

BUNDESREPUBLIK DEUTSCHLAND

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen: 101 12 105.9
Anmeldetag: 14. März 2001
Anmelder/Inhaber: Degussa AG, Düsseldorf/DE
Bezeichnung: Neue für das luxS-Gen kodierende Nukleotidsequenzen
Priorität: 09.09.2000 DE 100 44 755.4
IPC: C 12 N, C 12 Q, C 07 H

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

München, den 26. Juli 2001
Deutsches Patent- und Markenamt
Der Präsident
Im Auftrag

Ebert

Neue für das luxS-Gen kodierende Nukleotidsequenzen

Gegenstand der Erfindung sind für das luxS-Gen kodierende Nukleotidsequenzen aus coryneformen Bakterien und ein Verfahren zur fermentativen Herstellung von Aminosäuren 5 unter Verwendung von Bakterien, in denen das luxS-Gen abgeschwächt wird.

Stand der Technik

L-Aminosäuren, insbesondere Lysin, finden in der Humanmedizin und in der pharmazeutischen Industrie, in der 10 Lebensmittelindustrie und ganz besonders in der Tierernährung Anwendung.

Es ist bekannt, daß Aminosäuren durch Fermentation von Stämmen coryneformer Bakterien, insbesondere Corynebacterium glutamicum, hergestellt werden. Wegen der 15 großen Bedeutung wird ständig an der Verbesserung der Herstellverfahren gearbeitet. Verfahrensverbesserungen können fermentationstechnische Maßnahmen wie zum Beispiel Rührung und Versorgung mit Sauerstoff, oder die Zusammensetzung der Nährmedien, wie zum Beispiel die 20 Zuckerkonzentration während der Fermentation, oder die Aufarbeitung zur Produktform durch zum Beispiel Ionenaustauschchromatographie oder die intrinsischen Leistungseigenschaften des Mikroorganismus selbst betreffen.

25 Zur Verbesserung der Leistungseigenschaften dieser Mikroorganismen werden Methoden der Mutagenese, Selektion und Mutantenauswahl angewendet. Auf diese Weise erhält man Stämme, die resistent gegen Antimetabolite oder auxotroph für regulatorisch bedeutsame Metabolite sind und die 30 Aminosäuren produzieren.

Seit einigen Jahren werden ebenfalls Methoden der rekombinanten DNA-Technik zur Stammverbesserung von L-Aminosäure produzierenden Stämmen von Corynebacterium

eingesetzt, indem man einzelne Aminosäure-Biosynthesegene amplifiziert und die Auswirkung auf die Aminosäure-Produktion untersucht.

Aufgabe der Erfindung

- 5 Die Erfinder haben sich zur Aufgabe gestellt, neue Maßnahmen zur verbesserten fermentativen Herstellung von Aminosäuren bereitzustellen.

Beschreibung der Erfindung

- Werden im folgenden L-Aminosäuren oder Aminosäuren erwähnt,
10 sind damit eine oder mehrere Aminosäuren einschließlich ihrer Salze, ausgewählt aus der Gruppe L-Asparagin, L-Threonin, L-Serin, L-Glutamat, L-Glycin, L-Alanin, L-Cystein, L-Valin, L-Methionin, L-Isoleucin, L-Leucin, L-Tyrosin, L-Phenylalanin, L-Histidin, L-Lysin, L-Tryptophan
15 und L-Arginin gemeint. Besonders bevorzugt ist Lysin.

Wenn im folgenden L-Lysin oder Lysin erwähnt werden, sind damit nicht nur die Basen, sondern auch die Salze wie z.B. Lysin-Monohydrochlorid oder Lysin-Sulfat gemeint.

- Gegenstand der Erfindung ist ein isoliertes Polynukleotid
20 aus coryneformen Bakterien, enthaltend eine für das luxS-Gen kodierende Polynukleotidsequenz, ausgewählt aus der Gruppe

- a) Polynukleotid, das mindestens zu 70% identisch ist mit einem Polynukleotid, das für ein Polypeptid kodiert, das
25 die Aminosäuresequenz von SEQ ID No. 2 enthält,
- b) Polynukleotid, das für ein Polypeptid kodiert, das eine Aminosäuresequenz enthält, die zu mindestens 70% identisch ist mit der Aminosäuresequenz von SEQ ID No. 2,
- 30 c) Polynukleotid, das komplementär ist zu den Polynukleotiden von a) oder b), und

- d) Polynukleotid, enthaltend mindestens 15 aufeinanderfolgende Nukleotide der Polynukleotidsequenz von a), b) oder c),

wobei das Polypeptid bevorzugt die Aktivität der Histidin
5 Kinase LuxS aufweist.

Gegenstand der Erfindung ist ebenfalls das oben genannte Polynukleotid, wobei es sich bevorzugt um eine replizierbare DNA handelt, enthaltend:

- (i) die Nukleotidsequenz, gezeigt in SEQ ID No.1,
10 oder
- (ii) mindestens eine Sequenz, die der Sequenz (i)
innerhalb des Bereichs der Degeneration des
genetischen Kodes entspricht, oder
- (iii) mindestens eine Sequenz, die mit den zu den
15 Sequenzen (i) oder (ii) komplementären Sequenzen
hybridisiert, und gegebenenfalls
- (iv) funktionsneutralen Sinnmutationen in (i).

Weitere Gegenstände sind:

20 ein replizierbares Polynukleotid, insbesondere DNA,
enthaltend die Nukleotidsequenz, wie in SEQ ID No.1
dargestellt;

ein Polynukleotid, das für ein Polypeptid kodiert, das die Aminosäuresequenz, wie in SEQ ID No. 2 dargestellt,
enthält;

25 ein Vektor, enthaltend Teile des erfindungsgemäßen Polynukleotids, mindestens aber 15 aufeinanderfolgende Nukleotide der beanspruchten Sequenz,

und coryneforme Bakterien, in denen das luxS-Gen, insbesondere durch eine Insertion oder Deletion, abgeschwächt ist.

Gegenstand der Erfindung sind ebenso Polynukleotide, die im
5 wesentlichen aus einer Polynukleotidsequenz bestehen, die erhältlich sind durch Screening mittels Hybridisierung einer entsprechenden Genbank eines coryneformen Bakteriums, die das vollständige Gen oder Teile davon enthält, mit einer Sonde, die die Sequenz des erfindungsgemäßen
10 Polynukleotids gemäß SEQ ID No.1 oder ein Fragment davon enthält und Isolierung der genannten Polynukleotidsequenz.

- Polynukleotide, die die Sequenzen gemäß der Erfindung enthalten, sind als Hybridisierungssonden für RNA, cDNA und DNA geeignet, um Nukleinsäuren beziehungsweise
15 Polynukleotide oder Gene in voller Länge zu isolieren, die für die Histidin Kinase LuxS kodieren, oder um solche Nukleinsäuren beziehungsweise Polynukleotide oder Gene zu isolieren, die eine hohe Ähnlichkeit mit der Sequenz des luxS-Gens aufweisen.
20 Polynukleotide, die die Sequenzen gemäß der Erfindung enthalten, sind weiterhin als Primer geeignet, mit deren Hilfe mit der Polymerase-Kettenreaktion (PCR) DNA von Genen hergestellt werden kann, die für die Histidin Kinase LuxS kodieren.
25 Solche als Sonden oder Primer dienende Oligonukleotide enthalten mindestens 30, bevorzugt mindestens 20, ganz besonders bevorzugt mindestens 15 aufeinanderfolgende Nukleotide. Geeignet sind ebenfalls Oligonukleotide mit einer Länge von mindestens 40 oder 50 Nukleotiden.
30 „Isoliert“ bedeutet aus seinem natürlichen Umfeld herausgetrennt.

„Polynukleotid“ bezieht sich im allgemeinen auf Polyribonukleotide und Polydeoxyribonukleotide, wobei es

sich um nicht modifizierte RNA oder DNA oder modifizierte RNA oder DNA handeln kann.

Die Polynukleotide gemäß Erfindung schließen ein Polynukleotid gemäß SEQ ID No. 1 oder ein daraus

- 5 hergestelltes Fragment und auch solche ein, die zu wenigstens 70%, bevorzugt zu wenigstens 80% und besonders zu wenigstens 90% bis 95% identisch sind mit dem Polynukleotid gemäß SEQ ID No. 1 oder eines daraus hergestellten Fragments.

- 10 Unter „Polypeptiden“ versteht man Peptide oder Proteine, die zwei oder mehr über Peptidbindungen verbundene Aminosäuren enthalten.

Die Polypeptide gemäß Erfindung schließen ein Polypeptid gemäß SEQ ID No. 2, insbesondere solche mit der

- 15 biologischen Aktivität der Histidin Kinase LuxS und auch solche ein, die zu wenigstens 70%, bevorzugt zu wenigstens 80% und besonders zu wenigstens 90% bis 95% identisch sind mit dem Polypeptid gemäß SEQ ID No. 2 und die genannte Aktivität aufweisen.

- 20 Die Erfindung betrifft weiterhin ein Verfahren zur fermentativen Herstellung von Aminosäuren, ausgewählt aus der Gruppe L-Asparagin, L-Threonin, L-Serin, L-Glutamat, L-Glycin, L-Alanin, L-Cystein, L-Valin, L-Methionin, L-Isoleucin, L-Leucin, L-Tyrosin, L-Phenylalanin, L-Histidin, 25 L-Lysin, L-Tryptophan und L-Arginin, unter Verwendung von coryneformen Bakterien, die insbesondere bereits Aminosäuren produzieren und in denen die für das luxS-Gen kodierenden Nukleotidsequenzen abgeschwächt, insbesondere ausgeschaltet oder auf niedrigem Niveau exprimiert werden.

