

Data sheet acquired from Harris Semiconductor SCHS027B – Revised July 2003

CMOS Counter/Dividers

High-Voltage Types (20-Volt Rating) CD4017B—Decade Counter with

10 Decoded Outputs

CD4022B-Octal Counter with

8 Decoded Outputs

■ CD4017B and CD4022B are 5stage and 4-stage Johnson counters having 10 and 8 decoded outputs, respectively. Inputs include a CLOCK, a RESET, and a CLOCK INHIBIT signal. Schmitt trigger action in the CLOCK input circuit provides pulse shaping that allows unlimited clock input pulse rise and fall times.

These counters are advanced one count at the positive clock signal transition if the CLOCK INHIBIT signal is low. Counter advancement via the clock line is inhibited when the CLOCK INHIBIT signal is high. A high RESET signal clears the counter to its zero count. Use of the Johnson counter configuration permits high-speed operation, 2-input decode-gating and spike-free decoded outputs. Anti-lock gating is provided, thus assuring proper counting sequence. The decoded outputs are normally low and go high only at their respective decoded time slot. Each decoded output remains high for one full clock cycle. A CARRY-OUT signal completes one cycle every 10 clock input cycles in the CD4017B or every 8 clock input cycles in the CD4022B and is used to ripple-clock the succeeding device in a multi-device counting chain.

Features:

- Fully static operation
- Medium-speed operation . . .
 10 MHz (typ.) at V_{DD} = 10 V
- Standardized, symmetrical output characteristics
- 100% tested for quiescent current at 20 V
- 5-V, 10-V, and 15-V parametric ratings
- Meets all requirements of JEDEC Tentative Standard No. 13A, "Standard Specifications for Description of 'B' Series CMOS Devices"

Applications:

- Decade counter/decimal decode display (CD4017B)
- Binary counter/decoder
- Frequency division
- Counter control/timers
- Divide-by-N counting
- For further application information, see ICAN-6166 "COS/MOS MSI Counter and Register Design and Applications"

The CD4017B- and CD4022B-series types are supplied in 16-lead dual-in-line plastic packages (E suffix), 16-lead small-outline packages (NSR suffix), and 16-lead thin shrink small-outline packages (PW and PWR suffixes).

CD4017B, CD4022B Types

CLOCK

CLOCK 13

Vac ≈ 16

V55 = 8

RECOMMENDED OPERATING CONDITIONS

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

CHARACTERISTICS	V _{DD}	LIMITS		UNITS	
	(v)	Min.	Max.		
Supply-Voltage Range (For T _A = Full Package- Temperature Range)		3	18	v	
Clock Input Frequency, f _{CL}	5 10 15	- -	2.5 5 5.5	MHz	
Clock Pulse Width, t _W	5 10 15	200 90 60	+ - +	. ns	
Clock Rise & Fall Time, t _{rCL} , t _{fCL}	5 10 15	UNLI	18.		
Clock Inhibit Setup Time, t _s	5 10 15	230 100 70	- - -	ns	
Reset Pulse Width, t _{RW}	5 10 15	260 110 60	- -	ns	
Reset Removal Time, t _{rem}	5 10 15	400 280 150	- - -	ns	

TOP VIEW
CD4017B
TERMINAL DIAGRAM

TOP VIEW
NC - no connection
CD4022B
TERMINAL DIAGRAM

Fig. 3 – Logic diagram for CD4022B.

MAXIMUM RATINGS, Absolute-Maximum Values:	
DC SUPPLY-VOLTAGE RANGE, (VDD)	
Voltages referenced to VSS Terminal)	0.5V to +20V
INPUT VOLTAGE RANGE, ALL INPUTS	
DC INPUT CURRENT, ANY ONE INPUT	±10mA
POWER DISSIPATION PER PACKAGE (PD):	
For T _A = -55°C to +100°C	500mW
For TA = +100°C to +125°C	Derate Linearity at 12mW/OC to 200mW
DEVICE DISSIPATION PER OUTPUT TRANSISTOR	
FOR TA = FULL PACKAGE-TEMPERATURE RANGE (All Package 1	ypes) 100mW
OPERATING-TEMPERATURE RANGE (TA)	
STORAGE TEMPERATURE RANGE (Tatg)	65°C to +150°C
LEAD TEMPERATURE (DURING SOLDERING):	
At distance $1/16 \pm 1/32$ inch $(1.59 \pm 0.79$ mm) from case for 10s ma	x+265°C

Fig. 5- Typical output low (sink) current characteristics.

DRAIN-TO-SOURCE VOLTAGE (VDS)-V Fig. 6- Minimum output low (sink) current characteristics.

Fig. 7- Typical output high (source) current characteristics.

Fig. 8- Minimum output high (source) current characteristics.

