

Department of Computer Science and Engineering PES University, Bangalore, India

UE23CS243A: Automata Formal Language and Logic

Prakash C O, Associate Professor, Department of CSE

Regular Grammar (type-3 grammar):

Why do we care about regular grammars?

Programs are composed of tokens:

- Identifiers
- Literals (Integer literals, floating point literals, character literals, string literals, ...)
- Keywords
- Operators and
- Special symbols (i.e., Punctuation symbols, ...)

Each of these can be defined by regular grammars.

Formal Definition of a Grammar

Formally, a grammar is a 4-tuple G = (V, T, P, S)

where:

- V Set of nonterminals (or variables)
- T Set of terminal symbols
- P Set of productions(or rules)
 - o The head is nonterminal
 - o The body is a sequence of teminals and/or nonterminals
- S Start Symbol (Designation of one nonterminal as starting symbol)

Example:

> Production rules.

Note: All the variables in your grammar must be reachable from the start symbol of the grammar and all variables must derive something (or end)

Derivation:

A derivation in compiler design is the successive application of production rules to produce the desired input string.

- Given the grammar (i.e. productions)
- begin with the start symbol
- repeatedly replacing nonterminal by the body
- We obtain the language string/statement defined by the grammar (i.e. group of terminal strings)

There are two types of derivation in compiler design:

- 1) Left-most Derivation
- 2) Right-most Derivation

Left-most Derivation

The left-most derivation is a method of transforming an input string according to the grammar rules of a programming language. **The leftmost non-terminal is selected at each stage of left-most derivation.**

Grammar:

 $S \to ABC$

 $A \rightarrow a$

 $\boldsymbol{B} \to \boldsymbol{b}$

 $\boldsymbol{C} \to \boldsymbol{c}$

Input string: abc

Left-most derivation: $S \Rightarrow ABC \Rightarrow aBC \Rightarrow abC \Rightarrow abc$

Right-most Derivation

The right-most derivation is a method for transforming an input text depending on the grammar rules of a programming language.

The rightmost non-terminal is selected for expansion at each step, which is regulated by the production rule associated with that non-terminal.

Grammar:

 $S \rightarrow ABC$

 $\mathbf{A} \rightarrow \mathbf{a}$

 $\mathbf{B} \to \mathbf{b}$

 $\boldsymbol{C} \to \boldsymbol{c}$

Input string: abc

Right-most derivation: $S \Rightarrow ABC \Rightarrow ABc \Rightarrow Abc \Rightarrow abc$

Parse Tree: Parse Tree is the geometrical representation of a derivation.

- Parse tree is the hierarchical representation of terminals or non-terminals.
- These symbols (terminals or non-terminals) represent the derivation of the grammar to yield input strings.
- In parsing, the string springs using the beginning symbol.
- The starting symbol of the grammar must be used as the root of the Parse Tree.
- Leaves of parse tree represent terminals.
- Each interior node represents non-terminals (or productions) of a grammar.

Example 1:

 $S \rightarrow SAB$

 $A \rightarrow a$

 $B \rightarrow b$

The input string is "sab",

Derivation: $S \Rightarrow sAB \Rightarrow saB \Rightarrow sab$

then the Parse Tree is:

Example-2:

 $S \rightarrow AB$

 $A \rightarrow c \mid aA$

 $B \rightarrow d \mid bB$

The input string is "acbd",

Derivation: $S \Rightarrow AB \Rightarrow aAB \Rightarrow acB \Rightarrow acbB \Rightarrow acbd$

then the Parse Tree is as follows:

Sentential Form:

A sentential form is any string consisting of non-terminals and/or terminals that is derived from a start symbol. Therefore, every sentence is a sentential form, but only sentential forms without non-terminals are called sentences.

Example: Grammar: $S \rightarrow aSb \mid \lambda$

We write:

 $S \stackrel{*}{\Rightarrow} aaabbb$

Instead of:

 $S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aaaSbbb \Rightarrow aaabbb$

Linear Grammar

Grammars with at most one variable (or Nonterminal) at the right hand side of a production.

