A non-semisimple Kitaev lattice model

based on joint work with Ulrich Krähmer

Sebastian Halbig Sebastian.Halbig@uni-marburg.de

The big picture

Fault-tolerant quantum computation: Kitaev's toric code

Kitaev's construction for fault-tolerant quantum computation:

- 1. Consider a $k \times k$ lattice in the torus and associate the Hilbert space \mathbb{M}_k .
- 2. Specify a "Hamiltonian" $H: \mathbb{M}_k \longrightarrow \mathbb{M}_k$ using "local" features of the lattice.
- 3. Define as a "quantum memory" the space $\operatorname{Prot}_k \stackrel{\text{def}}{=} \ker H$.

This leads to error correction/prevention implemented on a physical level:

Theorem

For any $k \in \mathbb{N}$ we have dim $Prot_k = 4$.

Kitaev's toric code - lattices and the (extended) Hilbert space

Let $k \in \mathbb{N}$ and consider a $k \times k$ lattice embedded on a torus:

Assign to each edge a copy of \mathbb{C}^2 and set $\mathbb{M}_k = \bigotimes_{1 \leq i,j \leq k} \mathbb{C}^2 \bigotimes \bigotimes_{1 \leq i,j \leq k} \mathbb{C}^2$.

Kitaev's toric code - vertex actions

Set $\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. Given a *vertex* (point in the lattice) v define

$$A_v\colon \, \mathbb{I}\!\! M_k \longrightarrow \mathbb{I}\!\! M_k$$

- 1. Gives rise to a representation $\triangleright_v \colon \mathbb{C}\mathbb{Z}_2 \otimes \mathbb{M}_k \longrightarrow \mathbb{M}_k$.
- 2. Combining all "vertex actions" leads to $\triangleright : (\mathbb{C}\mathbb{Z}_2)^{\otimes k^2} \otimes \mathbb{M}_k \longrightarrow \mathbb{M}_k$.

Kitaev's toric code - face coactions

Set $\sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$. Given a *face* (square of the lattice) f define

$$B_f \colon \mathbb{I} \mathbb{M}_k \longrightarrow \mathbb{I} \mathbb{M}_k$$

- 1. Can be interpreted as a corepresentation $\delta_f \colon \mathbb{M}_k \longrightarrow \mathbb{C}\mathbb{Z}_2 \otimes \mathbb{M}_k$.
- 2. Combining all "face coactions" leads to a "global" comodule structure $\delta \colon \mathbb{M}_k \longrightarrow (\mathbb{C}\mathbb{Z}_2)^{\otimes k^2} \otimes \mathbb{M}_k$.

The local and global module structure of M_k

Associate to each vertex the face to its "top right" \rightsquigarrow {vertices} $\xrightarrow{1:1}$ {faces}. For every such vertex-face-pair (v, f) the vertex action and face coaction turn \mathbb{M}_k into a $D(\mathbb{C}\mathbb{Z}_2)$ -module.

Topological invariance of the protected space

We consider \mathbb{M}_k as a $D(\mathbb{C}\mathbb{Z}_2)^{\otimes k^2}$ -module

Definition

The protected space of the Kitaev lattice model is $\operatorname{Prot}_k = \mathbb{M}_k^{\text{inv}}$.

Theorem (Kitaev '97)

For any $k \in \mathbb{N}$ we have dim $Prot_k = 4$.

Proof sketch (based on Buerschaper, Mombelli, Christandl, Aguado '18).

The Haar integral of $D(\mathbb{C}\mathbb{Z}_2)$ defines a projector onto Prot_k . Taking traces yields the dimension.

Works for complex semisimple Hopf algebras.

Where to go from here?

