

НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ УКРАЇНИ «КИЇВСЬКИЙ ПОЛІТЕХНІЧНИЙ ІНСТИТУТ імені Ігоря Сікорського» ФАКУЛЬТЕТ ПРИКЛАДНОЇ МАТЕМАТИКИ

Кафедра системного програмування та спеціалізованих комп'ютерних систем

Лабораторна робота №1

з дисципліни «Бази даних і засоби управління»

Tema: «Створити БД "Міський транспорт" в СУБД PostgreSQL з допомогою конструктора PgAdmin 4»

Виконала: студентка 3 курсу

ФПМ групи КВ-81

Яременко Д.

Перевірив:

Лабораторна робота No.1.

Створити БД "Міський транспорт" в СУБД PostgreSQL з допомогою конструктора PgAdmin 4

Мета роботи: створити БД Міський транспорт та сформувати обмеження цілісності на значення даних.

Порядок виконання роботи

- 1. Розробити концептуальну модель вибраного предметного середовища. Концептуальну модель предметного середовища Міський транспорт наводиться в Додатку А до лабораторної роботи;
- 2. Розробити логічну модель (схему) даних БД. Логічна модель (схема) даних БД Міський транспорт наводиться в Додатку? до лабораторної роботи;
 - 3. Вивчити склад та правила роботи з СУБД PostgreSQL;
- 4. Створити в СУБД PostgreSQL БД Міський транспорт , використовуючи конструктори таблиць та стовпчиків (краще колонок). Схема даних БД Міський транспорт наводиться в Додатку Б до лабораторної роботи. Перелік атрибутів наводиться в Додатку В до лабораторної роботи;
 - 5. Сформувати обмеження цілісності, що забезпечують:
 - унікальність та обов'язковість вводу первинних ключів для всіх таблиць;
 - перевірка на відповідність зовнішніх ключів таблиць;
 - обмеження на значення даних для атрибутів "expiredIn", "name", "sex", "age", "surname" і вивід відповідних повідомлень при їх порушені (опис всіх атрибутів наводиться нижче в Додатку В до лабораторної роботи);
 - обов'язковість вводу атрибутів "expiredIn", "name", "sex", "age", "surname" та інших.
- 6. Фізична модель (схема) даних БД Міський транспорт наводиться в Додатку? до лабораторної роботи;
- 7. Заповнити створену БД даними (порядку 5-10 записів в кожній таблиці).

Зміст звіту

- 1. Склад СУБД PostgreSQL.
- 2. Концептуальна модель предметної області.
- 3. Логічна модель (схема) БД.
- 4. Склад обмежень цілісності в термінах СУБД PostgreSQL.
- 5. Фізична модель БД в термінах СУБД PostgreSQL.
- 6. Представлення БД в pgAdmin 4

Додаток А. Концептуальна модель предметної області "Міський транспорт"

В концептуальній моделі предметної області "Міський транспорт" (Рисунок 1) виділяються наступні сутності та зв'язки між ними.

Сутність "Транспорт" з атрибутами: рік випуску, дата останнього ТО.

Сутність "Маршрут" з атрибутами "перша зупинка", "остання зупинка", "номер зупинки";

Сутність "Зупинки" з атрибутами: назва, середня кількість пасажирів;

Сутність "Тип транспорту" з атрибутами: назва, опис.

Сутність "Гараж" з атрибутами: адрес, стан.

Між сутностями "транспорт" та "маршрут" зв'язок R(M:1), тому що одиниця транспорту може ходити лише по одному маршруту, але при цьому маршрут може мати багато одиниць транспорту.

Між сутностями "Маршрут" та "зупинка" зв'язок R(M:M), тому що один маршрут містить багато зупинок, а одна зупинка може належати як мінімум одному маршруту.

Між сутностями "Транспорт" та "Одномісний Гараж" зв'язок R(1:1), тому що одиниця транспорту повинна десь зберігатися, але не в багатьох місцях одночасно, а оскільки гараж одномісний, то в ньому може зберігатися лише одна одиниця транспорту.

Між сутностями "Транспорт" та "Тип" зв'язок R(N:1), тому що одиниця транспорту може мати лише один тип, але транспорту одного типу може бути багато.

Рисунок 1 - Концептуальна модель предметної області "Міський транспорт"

Додаток Б. Логічна модель (схема) БД "Міський транспорт"

В логічній моделі (Рисунок 2):

Сутність "Транспорт" перетворена в таблицю "Transport".

Сутність "Маршрут" була перетворена в таблицю "Route".

Сутність "Зупинки" була перетворена в таблицю "Stops".

Сутність "Гараж " була перетворена в таблицю "Garage".

Сутність "Тип" була перетворена в таблицю "Туре".

