# **Image Colorization using AI**

Vangala Bhanu Prakash<sup>1</sup>, Abdul Mannan Khan<sup>2</sup>, Sagar Sujith Somepalli<sup>3</sup>, Rakesh Chigurupati<sup>4</sup>, Pratham Shah<sup>5</sup>, Shubham Nandlal Vishwakarma<sup>6</sup>

\_\_\_\_\_\*\*\*\*\*\*\*\*\*\*\*

#### ABSTRACT

Colourization is a PC helped procedure of adding shading to a monochrome picture or film. The procedure includes typically fragmenting pictures into areas and following these districts crosswise over picture successions. Neither of these undertakings can be performed dependably by and by; thus, colourization requires extensive client mediation and stays a monotonous, tedious, and costly assignment.

Colourization is a term presented by Wilson Markle in 1970 to portray the PC helped process he created for including shading. Colourizing highly contrasting movies is an old thought going back to 1902. For a considerable length of time, numerous filmmakers restricted colourizing their high contrast motion pictures and thought of it as vandalism of their craft. Today it is acknowledged as an upgrade to the artistic expression.

The innovation itself has moved from meticulous hand colourization to the present to a great extent, robotized strategy. In India, the film Mughal-e-Azam, a blockbuster discharged in 1960 was remastered in shading in 2004. Individuals from different ages swarmed the performance centres to see it in shading, and the motion picture was an immense hit for the subsequent time!

Keywords: AI, Deep Learning, Convolution Neural Network, Image Processing, Generative Adversarial Network.

### INTRODUCTION

Let us first define the colourization problem in terms of the CIE Lab colour space. Like the RGB colour space, it is a 3-channel colour space, but unlike the RGB colour space, colour information is encoded only in the a (green-red component) and b (blue-yellow component) channels. The L (lightness) channel encodes intensity information only. The grayscale image we want to colour can be thought as the L-channel of the image in the Lab colour space and our objective to find the a and b components.

The Lab image so obtained can be transformed to the RGB colour space using standard colour space transforms. To simplify calculations, the ab space of the Lab colour space is quantized into 313 bins, as shown in Figure below. Instead of finding the a and b values for every pixel, because of this quantization, we simply need to find a bin number between 0 and 312.

However, another way of thinking about the problem is that we already have the Lchannel that takes values from 0 to 255, and we need to find the ab channel that takes values between 0 to 312. So, the colour prediction task is now turned into a multinomial classification problem where for every grey pixel, there are 313 classes to choose from.



## The objective of the project:

This project is a basic auto-encoder for image colourization. We have used feature extraction and fused it with a layer that is obtained after downsampling the input layer. We have used a convolutional neural network to up sample and predict the colour of the input image.

We have researched and surveyed various methods that have been applied for image colourization using various technologies on artificial intelligence. As part of this project, we have developed an understanding of Convolution Neural Network, Image Colorization and a bit of Image Processing.

We have utilized a dataset from Kaggle, which has pairs of pictures- B&W and colour.

The purpose of this project is not just the fulfilment of the J component for this course; instead, it is to learn and experiment with the tools that are available to usin the field of AI.

