Эллиптические кривые

Лекция 4. Алгоритм вычисления E[n]

Семён Новосёлов

БФУ им. И. Канта

2023

Поле определения E[n]

E – эллиптическая кривая над полем $K=\mathbb{F}_q$, $\operatorname{char} K
eq 2,3.$

Точки
$$\mathfrak{n}$$
-кручения: $E[\mathfrak{n}] = \big\{ P \in E\left(\bar{K}\right) : \mathfrak{n}P = \mathcal{O} \big\}.$

В случае р∤п:

$$E\left[n\right]\simeq\mathbb{Z}/n\mathbb{Z}\times\mathbb{Z}/n\mathbb{Z}$$

$$E[n] = \{O, (x_1, y_1), ..., (x_m, y_m)\},\$$

где
$$m = n^2 - 1$$
.

Поле, в котором лежит E[n] (расширение K):

$$K_{E,n} := K(x_1, y_1, \dots, x_m, y_m)$$

$$[K_{E,n}:K]=d<\infty$$

Мотивация

Зачем нужно находить E[n]?

- 1 нахождение точек из E[n] часть полиномиальных (от $\log q$) алгоритмов вычисления $\#E(\mathbb{F}_q)$.
- 2 $d=[K_{E,n}:K]$ степень вложения, $K_{E,n}$ поле определения спаривания Вейля $e_n:E[n]\times E[n]\mapsto \mu_r.$

сложность DLOG в $\mathbb{E}(\mathbb{F}_q) \rightleftarrows$ сложность DLOG в \mathbb{F}_{q^d}

Многочлены деления

Как вычислить E[n]?

Рассмотрим метод на основе факторизации многочленов деления:

- $\psi_{\mathfrak{m}} \in \mathbb{Z}[x,y,A,B]$
- $\bullet \ \phi_m = x \cdot \psi_m^2 \psi_{m+1} \psi_{m-1}$
- $\bullet \ \omega_{\mathfrak{m}} = \frac{1}{4y} \left(\psi_{\mathfrak{m}+2} \psi_{\mathfrak{m}-1}^2 \psi_{\mathfrak{m}-2} \psi_{\mathfrak{m}+1}^2 \right)$

Сложение точки Р с самой собой n раз:

$$[n]P = \left(\frac{\varphi_n(x)}{\psi_n^2(x)}, \frac{\omega_n(x)}{\psi_n^3(x, y)}\right).$$

Нахождение E[n]

Лемма

Многочлены ϕ_n и $\psi_n^2\in K\left[x\right]$ – взаимно просты, если $\Delta(E)\neq 0$. Т.е. для E – эллиптической кривой, φ_n,ψ_n^2 – взаимно просты.

⊲ Доказательство: [Lang, II 2.3].⊳

Следствие

Пусть $P=(x,y)\in E(\bar{K}).$ Тогда $[\mathfrak{n}]P=\mathcal{O}\Leftrightarrow \psi^2_\mathfrak{n}(x)=0.$

Нахождение E[n]

$$\psi_n^2(x) = n^2 x^{n^2 - 1} + \dots$$

(Washington, §3.2)

Факторизуем ψ_n в $\mathbb{F}_q[x]$.

$$\psi_n = f_1 \cdot \ldots \cdot f_r,$$

где f_r – неприводимые над $\mathbb{F}_{\mathfrak{q}}.$

Замечание

- все f_i различны
- в E[n] всего n^2-1 точек $eq \mathcal{O}$
- $\forall P_i \in E[n]$ имеем $-P_i \in E[n]$
- $\deg \psi_n(x) = \frac{n^2-1}{2} \Rightarrow \psi_n(x)$ имеет $\frac{n^2-1}{2}$ корней в $\overline{\mathbb{F}}_q$ и каждый корень кратности 1 (иначе мы имели бы меньше чем n^2-1 точек $\neq \mathcal{O}$ в E[n]).

Определение степени вложения d

Определим $d=[K_{E,n}:K] \neq 0$ из разложения ψ_n над \mathbb{F}_q :

$$\psi_n = f_1 \cdot \ldots \cdot f_r$$

Теорема

Пусть $\mathfrak n$ – простое > 2, $K=\mathbb F_\mathfrak q$, $\mathfrak n \ne \operatorname{char}(K)$, $d_\mathfrak i = \deg f_\mathfrak i$, $\ell = \operatorname{lcm}(d_1,\dots,d_r)$. Пусть $K'_{\mathsf E,\mathfrak n} = K(x_1,\dots,x_{\mathfrak n^2-1})$, где $x_\mathfrak i$ – x-координаты точек $\mathfrak n$ -кручения. Тогда

$$[K'_{E,n}: K] = \ell.$$

Кроме того, $[K_{E,n}: K'_{E,n}] = 1$, либо 2. То есть $d = \ell$ либо 2ℓ .

