Components and Examples of tikzircuit

January 15, 2014

Contents

1	Intro	oductory Examples	5
	1.1	Bridge Rectifier	5
	1.2	Strain Gauges Bridge	6
	1.3	Astable Multivibrator	7
2	Sou	rces	8
	2.1	Voltage Source in North-South Orientation	8
	2.2	Voltage Source in South-North Orientation	8
	2.3	Voltage Source in West-East Orientation	9
	2.4	Voltage Source in East-West Orientation	9
	2.5	Battery in North-South Orientation	9
	2.6	Battery in South-North Orientation	9
	2.7		10
	2.8	Current Source in South-North Orientation	10
	2.9	Current Source in West-East Orientation	10
	2.10		11
3	Volt	age and Current Arrows	11
	3.1	Voltage Arrow Between Two Nodes	11
	3.2		11
	3.3		12
	3.4	Current Arrow in South-North Orientation	12
	3.5	Current Arrow in West-East Orientation	12
	3.6	Current Arrow in East-West Orientation	12
4	Resi	stors, Capacitors and Inductors	13
	4.1	Resistor in West-East Orientation	13
	4.2	Resistor in North-South Orientation	13
	4.3	Capacitor in West-East Orientation	
	4.4		14

	$4.5 \\ 4.6 \\ 4.7$	Inductor in West-East Orientation	14 14 14
	4.8	Varistor in West-East Orientation	15
	4.9	Potentiometer in West-East Orientation, North Connection	15
	4.10	Potentiometer in West-East Orientation, South Connection	15
	4.11	Potentiometer in North-South Orientation, East Connection	16
	4.12	Potentiometer in North-South Orientation, West Connection	16
5		sformer	16
	5.1	Transformer in North-South Orientation	16
6	Diod		17
	6.1	Diode In North-South Orientation	17
	6.2	Diode in South-North Orientation	17
	6.3	Diode in West-East Orientation	17
	$6.4 \\ 6.5$	Diode in East-West Orientation	18
	6.6	Zener Diode in North-South Orientation	18 18
	6.7	Zener Diode in West-East Orientation	19
	6.8	Zener Diode in West-East Orientation	19
	6.9	LED in North-South Orientation, Light in East Direction	19
		LED in North-South Orientation, Light in West Direction	19
		LED in South-North Orientation, Light in West Direction	20
		LED in West-East orientation, Light in North Direction	20
	6.13	Photo Diode in North-South Orientation, Light from East	20
	6.14	photo diode in North-South Orientation, Light from West	21
7	Tran	sistors	21
	7.1	N-Channel JFET in North-South Orientation	21
	7.2	N-Channel JFET in West-East Orientation	21
	7.3	Enhancement-Mode N-Channel MOSFET in North-South Orientation	22
	7.4	Enhancement-Mode P-Channel MOSFET in North-South Orientation	22
	7.5	NPN Bipolar Junction Transistor in North-South Orientation	22
	$7.6 \\ 7.7$	NPN Bipolar Junction Transistor in North-South Orientation (Mirrored). NPN Bipolar Junction Transistor in South-North Orientation	$\frac{23}{23}$
	7.8	NPN Bipolar Junction Transistor in East-West Orientation	$\frac{23}{23}$
	7.9	PNP Bipolar Junction Transistor in North-South Orientation	24
8	Ope	rational Amplifiers	24
	8.1	OP-AMP, Standardized Symbol	24
	8.2	OP-AMP, Standardized Symbol, N-Input above P-Input	25
	8.3	OP-AMP	25
	8.4	OP-AMP N-Input above P-Input	25

	8.5	General Amplifier	6
9	Amp	olifiers 2	6
	9.1	Amplifier, Standardized Symbol	6
10	Logi	c Gates 2	7
	_	Inversion Symbol for Logic Gates Outputs	:7
		Logic Gate Symbol, IEC Standard	:7
		Logic AND Gate Symbol	:8
			28
		· ·	28
			29
			29
			29
		·	0
			0
			0
		•	1
			1
		Logic NOT Gate, ANSI Symbol	
			1
		BLogic XNOR Gate, ANSI Symbol	2
11	Flin-	Flops 3	2
	-	General Flip-Flop Symbol	
		General Flip-Flop Symbol for Negative Logic	
			3
			3
		1 1 0 0 0	3
		RS NAND Flip-Flop (Negative Logic)	
		·	34
		RS Flip-Flop Changing on Falling Edge	
		JK Flip-Flop Changing on Rising Edge	
		OJK Master-Slave Flip-Flop	
			5
			6
			6
			6
		1	7
		·	7
			7
			88
			88
			88
	11.20	Mosed Switch, South-North Direction	Ŏ

	11.21Pushbutton, South-North Direction
12	Miscellaneous
	12.1 Ground as Symbol
	12.2 Ground as Continued Drawing
	12.3 Connecting Terminal
	12.4 Junction (Black Filled Circle)
	12.5 Junction in the Middle of a Path
	12.6 Connection Node (for Referencing, not Visible)
	12.7 Midway Connection Node
	12.8 Invisible Node with Terminal Node Properties (Used with Voltage Arrows)
	12.9 Speaker
	12.10Bulb
	12.11Multimeter (Circle for Voltmeter or Ammeter)
	12.12Voltmeter
	12.13Ammeter
	12.14Brushless DC Electric Motor
	12.15Brushless DC Electric Generator
	12.16Brushes for Electric Motors and Generators
	12.17Brushless DC Electric Motor with Permanent Magnet
	12.18DC Electric Motor with Permanent Magnet
	12.19Shunt DC Electric Motor
	12.20Series DC Electric Motor

