### MODELING LIGHT INTENSITIES (Section 14-1 in Computer Graphics)

- Light Source
- Diffuse Reflection
- Specular Reflection
- Transmitted or Refracted LightTexture and Surface Pattern
- Shadows

## DISPLAYING LIGHT INTENSITIES (Section 14-2 in Computer Graphics)

- Halftoning
- Dithering

#### Introduction

- achieving realistic views
  - generate perspective projections
  - remove hidden surfaces
  - apply light intensities to present shading and color patterns
- calculate light intensities using a shading model based on optical properties of surfaces
  - opaque
  - transparent
  - · shiny or matte
  - relative positions of surfaces
  - orientations of surfaces with respect to light sources
  - types of light sources

### light sources

- light-emitting sources
  - point sources: the dimensions of the light source are small compared to the dimensions of the object
  - distributed sources: the dimensions of the light source are significant
- light-reflecting sources
  - illuminated surfaces
  - multiple reflections combine to produce ambient light or background light
- light-transmitting sources
  - transparent and translucent objects

#### reflections

- diffuse reflection
  - scattered light from point light sources and ambient light sources
  - a matte surface produces primarily diffuse reflection

Diffuse Reflections
From a Surface

- specular reflection
  - highlights or bright spots
  - more pronounced on shiny surfaces

Specular Reflection Superimposed on Diffuse Reflections

#### diffuse reflection

- · effects of ambient light
  - uniform intensity in all directions
  - surfaces range from highly reflective to highly absorbitive
  - $I = k_d I_a$ , where
    - · I is the intensity at any point on the surface
    - kd is the coefficient of reflection or reflectivity
    - Ia is the intensity of the ambient light
- · effects of point source light
  - the intensity of reflected light depends on the angle of illumination (Lambert's law)
    - perpendicular incident light produces a brighter surface than does oblique incident light



 for simplification, light sources are treated as being far enough away to produce parallel rays diffuse reflection, cont.

$$-I = \frac{k_d I_p}{d + d_0} (N \cdot L)$$

- · I is the intensity of any point on the surface
- · kd is the coefficient of reflection or reflectivity
- $\bullet$  I<sub>p</sub> is the intensity of the point source
- d is the distance from the point source to a point on the surface
- do is a constant which prevents the denominator from approaching zero
- · N is the surface normal
- · L is the unit vector to the point source



#### ambient light and diffuse reflection

• 
$$I = k_d I_a + \frac{k_d I_p}{d + d_0} (N \cdot L)$$

 when color is modeled, there is one component of this form for each color

#### specular reflection

- at certain angles, shiny surfaces reflect all incident light
- a specular reflection is a spot of reflected light that is the same color as the incident light
- for an ideal reflector, the angle of incidence is equal to the angle of specular reflection



- shiny surfaces have a narrow reflection range



- dull surfaces have a wider reflection range



 diffuse reflection and specular reflection are modeled with simplifications to increase efficiency

## specular reflection, continued

$$I = \frac{I_p}{d + d_0} (w(\theta) \cos^n \phi)$$

- W(Θ) depends on the surface material and is determined empirically
- $\phi$  is the angle between the R (the angle of specular reflection) and V (the unit vector to the viewer)
- n is high for shiny surfaces

# complete reflection model

diffuse component due to point source light

$$I = k_d I_a + \underbrace{\frac{I_p}{d + d_0} \left[ k_d (N \cdot L) + w(\theta) \cos^n \phi \right]}_{\text{ambient component}}$$
specular component

#### transmitted or refracted light

- usually from light-reflecting surfaces
  - see figure 14-10 on page 281
- diffuse refraction from translucent, light-scattering surfaces
  - implemented by diminishing the intensity (spreading it over a finite area)
  - costly to implement
- specular refraction
  - light incident on a transparent surface has a reflected component and a refracted component



## transmitted or refracted light, continued

 commonly modeled by shifting the path of the incident light or by ignoring path shifts altogether



- implemented by modifying the intensity
  - (It) of the transparent object according to the intensity (Ib) of the background object and the refraction coefficient (r)

$$I = rIt + (1 - r)Ib$$

- easily accommodated by the depth-sort hidden-surface method
- see figure 14-14 on page 283

## texture and surface patterns

- texture distinguishes
  - orange peel from orange plastic of the same color
  - glazed brick from china of the same color
- surface patterns permit
  - china with designs
  - Persian carpets
  - highways and runways with dividing lines and skid marks

### texture and surface patterns, continued

- achieving texture
  - alter the surface normal (as a function of position over the surface)
  - alter the reflection coefficient
  - alter both
  - use texture mapping methods (similar to pattern fill)
- achieving surface patterns
  - the surface pattern is defined as an array
  - the array is mapped onto the object at a designated position
  - patterns can be wrapped around threedimensional objects

#### shadows

- use hidden surface methods with the light source at the view position
  - use shadow polyhedra to identify surface sections which cannot be "seen" by the light source
  - compute the shade of each shadow area without a contribution from the light source that produced the shadow



- alternatively, apply surface patterns to shadow areas
- see figure 14-17 on page 285
- shadow patterns are valid for any viewing position, as long as the light sources remain stationary

## **Displaying Light Intensities**

- some graphics systems can display several intensity levels
  - a four-level system provides minimal shading capability
  - high quality shading patterns require 32 to 256 levels of intensity
  - intensity information may be stored as
    - an intensity level (lk)
    - a level number (k)
    - a value proportional to the control grid voltage

## halftoning

- other graphics systems can display only "on" and "off"
- pixels are treated as being 2-by-2 or 3-by-3 or larger
- 2-by-2 pixels have 5 different intensity levels



- n-by-n pixels have n<sup>2</sup>+ 1 different intensity levels
- color variations can be obtained by halftoning (see figure 14-20 on page 287)
- resolution diminishes

## halftoning, continued

• avoid introducing patterns



• equivalent combinations can be selected randomly



 patterns can be avoided by successively higher grid patterns with the same pixels set



## halftoning, continued

 halftoning can be combined with systems that have multiple levels of intensity



• natural when the resolution of the scene is less than the resolution of the output device

#### dithering techniques

- used with halftoning methods to smooth edges and improve overall appearance
- a dither intensity or dither noise is added to the calculated intensity
- dither noise can be calculated randomly or based on position
- alternatively, intensity is compared to a dither value (thresholding)
  - the pixel is turned on if the intensity exceeds the dither value
  - again, dither values can be generated randomly or based on position
  - example
    - $i = x \mod 2$
    - j = y mod 2
    - if I > D(i, j)
       then turn on pixel at (x, y)
    - where D is a 2-by-2 matrix containing the integers 0 through 3

$$D = \begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix}$$

#### MODELING LIGHT INTENSITIES

- light sourcediffuse reflection
- specular reflection
  transmitted or refracted light
  texture and surface pattern
- shadows

## DISPLAYING LIGHT INTENSITIES

- halftoning
- dithering