Planetary Data System

Harvest Tool

Software Requirements and Design Document (SRD/SDD)

Sean Hardman

March 6, 2010 Version 0.3

CHANGE LOG

Revision	Date	Description	Author
0.1	2010-02-22	Initial draft.	S. Hardman
0.2	2010-02-28	Incorporated comments from the System Design Working Group and	S. Hardman
0.3	2010-03-06	added deployment scenarios. Renumbered the level 4 requirement and moved deployment content to the Implementation section.	S. Hardman

TABLE OF CONTENTS

1.0 IN	ITRODUCTION	4
1.1	Document Scope and Purpose	4
1.2	Method	
1.3	Notation	
1.4	Controlling Documents	
1.5	Applicable Documents	
1.6	Document Maintenance	
2.0 T	OOL DESCRIPTION	6
3.0 U	SE CASES	8
3.1	Manage Policy	9
3.2	Register Latest	9
3.3	Register Batch	9
3.4	Discover Product(s)	10
3.5	Prepare Metadatà	
3.6	Submit Product	10
4.0 R	EQUIREMENTS	
4.1	Level 4 Requirements	12
		12
4.1 4.2	Level 4 Requirements	12 12
4.1 4.2 5.0 D	Level 4 RequirementsLevel 5 Requirements	12 12 14
4.1 4.2 5.0 D	Level 4 Requirements Level 5 Requirements ESIGN PHILOSOPHY, ASSUMPTIONS, AND CONSTRAINTS	12 12 14 15
4.1 4.2 5.0 D 6.0 A	Level 4 Requirements Level 5 Requirements ESIGN PHILOSOPHY, ASSUMPTIONS, AND CONSTRAINTS RCHITECTURAL DESIGN Service Architecture External Interface Design	12 12 14 15 15
4.1 4.2 5.0 D 6.0 A 6.1	Level 4 Requirements Level 5 Requirements ESIGN PHILOSOPHY, ASSUMPTIONS, AND CONSTRAINTS RCHITECTURAL DESIGN Service Architecture	12 12 14 15 15
4.1 4.2 5.0 D 6.0 A 6.1 6.2	Level 4 Requirements Level 5 Requirements ESIGN PHILOSOPHY, ASSUMPTIONS, AND CONSTRAINTS RCHITECTURAL DESIGN Service Architecture External Interface Design	12 14 15 15 15
4.1 4.2 5.0 D 6.0 A 6.1 6.2 6.3 6.4	Level 4 Requirements Level 5 Requirements ESIGN PHILOSOPHY, ASSUMPTIONS, AND CONSTRAINTS RCHITECTURAL DESIGN Service Architecture External Interface Design Internal Interface Design	12 12 14 15 15 16
4.1 4.2 5.0 D 6.0 A 6.1 6.2 6.3 6.4 7.0 A	Level 4 Requirements Level 5 Requirements ESIGN PHILOSOPHY, ASSUMPTIONS, AND CONSTRAINTS RCHITECTURAL DESIGN Service Architecture External Interface Design Internal Interface Design Data Model	12 14 15 15 16 16
4.1 4.2 5.0 D 6.0 A 6.1 6.2 6.3 6.4 7.0 A 8.0 IN	Level 4 Requirements Level 5 Requirements ESIGN PHILOSOPHY, ASSUMPTIONS, AND CONSTRAINTS RCHITECTURAL DESIGN Service Architecture External Interface Design Internal Interface Design Data Model NALYSIS	12 14 15 15 16 16 17

1.0 INTRODUCTION

The PDS 2010 effort will overhaul the PDS data architecture (e.g., data model, data structures, data dictionary, etc) and deploy a software system (online data services, distributed data catalog, etc) that fully embraces the PDS federation as an integrated system while leveraging modern information technology.

This tool provides functionality for capturing and registering product metadata. The tool will run locally at the Discipline Node to crawl the local data repository in order to discover products and register associated metadata with the Inventory service.

1.1 Document Scope and Purpose

This document addresses the use cases, requirements and software design of the Harvest tool within the PDS 2010 data system. This document is intended for the reviewer of the tool as well as the developer and tester of the tool.

1.2 Method

This combined Software Requirements and Software Design Document (SRD/SDD) represents the software by defining use cases and requirements and by using architecture diagrams, functional descriptions, context diagrams and data flow diagrams for the high-level design. UML diagrams will illustrate the detailed design.

1.3 Notation

The numbering of the requirements in this document will be formatted as **LX.(REG|HVT).AA.X**, where:

- LX represents the requirements level where X is a number.
- REG is an abbreviation representing the registry requirement section for the specified level.
- HVT is an abbreviation representing the harvest requirement section for the specified level.
- AA is a two-letter abbreviation representing the requirement sub-category (optional).
- **X** is a unique number within the section and optional sub-category for the requirement.

