

Ukraine International Airlines Flight 752

https://en.wikipedia.org/wiki/Ukraine_International_Airlines_Flight_752

Sentiment analysis Evaluation

Receiver Operating Characteristic ROC

The ROC curve was first developed by electrical engineers and radar engineers during World War II for detecting enemy objects in battlefield!

Missile attack vs. passenger airplane!

Recall aka True Positive Rate (TPR)

What percentage of positives are captured.

Figure 4.4 Contingency table

False Positive Rate (FPR)

What percentage are *incorrectly* captured as positives!

Figure 4.4 Contingency table

Perfect Classifier

	Gold Positive	Gold Negative
Model Positive	N+	0
Model Negative	0	N-
	$TPR = \frac{N+}{(N+)+0} = 1.0$	$FPR = \frac{0}{0 + (N -)} = 0.0$

Perfect Classifier

	Gold Positive	Gold Negative
Model Positive	N+	† 0
Model Negative	0	↓ N-
	TPR= $\frac{N+}{(N+)+0}$ =1.0	$FPR = \frac{0}{0 + (N -)} = 0.0$

Worst Classifier

	Gold Positive	Gold Negative
Model Positive	0	N-
Model Negative	N+	0
	$TPR = \frac{0}{(N+)+0} = 0.0$	$FPR = \frac{N-}{0+(N-)} = 1.0$

Uniformly Random Classifier

	Gold Positive	Gold Negative
Model Positive	?	?
Model Negative	?	?

TPR=0.5

FPR=0.5

What is this model?

Recall TPR

ROC

Recall TPR

 $\delta: 0.0 \rightarrow 1.0$

ROC

Recall TPR

Area Under Curve (AUC): Single Real Point

Recall TPR

Max = ?

Min = ?

Area Under Curve (AUC): Single Real Point

ROC: Model Comparison

Other Metrics

		True condition				
	Total population	Condition positive	Condition negative	Prevalence = $\frac{\Sigma \text{ Condition positive}}{\Sigma \text{ Total population}}$	Σ True positiv	acy (ACC) = e + Σ True negative al population
Predicted condition	Predicted condition positive	True positive	False positive, Type I error	Positive predictive value (PPV), Precision = Σ True positive Σ Predicted condition positive	False discovery rate (FDR) = Σ False positive Σ Predicted condition positive	
	Predicted condition negative	False negative, Type II error	True negative	False omission rate (FOR) = Σ False negative Σ Predicted condition negative	Negative predictive value (NPV) = Σ True negative Σ Predicted condition negative	
		True positive rate (TPR), Recall, Sensitivity, probability of detection, Power $= \frac{\Sigma \text{ True positive}}{\Sigma \text{ Condition positive}}$	False positive rate (FPR), Fall-out, probability of false alarm $= \frac{\Sigma \text{ False positive}}{\Sigma \text{ Condition negative}}$	Positive likelihood ratio (LR+) = TPR FPR	Diagnostic odds	F ₁ score =
		False negative rate (FNR), Miss rate $= \frac{\Sigma \text{ False negative}}{\Sigma \text{ Condition positive}}$	Specificity (SPC), Selectivity, True negative rate (TNR) = $\frac{\Sigma \text{ True negative}}{\Sigma \text{ Condition negative}}$	Negative likelihood ratio (LR-) = FNR TNR	= LR+ = LR-	2 · Precision · Recall Precision + Recall

https://en.wikipedia.org/wiki/Precision_and_recall

Calculate the metrics/curves

Labeled Data = {Train} U {Test}

Labeled Data = {Train} U {Test}

Labeled Data = {Train} U {Test}

$$\{\text{Train}\} \cap \{\text{Test}\} \stackrel{?}{=} \emptyset$$

Imbalance Labeled Data = {Train} U {Test}

$$\{\text{Train}\} \cap \{\text{Test}\} \stackrel{?}{=} \emptyset$$

Train and test sets presumably follow same distribution!

Underfit → Balance fit ← Overfit

ROC_{train}

Recall TPR

The model couldn't learn anything from training set!

 $ROC_{Test} = ?$

ROC_{test}

Recall TPR

The model performs well on train set. It means it learnt!

But performs poor in test set. It only know train set. Cannot generalize!

ROC_{test}

Recall TPR

The model performs well on train set. It means it learnt!

But performs poor in test set. It only know train set. Cannot generalize!

Find the best running settings of the mode

- #layers
- Activation functions
- Probs. assumption

Find the best running settings of the mode

- Checking the performance of model on Train and Test
- For all different possibilities

Blind grid search! Brute-force

Find the best running settings of the mode

- Learn the performance of model on Train and Test
- For all different possibilities

Guided grid search!

Find the best running settings of the mode

- Learn the performance of model on Train and Test
- For all different possibilities

Guided grid search!