Satisfiability and Term Rewriting

Akihisa Yamada @ AIST Tokyo Waterfront

Term Rewriting

- Variables $x, y, z, ... \in \mathcal{V}$
- Functions $f, g, h, ... \in \mathcal{F}$, with arity $ar : \mathcal{F} \to \mathbb{N}$
- Terms $s, t, l, r, ... \in \mathcal{T} ::= x \mid f(s_1, ..., s_{ar(f)})$
- Substitutions $\sigma, \tau, \dots : \mathcal{V} \to \mathcal{T}$
- Term Rewrite System (TRS) \mathcal{R} is a set of rules $l \to r$ meaning " \mathcal{R} rewrites $l\sigma$ to $r\sigma$ " (under any context) $C[l\sigma] \to_{\mathcal{R}} C[r\sigma]$
- \mathcal{R} is **terminating**: there is no $s_1 \to_{\mathcal{R}} s_2 \to_{\mathcal{R}} s_3 \to_{\mathcal{R}} \cdots$

SMT for Term Rewriting

Proving termination

• Initialize:

$$\frac{(\mathcal{P},\mathcal{R})}{\mathcal{R} \text{ is terminating}}$$
 where \mathcal{P} is the set of dependency pairs

• Divide:

$$\frac{(\mathcal{C}_1,\mathcal{R})\ \cdots\ (\mathcal{C}_n,\mathcal{R})}{(\mathcal{P},\mathcal{R})}$$
 where $\mathcal{C}_1,\ldots,\mathcal{C}_n$ are the SCCs of dependency graph

Concur:

$$\frac{\left(\mathcal{C}\setminus >_{\mathrm{WPO}(\mathcal{A},\succ,\pi)},\mathcal{R}\right)}{\left(\mathcal{C},\mathcal{R}\right)} \quad \text{if } \mathcal{C}\cup\mathcal{R}\subseteq \geq_{\mathrm{WPO}(\mathcal{A},\succ,\pi)}$$

WPO [Y+, SCP 2014] as SMT

Definition: WPO($\mathcal{A}, >, \pi$) is defined by:

$$s = f(s_1, ..., s_n) \supseteq_{WPO} t = g(t_1, ..., t_m)$$
 iff

- **1.** $\mathcal{A}[s] > \mathcal{A}[t]$ or
- **2.** $\mathcal{A}[s] \geq \mathcal{A}[t]$ and
 - **a.** $\exists i \in \pi(f)$. $s_i \supseteq_{WPO} t$; or
 - **b.** $\forall j \in \pi(g)$. $s \supset_{WPO} t_i$ and

i.
$$f > g$$
 or

ii.
$$f \geqslant g$$
 and

$$\pi_f(s_1, ..., s_n) \supseteq ^{\text{lex}}_{\text{WPO}} \pi_g(t_1, ..., t_m)$$

$$(s \supseteq_{\text{wpo}} t) \coloneqq$$

1.
$$\mathcal{A}[s] > \mathcal{A}[t] \lor$$

$$2. \mathcal{A}[s] \ge \mathcal{A}[t] \wedge ($$

$$\mathbf{a.} \left(\bigvee_{i \in \pi(f)} s_i \supseteq_{\text{wpo}} t \right) \vee$$

b.
$$(\bigwedge_{j \in \pi(g)} s \supset_{\text{wpo}} t_j) \land ($$

i.
$$f > g \vee$$

ii.
$$f \geqslant g \land$$

$$\pi_f(s_1,\ldots,s_n) \supseteq_{\text{wpo}}^{\text{lex}} \pi_g(t_1,\ldots,t_m)$$

