西北农林科技大学本科课程考试试卷 (A 卷)

2010-2011 学年第 2 学期《材料力学》课程闭卷

专业班级:	命题教师:	张 XX	审题教师:	李 XX
学生姓名:	学 号:		考试成绩:	

注意事项:

- 1. 本试卷共 20 道试题, 满分 100 分, 考试时间 120 分钟。
- 2. 学生在答题前请先填写专业、学号、学院、姓名等基本信息。

题号	_	=	三	四	总分	审核人
得分						

-. 填空题(本题共有5个小题,每空1分,共10分)

- 1. 杆件变形的四种基本形式有: _ 压缩_、_ 剪切_、_ 扭转_、_ 弯曲_。
- 2. 标距为 100mm 的标准试样, 直径为 10mm, 拉断后测得伸长后的标距为 123mm, 缩颈 处的最小直径为 7mm,则该材料的伸长率 $\delta=$ **23**%,断面收缩率 $\psi=$ **51**%。
- 3. 从强度角度出发,截面积相同的矩形杆件和圆形杆件, **矩形杆件** 更适合做承受弯曲变形为主的梁。
- 4. 某点的应力状态如图示,则主应力为: $\zeta_1 = __80MPa__$; $\zeta_2 = __30MPa__$ 。

5. 平面图形对过其形心轴的静矩 $_{--}$ 0(请填入 =,>, <)

- 6. 受扭圆轴,上面作用的扭矩 T 不变,当直径减小一半时,该截面上的最大切应力与原来的最大切应力之比为____。 (\mathbf{D})
 - A. 2

B. 4

C. 6

- D. 8
- 7. 图示为一端固定的橡胶板条,若在加力前在板表面划条斜直线 AB,那么加轴向拉力后 AB 线所在位置是 ? (其中 ab//AB//ce) (B)

A. ab

B. ae

C. ce

D. ed

8. 根据切应力互等定理,图示的各单元体上的切应力正确的是

 (\mathbf{A})

9. 在平面图形的几何性质中,_____ 的值可正、可负、也可为零。

 (\mathbf{D})

A. 静矩和惯性矩

B. 极惯性矩和惯性矩

C. 惯性矩和惯性积

D. 静矩和惯性积

10. 受力情况相同的三种等截面梁,用 $(\zeta_{max})_1$ 、 $(\zeta_{max})_2$ 、 $(\zeta_{max})_3$ 分别表示三根梁内横截面上的最大正应力,则下列说法正确的是 。 (\mathbf{C})

A.
$$(\zeta_{max})_1 = (\zeta_{max})_2 = (\zeta_{max})_3$$

B.
$$(\zeta_{max})_1 < (\zeta_{max})_2 = (\zeta_{max})_3$$

C.
$$(\zeta_{max})_1 = (\zeta_{max})_2 < (\zeta_{max})_3$$

D.
$$(\zeta_{max})_1 < (\zeta_{max})_2 < (\zeta_{max})_3$$

11. 在图示矩形截面上,剪力为 Fs, 欲求 m-m 线上的切应力,则公式 $\tau = \frac{F_s \bullet S_z^*}{BI_z}$ 中, 下列 说法正确的是

第2页,共6页

西北农林科技大学本科课程考试试卷

- A. S_z^* 为截面的阴影部分对 Z' 轴的静矩, $B = \delta$ 。
- B. S_z^* 为截面的整个部分对 Z' 轴的静矩, $B=\delta$ 。
- C. S_z^* 为截面的整个部分对 Z 轴的静矩, $B = \delta$ 。
- D. S_z^* 为截面的阴影部分对 Z 轴的静矩, $B=\delta$ 。
- 12. 已知梁的 EI_z 为常数,长度为 l,欲使两的挠曲线在 x = l/3 处出现一拐点,则比值 $m_1/m_2 = _{___}$ (**C**)

A. 2

B. 3

C. 1/2

- D. 1/3
- 13. 如图所示单向均匀拉伸的板条。若受力前在其表面画上两个正方形 a 和 b,则受力后 正方形 a、b 分别变为 。不会产生温度应力。 (\mathbf{D})
 - A. 正方形、正方形

