

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н. Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н. Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»

КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»

ОТЧЕТ

по лабораторной работе № 3 по курсу «Анализ Алгоритмов» на тему: «Трудоемкость сортировок»

Студент <u>ИУ7-53Б</u> (Группа)	(Подпись, дата)	Лысцев Н. Д. (И. О. Фамилия)
Преподаватель	(Подпись, дата)	Волкова Л. Л.

СОДЕРЖАНИЕ

\mathbf{B}	ЗВЕДЕНИЕ 4				
1	Ана	алитич	еский раздел	5	
	1.1	Алгор	оитм блочной сортировки	5	
	1.2	Алгор	итм сортировки слиянием	5	
	1.3	Алгор	итм поразрядной сортировки	5	
2	Koı	нструк	торский раздел	7	
	2.1	.1 Разработка алгоритмов		7	
		2.1.1	Алгоритм блочной сортировки	7	
		2.1.2	Алгоритм сортировки слиянием	8	
		2.1.3	Алгоритм поразрядной сортировки	11	
	2.2	2 Оценка трудоемкости алгоритмов			
		2.2.1	Модель вычислений для проведения оценки трудоемкости		
			алгоритмов	13	
		2.2.2	Трудоемкость алгоритма блочной сортировки	14	
		2.2.3	Трудоемкость алгоритма сортировки слиянием	15	
		2.2.4	Трудоемкость алгоритма поразрядной сортировки	17	
3	Tex	нологі	ический раздел	19	
	3.1	Требования к программному обеспечению		19	
	3.2	Р. Средства реализации			
	3.3	Сведе	ния о модулях программы	20	
	3.4	Реали	зации алгоритмов	21	
	3.5	Функі	циональные тесты	25	
4	Исс	ледов	ательский раздел	26	
	4.1	Техни	ческие характеристики	26	
	4.2	Время	н выполнения алгоритмов	26	
	4.3	Испол	иьзование памяти	26	

ВВЕДЕНИЕ

Сортировка – процесс перегруппировки последовательности объектов в некотором порядке. Это одна из фундаментальных операций в алгоритмике и компьютерных науках, играющая ключевую роль в эффективной обработке данных.

Целью данной лабораторной работы является исследование трех алгоритмов сортировки: блочной сортировки, сортировки слиянием и поразрядной сортировки.

Для достижения поставленной цели необходимо решить следующие задачи:

- 1) Изучить и описать три алгоритма сортировки: блочной, слиянием и поразрядной.
- 2) Создать программное обеспечение, реализующее следующие алгоритмы:
 - алгоритм блочной сортировки;
 - алгоритм сортировки слиянием;
 - алгоритм поразрядной сортировки.
- 3) Провести анализ эффективности реализаций алгоритмов по памяти и по времени.
- 4) Провести оценку трудоемкости алгоритмов сортировки.
- 5) Обосновать полученные результаты в отчете к выполненной лабораторной работе.

1 Аналитический раздел

В данном разделе будут рассмотрены алгоритм блочной сортировки, сортировки слиянием и поразрядной сортировки.

1.1 Алгоритм блочной сортировки

Блочная сортировка – алгоритм сортировки, в котором сортируемые элементы распределяются между конечным числом отдельных блоков так, чтобы все элементы в каждом следующем по порядку блоке были всегда больше (или меньше), чем в предыдущем. Каждый блок затем сортируется отдельно, либо рекурсивно тем же методом, либо другим. Затем элементы помещаются обратно в массив [1].

1.2 Алгоритм сортировки слиянием

Сортировка слиянием — алгоритм сортировки, который упорядочивает списки (или другие структуры данных, доступ к элементам которых можно получать только последовательно, например — потоки) в определённом порядке. Эта сортировка — хороший пример использования принципа «разделяй и властвуй» [2].

