Projet : Programmation par contraintes

Set Constraint Modeling - SGP / STS

Jonathan Fontaine, Arthur Gontier, Oryan Rampon, Corentin Pelhâtre, Mathis Ocquident, Thaddeus Leonard, Adrien Cassaigne

UNIVERSITÉ DE NANTES

M2 Informatique ORO

19 décembre 2019

Plan

- Introduction
- Social Golfer Problem :
- 3 Sports Tournament Scheduling :
- 4 Tunning
- Solveur
- 6 Résultats
- Conclusion

Plan

- Introduction
- Social Golfer Problem :
- Sports Tournament Scheduling :
- Tunning
- Solveur
- 6 Résultats
- Conclusion

Équipe Erasmus :

Groupe de 7 étudiants Erasmus qui n'ont pas eu ce cours l'année dernière ⇒ faire de son mieux.

Social Golfer Problem:

L'objectif du SGP est de planifier g*p golfeurs dans g groupes de p joueurs sur w semaines tel que :

- ⇒ Il n'y a jamais deux golfeurs qui jouent dans le même groupe plus d'une fois.
- ⇒ Tous les golfeurs jouent une fois par semaine.
- \Longrightarrow Le nombre de groupes et le nombre de joueurs par groupe reste inchangé au cours des w semaines.

Sports Tournament Scheduling :

Le STS est un problème visant a créer un tournois entre n équipes réparties sur n/2 terrains en n-1 semaines.

⇒ Chaque équipe doit jouer contre les n-1 autres équipes dans le temps imparti.

⇒ Chaque équipe ne peut jouer qu'au maximum deux fois sur un terrain.

But : fournir un emplois du temps des n/2 terrains sur n-1 semaines avec pour chaque élément de ce dernier, les deux équipes qui se rencontrent.

Plan

- Introduction
- Social Golfer Problem :
- 3 Sports Tournament Scheduling :
- 4 Tunning
- Solveur
- 6 Résultats
- Conclusion

Modèle de contraintes ensemblistes

Définition des ensembles

P : l'ensemble des joueurs

S: l'ensemble des semaines

 $s \in S$: l'ensemble des groupes d'une semaine

 $g \in s \in S, g \subset P$: l'ensemble des joueurs d'un groupe d'une semaine

Modèle de contraintes ensemblistes

Contraintes

Chaque joueur est attribué à un unique groupe par semaine

$$g_1 \cap g_2 = \emptyset$$
 $(\forall s \in S)(\forall g_1, g_2 \in s | g_1 \neq g_2)$

Chaque joueur rencontre les autres au plus une fois

$$|g_1 \cap g_2| \le 1$$
 $(\forall s_1, s_2 \in S | s_1 \ne s_2)(\forall g_1 \in s_1, \forall g_2 \in s_2)$

Variables

$$x_{ijk} = \begin{cases} 1 : \text{Si le joueur k joue dans le groupe j la semaine i.} \\ 0 : \text{Sinon.} \end{cases}$$

$$z_{ijq_1q_2} = \begin{cases} 1 : \text{si } q_1 \text{ et } q_2 \text{ jouent ensemble dans le groupe j la semaine i.} \\ 0 : \text{Sinon.} \end{cases}$$

Contraintes

$$\sum_{j \in g} x_{ijk} = 1 \qquad \forall i \in w, \forall k \in p \qquad (1)$$

$$\sum_{k \in p} x_{ijk} = p \qquad \forall i \in w, \forall j \in g \qquad (2)$$

$$z_{ijq_1q_2} \ge x_{ijq_1} + x_{ijq_2} - 1 \qquad \forall i \in w, \forall j \in g, \forall q_1, q_2 \in p, q_1 \ne q_2 \qquad (3)$$

$$\sum_{i \in w, j \in g} z_{ijq_1q_2} \le 1 \qquad \forall q_1, q_2 \in p, q_1 \ne q_2 \qquad (4)$$

