Mathematics II

Course Objectives:

- 1.To develop the skill of solving differential equations and to provide knowledge of vector algebra and calculus
- 2.To make students familiar with calculus of several variables and infinite series
- 1. Calculus of Two or more variables (6 hours)
 - a.Introduction: Limit and Continuity
 - **b.**Partial Derivatives
 - i. Homogeneous function, Euler's theorem for the function of two and three variables
 - ii. Total Derivatives
 - c.Extrema of functions of two and three variables: Lagrange's Multiplier
- 2. Multiple Integrals (6 hours)
 - a.Introduction
 - b.Double Integrals in Cartesian and Polar form: Change of order of integration
 - c. Triple Integrals in Cartesian, Cylindrical and Spherical coordinates
 - d. Area and Volume by Double and Triple Integrals
- •
- 3. Three Dimensional Solid Geometry (11 hours)
 - a. The Straight Line; Symmetric and General form
 - b.Coplanar Lines
 - c. Shortest Distance
 - d.Sphere
 - e.Plane Section of a Sphere by Planes
 - f. Tangent Planes and Lines to the Spheres
 - g.Right Circular Cone
 - h.Right Circular Cylinder
- •
- 4. Solution of Differential Equations in Series and Special Functions (9 hours)
 - a. Solution of Differential Equation by Power Series Method
 - b.Legendre's Equation
 - c.Legendre's Polynomial function: Properties and Applications.
 - d.Bessel's Equation
 - e.Bessel's Function of First and Second kind: Properties and Applications
- •
- 5. Vector Algebra and Calculus (8 hours)
 - a.Introduction
 - b. Two and Three dimensional vectors
 - c.Scalar Products and Vector Products
 - d.Reciprocal System of Vectors
 - e. Application of Vectors: Lines and Planes
 - f.Scalar and Vector fields
 - g.Derivatives Velocity and Acceleration
 - h.Directional Derivatives

- 6. Infinite Series (5 hours)
 - a.Introduction
 - b. Series with Positives terms
 - c.Convergence and Divergence
 - d. Alternating series: Absolute convergence
 - e.Radius and Interval of Convergence

References:

- 1. Erwin Kreyszig, "Advanced Engineering Mathematics", John Wiley and Sons Inc
- 2. Thomas, Finney, "Calculus and Analytical Geometry" Addison- Wesley
- 3.M. B. Singh, B. C. Bajrachrya, "Differential Calculus", Sukunda Pustak Bhandar, Nepal
- 4.M. B. Singh, B. C. Bajrachrya, "A text book of Vectors", Sukunda Pustak Bhandar, Nepal
- 5.M. B. Singh, S. P. Shrestha, "Applied Mathematics"
- 6.G.D. Pant, G. S. Shrestha, "Integral Calculus and Differential Equations", Sunila Prakashan,Nepal
- 7.Y. R. Sthapit, B. C. Bajrachrya, "A text book of Three Dimensional Geometry", Sukunda Pustak Bhandar,Nepal
- 8. Santosh Man Maskey, "Calculus", Ratna Pustak Bhandar, Nepal

Evaluation Scheme:

The questions will cover all the chapters in the syllabus. The evaluation scheme will be as indicated in the table below:

Chapter	Hours	Mark distribution *
1	06	10
2	06	10
3	11	20
4	09	15
5	08	15
6	05	10
Total	45	80

^{*}Note: There may be minor deviation in marks distribution.