Двухсеместровый курс. Теоретический минимум. Раздел 3. Список вопросов.

1. Что такое координатная линия? Какая координатная линия называется координатной осью?

Опр. 1.2. Координатная линия — непрерывная линия без самопересечений, каждой точке которой ставится в соответствие действительное число.

Опр. 1.3. Координатной осью α называют координатную линию, представленную ориентированной прямой, имеющей начало отсчета O и снабженную масштабом E. При этом любой точке P координатной оси ставится в соответствие вещественное число x_P , называемое координатой точки:

$$P \in \alpha \qquad \leftrightarrow \qquad x_P \in \mathbb{R}$$

2. Дайте определение координатной линии уровня.

Опр. 1.5. Координатной линией уровня на плоскости называется любая прямая, параллельная одной из координатных осей.

3. Сформулируйте определение координатной поверхности уровня.

Опр. 1.6. Координатной поверхностью уровня в пространстве называется любая плоскость, параллельная одной из координатных плоскостей.

4. Какая система координат называется прямоугольной? Проиллюстрируйте.

Опр. 1.7. Прямоугольной системой координат называется такая система, в которой угол между каждой парой координатных осей является прямым.

5. Какая система координат называется полярной? Проиллюстрируйте.

Опр. 1.8. Полярной системой координат называется такая система координат, в которой каждой точке соответствует полярный радиус r — расстояние от начала координат (полюса), и полярный угол ϕ , который отсчитывается от луча, выходящего из начала координат (полярная ось), против часовой стрелки.

6. Дайте определение коллинеарности векторов.

Опр. 2.2. Направленные отрезки будем называть **коллинеарными**, если они лежат на параллельных прямых.

7. Дайте определение компланарности векторов.

Опр. 2.3. Направленные отрезки будем называть **компланарными**, если они лежат на параллельных плоскостях.

8. Перечислите свойства отношения эквивалентности.

Опр. 2.5. Отношением эквивалентности \sim на множестве M называется отношение, обладающее свойствами рефлексивности, симметричности, транзитивности.

$$(M,\sim)$$
 — отношение эквивалентности, когда

$$R: x \sim x$$
, $S: x \sim y \rightarrow y \sim x$, $T: x \sim y \& y \sim z \rightarrow x \sim z$

9. Что называется классом эквивалентности элемента $a \in M$?

Опр. 2.6. Класс эквивалентности элемента $a \in M$ - это подмножество множества M, в котором все элементы эквивалентны a.

$$[a] = \{x \in M : x \sim a\}$$

10. В каком случае направленные отрезки будут эквивалентны?

Опр. 2.7. Направленные отрезки будем называть **эквивалентными**, если они сонаправлены и их модули равны.

$$\vec{a} \sim \vec{b} \iff \begin{cases} |\vec{a}| = |\vec{b}| \\ \vec{a} \uparrow \uparrow \vec{b} \end{cases}$$

11. Дайте определение свободному вектору.

Опр. 2.8. Свободным вектором, или просто вектором, называется класс эквивалентности направленных отрезков.

12. Какую алгебраическую структуру можно задать на множестве свободных векторов?

Лемма 3.1. Множество свободных векторов с введенными операциями сложения и умножения на скаляр образуют линейное пространство.

< свободные ветора, $+,*\lambda>-$ линейное пространство над $\mathbb R$

13. Какое преобразование называют параллельным переносом?

Опр. 3.3. Параллельным переносом (или трансляцией) $T_{\bf a}$ точки P называется преобразование, которое сопоставляет ей такую точку P', что направленный отрезок ${\bf PP'}$ по модулю и направлению совпадает с ${\bf a}$, называемым вектором переноса.

14. Какую алгебраическую структуру образует множество параллельных переносов? Поясните.

Лемма 3.2. Множество параллельных переносов образует абелеву группу.

Доказательство. Композицию параллельных переносов $T_{\bf a} \circ T_{\bf b}$ можно однозначно интерпретировать как сопоставление точке P другой точки P' такой, что ${\bf PP'}={\bf a}+{\bf b}$. Таким образом структура абелевой группы на множестве векторов однозначно переносится на множество преобразований трансляции.

 $<\{T_{\vec{a}}\}$,> —абелева группа

- (1) коммутативность $T_{\vec{a}} \circ T_{\vec{b}} = T_{\vec{b}} \circ T_{\vec{a}}$
- (2) ассоциативность $(T_{\vec{a}} \circ T_{\vec{b}}) \circ T_{\vec{c}} = T_{\vec{a}} \circ (T_{\vec{b}} \circ T_{\vec{c}})$
- (3) нейтральный элемент $T_{\vec{0}}$: $T_{\vec{a}} \circ T_{\vec{0}} = T_{\vec{a}}$
- (4) обратный элемент $T_{\overrightarrow{-a}}$: $T_{\overrightarrow{a}} \circ T_{\overrightarrow{-a}} = T_{\overrightarrow{0}}$

15. Что называется аффинным пространством?

