Chicago Car Accidents Analysis

Justin Lee

Overview

Analyst: Justin Lee

Stakeholder: Vehicle Safety Board of Chicago

Motive: Aims to understand the primary contributory causes of a car accident in order to reduce traffic accidents.

Data Understanding

Dataset features:

- 29 columns
- 2,005,876 rows
- Target variable column: DRIVER_ACTION

7973795K	10020000000000
NONE	568041
UNKNOWN	406729
FAILED TO YIELD	145118
OTHER	143764
FOLLOWED TOO CLOSELY	93147
IMPROPER BACKING	46726
IMPROPER TURN	42036
IMPROPER LANE CHANGE	41055
IMPROPER PASSING	35904
DISREGARDED CONTROL DEVICES	28288
TOO FAST FOR CONDITIONS	23312
WRONG WAY/SIDE	6449
IMPROPER PARKING	5856
OVERCORRECTED	3230
EVADING POLICE VEHICLE	2473
CELL PHONE USE OTHER THAN TEXTING	2313
EMERGENCY VEHICLE ON CALL	1493
TEXTING	626
STOPPED SCHOOL BUS	193
LICENSE RESTRICTIONS	69
Name: DRIVER_ACTION, dtype: int64	07.000

Baseline Model Evaluation

- 1) High overall accuracy (78%) but biased toward majority class
 - a) 97% recall for majority class
- 2) Poor detection of minority class
 - a) Class -2 has only 5% recall
 - b) Class -1 has only 2% recall
- 3) Confusion matrix shows severe misclassification
 - a) Class -2 misclassified as Class 0 in 33,462 cases
 - b) Class -1 misclassified as Class 0 in 42,688 cases

Balanced Model Evaluation

- 1) Improved recall for minority classes -2 and -1
 - a) Class -2 improved from 5% to 28%
 - b) Class -1 improved from 2% to 61%
- 2) Lower accuracy trade-off
 - a) Accuracy dropped from 78% to 49%
- 3) Overall more balanced predictions
 - a) Class 0 recall dropped from 97% to 50% fewer cases of the majority class are being correctly predicted

Recommendations

Balanced Model

In order to reduce traffic accidents it is best to prioritize recall and fairness of all traffic cases rather than accuracy of a model. A balanced performance across all causes should be prioritized over pure accuracy.

Next Steps

Random Forest Model

Add Environmental Data

Policy Recommendations

A Random Forest Model will help handle imbalanced data better than a single Decision Tree. We could consider adding external factors to our data. Weather data, traffic density, and road conditions would all be great factors to add to our data to help improve model accuracy.

We could create policy recommendations from our model results. We could enforce stricter rules and regulations based on leading causes of traffic accidents.

Contact Information

Justin Lee

Email: jlee8150@gmail.com

LinkedIn:

https://www.linkedin.com/in/justinlee2023/

