Linguagens Formais e Autômatos

Humberto Longo

Instituto de Informática Universidade Federal de Goiás

Bacharelado em Ciência da Computação, 2021/1

INF/UFG – LFA 2021/1 – H. Longo

(1 - 1 de 0

Roteiro

INF/UFG - LFA 2021/1 - H. Longo

Operações com DFA's (66 - 132 de 679)

Complemento de um DFA

Teorema 1.28

▶ Se $M = \langle \Sigma, S, s_0, \delta, F \rangle$ é um DFA, então $M' = \langle \Sigma, S, s_0, \delta, S - F \rangle$ é um DFA tal que $\mathcal{L}(M') = \Sigma^* - \mathcal{L}(M)$.

Demonstração.

- ▶ Seja $w \in \Sigma^*$ e $\overline{\delta}$ a função de transição estendida construída a partir de δ .
- ▶ Para cada $w \in \mathcal{L}(M)$, $\overline{\delta}(s_0, w) \in F$.
- ▶ Portanto, $w \notin \mathcal{L}(M')$.
- ▶ Se $w \notin \mathcal{L}(M)$, então $\overline{\delta}(s_0, w) \in S F$ e $w \in \mathcal{L}(M')$.

Complemento de um DFA

Exemplo 1.29

▶ DFA D_2 que reconhece $\mathcal{L}_2 = \{w \in \{a,b\}^* \mid w \text{ contém a subcadeia } aa\}.$

Operações com DFA's (68 - 132 de 679)

Complemento de um DFA

Exemplo 1.29

▶ DFA D_3 que reconhece $\mathcal{L}_3 = \{w \in \{a,b\}^* \mid w \text{ não contém a subcadeia } aa\}.$

INF/UFG - LFA 2021/1 - H. Longo

Operações com DFA's (69 - 132 de 679)

Complemento de um DFA

Exemplo 1.30

▶ $\mathcal{L}(M_4) = \{w \in \{a, b\}^+ \mid w \text{ cont\'em nr. par de } a's \text{ e nr. impar de } b\text{'s}\}.$

INF/UFG - LFA 2021/1 - H. Longo

Operações com DFA's (70 - 132 de 679)

Complemento de um DFA

Exemplo 1.30

- ▶ $\mathcal{L}(M_5) = \{w \in \{a,b\}^+ \mid w \text{ não contém nr. par de } a's \text{ e nr. impar de } b\text{'s}\}.$
- $ightharpoonup \mathcal{L}(M_5) = \{a, b\}^* \mathcal{L}(M_4).$

Complemento de um DFA

Exemplo 1.31

Complemento de um DFA

Exemplo 1.31

 $\mathcal{L}(M_7) = (ab)^*c.$

INF/UFG - LFA 2021/1 - H. Longo

Operações com DFA's (73 - 132 de 679)

Complemento de um DFA

Exemplo 1.31

INF/UFG - LFA 2021/1 - H. Longo

Operações com DFA's (74 - 132 de 679

Operações com autômatos

Produto ⊗ de autômatos

- ▶ Sejam os DFA's $D_1 = \langle \Sigma_1, S, s_0, \delta_1, F_1 \rangle$ e $D_2 = \langle \Sigma_2, Q, q_0, \delta_2, F_2 \rangle$.
- ▶ O produto de D_1 e D_2 é o autômato $D_1 \otimes D_2 = \langle \Sigma_1 \cap \Sigma_2, S.Q, s_0.q_0, \delta, F_1.F_2 \rangle$:
 - $S.Q = \{s_i.q_j \mid (s_i,q_j) \in S \times Q\},$
 - $F_1.F_2 = \{s_i.q_i \mid (s_i, q_i) \in F_1 \times F_2\},\$
 - ▶ Para $s_i \in S$, $q_j \in Q$ e $a \in \Sigma_1 \cap \Sigma_2$, define-se

$$\delta(s_i.q_j,a) = \begin{cases} \delta_1(s_i,a).\delta_2(q_j,a), & \text{se } \delta_1(s_i,a) \text{ e } \delta_2(q_j,a) \text{ est\~ao definidos;} \\ \varnothing, & \text{se } \delta_1(s_i,a) \text{ ou } \delta_2(q_j,a) \text{ n\~ao est\'a definido.} \end{cases}$$

Produto de autômatos

Lema 1.32

▶ Dados os DFA's $D_1 = \langle \Sigma_1, S, s_0, \delta_1, F_1 \rangle$, $D_2 = \langle \Sigma_2, Q, q_0, \delta_2, F_2 \rangle$ e $D_1 \otimes D_2 := \langle \Sigma_1 \cap \Sigma_2, S.Q, s_0.q_0, \delta, F_1.F_2 \rangle$, então $\mathcal{L}(D_1 \otimes D_2) = \mathcal{L}(D_1) \cap \mathcal{L}(D_2)$.

