QF Battauz

Klejdi Sevdari

October 2022

1 Stochatic Processes in Discrete Time

In discrete time stochastic processes, we consider three fundamental objects: a set of dates $\mathcal{T} = \{0, 1, \dots, T\}$, finite sets of the world at time T $\Omega = \{\omega_1, \dots, \omega_K\}$ and a probability distribution over those states \mathbb{P} with $\mathbb{P}(w_k) > 0$, $\forall k$.

Definition 1 (Parition). A partition of Ω is a collection $\mathcal{A} = \{\mathcal{A}_1, \dots, \mathcal{A}_\ell\}$ such that $\mathcal{A}_i \cap \mathcal{A}_j = \emptyset$ and $\cup_i \mathcal{A}_i = \Omega$.

Definition 2 (Finer and Coarser Partitions). Given two partitions \mathcal{A} and \mathcal{A}' , we say that \mathcal{A}' is finer than \mathcal{A} if every element of \mathcal{A}' is contained in \mathcal{A} .

Definition 3 (Information Structure). We call the family of partitions $\mathcal{P} = \{\mathcal{P}_t\}_{t=0}^T$ an information structure on \mathcal{T} if it satisfies:

- $\mathcal{P}_0 = \Omega$,
- \mathcal{P}_{t+1} is finer than \mathcal{P}_t for all t.
- $\mathcal{P}_T = \{\{\omega_1\}, \{\omega_2\}, \dots, \{\omega_K\}\}\}.$

We denote by s_t the number of cells/cardinality of \mathcal{P}_t . We denote by f_h^t for $h = 1, \ldots, s_t$, the generic element of the partition \mathcal{P}_t . Figure 1 illustrates this idea.

$$t = 0 t = 1 t = 2$$

$$f_1^1 = \{\omega_1, \omega_2, \omega_3\} \nearrow f_2^1 = \{\omega_1\}$$

$$\searrow f_3^1 = \{\omega_3\}$$

$$f_1^0 = \{\Omega\} \nearrow f_2^1 = \{\omega_4, \omega_5\} \nearrow f_2^2 = \{\omega_4\}$$

$$\searrow f_3^1 = \{\omega_4, \omega_5\} \nearrow f_2^2 = \{\omega_4\}$$

$$f_3^1 = \{\omega_6, \omega_7\} \nearrow f_6^2 = \{\omega_6\}$$

$$f_7^2 = \{\omega_7\}$$

Figure 1: Illustrative Example of an Information Structure.

Definition 4 (Measurable Random Variable). The function $X(t): \Omega \to \mathbb{R}$ is measurable wrt \mathcal{P}_t iff for any $w', w'' \in f_h^t$ we have that X(t)(w') = X(t)(w''). That is X is constant on any f_h^t .

Definition 5 (Adapted Stochastic Process). We call $X = \{X(t)\}_{t=0}^T$ a stochastic process adapted to information structure \mathcal{P} if X(t) is measurable wrt \mathcal{P}_t for all t.

We finally denote by $L = \sum_t s_t$ the number of cells in a given information structure, so that the whole stochastic process X can be described by a vector in \mathbb{R}^L .

Remark (Alternative definition of Stochastic Process). A stochastic process X is a map $X : \mathbb{T} \times \Omega \to \mathbb{R}$ such that for any f_h^t and any $w', w'' \in f_h^t$ we have that X(t)(w') = X(t)(w'').

1.1 Conditional Expectation and Independence

Definition 6 (Conditional Expectation). The conditional expected value of X given \mathcal{P}_t and under the probability Q is:

$$\mathbb{E}^{\mathbb{Q}}[X|\mathcal{P}_t](f_h^t) = \sum_{\omega \in f_h^t} X(\omega) \mathbb{Q}[\omega|f_h^t] = \sum_{\omega \in f_h^t} X(\omega) \frac{\mathbb{Q}[w]}{\mathbb{Q}[f_h^t]}.$$

Properties of Conditional Expectation:

- $\mathbb{E}\left[\mathbb{E}[X|\mathcal{P}_{t_2}]|\mathcal{P}_{t_1}\right] = \mathbb{E}[X|\mathcal{P}_{t_1}]$
- \mathcal{P}_t -measurable random variables can be taked out of \mathcal{P}_t -conditional expectations:

$$\mathbb{E}[hX|\mathcal{P}_t] = h\mathbb{E}[X|\mathcal{P}_t]$$
 if h is \mathcal{P}_t -measurable.

