1. [20 marks]

- (a) [2 marks] There are 16% of the observations before 5 hours (6% in [3,4), 10% in [4,5)) and 27% before 6 hours (11% of the observations in [5,6)). Hence, q_1 must be in [5,6) (1 mark). Similarly, $q_3 \in [8,9)$ (1 mark).
- (b) [2 marks] $q_1 \in [5,6)$ and $q_3 \in [8,9)$, so the minimum iqr is 2 and conservative limits are given by $(6-1.5\times2,8+1.5\times2)=(3,11)$. Clearly, no outliers (1 mark for using a criterion like $(q_1-1.5\times iqr,q_3+1.5\times iqr)$, 1 mark for conclusion using conservative limits)
- (c) [3 marks]
 - i. [2 marks] Large sample interval: $[\bar{x} \pm z_{1-\alpha/2} \frac{s}{\sqrt{n}}] = [6.92 \pm 1.96 \times \frac{1.64}{\sqrt{100}}] = [6.60, 7.24]$ (Confidence interval using the *t*-quantile $[\bar{x} \pm t_{99,1-\alpha/2} \frac{s}{\sqrt{n}}] \simeq [\bar{x} \pm t_{100,1-\alpha/2} \frac{s}{\sqrt{n}}] = [6.92 \pm 1.984 \times \frac{1.64}{\sqrt{100}}] = [6.59, 7.25]$ also accepted) (1 mark for a correct expression of a CI, 1 mark for the correct CI)
 - ii. [1 mark] The previous large-sample confidence interval is based on the approximation $\bar{X} \stackrel{a}{\sim} \mathcal{N}$ (Central Limit Theorem). Here n=100 is large enough for that approximation to be reliable whatever the initial distribution of the battery lifetime. Hence the non-normal appearance of the histogram is not a problem.
- (d) [8 marks]
 - i. [1 mark] $\hat{p} = 0.28$
 - ii. [6 marks] Let π be the true proportion of produced batteries which last for more than 8 hours
 - [1 mark] <u>Hypotheses:</u> $H_0: \pi = 0.33$ against $H_a: \pi < 0.33$ (one-sided test)

 - [1 mark] Observed value of the test statistic: $z_0 = \sqrt{n} \frac{\hat{p} \pi_0}{\sqrt{\pi_0(1 \pi_0)}} = 10 \times \frac{-0.05}{\sqrt{0.33 \times 0.67}} = -1.06$
 - [1 mark] p-value: $p = \Phi(-1.06) = 0.1446$ (from table)
 - [1 mark] <u>Conclusion</u>: the data do not show enough evidence to contradict the manufacturer (we cannot reject the claim that $\pi \ge 0.33$ at significance level 5%)
 - iii. [1 mark] The test is based on the normal approximation for \hat{P} . The rule-of-thumb for that approximation to be valid is $n\pi_0(1-\pi_0) > 5$. Here, $100 \times 0.33 \times 0.67 = 22.1$, so no problem. (Also accept $n\hat{p}(1-\hat{p}) > 5$).
- (e) [5 marks] Let E_i = 'Inspector i detects a flaw', and F = 'the inspected battery has a flow'. Then, $\mathbb{P}(E_1|F) = 0.9$, $\mathbb{P}(E_2|F) = 0.7$ and E_1, E_2 are independent.
 - i. [2 marks: 1 mark for probability of a union, 1 mark for answer] $\mathbb{P}(E_1 \cup E_2|F) = \mathbb{P}(E_1|F) + \mathbb{P}(E_2|F) \mathbb{P}(E_1 \cap E_2|F) = 0.9 + 0.7 0.9 \times 0.7 = 0.97$ (independence has been used)

ii. [3 marks: 1 mark for Bayes' rule, 1 mark for law of total probability, 1 mark for answer] $\mathbb{P}(E_1|F^c) = \mathbb{P}(E_2|F^c) = 0$, $\mathbb{P}(F) = 0.10$. Then,

$$\mathbb{P}(F|(E_1 \cup E_2)^c) = \mathbb{P}((E_1 \cup E_2)^c | F) \times \frac{\mathbb{P}(F)}{\mathbb{P}((E_1 \cup E_2)^c)}
= \frac{\mathbb{P}((E_1 \cup E_2)^c | F) \mathbb{P}(F)}{\mathbb{P}((E_1 \cup E_2)^c | F) \mathbb{P}(F) + \mathbb{P}((E_1 \cup E_2)^c | F^c) \mathbb{P}(F^c)}
= \frac{0.03 \times 0.10}{0.03 \times 0.10 + 1 \times 0.9}
= 0.0033$$

2. [20 marks]