### LITERATURE REVIEW SUMMARY TABLE

| Auth ors and Ye ar(Reference)                     | Title<br>(Study)                                            | Concept / Theoretic al mod el/ Framework               | Methodol ogy<br>used/ Impleme<br>ntation                                       | Dataset<br>details/<br>Analysis                                           | RelevantFinding                                               | Limitations/<br>Future<br>Research/Gaps<br>identified                            |
|---------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------------------------|
| You Zhou,<br>Jeff Hwan<br>g                       | Image<br>Coloriz<br>ation with<br>Deep<br>Convol<br>utional | Deep Convolut<br>ion Neural<br>Network                 | Build a<br>learning<br>pipeline that<br>comprisesa<br>neural network<br>and an | The MIT<br>CVCL<br>Urban and<br>Natural<br>Scene<br>Categories<br>dataset | It uses the RGB to<br>CIELUV colorspace to<br>train its model | It will take a very large time to train themodel and it's practically impossible |
| 2016                                              | Neural<br>Networ<br>ks                                      |                                                        | image<br>pre-<br>processin<br>g front-<br>end.                                 |                                                                           |                                                               | in a laptop.<br>It producesunder<br>coloredProjects                              |
| Mark J. Huis kes, Mich ael S. Lew 2008            | The MIR<br>Flickr<br>Retrieval<br>Evaluati<br>on            | Image<br>Retrieval<br>through API                      | Create a redistrib utable image set from a social networking site.             | Flickr<br>retrieved<br>images                                             | Uses metadata<br>and tags found<br>to group the<br>images     | It is not reliable to train a model based on this small dataset obtained.        |
| Anat<br>Levin,<br>Dani<br>Lischi<br>nski,<br>Yair | Colori<br>zation<br>using<br>Optimi<br>zation               | Image<br>Colourization<br>without precise<br>segmentat | Cost effective colourization techniq ue with minimal                           | ACM<br>SIGGRAPH<br>2004                                                   | Reducing manual inputfor colourization process                | Doesn't distinguish betweenhue and saturatio n, optimizati                       |
| Weiss                                             |                                                             | ion                                                    | user<br>input                                                                  |                                                                           |                                                               | on can<br>be improved.                                                           |

| A u t h o r sa n d Ye a r (Refer ence)                   | Title (Study)                                   | Concept / The oretical model/ Framewo rk                                             | Methodol<br>ogy used/<br>Impleme<br>ntation                 | Dataset<br>details<br>/ Analysis | RelevantFinding                                                | Limitations/<br>Future<br>Research/Gaps<br>identified                              |
|----------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------|----------------------------------|----------------------------------------------------------------|------------------------------------------------------------------------------------|
| Bei Tang , Guil lerm o Sapi ro, Vice nt Casell           | Image<br>Enhan<br>cement                        | Image Enhance ment by color image denoising                                          | Seperati ng color data into brightne ss and chromat icity   | Intern et<br>obtained<br>images  | Coupling brightness and chromaticity helps in segmentation     | To find the optimal coupling is challengi                                          |
| es Tomi hisa Welsh , Mich ael Ashik hmin, Klaus Muell er | Transferring<br>Color to<br>Greyscale<br>Images | Transfe ring chroma tic informa tion by matchin g lumina nce and texture information | Using an example color image to colourize a greyscale image | Intern et<br>obtained<br>images  | Helpful in<br>creating color<br>indexable image<br>collections | Can be further improved by using more sophistica ted measure of texture similarity |

Innovation component in the project

The actual ab colour space is not discrete, it is continuous, and for a CNN model to train in such a data would have taken a very long time.

Nevertheless, as we have made it to be divided into 313 spaces, thetraining can be done in a standard laptop itself.

Work was done and implementation

# Methodology:

Use dataset for feature extraction. Use epoc to train our CNN

Once trained, use the model for predicting the colourized image.

Hardware and software requirements:

8GB RAM

Minimum Quad-core Intel i5 Kabylake ProcessorInternet Connection (High-Speed Broadband) M.2 PCIe SSD with 256GB of storage or more

Premium Graphics Processing Card, GTX 1050Ti or higher. Python

Libraries like sklearn, pandas, tensorflow, keras and matplotlib

Dataset used:

a. Where from you are taking your dataset?

We are taking the data set from Kaggle.

Image Colorization (25kX224X224 grayscale and typicalimages) <a href="https://www.kaggle.com/shrayankumar9892/image-colorization">https://www.kaggle.com/shrayankumar9892/image-colorization</a>

b. Is your project based on any other reference project?

Yes, Stanford University, which was trained on an AWS instancerunning on a NVIDIA GRID K520 GPU.

c. How does your project differ from the reference project?

They have used a cieluv colour space, and we are using an ab colourspace, which is easier to train.

