CHM 111 lab

Experiments for basic radicals

*Flame test

Experiment	Observation	Inference
The mixture is made into a paste with con. HCl on a watch glass. A little of	, ,	Copper may be present Barium may be present
this paste is taken at the end of a glass rod and shown very near a non-luminous Bunsen flame. The color imparted, if any, to the flame is noted.	c) Brick red colourd) Crimson red coloure) Lilac colour	Calcium may be present Strontium may be present Potassium may be present Sodium may be present Lithium may be present

The complete qualitative analysis of any inorganic mixture covers the identification of both, the cations and anions.

The analysis of cations is simple as it is systematic in approach, unlike acidic radicals.

Once the original solution is prepared various radicals from it are precipitated GroupWise in the form of suitable compounds.

Take a pinch of substance + 2 test tube distilled water, stir, heat if necessary. Filter only if solutions is turbid i.e. not clear. Use it as original solution (O.S.)

Analysis of Group 0

Radical --- NH₄+

Experiment	Observation	Inference
1) O. S. + 2ml dil NaOH shake well and warm gently	NH ₃ gas evolved recognized by its smell turning most red litmus paper blue or moist Turmeric Paper brown or Evolution of dense white fumes when a glass rod dipped in conc.HCl is held over the mouth of the test tube	NH ₄ + is present
Further treat with 1ml of Nessler's reagent	Brown ppt or colouration	NH ₄ + is present

$$NH_4Cl + NaOH \rightarrow NH_3 + NaCl + H_2O$$

With Nessler's reagent

$$NH_3 + 3NaOH + 2K_2HgI_4 \rightarrow 3NaI + 4KI + 2H_2O_2 + Hg_2ONH_2I$$

Oxydimercuric ammonium Iodide

Intergroup Separation

Dil. HCl is added to t	he original solution	and filtered

Residue: (white)→ **Presence of Group** I cation

No residue \rightarrow Absence of Group I cation

Filtrate: It is diluted, heated and then H₂S is passed through it. (Filtered)

(Note: If a precipitate is formed, after separating it, H₂S should again be passed through the filtrate and these processes repeated till no more precipitate is formed.)

Residue: (Black/Browni sh black/Yellow/ Orange/Brow n)→ Presence of Group II cation No residue \rightarrow Absence Group II cation

Filtrate: H₂S is boiled off. It is then treated with NH₄Cl and excess of NH₄OH. (Filtered)

Residue: (White/Green /Reddish brown)→ Presence of Group cation No residue \rightarrow Absence

Group

cation

Filtrate: It is concentrated. Excess of NH₄OH is added and H₂S is passed. (Filtered)

(Note: If a precipitate is formed, completeness of precipitation must be ensured by continued passing of H₂S.)

Residue (Black/Flesh colored dirty white) Presence of **Group IV cation** No residue \rightarrow Absence

Group IV cation

Filtrate: H₂S is boiled off and concentrated. Excess of NH₄OH and excess of NH₄(CO₃)₂ are added and warmed. (Filtered)

Residue (White) \rightarrow | Filtrate: Tested for Presence of Group V cation

residue No Absence of Group V cation

Group VI cations

Analysis of Group I Residue

Radicals --- Ag⁺, Pb²⁺, Hg²⁺

The Group I residue is boiled with water and filtered

Residue: A white residue \rightarrow Presence of Ag⁺ and Hg²⁺ Wash the residue with hot water to remove PbCl₂ if any. Now shake the residue with dil.NH₄OH, warm and filter.

Residue: It gradually turns black. Dissolve this in aqua regia (1 part | conc. $HNO_3 + 3$ parts conc. $HCl) \mid a \mid l$ portion+ $dil.HNO_3 \rightarrow A$ and add $SnCl_2$ soln $\rightarrow A$ white precipitate turning to grey colour \rightarrow Presence of Hg₂²⁺

Filtrate: Divide into three portions:

- white precipitate Presence of Ag⁺
- b) II portion+ KI soln \rightarrow A pale *yellow precipitate*→ **Presence** of Ag⁺
- III portion + $K_2CrO_A \rightarrow A$ brick red precipitate→ Presence of Ag⁺ is confirmed.

