CS711008Z Algorithm Design and Analysis

Lecture 7. Basic algorithm design technique: Greedy

Dongbo Bu

Institute of Computing Technology Chinese Academy of Sciences, Beijing, China

Outline

- Greedy is usually used to solve an optimisation problem with a solution form $X = [x_1, x_2, ..., x_n]$, $(x_i \in S)$.
- Connection with dynamic programming: SHORTESTPATH problem and INTERVALSCHEDULING problem.
- Elements of greedy technique.
- Other examples: HUFFMAN CODE, SPANNING TREE.
- Theoretical foundation of greedy technique: Matroid and submodular functions.
- Introduction to important data structures: BINOMIAL HEAP, FIBONACCI HEAP, UNION-FIND.

Greedy technique

- Greedy is usually used to solve an optimization problem whose solving process can be described as a multiple-stage decision process, e.g., solution has the form $X=[x_1,x_2,...,x_n]$, $x_i\in S$.
- For this type of problems, we can construct a tree to enumerate all possible decisions.
- of Greedy technique can be treated as finding a set of paths from root (null solution) to a leaf node (complete solution).

 At each intermediate node, greedy rule is applied to select one of its children nodes.

The first example: Two versions of IntervalScheduling problem

INTERVALSCHEDULING problem

- Practical problem:
 - a class room is requested by several courses;
 - the *i*-th course A_i starts from S_i and ends at F_i .
- Objective: to meet as many students as possible.

An instance

Example:

Solutions:
$$S_1=\{A_1,A_3,A_5,A_8\}$$
 | $S_2=\{A_6,A_9\}$
Benefits: $B(S_1)=1+4+3+3=11$ | $B(S_2)=2+5=7$

INTERVALSCHEDULING problem: version 1

Formulation:

INPUT:

n activities $A = \{A_1, A_2, ..., A_n\}$ that wish to use a resource. Each activity A_i uses the resource during interval $[S_i, F_i)$. The selection of activity A_i yields a benefit of W_i .

OUTPUT:

To select a collection of **compatible** activities to **maximize benefits**.

- Here, A_i and A_j are **compatible** if there is no overlap between the corresponding intervals $[S_i, F_i)$ and $[S_j, F_j)$, i.e. the resource cannot be used by more than one activities at a time.
- It is assumed that the activities have been sorted according to the finishing time, i.e. $F_i \leq F_j$ for any i < j.

Key observation I

- It is not easy to solve a problem with n activities directly. Let's see whether it can be reduced into smaller sub-problems.
- Solution: a subset of activities. Imagine the solving process as a series of decisions; at each decision step, we choose an activity to use the resource.
- Suppose we have already worked out the optimal solution. Consider the first decision in the optimal solution, i.e. whether A_n is selected or not. There are 2 options:
 - ① Select activity A_n : the selection leads to a **smaller** subproblem, namely selecting from the activities ending before S_n .

Key observation II

② Abandon activity A_n : then it suffices to solve another smaller subproblem: to select activities from $A_1, A_2, ..., A_{n-1}$.

Key observation cont'd

- Summarizing the two cases, we can design the general form of subproblems as: selecting a collection of activities from $A_1,A_2,...,A_i$ to maximize benefits.
- Denote the optimal solution value as OPT(i).
- Optimal substructure property: ("cut-and-paste" argument)

$$OPT(i) = \max \left\{ \frac{OPT(pre(i)) + W_i}{OPT(i-1)} \right\}$$

Here, pre(i) denotes the largest index of the activities ending before S_i .

Dynamic programming algorithm

```
Recursive_DP(i)
```

```
Require: All A_i have been sorted in the increasing order of F_i.
1: if i < 0 then
2: return 0:
3: end if
4: if i == 1 then
```

- 5: **return** W_1 :
- 6: end if
 - pre(i).
- 7: Determine the largest index of the activities ending before S_i , denoted as
- 8: $m = \max \begin{cases} \text{RECURSIVE_DP}(pre(i)) + W_i \\ \text{RECURSIVE_DP}(i-1) \end{cases}$
- 9: **return** *m*:

Note:

- The original problem can be solved by calling RECURSIVE_DP(n).
- It needs $O(n \log n)$ to sort the activities and determine pre(.), and the dynamic programming needs O(n) time.
- Thus, time complexity: $O(n \log n)$ 11 / 141

Multiple-stage decision process

• We have to enumerate the two options $x_1 = 0$ and $x_1 = 1$, as we have no idea which one is optimal.

INTERVALSCHEDULING problem: version 2

Let's investigate a special case

百门谋以有17同营、今安排的深刻多到好。

A special case of IntervalScheduling problem with all weights $w_i = 1$.

INTERVALSCHEDULING problem: version 2

Formulation:

INPUT:

n activities $A=\{A_1,A_2,...,A_n\}$ that wish to use a resource. Each activity A_i uses the resource during interval $[S_i,F_i).$

OUTPUT:

To select as many **compatible activities** as possible.

Greedy selection property

Another key observation: Greedy selection I

- Since this is just a special case, the optimal substructure property still holds.
- Besides the optimal substructure property, the special weight setting leads to "greedy selection" property.

Theorem

Suppose A_1 is the activity with the earliest ending time. A_1 is used in an optimal solution.

Another key observation: Greedy selection II

Proof.

(exchange argument)

- Suppose we have an optimal solution $O = \{A_{i1}, A_{i2}, ..., A_{iT}\}$ but $A_{i1} \neq A_m$.
- A_1 ends earlier than A_{i1} .
- A_1 is compatible with $A_{i2},...,A_{iT}$. (Why?)
- Construct a new subset $O' = O \{A_{i1}\} \cup \{A_1\}$
- $\bullet \ O' \ \text{is also an optimal solution since} \ |O'| = |O|.$

18 / 141

Multiple-stage decision process

• Greedy selection rule: $x_1 = 1$ is the optimal option. Thus it is unnecessary to enumerate the two options $x_1 = 0$ and $x_1 = 1$,.

Simplifying the DP algorithm into a greedy algorithm

Interval_Scheduling_Greedy(n)

Require: All A_i have been sorted in the increasing order of F_i .

- 1: $previous_finish_time = -\infty$;
- 2: for i = 1 to n do
- 3: if $S_i \geq previous_finish_time$ then
- 4: Select activity A_i ;
- 5: $previous_finish_time = F_i;$
- 6: end if
- 7: end for

Time complexity: $O(n \log n)$ (sorting activities in the increasing order of finish time).