Example-1:

 $S \rightarrow aSb$ $S \rightarrow \lambda$

Example-2:

S → Ab

A → aAb

 $A \rightarrow \lambda$

Non-Linear Grammar

Grammars with more than one variable (or Nonterminal) at the right hand side of a production.

Example:

$$S \rightarrow \lambda$$

 $S \rightarrow aSb$
 $S \rightarrow bSa$
 $L(G) = \{ w \mid n_a(w) = n_b(w) \}$

Right-Linear Grammar

• **Right linear grammar:** The non-terminal symbol should be at the right end of the production body. All productions have the form:

$$S \rightarrow WS$$
 or $S \rightarrow WA$
 $S \rightarrow W$ $A \rightarrow W$

where S and A are non-terminals in V and w is a string of terminals i.e., $w \in \Sigma^*$

• Right linear grammar: The grammars, in which all rules are of the form $A \to w\alpha$ where w is a string of terminals and α is either empty or a single nonterminal.

Examples:

1) S → abS S → a 2) S → 00B | 11S B → 0B | 1B | 0 | 1 3) S → cS S → λ

Left-Linear Grammar

• **Left linear grammar:** The non-terminal symbol should be at the left end of the production body. All productions have the form:

$$S \rightarrow SW$$
 or $S \rightarrow AW$
 $S \rightarrow W$ $A \rightarrow W$

where S and A are non-terminals in V and w is a string of terminals i.e., $w \in \Sigma^*$

• Left linear grammar: The grammars, in which all rules are of the form $A \to \alpha w$ where α is either empty or a single nonterminal and w is a string of terminals.

Example:

Regular Grammar

- A regular language can be described by a special kind of grammar called regular grammar.
- A regular grammar is a grammar that is left-linear or right-linear.
- Regular grammars generate regular languages.

Example: Construct a regular grammar for the language of the regular expression $(a|b)^*a$

Regular Grammar is:

$$S \rightarrow aS$$

 $S \rightarrow bS$ or $S \rightarrow aS$ | bS | a

Does this sentence (or string) baaba conform to the written grammar. YES

Derivation: $S \Rightarrow bS \Rightarrow baS \Rightarrow baabS \Rightarrow baaba$

Construct a Regular Grammar for the given language description.

Hint: Easy way is to construct NFA(or λ -NFA with state names as uppercase letters) and then writing the regular grammar.

1	$L = \{a\}$	
2	$L = \{ab\}$	
3	L = $\{ w \mid w \in \{a, b\}^* \text{ and } w = 2 \}$	
4	L = $\{ w \mid w \in \{a, b\}^* \text{ and } w \le 2 \}$	
5	L = {aaaa}	
6	$L = \{a, b\}$	
7	L = {ab, ba}	
8	$L = \{\lambda, a, aa, aaa,\}$	
9	L = { a, aa, aaa, }	
10	$L = \{\lambda, ab, abab,\}$	
11	L = { λ, a, b, ab, ba, aaa, bbb, bba, bab, abb, aab, aba, baa, }	
12	L = { a, b, ab, ba, aaa, bbb, bba, bab, abb, aab, aba, baa, }	
13	Strings with zero or more a's only and Strings with zero or more b's only.	
14	Strings with one or more a's only and Strings with one or more b's only.	
15	Strings begins with zero or more a's followed by single b.	
16	Strings begins with a and followed by zero or more b's.	
17	$L=\{a^{2n}\mid n\geq 0\}$	
17a	$L=\{a^{2n}\mid n\geq 1\}$	
18	$L=\{a^{2n+1} \mid n \ge 0\}$	
19	L={ a ⁴ⁿ n≥0 }	
20	L = $\{ w_1 a w_2 \mid w_1 \in \{b\}^* \text{ and } w_2 \in \{a, b\}^* \}$	
21	$L=\{a^mb^n \mid m\geq 0 \text{ and } n>0 \}$	
22	$L=\{a^mb^n \mid m>0 \text{ and } n\geq 0 \}$	
23	$L=\{a^mb^n \mid m>0 \text{ and } n>0 \}$	
24	$L=\{a^mb^n \mid m\geq 0 \text{ and } n\geq 0\}$	
	$L = \{ \lambda, a, aa, aaa,, b, bb, bbb, bbb,, ab, aab, a$	
25	0 or more a's, followed by 0 or more b's, followed by 0 or more c's. $L = \{\epsilon, a, b, c, aa, ab, ac, ac, ab, ac, ac, ab, ac, ac, ab, ac, ac, ac, ab, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac$	
	bb, bc, cc, aaa,}	
26	$L=\{a^mb^n \mid m>0 \text{ or } n>0 \}$	
27	Strings ending with abb. L = {abb, aabb, babb, aaabb, ababb, baabb, bbabb,}	
28	Strings starting with ab. L = {ab, aba, abb, abaa, abab, abba, abbb,}	