Demonstração.

$$w\in\mathcal{L}(D_1\otimes D_2)$$
 se e somente se $\overline{\delta}(s_0.q_0,w)\in F_1.F_2,$
se e somente se $\overline{\delta_1}(s_0,w).\overline{\delta_2}(q_0,w)\in F_1.F_2,$
se e somente se $\overline{\delta_1}(s_0,w)\in F_1$ e $\overline{\delta_2}(q_0,w)\in F_2,$
se e somente se $w\in\mathcal{L}(D_1)$ e $w\in\mathcal{L}(D_2).$

Produto ⊗ de autômatos

Exemplo 1.33

▶ DFA D_1 que reconhece $\mathcal{L}_1 = \{w \in \{0, 1, 2\}^* \mid w \text{ contém exatamente dois 0's}\}$:

INF/UFG - LFA 2021/1 - H. Longo

Operações com DFA's (77 - 132 de 679)

Produto ⊗ de autômatos

Exemplo 1.33

▶ DFA D_2 que reconhece $\mathcal{L}_2 = \{w \in \{0, 1\}^* \mid w \text{ possui comprimento par}\}$:

INF/UFG - LFA 2021/1 - H. Longo

Operações com DFA's (78 - 132 de 679

Produto ⊗ de autômatos

Exemplo 1.33

- $\mathcal{L}_3 = \{w \in \{0, 1\}^* \mid w \text{ contém exatamente dois 0's e possui comprimento par}\}.$
- $\blacktriangleright \mathcal{L}_3 = D_1 \otimes D_2 = \mathcal{L}_1 \cap \mathcal{L}_2.$
- ▶ DFA $D_3 = D_1 \otimes D_2$ que reconhece \mathcal{L}_3 :

Operações com autômatos

Produto ⊕ de autômatos

- ▶ Sejam os DFA's $D_1 = \langle \Sigma_1, S, s_0, \delta_1, F_1 \rangle$ e $D_2 = \langle \Sigma_2, Q, q_0, \delta_2, F_2 \rangle$.
- $D_1 \oplus D_2 = \langle \Sigma_1 \cup \Sigma_2, S.Q, s_0.q_0, \delta, F_1.F_2 \rangle :$

 - $F_1.F_2 = \{s_i.q_j \mid (s_i, q_j) \in S \times F_2 \text{ ou } (s_i, q_j) \in F_1 \times Q\},\$
 - ▶ Para $s_i \in S$, $q_j \in Q$ e $a \in \Sigma_1 \cup \Sigma_2$, define-se

$$\delta(s_i.q_j,a) = \begin{cases} \delta_1(s_i,a).\delta_2(q_j,a), & \text{se } \delta_1(s_i,a) \text{ e } \delta_2(q_j,a) \text{ est\~ao definidos;} \\ \varnothing, & \text{se } \delta_1(s_i,a) \text{ ou } \delta_2(q_j,a) \text{ n\~ao est\'a definido.} \end{cases}$$

Lema 1.34

▶ Dados os DFA's $D_1 = \langle \Sigma_1, S, s_0, \delta_1, F_1 \rangle$, $D_2 = \langle \Sigma_2, Q, q_0, \delta_2, F_2 \rangle$ e $D_1 \oplus D_2 := \langle \Sigma_1 \cup \Sigma_2, S.Q, s_0.q_0, \delta, F_1.F_2 \rangle$, então $\mathcal{L}(D_1 \oplus D_2) = \mathcal{L}(D_1) \cup \mathcal{L}(D_2)$.

Produto ⊕ de autômatos

Exemplo 1.35

► DFA D₁ que reconhece

 $\mathcal{L}_1 = \{w \in \{a, b\}^* \mid w \text{ possui pelo menos dois } b$'s consecutivos}:

INF/UFG - LFA 2021/1 - H. Longo

Operações com DFA's (81 - 132 de 679)

Produto ⊕ de autômatos

Exemplo 1.35

ightharpoonup DFA D_2 que reconhece

 $\mathcal{L}_2 = \{w \in \{a, b\}^* \mid w \text{ cont\'em a subcadeia } aa\}.$

INF/UFG - LFA 2021/1 - H. Longo

Operações com DFA's (82 - 132 de 679)

Produto ⊕ de autômatos

Exemplo 1.35

ightharpoonup DFA D_3 que reconhece

 $\mathcal{L}_3 = \{w \in \{a, b\}^* \mid w \text{ não contém a subcadeia } aa\}.$

Produto ⊕ de autômatos

Exemplo 1.35

- $\mathcal{L}(D_4) = \{w \in \{a,b\}^* \mid w \text{ cont\'em } bb \text{ ou n\~ao cont\'em } aa\}.$
- $\blacktriangleright \mathcal{L}(D_4) = \mathcal{L}(D_1 \oplus D_2) = \mathcal{L}(D_1) \cup \mathcal{L}(D_2).$

$$D_4 = D_1 \oplus D_3 : \bullet \longrightarrow S_0.q_0$$

Produto ⊕ de autômatos

Exemplo 1.35

- ▶ $\mathcal{L}(D_4) = \{w \in \{a, b\}^* \mid w \text{ contém } bb \text{ ou não contém } aa\}.$
- $\blacktriangleright \mathcal{L}(D_4) = \mathcal{L}(D_1 \oplus D_2) = \mathcal{L}(D_1) \cup \mathcal{L}(D_2).$