B. 正方形、菱形

C. 矩形、菱形

D. 矩形、正方形

- 14. 低碳钢试样拉伸至屈服时,有以下结论,请判断哪个是正确的。 (C)
 - A. 应力和塑性变形很快增加,因而认为材料失效;
 - B. 应力和塑性变形虽然很快增加,但不意味着材料失效;
 - C. 应力不增加,塑性变形很快增加,因而认为材料失效;
 - D. 应力不增加,塑性变形很快增加,但不意味着材料失效。
- 15. 图示拉杆头和拉杆的横截面均为圆形,拉杆头剪切面积 A = 。 (\mathbf{B})

- A. πDh
- B. πdh
- C. $\pi d^2/4$ D. $\pi (D^2 d^2)/4$

三. 分析作图题(每小题 10 分,共 20 分)

16. (10分) 求做图示构件的内力图。

参考答案:

剪力图: (5分)

弯矩图: (5分)

17. (10分) 图示矩形等截面梁, 试比较水平放置与竖立放置时最大弯曲正应力的比值 $\zeta_{\text{P}}/\zeta_{\text{D}}$,说明那种放置方式合理。

由弯曲正应力
$$s=\frac{M}{W_z}$$
 和矩形梁 $W_z=\frac{bh^2}{6}$ (4 分) 可知: $\frac{s_+}{s_\pm}=\frac{W_{z\pm}}{W_{z+}}=\frac{b\cdot(4b)^2}{4b\cdot b^2}=4$

可知:
$$\frac{S_{+}}{S_{x}} = \frac{W_{z\dot{x}}}{W_{z\dot{x}}} = \frac{b \cdot (4b)^2}{4b \cdot b^2} = 4$$
 (4 分)

得 分	
评阅人	

四. 计算题(共 50 分)

- 18. (15 分) 图示阶梯状直杆,若横截面积 $A_1 = 200mm^2, A_2 = 300mm^2, A_3 = 400mm^2$ 。
 - (1) (5分) 试求横截面 1-1, 2-2, 3-3 上的轴力,并作轴力图;
 - (2) (5分) 求横截面 3-3上的应力。

参考答案:

 $F_{N1} = -20KN(氏)$ $F_{N2} = -10KN(氏)$ $F_{N3} = 10KN(氏)$ (5 分) 4力图:

$$s_3 = \frac{F_{N3}}{A_3} = \frac{10'10^3}{40'10^{-6}} = 25MPa \tag{5 \%}$$

19. (20 分) 已知某受力构件上危险点应力状态如图所示,已知材料的弹性模量 E=200GPa,泊松比 $\mu=0.3$,求该单元体的主应力、最大主应变及最大切应力(应力单位为 MPa)。

参考答案:

由题知 $\zeta = 50MP$ 是主应力之一,考虑其它两对平面,可视为平面应力,则应力圆为:

(5分)

解得其它两个主应力为 80MPa 和-20MPa,因此三个主应力分别为:

$$\zeta_1 = 80MPa, \zeta_2 = 50MPa, \zeta_3 = -20MPa \tag{5 \%}$$

最大切应力为
$$\eta = (\zeta_1 - \zeta_3)/2 = 50MPa$$
 (5 分)

有广义胡克定律知最大主应变为:
$$\varepsilon_1 = [\zeta_1 - \mu(\zeta_2 + \zeta_3)]/E = 0.355 \times 10^{-3}$$
 (5 分)

西北农林科技大学本科课程考试试卷

20. (15 分) 图示实心轴和空心轴通过牙嵌式离合器连接在一起。已知轴的转速 n =100r/min, 传递的功率 P=7.5kw, 材料的许用应力 $[\eta]=40MPa$, 空心圆轴的内 外径之比 $d_2 = 0.5D_2$ 。试选择实心轴的直径 d_1 和空心轴内外径 D_2 。

参考答案:

轴所传递的扭矩为

$$T = 9549 \frac{P}{M} = 9549 \frac{7.5}{100} Nm = 716 Nm \tag{3 \%}$$

由实心轴的强度条件

$$t_{max} = \frac{T}{W_t} = \frac{16T}{pd_1^3} [t]$$
 (3 分) 可得实心圆轴的直径为

$$d_1 = \sqrt[3]{\frac{16T}{p[t]}} = \sqrt[3]{\frac{16'716}{p \cdot 40 \cdot 10^6}} = 45mm \tag{3 \%}$$

空心圆轴的外径为
$$D_2 = \sqrt[3]{\frac{16T}{p[t](1-0.5^4)}} - \sqrt[3]{\frac{16'716}{p\cdot 40\cdot 10^6(1-0.5^4)}} = 46mm$$
 (3 分)