29	Strings that contains aa. L = {aa, aaa, baa, aab,}
30	1 or more a's, followed by 1 or more b's, followed by 1 or more c's. L = {abc, aabc, abbc,
	abcc, aabbc, aabcc, abbcc,}
31	Strings that end with a or bb. L = {a, bb, aa, abb, ba, bbb,}
32	Strings with even number of a's followed by odd number of b's. L = {b, aab, bbb, aabbb,}
33	Binary strings ending with 3 0's. L = {000, 0000, 1000, 00000, 01000, 10000, 11000,}
34	Strings with even number of 1's. L = $\{\epsilon, 11, 1111, 111111,\}$

Solutions:

	L = {a}	a	Grammar
		а	_
2 I		_	$S \rightarrow a$
	$L = \{ab\}$	ab	S → ab
3 I	L = $\{ w \mid w \in \{a, b\}^* \text{ and } w = 2 \}$	(a b)(a b)	$S \rightarrow aA \mid bA$
		or	$A \rightarrow a \mid b$
4 I	L = { w $w \in \{a, b\}^* \text{ and } w \le 2 \}$	[ab][ab] (a b)? (a b)?	$S \rightarrow aA \mid bA \mid \lambda$
	$L = \{ w \mid w \in \{a, b\} \text{ and } w \ge 2 \}$	or	$A \rightarrow a \mid b \mid \lambda$
			$A \rightarrow a \mid b \mid \lambda$
		$(\varepsilon a b)(\varepsilon a b)$	
	L = {aaaa}	aaaa	S → aaaa
6 I	$L = \{a, b\}$	a b	$S \rightarrow a \mid b$
7 I	L = {ab, ba}	ab ba	$S \rightarrow ab \mid ba$
8 I	L = { λ, a, aa, aaa, }	a*	$S \rightarrow aS \mid \lambda$
9 I	L = { a, aa, aaa, }	a+	S → aS a
10 I	L = { λ, ab, abab, }	(ab)*	S → abS λ
11 I	L = $\{\lambda, a, b, ab, ba, aaa, bbb, bba, bab, abb, aab,$	(a b)*	$S \rightarrow aS \mid bS \mid \lambda$
a	aba, baa, }		
12 I	L = { a, b, ab, ba, aaa, bbb, bba, bab, abb, aab, aba,	(a b) ⁺	$S \rightarrow aS \mid bS \mid a \mid b$
b	baa, }		
13 5	Strings with zero or more a's only and Strings	a* b*	S → A B
v	with zero or more b's only.		$A \rightarrow aA \mid \lambda$
			$B \rightarrow bB \mid \lambda$
			or
			$S \rightarrow aA \mid bB \mid \lambda$
			$A \rightarrow aA \mid \lambda$
			$B \rightarrow bB \mid \lambda$
14 5	Strings with one or more a's only and Strings	a+ b+	S → A B

