FEM für Dynamik

Kapitel 1: Einführung

Prof. Dr.-Ing. Thomas Grätsch

Department Maschinenbau und Produktion Fakultät Technik und Informatik Hochschule für Angewandte Wissenschaften Hamburg

Allgemeines

- Vorlesung
 - Do 12.15 15.30 Uhr, F.231
- Labore
 - Do 12.15 15.30 Uhr, F.201
 - Termine: 19.04., 03.05., 24.05., 07.06.
- Laborbericht
 - Präsentationen am Ende des Semesters
- Hausaufgaben
 - Kleinere Aufgaben in 2er-Gruppen

Allgemeines

- Sprechstunde
 - Do 10.00 12.00 Uhr, F.226e
- Skript
 - PDF-Folien
 - Mitschriften
- Klausur
 - Mi 27.06.2018, 12.30 14.00 Uhr

Vorlesungstermine

Datum	Tag	Thema
15.03.18	Do	1. Einführung
22.03.18	Do	2. Eimassenschwinger
		2.1 Eigenschwingungen
		2.2 Freie ungedämpfte Schwingungen
		2.3 Freie gedämpfte Schwingungen
		2.4 Erzwungene ungedämpfte Schwinung
		2.5 Erzwungene gedämpfte Schwingung
		Amplitudenfrequenzgang, Resonanz
29.03.18	Do	keine Vorlesung
05.04.18	Do	3. Bewegungsgleichung der FEM
		3.1 Dynamische Stab- und Balkenelemente
		3.2 Strukturdynamische 2D- und 3D-Elemente
		Massenmatrix, Dämpfungsmatrix
		4. Das Eigenschwingungsproblem der FEM
		4.1 Eigenfrequenzen und Eigenformen

Vorlesungstermine

Datum	Tag	Thema
12.04.18	Do	4.2 Eigenschaften der Eigenformen
		Modale Eigenschaften, Rayleigh-Quotient
		4.3 Einfluss der Dämpfung
		4.4 Modale Beteiligungsfaktoren
		4.5 MAC-Werte
19.04.18	Do	⇒Labor Eigenschwingungen
26.04.18	Do	5. Modale Superposition
		5.1 Modale Bewegungsgleichung
		5.2 Freie Schwingungen
		5.3 Erzwungene Schwingungen
03.05.18	Do	⇒Labor Modale Superposition
10.05.18	Do	Feiertag
17.05.18	Do	6. Harmonische Erregung, Frequenzgang
		(nur bis 13:45 Uhr)
24.05.18	Do	⇒Labor Harmonische Erregung

Vorlesungstermine

Datum	Tag	Thema
31.05.18	Do	7. Direkte Integration
		7.1 Das Newmark-Verfahren
		7.2 Zentrale Differenzenmethode (CDM)
07.06.18	Do	⇒Labor Direkte Integration
14.06.18	Do	8. Fouriertransformation
		Zusammenfassung und Klausurvorbereitung
21.06.18	Do	Laborvorträge
27.06.18	Mi	Klausur

Literatur

- Bathe KJ: Finite Element Procedures, 2nd edition, 2015
- Link M: Finite Elemente in der Statik und Dynamik, Springer Vieweg, 2014
- Klein, B: FEM, Springer Vieweg, 2010
- Nasdala L: FEM-Formelsammlung Statik und Dynamik, Springer Vieweg, 2010
- und viele andere . . .