第 4 节 实对称矩阵的相似对角化

安徽财经大学

统计与应用数学学院

安徽财经大学

- 在§4.2 中所讨论的一般 n 阶矩阵相似对角化的结论对于实对称矩阵当然成立。而实对称矩阵的相似对角化又有其自身的特殊性。实对称矩阵的一个重要特性就是它的特征值都是实数。为了证明这个结论,我们先介绍复矩阵的共轭矩阵概念及其基本性质。
- 设 $A = (a_{ij})_{m \times n}, a_{ij} \in \mathbb{C}$, 我们把 $A = (\overline{a}_{ij})_{m \times n}$ 称为 A 的共轭矩阵, 其中 \overline{a}_{ij} 是 a_{ij} 的共轭复数.
- 由共轭矩阵的定义及共轭复数的运算性质,易证共轭矩阵有以下性质:
 - $1^{\circ} \quad \overline{A}^{\mathrm{T}} = \overline{A}^{\mathrm{T}}; \quad 2^{\circ} \quad \overline{kA} = \overline{kA}; \quad 3^{\circ} \quad \overline{AB} = \overline{A} \ \overline{B}.$
- 现在我们利用上述性质证明以下定理

2/13

- 在 §4.2 中所讨论的一般 n 阶矩阵相似对角化的结论对于实对称矩阵当然成立. 而实对称矩阵的相似对角化又有其自身的特殊性. 实对称矩阵的一个重要特性就是它的特征值都是实数. 为了证明这个结论, 我们先介绍复矩阵的共轭矩阵概念及其基本性质.
- 设 $A = (a_{ij})_{m \times n}, a_{ij} \in \mathbb{C}$, 我们把 $\overline{A} = (\overline{a}_{ij})_{m \times n}$ 称为 A 的共轭矩阵, 其中 \overline{a}_{ij} 是 a_{ij} 的共轭复数.
- 由共轭矩阵的定义及共轭复数的运算性质, 易证共轭矩阵有以下性质:
 - 1° $\overline{A^{\mathrm{T}}} = \overline{A}^{\mathrm{T}}$; 2° $\overline{kA} = \overline{kA}$; 3° $\overline{AB} = \overline{A} \overline{B}$.
- 现在我们利用上述性质证明以下定理

- 在§4.2 中所讨论的一般 n 阶矩阵相似对角化的结论对于实对称矩阵当然成立。而实对称矩阵的相似对角化又有其自身的特殊性。实对称矩阵的一个重要特性就是它的特征值都是实数。为了证明这个结论,我们先介绍复矩阵的共轭矩阵概念及其基本性质。
- 设 $A = (a_{ij})_{m \times n}, a_{ij} \in \mathbb{C}$, 我们把 $\overline{A} = (\overline{a}_{ij})_{m \times n}$ 称为 A 的共轭矩阵, 其中 \overline{a}_{ij} 是 a_{ij} 的共轭复数.
- 由共轭矩阵的定义及共轭复数的运算性质,易证共轭矩阵有以下性质:

1°
$$\overline{A}^{\mathrm{T}} = \overline{A}^{\mathrm{T}}$$
; 2° $\overline{k}A = \overline{k}A$; 3° $\overline{A}B = \overline{A}\overline{B}$.

• 现在我们利用上述性质证明以下定理

- 在§4.2 中所讨论的一般 n 阶矩阵相似对角化的结论对于实对称矩阵当然成立。而实对称矩阵的相似对角化又有其自身的特殊性。实对称矩阵的一个重要特性就是它的特征值都是实数。为了证明这个结论,我们先介绍复矩阵的共轭矩阵概念及其基本性质。
- 设 $A = (a_{ij})_{m \times n}, a_{ij} \in \mathbb{C}$, 我们把 $\overline{A} = (\overline{a}_{ij})_{m \times n}$ 称为 A 的共轭矩阵, 其中 \overline{a}_{ij} 是 a_{ij} 的共轭复数.
- 由共轭矩阵的定义及共轭复数的运算性质,易证共轭矩阵有以下性质:

1°
$$\overline{A}^{\mathrm{T}} = \overline{A}^{\mathrm{T}}$$
; 2° $\overline{k}\overline{A} = \overline{k}\overline{A}$; 3° $\overline{A}\overline{B} = \overline{A}\overline{B}$.

• 现在我们利用上述性质证明以下定理:

实对称矩阵的特征值都是实数.

证明

设 λ 是实对称矩阵 A 的任一特征值,则有非零向量 α ,使得 $A\alpha = \lambda\alpha$. 欲证 λ 是实数,只需证明 $\overline{\lambda} = \lambda$. 在 $A\alpha = \lambda\alpha$ 两端取共轭,得 $\overline{A\alpha} = \overline{\lambda\alpha}$,由共轭矩阵的性质 2° 及性质 3° ,有 $\overline{A\alpha} = \overline{\lambda\alpha}$.因为 A 是实对称矩阵,所以 $\overline{A} = A$, $A^{\mathrm{T}} = A$,于是有

$$A^{\mathrm{T}}\overline{\alpha} = \overline{\lambda}\overline{\alpha},$$

上式两端再取转置, 有

$$\overline{\boldsymbol{\alpha}}^{\mathrm{T}} \boldsymbol{A} = \overline{\lambda} \overline{\boldsymbol{\alpha}}^{\mathrm{T}},$$

再用 α 右乘上式两端,得

$$\overline{lpha}^{
m T} A lpha = \overline{\lambda} \overline{lpha}^{
m T} lpha,
onumber \ \lambda \overline{lpha}^{
m T} lpha = \overline{\lambda} \overline{lpha}^{
m T} lpha,
onumber \ \lambda \overline{l$$

实对称矩阵的特征值都是实数.

