Lecture Notes in Computer Science

3485

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, UK

Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler

University of Surrey, Guildford, UK

Jon M. Kleinberg

Cornell University, Ithaca, NY, USA

Friedemann Mattern

ETH Zurich. Switzerland

John C. Mitchell

Stanford University, CA, USA

Moni Naor

Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz

University of Bern, Switzerland

C. Pandu Rangan

Indian Institute of Technology, Madras, India

Bernhard Steffen

University of Dortmund, Germany

Madhu Sudan

Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos

New York University, NY, USA

Doug Tygar

University of California, Berkeley, CA, USA

Moshe Y. Vardi

Rice University, Houston, TX, USA

Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

Ralf Steinmetz Klaus Wehrle (Eds.)

Peer-to-Peer Systems and Applications

Volume Editors

Ralf Steinmetz TU Darmstadt KOM - Multimedia Communications Lab Merckstr. 25, 64283 Darmstadt, Germany E-mail: Ralf.Steinmetz@kom.tu-darmstadt.de

Klaus Wehrle Universität Tübingen Protocol-Engineering and Distributed Systems Group Morgenstelle 10 c, 72076 Tübingen, Germany E-mail: Klaus.Wehrle@uni-tuebingen.de

Library of Congress Control Number: 2005932758

CR Subject Classification (1998): C.2, H.3, H.4, C.2.4, D.4, F.2.2, E.1, D.2

ISSN 0302-9743

ISBN-10 3-540-29192-X Springer Berlin Heidelberg New YorkISBN-13 978-3-540-29192-3 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting, reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005 Printed in Germany

Typesetting: Camera-ready by author, data conversion by Boller Mediendesign Printed on acid-free paper SPIN: 11530657 06/3142 5 4 3 2 1 0

This book is dedicated to our children:

Jan, Alexander,
Felix, Lena, Samuel & Julius

Foreword

Ion Stoica (University of California at Berkeley)

Starting with Napster and Gnutella, Peer-to-Peer systems became an integrated part of the Internet fabric attracting millions of users. According to recent measurements of several large ISPs, Peer-to-Peer traffic exceeds Web traffic, once the dominant traffic on the Internet. While the most popular Peer-to-Peer applications continue to remain file sharing and content distribution, new applications such as Internet telephony are starting to emerge.

Not surprisingly, the popularity of Peer-to-Peer systems has fueled academic research. In a very short time, Peer-to-Peer has evolved into an exciting research field which brings together researchers from systems, networking, and theory. During the past five years, Peer-to-Peer work has appeared in the proceedings of virtually all top system and networking conferences.

However, while the huge popularity of the Peer-to-Peer systems and the explosion of Peer-to-Peer research have created a large body of knowledge, there is little structure to this body. Surveys on Peer-to-Peer systems and books providing comprehensive coverage on the Peer-to-Peer technologies are few and far apart. The fact that Peer-to-Peer is still a rapidly evolving field makes the relative lack of such materials even more critical.

This book fills this void by including a collection of representative articles, which gives an up-to-date and comprehensive snapshot of the Peer-to-Peer field. One of the main challenges that faces any book covering such a vast and relatively new territory is how to structure the material. This book resolves this conundrum by dividing the material into roughly three parts.

The first part of the book covers the basics of Peer-to-Peer designs, unstructured and structured systems, and presents a variety of applications including e-mail, multicast, Grid computing, and Web services. The book then goes beyond describing traditional systems, by discussing general aspects of the Peer-to-Peer systems, namely the self-organization nature of the Peer-to-Peer systems, and the all-important topic of evaluating these systems. In addition, the book illustrates the broad applicability of Peer-to-Peer by discussing the impact of the Peer-to-Peer technologies in two computer-science areas, namely searching and information retrieval, and mobile computing. No Peer-to-Peer book would be complete without discussing the business model, accounting, and security. This book touches on these topics in the last part.

VIII Foreword

With this book, Steinmetz and Wehrle have made a successful attempt to present the vast amount of knowledge in the Peer-to-Peer field, which was accumulated over the last few years, in a coherent and structured fashion. The book includes articles on most recent developments in the field. This makes the book equally useful for readers who want to get an up-to-date perspective on the field, as well as for researchers who want to enter the field. The combination of the traditional Peer-to-Peer designs and applications and the discussion of their self-organizing properties and their impact on other areas of computer science make this book a worthy addition to the Peer-to-Peer field.