 $\triangleleft \exists x_i$ т.ч. $y_i = \sqrt{x_i^3 + ax_i + b} \not\in K'_{E,n} = \mathbb{F}_{\mathfrak{q}^\ell} \implies d = 2\ell$. В противном случае: $d = \ell$. \triangleright

Обобщенный символ Лежандра

Определение

 $\mathsf{K} = \mathbb{F}_{\mathsf{q}}$, $\mathsf{x} \in \mathsf{K}$. Квадратичный характер $\left(\frac{\cdot}{\mathsf{K}} \right)$ – это

$$\left(\frac{x}{K}\right) = \begin{cases} 1, & \exists y \in K : \ y^2 = x \\ -1, & \nexists y \in K : \ y^2 = x \\ 0, & x = 0. \end{cases}$$

чтобы определить $\mathbf{d} = \ell$ или $\mathbf{d} = 2\ell$, необходимо вычислить

$$\left(\frac{x_{i}^{3}+ax_{i}+b}{\mathbb{F}_{q^{\ell}}}\right),$$

 $\forall x_i$ – корней ψ_n .

Лемма

Если $K=\mathbb{F}_q$ и $d=[K_{E,n}:K]$, то $q^d\equiv 1 \bmod n.$ В частности, $\operatorname{ord}(q,n)\mid d.$

Замечание

Так как DLOG на $E(\mathbb{F}_q)$ сводится в \mathbb{F}_{q^d} для проверки безопасности достаточно проверить, что $q^d\not\equiv 1 \bmod n$ для $d\leq 1000$ (требование ГОСТ и др.)

Лемма (van Tuyl)

Пусть f_i — неприводимый многочлен в разложении ψ_n , т.ч. $2d_i \nmid \ell$, $d_i = \deg f_i$. Положим

$$d^*=\mathrm{lcm}(\mathrm{ord}(q,n),\ d_i),$$

$$c=\left(\frac{x_i^3+\alpha x+b}{\mathbb{F}_{q^{d_i}}}\right),\ \text{где}\ f_i(x_i)=0.$$

Тогда

$$\mathrm{d} = egin{cases} \ell, & ext{ если } \mathrm{c} = 1 \text{ и } \mathrm{d}^* | \ell \ 2\ell & ext{ иначе.} \end{cases}$$

• Лемма позволяет рассмотреть лишь один f_i (и его корень x_i) для определения d.

Алгоритм вычисления $d = [K_{E,n} : K]$

Вход: $E/\mathbb{F}_{\mathfrak{q}}: y^2=x^3+ax+b$, $\mathfrak{n}\geqslant 3$ – нечётное.

Выход: d т.ч. $E[n] \subseteq E(\mathbb{F}_{q^d})$.

- $oldsymbol{0}$ Построить $\psi_{\mathfrak{n}} \in \mathbb{F}_{\mathfrak{q}}[x]$
- **2** Факторизовать $\psi_n = f_1 \cdot \ldots \cdot f_r$
- 4 Выбрать f_i т.ч. $2 \cdot \deg f_i \nmid \ell$
- $egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} x_i^3 + ax_i + b \\ \mathbb{F}_{q^{d_i}} \end{aligned} \end{aligned} \end{aligned}$, где x_i корень f_i .
- 6 if c = -1: return $d = 2\ell$
- $\begin{aligned} \textbf{0} & \text{ d}^* = \operatorname{lcm}(\operatorname{ord}(\textbf{q},\textbf{n}),\textbf{d}_i) \\ & \text{ if } \textbf{d}^* = \ell \text{ or } \ell = \textbf{n} \cdot \textbf{d}^*\text{:} \\ & \text{ return } \textbf{d} = \ell \\ & \text{ return } \textbf{d} = 2\ell \end{aligned}$

- Алгоритм может быть адаптирован для вычисления самой группы точек n-кручения E[n], если для x_i –

• для n = 2, E[n] вычисляется разложением многочлена

 $x^{3} + ax + b$ (см. пред. лекцию)

• для n = 1, $E[n] = {O}$.

корня f_i, вычислять соответствующие u_i

Оценка сложности

- Шаг 1. $\deg \psi_n = \frac{n^2 1}{2}$. Грубо: poly(n).
- Шаг 2. Факторизация многочлена

$$\widetilde{O}((\deg \psi_n)^2 \log^2 q) \hspace{1cm} \text{(MCA, Th. 14.14)}$$

Шаг 5. Обобщённый символ Лежандра:

• Шаг 7. Сводится к факторизации n-1. Время: $L_n(1/3)$. Итого: $L_n(1/3) \cdot \log^2 q$ операций в \mathbb{F}_q .

Литература

- H. Cohen и др. <u>Handbook of elliptic and hyperelliptic curve cryptography</u>. 2005.
- S. Lang. Elliptic Curves: Diophantine Analysis. 1978.
- A. L. van Tuyl.
 The field of n-torsion points of an elliptic curve over a finite field. 1997.
- J. Von Zur Gathen и J. Gerhard. Modern computer algebra. 2013.
- L. C. Washington. Elliptic curves: number theory and cryptography. 2008.

Контакты

snovoselov@kantiana.ru

Страница курса:

crypto-kantiana.com/semyon.novoselov/teaching/elliptic_curves_2023