Sistemi - Modulo di Sistemi a Eventi Discreti

Laurea Magistrale in Ingegneria e Scienze Informatiche Tiziano Villa

29 Settembre 2016

Nome e Cognome:

Matricola:

Posta elettronica:

problema	punti massimi	i tuoi punti
problema 1	20	
problema 2	10	
totale	30	

- 1. Si consideri un impianto G con $\Sigma = \{a,b\}$, $\Sigma_{uc} = \{b\}$, $L(G) = \overline{a^{\star}ba^{\star}}$ (cioe' il linguaggio ottenuto dai prefissi delle stringhe dell'espressione regolare $a^{\star}ba^{\star}$), $L_m(G) = a^{\star}ba^{\star}$.
 - (a) Si enunci formalmente la definizione di controllabilita' di un linguaggio e la si descriva intuitivamente a parole.

Traccia di soluzione

Definizione Siano K e $M=\overline{M}$ linguaggi sull'alfabeto di eventi E, con $E_{uc}\subseteq E$. Si dice che K e' controllabile rispetto a M e E_{uc} , se per tutte le stringhe $s\in \overline{K}$ e per tutti gli eventi $\sigma\in E_{uc}$ si ha

$$s\sigma \in M \Rightarrow s\sigma \in \overline{K}$$
.

[equivalente a $\overline{K}E_{uc} \cap M \subseteq \overline{K}$]

(b) Si enunci formalmente la definizione di osservabilita' di un linguaggio e la si descriva intuitivamente a parole.

Traccia di soluzione.

Definizione Siano K e $M=\overline{M}$ linguaggi sull'alfabeto di eventi E. Sia $E_c\subseteq E$ l'insieme degli eventi controllabili. Sia $E_o\subseteq E$ l'insieme degli eventi osservabili con P la proiezione da E^* a E_o^* .

Si dice che K e' osservabile rispetto a M, P, E_c , se per tutte le stringhe $s \in \overline{K}$ e per tutti gli eventi $\sigma \in E_c$,

$$s\sigma \notin \overline{K} \land s\sigma \in M \Rightarrow P^{-1}[P(s)]\{\sigma\} \cap \overline{K} = \emptyset.$$

Per tutti i punti seguenti si supponga che gli eventi a e b siano indistinguibili, cioe' esiste una proiezione P tale che $P(a) = P(b) \neq \epsilon$ (vuol dire che si vede che l'impianto produce un evento, ma non si sa se produce a o b).

(c) Si verifichi se la specifica $K_3 = \{b, aa\} \subset L(G)$ e' controllabile. Si verifichi se la specifica $K_3 = \{b, aa\} \subset L(G)$ e' osservabile. Si descriva una strategia di controllo, se esiste.

Traccia di soluzione.

$$\overline{K_3}E_{uc}\cap M=\{\epsilon,b,a,aa\}b\cap M=\{b,ab,aab\}\not\subseteq\overline{K_3}$$
. Percio' K_3 non e' controllabile,

Intuitivamente: non si puo' impedire all'impianto di produrre, ad esempio, ab. K_3 non e' controllabile.

$$K_3$$
 non e' osservabile, poiche' $ba \notin \overline{K_3}$ e $ba \in M$, ma $P^{-1}[P(s)]\sigma \cap \overline{K_3} = P^{-1}[P(b)]a \cap \overline{K_3} = \{aa,ba\} \cap \overline{K_3} \neq \emptyset$.

Commento intuitivo. Il fatto che K_3 non e' osservabile significa che se anche K_3 fosse controllabile (e non lo e') l'osservabilità limitata renderebbe impossibile mantenere l'impianto entro la specifica. Infatti, supponiamo che b fosse controllabile, se all'inizio l'impianto producesse a poi si dovrebbe disabilitare b, mentre se all'inizio l'impianto producesse b poi si dovrebbe disabilitare a. Ma se non si distinguono a e b non si sa se disabilitare a o b.

Dato che K_3 non e' controllabile ne' osservabile, non esiste una strategia di controllo.

Poiche' non c'e' osservabilita, anche se *b* fosse controllabile non ci sarebbe una strategia di controllo.

(d) Si verifichi se la specifica $K_4 = \{b, aa, baa, aaa\} \subset L(G)$ e' controllabile.

