Problem 1

Use Holder's inequality to show

$$\int_0^1 \sqrt{x} (1-x)^{-1/3} dx \le \frac{2}{5^{1/3}}.$$

Solution

Using Holder's inequality, let p = 3, and let p' = 3/2. Then, we have

$$\begin{split} \int_0^1 \sqrt{x} (1-x)^{-1/3} dx & \leq \left(\int_0^1 \sqrt{x}^3 dx \right)^{1/3} \left(\int_0^1 ((1-x)^{-1/3})^{3/2} dx \right)^{2/3} \\ & = \left(\int_0^1 x^{3/2} dx \right)^{1/3} \left(\int_0^1 u^{-1/2} du \right)^{2/3} \\ & = \left(\frac{2}{5} \right)^{1/3} 2^{2/3} \\ & = \frac{2}{5^{1/3}}, \end{split}$$

as desired.

Problem 2

Let $E \subseteq \mathbb{R}^n$ be measurable with |E| = 1. Let $h \ge 0$ be measurable on E. Let $A = \int_E h dx$. Show that

$$\sqrt{1+A^2} \le \int_E \sqrt{1+h^2} dx \le 1+A.$$

Solution

(I've not yet figured out the proof of the first inequality, which would go here.) For the second inequality, we have

$$\int_{E} \sqrt{1+h^2} dx \le \int_{E} \sqrt{1+h^2+2h} dx$$

$$= \int_{E} \sqrt{(1+h)^2} dx$$

$$= \int_{E} 1+h dx$$

$$= 1+A$$

Problem 3

Find all nonnegative functions $g \in L^3(0,1)$ such that

$$\left(\int_0^1 x g(x) dx\right)^3 = \frac{4}{25} \int_0^1 g^3(x) dx$$

April 23, 2023

Solution

Using Holders inequality, we can see that if $p = \frac{3}{2}$, and p' = 3, then

$$\int_0^1 x g(x) dx \le \left(\int_0^1 x^{3/2} dx \right)^{2/3} \left(\int_0^1 g^3(x) dx \right)^{1/3}$$

$$= \left(\frac{2}{5} \right)^{2/3} \left(\int_0^1 g^3(x) dx \right)^{1/3}$$

$$= \left(\frac{4}{25} \int_0^1 g^3(x) dx \right)^{1/3}$$

$$\left(\int_0^1 x g(x) dx \right)^3 = \frac{4}{25} \int_0^1 g^3(x) dx.$$

Now, as we proved in class, the equality holds if and only if $\alpha x^{3/2} = g^3(x)$ almost everywhere for some real α . Thus, we have

$$g(x) = \alpha x^{\frac{1}{2}}$$

for some nonnegative real number α and for almost every x.

Problem 4

Let $f \in L^{\infty}(0,1)$ and $||f||_{\infty} \leq 1$. Show that

$$\int_{0}^{1} \sqrt{1 - f^{2}(x)} dx \le \sqrt{1 - \left(\int_{0}^{1} f(x) dx\right)^{2}},$$

and describe the class of functions f for which equality takes place.

Solution

We have

$$\int_0^1 \sqrt{1 - f^2(x)} dx = \int_0^1 \sqrt{(1 - f)(1 + f)} dx$$

$$= \int_0^1 \sqrt{1 - f} \sqrt{1 + f} dx$$

$$\leq \sqrt{\int_0^1 (1 - f) dx} \sqrt{\int_0^1 (1 + f) dx}$$
Cauchy-Schwarz's inequality
$$= \sqrt{1 - \int_0^1 f dx} \sqrt{1 + \int_0^1 f dx}$$

$$= \sqrt{1 - \left(\int_0^1 f(x) dx\right)^2}.$$

From the proof of Holder's Inequality, we know that the equality holds iff there exists some $\alpha \in \mathbb{R}$ such that $1 - f = \alpha(1 + f)$. Thus,

$$1 - f = \alpha(1 + f) \implies 1 - f = \alpha + \alpha f$$

$$\implies 1 - \alpha = (1 + \alpha)f$$

$$\implies f = \frac{1 - \alpha}{1 + \alpha}.$$

Problem 5

Theorem 1. Prove that

$$\int_{0}^{\infty} e^{-x} \sqrt{x^4 + 3x^2 + 2} dx \le \sqrt{12},$$

and that the equality does not hold.