Алгоритм действий в сортировке слиянием:

- 1) Сортируемый массив разбивается на две части примерно одинакового размера;
- 2) Каждая из получившихся частей сортируется отдельно, например тем же самым алгоритмом;
- 3) Два упорядоченных массива половинного размера соединяются в один.

1.3 Алгоритм поразрядной сортировки

Поразрядная сортировка — алгоритм сортировки, который выполняется за линейное время. Сравнение производится поразрядно: сначала сравниваются значения одного крайнего разряда, и элементы группируются по результатам

этого сравнения, затем сравниваются значения следующего разряда, соседнего, и элементы либо упорядочиваются по результатам сравнения значений этого разряда внутри образованных на предыдущем проходе групп, либо переупорядочиваются в целом, но сохраняя относительный порядок, достигнутый при предыдущей сортировке. Затем аналогично делается для следующего разряда, и так до конца [3].

Вывод

В данном разделе были рассмотрены алгоритм блочной сортировки, сортировки слиянием и поразрядной сортировки.

2 Конструкторский раздел

2.1 Разработка алгоритмов

2.1.1 Алгоритм блочной сортировки

На рисунке 2.1 представлена схема алгоритма блочной сортировки.

Рисунок 2.1 – Схема алгоритма блочной сортировки

2.1.2 Алгоритм сортировки слиянием

На рисунке 2.2 представлена схема алгоритма сортировки слиянием.

На рисунках 2.3 и 2.4 представлена схема алгоритма функции слияния двух отсортированных подмассивов.

Рисунок 2.2 – Схема алгоритма сортировки слиянием

Рисунок 2.3 – Схема алгоритма функции слияния двух отсортированных подмассивов (начало)

Рисунок 2.4 — Схема алгоритма функции слияния двух отсортированных подмассивов (конец)

2.1.3 Алгоритм поразрядной сортировки

На рисунке 2.5 представлена схема алгоритма сортировки слиянием.

На рисунке 2.6 представлена схема алгоритма функции сортировки по определенному разряду.

Рисунок 2.5 – Схема алгоритма поразрядной сортировки

Рисунок 2.6 – Схема алгоритма функции сортировки по определенному разряду

2.2 Оценка трудоемкости алгоритмов

2.2.1 Модель вычислений для проведения оценки трудоемкости алгоритмов

Была введена модель вычислений для определения трудоемкости каждого отдельного взятого алгоритма сортировки.

- 1) Трудоемкость базовых операций имеет:
 - равную 1:

$$+, -, =, + =, - =, ==, ! =, <, >, <=, >=, [], ++, --,$$
 $\&\&, >>, <<, |], \&, |$

$$(2.1)$$

— равную 2:

$$*,/,\%, *=,/=,\%=$$
 (2.2)

2) Трудоемкость условного оператора:

$$f_{if} = f_{\text{условия}} + \begin{cases} min(f_1, f_2), & \text{лучший случай} \\ max(f_1, f_2), & \text{худший случай} \end{cases}$$
 (2.3)

3) Трудоемкость цикла:

$$f_{for} = f_{\text{инициализация}} + f_{\text{сравнения}} + M_{\text{итераций}} \cdot (f_{\text{тело}} + f_{\text{инкремент}} + f_{\text{сравнения}})$$
 (2.4)

4) Трудоемкость передачи параметра в функции и возврат из функции равны 0.

2.2.2 Трудоемкость алгоритма блочной сортировки

Обозначим количество блоков за K. Алгоритм состоит из четырех последовательно идущих циклов:

- 1) Поиск минимума и максимума среди всех элементов массива.
- 2) Распределение элементов массива по соответствующим корзинам.
- 3) Сортировка элементов каждой корзины другим алгоритмом сортировки.
- 4) Соединение всех корзин воедино.

Для сортировки корзин на шаге 3) была использована функция std :: sort из заголовочного файла (algorithm) библиотеки языка C + +. Сложность данного алгоритма сортировки $O(N \cdot log(N))$.

