EE 240C Analog-Digital Interface Integrated Circuits

Dynamic Errors

Dynamic Performance Metrics

- Time domain
 - Glitch impulse, aperture uncertainty, settling time, ...
 - We'll look at these later, in the context of specific circuits
- Frequency domain
 - Performance metrics follow from looking at converter or building block output spectrum
 - "Spectral performance metrics"
 - Basic idea: Apply one or more tones at converter input
 - Expect same tone(s) at output, all other frequency components represent nonidealities
 - Important to realize that both static (DNL, INL) and dynamic errors contribute to frequency domain nonideality

Alphabet Soup of Spectral Metrics

- SNR Signal–to–noise ratio
- SNDR (SINAD) Signal–to–(noise+distortion) ratio
- ENOB Effective number of bits
- DR Dynamic range
- SFDR Spurious free dynamic range
- THD Total harmonic distortion
- ERBW Effective Resolution Bandwidth
- IMD Intermodulation distortion
- MTPR Multi-tone power ratio

DAC Tone Test/Simulation

Typical DAC Output Spectrum

[Hendriks, "Specifying Communications DACs, IEEE Spectrum, July 1997]

ADC Tone Test/Simulation

EE 240C Analog-Digital Interface Integrated Circuits

Spectral Analysis

Discrete Fourier Transform

 DFT takes a block of N time domain samples (spaced T_s=1/f_s) and yields a set of N frequency bins

$$X(k) = \sum_{n=0}^{N-1} x(n)e^{-j2\pi kn/N}$$

- Bin k represents frequency content at k·f_s/N [Hz]
- DFT frequency resolution
 - Proportional to 1/(N·T_s) in [Hz/bin]
 - N·T_s is total time spent gathering samples
- A DFT with N=2^{integer} can be found using a computationally efficient algorithm
 - FFT = Fast Fourier Transform

Matlab Example

```
50
   = 100;
fs = 1000;
                                      40
fx = 100;
                                   DFT Magnitude
0 0 0
x = cos(2*pi*fx/fs*[0:N-1]);
s = abs(fft(x));
plot(s, 'linewidth', 2);
                                      10
                                               20
                                                       40
                                                               60
                                                                       80
                                                                               100
                                                          Bin#
```

Normalized Plot with Frequency Axis

```
= 100;
fs = 1000:
fx = 100;
FS = 1; % full-scale amplitude
x = FS*cos(2*pi*fx/fs*[0:N-1]);
s = abs(fft(x));
% remove redundant half of spectrum
s = s(1:end/2);
% normalize magnitudes to dBFS
% dbFS = dB relative to full-scale
s = 20*\log 10(2*s/N/FS);
% frequency vector
f = [0:N/2-1]/N;
plot(f, s, 'linewidth', 2);
xlabel('Frequency [f/fs]')
ylabel('DFT Magnitude [dBFS]')
```


Another Example

- Same as before, but now f_x=101
- This doesn't look the spectrum of a sinusoid...
- What's going on?

Spectral Leakage

- DFT implicitly assumes that data repeats every N samples
- A sequence that contains a non-integer number of sine wave cycles has discontinuities in its periodic repetition
 - Discontinuity looks like a high frequency signal component
 - Power spreads across spectrum
- Two ways to deal with this
 - Ensure integer number of periods
 - Windowing

Integer Number of Cycles

```
N = 100;
cycles = 9;
fs = 1000;
fx = fs*cycles/N;
```

 Usable test frequencies are limited to a multiple of f_s/N

Windowing

- Spectral leakage can be attenuated by windowing the time samples prior to the DFT
- Windows taper smoothly down to zero at the beginning and the end of the observation window
- Time domain samples are multiplied by window coefficients on a sample-by-sample basis
 - Means convolution in frequency
 - Sine wave tone and other spectral components smear out over several bins
- Lots of window functions to chose from
 - Tradeoff: attenuation versus smearing
- Example: Hann Window

Hann Window

N=64;
wvtool(hann(N))

Spectrum with Window

```
N = 100;
fs = 1000;
fx = 101;
A = 1;

x = A*cos(2*pi*fx/fs*[0:N-1]);
s = abs(fft(x));
x1 = x.*hann(N);
s1 = abs(fft(x1));
```


Integer Cycles versus Windowing

- Integer number of cycles
 - Test signal falls into single DFT bin
 - Requires careful choice of signal frequency
 - Ideal for simulations
 - For lab measurements, lock sampling and signal frequency generators (PLL)