An example 1

Step 1:

Step 2:

An example II

Step 3:

Step 4:

Question: does the greedy algorithm work in general cases?

Why greedy strategy doesn't work for the general INTERVALSCHEDULING problem?

```
\label{eq:conditions:operator} \begin{split} \text{Solutions:} \quad &Greedy: \{A_1,A_3,A_5,A_8\} \quad | \quad OPT: \ \{A_2,A_4,A_5,A_9\} \\ \text{Benefits:} \quad & 1+4+3+3=11 \qquad | \quad 5+2+3+5=15 \end{split}
```

- Reason: Greedy choice property doesn't hold.
- Note: although the problem is the same, a slight change of weights leads to significant affects on algorithm design.

Elements of greedy algorithm

- In general, greedy algorithms have five components:
 - A candidate set, from which a solution is created
 - A selection function, which chooses the best candidate to be added to the solution
 - 3 A feasibility function, that is used to determine if a candidate can be used to contribute to a solution
 - 4 An objective function, which assigns a value to a solution, or a partial solution, and
 - **5** A solution function, which will indicate when we have discovered a complete solution

DP versus Greedy

Similarities:

- 都用来解代化问题。 Both dynamic programming and greedy techniques are typically applied to optimization problems.
- **Optimal substructure**: Both dynamic programming and greedy techniques exploit the optimal substructure property.
- **3** Beneath every greedy algorithm, there is almost always a more cumbersome dynamic programming solution

DP versus Greedy cont'd

Differences: 动规定和革行有的为关键。 A dynamic programming method typically enumerate all

- A dynamic programming method typically enumerate all possible options at a decision step, and the decision cannot be determined before subproblems were solved.
- In contrast, greedy algorithm does not need to enumerate all possible options—it simply make a locally optimal (greedy) decision without considering results of subproblems.

Note:

- Here, "local" means that we have already acquired part of an optimal solution, and the partial knowledge of optimal solution is sufficient to help us make a wise decision.
- Sometimes a rigorous proof is unavailable, thus extensive experimental results are needed to show the efficiency of the greedy technique.

How to design greedy method?

- 1. \$\$10000 Tinstance
- 2、使用DP产工最代解 Two strategies:
- 3. 使用 NN,榆入 Simplifyi
- to Sample和新代解, 输出每一方选准.
- Simplifying a dynamic programming method through greedy selection:
- Trial-and-error: Imagining the solution-generating process as making a sequence of choices, and trying different greedy selection rules.

Trying other greedy rules

Incorrect trial 1: earlist start rule

- Intuition: the earlier start time, the better.
- Incorrect. A negative example:

- Greedy solution: blue one. Solution value: 1.
- Optimal solution: red ones. Solution value: 2.

Incorrect trial 2: trying minimal duration rule

- Intuition: the shorter duration, the better.
- Incorrect. A negative example:

- Greedy solution: blue one. Solution value: 1.
- Optimal solution: red ones. Solution value: 2.

Incorrect trial 3: trying minimal conflicts rule

- Intuition: the less conflict activities, the better.
- Incorrect. A negative example:

- Greedy solution: blue ones. Solution value: 3.
- Optimal solution: red ones. Solution value: 4.

Revisiting $\operatorname{ShortestPath}$ problem

Revisiting SINGLE SOURCE SHORTEST PATHS problem

INPUT:

A directed graph G=< V, E>. Each edge e=< i, j> has a distance $d_{i,j}$. A single source node s, and a destination node t; **OUTPUT:**

The shortest path from s to t (Or the shortest paths from s to each node $v \in V$, or the shortest paths from each node $v \in V$ to t).

Two versions of ShortestPath problem:

- No negative cycle: Bellman-Ford dynamic programming algorithm;
- 2 No negative edge: Dijkstra greedy algorithm.

Optimal sub-structure property in version 1

Optimal sub-structure property

- Solution: a path from s to t with at most (n-1) edges. Imagine the solving process as making a series of decisions; at each decision step, we decide the subsequent node.
- Suppose we have already obtained an optimal solution O. Consider the final decision (i.e. from which we reach node t) within O. There are several possibilities for the decision:
 - node v such that $\langle v, t \rangle \in E$: then it suffices to solve a smaller subproblem, i.e. "starting from s to node v via at most (n-2) edges".
- Thus we can design the general form of sub-problems as "starting from s to a node v via at most k edges". Denote the optimal solution value as OPT(v, k).
- Optimal substructure: $\mathsf{WSWVES}(k) = \min \begin{cases} OPT(v,k-1) \\ \min_{\langle u,v \rangle \in E} \{OPT(u,k-1) + d_{u,v} \} \end{cases}$
 - Note: the first item OPT(v, k-1) is introduced here to describe "at most".
 - Time complexity: O(mn)

Bellman-Ford algorithm 1956

```
Bellman_Ford(G, s, t)
 1: for i = 0 to n do
 2: OPT[s, i] = 0;
 3: end for
 4: for any node v \in V do
 5: OPT[v, 0] = \infty;
 6: end for
 7: for k = 1 to n - 1 do
 8: for all node v (in an arbitrary order) do
     OPT[v, k] = \min \begin{cases} OPT[v, k - 1], \\ \min_{\langle u, v \rangle \in E} \{OPT[u, k - 1] + d(u, v)\} \end{cases}
      end for
10:
11: end for
12: return OPT[t, n-1];
```

An example

Greedy-selection property in version $2\,$

Greedy-selection property

• At the k-th step, let's consider a special node v^* , the nearest node from s via at most k-1 edges, i.e. $OPT(v^*, k-1) = min_v OPT(v, k-1)$.

• Consider the optimal substructure property for v^* , i.e. $OPT(v^*,k) = \min \begin{cases} OPT(v^*,k-1) \\ \min_{< u,v^*>\in E} \{OPT(u,k-1) + d_{u,v^*} \} \end{cases}$

• The above equality can be further simplified as: $OPT(v^*,k) = OPT(v^*,k-1) \\ \text{(Why? } OPT(u,k-1) \geq OPT(v^*,k-1) \text{ and } d_{u,v^*} \geq 0.\text{)}$

The meaning of $OPT(v^*, k) = OPT(v^*, k-1)$

- Intuitively v^* (in red circles) can be treated as has already been explored using at most (k-1) edges, and the distance will not change afterwards.
- ② Thus, the calculations of $OPT(v^*, k)$ (in green rectangles) are in fact redundant.
- **3** In other words, it suffices to calculate $OPT(v,k) = \min_{< u,v> \in E} \{OPT(u,k-1) + d_{u,v}\}$ for the unexplored nodes $v \neq v^*$.