Si verifichi se la specifica $K_4 = \{b, aa, baa, aaa\} \subset L(G)$ e' osservabile. Si descriva una strategia di controllo, se esiste.

Traccia di soluzione.

 K_4 non e' controllabile. Ad esempio, non si puo' impedire all'impianto di produrre ab.

 K_4 e' osservabile.

$$s \in \overline{K_4} = \{\epsilon, b, a, aa, ba, aaa, baa\}$$

$$s\sigma = \{a, ba, aa, aaa, baa, aaaa, baaa\}$$

Le stringhe $s\sigma=a,ba,aa,aaa,baa\in\overline{K_4}$ soddisfano in modo banale l'implicazione (antecedente falso, implicazione vera).

Le stringhe $s\sigma = aaaa, baaa \notin \overline{K_4}, \in M$ sono tali che $P^{-1}[P(s)]\sigma \cap \overline{K_4} = \emptyset$ (dato che $\overline{K_4}$ non contiene stringhe lunghe 4), per cui sia l'antecedente che il conseguente sono veri e l'implicazione e' vera.

Commento intuitivo. Il fatto che K_4 e' osservabile significa che non e' l'osservabilità' limitata a rendere impossibile mantenere l'impianto entro la specifica. Infatti, non potendosi disabilitare b, non si possono impedire stringhe come ab; il fatto che non si riesca a distinguere b da a o aa da ab e ba non peggiora la situazione, gia' compromessa dall'incontrollabilita' di b. Detto altrimenti, se b fosse controllabile, ci sarebbe una strategia di controllo anche in presenza di osservabilita' limitata: dopo il primo evento disabilita b per i prossimi due eventi, dopo il terzo evento disabilita tutto.

Dato che K_4 non e' controllabile, non esiste una strategia di controllo.

(e) Si verifichi se la specifica $K_5 = \{b, aa, ba\} \subset L(G)$ e' controllabile.

Si verifichi se la specifica $K_5 = \{b, aa, ba\} \subset L(G)$ e' osservabile.

Si descriva una strategia di controllo, se esiste.

Traccia di soluzione.

 K_5 non e' controllabile. Ad esempio, non si puo' impedire all'impianto di produrre ab.

 K_5 e' osservabile.

$$s \in \overline{K_5} = \{\epsilon, b, a, aa, ba\}$$

$$s\sigma = \{a, ba, aa, aaa, baa\}$$

Le stringhe $s\sigma=a,ba,aa\in\overline{K_5}$ soddisfano in modo banale l'implicazione (antecedente falso, implicazione vera).

Le stringhe $\underline{s\sigma} = aaa, baa \notin \overline{K_5}, \in M$ sono tali che $P^{-1}[P(s)]\sigma \cap \overline{K_5} = \emptyset$ (dato che $\overline{K_5}$ non contiene stringhe lunghe 3), per cui sia l'antecedente che il conseguente sono veri e l'implicazione e' vera.

Commento intuitivo. Il fatto che K_5 e' osservabile significa che non e' l'osservabilita' limitata a rendere impossibile mantenere l'impianto entro la specifica. Infatti, non potendosi disabilitare b, non si possono impedire stringhe come ab; il fatto che non si riesca a distinguere b da a o aa da ab e ba non peggiora la situazione, gia' compromessa dall'incontrollabilita' di b. Detto altrimenti, se b fosse controllabile, ci sarebbe una strategia di controllo anche in presenza di osservabilita' limitata: dopo il primo evento disabilita b, dopo il secondo evento disabilita tutto.

Dato che K_5 non e' controllabile, non esiste una strategia di controllo.

Per rispondere alle domande seguenti, si consideri la definizione di linguaggio normale.

Siano dati $M=\overline{M}\subseteq E^\star$ e la proiezione P. Un linguaggio $K\subseteq M$ si dice normale rispetto a M e P se

$$\overline{K} = P^{-1}[P(\overline{K})] \cap M.$$

In altri termini, \overline{K} si puo ricavare in modo esatto da $P(\overline{K})$ ed M.

(f) Il linguaggio $K_6 = \{a, b\}$ e' normale ?

Si mostri il calcolo per ottenere la risposta.

Traccia di soluzione.