• "Coherent sampling": $f_{in} = \frac{J}{M} f_s$ for M samples and GCD(J,M)=1

- Windowing
 - No restrictions on signal frequency
 - Signal and harmonics distributed over several DFT bins
 - Beware of smeared out nonidealities...
 - Requires more samples for given accuracy
- More info
 - http://www.maxim-ic.com/appnotes.cfm/appnote_number/1040

EE 240C Analog-Digital Interface Integrated Circuits

Converter Spectral Analysis

Quantization Noise Spectrum

Example:

- Spectral analysis to evaluate (simulated) quantizer performance
- First look at quantization noise introduced by an ideal quantizer

```
N = 2048;
cycles = 67;
fs = 1000;
fx = fs*cycles/N;
LSB = 2/2^10;

%generate signal, quantize (mid-tread) and take FFT
x = cos(2*pi*fx/fs*[0:N-1]);
x = round(x/LSB)*LSB;
s = abs(fft(x));
s = s(1:end/2)/N*2;

% calculate SNR
sigbin = 1 + cycles;
noise = [s(1:sigbin-1), s(sigbin+1:end)];
snr = 10*log10( s(sigbin)^2/sum(noise.^2) );
```

Spectrum with Quantization Noise

- 0 dBFS = full-scale sinewave
- Spectrum looks fairly uniform Is this expected?
- Signal-to-quantization noise ratio equals power in signal bin (just one for coherent sampling), divided by sum of power in all noise bins
- Compare with "theory":

SQNR =
$$\frac{\text{Signal Power}}{\text{Quantization Noise Power}}$$

= $6.02 \cdot N + 1.76 \ [dB]$
= $61.9 \ dB$

FFT Noise Floor

$$N_{floor} = -61.9 \ dBc - 10 \log \left(\frac{2048}{2}\right)$$
$$= -61.9 \ dBc - 30.1 \ dB$$
$$= -92 \ dBc$$

- How could we lower the noise floor?
- Depends on FFT size
- Plot is "useless" if FFT size is not specified!

DFT Plot Annotation

- DFT plots are fairly meaningless unless you clearly specifiy the underlying conditions
- Most common annotation
 - Specify how many DFT points were used (N)
- Less common options
 - Shift DFT noise floor by 10log₁₀(N/2)dB
 - Normalize with respect to bin width in Hz and express noise as power spectral density
 - "Noise power in 1 Hz bandwidth,"
- DFT should be averaged (e.g. using pwelch in MATLAB)
- Scaling: dBFS vs sinewave power (spectrum analyzer) vs powerspectral density (digital signal processing)

Periodic Quantization Noise

- Same as before, but cycles
 = 64 (instead of 67)
- $f_x = f_s \cdot 64/2048 = f_s/32$
- Quantization noise is highly deterministic and periodic
- For more random and "white" quantizion noise, it is best to make N and cycles mutually prime
 - GCD(N,cycles)=1

Typical ADC Output Spectrum

- Fairly uniform noise floor due to additional electronic noise
- Harmonics due to nonlinearities
- Definition of SNR

$$SNR = \frac{Signal\ Power}{Total\ Noise\ Power}$$

- Total noise power includes all bins except DC, signal, and 2nd through 7th harmonic
 - Both quantization noise and electronic noise affect SNR

SNDR and ENOB

Definition

$$SNDR = \frac{Signal\ Power}{Noise\ and\ Distortion\ Power}$$

- Noise and distortion power includes all bins except DC and signal
- Effective number of bits

$$ENOB = \frac{SNDR(dB) - 1.76dB}{6.02dB}$$

Effective Number of Bits

• Is a 10-Bit converter with 47.5dB SNDR really a 10-bit converter?

$$ENOB = \frac{47.5dB - 1.76dB}{6.02dB} = 7.6$$

- We get ideal ENOB only for zero electronic noise, perfect transfer function with zero INL, ...
- Low electronic noise is costly
 - Cutting thermal noise down by 2x, can cost 4x in power dissipation
- Rule of thumb for good power efficiency: ENOB < B-1
 - B is the "number of wires" coming out of the ADC or the so called "stated resolution"

Survey Data

R. H. Walden, "Analog-to-digital converter survey and analysis," *IEEE J. on Selected Areas in Communications*, pp. 539-50, April 1999