Filtrate: The hot solution is divided into three portions:

- a) I portion+ KI soln \rightarrow A yellow precipitate which dissolved on heating with water, but reappears on cooling in the form of golden $spangles \rightarrow Presence of Pb^{2+}$
- II portion + $K_2Cr_2O_7 \rightarrow A$ yellow precipitate soluble in NaOH \rightarrow Presence of Pb²⁺
- III portion + dil. $H_2SO_4 \rightarrow A$ white precipitate \rightarrow Presence of Pb²⁺ is confirmed.

Reactions of specific tests

Analysis of Group I Radicals --- Ag+, Pb2+, Hg2+

<u>Chemical Reactions involved in 1 Group Analysis</u>: Ag⁺, Pb²⁺ and Hg²⁺ ions present in the solution react with Cl⁻ ions from HCl, to give white precipitate.

- 1) $Pb(NO_3)_2 + 2HCl \rightarrow PbCl_2 + 2HNO_3$
- 2) $AgNO_3 + HCl \rightarrow AgCl + HNO_3$
- 3) $Hg_2(NO_3)_2 + 2HCl \rightarrow Hg_2Cl_2 + 2HNO_3$

Separation and identification of Pb (filtrate): On boiling the ppt with water, $PbCl_2$ becomes soluble thus separated by filtration. This when treated with KI, K_2CrO_4 and H_2SO_4 separately, following reactions take place.

Portion I
$$PbCl_2 + 2KI \rightarrow PbI_2 + 2KCl$$

Portion II $PbCl_2 + K_2CrO_4 \rightarrow PbCrO_4 + 2KCl$
Portion III $PbCl_2 + H_2SO_4 \rightarrow PbSO_4 + 2HCl$

<u>Treatment of residue with NH₄OH:</u> i) AgCl dissolves in NH₄OH forming a soluble complex.

$$AgCl + 2NH_4OH \rightarrow [Ag(NH_3)_2]Cl + 2H_2O$$

(diamine silver chloride)

(black)

NH₄OH converts Hg₂Cl₂ to black residue which consists of white amino-mercuric chloride and black finely divided Hg.

$$Hg_2Cl_2 + 2NH_4OH \rightarrow Hg(NH_2)Cl + Hg + NH_4Cl + 2H_2O$$
(white) (black)

Reactions of Ag: The filtrate containing soluble silver complex is treated in three ways separately

Portion I : $[Ag(NH_3)_2]Cl + 2HNO_3 \rightarrow AgCl + 2NH_4NO_3$

Portion II : $[Ag(NH_3)_2]Cl + KI \rightarrow AgI + KCl + 2NH_3$

Portion III : $2[Ag(NH_3)_2]Cl + K_2CrO_4 \rightarrow Ag_2CrO_4 + 2KCl + 4NH_3$

Reactions of Hg_2^{2+} :

$$HNO_3 + 3HCl \rightarrow NOCl+ 2Cl+ 3H_2O$$
 $Hg + 2Cl \rightarrow HgCl_2$
 $Hg(NH_2)Cl + 3Cl_2 \rightarrow 2HgCl_2 + 4HCl + N_2$

Addition of SnCl₂ reduces HgCl₂ to white Hg₂Cl₂. Further addition of SnCl₂ reduces white Hg₂Cl₂ to black finely divided Hg.

$$2HgCl2 + SnCl2 \rightarrow HgCl2 + SnCl4$$

$$Hg2Cl2 + SnCl2 \rightarrow 2Hg + SnCl4$$
(black)

Analysis of Group II

The Group II residue is boiled with NaOH soln and a few drops of ammonium sulphides soln and filtered.

Residue:

- a) A Black/brownish black/yellow residue → Presence of Group IIA cation. (Bi²⁺, Cu²⁺, Cd²⁺)
- b) No residue: Absence of Group IIA cation.

Filtrate: It is acidified with dil.HCl and warmed

- a) An orange/yellow residue \rightarrow Presence of Group IIB cation. (As²⁺, Sb²⁺, Sn³⁺, Sn⁴⁺)
- b) No residue: Absence of Group IIB cation.

Analysis of Group IIA

Radicals --- Bi²⁺, Cu²⁺, Cd²⁺

Filtrate: The group IIA residue is boiled with dil HNO₃ and filtered.

Residue:

Filtrate: It is treated with excess of dil. H₂SO₄ and filtered.