证明.

设 λ 是实对称矩阵 A 的任一特征值, 则有非零向量 α , 使得 $A\alpha = \lambda \alpha$. 欲证 λ 是实数, 只需证明 $\overline{\lambda} = \lambda$. 在 $A\alpha = \lambda \alpha$ 两端取共轭. 得

3/13

实对称矩阵的特征值都是实数.

证明.

设 λ 是实对称矩阵 A 的任一特征值,则有非零向量 α ,使得 $A\alpha=\lambda\alpha$. 欲证 λ 是实数,只需证明 $\overline{\lambda}=\lambda$. 在 $A\alpha=\lambda\alpha$ 两端取共轭,得 $\overline{A\alpha}=\overline{\lambda\alpha}$,由共轭矩阵的性质 2° 及性质 3° ,有 $\overline{A\alpha}=\overline{\lambda\alpha}$. 因为 A 是实对称矩阵,所以 $\overline{A}=A$, $A^{\rm T}=A$,于是有

$$\mathbf{A}^{\mathrm{T}}\overline{\boldsymbol{\alpha}} = \overline{\lambda}\overline{\boldsymbol{\alpha}},$$

上式两端再取转置,有

$$\overline{\boldsymbol{\alpha}}^{\mathrm{T}} \boldsymbol{A} = \overline{\lambda} \overline{\boldsymbol{\alpha}}^{\mathrm{T}},$$

再用 lpha 右乘上式两端,得

$$\overline{\alpha}^{\mathrm{T}} A \alpha = \overline{\lambda} \overline{\alpha}^{\mathrm{T}} \alpha$$

$$\lambda \overline{\alpha}^{\mathrm{T}} \alpha = \overline{\lambda} \overline{\alpha}^{\mathrm{T}} \alpha$$

实对称矩阵的特征值都是实数.

证明.

设 λ 是实对称矩阵 A 的任一特征值,则有非零向量 α ,使得 $A\alpha=\lambda\alpha$. 欲证 λ 是实数,只需证明 $\overline{\lambda}=\lambda$. 在 $A\alpha=\lambda\alpha$ 两端取共轭,得 $\overline{A\alpha}=\overline{\lambda\alpha}$,由共轭矩阵的性质 2° 及性质 3° ,有 $\overline{A\alpha}=\overline{\lambda\alpha}$. 因为 A 是实对称矩阵,所以 $\overline{A}=A$, $A^{\mathrm{T}}=A$, 于是有

$$\mathbf{A}^{\mathrm{T}}\overline{\boldsymbol{\alpha}} = \overline{\lambda}\overline{\boldsymbol{\alpha}},$$

上式两端再取转置, 有

$$\overline{\boldsymbol{\alpha}}^{\mathrm{T}} \boldsymbol{A} = \overline{\lambda} \overline{\boldsymbol{\alpha}}^{\mathrm{T}},$$

再用 lpha 右乘上式两端,得

 $\overline{\alpha}^{\mathrm{T}} A \alpha = \overline{\lambda} \overline{\alpha}^{\mathrm{T}} \alpha$ $\lambda \overline{\alpha}^{\mathrm{T}} \alpha = \overline{\lambda} \overline{\alpha}^{\mathrm{T}} \alpha,$

实对称矩阵的特征值都是实数.

证明.

设 λ 是实对称矩阵 A 的任一特征值, 则有非零向量 α , 使得 $A\alpha = \lambda\alpha$. 欲证 λ 是实数, 只需证明 $\overline{\lambda} = \lambda$. 在 $A\alpha = \lambda\alpha$ 两端取共轭, 得 $\overline{A\alpha} = \overline{\lambda\alpha}$, 由共轭矩阵的性质 2° 及性质 3° , 有 $\overline{A\alpha} = \overline{\lambda\alpha}$. 因为 A 是实对称矩阵, 所以 $\overline{A} = A$, $A^{\mathrm{T}} = A$, 于是有

$$\mathbf{A}^{\mathrm{T}}\overline{\boldsymbol{\alpha}} = \overline{\lambda}\overline{\boldsymbol{\alpha}},$$

上式两端再取转置, 有

$$\overline{\boldsymbol{\alpha}}^{\mathrm{T}}\boldsymbol{A} = \overline{\lambda}\overline{\boldsymbol{\alpha}}^{\mathrm{T}},$$

再用 α 右乘上式两端,得

$$\overline{\alpha}^{\mathrm{T}} A \alpha = \overline{\lambda} \overline{\alpha}^{\mathrm{T}} \alpha,$$

$$\lambda \overline{\alpha}^{\mathrm{T}} \alpha = \overline{\lambda} \overline{\alpha}^{\mathrm{T}} \alpha,$$

实对称矩阵的特征值都是实数.

证明.

移项, 有 $(\lambda - \overline{\lambda})\overline{\alpha}^{T}\alpha = 0$. 因为 $\alpha \neq 0$, 所以

$$\overline{m{lpha}}^{
m T}m{lpha}=(\overline{a}_1,\overline{a}_2,\cdots,\overline{a}_n)\left(egin{array}{c} a_1\ a_2\ dots\ a_n \end{array}
ight)=\sum_{i=1}^n\overline{a}_ia_i>0,$$

故 $\lambda - \lambda = 0$, $\lambda = \lambda$, 即 λ 为实数

线性代数

任一 n 阶矩阵的不同特征值的特征向量是线性无关的,实对称矩阵则

4/13

实对称矩阵的特征值都是实数。

证明.

