CSCI 620 Data Mining Group 5

Karan Manghi Aamir Jamal Tejas Arya Akshay Kshirsagar

Agenda:

- Project Description
- Domains of Application
- Dataset Description
- Roadmap
- Data Extraction and Cleaning
- Feature generation
- Decision tree implementation and result
- Naive Bayes implementation and result
- Other approaches and Ideas
- References

Project Description

- Identifying the author of an anonymous text based on its stylometric features.
- Implemented for 2 authors:
 - L. Frank Baum
 - R. M. Ballantyne
- Classification Problem.
- Supervised learning

Domains of Application

- Author Attribution
- Author Verification
- Plagiarism Detection
- Author Profiling [age, education, gender]
- Can be also applied in computer code, music scores, ...

Dataset Description

- Project Gutenberg a library of over 60,000 free eBooks
 - L. Frank Baum 92 eBooks
 - R. M. Ballantyne 98 eBooks
- Each book with minimum 2100 sentences (After cleaning)

Roadmap

Data Extraction and Cleaning

- Extraction
 - Gutenberg 0.8.0 library for python
 - Allows methods like
 - Loading text
 - Removing metadata from loaded text
 - Document downloaded from Project Gutenberg repository and saved as text file
- Cleaning
 - Removed authors' names from files manually

Feature Generation

- Packages used
 - NLP, openNLP
- After cleaning, read the text files iteratively and performed following actions
 - Tokenize and annotate
 - Tokenize document to sentences
 - Tokenize sentences to words
 - Tag tokenized words with Part of Speech they belong to
 - We have POS tags and other relevant information such as number of words in a document
 - o From the above information, we generate following features for each document in a csv file
 - Noun-Word ratio → NounRatio
 - Adjective-Word ratio → AdjectiveRatio
 - Verb-Word ratio → VerbRatio
 - Adverb-Word ratio → AdverbRatio
 - Number of conjunctions → Conjunctions
 - Average word length for a document → AvgWordLength
 - Label → **Target**

Raw Features

54	have	VB	
55	told	VBN	
56	_you_	NNS	
57	that	IN	
58	•	75	
59	11	n .	
60	You	PRP	
61	know	VBP	
62	very	RB	
63	well	RB	
64	that	IN	
65	you	PRP	
66	have	VBP	
67	often	RB	
68	seen	VBN	
69	a	DT	
70	man	NN	
71	above	IN	
72	six	CD	
73	feet	NNS	

Adjective: JJ, JJR, JJS Noun: NN, NNS, NNP, NNPS Adverb: RB, RBR, RBS Verb: VB, VBD, VBG, VBN Conjunction: CC, IN

Algorithm - Decision Trees

- First, convert the CSV from the program into CSV with features and target
 file_read=pandas.read_csv("demo.csv",usecols=[2,3])
- Remove NAs
- Shuffle data
- Split into train and test -> 85:15
- Library used: "rpart"
- Syntax of using decision trees

```
author_tree <- rpart(formula=Target~NounRatio+AdjectiveRatio+VerbRatio+AdverbRatio+Conjunction+AvgWordLength|,train_authors,method = "class")
```

Features

NounRatio	AdjectiveRatio	VerbRatio	AdverbRatio	Conjunction	AvgWordLength	Target
0.225296763	0.07330984	0.157864231	0.066493555	15563	4.338484188	1
0.229293599	0.072258903	0.15712392	0.062839371	14320	4.364914472	1
0.224482109	0.073728814	0.15834275	0.067024482	9142	4.367758945	1
0.229333843	0.074385429	0.158196408	0.063654312	5423	4.327123933	1
0.211838529	0.075908457	0.162352176	0.069591496	16293	4.371535903	1
0.236412736	0.074157335	0.164461034	0.063440222	12165	4.389308336	1
0.227083223	0.078895984	0.150667581	0.065343818	16474	4.418069555	1
0.219568526	0.079217089	0.154751642	0.068158839	16229	4.403280224	1
0.240646975	0.077525399	0.158845594	0.058299887	16584	4.510853993	1

- Good Accuracy
- Good Sensitivity

Confusion Matrix and Statistics

```
Reference
Prediction 0 1
0 13 6
1 0 11
```

Accuracy: 0.8

95% CI : (0.6143, 0.9229)