#### **Tools used:**

- 1. GPU GTX 1050Ti
- 2. 8GB RAM
- 3. Jupiter Notebook
- 4. Python 3
- 5. NVIDIA Nsight HUD 2019.4 to enhance the GPU functionality
- 6. Keras
- 7. Tensorflow
- 8. Tensor Board

# SCREENSHOT AND DEMO

```
#Importing the images as np array
images_gray = np.load('l/
gray_scale.npy') images_lab =
```

#Function to pipe line the gray scale images that we imported in cell

```
#TensorBoard is a visualization tool provided with TensorFlow
tbCallBack = tf.keras.callbacks.TensorBoard(log_dir='./
folder_to_save_graph_3',_
```

```
#Pipeline the images
imgs_for_input = pipe_line_img(images_gray, batch_size = 300)
```

```
#Obtaining the rgb of the lab images
imgs_for_output = preprocess_input(get_rbg_from_lab(gray_imgs = images_gray,__
```

(300, 224, 224, 3)

```
#Outputting the rgb image we obtained in cell 7 plt.imshow(imgs_for_output[10])
```

Clipping input data to the valid range for imshow with RGBdata ([0..1]for floats or [0..255] for integers).

<matplotlib.image.AxesImage at 0x25ace381c88>



```
#Making the imple CNN network using Keras (4 layers)
model simple = Sequential()
model simple.add(Conv2D(strides = 1, kernel_size = 3, filters = 12,
use bias =_
→True, bias initializer =
tf.keras.initializers.RandomUniform(minval=-0.05,

←maxval=0.05) , padding = "valid", activation = tf.nn.relu))
model simple.add(Conv2D(strides = 1, kernel size = 3, filters = 12,
use bias =
→True, bias initializer =
tf.keras.initializers.RandomUniform(minval=-0.05,
commaxval=0.05) , padding = "valid", activation = tf.nn.relu))
model simple.add(Conv2DTranspose(strides = 1, kernel size = 3, filters
= 12,
←use bias = True, bias initializer = tf.keras.initializers.
←RandomUniform(minval=-0.05, maxval=0.05) , padding = "valid",
```

```
imgs_for_s = np.zeros((300, 224,
224, 1)) imgs_for_s[:, :, :, 0] =
```

prediction.shape

(300, 224, 224, 3)

#Training our model with 100 epochs and batch size 16
model\_simple.fit(imgs\_for\_input\_train, imgs\_for\_output\_train, epochs =
100,\_\_

Train on 270 samples Epoch 1/100

270/270 [======] - 3s 10ms/sample - loss: 0.3860

| Epoch 2/2                                                                     | 100                                     |         | <b>5</b> / |        | 0.24   |    |
|-------------------------------------------------------------------------------|-----------------------------------------|---------|------------|--------|--------|----|
| 270/270                                                                       |                                         | -       | 5ms/       |        | - 0.34 |    |
| [=====                                                                        | ======]                                 | 1s      | sample     | loss   | s: 13  |    |
| Epoch 3/                                                                      | 100                                     |         |            |        |        |    |
| 270/270                                                                       |                                         | -       | 5ms/       |        | - 0.33 |    |
| [=====                                                                        | =======]                                | 1s      | sample     | loss   | s: 60  |    |
| Epoch 4/                                                                      | 100                                     |         |            |        |        |    |
| 270/270                                                                       |                                         | -       | 5ms/       |        | - 0.33 |    |
| [=====                                                                        | =======]                                | 1s      | sample     | loss   | s: 38  |    |
| Epoch 5/                                                                      | 100                                     |         |            |        |        |    |
| 270/270                                                                       |                                         | -       | 5ms/       |        | - 0.33 |    |
| [=====                                                                        | ======]                                 | 1s      | sample     | loss   | s: 23  |    |
| Epoch 6/                                                                      | 100                                     |         |            |        |        |    |
| 270/270                                                                       |                                         | - 3     | 5ms/       | - 0.33 |        |    |
| <b>-</b> <i>r</i> • <i>r</i> • <i>r</i> • · · · · · · · · · · · · · · · · · · | [====================================== | 5       |            |        | loss:  | 18 |
|                                                                               |                                         | ]       | 15         | Sampic | 1033.  | 10 |
|                                                                               | Epoch 7/100                             |         |            |        |        |    |
|                                                                               | 270/270                                 | _       | _          | 5ms/   |        |    |
|                                                                               | [====================================== | ======] | 1s         | sample | loss:  | 15 |