• Linearity: $\mathbb{E}[hX + kY | \mathcal{P}_t] = h\mathbb{E}[X | \mathcal{P}_t] + k\mathbb{E}[Y | \mathcal{P}_t].$

Definition 7 (Independence). A random variable X with values x_1, \ldots, x_M on Ω is independent of the information \mathcal{P}_t wrt probability Q if:

$$\mathbb{Q}\left[\left\{\omega:X(\omega)=x_m\right\}\cap f_h^t\right]=\mathbb{Q}\left[\left\{\omega:X(\omega)=x_m\right\}\right]\cdot Q\left[f_h^t\right],\quad\forall f_h^t\text{ and for all }m=1,\ldots,M.$$

Lemma 1. If X is independent of \mathcal{P}_t wrt \mathbb{Q} , then $\mathbb{E}[X|\mathcal{P}_t] = \mathbb{E}[X]$.

Lemma 2. If X is independent of \mathcal{P}_t and Y is measurable under \mathcal{P}_t , then $\mathbb{E}[f(X,Y)|\mathcal{P}_t] = \mathbb{E}[f(X,Y)]$.

Definition 8 (Martingale). Let $M = \{M\}_{t=0}^T$ be a process adapted to \mathcal{P} . Then, under probability \mathbb{Q} , M is a martingale given \mathcal{P} if $\forall t_1, t_2 \in \{0, \ldots, T\}$ such that $t_2 > t_1$, we have that:

$$\mathbb{E}^{\mathbb{Q}}\left[M(t_2)|\mathcal{P}_{t_1}\right] = M(t_1).$$

Lemma 3. For all t, we have that $\mathbb{E}^{\mathbb{Q}}[M(t)] = M(0)$.

Lemma 4. M is a martingale iff for all t, we have that $\mathbb{E}^{\mathbb{Q}}[M(t+1)|\mathcal{P}_t] = M(t)$.

2 Multi-period Markets

In this section we consider N+1 securities indexed by j which are traded at dates $t=0,\ldots,T$. We also assume that there is an information structure $\mathcal{P}=\{\mathcal{P}_t\}_{t=0}^T$. We will denote by $S_j(t)(f_h^t)$ the price of security j at node f_h^t of the information structure. The security indexed by j=0 is denoted by $B=\{B(t)\}_{t=0}^T$, and we have B(0)=1. We also define

$$r(t) = \frac{B(t+1) - B(t)}{B(t)}$$
 which represents the net return from investing in the riskless bond at time t.

We assume that $\{r(t)\}_{t=0}^{T-1}$ is a stochastic process adapted to the information structure \mathcal{P} .

Observing that B(t+1) = B(t)(1+r(t)) and using the fact that B(0) = 1, we can see that:

$$B(t+1) = B(t)(1+r(t)) = B(t-1)(1+r(t-1))(1+r(t)) = \prod_{\tau=0}^{t} (1+r(\tau)).$$

2.1 Dynamic Investment Strategies

We let the positions taken on the N+1 securities by described by N+1 stochastic processes denoted by $\theta_j = \{\theta_j(t)\}_{t=0}^{T-1}$. We denote by $\theta = (\theta_0, \dots, \theta_N)$ the dynamic investment strategy.

