PROJECT

지바이크 BMS 프로젝트

이준영, 이한준, 오윤식

Contents

- 1. 프로젝트 배경 및 목적
- 2. BMS란?
- 3. 세대별 BMS의 차이
- 4. 프로젝트의 차별성
- 5. 결과 및 기대효과

프로젝트 배경 및 목적

BMS 리버스 엔지니어링

- 주제: 지바이크 BMS 리버스 엔지니어링
- 배경 및 목적

현재 지바이크는 나인 봇의 제품을 이용하여 있지만, 이를 **내재화**할 경우, 비용 절감은 물론 시스템 관리 전반에 대한 제어력과 기능 확장성도 확보할 수 있다.

• 기대 효과

- 1. Threshold 등 제어 파라미터를 상황에 맞춰 설정할 수 있다.
- 2. 고장 진단 시스템 구축 시 직접 제어 가능한 코드 확보가 가능하다.
- 3. 유지보수 및 확장이 용이하다.
- 4. 시스템 운영으로 축적된 데이터를 기반으로 딥러닝 기반의 효율적인 **제어** 모델 개발로 이어질 수 있다.

BMS란?

Battery Management System

- 배터리를 안전하게 관리하기 위한 장치
- 배터리의 과방전, 과충전, 과전류 및 단락 보호 기능 등을 가진 보호회로
- 셀 밸런싱 기능을 통해 배터리의 수명 증가

Applications of BMS

- 전기 자동차 및 하이브리드 자동차
- 노트북 및 휴대용 전자기기
- 전동 킥보드

세대별 BMS의 차이

1세대

주요 기능

• 전압, 전류, 온도 모니터링

특징 및 기술 수준

- 기본적인 보호 기능 수행
- 단순한 아날로그 회로 기반

통신 방식

없음

2세대

주요 기능

• 기본 보호 + 간단한 진단 및 통신

특징 및 기술 수준

- SOC, SOH(수명 예측)
- MCU 기반

통신 방식

• CAN, LIN (유선 통신)

3세대

주요 기능

• 예측 및 최적화 기능 강화

특징 및 기술 수준

- 머신 러닝을 활용한 예측 모델
- 데이터 기반 실시간 제어

통신 방식

• CAN, BLE (무선 통신)

프로젝트의 차별성

지바이크 기존 BMS

Ninebot MAX G30에서 사용하는 BMS

특징

- 기존에는 Ninebot에서 판매하는 2세대 BMS를 사용

단점

- MCU를 이용한 BMS IC 직접 제어 불가
- BMS가 고장났을 때, 회로도와 구성 소자를 알 수 없는 어려움
- 향후 킥보드 고장 예측 진단 시, 데이터 수집 및 이용 불가능

위와 같은 단점을 극복할 수 있는 2세대 BMS 회로 개발 진행

프로젝트의 차별성

프로젝트로 제작한 BMS

프로젝트로 제작한 10 Cell BMS

특징

- MCU를 이용한 BMS IC 직접 제어 가능
- 보유한 회로도와 MCU코드를 이용해 유지 보수 이점
- 향후 킥보드 고장 예측 진단 시, 데이터 수집 및 이용 가능
- 기존 나인봇 BMS 대비 고성능의 BMS IC, MCU 사용

(높은 ADC분해능, 낮은 셀 전압 측정 오차, 낮은 전력 소비)

기대 효과

실제 테스트 결과

• 지금 까지의 실험 결과 셀 전압, 전류, 온도 모니터링과 기본적인 BMS의 보호 동작이 정상적으로 수행하는 것을 확인할 수 있었고, 이때의 상태 값을 BMS IC와 MCU 간의 I2C 통신을 통해 확인할 수 있다.

셀 전압 모니터링			정상 전압/ 과충전/과방전 보호			온도 모니터링 및 보호			
device_number		Failed to evaluate express	™ value_SafetyStatusA	uint8_t	0	Breakpoints ** Expressions	Registers 🕰 Live	Expressions × == SFRs	
<i>€</i> CellVoltage	uint16_t [16]	[16]	™- UV_Fault	uint8_t	0	Expression	Туре	Value	Address
5 23 35 37			™ OV_Fault	uint8_t	0	Temperature	uint16_t [3]	[3]	0x20000134
™ CellVoltage[0]	uint16_t	3975	™ SCD_Fault	uint8_t	0	™ Temperature[0]	uint16_t	20	0x20000134
™ CellVoltage[1]	uint16_t	3732	= Ses OCD_Fault	uint8_t	0	Temperature[1] Temperature[2]	uint16_t uint16_t	21	0x20000136 0x20000138
			- ™ ProtectionsTriggered	uint8_t	0	> 🥏 CellVoltage	uint16_t [16]	[16]	0x20000114
🟁 CellVoltage[2]	uint16_t	3886	™ value_SafetyStatusA	uint8_t	1000	™ RX_Buf	uint8_t	-68	0x20000112
™ CellVoltage[3]	uint16_t	3877	™ UV_Fault	uint8_t	0	™ Pack_Current	uint16_t	-15	0x20000140
™ CellVoltage[4]	uint16_t	4040	= ™ OV_Fault	uint8_t	1	value_SafetyStatusA UV_Fault	uint8_t uint8_t	0	0x20000144 0x20000148
			SCD Fault	uint8_t	0	OV_Fault	uint8_t	0	0x20000149
™ CellVoltage[5]	uint16_t	2993	™ OCD_Fault	uint8_t	0	™ SCD_Fault	uint8_t	0	0x2000014a
™ CellVoltage[6]	uint16_t	4035	- ™ ProtectionsTriggered	uint8_t	1	™ OCD_Fault	uint8_t	0	0x2000014b
		400.00	™ value_SafetyStatusA	uint8_t	100	ProtectionsTriggered value_SafetyStatusB	uint8_t uint8_t	0	0x2000014f 0x20000145
™ CellVoltage[7]	uint16_t	3733	₩ UV_Fault	uint8_t	1	OTINT_Fault	uint8_t uint8_t	0	0x20000145
CellVoltage[8]	uint16_t	3901	™ OV_Fault	uint8_t	0	oTD_Fault	uint8_t	0	0x2000014d
					0	OTC_Fault	uint8_t	0	0x2000014e
™ CellVoltage[9]	uint16_t	3935	™ SCD_Fault	uint8_t	0	™ DSG	uint8_t	1	0x20000150
CellVoltage[10]	uint16_t	0	™ OCD_Fault	uint8_t	0	M CHG	uint8_t		0x20000151
	SAMSAK a s		■ ProtectionsTriggered	uint8_t	1	★ Add new expression			

기대 효과

적용 가능성

- BMS를 통해 확인할 수 있는 데이터를 CAN 통신을 통해 받아와서 다음과 같은 GUI를 통해 가시성을 높여 더욱 용이하게 사용 가능
- CAN 통신을 통해 받아온 데이터를 향후 킥보드 수명 예측 진단에 활용 가능

향후 발전 방향

3세대 BMS로 나아갈 때 필요한 기능인 머신러닝을 활용한 정밀한 수명 예측, 실시간 데이터 분석 기능을 위해 실시간으로

BMS의 다양한 데이터 값을 받아올 수 있는 지금의 BMS가 개발의 초석이 될 수 있으리라 생각됨

결론

외산 제품 의존 없이, 회로와 펌웨어를 직접 설계하여 기술 자립 기반 확보

MCU와 직접 통신 가능한 구조로 유지보수, 보호설정, 기능확장이 자유로움

전압, 전류, 온도 등 실시간 데이터 확보로 향후 고장 예측·AI 분석 기반 마련

감사합니다.