Física Experimental II

Atividade experimental II O pêndulo físico.

Ícaro Chiabai - RA 247171 - Curso 34

 $2^{\underline{0}}$ Semestre. Setembro de 2021.

Resumo

Estudamos o pêndulo físico, visando determinar valores para a aceleração da gravidade e para o raio de giração do pêndulo físico confeccionado. Obtivemos os valores de $g = 9.7m/s^2$ e $k = 0.1 \pm 0.001m$ teórico e $g = 9.7 \pm 0.3m/s^2$ e $k = 0.106 \pm 0.005m$ experimentais. Resultados que concordam em seus intervalos. Acreditamos que algumas fontes de incertezas sejam causadas por forças de resistência e que desvios sistemáticos surjam na determinação do centro de massa.

1 Introdução

Neste experimento iremos estudar o pêndulo físico, um corpo rígido suspenso que oscila em torno do eixo onde está suspenso.

2 Objetivos

Neste experimento, esperamos determinar valores para a aceleração da gravidade e o raio de giração do pêndulo feito.

3 Metodologia

Para realizar este experimento, desenvolvemos nosso próprio pêndulo físico. Utilizando um rolo de papelão de papel Kraft, estimamos o centro de massa desse rolo tentando equilibrar ele em cima de uma régua, o centro de massa estaria localizado entre os extremos dessa régua, estimamos que estivesse localizado no centro desse intervalo e a partir desse ponto realizamos furos espaçados em 1 cm com o auxílio de uma régua milimetrada. Desvios sistemáticos podem surgir nesse momento devido uma possível posição inadequada do centro de massa, que pode fazer com que as distâncias do centro de massa não correspondam com a realidade, causando um offset invisível que impacta diretamente nos dados coletados. Acreditamos que o método utilizado para determinar o centro de massa não foi ideal, pensamos que seja melhor realizar a medição do tubo e analisar a região do centro do tubo, caso o tubo utilizado pareça bastante homogêneo como o que foi utilizado. A figura 1 apresenta informações sobre o rolo utilizado e a figura 2 apresenta detalhes sobre a montagem.

Para a coleta de dados, erguemos o rolo em torno de 60° em relação a vertical e soltamos 3 vezes e utilizamos a média dos dados obtidos para a confecção dos gráficos. Filmamos a oscilação e analisamos o vídeo no software *Tracker* para coletarmos o período. Um detalhe muito importante é que consideramos apenas a primeira oscilação como válida para continuidade do experimento, pois à medida que o pêndulo oscila, sua oscilação sofre interferência por forças de resistência, como a do atrito entre o arame utilizado e o pêndulo. Portanto, consideramos apenas a primeira oscilação para todas as distâncias

(a) Rolo de papelão e arame utilizado. A massa do rolo é de 51 gramas e foi medida com uma balança comum, com uma incerteza de $0.1~\rm g.$

(b) Medidas dos furos realizados. O rolo tem um comprimento de 33 cm, espessura de 4 mm e diâmetro externo de 7,5 cm. A incerteza relacionada a essas medidas é de 0,5 mm.

Figura 1: Informações sobre o rolo

(a) Vista de cima da montagem. Uma cabeça de martelo e um apoio de metal foram utilizados como pesos para fixar o arame.

(b) Vista lateral da montagem. Tentamos evitar ao máximo a interferência do vento na oscilação do pêndulo.

Figura 2: Montagem do experimento

coletadas. A incerteza associada ao período é de 0,03 segundos e à distância do centro de massa é de 0,05 cm. A aceleração da gravidade local foi mensurada utilizando o aplicativo de celular Phyphox que apontou um valor de $9.7 \cdot m/s^2$, sua incerteza não foi identificada.

4 Análise de dados

Com os períodos obtidos para cada distância, utilizamos a linguagem de programação Python e as bibliotecas Numpy, Matplotlib e Pandas para realizar o tratamento dos dados e a confecção dos gráficos. Linearizamos a equação modelo $T=2\pi\sqrt{\frac{D+\frac{k^2}{D}}{g}}$ para o pêndulo físico e obtivemos a equação $DT^2=\frac{4\pi^2}{g}\cdot D^2+\frac{4\pi^2k^2}{g}$, que podemos comparar com uma equação de uma reta se considerarmos $y=DT^2$; $A=\frac{4\pi^2}{g}$; $x=D^2$; $B=\frac{4\pi^2k^2}{g}$, como mostrado no gráfico da figura 3. Com isso, plotamos os dados experimentais seguindo essa reta e realizamos um ajuste polinomial linear usando o método dos mínimos quadrados. Obtendo o gráfico presente na figura 3.

