	WEP (802.11)	WPA	WPA2 (802.11i)	
Алгоритм	RC4 (потоковое)	RC4	AES	
Размер ключа	40+24, 104+24	40+24, 104+24	128	
ключ	статический	пофреймовый (TKIP)	блочный (ССМР)	
Уязвимости	1) пассивные: сбор фреймов и стат. анализ (слабые IV) KSA 2)активные: повторное использование IV, манипуляция битами	брутфорс	krack	
Особенности	Аутентификация физ. устройства, а не абонента;	1) Контроль целостности для предотвращения манипуляции битами (МІС) – уник. ключ 2) двойное смешивание при выработке ключевой последовательности	1) RSN — концепция повышенной безопасности, иерархия временных ключей 2) ССМР вычисляет МІС СВС-МАС	
Аутентификация	1) Открытая (любой абонент) 802.11 2) Общий ключ (SKA) 802.11 3) MAC not 802.11 (сравнен. сервер)	1) Enterprise (сервер Radius) 2) PSK – персональн.	1) Enterprise (сервер Radius) 2) PSK – персональн.	

WEP

Открытая аутентификация:

- 1) Фрейм Probe Request →
- 2) **←** Фрейм Probe Response
- 3) Auth Request ->
- 4) Auth Response
- 5) Ассоциирование Request \rightarrow (согласование SSID, пароля, сетевого режима a/b/g/n.., режим безопас. WEP,
- 6) Accoциирование Response (WPA, WPA2, настройки канала)

Уязвимости WEP:

- 1. Идентификация SSID (фреймы Beacon, probe response)
- 2. Открытая auth легитимность абонента?
- 3. SKA xor cipher and open text
- 4. МАС передается в открытом виде (чел может подставить свой)

802.1x/EAP (Enterprise-режим)

Алгоритм аутентификации Extensible Authentication Protocol или EAP (расширяемый протокол идентификации) поддерживает централизованную аутентификацию элементов инфраструктуры беспроводной сети и ее пользователей с возможностью динамической генерации ключей шифрования

Архитектура 802.1х

- 1) Клиент (1) ассоциируется с аутентификатором, 3) EAP Response)
- 2) Аутентификатор (2) EAP Request indentity, 5) авторизован, передача всего трафика)
- 3) Сервер аутентификации (4) Radius-ACCEPT/REJECT)

Аутентификация по протоколу ЕАР.

- EAP-MD5 не поддерживает динамическое распределение ключей, уязвим для атаки человек по середине (фальшивая AP), подслушивание запроса в ходе аутентификации).
- EAP-TLS взаимная аутентефикация на базе сертификатов (нужен удостоверяющий центр)
- EAP-LEAP От циско. Основано на паролях. Аутентифицирует пользователя, а не устройство (брутфорс)
- PEAP и EAP-TTLS сертификат только у сервера. Как eap-tls, но не поддерживает утаревших PAP, CHAP. Вместо них PEAP-MS-CHAPv2, PEAP-EAP-TLS.

VPN

VPN отвечает трем условиям: конфиденциальность, целостность и доступность. Следует отметить, что никакая VPN не является устойчивой к DoS- или DDoS-атакам и не может гарантировать доступность на физическом уровне просто в силу своей виртуальной природы.

- **топология "сеть-сеть".** VPN-туннель между двумя географически разнесенными частными сетями;
- **топология "хост-сеть".** удаленные пользователи подключаются к корпоративной сети через Internet;
- топология "хост-хост". 2 хоста, обменивающихся друг с другом шифрованными и нешифрованными данными.

Распространенные туннельные протоколы

- **IPsec.** предоставляет службы аутентификации и шифрования данных на сетевом уровне. Протокол IPSec состоит из трех основных частей:
 - заголовка аутентификации (Authentication Header AH);
 - безопасно инкапсулированной полезной нагрузки (Encapsulating Security Payload ESP);
 - схемы обмена ключами через Internet (Internet Key Exchange IKE).

