Homework 3

Course: CO20-320241

September 30, 2019

Problem 3.1

Solution:

A) Distributive rule: (M + N)(!M + P)(!N + !P) = (M*!M + P*M + N*!M + NP)(!N + !P)

Complement:

$$(M*!M + P*M + N*!M + NP)(!N+!P) = (P*M + N*!M + NP)(!N+!P)$$

Distributive rule:

Complement:

$$(!N*P*M+!N*N*!M+!N*N*P+!P*P*M+!P*N*!M+!P*N*P) = (!N*P*M+!P*N*!M)$$

B) Distributive rule:

$$!A * B * !C + A * B * !C + B * !C * D = B * !C * (!A + A + D)$$

Complement:

$$B*!\hat{C}*(!A+A+D) = B*!C*(1+D)$$

De morgan:

$$B*!C*(1+D) = B*!C$$

C) De morgan:

$$!((M+N+P)*Q) = !(M+N+P)+!Q$$

DE morga and associativen:

$$!(M + N + P) + !Q = !M * !N * !P + !Q$$

d)De morgan and associative:

$$!((A*B*C) + (D*E*F)) = !(A*B*C)*!(D*E*F)$$

De morgan and associative:

$$(!A+!B+!C)*(!D+!E+!F)$$

e)De morgan and associative:

$$!((A*!B) + (C*!D) + (E*F)) = !(A*B)*!(C*!D)*!(E*F) =$$

De morgan and associative:

$$(!A+!B)*(!C+D)*(!E+!F)$$

f)De morgan and associative:

$$!(!(A+B*!C)+D*!(E+!F)) = (A+B*!C)*!(D*!(E+!F)) =$$

De morgan and associative:

$$(A + B*!C) * (!D + (E + F))$$

Problem 3.2

Solution:

By observing the given circuit we can conclude that it corresponds to the following expression: $(\overline{A}*\overline{B}*\overline{C})+(A*\overline{B}*\overline{C})+(\overline{A}*\overline{B}*\overline{C})$

Constructing the table:

	\overline{CD}	$\overline{C}D$	CD	$C\overline{D}$
\overline{AB}	1	1	1	0
$\overline{A}B$	0	0	0	0
AB	0	0	0	0
$A\overline{B}$	1	1	0	0

From this we can conclude we have 2 unique loops:

(0,0),(0,1),(3,0),(3,1)

(0,1), (0,2)

Therefore the equation is $\overline{B}*\overline{C}+\overline{A}*\overline{B}*D$

Problem 3.3

Solution:

S	R	CLK	Q
0	0	UP	Q_0
1	0	UP	1
0	1	UP	0
1	1	UP	Ambigous

Problem 3.4

Solution:

S	R	CLK	Q
0	0	DOWN	Q_0
1	0	DOWN	1
0	1	DOWN	0
1	1	DOWN	Ambigous

Problem 3.5

Solution:

S	R	CLK	Q
0	0	UP	Q_0 (No change)
1	0	UP	1
0	1	UP	0
1	1	UP	$\overline{Q_0}$ (toggles)

Problem 3.6

Solution:

J	K	CLK	Q
0	0	DOWN	Q_0 (No change)
1	0	DOWN	1
0	1	DOWN	0
1	1	DOWN	$\overline{Q_0}$ (toggles)

Problem 3.7

Solution:

A) Let's start analyzing from the back. We want Y to get HIGH. We observe that it is a J-K flip flop, with grounded K. That means K=0 for ever. Assuming the flip flop react on the positive going transitions, we want scenario where input J is HIGH, and timer to react after it, noticing the change. So what we want is J,C going high in this order. (According to state table from previous exercises). IN order J to get HIGH, we want X to get high. For that the situation is indentical, so we want to get A, then B HIGH, so we can register the change, and output HIGH at X, that will go to another J, and C will get HIGH, and after that Y will end up being high. So the order is A, B, C.

B)Since, the signal is connected to the CLR asynchrous input, it makes the X and Y outputs 0, it wipes it immideately.It is low input, so low start will set outputs to 0, "restarting" them.

C)