No Information Rate : 0.5667 P-Value [Acc > NIR] : 0.006664

Kappa : 0.6137

Mcnemar's Test P-Value : 0.041227

Sensitivity: 1.0000 Specificity: 0.6471

- Good accuracy
- Good specificity

```
print(confusionMatrix(data = prediction_numeric,reference = test_authors$Target))
Confusion Matrix and Statistics
          Reference
Prediction 0 1
         0 13 0
         1 4 13
               Accuracy: 0.8667
                 95% CI: (0.6928, 0.9624)
    No Information Rate: 0.5667
    P-Value [Acc > NIR] : 0.0004563
                  Kappa: 0.738
 Mcnemar's Test P-Value: 0.1336144
            Sensitivity: 0.7647
            Specificity: 1.0000
         Pos Pred Value : 1.0000
         Neg Pred Value: 0.7647
             Prevalence: 0.5667
         Detection Rate: 0.4333
   Detection Prevalence: 0.4333
      Balanced Accuracy: 0.8824
        'Positive' class: 0
```


Algorithm - Naive Bayes

- Conditionally independent
- Maximum A Posteriori
- Works well for large dataset.

$$Precision = \frac{True\ Positive}{True\ Positive + False\ Positive}$$

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

$$y = \underset{c_i}{argmax} \ P(c_i) \prod_{j=1}^{n} P(x_j|c_i)$$

$$P(c_i|x_0,...,x_n) \propto P(x_0,...,x_n|c_i)P(c_i)$$

 $\propto P(c_i)\prod_{j=1}^n P(x_j|c_i)$

$$Recall = \frac{True\ Positive}{True\ Positive + False\ Negative}$$

Naive Bayes .. (continued)

- Library used: e1071, caret
- Steps:
 - Read the features.csv file.
 - Clean data. Check for NA values as well as omit rows having any blank values.
 - CSV file contains records of same author in a sequence. Shuffle data to generate random sequence.
 - This is done to avoid all the records of one author in the train dataset.
 - Separate the data into Training and Testing data set. Perform 10 fold Cross validation.
 - Use the library provided "Train" method.
 - Once the model is trained, use "Predict" method to get output values.
 - Calculate Accuracy, Precision and Recall using Confusion Matrix.

Results - Naive Bayes

```
New Approach
Confusion Matrix and Statistics
         Reference
Prediction 0 1
        0 10 2
        1 3 15
              Accuracy : 0.8333
                95% CI: (0.6528, 0.9436)
    No Information Rate: 0.5667
    P-Value [Acc > NIR] : 0.001939
                 Kappa: 0.6575
 Mcnemar's Test P-Value: 1.000000
             Precision: 0.8333
                Recall: 0.7692
                    F1: 0.8000
            Prevalence: 0.4333
        Detection Rate: 0.3333
   Detection Prevalence: 0.4000
      Balanced Accuracy: 0.8258
       'Positive' class: 0
```

```
Old Approach
Confusion Matrix and Statistics
         Reference
Prediction 0 1
        0 11 1
        1 6 12
              Accuracy: 0.7667
                95% CI: (0.5772, 0.9007)
    No Information Rate: 0.5667
    P-value [Acc > NIR] : 0.01905
                 Kappa: 0.5455
 Mcnemar's Test P-Value: 0.13057
             Precision: 0.9167
                Recall: 0.6471
                    F1: 0.7586
            Prevalence: 0.5667
        Detection Rate: 0.3667
   Detection Prevalence: 0.4000
      Balanced Accuracy: 0.7851
       'Positive' class: 0
```

Other Approaches and Ideas

Additional features

- Variance of word vectors
 - Vectorization of text process of converting text into vectors
 - "The cat sits on the mat and refuses to wear a hat and that is the end"
 - "1 2 3 4 1 5 6 7 8 9 10 11 6 12 13 1 1₄
 - "of this example"
 - **1** 15 16 17
- For each sentence of the document, create a vector and calculate their variance

$$\sigma^2 = \frac{\sum (x - \mu)^2}{N}$$

- \circ N = 20, x = sample (1,2,3,4,1), μ = mean of the sample data
- Calculate average variance of the document

Other Approaches and Ideas

- TF-IDF
 - Calculate word importance to a document with respect to the corpora of multiple documents
 - More numeric data → Even better results!
- Clustering
 - Or we could go with a different data mining task with the same dataset

Conclusion

- Decision tree > Naive Bayes
- For this dataset, Decision tree gives better result.
- We believe that by choosing more significant feature with the help of a domain expert.
- Using more data -> more robust and better analysis
- Decision tree why better ?

References

- 1) <u>https://towardsdatascience.com/introduction-to-naive-bayes-classification-4cffabb1ae54</u>
- 2) https://cran.r-project.org/web/packages/openNLP/openNLP.pdf