INT102 Algorithmic Foundations And Problem Solving

More Shortest paths: Bellman-ford Algorithm, Floyd's Algorithm

Dr Pengfei Fan Department of Intelligent Science

Learning outcomes

- Bellman-Ford Algorithm, to find the shortest paths in a graph (edges may have a negative weight) or detect a negative weighted cycle in a graph
- · Floyd's Algorithm, to find all pair-shortest paths
- Warshall's Algorithm, to find transitive closure of a directed graph (Self-Study)

Single-source shortest-paths

- Consider a (un)directed connected graph G with the edges labelled by weight
- Given a particular vertex called the <u>source</u>
 - Find shortest paths from the source to all other vertices (shortest path means the total weight of the path is the smallest)

Shortest Paths

- Single-source shortest paths: Find shortest paths
 from the source to all other vertices (shortest path means
 the total weight of the path is the smallest)
 - Only nonnegative edge weights: Dijkstra's algorithm
 - Allow negative edge weights: Bellman-Ford algorithm (Dynamic Programming)
- All-pairs shortest paths: Find shortest path between each pair of vertices.
 - Floyd's algorithm (Dynamic Programming)

Bellman-Ford Algorithm

Negative Weighted Edges

- Dijlstra's Algorithm does not work with graphs with negative weighted edges.
 - Consider the digraph consists of $V = \{s, a, b\}$ and $E = \{(s, a), (s, b), (b, a)\}$, where w(s, a) = 2, w(s, b) = 4, and w(b, a) = -3.

Dijkstra's algorithm gives d[a] = 2, d[b] = 4. But due to the negative-edge weight w(b, a), the shortest distance from vertex s to vertex a is 4-3 = 1.

Negative-weight Cycles

Recall: If a graph G = (V, E) contains a negative-weight cycle, then some shortest paths may not exist.

Bellman-Ford algorithm

 Bellman-Ford algorithm: Finds all shortest-path lengths from a source s ∈ V to all v ∈ V or determines that a negative-weight cycle exists.

```
Algorithm Bellman-Ford(G=(V, E), s)
//input: a graph G=(V,E) with a source vertex s
//output: an array d[0..|V|-1], indexed with V, d[v] is the
//length of shortest path from s to v
     d[s] \leftarrow 0
                                                            Time complexity: O(VE)
     for each v \in V - \{s\}
         do d[v] \leftarrow \infty
     for i \leftarrow 1 to |V| - 1
       do for each edge (u, v) \in E
           do if d[v] > d[u] + w(u, v)
              then d[v] \leftarrow d[u] + w(u, v)
     for each edge (u, v) \in E
         do if d[v] > d[u] + w(u, v)
            then report that a negative-weight cycle exists
```

Dynamic programming

- Write down a formula that relates a solution of a problem with those of sub-problems.
 E.g. F(n) = F(n-1) + F(n-2).
- Index the sub-problems so that they can be <u>stored</u> and <u>retrieved</u> easily in a table (i.e., array)
- Fill the table in some <u>bottom-up</u> manner; start filling the solution of the smallest problem.
 - This ensures that when we solve a particular sub-problem, the solutions of all the smaller sub-problems that it depends are available.

G is as following and A is the source vertex.

Update B, w.r.t AB, DB.

Note: for $i \leftarrow 1$ to |V| - 1: The first iteration (i=1)

$$A \quad B \quad C \quad D \quad E$$
 $0 \quad \infty \quad \infty \quad \infty$
 $0 \quad -1 \quad \infty \quad \infty \quad \infty$
 $0 \quad \infty \quad \infty$

do if
$$d[v] > d[u] + w(u, v)$$

then $d[v] \leftarrow d[u] + w(u, v)$

$$d[B] = \infty$$
For AB
$$d[A]+w(A,B)=0+-1=-1$$
For DB
$$d[D]+w(D,B)=\infty+1=\infty$$

Update C, w.r.t AC, BC, DC.

A	B	C	D	E
0	∞	∞	∞	∞
0	-1	∞	∞	∞
0	∞	∞	∞	∞
0	-1	4	∞	∞
0	-1	2	∞	∞
0	-1	∞	∞	∞

do if
$$d[v] > d[u] + w(u, v)$$

then $d[v] \leftarrow d[u] + w(u, v)$

d[A]+w(A,C)=0+4=4
For BC
d[B]+w(B,C)=-1+3=2
For DC
d[D]+w(D,C)=
$$\infty$$
+5= ∞

Update D, w.r.t BD, ED.

00 00 00

do if d[v] > d[u] + w(u, v)**then** $d[v] \leftarrow d[u] + w(u, v)$

For BD

$$d[B]+w(B,D)=-1+2=1$$

For ED
 $d[E]+w(E,D)=\infty+-3=\infty$

Update E, w.r.t BE.