Пусть \mathcal{A} — непустое множество, элементы которого мы будем называть mov- $\kappa a mu, L(\mathbb{B})$ — линейное пространство над полем \mathbb{K} , а также задано отображение (векторизация)

$$\Phi: \mathcal{A} \times \mathcal{A} \to L$$

сопоставляющее паре точек (A, B) из A вектор $AB = x \in L$.

Опр. 4.1. Тройка (A, L, Φ) называется аффинным пространством с ассоциированным линейным пространством L над полем \mathbb{K} , если выполнено:

- Для любой точки $A \in \mathcal{A}$ и любого вектора $x \in L$ существует единственная точка $B \in \mathcal{A}$ такая, что $\mathbf{AB} = x \in L$.
- Lля любых трех точек $A, B, C \in \mathcal{A}$ имеет место равенство (треугольника)

$$\mathbf{AC} = \mathbf{AB} + \mathbf{BC} \tag{1}$$

16. Что такое репер (точечный базис) аффинного пространства?

Опр. 4.2. Репером (или точечным базисом) называется совокупность фиксированной точки O (начала координат) и $\{e_i\}_{i=1}^n$ — базиса ассоциированного линейного пространства.

17. Что является базисом на прямой линии, плоскости?

На прямой линии базисом является любой ненулевой вектор;

На плоскости базисом является любая упорядоченная пара неколлинеарных векторов;

18. Как можно задать базис в трехмерном пространстве?

В трехмерном пространстве базис - упорядоченная тройка любых некомпланарных векторов;

в ДПСК:
$$\vec{i}$$
, \vec{j} и \vec{k}

19. Какая точка называется ортогональной проекцией точки А на прямую L?

Опр. 1.1. Ортогональной проекцией точки A на прямую L будем называть точку A', полученную опусканием перпендикуляра из точки A на прямую L.

20. Как определяется ортогональная проекция вектора на прямую L?

Опр. 1.2. Ортогональной проекцией вектора $\mathbf{a} = [\mathbf{A}\mathbf{B}]$ на прямую L будем называть класс эквивалентности \mathbf{a}' направленного отрезка $\mathbf{A}'\mathbf{B}'$, где точка A' является ортогональной проекцией начала A направленного отрезка $\mathbf{A}\mathbf{B}$, а точка B' — ортогональной проекцией конца B направленного отрезка $\mathbf{A}\mathbf{B}$.

$$\mathbf{a}' = \mathbf{Pr}_L^{\perp} \mathbf{a}$$

21. Какой вектор называется ортом направленной прямой?

Опр. 1.3. Ортом **e** направленной прямой L называется вектор, модуль которого равен $|\mathbf{e}|=1$, а направление совпадает с заданным направлением прямой.

22. Что называется величиной проекции вектора на ось?

Опр. 1.4. Пусть на прямой L задано направление и ${\bf e}$ — ее орт. Величиной проекции вектора а на ось L называется число $x_a = \Pr_L^{\perp}$ а такое, что

$$\mathbf{a}' = x_a \mathbf{e}$$

23. Выпишите разложение произвольного вектора плоскости и пространства по базису декартовой прямоугольной системы координат?

NtB. Для любого вектора **a**, заданного на плоскости, существует единственное представление в базисе ДПСК $\{i, j\}$, являющихся ортами координатных осей Ox и Oy.

$$\mathbf{a} = x_a \mathbf{i} + y_a \mathbf{j},$$

где
$$x_a = \operatorname{Pr}_x^{\perp} \mathbf{a}$$
 и $y_a = \operatorname{Pr}_y^{\perp} \mathbf{a}$.

NtB. Для любого вектора **a**, заданного в пространстве, существует единственное представление в базисе ДПСК $\{i, j, k\}$, являющихся ортами координатных осей Ox, Oy и Oz.

$$\mathbf{a} = x_a \mathbf{i} + y_a \mathbf{j} + z_a \mathbf{k},$$

где
$$x_a = \operatorname{Pr}_x^{\perp} \mathbf{a}, \ y_a = \operatorname{Pr}_y^{\perp} \mathbf{a}$$
 и $z_a = \operatorname{Pr}_z^{\perp} \mathbf{a}$.

24. Дайте определение скалярного произведения геометрических векторов.

Опр. 2.1. Скалярным произведением векторов **a** и **b** назовем число, определяемое равенством:

$$(\mathbf{a}, \mathbf{b}) = |\mathbf{a}| \cdot \operatorname{Pr}_{\mathbf{a}}^{\perp} \mathbf{b}$$

Опр. 2.2. Для скалярного произведения существует несколько обозначений.

$$(\mathbf{a}, \mathbf{b}) = (\mathbf{a} \cdot \mathbf{b}) = \mathbf{a} \cdot \mathbf{b}$$

25. Запишите представление скалярного произведения геометрических векторов через косинус угла между векторами?

$$(\mathbf{a}, \mathbf{b}) = |\mathbf{a}| |\mathbf{b}| \cos \varphi$$

26. Напишите все возможные попарные скалярные произведения векторов $\vec{t}, \vec{j}, \vec{k}$.

