Segmenting and Clustering Crimes **Against Females in New York City**

Amr Elrasad

1 Introduction

This project is utilizing the power of data science and machine learning to infer a safety maps of the New York City for women.

The project uses the data of incidents reported to New York police department to analyse the relation between police precincts locations and the sex of the victim. In this project, I focus on female sex to be able to come up with safety map showing how danger or safe each precinct is in New York City.

2 Business value

The project idea is interesting for many stakeholders such as:

- 1. Mobile apps development industry: this looks like a good app on mobile phone for each woman to avoid danger spots in the city. I can be also helpful for tourists.
- 2. Police department: the information inferred by this study will help the police department to better re-distribute and organize the patrol service
- 3. Employers: this would help employers better understands the risks of their business locations in relation to female employees.
- 4. Business Owners: they would utilize this information to direct their advertisement towards women if their business location is in the nearest areas.
- 5. Housing for females: the information might help planning for female students/employee housing developments to choose best spots of such projects.

3 Data

The data used in this project is available on (https://catalog.data.gov/dataset/nypd-complaint-datahistoric). The data is provided by Data.gov which is managed and hosted by the U.S. General Services Administration.

The data provide several keys which are:

Indicator of whether crime was successfully completed or attempted, CRM_ATPT_CPTD_CD

but failed or was interrupted prematurely

HADEVELOPT Name of NYCHA housing development of occurrence, if applicable

HOUSING_PSA Development Level Code

Jurisdiction responsible for incident. Either internal, like Police(0), JURISDICTION_CODE

Transit(1), and Housing(2); or external(3), like Correction, Port

Authority, etc.

JURIS_DESC Description of the jurisdiction code
KY_CD Three digit offense classification code

LAW_CAT_CD Level of offense: felony, misdemeanor, violation

LOC_OF_OCCUR_DESC Specific location of occurrence in or around the premises; inside,

opposite of, front of, rear of

OFNS_DESC Description of offense corresponding with key code

PARKS NM Name of NYC park, playground or greenspace of occurrence, if

applicable (state parks are not included)

PATROL_BORO The name of the patrol borough in which the incident occurred

PD_CD Three digit internal classification code (more granular than Key Code)

Description of internal classification corresponding with PD code (more

PD_DESC granular than Offense Description)

PREM_TYP_DESC Specific description of premises; grocery store, residence, street, etc.

RPT_DT Date event was reported to police

STATION_NAME Transit station name SUSP_AGE_GROUP Suspect's Age Group

SUSP_RACE Suspect's Race Description SUSP_SEX Suspect's Sex Description

TRANSIT_DISTRICT Transit district in which the offense occurred.

VIC_AGE_GROUP Victim's Age Group

VIC_RACE Victim's Race Description
VIC_SEX Victim's Sex Description

X_COORD_CD X-coordinate for New York State Plane Coordinate System, Long

Island Zone, NAD 83, units feet (FIPS 3104)

Y_COORD_CD Y-coordinate for New York State Plane Coordinate System, Long Island

Zone, NAD 83, units feet (FIPS 3104)

Latitude Midblock Latitude coordinate for Global Coordinate System, WGS

1984, decimal degrees (EPSG 4326)

Longitude Midblock Longitude coordinate for Global Coordinate System, WGS

1984, decimal degrees (EPSG 4326)

4 Methodology

The phases of this project are as follows

4.1 Data Analysis

In this phase, the data is read and cleaned. Also, the relevant information for study is chosen.

The steps in details are:

1. Read data frame

	CMPLNT_NUM	CMPLNT_FR_DT	CMPLNT_FR_TM	CMPLNT_TO_DT	CMPLNT_TO_TM	ADDR_PCT_CD	RPT_DT	KY_CD
0	619128592	05/25/2017	11:00:00	05/25/2017	11:15:00	48	05/25/2017	351
1	699494668	05/25/2017	11:00:00	05/25/2017	12:00:00	71	05/25/2017	106
2	103321764	05/25/2017	11:00:00	05/25/2017	11:10:00	104	05/25/2017	352
3	137516053	05/25/2017	11:00:00	05/25/2017	11:05:00	113	05/25/2017	341
4	451320561	05/25/2017	11:00:00	NaN	NaN	5	05/25/2017	351
4								+

2. Choose relevant information

I choose the columns to work on. Which are: Borough, crime category, precincts code, incident

	ADDR_PCT_CD	BORO_NM	Latitude	Longitude	LAW_CAT_CD	VIC_SEX
0	48	BRONX	40.846484	-73.893850	MISDEMEANOR	D
1	71	BROOKLYN	40.667757	-73.929829	FELONY	F
2	104	QUEENS	40.729690	-73.874856	MISDEMEANOR	F
3	113	QUEENS	40.678989	-73.791585	MISDEMEANOR	D
4	5	MANHATTAN	40.713989	-73.998714	MISDEMEANOR	Е

location, and victim sex

3. Choose victim sex

I choose the rows where the female is the victim sex

	ADDR_PCT_CD	BORO_NM	Latitude	Longitude	LAW_CAT_CD
0	71	BROOKLYN	40.667757	-73.929829	FELONY
1	104	QUEENS	40.729690	-73.874856	MISDEMEANOR
2	48	BRONX	40.855168	-73.887904	MISDEMEANOR
3	45	BRONX	40.842202	-73.849757	MISDEMEANOR
4	24	MANHATTAN	40.794953	-73.971437	FELONY

4. One hot encoding

One hot encoding to change categorial column of crime category as in figure below:

	ADDR_PCT_CD	BORO_NM	Latitude	Longitude	FELONY	MISDEMEANOR	VIOLATION
0	1	MANHATTAN	40.710229	-74.007746	0	0	1
1	1	MANHATTAN	40.720464	-74.006852	0	1	0
2	1	MANHATTAN	40.715529	-74.009240	0	1	0
3	1	MANHATTAN	40.722855	-74.003375	1	0	0
4	1	MANHATTAN	40.705024	-74.012978	0	1	0

5. Scoring

A score column is added to give a single value metric to each index based on crime category.