Passage de FD entier à SAT : fonction annexe

Algorithme 1 : enumar(f,ii1,jj,k,n,sign)

```
ar = collect(1:k)
 writear(f,ii1,jj,1,k,ar)
 pour i in 2 :binomial(n,k) faire
        tant que ii < k faire
               Si ar[end-ii] + 1 \le n - ii alors
                      ar[end-ii] = ar[end-ii] + 1
                      pour iii in k-ii+1 :k faire
                             ar[iii] = ar[iii-1]+1
                      fin
                      ii = k
               Sinon
                     ii = ii + 1
               fin
          Si sign alors
                 writear(f,ii1,jj,i,k,ar)
          Sinon
                 writearneg(f,ii1,jj,i,k,ar)
          fin
```

Exemple d'exécution sur 3 parmi 5 :

123-124-125-134-135-145-234-245-345

Passage de FD entier à SAT :

la contrainte en " \geq " :

$$\sum_{a \in A} x_{ab} \ge c$$

$$\forall b \in B \tag{5}$$

$$\Rightarrow \bigwedge_{b \in B} \bigvee_{a \in \binom{q}{q-c+1}} x_{ab}$$

la contrainte en "<" :

$$\sum_{a \in A} x_{ab} \le c$$

$$\forall b \in B$$

(6)

$$\Rightarrow \bigwedge_{b \in B} \left(\bigvee_{\forall a \in \binom{q}{c+1}} \neg x_{ab} \right)$$

Modèle SAT (1):

Contrainte du FD associée :

$$\sum_{i \in \mathbb{Z}} x_{ijk} = 1 \qquad \forall i \in w, \forall k \in p$$
 (9)

$$\bigwedge_{i,k} \bigvee_{i} x_{ijk} \tag{10}$$

$$\bigwedge_{i,j,j',k;j\neq i'} (\neg x_{ijk} \vee \neg x_{ij'k}) \tag{11}$$

Modèle SAT (2):

Contrainte du FD associée :

$$\sum_{k \in p} x_{ijk} = p \qquad \forall i \in w, \forall j \in g$$
 (12)

SAT:

$$\bigwedge_{i,j} \bigvee_{k \in \binom{q}{q-p+1}} x_{ijk} \tag{13}$$

$$\bigwedge_{i,j} \bigvee_{k \in \binom{q}{p+1}} \neg x_{ijk}$$

(14)

Modèle SAT (3) :

Contrainte du FD associée :

$$z_{ijq_{1}q_{2}} \geq x_{ijq_{1}} + x_{ijq_{2}} - 1 \qquad \forall i \in w, \forall j \in g, \forall q_{1}, q_{2} \in p, q_{1} \neq q_{2} \qquad (15)$$

$$\sum_{i \in w, j \in g} z_{ijq_{1}q_{2}} \leq 1 \qquad \qquad \forall q_{1}, q_{2} \in p, q_{1} \neq q_{2} \qquad (16)$$

$$\bigwedge_{(i,j)\neq(i',j'),k\neq k'} (\neg x_{ijk} \vee \neg x_{ijk'} \vee \neg x_{i'j'k} \vee \neg x_{i'j'k'}) \tag{17}$$

Plan

- Introduction
- Social Golfer Problem :
- 3 Sports Tournament Scheduling :
- 4 Tunning
- Solveur
- 6 Résultats
- Conclusion

Modèle de contraintes ensemblistes

Définition des ensembles

E : l'ensemble des équipes

 $M_{ij} \subset E$: Terrain j semaine i, un ensemble de deux équipes

Modèle de contraintes ensemblistes

Contraintes

Chaque équipe ne joue qu'une fois par semaine :

$$M_{i,j} \cap M_{i,j'} = \emptyset$$
 $\forall i,j,j' \text{ avec } j \neq j'$

Chaque équipe joue au plus deux fois sur le terrain j :

$$|M_{i_1j} \cap M_{i_2j} \cap M_{i_3j}| = 0 \qquad \forall i_1 \neq i_2 \neq i_3 \ \forall j$$

Cardinal de l'union de toutes les semaines = nombre de match possibles =

$$(n-1)n/2$$

$$|\bigcup_i M_i| = \frac{(n-1)n}{2} \quad \Leftrightarrow \quad all Different(M_{ij} \forall i, j)$$

