of drain-return parameters in use in the current stress period.

Cond—is the hydraulic conductance of the interface between the aquifer and the drain.

Pname—is the name of a parameter being used in the current stress period. NP parameter names will be read.

Flow Observations Using the Drain Return Package

The concept of flow observations and related equations are presented in chapter 4 of Hill and others (2000). The method for specifying flow observations for features simulated using the DRT1 Package is nearly identical to the method used for features simulated using the DRN Package (Hill and others, 2000). For each observation specified, MODFLOW-2000 calculates a simulated equivalent, which can be compared to the user-specified observed value. The simulated equivalents calculated by the DRT1 Package include the flow from the drain-return cells and are not adjusted for any return flow to recipient cells. The differences between use of the DRN Package and use of the DRT1 Package to specify flow observation are: (1) the file type "DTOB" is used in the name file for the DRT1 Package instead of "DROB," which is used for the DRN Package; and (2) the variable names differ.

When more than one drain-return feature is specified at the same cell in the same stress period, care must be taken to ensure that flow observations are associated with the correct feature. Hill and others (2000) provide instructions for preparing an input file to address this situation.

Input Instructions for Flow Observations

Input for the file used to specify flow observations using the DRT1 Package is read from a file that is specified with "DTOB" as the file type listed in the name file.

- 0. [#Text]
 - Item 0 is optional and can include as many lines as desired. Each line needs to begin with the "#" character in the first column.
- 1. NQDT NQCDT NQTDT (free format)
- 2. TOMULTDT EVFDT IOWTQDT (free format)
 - Read items 3, 4, and 5 for each of NQDT groups of cells for which flow observations are to be specified for features simulated with the DRT1 Package.
- 3. NQOBDT NQCLDT (free format)
 - Read item 4 for each of NQOBDT observation times for this group of cells. STATISTIC and STAT-FLAG are ignored if IOWTODT > 0.
- 4. OBSNAM IREFSP TOFFSET HOBS STATISTIC STAT-FLAG PLOT-SYMBOL (free format)
 Read item 5 for each cell in this group; the number of cells equals the absolute value of NQCLDT from item 3
- 5. Layer Row Column Factor (free format)
 - Read items 6 and 7 if IOWTQDT > 0.
- 6. FMTIN IPRN (free format)
- 7. WTQ(1,1), WTQ(1,2), WTQ(1,3), ..., WTQ(1,NQTDT) (format: FMTIN)
 WTQ(2,1), WTQ(2,2), WTQ(2,3), ..., WTQ(2,NQTDT)
 ...
 WTO(NOTDT,1), WTO(NOTDT,2), WTO(NOTDT,3), ..., WTO(NOTDT,NOTDT)

Explanation of Variables for Flow Observations

Text—is a character variable (79 characters) that starts in column 2. Any characters can be included in Text. The "#" character must be in column 1. Lines beginning with "#" are restricted to these first lines of the input file. Text is written to the LIST output file when the input file is read and provides an opportunity for the user to include information about the model both in the input file and the associated output file.

NQDT—is the number of cell groups for which drain-return flow observations are listed. A group consists of the drain-return cells needed to represent one flow measurement. Recipient cells are not included in NQDT.

NQCDT—is greater than or equal to the total number of drain-return cells in all cell groups. NQCDT must be greater than or equal to the sum of all |NQCLDT|. Recipient cells are not included in NQCDT.

NQTDT—is the total number of drain-return observations for all cell groups. NQTDT must equal the sum of all NQOBDT, which are specified in repetitions of item 3 in the DTOB input file.

TOMULTDT—is the time-offset multiplier for drain-return observations [-- or T/T]. The product of TOMULTDT and TOFFSET must produce a time value in units consistent with other model input. TOMULTDT can be dimensionless or can be used to convert the units of TOFFSET to the time unit used in the simulation.

EVFDT—is the error variance multiplier for observations represented by the DRT1 Package, and is used to calculate the weights as described below in the explanation of STATISTIC. EVFDT makes it easy to change the weights uniformly for all flow observations represented using the DRT1 Package.

IOWTQDT—is a flag that indicates that the variance-covariance matrix on drain-return flow observations is to be read into array WTQ of item 7. If IOWTQDT equals zero, weights are calculated using STATISTIC of item 4; if it is greater than zero, items 6 and 7 are read and used to calculate the weights.

NQOBDT—is the number of times at which flows are observed for the group of cells.

NQCLDT—is a flag, and the absolute value of NQCLDT is the number of drain-return cells in the group. If NQCLDT is less than zero, FACTOR = 1.0 for all cells in the group. Recipient cells are not included in NQCLDT.

OBSNAM—is a string of 1 to 12 non-blank characters used to identify the observation.

IREFSP—is the reference stress period to which observation times are referenced. The reference point is the beginning of the stress period.

TOFFSET—is the time offset of the observation from the beginning of stress period IREFSP [T]. TOFFSET must be in units such that the product of TOMULTDT and TOFFSET is in time units consistent with other model input. TOFFSET and TOMULTDT from the DTOB file and values of PERLEN, NSTP, and TSMULT from the DIS file (Harbaugh and others, 2000) are used to determine the stress period, time step, and time during the time step for the observation. To specify that an observation is for a steady-state model solution, specify IREFSP as the stress-period number of the steady-state stress period, and specify TOFFSET such that TOMULTDT×TOFFSET is less than or equal to PERLEN for the stress period; if PERLEN is zero, set TOFFSET to zero. If the observation falls within a time step, the simulated equivalent is calculated by linearly interpolating between values for the beginning and end of the time step. If the first stress period is transient and the observation falls within the first time step, the simulated equivalent from the end of the time step is used because no flow from the beginning of the time step is available for interpolation.

HOBS—is the observed drain-return-boundary flow $[L^3/T]$. For the DRT1 Package, only negative values of HOBS are expected. Negative values indicate flow out of the ground-water system.

STATISTIC—is the value from which the weight for the observation is calculated as determined using STAT-FLAG. STATISTIC is ignored if IOWTQDT is greater than zero, in which case WTQ of item 7 is used to define the weighting.

STAT-FLAG—is a flag identifying what STATISTIC is and how the weight is calculated. STAT-FLAG is ignored if IOWTQDT is greater than zero.

STAT-FLAG = 0, STATISTIC is a scaled variance $[(L^3/T)^2]$, weight = $1/(STATISTIC \times EVFDT)$ STAT-FLAG = 1, STATISTIC is a scaled standard deviation $[L^3/T]$, weight = $1/(STATISTIC^2 \times EVFDT)$ STAT-FLAG = 2, STATISTIC is a scaled coefficient of variation [dimensionless], weight = $1/[(STATISTIC \times HOBS)^2 \times EVFDT]$ PLOT-SYMBOL—is an integer that will be written to output files intended for graphical analysis to allow control of the symbols used when plotting data (Hill and others, 2000).

LAYER—is the layer index of a drain-return cell included in the cell group.

ROW—is the row index of a drain-return cell included in the cell group.

COLUMN—is the column index of a drain-return cell included in the cell group.

FACTOR—is the portion of the simulated drain flow in the cell that is included in the total simulated drain flow for this cell group (f_n of eq. 9 in Hill and others, 2000).

FMTIN—is the Fortran format to be used in reading each line of the variance-covariance matrix used to calculate the weighting. The format needs to be enclosed in parentheses and needs to accommodate real numbers.

IPRN—is a flag identifying the format in which the variance-covariance matrix is to be printed. If IPRN is less than zero, the matrix is not printed. Permissible values of IPRN and corresponding formats are:

Output requires more than 80 columns		Output requires 80 columns or less	
IPRN	Format	IPRN	Format
1	10G12.3	6	5G12.3
2	10G12.4	7	5G12.4
3	9G12.5	8	5G12.5
4	8G13.6	9	4G13.6
5	8G14.7	10	4G14.7

WTQ—is an NQTDT by NQTDT array containing the variance-covariance matrix on drain-return flow observations $[(L^3/T)^2]$. For elements WTQ(I,J), if $I \neq J$, WTQ(I,J) is the covariance between observations I and J; if I = J, WTQ(I,J) is the variance of observation I. Note that the variance-covariance matrix is symmetric, but the entire matrix (upper and lower parts) must be entered.

DRT1 Example Problem

A simple example problem was devised to demonstrate that the DRT1 Package correctly calculates flow out of a drain-return cell and into a recipient cell when the RETURNFLOW option is selected. For this problem, a grid of 11 rows by 11 columns in one layer was used to simulate an unconfined aquifer with a uniform base elevation of 0 ft. All row and column widths were 100 ft. All cells in column 1 had a specified head of 50 ft, and all cells in column 11 had a specified head of 100 ft. Hydraulic conductivity of the aquifer material was 0.05 ft/d, and the system was modeled in steady state. A drain was simulated in row 5, column 8, and 40 percent of the flow from the drain was assumed to return to the ground-water system in row 7, column 3 (fig. 6). The drain elevation was 60 ft and the conductance of the drain was 2 ft²/d. This system was simulated with the DRT1 Package for one simulation and with the DRN and WEL Packages (Harbaugh and others, 2000) for a second simulation. The input files for these simulations are listed in Appendix B.

For the simulation using the DRT1 Package, a drain-return feature was defined in the cell in row 5, column 8. The corresponding recipient cell was specified in row 7, column 3. The return-flow proportion was specified as 0.4. Results of the model run showed that flow out of the ground-water system at the drain-return cell was 45.2126 ft³/d. Note that, in general, model results would be presented with no more significant digits than are supported by the input data; however, for this demonstration of model accuracy, all digits shown in the LIST file

are reported. Flow into the system at the recipient cell was 18.0850 ft³/d, which equals 40 percent of the flow out of the system at the drain-return cell. The LIST output file generated by this simulation is in Appendix B. When the DRT1 Package is used to simulate the system, the ratio of flow into the system at the recipient cell to flow out of the system at the drain-return cell always would equal 0.40, even if calculated head at the drain-return cell changes with changing stresses.

For the simulation using the DRN and WEL Packages, a drain was simulated in row 5, column 8, and an injection well was simulated in row 7, column 3. The injection rate was specified as 18.0850 ft³/d to agree with the results from the simulation that used the DRT1 Package. Flow out of the ground-water system at the drain was calculated as 45.2125 ft³/d, matching the outflow obtained using the DRT1 Package. The calculated head distribution and volumetric budget for this simulation are listed in Appendix B. The head distribution was identical to that obtained with the DRT1 Package, and the volumetric budgets were identical within round-off error. Note that if different stresses were applied to the system and were to result in a different calculated head at the drain cell, the user would need to manually change the specified injection rate to maintain the assumed 40-percent ratio of inflow to outflow.

- C Constant-head cell
- D Drain or drain-return cell
- I Injection well or recipient cell

Figure 6.-- Location of features simulated in the DRT1 example problem.

Module Documentation for the Drain Return Package

The DRT1 Package is composed of 14 modules. Five of these are primary modules that are part of the Ground-Water Flow Process. Four are primary modules that are part of the Observation Process. One is a primary module that is part of the Sensitivity Process. Primary modules are called directly from the main program unit. In addition, the DRT1 Package includes two secondary modules that are part of the Ground-Water Flow Process and two secondary modules that are part of the Observation Process. Secondary modules are called from other modules. The 14 modules are:

GWF1DRT1AL—Reads options and allocates memory for data arrays. GWF1DRT1AL is a primary module of the Ground-Water Flow Process and is in source-code file gwf1drt1.f.

GWF1DRT1RQ—Reads drain-return parameter definitions. GWF1DRT1RQ is a primary module of the Ground-Water Flow Process and is in source-code file gwf1drt1.f.

GWF1DRT1RP—Reads drain-return cell data and, if DRT parameters are defined, performs substitution using parameter values. GWF1DRT1RP is a primary module of the Ground-Water Flow Process and is in source-code file gwf1drt.f.

GWF1DRT1FM—Formulates terms needed to solve the ground-water flow equation and adds them to the head-coefficient array (HCOF) and to the right-hand side array (RHS). GWF1DRT1FM is a primary module of the Ground-Water Flow Process and is in source-code file gwf1drt1.f.

GWF1DRT1BD—Computes flow rates simulated as flow from drain-return cells and to recipient cells and writes cell-by-cell flow rates if that option is selected. GWF1DRT1BD is a primary module of the Ground-Water Flow Process and is in source-code file gwf1drt1.f.

SGWF1DRT1LR—Reads and prints a list of drain-return cell data. SGWF1DRT1LR is a secondary module of the Ground-Water Flow Process and in source-code file gwf1drt1.f.

SGWF1DRT1LS—Reads a DRT parameter name and performs substitution for associated drain-return cells using the current parameter value. SGWF1DRT1LS is a secondary module of the Ground-Water Flow Process and is in source-code file gwf1drt1.f.

OBS1DRT1AL—Reads data from the DTOB file regarding numbers of observations at drain-return cells and allocates memory. OBS1DRT1AL is a primary module of the Observation Process and is in source-code file obs1drt1.f.

OBS1DRT1RP—Reads and checks flow-observation data for drain-return cells. OBS1DRT1RP is a primary module of the Observation Process and is in source-code file obs1drt1.f.

OBS1DRT1FM—Calculates simulated equivalents for flow observations at drain-return cells. OBS1DRT1FM is a primary module of the Observation Process and is in source-code file obs1drt1.f.

OBS1DRT1DR—Calculates sensitivities for flow observations at drain-return cells. OBS1DRT1DR is a primary module of the Observation Process and is in source-code file obs1drt1.f.

SOBS1DRT1OH—Calculates and prints weighted residuals for flow observations at drain-return cells. SOBS1DRT1OH is a secondary module of the Observation Process and is in source-code file obs1drt1.f.

SOBS1DRT1QC—Populates QCLS array with Condfact from parameter definition for one DRT parameter. SOBS1DRT1QC is a secondary module of the Observation Process and is in source-code file obs1drt1.f.

SEN1DRT1FM—Formulates terms needed to solve the sensitivity equation and adds them to the right-hand side array (RHS). SEN1DRT1FM is a primary module of the Sensitivity Process and is in source-code file sen1drt1.f.

Module GWF1DRT1AL

Narrative for Module GWF1DRT1AL

This primary module reads package options from item 1 of the DRT1 input file and allocates space in the RX and IR arrays (Harbaugh and others, 2000). Output is written to the LIST file.

- 1. Print a message identifying the DRT1 Package.
- 2. Read and print comment lines (item 0) introduced with the "#" character.
- 3. Read maximum number of DRT1 cells that can be active at one time (MXADRT), the unit number for cell-by-cell flow terms (IDRTCB), the number of parameters (NPDRT), the maximum number of drain-return cells to be defined using parameters (MXL), and any package options from item 1. Print messages related to number of cells, number of parameters, options and, if IDRTCB is greater than zero, the unit number.
- 4. Allocate space in the RX array for the DRTF array.
- 5. Print a message showing amount of storage required by the DRT1 Package.

Listing for Module GWF1DRT1AL

```
SUBROUTINE GWF1DRT1AL(ISUM, LCDRTF, MXDRT, NDRTCL, IN, IOUT, IDRTCB,
                        NDRTVL, IDRTAL, IFREFM, NPDRT, IDRTPB, NDRTNP,
                           IDRTFL)
C
C----VERSION 20000620 ERB
С
C
     ALLOCATE ARRAY STORAGE FOR DRAINS AND RETURN FLOWS
С
     SPECIFICATIONS:
С
C
      COMMON /DRTCOM/DRTAUX(5)
      CHARACTER*16 DRTAUX
      CHARACTER*200 LINE
C
C1-----IDENTIFY PACKAGE AND INITIALIZE NDRTCL.
     WRITE(IOUT,1)IN
    1 FORMAT(1X./
     &1X,'DRT1 -- DRAIN RETURN PACKAGE, VERSION 1, 5/2/2000',/,
     &' INPUT READ FROM UNIT', 13)
     NDRTCI_{i}=0
     NDRTNP=0
      IDRTFL=0
C2----READ MAXIMUM NUMBER OF DRAINS AND UNIT OR FLAG FOR
C2----CELL-BY-CELL FLOW TERMS.
    READ COMMENTS (ITEM 0)
     CALL URDCOM(IN, IOUT, LINE)
     READ ITEM 1
C
     IF (IFREFM.EQ.0) THEN
        READ(LINE, '(4110)') MXADRT, IDRTCB, NPDRT, MXL
```

```
LLOC=21
      ELSE
        LLOC=1
        CALL URWORD(LINE, LLOC, ISTART, ISTOP, 2, MXADRT, R, IOUT, IN)
        CALL URWORD(LINE, LLOC, ISTART, ISTOP, 2, IDRTCB, R, IOUT, IN)
        CALL URWORD (LINE, LLOC, ISTART, ISTOP, 2, NPDRT, R, IOUT, IN)
        CALL URWORD(LINE, LLOC, ISTART, ISTOP, 2, MXL, R, IOUT, IN)
      ENDIF
      WRITE(IOUT, 3) MXADRT
    3 FORMAT(1X,'MAXIMUM OF', I5,
     &' ACTIVE DRAINS WITH RETURN FLOW AT ONE TIME')
     IF (IDRTCB.LT.0) WRITE(IOUT,7)
    7 FORMAT(1X,'CELL-BY-CELL FLOWS WILL BE PRINTED WHEN ICBCFL NOT 0')
      IF (IDRTCB.GT.0) WRITE(IOUT,8) IDRTCB
    8 FORMAT(1X, 'CELL-BY-CELL FLOWS WILL BE SAVED ON UNIT', I3)
      IF (NPDRT.GT.0) THEN
        WRITE(IOUT,9) NPDRT,MXL
       FORMAT(1X, I5, ' Named Parameters
                                            ',I5,' List entries')
      ELSE
        WRITE(IOUT, '(A)') ' No named parameters'
      END IF
C3-----READ AUXILIARY VARIABLES AND CBC ALLOCATION OPTION.
      IDRTAL=0
      NAUX=0
   10 CALL URWORD(LINE, LLOC, ISTART, ISTOP, 1, N, R, IOUT, IN)
      IF (LINE(ISTART:ISTOP).EQ.'CBCALLOCATE' .OR.
         LINE(ISTART: ISTOP).EQ. 'CBC') THEN
        IDRTAL=1
        WRITE(IOUT, 11)
       FORMAT(1X,'MEMORY IS ALLOCATED FOR CELL-BY-CELL BUDGET TERMS')
        GOTO 10
      ELSEIF(LINE(ISTART:ISTOP).EQ.'AUXILIARY' .OR.
            LINE(ISTART: ISTOP).EO. 'AUX') THEN
        CALL URWORD (LINE, LLOC, ISTART, ISTOP, 1, N, R, IOUT, IN)
        IF (NAUX.LT.5) THEN
          NAUX=NAUX+1
          DRTAUX(NAUX)=LINE(ISTART:ISTOP)
          WRITE(IOUT, 12) DRTAUX(NAUX)
   12
         FORMAT(1X, 'AUXILIARY DRAIN-RETURN FLOW VARIABLE: ',A)
        ENDIF
        GOTO 10
      ELSEIF (LINE(ISTART:ISTOP).EQ.'RETURNFLOW') THEN
        IDRTFL=4
        WRITE(IOUT, 13)
        GOTO 10
   13 FORMAT(1X,'RETURN FLOW OPTION IS SELECTED')
      ENDIF
      IF (IDRTAL.EQ.1 .AND. IDRTFL.EQ.4) IDRTAL = 2
      NDRTVL=5+NAUX+IDRTAL+IDRTFL
C4----ALLOCATE SPACE IN THE RX ARRAY FOR THE DRTF ARRAY.
      TDRTPB=MXADRT+1
      MXDRT=MXADRT+MXL
      ISOLD=ISUM
      LCDRTF=ISUM
      ISUM=ISUM+NDRTVL*MXDRT
C5----PRINT AMOUNT OF SPACE USED BY DRAIN PACKAGE.
     ISP=ISUM-ISOLD
      WRITE (IOUT, 14) ISP
  14 FORMAT(1X, I10, ' ELEMENTS IN RX ARRAY ARE USED BY DRT')
C
C6----RETURN.
     RETURN
      END
```

List of Variables for Module GWF1DRT1AL

Variable	Range	Definition
DRTAUX	Package	Auxiliary-variable names
IDRTAL	Package	Indicator for saving cell-by-cell budget terms
IDRTCB	Package	Indicator and unit number for writing cell-by-cell flows
IDRTFL	Package	Indicator for return-flow option
IDRTPB	Package	First position in DRTF array used for storing parameter data
IFREFM	Global	Flag indicating if variables are to be read in free format
IN	Module	Unit number for input file
IOUT	Global	Unit number of LIST output file
ISOLD	Module	ISUM value before allocation
ISP	Module	Number of elements allocated in RX array
ISTART	Module	Starting position of parsed word
ISTOP	Module	Ending position of parsed word
ISUM	Module	Pointer used to keep track of position in RX
LCDRTF	Package	Position in RX of first element of DRTF
LINE	Module	Contents of one line read from input file
LLOC	Module	Pointer used to keep track of position in LINE
MXADRT	Package	Maximum number of drain-return cells that can be active in a stress period
MXDRT	Package	Dimensioning variable for DRTF
MXL	Module	Maximum number of drain-return cells that will be defined using parameters
N	Module	Dummy integer variable
NAUX	Module	Number of auxiliary variables
NDRTCL	Package	Number of drain-return cells used in a stress period
NDRTNP	Package	Number of non-parameter drain-return cells in use during a stress period
NDRTVL	Package	Dimensioning variable for DRTF
NPDRT	Package	Number of drain-return parameters
R	Module	Dummy real variable

Module GWF1DRT1RQ

Narrative for Module GWF1DRT1RQ

This primary module reads parameter definitions (items 2 and 3) from the DRT1 input file. Output is written to the GLOBAL file.

- 1. Print a message indicating how many drain-return parameters are being used.
- 2. For each drain-return parameter, call a utility and a secondary DRT1 module to read the parameter definition. The utility reads item 2 and prints the parameter name, type, value, and number of list entries used to define the parameter. The secondary module reads item 3 and prints the list entries, including drain-return cell location, drain elevation, a factor, recipient-cell location, and return-flow proportion.
- 42 MODFLOW-2000—Documentation of Packages for Simulating Evapotranspiration with a Segmented Function (ETS1) and Drains with Return Flow (DRT1)

Listing for Module GWF1DRT1RQ

```
SUBROUTINE GWF1DRT1RQ(IN,IOUT,NDRTVL,IDRTAL,NCOL,NROW,NLAY,NPDRT,
                          DRTF, IDRTPB, MXDRT, IFREFM, ITERP, IDRTFL)
    &
С
C----VERSION 20000620 ERB
     ******************
C
C
     READ DRAIN-RETURN PARAMETERS
С
С
С
     SPECIFICATIONS:
С
     DIMENSION DRTF(NDRTVL,MXDRT)
     COMMON /DRTCOM/DRTAUX(5)
     CHARACTER*16 DRTAUX
С
С
C----READ NAMED PARAMETERS.
     IF (ITERP.EQ.1) WRITE(IOUT,500) NPDRT
 500 FORMAT(1X,//1X,I5,' Drain-return parameters')
     IF (NPDRT.GT.0) THEN
       NAUX=NDRTVL-5-IDRTAL-IDRTFL
       LSTSUM=IDRTPB
       DO 10 K=1,NPDRT
        LSTBEG=LSTSUM
С
        READ ITEM 2
        CALL UPARLSTRP(LSTSUM, MXDRT, IN, IOUT, IP, 'DRT', 'DRT', ITERP)
        NLST=LSTSUM-LSTBEG
С
        READ ITEM 3
        CALL SGWF1DRT1LR(NLST, DRTF, LSTBEG, NDRTVL, MXDRT, IDRTAL, IN, IOUT,
                        DRTAUX, 5, NAUX, IFREFM, NCOL, NROW, NLAY, ITERP,
    &
                         IDRTFL)
  10 CONTINUE
     ENDIF
C
C6----RETURN
     RETURN
     END
```

List of Variables for Module GWF1DRT1RQ

Variable	Range	Definition
DRTAUX	Package	Auxiliary-variable names
DRTF	Package	Drain-return cell data
IDRTAL	Package	Indicator for saving cell-by-cell budget terms
IDRTFL	Package	Indicator for return-flow option
IDRTPB	Package	First position in DRTF array used for storing parameter data
IFREFM	Global	Flag indicating if variables are to be read in free format
IN	Module	Unit number of input file
IOUT	Global	Unit number of GLOBAL output file
IP	Module	Parameter number
ITERP	Global	Parameter-estimation iteration number
K	Module	Index for parameters
LSTBEG	Module	First position in DRTF of a list of parameter-controlled drain-return cells
LSTSUM	Module	Position in DRTF following a list of parameter-controlled drain-return cells

Variable	Range	Definition
MXDRT	Package	Dimensioning variable for DRTF
NAUX	Module	Number of auxiliary variables
NCOL	Global	Number of columns in model grid
NDRTVL	Package	Dimensioning variable for DRTF
NLAY	Global	Number of layers in model grid
NLST	Module	Number of drain-return cells in list
NPDRT	Package	Number of drain-return parameters
NROW	Global	Number of rows in model grid

Module GWF1DRT1RP

Narrative for Module GWF1DRT1RP

This primary module, for each stress period, reads items 4 through 6 of the DRT1 input file and prepares data. Output is written to the LIST file.

- 1. Read ITMP and, if DRT1 parameters are defined, NP from item 4 of the DRT1 file.
- 2. Determine how many auxiliary variables need to be read.
- 3. Determine the number of non-parameter drain-return cells to be read. If ITMP > 0, this number is ITMP.
- 4. If non-parameter drain-return cells are to be read, call a secondary module to read data for them from item 5.
- 5. If NP > 0, DRT1 parameters are active this stress period; so, for each of NP parameters, call a secondary module to read the name from item 6 and prepare data using the current parameter values.
- 6. Determine how many of the drain-return cells can return a portion of the flow to a recipient cell. Drain-return cells that have a non-zero layer index can return flow to a recipient cell.
- 7. Print a message showing how many drain-return cells are active this stress period.

Listing for Module GWF1DRT1RP

```
SUBROUTINE GWF1DRT1RP(DRTF, NDRTCL, MXDRT, IN, IOUT, NDRTVL, IDRTAL,
                          IFREFM, NCOL, NROW, NLAY, NDRTNP, NPDRT, IDRTPB,
                          IDRTFL, NRFLOW)
С
C----VERSION 20000620 ERB
     ******************
С
C
     READ DRAIN HEAD, CONDUCTANCE AND BOTTOM ELEVATION. IF THE
     RETURNFLOW OPTION IS SELECTED, READ RECIPIENT CELL AND PROPORTION.
С
С
     SPECIFICATIONS:
С
     DIMENSION DRTF(NDRTVL, MXDRT)
     COMMON /DRTCOM/DRTAUX(5)
     CHARACTER*16 DRTAUX
С
C1----READ ITMP (NUMBER OF DRAINS OR FLAG TO REUSE DATA) AND
```

```
C1----NUMBER OF PARAMETERS.
      IF (NPDRT.GT.0) THEN
        IF (IFREFM.EQ.0) THEN
         READ(IN,'(2110)') ITMP,NP
        ELSE
         READ(IN,*) ITMP,NP
        ENDIF
      ELSE
        NP=0
        IF (IFREFM.EQ.0) THEN
         READ(IN,'(I10)') ITMP
        ELSE
         READ(IN,*) ITMP
        ENDIF
      ENDIF
С
C----CALCULATE SOME CONSTANTS
      NAUX=NDRTVL-5-IDRTAL-IDRTFL
C2-----DETERMINE THE NUMBER OF NON-PARAMETER DRAIN-RETURN CELLS.
     IF (ITMP.LT.0) THEN
       WRITE(IOUT,7)
       FORMAT(1X,/,
     &' REUSING NON-PARAMETER DRAIN-RETURN CELLS FROM',
     &' LAST STRESS PERIOD')
      ELSE
        NDRTNP=ITMP
      ENDIF
С
C3-----IF THERE ARE NEW NON-PARAMETER DRAIN-RETURN CELLS, READ THEM.
      MXADRT=IDRTPB-1
      IF (ITMP.GT.0) THEN
       IF (NDRTNP.GT.MXADRT) THEN
          WRITE(IOUT, 500) NDRTNP, MXADRT
  500
         FORMAT(1X,/1X,'THE NUMBER OF ACTIVE DRT DRAINS (',14,
                 ') IS GREATER THAN MXADRT(', I4,')')
     &
          STOP
        ENDIF
        CALL SGWF1DRT1LR(NDRTNP, DRTF, 1, NDRTVL, MXDRT, IDRTAL, IN, IOUT,
                        DRTAUX,5,NAUX,IFREFM,NCOL,NROW,NLAY,1,IDRTFL)
      ENDIF
      NDRTCL=NDRTNP
C1C----IF THERE ARE ACTIVE DRT PARAMETERS, READ THEM AND SUBSTITUTE
      CALL PRESET('DRT')
      IF (NP.GT.0) THEN
        NREAD=NDRTVL-IDRTAL
        DO 30 N=1,NP
         CALL SGWF1DRT1LS(IN,IOUT,DRTF,NDRTVL,MXDRT,NREAD,MXADRT,
                          NDRTCL, DRTAUX, 5, NAUX, IDRTFL)
     &
   30 CONTINUE
      ENDIF
С
      COUNT NUMBER OF DRAIN-RETURN CELLS THAT CAN HAVE RETURN FLOW
      NRFLOW = 0
      IF (IDRTFL.GT.0) THEN
        DO 40 I=1,NDRTCL
         IF (DRTF(6,I) .GT. 0.0) NRFLOW = NRFLOW + 1
   40
      CONTINUE
      ENDIF
C3-----PRINT NUMBER OF DRAIN-RETURN CELLS IN CURRENT STRESS PERIOD.
      WRITE (IOUT, 510) NDRTCL
  510 FORMAT(1X,/1X,I5,' DRAIN-RETURN CELLS')
C
C8----RETURN.
     RETURN
```

END

List of Variables for Module GWF1DRT1RP

Variable	Range	Definition
DRTAUX	Package	Auxiliary-variable names
DRTF	Package	Drain-return cell data
I	Module	Index for drain-return cells
IDRTAL	Package	Indicator for saving cell-by-cell budget terms
IDRTFL	Package	Indicator for return-flow option
IDRTPB	Package	First position in DRTF array used for storing parameter data
IFREFM	Global	Flag indicating if variables are to be read in free format
IN	Module	Unit number of input file
IOUT	Global	Unit number of LIST output file
ITMP	Module	Flag and number of non-parameter drain-return cells
MXADRT	Package	Maximum number of drain-return cells that can be active in a stress period
MXDRT	Package	Dimensioning variable for DRTF
N	Module	Index for DRT parameters active this stress period
NAUX	Module	Number of auxiliary variables
NCOL	Global	Number of columns in model grid
NDRTCL	Package	Number of drain-return cells used in a stress period
NDRTNP	Package	Number of non-parameter drain-return cells in use during current stress period
NDRTVL	Package	Dimensioning variable for DRTF
NLAY	Global	Number of layers in model grid
NP	Module	Number of DRT parameters active this stress period
NPDRT	Package	Number of drain-return parameters
NREAD	Module	Number of values to be substituted for each drain-return cell
NRFLOW	Package	Number of drain-return cells with a positive return-flow proportion
NROW	Global	Number of rows in model grid

Module GWF1DRT1FM

Narrative for Module GWF1DRT1FM

This primary module adds terms to the finite-difference equations to account for loss of water from the ground-water system through drain-return cells. Terms are added for recipient cells where a portion of the drain flow is returned.

