Regulatory sequence analysis

Pattern discovery

Jacques van Helden https://orcid.org/0000-0002-8799-8584

Aix-Marseille Université, France Theory and Approaches of Genome Complexity (TAGC)

Institut Français de Bioinformatique (IFB) http://www.france-bioinformatique.fr

Pattern discovery : goal

- We have a set of sequences
- We suspect that they share some functional signal
- We don't know the pattern of this signal
- General approach: detect unexpected patterns
 - Over-representation
 - Under-representation (avoided signals)
 - Positional bias
- Pattern descriptions
 - String-based descriptions
 - Position-specific scoring matrices (motif profiles)

Pattern discovery : typical cases

- Small sequence set
 - e.g. family of 20 co-regulated genes, obtained from DNA chip experiment
 → identify putative regulatory sites
- Sorted sequence lists
 - e.g. intergenic fragment sorted by affinity for a given transcription factor, on the basis of a ChIP-chip experiment.
- Genome-scale pattern discovery
 - In full genomes
 - Identify over-represented motifs in full genomes
 - Identify under-represented motifs in full genomes (e.g. organism-specific restriction sites in bacterial genomes)
 - In all upstream sequences
 - identify transcription initiation signals
 - identify binding sites for general transcription factors
 - In all downstream sequences
 - identify 3' maturation signals

Pattern discovery: from sequences to motifs

>YBR092C; upstream from -446 to -1; size: 446

TAAAAGTGATTAAAAGAGTTAATTGAATAGGCAATCTCTAAATGAATCGATACAACCTTG GCACTCACACGTGGGACTAGCACAGACTAAATTTATGATTCTGGTCCCTGTTTTCGAAGA Situation

- Let us assume we receive a set of sequences supposed to be co-regulated.
- We ignore the transcription factors involved in this regulation.
- We ignore the cis-acting elements (motifs and binding sites).

Questions

- Could we discover some signals (motifs) on the basis of these sequences?
 - This is a problem of pattern discovery ("ab initio" motif detection)
- Can we afterwards report the instances of these discovered motifs in the input sequences?
 - This is a problem of *pattern matching*.
- Can we predict the transcription factor that would bind the discovered motifs?
 - By comparison with a library of known factors

Pattern comparison

- From the genome only
 - This is a difficult problem.

• •

Pattern discovery: groups of functionally related genes

Pattern discovery: approaches

Pattern discovery approaches

- String-based approaches
 - detection of over-represented words
 - oligo-analysis (single words)
 - dyad-detector (pairs of words separated by a spacer)
- Matrix-based approaches
 - Greedy algorithms (consensus)
 - progressive incorporation of more sequences into the pattern
 - Heuristic algorithms
 - Iterative optimization of the pattern
 - Gibbs sampler (gibbs, alignACE)
- Hidden Markov models (YEBIS, MEME)