Definition 9 (Value Process).

$$V_{\theta}(t) = \begin{cases} \theta_0(t)B(t) + \sum_{j=1}^{N} \theta_j(t)S_j(t) & t = 0, \dots, T - 1\\ \theta_0(T - 1)B(T) + \sum_{j=1}^{N} \theta_j(T - 1)S_j(T) & t = T. \end{cases}$$

Definition 10 (Cashflow Process).

$$C_{\theta}(t) = \begin{cases} -V_{\theta}(0) & t = 0\\ \theta_{0}(t-1)B(t) + \sum_{j=1}^{N} \theta_{j}(t-1)S_{j}(t) - V_{\theta}(t) & t = 1, \dots, T-1\\ V_{\theta}(T) & t = T. \end{cases}$$

Definition 11 (Self-financing Dynamic Strategies). A dynamic strategy is said to be self-financing if $C_{\theta}(t) = 0$ for all t = 1, ..., T - 1. This implies that the intermediate cash flow is zero.

Definition 12 (Discounted Gain Process).

$$G_{\theta}(t) = \begin{cases} \frac{V_{\theta}(t)}{B(t)} + \sum_{\tau=0}^{t} \frac{C_{\theta}(\tau)}{B(\tau)}, & t = 0, \dots, T - 1\\ \sum_{\tau=0}^{T} \frac{C_{\theta}(\tau)}{B(\tau)} & t = T. \end{cases}$$

Definition 13 (Violation of the LOP). A multi-period financial market gives rise to violations of the law of one price if there exist two dynamic strategies generating the same cashflow in t > 1 but having different initial values. That is:

$$\theta \neq \theta', \quad C_{\theta}(t)(f_h^t) = C_{\theta'}(t)(f_h^t), \quad V_{\theta}(0) \neq V_{\theta'}(0).$$

Definition 14 (Arbitrage Opportunities of the 1^{st} type). A multi-period financial market gives rise to arbitrage opportunities of the first type if there exists a dynamic strategy θ having the following properties:

$$V_{\theta} \leq 0$$

$$C_{\theta}(t)(f_h^t) \geq 0, \quad \text{for all } h = 1, \dots, s_t, \ t = 1, \dots, T.$$

$$C_{\theta}(\tau)(f_{\ell}^{\tau}) > 0, \quad \text{for some } \tau \in \{1, \dots, T\}, \ \ell \in \{1, \dots, s_{\tau}\}.$$

Definition 15 (Arbitrage Opportunities of the 2^{nd} type). A multi-period financial market gives rise to arbitrage opportunities of the second type if the following hold:

$$V_{\theta} < 0$$

$$C_{\theta}(t)(f_h^t) \ge 0, \quad \text{for all } h = 1, \dots, s_t, \ t = 1, \dots, T.$$

Lemma 5. No Arbitrage implies LOP.

3 Characterization of No Arbitrage

Definition 16 (State Price Vectors). We say that $\psi = (\psi(f_1^0), \psi(f_1^1), \psi(f_2^1), \dots, \psi(f_1^T), \psi(f_2^T), \psi(f_K^T)) \in \mathbb{R}^L$ is a state price vector if

- $\bullet \ \psi > 0,$
- $\psi(f_1^0) = 1$,

 $\frac{1}{1+r(t)(f_h^t)} = \sum_{f_\ell^{t+1} \subset f_h^t} \frac{\psi(f_\ell^{t+1})}{\psi(f_h^t)}, \qquad t = 1, \dots, T, \ h = 1, \dots, s_t.$

$$S_j(t)(f_h^t) = \sum_{f_\ell^{t+1} \subset f_h^t} \frac{\psi(f_\ell^{t+1})}{\psi(f_h^t)} S_j(t+1)(f_\ell^{t+1}), \qquad \begin{array}{l} j = 1, \dots, N \\ h = 1, \dots, s_t \\ t = 1, \dots, T. \end{array}$$

Definition 17 (Equivalent Martingale Measures EMM). \mathbb{Q} , a strictly positive probability over Ω , is an EMM if the following holds:

$$i = 0, \dots, N t = 0, \dots, T - 1 , \qquad S_i(t) = \mathbb{E}^{\mathbb{Q}} \left[\frac{S_i(t+1)}{1 + r(t)} \right] \implies \mathbb{E}^{\mathbb{Q}} \left[\frac{S_i(t+1) - S_i(t)}{S_i(t)} \right] = r(t).$$