- 1. For each cell in the drain-return cell list, do steps 2 through 5.
- 2. If the cell is inactive or designated as constant-head, skip steps 3 through 5.
- 3. If the head in the cell is at or below the drain elevation, skip steps 4 and 5.
- 46 MODFLOW-2000—Documentation of Packages for Simulating Evapotranspiration with a Segmented Function (ETS1) and Drains with Return Flow (DRT1)

- 4. Add terms to HCOF and RHS for the drain-return cell to account for loss of water.
- 5. If a recipient cell is specified to receive return flow, add term to RHS for the recipient cell to account for return flow.

Listing for Module GWF1DRT1FM

```
SUBROUTINE GWF1DRT1FM(NDRTCL, MXDRT, DRTF, HNEW, HCOF, RHS, IBOUND,
                          NCOL, NROW, NLAY, NDRTVL, IDRTFL)
C
C----VERSION 20000620 ERB
     С
С
     ADD DRAIN-RETURN FLOW TO SOURCE TERMS FOR BOTH DRAIN-RETURN CELLS
C
     AND RECIPIENT CELLS
С
С
C
       SPECIFICATIONS:
С
     DOUBLE PRECISION HNEW, EEL
C
     DIMENSION DRTF(NDRTVL, MXDRT), HNEW(NCOL, NROW, NLAY),
              RHS(NCOL, NROW, NLAY), IBOUND(NCOL, NROW, NLAY),
              HCOF (NCOL, NROW, NLAY)
C
C1----IF NDRTCL<=0 THERE ARE NO DRAINS. RETURN.
     IF (NDRTCL.LE.0) RETURN
C
C2----PROCESS EACH CELL IN THE DRAIN-RETURN CELL LIST.
     DO 100 L=1,NDRTCL
C3----GET COLUMN, ROW AND LAYER OF CELL CONTAINING DRAIN.
       IL=DRTF(1,L)
       IR=DRTF(2,L)
       IC=DRTF(3,L)
C4-----IF THE CELL IS EXTERNAL SKIP IT.
       IF (IBOUND(IC, IR, IL). LE.0) GOTO 100
C5-----IF THE CELL IS INTERNAL GET THE DRAIN DATA.
       EL=DRTF(4,L)
       EEL=EL
C6-----IF HEAD IS LOWER THAN DRAIN THEN SKIP THIS CELL.
       IF (HNEW(IC, IR, IL).LE.EEL) GOTO 100
C7-----HEAD IS HIGHER THAN DRAIN. ADD TERMS TO RHS AND HCOF.
       C=DRTF(5,L)
       HCOF(IC,IR,IL)=HCOF(IC,IR,IL)-C
       RHS(IC, IR, IL)=RHS(IC, IR, IL)-C*EL
       IF (IDRTFL.GT.0) THEN
         ILR = DRTF(6,L)
         IF (ILR.NE.0) THEN
           IRR = DRTF(7,L)
           ICR = DRTF(8,L)
           RFPROP = DRTF(9,L)
           H = HNEW(IC,IR,IL)
           RHS(ICR, IRR, ILR) = RHS(ICR, IRR, ILR)
                              - RFPROP*C*(H-EL)
         ENDIF
       ENDIF
 100 CONTINUE
С
C8----RETURN.
     RETURN
     END
```

List of Variables for Module GWF1DRT1FM

Variable	Range	Definition
С	Module	Hydraulic conductance of drain for a drain-return cell
DRTF	Package	Drain-return cell data
EEL	Module	Drain elevation for a drain-return cell
EL	Module	Drain elevation for a drain-return cell
Н	Module	Hydraulic head at a drain-return cell
HCOF	Global	Head-coefficient array
HNEW	Global	Head
IBOUND	Global	Boundary-status indicator
IC	Module	Cell index of a drain-return cell
ICR	Module	Cell index of a recipient cell
IDRTFL	Package	Indicator for return-flow option
IL	Module	Layer index of a drain-return cell
ILR	Module	Layer index of a recipient cell
IR	Module	Row index of a drain-return cell
IRR	Module	Row index of a recipient cell
L	Module	Index for drain-return cells
MXDRT	Package	Dimensioning variable for DRTF
NCOL	Global	Number of columns in model grid
NDRTCL	Package	Number of drain-return cells used in a stress period
NDRTVL	Package	Dimensioning variable for DRTF
NLAY	Global	Number of layers in model grid
NROW	Global	Number of rows in model grid
RFPROP	Package	Return-flow proportion
RHS	Global	Right-hand side

Module GWF1DRT1BD

Narrative for Module GWF1DRT1BD

This primary module calculates rates and volumes of water removed from drain-return cells and returned to recipient cells. Output is written to the LIST file and, optionally, to the unformatted file associated with unit IDRTCB.

- 1. If cell-by-cell flows will be saved as a list, write a header to the cell-by-cell output file.
- 2. Initialize a buffer of all cell locations to zero.
- 3. For each drain-return cell, do steps 4 through 11.
- 4. If the cell is inactive, skip steps 5 through 11.
- 48 MODFLOW-2000—Documentation of Packages for Simulating Evapotranspiration with a Segmented Function (ETS1) and Drains with Return Flow (DRT1)

- 5. If the head in the cell is at or below the drain elevation, skip steps 6 through 11.
- 6. Accumulate flow volume and rate out of the drain-return cell.
- 7. Determine if a recipient cell is specified to receive return flow. If not, skip step 8.
- 8. Accumulate flow volume and rate returned to the recipient cell.
- 9. Write cell-by-cell flow rates to the LIST file, if requested.
- 10. Add rates to buffer at drain-return cell location and, if applicable, at recipient cell location.
- 11. Copy rates to DTRF array, if requested.
- 12. If requested, save cell-by-cell flow rates to the unformatted file associated with unit IDRTCB.
- 13. Move volumes, rates, and labels into arrays for printing budget.
- 14. Increment budget-term counter.

Listing for Module GWF1DRT1BD

```
SUBROUTINE GWF1DRT1BD(NDRTCL, MXDRT, VBNM, VBVL, MSUM, DRTF, DELT, HNEW,
                          NCOL, NROW, NLAY, IBOUND, KSTP, KPER, IDRTCB,
                           ICBCFL,BUFF,IOUT,PERTIM,TOTIM,NDRTVL,IDRTAL,
     &
                           IDRTFL, NRFLOW, IAUXSV)
C----VERSION 20000620 ERB
C
С
     CALCULATE VOLUMETRIC BUDGET FOR DRAIN-RETURN CELLS
С
      C
C
        SPECIFICATIONS:
     COMMON /DRTCOM/DRTAUX(5)
     CHARACTER*16 DRTAUX
     CHARACTER*16 VBNM(MSUM), TEXT
     DOUBLE PRECISION HNEW, HHNEW, EEL, CC, CEL, RATIN, RATOUT, QQ
C
     DIMENSION VBVL(4, MSUM), DRTF(NDRTVL, MXDRT), HNEW(NCOL, NROW, NLAY),
              IBOUND(NCOL,NROW,NLAY),BUFF(NCOL,NROW,NLAY)
C
     DATA TEXT /' DRAINS (DRT)'/
С
C1----INITIALIZE CELL-BY-CELL FLOW TERM FLAG (IBD) AND
C1-----ACCUMULATORS (RATIN AND RATOUT).
     ZERO=0.
     RATIN=ZERO
     RATOUT=ZERO
     TBD=0
      IF (IDRTCB.LT.0 .AND. ICBCFL.NE.0) IBD=-1
     IF (IDRTCB.GT.0) IBD=ICBCFL
     IBDLBL=0
C2----IF CELL-BY-CELL FLOWS WILL BE SAVED AS A LIST, WRITE HEADER.
     IF (IBD.EQ.2) THEN
       NAUX = NDRTVL - 5 - IDRTAL
       IF (IAUXSV.EQ.0) NAUX = 0
       CALL UBDSV4(KSTP, KPER, TEXT, NAUX, DRTAUX, IDRTCB, NCOL, NROW, NLAY,
               NDRTCL+NRFLOW, IOUT, DELT, PERTIM, TOTIM, IBOUND)
     ENDIF
C3----CLEAR THE BUFFER.
```

```
DO 30 IL=1, NLAY
       DO 20 IR=1,NROW
         DO 10 IC=1,NCOL
           BUFF(IC, IR, IL)=ZERO
   10
         CONTINUE
   20 CONTINUE
   30 CONTINUE
C4----IF THERE ARE NO DRAIN-RETURN CELLS THEN DO NOT ACCUMULATE FLOW.
     IF (NDRTCL.LE.0) GOTO 200
C5-----LOOP THROUGH EACH DRAIN-RETURN CELL, CALCULATING FLOW.
     DO 100 L=1,NDRTCL
C5A----GET LAYER, ROW & COLUMN OF CELL CONTAINING DRAIN.
       IL=DRTF(1,L)
       IR=DRTF(2,L)
       IC=DRTF(3,L)
       Q=ZERO
C5B----IF CELL IS NO-FLOW OR CONSTANT-HEAD, IGNORE IT.
       IF (IBOUND(IC, IR, IL). LE.0) GOTO 99
C5C----GET DRAIN PARAMETERS FROM DRAIN-RETURN LIST.
       EL=DRTF(4,L)
        EEL=EL
        C=DRTF(5,L)
        HHNEW=HNEW(IC,IR,IL)
C5D----IF HEAD HIGHER THAN DRAIN, CALCULATE Q=C*(EL-HHNEW).
C5D----SUBTRACT Q FROM RATOUT.
        IF (HHNEW.GT.EEL) THEN
          CC=C
          CEL=C*EL
         OO=CEL - CC*HHNEW
          Q=QQ
         RATOUT=RATOUT-00
          ILR=0
          IF (IDRTFL.GT.0) THEN
           ILR = DRTF(6,L)
           IF (ILR.NE.0) THEN
             IRR = DRTF(7,L)
             ICR = DRTF(8,L)
             RFPROP = DRTF(9,L)
              QQIN = RFPROP*(CC*HHNEW-CEL)
              QIN = QQIN
             RATIN = RATIN + QQIN
           ENDIF
          ENDIF
        ENDIF
C5E----PRINT THE INDIVIDUAL RATES IF REQUESTED(IDRTCB<0).
       IF (IBD.LT.0) THEN
         IF (IBDLBL.EQ.0) WRITE(IOUT,61) TEXT,KPER,KSTP
   61
         FORMAT(1X,/1X,A,' PERIOD',I3,' STEP',I3)
         WRITE(IOUT,62) L,IL,IR,IC,Q
         FORMAT(1X, 'DRAIN ', 14, ' LAYER ', 13, ' ROW ', 14,
   62
           ' COL ', I4, '
                             RATE ',1PG15.6)
          IF (ILR.NE.0) THEN
           WRITE(IOUT, 550) L, ILR, IRR, ICR, QIN
           FORMAT(1X, 'DRAIN ', 14, ' RETURN: LAYER ', 13, ' ROW ', 14,
  550
           ' COL ', I4, ' RATE ', 1PG15.6)
          ENDIF
          IBDLBL=1
        ENDIF
C5F----ADD Q TO BUFFER.
        BUFF(IC,IR,IL) = BUFF(IC,IR,IL) + Q
```

50

```
IF (IDRTFL.GT.0 .AND. ILR.GT.0)
        BUFF(ICR, IRR, ILR) = BUFF(ICR, IRR, ILR) + QIN
С
C5G----IF SAVING CELL-BY-CELL FLOWS IN A LIST, WRITE FLOW. OR IF
C5G----RETURNING THE FLOW IN THE DRTF ARRAY, COPY FLOW TO DRTF.
   99 IF (IBD.EQ.2) THEN
         CALL UBDSVB(IDRTCB, NCOL, NROW, IC, IR, IL, Q, DRTF(1, L), NDRTVL, NAUX,
                      10, IBOUND, NLAY)
         IF (IDRTFL.NE.0 .AND. ILR.GT.0)
          CALL UBDSVB(IDRTCB, NCOL, NROW, ICR, IRR, ILR, QIN, DRTF(1,L),
     δ.
                        NDRTVL, NAUX, 10, IBOUND, NLAY)
        ENDIF
        IF (IDRTAL.NE.0) DRTF(NDRTVL,L) = Q
        IF (IDRTAL.GT.1) DRTF(NDRTVL-1,L) = QIN
  100 CONTINUE
С
C6----IF CELL-BY-CELL FLOW WILL BE SAVED AS A 3-D ARRAY,
C6----CALL UBUDSV TO SAVE THEM.
     IF (IBD.EQ.1) CALL UBUDSV(KSTP, KPER, TEXT, IDRTCB, BUFF, NCOL, NROW,
                                NLAY, IOUT)
С
C7-----MOVE RATES, VOLUMES & LABELS INTO ARRAYS FOR PRINTING.
  200 CONTINUE
     RIN = RATIN
      ROUT=RATOUT
      VBVL(3,MSUM)=RIN
      VBVL(1,MSUM)=VBVL(1,MSUM)+RIN*DELT
      VBVL(4,MSUM)=ROUT
      VBVL(2,MSUM)=VBVL(2,MSUM)+ROUT*DELT
      VBNM(MSUM)=TEXT
С
C8----INCREMENT BUDGET TERM COUNTER.
     MSUM=MSUM+1
С
C9----RETURN.
      RETURN
      END
```

List of Variables for Module GWF1DRT1BD

Variable	Range	Definition
BUFF	Global	Buffer used to accumulate information before printing or recording it
С	Module	Hydraulic conductance of drain for a drain-return cell
CC	Module	Hydraulic conductance of drain for a drain-return cell
CEL	Module	Product of C times EL
DELT	Global	Length of the current time step
DRTAUX	Package	Auxiliary-variable names
DRTF	Package	Drain-return cell data
EEL	Module	Drain elevation for a drain-return cell
EL	Module	Drain elevation for a drain-return cell
HHNEW	Module	Head at a drain-return cell
HNEW	Global	Head
IBD	Module	Cell-by-cell budget save flag
IBDLBL	Module	Indicator for printing table heading
IBOUND	Global	Boundary-status indicator

Variable	Range	Definition
IC	Module	Cell index for a drain-return cell
ICBCFL	Global	Cell-by-cell flow-term write flag
ICR	Module	Cell index for a recipient cell
IDRTAL	Package	Indicator for saving cell-by-cell budget terms
IDRTCB	Package	Indicator and unit number for writing cell-by-cell flows
IDRTFL	Package	Indicator for return-flow option
IL	Module	Layer index for a drain-return cell
ILR	Module	Layer index for a recipient cell
IOUT	Global	Unit number of LIST output file
IR	Module	Row index for a drain-return cell
IRR	Module	Row index for a recipient cell
KPER	Global	Stress period counter
KSTP	Global	Time step counter
L	Module	Index for drain-return cells
MSUM	Global	Counter for budget entries and labels in VBVL and VBNM
MXDRT	Package	Dimensioning variable for DRTF
NAUX	Module	Number of auxiliary variables
NCOL	Global	Number of columns in model grid
NDRTCL	Package	Number of drain-return cells used in a stress period
NDRTVL	Package	Dimensioning variable for DRTF
NLAY	Global	Number of layers in model grid
NRFLOW	Package	Number of drain-return cells with a positive return-flow proportion
NROW	Global	Number of rows in model grid
PERTIM	Global	Elapsed time since beginning of stress period
Q	Module	Drain-flow rate
QIN	Module	Return-flow rate at a recipient cell
QQ	Module	Drain-flow rate
QQIN	Module	Return-flow rate at a recipient cell
RATIN	Module	Cumulative return-flow rate at all recipient cells
RATOUT	Module	Cumulative drain-flow rate at all drain-return cells
RFPROP	Package	Return-flow proportion
RIN	Module	Cumulative return-flow rate at all recipient cells
ROUT	Module	Cumulative drain-flow rate at all drain-return cells
TEXT	Module	Heading label
TOTIM	Global	Elapsed time since beginning of simulation
VBNM	Global	Labels for entries in the volumetric budget
VBVL	Global	Entries for the volumetric budget
ZERO	Module	0.0

Module SGWF1DRT1LR

Narrative for Module SGWF1DRT1LR

This secondary module reads and writes a list of drain-return cell entries. Output is written to the GLOBAL file.

- 1. Determine from which file list is to be read.
- 2. Determine if a scaling factor is to be used. If so, read it and print the value.
- 3. Print a label for the list.
- 4. For each entry in the list, read drain-return cell layer, row, column, drain elevation, and other variables, as required by options. Write values related to the drain-return cell and check validity of drain-cell location.
- 5. If the RETURNFLOW option has been specified, for each entry in the list, do steps 6 and 7.
- 6. Print values related to the recipient cell and check validity of recipient-cell location and return-flow proportion.
- 7. For the recipient cell, if the layer index or return-flow proportion equals zero, set all cell indices and proportion to zero.
- 8. If data came from a file specified with the "OPEN/CLOSE" option (Harbaugh and others, 2000), close the file.

Listing for Module SGWF1DRT1LR

```
SUBROUTINE SGWF1DRT1LR(NLIST, DRTF, LSTBEG, NDRTVL, MXDRT, IDRTAL,
                        INPACK, IOUT, DRTAUX, NCAUX, NAUX, IFREFM,
    &
    ۶
                         NCOL, NROW, NLAY, ITERP, IDRTFL)
С
C----VERSION 20000620 ERB
     *****************
C
    Read and print a list of drain and optional associated
С
    return-flow recipient cells. NAUX of the values in the list are
C
С
    optional -- auxiliary data.
     CHARACTER*57 LABEL1, LABEL2, LABEL3
     CHARACTER*16 DRTAUX(NCAUX)
     DIMENSION DRTF(NDRTVL, MXDRT)
     CHARACTER*200 LINE, FNAME
     DATA NUNOPN/99/
С
C
     IERR = 0
     ISCLOC1 = 5
     ISCLOC2 = 5
     IN=INPACK
     ICLOSE=0
     LABEL1='DRAIN NO. LAYER ROW COL DRAIN EL. STRESS FACTOR'
     LABEL2=' ---DRAIN CELL--- --RECIPIENT CELL-- RETURN'
     LABEL3='DRAIN NO. LAYER ROW COL LAYER ROW COL
С
  Check for and decode EXTERNAL and SFAC records.
     READ(IN,'(A)') LINE
     SFAC=1.
     LLOC=1
     CALL URWORD(LINE, LLOC, ISTART, ISTOP, 1, I, R, IOUT, IN)
     IF (LINE(ISTART:ISTOP).EQ.'EXTERNAL') THEN
```

```
CALL URWORD(LINE, LLOC, ISTART, ISTOP, 2, I, R, IOUT, IN)
        IN=I
        IF (ITERP.EQ.1) WRITE(IOUT,510) IN
  510
       FORMAT(1X, 'Reading list on unit', I4)
        READ(IN, '(A)') LINE
      ELSEIF (LINE(ISTART:ISTOP).EQ.'OPEN/CLOSE') THEN
        CALL URWORD(LINE, LLOC, ISTART, ISTOP, 0, N, R, IOUT, IN)
        FNAME=LINE(ISTART:ISTOP)
        IN=NUNOPN
        IF (ITERP.EQ.1) WRITE(IOUT,520) IN,FNAME
  520
       FORMAT(1X,/1X,'OPENING FILE ON UNIT', 14,':',/1X,A)
        OPEN(UNIT=IN,FILE=FNAME)
        ICLOSE=1
        READ(IN,'(A)') LINE
      ENDIF
      LLOC=1
      CALL URWORD(LINE, LLOC, ISTART, ISTOP, 1, I, R, IOUT, IN)
      IF (LINE(ISTART:ISTOP).EQ.'SFAC') THEN
        CALL URWORD(LINE, LLOC, ISTART, ISTOP, 3, I, SFAC, IOUT, IN)
        IF (ITERP.EQ.1) THEN
          WRITE(IOUT, 530) SFAC
  530
          FORMAT(1X,'LIST SCALING FACTOR=',1PG12.5)
          IF (ISCLOC1.EQ.ISCLOC2) THEN
            WRITE(IOUT, 540) ISCLOC1
  540
            FORMAT(1X,'(THE SCALE FACTOR WAS APPLIED TO FIELD', 12,')')
          ELSE
            WRITE(IOUT,550) ISCLOC1,ISCLOC2
  550
            FORMAT(1X,'(THE SCALE FACTOR WAS APPLIED TO FIELDS',
                   I2,'-',I2,')')
     &
          ENDIF
        ENDIF
        READ(IN,'(A)') LINE
      ENDIF
C
  Write a label for the list.
      IF (ITERP.EQ.1) THEN
        WRITE(IOUT, '(1X)')
        CALL ULSTLB(IOUT, LABEL1, DRTAUX, NCAUX, NAUX)
      ENDIF
C
  Read the list
      NREAD2=NDRTVL-IDRTAL
      NREAD1=NREAD2-NAUX
      N=NLIST+LSTBEG-1
      DO 100 II=LSTBEG, N
  Read a line into the buffer. (The first line has already been read
  in order to scan for EXTERNAL and SFAC records.)
        IF (II.NE.LSTBEG) READ(IN, '(A)') LINE
С
С
  Read the non-optional values from the line.
        IF (IDRTFL.EQ.0) THEN
          IF (IFREFM.EQ.0) THEN
            READ(LINE, '(3110,9F10.0)') K,I,J,(DRTF(JJ,II),JJ=4,NREAD1)
            LLOC=10*NREAD1+1
          ELSE
            LLOC=1
            CALL URWORD(LINE, LLOC, ISTART, ISTOP, 2, K, R, IOUT, IN)
            CALL URWORD(LINE, LLOC, ISTART, ISTOP, 2, I, R, IOUT, IN)
            CALL URWORD(LINE, LLOC, ISTART, ISTOP, 2, J, R, IOUT, IN)
            DO 10 JJ=4, NREAD1
              CALL URWORD (LINE, LLOC, ISTART, ISTOP, 3, IDUM, DRTF(JJ, II),
                           IOUT,IN)
   10
            CONTINUE
```

```
ENDIF
      ELSE
        IF (IFREFM.EQ.0) THEN
          READ(LINE, '(3110,2F10.0,3110,9F10.0)') K,I,J,
               (DRTF(JJ, II), JJ=4,5), KR, IR, JR, (DRTF(JJ, II), JJ=9, NREAD1)
          LLOC=10*NREAD1+1
        ELSE
          LLOC=1
          CALL URWORD(LINE, LLOC, ISTART, ISTOP, 2, K, R, IOUT, IN)
          CALL URWORD(LINE, LLOC, ISTART, ISTOP, 2, I, R, IOUT, IN)
           CALL URWORD(LINE, LLOC, ISTART, ISTOP, 2, J, R, IOUT, IN)
           CALL URWORD(LINE, LLOC, ISTART, ISTOP, 3, IDUM, DRTF(4, II), IOUT,
   &
                        IN)
           CALL URWORD(LINE, LLOC, ISTART, ISTOP, 3, IDUM, DRTF(5, II), IOUT,
                        IN)
          CALL URWORD(LINE, LLOC, ISTART, ISTOP, 2, KR, R, IOUT, IN)
           IF (KR.EQ.O .AND. NREAD1.EQ.9 .AND. NAUX.EQ.O) THEN
             IR = 0
            JR = 0
            DRTF(9,II) = 0.0
           ELSE
            CALL URWORD(LINE, LLOC, ISTART, ISTOP, 2, IR, R, IOUT, IN)
             CALL URWORD(LINE, LLOC, ISTART, ISTOP, 2, JR, R, IOUT, IN)
             DO 20 JJ=9,NREAD1
               CALL URWORD(LINE, LLOC, ISTART, ISTOP, 3, IDUM, DRTF(JJ, II),
   &
                            IOUT, IN)
 20
            CONTINUE
           ENDIF
           DRTF(6,II) = KR
           DRTF(7,II) = IR
          DRTF(8,II) = JR
        ENDIF
      ENDIF
      DRTF(1,II)=K
      DRTF(2,II)=I
      DRTF(3,II)=J
      DO 50 ILOC=ISCLOC1, ISCLOC2
        DRTF(ILOC, II) = DRTF(ILOC, II) *SFAC
 50
      CONTINUE
Read the optional values from the line
      IF (NAUX.GT.0) THEN
        DO 60 JJ=NREAD1+1,NREAD2
          CALL URWORD(LINE, LLOC, ISTART, ISTOP, 3, IDUM, DRTF(JJ, II), IOUT,
   &
                        IN)
 60
        CONTINUE
      ENDIF
Write the values that were read and that are not related to
return flow.
      NN=II-LSTBEG+1
      IF (ITERP.EQ.1) THEN
        IF (IDRTFL.EQ.0) THEN
          WRITE(IOUT, 570) NN, K, I, J, (DRTF(JJ, II), JJ=4, NREAD2)
570
          FORMAT(1X,16,17,17,17,14G16.4)
           IF (NREAD2.GE.10) THEN
            WRITE(IOUT, 570) NN, K, I, J, (DRTF(JJ, II), JJ=4,5),
   δ
                              (DRTF(JJ, II), JJ=10, NREAD2)
           ELSE
            WRITE(IOUT, 570) NN, K, I, J, (DRTF(JJ, II), JJ=4, 5)
           ENDIF
        ENDIF
```

C

С

```
ENDIF
C
C
  Check for illegal grid location
        IF (K.LT.1 .OR. K.GT.NLAY) THEN
          WRITE(IOUT,*) ' ERROR: Layer number is outside of the grid'
          IERR = 1
        ENDIF
        IF (I.LT.1 .OR. I.GT.NROW) THEN
          WRITE(IOUT, *) ' ERROR: Row number is outside of the grid'
        IF (J.LT.1 .OR. J.GT.NCOL) THEN
          WRITE(IOUT,*) ' ERROR: Column number is outside of the grid'
          IERR = 1
        ENDIF
        IF (IERR.NE.0) STOP
  100 CONTINUE
C
C
      Check and write data related to return-flow recipient cells
      IF (IDRTFL.GT.0) THEN
        IF (ITERP.EQ.1) WRITE(IOUT, '(/,1X,A,/,1X,A)') LABEL2, LABEL3
        NN = 0
        DO 110 II=LSTBEG, N
          NN = NN + 1
          K = DRTF(1,II)
          I = DRTF(2,II)
          J = DRTF(3.II)
          KR = DRTF(6,II)
          IR = DRTF(7,II)
          JR = DRTF(8,II)
          RFP = DRTF(9,II)
          IF (ITERP.EQ.1) WRITE(IOUT,600) NN,K,I,J,KR,IR,JR,RFP
  600
          FORMAT(1X,16,317,317,2X,F8.6)
C
  Check for illegal grid location
          IF (KR.NE.0) THEN
            IF (KR.LT.0 .OR. KR.GT.NLAY) THEN
              WRITE(IOUT,*) ' ERROR: Layer number is outside of the',
                            ' grid'
     &
              IERR = 1
            ENDIF
            IF (IR.LT.1 .OR. IR.GT.NROW) THEN
              WRITE(IOUT,*) ' ERROR: Row number is outside of the grid'
              IERR = 1
            ENDIF
            IF (JR.LT.1 .OR. JR.GT.NCOL) THEN
              WRITE(IOUT,*) ' ERROR: Column number is outside of the',
                            ' grid'
     &
              IERR = 1
            ENDIF
  Check for invalid return-flow proportion
            IF (RFP.LT.0.0 .OR. RFP.GT.1.0) THEN
              WRITE(IOUT, 590)
  590
              FORMAT(' ERROR: Proportion must be between 0.0 and 1.0')
              IERR = 1
            ENDIF
          ENDIF
C
  If the proportion = 0 or KR = 0, set all indices and proportion to 0
          IF (KR.EQ.O .OR. RFP.EQ.O.O) THEN
            DRTF(6,II) = 0.0
            DRTF(7,II) = 0.0
```

56

```
DRTF(8,II) = 0.0
DRTF(9,II) = 0.0
ENDIF
IF (IERR.NE.0) STOP

110 CONTINUE
ENDIF
C
IF (ICLOSE.NE.0) CLOSE(UNIT=IN)
C
RETURN
END
```

List of Variables for Module SGWF1DRT1LR

Variable	Range	Definition
DRTAUX	Package	Auxiliary-variable names
DRTF	Package	Drain-return cell data
FNAME	Module	Input file name for OPEN/CLOSE type file
Ι	Module	Row index for a drain-return cell
ICLOSE	Module	Indicator for use of OPEN/CLOSE type file
IDRTAL	Package	Indicator for saving cell-by-cell budget terms
IDRTFL	Package	Indicator for return-flow option
IDUM	Module	Dummy integer variable
IERR	Module	Error flag
IFREFM	Global	Flag indicating if variables are to be read in free format
II	Module	List-entry index
ILOC	Module	Variable in DRTF to which SFAC applies
IN	Module	Unit number of input file
INPACK	Module	Unit number of input file
IOUT	Global	Unit number of GLOBAL output file
IR	Module	Row index for a recipient cell
ISCLOC1	Module	First variable in DRTF to which SFAC applies
ISCLOC2	Module	Last variable in DRTF to which SFAC applies
ISTART	Module	Starting position of parsed word
ISTOP	Module	Ending position of parsed word
ITERP	Global	Parameter-estimation iteration number
J	Module	Column index for a drain-return cell
JJ	Module	DO-loop counter
JR	Module	Column index for a recipient cell
K	Module	Layer index for a drain-return cell
KR	Module	Layer index for a recipient cell
LABEL1	Module	Table heading

Variable	Range	Definition
LABEL2	Module	Table heading
LABEL3	Module	Table heading
LINE	Module	Contents of one line read from input file
LLOC	Module	Pointer used to keep track of position in LINE
LSTBEG	Module	First position in DRTF of a list of parameter-controlled drain-return cells
MXDRT	Package	Dimensioning variable for DRTF
N	Module	Last position in DRTF of a list of parameter-controlled drain-return cells
NAUX	Module	Number of auxiliary variables
NCAUX	Module	Maximum number of auxiliary variables
NCOL	Global	Number of columns in model grid
NDRTVL	Package	Dimensioning variable for DRTF
NLAY	Global	Number of layers in model grid
NLIST	Module	Number of entries in a list of drain-return cells
NN	Module	Drain-return cell number
NREAD1	Module	First index in DRTF for auxiliary variables
NREAD2	Module	Last index in DRTF for auxiliary variables
NROW	Global	Number of rows in model grid
NUNOPN	Module	Unit number for OPEN/CLOSE type file
R	Module	Dummy real variable
RFP	Module	Return-flow proportion
SFAC	Module	Multiplier for list entries

Module SGWF1DRT1LS

Narrative for Module SGWF1DRT1LS

This secondary module reads a DRT1 parameter name then activates that parameter by performing substitution, using the current parameter value. Output is written to the LIST file.

- 1. Read the line containing the parameter name (item 6 of the DRT1 file) and print a message with the name.
- 2. Search through the list of parameter names to find a match. When a match is found, check that parameter type is "DRT." Stop with error message if parameter name is not found or if parameter type is incorrect.
- 3. Determine number of list entries associated with the parameter.
- 4. Print label for list values.
- 5. For each entry in list, perform substitution by copying data into the part of the DRTF array that is used in formulating the finite-difference equations. Use current parameter value to calculate the drain conductance.
- 6. If the RETURNFLOW option has been specified, write recipient-cell data associated with the parameter.