EE 240C Analog-Digital Interface Integrated Circuits

Dynamic Range & Distortion

Dynamic Range

$$DR = \frac{Maximum Signal Power}{Minimum Detectable Signal} \ge SNR_{peak}$$

SFDR

 Definition of "Spurious Free Dynamic Range"

$$SFDR = \frac{Signal\ Power}{Largest\ Spurious\ Power}$$

- Largest spur is often (but not necessarily) a harmonic of the input tone
- SFDR represent smallest value of signal that can be distinguished from large interfering signal

SDR and THD

Signal-to-distortion ratio

$$SDR = \frac{Signal\ Power}{Total\ Distortion\ Power}$$

Total harmonic distortion

$$THD = \frac{Total \ Distortion \ Power}{Signal \ Power} = \frac{1}{SDR}$$

- By convention, total distortion power consists of 2nd through 7th harmonic
- Is there a 6th and 7th harmonic in the plot to the right?

Lowering the Noise Floor

 Increasing the FFT size let's us lower the noise floor and reveal low level harmonics

Aliasing

 Harmonics can appear at "arbitrary" frequencies due to aliasing

$$f_1 = f_x = 0.3125 f_s$$

 $f_2 = 2 f_1 = 0.6250 f_s \rightarrow 0.3750 f_s$
 $f_3 = 3 f_1 = 0.9375 f_s \rightarrow 0.0625 f_s$
 $f_4 = 4 f_1 = 1.2500 f_s \rightarrow 0.2500 f_s$
 $f_5 = 5 f_1 = 1.5625 f_s \rightarrow 0.4375 f_s$

Frequency Dependence

- Metrics generally depend on frequency
 - Sampling frequency and input frequency

[Analog Devices, AD9203 Datasheet]

ERBW

- Defined as the input frequency at which the SNDR of a converter has dropped by 3dB
 - Equivalent to a 0.5-bit loss in ENOB
- ERBW > $f_s/2$ is not uncommon, especially in converters designed for sub-sampling applications

Relationship Between INL and SFDR

- At low input frequencies, finite SFDR is mostly due to INL
- Quadratic/cubic bow gives rise to second/third order harmonic
- Rule of thumb: SFDR $\approx 20\log(2^B/INL)$
 - E.g. 1 LSB INL, 10 bits \rightarrow SFDR \cong 60dB

SNR Degradation due to DNL (1)

- For an ideal quantizer we assumed uniform quatization error over $\pm \Delta/2$
- Let's add uniform DNL over ± 0.5 LSB and repeat math...

SNR Degradation due to DNL (2)

Integrate triangular pdf

$$\overline{e^2} = 2 \int_0^{+\Delta} \left(1 - \frac{e}{\Delta}\right) \frac{e^2}{\Delta} de = \frac{\Delta^2}{6}$$

$$\Rightarrow SNR = 6.02 \cdot B - 1.25 \text{ [dB]}$$

Compare to ideal quantizer

$$\overline{e^2} = \int_{-\Delta/2}^{+\Delta/2} \frac{e^2}{\Delta} de = \frac{\Delta^2}{12}$$

$$\Rightarrow SNR = 6.02 \cdot B + 1.76 \text{ [dB]}$$

- Bottom line: non-zero DNL across many codes can easily cost a few dB in SNR
 - "DNL noise"

EE 240C Analog-Digital Interface Integrated Circuits

Error Sources

Motivation: Current DAC ("M-DAC")

Unit Element

2^B-1 switches

Binary Weighted

B switches

How do their DNL and INL compare?

Static Errors – Systematic

- Unit element mismatch cause INL and DNL errors
- Types of errors
 - 1. Systematic errors
 - Affect all circuits uniformly
 - E.g.
 - Contact and wiring resistance (IR drop)
 - Edge effects, process gradients
 - Finite current source output resistance
 - Can (in theory) be mitigated by proper layout and design

E.g. [Lin, JSSC 12/98], [Van der Plas, JSSC 12/99]

