Complex Networks Orientation

2018.11.28(Thu)

Complex Networks

- Instructor: Tsuyoshi Murata (murata@c.titech.ac.jp)
- Goal: acquire knowledge for understanding and analyzing networks (graphs)
- Score: based on quizzes and assignments
- Classes: Monday & Thursday (10:45-12:15)
- Teaching materials: available at Tokyo Tech
 OCW (and <u>www.net.c.titech.ac.jp/lecture/cn</u>)

Schedule

- Nov.29(Thu) today
- Dec.3(Mon)
- Dec.6(Thu)
- Dec.10(Mon)
- Dec.13(Thu) canceled
- Dec.17(Mon)
- Dec.20(Thu)
- Dec.24(Mon) class on Christmas Eve! (blame Tokyo Tech)

- Jan.7(Mon)
- Jan.10(Thu)
- Jan.17(Thu)
- Jan.21(Mon)
- Jan.24(Thu)
- Jan.28(Mon)
- Jan.31(Thu)
- Feb.4(Mon)

Goal

metrics	algorithms
models	processes

path length, density, diameter, degree distribution, clustering coefficient, ...

Goal

Dijkstra's algorithm, graph partitioning, centrality computation,

..

metrics

algorithms

models

random network, scalefree network, smallworld network, power law, configuration model, processes

rumor/disease diffusion, influence maximization / minimization, SI model, SIR model, ...

textbook

Networks (second edition), Mark Newman,
 Oxford University Press, 2018.

https://global.oup.com/academic/product/net

works-9780198805090

references

Networks, Crowds, and Markets:
 Reasoning About a Highly Connected
 World, David Easley and Jon Kleinberg,
 Cambridge University Press, 2010.

NETWORKS

AND MARKETS

CROWDS

http://www.cs.cornell.edu/home/kleinber/networks-book/

Networks: A Very Short Introduction,
 Oxford University Press, 2012.

https://www.oupjapan.co.jp/en/node/13481

online resources

- Social Network Analysis with Python and NetworkX
 - https://pydata.org/barcelona2017/schedule/presen tation/7/
 - https://github.com/jtorrents/pydata bcn Network

contents of this course

- Basic knowledge for understanding/analyzing networks
 - fundamentals of network
 - network algorithms
 - network models
 - processes on networks
 - tools for analyzing and visualizing networks

topics (1)

- 1. introduction
- 2. tools for analyzing networks
- 3. fundamentals (1) mathematics of networks
- 4. fundamentals (2) measures and metrics
- 5. fundamentals (3) the large-scale structure of networks
- 6. network algorithms (1) representation

topics (2)

- 7. network algorithms (2) matrix algorithms
- 8. network algorithms (3) graph partitioning
- 9. network models (1) random graphs
- 10. network models (2) network formation
- 11. network models (3) small-world model
- 12. processes on networks (1) percolation
- 13. processes on networks (2) epidemics
- 14. summary

Remarks

- All lectures, quizzes, assignments will be in English this quarter. I will not accept quizzes & assignments written in Japanese.
- Non-CS students (undergraduate students, YSEP, ACAP, ...) are also welcome. But all students are graded based on the same evaluation criteria.
- Copying the assignments of other students is strictly prohibited. "Similar" assignments will be rejected.

tools: igraph

- software for analyzing networks
 - A rich set of functions calculating various
 structural properties
 - http://igraph.org/

tools: Gephi

- new software for analyzing networks
 - easy to use, online tutorials available
 - https://gephi.github.io/ (English)

- http://oss.infoscience.co.jp/gephi/gephi.org/index

.html (Japanese)

model environment

tools: graph-tool

- Python + C++ (fast)
- Support parallelism (OpenMP)
- https://graph-tool.skewed.de/

tools: NetworKit

- focuses on performance and integration (with Python, Jupyter Notebook, Gephi and pandas)
- https://networkit.github.io/

tools: networkX

- Python library for analyzing networks
- easy to install
- http://networkx.github.io/

Jupyter notebook

- an open-source web application that allows you to create and share documents that contain live code, equations, visualizations and narrative text.
- http://jupyter.org/
- Anaconda (a python distribution for data requirement of the distribution of the dist
- https://www.anaconda.com/

ANACONDA

Google colaboratory

- Built on top of Jupyter notebook
- Interactive browser-based environment is available (Google account is required)
- https://colab.research.google.com/

Google colaboratory for network analysis

- Jupyter notebook (as python environment) + networkX (for network analysis) + matplotlib (for plotting / graph drawing)
- Microsoft also provides similar environments https://notebooks.azure.com/