Variables

$$x_{ijk} = \begin{cases} 1 : \text{Si l'équipe k joue sur le terrain j la semaine i.} \\ 0 : \text{Sinon.} \end{cases}$$

$$z_{ijk_1k_2} =$$
 $\left\{ \begin{array}{l} 1: \text{si } k_1 \text{ et } k_2 \text{ jouent ensemble sur le terrain j la semaine i.} \\ 0: \text{Sinon.} \end{array} \right.$

Contraintes

Deux équipes sur chaque terrain :

$$\sum_{k} x_{ijk} = 2$$
 $\forall i, j$

Chaque équipe joue une fois par semaine :

$$\sum_{j} x_{ijk} = 1$$
 $\forall i \forall k$

Chaque équipe joue au plus deux fois sur le même terrain :

$$\sum_{i} x_{ijk} \leq 2 \quad \forall j, k$$

Contraintes

Toutes les équipes se rencontrent au moins une fois

$$z_{ijk_1k_2} \le \frac{x_{ijk_1} + x_{ijk_2}}{2}$$

$$\forall i, j, k_1, k_2 \quad k_1 \neq k_2$$

$$\forall k_1, k_2 \quad k_1 \neq k_2$$

$$_1 \neq k_2 \tag{18}$$

$$\sum_{i,j} z_{ijk_1k_2} \ge 1$$

$$\forall k_1, k_2 \quad k_3$$

Modèle SAT (1):

Contrainte du FD associée :

$$\sum_{k} x_{ijk} = 2 \qquad \forall i, j \tag{20}$$

$$\bigwedge_{i,j} \bigvee_{k \in \binom{q}{q-1}} x_{ijk} \tag{21}$$

$$\bigwedge_{i,j,k,k',k'':k\neq k'\neq k''} (\neg x_{ijk} \vee \neg x_{ijk'} \vee \neg x_{ijk''})$$
(22)

Modèle SAT (2):

Contrainte du FD associée :

$$\sum_{i} x_{ijk} = 1 \qquad \forall i \forall k \tag{23}$$

$$\bigwedge_{i,k} \bigvee_{j} x_{ijk} \tag{24}$$

$$\bigwedge_{i,k} \bigvee_{j} x_{ijk}$$

$$\bigwedge_{i,j,j',k;j\neq j'} (\neg x_{ijk} \vee \neg x_{ij'k})$$
(24)

Modèle SAT (3):

Contrainte du FD associée :

$$\sum_{i} x_{ijk} \le 2 \qquad \forall j, k \tag{26}$$

$$\bigwedge_{i,i',j'',j,k;i\neq i'\neq i''} (\neg x_{ijk} \vee \neg x_{i''jk} \vee \neg x_{i''jk})$$
(27)

Modèle SAT (4):

Contrainte du FD associée :

$$z_{ijk_1k_2} \le \frac{x_{ijk_1} + x_{ijk_2}}{2} \\ \sum_{i,j} z_{ijk_1k_2} \ge 1$$

$$\forall i, j, k_1, k_2 \quad k_1 \neq k_2 \tag{28}$$

$$\forall k_1, k_2 \quad k_1 \neq k_2 \tag{29}$$

SAT:

$$\bigwedge_{i,j,k,k';k\neq k'} (z_{ijkk'} \vee \neg x_{ijk} \vee \neg x_{ijk'}) \qquad (30)$$

$$\bigwedge_{i,j,k,k';k\neq k'} (\neg z_{ijkk'} \vee x_{ijk}) \qquad \bigwedge_{i,j,k,k';k\neq k'} (\neg z_{ijkk'} \vee x_{ijk'}) \qquad (31)$$

 $i,j,k,k';k\neq k'$

$$\bigwedge_{i,j,k,k';k\neq k'} (\neg z_{ijkk'} \lor x_{ijk})$$

$$\bigwedge_{k,k',k\neq k'} \bigvee_{i,j} z_{ijkk'}$$

$$(\neg z_{ijkk'} \lor x_{ijk'}) \qquad (31$$

(32)

Plan

- Introduction
- Social Golfer Problem
- 3 Sports Tournament Scheduling :
- 4 Tunning
- Solveur
- 6 Résultats
- Conclusion