41 / 141

But how to calculate OPT(v,k) for the unexplored nodes $v \notin S$? Let's see a greedy selection rule.

Theorem

Let S denote the **explored** nodes. Consider the nearest unexplored node u^* , i.e., u^* is the node u ($u \notin S$) that minimizes $d'(u) = \min_{w \in S} \{d(w) + d(w, u)\}$. Then the path $P = s \to ... \to w \to u^*$ is

Proof.

- Suppose there is another path P' from s to u^* shorter than P.
- Without loss of generality, we denote $P' = s \to ... \to x \to y \to ... \to u^*$. Here, y denotes the first node in P' leaving out of S.
- But $|P'| \ge d(s,x) + d(x,y) \ge d'(u^*)$. A contradiction.

one of the shortest paths from s to u^* with distance $d'(u^*)$.

 $S: {\sf explored} \ {\sf area}$

Key observations

① Let v^* denote the nearest node from s using at most k-1 edges. The shortest distance $d(v^*)$ will not change afterwards.

2 Let's u^* denote the nearest unexplored node. The shortest distance can be determined.

0

一一从以出发, 2, 走一号时到 活点,路径最小的

Dijkstra's algorithm [1959]

```
DIJKSTRA(G,s) total BFS
```

- 1: $S = \{s\}$; //S denotes the set of explored nodes,
- 2: d(s) = 0; //d(u) stores an upper bound of the shortest-path weight from s to u:
 - 3: for all node $v \neq s$ do 4: $d(v) = +\infty$;
 - 5: end for
 - 6: while $S \neq V$ do
 - 7: **for all** node $v \notin S$ **do**
 - $d(v) = \min_{u \in S} \{d(u) + d(u, v)\};$
 - end for Select the node v^* ($v^* \notin S$) that minimizes d(v);
 - $S = S \cup \{v^*\};$
 - 12: end while
 - Line (8-10) is called "relaxing". That is, we test whether the shortest-path to v found so far can be improved by going through u, and if so, update d(v).
 - In the case that $d_{u,v} = 1$ for any u, v pair, Dijkstra's algorithm reduces to BFS. Thus, Dijkstra's algorithm can be 45/141

Implementing Dijkstra algorithm using priority queue

```
DIJKSTRA(G, s)
 1: key(s) = 0; //key(u) stores an upper bound of the shortest-path
   weight from s to u:
 2: PQ. Insert (s):
 3: S = \{s\}; // Let S be the set of explored nodes;
 4: for all node v \neq s do
5: key(v) = +\infty
6: PQ. Insert (v) // n times
 7: end for
 8: while S \neq V do
 9: v = PQ. EXTRACTMIN(); // n times
10: S = S \cup \{v\};
11: for each w \notin S and \langle v, w \rangle \in E do
12: if key(v) + d(v, w) < key(w) then
     PQ.DECREASEKEY(w, key(v) + d(v, w)); // m times
13:
        end if
14:
15:
      end for
16: end while
Here PQ denotes a min-priority queue. (see a demo)
```

Contributions by Edsger W. Dijkstra

- The semaphore construct for coordinating multiple processors and programs.
- The concept of self-stabilization 090009 an alternative way to ensure the reliability of the system
- "A Case against the GO TO Statement", regarded as a major step towards the widespread deprecation of the GOTO statement and its effective replacement by structured control constructs, such as the while loop.

SHORTESTPATH: Bellman-Ford algorithm vs. Dijkstra algorithm

A slight change of edge weights leads to a significant change of algorithm design.

- ① No negative cycle: an optimal path from s to v has at most n-1 edges; thus the optimal solution is OPT(v,n-1). To calculate OPT(v,n-1), we appeal to the following recursion: $OPT[v,k] = \min \begin{cases} OPT[v,k-1], \\ \min_{< u,v> \in E} \{OPT[u,k-1] + d(u,v)\} \end{cases}$
- ② No negative edge: This stronger constraint on edge weights implies greedy choice property. In particular, it is not necessary to calculate OPT(v,i) for any explored node $v \in S$, and for the nearest unexplored node, its shortest distance from s is determined.

Time complexity analysis

Time complexity of DIJKSTRA algorithm

Operation	Linked	Binary	Binomial	Fibonacci	
	list	heap	heap	heap	
МакеНеар	1	1	1	1	
Insert	1	$\log n$	$\log n$	1	
ExtractMin	n	$\log n$	$\log n$	$\log n$	
DecreaseKey	1	$\log n$	$\log n$	1	
DELETE	n	$\log n$	$\log n$	$\log n$	
Union	1	n	$\log n$	1	
FINDMIN	n	1	$\log n$	1	
Dijkstra	$O(n^2)$	$O(m \log n)$	$O(m \log n)$	$O(m + n \log n)$	

DIJKSTRA algorithm: n INSERT, n EXTRACTMIN, and m DECREASEKEY.

 ${\sf Extension:} \ \ {\sf can} \ \ {\sf we} \ \ {\sf reweigh} \ \ {\sf the} \ \ {\sf edges} \ \ {\sf to} \ \ {\sf make} \ \ {\sf all} \ \ {\sf weight} \ \ {\sf positive?}$

Trial 1: increasing all edge weights by the same amount

Trial 2: increasing an edge weight according to its two ends

- Suppose each node v is associated with a number c(v). We reweigh an edge (u,v) as follows. d'(u,v) = d(u,v) + c(u) c(v)
- Note that for any path $u \leadsto v$, we have $d'(u \leadsto v) = d(u \leadsto v) + c(u) c(v)$
- ullet Advantage: the shortest path from u to v with the new weighting function is exact the same to that with the original weighting function.
- But how to define c(v) to make all edge weight positive?

Reweighting schema

- Adding a new node S, and connect S to each node v with an edge weight d(S,v)=0, $d(v,S)=\infty$
- Set c(v) as dist(S, v), the shortest distance from S to v.
- We can prove that for any node pair u and v, $d'(u,v) = d(u,v) + dist(u) dist(v) \ge 0$.