Can be huge. Be lazy

Lazy SMT encoding

Definition: WPO($\mathcal{A}, >, \pi$) is defined by:

$$s = f(s_1, ..., s_n) \supseteq_{WPO} t = g(t_1, ..., t_m)$$
 iff

- **1.** $\mathcal{A}[s] > \mathcal{A}[t]$ or
- **2.** $\mathcal{A}[s] \geq \mathcal{A}[t]$ and
 - **a.** $\exists i \in \pi(f)$. $s_i \supseteq_{WPO} t$; or
 - **b.** $\forall j \in \pi(g)$. $s \supset_{WPO} t_j$ and

i.
$$f > g$$
 or

ii.
$$f \geqslant g$$
 and

$$\pi_f(s_1, ..., s_n) \supseteq ^{\text{lex}}_{\text{WPO}} \pi_g(t_1, ..., t_m)$$

$$(s \supseteq_{\text{wpo}} t) \coloneqq$$

$$\mathbf{1.}\,\mathcal{A}[\![s]\!] > \mathcal{A}[\![t]\!] \,\vee$$

$$2. \mathcal{A}[s] \geq \mathcal{A}[t] \wedge (\lambda_{-}.$$

$$a. \left(\bigvee_{i \in \pi(f)} s_i \supseteq_{\text{wpo}} t \right) \lor$$

b.
$$(\bigwedge_{j \in \pi(g)} S \supset_{\text{wpo}} t_j) \land (\lambda_{\underline{\hspace{0.5cm}}}.$$

i.
$$f > g \vee$$

ii.
$$f \geq g \wedge \lambda$$
_.

$$\pi_f(s_1,\ldots,s_n) \supseteq_{\text{wpo}}^{\text{lex}} \pi_g(t_1,\ldots,t_m)$$

$$\phi \land (\lambda_{-}.\psi) \hookrightarrow \begin{cases} \text{False} & \text{if } \phi \text{ is obviously false} \\ \phi \land \psi & \text{otherwise} \end{cases}$$

Further ideas

Context-aware encoding?

$$\phi_1 \wedge \left(\dots \wedge \left(\phi_{n-1} \wedge \left(\phi_n \wedge (\lambda_-, \psi) \right) \vee \dots \right) \right) \hookrightarrow \phi_1 \wedge \left(\dots \wedge \left(\phi_{n-1} \vee \dots \right) \right)$$
 if $\phi_1 \wedge \dots \wedge \phi_n$ is (trivially) unsat

- Encode by need?
 - SMT solver might not need to know ψ
 - e.g. x>0 V $(\lambda_{-}\psi)$ is SAT, whatever ψ

Satisfiability modulo rewriting

Reachability (in term rewriting)

• **Example**: Let \mathcal{R} be a rewrite system (or functional program)

```
hd(Cons(x, xs)) \rightarrow x

hd(Nil) \rightarrow error("nil access")
```

- Question:
 - From hd(x), is error(y) reachable?
- Classic answer:
 - NO! because $hd(x) \rightarrow_{\mathcal{R}}^* error(y)$
- Our answer:
 - SAT! solution $[x \mapsto Nil, y \mapsto "nil access"]$

Our motivation stems from...

• termination analysis:

```
String(x) + y \rightarrow \text{int\_of\_string}(x) + y \in \mathcal{R}_1
is non-looping, if
\text{int\_of\_string}(x) \rightarrow \text{String}(x') is UNSAT modulo \mathcal{R}_1
```

• **confluence analysis** for conditional rewriting:

```
\operatorname{sgn}(x) \to 1 \quad \Leftarrow x > 0 \twoheadrightarrow \operatorname{True}, \operatorname{sgn}(x) \to -1 \Leftarrow x < 0 \twoheadrightarrow \operatorname{True} \in \mathcal{R}_2 are harmless, if x > 0 \twoheadrightarrow \operatorname{True} \wedge x < 0 \twoheadrightarrow \operatorname{True} is UNSAT modulo \mathcal{R}_2
```

Problem is not new

- ... but not so old
 - called "(in)feasibility" [Lucas & Guitiérrez 2018]
- SAT/SMT friendly formulation [Sternagel & Yamada, TACAS 2019]
 - look-ahead reachability
 - implementations
- Contribution of [Yamada, IJCAR 2022]
 - a model-based UNSAT

