Q

[翻译]H.264 探索 第二部分 H264码流格式

h264

cppprimer 2016年08月24日发布

H.264 探索 第二部分 H264码流格式

原文地址

前言

先前的话题是关于色彩模型,以及如何存储像素色彩数据的。现在是时候去更深了解H.264码流格式,并找到这些像素的数据。

NAL

显然,解码器接收一个特定的格式的比特序列,并进行操作。二进制流是结构化的,由packets组成。在上层,流由NAL-packets组成,并具有以下形式:

NAL表示Network Abstraction Layer(网络抽象层)的缩写。

packet结构如下图

NAL-packet的第一个字节是一个包含关于packet的类型信息的报头。

表1中描述了所有可能的数据包类型。

Туре	Definition
0	Undefined
1	Slice layer without partitioning non IDR

Туре	Definition
3	Slice data partition B layer
4	Slice data partition C layer
5	Slice layer without partitioning IDR
6	Additional information (SEI)
7	Sequence parameter set
8	Picture parameter set
9	Access unit delimiter
10	End of sequence
11	End of stream
12	Filler data
1323	Reserved
2431	Undefined

NAL类型定义了当前NAL-packet数据结构。它可以是slice, parameter set, filler等等。

如从图中可以看出, NAL-packet的有效载荷被定义为RBSP(Raw Byte Sequence Payload)。

RBSP描述了一行被定义为SODB(String Of Data Bits)的字节集。所以RBSP包含SODB。

根据ITU-T规范,如果SODB为空(0比特长度),RBSP也为空。

RBSP的第一字节(最显著,最左边)包含八位SODB; RBSP的下一个字节应该也包括以下八个SODB等等,直到有少于8位SODB。接着是一个停止位和均衡位(如下图)

SLICE

现在,让我们更进一步查看我们的比特流:

任何已编码图片都包含slice(切片),slice包含macroblocks(宏块)。大多数情况下,一个已编码图像对应于一个切片。此外,一个图像可以有多个切片。所述切片被分为以下类型:

Туре	Description
0	P-slice. Consists of P-macroblocks (each macro block is predicted using one reference frame) and / or I-macroblocks.
1	B-slice. Consists of B-macroblocks (each macroblock is predicted using one or two reference frames) and / or I-macroblocks.
2	I-slice. Contains only I-macroblocks. Each macroblock is predicted from previously coded blocks of the same slice.
3	SP-slice. Consists of P and / or I-macroblocks and lets you switch between encoded streams.
4	SI-slice. It consists of a special type of SI-macroblocks and lets you switch between encoded streams.
5	P-slice.
6	B-slice.
7	I-slice.
8	SP-slice.
9	SI-slice.

看起来像上表包含了一些冗余数据,但事实并非如此:

类型5 - 9意味着当前图像的所有其他切片将是同一类型。正如你所看到的每个切片都由header和data组成。切片头包含了关于切片类型,切片宏块的类型,切片帧的数量的信息。当然切片头也包含了参照帧的设置(the reference frame settings)和量化参数(quantification parameters)的信息。最好,我们来查看切片data,这是储存像素数据的地方。宏块是信息的主要载体,因为它们包含将对应于单个像素的亮度和色度分量的集合。无需进入细节可以得出结论,不考虑细节可以得出的结论是,视频解码最终可以简化为从比特流中对宏块的搜索和提取,以及后续借助亮度和色度分量对像素颜色的恢复。宏块组成如下图:

在这里,我们有宏块类型,预测类型(这是下一文章的主题),编码块模式(Coded Block Pattern),量化参数(Quantization Parameter)(如果我们有CPB),最后数据(data):亮度和色度分量的集合。

2016年08月24日发布 ••

你可能感兴趣的文章

PHP+FFMPEG自动转码H264标准Mp4文件 24 收藏, 5.6k 浏览

RTP打包h264码流 1.6k 浏览

h264 hardware mediacodec+surfacetexture编码解码在某些mtk机型上会出现问题预警 77 浏览

系列文章

[翻译]H.264 探索 第一部分 色彩模型 488 浏览

Copyright © 2011-2018 SegmentFault. 当前呈现版本 17.06.16 浙ICP备 15005796号-2 浙公网安备 33010602002000号 杭州堆栈科技有限公司版权所有

CDN 存储服务由 又拍云 赞助提供 移动版 桌面版