- 30 Der Begriff „Abschwächung“ beschreibt in diesem Zusammenhang die Verringerung oder Ausschaltung der intrazellulären Aktivität eines oder mehrerer Enzyme (Proteine) in einem Mikroorganismus, die durch die

entsprechende DNA kodiert werden, indem man beispielsweise einen schwachen Promotor verwendet oder ein Gen bzw. Allel verwendet, das für ein entsprechendes Enzym mit einer niedrigen Aktivität kodiert bzw. das entsprechende Gen oder 5 Enzym (Protein) inaktiviert und gegebenenfalls diese Maßnahmen kombiniert.

Die Mikroorganismen, die Gegenstand der vorliegenden Erfindung sind, können Aminosäuren aus Glucose, Saccharose, Lactose, Fructose, Maltose, Melasse, Stärke, Cellulose oder 10 aus Glycerin und Ethanol herstellen. Es kann sich um Vertreter coryneformer Bakterien insbesondere der Gattung Corynebacterium handeln. Bei der Gattung Corynebacterium ist insbesondere die Art *Corynebacterium glutamicum* zu nennen, die in der Fachwelt für ihre Fähigkeit bekannt ist, 15 L-Aminosäuren zu produzieren.

Geeignete Stämme der Gattung *Corynebacterium*, insbesondere der Art *Corynebacterium glutamicum* (*C. glutamicum*), sind besonders die bekannten Wildtypstämme

20 *Corynebacterium glutamicum* ATCC13032
 Corynebacterium acetoglutamicum ATCC15806
 Corynebacterium acetoacidophilum ATCC13870
 Corynebacterium melassecola ATCC17965
 Corynebacterium thermoaminogenes FERM BP-1539
 Brevibacterium flavum ATCC14067
25 *Brevibacterium lactofermentum* ATCC13869 und
 Brevibacterium divaricatum ATCC14020

und daraus hergestellte L-Aminosäuren produzierende Mutanten beziehungsweise Stämme.

Das neue, für die Histidin Kinase LuxS kodierende luxS-Gen 30 von *C. glutamicum* wurde isoliert. Die Histidin Kinase LuxS ist Teil eines Zwei-Komponenten-Systems. Zwei-Komponenten-Regulationssysteme zeichnen sich dadurch aus, dass

verschiedene Response-Regulator-Proteine durch Sensor-Kinasen aktiviert werden können.

Zur Isolierung des luxS-Gens oder auch anderer Gene von C. glutamicum wird zunächst eine Genbank dieses

- 5 Mikroorganismus in Escherichia coli (E. coli) angelegt. Das Anlegen von Genbanken ist in allgemein bekannten Lehrbüchern und Handbüchern niedergeschrieben. Als Beispiel seien das Lehrbuch von Winnacker: Gene und Klone, Eine Einführung in die Gentechnologie (Verlag Chemie, Weinheim, 10 Deutschland, 1990), oder das Handbuch von Sambrook et al.: Molecular Cloning, A Laboratory Manual (Cold Spring Harbor Laboratory Press, 1989) genannt. Eine sehr bekannte Genbank ist die des E. coli K-12 Stammes W3110, die von Kohara et al. (Cell 50, 495-508 (1987)) in λ -Vektoren angelegt wurde.
- 15 Bathe et al. (Molecular and General Genetics, 252:255-265, 1996) beschreiben eine Genbank von C. glutamicum ATCC13032, die mit Hilfe des Cosmidvektors SuperCos I (Wahl et al., 1987, Proceedings of the National Academy of Sciences USA, 84:2160-2164) im E. coli K-12 Stamm NM554 (Raleigh et al., 20 1988, Nucleic Acids Research 16:1563-1575) angelegt wurde.

Börmann et al. (Molecular Microbiology 6(3), 317-326 (1992)) wiederum beschreiben eine Genbank von C. glutamicum ATCC13032 unter Verwendung des Cosmides pHC79 (Hohn und Collins, 1980, Gene 11, 291-298).

- 25 Zur Herstellung einer Genbank von C. glutamicum in E. coli können auch Plasmide wie pBR322 (Bolivar, 1979, Life Sciences, 25, 807-818) oder pUC9 (Vieira et al., 1982, Gene, 19:259-268) verwendet werden. Als Wirt eignen sich besonders solche E. coli-Stämme, die restriktions- und 30 rekombinationsdefekt sind wie beispielsweise der Stamm DH5 α mcr, der von Grant et al. (Proceedings of the National Academy of Sciences USA, 87 (1990) 4645-4649) beschrieben wurde. Die mit Hilfe von Cosmiden oder anderen λ -Vektoren klonierten langen DNA-Fragmente können anschließend 35 wiederum in gängige für die DNA-Sequenzierung geeignete

Vektoren subkloniert und anschließend sequenziert werden, so wie es z. B. bei Sanger et al. (Proceedings of the National Academy of Sciences of the United States of America, 74:5463-5467, 1977) beschrieben ist.

- 5 Die erhaltenen DNA-Sequenzen können dann mit bekannten Algorithmen bzw. Sequenzanalyse-Programmen wie z.B. dem von Staden (Nucleic Acids Research 14, 217-232(1986)), dem von Marck (Nucleic Acids Research 16, 1829-1836 (1988)) oder dem GCG-Programm von Butler (Methods of Biochemical Analysis 39, 74-97 (1998)) untersucht werden.
10

- Die neue für das luxS-Gen kodierende DNA-Sequenz von C. glutamicum wurde gefunden, die als SEQ ID No. 1 Bestandteil der vorliegenden Erfindung ist. Weiterhin wurde aus der vorliegenden DNA-Sequenz mit den oben beschriebenen
15 Methoden die Aminosäuresequenz des entsprechenden Proteins abgeleitet. In SEQ ID No. 2 ist die sich ergebende Aminosäuresequenz des luxS-Genproduktes dargestellt.

- Kodierende DNA-Sequenzen, die sich aus SEQ ID No. 1 durch die Degeneriertheit des genetischen Kodes ergeben, sind
20 ebenfalls Bestandteil der Erfindung. In gleicher Weise sind DNA-Sequenzen, die mit SEQ ID No. 1 oder Teilen von SEQ ID No. 1 hybridisieren, Bestandteil der Erfindung. In der Fachwelt sind weiterhin konservative Aminosäureaustausche wie z.B. Austausch von Glycin gegen Alanin oder von
25 Asparaginsäure gegen Glutaminsäure in Proteinen als „Sinnmutationen“ (sense mutations) bekannt, die zu keiner grundsätzlichen Veränderung der Aktivität des Proteins führen, d.h. funktionsneutral sind. Weiterhin ist bekannt, daß Änderungen am N- und/oder C-Terminus eines Proteins
30 dessen Funktion nicht wesentlich beeinträchtigen oder sogar stabilisieren können. Angaben hierzu findet der Fachmann unter anderem bei Ben-Bassat et al. (Journal of Bacteriology 169:751-757 (1987)), bei O'Regan et al. (Gene 77:237-251 (1989)), bei Sahin-Toth et al. (Protein Sciences 35:240-247 (1994)), bei Hochuli et al. (Bio/Technology

6:1321-1325 (1988)) und in bekannten Lehrbüchern der Genetik und Molekularbiologie. Aminosäuresequenzen, die sich in entsprechender Weise aus SEQ ID No. 2 ergeben, sind ebenfalls Bestandteil der Erfindung.

- 5 In gleicher Weise sind DNA-Sequenzen, die mit SEQ ID No. 1 oder Teilen von SEQ ID No. 1 hybridisieren Bestandteil der Erfindung. Schließlich sind DNA-Sequenzen Bestandteil der Erfindung, die durch die Polymerase-Kettenreaktion (PCR) unter Verwendung von Primern hergestellt werden, die sich
10 aus SEQ ID No. 1 ergeben. Derartige Oligonukleotide haben typischerweise eine Länge von mindestens 15 Nukleotiden.

Anleitungen zur Identifizierung von DNA-Sequenzen mittels Hybridisierung findet der Fachmann unter anderem im Handbuch "The DIG System Users Guide for Filter

- 15 Hybridization" der Firma Boehringer Mannheim GmbH (Mannheim, Deutschland, 1993) und bei Liebl et al. (International Journal of Systematic Bacteriology 41: 255-260 (1991)). Die Hybridisierung findet unter stringenten Bedingungen statt, das heisst, es werden nur Hybride
20 gebildet, bei denen Sonde und Zielsequenz, d. h. die mit der Sonde behandelten Polynukleotide, mindestens 70% identisch sind. Es ist bekannt, dass die Stringenz der Hybridisierung einschließlich der Waschschritte durch Variieren der Pufferzusammensetzung, der Temperatur und der
25 Salzkonzentration beeinflusst bzw. bestimmt wird. Die Hybridisierungsreaktion wird vorzugsweise bei relativ niedriger Stringenz im Vergleich zu den Waschschritten durchgeführt (Hybaid Hybridisation Guide, Hybaid Limited, Teddington, UK, 1996).
- 30 Für die Hybridisierungsreaktion kann beispielsweise ein 5x SSC-Puffer bei einer Temperatur von ca. 50 - 68°C eingesetzt werden. Dabei können Sonden auch mit Polynukleotiden hybridisieren, die weniger als 70% Identität zur Sequenz der Sonde aufweisen. Solche Hybride
35 sind weniger stabil und werden durch Waschen unter

stringenten Bedingungen entfernt. Dies kann beispielsweise durch Senken der Salzkonzentration auf 2x SSC und gegebenenfalls nachfolgend 0,5x SSC (The DIG System User's Guide for Filter Hybridisation, Boehringer Mannheim, 5 Mannheim, Deutschland, 1995) erreicht werden, wobei eine Temperatur von ca. 50 - 68°C eingestellt wird. Es ist gegebenenfalls möglich die Salzkonzentration bis auf 0,1x SSC zu senken. Durch schrittweise Erhöhung der Hybridisierungstemperatur in Schritten von ca. 1 - 2°C von 10 50 auf 68°C können Polynukleotidfragmente isoliert werden, die beispielsweise mindestens 70% oder mindestens 80% oder mindestens 90% bis 95% Identität zur Sequenz der eingesetzten Sonde besitzen. Weitere Anleitungen zur Hybridisierung sind in Form sogenannter Kits am Markt 15 erhältlich (z.B. DIG Easy Hyb von der Firma Roche Diagnostics GmbH, Mannheim, Deutschland, Catalog No. 1603558).