	with one or more b's only.	or	$A \rightarrow aA \mid a$
		aa* bb*	$B \rightarrow bB \mid b$
			or
			$S \rightarrow aA \mid bB$
			$A \rightarrow aA \mid \lambda$
			$B \rightarrow bB \mid \lambda$
15	Strings begins with zero or more a's and ends	a*b	$S \rightarrow aS \mid b$
	with single b.		or
			$S \rightarrow Ab$
			$A \rightarrow Aa \mid \lambda$
16	Strings begins with a and followed by zero or	ab*	S → aB
	more b's.		$B \rightarrow bB \mid \lambda$
			or C Ch
17	I - (a2n m>0)	(00)*	$S \rightarrow a \mid Sb$ $S \rightarrow aA \mid \lambda$
17	$L=\{a^{2n}\mid n\geq 0\}$	(aa)*	$A \rightarrow aA \mid \lambda$
			or
			$S \rightarrow aaS \mid \lambda$
17a	L={ a ²ⁿ n≥1 }	(aa)+	S → aA
			$A \rightarrow aS \mid a$
			or
			S → aaS aa
18	L={ $a^{2n+1} n \ge 0$ }	(aa)*a	$S \rightarrow aaS \mid a$
			or
			$S \rightarrow aA \mid a$
			$A \rightarrow aS$
			$\begin{array}{c} \mathbf{or} \\ \mathbf{S} \to \mathbf{aA} \end{array}$
			$A \rightarrow aS \mid \lambda$
19	L={ a ⁴ⁿ n≥0 }	(aaaa)*	$S \rightarrow aaaaS \mid \lambda$
	_ (- ^-	(www.)	or
			$S \rightarrow aA \mid \lambda$
			$A \rightarrow aB$
			$B \rightarrow aA$
			$A \rightarrow aS$
20	L = { $w_1aw_2 \mid w_1 \in \{b\}^* \text{ and } w_2 \in \{a, b\}^* \}$	b*a(a b)*	$S \rightarrow bS \mid aA \mid a$
			$A \rightarrow aA \mid bA \mid \lambda$
21	L={ $a^mb^n m \ge 0$ and $n > 0$ }	a*bb*	$S \rightarrow aS \mid b \mid bB$
	L = { b, bb, ab, aab, abb, bbb,}	or	$B \rightarrow bB \mid \lambda$
22	I_(ambn was 0 and ns 0)	a*b+	C
22	$L=\{ a^mb^n \mid m>0 \text{ and } n\geq 0 \}$	aa*b*	$S \rightarrow aA$
	L = { a, aa, ab, aab, abb, aaa,}	or a+b*	$A \rightarrow aA \mid \lambda \mid bB$ $B \rightarrow bB \mid \lambda$
		a'u	$D \rightarrow DD \mid V$