Following the text of a requirement may be a reference to the requirement or use case from which it was derived. The reference will be in parenthesis. A paragraph following a requirement, which is indented and has a reduced font size, represents a comment providing additional insight for the requirement that it

follows. This comment is not part of the requirement for development or testing purposes.

1.4 Controlling Documents

- [1] Planetary Data System (PDS) Level 1, 2 and 3 Requirements, August 2006.
- [2] Planetary Data System (PDS) 2010 Project Plan, February 2010.
- [3] Planetary Data System (PDS) 2010 System Architecture Specification, Version 1.0, February 28, 2010.
- [4] Planetary Data System (PDS) 2010 Operations Concept, February 2010.
- [5] Planetary Data System (PDS) Service Software Requirements Document (SRD), TBD.

1.5 Applicable Documents

- [6] Planetary Data System (PDS) Registry Service Software Requirements and Design Document (SRD/SDD), Version 0.3, March 6, 2010.
- [7] PDS4 Information Model Specification, PDS4 Information Model Specification Team, February 2010.

1.6 Document Maintenance

The component design will evolve over time and this document should reflect that evolution. This document is limited to design content because the specification content will be captured in separate documentation (e.g., Installation Guide, Operation Guide, etc.). This document is under configuration control.

2.0 TOOL DESCRIPTION

This tool provides functionality for capturing and registering product metadata for the PDS 2010 system (referred to as the "system" from this point forward). The tool will run locally at the Discipline Node to crawl the local data repository in order to discover products and register associated metadata with the Inventory service. The following diagram details the context of the Harvest tool within the system:

Figure 1: Harvest Tool Context

Within the system, the Harvest tool is an infrastructure component. This means that there will not be any external interfaces to the tool. As depicted in the diagram above, the Harvest tool supports a single interface with the Inventory (Registry) service. This interface has a single purpose and that is to register products from a Discipline Node's data repository to its associated Inventory service instance. The Inventory service is an instance of the Registry service that offers an Application Programming Interface (API) for interacting with that service. The details regarding the tool interface can be found in section 6.2.

The Harvest tool provides the first line of metadata harvesting within the system in order to facilitate tracking of and access to products. The second line of

harvesting occurs in the Search service where metadata from the Registry instances merges with metadata from other sources to generate search indices for targeted search applications.

Although the current PDS system does not have a common Harvest tool, several of the Discipline Nodes have implemented Node-specific capabilities for their own local systems. The tool defined in this document will provide the PDS 2010 system with a common implementation of harvest and registration capabilities for use within the system.

3.0 USE CASES

A use case represents a capability of the component and why the user (actor) interacts with the component. It should be at a high enough level so as not to reveal or imply the internal structure of the system. An actor is an object (e.g., person, application, etc.) outside the scope of the component but interacts with the component. This section captures the use cases for the Harvest tool based on the description of the component from the previous section. These use cases will be used in the derivation of requirements for the component. The following diagram details the use cases:

The above diagram identifies the following actors (represented as stick figures):

Data Engineer

This actor represents a portion of the PDS Technical group that curates the data before and after it enters the PDS system.

Operator

This actor represents a portion of the PDS Technical group that is responsible for configuring and monitoring the system.

The following sections detail the use cases identified in the above diagram.

3.1 Manage Policy

The tool is policy driven with regard to how it discovers products and prepares metadata for those products. This use case pertains to the Operator actor.

- 1. Operator accesses a configuration file for an instance of the Harvest tool.
- 2. Operator edits the configuration file specifying policy for identifying target products and mapping the product type to a corresponding type supported by the target Registry service instance.
- 3. Operator saves the configuration file.

3.2 Register Latest

The tool runs in a mode where it wakes up periodically, inspects a target directory or directories and registers the latest products discovered. This use case pertains to the Data Engineer actor.

- 1. Data Engineer executes the Harvest tool specifying the configuration file.
- 2. Harvest tool searches for products in the target directory or directories (include Discover Product(s) use case).
- 3. Harvest tool prepares metadata for each discovered product (include Prepare Metadata use case).
- 4. Harvest tool registers each product with the target Registry service instance (include Submit Product use case).
- 5. Harvest tool sleeps the specified amount of time and then the scenario returns to step 2.

3.3 Register Batch

The tool runs in a mode where it performs one pass against a target directory and registers the products discovered. This mode of execution is appropriate for registration of an entire collection of products. It gives the Data Engineer more control over the registration of products by allowing a batch to be registered and then reviewed in the registry before approval. This use case pertains to the Data Engineer actor.