Anleitungen zur Amplifikation von DNA-Sequenzen mit Hilfe der Polymerase-Kettenreaktion (PCR) findet der Fachmann 20 unter anderem im Handbuch von Gait: Oligonukleotide synthesis: A Practical Approach (IRL Press, Oxford, UK, 1984) und bei Newton und Graham: PCR (Spektrum Akademischer Verlag, Heidelberg, Deutschland, 1994).

Es wurde gefunden, daß coryneforme Bakterien nach 25 Abschwächung des luxS-Gens in verbesserter Weise Aminosäuren produzieren.

Zur Erzielung einer Abschwächung können entweder die Expression des luxS-Gens oder die regulatorischen beziehungsweise katalytischen Eigenschaften des 30 Enzymproteins herabgesetzt oder ausgeschaltet werden. Gegebenenfalls können beide Maßnahmen kombiniert werden.

Die Verringerung der Genexpression kann durch geeignete Kulturführung oder durch genetische Veränderung (Mutation) der Signalstrukturen der Genexpression erfolgen.

Signalstrukturen der Genexpression sind beispielsweise Repressorgene, Aktivatorgene, Operatoren, Promotoren, Attenuatoren, Ribosomenbindungsstellen, das Startkodon und Terminatoren. Angaben hierzu findet der Fachmann z.B. in

5 der Patentanmeldung WO 96/15246, bei Boyd und Murphy (Journal of Bacteriology 170: 5949 (1988)), bei Voskuil und Chambliss (Nucleic Acids Research 26: 3548 (1998)), bei Jensen und Hammer (Biotechnology and Bioengineering 58: 191 (1998)), bei Pátek et al. (Microbiology 142: 1297 (1996)),

10 Vasicova et al. (Journal of Bacteriology 181: 6188 (1999)) und in bekannten Lehrbüchern der Genetik und Molekularbiologie wie z.B. dem Lehrbuch von Knippers („Molekulare Genetik“, 6. Auflage, Georg Thieme Verlag, Stuttgart, Deutschland, 1995) oder dem von Winnacker („Gene und Klone“, VCH Verlagsgesellschaft, Weinheim, Deutschland, 1990).

Mutationen, die zu einer Veränderung bzw. Herabsetzung der katalytischen Eigenschaften von Enzymproteinen führen, sind aus dem Stand der Technik bekannt; als Beispiele seien die

20 Arbeiten von Qiu und Goodman (Journal of Biological Chemistry 272: 8611-8617 (1997)), Sugimoto et al. (Bioscience Biotechnology and Biochemistry 61: 1760-1762 (1997)) und Möckel („Die Threonindehydrolase aus Corynebacterium glutamicum: Aufhebung der allosterischen Regulation und Struktur des Enzyms“, Berichte des Forschungszentrums Jülichs, JüL-2906, ISSN09442952, Jülich, Deutschland, 1994) genannt. Zusammenfassende Darstellungen können bekannten Lehrbüchern der Genetik und Molekularbiologie wie z.B. dem von Hagemann („Allgemeine

25 Genetik“, Gustav Fischer Verlag, Stuttgart, 1986) entnommen werden.

Als Mutationen kommen Transitionen, Transversionen, Insertionen und Deletionen in Betracht. In Abhängigkeit von der Wirkung des Aminosäureaustausches auf die

30 Enzymaktivität wird von Fehlsinnmutationen („missense

mutations") oder Nichtsinnmutationen („nonsense mutations“) gesprochen. Insertionen oder Deletionen von mindestens einem Basenpaar (bp) in einem Gen führen zu Rasterverschiebungsmutationen („frame shift mutations“), in deren Folge falsche Aminosäuren eingebaut werden oder die Translation vorzeitig abbricht. Deletionen von mehreren Kodonen führen typischerweise zu einem vollständigen Ausfall der Enzymaktivität. Anleitungen zur Erzeugung derartiger Mutationen gehören zum Stand der Technik und können bekannten Lehrbüchern der Genetik und Molekularbiologie wie z.B. dem Lehrbuch von Knippers („Molekulare Genetik“, 6. Auflage, Georg Thieme Verlag, Stuttgart, Deutschland, 1995), dem von Winnacker („Gene und Klone“, VCH Verlagsgesellschaft, Weinheim, Deutschland, 1990) oder dem von Hagemann („Allgemeine Genetik“, Gustav Fischer Verlag, Stuttgart, 1986) entnommen werden.

Eine gebräuchliche Methode, Gene von C. glutamicum zu mutieren, ist die von Schwarzer und Pühler (Bio/Technology 9, 84-87 (1991)) beschriebene Methode der Gen-Unterbrechung („gene disruption“) und des Gen-Austauschs („gene replacement“).

Bei der Methode der Gen-Unterbrechung wird ein zentraler Teil der Kodierregion des interessierenden Gens in einen Plasmidvektor kloniert, der in einem Wirt (typischerweise E. coli), nicht aber in C. glutamicum replizieren kann. Als Vektoren kommen beispielsweise pSUP301 (Simon et al., Bio/Technology 1, 784-791 (1983)), pK18mob oder pK19mob (Schäfer et al., Gene 145, 69-73 (1994)), pK18mobsacB oder pK19mobsacB (Jäger et al., Journal of Bacteriology 174: 5462-65 (1992)), pGEM-T (Promega corporation, Madison, WI, USA), pCR2.1-TOPO (Shuman (1994)). Journal of Biological Chemistry 269:32678-84; US-Patent 5,487,993), pCR®Blunt (Firma Invitrogen, Groningen, Niederlande; Bernard et al., Journal of Molecular Biology, 234: 534-541 (1993)) oder pEM1 (Schrumpf et al, 1991, Journal of Bacteriology

173:4510-4516) in Frage. Der Plasmidvektor, der das zentrale Teil der Kodierregion des Gens enthält, wird anschließend durch Konjugation oder Transformation in den gewünschten Stamm von *C. glutamicum* überführt. Die Methode 5 der Konjugation ist beispielsweise bei Schäfer et al. (*Applied and Environmental Microbiology* 60, 756-759 (1994)) beschrieben. Methoden zur Transformation sind beispielsweise bei Thierbach et al. (*Applied Microbiology and Biotechnology* 29, 356-362 (1988)), Dunican und Shivnan 10 (*Bio/Technology* 7, 1067-1070 (1989)) und Tauch et al. (*FEMS Microbiological Letters* 123, 343-347 (1994)) beschrieben. Nach homologer Rekombination mittels eines "cross-over"-Ereignisses wird die Kodierregion des betreffenden Gens durch die Vektorsequenz unterbrochen und man erhält zwei 15 unvollständige Allele, denen jeweils das 3'- bzw. das 5'-Ende fehlt. Diese Methode wurde beispielsweise von Fitzpatrick et al. (*Applied Microbiology and Biotechnology* 42, 575-580 (1994)) zur Ausschaltung des *recA*-Gens von *C. glutamicum* verwendet.

20 Bei der Methode des Genaustausches („gene replacement“) wird eine Mutation wie z.B. eine Deletion, Insertion oder Basenaustausch in dem interessierenden Gen in-vitro hergestellt. Das hergestellte Allel wird wiederum in einen für *C. glutamicum* nicht replikativen Vektor kloniert und dieser anschließend durch Transformation oder Konjugation 25 in den gewünschten Wirt von *C. glutamicum* überführt. Nach homologer Rekombination mittels eines ersten, Integration bewirkenden "cross-over"-Ereignisses und eines geeigneten zweiten, eine Exzision bewirkenden "cross-over"-Ereignisses im Zielgen bzw. in der Zielsequenz erreicht man den Einbau 30 der Mutation bzw. des Allels. Diese Methode wurde beispielsweise von Peters-Wendisch et al. (*Microbiology* 144, 915 - 927 (1998)) verwendet, um das *pyc*-Gen von *C. glutamicum* durch eine Deletion auszuschalten.

In das luxS-Gen kann auf diese Weise eine Deletion, Insertion oder ein Basenaustausch eingebaut werden.

Zusätzlich kann es für die Produktion von L-Aminosäuren vorteilhaft sein, zusätzlich zur Abschwächung des luxS-Gens eines oder mehrere Enzyme des jeweiligen Biosyntheseweges, der Glykolyse, der Anaplerotik, des Zitronensäure-Zyklus, des Pentosephosphat-Zyklus, des Aminosäure-Exports und gegebenenfalls regulatorische Proteine zu verstärken, insbesondere überzuexprimieren.

