NeurIPS'24 & INFORMS Data
Mining Paper Competition Finalist

Cost-aware Bayesian Optimization with Adaptive Stopping via the Pandora's Box Gittins Index

Qian Xie (Cornell ORIE)

INFORMS Applied Probability Society Conference 2025

World of Hyperparameter Optimization

Hyperparameter tuning:

Training hyperparameters ------

World of Hyperparameter Optimization

Hyperparameter tuning:

Training hyperparameters ------

Control optimization:

Control variables

Plasma physics:

Fusion reactor design

World of Hyperparameter Optimization

Grid Search for AutoML

Hyperparameter tuning:

Training hyperparameters —

Parameter	Туре	Scale	Range	Number of Options
Batch size	Integer	Log-scale	[16, 512]	10
Learning rate	Float	Log-scale	[1e-4, 1e-1]	10
Momentum	Float	Linear	[0.1, 0.99]	10
Weight decay	Float	Log-scale	[1e-5, 1e-1]	10
Number of layers	Integer	Linear	{1, 2, 3, 4}	 4
Max units per layer	Integer	Log-scale	[64, 1024]	10
Dropout	Float	Linear	[0.0, 1.0]	10

40,000,000 combinations!

Grid Search for AutoML

Hyperparameter tuning:

Training hyperparameters →

expensive-to-evaluate

Accuracy

Time-consuming!

40,000,000 combinations!

Grid Search for AutoML

Hyperparameter tuning:

Training hyperparameters ————

expensive-to-evaluate

Accuracy

Time-consuming!

More efficient: Bayesian optimization

40,000,000 combinations!

Black-box optimization:

Input hyperparameters ——

unknown & expensive-to-evaluate

----- Performance metric

Goal: $\max_{x \in \mathcal{X}} f(x)$

Key idea: maintain probabilistic belief about *f*

Maintain belief

Probabilistic model

Update belief

Probabilistic model

Update belief

Probabilistic model

Guide search

Acquisition function

Classic Acquisition Functions

- •Improvement-based
- Entropy-based
- •Upper Confidence Bound
- Thompson Sampling

New Acquisition Function: Gittins Index

- Improvement-based
- Entropy-based
- Upper Confidence Bound
- Thompson Sampling
- •My work: Gittins Index

New Acquisition Function: Gittins Index

- Improvement-based
- Entropy-based
- Upper Confidence Bound
- Thompson Sampling
- •My work: Gittins Index

Why another acquisition function?

> Smart stopping time

Observable multi-stage feedback

Observable multi-stage feedback

New design principle: Gittins index

Gittins index

Cost-aware

Stopping-aware

Feedback-aware

Optimal in simplified problems

Optimal in simplified problems

Coauthors

Raul Astudillo

Smart stopping time

[Under review]

Linda Cai

Peter Frazier Alexander Terenin Ziv Scully

Observable multi-stage feedback [Ongoing work]

Outline

Studied Problem

Cost-aware Bayesian optimization

Key idea

Link to simplified problem and Gittins index theory

Impact

Competitive empirical performance

Future direction

"Exotic" Bayesian optimization

Outline

Studied Problem

Cost-aware Bayesian optimization

Key idea

Link to simplified problem and Gittins index theory

Impact

Competitive empirical performance

Future direction

"Exotic" Bayesian optimization

[Lee, Perrone, Archambeau, Seeger'21]

Goal:
$$\sup_{\text{policy}} \mathbb{E} \max_{t=1,2,...,T} f(x_t)$$

s.t. $\sum_{t=1}^{T} c(x_t) \leq B$ Budget constraint

Outline

Studied Problem

Cost-aware Bayesian optimization

Key idea

Link to simplified problem and Gittins index theory

Impact

Competitive empirical performance

Future direction

"Exotic" Bayesian optimization

Correlated

Correlated

Intractable MDP!

