Advanced Topics in Biostatistics: Dose-response modeling

Prof. Dr. Annette Kopp-Schneider Biostatistics – C060 kopp@dkfz.de

Outline

- Dose-response studies
- Common dose-response models
- Common measures of potency: ED50, ED10
- Parameter estimation
- Dose-response analysis with SigmaPlot
- Data transformations
- Fixing model parameters
- Assessment of model fit
- Experimental design issues
- Recommendations for practical use

THE LD₅₀ OF TOXICITY DATA IS 2 KILOGRAMS PER KILOGRAM.

Dose-response studies

- Investigate relationship between different doses/concentrations of a test substance and their effects (responses) on a test system
- Study types, e.g.:
 - in vitro experiments
 - bioassays
 - early phase clinical experiments
- Aims: characterize toxicity/effect of test substance
 - risk assessment: determine ,safe' or ,hazardous' (e.g. toxic) dose levels for drugs, potential environmental pollutants or other substances to which humans, animals or other organisms are exposed
 - clinical trials: determine ,optimal' dose to be recommended for treatment of patients with given medical condition
- Dose-response relationships depend on exposure time and exposure route (inhalation, dietary intake,...)

Example

- In vitro experiment: recombinant androgen receptor binding assay (inhibition of receptor activity)
- Response: dpm (disintegrations radiolabeled ligand bound per minute)
- Control: 6 replicates, 8 dose levels: 3 replicates each, (+ 6 non-specific binding)

Typical questions

Is there an effect of dose on response?

Is a clear dose-response relationship observed?

 If there is a clear dose-response relationship, what is its functional form?

Dose-response models

Response = f(dose) + error

- f typically non-linear
- f often sigmoidal

Assumptions about error:

- expected error: 0
- uncorrelated
- normally distributed

Common dose-response model: 4-parameter log-logistic model

Other dose-response models exist:

Weibull model Gompertz model

• • • •

Properties of log-logistic model

- Two parameterizations: either log(ED50) or ED50 is estimated.
- Dose-response curve rescaled to log dose scale to obtain clear visualization.
- log-logistic model function plotted on log scale is symmetric around ED50.
- Different model parametrizations exist (e.g. natural log replaced by log10).
- Hill Slope > 0 usually indicates decreasing dose-response relationship.
- Hill Slope < 0 usually indicates increasing dose-response relationship.

Relative vs. absolute ED50

Relative ED50:

Dose producing half-maximal effect, i.e. dose corresponding to response midway between estimates of lower and upper plateau.

Absolute ED50 (only for decreasing curves):

Dose corresponding to 50% of mean control response.

Common measures of potency/toxicity: Effective doses

Naming conventions

Effective doses EDp: ED10, ED50,...

Effective Concentrations ECp: EC10, EC50,...

Inhibitory Concentration ICp: IC10, IC50,...

Estimation of model parameters

Least squares method:

Minimize sum of squared residuals

Residual=

Observed response – predicted response

(cf. Estimation in linear regression)

- Non-linear optimization problem \rightarrow iterative numerical optimization algorithms needed to find optimal parameter values
- At each iteration step, algorithm determines new parameter values based on data, model and current parameter values (until convergence is reached)
- Algorithm requires to pick/estimate initial values for each model parameter as starting point for iterative procedure
- If variance depends on response level \rightarrow weighted least squares, weights: 1/response or 1/response²

Example: Parameter estimates

ED50 =
$$e^{\log(ED50)}$$
 = $e^{1.615}$ = 5.03 nM

Interpretation: A dose of 5.03 nM produces 50% of the maximal effect

Precision of parameter estimates

- Estimation of ED50 value from experimental data
- Experimental data vary
- Repetitions of the same experiment result in different ED50 estimates
- Precision of ED50 estimate can be assessed by 95% confidence interval (CI)

- Example: 95% CI for ED50 is [4.26 nM, 5.93 nM]
- Interpretation:

the interval [4.26 nM, 5.93 nM] covers the true (but unknown) ED50 with 95% probability

if you would repeat the experiment 100 times and always calculate the 95% CI, the true (but unknown) ED50 is expected to be contained in 95 of the 100 Cls.

