1. Para estudar a associação entre duas variáveis X (fator) e Y (resposta), ambas com duas categorias cada, podemos planejar o estudo de diversas maneiras. Considerando as categorias da variável X nas linhas e as da variável Y nas colunas de uma tabela de contingência 2 x 2 temos:

Delineamentos Usuais	Exemplos	Modelos Associados	Hipótese Nula	Estatística de Teste	Medidas de Associação
a) Totais marginais-linha fixos $(n_{i+} \text{ fixos} \rightarrow \text{categorias de } X)$	Estudo de Coorte Ens. Clínico Aleat.	Produto de Binomiais	Hipótese de homogeneidade $\begin{aligned} &H_0 \colon p_{(1)1} = p_{(2)1} \\ &H_0 \colon p_{(1)1} - p_{(2)1} = 0 \end{aligned}$ $H_0 \colon \frac{p_{(1)1}}{p_{(2)1}} = 1$ $H_0 \colon \frac{p_{(1)1}/p_{(1)2}}{p_{(2)1}/p_{(2)2}} = \frac{p_{(1)1} p_{(2)2}}{p_{(1)2} p_{(2)1}} = 1$	Q_{P, Q_L} ou $Q_N \sim \chi^2_{(1)}$	Incidência d e IC(d) RR e IC(RR) OR e IC(OR)
b) Totais marginais-coluna fixos $(n_{+j} \text{ fixos} \rightarrow \text{categorias de } Y)$	Est. Caso-Controle	Produto de Binomiais	Hipótese de homogeneidade $ \begin{aligned} &H_0\text{: } p_{1(1)} = p_{1(2)} \\ &H_0\text{: } \frac{p_{1(1)} \slashed{p}_{2(1)}}{p_{1(2)} \slashed{p}_{2(2)}} = \frac{p_{1(1)} \slashed{p}_{2(2)}}{p_{1(2)} \slashed{p}_{2(1)}} = 1 \end{aligned} $	Q_{P} , Q_{L} ou $Q_{N} \sim \chi^{2}_{(1)}$	OR e IC(OR)
c) Total geral fixo (n fixo e demais totais aleatórios)	Estudo Transversal	Multinomial	Hipótese de independência $H_0{:}\; p_{ij} = (p_{i+})\; (p_{+j})$	Q_{P} , Q_{L} ou $Q_{N} \sim \chi^{2}_{(1)}$	Prevalência * OR e IC(OR) * RP e IC(RP) *
d) Todos os totais aleatórios (n _{i+} , n _{+j} e n aleatórios)	Estudos com tempo de duração fixo	Produto de Poisson	Hipótese de multiplicatividade $H_0\text{: }\mu_{ij} = \frac{\mu_{i+}\mu_{+j}}{\mu}$	$Q_{P,}Q_{L}$ ou $Q_{N} \sim \chi^{2}_{(1)}$	OR e IC(OR) *

^{*} Nesses casos, tais medidas são condicionais aos totais marginais-linha <u>observados</u> após a realização do estudo (e não ao que foi planejado no delineamento amostral). <u>Obs</u>: Se as frequências esperadas e observadas não satisfizerem às condições de uso das estatísticas $Q_{P_{i}}$, Q_{L} ou $Q_{N} \rightarrow$ teste exato de Fisher.

2. Para estudar a associação entre duas variáveis X (fator) e Y (resposta), considerando as categorias da variável X nas linhas e as da variável Y nas colunas de uma tabela de contingência bidimensional s x r, com r > 2 ou s > 2 ou s, r > 2, temos:

Delineamentos Usuais	Modelos Associados	Hipótese Nula	Estatística de Teste
a) Totais marginais-linha fixos $(n_{i+} \text{ fixos} \rightarrow \text{categorias de } X)$	 Se s ≥ 2 e r = 2 → Produto de Binomiais Se s ≥ 2 e r > 2 → Produto de Multinomiais 	H_0 : homogeneidade \rightarrow H_0 : escores médios não diferem \rightarrow H_0 : ausência de tendência linear \rightarrow	Se X e Y nominais: Q_L , Q_N ou $Q_P \sim \chi^2_{(s-1)(r-1)}$ Se X nominal e Y ordinal: $Q_S \sim \chi^2_{(s-1)}$ Se X e Y ordinais: $Q_{CS} \sim \chi^2_{(1)}$ (ou $Q_S \sim \chi^2_{(s-1)}$)
b) Totais marginais-coluna fixos (n _{+j} fixos→ categorias de Y) *	 Se s = 2 e r ≥ 2 → Produto de Binomiais Se s > 2 e r ≥ 2 → Produto de Multinomiais 	H_0 : homogeneidade \rightarrow H_0 : escores médios não diferem \rightarrow H_0 : ausência de tendência linear \rightarrow	Se X e Y nominais: Q_L , Q_N ou $Q_P \sim \chi^2_{(s-1)(r-1)}$ Se X ordinal e Y nominal: $Q_S \sim \chi^2_{(r-1)}$ Se X e Y ordinais: $Q_{CS} \sim \chi^2_{(1)}$
c) Total geral fixo (n fixo e demais aleatórios)	Multinomial	H_0 : independência \rightarrow H_0 : independência \rightarrow H_0 : ausência de tendência linear \rightarrow	Se X e Y nominais: Q_L , Q_N ou $Q_P \sim \chi^2_{(s-1)(r-1)}$ Se X ou Y ordinal: Q_L , Q_N ou $Q_P \sim \chi^2_{(s-1)(r-1)}$ Se X e Y ordinais: $Q_{CS} \sim \chi^2_{(1)}$
d) Todos os totais aleatórios (n _{i+} n _{+j} e n aleatórios)	Produto de Poisson	H ₀ : multiplicatividade	Q_L , Q_N ou $Q_P \sim \chi^2_{(s-1)(r-1)}$ Obs: condicional a n fixo \rightarrow idem ao item c)

^{*} Exceção ao estudo caso-controle, é mais usual considerar no delineamento amostral que as categorias da variável X tenham seus respectivos totais marginais fixos. Lembre-se que o teste exato de Fisher é uma alternativa quando as frequências esperadas e observadas não satisfizerem às condições de uso das estatísticas Q_{P.} Q_Lou Q_N

3. Para estudar a associação entre X e Y controlando pelo efeito de uma terceira variável Z, em que Z tem h=1,...,q categorias.

Situações abordadas	Hipótese Nula	Estatística de Teste	
a) Tabela 2 x 2 (s = r = 2) para cada estrato h de Z e n_{hi+} fixos	H ₀ : $p_{h(1)1} = p_{h(2)1}$ para $h = 1,, q$	X e Y dicotômicas: $Q_{MH} \sim \chi^2_{(1)}$	
b) Tabela 2 x r (r > 2) para cada estrato h de Z e n_{hi+} fixos	H_0 : $\overline{F}_{h_1} = \overline{F}_{h_2}$ para $h = 1,, q$	X nominal e Y ordinal: $Q_{SMH} \sim \chi^2_{(1)}$	
c) Tabela s x r (s > 2, r = 2 ou r > 2) para cada estrato h de Z e n_h fixos	H_0 : $p_{hij} = (p_{hi+})(p_{h+j})$ para $h = 1,, q$	X e Y ordinais: $Q_{CSMH} \sim \chi^2_{(1)}$	

Obs: Para mais detalhes consultar Kuritz, Landis e Koch (1988). A general review of Mantel-Haenszel methods. Ann. Rev. Public Health, 9:123-160.