Berkeley, July 20th, 2005

Ion Stoica

Table of Contents

1.	Int	roduction	1
	1.1	Why We Wrote This Book	1
	1.2	Structure and Contents	3
	1.3	Teaching Materials and Book Website	5
	1.4	Acknowledgements	5
Pa	rt I.	Peer-to-Peer: Notion, Areas, History and Future	
2.	Wh	at Is This "Peer-to-Peer" About?	9
	2.1	Definitions	10
		2.1.1 Shift of Paradigm in Internet Communication	12
	2.2	Research Challenges in Peer-to-Peer Systems & Applications .	12
		2.2.1 Unstructured Peer-to-Peer Systems	15
		2.2.2 Structured Peer-to-Peer Systems	15
	2.3	Conclusion	16
3.	Pas	and Future	17
	3.1	Status Quo: Networks (Over)Filled with Peer-to-Peer Traffic .	17
	3.2	How It All Began: From Arpanet to Peer-to-Peer	18
	3.3	The Napster-Story	19
	3.4	Gnutella and Its Relatives: Fully Decentralized Architectures.	20
	3.5	Driving Forces Behind Peer-to-Peer	22
4.	$\mathbf{A}\mathbf{p}$	plication Areas	25
	4.1	Information	25
	4.2	Files	27
	4.3	Bandwidth	29
	4.4	Storage Space	30
	4.5	Processor Cycles	31

First and County County of Dans to Dans Court	0.5
5. First and Second Generation of Peer-to-Peer Systems	. 35
5.1 General Characteristics of Early Peer-to-Peer Systems	. 35
5.2 Centralized Peer-to-Peer Networks	
5.2.1 Basic Characteristics	. 37
5.2.2 Signaling Characteristics	. 38
5.2.3 Discussion	
5.3 Pure Peer-to-Peer-Networks	
5.3.1 Basic Characteristics	
5.3.2 Signaling Characteristics	
5.3.3 Discussion	
5.4 Hybrid Peer-to-Peer Networks	
5.4.1 Basic Characteristics	
5.4.2 Signaling Characteristics	
5.4.3 Discussion	. 54
6. Random Graphs, Small-Worlds and Scale-Free Networks	. 57
6.1 Introduction	. 57
6.2 Definitions	
6.3 The Riddle – Analysis of Real Networks	
6.4 Families and Models	
6.4.1 Random Graphs	
6.4.2 Small-Worlds – The Riddle's First Solution	
6.4.3 Scale-Free Networks: How the Rich Get Richer	
6.5 Applications to Peer-to-Peer Systems	
6.5.1 Navigating in Small-Worlds	
6.5.2 Small-World Overlay Networks in P2P Systems	
6.5.3 Scale-Free Overlay Networks in P2P Systems	
6.6 Summary	. 76
Part III. Structured Peer-to-Peer Systems	
7. Distributed Hash Tables	70
7. Distributed Hash Tables	
7.1.1 Comparison of Strategies for Data Retrieval	
7.1.2 Central Server	
7.1.2 Central Server 7.1.3 Flooding Search	
7.1.4 Distributed Indexing – Distributed Hash Tables	
7.1.4 Distributed indexing – Distributed riash Tables	
7.1.5 Comparison of Lookup Concepts	
7.2.1 Distributed Management of Data	
7.2.2 Addressing in Distributed Hash Tables	