1 Introductory Examples

1.1 Bridge Rectifier


```
\begin{tikzpicture}
 \renewcommand{\voltagecolor}{blue}
 \voltagesourceNS{Uin}{(0.3,0)}{left}{$u_e(t)$}
 \label{left} $$ \prod_{1,1.3}{\left(1,1.3\right)}{\left(1,1.3\right)}$
 \label{limits} $$ \widetilde{SN}_{diodeThree}_{(3,1.3)}{right}_{SD_{3}}$$
 \label{linear_substitution} $$ \widetilde{SN}(diodeFour)_{(3,-1.3)}{right}_{$D_{4}$}$
 \draw (UinN) -- ++(0,0.2) node (UinHelpOne) {} -- (UinHelpOne -|
     diodeOneA) \junction{UinOne};
 \draw (UinS) -- ++(0,-0.2) node (UinHelpTwo) {} -- (UinHelpTwo -|
     diodeThreeA) \junction{UinTwo};
 \draw (diodeOneA) -- (diodeTwoC) (diodeThreeA) -- (diodeFourC);
 \draw (diodeThreeC) -- ++(0,0.3) \junction{jThree} -| (diodeOneC);
 \draw (diodeFourA) -- ++(0,-0.3) \junction{jFour} -| (diodeTwoA);
 \draw (jThree) -| (resistorN);
 \draw (jFour) - | (resistorS);
 \draw (jThree -| resistor) \junction{jrN} -- ++(1.4,0)
     \terminal{tuOutPlus};
 \draw (jFour -| resistor) \junction{jrS} -- (jFour -| tuOutPlus)
     \terminal{tuOutMinus};
 \end{tikzpicture}
```

1.2 Strain Gauges Bridge


```
\begin{tikzpicture}
 \renewcommand{\voltagecolor}{black}
 \opampNormInv{op}{(0,0)}
 \label{local_rone} $$\operatorname{Three}_{(opInPlus-|rOne)}_{\space{0.5cm}} = SI_{150}_{\ohm}_{\space{0.5cm}} $$
 \draw (rOneE) -- (opInMinus) \mjunction{jopInMinus};
 \draw (rThreeE) -- (opInPlus) \mjunction{jopInPlus};
 \phi = \phi + (-6,0) \cnode{dms};
 \int \sqrt{y} \ in \{-0.8/1.2/0ne, -0.8/-1.2/Two, 0.8/1.2/Three, 
                        0.8/-1.2/Four}{%
     \draw[-latex] (dms)++(\x,\y) ++(-0.4,-0.4) -- ++(0.8,0.8);
 \draw (dmsOneN) -- ++(0,0.8) \cnode{foo};
 \draw (dmsThreeN) -- (dmsThree|-foo) -- (foo) \mjunction{jdmsN};
 \displaystyle \frac{draw (jdmsN) -- ++(0,0.8) \text{terminal}\{tudmsPlus} node [left] {\SI\{15\}{\volt}\};}
 \draw (dmsTwoS) -- ++(0,-0.8) \cnode{foo};
 \draw (dmsFourS) -- (dmsFour|-foo) -- (foo) \mjunction{jdmsS};
 \draw (jdmsS) -- ++(0,-0.5) \cnode{gnddms};
 \gnd{(gnddms)}
 \draw (dmsOneS) -- (dmsTwoN) (rOneW) -- (rOne-|dmsOne) \junction{jLeft};
 \draw (dmsThreeS) -- (dmsFourN);
 \draw (rThreeW) -- (rThree-|dmsThree) \junction{jRight};
 \draw (jopInPlus) -- (rFourN) (rFourS) -- ++(0,-0.5) \cnode{gndRFour};
 \gnd{(gndRFour)}
 \draw (jopInMinus) |- (rTwoW);
```

```
\draw (opOut) -- ++(1,0) \junction{jopOut} |- (rTwoE);
\draw (jopOut) -- ++(1,0) \terminal{tuaPlus};
\draw (tuaPlus|-gnddms) \cnode{gndOut} -- ++(0,0.5) \terminal{tuaMinus};
\gnd{(gndOut)}
\voltagearrow{(tuaPlus)}{(tuaMinus)}{right}{$u_{a}$}
\end{tikzpicture}
```

1.3 Astable Multivibrator


```
\begin{tikzpicture}
 \renewcommand{\voltagecolor}{red}
 \BJTnpnNSMirror{bjtOne}{(0,0)}
 \path (bjtOne) ++(-0.2,0) node[left] {BC 550};
 \BJTnpnNS{bjtTwo}{(bjtOne)++(7.8,0)}
 \path (bjtTwo) ++(0.2,0) node [right] {BC 550};
 \ledNSW{ledOne}{(bjtOneC)++(0,1.8)}{$D_{1}$}
 \ledNSE{ledTwo}{(bjtTwoC |- ledOne)}{$D_{2}$}
 \label{ledOne} $$\operatorname{C}_{C,1}$}{\$XI{470}}{\mathbb R}^{C,1}}
 \capacitorWE{cOne}{(ledOne)++(1.2,-1)}{$C_{1}}{$xI_{47}{\min cro\hat{s}}}
 \path (c0ne)++(-0.3,0.2) node \{\$+\$\};
 \rcone \resistorNS{rOne}{(rcOne)++(2.5,0)}{}{$R_{1}$}
 \capacitorWE\{cTwo\}\{(ledTwo)++(-1.2,-1)\}\{\$C_{2}\}\$\}\{\$SI\{47\}\{\micro\farad\}\$\}
 \path (cTwo)++(0.3,0.2) node \{\$+\$\};
 \draw (rcOneN) -- ++(0,0.5) \junction{jrcN} -| (uN);
 \draw (bjtOneE) -- ++(0,-0.5) \junction{jbjtE} -| (uS);
 \draw (jrcN) -| (rcTwoN);
 \draw (jbjtE) -| (bjtTwoE);
 \draw (rOneN) -- (rOne |- jrcN) \junction{jrOneN};
```

```
\draw (rTwoN) -- (rTwo |- jrcN) \junction{jrTwoN};
\draw (rcOneS) -- (ledOneA) (ledOneC) -- (bjtOneC);
\draw (rcTwoS) -- (ledTwoA) (ledTwoC) -- (bjtTwoC);
\draw (bjtOneC |- cOne) \junction{jbjtOneC} -- (cOneW);
\draw (bjtTwoC |- cTwo) \junction{jbjtTwoC} -- (cTwoE);
\draw (cOneE) -- (cOne -| rOne) \junction{jcOneW} -- (rOneS);
\draw (cTwoW) -- (cTwo -| rTwo) \junction{jcTwoE} -- (rTwoS);
\draw (jcOneW) -- (rTwo |- bjtTwo) -- (bjtTwoB);
\draw (jcTwoE) -- (rOne |- bjtOne) -- (bjtOneB);
\end{tikzpicture}
```

