Fundamentos Teóricos da Computação

CIÊNCIA DA COMPUTAÇÃO

Prof. Dr. João Paulo Aramuni

Sumário

- * AFNE
- * AFN\(\lambda\)
- * Exemplos

AFN Estendido

* AFN Estendido

AFN Estendido

- * Outro conceito útil, tanto do ponto de vista teórico quanto do prático, é o de autômato finito não determinístico estendido (AFNE), embora este não aumente o poder computacional com relação a AFN ou a AFD.
- * A diferença entre autômato finito não determinístico estendido e AFN é que, enquanto no AFN as transições são sob símbolos do alfabeto, no AFNE elas são sob palavras.

AFN Estendido

- * Um AFNE é uma quíntupla: $(E, \Sigma, \delta, I, F)$
 - * E, Σ , I e F são como nos AFNs; e
 - * δ é uma função <u>parcial</u> $E \times D \rightarrow P(E)$ onde D é algum subconjunto finito de Σ^*
 - * Neste caso, a função de transição pode receber palavras formadas com símbolos do alfabeto, em vez de apenas símbolos do alfabeto

* AFNE para reconhecer a linguagem:

 $L = \{w \in \{0\}^* \mid |w| \text{ \'e par}\} \cup \{w \in \{1\}^* \mid |w| \text{ \'e impar}\}$

AFNλ

- * Um AFN λ é uma quíntupla: $(E, \Sigma, \delta, I, F)$
 - * E, Σ , I e F são como nos AFNs; e
 - * δ é uma função total $E \times (\Sigma \cup \{\lambda\}) \rightarrow P(E)$
 - * Neste caso, a função de transição pode receber apenas símbolos do alfabeto ou a palavra vazia

* AFNλ para reconhecer a linguagem:

 $L = \{w \in \{0\}^* \mid |w| \text{ \'e par}\} \cup \{w \in \{1\}^* \mid |w| \text{ \'e impar}\}$

- * Construir um AF que reconheça $L = L_1L_2$, onde:
 - * $L_1 = \{w \in \{0, 1\}^* \mid w \text{ tem um número par de 0s}\};$
 - * $L_2 = \{w \in \{0, 1\}^* \mid w \text{ tem um número ímpar de 1s}\};$
- * Construir um AFD para esta linguagem diretamente é difícil
 - Mesmo o AFN para esta linguagem pode ser complexo de ser construído

* $L_1 = \{w \in \{0, 1\}^* \mid w \text{ tem um número par de 0s}\};$

* $L_2 = \{w \in \{0, 1\}^* \mid w \text{ tem um número ímpar de 1s}\};$

- * Liga-se os estados finais de M_1 a cada estado inicial de M_2
- st Os estados iniciais são os de M_1
- st Os estados finas são os de M_2

AFN a partir de um AFNλ

- * Seja M um AFN λ
 - * Seja Q o AFN equivalente a M que deseja-se construir
- * Informalmente
 - st Os estados existentes em Q são iguais aos de M
 - * Todo estado de M alcançável a partir de um estado inicial apenas consumindo-se a palavra vazia (transições sob λ a partir dos estados iniciais) é um estado inicial de Q
 - * Todo estado de M que possua uma transição sob a para um estado e que tenha uma transição sob λ para um estado e', também possuirá uma transição para e' sob a
 - st Todas as transições sob λ de M são removidas de Q
 - st Todas as demais transições de M permanecem iguais em Q

AFN a partir de um AFNλ

- * Seja M um AFN λ
 - st Seja Q o AFN equivalente a M que deseja-se construir
- * Informalmente
 - st Os estados existentes em Q são iguais aos de M
 - * Todo estado de M alcançável a partir de um estado inicial apenas consumindo-se a palavra vazia (transições sob λ a partir dos estados iniciais) é um estado inicial de Q
 - * Todo estado de M que possua uma transição sob a para um estado e que tenha uma transição sob λ para um estado e', também possuirá uma transição para e' sob a
 - st Todas as transições sob λ de M são removidas de Q
 - st Todas as demais transições de M permanecem iguais em Q

Transições sob λ

* Todo estado de M que possua uma transição sob a para um estado e que tenha uma transição sob λ para um estado e', também possuirá uma transição para e' sob a

 $L = \{w \in \{0\}^* \mid |w| \text{ \'e par}\} \cup \{w \in \{1\}^* \mid |w| \text{ \'e impar}\}$

- * $L = L_1L_2$, onde:
 - * $L_1 = \{ w \in \{0, 1\}^* \mid w \text{ tem um número par de 0s} \};$
 - * $L_2 = \{w \in \{0, 1\}^* \mid w \text{ tem um número ímpar de 1s}\};$

* Seja o AFN λ M= ({0,1,2}, {a,b,c}, δ , {0}, {2}) sendo δ dada por:

δ	a	b	C	λ
0	{0}	Ø	Ø	{1}
1	Ø	{1}	Ø	{2}
2	Ø	Ø	{2}	Ø

- a) Desenhe este AFNλ
- b) Determine e desenhe um AFN M' equivalente a M.
- c) Determine e desenhe um AFD equivalente a M'.

a) Desenhe este AFN λ

b) Determine e desenhe um AFN M' equivalente a M.

c) Determine e desenhe um AFD equivalente a M'.

- * Construir um AF que reconheça $L = L_1 \cup L_2$, onde:
 - * $L_1 = \{w \in \{0, 1\}^* \mid w \text{ tem um número par de 0s}\};$
 - * $L_2 = \{w \in \{0, 1\}^* \mid w \text{ tem um número ímpar de 1s}\};$

- * Primeiramente, vamos aos AFD's de cada um:
 - * $L_1 = \{w \in \{0, 1\}^* \mid w \text{ tem um número par de 0s}\};$

- * Primeiramente, vamos aos AFD's de cada um:
 - * $L_2 = \{w \in \{0, 1\}^* \mid w \text{ tem um número ímpar de 1s}\};$

* Agora, vamos ao AFN λ para $L=L_1 \cup L_2$:

* Agora, vamos ao AFN para $L = L_1 \cup L_2$:

* Agora, vamos ao AFD para $L = L_1 \cup L_2$:

Obrigado.

joaopauloaramuni@gmail.com joaopauloaramuni@fumec.br