• PPTP.

Протокол определяет следующие типы коммуникаций:

- РРТР-соединение, по которому клиент организует РРР-канал с провайдером;
- Управляющее PPTP-соединение, которое клиент организует с VPN-сервером и по которому согласует

характеристики туннеля;

- РРТР-туннель, по которому клиент и сервер обмениваются зашифрованными данными.
- **L2TP.** Канальный уровень. Используется PPP с аутентификацией по протоколу PAP или CHAP, но, в отличие от PPTP, L2TP определяет собственный туннельный протокол. не содержит средств шифрования.

IDS – выявлять и своевременно предотвращать вторжения в вычислительные сети

- 1) на базе сети
- 2) на базе хоста

NIDS – анализируют трафик с целью обнаружения известных атак на основании имеющихся у них наборов правил

<u>HIDS — устанавливаются непосредственно на узлах и осуществляют наблюдение за целостностью файловой системы</u>

- 1) на основе сигнатур (события, происходящие в сети, сравниваются с признаками известных атак, которые и называются сигнатурами.)
- 2) на основе базы знаний (основанными на поведении или статистическими)

Из коммерческих решений хорошо известны программы AirDefense Guard и Isomair Wireless Sentry. Они основаны на размещении сенсоров на территории

Угрозы в WI-FI сетях

- 1) Прямые угрозы (человек посередине)
- 2) Чужаки (возможность неавторизованного доступа к корпоративной сети)
- 3) Некорректно сконфигурированные точки доступа
- 4) Некорректно сконфигурированные беспроводные клиенты
- 5) Взлом шифрования
- 6) Имперсонация и Identity Theft (кража личности)

Особенности функционирования беспроводных сетей

- 1) Активность в нерабочее время
- 2) Интерференция
- 3) Связь

Методы ограничения доступа

- 1) Фильтрация МАС-адресов
- 2) Режим скрытого идентификатора SSID (англ. Service Set IDentifier)

Cisco Centralized Key Managment (CCKM)

Вариант аутентификации от фирмы CISCO. Используемые шифры: WEP, CKIP, TKIP, AES-CCMP.

Атаки на Wi-Fi сети

Наиболее распространённые программы для сбора информации — это Kismet и Aircrack-ng suite. Другие программы: Dwepcrack (улучшенная FMS атака), AirSnot (FMS), WepLab (улучшенная FMS атака, атака Koreka).

1. Атаки на сети с WEP-шифрование

- FMS-атака (Fluhrer, Martin, Shamir) самая первая атака на сети с WEP- шифрованием, появилась в 2001 году. Основана на анализе передаваемых векторов инициализации и требует, чтобы пакеты содержали «слабые» инициализационные вектора (Weak IV).
- 2. Атака КОРЕК'А (ник хакера, придумавшего атаку). Количество требуемых уникальных IV несколько сотен тысяч, для ключа длиной 128 бит. Главное требование чтобы IV не совпадали между собой. Абсолютно не важно наличие слабых IV.
- **PTW-атака (Pyshkin, Tews, Weinmann).** прослушивание большого количества ARP-пакетов Достаточно 10000-100000 пакетов. Самая эффективная атака на сеть с WEP-шифрованием.

Манипуляция с ICV

2. Атаки на сети с WPA/WPA2-шифрованием

уязвимости Hole196 в протоколе WPA2. Используя эту уязвимость, авторизовавшийся в сети злонамеренный пользователь может расшифровывать данные других пользователей, используя свой закрытый ключ. Никакого взлома ключей или брут-форса не требуется.

На сегодня основными методами взлома WPA2 PSK являются атака по словарю и метод грубой силы.

Атака по словарю на WPA/WPA2 PSK. PSK не знаем, знаем SSID, Authenticator Nounce (ANounce), Supplicant, Nounce (SNounce), Authenticator MAC-address (MAC-адрес точки доступа) и Suppliant MAC-address (MAC-адрес wifi-клиента). Через проверку MIC будет подбираться PSK.