(a) Gráfico que contém as retas resultantes da linearização da equação modelo para valores de k variados.

(b) Gráfico resultado da linearização da equação modelo com base nos coeficientes da reta r em vermelho.

Figura 3: Gráficos para visualizar a linearização da equação modelo para o comportamento teórico e obtido.

Utilizando os coeficientes da reta, conseguimos determinar os valores estimados para a aceleração da gravidade g e raio de giração k e podemos descobrir a incerteza associada realizando a devida propagação de incertezas, que será melhor detalhado na seção de resultados.

5 Resultados

Como apresentado no gráfico da figura 3, obtivemos os valores $g_{exp} = 9.7 \pm 0.3 m/s^2$ e $k_{exp} = 0.106 \pm 0.005 m$, que é um resultado promissor pois estão de acordo com o os valores teóricos esperados. O raio de giração, que foi obtido comparando a equação do momento de inércia para um tubo cilíndrico de paredes espessas com extremidades abertas $I = \frac{1}{12} \cdot m \cdot [3 \cdot (r_{interno}^2 + r_{externo}^2) + L^2]$, onde L é o comprimento do tubo, com a equação $I_{CM} = mk^2$, obtivemos um valor de $k_t = 0.1 \pm 0.001 m$.

6 Discussão

O nosso resultado está dentro do intervalo de confiança. Acreditamos que as margens de erros são mais impactadas por desvios sistemáticos (marcação errônea do centro de massa) e outros fatores externos, como forças de resistência (do ar, atrito), influência do fluxo de ar no local do experimento, arame não estar totalmente reto, tubo não ser homogêneo, existem inúmeras possíveis fontes de desvios e essas são as que achamos mais importantes. Analisando o gráfico presente na figura 4, podemos ver que o comportamento obtido experimentalmente é similar ao comportamento esperado de um pêndulo físico com a equação modelo $T=2\pi\sqrt{\frac{D+\frac{k^2}{D}}{g}}$, e não de um pêndulo simples, cuja equação modelo é $T=2\pi\sqrt{\frac{D}{g}}$.

Figura 4: Gráfico comparando o comportamento experimental com o comportamento previsto.

Comparando com o comportamento do pêndulo físico para valores de k=0.1m e k=0.11m, obtemos o gráfico na figura 5. Que nos mostra que o comportamento obtido é coerente com um valor de k entre 0.1m e 0.11m, o que está de acordo com o k obtido $(k=0.106\pm0.005m)$.

Figura 5: Gráfico comparando o comportamento experimental com comportamentos previstos para k = 0.1m e k = 0.1lm.

Quanto a posição angular do pêndulo em função do tempo, podemos confeccionar um gráfico considerando o ângulo de partida do pêndulo e a velocidade angular, que pode ser obtida a partir da primeira oscilação do pêndulo e realizar uma sobreposição com a previsão teórica a partir da equação $\theta(t) = \theta_0 cos(\omega t)$, onde ω é a velocidade angular e θ_0 é o ângulo de partida. Obtemos o gráfico presente na figura 6, podemos notar que a posição angular possui sua amplitude reduzida, que, provavelmente, é devido à forças de resistências já supracitadas. Isso fará com que o pêndulo pare, ao contrário da previsão teórica, que considera um ambiente ideal que não exista resistência, fazendo com que a amplitude não se reduza, portanto, o pêndulo nunca pare. Percebemos também que o período entre as oscilações aumenta, o que deve ser causado pela perda de energia mecânica do pêndulo, que se traduz em redução da velocidade angular, que, pela sua relação $\omega = \frac{2\pi}{T}$, requer um aumento do período de oscilação. O restante dos gráficos para outras distâncias encontram-se no apêndice e concordam com a análise feita.

Figura 6: Gráfico do comportamento da posição angular para uma distância de 9 cm do centro de massa.

7 Conclusão

Com base nos resultados obtidos, conseguimos alcançar nossos objetivos. Esperávamos encontrar $g=9.7m/s^2$ e $k=0.1\pm0.001m$ e encontramos $g=9.7\pm0.3m/s^2$ e $k=0.106\pm0.005m$, um resultado que consideramos confiável devido aos cuidados obtidos para realizar as medições. Foi possível aprender alguns cuidados que devemos ter na hora de realizar a coleta de dados: zelar pela uniformidade das situações iniciais, coletar os dados mais de uma vez para cada situação e criar um local propício para realizar a coleta. Com certeza o aprendizado adquirido com os cuidados necessários para a coleta de dados de um experimento científico explicitado nesse experimento serão reaproveitados em futuros experimentos.