2 Sources

2.1 Voltage Source in North-South Orientation

```
\voltagesourceNS{name}{position}{align:left|right}{text}

node endings: N: north, S: south

Example:
\renewcommand{\voltagecolor}{blue}
\renewcommand{\fillcolor}{lightgray}
\voltagesourceNS{u}{(0,0)}{left}{\SI{1}{\volt}}
```

2.2 Voltage Source in South-North Orientation

 $\operatorname{draw} (uN) -- ++(0,0.5) (uS) -- ++(0,-0.5);$

```
\voltagesourceSN{name}{position}{align:left|right}{text}
```

node endings: N: north, S: south

Example:

```
\renewcommand{\voltagecolor}{blue}
\voltagesourceSN{Ua}{(0,0)}{left}{\SI{10}{\volt}}
\draw (uN) -- ++(0,0.5) (uS) -- ++(0,-0.5);
```


2.3 Voltage Source in West-East Orientation

\voltagesourceWE{name}{position}{align:above|below}{text}

node endings: W: west, E: east

Example:

2.4 Voltage Source in East-West Orientation

\voltagesourceEW{name}{position}{align:above|below}{text}

node endings: W: west, E: east

Example:

2.5 Battery in North-South Orientation

\batteryNS{name}{position}{left text}{right text}

node endings: N: north, S: south

Example:

$$\batteryNS\{u\}\{(0,0)\}\{\$U_{b}\}\{\SI\{1\}\{\volt\}\}\draw\ (uN) -- ++(0,0.5)\ (uS) -- ++(0,-0.5);$$

$$U_b \stackrel{|}{-} 1 \text{ V}$$

2.6 Battery in South-North Orientation

\batterySN{name}{position}{left text}{right text}

node endings: N: north, S: south

Example:

$$\batterySN{u}{(0,0)}{U_{b}}{SI{1}{\volt}} \draw (uN) -- ++(0,0.5) (uS) -- ++(0,-0.5);$$

$$U_b \stackrel{\perp}{-} 1 V$$

2.7 Current Source in North-South Orientation

\currentsourceNS{name}{position}{align:left|right}{text}

node endings: N: north, S: south

Example:

```
\renewcommand{\currentcolor}{green}
\currentsourceNS{i}{(0,0)}{right}{$I$}
\draw (iN) -- ++(0,0.5) (iS) -- ++(0,-0.5);
```


2.8 Current Source in South-North Orientation

\currentsourceSN{name}{position}{align:left|right}{text}

node endings: N: north, S: south

Example:

2.9 Current Source in West-East Orientation

\currentsourceWE{name}{position}{align:above|below}{text}

node endings: W: west, E: east

Example:

```
\currentsourceWE{i}{(0,0)}{above}{$I$} \draw (iW) -- ++(-0.5,0) (iE) -- ++(0.5,0);
```


2.10 Current Source in East-West Orientation

\currentsourceEW{name}{position}{align:above|below}{text}

node endings: W: west, E: east

Example:

```
\currentsourceEW{i}{(0,0)}{above}{$I$}
\draw (iW) -- ++(-0.5,0) (iE) -- ++(0.5,0);
```


3 Voltage and Current Arrows

3.1 Voltage Arrow Between Two Nodes

\voltagearrow{begin}{end}{text parameters}{text}

Example: \draw (0,1) -- (1,1) \terminal{t0ne}; \draw (0,0) -- (1,0) \terminal{tTwo}; \voltagearrow{(t0ne)}{(tTwo)}{right}{\$U\$}

3.2 Curved Voltage Arrow Between Two Nodes

\voltagearrowC{begin}{end}{control option}{text parameters}{text}

```
Example:
\draw (0,1) -- (1,1) \terminal{tA};
\draw (0,0) -- (1,0) \terminal{tB};
\voltagearrowC{(tA)}{(tB)}{+(1,0) and +(1,0)}{left}{$U$}
```

3.3 Current Arrow in North-South Orientation

\currentarrowNS{position}{align:left|right}{text}

Example:
\draw (0,0) -- (0,1) \mnode{ia};
\currentarrowNS{(ia)}{left}{\$I\$}

3.4 Current Arrow in South-North Orientation

\currentArrowSN{position}{align:left|right}{text}

```
Example: \draw (0 0) -- (0 1) \mnodef
```

 $\label{lem:condition} $$ \operatorname{(0,0)} -- (0,1) \mode{ia}; $$ \operatorname{(ia)}{\left(ia\right)}{\left(ia\right)} $$$

3.5 Current Arrow in West-East Orientation

\currentArrowWE{position}{align:above|below}{text}

```
Example:
\draw (0,0) -- (1,0) \mnode{ia};
\currentArrowWE{(ia)}{above}{$I$}
```

