

Critical Design Review Parking Lot Vehicle Classification

Team Members: Aniruddha Srinivasan, Coleman Todd, Fabianna Barbarino, Jacqueline Mioduski, Spencer Cho, Tyler Roosth

Presentation Contents

1 Problem Background

7 Validation Plan

2 Requirements

8 Timeline

Goals & Objectives

Project Management & Teamwork

Evaluation of Alternate Solutions

Vision for Final Product

5 System Level Description

Societal, Safety, & Environmental Analysis

6 Our ML Results & UI

Manufacturability, sustainability, and Economics

Problem Background

- ☐ Increased vehicle traffic as business growth occurs
- ☐ Security personnel need to identify a large number of cars simultaneously
- ■Analysts need to track heavier traffic flow

Requirements

- Take in videos
- Tracking at least 5 vehicles at 10+FPS
- Desktop App
- > Run in Docker Container
- Vehicle States
 - Parked
 - Stopped
 - Moving

Goals & Objectives

Our main goal to build a containerized app that detects and tracks vehicles across a parking lot and continually logs the driving patterns.

- Our 3 states are: parked, moving, and stopped
- Monitored through the user interface by <u>security personnel</u> or <u>data scientist</u>.

Vehicle detector can track at least 5 cars

Cameras will be 12 feet off the ground looking out. This has been successfully completed!

Bounding Boxes around the cars

The coordinates will be sent to our database.

This has been successfully completed!

Tie the back-end with the front-end successfully

GUI should show data associated with the video playing. This is in progress.

Implementation works as a desktop app on a GPU workstation/laptop

Evaluation of Alternative Solutions

Evaluation of Alternative Solutions Cont.

Databases

MongoDB

- Flexibility
- Ease of Use with Atlas
- Preservation of Data if changes need to be made

SQL

- Not as Flexible
- Changes result in obsolete Data

System Level Description

Machine Learning Video Results

Security Guard View

Analyst View

Database

- Currently using MongoDB for the Database.
- Easy to implement with the Frontend (nodejs / react)
- Information is stored into MongoDB Atlas
 - Cloud Platform
- Contains the following
 - X and Y
 - BBox Width and BBox Height
 - Timestamp
 - State
 - Unique ID

Approach for Design Validation

- MVP Requirements
- 1 USB Camera should be able to send a live feed to our application (up to 5 cars in frame)
- ➤ *Does not have to be live, annotated video can be premade
- Web Application should be able to view this feed, view details of parked, stopped, not stopped vehicles. Illegally parked, speeding are optional metrics
- Business analyst view should update with data from MongoDB database. Have historical data in table that can be filtered by state or time or camera
- > Application should run in a Docker container smoothly with reasonable usage of resources

ML Detection	Backend	GUI	Infrastructure
5 cars 10 FPS >85% accuracy	MongoDB Database Record position,	2 separate views Filter by status	Runs in Docker container
Vehicle status	time, status,id		1GB VRAM Linux

Timeline

Project Management and Teamwork

- Members divide into 3 pairs
- Tasked with module connections
- Assignments are flexible
- 2 in-person meetings weekly

ML Recognition

Aniruddha Srinivasan & Jacqueline Mioduski

Database Server Management

Tyler Roosth & Coleman Todd

User Interface

Fabianna Barbarino & Spencer Cho

Docker & Documentation

All Member & Rotating

Vision for Final Product

- Fully containerized CV pipeline
- Graphical user interface for security personnel
- > Ability to identify 3 main vehicle states
 - Moving, parked, stopped
- Use of video files to be processed

Stretch Goals

- Additional vehicle states
 - Speeding, illegally parked
- Analyst GUI
- Live video feed to be processed

Societal, Safety, and Environmental Analysis

Beneficial Impact

★ Increase in parking lot safety

Detrimental Impact

★ Potential loss of privacy due to information being stored and cameras recording

Safety Precautions we must take

★ Inclement weather may damage camera

Environmental Impact

★ Carbon emissions from streaming video footage, but these cameras have to be on.

Manufacturability, Sustainability, and Economics

Economics

creates a flexible, repeatable, efficient, & cost-effective process to assist parking lot monitoring

Sustainability

★ analytics may be used to reduce parking lot traffic density = lower carbon footprint

Manufacturability

★ will use existing architecture to gather, process, & store data

THANK YOU!

Do you have any questions?

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon** and infographics & images by **Freepik**