•	ì	j	\vec{k}
ì	1	0	0
\vec{J}	0	1	0
\vec{k}	0	0	1

27. Как определяется скалярное произведение векторов в декартовой прямоугольной системе координат?

$$\vec{a} \cdot \vec{b} = a_x b_x + a_y b_y + a_z b_z$$

28. Запишите формулу нахождение длины векторов в декартовой прямоугольной системе координат.

$$|\vec{a}| = \sqrt{(\vec{a} \cdot \vec{a})} = \sqrt{a_x^2 + a_y^2 + a_z^2}$$

29. Какая тройка векторов называется правой?

Опр. 3.1. Тройка $\{a,b,c\}$ называется **правой**, если, располагаясь по направлению вектора c, наблюдатель видит, что кратчайший поворот от a к b происходит по часовой стрелке.

30. Дайте определение векторного произведения.

Опр. 3.2. Векторным произведением векторов **a** и **b** называется вектор **c**, удовлетворяющий следующим условиям:

- (a) $|\mathbf{c}| = |\mathbf{a}||\mathbf{b}|\sin\varphi$, где φ угол между векторами;
- (б) $\mathbf{c} \perp \mathbf{a}$, $\mathbf{c} \perp \mathbf{b}$;
- (в) $\{{\bf a},{\bf b},{\bf c}\}$ образуют правую тройку.

$$[\mathbf{a}, \mathbf{b}] = [\mathbf{a} \times \mathbf{b}] = \mathbf{a} \times \mathbf{b}$$

31. В чем заключается геометрический смысл модуля векторного произведения?

NtB. Модуль векторного произведения векторов **a** и **b** равен площади параллелограмма, построенного на данных векторах.

$$|[\vec{a} \times \vec{b}]| = S_{\text{параллелограмма}}$$

32. Перечислите свойства векторного произведения.

Свойства векторного произведения

(а) Линейность.

$$(\lambda \mathbf{a} + \mu \mathbf{b}) \times \mathbf{c} = \lambda \mathbf{a} \times \mathbf{c} + \mu \mathbf{b} \times \mathbf{c}$$

(б) Антикоммутативность.

$$\mathbf{a} \times \mathbf{b} = -\mathbf{b} \times \mathbf{a}$$

(в) Связь с коллинеарностью векторов.

$$\mathbf{a} \times \mathbf{b} = 0 \quad \Leftrightarrow \quad \mathbf{a} \parallel \mathbf{b}$$

(г) Разложение в ортогональные компоненты.

$$\mathbf{a}\times\mathbf{b}=(\mathbf{a}_{\perp\mathbf{b}})\times\mathbf{b}=\mathbf{a}\times(\mathbf{b}_{\perp\mathbf{a}}),$$

где $\mathbf{a}_{\perp \mathbf{b}}$ — компонента вектора a, ортогональная вектору \mathbf{b} , и наоборот $\mathbf{b}_{\perp \mathbf{a}}$ — компонента вектрора b, ортогональная вектору \mathbf{a} .

33. Напишите все возможные попарные векторного произведения векторов $\vec{\imath}, \vec{j}, \vec{k}$.

×	ì	j	\vec{k}
ì	$\vec{0}$	$ec{k}$	$-\vec{j}$
j	$-\vec{k}$	$\vec{0}$	\vec{l}
\vec{k}	\vec{J}	$-\vec{\iota}$	$\vec{0}$

34. Как может быть представлено векторное произведение в декартовой прямоугольной системе координат?

Векторное произведение ДПСК можно представить в виде определителя:

$$\mathbf{a} \times \mathbf{b} = \begin{vmatrix} a_y & a_z \\ b_y & b_z \end{vmatrix} \mathbf{i} - \begin{vmatrix} a_x & a_z \\ b_x & b_z \end{vmatrix} \mathbf{j} + \begin{vmatrix} a_x & a_y \\ b_x & b_y \end{vmatrix} \mathbf{k} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix}$$

35. Дайте определение смешанному произведению тройки векторов.

Опр. 4.1. Смешанным произведением трех векторов **a**, **b** и **c** называется результат последовательного применения к данной тройке операций векторного и скалярного произведений:

$$\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) \equiv (\mathbf{a}, \mathbf{b}, \mathbf{c})$$

36. Как можно определить критерий компланарности векторов, используя смешанное произведение?

$$(\mathbf{a}, \mathbf{b}, \mathbf{c}) = 0 \iff \mathbf{a}, \mathbf{b}, \mathbf{c} -$$
компланарны

37. Какой вывод можно сделать про тройку векторов, если их смешанное произведение положительно? Отрицательно?

$$(\vec{a}, \vec{b}, \vec{c}) > 0 \iff \{\vec{a}, \vec{b}, \vec{c}\}$$
 — правая тройка $(\vec{a}, \vec{b}, \vec{c}) < 0 \iff \{\vec{a}, \vec{b}, \vec{c}\}$ — левая тройка

- 38. Как выглядит смешанное произведение в декартовой прямоугольной системе координат?
- **NtB.** Смешанное произведение в ДПСК.

$$(\mathbf{a}, \mathbf{b}, \mathbf{c}) = a_x \begin{vmatrix} b_y & b_z \\ c_y & c_z \end{vmatrix} - a_y \begin{vmatrix} b_x & b_z \\ c_x & c_z \end{vmatrix} + a_z \begin{vmatrix} b_x & b_y \\ c_x & c_y \end{vmatrix} = \begin{vmatrix} a_x & a_y & a_z \\ b_x & b_y & b_z \\ c_x & c_y & c_z \end{vmatrix}$$

39. Дайте определение прямой на плоскости как геометрическому месту точек.

