# Kernel Methods

AI534

#### **Key concepts:**

Feature mapping to address non-linear separability The kernel trick to avoid explicit feature mapping Definition of Kernel functions

Kernelized perceptron

Kernelized linear regression with L2 regularization

## **Nonlinearly Separable Data**



Mapping the data to a higher dimensional space can introduce linear separability for data that is not linearly separable in the original input space

### Non-linear Classifier via Feature Mapping

• General idea: For <u>any</u> data set, the *original input space* can always be mapped to some higher-dimensional **feature spaces** such that the data is linearly separable:



### Example: Quadratic Feature Space

- Assume *d* input dimensions  $x = (x_1, \dots, x_d)$
- Number of quadratic terms:

$$1 + d + d + d(d-1)/2 \approx O(d^2)$$

- What if we want to consider even higher order features?
  - For cubic feature space:  $O(d^3)$
  - The number of dimensions after mapping increase rapidly with increasing **order** m





#### Revisiting Perceptron (using nonlinear feature mapping)

Given current weight  $\mathbf{w}_t$ , predict for  $\mathbf{x}$  by:  $\hat{y}(\mathbf{x}) = sign(\mathbf{w}_t^T \mathbf{x})$ 

 $\mathbf{w}_t$  was created when  $\mathbf{w}_{t-1}$  makes a mistake on a training example  $(\mathbf{x}, y)$  via:

$$\mathbf{w}_t = \mathbf{w}_{t-1} + y\mathbf{x}$$

Let  $S_t$  stores (the indices of) all the previous mistakes leading up to  $\mathbf{w}_t$ , we have:

$$\mathbf{w}_t = \sum_{i \in S_t} y_i \mathbf{x}_i$$

Note  $S_t$  may contain repetitions: if an example was misclassified multiple times, it will appear multiple times.

We can then rewrite the prediction rule as:

$$\hat{y}(\mathbf{x}) = sign(\sum_{i \in S_t} y_i \mathbf{x}_i^T \mathbf{x})$$

Now if data is mapped to a higher dimension by  $\Phi$ , we simply replace  $\mathbf{x}$  with  $\Phi(\mathbf{x})$ :

$$\hat{y}(\mathbf{x}) = sign\left(\sum_{i \in S_t} y_i \Phi(\mathbf{x}_i)^T \Phi(\mathbf{x})\right)$$

## Restructuring the Perceptron algorithm

```
Let \mathbf{w} \leftarrow (0,0,...,0)

Repeat if iter \leq iters

for every training example i=1,...,n

u_i = \mathbf{w}^T \mathbf{x}_i

if y_i u_i \leq 0 \mathbf{w} \leftarrow \mathbf{w} + y_i \mathbf{x}_i

iter = iter + 1 Original Perceptron
```

New version by Remembering all mistakes in *S* 





#### Dot product in the Quadratic Feature Space

Explicit mapping takes  $O(d^2)$  time. Consider two d-dimensional vectors **a** and **b**:

$$\Phi(\mathbf{a})^{T}\Phi(\mathbf{b}) = \begin{bmatrix}
1 \\ \sqrt{2}a_{1} \\ \sqrt{2}a_{2} \\ \vdots \\ \sqrt{2}a_{d} \\ a_{1}^{2} \\ a_{2}^{2} \\ \vdots \\ a_{d}^{2} \\ \sqrt{2}a_{1}a_{2} \\ \sqrt{2}a_{1}a_{3} \\ \vdots \\ \sqrt{2}a_{1}a_{d} \\ \vdots \\ \sqrt{2}a_{d-1}a_{d}
\end{bmatrix}$$

$$\begin{bmatrix}
1 \\ \sqrt{2}b_{1} \\ \sqrt{2}b_{2} \\ \vdots \\ \sqrt{2}b_{1}b_{2} \\ \vdots \\ b_{d}^{2} \\ \sqrt{2}b_{1}b_{2} \\ \vdots \\ \sqrt{2}b_{d-1}b_{d}
\end{bmatrix}$$