 $K_6=\{a,b\}, \overline{K_6}=\{\epsilon,a,b\}, P(\overline{K_6})=\{\epsilon,c\}, P^{-1}[P(\overline{K_6})]=\{\epsilon,a,b\}, P^{-1}[P(\overline{K_6})]\cap M=\{\epsilon,a,b\}\cap M=\{\epsilon,a,b\}=\overline{K_6} \text{ [ho indicato con c il fatto che la proiezione renda indistinguibile se l'impianto produca a o b]. Il linguaggio <math>K_6$ e' normale.

(g) Il linguaggio $K_7 = \{a, aa, ab, ba\}$ e' normale ? Si mostri il calcolo per ottenere la risposta.

Traccia di soluzione.

 $K_7 = \{a, aa, ab, ba\}, \ \overline{K_7} = \{\epsilon, a, b, aa, ab, ba\}, \ P(\overline{K_7}) = \{\epsilon, c, cc\}, \\ P^{-1}[P(\overline{K_7})] = \{\epsilon, a, b, aa, ab, ba, bb\}, \\ P^{-1}[P(\overline{K_7})] \cap M = \{\epsilon, a, b, aa, ab, ba, bb\} \cap M = \{\epsilon, a, b, aa, ab, ba\} = \overline{K_7} \text{ [ho indicato con } c \text{ il fatto che la proiezione renda indistinguibile se l'impianto produca } a \text{ o } b].$

Il linguaggio K_7 e' normale.

(h) Il linguaggio $K_8 = K_6 \cap K_7 = \{a\}$ e' normale ? Si mostri il calcolo per ottenere la risposta.

Esiste sempre il sovralinguaggio normale infimo di un dato linguaggio ? Traccia di soluzione.

 $K_8=\{a\}, \ \overline{K_8}=\{\epsilon,a\}, \ P(\overline{K_8})=\{\epsilon,c\}, \ P^{-1}[P(\overline{K_8})]=\{\epsilon,a,b\}, \ P^{-1}[P(\overline{K_8})]\cap M=\{\epsilon,a,b\}\cap M=\{\epsilon,a,b\}\neq \overline{K_8} \ \text{poiche'} \ b\not\in \overline{K_8} \ \text{[ho indicato con c il fatto che la proiezione renda indistinguibile se l'impianto produca a o b].}$

Il linguaggio K_8 non e' normale, il che dimostra anche che l'intersezione non preserva la normalita'.

Poiche' la normalita' di un linguaggio non e' preservata dall'intersezione, non esiste sempre il sovralinguaggio normale infimo di un dato linguaggio.

2. Una rete di Petri marcata e' specificata da una quintupla: $\{P, T, A, w, x\}$, dove P sono i posti, T le transizioni, A gli archi, w la funzione di peso sugli archi, e x il vettore di marcamento (numero di gettoni per posto). $I(t_i)$ indica l'insieme dei posti in ingresso alla transizione t_i , $O(t_j)$ indica l'insieme dei posti in uscita dalla transizione t_j .

Si consideri la rete di Petri P_{46} definita da:

- $P = \{p_1, p_2, p_3, p_4\}$
- $T = \{t_1, t_2, t_3\}$
- $A = \{(p_1, t_1), (p_2, t_1), (p_3, t_2), (p_4, t_3), (t_1, p_3), (t_2, p_1), (t_2, p_2), (t_2, p_4), (t_3, p_2)\}$
- $\forall i, j \ w(p_i, t_j) = 1$
- $\forall i, j \ w(t_i, p_j) = 1$

Sia $x_0 = [1, 1, 0, 0]$ la marcatura iniziale.

(a) Si disegni il grafo della rete di Petri P_{46} .

(b) Si costruisca l'albero di ricopribilita' della rete di Petri.

Lo stato $x_v = [0, 0, 0, 0]$ e' raggiungibile ?

Traccia di soluzione.

Si allega la figura.

Lo stato $x_v = [0, 0, 0, 0]$ non e' raggiungibile (ogni stato dell'albero ha almeno un posto con un gettone).

(c) Si scriva la definizione di rete di Petri limitata.

La rete di Petri P_{46} e' limitata ?

Traccia di soluzione.

La rete di Petri P_{46} non e' limitata poiche' ω appare nell'albero di ricopribilita'.