> Method of Successive Approximation >

This method is also known as direct substitution method or method of iterations or method of fixed iterations, is applicable if the equation

can be expressed as

If n, is the initial approximation to the root then the next approximation to the root is given by

and the next approximation will be

In general

$$u_{i} = g(u_{i-1})$$
 $u_{i+1} = g(u_{i})$

The iterative cycle will terminate when the relative error in the new approximation is within the prescribed tolerance.

NOTE:-

This method is converse it and only if

19/(u) 1 < 1

Ex 2.11 Given that one rook of non-liner equation $2^{11}-11-3=0$ lies in the interval (-3,-2). Find the root correct to three decimal places

three significant digits, the iterative process will be terminated as soon as the successive iterations produces no change at first four significant positions.

$$2^{N} - 2^{N} - 3 = 0$$

$$2^{N} - 2^{N} - 3$$

$$2^{N} - 2^{N} - 3$$

$$2^{N} - 3 = 0$$

$$2^{N} - 3$$

$$2^{N} - 3 = 0$$

$$2^{N} - 3$$

Iteration 1: Let us take intial approximation $u_1 = -3$

$$u_2 = g(u_1)$$
 $u_2 = 2^{-3} = -2.875$

Iteration 2:-

Now we take 2= -2.875 as

the current appro. to obtain the mext appro.

$$u_3 = g(u_2)$$

 $u_3 = z^{-2.875} - 3 = -2.8637$

L. F. S. Lind of

Iteration 3:- Now we take $u_3 = -2.8637$ as the current appro. to obtain the next app. as

$$u_4 = g(u_3)$$

 $u_4 = z^{-2.8637} - 3 = -2.8626$

Iteration 4:-

Now we take 24=-2.8626-11-

$$U_5 = g(U_4)$$
 $U_5 = 2^{-3.8626} - 3 = -2.8625$

Interation 5:-

Now we take 25==2.8625-11-

$$216 = g(45)$$

$$= 2^{-2.8625}$$

$$= 2^{-3}$$

$$216 = -2.8625$$

We see that after iteration three number. Here is no change at the first far significant digits. Therefore, we take u = -2.862 as the desired solution correct to four significant digits or 3 decimal plance.

Find the root of equition 2u=cosu+3 correct to three decimal places by using Iteration method.

$$f(u) = 2u - \cos u - 3 = 0$$

 $f(0) = -4$
 $f(1) = -1.54$ | So, rigion (1,2)
 $f(2) = +1.41$

then quadratook lies between (1,2)

$$u = \frac{1}{2} (\cos u + 3)$$

$$g(u) = \frac{1}{2}(\cos u + 3)$$

$$g'(u) = \frac{1}{2} (-\sin u)$$

$$g'(n) = \left| \frac{1}{2} \left(-\sin n \right) \right|$$

So this method is applicable for this egn

$$\mathcal{U} = 9(\mathcal{U})$$

$$\mathcal{U} = \frac{1}{2} \left(\cos \mathcal{U} + 3 \right)$$

Interation 1 :-

Let us take intial approx. as u,=1.5

$$u_2 = \frac{1}{2} (\cos(1.5) + 3) = 1.5353$$

Iteration - ? -Now we take 21=1.5353-11-213 = g(22) $u_3 = \frac{1}{2} [\cos(1.5353) + 3] = 1.5177$ Now we take 213=1.5177.-11-Iteration-3:uu = \frac{1}{2} [cos (1.5177) + 3] = 1.5265 $u_4 = g(u_3)$ Now we take 24=1,5265 -11-Iteration-4!-U5 = g (uu) $u_5 = \frac{1}{2} \left[\cos \left(1.5265 \right) + 3 \right] = 1.5221$ Now we take 15=1.5221-11-Iteration-5:-U6 = g (U5) $u_6 = \frac{1}{2} \left[\cos \left(1.5221 \right) + 3 \right] = 1.5243$ Now we take U6 = 1.5243 Iteration -6:-U7 = 9 (26) $u_7 = \frac{1}{2} \left[\cos(1.5243) + 3 \right] = 1.5232$ NOW -11- 217=1.5232-11-Itexation-7 $21_8 = \frac{1}{2} \left[\cos \left(1.5232 \right) + 3 \right] = 1.5237$ NOW -11- 218=105237 -11 Iteration 8 Ug = \[[cos (1.5237)+3] Ng = 105235 we see that after Iteration

= Find the root of the egm zu-log, n=7 by using method of f

correct to the 3 decimal places using iteration method.

Solve

$$f(u) = 2u - \log_{10} u - 7 = 0$$

$$f(0) = -7$$

$$f(1) = 2 - 0 - 7 = -5$$

$$f(2) = 4 - 0.3010 - 7 = -3.301$$

$$f(3) = 6 - 0.4771 - 7 = -1.4771$$

$$f(4) = 8 - 0.6020 - 7 = 0.398$$

then quadrate rook liest B/W (3,4) 24 - Log, 21 -7 =0

So,
$$u = \left(\frac{\log_{10} u + 7}{2}\right)$$

$$g(u) = \frac{\log_{10} u + 7}{2}$$

$$g'(u) = \frac{1}{2} \log_{10} e = \frac{0.493}{2}$$

So, this method satisfies the cond" g'(n) < 1.50 its applicable for this egm.