Hg²⁺

Residue: A white residue: Presence of Bismuth (Bi³⁺)

The residue is collected and dissolved in minimum quantity of dil. HCl. The solution is divided into two portions

- a) A portion is added to large excess of water (taken in a boiling test tube or a beaker)
 → A white turbidity → Presence of Bi³+
- b) The second portion is treated with sodium stannite solution
 → A black precipitate →
 Presence of Bi³⁺ is confirmed.

Filtrate: It is concentrated and then treated with excess of NH₄OH solution

Filtrate: The color is noted.

- a) Blue: Presence of Cu²⁺
- b) Colourless: Absence of Cu²⁺

It is divided into two portions:

a) One portion is acidified with CH_3COOH and treated with $K_4Fe(CN)_6$ solution \rightarrow A brown precipitate \rightarrow Presence of Cu^{2+} is confirmed.

Test for Cadmium (Cd²⁺)

The second portion is again divided into two parts:

- a) To one part, add KCN soln drop by drop until blue colour disappears and then H_2S is passed through it \rightarrow A yellow precipitate \rightarrow Presence of Cd²⁺ is confirmed.
- b) To second part, add excess of dil. H_2SO_4 to make soln strongly acidic. Now, add Zn dust, boil and filter. To the filtrate add NH_4OH to neutralize excess acid, then add 1ml. Dil. HCl and pass $H_2S \rightarrow A$ yellow precipitate \rightarrow Presence of Cd²⁺ is confirmed.

Reactions of Ba³⁺:

$$Bi^{3+} + 3OH^{-} \longrightarrow Bi(OH)_{3} \downarrow$$

$$2Bi(OH)_{3} \downarrow + 3[Sn(OH)_{4}]^{2-} \longrightarrow 2Bi \downarrow + 3[Sn(OH)_{6}]^{2-}$$

Reactions of Cu^{2+:}

$$Cu^{2+} + [Fe(CN)_6]^{2-} \longrightarrow Cu[Fe(CN)_6] \downarrow$$

Reactions of Cd^{2+:}

$$Cd^{2+} + 2CN^{-} \longrightarrow Cd(CN)_{2} \downarrow$$

$$Cd(CN)_{2} \downarrow + 2CN^{-} \longrightarrow [Cd(CN)_{4}]^{2-}$$

$$[Cd(CN)_{4}]^{2-} + H_{2}S \longrightarrow CdS \downarrow + 2H^{+} + 4CN^{-}$$

Analysis of Group IIB

Radicals: As^{2+} , Sb^{2+} , Sn^{3+} , Sn^{4+}

Filtrate: Warm the filtrate with dil HCl. If white precipitate comes, filter it off. Now add 10ml of conc. HCl and boil it for 2-3 minutes. Dilute it with about 5ml of hot water and filter.

Residue:

A yellow residue → Presence of Arsenic As³⁺ Divide and dissolve the residue separately in

- a) Con HNO₃ and add excess of ammonium molybdate and heat \rightarrow A yellow precipitate \rightarrow Presence of As³⁺.
- b) The residue is gently warmed with ammonium carbonate solution and acidified with dil. HCl \rightarrow A yellow precipitate with or without passing $H_2S \rightarrow$ Presence of As³+ is confirmed.

Filtrate: Boil the filtrate to remove H₂S completely and divide the solution in two portions:

- a) I Portion+ NH_4OH till alkaline. Add solid oxalic acid, boil and pass $H_2S \rightarrow An$ orange precipitate \rightarrow **Antimony**
- **b)** II Portion + 1-2 iron nails. Boil and filter.
 - i) If black residue \rightarrow Antimony
 - ii) Filtrate + $HgCl_2$ soln \rightarrow A white $precipitate \rightarrow$ **Tin**

$$Sn^{4+} + Fe \longrightarrow Fe^{2+} + Sn^{2+}$$

$$Sn^{2+} + Hg_2Cl_2 \downarrow \rightarrow Hg \downarrow + Sn^{4+} + 2Cl^{-}$$

Analysis of Group III Radicals --- Al³⁺, Cr³⁺, Fe²⁺, Fe³⁺

The Group III residue is mixed with NaOH and few drops of Br₂ water. Boil it for 2-3 minutes and filter.

Residue: The color is noted.