Our aim is to generalise this to finite-dimensional non-semisimple Hopf algebras. This needs three levels of generalisations:

- 1. lattices on oriented surfaces
- → Kitaev graphs

2. regular Hopf bimodule

→ involutive (twisted) Hopf bimodules

3. invariant subspaces

→ bitensor products

A Kitaev graph Γ is a graph such as the following:

- finite and connected
- · loops and multiple edges are allowed
- edges are directed
- "edge ends" at every vertex are totally ordered
- every vertex has a unique associated adjacent face
- choice of a distinguished vertex

Each Kitaev graph Γ gives rise to a surface with boundary Σ_{Γ} and a surface without boundary Σ_{Γ}^{cl} :

Construction: We define two "elementary transformations" of Kitaev graphs:

Leads to a "structure group" & acting on the set of Kitaev graphs.

Observation: We can increase the number of boundary components of Σ_{Γ} without changing the genus by gluing a certain graph **A** to Γ .

Theorem

For all Kitaev graphs Γ , Δ we have:

$$\Sigma_{\Gamma} \cong \Sigma_{\Delta} \qquad \iff \Delta \in \mathfrak{G} \bullet \Gamma$$

$$\Sigma_{\Gamma}^{\text{cl}} \cong \Sigma_{\Delta}^{\text{cl}} \qquad \iff \exists a, b \in \mathbb{N}_{0} \text{ with } \Delta \# A^{\#a} \in \mathfrak{G} \bullet (\Gamma \# A^{\#b}).$$

Key aspect of the proof: Each orbit of the action of \mathfrak{G} contains a unique *standard graph*

this "half" of the graph controls the genus.

this "half" of the graph consists of copies of A and adds to the number of boundary components.

From now on: H is a finite-dimensional Hopf algebra over an arbitrary field \mathbb{k} .

From now on: H is a finite-dimensional Hopf algebra over an arbitrary field \mathbb{k} .

Classical: Decorate each edge of a Kitaev graph with the regular bimodule-bicomodule H. Use $S \colon H \longrightarrow H$ to model the reversal of edge directions. **Problem:** $S^2 = \mathrm{id}_H$ and $\dim H \in \mathbb{k}^\times$ is equivalent to H semisimple and cosemisimple.

Definition

An *involutive Hopf bimodule* is a pair of a bimodule-bicomodule M an involution $\psi\colon M\longrightarrow M$ such that for all $g,h\in H$ and $m\in M$

$$(h \triangleright m \triangleleft g)_{[-1]} \otimes (h \triangleright m \triangleleft g)_{[0]} \otimes (h \triangleright m \triangleleft g)_{[1]}$$

= $h_{(1)}m_{[-1]}g_{(1)} \otimes h_{(2)} \triangleright m_{[0]} \triangleleft g_{(2)} \otimes h_{(3)}m_{[1]}S^{-2}(g_{(3)})$

$$\psi(h \triangleright m) = \psi(m) \triangleleft S(h), \qquad \psi(m)_{[-1]} \otimes \psi(m)_{[0]} = S(m_{[1]}) \otimes \psi(m_{[0]}).$$

Key example: $p, \chi \in G(H) \times G(H^*)$ group-like and character with $\chi(p) = 1$ and

$$\chi(m_{(1)})S^2(m_{(2)})p = \chi(m_{(2)})pm_{(1)},$$
 for all $m \in H$.

Set M = H as vector space and define

$$g \triangleright m \triangleleft h = \chi^{-1}(h_{(2)})gmh_{(1)}, \quad m_{[-1]} \otimes m_{[0]} \otimes m_{[1]} = m_{(-1)} \otimes m_{(0)} \otimes m_{(1)}p,$$

$$\psi(m) = \chi(m_{(1)})p^{-1}S(m_{(2)}).$$

Key example: $p, \chi \in G(H) \times G(H^*)$ group-like and character with $\chi(p) = 1$ and

$$\chi(m_{(1)})S^2(m_{(2)})p = \chi(m_{(2)})pm_{(1)},$$
 for all $m \in H$.

