PSYCHOPHYSIOLOGY

Significance?... Significance! Empirical, methodological, and theoretical connections between the late positive potential and P300 as neural responses to stimulus significance: An integrative review

Greg Hajcak ⋈, Dan Foti

working to better understand the development and risk for anxiety and depression—as well as training students to treat these disorders

Yang Ziyang 2024.03.29

Historical introduction

early perceptual processing later stages that involve elaborative processing and sustained attention

LPP as a neural index of emotional reactivity and regulation

regulation strategies

LPP (Late Positive Potential)

time-course

relative degree of emotional reactivity across different stimulus

dynamic allocation of attention to emotional stimuli

Historical introduction

Clinical Neuroscience

utilized the LPP as an indicator of abnormal emotional processing in psychopathology

Nearly every psychiatric disorder is characterized by a form of dysregulated affect

identifying disorder-specific

transdiagnostic deficits :

LPP provides an objective indicator of emotional reactivity

a selective review of the LPP literature on normal and abnormal emotional processing

stimulus characteristics and task parameters that shape emotional processing

index of stimulus significance
(stimulus activates appetitive or aversive motivational systems)

WHY? Attention

emotional content is important

Conveys information about potential threats and opportunities that are salient to an organism's survival

Emotional content naturally captures attention and facilitates action tendencies to approach or avoid

✓ EVEN irrespective of the goal at hand

Bradley argues that the LPP is a neural response indicating that *significance* has been detected in the environment

"activation of cortico-limbic appetitive and defensive systems that mediate the sensory and motor processes that support perception and action"

emotional content

activates appetitive or aversive motivational systems

elicits an increased LPP

fMRI

LPP relates to activation in both **cortical** and **subcortical** neural areas involved in emotional processing

(e.g., occipital, parietal, and temporal cortices)

(e.g., amygdala, ventral striatum)

the key stimulus dimension that modulates LPP amplitude is

significance

> Subjective ratings of <u>arousal</u>

Skin conductance

Pupil dilation

autonomic response

Activation of specific neural circuits

BUT:

specific stimuli are often chosen based on normative ratings of subjective valence and arousal—but not *significance* per se

while significance can be expected to correlate with arousa

exciting sports images
erotic images

LPP amplitude

Pupil dilation 1

erotic images activate appetitive motivational systems to a greater extent, because they are more significant

Although most neutral stimuli are low in significance, there are notable exceptions

- neutral images containing people elicit a larger LPP compared to neutral images that do not contain people
- the LPP is potentiated to faces of relatives, faces of romantic partners, as well as one's own name and face

The term LPP describes the protracted slow-wave elicited by emotional compared to neutral stimuli.

the LPP appears to have a distinct time-course compared to the positivity studied in traditional cognitive tasks of attention and target detection.

LPP does not only reflect a "late" ERP difference between emotional and neutral stimuli

the morphological difference between the canonical ERP waveform to target stimuli and the LPP is **duration**:

- typical ERP responses to target stimuli are relatively transient
- LPP is evident as a more protracted positive potential

the morphological difference between the canonical ERP waveform to target stimuli and the LPP is **duration**:

- > typical ERP responses to target stimuli are relatively transient
- > LPP is evident as a more protracted positive potential

Why so long?

LPP reflects the relatively automatic and sustained engagement with emotionally significant content

A straightforward answer is that a potential threat or opportunity continues to be significant for as long as it persists before an organism

A straightforward answer is that a potential threat or opportunity continues to be significant for as long as it persists before an organism

If emotionally significant stimuli sustain engagement and *attention* for the duration of their presentation, this should be evident in other measurement domains

attention

other measurement domains

presented an irrelevant but loud auditory probe several seconds after the presentation of emotional and neutral pictures

found that the target ERP response elicited by the auditory probe was reduced when participants were viewing emotional suggest that the sustained engagement with emotional picture content interferes with the processing of salient startle probes

manipulate the significance of specific stimuli, and thereby alter the LPP

Affective Decision: Is this emotional or neutral?