A	В	C	D	E
0	∞	∞	∞	∞
0	-1	∞	∞	∞
0	∞	∞	00	∞
0	-1	4	∞	∞
0	-1	2	∞	∞
0	-1	∞	∞	∞
0	-1	2	1	∞
0	-1	2	∞	∞
0	-1	2	1	1

do if d[v] > d[u] + w(u, v)**then** $d[v] \leftarrow d[u] + w(u, v)$ $d[E] = \infty$ For BE d[B]+w(B,E)=-1+2=1

Note: for $i \leftarrow 1$ to |V| - 1:

The second iteration (i=2)

A	B	C	D	E
0	-1	2	1	1
0	-1	2	-2	1

The third iteration (i=3)
The fourth iteration (i=4)

do if
$$d[v] > d[u] + w(u, v)$$

then $d[v] \leftarrow d[u] + w(u, v)$

See how to maintain the array of predecessors in Q1 from Tutorial Week 8

Floyd's Algorithm

All-pairs shortest paths

Problem: A weighted (di)graph G = (V, E), find a $|V| \times |V|$ matrix, it's entry d_{ij} is the shortest-path length between vertices i, j, where $i, j \in V$.

Naive solution:

- Run Bellman-Ford algorithm once for each vertex.
- Time = $O(V^2E)$.
- Dense graph \Rightarrow $O(V^4)$ time, e.g., for a complete graph, |E|=|V||(V-1)|/2

Dynamic programming

- Write down a formula that relates a solution of a problem with those of sub-problems.
 E.g. F(n) = F(n-1) + F(n-2).
- Index the sub-problems so that they can be <u>stored</u> and <u>retrieved</u> easily in a table (i.e., array)
- Fill the table in some <u>bottom-up</u> manner; start filling the solution of the smallest problem.
 - This ensures that when we solve a particular sub-problem, the solutions of all the smaller sub-problems that it depends are available.

Floyd's Algorithm: All Pairs Shortest Paths

- Problem: in a weighted (di)graph, find shortest paths between every pair of vertices
- Weight Matrix: the entry w_{ij} is the weight on edge $(v_{i,}, v_{j})$.
- Distance Matrix: the entry d_{ij} is the distance between v_i and v_j .
- Idea: construct solutions through a series of matrices $D^{(0)}$, ..., $D^{(n)}$ using increasing subsets of the vertices allowed as intermediate

Floyd's Algorithm

On the k-th iteration, the algorithm determines shortest paths between every pair of vertices i, j that use only vertices among 1,...,k as intermediate

$$D^{(k)}[i,j] = \min\{D^{(k-1)}[i,j], D^{(k-1)}[i,k] + D^{(k-1)}[k,j]\}$$

Recursive & Non-Recursive:

https://www.youtube.com/watch?v=NdBHw5mqIZE&ab_channel=arisaif

Floyd's Algorithm (pseudocode)

```
let V = number of vertices in graph
let dist = V × V array of minimum distances initialized to ∞
for each vertex v
  dist[v][v] \leftarrow 0
for each edge (u,v)
  dist[u][v] \leftarrow weight(u,v)
for k from 1 to V
  for i from 1 to V
    for j from 1 to \vee
      if dist [i][j] > dist [i][k] + dist [k][j]
        dist[i][i] \leftarrow dist[i][k] + dist[k][i]
      end if
```

```
→ let V = number of vertices in graph
    let dist = V \times V array of minimum distances
    for each vertex v
      dist[v][v] \leftarrow 0
    for each edge (u,v)
      dist[u][v] \leftarrow weight(u,v)
    for k from 1 to V
      for i from 1 to V
        for j from 1 to V
          if dist [i][j] > dist [i][k] + dist [k][j]
             dist [i][j] \leftarrow dist [i][k] + dist [k][j]
          end if
```



```
let V = number of vertices in graph
→ let dist = V × V array of minimum distances
   for each vertex v
     dist [v][v] \leftarrow 0
   for each edge (u,v)
     dist[u][v] \leftarrow weight(u,v)
   for k from 1 to V
     for i from 1 to V
       for j from 1 to V
         if dist [i][j] > dist [i][k] + dist [k][j]
            dist [i][j] \leftarrow dist [i][k] + dist [k][j]
         end if
```