Reachability constraint satisfaction

Syntax

$$\phi, \psi, \dots := s \rightarrow t \mid \top \mid \bot \mid \phi \land \psi \mid \phi \lor \psi \mid \phi \Rightarrow \psi \mid \neg \phi \mid \exists x. \phi \mid \forall x. \phi$$

- Semantics
 - substitution σ satisfies ϕ modulo rewrite system $\mathcal R$

 $\sigma \vDash_{\mathcal{R}} \phi$

- $\sigma \vDash_{\mathcal{R}} s \twoheadrightarrow t \iff s\sigma \twoheadrightarrow_{\mathcal{R}} t\sigma$
- $\sigma \vDash_{\mathcal{R}} \phi \land \psi \iff (\sigma \vDash_{\mathcal{R}} \phi) \land (\sigma \vDash_{\mathcal{R}} \psi)$
- ...
- ϕ is satisfiable modulo \mathcal{R} :
 - there exists σ such that $\sigma \vDash_{\mathcal{R}} \phi$
- ϕ and ψ are **equisatisfiable modulo** \mathcal{R} :
 - $SAT_{\mathcal{R}}(\phi) \iff SAT_{\mathcal{R}}(\psi)$

$$SAT_{\mathcal{R}}(\phi)$$

$$\phi \equiv_{\mathcal{R}} \psi$$

Co-rewrite pair

Definition: (\geq, \sqsubseteq) is a **co-rewrite pair** if

- \geq and \sqsubseteq are closed under substitutions ($s \geq t \implies s\theta \geq t\theta$)
- \geqslant is closed under contexts ($s \geqslant t \implies C[s] \geqslant C[t]$)
- ≽ is a quasi-order
- $\bullet \geqslant \cap \sqsubset = \emptyset$

Theorem [Y, IJCAR 2022]:

 $s \rightarrow t$ is \mathcal{R} -unsat **iff** there's a co-rewrite pair $\langle \geq \rangle$, $\square \rangle$ s.t. $\mathcal{R} \subseteq \geq \rangle$ and $s \subseteq t$

Proposition: WPO forms a co-rewrite pair (under mild modification)

Clause refuter

```
(Almost) Corollary [new]: s_1 \twoheadrightarrow t_1 \wedge \cdots \wedge s_n \twoheadrightarrow t_n is \mathcal{R}-unsat iff there is \mathcal{A}, \geq \pi s.t. \mathcal{R} \subseteq \geq_{\mathrm{WPO}(\mathcal{A}, \geq \pi)} \wedge \left( s_1 \sqsubset_{\mathrm{WPO}(\mathcal{A}, \geq \pi)} t_1 \vee \cdots \vee s_n \sqsubset_{\mathrm{WPO}(\mathcal{A}, \geq \pi)} t_n \right)
```

Constructors evaluate to constructors

• Observation (folklore):

```
if Cons(...) \rightarrow \cdots \notin \mathcal{R} then
```

- Cons $(s, ss) \rightarrow_{\mathcal{R}} \text{Cons}(t, ts)$ iff $s \rightarrow_{\mathcal{R}} t$ and $ss \rightarrow_{\mathcal{R}} ts$
- $Cons(s, ss) \rightarrow_{\mathcal{R}} Nil never happen$

• In our language:

- $Cons(s, ss) \rightarrow Cons(t, ts) \equiv_{\mathcal{R}} s \rightarrow t \land ss \rightarrow ts$
- Cons $(s, ss) \rightarrow Nil \equiv_{\mathcal{R}} \bot$
- **Proposition**: If $f(...) \rightarrow \cdots \notin \mathcal{R}$, then

$$f(s_1, ..., s_n) \Rightarrow f(t_1, ..., t_n) \equiv_{\mathcal{R}} s_1 \Rightarrow t_1 \land \cdots \land s_n \Rightarrow t_n$$