Listing for Module SGWF1DRT1LS

```
SUBROUTINE SGWF1DRT1LS(IN, IOUT, DRTF, NDRTVL, MXDRT, NREAD, MXADRT,
                         NDRTCL, DRTAUX, NCAUX, NAUX, IDRTFL)
С
C----VERSION 20000620 ERB
     *****************
     Read a list parameter name and look it up in the list of
С
C
C
       SPECIFICATIONS:
C
     INCLUDE 'param.inc'
     CHARACTER*3 PACK, PTYP
     DIMENSION DRTF(NDRTVL, MXDRT)
     CHARACTER*57 LABEL1, LABEL2, LABEL3
     CHARACTER*16 DRTAUX(NCAUX)
     CHARACTER*200 LINE
     CHARACTER*10 CTMP1, CTMP2
C
     ______
     PACK = 'DRT'
     PTYP = 'DRT'
     IPVL1 = 5
     TPVT_12 = 5
     LABEL1='DRAIN NO. LAYER ROW COL DRAIN EL. CONDUCTANCE '
     LABEL2=' ----DRAIN CELL---- --RECIPIENT CELL-- RETURN'
     LABEL3='DRAIN NO. LAYER ROW COL LAYER ROW COL
С
     READ(IN,'(A)') LINE
     LLOC=1
     CALL URWORD (LINE, LLOC, ISTART, ISTOP, 0, IDUM, RDUM, IOUT, IN)
     WRITE(IOUT,500) LINE(ISTART:ISTOP)
  500 FORMAT(/,' Parameter: ',A)
     IF(LINE(ISTART:ISTOP).EQ.' ') THEN
       WRITE(IOUT, *) ' Blank parameter name in the ', PACK, ' file.'
       STOP
     END IF
     CTMP1=LINE(ISTART:ISTOP)
     CALL UPCASE(CTMP1)
     DO 100 IP=1,MXPAR
      CTMP2=PARNAM(IP)
       CALL UPCASE (CTMP2)
       IF(CTMP1.EQ.CTMP2) THEN
         IF(PARTYP(IP).NE.PTYP) THEN
           WRITE(IOUT,510) PARNAM(IP),PARTYP(IP),PACK,PTYP
  510
           FORMAT(1X,'Parameter type conflict:',/
             1X, 'Named parameter: ',A,' was defined as type: ',A,/
    &
             1X, 'However, this parameter is used in the ',A,
    &
    &
              ' file, so it should be type: ',A)
           STOP
         ENDIF
         NLST=IPLOC(2,IP)-IPLOC(1,IP)+1
         IACTIVE(IP)=1
         NDRTCL=NDRTCL+NLST
         IF(NDRTCL.GT.MXADRT) THEN
           WRITE(IOUT,520) NDRTCL, MXADRT
  520
           FORMAT(1X,/1X,'THE NUMBER OF ACTIVE LIST ENTRIES (',14,
            ')',/1X,'IS GREATER THAN THE MAXIMUM ALLOWED (',I4,')')
           STOP
         ENDIF
С
```

```
Write label for list values
           CALL ULSTLB(IOUT, LABEL1, DRTAUX, NCAUX, NAUX)
C
С
  Substitute values
           DO 60 I=1,NLST
             II=NDRTCL-NLST+I
             III=I-1+IPLOC(1,IP)
             DO 20 J=1,NREAD
               DRTF(J,II)=DRTF(J,III)
   20
             CONTINUE
             DO 40 IPVL=IPVL1, IPVL2
               DRTF(IPVL,II) = DRTF(IPVL,II) *B(IP)
   40
             CONTINUE
             IL=DRTF(1,II)
             IR=DRTF(2,II)
             IC=DRTF(3,II)
             IF (IDRTFL.EQ.0) THEN
                WRITE(IOUT, 530) II, IL, IR, IC, (DRTF(JJ, II), JJ=4, NREAD)
  530
                FORMAT(1X,16,17,17,17,14G16.4)
             ELSE
                IF (NREAD.GE.10) THEN
                  \mathtt{WRITE}(\mathtt{IOUT},\mathtt{530}) \ \mathtt{II},\mathtt{IL},\mathtt{IR},\mathtt{IC},(\mathtt{DRTF}(\mathtt{JJ},\mathtt{II}),\mathtt{JJ}\mathtt{=}4,\mathtt{5})\,,
     &
                                    (DRTF(JJ, II), JJ=10, NREAD)
                  WRITE(IOUT, 530) II, IL, IR, IC, (DRTF(JJ, II), JJ=4,5)
                ENDIF
             ENDIF
   60
           CONTINUE
           GOTO 120
         ENDIF
  100 CONTINUE
C
       WRITE(IOUT,*) ' The ',PACK,
     & ' file specifies an undefined parameter:',LINE(ISTART:ISTOP)
C
  120 CONTINUE
C
С
       WRITE DATA RELATED TO RETURN-FLOW RECIPIENT CELLS
       IF (IDRTFL.GT.0) THEN
         WRITE(IOUT, '(/,1X,A,/,1X,A)') LABEL2, LABEL3
         NN = 0
         DO 140 II=NDRTCL-NLST+1,NDRTCL
           NN = NN + 1
           K = DRTF(1,II)
           I = DRTF(2,II)
           J = DRTF(3,II)
           KR = DRTF(6,II)
           IR = DRTF(7,II)
           JR = DRTF(8,II)
           RFP = DRTF(9,II)
           WRITE(IOUT,600) NN,K,I,J,KR,IR,JR,RFP
  600
           FORMAT(1X,16,317,317,2X,F8.6)
  140
        CONTINUE
       ENDIF
C
      RETURN
      END
```

60

List of Variables for Module SGWF1DRT1LS

Variable	Range	Definition
В	Global	Parameter values
CTMP1	Module	Name of active parameter listed in input file for the stress period
CTMP2	Module	Parameter name listed in parameter definition
DRTAUX	Package	Auxiliary-variable names
DRTF	Package	Drain-return cell data
I	Module	Counter for entries for a list of parameter-controlled drain-return cells
IACTIVE	Global	Flag indicating if a parameter is active
IC	Module	Column index for a drain-return cell
IDRTFL	Package	Indicator for return-flow option
IDUM	Module	Dummy integer variable
II	Module	List-entry index for an active drain-return cell
III	Module	List-entry index for a parameter-controlled drain-return cell
IL	Module	Layer index for a drain-return cell
IN	Module	Unit number for input file
IOUT	Global	Unit number of LIST output file
IP	Module	Parameter number
IPLOC	Global	First and last locations in DRTF of cell-list entries for each parameter
IPVL	Module	Index of DRTF for elements controlled by parameter value
IPVL1	Module	Index of DRTF for first element controlled by parameter value
IPVL2	Module	Index of DRTF for last element controlled by parameter value
IR	Module	Row index for a drain-return cell
ISTART	Module	Starting position of parsed word
ISTOP	Module	Ending position of parsed word
J	Module	Column index for a drain-return cell
JJ	Module	DO-loop counter
JR	Module	Column index for a recipient cell
K	Module	Layer index for a drain-return cell
KR	Module	Layer index for a recipient cell
LABEL1	Module	Table heading
LABEL2	Module	Table heading
LABEL3	Module	Table heading
LINE	Module	Contents of one line read from input file
LLOC	Module	Pointer used to keep track of position in LINE
MXADRT	Package	Maximum number of drain-return cells that can be active in a stress period
MXDRT	Package	Dimensioning variable for DRTF

Variable	Range	Definition
MXPAR	Global	Maximum number of parameters
NAUX	Module	Number of auxiliary variables
NCAUX	Module	Maximum number of auxiliary variables
NDRTCL	Package	Number of drain-return cells used in a stress period
NDRTVL	Package	Dimensioning variable for DRTF
NLST	Module	Number of drain-return cells in list
NN	Module	Drain-return cell number
NREAD	Module	Number of values to be substituted for each drain-return cell
PACK	Module	Package abbreviation
PARNAM	Global	Parameter names
PARTYP	Global	Parameter type
PTYP	Module	Expected parameter type
RDUM	Module	Dummy real variable
RFP	Module	Return flow proportion

Module OBS1DRT1AL

Narrative for Module OBS1DRT1AL

This primary module reads item 1 of the DTOB file and allocates space for flow observations for the DRT1 Package. Output is written to the GLOBAL file.

- 1. Write a message identifying the process, the package, and the unit number used for input.
- 2. If an OBS file (Hill and others, 2000) has not been listed in the name file, print a warning message, turn off DRT1 flow observations, and return.
- 3. Read and print comment lines introduced with the "#" character.
- 4. Read the number of cell groups, total number of cells, and number of flow observations from item 1 of the DTOB file. Print message showing these values.
- 5. Allocate space in the X array for the DRTF array.

Listing for Module OBS1DRT1AL

```
WRITE(IOUT, 490) IUDTOB
  490 FORMAT(/,' OBS1DRT1 -- OBSERVATION PROCESS (DRAIN FLOW ',
    &'OBSERVATIONS: DRAIN RETURN PACKAGE)',/,' VERSION 1.0, 5/2/2000',
    &/,' INPUT READ FROM UNIT ',I3)
С
  Turn off observation package if OBS is not active
     IF (IOBS.LE.0) THEN
       WRITE(IOUT,610)
610
       FORMAT(/,1X,'WARNING: OBSERVATION (OBS) FILE IS NOT LISTED BUT',
          ' THE DRT OBSERVATION',/,' FILE (DTOB) IS',
          ' LISTED -- TURNING OFF DRT OBSERVATIONS (OBS1DRT1AL)')
       IUDTOB = 0
       RETURN
     ENDIF
С
 Read data
     READ COMMENTS (ITEM 0)
     CALL URDCOM(IUDTOB, IOUT, LINE)
     LLOC = 1
C
     READ ITEM 1
     CALL URWORD(LINE, LLOC, ISTART, ISTOP, 2, NQDT, DUM, IOUT, IUDTOB)
     CALL URWORD(LINE, LLOC, ISTART, ISTOP, 2, NQCDT, DUM, IOUT, IUDTOB)
     CALL URWORD(LINE, LLOC, ISTART, ISTOP, 2, NQTDT, DUM, IOUT, IUDTOB)
     WRITE (IOUT,500) NQDT, NQCDT, NQTDT
  10 FORMAT(1515)
  500 FORMAT (/,
          ' FOR DRAIN RETURN PACKAGE: ',/,
          ' NUMBER OF FLOW-OBSERVATION DRAIN-CELL GROUPS.....:', 15,/,
         ' NUMBER OF CELLS IN DRAIN-CELL GROUPS.....:',15,/,
          C
     NQ = NQ + NQDT
     NQC = NQC + NQCDT
     NQT = NQT + NQTDT
     LCSSDT = ISUM
     ISUM = ISUM + ITMXP + 1
     POINTER TO OBSERVATION ARRAYS
     LCOBDRT = IOBSUM
     IOBSUM = IOBSUM + NQTDT
С
     RETURN
     END
```

List of Variables for Module OBS1DRT1AL

Variable	Range	Definition
DUM	Module	Dummy real variable
IOBS	Global	Indicator that Observation Process is active
IOBSUM	Global	Pointer used to keep track of position in OBSNAM and HOBS
IOUT	Global	Unit number of GLOBAL output file
ISTART	Module	Starting position of parsed word
ISTOP	Module	Ending position of parsed word
ISUM	Global	Pointer used to keep track of position in X
ITMXP	Global	Maximum number of parameter-estimation iterations
IUDTOB	Package	Unit number for DRT observations

Variable	Range	Definition
LCOBDRT	Package	Position in OBSNAM and HOBS of first DRT observation
LCSSDT	Package	Position in X of first element of SSDT
LINE	Module	Contents of one line read from input file
LLOC	Module	Pointer used to keep track of position in LINE
NQ	Global	Number of cell groups used for all flow observations
NQC	Global	Number of cells in all cell groups
NQCDT	Package	Number of cells in used for all DRT observations
NQDT	Package	Number of cell groups used for DRT observations
NQT	Global	Total number of flow observations
NQTDT	Package	Number of DRT flow observations

Module OBS1DRT1RP

Narrative for Module OBS1DRT1RP

This primary module reads items 2 through 7 of the DTOB file and prepares data for DRT1 flow observations. Output is written to the GLOBAL file.

- 6. Read the time-offset multiplier, error variance, and variance-covariance matrix flag for DRT1 observations from item 2.
- 7. Initialize some variables.
- 8. Write messages showing error variance and time-offset multiplier.
- 9. For each cell group, do steps 5 through 13.
- 10. Read the number of times at which flows are observed for the cell group and the number of cells in the group.
- 11. Set a flag identifying the cell group as being associated with the DRT1 Package.
- 12. Print a message showing the number of observations and the number of cells in the group, and print a table heading for the list of cells.
- 13. For each observation time, do steps 9 through 12.
- 14. Read and print the observation name, reference stress period, time offset, observation, data related to the observation weight, and a plot symbol.
- 15. Call a utility to convert the observation time to a time-step number and offset within a time step.
- 16. Advance the variable that indicates the time step required for the latest observation, if appropriate.
- 17. Check that DRT1 Package is active. If not, print error message and stop.
- 18. For each cell in the group, read and print layer, row, column, and factor for the cell. Check validity of cell location.

- 19. If flag indicates variance-covariance matrix for weighting DRT1 flow observations is to be read, do steps 15 and 16.
- 20. Read input format and print flag for variance-covariance matrix on DRT1 flow observations.
- 21. If requested, print the variance-covariance matrix.
- 22. Set pointer for the variance-covariance matrix for the next flow-observation package.

Listing for Module OBS1DRT1RP

```
SUBROUTINE OBS1DRT1RP(NCOL, NROW, NPER, IUDTOB, IOUT, OBSNAM, NH, JT, NOT,
                          IBT,NQOB,NQCL,IQOB,QCLS,IERR,HOBS,TOFF,WTQ,
                          IOWTQ, IPRN, NDMH, NSTPA, PERLNA, TSMLTA, ISSA,
                          ITRSS, NQAR, NQCAR, NQTAR, IQ1, NQT1, NDD, IUDT,
                          NQDT, NQTDT, NT, NC, IPLOT, NAMES, ND, IPR, MPR,
                          IOWTQDT)
C
     VERSION 20000620 ERB
     ******************
C
C
     READ. CHECK AND STORE FLOW-OBSERVATION DATA FOR DRAIN-RETURN
     BOUNDARIES.
     ******************
C
       SPECIFICATIONS:
C
     REAL BLANK, EVFDT, HOBS, PERLNA, QCLS, TOFF, TOFFSET, TOMULTDT,
        TSMLTA, WTQ
     INTEGER I, 14, IBT, IERR, IOUT, IOWTQ, IPRN, IQ, IQOB, IUDTOB,
         IWT, J, JT, L, N, NC, NC1, NC2, NCOL, NDMH, NH, NPER,
            NQCL, NQOB, NQT, NROW, NSTPA, NT, NT1, NT2, IUDT, ISSA
     INTEGER IPLOT(ND+IPR+MPR)
     CHARACTER*12 OBSNAM(NDD), NAMES(ND+IPR+MPR)
     CHARACTER*20 FMTIN*20, ANAME*50
     DIMENSION IBT(2,NQAR), NQOB(NQAR), NQCL(NQAR), IQOB(NQTAR),
               QCLS(5,NQCAR), HOBS(NH+NQT), TOFF(NH+NQT), NSTPA(NPER),
              PERLNA(NPER), TSMLTA(NPER), ISSA(NPER)
     DIMENSION WTQ(NDMH, NDMH)
     CHARACTER*10 STATYP(0:2)
     DATA (STATYP(I),I=0,2)/'VARIANCE','STD. DEV.','COEF. VAR.'/
     DATA ANAME/'COVARIANCE OF DRT-PACKAGE FLOW OBSERVATIONS '/
 500 FORMAT (15X,2F5.0,F10.0)
 505 FORMAT (8F10.0)
 510 FORMAT (A4,6X,I5,3F10.0,I5)
  515 FORMAT (A3,2X,2I5)
 517 FORMAT (/,' DRT-PACKAGE FLOW OBSERVATION VARIANCES ARE',
    % ' MULTIPLIED BY: ',G15.4)
  520 FORMAT (/,' OBSERVED DRT-PACKAGE FLOW DATA',/,' -- TIME OFFSETS',
    & 'ARE MULTIPLIED BY: ',G12.5)
                                        BOUNDARY TYPE: ',A,
  525 FORMAT (/,' GROUP NUMBER: ',13,'
    &' NUMBER OF CELLS IN GROUP: ',15,/,
    &' NUMBER OF FLOW OBSERVATIONS: ',15,//,
    &20X,'REFER.',14X,'OBSERVED',/,
    &7X,'OBSERVATION',2X,'STRESS',4X,'TIME',5X,'DRAIN FLOW',15X,
    &'STATISTIC PLOT',/,
    &2X,'OBS# NAME', 6X,'PERIOD OFFSET', 5X,'GAIN (-)',
    &4X,'STATISTIC TYPE SYM.')
  535 FORMAT (1X, I5, 1X, A12, 2X, I4, 2X, G11.4, 1X, G11.4, 1X, G11.4, 2X, A10,
    &1X,I5)
  540 FORMAT (/,'
                      LAYER ROW COLUMN
                                          FACTOR')
 550 FORMAT (4x,F8.0,F6.0,F7.0,F9.2)
 555 FORMAT (4X,F8.0,F6.0,F9.2)
  560 FORMAT (/,' FOR OBS',15,' STATISTIC RELATED TO WEIGHT < OR =0 -- '
            ,'STOP EXECUTION (OBS1DRT1RP)',/)
```

```
565 FORMAT (/,' DRAIN RETURN (DRT) PACKAGE',
    &
             ' IS NOT OPEN -- STOP EXECUTION (OBS1DRT1RP)')
  570 FORMAT (/,' LARGEST OBS TIME STEP (',15,') LARGER THAN NPER (',15,
    &
             ') OF BASIC PACKAGE INPUT FILE',/,
             ' -- STOP EXECUTION (OBS1DRT1RP)',/)
  590 FORMAT (/,' ROW OR COLUMN NUMBER INVALID',
             ' -- STOP EXECUTION (OBS1DRT1RP)',/)
  605 FORMAT (/,' OBSERVATION', 15,' EQUALS ZERO, THE STATISTIC ',
            'CAN NOT BE A',/,' COEFFICIENT OF VARIATION (ISTAT=2)',
    &
             ' -- STOP EXECUTION(OBS1DRT1RP)')
  615 FORMAT (//,1X,A,/,1X,42('-'))
  620 FORMAT (/,1X,'ERROR: SEARCH ABOVE FOR ERROR MESSAGE(S)',/,
     &' -- STOP EXECUTION (OBS1DRT1RP)')
C
C----READ TIME-OFFSET MULTIPLIER FOR FLOW-OBSERVATION TIMES AND INPUT
     ERROR VARIANCE FOR FLOW OBSERVATIONS (ITEM 2)
     READ(IUDTOB,*) TOMULTDT, EVFDT, IOWTQDT
     IF (IOWTQDT.GT.0) IOWTQ = 1
C
C----INITIALIZE VARIABLES
     IQ2 = IQ1 + NQDT - 1
     DO 20 IQ = IQ1, IQ2
       IBT(2,IQ) = 0
  20 CONTINUE
C-----WRITE TITLE AND LOOP THROUGH CELL GROUPS (READ ITEMS 3, 4, AND 5)
     WRITE (IOUT,517) EVFDT
     WRITE (IOUT, 520) TOMULTDT
     DO 120 IQ = IQ1,IQ2
C
       READ ITEM 3
       READ (IUDTOB, *) NOOB(IO), NOCL(IO)
        IBT(1,IQ) = 6
       WRITE (IOUT,525) IQ, 'DRT', NQCL(IQ), NQOB(IQ)
C-----SET FLAG FOR SETTING ALL FACTORS TO 1
       T4 = 0
       IF (NQCL(IQ).LT.0) THEN
         I4 = 1
         NQCL(IQ) = -NQCL(IQ)
       ENDIF
C-----READ TIME STEPS, MEASURED FLOWS, AND WEIGHTS.
       NT1 = NT + 1
       NT2 = NT + NQOB(IQ)
       DO 30 J = NT1, NT2
         N = NH + J
C-----READ ITEM 4
         IF (IOWTQDT.GT.0) THEN
           READ (IUDTOB,*) OBSNAM(N), IREFSP, TOFFSET, HOBS(N), STAT,
     &
                           IST, IPLOT(N)
           NAMES(N) = OBSNAM(N)
           WRITE (IOUT, 535) N, OBSNAM(N), IREFSP, TOFFSET, HOBS(N),
               STATYP(IST), IPLOT(N)
     &
           READ (IUDTOB,*) OBSNAM(N), IREFSP, TOFFSET, HOBS(N),
     &
                            WTQ(J,J), IWT, IPLOT(N)
           NAMES(N) = OBSNAM(N)
           WRITE (IOUT, 535) N, OBSNAM(N), IREFSP, TOFFSET, HOBS(N),
               WTQ(J,J), STATYP(IWT), IPLOT(N)
            IF (HOBS(N).EQ.0 .AND. IWT.EQ.2) THEN
             WRITE (IOUT, 605) N
             IERR = 1
            ENDIF
            IF (IWT.EQ.2) WTQ(J,J) = WTQ(J,J)*HOBS(N)
            IF (IWT.GT.0) WTQ(J,J) = WTQ(J,J)*WTQ(J,J)
            WTQ(J,J) = WTQ(J,J)*EVFDT
            IF (WTQ(J,J).LE.O.) THEN
             WRITE (IOUT, 560) N
              IERR = 1
```

```
ENDIF
          ENDIF
          CALL UOBSTI(OBSNAM(N), IOUT, ISSA, ITRSS, NPER, NSTPA, IREFSP,
                      IQOB(J),PERLNA,TOFF(N),TOFFSET,TOMULTDT,TSMLTA,1)
C----ERROR CHECKING
          IF (IQOB(J).GT.JT) JT = IQOB(J)
          IF (IUDT.EQ.0) THEN
            WRITE (IOUT, 565)
            IERR = 1
          ENDIF
   30 CONTINUE
C-----READ LAYER, ROW, COLUMN, AND FACTOR (ITEM 5)
       NC1 = NC + 1
       NC2 = NC + NQCL(IQ)
        WRITE (IOUT,540)
        DO 40 L = NC1, NC2
         READ (IUDTOB,*) (QCLS(I,L),I=1,4)
          IF (I4.EQ.1) QCLS(4,L) = 1.
          WRITE (IOUT, 550) (QCLS(I,L), I=1,4)
          I = QCLS(2,L)
          J = QCLS(3,L)
          IF (J.LE.O .OR. J.GT.NCOL .OR. I.LE.O .OR. I.GT.NROW) THEN
            WRITE (IOUT, 590)
            IERR = 1
          ENDIF
   40 CONTINUE
C-----UPDATE COUNTERS
       NC = NC2
       NT = NT2
  120 CONTINUE
      IQ1 = IQ2 + 1
C
C-----READ FULL COVARIANCE MATRIX ON DRAIN-RETURN-CELL
C
       FLOW-OBSERVATION DATA
      IPRN = 0
      NQT2 = NQT1 + NQTDT - 1
      IF (IOWTQDT.GT.0 .AND. NQTDT.GT.0) THEN
C
       READ ITEM 6
        READ (IUDTOB,*) FMTIN, IPRN
С
        READ ITEM 7
        DO 140 I = NQT1, NQT2
          \texttt{READ} \text{ (IUDTOB,FMTIN) (BLANK,J=NQT1,I-1), (WTQ(I,J),J=I,NQT2)}
          DO 130 J = I, NQT2
            WTQ(I,J) = WTQ(I,J)*EVFDT
            IF (I.EQ.J) THEN
              IF (WTQ(I,J).LT.0.)WTQ(I,J) = -WTQ(I,J)
            ELSE
              WTQ(J,I) = WTQ(I,J)
            ENDIF
  130
        CONTINUE
       CONTINUE
  140
        IF (IPRN.GE.0) THEN
         WRITE (IOUT,615) ANAME
          CALL UARRSUBPRW(WTQ, NDMH, NDMH, NQT1, NQT2, NQT1, NQT2, IPRN, IOUT,
                          OBSNAM(NH+1),NDMH)
        ENDIF
      ENDIF
      NQT1 = NQT2 + 1
С
      IF (IERR.GT.0) THEN
        WRITE(IOUT,620)
        STOP
      ENDIF
С
      RETURN
      END
```

List of Variables for Module OBS1DRT1RP

Variable	Range	Definition
ANAME	Module	Header for printed WTQ matrix
BLANK	Module	Dummy real variable
EVFDT	Package	Error variance multiplier for DRT observations
FMTIN	Module	Fortran format for reading WTQ
HOBS	Global	Observed values
I	Module	Index for WTQ
I4	Module	Flag for setting all observation-cell contribution factors to 1.0
IBT	Process	Indicator identifying package used for flow observation
IERR	Global	Error flag
IOUT	Global	Unit number of GLOBAL output file
IOWTQ	Global	Indicator of use of variance-covariance matrix for flow observations
IOWTQDT	Package	Indicator of use of variance-covariance matrix for DRT flow observations
IPLOT	Global	Plot symbols
IPR	Global	Number of parameters involved in variance-covariance matrix for weighting prior information (Hill and others, 2000)
IPRN	Module	Print code for WTQ
IQ	Module	Index for cell groups
IQ1	Module	Pointer for first cell group of DRT observations
IQ2	Module	Pointer for last cell group of DRT observations
IQOB	Process	Time step of each observation
IREFSP	Module	Reference stress period
ISSA	Global	Indicator of steady or transient state for each stress period
IST	Module	Indicator of statistic type
ITRSS	Global	Indicator that simulation is steady, transient, or a combination of the two
IUDT	Package	Unit number for DRT input file
IUDTOB	Package	Unit number for DRT observations input file
IWT	Module	Statistic type
J	Module	DO-loop counter for DRT observations
JT	Global	Number of final required time step
L	Module	Index for flow-observation cells
MPR	Global	Number of prior-information equations (Hill and others, 2000)
N	Module	Index for observations
NAMES	Global	Observation names

Variable	Range	Definition
NC	Module	Counter for flow-observation cells
NC1	Module	Pointer for first cell in group
NC2	Module	Pointer for last cell in group
NCOL	Global	Number of columns in model grid
ND	Global	Number of observations
NDD	Process	Dimensioning variable for observation arrays
NDMH	Process	Number of observations minus number of head observations
NH	Process	Number of head observations
NPER	Global	Number of stress periods
NQAR	Process	Dimensioning variable for flow-observation cell-group arrays
NQCAR	Process	Dimensioning variable for flow-observation cell arrays
NQCL	Process	Number of cells in each group
NQDT	Package	Number of cell groups for DRT observations
NQOB	Process	Number of flow observations for each group
NQT	Process	Total number of flow observations
NQT1	Process	Counter for number of flow observations
NQT2	Module	Pointer for last DRT flow observation
NQTAR	Process	Dimensioning variable for IQOB
NQTDT	Package	Number of DRT flow observations
NROW	Global	Number of rows in model grid
NSTPA	Global	Number of time steps in each stress period
NT	Process	Pointer for flow observations
NT1	Module	Pointer for first cell in group
NT2	Module	Pointer for last cell in group
OBSNAM	Global	Observation names
PERLNA	Global	Length of each stress period
QCLS	Global	Cell data for flow observations
STAT	Module	Statistic
STATYP	Module	Statistic type
TOFF	Process	Normalized observation-time offset within a time step
TOFFSET	Module	Observation-time offset from beginning of reference stress period
TOMULTDT	Package	Time-offset multiplier for DRT observations
TSMLTA	Global	Time-step multiplier for each stress period
WTQ	Global	Variance-covariance matrix for weighting flow observations

Module OBS1DRT1FM

Narrative for Module OBS1DRT1FM

This primary module calculates simulated equivalents for flow observations at features simulated using the DRT1 Package. Output is written to the LIST file.

1. Initialize some variables.

70

- 2. For each flow-observation cell group in the simulation, do steps 3 through 9.
- 3. If the cell group is associated with the DRT1 Package, do steps 4 through 9.
- 4. For each observation time specified for the cell group, do steps 5 through 9.
- 5. If the observation time is in the current time step, do steps 6 through 9.
- 6. For each cell in the cell group, do steps 7 and 8.
- 7. Loop through the DRTF array to find a matching cell, based on layer, row, column, and position in the DRTF array. When a match is found, calculate the flow for the cell. If the head in the cell is below the drain elevation, increment count of disconnected cells.
- 8. Add flow from the cell to the variable that accumulates flow for the cell group to calculate the simulated equivalent for the observation.
- 9. If any cells in the group are disconnected, print message listing them. Check for disconnected observation (heads at all cells in group below corresponding drain elevations). Print message if observation is disconnected.