dist

```
let V = number of vertices in graph
let dist = V \times V array of minimum distances
for each vertex v
  dist[v][v] \leftarrow 0
for each edge (u,v)
  dist[u][v] \leftarrow weight(u,v)
                                                                        to vertex
                                                                                     4
for k from 1 to V
  for i from 1 to V
                                                            1
    for j from 1 to V
                                                            2
      if dist [i][j] > dist [i][k] + dist [k][j]
                                                                                            dist
                                                 from vertex
         dist[i][j] \leftarrow dist[i][k] + dist[k][j]
                                                            3
      end if
                                                            4
```

```
let V = number of vertices in graph
let dist = V \times V array of minimum distances
for each vertex v
  dist[v][v] \leftarrow 0
for each edge (u,v)
  dist[u][v] \leftarrow weight(u,v)
for k from 1 to V
  for i from 1 to V
    for j from 1 to V
      if dist [i][j] > dist [i][k] + dist [k][j]
         dist[i][j] \leftarrow dist[i][k] + dist[k][j]
      end if
```



```
let V = number of vertices in graph
let dist = V \times V array of minimum distances
for each vertex v
  dist[v][v] \leftarrow 0
for each edge (u,v)
  dist[u][v] \leftarrow weight(u,v)
for k from 1 to V
  for i from 1 to V
    for j from 1 to V
      if dist [i][j] > dist [i][k] + dist [k][j]
         dist[i][j] \leftarrow dist[i][k] + dist[k][j]
      end if
```


$$k = 1 2 3 4$$

 $i = 1 2 3 4$
 $j = 1 2 3 4$

if dist [i][j] > dist [i][k] + dist [k][j]
 dist [i][j] ← dist [i][k] + dist [k][j]

	1	2	3	4
1	0		-2	
2	4	0	3	
3			0	2
4		-1		0

$$k = 1 2 3 4$$

 $i = 1 2 3 4$
 $j = 1 2 3 4$

dist [i][j] > dist [i][k] + dist [k][j] dist [1][1] > dist [1][1] + dist [1][1] 0 > 0 + 0 X 0 > 0

$$k = 1 2 3 4$$

 $i = 1 2 3 4$
 $j = 1 2 3 4$

dist [i][j] > dist [i][k] + dist [k][j] dist [1][2] > dist [1][1] + dist [1][2] $\infty > 0 + \infty$

$$k = 1 2 3 4$$

 $i = 1 2 3 4$
 $i = 1 2 3 4$

dist [i][j] > dist [i][k] + dist [k][j] dist [1][3] > dist [1][1] + dist [1][3] -2 > 0 + -2 X -2 > -2

	1	2	3	4
1	0		-2	
2	4	0	3	
3			0	2
4		-1		0

$$k = 1 2 3 4$$

 $i = 1 2 3 4$
 $i = 1 2 3 4$

dist [i][j] > dist [i][k] + dist [k][j] dist [1][4] > dist [1][1] + dist [1][4] $\infty > 0 + \infty$

2

3

4

$$k = 1 2 3 4$$

 $i = 1 2 3 4$
 $i = 1 2 3 4$

dist [i][j] > dist [i][k] + dist [k][j] dist [2][3] > dist [2][1] + dist [1][3] 3 > 4 + -23 > 2

	1	2	3	4
1	0		-2	
2	4	0	2	
3			0	2
4		-1		0

$$k = 1 2 3 4$$

 $i = 1 2 3 4$
 $j = 1 2 3 4$

dist [i][j] > dist [i][k] + dist [k][j] dist [4][1] > dist [4][2] + dist [2][1] $\infty > -1 + 4$ $\infty > 3$

	1	2	3	4
1	0		-2	
2	4	0	2	
3			0	2
4	3	-1		0

$$k = 1 2 3 4$$

 $i = 1 2 3 4$
 $i = 1 2 3 4$

dist [i][j] > dist [i][k] + dist [k][j] dist [4][3] > dist [4][2] + dist [2][3] $\infty > -1 + 2$ $\infty > 1$

	1	2	3	4
1	0		-2	
2	4	0	2	
3			0	2
4	3	-1	1	0

$$k = 1 2 3 4$$

 $i = 1 2 3 4$
 $j = 1 2 3 4$

dist [i][j] > dist [i][k] + dist [k][j] dist [3][1] > dist [3][4] + dist [4][1] $\infty > 2 + 3$ $\infty > 5$

	1	2	3	4
1	0	-1	-2	0
2	4	0	2	4
3	5		0	2
4	3	-1	1	0

Floyd's Algorithm (example)

$$k = 1 2 3 4$$

 $i = 1 2 3 4$
 $j = 1 2 3 4$

dist [i][j] > dist [i][k] + dist [k][j] dist [3][2] > dist [3][4] + dist [4][2] $\infty > 2 + -1$ $\infty > 1$

	1	2	3	4
1	0	-1	-2	0
2	4	0	2	4
3	5	1	0	2
4	3	-1	1	0

Floyd's Algorithm (example)

Floyd's Algorithm (Complexity)

Time efficiency: $O(n^3)$

Warshall's Algorithm

Transitive closure of a directed graph (Self-Study)

Input: Digraph G = (V, E), where |V| = n.