Геометрическое место точек плоскости, равноудаленных от двух заданных точек, определяет **прямую** в \mathbb{R}^2 .

40. Дайте определение прямой в пространстве как геометрическому месту точек. Геометрическое место точек пространства, равноудаленных от трех заданных точек, не лежащих на одной прямой, определяет **прямую** в \mathbb{R}^3 .

41. Дайте определение плоскости в пространстве как геометрическому месту точек.

Геометрическое место точек пространства, равноудаленных от двух заданных точек, определяет **плоскость** в \mathbb{R}^3 .

42. Что такое направляющее подпространство линейного многообразия геометрических векторов?

Опр. 2.1. Линейное подпространство L, по которому строится линейное многообразие M, называют **направляющим подпространством**.

$$L \leq \mathbb{R}^n$$
, $M = r_0 + L = \{r_0 + a \mid a \in L\}$

43. Что называется векторными параметрическими уравнениями прямой и плоскости? Выпишите их и поясните обозначения.

Опр. 2.2. Уравнения, описывающие прямые (на плоскости или в пространстве) и плоскости (в пространстве) при помощи радиус-векторов опорных точек и векторов направляющего подпространства, называются **векторными параметрическими уравнениями** прямых и плоскостей.

$$r=r_0+lpha s$$
 — прямая $r=r_0+lpha a+eta b$ — плоскость

 r_0 — радиус-вектор опорной точки, $s,a,b \neq 0$ — направляющие векторы

44. Запишите нормальное векторное уравнение прямой на плоскости. Поясните смысл введенных обозначений.

Опр. 3.2. Нормальным векторным уравнением прямой на плоскости называют уравнение вида

$$(\mathbf{r} - \mathbf{r}_0, \mathbf{n}) = 0 \qquad \Leftrightarrow \qquad (\mathbf{r}, \mathbf{n}) = (\mathbf{r}_0, \mathbf{n}) = -C$$

где ${\bf n}$ — вектор нормали к прямой, а C — некоторая константа.

45. Что такое вектор нормали к прямой на плоскости?

Опр. 3.1. Нормалью \mathbf{n} к прямой на плоскости называется произвольный вектор, который ортогонален любому вектору, коллинеарному с данной прямой.

46. Запишите каноническое уравнение прямой на плоскости. Поясните смысл введенных обозначений.

$$\frac{x - x_0}{s_x} = \frac{y - y_0}{s_y}$$

r = (x, y) – радиус-векторы точек прямой,

 $r_0 = (x_0, y_0)$ – радиус-вектор опорной точки,

 $s = (s_x, s_y)$ – ненулевой направляющий вектор.

47. Запишите общее уравнение прямой на плоскости. Поясните смысл введенных обозначений.

$$Ax + By + C = 0$$

r = (x, y) – радиус-векторы точек прямой

A, B, C — свободные коэффициенты

48. Запишите уравнение прямой на плоскости в отрезках на осях. Поясните смысл введенных обозначений.

$$\frac{x}{a} + \frac{y}{b} = 1$$
, $a = -\frac{C}{A}$, $b = -\frac{C}{B}$

A, B, C – свободные коэффициенты общего уравнения Ax + By + C = 0

49. При каком условии на уравнения прямые на плоскости параллельны? Произвольные прямые:

$$\mathbf{r} = \mathbf{r}_1 + t_1 \mathbf{s}_1$$
 $(\mathbf{r}, \mathbf{n}_1) = (\mathbf{r}_1, \mathbf{n}_1)$
 $\mathbf{r} = \mathbf{r}_2 + t_2 \mathbf{s}_2$ $(\mathbf{r}, \mathbf{n}_2) = (\mathbf{r}_2, \mathbf{n}_2)$

Для параллельных прямых выполняются следующие равносильные условия

(1)
$$\mathbf{n}_1 \parallel \mathbf{n}_2 \qquad \Leftrightarrow \qquad \mathbf{n}_1 = \alpha \mathbf{n}_2$$

(2) $\mathbf{s}_1 \parallel \mathbf{s}_2 \qquad \Leftrightarrow \qquad \mathbf{s}_1 = \alpha \mathbf{s}_2$

$$(2) \quad \mathbf{s}_1 \parallel \mathbf{s}_2 \qquad \Leftrightarrow \qquad \mathbf{s}_1 = \alpha \mathbf{s}_2$$

$$(3) \quad \mathbf{n}_1 \perp \mathbf{s}_2 \qquad \Leftrightarrow \qquad (\mathbf{n}_1, \mathbf{s}_2) = 0$$

50. При каком условии два уравнения прямой на плоскости описывают одну и ту же прямую?