Set M = H as vector space and define

$$g \triangleright m \triangleleft h = \chi^{-1}(h_{(2)})gmh_{(1)}, \quad m_{[-1]} \otimes m_{[0]} \otimes m_{[1]} = m_{(-1)} \otimes m_{(0)} \otimes m_{(1)}p,$$

$$\psi(m) = \chi(m_{(1)})p^{-1}S(m_{(2)}).$$

Observation

If we change all S^{\mp} to S^{\pm} in the previous definition, we obtain an embedding of stable anti-Yetter–Drinfeld modules into the category of involutive S^2 -twisted Hopf bimodules.

Theorem

There is an algebra B(H) with underlying vector space $\mathbb{k}\mathbb{Z}_2 \otimes H \otimes H^{\mathrm{op}} \otimes H^* \otimes (H^*)^{\mathrm{op}}$ whose modules coincide with involutive Hopf bimodules.

We fix an involutive Hopf bimodule (M, ψ) .

Construction

Let Γ be a Kitaev graph. The extended Hilbert space is

$$\mathbb{I}_{\Gamma} \stackrel{\text{\tiny def}}{=} \otimes_{e \in E_{\Gamma}} M.$$

We fix an involutive Hopf bimodule (M, ψ) .

Construction

Let Γ be a Kitaev graph. The Θ A copy of M for every edge of Γ .

$$I\!M_\Gamma\stackrel{\scriptscriptstyle
m def}{=}\otimes_{e\in E_\Gamma}M.$$

We fix an involutive Hopf bimodule (M, ψ) .

Construction

Let Γ be a Kitaev graph. The extended Hilbert space is

$$\mathbb{I}_{\Gamma} \stackrel{\text{\tiny def}}{=} \otimes_{e \in E_{\Gamma}} M.$$

For every vertex $v \in V_{\Gamma}$ and $f \in F_{\Gamma}$ define algebra maps

$$A_v \colon H \longrightarrow \operatorname{End}(\mathbb{M}_{\Gamma}), \qquad B_f \colon (H^*)^{\operatorname{op}} \longrightarrow \operatorname{End}(\mathbb{M}_{\Gamma}).$$

These maps depend on the "local" structure of Γ .

Generalisation 2: The extended Hilbert space as a Yetter-Drinfeld module

For Γ a Kitaev graph, set $H_v = H$ for each vertex $v \in V_\Gamma$ and write $\mathbb{H}_\Gamma \stackrel{\text{\tiny def}}{=} \otimes_{v \in V_\Gamma} H_v$.

Theorem

The local (co)actions turn \mathbb{M}_{Γ} *into an* \mathbb{H}_{Γ} -*Yetter–Drinfeld-module.*

Generalisation 2: From involutive Hopf bimodules to Yetter-Drinfeld modules

Use: The Hopf bimodule *M* admits a left-left Yetter–Drinfeld module structure:

$$h \cdot m = h_{(1)} \triangleright m \triangleleft S(h_{(2)}), \qquad \delta(m) = m_{[-1]} \otimes m_{[0]}, \qquad h \in H, m \in M.$$

The map $\psi \colon M \longrightarrow M$, implies that \mathbb{M}_{Γ} is "locally" of the above form.

Generalisation 2: Involutive bimodules and extended Hilbert spaces

Generalisation 3: Invariants of surfaces with boundary

Theorem

Suppose the graphs Γ and Δ satisfy $\Sigma_{\Gamma} \cong \Sigma_{\Delta}$. Then \mathbb{M}_{Γ} and \mathbb{M}_{Δ} are isomorphic as Yetter–Drinfeld modules.

Proof strategy: Transfer the "elementary transformations" of Kitaev graphs to the level of extended Hilbert spaces.

Generalisation 3: Invariants of surfaces with boundary

Upshot: If we want to construct invariants of *closed surfaces*, it suffices to study standard graphs.

Goal: "Remove" the yellow loops.

