

NTE87 (NPN) & NTE88 (PNP) Silicon Complementary Transistors High Power Audio, Disk Head Positioner for Linear Applications

Description:

The NTE87 (NPN) and NTE88 (PNP) are complementary silicon power transistors in a TO3 type package designed for high power audio, disk head positioners, and other linear applications. These devices can also be used in power switching circuits such as relay or solenoid drivers, DC–to–DC converters or inverters.

Features:

High Safe Operating Area: 1.2A @ 100V

• Completely Characterized for Linear Operation

• High DC Current Gain: h_{FE} = 20 Min @ I_C = 2A

Low Saturation Voltage: 2V

For Low Distortion Complementry Designs

Collector-Emitter Voltage, V _{CEO(sus)}
Collector Current, I _C Continuous 10A Peak (Note 2) 15A
Base Current, IB Continuous 2A Peak (Note 2) 5A
Emitter Current, I _E Continuous
Operating Junction Temperature Range, T _J
Storage Temperature Range, T _{stg} –65° to +200°C
Thermal Resistance, Junction–to–Case, R _{thJC}
Lead Temperature (During Soldering), T _L

Note 1. Matched complementary pairs are available upon request (NTE88MCP). Matched complementary pairs have their gain specification (h_{FE}) matched to within 10% of each other.

Note 2. Pulse Test: Pulse Width = 5ms, Duty Cycle \leq 10%.

Electrical Characteristics: $(T_C = +25^{\circ}C \text{ unless otherwise specified})$

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit	
OFF Characteristics							
Collector–Emitter Breakdown Voltage	V _{CEO(sus)}	I _C = 100mA, Note 3	250	_	_	V	
Collector Cutoff Current	I _{CEO}	V _{CE} = 250V	_	_	1	mA	
	I _{CEX}	$V_{CE} = 250V, V_{BE(off)} = 1.5V$	_	_	500	μΑ	
Emitter Cutoff Current	I _{EBO}	V _{EB} = 5V	_	_	500	μΑ	
Second Breakdown							
Second Breakdown Collector Current with Base Forward Bias	I _{S/b}	V _{CE} = 40V, t = 0.5s (non-repetitive)	5	_	_	Α	
		V _{CE} = 100V, t = 0.5s (non-repetitive)	1.4	_	_	Α	
ON Characteristics (Note 3)							
DC Current Gain	h _{FE}	$V_{CE} = 2V$, $I_C = 2A$	20	_	100		
		$V_{CE} = 2V$, $I_C = 4A$	5	_	_		
Collector–Emitter Saturation Voltage	V _{CE(sat)}	I _C = 2A, I _B = 200mA	_	_	0.8	V	
		I _C = 4A, I _B = 400mA	_	_	2.5	V	
Base-Emitter On Voltage	V _{BE(on)}	V _{CE} = 2V, I _C = 4A	_	_	2	V	
Dynamic Characteristics							
Current Gain-Bandwidth Product	f _T	$V_{CE} = 10V$, $I_{C} = 1A$, $f_{test} = 1MHz$	4	_	_	MHz	
Output Capacitance	C _{ob}	$V_{CB} = 10V$, $I_E = 0$, $f_{test} = 1MHz$	_	_	500	pF	

Note 3. Pulse Test: Pulse Width = $300\mu s$, Duty Cycle $\leq 2\%$.