- 10 Der Begriff "Verstärkung" beschreibt in diesem Zusammenhang die Erhöhung der intrazellulären Aktivität eines oder mehrerer Enzyme (Proteine) in einem Mikroorganismus, die durch die entsprechende DNA kodiert werden, indem man beispielsweise die Kopienzahl des Gens bzw. der Gene
- 15 erhöht, einen starken Promotor verwendet oder ein Gen oder Allel verwendet, das für ein entsprechendes Enzym (Protein) mit einer hohen Aktivität kodiert und gegebenenfalls diese Maßnahmen kombiniert.

- 20 So kann für die Herstellung von L-Aminosäuren neben der Abschwächung des luxS-Gens gleichzeitig eines oder mehrere der Gene, ausgewählt aus der Gruppe

- das für die Dihydridipicolinat-Synthase kodierende Gen dapA (EP-B 0 197 335),
- das für die Glyceraldehyd-3-Phosphat Dehydrogenase kodierende Gen gap (Eikmanns (1992), Journal of Bacteriology 174: 6076-6086),
- das für die Triosephosphat Isomerase kodierende Gen tpi (Eikmanns (1992), Journal of Bacteriology 174:6076-6086),
- das für die 3-Phosphoglycerat Kinase kodierende Gen pgk (Eikmanns (1992), Journal of Bacteriology 174:6076-6086),

- das für die Glucose-6-Phosphat Dehydrogenase kodierende Gen zwf (JP-A-09224661),
 - das für die Pyruvat Carboxylase kodierende Gen pyc (DE-A-198 31 609),
- 5 • das für die Malat-Chinon-Oxidoreduktase kodierende Gen mqo (Molenaar et al., European Journal of Biochemistry 254, 395-403 (1998),
- das für eine feed-back resistente Aspartatkinase kodierende Gen lysC (Accession No.P26512; EP-B-0387527; 10 EP-A-0699759; WO 00/63388),
 - das für den Lysin-Export kodierende Gen lysE (DE-A-195 48 222)
 - das für die Homoserin-Dehydrogenase kodierende Gen hom (EP-A 0131171),
- 15 • das für die Threonin-Dehydratase kodierende Gen ilvA (Möckel et al., Journal of Bacteriology (1992) 8065-8072)) oder das für eine "feed back resistente" Threonin-Dehydratase kodierende Allel ilvA(Fbr) (Möckel et al., (1994) Molecular Microbiology 13: 833-842),
- 20 • das für die Acetohydroxysäure-Synthase kodierenden Gen ilvBN (EP-B 0356739),
 - das für die Dihydroxysäuredehydratase kodierende Gen ilvD (Sahm und Eggeling (1999) Applied and Environmental Microbiology 65: 1973-1979),
- 25 • das für das Zwal-Protein kodierende Gen zwal (DE: 19959328.0, DSM 13115)

verstärkt, insbesondere überexprimiert werden.

Weiterhin kann es für die Produktion von Aminosäuren vorteilhaft sein, neben der Abschwächung des luxS-Gens

gleichzeitig eines oder mehrere der Gene, ausgewählt aus der Gruppe

- das für die Phosphoenolpyruvat-Carboxykinase kodierende Gen pck (DE 199 50 409.1, DSM 13047),

5 • das für die Glucose-6-Phosphat Isomerase kodierende Gen pgi (US 09/396,478, DSM 12969),

- das für die Pyruvat-Oxidase kodierende Gen poxB (DE:1995 1975.7, DSM 13114),

- 10 • das für das Zwa2-Protein kodierende Gen zwa2 (DE: 19959327.2, DSM 13113)

abzuschwächen, insbesondere die Expression zu verringern.

Weiterhin kann es für die Produktion von Aminosäuren vorteilhaft sein, neben der Abschwächung des luxS-Gens unerwünschte Nebenreaktionen auszuschalten (Nakayama:

15 „Breeding of Amino Acid Producing Microorganisms“, in: Overproduction of Microbial Products, Krumphanzl, Sikyta, Vanek (eds.), Academic Press, London, UK, 1982).

Die erfindungsgemäß hergestellten Mikroorganismen sind ebenfalls Gegenstand der Erfindung und können

20 kontinuierlich oder diskontinuierlich im batch - Verfahren (Satzkultivierung) oder im fed batch (Zulaufverfahren) oder repeated fed batch Verfahren (repetitives Zulaufverfahren) zum Zwecke der Produktion von L-Aminosäuren kultiviert werden. Eine Zusammenfassung über bekannte

25 Kultivierungsmethoden ist im Lehrbuch von Chmiel (Bioprozesstechnik 1. Einführung in die Bioverfahrenstechnik (Gustav Fischer Verlag, Stuttgart, 1991)) oder im Lehrbuch von Storhas (Bioreaktoren und periphere Einrichtungen (Vieweg Verlag, Braunschweig/Wiesbaden, 1994)) beschrieben.

Das zu verwendende Kulturmedium muß in geeigneter Weise den Ansprüchen der jeweiligen Stämme genügen. Beschreibungen von Kulturmedien verschiedener Mikroorganismen sind im Handbuch „Manual of Methods for General Bacteriology“, der 5 American Society for Bacteriology (Washington D.C., USA, 1981) enthalten.

Als Kohlenstoffquelle können Zucker und Kohlehydrate wie z.B. Glucose, Saccharose, Lactose, Fructose, Maltose, Melasse, Stärke und Cellulose, Öle und Fette, wie zum 10 Beispiel Sojaöl, Sonnenblumenöl, Erdnußöl und Kokosfett, Fettsäuren, wie zum Beispiel Palmitinsäure, Stearinsäure und Linolsäure, Alkohole wie zum Beispiel Glycerin und Ethanol und organische Säuren, wie zum Beispiel Essigsäure verwendet werden. Diese Stoffe können einzeln oder als 15 Mischung verwendet werden.

Als Stickstoffquelle können organische Stickstoff-haltige Verbindungen wie Peptone, Hefeextrakt, Fleischextrakt, Malzextrakt, Maisquellwasser, Sojabohnenmehl und Harnstoff oder anorganische Verbindungen wie Ammoniumsulfat, 20 Ammoniumchlorid, Ammoniumphosphat, Ammoniumcarbonat und Ammoniumnitrat verwendet werden. Die Stickstoffquellen können einzeln oder als Mischung verwendet werden.

Als Phosphorquelle können Phosphorsäure, Kaliumdihydrogenphosphat oder Dikaliumhydrogenphosphat oder 25 die entsprechenden Natrium haltigen Salze verwendet werden. Das Kulturmedium muß weiterhin Salze von Metallen enthalten, wie zum Beispiel Magnesiumsulfat oder Eisensulfat, die für das Wachstum notwendig sind. Schließlich können essentielle Wuchsstoffe wie Aminosäuren 30 und Vitamine zusätzlich zu den oben genannten Stoffen eingesetzt werden. Dem Kulturmedium können überdies geeignete Vorstufen zugesetzt werden. Die genannten Einsatzstoffe können zur Kultur in Form eines einmaligen Ansatzes hinzugegeben oder in geeigneter Weise während der 35 Kultivierung zugefüttert werden.

Zur pH - Kontrolle der Kultur werden basische Verbindungen wie Natriumhydroxid, Kaliumhydroxid, Ammoniak beziehungsweise Ammoniakwasser oder saure Verbindungen wie Phosphorsäure oder Schwefelsäure in geeigneter Weise 5 eingesetzt. Zur Kontrolle der Schaumentwicklung können Antischaummittel, wie zum Beispiel Fettsäurepolyglykolester eingesetzt werden. Zur Aufrechterhaltung der Stabilität von Plasmiden können dem Medium geeignete selektiv wirkende Stoffe, wie zum Beispiel Antibiotika hinzugefügt werden. Um 10 aerobe Bedingungen aufrechtzuerhalten, werden Sauerstoff oder Sauerstoff-haltige Gasmischungen, wie zum Beispiel Luft in die Kultur eingetragen. Die Temperatur der Kultur liegt normalerweise bei 20°C bis 45°C und vorzugsweise bei 25°C bis 40°C. Die Kultur wird solange fortgesetzt, bis 15 sich ein Maximum des gewünschten Produktes gebildet hat. Dieses Ziel wird normalerweise innerhalb von 10 Stunden bis 160 Stunden erreicht.

Methoden zur Bestimmung von L-Aminosäuren sind aus dem Stand der Technik bekannt. Die Analyse kann zum Beispiel so 20 wie bei Spackman et al. (Analytical Chemistry, 30, (1958), 1190) beschrieben durch Anionenaustausch-Chromatographie mit anschließender Ninhydrin-Derivatisierung erfolgen, oder sie kann durch reversed phase HPLC erfolgen, so wie bei Lindroth et al. (Analytical Chemistry (1979) 51: 1167-1174) 25 beschrieben.

Das erfindungsgemäße Verfahren dient zur fermentativen Herstellung von Aminosäuren.

Folgender Mikroorganismus wurde als Reinkultur am 26.02.2001 bei der Deutschen Sammlung für Mikroorganismen 30 und Zellkulturen (DSMZ, Braunschweig, Deutschland) gemäß Budapest Vertrag hinterlegt:

- Escherichia coli Top10/pCR2.1luxSint als DSM 14082.

Die vorliegende Erfindung wird im folgenden anhand von Ausführungsbeispielen näher erläutert.