移项, 有 $(\lambda - \overline{\lambda})\overline{\alpha}^{\mathrm{T}}\alpha = 0$. 因为 $\alpha \neq 0$, 所以

$$\overline{m{lpha}}^{\mathrm{T}}m{lpha} = (\overline{a}_1, \overline{a}_2, \cdots, \overline{a}_n) \left(egin{array}{c} a_1 \ a_2 \ dots \ a_n \end{array}
ight) = \sum_{i=1}^n \overline{a}_i a_i > 0,$$

故 $\lambda - \overline{\lambda} = 0$, $\lambda = \overline{\lambda}$, 即 λ 为实数.

 $\mathsf{t} = n$ 阶矩阵的不同特征值的特征问量是线性无天的,实对称矩阵则

实对称矩阵的特征值都是实数.

证明.

移项, 有 $(\lambda - \overline{\lambda})\overline{\alpha}^{\mathrm{T}}\alpha = 0$. 因为 $\alpha \neq 0$, 所以

$$\overline{m{lpha}}^{\mathrm{T}}m{lpha} = (\overline{a}_1, \overline{a}_2, \cdots, \overline{a}_n) \left(egin{array}{c} a_1 \ a_2 \ dots \ a_n \end{array}
ight) = \sum_{i=1}^n \overline{a}_i a_i > 0,$$

故 $\lambda - \overline{\lambda} = 0$, $\lambda = \overline{\lambda}$, 即 λ 为实数.

任一 n 阶矩阵的不同特征值的特征向量是线性无关的,实对称矩阵则n

设 A 为一个实对称矩阵,那么对应于 A 的不同特征值的特征向量彼此正交。

证明

设 λ_1,λ_2 是 $m{A}$ 的两个不同的特征值, $m{lpha}_1,m{lpha}_2$ 是 $m{A}$ 分别属于 λ_1,λ_2 的特征向量, 于是有

$$A\alpha_1 = \lambda_1 \alpha_1, \quad A\alpha_2 = \lambda_2 \alpha_2,$$

上面第一个等式两端取转置可得

$$\boldsymbol{\alpha}_1^{\mathrm{T}} \boldsymbol{A} = \lambda_1 \boldsymbol{\alpha}_1^{\mathrm{T}},$$

用 α_2 右乘上式两端得

$$\lambda_1 \boldsymbol{lpha}_1^{\mathrm{T}} \boldsymbol{lpha}_2 = \boldsymbol{lpha}_1^{\mathrm{T}} \boldsymbol{A} \boldsymbol{lpha}_2 = \boldsymbol{lpha}_1^{\mathrm{T}} \lambda_2 \boldsymbol{lpha}_2 = \lambda_2 \boldsymbol{lpha}_1^{\mathrm{T}} \boldsymbol{lpha}_2,$$

设 A 为一个实对称矩阵,那么对应于 A 的不同特征值的特征向量彼此正交.

证明.

设 λ_1,λ_2 是 A 的两个不同的特征值, α_1,α_2 是 A 分别属于 λ_1,λ_2 的特征向量, 于是有

$$\boldsymbol{A}\boldsymbol{\alpha}_1 = \lambda_1\boldsymbol{\alpha}_1, \quad \boldsymbol{A}\boldsymbol{\alpha}_2 = \lambda_2\boldsymbol{\alpha}_2,$$

上面第一个等式两端取转置可得

$$\boldsymbol{\alpha}_1^{\mathrm{T}} \boldsymbol{A} = \lambda_1 \boldsymbol{\alpha}_1^{\mathrm{T}},$$

用 α_2 右乘上式两端得

$$\lambda_1 oldsymbol{lpha}_1^{
m T} oldsymbol{lpha}_2 = oldsymbol{lpha}_1^{
m T} oldsymbol{A} oldsymbol{lpha}_2 = oldsymbol{lpha}_1^{
m T} oldsymbol{lpha}_2 = \lambda_2 oldsymbol{lpha}_1^{
m T} oldsymbol{lpha}_2,$$

设 A 为一个实对称矩阵,那么对应于 A 的不同特征值的特征向量彼此正交.

证明.

设 λ_1,λ_2 是 A 的两个不同的特征值, α_1,α_2 是 A 分别属于 λ_1,λ_2 的特征向量, 于是有

$$\boldsymbol{A}\boldsymbol{\alpha}_1 = \lambda_1\boldsymbol{\alpha}_1, \quad \boldsymbol{A}\boldsymbol{\alpha}_2 = \lambda_2\boldsymbol{\alpha}_2,$$

上面第一个等式两端取转置可得

$$\boldsymbol{\alpha}_1^{\mathrm{T}} \boldsymbol{A} = \lambda_1 \boldsymbol{\alpha}_1^{\mathrm{T}},$$

用 α_2 右乘上式两端得

$$\lambda_1 \boldsymbol{lpha}_1^{\mathrm{T}} \boldsymbol{lpha}_2 = \boldsymbol{lpha}_1^{\mathrm{T}} \boldsymbol{A} \boldsymbol{lpha}_2 = \boldsymbol{lpha}_1^{\mathrm{T}} \lambda_2 \boldsymbol{lpha}_2 = \lambda_2 \boldsymbol{lpha}_1^{\mathrm{T}} \boldsymbol{lpha}_2$$

设 A 为一个实对称矩阵,那么对应于 A 的不同特征值的特征向量彼此正交.

证明.

