GPU Classification of Cifar-10

Neha Joseph & Ashley Herce TA: Junhao

Work partition: Neha: Training, Testing and optimizing AlexNet Ashley: Testing and optimizing ViT-H

Track 2 - AlexNet & ViT-H optimizations on GPU

- We aim to optimize two different models (AlexNet and VIT-H) on the Google Colab GPU(Nvidia Tesla K80 12GB VRAM), and compare the results in change in accuracy and inference latency
 - Our first goal is to recreate similar accuracy results from the published AlexNet and VIT-H models
 - We then aim to replicate similar results while using different optimization techniques such as different types of Quantization and weight pruning
 - For AlexNet we are currently using post training float16 quantization and post training integer quantization
 - For VIT-H we are currently trying to replicate the original model however, we are running into issues as we are restricted by the GPU available and are currently trying to modify our implementation

CIFAR10 Dataset

- 10 classes: airplanes, cars, birds, cats, deer, dogs, frogs, horses, ships and trucks
- The classes are mutually exclusive and there are no overlaps in between the classes
- 60,000 32x32 colour images in 10 classes split into 50,000 training data,

and 10,000 testing data

Design - Alexnet

- 8 layers total
 - 5 convolutional layer (some followed by max pooling layer)
 - 2 fully connected hidden layers
 - 1 fully connected output layer

Design - Alexnet

Layer (type)	Output Shape	Param #		
conv2d_20 (Conv2D)	(None, 22, 22, 64)	23296		
<pre>max_pooling2d_12 (MaxPooli ng2D)</pre>	(None, 10, 10, 64)	0		
conv2d_21 (Conv2D)	(None, 10, 10, 192)	307392		
<pre>max_pooling2d_13 (MaxPooli ng2D)</pre>	(None, 5, 5, 192)	0		
conv2d_22 (Conv2D)	(None, 5, 5, 384)	663936		
conv2d_23 (Conv2D)	(None, 5, 5, 256)	884992		
conv2d_24 (Conv2D)	(None, 5, 5, 256)	590080		
<pre>max_pooling2d_14 (MaxPooli ng2D)</pre>	(None, 2, 2, 256)	0		
flatten_2 (Flatten)	(None, 1024)	0		
dense_9 (Dense)	(None, 4096)	4198400		
dropout_7 (Dropout)	(None, 4096)	0		
dense_10 (Dense)	(None, 4096)	16781312		
dropout_8 (Dropout)	(None, 4096)	0		
dense_11 (Dense)	(None, 10)	40970		
Total params: 23490378 (89.61 MB) Trainable params: 23490378 (89.61 MB)				

Trainable params: 23490378 (89.61 MB)
Non-trainable params: 0 (0.00 Byte)

Design - ViT-H (Vision Transformer)

Source: https://github.com/lucidrains/vit-pytorch/blob/main/images/vit.gif

- Relies on Transformer architecture (Commonly in NLP)
- Originally designed and tested on larger high resolution datasets (Imagenet21k)
- Computationally expensive due to large size
 - Possible to achieve high accuracy on CIFAR10 but not on Google Colab GPU so far
- Transformer Encoder processes the vectors from patch embedding and the layers within allow the model to attend to specific parts of each patch vector and how it relates to other patches to understand context and spatial relationships
- MLP is a small neural network with hidden layers w/activation function (GELU and dropout)
 - Vector output indicates likelihood of the image belonging to each class

Design - ViT-H (small portion)