- Die Isolierung von Plasmid-DNA aus Escherichia coli sowie alle Techniken zur Restriktion, Klenow- und alkalische Phosphatasebehandlung wurden nach Sambrook et al.
5 (Molecular Cloning. A Laboratory Manual, 1989, Cold Spring Harbour Laboratory Press, Cold Spring Harbor, NY, USA) durchgeführt. Methoden zur Transformation von Escherichia coli sind ebenfalls in diesem Handbuch beschrieben.
- 10 Die Zusammensetzung gängiger Nährmedien wie LB- oder TY-Medium kann ebenfalls dem Handbuch von Sambrook et al. entnommen werden.

Beispiel 1

- Herstellung einer genomischen Cosmid-Genbank aus C.
15 glutamicum ATCC 13032

Chromosomale DNA aus C. glutamicum ATCC 13032 wurde wie bei Tauch et al., (1995, Plasmid 33:168-179) beschrieben, isoliert und mit dem Restriktionsenzym Sau3AI (Amersham Pharmacia, Freiburg, Deutschland, Produktbeschreibung
20 Sau3AI, Code no. 27-0913-02) partiell gespalten. Die DNA-Fragmente wurden mit shrimp alkalischer Phosphatase (Roche Molecular Biochemicals, Mannheim, Deutschland, Produktbeschreibung SAP, Code no. 1758250) dephosphoryliert. Die DNA des Cosmid-Vektors SuperCos1
25 (Wahl et al. (1987), Proceedings of the National Academy of Sciences, USA 84:2160-2164), bezogen von der Firma Stratagene (La Jolla, USA, Produktbeschreibung SuperCos1 Cosmid Vektor Kit, Code no. 251301) wurde mit dem Restriktionsenzym XbaI (Amersham Pharmacia, Freiburg,
30 Deutschland, Produktbeschreibung XbaI, Code no. 27-0948-02) gespalten und ebenfalls mit shrimp alkalischer Phosphatase dephosphoryliert.

Anschließend wurde die Cosmid-DNA mit dem Restriktionsenzym BamHI (Amersham Pharmacia, Freiburg, Deutschland, Produktbeschreibung BamHI, Code no. 27-0868-04) gespalten. Die auf diese Weise behandelte Cosmid-DNA wurde mit der behandelten ATCC13032-DNA gemischt und der Ansatz mit T4-
5 DNA-Ligase (Amersham Pharmacia, Freiburg, Deutschland, Produktbeschreibung T4-DNA-Ligase, Code no. 27-0870-04) behandelt. Das Ligationsgemisch wurde anschließend mit Hilfe des Gigapack II XL Packing Extracts (Stratagene, La Jolla, USA, Produktbeschreibung Gigapack II XL Packing
10 Extract, Code no. 200217) in Phagen verpackt.

Zur Infektion des E. coli Stammes NM554 (Raleigh et al. 1988, Nucleic Acid Res. 16:1563-1575) wurden die Zellen in 10 mM MgSO₄ aufgenommen und mit einem Aliquot der Phagensuspension vermischt. Infektion und Titerung der
15 Cosmidbank wurden wie bei Sambrook et al. (1989, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor) beschrieben durchgeführt, wobei die Zellen auf LB-Agar (Lennox, 1955, Virology, 1:190) + 100 µg/ml Ampicillin ausplattiert wurden. Nach Inkubation über Nacht bei 37°C wurden rekombinante Einzelklone selektiert.
20

Beispiel 2

Isolierung und Sequenzierung des Gens luxS

Die Cosmid-DNA einer Einzelkolonie wurde mit dem Qiaprep Spin Miniprep Kit (Product No. 27106, Qiagen, Hilden, Germany) nach Herstellerangaben isoliert und mit dem Restriktionsenzym Sau3AI (Amersham Pharmacia, Freiburg, Deutschland, Produktbeschreibung Sau3AI, Product No. 27-0913-02) partiell gespalten. Die DNA-Fragmente wurden mit
25 shrimp alkalischer Phosphatase (Roche Molecular Biochemicals, Mannheim, Deutschland, Produktbeschreibung SAP, Product No. 1758250) dephosphoryliert. Nach gelelektrophoretischer Auftrennung erfolgte die Isolierung 30 der Cosmidfragmente im Größenbereich von 1500 bis 2000 bp

mit dem QiaExII Gel Extraction Kit (Product No. 20021, Qiagen, Hilden, Germany).

Die DNA des Sequenziervektors pZero-1 bezogen von der Firma Invitrogen (Groningen, Niederlande, Produktbeschreibung 5 Zero Background Cloning Kit, Product No. K2500-01) wurde mit dem Restriktionsenzym BamHI (Amersham Pharmacia, Freiburg, Deutschland, Produktbeschreibung BamHI, Product No. 27-0868-04) gespalten. Die Ligation der Cosmidfragmente in den Sequenziervektor pZero-1 wurde wie von Sambrook et 10 al. (1989, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor) beschrieben durchgeführt, wobei das DNA-Gemisch mit T4-Ligase (Pharmacia Biotech, Freiburg, Deutschland) über Nacht inkubiert wurde. Dieses Ligationsgemisch wurde anschließend in den E. coli Stamm 15 DH5 α MCR (Grant, 1990, Proceedings of the National Academy of Sciences, U.S.A., 87:4645-4649) elektroporiert (Tauch et al. 1994, FEMS Microbiol. Letters, 123:343-7) und auf LB-Agar (Lennox, 1955, Virology, 1:190) mit 50 mg/l Zeocin ausplattiert.

20 Die Plasmidpräparation der rekombinanten Klone erfolgte mit dem Biorobot 9600 (Product No. 900200, Qiagen, Hilden, Deutschland). Die Sequenzierung erfolgte nach der Dideoxy-Kettenabbruch-Methode von Sanger et al. (1977, Proceedings 25 of the National Academies of Sciences, U.S.A., 74:5463-5467) mit Modifikationen nach Zimmermann et al. (1990, Nucleic Acids Research, 18:1067). Es wurde der "RR dRhodamin Terminator Cycle Sequencing Kit" von PE Applied Biosystems (Product No. 403044, Weiterstadt, Deutschland) verwendet. Die gelelektrophoretische Auftrennung und 30 Analyse der Sequenzierreaktion erfolgte in einem "Rotiphorese NF Acrylamid/Bisacrylamid" Gel (29:1) (Product No. A124.1, Roth, Karlsruhe, Germany) mit dem "ABI Prism 377" Sequenziergerät von PE Applied Biosystems (Weiterstadt, Deutschland).

Die erhaltenen Roh-Sequenzdaten wurden anschließend unter Anwendung des Staden-Programmpakets (1986, Nucleic Acids Research, 14:217-231) Version 97-0 prozessiert. Die Einzelsequenzen der pZero1-Derivate wurden zu einem 5 zusammenhängenden Contig assembliert. Die computergestützte Kodierbereichsanalyse wurden mit dem Programm XNIP (Staden, 1986, Nucleic Acids Research, 14:217-231) angefertigt. Weitere Analysen wurden mit den "BLAST search programs" (Altschul et al., 1997, Nucleic Acids Research, 10 25:33893402) gegen die non-redundant Datenbank des "National Center for Biotechnology Information" (NCBI, Bethesda, MD, USA) durchgeführt.

Die erhaltene Nukleotidsequenz ist in SEQ ID No. 1 dargestellt. Die Analyse der Nukleotidsequenz ergab ein 15 offenes Leseraster von 1272 bp, welches als luxS-Gen bezeichnet wurde. Das luxS-Gen kodiert für ein Polypeptid von 423 Aminosäuren.

Beispiel 3

Herstellung eines Integrationsvektors für die 20 Integrationsmutagenese des luxS-Gens

Aus dem Stamm ATCC 13032 wurde nach der Methode von Eikmanns et al. (Microbiology 140: 1817 - 1828 (1994)) chromosomal DNA isoliert. Aufgrund der aus Beispiel 2 für C. glutamicum bekannten Sequenz des luxS-Gens wurden die 25 folgenden Oligonukleotide für die Polymerase Kettenreaktion ausgewählt (siehe SEQ ID No. 3 und SEQ ID No. 4):

luxS-int1:

5` TCG TGA CCG TGG CTA TTG AT 3`

luxS-int2:

30 5` CTT GAG CAA TTC GCA GAA GG 3`

Die dargestellten Primer wurden von der Firma MWG Biotech (Ebersberg, Deutschland) synthetisiert und nach der Standard-PCR-Methode von Innis et al. (PCR protocols. A

guide to methods and applications, 1990, Academic Press) mit der Taq-Polymerase der Firma Boehringer Mannheim (Deutschland, Produktbeschreibung Taq DNA Polymerase, Product No. 1 146 165) die PCR Reaktion durchgeführt. Mit Hilfe der Polymerase-Kettenreaktion ermöglichen die Primer die Amplifikation eines 492 bp großen internen Fragmentes des luxS-Gens. Das so amplifizierte Produkt wurde in einem 0,8%igen Agarosegel elektrophoretisch geprüft.

Das amplifizierte DNA Fragment wurde mit dem TOPO TA Cloning Kit der Firma Invitrogen Corporation (Carlsbad, CA, USA; Katalog Nummer K4500-01) in den Vektor pCR2.1-TOPO (Mead et al. (1991) Bio/Technology 9:657-663) ligiert.

Anschließend wurde der E. coli Stamm TOP10 mit dem Ligationsansatz (Hanahan, In: DNA cloning. A practical approach. Vol.I. IRL-Press, Oxford, Washington DC, USA, 1985) elektroporiert. Die Selektion von Plasmid-tragenden Zellen erfolgte durch Ausplattieren des Transformationsansatzes auf LB Agar (Sambrook et al., Molecular cloning: a laboratory manual. 2nd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989), der mit 50 mg/l Kanamycin supplementiert worden war. Plasmid-DNA wurde aus einer Transformante mit Hilfe des QIAprep Spin Miniprep Kit der Firma Qiagen isoliert und durch Restriktion mit dem Restriktionsenzym EcoRI und anschließender Agarosegel-Elektrophorese (0,8%) überprüft. Das Plasmid wurde pCR2.1luxSint genannt und ist in Figur 1 dargestellt.

