TITLE: Predicting House Prices using Machine Learning

Phase 3: Development Part 1

Start building the house price prediction model by loading and preprocessing the dataset.

Importing Dependencies:

```
linkcode
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import r2_score,
mean_absolute_error, mean_squared_error
from sklearn.linear_model import LinearRegression
from sklearn.ensemble import RandomForestRegressor
import xgboost as xg%matplotlib inline
import warnings
warnings.filterwarnings("ignore")
/opt/conda/lib/python3.10/site-packages/scipy/__init__.py:146: UserWarning: A NumPy version
>=1.16.5 and <1.23.0 is required for this version of SciPy (detected version 1.23.5
warnings.warn(f"A NumPy version >={np_minversion} and <{np_maxversion}"</pre>
Loading Dataset:
Dataset = <a href="https://www.kaggle.com/datasets/vedavyasv/usa.housing">https://www.kaggle.com/datasets/vedavyasv/usa.housing</a>
Data Exploration:
dataset.info():
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5000 entries, 0 to 4999
```

Data columns (total 7 columns):

Column Non-Null Count Dtype

--- -----

0 Avg. Area Income 5000 non-null float64

1 Avg. Area House Age 5000 non-null float64

2 Avg. Area Number of Rooms 5000 non-null float64

3 Avg. Area Number of Bedrooms 5000 non-null float64

4 Area Population 5000 non-null float64

5 Price 5000 non-null float64

6 Address 5000 non-null object

dtypes: float64(6), object(1)

memory usage: 273.6+ KB

dataset.describe():

	Avg. Area Income	Avg. Area House Age	Avg. Area Number of Rooms	Avg. Area Number of Bedrooms	Area Population	Price
count	5000.000000	5000.000000	5000.000000	5000.000000	5000.000000	5.000000e+03
mean	68583.108984	5.977222	6.987792	3.981330	36163.516039	1.232073e+06
std	10657.991214	0.991456	1.005833	1.234137	9925.650114	3.531176e+05
min	17796.631190	2.644304	3.236194	2.000000	172.610686	1.593866e+04
25%	61480.562388	5.322283	6.299250	3.140000	29403.928702	9.975771e+05
50%	68804.286404	5.970429	7.002902	4.050000	36199.406689	1.232669e+06
75%	75783.338666	6.650808	7.665871	4.490000	42861.290769	1.471210e+06
max	107701.748378	9.519088	10.759588	6.500000	69621.713378	2.469066e+06

dataset.columns:

Index(['Avg. Area Income', 'Avg. Area House Age', 'Avg. Area Number of Rooms',

'Avg. Area Number of Bedrooms', 'Area Population', 'Price', 'Address'],

dtype='object')

Visualisation and Pre-Processing of Data:

Sns.histplot(dataset, x='Price', bins=50, color='y')

<Axes: xlabel='Price', ylabel='Count'>

Sns.boxplot(dataset, x='Price', palette='Blues')

<Axes: xlabel='Price'>

sns.jointplot(dataset, x='Avg . Area House Age', y='Price', kind='hex')

<seaborn.axisgrid.JointGrid at 0x7caf1d571810>

sns.jointplot(dataset, x='Avg. Area Income', y='Price')

<seaborn.axisgrid.JointGrid at 0x7caf1d8bf7f0>

plt.figure(figsize=(12,8))

sns.pairplot(dataset)

<seaborn.axisgrid.PairGrid at 0x7caf0c2ac550>

<Figure size 1200x800 with 0 Axes>

dataset.hist(figsize=(10,8))

array([[<Axes: title={'center': 'Avg. Area Income'}>,

<Axes: title={'center': 'Avg. Area House Age'}>],

[<Axes: title={'center': 'Avg. Area Number of Rooms'}>,

<Axes: title={'center': 'Avg. Area Number of Bedrooms'}>],

[<Axes: title={'center': 'Area Population'}>

<Axes: title={'center': 'Price'}>]], dtype=object)

Visualising Correlation:

Dataset.corr(numeric_only=True)

	Avg. Area Income	Avg. Area House Age	Avg. Area Number of Rooms	Avg. Area Number of Bedrooms	Area Population	Price
Avg. Area Income	1.000000	-0.002007	-0.011032	0.019788	-0.016234	0.639734
Avg. Area House Age	-0.002007	1.000000	-0.009428	0.006149	-0.018743	0.452543
Avg. Area Number of Rooms	-0.011032	-0.009428	1.000000	0.462695	0.002040	0.335664
Avg. Area Number of Bedrooms	0.019788	0.006149	0.462695	1.000000	-0.022168	0.171071
Area Population	-0.016234	-0.018743	0.002040	-0.022168	1.000000	0.408556
Price	0.639734	0.452543	0.335664	0.171071	0.408556	1.000000

Plt.figure(figsize=(10,5))

Sns.heatmap(dataset.corr(numeric_only = True), annot=True

<Axes: >