Для поиска максимального и минимального элемента в массиве на шаге 1) были использованы функции $std::max_element$ и $std::min_element$ из заголовочного файла (algorithm) библиотеки языка C++. Сложность данных алгоритмов O(N).

Трудоемкость инициализации пяти переменных:

$$f_1 = 5 \tag{2.5}$$

Цикл распределения элементов массива по соответствующим корзинам имеет следующую трудоемкость:

$$f_2 = 1 + 1 + N \cdot (8 + 1 + 1) = 2 + 10 \cdot N = O(N)$$
 (2.6)

Цикл сортировки каждой корзины алгоритмом std :: sort в лучшем случае (элементы распределены по блокам равномерно, асимптотика их просмотра O(K), входной массив расположен так, что внутренняя сортировка работает за лучшее время -O(N)) имеет асимптотику:

$$f_3 = O(N+K) \tag{2.7}$$

В худшем случае (элементы не имеют математической разницы между собой и внутренняя сортировка работает за худшее время – $O(N^2)$) асимптотика данного цикла:

$$f_3 = O(N^2) \tag{2.8}$$

Так как элементы массива равномерно распределены по K корзинам, то цикл соединения всех корзин воедино имеет следующую трудоемкость:

$$f_4 = 1 + 1 + N \cdot (1 + 3 + \frac{N}{K} \cdot (5 + 1 + 3) + 1 + 1) =$$

$$9 \cdot \frac{N^2}{K} + 6 \cdot N + 2$$
(2.9)

Итоговая трудоемкость f_{bucket} равна:

В лучшем случае:

$$f_{bucket} = f_1 + f_2 + f_3 + f_4 = 5 + 2 + 10 \cdot N + O(N + K) + 9 \cdot \frac{N^2}{K} + 6 \cdot N + 2 =$$

$$9 \cdot \frac{N^2}{K} + 16 \cdot N + 7 + O(N + K) = O(N + K)$$
(2.10)

В худшем случае:

$$f_{bucket} = f_1 + f_2 + f_3 + f_4 = 5 + 2 + 10 \cdot N + O(N^2) + 9 \cdot \frac{N^2}{K} + 6 \cdot N + 2 =$$

$$9 \cdot \frac{N^2}{K} + 16 \cdot N + 7 + O(N^2) = O(N^2)$$
(2.11)

2.2.3 Трудоемкость алгоритма сортировки слиянием

Пусть

- *REC* трудоемкость рекурсивного алгоритма;
- *DIR* трудоемкость прямого решения;

- -DIV трудоемкость разбиения ввода (N) на несколько частей;
- *COM* трудоемкость объединения решений.

Тогда трудоемкость рекурсивного алгоритма считается по следующей формуле:

$$REC(N) = \begin{cases} DIR(N), & N \le N_0 \\ DIV(N) + \sum_{i=1}^{n} REC(F[i]) + COM(N), & N > N_0 \end{cases}$$
 (2.12)

где N — число входных элементов, N_0 — наибольшее число, определяющее тривиальный случай (прямое решение), n — число рекурсивных вызовов для данного N, F[i] — число входных элементов для данного i.

Трудоемкость алгоритма сортировки слиянием определяется следующим образом:

1) Трудоемкость разбиения ввода (N) на части. Каждый следующий вызов берется размерность массива в 2 раза меньше предыдущей путем вычисления индекса срединного элемента массива.

$$DIV(N) = 1 + 2 + 1 = 4 (2.13)$$

2) Трудоемкость сортировки левого и правого подмассива (обозначим ее буквой G = G(N)):

$$G(N) = 2 \cdot REC(\frac{N}{2}) \tag{2.14}$$

Число разбиений K массива размером N на подмассивы размера в два раза меньше в алгоритме сортировки слиянием определяется следующей формулой:

$$K = \log_2(N) \tag{2.15}$$

Поскольку выполняется сортировка массива размером N, то

$$REC(\frac{N}{2}) = \frac{N}{2} \cdot \log_2(\frac{N}{2}) = \frac{1}{2} \cdot N \cdot \log_2(N) - \frac{1}{2} \cdot N$$
 (2.16)