设 λ_1, λ_2 是 A 的两个不同的特征值, α_1, α_2 是 A 分别属于 λ_1, λ_2 的特征向量, 于是有

$$A\alpha_1 = \lambda_1\alpha_1, \quad A\alpha_2 = \lambda_2\alpha_2,$$

上面第一个等式两端取转置可得

$$\boldsymbol{\alpha}_1^{\mathrm{T}} \boldsymbol{A} = \lambda_1 \boldsymbol{\alpha}_1^{\mathrm{T}},$$

用 α_2 右乘上式两端得

$$\lambda_1 \boldsymbol{\alpha}_1^{\mathrm{T}} \boldsymbol{\alpha}_2 = \boldsymbol{\alpha}_1^{\mathrm{T}} \boldsymbol{A} \boldsymbol{\alpha}_2 = \boldsymbol{\alpha}_1^{\mathrm{T}} \lambda_2 \boldsymbol{\alpha}_2 = \lambda_2 \boldsymbol{\alpha}_1^{\mathrm{T}} \boldsymbol{\alpha}_2,$$

设 A 为一个实对称矩阵,那么对应于 A 的不同特征值的特征向量彼此正交.

证明.

设 λ_1, λ_2 是 A 的两个不同的特征值, α_1, α_2 是 A 分别属于 λ_1, λ_2 的特征向量, 于是有

$$\boldsymbol{A}\boldsymbol{\alpha}_1 = \lambda_1\boldsymbol{\alpha}_1, \quad \boldsymbol{A}\boldsymbol{\alpha}_2 = \lambda_2\boldsymbol{\alpha}_2,$$

上面第一个等式两端取转置可得

$$\boldsymbol{\alpha}_1^{\mathrm{T}} \boldsymbol{A} = \lambda_1 \boldsymbol{\alpha}_1^{\mathrm{T}},$$

用 α_2 右乘上式两端得

$$\lambda_1 \boldsymbol{lpha}_1^{\mathrm{T}} \boldsymbol{lpha}_2 = \boldsymbol{lpha}_1^{\mathrm{T}} \boldsymbol{A} \boldsymbol{lpha}_2 = \boldsymbol{lpha}_1^{\mathrm{T}} \lambda_2 \boldsymbol{lpha}_2 = \lambda_2 \boldsymbol{lpha}_1^{\mathrm{T}} \boldsymbol{lpha}_2,$$

一般 n 阶矩阵未必能与对角矩阵相似,而实对称矩阵则一定能够与对角矩阵相似,这个结论可由下面的定理得到:

定理 (4.4.3)

对任意 n 阶实对称矩阵 A, 都存在一个 n 阶正交矩阵 C, 使得

$$\mathbf{C}^{\mathrm{T}} \mathbf{A} \mathbf{C} = \mathbf{C}^{-1} \mathbf{A} \mathbf{C}$$

为对角矩阵.

由定理 3 可知实对称矩阵的对角化问题,实质上是求正交矩阵 C 的问题. 计算 C 的步骤如下:

- 1° 求出实对称矩阵 A 的全部特征值 $\lambda_1, \lambda_2, \dots, \lambda_n$:
- 2° 对于各个不同的特征值 λ_i , 求出齐次线性方程组 $(\lambda_i I A)$ X = 0 的基础解系. 对基础解系进行正交化和单位化, 得到 A 对于 λ_i 的一组标准正交的特征向量. 由 $\S4.2$ 的推论 3 可知, 这个向量组所含向量的个数恰好是 λ_i 作为 A 的特征值的重数;
- 3° 将 $\lambda_i (i=1,2,\cdots,r)$ 的所有标准正交的特征向量构成一组 ${f R}^n$ 的标准正交基 $m{\gamma}_1,m{\gamma}_2,\cdots,m{\gamma}_n$
- 4° 取 $C=(\gamma_1,\gamma_2,\cdots,\gamma_n)$,则 C 为正交矩阵且使得 $C^{\mathrm{T}}AC(=C^{-1}AC)$ 为对角矩阵,对角线上的元为相应特征向量的特征 值.

由定理 3 可知实对称矩阵的对角化问题, 实质上是求正交矩阵 C 的问题. 计算 C 的步骤如下:

1° 求出实对称矩阵 A 的全部特征值 $\lambda_1, \lambda_2, \dots, \lambda_r$;

 2° 对于各个不同的特征值 λ_i , 求出齐次线性万程组 $(\lambda_i I - A) X = 0$ 的基础解系. 对基础解系进行正交化和单位化, 得到 A 对于 λ_i 的一组标准正交的特征向量. 由 $\S 4.2$ 的推论 3 可知, 这个向量组所含向量的个数恰好是 λ_i 作为 A 的特征值的重数;

 3° 将 $\lambda_i (i=1,2,\cdots,r)$ 的所有标准正交的特征向量构成一组 \mathbf{R}^n 的标

准正交基 $\gamma_1, \gamma_2, \cdots, \gamma_n$

 $C = (\gamma_1, \gamma_2, \cdots, \gamma_n)$,则 C 为正交矩阵且使得

 $C^{+}AC (= C^{-+}AC)$ 为对角矩阵,对角线上的元为相应特征问量的特征

7/13

由定理3可知实对称矩阵的对角化问题,实质上是求正交矩阵C的问 題. 计算 C 的步骤如下:

- 1° 求出实对称矩阵 A 的全部特征值 $\lambda_1, \lambda_2, \cdots, \lambda_r$;
- 对于各个不同的特征值 λ_i , 求出齐次线性方程组 $(\lambda_i I A) X = 0$ 的基础解系. 对基础解系进行正交化和单位化, 得到 A 对于 λ_i 的一组 标准正交的特征向量。由 §4.2 的推论 3 可知, 这个向量组所含向量的个 数恰好是 λ_i 作为 A 的特征值的重数:

