Gen Al for Predictive Maintenance in Automotive Manufacturing

A Journey From Downtime to Data-Driven Uptime

Speaker Introduction

Abhijit Joshi

Supply Chain Transformation Specialist

Deloitte Consulting

20 years of experience in leading digital transformation initiatives across automotive manufacturing, specializing in Al-driven operational excellence and predictive maintenance solutions.

Abstract & Overview

The Challenge:

Based on the recent reports the unplanned equipment downtime costs automotive manufacturers up to \$22,000 per minute and traditional maintenance strategies are inadequate to address this challenge

The Solve:

Applying generative AI to predictive maintenance in ERP systems can reduce unplanned downtime by up to 40%. This session explores the approach for any maintenance application implementation. How AI helps to analyze the data provided by sensors on production lines. This data is arranged in the structured workflow pattern to feed to maintenance systems to generate the preventive maintenance work orders

Traditional Maintenance Methods

Calendar-Based

Fixed intervals; simple but can cause premature replacements and miss unexpected failures.

Usage-Based

Maintenance based on runtime/cycle counts; better alignment but limited by variable equipment stress.

Condition-Based

Monitors parameters (vibration, temperature, etc.); improves effectiveness but struggles with complex degradation and false alarms.

Traditional Maintenance Challenges

Reactive Maintenance

Traditional maintenance is reactive, causing frequent unplanned stoppages that disrupt automotive production flow.

Fixed Schedule Limitations

Fixed schedules lead to equipment being serviced too early or too late, wasting resources or risking failures.

Lack of Data-Driven Decisions

Without real-time data, anticipating failures is difficult, limiting optimal equipment health management.

Reactive to Proactive

Generative AI plays a vital role in this transformation. It can transform maintenance from reactive firefighting to proactive optimization through data-driven insights and predictive analytics.

The Drivers for Proactive Approach

IoT Integration

Internet of Things (IoT) devices continuously monitor equipment in real-time, providing critical data for predictive maintenance.

ERP System Function

Enterprise Resource Planning (ERP) systems coordinate maintenance activities, inventory, and operational workflows to ensure smooth processes

Generative Al

Generative AI analyzes data to predict equipment failures and optimize maintenance schedules effectively.

Generative AI for Predictive Maintenance Framework Maintenance Sensor Data Performance Collection History Metrics **Data Processing** Feature Engineering & Analytics **ERP System** Gen Al Engine Predictive Analytics • Maintenance Optimization Resource Planning • Failure Prediction Manufacturing Systems Equipment Control • Real-time Monitoring **Automated Actions** Maintenance Plans Performance KPIs Optimized Schedules Work Orders ROI Analytics

The Framework

Al-Driven Maintenance: Integrates generative Al into ERP modules for condition-based, automated work order creation.

Proactive Issue Detection: Al identifies early equipment deterioration, enabling maintenance before failures occur.

Workflow Efficiency: Automation reduces manual analysis and ensures timely interventions.

Familiar Interfaces: Maintains existing ERP workflows with enhanced intelligence.

Human Oversight: Initial deployments use engineer verification to build trust and refine AI predictions.

Progressive Automation: Automation increases for predictable failures; critical systems retain human checks.

Role of IoT in Data Collection

Real-Time Sensor Data

Sensors embedded in machines capture real-time data such as vibration, temperature, and pressure to assess equipment health.

Predictive Analytics Foundation

Collected data forms the basis for predictive analytics enabling early detection of anomalies and potential failures.

Continuous Monitoring

IoT networks provide continuous data availability essential for accurate predictions and timely maintenance.

Role of ERP Integration

Predictive Maintenance Management

ERP systems use AI and IoT insights to predict maintenance needs and manage schedules proactively.

Automated Work Order Generation

ERP automatically creates work orders and allocates resources when Al detects potential issues.

Continuous Improvement Feedback

ERP feedback refines AI models, improving prediction accuracy and future maintenance efficiency.

Role of Generative Al for Predictive Analytics Modeling Equipment Behavior

Generative AI models equipment behavior to understand and predict potential failures effectively.

Synthetic Data Generation

It generates synthetic data scenarios to simulate different operational conditions for analysis.

Real-Time IoT Data Learning

Generative Al learns from historical and real-time IoT data to detect failure patterns early.

Proactive Maintenance Forecasting

Al forecasts maintenance needs, enabling proactive actions to reduce downtime and enhance reliability.

Target Applications

Robotic Systems

Early failure detection in automated assembly and welding robots through continuous monitoring of operational patterns

Paint Application Lines

Predictive maintenance for paint booth equipment and spray systems to prevent quality issues and downtime

Implementation Strategy

0

Leverage Existing Infrastructure

Utilize current sensor networks and data systems without major overhauls

O

Émbed into ERP Systems

Integrate predictive intelligence seamlessly into existing workflows to create preventive work orders and assign to technicians C

Scale Gradual Adoption

Implement without disrupting legacy workflows or operations

Proven Results from Real Deployments

40%

Downtime Reduction

Unscheduled downtime decreased in automotive plants using generative Al

85%

Forecast Accuracy

Equipment deterioration prediction accuracy achieved by generative models

50%

False Alarm Reduction

Decrease in maintenance false alarms through intelligent pattern recognition

Cost and Efficiency Improvements

Maintenance Cost Reduction

Achieved through optimized scheduling and resource allocation

First-Time Fix Rate

Improved repair precision through accurate diagnostics

Key Benefits

Planned Repairs

Schedule maintenance during planned pauses instead of emergency shutdowns

Enhanced Reliability

Transform maintenance into strategic driver of production stability

Cost Efficiency

Achieve significant cost savings through optimized maintenance operations

Conclusion: The Zero-Downtime Factory Vision

Generative AI serves as a core enabler for achieving zero-downtime manufacturing, where predictive intelligence prevents failures before they occur and optimizes entire production ecosystems.

Future Autonomous Systems
Future systems will self-diagnose and self-repair, enhancing reliability and cost-effectiveness.

Thank You for your valued time and listening to this presentation