DEPARTMENT OF ZOOLOGY SEMESTER - V

Category I

(B.Sc. Honours in Zoology in three years)

DISCIPLINE SPECIFIC CORE COURSE -13 -:

Principles of Immunology Zoo-DSC-13

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course title & Code	Credits	Credit distribution of the course			Eligibility criteria	Pre- requisite of
		Lecture	Tutorial	Practical/ Practice		the course (if any)
Principles of Immunology Zoo-DSC-13	04	02	Nil	02	Passed Class XII with Biology/ Biotechnology	NIL

Learning Objectives

The learning objectives of this course are as follows:

- to impart an in-depth knowledge on how our immune system fights with infection and foreign substances that can harm our body
- to understand and design new therapeutics against a wide range of diseases and infections.
- to assist in comprehending the quick response to pandemics in the form of vaccines
- to apprise the students on the development of therapies targeting different components of the immune system that can alter the progression of human inflammatory diseases and cancers.

Learning Outcomes

By studying this course, students will be able to

- have a better understanding of the concepts of innate and acquired immunity.
- acquire knowledge of the immunogenicity of biomolecules
- comprehend and analyze the different cellular and humoral components of the immune system
- appreciate the contribution of various components of immune system in health and disease including basis of vaccination, autoimmunity, immunodeficiency and hypersensitivity

SYLLABUS OF DSC-13

UNIT 1: Overview of the Immune System

6 hrs

Early theories (Selective and Instructional) and Clonal Selection theory; Innate immunity: components and defensive barriers of innate immunity. Adaptive immune system: Components and attributes of acquired immunity, humoral and cell mediated immunity, active and passive immunity, primary and secondary immune response,

UNIT 2: Antigens and Immunoglobulins

10 hrs

Antigens and immunogens; antigenicity and immunogenicity; factors affecting immunogenicity; antigenic determinants and its properties (B- and T-cell epitopes); Haptens and Adjuvants.

Structure and functions of different classes of antibodies; antigenic determinants on immunoglobulin; Production and applications of monoclonal antibodies.

UNIT 3: MHC and Antigen Presentation

4 hrs

Structure and functions of MHC (MHC-I & MHC-II); endogenous and exogenous pathways of antigen processing and presentation.

UNIT 4: Complement System and Cytokines

3 hrs

Pathways of complement activation and biological consequences of complement activation; properties and functions of cytokines

UNIT 5: Immune System in Health and Diseases

7 hrs

Vaccines and their types; Gell and Coombs classification of hypersensitivity; autoimmunity and immunodeficiency with suitable examples.

Practical (60 hrs)

(Laboratory periods: 15 classes of 4 hours each)

- 1. Study of lymphoid cells and organs in rat/mouse*.
- 2. Histological study of spleen, thymus and lymph nodes through slides/photomicrographs.
- 3. To study various types of white blood cells using Leishman's/Giemsa/Crystal violet stained blood smear.
- 4. To understand the antigen and antibody interactions by
- i) Ouchterlony's double immunodiffusion method.
- ii) ABO Blood group antigen determination by heamagglutination test.
- iii) Demonstration of ELISA.
- iv) Demonstration of Immunoelectrophoresis.
- v) FACS
- vi) RIA
- vii) Elispot

- 5. Cell counting and viability test (trypan blue dye exclusion test) from splenocytes* from rat/mouse/any other species.
- 6. Project on any topic/ Project report on visit to any research institute/laboratory to study the immunological techniques.

Essential/recommended readings

Punt, J., Stranford, S., Jones, P., Owen, J.A. (2018) Kuby Immunology, VIII Edition, WH Freeman and Company

Abul Abbas, Andrew Lichtman, Shiv Pillai (2017) Cellular and Molecular Immunology; Elsevier

Kindt, T. J., Goldsby, R.A., Osborne, B. A. and Kuby, J. (2006) Immunology, VI; Edition, W.H. Freeman and Company

David, M., Jonathan, B., David, R. B. and Ivan, R. (2006) Immunology, VII Edition, Mosby, Elsevier Publication.

Suggestive readings

- 1. Singh, I. K. and Sharma, P. [Eds.] (2022) An Interplay of Cellular and Molecular Components of Immunology. Taylor & Francis group, CRC Press.
- 2. Kaur, H., Toteja, R., and Makhija, S. (2021) Textbook of Immunology, I.K International Publishing House and Wiley India Ltd
- 3. Singh, I. K. and Sharma, P. [Eds.] (2022) Essentials of Immunology, Laboratory Manual; Prestige Publishers.
- 4. Kenneth Murphy, Casey Weaver (2016) Janeway's Immunobiology; 9th Edition, Garland Science

NOTE: Examination scheme and mode shall be as prescribed by the Examination Branch, University of Delhi, from time to time.

^{*}depending on availability of animals or sample.