山西农业大学

十一、加法器

• 1、加法的类型

两个二进制数之间的算术运算都是化做若干步<mark>加法</mark>运算进行的。 实现加法运算的<mark>加法器</mark>是构成算术运算器的基本单元。

半加

- 不考虑来自低位的进位,将两个1位二进制数相加
- 实现半加运算的电路称为半加器。

加数A 1 加数B 1 进位CI 1 1 结果 1 0

全加

- 将两个对应的加数和来自低位的进位, 3个数相加
- 实现全加运算的电路称为全加器。

加数A 1 加数B 1 进位CI + 1 结果 1 1

17:07

• 2、一位半加器的设计

定变量

- 输入变量: A(加数1)、B(加数2)
- 输出变量: S(相加的和)、CO(向高位的进位)

IE在鏡中...

明含义

- 输入变量: 原码输入
- 输出变量: 原码输出

	列表	格			写函数 「 写函数
	输 入			出	
\boldsymbol{A}	B	CI	S	co	
0	0	0	0	0	
0	0	1	1	0	A'B'CI
0	1	0	1	0	A'BCI'
0	1	1	0	1	➡ A'BCI
1	0	0	1	0	➡ AB'CI'
1	0	1	0	1	➡ AB'CI
1	1	0	0	1	➡ ABCI'
1	1	1	1	1	<i>⇒ ABCI ⇒ ABCI</i>
					$S = \overrightarrow{ABCI} + \overrightarrow{ABCI} + \overrightarrow{ABCI} + \overrightarrow{ABCI}$
					$CO = \overrightarrow{ABCI} + \overrightarrow{ABCI} + \overrightarrow{ABCI} + \overrightarrow{ABCI}$

• 3、多位串行加法器

依次将低位全加器的进位输出端CO接到高位全加器的进位输入端CI,就可以构成多位串行加法器。

缺点

- 低位运算结束产生进位后, 高位才能开始全加运算
- 运算速度慢

优点

- 电路结构简单
- 用于对运算速度要求不高的 设备中

• 4、超前进位加法器(快速进位加法器)

为提高运算速度,必须减少由于进位信号逐级传递所耗费的时间。

加数A、B确定

加到第i位的进位输入信号(CI) $_{i}$, 一定能由 $A_{i-1}A_{i}$ $_{2}$... A_{θ} 和 $B_{i-1}B_{i-2}$... B_{θ} 唯一确定

通过逻辑电路事先得到每一位的进位输入信号, 而无需从最低位开始向高位逐位传递进位信号。

优点

- 运算速度快
- 全加器每一位的进位输入基本同时产生

缺点

- 电路结构复杂
- 当加法器位数增加时,电路 复杂程度随之急剧上升

· 例11: 用双全加器74LS283将BCD的8421码转换为余3码

定变量

- 输入变量: A₃A₂A₁A₀(BCD码)
- 输出变量: Y₃Y₂Y₁Y₀(余3码)

明含义

- 输入变量: 原码输入
- 输出变量: 原码输出

写函数 $Y_3Y_2Y_1Y_0 = A_3A_2A_1A_0 + 0011$

选器件

• 4位全加器

画电路

• 例12: 设计一个3位二进制数的3倍乘法电路

定变量

输入变量: D(d₂ d₁ d₀) (3位二进制数)

• 输出变量: Y(y₄y₃y₂y₁y₀)

3位输入,最大为**111**

10101,输出为:5位

明含义

• 输入变量: 原码输入

• 输出变量: 原码输出

写函数

$$Y = D \times 3 = D \times 2 + D$$
$$(y_4 y_3 y_2 y_1 y_0) = (d_2 d_1 d_0) + (0 d_2 d_1 d_0)$$

选器件

- 4位全加器
- 74HC83

