МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«БЕЛГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ им. В. Г. ШУХОВА» (БГТУ им. В.Г. Шухова)

Кафедра программного обеспечения вычислительной техники и автоматизированных систем

Лабораторная работа №5

по дисциплине: Основы программирования тема: «Использование подпрограмм при работе с двумерными массивами»

Выполнил: ст. группы ПВ-201 Машуров Дмитрий Русланович

Проверил: Брусенцева Валентина Станиславовна

Лабораторная работа №5

«Использование подпрограмм при работе с двумерными массивами»

Цель работы: получение навыков работы с двумерными массивами и закрепление навыков использования подпрограмм.

Задания для подготовки к работе:

- 1. Изучите способы описания и использования многомерных массивов.
- 2. Разбейте задачу соответствующего варианта на подзадачи, таким образом, чтобы решение каждой подзадачи описывалось подпрограммой, а основная программа состояла бы в основном из вызовов подпрограмм.
- 3. Опишите математическое решение задачи с выводом необходимых формул, если необходимо.
- 4. Опишите блок-схему алгоритма решения задачи в укрупненных блоках.
- 5. Для каждой подзадачи опишите используемые структуры данных, спецификацию и блок-схему алгоритма
- 6. Опишите блок-схему алгоритма решения задачи с использованием блоков «предопределенный процесс».
- 7. Закодируйте алгоритм.
- 8. Подберите наборы тестовых данных с обоснованием их выбора.

Задания к работе:

- 1. Наберите программу, отладьте ее и протестируйте.
- 2. Выполните анализ ошибок, выявленных при отладке программы

Задание варианта №17

Дана квадратная матрица, все элементы которой различны. Назовем псевдодиагональю множество элементов этой матрицы, лежащих на прямой, параллельной прямой, содержащей элементы $a_{i,n-i+1}$, где n — порядок матрицы. Найти сумму максимальных элементов псевдодиагоналей данной матрицы

Выполнение работы:

1. Общее решение

По условию задачи нам нужно перебрать элементы, которые стоят на диагоналях, параллельных диагонали (которую в дальнейшем обозначим *обратной диагональю*), содержащей элементы $a_{i,n-i+1}$, (выделены красным), и найти среди каждой диагонали максимальное значение, которое потом мы сложим с остальными максимальными значениями:

3	4	2
54	2	1
0	7	54
3	4	2
54	2	1
0	7	54
3	4	2
54	2	1
<mark>0</mark>	7	54
3	4	2
54	2	1
0	7	54
3	4	2
54	2	1
0	7	54

2. Разбиение задачи на подзадачи

- 1) Ввод матрицы определённого порядка
- 2) Поиск и суммирование максимального элемента каждой псевдодиагонали, располагающейся выше обратной диагонали (и включая саму обратную диагональ)
- 3) Поиск и суммирование максимального элемента каждой псевдодиагонали, располагающейся ниже обратной диагонали (не включая обратную диагональ)
- 4) Вывод суммы

3. Описание структур данных

М – константа, определяющая максимальный размер матрицы

N – константа, определяющая максимальный размер столбцов матрицы

t_iterator — тип, определяющий различные переменные-итераторы в циклах

t_matrix - тип, описывающий квадратную матрицу размера 99х99

```
const
M = 99;
N = 99;
type
t_matrix = array[0..m,0..n] of integer;
t_iterator = integer;
```

4. Блок-схема с укрупнёнными блоками

5. Описание подпрограмм

Спецификация процедуры read_matrix

- 1) Заголовок: procedure read_matrix(var a: t_matrix; p: integer)
- 2) Назначение: ввод матрицы а порядка р
- 3) Входные параметры: р
- 4) Выходные параметры: а Блок-схема:

Спецификация процедуры find_max_above

- 1) Заголовок: procedure find_max_above(a: t_matrix; i: integer; j: integer; var max: integer)
- 2) Назначение: сравнение максимального значения **max** и значения **a**_{j,i-j} с целью найти максимальное из них
- 3) Входные параметры: а, і, ј, тах
- 4) Выходные параметры: max Блок-схема:

