Printed Page 1 of 3

Paper Id: 120323

Roll No: Sub Code:KEE303

B TECH (SEM-III) THEORY EXAMINATION 2019-20 BASIC SIGNALS & SYSTEMS

Time: 3 Hours Total Marks: 100

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1. Attempt all questions in brief.

 $2 \times 10 = 20$

Qno.	Question	Marks	С
			О
a.	Define signal. What are various types of signals?	2	1
b.	Differentiate between Invertible and Non-Invertible system.	2	1
c.	State and explain sampling theorem.	2	2
d.	State and prove time shifting property of Fourier Series.	2	2
e.	Deduce inverse laplace transform of 1/s(s+4).	2	3
f.	Drive Laplace transform of sinωt.	2	3
g.	What is the significance of state variable?	2	4
h.	What is the condition for the stability of a system?	2	4
i.	Drive time reversal property of z-transform.	2	5
j.	Find the z transform of $f(nT) = e^{-anT}$; $a>0$, $n \ge 0$	2	5

SECTION B

2. Attempt any *three* of the following: 10X3=30

Question	Marks	СО
find even and odd component of the following signals	10	1
(i) $x(t) = \cos t + \sin t + \cos t \sin t$		
(ii) $x(n) = \{1,2,1,4,5,0,3\}$		
7		
Obtain the trigonometric Fourier series for the half wave rectified sine	10	2
wave.		
Calculate the Laplace transform for the function $F(t) = e^{-at}$ sinhbt.	10	3
Obtain the state model for the electric network shown in figure. Select	10	4
i _L and Vc as state variables.		
R L		
+ VR - + VL -		
ys +		
· · · · · · · · · · · · · · · · · · ·		
State and prove the time delay theorem and Parsavel's theorem of Z-	10	5
transform.		
	find even and odd component of the following signals (i) $x(t) = \cos t + \sin t + \cos t \sin t$ (ii) $x(n) = \{1,2,1,4,5,0,3\}$ Obtain the trigonometric Fourier series for the half wave rectified sine wave. Calculate the Laplace transform for the function $F(t) = e^{-at} \sinh t$. Obtain the state model for the electric network shown in figure. Select i _L and Vc as state variables.	find even and odd component of the following signals (i) x(t)= cost + sint + cost sint (ii) x(n) = {1,2,1,4,5,0,3} Obtain the trigonometric Fourier series for the half wave rectified sine wave. Calculate the Laplace transform for the function F(t) = e ^{-at} sinhbt. Obtain the state model for the electric network shown in figure. Select i _L and Vc as state variables. State and prove the time delay theorem and Parsavel's theorem of Z- 10

Paper Id:

120323

Roll No:							
Kuli Mu.							

SECTION C

3. Attempt any *one* part of the following:

10X1=10

Qno.	Question	Marks	CO
a.	Sketch the function	10	1
	(i) $x(t)=u(t)+2u(t)+3u(t-4)-u(t-5)$		
	(ii) $x(t) = r(t+1)-r(t)+r(t-2)$		
b.	Obtain F-V and F-I analogous system of mechanical system shown in	10	1
	figure.		
	k F		
	M 0000 4		

4. Attempt any *one* part of the following:

Qno.	Question	Marks	СО
a.	Explain the trigonometric and exponential form of Fourier series representation of periodic signal. Find the Fourier transform of given signal shown in fig.	10	2
b.	State and prove duality property of Fourier transform. Find the inverse fourier transform of, $X(j\omega) = \begin{cases} 2\cos\omega, & \omega < \pi \\ 0, & \omega > \pi \end{cases}$	10	2

5. Attempt any *one* part of the following:

Qno.	Question	Marks	CO
a.	For a transfer function H (s) = $(s+10)/(s^2 + 3s + 2)$. Find the response	10	3
	due to input $x(t) = \sin 2(t) u(t)$.		
b.	Find the inverse Laplace transform of given function by using	10	3
	convolution theorem (i) $x(s) = 1/(s^2+a^2)^2$ (ii) $x(s) = s/(s+1)(s+2)$		

6. Attempt any *one* part of the following:

	4
	4
))

7. Attempt any *one* part of the following:

10X1	1=10
I UZ N	1 10

	recempt any one part of the following.				
Qno.	Question	Marks	CO		
a.	State and prove time shifting property of Z-transform. Also find the inverse Z-transform of given function using convolution theorem. $x_1(z) = \frac{1}{1 - az^{-1}}, ROC: [z] > [a]$ $x_2(z) = \frac{1}{1 - z^{-1}}, ROC: [z] > [1]$	10	5		
b.	For the discrete system described by the difference equation $y(n) = 0$. $6y(n-1)-0.08y(n-2)+x(n)$. Determine: (i)The unit sample response sequence, $h(n)$, (ii)The step response.	10	5		