Symetrie sur les indices

Observation de nombreuse solutions équivalentes dû aux indices

Adaptation : $k \neq k'$ par k < k', $(i,j) \neq (i',j')$

Exemple : $\bigwedge_{k,k',k\neq k'}$ avec $k \in \{1,2,3,4\}$

On a 12 arrangements possibles avec la première modélisation, alors qu'on réduit à 6 en utilisant la seconde tout en conservant toutes les solutions possibles

Première semaine

Algo simple pour fixer la première semaine dans SGP et STS \longrightarrow casser les symétries améliorer les temps de résolution sur tous les modèles (SAT, FD, ensembliste)

Example

	Sans	Avec
SGP(4,4,4) FD	30,37s	8,13s
SGP(4,4,4) SAT	2,26s	0,07s
SGP(5,5,5) B&B	>5min	1,15s

	Sans	Avec
STS(6) B&B	0.3s	1s
STS(8) B&B	85s	>5min
STS(8) FD	4s	3,8s
STS(10) SAT	0,63s	0,04s

Symetrie sur le modèle ensembliste

Symetries sur le probleme SGP :

On fixe les éléments des groupes de la première semaine

On fixe les éléments du premier groupe de la deuxième semaine

On fixe les premiers éléments des groupes de chaques semaines

Symetrie sur le probleme STS :

On fixe les éléments des terrains de la première semaine

Plan

- Introduction
- Social Golfer Problem :
- 3 Sports Tournament Scheduling :
- 4 Tunning
- Solveur
- 6 Résultats
- Conclusion

Filtrage

contrainte : $(v_1 \cap v_2) = \emptyset$

$$v_1^{\uparrow} \leftarrow v_1^{\uparrow} \backslash v_2^{\downarrow} v_2^{\uparrow} \leftarrow v_2^{\uparrow} \backslash v_1^{\downarrow}$$

contrainte : $|v_1 \cap v_2| \leq 1$

Ne filtrer que si $(v_1 \cap v_2) \neq \emptyset$. Prenons $val \in (v_1 \cap v_2)$:

$$v_1^{\uparrow} \leftarrow v_1^{\uparrow} \setminus (v_2^{\downarrow} \setminus val)$$

$$v_2^{\uparrow} \leftarrow v_2^{\uparrow} \backslash (v_1^{\downarrow} \backslash val)$$

contrainte : $(v_1 \cap v_2 \cap v_3) = \emptyset$

$$v_1^{\uparrow} \leftarrow v_1^{\uparrow} \setminus (v_2^{\downarrow} \cap v_3^{\downarrow})$$

$$v_{2}^{\uparrow} \leftarrow v_{2}^{\uparrow} \setminus (v_{1}^{\downarrow} \cap v_{3}^{\downarrow}) \\ v_{3}^{\uparrow} \leftarrow v_{3}^{\uparrow} \setminus (v_{1}^{\downarrow} \cap v_{2}^{\downarrow})$$

structures

Variables

min : l'ensemble minimum de la variable

max : l'ensemble maximum de la variable

card_min : le cardinal minimal de la variable

card_max : le cardinal maximal de la variable

univers : l'univers de la variable

Contrainte

indices_argument : la liste des indices des variables

filtrage!: l'algorithme de filtrage à appliquer au variables

Algorithme 2 : solver_generique!(variables, contraintes)

```
1 contraintes Variables ← Tableau qui associe, à la case i, la liste des
    indices des contraintes dans lesquelles est présente la variable à
    l'indice i dans le tableau variables
 2 pileF ← Pile contenant tous les indices des contraintes.
       // contrainte à filtrer
 3 infaisable ← Faux
 4 tant que nonVide(pileF) et non infaisable faire
       indiceCtr = depiler(pileF)
       ctr \leftarrow contraintes[indiceCtr]
       filtrer!(ctr, variables)
       pour var ∈ variable(ctr, variables) faire
 8
           Si var à changer alors
               Si valide(var) alors
10
                   pour indCtr \in contraintesVariables[var] faire
11
                      Si indCtr ∉ pileF alors
12
                          empiler(pileF, indCtr)
13
                      fin
14
15
                   fin
               Sinon
16
                   infaisable \leftarrow Vrai
17
               fin
18
           fin
19
20
       fin
21 fin
```