- a) Black residue \rightarrow Presence of Mn
- b) Reddish brown → Presence of Ferric only

Wash the residue with hot water. Reject the washing. Dissolve in conc.HNO₃. Divide solution into two portions:

- a) I Portion + $K_4[Fe(CN)_6]$ soln \rightarrow A deep blue $precipitate/coloration \rightarrow Presence of iron$
- b) II Portion + pinch of PbO₂. It is then diluted with water and allowed to stand for a while \rightarrow Violet or purple colour in upper layer of solution \rightarrow Presence of Mn²⁺ is confirmed.

To test whether Ferrous(Fe²⁺) or Ferric (Fe³⁺) (Note: These tests need to be done only if iron is found to be present)

- a) O.S. + $K_3[Fe(CN)_6]$ is added \rightarrow A deep blue ppt/colour \rightarrow Presence of Ferrous(Fe²⁺)
- b) O.S. + dil.H₂SO₄ + dil. KMnO₄ is added in drops \rightarrow The KMnO₄ soln is decolourised \rightarrow Presence of Ferrous(Fe²⁺)
- c) O.S. + $K_{A}[Fe(CN)_{6}]$ soln is added \rightarrow A deep blue ppt/colour \rightarrow Presence of Ferrous(Fe³⁺)
- d) O.S. + KCNS soln is added \rightarrow A blood red colouration \rightarrow Presence of Ferrous (Fe³⁺)

Filtrate: The color is noted.

- a) Yellow \rightarrow Presence of Cr³⁺
- b) Colourless \rightarrow Absence of Cr³⁺

It is divided into two portions:

One portion is acidified with CH₃COOH and again divided into two parts:

- i) Part I treated with lead acetate solution $\rightarrow A$ yellow precipitate soluble in NaOH and reappears \rightarrow Presence of Cr³⁺
- ii) Part II + $AgNO_3$ soln \rightarrow Brownish red $precipitate \rightarrow Presence of Cr^{3+}$ is confirmed.

The second portion is boiled with solid $NH_4Cl \rightarrow A$ white gelatinous precipitate \rightarrow Presence of Al³⁺.

The above ppt is collected and dissolved in con.HNO₃. This soln is boiled with a few drops of cobalt nitrate solution. A piece of filter paper is moistened with this soln and the burned to ashes \rightarrow A blue tinted ash \rightarrow Presence of Al³⁺ is confirmed.

Analysis of Group III Radicals --- Al³⁺, Cr³⁺, Fe²⁺, Fe³⁺

Reactions of Al³⁺:

i) In presence of NH₄Cl:

$$NaAlO_2 + NH_4Cl + H_2O \rightarrow Al(OH)_3 + NaCl + NH_3$$
 (white gelatinous)

ii) In presence of HCl and NH₄OH:

$$NaAlO_2 + 4HCl \rightarrow AlCl_3 + NaCl + 2H_2O$$

 $AlCl_3 + 3NH_4OH \rightarrow Al(OH)_3 + 3NH_4Cl$

Reactions of Cr³⁺:

$$\begin{array}{c}
\text{lead chromate} \\
\text{Na}_2\text{CrO}_4 + \text{Pb}(\text{CH}_3\text{COO})_2 \rightarrow \text{PbCrO}_4 + 3\text{CH}_3\text{COONa} + \text{NH}_3 \\
\text{(yellow soln)}
\end{array}$$

PbCrO₄ is soluble in NaOH but insoluble in CH₃COOH

$$PbCrO_4 + 4NaOH \rightarrow Na_2PbO_2 + Na_2CrO_4 + 2H_2O$$
 (soluble)

$$Na_2CrO_4 + 2AgNO_3 \rightarrow Ag_2CrO_4 + 2NaNO_3$$

(brownish red)

Reactions with Fe²⁺:

(Ferrous ferricyanide)

i) $3\text{FeCl}_2 + 2\text{K}_3[\text{Fe}(\text{CN})]_6 \rightarrow \text{Fe}_3[\text{Fe}(\text{CN})_6]_2 + 6\text{KCl}$ (Turnbull's blue)

Reactions with Fe^{3+:}

i)
$$Fe(OH)_3 + 3HNO_3 \rightarrow Fe(NO_3)_3 + 3H_2O$$

 $Fe^{3+} + 3[Fe(CN)_6]^{4-} \rightarrow Fe_4[Fe(CN)_6]_3$
(Prussian Blue)

ii)
$$Fe^{3+} + SCN^- \rightarrow [Fe(SCN)^{2+}]$$
 (Blood red)

Reactions with Mn^{3+:}

$$2Mn(NO_3)_2 + 5NaBiO_3 + 16HNO_3 \rightarrow 2HMnO_4 + 5Bi(NO_3)_2 + 5NaNO_3 + 7H_2O$$
 (purple soln)

Analysis of Group IV Radicals --- Zn²⁺, Mn²⁺, Co²⁺, Ni²⁺

Filtrate: The group IV residue is shaken with dil HCl and filtered.