Algorithms for Load Balancing in DHTs................ 124

Comparison of Load-Balancing Approaches 129

9.1.3

9.1.4

Table of Contents

XI

	9.2	Reliability of Data in Distributed Hash Tables	131
		9.2.1 Redundancy	132
		9.2.2 Replication	132
	9.3	Summary	135
10	D C	mid. Demonics of Solf Opposition Decosors in	
10.		rid: Dynamics of Self-Organizing Processes in actured Peer-to-Peer Systems	137
		The Concept of Self-Organization	
		Example of Self-Organization in Unstructured P2P Systems .	
		Self-Organization in Structured Peer-to-Peer Systems	
	10.0	10.3.1 The Structure of P-Grid Overlay Networks	
		10.3.2 Dynamics of P-Grid Overlay Networks	
		10.3.3 Bootstrapping a P-Grid Overlay Network	
		10.3.4 Routing Table Maintenance	
		10.3.5 Analysis of the Maintenance Mechanism	
	10.4	Summary	
	10.1	~	101
Dar.	+ TV/	. Peer-to-Peer-Based Applications	—
<u> </u>	0 I V	. 1 cer-to-r cer-based Applications	
11.		olication-Layer Multicast	
		Why Multicast on Application Layer	
		Design Aspects and Taxonomy	
	11.3	Unstructured Overlays	
		11.3.1 Centralized Systems	
		11.3.2 Fully Distributed Systems	
	11.4	Structured Overlays	
		11.4.1 Flooding-Based Replication	
		11.4.2 Tree-Based Replication	
		11.4.3 Performance/Cost Evaluation	
		Hot Topics	
	11.6	Summary	170
12.	ePC	OST	171
	12.1	Scoped Overlays	172
		12.1.1 Design	173
		12.1.2 Ring Structure	173
		12.1.3 Gateway Nodes	175
		12.1.4 Routing	175
		12.1.5 Global Lookup	176
	12.2	POST Design	
		12.2.1 Data Types	
		12.2.2 User Accounts	
		12.2.3 Single-Copy Store	
		12.2.4 Event Notification	179

		12.2.5 Metadata	180
		12.2.6 Garbage Collection	
		12.2.7 POST Security	
	12.3	ePOST Design	
		12.3.1 Email Storage	
		12.3.2 Email Delivery	184
		12.3.3 Email Folders	185
		12.3.4 Incremental Deployment	186
		12.3.5 Management	186
	12.4	Correlated Failures	187
		12.4.1 Failure Models	188
		12.4.2 Glacier	189
		12.4.3 Maintenance in Glacier	190
		12.4.4 Recovery After Failures	191
		12.4.5 Object Aggregation	191
	12.5	Preliminary Experience	192
13.		cributed Computing – GRID Computing	
		Introduction	
		The GRID Architecture	
		The Globus Project	
	13.4	Defining the GRID: The Global GRID Forum Initiative	
		13.4.1 The Open GRID Services Architecture (OGSA)	
		13.4.2 GRID Services: Building Blocks for the GRID	
		13.4.3 Stateful Web Services: OGSI & WS-Resource FW	
	13.5	GRID and Peer-to-Peer Computing	
		13.5.1 Comparing GRID and Peer-to-Peer	
	10.0	13.5.2 GRID and Peer-to-Peer: Converging Concepts?	
	13.6	Summary	205
11	Wol	Services and Peer-to-Peer	207
14.		Introduction	
		Architecture and Important Standards	
	14.2	14.2.1 XML and XML Schema	
		14.2.2 WSDL	
		14.2.3 SOAP	
		14.2.4 HTTP	
		14.2.5 UDDI	
		14.2.6 WS-*	
	14 3	Service Orchestration	
		Comparison of Peer-to-Peer and Web Services	
	11.1	14.4.1 What Can Peer-to-Peer Learn from Web Services?	
		14.4.2 What Can Web Services Learn from Peer-to-Peer?	
		14.4.3 Side-Effects when Joining Web Services and P2P	
	14.5	Resulting Architectures	

D	T 7	0 10 0	•
Part	ν.	Self-C	Organization

15.	Cha	racterization of Self-Organization	227
		Introduction	
	15.2	Basic Definitions	228
		15.2.1 System	228
		15.2.2 Complexity	229
		15.2.3 Feedback	230
		15.2.4 Emergence	230
		15.2.5 Complex System	231
		15.2.6 Criticality	232
		15.2.7 Hierarchy & Heterarchy	233
		15.2.8 Stigmergy	235
		15.2.9 Perturbation	235
	15.3	Characteristics of Self-Organization	235
		15.3.1 Self-Determined Boundaries	235
		15.3.2 Operational Closure & Energetic Openness	
		15.3.3 Independence of Identity and Structure	236
		15.3.4 Maintenance	
		15.3.5 Feedback & Heterarchy	
		15.3.6 Feedback	
		15.3.7 Criticality	238
		15.3.8 Emergence	
		15.3.9 Self-Determined Reaction to Perturbations	
		15.3.10Reduction of Complexity	
	15.4	Applications in Computer Science	
		15.4.1 Small-World and Scale-Free Networks	240
		15.4.2 Swarming	
		15.4.3 Cellular Automata	
	15.5	Conclusions	
16.		-Organization in Peer-to-Peer Systems	
		Introduction	
	16.2	Evaluation of Peer-to-Peer Systems	248
		16.2.1 Criteria	
		16.2.2 Unstructured Peer-to-Peer Networks	250
		16.2.3 Structured Peer-to-Peer Systems	255
		16.2.4 Summary of Peer-to-Peer Evaluations	259
	16.3	Towards More Self-Organization in Overlays	260
		16.3.1 Active Virtual Peers	
		16.3.2 Objectives & Requirements for Control of Overlays	
		16.3.3 An Implementation of the AVP Concept	
		16.3.4 Related Work	
	16.4	Conclusions	265

