

SEMANA 3

2020

Autor: Claudia Amaya de Serrano

Creado por: Lic. Zenón Portillo Claudia Amaya de Serrano

Julio – Agosto 2020

1. INTEGRAL INDEFINIDA

Definición

Llamaremos integral indefinida de una función f(x) en un intervalo (a, b) al conjunto de todas sus funciones primitivas en dicho intervalo. Lo representaremos con la notación habitual:

$$\int f(x)dx$$

donde \int recibe el nombre de símbolo de integral y f(x)recibe el nombre de integrando

Ahora, ¿A qué se refiere con funciones primitivas?

1.1 Funciones Primitivas

Definición

Sea f una función definida sobre un intervalo I cualquiera, se dice que una función F definida en I es **primitiva** o también llamada **antiderivada** de f si para todo $x \in I$ se cumple que F es derivable y F'(x) = f(x)

Si no ha quedado claro, veamos algunos ejemplos:

Ejemplo (a): La función $F(x) = x^2 + 4$ es **una** primitiva de la funci[on f(x) = 2x, ¿por qué? pues debido a que la derivada de F(x) es decir $(x^2 + 4)' = 2x$

Ejemplo (b): La función G(x) = sen(x) es **la** primitiva de la funci[on g(x) = cos(x), debido a que la derivada de G(x) es decir (sen(x))' = cos(x)

¿Se ha dado cuenta de una pequeña diferencia? en el ejemplo (a) resaltamos la palabra **una** primitiva. Veamos el siguiente ejemplo para comprender la diferencia entre **una** primitiva y la primitiva de una función

Ejemplo (c): La función $H(x) = \frac{1}{4}x^4$ es **una** primitiva de la funcón $h(x) = x^3$, ¿por qué? pues debido a que la derivada de H(x) es decir $(\frac{1}{4}x^4)' = x^3$. Sin embargo, otra primitiva de h podria ser $J(x) = \frac{1}{4}x^4 + 6$ pues tambien se cumple que $(\frac{1}{4}x^4 + 6)' = (\frac{1}{4}x^4)' + (6)' = x^3 + 0 = x^3$.

Generalicemos ahora:

Si F(x) es una primitiva particular de una función dada f(x), entonces todas las primitivas de f(x) son de la forma F(x) + C donde C es una constante arbitraria

Haciendo uso de la definición de integral indefinida, entonces podemos expresar los ejemplos anteriores de la siguiente forma.

Ejemplo (a):
$$\int 2xdx = x^2 + C$$
 Ejemplo (b):
$$\int cos(x)dx = sen(x) + C$$
 Ejemplo (c):
$$\int x^3dx = \frac{1}{4}x^4 + C$$

A continuación proporcionamos una tabla de integrales que puede ser útil para comenzar a calcular integrales de funciones básicas:

$$\int dx = x + C$$

$$\int cos(x)dx = sen(x) + C$$

$$\int csc^{2}(x)dx = -cot(x) + C$$

$$\int sec(x)tan(x)dx = sec(x) + C$$

$$\int csc(x)cot(x)dx = -csc(x) + C$$

Apliquemos lo visto hasta ahora:

Ejemplos Calcule las siguientes integrales haciendo uso de la tabla anterior:

1.
$$\int x^8 dx = \frac{x^{8+1}}{8+1} + C = \frac{x^9}{9} + C$$

2.
$$\int \frac{1}{x^5} dx = \int x^{-5} dx = \frac{x^{-5+1}}{-5+1} + C = -\frac{x^{-4}}{4} + C$$

3.
$$\int \sqrt{x} dx = \int x^{\frac{1}{2}} dx = \frac{x^{\frac{1}{2}+1}}{\frac{1}{2}+1} + C = \frac{x^{\frac{3}{2}}}{\frac{3}{2}} + C = \frac{2x^{\frac{3}{2}}}{3} + C$$

4.
$$\int \sqrt[4]{x^3} + \cos(x) \, dx = \int \sqrt[4]{x^3} \, dx + \int \cos(x) \, dx = \int x^{\frac{3}{4}} \, dx + \int \cos(x) \, dx$$
$$= \frac{x^{\frac{3}{4}+1}}{\frac{3}{4}+1} + C + \operatorname{sen}(x) + C = \frac{4x^{\frac{7}{4}}}{7} + \operatorname{sen}(x) + C$$

Resuelva los siguientes ejercicios

a.
$$\int x^7 dx$$

b.
$$\int x^5 - 4dx$$

b.
$$\int x^5 - 4dx$$

c.
$$\int \sqrt[3]{x} + 6dx$$

$$d. \int \frac{1}{x^4} dx$$

1.2 Propiedades de las integrales indefinidas

Si f y g son funciones que tienen primitivas en un intervalo definido I, se cumple lo siguiente:

Propiedad 1.

$$\int kf(x)dx = k \int f(x)dx$$

Donde k es una constante multiplicativa que puede salir del integrando

Propiedad 2.

$$\int [f(x) + g(x)]dx = \int f(x)dx + \int g(x)dx$$

es decir, la integral de una suma es igual a la suma de las integrales de sus términos

¿Les suenan estas propiedades? Claro, son las que estudiamos en la primera semana con respecto a las propiedades de las sumatorias.