Таким образом, трудоемкость сортировки левого и правого подмассива определяется следующей формулой:

$$G(N) = 2 \cdot (\frac{1}{2} \cdot N \cdot \log_2(N) - \frac{1}{2} \cdot N) = N \cdot \log_2(N) - N$$
 (2.17)

3) Трудоемкость объединения решений, а именно слияние двух отсортированных подмассивов

$$COM(N) = 2 + 1 + \frac{N}{2} \cdot (4 + 1 + 1) + \frac{N}{2} \cdot (4 + 1 + 1) + 3 + 1 + \frac{N}{2} \cdot (1 + 4 + 1 + 1) = \frac{19}{2} \cdot N + 7$$
(2.18)

Таким образом, трудоемкость алгоритма сортировки слиянием 2.12 определяется так:

$$f_{merge} = DIV(N) + G(N) + COM(N) = 4 + N \cdot \log_2(N) - N + \frac{19}{2} \cdot N + 7 = (2.19)$$

$$N \cdot \log_2(N) + \frac{17}{2} \cdot N + 11 = O(N \cdot \log_2(N))$$

2.2.4 Трудоемкость алгоритма поразрядной сортировки

Трудоемкость алгоритма поразрядной сортировки состоит из:

- цикла по всем разрядам наибольшего числа в массиве;
- сортировки массива по каждому из разрядов.

Асимптотика трудоемкости поиска наибольшего элемента массива равна:

$$f_1 = O(N) \tag{2.20}$$

Пусть число разрядов наибольшего числа равно K. Тогда трудоемкость цикла сортировки по всем разрядам наибольшего числа равна:

$$f_2 = 1 + 2 + K \cdot (f_{count} + 1 + 2) \tag{2.21}$$

где f_{count} – трудоемкость сортировки по одному разряду.

Трудоемкость сортировки по одному разряду равна:

$$f_{count} = 2 + 9 \cdot N + 47 + 2 + 18 \cdot N + 2 + 5 \cdot N =$$

$$32 \cdot N + 53$$
(2.22)

Итоговая трудоемкость поразрядной сортировки в лучшем и худшем случае равна:

$$f_{radix} = 3 + K \cdot (32 \cdot N + 53 + 3) = 32 \cdot K \cdot N + 56 \cdot K + 3 = O(K \cdot N)$$
(2.23)

Вывод

В данном разделе были построены схемы алгоритмов блочной сортировки, сортировки слиянием и поразрядной сортировки, а также были выполнены теоретические расчеты трудоемкости этих алгоритмов.

Согласно расчетам трудоемкости, на равномерно распределенных данных самым эффективным алгоритмом сортировки будет алгоритм блочной сортировки со сложностью O(N+K). Для сортировки же произвольных данных из всех трех алгоритмов лучше всего подошел бы алгоритм сортировки слиянием со сложностью $O(N \cdot \log_2(N))$.

3 Технологический раздел

В данном разделе будут перечислены требования к программному обеспечению, средства реализации, листинги кода и функциональные тесты.

3.1 Требования к программному обеспечению

К программе предъявляется ряд требований:

- на вход подаётся вектор элементов;
- все элементы вектора целые неотрицательные числа (это необходимо для возможности сравнения сортировок между собой);
- на выходе в том же векторе находятся отсортированные по возрастанию элементы исходного.

3.2 Средства реализации

В качестве языка программирования для этой лабораторной работы был выбран C++[4] по следующим причинам:

- в C++ есть встроенный модуль ctime, предоставляющий необходимый функционал для замеров процессорного времени;
- в стандартной библиотеке C++ есть оператор sizeof, позволяющий получить размер переданного объекта в байтах. Следовательно, C++ предоставляет возможности для проведения точных оценок по используемой памяти.