Generalisation 3: The classical ground state

The classical protected ground state:

 $\operatorname{Prot}(\Gamma) = \{ m \in \operatorname{IM}_{\Gamma} \mid \delta_f(m) = 1 \otimes m, h \bullet_v m = \varepsilon(h)m, f \in F_{\Gamma}, v \in V_{\Gamma}, h \in H \}.$ We have $\operatorname{Prot}(\Gamma) = \operatorname{im}(s\pi\iota)$, where:

$$\mathbb{M}_{\Gamma}^{\mathrm{coinv}} \, \stackrel{\iota}{\longleftarrow} \, \, \mathbb{M}_{\Gamma} \, \stackrel{\xi----\frac{s}{\sigma}----}{\longrightarrow} \, \, \mathbb{M}_{\Gamma}/\mathbb{H}_{\Gamma}^{+}\mathbb{M}_{\Gamma}.$$

Observation: The section s is given by $[m] \mapsto \Lambda \cdot m$ for an integral $\Lambda \in \mathbb{H}_{\Gamma}$ with $\Lambda^2 = \Lambda$. Thus, s only exists if H is semisimple.

However: $\operatorname{im}(\pi \iota) \cong \operatorname{im}(s\pi \iota)$.

Generalisation 3: Bitensor products

Definition

Let $(X, \triangleleft, \varrho) \in \mathsf{M}_{H}^{H}$ and $(N, \triangleright, \delta) \in {}_{H}^{H}\mathsf{M}$ be right-right and left-left modules-comodules respectively.

- 1. We write $\pi_{X,M} \colon X \otimes_{\mathbb{k}} M \longrightarrow X \otimes_{H} M \stackrel{\text{\tiny def}}{=} \operatorname{coker}(\triangleleft \otimes \operatorname{id}_{M} \operatorname{id}_{X} \otimes \triangleright)$.
- 2. We set $\iota_{X,M} \colon X \square_H M \stackrel{\text{\tiny def}}{=} \ker(\varrho \otimes_{\mathbb{k}} \mathrm{id}_M \mathrm{id}_X \otimes_{\mathbb{k}} \delta) \longrightarrow X \otimes_{\mathbb{k}} M.$
- 3. The *bitensor product* of X and M is $Bit_H^H(X, M) \stackrel{\text{def}}{=} \operatorname{im} \pi_{X,M} \iota_{X,M}$.

Generalisation 3: Bitensor products and invariant subspaces

Theorem

The following are equivalent:

- 1. H is semisimple and counimodular, and
- 2. There is a natural isomorphism $\operatorname{Bit}_{H}^{H}(\Bbbk_{\varepsilon}^{a}, N) \cong \operatorname{Hom}_{D(H)}({}_{\varepsilon}^{1} \Bbbk, N)$, where $a \in G(H)$ is the modular element of H and $N \in {}_{H}\operatorname{YD}$.

Consequence: In the complex semisimple case, our theory reduces to the classical Kitaev model if we set $M=H_{\rm reg}$ to be the regular involutive Hopf bimodule ((co)actions are given by (co)multiplication) with the antipode as involution.

Generalisation 3: Bitensor products and closing boundaries

Let $v \in V_{\Gamma}$ be a vertex. It has a corresponding boundary component b of Σ_{Γ} . We think of $\operatorname{Bit}_{H_0}^{H_0}(X, \mathbb{M}_{\Gamma})$ as closing the boundary b by gluing in a disc labelled X.

Generalisation 3: The annular graph

By closing the inner boundary component of the annular graph, we obtain a disc. We translate its contractability to the condition that the associated space is the trivial Yetter–Drinfeld module.

Generalisation 3: The annular graph

Lemma

The following are equivalent:

- 1. $M^{\text{coinv}} = \{m \in M \mid m_{[-1]} \otimes m_{[0]} = 1 \otimes m\}$ is one-dimensional, and
- 2. there exists a $Y \in M_H^H$ such that $Bit_{H_{in}}^{H_{in}}(Y, \mathbb{M}_A) \cong {}_{\varepsilon}^1 \mathbb{k}$.