Beispiel 4

Integrationsmutagenese des luxS-Gens in dem Stamm DSM 5715

Der in Beispiel 3 genannte Vektor pCR2.1luxSint wurde nach der Elektroporationsmethode von Tauch et.al. (FEMS Microbiological Letters, 123:343-347 (1994)) in Corynebacterium glutamicum DSM 5715 elektroporiert. Bei dem

Stamm DSM 5715 handelt es sich um einen AEC resistenten Lysin-Produzenten. Der Vektor pCR2.1luxSint kann in DSM5715 nicht selbständig replizieren und bleibt nur dann in der Zelle erhalten, wenn er ins Chromosom von DSM 5715 integriert hat. Die Selektion von Klonen mit ins Chromosom integriertem pCR2.1luxSint erfolgte durch Ausplattieren des Elektroporationsansatzes auf LB Agar (Sambrook et al., Molecular cloning: a laboratory manual. 2nd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.), der mit 15 mg/l Kanamycin supplementiert worden war.

Für den Nachweis der Integration wurde das luxSint-Fragment nach der Methode "The DIG System Users Guide for Filter Hybridization" der Firma Boehringer Mannheim GmbH (Mannheim, Deutschland, 1993) mit dem Dig-Hybridisierungskit der Firma Boehringer markiert. Chromosomal DNA eines potentiellen Integranten wurde nach der Methode von Eikmanns et al. (Microbiology 140: 1817 - 1828 (1994)) isoliert und jeweils mit den Restriktionsenzymen SalI, EcoRI und PstI geschnitten. Die entstehenden Fragmente wurden mittels der Agarosegel-Elektrophorese aufgetrennt und mit dem Dig-Hybridisierungskit der Firma Boehringer bei 68°C hybridisiert. Das in Beispiel 3 genannte Plasmid pCR2.1luxSint hatte innerhalb des chromosomalen luxS-Gens ins Chromosom von DSM5715 inseriert. Der Stamm wurde als DSM5715::pCR2.1luxSint bezeichnet.

Beispiel 5

Herstellung von Lysin

Der in Beispiel 4 erhaltene C. glutamicum Stamm DSM5715::pCR2.1luxSint wurde in einem zur Produktion von Lysin geeigneten Nährmedium kultiviert und der Lysingehalt im Kulturüberstand bestimmt.

Dazu wurde der Stamm zunächst auf Agarplatte mit dem entsprechenden Antibiotikum (Hirn-Herz Agar mit Kanamycin (25 mg/l) für 24 Stunden bei 33°C inkubiert. Ausgehend von dieser Agarplattenkultur wurde eine Vorkultur angeimpft (10 ml Medium im 100 ml Erlenmeyerkolben). Als Medium für die Vorkultur wurde das Vollmedium CgIII verwendet.

Medium Cg III

NaCl 2,5 g/l

Bacto-Pepton 10 g/l

Bacto-Yeast-Extrakt 10 g/l

Glucose (getrennt autoklaviert) 2% (w/v)

Der pH-Wert wurde auf pH 7.4 eingestellt

Diesem wurde Kanamycin (25 mg/l) zugesetzt. Die Vorkultur 10 wurde 16 Stunden bei 33°C bei 240 rpm auf dem Schüttler inkubiert. Von dieser Vorkultur wurde eine Hauptkultur angeimpft, so daß die Anfangs-OD (660 nm) der Hauptkultur 0,1 OD betrug. Für die Hauptkultur wurde das Medium MM verwendet.

Medium MM

CSL (Corn Steep Liquor) 5 g/l

MOPS (Morpholinopropansulfonsäure) 20 g/l

Glucose (getrennt autoklaviert) 50g/l

Salze:

$(\text{NH}_4)_2\text{SO}_4$ 25 g/l

KH_2PO_4 0,1 g/l

$\text{MgSO}_4 \cdot 7 \text{ H}_2\text{O}$ 1,0 g/l

$\text{CaCl}_2 \cdot 2 \text{ H}_2\text{O}$ 10 mg/l

$\text{FeSO}_4 \cdot 7 \text{ H}_2\text{O}$ 10 mg/l

$\text{MnSO}_4 \cdot \text{H}_2\text{O}$ 5,0mg/l

Biotin (sterilfiltriert) 0,3 mg/l

Thiamin * HCl (sterilfiltriert) 0,2 mg/l

Leucin (sterilfiltriert) 0,1 g/l

CaCO_3 25 g/l

CSL, MOPS und die Salzlösung werden mit Ammoniakwasser auf pH 7 eingestellt und autoklaviert. Anschließend werden die 5 sterilen Substrat- und Vitaminlösungen zugesetzt, sowie das trocken autoklavierte CaCO_3 zugesetzt.

Die Kultivierung erfolgt in 10 ml Volumen in einem 100 ml Erlenmeyerkolben mit Schikanen. Es wurde Kanamycin (25 mg/l) zugesetzt. Die Kultivierung erfolgte bei 33°C und 10 80% Luftfeuchtigkeit.

Nach 72 Stunden wurde die OD bei einer Meßwellenlänge von 660 nm mit dem Biomek 1000 (Beckmann Instruments GmbH, München) ermittelt. Die gebildete Lysinmenge wurde mit einem Aminosäureanalysator der Firma Eppendorf-BioTronik 5 (Hamburg, Deutschland) durch Ionenaustauschchromatographie und Nachsäulenderivatisierung mit Ninhydrindetektion bestimmt.

In Tabelle 1 ist das Ergebnis des Versuchs dargestellt.

Tabelle 1

Stamm	OD (660 nm)	Lysin-HCl g/l
DSM5715	8,0	12,64
DSM5715:::pCR2.1luxSint	9,3	14,39

10

Beschreibung der Figur:

Figur 1: Karte des Plasmids pCR2.1luxSint.

Die verwendeten Abkürzungen und Bezeichnungen haben folgende Bedeutung.

- KmR: Kanamycin Resistenz-Gen
- EcoRI: Schnittstelle des Restriktionsenzyms EcoRI
- PstI: Schnittstelle des Restriktionsenzyms PstI
- SalI: Schnittstelle des Restriktionsenzyms SalI
- luxSint: internes Fragment des luxS-Gens
- ColE1: Replikationsursprung des Plasmides ColE1

SEQUENZPROTOKOLL

<110> Degussa AG

5 <120> Neue für das luxS-Gen kodierende Nukleotidsequenzen

<130> 000457 BT

10 <140>

<141>

<160> 4

15 <170> PatentIn Ver. 2.1

<210> 1

<211> 1902

<212> DNA

20 <213> Corynebacterium glutamicum

<220>

<221> CDS

<222> (342)..(1610)

<223> luxS-Gen

25

<400> 1

ggtaggagta aaaaacgcag gagggcgtcg aaaagcgttc gtctgtgccg taaccgtga 60

30

cgcgctggcc gttggtatcg gcgacccagt cggtgcccag gtaggggcat gcgggttgcg 120

cggtgcgttc gaccgcgggc atcgcgtcga tggaaaggcc gtcagtaatt acttccgggg 180

ctgcctcggt ggtggctct ggggttgctt caggttccgc cgggtacaa gcggtgagca 240

35

tgatggaagc agcgaggata gtaggtaatg tacgacgcat gcagtcaagc ctagatcgtg 300

tgtcgaaac cggacgcaat gagctcgatg ttgaaaccct t gtg aag aag ggg aat 356

Met Lys Lys Gly Asn
1 5

40

caa ccg ggc gcg atg agc tat cgc aac agt atc cac att ttg aca gcc 404
Gln Pro Gly Ala Met Ser Tyr Arg Asn Ser Ile His Ile Leu Thr Ala
10 15 20

45

tcg ctg ctg gtc gtg ggg ttg gga gct tcc gcc cgc ctg acg ctg ccg 452
Ser Leu Leu Val Val Gly Leu Gly Ala Ser Ala Arg Leu Thr Leu Pro
25 30 35

50

atg ttt gcg ctg tcg tgc gtg ctg ttg ttt gtg tgg ggt ttt ctg tac 500
Met Phe Ala Leu Ser Cys Val Leu Leu Phe Val Trp Gly Phe Leu Tyr
40 45 50