Produto ⊕ de autômatos

Exemplo 1.35

- ▶ $\mathcal{L}(D_4) = \{w \in \{a, b\}^* \mid w \text{ contém } bb \text{ ou não contém } aa\}.$
- $\blacktriangleright \mathcal{L}(D_4) = \mathcal{L}(D_1 \oplus D_2) = \mathcal{L}(D_1) \cup \mathcal{L}(D_2).$

INF/UFG – LFA 2021/1 – H. Longo

Operações com DFA's (85 - 132 de 679)

Produto ⊕ de autômatos

Exemplo 1.35

- $\mathcal{L}(D_4) = \{w \in \{a, b\}^* \mid w \text{ contém } bb \text{ ou não contém } aa\}.$
- $\blacktriangleright \mathcal{L}(D_4) = \mathcal{L}(D_1 \oplus D_2) = \mathcal{L}(D_1) \cup \mathcal{L}(D_2).$

Produto ⊕ de autômatos

Exemplo 1.35

- $\mathcal{L}(D_4) = \{w \in \{a, b\}^* \mid w \text{ contém } bb \text{ ou não contém } aa\}.$
- $\blacktriangleright \mathcal{L}(D_4) = \mathcal{L}(D_1 \oplus D_2) = \mathcal{L}(D_1) \cup \mathcal{L}(D_2).$

INF/UFG - LFA 2021/1 - H. Longo

Operações com DFA's (88 - 132 de 679)

Produto ⊕ de autômatos

Exemplo 1.35

▶ $\mathcal{L}(D_4) = \{w \in \{a,b\}^* \mid w \text{ cont\'em } bb \text{ ou n\~ao cont\'em } aa\}.$

 $\mathcal{L}(D_4) = \mathcal{L}(D_1 \oplus D_2) = \mathcal{L}(D_1) \cup \mathcal{L}(D_2).$

Produto ⊕ de autômatos

Exemplo 1.35

- $ightharpoonup \mathcal{L}(D_4) = \{w \in \{a,b\}^* \mid w \text{ contém } bb \text{ ou não contém } aa\}.$
- $\mathcal{L}(D_4) = \mathcal{L}(D_1 \oplus D_2) = \mathcal{L}(D_1) \cup \mathcal{L}(D_2).$

Operações com DFA's (90 – 132 de 679)

INF/UFG - LFA 2021/1 - H. Longo

Operações com DFA's (89 - 132 de 679)

Produto ⊕ de autômatos

Exemplo 1.35

- $\mathcal{L}(D_4) = \{w \in \{a,b\}^* \mid w \text{ cont\'em } bb \text{ ou n\~ao cont\'em } aa\}.$
- $\blacktriangleright \mathcal{L}(D_4) = \mathcal{L}(D_1) \cup \mathcal{L}(D_2).$
- ► M_3 é outra versão minimizada do autômato D_4 :

Minimização de DFA's - I

Definição 1.36

INF/UFG - LFA 2021/1 - H. Longo

- ▶ Dado um DFA $M = \langle \Sigma, S, s_0, \delta, F \rangle$, é possível construir um DFA $M' = \langle \Sigma, S', s'_0, \delta', F' \rangle$, a partir de M e da relação de não equivalência de estados (definida no teorema 1.38), onde:
 - S' é o conjunto das classes de equivalência constituídas de estados equivalentes de M;
 - ▶ $[s_0] \in S'$ se estado inicial $s_0 \in S$;
 - $ightharpoonup [s_i] \in F' \text{ se } s_i \in F;$
 - $\delta'([s_i], a) = [\delta(s_i, a)].$

Minimização de DFA's - I

Observações

- ▶ Se M' tem estados inalcançáveis a partir de $[s_0]$, estes estados e todos os arcos associados são eliminados.
- $\mathcal{L}(M') = \{ u \mid \overline{\delta}'([s_0], u) = [\overline{\delta}(s_i, \varepsilon)] \text{ com } s_i \in F \}.$
- $\mathcal{L}(M) = \mathcal{L}(M').$

INF/UFG - LFA 2021/1 - H. Longo

Operações com DFA's (93 - 132 de 679)

Minimização de DFA's - I

Definição 1.37 (Estados equivalentes)

▶ Seja o DFA $M = \langle \Sigma, S, s_0, \delta, F \rangle$. Dois estados $s_i, s_j \in S$ são equivalentes se $\overline{\delta}(s_i, u) \in F$ se, e somente se, $\overline{\delta}(s_j, u) \in F$, para todo $u \in \Sigma^*$.

