Homologie singulière

Table des matières

1.	Premières définitions	1
	1.1. Simplexe	1
	1.2. Chaine singulière · · · · · · · · · · · · · · · · · · ·	2
	1.3. Complexe de chaines · · · · · · · · · · · · · · · · · · ·	2
	1.4. Morphisme de chaines · · · · · · · · · · · · · · · · · · ·	2
2.	Propriétés fondamentales de l'homologie singulière	3
	2.1. Homologie d'un singleton · · · · · · · · · · · · · · · · · · ·	3

1. Premières définitions

1.1. Simplexe

Définition 1.1. Soit E un \mathbb{R} -espace vectoriel et A un sous-ensemble de E. On dit que A est *convexe* si

$$\forall p, q \in A, [p, q] := \{(1 - t)p + tq \mid t \in [0, 1]\} \subset A.$$

Définition 1.2. Soit E un \mathbb{R} -espace vectoriel, A un sous-ensemble de E et $p_0, ..., p_n$ des éléments de A. On appelle *combinaison (linéaire) convexe* une combinaison de la forme $t_0p_0 + \cdots + t_np_n$, telle que $t_0, ..., t_n \in [0, 1]$ et $t_0 + \cdots + t_n = 1$.

Proposition 1.3. Soit E un \mathbb{R} -espace vectoriel, A un sous-ensemble de E et $p_0, ..., p_n$ des éléments de A. Alors si A est convexe toute combinaison convexe de $p_0, ..., p_n$ appartient à A.

Démonstration. Soit $t_0, ..., t_n \in [0,1]$ tels que $t_0 + \cdots + t_n = 1$. Notons $H(n): t_0 p_0 + \cdots + t_n p_n \in A$. Pour n=1. On pose $t:=t_1$, alors puisque A est convexe $t_0 p_0 + t_1 p_1 = (1-t)p_0 + t p_1 \in A$. Pour n>1. On suppose que H(n-1) est vérifiée. Sans perte de généralité, on suppose que $t_n \neq 0$, et on pose

$$p := \frac{t_0}{1 - t_n} p_0 + \dots + \frac{t_{n-1}}{1 - t_n} p_{n-1}$$

alors d'après H(n-1) on a $p \in A$. Par convexité on a $t_0p_0 + \cdots + t_np_n = (1-t_n)p + t_np_n \in A$. \square

Définition 1.4. Soit E un \mathbb{R} -espace vectoriel et A un sous-ensemble de E. On appelle *enveloppe convexe de A*, notée [A], l'ensemble des combinaisons convexes de sous-ensembles finis de A.

Proposition 1.5. Soit E un \mathbb{R} -espace vectoriel et A un sous-ensemble de E. Alors l'enveloppe convexe de A est le plus petit ensemble convexe contenant A.

Démonstration. Soit $p, q \in [A]$ et $t \in [0, 1]$. Puisque (1 - t)p + tq est une combinaison convexe d'un sous-ensemble fini de A, on a bien $(1 - t)p + tq \in [A]$. Donc [A] est convexe.

Soit B un sous-ensemble convexe de E contenant A. Soit $x \in [A]$, alors il existe $p_0, ..., p_n \in A$ et $t_0, ..., t_n \in [0,1]$ tels que $t_0 + \cdots + t_n = 1$ et $x = t_0 p_0 + \cdots + t_n p_n$. D'après la Proposition 1.3 on a bien $x \in B$. Donc $[A] \subset B$.

Définition 1.6. Soit E un \mathbb{R} -espace vectoriel et F une famille libre de n+1 éléments de E. On appelle n-simplexe généré par F l'enveloppe convexe de F. On dit que les éléments de F sont les sommets de F et que F et

Définition 1.7. On appelle *n-simplexe standard*, noté Δ^n , le *n-*simplexe généré par la base canonique de \mathbb{R}^{n+1} .

Définition 1.8. Soit E un \mathbb{R} -espace vectoriel, [F] un n-simplexe et $x = t_0 p_0 + \cdots + t_n p_n$ un élément de [F]. On appelle *coordonnées barycentriques de x* les coefficients $t_0, ..., t_n$.