Solution

Proof. We have

$$\begin{split} \int_0^\infty e^{-x} \sqrt{x^4 + 3x^2 + 2} dx &= \int_0^\infty \sqrt{e^{-2x}(x^4 + 3x^2 + 2)} dx \\ &= \int_0^\infty \sqrt{e^{-x}(x^2 + 2)e^{-x}(x^2 + 1)} dx \\ &= \int_0^\infty \sqrt{e^{-x}(x^2 + 2)} \sqrt{e^{-x}(x^2 + 1)} dx \\ &\leq \sqrt{\int_0^\infty e^{-x}(x^2 + 2) dx} \sqrt{\int_0^\infty e^{-x}(x^2 + 1) dx} dx \quad \text{Cauchy-Schwarz's inequality} \\ &= \sqrt{2 + 2} \sqrt{2 + 1} \qquad \qquad \text{Apply integration by parts twice} \\ &= \sqrt{12}. \end{split}$$

Assume that the equality holds. Then, there exists some $\alpha \in \mathbb{R}$ such that for almost every $x \in [0, \infty)$, we have

$$e^{-x}(x^2+2) = \alpha e^{-x}(x^2+1).$$

With this, we see

$$x^{2} + 2 = \alpha x^{2} + \alpha \implies x^{2}(1 - \alpha) = 2 + \alpha$$

$$\implies x^{2} = \frac{1 - \alpha}{2 + \alpha}.$$

Thus, for any given α , this can only be true for at most two points in $[0, \infty)$, which contradicts our assumption that this is true almost everywhere. Therefore, we can conclude that the equality does not hold, as desired. \square

Problem 6

Let $f: \mathbb{R}^n \to \mathbb{R}$ be continuous and bounded. Show that

$$||f||_{\infty} = \sup\{|f(x)| : x \in \mathbb{R}^n\}.$$

Solution

Let $M = \sup\{|f(x)| : x \in \mathbb{R}^n\}$, and let $\alpha < M$. Then, by definition of supremum, we have

$$\{x \in \mathbb{R}^n : |f(x)| > M\} = \emptyset \implies |\{x \in \mathbb{R}^n : |f(x)| > M\}| = 0$$
$$\implies M \ge ||f||_{\infty}.$$

Thus, we just need to show that $M \leq ||f||_{\infty}$, and our proof will be complete. To do this, let's suppose for sake of contradiction that $M > ||f||_{\infty}$. Then, there exists some nonnegative $\alpha < M$ such that

$$|\{x \in \mathbb{R}^n | |f(x)| > \alpha\}| = 0.$$

We have

$${x \in \mathbb{R}^n | |f(x)| > \alpha} = |f|^{-1} ((\alpha, \infty)).$$

Since f is continuous, |f| is continuous. Thus, since (α, ∞) is open, we can conclude that $|f|^{-1}((\alpha, \infty))$ is open. Now, by definition of supremum, we have that there exists some $x \in \mathbb{R}^n$ such that $\alpha < |f(x)| \leq M$. Thus, $|f|^{-1}((\alpha, \infty))$ is nonempty. Since nonempty open subsets of \mathbb{R}^n have positive measure, we can conclude that

$$|\{x \in \mathbb{R}^n | |f(x)| > \alpha\}| > 0$$

and we have reached a contradiction. Thus, $M \leq ||f||_{\infty}$, and our proof is complete.

Problem 7

Theorem 2. Let $\{f_k\} \subset L^p(E)$ for some $1 \leq p < \infty$. Assume that $|E| < \infty$, $||f_k||_p \leq A$ for each natural k, and that

$$\lim_{k \to \infty} f_k(x) = f(x)$$

for almost every $x \in E$. Then $f_k \to f$ in L^1 .

Solution

To prove this, we will start by proving an intuitive lemma.

Lemma 1. Let $E \subseteq \mathbb{R}^n$, and let $f \in L(E)$. Then for any $\epsilon > 0$, there exists a $\delta > 0$ such that if $A \subseteq E$ with $|A| < \delta$, then

$$\int_{A} |f| < \epsilon.$$

Informally, this is known as the fact that integrals over small sets are small.

Proof. Let $\epsilon > 0$, and let $A \subseteq E$. Let g be a simple function with $0 \le g \le |f|$. Then

$$\int_A (|f|-g) \le \int_E (|f|-g) \implies \int_A |f| \le \int_A g + \int_E |f| - \int_E g.$$

By theorem 4.13 in our textbook, and the monotone convergence theorem, we can choose g such that

$$\int_{E} |f| - \int_{E} g < \frac{\epsilon}{2}.$$

If we define $M = \max g$, then

$$\int_A g \le |A| M.$$

Thus, if we let $\delta = \frac{\epsilon}{2M}$, and A is such that $|A| < \delta$, then we have

$$\begin{split} \int_A |f| &\leq \int_A g + \int_E |f| - \int_E g \\ &< \frac{\epsilon}{2} + \frac{\epsilon}{2} \\ &= \epsilon, \end{split}$$

and our proof is complete.

Now we are ready for the proof of the main theorem.