Listing for Module OBS1DRT1FM

```
SUBROUTINE OBS1DRT1FM(NQ,NQT,NQOB,NQCL,IQOB,QCLS,IBT,HNEW,NCOL,
                         NROW, NLAY, IOUT, IBOUND, NH, OBSNAM, H, TOFF,
                         MXDRT, NDRTCL, DRTF, WTQ, NDMH, ITS, NQAR, NQCAR,
    æ
                         NOTAR , NDRTVL)
     VERSTON 20000620 ERB
     ****************
     CALCULATE SIMULATED EQUIVALENTS TO OBSERVED FLOWS FOR THE DRAIN
     RETURN PACKAGE
     *****************
C
С
        SPECIFICATIONS:
C
     REAL C, DRTF, FACT, H, HB, HH, HHNEW, QCLS, TOFF, WTQ, ZERO
     INTEGER I, IBOUND, IBT, IBT1, IFLAG, II, IOUT, IQ, IQOB, IRBOT,
            ITS, J, JJ, JRBOT, K, KK, KRBOT, MXDRT, N, NB, NBN, NC,
            NC1, NC2, NCOL, NDMH, NDRTCL, NH, NLAY, NQ, NQCL, NQOB,
            NQT, NROW, NT, NT1, NT2
     CHARACTER*12 OBSNAM(NH+NQT)
     DOUBLE PRECISION HNEW(NCOL, NROW, NLAY)
     DIMENSION IBOUND(NCOL, NROW, NLAY), IBT(2, NQAR), NQOB(NQAR),
              NQCL(NQAR), IQOB(NQTAR), QCLS(5,NQCAR), H(NH+NQT),
              TOFF(NH+NOT), DRTF(NDRTVL, MXDRT), WTO(NDMH, NDMH)
     INCLUDE 'param.inc'
 500 FORMAT (/,
    &' HEADS AT DRAIN-RETURN CELLS ARE BELOW THE',
```

```
&' BOTTOM OF THE DRAIN AT THE CELLS LISTED',/,
    &' BELOW. THESE CONDITIONS DIMINISH THE IMPACT',
    &' OF THE OBSERVATION ON ALL',/,
    &' PARAMETERS EXCEPT, IN SOME CASES, THE HYDRAULIC CONDUCTIVITY',
    &' OF THE DRAIN',/,
    &' (SEE TEXT FOR MORE INFORMATION).')
 505 FORMAT (/,' OBS#',I5,', ID ',A,', TIME STEP ',I5)
  510 FORMAT (' LAYER ROW COLUMN')
 520 FORMAT (317)
 525 FORMAT (' *', I5, I7)
 530 FORMAT (17,' OF THE',17,' REACHES OR CELLS USED TO SIMULATE THE',
            ' GAIN OR LOSS ARE',/,22X,'AFFECTED.')
  535 FORMAT (' THIS OBSERVATION NO LONGER IMPACTS PARAMETER ',
             'ESTIMATION AND WILL BE ELIMINATED FROM THIS PARAMETER ',
             /,'ESTIMATION ITERATION')
 540 FORMAT (' CELL #', 15,
             ' OF HEAD-DEP. BOUNDARY GAIN OR LOSS OBS#', I5, ' ID=', A, /,
    &c
             ' NOT FOUND IN CELLS LISTED FOR DRAIN RETURN PACKAGE', /,
    &
             ' -- STOP EXECUTION (OBS1DRT1FM)')
C----INITIALIZE VARIABLES
     ZERO = 0.0
     NC = 0
     NT1 = 1
     JRBOT = 0
C----LOOP THROUGH BOUNDARY FLOWS
     DO 60 IQ = 1, NQ
       IBT1 = IBT(1,IQ)
       NT2 = NT1 + NQOB(IQ) - 1
       IF (IBT1.NE.6) GOTO 50
C-----WAS THERE A MEASUREMENT AT THIS BOUNDARY THIS TIME STEP?
       DO 40 NT = NT1, NT2
         IF (IQOB(NT).EQ.ITS .OR.
             (IQOB(NT).EQ.ITS-1.AND.TOFF(NH+NT).GT.ZERO)) THEN
C-----ASSIGN VARIABLES ACCORDING TO BOUNDARY TYPE
           IRBOT = 0
           KRBOT = 0
           NBN = NDRTCL
C----LOOP THROUGH CELLS.
           NC1 = NC + 1
           NC2 = NC + NQCL(IQ)
           NB = 0
           DO 30 N = NC1, NC2
             K = QCLS(1,N)
             I = QCLS(2,N)
             J = OCLS(3,N)
C----LOOP THROUGH DATA FILE TO FIND A MATCH.
             IFLAG = 0
             DO 10 MNB = 1, NBN
               NB = NB + 1
               IF (NB.GT.NBN) NB = 1
               KK = DRTF(1,NB)
               II = DRTF(2,NB)
               JJ = DRTF(3,NB)
C-----DO CALCULATIONS IF THIS IS A MATCH
               IF (I.EQ.II.AND.J.EQ.JJ.AND.K.EQ.KK) THEN
                 IF (IBOUND(J,I,K).LT.1) GOTO 30
                 IFLAG = 1
C-----ASSIGN VARIABLE VALUES
                 HHNEW = HNEW(J,I,K)
                 HB = DRTF(4,NB)
                 C = DRTF(5.NB)
C-----CALCULATE FLOWS
```

```
HH = C*(HB-HHNEW)
                 IF (HHNEW.LE.HB) THEN
                   HH = 0.0
                   IF (JRBOT.EQ.0) WRITE (IOUT,500)
                   JRBOT = 1
                   IF (IRBOT.EQ.0) THEN
                     WRITE (IOUT,505) NH + NT, OBSNAM(NH+NT), ITS
                     WRITE (IOUT,510)
                   ENDIF
                   IRBOT = IRBOT + 1
                   IF (IBT(2,IQ).EQ.0) KRBOT = KRBOT + 1
                   WRITE (IOUT,520) K, I, J
                 ENDIF
                 GOTO 20
               ENDIF
  1.0
             CONTINUE
             IF (IFLAG.EQ.0) THEN
               WRITE (IOUT,540) N, NH + NT, OBSNAM(NH+NT)
               STOP
             ENDIF
C----SUM VALUES FROM INDIVIDUAL CELLS.
C-----CALCULATE FACTOR FOR TEMPORAL INTERPOLATION
             FACT = 1.0
             IF (TOFF(NH+NT).GT.ZERO) THEN
               IF (IQOB(NT).EQ.ITS) FACT = 1. - TOFF(NH+NT)
               IF (IQOB(NT).EQ.ITS-1) FACT = TOFF(NH+NT)
             ENDIF
C-----FLOWS
            H(NH+NT) = H(NH+NT) + HH*FACT*QCLS(4,N)
          CONTINUE
C----PRINT NUMBER OF CELLS AT WHICH HEAD IS BELOW THE BOTTOM OF THE
C-----DRAIN; CHECK FOR DISCONNECTED OBSERVATIONS.
           IF (IRBOT.GT.0) WRITE (IOUT,530) IRBOT, NQCL(IQ)
           IF (KRBOT.EQ.NQCL(IQ)) THEN
             WTQ(NT,NT) = -WTQ(NT,NT)
             WRITE (IOUT,535)
           ENDIF
         ENDIF
   40 CONTINUE
C-----UPDATE COUNTERS
  NC = NC + NQCL(IQ)
       NT1 = NT2 + 1
C
   60 CONTINUE
     RETURN
```

List of Variables for Module OBS1DRT1FM

Variable	Range	Definition
С	Module	Hydraulic conductance of drain for a drain-return cell
DRTF	Package	Drain-return cell data
FACT	Module	Factor for temporal interpolation
Н	Module	Simulated equivalents to observations
НВ	Module	Drain elevation for a drain-return cell
НН	Module	Drain flow at a drain-return cell

END

Variable	Range	Definition
HHNEW	Module	Head at a drain-return cell
HNEW	Global	Head
I	Module	Implied-DO-loop counter
IBOUND	Global	Boundary-status indicator
IBT	Process	Indicator identifying package used for flow observation
IBT1	Module	Observation-type indicator for a flow-observation cell group
IFLAG	Module	Indicator that cell in observation cell group is a drain-return cell
II	Module	Row index for a drain-return cell
IOUT	Global	Unit number of LIST output file
IQ	Module	Index for cell groups
IQOB	Process	Time step of each observation
IRBOT	Module	Counter for observation cells where head is below drain elevation
ITS	Global	Time-step number
J	Module	Column index for a DRT observation cell
JJ	Module	Column index for a drain-return cell
JRBOT	Module	Indicator that head is below drain elevation for at least one cell
K	Module	Layer index for a DRT observation cell
KK	Module	Layer index for a drain-return cell
KRBOT	Module	Counter for cells where head is below drain elevation and cell is not controlled by any DRT parameter
MNB	Module	DO-loop counter for drain-return cells
MXDRT	Package	Dimensioning variable for DRTF
N	Module	Cell index in QCLS
NB	Module	Cell index in DRTF
NBN	Module	Number of drain-return cells used in a stress period
NC	Module	Place marker for position in QCLS
NC1	Module	Position in QCLS of first cell in group
NC2	Module	Position in QCLS of last cell in group
NCOL	Global	Number of columns in model grid
NDMH	Process	Number of observations minus number of head observations
NDRTCL	Package	Number of drain-return cells used in a stress period
NDRTVL	Package	Dimensioning variable for DRTF
NH	Process	Number of head observations
NLAY	Global	Number of layers in model grid
NQ	Process	Number of flow-observation cell groups

Variable	Range	Definition
NQAR	Process	Dimensioning variable for flow-observation cell-group arrays
NQCAR	Process	Dimensioning variable for flow-observation cell arrays
NQCL	Process	Number of cells in each group
NQOB	Process	Number of flow observations for each group
NQT	Process	Total number of flow observations
NQTAR	Process	Dimensioning variable for IQOB
NROW	Global	Number of rows in model grid
NT	Module	Pointer for flow observations
NT1	Module	Pointer for first cell in group
NT2	Module	Pointer for last cell in group
OBSNAM	Global	Observation names
QCLS	Global	Cell data for flow observations
TOFF	Process	Normalized observation-time offset within a time step
WTQ	Global	Variance-covariance matrix for weighting flow observations
ZERO	Module	0.0

Module OBS1DRT1DR

Narrative for Module OBS1DRT1DR

This primary module calculates observation sensitivities for flow observations at features simulated using the DRT1 Package for one DRT1 parameter. Output, if any, is written to the GLOBAL file.

- 1. Initialize some variables.
- 2. If the current parameter is a DRT parameter, call a secondary module to populate an element in the QCLS array with Condfact from the parameter definition.
- 3. For each flow-observation cell group in the simulation, do steps 4 through 10.
- 4. If the cell group is associated with the DRT1 Package, do steps 5 through 9.
- 5. For each observation time specified for the cell group, do steps 6 through 9.
- 6. If the observation time is in the current time step, do steps 7 through 9.
- 7. For each cell in the cell group, do steps 8 and 9.
- 8. Loop through the DRTF array to find a matching cell, based on layer, row, column, and position in the DRTF array. When a match is found, calculate contribution for the cell at this time step to observation sensitivity.
- 9. Sum contributions from individual cells to sensitivity for the group.
- 10. Update pointers for the next cell group.
- 74 MODFLOW-2000—Documentation of Packages for Simulating Evapotranspiration with a Segmented Function (ETS1) and Drains with Return Flow (DRT1)

Listing for Module OBS1DRT1DR

```
SUBROUTINE OBS1DRT1DR(NQ, NQT, NQOB, NQCL, IQOB, QCLS, IBT, HNEW, IP, SNEW,
                          NCOL, NROW, NLAY, IOUT, IBOUND, NH, X, OBSNAM, NPE,
    &
                           LN, TOFF, MXDRT, NDRTCL, DRTF, NPLIST, ITS, NQAR,
    &
                           NQCAR, NQTAR, NDRTVL, IERR, IERRU, NDRTNP, IDRTPB)
C
     VERSION 20000619 ERB
C
C
     CALCULATE SENSITIVITIES FOR FLOW OBSERVATIONS FOR THE DRAIN RETURN
     PACKAGE
C
     *****************
C
C
        SPECIFICATIONS:
C
     ______
     REAL C, DRTF, FACT, HB, HHNEW, QCLS, TOFF, X, XX, ZERO
     INTEGER I, IBOUND, IBT, IBT1, IFLAG, II, IOUT, IP, IQ, IQOB, ITS,
             J, JJ, K, KK, LN, MXDRT, N, NB, NBN, NC, NC1, NC2, NCOL,
    &
             NDRTCL, NH, NLAY, NPE, NQ, NQCL, NQOB, NQT, NROW, NT, NT1,
    &
             NT2
     CHARACTER*4 PIDTMP
     CHARACTER*12 OBSNAM(NH+NQT)
     DOUBLE PRECISION HNEW(NCOL, NROW, NLAY), SNEW(NCOL, NROW, NLAY)
     DIMENSION IBOUND(NCOL, NROW, NLAY), X(NPE, NH+NQT), IBT(2, NQAR),
               LN(NPLIST), NQOB(NQAR), NQCL(NQAR), IQOB(NQTAR),
               QCLS(5,NQCAR), TOFF(NH+NQT), DRTF(NDRTVL,MXDRT)
     INCLUDE 'param.inc'
 500 FORMAT (/,
    &' FOR THE DRAIN RETURN PACKAGE: ,',/,
    &' HEADS AT DRAIN CELLS ARE BELOW THE',
    &' BOTTOM OF THE DRAIN AT THE CELLS LISTED',/,
    &' BELOW. THESE CONDITIONS DIMINISH THE IMPACT',
    &' OF THE OBSERVATION ON ALL',/,
    &' PARAMETERS EXCEPT, IN SOME CASES, THE HYDRAULIC CONDUCTIVITY',
    &' OF THE DRAIN',/,
    &' (SEE TEXT FOR MORE INFORMATION).')
 505 FORMAT (/,' OBS#', I5,', ID ', A4,', TIME STEP ', I5)
                LAYER ROW COLUMN')
 510 FORMAT ('
 520 FORMAT (317)
 525 FORMAT (' *', I5, I7)
 530 FORMAT (17,' OF THE',17,' REACHES OR CELLS USED TO SIMULATE THE',
             ' GAIN OR LOSS ARE',/,22X,'AFFECTED.')
 535 FORMAT (' THIS OBSERVATION NO LONGER IMPACTS PARAMETER ',
             'ESTIMATION AND WILL BE ELIMINATED FROM THIS PARAMETER ',
    &
    &
             /,'ESTIMATION ITERATION')
  540 FORMAT (' CELL #', I5,
            ' OF HEAD-DEP. BOUNDARY GAIN OR LOSS OBS#', I5, ' ID=', A,
    &
            ' NOT FOUND IN CELLS LISTED FOR',/,'DRAIN RETURN PACKAGE',
            ' -- STOP EXECUTION (OBS1DRT1DR)')
C----INITIALIZE VARIABLES
     ZERO = 0.0
     NC = 0
     NT1 = 1
     IIPP = IPPTR(IP)
     PIDTMP = PARTYP(IIPP)
     IF (PIDTMP.EQ.'DRT ')
        CALL SOBS1DRT1QC(IBT, IIPP, NDRTVL, MXDRT, NQ, NQCL, DRTF, QCLS,
                         NQAR, NQCAR, NDRTNP, IDRTPB)
C----LOOP THROUGH BOUNDARY FLOWS
     DO 60 IQ = 1, NQ
       IBT1 = IBT(1,IQ)
       NT2 = NT1 + NQOB(IQ) - 1
       IF (IBT1.NE.6) GOTO 50
C-----WAS THERE A MEASUREMENT AT THIS BOUNDARY THIS TIME STEP?
```

```
DO 40 NT = NT1, NT2
         IF (IQOB(NT).EQ.ITS .OR.
             (IQOB(NT).EQ.ITS-1.AND.TOFF(NH+NT).GT.ZERO)) THEN
C-----ASSIGN VARIABLES ACCORDING TO BOUNDARY TYPE
           NBN = NDRTCL
C-----LOOP THROUGH CELLS.
           NC1 = NC + 1
           NC2 = NC + NQCL(IQ)
           NB = 0
           DO 30 N = NC1, NC2
             K = QCLS(1,N)
             I = QCLS(2,N)
             J = QCLS(3,N)
C-----LOOP THROUGH DATA FILE TO FIND A MATCH.
             IFLAG = 0
             DO 10 MNB = 1, NBN
               NB = NB + 1
               IF (NB.GT.NBN) NB = 1
               KK = DRTF(1,NB)
               II = DRTF(2,NB)
               JJ = DRTF(3,NB)
C-----DO CALCULATIONS IF THIS IS A MATCH
               IF (I.EQ.II.AND.J.EQ.JJ.AND.K.EQ.KK) THEN
                 IF (IBOUND(J,I,K).LT.1) GOTO 30
                 IFLAG = 1
C-----ASSIGN VARIABLE VALUES
                 HHNEW = HNEW(J,I,K)
                 HB = DRTF(4,NB)
                 C = DRTF(5,NB)
C-----CALCULATE SENSITIVITIES
                 XX = ZERO
                 IF (HHNEW.LE.HB) GOTO 30
                 IF (HHNEW.GT.HB) XX = -C*SNEW(J,I,K)
                 IF (IIPP.EQ.IBT(2,IQ) .AND. HHNEW.GT.HB)
                     XX = XX + QCLS(5,N)*(HB-HHNEW)
     &
                 GOTO 20
               ENDIF
   10
             CONTINUE
             IF (IFLAG.EQ.0) THEN
               WRITE (IOUT, 540) N, NH + NT, OBSNAM(NH+NT)
               WRITE (IERRU,540) N, NH + NT, OBSNAM(NH+NT)
               IERR = 1
               RETURN
             ENDIF
C----SUM VALUES FROM INDIVIDUAL CELLS.
C-----CALCULATE FACTOR FOR TEMPORAL INTERPOLATION
             FACT = 1.0
             IF (TOFF(NH+NT).GT.ZERO) THEN
               IF (IQOB(NT).EQ.ITS) FACT = 1. - TOFF(NH+NT)
               IF (IQOB(NT).EQ.ITS-1) FACT = TOFF(NH+NT)
             ENDIF
C-----SENSITIVITY-EQUATION SENSITIVITIES
             IF (LN(IIPP).GT.0) XX = XX*B(IIPP)
             X(IP,NH+NT) = X(IP,NH+NT) + XX*FACT*QCLS(4,N)
   30
           CONTINUE
         ENDIF
   40 CONTINUE
C-----UPDATE COUNTERS
  50 	 NC = NC + NQCL(IQ)
       NT1 = NT2 + 1
C
   60 CONTINUE
     RETURN
     END
```

76

List of Variables for Module OBS1DRT1DR

Variable	Range	Definition
В	Global	Parameter values
С	Module	Hydraulic conductance of drain for a drain-return cell
DRTF	Package	Drain-return cell data
FACT	Module	Factor for temporal interpolation
HB	Module	Drain elevation for a drain-return cell
HHNEW	Module	Head at a drain-return cell
HNEW	Global	Head
I	Module	Row index for a flow-observation cell
IBOUND	Global	Boundary-status indicator
IBT	Process	Indicator identifying package used for flow observations and parameter controlling drain conductance of cells in flow-observation cell group
IBT1	Module	Indicator identifying package used for a flow observation
IDRTPB	Package	Index of first cell of first parameter definition in DRTF
IERR	Global	Error flag
IERRU	Global	Unit for writing warnings and error messages
IFLAG	Module	Indicator that cell in observation cell group is a drain-return cell
II	Module	Row index for a drain-return cell
IIPP	Module	Parameter number
IOUT	Global	Unit number of GLOBAL output file
IP	Module	Index for pointer to parameter number
IPPTR	Global	Pointer to parameter number
IQ	Module	Index for cell groups
IQOB	Process	Time step of each observation
ITS	Global	Time-step number
J	Module	Column index for a DRT observation cell
JJ	Module	Column index for a drain-return cell
K	Module	Layer index for a DRT observation cell
KK	Module	Layer index for a drain-return cell
LN	Global	Indicator for log-transforming parameter values
MNB	Module	DO-loop counter for drain-return cells
MXDRT	Package	Dimensioning variable for DRTF
N	Module	Cell index in QCLS
NB	Module	Cell index in DRTF
NBN	Module	Number of drain-return cells used in a stress period
NC	Module	Place marker for position in QCLS
NC1	Module	Position in QCLS of first cell in group

Variable	Range	Definition
NC2	Module	Position in QCLS of last cell in group
NCOL	Global	Number of columns in model grid
NDRTCL	Package	Number of drain-return cells used in a stress period
NDRTNP	Package	Number of non-parameter drain-return cells in use during current stress period
NDRTVL	Package	Dimensioning variable for DRTF
NH	Process	Number of head observations
NLAY	Global	Number of layers in model grid
NPE	Global	Number of parameters being estimated or analyzed for sensitivity
NPLIST	Global	Number of parameters listed in Sensitivity Process input file (Hill and others, 2000)
NQ	Process	Number of flow-observation cell groups
NQAR	Process	Dimensioning variable for flow-observation cell-group arrays
NQCAR	Process	Dimensioning variable for flow-observation cell arrays
NQCL	Process	Number of cells in each group
NQOB	Process	Number of flow observations for each group
NQT	Process	Total number of flow observations
NQTAR	Process	Dimensioning variable for IQOB
NROW	Global	Number of rows in model grid
NT	Module	Pointer for flow observations
NT1	Module	Pointer for first cell in group
NT2	Module	Pointer for last cell in group
OBSNAM	Global	Observation names
PARTYP	Global	Parameter type
PIDTMP	Module	Parameter type of current parameter
QCLS	Global	Cell data for flow observations
SNEW	Global	Parameter sensitivity at each cell
TOFF	Process	Normalized observation-time offset within a time step
X	Global	Observation sensitivities
XX	Module	Temporary variable for calculation of observation sensitivity
ZERO	Module	0.0

Module SOBS1DRT10H

Narrative for Module SOBS1DRT1OH

This secondary module calculates and prints weighted residuals for flow observations at features simulated using the DRT1 Package. Output is written to the LIST file and, optionally, to files generated by the Observation Process.

- 1. Write table heading.
- 2. Initialize some variables.

- 3. For each flow observation specified using the DRT1 Package, do steps 4 through 9.
- 4. If the observation has not been deactivated, do steps 5 through 9.
- 5. Calculate the unweighted residual.
- 6. Calculate the weighted residual.
- 7. If required, write data to output files named using OUTNAM of the Observation Process input file (Hill and others, 2000).
- 8. Add weighted residual to variables that accumulate the sum of squared, weighted residuals.
- 9. Determine the effect of the weighted residual on descriptive statistics.
- 10. Store the sum of squared, weighted residuals due to DRT1-Package flow observations.
- 11. Calculate and print statistics for DRT1-Package residuals.

Listing for Module SOBS1DRT10H

```
SUBROUTINE SOBS1DRT10H(IO, IOWTQDT, IOUT, NH, NQTDT, HOBS, H, WTQ, OBSNAM,
     &
                            IDIS, WTQS, D, AVET, NPOST, NNEGT, NRUNS, RSQ, ND,
     &
                            MPR, IPR, NDMH, WTRL, NRES, IUGDO, OUTNAM, IPLOT,
                            IPLPTR,LCOBDRT,ISSWR,SSDT,ITMXP)
C
     VERSION 20000510 ERB
C
     CALCULATE AND PRINT WEIGHTED RESIDUALS FOR DRAIN-RETURN FLOW
     OBSERVATIONS
     ******************
C
C
        SPECIFICATIONS:
С
     REAL AVE, AVET, D, H, HOBS, RES, RSQ, SWH, VMAX, VMIN, WT2, WTQ,
         WTQS, WTR, WTRL
     INTEGER IDIS, IO, IOUT, IOWTQDT, IPR, J, MPR, N, ND, NDMH, NH,
         NMAX, NMIN, NNEG, NNEGT, NPOS, NPOST, NQ1, NQ2, NQTDT,
             NRES, NRUNS
     INTEGER IUGDO(6), IPLOT(ND+IPR+MPR), IPLPTR(ND+IPR+MPR)
     CHARACTER*12 OBSNAM(ND)
     CHARACTER*200 OUTNAM
     DIMENSION H(ND), HOBS(ND), D(ND+MPR+IPR), WTQ(NDMH, NDMH),
            WTQS(NDMH,NDMH), SSDT(ITMXP+1)
C
  500 FORMAT (/,
     &' DATA FOR FLOWS REPRESENTED USING THE DRAIN RETURN PACKAGE',//
     &7X,'OBSERVATION MEAS. CALC.',14X,'WEIGHTED',/,
     &' OBS# NAME',10X,'FLOW',7X,'FLOW',4X,'RESIDUAL',3X,
    & 'RESIDUAL',/)
  505 FORMAT (/,
     &' DATA FOR FLOWS REPRESENTED USING THE DRAIN RETURN PACKAGE',//
     &7X, 'OBSERVATION', 6X, 'MEAS. CALC.', 26X, 'WEIGHTED', /,
     &2X,'OBS# NAME',10X,'FLOW',7X,'FLOW',5X,'RESIDUAL',2X,
     &'WEIGHT**.5',2X,'RESIDUAL',/)
  510 FORMAT (1X, I5, 1X, A12, 1X, 5(1X, G10.3))
  515 FORMAT (1X, I5, 1X, A12, 2X, G10.3, ' DISCONNECTED')
  520 FORMAT (/,' SUM OF SQUARED WEIGHTED RESIDUALS (DRT FLOWS ONLY)',
             2X,G11.5)
  525 FORMAT (/,' STATISTICS FOR DRT PACKAGE FLOW RESIDUALS :',/,
            ' MAXIMUM WEIGHTED RESIDUAL :',G10.3,' OBS#',I7,/,
             ' MINIMUM WEIGHTED RESIDUAL :',G10.3,' OBS#',I7,/,
             ' AVERAGE WEIGHTED RESIDUAL :',G10.3,/,
             ' # RESIDUALS >= 0. :',17,/,' # RESIDUALS < 0. :',17,/,
```

```
' NUMBER OF RUNS : ', I5, ' IN', I5, ' OBSERVATIONS')
  530 FORMAT (2G20.7)
  535 FORMAT (' ')
  540 FORMAT (2(G15.7,1X), I5,2X,A)
  550 FORMAT (G15.7,1X,I5,2X,A)
C
      IF (IO.EQ.1) THEN
        IF (IOWTQDT.GT.0) THEN
          WRITE (IOUT, 500)
          WRITE (IOUT, 505)
        ENDIF
      ENDIF
      IDISDT = 0
      NRESDT = 0
      NRUNSDT = 1
      RSQDT = 0.0
     NNEG = 0
      NPOS = 0
      VMAX = -1.E20
      VMIN = 1.E20
      AVE = 0.
      DO 20 N = LCOBDRT, LCOBDRT+NQTDT-1
       NQ1 = N - NH
        IF (WTQ(NQ1,NQ1).LT.0.) THEN
          WRITE (IOUT,515) N, OBSNAM(N), HOBS(N)
          IDIS = IDIS + 1
          IDISDT = IDISDT + 1
          GOTO 20
        ENDIF
        NRES = NRES + 1
        NRESDT = NRESDT + 1
        IPLPTR(NRES) = N
        RES = HOBS(N) - H(N)
        IF (IOWTODT.GT.0) THEN
          WTR = 0.0
          SWH = 0.0
          OMH = 0.0
          DO 10 J = 1, NQTDT
           NQ2 = LCOBDRT + J - 1
            WTR = WTR + WTQS(NQ1,J)*(HOBS(NQ2)-H(NQ2))
            SWH = SWH + WTQS(NQ1,J)*H(NQ2)
            OWH = OWH + WTQS(NQ1,J)*HOBS(NQ2)
   10
          CONTINUE
          IF (IO.EQ.1) WRITE (IOUT,510) N, OBSNAM(N),
                                        HOBS(N), H(N), RES, WTR
     &
        ELSE
          WT2 = WTQS(NQ1,NQ1)
          WTR = RES*WT2
          OWH = HOBS(NQ1)*WT2
          SWH = H(NQ1)*WT2
          IF (IO.EQ.1) WRITE (IOUT,510) N, OBSNAM(N),
                                        HOBS(N), H(N), RES, WT2, WTR
     &
        ENDIF
        IF (IO.EQ.1) THEN
          IF (OUTNAM.NE.'NONE') THEN
            WRITE (IUGDO(1),540) H(N), HOBS(N), IPLOT(N), OBSNAM(N)
            WRITE (IUGDO(2),540) SWH, OWH, IPLOT(N), OBSNAM(N)
            WRITE (IUGDO(3),540) SWH, WTR, IPLOT(N), OBSNAM(N)
            WRITE (IUGDO(4),550) RES, IPLOT(N), OBSNAM(N)
            WRITE (IUGDO(5),550) WTR, IPLOT(N), OBSNAM(N)
            D(NRES) = WTR
          ENDIF
        ENDIF
        RSQ = RSQ + (WTR**2)
```

```
RSQDT = RSQDT + (WTR**2)
    IF (WTR.GT.VMAX) THEN
      VMAX = WTR
     NMAX = N
    ENDIF
    IF (WTR.LT.VMIN) THEN
      VMIN = WTR
     NMIN = N
    ENDIF
    IF (WTR.GE.0.) NPOS = NPOS + 1
    IF (WTR.LT.0.) NNEG = NNEG + 1
    IF (N.GT.1) THEN
     IF (WTRL*WTR.LT.0.) NRUNS = NRUNS + 1
    ENDIF
    IF (N.GT.LCOBDRT) THEN
     IF (WTRL*WTR.LT.0.) NRUNSDT = NRUNSDT + 1
    ENDIF
    WTRL = WTR
    AVE = AVE + WTR
20 CONTINUE
  IF (ISSWR.GT.0) SSDT(ISSWR) = RSQDT
  IF (NQTDT.NE.IDISDT) THEN
    AVET = AVET + AVE
    NPOST = NPOST + NPOS
    NNEGT = NNEGT + NNEG
    AVE = AVE/REAL(NQTDT-IDISDT)
    IF (IO.EQ.1) THEN
      WRITE (IOUT, 525) VMAX, NMAX, VMIN, NMIN, AVE, NPOS, NNEG,
                      NRUNSDT, NRESDT
     WRITE (IOUT,520) RSQDT
    ENDIF
  ENDIF
  RETURN
  END
```

List of Variables for Module SOBS1DRT1OH

Variable	Range	Definition
AVE	Module	Average weighted residual for DRT observations
AVET	Process	Cumulative weighted residual for all observations
D	Process	Weighted residuals
Н	Process	Simulated equivalents to observations
HOBS	Global	Observed values
IDIS	Process	Counter for deactivated observations
IDISDT	Module	Counter for deactivated DRT observations
IO	Process	Printing flag
IOUT	Global	Unit number of LIST output file
IOWTQDT	Package	Variance-covariance matrix for weighting flow observations
IPLOT	Global	Plot symbols
IPLPTR	Global	Pointer to IPLOT elements
IPR	Global	Number of parameters involved in variance-covariance matrix for weighting prior information
ISSWR	Global	Number of times parameter-estimation loop has been executed

Variable	Range	Definition
ITMXP	Global	Maximum number of parameter-estimation iterations
IUGDO	Global	Unit numbers for automatically generated output files
J	Module	Counter for DRT observations
LCOBDRT	Package	Position in OBSNAM and HOBS of first DRT observation
MPR	Global	Number of prior-information equations
N	Module	Counter for DRT observations
ND	Global	Number of observations
NDMH	Process	Number of observations minus number of head observations
NH	Process	Number of head observations
NMAX	Module	Number of observation having largest weighted residual
NMIN	Module	Number of observation having smallest weighted residual
NNEG	Module	Number of residuals for DRT observations that are less than zero
NNEGT	Process	Number of residuals that are less than zero
NPOS	Module	Number of residuals for DRT observations that are greater than or equal to zero
NPOST	Process	Number of residuals that are greater than or equal to zero
NQ1	Module	Index for flow observations
NQ2	Module	Index for observations
NQTDT	Package	Number of DRT flow observations
NRES	Process	Number of residuals
NRESDT	Package	Number of residuals for DRT observations
NRUNS	Process	Number of runs
NRUNSDT	Package	Number of runs in DRT observations
OBSNAM	Global	Observation names
OUTNAM	Global	File name base for automatically generated output files
OWH	Module	Weighted observation
RES	Module	Residual
RSQ	Process	Cumulative sum of squared, weighted residuals
RSQDT	Module	Sum of squared, weighted residuals for DRT observations
SSDT	Package	Sum of squared, weighted residuals for DRT observations for each iteration
SWH	Module	Weighted simulated equivalent
VMAX	Module	Maximum weighted residual
VMIN	Module	Minimum weighted residual
WT2	Module	Square root of the weight
WTQ	Global	Variance-covariance matrix for weighting flow observations
WTQS	Global	Square root of the weight matrix
WTR	Module	Weighted residual
WTRL	Process	Weighted residual of previous observation

Module SOBS1DRT1QC

Narrative for Module SOBS1DRT1QC

Where one or more drain-return cells in an observation cell group are controlled by a DRT parameter, this secondary module copies Condfact from the parameter definition into the QCLS array.

- 1. Initialize some variables.
- 2. For each flow-observation cell group do steps 3 through 12.
- 3. Increment pointers to starting and ending cells in the cell group.
- 4. If the current parameter is active this stress period, do steps 5 through 12.
- 5. If this cell group is for DRT1 flow observations, do steps 6 through 12.
- 6. Set pointers that keep place in the DRTF array.
- 7. Do steps 8 through 12 for each cell in the cell group.
- 8. Identify the layer, row, and column of the flow-observation cell.
- 9. If the flow-observation cell is a non-parameter drain-return cell, skip steps 10 through 12 and go to the next cell in the cell group.
- 10. If the flow-observation cell is associated with an active DRT1 parameter preceding the parameter of interest, skip steps 11 and 12 and go to the next cell in the cell group.
- 11. Do step 12 for each parameter-controlled drain-return cell.
- 12. If the flow-observation cell is a drain-return cell controlled by the parameter of interest, populate the appropriate element for the flow-observation cell in the QCLS array with Condfact from the parameter definition.