$$\begin{bmatrix}
1 \\ \sqrt{2}b_{1} \\ b_{2}^{2} \\ \vdots \\ b_{d}^{2} \\ \sqrt{2}b_{1}b_{2} \\ \vdots \\ \sqrt{2}b_{d-1}b_{d}
\end{bmatrix}$$

$$\begin{bmatrix}
1 \\ \sqrt{2}b_{1} \\ b_{2}^{2} \\ \vdots \\ b_{d}^{2} \\ \sqrt{2}b_{1}b_{2} \\ \vdots \\ \sqrt{2}b_{d-1}b_{d}
\end{bmatrix}$$

$$\begin{bmatrix}
2 \\ (\mathbf{a}^{T}\mathbf{b} + 1)^{2} = (\mathbf{a}^{T}\mathbf{b})^{2} + 2(\mathbf{a}^{T}\mathbf{b}) + 1 \\ = \left(\sum_{i=1}^{d} a_{i}b_{i} + 1\right)^{2} + 2\left(\sum_{i=1}^{d} a_{i}b_{i} + 1\right)^{2} = \left(\sum_{i=1}^{d} a_{i}b_{i} + 1\right)^{2} = \left(\sum_{i$$

 $\kappa(\mathbf{a}, \mathbf{b}) = (\mathbf{a}^T \mathbf{b} + 1)^2$  computes the dot product in quadratic space in O(d) time

### The kernel trick

- **Definition:** A function  $\kappa(\mathbf{x}, \mathbf{x}')$  is called a <u>kernel function</u> if  $\kappa(\mathbf{x}, \mathbf{x}') = \langle \phi(\mathbf{x}), \phi(\mathbf{x}') \rangle$  for some mapping function  $\phi$
- **Implication**: we can simply replace any occurrences of dot product  $\langle \mathbf{x} \cdot \mathbf{x}' \rangle$  with a kernel function  $\kappa$  that computes  $\kappa(\mathbf{x}, \mathbf{x}') = \langle \phi(\mathbf{x}), \phi(\mathbf{x}') \rangle$
- **Implication**: we do not need to explicitly compute the mapping of the features --- significant computational savings
- For example, to compute the dot product in the quadratic space:
  - With the quadratic kernel function  $\kappa(\mathbf{x}, \mathbf{x}') = (\mathbf{x}^T \mathbf{x}' + 1)^2 : O(d)$
  - With explicit mapping  $<\phi(\mathbf{x}),\phi(\mathbf{x}')>:O(d^2)$

# **Kernelizing Perceptron**

```
S = [ ] // \text{list of mistaken examples} Repeat if iter \leq iters for every training example i = 1, ..., n u_i = \sum_{j \in S} y_j \mathbf{x}_j^T \mathbf{x}_i (restructured) if y_i u_i \leq 0 add i to S iter = iter + 1
```

```
Replacing \mathbf{x}_{j}^{T}\mathbf{x}_{i} with \kappa(\mathbf{x}_{j},\mathbf{x}_{i})
```

```
S = [] // \text{list of mistaken examples} Repeat if iter \leq iters for every training example i = 1, ..., n u_i = \sum_{j \in S} y_j \kappa(\mathbf{x}_j, \mathbf{x}_i) if y_i u_i \leq 0 add i to S iter = iter + 1
```

# Making it better

```
S = [\ ] //list of mistaken examples Repeat if iter \leq iters for every training example i = 1, ..., n u_i = \sum_{j \in S} y_j \kappa(\mathbf{x}_j, \mathbf{x}_i) if y_i u_i \leq 0 add i to S iter = iter + 1
```



Keep a counter for each example

Let 
$$\alpha_i = 0 \ \forall i = 1, ..., n$$
  
Repeat if  $iter \leq iters$   
for every training example  $i = 1, ..., n$   

$$u_i = \sum_{j=1 \ to \ n} \alpha_j y_j \kappa(\mathbf{x}_j, \mathbf{x}_i)$$
if  $y_i u_i \leq 0 \quad \alpha_i \leftarrow \alpha_i + 1$ 

$$iter = iter + 1$$

#### **Kernel perceptron**

#### Kernel functions

- A kernel function can be intuitively viewed as computing some similarity measure between examples
- In practice, we directly use the kernel functions without explicitly stating the transformation  $\boldsymbol{\Phi}$
- Given a kernel function, finding its corresponding transformation can be very cumbersome or impossible
  - RBF kernel's mapped space has infinite dimensions
- Not all functions are kernels
  - For some functions there does not exist a corresponding mapping  $\Phi(\mathbf{x})$
- If you have a good similarity measure, can we use it as a kernel?

