数值计算复习笔记

徐大鹏

2017年6月12日

Part I

概论

提到的考点: 1.1 - 1.3.9 适定的、不适定的;误差来源和表示、条件数;机器精度;舍入误差:大数吃小数、抵消。

条件数:解的相对变化与输入数据相对变化的比值。

condition number
$$= \frac{\left|\frac{(\hat{y}-y)}{y}\right|}{\left|\frac{(\hat{x}-x)}{x}\right|} = \left|\frac{\frac{\Delta y}{y}}{\frac{\Delta x}{x}}\right| = \left|\frac{x \cdot \Delta y}{y \cdot \Delta x}\right|$$

条件数刻画了问题的**病态性**,病态性的另一种说法是**敏感性**。也就是如果输入数据只变化了一点点,那么输出数据会变化多少。这个概念和在数学建模的灵敏性分析中使用的概念相一致。如果敏感性越强,意味着输入数据变化相同的范围,输出数据会有更大的变化,在上述定义式中,也就是分子更大,这样的结果就是条件数更大。

使用导数的概念可以得到条件数在某一点x的近似表示。

condition number =
$$\left| \frac{x}{y} \cdot \frac{\Delta y}{\Delta x} \right| \stackrel{x \to \infty}{=} \left| \frac{x}{y} \cdot y'(x) \right| \stackrel{y = f(x)}{=} \left| \frac{x \cdot f'(x)}{f(x)} \right|$$

这种表示形式的最大好处在于,只和自变量x相关,便于分析和计算。上面这种 形式的条件数是最常用的计算形式,必须熟记。

对于反函数 $x = f^{-1}(y) = g(y)$ 而言,它的条件数是

condition number
$$\stackrel{y \to \infty}{=} \left| \frac{y \cdot g'(y)}{x} \right| = \left| \frac{y \cdot \frac{1}{f'(x)}}{x} \right| = \left| \frac{y}{x \cdot f'(x)} \right| = \left| \frac{f(x)}{x \cdot f'(x)} \right|$$

正好就是原函数的条件数的倒数。

条件数的概念会和第二章线性方程组、第五章非线性方程组有联系。 当x或y为零时,无法计算条件数,只能使用绝对条件数代替。

absolute condition number =
$$\left| \frac{\Delta y}{\Delta x} \right|$$

浮点系统可以使用四个参数完备地表示:基数 β 、精度p、L、U。它们的含义是什么?

$$x = \pm \left(\sum_{i=0}^{p} \frac{d_i}{\beta^i}\right) \beta^E$$

正规化浮点系统的下溢限

$$UFL = \beta^L$$

上溢限

$$OFL = \beta^{U+1} (1 - \beta^{-p})$$

正规化浮点数的总个数

$$2(\beta - 1)\beta^{p-1}(U - L + 1) + 1$$

截断舍入的机器精度

$$\epsilon_{mach} = \beta^{1-p}$$

最近舍入的机器精度

$$\epsilon_{mach} = \frac{1}{2}\beta^{1-p}$$

机器精度的含义是什么?

舍入误差分析的标准模型:

$$f(x \text{ op } y) = (x \text{ op } y)(1 + \delta)$$

其中op可以是加、减、乘、除中的任意一种,相对扰动 $|\delta| \leq \epsilon_{mach}$ 。

Part II

线性方程组

提到的考点: 2.3 — 2.4.8 范数、性质、条件数、误差限、影响因素、残差; 高斯消去法、LU分解。2.5 特殊线性方程组的解法: 对称正定方程组的求解、 带状方程组的求解。2.6 迭代法(参考第11章): 雅克比方法、高斯-赛德尔方法、SOR方法。

向量的p-范数:

$$\|x\|_p = \left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}}$$

注意表达式里,每一个分量x_i都取了绝对值。

矩阵范数: 定义 $m \times n$ 的矩阵A的(向量诱导)范数是

$$\|A\| = \max_{oldsymbol{x}
eq oldsymbol{0}} \frac{\|Aoldsymbol{x}\|}{\|oldsymbol{x}\|}$$

使用向量1-范数、∞-范数的结果不太容易推导,直接记住形式:

$$\|\boldsymbol{A}\|_1 = \max_j \sum_{i=1}^m |a_{ij}|$$

$$\|\boldsymbol{A}\|_{\infty} = \max_{i} \sum_{j=1}^{n} |a_{ij}|$$

一个是按行求和,一个是按列求和。

矩阵条件数的性质:

- 对任意A, cond(A) ≥ 1。
 不会证。
- 对任意 \mathbf{A} 及非零标量 γ , $\operatorname{cond}(\gamma \mathbf{A}) = \operatorname{cond}(\mathbf{A})$.
- 对任意对角阵, $\mathbf{D} = \operatorname{diag}(d_i)$, $\operatorname{cond}(\mathbf{D}) = \frac{\max_i |d_i|}{\min_i |d_i|}$ 。显然。

条件数 $\operatorname{cond}(\boldsymbol{A})$ 刻画了矩阵接近奇异的程度。行列式 $\det(\boldsymbol{A})$ 刻画了矩阵是否是奇异的。

第2.3.4节主要讲了求解线性方程组的误差限表示、误差限和什么相关,以及如何推导误差限的问题。推导得到了两个主要结论。第一个是,右端向量带有扰动的方程组 $\mathbf{A}(\mathbf{x}+\Delta\mathbf{x})=\mathbf{b}+\Delta\mathbf{b}$ 的解的估计式是

$$\frac{\|\Delta x\|}{\|x\|} \le \operatorname{cond}(\boldsymbol{A}) \cdot \frac{\|\Delta \boldsymbol{b}\|}{\boldsymbol{b}}$$