A Black residue \rightarrow Co^{2+} or Ni^{2+} are present.

The residue is dissolved in aquaregia by heating in a porcelain dish and then the soln is evaporated nearly to dryness.

- a) A yellow residue \rightarrow Presence of Ni²⁺
- b) A blue residue \rightarrow Presence of Co²⁺

This residue is dissolved in water and the solution is divided into three portions:

- I portion + solid NH₄Cl+ excess NH₄OH+ $K_3[Fe(CN)_6]$ soln is added \rightarrow A reddish brown precipitate \rightarrow Presence of Co²⁺
- II portion + solid ammonium thiocyanate is added and then shaken well with a mixture of amyl alcohol and ether \rightarrow A Blue organic layer \rightarrow Presence of Co²⁺ is confirmed.
- iii) III portion+ NH₄Cl+ excess NH₄OH+ dimethyl glyoxime reagent are added → A Rose red precipitate → Presence of Ni²⁺ is confirmed.

Filtrate: Boil off H₂S. Cool. Excess of NaOH soln is added. Boil for 3 minutes and filter.

Residue: Wash the residue and | **Filtrate:** add con.HNO₃. Boil, cool and | It is divided into two portions: divide in two parts.

- i) I part, dilute and cool. Add sodium bismuthate. Stir well purple coloured \rightarrow Presence of $| K_{\Delta}[Fe(CN)_{6}] \rightarrow A$ Manganese (Mn²⁺)
- ii) II part+ pinch of PbO₂, boil for some time and then allow to stand \rightarrow purple color in *upper liquid* → **Presence of** (Mn²⁺) is confirmed.

- i) H₂S is passed through the first portion \rightarrow *A white precipitate* \rightarrow Presence of Zinc (Zn²⁺)
- and wait \rightarrow supernatant liquid | ii) II portion + CH₃COOH+ white *precipitate* → **Presence** of (Zn²⁺) is confirmed.

Analysis of Group IV Radicals --- Zn²⁺, Mn²⁺, Co²⁺, Ni²⁺

<u>Chemical Reactions involved in IV Group Analysis</u>: The addition of NH₄OH converts these cations except Mn into soluble amino complexes.

$$Zn^{2+} + 4NH_3 \rightarrow [Zn(NH_3)_4]^{2+}$$
 $Co^{2+} + 6NH_3 \rightarrow [Co(NH_3)_6]^{2+}$
 $Ni^{2+} + 6NH_3 \rightarrow [Ni(NH_3)_6]^{2+}$

The ammoniacal solution containing Mn^{2+} and these amino complexes gets converted into sulphides when H_2S is passed.

$$Mn^{2+} + S^{2-} \rightarrow MnS$$

$$[Zn(NH_3)_4]^{2+} + S^{2-} \rightarrow ZnS + 4NH_3$$

$$[Co(NH_3)_6]^{2+} + S^{2-} \rightarrow CoS + 6NH_3$$

$$[Ni(NH_3)_6]^{2+} + S^{2-} \rightarrow NiS + 6NH_3$$

Addition of very dil.HCl, dissolves only Zn and Mn sulphides

$$ZnS + 2HCl \rightarrow ZnCl_2 + H_2S$$

 $MnS + 2HCl \rightarrow MnCl_2 + H_2S$

Reactions with Zn²⁺ and Mn²⁺

Zn forms a white precipitate of $Zn(OH)_2$ but it dissolves in excess of NaOH forming a soluble complex sodium zincate.

$$ZnCl_2 + 2NaOH \rightarrow Zn(OH)_2 + 2NaCl$$

(soluble complex)

$$Zn(OH)_2 + 2NaOH \rightarrow Na_2ZnO_2 + 2H_2O$$

(sodium zincate)