Dose-response analysis with SigmaPlot (1)

Dose-response analysis with SigmaPlot (2)

Dose-response analysis with SigmaPlot (3)

Dose-response analysis with SigmaPlot (4)

Dose-response analysis with SigmaPlot (5)

Dose-response analysis using WebApp (1)

See Website: http://www.dkfz.de/en/biostatistics/software.html

.... Dose-response modeling

.... Web application for analysis of dose-response studies

Or directly http://biostatistics.dkfz.de/mdra/

Dose-response analysis using WebApp (2)

Estimation of other quantiles (EDp)

For $0 \le p \le 100$:

$$EDp = ED50 \cdot \left(\frac{100}{100 - p} - 1\right)^{1/\text{HillSlope}}$$

Example:

$$ED10 = ED50 \cdot \left(\frac{100}{100 - 10} - 1\right)^{1/\text{HillSlope}} = 5.03 \cdot \left(\frac{100}{100 - 10} - 1\right)^{1/1.59} = 1.27$$

Interpretation: Dose of 1.27 nM results in 10% of the maximal effect

Data transformation in dose-response analysis (1)

Scale response range for better data visualization/interpretation

→ More convenient comparison of experiments

Data transformation in dose-response analysis (2)

Typical transformations of response:

- (a) background correction
- (b) normalization: divide by mean of (background corrected) control

Evaluation of normalized response data: Common approaches (1)

- Use background correction
 - \rightarrow fix BOTTOM = 0, use 3-parameter log-logistic model
- Use (background correction and) normalization
 - \rightarrow fix BOTTOM \equiv 0, TOP \equiv 1 (=100%), use 2-parameter log-logistic model

Fixing parameters leads to...

- Less numerical problems with curve fitting
- Smaller Confidence Intervals
- ... and potentially incorrect results

Evaluation of normalized response data: Common approaches (2)

e.g. from GraphPad Prism 'Analyzing dose-response data':

Constraining Curve-Fit Parameters

Since we normalized the original data such that the vertical range extends by definition from 0 to 100, it doesn't make sense to fit the "bottom" and the "top" of the curves. So we'll fix those parameters, leaving only the midpoint $(\log EC_{50})$ and slope (Hill slope) of each curve to be fitted by Prism. Select the **Constaints** tab. Constrain the parameters BOTTOM and TOP to 0 and 100, respectively:

Evaluation of normalized response data: Common approaches (3)

e.g. GraphPad Prism

Evaluation of normalized response data: Common approaches (4)

This problem should be fixed now.

Correct approach

Toxicology Letters 213 (2012) 292-298

Contents lists available at SciVerse ScienceDirect

Toxicology Letters

The impact of data transformations on concentration-response modeling

Marc Weimer^{a, 1}, Xiaoqi Jiang^{a, 1}, Oriana Ponta^a, Sven Stanzel^a, Alexius Freyberger^b, Annette Kopp-Schneider^{a, *}

Department of Biostatistics, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany

^b Bayer Pharma AG, GGD GED Toxicology, Department of Pathology and Clinical Pathology, Aprather Weg 18, 42096 Wuppertal, Germany

Effects of normalization and fixing parameters

	ТОР	воттом	HillSlope	ED50 (95%-CI)
Original data	1522	177	1.59	5.03 nM [4.26, 5.93]
Background corrected and normalized data 4-par model	1.00	0.12	1.59	5.03 nM [4.26, 5.93]
Background corrected data Fix BOTTOM≡0, Use 3-par model	1451	-	1.32	5.76 nM [4.86, 6.82]
Background corrected and normalized data Fix BOTTOM≡0, TOP≡1, Use 2-par model	-	-	1.35	5.88 nM [5.06, 6.84]

When using (background corrected and) normalized data: fit 4-parameter model!

A special situation where fixing TOP is legitimate

- Several experiments
- Each experiment: control + several doses, 1 replicate each
- Measurements are normalized to control (fold-change data)
- Here: evaluate with 3-parameter log-logistic model, fixing TOP=1, and exclude control data.

Model assessment (1)

- Plot data together with fitted curve: Is the fitted curve close to the data?
- Use diagnostic plots to assess whether model assumptions are violated (like in linear regression): plot residuals
- Compute Cls: wide Cls indicate problems
- Consider R²:

Fraction of the total variance (of response) explained by the model equation

R² = 0: best-fit curve is no better than a horizontal line going through overall mean response

 $R^2 = 1$: perfect fit

Model assessment (2)

Residual Plot (with SigmaPlot)

Model assessment (3)

Experimental design of dose-response experiments

First step: Range finder experiment

dose levels should span wide dose range

how many dose levels?

- problem-specific

- the more, the better

small number of replicates/dose level

Second step: Main experiment

Optimal experimental design for main experiment

Choice of design depends on which measure of potency should be estimated

Here: ED50

Optimal experimental design for main experiment using WebApp (1)

See Website: http://www.dkfz.de/en/biostatistics/software.html

.... Dose-response modeling

.... Web application for design of dose-response studies

Or directly http://biostatistics.dkfz.de/DoseResponseDesigns/

Requires rough estimates of ED50 and HillSlope

Optimal experimental design for main experiment using WebApp (2)

Optimal Experimental Design for single substance and interaction trials

This Application allows computation of D-optimal designs for interaction trials in a dose response context. Designs are computed for two singular treatments as well as up to 5 combination treatments. Furthermore, the efficiency of prespecified designs can be checked, and more

robust designs suitable for several parameter conditions can be computed.