Johnson algorithm for all pairs shortest path [1977]

```
JOHNSON(G, d)
 1: Create a new node s^*:
 2: for all node v \neq s^* do
 3: d(s^*, v) = 0
 4: end for
 5: Run Bellman-Ford to calculate the shortest distance from s^* to all
   nodes:
 6: Reweighting: d'(u,v) = d(u,v) + dist(s^*,u) - dist(s^*,v)
 7: for all node u \neq s^* do
      Run Dijkstra's algorithm with the new weight d' to calculate the
      shortest paths from u:
      for all node v \neq s^* do
        dist(u, v) = dist(u, v) - dist(s^*, u) + dist(s^*, v):
      end for
11:
12: end for
Time complexity: O(mn + n^2 \log n).
```

Extension: data structures designed to speed up the Dijkstra's algorithm

Binary heap, Binomial heap, and Fibonacci heap

Figure 1: Robert W. Floyd, Jean Vuillenmin, Robert Tarjan

(See extra slides for binary heap, binomial heap and Fibonacci heap)

Huffman Code

Compressing files

- Practical problem: how to compact a file when you have the knowledge of frequency of letters?
- Example:

SYMBOL	A	В	С	D	E	
Frequency	24	12	10	8	8	
Fixed Length Code	000	001	010	011	100	E(L) = 186
Variable Length Code	00	01	10	110	111	E(L) = 140

Formulation

INPUT:

a set of symbols $S = \{s_1, s_2, ..., s_n\}$ with its appearance frequency $P = \{p_1, p_2, ..., p_n\}$;

OUTPUT:

assign each symbol with a binary code C_i to minimize the length expectation $\sum_i p_i |C_i|$.

Requirement: prefix code I

 To avoid the potential ambiguity in decoding, we require the coding to be prefix code.

Definition (Prefix coding)

A prefix coding for a symbol set S is a coding such that for any symbols $x,y\in S$, the code C(x) is not prefix of the code C(y).

- Intuition: A prefix code can be represented as a binary tree, where a leaf represents a symbol, and the path to a leaf represents the code.
- Our objective: to design an optimal tree T to minimize expected length E(T) (the size of the compressed file).

Requirement: prefix code II

Full binary tree

Theorem

An optimal binary tree should be a full tree.

Proof.

- ullet Suppose T is an optimal tree but is not full;
- ullet There is a node u with only one child v;
- Construct a new tree T', where u is replaced with v;
- $E(T') \leq E(T)$ since any child of v has a shorter code.

63 / 141

But how to construct the optimal tree? Let's describe the solving process as a multiple-stage decision process.

A top-down multiple-decision process

ullet There a total of 2^n options, which makes the dynamic programming infeasible.

Shannon-Fano coding [1949]

Top-down method:

- 1: Sorting S in the decreasing order of frequency.
- 2: Splitting S into two sets S_1 and S_2 with almost equal frequencies.
- 3: Recursively building trees for S_1 and S_2 .

An example: Step 1

Symbol	Freq- quency						
A	24	24	0	24	00		
В	12	36	0	12	01		
С	10	26	1	10	10		
D	8	16	1	16		16	110
E	8	8	1	8		8	111

An example: Step 2

Symbol	Freq- quency						
A	24	24	0	24	00		
В	12	36	0	12	01		
С	10	26	1	10	10		
D	8	16	1	16		16	110
E	8	8	1	8		8	111

An example: Step 3

Symbol	Freq- quency						
Α	24	24	0	24	00		
В	12	36	0	12	01		
С	10	26	1	10	10		
D	8	16	1	16		16	110
Е	8	8	1	8		8	111

A bottom-up multiple-decision process

• There a total of $\binom{n}{2}$ options.

Huffman code: bottom-up manner [1952]

Bottom-up method:

- 1: repeat
- 2: Merging the two lowest-frequency letters y and z into a new meta-letter yz,
- 3: Setting $P_{yz} = P_y + P_z$.
- 4: until only one label is left

Huffman code: bottom-up manner [1952]

Key Observations:

- In an optimal tree, $depth(u) \geq depth(v)$ iff $P_u \leq P_v$. (Exchange argument)
- ② There is an optimal tree, where the lowest-frequency letters Y and Z are siblings. (Why?)
 - ullet Consider a deepest node v.
 - ullet v's parent, denoted as u, should has another child, say w.
 - ullet w should also be a deepest node.
 - v and w have the lowest frequency.

Huffman code algorithm 1952

$\operatorname{Huffman}(S, P)$

- 1: **if** |S| == 2 **then**
- 2: return a tree with a root and two leaves;
- 3: end if
- 4: Extract the two lowest-frequency letters Y and Z from S;
- 5: Set $P_{YZ} = P_Y + P_Z$;
- 6: $S = S \{Y, Z\} \cup \{YZ\};$
- 7: T' = HUFFMAN(S, P);
- 8: T = add two children Y and Z to node YZ in T';
- 9: **return** T;

Example

Symbol	Frequency	Code	Code Length	total Length				
A	24	0	1	24				
В	12	100	3	36				
C	10	101	3	30				
D	8	110	3	24				
E	8	111	3	24				
ges. 186 bit tot. 138 bit (3 bit code)								

Shannon-Fano vs. Huffman

Sym.	Freq.	Shannon-Fano code len. tot.							
	24	00	2	48	0	1	24		
В	12	01	2	24	100	3	36		
C	10	10	2	20	101	3	30		
D	8	110	3	24	110	3	24		
E	8	111	3	24	111	3	24		
total 186				140			138		
(linear 3 bit code)									

Huffman algorithm: correctness

Lemma

$$E(T') = E(T) - P_{YZ}$$

Froot.
$$E(T) = \sum_{x \in S} P_x D(x, T)$$

$$= P_Y D(Y, T) + P_Z D(Z, T) + \sum_{x \neq Y, x \neq Z} P_x D(x, T)$$

$$= P_Y (1 + D(YZ, T')) + P_Z (1 + D(YZ, T')) + \sum_{x \neq Y, x \neq Z} P_x D(x, T)$$

$$= P_{YZ} + P_Y D(YZ, T') + P_Z D(YZ, T') + \sum_{x \neq Y, x \neq Z} P_x D(x, T')$$

$$= P_{YZ} + E(T')$$

Huffman algorithm: correctness cont'd

Theorem

Huffman algorithm output an optimal code.