INF/UFG - LFA 2021/1 - H. Longo

Operações com DFA's (94 - 132 de 679)

Minimização de DFA's - I

Estados equivalentes

- ightharpoonup Estados s_i e s_j são equivalentes:
 - ightharpoonup processamento de qualquer cadeia começando com b, a partir de s_i ou s_j , termina em um estado final; e
 - **>** processamento de qualquer cadeia começando com a, a partir de s_i ou s_j , termina em um estado não final.

Minimização de DFA's – I

Estados equivalentes

- ightharpoonup Estados s_m e s_n são equivalentes.
 - Qualquer processamento nestes estados termina em um estado final.

INF/UFG - LFA 2021/1 - H. Longo Operações com DFA's (95 - 132 de 679) INF/UFG - LFA 2021/1 - H. Longo Operações com DFA's (96 - 132 de 679)

Minimização de DFA's - I

Identificação de estados equivalentes

- Para cada par de estados s_i e s_j (i < j), calcular os valores NEq[i, j] e Dep[i, j]:
 - NE $q[i, j] = \begin{cases} 1, & \text{se estados } s_i \in s_j \text{ são não equivalentes;} \\ 0, & \text{caso contrário.} \end{cases}$
 - ▶ $(i, j) \in Dep[m, n] \Rightarrow$ não equivalência do par de estados (s_i, s_j) depende da não equivalência do par (s_m, s_n) .

INF/UFG - LFA 2021/1 - H. Longo

Operações com DFA's (97 - 132 de 679)

Minimização de DFA's - I

Identificação de estados equivalentes

- Quando examinados os estados si e si:
 - 1. Se s_m e s_n já estão marcados como não equivalentes, então NEq[i, j] recebe 1.
 - Se s_m e s_n ainda não estão marcados como não equivalentes, então uma posterior determinação de que s_m e s_n são não equivalentes fornece a resposta para s_i e s_j.
 - $ilde{igli}$ $(i,j) \in Dep[m,n]$ indica que a não equivalência de s_m e s_n é suficiente para determinar a não equivalência de s_i e s_j .

INF/UFG - LFA 2021/1 - H. Longo

Operações com DFA's (98 - 132 de 679)

Estados equivalentes

Algoritmo 1: EstadosEquivalentes(M)

```
// Determina os estados equivalentes de um DFA \it M
    Entrada: DFA M = \langle \Sigma, S, s_0, \delta, F \rangle.
   Saída: Matrizes NEq e Dep.
 1 para todo s_i, s_i \in S, i < j, faça
          se ((s_i \in F \text{ e } s_j \notin F) \text{ ou } (s_i \notin F \text{ e } s_j \in F)) então NEq[i, j] \leftarrow 1;
          senão NEq[i, j] \leftarrow 0;
          Dep[i, j] \leftarrow \emptyset;
 \mbox{5 para todo } ((a \in \Sigma) \mbox{ e } (NEq[i,j] = 0, i < j)) \mbox{ faça} 
          s_m \leftarrow \delta(s_i, a);
          s_n \leftarrow \delta(s_i, a);
          se ((NEq[m, n] = 1) ou (NEq[n, m] = 1)) então DIST(i, j);
q
                se ((m < n) e ((i, j) \neq (m, n))) então
10
                   Dep[m, n] \leftarrow Dep[m, n] \cup \{(i, j)\};
                        se ((m > n) e ((i, j) \neq (n, m))) então
12
                          Dep[n,m] \leftarrow Dep[n,m] \cup \{(i,j)\};
```

Estados equivalentes

Algoritmo 2: DIST(i, j)

```
Entrada: Índices i e j.

1 NEq[i,j] \leftarrow 1;
2 para todo (k,\ell) \in Dep[i,j]
faça
```

 $\exists \quad \bigsqcup \quad \mathsf{DIST}(k,\ell);$

INF/UFG - LFA 2021/1 - H. Longo Operações com DFA's (99 - 132 de 679) INF/UFG - LFA 2021/1 - H. Longo Operações com DFA's (100 - 132 de 679)

Estados equivalentes

Teorema 1.38

▶ Os estados s_i e s_j são não equivalentes se, e somente se, NEq[i, j] = 1 ao término do Algoritmo 1.

Demonstração.

- 1. $NEq[i, j] = 1 \Rightarrow s_i \in s_j$ são não equivalentes.
 - Se NEq[i, j] recebe 1 no passo 2, então s_i e s_j são não equivalentes.
 - ▶ NEq[i, j] recebe 1 no passo 8 somente se $\delta(s_i, a) = s_m$ e $\delta(s_j, a) = s_n$, para algum símbolo a, quando o algoritmo já determinou que s_m e s_n são não equivalentes.
 - ▶ Se u é a cadeia que mostra a não equivalência de s_m e s_n , então au mostra a não equivalência de s_i e s_i .

