Universidade Federal de Ouro Preto BCC 325 - Inteligência Artificial Prova 2 Prof. Rodrigo Silva

1. Para se obter os pesos, \mathbf{w} , de um modelo de regressão linear utilizamos a expressão $\mathbf{w} = (X^t X)^{-1} X^t \mathbf{y}$. Considerando a seguinte base de dados, responda:

Atributo1	Atributo2	Classe
1.2	2	3
2.3	3	5
3.5	4	6
4	5	8
5.7	2	2
6.7	2.5	9

- (a) Defina X em termos da base de dados apresentada. Considere a necessidade de determinar a constante que representa a interceptação do modelo com o eixo vertical.
- (b) Defina o vetor ${\bf y}$ em termos da base dados apresentada.
- (c) Explique como a equação $\mathbf{w} = (X^t X)^{-1} X^t \mathbf{y}$ é obtida.
- (d) É possivel utilizar este método para resolver problemas em que a relação entre variável dependente (atributo alvo), y, e as variáveis independentes (atributos de entrada), \mathbf{x} , não é linear? Como?
- (e) Apresente X para o caso em que suspeitamos que a relação entre \mathbf{x} e y é quadrática.
- 2. Considere os dados abaixo:

- (a) Qua tipo de problema resolvemos com regressão logística?
- (b) É possível resolver este problema com um aplicação direta do algoritmo de regresão logística com as variáveis definidas nos eixos x e y? Por quê?
- (c) O que poderia ser feito para que este problema seja resolvível com regressão logística?
- (d) Como o vetor de pesos \mathbf{w} é obtido quanto temos um modelo de regressão logística?

- 3. Quando dizemos que um algoritmo de aprendizado de máquina "está aprendendo", que processo algorítmico está acontecendo?
- 4. Considere a base de dados abaixo:

Atributo1	Atributo2	Classe
1	2	Classe1
2	3	Classe1
3	4	Classe2
4	5	Classe2
5	20	Classe1
6	30	Classe1
7	40	Classe2
8	50	Classe2

- (a) Calcule o gini para a condição $Atributo1 \leq 4.5$. $I_G(p) = 1 \sum_{i=1}^{J} p_i^2$
- (b) Quais seriam condições ótimas, em relação ao gini, após selecionarmos como raíz da árvore de decisão o critério $Atributo1 \le 4.5$. Desenhe essa árvore.
- 5. O que é overfitting? Quais são os indícios de que um modelo está sofrendo de overfitting? De forma geral, o que deve ser feito para diminuir o overfitting?
- 6. Quais as vantagens do algoritmo de busca em largura sobre o algoritmo de busca em profundidade? E quais as desvantagens?
- 7. Quando devemos utilizar o algoritmo de busca A*?