Parallel Programming in C with MPI and OpenMP

Michael J. Quinn

Chapter 5. The Sieve of Eratosthenes

Eratosthenes

- Born: 276 BC in Cyrene, North Africa (now Shahhat, Libya)
- Died: 194 BC in Alexandria, Egypt

Chapter Objectives

- Analysis of block allocation schemes
- Function MPI_Bcast
- Performance enhancements

Outline

- Sequential algorithm
- Sources of parallelism
- Data decomposition options
- Parallel algorithm development, analysis
- MPI program
- Benchmarking
- Optimizations

Sequential Algorithm

	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60

Complexity : $\Theta(n \ln \ln n)$

Pseudocode

- Create list of unmarked natural numbers 2, 3, ..., n
- $2. \quad k \leftarrow 2$
- 3. Repeat
 - (a) Mark all multiples of k between k^2 and n
 - (b) $k \leftarrow$ smallest unmarked number > k until $k^2 > n$
- 4. The unmarked numbers are primes

Sources of Parallelism

- Domain decomposition
 - Divide data into pieces
 - Associate computational steps with data
- One primitive task per array element

Making 3(a) Parallel

Mark all multiples of k between k² and n

```
\Rightarrow
```

```
    for all j where k² ≤ j ≤ n do
        if (j mod k = 0) then
        mark j (it is not a prime)
        endif
        endfor
```

Making 3(b) Parallel

Find smallest unmarked number > k

 \Rightarrow

- Min-reduction (to find smallest unmarked number > k)
- Broadcast (to get result to all tasks)

Agglomeration Goals

- Consolidate tasks
- Reduce communication cost
- Balance computations among processes

Data Decomposition Options

- Interleaved (cyclic)
 - Easy to determine "owner" of each index
 - Leads to load imbalance for this problem
- Block
 - Balances loads
 - More complicated to determine owner if n not a multiple of p

Block Decomposition Options

- Want to balance workload when n not a multiple of p
- Each process gets either \[n/p \] or \[n/p \]
 elements
- Seek simple expressions
 - Find low, high indices given an owner
 - Find owner given an index

Method #1

- Let $r = n \mod p$
- If r = 0, all blocks have same size
- Else
 - First *r* blocks have size $\lceil n/p \rceil$
 - Remaining p r blocks have size $\lfloor n/p \rfloor$

Examples

Method #1 Calculations

- First element controlled by process i $i\lfloor n/p\rfloor + \min(i,r)$
- Last element controlled by process i $(i+1)\lfloor n/p \rfloor + \min(i+1,r) 1$
- Process controlling element j

$$\min\left[\left\lfloor\frac{j}{\lfloor n/p\rfloor+1}\right\rfloor,\left\lfloor\frac{(j-r)}{\lfloor n/p\rfloor}\right\rfloor\right]$$

Method #2

- Scatters larger blocks among processes
- First element controlled by process i

$$\left\lfloor \frac{in}{p} \right\rfloor$$

Last element controlled by process i

$$\left| \frac{(i+1)n}{p} \right| - 1$$

Process controlling element j

$$\left| \frac{p(j+1)-1}{n} \right|$$

$$j = \left\lfloor \frac{in}{p} \right\rfloor$$

$$j \le \frac{in}{p} < j+1$$

$$\frac{pj}{n} \le i < \frac{p(j+1)}{n} \le i+1 < \frac{p(j+2)}{n}$$

$$i < \frac{p(j+1)}{n} \le i+1$$

$$i \le \frac{p(j+1)-1}{n} < i+1$$

$$i = \left\lfloor \frac{p(j+1)-1}{n} \right\rfloor$$

Examples

Comparing Methods

Our choice

Operations	Method 1	Method 2		
Low index	4	2		
High index	6	4		
Owner	7	4		

Assuming no operations for "floor" function

Pop Quiz

 Illustrate how block decomposition method #2 would divide 13 elements among 5 processes.

$$13(0)/5 = 0$$
 $13(2)/5 = 5$ $13(4)/5 = 10$
 $13(1)/5 = 2$ $13(3)/5 = 7$

Block Decomposition Macros

```
#define BLOCK LOW(id,p,n) ((id)*(n)/(p))
#define BLOCK HIGH(id,p,n) \
        (BLOCK LOW((id)+1,p,n)-1)
#define BLOCK SIZE(id,p,n) \
        (BLOCK HIGH(id,p,n)-BLOCK LOW(id,p,n)+1)
#define BLOCK OWNER(index,p,n) \
        (((p)*(index)+1)-1)/(n))
```

Local vs. Global Indices

Looping over Elements

Sequential program

```
for (i = 0; i < n; i++) {
    ...
} Index i on this process...
• Parallel program
size = BLOCK_SIZE (id,p,n);</pre>
```

size = BLOCK_SIZE (id,p,n);
for (i = 0 i < size; i++) {
 gi = i + BLOCK_LOW(id,p,n);
}</pre>

...takes place of sequential program's index gi

Decomposition Affects Implementation

- Largest prime used to sieve is \sqrt{n}
- First process has $\lfloor n/p \rfloor$ elements
- It has all sieving primes if $p < \sqrt{n}$
- First process always broadcasts next sieving prime
- No reduction step needed

Fast Marking

- Block decomposition allows same marking as sequential algorithm:
- j, j + k, j + 2k, j + 3k, ...

instead of

for all j in block
 if j mod k = 0 then mark j (it is not a prime)

