PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE FACULTAD DE MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICA

Ayudante: Nicholas Mc-Donnell

Email: namcdonnell@uc.cl

Solución Ayudantía 6

Álgebra I - MAT2227

Fecha: 2019/09/10

- 1) 1) Se nota que (3,11)=1 y que $\varphi(11)=10$ por lo que $3^{200}\equiv (3^{10})^20\equiv 1\mod 11$.
 - 2) Se nota que (7,12) = 1 y que $\varphi(12) = 4$, por lo que $7^{256} \equiv (7^4)^{64} \equiv 1 \mod 12$.
 - 3) Se nota que (4,9)=1 y $\varphi(9)=6$, como $6\mid 9072$, se tiene que $4^{9072}\equiv 1\mod 9$.
- 2) Se nota que ver el dígito de la unidad de un número es equivalente a ver el número modulo 10.
 - 1) Como (3,10) = 1 y $\varphi(10) = 4$, entonces $3^{90} \equiv 3^{88} \cdot 3^2 \equiv 9 \mod 10$, por lo que el dígito de la unidad es 9.
 - 2) Como (17, 10) = 1 y 4 | 212, entonces $17^{212} \equiv 1 \mod 10$.
 - 3) Se escribe 9! = $9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1$, y se nota que 10 | 9!, por lo que su dígito de la unidad es 0.
 - 4) Se escribe el producto modulo 10: $2 \cdot 3 \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 19 \cdot 23 \equiv 2 \cdot 3^3 \cdot 7^2 \cdot 9 \equiv 3^5 \cdot (-3)^2 \equiv 3^7 \equiv 3^3 \equiv 27 \equiv 7 \mod 10$.
- 3) Sea n minimal tal que $a^n \equiv 1 \mod 36$, con a fijo y coprimo con 36. Luego se nota que $\varphi(36) = 12$, por lo que $n \leq 12$. Ahora se asume que $n \nmid 12$, por lo $12 = n \cdot q + r$, donde 0 < r < n, luego $a^{12} \equiv a^{n \cdot q + r} \equiv (a^n)^q \cdot a^r \equiv a^r \equiv 1 \mod 36$, por lo que n no es minimal. Se nota que esta demostración implica que los n minimales tal que $a^n \equiv 1 \mod m$ para algún a fijo coprimo con m, cumplen que $n \mid \varphi(m)$.
- 4) Como $p \mid m$, se tiene que $a^{m-1} \equiv 1 \mod p$, como p primo, se tiene que el mínimo n tal que $a^n \equiv 1 \mod p$ es p-1, por lo que $p-1 \mid m-1$. Similarmente se tiene que $\varphi(p^r) \mid m-1$, pero se nota que (m-1,m)=1, y como $p \mid m$, se tiene que $p \equiv 1$ y más aún se tiene que $p \neq 2$, por lo mismo.

 $^{^{1}\}varphi(p^{r}) = p^{r-1}(p-1)$