- 1. Data Engineer executes the Harvest tool specifying the configuration file.
- 2. Harvest tool searches for products in the target directory or directories (include Discover Product(s) use case).
- 3. Harvest tool prepares metadata for each discovered product (include Prepare Metadata use case).
- 4. Harvest tool registers each product with the target Registry service instance (include Submit Product use case).

3.4 Discover Product(s)

Products are discovered based on the directories where they reside and the names of the files that make up the product. There are two methods for product discovery. The first utilizes the manifest file that will accompany collections in PDS4. The second is with a regular expression. The configuration will specify both methods for the tool. This use case is included as part of the Register Latest and Register Batch use cases.

- 1. Harvest tool obtains criteria for product discovery from the configuration file.
- 2. Harvest tool traverses the target directory or directories searching for products that match the criteria.
- Harvest tool discovers candidate product(s).

Alternative: Previously Discovered Product

At step 3, the tool has already registered the discovered product.

- a. Harvest tool determines a previous registration for a candidate product and skips it.
- b. Return to primary scenario at step 2.

3.5 Prepare Metadata

Metadata is prepared for a discovered product based on the product type specified in the configuration file for the service. This use case is included as part of the Register Latest and Register Batch use cases.

- 1. Harvest tool determines the metadata for a product based on the product type.
- 2. Harvest formats the metadata for submission to the Registry service.

3.6 Submit Product

A product and its associated metadata are submitted to the target instance of the Registry service. This use case is included as part of the Register Latest and Register Batch use cases.

- 1. Harvest tool authenticates for access to the Registry service API (include Security service Authenticate User use case).
- 2. Harvest tool submits the associated metadata for a product for registration via the Registry service API.
- 3. Registry service responds with a successful status regarding the registration and the global unique identifier for the product.
- 4. Harvest tool logs the registration.

Alternative: Product Registration Fails

At step 2, the product registration fails for any number of reasons.

a. Registry service returns an exception with cause of failure.

b. Harvest tool logs the exception.

4.0 REQUIREMENTS

The architecture definition phase of the PDS 2010 project resulted in the decomposition of the system into several elements [3]. The Harvest tool derives from the Catalog/Data Management element, which was derived from requirements 2.6 and 2.2.2 of the PDS Level 1, 2, and 3 Requirements document [1]. The following level 3 requirements are relevant to this tool:

- **2.2.2** PDS will track the status of data deliveries from data providers through the PDS to the deep archive
- **2.6.2** PDS will design and implement a catalog system for managing information about the holdings of the PDS

4.1 Level 4 Requirements

The level four requirements in PDS represent subsystem, component or tool requirements at a high level. The following requirements pertain to the Harvest tool:

L4.REG.3 - The system shall register artifacts of a data delivery into an instance of the registry. (2.2.2, 2.6.2)

A data delivery consists of products (artifacts) including but not limited to data, document and software.

Requirements L4.REG.1, L4.REG.2 and L4.REG.3 are defined in the Registry Service SRD/SDD document [6].

4.2 Level 5 Requirements

The level five requirements in PDS represent subsystem, component or tool requirements at a detailed level. The following requirements pertain to the Harvest tool:

- **L5.HVT.1** The tool shall accept a configuration file specifying policy for tool behavior. (L4.REG.3, UC 3.1)
- **L5.HVT.2** The tool shall provide a command-line interface for execution. (L4.REG.3, UC 3.2, UC 3.3)
- **L5.HVT.3** The tool shall execute from a scheduler. (L4.REG.3, UC 3.2)

- **L5.HVT.4** The tool shall recursively traverse the specified directory or directories in order to identify candidate products for registration. (L4.REG.3, UC 3.4)
- **L5.HVT.5** The tool shall determine candidate products for registration through a combination of the following: (L4.REG.3, UC 3.4)
 - a. The product is listed in a manifest file residing in the target directory.
 - b. The product matches the specified file naming convention from the configuration file.
 - c. A previously registered product has been modified.
- **L5.HVT.6** The tool shall capture metadata for a candidate product specified by the product type. (L4.REG.3, UC 3.5)

This includes identifying metadata (i.e., file location in the data repository) as well as product-specific metadata.

L5.HVT.7 - The tool shall submit the associated metadata for a candidate product to the specified Registry Service instance. (L4.REG.3, UC 3.6)

Products are registered in place (i.e., the local data repository) and are not physically transferred to the Registry Service.

L5.HVT.8 - The tool shall track each product registration. (L4.REG.3, UC 3.6)

This is internal tracking for determining previous product registration.

5.0 DESIGN PHILOSOPHY, ASSUMPTIONS, AND CONSTRAINTS

The intent of the Harvest tool is to provide a simple solution for crawling product archives at the Discipline and Data Nodes for the purpose of registering products into the federated system of registries. The tool will be configurable to support varying directory structures across the Nodes including PDS3 directory structures.

