FINITE AUTOMATA

COMP 4200 - Formal Language

TERMINOLOGIES

ALPHABETS AND STRINGS

- An alphabet is any finite set of characters.
 - Examples: {0,1}, {a,b,c}, {0,1,#}, {a,....z,A,.....Z}
 - Typically represented by Σ .

- A string over an alphabet Σ is a finite sequence of characters from Σ .
 - Examples: $\Sigma = \{a, b, c\}$ some valid strings include
 - abc,
 - baba,
 - aaaabbbbccc.
- Empty string, denoted by \in , with length 0.
- Length, number of characters in string, denoted by |x|

- A Language is a set of strings.
- We say that L is a *language over* Σ if it is a set of strings formed from V same on both sides characters in Σ .
- Example: The language of palindromes over $\Sigma = \{a, b, c\}$ is the set {∅, a, b, c, aa, bb, cc, aaa, aba, aca, bab, ... }
- One special language is Σ^* , which is the set of all possible strings generated over the alphabet Σ^* .
- Formally we can say, L is a language over Σ iff $L \subseteq \Sigma^*$.
- Example: $\Sigma = \{a, b, c\}$ then $\Sigma^* = \{\epsilon, a, b, c, aa, ab, ac, ba, ...,$ aaaaaabbbaababa,...}.

*universal set = 2 * same as sigma including empty string

inclusive of everything

LANGUAGE EXAMPLE

• The following is a language $L=\{b,ba,baa,baaa,baaaa,...\}$. Now, is the following a language? $\{aa,ab,ba,\epsilon\}$.

True

LANGUAGE EXAMPLE

• The following is a language $L = \{b, ba, baa, baaa, baaaa, ...\}$

Now, is the following a language? {aa, ab, ba, ε }.

Yes! because its finite, and its definitely a language.

How about $\{aa, ab, ba, \emptyset\}$. Is this a language?

No! Because \emptyset is no a valid string

You cannot have a null string in language, but you can

have empty. E

$$\Sigma = \{a,b\}$$

- Example 1: Consider, set of strings $L_1 = \{x \mid x \in \{a,b\}^* \ and \ |x| \ is \ even\}$ In words, L_1 , is the language of all strings made out of a, b that have even length.
- •Example 2: Language $L_2 = \{x \mid there \ is \ a \ z \ where \ xz = apples\}$

 L_2 is the language made out of all prefixes of L_2 that is $\{\varepsilon, a, ap, app, apple, apple, apples\}.$

AUTOMATON

*Automaton is a simple, idealized mathematical computation machine that has limited memory.

- Automaton can also be said as a simple state machine.
- These machines are called as Finite State Automaton (FSM) or Finite State Automaton (FSA).
- In other words, a finite automaton is a mathematical machine for determining whether a string is contained within some language.

You always need a start state. You can never have a machine voithout a Stark state

STATE DIAGRAM

0

 q_2

Start state, always starts with an arrow.

Circles represent q_0 q_1 0 a state of Automaton. Rinul State, machine must have

The automaton is run on an input string and answers "yes" or "no."

 q_3

only have I V Start state

STATE DIAGRAM

Always begin with start state which is " q_0 " here.

Input: 0 1 0 1 1 0

Accepted

Always begin with start state which is "q₀" here.

In q_0 , $\rightarrow q_1$, on input 0. $q_1 \rightarrow q_3$, on input 1. Etc....

The double circle indicates that this state is an accepting state, the automaton outputs "yes."

Input: 0 1 0 1 1 0

Always begin with start state which is " q_0 " here.

Input: 1 0 1 0 0 0

Rejected by machine

Always begin with start state which is "q₀" here.

This state is not an accepting state, so the automaton says "no"

The double circle indicates that this state is an accepting state, the automaton outputs "yes."

Input: 1 0 1 0 0 0

EXAMPLE: STATE DIAGRAM

 q_0 q_1 0 Does the automaton accept or reject? q_2 q_3

Input: 111911190 $q_1 \leftarrow q_0$

$$Q. 50 \rightarrow 51 \rightarrow 51 \rightarrow 52 \rightarrow 52 \rightarrow 52$$

a. **61**000

b 1011

FINITE AUTOMATON

- Does the automaton accept input once it reaches *NO!, after parsing through input & then decide
- When do you consider if a finite automaton is • When it ends in final state. after reading all of input accepted?

SUMMARY

- A finite automaton is a collection of states joined by transitions.
- •Some state is designated as the start state. Of orly
- •Some states are designated as accepting states. O, can be multiple
- The automaton processes a string by beginning in the start state and following the indicated transitions.
- If the automaton ends in an accepting state, it accepts the input. Otherwise, the automaton rejects the input.

