with 
$$\hat{B} = \vec{\nabla} \times \hat{A}$$
,  $E = -\vec{\nabla} \phi - \vec{c} + \vec{A}$ 

$$|| \mathbf{w} ||_{\mathbf{H}} = \frac{9}{2c} (\vec{\mathbf{v}} \times \vec{\mathbf{B}} - \vec{\mathbf{B}} \times \vec{\mathbf{v}}) + 9\vec{\mathbf{E}}$$

## Schrodinger Picture:

If 
$$A' = A + \sqrt[3]{x}$$
,  $t$ )
$$\phi' = \phi - \frac{1}{x} \partial_t f(x,t)$$

$$\phi' = \psi = \frac{1}{x} \partial_t f(x,t)$$

$$\phi' = \psi = \frac{1}{x} \partial_t f(x,t)$$
Gauge Transformation.

Then he have gauge invariant:

$$E'=E$$
,  $B'=B$  and  $(k) = H' U'$ 

$$H = \frac{\left(P_{X} - \frac{e}{c}A_{X}\right)^{2}}{2m} + \frac{\left(P_{Y} - \frac{e}{c}A_{Y}\right)^{2}}{2m}$$

## Choose Gauge:

With Londau Gauge:

$$H = \frac{(-i\hbar\partial_x + \frac{eB}{c}\gamma)^2}{2m} + \frac{(-i\hbar\partial_y)^2}{2m}$$

$$= -\frac{\hbar^2}{2m} \left(\frac{1}{2}\lambda + i\frac{1}{4^2}\right)^2 - \frac{\hbar^2}{2m}\frac{1}{2}\lambda^2$$
where  $l = \frac{\hbar c}{eB}$ 

Define Cyclotron frequency 
$$w_{R} = \frac{eB}{mc}$$

Note H doesn't depend on X, so it has translational symmetry in X.

 $\Psi(xy) \rightarrow e^{-ikx} + (y)$ 

look for: Hx4k = Ex4k

then  $H_{K} = -\frac{t^{2}}{2m} \lambda_{1}^{2} + \frac{1}{2} m W_{B}^{2} (1-k\ell^{2})^{2}$  < Harmonic Oscillator with displaced center.

We know solutions to HO.

En, k= twg(n+=)

Doesn't depend on K, So degeneracy in K.  $\frac{1}{T^{1/4}\sqrt{2^{n}n!}} = \frac{1}{L_{X}} e^{-\frac{1}{2}K^{2}}$ This  $(X^{-1})^{2} = \frac{1}{L_{X}} e^{-\frac{1}{2}K^{2}}$ 

with K= 2 m, m= 0, ±1, ±2 ....

with constraint  $0 < kl^2 < Ly$ Since  $kl^2$  is the distance displaced in t-direction. So don't work the wave function outside the box. Lx, Ly.

Then every is not infilitely degenerate by k
but limited by Area
27112

$$E_{N,K} = KW_B(N + \frac{1}{2}) \frac{Area}{2\pi l^2}$$

It of degeneracy

$$N = \frac{Area}{2716^2} = \frac{Area}{271 \frac{hc}{eB}} = \frac{B \cdot Area}{fc} = \frac{\Phi}{\Phi}$$



DoS: 
$$\frac{V(E)}{Area} = \sum_{m=0}^{\infty} \frac{1}{2\pi l^2} S(E-tw_8(n+\frac{1}{2}))$$

Focus on the lowest tevel 
$$n=0$$
:

1) example: 
$$A_{K} = e^{-\frac{1}{2}k^{2}\ell^{2}}$$

then 
$$\psi(xy) \sim e^{-\frac{(\chi^2+y^2)}{41^2}} e^{-\frac{i}{2t^2}} \times 1$$