| Epoch 8/100<br>270/270 | _  | 5ms/   | <u>-</u> | 0.33 |
|------------------------|----|--------|----------|------|
| [======]               | 1s | sample | loss:    | 09   |
| Epoch 9/100            | 13 | sample | 1033.    | 0)   |
| 270/270                | _  | 5ms/   | <u>-</u> | 0.33 |
| [======]               | 1s | sample | loss:    | 11   |
| Epoch 10/100           |    | r      |          |      |
| 270/270                | -  | 5ms/   | -        | 0.33 |
| [======]               | 1s | sample | loss:    | 09   |
| Epoch 11/100           |    |        |          |      |
| 270/270                | -  | 5ms/   | -        | 0.33 |
| [======]               | 1s | sample | loss:    | 02   |
| Epoch 12/100           |    |        |          |      |
| 270/270                | -  | 5ms/   | -        | 0.33 |
| [======]               | 1s | sample | loss:    | 01   |
| Epoch 13/100           |    |        |          |      |
| 270/270                | -  | 5ms/   | -        | 0.32 |
| [======]               | 1s | sample | loss:    | 99   |
| Epoch 14/100           |    |        |          |      |
| 270/270                | -  | 5ms/   | -        | 0.32 |
| [======]               | 1s | sample | loss:    | 98   |
| Epoch 15/100           |    |        |          |      |
| 270/270                | -  | 5ms/   | -        | 0.32 |
| [======]               | 1s | sample | loss:    | 96   |
| Epoch 16/100           |    |        |          |      |
| 270/270                | -  | 5ms/   | -        | 0.32 |
| [======]               | 1s | sample | loss:    | 95   |
| Epoch 17/100           |    |        |          |      |
| 270/270                | -  | 5ms/   | -        | 0.32 |
| [======]               | 1s | sample | loss:    | 96   |
| Epoch 18/100           |    |        |          |      |
| 270/270                | -  | 5ms/   | -        | 0.32 |
| [======]               | 1s | sample | loss:    | 94   |
| Epoch 19/100           |    |        |          |      |
| 270/270                | -  | 5ms/   | -        | 0.32 |
| []                     | 1s | sample | loss:    | 92   |
| Epoch 20/100           | 4  |        |          |      |
| 270/270                | -  | 5ms/   | -        | 0.32 |

