Presentazione Progetto BISF

Tommaso Cammelli – 851593

Titoli utilizzati

settore tecnologico

settore militare

settore bancario

JPMORGAN CHASE & CO.

Statistiche descrittive

Rendimenti semplici e composti

Grafici diagnostici e statistiche – FB/GOOG

Alphabet (GOOG) Box Plot Histogram net Return 0.10 -0.05-0.10 -0.15 -0.20 -0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 qq-plot 0.15 0.10 0.05 -0.05 -0.10 -0.15-0.20Media Varianza Deviazione Standard Asimmetria Curtosi Adj Close 0.0192 -0.6988 2.6747

Volatilità: 25,11%

Grafici diagnostici e statistiche – RTX/LMT

Volatilità: 21,1%

Lockheed Martin (LMT)

0.05

Histogram net Return

Grafici diagnostici e statistiche – BAC/JPM

Bank of America (BAC)

Volatilità: 31,74%

JPMorgan Chase (JPM)

Volatilità: 27,04%

Correlazione e dispersione

Modelli di Previsione

Mediante modello ARIMA

Il modello di previsione ARIMA

ARIMA (AutoRegressive Integrated Moving Averages) è un modello statistico autoregressivo integrato a media mobile che ci permette di effettuare predizioni sui trend futuri in una serie storica (utilizzando dati passati).

Questo modello essendo composto da 3 parti (definite dal nome), necessità in input tre variabili:

- p = lag order
- *d* = grado di differenziazione
- *q* = ordine della media mobile

La scelta accurata di queste tre variabili è fondamentale per ottenere risultati con margine di errore inferiore.

Predizioni con ARIMA – FB/GOOG

predizione per Meta (FB)

parametri stimati (p, d, q)

SARIMAX Results

Dep. Variable:	у	No. Observations:	324
Model:	SARIMAX(3, 1, 1)	Log Likelihood	-912.383
Date:	Tue, 24 May 2022	AIC	1836.767
Time:	16:34:12	BIC	1859.433
Sample:	0	HQIC	1845.815
	- 324		
Covariance Type:	opg		

predizione per Alphabet (GOOG)

Alphabet stock price - actual vs. predicted

parametri stimati (p, d, q)

SARIMAX Results

Dep. Variable:	у	No. Observations:	348
Model:	SARIMAX(3, 1, 2)	Log Likelihood	-1546.650
Date:	Tue, 24 May 2022	AIC	3107.301
Time:	16:39:05	BIC	3134.246
Sample:	0	HQIC	3118.029
	- 348		
Covariance Type:	opg		

Predizioni con ARIMA – RTX/LMT

predizione per Raytheon (RTX)

parametri stimati (p, d, q)

SARIMAX Results

Dep. Variable:	у	No. Observations:	348
Model:	SARIMAX(1, 1, 1)	Log Likelihood	-596.913
Date:	Tue, 24 May 2022	AIC	1201.826
Time:	16:49:36	BIC	1217.224
Sample:	0	HQIC	1207.957
	- 348		
Covariance Type:	opg		

predizione per Lockheed Martin (LMT)

Lockheed Martin stock price - actual vs. predicted

parametri stimati (p, d, q)

SARIMAX Results

348	No. Observations:	у	Dep. Variable:
-994.125	Log Likelihood	SARIMAX(0, 1, 2)	Model:
1996.251	AIC	Tue, 24 May 2022	Date:
2011.648	BIC	16:57:17	Time:
2002.381	HQIC	0	Sample:
		- 348	
		opg	Covariance Type:

Predizioni con ARIMA – BAC/JPM

predizione per Bank of America (BAC)

parametri stimati (p, d, q)

CADIMAN Desults

SAHIMAX Results			
Dep. Variable:	у	No. Observations:	348
Model:	SARIMAX(1, 1, 1)	Log Likelihood	-288.497
Date:	Tue, 24 May 2022	AIC	584.994
Time:	17:14:17	BIC	600.392
Sample:	0	HQIC	591.125
	- 348		
Covariance Type:	opg		

predizione per JPMorgan Chase (JPM)

parametri stimati (p, d, q)