Proof. Let q be the conjugate exponent of p, and let $F \subseteq E$ be measurable. If p > 1, we have

$$\int_{F} |f_{k}| \leq \left(\int_{F} 1\right)^{1/q} \left(\int_{F} |f|^{p}\right)^{1/p}$$
By Holder's inequality
$$\leq \left(\int_{F} 1\right)^{1/q} \left(\int_{E} |f|^{p}\right)^{1/p}$$

$$= |F|^{1/q} ||f_{k}||_{p}$$

$$\leq |F|^{1/q} A.$$

Let $\epsilon > 0$. By Ergorov's theorem, there exists a closed set $F \subseteq E$ such that f_k converges uniformly to f on F, and $|E \setminus F| < \epsilon$. We have

$$\lim_{k\to\infty} \int_E |f_k - f| = \lim_{k\to\infty} \int_F |f_k - f| + \int_{E\backslash F} |f_k - f|$$

$$= 0 + \lim_{k\to\infty} \int_{E\backslash F} |f_k - f| \qquad \text{By the uniform convergence theorem}$$

$$\leq \int_{E\backslash F} |f_k| + \int_{E\backslash F} |f|$$

$$\leq |E\backslash F|^{1/q} A + \int_{E\backslash F} \liminf |f_k|$$

$$\leq |E\backslash F|^{1/q} A + \liminf \int_{E\backslash F} |f_k| \qquad \text{By Fatou's Lemma}$$

$$\leq 2|E\backslash F|^{1/q} A$$

$$\leq 2|\epsilon|^{1/q} A.$$

Thus, taking the limit as $\epsilon \to 0$, we have proven that f_k converges to f in L^1 if p > 1. Now consider the case of p = 1. Then, we have

$$\lim_{k \to \infty} \int_{E} |f_{k} - f| = \lim_{k \to \infty} \int_{F} |f_{k} - f| + \int_{E \setminus F} |f_{k} - f|$$

$$= 0 + \lim_{k \to \infty} \int_{E \setminus F} |f_{k} - f|$$
By the uniform convergence theorem
$$\leq \int_{E \setminus F} |f_{k}| + \int_{E \setminus F} |f|$$

$$\leq \int_{E \setminus F} |f_{k}| + \int_{E \setminus F} \lim\inf|f_{k}|$$

$$\leq \int_{E \setminus F} |f_{k}| + \lim\inf|f_{E \setminus F}|f_{k}|$$
By Fatou's Lemma.

Thus, taking the limit as $\epsilon \to 0$, the above lemma allows us to conclude that f_k converges to f in L^1 , and our proof is complete.

Problem 8

Theorem 3. Let $1 \leq p < \infty$ and assume that $f \in L^p(\mathbb{R})$. Then

$$\lim_{t \to \infty} \int_{t}^{t+1} f(x)dx = 0.$$

Solution

Proof. We have

$$\lim_{t \to \infty} \int_{t}^{t+1} |f(x)| dx = 0 \implies \lim_{t \to \infty} \left| \int_{t}^{t+1} f(x) dx \right| = 0$$

$$\implies \lim_{t \to \infty} \int_{t}^{t+1} f(x) dx = 0,$$

so it will suffice to show that $\lim_{t\to\infty} \int_t^{t+1} f(x) dx = 0$.

Suppose, for sake of contradiction, that $\lim_{t\to\infty} \int_t^{t+1} f(x) dx \neq 0$. Then, there exists some $\epsilon > 0$ such that for any natural N, there exists an $t \geq N$ such that

$$\int_{t}^{t+1} f(x)dx > \epsilon.$$

Let t_0 be any natural number such that

$$\int_{t_0}^{t_0+1} f(x)dx > \epsilon,$$

and define a sequence $\{t_n\}_{n=1}^{\infty}$ such that $t_n \geq t_{n-1} + 1$, and

$$\int_{t_n}^{t_n+1} f(x)dx > \epsilon.$$

Then, the intervals $[t_n, t_n + 1]$ are non overlapping, and we have

$$\int_{\mathbb{R}} |f(x)| dx \ge \sum_{n=0}^{\infty} \int_{t_n}^{t_n+1} f(x) dx$$

$$> \sum_{n=0}^{\infty} \epsilon$$

Thus, $f \notin L^1$ and by theorem 8.2 $f \notin L^p$, which is a contradiction. Thus, we have proven the theorem.