3.6 Current Arrow in East-West Orientation

\currentArrowEW{position}{align:above|below}{text}

```
Example:
\draw (0,0) -- (1,0) \mnode{ia};
\currentArrowEW{(ia)}{above}{$I$}
```

4 Resistors, Capacitors and Inductors

4.1 Resistor in West-East Orientation

\resistorWE{name}{position}{text above}{text below}

node endings: W: west, E: east

Example:

4.2 Resistor in North-South Orientation

\resistorWE{name}{position}{text left}{text right}

node endings: N: north, S: south

Example:

4.3 Capacitor in West-East Orientation

\capacitorWE{name}{position}{text above}{text below}

node endings: W: west, E: east

Example:

$$C_1$$
 $-\parallel$
 $1 \,\mu$ F

4.4 Capacitor in North-South Orientation

\capacitorNS{name}{position}{text left}{text right}

node endings: N: north, S: south

Example:

$$\capacitorNS{c}{(0,0)}{C_{1}}{SI{1}{\min cro \cdot farad}} \draw (cN) -- ++(0,0.5) (cS) -- ++(0,-0.5);$$

$$C_1 \stackrel{\downarrow}{=} 1 \, \mu \text{F}$$

4.5 Inductor in West-East Orientation

\inductorWE{name}{position}{text above}{text below}

node endings: W: west, E: east

Example:

$$\label{lem:linear_loss} $$ \left(1,0,0\right)_{sL_{1}}_{\infty (1W) -- ++(-0.5,0) (1E) -- ++(0.5,0)} \right) $$$$

4.6 Inductor in North-South Orientation

\inductorNS{name}{position}{text left}{text right}

node endings: N: north, S: south

Example:

$$L_1 \left. \left. \left. \left. \left. \left. \right| \right. \right| \right. \right. \right. 1 \, \mu H \right. \right.$$

4.7 Inductor in North-South Orientation (Mirrored)

\inductorNS{name}{position}{text left}{text right}

node endings: N: north, S: south

Example:

4.8 Varistor in West-East Orientation

\varistorWE{name}{position}{text left}{text right}{controlling voltage}

node endings: W: west, E: east

Example:

4.9 Potentiometer in West-East Orientation, North Connection

\potentiometerWEN{name}{position}{text}

node endings: W: west, E: east, N: north

Example:

4.10 Potentiometer in West-East Orientation, South Connection

\potentiometerWES{name}{position}{text}

node endings: W: west, E: east, S: south

Example:

4.11 Potentiometer in North-South Orientation, East Connection

\potentiometerNSE{name}{position}{text}

node endings: N: north, S: south, E: east

Example:

```
\potentiometerNSE{p}{(0,0)}{$R_{1}$}
\draw (pS) -- ++(0,-0.5) (pN) -- ++(0,0.5);
\draw (pE) -- ++(0.5,0);
```

4.12 Potentiometer in North-South Orientation, West Connection

\potentiometerNSW{name}{position}{text}

node endings: N: north, S: south, W: west

Example:

5 Transformer

5.1 Transformer in North-South Orientation

\transformerNS{name}{position}

node endings: N: north, S: south

Example:

```
\transformerNS{tf}{(0,0)}
\draw (tfAN) -- ++(-0.5,0) (tfAS) -- ++(-0.5,0);
\draw (tfBN) -- ++( 0.5,0) (tfBS) -- ++( 0.5,0);
```


6 Diodes

6.1 Diode In North-South Orientation

\diodeNS{name}{position}{align:left|right}{text}

node endings: A: anode, C: cathode

Example:

$$\label{lem:diodens} $$ \draw (dA) -- ++(0,0.5) (dC) -- ++(0,-0.5);$$

6.2 Diode in South-North Orientation

\diodeSN{name}{position}{align:left|right}{text}

node endings: A: anode, C: cathode

Example:

6.3 Diode in West-East Orientation

\diodeWE{name}{position}{align:above|below}{text}

node endings: A: anode, C: cathode

Example:

6.4 Diode in East-West Orientation

\diodeEW{name}{position}{align:above|below}{text}

node endings: A: anode, C: cathode

Example:

6.5 Zener Diode in North-South Orientation

\zDiodeNS{name}{position}{align:left|right}{text}

node endings: A: anode, C: cathode

Example:

6.6 Zener Diode in South-North Orientation

\zDiodeSN{name}{position}{align:left|right}{text}

node endings: A: anode, C: cathode

Example:

 D_1

6.7 Zener Diode in West-East Orientation

\zDiodeWE{name}{position}{align:above|below}{text}

node endings: A: anode, C: cathode

Example:

$$\zDiodeWE{zd}{(0,0)}{above}{D_{1}} \draw (zdA) -- ++(-0.5,0) (zdC) -- ++(0.5,0);$$

6.8 Zener Diode in East-West Orientation

\zDiodeEW{name}{position}{align:above|below}{text}

node endings: A: anode, C: cathode

Example:

6.9 LED in North-South Orientation, Light in East Direction

\ledNSE{name}{position}{text}

node endings: A: anode, C: cathode

Example:

6.10 LED in North-South Orientation, Light in West Direction

\ledNSW{name}{position}{text}

node endings: A: anode, C: cathode

Example:

6.11 LED in South-North Orientation, Light in West Direction

\ledSNW{name}{position}{text}

node endings: A: anode, C: cathode

Example:

6.12 LED in West-East orientation, Light in North Direction

\ledWEN{name}{position}{text}

node endings: A: anode, C: cathode

Example:

6.13 Photo Diode in North-South Orientation, Light from East

\photodiodeNSE{name}{position}{text}

node endings: A: anode, C: cathode

Example:

$$\label{local-photodiodeNSE} $$ \Phi^{(0,0)}_{D_{1}}^{D_{1}} \ \ \, D_{1} $$ \ \ \, D_{1} $$$$

