Corso di Matematica Discreta

Appunti su: RELAZIONI

Sia A un insieme non vuoto.

Definizione 1. Sia $n \geq 2$. Una relazione n-aria nell'insieme A è il dato di un sottoinsieme

$$\Gamma \subseteq \underbrace{A \times \cdots \times A}_{n \ fattori} = A^n.$$

Quando n=2 o 3 si parla di relazioni **binarie** o **ternarie** rispettivamente. Fissata una relazione n-aria Γ in A diremo che n elementi $a_1, ..., a_n$ di A (anche ripetuti) sono in **relazione** (tramite Γ) se e soltanto se

$$(a_1,...,a_n) \in \Gamma$$
.

Diamo alcuni esempi.

- 1. Sia $A=\pi$ il piano della geometria euclidea che pensiamo dotato di coordinate cartesiane. Poniamo
 - n = 3 e

$$\Gamma_1 = \left\{ (P,Q,R) \in \pi^3 \text{ tali che } \begin{smallmatrix} P,Q,R \text{ non sono tutti uguali} \\ \text{e giacciono sulla stessa retta} \end{smallmatrix} \right\}.$$

Tramite Γ_1 tre punti del piano sono in relazione se e soltanto se individuano una ed una sola retta. Ad esempio P=(-2,-2), Q=(0,0) e R=(1,1) sono in relazione mentre P'=(1,0), Q'=(0,1) e R'=(1,-1) non sono in relazione.

• n=3 e

 $\Gamma_2 = \left\{ (P,Q,R) \in \pi^3 \text{ tali che } P,Q,R \text{ sono vertici di un triangolo rettangolo} \right\}.$

Ad esempio, in questo caso $P=(0,0),\,Q=(4,0)$ e R=(0,-1) sono in relazione mentre $P'=(1,1),\,Q'=(0,1)$ e R'=(-1,-1) non sono in relazione.

• n=4 e

$$\Gamma_3 = \left\{ (P_i = (x_i, y_i)) \in \pi^4 \text{ tali che } \left(\begin{smallmatrix} x_1 + x_2 + x_3 + x_4 = 0 \\ y_1 + y_2 + y_3 + y_4 = 0 \end{smallmatrix} \right\}.$$

Ad esempio, in questo caso $P_1 = (1,2)$, $P_2 = (-1,1)$, $P_3 = (2,-3)$ e $P_4 = (-2,0)$ sono in relazione mentre $Q_1 = (0,0)$, $Q_2 = (0,1)$, $Q_3 = (3,-1)$ e $Q_4 = (1,1)$ non sono in relazione.

2. Sia $A = \mathbb{Z}$, insieme dei numeri interi. Poniamo

• n = 3 e

$$\Gamma_1 = \{(a, b, c) \in \mathbb{Z}^3 \text{ tali che } a + b > c\}$$

Ad esempio, $a=3,\ b=2$ e c=4 sono in relazione¹ tramite Γ_1 mentre $x=1,\ y=-2$ e z=0 non lo sono.

• n = 4 e

$$\Gamma_2 = \{(a, b, c, d) \in \mathbb{Z}^4 \text{ tali che } a + b = c + d\}$$

Ad esempio, $a=1,\,b=-3,\,c=-2$ e d=0 sono in relazione tramite Γ_2 mentre $w=3,\,x=1,\,y=-1$ e z=2 non lo sono non lo sono.

Da ora in poi ci interesseremo esclusivamente di **relazioni binarie** (n=2). Data una relazione binaria $\Gamma \subset A \times A$ ed elementi $a, b \in \Gamma$ scriveremo alternativamente

$$a\Gamma b$$
 "a è in relazione con b"

per dire che $(a, b) \in \Gamma$.

Data una relazione binaria $\Gamma \subset A \times A$ siamo interessati ad analizzare le proprietà seguenti:

- 1. **proprietà riflessiva:** per ogni $a \in A$ si ha $a\Gamma a$;
- 2. **proprietà simmetrica:** ogni qual volta a e b sono tali che $a\Gamma b$ allora anche $b\Gamma a$;
- 3. **proprietà antisimmetrica:** se a e b sono tali che $a\Gamma b$ e $b\Gamma a$ allora è a=b:
- 4. **proprietà transitiva:** se a, b e c sono tali che $a\Gamma b$ e $b\Gamma c$ allora anche $a\Gamma c$.

Queste quattro proprietà possono o non possono risultare soddisfatte per una data relazione binaria. Facciamo alcuni esempi.

1. Sia A l'insieme delle rette del piano euclideo. Consideriamo le seguenti due relazioni in A. Date rette r ed s poniamo

$$r\Gamma_1 s \Leftrightarrow r \text{ ed } s \text{ sono perpendicolari,}$$

 \mathbf{e}

$$r\Gamma_2 s \Leftrightarrow r \text{ ed } s \text{ sono parallele oppure coincidenti},$$

Come si verifica facilmente Γ_1 è simmetrica ma non è né riflessiva, né antisimmetrica, né transitiva. Invece Γ_2 è riflessiva, simmetrica e transitiva ma non antisimmetrica.