| [======]                | 1s      | sample | : 1    | oss:  | 94         |      |
|-------------------------|---------|--------|--------|-------|------------|------|
| Epoch 21/100            |         |        |        |       |            |      |
| 270/270<br>[======]     | -<br>1s | 5ms/   | 1      | oss:  | 0.32<br>93 |      |
| Epoch 22/100            | 18      | sample | 1      | .OSS: | 93         |      |
| 270/270                 | -       | 5ms/   |        | -     | 0.32       |      |
| [======]                | 1s      | sample | 1      | oss:  | 91         |      |
| Epoch 23/100            |         |        |        |       |            |      |
| 270/270                 | -       | 5ms/   |        | -     | 0.32       |      |
| [======]                | 1s      | sample | 1      | oss:  | 89         |      |
| Epoch 24/100            |         |        |        |       |            |      |
| 270/270                 | -       | 5ms/   |        | -     | 0.32       |      |
| [======]                | 1s      | sample | 1      | oss:  | 88         |      |
| Epoch 25/100            |         |        |        |       |            |      |
| 270/270                 | -       | 5ms/   |        | -     | 0.32       |      |
| [======]                | 1s      | sample | 1      | oss:  | 89         |      |
|                         |         |        |        |       |            |      |
| Epoch 26/100<br>270/270 |         | _      | 5ms/   |       | _          | 0.32 |
| [=====]                 |         | 1s     | sample |       | loss:      | 89   |
| Epoch 27/100            |         | 18     | sample |       | 1088.      | 05   |
| 270/270                 |         | _      | 5ms/   |       | _          | 0.32 |
| [=======]               |         | 1s     | sample |       | loss:      | 89   |
| Epoch 28/100            |         |        | Ι.     |       |            |      |
| 270/270                 |         | _      | 5ms/   |       | -          | 0.32 |
| [======]                |         | 1s     | sample |       | loss:      | 89   |
| Epoch 29/100            |         |        |        |       |            |      |
| 270/270                 |         | -      | 5ms/   |       | -          | 0.32 |
| [======]                |         | 1s     | sample |       | loss:      | 88   |
| Epoch 30/100            |         |        |        |       |            |      |
| 270/270                 |         | -      | 5ms/   |       | -          | 0.32 |
| [=====]                 |         | 1s     | sample |       | loss:      | 86   |
| Epoch 31/100            |         |        |        |       |            |      |
| 270/270                 |         | -      | 5ms/   |       | -          | 0.32 |
| [======]                |         | 1s     | sample |       | loss:      | 87   |
| Epoch 32/100            |         |        |        |       |            |      |
| 270/270                 |         | -      | 5ms/   |       | -          | 0.32 |
| [======]                |         | 1s     | sample |       | loss:      | 8€   |

| Epoch 33/100                                  |               |                |         |            |      |
|-----------------------------------------------|---------------|----------------|---------|------------|------|
| 270/270                                       |               | -              | 5ms/    | -          | 0.32 |
| [======================================       | =====]        | 1s             | sample  | loss:      | 86   |
| Epoch 34/100                                  |               |                |         |            |      |
| 270/270 [==================================== | ====] _<br>1s | •              | - loss: |            |      |
| 270/270 [==================================== | -             | - /            |         | 0 00       |      |
| Epoch 36/100                                  | -<br>1s       |                | e loss: |            |      |
| 270/270 [==================================== |               | <b>.</b> . /   |         | 0 00       |      |
| Epoch 37/100                                  | -<br>1s       |                | e loss: |            |      |
| 270/270 [==================================== | ====]         | 5ms/           | _       | 0 32       |      |
| Epoch 38/100                                  | 1s            | •              | e loss: |            |      |
| 270/270 [==================================== | ====] _       | 5ms/           | _       | 0.32       |      |
| Epoch 39/100270/270                           | 1s            | sample         | e loss: | 84         |      |
| [=====]                                       | -<br>1s       | 5ms/<br>sample |         |            |      |
| Epoch 40/100270/270                           |               | -              |         |            |      |
| [======]                                      | -<br>1s       |                | loss:   |            |      |
| Epoch 41/100270/270                           |               | _              |         |            |      |
| [=======]                                     | -<br>1s       |                | loss:   |            |      |
| Epoch 42/100270/270                           |               | -              |         |            |      |
| [======]                                      | -<br>1s       | 5ms/<br>sample | e loss: | 0.32<br>86 |      |
| Epoch 43/100270/270                           |               | -              |         |            |      |
| [======]                                      | -<br>1s       |                | e loss: |            |      |
| Epoch 44/100270/270                           |               |                |         |            |      |
| [=====]                                       | -<br>1s       |                | loss:   |            |      |
| Epoch 45/100270/270                           |               | _ ,            |         |            |      |
| [=======]                                     | -<br>1s       |                | e loss: |            |      |
| Epoch 46/100                                  |               | <b>.</b> . /   |         | 0 00       |      |
| 270/270                                       | -<br>1s       |                | e loss: |            |      |
| [======]                                      |               | E /            |         | 0 22       |      |
| Epoch 47/100270/270                           | 1s            | sample         | e loss: | 84         |      |
| [======]                                      |               |                |         |            |      |