Proof.

(Induction)

- Suppose there is another tree *t* with smaller expected length;
- In the tree t, let's merge the lowest frequency letters Y and Z into a meta-letter YZ; converting t into a new tree t' with of size n-1;
- t' is better than T'. Contradiction.

Analysis

Time complexity:

- $T(n) = T(n-1) + O(n) = O(n^2)$.
- $T(n) = T(n-1) + O(\log n) = O(n \log n)$ if use priority queue.

Note: Huffman code is a bit different example of greedy technique—the problem is shrinked at each step; in addition, the problem is changed a little (the frequency of a new meta letter is the sum frequency of its members).

Application

- In practical operation Shannon-Fano coding is not of larger importance. This is especially caused by the lower code efficiency in comparison to Huffman coding.
- Huffman codes are part of several data formats as ZIP, GZIP and JPEG. Normally the coding is preceded by procedures adapted to the particular contents. For example the wide-spread DEFLATE algorithm as used in GZIP or ZIP previously processes the dictionary based LZ77 compression.

See http://www.binaryessence.com/dct/en000003.htm for details.

Theoretical foundation of greedy strategy: Matroid and submodular functions

Theoretical foundation of greedy strategy

• Consider the following optimization problem: given a finite set of objects N, the objective is to find a subset $S \in \mathcal{F}$ such that a set function f(S) is maximized, i.e.,

Here, $\mathcal{F} \subseteq 2^N$ represents certain constraints over S.

In general cases, the problem is clearly intractable — you
would better check all possible subsets in F to avoid missing
the optimal solution. However, in certain special cases, greedy
strategy applies and generates optimal solution or good
approximation solutions.

When greedy strategy is perfect or good enough?

- \bullet So what conditions on either ${\cal F}$ or f(S) or both does greedy strategy needs?
 - Matroid: Greedy strategy generates optimal solution when f(S) is a linear function, and \mathcal{F} can be characterized as F independent subsets.
 - Submodular functions: Greedy strategy might generate provably good approximation when f(S) is a submodular function.

When greedy strategy is perfect: Maximizing/minimizing a linear function under matroid constraint

Revisiting MAXIMAL LINEARLY INDEPENDENT SET problem

- Question: Given a set of vectors, to determine the maximal linearly independent set.
- Example:

$$V_1 = [\ 1 \ 2 \ 3 \ 4 \ 5]$$

 $V_2 = [\ 1 \ 4 \ 9 \ 16 \ 25]$
 $V_3 = [\ 1 \ 8 \ 27 \ 64 \ 125]$
 $V_4 = [\ 1 \ 16 \ 81 \ 256 \ 625]$
 $V_5 = [\ 2 \ 6 \ 12 \ 20 \ 30]$

• Independent vector set: $\{V_1, V_2, V_3, V_4\}$

Calculating maximal number of independent vectors

```
INDEPENDENTSET(M)

1: I=\{\};

2: for all row vector v do

3: if I\cup\{v\} is still independent then

4: I=I\cup\{v\};

5: end if

6: end for

7: return I;
```

Correctness: Properties of linear independence vector set

Let's consider the **linear independence** for vectors.

- Hereditary property: if B is an independent vector set and $A \subset B$, then A is also an independent vector set.
- **2** Augmentation property: if both A and B are independent vector sets, and |A| < |B|, then there is a vector $v \in B A$ such that $A \cup \{v\}$ is still an independent vector set.

Example:

$$egin{array}{llll} V_1 = [&1&2&3&4&5 \] \ V_2 = [&1&4&9&16&25 \] \ V_3 = [&1&8&27&64&125 \] \ V_4 = [&1&16&81&256&625 \] \ V_5 = [&2&6&12&20&30 \] \end{array}$$

- Independent vector sets: $A = \{V_1, V_3, V_5\}$, $B = \{V_1, V_2, V_3, V_4\}$, and |A| < |B|.
- Augmentation of $A: A \cup \{V_4\}$ is also independent.

A weighted version

- Question: Given a matrix, where each row vector is associated with a weight, to determine a set of linearly independent vectors to maximize the sum of weight.
- Example:

$$V_1 = [\ 1 \ 2 \ 3 \ 4 \ 5 \] \ W_1 = 9$$
 $V_2 = [\ 1 \ 4 \ 9 \ 16 \ 25 \] \ W_2 = 7$
 $V_3 = [\ 1 \ 8 \ 27 \ 64 \ 125 \] \ W_3 = 5$
 $V_4 = [\ 1 \ 16 \ 81 \ 256 \ 625 \] \ W_4 = 3$
 $V_5 = [\ 2 \ 6 \ 12 \ 20 \ 30 \] \ W_5 = 1$

A general greedy algorithm (by Jack Edmonds [1970])

```
Matroid_Greedy(M, W)
1: I = \{\};
 2: Sort row vectors in the decreasing order of their weights;
 3: for all row vector v do
 4: if I \cup \{v\} is still independent then
 5: I = I \cup \{v\};
 6: end if
 7: end for
 8: return I:
Time complexity: O(n \log n + nC(n)), where C(n) is the time
needed to check independence.
```

Matroid greedy algorithm: correctness

Theorem

[Greedy-choice property] Let v be the vector with the largest weight and $\{v\}$ is independent, then there is an optimal vector set A of M and A contains v.

Proof.

- Assume there is an optimal subset B but $v \notin B$.
- Then we can construct A from B as follows:
 - $\bullet \ \, \text{Initially:} \, \, A = \{v\};$
 - ② Until |A| = |B|, repeatedly find a new element of B that can be added to A while preserving the independence of A (by augmentation property);
- Finally we have $A = B \{v'\} \cup \{v\}$.
- We have $W(A) \geq W(B)$ since $W(v) \geq W(v')$ for any $v' \in B$. A contradiction.

Matroid greedy algorithm: correctness cont'd

Theorem

[Optimal substructure property] Let v be the vector with the largest weight and $\{v\}$ is itself independent. The remaining problem reduces to finding an optimal subset in M', where $M' = \{v' \in S, \text{ and } v, v' \text{ are independent}\}$

Proof.

- Suppose A' is an optimal independent set of M'.
- Define $A = A' \cup \{v\}$.
- Then A is also an independent set of M.
- And A has the maximum weight W(A) = W(A') + W(v).

