Week 12

Database Systems Introduction to Databases and Data Warehouses

CHAPTER 4 - Update Operations, Update Anomalies, and Normalization (Part 3 & 4)

MAIN TOPICS

- Normalization Example 2 University Recruiting (cont'd)
- Case Study Exercise 4.5
 - Update Anomaly, Functional Dependency, Normalization

Example 2: relation RECRUITING

Table columns and data

RECRUITING

RecruiterID	RecruiterName	StatusID	Status	City	State	StatePopulation	CityPopulation	NoOfRecruits
R1	Katy	IF	Internal Full Time	Portland	ME	1,350,000	70,000	11
R1	Katy	IF	Internal Full Time	Grand Rapids	MI	9,900,000	190,000	20
R2	Abra	IP	Internal Part Time	Rockford	IL	12,900,000	340,000	17
R3	Jana	CN	Contractor	Spokane	WA	6,800,000	210,000	8
R3	Jana	CN	Contractor	Portland	OR	3,900,000	600,000	30
R3	Jana	CN	Contractor	Eugene	OR	3,900,000	360,000	20
R4	Maria	IF	Internal Full Time	Rockford	IL	12,900,000	340,000	14
R4	Maria	IF	Internal Full Time	Grand Rapids	MN	5,400,000	11,000	9
R5	Dan	CN	Contractor	Grand Rapids	MI	9,900,000	190,000	33

Composite primary key: (RecruiterID, City, State)

Each row: a specific recruiter's recruiting result in one city.

Normalization Example 2: Normalizing a table to 2NF

1. identify the types of functional dependencies.

Туре	Functional Dependency
Partial	RecruiterID -> RecuriterName, StatusID, Status
Transitive	StatusID -> Status
Partial	City, State -> CityPopulation
Partial	State -> StatePopulation
Full	RecruiterID, City, State -> NoOfRecruits

Normalization Example 2: Normalizing a table to 2NF

Nnormalized to 2NF

2. Remove partial functional dependencies (FDs) by adding 1 extra able for each set of partial FDs.

Normalization Example 2: Normalizing a table to 3NF

Remove transitive functional dependencies (FDs) by adding 1 extra able for each set of transitive FDs.

entral Plane University relation RECRUITING – not normalized, prone to update anomalies

RECRUITING

RecruiterID	RecruiterName	StatusID	Status	City	State	StatePopulation	CityPopulation	NoOfRecruits
R1	Katy	IF	Internal Full Time	Portland	ME	1,350,000	70,000	11
R1	Katy	IF	Internal Full Time	Grand Rapids	MI	9,900,000	190,000	20
R2	Abra	IP	Internal Part Time	Rockford	IL	12,900,000	340,000	17
R3	Jana	CN	Contractor	Spokane	WA	6,800,000	210,000	8
R3	Jana	CN	Contractor	Portland	OR	3,900,000	600,000	30
R3	Jana	CN	Contractor	Eugene	OR	3,900,000	360,000	20
R4	Maria	IF	Internal Full Time	Rockford	IL	12,900,000	340,000	14
R4	Maria	IF	Internal Full Time	Grand Rapids	MN	5,400,000	11,000	9
R5	Dan	CN	Contractor	Grand Rapids	MI	9,900,000	190,000	33

Tentral Plane University example - normalized relations with data (redundancy eliminated and update anomalies resolved)

RECRUITER

RecruiterID	RecruiterName	StatusID
R1	Katy	IF
R2	Abra	IP
R3	Jana	CN
R4	Maria	IF
R5	Dan	CN

STATUS

StatusID	Status
CN	Contractor
IF	Internal Full Time
IP	Internal Part Time

CITY

City	State	CityPopulation
Portland	ME	70,000
Grand Rapids	MI	190,000
Rockford	IL	340,000
Spokane	WA	210,000
Portland	OR	600,000
Eugene	OR	360,000
Grand Rapids	MN	11,000

STATE

State	StatePopulation
ME	1,350,000
MI	9,900,000
IL	12,900,000
WA	6,800,000
OR	3,900,000
MN	5,400,000

RECRUITING

RecruiterID	City	State	NoOfRecruits
R1	Portland	ME	11
R1	Grand Rapids	MI	20
R2	Rockford	IL	17
R3	Spokane	WA	8
R3	Portland	OR	30
R3	Eugene	OR	20
R4	Rockford	IL	14
R4	Grand Rapids	MN	9
R5	Grand Rapids	MI	33

NORMALIZATION: Practice 2,

-CHAPTER 4 END-CHAPTER EXERCISE 4.5

Lectured in class.