Par	VI. Search and Retrieval	
17	Peer-to-Peer Search and Scalability	60
11.	7.1 Peer-to-Peer Search and Lookup in Overlay Networks	
	17.1.1 Problem Statement and Chapter Overview	
	17.1.2 Search and Lookup – Functional Options	
	17.1.2 Search and Bookup - Punctional Options	
	17.1.4 Overlay Topology Requirements	
	17.1.4 Overlay Topology Requirements	
	17.1.3 Overlay Topology Farameters	
	17.2.1 Definition of Peer-to-Peer Scalability	
	17.2.1 Definition of Feer-to-Feer Scalability	
	17.2.2 Emiciency and Scale 27 17.2.3 Scalability Metric and Notation	
	17.2.3 Scalability Metric and Notation	
	17.3.1 Overhead for Lookup and Search	
	17.3.2 Dimensions of Lookup & Search Overhead	
	17.3.3 The Assessment Scheme	
	7.4 Scalable Search with SHARK	
	7.5 Summary and Conclusions	38
18	Algorithmic Aspects of Overlay Networks 28	20
10.	8.1 Background and Motivation	
	8.2 Model Definition	
	8.3 Gathering Information Along a Path	
	18.3.1 Basic Algorithms	
	18.3.2 collect-rec	
	8.4 weighted collect-rec Algorithm	
	18.4.1 Algorithm Description	
	18.4.2 Detailed Algorithm Description	
	18.4.3 Analysis of weighted collect-rec Algorithm	
	18.5 Gathering Information from a Tree	
	18.5.1 Detailed Algorithm Description	
	18.5.2 Analysis of weighted collect on trees Algorithm	
	18.6 Gathering Information from General Graphs	
	18.7 Global Functions	
	8.8 Performance Evaluation	
	18.8.1 weighted collect-rec Algorithm Performance	
	18.8.2 Performance of weighted collect on trees Algorithm 31	
	18.8.2 Ferformance of weighted collect on trees Algorithm 51	19
19.	Schema-Based Peer-to-Peer Systems	23
	9.1 Introduction	
	9.2 Design Dimensions of Schema-Based Peer-to-Peer Systems 32	25
	19.2.1 Data Model and Query Language	

XVI Table of Contents

		19.2.2 Data Placement	326
		19.2.3 Topology and Routing	327
	19.3	Case Study: A Peer-to-Peer Network for the Semantic Web	
		19.3.1 Semantic Web Data Model and Query Language	329
		19.3.2 Schema-Based Routing Indices	331
	19.4	Advanced Topics	333
		19.4.1 Schema Mapping	333
		19.4.2 Distributed Query Plans	334
		19.4.3 Top-k Query Processing	334
	19.5	Conclusion	336
20.	Sup	porting Information Retrieval in Peer-to-Peer	
		tems	337
	20.1	Content Searching in Peer-to-Peer Applications	337
		20.1.1 Exchanging Media Files by Meta-Data Searches	338
		20.1.2 Problems in Peer-to-Peer Information Retrieval	338
		$20.1.3$ Related Work in Distributed Information Retrieval \dots	341
	20.2	Indexstructures for Query Routing	
		20.2.1 Distributed Hash Tables for Information Retrieval	
		20.2.2 Routing Indexes for Information Retrieval	
		20.2.3 Locality-Based Routing Indexes	
	20.3	Supporting Effective Information Retrieval	
		20.3.1 Providing Collection-Wide Information	
		20.3.2 Estimating the Document Overlap	
		20.3.3 Prestructuring Collections with Taxonomies $\ldots \ldots$	
	20.4	Summary and Conclusion	351
21.	Hyb	orid Peer-to-Peer Systems	353
	21.1	Introduction	353
	21.2	Overlay Network Design Dimensions	354
	21.3	Hybrid Architectures	356
		21.3.1 JXTA	
		21.3.2 Brocade	
		21.3.3 SHARK	
		21.3.4 Omicron	
	21.4	Hybrid Routing	
		21.4.1 OceanStore	
		21.4.2 Hybrid PIER	
		Comparison with Non-hybrid Systems	
	21.6	Summary and Conclusion	365