Static Errors – Random

2. Random errors

- Vary randomly from device to device
- Caused e.g. by material roughness, randomness in etching, ...
- Usually well approximated by a Gaussian PDF (central limit theorem)
- References
 - C. Conroy et al., "Statistical Design Techniques for D/A
 Converters," IEEE J. Solid-State Ckts., pp. 1118-28, Aug. 1989.
 - P. Crippa, et al., "A statistical methodology for the design of high-performance CMOS current-steering digital-to-analog converters," IEEE Trans. CAD of ICs and Syst. pp. 377-394, Apr. 2002.
 - M. J. M. Pelgrom, A. C. J. Duinmaijer, and A. P. G. Welbers,
 "Matching properties of MOS transistors," *IEEE Journal of Solid-State Circuits*, vol. 24, pp. 1433 1439, October 1989.
 - Jeroen A. Croon, Maarten Rosmeulen, Stefaan Decoutere, Willy
 Sansen, Herman E. Maes; An easy-to-use mismatch model for the
 MOS transistor, IEEE Journal of Solid-State Circuits, vol. 37, pp.
 1056 1064, August 2002.

Gaussian Distribution

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \qquad X = \frac{x-\mu}{\sigma}$$

Yield (1)

$$P \Big(-C \leq X \leq +C \Big) = \frac{1}{\sqrt{2\pi}} \int\limits_{-C}^{+C} e^{-\frac{X^2}{2}} dX = erf \left(\frac{C}{\sqrt{2}} \right)$$

Yield (2)

С	$P(-C \le X \le C) [\%]$	С	$P(-C \le X \le C) [\%]$
0.2000	15.8519	2.2000	97.2193
0.4000	31.0843	2.4000	98.3605
0.6000	45.1494	2.6000	99.0678
0.8000	57.6289	2.8000	99.4890
1.0000	68.2689	3.0000	99.7300
1.2000	76.9861	3.2000	99.8626
1.4000	83.8487	3.4000	99.9326
1.6000	89.0401	3.6000	99.9682
1.8000	92.8139	3.8000	99.9855
2.0000	95.4500	4.0000	99.9937

Example

- Measurements show that the current in a production lot of current sources follows a Gaussian distribution with $\sigma=0.1$ mA and $\mu=10$ mA
 - What fraction of current sources is within $\pm 3\%$ (or $\pm 1\%$) of the mean?
- Relative matching ("coefficient of variation")

$$\sigma_u = \frac{\sigma}{\mu} = \text{stdev}\left(\frac{\Delta I}{I}\right) = \frac{0.1mA}{10mA} = 1\%$$

Fraction of current sources within 3%

$$- C = 3 \rightarrow 99.73\%$$

Fraction of current sources within 1%

$$- C = 1 \rightarrow 68.27\%$$

Mismatch in MOS Current Sources

Example

- W=500μm, L=0.2μm, $g_m/I_D=10S/A$, $A_{Vt}=5mV-μm$, $A_{\beta}=1\%-μm$

$$\sigma_{\frac{\Delta I}{I_1}} = \sqrt{\left(10\frac{S}{A} \cdot \frac{5mV}{10}\right)^2 + \left(\frac{1\%}{10}\right)^2} = \sqrt{(0.5\%)^2 + (0.1\%)^2} = 0.51\%$$

EE 240C Analog-Digital Interface Integrated Circuits

DNL & INL of Unit Element DAC

Unit Element DAC

Unit Element

Binary Weighted

B switches

DNL of Unit Element DAC

$$DNL(k) = \frac{Step(k) - Step_{avg}}{Step_{avg}} = \frac{I_k - \frac{1}{N} \sum_{j=1}^{N} I_j}{\frac{1}{N} \sum_{j=1}^{N} I_j} \cong \frac{I_k - I}{I} = \frac{\Delta I}{I}$$
$$stdev(DNL(k)) = stdev\left(\frac{\Delta I}{I}\right) = \sigma_u$$

- Standard deviation of DNL for each code is simply equal to relative matching (σ_u) of unit elements
- Example
 - Say we have unit elements with $\sigma_u = 1\%$ and want 99.73% of all converters to meet the spec
 - Which DNL specification value should go into the datasheet?