Layer (type)	Output Shape	Param #	Connected to
input_layer_12 (InputLayer)	(None, 32, 32, 3)	0	-
data_augmentation (Sequential)	(None, 32, 32, 3)	7	input_layer_12[0][0]
patches_14 (Patches)	(None, 25, 108)	0	data_augmentation[0][
patch_encoder_6 (PatchEncoder)	(None, 25, 64)	8,576	patches_14[0][0]
layer_normalization_102 (LayerNormalization)	(None, 25, 64)	128	patch_encoder_6[0][0]
multi_head_attention_48 (MultiHeadAttention)	(None, 25, 64)	66,368	layer_normalization_1 layer_normalization_1
add_96 (Add)	(None, 25, 64)	0	multi_head_attention patch_encoder_6[0][0]
layer_normalization_103 (LayerNormalization)	(None, 25, 64)	128	add_96[0][0]
dense_121 (Dense)	(None, 25, 128)	8,320	layer_normalization_1
dropout_163 (Dropout)	(None, 25, 128)	0	dense_121[0][0]
dense_122 (Dense)	(None, 25, 64)	8,256	dropout_163[0][0]
dropout_164 (Dropout)	(None, 25, 64)	0	dense_122[0][0]
add_97 (Add)	(None, 25, 64)	0	dropout_164[0][0], add_96[0][0]
layer_normalization_104 (LayerNormalization)	(None, 25, 64)	128	add_97[0][0]
multi_head_attention_49 (MultiHeadAttention)	(None, 25, 64)	66,368	layer_normalization_1 layer_normalization_1
add_98 (Add)	(None, 25, 64)	0	multi_head_attention add_97[0][0]

	,		
layer_normalization_105 (LayerNormalization)	(None, 25, 64)	128	add_98[0][0]
dense_123 (Dense)	(None, 25, 128)	8,320	layer_normalization_1
dropout_166 (Dropout)	(None, 25, 128)	0	dense_123[0][0]
dense_124 (Dense)	(None, 25, 64)	8,256	dropout_166[0][0]
dropout_167 (Dropout)	(None, 25, 64)	0	dense_124[0][0]
add_99 (Add)	(None, 25, 64)	0	dropout_167[0][0], add_98[0][0]
layer_normalization_106 (LayerNormalization)	(None, 25, 64)	128	add_99[0][0]
multi_head_attention_50 (MultiHeadAttention)	(None, 25, 64)	66,368	layer_normalization_1 layer_normalization_1
add_100 (Add)	(None, 25, 64)	0	multi_head_attention add_99[0][0]
layer_normalization_107 (LayerNormalization)	(None, 25, 64)	128	add_100[0][0]
dense_125 (Dense)	(None, 25, 128)	8,320	layer_normalization_1
dropout_169 (Dropout)	(None, 25, 128)	0	dense_125[0][0]
dense_126 (Dense)	(None, 25, 64)	8,256	dropout_169[0][0]
dropout_170 (Dropout)	(None, 25, 64)	0	dense_126[0][0]
add_101 (Add)	(None, 25, 64)	0	dropout_170[0][0], add_100[0][0]
layer_normalization_108 (LayerNormalization)	(None, 25, 64)	128	add_101[0][0]
multi_head_attention_51 (MultiHeadAttention)	(None, 25, 64)	66,368	layer_normalization_1 layer_normalization_1
add_102 (Add)	(None, 25, 64)	0	multi_head_attention add_101[0][0]
layer_normalization_109 (LayerNormalization)	(None, 25, 64)	128	add_102[0][0]
dense_127 (Dense)	(None, 25, 128)	8,320	layer_normalization_1
dropout_172 (Dropout)	(None, 25, 128)	0	dense_127[0][0]
dense_128 (Dense)	(None, 25, 64)	8,256	dropout_172[0][0]

Results - Model accuracy on Test Data

Current results for AlexNet

Top 1 accuracy: 0.5386 Top 5 accuracy: 0.8949 72.67679471700467 ms

Current results for ViT-H

Test accuracy: 18.78% Test top 5 accuracy: 76.01% time: 1min 26s (started: 2024-04-24 23:03:39 +00:00)

*Accuracy after training on ¼ the Training Data

Next Steps: Work on optimizing latency of both models and comparing results of accuracy, inference times of both models and detailing the tradeoffs and benefits of each model