INF/UFG - LFA 2021/1 - H. Longo

Operações com DFA's (101 - 132 de 679)

Estados equivalentes

Teorema 1.38

▶ Os estados s_i e s_j são não equivalentes se, e somente se, NEq[i, j] = 1 ao término do Algoritmo 1.

Demonstração.

- 2. s_i e s_j não equivalentes $\Rightarrow NEq[i, j] = 1$.
 - Indução no comprimento da menor cadeia que mostra a não equivalência de um par de estados.

INF/UFG - LFA 2021/1 - H. Longo

Operações com DFA's (102 - 132 de 679)

Estados equivalentes

Teorema 1.38

▶ Os estados s_i e s_j são não equivalentes se, e somente se, NEq[i, j] = 1 ao término do Algoritmo 1.

Demonstração.

2. s_i e s_j não equivalentes $\Rightarrow NEq[i, j] = 1$.

Base: Pares de estados que são não equivalentes por uma cadeia de comprimento 0.

- $ightharpoonup \overline{\delta}(s_i, \varepsilon) = s_i \ e \ \overline{\delta}(s_j, \varepsilon) = s_j.$
- Apenas um entre s_i e s_j é estado final e NEq[i, j] recebe 1 no passo 2.

Estados equivalentes

Teorema 1.38

Se estados s_i e s_j são não equivalentes se, e somente se, NEq[i, j] = 1 ao término do Algoritmo 1.

Demonstração.

2. s_i e s_j não equivalentes $\Rightarrow NEq[i, j] = 1$.

Hipótese: Suponha que todo par de estados não equivalentes por uma cadeia de comprimento k ou menor é marcado pelo algoritmo.

Estados equivalentes

Teorema 1.38

▶ Os estados s_i e s_j são não equivalentes se, e somente se, NEq[i, j] = 1 ao término do Algoritmo 1.

Demonstração.

2. s_i e s_j não equivalentes $\Rightarrow NEq[i, j] = 1$.

Passo: Sejam s_i e s_i estados para os quais a menor cadeia u que os tornam não equivalentes é de comprimento k + 1.

- $\triangleright u = av$.
- $\overline{\delta}(s_i, u) = \overline{\delta}(s_i, av) = \overline{\delta}(s_m, v) = s_p.$
- $\overline{\delta}(s_i, u) = \overline{\delta}(s_i, av) = \overline{\delta}(s_n, v) = s_a.$
- Apenas um entre s_p e s_q é estado final, já que o processamento precedente torna s_i e s_i não equivalentes.

INF/UFG - LFA 2021/1 - H. Longo

Operações com DFA's (105 - 132 de 679

Estados equivalentes

Teorema 1.38

▶ Os estados s_i e s_j são não equivalentes se, e somente se, NEq[i, j] = 1 ao término do Algoritmo 1.

Demonstração.

2. s_i e s_i não equivalentes $\Rightarrow NEq[i, j] = 1$.

Passo: \triangleright Claramente, s_m e s_n são não equivalentes por uma cadeia de comprimento k.

- ▶ Por H.I., NEq[m, n] = 1.
- ▶ Se NEq[m, n] é marcado antes dos estados s_i e s_j serem examinados no passo 5, então NEq[i, j] recebe 1 por uma chamada ao procedimento DIST.

INF/UFG - LFA 2021/1 - H. Longo

Operações com DFA's (106 - 132 de 679

Estados equivalentes

Teorema 1.38

▶ Os estados s_i e s_j são não equivalentes se, e somente se, NEq[i, j] = 1 ao término do Algoritmo 1.

Demonstração.

2. s_i e s_j não equivalentes $\Rightarrow NEq[i, j] = 1$.

- Passo: Se s_i e s_j são examinados no passo 8 e $NEq[i, j] \neq 1$, então (i, j) é inserido no conjunto Dep[m, n].
 - Por H.I., NEq[m, n] eventualmente recebe 1 por uma chamada a DIST(m, n).
 - \triangleright NEq[i, j] também recebe 1 pela chamada recursiva a DIST, já que $(i, j) \in Dep[m, n].$

Exemplos de Minimização de DFA's

Exemplo 1.39

 $\mathcal{L}(M_1) = (a \cup b)(a \cup b^*):$

Exemplo 1.39

- ▶ Índices marcados com 1 no passo 2:
 - Arr NEq[0, 1], NEq[0, 2], NEq[0, 3], NEq[0, 4], NEq[0, 5], NEq[0, 6], NEq[1, 7], NEq[2, 7], NEq[3, 7], NEq[4, 7], NEq[5, 7] e NEq[6, 7].

