

Página Principal ► Mis cursos ► Cálculo I 2020 ► Cuestionarios en Moodle. ► Cuestionario 2

Comenzado el	viernes, 9 de octubre de 2020, 09:43
Estado	Finalizado
Finalizado en	viernes, 9 de octubre de 2020, 12:42
Tiempo empleado	2 horas 58 minutos

Puntúa como 18,00	Determinar el punto, sobre la gráfica de la función $y=\sqrt{x}$ más cercano al punto $(2,0)$.
	Problema 2:
	Dados dos números positivos, si la suma del cuadrado del primero más el segundo es una constante positiva $m{A}$.
	¿Cuáles son los números que hacen que su producto sea máximo?
	Seleccione una o más de una:
	$arpropto$ a. Uno de los números buscados en el problema 2 es $\sqrt{rac{A}{2}}$.
	a. One to lee hambles substates on or producting 2 of $\sqrt{3}$.
	b. Uno de los números buscados en el problema 2 es $\frac{2}{3}A$.
	c. La distancia mínima en el problema 1 es $d=rac{7}{4}$.
	d. El valor x correspondiente al punto (x,y) buscado en el problema 1 se puede obtener al resolver la ecuación $x^2-3x+4=0$
	e. La distancia mínima en el problema 1 se obtiene considerando al punto $\left(\frac{3}{2}, \sqrt{\frac{3}{2}}\right)$ de la gráfica.
	$lacksquare$ f. No se puede plantear el problema 2 porque los valores dependen de $oldsymbol{A}$.
Pregunta 3	Tildar la(s) alternativa(s) correcta(s):
Finalizado Puntúa como 18,00	Seleccione una o más de una:
Puntua como 16,00	a. La ecuación $b^2x^2+a^2y^2=a^2b^2$ representa una elipse. Las rectas de ecuaciones $y=\pm a$ son tangentes a la elipse en los puntos $(0,\pm b)$.
	b. Para el astroide $ax^{\frac{2}{3}} + by^{\frac{2}{3}} = 4$ (donde a , b son dos constantes reales positivas), se cumple que la recta
	tangente al mismo en los puntos $P(x,y)$ cuyas coordenadas cumplen la condición $\frac{x}{y}=-rac{a^3}{i^3}$, es paralela a la recta
	de ecuación $x\!-\!y\!=\!0$.
	c. La recta normal al <i>Folio de Descartes</i> $x^3+y^3=3xy$ en el punto $P(\frac{3}{2},\frac{3}{2})$ pasa por el origen.
	d. Sea la elipse $4x^2+y^2=72$ y la recta S cuya ecuación es $2y+ax+3=0$, con $a\in\mathbb{R}-\{0\}$. En los puntos $P(x,y)$ cuyas componentes verifican la condición $y-2ax=0$, la recta tangente a la elipse resulta normal a S.
	e. Sea el astroide $ax^{\frac{2}{3}}+by^{\frac{2}{3}}=4$, donde a , b son dos constantes reales positivas. En todos los puntos de su gráfica el astroide tiene una recta tangente.
Pregunta 4	Tildar la(s) opciones correctas
Finalizado Puntúa como 18,00	Seleccione una o más de una:
Funda como 16,00	a. El diferencial de y puede considerarse como una aproximación al cambio de y
	b. Si se tiene un cubo de 3cm de lado y un error de medición de 0,02, el error propagado en el cálculo del área de una cara del cubo es de 0,1204 y el error propagado en el cálculo del volumen del cubo es de 0,544
	c. El error propagado en la medición es el que se observa en la gráfica de la recta tangente a la función dada
	d. El diferencial de y es el cambio producido en la función para un incremento de la variable independiente.
	e. Sea y = (x^3)+2. Si x=1 y dx=0,01 entonces dy= 0,03
	f. Sea y = (x^3)+2. El error de propagación en x=1, para un error de medición de 0.01 es, aproximadamente, de ±0,273

Teniendo en cuenta los siguientes enunciados, tildar la(s) alternativas correcta(s):

Pregunta 2

Problema 1:

Finalizado

Pregunta 5

Finalizado

Puntúa como 14.00

Tildar la(s) alternativa(s) correcta(s):

Seleccione una o más de una:

a. Empleando el método de fracciones parciales, se puede llegar a la siguiente igualdad:

$$\int \frac{dx}{x^2 - 4} = \frac{1}{4} ln \frac{|x - 2|}{|x + 2|} + C$$

- b. La integral $\int \frac{dx}{1+\sqrt{x}}$ puede ser calculada con el método de sustitución, escogiendo u²=x.
- c. El método de integración por partes resulta útil para calcular $\int \sqrt{1-e^x}dx$
- d. La técnica de integración por partes, y, en su marco, la elección u=ln(x) es útil para calcular $\int x^3 ln(x) dx$

Pregunta 6

Finalizado

Puntúa como 18,00

Marcar todas las alternativas que considere correctas

Seleccione una o más de una:

- a. Dado a>0, el cociente de polinomios $\frac{a(x^2+1)}{x(x^2-16)}$ se puede escribir en la forma $\frac{A}{x+2}+\frac{B}{x-2}+\frac{C}{x}$ para ciertas constantes A_1B_1C .
- b. Dado a>0, el cociente de polinomios $\frac{ax(x^2+1)}{x^2-25}$ se puede escribir en la forma $\frac{A}{x+5}+\frac{B}{x-5}$ para ciertas constantes A,B.
- c. Ninguna de las opciones restantes es correcta.
- d. Es posible resolver la integral $\int \frac{1+e^x}{e^2x-4} dx$ utilizando la sustitución $u=e^x$ y luego el método de separación en suma de fracciones parciales.
- e. La integral $\int \frac{-6a}{(x+1)(x-5)} dx$, con a < 0, puede re-escribirse como $\int \left(\frac{a}{x+1} \frac{a}{x-5}\right) dx$ y, así, es posible calcular su integral de manera más sencilla.

◆ Foro de consultas sobre el Recuperatorio 1

Ir a...

Foro de consultas para el cuestionario 2 ▶