Par	t VI	I. Peer-to-Peer Traffic and Performance Evaluation
22.		Platforms Under a Heavy Peer-to-Peer Workload 369 Introduction
		Peer-to-Peer Traffic Characteristics
	22.2	22.2.1 Traffic Mix on IP Platforms
		22.2.2 Daily Traffic Profile
		22.2.3 Traffic Growth and Prognosis
		22.2.4 Asymmetrical Versus Symmetrical Access Lines 373
	22.3	Cross Layer Aspects
		22.3.1 Routing on Application and IP Layer
		22.3.2 Network and Transport Layer Analysis
		22.3.3 Application Layer Pattern
		22.3.4 Distribution of Sources for eDonkey File-Sharing 376
		22.3.5 Caches for Peer-to-Peer Data
	22.4	Implications for QoS in Multi-service IP Networks 379
		Conclusion
23 .	Tra	ffic Characteristics and Performance Evaluation of
	Pee	r-to-Peer Systems
		Introduction
		A Concept for Peer-to-Peer Performance
	23.3	Traffic Characteristics of Peer-to-Peer-Systems
		23.3.1 Gnutella
		23.3.2 eDonkey
		Evaluation of a Peer-to-Peer Resource Mediation Mechanism . 391
		Evaluation of a Peer-to-Peer Resource Access Mechanism 394
	23.6	Conclusion
D		II Desate Desais Melile and III instruction Fundaments
Pai	τνι	II. Peer-to-Peer in Mobile and Ubiquitous Environments
24.	Pee	r-to-Peer in Mobile Environments
	24.1	Why Is P2P Interesting for Mobile Users and Services 401
		24.1.1 Scenario 1: Taxi Locator
		24.1.2 Scenario 2: University Campus
	24.2	Introduction to Mobile Communication Systems 403
		Challenges for Peer-to-Peer Techniques in Mobile Networks 405
		24.3.1 Peer-to-Peer Systems in Mobile Ad-Hoc Networks 406
	24.4	Solutions for Peer-to-Peer in Mobile and Wireless Networks 407
		24.4.1 Solutions with Unstructured Peer-to-Peer Networks 408
		24.4.2 Solutions Based on Structured Peer-to-Peer Networks . 412
	24.5	Summary

25.	Spo	ntaneous Collaboration in Mobile Peer-to-Peer	
		works	. 419
	25.1	Introduction and Motivation	. 419
		25.1.1 Mobile Peer-to-Peer Networks and MANETS	. 420
		25.1.2 One-Hop Peer-to-Peer Design Space	
		25.1.3 Chapter Overview	
	25.2	Application Domains and Examples	
		25.2.1 Shark	
		25.2.2 MobiTip	
		25.2.3 SpotMe	
		25.2.4 Socialight	
		25.2.5 AdPASS	. 425
	25.3	Building Blocks for Mobile Peer-to-Peer Networks	. 426
	25.4	The iClouds Project	. 429
		25.4.1 Multi-hop Information Dissemination	. 429
		25.4.2 Data Structures and Communication Semantics	. 430
		25.4.3 Architecture	. 432
	25.5	Conclusion	. 433
26.	_	demic Data Dissemination for Mobile Peer-to-Peer	
		kup Services	
		Motivation and Background	
	26.2	Passive Distributed Indexing	
		26.2.1 Overview	
		26.2.2 Basic Concept	
		26.2.3 Selective Forwarding for Extending Radio Coverage	
	26.3	Consistency Issues	
		26.3.1 Dealing with Weak Connectivity and Node Failures	
		26.3.2 Dealing with Data Modification at the Origin Node	
	26.4	Performance Studies	
		26.4.1 Simulation Environment	
		26.4.2 Sensitivity to System Characteristics	
		26.4.3 Sensitivity to Application Characteristics	
		26.4.4 Impact of Consistency Mechanisms	
	26.5	Summary	. 454
~ -	ъ		
27.		r-to-Peer and Ubiquitous Computing	
		Introduction to Ubiquitous Computing	
	27.2	Characteristics of Ubiquitous Computing Applications	
		27.2.1 Information	
		27.2.2 Network	
		27.2.3 Collaboration	
		27.2.4 Sharing Resources	
	o= -	27.2.5 Context Information	
	27.3	Communications in Ubiquitous Computing Architectures	. 461