| Epoch 48/100        |         |                |            |            |
|---------------------|---------|----------------|------------|------------|
| 270/270 [======]    | -<br>1s | 5ms/<br>sample | -<br>loss: |            |
| Epoch 49/100270/270 |         |                |            |            |
| [======]            | -<br>1s | 5ms/<br>sample | -<br>loss: |            |
| Epoch 50/100270/270 |         |                |            |            |
| [======]            | -<br>1s | 5ms/<br>sample | -<br>loss: | 0.32       |
| Epoch 51/100270/270 |         | -              |            |            |
| [======]            | -<br>1s | 5ms/<br>sample | -<br>loss: |            |
| Epoch 52/100270/270 |         |                |            |            |
| [=====]             | -<br>1s | 5ms/<br>sample | -<br>loss: | 0.32<br>81 |
| Epoch 53/100270/270 |         | -              |            |            |
|                     | -       |                | _          |            |
| [======]            | 1s      | sample         | loss:      | 80         |
| Epoch 54/100270/270 | _       | 5mg/           | _          | 0 32       |
| [======]            | 1s      | sample         |            | 81         |
| Epoch 55/100270/270 |         |                |            |            |
| [======]            | -<br>1s | 5ms/<br>sample | 1000:      |            |
|                     | 12      | Sample         | 1055.      | 00         |
| Epoch 56/100270/270 | _       | 5ms/           | _          | 0.32       |
| [======]            | 1s      | sample         |            |            |
| Epoch 57/100270/270 |         | ,              |            |            |
| []                  | -<br>1s | 5ms/<br>sample | -<br>loss: |            |
| [=======]           |         | o annip i o    | 1000.      |            |
| Epoch 58/100270/270 | _       | 5ms/           | _          | 0.32       |
| [======]            | 1s      | sample         | loss:      | 81         |
| Epoch 59/100270/270 |         | _ ,            |            |            |
|                     | -<br>1s | 5ms/<br>sample | -<br>loss: | 0.32<br>79 |
| [======]            |         | ı              |            | -          |
| Epoch 60/100270/270 |         | E /            |            | 0 20       |
| [======]            | -<br>1s | 5ms/<br>sample | loss:      | 0.32<br>78 |
| Epoch 61/100        |         |                |            |            |



# International Journal of All Research Education and Scientific Methods (IJARESM), ISSN: 2455-6211 Volume 10, Issue 10, October-2022, Impact Factor: 7.429, Available online at: www.ijaresm.com

|                        |          | _ ,            |            |            |
|------------------------|----------|----------------|------------|------------|
| 270/270 [=====]        | -<br>1s  | 5ms/<br>sample | loss:      | 0.32<br>81 |
| Epoch 62/100           |          |                |            |            |
| 270/270 [======]       | -<br>1s  | 5ms/<br>sample | -<br>loss: | 0.32<br>79 |
| Epoch 63/100           |          |                | 1000.      | , 3        |
| 270/270 [======]       | _        | 5ms/           | _          | 0.32       |
| Epoch 64/100           | 1s       | sample         | loss:      | 79         |
| 270/270 [======]       | _        | 5ms/           | _          | 0.32       |
| Epoch 65/100           | 1s       | sample         | loss:      | 79         |
| 270/270 [======]       | _        | 5ms/           | _          | 0.32       |
| Epoch 66/100270/270    | 1s       | sample         | loss:      | 76         |
| [======]               |          | _ ,            |            |            |
| Epoch 67/100270/270    | -<br>1s  | 5ms/<br>sample | loss:      | 0.32<br>76 |
| [======]               |          |                |            |            |
| Epoch 68/100270/270    | -<br>1s  | 5ms/<br>sample | -<br>loss: | 0.32<br>77 |
| [======]               |          | 1              |            |            |
| Epoch 69/100270/270    | _<br>1 _ | 5ms/           | _          | 0.32       |
| [======]               | 1s       | sample         | loss:      | 76         |
| Epoch 70/100270/270    | -        | 5ms/           | _          | 0.32       |
| [=======]              | 1s       | sample         | loss:      | 78         |
| Epoch 71/100270/270    | _        | 5ms/           | _          | 0.32       |
| [======]               | 1s       | sample         | loss:      | 79         |
|                        |          |                |            |            |
| Epoch 72/100270/270    | -<br>1s  | 5ms/<br>sample | loss:      | 0.32<br>75 |
| [=======] Enach 72/100 |          |                |            |            |
| Epoch 73/100           | -<br>1s  | 5ms/<br>sample | -<br>loss: | 0.32<br>76 |
| 270/270                | 13       | Sampre         | 1000.      | 7 0        |
| [======]               | _        | 5ms/           | _          | 0.32       |
|                        | 1s       | sample         | loss:      | 78         |