Listing for Module SOBS1DRT1QC

```
SUBROUTINE SOBS1DRT1QC(IBT, IIPP, NDRTVL, MXDRT, NQ, NQCL, DRTF, QCLS,
                       NQAR, NQCAR, NDRTNP, IDRTPB)
C
    VERSTON 20000518 ERB
    ******************
С
    POPULATE QCLS ARRAY ELEMENT 5 FOR DRT FLOW-OBSERVATION CELLS ON
С
    ONE DRT-PARAMETER-CONTROLLED HEAD-DEPENDENT BOUNDARY IF IT IS
C
C
    ACTIVE THIS STRESS PERIOD
С
    С
       SPECIFICATIONS:
    DIMENSION IBT(2,NQAR), NQCL(NQAR), DRTF(NDRTVL,MXDRT),
    & QCLS(5,NQCAR)
    CHARACTER*4 PTYP
    INCLUDE 'param.inc'
    PTYP = 'DRT '
    MCOLFAC = 5
    NC = 0
C----LOOP THROUGH CELL GROUPS
    DO 120 IQ=1,NQ
```

```
C-----DETERMINE STARTING AND ENDING CELLS IN THIS CELL GROUP
       NC1 = NC + 1
       NC2 = NC + NQCL(IQ)
       IF (IACTIVE(IIPP).EQ.1) THEN
C-----IF PID FOR THIS PARAMETER MATCHES BOUNDARY TYPE SPECIFIED
          FOR THIS CELL GROUP
          IF (IBT(1, IQ).EQ.6) THEN
C
           RESET POINTERS
            NB = 0
            NBOP = IDRTPB - 1
            NBP = IPLOC(1, IIPP) - 1
            IP1 = 1
C-----LOOP THROUGH CELLS IN THIS GROUP
            DO 100 \text{ JJ} = \text{NC1,NC2}
              KO = QCLS(1,JJ)
              IO = QCLS(2,JJ)
              JO = QCLS(3,JJ)
С
С
              SKIP OVER CELLS IN OBSERVATION CELL GROUP ASSOCIATED WITH
              NON-PARAMETER CELLS IN THE SAME LAYER, ROW AND COLUMN
C
              IF(NDRTNP.GT.0) THEN
                DO 20 MNB = 1, NDRTNP
                  NB = NB + 1
                  IF (NB.GT.NDRTNP) GOTO 30
                  KNP = DRTF(1,NB)
                  INP = DRTF(2,NB)
                  JNP = DRTF(3,NB)
                  IF (KO.EQ.KNP .AND. IO.EQ.INP .AND. JO.EQ.JNP)
                     GOTO 100
     &
   20
                CONTINUE
   30
                CONTINUE
              ENDIF
C
C
              SKIP OVER CELLS IN OBSERVATION CELL GROUP ASSOCIATED WITH
С
              ACTIVE DRAIN-RETURN PARAMETERS PRECEDING PARAMETER OF
С
              INTEREST IN PARAMETER SECTION OF ARRAY WHERE LAYER, ROW,
С
              AND COLUMN MATCH
              IF (IIPP.GT.1 .AND. NBP.EQ.IPLOC(1,IIPP)-1) THEN
                KIP1 = IP1
                DO 60 KIP = KIP1, IIPP-1
                  IP1 = KIP
                  IF (PARTYP(KIP).EQ.PTYP) THEN
                    IF (IACTIVE(KIP).GT.0) THEN
                      DO 40 II = IPLOC(1,KIP),IPLOC(2,KIP)
                        NBOP = NBOP + 1
                        IF (NBOP.GT.IPLOC(2,KIP)) GOTO 50
                        KOP = DRTF(1, NBOP)
                        IOP = DRTF(2, NBOP)
                        JOP = DRTF(3,NBOP)
                        IF (KO.EQ.KOP .AND. IO.EQ.IOP .AND. JO.EQ.JOP)
     &
                            GOTO 100
   40
                      CONTINUE
   50
                      CONTINUE
                    ENDIF
                    NBOP = IPLOC(2,KIP)
                  ENDIF
   60
                CONTINUE
              ENDIF
C
C-----LOOP THROUGH PARAMETER CELLS IN PACKAGE DATA FILE
              DO 80 II = IPLOC(1, IIPP), IPLOC(2, IIPP)
                NBP = NBP + 1
```

```
IF (NBP.GT.IPLOC(2,IIPP)) GOTO 90
              K = DRTF(1, NBP)
              I = DRTF(2,NBP)
              J = DRTF(3,NBP)
C-----F OBSERVATION CELL IS ON THE PARAMETER-CONTROLLED
C
             BOUNDARY, PUT PARAMETER FACTOR IN QCLS(5)
              IF (KO.EQ.K .AND. IO.EQ.I .AND. JO.EQ.J) THEN
                IBT(2,IQ) = IIPP
                IFLAG = 1
                QCLS(5,JJ) = DRTF(MCOLFAC,NBP)
                GOTO 100
              ENDIF
  80
           CONTINUE
  90
            CONTINUE
 100
         CONTINUE
       ENDIF
       ENDIF
       IF (IFLAG.EQ.0 .AND. IBT(2,IQ).EQ.IIPP) IBT(2,IQ) = 0
       NC = NC2
 120 CONTINUE
С
     RETURN
     END
```

List of Variables for Module SOBS1DRT1QC

Variable	Range	Definition
DRTF	Package	Drain-return cell data
I	Module	Row index of a drain-return cell
IACTIVE	Global	Flag indicating if a parameter is active
IBT	Process	Indicator identifying package used for flow observations and parameter controlling drain conductance of cells in flow-observation cell group
IDRTPB	Package	Index of first cell of first parameter definition in DRTF
IFLAG	Module	Indicator that cell in observation cell group is a drain-return cell
II	Module	Counter for cells controlled by a parameter
IIPP	Module	Parameter number
INP	Module	Row index for a non-parameter drain-return cell
Ю	Module	Row index for a flow-observation cell
IOP	Module	Row index for a drain-return cell defined by a parameter other than the parameter of interest
IP1	Module	Place keeper for parameters other than the parameter of interest
IPLOC	Global	First and last locations in DRTF of cell-list entries for each parameter
IQ	Module	Index for cell groups
J	Module	Column index for a drain-return cell
JJ	Module	Counter for cells in group of flow-observation cells
JNP	Module	Column index for a non-parameter drain-return cell
JO	Module	Column index for a flow-observation cell

Variable	Range	Definition
JOP	Module	Column index for a drain-return cell defined by a parameter other than the parameter of interest
K	Module	Layer index for a drain-return cell
KIP	Module	Counter for parameters other than the parameter of interest
KIP1	Module	Starting parameter when looping through parameters other than the parameter of interest
KNP	Module	Layer index for a non-parameter drain-return cell
КО	Module	Layer index for a flow-observation cell
KOP	Module	Layer index for a drain-return cell defined by a parameter other than the parameter of interest
MCOLFAC	Module	Position in DRTF where factor used to calculate drain conductance from parameter value is stored
MNB	Module	Counter for non-parameter drain-return cells
MXDRT	Package	Dimensioning variable for DRTF
NB	Module	Entry index for non-parameter drain-return cells
NBOP	Module	Entry index for cells defined by parameters other than the parameter of interest
NBP	Module	Entry index for cells defined by parameter of interest
NC	Module	Place marker for position in QCLS
NC1	Module	Position in QCLS of first cell in group
NC2	Module	Position in QCLS of last cell in group
NDRTNP	Package	Number of non-parameter drain-return cells in use during current stress period
NDRTVL	Package	Dimensioning variable for DRTF
NQ	Process	Number of flow-observation cell groups
NQAR	Process	Dimensioning variable for flow-observation cell-group arrays
NQCAR	Process	Dimensioning variable for flow-observation cell arrays
NQCL	Process	Number of cells in each group
PARTYP	Global	Parameter type
PTYP	Module	Parameter type for drain-return parameters
QCLS	Global	Cell data for flow observations

Module SEN1DRT1FM

Narrative for Module SEN1DRT1FM

This primary module calculates the derivative of the drain flow with respect to one DRT1 parameter and subtracts it from the RHS array. If the RETURNFLOW option is specified, it also calculates the derivative of the return flow with respect to the parameter and subtracts it from the RHS array.

- For each cell listed in the parameter definition, do steps 2 and 3. 1.
- If the cell is active, do step 3.

3. If the head in the cell is above the drain elevation, calculate the derivative of the drain flow with respect to the parameter. If the RETURNFLOW option has been selected, also calculate the derivative of the return flow with respect to the parameter. Subtract the derivative(s) from the appropriate RHS array element(s).

Listing for Module SEN1DRT1FM

```
SUBROUTINE SEN1DRT1FM(MXDRT,DRTF,HNEW,NCOL,NROW,NLAY,IBOUND,RHS,
                           IP,NDRTVL,IDRTFL)
C----VERSION 20000619 ERB
     *****************
     FOR DRAIN-RETURN AND RECIPIENT CELLS: CALCULATE MATRIX AND VECTOR
С
C
     DERIVATIVES, MULTIPLY BY HEADS, AND ADD COMPONENTS TO RHS.
C
С
        SPECIFICATIONS:
     REAL DRTF, RHS
     INTEGER I, IBOUND, II, J, K, MXDRT, NCOL, NLAY, NROW
     DOUBLE PRECISION DF, HH, HNEW(NCOL, NROW, NLAY)
     DIMENSION DRTF(NDRTVL, MXDRT), IBOUND(NCOL, NROW, NLAY),
              RHS(NCOL,NROW,NLAY)
     INCLUDE 'param.inc'
С
С
     IF (IACTIVE(IP).EQ.0) RETURN
     IPOS1 = IPLOC(1, IP)
     NPC = IPLOC(2, IP) - IPOS1 + 1
C----LOOP THROUGH PARAMETER CELLS
     DO 20 II = 1, NPC
       ICP = IPOS1-1+II
       K = DRTF(1,ICP)
       I = DRTF(2, ICP)
       J = DRTF(3,ICP)
       IF (IBOUND(J,I,K).GT.0) THEN
C-----CALCULATE CONTRIBUTION TO SENSITIVITY
         ELEVD = DRTF(4,ICP)
         HH = HNEW(J,I,K)
         IF (HH.GT.ELEVD) THEN
           FACTOR = DRTF(5, ICP)
           DF = FACTOR*(ELEVD-HH)
           RHS(J,I,K) = RHS(J,I,K) - DF
C CALCULATE CONTRIBUTION TO SENSITIVITY OF RETURN FLOW
           IF (IDRTFL.GT.0) THEN
             KR = DRTF(6, ICP)
             IF (KR.NE.0) THEN
               IR = DRTF(7,ICP)
               JR = DRTF(8,ICP)
               RFPROP = DRTF(9,ICP)
               DFR = RFPROP*FACTOR*(HH-ELEVD)
               RHS(JR,IR,KR) = RHS(JR,IR,KR) - DFR
             ENDIF
            ENDIF
          ENDIF
       ENDIF
   20 CONTINUE
C
     RETURN
```

END

List of Variables for Module SEN1DRT1FM

Variable	Range	Definition
DF	Module	Contribution to RHS of derivative of drain flow with respect to the parameter
DFR	Module	Contribution to RHS of derivative of return flow with respect to the parameter
DRTF	Package	Drain-return cell data
ELEVD	Module	Drain elevation for an active drain-return cell
FACTOR	Module	Multiplier (Condfact) in the parameter definition
НН	Module	Hydraulic head in a cell
HNEW	Global	Head
Ι	Module	Row index for a drain-return cell controlled by the parameter
IACTIVE	Global	Flag indicating if each parameter is active
IBOUND	Global	Boundary-status indicator
ICP	Module	List-entry index for a drain-return cell in the parameter definition
IDRTFL	Package	Indicator for return-flow option
II	Module	Counter for drain-return cells in the parameter definition
IP	Module	Parameter number
IPLOC	Global	First and last locations in DRTF of cell-list entries for each parameter
IPOS1	Module	Position in DRTF of first cell in the parameter definition
IR	Module	Row index of a recipient cell
J	Module	Column index for a drain-return cell controlled by the parameter
JR	Module	Column index of a recipient cell
K	Module	Layer index of a drain-return cell in the parameter definition
KR	Module	Layer index of a recipient cell
MXDRT	Package	Dimensioning variable for DRTF
NCOL	Global	Number of columns in model grid
NDRTVL	Package	Dimensioning variable for DRTF
NLAY	Global	Number of layers in model grid
NPC	Module	Number of cells controlled by the parameter
NROW	Global	Number of rows in model grid
RFPROP	Package	Return-flow proportion
RHS	Global	Right-hand side

PARAMETER-ESTIMATION EXAMPLE PROBLEM

This example problem demonstrates the use of the Sensitivity and Parameter-Estimation Processes with the ETS1 and DRT1 Packages. The example also demonstrates the use of observations with the DRT1 Package. For this problem, a grid of 11 rows by 11 columns in one layer was used to simulate an unconfined aquifer with a uniform base elevation of 0 ft. All row and column widths were 100 ft. All cells in column 1 had a specified head

of 50 ft, all cells in column 11 had a specified head of 100 ft, and the system was modeled in steady state. The parameter "HydCond" was defined in the LPF Package (Harbaugh and others, 2000) to produce uniform hydraulic conductivity in the model domain. The parameter "Recharge" was defined to produce uniform recharge over the model area using the RCH Package (Harbaugh and others, 2000). Unique input and output files for this example problem are listed in Appendix C. Some of the required input files were the same as for either the ETS1 or the DRT1 example problem and are listed in Appendix A or B; these files are not repeated.

The ETS1 Package was used to simulate evapotranspiration with a uniform maximum evapotranspiration rate, but with a segmented function relating evapotranspiration rate to head. The two-segment function was the same as that described in the "ETS1 Example Problem" section. The parameter "ETS-Max" was defined to determine the maximum evapotranspiration rate. The input file for the ETS1 Package is listed in Appendix A.

The DRT1 package was used to simulate a drain-return feature in the cell in row 5, column 8. Forty percent of the discharge from the drain-return feature was assumed to recharge the ground-water system in the cell in row 7, column 3. The location of the drain-return and recipient cells are shown in figure 6. The parameter "DRT-Cond" was defined to determine the hydraulic conductance of the drain. The input file for the DRT1 Package is listed in Appendix B.

Twenty-two head observations were specified. One flow observation was specified at the drain-return feature. As described in Hill and others (2000), the Observation Process uses observed values and simulated equivalents to calculate the value of an objective function, which is used as a measure of model fit to the observations. MODFLOW-2000 was run in the "Forward with Observations" mode using "true" parameter values to generate a set of model-calculated values to be used as observations when the model was run in the "Parameter Estimation" mode.

To demonstrate the capability of the program to estimate parameter values, the starting values for the parameters "ETS-Max," "DRT-Cond," "Recharge," and "HydCond" were changed in the Sensitivity-Process input file from the "true" values. MODFLOW-2000 was then run in the "Parameter Estimation" mode to estimate these four parameters. The GLOBAL and LIST output files for the run made in "Parameter Estimation" mode are listed in Appendix C. The Parameter-Estimation Process converged on a set of parameter values that minimized the objective function in five parameter-estimation iterations. The parameters and their starting, estimated, and "true" values are listed in table 1. The ability of the program to converge on the "true" set of parameter values indicates that the ETS1 and DRT1 Packages perform the functions of the Ground-Water Flow, Observation, Sensitivity, and Parameter-Estimation Processes as intended.

Table 1. Parameters defined by parameter-estimation example problem and starting, estimated, and true parameter values [d, day; ft, foot]

Parameter name	Description	Starting value	Estimated value	True value
ETS-Max	Maximum evapotranspiration flux rate (ft/d)	0.005	1.000×10^{-2}	1.000×10 ⁻²
DRT-Cond	Hydraulic conductance of drain-return cells (ft ² /d)	4.0	2.000	2.000
Recharge	Recharge rate (ft/d)	3.0×10^{-3}	1.000×10^{-3}	1.000×10^{-3}
HydCond	Hydraulic conductivity (ft/d)	9.0×10^{-2}	5.000×10^{-2}	5.000×10^{-2}

MODFLOW-2000 MODIFICATIONS NEEDED TO USE ETS1 AND DRT1

The ETS1 and DRT1 Packages are designed to be incorporated into the USGS modular, three-dimensional finite-difference ground-water flow model, MODFLOW-2000. Call statements to invoke the subroutines described in the preceding module-documentation sections and other code changes must be added to the main program unit and to modules of the Observation, Sensitivity, and Parameter-Estimation Processes for the ETS1 and DRT1 Packages to operate properly. The changes described in this section enable the use of both ETS1 and

DRT1. The changes are listed according to the file in which the changes are required. The files to be changed are: mf2k.f, obs1bas6.f, sen1bas6.f, pes1bas6.f, and pes1gau1.f. After the files are edited, the program will need to be recompiled. Versions of MODFLOW-2000 downloaded after publication of this report from the URL listed in the Preface of this report include the ETS1 and DRT1 Packages, and no modifications are required.

File mf2k.f

In the DATA statement where the CUNIT array is initialized, add "ETS" to initialize element 39, "DRT" for element 40, and "DTOB" for element 41. If these elements already have non-blank entries, other elements of the CUNIT array can be used. If other elements are used, the references to IUNIT elements 39 through 41 in the following code to be added need to be changed accordingly.

Insert variables LCOBDRT, LCSSDT, NQTDT, and IOWTQDT at the end of the argument list in the call to subroutine OBS1BAS6DF, after NDAR.

```
After the call to OBS1BAS6FAL, insert the following lines:
 IF (IUNIT(41).GT.0)
      CALL OBS1DRT1AL(IUNIT(41),NQ,NQC,NQT,IOUTG,NQDT,NQTDT,IOBSUM,
۶
                        LCOBDRT, ITMXP, LCSSDT, ISUMX, IOBS)
After the call to OBS1BAS6FRP, insert the following lines:
 IF (IUNIT(41).GT.0)
      CALL OBS1DRT1RP(NCOL, NROW, NPER, IUNIT(41), IOUTG, OBSNAM, NH, JT,
δε
                        NQT, IX(LCIBT), IX(LCNQOB), IX(LCNQCL),
&
                        IX(LCIQOB),X(LCQCLS),IERR,X(LCHOBS),X(LCTOFF),
δε
&
                        X(LCWTQ), IOWTQ, IPRN, NDMH, NSTP, PERLEN,
                        TSMULT, ISSFLG, ITRSS, NQAR, NQCAR,
&
                        NQTAR, IQ1, NQT1, NDD, IUNIT(40), NQDT, NQTDT, NT,
۶
                        NC, IX(LCIPLO), NAMES, ND, IPR, MPR, IOWTQDT)
After the call to GWF1HFB6AL, insert the following lines:
   IF(IUNIT(39).GT.0)
&
        CALL GWF1ETS1AL(ISUMRX, ISUMIR, LCIETS, LCETSR, LCETSX, LCETSS,
                          NCOL, NROW, NETSOP, IUNIT(39), IOUT, IETSCB,
&
                          IFREFM, NPETS, IETSPF, NETSEG, LCPXDP, LCPETM,
&
                          NSEGAR)
&
   IF(IUNIT(40).GT.0)
        CALL GWF1DRT1AL(ISUMRX,LCDRTF,MXDRT,NDRTCL,IUNIT(40),IOUT,
&
&
                          IDRTCB, NDRTVL, IDRTAL, IFREFM, NPDRT, IDRTPB,
                          NDRTNP, IDRTFL)
After the call to GWF1HFB6RP, insert the following lines:
   IF(IUNIT(39).GT.0) CALL GWF1ETS1RQ(IUNIT(39),IOUTG,NPETS,ITERPK)
   IF(IUNIT(40).GT.0)
        CALL GWF1DRT1RQ(IUNIT(40), IOUTG, NDRTVL, IDRTAL, NCOL, NROW,
&
                          NLAY, NPDRT, RX(LCDRTF), IDRTPB, MXDRT, IFREFM,
۶
                          ITERPK, IDRTFL)
After the call to GWF1CHD6RP, insert the following lines:
      IF(IUNIT(39).GT.0)
          CALL GWF1ETS1RP(NETSOP, IR(LCIETS), RX(LCETSR), RX(LCETSX),
&
                            RX(LCETSS), GX(LCDELR), GX(LCDELC), NCOL,
δε
                            NROW, IUNIT(39), IOUT, IFREFM, NPETS,
δε
                            GX(LCRMLT), IG(LCIZON), NMLTAR, NZONAR,
                             IETSPF,NETSEG,RX(LCPXDP),RX(LCPETM),
&
                             NSEGAR)
&
```

```
IF(IUNIT(40).GT.0)
&
          CALL GWF1DRT1RP(RX(LCDRTF), NDRTCL, MXDRT, IUNIT(40),
&
                            IOUT, NDRTVL, IDRTAL, IFREFM, NCOL, NROW, NLAY,
&
                            NDRTNP, NPDRT, IDRTPB, IDRTFL, NRFLOW)
After the call to GWF1RCH6FM, insert the following lines:
          IF (IUNIT(39).GT.0)
              CALL GWF1ETS1FM(NETSOP, IR(LCIETS), RX(LCETSR),
&
&
                                RX(LCETSX), RX(LCETSS), GX(LCRHS),
δź
                                GX(LCHCOF), IG(LCIBOU), GZ(LCHNEW), NCOL,
                                NROW, NLAY, NETSEG, RX (LCPXDP),
&
                                RX(LCPETM), NSEGAR)
&
          IF (IUNIT(40).GT.0)
δz
              CALL GWF1DRT1FM(NDRTCL, MXDRT, RX(LCDRTF), GZ(LCHNEW),
&
                                GX(LCHCOF),GX(LCRHS),IG(LCIBOU),NCOL,
                                NROW,NLAY,NDRTVL,IDRTFL)
```

Insert variables LCOBDRT, X(LCSSDT), NQTDT, and IOWTQDT at the end of the argument list in the call to subroutine SEN1BAS6NC. Note that SEN1BAS6NC is called twice from the main program unit, so this change needs to be made in two places.

After the call to GWF1RCH6BD, insert the following lines:

```
C--EVAPOTRANSPIRATION WITH SEGMENTED RATE FUNCTION
```

```
IF (IUNIT(39).GT.0)
     &
                  CALL GWF1ETS1BD(NETSOP, IR(LCIETS), RX(LCETSR), RX(LCETSX),
     &
                                    RX(LCETSS), IG(LCIBOU), GZ(LCHNEW), NCOL,
                                    NROW, NLAY, DELT, VBVL, VBNM, MSUM, KKSTP,
     &
     \mathcal{L}
                                    KKPER, IETSCB, ICBCFL, GX (LCBUFF), IOUT,
                                    PERTIM, TOTIM, NETSEG, RX(LCPXDP),
     &
                                    RX(LCPETM), NSEGAR)
C--DRAINS WITH RETURN FLOW
             IF (IUNIT(40).GT.0)
     &
                  CALL GWF1DRT1BD(NDRTCL, MXDRT, VBNM, VBVL, MSUM, RX(LCDRTF),
     &
                                    DELT, GZ(LCHNEW), NCOL, NROW, NLAY,
     &
                                    IG(LCIBOU), KKSTP, KKPER, IDRTCB, ICBCFL,
                                    GX(LCBUFF), IOUT, PERTIM, TOTIM, NDRTVL,
     &
                                    IDRTAL, IDRTFL, NRFLOW, IAUXSV)
     After the call to OBS1BAS6FFM, insert the following lines:
                  IF (IUNIT(40).NE.0)
     &
                      CALL OBS1DRT1FM(NQ,NQT,IX(LCNQOB),IX(LCNQCL),
     &
                                         IX(LCIQOB),X(LCQCLS),IX(LCIBT),
                                        GZ(LCHNEW), NCOL, NROW, NLAY, IOUT,
     δz
     δε
                                        IG(LCIBOU),NH,OBSNAM,X(LCH),
                                        X(LCTOFF), MXDRT, NDRTCL, RX(LCDRTF),
     &
                                        X(LCWTQ), NDMH, ITS, NQAR, NQCAR, NQTAR,
     &
                                        NDRTVL)
```

Insert variables LCOBDRT, X(LCSSDT), NQTDT, and IOWTQDT at the end of the argument list in the call to subroutine OBS1BAS6SS, after X(LCRSPA).

After the call to SEN1CHD6FM, insert the following lines:

```
IF (PIDTMP.EQ.'ETS ')
& CALL SEN1ETS1FM(NCOL,NROW,NLAY,GX(LCDELR),
& GX(LCDELC),GX(LCRMLT),NETSOP,
& IR(LCIETS),IG(LCIBOU),GX(LCRHS),
& RX(LCETSS),RX(LCETSX),GZ(LCHNEW),
& IG(LCIZON),NMLTAR,NZONAR,IIPP,
& NETSEG,RX(LCPXDP),RX(LCPETM),NSEGAR)
```

```
IF (PIDTMP.EQ.'DRT ')
&
                 CALL SEN1DRT1FM(MXDRT, RX(LCDRTF), GZ(LCHNEW), NCOL,
                                   NROW, NLAY, IG(LCIBOU), GX(LCRHS),
۶
                                   IIPP,NDRTVL,IDRTFL)
After the call to OBS1BAS6FDR, insert the following lines:
               IF (IUNIT(40).NE.0)
&
                   CALL OBS1DRT1DR(NQ,NQT,IX(LCNQOB),IX(LCNQCL),
&
                                     IX(LCIQOB),X(LCQCLS),IX(LCIBT),
                                     GZ(LCHNEW), IP, Z(LCSNEW), NCOL, NROW,
δε
                                     NLAY, IOUTG, IG(LCIBOU), NH, X(LCX),
                                     OBSNAM, NPE, IX(LCLN), X(LCTOFF),
                                     MXDRT, NDRTCL, RX(LCDRTF), NPLIST,
δε
                                     ITS, NOAR, NOCAR, NOTAR, NDRTVL, IERR,
۶
                                     IERRU,NDRTNP,IDRTPB)
```

Insert variables LCOBDRT, X(LCSSDT), NQTDT, and IOWTQDT at the end of the argument list in the call to subroutine OBS1BAS6OS, after X(LCBSCA).

Insert variables LCOBDRT, X(LCSSDT), NQTDT, and IOWTQDT at the end of the argument list in the call to subroutine OBS1BAS6OH, after X(LCBPRI).

Insert variables X(LCSSDT) and NQTDT at the end of the argument list in the call to subroutine PES1BAS6OT, after ITERPK.

File obs1bas6.f

Insert variables LCOBDRT, LCSSDT, NQTDT, and IOWTQDT at the end of the argument list in the SUBROUTINE statement for subroutine OBS1BAS6DF, after NDAR.

In subroutine OBS1BAS6DF before the RETURN statement, insert the following lines:

```
IOWTQDT = 0
LCOBDRT = 1
LCSSDT = 1
NQTDT = 0
```

Insert variables LCOBDRT, SSDT, NQTDT, and IOWTQDT at the end of the argument list in the SUBROUTINE statement for subroutine OBS1BAS6SS, after RSPA.

In subroutine OBS1BAS6SS, insert after the existing DIMENSION statements the following line: ${\tt DIMENSION~SSDT(ITMXP+1)}$

In subroutine OBS1BAS6SS, insert variables LCOBDRT, SSDT, NQTDT, and IOWTQDT at the end of the argument list in the call to subroutine OBS1BAS6OH, after BPRI.

Insert variables LCOBDRT, SSDT, NQTDT, and IOWTQDT at the end of the argument list in the SUBROUTINE statement for subroutine OBS1BAS6OS, after BSCAL.

In subroutine OBS1BAS6OS, insert after the existing DIMENSION statements the following line: DIMENSION SSDT(ITMXP+1)

In subroutine OBS1BAS6OS, insert variables LCOBDRT, SSDT, NQTDT, and IOWTQDT at the end of the argument list in the call to subroutine OBS1BAS6OH, after BPRI.

Insert variables LCOBDRT, SSDT, NQTDT, and IOWTQDT at the end of the argument list in the SUBROUTINE statement for subroutine OBS1BAS6OH, after BPRI.

In subroutine OBS1BAS6OH, insert after the existing DIMENSION statements the following line: DIMENSION SSDT(ITMXP+1)

In subroutine OBS1BAS6OH, insert after the call to SOBS1BAS6FOH the following lines:

```
C-----DRAIN-RETURN FLOW OBSERVATIONS
```

File sen1bas6.f

Insert variables LCOBDRT, SSDT, NQTDT, and IOWTQDT at the end of the argument list in the SUBROUTINE statement for subroutine SEN1BAS6NC, after IERRU.

```
In subroutine SEN1BAS6NC, insert after the existing DIMENSION statements the following line: DIMENSION SSDT(ITMXP+1)
```

In subroutine SEN1BAS6NC, insert variables LCOBDRT, SSDT, NQTDT, and IOWTQDT at the end of the argument list in the call to subroutine OBS1BAS6OH, after BPRI.

File pes1bas6.f

In subroutine PES1BAS6CN add ".OR. PIDTMP.EQ.'DRT '.OR. PIDTMP.EQ.'ETS '" to the end of the logical expression in the first IF statement in DO loop 20.

In subroutine PES1BAS6CK add ".OR. PIDTMP.EQ.'ETS' to the end of the logical expression in the IF statement in DO loop 60.

Insert variables SSDT and NQTDT at the end of the argument list in the SUBROUTINE statement for subroutine PES1BAS6OT, after ITERPK.

In subroutine PES1BAS6OT, insert after the existing DIMENSION statements the following line: DIMENSION SSDT(ITMXP+1)

In subroutine PES1BAS6OT, insert variables SSDT and NQTDT at the end of the argument list in the call to subroutine SPES1GAU1PR, after ITERPK.

File pes1gau1.f

Insert variables SSDT and NQTDT at the end of the argument list in the SUBROUTINE statement for subroutine SPES1GAU1PR, after ITERPK.

In subroutine SPES1GAU1PR, insert after the existing DIMENSION statement the following line: DIMENSION SSDT(ITMXP+1)

In subroutine SPES1GAU1PR, insert after the IF...THEN...ENDIF block that is contingent on the logical expression (NQTDR.GT.0) the following lines:

REFERENCES

- American National Standards Institute, 1978, Programming language FORTRAN: ANSI X3.9-1978, New York, American National Standards Institute, variously paginated.
- ————1992, American national standard for programming language Fortran extended: ANSI X3.198-1992, New York, American National Standards Institute, 369 p.
- Harbaugh, A.W., Banta, E.R., Hill, M.C., and McDonald, M.G., 2000, MODFLOW-2000, the U.S. Geological Survey modular ground-water model—User guide to modularization concepts and the Ground-Water Flow Process: U.S. Geological Survey Open-File Report 00–92, 121 p.
- Harbaugh, A.W., and McDonald, M.G., 1996a, User's documentation for MODFLOW-96, an update to the U.S. Geological Survey modular finite-difference ground-water flow model: U.S. Geological Survey Open-File Report 96–485, 56 p.
- ———1996b, Programmer's documentation for MODFLOW-96, an update to the U.S. Geological Survey modular finite-difference ground-water flow model: U.S. Geological Survey Open-File Report 96–486, 220 p.
- Hill, M.C., 1990, Preconditioned conjugate-gradient 2 (PCG2), a computer program for solving ground-water flow equations: U.S. Geological Survey Water-Resources Investigations Report 90–4048, 43 p.
- Hill, M.C., Banta, E.R., Harbaugh, A.W., and Anderman, E.R., 2000, MODFLOW-2000, the U.S. Geological Survey modular ground-water model—User guide to the Observation, Sensitivity, and Parameter-Estimation Processes and three post-processing programs: U.S. Geological Open-File Report 00–184, 209 p.
- McDonald, M.G., and Harbaugh, A.W., 1988, A modular three-dimensional finite-difference ground-water flow model: U.S. Geological Survey Techniques of Water-Resources Investigations, book 6, chap. A1, 586 p.