### Kernel Function or Not

Consider a finite set of m points, we define the kernel (Gram)
marix as

$$K = \begin{bmatrix} \kappa(\mathbf{x}_1, \mathbf{x}_1) & \kappa(\mathbf{x}_1, \mathbf{x}_2) & \dots & \kappa(\mathbf{x}_1, \mathbf{x}_n) \\ \kappa(\mathbf{x}_2, \mathbf{x}_1) & \kappa(\mathbf{x}_2, \mathbf{x}_2) & \dots & \kappa(\mathbf{x}_2, \mathbf{x}_n) \\ \dots & \dots & \dots & \dots \\ \kappa(\mathbf{x}_n, \mathbf{x}_1) & \kappa(\mathbf{x}_n, \mathbf{x}_2) & \dots & \kappa(\mathbf{x}_n, \mathbf{x}_n) \end{bmatrix}_{n \times n}$$

Kernel matrices by definition are square and symmetric

#### Mercer theorem:

A function  $\kappa$  is a kernel function if and only if for any finite sample  $\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n$ , its corresponding kernel matrix is positive semi-definite ( $c^T K c \geq 0$  for all  $c \in R^n$ , or alternatively, only has non-negative eigenvalues)

## Understanding mercer theorem

• If  $\kappa(\cdot)$  is a kernel and K is the kernel matrix with  $K_{ij} = \kappa(x_i, x_j)$ , then

$$c^{T}Kc = \sum_{ij} c_{i}c_{j}K_{ij} = \sum_{ij} c_{i}c_{j}\phi(x_{i})\phi(x_{j})$$

$$= \left(\sum_{i} c_{i}\phi(x_{i})\right)\left(\sum_{j} c_{j}\phi(x_{j})\right)$$
You can original function Alternat function

You can use mercer theorem or the original definition to show that a function is a kernel function.

Alternatively, you can also show a function is kernel by linking it to some well known kernel functions using closure property.

#### Some common kernel functions

- Linear kernel:  $\kappa(a,b) = (a \cdot b)$  ( $\phi$  is identity mapping)
- $\kappa(a,b) = (a \cdot b)^d$ 
  - $\phi$  maps to d-th order (**only**) polynomial features
- $\kappa(a,b) = (a \cdot b + 1)^d$ 
  - $\phi$  maps to **up to** d-th order polynomial features
- Radial-Basis-Function (RBF) or Gaussian kernel:

$$\kappa(a,b) = \exp\left(-\frac{(a-b)^2}{2\sigma^2}\right)$$

- $\phi$  maps to infinite dimensional feature space
- Proof is based on the identity of

$$e^x = \frac{\sum_{k=0}^{\infty} x^k}{k!}$$

# Closure Property of Kernels

If  $\kappa_1$  and  $\kappa_2$  are kernel functions, then the following are all kernel functions:

- $\kappa(x,y) = \kappa_1(x,y) + \kappa_2(x,y)$ 
  - $\Phi$  = concatenation of  $\Phi_1$  and  $\Phi_2$
- $\kappa(x, y) = a\kappa_1(x, y)$ , where a > 0
  - $\Phi = \sqrt{a}\Phi_1$
- $\kappa(x, y) = \kappa_1(x, y)\kappa_2(x, y)$ 
  - If  $\Phi_1$  has  $N_1$  features and  $\Phi_2$  has  $N_2$  features
  - $\Phi$  will have  $N_1 \times N_2$  features:  $\Phi_{ij} = \Phi_{1i} \cdot \Phi_{2j}$

One can repeatedly apply the closure property to compose kernel functions, e.g.,  $a\kappa_1 + b\kappa_2 + \kappa_1\kappa_2$  is a kernel function for a, b > 0