An extension of linear independence for vectors: matroid

Matroid [Haussler Whitney, 1935]

- Matroid was proposed to capture the concept of linear independence in matrix theory, and generalize the concept in other field, say graph theory.
- In fact, in the paper On the abstract properties of linear independence, Haussler Whitney said:

 This paper has a close connection with a paper by the author on linear graphs; we say a subgraph of a graph is independent if it contains no circuit.

Origin 1 of matroid: linear independence for vectors

Let's consider the **linear independence** for vectors.

- Hereditary property: if B is an independent vector set and $A \subset B$, then A is also an independent vector set
- **Q** Augmentation property: if both A and B are independent vector sets, and |A| < |B|, then there is a vector $v \in B A$ such that $A \cup \{v\}$ is still an independent vector set

Example:

$$V_1 = [\ 1 \ 2 \ 3 \ 4 \ 5]$$

 $V_2 = [\ 1 \ 4 \ 9 \ 16 \ 25]$
 $V_3 = [\ 1 \ 8 \ 27 \ 64 \ 125]$
 $V_4 = [\ 1 \ 16 \ 81 \ 256 \ 625]$
 $V_5 = [\ 2 \ 6 \ 12 \ 20 \ 30]$

- Independent vector sets: $A = \{V_1, V_3, V_5\}$, $B = \{V_1, V_2, V_3, V_4\}$, and |A| < |B|.
- Augmentation of $A: A \cup \{V_4\}$ is also independent.

Origin 2 of matroid: acyclic subgraph [H. Whitney, 1932]

- Given a graph G=< V, E>, let's consider the acyclic property.
 - Hereditary property: if an edge set B is an acyclic forest and $A \subset B$, then A is also an acyclic forest

Origin 2 of matroid: acyclic subgraph

- Augmentation property: if both A and B are acyclic forests, and |A|<|B|, then there is an edge $e\in B-A$ such that $A\cup\{e\}$ is still an acyclic forest
 - ullet Suppose forest B has more edges than forest A;
 - A has more trees than B. (Why? #Tree = |V| |E|)
 - B has a tree connecting two trees of A. Denote the connecting edge as (u,v).
 - Adding (u,v) to A will not form a cycle. (Why? it connects two different trees.)

Abstraction: the formal definition of matroid

- A matroid is a pair $M=(N,\mathcal{I})$, where N is a finite nonempty set (called **ground set**), and $\mathcal{I}\subseteq 2^N$ is a family of **independent subsets** of N satisfying the following conditions:
 - **1** Hereditary property: if $B \in \mathcal{I}$ and $A \subset B$, then $A \in \mathcal{I}$;
 - **2 Augmentation property:** if $A \in \mathcal{I}$, $B \in \mathcal{I}$, and |A| < |B|, then there is some element $x \in B A$ such that $A \cup \{x\} \in \mathcal{I}$.

Properties of matroid

- ullet Bases and rank: Maximal independent sets of a matroid M are called bases. It follows from the augmentation property that all bases have the same cardinality, which is denoted as rank.
- Bijection basis exchange: If B_1 and B_2 are two bases of a matroid $M=(N,\mathcal{I})$, then there exists a bijection $\phi: B_1-B_2 \to B_2-B_1$ such that:

$$\forall x \in B_1 - B_2, \ B_1 - x + \phi(x) \in \mathcal{I}$$

SPANNING TREE: an application of matroid

MINIMUM SPANNING TREE problem

Practical problem:

- In the design of electronic circuitry, it is often necessary to make the pins of several components electrically equivalent by wiring them together.
- ullet To interconnect a set of n pins, we can use n-1 wires, each connecting two pins;
- Among all interconnecting arrangements, the one that uses the least amount of wire is usually the most desirable.

MINIMUM SPANNING TREE problem

Formulation:

Input: A graph G, and each edge e=< u,v> is associated with a weight W(u,v);

Output: a spanning tree with the minimum sum of weights. Here, a spanning tree refers to a set of n-1 edges connecting all nodes.

INDEPENDENT VECTOR SET versus ACYCLIC FOREST

GENERIC SPANNING TREE algorithm

- Objective: to find a spanning tree for graph *G*;
- Basic idea: analogue to MAXIMAL LINEARLY INDEPENDENT SET calculation;

GENERICSPANNINGTREE(G)

- 1: $F = \{\};$
- 2: **while** F does not form a spanning tree **do**
- 3: find an edge (u, v) that is **safe** for F;
- 4: $F = F \cup \{(u, v)\};$
- 5: end while

Here F denotes an <code>ACYCLIC</code> FOREST, and F is still <code>ACYCLIC</code> if added by a safe edge.

Examples of safe edge and unsafe edge

Figure 3: Safe edge

Figure 4: Unsafe edge

MINIMUM SPANNING TREE algorithms

Kruskal's algorithm [1956]

• Basic idea: during the execution, F is always an acyclic forest, and the safe edge added to F is always a least-weight edge connecting two distinct components.

Figure 5: Joseph Kruskal

Kruskal's algorithm [1956]

```
MST-Kruskal(G, W)
1: F = \{\};
 2: for all vertex v \in V do
 3: MakeSet(v);
 4: end for
 5: sort the edges of E into nondecreasing order by weight W;
 6: for each edge (u, v) \in E in the order do
 7: if FINDSET(u) \neq FINDSET(v) then
    F = F \cup \{(u, v)\};
      Union (u, v);
     end if
11: end for
Here, Union-Find structure is used to detect whether a set of
edges form a cycle.
(See extra slides for UNION-FIND data structure, and a demo of
Kruskal algorithm)
```

106 / 141

Time complexity

- Running time:
 - **①** Sorting: $O(m \log m)$
 - 2 Initializing: n MAKESET operations;
 - **3** Detecting cycle: 2m FINDSET operations;
 - **4** Adding edge: n-1 UNION operations.
- Thus, the total time is $O(m \log n)$ when using UNION-FIND data structures.
- Provided that the edges are already sorted or can be sorted in O(n) time using radix sort or counting sort, the total time is $O((m+n)\alpha(n))$, where $\alpha(n)$ is a very slowly growing function.

