

# Department of Computer Science

CSE 4820: Wireless and Mobile Security

15. Zigbee Security

Dr. Abdullah Aydeger

**Location: Harris Inst #310** 

Email: aaydeger@fit.edu

# Outline

Attacking Zigbee



# Recall: Zigbee Overview

| Solution                           | Description                                                                                                                              |
|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| Network Protocol                   | Zigbee PRO 2015 (or newer)                                                                                                               |
| Network Topology                   | Self-Forming, Self-Healing MESH                                                                                                          |
| Network Device Types               | Coordinator (routing capable), Router, End Device, Zigbee Green Power Device                                                             |
| Net. Size (theoretical # of nodes) | Up to 65,000                                                                                                                             |
| Radio Technology                   | IEEE 802.15.4-2011                                                                                                                       |
| Frequency Band / Channels          | 2.4 GHz (ISM band)<br>16-channels (2 MHz wide)                                                                                           |
| Data Rate                          | 250 Kbits/sec                                                                                                                            |
| Security Models                    | Centralized (with Install Codes support) Distributed                                                                                     |
| Encryption Support                 | AES-128 at Network Layer<br>AES-128 available at Application Layer                                                                       |
| Communication Range (Avg)          | Up to 300+ meters (line of sight) Up to 75-100 meter indoor                                                                              |
| Low Power Support                  | Sleeping End Devices Zigbee Green Power Devices (energy harvesting)                                                                      |
| Legacy Profile Support             | Zigbee 3 devices can join legacy Zigbee profile networks. Legacy devices may join Zigbee 3 networks (based on network's security policy) |
| Logical device support             | Each physical device may support up to 240 end-points (logical devices)                                                                  |

### Recall: ZigBee Layers

Application Layer (APL)

App. Framework

App Support (APS)

Zigbee Device Option (ZDO)



Defined in IEEE 802.15.4 (Low-rate wireless personal area network)

Network Layer (NWK)

Medium Access Control Layer (MAC)

Physical Layer (PHY)

https://csa-iot.org/all-solutions/zigbee/



# Recall: Example Zigbee Network

One ZC for the network, additional ZRs





# Recall: Zigbee: Key Provisioning

- Significant challenge; process of provisioning, rotating, and revoking keys on devices
- Zigbee Pro; Administrator can use the SKKE method to derive the network and link keys on devices
  - Requires devices to have master key provisioned on the TC and device joining the network



#### Recall: Zigbee Attacks

- KillerBee:
  - Python-based framework for manipulating and penetration testing Zigbee and IEEE 802.15.4 networks



- Written and tested on Linux, free and open-source
- Includes support for Scapy
- · Includes a variety of tools including zbwireshark, zbdump, and zbreplay

https://github.com/riverloopsec/killerbee



### Zigbee: Network Discovery

- First assessment is to discover networks within range and enumerate the configuration of devices
  - Simple way; mimic Zigbee network discovery process with Killerbee
- Part of network discovery process in Zigbee Standard, ZDEs transmit beacon request on a given channel
  - All ZR and ZCs receiving beacon -> respond by sending a beacon frame
    - Disclose PAN ID, ZC or ZR source address, stack profile/version, extended IEEE address information
- Using same technique to actively scan for the presence of Zigbee network

# Zigbee: Network Discovery

- Killerbee tool zbstumbler (similar to Wifi discovery tool Netstumbler):
  - Channel hops and transmits beacon request frames
    - Every two seconds hopping to a new channel
  - Display useful information from response beacon frames



# Zigbee Network Scanning Countermeasure

- Beacon request mechanism is integral to Zigbee
  - Cannot be disabled
  - Attacker can use it freely
- Best countermeasure is to understand the impact and evaluate your own networks to identify the information attacker can gain