From now on: We assume dim $M^{\text{coinv}} = 1$ and fix a $Y \in M_H^H$ which "trivialises" the annular graph.

Warning: Not all Hopf algebras admit an involutive Hopf bimodule M such that $\dim M^{\text{coinv}} = 1$.

Generalisation 3: The protected space

Definition

Let Γ be a Kitaev graph and $X \in M_H^H$ and write

$$\mathbb{X}_{\Gamma} \stackrel{\scriptscriptstyle ext{def}}{=} \otimes_{v \in V_{\Gamma}} Z_v, \qquad ext{where } Z_v = egin{cases} X & ext{if } v ext{ is distinguished,} \ Y & ext{otherwise.} \end{cases}$$

We call $\operatorname{Prot}_H(X, M, \Gamma) \stackrel{\text{\tiny def}}{=} \operatorname{Bit}_{\mathbb{H}_{\Gamma}}^{\mathbb{H}_{\Gamma}}(\mathbb{X}_{\Gamma}, \mathbb{M}_{\Gamma})$ the protected space with coefficient X. We refer to $\operatorname{Prot}_H(\mathbb{k}^1_{\varepsilon}, M, \Gamma)$ as the *ground state*.

Generalisation 3: Excision

Aim: Understand the gluing of Kitaev graphs algebraically.

Theorem

Let Γ, Δ be two Kitaev graphs and $X, X' \in M_H^H$ There is a space $\operatorname{Aux}_H(X \otimes X', M, \Gamma \# \Delta)$ with canonical embeddings and projections

Generalisation 3: Topological invariance

Corollary

For any Γ we have $\operatorname{Prot}_H(X, M, \Gamma) \cong \operatorname{Prot}_H(X, M, \Gamma \# \mathbf{A})$. In particular, if Γ and Δ are such that $\Sigma_{\Gamma}^{\operatorname{cl}} \cong \Sigma_{\Delta}^{\operatorname{cl}}$ then $\operatorname{Prot}_H(X, M, \Gamma) \cong \operatorname{Prot}_H(X, M, \Delta)$.

Any surface can be decomposed as a connected sum of tori. Explicit computations and geometrical interpretation of results?

Finally...

Ok great. But what do we actually compute?

Let us compare our approach to the classical case.

Ok great. But what do we actually compute?

The classical case reinterpreted

Definition

Let $g \in \mathbb{N}_0$. If g = 0, set $\varpi_1(\Sigma_g) \stackrel{\text{\tiny def}}{=} \langle x \rangle \cong \mathbb{Z}$. Otherwise, $\varpi_1(\Sigma_g)$ is generated by $\alpha_1, \dots, \alpha_g, \beta_1, \dots, \beta_g, x$ and the relations

$$[\beta_g, \alpha_g^{-1}] \dots [\beta_1, \alpha_1^{-1}] = x$$

$$\alpha_i x = x \alpha_i, \qquad \beta_i x = x \beta_i, \qquad 1 \le i \le g.$$

The group $\varpi_1(\Sigma_g)$ is a central extension of the fundamental group of a surface of genus g.

Such groups arise in the study of Seifert fibered spaces.

The classical case reinterpreted

Fix a finite group *G*.

Lemma

The space $\Omega_g \stackrel{\text{def}}{=} \operatorname{span}_{\mathbb{K}} \operatorname{Hom}_{\operatorname{Grp}}(\varpi_1(\Sigma_g), G)$ becomes a $\mathbb{K}G$ -Yetter-Drinfeld module by setting for all $y, h \in G, f \in \operatorname{Hom}_{\operatorname{Grp}}(\varpi_1(\Sigma_g), G)$:

$$\delta(f) \stackrel{\text{def}}{=} f(x) \otimes f, \qquad (h \triangleright f)y = (\operatorname{ad}(h) f)y \stackrel{\text{def}}{=} hf(y)h^{-1}.$$

Convention: Given $p \in G$, we write $p(\Omega_g) = \{\omega \in \Omega_g \mid \omega_{[-1]} \otimes \omega_{[0]} = p \otimes \omega\}.d$

Character varieties

Fact: If $p \in G$ is central and $\chi \colon \Bbbk G \longrightarrow \Bbbk$ is a (multiplicative) character there is a corresponding involutive Hopf bimodule $M_{(p,\chi)}$ with $\dim(M_{(p,\chi)})^{\operatorname{coinv}} = 1$.

