Álgebra Relacional

- σ select
- □ projection
- produto cartesiano
- - join
- U uniao
- \ diferença

Exemplos:

```
estudantes \otimes turmas
estudantes \bowtie_{turma} turmas
\sigma_{cidade='braga'}estudantes
\sigma_{ano=1}turmas
\Pi_{enum,enome}(\sigma_{cidade='braga'}(estudantes))
\sigma_{cidade='braga' \land ano=1 \land estudantes.turma=turmas.turma}
(estudantes \otimes turmas)
\sigma_{cidade='braga' \land ano=1}(estudantes \bowtie_{turma} turmas)
\sigma_{cidade='braga'}(estudantes) \bowtie_{turma} \sigma_{ano=1}(turmas)
```

Query Optimization

Expressão	Custo
t_1	$card(t_1)$ se t_1 é um operando simples
t_1	$custo(t_1)$ se t_1 é uma operação
$t_1 \otimes t_2$	$card(t_1) * card(t_2) + custo(t_1) + custo(t_2)$
$t_1 \bowtie_{A_i} t_2$	$card(t_1) + card(t_2) + custo(t_1) + custo(t_2)$
$t_1 \cup t_2$	$card(t_1) + card(t_2) + custo(t_1) + custo(t_2)$
$t_1 \setminus t_2$	$card(t_1) + card(t_2) + custo(t_1) + custo(t_2)$
$\sigma_{Cond}(t_1)$	$card(t_1) + custo(t_1)$
$\Pi_{A_i,,A_j}t_1$	$custo(t_1)$

NOTA: custo($\sigma(\text{operação})$) = 2 * custo(operação) (TALVEZ)

Os procedimentos comuns para avaliar o desempenho de uma interrogação são:

- reescrever a interrogação em álgebra relacional;
- encontrar algoritmos para calcular resultados intermédios da forma mais simples;
- executar os algoritmos e obter os resultados.

Estes procedimentos podem esbarrar em dificuldades na medida em que na álgebra relacional podem-se obter expressões equivalentes, há problemas em lidar com sub-queries e os tamanhos intermédios obtidos são muito importantes. Os resultados da avaliação dependem da extensão das relações, o que nem sempre é possível saber dada a dinâmica de crescimento das tabelas.

Oracle Schema

Criar Tablespace/Datafile

CREATE TABLESPACE uminho_tables DATAFILE 'UMINHO_FILES_01.dbf' SIZE 500m;

CREATE TEMPORARY TABLESPACE aebd_taemp TEMPFILE 'aebd_temp_01.dbf' SIZE 50M;

Criar User

CREATE USER uminho IDENTIFIED BY "uminho2020" DEFAULT TABLESPACE uminho_tables QUOTA UNLIMITED ON uminho_tables;

CREATE USER aebd IDENTIFIED BY "aebd" DEFAULT TABLESPACE aebd_tables TEMPORARY TABLESPACE aebd_temp QUOTA UNLIMITED ON aebd_tables;

Permissões e Roles

GRANT CONNECT, RESOURCE, CREATE VIEW, CREATE SEQUENCE TO uminho;

Oracle High Availability

Alta Disponibilidade -> Mecanismos de Redundância

- Plano A: redundância ao nível dos discos
- Plano B: redundância ao nível dos datacenters
- Plano C: redundância ao nível dos dados (backups)

Na pior situação, Plano C, é onde a Oracle tem maior impacto, pois, tem aquilo a que se chama Hot Backups que permite criar backups sem desligar a base de dados ou interromper o seu funcionamento.

Hot-Backups:

- Export-import: "logical" database backups in that they extract logical definitions and data from the database to a file (criam-se um ficheiro para o qual se faz um dump de toda a informação associada à BD: esquemas lógicos de modelação, dados, users, etc)
- RMAN backups: cria os backups da base de dados e permite intervir em situações de desastre repondo apenas a informação em falta ao contrário do Export/Import

Onde usar Export/Import e RMAN:

Export/Import:

- Migrar dados entre BDs Oracle e outras plataformas
- Detetar corrupção da base de dados
- Dar upgrade da versão da Base de Dados Oracle (ex: Oracle 10 -> Oracle 12)
- RMAN:
 - Situações de desastre (recovery específico para o conjunto de dados que se perderam ou ficaram corrompidos)

_