Assignment05

October 18, 2018

1 Assignment05

1.1 StudentID: 20155212

1.2 Name: Choi Bowon

1.3 GitHub: https://github.com/ChoiBowon/Assignment

1.4 Import packages for project

```
In [286]: import matplotlib.pyplot as plt
    import numpy as np
    from scipy import signal
    from skimage import io, color
    from skimage import exposure
```

1.5 Input file image and transform to gray scale image

```
In [287]: file_image = 'cau.jpg'
    im_color = io.imread(file_image)
    im_gray = color.rgb2gray(im_color)
```

1.6 Define kernels for example

1.7 Plot the images

```
In [289]: plt.figure(figsize=(10,10))
    p1 = plt.subplot(2,2,1)
    p1.set_title('color image')
    plt.imshow(im_color)
    plt.axis('off')

    p2 = plt.subplot(2,2,2)
    p2.set_title('gray image')
    plt.imshow(im_gray, cmap='gray')
```

```
plt.axis('off')

p3 = plt.subplot(2,2,3)
p3.set_title('convolution kernel')
plt.imshow(ker, cmap='gray')
plt.axis('off')

p4 = plt.subplot(2,2,4)
p4.set_title('convolution result')
plt.imshow(im_conv, cmap='gray')
plt.axis('off')

plt.show()
```

color image

gray image

convolution kernel

convolution result

1.8 Define kernels for computing image gradients

```
In [290]: ker_gradient = np.array([[1,0,-1],[1,0,-1],[1,0,-1]])
```

1.9 Function for computing x_derivative and y_derivative and shows the result

1.9.1 The y_derivative function uses transpose matrix of image

x derivative image


```
print("y derivative image")
    return y_result.T
y_result = y_derivative()
```

y derivative image

1.10 Function for computing the magnitude of the gradient and Showing the result images

1.11 Function for computing the direction of the gradient using tangent method and Showing the result of direction

1.12 Define kernels for smoothing image

```
In [297]: ker_soomth = np.array([[1/3,1/3,1/3],[1/3,1/3],[1/3,1/3],[1/3,1/3]])
```

1.13 Define function for smoothing and show the result of smoothing image function

1.14 Define my own kernel

```
In [300]: ker_own = np.array([[-1,-1,-1],[-1,9,-1],[-1,-1,-1]])
```

1.15 Show the result of convolution with my own kernal

1.15.1 It shows the edge of gray scale image