Output: $n \times n$ matrix $R = (R_{ij})$, where

$$R_{ij} = \begin{cases} 1 & \text{if there exists a path from } i \text{ to } j, \\ 0 & \text{otherwise.} \end{cases}$$

IDEA: Similar to Floyd' algorithm, but with (\lor, \land) instead of (min, +):

$$R_{ij}^{(k)} = R_{ij}^{(k-1)} \lor (R_{ik}^{(k-1)} \land R_{kj}^{(k-1)}).$$

Warshall's Algorithm: Transitive Closure

- Computes the transitive closure of a relation
- Alternatively: existence of all nontrivial paths in a digraph
- Example of transitive closure:

Warshall's Algorithm

Constructs transitive closure T as the last matrix in the sequence of nby-n matrices $R^{(0)}, \ldots, R^{(k)}, \ldots, R^{(n)}$ where

 $R^{(k)}[i,j] = 1$ iff there is nontrivial path from i to j with only first k vertices allowed as intermediate

Note that $R^{(0)} = A$ (adjacency matrix), $R^{(n)} = T$ (transitive closure)

Warshall's Algorithm (recurrence)

On the k-th iteration, the algorithm determines for every pair of vertices i, j if a path exists from i and j with just vertices 1, ..., kallowed as intermediate

$$R^{(k)}[i,j] = \begin{cases} R^{(k-1)}[i,j] & \text{(path using just is } \\ \text{or } \\ R^{(k-1)}[i,k] & \text{and } R^{(k-1)}[k,j] & \text{(path from } i \text{ to } k \end{cases}$$

(path using just $1, \dots, k-1$)

and from k to i using just $1, \dots, k-1$

Warshall's Algorithm (matrix generation)

Recurrence relating elements $R^{(k)}$ to elements of $R^{(k-1)}$ is:

$$R^{(k)}[i,j] = R^{(k-1)}[i,j]$$
 or $(R^{(k-1)}[i,k])$ and $R^{(k-1)}[k,j]$

It implies the following rules for generating $R^{(k)}$ from $R^{(k-1)}$:

- Rule 1 If an element in row i and column j is 1 in $R^{(k-1)}$, it remains 1 in $R^{(k)}$
- Rule 2 If an element in row i and column j is 0 in $R^{(k-1)}$, it has to be changed to 1 in $R^{(k)}$ if and only if the element in its row i and column k and the element in its column j and row k are both 1's in $R^{(k-1)}$

Warshall's Algorithm (example)

- Rule 1 If an element in row i and column j is 1 in $R^{(k-1)}$, it remains 1 in $R^{(k)}$
- Rule 2 If an element in row i and column j is 0 in $R^{(k-1)}$, it has to be changed to 1 in $R^{(k)}$ if and only if the element in its row i and column k and the element in its column j and row k are both 1's in $R^{(k-1)}$

Warshall's Algorithm (example)

$$R^{(1)} = \begin{array}{c|ccc} 0 & 0 & 1 & 0 \\ \hline 1 & 0 & 1 & 1 \\ \hline 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{array}$$

$$R^{(2)} = \begin{array}{c|cccc} 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ \hline 0 & 0 & 0 & 0 \\ \hline 1 & 1 & 1 & 1 \end{array}$$

$$R^{(3)} = \begin{array}{c} 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ \hline 1 & 1 & 1 & 1 \end{array}$$

$$R^{(4)} = \begin{array}{c} 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \end{array}$$

Warshall's Algorithm (pseudocode)

```
ALGORITHM Warshall(A[1..n, 1..n])

//Implements Warshall's algorithm for computing the transitive closure

//Input: The adjacency matrix A of a digraph with n vertices

//Output: The transitive closure of the digraph

R^{(0)} \leftarrow A

for k \leftarrow 1 to n do

for i \leftarrow 1 to n do

R^{(k)}[i, j] \leftarrow R^{(k-1)}[i, j] or (R^{(k-1)}[i, k] and R^{(k-1)}[k, j])
```

return $R^{(n)}$

Warshall's Algorithm (Complexity)

Time efficiency: $O(n^3)$

Space efficiency: Matrices can be written over their

predecessors

Learning outcomes

- Bellman-Ford Algorithm, to find the shortest paths in a graph (edges may have a negative weight) or detect a negative weighted cycle in a graph
- · Floyd's Algorithm, to find all pair-shortest paths
- Warshall's Algorithm, to find transitive closure of a directed graph (Self-Study)