| Epoch 74/100        |          |                |            |      |
|---------------------|----------|----------------|------------|------|
| 270/270 [======]    | _        | 5ms/           | _          | 0.32 |
| Epoch 75/100        | 1s       |                |            |      |
| 270/270 [======]    | _        | E/             | _          | 0 20 |
| Epoch 76/100270/270 | -<br>1s  |                |            |      |
| [======]            |          |                |            |      |
| Epoch 77/100270/270 | -<br>1s  |                | -<br>loss: |      |
| [======]            |          |                |            |      |
| Epoch 78/100270/270 | -<br>1s  |                | -<br>loss: |      |
| [======]            |          |                | 1000.      | , 0  |
| Epoch 79/100270/270 | _<br>1 _ |                | _          |      |
| [======]            | IS       | sample         | loss:      | / 4  |
| Epoch 80/100270/270 | _        |                | _          |      |
| [=====]             | 1s       | sample         | loss:      | 76   |
| Epoch 81/100270/270 | _        | 5ms/           | _          | 0.32 |
| [======]            | 1s       |                |            |      |
| Epoch 82/100270/270 |          | F/             |            | 0 20 |
| [======]            | -<br>1s  | 5ms/<br>sample |            |      |
| Epoch 83/100270/270 |          |                |            |      |
| [======]            | -<br>1s  |                | -<br>loss: |      |
| Epoch 84/100270/270 |          |                |            |      |
| [======]            | -<br>1s  |                | -<br>1088: |      |
| Epoch 85/100270/270 | 15       | Sampre         | 1055.      | , 1  |
| [======]            |          | 5ms/           |            |      |
| Epoch 86/100        | 1s       | sample         | loss:      | 75   |
|                     | _        | 5ms/           | _          | 0.32 |
| 270/270 [======]    | 1s       | sample         | loss:      | 74   |
| Epoch 87/100        | _        | 5ms/           | _          | 0 32 |
|                     | 1s       | 5ms/<br>sample | loss:      | 75   |



# International Journal of All Research Education and Scientific Methods (IJARESM), ISSN: 2455-6211 Volume 10, Issue 10, October-2022, Impact Factor: 7.429, Available online at: www.ijaresm.com

