Mathematical Logic Homework 5

Ding Yaoyao

October 26, 2018

Solution 5.1. Because Φ is inconsistent, for any φ , $\Phi \vdash \varphi$. Then by the definition of \sim relation, there is only one element of the universe T^{Φ} and the only element is the whole set of the terms T^S . Let e denote the lonely element. For any relation R, we have $(e, \ldots, e) \in R$ because $\Phi \vdash R(t_1, \ldots, t_n)$. For any function f, because we have only one element in universe, $f(e, \ldots, e) = e$. For any constant e, $e^{\Phi} = e$.

Solution 5.2. (1) Let's construct a S-interpretation $\mathfrak I$ that is satisfied by the Φ . Let the universe $A = \{a, b\}$ and $a \in R, b \notin R$. Let $\beta(x) = b$ for all $x \in A$. Then $\mathfrak I \models \Phi$. Because Φ is satisfiable, then Φ is consistent.

(2) Because no function and constant symbol exists, T^S only contains variables (i.e. $T^S = \{v_0, v_1, \dots\}$). Then $\neg Rt \in \Phi$. By the lemma 2.6.a in Logic 5.pdf, $\Phi \vdash Rt$ is equivalent to that $\Phi \cup \{\neg Rt\}$ is inconsistent. Because $\neg Rt \in \Phi$, then $\Phi \cup \{\neg Rt\} = \Phi$. By (1), Φ is consistent, which is a contradiction. So such term $t \in T^S$ does not exist.

Solution 5.3. (1) Let's construct a S-interpretation \mathfrak{I} that is satisfied by Φ . Let the universe $A = \{a\}$ and $a \in \mathbb{R}$. Then $\mathfrak{I} \models \Phi$.

- (2) It's equivalent to show that $\Phi \cup \{\neg Rx\}$ and $\Phi \cup \{\neg Ry\}$ are consistent by lemma 2.6.a. Let's prove $\Phi \cup \{\neg Rx\}$ is consistent and the proof of $\Phi \cup \{\neq Ry\}$ is completely the same. Let the universe $A = \{a, b\}$, $a \in R, b \notin R$ and $\beta(x) = a$ and $\beta(y) = b$. Then $\Im \models Rx \vee Ry$ and $\Im \models \neg Rx$. Then $\Im \models \Phi \cup \{\neg Rx\}$ is consistent.
- (3) Because $\Phi \not\vdash Rx$, then $\mathfrak{T}^{\Phi} \not\models Rx$. Similarly, $\mathfrak{T}^{\Phi} \not\models Ry$. Thus $\mathfrak{T}^{\Phi} \not\models Rx \lor Ry$, which means $\mathfrak{T}^{\Phi} \not\models \Phi$.