Ahora, apliquemos lo aprendido en los siguientes ejemplos:

1)
$$\int 4x^6 dx = 4 \int x^6 dx = 4 \left(\frac{x^{6+1}}{6+1}\right) + C = 4 \left(\frac{x^7}{7}\right) + C = \frac{4x^7}{7} + C$$

2)
$$\int 7sec^2(x)dx = 7 \int sec^2(x)dx = 7tan(x) + C$$

3)
$$\int \frac{8}{x^3} dx = \int 8x^{-3} dx = 8 \int x^{-3} dx = 8 \left(\frac{x^{-3+1}}{-3+1} \right) + C = 8 \left(\frac{x^{-2}}{-2} \right) + C = -\frac{4}{x^2} + C$$

4)
$$\int 6x^5 + 3x^2 + 12dx = \int 6x^5 dx + \int 3x^2 dx + \int 12dx = 6\frac{x^{5+1}}{5+1} + 3\frac{x^{2+1}}{2+1} + 12x$$
$$= 6\frac{x^6}{6} + 3\frac{x^3}{3} + 12x = x^6 + x^3 + 12x + C$$

5)
$$\int (3x^2 + x)\sqrt{x}dx$$

Solución

$$\int (3x^2 + x)\sqrt{x}dx = \int (3x^2 + x)x^{\frac{1}{2}}dx = \int 3x^2 \cdot x^{\frac{1}{2}} + x \cdot x^{\frac{1}{2}}dx = \int 3x^{\frac{5}{2}} + \int x^{\frac{3}{2}}dx$$

$$= 3\int x^{\frac{5}{2}} + \int x^{\frac{3}{2}}dx = 3\left(\frac{x^{\frac{5}{2}+1}}{\frac{5}{2}+1}\right) + \left(\frac{x^{\frac{3}{2}+1}}{\frac{3}{2}+1}\right) + C$$

$$= 3\left(\frac{x^{\frac{7}{2}}}{\frac{7}{2}}\right) + \left(\frac{x^{\frac{5}{2}}}{\frac{5}{2}}\right) + C = 3\left(\frac{2x^{\frac{7}{2}}}{7}\right) + \left(\frac{2x^{\frac{5}{2}}}{5}\right) + C$$

$$= \frac{6x^{\frac{7}{2}}}{7} + \frac{2x^{\frac{5}{2}}}{5} + C$$

6)
$$\int \frac{x^4 + x^2 + x}{x^4} dx$$

Solución

$$\int \frac{x^4 + x^2 + x}{x^4} dx = \int \left(\frac{x^4}{x^4} + \frac{x^2}{x^4} + \frac{x}{x^4}\right) dx = \int \left(1 + \frac{1}{x^2} + \frac{1}{x^3}\right) dx$$

$$= \int 1 dx + \int \frac{1}{x^2} dx + \int \frac{1}{x^3} dx$$

$$= \int 1 dx + \int x^{-2} dx + \int x^{-3} dx$$

$$= x + \frac{x^{-2+1}}{-2+1} + \frac{x^{-3+1}}{-3+1} + C$$

$$= x - \frac{1}{x} - \frac{1}{2x^2} + C$$

Estamos preparados para realizar algunos ejercicios

a.
$$\int y^3(y+1)dy$$

b.
$$\int 5x^6 - 4\cos(x))dx$$

c.
$$\int (y^2+3)(y^2-3)dy$$

$$d. \int \frac{x^3 + 4x^2 + 2}{\sqrt{x}} dx$$

e.
$$\int ((m-2)^2 + m^2)dm$$

f.
$$\int \frac{\cos 2x}{\sin x + \cos x} dx$$

g.
$$\int \frac{3senx}{cos^2x} dx$$

$$h. \int \frac{-5cosx}{1-cosx} dx$$

2. FUNCIONES ESPECIALES

2.1 Función logarítmica y su integración

En primer lugar vamos a detallar algunas propiedades de la función logarítmica para el caso a>1