	27.4	Ubiquitous Computing Middleware	
		27.4.1 Support for Heterogeneous Devices	462
		27.4.2 Resource Constraints	462
		27.4.3 Mobility Support	462
		27.4.4 Networking Support	463
		27.4.5 Performance Issues	463
	27.5	Peer-to-Peer and Ubiquitous Computing	465
	27.6	Research Challenges in Ubiquitous Peer-to-Peer Computing	466
		27.6.1 Heterogeneous Devices	467
		27.6.2 Efficient Algorithms	467
		27.6.3 Security and Privacy	467
		27.6.4 Scalable Architectures	
		27.6.5 Next Generation Peer-to-Peer Middleware	468
	27.7	Summary	468
Par	t IX	. Business Applications and Markets	
20	Dua	iness Applications and Revenue Models	179
40.		Introduction	
		Definitions	
	20.2	28.2.1 Peer-to-Peer Applications and Service Styles	
		28.2.2 A Referential View of Peer-to-Peer Interaction Styles	
		28.2.3 Business Models and Revenue Models	
	20.2	Revenue Models for P2P Business Application/Service Styles .	
	20.3	28.3.1 Instant Messaging	
		28.3.2 Digital Content Sharing	
		28.3.3 Grid Computing	
		28.3.4 Collaboration	
	20 1	Discussion	
	20.4	Discussion	401
29.	Pee	r-to-Peer Market Management	491
	29.1	Requirements	491
		29.1.1 Main Problems	492
		29.1.2 Functional Requirements	493
		29.1.3 Non-functional Requirements	493
	29.2	Architecture	495
		29.2.1 Market Model	495
		29.2.2 Service Usage Model	497
		29.2.3 Peer Model	497
		29.2.4 Key Elements and Mechanisms	499
	29.3	Case Studies	500
		29.3.1 Peer-to-Peer Middleware	501
		29.3.2 PeerMart: Peer-to-Peer Auctions	503
	29.4	Conclusion and Outlook	507

30.	A P	Peer-to-Peer Framework for Electronic Markets	. 509
	30.1	Markets as Peer-to-Peer Systems	. 509
		30.1.1 Service and Distribution Basics	. 510
		30.1.2 SESAM Project Structure	. 512
	30.2	A Service-Oriented Peer-to-Peer Architecture	. 513
		30.2.1 Service Orientation	. 514
		30.2.2 ServiceNets	. 515
		30.2.3 Peer Architecture	. 517
	30.3	Security, Robustness, and Privacy Challenges	
		30.3.1 Attack Classification/Threat Analysis	
		30.3.2 Peer-to-Peer-Related Challenges	
		30.3.3 Selected Issues	
	30.4	Summary	. 524
Par	t X.	Advanced Issues	
31.	Sec	urity-Related Issues in Peer-to-Peer Networks	. 529
	31.1	Introduction	. 529
	31.2	Security Concerns on the Application Layer	. 529
		31.2.1 File Sharing Applications	. 530
		31.2.2 Data Backup Service	. 530
		31.2.3 File Storage Service	. 531
	31.3	Security Concerns on the Networking Layer	. 532
		31.3.1 Invalid Lookup	. 532
		31.3.2 Invalid Routing Update	
		31.3.3 Partition	
		31.3.4 Sybil Attack	
		31.3.5 Consideration of Implications of Topology	
	31.4	Security Concepts for Selected Systems	
		31.4.1 Groove	
		31.4.2 SixFour (6/4) Peer-to-Peer	
		31.4.3 Freenet	
		31.4.4 Further Peer-to-Peer Anonymizing Solutions	
	31.5	Conclusion	. 545
32.	Acc	ounting in Peer-to-Peer-Systems	. 547
		The Purpose of Accounting	
		Why Is Not Accounting in Peer-to-Peer Straight Forward?	
		A Classification of P2P Accounting Schemes	
		32.3.1 Information Collection	
		32.3.2 Information Storage	
	32.4	Proposed Accounting Schemes	
		32.4.1 Plain Numbers-Based Systems	
		32.4.2 Receipt-Based Systems	