| 270/270      | -<br>1s | 5ms/<br>sample | loss: | 0.32<br>75 |
|--------------|---------|----------------|-------|------------|
| Epoch 88/100 |         | •              |       |            |
| 270/270      | -       | 5ms/           | -     | 0.32       |
| [======]     | 1s      | sample         | loss  | <b>7</b> 4 |
| Epoch 89/100 |         |                |       |            |
| 270/270      | -       | 5ms/           | -     | 0.32       |
| [======]     | 1s      | sample         | loss: | 73         |
| Epoch 90/100 |         |                |       |            |
| 270/270      | -       | 5ms/           | -     | 0.32       |
| [======]     | 1s      | sample         | loss: | 73         |
| Epoch 91/100 |         |                |       |            |
| 270/270      | -       | 5ms/           | -     | 0.32       |
| [======]     | 1s      | sample         | loss: | 80         |
| Epoch 92/100 |         |                |       |            |
| 270/270      | -       | 5ms/           | -     | 0.32       |
| [======]     | 1s      | sample         | loss: | 7 <i>ϵ</i> |
| Epoch 93/100 |         |                |       |            |
| 270/270      | -       | 5ms/           | -     | 0.32       |
| [======]     | 1s      | sample         | loss: | 75         |
| Epoch 94/100 |         |                |       |            |
| 270/270      | -       | 5ms/           | -     | 0.32       |
| [======]     | 1s      | sample         | loss: | <b>7</b> 4 |
| Epoch 95/100 |         |                |       |            |
| 270/270      | -       | 5ms/           | -     | 0.32       |
| [======]     | 1s      | sample         | loss: | <b>7</b> 4 |
| Epoch 96/100 |         |                |       |            |
| 270/270      | -       | 5ms/           | -     | 0.32       |
| [======]     | 1s      | sample         | loss: | 73         |
| Epoch 97/100 |         |                |       |            |
| 270/270      | -       | 5ms/           | -     | 0.32       |
| [======]     | 1s      | sample         | loss: | 75         |

Epoch 98/100
270/270 [=======] - 1s 5ms/sample - loss: 0.3273
Epoch 99/100
270/270 [======] - 1s 5ms/sample - loss: 0.3272
Epoch 100/100
270/270 [========] - 1s 5ms/sample - loss: 0.3272

<tensorflow.python.keras.callbacks.History at0x25ad0b9db88>

#Predicting the output of the input test images using our model which the model.

←has never seen before

Clipping input data to the valid range for imshow with RGBdata ([0..1]for floats or [0..255] for integers). : <matplotlib.image.AxesImage at 0x25bc39950c8>



#Image Colorised by our model
plt.imshow(out[16,:]) # Ouput

: <matplotlib.image.AxesImage at 0x25bc4b3f588>



```
#The original Colorised image
plt.imshow(np.squeeze(imgs_for_output_test[16,:])) # Expected
```

Clipping input data to the valid range for imshow with RGBdata ([0..1]for floats or [0..255] for integers). : <matplotlib.image. AxesImage at 0x25bc4ba1808>



RESULTS AND DISCUSSION

We obtain a satisfactorily coloured image that has been obtained from agreyscale image via our trained model.

Upon surveying various papers on the topic of *Image Colorization*, we realize that the most predominantly used methods for colourizing images are the use of manual labour to enhance images even after the images are colourized by the program using various AI technologies. This is the case since a typical computer does not have high floating-point operations computability.

The usage of such programs to obtain images are widely used by researchers and is still developing. There is still a long way to go to achieve perfection in this task using a learning model or a neural network.

Moreover, since an image is a much more complicated thing when compared to numeric or textual data, the program finds it hard to distinguishbetween several parameters such as hue and saturation. We need more computation power in typical computers to be able to achieve the high quality output of coloured images from B&W images. We may never know, several years from now, we could have the capability of scanning a 100- year old picture and colourizing it in an instant.

Such things are not very far away, since Google in 2018, teased an upcoming feature in a smartphone that had the capability of converting ablack and white picture to a coloured one.

# REFERENCES

- [1] http://cs231n.stanford.edu/reports/2016/pdfs/
- [2] 219\_Report.pdf https://docs.opencv.org/3.4/de/d25/
- [3] imgproc\_color\_conversions.html https://www.cs.huji.ac.il/~yweiss/
- [4] Colorization/colorization-siggraph04.pdf https://www.kaggle.com/
- [5] shravankumar9892/image-colorization http://videolectures.net/
- [6] eccv2016\_zhang\_image\_colorization/ https://press.liacs.nl/mirflickr/
- [7] mirflickr.pdf
- [8] https://pdfs.semanticscholar.org/8369/73ca8c06e9cab22d3ab77c95ef77fea758c d.pdf
- [9] https://www.cs.drexel.edu/~david/Classes/Papers/colorize-sig02.pdf