Summary of previous lecture

- Quantum entanglement
 - Typical example: $|\psi^{-}\rangle = [|H\rangle_{A}|V\rangle_{B} |V\rangle_{A}|H\rangle_{B}]/\sqrt{2}$
 - Can we implement communication faster than the speed of light by using EPR pair (i.e. Bell basis)? NO!!!
 - Schrödinger's cat state
- Quantum teleportation
 - An arbitrary quantum state can be teleported by using an entangled state
 - No violation of no-cloning theorem
- Reversible gate
 - Unitary gate is reversible
 - Example: Toffoli gate
- Quantum parallelism
 - A superposition of all the possible combinations of input bits can be used as an input to a quantum circuit

$$\begin{array}{ccc}
& \frac{1}{\sqrt{2^n}} \sum_{x=0}^{2^n - 1} |x\rangle & |0\rangle \\
& & |0\rangle \\$$

Deutsch's Algorithm I

- Section 1.4.3
- Assumption: $f(x): \{0,1\} \rightarrow \{0,1\}$, i.e. the result of f(x) is either 0 or 1 depending on the input value x, but we don't know the actual value of f(0) and f(1). Also, calculation of f(x) takes a long time, so we want to minimize the number of f(x) calculation.
- Challenge: can we decide whether the value of f(0) and f(1) are the same (f(0) = f(1)) or different $(f(0) \neq f(1))$ only through a single calculation?
- Answer: Yes, if we use the quantum superposition of the input state and quantum interference
- Assume that we are given the following quantum circuit U_f that accepts two input values (x, y) and produce two output values $(x, y \oplus f(x))$. Here, \oplus means modulo 2 addition.

Deutsch's Algorithm II

- For input $|x\rangle \left[\frac{|0\rangle |1\rangle}{\sqrt{2}}\right]$, we can generalize the result of U_f operation.
 - When f(x) = 0, $\frac{|x,0+f(x)\rangle |x,1+f(x)\rangle}{\sqrt{2}} = \frac{|x,0\rangle |x,1\rangle}{\sqrt{2}} = |x\rangle \left[\frac{|0\rangle |1\rangle}{\sqrt{2}}\right]$
 - When f(x) = 1, $\frac{|x,0+f(x)\rangle |x,1+f(x)\rangle}{\sqrt{2}} = \frac{|x,1\rangle |x,0\rangle}{\sqrt{2}} = |x\rangle \left[\frac{|1\rangle |0\rangle}{\sqrt{2}}\right]$
 - Therefore, for input state $|x\rangle \left[\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right]$, the output is $(-1)^{f(x)}|x\rangle \left[\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right]$
- For $\left[\frac{|0\rangle+|1\rangle}{\sqrt{2}}\right]\left[\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right] = \frac{|0\rangle}{\sqrt{2}}\left[\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right] + \frac{|1\rangle}{\sqrt{2}}\left[\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right]$,
 - $\frac{(-1)^{f(0)}|0\rangle}{\sqrt{2}} \left[\frac{|0\rangle |1\rangle}{\sqrt{2}} \right] + \frac{(-1)^{f(1)}|1\rangle}{\sqrt{2}} \left[\frac{|0\rangle |1\rangle}{\sqrt{2}} \right] = (-1)^{f(0)} \left[\frac{|0\rangle + (-1)^{f(1) f(0)}|1\rangle}{\sqrt{2}} \right] \left[\frac{|0\rangle |1\rangle}{\sqrt{2}} \right]$
- In quantum mechanics, the global phase cannot be measured, so $(-1)^{f(0)}$ can be omitted. Therefore, depending on whether the values of f(0) and f(1) are the same, the result becomes:
 - When f(0) = f(1), $\left[\frac{|0\rangle + |1\rangle}{\sqrt{2}}\right] \left[\frac{|0\rangle |1\rangle}{\sqrt{2}}\right]$
 - When $f(0) \neq f(1)$, $\left[\frac{|0\rangle |1\rangle}{\sqrt{2}}\right] \left[\frac{|0\rangle |1\rangle}{\sqrt{2}}\right]$

Deutsch's Algorithm III

$$|0\rangle - H - x - x - H - x$$

$$|1\rangle - H - y - y \oplus f(x) - 1$$

$$|\psi_0\rangle - |\psi_1\rangle - |\psi_2\rangle - |\psi_3\rangle$$

•
$$|\psi_0\rangle = |01\rangle$$

•
$$|\psi_1\rangle = \left[\frac{|0\rangle + |1\rangle}{\sqrt{2}}\right] \left[\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right]$$

$$|\psi_2\rangle = \begin{cases} \left[\frac{|0\rangle + |1\rangle}{\sqrt{2}}\right] \left[\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right] & \text{if } f(0) = f(1) \\ \left[\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right] \left[\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right] & \text{if } f(0) \neq f(1) \end{cases}$$

$$|\psi_3\rangle = \begin{cases} |0\rangle \left[\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right] & \text{if } f(0) = f(1) \\ |1\rangle \left[\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right] & \text{if } f(0) \neq f(1) \end{cases}$$

Therefore we can decide whether f(0) = f(1) or not only by a single calculation.