В качестве функции, которая будет осуществлять замеры процессорного времени, будет использована функция $clock_gettime$ из встроенного модуля ctime [5].

3.3 Сведения о модулях программы

Программа состоит из шести модулей:

- 1) algorithms.cpp модуль, хранящий реализации алгоритмов сортировки;
- 2) processTime.cpp модуль, содержащий функцию для замера процессорного времени;
- 3) memoryMeasurements.cpp модуль, содержащий функции, позволяющие провести сравнительный анализ использования памяти в реализациях алгоритмов сортировки;
- 4) timeMeasurements.cpp модуль, содержащий функции, позволяющие провести сравнительный анализ использования времени в реализациях алгоритмов сортировки;
- 5) таіп.срр файл, содержащий точку входа в программу;
- 6) task7 модуль, содержащий набор скриптов для проведения замеров программы по времени и памяти и построения графиков по полученным данным.

3.4 Реализации алгоритмов

В листингах 3.1-3.4 представлены реализации трех алгоритмов сортировки: блочной, сортировки слиянием и поразрядной.

Листинг 3.1 – Реализация алгоритма блочной сортировки

```
void bucketSort(vector<int> &arr)
    int n = arr.size();
    int minVal = *min_element(arr.begin(), arr.end());
    int maxVal = *max_element(arr.begin(), arr.end());
    int bucketRange = (maxVal - minVal) / n + 1;
    int bucketIndex, i, j, index = 0;
    vector < vector < int >> buckets(n);
    for (i = 0; i < n; i++)
    {
        bucketIndex = (arr[i] - minVal) / bucketRange;
        buckets[bucketIndex].push_back(arr[i]);
    }
    for (i = 0; i < n; i++)
        sort(buckets[i].begin(), buckets[i].end());
    for (i = 0; i < n; i++)
        for (j = 0; j < buckets[i].size(); j++)</pre>
            arr[index++] = buckets[i][j];
}
```

Листинг 3.2 – Реализация алгоритма сортировки слиянием (начало)

```
static void _merge(vector<int> &arr, int low, int high, int mid)
{
    int i, j, k, a;
    int lengthLeft = mid - low + 1;
    int lengthRight = high - mid;
    vector<int> arrLeft(lengthLeft), arrRight(lengthRight);
    for (a = 0; a < lengthLeft; a++)</pre>
        arrLeft[a] = arr[low + a];
    for (a = 0; a < lengthRight; a++)</pre>
        arrRight[a] = arr[mid + 1 + a];
    i = 0;
    j = 0;
    k = low;
    while (i < lengthLeft && j < lengthRight)
    {
        if (arrLeft[i] <= arrRight[j])</pre>
        {
            arr[k] = arrLeft[i];
            i++;
        }
        else
        {
            arr[k] = arrRight[j];
            j++;
        }
        k++;
    }
```

Листинг 3.3 – Реализация алгоритма сортировки слиянием (конец)

```
while (i < lengthLeft)
    {
        arr[k] = arrLeft[i];
        k++;
        i++;
    }
    while (j < lengthRight)</pre>
        arr[k] = arrRight[j];
        k++;
        j++;
    }
}
static void _mergeSort(vector<int> &arr, int low, int high)
{
    if (low < high)
    {
        _mergeSort(arr, low, (low + high) / 2);
        _mergeSort(arr, (low + high) / 2 + 1, high);
        _merge(arr, low, high, (low + high) / 2);
    }
}
void mergeSort(vector<int> &arr)
{
    _mergeSort(arr, 0, arr.size() - 1);
}
```

