WINE QUALITY PREDICTION

Using DecisionTree and Neural Network.

Manish Meshram & Supratik Chanda

INTRODUCTION

- Red wine dataset
- Prediction of quality of wine using Decision Trees and Neural Networks

DATASET

- Independent variables:
 - fixed acidity
 - volatile acidity
 - citric acid
 - residual sugar
 - chlorides
 - free sulfur dioxide
 - o total sulfur dioxide
 - density
 - o pH
 - sulphates
 - o alcohol
- Dependent variable is quality score from 1 to 10 (10 being the highest)
- 1599 instance of data

EXPLORATORY DATA ANALYSIS

Frequency count plot

DECISION TREES MAX_DEPTH AND MAX_LEAF_NODES ANALYSIS

```
dTree Max Leaf Nodes 1= DecisionTreeClassifier(criterion='gini', max depth=5, max leaf nodes=2, min samples leaf=10, random stat
                                                                                                                                      dTree_Max_Depth_1= DecisionTreeClassifier(criterion='gini', max_depth=1, min_samples_leaf=10, random_state=4)
2 dTree Max Leaf Nodes 1.fit(X,Y)
                                                                                                                                     dTree_Max_Depth_1.fit(X,Y)
  graph = Source(tree.export_graphviz(dTree_Max_Leaf_Nodes_1, feature_names=list(FeatureDTFrame.Features[0:10]),
                                                                                                                                      graph = Source(tree.export_graphviz(dTree_Max_Depth_1, feature_names=list(FeatureDTFrame.Features[0:10]),
                                       class names=['3','4','5','6','7','8'],filled=True))
                                                                                                                                                                         class_names=['3','4','5','6','7','8'],filled=True))
5 tempGraph = graph.pipe(format='svg')
                                                                                                                                      tempGraph = graph.pipe(format='svg')
6 tempSVG=SVG(tempGraph)
                                                                                                                                     tempSVG=SVG(tempGraph)
7 print('Max depth is 5 and max_leaf_nodes is 2 while min_samples_leaf is 10')
                                                                                                                                     print('Max_depth is 1 while min_samples leaf is 10')
8 display(tempSVG)
                                                                                                                                   8 display(tempSVG)
                                                                                                                                 Max depth is 1 while min samples leaf is 10
```

Max_depth is 5 and max_leaf_nodes is 2 while min_samples_leaf is 10

```
alcohol <= 10.15

gini = 0.648

samples = 1359

value = [10, 53, 577, 535, 167, 17]

class = 5

True

False

gini = 0.656

samples = 676

value = [6, 29, 425, 197, 17, 2]

class = 5

value = [4, 24, 152, 338, 150, 15]

class = 6
```

```
alcohol <= 10.15
gini = 0.648
samples = 1359
value = [10, 53, 577, 535, 167, 17]
class = 5

True

False

gini = 0.517
samples = 676
value = [6, 29, 425, 197, 17, 2]
class = 5

value = [4, 24, 152, 338, 150, 15]
class = 6
```

DECISION TREES MINIMUM_LEAF_SAMPLES

Max depth is 3 and max leaf nodes is 10 while min samples leaf is 1000

gini = 0.648 samples = 1359 value = [10, 53, 577, 535, 167, 17] class = 5 Max_depth is 3 and max_leaf_nodes is 10 while min_samples_leaf is 500

DECISION TREES F1_Score before and after Predictor Variable Modification

The accuracy score is 0.6029411764705882

The accuracy score is 0.796875

	precision	recall	f1-score	support			precision	recall	f1-score	support
3	0.00	0.00	0.00	2			\$1000000000000000000000000000000000000			CONTRACT - PROSE TO
4	0.00	0.00	0.00	11		0	0.78	0.79	0.78	149
5	0.61	0.87	0.72	116		1	0.82	0.80	0.81	171
6	0.59	0.44	0.51	107		1	0.02	0.00	0.01	1/1
7	0.57	0.48	0.52	33						
8	0.00	0.00	0.00	3	micro	avg	0.80	0.80	0.80	320
					macro	avg	0.80	0.80	0.80	320
micro avg	0.60	0.60	0.60	272	weighted	ava	0.80	0.80	0.80	320
macro avg	0.30	0.30	0.29	272	wergiiced a	uvg	0.00	0.00	0.00	520
weighted avg	0.56	0.60	0.57	272						

NEURAL NETWORK 1

Architecture: 11 x 2 x 2 x 1

Solver: Adam

Activation function: ReLU Maximum iterations: 500

	precision	recall	f1-score	support
0.0	0.67	0.73 0.71	0.70	178 222
avg / tot		0.71	0.74	400

NEURAL NETWORK 2

Architecture: 11 x 15 x 15 x 15 x 1

Solver: Adam

Activation function: ReLU Maximum iterations: 10000

pre	cision	recall	f1-score	support
0.0	0.75 0.80	0.75 0.80	0.75 0.80	178 222
avg / total	0.78	0.78	0.78	400

NEURAL NETWORK 3

Architecture: 11 x 30 x 30 x 15 x 1

Solver: Adam

Activation function: ReLU Maximum iterations: 10000

p	recision	recall	f1-score	support
0.0	0.78	0.79	0.79	178 222
avg / tota	1 0.81	0.81	0.81	400