Произвольные прямые:

$$\mathbf{r} = \mathbf{r}_1 + t_1 \mathbf{s}_1$$
 $(\mathbf{r}, \mathbf{n}_1) = (\mathbf{r}_1, \mathbf{n}_1)$
 $\mathbf{r} = \mathbf{r}_2 + t_2 \mathbf{s}_2$ $(\mathbf{r}, \mathbf{n}_2) = (\mathbf{r}_2, \mathbf{n}_2)$

При совпадении прямых (частный случай параллельности) дополнительно выполняется

$$\mathbf{s}_1 \parallel \mathbf{s}_2 \parallel (\mathbf{r}_1 - \mathbf{r}_2)$$

51. Как определить условие пересечения прямых на плоскости?

Произвольные прямые:

$$\mathbf{r} = \mathbf{r}_1 + t_1 \mathbf{s}_1 \qquad \qquad (\mathbf{r}, \mathbf{n}_1) = (\mathbf{r}_1, \mathbf{n}_1)$$

$$\mathbf{r} = \mathbf{r}_2 + t_2 \mathbf{s}_2 \qquad \qquad (\mathbf{r}, \mathbf{n}_2) = (\mathbf{r}_2, \mathbf{n}_2)$$

Пересечение прямых гарантирует выполнение следующего условия

$$(\mathbf{n_1}, \mathbf{s}_2) \neq 0, \qquad (\mathbf{n_2}, \mathbf{s}_1) \neq 0$$

52. Как определить условие ортогональности прямых на плоскости?

В случае ортогональных прямых (частный случай пересекающихся прямых) можно утверждать, что

$$\mathbf{n}_1 \parallel \mathbf{s}_2, \qquad \qquad \mathbf{n}_2 \parallel \mathbf{s}_1$$

53. Что такое вектор нормали к плоскости? Как он может быть найден, если известны два неколлинеарные вектора, принадлежащие плоскости?

Опр. 5.1. Вектором нормали ${\bf n}$ к плоскости называется любой вектор, ортогональный этой плоскости.

NtB 5.1. Если известны два неколлинеарных вектора **a** и **b**, принадлежащие этой плоскости, то вектор нормали может быть естественным образом найден как результат векторного умножения данных векторов:

54. Запишите параметрические уравнения плоскости в векторном и координатном видах. Поясните смысл введенных обозначений.

Векторный вид: $r = r_0 + \alpha a + \beta b$

Координатный вид:

$$\begin{cases} x = x_0 + \alpha a_x + \beta b_x \\ y = y_0 + \alpha a_y + \beta b_y \\ z = z_0 + \alpha a_z + \beta b_z \end{cases}$$

r=(x,y,z) – радиус-векторы точек плоскости, $a=(a_x,a_y,a_z)$, $b=(b_x,b_y,b_z)$ – пара неколлинеарных векторов в плоскости, $r_{0,1,2}=(x_{0,1,2},y_{0,1,2},z_{0,1,2})$ – радиус-векторы опорных точек плоскости, lpha, eta – свободные коэффициенты.

55. Запишите уравнение плоскости, используя условие компланарности. Поясните смысл введенных обозначений.

Уравнение, полученное из условия компланарности:

$$(\mathbf{r} - \mathbf{r}_0, [\mathbf{a} \times \mathbf{b}]) = (\mathbf{r} - \mathbf{r}_0, \mathbf{a}, \mathbf{b}) = 0$$

Уравнение, полученное из условия компланарности:

$$(\mathbf{r} - \mathbf{r}_0, \mathbf{a}, \mathbf{b}) = 0 \qquad \Leftrightarrow \qquad \begin{vmatrix} x - x_0 & y - y_0 & z - z_0 \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix} = 0$$

r=(x,y,z) – радиус-векторы точек плоскости, $a=(a_x,a_y,a_z), b=(b_x,b_y,b_z)$ – пара неколлинеарных векторов в плоскости, $r_0=(x_0,y_0,z_0)$ – радиус-векторы опорных точек плоскости.

56. Запишите общее уравнения плоскости. Поясните смысл введенных обозначений.

$$Ax + By + Cz + D = 0$$

(x,y,z) – точки плоскости, A,B,C,D – свободные коэффициенты

57. Запишите уравнение плоскости в отрезках. Поясните смысл введенных обозначений.

$$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1,$$
 $a = -\frac{D}{A}, b = -\frac{D}{B}, c = -\frac{D}{C}$

A, B, C, D — свободные коэф. общего уравнения Ax + By + Cz + D = 0

58. При каком условии плоскости параллельны?