Mn is converted to a white ppt of Mn(OH)₂ which is oxidized to black MnO₂ and finally becomes hydrated as MnO₂.xH₂O

$$Mn+2NaOH \rightarrow Mn(OH)_2 + 2NaCl$$

$$Mn(OH)_2 + O \rightarrow MnO_2 + H_2O$$

(Brown or black)

Thus filtrate contains Na₂ZnO₂ and residue contains MnO₂.xH₂O

<u>Test for Zn^{2+} </u>: On passing H_2S into the filtrate, a white ppt of ZnS is produced.

$$Na_2ZnO_2 + H_2S \rightarrow 2NaOH + ZnS$$

<u>Test for Mn²⁺</u> $Mn(OH)_2$ with con.HNO₃ changes to $Mn(NO_3)_2$

$$2MnO_2 + 4HNO_3 \rightarrow 2Mn(NO_3)_2 + 2H_2O + O_2$$

i) Sodium bismuthate: $5\text{NaBiO}_3 + 2\text{Mn}(\text{NO}_3)_2 + 16\text{HNO}_3 \rightarrow + 2\text{HMnO}_4 + 5\text{Bi}(\text{NO}_3)_3 + 5\text{NaNO}_3 + 7\text{H}_2\text{O}_3 + 7\text{H}_2$

ii) Lead dioxide: $2Mn(NO_3)_2 + 5PbO_2 + 6HNO_3 \rightarrow + 2HMnO_4 + 5Pb(NO_3)_2 + 2H_2O$

Confirmatory test for Co²⁺

Ammonium thiocyanate ether test:

On addition of ether and a crystal of ammonium thiocyanate, a blue colour is obtained in the ethereal layer due to the formation of ammonium cobalti thiocyanate.

Confirmatory test for Ni²⁺

Dimethyl glyoxime test

Ni²⁺ ions react with dimethyl glyoxime to form bright rose-red coloured Nickel-dimethyl glyoxime complex, Ni(dmgH)₂.

OH O

$$CH_3-C=NOH$$
 $CH_3-C=NOH$
 $CH_3-C=NOH$
 $CH_3-C=NOH$
 $CH_3-C=NOH$
 $CH_3-C=NOH$
 $CH_3-C=NOH$
 $CH_3-C=NOH$
 $CH_3-C=N^{/}N=C-CH_3$
 $CH_3-C=NOH$
 $CH_3-C=N^{/}N=C-CH_3$
 $CH_3-C=N^{/}N=C-CH_3$
 $CH_3-C=NOH$
 CH_3-C

Analysis of Group V

Radicals --- Ba²⁺, Sr²⁺, Ca²⁺

Filtrate: The group V residue is washed with a little hot water and dissolved in minimum quantity od hot acetic acid. The dissolved CO₂ is boiled off. To the nearby boiling solution, a slight excess of K₂CrO₄ solution is added dropwise with constant stirring and filtered.

Residue:

Yellow Residue \rightarrow Ba²⁺ is present.

The residue is collected, washed well with hot water and dissolved in a little con. HCl. The solution is divided into two portions.

- i) To one portion, dil. H_2SO_4 is added \rightarrow A white precipitate \rightarrow Presence of Ba²⁺ is confirmed.
- ii) The second portion is evaporated in a porcelain dish to a paste and flame test is conducted with it→ A pale green flame→
 Presence of Ba²⁺ is further confirmed.

Filtrate: It is concentrated by evaporation and $(NH_4)_2SO_4$ solution is added in excess, boiled and filtered.

Residue: Test for Sr²⁺

A white precipitate \rightarrow Presence of Sr^{2+}

Flame test is conducted on the original mixture \rightarrow *A crimson red flame* \rightarrow **Presence of Sr**²⁺ **is further confirmed.**

Filtrate: <u>Test for Ca²⁺</u>

To filtrate, ammonium oxalate solution is added \rightarrow *A white* precipitate \rightarrow **Presence of Ca²⁺**

*Flame test is conducted on the original mixture \rightarrow Brick red Flame \rightarrow Ca²⁺ is confirmed.

*Flame test: The mixture is made into a paste with con. HCl on a watch glass. A little of this paste is taken at the end of a glass rod and shown very near a non-luminous Bunsen flame. The color imparted, if any, to the flame is noted.