FORMAL DEFINITION OF FA

- •A finite automaton is a 5-tuple (Q, Σ , δ , q0, F), where
- $1.Q \rightarrow$ a finite set called the states,
- 2. $\Sigma \rightarrow$ a finite set called the alphabet,
- 3. $\delta \rightarrow Q \times \Sigma$, transition function,
- 4. $q0 \rightarrow$ the start/initial state, $q0 \in Q$
- 5. F \rightarrow the set of accept/final states, F \subseteq Q

You can how moltiple accept states

FXAMPLE

- •Q? {a1,92,93}
 •Σ? {6,13

 - δ?
 - q0 ? (1
 - F? {a 2}

you can have multiple Final states so need

δ , transition table is given below

Q	0	1
ql	9,	22
q2	93	92
q3	92	92

•
$$Q - \{a_1, q_2, q_3\}$$
• $\Sigma - \{a_1, q_2, q_3\}$

$$\Sigma - \{0, 1\}$$

The language of an automaton is the set of strings that it accepts.

If D is an automaton, we denote the language of D as $\mathcal{L}(D)$.

$$\mathcal{L}(D) = \{ w \in \Sigma^* \mid D \text{ accepts } w \}$$

If A is the set of all strings that machine M accepts, we say that A is the

language of machine M and write L(M) = A.

We say that M recognizes A or That M accepts A.

A machine may accept many strings, but it always recognizes only one language.

if the machine accepts no strings, it still recognizes one language- ε or \emptyset

M accepts strings but recognizes a language.

A = {w | w contains at least one 1 and an even number of 0s follow the last 1}.Then L(M1) = A, or equivalently, M1 recognizes A.

STATE DIAGRAM OF THE TWO-STATE FINITE

AUTOMATON
$$0 = \{2, 2, 2, 2, 3\}$$

 $1 = \{0, 1\}$

- What is the formal definition?
- What is the language it recognizes?

STATE DIAGRAM OF THE TWO-STATE FINITE

q, 3 q2 3 q2 3 q, The string has to end a, 3 q2-

$$M2 =$$

	0	1
ql		
q2		

$$L(M2) =$$

$$\langle 11 \rangle \langle 11 \rangle$$

$$Q: \{a_1, a_2\}$$

 $\{z \in \{0, 1\}\}$

EXAMPLE TO TRY!

- What is the formal definition?
- What is the language it recognizes?

EXAMPLE TO TRY!

$$\begin{cases} -\frac{1}{2} & \frac{1}{2} & \frac$$

$$Q = \{a_0, e_1, e_2\}$$

 $2 = \{0, 1\}$
 $e_0 = \{e_0\}$
 $= \{e_2\}$

EXAMPLE X 1010 90 390 90 90 900 900

- What is the formal definition?
- What is the language it

EXAMPLE

EXAMPLE

- What is the formal definition?
- What is the language it recognizes?
 The String has to Start with o and end with I

EXAMPLE

$$q_0$$
 q_1
 q_2
 q_3
Dead state
 q_3
 q_4
 q_5
 q_6
 q_7
 q_8

YES!!

What is the formal definition?

$$q_0 = q_1$$
 $F = \{ a_1, q_3 \}$

FORMAL DEFINITION OF COMPUTATION

 $M = (Q, \Sigma, \delta, q0, F)$ be a finite automaton and $w = w_1, w_2, w_3, \dots, w_n$ be a string where each w_i is a member of the alphabet Σ .

Then M accepts w if a sequence of states r_0, r_1, \ldots, r_n in Q exists with three conditions:

$$1.r_0 = q_0$$
, Shart with start stat (

2.
$$\delta(r_i, w_{i+1}) = r_{i+1}$$
, for $i = 0, ..., n-1$, and

M recognizes language A if $A = \{w \mid M \text{ accepts } w\}$.

FORMAL DEFINITION OF COMPUTATION

- String w is accepted if $\delta^*(q0, w) \in F$, that is, w leads from the start state to an accepting state.
- String w is rejected if it isn't accepted.

Can't Sevelop larguages like on, In

- A language is any set of strings over some alphabet.
- •L(M), language recognized by finite automaton $M = \{ w \mid w \text{ is accepted by M} \}$.
- A language is *regular, or FA-recognizable*, if it is recognized by some finite automaton.

43 212 aaba Let M: ($\{q0,q1,q2,q3\}$, $\{a,b\}$, $q0,q1,\delta$) where transition is given by $\delta(q0,a)=q1$, $\delta(q_1,a)=q_3, \delta(q_2,a)=q_2, \delta(q_3,a)=q_2; \delta(q_0,b)=q_2, \delta(q_1,b)=q_0, \delta(q_2,b)=q_2,$ $\delta(q3,b)=q2.$ Represent M by its state table Represent M by its state diagram • Which of the following strings are accepted by M ababa, aabba.

b

DETERMINISTIC FINITE AUTOMATON(DFA)

- A DFA is a
 - Deterministic
 - Finite
 - Automaton
- DFAs are the simplest type of automaton.
- It has very limited memory

INFORMAL DEFINITION OF DFA

- •A DFA is defined relative to some alphabet Σ .
- •For each state in the DFA, there must be exactly one transition defined for each symbol in the alphabet.
 - This is the "deterministic" part of DFA.
- There is a unique start state.
- There are zero or more accepting states.

IS THIS A DFA?

Ves, it has

onique start state

| accept state

o, | on each

IS THIS A DFA?