Recall the property of Hadamard gate

$$H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}, H^2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$|0\rangle \rightarrow H \rightarrow \frac{|0\rangle + |1\rangle}{\sqrt{2}} \rightarrow H \rightarrow |0\rangle$$

$$|1\rangle \rightarrow H \rightarrow \frac{|0\rangle - |1\rangle}{\sqrt{2}} \rightarrow H \rightarrow |1\rangle$$

Deutsch-Jozsa Algorithm

- Please read section 1.4.4
- Especially check that $H^{\otimes n}|x\rangle = \sum_{z} (-1)^{x \cdot z} |z\rangle / \sqrt{2^n}$

Reversible gates

- Section 3.2.5 (pp.156~160)
- Fredkin gate

	npu	ıt	Output					
C	Α	В	C'	A'	B'			
0	0	0	0	0	0			
0	0	1	0	0	1			
0	1	0	0	1	0			
0	1	1	0	1	1			
1	0	0	1	0	0			
1	0	1	1	1	0			
1	1	0	1	0	1			
1	1	1	1	1	1			

Similar to Toffoli gate, an arbitrary classical circuit can be simulated by reversible Fredkin circuits.

Reminder for Toffoli gate

	1pu	t	Output				
a	b	С	a'	b'	C [']		
0	0	0	0	0	0		
0	0	1	0	0	1		
0	1	0	0	1	0		
0	1	1	0	1	1		
1	0	0	1	0	0		
1	0	1	1	0	1		
1	1	0	1	1	1		
1	1	1	1	1	0		

Overhead of reversible gates

- When implementing f(x) function using quantum gates, auxiliary (ancilla) qubit and/or garbage bits naturally occur with reversible gates.
 - For example, AND gate with Fredkin gate: $(A, B, 0) \rightarrow (A, \overline{A}B, AB)$

 The numbers of auxiliary qubits and garbage qubits increase as the number of gates increases.

Overhead of reversible gates

 More serious problem is that the garbage qubit gets entangled with other results and accidental measurement of garbage qubit will destroy the superposition

$$\begin{array}{l} \square \quad \frac{|0\rangle_{1}+|1\rangle_{1}}{\sqrt{2}} \otimes |1\rangle_{2} \otimes |0\rangle_{3} \\ = \frac{1}{\sqrt{2}}(|0\rangle_{1} \otimes |1\rangle_{2} \otimes |0\rangle_{3} + |1\rangle_{1} \otimes |1\rangle_{2} \otimes |0\rangle_{3}) \\ \xrightarrow{Fredkin\ gate} \frac{1}{\sqrt{2}}(|0\rangle_{1} \otimes |1\rangle_{2} \otimes |0\rangle_{3} + |1\rangle_{1} \otimes |0\rangle_{2} \otimes |1\rangle_{3}) \end{array}$$

 Measurement of qubit 2 will collapse the above superposed states.

Un-computation I

- Can we recycle auxiliary qubits and un-entangle the garbage qubits?
 - Generally $(x,a) \to (f(x),g(x))$
 - By using NOT gates to the auxiliary qubits, we can generalize that all the auxiliary qubits starts in 0's: $(x,0) \rightarrow (f(x),g(x))$
 - Make a copy of input x using C-NOT before the calculation of f(x): $(x,0,0) \rightarrow (x,f(x),g(x))$

Un-computation II

■ If we need to calculate $(x,y) \rightarrow (x,y \oplus f(x))$, we can recover all the auxiliary qubits back to its initial state after the calculation:

$$(x,0,0,y) \to (x,f(x),g(x),y) \to (x,f(x),g(x),y \oplus f(x))$$

$$\xrightarrow{Uncompute} (x,0,0,y \oplus f(x))$$

$$0 \xrightarrow{U} U \xrightarrow{g(x)} U^{\dagger} 0$$

$$0 \xrightarrow{U} U \xrightarrow{g(x)} U \xrightarrow{g(x)} 0$$

$$y \oplus f(x)$$

양자 컴퓨터를 이용한 소인수 분해

- 15의 소인수 분해 예
 - 소인수 분해하고자 하는 수(15)보다 작고 공통 인수가 없는 임의 의 수를 선택
 - 예) a=7
 - □ 0~255 사이의 모든 x에 대하여 a^x (mod 15)를 계산후 그 결과값 들의 주기를 찾음
 - Ex)

7°	7 ¹	7 ²	7 ³	74	7 ⁵	7 ⁶	77	7 ⁸	7 ⁹	710	711	712	
1	7	4	13	1	7	4	13	1	7	4	13	1	

- $7^4 = 1 \pmod{15} = 7^4 1 = (7^2 1)(7^2 + 1) = N * 15$
- $\gcd(7^2 1, 15) = 3, \gcd(7^2 + 1, 15) = 5$