1	df_grouped							
	ADDR_PCT_CD	BORO_NM	Latitude	Longitude	FELONY	MISDEMEANOR	VIOLATION	Score
0	1	MANHATTAN	40.714436	-74.008120	193.0	284.0	113.0	2043.0
1	5	MANHATTAN	40.718126	-73.995498	160.0	254.0	87.0	1736.0
2	6	MANHATTAN	40.733790	-74.001023	233.0	205.0	78.0	1936.0
3	7	MANHATTAN	40.716364	-73.984518	163.0	294.0	132.0	1961.0
4	9	MANHATTAN	40.726165	-73.983405	273.0	369.0	102.0	2676.0
5	9	QUEENS	40.726554	-73.987828	1.0	0.0	0.0	5.0
6	10	MANHATTAN	40.747869	-74.000401	177.0	224.0	82.0	1721.0
7	13	MANHATTAN	40.738675	-73.985680	281.0	335.0	123.0	2656.0
8	14	MANHATTAN	40.752727	-73.988398	405.0	381.0	126.0	3420.0
9	17	MANHATTAN	40.752853	-73.971203	178.0	156.0	117.0	1592.0

6. Adding empty clusters

Using a new copy of the data frame with new column for cluster labels is added. It is initialized with NaN.

	Cluster Labels	ADDR_PCT_CD	BORO_NM	Latitude	Longitude	FELONY	MISDEMEANOR	VIOLATION	Score
0	NaN	1	MANHATTAN	40.714436	-74.008120	193.0	284.0	113.0	2043.0
1	NaN	5	MANHATTAN	40.718126	-73.995498	160.0	254.0	87.0	1736.0
2	NaN	6	MANHATTAN	40.733790	-74.001023	233.0	205.0	78.0	1936.0
3	NaN	7	MANHATTAN	40.716364	-73.984518	163.0	294.0	132.0	1961.0
4	NaN	9	MANHATTAN	40.726165	-73.983405	273.0	369.0	102.0	2676.0

7. Cleaning repetitions

A cleaning is needed to clean repeated rows with precincts in multiple boroughs.

8. Grouping:

Grouping is done based on precincts codes and the location coordinates are averaged.

1	df_grouped							
	ADDR_PCT_CD	BORO_NM	Latitude	Longitude	FELONY	MISDEMEANOR	VIOLATION	Score
0	1	MANHATTAN	40.720384	-74.006939	193.0	284.0	113.0	2043.0
1	5	MANHATTAN	40.716097	-73.997252	160.0	254.0	87.0	1736.0
2	6	MANHATTAN	40.733985	-74.005457	233.0	205.0	78.0	1936.0
3	7	MANHATTAN	40.716392	-73.983726	163.0	294.0	132.0	1961.0
4	9	MANHATTAN	40.726359	-73.988002	273.0	369.0	102.0	2676.0
5	10	MANHATTAN	40.742876	-73.998551	177.0	224.0	82.0	1721.0
6	13	MANHATTAN	40.736980	-73.982771	281.0	335.0	123.0	2656.0
7	14	MANHATTAN	40.753830	-73.995050	405.0	381.0	126.0	3420.0
8	17	MANHATTAN	40.756657	-73.970653	178.0	156.0	117.0	1592.0
9	18	MANHATTAN	40.765130	-73.985013	302.0	357.0	184.0	2949.0

4.2 Foursquare API

I used Foursquare API to get the location coordinates of each precinct. I created a list of all of them on my Foursquare account. I get list id query to get list details. A loop is used to parse list and nested dictionaries to get each list item location and updates the corresponding data frames.

4.3 Clustering

I used two clustering approaches:

- 1. K-Means: This algorithm helps clustering data into desired number of clusters and helps infer the relation between data samples.
- 2. DBSCAN: This algorithm can give insights about outliers and can help decide appropriate number of clusters.

More details are in the results section

5 Results & Discussion

In this section, an overview of the results is presented.

I have done four clustering experiments as follows:

5.1 K-means I

In this experiment, I used the crime category count for each type and the location coordinates to cluster these data points. The results from clustering is as below

There is some geographical over lapping between clusters. This is due to the fact that coordinates

noticed. This is due to the fact that only one metric in this experiment (score) is passed to the algorithm unlike the previous experiment

5.3 K-Means III

In this experiment, I used score only for clustering.

A large geographical scattering is noticed in this case. This is expected as the geographical coordinates are not used in clustering this time.

5.4 DBSCAN

In this experiment, I explored the power of DBSCAN algorithm to make use of:

- 1. Outlier detection
- 2. Ability to select number of clusters

The results are as below:

The algorithm classified data into 3 clusters based on the score. The geographical coordinates are not used in this experiment.

6 Conclusion

This study provided insights about crime against women in New York City. The study used the geographical locations, the crime category for clustering

Four different experiments were made. The four outcomes can be of potential interests for many stakeholders and governmental agencies.

I hope this study will provide safety of each woman in New York and would help increase crime avoidance and prevention rates.