2) Example: 
$$A_{k} = e^{-\frac{1}{2}k^{2}l^{2} + (\sqrt{6}+i\chi_{6})k}$$
  
 $\psi(\chi, \gamma) = \frac{1}{\sqrt{12}\sqrt{12}} e^{-\frac{(\vec{r}-\vec{r_{3}})^{2}}{4l^{2}}} - \frac{i}{2l^{2}}(x-x)(\gamma-\gamma_{6})$ 

hext week 2 OH: Thurs 4-5, Mon: 4-5, HW Feb 5. Radial Cauge: Ax=-1By Ay= 1Bx, A=1(Bx2) then  $H = -\frac{h^2}{2m}(\lambda_x + i\frac{eB}{2hc})^2 - \frac{h^2}{2m}(\lambda_1 - i\frac{eB}{2hc}x)^2$ with  $W_8 = \frac{eB}{mc}$   $= \frac{-\frac{h^2}{2m}(\frac{1}{4x} + \frac{1}{4y^2}) + i\frac{eB}{2mc}h(\frac{x}{4y} - \frac{y}{4y}) + \frac{h^2}{2m}(\frac{eB}{2hc}(\frac{x}{2} + \frac{y}{2})}{2m(\frac{1}{r} - \frac{1}{r} -$ = - \frac{\tau\_B}{2} \left( \frac{1}{2} \right) + \frac{\tau\_B}{2} \left( \frac{1}{2} \right) + \frac{\tau\_B}{8} \frac{\tau^2}{\tau^2} then let  $\psi = e^{im\phi} \psi_n(\Gamma)$ ,  $\forall m \forall m = E_m \psi_m$ then he will get ansher depend by generalized Laguerre

4 d = 412

Polynomial.

Consider Lawest Landau Level (LLL) in complex coordinates.

$$Z= x + i\gamma$$
, let  $\partial = \frac{1}{2} = \frac{1}{2}(\partial_x + i\partial_y)$ 

then 
$$f(x,y) = f(\frac{z+\overline{z}}{z}, \frac{z-\overline{z}}{z\overline{i}}) = f(z,\overline{z})$$

$$\rightarrow H = -\frac{tw_R}{2} \left[ \left( \partial_X + \frac{i}{2\eta^2} \gamma \right)^2 + \left( \partial_Y - \frac{i}{2\eta^2} \chi \right)^2 \right]$$

define 
$$X' = \frac{X}{C}$$
,  $Y' = \frac{H}{hw_B}$ .

then 
$$H' = -\frac{1}{2} \left[ (\partial_{x'} + \frac{1}{2} \gamma')^2 - \frac{1}{2} (\partial_{\gamma'} - \frac{1}{2} \chi')^2 \right]$$

NOW we will drop :

$$H = \frac{1}{12} \left( -i \frac{1}{12} - \frac{1}{12} \left( x - i \frac{1}{12} \right) \right) + \frac{1}{12} \left( x + i \frac{1}{12} - \frac{1}{12} \left( x + i \frac{1}{12} \right) \right) + \frac{1}{12} \left( x + i \frac{1}{12} - \frac{1}{12} \left( x + i \frac{1}{12} \right) \right) + \frac{1}{12} \left( x + i \frac{1}{12} - \frac{1}{12} \left( x + i \frac{1}{12} \right) \right) + \frac{1}{12} \left( x + i \frac{1}{12} - \frac{1}{12} \left( x + i \frac{1}{12} \right) \right) + \frac{1}{12} \left( x + i \frac{1}{12} - \frac{1}{12} \left( x + i \frac{1}{12} \right) \right) + \frac{1}{12} \left( x + i \frac{1}{12} - \frac{1}{12} \left( x + i \frac{1}{12} \right) \right) + \frac{1}{12} \left( x + i \frac{1}{12} - \frac{1}{12} \left( x + i \frac{1}{12} \right) \right) + \frac{1}{12} \left( x + i \frac{1}{12} - \frac{1}{12} \left( x + i \frac{1}{12} \right) \right) + \frac{1}{12} \left( x + i \frac{1}{12} - \frac{1}{12} \left( x + i \frac{1}{12} - \frac{1}{12} \right) \right) + \frac{1}{12} \left( x + i \frac{1}{12} - \frac{1}{12} - \frac{1}{12} \left( x + i \frac{1}{12} - \frac{1$$