DNL Yield Example

- First cut solution
 - For 99.73% yield, need C = 3
 - $-\sigma_{DNL} = \sigma_{u} = 1\%$
 - $-3 \sigma_{DNI} = 3\%$
 - DNL specification for a yield of 99.73% is ± 0.03 LSB
 - Independent of target resolution (?)
- Not quite right
 - Must keep in mind that a converter will meet specs only if all codes meet DNL spec, i.e. DNL(k) < DNL_{spec} for all k
 - A converter with more codes is less likely to have all codes meet the specification
 - E.g. for 12-Bit DAC, DNL spec should be ±0.0497 LSB
 - In practice: also affected by correlations → use (Monte Carlo) simulation & measurements

INL

Standard deviation of INL is maximum at mid-scale (k=N/2)

$$\sigma_{\text{INL}} \cong \sigma_u \sqrt{\frac{N}{2} \left(1 - \frac{N/2}{N}\right)} = \frac{1}{2} \sigma_u \sqrt{N} \cong \frac{1}{2} \sigma_u \sqrt{2^B}$$

For derivation of this result see
 [Kuboki et al., IEEE Trans. Circuits & Systems, 6/1982]

Maximum Achievable Resolution for INL

$$B \cong \log_2\left(4\left[\frac{\sigma_{\text{INL}}}{\sigma_u}\right]^2\right) = 2 + 2\log_2\left(\frac{\sigma_{\text{INL}}}{\sigma_u}\right)$$

• Example: $\sigma_{INL} = 0.1$ LSB (at mid-scale code)

σ_{u}	В
1%	8.6
0.5%	10.6
0.2%	13.3
0.1%	15.3

INL Yield

- Again, we should ask how many DACs will meet the spec for a given σ_{INL} (worst code)
 - It turns out that this is a difficult math problem
- Two solutions
 - Do the math
 - G. I. Radulov et al., "Brownian-Bridge-Based Statistical Analysis of the DAC INL Caused by Current Mismatch," IEEE TCAS II, pp. 146-150, Feb. 2007.
 - Yield simulations
- Good rule of thumb
 - For high target yield (>95%), the probability of "all codes meet INL spec" is very close to "worst code meets INL spec"

EE 240C Analog-Digital Interface Integrated Circuits

DNL & INL of Binary Weighted DAC

Unit Element DAC

Unit Element

2^B-1 switches

Binary Weighted

DNL/INL of Binary Weighted DAC

- INL same as for thermometer DAC
 - Why?
- DNL is not same for all codes, but depends on transition
- Consider worst case: 0111 ... → 1000 ...
 - Turning on MSB and turning off all LSBs

$$\sigma_{DNL}^2 = \underbrace{\left(2^{B-1} - 1\right)\sigma_u^2}_{0111...} + \underbrace{\left(2^{B-1}\right)\sigma_u^2}_{1000...} = \left(2^B - 1\right)\sigma_u^2$$

- Example
 - -B = 12, $\sigma_u = 1\%$ $\rightarrow \sigma_{DNL} = 0.64 LSB$
 - Much worse than thermometer DAC

σ_{DNL} (4-bit Example)

Simulation Example

Another Random Run

- Peak DNL not at mid-scale!
 - Important to realize that this is just one single statistical outcome...

Multiple Simulation Runs (100)

[Lin & Bult, JSSC 12/1998]

EE 240C Analog-Digital Interface Integrated Circuits

Segmented DAC

Comparison

	Unit Element	Compromise?	Binary Weighted
σ _{INL} (worst case)		$\cong rac{1}{2} \sigma_u \sqrt{2^B}$	
σ _{DNL} (worst case)	$\cong \sigma_u$?	$\cong \sigma_u \sqrt{2^B - 1}$
Number of Switched Elements	$2^{B}-1$?	В

Example (B=16, σ_u =0.5%)

DAC Architecture	σ _{INL} (worst)	σ _{DNL} (worst)	Number of Switched Elements
Unit Element Binary Weighted	0.64 0.64	0.005 1.28	65535 16
Compromise?	?	?	?

Segmented DAC

- Binary weighted section with B_b bits
- Thermometer section with B_t = B-B_b bits
- Typically B_t ~ 4...8
- Reasonably small encoder
- Easier to achieve monotonicity

Segmented DAC (2-2)

Comparison

	Thermometer	Segmented	Binary Weighted
σ _{INL} (worst case)		$\cong rac{1}{2} \sigma_u \sqrt{2^B}$	
σ _{DNL} (worst case)	$\cong \sigma_u$	$\cong \sigma_u \sqrt{2^{B_b+1}-1}$	$\cong \sigma_u \sqrt{2^B - 1}$
Number of Switched Elements	$2^{B}-1$	$B_b + 2^{B_t} - 1$	В

Example (B=12, σ_u =1%)

DAC Architecture	σ _{INL} (worst)	σ _{DNL} (worst)	Number of Switched Elements	
Thermometer	0.32	0.01	4095	
Binary Weighted	0.32	0.64	12	
Segmented (B _b =7, B _t =5)	0.32	0.16	38	

