Curs 13

2021-2022 Fundamentele limbajelor de programare

Cuprins

λ -calcul

λ-calcul: sintaxa

Lambda Calcul - sintaxă

$$t = x$$
 (variabilă)
| $\lambda x. t$ (abstractizare)
| $t t$ (aplicare)

λ -termeni

Fie $Var = \{x, y, z, ...\}$ o mulţime infinită de variabile. Mulţimea λ -termenilor ΛT este definită inductiv astfel:

```
[Variabilă] Var \subseteq \Lambda T
[Aplicare] dacă t_1, t_2 \in \Lambda T atunci (t_1 t_2) \in \Lambda T
[Abstractizare] dacă x \in Var ş i t \in \Lambda T atunci (\lambda x.t) \in \Lambda T
```

Lambda termeni

Convenţii:

- □ se elimină parantezele exterioare
- aplicarea este asociativă la stânga: t₁t₂t₃ este (t₁t₂)t₃
- corpul abstractizării este extins la dreapta:

$$\lambda x.t_1t_2$$
 este $\lambda x.(t_1t_2)$ (nu $(\lambda x.t_1)t_2$)

 \square scriem $\lambda xyz.t$ în loc de $\lambda x.\lambda y.\lambda z.t$

Mulţimea variabilelor libere FV(t)

Pentru un λ -termen t mulţimea variabilelor libere este definită astfel:

[Variabilă]
$$FV(x) = \{x\}$$

[Aplicare]
$$FV(t_1t_2) = FV(t_1) \cup FV(t_2)$$

[Abstractizare]
$$FV(\lambda x.t) = FV(t) \setminus \{x\}$$

Substituţii

Fie t un λ -termen si $x \in Var$.

Definiție intuitivă

Pentru un λ -termen u vom nota prin [u/x]t rezultatul înlocuirii tuturor apariţiilor libere ale lui x cu u în t.

Definirea substituţiei

Rezultatul substituirii lui *x* cu *u* în *t* este definit astfel:

```
[Variabilă] [u/x]x = u

[Variabilă] [u/x]y = y dacă x \neq y

[Aplicare] [u/x](t_1t_2) = [u/x]t_1[u/x]t_2

[Abstractizare] [u/x]\lambda y.t = \lambda y.[u/x]t unde y \neq x și y \notin FV(u)
```

6/1

α -conversie (α -echivalenţă)

Definim următoarea relaţie peste termeni:

α -conversia $=_{\alpha}$

```
[Reflexivitate] t =_{\alpha} t

[Simetrie] t_1 =_{\alpha} t_2 implică t_2 =_{\alpha} t_1

[Tranzitivitate] t_1 =_{\alpha} t_2 şi t_2 =_{\alpha} t_3 implică t_1 =_{\alpha} t_3

[Redenumire] \lambda x.t =_{\alpha} \lambda y.[y/x]t dacă y \notin FV(t)

[Compatibilitate] t_1 =_{\alpha} t_2 implică

t t_1 =_{\alpha} t t_2, t_1 t =_{\alpha} t_2 t şi \lambda x.t_1 =_{\alpha} \lambda x.t_2
```

Vom lucra modulo α -conversie, doi termeni α -echivalenţi vor fi consideraţi "egali".

Daca $t_1 =_{\alpha} t_2$, atunci vom folosi notaţia $[u/x]t_1 =_{\alpha} [u/x]t_2$ pentru a semnala faptul că în t_1 am redenumit variabilele.