Pandora's Box

[Weitzman'79]

Intractable MDP!

$$t = 0$$

$$\sup_{\text{policy}} \mathbb{E} \left(\max_{t=1,2,\dots,T} f(x_t) - \sum_{t=1}^{T} c(x_t) \right)$$

$$t = 1$$

$$c(x_1)$$

$$\sup_{\text{policy}} \mathbb{E} \left(\max_{t=1,2,\dots,T} f(x_t) - \sum_{t=1}^{T} c(x_t) \right)$$

$$t = 2$$

$$c(x_1)$$

$$c(x_2)$$

$$\sup_{\text{policy}} \mathbb{E} \left(\max_{t=1,2,\dots,T} f(x_t) - \sum_{t=1}^{T} c(x_t) \right)$$

$$t = T$$
, stop

$$c(x_1)$$

$$\sup_{\text{policy}} \mathbb{E} \left(\max_{t=1,2,\dots,T} f(x_t) - \sum_{t=1}^{T} c(x_t) \right)$$

$$c(x_3)$$

$$c(x_2)$$

Pandora's Box

Continuous

Correlated

Budget-constrained

$$\sup_{\text{policy}} \mathbb{E} \max_{t=1,2,\dots,T} f(x_t)$$

s.t. $\sum_{t=1}^{T} c(x_t) \leq B$

Discrete

Independent

Cost-per-sample

$$\sup_{\text{policy}} \mathbb{E}\left(\max_{t=1,2,\dots,T} f(x_t) - \sum_{t=1}^{T} c(x_t)\right)$$

43

Pandora's Box

[Weitzman'79]

Continuous

Correlated

Expected-budget-constrained

$$\sup_{\text{policy}} \mathbb{E} \max_{t=1,2,\dots,T} f(x_t)$$

s.t. $\mathbb{E} \sum_{t=1}^{T} c(x_t) \leq B$

Discrete

Independent

Cost-per-sample

$$\sup_{\text{policy}} \mathbb{E}\left(\max_{t=1,2,\dots,T} f(x_t) - \sum_{t=1}^{T} c(x_t)\right)$$

Pandora's Box

[Weitzman'79]

Continuous

Correlated

Ebc & Cps

$$\sup_{\text{policy}} \mathbb{E} \max_{t=1,2,\dots,T} f(x_t)$$

s.t. $\mathbb{E} \sum_{t=1}^{T} c(x_t) \leq B$

Discrete

Independent

Cost-per-sample

$$\sup_{\text{policy}} \mathbb{E} \left(\max_{t=1,2,\dots,T} f(x_t) - \sum_{t=1}^{T} c(x_t) \right)$$

Pandora's Box

[Weitzman'79]

Continuous

Correlated

Ebc & Cps

Intractable MDP!

Discrete

Independent

Cost-per-sample

Optimal policy: Gittins index

Pandora's Box

Continuous

Correlated

Ebc & Cps

Discrete

Independent

Cost-per-sample

How to translate?

Optimal policy: Gittins index

Pandora's Box

[Weitzman'79]

Correlated

Ebc & Cps

Discrete

Independent

Cost-per-sample

incorporate posterior

Acquisition function

+ stopping rule

Optimal policy: Gittins index

Qian Xie (Cornell ORIE)

Pandora's Box

[Weitzman'79]

f(x) f(x)

Correlated

Independent

Discrete

Ebc & Cps

Cost-per-sample

incorporate posterior

Acquisition function

Gittins index is optimal

+ stopping rule Empirically good?

Outline

Studied Problem

Cost-aware Bayesian optimization

Key idea

Link to Pandora's box and Gittins index theory

Impact

Competitive empirical performance

Future direction

"Exotic" Bayesian optimization

52

Experiment Setup: Objective Functions

Pest Control

Empirical

Figure from ChatGPT

Ackley function

Lunar Lander

Figure from OpenAI Gym

53

Uniform-cost: Gittins Index vs Baselines

Varying-cost: Gittins Index vs Baselines

Stopping Rule: Gittins Index vs Baselines

Gittins Index: A New Design Principle

Studied Problem

Cost-aware Bayesian optimization

Key idea

Link to Pandora's box and Gittins index theory

Impact

Competitive empirical performance

Ongoing work

58

Multi-stage Bayesian optimization

Find our papers on arXiv!

"Cost-aware Bayesian Optimization via the Pandora's Box Gittins Index."

"Cost-aware Stopping for Bayesian Optimization."