由定理3可知实对称矩阵的对角化问题,实质上是求正交矩阵C的问 題. 计算 C 的步骤如下:

- 求出实对称矩阵 A 的全部特征值 $\lambda_1, \lambda_2, \cdots, \lambda_r$;
- 对于各个不同的特征值 λ_i , 求出齐次线性方程组 $(\lambda_i I A) X = 0$ 的基础解系. 对基础解系进行正交化和单位化. 得到 A 对于 λ_i 的一组 标准正交的特征向量。由 §4.2 的推论 3 可知, 这个向量组所含向量的个 数恰好是 λ_i 作为 A 的特征值的重数:
- 3° 将 $\lambda_i (i=1,2,\cdots,r)$ 的所有标准正交的特征向量构成一组 \mathbf{R}^n 的标 准正交基 $\gamma_1, \gamma_2, \cdots, \gamma_n$

由定理 3 可知实对称矩阵的对角化问题, 实质上是求正交矩阵 C 的问题. 计算 C 的步骤如下:

- 1° 求出实对称矩阵 A 的全部特征值 $\lambda_1, \lambda_2, \dots, \lambda_r$;
- 2° 对于各个不同的特征值 λ_i , 求出齐次线性方程组 $(\lambda_i I A) X = 0$ 的基础解系. 对基础解系进行正交化和单位化, 得到 A 对于 λ_i 的一组 标准正交的特征向量. 由 $\S 4.2$ 的推论 3 可知, 这个向量组所含向量的个数恰好是 λ_i 作为 A 的特征值的重数;
- 3° 将 $\lambda_i (i=1,2,\cdots,r)$ 的所有标准正交的特征向量构成一组 ${f R}^n$ 的标准正交基 $\gamma_1,\gamma_2,\cdots,\gamma_n$
- 4° 取 $C=(\gamma_1,\gamma_2,\cdots,\gamma_n)$,则 C 为正交矩阵且使得
- $C^{\mathrm{T}}AC (=C^{-1}AC)$ 为对角矩阵,对角线上的元为相应特征向量的特征值.

设
$$A = \begin{pmatrix} 2 & 2 & -2 \\ 2 & 5 & -4 \\ -2 & -4 & 5 \end{pmatrix}$$
, 求正交矩阵 C , 使 $C^{-1}AC$ 为对角矩阵.

$$\det(\lambda \mathbf{I} - \mathbf{A}) = \begin{vmatrix} \lambda - 2 & -2 & 2 \\ -2 & \lambda - 5 & 4 \\ 2 & 4 & \lambda - 5 \end{vmatrix} = \begin{vmatrix} \lambda - 2 & -2 & 2 \\ 0 & \lambda - 1 & \lambda - 1 \\ 2 & 4 & \lambda - 5 \end{vmatrix}$$
$$= \begin{vmatrix} \lambda - 2 & -2 & 4 \\ 0 & \lambda - 1 & 0 \\ 2 & 4 & \lambda - 9 \end{vmatrix} = (\lambda - 1) \begin{vmatrix} \lambda - 2 & 4 \\ 2 & \lambda - 9 \end{vmatrix}$$
$$= (\lambda - 1)^{2}(\lambda - 10).$$

4□▶ 4□▶ 4□▶ 4□▶ 3□ 90

设
$$A = \begin{pmatrix} 2 & 2 & -2 \\ 2 & 5 & -4 \\ -2 & -4 & 5 \end{pmatrix}$$
, 求正交矩阵 C , 使 $C^{-1}AC$ 为对角矩阵.

解

$$\det(\lambda \mathbf{I} - \mathbf{A}) = \begin{vmatrix} \lambda - 2 & -2 & 2 \\ -2 & \lambda - 5 & 4 \\ 2 & 4 & \lambda - 5 \end{vmatrix} = \begin{vmatrix} \lambda - 2 & -2 & 2 \\ 0 & \lambda - 1 & \lambda - 1 \\ 2 & 4 & \lambda - 5 \end{vmatrix}$$
$$= \begin{vmatrix} \lambda - 2 & -2 & 4 \\ 0 & \lambda - 1 & 0 \\ 2 & 4 & \lambda - 9 \end{vmatrix} = (\lambda - 1) \begin{vmatrix} \lambda - 2 & 4 \\ 2 & \lambda - 9 \end{vmatrix}$$

4 D > 4 A > 4 B > 4 B > B 900

设
$$A = \begin{pmatrix} 2 & 2 & -2 \\ 2 & 5 & -4 \\ -2 & -4 & 5 \end{pmatrix}$$
, 求正交矩阵 C , 使 $C^{-1}AC$ 为对角矩阵.

解

$$\det(\lambda \mathbf{I} - \mathbf{A}) = \begin{vmatrix} \lambda - 2 & -2 & 2 \\ -2 & \lambda - 5 & 4 \\ 2 & 4 & \lambda - 5 \end{vmatrix} = \begin{vmatrix} \lambda - 2 & -2 & 2 \\ 0 & \lambda - 1 & \lambda - 1 \\ 2 & 4 & \lambda - 5 \end{vmatrix}$$
$$= \begin{vmatrix} \lambda - 2 & -2 & 4 \\ 0 & \lambda - 1 & 0 \\ 2 & 4 & \lambda - 9 \end{vmatrix} = (\lambda - 1) \begin{vmatrix} \lambda - 2 & 4 \\ 2 & \lambda - 9 \end{vmatrix}$$
$$= (\lambda - 1)^{2}(\lambda - 10).$$

设
$$A = \begin{pmatrix} 2 & 2 & -2 \\ 2 & 5 & -4 \\ -2 & -4 & 5 \end{pmatrix}$$
,求正交矩阵 C ,使 $C^{-1}AC$ 为对角矩阵.