α -conversie

Exemplu:

α -conversie

Exemplu:

 β -reducția este o relație pe mulțimea λ -termenilor, lucrand modula α -echivalenta.

$$\beta$$
-reducţia \rightarrow_{β} , $\stackrel{*}{\rightarrow}_{\beta}$

 \square un singur pas $\rightarrow_{\beta} \subseteq \Lambda T \times \Lambda T$

[Aplicarea] $(\lambda x.t)u \rightarrow_{\beta} [u/x]t$ [Compatibilitatea] $t_1 \rightarrow_{\beta} t_2$ implică

 $t t_1 \rightarrow_{\beta} t t_2, t_1 t \rightarrow_{\beta} t_2 t \S i \lambda x. t_1 \rightarrow_{\beta} \lambda x. t_2$

 β -reducția este o relație pe mulțimea λ -termenilor, lucrand modula α -echivalenta.

$$\beta$$
-reducţia $\rightarrow_{\beta},\stackrel{*}{\rightarrow_{\beta}}$

□ un singur pas $\rightarrow_{\beta} \subseteq \Lambda T \times \Lambda T$

[Aplicarea]
$$(\lambda x.t)u \rightarrow_{\beta} [u/x]t$$

[Compatibilitatea] $t_1 \rightarrow_{\beta} t_2$ implică

$$t\;t_1 \to_\beta t\;t_2,\; t_1t \to_\beta t_2t\;\S\;i\;\lambda x.t_1 \to_\beta \lambda x.t_2$$

 \square zero sau mai mulţi paş i $\overset{*}{\to}_{\beta} \subseteq \Lambda T \times \Lambda T$

$$t_1 \stackrel{*}{\to}_{\beta} t_2$$
 dacă există $n \geq 0$ ş i u_0, \dots, u_n astfel încât

$$t_1 =_{\alpha} u_0 \rightarrow_{\beta} u_1 \rightarrow_{\beta} \cdots \rightarrow_{\beta} u_n =_{\alpha} t_2$$

9/1

Să considerăm termenul $(\lambda x.(\lambda y.yx)z)v$

$$\Box (\lambda x.(\lambda y.yx)z)v \rightarrow_{\beta} (\lambda y.yv)z \rightarrow_{\beta} zv$$

Să considerăm termenul $(\lambda x.(\lambda y.yx)z)v$

$$\Box (\lambda x.(\lambda y.yx)z)v \rightarrow_{\beta} (\lambda y.yv)z \rightarrow_{\beta} zv$$

$$\square (\lambda x.(\lambda y.yx)z)v \rightarrow_{\beta} (\lambda x.zx)v \rightarrow_{\beta} zv$$

Să considerăm termenul $(\lambda x.(\lambda y.yx)z)v$

- $\square (\lambda x.(\lambda y.yx)z)v \rightarrow_{\beta} (\lambda x.zx)v \rightarrow_{\beta} zv$

Observăm că un termen poate fi β -redus în mai multe moduri.

Proprietatea de confluenţă ne asigură că vom ajunge întotdeauna la acelaşi rezultat.

Confluența β -reducției

Teorema Church-Rosser

Dacă $t\stackrel{*}{\rightarrow}_{\beta} t_1$ și $t\stackrel{*}{\rightarrow}_{\beta} t_2$

Confluența β -reducției

Teorema Church-Rosser

Dacă $t \stackrel{*}{\rightarrow}_{\beta} t_1$ şi $t \stackrel{*}{\rightarrow}_{\beta} t_2$

atunci există u astfel încât $t_1 \stackrel{*}{\to}_{\beta} u$ și $t_2 \stackrel{*}{\to}_{\beta} u$.

β -forma normală

Intuitiv, o formă normală este un termen care nu mai poate fi redus (sau punctul final al unui calcul).

Formă normală

- un λ -termen căruia nu i se mai poate aplica reducerea într-un pas \rightarrow_{β} se numeşte β -formă normală
- □ dacă $t \xrightarrow{*}_{\beta} u_1$, $t \xrightarrow{*}_{\beta} u_2$ şi u_1 , u_2 sunt β -forme normale atunci, datorită confluenței, $u_1 =_{\alpha} u_2$
- \Box un λ -termen poate avea cel mult o β -formă normală (modulo α -echivalenţă)

β -forma normală

Intuitiv, o formă normală este un termen care nu mai poate fi redus (sau punctul final al unui calcul).