STATIC ELECTRICAL CHARACTERISTICS

CHARAC- TERISTIC	CON	DITIONS LIMITS AT INDICATED TEMPERATUR					UNIT						
	v _o	VIN	V _{DD}						+25		S		
	(V)	(V)	(V)	-55	-40	+85	+125	Min.	Тур.	Max.			
Quiescent		0,5	5	5	5	150	150	_	0.04	5			
Device		0,10	10	10	10	300	300	_	0.04	10	μΑ		
Current,	_	0,15	15	20	20	600	600		0.04	20	ĺ		
I _{DD} Max.	_	0,20	20	100	100	3000	3000	_	0.08	100			
Output Low	0.4	0,5	5	0.64	0.61	0.42	0.36	0.51	1	_			
(Sink) Current	0.5	0,10	10	1.6	1.5	1.1	0.9	1.3	2.6	_			
OL Min.	1.5	0,15	15	4.2	4	2.8	2.4	3.4	6.8	-			
Output High	4.6	0,5	5	-0.64	-0.61	-0.42	-0.36	-0.51	-1	_	mΑ		
Output High (Source) Current, IOH Min	2.5	0,5	5	-2	-1.8	-1.3	-1.15	-1.6	-3.2	-			
	9.5	0,10	10	-1.6	-1.5	-1.1	-0.9	-1.3	-2.6	-			
	13.5	0,15	15	-4.2	-4	-2.8	-2.4	-3.4	-6.8	-			
Output Voltage:		0,5	5	0.05 – 0				0	0.05				
Low-Level,		0,10	10	0.05				-	0	0.05			
VOL Max.	-	0,15	15	0.05				0	0.05	v			
Output	-	0,5	5		4	.95		4.95	5	_			
Voltage:		0,10	10		9	.95		9.95	10]		
High Level, VOH Min.	_	0,15	15	14.95 14.95 1					15	· –			
Input Low Voltage	0.5,4.5	_	5	1.5 3					1.5				
	1,9		10							3			
	1.5,13.5	_	15	4					_	4	v		
Input High Voltage, V _{IH} Min.	0.5,4.5		5			3.5		3.5		_]		
	1,9	-	10	7				7					
	1.5,13.5	_	15	11			11	_					
Input Current	_	0,18	18	±0.1	±0.1	±1	±1	-	±10-5	±0.1	μА		

DYNAMIC ELECTRICAL CHARACTERISTICS

At $T_A = 25^{\circ}$ C, Input t_r , $t_f = 20$ ns, $C_L = 50$ pF, $R_L = 200$ k Ω

CHARACTERISTIC	CONDITIONS		LIMITS			
•	V _{DD} (V)	Min.	Тур.	Max.	UNITS	
CLOCKED OPERATION		-	•		·	
	5	_	325	650		
Propagation Delay Time, tpHL, tpLH	10		135	270	}	
Decode Out	15	-	85	170	ns	
	5	_ "	300	600	, ,,,	
Carry Out	10		125	250		
·	15		80	160		
Transition Time, t _{THL} , t _{TLH}	5	_	100	200		
Carry Out or Decode Out Line	10	_	50	100	ns	
- Carry Carol Decode Out Line	15	_	40	80		
	5	2.5	5	_		
Maximum Clock Input Frequency, fCL*	10	5	10	_	MHz	
	15	5.5	11	-		
	5	_	100	200		
Minimum Clock Pulse Width, tW	10	_	45	90	ns	
	15		30	60		
Clock Rise or Fall Time, trCL, trCL	5, 10, 15	UNLIMITED				
Minimum Clock Inhibit	5	_	115	230	-	
to Clock Setup Time, t _s	10	_ '	50	100	ns	
<u> </u>	15	_	35	70		
Input Capacitance, CIN	Any Input	_	5	-	pF	
RESET OPERATION						
Propagation Delay Time, tpHL, tpLH	5		265	530		
Carry Out or Decode Out Lines	10	_	115	230	ns	
	15	_	85	170		
*	5	-	130	260		
Minimum Reset Pulse Width, tw	10	_	55	110	ns	
	15		30	60		
	5		200	400	•	
Minimum Reset Removal Time	10	_		280	ns	
	15	_		150	ĺ	

^{*} Measured with respect to carry output line.

Fig. 9 - Propagation delay, setup, and reset removel time waveforms.

Fig. 10 - Typical transition time as a function of load capacitance.

Fig. 11 — Typical propagation delay time as a function of load capacitance (clock to decode output).

Fig. 12 — Typical propagation delay time as a function of load capacitance (clock to carry-out).

Fig. 13 – Typical dyanamic power dissipation as a function of clock input frequency.

Fig. 17 - Dynamic power dissipation test circuit.

Fig. 18 – Divide by N counter (N \leq 10) with N decoded outputs.

Fig. 16 - Input-voltage test circuit.

When the Nth decoded output is reached (Nth clock pulse) the S-R flip flop (constructed from two NOR gates of the CD4001B) generates a reset pulse which clears the CD4017B or CD4022B to its zero count. At this time, if the Nth decoded output is greater than or equal to 6 in the CD-4017B or 5 in the CD4022B, the COUT line goes high to clock the next CD4017B or CD-4022B counter section. The "0" decoded output also goes high at this time. Coincidence of the clock low and decoded "0" output low resets the S-R flip flop to enable the CD4017B or CD4022B. If the Nth decoded output is less than 6 (C()4(-17B) or 5 (CD4022B), the COUT line will not go high and, therefore, cannot be used. in this case "0" decoded output may be used to perform the clocking function for the next counter.

Fig. 19 - Cascading the CD4017B.

CHIP DIMENSIONS AND PAD LAYOUTS

CD4017BH

CD4022BH

Dimensions in parentheses are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mils (10⁻³ inch).

14 LEADS SHOWN

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

N (R-PDIP-T**)

16 PINS SHOWN

PLASTIC DUAL-IN-LINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

Falls within JEDEC MS-001, except 18 and 20 pin minimum body Irngth (Dim A).

The 20 pin end lead shoulder width is a vendor option, either half or full width.

MECHANICAL DATA

NS (R-PDSO-G**)

14-PINS SHOWN

PLASTIC SMALL-OUTLINE PACKAGE

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

PW (R-PDSO-G**)

14 PINS SHOWN

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.

D. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2003, Texas Instruments Incorporated