Itexation 1: let take appro.
$$u_1 = 3.5$$

So,

 $u_2 = 9(u_1)$
 $u_2 = \frac{1}{4} [u_{9,0}(3.5) + 7]$
 $u_2 = \frac{1}{4} [0.5uu_0 + 7]$
 $u_3 = 3.7720$

Iteration ?:

$$\mathcal{U}_{2} = 3.7720$$
 $\mathcal{U}_{3} = 9(\mathcal{U}_{2})$
 $\mathcal{U}_{3} = \frac{1}{2}[\log_{10}(3.7720) + 7]$
 $\mathcal{U}_{3} = 3.7882$

Iteration 3:

$$2J_3 = 3.7882$$
 $2J_4 = 9(M_3)$
 $= \frac{1}{2} [wg_{10}(3.7882) + 7]$
 $2J_4 = 3.7892$

Iteration 4:-

$$u_4 = 3.7892$$
 $u_5 = 9(M_4)$
 $= \frac{1}{2}[log_{10}(3.7892) + 7]$
 $u_5 = 3.7892$

Iteration 5:-
$$u_5 = 3.7892$$

$$u_6 = \frac{1}{2} \left[wg_{10} \left(3.7892 \right) + 7 \right] = 3.7892$$

Here 3.7892 is desired som

Find the one rook of the egn 321-2em = 0 lies b/w (0,1). Find that rook with tolsence o.001

Method of Synthetic division:

The Division of Polynomial f(u) by the factor (u-x) can be carried rapidly by Synthetic division the remender of the above division will give the value of Polynomial for u=v. How every if replynomial for the root of the polynomial for the remender resulting from the division will be zero.

simillarly the value of derivative f'en of the polynomial few for u=v is equal to the remender obtained by second synthetic division of the result obtain from the first synthetic division which will be a polynomial of degree 1 less to the original polynomial.

		- L. mied	215-344-1043+522+224+6
9 5	pivide the	palytottics	
Solve	1	= -10	5 32 6
		THE REAL PROPERTY AND PERSONS ASSESSED.	_74 -76
		-6	-19 -54 -20 f(n)
		5 14	37 (94] f'(n)
			- C
_ /	· 612 = 216_	uy-uz-1 F	and the value of division also find
4	(10)	Synenco	
	£. (E)		
Solm	21-2=0 21=2		-1 ·0 0 ·-1
	2 1 1	0 -1	6 10 20 39 f(Z)
	Will control to the control of the c	2 3	50 50 128 (CM)
		3 8	37 60 [198] + CE
		2 12	46 146 73 210 f"(2)
	And the second s	6 23	78 (11/(2)
		39	1511 f

Suppose the polynomial is $u^2 = 3u^4 - 10u^2 + 10u^2$

 $2u^{3}-4u^{2}-721+21$ Remender 30(21.

Solve

Suppose the polynomial is $u^5 - 3u^4 - 10u^3 + 10u^2 + uuu + u8$ is to be
divided by the quadratic factor $u^2 + 2u + 1$.

The division of the Polynomial f(x) by the quadratic x^2-d , $x-\beta$ d=-2, $\beta=-1$

f(u)

-2 -1	1	-3 -7	-10	10 2 5	44 -34 1	48 -22 -17
***	1	-5	-1	17	11	9 +>f(u)
	21 ³ -	+17				

Remender 11 (u+z) +9= 11u+31

divide 245-344+54+64+9 By factor 22= 2c+2 By Synthetic division

Solve

7779977799

$$d = +1$$
 , $B = -2$

18 (21-2)+5=18(N-1)+5 Remender ⇒18U-13

Baisstrow Method

This method is used to find two real number pand 2 इस विधि का उपयोग दो वास्तविक संख्याएँ १ वश्

लात करते के लिए किया जाता है जो उस प्रकार हो की и2+Ри+9., Ри(и) то ет factor €1, Род во से प्रारंक करके हम Iterates ई (PK, 9K) है निम्बलिशित ज्ञां से प्राप करते है:-