8 Apêndice: Código fonte do arquivo Python

Disponível no GitHub.

9 Apêndice: Gráficos adicionais

10 Apêndice: Cálculo de incertezas.

Os cálculos não presentes abaixo foram computados no código em Python por variarem de acordo com os dados. Seguem as fotos abaixo:

$$T = \lambda \pi \sqrt{\frac{D + \frac{K^2}{D}}{9}}$$

$$T^2 = 4\pi^2 \left(\frac{D^2 + K^2}{D^2}\right)$$

$$T^3 \cdot Dq = 4\pi^2 D^2 + 4\pi^2 K^2$$

$$DT^3 = 4\pi^2 D^2 + 4\pi^2 K^2$$

$$A = 4\pi^2 P$$

$$A =$$

$$B = \frac{4\pi^{2}}{R} \cdot K^{2} \Rightarrow B = A \cdot K^{2}$$

$$K^{2} = \frac{B}{A} \Rightarrow K = \sqrt{\frac{B}{A}}$$

$$MK^{2} = \left(\frac{\partial K}{\partial A}\right)^{2} \cdot MA^{2} + \left(\frac{\partial K}{\partial B}\right)^{2} \cdot MB^{2}$$

$$MK^{2} = \left(-\frac{1}{2A}\sqrt{\frac{B}{A}}\right)^{2} \cdot MA^{2} + \left(\frac{1}{2B}\sqrt{\frac{B}{A}}\right)^{2} \cdot MB^{2}$$

$$MK^{2} = \left(-\frac{1}{2A}\sqrt{\frac{B}{A}}\right)^{2} \cdot MA^{2} + \left(\frac{1}{2B}\sqrt{\frac{B}{A}}\right)^{2} \cdot MB^{2}$$

$$MK^{2} = \frac{B}{4A^{2}} \cdot MA^{2} + \frac{B}{4B^{2}A} \cdot MB^{2}$$

$$MK = \sqrt{\frac{BMA^{2}}{4A^{2}} + \frac{BMB^{2}}{4B^{2}A}}$$

$$Para ea volors obtides:$$

$$MK = 0,004$$

$$MK = 0,004$$

$$Mattaga de DT^{2}$$

$$M^{2} = \left(\frac{\partial DT^{2}}{\partial O}\right)^{2} \cdot MD^{2} + \left(\frac{\partial DT^{2}}{\partial T}\right)^{2} \cdot MT^{2}$$

N	$L^{2} = (T^{2})^{2} \cdot (0,0005)^{2} + (2DT)^{2} \cdot (0,03)^{2}$
W	2 = T + 2,5.20 + 402 T + 0,0009
w	$= a_1 + 3_16$
L	15 Varia para cada valor de D. T.
J	marteza para D ^a :
Л	$\chi^2 = \left(\frac{\partial D^2}{\partial Q}\right)^2 \cdot M \alpha^2$
N	$V_g = (gD)_g \cdot m D_g$
W	$a = 40^{3} \cdot 2.5 \cdot 10^{-7}$
	$V_g = 70_{-e} D_S$
	$L = D.10^{-3}$ Varia pl coda ponto.
<i>J.</i>	marteza de K: (K² = 1 · m. [3(13 + 122) + 2]
1.0	4 1 2 4 4 2 4 4 4 4 4
K.	$\frac{1}{12} = \frac{1}{12} + \frac{1}{12} $
	$x_{3} = \left(\frac{1}{10}\right)_{3} + \left(\frac{1}{10}\right)_{3} + \frac{1}{10}$

$K = \sqrt{\left(\frac{x_1}{a}\right)^2 + \left(\frac{x_2}{a}\right)^2 + \frac{12}{12}}$
$MK_{5} = \left(\frac{gu}{gK}\right)_{5} \cdot Wu'_{5} + \left(\frac{gu}{gK}\right)_{5} \cdot Wu_{5}^{2} + \left(\frac{gv}{gK}\right)_{5} \cdot Wv_{5}^{2}$
$M_{k}^{2} = \left(\frac{M_{\perp}}{2\sqrt{N_{1}^{2} + N_{2}^{2} + 1_{2}^{2}}}\right)^{2} \cdot M^{2} + \left(\frac{M_{2}}{2\sqrt{N_{1}^{2} + N_{2}^{2} + 1_{2}^{2}}}\right)^$
$\left(\frac{1}{3\sqrt{3!}\cdot\sqrt{3x_1^2+3x_2^2+L^2}}\right)^2 m^2$
$u\kappa = 0.001 m$