Particle spectrograph

Wave operator and propagator

Source constraints		
SO(3) irreps	Fundamental fields	Multiplicities
$\tau_{0+}^{\#2} == 0$	$\partial_{\beta}\partial_{\alpha}t^{\alpha\beta}==0$	1
$\tau_{0+}^{\#1} - 2 i k \sigma_{0+}^{\#1} == 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} == \partial_{\beta}\partial^{\beta}\tau^{\alpha}_{\alpha} + 2\partial_{\chi}\partial^{\chi}\partial_{\beta}\sigma^{\alpha\beta}_{\alpha}$	1
$\tau_{1}^{\#2}{}^{\alpha} + 2ik \sigma_{1}^{\#2}{}^{\alpha} = 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\alpha\beta} + 2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial_{\beta}\sigma^{\alpha\beta\chi}$	e e
$\tau_{1}^{\#1}{}^{\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\beta\alpha}$	3
$\tau_{1+}^{\#1}\alpha\beta + ik \ \sigma_{1+}^{\#2}\alpha\beta == 0$	$\partial_{\chi}\partial^{\alpha}\tau^{\beta\chi} + \partial_{\chi}\partial^{\beta}\tau^{\chi\alpha} + \partial_{\chi}\partial^{\chi}\tau^{\alpha\beta} +$	3
	$2 \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\alpha \beta \chi} = =$	
	$\partial_{\chi}\partial^{\alpha} \tau^{\chi\beta} + \partial_{\chi}\partial^{\beta} \tau^{\alpha\chi} +$	
	$\partial_{\chi}\partial^{\chi}\tau^{etalpha}+2\partial_{\sigma}\partial_{\chi}\partial^{eta}\sigma^{lpha\chi\delta}$	
$\tau_{2+}^{\#1}\alpha\beta - 2ik \sigma_{2+}^{\#1}\alpha\beta == 0$	$t_{2+}^{\#1}\alpha\beta - 2ik \sigma_{2+}^{\#1}\alpha\beta == 0 - i(4 \partial_{\delta}\partial_{\chi}\partial^{\beta}\partial^{\alpha}\tau^{\chi\delta} + 2 \partial_{\delta}\partial^{\delta}\partial^{\beta}\sigma^{\tau\chi}_{\chi} -$	5
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau^{\beta \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau^{\chi \beta} -$	
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\alpha \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\chi \alpha} +$	
	$3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau^{\alpha\beta} + 3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau^{\beta\alpha} +$	
	4 i k^{X} $\partial_{\epsilon}\partial_{\chi}\partial^{eta}\partial^{lpha}\sigma^{\deltaarepsilon}_{\delta}$ -	
	$6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \delta \epsilon}$ -	
	$6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\alpha \delta \epsilon} +$	
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \tau^{\chi\delta} +$	
	$6 i k^{\chi} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\alpha \delta \beta} +$	
	6 i k^{χ} $\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial_{\chi}\sigma^{eta\deltalpha}$ -	
	$2 \eta^{lphaeta} \partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\delta} au_{\chi}^{\chi} .$	
	$4 i \eta^{\alpha\beta} k^X \partial_\phi \partial^\phi \partial_\epsilon \partial_\chi \sigma^{\delta\epsilon}{}_\delta) == 0$	
Total constraints/gauge generators:	ge generators:	16