 SARIMAX Results

 Dep. Variable:
 y
 No. Observations:
 348

 Model:
 SARIMAX(0, 1, 0)
 Log Likelihood
 -666.058

 Date:
 Tue, 24 May 2022
 AIC
 1336.117

 Time:
 17:27:36
 BIC
 1343.815

 Sample:
 0
 HQIC
 1339.182

 - 348

 Covariance Type:
 opg

Strategie di trading

Mediante Bollinger's Bands

Strategia con Bollinger's Band (BB)

La Bollinger's Band è uno strumento analitico costituito da un insieme di linee che si trovano rispettivamente due deviazioni standard sopra e sotto (positivamente e negativamente) la media mobile semplice (SMA) relativa ad il prezzo di un titolo.

La strategia con le BB prevede che in caso di 'breakout' cioè superamento della linea superiore o inferiore, venga generato un trading signal. (senza short selling)

Backtest strategia BB su FB


```
Starting Portfolio Value: 10000.00
2020-02-05, BUY CREATED --- Size: 47, Cash: 10000.00, Open: 212.51, Close: 210.11
2020-02-05, BUY EXECUTED --- Price: 212.51, Cost: 9987.97, Commission: 9.99
2020-05-04, SELL CREATED --- Size: 47
2020-05-04, SELL EXECUTED --- Price: 200.20, Cost: 9987.97, Commission: 9.41
2020-05-04, OPERATION RESULT --- Gross: -578.57, Net: -597.97
2020-06-30, BUY CREATED --- Size: 42, Cash: 9402.03, Open: 220.59, Close: 227.07
2020-06-30, BUY EXECUTED --- Price: 220.59, Cost: 9264.78, Commission: 9.26
2020-08-04, SELL CREATED --- Size: 42
2020-08-04, SELL EXECUTED --- Price: 251.56, Cost: 9264.78, Commission: 10.57
2020-08-04, OPERATION RESULT --- Gross: 1300.74, Net: 1280.91
Final Portfolio Value: 10682.94
```

Rendimento annuale (periodo 2020): +7.4%

CAPM

Capital Asset Pricing Model

II CAPM ed il modello Fama-French

- Il CAPM (Capital Asset Pricing Model) descrive la relazione tra il rischio sistematico (o di mercato) e i rendimenti aspettati di una security. Interpretando i valori dell'indice β si può avere una idea del livello di sensitività dell'indice rispetto al mercato.
- Il modello Fama-French a 3 fattori estende il CAPM aggiungendo altri due indici beta (o fattori) utili per spiegare l'eccesso di ritorno di un asset o portfolio.

$$E(r_i) - r_f = \alpha + \beta_{mkt}MKT + \beta_{smb}SMB + \beta_{hml}HML$$

Esposizione con Fama-Frech – FB/GOOG

Esposizione per FB

OLS Regression Results

		OLS	Regres	sion R	esults		
Dep. Variable: Model: Method: Date: Time: No. Observation Of Residuals: Df Model: Covariance Type	ns:	Least S Thu, 26 Ma 15	ess_rtn OLS Squares ay 2022 5:09:13 114 110 3	Adj. F-st Prob	uared: R-squared: atistic: (F-statistic) Likelihood:	:	0.194 0.172 8.851 2.63e-05 112.20 -216.4 -205.5
=========	coef	std e	r	t	P> t	[0.025	0.975]
mkt smb	0.0100 1.1343 -0.0631 -0.4505	0.23 0.36	31 -	4.910	0.278 0.000 0.863 0.117	-0.008 0.676 -0.789 -1.016	1.592
Omnibus: Prob(Omnibus): Skew: Kurtosis:	=====		27.694 0.000 0.716 7.461	Jarq Prob	========= in-Watson: ue-Bera (JB): (JB): . No.	=======	1.867 104.260 2.29e-23 43.8