解

$$\det(\lambda \mathbf{I} - \mathbf{A}) = \begin{vmatrix} \lambda - 2 & -2 & 2 \\ -2 & \lambda - 5 & 4 \\ 2 & 4 & \lambda - 5 \end{vmatrix} = \begin{vmatrix} \lambda - 2 & -2 & 2 \\ 0 & \lambda - 1 & \lambda - 1 \\ 2 & 4 & \lambda - 5 \end{vmatrix}$$
$$= \begin{vmatrix} \lambda - 2 & -2 & 4 \\ 0 & \lambda - 1 & 0 \\ 2 & 4 & \lambda - 9 \end{vmatrix} = (\lambda - 1) \begin{vmatrix} \lambda - 2 & 4 \\ 2 & \lambda - 9 \end{vmatrix}$$
$$= (\lambda - 1)^{2}(\lambda - 10).$$

◆ロト ◆母 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ○

设
$$A = \begin{pmatrix} 2 & 2 & -2 \\ 2 & 5 & -4 \\ -2 & -4 & 5 \end{pmatrix}$$
,求正交矩阵 C ,使 $C^{-1}AC$ 为对角矩阵.

解

$$\det(\lambda \mathbf{I} - \mathbf{A}) = \begin{vmatrix} \lambda - 2 & -2 & 2 \\ -2 & \lambda - 5 & 4 \\ 2 & 4 & \lambda - 5 \end{vmatrix} = \begin{vmatrix} \lambda - 2 & -2 & 2 \\ 0 & \lambda - 1 & \lambda - 1 \\ 2 & 4 & \lambda - 5 \end{vmatrix}$$
$$= \begin{vmatrix} \lambda - 2 & -2 & 4 \\ 0 & \lambda - 1 & 0 \\ 2 & 4 & \lambda - 9 \end{vmatrix} = (\lambda - 1) \begin{vmatrix} \lambda - 2 & 4 \\ 2 & \lambda - 9 \end{vmatrix}$$
$$= (\lambda - 1)^{2}(\lambda - 10)$$

4 D > 4 A > 4 B > 4 B > B = 900

设
$$A = \begin{pmatrix} 2 & 2 & -2 \\ 2 & 5 & -4 \\ -2 & -4 & 5 \end{pmatrix}$$
, 求正交矩阵 C , 使 $C^{-1}AC$ 为对角矩阵.

解

$$\det(\lambda \mathbf{I} - \mathbf{A}) = \begin{vmatrix} \lambda - 2 & -2 & 2 \\ -2 & \lambda - 5 & 4 \\ 2 & 4 & \lambda - 5 \end{vmatrix} = \begin{vmatrix} \lambda - 2 & -2 & 2 \\ 0 & \lambda - 1 & \lambda - 1 \\ 2 & 4 & \lambda - 5 \end{vmatrix}$$
$$= \begin{vmatrix} \lambda - 2 & -2 & 4 \\ 0 & \lambda - 1 & 0 \\ 2 & 4 & \lambda - 9 \end{vmatrix} = (\lambda - 1) \begin{vmatrix} \lambda - 2 & 4 \\ 2 & \lambda - 9 \end{vmatrix}$$
$$= (\lambda - 1)^{2}(\lambda - 10).$$

4□▶
4□▶
4□▶
4□▶
4□▶
4□
5
6
6

对于 $\lambda_1 = 1$ (2 重), 由 $(\lambda_1 \mathbf{I} - \mathbf{A}) \mathbf{X} = \mathbf{0}$, 即

$$\begin{pmatrix} -1 & -2 & 2 \\ -2 & -4 & 4 \\ 2 & 4 & -4 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix},$$

解得基础解系为 $\alpha_1=(-2,1,0)^{\mathrm{T}}, \alpha_2=(2,0,1)^{\mathrm{T}}$. 将 α_1,α_2 正交化, 有

$$\beta_1 - \alpha_1 - (2,1,0)$$
, $\beta_2 - (2,0,1)^T = \frac{-4}{2}(2,4,5)^T$

$$\boldsymbol{\beta}_2 = \boldsymbol{\alpha}_2 - \frac{(\boldsymbol{\alpha}_2, \boldsymbol{\beta}_1)}{(\boldsymbol{\beta}_1, \boldsymbol{\beta}_1)} \boldsymbol{\beta}_1 = (2, 0, 1)^{\mathrm{T}} - \frac{-4}{5} (-2, 1, 0)^{\mathrm{T}} = \frac{1}{5} (2, 4, 5)^{\mathrm{T}}$$

再将 β_1, β_2 单位化, 有

$$\gamma_1 = \frac{1}{\|\beta_1\|} \beta_1 = \left(-\frac{2}{\sqrt{5}}, \frac{1}{\sqrt{5}}, 0\right)^{\mathrm{T}}, \gamma_2 = \frac{1}{\|\beta_2\|} \beta_2 = \left(\frac{2}{3\sqrt{5}}, \frac{4}{3\sqrt{5}}, \frac{5}{3\sqrt{5}}\right)^{\mathrm{T}}$$

◆ロト ◆団ト ◆豆ト ◆豆 ・ りゅぐ

对于 $\lambda_1 = 1$ (2 重), 由 $(\lambda_1 \mathbf{I} - \mathbf{A}) \mathbf{X} = \mathbf{0}$, 即

$$\begin{pmatrix} -1 & -2 & 2 \\ -2 & -4 & 4 \\ 2 & 4 & -4 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix},$$

