Ling 105 Sounds of Language

Tuesday, September 24, 2024

Kevin Ryan

• Articulatory vowel space

Where symbols appear in pairs, the one to the right represents a rounded vowel.

Production vs. acoustics

• Acoustic vowel space

Fundamental frequency (f0)

- Rate of vocal fold vibration
- Largest periodic component of waveform (not just "the frequency of the sound")
- Measured in Hertz (Hz): # of cycles per second (s)
 - i.e. inverse of wavelength (measured in seconds), i.e.
 Hz = 1 / wavelength
 (F0_demo, risingto80hz)
 - also Hz = # of periods in selection \div duration of selection
- Perceptual correlate is pitch (which is not always veridical)
 - JND (a.k.a. difference limen) (JND test)
 - Auditory illusions (e.g. pitch/volume, Shepard tone)
 - Octave, fifth, etc.

• At which frequency do sounds sound the loudest?

$f0 \neq vowel quality$

- Different f0s, same quality
- Different qualities, same f0
- Independence of pitch & quality makes tone languages possible

(Thai; Lemmy Laffer)

Thai lexical tone

Five Thai tones

- [náː] 'aunt' ♪
- [nàː] (name) ♪
- [nâː] 'face' ♪
- [năː] 'thick' ♪
- [nāː] 'field' ♪

Mai mai mai mai?

"New wood doesn't burn, does it?" (high, low, falling, falling, high)

Source + Filter

- A Swazi sentence, as heard from the glottis: A (Louis Goldstein)
- Recorded by EGG (electroglottograph)

- Is the first vowel [e] or [o]? ♪
- The original sentence: ♪

Acoustic manipulation

- Many lemons are in the barrel
 - Original ♪
 - f0 extracted ♪
 - f0 flattened ♪

Acoustic manipulation

- Permit
 - Original ♪
 - f0 extracted ightharpoonup
 - f0 flattened ♪

Acoustic manipulation

• The source (EGG) ♪

Manipulated to be [i]-colored ♪

Manipulated to be [u]-colored ♪

Waveform

• x = time (s or ms); y = amplitude (dB)

Wave synthesis & the missing fundamental

- Wave shapes (e.g. square, sawtooth, triangle, sinusoid)
 - Which is most typical of sound?
- What is $\sin(x)$ in Hz?
- Google, Praat: $\sin(200^*2^*pi^*x)$ for a 200 Hz tone (add outer multiplier to amplify)
- Generate two tones, 200 Hz and 300 Hz
 - Wavelengths?
- If combined, what is the new f0?
 - Listen in Audacity
 - Rule for missing fundamental of two frequencies
 - By formula in Praat

Some wave types

Missing fundamental

- These waves come into sync every 10 ms
- Highest common factor of 200 and 300 is 100