Quadratic (free) action								
S ==								
$\iiint \int (\frac{1}{6} (6t_1 \ \omega_{\alpha}^{\alpha i} \ \omega_{i\theta}^{\theta} + 6 \ f^{\alpha\beta} \ \tau_{\alpha\beta} + 6 \ \omega^{\alpha\beta\chi} \ \sigma_{\alpha\beta\chi} - 12t_1 \ \omega_{\alpha\theta}^{\theta} \ \partial_i f^{\alpha i} + 12t_1$								
$\omega_{,\ \theta}^{\ \theta}\partial'f^{\alpha}_{\ \alpha}$ - 6 $t_1\partial_{i}f^{\theta}_{\ \theta}\partial'f^{\alpha}_{\ \alpha}$ - 12 $r_1\partial_{\beta}\omega_{,\ \theta}^{\ \theta}\partial'\omega^{\alpha\beta}_{\ \alpha}$ +								
$12 r_1 \partial_i \omega_{\beta \theta}^{\theta} \partial^i \omega^{\alpha \beta}_{\alpha} - 6 t_1 \partial_i f^{\alpha i} \partial_{\theta} f_{\alpha}^{\theta} +$								
$12 t_1 \partial' f^{\alpha}_{\alpha} \partial_{\theta} f_{i}^{\theta} + 12 r_1 \partial_{\alpha} \omega^{\alpha \beta i} \partial_{\theta} \omega_{\beta i}^{\theta} -$								
$24 r_1 \partial' \omega^{\alpha\beta}_{\alpha} \partial_{\theta} \omega_{\beta}^{\theta} - 12 r_1 \partial_{\alpha} \omega^{\alpha\beta} \partial_{\theta} \omega_{\beta}^{\theta} +$								
$24 r_1 \partial' \omega^{\alpha\beta}_{\alpha} \partial_{\theta} \omega_{i\beta}^{\theta} + 4 t_1 \omega_{i\theta\alpha} \partial^{\theta} f^{\alpha i} + 4 t_2 \omega_{i\theta\alpha} \partial^{\theta} f^{\alpha i} -$								
$4t_1\partial_\alpha f_{_{l\theta}}\partial^\theta f^{\alpha l}+2t_2\partial_\alpha f_{_{l\theta}}\partial^\theta f^{\alpha l}-4t_1\partial_\alpha f_{_{\theta l}}\partial^\theta f^{\alpha l}-$								
$t_2 \partial_{\alpha} f_{\theta_i} \partial^{\theta} f^{\alpha_i} + 2 t_1 \partial_{i} f_{\alpha \theta} \partial^{\theta} f^{\alpha_i} - t_2 \partial_{i} f_{\alpha \theta} \partial^{\theta} f^{\alpha_i} +$								
$4 t_1 \partial_{\theta} f_{\alpha i} \partial^{\theta} f^{\alpha i} + t_2 \partial_{\theta} f_{\alpha i} \partial^{\theta} f^{\alpha i} + 2 t_1 \partial_{\theta} f_{i \alpha} \partial^{\theta} f^{\alpha i} -$								
$t_2 \partial_{\theta} f_{i\alpha} \partial^{\theta} f^{\alpha i} + 2 (t_1 + t_2) \omega_{\alpha i \theta} (\omega^{\alpha i \theta} + 2 \partial^{\theta} f^{\alpha i}) +$								
$2 \omega_{\alpha\theta i} ((t_1 - 2t_2) \omega^{\alpha i\theta} + 2(2t_1 - t_2) \partial^{\theta} f^{\alpha i}) -$								
$8 r_1 \partial_{\beta} \omega_{\alpha_{l}\theta} \partial^{\theta} \omega^{\alpha\beta_{l}} + 8 r_2 \partial_{\beta} \omega_{\alpha_{l}\theta} \partial^{\theta} \omega^{\alpha\beta_{l}} +$								
$4r_1\partial_\beta\omega_{\alpha\theta_I}\partial^\theta\omega^{\alpha\beta_I}-4r_2\partial_\beta\omega_{\alpha\theta_I}\partial^\theta\omega^{\alpha\beta_I}-16r_1\partial_\beta\omega_{I\theta\alpha}$								
$\partial^{\theta}\omega^{\alpha\beta\prime} + 4 r_2 \partial_{\beta}\omega_{\prime\theta\alpha}\partial^{\theta}\omega^{\alpha\beta\prime} - 4 r_1 \partial_{\prime}\omega_{\alpha\beta\theta}\partial^{\theta}\omega^{\alpha\beta\prime} -$								
$2 r_2 \partial_i \omega_{\alpha\beta\theta} \partial^\theta \omega^{\alpha\beta i} + 4 r_1 \partial_\theta \omega_{\alpha\beta i} \partial^\theta \omega^{\alpha\beta i} +$								
$2 r_2 \partial_\theta \omega_{\alpha\beta i} \partial^\theta \omega^{\alpha\beta i} + 4 r_1 \partial_\theta \omega_{\alpha i\beta} \partial^\theta \omega^{\alpha\beta i} -$								
$4r_2\partial_{\theta}\omega_{lpha_ieta}\partial^{\theta}\omega^{lphaeta_i}))[t,x,y,z]dzdydxdt$								