Problem 9

Theorem 4. Let $p, q, r \in [1, \infty)$ such that

$$\frac{1}{r} = \frac{1}{p} + \frac{1}{q}.$$

If $f \in L^p(\mathbb{R}^n)$ and $g \in L^p(\mathbb{R}^n)$, then

$$||fg||_r \le ||f||_p \cdot ||g||_q.$$

Solution

Proof. Define $p' = \frac{p}{r}$ and $q' = \frac{q}{r}$. Then p' and q' are conjugate exponents. We have

$$||fg||_{r} = \left(\int_{\mathbb{R}^{n}} |fg|^{r}\right)^{1/r}$$

$$= \left(\int_{\mathbb{R}^{n}} |f^{r}g^{r}|\right)^{1/r}$$

$$\leq \left(\left(\int_{\mathbb{R}^{n}} |f^{r}|^{p'}\right)^{1/p'} \left(\int_{\mathbb{R}^{n}} |g^{r}|^{q'}\right)^{1/q'}\right)^{1/r}$$

$$= \left(\int_{\mathbb{R}^{n}} |f|^{rp'}\right)^{1/rp'} \left(\int_{\mathbb{R}^{n}} |g|^{rq'}\right)^{1/rq'}$$

$$= \left(\int_{\mathbb{R}^{n}} |f|^{p}\right)^{1/p} \left(\int_{\mathbb{R}^{n}} |g|^{q}\right)^{1/q}$$

$$= ||f||_{p} \cdot ||g||_{q},$$

By Holder's inequality

and our proof is complete.

Problem 10

Theorem 5. Let $1 \le p < r < q < +\infty$ and define $\theta \in (0,1)$ by

$$\frac{1}{r} = \frac{\theta}{p} + \frac{1 - \theta}{q}.$$

Let $f \in L^p \cap L^q$. Prove that

$$||f||_r \le ||f||_p^{\theta} \cdot ||f||_q^{1-\theta}.$$

Solution

Proof. Define $p' = \frac{p}{\theta}$ and $q' = \frac{q}{1-\theta}$. Then, we have

$$\frac{1}{r} = \frac{1}{p'} + \frac{1}{q'}.$$

Utilizing the results of the previous problem, we have

$$\begin{aligned} ||f||_{r} &= ||f^{\theta} f^{1-\theta}||_{r} \\ &\leq ||f^{\theta}||_{p'} \cdot ||f^{1-\theta}||_{q'} \\ &= \left(\int_{\mathbb{R}^{n}} |f^{\theta}|^{p'} \right)^{1/p'} \left(\int_{\mathbb{R}^{n}} |f^{1-\theta}|^{q'} \right)^{1/q'} \\ &= \left(\int_{\mathbb{R}^{n}} |f|^{\theta p'} \right)^{1/p'} \left(\int_{\mathbb{R}^{n}} |f|^{(1-\theta)q'} \right)^{1/q'} \\ &= \left(\int_{\mathbb{R}^{n}} |f|^{p} \right)^{\theta/p} \left(\int_{\mathbb{R}^{n}} |f|^{q} \right)^{(1-\theta)/q} \\ &= ||f||_{p}^{\theta} \cdot ||f||_{q}^{1-\theta}, \end{aligned}$$

and our proof is complete.

Problem 11

Theorem 6. Let $0 < r < \infty$ and $f \in L^r(\mathbb{R}^n) \cap L^{\infty}(\mathbb{R}^n)$. Then the following statements are true:

Part (i):

For all $p \in (r, \infty)$,

$$||f||_p \le ||f||_r^{r/p} \cdot ||f||_{\infty}^{1-r/p}.$$

Part (ii):

$$\lim_{p \to \infty} ||f||_p = ||f||_{\infty}.$$

Solution

Proof. Part (i):

We have

$$\begin{aligned} ||f||_p &= ||f^{r/p} f^{1-r/p}||_p \\ &= \left(\int_{\mathbb{R}^n} |f^{r/p} f^{1-r/p}|^p dx \right)^{1/p} \\ &= \left(\int_{\mathbb{R}^n} |f^r f^{p-r}| dx \right)^{1/p} \\ &\leq \left(||f^{p-r}||_{\infty} \cdot \int_{\mathbb{R}^n} |f^r| dx \right)^{1/p} \\ &= \left(||f||_{p-r}^{p-r} \cdot \int_{\mathbb{R}^n} |f|^r dx \right)^{1/p} \\ &= \left(||f||_{p-r}^{p-r} \cdot ||f||_r^r \right)^{1/p} \\ &= ||f||_r^{r/p} \cdot ||f||_r^{1-r/p}, \end{aligned}$$

Holder's Inequality

as desired.

Part (ii):

Using the results from the previous part, we have

$$\lim_{p \to \infty} ||f||_p \le \lim_{p \to \infty} ||f||_r^{r/p} \cdot ||f||_{\infty}^{1-r/p}$$

$$= ||f||_r^0 \cdot ||f||_{\infty}^{1-0}$$

$$= ||f||_{\infty}.$$

Thus, all we must do to complete the proof is show that $\lim_{p\to\infty} ||f||_p \ge ||f||_\infty$ (but I've not figured this part out yet).