## Университет ИТМО Факультет программной инженерии и компьютерной техники

## Лабораторная работа №3

по дисциплине «Системы Ввода-Вывода»

Выполнили:

Студенты группы Р3331

Дворкин Борис Александрович

Краков Кирилл Константинович

Вариант: 1+3

Преподаватель: Быковский Сергей Вячеславович

г. Санкт-Петербург 2024 г.

# Содержание

| Описание задания                                             | 3 |
|--------------------------------------------------------------|---|
| Цель                                                         | 3 |
| Задачи                                                       | 3 |
| Выполнение                                                   | 4 |
| Репозиторий с иерархией реализации и исходным кодом:         | 4 |
| Анализ протокола обмена данными с BMP280 через интерфейс I2C |   |
| Анализ временной диаграммы калибровочной таблицы             | 4 |
| dig_T1 (байты 0x88/0x89):                                    | 4 |
| dig_T2 (байты 0x8A/0x8B):                                    | 4 |
| dig_T3 (байты 0x8C/0x8D):                                    | 4 |
| Анализ временной диаграммы температурных данных              | 5 |
| Сырые данные температуры:                                    | 5 |
| Сырое значение температуры (adc_T):                          | 5 |
| var1:                                                        | 5 |
| var2:                                                        | 5 |
| Итоговый расчет:                                             | 5 |
| Анализ протокола обмена данными с DHT-11 через 1-Wire        | 6 |
| Анализ временной диаграммы обмена данными                    | 6 |
| Декодирование & преобразование в человекочитаемый формат:    |   |
| Проверка контрольной суммы                                   | 6 |
| Интерпретация результатов                                    | 6 |
| Вывод                                                        | 7 |

## Описание задания

### Цель

Познакомится с принципами обмена данными между устройствами, алгоритмами обмена и форматами передачи данных на примере интерфейсов I2C, SPI, 1-Wire

#### Задачи

- 1. Подключить комплект с контроллер с датчиком и логическим анализатором к компьютеру
- 2. С помощью логического анализатора записать временную диаграмму обмена данными по сигнальным линиям в течении трех транзакций обмена.
- 3. Расшифровать протокол обмена данными.
- 4. Перевести значение физической величины, заданной в варианте задания, в человекочитаемый формат.
- 5. Нарисовать временную диаграмму передачи другого, отличного от полученных, значения физической величины.
- 6. Определить скорость интерфейса.
- 7. Оформить отчет по работе в электронном формате

## Выполнение

## Репозиторий с иерархией реализации и исходным кодом:

https://github.com/Imtjl/io-systems

## Анализ протокола обмена данными с ВМР280 через интерфейс I2С

## Анализ временной диаграммы калибровочной таблицы



### dig\_T1 (байты 0x88/0x89):

- LSB: 0xB9 = 185
- MSB: 0x6D = 109
- dig\_T1 = MSB \* 256 + LSB = 109 \* 256 + 185 = 28089

#### dig\_T2 (байты 0x8A/0x8B):

- LSB: 0xD5 = 213
- MSB: 0x67 = 103
- dig\_T2 = MSB \* 256 + LSB = 103 \* 256 + 213 = 26581

#### dig\_T3 (байты 0x8C/0x8D):

- LSB: 0x18 = 24
- MSB: 0xFC = 252 (>127, значит отрицательное)
- dig T3 = MSB \* 256 + LSB = 252 \* 256 + 24 = 64536
- Корректировка для отрицательного числа: 64536 65536 = -1000

### Анализ временной диаграммы температурных данных



#### Сырые данные температуры:

- 1.  $temp_msb (0xFA): 0x82 = 130$
- 2. **temp\_lsb (0xFB):** 0xC6 = 198
- 3.  $temp_xisb(0xFC): 0x00 = 0$

#### Сырое значение температуры (adc\_T):

- adc\_T = (temp\_msb \* 4096) + (temp\_lsb \* 16) + (temp\_xlsb / 16)
- $adc_T = (130 * 4096) + (198 * 16) + (0 / 16)$
- adc T = 532480 + 3168 + 0
- adc\_T = 535648

#### var1:

- adc\_T/16384.0 = 535648/16384.0 = 32.6931
- dig T1/1024.0 = 28089/1024.0 = 27.4307
- (32.6931 27.4307) = 5.2624
- var1 = 5.2624 \* 26581 = 139876.9

#### var2:

- adc T/131072.0 = 535648/131072.0 = 4.0866
- dig T1/8192.0 = 28089/8192.0 = 3.4288
- (4.0866 3.4288) = 0.6578
- (0.6578 \* 0.6578) = 0.4327
- var2 = 0.4327 \* (-1000) = -432.7

#### Итоговый расчет:

- t\_fine = 139876.9 + (-432.7) = 139444.2
- T = 139444.2 / 5120.0 = **27.24°C**

## Анализ протокола обмена данными с DHT-11 через 1-Wire

### Анализ временной диаграммы обмена данными



#### Декодирование & преобразование в человекочитаемый формат:

| Байт<br>данных | Двоичное<br>представление | Десятичное<br>значение | Назначение                   |
|----------------|---------------------------|------------------------|------------------------------|
| DATA[1]        | 00100011                  | 35                     | Целая часть<br>влажности     |
| DATA[2]        | 00000000                  | 0                      | Дробная часть<br>влажности   |
| DATA[3]        | 00011011                  | 27                     | Целая часть<br>температуры   |
| DATA[4]        | 00000010                  | 2                      | Дробная часть<br>температуры |
| CONTROL        | 01000000                  | 64                     | Контрольная сумма            |

## Проверка контрольной суммы

В соответствии с протоколом DHT-11, последний байт является контрольной суммой, равной сумме четырех байтов данных:

Расчет: 35 + 0 + 27 + 2 = 64

Полученное значение контрольной суммы (64) <u>совпадает</u> с расчетным значением, что подтверждает корректность принятых данных.

#### Интерпретация результатов

Относительная влажность: 35.0%Температура воздуха: 27.2°С

## Вывод

В результате работы с двумя различными интерфейсами я сделал для себя несколько важных выводов. Протокол, используемый датчиком DHT-11, оказался удивительно простым и интуитивно понятным. По сути, за несколько минут можно полностью разобраться в его работе и декодировать данные практически вручную.

В противоположность этому, протокол в ВМР280 требует гораздо больше времени на анализ и понимание. Сложные битовые операции, многоэтапные вычисления и необходимость учета калибровочных коэффициентов делают работу с ним значительно более трудоемкой.

Однако эта сложность компенсируется универсальностью I2C - он широко используется в индустрии и позволяет подключать множество устройств к одной шине. В то время как 1-Wire, хоть и прост, но является более узкоспециализированным и встречается реже.

Это хороший пример инженерного трейдоффа: либо простота и понятность, либо универсальность и масштабируемость.