Formă normală

- □ un λ -termen căruia nu i se mai poate aplica reducerea într-un pas \rightarrow_{β} se numeşte β -formă normală
- □ dacă $t \xrightarrow{*}_{\beta} u_1$, $t \xrightarrow{*}_{\beta} u_2$ şi u_1 , u_2 sunt β -forme normale atunci, datorită confluenței, $u_1 =_{\alpha} u_2$
 - un λ -termen poate avea cel mult o β -formă normală (modulo α -echivalenţă)

Exemplu:

- □ zv este β-formă normală pentru $(\lambda x.(\lambda y.yx)z)v$ $(\lambda x.(\lambda y.yx)z)v \rightarrow_{\beta} (\lambda y.yv)z \rightarrow_{\beta} zv$
- Dexistă termeni care **nu** pot fi reduşi la o β -formă normală, de exemplu $(\lambda x.xx)(\lambda x.xx)$

Intuitiv, β -conversia extinde β -reducţia în ambele direcţii.

$$\square (\lambda y.yv)z \rightarrow_{\beta} zv \leftarrow_{\beta} (\lambda x.zx)v$$

Intuitiv, β -conversia extinde β -reducţia în ambele direcţii.

- $\square (\lambda y.yv)z \rightarrow_{\beta} zv \leftarrow_{\beta} (\lambda x.zx)v$
- $\square (\lambda y.yv)z \leftarrow_{\beta} (\lambda x.(\lambda y.yx)z)v \rightarrow_{\beta} (\lambda x.zx)v$

Intuitiv, β -conversia extinde β -reducţia în ambele direcţii.

- $\square (\lambda y.yv)z \rightarrow_{\beta} zv \leftarrow_{\beta} (\lambda x.zx)v$
- $\square (\lambda y.yv)z \leftarrow_{\beta} (\lambda x.(\lambda y.yx)z)v \rightarrow_{\beta} (\lambda x.zx)v$

β -conversia $=_{\beta}$

 $\Box =_{\beta} \subseteq \Lambda T \times \Lambda T$

 $t_1 =_{\beta} t_2$ dacă există $n \ge 0$ și u_0, \dots, u_n astfel încât

 $t_1 =_{\alpha} u_0, \ u_n =_{\alpha} t_2$ şi, pentru orice $i, \ u_i \to_{\beta} u_{i+1}$ sau $u_{i+1} \to_{\beta} u_i$

13/1

Intuitiv, β -conversia extinde β -reducţia în ambele direcţii.

- $\square (\lambda y.yv)z \rightarrow_{\beta} zv \leftarrow_{\beta} (\lambda x.zx)v$
- $\square (\lambda y.yv)z \leftarrow_{\beta} (\lambda x.(\lambda y.yx)z)v \rightarrow_{\beta} (\lambda x.zx)v$

β -conversia $=_{\beta}$

 $=_{\beta} \subseteq \Lambda T \times \Lambda T$ $t_1 =_{\beta} t_2 \text{ dacă există } n \ge 0 \text{ şi } u_0, \dots, u_n \text{ astfel încât}$ $t_1 =_{\alpha} u_0, u_n =_{\alpha} t_2 \text{ şi, pentru orice } i, u_i \to_{\beta} u_{i+1} \text{ sau } u_{i+1} \to_{\beta} u_i$

Exemplu: $(\lambda y.yv)z =_{\beta} (\lambda x.zx)v$

β -conversia $=_{\beta}$

$$\Box =_{\beta} \subseteq \Lambda T \times \Lambda T$$

$$t_1 =_{\beta} t_2 \text{ dacă există } n \geq 0 \text{ ş i } u_0, \dots, u_n \text{ astfel încât}$$

$$t_1 =_{\alpha} u_0, u_n =_{\alpha} t_2 \text{ ş i, pentru orice } i, u_i \to_{\beta} u_{i+1} \text{ sau } u_{i+1} \to_{\beta} u_i$$

β -conversia $=_{\beta}$

```
 \Box =_{\beta} \subseteq \Lambda T \times \Lambda T 
 t_1 =_{\beta} t_2 \text{ dacă există } n \ge 0 \text{ ş i } u_0, \dots, u_n \text{ astfel încât} 
 t_1 =_{\alpha} u_0, u_n =_{\alpha} t_2 \text{ ş i, pentru orice } i, u_i \to_{\beta} u_{i+1} \text{ sau } u_{i+1} \to_{\beta} u_i
```