6.14 photo diode in North-South Orientation, Light from West

\photodiodeNSW{name}{position}{text}

node endings: A: anode, C: cathode

Example:

7 Transistors

7.1 N-Channel JFET in North-South Orientation

\nChnJFETNS{name}{position}

node endings: D: drain, G: gate, S: source

Example:

7.2 N-Channel JFET in West-East Orientation

\nChnJFETWE{name}{position}

node endings: D: drain, G: gate, S: source

```
Example:
\nChnJFETWE{jfet}{(0,0)}
\path (jfetG) node [below]{G};
\path (jfetD) node [left]{D};
\path (jfetS) node [right]{S};

Comparison of the comparison o
```

7.3 Enhancement-Mode N-Channel MOSFET in North-South Orientation

\NMOSFETenhNS{name}{position}

node endings: D: drain, G: gate, S: source, B: bulk

Example:

7.4 Enhancement-Mode P-Channel MOSFET in North-South Orientation

\PMOSFETenhNS{name}{position}

node endings: D: drain, G: gate, S: source, B: bulk

Example:

7.5 NPN Bipolar Junction Transistor in North-South Orientation

\BJTnpnNS{name}{position}

node endings: B: basis, E: emitter, C: collector

Example:

```
\BJTnpnNS{b}{(0,0)}
\path (bB) node [left]{B};
\path (bC) node [above]{C};
\path (bE) node [below]{E};
```

7.6 NPN Bipolar Junction Transistor in North-South Orientation (Mirrored)

\BJTnpnNSMirror{name}{position}

node endings: B: basis, E: emitter, C: collector

Example:

7.7 NPN Bipolar Junction Transistor in South-North Orientation

\BJTnpnSN{name}{position}

node endings: B: basis, E: emitter, C: collector

Example:

7.8 NPN Bipolar Junction Transistor in East-West Orientation

\BJTnpnEW{name}{position}

node endings: B: basis, E: emitter, C: collector

```
Example:
\BJTnpnEW{b}{(0,0)}
\path (bB) node [below]{B};
\path (bC) node [right]{C};
\path (bE) node [left]{E};

B
```

7.9 PNP Bipolar Junction Transistor in North-South Orientation

\BJTpnpNS{name}{position}

node endings: B: basis, E: emitter, C: collector

Example:

```
\BJTpnpNS{b}{(0,0)}
\path (bB) node [left]{B};
\path (bC) node [above]{C};
\path (bE) node [below]{E};
```

8 Operational Amplifiers

8.1 OP-AMP, Standardized Symbol

\opampNorm{name}{position}

node endings: Out: output, InMinus: n-input, InPlus: p-input, UbattPlus: positive power supply, UbattMinus: negative power supply Gnd: ground

Example:

8.2 OP-AMP, Standardized Symbol, N-Input above P-Input

\opampNormInv{name}{position}

node endings: Out: output, InMinus: n-input, InPlus: p-input, UbattPlus: positive power supply, UbattMinus: negative power supply Gnd: ground

8.3 OP-AMP

\opamp{name}{position}

node endings: Out: output, InMinus: n-input, InPlus: p-input, UbattPlus: positive power supply, UbattMinus: negative power supply Gnd: ground

8.4 OP-AMP, N-Input above P-Input

\opampInv{name}{position}

node endings: Out: output, InMinus: n-input, InPlus: p-input, UbattPlus: positive power supply, UbattMinus: negative power supply Gnd: ground

8.5 General Amplifier

\amplifier{name}{position}

node endings: OutPlus: p-output OutMinus: n-output, InMinus: n-input, InPlus: p-input, UbattPlus: positive power supply, UbattMinus: negative power supply Gnd: ground

9 Amplifiers

9.1 Amplifier, Standardized Symbol

\ampNorm{name}{position}{amplification factor}

node endings: Out: output, InMinus: n-input, InPlus: p-input, UbattPlus: positive power supply, UbattMinus: negative power supply Gnd: ground

10 Logic Gates

10.1 Inversion Symbol for Logic Gates Outputs

```
\NOTcircle{name}{position}

Example:
\draw (0,0) -- (0,1);
```

10.2 Logic Gate Symbol, IEC Standard

\LogicGateIEC{name}{position}

 $\NOTcircle{n}{(0,0.5)}$

node endings: In: input, Out: output, InN: north input, InS: south input, N: north, S: south

```
Example:
\LogicGateIEC{g}{(0,0)}
\draw (gIn) -- ++(-0.2,0);
\draw (gOut) -- ++(0.5,0);
\draw (gInN) -- ++(-0.5,0);
\draw (gInS) -- ++(-0.5,0);
\draw (gN) -- ++(0,0.2);
\draw (gS) -- ++(0,-0.2);
```

10.3 Logic AND Gate Symbol

\GateAND{name}{position}

node endings: In: input, Out: output, InN: north input, InS: south input, N: north, S: south

```
Example:

\GateAND{g}{(0,0)}

\draw (gOut) -- ++(0.5,0);

\draw (gInN) -- ++(-0.5,0);

\draw (gInS) -- ++(-0.5,0);
```

10.4 Logic NAND Gate Symbol

\GateNAND{name}{position}

node endings: In: input, Out: output, InN: north input, InS: south input, N: north, S: south

```
Example:

\GateNAND{g}{(0,0)}

\draw (gOut) -- ++(0.5,0);

\draw (gInN) -- ++(-0.5,0);

\draw (gInS) -- ++(-0.5,0);
```

10.5 Logic OR Gate Symbol

\GateOR{name}{position}

node endings: In: input, Out: output, InN: north input, InS: south input, N: north, S: south

```
Example:

\GateOR{g}{(0,0)}

\draw (gOut) -- ++(0.5,0);

\draw (gInN) -- ++(-0.5,0);

\draw (gInS) -- ++(-0.5,0);
```

