	1	٠.
	\mathcal{C}	5
	9	1
	\subseteq	2
	C	1
	ا مع	
	<u>,</u>	í
	\subseteq	7
		י ר
		4
	Ω	4
	C)
	<u>V</u>	2
		٦
	\subseteq	4
	7	7
	ĹΤ	j
,	\equiv	_
	\subseteq	7
)
	Ξ	_
		2
	Ω	7
	_	3
	įΥ	4
		4
	\mathbf{U}	2
	=	_
	\vdash	4
	_	4
	_	٦ ج
	<u>ر</u>	3
	Firs I	7 3010
	ctica I	7 30100
	tíctica I	TOTOCIO
	Tatictica I	
	etatíctica I	
	statical	THIS CHISTON TRANSPORTS
	statical	

Nome da família						Função Geradora	Função Geradora
paramétrica de distribuições	Função de probabilidade $f(\cdot)$	Espaço paramétrico	Média $\mu = \mathbb{E}[X]$	$\begin{array}{c} \text{Variancia} \\ \sigma^2 = Var[X] \end{array}$	ou Momento Fatorial $\mu_{[r]}$ para $r=1,2,$	$de Momentos M(t) = \mathbb{E}[e^{Xt}]$	de Probabilidades $\varphi(t) = \mathbb{E}[t^X]$
Uniforme Discreta	$f(x) = \frac{1}{N} I_{\{1,2,\dots,N\}}(x)$	$N=1,2,\dots$	$\frac{N+1}{2}$	$\frac{N^2 - 1}{12}$	$\mu_4' = \frac{N(N+1)^2}{4}$ $\mu_4' = \frac{N(N+1)(2N+1)(3N^2 + 3N + 1)}{30}$	$\sum_{j=1}^{N} \frac{1}{N} e^{jt}$	$\begin{cases} 1, & \text{se } t = 1\\ \frac{t(1 - t^N)}{N(1 - t)}, & \text{se } t \neq 1. \end{cases}$
Bernoulli	$f(x) = p^x \ q^{1-x} I_{\{0,1\}}(x)$	$0 \le p \le 1$ $(q = 1 - p)$	d	bd	$\mu_r'=p, \ \forall r \in \mathbb{N}^*$	$q + pe^t$	b + td
Binomial	$f(x) = \binom{n}{x} p^x q^{n-x} I_{\{0,1,2,\dots,n\}}(x)$	$0 \le p \le 1$ (q = 1 - p) n = 1, 2,	đu	bdu	$\mu_3 = npq(q-p)$ $\mu_4 = 3(npq)^2 + npq(1-6pq)$	$(q+pe^t)^n$	$(pt+q)^n$
Hipergeométrica	$f(x) = \frac{\binom{K}{x} \binom{M-K}{n-x}}{\binom{M}{n}},$ onde $\max(0, n-M+K) \le x \le \min(n, K)$	M = 1, 2, $K = 0, 1,, M$ $n = 1, 2,, M$	$nrac{K}{M}$	$n\frac{K}{M}\frac{M-K}{M}\frac{M-n}{n-1}$	$\mu_{[r]} = r! \frac{\binom{K}{r} \binom{n}{r}}{\binom{M}{r}}$	não é usual	não é usual
Poisson	$f(x) = \frac{e^{-\lambda \lambda^x}}{x!} I_{\{0,1,2,\}}(x)$	γ > 0	~	~	$\kappa_r = \lambda$ $\mu_3 = \lambda$ $\mu_4 = \lambda + 3\lambda^2$	$e^{\lambda(e^t-1)}$	$e^{\lambda(t-1)}$
Geométrica	$f(x) = pq^{x-1}I_{\{1,2,\}}(x)$	$0 \le p \le 1$ $(q = 1 - p)$	<u>1</u>	બહુ	$\mu_3 = \frac{1+4q+q^2}{p^2}$ $\mu_4 = \frac{1+11q+11q^2+q^2}{p^4}$	$\frac{pe^t}{1-qe^t}$	$rac{pt}{1-qt}, t < rac{1}{q}$
Binomial Negativa	$f(x) = \binom{x-1}{r-1} p^r q^{x-r} I_{\{r,r+1,r+2,\dots\}}(x)$	$0 \le p \le 1$ $(q = 1 - p)$ $r > 0$	rıø	$\frac{rq}{p^2}$	$\mu_3 = \frac{r(r^2 + (3r + 1)q + q^2)}{p^3}$ $\mu_4 = \frac{r[r^3 + (1 + 4r + 6r^2)q + (7r + 4)q^2 + q^3]}{p^4}$	$\left(\frac{pe^t}{1-qe^t}\right)^r$	$\left(rac{pt}{1-qt} ight)^r, t <rac{1}{q}$