Expressing the cone radius in the relational calculus with real polynomial constraints

Floris Geerts
University of Limburg (LUC)
Dept. WNI
B-3590 Diepenbeek, Belgium
floris.geerts@luc.ac.be

Abstract

We show that there is a query expressible in first-order logic over the reals that returns, on any given semi-algebraic set A, for every point a radius around which A is conical. We obtain this result by combining famous results from calculus and real algebraic geometry, notably Sard's theorem and Thom's first isotopy lemma, with recent algorithmic results by Rannou.

1 Introduction

The framework of constraint databases, introduced by Kanellakis, Kuper and Revesz [8], provides a nice theoretical model for spatial databases [11]. A spatial dataset is modeled using real polynomial inequality constraints; such sets are also known as semi-algebraic sets [1, 3]. The relational calculus (first-order logic) with real polynomial constraints then serves as a basic query language, denoted here as FO.

The study of the expressive power of query languages for constraint databases is an active domain of research [10]. One of the problems in particular that received attention in recent years is that of determining the exact power of FO in expressing topological properties of spatial databases [2, 5, 7, 9, 13]. One such property, which is central in this research, is that locally around each point, a semi-algebraic set has the topology of a cone. A radius at which this behavior shows is called a *cone radius* around the point for the set.

Accordingly, a cone radius query is a query that returns, for a semi-algebraic set A, a set of pairs (\vec{p}, r) giving for every point \vec{p} a cone radius r in \vec{p} for A. In this paper, we show that there exists an FO formula expressing a cone radius query. So

far, this was only known in two dimensions [5]. Expressibility of the cone radius, apart from being a natural question in itself, has also applications: for example, it has been linked to the expressibility of piecewise linear approximations [4].

2 Preliminaries

2.1 Spatial databases and Queries

A semi-algebraic set in \mathbb{R}^n is a finite union of sets definable by conditions of the form

$$f_1(\vec{x}) = f_2(\vec{x}) = \dots = f_k(\vec{x}) = 0, \ g_1(\vec{x}) > 0, \ g_2(\vec{x}) > 0, \dots, \ g_\ell(\vec{x}) > 0,$$

with $\vec{x} = (x_1, \ldots, x_n) \in \mathbb{R}^n$, and where $f_1(\vec{x}), \ldots, f_k(\vec{x}), g_1(\vec{x}), \ldots, g_\ell(\vec{x})$ are multi-variate polynomials in the variables x_1, \ldots, x_n with real coefficients. A database schema \mathcal{S} is a finite set of relation names, each with a given arity. A database over \mathcal{S} assigns to each $S \in \mathcal{S}$ a semi-algebraic set S^D in \mathbb{R}^n , if n is the arity of S. A k-ary query over \mathcal{S} is a function mapping each database over \mathcal{S} to a semi-algebraic set in \mathbb{R}^k .

As query language we use first-order logic (FO) over the vocabulary $(+, \cdot, 0, 1, <)$ expanded with the relation names in S. A formula $\varphi(x_1, \ldots, x_k)$ expresses the k-ary query defined by

$$\varphi(D) := \{(a_1, \dots, a_k) \in \mathbb{R}^k \mid \langle \mathbb{R}, D \rangle \models \varphi(a_1, \dots, a_k) \},$$

for any database D. Note that $\varphi(D)$ is always semi-algebraic because all relations in D are; indeed, by Tarski's theorem [15], the relations that are first-order definable on the real ordered field are precisely the semi-algebraic sets.

An example of a query expressed in FO is the following: Let S be a schema containing the relation name S. Consider the FO-formula

$$\varphi_{\mathrm{int}}(\vec{x}) := (\exists \varepsilon > 0)(\forall x_1') \cdots (\forall x_n')(\|\vec{x} - \vec{x}'\| < \varepsilon \to S(x_1', \dots, x_n')).$$

For any database D, $\varphi_{\rm int}(D)$ equals the interior of S^D . However, not every query is first-order expressible: the query which asks whether a set is connected is not expressible in FO. This result and other results related to constraint databases have recently been collected in a single volume [10].