23	$L=\{a^mb^n \mid m>0 \text{ and } n>0 \}$	aa*bb*	S → aA
		or	$A \rightarrow aA \mid bB$
		a+b+	$B \rightarrow \lambda \mid bB$
24	$L=\{ a^mb^n \mid m\geq 0 \text{ and } n\geq 0 \}$	a*b*	$S \rightarrow aS \mid bB \mid \lambda$
	$L = \{ \lambda, a, aa, aaa,, b, bb, bbb, bbb,,$		$B \rightarrow bB \mid \lambda$
	ab, aab, abb, aabb, aaab, }		
25	0 or more a's, followed by 0 or more b's, followed	a*b*c*	$S \rightarrow aS \mid bB \mid cC \mid \epsilon$
	by 0 or more c's. L = $\{\varepsilon, a, b, c, aa, ab, ac, ba, bb,$		$B \rightarrow bB \mid cC \mid \epsilon$
	bc, ca, cb, cc, aaa,}		$C \rightarrow cC \mid \varepsilon$
26	$L=\{a^mb^n m>0 \text{ or } n>0 \}$	aa*b* a*b*b	$S \rightarrow aS \mid aA \mid bA$
		or	$A \rightarrow bA \lambda$
		a+b* a*b+	
27	Strings ending with abb. L = {abb, aabb, babb,	(a b)*abb	$S \rightarrow aS \mid bS \mid aB$
	aaabb, ababb, baabb, bbabb,}		$B \rightarrow bA$
			A → b
28	Strings starting with ab. L = {ab, aba, abb, abaa,	ab(a b)*	$S \rightarrow aB$
	abab, abba, abbb,}		$B \rightarrow bA$
20		(- 11-) \(\)	$A \rightarrow aA \mid bA \mid \epsilon$
29	Strings that contains aa. L = {aa, aaa, baa, aab,}	(a b)*aa(a b)*	$S \rightarrow aS \mid bS \mid aA$
			$A \rightarrow aB$
30	1 or more a's, followed by 1 or more b's, followed	a+b+c+	$B \to aB \mid bB \mid \epsilon$ $S \to aA$
30		or	$A \rightarrow aA \mid bB$
	by 1 or more c's. L = {abc, aabc, abbc, abcc, aabbc,	aa*bb*cc*	$B \rightarrow bB \mid cC$
	aabcc, abbcc,}		$C \rightarrow cC \mid \varepsilon$
31	Strings that end with a or bb. L = {a, bb, aa, abb,	(a b)*(a bb)	$S \rightarrow aS \mid bS \mid a \mid bB$
	ba, bbb,}		$B \rightarrow b$
0.0			
32	Strings with even number of a's followed by odd	(aa)*(bb)*b	$S \rightarrow aA \mid bB \mid b$
	number of b's. L = {b, aab, bbb, aabbb,}		$A \rightarrow aC$
			$C \rightarrow aA \mid bB \mid \epsilon$
			$\begin{vmatrix} B \rightarrow bD \mid \varepsilon \\ D \rightarrow bB \end{vmatrix}$
33	Binary strings ending with 3 0's. L = {000, 0000,	(0+1)*000	$S \rightarrow 0S \mid 1S \mid 0A$
		(0.2) 000	$A \rightarrow 0B$
	1000, 00000, 01000, 10000, 11000,}		$B \rightarrow 0$
34	Strings with even number of 1's. L = $\{\epsilon, 11, 1111,$	(11)*	$S \rightarrow 1A \mid \varepsilon$
	111111,}		A → 1S
35	Strings with atmost 3 a's and $\Sigma \in \{a, b\}$	b*a?b*	$S \rightarrow bS \mid aA \mid \lambda$
		b*ab*ab*	$A \rightarrow bA \mid aB \mid \lambda$
		b*ab*ab*ab*	$B \rightarrow bB \mid aC \mid \lambda$
			$C \rightarrow bC \mid \lambda$

Note:

Every regular language can be specified by a finite state automaton, a regular expression, or a regular grammar. Furthermore, all of these specifications are equivalent in the sense that they all capture the class of regular languages.

Finite State Automaton	Recognizer	Determines whether a particular input string in the regular language is recognized by the FSA or not.
Regular Expression	Expresser	Expresses a regular language as a pattern to which every string in the regular language conforms.
Regular Grammar	Generator	Provides grammar rules for generating strings in the regular language

Note: Regular grammar is a formal specification of a regular language by way of grammar rules.

Exercises:

Construct a Regular Grammar for the given language description and Regular expression.

- 1. Strings of a's and b's of length 2. Regex = $aa \mid ab \mid ba \mid bb$ OR (a|b)(a|b)
- 2. Strings of a's and b's of length \leq 2. Regex = $\epsilon |a|b|aa|ab|ba|bb$ OR $(\epsilon |a|b)(\epsilon |a|b)$ OR (a|b)?
- 3. Strings of a's and b's of length ≤ 5 . Regex = $(\varepsilon \mid a \mid b)^5$
- 4. Even-lengthed strings of a's and b's. Regex = $(aa \mid ab \mid ba \mid bb)^* OR ((a|b)(a|b))^*$
- 5. Odd-lengthed strings of a's and b's. Regex = $(a|b)((a|b)(a|b))^*$
- 6. L(R) = { w : w \in {0,1}* with at least three consecutive 0's } Regex = (0|1)* 000 (0|1)*
- 7. Strings of 0's and 1's with no two consecutive 0's. Regex = $(1 \mid 01)^* (0 \mid \epsilon)$
- 8. Strings of a's and b's starting with a and ending with b. Regex = a(a|b)*b
- 9. Strings of a's and b's whose second last symbol is a. Regex = (a|b)* a (a|b)
- 10. Strings of a's and b's whose third last symbol is a and fourth last symbol is b.

```
Regex = (a|b)*b a (a|b) (a|b)
```

