Toe-Walking Detection

Faaris Khilji

This document goes over the methods used to detect toe walking versus normal walking

Sensor placement:

Initially I recorded the raw data and trained the model using a basic ANN. I recorded 238 timesteps worth of data for each sample of walking or toe-walking. Each timestep contains six features being acceleration x,y,z and gyro x,y,z.

Below the code for the model is pictured:

```
model = tf.keras.Sequential()
model.add(tf.keras.layers.Dense(100, activation='relu'))
model.add(tf.keras.layers.Dense(50, activation='relu'))
model.add(tf.keras.layers.Dense(15,activation='relu'))
model.add(tf.keras.layers.Dense(NUM_GESTURES, activation='softmax'))
model.add(tf.keras.layers.Dense(NUM_GESTURES, activation='softmax'))
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
```

Utilizing this model I trained the neural network and achieved an accuracy of 82% when testing it out live.

[[20 0] [3 17]]]	precision	recall	f1-score	support
	0	0.87	1.00	0.93	20
	1	1.00	0.85	0.92	20
accuracy				0.93	40
macro	avg	0.93	0.93	0.92	40
weighted	avg	0.93	0.93	0.92	40

Confusion matrix and classification report for first model

Improving the Model

To improve the model I wanted to extract more features from the raw data.

Max is: 3.6277687357382638 Min is: 0.06721606950722424 Max is: 6.292196119003285 Min is: 0.10246950765959599

Max is: 933.6217185011284 Min is: 1.1013836752013353

ax is: 367.7676605494289 in is: 0.7569900924054422

I added these two features to the end of each line of data resulting in 8 features total to be passed into the model.

[[20 0] [0 20]]				
		precision	recall	f1-score	support
	0	1.00	1.00	1.00	20
	1	1.00	1.00	1.00	20
accur	acy			1.00	40
macro	avg	1.00	1.00	1.00	40
weighted	avg	1.00	1.00	1.00	40

When testing this model out I did not encounter a time where it predicted incorrectly.

How Data was Split:

Туре	# Samples		
Training	160		
Validation	20		
Test	20		

For each sample there are 238 timesteps and 6 or 8 features. In total this means there are 1428 or 1904 data points passed into model.