2.2 Cones

Let $A \subseteq \mathbb{R}^n$ be a semi-algebraic set and $\vec{p} \in \mathbb{R}^n$ a point not in A. We define the *cone with base* A *and top* \vec{p} as the union of all closed line segments between \vec{p} and points in A. We denote this set with $\operatorname{Cone}(A, \vec{p}) := \{t\vec{b} + (1-t)\vec{p} \mid \vec{b} \in A, \ 0 \le t \le 1\}$. For a point $\vec{p} \in \mathbb{R}^n$ and $\varepsilon > 0$, denote the closed ball centered at

 \vec{p} with radius ε by $B^n(\vec{p}, \varepsilon)$, and denote the sphere centered at \vec{p} with radius ε , by $S^{n-1}(\vec{p}, \varepsilon)$. The following well-known theorem says that, locally around each point, a semi-algebraic set has the topology of a cone.

Theorem ([1, 3]). Let $A \subseteq \mathbb{R}^n$ be a semi-algebraic set and \vec{p} a point of A. Then there is a real number $\varepsilon > 0$ such that the intersection $A \cap B^n(\vec{p}, \varepsilon)$ is homeomorphic to the set $\text{Cone}(A \cap S^{n-1}(\vec{p}, \varepsilon), \vec{p})$.

Any real number $\varepsilon > 0$ as in the lemma is called a *cone radius* of A in \vec{p} .

Let S be a schema containing a relation name S of arity n. A cone radius query Q_{radius} is a query which maps any database D over S to a set of pairs $(\vec{p},r) \in \mathbb{R}^n \times \mathbb{R}$ such that for every point $\vec{p} \in S^D$ there exists at least one pair $(\vec{p},r) \in Q_{\text{radius}}(D)$, and for every $(\vec{p},r) \in Q_{\text{radius}}(D)$, r is a cone radius in \vec{p} for S^D

We will use the following notation: Let $A \subseteq B \subseteq \mathbb{R}^n$, the closure of A in B is denoted by $\operatorname{cl}_B(A)$, and $\operatorname{int}_B(A)$ indicates the interior of A in B. When the ambient space B is \mathbb{R}^n , we omit the subscript B. We denote $\operatorname{cl}(A) - A$ (the frontier of A) with ∂A .

2.3 Whitney stratification

Every semi-algebraic set $A \subseteq \mathbb{R}^n$ can be "nicely" decomposed in a finite sequence \mathcal{Z} of n+1 semi-algebraic sets Z_0, \ldots, Z_n , called *strata*, with the following properties. For each $i=0,\ldots,n$:

- 1. Z_i is either a C^1 semi-algebraic set in \mathbb{R}^n of dimension i, or an empty set; and
- 2. each triple (Z_i, \vec{p}, Z_j) for i < j and $\vec{p} \in Z_i$ has the Whitney property.

Such a decomposition is called a C^1 -Whitney stratification of A. We will not need the precise definitions of when a set is C^1 and of the Whitney property. We refer to the paper of Rannou [12] for more details.

We remark that in this paper we do not require the *frontier condition*, which says that the frontier of a stratum is the union of lower dimensional strata, and also do not suppose strata to be connected. Both properties are not necessary for Thom's first isotopy lemma [6, 14], which we will use in our proof in Section 4.

3 Constructing a Whitney stratification

Let A be a semi-algebraic set in \mathbb{R}^n . We shall construct a C^1 -Whitney stratification \mathcal{Z} of the closure $\operatorname{cl}(A)$ such that A is the union of connected components of strata of \mathcal{Z} . We then say that \mathcal{Z} is *compatible with* A. This construction will be expressible in FO.

Our construction is an adaptation of the construction given by Shiota [14, Lemma I.2.2].