For details see:

Holland-Letz, T and Kopp-Schneider, A (2020): An R-Shiny application to calculate optimal designs for single substance and interaction trials in dose response experiments (under review)

For the (outdated) previous application from Optimal experimental designs for dose-response studies with continuous endpoints, Archives of Toxicology (2015), 89(11), 2059-68, see https://biostatistics-dkfz.shinyapps.io/dosis/

Two different dose response functions can be considered:

$$Log-logistic: y = c + \frac{d-c}{1 + \exp^{b(ln(x) - ln(e))}}$$

$$Weibull: y = c + (d-c) \exp^{(-\exp^{(-b(\ln(x)-\ln(c))})}$$

Basic settings for design algorithm Lowest log dose level: 1 -10 Highest log dose level: + Number of available dose levels (min 10): 1 101 Reduction parameter: 0.99 + Number of iterations for algorithm (min 50): -

1.	Com	oute	Or	timal	Designs

2. Check efficiency of specific designs

3. Quasi-Bayesian Designs

4. Compute Optimal Designs for Interactions

This part computes D-optimal designs for a single treatment on the specified design space. One of two available dose response functions can be chosen, and an a priori assumption regarding the assumed slope and ED50 parameters can be made.

Lowering the value for the reduction parameter will try to find a design with fewer support points, but might reduce the efficiency.

Function Parameters

Plot of function

Optimal experimental design for main experiment using WebApp (3)

Result

Proposed designs, values of parameters b and e, and resulting D-Efficiency of proposed designs:

	Design	Design	Design	Design	е	b	D-Eff
LogDose	-10.00	-1.00	1.00	10.00	1	1	1.00
Weight	0.25	0.25	0.25	0.25	NA	NA	NA

Design Heatmap

Points marked red on the diagonal are potential design points. Pairs of different design points marked red when crossreferenced are interchangeable with negligible loss of efficiency.

/ersion 3.2, 13Oct2020 Contact: t.holland-letz(at)dkfz.de

Optimal experimental design for main experiment using WebApp (4)

Take home: Recommendations for practical use

- Always plot your raw data (on log-scaled dose) before fitting a (dose-response) model.
- Fit dose-response model to all data points instead of mean response per dose level.
- Use control measurements for model fitting (typically).
- Fix model parameters only if there is compelling reason to do so.
- Use 4-parameter dose-response model even if data have been (backgroundcorrected and) normalized.
- Plot data points with fitted curve, inspect residuals.
- Check whether model assumptions are violated.
- Compute confidence intervals of model parameters (e.g. ED50) to assess precision of parameter estimates.

Software

- SigmaPlot
- GraphPad Prism
- R package drc
- WebApps at http://www.dkfz.de/en/biostatistics/software.html
 - MDRA
 - DoseResponseDesigns

References

- Holland-Letz T, Kopp-Schneider A. (2015) Optimal experimental designs for dose-response studies with continuous endpoints. Archives of Toxicology 89(11):2059-68.
- Jiang, X, and Kopp-Schneider A. (2015) Statistical strategies for averaging EC50 from multiple dose-response experiments. Archives of Toxicology 89(11):2119-27.
- Kappenberg F, Brecklinghaus T, Albrecht W, Blum J, van der Wurp C, Leist M, Hengstler JG, Rahnenführer J. (2020) Handling deviating control values in concentration-response curves. Archives of Toxicology 2020 online.
- Motulsky, H., Christopoulos, A. (2004). Fitting Models to Biological Data Using Linear and *Nonlinear Regression. A practical guide to curve fitting.* Oxford University Press, New York.
- Ritz, C. (2010). Toward a unified approach to dose-response modeling in ecotoxicology. Environmental Toxicology and Chemistry **29**, 220-229.
- Ritz C, Baty F, Streibig JC, Gerhard D (2015) Dose-Response Analysis Using R. PLoS ONE 10(12): e0146021. doi:10.1371/journal.pone.0146021
- Weimer, M., Jiang, X., Ponta, O., Stanzel, S., Freyberger, A., Kopp-Schneider, A. (2012). The impact of data transformations on concentration-response modeling. Toxicology Letters **213**, 292-298.

Page 42

Next lexture

4 November

Non-parametric methods