 $^{^1}$ si noti che l'ordine in cui sono assegnati i valori può essere importante, ad esempio $(4,2,3)\notin\Gamma_1.$

2. Sia A un insieme qualunque e sia $P = \mathcal{P}(A)$ il suo insieme delle parti. In P consideriamo le due relazioni seguenti:

$$S\Gamma_1 T \Leftrightarrow S \cap T = \emptyset,$$

е

$$S\Gamma_2T \Leftrightarrow S \cup T = A.$$

Allora Γ_1 e Γ_2 sono simmetriche ma non sono né riflessive, né antisimmetriche, né transitive.

3. In $A = \mathbb{Z}$ poniamo

$$m\Gamma_1 n \Leftrightarrow m \leq n,$$

oppure

$$m\Gamma_2 n \Leftrightarrow m \text{ divide } n.$$

Entrambe le relazioni sono riflessive e transitive, ma mentre Γ_1 è antisimmetrica (infatti $m \leq n$ e $n \leq m$ sono valide contemporaneamente solo se m = n) la Γ_2 non lo è in quanto, ad esempio, 2 divide -2, -2 divide 2 ma $2 \neq -2$.

4. In $A = \mathbb{Z}$ consideriamo la relazione

$$m\Gamma n \Leftrightarrow m-n$$
 è pari.

Allora Γ è riflessiva (perché n-n=0 è pari), simmetrica (perché n-m=-(m-n)) e transitiva (perché se m-n=2a e n-p=2b anche m-p=2(a+b) è pari), ma non antisimmetrica.

Diremo che una relazione binaria è:

- una relazione di equivalenza se è riflessiva, simmetrica e transitiva;
- una relazione di **ordine** se è riflessiva, antisimmetrica e transitiva;

Negli esempi
 sopra la Γ_2 nell'esempio 1 e quella dell'esempio 4 sono equivalenze, la
 Γ_1 dell'esempio 3 è di ordine.

Esercizio:

1. L'unica relazione che è contemporaneamente un'equivalenza e di ordine è l'uguaglianza:

$$a\Gamma b \quad \Leftrightarrow \quad a=b.$$

2. Nell'esempio 3 sopra se restringiamo la relazione Γ_2 ad \mathbb{N} , allora otteniamo una relazione d'ordine.

Restringiamo ora l'attenzione alle relazioni d'equivalenza. Sia dunque

$$\Gamma \subset A \times A$$

una certa relazione di equivalenza. Se $a\Gamma b$ diremo che a e b sono equivalenti. Dato un elemento $a \in A$ possiamo considerare il sottoinsieme di A degli elementi ad esso equivalenti, ovvero

$$C_a = \{x \in A \text{ tali che } x\Gamma a\} = \{x \in A \text{ tali che } a\Gamma x\}$$

(le due formulazioni sono equivalenti perché la relazione è simmetrica). Tale sottoinsieme è detto la classe di equivalenza di a. Osserviamo che:

- 1. dalla riflessività di Γ segue che $a \in C_a$ (e quindi, in particolare, $C_a \neq \emptyset$);
- 2. dalla simmetricità di Γ segue che se $b \in C_a$ allora $a \in C_b$;
- 3. dalla transitività di Γ segue che se $b \in C_a$ e $c \in C_b$ allora $c \in C_a$. cioè che $C_b \subseteq C_a$. Ma per simmetricità allora anche $C_a \subseteq C_b$ e quindi $C_a = C_b$.

Siano ora $a, b \in A$ con rispettive classi di equivalenza C_a e C_b e sia $x \in C_a \cap C_b$. Per quanto detto nell'osservazione 3 sopra deve risultare $C_x = C_a$ e $C_x = C_b$ e quindi $C_a = C_b$. Quindi le classi di equivalenza soddisfano le proprietà seguenti:

- 1. sono non vuote;
- 2. sono un ricoprimento, in quanto ogni elemento di *a* appartiene ad una classe di equivalenza (osservazione 1 sopra);
- 3. se due classi di equivalenza hanno intersezione non vuota allora coincidono (osservazione 3 sopra).

Dunque le classi di equivalenza formano una **partizione** dell'insieme A. Viceversa, assegnata una partizione

$$A = \bigcup_{i \in I} C_i$$

possiamo definire un'equivalenza in A dichiarando equivalenti gli elementi che appartengono ad un medesimo sottoinsieme della partizione. Cioè, posto C_a l'unico sottoinsieme della partizione contenente l'elemento $a \in A$, dichiarando

$$a\Gamma b \Leftrightarrow C_a = C_b.$$

Infatti:

- 1. $a\Gamma a$ perché $C_a = C_a$ (riflessiva),
- 2. se $a\Gamma b$ allora $C_a = C_b$ e quindi $b\Gamma a$ (simmetrica),
- 3. se $a\Gamma b$ e $b\Gamma c$ allora $C_a = C_b = C_c$ e quindi $a\Gamma c$ (transitiva).