We define Z_n as the subset of A where A is locally C^1 and of dimension n. Now suppose that the strata Z_n, \ldots, Z_{k+1} have already been constructed. Then the stratum Z_k is constructed as follows. Define $A_0 = A$ and $A_1 = \partial A$. For i = 0, 1 construct

$$R_k^i := \{ \vec{p} \in A_i - \bigcup_{j=k+1}^n Z_j \mid A_i \text{ is } C^1 \text{ and of dimension } k$$
 (1)

in a neighborhood of \vec{p} }

$$W_k^i := \bigcap_{j=k+1}^n \operatorname{int}_{R_k^i} (\{ \vec{p} \in R_k^i \mid (R_k^i, \vec{p}, Z_j) \text{ has the Whitney property} \})$$
 (2)

$$Z_k^i := W_k^i - \text{cl}(R_k^{1-i}).$$
 (3)

Then we define $Z_k := Z_k^0 \cup Z_k^1$.

The stratum Z_k has indeed the desired properties: By (1) it is C^1 and of dimension k, (2) guarantees that for all points in Z_k , and for any j > k, the triples (Z_k, \vec{p}, Z_j) have the Whitney property, and (3) ensures that the connected components of Z_k lie either completely in A or completely in ∂A .

It is well known [17, 14] that the dimension of $A_i - \bigcup_{j=k}^n Z_j$ is strictly less than the dimension of $A_i - \bigcup_{j=k+1}^n Z_j$ for i = 0, 1. Hence, the stratification \mathcal{Z} will consists of exactly n+1 strata Z_k , some of which may be empty.

We now show that the above construction is in FO.

Theorem 1. Let S be a database schema containing a relation name S of arity n. The n-ary query Q_{k -stratum, which takes as input a database D over S, and returns the kth stratum Z_k of the stratification Z constructed above for $A = S^D$, is expressible in FO.

In order to prove FO-expressibility of these queries, it is sufficient to show that the sets R_k^i , W_k^i , and Z_k^i occurring in the construction are FO-expressible. But this follows immediately from the work of Rannou [12]. Indeed, from that work we can deduce the following lemma, which immediately implies Theorem 1:

Lemma 1. (i) Let S be a database schema containing a relation name S of arity n. The n+1 queries of arity n, defined as

$$Q_{k\text{-reg}}(D) := \{ \vec{x} \in \mathbb{R}^n \mid \vec{x} \in S^D \land (S^D \text{ is } C^1 \text{ and of dimension } k \text{ in an open neighborhood of } \vec{x}) \},$$

for any database D over S, are all expressible in FO.

(ii) Let S be a database schema containing two relation names S_1 and S_2 of arity

n. The n-ary query, defined as

$$Q_{Whitney}(D) := \{ \vec{x} \in \mathbb{R}^n \mid S_1^D, S_2^D \text{ are } C^1 \text{ and } (S_1^D, \vec{x}, S_2^D) \}$$

$$has the Whitney property \},$$

for any database D over S, is expressible in FO.

4 Expressing the cone radius in FO

We are now ready to prove the main result of this paper.

Theorem 2. There exists an FO-expressible cone radius query.

Proof. Consider a semi-algebraic set A in \mathbb{R}^n , and let \mathcal{Z} be the C^1 -Whitney stratification of cl(A) compatible with A. Let $\vec{p} \in cl(A)$ and define the C^1 -map

$$f_{\vec{p}}: \operatorname{cl}(A) \to \mathbb{R}: \vec{x} \mapsto ||\vec{x} - \vec{p}||^2.$$

We will need Thom's First Isotopy Lemma [14]. Applied to the C^1 -map $f_{\vec{p}}$ and the C^1 -Whitney stratification \mathcal{Z} , this lemma can be stated as follows: For any a < b,