Prim's algorithm

Prim's algorithm [1957]

- Basic idea: the final minimum spanning tree is grown step by step. Let's describe the solving process as a multiple-stage decision process. At each step, the least-weight edge connect the sub-tree to a node not in the tree is chosen.
- Note: One advantage of Prim's algorithm is that no special check to make sure that a cycle is not formed is required.

Figure 6: Robert C. Prim

Greedy selection property

Theorem

[Greedy selection property] Suppose T is a sub-tree of the final minimum spanning tree, and e=(u,v) is the least-weight edge connect one node in T and another node not in T. Then e is in the final minimum spanning tree.

Prim algorithm for Minimum Spanning Tree [1957]

```
MST-PRIM(G, W, root)
 1: for all node v \in V and v \neq root do
 2: key[v] = \infty;
 3: \Pi[v] = \text{Null}; //\Pi(v) denotes the predecessor node of v
 4: PQ.INSERT(v); // n times
 5: end for
 6: key[root] = 0;
 7: PQ.INSERT(root);
 8: while PQ \neq \text{Null} do
```

11:

13: 14:

15:

u = PQ.EXTRACTMIN(); // n timesfor all v adjacent with u do

PQ.DecreaseKey(W(u, v)); // m times

Here, PQ denotes a min-priority queue. The chain of predecessor nodes originating from \boldsymbol{v} runs backwards along a shortest path from \boldsymbol{s} to $\boldsymbol{v}.$

111 / 141

if W(u,v) < key(v) then

 $\Pi(v) = u;$

end if

end for 16: end while

(See a demo)

Time complexity of PRIM algorithm

Operation	Linked	Binary	Binomial	Fibonacci
	list	heap	heap	heap
МакеНеар	1	1	1	1
Insert	1	$\log n$	$\log n$	1
ExtractMin	n	$\log n$	$\log n$	$\log n$
DecreaseKey	1	$\log n$	$\log n$	1
DELETE	n	$\log n$	$\log n$	$\log n$
Union	1	n	$\log n$	1
FINDMIN	n	1	$\log n$	1
Prim	$O(n^2)$	$O(m \log n)$	$O(m \log n)$	$O(m + n \log n)$

PRIM algorithm: n INSERT, n EXTRACTMIN, and m DECREASEKEY.

Applications of Matroid

Note:

- Matroid is useful when determining whether greedy technique yields optimal solutions.
- 2 It covers many cases of practical interests (Some exceptions: Huffman code, Interval Scheduling problems).

When greedy strategy is good enough: Maximizing a submodular function

Optimizing a set function

- Most combinatorial optimization problems, e.g., MINCUT, MAXCUT, VERTEXCOVER, SETCOVER, MINIMUM SPANNING TREE, MAXCOVERAGE, aim to maximize/minimize a set function.
- These problems have the following form:

$$\begin{array}{ll}
\max / \min & f(S) \\
s.t. & S \in \mathcal{F}
\end{array}$$

Here, $S\subseteq N$ represents a subset of a ground set N, $\mathcal{F}\subseteq 2^N$ represents certain constraints over these subsets, and f(S) denotes a set function.

Let's start from the MAXCOVERAGE problem

• Consider a set of n elements $N = \{1, 2, ..., n\}$, and m subsets $A_1, A_2, ..., A_m \subseteq N$. The goal of MAXCOVERAGE problem is to select k subsets such that the cardinality of their union is maximized.

$$\max_{s.t.} |f(S)|$$

Set function

• The objective function in the MAX COVERAGE problem $f(S) = |\bigcup_{A_i \in S}|$ is a set function defined over subsets.

Set function: another viewpoint

 \bullet A set function $f:\{0,1\}^m \to \mathbb{R}$ defines value for nodes of a cube.

Revisiting the continuous optimization

 But how to maximize a set function? Let's revisit the continuous maximization first.

- A continuous function $f: \mathbb{R} \to \mathbb{R}$ can be efficiently maximized if it is **convex**, and can be efficiently maximized if it is **concave**.
- Question: are there discrete analogy to convexity or concavity for set functions?

Submodularity: discrete analogy to concavity

• Concavity: f(x) is concave if the derivative f'(x) is non-increasing in x, i.e., when Δx is sufficiently small, $f(x_1 + \Delta x) - f(x_1) \ge f(x_2 + \Delta x) - f(x_2)$ if $x_1 \le x_2$.

• Submodularity: f(S) is submodular if for any element e, the marginal contribution (discrete analogy to derivative) $f(S \cup \{e\}) - f(S)$ is non-increasing in S, i.e., $f(S_1 \cup \{e\}) - f(S_1) > f(S_2 \cup \{e\}) - f(S_2)$ if $S_1 \subseteq S_2$.

Submodular functions: decreasing marginal contribution

• Let's consider a set function f(S) defined over subsets $S\subseteq N$, where N is a finite ground set.

Definition (Marginal contribution to a subset S)

The marginal contribution of a subset $T \subseteq X$ to S is defined as $f_S(T) = f(S \cup T) - f(S)$.

Definition (Submodular function f(S))

A set function $f:2^N\to\mathbb{R}$ is submodular iff $\forall S_1\subseteq S_2\subseteq N$, $\forall e\in N-S_2,\ f_{S_2}(\{e\})\leq f_{S_1}(\{e\}).\ f(S)$ is supermodular if -f(S) is submodular, and modular if both sub- and supermodular.

• Intuition: marginal contribution is discrete analogy to derivative of a continuous function, while "decreasing marginal contribution" (or "diminishing returns") definition of f(S) is discrete analogy to concave functions.

Submodular function: example 1

• The objective function in the MAX COVERAGE problem $f(S) = |\bigcup_{A_i \in S}|$ is submodular.

Submodular function: example 2

• Given a graph G=< V, E>. Let f(S) be the number of edges e=(u,v) such that $u\in S$ and $v\in V-S$.

• f(S) is submodular. For example, in the above figure, $f(S_1 \cup \{u\}) - f(S_1) = 8 - 4 = 4$, while $f(S_2 \cup \{u\}) - f(S_2) = 4 - 6 = -2$.

An equivalent definition: subadditive

Definition (Submodular function)

A function $f:2^N\to\mathbb{R}$ is submodular iff $\forall A,B\subseteq N$, $f(A)+f(B)\geq f(A\cup B)+f(A\cap B)$.