- 11. Strings of a's and b's whose first and last symbols are the same. Regex = (a (a|b)*a) | (b (a|b)*a)
- 12. Strings of a's and b's whose first and last symbols are different. Regex = (a (a|b)*b) | (b (a|b)*a)
- 13. Strings of a's and b's whose last and second last symbols are same. Regex = (a|b)* (aa | bb)
- 14. Strings of a's and b's whose length is even or a multiple of 3 or both.

```
Regex = R1 | R2 where R1 = ((a|b)(a|b))^* and R2 = ((a|b)(a|b)(a|b))^*
```

15. Strings of a's and b's such that every block of 4 consecutive symbols has at least 2 a's.

```
Regex = (aaxx \mid axax \mid axxa \mid xaax \mid xaxa \mid xxaa)^* where x = (a|b)
```

16. L = $\{a^nb^m : n \ge 0, m \ge 0\}$ Regex = a^*b^*

18. $L = \{a^nb^m : n \mid m \text{ is even}\}$ Regex =aa*bb*|a(aa)*b(bb)*Regex = (aa)* (bb)* 19. L = $\{a^{2n}b^{2m} : n \ge 0, m \ge 0\}$ 20. Strings of a's and b's containing not more than three a's. Regex = $b^* (\epsilon \mid a) b^* (\epsilon \mid a) b^* (\epsilon \mid a) b^*$ Regex = aaa a* $(\varepsilon \mid b) (\varepsilon \mid b) (\varepsilon \mid b)$ 21. L = $\{a^nb^m : n \ge 3, m \le 3\}$ 22. L = $\{ w : |w| \mod 3 = 0 \text{ and } w \in \{a,b\}^* \}$ $Regex = ((a|b)(a|b)(a|b))^*$ 23. L = { $w : n_a(w) \mod 3 = 0 \text{ and } w \in \{a,b\}^*$ } **Regex =b*** a b* a b* a b* 24. Strings of 0's and 1's that do not end with 01. Regex = $(0|1)^*(00|10|11)$ 25. L = { vuv : u, $v \in \{a,b\}^*$ and |v| = 2} Regex = (aa | ab | ba | bb) (a|b)* (aa | ab | ba | bb)26. Strings of a's and b's that end with ab or ba. Regex = (a|b)* (ab | ba)27. L = $\{a^nb^m : m, n \ge 1 \text{ and } mn \ge 3\}$ Regex = $a bbb b^* | aaa a^* b | aa a^* bb b^*$

Regex = $aa^*bb^*ORa^+b^+$

Equivalence of Regular Grammar and Finite Automata

The relationship of regular grammar and finite automata is shown below:

If G is a regular grammar, then L(G) is a regular language accepted by Finite automata.

Converting Finite Automata to Regular Grammars

Algorithm: Finite Automata to Regular Grammar

Perform the following steps to construct a regular grammar that generates the language of a given Finite automata:

- 1. Rename the states to a set of uppercase letters (if the state names are named with $q_0,q_1,q_2...$ or 1,2,3,...)
- 2. The start symbol of the grammar is the Finite Machines start state.
- 3. For each state transition from I to J labelled with a, create the production $\mathbf{I} \to \mathbf{aJ}$
- 4. For each state transition from I to J labelled with λ , create the production $\mathbf{I} \to \mathbf{J}$
- 5. For each final state K, create a null production $K \rightarrow \lambda$

Example: Convert the following finite automata to regular grammar.

17. L = $\{a^nb^m : n > 0, m > 0\}$

Regular Grammar:

- $\circ \quad S \to aI$
- \circ $\mathbf{S} \rightarrow \mathbf{J}$
- \circ $I \rightarrow bK$
- $\circ \quad J \to aJ$
- \circ $J \rightarrow aK$
- $\circ\quad K \mathop{\rightarrow} \lambda$

Exercise:

1. Convert the following finite automata to regular grammar for the language to accept at most 3 'a's over the alphabet $\Sigma = \{a, b\}$.