Произвольные плоскости:

$$\mathbf{r} = \mathbf{r}_1 + \alpha_1 \mathbf{a}_1 + \beta_1 \mathbf{b}_1 \qquad (\mathbf{r}, \mathbf{n}_1) = (\mathbf{r}_1, \mathbf{n}_1) = -D_1$$

$$\mathbf{r} = \mathbf{r}_2 + \alpha_2 \mathbf{a}_2 + \beta_2 \mathbf{b}_2 \qquad (\mathbf{r}, \mathbf{n}_2) = (\mathbf{r}_2, \mathbf{n}_2) = -D_2$$

Параллельность плоскостей

$$\mathbf{n}_1 \parallel \mathbf{n}_2 \qquad \Leftrightarrow \qquad \mathbf{n}_1 = \lambda \mathbf{n}_2$$

59. При каком условии уравнения плоскостей описывают одну и ту же плоскость? Произвольные плоскости:

$$\mathbf{r} = \mathbf{r}_1 + \alpha_1 \mathbf{a}_1 + \beta_1 \mathbf{b}_1 \qquad (\mathbf{r}, \mathbf{n}_1) = (\mathbf{r}_1, \mathbf{n}_1) = -D_1$$

$$\mathbf{r} = \mathbf{r}_2 + \alpha_2 \mathbf{a}_2 + \beta_2 \mathbf{b}_2 \qquad (\mathbf{r}, \mathbf{n}_2) = (\mathbf{r}_2, \mathbf{n}_2) = -D_2$$

(б) Совпадение плоскостей

$$\begin{cases} \mathbf{n}_1=\lambda\mathbf{n}_2\\ D_1=\lambda D_2 \end{cases}$$
или
$$(\mathbf{r}_1-\mathbf{r}_2,\mathbf{a}_1,\mathbf{b}_1)=(\mathbf{r}_1-\mathbf{r}_2,\mathbf{a}_2,\mathbf{b}_2)=0$$

60. При каком условии плоскости пересекаются? Какое геометрическое мест точек определяется пересечением плоскостей?

Произвольные плоскости:

$$\mathbf{r} = \mathbf{r}_1 + \alpha_1 \mathbf{a}_1 + \beta_1 \mathbf{b}_1 \qquad (\mathbf{r}, \mathbf{n}_1) = (\mathbf{r}_1, \mathbf{n}_1) = -D_1$$

$$\mathbf{r} = \mathbf{r}_2 + \alpha_2 \mathbf{a}_2 + \beta_2 \mathbf{b}_2 \qquad (\mathbf{r}, \mathbf{n}_2) = (\mathbf{r}_2, \mathbf{n}_2) = -D_2$$

(в) Пересечение плоскостей

$$\mathbf{n}_1 \neq \lambda \mathbf{n}_2$$
 или $[\mathbf{n}_1 \times \mathbf{n}_2] = \mathbf{s} \neq 0$

Пересечение плоскостей образует прямую.

61. При каком условии плоскости ортогональны?

Произвольные плоскости:

$$\mathbf{r} = \mathbf{r}_1 + \alpha_1 \mathbf{a}_1 + \beta_1 \mathbf{b}_1 \qquad (\mathbf{r}, \mathbf{n}_1) = (\mathbf{r}_1, \mathbf{n}_1) = -D_1$$

$$\mathbf{r} = \mathbf{r}_2 + \alpha_2 \mathbf{a}_2 + \beta_2 \mathbf{b}_2 \qquad (\mathbf{r}, \mathbf{n}_2) = (\mathbf{r}_2, \mathbf{n}_2) = -D_2$$

Ортогональность плоскостей

$$(\mathbf{n}_1, \mathbf{n}_2) = 0$$

62. Запишите параметрические уравнения прямой в пространстве. Поясните смысл введенных обозначений.

Параметрические уравнения прямой в пространстве

$$\mathbf{r} = \mathbf{r}_0 + t \cdot \mathbf{s} \qquad \Leftrightarrow \qquad \begin{cases} x = x_0 + t s_x \\ y = y_0 + t s_y \\ z = z_0 + t s_z \end{cases}$$
 (7)

где $\mathbf{r}_0 = (x_0, y_0, z_0)$ — опорная точка прямой, а $\mathbf{s} = (s_x, s_y, s_z)$ — ее направляющий вектор.

63. Запишите каноническое уравнение прямой в пространстве. Поясните смысл введенных обозначений.

Каноническое уравнение прямой в пространстве

$$\frac{x - x_0}{s_x} = \frac{y - y_0}{s_y} = \frac{z - z_0}{s_z}$$

r=(x,y,z) – радиус-векторы точек прямой, $r_0=(x_0,y_0,z_0)$ – радиус-вектор опорной точки, $s=\left(s_x,s_y,s_z\right)$ – ненулевой направляющий вектор.

64. При каком условии прямые в пространстве параллельны?

Произвольные прямые:

$$\mathbf{r} = \mathbf{r}_1 + t_1 \mathbf{s}_1$$

$$\mathbf{r} = \mathbf{r}_2 + t_2 \mathbf{s}_2$$

Прямые параллельны

$$\mathbf{s}_1 \parallel \mathbf{s}_2 \qquad \Leftrightarrow \qquad \mathbf{s}_1 = \lambda \mathbf{s}_2$$

65. При каком условии уравнения прямых в пространстве описывают совпадающие прямые?