10.6 Logic NOR Gate Symbol

\GateNOR{name}{position}

node endings: In: input, Out: output, InN: north input, InS: south input, N: north, S: south

```
Example:
\GateNOR{g}{(0,0)}
\draw (gOut) -- ++(0.5,0);
\draw (gInN) -- ++(-0.5,0);
\draw (gInS) -- ++(-0.5,0);
```

10.7 Logic NOT Gate Symbol

\GateNOT{name}{position}

node endings: In: input, Out: output, InN: north input, InS: south input, N: north, S: south

```
Example:

\GateNOT{g}{(0,0)}

\draw (gOut) -- ++(0.5,0);

\draw (gIn) -- ++(-0.5,0);
```

10.8 Logic XOR Gate Symbol

\GateXOR{name}{position}

node endings: In: input, Out: output, InN: north input, InS: south input, N: north, S: south

```
Example:

\GateXOR{g}{(0,0)}

\draw (gOut) -- ++(0.5,0);

\draw (gInN) -- ++(-0.5,0);

\draw (gInS) -- ++(-0.5,0);
```

10.9 Logic XNOR Gate Symbol

\GateXNOR{name}{position}

node endings: In: input, Out: output, InN: north input, InS: south input, N: north, S: south

```
Example:
```

```
\GateXNOR{g}{(0,0)}
\draw (gOut) -- ++(0.5,0);
\draw (gInN) -- ++(-0.5,0);
\draw (gInS) -- ++(-0.5,0);
```

10.10 Logic AND Gate, ANSI Symbol

\ANSIGateAND{name}{position}

node endings: Out: output, InN: north input, InS: south input, N: north, S: south

Example:

```
\ANSIGateAND{g}{(0,0)}
\draw (gOut) -- ++(0.5,0);
\draw (gInN) -- ++(-0.5,0);
\draw (gInS) -- ++(-0.5,0);
```

10.11 Logic NAND Gate, ANSI Symbol

\ANSIGateNAND{name}{position}

node endings: Out: output, InN: north input, InS: south input, N: north, S: south

Example:

```
\ANSIGateNAND{g}{(0,0)}
\draw (gOut) -- ++(0.5,0);
\draw (gInN) -- ++(-0.5,0);
\draw (gInS) -- ++(-0.5,0);
```

10.12 Logic OR Gate, ANSI Symbol

\ANSIGateOR{name}{position}

node endings: Out: output, InN: north input, InS: south input, N: north, S: south

Example:

```
\ANSIGateOR{g}{(0,0)}
\draw (gOut) -- ++(0.5,0);
\draw (gInN) -- ++(-0.5,0);
\draw (gInS) -- ++(-0.5,0);
```

10.13 Logic NOR Gate, ANSI Symbol

\ANSIGateNOR{name}{position}

node endings: Out: output, InN: north input, InS: south input, N: north, S: south

Example:

```
\ANSIGateNOR{g}{(0,0)}
\draw (gOut) -- ++(0.5,0);
\draw (gInN) -- ++(-0.5,0);
\draw (gInS) -- ++(-0.5,0);
```

10.14 Logic NOT Gate, ANSI Symbol

\ANSIGateNOT{name}{position}

node endings: Out: output, In: input, N: north, S: south

Example:

```
\ANSIGateNOT{g}{(0,0)}
\draw (gOut) -- ++(0.5,0);
\draw (gIn) -- ++(-0.5,0);
```


10.15 Logic XOR Gate, ANSI Symbol

\ANSIGateXOR{name}{position}

node endings: Out: output, InN: north input, InS: south input, N: north, S: south

Example:

```
\ANSIGateXOR{g}{(0,0)}
\draw (gOut) -- ++(0.5,0);
\draw (gInN) -- ++(-0.5,0);
\draw (gInS) -- ++(-0.5,0);
```

10.16 Logic XNOR Gate, ANSI Symbol

\ANSIGateXNOR{name}{position}

node endings: Out: output, InN: north input, InS: south input, N: north, S: south

Example:

```
\ANSIGateXNOR{g}{(0,0)}
\draw (gOut) -- ++(0.5,0);
\draw (gInN) -- ++(-0.5,0);
\draw (gInS) -- ++(-0.5,0);
```

11 Flip-Flops

11.1 General Flip-Flop Symbol

\FlipFlop{name}{position}

node endings: OutN: north output, OutS: south output InN: north input, InS: south input, N: north, S: south W: middle input

Example:

```
\FlipFlop{ff}{(0,0)}
\draw (ffInN) -- ++(-0.5,0) (ffInS) -- ++(-0.5,0);
\draw (ffOutN) -- ++(0.5,0) (ffOutS) -- ++(0.5,0);
```

11.2 General Flip-Flop Symbol for Negative Logic

\FlipFlopNegLogic{name}{position}

Example:

```
\FlipFlopNegLogic{ff}{(0,0)}
\draw (ffInN) -- ++(-0.5,0) (ffInS) -- ++(-0.5,0);
\draw (ffOutN) -- ++(0.5,0) (ffOutS) -- ++(0.5,0);
```

11.3 Flip-Flop Changing on Rising Edge

\FlipFlopRisingEdge{name}{position}

node endings: OutN: north output, OutS: south output InN: north input, InS: south input, N: north, S: south W: middle input

Example:

```
\FlipFlopRisingEdge{ff}{(0,0)}
\draw (ffInN) -- ++(-0.5,0) (ffInS) -- ++(-0.5,0);
\draw (ffW) -- ++(-0.5,0);
\draw (ffOutN) -- ++(0.5,0) (ffOutS) -- ++(0.5,0);
```