- (a) If $f_{\vec{p}}$ is proper, i.e., $f_{\vec{p}}^{-1}([a,b])$ is compact, and
- (b) if for each stratum $Z \in \mathcal{Z}$, the restriction

$$f_{\vec{p}}|(Z\cap \operatorname{int}(B^n(\vec{p},b)-B^n(\vec{p},a)))\to (a,b)\subseteq \mathbb{R}$$

has no critical points (this will be explained later),

then for any $c \in (a, b)$, there exists a homeomorphism

$$h: \operatorname{cl}(A) \cap \operatorname{int}(B^n(\vec{p}, b) - B^n(\vec{p}, a)) \to (\operatorname{cl}(A) \cap S^{n-1}(\vec{p}, c)) \times (a, b).$$

Moreover, this homeomorphism satisfies the following two properties:

- (i) For each $d \in (a, b)$, $h(cl(A) \cap S^{n-1}(\vec{p}, d)) = (cl(A) \cap S^{n-1}(\vec{p}, c)) \times \{d\}$, and
- (ii) $h(Z \cap \operatorname{int}(B^n(\vec{p}, b) B^n(\vec{p}, a))) = (Z \cap S^{n-1}(\vec{p}, c)) \times (a, b)$ is a homeomorphism for every connected component Z of a stratum of Z.

This statement of Thom's First Isotopy Lemma is a specialized form of Theorem II.6.2 in Shiota [14].

Remark that condition (a) is automatically satisfied. Indeed, the inverse image by $f_{\vec{p}}$ of any interval $[a,b] \subset \mathbb{R}$ is equal to $\operatorname{cl}(A) \cap (B^n(\vec{p},b) - \operatorname{int}(B^n(\vec{p},a)))$ which is closed and bounded in \mathbb{R}^n .

Claim 1. If condition (b) is satisfied for 0 < b (so a = 0), then every $c \in (0, b)$ is a cone radius of A in \vec{p} .

Proof of Claim. Take an arbitrary real number $c \in (0, b)$. The lemma gives a homeomorphism

$$h_0: cl(A) \cap int(B^n(\vec{p}, b) - \{\vec{p}\}) \to (cl(A) \cap S^{n-1}(\vec{p}, c)) \times (0, b).$$

By property (i), we obtain a homeomorphism

$$h_1: cl(A) \cap (B^n(\vec{p}, c) - \{\vec{p}\}) \to (cl(A) \cap S^{n-1}(\vec{p}, c)) \times (0, c],$$

which equals the restriction $h_0|\operatorname{cl}(A) \cap (B^n(\vec{p},c) - \{\vec{p}\})$. Since the cylinder $(\operatorname{cl}(A) \cap S^{n-1}(\vec{p},c)) \times (0,c]$ is clearly homeomorphic to the cone $\operatorname{Cone}(\operatorname{cl}(A) \cap S^{n-1}(\vec{p},c),\vec{p}) - \{\vec{p}\}$, e.g., by the homeomorphism

$$h_2(\vec{x}, t) := (1 - \frac{t}{c})\vec{p} + (\frac{t}{c})\vec{x} \text{ for } t \in (0, c],$$

we obtain a homeomorphism

$$h_3 := h_2 \circ h_1 : \operatorname{cl}(A) \cap (B^n(\vec{p}, c) - \{\vec{p}\}) \to \operatorname{Cone}(\operatorname{cl}(A) \cap S^{n-1}(\vec{p}, c), \vec{p}) - \{\vec{p}\}.$$

It is easily verified that $h_2: (Z \cap S^{n-1}(\vec{p}, c)) \times (0, c] \to \operatorname{Cone}(Z \cap S^{n-1}(\vec{p}, c), \vec{p}) - \{\vec{p}\}\$ is a homeomorphism for each connected component Z of a stratum of Z. Since h_1 also satisfies property (ii), we have that $h_3: (Z \cap (B^n(\vec{p}, c) - \{\vec{p}\}) \to \operatorname{Cone}(Z \cap S^{n-1}(\vec{p}, c), \vec{p}) - \{\vec{p}\}\$ is a homeomorphism for each connected component Z of a stratum of Z.

