Конспект по дискретной математике.

Киселев Д.А 8371

18.02.19

Повтор последовательностей чисел в разных с/сч:

10ная: 0,1,2,3,4,5,6,7,8,9,10,11,12,13...

4ная: 0,1,2,3,10,11,12,13,20,21,22,23,30,31...

3ная: 0,1,2,10,11,12,20,21,22,100,101,102...

8ная: 83677 + единица = <math>83700

Римская: I II III IV V VI VII VIII IX X XI XII...

x + y = z Не предполагает с/сч

Продолжение док-ва о представлении числа п в Рной с/сч:

Поделим число n с остатком на p:

 $n = p \cdot n_1 + a_0$ Где n_1 - частное, a_0 - остаток или последняя цифра числа

Далее делим n_1 , n_2 на p:

 $n_1 = p \cdot n_2 + a_1$

 $n_2 = p \cdot n_3 + a_2$

Продолжаем пока не стало 0, это произойдет, т.к $n_k > n_{k+1}$

Поймем, что a_i - это цифры числа

 $n = pn_1 + a_0 = p(pn_2 + a_1) + a_0 = p^2n_2 + pa_1 + a_0 = p^2(pn_3 + a_2) + pa_1 + a_0 = p^3n_3 + p^2a_2 + pa_1 + a_0 = \dots = p^na_n + \dots + pa_1 + a_0$

Это и есть определение: $(a_n \dots a_0)_p$

Пример: произведем вычисления в 10ной c/cч:

Способ удобный для перевода из 10ной в Nную с/сч:

Число 31. Из 10ной в 4ную.

Ответ: $31_{10} = 133_4$

Перевод из Nной в 10ную удобен по определинию:

$$123_4 = 1 \cdot 4^2 + 2 \cdot 4^1 + 3 \cdot 4^0 = 27_{10}$$

Алгоритм действий в Рных с/сч:

1.Сложение в столбик:

$$+ \begin{cases} a_n \ a_{n-1} \dots a_2 \ a_1 \ a_0 \\ b_n \ b_{n-1} \dots b_2 \ b_1 \ b_0 \end{cases}$$

 $(a_0 + b_0) mod p$

Перенос $a_0 + b_0 \ge p = \left[\begin{array}{c} \frac{a_0 + b_0}{p} \end{array} \right]$

Пример:

123 + 303 в 4ной с/сч:

$$\frac{+\frac{123}{303}}{1032}$$

- 2.Вычитание, аналогично.
- 3.Умножение

 $123 \cdot 2$ в 4ной с/сч:

$$\times \frac{123}{2}$$

Позиционные системы счисления со сменным основанием.

Пример: время

3 часа 27 минут - 03:27, где 0 - 10ная с/сч, 3 - 10ная, 2 - 6ная, 7-10ная.

Час/мин/сек

12:37:59,где 1 - 10
ная с/сч, 2 - 10ная, 3 - 6ная, 7 - 10ная, 5 - 6ная, 9 - 10ная.

Опр: Пусть есть числа $p_i \in N$

$$p_i \ge 2, i \in N \cup \{0\}$$

 C/c ч с основанием p_i задает числа так:

$$\overline{(a_n \dots a_1 \ a_0)} = a_0 + p_0 a_1 + p_0 p_1 a_2 + \dots + p_0 p_1 p_2 \dots p_{n-1} a_n \qquad 0 \le a_1 < p_i$$

Пример:

 $12:37:59=\mathbf{9+5}\cdot 10+\mathbf{7}\cdot 10\cdot 6+\mathbf{3}\cdot 10\cdot 6\cdot 10+\mathbf{2}\cdot 10\cdot 6\cdot 10\cdot 6+\mathbf{1}\cdot 10\cdot 6\cdot 10\cdot 6\cdot 10=45479$ секунд

Утв: Любые $n \in N$ представляется в с/сч с основанием Р единственным образом.

Пример: Факториальная система счисления

$$\overline{(a_n \dots a_1 \ a_0)_!} = a_0 + 2! \cdot a_1 + 3! \cdot a_2 + \dots (n+1)! \cdot a_n$$

Система счисления	
10	!
1	1
2	10
3	11
4	20
5	21
6	100

Система счисления	
10	!
7	101
8	110
9	111
10	120
11	121
12	200

Примеры перевода:

$$2321_! = 1 + 2! \cdot 2 + 3! \cdot 3 + 4! \cdot 2 = 1 + 4 + 18 + 48 = 71_{10}$$

Перевод в !ную с/сч:

 $42_{10}=?_!$ При переводе в с/сч с основанием $p_!$ нужно делить и считать остатки по модулю p_0,p_1,p_2

 $42_{10} = 1300_{!}$