Final Exam.

1

Consider the finite-state automaton given by the following transition diagram:

- a. Find the 0-,1-, 2-, and 3-equivalence classes of states of A.
- b. Draw the transition diagram for \overline{A} , the quotient automaton of A.

2.

Are the automata A and A' shown below equivalent?

3.

a.

A finite-state automaton A, given by the transition diagram below, has next-state function N and eventual-state function N^* .

- **a.** Find $N(s_1, 1)$ and $N(s_0, 1)$.
- b. Find $N(s_2, 0)$ and $N(s_1, 0)$.
- c. Find N*(s₀, 10011) and N*(s₁, 01001).
- d. Find N*(s₂, 11010) and N*(s₀, 01000).

4.

а

Next-State Table

			Input	
			0	1
	\rightarrow	s_0	s_1	s_2
State		s_1	s_1	s_2
	0	<i>s</i> ₂	s_1	s_2

- a. Find its states.
- b. Find its input symbols.
- c. Find its initial state.
- d. Find its accepting states.
- e. Draw its transition diagram.

5.

а

(a) design an automaton with the given input alphabet that accepts the given set of strings, and (b) find a regular expression that defines the language accepted by the automaton.

Input alphabet = {0, 1}; Accepts the set of all strings for which the final three input symbols are 1.

6.

a.

write a regular expression to define the given set of strings.

All words that are written in lower-case letters and contain at least one of the vowels a, e, i, o, or u.

7.

a

describe L_1L_2 , $L_1 \cup L_2$, and $(L_1 \cup L_2)^*$ for the given languages L_1 and L_2 .

 L_1 is the set of all strings of a's and b's that start with an a and contain only that one a; L_2 is the set of all strings of a's and b's that contain an even number of a's.

8.

A Regular Expression That Defines a Language

Let $\Sigma = \{0, 1\}$. Find regular expressions over Σ that define that following languages.

- a. The language consisting of all strings of 0's and 1's that have even length and in which the 0's and 1's alternate.
- b. The language consisting of all strings of 0's and 1's with an even number of 1's. Such strings are said to have *even parity*.
- c. The language consisting of all strings of 0's and 1's that do not contain two consecutive 1's.