Esposizione per GOOG

OLS Regression Results

=========	=======		:=====:	====		======	
Dep. Variable	:	excess	_rtn	R-sc	uared:		0.392
Model:			OLS	Adj.	R-squared:		0.376
Method:		Least Squ	iares	F-st	atistic:		24.92
Date:	٦	hu, 26 May			(F-statistic):		1.63e-12
Time:		15:2	23:11	Log-	·Likelihood:		191.82
No. Observati	ons:		120	AIC:			-375.6
Df Residuals:			116	BIC:			-364.5
Df Model:			3				
Covariance Ty	pe:	nonro	bust				
	=======			====		======	
	coef	std err		t	P> t	[0.025	0.975]
Intercept	0.0068	0.005	1	. 400	0.164	-0.003	0.016
	1.0504				0.000		
smb	-0.5393	0.196	-2	.752	0.007	-0.927	-0.151
hml	-0.1268	0.154	-0	. 825	0.411	-0.431	0.178
	======					======	
Omnibus:					oin-Watson:		2.133
Prob(Omnibus)	:				lue-Bera (JB):		7.037
Skew:			.309				0.0296
Kurtosis:		4	1.012	Cond	i. No.		44.4

Dove:

- mkt: Market factor
- **smb**: Size factor

Esposizione con Fama-Frech – RTX/LMT

Esposizione per RTX

OLS Regression Results

	excess east Squa 26 May 2 15:28	OLS ares 2022 3:18 120 116 3	Adj. F-st Prob	uared: R-squared: atistic: (F-statistic): Likelihood:		0.606 0.595 59.36 2.50e-23 210.65 -413.3 -402.1
		nust				
=======	=======	=====	====	=========	======	
coef :	std err		t	P> t	[0.025	0.975]
0067 2293 0075 4470	0.004 0.104 0.168 0.131	11 -0	.824 .045	0.110 0.000 0.964 0.001	-0.015 1.023 -0.339 0.187	0.002 1.435 0.324 0.707
=======	0	.002 .361	Jarq Prob	ue-Bera (JB): (JB):	=======	2.189 26.871 1.46e-06 44.4
2	0067 2293 0075	0067 0.004 2293 0.104 0075 0.168 1470 0.131	0067 0.004 -1 2293 0.104 11 0075 0.168 -0	20067 0.004 -1.612 2293 0.104 11.824 2075 0.168 -0.045 1470 0.131 3.401 2075 0.002 Jarq 0.002 Jarq 0.361 Prob	2006 std err t P> t	nonrobust coef std err t P> t [0.025 coef 0.004 -1.612 0.110 -0.015 coef 0.104 11.824 0.000 1.023 coef 0.168 -0.045 0.964 -0.339 coef 0.131 3.401 0.001 0.187 coef 0.002 Jarque-Bera (JB): 0.361 Prob(JB):

Esposizione per LMT

OLS Regression Results

=========	=======		======	====		======	========
Dep. Variable	:	excess	_rtn	R-sc	quared:		0.383
Model:			OLS	Adj.	R-squared:		0.367
Method:		Least Squ	ares	F-st	atistic:		24.01
Date:		Thu, 26 May			(F-statistic):		3.70e-12
Time:		15:3	4:07	Log-	·Likelihood:		210.71
No. Observati	ons:		120	AIC:			-413.4
Df Residuals:			116	BIC:			-402.3
Df Model:			3				
Covariance Ty	pe:	nonro	bust				
	=======		=====	====		======	
	coef	std err		t	P> t	[0.025	0.975]
Intercept	0.0046	0.004	1.	103	0.272	-0.004	0.013
	0.8730				0.000		
smb	-0.5501	0.167	-3.	285	0.001	-0.882	-0.218
hml	-0.0070	0.131	-0.	053	0.958	-0.267	0.253
	======		=====	====		======	
Omnibus:					oin-Watson:		2.122
Prob(Omnibus)	:				lue-Bera (JB):		4.429
Skew:			. 469				0.109
Kurtosis:		3	. 085	Conc	i. No.		44.4
	======		=====			======	

