Sparse Matrix

A matrix is represented as 2 dimensional array where every element is accessed by row and column index

A matrix for which most of values are zero is termed as the sparse matrix. If a sparse matrix is stored in a memory as a two dimensional matrix it wastes lot of space.

So alternate representations are preferred for sparse matrix

Alternate representations are

- Triple notation
- Linked representation
- 1) Triple notation:

In triple notation sparse matrix is represented as an array of tuple values. Each tuple consists of

```
<rowno columnno Value>
```

The first block in array block holds information regarding

<total no of rows, total no of columns ,value>

Declaration

```
typedef struct
{
  int col;
  int row;
  int value;
} term;
```

Various operations that can be performed on sparse matrix are

- Create_SparseMatrix()
- Transpose_of_SparseMatrix()
- Add_SparseMatrices()
- Multiple_SparseMatrices()

	0) () (0	[2	
	3) 3) (0	4	
	0) () (0	0	
Triple Notation	1)]) (0	8	
Triple Notation	0	5 () (0	0	

Row	Column	Value
No	No	
5	4	6
0	0	2
1	0	4
1	3	3
3	0	8
3	3	1
4	2	6

2) Linked Representation

Two types of nodes are used

Header Node

Data Node

row	col		value
dowi	1	1	right

```
#define MAX_SIZE 50 /* size of largest matrix */
typedef enum {head, entry} tagfield;
typedef struct matrixNode * matrixPointer;
typedef struct entryNode {
int row;
int col;
int value; };
typedef struct matrixNode {
matrixPointer down;
matrixPointer right;
tagfield tag;
union
{ matrixPointer next;
entryNode entry;
} u;
};
```


Sparse Matrix representation using Linked Nodes

Courtesy: "Fundamentals of Data Structures" By Ellis Horowitz and Sartaj Sahni