 $f(...) \Rightarrow g(...) \equiv_{\mathcal{R}} \bot \text{ if } f \neq g$

Constructors evaluate to constructors

• Observation (folklore):

```
if Cons(...) \rightarrow \cdots \notin \mathcal{R} then
```

- $Cons(s,ss) \rightarrow_{\mathcal{R}} Cons(t,ts)$ iff $s \rightarrow_{\mathcal{R}} t$ and $ss \rightarrow_{\mathcal{R}} ts$
- Cons $(s, ss) \rightarrow_{\mathcal{R}} Nil$ never happen

• In our language:

- $Cons(s, ss) \rightarrow Cons(t, ts) \equiv_{\mathcal{R}} s \rightarrow t \land ss \rightarrow ts$
- Cons $(s, ss) \rightarrow Nil \equiv_{\mathcal{R}} \bot$
- **Proposition**: If $f(...) \rightarrow \cdots \notin \mathcal{R}$, then

$$\begin{split} f(s_1,\dots,s_n) & \twoheadrightarrow g(t_1,\dots,t_m) \equiv_{\mathcal{R}} \\ f(s_1,\dots,s_n) & \twoheadrightarrow^{>\epsilon} g(t_1,\dots,t_m) \coloneqq \begin{cases} s_1 \twoheadrightarrow t_1 \wedge \dots \wedge s_n \twoheadrightarrow t_n & \text{if } f = g \\ \bot & \text{if } f \neq g \end{cases} \end{split}$$

•
$$\mathcal{R} = \{ 0 > x \rightarrow \text{False}, \ s(x) > 0 \rightarrow \text{True}, \ s(x) > s(y) \rightarrow x > y \}$$

| Is $0 > z \rightarrow \text{True}$ | SAT modulo \mathcal{R} ?

•
$$\mathcal{R} = \{ 0 > x \rightarrow \text{False}, \ s(x) > 0 \rightarrow \text{True}, \ s(x) > s(y) \rightarrow x > y \}$$
Is $0 > z \rightarrow \text{True}$ SAT?

•
$$\mathcal{R} = \{ 0 > x \rightarrow \text{False}, \ s(x) > 0 \rightarrow \text{True}, \ s(x) > s(y) \rightarrow x > y \}$$
Is $0 > z \rightarrow \text{True}$ SAT?

•
$$\mathcal{R} = \{ 0 > x \rightarrow \text{False}, \ s(x) > 0 \rightarrow \text{True}, \ s(x) > s(y) \rightarrow x > y \}$$
Is $0 > z \rightarrow \text{True}$ SAT?

• Theorem [Sternagel & Y., TACAS 2019]:

$$f(s_1 \dots) \twoheadrightarrow g(t_1 \dots) \equiv_{\mathcal{R}}$$

$$f(s_1 \dots) \Rightarrow^{>\epsilon} g(t_1 \dots) \vee \bigvee_{\substack{l \to r \in \mathcal{R} \\ \text{renamed}}} f(s_1 \dots) \Rightarrow^{>\epsilon} l \wedge r \Rightarrow g(t_1 \dots)$$

Look-ahead example

```
• \mathcal{R} = \{ \ 0 > x \rightarrow \text{False}, \ s(x) > 0 \rightarrow \text{True}, \ s(x) > s(y) \rightarrow x > y \}

• 0 > z \rightarrow \text{True}

\equiv_{\mathcal{R}} \quad 0 \rightarrow 0 \land z \rightarrow x \land \frac{\text{False}}{\text{False}} \rightarrow \frac{\text{True}}{\text{V}} \lor 0 \rightarrow \frac{s(x)}{\text{V}} \land z \rightarrow 0 \land \text{True} \rightarrow \text{True} \lor 0 \rightarrow \frac{s(x)}{\text{V}} \land z \rightarrow s(y) \land x > y \rightarrow \text{True}
```

Idea:

Conclusions

- Use of SMT for rewriting
 - Context-aware encoding?
 - Encoding by need?
- Satisfiability modulo rewriting
 - DPLL(R)?