SVKM'S

Mithibai College of Arts, Chauhan Institute of Science & Amrutben Jivanlal College of Commerce and Economics (Autonomous) Academic Year (2021-22)

Class: SYBSc

Semester: IV

Program: Bachelor of Science

Subject: Computer Science

Course Name: Linear Algebra with Python

Course Code: USMACS405

Date:

Max. Marks: 50

Time: 7:30 am to 9:15 am Duration: 1 hr 45 minutes

REGULAR EXAMINATION

Instructions: Candidates should read carefully the instructions printed on the question paper and on the cover of the Answer Book, which is provided for their use.

- 1) This question paper contains 03 pages.
- 2) All questions are compulsory.
- 3) Answer to each new question to be started on a fresh page.
- 4) Figures in brackets on the right-hand side indicate full marks.
- 5) Assume Suitable data if necessary
- 6) Use of only non-scientific calculators is allowed

Q 1. Attempt any two

14

Given u = (3, -2, -3, 1, -2), v = (2, -1, -2, 2, -1), find A.

07

- distance between the vectors u and v i.
 - angle between the vectors u and v ii.
 - projection between the vectors u and v iii.
 - norm of the vector u iv.
- Given z and w are complex numbers where z = 2 i and w = 3 + 2i then find В.

07

- i. z + w
- ii. ZW
- iii. conjugate of z
- iv. w/z
- Z V.
- Solve the following triangular system of linear equations: C. i.

07

$$2p - 4q - 3r - 2s = -9$$

$$q + 4r - s = 4$$

$$3r + s = -6$$

$$2s = -6$$

ii.	Determine whether the following homogeneous sys	stem o	of linear	equations	have
	non zero solution				

$$x + y - z = 0$$

 $2x + 4y - z = 0$
 $3x + 2y + 2z = 0$

Q2. Attempt any two

14

07

$$A = \begin{bmatrix} -7 & -12 & 1 \\ -4 & 3 & 4 \\ -2 & 5 & 2 \end{bmatrix} \quad B = \begin{bmatrix} 4 & 1 & -2 \\ 5 & 4 & 2 \\ -2 & -3 & -1 \end{bmatrix}$$

- i. Find the sum of the matrices
- ii. Find the transpose of matrix A
- iii. Find the inverse of matrix B from its adjugate matrix

B. Given that

07

$$A = \begin{bmatrix} 3 & -4 & 4 \\ 1 & 3 & -2 \\ 1 & 6 & 1 \end{bmatrix} \quad B = \begin{bmatrix} 4 & -1 & 2 \\ 3 & 2 & 2 \\ -1 & -2 & 4 \end{bmatrix}$$

- i. Find the difference A B
- ii. Find the transpose of matrix A
- iii. Find the product of matrices

C. Find the basis and the rank of following matrix:

07

$$\begin{bmatrix} 1 & 2 & 0 & -1 \\ 2 & 6 & -3 & -3 \\ 3 & 5 & 4 & 0 \\ -2 & 2 & 1 & 2 \end{bmatrix}$$

Q3. Attempt any two

14

07

$$\begin{bmatrix} 1 & 1 & 1 \\ 2 & 2 & -1 \\ 3 & 2 & 4 \end{bmatrix}$$

В.	Solve the following system of linear equations using Gaussian Elimination	
	3x + 5y + 2z = -5 x + 3y + 2z = -7 3x + y - 2z = 11	
C.	For the following matrix A i. Find all eigenvalues and corresponding eigenvectors. ii. Find matrices P and D such that P is nonsingular and D = P ⁻¹ AP is diagonal.	07
	$A = \begin{bmatrix} 4 & 1 \\ 7 & -2 \end{bmatrix}$	
Q 4.	Attempt any four	08
A.	Explain norm of a vector.	02
В.	Describe linearly dependent vectors.	02
C.	Explain degenerate linear equations and its solutions.	02
D.	What are the elementary row operations allowed on system of linear equations?	02
E.	Explain homogeneous system of linear equations	02
F.	Define eigenvalue and eigenvector.	02