Dove:

- mkt: Market factor
- **smb**: Size factor
- hml: Value factor

Esposizione con Fama-Frech – BAC/JPM

Esposizione per BAC

OLS Regression Results

OLS Regression Results								
Dep. Variable: Model: Method: Date: Time: No. Observations Df Residuals: Df Model: Covariance Type:	Thu ;:			F-sta Prob	ared: R-squared: tistic: (F-statistic): ikelihood:		0.604 0.593 58.87 3.34e-23 178.26 -348.5 -337.4	
==========	coef	std err	===:	t	P> t	[0.025	0.975]	
smb 0	.3409).2108	0.136 0.219	9.8	847 961	0.178 0.000 0.339 0.000	1.071 -0.224	1.611 0.645	
Omnibus: Prob(Omnibus): Skew: Kurtosis:			i	Jarqu	,		2.198 17.075 0.000196 44.4	

Esposizione per JPM

OLS Regression Results

=========		=======	=======	======		=======	=======
Dep. Variable	:	ex	cess_rtn	R-sq	uared:		0.691
Model:			OLS		R-squared:		0.683
Method:		Least	Squares	F-st	atistic:		86.28
Date:		Thu, 26			(F-statistic)	:	2.06e-29
Time:			15:44:25		Likelihood:		221.60
No. Observation	ons:		120	AIC:			-435.2
Df Residuals:			116	BIC:			-424.1
Df Model:			3				
Covariance Typ	oe:	n	onrobust				
=========		======				=======	=======
	coef	std	err	t	P> t	[0.025	0.975]
	0.0058			1.541			0.013
mkt	1.1199					0.932	1.308
smb	0.0163					-0.287	0.319
hml	1.0124	0.	120	8.440	0.000	0.775	1.250
				======		=======	=======
Omnibus:			10.230		in-Watson:		2.123
Prob(Omnibus)	:		0.006		ue-Bera (JB):		20.512
Skew:			-0.256		(JB):		3.51e-05
Kurtosis:			4.959	Cond	. No.		44.4
		======	======	======		=======	

Dove

- mkt: Market factor
- **smb**: Size factor

hml: Value factor

Portfolio Optimization

Costruzione di portafoglio

Portfolio optimization e Monte Carlo

- La Modern Portfolio Theory **MPT** è il principio fondamentale che sta dietro alla allocazione degli asset in un portfolio, tale principio si basa sulla *diversificazione* dei titoli per cercare di aumentare il profitto e di ridurre il rischio.
- Le simulazioni di Monte Carlo ci permettono di ottenere un set di portafogli ottimali grazie alla generazione in maniera random di un elevato numero di portafogli, tale metodo lo si può utilizzare sia con dati passati ma anche con dati di previsione.

Portafoglio ottimale con monte carlo

Portfolio con dati storici

Maximum Sharpe ratio portfolio ----

Performance

returns: 24.54% volatility: 19.48% sharpe_ratio: 125.94%

Weiahts

BAC: 1.55% FB: 15.66% GOOG: 31.05% JPM: 0.10% LMT: 51.17% RTX: 0.48%

Portfolio con dati di previsione (ARIMA)

Maximum Sharpe ratio portfolio ----

Performance

returns: 15.02% volatility: 8.56% sharpe_ratio: 175.42%

Weights

BAC: 0.50% FB: 10.80% GOOG: 17.47% JPM: 28.70% LMT: 38.01% RTX: 4.52%

Beta dei portafogli ottimali

Portfolio con dati passati

Portfolio con dati di previsione (ARIMA)