55

ttc tat gga tca acc aaa cgc gta gat ttg agc cac ggc atg cag ctg 548
Phe Tyr Gly Ser Thr Lys Arg Val Asp Leu Ser His Gly Met Gln Leu
55 60 65ggc tgg ctg ttt gtg ctg acg ctg gtg tgg att ttt atg gtg ccg atc 596
Gly Trp Leu Phe Val Leu Thr Leu Val Trp Ile Phe Met Val Pro Ile
70 75 80 85

	gtg ccc gtg tcc att tat ctg ctg ttc ccg ctg ttt ttc ctc tat cta	644
	Val Pro Val Ser Ile Tyr Leu Leu Phe Pro Leu Phe Phe Leu Tyr Leu	
	90 95 100	
5	cag gtg atg cct gac gtg aga ggc att att gcg att ttg ggt gcg aca	692
	Gln Val Met Pro Asp Val Arg Gly Ile Ile Ala Ile Leu Gly Ala Thr	
	105 110 115	
10	gcg att gcg att gcc agc cag tat tcc gtg ggg ttg acc ttt ggt ggt	740
	Ala Ile Ala Ile Ala Ser Gln Tyr Ser Val Gly Leu Thr Phe Gly Gly	
	120 125 130	
15	gtg atg ggt ccg gtg gtc tct gcg atc gtg acc gtg gct att gat tac	788
	Val Met Gly Pro Val Val Ser Ala Ile Val Thr Val Ala Ile Asp Tyr	
	135 140 145	
20	gct ttc cgc acg ttg tgg cggtt gaa aat aat gaa aag cag gaa ttg att	836
	Ala Phe Arg Thr Leu Trp Arg Val Asn Asn Glu Lys Gln Glu Leu Ile	
	150 155 160 165	
	gat cag ttg att gaa act cgc tcc cag ctg gcg gtg acg gaa cga aat	884
	Asp Gln Leu Ile Glu Thr Arg Ser Gln Leu Ala Val Thr Glu Arg Asn	
	170 175 180	
25	gct ggt att gct gct gaa cgt caa cgt att gct cat gaa att cat gac	932
	Ala Gly Ile Ala Ala Glu Arg Gln Arg Ile Ala His Glu Ile His Asp	
	185 190 195	
30	acg gtc gcc cag gga ctc tcc tcc att caa atg ctg ctg cat gtc tct	980
	Thr Val Ala Gln Gly Leu Ser Ser Ile Gln Met Leu Leu His Val Ser	
	200 205 210	
35	gaa cag gag att ctc gtt gct gag atg gaa gag aag cca aag gag gct	1028
	Glu Gln Glu Ile Leu Val Ala Glu Met Glu Glu Lys Pro Lys Glu Ala	
	215 220 225	
40	atc gtg aag aag atg cgc ctt gcc cga caa aca gcc tcc gac aat ctc	1076
	Ile Val Lys Lys Met Arg Leu Ala Arg Gln Thr Ala Ser Asp Asn Leu	
	230 235 240 245	
	agt gag gct cgc gct atg att gct gct ttg caa ccg gca gct ctg tct	1124
	Ser Glu Ala Arg Ala Met Ile Ala Ala Leu Gln Pro Ala Ala Leu Ser	
	250 255 260	
45	aaa acc tcc ttg gaa gca gca ctt cac cgc gtc aca gaa ccg ttg ttg	1172
	Lys Thr Ser Leu Glu Ala Ala Leu His Arg Val Thr Glu Pro Leu Leu	
	265 270 275	
50	ggt att aat ttt gtg att tct gtc gac ggt gat gtt cgc caa ctg ccc	1220
	Gly Ile Asn Phe Val Ile Ser Val Asp Gly Asp Val Arg Gln Leu Pro	
	280 285 290	
55	atg aaa act gaa gcc acc ctt ctg cga att gct caa ggt gct gca atc gga	1268
	Met Lys Thr Glu Ala Thr Leu Leu Arg Ile Ala Gln Gly Ala Ile Gly	
	295 300 305	

	aat gtg gcg aaa cat tca gag gcg aaa aac tgc cac gtg aca cta acc	1316
	Asn Val Ala Lys His Ser Glu Ala Lys Asn Cys His Val Thr Leu Thr	
	310 315 320 325	
5	tac gaa gac aca gaa gta cgc ctt gat gtg gtt gat gac ggt gtc ggt	1364
	Tyr Glu Asp Thr Glu Val Arg Leu Asp Val Val Asp Asp Gly Val Gly	
	330 335 340	
10	ttt gag cct tcg gaa gtg tcc agt acc ccc gct ggc ctt ggc cat atc	1412
	Phe Glu Pro Ser Glu Val Ser Ser Thr Pro Ala Gly Leu Gly His Ile	
	345 350 355	
15	ggc tta acc gca ttg cag cag cgt gcg atg gaa ttg cac ggc gaa gtt	1460
	Gly Leu Thr Ala Leu Gln Gln Arg Ala Met Glu Leu His Gly Glu Val	
	360 365 370	
20	ata gtg gaa tct gca tat ggg cag ggt act gcg gta tct gca gca ttg	1508
	Ile Val Glu Ser Ala Tyr Gly Gln Gly Thr Ala Val Ser Ala Ala Leu	
	375 380 385	
25	ccg gtg gag cca cca gag ggg ttt gtc ggg gcg ccg gtt ttg gca gat	1556
	Pro Val Glu Pro Pro Gly Phe Val Gly Ala Pro Val Leu Ala Asp	
	390 395 400 405	
30	gat gag taaggctaga ctaaagtacg attcatctgc tcatcgatac tcttgaaggc	1660
	Asp Glu	
	gcattttcat tcgaaacgaa gtgcgccatt gggaggacc tagttcaaac aatgattcgc	1720
35	gtgctgcttg ctgatgacca cgaaatcgtg aggctcgac tccgagctgt gctggaaagc	1780
	gcccaggaca ttgaagtggt gggcgaagtc tccaccgccc aaggtgcggc gcagggcagcc	1840
	caagaaggcg gaatcgacgt catcttgatg gacctccgat tcggccccgg cgtccaagga	1900
40	ac	1902
	<210> 2	
	<211> 423	
45	<212> PRT	
	<213> Corynebacterium glutamicum	
	<400> 2	
50	Met Lys Lys Gly Asn Gln Pro Gly Ala Met Ser Tyr Arg Asn Ser Ile	
	1 5 10 15	
	His Ile Leu Thr Ala Ser Leu Leu Val Val Gly Leu Gly Ala Ser Ala	
	20 25 30	
55	Arg Leu Thr Leu Pro Met Phe Ala Leu Ser Cys Val Leu Leu Phe Val	
	35 40 45	
	Trp Gly Phe Leu Tyr Phe Tyr Gly Ser Thr Lys Arg Val Asp Leu Ser	
	50 55 60	

	His	Gly	Met	Gln	Leu	Gly	Trp	Leu	Phe	Val	Leu	Thr	Leu	Val	Trp	Ile
	65						70					75				80
5	Phe	Met	Val	Pro	Ile	Val	Pro	Val	Ser	Ile	Tyr	Leu	Leu	Phe	Pro	Leu
							85				90				95	
	Phe	Phe	Leu	Tyr	Leu	Gln	Val	Met	Pro	Asp	Val	Arg	Gly	Ile	Ile	Ala
							100				105				110	
10	Ile	Leu	Gly	Ala	Thr	Ala	Ile	Ala	Ile	Ala	Ser	Gln	Tyr	Ser	Val	Gly
							115				120				125	
15	Leu	Thr	Phe	Gly	Gly	Val	Met	Gly	Pro	Val	Val	Ser	Ala	Ile	Val	Thr
							130				135				140	
	Val	Ala	Ile	Asp	Tyr	Ala	Phe	Arg	Thr	Leu	Trp	Arg	Val	Asn	Asn	Glu
							145				150				160	
20	Lys	Gln	Glu	Leu	Ile	Asp	Gln	Leu	Ile	Glu	Thr	Arg	Ser	Gln	Leu	Ala
							165				170				175	
	Val	Thr	Glu	Arg	Asn	Ala	Gly	Ile	Ala	Ala	Glu	Arg	Gln	Arg	Ile	Ala
							180				185				190	
25	His	Glu	Ile	His	Asp	Thr	Val	Ala	Gln	Gly	Leu	Ser	Ser	Ile	Gln	Met
							195				200				205	
30	Leu	Leu	His	Val	Ser	Glu	Gln	Glu	Ile	Leu	Val	Ala	Glu	Met	Glu	Glu
							210				215				220	
	Lys	Pro	Lys	Glu	Ala	Ile	Val	Lys	Lys	Met	Arg	Leu	Ala	Arg	Gln	Thr
							225				230				240	
35	Ala	Ser	Asp	Asn	Leu	Ser	Glu	Ala	Arg	Ala	Met	Ile	Ala	Ala	Leu	Gln
							245				250				255	
	Pro	Ala	Ala	Leu	Ser	Lys	Thr	Ser	Leu	Glu	Ala	Ala	Leu	His	Arg	Val
							260				265				270	
40	Thr	Glu	Pro	Leu	Leu	Gly	Ile	Asn	Phe	Val	Ile	Ser	Val	Asp	Gly	Asp
							275				280				285	
	Val	Arg	Gln	Leu	Pro	Met	Lys	Thr	Glu	Ala	Thr	Leu	Leu	Arg	Ile	Ala
							290				295				300	
45	Gln	Gly	Ala	Ile	Gly	Asn	Val	Ala	Lys	His	Ser	Glu	Ala	Lys	Asn	Cys
							305				310				320	
50	His	Val	Thr	Leu	Thr	Tyr	Glu	Asp	Thr	Glu	Val	Arg	Leu	Asp	Val	Val
							325				330				335	
	Asp	Asp	Gly	Val	Gly	Phe	Glu	Pro	Ser	Glu	Val	Ser	Ser	Thr	Pro	Ala
							340				345				350	
55	Gly	Leu	Gly	His	Ile	Gly	Leu	Thr	Ala	Leu	Gln	Gln	Arg	Ala	Met	Glu
							355				360				365	

Leu His Gly Glu Val Ile Val Glu Ser Ala Tyr Gly Gln Gly Thr Ala
370 375 380

5 Val Ser Ala Ala Leu Pro Val Glu Pro Pro Glu Gly Phe Val Gly Ala
385 390 395 400

Pro Val Leu Ala Asp Ser Asp Ser Ser Ala Thr Gly Glu Val Glu Leu
405 410 415

10 Ser Ser Pro Thr Asp Asp Glu
420

15 <210> 3
<211> 20
<212> DNA
<213> Corynebacterium glutamicum

20 <220>
<223> Primer luxS-int1

<400> 3
tcgtgaccgt ggctattgat 20

25 <210> 4
<211> 20
<212> DNA
30 <213> Corynebacterium glutamicum

<220>
<223> Primer luxS-int2

35 <400> 4
cttgagcaat tcgcagaagg 20

Patentansprüche

1. Isoliertes Polynukleotid aus coryneformen Bakterien, enthaltend eine für das luxS-Gen kodierende Polynukleotidsequenz, ausgewählt aus der Gruppe

5 a) Polynukleotid, das mindestens zu 70% identisch ist mit einem Polynukleotid, das für ein Polypeptid kodiert, das die Aminosäuresequenz von SEQ ID No. 2 enthält,

10 b) Polynukleotid, das für ein Polypeptid kodiert, das eine Aminosäuresequenz enthält, die zu mindestens 70% identisch ist mit der Aminosäuresequenz von SEQ ID No. 2,

c) Polynukleotid, das komplementär ist zu den Polynukleotiden von a) oder b), und

15 d) Polynukleotid, enthaltend mindestens 15 aufeinanderfolgende Nukleotide der Polynukleotidsequenz von a), b) oder c),

wobei das Polypeptid bevorzugt die Aktivität der Histidin Kinase LuxS aufweist.