- (a) [2 marks] Any two of the following will do:
 - Range 3 is the most energy efficient (or range 1 is least efficient, or state the ordering).
 - The variabilities for the three are similar
 - The distributions are skewed
 - There are not obvious outliers
- (b) [1 mark] The variances for different groups are same/similar (either from summary statistics or boxplot).
- (c) [3 marks, 1 mark for (1)-(3), 1 mark for (4) and (5) and 1 mark for (6)]
 - (1) k-1=2
 - (2) n k = 18 3 = 15.
 - (3) n-1=18-1=17.
 - (4) $SS_{Tr} = 6 \sum_{k=1}^{3} (x_k \bar{X})^2 = 10.598.$
 - (5) $SS_{Er} = 5(s_1^2 + s_2^2 + s_3^2) = 28.279$. (either (4) or (5) can also use the fact that they sum to 38.88)
 - (6) $MS_{Tr} = SS_{Tr}/2 = 5.299$ (or use $2.81 \times 1.885 = 5.299$)

Source	df	SS	MS	\mathbf{F}
Treatment	(1) 2	$(4)\ 10.598$	(6) 5.299	2.811
Error	(2) 15	(5) 28.279	1.885	
Total	(3) 17	38.88		

- (d) [6 marks]
 - [1 mark] $H_0: \mu_1 = \mu_2 = \mu_3$ vs. $H_a:$ not all three means are equal
 - [2 marks, 1 for degree of freedom and 1 for the rest] For rejection region we use $P(F > f_{2,15,0.95}) = 0.05$ and $f_{2,15,0.95} = 3.68$ the rejection region is $(3.68, \infty)$.
 - [2 marks, 1 for stating the *p*-value as probability and 1 for the final numerical value] The *p*-value is equal to $P(F_{2,15} > 2.811)$. From table $P(F_{2,15} > 3.68) = 0.05$ and thus p-value is larger than 0.05.
 - \bullet [1 mark]conclusion: we do not reject the null.
- (e) [6 marks]
 - [1 mark] $H_0: \mu_1 = \mu_2 \text{ vs } H_a: \mu_1 \neq \mu_2$
 - [2 marks, 1 for degree of freedom and 1 for the rest] We reject if $|\bar{x}_1 \bar{x}_2| > t_{15,0.975} \sqrt{MS_{Er}/3} = 2.131 \sqrt{MS_{Er}/3} = 1.689$ (or $|\bar{x}_1 \bar{x}_2|/\sqrt{MS_{Er}/3} > t_{15,0.975} = 2.131$).
 - [2 marks, 1 for test statistic and 1 for *p*-value] The test statistics is $\frac{\bar{x}_1 \bar{x}_2}{\sqrt{MS_{Er}/3}} = 0.759$ and p-value is $2P(t_{15} > 0.759) = 0.46$ (from statistical table it can only be seen to be between 0.4 and 0.5).
 - [1 mark] We do not reject the null.

$(f) \ [2 \ marks]$

- [1 mark] The p-values should be compared with 0.05/3 = 0.0167.
- [1 mark] All p-values are bigger than this and we cannot reject the null hypothesis.

3. [20 marks]

- (a) i. $\epsilon \sim N(0, \sigma)$ [1 mark], also take full marks for simply "normal" ii. gq plot not perfect but results are approximately correct by Central Limit T
 - ii. qq plot not perfect but results are approximately correct by Central Limit Theorem [1 mark]
- (b) $[1 \text{ mark}] \hat{\beta}_1 = 0.0383$
- (c) $[1 \text{ mark}] r^2 = 33.5\%$
- (d) [1 mark] $r = \sqrt{r^2} = \sqrt{0.335} = 0.579$
- (e) $[1 \text{ mark}] s = \hat{\sigma} = 9.96$
- (f) [7 marks total: 2 marks for hypotheses, 1 mark for test statistic, 1 mark for df, 1 mark for p-value (or rejection region), 1 mark for decision, 1 mark for conclusion]
 - $H_0: \beta_1 = 0$ vs. $H_a: \beta_1 \neq 0$ [2 marks: 1 mark for H_0 and 1 mark for H_a]
 - $t = \frac{0.038321}{0.0076395} = 5.0161, df = 50$
 - p < 0.0001 as reported, could also use $t_{50,0.975} = 2.009$
 - Reject H_0
 - HIC is significantly associated with CTI (or something similar that ties original problem with statistical results)
- (g) $[2 \text{ marks}] z_{0.975} = 1.96$

$$0.038321 \pm 1.96 \times 0.0076395 = (0.02334758, 0.05329442)$$

(h) [5 marks, 1 mark for $\hat{y}(x_0)$, 1 mark for t quantile, 1 mark for correct equation, 1 mark for correct interval, 1 mark for explanation]

$$t_{50,0.995} = 2.678$$

 $\hat{y}(x_0) = 68.518 + 0.038321(1000) = 106.839$

$$\hat{y}(x_0) \pm st_{n-2,1-\alpha/2} \sqrt{\frac{1}{n} + \frac{(x_0 - \bar{x})^2}{s_{XX}}}$$

$$= 106.839 \pm 9.96 \times 2.678 \sqrt{\frac{1}{52} + \frac{(1000 - 33023/52)^2}{1698115}}$$

$$= [98.50354, 115.17446]$$

Prediction interval for Y at X = x will be wider than the corresponding CI for the mean, as it takes into account extra variability associated with a single observation, in addition to the uncertainty inherent in the estimation of the mean response.