Observații

 $\square =_{\beta}$ este o relaţie de echivalenţă

β -conversia $=_{\beta}$

```
 \Box =_{\beta} \subseteq \Lambda T \times \Lambda T 
 t_1 =_{\beta} t_2 \text{ dacă există } n \ge 0 \text{ ş i } u_0, \dots, u_n \text{ astfel încât} 
 t_1 =_{\alpha} u_0, u_n =_{\alpha} t_2 \text{ ş i, pentru orice } i, u_i \to_{\beta} u_{i+1} \text{ sau } u_{i+1} \to_{\beta} u_i
```

Observatii

- $\square =_{\beta}$ este o relație de echivalență
- \square pentru t_1 , t_2 λ -termeni şi u_1 , u_2 β -forme normale dacă $t_1 \stackrel{*}{\to}_{\beta} u_1$, $t_2 \stackrel{*}{\to}_{\beta} u_2$ şi $u_1 =_{\alpha} u_2$ atunci $t_1 =_{\beta} t_2$

β -conversia $=_{\beta}$

```
 \Box =_{\beta} \subseteq \Lambda T \times \Lambda T 
 t_1 =_{\beta} t_2 \text{ dacă există } n \ge 0 \text{ ş i } u_0, \dots, u_n \text{ astfel încât} 
 t_1 =_{\alpha} u_0, u_n =_{\alpha} t_2 \text{ ş i, pentru orice } i, u_i \to_{\beta} u_{i+1} \text{ sau } u_{i+1} \to_{\beta} u_i
```

Observatii

- $\square =_{\beta}$ este o relație de echivalență
- \square pentru t_1 , t_2 λ -termeni şi u_1 , u_2 β -forme normale dacă $t_1 \stackrel{*}{\to}_{\beta} u_1$, $t_2 \stackrel{*}{\to}_{\beta} u_2$ şi $u_1 =_{\alpha} u_2$ atunci $t_1 =_{\beta} t_2$

 β -conversia reprezintă "egalitatea prin calcul", iar β -reducția (modulo α -conversie) oferă o procedură de decizie pentru aceasta.

Expresivitatea λ -calculului

Expresivitatea *λ*-calculului

Vom arăta cum putem exprima în lambda calcul

- □ Booleeni
- Numere naturale

Expresivitatea *λ*-calculului

Vom arăta cum putem exprima în lambda calcul

- □ Booleeni
- Numere naturale

Intuiție: tipurile de date sunt codificate de capabilități.

- □ Booleeni capabilitatea de a alege între două alternative
- □ Numere naturale capabilitatea de a itera de un număr dat de ori

Booleeni

Intuiție: Capabilitatea de a alege între două alternative.

Codificare: Un Boolean este o funcție cu 2 argumente reprezentând

ramurile unei alegeri.

Booleeni

Intuiție: Capabilitatea de a alege între două alternative.

Codificare: Un Boolean este o funcție cu 2 argumente reprezentând ramurile unei alegeri.

Incepem prin a defini doi λ -termeni pentru a coda "true" și "false":

- □ $\mathbf{T} = \lambda xy.x$ din cele două alternative o alege pe prima
- □ $\mathbf{F} = \lambda xy.y$ din cele două alternative o alege pe a doua

Negaţia

- \Box **T** = $\lambda xy.x$
- \Box **F** = $\lambda xy.y$
- \square not = $\lambda b.b$ F T

Negaţia

- \Box **T** = $\lambda xy.x$
- \Box **F** = $\lambda xy.y$
- \square not = $\lambda b.b$ F T

Avem urmatoarele β -reducţii:

$$\square$$
 not $T = (\lambda b.b FT)T \rightarrow_{\beta} TFT = (\lambda xy.x) FT \rightarrow_{\beta} F$

Negaţia

- \Box **T** = $\lambda xy.x$
- \Box **F** = $\lambda xy.y$
- \square not = $\lambda b.b$ F T