22 return non infaisable

Algorithme 3: branch_and_bound!(variables, contraintes)

```
1 faisable = solver_generique!(variables, contraintes)
 2 Si faisable alors
       nonClot ← liste de variables non clot
 3
       Si non est_vide(nonClot) alors
 4
           trier nonClot dans l'ordre croissant des variables les plus proches
 5
              d'être réalisées // plus petit différence entre la
              taille de l'ensemble min et le cardinal max
           varBranch \leftarrow nonClot[1]
 6
           candidat ← Liste(varBranch.max \ varBranch.min)
 7
           ptr ← candidat.premier
           faisableTemp \leftarrow false
           tant que ptr \neq \emptyset and non faisableTemp faire
10
              varCopie ← copie(variables)
11
              inserer(varCopie[varBranch].min, ptr.val)
12
13
              faisableTemp \leftarrow branch\_and\_bound!(varCopie, contraintes)
              Si non faisable Temp alors
14
                  varBranch.max \leftarrow varBranch.max \setminus ptr.val
15
              fin
16
17
              valeur ← ptr.suiv
           fin
18
           Si faisableTemp alors
19
20
              variables ← varCopie
           Sinon
21
              faisable ← solver_generique!(variables, contraintes)
22
          fin
23
24
      fin
25 fin
26 return faisable
```

Analyse & Discussion

Améliorations

- Dans le solver générique, on peut détecter les contraintes close, qui sont toujours vrai, et ne plus les ajouter dans la pile. exemple : (v₁ ∩ v₂) = ∅ avec (v₁[↑] ∩ v₂[↑]) = ∅ alors on peut désactiver la contrainte.
- Dans le branch an bound, lors d'un nouvel appel du solver générique, on peut ajouter seulement les contraintes ayant la variable modifié dans le branchement.

Plan

- Introduction
- Social Golfer Problem
- Sports Tournament Scheduling :
- 4 Tunning
- Solveur
- 6 Résultats
- Conclusion

Résultats SGP 4-4-4

Ensembliste 4-4-4			
	Groupe 1	[1,2,3,4]	
Semaine 1	Groupe 2	[5,6,7,8]	
	Groupe 3	[9,10,11,12]	
	Groupe 4	[13,14,15,16]	
	Groupe 1	[1,5,9,13]	
Semaine 2	Groupe 2	[2,7,10,16]	
Semanie 2	Groupe 3	[3,8,11,14]	
	Groupe 4	[4,6,12,15]	
Semaine 3	Groupe 1	[1,7,11,15]	
	Groupe 2	[2,5,12,14]	
	Groupe 3	[3,6,9,16]	
	Groupe 4	[4,8,10,13]	
Semaine 4	Groupe 1	[1,6,10,14]	
	Groupe 2	[2,8,9,15]	
	Groupe 3	[3,7,12,13]	
	Groupe 4	[4,5,11,16]	

Ensembliste	0,091 s
FD-Gurobi	0.313877 s
SAT-z3	0.04 s
SAT-Minisat	1.6285 s
Branch And Bound	0.077761 s

Résultats SGP 5-5-5

Ensembliste					
	Groupe 1	[1,2,3,4,5]		Groupe 1	[1,8,13,18,23]
	Groupe 2	[6,7,8,9,10]		Groupe 2	[2,6,15,17,24]
Semaine 1	Groupe 3	[11,12,13,14,15]	Semaine 4	Groupe 3	[3,10,11,19,22]
	Groupe 4	[16,17,18,19,20]		Groupe 4	[4,9,12,16,25]
	Groupe 5	[21,22,23,24,25]		Groupe 5	[5,7,14,20,21]
	Groupe 1	[1,6,11,16,21]		Groupe 1	[1,7,14,17,22]
	Groupe 2	[2,9,13,20,22]		Groupe 2	[2,10,14,16,23]
Semaine 2	Groupe 3	[3,8,14,17,25]	Semaine 5	Groupe 3	[3,9,15,18,21]
	Groupe 4	[4,7,15,19,23]	1	Groupe 4	[4,8,11,20,24]
	Groupe 5	[5,10,12,18,24]		Groupe 5	[5,6,13,19,25]
	Groupe 1	[1,9,14,19,24]			
	Groupe 2	[2,7,11,18,25]			
Semaine 3	Groupe 3	[3,6,12,20,23]		Temps	0.134 s
	Groupe 4	[4,10,13,17,21]	1		
	Groupe 5	[5,8,15,16,22]			