Analysis of Group V Radicals --- Ba²⁺, Sr²⁺, Ca²⁺

The fifth group radicals are precipitated as their carbonates. The function of NH_4Cl is to suppress the ionization of NH_4OH and $(NH_4)_2CO_3$ (common ion effect) which will otherwise precipitate Mg.

The precipitation reaction takes place as follows:

$$MCl_2 + (NH_4)_2CO_3 \rightarrow MCO_3 + 2NH_4Cl$$

 $MCO_2 + 2CH_3COOH \rightarrow (CH_3COO)_2M + CO_2 + H_2O$

Reactions of Ba²⁺

$$2BaCrO_4 + 16HCl \rightarrow 2BaCl_2 + 2CrCl_3 + Cl_2 + 8H_2O$$

$$BaCl_2 + (NH_4)_2SO_4 \rightarrow BaSO_4 + 2NH_4Cl$$

Confirmatory test for Sr²⁺

$$(CH_3COO)_2Sr + (NH_4)_2SO_4 \rightarrow SrSO_4 + 2 CH_3COONH_4$$

Confirmatory test for Ca²⁺

$$(CH_3COO)_2Ca + (NH_4)_2C_2O_4 \rightarrow 2CH_3COONH_4 + CaC_2O_4 \downarrow$$
Calcium oxalate
(White precipitate)

The filtrate left after the removal of Group V cations is evaporated nearly to dryness in a porcelain dish. About 5ml of con. HNO₃ is added to the paste and then evaporated cautiously to dryness. Heating is continued cautiously until the evolution of white fumes stops. The major portion of the residue is dissolved in minimum amount of water.

A) Tests for Magnesium Mg²⁺

- **1 a)** Portion I + saturated NH₄Cl and NH₄OH till alkaline (in slight excess) and then add ammonium phosphate solution and shaken well (The inner sides of the test tube below the liquid level are scratched using a glass rod) \rightarrow A white crystalline precipitate \rightarrow Presence of Mg²⁺
- b) The above ppt is collected and dissolved in con.HNO₃. This soln is boiled with a few drops of cobalt nitrate solution. A piece of filter paper is moistened with this soln and the burned to ashes \rightarrow A pink tinted ash \rightarrow **Presence of Mg²⁺ is confirmed.**
- 2. Portion II + excess of NH₄OH is added followed by oxine reagent \rightarrow A yellow precipitate \rightarrow Presence of Mg²⁺is confirmed.
- 3. Portion III of the solution is treated with a few drops of magneson reagent is added followed by excess of NaOH soln \rightarrow *A* Blue precipitate \rightarrow Presence of Mg²⁺is further confirmed.

B) Test for Na and K

1. Take the filtrate of Group V, precipitate off magnesium by Na₂HPO₄. Now evaporate this filtrate to dryness to remove NH₄⁺. Lixiviate it with water and add sodium reagent (magnesium acetate and uranyl acetate). The inner sides of the test tube below the liquid level are scratched using a glass rod and kept for a while. \rightarrow A crystalline yellow precipitate \rightarrow Presence of

Na⁺ is confirmed

- 2. Lixiviate it with water and add some acetic acid and finally sodium cobaltinitrite in excess \rightarrow A yellow precipitate \rightarrow Presence of K⁺
- C) Flame test is conducted with the initial residue:
- a) Golden yellow color flame → Presence of Na⁺ is confirmed.
- b) A lilac flame → Presence of K⁺ is confirmed.

Confirmatory test for Mg⁺ Ammonium Phosphate test

Mg²⁺ ions react with ammonium phosphate in presence of NH₄Cl and NH₄OH to form white precipitate of magnesium ammonium phosphate.

$$MgCl_2 + NH_4OH + (NH_4)_2HPO_4 \rightarrow Mg(NH_4)PO_4 \downarrow + 2NH_4CI + H_2O$$

Magnesium ammonium phosphate
(White precipitate)

Confirmatory test for Na⁺

$$NaCl + 3(CH_3COO)_2UO_2 + (CH_3COO)_2Mg + CH_3COOH \rightarrow NaMg(UO_2)_3(CH_3COO)_9 + HCl$$

Confirmatory test for K⁺

$$Na_3[Co(NO_2)_6] + 2KCl \rightarrow K_2Na[Co(NO_2)_6] + 2NaCl$$
(Yellow ppt)