INF/UFG - LFA 2021/1 - H. Longo

Operações com DFA's (109 - 132 de 679)

Exemplos de Minimização de DFA's

Exemplo 1.39

► Cada índice não marcado recebe 1 no passo 8:

Índices	Ação	Motivo
0,7	NEq[0, 7] = 1	não equivalente por a
1,2	NEq[1, 2] = 1	não equivalente por a
1,3	NEq[1, 3] = 1	não equivalente por a
1,4	$Dep[2,5] = \{(1,4)\}$	
	$Dep[3, 6] = \{(1, 4)\}$	
1,5	NEq[1, 5] = 1	não equivalente por a
1,6	NEq[1, 6] = 1	não equivalente por a
2,3	NEq[2,3] = 1	não equivalente por b
2,4	NEq[2, 4] = 1	não equivalente por a
2,5		sem ação, pois $\delta(s_2, x) = \delta(s_5, x) \ \forall \ x \in \Sigma$
2,6	NEq[2, 6] = 1	não equivalente por b
3,4	NEq[3, 4] = 1	não equivalente por a
3,5	NEq[3, 5] = 1	não equivalente por b
3,6		
4,5	NEq[4, 5] = 1	não equivalente por a
4,6	NEq[4, 6] = 1	não equivalente por a
5,6	NEq[5, 6] = 1	não equivalente por b

INF/UFG - LFA 2021/1 - H. Longo

Operações com DFA's (110 - 132 de 679)

Exemplos de Minimização de DFA's

Exemplo 1.39

► Após todos os pares de índices serem examinados, apenas os pares de estados [1,4], [2,5] e [3,6] são equivalentes:

Exemplos de Minimização de DFA's

Exemplo 1.40

 $\mathcal{L}(M_1) = a(a \cup b)^* \cup ba(a \cup b)^* \cup bba(a \cup b)^*$

Exemplo 1.40

- ► Índices marcados com 1 no passo 2:
 - ► NEq[0,4], NEq[0,5], NEq[0,6], NEq[1,4], NEq[1,5], NEq[1,6], NEq[2,4], NEq[2,5], NEq[2,6], NEq[3,4], NEq[3,5] e NEq[3,6].

INF/UFG - LFA 2021/1 - H. Longo

Operações com DFA's (113 - 132 de 679)

Exemplos de Minimização de DFA's

Exemplo 1.40

► Cada índice não marcado recebe 1 no passo 8:

Índices	Ação	Motivo
0,1	$Dep[4, 5] = \{(0, 1)\}$	
	$Dep[1, 2] = \{(0, 1)\}$	
0,2	$Dep[4, 6] = \{(0, 2)\}\$	
	$Dep[1,3] = \{(0,2)\}\$	
0,3	NEq[0, 3] = 1	não equivalente por a
1,2	$Dep[5, 6] = \{(1, 2)\}$	
	$Dep[2,3] = \{(1,2)\}$	
1,3	NEq[1, 3] = 1	não equivalente por a
	NEq[0, 2] = 1	chamada a $DIST(1,3)$
2,3	NEq[2, 3] = 1	não equivalente por a
	NEq[1, 2] = 1	chamada a $DIST(1,2)$
	NEq[0, 1] = 1	chamada a $DIST(0,1)$
4,5		
4,6		
5,6		

INF/UFG - LFA 2021/1 - H. Longo

Operações com DFA's (114 - 132 de 679)

Exemplos de Minimização de DFA's

Exemplo 1.40

▶ Após todos os pares de índices serem examinados, as posições [4,5], [4,6] e [5,6] na matriz NEq indicam pares de estados equivalentes. Logo, os pares de estados (s_4, s_5) , (s_4, s_6) e (s_5, s_6) são, individualmente, equivalentes. Portanto, s_4 , s_5 e s_6 são todos equivalentes entre si:

Exemplos de Minimização de DFA's

Exemplo 1.41 $\blacktriangleright \mathcal{L}(M_1) = ???$

Exemplo 1.41

- 1. Construir uma matriz triangular superior para pares de estados do autômato.
 - ▶ Os pares de estados (s_i, s_j) e (s_j, s_i) são representados na mesma posição da matriz (NEq[i, j] se i < j ou NEq[j, i] se j < i).
 - Posições da matriz inicialmente são vazias.

INF/UFG - LFA 2021/1 - H. Longo

Operações com DFA's (117 - 132 de 679)

Exemplos de Minimização de DFA's

Exemplo 1.41

2. Marcar com um "1" toda posição [i, j], com i < j, onde s_i é um estado final e s_j não é final, ou vice-versa.

	s_1	s_2	S 3	s_4	S 5	s_6	S 7
s_0		1					
s_0 s_1		1					
s_2			1	1	1	1	1
s_3							
s_4							
s ₄ s ₅ s ₆							
s_6							

INF/UFG - LFA 2021/1 - H. Longo

Operações com DFA's (118 - 132 de 679)

Exemplos de Minimização de DFA's

Exemplo 1.41

- Criar uma lista vazia de pares de estados para cada posição não marcada na matriz
- 4. Para cada posição [i,j] não marcada, verificar se a posição $[\delta(s_i,a),\delta(s_j,a)]$ está marcada para algum símbolo $a\in \Sigma$.
 - ► Em caso positivo, marcar a posição [i, j].
 - ► Em caso negativo, adicionar (i,j) às listas associadas às posições $[\delta(s_i,a),\delta(s_j,a)]$, com $a \in \Sigma$.
 - ▶ $[\delta(s_0, a), \delta(s_1, a)] = [s_1, s_6] \Rightarrow$ não marcada; e $[\delta(s_0, b), \delta(s_1, b)] = [s_5, s_2] \Rightarrow$ marcada. Conclusão: marcar também $[s_0, s_1]$.