Theorem

Let $p \in G$ be central, $\chi \colon \Bbbk G \longrightarrow \Bbbk$ a character, and Γ a Kitaev graph whose associated closed surface Σ_{Γ} has genus g. Then, we have:

$$\operatorname{Prot}_{M_{(p,\chi)}}(\Bbbk^1_{\varepsilon},\Gamma) \cong \operatorname{prot}_{\mathbb{R}}\{\chi^{-2g}(h)f - h \triangleright f \mid h \in G, f \in \operatorname{prot}_{\mathbb{R}}\{\chi^{-2g}(h)f - h \triangleright f \mid h \in G, f \in \operatorname{prot}_{\mathbb{R}}\{\chi^{-2g}(h)f - h \triangleright f \mid h \in G, f \in \operatorname{prot}_{\mathbb{R}}\{\chi^{-2g}(h)f - h \triangleright f \mid h \in G, f \in \operatorname{prot}_{\mathbb{R}}\{\chi^{-2g}(h)f - h \triangleright f \mid h \in G, f \in \operatorname{prot}_{\mathbb{R}}\{\chi^{-2g}(h)f - h \triangleright f \mid h \in G, f \in \operatorname{prot}_{\mathbb{R}}\{\chi^{-2g}(h)f - h \triangleright f \mid h \in G, f \in \operatorname{prot}_{\mathbb{R}}\{\chi^{-2g}(h)f - h \triangleright f \mid h \in G, f \in \operatorname{prot}_{\mathbb{R}}\{\chi^{-2g}(h)f - h \triangleright f \mid h \in G, f \in \operatorname{prot}_{\mathbb{R}}\{\chi^{-2g}(h)f - h \triangleright f \mid h \in G, f \in \operatorname{prot}_{\mathbb{R}}\{\chi^{-2g}(h)f - h \triangleright f \mid h \in G, f \in \operatorname{prot}_{\mathbb{R}}\{\chi^{-2g}(h)f - h \triangleright f \mid h \in G, f \in \operatorname{prot}_{\mathbb{R}}\{\chi^{-2g}(h)f - h \triangleright f \mid h \in G, f \in \operatorname{prot}_{\mathbb{R}}\{\chi^{-2g}(h)f - h \triangleright f \mid h \in G, f \in \operatorname{prot}_{\mathbb{R}}\{\chi^{-2g}(h)f - h \triangleright f \mid h \in G, f \in \operatorname{prot}_{\mathbb{R}}\{\chi^{-2g}(h)f - h \triangleright f \mid h \in G, f \in \operatorname{prot}_{\mathbb{R}}\{\chi^{-2g}(h)f - h \triangleright f \mid h \in G, f \in \operatorname{prot}_{\mathbb{R}}\{\chi^{-2g}(h)f - h \triangleright f \mid h \in G, f \in \operatorname{prot}_{\mathbb{R}}\{\chi^{-2g}(h)f - h \triangleright f \mid h \in G, f \in \operatorname{prot}_{\mathbb{R}}\{\chi^{-2g}(h)f - h \triangleright f \mid h \in G, f \in \operatorname{prot}_{\mathbb{R}}\{\chi^{-2g}(h)f - h \triangleright f \mid h \in G, f \in \operatorname{prot}_{\mathbb{R}}\{\chi^{-2g}(h)f - h \triangleright f \mid h \in G, f \in \operatorname{prot}_{\mathbb{R}}\{\chi^{-2g}(h)f - h \triangleright f \mid h \in G, f \in \operatorname{prot}_{\mathbb{R}}\{\chi^{-2g}(h)f - h \triangleright f \mid h \in G, f \in \operatorname{prot}_{\mathbb{R}}\{\chi^{-2g}(h)f - h \triangleright f \mid h \in G, f \in \operatorname{prot}_{\mathbb{R}}\{\chi^{-2g}(h)f - h \triangleright f \mid h \in G, f \in \operatorname{prot}_{\mathbb{R}}\{\chi^{-2g}(h)f - h \triangleright f \mid h \in G, f \in \operatorname{prot}_{\mathbb{R}}\{\chi^{-2g}(h)f - h \triangleright f \mid h \in G, f \in \operatorname{prot}_{\mathbb{R}}\{\chi^{-2g}(h)f - h \triangleright f \mid h \in G, f \in \operatorname{prot}_{\mathbb{R}}\{\chi^{-2g}(h)f - h \triangleright f \mid h \in G, f \in \operatorname{prot}_{\mathbb{R}}\{\chi^{-2g}(h)f - h \triangleright f \mid h \in G, f \in \operatorname{prot}_{\mathbb{R}}\{\chi^{-2g}(h)f - h \triangleright f \mid h \in G, f \in \operatorname{prot}_{\mathbb{R}}\{\chi^{-2g}(h)f - h \triangleright f \mid h \in G, f \in \operatorname{prot}_{\mathbb{R}}\{\chi^{-2g}(h)f - h \triangleright f \mid h \in G, f \in \operatorname{prot}_{\mathbb{R}}\{\chi^{-2g}(h)f - h \triangleright f \mid h \in G, f \in \operatorname{prot}_{\mathbb{R}}\{\chi^{-2g}(h)f - h \triangleright f \mid h \in G, f \in \operatorname{prot}_{\mathbb{R}}\{\chi^{-2g}(h)f - h \triangleright f \mid h \in G, f \in \operatorname{prot}_{\mathbb{R}}\{\chi^{-2g}(h)f - h \triangleright f \mid h \in G, f \in \operatorname{prot}_{\mathbb{R}}\{\chi^{-2g}(h)f - h \triangleright f \mid h \in G, f \in \operatorname{prot}_{\mathbb{R}}\{\chi^{-2g}(h)f - h \triangleright f \mid h \in G, f \in \operatorname{prot}_{\mathbb{R}}\{\chi^{-2g}(h)f - h \triangleright f \mid h \in G, f \in \operatorname{prot}_{\mathbb{R}}\{\chi^{-2g}(h)f - h \triangleright f \mid h \in G,$$