Произвольные прямые:

$$\mathbf{r} = \mathbf{r}_1 + t_1 \mathbf{s}_1$$

$$\mathbf{r} = \mathbf{r}_2 + t_2 \mathbf{s}_2$$

Прямые совпадают

$$\mathbf{s}_1 \parallel \mathbf{s}_2 \parallel (\mathbf{r}_2 - \mathbf{r}_1)$$

66. В каком случае уравнения прямых в пространстве описывают пересекающиеся прямые? В каком случае они будут скрещиваться? Произвольные прямые:

 $\mathbf{r} = \mathbf{r}_1 + t_1 \mathbf{s}_1$

$$\mathbf{r} = \mathbf{r}_2 + t_2 \mathbf{s}_2$$

Прямые пересекаются

$$\begin{cases} (\mathbf{r}_2 - \mathbf{r}_1, \mathbf{s}_1, \mathbf{s}_2) = 0 \\ \mathbf{s}_1 \neq \lambda \mathbf{s}_2 \end{cases}$$

Прямые скрещиваются

$$(\mathbf{r}_1 - \mathbf{r}_2, \mathbf{s}_1, \mathbf{s}_2) \neq 0$$

67. Перечислите способы задания линий на плоскости.

Способы задания линий

(а) Явное задание линии

$$y = f(x),$$
 или $x = g(y)$

(б) Неявное задание линии

$$F(x,y) = 0$$

(в) Параметрическое задание линии

$$\begin{cases} x = x(t) \\ y = y(t) \end{cases}$$

68. Какая кривая называется алгебраической кривой? Что называется ее порядком?

Опр. 1.2. Алгебраической кривой на плоскости называется геометрическое место точек, для которых соотношения между координатами могут быть выражены с помощью степенных функций.

$$F(x,y) = a_1 x^{m_1} y^{n_1} + \ldots + a_l x^{m_k} y^{n_k} = 0, \qquad m_i, n_i \in \mathbb{N}$$
 (4)

Опр. 1.3. Порядком линии p называется порядок полинома, определяющего связь между координатами, т.е.

$$p = \max_{i=1...k} \{m_i + n_i\} \tag{5}$$

69. Запишите общее уравнение алгебраической линии (кривой) 2-го порядка.

Опр. 1.4. Общим уравнением алгебраической линии (кривой) 2-го порядка называется уравнение вида

$$Ax^{2} + 2Bxy + Cy^{2} + Dx + Ey + F = 0, (6)$$

в котором левая часть представлена полиномом второй степени от координат x и y точек, принадлежащих кривой.

70. Дайте определение эллипса. Что называется его фокусами?

Опр. 2.1. Эллипсом называется геометрическое место точек, сумма расстояний от которых до двух заданных точек плоскости (фокусов) есть величина постоянная.

$$F_1(-c,0), \qquad F_2(c,0)$$

71. Какое уравнение называется каноническим уравнением эллипса. Поясните обозначения.

Опр. 2.2. Уравнение вида

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1, b^2 = a^2 - c^2 (9)$$

называют **каноническим уравнением эллипса**, где a и b — большая и малая полуось соответственно.

72. Что такое эксцентриситет эллипса? В чем смысл этой величины?

Опр. 2.3. Эксцентриситетом эллипса называют величину $\varepsilon = c/a$, характеризующую степень "вытянутости" эллипса.

a – большая полуось, c – расстояние от центра до фокусов

73. Выпишите параметрические уравнения эллипса.

Параметрическими уравнениями эллипса называют

$$\begin{cases} x = a \cos t \\ y = b \cos t \end{cases}$$

a – большая полуось, b – малая полуось

74. Как может быть записано уравнение касательной к эллипсу в некоторой точке?

Уравнением касательной к эллипсу называют уравнение вида

$$\frac{xx_0}{a^2} + \frac{yy_0}{b^2} = 1$$

a – большая полуось, b – малая полуось, (x_0, y_0) — точка касания

75. Какие прямые называются директрисами эллипса? Запишите директориальной свойство эллипса.

Опр. 2.6. Директрисами эллипса называются прямые, параллельные малой оси эллипса и проходящие от нее на расстоянии a/ε .

a – большая полуось, arepsilon – эксцентриситет

Директориальное свойство эллипса. Эллипс — множество точек, для которых отношение расстояния $r_{1,2}$ до фокуса и расстояния $d_{1,2}$ до соответствующей директрисы постоянно и равно эксцентриситету ε :

$$\frac{r_1}{d_1} = \frac{r_2}{d_2} = \varepsilon \tag{14}$$

76. Запишите оптическое свойство эллипса. Проиллюстрируйте.

Оптическое свойство эллипса. Фокальные радиусы произвольной точки M_0 эллипса составляют равные углы с касательной к эллипсу в этой точке.

77. Какие симметрии существуют у эллипса?

Свойства симметрии эллипса. Для всякой точки M(x,y), принадлежащей эллипсу E, справедливо

- (a) $M_1(-x,y) \in E$ осевая симметрия относительно Oy
- (б) $M_1(x, -y) \in E$ осевая симметрия относительно Ox
- (в) $M_1(-x,-y) \in E$ центральная симметрия относительно начала координат O

78. Дайте определение гиперболы. Запишите его каноническое уравнение. Поясните обозначения.