Exemplos de Minimização de DFA's

Exemplo 1.41

5. Quando a posição [i, j] for marcada, marcar também todas as posições na lista de [i, j].

	s_1	s_2	s_3	s_4	s_5	s_6	s_7
s_0	1	1	1		1	1	1
s_1		1	1	1	1	1	
s_2			1	1	1	1	1
s_3				1		1	1
s_4					1	1	1
S_5						1	1
<i>s</i> ₆							1

Exemplo 1.41

- 6. Colapsar os pares de estados que não foram marcados.
- 7. Eliminar estados não alcançáveis.

INF/UFG - LFA 2021/1 - H. Longo

Operações com DFA's (121 - 132 de 679)

Exemplos de Minimização de DFA's

Exemplo 1.41

INF/UFG - LFA 2021/1 - H. Longo

Operações com DFA's (122 - 132 de 679)

Minimização de DFA's - II

- ▶ Dado um DFA $M = \langle \Sigma, S, s_0, \delta, F \rangle$, é possível construir a partir de M um DFA $M' = \langle \Sigma, S', s'_0, \delta', F' \rangle$, com número mínimo de estados, que também reconheça a linguagem $\mathcal{L}(M)$:
 - Particionar o conjunto S de estados em dois subconjuntos. Um conjunto com todos os estados de aceitação e o outro com estados de não aceitação.
 - 2. Iterativamente, particionar cada subconjunto da partição corrente: se dois estados de um conjunto forem não equivalentes, dividir esse subconjunto.
 - Mesclar todos os estados de um conjunto em um novo estado. O número de estados no DFA minimizado é igual ao número de subconjuntos na última partição do conjunto S.

Minimização de DFA's – II

Exemplo 1.42

Minimização de DFA's - II

Exemplo 1.42

INF/UFG - LFA 2021/1 - H. Longo

Operações com DFA's (125 - 132 de 679)

Minimização de DFA's - II

Algoritmo 3: EstadosEquivalentes(*M*)

// Determina os estados equivalentes de um DFA ${\it M}$

Entrada: DFA $M = \langle \Sigma, S, s_0, \delta, F \rangle$. Saída: Partição P de S.

1 $P_0 \leftarrow \{F, S - F\};$

2 $k \leftarrow 1$; 3 $P_1 \leftarrow \varnothing$;

4 enquanto $(P_k \neq P_{k-1})$ faça

 $\begin{array}{c|c} T \leftarrow \varnothing; \\ T \leftarrow \varnothing; \\ \hline \text{para todo } p \in P_k \text{ faça} \\ \hline T \leftarrow T \cup \text{Particione}(p); \\ \end{array}$

8 $k \leftarrow k+1;$ 9 $P_k \leftarrow T;$

10 retorna P_k .

INF/UFG - LFA 2021/1 - H. Longo

Operações com DFA's (126 - 132 de 679)

Minimização de DFA's - II

Algoritmo 4: Particione(P)

// Particiona o conjunto P em subconjuntos de estados equivalentes

Entrada: Subconjunto p de uma partição S.

Saída: Partionamento de p.

1 para todo $(a \in \Sigma)$ faça

se a particiona p em p1 e p2 então

retorna p_1, p_2

4 retorna p

Linha 2 do Algoritmo 4

- ▶ Dados dois estados $s_i, s_j \in p \ (p \in P)$, um símbolo $a \in \Sigma$ particiona p, se:
 - 1. $\delta(s_i, a) = s_m$
 - $2. \ \delta(s_i, a) = s_n,$
 - 3. $s_m \in p_k$, $s_n \in p_\ell$ e $k \neq \ell$ $(s_m \in s_n)$ pertencem a subconjuntos diferentes da partição P).

Operações com DFA's (127 - 132 de 679)

Exemplos de minimização de DFA's

Exemplo 1.43

- $M = \langle \Sigma = \{a, b\}, S = \{s_0, s_1, s_2, s_3, s_4, s_5\}, s_0, \delta, F = \{s_1, s_3, s_4\} \rangle.$
- ▶ $\mathcal{L}(M) = ???$

Exemplo 1.43

 $\blacktriangleright \mathcal{L}(M) = a^*ba^* !!!$

 $P_0 = \{p_1^0 = F, p_2^0 = S - F\} = \{p_1^0 = \{s_1, s_3, s_4\}, p_2^0 = \{s_0, s_2, s_5\}\}.$

INF/UFG - LFA 2021/1 - H. Longo

Operações com DFA's (129 - 132 de 679)

Exemplos de minimização de DFA's

Exemplo 1.43

▶ Para calcular P_1 , deve-se verificar se os subconjuntos de P_0 podem ser particionados.