Character varieties

Observation: G acts by conjugation on $\operatorname{Hom}_{\operatorname{Grp}}(\pi_1(\Sigma_g), G)$. Write $\operatorname{Ch}(\Sigma_g, G) \stackrel{\text{\tiny def}}{=} \operatorname{Hom}_{\operatorname{Grp}}(\pi_1(\Sigma_g), G)/G$ for the set of its orbits. We have $\operatorname{Prot}_{M_{(p,\chi)}}(\Bbbk^1_{\varepsilon}, \Gamma) = \operatorname{span}_{\Bbbk} \operatorname{Ch}(\Sigma_g, G)$.

And that is a good point to stop.

And that is a good point to stop. But, if we still have

time ...

A glimpse into small quantum groups

Let us fix a primitive N-th root of unity $q \in \mathbb{C}$ and consider the Taft algebra A_q . It has two generators h, x and the relations

$$h^{N} = 1,$$
 $x^{N} = 0,$ $hx = qxh,$
 $\Delta(h) = h \otimes h,$ $\Delta(x) = 1 \otimes x + x \otimes h,$
 $S(h) = h^{N-1},$ $S(x) = -xh.$

Observation: $H = \operatorname{span}_{\mathbb{C}}(\{g^i \mid 0 \le i < N\})$ is a Hopf subalgebra and the canonical embedding $\iota \colon H \longrightarrow A_q$ has a retract $\pi \colon A_q \longrightarrow H$ which is a Hopf algebra map and whose kernel is $B_q^+ \stackrel{\scriptscriptstyle \mathrm{def}}{=} \operatorname{span}_{\mathbb{C}}(\{g^i x^{j+1} \mid 0 \le i, j < N\}) \subset A_q$.