• Taking the submodular function $f(A)=|\bigcup_{i\in A}T_i|$ as an example. Let $A=\{1,2\},\ B=\{1,3\},$ we have

$$f(A \cup B) + f(A \cap B) = |T_1 \cup T_2 \cup T_3| + |T_1|$$
 (2)

$$\leq |T_1 \cup T_2| + |T_1 \cup T_3|$$
 (2)
= $f(A) + f(B)$ (3)

Equivalence of the two definitions

• Subadditivity essentially implies "decreasing marginal contribution", i.e., by setting $S_1 = A \cap B$, $S_2 = A$, and T = B - A, the inequality $f(A \cup B) - f(A) \leq f(B) - f(A \cap B) \text{ can be rewritten as } f(S_2 \cup T) - f(S_2) \leq f(S_1 \cup T) - f(S_1).$

A useful property of submodular functions: upper bound

Lemma

If f is submodular, then $\forall S \subseteq T \subseteq N$, $f(T) \leq f(S) + \sum_{e \in T \setminus S} f_S(e)$. Furthermore, if f is monotone submodular, S need not be a subset of $T \colon \forall S \subseteq N$, $T \subseteq N$, $f(T) \leq f(T \cup S) \leq f(S) + \sum_{e \in T \setminus S} f_S(e)$.

- By integrating marginal contributions, it is easy to prove the upper bound for submodular functions.
- Note that this is a discrete analogy to the property for a concave continuous function f(x): $f(b) \le f(a) + (b-a)f'(a)$.

MAXCOVERAGE problem with cardinality constraint

• Now let's consider the MAXCOVERAGE problem with cardinality constraint first, i.e., select k subsets such that the cardinality of their union is maximized, e.g., select k subsets in the following example.

- Here we adopt the value query model, i.e., an algorithm can query a black-box oracle for the value f(S). An algorithm making polynomial queries is considered to have polynomial running time.
- We also assume that f is normalized, i.e., $f(\phi) = 0$.

Greedy algorithm (cardinality constraint)

Greedy Cardinality Constraint (k, N)

- 1: $S = \phi$; 2: while |S| < k do 3: $x^* = argmax_{x \in N} f_S(x)$; 4: $S = S \cup \{x^*\}$; 5: $N = N - \{x^*\}$; 6: end while 7: return S;
 - Greedy rule: at each step, the item with the largest marginal contribution will be selected.

An example: Step 1

• Let $S_i = \{x_1^*, x_2^*, ..., x_i^*\}$ be the value of S after the i-th execution of the while loop. Initially A_3 was selected as $f_{\phi}(A_3) = 12$.

• A_1 was selected with $f_{S_1}(A_1) = 10$, which is larger than $f_{S_1}(A_2) = 8$, and $f_{S_1}(A_4) = 6$.

• A_2 was selected as $f_{S_2}(A_2) = 7 > f_{S_2}(A_4) = 6$. Done.

Analysis

Theorem

Let $S_k = \{x_1^*, x_2^*, ..., x_k^*\}$ be the set returned by Greedy Cardinality Constraint, then $f(S_k) \geq (1 - \frac{1}{e})f(S^*)$.

Proof.

$$f(S^*) \le f(S_{i-1}) + \sum_{e \in S^* \setminus S_{i-1}} f_{S_{i-1}}(e)$$
 (4)

$$\leq f(S_{i-1}) + \sum_{e \in S^* \setminus S_{i-1}} f_{S_{i-1}}(x_i^*)$$
(5)

$$\leq f(S_{i-1}) + \sum_{e \in S^* \setminus S_{i-1}} f_{S_{i-1}}(x_i^*)$$
(6)

$$= f(S_{i-1}) + \sum_{e \in S^* \setminus S_{i-1}} (f(S_i) - f(S_{i-1}))$$

$$< f(S_{i-1}) + k(f(S_i) - f(S_{i-1}))$$
(8)

- $\leq f(S_{i-1}) + k(f(S_i) f(S_{i-1}))$ (8)
- Substracting $kf(S^*)$ on both sides, we have: $f(S_i) f(S^*) \ge (1 \frac{1}{k})(f(S_{i-1}) f(S^*))$
- By induction we further have: $f(S_k) \ge (1 (1 \frac{1}{k})^k) f(S^*)$.

MAXCOVERAGE problem with knapsack constraint

• Now let's further consider the MAXCOVERAGE problem with knapsack constraint, i.e., each element $e \in N$ is associated with a cost C(e), and we have a budget B. We aims to select subsets such that the total cost is no more than B and the cardinality of their union is maximized.

$$\max_{s.t.} f(S)$$

$$s.t. \sum_{e \in S} C(e) \le B$$

Greedy algorithm (knapsack constraint)

GreedyKnapsackConstraint (N, \mathbf{C}, B)

```
1: S = \phi;

2: while \sum_{e \in S} C(e) < B do

3: x^* = argmax_{x \in N} \frac{f_S(x)}{C(x)};

4: if \sum_{e \in S} C(e) + C(x^*) < B then

5: S = S \cup \{x^*\};

6: end if

7: N = N - \{x^*\};

8: end while

9: return S;
```

• Greedy rule: instead of maximizing marginal contribution at each step, the algorithm selects the cheapest item.

An example: Step 1

• Let $S_i = \{x_1^*, x_2^*, ..., x_i^*\}$ be the value of S after the i-th execution of the while loop. Initially A_4 was selected with $\frac{f_\phi(A_4)}{C(A_4)} = \frac{8}{2}$, which is larger than $A_1(\frac{12}{46})$, $A_2(\frac{12}{41})$ and $A_3(\frac{12}{40})$.

• A_2 was selected with $\frac{f_{S_1}(A_2)}{C(A_2)} = \frac{12}{41}$ as it is larger than $\frac{f_{S_1}(A_1)}{C(A_1)} = \frac{12}{46}$ and $\frac{f_{S_1}(A_3)}{C(A_3)} = \frac{10}{40}$.

• A_1 was selected with $\frac{f_{S_2}(A_1)}{C(A_1)}=\frac{10}{46}$ as it is larger than $\frac{f_{S_2}(A_3)}{C(A_3)}=\frac{6}{40}$. However we cannot add A_1 to S_2 as $C(A_1)+C(A_2)+C(A_4)=89>88$.

ullet A_3 was selected. The process ended as no subset can be added without incurrence of violation of knapsack constraint.

Analysis

•

Accelerated greedy algorithm