Expectation and Variance

Definition: Expectation

The expectation of a *real* random variable X is defined as

$$\mathbb{E}[X] := \sum_{x \in \mathcal{X}} P_X(x) \cdot x.$$

Note that if X is not real, then we can still consider the expectation of some function $f:\mathcal{X} \to \mathbb{R}$, where

$$\mathbb{E}[f(X)] = \sum_{x \in \mathcal{X}} P_X(x) \cdot f(X).$$

Definition: Variance

The variance of a *real* random variable X is defined as

$$\operatorname{Var}[X] := \mathbb{E}[(X - \mathbb{E}[X])^2].$$

The variation is a measure for the deviation of the mean. Hoeffding's inequality (here stated for binary random variables) states that for a list of i.i.d. random variables, the average of the random variables is close to the expectation, except with very small probability. We state it here without proof.

Theorem: Hoeffding's inequality

Let X_1,\ldots,X_n be independent and identically distributed binary random variables with $P_{X_i}(0)=1-\mu$ and $P_{X_i}(1)=\mu$, and thus $\mathbb{E}[X_i]=\mu$. Then, for any $\delta>0$

$$P\left[\sum_i X_i > (\mu + \delta) \cdot n
ight] \leq \exp(-2\delta^2 n).$$

created: 2018-12-12