Non-Affective Decision : How many people are in the picture?

The LPP was reduced when participants made non-emotional compared to emotional decisions

drawing attention to non-emotional features might reduce the significance of picture content

meaning-based manipulations may alter the way in which unpleasant pictures are visually explored

directing attention to non-emotional foci eliminated the difference between unpleasant and neutral pictures.

visual-spatial attention in determining LPP amplitude

Pz

explicitly alter the significance of picture content based on *task instructions*

Emotional content, in this case, is not less relevant to the task

reappraisal involves altering the meaning of that content

Hajcak & Nieuwenhuis, 2006; Krompinger, Moser, & Simons, 2008; Langeslag & Sanchez, 2018; Paul, Simon, Kniesche, Kathmann, & Endrass, 2013

reappraisal involves altering the meaning of that content

cross these studies, there are several potential pitfalls in interpreting reappraisal-related effects on the LPP.

Other interpretations also warrant consideration: Participants might be *distracting* themselves or even struggling to do reappraisal. general instruction

?

not clear what participants are actually doing

reappraisal is generally more cognitively challenging than the control condition such as passive viewing

The LPP continued to be affected by the previously paired description

reappraisal \implies preappraisals

Meaning-based

> attentional

working memory load

reduce the activation of motivational neural circuits

variability in the amplitude of the LPP reflects stimulus significance and associated activation of motivational circuits

effects traditionally understood to indicate successful emotion regulation operate directly on the motivational significance of the stimuli.

Theoretical implications

major depressive disorder (MDD) and the LPP

theoretical implications of the research on late positive potentials (LPP) and P300 as neural responses to stimulus significance

theory of context updating and orienting

potential involvement of the locus coeruleus-norepinephrine (LC-NE) system

PSYCHOPHYSIOLOGY

Significance?... Significance! Empirical, methodological, and theoretical connections between the late positive potential and P300 as neural responses to stimulus significance: An integrative review

Greg Hajcak ⋈, Dan Foti

working to better understand the development and risk for anxiety and depression—as well as training students to treat these disorders

Yang Ziyang 2024.03.29

EffortEmpathy实验结果

Yang Ziyang 2024.03.19

Design

13.5s/trial 200 trials (2effort*2pain*50)

正式实验时长(平均每个回合休息1.5s计) > 45 min 总时长> **103**min = 40准备+ 45正式 +7指导语+5练习+3*2mins休息

(2effort: low – high)

900 - 1100ms

RT

2color*2gender = 4balance

41 participants(20 female)

1800 - 2200ms 1500 ms 900 - 1100ms

RT

(EPSS-Limb)

Rating

ANOVA Table: Dependent varia Between-subject Within-subjects Covariate(s):	s fac	ctor(Rating - Type -		Difficulty
MS	MSE	df1	df2	F	р	η²p [90% CI of η²p] η²G
Type 542.939 2	.189	1	40	248.028	<.001 **	* .861 [.793, .900] .776
ANOVA Table: Dependent varia Between-subjects Within-subjects Covariate(s):	s fac	tor(Effort
MS	MSE	df1	df2	F	р	η²p [90% CI of η²p] η²G
Type 463.720 2	.145	1	40	216.235	<.001 **	* .844 [.768, .888] .649
ANOVA Table: Dependent varial Between-subjects Within-subjects Covariate(s):	fac	tor(Rating - Type -		Like
		451	d£2	F	р	n2n [00% GT of n2n] n2G
MS	MSE	aiı	uız		P	η ² p [90% CI of η ² p] η ² G

MaxPressNumber


```
> summary(MPN)
    MeanMaxNum
Min. :26.33
1st Qu.:31.67
Median :34.67
Mean :34.26
3rd Qu.:37.00
Max. :40.00
```

```
Shapiro-Wilk normality test

data: MPN$MPN

W = 0.97056, p-value = 0.3597
```