WPA2

Кардинальными отличиями WPA2 от WPA стало индивидуальное шифрование данных каждого пользователя и более надежный алгоритм шифрования – AES. Долгое время основными методами взлома маршрутизаторов, работавших по WPA2, был взлом PIN-кода при подключении через WPS (Wi-Fi Protected Setup) или перехват рукопожатия и подбор ключа методом подбора «грубой силой». Обезопасить себя можно было, отключив WPS и установив достаточно сильный пароль.

KRACK – способа взлома сетей Wi-Fi, использующих WPA2. С этого момента эксперты стали считать протокол WPA2 ненадежным. Установить ПО.

Свойство	Статический WEP	Динамический WEP	WPA	WPA 2 (Enterprise)
Идентификация	Пользователь, компьютер, карта WLAN	Пользователь, компьютер	Пользователь, компьютер	Пользователь, компьютер
Авторизация	Общий ключ	EAP	ЕАР или общий ключ	ЕАР или общий ключ
Целостность	32-bit Integrity Check Value (ICV)	32-bit ICV	64-bit Message Integrity Code (MIC)	CRT/CBC-MAC (Counter mode Cipher Block Chaining Auth Code — CCM) Part of AES
Шифрование	Статический ключ	Сессионный ключ	Попакетный ключ через ТКІР	CCMP (AES)
Распределение ключей	Однократное, вручную	Сегмент Pair-wise Master Key (PMK)		Производное от РМК
Вектор инициализации	Текст, 24 бита	Текст, 24 бита	Расширенный вектор, 65 бит	48-бит номер пакета (PN)
Алгоритм	RC4	RC4	RC4	AES
Длина ключа, бит	64/128	64/128	128	до 256
Требуемая инфраструктура	Нет	RADIUS	RADIUS	RADIUS

Нововведения WPA3

Для защиты от brute-force введено ограничение на число попыток аутентификации в рамках одного handshake.

Вместо PSK (Pre-Shared Key) ключа в WPA3 реализована технология SAE (Simultaneous Authentication of Equals). Компрометация закрытого ключа одной из сторон не приводит к компрометации сессионного ключа, т.е. даже узнав пароль атакующий не сможет расшифровать ранее перехваченный трафик.

Достоинства WPA3-Personal:

- пользователи могут выбирать легко запоминаемые пароли, не задумываясь о безопасности;
- новые алгоритм SAE обеспечивающий улучшенную защиту за счет изменения алгоритма авторизации;
- шифрование данных Forward Secrecy, защищает трафик данных, даже если пароль был скомпрометирован.

WPA3-Enterprise 192-bit mode

Individualized data encryption B WPA3

Упрощение настройки подключения WPA3 (WPS)

Enhanced Open – протокол, разработанный для защиты пользователя в открытой сети

	WEP	WPA	WPA2	WPA3
Release Year	1999	2003	2004	2018
Encryption Method	Rivest Clipher 4 (RC4)	Temporal Key Integrity Protocol(TKIP) with RC4	CCMP and Advanced Encryption Standard	Advanced Encryption Standard(AES)
Session Key Size	40-bit	128-bit	128-bit	128-bit(WPA3-Personal) 192-bit(WPA3-Enterprise)
Clipher Type	Stream	Stream	Block	Block
Data Integrity	CRC-32	Message Integrity Code	CBC-MAC	Secure Hash Algorithm
Key Management	Not provided	4-way handshaking mechanism	4-way handshaking mechanism	Simultaneous Authentication of Equals handshark
Authentication	WPE-Open WPE-Shared	Pre-Shared Key(PSK)& 802.1x with EAP variant	Pre-Shared Key(PSK)& 802.1x with EAP variant	Simultaneous Authentication of Equals(SAE)&802.1x with EAP variant