Propiedades

- Dominio: R^+
- $f(0) = log_a 0 = 1$
- Es creciente en todo su dominio
- Es continua en todo su dominio
- $\lim_{x\to\infty} \log_a x = \infty$ y $\lim_{x\to 0^+} \log_a x = -\infty$
- $\bullet \ f^{''}(x)=\frac{-1}{x^2lna}<0$ lo que quiere decir que la función es cóncava hacia abajo

Luego de observar sus características, veamos su forma de integración:

Integración

$$\int \frac{1}{x} dx = ln|x| + C \text{ si } x > 0$$

$$\int \frac{f'(x)}{f(x)} dx = \ln|f(x)| + C \text{ si } x > 0$$

7

Es decir, siguiendo el lenguaje utilizado en esta sección: lnx es una antiderivada de $\frac{1}{x}$

Apliquemos ahora en algunos ejemplos lo expuesto:

$$1) \int \frac{2x+1}{x^2+x+3} dx$$

Desde el momento que vemos una fracción podríamos intuir que se trata de una integral que involucra a la función logarítmica, por lo tanto lo primero que debemos hacer es calcular la derivada del denominador:

$$(x^2 + x + 3)' = 2x + 1$$

entonces podemos deducir que:

$$\int \frac{2x+1}{x^2+x+3} dx = \ln|x^2+x+3| + C$$

$$2) \int \frac{x^2}{x^3 + 7} dx$$

Calculemos la derivada del denominador:

$$(x^3 + 7)' = 3x^2$$

Como podemos observar en este caso a diferencia del ejemplo anterior la derivada no es exactamente igual al numerador, pero podríamos multiplicar y dividir por 3 y de esa forma obtenemos en el numerador lo que necesitamos, veamos

$$\int \frac{x^2}{x^3 + 7} dx = \int \frac{3x^2}{3(x^3 + 7)} dx = \frac{1}{3} \int \frac{3x^2}{x^3 + 7} dx = \frac{1}{3} \ln|x^3 + 7| + C$$

3)
$$\int \tan(x)dx$$

¡Pero no tiene numerador! veamos: Si recordamos $tan(x) = \frac{sen(x)}{Ccos(x)}$ y si calculemos la derivada del denominador:

$$(\cos(x))' = -\sin(x)$$

Entonces podriamos poner lo siguiente:

$$\int \frac{sen(x)}{cos(x)} dx = \int \frac{-(cos(x))'}{(cos(x))} dx = -ln(cos(x)) + C$$

Con estos conocimientos, podemos realizar los siguientes ejercicios:

a.
$$\int \frac{3}{3x+2} dx$$

b.
$$\int \frac{2x+3}{x^2+2x+2} dx$$

c.
$$\int \frac{sec^2(x)}{1 + tan(x)} dx$$

d.
$$\int \frac{2}{x(lnx)^2} dx$$

$$d. \int \frac{2}{x(\ln x)^2} dx$$

e.
$$\int \frac{1 + sen(x)}{cos(x) - x} dx$$

2.2 Función exponencial y su integración

Algunas propiedades de la función exponencial $f(x) = a^x \operatorname{con} a > 1$ son las siguientes:

Propiedades

- Dominio: R^+
- La función corta al eje y en (0,1)
- Es creciente en todo su dominio
- Es continua en todo su dominio
- $\lim_{x\to\infty} a^x = \infty$ y $\lim_{x\to-\infty} a^x = 0$
- $\bullet \ f''(x) = a^x (lna)^2 > 0$ lo que quiere decir que la función es cóncava hacia arriba

Al observar sus características, estudiemos su forma de integración:

Integración

$$\int e^x dx = e^x + C$$

$$\int e^x dx = e^x + C$$

$$\int e^f(x)f'(x)dx = e^{f(x)} + C$$

Apliquemos ahora en algunos ejemplos lo expuesto:

$$1) \int 5e^x dx = 5e^x$$

2)
$$\int 2xe^{x^2}dx = e^{x^2} + C$$
 ya que $(x^2)' = 2x$

$$3) \int x^2 e^{x^3 + 4} dx = \int \frac{1}{3} 3x^2 e^{x^3 + 4} dx = \frac{1}{3} \int 3x^2 e^{x^3 + 4} = \frac{1}{3} e^{x^3 + 4} + C$$

Realicemos los siguientes ejercicios

a.
$$\int e^{4x} dx$$

b.
$$\int e^{3x-2} dx$$

c.
$$\int (2x+4)e^{x^2+4x+3}dx$$

d.
$$\int (sen(x))e^{os(x)}dx$$

e.
$$\int (sec^2(x))e^{tan(x)+3}dx$$

f.
$$\int (x^2 + 3)e^{x^3 + 9x}dx$$

2.3 Funciones trigonométricas inversas y sus integrales

Las funciones trigonométricas, seno, coseno, tangente, cotangente no son funciones inyectivas y por lo tanto no tienen una funcion inversa como tal, pero si se pueden encontrar esta si se restringe el dominio.

