Geometry of Log-unit Lattices

Fernando Azpeitia Tellez, Christopher Powell, and Dr. Shahed Sharif Department of Mathematics, California State University, San Marcos

Objective

To describe the geometry of log-unit lattices for certain classes of number fields.

Lattices

A lattice $\mathcal{L}(b_1,\ldots,b_m)$ is a subgroup of \mathbb{R}^n of the form

$$\mathcal{L}(b_1,\ldots,b_m)=\sum_{i=1}^m\mathbb{Z}b_i,$$

where $b_1, \ldots, b_m \in \mathbb{R}^n$ are linearly independent. In other words, a lattice is a regularly spaced array of points. The set $B = \{b_1, \ldots, b_m\}$ is called a **basis** for \mathcal{L} . The **fundamental mesh** of $\mathcal{L}(B)$ is defined to be

$$\Phi(B) = \left\{ \sum_{i=1}^{m} x_i b_i \mid x_i \in \mathbb{R}, \ 0 \le x_i < 1 \right\}$$

Geometrically, $\Phi(B)$ is a parallelopiped. The **co-volume** of $\mathcal{L}(B)$ is defined to be the volume of the $\Phi(B)$. A lattice is **orthogonal** if it has an orthogonal basis.

Figure 1. Orthogonal lattice $\mathcal{L}(b_1,b_2)$

The **covering radius** is, roughly, the largest radius ρ such that some open ball of radius ρ does not contain any lattice points.

Figure 2. An open ball of radius ρ

Number Fields

A **number field** K is a finite dimensional field extension of \mathbb{Q} . If

$$K = \mathbb{Q}\left(\sqrt{d_1}, \sqrt{d_2}\right)$$

where d_1 and d_2 are distinct square-free integers > 1, then we say K is a **real bi-quadratic number field**. In this case, elements of K are of the form

$$a + b\sqrt{d_1} + c\sqrt{d_2} + e\sqrt{d_1d_2}$$

where $a,b,c,e\in\mathbb{Q}$. Each number field K contains an analogue of $\mathbb{Z}\subseteq\mathbb{Q}$, known as the **ring of integers** \mathcal{O}_K .

Post-Quantum Cryptography

The security of classical public-key cryptographic algorithms depends on the difficulty of two mathematical problems: the *integer factorization problem* and *discrete log problem*. However, both of these problems can be efficiently solved by a quantum computer running *Shor's algorithm*. In 2016, the National Institute for Standards and Technology (NIST) initiated *Post-Quantum Standardization*, a contest for evaluating and standardizing cryptographic algorithms that are secure against attacks by a quantum computer.

Lattice-based cryptosystems represent over one-third of all candidates submitted to NIST for evaluation. Many of these cryptosystems depend on a special type of lattice, known as a *log-unit lattice*, which are associated to number fields. The security of lattice-based cryptosystems depends on the difficulty of optimization problems such as the *closest vector problem*.

The Problem

With the exception of log-unit lattices associated to some cyclotomic number fields [2], the geometry of these lattices is not well-understood. Yet, the geometry is crucial to the implementation of lattice-based cryptosystems. If the geometry is too well-behaved, the algorithms fail to produce strong encryption (e.g., see attack in [1]).

The following diagrams help to illustrate the difference in complexity in computing the covering radius ρ between an orthogonal lattice and a non-orthogonal lattice.

Figure 3. Orthogonal $\mathcal{L}(b_1,b_2)$ with $\rho=\frac{1}{2}(\|b_1+b_2\|)=1.1$

Figure 4. Non-orthogonal $\mathcal{L}(b_1,b_2)$ with $\rho=\frac{1.2\sqrt{2}}{5}\|b_1+b_2\|=1.2$

For this research, we mainly address the orthogonality of log-unit lattice associated to real biquadratic number fields, but also other invariants such as ρ .

Logarithmic Embedding

Dirichlet's Unit Theorem describes the structure of the unit group \mathcal{O}_K^{\times} , the set of invertible elements in \mathcal{O}_K . The proof of this theorem constructs a function $\text{Log}: K^{\times} \to \mathbb{R}^n$ which maps \mathcal{O}_K^{\times} to a lattice in a subspace of \mathbb{R}^n . In other words, $\Lambda = \text{Log}(\mathcal{O}_K^{\times})$ is a lattice, called the **log-unit lattice**. If K is a real biquadratic number field, then Λ is a 3-dimensional lattice in \mathbb{R}^4 .

Theorem 1

Let $K=\mathbb{Q}(\sqrt{2},\!\sqrt{d})$ be a real biquadratic number field, where d is prime. If $d\equiv 3 \mod 4$, then Λ is orthogonal.

Exampe 1

For d=127, we get that

 $b_1 = (8.03, 8.03, -8.03, -8.03)$

 $b_2 = (-0.881, 0.881, -0.881, 0.881)$

 $b_3 = (-3.12, 3.12, 3.12, -3.12)$

is a basis for Λ . Note that all basis vectors are mutually orthogonal.

Conjecture

Let $K=\mathbb{Q}(\sqrt{d_1},\!\sqrt{d_2})$ be a real biquadratic number field. If d_1 and d_2 are distinct primes congruent to $3 \mod 4$, then Λ is not orthogonal.

Example 2

For $d_1 = 7$ and $d_2 = 11$, we get that

 $b_1 = (-0.112, -2.88, 2.88, 0.112)$

 $b_2 = (1.09, -1.09, -1.09, 1.09)$

is a basis for Λ . Note that $b_1 \perp b_2, b_2 \perp$

 $b_3 = (2.88, 0.112, -0.112, -2.88)$

 b_3 , but $b_1 \not\perp b_3$.

Summary of Impact

Theorem 1 implies that a certain class of log-unit lattices have a very well-behaved geometry. Consequently, these lattices are too insecure for cryptographic application. Our conjecture, if true, would imply that a certain family of log-unit lattices are *not* orthogonal. However, these lattices contain orthogonal sublattices, which is also undesirable for security.

NTRU Prime

NTRU Prime is a lattice-based cryptosystem submitted to NIST which uses log-unit lattices associated to fields of the form $\mathbb{Q}[x]/\langle x^p-x-1\rangle$, where p is prime. We implemented a program in SAGE which finds a set of elements $\{\varepsilon_1,\ldots,\varepsilon_m\}$, $m=\frac{p-1}{2}$ that generate the unit group. Our next step is to analyze the factors of x^p-x to determine if a simpler set of generators can be found.

Future Directions

It remains to investigate log-unit lattices associated to other classes of biquadratic fields, cyclic cubic fields, and fields used in the NTRU Prime cryptosystem.

References

- [1] Peter Campbell, Michael Groves, and Dan Shepherd, SOLILOQUY: A Cautionary Tale, 2014.
- [2] Ronald Cramer, Léo Ducas, Chris Peikert, and Oded Regev, Recovering Short Generators of Principal Ideals in Cyclotomic Rings, February 25, 2016.

Acknowledgements

This project was possible thanks to generous support from

Special thanks to Dr. Kamel Haddad

Contact Information

- Fernando Azpeitia Tellez azpei002@cougars.csusm.edu
- Christopher Powell powel054@cougars.csusm.edu
- Dr. Shahed Sharif ssharif@csusm.edu