第二个是,矩阵 ${m A}$ 的元素带有扰动的方程组 $({m A}+{m E})({m x}+\Delta{m x})={m b}$ 的解的估计式是

$$\frac{\Delta \boldsymbol{x}}{\|\boldsymbol{x} + \Delta \boldsymbol{x}\|} \leq \operatorname{cond}(\boldsymbol{A}) \frac{\|\boldsymbol{E}\|}{\|\boldsymbol{A}\|}$$

注意直接使用不等式推得的第二个结论中,左边分母上是带扰动的输入 $x+\Delta x$ 。

使用更精确的方法改进第二个结论? 然后可以得到最终的结论:

$$\frac{\Delta \boldsymbol{x}}{\|\boldsymbol{x}\|} \leq \operatorname{cond}(\boldsymbol{A}) \left(\frac{\|\Delta \boldsymbol{b}\|}{\|\boldsymbol{b}\|} + \frac{\|\boldsymbol{E}\|}{\|\boldsymbol{A}\|} \right)$$

上式左侧的分式是向前误差,右侧的分式是向后误差。条件数是输出误差对输入误差的一个估计。一个输入数据的误差输入数据的误差就是数据传播误差。浮点系统的数据传播误差的大小由机器精度 ϵ_{mach} 决定。可以将上式写成这种形式

$$\frac{\Delta \boldsymbol{x}}{\|\boldsymbol{x}\|} \lessapprox \operatorname{cond}(\boldsymbol{A}) \epsilon_{mach}$$

矩阵条件数cond(A)太大的原因:

- 1. 矩阵本身是接近奇异的,也就是行向量之间接近线性相关;
- 2. 观测的数据相差太大,比如某个列向量大了很多个数量级

残差:

$$r = b - A\hat{x}$$

相对残差:

$$rac{\|m{r}\|}{\|m{A}\|\cdot\|\hat{m{x}}\|}$$

稳定算法产生的相对残差总是很小。

线性方程组的求解:相互等价的两种算法,Gauss消去法和LU分解。这

$$\mathbf{M}_{k}\mathbf{a} = \begin{bmatrix} 1 & \cdots & 0 & 0 & \cdots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & 1 & 0 & \cdots & 0 \\ \hline 0 & \cdots & -m_{k+1} & 1 & \cdots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & -m_{n} & 0 & \cdots & 1 \end{bmatrix} \begin{bmatrix} a_{1} \\ \vdots \\ a_{k} \\ a_{k+1} \\ \vdots \\ a_{n} \end{bmatrix} = \begin{bmatrix} a_{1} \\ \vdots \\ a_{k} \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

里,我们构造了一个初等消去阵

$$oldsymbol{M}_k = oldsymbol{I} - oldsymbol{m} oldsymbol{e}_k^T$$

, 其中

$$\boldsymbol{m}=(0,\,\cdots,\,0,\,m_{k+1},\,\cdots,\,m_n)$$

考虑到 $m_i = a_i/a_k$, 上式可写作

$$\boldsymbol{m} = (0, \dots, 0, \frac{a_{i+1}}{a_k}, \dots, \frac{a_n}{a_k})$$

 M_k 是一个单位下三角矩阵,然后后面就很显然了,果然没什么好推的。

选主元:每次循环时选择最大的元素作为主元,因为主元 a_k 出现在 $m_i=a_i/a_k$ 的分母上。如果 a_k 比较小,会产生一个非常大的乘数 m_i ,从而造成大数吃小数的(抵消)问题,导致误差。选主元的结果是在A上乘以了一个排列矩阵P,使

$$PA = LU$$

这样,求解Ax = b的问题等价转化为求解PAx = Pb的问题。特别注意,排列阵P具有性质

$$P^{-1} = P^T$$

另外,这个性质实际上说明排列阵P是一个正交矩阵。

高斯-若当(Gauss-Jordan)消去法:这种方法的区别在于,开始于

$$\left[\begin{array}{c|c}A&I\end{array}\right]$$

但是行化简的方式,是将非对角线上的元素一次消去,是一种彻底的消元法。 消元后,乘以一个对角矩阵将左侧矩阵的对角元素化为全1。最终得到的结果是

$$\left[egin{array}{c|c} I & A^{-1} \end{array}
ight]$$

这种方法更适合于求出逆矩阵 A^{-1} 。

对称正定方程组:如果A是对称正定的,那么 $A = LL^T > 0$

Part III

线性最小二乘

提到的考点: 正规方程组、增广方程组、QR分解(House-Hold方法、Givens旋转、Gram-Schmidt正交化方法)、奇异值分解。

House-Hold变换。

$$m{H} = m{I} - 2 rac{m{v} m{v}^T}{m{v}^T m{v}}$$
 $m{H} m{H}^T = m{I} - 2 rac{m{v} m{v}^T}{m{v}^T m{v}}$

Part IV

非线性方程组

提到的考点: 5.1, 5.4 — 5.5.5: 收敛速度、收敛性; 二分法、牛顿法、反二次方法。迭代收敛准则。例题5.9

Part V

插值

提到的考点: 7.3 三种基函数: 单项式、拉格朗日、牛顿。7.3.1 — 7.3.3, 7.3.5 余项定理。7.4.2 三次样条。例题7.6

Part VI

积分和微分

提到的考点: 待定系数法。8.3 牛顿科特斯方法、高斯方法。简单求积公式构造出复杂的求积公式。8.6 差分公式和推导。积分: 代数精度、验证法确定。