# 14. 半教師あり学習

• 正解情報が学習データの一部にのみ与えられている状況での学習



# 14.1 半教師あり学習とは 14.1.1 数値特徴の場合

• 半教師あり学習に適した数値特徴データの性質



半教師あり学習に適するデータ

半教師あり学習に適さないデータ

ID: 1403

# 14.1.1 数値特徴の場合

- 半教師あり学習が可能なデータ
  - 半教師あり平滑性仮定
    - 二つの入力が高密度領域で近ければ、出力も関連している
  - クラスタ仮定
    - もし入力が同じクラスタに属するなら、それらは同じクラスになりやすい
  - 低密度分離
    - 識別境界は低密度領域にある
  - 多様体仮定
    - 高次元のデータは、低次元の多様体上に写像できる
      - 多様体:局所的に線形空間と見なせる空間

## 14.1.2 カテゴリ特徴の場合

- オーバーラップ
  - 文書からの評判分析の例



# 14.1.2 カテゴリ特徴の場合

#### • 特徴の伝播



ID: 1406

## 14.1.3 半教師あり学習のアルゴリズム

- 半教師あり学習の基本的な考え方
  - 正解付きデータで識別器を作成
  - 正解なしデータで識別器のパラメータを調整
- 識別器に対する要求
  - 確信度の出力:正解なしデータに対する出力を信用 するかどうかの判定に必要

## 14.2 自己学習

- 自己学習のアルゴリズム
  - 1.正解付きデータで初期識別器を作成
  - 2.正解なしデータの識別結果のうち、確信度の高いものを、正解付きデータとみなす
  - 3.新しい正解付きデータで、識別器を学習
  - 4. 2, 3 を繰り返す



#### 14.2 自己学習

- 自己学習の性質
  - クラスタ仮定や低密度分離が満たされるデータに対しては、高い性能が期待できる
  - 低密度分離が満たされていない場合、初期識別器の 誤りが拡大してゆく可能性がある

#### 14.3 共訓練

- 共訓練とは
  - 判断基準が異なる識別器を交互に用いる
  - ・ 片方の確信度が高いデータを、相手が正解付きデータとみなして学習



#### 14.3 共訓練

- 共訓練の特徴
  - 学習初期の誤りに対して頑健
- 共訓練の問題点
  - それぞれが識別空間として機能する特徴集合を、 どのようにして作成するか
  - 全ての特徴を用いる識別器よりも高性能な識別器が 作成できるか

## 14.4 YATSI アルゴリズム

- YATSI(Yet Another Two-Stage Idea) アルゴリズムの考え方
  - 繰り返し学習による誤りの増幅を避ける



正解付きデータで作った識別器 で全データを識別

正解付きデータ:1 識別後の正解なしデータ:0.1 の重みで k-NN

予測値を近づける

## 14.5 ラベル伝搬法

- ラベル伝搬法の考え方
  - 特徴空間上のデータをノードとみなし、類似度に基づいたグラフ構造を構築する
  - 近くのノードは同じクラスになりやすいという仮定 で、正解なしデータの予測を行う
  - 評価関数 (最小化)

$$J(\mathbf{f}) = \sum_{i=1}^{l} (y_i - f_i)^2 + \lambda \sum_{i < j} w_{ij} (f_i - f_j)^2$$
 隣接ノードの

予測値と正解

ラベルを近づける

 $f_i$ : i番目のノードの予測値

 $y_i$ : i 番目のノードの正解ラベル { -1, 0, 1}

 $w_{ij}$ : i番目のノードとj番目のノードの結合の有無

# 14.5 ラベル伝搬法

- 1.データ間の類似度に基づいて、データをノード としたグラフを構築
- 類似度の基準
  - RBF  $K(x, x') = \exp(-\gamma ||x x'||^2)$ 
    - 全ノードが結合
    - 連続値の類似度が与えられる
  - K-NN
    - 近傍の k 個のノードが結合
    - 結合の有無は 0 または 1 で表現
    - 省メモリ

## 14.5 ラベル伝搬法

2.ラベル付きノードからラベルなしノードにラベルを伝播させる操作を繰り返し、隣接するノードがなるべく同じラベルを持つように最適化



ID: 1415

# Multi-instance learning

- Multi-instance learning の問題設定
  - 学習データ
    - データの集まり (bag) に対して 1 つのラベルが付いて いる
    - 例)
      - A さん、 B さんの Tweet: 面白い
      - C さん、 D さんの Tweet: 面白くない

全 Tweet がこのラベルに 当てはまるわけではない

- 問題
  - 未知のデータの集まり (bag) (たとえば E さんの一定 期間の Tweet ) が与えられたとき、面白い or 面白くな いを判定

## Multi-instance learning

- 入力を集約する学習手法
  - bag の特徴ベクトルの集約情報(平均値・中央 値・最大値・最小値など)を新たに特徴とする
  - 上記データに対して通常の教師あり学習
- ・ 出力を集約する学習手法
  - bag の各データにその bag のクラスラベルを与えて、通常の教師あり学習
  - 判定したい bag に対して、個々のデータのクラス を判定し、多数決などの投票