符合正态分布

Accepted Trials

subj	LENP	LEPP	HENP	HEPP
201	49	50	50	50
202	50	47	44	45
203	50	49	48	49
204	48	43	42	43
205	48	49	50	50
206	49	47	48	49
207	47	49	49	50
208	50	49	47	50
209	49	50	47	44
210	48	47	48	49
211	38	43	33	32
212	48	48	46	44
213	48	47	47	50
214	47	47	46	48
215	45	46	45	44
216	47	48	46	44
217	49	49	49	50
218	41	42	43	43
219	47	46	49	49
220	49	49	50	47

301 47 49 40 40 302 50 47 46 49 303 48 49 50 48 304 48 47 50 48 305 49 50 48 48 306 49 48 49 47 307 50 49 49 49 308 43 49 43 44 309 47 48 45 50 310 47 49 45 49 311 37 34 40 35 312 46 48 40 42 313 49 49 45 46 314 50 50 49 47 315 49 49 48 48 316 48 49 47 44 317 49 47 48 48 318 47 48 46 47 319 50 <t< th=""><th>subj</th><th>LENP</th><th>LEPP</th><th>HENP</th><th>HEPP</th></t<>	subj	LENP	LEPP	HENP	HEPP
302 50 47 46 49 303 48 49 50 48 304 48 47 50 48 305 49 50 48 48 306 49 48 49 47 307 50 49 49 49 308 43 49 43 44 309 47 48 45 50 310 47 49 45 49 311 37 34 40 35 312 46 48 40 42 313 49 49 45 46 314 50 50 49 47 315 49 49 48 48 316 48 49 47 44 317 49 47 48 48 318 47 48 46 47 319 50 50 45 50 320 45 <t< td=""><td>301</td><td>47</td><td>49</td><td>40</td><td>40</td></t<>	301	47	49	40	40
304 48 47 50 48 305 49 50 48 48 306 49 48 49 47 307 50 49 49 49 308 43 49 43 44 309 47 48 45 50 310 47 49 45 49 311 37 34 40 35 312 46 48 40 42 313 49 49 45 46 314 50 50 49 47 315 49 49 48 48 316 48 49 47 44 317 49 47 48 48 318 47 48 46 47 319 50 50 45 50 320 45 50 45 49			47		49
305 49 50 48 48 306 49 48 49 47 307 50 49 49 49 308 43 49 43 44 309 47 48 45 50 310 47 49 45 49 311 37 34 40 35 312 46 48 40 42 313 49 49 45 46 314 50 50 49 47 315 49 49 48 48 316 48 49 47 44 317 49 47 48 48 318 47 48 46 47 319 50 50 45 50 320 45 50 45 49	303	48	49	50	48
306 49 48 49 47 307 50 49 49 49 308 43 49 43 44 309 47 48 45 50 310 47 49 45 49 311 37 34 40 35 312 46 48 40 42 313 49 49 45 46 314 50 50 49 47 315 49 49 48 48 316 48 49 47 44 317 49 47 48 48 318 47 48 46 47 319 50 50 45 50 320 45 50 45 49	304	48	47	50	48
307 50 49 49 49 308 43 49 43 44 309 47 48 45 50 310 47 49 45 49 311 37 34 40 35 312 46 48 40 42 313 49 49 45 46 314 50 50 49 47 315 49 49 48 48 316 48 49 47 44 317 49 47 48 48 318 47 48 46 47 319 50 50 45 50 320 45 50 45 49	305	49	50	48	48
308 43 49 43 44 309 47 48 45 50 310 47 49 45 49 311 37 34 40 35 312 46 48 40 42 313 49 49 45 46 314 50 50 49 47 315 49 49 48 48 316 48 49 47 44 317 49 47 48 48 318 47 48 46 47 319 50 50 45 50 320 45 50 45 49	306	49	48	49	47
309 47 48 45 50 310 47 49 45 49 311 37 34 40 35 312 46 48 40 42 313 49 49 45 46 314 50 50 49 47 315 49 49 48 48 316 48 49 47 44 317 49 47 48 48 318 47 48 46 47 319 50 50 45 50 320 45 50 45 49	307	50	49	49	49
310 47 49 45 49 311 37 34 40 35 312 46 48 40 42 313 49 49 45 46 314 50 50 49 47 315 49 49 48 48 316 48 49 47 44 317 49 47 48 48 318 47 48 46 47 319 50 50 45 50 320 45 50 45 49	308	43	49	43	44
311 37 34 40 35 312 46 48 40 42 313 49 49 45 46 314 50 50 49 47 315 49 49 48 48 316 48 49 47 44 317 49 47 48 48 318 47 48 46 47 319 50 50 45 50 320 45 50 45 49	309	47	48	45	50
312 46 48 40 42 313 49 49 45 46 314 50 50 49 47 315 49 49 48 48 316 48 49 47 44 317 49 47 48 48 318 47 48 46 47 319 50 50 45 50 320 45 50 45 49	310	47	49	45	49
313 49 49 45 46 314 50 50 49 47 315 49 49 48 48 316 48 49 47 44 317 49 47 48 48 318 47 48 46 47 319 50 50 45 50 320 45 50 45 49	311	37	34	40	35
314 50 50 49 47 315 49 49 48 48 316 48 49 47 44 317 49 47 48 48 318 47 48 46 47 319 50 50 45 50 320 45 50 45 49	312	46	48	40	42
315 49 49 48 48 316 48 49 47 44 317 49 47 48 48 318 47 48 46 47 319 50 50 45 50 320 45 50 45 49	313	49	49	45	46
316 48 49 47 44 317 49 47 48 48 318 47 48 46 47 319 50 50 45 50 320 45 50 45 49	314	50	50	49	47
317 49 47 48 48 318 47 48 46 47 319 50 50 45 50 320 45 50 45 49	315	49	49	48	48
318 47 48 46 47 319 50 50 45 50 320 45 50 45 49	316	48	49	47	44
319 50 50 45 50 320 45 50 45 49	317	49	47	48	48
320 45 50 45 49	318	47	48	46	47
	319	50	50	45	50
321 43 43 46	320	45	50	45	49
	321	43	43	43	46