		32.4.3 Token-Based Systems
		32.4.4 Proof of Work-Based Systems
	32.5	Token-Based Accounting Scheme
		32.5.1 Prerequisites
		32.5.2 Overview
		32.5.3 Token Structure
		32.5.4 Token Aggregation
		32.5.5 Check for Double Spending
		32.5.6 Transactions
		32.5.7 Trust & Security Considerations 561
		32.5.8 Performance Analysis
		32.5.9 Summary & Conclusions
33.		PlanetLab Platform 567
		Introduction and History 567
	33.2	Architectural Principles
		33.2.1 Application-Centric Interfaces
		33.2.2 Distributed Virtualization
	00.0	33.2.3 Unbundled Management
	33.3	PlanetLab Methodology
		33.3.1 Using PlanetLab
		33.3.2 Reproducibility
		33.3.3 Representivity
		33.3.4 Quantitative Results
	22.4	33.3.5 Qualitative Experience
	33.4	Effects on the Internet
		33.4.1 Many-to-Many Connections
		33.4.2 Many Alternative Routes
	22 5	33.4.3 Overlays and Traffic Correlation
	33.3	Long-Term Goals
Bib	liogr	aphy
T!		62:
\mathbf{n}	EX	02i

List of Authors

List of authors in order of appearance:

Ion Stoica 645 Soda Hall Computer Science Division University of California, Berkeley Berkeley, CA 94720-1776 USA

Ralf Steinmetz TU Darmstadt KOM – Multimedia Communications Merckstraße 25 64283 Darmstadt Germany

Rüdiger Schollmeier TU München Institute of Communication Networks Arcisstraße 21 80290 München Germany

Kai Fischbach Universität zu Köln Seminar für Wirtschaftsinformatik, insb. Informationsmanagement Pohligstr. 1 50969 Köln Germany

Vasilios Darlagiannis TU Darmstadt KOM – Multimedia Communications Merckstraße 25 64283 Darmstadt Germany Klaus Wehrle Universität Tübingen Protocol-Engineering & Distributed Systems Group Morgenstelle 10c 72076 Tübingen Germany

Jörg Eberspächer TU München Institute of Communication Networks Arcisstraße 21 80290 München Germany

Detlef Schoder Universität zu Köln Seminar für Wirtschaftsinformatik, insb. Informationsmanagement Pohligstr. 1 50969 Köln Germany

Christian Schmitt Universität zu Köln Seminar für Wirtschaftsinformatik, insb. Informationsmanagement Pohligstr. 1 50969 Köln Germany

Katharina Anna Lehmann Universität Tübingen Arbeitsbereich für Paralleles Rechnen WSI – Am Sand 13 72076 Tübingen Germany Michael Kaufmann Universität Tübingen Arbeitsbereich für Paralleles Rechnen WSI – Am Sand 13 72076 Tübingen Germany

Stefan Götz Universität Tübingen Protocol-Engineering & Distributed Systems Group Morgenstelle 10c 72076 Tübingen Germany

Karl Aberer School of Computer and Communication Sciences Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland

Manfred Hauswirth School of Computer and Communication Sciences Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland

Kostas Katrinis ETH Zürich, TIK Gloriastrasse 35 8092 Zürich Switzerland

Andreas Haeberlen Rice University & MPI-SWS Distributed Systems Group 3007 Duncan Hall, 6100 Main St. Houston TX 77005 USA

Peter Druschel Rice University & MPI-SWS Distributed Systems Group 3007 Duncan Hall, 6100 Main St. Houston TX 77005 USA Simon Rieche Universität Tübingen Protocol-Engineering & Distributed Systems Group Morgenstelle 10c 72076 Tübingen Germany

Heiko Niedermayer Universität Tübingen Computer Networks & Internet Morgenstelle 10c 72076 Tübingen Germany

Anwitaman Datta School of Computer and Communication Sciences Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland

Martin May ETH Zürich, TIK Gloriastrasse 35 8092 Zürich Switzerland

Alan Mislove Rice University & MPI-SWS Distributed Systems Group 3007 Duncan Hall, 6100 Main St. Houston TX 77005 USA

Ansley Post Rice University & MPI-SWS Distributed Systems Group 3007 Duncan Hall, 6100 Main St. Houston TX 77005 USA