20 2. Polynukleotid gemäß Anspruch 1, wobei das Polynukleotid eine in coryneformen Bakterien replizierbare, bevorzugt rekombinante DNA ist.

3. Polynukleotid gemäß Anspruch 1, wobei das Polynukleotid eine RNA ist.

25 4. Polynukleotid gemäß Anspruch 2, enthaltend die Nukleinsäuresequenz wie in SEQ ID No. 1 dargestellt.

5. Replizierbare DNA gemäß Anspruch 2, enthaltend

(i) die Nukleotidsequenz, gezeigt in SEQ ID No. 1,
oder

- (ii) mindestens eine Sequenz, die der Sequenz (i) innerhalb des Bereichs der Degeneration des genetischen Kodes entspricht, oder
- 5 (iii) mindestens eine Sequenz, die mit der zur Sequenz (i) oder (ii) komplementären Sequenz hybridisiert, und gegebenenfalls
 - (iv) funktionsneutrale Sinnmutationen in (i).
- 10 6. Replizierbare DNA gemäß Anspruch 2, d a d u r c h g e k e n n z e i c h n e t, daß die Hybridisierung unter einer Stringenz entsprechend höchstens 2x SSC durchgeführt wird.
- 7. Polynukleotidsequenz gemäß Anspruch 1, die für ein Polypeptid kodiert, das die in SEQ ID No. 2 dargestellte Aminosäuresequenz enthält.
- 15 8. Coryneforme Bakterien, in denen das luxS-Gen abgeschwächt, insbesondere ausgeschaltet wird.
- 9. Vektor pCR2.1luxSint, der
 - 9.1 ein 492 bp großes internes Fragment der luxS-Gens trägt,
 - 20 9.2 dessen Restriktionskarte in Figur 1 wiedergegeben wird, und
 - 9.3 der in dem E. coli-Stamm Top10/pCR2.1luxSint unter der Nr. DSM 14082 bei der Deutschen Sammlung für Mikroorganismen und Zellenkulturen hinterlegt ist.
- 25 10. Verfahren zur fermentativen Herstellung von L-Aminosäuren, insbesondere Lysin, d a d u r c h g e k e n n z e i c h n e t, daß man folgende Schritte durchführt:

- a) Fermentation der die gewünschte L-Aminosäure produzierenden coryneformen Bakterien, in denen man zumindest das luxS-Gen oder dafür kodierende Nukleotidsequenzen abschwächt, insbesondere ausschaltet;
 - b) Anreicherung der L-Aminosäure im Medium oder in den Zellen der Bakterien, und
 - c) Isolieren der L-Aminosäure.
11. Verfahren gemäß Anspruch 10, d a d u r c h
10 g e k e n n z e i c h n e t, daß man Bakterien
einsetzt, in denen man zusätzlich weitere Gene des
Biosyntheseweges der gewünschten L-Aminosäure
verstärkt.
12. Verfahren gemäß Anspruch 10, d a d u r c h
15 g e k e n n z e i c h n e t, daß man Bakterien
einsetzt, in denen die Stoffwechselwege zumindest
teilweise ausgeschaltet sind, die die Bildung der
gewünschten L-Aminosäure verringern.
13. Verfahren gemäß Anspruch 10, d a d u r c h
20 g e k e n n z e i c h n e t, daß man die Expression des
(der) Polynukleotides (e), das (die) für das luxS-Gen
kodiert (kodieren) abschwächt, insbesondere
ausschaltet.
14. Verfahren gemäß Anspruch 10, d a d u r c h
25 g e k e n n z e i c h n e t, daß man die
regulatorischen beziehungsweise katalytischen
Eigenschaften des Polypeptids (Enzymprotein) verringert,
für das das Polynukleotid luxS kodiert.
15. Verfahren gemäß Anspruch 10, d a d u r c h
30 g e k e n n z e i c h n e t, daß man zur Herstellung
von L-Aminosäuren coryneforme Mikroorganismen

fermentiert, in denen man gleichzeitig eines oder mehrere der Gene, ausgewählt aus der Gruppe

- 15.1 das für die Dihydrodipicolinat-Synthase kodierende Gen dapA,
- 5 15.2 das für die Glyceraldehyd-3-Phosphat Dehydrogenase kodierende Gen gap,
- 15.3 das für die Triosephosphat Isomerase kodierende Gen tpi,
- 10 15.4 das für die 3-Phosphoglycerat Kinase kodierende Gen pgk,
- 15.5 das für die Glucose-6-Phosphat Dehydrogenase kodierende Gen zwf,
- 15.6 das für die Pyruvat Carboxylase kodierende Gen pyc,
- 15 15.7 das für die Malat-Chinon-Oxidoreduktase kodierende Gen mqo,
- 15.8 das für eine feed-back resistente Aspartatkinase kodierende Gen lysC,
- 15.9 das für den Lysin-Export kodierende Gen lysE,
- 20 15.10 das für die Homoserin-Dehydrogenase kodierende Gen hom,
- 15.11 das für die Threonin-Dehydratase kodierende Gen ilvA oder das für eine feed back resistente Threonin-Dehydratase kodierende Allel ilvA(Fbr),
- 25 15.12 das für die Acetohydroxysäure-Synthase kodierende Gen ilvBN,

15.13 das für die Dihydroxysäuredehydratase kodierende Gen *ilvD*,

15.14 das für das Zwal-Protein kodierende Gen *zwal*

5 verstärkt bzw. überexprimiert.

16. Verfahren gemäß Anspruch 10, d a d u r c h g e k e n n z e i c h n e t, daß man zur Herstellung von L-Aminosäuren coryneforme Mikroorganismen fermentiert, in denen man gleichzeitig eines oder
10 mehrere der Gene, ausgewählt aus der Gruppe

16.1 das für die Phosphoenolpyruvat-Carboxykinase kodierende Gen *pck*,

16.2 das für die Glucose-6-Phosphat Isomerase kodierende Gen *pgi*,

15 16.3 das für die Pyruvat-Oxidase kodierende Gen *poxB*

16.4 das für das Zwa2-Protein kodierende Gen *zwa2* abschwächt.

17. Coryneforme Bakterien, die einen Vektor enthalten, der Teile des Polynukleotids, mindestens aber 15 aufeinanderfolgende Nukleotide der Sequenz gemäß Anspruch 1, trägt.
20

18. Verfahren gemäß einem oder mehreren der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t, daß man Mikroorganismen der Art *Corynebacterium glutamicum* einsetzt.
25

19. Verfahren zum Auffinden von RNA, cDNA und DNA, um Nukleinsäuren, beziehungsweise Polynukleotide oder Gene zu isolieren, die für die Histidin Kinase LuxS kodieren oder eine hohe Ähnlichkeit mit der Sequenz des luxS-Gens aufweisen, d a d u r c h
30

gekennzeichnet, daß man das Polynukleotid, enthaltend die Polynukleotidsequenzen gemäß den Ansprüchen 1, 2, 3 oder 4 als Hybridisierungssonden einsetzt.

Zusammenfassung

Die Erfindung betrifft ein isoliertes Polynukleotid enthaltend eine Polynukleotidsequenz, ausgewählt aus der Gruppe

- 5 a) Polynukleotid, das mindestens zu 70% identisch ist mit einem Polynukleotid, das für ein Polypeptid kodiert, das die Aminosäuresequenz von SEQ ID No. 2 enthält,
- b) Polynukleotid, das für ein Polypeptid kodiert, das eine Aminosäuresequenz enthält, die zu mindestens 70% 10 identisch ist mit der Aminosäuresequenz von SEQ ID No. 2,
- c) Polynukleotid, das komplementär ist zu den Polynukleotiden von a) oder b), und
- d) Polynukleotid, enthaltend mindestens 15 15 aufeinanderfolgende Nukleotide der Polynukleotidsequenz von a), b) oder c),

und ein Verfahren zur fermentativen Herstellung von L-Aminosäuren unter Verwendung von coryneformen Bakterien, in denen zumindest das luxS-Gen abgeschwächt vorliegt, und die 20 Verwendung von Polynukleotiden, die die erfindungsgemäßen Sequenzen enthalten, als Hybridisierungssonden.

Figur 1: Plasmid pCR2.1luxSint

5

10

15

20