11.4 Flip-Flop Changing on Falling Edge

\FlipFlopFallingEdge{name}{position}

node endings: OutN: north output, OutS: south output InN: north input, InS: south input, N: north, S: south W: middle input

Example:

```
\FlipFlopFallingEdge{ff}{(0,0)}
\draw (ffInN) -- ++(-0.5,0) (ffInS) -- ++(-0.5,0);
\draw (ffInC) -- ++(-0.5,0);
\draw (ffOutN) -- ++(0.5,0) (ffOutS) -- ++(0.5,0);
```

11.5 RS Flip-Flop

\RSFlipFlop{name}{position}

Example:

```
\RSFlipFlop{ff}{(0,0)}
\draw (ffInN) -- ++(-0.5,0) (ffInS) -- ++(-0.5,0);
\draw (ffOutN) -- ++(0.5,0) (ffOutS) -- ++(0.5,0);
```

11.6 RS NAND Flip-Flop (Negative Logic)

\RSNANDFlipFlop{name}{position}

node endings: OutN: north output, OutS: south output InN: north input, InS: south input, N: north, S: south W: middle input

Example:

```
\label{eq:continuous_series} $$ \RSNANDFlipFlop{ff}{(0,0)} $$ $$ $$ $$ \draw (ffInN) -- ++(-0.5,0) (ffInS) -- ++(-0.5,0); $$ $$ $$ \draw (ffOutN) -- ++(0.5,0) (ffOutS) -- ++(0.5,0); $$ $$ $$ $$ $$ $$ $$ $$ $$ $$
```

11.7 RS Flip-Flop Changing on Rising Edge

\RSFlipFlopRisingEdge{name}{position}

node endings: OutN: north output, OutS: south output InN: north input, InS: south input, N: north, S: south W: middle input

Example:

```
\RSFlipFlopRisingEdge{ff}{(0,0)}
\draw (ffInN) -- ++(-0.5,0) (ffInS) -- ++(-0.5,0);
\draw (ffW) -- ++(-0.5,0);
\draw (ffOutN) -- ++(0.5,0) (ffOutS) -- ++(0.5,0);
```

11.8 RS Flip-Flop Changing on Falling Edge

\RSFlipFlopFallingEdge{name}{position}

```
Example:

\RSFlipFlopFallingEdge{ff}{(0,0)}

\draw (ffInN) -- ++(-0.5,0) (ffInS) -- ++(-0.5,0);

\draw (ffInC) -- ++(-0.5,0);

\draw (ffOutN) -- ++(0.5,0) (ffOutS) -- ++(0.5,0);
```

11.9 JK Flip-Flop Changing on Rising Edge

\JKFlipFlopRisingEdge{name}{position}

node endings: OutN: north output, OutS: south output InN: north input, InS: south input, N: north, S: south W: middle input

```
Example:

\JKFlipFlopRisingEdge{ff}{(0,0)}

\draw (ffInN) -- ++(-0.5,0) (ffInS) -- ++(-0.5,0);

\draw (ffW) -- ++(-0.5,0);

\draw (ffOutN) -- ++(0.5,0) (ffOutS) -- ++(0.5,0);
```

11.10 JK Master-Slave Flip-Flop

\JKMSFlipFlop{name}{position}

node endings: OutN: north output, OutS: south output InN: north input, InS: south input, N: north, S: south W: middle input

```
Example:

\JKMSFlipFlop{ff}{(0,0)}

\draw (ffInN) -- ++(-0.5,0) (ffInS) -- ++(-0.5,0);

\draw (ffW) -- ++(-0.5,0);

\draw (ffOutN) -- ++(0.5,0) (ffOutS) -- ++(0.5,0);
```

11.11 D Flip-Flop Changing on Rising Edge

\DFlipFlopRisingEdge{name}{position}

```
Example:

\DFlipFlopRisingEdge{ff}{(0,0)}

\draw (ffInN) -- ++(-0.5,0);

\draw (ffW) -- ++(-0.5,0);

\draw (ffOutN) -- ++(0.5,0) (ffOutS) -- ++(0.5,0);
```

11.12 T Flip-Flop Changing on Rising Edge

\TFlipFlopRisingEdge{name}{position}

node endings: OutN: north output, OutS: south output InN: north input, InS: south input, N: north, S: south W: middle input

```
Example:

\TFlipFlopRisingEdge{ff}{(0,0)}
\draw (ffW) -- ++(-0.5,0);
\draw (ffOutN) -- ++(0.5,0) (ffOutS) -- ++(0.5,0);
```

11.13 T Flip-Flop Changing on Falling Edge

\TFlipFlopFallingEdge{name}{position}

node endings: OutN: north output, OutS: south output InN: north input, InS: south input, N: north, S: south W: middle input

```
Example:

\TFlipFlopFallingEdge{ff}{(0,0)}
\draw (ffInC) -- ++(-0.5,0);
\draw (ffOutN) -- ++(0.5,0) (ffOutS) -- ++(0.5,0);
```

11.14 Monoflop

\Monoflop{name}{position}

Example:

11.15 Switch, West-East Direction

\switchWE{name}{position}

node endings: W: west, E: east, N: north connection

Example:

```
\switchWE{s}{(0,0)}
\draw (sW) -- ++(-0.5,0) (sE) -- ++(0.5,0);
```

11.16 Closed Switch, West-East Direction

\switchClosedWE{name}{position}

node endings: W: west, E: east, N: north connection

Example:

```
\switchClosedWE{s}{(0,0)}
\draw (sW) -- ++(-0.5,0) (sE) -- ++(0.5,0);
```

11.17 Switch, East-West Direction

\switchEW{name}{position}

node endings: W: west, E: east, N: north connection

Example:

```
\switchEW{s}{(0,0)}
\draw (sW) -- ++(-0.5,0) (sE) -- ++(0.5,0);
```

