ESIR1 BD Bases de données

requêtes complexes

Olivier Ridoux

Plan de la séance

• Requêtes imbriquées

• Simulation de la division relationnelle

Requêtes imbriquées

requêtes complexes

Motivation

• SELECT ... FROM ... WHERE ...

$$\Pi_{...}(\sigma_{...}(...))$$

...mais l'AR permet toutes les imbrications...

...et SQL aussi!

Nomenclature des tables (1)

• Table : n lignes × m colonnes

SELECT ... FROM ... WHERE ...

• Ligne : 1 ligne × m colonnes

SELECT ... FROM ... WHERE key = ...
SELECT agrégat ... FROM ... WHERE ...

• Colonne : n lignes × 1 colonne

SELECT colonne FROM ... WHERE ...

Nomenclature des tables (2)

• Valeur : 1 ligne × 1 colonne

SELECT colonne WHERE key = ...
SELECT agregat ...

• Booléen : 0 ligne × 0 colonne

SELECT colonne ... WHERE faux

Imbrication de requête (1)

SELECT ...

FROM (requête table) t

Obligation de renommer la table

Exemple (1)

- SELECT Nom, Prenom, Intitule
- FROM Adherent adh,
 - (SELECT NumAdherent, NumActivite
 - FROM AdherentActivite adac
 - WHERE adac.Expertise > 5) adax,
 - Activite act

WHERE adh.NumAdherent = adax.NumAdherent

AND adac. NumActivite = act. NumActivite

Imbrication de requête (2)

- SELECT ...
- FROM ...
 - WHERE attr IN (requête colonne)
 - Aussi ALL, SOME (= ANY)
 - ...WHERE arg relop ALL (requête colonne)
 - ...WHERE arg relop ANY (requête colonne)

Exemple (2)

FROM Activite

WHERE NumActivite

IN (SELECT NumActivite

FROM AdherentActivite

WHERE expertise > 5);

Imbrication de requête (2,5)

Imbrication de requête (3)

SELECT ... FROM ...

WHERE attr relop (requête valeur)

SELECT f(... requête valeur) FROM ...

Imbrication simple (1)

- La requête interne ne fait pas référence à des éléments de la requête externe...
- ...elle en est indépendante
- ...elle peut être **évaluée à part** en une seule fois
- ...elle peut être **évaluée hors** de la requête externe

Imbrication simple (2)

SELECT f FROM Fourniture

WHERE p IN (SELECT p

FROM Produit

WHERE couleur = 'vert');

Imbrication simple (3)

Analogie

```
T = T + 0;

for I = 1, n do {

S = 0;

for J = 1, m do { S = S + A[J] };

T = T + S };
```


Imbrication corrélée (1)

• La requête interne **fait référence** à des éléments de la requête externe...

...elle en est dépendante

...elle doit être évaluée répétitivement dans la requête externe

Imbrication corrélée (2)

SELECT f FROM Fourniture AS f1 WHERE f IN

(SELECT f FROM Fourniture AS f2 WHERE f1.f = f2.f AND f1.p <> f2.p);

Imbrication corrélée (3)

Analogie

```
T = T + 0;

for I = 1, n do {

S = 0;

for J = 1, m do { S = S + A[I,J] };

T = T + S };
```


Imbrication corrélée (4)

• EXISTS n'a de sens que corrélée

Exemple

SELECT f FROM Fourniture AS f1 WHERE EXISTS

(SELECT * FROM Fourniture AS f2 WHERE f1.f = f2.f AND f1.p <> f2.p);

Simulation de la division

requêtes complexes

Problématique

• La division relationnelle est commode, mais pas définie en SQL...

...la simuler!

Exemple division (1)

Les numéros d'adhérents

SELECT NumAdherent FROM Adherent

 Les numéros des adhérents qui pratiquent une activité

SELECT NumAdherent FROM AdherentActivite

 Les numéros des adhérents qui pratiquent toutes les activités

Exemple division (2)

 Les numéros des adhérents qui pratiquent toutes les activités

SELECT NumAdherent,
NumActivite
FROM AdherentActivite
/

SELECT NumActivite
FROM AdherentActivite

Méthode du groupement

 Rechercher tous les NumAdherent en relation avec tous les NumActivite

SELECT NumAdherent
FROM AdherentActivite
GROUP BY NumAdherent
HAVING COUNT(*)

= (SELECT COUNT(NumActivite)
FROM AdherentActivite)

 Ces adhérents sont en relation avec autant d'activités qu'il y a d'activités

Méthode des soustractions

- Rechercher tous les NumAdherent en relation avec tous les NumActivite
- R1 = SELECT NumAdherent FROM Adherent
 - R2 = SELECT NumActivite FROM AdherentActivite
 - R3 = SELECT x, y FROM R1, R2
 - R4 = SELECT x FROM (R3 MINUS AdherentActivite) m
 - **R5 = R1 MINUS R4**
 - Ces adhérents ne forment pas de combinaisons nouvelles quand on les combine avec toutes les activités

Méthode du EXISTS

- Rechercher tous les NumAdherent en relation avec tous les NumActivite
- SELECT NumAdherent FROM Adherent ad
 - WHERE NOT EXISTS
 - (SELECT * FROM AdherentActivite adac1
 WHERE NOT EXISTS
 (SELECT * FROM AdherentActivite adac2
 WHERE adac2.NumActivite = adac1.NumActivite
 AND adac2.NumAdherent = ad.NumAdherent))
 - Pour chacun de ces adhérents, il n'existe pas d'activité avec qui il ne soit pas en relations

Conclusion

• Imbriquer les requêtes est normal...

...en particulier pour simuler la division

 Distinguer table, ligne, colonne, valeur, booléen