"Simplifying" Yetter-Drinfeld modules

Lemma

Suppose $M \in {}_{A_q}\mathsf{YD}$. The spaces

$$M^{\operatorname{co} H} \stackrel{\scriptscriptstyle \mathrm{def}}{=} \{ m \in M \mid \delta(m) \in H \otimes M \}, \qquad B_q^+ M \stackrel{\scriptscriptstyle \mathrm{def}}{=} \operatorname{span}_{\mathbb{C}} \{ a \rhd m \mid a \in B_q^+, m \in M \}.$$

become H-Yetter-Drinfeld modules by setting for all $m \in M$ and $h \in H$:

$$h \diamond m = \iota(h) \bullet m, \qquad \delta(m) = \pi(m_{|-1|}) \otimes m_{|0|}.$$

Define: For $M \in {}_{A_q}\mathsf{YD}$, we set $\langle M \rangle \stackrel{\scriptscriptstyle \mathsf{def}}{=} \frac{M^{\mathrm{co}H}}{M^{\mathrm{co}H} \cap B_q^+ M} \in {}_{H}\mathsf{YD}$.

Inflation

Lemma

There is a functor

$$\operatorname{Inf}_{H}^{A_q} \colon \mathsf{YD}_{H} \longrightarrow \mathsf{Mod}_{A_q}^{A_q}, \qquad X \longmapsto X,$$

where for all $a \in A_q$ and $x \in X$ we have

$$a \cdot x = \pi(a) \diamond m, \qquad \delta(x) = \iota(x_{\{-1\}}) \otimes x_{\{0\}}.$$

Coming full circle

Theorem

Let $X \in \mathsf{YD}_H$ and M an involutive A_q -Hopf bimodule with $\dim M^{\mathrm{coinv}} = 1$. For any Kitaev graph Γ , we have a canonical isomorphism

$$\operatorname{Prot}_{A_q}(X,M,\Gamma) \cong \operatorname{Hom}_{D(H)}({}_{\varepsilon}^1 \Bbbk, \langle I M_{\Gamma} \rangle).$$

Coming full circle

For q = -1 we have $\mathbb{C}\mathbb{Z}_2 \cong H \subset A_{-1}$.

Classical: For the torus, the only topologically protected space of the \mathbb{Z}_2 -model is the ground state.

Question: Does A_{-1} yield "more" invariants?

Coming full circle

The action and coaction of a simple $X \in \mathsf{YD}_H$ correspond to a character $\alpha \colon \mathbb{C}\mathbb{Z}_2 \longrightarrow \mathbb{C}$ and a group-like element $k \in \mathbb{C}\mathbb{Z}_2$.

Example

There is an involutive Hopf bimodule $M_{(h,\varepsilon)}$ of A_{-1} determined by the group-like $h \in G(H)$ and the character $\varepsilon \in G(H^*)$.

Let Γ parameterise the torus and let \mathbb{C}^k_α be a one-dimensional right $\mathbb{C}\mathbb{Z}_2$ -Yetter–Drinfeld module. We have

$$\dim \operatorname{Prot}_{A_{-1}}(\mathbb{C}^k_{\alpha}, M_{(h,\varepsilon)}, \Gamma) = \begin{cases} 4 & \text{if } k = 1 \text{ and } \alpha = \varepsilon, \\ 2 & \text{if } k \neq 1 \text{ and } \alpha \neq \varepsilon, \\ 0 & \text{otherwise.} \end{cases}$$