Спецификация процедуры find_max_below

- 1) Заголовок: procedure find_max_below(a: t_matrix; p: integer; i: integer; j: integer; var max: integer)
- 2) Назначение: сравнение максимального значения **max** и значения **a**_{p-1-(i-j)} с целью найти максимальное из них
- 3) Входные параметры: a, p, i, j, max
- 4) Выходные параметры: max Блок-схема:

Спецификация процедуры search_above

- 1) Заголовок: procedure search_above(a: t_matrix; p: integer; max: integer; var sum: integer;)
- 2) Назначение: поиск и суммирование максимальных значений в sum псевдодиагоналей матрицы а порядка р, располагающихся выше обратной диагонали (и включая её)
- 3) Входные параметры: a, p, max, sum
- 4) Выходные параметры: sum Блок-схема:

Спецификация процедуры search_below

- 1) Заголовок: procedure search_below(a: t_matrix; p: integer; max: integer; var sum: integer)
- 2) Назначение: поиск и суммирование максимальных значений в sum псевдодиагоналей матрицы а порядка р, располагающихся ниже обратной диагонали (не включая её)
- 3) Входные параметры: a, p, max, sum
- 4) Выходные: sum Блок-схема:

6. Блок-схема с блоками «предопределённый процесс»

7. Тестовые данные:

$N_{\underline{0}}$	Входные значения	Результат
Π/Π		
1	1 2	8
	3 4	
2	5 2 1	
	4 3 2	24
	7 5 3	
3	0 0 5	
	0 5 0	5
	5 0 0	

8. Текст программы

```
const
 M = 99;
 N = 99;
  t_matrix = array[0..m,0..n] of integer;
 t_iterator = integer;
{процедура ввода матрицы matrix размера m строк и n столбцов}
procedure read_matrix(var a: t_matrix; p: integer);
var i,j: t_iterator;
begin
  for i := 0 to p-1 do
    for j := 0 to p-1 do
      read(a[i][j]);
end;
{поиск максимального выше обратной диагонали}
procedure find_max_above(a: t_matrix; i: integer; j: integer; var max: integer);
begin
  if (a[j][i-j] > max) then
    max := a[j][i-j]
end;
{поиск максимального ниже обратной диагонали}
procedure find_max_below(a: t_matrix; p: integer; i: integer; j: integer; var
max: integer);
begin
  if (a[p - 1 - (i - j)][i] > max) then
    \max := a[p - 1 - (i - j)][i];
end;
{процедура поиска выше обратной диагонали}
procedure search_above(a: t_matrix; p: integer; max: integer; var sum: integer);
var i,j: t_iterator;
begin
  for i := 0 to p-1 do
    begin
      for j := i downto 0 do
        begin
          find_max_above(a,i,j,max);
        end;
```

```
sum := sum + max;
      max := 0;
    end;
end;
{процедура поиска ниже обратной диагонали}
procedure search_below(a: t_matrix; p:integer; max: integer; var sum: integer);
var i,j: t_iterator;
begin
 begin
  for j := 1 to p-1 do
   begin
      for i := j to p-1 do
        begin
          find_max_below(a,p,i,j,max);
      sum := sum + max;
      max := 0;
    end
  end;
end;
var
  a: t_matrix;
  p, max, sum: integer;
begin
 max := 0;
  sum := 0;
 writeln('Ввод квадратной матрицы');
  write('Ввод порядка матрицы: ');
  read(p);
 writeln('Вводите значения матрицы по строками');
  read_matrix(a,p);
  search_above(a,p,max,sum);
  search_below(a,p,max,sum);
 write('Сумма максимальных значений псевдодиагоналей равна = ');
 write(sum);
end.
```

9. Анализ допущенных ошибок

- вывод max вместо sum в конце
- добавлены лишние буквы в процедуре read_matrix

10. Результаты работы программы

Пример №1:

```
Ввод квадратной матрицы
Ввод порядка матрицы: 2
Вводите значения матрицы по строками
1 2
3 4
Сумма максимальных значений псевдодиагоналей равна = 8
```

Пример №2:

```
Ввод квадратной матрицы
Ввод порядка матрицы: 3
Вводите значения матрицы по строками
5 2 1
4 3 2
7 5 3
Сумма максимальных значений псевдодиагоналей равна = 24
```