H = ata + =

Show 
$$[a^{\dagger}, a] = 1$$
, then  $a^{\dagger}a = n$ 

$$|e| \psi = e^{\frac{1}{4}} \chi = e^{\frac{1}{4}} \chi$$

$$(-2i) - \frac{1}{2}z) e^{\frac{2z}{4}} \chi$$

$$|f| = e^{\frac{2z}{4}} (-2i) - \frac{1}{2}z - 2i(-\frac{z}{4}) \chi$$

Then 
$$(-2i\overline{\delta})\chi = e^{4} E \chi$$

$$\frac{-27}{4} \frac{1}{2} (-25) + (7) (-25) \chi = (E - \frac{1}{2}) \chi = \frac{37}{4}$$

$$\frac{1}{2} \int_{E = \frac{1}{2} \text{ in } UL \text{ s. RHS=0}}$$

$$\frac{1}{22} \int_{E = \frac{1}{2} \text{ in } UL \text{ s. RHS=0}}$$

then LHS = 0. let  $x=z^m$ , m=0,1,2...S> it B as degenerate.

then 
$$Z^{M} = (\chi + i\gamma)^{M} = (rei\phi)^{M} = r^{M} e^{im\phi}$$
  
then  $\psi(\chi, \gamma)_{N=0} = e^{-\frac{|Z|^{2}}{4}} z^{M}$ 

Magnetic Monopole.

Therefore, let A be singular.

Suppose (em), magnetic monopole in optere.

e = e = e Hux guly from to rep

$$L_3 = e^{\frac{i}{2}\pi} \left(\frac{e}{hc}\right) \phi_3 = e^{\frac{i}{2}\pi} \frac{\phi_3}{\phi_6}, \quad \theta = \frac{hc}{e}$$

$$L_3 = e^{\frac{i}{2}\pi} \left(\frac{e}{hc}\right) \phi_3 = e^{\frac{i}{2}\pi} \frac{\phi_3}{\phi_6}, \quad \theta = \frac{hc}{e}$$

= = izn do' Flux galy through rest of sphere.

then 
$$\phi = N\phi$$

Since 
$$\phi$$
: 471em  $\phi$  =  $\frac{tc}{e}$ 27

$$e_m e = N \frac{\hbar c}{2}$$

$$e_m = N\left(\frac{hc}{2e^2}\right)e$$
 and  $\frac{hc}{e^2} \sim 187$ 

$$= \frac{1}{N}\frac{137}{2}e$$

$$\frac{1}{2}N\frac{137}{2}e$$

or 
$$e = N \frac{tc}{2em}$$
 < meaning that electric charge is quantized and depend on  $em$  if it exists.

$$\vec{A} = \frac{e_m(1-cos\theta)}{rsin\theta} \hat{\varphi}$$



$$\oint \vec{A} \cdot d\vec{1} = \frac{e_m(|-\cos b|)}{r \sin \theta} \quad 2\pi \sinh \theta = \frac{e_m}{r^2} \quad 2\pi (|-\cos \theta|) r^2$$

when  $\theta = 0$ , it is fine, but as  $\theta = \pi$ ,  $\sin \theta = 0$ , then it is divergent.



Wa-Yang Monopole:



$$\vec{A} = \frac{e_m(1-\cos b)}{\cos b} \varphi$$

$$\frac{1}{A} = \frac{e_{m}(1-c_{0}s\theta)}{rsin\theta} \hat{\varphi} \qquad \frac{(\underline{\pi})}{A} = -\frac{e_{m}(Hco(\theta))}{rsin\theta} \hat{\varphi}$$

$$0 \le \theta < \pi - \varepsilon$$

$$\varepsilon < \theta \le \pi$$

$$A^{\text{II}} - A^{\text{I}} = \vec{\nabla} \Lambda$$
,  $\Lambda = -2e_{\text{m}} \Upsilon$