11.18 Closed Switch, East-West Direction

\switchClosedEW{name}{position}

node endings: W: west, E: east, N: north connection

Example:

\switchClosedEW{s}{(0,0)} \draw (sW) -- ++(-0.5,0) (sE) -- ++(0.5,0);

11.19 Switch, South-North Direction

\switchSN{name}{position}

node endings: S: south, N: north, W: west connection

Example:

$$\sitchSN{s}{(0,0)}$$

\draw (sS) -- ++(0,-0.5) (sN) -- ++(0,0.5);

11.20 Closed Switch, South-North Direction

\switchClosedSN{name}{position}

node endings: S: south, N: north, W: west connection

Example:

11.21 Pushbutton, South-North Direction

\pushbuttonSN{name}{position}

node endings: S: south, N: north, W: west connection

Example:

```
\pushbuttonSN{b}{(0,0)}
\draw (bS) -- ++(0,-0.5) (bN) -- ++(0,0.5);
```

12 Miscellaneous

12.1 Ground as Symbol

\gnd{position}

```
Example: \draw (0,0) -- (1,0) \junction{gnd}; \gnd{(gnd)}
```

12.2 Ground as Continued Drawing

\gndNow

12.3 Connecting Terminal

```
\terminal{name}
```

node endings: Con: use terminal as connector (no space when wired)

```
Example:
```

```
\renewcommand{\fillcolor}{white} \draw (0,0) -- ++(1,0) \terminal{t};
```

12.4 Junction (Black Filled Circle)

```
\junction{name}
```

```
Example: \draw (0,0) -- (1,0); \draw (0.5,0) \junction{j} -- ++(0,-0.5);
```

12.5 Junction in the Middle of a Path

```
\junction{name}
```

```
Example: \draw (0,0) -- (1,0) \mjunction{j} (j) -- ++(1,0); --
```

12.6 Connection Node (for Referencing, not Visible)

\cnode{name}

```
Example:

\draw (0,0) -- (0.5,0) \cnode{c} -- (0.5,0.5);

\draw (c) -- ++(0,-0.5);
```

12.7 Midway Connection Node

\mnode{name}

```
Example: \draw (0,0) -- (1,0) \mnode{m}; \draw (m) -- ++(0,-0.5);
```

12.8 Invisible Node with Terminal Node Properties (Used with Voltage Arrows)

 $\neq {name}$

Example:

 $\draw (0,0) -- ++(1,0) \trode{t};$

12.9 Speaker

\speakerWE{name}{position}

node endings: N: north, S: south,

Example:

 $\speakerWE\{sp\}\{(0,0)\}\draw\ (spN) -- ++(0,0.5)\ (spS) -- ++(0,-0.5);$

12.10 Bulb

\bulb{name}{position}

node endings: N: north, S: south, W: west, E: east

Example:

\bulb{b}{(0,0)} \draw (bN) -- ++(0,0.5) (bS) -- ++(0,-0.5);

12.11 Multimeter (Circle for Voltmeter or Ammeter)

\multimeter{name}{position}{letter}

node endings: N: north, S: south, W: west, E: east

Example:

\multimeter{m}{(0,0)}{M} \draw (mN) -- ++(0,0.5) (mS) -- ++(0,-0.5);

12.12 Voltmeter

\voltmeter{name}{position}

node endings: N: north, S: south, W: west, E: east

Example:

```
\voltmeter{v}{(0,0)}
\draw (vN) -- ++(0,0.5) (vS) -- ++(0,-0.5);
```


12.13 Ammeter

\ammeter{name}{position}

node endings: N: north, S: south, W: west, E: east

Example:

\ammeter{a}{(0,0)} \draw
$$(vW) -- ++(-0.5,0) (vE) -- ++(0.5,0);$$

12.14 Brushless DC Electric Motor

\BLDCMotor{name}{position}{pin1}{pin2}

node endings: N: north, S: south, W: west, E: east

Example:

12.15 Brushless DC Electric Generator

\BLDCGenerator{name}{position}{pin1}{pin2}

node endings: N: north, S: south, W: west, E: east

Example:

12.16 Brushes for Electric Motors and Generators

\brushes{position}

Only usful in combination with motors or generators.

Example:

\brushes{(0,0)}

12.17 Brushless DC Electric Motor with Permanent Magnet

\permanentMagnetBLDCMotor{name}{position}{pin1}{pin2}

node endings: N: north, S: south, W: west, E: east

Example:

$$\label{eq:localization} $$\operatorname{Motor}(0,0)^{A_1}_{A_2$} $$ A_1 $$ \draw (motorN) -- ++(0,0.5); $$ A_2 $$ A_2 $$ A_2 $$ A_2 $$$$

12.18 DC Electric Motor with Permanent Magnet

\permanentMagnetDCMotor{name}{position}{pin1}{pin2}

node endings: N: north, S: south, W: west, E: east

Example:

```
\permanentMagnetDCMotor{motor}{(0,0)}{$A_1$}{$A_2$}
\draw (motorN) -- ++(0,0.5);
\draw (motorS) -- ++(0,-0.5);
```


12.19 Shunt DC Electric Motor

\shuntDCMotor{name}{position}

node endings: N: north, S: south, W: west, E: east

Example:

```
\shuntDCMotor{motor}{(0,0)}
\draw (motorN) -- ++(0,0.5);
\draw (motorS) -- ++(0,-0.5);
```


12.20 Series DC Electric Motor

\seriesDCMotor{name}{position}

node endings: N: north, S: south, W: west, E: east

Example:

```
\seriesDCMotor{motor}{(0,0)}
\draw (motorN) -- ++(0,0.5);
\draw (motorS) -- ++(0,-0.5);
```

