Nanyang Technological University

SPMS/DIVISION OF MATHEMATICAL SCIENCES

2015/16 Semester 1

MH1810 Mathematics I

Tutorial 6

1. Determine the following limits at infinity.

(a)
$$\lim_{x \to \infty} \frac{3x+5}{x-4}$$

$$\begin{array}{ccc}
x \to \infty & x - 4 \\
\text{(b)} & \lim_{x \to \infty} & \frac{x^3 - 2x + 3}{5 - 2x^2} \\
\text{(c)} & \lim_{x \to \infty} & \frac{x + 2}{\sqrt{9x^2 + 1}} \\
\text{(d)} & \lim_{x \to -\infty} & \frac{x}{\sqrt{x^2 + 4}}
\end{array}$$

(c)
$$\lim_{x \to \infty} \frac{x+2}{\sqrt{9x^2+1}}$$

(d)
$$\lim_{x \to -\infty} \frac{x}{\sqrt{x^2 + 4}}$$

(e)
$$\lim_{x \to \infty} \left(\sqrt{x^4 + 6x^2} - x^2 \right)$$

(f)
$$\lim_{x \to \infty} \frac{e^{3x} - e^{-3x}}{e^{3x} + e^{-3x}}$$

(g)
$$\lim_{x \to 20} [\ln(2+x) - \ln(1+x)]$$

- 2. Find the domain of $g(x) = \frac{\sqrt{x+3}}{x^2-3x-10}$.
- 3. Use the Intermediate Value Theorem to show that there is a root of the equation $(1-x)^3 = \sin x$ in the interval (0,1).
- 4. Explain why the equation $x^3 15x + 1 = 0$ has three solutions in the interval [-4, 4].
- 5. Use the Intermediate Value Theorem to show that the two graphs $y = e^x$ and y = -x intersect.
- 6. Suppose that a function f is continuous on the closed interval [0,1] and $0 \le f(x) \le 1$ for every $x \in [0,1]$. Is it true that f(c) = c for some $c \in [0,1]$? Justify your answer.
- 7. (a) Write down the definition of f'(0) and use it to find f'(0) where $f(x) = 1 x^3$.
 - (b) Use the value f'(0) you have found in part (a) to write down an equation of the tangent line to the curve $y = 1 - x^3$ at the point (0, 1).
- 8. Use the definition of derivative to find the first derivative of the following functions:

(a)
$$f(x) = \frac{1}{5 - 3x}$$

(b)
$$g(x) = \sqrt{x^2 + 3}$$
.

- 9. Consider the function f where f(x) = x|x|. Is f differentiable at x = 0? If it is, determine f'(0).
- 10. Consider f which is defined as follows:

$$f(x) = \begin{cases} \frac{e^x}{2+x} & \text{if } x \ge 0, \\ \cos(1 - e^{\pi x}) & \text{if } x < 0. \end{cases}$$

Is f differentiable at x = 0?

Answers

1.	(a) 3
	(b) $-\infty$
	(c) $\frac{1}{3}$
	(d) -1
	(e) 3
	(f) 1
	(g) 0
2.	The domain is $[-3,\infty)\setminus\{-2,5\}$.
6.	TRUE
7	(a) $f'(0) = 0$
١.	(a) $f(0) = 0$ (b) $y = 1$
0	(2) 3
0.	(a) $\frac{3}{(5-3x)^2}$
	(b) $\frac{x}{\sqrt{x^2+3}}$
9.	f is differentiable at $x = 0$ and $f'(x) = 0$
10.	Not diffrentiable at $x = 0$.