This implies that the restriction $h = h_3 | A \cap (B^n(\vec{p}, c) - \{\vec{p}\})$ is a homeomorphism from $h(A \cap (B^n(\vec{p}, c) - \{\vec{p}\}))$ to $\text{Cone}(A \cap S^{n-1}(\vec{p}, c), \vec{p}) - \{\vec{p}\}$, because A is the union of connected components of strata of \mathcal{Z} .

The homeomorphism h can easily be extended to the point \vec{p} , hence c is indeed a cone radius as desired.

Let S be a schema containing a relation name S of arity n, and let D be a database over S. By Claim 1, we can define the following cone radius query

$$Q_{\text{radius}}(D) := \{ (\vec{p}, r) \in \mathbb{R}^n \times \mathbb{R} \mid \vec{p} \in S^D \text{ and } r \in (0, b) \},$$

where the interval (0, b) satisfies condition (b) for the map $f_{\vec{p}}$ and semi-algebraic set $A = S^D$. Let us express this query in FO.

We define the critical point query as

$$Q_{\text{crit}}(D) := \{ (\vec{p}, \vec{x}) \in \mathbb{R}^n \times \mathbb{R}^n \mid \vec{p} \in S^D \text{ and } \vec{x} \in Q_{k\text{-stratum}}(D) \text{ for a certain } k \text{ and } \vec{x} \text{ is a critical point of } f_{\vec{p}} \text{ restricted to } Q_{k\text{-stratum}}(D) \}.$$

The *critical points* of $f_{\vec{p}}$ restricted to a stratum Z, are the points $\vec{x} \in Z$ where the differential map $d_{\vec{x}}(f_{\vec{p}}|Z)$ is not surjective.

Claim 2. A point $\vec{x} \in \mathbb{R}^n$ is a critical point of $f_{\vec{p}}|Z$ if and only if the tangent space of Z in \vec{x} is orthogonal to the vector $\vec{x} - \vec{p}$.

Proof of Claim. We compute the differential $d_{\vec{x}}(f_{\vec{p}}|Z)$ as follows: Locally around \vec{x} , we may assume that the projection on the first k coordinates $\Pi: Z \to U \subset \mathbb{R}^k$, is a homeomorphism, where k is the dimension of Z in \vec{x} . By definition of the differential, $d_{\vec{x}}(f_{\vec{p}}|Z) = (d_{(x_1,\ldots,x_k)}g)(d_{(x_1,\ldots,x_k)}\Pi^{-1})^{-1}$, where $g = (f|Z) \circ \Pi^{-1}$. By the C^1 Inverse Function Theorem, we may assume that $\Pi^{-1}: U \to Z: (x_1,\ldots,x_k) \mapsto (x_1,\ldots,x_k,\varphi_{k+1},\ldots,\varphi_n)$, where $\varphi_i(x_1,\ldots,x_k)$ are C^1 -maps, and hence $g: U \mapsto \mathbb{R}: (x_1,\ldots,x_k) = \sum_{i=1}^k (x_i-p_i)^2 + \sum_{j=k+1}^n (\varphi_j(x_1,\ldots,x_k)-p_j)^2$. An elementary calculation shows that the differential of $f_{\vec{p}}|Z$ in \vec{x} is the vector

$$d_{\vec{x}}(f_{\vec{p}}|Z) = 2\left(\left((x_i - p_i) + \sum_{j=k+1}^n (x_j - p_j) \frac{\partial \varphi_j}{\partial x_i}(x_1, \dots, x_k)\right)_{i=1,\dots,k}, \underbrace{0,\dots,0}_{n-k \text{ times}}\right).$$