There are two reasons for choosing the crawler design. The first is that it provides backward compatibility and support for existing archives by simply modifying the configuration for the target directory structure and the types of products to be registered. The second is that it will cause minimal impact on current Node operations. The crawler can be run against the current archive and not interfere with existing software running at the Node.

6.0 ARCHITECTURAL DESIGN

The architectural design covers the component breakdown within the tool, external/internal interfaces and the associated data model.

6.1 Service Architecture

The following diagram details the architecture for the Harvest tool:

Figure 3: Harvest Tool Architecture

The Harvest tool consists simply of a Crawler component that receives its configuration from a local configuration file as well as from command-line parameters. It extracts metadata from candidate products and registers those products with the target Registry service instance using the REST-based Registry service API. The Registry Service SRD/SDD [6] documents the API in detail. A local log file captures each registration.

6.2 External Interface Design

The external interface for the Harvest tool is limited to the command-line interface. More information on these interfaces will be forthcoming in a subsequent version of this document.

6.3 Internal Interface Design

The internal interfaces for the Harvest tool involve the structures of the configuration file and the local registration log. More information on these interfaces will be forthcoming in a subsequent version of this document.

6.4 Data Model

The Harvest tool does not have an associated data model but the metadata that passes to the Registry service for product registration is subject to the PDS4 Information Model Specification based on the type of product registered.

7.0 ANALYSIS

The choice of a crawler-based approach was influenced by involvement of Engineering Node staff in recent data system development at the Jet Propulsion Laboratory. These include data systems developed for:

- Physical Oceanography Distributed Active Archive Center (PO.DAAC)
- Orbiting Carbon Observatory (OCO)

Both data systems rely on crawler-based approaches for identifying and registering products with their respective registries. Although both projects developed their solutions with reuse in mind, they each took a different approach with regard to extension points and the underlying library utilized to access the file system. The development staff will review both approaches for suitability in the Harvest tool.

8.0 IMPLEMENTATION

The PDS 2010 system is a phased implementation with increasing capabilities delivered in three planned builds. The builds are as follows:

- **Build 1** This build consists of the Ingestion subsystem including the Security, Harvest, Registry (Inventory, Dictionary, Document, Service) and Report components along with the Data Provider tool suite.
- **Build 2** This build consists of the Distribution subsystem including the Search and Monitor components along with a revised web site and general portal applications.
- Build 3 This build consists of enhanced user capabilities include the Order and Subscription components along with integration of Discipline Node applications and science services.

The Harvest tool, implemented in conjunction with the Registry service, is scheduled for delivery in Build 1. There is no planned phasing with regard to the implementation with all planned capabilities available in Build 1.

The implementation platform for the Harvest tool is the Java 2 Platform Standard Edition 6.0. In addition, development will utilize publically available libraries for command-line option handling, message handling, file system access and HTTP interfacing. It will also utilize the PDS common library for parsing and reading product labels for metadata extraction.

The scenario for the preferred deployment is to run an instance of the Harvest tool and an instance of the Registry service locally at the Node. This will allow for the registration of PDS3 and PDS4 products with separate configurations of the Harvest tool. The following diagram depicts this deployment scenario:

Figure 4: Harvest Tool Deployment (Local Registry)

The Harvest tool provides for execution from the command-line as well as from a scheduler application. A network file system enables access to the PDS3 and PDS4 archive data repositories. The phrase "network file system" is used generically here since the actual implementation may vary from Node to Node based on the choice of platform available at the Node. The Harvest tool submits product registrations to the Registry service via its REST-based interface using the Hypertext Transfer Protocol (HTTP).

A second deployment scenario involves deploying the Harvest tool at the Node but having the product registrations submitted to a remote Registry service hosted at the Engineering Node. This is not the preferred scenario but could be useful during the Build 1 checkout phase where only one or two candidate Nodes will have the preferred deployment. The following diagram depicts this deployment scenario:

Figure 5: Harvest Tool Deployment (Remote Registry)

For Nodes that already have a harvest mechanism in place, they can integrate their harvest mechanism and make direct calls to the Registry service REST-based API to register their products. This would alleviate the need for a local deployment of the Harvest tool.

9.0 DETAILED DESIGN

More information on this topic will be forthcoming in a subsequent version of this document.

APPENDIX A ACRONYMS

The following acronyms pertain to this document:

API	Application Programming Interface
-----	-----------------------------------

HTTP Hypertext Transfer Protocol JPL Jet Propulsion Laboratory

NASA National Aeronautics and Space Administration

PDS Planetary Data System

PDS3 Version 3.8 of the PDS Standards
PDS4 Version 4 of the PDS Standards
REST Representational State Transfer
SDD Software Design Document

SRD Software Requirements Document

UC Use Case