LPP print (summary(Mod_LPP <- Imer(LPP ~ Effort*Pain+(Effort|Subject), a1,REML=FALSE)))
LMM TW:900-1300ms 电极点: CP3 CPZ CP4

LPP print (summary(Mod_LPP <- Imer(LPP ~ Effort*Pain+(Effort|Subject), a1,REML=FALSE)))

LMM TW:900-1300ms 电极点: CP3 CPZ CP4

		LPP	
Predictors	Estimates	CI	р
(Intercept)	0.83	0.03 – 1.62	0.041
Effort2-1	1.58	0.64 – 2.51	0.001
Pain2-1	-1.10	-1.540.66	<0.001
Effort2-1:Pain2-1	-0.90	-1.780.02	0.045
Random Effects			
σ^2	90.00		
τ ₀₀ Subject	5.75		
τ ₁₁ Subject.Effort2-1	6.71		
P01 Subject	0.22		
ICC	0.08		
N _{Subject}	38		
Observations	7182		
Marginal R ² / Conditional R ²	0.010 / 0.	085	

在High\Low Effort两种条件下,Pain的激活都显著大于NoPain 但在HighEffort条件下效应更大

LPP print (summary(Mod_LPP <- Imer(LPP ~ Effort*Pain*cTrial+(Effort|Subject), a1,REML=FALSE)))