Since $d_{(x_1,\ldots,x_k)}\Pi^{-1}$ is an isomorphism between the tangent space $T_{(x_1,\ldots,x_k)}U$ of U in the projection $\Pi(\vec{x})$, and the tangent space $T_{\vec{x}}Z$ of Z in \vec{x} , any tangent vector $(v_1,\ldots,v_n)\in T_{\vec{x}}Z$ is of the form $(d_{(x_1,\ldots,x_k)}\Pi^{-1})(v_1,\ldots,v_k)$. More specifically, any tangent vector $\vec{v}\in T_{\vec{x}}Z$ can be written as

$$(v_1,\ldots,v_n)=(v_1,\ldots,v_k,\sum_{i=1}^k\frac{\partial\varphi_{k+1}}{\partial x_i}(x_1,\ldots,x_k)v_i,\ldots,\sum_{i=1}^k\frac{\partial\varphi_n}{\partial x_i}(x_1,\ldots,x_k)v_i).$$

Hence, the product

$$d_{\vec{x}}(f_{\vec{p}}|Z) \cdot \vec{v} = 2 \sum_{i=1}^{k} (x_i - p_i)v_i + 2 \sum_{j=k+1}^{n} (x_j - p_j) \left(\sum_{i=1}^{k} \frac{\partial \varphi_j}{\partial x_i} (x_1, \dots, x_k)v_i \right),$$

is equal to $2\sum_{i=1}^n (x_i - p_i)v_i$. This implies that the differential map $d_{\vec{x}}(f_{\vec{p}}|Z)$ is not surjective if and only if $2\sum_{i=1}^n (x_i - p_i)v_i = 0$ for all tangent vectors $\vec{v} \in T_{\vec{x}}Z$. This proves the Claim.

The proof of the theorem now continues as follows. The tangent space query

$$Q_{\text{tangent}}(D) := \{ (\vec{x}, \vec{v}) \in \mathbb{R}^n \times \mathbb{R}^n \mid S^D \text{ is } C^1, \ \vec{x} \in S^D \text{ and } \vec{v} \in T_{\vec{x}}S^D \},$$

is expressible in FO [12, Lemma 2]. Because the orthogonality of two vectors can be easily expressed in FO, the formula

$$\varphi_{\operatorname{crit}}(\vec{p}, \vec{x}) := S(\vec{p}) \wedge \bigvee_{j=0}^{n} \forall \vec{v} \left(\varphi_{\operatorname{tangent}}(\varphi_{j\operatorname{-stratum}}(S))(\vec{x}, \vec{v}) \to (\vec{x} - \vec{p}) \cdot \vec{v} = 0 \right)$$

expresses Q_{crit} correctly by Claim 2. Here, $\varphi_{j\text{-stratum}}$ denotes an FO-formula expressing $Q_{j\text{-stratum}}$ for $j=0,\ldots,n,$ and φ_{tangent} is an FO formula expressing Q_{tangent} .

A critical value of $f_{\vec{p}}$ is the image by $f_{\vec{p}}$ of a critical point. The query which returns the set of critical values is expressible in FO by the formula

$$\varphi_{\mathrm{val}}(\vec{p},r) := \exists \vec{x} \left(\varphi_{\mathrm{crit}}(\vec{p},\vec{x}) \land r = f_{\vec{p}}(\vec{x}) \right).$$

We now observe that $\{r \in \mathbb{R} \mid \varphi_{\text{val}}(\vec{p},r)\}$ is finite for each \vec{p} . Indeed, the set of critical points $\{\vec{x} \in \mathbb{R}^n \mid \varphi_{\text{crit}}(\vec{p},\vec{x})\}$ is semi-algebraic and hence admits a C^1 -cell decomposition $\mathcal{C} = \{C_1, \ldots, C_m\}$ such that $f|C_i$ is C^1 [16]. Sard's Theorem for C^1 -maps [18] implies that each $f_{\vec{p}}|C_i$ attains only a finite number of values. Hence the image by $f_{\vec{p}}$ of the set of critical points is finite.