解得基础解系为 $\alpha_1=(-2,1,0)^{\mathrm{T}}, \alpha_2=(2,0,1)^{\mathrm{T}}$. 将 α_1,α_2 正交化, 有

$$\boldsymbol{\beta}_1 = \boldsymbol{\alpha}_1 = (-2, 1, 0)^{\mathrm{T}},$$

$$\boldsymbol{\beta}_2 = \boldsymbol{\alpha}_2 - \frac{(\boldsymbol{\alpha}_2, \boldsymbol{\beta}_1)}{(\boldsymbol{\beta}_1, \boldsymbol{\beta}_1)} \boldsymbol{\beta}_1 = (2, 0, 1)^{\mathrm{T}} - \frac{-4}{5} (-2, 1, 0)^{\mathrm{T}} = \frac{1}{5} (2, 4, 5)^{\mathrm{T}}.$$

再将 β_1, β_2 单位化, 有

$$\gamma_1 = \frac{1}{\|oldsymbol{eta}_1\|} oldsymbol{eta}_1 = \left(-\frac{2}{\sqrt{5}}, \frac{1}{\sqrt{5}}, 0\right)^{\mathrm{T}}, \gamma_2 = \frac{1}{\|oldsymbol{eta}_2\|} oldsymbol{eta}_2 = \left(\frac{2}{3\sqrt{5}}, \frac{4}{3\sqrt{5}}, \frac{5}{3\sqrt{5}}\right)^{\mathrm{T}}$$

对于 $\lambda_1 = 1$ (2 重), 由 $(\lambda_1 I - A) X = 0$, 即

$$\begin{pmatrix} -1 & -2 & 2 \\ -2 & -4 & 4 \\ 2 & 4 & -4 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix},$$

解得基础解系为 $\alpha_1 = (-2, 1, 0)^T$, $\alpha_2 = (2, 0, 1)^T$. 将 α_1 , α_2 正交化, 有

$$\boldsymbol{\beta}_1 = \boldsymbol{\alpha}_1 = (-2, 1, 0)^{\mathrm{T}},$$

$$\beta_2 = \alpha_2 - \frac{(\alpha_2, \beta_1)}{(\beta_1, \beta_1)} \beta_1 = (2, 0, 1)^{\mathrm{T}} - \frac{-4}{5} (-2, 1, 0)^{\mathrm{T}} = \frac{1}{5} (2, 4, 5)^{\mathrm{T}}.$$

再将 β_1, β_2 单位化, 有

$$\gamma_1 = \frac{1}{\|\beta_1\|} \beta_1 = \left(-\frac{2}{\sqrt{5}}, \frac{1}{\sqrt{5}}, 0\right)^{\mathrm{T}}, \gamma_2 = \frac{1}{\|\beta_2\|} \beta_2 = \left(\frac{2}{3\sqrt{5}}, \frac{4}{3\sqrt{5}}, \frac{5}{3\sqrt{5}}\right)^{\mathrm{T}}$$

对于 $\lambda_2 = 10$, 由 $(\lambda_2 I - A) X = 0$ 解得 $\alpha_3 = (1, 2, -2)^T$, 将 α_3 单位化, 有

$$oldsymbol{\gamma}_3 = rac{1}{\|oldsymbol{lpha}_3\|} oldsymbol{lpha}_3 = \left(rac{1}{3},rac{2}{3},-rac{2}{3}
ight)^{\mathrm{T}}.$$

$$m{C} = (m{\gamma}_1, m{\gamma}_2, m{\gamma}_3) = \left(egin{array}{ccc} -rac{2}{\sqrt{5}} & rac{2}{3\sqrt{5}} & rac{1}{3} \ rac{1}{\sqrt{5}} & rac{4}{3\sqrt{5}} & rac{2}{3} \ 0 & rac{5}{3\sqrt{5}} & -rac{2}{3} \end{array}
ight)$$

则 C 为正交矩阵,且 $C^{-1}AC=\left(egin{array}{ccc}1&&&&\\&1&&&\\&&10&&\end{array}
ight)$

对于 $\lambda_2 = 10$, 由 $(\lambda_2 \mathbf{I} - \mathbf{A}) \mathbf{X} = \mathbf{0}$ 解得 $\alpha_3 = (1, 2, -2)^{\mathrm{T}}$, 将 α_3 单位化, 有

$$\gamma_3 = \frac{1}{\|\boldsymbol{lpha}_3\|} \boldsymbol{lpha}_3 = \left(\frac{1}{3}, \frac{2}{3}, -\frac{2}{3}\right)^{\mathrm{T}}.$$

令

$$C = (\gamma_1, \gamma_2, \gamma_3) = \begin{pmatrix} -\frac{2}{\sqrt{5}} & \frac{2}{3\sqrt{5}} & \frac{1}{3} \\ \frac{1}{\sqrt{5}} & \frac{4}{3\sqrt{5}} & \frac{2}{3} \\ 0 & \frac{5}{3\sqrt{5}} & -\frac{2}{3} \end{pmatrix}.$$

4□▶ 4團▶ 4 ≣ ▶ ■ 900

例 (4.4.2)

设 A, B 都是 n 阶实对称矩阵, 证明 A 与 B 相似的充要条件是 A 与 B 有相同的特征值.

证明

充分性 设 A 与 B 有相同的特征值 $\lambda_1, \lambda_2, \dots, \lambda_n$, 则存在可逆矩阵 P, Q, 使

$$P^{-1}AP = \Lambda = Q^{-1}BQ$$

其中 $A = \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_n)$. 由矩阵相似的传递性可知 A = B 相似. 必要性的证明与 $\S 4.2$ 定理 1 的证明相同.