APPENDIX A—Input and Output File for the ETS1 Example Problem

```
The name file (Harbaugh and others, 2000) is:
 NAME file for ets1 test case
#
  Output file
        12 ets1.lst
list
# Global input files
        21 ..\data\ets1.dis
dis
         22
             ..\data\ets1.mlt
mult
        23
            ..\data\ets1.zon
zone
# Flow-Process input files
        31
            ..\data\ets1.bas
bas6
            ..\data\ets1.oc
         32
OC
lpf
         33
            ..\data\ets1.lpf
            ..\data\ets1.ets
ets
         37
         38 ..\data\ets1.evt
# evt
            ..\data\ets1.pcg
pcg
     The discretization (DIS) input file (Harbaugh and others, 2000) is:
# DIS file for ets1, drt1, and etsdrt test cases. Units: Days, Feet
                       Item 1: NLAY NROW NCOL NPER ITMUNI LENUNI Item 2: LAYCBD
 1 11 11 1 4 1
 0
                       Item 3: DELR
constant
          100.0
          100.0
                       Item 4: DELC
constant
          100.0
                       Item 5: Top
constant
                       Item 6: BOTM, layer 1
            0.0
constant
 0.0
          1.0 SS
                       Item 7: PERLEN NSTP TSMULT SS/TR, period 1
     The multiplier-array (MULT) input file (Harbaugh and others, 2000) is:
 MULT file for ets1 test case
#
  1
                     Item 1: NML
TwoTenths
                    Item 2: MLTNAM
                    Item 3: RMLT
constant
            0.2
     The zone-array (ZONE) input file (Harbaugh and others, 2000) is:
# ZONE file for ets1 test case
                          Item 1: NZN
 1
ET-zones
                          Item 2: ZONNAM
INTERNAL
          1 (1112)
                     - 1
                          Item 3: IZON
 2 2 2 2 2 2 2 2 1 1
 2 2 2 2 2 2 2 2 2 1 1
 2 2 2 2 2 2 2 2 1 1
   2 2 2 2 2 2 2 2 1 1
   2 2
       2
         2 2 2 2
                  2 1
                      1
   2 2 2 2 2 2 2
                  2 1 1
 2
   2 2 2 2 2 2 2
                  2 1 1
     2
       2
         2
           2
              2
                2
                    1 1
   2 2 2 2 2 2 2
                  2 1 1
 2 2 2 2 2 2 2 2 1 1
     The input file for the Basic (BAS) Package (Harbaugh and others, 2000) is:
# BAS file for ets1, drt1, and etsdrt test cases
free
internal 1 (free) -1
                                     Item 2: Ibound
               1.
                  1
 -1
     1
        1
            1
                     1
                         1
                            1
                               1 –1
 -1
     1
        1
            1
               1
                  1
                      1
                         1
                            1
                               1 -1
                               1 -1
 -1
        1
            1
               1
                  1
                     1
                         1
                            1
     1
 -1
     1
        1
           1
               1
                  1
                     1
                         1
                            1
                               1 -1
 -1
        1
               1
                  1
                     1
                         1
                            1
     1
            1
                               1 -1
 -1
     1
        1
            1
               1
                  1
                      1
                         1
                            1
                               1 - 1
 -1
     1
        1
            1
               1
                  1
                      1
                         1
                            1
                               1 -1
 -1
        1
            1
               1
                  1
                     1
                         1
                            1
                               1 -1
     1
     1
        1
            1
               1
                  1
                      1
                         1
                            1
                               1 -1
 -1
                         1
                               1 –1
     1
        1
            1
               1
                  1
                     1
                            1
```

```
-999
                                   Item 3: HNOFLO
INTERNAL 1.0
              (FREE) -1
                                  Item 4: STRT
50.0 55.0 60.0 65.0 70.0 75.0 80.0 85.0 90.0 95.0 100.0
50.0 55.0 60.0 65.0 70.0 75.0 80.0 85.0 90.0 95.0 100.0
50.0 55.0 60.0 65.0 70.0 75.0 80.0 85.0 90.0 95.0 100.0
50.0 55.0 60.0 65.0 70.0 75.0 80.0 85.0 90.0 95.0 100.0
50.0 55.0 60.0 65.0 70.0 75.0 80.0 85.0 90.0 95.0 100.0
50.0 55.0 60.0 65.0 70.0 75.0 80.0 85.0 90.0 95.0 100.0
50.0 55.0 60.0 65.0 70.0 75.0 80.0 85.0 90.0 95.0 100.0
50.0 55.0 60.0 65.0 70.0 75.0 80.0 85.0 90.0 95.0 100.0
50.0 55.0 60.0 65.0 70.0 75.0 80.0 85.0 90.0 95.0 100.0
50.0 55.0 60.0 65.0 70.0 75.0 80.0 85.0 90.0 95.0 100.0
50.0 55.0 60.0 65.0 70.0 75.0 80.0 85.0 90.0 95.0 100.0
    The Output-Control input file (Harbaugh and others, 2000) is:
```

```
# OC file for ets1, drt1, and etsdrt test cases
head print format 8
period 1 step 1
  print head
```

The input file for the Layer Property Flow (LPF) Package (Harbaugh and others, 2000), is:

```
# LPF file for ets1 and drt1 test cases
0 0 0 Item 1: ILPFCB HDRY NPLPF
1 Item 2: LAYTYP
0 Item 3: LAYAVG
1.0 Item 4: CHANI
0 Item 5: LAYVKA
0 Item 6: LAYWET
constant 5.0E-2 Item 10: HK, layer 1
constant 1.0E-2 Item 12: VKA, layer 1
```

The input file for the ETS1 Package follows. Note that the ETS1 Package is not used for the simulation in which evapotranspiration is simulated with the EVT Package.

```
# ETS input file for ets1 and etsdrt test cases
 1 0 1
                      Item 1: NETSOP IETSCB NPETS NETSEG
ETS-Max ETS 0.01 1 Item 2: PARNAM PARTYP PARVAL NCLU
none
          all
                      Item 3: Mltarr Zonarr
 1 1 1 0 1
                      Item 4: INETSS INETSR INETSX INIETS INSGDF, period 1
CONSTANT 100.0
                      Item 5: ETSS
ETS-Max
                      Item 7: Pname
constant 36.0
                      Item 8: ETSX
         0.5
                      Item 10: PXDP
constant
constant
          0.1
                      Item 11: PETM
```

The input file for the Evapotranspiration (EVT) package follows. Note that the EVT Package is not used for the simulation in which evapotranspiration is simulated with the ETS1 Package.

```
# EVT file for ets1 test case
PARAMETER 1
            Item 1: NPEVT
1
 Ω
            Item 2: NEVTOP IEVTCB
EVT-Max EVT 0.01 2
            Item 3: PARNAM PARTYP Parval NCLU
NONE
    ET-zones 1
            Item 4: Mltarr Zonarr IZ
TwoTenths ET-zones 2
            Item 4: Mltarr Zonarr IZ
1 1 1 0
CONSTANT 100.0
            Item 5: INSURF INEVTR INEXDP INIEVT
            Item 6: SURF
EVT-Max 10
            Item 8: Pname
INTERNAL 1.0
      (FREE) -1 Item 9: EXDP
36.0 36.0 36.0 36.0 36.0 36.0 36.0 36.0
                   36.0 20.0
36.0 36.0 36.0 36.0 36.0 36.0 36.0 36.0
                     20.0
```

98

```
The input file for the Preconditioned Conjugate-Gradient (PCG2) Package (Hill, 1990), is:
# PCG file for ets1, drt1, and etsdrt test cases
#
 60
                               Item 1: MXITER ITER1 NPCOND
           1. 2 0 2 1.0 Item 2: HCLOSE RCLOSE RELAX NBPOL IPRPCG MUTPCG DAMP
1.E-4 80.
    The combined GLOBAL and LIST output file for the run using the ETS1 Package is:
                                   MODFLOW-2000
      U.S. GEOLOGICAL SURVEY MODULAR FINITE-DIFFERENCE GROUND-WATER FLOW MODEL
                              VERSION 1.0 07/20/2000
 This model run combines GLOBAL and LIST output into this single file.
 GLOBAL LISTING FILE: etsl.lst
                         UNIT 12
#Global input files
 OPENING ..\data\ets1.dis
 FILE TYPE:DIS
                UNIT 21
 OPENING ..\data\ets1.mlt
 FILE TYPE:MULT UNIT 22
 OPENING ..\data\ets1.zon
                 IINITT 23
 FILE TYPE:ZONE
#Flow-Process input files
 OPENING ..\data\ets1.bas
 FILE TYPE:BAS6 UNIT 31
 OPENING ..\data\ets1.oc
 FILE TYPE:OC
               UNIT 32
 OPENING ..\data\ets1.lpf
 FILE TYPE:LPF
                UNIT 33
 OPENING ..\data\ets1.ets
 FILE TYPE:ETS
               UNIT 37
#evt 38 ..\data\ets1.evt
 OPENING ..\data\ets1.pcg
 FILE TYPE:PCG
               UNIT 39
 DISCRETIZATION INPUT DATA READ FROM UNIT 21
 # DIS file for ets1, drt1, and etsdrt test cases. Units: Days, Feet
    1 LAYERS
                    11 ROWS
                                    11 COLUMNS
   1 STRESS PERIOD(S) IN SIMULATION
 MODEL TIME UNIT IS DAYS
 MODEL LENGTH UNIT IS FEET
 THE OBSERVATION PROCESS IS INACTIVE
 THE SENSITIVITY PROCESS IS INACTIVE
 THE PARAMETER-ESTIMATION PROCESS IS INACTIVE
 MODE: FORWARD
 ZONE OPTION, INPUT READ FROM UNIT 23
 # ZONE file for ets1 test case
     1 ZONE ARRAYS
 MULTIPLIER OPTION, INPUT READ FROM UNIT 22
 # MULT file for ets1 test case
   1 MULTIPLIER ARRAYS
  Confining bed flag for each layer:
```

1232 ELEMENTS OF GX ARRAY USED OUT OF 1232 121 ELEMENTS OF GZ ARRAY USED OUT OF 242 ELEMENTS OF IG ARRAY USED OUT OF 121 242

DELR = 100.000

DELC = 100.000

TOP ELEVATION OF LAYER 1 = 100.000

MODEL LAYER BOTTOM EL. = 0.00000 FOR LAYER 1

STRESS PERIOD LENGTH TIME STEPS MULTIPLIER FOR DELT SS FLAG 1 0.000000 1 1.000 SS

STEADY-STATE SIMULATION

MULT. ARRAY: TwoTenths = 0.200000

ZONE ARRAY: ET-zones READING ON UNIT 23 WITH FORMAT: (1112)

LPF1 -- LAYER PROPERTY FLOW PACKAGE, VERSION 1, 1/11/2000

INPUT READ FROM UNIT 33

LPF file for ets1 and drt1 test cases HEAD AT CELLS THAT CONVERT TO DRY= 0.0000

No named parameters

LAYER FLAGS:

LAYER	LAYTYP	LAYAVG	CHANI	LAYVKA	LAYWET	
1	1	0	1.000E+00	0	0	

INTERPRETATION OF LAYER FLAGS:

HORIZONTAL DATA IN INTERBLOCK LAYER TYPE TRANSMISSIVITY ANISOTROPY ARRAY VKA (LAYTYP) (LAYAVG) (CHANI) (LAYVKA) WETTABILITY LAYER (LAYVKA) (LAYWET) CONVERTIBLE HARMONIC 1.000E+00 VERTICAL K NON-WETTABLE

242 ELEMENTS IN X ARRAY ARE USED BY LPF 6 ELEMENTS IN IX ARRAY ARE USED BY LPF

PCG2 -- CONJUGATE GRADIENT SOLUTION PACKAGE, VERSION 2.4, 12/29/98 # PCG file for ets1, drt1, and etsdrt test cases

MAXIMUM OF 60 CALLS OF SOLUTION ROUTINE MAXIMUM OF 8 INTERNAL ITERATIONS PER CALL TO SOLUTION ROUTINE MATRIX PRECONDITIONING TYPE : 1

1323 ELEMENTS IN X ARRAY ARE USED BY PCG

3360 ELEMENTS IN IX ARRAY ARE USED BY PCG

242 ELEMENTS IN Z ARRAY ARE USED BY PCG

1565 ELEMENTS OF X ARRAY USED OUT OF 1565 242 ELEMENTS OF Z ARRAY USED OUT OF 3366 ELEMENTS OF IX ARRAY USED OUT OF 3366 0 ELEMENTS OF XHS ARRAY USED OUT OF

> SOLUTION BY THE CONJUGATE-GRADIENT METHOD -----

> > 60

MAXIMUM NUMBER OF CALLS TO PCG ROUTINE =

MAXIMUM ITERATIONS PER CALL TO PCG = MATRIX PRECONDITIONING TYPE = RELAXATION FACTOR (ONLY USED WITH PRECOND. TYPE 1) = 0.10000E+01 PARAMETER OF POLYMOMIAL PRECOND. = 2 (2) OR IS CALCULATED: HEAD CHANGE CRITERION FOR CLOSURE = 0.10000E-03 RESIDUAL CHANGE CRITERION FOR CLOSURE = 0.80000E+02 PCG HEAD AND RESIDUAL CHANGE PRINTOUT INTERVAL = PRINTING FROM SOLVER IS LIMITED(1) OR SUPPRESSED (>1) = DAMPING PARAMETER = 0.10000E+01 WETTING CAPABILITY IS NOT ACTIVE IN ANY LAYER HYD. COND. ALONG ROWS = 5.000000E-02 FOR LAYER VERTICAL HYD. COND. = 1.000000E-02 FOR LAYER # BAS file for ets1, drt1, and etsdrt test cases THE FREE FORMAT OPTION HAS BEEN SELECTED 1 LAYERS 11 ROWS 11 COLUMNS 1 STRESS PERIOD(S) IN SIMULATION BAS6 -- BASIC PACKAGE, VERSION 6, 1/11/2000 INPUT READ FROM UNIT 31 5 ELEMENTS IN IR ARRAY ARE USED BY BAS ETS1 -- EVAPOTRANSPIRATION SEGMENTS PACKAGE, VERSION 1, 5/2/2000 INPUT READ FROM UNIT 37 # ETS input file for ets1 and etsdrt test cases OPTION 1 -- EVAPOTRANSPIRATION FROM TOP LAYER 1 Named Parameters 2 SEGMENTS DEFINE EVAPOTRANSPIRATION RATE FUNCTION 605 ELEMENTS IN RX ARRAY ARE USED BY ETS 121 ELEMENTS IN IR ARRAY ARE USED BY ETS 605 ELEMENTS OF RX ARRAY USED OUT OF 126 ELEMENTS OF IR ARRAY USED OUT OF 605 126 # BAS file for ets1, drt1, and etsdrt test cases BOUNDARY ARRAY FOR LAYER 1 READING ON UNIT 31 WITH FORMAT: (FREE) AQUIFER HEAD WILL BE SET TO -999.00 AT ALL NO-FLOW NODES (IBOUND=0). INITIAL HEAD FOR LAYER 1 READING ON UNIT 31 WITH FORMAT: (FREE) # OC file for ets1, drt1, and etsdrt test cases OUTPUT CONTROL IS SPECIFIED ONLY AT TIME STEPS FOR WHICH OUTPUT IS DESIRED HEAD PRINT FORMAT CODE IS 8 DRAWDOWN PRINT FORMAT CODE IS 0 HEADS WILL BE SAVED ON UNIT 0 DRAWDOWNS WILL BE SAVED ON UNIT

1 Evapotranspiration segments parameters

PARAMETER NAME: ETS-Max TYPE: ETS CLUSTERS: Parameter value from package file is: 1.00000E-02

MULTIPLIER ARRAY: none ZONE ARRAY: all

1 PARAMETER HAS BEEN DEFINED IN ALL PACKAGES. (SPACE IS ALLOCATED FOR 500 PARAMETERS.)

STRESS PERIOD NO. 1, LENGTH = 0.000000

NUMBER OF TIME STEPS = 1

MULTIPLIER FOR DELT = 1.000

INITIAL TIME STEP SIZE = 0.000000

ET SURFACE (ETSS) = 100.000

ETSR array defined by the following parameters:

Parameter: ETS-Max
EVAPOTRANS. RATE (ETSR) = 1.000000E-02

EXTINCTION DEPTH (ETSX) = 36.0000

PXDP AND PETM ARRAYS FOR INTERSECTION 1 OF HEAD/ET RELATION:

EXTINCT. DEP. PROPORTION = 0.500000

ET RATE PROPORTION = 0.100000

SOLVING FOR HEAD

OUTPUT CONTROL FOR STRESS PERIOD 1 TIME STEP 1 PRINT HEAD FOR ALL LAYERS

		HEAD	IN :			AT EN						RESS	PERIOD	1	
	1	2	3						7	8	9				
2 3 4 5 6 7 8 9	50.0	53.8 53.8 53.8 53.8 53.8 53.8 53.8 53.8	57. 57. 57. 57. 57. 57. 57.	3 60 3 60 3 60 3 60 3 60 3 60 3 60 3 60	. 7 . 7 . 7 . 7 . 7 . 7	63.8 63.8 63.8 63.8 63.8 63.8 63.8	66. 66. 66. 66. 66.	8 70 8 70 8 70 8 70 8 70 8 70 8 70 8 70	.1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7	4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2	79.6 79.6 79.6 79.6 79.6 79.6 79.6 79.6	86. 86. 86. 86. 86. 86.	6 100. 6 100. 6 100. 6 100. 6 100. 6 100. 6 100. 6 100.	0 0 0 0 0 0 0 0	
VOL.	UMETRIC	BUDGE"													1
	CUMULAT	IVE VO			L	**3		RATES	FOR	THIS	S TIME	STEP		L**3/T	
		N:								IN	=				
	CONST	STORAC ANT HEA SEGMEN	GE = AD = IS =			0.0 0.0 0.0	000 000 000		CO	NSTA	STORAG	GE = AD = IS =		0.0 683.8 0.0	0000 3303 0000
		TOTAL :	IN =			0.0	000			I	TOTAL :	IN =		683.8	3303
	OU'									OUT	-				
	CONST.	STORAC ANT HEA SEGMEN	GE = AD = IS =			0.0 0.0 0.0	000 000 000		CO	NSTA ET S	STORAC ANT HEA SEGMEN	GE = AD = IS =		0.0 107.9 575.8	
	T	OTAL O	JT =			0.0	000			TO	TAL O	JT =		683.8	3302
		IN - O	JT =			0.0	000			I	N - 01	JT =		1.2207	E-04

PERCENT DISCREPANCY = 0.00 PERCENT DISCREPANCY = 0.00

	TIME SUMMA	ARY AT END	OF TIME STEP	1 IN STRESS	PERIOD	1
		SECONDS	MINUTES	HOURS	DAYS	YEARS
TIME	STEP LENGTH	0.0000	0.0000	0.0000	0.0000	0.0000
STRESS	PERIOD TIME	0.0000	0.0000	0.0000	0.0000	0.0000
	TOTAL TIME	0.0000	0.0000	0.0000	0.0000	0.0000

The following calculated head distribution and volumetric budget is from the combined GLOBAL and LIST output fi

The following calculated head distribution and volumetric budget is from the combined GLOBAL and file for the run using the EVT Package.													
ine ioi		HEAD	IN LA	AYER 1									
				4	5	6	7	8	9	10	11		
1 2 3 4 5 6 7 8 9 10	50.0 50.0 50.0 50.0 50.0 50.0 50.0	53.8 53.8 53.8 53.8 53.8 53.8 53.8 53.8	57.3 57.3 57.3 57.3 57.3 57.3 57.3 57.3	60.7 60.7 60.7 60.7	63.8 63.8 63.8 63.8 63.8 63.8 63.8 63.8	66.8 66.8 66.8 66.8 66.8 66.8 66.8	70.1 70.1 70.1 70.1 70.1 70.1 70.1 70.1	74.2 74.2 74.2 74.2 74.2 74.2 74.2 74.2	79.6 79.6 79.6 79.6 79.6 79.6 79.6 79.6	86.6 86.6 86.6 86.6 86.6 86.6 86.6	100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0		
1 VOI	LUMETRIC											ERIOD	1
CUMULATIVE VOLUMES L**3 RATES FOR THIS TIME STEP L**3/T													
		N:						IN					
		STORA ANT HE	GE = AD = ET =		0.0 0.0 0.0	000			STORAC NT HEA	GE = AD = ET =		0.0 683.8 0.0	303
		TOTAL	IN =		0.0	000		Т	OTAL 1	[N =		683.8	303
	OU	T:						OUT					
	CONST.	ANT HE	AD =		0.0			CONSTA					
	Т	OTAL O	UT =		0.0	000		TO	TAL OU	JT =		683.8	303
		IN - O	UT =		0.0	000		I	N - OU	JT =	6	.1035E	-05
PERC	CENT DIS	CREPAN(CY =		0.0	0	PERCEN	T DISC	REPANC	CY =		0.0	0

APPENDIX B—Input and Output Files for the DRT1 Example Problem

The name file (Harbaugh and others, 2000) is:

```
# NAME file for drt1 test case
# Output file
list
         12 drt1.lst
# Global input file
         21 ..\data\ets1.dis
dis
# Flow process input files
bas6
         31 ..\data\ets1.bas
         32
             ..\data\ets1.oc
OC
         33 ..\data\ets1.lpf
34 ..\data\drt1.drt
35 ..\data\drt1.drn
lpf
drt
# drn
# wel
           36 ..\data\drt1.wel
pcq
             ..\data\ets1.pcg
```

The DIS, BAS, OC, LPF, and PCG2 input files are the same as for the ETS1 example problem and are listed in Appendix A.

The input file for the DRT1 Package follows. Note that the DRT1 Package is not used for the simulation in which the drain and return flow are simulated with the Drain (DRN) and Well (WEL) Packages (Harbaugh and others, 2000).

```
# DRT file for drt1 and etsdrt test cases
1 0 1 1 returnflow
                         Item 1: MXADRT IDRTCB NPDRT MXL
DRT-Cond drt 2.0 1
                         Item 2: PARNAM PARTYP PARVAL NLST
1 5 8 60.0 1.0 1 7 3 0.4
                         Item 3: LAY ROW COL ELEV Condfact LayR RowR ColR Rfprop
                         Item 4: ITMP NP, stress period 1
DRT-Cond
                         Item 6: Pname
```

The input file for the DRN Package follows. Note that the DRN Package is not used for the simulation in which the drain and return flow are simulated with the DRT1 Package.

```
# DRN file for drt1 test case
PARAMETER 1 1
                           Item 1: NPDRN MXL
                           Item 2: MXACTD IDRNCB
 1 0
DRN-Cond
          drn 2.0
                           Item 3: PARNAM PARTYP PARVAL NLST
1 5 8
         60.0 1.0
                           Item 4: LAY ROW COL ELEV CONDFACT
0 1
                           Item 5: ITMP NP, stress period 1
DRN-Cond
                           Item 7: Pname
```

The input file for the WEL Package follows. Note that the WEL Package is not used for the simulation in which the drain and return flow are simulated with the DRT1 Package.

```
# WEL file for drt1 test case
                     Item 1: NPWEL MXL
parameter 1 1
                     Item 2: MXACTW IWELCB
   0
Inject Q 18.085
                     Item 3: PARNAM PARTYP Parval NLST
                  1
   7
      3 1.0
                     Item 4: Layer Row Column Qfact
   1
                     Item 5: ITMP NP
 0
                     Item 7: Pname
Inject
```

#Global input file

OPENING ..\data\ets1.dis

The combined GLOBAL and LIST output file for the run using the DRT1 Package is:

```
MODFLOW-2000
     U.S. GEOLOGICAL SURVEY MODULAR FINITE-DIFFERENCE GROUND-WATER FLOW MODEL
                            VERSION 1.0 07/20/2000
This model run combines GLOBAL and LIST output into this single file.
GLOBAL LISTING FILE: drt1.lst
                        UNIT 12
```

```
FILE TYPE:DIS UNIT 21
# Flow process input files
OPENING ..\data\ets1.bas
FILE TYPE:BAS6 UNIT 31
OPENING ..\data\ets1.oc
FILE TYPE:OC UNIT 32
OPENING ..\data\ets1.lpf
FILE TYPE:LPF UNIT 33
OPENING ..\data\drt1.drt
FILE TYPE:DRT UNIT 34
#drn 35 ..\data\drt1.drn
# wel 36 ..\data\drt1.wel
OPENING ..\data\ets1.pcg
FILE TYPE:PCG UNIT 39
DISCRETIZATION INPUT DATA READ FROM UNIT 21
 # DIS file for ets1, drt1, and etsdrt test cases. Units: Days, Feet
            11 ROWS 11 COLUMNS
   1 LAYERS
  1 STRESS PERIOD(S) IN SIMULATION
MODEL TIME UNIT IS DAYS
MODEL LENGTH UNIT IS FEET
THE OBSERVATION PROCESS IS INACTIVE
THE SENSITIVITY PROCESS IS INACTIVE
THE PARAMETER-ESTIMATION PROCESS IS INACTIVE
MODE: FORWARD
 Confining bed flag for each layer:
      1111 ELEMENTS OF GX ARRAY USED OUT OF 1111 121 ELEMENTS OF GZ ARRAY USED OUT OF 121
       121 ELEMENTS OF GZ ARRAY USED OUT OF 121 ELEMENTS OF IG ARRAY USED OUT OF
                                              121
121
                   DELR = 100.000
                   DELC = 100.000
TOP ELEVATION OF LAYER 1 = 100.000
  MODEL LAYER BOTTOM EL. = 0.00000
                                    FOR LAYER 1
 STRESS PERIOD LENGTH TIME STEPS MULTIPLIER FOR DELT SS FLAG
     1 0.000000
                           1
                                                  1.000 SS
 STEADY-STATE SIMULATION
LPF1 -- LAYER PROPERTY FLOW PACKAGE, VERSION 1, 1/11/2000
       INPUT READ FROM UNIT 33
 # LPF file for ets1 and drt1 test cases
HEAD AT CELLS THAT CONVERT TO DRY= 0.0000
No named parameters
  LAYER FLAGS:
 LAYER LAYTYP LAYAVG CHANI LAYVKA LAYWET
 ______
                        0 1.000E+00
              1
  1
                                                0
```

INTERPRETATION OF LAYER FLAGS:

LAYER	(LAYTYP)	(LAYAVG)	(CHANI)	(LAYVKA)	(LAYWET)
	LAYER TYPE	TRANSMISSIVITY	ANISOTROPY	ARRAY VKA	WETTABILITY
		INTERBLOCK	HORIZONTAL	DATA IN	

CONVERTIBLE HARMONIC 1.000E+00 VERTICAL K NON-WETTABLE

242 ELEMENTS IN X ARRAY ARE USED BY LPF 6 ELEMENTS IN IX ARRAY ARE USED BY LPF

PCG2 -- CONJUGATE GRADIENT SOLUTION PACKAGE, VERSION 2.4, 12/29/98 # PCG file for ets1, drt1, and etsdrt test cases

MAXIMUM OF 60 CALLS OF SOLUTION ROUTINE
MAXIMUM OF 8 INTERNAL ITERATIONS PER CALL TO SOLUTION ROUTINE

MATRIX PRECONDITIONING TYPE : 1

1323 ELEMENTS IN X ARRAY ARE USED BY PCG

3360 ELEMENTS IN IX ARRAY ARE USED BY PCG

242 ELEMENTS IN Z ARRAY ARE USED BY PCG

1565 ELEMENTS OF X ARRAY USED OUT OF 242 ELEMENTS OF Z ARRAY USED OUT OF

242

3366 ELEMENTS OF IX ARRAY USED OUT OF 0 ELEMENTS OF XHS ARRAY USED OUT OF

SOLUTION BY THE CONJUGATE-GRADIENT METHOD _____

MAXIMUM NUMBER OF CALLS TO PCG ROUTINE = MAXIMUM ITERATIONS PER CALL TO PCG =

8 MATRIX PRECONDITIONING TYPE = 1

RELAXATION FACTOR (ONLY USED WITH PRECOND. TYPE 1) = 0.10000E+01

PARAMETER OF POLYMOMIAL PRECOND. = 2 (2) OR IS CALCULATED:

HEAD CHANGE CRITERION FOR CLOSURE = 0.10000E-03

RESIDUAL CHANGE CRITERION FOR CLOSURE = 0.80000E+02

PCG HEAD AND RESIDUAL CHANGE PRINTOUT INTERVAL =

PRINTING FROM SOLVER IS LIMITED(1) OR SUPPRESSED (>1) = DAMPING PARAMETER = 0.10000E+01

WETTING CAPABILITY IS NOT ACTIVE IN ANY LAYER

HYD. COND. ALONG ROWS = 5.000000E-02 FOR LAYER

VERTICAL HYD. COND. = 1.000000E-02 FOR LAYER

BAS file for ets1, drt1, and etsdrt test cases THE FREE FORMAT OPTION HAS BEEN SELECTED

1 LAYERS 11 ROWS 11 COLUMNS

1 STRESS PERIOD(S) IN SIMULATION

BAS6 -- BASIC PACKAGE, VERSION 6, 1/11/2000 INPUT READ FROM UNIT 31 5 ELEMENTS IN IR ARRAY ARE USED BY BAS

DRT1 -- DRAIN RETURN PACKAGE, VERSION 1, 5/2/2000

INPUT READ FROM UNIT 34

DRT file for drt1 and etsdrt test cases

MAXIMUM OF 1 ACTIVE DRAINS WITH RETURN FLOW AT ONE TIME

1 Named Parameters 1 List entries

RETURN FLOW OPTION IS SELECTED

18 ELEMENTS IN RX ARRAY ARE USED BY DRT

18 ELEMENTS OF RX ARRAY USED OUT OF 5 ELEMENTS OF IR ARRAY USED OUT OF

BAS file for ets1, drt1, and etsdrt test cases

BOUNDARY ARRAY FOR LAYER 1

READING ON UNIT 31 WITH FORMAT: (FREE)

AQUIFER HEAD WILL BE SET TO -999.00 AT ALL NO-FLOW NODES (IBOUND=0).