#### Eavesdropping Attacks

- Zigbee networks are mostly not encrypted
  - Extremely easy to eavesdrop
- Even if it uses encryption
  - Many unencrypted fields useful; MAC header, config of network, node address and PAN ID
  - Might substitute network discovery?
- Killerbee zbdump -> similar to tcpdump

```
Destination
                                                            Protocol Length Info
                                                                       51 Command, Dst: Broadcast, Src: 0x0000
20 13.098522
                                                            ZiaBee
                                                                       28 Beacon, Src: 0x0000, EPID: 31:44:80:c9:ca:7f:4a:d5
21 15.596531
22 15.724666
                                                                       28 Beacon, Src: 0x0000, EPID: 31:44:80:c9:ca:7f:4a:d5
                                                                       28 Beacon, Src: 0x0000, EPID: 31:44:80:c9:ca:7f:4a:d5
                                                                       28 Beacon, Src: 0x0000, EPID: 31:44:80:c9:ca:7f:4a:d5
                                                                     111 Ack, Bad FCS
                                                                      97 Data, Dst: 0x0000, Src: 0x42c9, Bad FCS
                                      0x42c9
                                                                      113 Data, Dst: 0x42c9, Src: 0x0000, Bad FCS
                                      0x42c9
                                                                       50 Data, Dst: 0x42c9, Src: 0x0000
                                                                       57 Ack. Bad FCS
                                                                       56 Data, Dst: 0x42c9, Src: 0x0000, Bad FCS
                                      0x42c9
                                                                      51 Data, Dst: 0x42c9, Src: 0x0000, Bad FCS
                                                                      108 Data, Dst: 0x42c9, Src: 0x0000, Bad FCS
                                                                      105 Data, Dst: 0x42c9, Src: 0x0000, Bad FCS
                00:15:5f:00:b4:4d:2 0x0000
                                                                      27 Association Request, RFD, Bad FCS
                                                                       86 Data Request, Bad FCS
                                                                       90 Data Request, Bad FCS
                                                                       73 Data Request, Bad FCS
                                                                       67 Data Dst: 0x0000 Src: 0x87c4 Rad ECS
```

- Destination: 0x0000
- FCS: 0x6c04 (Incorrect, expected FCS=0xc2aa)
- ▶ [Expert Info (Warning/Checksum): Bad FCS]



- Silva/Nunes attack exploits a flaw in how recipients process inbound packets with regard to the IEEE 802.15.4 frame counter (FC) value
- When a transmitting node sends a secure packet, it includes a sequential frame counter value in each frame with a range of 0 to 0xffffffff-1
  - FC value is not encrypted but it is included in the calculation of MIC (Message Integrity Check) for a packet



- A receiving node remembers the last observed FC value for all of the nodes on the network
- To defeat replay attacks and avoid reprocessing packet retransmissions, receiving node only accepts packets with greater FC than last observed
- FC is also used to make the 'nonce' unique for each packet transmitted by a specific node



- The unique nonce is important for AES-CTR to avoid initialization vector collision
  - Attacker can use plaintext/ciphertext data to get the key, if collision
- IEEE 802.15.4 specifies that when FC is equal to 0xffffffff, receiving node must stop processing all further data from the device
  - Add the transmitter to a device blacklist
  - Only way to recover, administrator updating the network key on all devices (firmware update)

- Under intended use circumstances in IEEE 802.15.4, devices are not likely to reach max FC value
  - 1 packet per second, a node will need 136 years to reach
- If node receives packet with increasing FC, it will accept and update FC value prior to validating the encrypted packet
  - Attacker forges 0xffffffff-1 and blacklist the legitimate transmitter



# Zbscapy

```
$ sudo zbscapy  # start killerbee framework

>>> kb = KillerBee()  # acquire killerbee-enabled device

>>> conf.killerbee_channel = 15  # set to channel #15

>>> f = Dot15d4()/Dot15d4Cmd(cmd_id=7)  # craft a IEEE 802.15.4 Command Frame  # with the CMD_ID = 7 (Beacon Req)

>>>kbsendp(f,iface=kb)  # send the frame
```





# Thankyou. Questions?

Dr. Abdullah Aydeger