## Key Choices in Applying Kernel

- Selecting the kernel function
  - (cross-) validation to rescue
  - Popular choices: Linear kernel, polynomial kernels (with low degrees)
  - Start simple, go more complex only if needed.
  - Can learn to combine different kernels (kernel learning)
    - $K = \alpha_1 K_1 + \alpha_2 K_2 + \cdots + \alpha_k K_k$ , s.t.  $\alpha_i \ge 0$  for  $i = 1, \dots, k$
  - Kernel functions are defined for many non-traditional non-Euclidean data, e.g., graph kernel, set kernel, string kernel etc.
- Selecting the kernel parameter
  - can have strong impact on performance
  - the optimal range can be reasonably large
  - grid search with (cross-)validation is commonly used

## Question break

It can be shown that for any dataset, we can map the original input features to a higher dimensional feature space such that the positive and negative examples are linearly separable in the mapped space. What are the implications of such feature mapping?

- A. Feature engineering is no longer important because feature mapping can create the separation that we need.
- B.Feature engineering is still important because without the right features, the separation in the mapped space will not be generalizable.

The kernel trick uses a kernel function instead of explicitly mapping the features then taking the dot product. Among the following statements, which ones are true?

- A.Using kernel functions (as opposed to mapping then dot product) is a faster way to compute the dot product in the mapped space.
- B.Using kernel functions (as opposed to mapping then dot product) is more sample efficient, i.e., it needs fewer training examples to learn effectively.
- C.Using kernel functions (as opposed to mapping then dot product) allows us to consider mappings that are not explicitly possible, e.g., due to infinite dimensions.

### **Revisiting Linear Regression**

Consider the L2 regularized linear regression

$$\max_{\mathbf{w}} \frac{1}{2} \|\mathbf{y} - \mathbf{X}\mathbf{w}\|^2 + \frac{\lambda}{2} \mathbf{w}^T \mathbf{w}$$

where  $\mathbf{X}$  is the data matrix, each row contains the features of one training example,  $\mathbf{y}$  is the vector of ground truth predictions for all training examples

Closed form solution:

$$\mathbf{w} = (\lambda \mathbf{I} + \mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

where I is the identity matrix

- **w** lies in the space spanned by the training examples, i.e.,  $\mathbf{w} = \sum_i \alpha_i \mathbf{x}_i$
- Instead of solving the optimization problem in the space of  $\mathbf{w}$ , instead, we can directly solve for  $\alpha_i's$

# Kernelizing Linear Regression

#### • Learned Function:

- Original:  $\hat{f}(\mathbf{x}) = \mathbf{w}^T \mathbf{x}$
- Kernelized:  $\hat{f}(\mathbf{x}) = \sum_i \alpha_i \kappa(\mathbf{x}_i, \mathbf{x})$  (plug in  $\mathbf{w} = \sum_i \alpha_i \Phi(\mathbf{x}_i)$  and replace dot product with  $\kappa$ )

#### Objective:

- Original:  $\frac{1}{2} ||\mathbf{y} \mathbf{X}\mathbf{w}||^2 + \frac{\lambda}{2} \mathbf{w}^T \mathbf{w}$   $\leftarrow$  solving for  $\mathbf{w}$ , primal problem
- Kernelized:  $\frac{1}{2} ||\mathbf{y} K\boldsymbol{\alpha}||^2 + \frac{\lambda}{2} \boldsymbol{\alpha}^T K\boldsymbol{\alpha}$   $\leftarrow$  solving for  $\boldsymbol{\alpha}$ , dual problem

K is the kernel (gram) matrix of the training data:  $K_{ij} = \kappa(\mathbf{x}_i, \mathbf{x}_j)$ 

Closed form solution:

$$\alpha = (K + \lambda I)^{-1} \mathbf{y}$$

### General Applications of Kernel Methods

- Many learning algorithms formulate optimization problems and the solutions are some weighted sum of the input training examples
- Explicitly express the weights as sum of weighted sum of training examples allows us to perform learning using dot products between examples, in the dual space
- Apply the kernel trick by replacing dot product with kernel functions.
- This enables the use of high dimensional nonlinear feature spaces without having to pay the price of computing and working with high dimensional mapped features
- Many types of kernels, wide applicability including some for data that are not naturally in vector form, like graphs, strings, sets etc.