INITIAL HEAD FOR LAYER 1

READING ON UNIT 31 WITH FORMAT: (FREE) # OC file for ets1, drt1, and etsdrt test cases

OUTPUT CONTROL IS SPECIFIED ONLY AT TIME STEPS FOR WHICH OUTPUT IS DESIRED HEAD PRINT FORMAT CODE IS 8 DRAWDOWN PRINT FORMAT CODE IS 0 HEADS WILL BE SAVED ON UNIT 0 DRAWDOWNS WILL BE SAVED ON UNIT 0

1 Drain-return parameters

PARAMETER NAME:DRT-Cond TYPE:DRT

Parameter value from package file is: 2.0000

NUMBER OF ENTRIES: 1

DRAIN NO. LAYER ROW COL DRAIN EL. STRESS FACTOR

1 1 5 8 60.00 1.000

DRAIN NO. LAYER ROW COL LAYER ROW COL PROP. 1 1 5 8 1 7 3 0.400000

1 PARAMETER HAS BEEN DEFINED IN ALL PACKAGES. (SPACE IS ALLOCATED FOR 500 PARAMETERS.)

STRESS PERIOD NO. 1, LENGTH = 0.000000

NUMBER OF TIME STEPS = 1

MULTIPLIER FOR DELT = 1.000

INITIAL TIME STEP SIZE = 0.000000

Parameter: DRT-Cond

DRAIN NO. LAYER ROW COL DRAIN EL. CONDUCTANCE

1 1 5 8 60.00 2.000

DRAIN NO. LAYER ROW COL LAYER ROW COL PROP. 1 1 5 8 1 7 3 0.400000

1 DRAIN-RETURN CELLS

SOLVING FOR HEAD

OUTPUT CONTROL FOR STRESS PERIOD 1 TIME STEP 1
PRINT HEAD FOR ALL LAYERS

HEAD IN LAYER 1 AT END OF TIME STEP 1 IN STRESS PERIOD 1

1 2 3 4 5 6 7 8 9 10 11

1 50.0 56.7 62.6 68.1 73.1 77.8 82.4 86.9 91.4 95.7 100.0 2 50.0 56.7 62.6 68.0 73.0 77.7 82.2 86.7 91.2 95.7 100.0 3 50.0 56.7 62.7 68.0 73.0 77.5 81.9 86.2 90.9 95.5 100.0 4 50.0 56.8 62.8 68.1 72.9 77.3 81.3 85.2 90.4 95.3 100.0 5 50.0 57.0 63.1 68.3 73.0 77.2 80.7 82.6 89.8 95.2 100.0 6 50.0 57.3 63.7 68.7 73.3 77.5 81.5 85.3 90.4 95.4 100.0 7 50.0 57.7 65.2 69.2 73.6 78.0 82.2 86.5 91.1 95.6 100.0

8	50.0	57.4	63.9	69.0	73.8	78.3	82.7	87.1	91.4	95.8 100.0
9	50.0	57.2	63.4	68.9	73.8	78.5	83.0	87.4	91.7	95.9 100.0
10	50.0	57.1	63.3	68.8	73.9	78.6	83.2	87.5	91.8	96.0 100.0
11	50.0	57.0	63.2	68.8	73.9	78.7	83.2	87.6	91.9	96.0 100.0

VOLUMETRIC BUDGET FOR ENTIRE MODEL AT END OF TIME STEP $\,$ 1 IN STRESS PERIOD $\,$ 1

CUMULATIVE VOLUMES	L**3	RATES FOR THIS TIME ST	TEP	L**3/T
in:		IN:		
STORAGE = CONSTANT HEAD = DRAINS (DRT) =	0.0000 0.0000 0.0000	STORAGE CONSTANT HEAD DRAINS (DRT)	=	0.0000 233.9942 18.0850
TOTAL IN =	0.0000	TOTAL IN	=	252.0792
OUT:		OUT:		
STORAGE = CONSTANT HEAD = DRAINS (DRT) =	0.0000 0.0000 0.0000	STORAGE CONSTANT HEAD DRAINS (DRT)	=	0.0000 206.8666 45.2126
TOTAL OUT =	0.0000	TOTAL OUT	=	252.0792
IN - OUT =	0.0000	IN - OUT	=	4.5776E-05
PERCENT DISCREPANCY =	0.00	PERCENT DISCREPANCY	=	0.00

TIME SUMMA	ARY AT END SECONDS	OF TIME STEP MINUTES	1 IN STRESS HOURS	PERIOD 1 DAYS	YEARS
TIME STEP LENGTH	0.0000	0.0000	0.0000	0.0000	0.0000
STRESS PERIOD TIME		0.0000	0.0000	0.0000	0.0000
TOTAL TIME		0.0000	0.0000	0.0000	0.0000

The following calculated head distribution and volumetric budget are from the combined GLOBAL and LIST output file for the run using the DRN and WEL Packages.

			HEAD	IN LA	AYER 1	AT END	OF	TIME ST	rep 1	IN ST	RESS PE	RIOD	1	
		1	2	3	4	5	6	7	8	9	10	11	_	
•	1 2 3 4 5 6 7 8 9	50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0	56.7 56.7 56.7 56.8 57.0 57.3 57.7 57.4	62.6 62.6 62.7 62.8 63.1 63.7 65.2 63.4 63.3	68.0 68.1 68.3 68.7 69.2 69.0 68.9 68.8	73.0 72.9 73.0 73.3 73.6 73.8 73.8 73.9	77.7 77.5 77.3 77.2 77.5 78.0 78.3 78.5	82.2 81.9 81.3 80.7 81.5 82.2 82.7 83.0 83.2	86.2 85.2 82.6 85.3 86.5 87.1 87.4 87.5	91.2 90.9 90.4 89.8 90.4 91.1 91.4 91.7 91.8	95.7 95.5 95.3 95.2 95.4 95.6 95.8 95.9	100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0		
1		50.0 UMETRIC CUMULAT	BUDGE:	FOR		MODEL	AT E		TIME ST	EP 1	IN STR	ESS PE	RIOD *3/T	1 -

IN:			IN:		
STORAGE	=	0.0000	STORAGE	=	0.0000
CONSTANT HEAD	=	0.0000	CONSTANT HEAD	=	233.9942
WELLS	=	0.0000	WELLS	=	18.0850
DRAINS	=	0.0000	DRAINS	=	0.0000
TOTAL IN	=	0.0000	TOTAL IN	=	252.0792
OUT:			OUT:		
STORAGE	=	0.0000	STORAGE	=	0.0000
CONSTANT HEAD	=	0.0000	CONSTANT HEAD	=	206.8666
WELLS	=	0.0000	WELLS	=	0.0000
DRAINS	=	0.0000	DRAINS	=	45.2125
TOTAL OUT	=	0.0000	TOTAL OUT	=	252.0792
IN - OUT	=	0.0000	IN - OUT	=	6.1035E-05
PERCENT DISCREPANCY	=	0.00	PERCENT DISCREPANCY	=	0.00

APPENDIX C—Input and Output Files for the Parameter-Estimation Problem

The name file (Harbaugh and others, 2000) is:

NAME file for etsdrt test case

```
# Output files
global 11 etsdrt.glo
list
        12 etsdrt.lst
# Global input files
dis
        21 ..\data\ets1.dis
#
# Flow process input files
bas6
        31 ..\data\ets1.bas
             ..\data\ets1.oc
         32
OC
        33
             ..\data\etsdrt.lpf
lpf
        34
             ..\data\drt1.drt
drt
        36
             ..\data\etsdrt.rch
rch
            ..\data\ets1.ets
        37
ets
        39
            ..\data\ets1.pcg
pcq
#
# O-S-P processes input files
         41
            ..\data\etsdrt.obs
obs
         42
             ..\data\etsdrt.ohd
hob
dtob
         43
             ..\data\etsdrt.odt
         45
             ..\data\etsdrt.sen
sen
pes
         46
             ..\data\etsdrt.pes
     The DIS, BAS, OC, ETS1, and PCG2 input files are the same as for the ETS1 example problem and are listed in
Appendix A. The DRT1 input file is the same as for the DRT1 example problem and is listed in Appendix B.
     The input file for the LPF Package is:
# LPF file for etsdrt test case
  0
     0
                           Item 1: ILPFCB HDRY NPLPF
        1
 1
                           Item 2: LAYTYP
 0
                           Item 3: LAYAVG
 1.0
                           Item 4: CHANI
 0
                           Item 5: LAYVKA
                           Item 6: LAYWET
HydCond HK 5.0E-2 1
                           Item 8: PARNAM PARTYP Parval NCLU
    NONE ALL
                           Item 9: Layer Mltarr Zonarr [IZ]
                           Item 10: HK layer 1 print code
-1
constant 1.0E-2
                           Item 12: VKA, layer 1
     The input file for the Recharge (RCH) Package (Harbaugh and others, 2000) is:
# RCH file for etsdrt test case
parameter 1
                           Item 1: NPRCH
                           Item 2: NRCHOP IRCHCB
1 0
                           Item 3: PARNAM PARTYP PARVAL NCLU
recharge
          rch
                1.e-3
           all
                           Item 4: MLTARR ZONARR [IZ]
none
                           Item 5: INRECH, stress period 1
 1
                           Item 7: Pname
recharge
     The OBS input file for all observations (Hill and others, 2000) is:
# OBS file for etsdrt test case
etsdrt 1 Item 1: OBSNAM ISCALS
     The HOB input file specifying head observations (Hill and others, 2000) is:
# HOB file for etsdrt test case
 22
                                                                Item 1: NH MOBS MAXM
1.0 1.0
                                                                Item 2: TOMULTH EVH
h-1-8
          1
                 8
                    1
                        0.0
                             0.0
                                  0.0
                                        82.26832
                                                   0.1
                                                        1
                                                            1
                                                                Item 3
h-2-3
         1
             2
                 3
                    1
                       0.0
                             0.0 0.0
                                        69.13411
                                                   0.1
                                                        1
                                                           1
                                                                Item 3
h-3-5
         1
            3
                 5 1
                       0.0
                            0.0 0.0
                                        76.62444
                                                   0.1
                                                       1 1
                                                                Item 3
```

83.85851

0.1

Ttem 3

1 0.0 0.0 0.0

h-4-9

```
h-5-6
        1 5
              6 1 0.0 0.0 0.0 78.47830 0.1 1 1
                                                          Item 3
h-6-10 1 6 10 1 0.0 0.0 0.0 88.60881 0.1 1 1
                                                          Item 3
h-7-2
        1 7
                     0.0 0.0 0.0 62.68863 0.1 1 1
               2.
                  1
                                                          Item 3
h-8-4
        1 8
                     0.0 0.0
                               0.0 74.06773
                                              0.1 1
                                                     1
               4
                  1
                                                          Item 3
h-9-10
        1 9
              10
                  1
                     0.0
                          0.0
                               0.0 88.72263
                                              0.1 1
                                                      1
                                                          Item 3
h-10-7
        1 10
               7
                  1
                     0.0
                          0.0
                               0.0
                                    80.77811
                                              0.1
                                                   1
                                                      1
                                                          Item 3
h-11-5
        1 11
               5
                  1
                     0.0
                          0.0
                               0.0
                                    76.84839
                                              0.1
                                                   1
                                                      1
                                                          Item 3
                                              0.1 1
        1 1
h-1-10
              10
                  1
                     0.0
                          0.0
                               0.0
                                    88.71668
                                                      1
                                                          Item 3
                                              0.1 1
h - 2 - 7
        1 2
               7
                  1
                     0.0
                          0.0
                               0.0
                                   80.58694
                                                      1
                                                          Ttem 3
                                    78.74275
        1 3
                                              0.1 1
h-3-6
               6
                  1
                     0.0
                          0.0
                               0.0
                                                      1
                                                          Item 3
h - 4 - 4
        1 4
               4 1
                     0.0
                          0.0 0.0 73.66403 0.1 1 1
                                                          Item 3
h-5-8
        1 5
               8 1
                    0.0
                         0.0 0.0 79.12901 0.1 1 1
                                                          Item 3
h - 6 - 3
       1 6
               3 1 0.0 0.0 0.0 69.76251 0.1 1 1
                                                          Item 3
               8 1 0.0 0.0
                               0.0 82.03431 0.1 1 1
h - 7 - 8
        1 7
                                                          Ttem 3
                               0.0 84.20422 0.1 1 1
               9 1
                                                          Item 3
h-8-9
        1 8
                     0.0 0.0
        1 9
h-9-2
               2
                  1
                     0.0
                          0.0
                               0.0
                                    62.24666
                                              0.1 1
                                                      1
                                                          Item 3
                                             0.1 1
0.1 1
        1 10
               3
                               0.0
h-10-3
                  1
                     0.0
                          0.0
                                    69.31798
                                                      1
                                                          Item 3
h-11-9
        1 11
               9
                  1
                     0.0 0.0 0.0 84.25888
                                                      1
                                                          Item 3
    The DROB input file specifying flow observations using the DRT1 Package is:
# DTOB file for etsdrt test case
                            Item 1: NQDT NQCDT NQTDT
  1
       1
            1
                            Item 2: TOMULTDT EVFDT IOWTQDT
 1.0
                            Item 3: NQOBDT NQCLDT
1 1
D-1 1 0.0 -38.25803 0.1 2 2
                            Item 4: OBSNAM IREFSP TOFFSET HOBS STAT STAT-FLAG PLOTSYM
                            Item 5: LAY ROW COL FACTOR
1 5 8 1.0
    The input file for the Sensitivity Process (Hill and others, 2000) is:
# SEN file for etsdrt test case
4
  0 0 4
                                              Item 1: NPLIST ISENALL IUHEAD MXSEN
  0 12 1
                                              Item 2: IPRINTS ISENSU ISENPU ISENFM
                 .005
                         1.E-3 1.E-1 1.E-4 Item 3: PARNAM ISENS LN B BL BU BSCAL
ETS-Max
           1 0
DRT-Cond
           1 1
                  4.0
                          0.1
                                100.0
                                        0.01
                                              Item 3: PARNAM ISENS LN B BL BU BSCAL
           1 0 3.E-3
                         1.E-5
Recharge
                               1.E-1 1.E-5
                                              Item 3: PARNAM ISENS LN B BL BU BSCAL
HydCond
              1 9.E-2
                         1.E-4 1.E1
                                       1.E-5
                                              Item 3: PARNAM ISENS LN B BL BU BSCAL
    The input file for the Parameter-Estimation Process (Hill and others, 2000) is:
# PES file for etsdrt test case
                          Item 1: MAX-ITER MAX-CHANGE TOL SOSC
20 2.0 0.0001 0.0
 0 0 0 0 0.0 0.001 1.5 0 Item 2: IBEFLG IYCFLG IOSTAR NOPT NFIT SOSR RMAR RMARM IAP
 6 0
                          Item 3: IPRCOV IPRINT LPRINT
      Ω
 0.08
      0.0 0
                           Item 4: CSA FCONV LASTX
                          Item 5: NPNG IFPR MPR
 0
   0
      0
    The GLOBAL output file is:
                                 MODFLOW-2000
      U.S. GEOLOGICAL SURVEY MODULAR FINITE-DIFFERENCE GROUND-WATER FLOW MODEL
                            VERSION 1.0 07/20/2000
This model run produced both GLOBAL and LIST files. This is the GLOBAL file.
 GLOBAL LISTING FILE: etsdrt.glo
                        UNIT 11
 OPENING etsdrt.lst
FILE TYPE:LIST UNIT 12
#Global input files
 OPENING ..\data\ets1.dis
FILE TYPE:DIS UNIT 21
# Flow process input files
 OPENING ..\data\ets1.bas
FILE TYPE:BAS6 UNIT 31
```

```
OPENING ..\data\ets1.oc
FILE TYPE:OC UNIT 32
OPENING ..\data\etsdrt.lpf
FILE TYPE:LPF UNIT 33
OPENING ..\data\drt1.drt
FILE TYPE:DRT
              UNIT 34
OPENING ..\data\etsdrt.rch
FILE TYPE:RCH UNIT 36
OPENING ..\data\ets1.ets
              UNIT 37
FILE TYPE:ETS
OPENING ..\data\ets1.pcg
FILE TYPE:PCG UNIT 39
# O-S-P processes input files
OPENING ..\data\etsdrt.obs
FILE TYPE:OBS
              UNIT 41
OPENING ..\data\etsdrt.ohd
FILE TYPE:HOB UNIT 42
OPENING ..\data\etsdrt.odt
FILE TYPE:DTOB UNIT 43
OPENING ..\data\etsdrt.sen
FILE TYPE:SEN UNIT 45
OPENING ..\data\etsdrt.pes
FILE TYPE: PES UNIT 46
DISCRETIZATION INPUT DATA READ FROM UNIT 21
# DIS file for ets1, drt1, and etsdrt test cases. Units: Days, Feet
   1 LAYERS 11 ROWS 11 COLUMNS
  1 STRESS PERIOD(S) IN SIMULATION
MODEL TIME UNIT IS DAYS
MODEL LENGTH UNIT IS FEET
THE OBSERVATION PROCESS IS ACTIVE
THE SENSITIVITY PROCESS IS ACTIVE
THE PARAMETER-ESTIMATION PROCESS IS ACTIVE
MODE: PARAMETER ESTIMATION
 Confining bed flag for each layer:
                                              1111
      1111 ELEMENTS OF GX ARRAY USED OUT OF
       121 ELEMENTS OF GZ ARRAY USED OUT OF
121 ELEMENTS OF IG ARRAY USED OUT OF
                                                   121
                    DELR = 100.000
                    DELC =
                            100.000
TOP ELEVATION OF LAYER 1 =
                            100.000
  MODEL LAYER BOTTOM EL. = 0.00000
                                      FOR LAYER 1
STRESS PERIOD LENGTH TIME STEPS MULTIPLIER FOR DELT SS FLAG
              0.00000
                            1
                                                     1.000 SS
```

STEADY-STATE SIMULATION

```
INPUT READ FROM UNIT 33
# LPF file for etsdrt test case
HEAD AT CELLS THAT CONVERT TO DRY= 0.0000
   1 Named Parameters
 LAYER FLAGS:
LAYER LAYTYP
                   LAYAVG CHANI LAYVKA
                                                            LAYWET
                      0 1.000E+00
 INTERPRETATION OF LAYER FLAGS:
      INTERBLOCK HORIZONTAL DATA IN
LAYER TYPE TRANSMISSIVITY ANISOTROPY ARRAY VKA WETTABILITY
LAYER (LAYTYP) (LAYAVG) (CHANI) (LAYVKA) (LAYWET)
                    _____
 1 CONVERTIBLE HARMONIC 1.000E+00 VERTICAL K NON-WETTABLE
      242 ELEMENTS IN X ARRAY ARE USED BY LPF
        6 ELEMENTS IN IX ARRAY ARE USED BY LPF
PCG2 -- CONJUGATE GRADIENT SOLUTION PACKAGE, VERSION 2.4, 12/29/98
# PCG file for ets1, drt1, and etsdrt test cases
MAXIMUM OF 60 CALLS OF SOLUTION ROUTINE
MAXIMUM OF 8 INTERNAL ITERATIONS PER CALL TO SOLUTION ROUTINE
MATRIX PRECONDITIONING TYPE : 1
     1323 ELEMENTS IN X ARRAY ARE USED BY PCG
     3360 ELEMENTS IN IX ARRAY ARE USED BY PCG
      242 ELEMENTS IN Z ARRAY ARE USED BY PCG
SEN1BAS6 -- SENSITIVITY PROCESS, VERSION 1.0, 10/15/98
INPUT READ FROM UNIT 45
# SEN file for etsdrt test case
NUMBER OF PARAMETER VALUES TO BE READ FROM SEN FILE:
ISENALL...:
SENSITIVITIES WILL BE STORED IN MEMORY
FOR UP TO 4 PARAMETERS
      149 ELEMENTS IN X ARRAY ARE USED FOR SENSITIVITIES
      121 ELEMENTS IN Z ARRAY ARE USED FOR SENSITIVITIES
        8 ELEMENTS IN IX ARRAY ARE USED FOR SENSITIVITIES
PES1BAS6 -- PARAMETER-ESTIMATION PROCESS, VERSION 1.0, 07/22/99
INPUT READ FROM UNIT 46
# PES file for etsdrt test case
MAXIMUM NUMBER OF PARAMETER-ESTIMATION ITERATIONS (MAX-ITER) =
MAXIMUM PARAMETER CORRECTION (MAX-CHANGE) ----- = 2.0000
CLOSURE CRITERION (TOL) ----- = 0.10000E-03
SUM OF SQUARES CLOSURE CRITERION (SOSC) ----- = 0.0000
FLAG TO GENERATE INPUT NEEDED BY BEALE-2000 (IBEFLG) ----- =
FLAG TO GENERATE INPUT NEEDED BY YCINT-2000 (IYCFLG) ----- =
OMIT PRINTING TO SCREEN (IF = 1) (IOSTAR) ----- =
ADJUST GAUSS-NEWTON MATRIX WITH NEWTON UPDATES (IF = 1)(NOPT) =
NUMBER OF FLETCHER-REEVES ITERATIONS (NFIT) -----=
CRITERION FOR ADDING MATRIX R (SOSR) ----- = 0.0000
INITIAL VALUE OF MARQUARDT PARAMETER (RMAR) ----- = 0.10000E-02
MARQUARDT PARAMETER MULTIPLIER (RMARM) ----- = 1.5000
APPLY MAX-CHANGE IN REGRESSION SPACE (IF = 1) (IAP) -----=
FORMAT CODE FOR COVARIANCE AND CORRELATION MATRICES (IPRCOV) =
PRINT PARAMETER-ESTIMATION STATISTICS
   EACH ITERATION (IF > 0) (IPRINT) -----=
PRINT EIGENVALUES AND EIGENVECTORS OF
   COVARIANCE MATRIX (IF > 0) (LPRINT) -----=
SEARCH DIRECTION ADJUSTMENT PARAMETER (CSA) ----- = 0.80000E-01
MODIFY CONVERGENCE CRITERIA (IF > 0) (FCONV) ----- = 0.0000
CALCULATE SENSITIVITIES USING FINAL
```

LPF1 -- LAYER PROPERTY FLOW PACKAGE, VERSION 1, 1/11/2000

```
PARAMETER ESTIMATES (IF > 0) (LASTX) ----- =
NUMBER OF USUALLY POS. PARAMETERS THAT MAY BE NEGATIVE (NPNG) =
                                                                            0
NUMBER OF PARAMETERS WITH CORRELATED PRIOR INFORMATION (IFPR) =
NUMBER OF PRIOR-INFORMATION EQUATIONS (MPR) ----- =
   271 ELEMENTS IN X ARRAY ARE USED FOR PARAMETER ESTIMATION
    99 ELEMENTS IN Z ARRAY ARE USED FOR PARAMETER ESTIMATION
    22 ELEMENTS IN IX ARRAY ARE USED FOR PARAMETER ESTIMATION
OBS1BAS6 -- OBSERVATION PROCESS, VERSION 1.0, 4/27/99
INPUT READ FROM UNIT 41
# OBS file for etsdrt test case
OBSERVATION GRAPH-DATA OUTPUT FILES
WILL BE PRINTED AND NAMED USING THE BASE: etsdrt
DIMENSIONLESS SCALED OBSERVATION SENSITIVITIES WILL BE PRINTED
HEAD OBSERVATIONS -- INPUT READ FROM UNIT 42
# HOB file for etsdrt test case
NUMBER OF HEADS..... 22
  NUMBER OF MULTILAYER HEADS....:
                                                              Λ
  MAXIMUM NUMBER OF LAYERS FOR MULTILAYER HEADS....:
OBS1DRT1 -- OBSERVATION PROCESS (DRAIN FLOW OBSERVATIONS: DRAIN RETURN PACKAGE)
VERSION 1.0, 5/2/2000
INPUT READ FROM UNIT 43
# DTOB file for etsdrt test case
FOR DRAIN RETURN PACKAGE:
NUMBER OF FLOW-OBSERVATION DRAIN-CELL GROUPS.....:
  NUMBER OF CELLS IN DRAIN-CELL GROUPS.....:
NUMBER OF DRAIN CELL GROUPS......
  NUMBER OF DRAIN-CELL FLOWS.....:
    628 ELEMENTS IN X ARRAY ARE USED FOR OBSERVATIONS
      6 ELEMENTS IN Z ARRAY ARE USED FOR OBSERVATIONS
    231 ELEMENTS IN IX ARRAY ARE USED FOR OBSERVATIONS
COMMON ERROR VARIANCE FOR ALL OBSERVATIONS SET TO:
       2613 ELEMENTS OF X ARRAY USED OUT OF
                                                        2613
       468 ELEMENTS OF Z ARRAY USED OUT OF 468 3627 ELEMENTS OF IX ARRAY USED OUT OF 362
                                                        3627
       484 ELEMENTS OF XHS ARRAY USED OUT OF
INFORMATION ON PARAMETERS LISTED IN SEN FILE
                                                                        ALTERNATE
                                                          UPPER
                                            LOWER
                         VALUE IN SEN REASONABLE REASONABLE SCALING
  NAME ISENS LN INPUT FILE
                                                        LIMIT
                                         LIMIT
ETS-Max 1 0 0.50000E-02 0.10000E-02 0.10000 0.10000E-03
DRT-Cond 1 1 4.0000 0.10000 100.00 0.10000E-01
Recharge 1 0 0.30000E-02 0.10000E-04 0.10000 0.10000E-04
HydCond 1 1 0.90000E-01 0.10000E-03 10.000 0.10000E-04
FOR THE PARAMETERS LISTED IN THE TABLE ABOVE, PARAMETER VALUES IN INDIVIDUAL
PACKAGE INPUT FILES ARE REPLACED BY THE VALUES FROM THE SEN INPUT FILE. THE
ALTERNATE SCALING FACTOR IS USED TO SCALE SENSITIVITIES IF IT IS LARGER THAN
THE PARAMETER VALUE IN ABSOLUTE VALUE AND THE PARAMETER IS NOT LOG-TRANSFORMED.
HEAD OBSERVATION VARIANCES ARE MULTIPLIED BY:
                                                        1.000
OBSERVED HEAD DATA -- TIME OFFSETS ARE MULTIPLIED BY: 1.0000
                    REFER.
      OBSERVATION STRESS
                              TIME
                                                                      STATISTIC
 OBS# NAME PERIOD OFFSET OBSERVATION STATISTIC
                                                                      TYPE
                                                                                   SYM

    1
    h-1-8
    1
    0.000
    82.27
    0.1000

    2
    h-2-3
    1
    0.000
    69.13
    0.1000

    3
    h-3-5
    1
    0.000
    76.62
    0.1000

    4
    h-4-9
    1
    0.000
    83.86
    0.1000

    5
    h-5-6
    1
    0.000
    78.48
    0.1000

                                                                      STD. DEV.
                                                                      STD. DEV.
                                                                      STD. DEV.
```

Α	n	n	_	n	ч	iy	•	•
~	ν	ν	c		u	10		•

STD. DEV. STD. DEV.

6 h-6-10 7 h-7-2 8 h-8-4 9 h-9-10 10 h-10-7 11 h-11-5 12 h-1-10 13 h-2-7 14 h-3-6 15 h-4-4 16 h-5-8 17 h-6-3 18 h-7-8 19 h-8-9 20 h-9-2 21 h-10-3 22 h-11-9	1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	88.6 62.6 74.0 88.7 76.8 88.7 80.5 78.7 73.6 69.7 82.0 84.2 62.2 69.3 84.2	9 7 2 8 5 2 9 4 6 3 3 6 3 0 5 2	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	STD. DEV.	1 1 1 1 1 1 1 1 1 1 1 1 1
OBSERVATION OBS# NAME 1 h-1-8 2 h-2-3 3 h-3-5 4 h-4-9 5 h-5-6 6 h-6-10 7 h-7-2 8 h-8-4 9 h-9-10 10 h-10-7 11 h-11-5 12 h-1-10 13 h-2-7 14 h-3-6 15 h-4-4 16 h-5-8 17 h-6-3 18 h-7-8 19 h-8-9 20 h-9-2 21 h-10-3 22 h-11-9		20W COL 1 8 2 3 3 5 4 9 5 6 6 10 7 2 8 4 9 10 10 7 11 5 1 10 2 7 3 4 4 4 5 8 6 3 7 8 8 9 9 2 10 3 11 9	ROW OFFSET 0.000	COL OFFSET 0.000	HEAD CHAN REFERENC OBSERVATI (IF > 0) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	E ON	
DRT-PACKAGE FLOW OBSERVED DRT-PACK TIME OFFSETS A	AGE FLOW D	DATA		ULTIPLI	IED BY:	1.000	
GROUP NUMBER: 1 NUMBER OF FLOW OE	BOUND	ARY TYPE:		NUMBEF	R OF CELLS	IN GROUP:	1
OBSERVATION OBS# NAME 23 D-1 LAYER ROW 1. 5.	PERIOD 1	TIME OFFSET 0.000 FACTOR	OBSER DRAIN GAIN -38.2	FLOW	STATISTIC 0.1000	STATISTIC TYPE COEF. VAR.	PLOT SYM. 2
	SOLUTION BY THE CONJUGATE-GRADIENT METHOD						
MAXIMUM NUMBER OF CALLS TO PCG ROUTINE = 60 MAXIMUM ITERATIONS PER CALL TO PCG = 8 MATRIX PRECONDITIONING TYPE = 1 RELAXATION FACTOR (ONLY USED WITH PRECOND. TYPE 1) = 0.10000E+01 PARAMETER OF POLYMOMIAL PRECOND. = 2 (2) OR IS CALCULATED: 2 HEAD CHANGE CRITERION FOR CLOSURE = 0.10000E-03 RESIDUAL CHANGE CRITERION FOR CLOSURE = 0.80000E+02							

PCG HEAD AND RESIDUAL CHANGE PRINTOUT INTERVAL = 999
PRINTING FROM SOLVER IS LIMITED(1) OR SUPPRESSED (>1) = 2

DAMPING PARAMETER = 0.10000E+01

CONVERGENCE CRITERIA FOR SENSITIVITIES PARAMETER HCLOSE RCLOSE _____ _____ _____ ETS-Max 0.20000E-03 160.00 DRT-Cond 0.25000E-06 0.20000 Recharge 0.33333E-03 266.67 HydCond 0.11111E-04 8.8889

WETTING CAPABILITY IS NOT ACTIVE IN ANY LAYER

PARAMETERS DEFINED IN THE LPF PACKAGE

PARAMETER NAME: HydCond TYPE:HK CLUSTERS: 1 Parameter value from package file is: 5.00000E-02

This value has been changed to: 9.00000E-02, as read from

the Sensitivity Process file

LAYER: 1 MULTIPLIER ARRAY: NONE ZONE ARRAY: ALL

HYD. COND. ALONG ROWS FOR LAYER 1 WILL BE DEFINED BY PARAMETERS (PRINT FLAG= -1)

VERTICAL HYD. COND. = 1.000000E-02 FOR LAYER 1

1 Recharge parameters

PARAMETER NAME: Recharge TYPE:RCH CLUSTERS: Parameter value from package file is: 1.00000E-03

This value has been changed to: 3.00000E-03, as read from

the Sensitivity Process file

MULTIPLIER ARRAY: none ZONE ARRAY: all

1 Evapotranspiration segments parameters

PARAMETER NAME:ETS-Max TYPE:ETS CLUSTERS: 1 Parameter value from package file is: 1.00000E-02

This value has been changed to: 5.00000E-03, as read from

the Sensitivity Process file

MULTIPLIER ARRAY: none ZONE ARRAY: all

1 Drain-return parameters

PARAMETER NAME:DRT-Cond TYPE:DRT

Parameter value from package file is: 2.0000

This value has been changed to: 4.0000 , as read from

the Sensitivity Process file

NUMBER OF ENTRIES:

DRAIN NO. LAYER ROW COL DRAIN EL. STRESS FACTOR _____ 5 8 60.00 1.000

----DRAIN CELL---- --RECIPIENT CELL-- RETURN DRAIN NO. LAYER ROW COL LAYER ROW COL PROP. 5 8 1

4 PARAMETERS HAVE BEEN DEFINED IN ALL PACKAGES. (SPACE IS ALLOCATED FOR 500 PARAMETERS.)

***SUGGESTION FOR CONVERTIBLE LAYERS:

PERFORM INITIAL PARAMETER ESTIMATION RUNS WITH THE LAYERS DESIGNATED AS CONFINED WITH ASSIGNED APPROXIMATE THICKNESSES TO AVOID LONG EXECUTION TIMES AND EXCESSIVE FRUSTRATION. CONVERT TO UNCONFINED AND CONVERTIBLE FOR FINAL PARAMETER ESTIMATION RUNS WHEN PARAMETERS ARE ALREADY CLOSE TO

1

DIMENSIONLESS SCALED SENSITIVITIES (SCALED BY B*(WT**.5))

	PARAMETER:	ETS-Max	DRT-Cond	Recharge	HydCond
OBS #	OBSERVATION				
1	h-1-8	-90.2	-2.87	94.0	-4.09
2	h-2-3	-43.2	-0.180	123.	-191.
3	h-3-5	-69.5	-2.06	113.	-101.
4	h-4-9	-75.9	-12.2	74.7	24.0
5	h-5-6	-78.5	-8.06	108.	-57.1
6	h-6-10	-52.9	-5.02	46.9	23.0
7	h-7-2	-26.8	13.9	94.5	-187.
8	h-8-4	-57.5	6.93	116.	-153.
9	h-9-10	-55.8	-0.753	48.0	20.2
10	h-10-7	-92.1	-0.374	104.	-28.8
11	h-11-5	-72.7	0.873	113.	-99.6
12	h-1-10	-55.2	-1.23	47.9	19.8
13	h-2-7	-88.5	-3.93	104.	-29.3
14	h-3-6	-80.6	-4.24	109.	-61.0
15	h-4-4	-55.2	0.126	116.	-147.
16	h-5-8	-73.9	-58.6	83.9	77.8
17	h-6-3	-43.9	13.0	121.	-209.
18	h-7-8	-87.4	-8.43	92.7	1.80
19	h-8-9	-81.1	-2.92	76.7	15.5
20	h-9-2	-27.1	4.56	95.4	-172.
21	h-10-3	-44.8	3.15	123.	-193.
22	h-11-9	-83.3	-0.378	77.4	15.0
23	D-1	7.72	-34.5	-8.77	-8.13

COMPOSITE SCALED SENSITIVITIES ((SUM OF THE SQUARED VALUES)/ND)**.5 66.7 15.4 95.4 107.