Avem urmatoarele β-reducţii:

- \square not $T = (\lambda b.b FT)T \rightarrow_{\beta} TFT = (\lambda xy.x) FT \rightarrow_{\beta} F$

Conjunctia

- \Box **T** = $\lambda xy.x$
- \Box **F** = $\lambda xy.y$
- \square not = $\lambda b.b$ F T
- \square and = $\lambda ab.ab$ **F**

Conjunctia

- \Box **T** = $\lambda xy.x$
- \Box **F** = $\lambda xy.y$
- \square not = $\lambda b.b$ F T
- \square and = $\lambda ab.abF$

Avem urmatoarele β -reducții:

 \square and TT = $(\lambda ab.abF)$ TT \rightarrow_{β} TTF = $(\lambda xy.x)$ TF \rightarrow_{β} T

Conjunctia

- \Box **T** = $\lambda xy.x$
- \Box **F** = $\lambda xy.y$
- \square not = $\lambda b.b$ F T
- \square and = $\lambda ab.abF$

- \square and TT = $(\lambda ab.abF)$ TT \rightarrow_{β} TTF = $(\lambda xy.x)$ TF \rightarrow_{β} T
- \square and TF = $(\lambda ab.abF)$ TF \rightarrow_{β} TFF = $(\lambda xy.x)$ FF \rightarrow_{β} F

Conjunctia

- \Box **T** = $\lambda xy.x$
- \Box **F** = $\lambda xy.y$
- \square not = $\lambda b.b$ F T
- \square and = $\lambda ab.abF$

- \square and TT = $(\lambda ab.abF)$ TT \rightarrow_{β} TTF = $(\lambda xy.x)$ TF \rightarrow_{β} T
- $lue{}$ and T F $= (\lambda ab.ab$ F) T F $ightarrow_{eta}$ T F F $= (\lambda xy.x)$ F F $ightarrow_{eta}$ F
- \square and $FT = (\lambda ab.abF) FT \rightarrow_{\beta} FTF = (\lambda xy.y)TF \rightarrow_{\beta} F$

Conjunctia

- \Box **T** = $\lambda xy.x$
- \Box **F** = $\lambda xy.y$
- \square not = $\lambda b.b$ F T
- \square and = $\lambda ab.abF$

- \square and TT = $(\lambda ab.abF)$ TT \rightarrow_{β} TTF = $(\lambda xy.x)$ TF \rightarrow_{β} T
- \square and T F = $(\lambda ab.abF)$ T F \rightarrow_{β} T F F = $(\lambda xy.x)$ F F \rightarrow_{β} F
- \square and $FT = (\lambda ab.abF) FT \rightarrow_{\beta} FTF = (\lambda xy.y)TF \rightarrow_{\beta} F$
- \square and $FF = (\lambda ab.abF) FF \rightarrow_{\beta} FFF = (\lambda xy.y)FF \rightarrow_{\beta} F$

Disjunctia

- \Box **T** = $\lambda xy.x$
- \Box **F** = $\lambda xy.y$
- \square not = $\lambda b.b$ F T
- \square and = $\lambda ab.ab$ **F**
- \square or =

Disjunctia

- \Box **T** = $\lambda xy.x$
- \Box **F** = $\lambda xy.y$
- \square not = $\lambda b.b$ F T
- \square and = $\lambda ab.ab$ **F**
- \square or = $\lambda ab.aTb$

Disjunctia

- \Box **T** = $\lambda xy.x$
- \Box **F** = $\lambda xy.y$
- \square not = $\lambda b.b$ F T
- \square and = $\lambda ab.abF$
- \square or = $\lambda ab.aTb$

- \square or $TT = (\lambda ab.aTb) TT \rightarrow_{\beta} TTT = (\lambda xy.x)TT \rightarrow_{\beta} T$
- \square or T F = $(\lambda ab.aTb)$ T F \rightarrow_{β} T T F = $(\lambda xy.x)$ T F \rightarrow_{β} T
- \square or $FT = (\lambda ab.aTb) FT \rightarrow_{\beta} FTT = (\lambda xy.y)TT \rightarrow_{\beta} T$
- \square or $FF = (\lambda ab.aTb) FF \rightarrow_{\beta} FTF = (\lambda xy.y)TF \rightarrow_{\beta} F$

Conditional

Putem sa definim

- \Box if T u w = u
- \Box if $\mathbf{F} u w = w$

Observati ca u si w sunt orice λ -termeni, nu doar Booleeni.