$$\begin{array}{lll} \rho_{K+1} &=& \rho_{K} + D\rho_{K} \\ \rho_{K} &=& -\frac{b_{N} (N_{N-3} - b_{N-1} (N_{N-2}))}{C_{N-2}^{2} - C_{N-3} (C_{N-1} - b_{N-1})} \\ D\rho_{K} &=& \frac{b_{N-1} (C_{N-1} - b_{N-1}) - b_{N} (N_{N-2})}{C_{N-2}^{2} - C_{N-3} (C_{N-1} - b_{N-1})} \\ The value of bi's and zi's axe obtain from xecoxance Relation
$$b_{i} &=& \alpha_{i} - \rho_{K} b_{i-1} - \rho_{K} b_{i-2} \\ C_{i} &=& b_{i} - \rho_{K} C_{i-1} - \rho_{K} c_{i-2} & FET \\ && i = 1,2,--- \\ with \\ C_{0} &=& b_{0} = \rho_{0} \\ &\rightarrow c_{N} + c_{N} v^{N-1} + c_{N} v^{N-2} + c_{N} - c_{N} v^{N-1} + c_{N} v^{N-1} \\ &-\rho_{K} b_{0} - \rho_{K} b_{1} - c_{N} - \rho_{K} b_{N-2} \\ &-\rho_{K} b_{0} - c_{N} - \rho_{K} b_{0} - c_{N} - \rho_{K} b_{N-2} \\ &-\rho_{K} b_{0} - c_{N} - \rho_{K} b_{0} - c_{N} - \rho_{K} b_{N-2} \\ &-\rho_{K} b_{0} - \rho_{K} b_{0} - c_{N} - \rho_{K} b_{N-2} \\ &-\rho_{K} b_{0} - c_{N} - \rho_{K} b_{0} - c_{N} - \rho_{K} b_{N-2} \\ &-\rho_{K} b_{0} - c_{N} - \rho_{K} b_{0} - c_{N} - \rho_{K} b_{N-2} \\ &-\rho_{K} b_{0} - c_{N} - \rho_{K} b_{0} - c_{N} - \rho_{K} b_{N-2} \\ &-\rho_{K} b_{0} - c_{N} - \rho_{K} b_{0} - c_{N} - \rho_{K} b_{N-2} \\ &-\rho_{K} b_{0} - c_{N} - \rho_{K} b_{0} - c_{N} - \rho_{K} b_{N-2} \\ &-\rho_{K} b_{0} - c_{N} - \rho_{K} b_{0} - c_{N} - \rho_{K} b_{N-2} \\ &-\rho_{K} b_{0} - c_{N} - \rho_{K} b_{0} - c_{N} - \rho_{K} b_{N-2} \\ &-\rho_{K} b_{0} - c_{N} - \rho_{K} b_{0} - c_{N} - \rho_{K} b_{N-2} \\ &-\rho_{K} b_{0} - c_{N} - \rho_{K} b_{0} - c_{N} - \rho_{K} b_{N-2} \\ &-\rho_{K} b_{0} - c_{N} - \rho_{K} b_{0} - c_{N} - \rho_{K} b_{N-2} \\ &-\rho_{K} b_{0} - c_{N} - \rho_{K} b_{0} - c_{N} - \rho_{K} b_{N-2} \\ &-\rho_{K} b_{0} - c_{N} - \rho_{K} b_{N-2} - \rho_{K} b_{N-2} \\ &-\rho_{K} b_{0} - c_{N} - \rho_{K} b_{N-2} - \rho_{K} b_{N-2} \\ &-\rho_{K} b_{0} - c_{N} - \rho_{K} b_{N-2} \\ &-\rho_{K} b_{0} - c_{N} - \rho_{K} b_{N-2} - \rho_{K} b_{N-2} \\ &-\rho_{K} b_{0} - c_{N} - \rho_{K} b_{N-2} - \rho_{K} b_{N-2} \\ &-\rho_{K} b_{N} - c_{N} - \rho_{K} b_{N} - c_{N} b_{N} \\ &-\rho_{K} b_{N} - c_{N} - \rho_{K} b_{N} \\ &-\rho_{K} b_{N} - c_{N} - \rho_{K} b$$$$

THE THEOLOGIC TO THE THE STATE OF THE THEOLOGICAL STATE OF THE THE THEOLOGICAL STATE OF THE THEO

da

यह विधि दो कोटि की है। प्रव १ व १ इन्हिंग शुब्दता तक सात करें युके हो। तो de

$$Q_{(n-2)}^{N} = b_0 u^{N-2} + b_1 u^{N-3} + - - + b_{N-3} + b_{N-1}$$

Pusing Baisstrow method obtain in quadratic

$$24^{4}-32^{3}+202^{2}+442+54=0$$
 with $(P, 9)=(2, 2)$

San we use the synthetic division method to determine bi's and Ci's

Idealion 3	Co.	Po = 2 a, -3 -3	1 90 = = = = = = = = = = = = = = = = = =	2 44 -56	9 9 - 56
-2	bo	-5 bi -2	28 b2 +14 -2	-80 -80	· A bu
	1 00	-7 c ₁	4 Q C2	-68 C ₃	

$$P_1 = 2 + (-0.0580) = 1.9420$$

$$DQ = \frac{b_3 ((3 - b_3) - b_4 (2))}{c_2^2 - c_1 (c_3 - b_3)}$$

$$= \frac{b_3 (3 - b_3^2 - b_4 (2))}{c_2^2 - c_1 (3 + c_1 b_3)}$$

$$= \frac{(-2)(-68) = (-2)^2 - (2)(40)}{(40)^2 - (-7)(-68) + (-7)(-2)}$$

$$= \frac{(36 - 4 - 80)}{1600 - 476 + 14}$$