Contrôle d'analyse I N°2

Durée : 1 heure 45 minutes Barème sur 20 points

NOM:	
	Groupe
PRENOM.	

1. La fonction f définie par

$$f(x) = \frac{\sqrt{x^3 + 4} + 2(x - 1)}{x} \cdot \arctan(\frac{1}{x})$$

est-elle prolongeable par continuité en $x_0 = 0$? Non, $\lim_{x \to 0^{\pm}} f(x) = \pm \pi$ 3 pts

2. On considère la fonction f définie sur un voisinage de $x_0 = \frac{\pi}{2}$ par

$$f(x) = \frac{\cos(2x) + \sin(x)}{\cos(x)}$$
 si $x \neq \frac{\pi}{2}$ et $f(\frac{\pi}{2}) = 0$.

- a) Montrer que la fonction f est dérivable en $x_0 = \frac{\pi}{2}$. $f'(\frac{\pi}{2}) = -\frac{3}{2}$
- b) La fonction f est-elle continûment dérivable en $x_0 = \frac{\pi}{2}$? Oui 6 pts
- 3. On considère la parabole Γ d'équation $y = \frac{x^2}{2}$.

Déterminer le point T de Γ d'abscisse positive tel que le triangle défini par

- le point T,
- le point M, intersection de la tangente à Γ en T et de l'axe Oy,
- le point $N\,,$ intersection de la normale à Γ en T et de l'axe $Oy\,,$

soit d'aire égale à 5. T(2, 2)

4. On considère la courbe Γ définie paramétriquement par

$$\Gamma: \begin{cases} x^2 t^3 + 2(t-x)^2 - 3t = 0 \\ y = \frac{1}{\sqrt{(t+1)^2 + 3}} \end{cases} \quad t \in \mathbb{R}.$$

Soit T le point de Γ d'abscisse $x_0 = -1$.

- a) Déterminer la pente de la tangente à Γ au point T. $m = -\frac{1}{2}$
- b) Soit P le point de Γ d'abscisse $x_P = -1, 1$. Déterminer l'approximation linéaire de son ordonnée y_P obtenue à partir du point T. $AL = \frac{11}{20}$

4.5 pts