2.3.1 Seno inverso

Definición

Se simboliza como $sen^{-1}x$ también puede llamarse **arcoseno** y se define como $y = sen^{-1}x$ si y solo si x = seny

Algunas observaciones de esta función son:

Propiedades

- El dominio de $y = sen^{-1}x$ es [-1, 1]
- \blacksquare El resultado de aplicar $y=sen^{-1}x$ siempre es un valor entre $-\frac{\pi}{2}$ y $\frac{\pi}{2}$
- \bullet Para $x \in [-1,1]$ se cumple que $sen(sen^{-1}x) = x$
- \blacksquare Para $x\in -\frac{\pi}{2}$ y $\frac{\pi}{2}$ se cumple que $sen^{-1}(senx)=x$

2.3.2 Coseno inverso

Definición

Se simboliza como $cos^{-1}x$ también puede llamarse **arco coseno** y se define como $y = cos^{-1}x$ si y solo si x = cosy

Algunas observaciones de esta función son:

Propiedades

- \bullet El dominio de $y=cos^{-1}x$ es [-1,1]
- \blacksquare El resultado de aplicar $y=cos^{-1}x$ siempre es un valor entre 0 y π
- \bullet Para $x \in [-1,1]$ se cumple que $\cos(\cos^{-1}x) = x$
- Para $x \in [0 \text{ y } \pi]$ se cumple que $\cos^{-1}(\cos x) = x$

2.3.3 Otras funciones inversas trigonométricas

Funciones trigonométricas inversas			
Función	dominio	ámbito	definición
Tangente inversa	R	$\left[-\frac{\pi}{2} \text{ y } \frac{\pi}{2} \right]$	$tan^{-1}x$
Cotangente inversa	R	$]0,\pi[$	$cot^{-1}x$
Secante inversa		$]0,\pi[-\frac{\pi}{2}]$	$sec^{-1}x$
Cosecante inversa	$]-\infty,-1]\cup[1,\infty[$	$\left[\right] - \frac{\pi}{2}, \frac{\pi}{2} \right] - 0$	$csc^{-1}x$

Ahora veamos las integrales de las funciones inversas anteriores:

$$\int \frac{1}{\sqrt{1-x^2}} dx = \operatorname{sen}^{-1} x + C$$

$$\int \frac{1}{1+x^2} dx = \tan^{-1} x + C$$

$$\int \frac{1}{x\sqrt{x^2-1}} dx = \operatorname{sec}^{-1} x + C$$

Apliquemos ahora en algunos ejemplos lo expuesto:

$$1) \int \frac{9}{x^2 + 1} dx$$

Solución

$$=9 \cdot \int \frac{1}{x^2+1} dx = 9 \tan^{-1} x + C$$

$$2) \int \frac{3}{2+2x^2} dx$$

Solución

$$= \int \frac{3}{2(1+x^2)} dx = \frac{3}{2} \int \frac{1}{1+x^2} dx = \frac{3}{2} \tan^{-1} x + C$$

3)
$$\int e^x + \frac{4}{2\sqrt{1-x^2}} dx$$

Solución

$$\int e^x dx + \int \frac{4}{2\sqrt{1-x^2}} dx = \int e^x dx + 2 \int \frac{1}{\sqrt{1-x^2}} dx = e^x + 2 \operatorname{sen}^{-1} x + C$$

4)
$$\int \frac{\frac{1}{x}}{\sqrt{x^2 - 1}} dx$$

$$= \int \frac{\frac{1}{x}}{\frac{\sqrt{x^2 - 1}}{1}} dx = \int \frac{1}{x\sqrt{x^2 - 1}} dx = \sec^{-1} x + C$$

Realicemos los siguientes ejercicios

a.
$$\int \frac{6}{1+x^2} dx$$

b.
$$\int \frac{1}{\sqrt{1-y^2}} dy$$

c.
$$\int \frac{2}{5\sqrt{x^2 - 1}} dx$$

$$d. \int \frac{1}{\sqrt{100 - x^2}} dx$$

e.
$$\int \frac{x^2}{\sqrt{1+x^2}} dx$$

f.
$$\int \frac{1}{\sqrt{4 - 6x - 9x^2}} dx$$