Ensembliste	0,134 s
FD-Gurobi	6.227383 s
SAT-z3	7.00 s
SAT-Minisat	Time Out
Branch And Bound	1.503023 s

ED.				
FD				
	Terrain 1	[1, 2]		
Semaine 1	Terrain 2	[3, 4]		
	Terrain 3	[5, 6]		
	Terrain 1	[1, 5]		
Semaine 2	Terrain 2	[3, 6]		
	Terrain 3	[2, 4]		
	Terrain 1	[4, 6]		
Semaine 3	Terrain 2	[2, 5]		
	Terrain 3	[1, 3]		
	Terrain 1	[3, 5]		
Semaine 4	Terrain 2	[1, 4]		
	Terrain 3	[2, 6]		
	Terrain 1	[2, 3]		
Semaine 5	Terrain 2	[1, 6]		
	Terrain 3	[4, 5]		
Temps	0.032309 s			

Ensembliste	0.082309 s
FD-Gurobi	0.032309 s
SAT-z3	0.00 s
SAT-Minisat	0.007741 s
Branch And Bound	0.364210

FD					
	Terrain 1	[1, 2]	Semaine 5	Terrain 1	[5, 7]
Semaine 1	Terrain 2	[3, 4]		Terrain 2	[1, 3]
	Terrain 3	[5, 6]		Terrain 3	[4, 8]
	Terrain 4	[7, 8]		Terrain 4	[2, 6]
	Terrain 1	[6, 7]		Terrain 1	[1, 8]
Semaine 2	Terrain 2	[5, 8]	Semaine 6	Terrain 2	[1, 8]
Semanie 2	Terrain 3	[2, 3]	Semanie 0	Terrain 3	[3, 7]
	Terrain 4	[1, 4]		Terrain 4	[4, 6]
	Terrain 1	[3, 6]		Terrain 1	[2, 4]
Semaine 3	Terrain 2	[4, 7]	Semaine 7	Terrain 2	[6, 8]
Semanie 3	Terrain 3	[2, 8]		Terrain 3	[1, 7]
	Terrain 4	[1, 5]		Terrain 4	[3, 5]
	Terrain 1	[3, 8]			
Semaine 4	Terrain 2	[1, 6]			
Jemaine 4	Terrain 3	[4, 5]			
	Terrain 4	[2, 7]			
		Temps	3.760724 s		

Ensembliste	0.201 s
FD-Gurobi	3.760724 s
SAT-z3	0.01 s
SAT-Minisat	0.032834 s
Branch And Bound	87.801295 s

Ensembliste	1.05 h	
FD-Gurobi	Time Out	
SAT-z3	0.02 s	
SAT-Minisat	0.019324 s	
Branch And Bound	Time Out	

Ensembliste	Time Out	
FD-Gurobi	Time Out	
SAT-z3	59.70 s	
SAT-Minisat	88.2098 s	
Branch And Bound	Time Out	

Analyse des Résultats

Analyse

- SGP
 - Problème plus combinatoire que le STS
 - On observe que l'on peut casser plus de symétrie que sur le STS
- STS
 - Problème moins combinatoire SGP
 - Beaucoup de clauses à deux litéraux

Améliorations

- SGP
 - On pourrait modifier le modèle en générant les groupes possibles pour les utiliser comme valeurs de variables ensembliste (il ne faudrait générer que $\frac{n(n-1)}{k(k-1)}$ avec n le nombre de joueurs et k le nombre de joueurs dans un groupe).

19 décembre 2019

Plan

- Introduction
- Social Golfer Problem :
- 3 Sports Tournament Scheduling :
- 4 Tunning
- Solveur
- 6 Résultats
- Conclusion

Conclusion:

- Modèle ensembliste est le meilleur sur le SGP.
- Modèle SAT est le meilleur sur le STS.
- Z3 est meilleur que Minisat.
- Notre solveur artisanal talonne minizinc sur le SGP
- Notre solveur artisanal est faible sur le STS a cause de son filtrage