BANKER'S ALGORITHM

<u>Define deadlock and implement methods for its</u>

<u>avoidance, detection and identify goals of</u>

<u>protection.</u>

Banker's Algorithm

• Banker's Algorithm is used to determine whether a process's request for allocation of resources be safely granted immediately.

or

- The grant of request be deferred to a later stage.
- For the banker's algorithm to operate, each process has to a priori specify its maximum requirement of resources.
- A process is admitted for execution only if its maximum requirement of resources is within the system capacity of resources.
- •The Banker's algorithm is an example of resource allocation policy that avoids deadlock.

Example:- Consider the following table of a system:

Process		Alloc	cated			M	ax				ork ilable		Need (Max – Allocation)			
	R1	R1R2R3R40012			R1	R2	R3	R4	R1	R2	R3	R4	R1	R2	R3	R4
P1	0	0	1	2	0	0	1	2	2	1	0	0				
P2	2	0	0	0	2	7	5	0								
Р3	0	0	3	4	6	6	5	0								
P4	2	3	5	4	4	3	5	6								
P5	0	3	3	2	0	6	5	2								

- 1. Compute NEED Matrix.
- 2. Is the system in safe state? Justify.

Solution:- Consider the following table of the system:

Process		Alloc	cated			M	ax				ork ilable		Need (Max – Allocation)			
	R1	R1 R2 R3 R4 0 0 1 2			R1	R2	R3	R4	R1	R2	R3	R4	R1	R2	R3	R4
P1	0	0	1	2	0	0	1	2	2	1	0	0				
P2	2	0	0	0	2	7	5	0								
Р3	0	0	3	4	6	6	5	0								
P4	2	3	5	4	4	3	5	6								
P5	0	3	3	2	0	6	5	2								

Compute NEED Matrix = ?
 Need [i] = Max[i] - Allocated[i],
 Therefore,

Need Matrix

NEED MATRIX	R1	R2	R3	R4
P1	0	0	0	0
P2	0	7	5	0
Р3	6	6	2	4
P4	2	0	0	2
P5	0	3	2	0

Final Table

Process		Alloc	cated			M	ах		Work Available					Need (Max – Allocation)			
	R1 R2 R3 R4 0 0 1 2			R4	R1	R2	R3	R4	R1	R2	R3	R4	R1	R2	R3	R4	
P1	0	0	1	2	0	0	1	2	2	1	0	0	0	0	0	0	
P2	2	0	0	0	2	7	5	0					0	7	5	0	
Р3	0	0	3	4	6	6	5	0					6	6	2	4	
P4	2	3	5	4	4	3	5	6					2	0	0	2	
P5	0	3	3	2	0	6	5	2					0	3	2	0	

By applying the Banker's Algorithm:

Let **Avail** = Available; i.e. Avail = $\{2,1,0,0\}$

Iteration 1. Check all processes from P1 to P5.

if (P1 Need <= Work Available)→TRUE

$$\{0,0,0,0\} \leftarrow \{2,1,0,0\} \rightarrow \mathsf{TRUE}$$

then calculate

Work Available = Work Available + Allocated [P1]

$$= \{2,1,0,0\} + = \{0,0,1,2\}$$

Work Available = **{2,1,1,2}**

Process		Alloc	ated			M	ax		W	/ork /	Availa	ble	Need (Max – Allocation)			
	R1 R2 R3 R4			R4	R1	R2	R3	R4	R1	R2	R3	R4	R1	R2	R3	R4
P1	0	0	1	2	0	0	1	2	2	1	0	0	0	0	0	0
P2	2	0	0	0	2	7	5	0	2	1	1	2	0	7	5	0
Р3	0	0	3	4	6	6	5	0					6	6	2	4
P4	2	3	5	4	4	3	5	6					2	0	0	2
P5	0	3	3	2	0	6	5	2					0	3	2	0

By applying the Banker's Algorithm:

Iteration 1.

For P2:→

if (P2 Need <= Work Available)→FALSE

{0,7,5,0} <= {2,1,1,2} →FALSE

//then Check for next process.

