## **ECE546 Milestone-1 Report**

#### **Team Members-**

- 1. Vaishnavi Avadhanam-200420812
- 2. Zachary Murray-200185195
- 3. Ramachandran Sekanipuram Srikanthan-200367158

#### Introduction-

This project aims to build a 28 bit (32x4) Synchronous SRAM with the Inputs-Address(A<4:0>), Write data(D<3:0>), Write-Enable Bar(WENB- low indicates write) and Clock(CLK) and Outputs-Read data(Q<3:0>). The design is tested using a randomly generated set of values which are being stored and retrieved from the circuit. The Synchronous SRAM is being designed using 3nm technology. The project also focuses on developing a layout for the design. This layout is being tested using the same set of test vectors from the RC tree extracted from the layout.

## Design options being considered-Bit-cells- 6-transistor CMOS SRAM Cell



### **5-transistor CMOS SRAM Cell**



#### **Architecture Overview-**



## **Row Decoders-Traditional Decoder**



### **Row Decoders-Hierarchical Decoders**



## Column Decoder - Pre-decoded Column Decoder + Mux



## **Bit-line Conditioning:**

#### NMOS

- » Faster sensing
- » Smaller noise margin



- Equalizer
  - » Better noise margin
  - Fast precharge V<sub>DD</sub> & sensing BL BL BL

Flip-flops: TSPC positive edge-triggered flip flop



# **Rough Floor Plan**



### Plan of work:

| Major Tasks                                       | Assignment                             |
|---------------------------------------------------|----------------------------------------|
| Bit Cell and Cell array design and testing.       | Vaishnavi Avadhanam                    |
| Row Decoders design and testing.                  | Zachary Murray                         |
| Column Decoders and Flip Flop design and testing. | Ramachandran Sekanipuram<br>Srikanthan |

### References:

- Dachineni Bharath Satyanarayana, Kakarlapudi Pradeep, Tsr Prasad, T Ravi, 2012, A Proposed Five Transistor CMOS SRAM Cell For High Speed Applications, INTERNATIONAL JOURNAL OF ENGINEERING RESEARCH & TECHNOLOGY (IJERT) Volume 01, Issue 09 (November 2012),
- 2. Rabaey, Jan M. Digital Integrated Circuits: A Design Perspective. Prentice-Hall, 2003.