Question 1

(a)

The diagram shows the graph of y = f(x), where f is a function with domain $-4 \le x \le 6$ and range $0 \le f(x) \le 3$. Make a sketch of the diagram shown and add a sketch of the graph of $y = f^{-1}(x)$. State the range of f^{-1} . $-4 \le f^{-1}(x) \le G$

(b) The functions f and g are defined for real values of x by

f:
$$x \mapsto 2x-1$$
,
g: $x \mapsto \frac{1}{x-1}$, where $x \ne 1$.

Express (i) fg(x), (ii) $g^{-1}(x)$, in the form of a single fraction in terms of x, stating in each case the value of x for which the function is not defined. $fg = \frac{3-x}{x-1}, x=1$

(c) The functions f and g are defined for real values of x by

f:
$$x \mapsto x^2$$
,
g: $x \mapsto x-3$.
$$g^{-1} = \frac{x+1}{x}, x=0$$

Express each of the following in terms of f and g only.

(i)
$$x \mapsto x - 6$$
, (ii) $x \mapsto x^2 - 6$, (iii) $x \mapsto (x + 3)^2$.

$$g^2 \qquad g^2 f \qquad fg^{-1}$$

Question 2

(a) The functions f and g are defined for all real values of x by

$$f(x) = 2x - 1$$
,
 $g(x) = x^2 + 3$.

- (i) Find $f^{-1}(x)$ and gf(x). $\frac{\chi+1}{2}$, $(2\chi-1)^2+3$
- (ii) Explain why g has no inverse function. not one -one.

[5]

The diagram shows the graph of y = f(x), $x \in \mathbb{R}$. The same scale is used for each axis. Copy the diagram.

On the same axes, sketch the graph of $y = f^{-1}(x)$, marking in any relevant point on the axes and any other line you may have used.

[3]

(c) The functions f and g are defined, for all real values of x, by

$$f: x \mapsto x^3$$
, $g: x \mapsto x + 2$

Express in terms of f and g only

(i)
$$x \mapsto x^3 + 2$$
, gf

(ii)
$$x \mapsto x^9 + 2$$
, qf^2

(ii)
$$x \mapsto x^9 + 2$$
, gf^2
(iii) $x \mapsto (x-2)^3$. fg^{-1}

[4]

Question 3

The function f is such that $f(x) = 2 + \frac{3}{x}$, x > 0.

Find

(i) an expression for
$$f^{-1}(x)$$
, $2i-2$

(iii) an expression for
$$f^2(x)$$
.

$$2+3x$$

Solve the equation $f^{-1}(x) = f^2(x)$.

(a) Functions f and g are defined for real values of x by

$$f(x) = 2x - 3$$
, $g(x) = x^2 + 1$.

- (i) Find an expression for fg(x). $2x^2-1$
- (ii) Find an expression for $f^2(x)$. 4x 9
- (iii) Sketch the graph of y = |f(x)|. [2]

(b)

The diagram, in which the same scale is used for each axis, shows the graph of y = h(x), passing through the points (1, 0) and (4, 2).

Copy the diagram and, on the same set of axes, sketch the graph of $y = h^{-1}(x)$. Show the coordinates of two points on your graph of $y = h^{-1}(x)$.

Question 5

Functions f and g are defined for $x \in \mathbb{R}$ by

f:
$$x \mapsto 3x + 1$$
,
g: $x \mapsto 2x^2 - 1$, $x \ge 0$.