Original Algorithm

- Create list of unmarked natural numbers 2, 3, ..., n
- $2. \quad k \leftarrow 2$
- 3. Repeat
 - (a) Mark all multiples of k between k^2 and n
 - (b) $k \leftarrow$ smallest unmarked number > k
 - until $k^2 > n$
- 4. The unmarked numbers are primes

Parallel Algorithm Development

- 1. Create list of unmarked natural numbers 2, 3, ..., *n*Each process creates its share of list
- 2. $k \leftarrow 2$ Each process does this
- 3. Repeat
 - (a) Mark all multiples of *k* between *k*² and *n*Each process marks its share of list
 - (b) k ← smallest unmarked number > k
 Process 0 only
 - (c) Process 0 broadcasts k to rest of processes until $k^2 > n$
- 4. The unmarked numbers are primes
- 5. Reduction to determine number of primes

Function MPI_Bcast

```
int MPI Bcast (
      void *buffer, /* Addr of 1st element */
      int count,    /* # elements to broadcast */
      MPI Datatype datatype, /* Type of elements */
      int root,    /* ID of root process */
      MPI Comm comm /* Communicator */
MPI_Bcast (&k, 1, MPI INT, 0, MPI COMM WORLD);
```

Task/Channel Graph

Analysis

- χ is time needed to mark a cell
- Sequential execution time: $\chi n \ln \ln n$
- Number of broadcasts: $\sqrt{n}/\ln\sqrt{n}$
- Broadcast time: $\lambda \lceil \log p \rceil$
- Expected execution time:

$$\chi n \ln \ln n / p + \left(\sqrt{n} / \ln \sqrt{n}\right) \lambda \lceil \log p \rceil$$

Code (1/4)

```
#include <mpi.h>
#include <math.h>
#include <stdio.h>
#include "MyMPI.h"
#define MIN(a,b) ((a)<(b)?(a):(b))
int main (int argc, char *argv[])
{
  MPI Init(&argc, &argv);
  MPI Barrier(MPI COMM WORLD);
   elapsed time = -MPI Wtime();
  MPI Comm rank (MPI COMM WORLD, &id);
  MPI Comm size(MPI COMM WORLD, &p);
   if (argc != 2) {
      if (!id) printf("Command line: %s <m>\n", argv[0]);
      MPI Finalize();
      exit (1);
                                                        32
```

Code (2/4)

```
n = atoi(arqv[1]);
low value = 2 + BLOCK LOW(id, p, n-1);
high value = 2 + BLOCK HIGH(id, p, n-1);
size = BLOCK SIZE(id, p, n-1);
proc0 size = (n-1)/p;
if ((1 + proc0 size) < (int) sqrt((double) n)) {
   if (!id) printf("Too many processes\n");
   MPI Finalize();
   exit (1);
marked = (char *) malloc(size);
if (marked == NULL) {
   printf("Cannot allocate enough memory\n");
   MPI Finalize();
   exit (1);
```

Code (3/4)

```
for (i = 0; i < size; i++) marked[i] = 0;
if (!id) index = 0;
prime = 2;
do {
   if (prime * prime > low value)
      first = prime * prime - low value;
   else {
      if (!(low value % prime)) first = 0;
      else first = prime - (low value % prime);
   for (i = first; i < size; i += prime) marked[i] = 1;</pre>
   if (!id) {
      while (marked[++index]);
      prime = index + 2;
   MPI Bcast(&prime, 1, MPI INT, 0, MPI COMM WORLD);
} while (prime * prime <= n);</pre>
```

Code (4/4)

```
count = 0;
for (i = 0; i < size; i++)
   if (!marked[i]) count++;
MPI Reduce (&count, &global count, 1, MPI INT, MPI SUM,
   0, MPI COMM WORLD);
elapsed time += MPI Wtime();
if (!id) {
   printf ("%d primes are less than or equal to %d\n",
      global count, n);
   printf ("Total elapsed time: %10.6f\n", elapsed time);
MPI Finalize ();
return 0;
```

Benchmarking

- Execute sequential algorithm
- Determine $\chi = 85.47$ nanosec
- Execute series of broadcasts
- Determine $\lambda = 250 \ \mu sec$

Execution Times (sec)

Processors	Predicted	Actual (sec)
1	24.900	24.900
2	12.721	13.011
3	8.843	9.039
4	6.768	7.055
5	5.794	5.993
6	4.964	5.159
7	4.371	4.687
8	3.927	4.222

Execution Times and Speed Ratio

Improvements

- Delete even integers
 - Cuts number of computations in half
 - Frees storage for larger values of n
- Each process finds own sieving primes
 - Replicating computation of primes to \sqrt{n}
 - Eliminates broadcast step
- Reorganize loops
 - Increases cache hit rate

Reorganize Loops

Lower

Cache hit rate

Higher

Comparing 4 Versions

Procs	Sieve 1	Sieve 2	Sieve 3	Sieve 4
1	24.900	12.237	12.466	2.543
2	12.721	10-fold im 6.609	orovement 6.378	1.330
3	8.843	5.019	4.272	0.901
4	6.768	4.072	3.201	0.679
5	5.794	3.652	ld improver 2.559	0.543
6	4.964	3.270	2.127	0.456
7	4.371	3.059	1.820	0.391
8	3.927	2.856	1.585	0.342

Summary

- Sieve of Eratosthenes: parallel design uses domain decomposition
- Compared two block distributions
 - Chose one with simpler formulas
- Introduced MPI_Bcast
- Optimizations reveal importance of maximizing single-processor performance

Exercises

- 5.9
- 5.11