	ī			,					1
_	$\tau_{1^{-}\alpha}^{\#2}$	0	0	0	$\frac{2ik}{t_1+2k^2t_1}$	$\frac{i\sqrt{2}}{(t_1 + 2k^2t_1)^2}$	0	$\frac{2 k^2 (2 k^2 r_1 + t_1)}{(t_1 + 2 k^2 t_1)^2}$	
	$\tau_{1}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0	,
	$\sigma_{1^-\alpha}^{\#2}$	0	0	0	$\frac{\sqrt{2}}{t_1 + 2 k^2 t_1}$	$\frac{\sqrt{2}}{t_1 + 2k^2t_1}$ $\frac{2k^2r_1 + t_1}{(t_1 + 2k^2t_1)^2}$		$-\frac{i\sqrt{2}k(2k^2r_1+t_1)}{(t_1+2k^2t_1)^2}$	$(_{,,+}^{\#2} - f_{,-}^{\#1} - f_{,-}^{\#2})$
	$\sigma_{1}^{\#1}{}_{\alpha}$	0	0	0	0	$\frac{\sqrt{2}}{t_1 + 2k^2t_1}$	0	$-\frac{2ik}{t_1+2k^2t_1}$	$(\omega_1^{\#1})$
	${\mathfrak l}_{1}^{\#1}_{\alpha\beta}$	$\frac{i\sqrt{2}k(t_1-2t_2)}{3(1+k^2)t_1t_2}$	$\frac{i k (t_1 + 4t_2)}{3 (1 + k^2)^2 t_1 t_2}$	$\frac{k^2 (t_1 + 4t_2)}{3 (1 + k^2)^2 t_1 t_2}$	0	0	0	0	$f_{i+\ldots}^{\#1}$
	$\sigma_{1}^{\#2}_{\alpha\beta}$	$\frac{\sqrt{2} (t_1 - 2t_2)}{3 (1 + k^2) t_1 t_2}$	$\frac{t_1 + 4t_2}{3(1 + k^2)^2 t_1 t_2}$	$-\frac{i k (t_1 + 4 t_2)}{3 (1 + k^2)^2 t_1 t_2}$	0	0	0	0	ω#2 ω*+
	$\sigma_{1}^{\#1}{}_{\alpha\beta}$	$\frac{2(t_1+t_2)}{3t_1t_2}$	$\frac{\sqrt{2} (t_1 - 2t_2)}{3 (1 + k^2) t_1 t_2}$	$-\frac{i\sqrt{2}k(t_1-2t_2)}{3(1+k^2)t_1t_2}$	0	0	0	0	$\omega_{i+\ldots}^{\#1}$
		$\sigma_{1}^{\#1} + \alpha \beta$	$\sigma_{1}^{#2} + \alpha \beta$	$\tau_1^{\#1} + \alpha \beta$	$\sigma_{1}^{\#1} +^{lpha}$	$\sigma_{1}^{\#2} +^{lpha}$	$\tau_{1^-}^{\#1} +^\alpha$	$\tau_1^{\#2} +^{\alpha}$	