EE 240C Analog-Digital Interface Integrated Circuits

Dynamic DAC Errors

Dynamic DAC Errors (1)

- Finite settling time and slewing
 - Finite RC time constant
 - Signal dependent slewing
- Feedthrough
 - Coupling from switch signals to DAC output
 - Clock feedthrough
- Glitches due to timing errors
 - Current sources won't switch simultaneously

Dynamic DAC Errors (2)

References

- Gustavsson, Chapter 12
- M. Albiol, J.L. Gonzalez, E. Alarcon, "Mismatch and dynamic modeling of current sources in current-steering CMOS D/A converters," IEEE TCAS I, pp. 159–169, Jan. 2004
- Doris, van Roermund, Leenaerts, Wide-Bandwidth High
 Dynamic Range D/A Converters, Springer 2006.
- T. Chen and G.G.E. Gielen, "The analysis and improvement of a current-steering DAC's dynamic SFDR," IEEE Trans. Ckts. Syst. I, pp. 3-15, Jan. 2006.

Glitch Impulse (1)

- DAC output waveform depends on timing
 - Consider binary weighted DAC transition 0111... → 1000...

Glitch Impulse (2)

- Worst case glitch impulse (area): $\infty \Delta t \ 2^{B-1}$
- LSB area: ∞T
- Need $\Delta t \ 2^{B-1} << T$ which implies $\Delta t << T/2^{-B+1}$

f _s [MHz]	В	∆t [ps]
1	12	<< 488
20	16	<< 1.5
1000	10	<< 2

Need low jitter clock & distribution

Commercial Example

AD9754

DYNAMIC SPECIFICATIONS (T_{MIN} to T_{MAX} , AVDD = +5 V, DVDD = +5 V, I_{OUTFS} = 20 mA, Differential Transformer Coupled Output, 50 Ω Doubly Terminated, unless otherwise noted)

Parameter	Min	Typ	Max	Units
DYNAMIC PERFORMANCE				
Maximum Output Update Rate (f _{CLOCK})	125			MSPS
Output Settling Time (t_{ST}) (to 0.1%) ¹		35		ns
Output Propagation Delay (tpD)		1		ns
Glitch Impulse		5		pV-s
Output Rise Time (10% to 90%) ¹		2.5		ns
Output Fall Time (10% to 90%) ¹		2.5		ns
Output Noise (I _{OUTFS} = 20 mA)		50		pA/√ Hz
Output Noise ($I_{OUTFS} = 2 \text{ mA}$)		30		pA/√ Hz

EE 240C Analog-Digital Interface Integrated Circuits

DAC Implementation

Implementation Example

Fig. 1. Basic architecture of the DAC.

Fig. 2. Two-step decoding.

[T. Miki, Y. Nakamura, M. Nakaya, S. Asai, Y. Akasaka, and Y. Horiba, "An 80-MHz 8-bit CMOS D/A Converter," IEEE J. of Solid-State Circuits, pp. 983-988, Dec. 1986.]

Mitigating IR Drop

Fig. 9. Symmetrical switching.

Common Centroid Layout Example

- Common centroid binary weighted array
- To cancel gradients
 - Process
 - IR drop
 - Timing

[Bastiaansen, Corne, et al. "A 10-bit 40 MHz 0.8 μm CMOS current-output D/A converter." *Solid-State Circuits Conference, 1990. ESSCIRC'90. Sixteenth European.* Vol. 1. IEEE, 1990.]

[M. Pelgrom, Analog-to-Digital Conversion, 3rd Ed.]

Basic Differential Pair Switch

Commonly Used Techniques

- Retiming
 - Latches in (or close to) each current cell
 - Latch controlled by global clock to ensure that current cells switch simultaneously (independent of decoder delays)
- Make before break
 - Ensure uninterrupted current flow, so that tail current source remains active
- Low swing driver
 - Drive differential pair with low swing to minimize coupling from control signals to output
- Cascoded tail current source for high output impedance
 - Ensures that overall impedance at output nodes is code independent (necessary for good INL)

Example Retiming Latch

[Van der Plas, JSSC 12/99]

Example Current Cell Implementation

[Barkin & Wooley, JSSC 4/2004]

Constant Clock Load Latch

Mercer, US patent ,7,023,255 4/4/2006