E4.5 Consider the following relation with sample data.

Date	AirlineID	AirlineName	TerminalID	NumberOfGates	NumberOfDepartingFlights
11-Dec	UA	United	A	20	34
11-Dec	NW	Northwest	A	20	17
11-Dec	AA	American	A	20	11
11-Dec	DL	Delta	В	15	20
11-Dec	JB	Jet Blue	В	15	6
12-Dec	UA	United	A	20	29
12-Dec	DL	Delta	В	15	20
12-Dec	SWA	Southwest	С	15	17

- The AIRPORT KLX Table captures the data about daily departing flights at the KLX Airport.
- Each airline operating at KLX airport has a unique Airline ID and an Airline Name.
- Each terminal at KLX airport has a unique Terminal ID and a fixed Number of Gates.
- Each airline is permanently assigned to one (and only one) terminal at the KLX Airport.
- Each terminal at KLX Airport can have multiple airlines assigned to it.
- Each day (Date), this table records the Number of Departing Flights at KLX Airport for each airline.
- E4.5a Using the AIRPORT KLX Table, describe an example that illustrates the insertion anomaly.

- E4.5b Using the AIRPORT KLX Table, describe an example that illustrates the deletion anomaly.
- E4.5c Using the AIRPORT KLX Table, describe an example that illustrates the modification anomaly.
- E4.5d Depict full key functional dependencies, partial functional dependencies (if any), and transitive functional dependencies (if any) in the AIRPORT KLX Table.
- E4.5e Show the result of normalizing the AIRPORT KLX Table to 2NF.
- E4.5f Show the result of normalizing the AIRPORT KLX Table to 3NF.
- E4.5g Using the set of tables resulting from E4.5f, describe how the anomalies shown in E4.5a, E4.5b, and E4.5c are eliminated.

NORMALIZATION: Example 4, Practice 3 -CHAPTER 4 END-CHAPTER EXERCISE 4.6

Lectured in class.

Consider the following relation with sample data.

NSPORTATION (DOT) PROJECT TABLE E4.6

SERARTM	ENT OF TE	RANSPORTA	CountyName	Project ManagerID	Project ManagerName	ProjectMiles WithinCounty
ProjectID	Project	CountyID		M1	Bob	10.00
	Name	11	Wilson	M1	Bob	17.00
	Road X	2	Ottawa	M1	Bob	12.00
	Road X	3	Davis	M2	Sue	23.00
	Road Y	3	Davis	M3	Lee	0.50
	Bridge A	1	Wilson	M3	Lee	0.30
	Bridge A	2	Ottawa	M1	Bob	2.00
	Tunnel Q	2		M4	Bob	23.00
THE RESIDENCE	Road W	4	Pony	The second are being		115/31 5 6 5 34

The DEPARTMENT OF TRANSPORTATION
(DOT) Project Table captures the data about projects
and their length (in miles).

- · Each project has a unique Project ID and Project Name.
- · Each county has a unique County ID and County Name.
- · Each project manager has a unique Project Manager ID and Project Manager Name.
- · Each project has one project manager.
- · A project manager can manage several projects.
- A project can span across several counties.
- This table records the length of the project in a county in the ProjectMilesWithinCounty column.
- E4.6a Using the DOT PROJECT Table, describe an example that illustrates the insertion

- Using the DOT PROJECT Table, describes E4.6b example that illustrates the deletion anomal
- Using the DOT PROJECT Table, described E4.6c an example that illustrates the modification anomaly.
- Depict full key functional dependences E4.6d partial functional dependencies (if any), at transitive functional dependencies (if any) the DOT PROJECT Table.
- Show the result of normalizing the D E4.6e PROJECT Table to 2NF.
- Show the result of normalizing the DO E4.6f PROJECT Table to 3NF.
- Using the set of tables resulting from Editional Control of the set of tables resulting from Editional Control of the set of tables resulting from Editional Control of tables resulting from Edition E4.6g describe how the anomalies shown in [4] E4.6b, and E4.6c are eliminated.