Опр. 3.1. Гиперболой называется геометрическое место точек плоскости таких, что модуль разности расстояний от этих точек до двух фиксированных точек плоскости (фокусов) остается постоянным.

Каноническое уравнение гиперболы

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1, \qquad b^2 = c^2 - a^2,$$

где a и b - вещественная и мнимая ось соответственно.

79. Выпишите параметрические уравнения гиперболы.

Параметрические уравнения гиперболы. Определяются схожим образом, но не через тригонометрические синус и косинус, а гиперболические

$$\begin{cases} x = a \operatorname{ch} t \\ y = b \operatorname{sh} t \end{cases} \tag{20}$$

a – вещественная ось, b – мнимая ось, t – свободный коэффициент

80. Как может быть записано уравнение касательной к гиперболе в некоторой точке?

Уравнение касательной к гиперболе

$$\frac{xx_0}{a^2} - \frac{yy_0}{b^2} = 1$$

a – вещественная ось, b – мнимая ось, (x_0, y_0) – точка касания

81. Какие прямые называются директрисами гиперболы? Запишите директориальное свойство гиперболы.

Директрисы гиперболы. Аналогично директрисам эллипса - прямые, параллельные мнимой оси и находящиеся на расстоянии a/ε

$$x = \pm \frac{a}{\varepsilon}, \qquad \frac{r_1}{d_1} = \frac{r_2}{d_2} = \varepsilon$$
 (22)

a — вещественная ось, $\varepsilon=rac{c}{a}$ — эксцентриситет, c — расстояние от центра до фокусов, r_1, r_2 — расстояния до фокусов, d_1, d_2 — расстояния до директрис.

82. Запишите оптическое свойство гиперболы. Проиллюстрируйте.

Оптическое свойство. Фокальные радиусы произвольной точки M_0 гиперболы составяют равные углы с касательной к гиперболе в точке M_0

83. Что называется асимптотами гиперболы? Как выглядят их уравнения?

Опр. 3.2. Асимптотой неограниченной кривой называется прямая линия такая, что расстояние от точки кривой до асимптоты стремится к нулю, когда точка кривой уходит на бесконечность.

Теорема 3.1. B канонической системе координат асимптотами гиперболы служат прямые

$$y = \pm \frac{b}{a}x\tag{23}$$

84. Дайте определение параболе. Запишите каноническое уравнение.

Опр. 4.1. Параболой называется геометрическое место точек плоскости таких, что расстояние от этих точек до фиксированной точки плоскости (фокуса) и до фиксированной прямой (директрисы) одинаково.

Каноническое уравнение параболы

$$y^2 = 2px, (25)$$

где p - фокальный параметр, определяемый как расстояние от фокуса до директрисы.

85. Как определяется положение директрисы и фокуса параболы в канонической системе координат?

Фокус в точке $F(\frac{p}{2},0)$, директриса – прямая $x=-\frac{p}{2}$.

p – фокальный параметр, расстояние от фокуса до директрисы.

86. Запишите оптическое свойство параболы. Проиллюстрируйте.

Оптическое свойство параболы. Касательная к параболе в каждой точке M_0 составляет равные углы с фокальным радиусом точки M_0 и с осью параболы.

Источник

https://docs.google.com/document/d/17xCaMa6oUmUyyr7MlmXgV08u9vGEgP265lqL4UmQVs/edit?tab=t.0

11	3-1	Системы координат
12	3-2	Действия над векторами
13	3-3	Прямая и плоскость
*	3-A	Координатные уравнения прямых и плоскостей
14	3-4	Кривые 2-го порядка
15	3-5	Общие уравнения кривых 2-го порядка

Оптические свойства

Эллипс https://www.desmos.com/calculator/q7sdf0baxq?lang=ru

Гипербола https://www.desmos.com/calculator/qri90hpnzz?lang=ru

Парабола https://www.desmos.com/calculator/uqajb6iczn?lang=ru

Общие обозначения в формулах прямой и плоскости

Прямая в плоскости

r=(x,y) — радиус-векторы точек прямой, $r_0=(x_0,y_0)$ — радиус-вектор опорной точки, $s=(s_x,s_y)$ — ненулевой направляющий вектор, n=(A,B) — вектор нормали.

Прямая в пространстве

r=(x,y,z) — радиус-векторы точек прямой, $r_0=(x_0,y_0,z_0)$ — радиус-вектор опорной точки, $s=\left(s_x,s_y,s_z\right)$ — ненулевой направляющий вектор, t — свободный коэффициент.

Плоскость в пространстве

 $n=(A,B,\mathcal{C})$ – вектор нормали к плоскости, r=(x,y,z) – радиус-векторы точек плоскости, $a=(a_x,a_y,a_z)$, $b=(b_x,b_y,b_z)$ – пара неколлинеарных векторов в плоскости, $r_{0,1,2}=(x_{0,1,2},y_{0,1,2},z_{0,1,2})$ – радиус-векторы опорных точек плоскости, α,β – свободные коэффициенты.

Сделал Сакулин Иван Михайлович К3121