Andreas Mauthe Lancaster University Computing Department Lancaster, LA1 4YR UK Oliver Heckmann TU Darmstadt KOM – Multimedia Communications Merckstraße 25 64283 Darmstadt Germany

Paul Müller TU Kaiserslautern AG ICSY Gottlieb-Daimler-Straße 67663 Kaiserslautern Germany

Christian Koppen Universität Passau Computer Networks & Computer Communications Group Innstraße 33 94032 Passau Germany

Jan Mischke McKinsey Company & Inc. Switzerland

Wolfgang Nejdl Universität Hannover, KBS Appelstraße 4 30167 Hannover Germany

Wolf-Tilo Balke L3S Research Center Expo Plaza 1 30539 Hannover Germany

Kurt Tutschku Universität Würzburg Institut für Informatik, Lehrstuhl III Am Hubland 97074 Würzburg Germany

Wolfgang Kellerer DoCoMo Communications Laboratories Europe GmbH Landsberger Straße 312 80687 München Germany Markus Hillenbrand TU Kaiserslautern AG ICSY Gottlieb-Daimler-Straße 67663 Kaiserslautern Germany

Hermann de Meer Universität Passau Computer Networks & Computer Communications Group Innstraße 33 94032 Passau Germany

Burkhard Stiller Universität Zürich, IFI Communication Systems Group Winterthurerstraße 190 8057 Zürich Switzerland

Danny Raz Technion IIT Department of Computer Science Haifa 32000 Israel

Wolf Siberski Universität Hannover, KBS Appelstraße 4 30167 Hannover Germany

Gerhard Hasslinger T-Systems Technologiezentrum Deutsche-Telekom-Allee 7 64307 Darmstadt Germany

Phuoc Tran-Gia Universität Würzburg Institut für Informatik, Lehrstuhl III Am Hubland 97074 Würzburg Germany

Andreas Heinemann TU Darmstadt FG Telekooperation Hochschulstraße 10 64289 Darmstadt

Germany

Max Mühlhäuser TU Darmstadt FG Telekooperation Hochschulstraße 10 64289 Darmstadt Germany

Christoph Lindemann Universität Dortmund Rechnersysteme und Leistungsbewertung August-Schmidt-Straße 12 44227 Dortmund Germany

Thomas Hummel Accenture European Technology Park 449, Route des Crêtes 06902 Sophia Antipolis France

Jan Gerke ETH Zürich, TIK Gloriastrasse 35 8092 Zürich Switzerland

Michael Conrad Universität Karlsruhe Institute of Telematics Zirkel 2 76128 Karlsruhe Germany

Hannes Hartenstein Universität Karlsruhe Institute of Telematics Zirkel 2 76128 Karlsruhe Germany

Martina Zitterbart Universität Karlsruhe Institute of Telematics Zirkel 2 76128 Karlsruhe Germany Oliver P. Waldhorst Universität Dortmund Rechnersysteme und Leistungsbewertung August-Schmidt-Straße 12 44227 Dortmund Germany

Jussi Kangasharju TU Darmstadt FG Telekooperation Hochschulstraße 10 64289 Darmstadt Germany

Steffen Muhle Universität zu Köln Seminar für Wirtschaftsinformatik, insb. Informationsmanagement Pohligstr. 1 50969 Köln Germany

David Hausheer ETH Zürich, TIK Gloriastrasse 35 8092 Zürich Switzerland

Jochen Dinger Universität Karlsruhe Institute of Telematics Zirkel 2 76128 Karlsruhe Germany

Marcus Schöller Universität Karlsruhe Institute of Telematics Zirkel 2 76128 Karlsruhe Germany

Daniel Rolli Universität Karlsruhe Lehrstuhl für Informationsbetriebswirtschaftslehre Englerstr. 14 76128 Karlsruhe Germany Ralf Ackermann TU Darmstadt KOM – Multimedia Communications Merckstraße 25 64283 Darmstadt Germany

Nicolas C. Liebau TU Darmstadt KOM – Multimedia Communications Merckstraße 25 64283 Darmstadt Germany Luka Divic-Krnic TU Darmstadt KOM – Multimedia Communications Merckstraße 25 64283 Darmstadt Germany

Timothy Roscoe Intel Research Berkeley 2150 Shattuck Avenue Berkeley, CA 94704 USA