By applying the Banker's Algorithm:

Iteration 1.

```
For P3:→

if (P3 Need <= Work Available )→FALSE

{6,6,2,4} <= {2,1,1,2} →FALSE

//then Check for next process.
```

By applying the Banker's Algorithm:

Iteration 1.

if (P4 Need <= Work Available)→TRUE

$$\{2,0,0,2\} \leftarrow \{2,1,1,2\} \rightarrow \mathsf{TRUE}$$

then calculate

Work Available = Work Available + Allocated [P4]

$$= \{2,1,1,2\} + = \{2,3,5,4\}$$

Work Available $= \{4,4,6,6\}$

Process		Alloc	ated			M	ax		Work Available					Need (Max – Allocation)			
	R1 R2 R3 R4			R4	R1	R2	R3	R4	R1	R2	R3	R4	R1	R2	R3	R4	
P1	0	0	1	2	0	0	1	2	2	1	0	0	0	0	0	0	
P2	2	0	0	0	2	7	5	0	2	1	1	2	0	7	5	0	
Р3	0	0	3	4	6	6	5	0	4	4	6	6	6	6	2	4	
P4	2	3	5	4	4	3	5	6					2	0	0	2	
P5	0	3	3	2	0	6	5	2					0	3	2	0	

By applying the Banker's Algorithm:

Iteration 1.

if (P5 Need <= Work Available)→TRUE

$$\{0,3,2,0\} \leftarrow \{4,4,6,6\} \rightarrow \mathsf{TRUE}$$

then calculate

Work Available = Work Available + Allocated [P5]

$$= \{4,4,6,6\} + = \{0,3,3,2\}$$

Work Available = **{4,7,9,8}**

Process		Alloc	cated			M	ax		W	/ork A	\vaila	ble	Need (Max – Allocation)			
	R1				R1	R2	R3	R4	R1	R2	R3	R4	R1	R2	R3	R4
P1	0	0	1	2	0	0	1	2	2	1	0	0	0	0	0	0
P2	2	0	0	0	2	7	5	0	2	1	1	2	0	7	5	0
Р3	0	0	3	4	6	6	5	0	4	4	6	6	6	6	2	4
P4	2	3	5	4	4	3	5	6	4	7	9	8	2	0	0	2
P5	0	3	3	2	0	6	5	2					0	3	2	0

By applying the Banker's Algorithm:

Iteration 2. Check only process P2 to P3.

if (P2 Need <= Work Available)→TRUE

$$\{0,7,5,0\} \leftarrow \{4,7,9,8\} \rightarrow TRUE$$

then calculate

Work Available = Work Available + Allocated [P2]

$$= \{4,7,9,8\} + = \{2,0,0,0\}$$

Work Available = **{6,7,9,8}**

Process		Alloc	ated			M	ax		W	/ork A	Availa	ble	Need (Max – Allocation)			
	R1 R2 R3 R4 0 0 1 2			R4	R1	R2	R3	R4	R1	R2	R3	R4	R1	R2	R3	R4
P1	0	0	1	2	0	0	1	2	2	1	0	0	0	0	0	0
P2	2	0	0	0	2	7	5	0	2	1	1	2	0	7	5	0
Р3	0	0	3	4	6	6	5	0	4	4	6	6	6	6	2	4
P4	2	3	5	4	4	3	5	6	4	7	9	8	2	0	0	2
P5	0	3	3	2	0	6	5	2	6	7	9	8	0	3	2	0

By applying the Banker's Algorithm:

Iteration 2. Check only process P2 to P3.

if (P3 Need <= Work Available)→TRUE

$$\{0,3,2,0\} \leftarrow \{6,7,9,8\} \rightarrow \mathsf{TRUE}$$

then calculate

Work Available = Work Available + Allocated [P3]

$$= \{6,7,9,8\} + = \{0,0,3,4\}$$

Work Available = {6,7,12,12} = System Capacity

Process		Alloc	cated			M	ах		Work Available				Need (Max – Allocation)			
	R1	R2	R3	R4	R1	R2	R3	R4	R1	R2	R3	R4	R1	R2	R3	R4
P1	0	0	1	2	0	0	1	2	2	1	0	0	0	0	0	0
P2	2	0	0	0	2	7	5	0	2	1	1	2	0	7	5	0
Р3	0	0	3	4	6	6	5	0	4	4	6	6	6	6	2	4
P4	2	3	5	4	4	3	5	6	4	7	9	8	2	0	0	2
P5	0	3	3	2	0	6	5	2	6	7	9	8	0	3	2	0
								7	7	12	12					

Since, all the processes got TRUE marked, no further iterations are required.

Therefore, Safe Sequence = P1, P4, P5, P2, P3

Therefore, the System is in the Safe State.