0	0	$i k t_1$	0	0	0							$\omega_{2^{-}}^{\#1} \alpha eta_{\chi}$	0	0	$\frac{1}{2} + \frac{61}{2}$
0	0	0	0	0	0										$k^2 r_1$
0	0	$\frac{t_1}{\sqrt{2}}$	0	0	0							$f_2^{#1}$	$-\frac{ikt_1}{\sqrt{2}}$	$k^2 t_1$	0
0	0	$-k^2 r_1 - \frac{t_1}{2}$	$\frac{t_1}{\sqrt{2}}$	0	$-ar{u}kt_1$							$\omega_{2}^{\#1}{}_{\alpha\beta} \ f_{2}^{\#1}{}_{\alpha\beta}$	$-\alpha\beta$ $\frac{t_1}{2}$	$-\alpha\beta$ $\frac{ikt_1}{\sqrt{2}}$	0 χ _{βχ}
$+t_{2})$	(t_1+t_2)						$\omega_{0}^{\#1}$	$f_{0^{+}}^{#1}$	$f_{0}^{#2}$		$\omega_{0}^{\sharp 1}$		$\omega_2^{\#1} +^{lphaeta}$	$f_2^{#1} + \alpha^{\beta}$	$\omega_{2^{ ext{-}}}^{#1} +^{lphaeta\chi}$
$\frac{1}{3}$ \bar{l} k $(t_1 + t_2)$	k^2 (t_1	0	0	0	0	$\omega_{0}^{#1}$ †	+	$\frac{i\sqrt{2}kt_1}{2}$	0		0	×			
-1 m	3 1					$f_{0+}^{#1}$ †	$-i\sqrt{2} kt_1$	$-2 k^2 t_1$	0		0	$\sigma_{2}^{\#1}$ $_{\alpha eta \chi}$	0	0	$\frac{2}{2k^2r_1+t_1}$
.21	$i k (t_1 + t_2)$					$f_{0+}^{#2}$ †	0	0	0	12	0	0	-	1	
$\frac{t_1+t_2}{3}$	ī k (t _{.]}	0	0	0	0	$\omega_0^{\sharp 1}$ †	0	0 "1	0		$r_2 + t_2$	$\tau_{2}^{\#1}$	$2i\sqrt{2}k$ $(1+2k^2)^2t_1$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0
	- <u>1</u>						$\sigma_{0}^{\#1}$	$ au_{0}^{\#1}$.#2 0 ⁺	$\sigma_0^{\#1}$	τ ₂ +	2 <i>i</i> (1+2	, 4, (1+2 k)	
2 <u>7</u> 2	$\frac{2t_2}{2}$					$\sigma_{0^{+}}^{\#1}$ †	$-\frac{1}{(1+2k^2)^2t_1}$	$\frac{\sqrt{2} k}{(1+2k^2)^2}$	$\frac{}{t_1}$	0	0	8	- t ₁		
$-\frac{t_1-2t_2}{3\sqrt{2}}$	$\frac{i k (t_1 - 2t_2)}{3 \sqrt{2}}$	0	0	0	0	$\tau_{0}^{\#1}$ †	$-\frac{i\sqrt{2} k}{(1+2k^2)^2 t_1}$	$-\frac{2k^2}{(1+2k^2)^2}$	$\frac{1}{t_1}$	0	0	$\sigma_{2}^{\#1}{}_{lphaeta}$	$\frac{2}{(1+2k^2)^2t_1}$	$2i\sqrt{2}k$ $(1+2k^2)^2t_1$	0
$+^{\alpha\beta}$	$+^{\alpha\beta}$. + _a	+ _α	$f_{1}^{\#1} \dagger^{\alpha}$	$f_{1}^{\#2} +^{\alpha}$	$\tau_{0}^{\#2}$ †	0	0		0	0		$-\alpha\beta$	μαβ	$\alpha eta \chi$
$\omega_1^{#2} + \alpha \beta$	$f_1^{#1} + \alpha^{\beta}$	$\omega_{1^{\text{-}}}^{\#_1} \dagger^{\alpha}$	$\omega_1^{\#2} +^{lpha}$	$f_1^{\#1}$	$f_{1}^{\#2}$	$\sigma_0^{\#1}$ †	0	0		0	$\frac{1}{k^2 r_2 + t_2}$		$\sigma_{2}^{\#1} + \alpha^{\beta}$	$\tau_{2}^{\#1} + \alpha \beta$	$\sigma_{2}^{#1} +^{\alpha eta \chi}$
									•						J

Massive and massless spectra

Massive particle									
Pole residue:	$-\frac{1}{r_2} > 0$								
Polarisations:	1								
Square mass:	$-\frac{t_2}{r_2} > 0$								
Spin:	0								
Parity:	Odd								

(No massless particles)

Unitarity conditions

 $r_1 < 0 \&\& r_2 < 0 \&\& t_1 > 0 \&\& t_2 > 0$