One can also show the following for the present value of security j given \mathbb{Q} :

$$\frac{S_j(t)}{B(t)} = \tilde{S}_j(t) = \mathbb{E}^{\mathbb{Q}} \left[\tilde{S}_j(t+1) | \mathcal{P}_t \right]$$

Lemma 6. Given a strictly probability \mathbb{Q} , the following are equivalent:

- \mathbb{Q} is an equivalent martingale measure,
- Every dynamic strategy satisfies:

$$V_{\theta}(t) = \begin{cases} \mathbb{E}^{\mathbb{Q}} \left[\frac{V_{\theta}(t+1) + C_{\theta}(t+1)}{1 + r(t)} \middle| \mathcal{P}_{t} \right], & t = 0, \dots, T - 2 \\ \\ \mathbb{E}^{\mathbb{Q}} \left[\frac{C_{\theta}(T)}{1 + r(T-1)} \middle| \mathcal{P}_{t-1} \right], & t = T - 1. \end{cases}$$

• the discounted gain process of every dynamic strategy is a martingale under \mathbb{Q} :

$$G_{\theta}(t) = \mathbb{E}^{\mathbb{Q}}[G_{\theta}(t+1)|\mathcal{P}_t], \quad t = 0, 1, \dots, T-1.$$

Theorem 7 (First Fundamental Theorem of Asset Pricing). *TFAE*:

- No Arbitrage holds.
- There exists a state price vector ψ .
- There exists a risk-neutral probability \mathbb{Q} .

4 Dynamically Complete Multi-period Markets

Definition 18 (Contingent Claim in a Multi-period setting). A contingent claim is a sequence $X = \{X(t)\}_{t=1}^T$ of random variables adapted to the given information structure $\mathcal{P} = \{P_t\}_{t=1}^T$. We then say that X is attainable in the multi-period market financial market if there exists a dynamic investment strategy θ such that:

$$C_{\theta}(t) = X(t), \ t = 1, \dots, T.$$

Definition 19 (Dynamically Complete Multi-period Financial Market). We say that a discrete-time multi-period financial market is dynamically complete if every contingent claim $X = \{X(t)\}_{t=0}^T$ is attainable. (typo: t=1?)

Lemma 8. A discrete-time multi-period market is dynamically complete if every one-period submarket is complete. Conversely, if a multi-period market is dynamically complete and every one-period submarket satisfies the law of one price, then every one-period submarket is complete.

Theorem 9 (Second Fundamental Theorem of Asset Pricing). The following statements are equivalent:

- The market obtains NA and is complete.
- There exists a unique risk-neutral probability (EMM).

5 No-arbitrage Valuation in the Multi-period Case

We look for conditions on the price of a new security such that the extended market is arbitrage-free as well. We take as an input a multi-period market in which B and N risky securities are traded. We assume that this market is arbitrage-free. A new security is introduced with a cashflow $\{X(t)\}_{t=1}^T$ and available for trading at dates $t = 0, \ldots, T$ at prices $\{S_X(t)\}_{t=0}^T$. We assume that $X(T) = S_X(T)$.

5.1 Redunant Securities

Definition 20 (Redunant Security). A security is redunant if there exists a strategy $\theta^X = \{\theta^X(t)\}_{t=0}^{T-1}$ such that $C_{\theta^X}(t) = X(t), \forall t$.