PARAMETER COMPOSITE SCALED SENSITIVITY
-----ETS-Max 6.66611E+01
DRT-Cond 1.53726E+01
Recharge 9.54185E+01
HydCond 1.07280E+02

STARTING VALUES OF REGRESSION PARAMETERS :

ETS-Max DRT-Cond Recharge HydCond
5.0000E-03 4.000 3.0000E-03 9.0000E-02

SUMS OF SQUARED, WEIGHTED RESIDUALS: ALL DEPENDENT VARIABLES: 0.21552E+06

DEP. VARIABLES PLUS PARAMETERS: 0.21552E+06

PARAMETER VALUES AND STATISTICS FOR ALL PARAMETER-ESTIMATION ITERATIONS

MODIFIED GAUSS-NEWTON CONVERGES IF THE ABSOLUTE VALUE OF THE MAXIMUM FRACTIONAL PARAMETER CHANGE (MAX CALC. CHANGE) IS LESS THAN TOL OR IF THE SUM OF SQUARED, WEIGHTED RESIDUALS CHANGES LESS THAN SOSC OVER TWO PARAMETER-ESTIMATION ITERATIONS.

MODIFIED GAUSS-NEWTON PROCEDURE FOR PARAMETER-ESTIMATION ITERATION NO. =

VALUES FROM SOLVING THE NORMAL EQUATION:

MARQUARDT PARAMETER ----- = 0.0000

MAX. FRAC. PAR. CHANGE (TOL= 0.100E-03) = -.71375

OCCURRED FOR PARAMETER "Recharge " TYPE U

CALCULATION OF DAMPING PARAMETER

MAX-CHANGE SPECIFIED: 2.00 USED: 2.00 OSCILL. CONTROL FACTOR (1, NO EFFECT)-- = 1.0000 DAMPING PARAMETER (RANGE 0 TO 1) ----- = 1.0000

CONTROLLED BY PARAMETER "Recharge " TYPE U

UPDATED ESTIMATES OF REGRESSION PARAMETERS :

ETS-Max DRT-Cond Recharge HvdCond

7.6013E-03 2.838 8.5875E-04 7.8182E-02

SUMS OF SQUARED, WEIGHTED RESIDUALS: ALL DEPENDENT VARIABLES: 6107.9

DEP. VARIABLES PLUS PARAMETERS:

MODIFIED GAUSS-NEWTON PROCEDURE FOR PARAMETER-ESTIMATION ITERATION NO. =

VALUES FROM SOLVING THE NORMAL EQUATION :

MARQUARDT PARAMETER ----- = 0.0000 MAX. FRAC. PAR. CHANGE (TOL= 0.100E-03) = 0.34440OCCURRED FOR PARAMETER "ETS-Max " TYPE U

CALCULATION OF DAMPING PARAMETER

MAX-CHANGE SPECIFIED: 2.00 USED: 2.00

OSCILL. CONTROL FACTOR (1, NO EFFECT)-- = 1.0000 DAMPING PARAMETER (RANGE 0 TO 1) ----- = 1.0000

CONTROLLED BY PARAMETER "ETS-Max" TYPE U

UPDATED ESTIMATES OF REGRESSION PARAMETERS :

ETS-Max DRT-Cond Recharge HydCond

1.0219E-02 2.153 1.0591E-03 5.2408E-02

SUMS OF SQUARED, WEIGHTED RESIDUALS:

ALL DEPENDENT VARIABLES: 96.352

DEP. VARIABLES PLUS PARAMETERS:

MODIFIED GAUSS-NEWTON PROCEDURE FOR PARAMETER-ESTIMATION ITERATION NO. =

VALUES FROM SOLVING THE NORMAL EQUATION :

MARQUARDT PARAMETER ----- = 0.0000

MAX. FRAC. PAR. CHANGE (TOL= 0.100E-03) = -.68346E-01

OCCURRED FOR PARAMETER "DRT-Cond " TYPE N

CALCULATION OF DAMPING PARAMETER

MAX-CHANGE SPECIFIED: 2.00 USED: 2.00

OSCILL. CONTROL FACTOR (1, NO EFFECT)-- = 1.0000

DAMPING PARAMETER (RANGE 0 TO 1) ----- = 1.0000

CONTROLLED BY PARAMETER "DRT-Cond " TYPE N

UPDATED ESTIMATES OF REGRESSION PARAMETERS :

ETS-Max DRT-Cond Recharge HydCond

1.0024E-02 2.006 1.0012E-03 5.0150E-02

SUMS OF SQUARED, WEIGHTED RESIDUALS:

ALL DEPENDENT VARIABLES: 0.21220

DEP. VARIABLES PLUS PARAMETERS: 0.21220

MODIFIED GAUSS-NEWTON PROCEDURE FOR PARAMETER-ESTIMATION ITERATION NO. =

VALUES FROM SOLVING THE NORMAL EQUATION :

MARQUARDT PARAMETER ----- = 0.0000 MAX. FRAC. PAR. CHANGE (TOL= 0.100E-03) = -.30231E-02

OCCURRED FOR PARAMETER "DRT-Cond " TYPE N

CALCULATION OF DAMPING PARAMETER

MAX-CHANGE SPECIFIED: 2.00 USED: 2.00

OSCILL. CONTROL FACTOR (1, NO EFFECT) -- = 1.0000

DAMPING PARAMETER (RANGE 0 TO 1) ----- = 1.0000 CONTROLLED BY PARAMETER "DRT-Cond" TYPE N

UPDATED ESTIMATES OF REGRESSION PARAMETERS :

ETS-Max DRT-Cond Recharge HydCond

9.9999E-03 2.000 9.9999E-04 4.9999E-02

SUMS OF SQUARED, WEIGHTED RESIDUALS:

ALL DEPENDENT VARIABLES: 0.11610E-04

DEP. VARIABLES PLUS PARAMETERS: 0.11610E-04

MODIFIED GAUSS-NEWTON PROCEDURE FOR PARAMETER-ESTIMATION ITERATION NO. =

VALUES FROM SOLVING THE NORMAL EQUATION :

MARQUARDT PARAMETER ----- = 0.0000
MAX. FRAC. PAR. CHANGE (TOL= 0.100E-03) = 0.21498E-04
OCCURRED FOR PARAMETER "HydCond" TYPE P

CALCULATION OF DAMPING PARAMETER

MAX-CHANGE SPECIFIED: 2.00 USED: 2.00
OSCILL. CONTROL FACTOR (1, NO EFFECT)-- = 1.0000
DAMPING PARAMETER (RANGE 0 TO 1) ----- = 1.0000
CONTROLLED BY PARAMETER "HydCond" TYPE P

UPDATED ESTIMATES OF REGRESSION PARAMETERS :

ETS-Max DRT-Cond Recharge HydCond
1.0000E-02 2.000 1.0000E-03 5.0000E-02

*** PARAMETER ESTIMATION CONVERGED BY SATISFYING THE TOL CRITERION ***

OBSERVATION SENSITIVITY TABLE(S) FOR PARAMETER-ESTIMATION ITERATION 5

DIMENSIONLESS SCALED SENSITIVITIES (SCALED BY B*(WT**.5))

	PARAMETER:	ETS-Max	DRT-Cond	Recharge	HydCond
OBS #	OBSERVATION				
1	h-1-8	-42.3	-0.441	37.8	15.2
2	h-2-3	-44.0	-0.199	93.6	-148.
3	h-3-5	-71.4	-1.04	105.	-96.7
4	h-4-9	-46.2	-2.69	28.7	64.0
5	h-5-6	-76.4	-3.45	98.8	-52.3
6	h-6-10	-45.1	-0.807	15.8	91.3
7	h-7-2	-25.5	4.52	68.7	-149.
8	h-8-4	-61.4	2.55	103.	-137.
9	h-9-10	-44.9	-0.578E-01	14.5	91.1
10	h-10-7	-64.5	0.251E-01	72.2	-23.0
11	h-11-5	-70.8	0.450	103.	-98.4
12	h-1-10	-44.8	-0.981E-01	14.6	90.9
13	h-2-7	-65.2	-1.26	74.3	-21.6
14	h-3-6	-74.4	-1.80	96.4	-58.3
15	h-4-4	-61.1	-0.212	105.	-130.
16	h-5-8	-56.3	-20.5	54.4	94.3
17	h-6-3	-45.1	4.16	93.2	-162.
18	h-7-8	-45.6	-2.06	42.1	19.3
19	h-8-9	-43.8	-0.378	24.4	59.8
20	h-9-2	-25.3	1.47	68.9	-137.
21	h-10-3	-44.5	1.06	92.9	-150.
22	h-11-9	-43.7	-0.826E-02	23.6	60.2
23	D-1	2.94	-5.86	-2.84	-4.93

COMPOSITE SCALED SENSITIVITIES ((SUM OF THE SQUARED VALUES)/ND)**.5 52.6 4.81 71.5 97.6

PARAMETER COMPOSITE SCALED SENSITIVITY
-----ETS-Max 5.26259E+01
DRT-Cond 4.81191E+00
Recharge 7.14750E+01
HydCond 9.75598E+01

FINAL PARAMETER VALUES AND STATISTICS:

PARAMETER NAME(S) AND VALUE(S):

120 MODFLOW-2000—Docmentation of Packages for Simulating Evapotranspiration with a Segmented Function (ETS1) and Drains with Return Flow (DRT1) ETS-Max DRT-Cond Recharge HydCond

1.0000E-02 2.000 1.0000E-03 5.0000E-02

SUMS OF SQUARED WEIGHTED RESIDUALS:
OBSERVATIONS PRIOR INFO. TOTAL
0.349E-07 0.00 0.349E-07

SELECTED STATISTICS FROM MODIFIED GAUSS-NEWTON ITERATIONS

	MAX. PARAMET	TER CALC. CHANGE	MAX. CHANGE	DAMPING
ITER.	PARNAM	MAX. CHANGE	ALLOWED	PARAMETER
1	Recharge	-0.713749	2.00000	1.0000
2	ETS-Max	0.344404	2.00000	1.0000
3	DRT-Cond	-0.683463E-01	2.00000	1.0000
4	DRT-Cond	-0.302312E-02	2.00000	1.0000
5	HydCond	0.214979E-04	2.00000	1.0000

SUMS OF SQUARED WEIGHTED RESIDUALS FOR EACH ITERATION

	SUMS OF SQUA	RED WEIGHTED	RESIDUALS
ITER.	OBSERVATIONS	PRIOR INFO.	TOTAL
1	0.21552E+06	0.0000	0.21552E+06
2	6107.9	0.0000	6107.9
3	96.352	0.0000	96.352
4	0.21220	0.0000	0.21220
5	0.11610E-04	0.0000	0.11610E-04
FINAL	0.34926E-07	0.0000	0.34926E-07

*** PARAMETER ESTIMATION CONVERGED BY SATISFYING THE TOL CRITERION ***

COVARIANCE MATRIX FOR THE PARAMETERS

	ETS-Max	DRT-Cond	Recharge	HydCond
ETS-Max	2.071E-15	1.811E-13	2.053E-16	2.022E-13
DRT-Cond	1.811E-13	1.843E-11	1.812E-14	1.813E-11
Recharge	2.053E-16	1.812E-14	2.039E-17	2.012E-14
HydCond	2.022E-13	1.813E-11	2.012E-14	1.997E-11

PARAMETER SUMMARY

PARAMETER VALUES IN "REGRESSION" SPACE --- LOG TRANSFORMED AS APPLICABLE

PARAMETER: * = LOG TRNS:	ETS-Max	DRT-Cond *	Recharge	HydCond *
UPPER 95% C.I. FINAL VALUES LOWER 95% C.I.	1.00E-02 1.00E-02 1.00E-02	3.01E-01 3.01E-01 3.01E-01		-1.30E+00 -1.30E+00 -1.30E+00
STD. DEV.	4.55E-08	1.86E-06	4.51E-09	1.94E-06
COEF. OF VAR. (ST		INAL VALUE) 6.19E-06		TINAL VALUE = 0.0 1.49E-06

PHYSICAL PARAMETER VALUES --- EXP10 OF LOG TRANSFORMED PARAMETERS

PARAMETER: * = LOG TRNS:	ETS-Max	DRT-Cond *	Recharge	HydCond *
UPPER 95% C.I. FINAL VALUES LOWER 95% C.I.	1.00E-02 1.00E-02 1.00E-02	2.00E+00 2.00E+00 2.00E+00	1.00E-03 1.00E-03 1.00E-03	5.00E-02 5.00E-02 5.00E-02
REASONABLE UPPER LIMIT REASONABLE LOWER LIMIT	1.00E-01 1.00E-03	1.00E+02 1.00E-01	1.00E-01 1.00E-05	1.00E+01 1.00E-04
ESTIMATE ABOVE (1) BELOW(-1)LIMITS	0	0	0	0
ENTIRE CONF. INT. ABOVE(1)BELOW(-1)	0	0	0	0

CORRELATION MATRIX FOR THE PARAMETERS

	ETS-Max	DRT-Cond	Recharge	HydCond	
ETS-Max	1.00	0.927	0.999	0.995	
DRT-Cond	0.927	1.00	0.935	0.945	
Recharge	0.999	0.935	1.00	0.997	
HydCond	0 995	0 945	0 997	1 00	

THE CORRELATION OF THE FOLLOWING PARAMETER PAIRS >= .95

PARAMETER PARAMETER CORRELATION ETS-Max Recharge 1.00 ETS-Max HydCond 0.99 Recharge HydCond 1.00

THE CORRELATION OF THE FOLLOWING PARAMETER PAIRS IS BETWEEN .90 AND .95

PARAMETER PARAMETER CORRELATION ETS-Max DRT-Cond 0.93 DRT-Cond Recharge 0.93 DRT-Cond HydCond 0.95

THE CORRELATION OF THE FOLLOWING PARAMETER PAIRS IS BETWEEN .85 AND .90 PARAMETER PARAMETER CORRELATION

CORRELATIONS GREATER THAN 0.95 COULD INDICATE THAT THERE IS NOT ENOUGH INFORMATION IN THE OBSERVATIONS AND PRIOR USED IN THE REGRESSION TO ESTIMATE PARAMETER VALUES INDIVIDUALLY.

TO CHECK THIS, START THE REGRESSION FROM SETS OF INITIAL PARAMETER VALUES THAT DIFFER BY MORE THAT TWO STANDARD DEVIATIONS FROM THE ESTIMATED VALUES. IF THE RESULTING ESTIMATES ARE WELL WITHIN ONE STANDARD DEVIATION OF THE PREVIOUSLY ESTIMATED VALUE, THE ESTIMATES ARE PROBABLY DETERMINED INDEPENDENTLY WITH THE OBSERVATIONS AND PRIOR USED IN THE REGRESSION. OTHERWISE, YOU MAY ONLY BE ESTIMATING THE RATIO OR SUM OF THE HIGHLY CORRELATED PARAMETERS.

THE INITIAL PARAMETER VALUES ARE IN THE SEN FILE.

LEAST-SQUARES OBJ FUNC (DEP.VAR. ONLY)- = 0.34926E-07
LEAST-SQUARES OBJ FUNC (W/PARAMETERS)-- = 0.34926E-07
CALCULATED ERROR VARIANCE----- = 0.18382E-08
STANDARD ERROR OF THE REGRESSION---- = 0.42874E-04
CORRELATION COEFFICIENT----- = 1.0000
W/PARAMETERS----- = 5

MAX LIKE OBJ FUNC = -56.359 AIC STATISTIC--- = -48.359 BIC STATISTIC--- = -43.817 ORDERED DEPENDENT-VARIABLE WEIGHTED RESIDUALS

NUMBER OF RESI	IDUALS INCLU	DED:	23			
-0.763E-04	-0.763E-04	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.997E-06	0.763E-04	0.763E-04

0.763E-04 0.763E-04

SMALLEST AND LARGEST DEPENDENT-VARIABLE WEIGHTED RESIDUALS

SMALLEST WEIGHTED RESIDUALS			LP	ARGEST WEIGHTED	RESIDUALS
	OBSERVATION	WEIGHTED		OBSERVATION	WEIGHTED
OBS#	NAME	RESIDUAL	OBS#	NAME	RESIDUAL
13	h-2-7	-0.76294E-04	3	h-3-5	0.76294E-04
10	h-10-7	-0.76294E-04	9	h-9-10	0.76294E-04
22	h-11-9	0.0000	17	h-6-3	0.76294E-04
21	h-10-3	0.0000	19	h-8-9	0.76294E-04
4	h-4-9	0.0000	23	D-1	0.99710E-06

CORRELATION BETWEEN ORDERED WEIGHTED RESIDUALS AND NORMAL ORDER STATISTICS (EQ.38 OF TEXT) = 0.687

COMMENTS ON THE INTERPRETATION OF THE CORRELATION BETWEEN WEIGHTED RESIDUALS AND NORMAL ORDER STATISTICS:

Generally, IF the reported CORRELATION is LESS than the critical value, at the selected significance level (usually 5 or 10%), the hypothesis that the weighted residuals are INDEPENDENT AND NORMALLY DISTRIBUTED would be REJECTED. HOWEVER, in this case, conditions are outside of the range of published critical values as discussed below.

The sum of the number of observations and prior information items is which is less than 35, the minimum value for which critical values are published. Therefore, the critical values for the 5 and 10% significance levels are less than 0.943 and 0.952, respectively.

CORRELATIONS GREATER than these critical values indicate that, probably, the weighted residuals ARE INDEPENDENT AND NORMALLY DISTRIBUTED.

Correlations LESS than these critical values MAY BE ACCEPTABLE, and rejection of the hypothesis is not necessarily warranted.

The Kolmogorov-Smirnov test can be used to further evaluate the residuals.

*** PARAMETER ESTIMATION CONVERGED BY SATISFYING THE TOL CRITERION ***

The LIST output file is:

MODFLOW-2000

U.S. GEOLOGICAL SURVEY MODULAR FINITE-DIFFERENCE GROUND-WATER FLOW MODEL VERSION 1.0 07/20/2000

This model run produced both GLOBAL and LIST files. This is the LIST file.

THIS FILE CONTAINS OUTPUT UNIQUE TO FINAL PARAMETER VALUES -- REGRESSION HAS CONVERGED

SENSITIVITIES ARE CALCULATED USING PREVIOUS SET OF PARAMETER VALUES

CURRENT VALUES OF PARAMETERS LISTED IN THE SEN FILE:

PARAMETER	PARAMETER	PARAMETER	FOOT-
NAME	TYPE	VALUE	NOTE
ETS-Max	ETS	1.00000E-02	*
DRT-Cond	DRT	2.0000	*
Recharge	RCH	1.00000E-03	*
HydCond	HK	5.00000E-02	*

* INDICATES VALUE ADJUSTABLE BY PARAMETER-ESTIMATION PROCESS REWOUND etsdrt.lst FILE TYPE:LIST UNIT 12 REWOUND ..\data\ets1.dis FILE TYPE:DIS UNIT 21 REWOUND ..\data\ets1.bas FILE TYPE:BAS6 UNIT 31 REWOUND ..\data\ets1.oc FILE TYPE:OC UNIT 32 REWOUND ..\data\drt1.drt FILE TYPE:DRT UNIT 34 REWOUND ..\data\etsdrt.rch FILE TYPE:RCH UNIT 36 REWOUND ..\data\ets1.ets FILE TYPE:ETS UNIT 37 REWOUND ..\data\etsdrt.obs FILE TYPE:OBS UNIT 41 REWOUND ..\data\etsdrt.ohd FILE TYPE:HOB UNIT 42 REWOUND ..\data\etsdrt.odt FILE TYPE:DTOB UNIT 43 # BAS file for ets1, drt1, and etsdrt test cases THE FREE FORMAT OPTION HAS BEEN SELECTED 1 LAYERS 11 ROWS 11 COLUMNS 1 STRESS PERIOD(S) IN SIMULATION BAS6 -- BASIC PACKAGE, VERSION 6, 1/11/2000 INPUT READ FROM UNIT 31 5 ELEMENTS IN IR ARRAY ARE USED BY BAS RCH6 -- RECHARGE PACKAGE, VERSION 6, 1/11/2000 INPUT READ FROM UNIT 36 # RCH file for etsdrt test case 1 Named Parameters OPTION 1 -- RECHARGE TO TOP LAYER 121 ELEMENTS IN RX ARRAY ARE USED BY RCH 121 ELEMENTS IN IR ARRAY ARE USED BY RCH ETS1 -- EVAPOTRANSPIRATION SEGMENTS PACKAGE, VERSION 1, 5/2/2000 INPUT READ FROM UNIT 37 # ETS input file for ets1 and etsdrt test cases OPTION 1 -- EVAPOTRANSPIRATION FROM TOP LAYER 1 Named Parameters 2 SEGMENTS DEFINE EVAPOTRANSPIRATION RATE FUNCTION 605 ELEMENTS IN RX ARRAY ARE USED BY ETS 121 ELEMENTS IN IR ARRAY ARE USED BY ETS DRT1 -- DRAIN RETURN PACKAGE, VERSION 1, 5/2/2000 INPUT READ FROM UNIT 34 # DRT file for drt1 and etsdrt test cases

BAS file for ets1, drt1, and etsdrt test cases

1 Named Parameters

RETURN FLOW OPTION IS SELECTED

MAXIMUM OF 1 ACTIVE DRAINS WITH RETURN FLOW AT ONE TIME

18 ELEMENTS IN RX ARRAY ARE USED BY DRT

744 ELEMENTS OF RX ARRAY USED OUT OF

247 ELEMENTS OF IR ARRAY USED OUT OF

1 List entries

744

247

BOUNDARY ARRAY FOR LAYER 1

READING ON UNIT 31 WITH FORMAT: (FREE)

AQUIFER HEAD WILL BE SET TO -999.00 AT ALL NO-FLOW NODES (IBOUND=0).

INITIAL HEAD FOR LAYER 1

READING ON UNIT 31 WITH FORMAT: (FREE)

OC file for ets1, drt1, and etsdrt test cases

OUTPUT CONTROL IS SPECIFIED ONLY AT TIME STEPS FOR WHICH OUTPUT IS DESIRED HEAD PRINT FORMAT CODE IS 8 DRAWDOWN PRINT FORMAT CODE IS 0 HEADS WILL BE SAVED ON UNIT 0 DRAWDOWNS WILL BE SAVED ON UNIT DRAWDOWNS WILL BE SAVED ON UNIT

HYD. COND. ALONG ROWS is defined by the following parameters: HydCond

HYD. COND. ALONG ROWS = 5.000005E-02 FOR LAYER 1

STRESS PERIOD NO. 1, LENGTH = 0.000000

NUMBER OF TIME STEPS =

MULTIPLIER FOR DELT = 1.000

INITIAL TIME STEP SIZE = 0.000000

RECH array defined by the following parameters:

Parameter: recharge

RECHARGE = 1.000001E-03

ET SURFACE (ETSS) = 100.000

ETSR array defined by the following parameters:

Parameter: ETS-Max EVAPOTRANS. RATE (ETSR) = 1.000001E-02

EXTINCTION DEPTH (ETSX) = 36.0000

PXDP AND PETM ARRAYS FOR INTERSECTION 1 OF HEAD/ET RELATION:

EXTINCT. DEP. PROPORTION = 0.500000

ET RATE PROPORTION = 0.100000

Parameter: DRT-Cond

DRAIN NO. LAYER ROW COL DRAIN EL. CONDUCTANCE 5 8 60.00 2.000

----DRAIN CELL--- -- RECIPIENT CELL-- RETURN DRAIN NO. LAYER ROW COL LAYER ROW COL PROP.
1 1 5 8 1 7 3 0.400000

1 DRAIN-RETURN CELLS

SOLVING FOR HEAD

OUTPUT CONTROL FOR STRESS PERIOD 1 TIME STEP 1 PRINT HEAD FOR ALL LAYERS

HEAD IN LAYER 1 AT END OF TIME STEP 1 IN STRESS PERIOD 1

3 4 5 6 8 1 50.0 62.0 69.1 73.6 76.7 78.9 80.7 82.3 84.2 88.7 100.0

2 3 4 5	50.0 50.0 50.0	62.0 62.0 62.1 62.2	69.1 69.2 69.2 69.4	73.6 73.6 73.7 73.8	76.6	78.8 78.7 78.6 78.5	80.4	82.2 82.0 81.3 79.1	84.1 83.9	88.7 100.0 88.7 100.0 88.6 100.0 88.5 100.0
6 7 8	50.0 50.0 50.0	62.4 62.7 62.4	69.8 70.8 69.8	74.0 74.3 74.1	76.7 76.9		80.1	81.3 82.0	83.9	88.6 100.0 88.7 100.0 88.7 100.0
9 10 11	50.0 50.0 50.0	62.2 62.2 62.1	69.5 69.3 69.3	73.9 73.8 73.8	76.9	79.0 79.0 79.0	80.7 80.8 80.8	82.3 82.3 82.3	84.2 84.3 84.3	88.7 100.0 88.7 100.0 88.7 100.0

VOLUMETRIC BUDGET FOR ENTIRE MODEL AT END OF TIME STEP $\,$ 1 IN STRESS PERIOD $\,$ 1

CUMULATIVE VOLUM	MES I	L**3	RATES FOR THIS TIME ST	EP L**3/T
IN:			IN:	
STORAGE	=	0.0000	-	
CONSTANT HEAD	=	0.0000	CONSTANT HEAD	= 585.5532
RECHARGE	=	0.0000	RECHARGE	= 990.0009
ET SEGMENTS	=	0.0000	ET SEGMENTS	= 0.0000
DRAINS (DRT)	=	0.0000	DRAINS (DRT)	= 15.3032
TOTAL IN	=	0.0000	TOTAL IN	= 1590.8573
OUT:			OUT:	
STORAGE	=	0.0000	STORAGE	= 0.0000
CONSTANT HEAD	=	0.0000	CONSTANT HEAD	= 372.6610
RECHARGE	=	0.0000	RECHARGE	= 0.0000
ET SEGMENTS	=	0.0000	ET SEGMENTS	
DRAINS (DRT)		0.0000	DRAINS (DRT)	
TOTAL OUT	=	0.0000	TOTAL OUT	= 1590.8573
IN - OUT	=	0.0000	IN - OUT	= 0.0000
PERCENT DISCREPANCY	=	0.00	PERCENT DISCREPANCY	= 0.00

TIME SUMMA	ARY AT END OF SECONDS	TIME STEP MINUTES	1 IN STRESS HOURS	PERIOD 1 DAYS	YEARS
TIME STEP LENGTH	0.0000	0.0000	0.0000	0.0000	0.0000
STRESS PERIOD TIME	0.0000	0.0000	0.0000	0.0000	0.0000
TOTAL TIME	0.0000	0.0000	0.0000	0.0000	0.0000
DATA AT HEAD LOCATI	ONS				
OBSERVATION	MEAS.	CALC.			WEIGHTED
OBS# NAME	HEAD	HEAD	RESIDUAL	WEIGHT**.5	RESIDUAL
1 h-1-8		82.268			0.00
2 h-2-3	69.134	69.134	0.00	10.0	0.00
3 h-3-5	76.624	76.624	0.763E-05		0.763E-04
4 h-4-9	83.859	83.859	0.00	10.0	0.00
5 h-5-6	78.478	78.478	0.00	10.0	0.00
6 h-6-10	88.609	88.609	0.00	10.0	0.00
7 h-7-2	62.689	62.689	0.00	10.0	0.00
8 h-8-4	74.068	74.068	0.00	10.0	0.00
9 h-9-10	88.723	88.723	0.763E-05	10.0	0.763E-04
10 h-10-7	80.778	80.778	-0.763E-05	10.0	-0.763E-04
11 h-11-5	76.848	76.848	0.00	10.0	0.00
12 h-1-10	88.717	88.717	0.00	10.0	0.00
13 h-2-7	80.587	80.587	-0.763E-05	10.0	-0.763E-04

14 h-3-6	78.743	78.743	0.00	10.0	0.00
15 h-4-4	73.664	73.664	0.00	10.0	0.00
16 h-5-8	79.129	79.129	0.00	10.0	0.00
17 h-6-3	69.763	69.763	0.763E-05	10.0	0.763E-04
18 h-7-8	82.034	82.034	0.00	10.0	0.00
19 h-8-9	84.204	84.204	0.763E-05	10.0	0.763E-04
20 h-9-2	62.247	62.247	0.00	10.0	0.00
21 h-10-3	69.318	69.318	0.00	10.0	0.00
22 h-11-9	84.259	84.259	0.00	10.0	0.00

STATISTICS FOR HEAD RESIDUALS :

MAXIMUM WEIGHTED RESIDUAL : 0.763E-04 OBS# 3
MINIMUM WEIGHTED RESIDUAL :-0.763E-04 OBS# 10

AVERAGE WEIGHTED RESIDUAL : 0.694E-05

RESIDUALS >= 0. : 20 # RESIDUALS < 0. : 2

NUMBER OF RUNS : 2 IN 22 OBSERVATIONS

SUM OF SQUARED WEIGHTED RESIDUALS (HEADS ONLY) 0.34925E-07

DATA FOR FLOWS REPRESENTED USING THE DRAIN RETURN PACKAGE

OBSERVATION	MEAS.	CALC.			WEIGHTED
OBS# NAME	FLOW	FLOW	RESIDUAL	WEIGHT**.5	RESIDUAL
23 D-1	-38.3	-38.3	0.381E-05	0.261	0.997E-06

STATISTICS FOR DRT PACKAGE FLOW RESIDUALS :

MAXIMUM WEIGHTED RESIDUAL : 0.997E-06 OBS# 23 MINIMUM WEIGHTED RESIDUAL : 0.997E-06 OBS# 23

AVERAGE WEIGHTED RESIDUAL : 0.997E-06

RESIDUALS >= 0. : 1 # RESIDUALS < 0. : 0

NUMBER OF RUNS : 1 IN 1 OBSERVATIONS

SUM OF SQUARED WEIGHTED RESIDUALS (DRT FLOWS ONLY) 0.99420E-12

SUM OF SQUARED WEIGHTED RESIDUALS (ALL DEPENDENT VARIABLES) 0.34926E-07

STATISTICS FOR ALL RESIDUALS :

AVERAGE WEIGHTED RESIDUAL : 0.668E-05

RESIDUALS >= 0. : 21 # RESIDUALS < 0. : 2

NUMBER OF RUNS : 2 IN 23 OBSERVATIONS

INTERPRETTING THE CALCULATED RUNS STATISTIC VALUE OF -3.24

NOTE: THE FOLLOWING APPLIES ONLY IF

RESIDUALS >= 0 . IS GREATER THAN 10 AND

RESIDUALS < 0. IS GREATER THAN 10

THE NEGATIVE VALUE MAY INDICATE TOO FEW RUNS:

- IF THE VALUE IS LESS THAN -1.28, THERE IS LESS THAN A 10 PERCENT CHANCE THE VALUES ARE RANDOM,
- IF THE VALUE IS LESS THAN -1.645, THERE IS LESS THAN A 5 PERCENT CHANCE THE VALUES ARE RANDOM,
- IF THE VALUE IS LESS THAN -1.96, THERE IS LESS THAN A 2.5 PERCENT CHANCE THE VALUES ARE RANDOM.