1.2. Chaine singulière

1.3. Complexe de chaines

Définition 1.9. Soit $(C)_{n\in\mathbb{Z}}$ une suite de groupe abéliens munis de morphismes $\partial_n: C_n \to C_{n-1}$ allant de chaque espace vers le précédent tels que pour tout $k \in \mathbb{Z}$ on a $\partial_k \circ \partial_{k+1} = 0$. On appelle *complexe de chaines*, noté C_{\bullet} , la suite $(C_n, \partial_n)_{n\in\mathbb{Z}}$.

Définition 1.10. Soit C_{\bullet} un complexe de chaines et $k \in \mathbb{Z}$.

- On appelle *n-cycle* un élément de $ker(\partial_k)$.
- On appelle *n-bord* un élément de $im(\partial_{k+1})$.

Définition 1.11. Soit C_{\bullet} un complexe de chaines et $k \in \mathbb{Z}$. On appelle k^e -groupe d'homologie, noté H_k , le quotient $H_k := \ker(\partial_k)/\operatorname{im}(\partial_{k+1})$. On appelle *classes d'homologie* les éléments de H_k .

Définition 1.12. Soit C_{\bullet} un complexe de chaines et $k \in \mathbb{Z}$. On dit que le complexe est *exact en* C_k si H_k est trivial (i.e. $H_k = \{0\}$).

- On dit que le complexe est *exact* s'il est exact en tout C_n .
- On dit que le complexe est *acyclique* s'il est exact en tout C_n avec $n \neq 0$.

Définition 1.13. Soit X un espace topologique. On appelle *complexe de chaines singulier* un complexe de chaines sur X.

1.4. Morphisme de chaines

Définition 1.14. Soit A_{\bullet} et B_{\bullet} deux complexes de chaines, et $(f_n : A_n \to B_n)_{n \in \mathbb{Z}}$ une suite de morphismes tels que pour tout $k \in \mathbb{Z}$ on a $\partial_{B,k} \circ f_k = f_{k-1} \circ \partial_{A,k}$. On appelle *morphisme de chaines*, noté $f_{\bullet} : A_{\bullet} \to B_{\bullet}$, la suite $(f_n : A_n \to B_n)_{n \in \mathbb{Z}}$.

Proposition 1.15. Soit A_{\bullet} , B_{\bullet} et C_{\bullet} trois complexes de chaines, et $f_{\bullet}: A_{\bullet} \to B_{\bullet}$ et $g_{\bullet}: B_{\bullet} \to C_{\bullet}$ deux morphismes de chaines. Alors la composition $g_{\bullet} \circ f_{\bullet}: A_{\bullet} \to C_{\bullet}$ est un morphisme de chaines.

2. Propriétés fondamentales de l'homologie singulière

2.1. Homologie d'un singleton

Théorème 2.1. Soit $\{p\}$ un espace singleton. Alors les groupes d'homologies de $\{p\}$ sont donnés par $H_0 \simeq \mathbb{Z}$ et pour tout $k \in \mathbb{N} \setminus \{0\}$, $H_k \simeq \{0\}$.

 $\textit{D\'{e}monstration}. \ \text{Soit} \ k \in \mathbb{N}. \ \text{Alors il existe un unique } k\text{-simplexe} \ \sigma_k : \Delta^k \to \{p\} \ \text{et il v\'{e}rifie}$

$$\partial_k \sigma_k = \begin{cases} 0 \text{ si } k = 0 \text{ ou } k \text{ est impair} \\ \sigma_{k-1} \text{ si } k \neq 0 \text{ et } k \text{ est pair} \end{cases}$$

Si k=0. Alors $H_0=\langle \sigma_0 \rangle/\{0\} \simeq \mathbb{Z}$.

Si $k \neq 0$ et k est impair. Alors $H_k = \langle \sigma_k \rangle / \langle \sigma_k \rangle \simeq \{0\}$.

Si $k \neq 0$ et k est pair. Alors $H_k = \{0\}/\{0\} \simeq \{0\}$.