Lemma 10. If the new security is redunant, TFAE:

- the extended market is arbitrage-free.
- for every θ^X replicating the new strategy, we have:

$$S_X(t) = V_{\theta X}(t), \quad \forall t.$$

• for every risk-neutral probability measure, \mathbb{Q} , of the initial market, we have that:

$$S_X(t) = \mathbb{E}^{\mathbb{Q}} \left[\frac{X(t+1) + S_X(t+1)}{1 + r(t)} \middle| \mathcal{P}_t \right], \quad t = 0, \dots, T - 2.$$

$$S_X(T-1) = \mathbb{E}^{\mathbb{Q}} \left[\frac{X(T)}{1+r(T-1)} \middle| \mathcal{P}_{T-1} \right], \quad t = T-1.$$

Definition 21 (Gordon's formula). The following equation enables us to determine the price of a new security:

$$S_X(t) = \mathbb{E}^{\mathbb{Q}} \left[\sum_{\tau=t+1}^T \frac{B(t)}{B(\tau)} X(\tau) \middle| \mathcal{P}_t \right], \quad \forall t = 0, \dots, T-1.$$

6 Binomial Model

The multi-period binomial model involves two securities. The first one is the risk-free bond B having a constant interest rate r at all times. The second security is S(t) modeled in the following way:

$$S(t)$$
 \nearrow $S(t)u$ with probability p $S(t)d$ with probability $1-p$ t

Figure 2: The risky stock in the Binomial model.

At time t, there are t+1 prices that S can take. The probability of each state is given by

$$\mathbb{P}\left[S(t) = Su^k d^{t-k}\right] = \binom{t}{k} p^k (1-p)^{t-k}.$$

In the binomial model, every 1-period submarket is complete and thus the whole multi-period market is dynamically complete. As long as d < 1 + r < u holds, then the market obtains no-arbitrage as well. The risk-neutral probability is given by:

$$\mathbb{Q}[S(t+1) = S(t)u] = q = \frac{1+r-d}{u-d}.$$

The risk-neutral probabilities do not depend on time nor the information node. For a generic date t, we get that:

$$\mathbb{Q}\left[S(t) = Su^k d^{t-k}\right] = \binom{t}{k} q^k (1-q)^{t-k}.$$

^{*}Non-redundant securities were skipped.

7 American and Path dependant Options

7.1 Valuation of American Options

Let X be an American option with maturity T. The option can be exercised at any intermediate date t = 1, ..., T. By properly choosing the exercise time τ , the holder can increase the value of his position. Hence the value of the American option at time t is

$$\tilde{V}(t) = \max_{t \le \tau \le T} \mathbb{E}^{\mathbb{Q}} \left[\frac{X(\tau)}{B(\tau)} \middle| \mathcal{P}_t \right].$$

 τ is a random variable, $\tau: \Omega \to T$ with the property that $\{\omega: \tau(\omega) = t\} \in \mathcal{P}_t$ for every t. A random variable τ with this property is called stopping time with respect to \mathcal{P}_t .

Properties of \tilde{V} :

- \tilde{V} is a super-martingale: $\tilde{V}(t_1) \geq \mathbb{E}^{\mathbb{Q}}\left[\tilde{V}(t_2) \middle| \mathcal{P}_{t_1}\right]$ for any $t_1 \leq t_2$.
- \tilde{V} is the smallest supermartingale greater or equal to the discounted payoff \tilde{X} . This means that if Y is a supermartingale such that $Y(t) \geq \tilde{X}(t)$, then $Y(t) \geq \tilde{V}(t)$.
- The optimal exercise policy τ^* is defined as

$$\tau^*(w) = \min \left\{ t : \tilde{V}(t)(\omega) = \tilde{X}(t)(w) \right\}.$$

• The discounted value of the American option if optimally exercises is a Q-martingale:

$$\left\{\tilde{V}((\tau^*(\omega) \wedge t)(\omega))\right\}_{t=0}^T$$
 is a \mathbb{Q} martingale.

Lemma 11 (Backward recursive formula for the American option). The discounted value of the American option \tilde{V} is given by:

$$\tilde{V}(t) = \max \left\{ \tilde{X}(t); \mathbb{E}^{\mathbb{Q}} \left[\tilde{V}(t+1) \big| \mathbb{P}_t \right] \right\}$$