Hungarian (HUN)

A. Húrozás

Feladat neve	A String Problem
Időkorlát	2 másodperc
Memóriakorlát	1 gigabyte

Lara imádja a bolhapiacokat. Múlt szombaton rendezték meg Bonnban a Rheinaue-Flohmarkt-ot, Németország egyik legnagyobb bolhapiacát. Lara természetesen az egész napot ott töltötte, a piacon sétált, alkudozott az árakon és mindenféle érdekességet vásárolt. A legérdekesebb dolog, amit hazahozott, egy tökéletesen kör alakú kis hárfa volt. Amikor el akart kezdeni játszani, észrevette, hogy a húrok keresztül-kasul állnak, ahelyett, hogy egymással párhuzamosak lennének.

Pontosabban: a hárfán $2\cdot N$ szeg van egyenletesen elosztva a kör alakú kereten. Az N húr mindegyikét két szeg tartja a helyén, és minden szeghez pontosan egy húr csatlakozik.

Lara nem sokat tud a hárfákról, de gyanítja, hogy a húrokat úgy kell állítani, hogy azok párhuzamosak legyenek egymással. A probléma megoldása érdekében úgy dönt, hogy áthúrozza a hárfát. Minden lépésben leválaszthatja a húr egyik végét a szegről, és egy másik szeghez rögzíti. A folyamat során nem probléma, ha több húr egyik végét ugyanarra a szegre rögzíti. A cél, hogy végül minden szeghez pontosan egy húr legyen kapcsolva, és az N húrnak egymással párhuzamosnak kell lennie.

Két példa a párhuzamos húrokkal ellátott hárfára:

Mivel az újrahúrozás minden egyes lépése sok munkát igényel, Lara a lehető legkevesebb lépésben szeretné újrahúrozni a hárfát. Segíts Larának megtalálni egy olyan újrahúrozási sorrendet, ami a lehető legkevesebb lépésből áll!

Bemenet

A bemenet első sora egy N egész számot tartalmaz, amely a húrok száma. A húrok 0-tól N-1-ig vannak sorszámozva.

Ezután N sor következnek, ahol az i. sor ($0 \le i \le N-1$) két egész számot tartalmaz: a_i -t és b_i -t, a két szeget, amelyek az i-edik húrt rögzítik. A szegek az óramutató járásával megegyező sorrendben vannak sorszámozva 0-tól $2 \cdot N - 1$ -ig. Minden szeghez pontosan egy húr van rögzítve.

Kimenet

Írass ki egy K egész számot, amely a hárfa újrahúzásához szükséges minimális lépésszám ahhoz, hogy minden húr párhuzamos legyen egymással.

Továbbá írass ki K sort, amelyek mindegyike három egész számot tartalmaz: p-t, s-t és e-t, jelezve, hogy a megoldás ezen lépésében a p. húr egyik végét le kell választani s. szegről, és vissza kell csatolni az e. szegre ($0 \le p \le N-1$, $0 \le s, e \le 2 \cdot N-1$).

Megjegyzés: ha a p. húr nincs az s. szeghez rögzítve az adott pillanatban, akkor a lépések sorrendjét helytelennek tekintjük.

Ha több válasz is létezik, bármelyiket kiirathatod. Fontos, hogy a részben helyes válaszok is érhetnek pontokat, lásd a pontozást.

Korlátok és pontozás

- $4 \le N \le 100\,000$.
- $0 \le a_i, b_i \le 2 \cdot N 1$.
- Minden a_i és b_i egyedi.

A megoldásodat az értékelő több tesztcsoporton fogja tesztelni, amelyek mindegyike adott pontot ér. Minden tesztcsoport több tesztesetet tartalmaz. Minden tesztcsoport esetén a pontjaidat a következőképpen határozzuk meg:

- \bullet Ha a programod megoldja a tesztcsoport összes tesztesetét, akkor a pontok 100%-át megkapod.
- Ha a programod nem oldja meg teljesen a tesztcsoportot, de **helyesen adja meg az egyes tesztekhez tartozó minimális lépésszámot**, akkor a pontok 50%-át kapod.

Amikor megállapítjuk, hogy a megoldásod eléri-e a tesztcsoport maximális pontszámának 50%-át, csak a K értékét vesszük figyelembe. A megoldás kimenete lehet egyszerűen csak a K érték és befejeződik a program futása, vagy lehet utána akár érvénytelen lépéssorozat is. Fontos, hogy a megoldásnak az időkorláton belül, helyesen kell befejeződnie.

Tesztcsoport	Pontszám	Korlátok
1	14	i húr $2 \cdot i$ és $2 \cdot i + 1$ szegekhez van rögzítve minden i esetén
2	16	A szükséges lépések száma legfeljebb 2
3	12	Garantáltan létezik olyan megoldás, ahol egy húr a 0 . és az 1 . szögekhez van rögzítve.
4	28	$N \leq 1000$
5	30	Nincsenek további korlátok.

Példák

Az első példában egy öthúros hárfa van. Az első lépésben a 4. húrt leválasztjuk a 8. szegről és visszatesszük a 9. szegre. A következő lépésben a 0. húrt leválasztjuk az 5. szegről, és átcsatoljuk a 8. szegre. Az utolsó lépésben az 1. húrt leválasztjuk a 9. szegről és áthelyezzük az 5. szegre. Most minden egyes szeghez pontosan egy húr van rögzítve, és az összes húr párhuzamos egymással. Ez a sorrend az alábbi ábrán látható.

Az alábbi ábra a hárfa kezdeti állapotát mutatja a 2., a 3. és a 4. példák esetén.

- Az első példa megfelel a 4. és az 5. tesztcsoport feltételeinek.
- A második példa megfelel az 1., a 3., a 4. és az 5. tesztcsoportok feltételeinek.

- A harmadik példa megfelel a 2., a 4. és az 5. tesztcsoportok feltételeinek.
- A negyedik példa megfelel a 3., a 4. és az 5. tesztcsoportok feltételeinek.

Bemenet	Kimenet
5 1 5 4 9 6 3 2 7 0 8	3 4 8 9 0 5 8 1 9 5
5 0 1 3 2 4 5 6 7 9 8	4 1 3 9 4 9 3 2 5 7 3 7 5
4 1 4 6 3 5 2 7 0	2 0 4 6 1 6 4
6 3 9 7 5 10 2 0 6 1 11 8 4	6 3 6 1 4 1 2 2 2 3 0 3 4 5 4 5 1 5 6