 $p_1^0 = \{s_1, s_3, s_4\}$:

 $\delta(s_1, a) = \delta(s_3, a) = s_3 \in \delta(s_1, b) = \delta(s_3, b) = s_5 \Rightarrow s_1 \in s_3$ são equivalentes.

 $\delta(s_1, a) = \delta(s_4, s) = s_3 \in \delta(s_1, b) = \delta(s_4, b) = s_5 \Rightarrow s_1 \in s_4$ são equivalentes.

▶ Como os pares (s_1, s_3) e (s_1, s_4) são equivalentes, então (s_3, s_4) também são equivalentes. Logo, p_1^0 não será particionado em P_1 , ou seja, $p_1^1 = p_1^0$.

 $p_2^0 = \{s_0, s_2, s_5\}$:

▶ $\delta(s_0, a) = s_2$ e $\delta(s_2, a) = s_0$ ($s_0, s_2 \in p_2^0$); $\delta(s_0, b) = s_1$ e $\delta(s_2, b) = s_4$ ($s_1, s_4 \in p_1^0$) $\Rightarrow s_0$ e s_2 são equivalentes.

▶ $\delta(s_0, a) = s_2$ e $\delta(s_5, a) = s_5$ $(s_2, s_5 \in p_2^0)$; $\delta(s_0, b) = s_1$ e $\delta(s_5, b) = s_5$ $(s_1 \in p_1^0$ e $s_5 \in p_2^0) \Rightarrow s_0$ e s_5 não são equivalentes.

► Como (s_0, s_2) são equivalentes e (s_0, s_5) não são equivalentes, então (s_2, s_5) também não são equivalentes. Logo, p_2^0 será particionado em $p_2^1 = \{s_0, s_2\}$ e $p_3^1 = \{s_5\}$.

 $P_1 = \{p_1^1 = \{s_1, s_3, s_4\}, p_2^1 = \{s_0, s_2\}, p_3^1 = \{s_5\}\}.$

INF/UFG - LFA 2021/1 - H. Longo

Operações com DFA's (130 - 132 de 679)

Exemplos de minimização de DFA's

Exemplo 1.43

▶ Para calcular P₂, deve-se verificar se os subconjuntos de P₁ podem ser particionados.

 $p_1^1 = \{s_1, s_3, s_4\}$:

Como os pares (s_1, s_3) e (s_1, s_4) são equivalentes, então (s_3, s_4) também são equivalentes (argumentação idêntica à usada para o subconjunto p_1^0). Logo, p_1^1 não será particionado em P_1 , ou seja, $p_1^2 = p_1^1$.

 $p_2^1 = \{s_0, s_2\}$:

▶ $\delta(s_0, a) = s_2 \in \delta(s_2, a) = s_0 (s_0, s_2 \in p_2^1)$; $\delta(s_0, b) = s_1 \in \delta(s_2, b) = s_4 (s_1, s_4 \in p_1^1) \Rightarrow s_0 \in s_2$ são equivalentes.

▶ Logo, p_2^1 não será particionado em P_2 , ou seja, $p_2^2 = p_2^1$.

 $p_3^1 = \{s_5\}$:

• Como há apenas um estado nesse conjunto, ele não pode ser mais particionado, ou seja, $p_3^2 = p_3^1$.

 $P_2 = \{p_1^2 = \{s_1, s_3, s_4\}, p_2^2 = \{s_0, s_2\}, p_3^2 = \{s_5\}\} = P_1.$

Exemplos de minimização de DFA's

Exemplo 1.43

▶ Dado que $P_1 = P_2$, esta é a partição final.

▶ A partição P_2 significa que os estados s_1 , s_3 e s_4 serão mesclados em apenas um estado. Da mesma forma, s_0 e s_2 serão mesclados em um novo estado.

▶ DFA *M'* minimizado e correspondente ao DFA *M*:

Livros texto

R. P. Grimaldi

Discrete and Combinatorial Mathematics – An Applied Introduction. Addison Wesley, 1994.

D. J. Velleman

How To Prove It – A Structured Approach.

Cambridge University Press, 1996.

J. E. Hopcroft; J. Ullman.

Introdução Ā Teoria de Autômatos, Linguagens e Computação. Ed. Campus.

T. A. Sudkamp.
Languages and Machines – An Introduction to the Theory of Computer Science.
Addison Wesley Longman, Inc. 1998.

J. Carroll; D. Long.
Theory of Finite Automata – With an Introduction to Formal Languages.
Prentice-Hall, 1989.

Introduction to the Theory of Computation.
PWS Publishing Company, 1997.

H. R. Lewis; C. H. Papadimitriou Elementos de Teoria da Computação. Bookman, 2000.

INF/UFG - LFA 2021/1 - H. Longo Bibliografia (679 - 679 de 679)