Conditional

Putem sa definim

- \Box if T u w = u
- \Box if $\mathbf{F} u w = w$

Observati ca u si w sunt orice λ -termeni, nu doar Booleeni.

Avem

if =
$$\lambda$$
buw.buw

unde b este un boolean.

Intuiție: Capabilitatea de a itera o funcție de un număr de ori peste

o valoare initială

Codificare: Un număr natural este o funcție cu 2 argumente

s funcția care se iterează

z valoarea iniţială

0 ::= λs z.z — s se iterează de 0 ori, deci valoarea inițială

Intuiție: Capabilitatea de a itera o funcție de un număr de ori peste

o valoare inițială

Codificare: Un număr natural este o funcție cu 2 argumente

s funcția care se iterează

z valoarea inițială

 $0 := \lambda s \ z.z - s$ se iterează de 0 ori, deci valoarea inițială

1 ::= $\lambda s z.s z$ — functia iterată o dată aplicată valorii inițiale

Intuiție: Capabilitatea de a itera o funcție de un număr de ori peste

o valoare initială

Codificare: Un număr natural este o funcție cu 2 argumente

s funcția care se iterează

z valoarea iniţială

 $0 := \lambda s \ z.z - s$ se iterează de 0 ori, deci valoarea inițială

1 ::= \(\lambda s \, z.s \, z \) — funcția iterată o dată aplicată valorii inițiale

 $2 := \lambda s z \cdot s(s z) - s$ iterată de 2 ori, aplicată valorii inițiale

Intuiție: Capabilitatea de a itera o funcție de un număr de ori peste

o valoare inițială

Codificare: Un număr natural este o funcție cu 2 argumente

- s funcția care se iterează
- z valoarea iniţială
- 0 ::= λs z.z s se iterează de 0 ori, deci valoarea inițială
- 1 ::= $\lambda s z.s z$ funcția iterată o dată aplicată valorii inițiale
- 2 ::= $\lambda s z.s(s z) s$ iterată de 2 ori, aplicată valorii inițiale

...

 $8 ::= \lambda s \ z.s(s(s(s(s(s(s(s(s(s))))))))$

...

Intuiție: Capabilitatea de a itera o funcție de un număr de ori peste

o valoare initială

Codificare: Un număr natural este o funcție cu 2 argumente

- s funcția care se iterează
- z valoarea iniţială
- $0 := \lambda s \ z.z s$ se iterează de 0 ori, deci valoarea inițială
- 1 ::= \(\lambda s \, z.s \, z \) funcția iterată o dată aplicată valorii inițiale
- 2 ::= $\lambda s z.s(s z) s$ iterată de 2 ori, aplicată valorii inițiale

...

 $8 ::= \lambda s z.s(s(s(s(s(s(s(s(s(s))))))))$

...

