AHMAD FARAZ KHAN

ahmadfk@vt.edu \(afkd98.github.io \(\) linkedin.com/in/ahmadfarazkhandurrani/ \(\) +1 540-449-6457

EDUCATION

Ph.D. in Computer Science, Virginia Tech, Blacksburg, VA

January 2021 – present

Research Focus: Machine Learning Systems

• M.S. in Computer Science, Virginia Tech, Blacksburg, VA

June 2024

• B.S. in Computer Science, LUMS, Lahore, Pakistan

May 2020

TECHNICAL PROFICIENCY

- Programming Languages: Python, JavaScript, C++
- Tools and Libraries: PyTorch, TensorFlow, Hugging Face, LangChain, Ollama, Pandas, SciPy, FLOWER, IBM Federated Learning, Spark MLlib, PySpark, Dask, Hadoop, DeepSpeed, MinIO, AWS Suite, Docker, OpenFaaS, SQL, Kubernetes

WORK EXPERIENCE

Research Intern, IBM Research, Almaden

May 2025 - present

Mentored by Dr. Taiga Nakamura and Dr. Swanand Ravindra Kadhe

- Designed a self-optimizing loop and domain-specific fine-grained synthetic data generation techniques guided by embedding-based similarity metrics.
- Enabled controlled distributional coverage, continual learning, and autonomous maintenance of foundational models, significantly improving robustness and performance in domain-specific tasks.

Graduate Research Assistant, DSSL, Virginia Tech

Spring 2021 – present

Advisor: Dr. Ali Butt, Virginia Tech

Mentor: Dr. Ali Anwar, University of Minnesota

ML Algorithms and Optimization:

- Designed an RLHF approach to fine-tune deep learning compression optimizations without sacrificing accuracy. Increased **resource** utilization up to 81×, scalability by 78×, and accuracy up to 53%.
- Developed clustering-based personalized learning solutions for distributed ML systems. Improved the **personalized accuracy by up to 45**%.
- Devised a Direct Preference Optimization (DPO) approach for prompt optimization without separate reward modeling for LLMs; enhanced score by 27% over supervised fine-tuning.
- Created a DPO pipeline to mitigate sycophancy, cutting it by 64% in persona tests and 44% in preference-driven tests.
- Implemented a RAG-based AI-driven DevOps platform using LLM agents for adaptive online cloud configuration, reducing human effort and cost.

Impact: Publications at IPDPS'25, ACM EuroSys'24 and IEEE BigData'24 (Best paper), with current submission at ACL'25.

ML Infrastructure:

- Created an adaptive aggregator server for collaborative learning with one million+ nodes; improved scalability by $4\times$, latency by $8\times$, and reduced cost by $2\times$.
- Developed a scheduler balancing efficiency vs. accuracy; improved accuracy by 57% and reduced training time by 40%.
- Engineered a locality-aware cache for non-training workloads, decreasing latency and cost by 71% and 98%, respectively.
- Improved secure AI systems by filtering adversarial contributions, raising accuracy by 7%.

Impact: Publications at MLSys'25, IEEE CLOUD'22, IEEE BigData'22 & 23, FL-AAAI'22.

SELECT PUBLICATIONS

"FLStore: Efficient Federated Learning Storage for non-training workloads", Ahmad Faraz Khan et al., MLSys 2025.

"IP-FL: Incentive-driven Personalization in Federated Learning", Ahmad Faraz Khan et al., IPDPS 2025.

"FLOAT: Federated Learning Optimizations with Automated Tuning", Ahmad Faraz Khan et al., EuroSys 2024.

"DynamicFL: Federated Learning with Dynamic Communication Resource Allocation", Qi Le, Enmao Diao, Xinran Wang, **Ahmad Faraz Khan** et al., *BigData 2024 (Best Paper)*.

"Mitigating Sycophancy in LLMs via Direct Preference Optimization", Azal Ahmad Khan, Sayan Alam, Xinran Wang, **Ahmad Faraz** Khan et al., *BiqData 2024*.

SERVICES

• Reviewer for COLM 2025; USENIX ATC 2024 (External Committee); Springer Neural Processing Letters 2022–23; IEEE TNSM 2024; PeerJ CS 2024.

ADDITIONAL EXPERIENCES

• Graduate Teaching Roles: Web/Cloud Development (Summer 2024 & Fall 2023); Advanced Operating Systems (Spring & Fall 2024); Python Programming (Spring 2020 & Fall 2021); Computer Security (Spring 2022).