Solution:

- $S \rightarrow bS \mid aA \mid \lambda$
- $A \rightarrow bA \mid aB \mid \lambda$
- $B \rightarrow bB \mid aC \mid \lambda$
- $C \rightarrow bC \mid aD \mid \lambda$

State D is a trap (or dead) state and its rules are

 $D \rightarrow aD \mid bD$ (Not used for string derivation, it's an useless production)

Note: The start symbol of the grammar is S, because the start state is S.

2. Convert the following finite automata to regular grammar.

Where $L = \{ n_a(w) \mod 2 = 0 \text{ and } n_b(w) \mod 2 = 0 \}$

Solution:

$$A \to aB \mid bC \mid \lambda$$

$$B \rightarrow aA \mid bD$$

$$C \to aD \mid bA$$

$D \rightarrow aC \mid bB$

Note: The start symbol of the grammar is A, because the start state is A.

3. Convert the following finite automata to regular grammar.

Where $L = \{abcw \mid where w \in \{a,b,c\}^*\}$

4. Convert the following finite automata to regular grammar.

Where L = { bwb | where $w \in \{a,b\}^*$ }

5. Convert the following finite automata to regular grammar.

Where language contains binary strings ends with 101.

Converting Regular Grammars to Finite Automata

Algorithm-01: Regular Grammar to Finite Automata

Perform the following steps to construct an Automata that accepts the language of a given regular grammar:

- 1. If necessary, transform the grammar so that all productions have the form $A \rightarrow x$ or $A \rightarrow xB$, where x is either a single letter (i.e., terminal symbol) or λ
- 2. The start state of the Automata is the grammar's start symbol.
- 3. For each production $I \rightarrow aJ$, construct a state transition from I to J labelled with the letter a.
- 4. For each production $I \rightarrow J$, construct a state transition from I to J labelled with λ .
- 5. If there are productions of the form $I \rightarrow a$ for some letter a, then create a single new state symbol F. For each production $I \rightarrow a$, construct a state transition from I to F labelled with a.
- 6. If there is a production of the form $I \to \lambda$ or $I \to \epsilon$ (i.e., Null production), then state I is a final state.

Examples:

1) Convert the following regular grammar to finite automata.

$$\begin{split} S &\rightarrow aS \mid bB \mid cC \mid \epsilon \\ B &\rightarrow bB \mid cC \mid \epsilon \\ C &\rightarrow cC \mid \epsilon \end{split}$$

Solution:

2) Convert the following regular grammar to finite automata.

$$A \rightarrow aB \mid bA \mid b$$

 $B \rightarrow aC \mid bB$
 $C \rightarrow aA \mid bC \mid a$

Solution:

3) Convert the following regular grammar to finite automata.

$$S \rightarrow bS \mid aA$$

$$A \rightarrow aA \mid aB \mid bA$$

$$B \rightarrow bbB$$

$$B \rightarrow \lambda$$

Solution:

Transform the given grammar so that all productions have the form $A \rightarrow x B$, where x is either a single letter (i.e., terminal symbol) or λ

$$S\rightarrow bS \mid aA$$
 $A\rightarrow aA \mid aB \mid bA$
 $B\rightarrow bC$
 $C\rightarrow bB$
 $B\rightarrow \lambda$

Algorithm-02: Regular Grammar to Automata

Assume that a regular grammar is given in its right-linear form, this grammar may be easily converted to a Automata. A right-linear grammar, defined by G = (V, T, P, S), may be converted to a automata, defined by $M = (Q, \Sigma, \delta, q0, F)$ by:

- 1. Create a state for each variable.
- **2.** Convert each production rule into a transition.
 - a) If the production rule is of the form $V_i \rightarrow aV_j$, where $a \in T$, add the transition $\delta(V_i, a) = V_j$ to automata M.
 - i) For example, $A \rightarrow aB$ becomes:
- ii) For example, $A \rightarrow aA$ becomes:

- b) If the production rule is of the form $V_i \to wV_j$, where $w \in T^*$, create a series of states which derive w and end in V_i . Add the states in between to set Q.
 - i) For example, $A \rightarrow abcD$ becomes:

Note: For intermediate states, give new names (i.e., names that are not there in the Nonterminals list V of the given grammar).

ii) For example, $A \rightarrow abA$ becomes:

- c) If the production rule is of the form $V_i \rightarrow w$, where $w \in T^*$, create a series of states which derive w and end in a final state.
 - i) For example, $A \rightarrow a$ becomes:

ii) For example, $A \rightarrow ab$ becomes:

d) If the production rule is of the form $V_i \to \lambda$ or $V_i \to \epsilon$ (i.e., Null production), then state V_i is a final state.