Observatie: 0 = false

succ ::= $\lambda n s z.s (n s z)$

succ ::=
$$\lambda n s z.s (n s z)$$

succ 0 =
$$(\lambda n \ s \ z.s \ (n \ s \ z))$$
0 $\rightarrow_{\beta} \lambda s \ z.s \ (0 \ s \ z) \rightarrow_{\beta} \lambda s \ z.s \ z = 1$

```
succ ::= \lambda n s z.s (n s z)

succ \mathbf{0} = (\lambda n s z.s (n s z))\mathbf{0} \rightarrow_{\beta} \lambda s z.s (\mathbf{0} s z) \rightarrow_{\beta} \lambda s z.s z = \mathbf{1}

plus ::= \lambda m n s z.m s (n s z)
```

```
succ ::= \lambda n \, s \, z.s \, (n \, s \, z)

succ 0 = (\lambda n \, s \, z.s \, (n \, s \, z))0 \rightarrow_{\beta} \lambda s \, z.s \, (0 \, s \, z) \rightarrow_{\beta} \lambda s \, z.s \, z = 1

plus ::= \lambda m \, n \, s \, z.m \, s \, (n \, s \, z)

plus 3 2 = (\lambda m \, n \, s \, z.m \, s \, (n \, s \, z)) 3 2 \rightarrow_{\beta} \lambda s \, z.3 \, s \, (2 \, s \, z)

\rightarrow_{\beta} \lambda s \, z.s(s(s(2 \, s \, z))) \rightarrow_{\beta} \lambda s \, z.s(s(s(s(s(z))))) = 5
```

succ ::=
$$\lambda n s z.s (n s z)$$

succ $\mathbf{0} = (\lambda n s z.s (n s z))\mathbf{0} \rightarrow_{\beta} \lambda s z.s (\mathbf{0} s z) \rightarrow_{\beta} \lambda s z.s z = \mathbf{1}$
plus ::= $\lambda m n s z.m s (n s z)$
plus $\mathbf{3} \mathbf{2} = (\lambda m n s z.m s (n s z)) \mathbf{3} \mathbf{2} \rightarrow_{\beta} \lambda s z.\mathbf{3} s (\mathbf{2} s z)$
 $\rightarrow_{\beta} \lambda s z.s(s(s(\mathbf{2} s z))) \rightarrow_{\beta} \lambda s z.s(s(s(s(z))))) = \mathbf{5}$
mult ::= $\lambda m n s.m (n s)$
Scaderea este mai complicata deoarece nu exista numere negative.

Perechi

Intuiție: Capabilitatea de a aplica o funcție componentelor perechii

Codificare: O funcție cu 3 argumente

reprezentând componentele perechii și funcția ce vrem să

o aplicăm lor.

 $pair ::= \lambda x \ y.\lambda f.f \ x \ y$

Constructorul de perechi

Exemplu: **pair** $x \ y \rightarrow_{\beta}^{2} \lambda f.f \ x \ y$

perechea (x, y) reprezintă capabilitatea de a aplica o funcție de două argumente lui x si apoi lui y.

Operații pe perechi

```
pair ::= \lambda x \ y.\lambda f.f \ x \ y

pair xy \equiv_{\beta} f \ x \ y

fst ::= \lambda p.p \ true \ -- true alege prima componentă

fst (pair x \ y) \rightarrow_{\beta} pair x \ y \ true \ \rightarrow_{\beta}^{3} true \ x \ y \ \rightarrow_{\beta}^{2} x

snd ::= \lambda p.p \ false \ -- false alege a doua componentă

snd (pair x \ y) \rightarrow_{\beta} pair x \ y \ false \ \rightarrow_{\beta}^{3} false \ x \ y \ \rightarrow_{\beta}^{2} y
```

Liste

Intuiție: Capabilitatea de a agrega o listă

Codificare: O funcție cu 2 argumente:

funcția de agregare și valoarea inițială

Lista [3,5] este reprezentată prin a 3 (a 5 i)

Liste

Intuiție: Capabilitatea de a agrega o listă

Codificare: O funcție cu 2 argumente:

funcția de agregare și valoarea inițială

Lista [3,5] este reprezentată prin a 3 (a 5 i)

null ::= λa i.i— lista vidă

cons ::= $\lambda x l.\lambda a i.a x (l a i)$ Constructorul de liste

Exemplu: cons 3 (cons 5 null) $\rightarrow^2_{\beta} \lambda a i.a$ 3 (cons 5 null a i) $\rightarrow^4_{\beta} \lambda a i.a$ 3 (a 5 (null a i)) $\rightarrow^2_{\beta} \lambda a i.a$ 3 (a 5 i)

Lista [3, 5] reprezintă capabilitatea de a agrega elementele 3 si apoi 5 dată fiind o funcție de agregare *a* și o valoare implicită *i*.

Pe săptămâna viitoare!