Liam Hardiman November 26, 2018

260A - Homework 3

Problem 1. Let $(b_1, b_2, ...)$ be a sequence of complex numbers such that $\sum_{n=1}^{\infty} b_n c_n$ is convergent for every $c = (c_1, c_2, ...) \in \ell^2$. Show that $b \in \ell^2$.

Proof. Consider the sequence of maps $T_n: \ell^2 \to \mathbb{C}$ that send (c_1, \ldots) to $\sum_{j=1}^n b_j c_j$. Since each T_n is just a finite sum, we have that the T_n 's form a sequence of bounded linear operators on ℓ^2 . Furthermore, this sequence is pointwise bounded: given any $(c_1, c_2, \ldots) \in \ell^2$, since $\sum_{j=1}^{\infty} b_j c_j$ converges, we have that the sequence of partial sums $|T_n(c_1, c_2, \ldots)| = |\sum_{j=1}^n b_j c_j|$ is bounded. By the uniform boundedness principle, we have that

$$\sup_{n\in\mathbb{N}, \|(c_1,c_2,\dots)\|_2=1} |T_n(c_1,c_2,\dots)| = \sup_{n\in\mathbb{N}} \|T_n\| = \sum_{j=1}^{\infty} |b_j| < \infty,$$

so
$$(b_1, b_2, ...) \in \ell^2$$
.

Problem 2. Let M be a measurable subset of \mathbb{R}^n with finite positive measure. Prove that $L^q(M)$ is of the first category in $L^p(M)$ if $1 \leq p < q \leq \infty$.

Proof. Since M has finite measure, we have that $L^q(M) \subseteq L^p(M)$ whenever $1 \le p < q \le \infty$. Consider the injection $\iota: L^q(M) \to L^p(M)$ that simply sends $f \in L^p(M)$ to itself. By the generalized Hölder inequality we have that $\|\iota(f)\|_{L^p} = \|f\|_{L^p} \le \mu(M)^{1/r} \|f\|_{L^q}$, where $\frac{1}{p} = \frac{1}{q} + \frac{1}{r}$. This shows that ι is bounded, and therefore continuous. Since $L^p(M)$ and $L^q(M)$ are Banach spaces, the open mapping theorem tells us that the image of ι is either surjective and open or of the first category in $L^p(M)$.

Our plan is to show that ι is not surjective, i.e. that $L^p(M) \setminus L^q(M)$ is nonempty. We'll do this by showing that $L^q(M) = L^p(M)$ would forbid the existence of subsets of M with arbitrarily small measure. Since sets of positive measure in \mathbb{R}^n do contain sets of arbitrarily small measure, we'll conclude that $L^q(M) \neq L^p(M)$.

If the embedding $\iota: L^q(M) \to L^p(M)$ were surjective, then the open mapping theorem would imply that ι is actually a homeomorphism. In particular, its inverse, $\iota': L^p(M) \to L^q(M)$ is a bounded operator. Let A be a subset of M with positive, finite measure and define the function

$$f_A(x) = \frac{1}{m(A)^{1/p}} \cdot \chi_A(x).$$

It's clear that $||f_A||_{L^p}=1$ and that $||f_A||_{L^q}=\frac{1}{m(A)^{1/p-1/q}}$. Since ι' is bounded, we have

$$0 < ||f_A||_{L^q} \le ||\iota'|| \cdot ||f_A||_{L^p} \implies 0 < \frac{1}{||\iota'||^{\frac{pq}{q-p}}} \le m(A).$$

This puts a positive lower bound on the measure of subsets of M. But M, as a subset of \mathbb{R}^n with positive measure, contains set of arbitrarily small measure. We conclude that $L^q(M)$ is of the first category of $L^p(M)$.

Problem 3. Let (X, \mathcal{A}, μ) be a finite measure space. Assume that E is a closed subspace of $L^2(X, \mu)$, and that E is contained in $L^{\infty}(X, \mu)$. Prove that E is finite dimensional.

Proof. By Hölder's inequality, the embedding $\iota: L^{\infty}(X) \to L^{2}(X)$, $f \mapsto f$ is continuous, i.e., $||f||_{L^{\infty}} \le C \cdot ||f||_{L^{2}}$ for some finite C > 0. Let $e_{1}, \ldots e_{n}$ be an orthonormal set in E.