Examples:

1) Convert the following regular grammar to Automata.

S→01A

A→10B

 $B\rightarrow 0A|11$

Solution:

2) Convert the following regular grammar to Automata.

 $S \rightarrow aB$

 $B \rightarrow bA$

 $A \rightarrow aA \mid bA \mid \epsilon$

Solution:

Reverse of a Regular Language

If L is a regular language, then L^R is also regular

- Let L be a regular language, then there exists an automata M such that L = L(M). $M = (Q, \Sigma, \delta, q_0, F)$ (where machine M has a single final state)
- Construct a new machine M^R (i.e., L^R=L(M^R)) by toggling initial and final state and by reversing the arrows (i.e., swapping initial and final state and changing the directions of the edges).
- The reverse of a regular language i.e., L^R is the language accepted by automata M^R.

Converting Right Linear Grammar to Left Linear Grammar

If G is a Right Linear Grammar, then there is a Left Linear Grammar G' such that L(G) = L(G'')

Conversion outline:

- a) From G, construct M
- b) From M construct M^R for L^R
- c) Generate G' a Right Linear Grammar for LR
- d) Generate G'' a Left Linear Grammar for $(L^R)^R = L$ (i.e., getting G'' from G' by reversing all symbols on RHS of productions)

Example:

1) Convert the following Right Linear Grammar to Left Linear Grammar

The Right Linear Grammar G is:

 $A \rightarrow aB$

 $B \rightarrow bC$

 $C \rightarrow aC \mid bC \mid \epsilon$

Where $L(G) = \{ abw \mid w \in \{a,b\}^* \}$

Solution:

a) From G, construct automata M

b) From M construct MR for LR

c) Generate G' a Right Linear Grammar from MR for LR

 $C \rightarrow aC \mid bC \mid bB$

 $B \rightarrow aA$

 $A \rightarrow \epsilon$

d) Generate G'' a Left Linear Grammar for $(L^R)^R = L$ (i.e., getting G'' from G' by reversing all symbols on RHS of productions)

$$C \rightarrow Ca \mid Cb \mid Bb$$

$$B \rightarrow Aa$$

$$A \rightarrow \epsilon$$

Note: L(G) = L(G'')

Converting Left Linear Grammar to Right Linear Grammar

If G is a Left Linear Grammar, then there is a Right Linear Grammar G" such that L(G) = L(G")

Conversion outline:

- a) From G, Generate G' a Right Linear Grammar for L^R (i.e., getting G' from G by reversing all symbols on RHS of productions)
- b) From G' construct M for L^R
- c) Construct M^R from M for $(L^R)^R$
- d) Generate G'' a right Linear Grammar for $(L^R)^R = L$

Example:

1) Convert the following Left Linear Grammar to Right Linear Grammar

Left Linear Grammar G is:

$$C \rightarrow Ca \mid Cb \mid Bb$$

$$B \rightarrow Aa$$

$$A \rightarrow \epsilon$$

Where L(G) = $\{abw \mid w \in \{a,b\}^*\}$

Solution:

a) From G, Generate G' a Right Linear Grammar for L^R (i.e., getting G' from G by reversing all symbols on RHS of productions)

$$C \rightarrow aC \mid bC \mid bB$$

$$B \rightarrow aA$$

$$A \rightarrow \epsilon$$

b) From G' construct M for L^R

c) Construct M^R from M for $(L^R)^R$

d) Generate G'' a right Linear Grammar for $(L^R)^R = L$

 $A \rightarrow aB$

 $\mathbf{B} \to \mathbf{bC}$

 $C \rightarrow aC \mid bC \mid \epsilon$

_____***____