Оскільки відношення між маршрутка і зупинками R(M:M), потрібно створити ще одну перехідну таблицю під назвою "Route Stops".

Рисунок 2 - Логічна модель предметної області "Міський транспорт"

Схема бази даних відповідає **1НФ** тому, що: кожен атрибут атомарний. Схема бази даних відповідає **2НФ** тому, що: кожен атрибут залежить від первинного ключа.

Схема бази даних відповідає **3НФ** тому, що: немає неключових транзитивних залежностей. Доведемо це твердження.

Таблиця Transport:

id→Creation Year (OK)

id→Last_TI_Date (OK)

id→Creation_Year →Last_TI_Date (OK)

Таблиця Туре:

id→Name (OK)

id → Description (OK)

id→Name →Description (OK)

Таблиця Garage:

id→Address (OK)

id**→**Condition (OK)

id→Address →Condition (OK)

Таблиця Stops:

id→Name(OK)

id➡Average_Volume (OK)

id→Name→Average_Volume (OK)

Name → Average Volume (OK, адже Name - потенційний ключ)

Таблиця Route:

id→Number(OK)

Таблиця Route Stops:

id⇒Stop_Number(OK)

В. Структура БД "Міський транспорт"

Рисунок 3 - Структурна модель предметної області "Міський транспорт"

Додаток Г. Опис структури БД "Міський транспорт" Текстове представлення логічної моделі (схеми) БД

Відношення	Атрибут	Тип
Відношення "Transport" містить інформацію про транспортні засоби які курсують по	Transport_Id — унікальний номер в БД. Не допускає NULL. Creation_year — рік виготовлення ТЗ. Не допускає NULL. Last_TI_Date — дата останнього ТО. Не	Числовий, SERIAL PK Дата (Date) Дата (Date)
маршруту.	допускає NULL. Туре – унікальний номер типу ТЗ в БД. Не допускає NULL. Route – унікальний номер маршруту в БД. Не допускає NULL.	Числовий, FK Числовий, FK
Відношення "Route" містить інформацію про маршрути.	Route_Id — унікальний номер в БД. Не допускає NULL Start_Stop — унікальний номер першої зупинки маршруту. Не допускає NULL. Finish_Stop — унікальний номер останньої зупинки маршруту. Не допускає NULL. Number — номер маршруту Не допускає NULL. NULL.	Числовий, SERIAL PK Числовий, FK Числовий, FK Числовий
Відношення "Route_Stop" містить інформацію про те, які зупинки належать до конкретних маршрутів.	Id – унікальний номер в БД. Не допускає NULL Stop_Id – унікальний номер зупинки в БД. Не допускає NULL. Route_Id – унікальний номер маршруту в БД. Не допускає NULL. Stop_Number – номер зупинки в маршруті.	Числовий, SERIAL PK Числовий, FK Числовий, FK Числовий
Відношення "Stop" містить інформацію про зупинки.	Stop_Id - унікальний номер в БД. Не допускає NULL Name –назва зупинки. Не допускає NULL. Average_Volume – середня кількість пасажирів на зупинці.	Числовий, SERIAL PK Текстовий(50) Числовий
Відношення "Туре" містить інформацію про типи транспорту.	Туре_Id — унікальний номер . Не допускає NULL. Name — назва типу транспорту. Не допускає NULL. Description — опис типу.	Числовий SERIAL PK Текстовий(50) Текстовий

Додаток Д. Опис таблиць БД "Міський транспорт" в pgAdmin 4

Структура таблиць БД

Таблиця "Route Stops"

```
create table route_stop(
  id serial not null,
  stop_id integer not null,
  route_id integer not null,
  stop_number integer not null,
  primary key(id),
  foreign key(stop_id) references stop(stop_id),
  foreign key(route_id) references route(route_id)
)
```


Таблиця "Garage"

```
create table garage(
  garage_id serial not null,
  address varchar(100) not null,
  condition varchar(50),
  transport integer,
  unique(transport),
  primary key(garage_id),
  foreign key(transport) references transport(transport_id)
)
```


Таблиця "Route"

```
create table route(
  route_id serial not null,
  start_stop integer not null,
  finish_stop integer not null,
  number integer not null,
  primary key(route_id),
  foreign key(start_stop) references stop(stop_id),
  foreign key(finish_stop) references stop(stop_id))
)
```


12 Троєщина - Кінцева

[null]

```
create table stop(
  stop_id serial not null,
  name varchar(50) not null,
  average_volume integer,
  unique(name),
  primary key(stop_id)
```

12

Таблиця "Туре"

```
create table type(
  type_id serial not null,
  name varchar(50) not null,
  description text,
  primary key(type_id)
```