Find

(i) fg in terms of x,
$$6\chi^2 - 2$$
 [1]

(ii)
$$g^{-1}$$
 in terms of x , $\left(\frac{\chi+1}{2}\right)^{\frac{1}{2}}$ [2]

Question 6

 $f(x) = 1 + \sqrt{x}, x \in \mathbb{R}, x \ge 0.$

(a) On the same axes, sketch the graphs of y = f(x) and $y = f^{-1}(x)$. State the number of roots of the equation $f(x) = f^{-1}(x)$. One

(b) Solve the equation $f(x) = f^{-1}(x)$. 극 (3+ 12)

Question 7

The function f is given by

$$f: x \mapsto x^2 - 6\lambda x, \quad x \in \mathbb{R},$$

where λ is a positive constant. Find, in terms of λ ,

 $25\lambda^4 + 30\lambda^3$ $ff(\lambda)$. · (i)

the range of f. $f(x) \approx -9\lambda^2$ (ii)

Give a reason why f does not have an inverse. not One -on c

The function f has an inverse if its domain is restricted to $x \ge k$ and also has an inverse if its domain is restricted to $x \le k$. Find k in terms of λ , and find an expression for $f^{-1}(x)$ corresponding to each of these domains for f.

$$f^{-1}(x) = 3\lambda \pm \sqrt{9x^2 + x} \quad x = -9\lambda^2$$

Question 8

f(x) is defined by $f(x) = (x-2)^2 + 1$, $x \in \mathbb{R}$, $x \ge 2$.

(a) On a single diagram, sketch the graphs of y = f(x), $y = f^{-1}(x)$ and $y = ff^{-1}(x)$.

g(x) is defined by $g(x) = \sqrt{x-1}, x \in \mathbb{R}$.

(b) Find gf(x) for $x \ge 2$. x - 2

h(x) is defined by h(x) = px + q, $x \in \mathbb{R}$, p, q constant. (c) If $fh(x) = 25x^2 + 20x + 5$, $x \in \mathbb{R}$, $x \ge r$, find the values of p, q and r.

Question 9

Functions f and g are defined by

$$f: x \mapsto ax + 2, a \neq 0$$

 $g: x \mapsto \frac{bx}{x+1}, x \neq -1, b > 0$

Find in similar form, g^{-1} and fg^{-1}

Given that $fg^{-1}(-1) = g\left(\frac{1}{b}\right)$, find a in terms of b. If $fg^{-1}(2) = 12$, find

the value of a and of b.

Functions f and g are defined by $f: x \mapsto \frac{2x}{x-1}$, $x \ne 1$, and $g: x \mapsto \frac{x+a}{x}$, $x \ne 0$.

Find f^{-1} in similar form. Given that $gf^{-1}(3) = 4$, calculate the value of a.

$$f^{-1}: \chi \rightarrow \frac{\chi}{\chi-2} \quad \chi \neq 2, \quad q=9$$

Functions f and g are defined on the set of real numbers by $f: x \mapsto \frac{3}{x+2}, x \neq k$, and $g: x \mapsto 2x + 1$.

(a) State the value of k. -2

(a) State the value of x. -2(b) Express fg in similar form and state the value of x for which fg is not defined. $\frac{3}{2x+3}$ $\pi + \frac{3}{9} - \frac{3}{2}$

(c) Find the value of p for which $f^{-1}(p) = g(9)$.

$$\frac{3}{2n+3}$$
 $n \neq -\frac{3}{2}$

[3]

Question 12 (Oct/Nov 2008 Examination)

The function f is defined by

$$f: x \mapsto 3x - 2$$
 for $x \in \mathbb{R}$.

(i) Sketch, in a single diagram, the graphs of y = f(x) and $y = f^{-1}(x)$, making clear the relationship between the two graphs.

The function g is defined by

$$g: x \mapsto 6x - x^2 \text{ for } x \in \mathbb{R}.$$

[5] (ii) Express gf(x) in terms of x, and hence show that the maximum value of gf(x) is 9.

$$-9x^2 + 30x - 16$$

The function h is defined by

$$h: x \mapsto 6x - x^2 \text{ for } x \ge 3.$$

(iii) Express $6x - x^2$ in the form $a - (x - b)^2$, where a and b are positive constants. [2]

(iv) Express $h^{-1}(x)$ in terms of x.

$$3 + \sqrt{9 - \varkappa}$$