Листинг 3.4 – Реализация алгоритма поразрядной сортировки (конец)

```
static void countSort(vector<int> &arr, int exp)
{
    int n = arr.size();
    int i;
    vector < int > output(n);
    int count [10] = \{0\};
    for (i = 0; i < n; i++)
        count[(arr[i] / exp) % 10]++;
    for (i = 1; i < 10; i++)
        count[i] += count[i - 1];
    for (i = n - 1; i >= 0; i--)
        output[count[(arr[i] / exp) % 10] - 1] = arr[i];
        count[(arr[i] / exp) % 10]--;
    }
    for (i = 0; i < n; i++)
        arr[i] = output[i];
}
void radixSort(vector<int> &arr)
    int max = *max_element(arr.begin(), arr.end());
    int exp;
    for (exp = 1; max / exp > 0; exp *= 10)
        countSort(arr, exp);
}
```

3.5 Функциональные тесты

В таблице 3.1 приведены тестовые данные, на которых было протестированно разработанное ΠO . Все тесты были успешно пройдены.

Таблица 3.1 – Функциональные тесты

Массив	Блочная	Слиянием	Поразрядная
1 2 3 4 5 6	1 2 3 4 5 6	1 2 3 4 5 6	1 2 3 4 5 6
6 5 4 3 2 1	1 2 3 4 5 6	1 2 3 4 5 6	1 2 3 4 5 6
41 56 67 10 34 2	2 10 34 41 56 67	2 10 34 41 56 67	2 10 34 41 56 67
54 33 0 55 33 7 14	0 7 14 33 33 54 55	0 7 14 33 33 54 55	0 7 14 33 33 54 55
4 4 4 4 4 4	4 4 4 4 4 4	4 4 4 4 4 4	4 4 4 4 4 4
10	10	10	10
U	Сообщение	Сообщение	Сообщение
1)	об ошибке	об ошибке	об ошибке

Вывод

В данном разделе были реализованы и протестированы 3 алгоритма сортировки: алгоритм блочной сортировки, алгоритм сортировки слиянием и алгоритм поразрядной сортировки.

4 Исследовательский раздел

В данном разделе будут проведены сравнения реализаций алгоритмов сортировки по времени работы и по затрачиваемой памяти.

4.1 Технические характеристики

Технические характеристики устройства, на котором проводились исследования:

- операционная система: Ubuntu 22.04.3 LTS x86_64 [6];
- оперативная память: 16 Гб;
- процессор: 11th Gen Intel® Core™ i7-1185G7 @ 3.00 ГГц \times 8.

4.2 Время выполнения алгоритмов

Время работы алгоритмов измерялось с использованием функции $clock\ gettime$ из встроенного модуля ctime.

Замеры времени для каждого размера матрицы проводились 1000 раз. На вход подавались случайно сгенерированные матрицы заданного размера. z

4.3 Использование памяти

Вывод

В данном разделе были проведены замеры времени работы, а также расчеты используемой памяти реализаций алгоритмов сортировки.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Блочная сортировка [Электронный ресурс]. Режим доступа: https://en.wikipedia.org/wiki/Bucket_sort (дата обращения: 21.11.2023).
- 2. Сортировка слиянием [Электронный ресурс]. Режим доступа: https://en.wikipedia.org/wiki/Merge_sort (дата обращения: 21.11.2023).
- 3. Поразрядная сортировка [Электронный ресурс]. Режим доступа: https://en.wikipedia.org/wiki/Radix_sort (дата обращения: 21.11.2023).
- 4. Справочник по языку C++ [Электронный ресурс]. Режим доступа: https://learn.microsoft.com/ru-ru/cpp/cpp-language-reference?view= msvc-170 (дата обращения: 28.09.2022).
- 5. clock_getres [Электронный ресурс]. Режим доступа: https://pubs.opengroup.org/onlinepubs/9699919799/functions/clock_getres.html (дата обращения: 28.09.2022).
- 6. Ubuntu 22.04.3 LTS (Jammy Jellyfish) [Электронный ресурс]. Режим доступа: https://releases.ubuntu.com/22.04/ (дата обращения: 28.09.2022).