Source: |KBhBlO101Cells|

1 | The Cell Cycle

1.1 | So, why do cell divide

[KBhBIO101CellReproduction]

The ability to produce organisms more of their kind is one characteristic that best distinguishes living things from nonliving matter

Viruses + Organelles challenge this definition => they are symbiotic and cannot reproduce on their own. We tend to think that cells

- Everyday, 50-70 Billion die => programmed cell death
- · To compensate this, Mitosis (cell division) happen
 - Cell divide in opposite directions
 - Two strands ANTIPARALLEL to each other

Before we continue, do yourself a favor and review [KBhBIO101DNAStructures]

lecellcycle.png

1.2 | The (actual) Cell Cycle

1.2.1 | G1 => Rest Phase, Gap 1

This is the phase which is the "daily life of a cell". There are two major checkpoints in this phase which, upon it is reached, sets the rest of the cell cycle into motion.

- May hit s.a. to volume checkpoint => if ratio too big, the cell is too big
- May hit diffusion checkpoint => larger cells would need to work harder to transport things to the centre

At this phase, the organelles in the cytoplasm also replicates in preparation for the S phase.

1.2.2 |S => S Phase, duplicate DNA. 150 mins

In this process, all of the DNA that is in the nucleus will be KBhBIO101DNAReplication ed in order to actually split the cell in half.

1.2.3 | **G2** => **Rest Phrase, Gap 2.**

The pairs of DNA begins bundling and condensing; the DNA is also checked upon and verified for consistency and dumped based the needs of the cell.

At this point, the enzymes needed to assist Mitosis is also synthesized.

1.2.4 | **M** => **Mitosis!**

Mitosis is the process by which the cell actually divide. It consists of four parts: prophase, metaphase, anaphase, telophase and a final

Prophase

The cytoskeleton of a cell disassembles, and the spindles to seperate the cell begins to form.

The centrioles, the proteins connecting all the spindles, separate to opposite poles of the cell and establishes the bridge of all the microtubuels called the "spindle apparatus".

Protein "joints" in the centromeres of chromasomes called kineticore attach to a spindle after the nuclar envelope erupts.

Metaphase

The microtubuals guide the proteins to align in the equator of the cell called the "metaphase plate".

Anaphase The centromere's centre degrades, freeing the two halfs of the chromasomes.

Kinetore senses tension, and when it is correct, molecules are sent down the microtubials to send a split signal. Yanked by their kineticores by the microtubuals, each copy of the chromatid moves towards one pole of the cell.

Telophase A "cleavage furrow" forms in the centre of the cell created by actin on the circumference constricting. As this cleavage deepens (the actin constricting further), the chromasomes unravel whilst a new nuclear envelope forms.

The spindle apparutus now disassembles; the microtubuals are broken down futher into monomers that will eventually construct the exoskeleton of the new cells.

Animals: **Cytokinesis** The cleavage furrow deepends even more and extends to the point where the two cells fully seperate.

1.3 | Features of the Cell Cycle

Most cell division results in genetically identical daughter cell

Each cell, once specialised, chooses what parts of their chromasome to unwrap + permanently wrap.

Difference in transcription results in different phenotypes.

Sperm + Egg (imcomplete cells) combine together to form a "zygote" => a single cell. Each person is from a zygote.

Paul's Cell Cycle Primer

Screen Shot 2020-11-09 at 3.16.12 PM.png

1.4 | Cell cycle regulation

Cell regulators are proteins that manage and sheperard the process of cell division. They respond to molecular signals throughout the cell and check for internal signals like DNA damage to control the rate and progress of cell division.

The Problem: Cells need to know whence to divide itself.

Drivers tell cells when to divide. The processes that move a cell forward through its life are called "drivers".

- Drivers consists of two parts: a switch + a cyclin
 - a "switch" turns on a "cyclin" protein
 - · this cyclin protein actually drive cell forward

- · Checkpoints regulate drivers' actions
 - Should the cells not meet the requirements of a checkpoint, its driver would be stopped; and/or
 - It will be called to self-destruct