例 (4.4.2)

设 A, B 都是 n 阶实对称矩阵, 证明 $A \subseteq B$ 相似的充要条件是 $A \subseteq B$ 有相同的特征值.

证明.

充分性 设 A 与 B 有相同的特征值 $\lambda_1, \lambda_2, \dots, \lambda_n$ 则存在可逆矩阵 P. Q. 使

$$P^{-1}AP = \Lambda = Q^{-1}BQ,$$

其中 $A = \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_n)$. 由矩阵相似的传递性可知 $A \subseteq B$ 相似. 必要性的证明与 §4.2 定理 1 的证明相同.

设 A, B 都是 n 阶实对称矩阵, 若存在正交矩阵 T, 使 $T^{-1}AT$, $T^{-1}BT$ 都是对角矩阵, 则 AB 是实对称矩阵.

证明

由 $(AB)^{\mathrm{T}} = B^{\mathrm{T}}A^{\mathrm{T}} = BA$ 可知, AB 对称的充要条件是 AB 可交换. 因此只需证 AB = BA. 据已知, 设

$$T^{-1}AT = \operatorname{diag}(\lambda_1, \lambda_2, \cdots, \lambda_n), T^{-1}BT = \operatorname{diag}(\mu_1, \mu_2, \cdots, \mu_n),$$

则

$$(T^{-1}AT)(T^{-1}BT) = (T^{-1}BT)(T^{-1}AT) = \operatorname{diag}(\lambda_1\mu_1, \dots, \lambda_n\mu_n)$$

所以 AB = BA. 故 AB 是实对称矩阵.

安徽财经大学

设 A, B 都是 n 阶实对称矩阵,若存在正交矩阵 T,使 $T^{-1}AT$, $T^{-1}BT$ 都是对角矩阵,则 AB 是实对称矩阵.

证明.

由 $(AB)^{\mathrm{T}} = B^{\mathrm{T}}A^{\mathrm{T}} = BA$ 可知, AB 对称的充要条件是 AB 可交换. 因此只需证 AB = BA. 据已知. 设

$$T^{-1}AT = \operatorname{diag}(\lambda_1, \lambda_2, \cdots, \lambda_n), T^{-1}BT = \operatorname{diag}(\mu_1, \mu_2, \cdots, \mu_n),$$

$$(T^{-1}AT)(T^{-1}BT) = (T^{-1}BT)(T^{-1}AT) = \operatorname{diag}(\lambda_1\mu_1, \dots, \lambda_n\mu_n)$$

设 A, B 都是 n 阶实对称矩阵,若存在正交矩阵 T,使 $T^{-1}AT$, $T^{-1}BT$ 都是对角矩阵,则 AB 是实对称矩阵.

证明.

由 $(AB)^T = B^TA^T = BA$ 可知, AB 对称的充要条件是 AB 可交换. 因此只雲证 AB = BA. 据已知. 设

$$T^{-1}AT = \operatorname{diag}(\lambda_1, \lambda_2, \cdots, \lambda_n), T^{-1}BT = \operatorname{diag}(\mu_1, \mu_2, \cdots, \mu_n),$$

则

$$(T^{-1}AT)(T^{-1}BT) = (T^{-1}BT)(T^{-1}AT) = \operatorname{diag}(\lambda_1\mu_1, \dots, \lambda_n\mu_n)$$

设 A, B 都是 n 阶实对称矩阵, 若存在正交矩阵 T, 使 $T^{-1}AT$, $T^{-1}BT$ 都是对角矩阵,则 AB 是实对称矩阵.

证明.

由 $(AB)^T = B^TA^T = BA$ 可知, AB 对称的充要条件是 AB 可交换. 因此只需证 AB = BA. 据已知. 设

$$T^{-1}AT = \operatorname{diag}(\lambda_1, \lambda_2, \cdots, \lambda_n), T^{-1}BT = \operatorname{diag}(\mu_1, \mu_2, \cdots, \mu_n),$$

则

$$(T^{-1}AT)(T^{-1}BT) = (T^{-1}BT)(T^{-1}AT) = \operatorname{diag}(\lambda_1\mu_1, \dots, \lambda_n\mu_n),$$

所以 AB = BA. 故 AB 是实对称矩阵.

12 / 13

小结

- 实对称矩阵的特征值都是实数. 不同特征值的特征向量彼此正交.
- 对任意 n 阶实对称矩阵 A, 都存在一个 n 阶正交矩阵 C, 使得 $C^{T}AC = C^{-1}AC$ 为对角矩阵.
- 实对称矩阵 $A \supset B$ 相似的充要条件是 $A \supset B$ 有相同的特征值.
- 实对称矩阵的对角化的步骤如下:
 - (1) 求出实对称矩阵 A 的全部特征值 $\lambda_1, \lambda_2, \dots, \lambda_r$;
 - (2) 对于各个不同的特征值 λ_i , 求出齐次线性方程组 $(\lambda_i I A) X = 0$ 的基础解系. 对基础解系进行正交化和单位化, 得到 A 对于 λ_i 的一组标准正交的特征向量.
 - (3) 将 $\lambda_i(i=1,2,\cdots,r)$ 的所有标准正交的特征向量构成一组 \mathbf{R}^n 的标准正交基 $\gamma_1,\gamma_2,\cdots,\gamma_n$
 - (4) 取 $C=(\gamma_1,\gamma_2,\cdots,\gamma_n)$, 则 C 为正交矩阵且使得 $C^{\Gamma}AC$ $(=C^{-1}AC)$ 为对角矩阵,对角线上的元为相应特征向量的特征值

安徽财经大学