LMM TW:900-1300ms 电极点: CP3 CPZ CP4

Predictors	Estimates	CI	p	\$emtrend
(Intercept)	0.82	0.03 – 1.62	0.041	Pain
Effort2-1	1.59	0.66 – 2.52	0.001	Pain
Pain2-1	1.12	0.68 – 1.55	<0.001	NoPain
cTrial	-0.41	-0.750.08	0.015	\$contras
Effort2-1:Pain2-1	0.88	0.01 – 1.76	0.048	contras
Effort2-1:cTrial	-0.28	-0.90 - 0.35	0.387	Pain -
Pain2-1:cTrial	-0.55	-0.99 – -0.11	0.014	
Effort2-1:Pain2-1:cTrial	0.35	-0.53 – 1.23	0.434	
Random Effects				
σ^2	88.67			
τ _{00 Subject}	5.74		(Effort*	cTrial*Pain Subject)
τ ₁₁ Subject.Effort2-1	6.72		(Effort*	cTrial+Pain Subject)
τ _{11 Subject.cTrial}	0.62		(Effort*	Pain Subject)
τ ₁₁ Subject.Effort2-1:cTrial	1.94		畸形拟	슴
P 01	0.22			Pain Subject)
	-0.31		(Pain S	, ,
	0.33		`	
ICC	0.09		未能拟	台
N _{Subject}	38			
Observations	7182			

Marginal R² / Conditional R² 0.013 / 0.099

\$contrasts

contrast estimate SE df t.ratio p.value

Pain - NoPain -0.55 0.225 7105 -2.443 0.0146

P3 print (summary(Mod_P3 <- Imer(P3 ~ Effort*Pain+(Effort+Pain|Subject), a1,REML=FALSE))) LMM TW:330-410ms 电极点: PZ P3 P4

< 0.001

< 0.001

< 0.001

0.039

P3 print (summary(Mod_P3 <- Imer(P3 ~ Effort*Pain+(Effort+Pain|Subject), a1,REML=FALSE)))

LMM TW:330-410ms 电极点: PZ P3 P4

		P3	
Predictors	Estimates	CI	р
(Intercept)	8.92	7.84 – 10.00	<0.001
Effort2-1	0.91	0.43 – 1.39	<0.001
Pain2-1	0.84	0.43 – 1.26	<0.001
Effort2-1:Pain2-1	0.81	0.04 – 1.58	0.039

Random Effects	
σ^2	69.00
τ _{00 Subject}	11.19
τ _{11 Subject.Effort2-1}	0.82
τ ₁₁ Subject.Pain2-1	0.25
P ₀₁	0.07
	0.77
ICC	0.14
N _{Subject}	38
Observations	7182
Marginal R ² / Conditional R ²	0.005 / 0.147

P3 print (summary(Mod_P3 <- Imer(P3 ~ Effort*Pain*Gender +(Effort|Subject), a1,REML=FALSE)))

LMM TW:330-410ms 电极点: PZ P3 P4

Predictors	Estimates	CI	р
(Intercept)	8.89	7.82 – 9.96	<0.001
Effort2-1	0.92	0.44 – 1.40	<0.001
Pain2-1	0.83	0.44 – 1.21	<0.001
Gender2-1	1.10	-1.04 - 3.24	0.314
Effort2-1:Pain2-1	0.79	0.02 – 1.55	0.045
Effort2-1:Gender2-1	-0.40	-1.35 – 0.56	0.416
Pain2-1:Gender2-1	1.06	0.29 – 1.83	0.007
Effort2-1:Pain2-1:Gender2-1	1.42	-0.12 – 2.96	0.070

Random Effects

σ^2	68.96	(Effort*Pain Subject)
τ _{00 Subject}	10.90	未能收敛
τ _{11 Subject.Effort2-1}	0.79	(Effort+Pain Subject)
P01 Subject	0.11	(Pain Subject)
ICC	0.14	畸形拟合
N _{Subject}	38	
Observations	7182	
Marginal R ² / Conditional R ²	0.010 / 0.	147

对于男性来说,Pain和NoPain 诱发的P3波幅无显著差异, 但对于女性来说,Pain诱发的 P3波幅显著大于NoPain

P3 MANOVA(data=a1, dv="P3", subID="Subject", within=c("Effort", "Pain"), between = ("Gender"))
ANOVA TW:330-410ms 电极点: PZ P3 P4

