Dr. Andrey Soldatenkov

Übungen zur Einführung in die komplexe Analysis – Blatt 3

Aufgabe 15. (Cayley Abbildung, 2+3 Punkte)

Sei $f : \mathbb{H} \to \mathbb{D}$ die Cayley Abbildung $z \mapsto \frac{z-i}{z+i}$. Man bestimme die Grenzwerte

$$\lim_{|x|\to+\infty} f(x+iy) \text{ und } \lim_{y\to+\infty} f(x+iy)$$

bei fixiertem y bzw. x. Man veranschauliche sich die Bilder der Geraden $L_y := \{x + iy \mid y = \text{const}\}$ und $L_x := \{x + iy \mid x = \text{const}\}$. Sind $f(L_y)$ Kreise?

Aufgabe 16. (Nullstellen von $\sin(z)$ und $\cos(z)$, 2 Punkte)

Man bestimme alle komplexen(!) Nullstellen $z \in \mathbb{C}$ von $\sin(z)$ und $\cos(z)$.

Aufgabe 17. (Euler an Goldbach 1746, 2 Punkte)

Man berechne die Zahl i^i und entscheide ob sie reell ist. Ist die Aussage abhängig vom gewählten Zweig des Logarithmus?

Aufgabe 18. (Bildbestimmung, 3 Punkte)

Man bestimme das Bild der holomorphen Abbildung

$$\{z \mid \text{Re}(z) > 0, z \notin (0,1]\} \to \mathbb{C}, \ z \mapsto i\sqrt{z^2 - 1}.$$

Hinweis: Die Abbildung ist Komposition dreier Funktionen und es bietet sich an, das Bild entsprechend in drei Schritten zu bestimmen.

Aufgabe 19. (Differentialgleichungen für Potenzreihen, 3+3 Punkte)

(i) Man bestimme den Konvergenzradius folgender Reihen

$$f(z) := \sum_{n=0}^{\infty} \frac{z^{2n}}{(2n)!}, \ g(z) = \sum_{n=0}^{\infty} \frac{z^{2n}}{(n!)^2} \text{ und } h(z) := \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n+1}}{2n+1}$$

(ii) Man beweise

$$f''(z) = f(z), z^2 g''(z) + zg'(z) = 4z^2 g(z) \text{ und } h'(z) = \frac{1}{z^2 + 1}$$

(im Konvergenzgebiet).

Aufgabe 20. (Harmonische Funktionen, 3 Punkte)

Man entscheide, welche der folgenden Funktionen $g: \mathbb{R}^2 \to \mathbb{R}$ harmonisch sind:

$$g(x,y) = x^2 - y^2$$
, $g(x,y) = 2xy$, $g(x,y) = x^3 - 3xy^2$, $g(x,y) = x^2 + y^2$.

Es gilt folgende Aussage: Sei $u := \mathbb{C} \to \mathbb{R}$ eine harmonische Funktion. Dann existiert eine ganze Funktion $f : \mathbb{C} \to \mathbb{C}$ mit Re(f) = u (hierfür gibt es Extrapunkte).

Aufgabe 21. (Konstante Funktionen, 4 Punkte)

Sei $f: U \to \mathbb{C}$ eine holomorphe Funktion auf einem Gebiet U. Man zeige, dass folgende Bedingungen äquivalent sind: (i) $z \mapsto \text{Re}(f(z))$ ist konstant, (ii) $z \mapsto \text{Im}(f(z))$ is konstant, (iii) $z \mapsto |f(z)|$ ist konstant und (iv) f(z) ist konstant.