This implies that either there are no critical values, or there exists a minimal critical value. By Claim 1, any value smaller than this minimal value is a cone radius. We therefore conclude that the query expressed in FO as

$$\varphi_{\text{radius}}(\vec{p}, r) := (\forall r')(\varphi_{\text{val}}(\vec{p}, r') \to r < r'),$$

is a cone radius query, as desired.

Acknowledgement

The author wishes to thank Jan Van den Bussche for many interesting discussions and critical remarks, which led to improvements in the presentation of the paper.

References

- [1] R. Benedetti and J.J. Risler. Real Algebraic and Semi-algebraic Sets. Hermann, Paris, 1990.
- [2] M. Benedikt, M. Grohe, L. Libkin, and L. Segoufin. Reachability and connectivity queries in constraint databases. In *Proceedings of the 19th ACM Symposium on Principles of Database Systems*, pages 104–115. ACM Press, 2000.
- [3] J. Bochnak, M. Coste, and M.-F. Roy. Real Algebraic Geometry, volume 36 of Ergebenisse der Mathematik und ihrer Grenzgebiete. Springer, 1998.
- [4] F. Geerts and B. Kuijpers. Linear approximation of planar spatial databases using transitive-closure logic. In *Proceedings of the Nineteenth ACM Symposium on Principles of Database Systems*, pages 126–135. ACM Press, 2000.

- [5] F. Geerts and B. Kuijpers. Expressing topological connectivity of spatial databases. In A. Mendelzon and R. Connor, editors, *Research Issues in Structured and Semistructured Database Programming*, volume 1949 of *Lecture Notes in Computer Science*, pages 224–238. Springer-Verlag, 2001.
- [6] C.G. Gibson, K. Wirthmüller, A.A. du Plessis, and E.J.N. Looijenga. Topological Stability of Smooth Mappings, volume 552 of Lecture Notes in Mathematics. Springer, 1976.
- [7] M. Grohe and L. Segoufin. On first-order topological queries. In *Proceedings* of the 15th IEEE Symposium on Logic in Computer Science, pages 349–360. IEEE Press, 2000.
- [8] P.C. Kanellakis, G.M. Kuper, and P.Z. Revesz. Constraint query languages. Journal of Computer and System Sciences, 51(1):26–52, 1995.
- [9] B. Kuijpers, J. Paredaens, and J. Van den Bussche. Topological elementary equivalence of closed semi-algebraic sets in the real plane. *Journal of Symbolic Logic*, 65(4):1530–1555, 2000.
- [10] G.M. Kuper, J. Paredaens, and L. Libkin, editors. *Constraint Databases*. Springer-Verlag, 2000.
- [11] J. Paredaens, J. Van den Bussche, and D. Van Gucht. Towards a theory of spatial database queries. In *Proceedings of the 13th ACM Symposium on Principles of Database Systems*, pages 279–288. ACM Press, 1994.
- [12] E. Rannou. The complexity of stratification computation. Discrete and Computational Geometry, 19:47–79, 1998.
- [13] L. Segoufin and V. Vianu. Querying spatial databases via topological invariants. *Journal of Computer and System Sciences*, 61(2):276–301, 2000.
- [14] M. Shiota. Geometry of Subanalytic and Semialgebraic Sets. Birkhäuser, 1997.
- [15] L. van den Dries. Alfred Tarski's elimination theory for real closed fields. Journal of Symbolic Logic, 53(1):7–19, 1988.
- [16] L. van den Dries. *Tame Topology and o-minimal Structures*. Cambridge University Press, 1998.
- [17] L. van den Dries and C. Miller. Geometric categories and o-minimal structures. *Duke Mathematical Journal*, 82(2):497–540, 1996.
- [18] A.J. Wilkie. A theorem of the complement and some new o-minimal structures. Selecta Mathematica, New Series, 5:397–421, 1999.