MS	MSE	df1	df2	F	р		η²p [90%	CI o	fη²p]	η²G
46.520	47.439	1	36	0.981	.329		.027 [.	.000,	.162]	.024
32.825	2.399	1	36	13.683	<.001	***	.275 [.	.090,	.454]	.017
1.458	2.399	1	36	0.608	.441		.017 [.	.000,	.140]	.001
26.552	1.551	1	36	17.118	<.001	***	.322 [.	.126,	.495]	.014
10.948	1.551	1	36	7.059	.012	*	.164 [.	.023,	.346]	.006
6.223	1.070	1	36	5.817	.021	*	.139 [.	012,	.319]	.003
4.948	1.070	1	36	4.624	.038	*	.114 [.	.004,	.290]	.003
	46.520 32.825 1.458 26.552 10.948 6.223	46.520 47.439 32.825 2.399 1.458 2.399	46.520 47.439 1 32.825 2.399 1 1.458 2.399 1 26.552 1.551 1 10.948 1.551 1 6.223 1.070 1	46.520 47.439 1 36 32.825 2.399 1 36 1.458 2.399 1 36 26.552 1.551 1 36 10.948 1.551 1 36 6.223 1.070 1 36	46.520 47.439	46.520 47.439	46.520 47.439	46.520 47.439 1 36 0.981 .329 .027 [46.520 47.439 1 36 0.981 .329 .027 [.000, 32.825 2.399 1 36 13.683 <.001 ***	46.520 47.439 1 36 0.981 .329 .027 [.000, .162] 32.825 2.399 1 36 13.683 < .001 ***

Contrast	"Gender"	Estimate	S.E.	df	t	р	 Cohen's d [95% CI of d]
NoPain - Pain NoPain - Pain							-0.166 [-0.496, 0.164] -0.762 [-1.075, -0.449]
Contrast	"Effort"	Estimate	S.E.	df	t	р	Cohen's d [95% CI of d]

P3 MANOVA(data=a1, dv="P3", subID= "Subject", within=c("Effort", "Pain"), between = ("Gender"))

ANOVA TW:330-410ms 电极点: PZ P3 P4

Contras	t "Effort"	Estimate	S.E.	df	t	р	Cohen'	s d [95%	CI of d]
NoPain Male - Pain Male	Low	-0.256	(0.369)	36	-0.693	1.000	-0.142	[-0.712,	0.429]
Pain Female - Pain Male	Low	1.480	(1.206)	36	1.227	1.000	0.820	[-1.046,	2.687]
Pain Female - NoPain Male	Low	1.736	(1.157)	36	1.500	.853	0.962	[-0.828,	2.752]
NoPain Female - Pain Male	Low	0.872	(1.162)	36	0.751	1.000	0.483	[-1.314,	2.281]
NoPain Female - NoPain Mal	e Low	1.128	(1.110)	36	1.016	1.000	0.625	[-1.093,	2.343]
NoPain Female - Pain Femal	e Low	-0.608	(0.350)	36	-1.738	.544	-0.337	[-0.878,	0.204]
NoPain Male - Pain Male	High	-0.343	(0.394)	36	-0.871	1.000	-0.190	[-0.800,	0.419]
Pain Female - Pain Male	High	1.811	(1.263)	36	1.434	.961	1.003	[-0.950,	2.957]
Pain Female - NoPain Male	High	2.154	(1.190)	36	1.811	.471	1.194	[-0.647,	3.035]
NoPain Female - Pain Male	High	-0.330	(1.197)	36	-0.276	1.000	-0.183	[-2.035,	1.669]
NoPain Female - NoPain Mal	e High	0.013	(1.120)	36	0.012	1.000	0.007	[-1.726,	1.740]
NoPain Female - Pain Femal	e High	-2.141	(0.374)	36	-5.727	<.001	*** -1.187	[-1.765,	-0.608]

仅在高努力条件下,女性会在Pain相比NoPain条件下诱发出更高的P3幅值而低努力条件下,不论男女在Pain和NoPain下都无差异

仅在高努力条件下,女性会在Pain相比NoPain条件下诱发出更高的P3幅值而低努力条件下,不论男女在Pain和NoPain下都无差异

Pain:LPP~Affective

Pain:P3~Affective

