Notes on Electrodynamics

Pugazharasu A D

August 2020

Contents

1	1 Vector Analysis					
	1.1	Vector	r Algebra	2		
	1.2 Differential Calculus					
		1.2.1	"Ordinary Derivatives"s	2		
		1.2.2	Gradient	2		
		1.2.3	The Del Operator	2		
		1.2.4	The Divergence			
		1.2.5	The Curl	2		
		1.2.6	Product Rules	2		
		1.2.7	Second Derivatives	2		
	1.3	Integr	al Calculus	2		
	1.4	Curvil	linear Coordinates	2		
		1.4.1	Spherical Coordinates	2		
		1.4.2	Cynlindrical Coordinates			
	1.5	The D	Oirac Delta Function	2		
		1.5.1	The Divergence of $\frac{\hat{r}}{r^2}$	2		
		1.5.2	The One-Dimensional Dirac Delta Function	3		
		1.5.3	The Three-Dimensional Dirac Delta Function	4		
	1.6	The T	Theory of Vector Fields	4		
		1.6.1	The Helmoltz Theorem	4		
		1.6.2	Potentials	4		
2	Potentials And Fields					
3	Elec	ctroma	agnetic Waves	7		
4	Electromagnetic Radiation					
5	Tensors and Lagrangians					
6	Helmholtz Theorem					

iv CONTENTS

Chapter 1

Vector Analysis

1.1	\mathbf{Vector}	\mathbf{A}	lgebra
	,		5

- 1.2 Differential Calculus
- 1.2.1 "Ordinary Derivatives"s
- 1.2.2 Gradient
- 1.2.3 The Del Operator
- 1.2.4 The Divergence
- 1.2.5 The Curl
- 1.2.6 Product Rules
- 1.2.7 Second Derivatives
- 1.3 Integral Calculus
- 1.4 Curvilinear Coordinates
- 1.4.1 Spherical Coordinates
- 1.4.2 Cynlindrical Coordinates
- 1.5 The Dirac Delta Function
- 1.5.1 The Divergence of $\frac{\hat{r}}{r^2}$

$$\nabla \cdot \frac{\hat{r}}{r^2} = 0 \tag{1.1}$$

Figure 1.1: A Plot of $\delta(x)$

1.5.2 The One-Dimensional Dirac Delta Function

The Dirac Delta is a functional ¹ which we define as,

$$\delta(x-a) = \begin{cases} 0, & \text{if } x \neq a \\ \infty, & \text{if } x = a \end{cases}$$
 (1.2)

$$\int_{-\infty}^{+\infty} \delta(x - a) dx = 1 \tag{1.3}$$

 $\forall a \in \mathbb{R}$ We can visualize it as a sharp peak at a, We can interpret 1.3 as saying "the area of the delta distribution is always 1".

$$f(x)\delta(x-a) = f(a) \tag{1.4}$$

We can combine these to get,

$$\int_{-\infty}^{+\infty} \delta(x - a) f(x) dx = f(a)$$
 (1.5)

A few interesting properties

$$\delta(kx) = \frac{1}{|k|}\delta(x) \tag{1.6}$$

$$\frac{d}{dx}(\delta(x)) = -\delta(x) \tag{1.7}$$

¹An object that is a map between functions

where k is a constant

$$\frac{d\theta}{dx} = \delta(x) \tag{1.8}$$

Where θ is the step function defined as,

$$\theta(x) = \begin{cases} 1, & \text{if } x > 0\\ o, & \text{if } x \le 0 \end{cases}$$
 (1.9)

1.5.3 The Three-Dimensional Dirac Delta Function

We generalize () to three dimensions,

$$\delta^{3}(\vec{r} - \vec{a}) = \delta(x - a_x)\delta(y - a_y)\delta(z - a_z)$$
(1.10)

$$\int_{-\infty}^{+\infty} \delta^3(\vec{r} - \vec{a})dV = 1 \tag{1.11}$$

We can also define the three-dimensional delta function as

$$\mathfrak{r}$$
 (1.12) $\mathfrak{r}=$

1.6 The Theory of Vector Fields

1.6.1 The Helmoltz Theorem

This does cause an issue with "Ontology" $^{2}\,$

1.6.2 Potentials

²What's real and what isn't?

Chapter 2 Potentials And Fields

Chapter 3 Electromagnetic Waves

Chapter 4

Electromagnetic Radiation

Chapter 5

Tensors and Lagrangians

We can write the Faraday tensor as,

$$\frac{\partial J^{\mu}}{\partial x^{\mu}} = 0 \tag{5.1}$$

$$\frac{\partial F^{\mu\nu}}{\partial x^{\nu}} = \mu_0 J^{\mu} \tag{5.2}$$

$$\frac{\partial G^{\mu\nu}}{\partial x^{\nu}} = 0 \tag{5.3}$$

Chapter 6 Helmholtz Theorem