UNIT-2

Group

A group G denoted by $\{G, \bullet\}$, is a set under some operations (\bullet) if it satisfies the CAIN properties.

- C Closure
- * A Associative
- * 1 Identity
- * N iNverse.

Abelian Group

A group is said to be Abelian if it already a group and Commutative property is also satisfied i.e. $(a \bullet b) = (b \bullet a)$ for all a, b in G.

Group and Abelian Group

Property		Property	Explanation	
		A1 - Closure	a, b ∈ G, then (a • b) ∈ G.	
dno	ď	A2 - Associative	a • (b • c) = (a • b) • c for all a, b, c ∈ G.	
🔹 Abelian Group	Group	A3 - Identity element	(a • e) = (e • a) = a for all a, e ∈ G.	
• Abe	A4 - Inverse element		(a • a') = (a' • a) = e for all a, a' ∈ G.	
	A5 - Commutative		(a • b) = (b • a) for all a, b ∈ G.	

Cyclic Group

A group G denoted by $\{G, \bullet\}$, is said to be a cyclic group, if it contains at-least one generator element.

Cyclic Group

Question 1: Prove that (G, *) is a cyclic group, where $G = \{1, \omega, \omega^2\}$.

Solution:

Composition Table

* 1 ω ω²

1
$$J$$
 ω ω²

ω ω ω² 1
ω² ω² 1 ω

$$1^{1} = 1$$
 $1^{2} = 1^{*}1 = 1$
 $1^{3} = 1^{*}1^{*}1 = 1$
 $1^{4} = 1^{*}1^{*}1^{*}1 = 1$

$$\omega^{1} = \omega$$

$$\omega^{2} = \omega^{*}\omega = \omega^{2}$$

$$\omega^{3} = \omega^{2*}\omega = 1$$

$$\omega^{4} = \omega^{3*}\omega = \omega$$
(6)

$$\omega^{1} = \omega$$

$$\omega^{2} = \omega^{*}\omega = \omega^{2}$$

$$\omega^{3} = \omega^{2*}\omega = 1$$

$$\omega^{4} = \omega^{3*}\omega = \omega$$

$$(\omega^{2})^{1} = \omega^{2}$$

$$(\omega^{2})^{2} = \omega^{4} = \omega^{3*}\omega = \omega$$

$$(\omega^{2})^{3} = \omega^{6} = \omega^{3*}\omega^{3} = 1$$

$$(\omega^{2})^{4} = \omega^{8} = \omega^{3*}\omega^{3*}\omega^{2} = \omega^{2}$$

Cyclic Group

Question 2: When does group G with operation 'x', is said to be a cyclic group?

Solution:

Let us take an element χ

G = { ...,
$$\chi^{-4}$$
, χ^{-3} , χ^{-2} , χ^{-1} , 1, χ , χ^{2} , χ^{3} , χ^{4} ,}

= Group generated by χ

If $G = \langle \chi \rangle$ for some χ , then we call G a cyclic group.

Cyclic Group

Question 3: When does group G with operation '+', is said to be a cyclic group?

Solution:

Let us take an element y

$$G = \{ \ldots, -4y, -3y, -2y, -y, 0, y, 2y, 3y, 4y, \ldots \}$$

= Group generated by y

If $G = \langle y \rangle$ for some y, then we call G a cyclic group.

Rings

A ring R denoted by $\{R, +, *\}$, is a set of elements with two binary operations, called addition and multiplication, such that for all a, b, c \in R the following axioms are obeyed:

- Group (A1-A4), Abelian Group(A5).
- \bullet Closure under multiplication (M1): If a, b \in R then ab \in R
- $^{\diamond}$ Associativity of multiplication (M2): a (bc) = (ab) c for all a, b, c \in R
- Distributive laws (M3):

$$a (b + c) = ab + ac$$
 for all $a, b, c \in R$
 $(a + b) c = ac + bc$ for all $a, b, c \in R$

Commutative Rings

A ring is said to be commutative, if it satisfies the following additional condition:

Commutativity of multiplication (M4): ab = ba for all $a, b \in R$

Integral Domain

An integral domain is a commutative ring that obeys the following axioms:

Multiplicative identity (M5): There is an element $1 \in R$ such that a1 = 1a = a for all $a \in R$.

No zero divisors (M6): If $a, b \in R$ and ab = 0, then either a = 0 or b = 0.

Fields

A field F , sometimes denoted by {F, +,* }, is a set of elements with two binary operations, called addition and multiplication, such that for all a, b, c ∈ F the following axioms are obeyed:

(A1–M6): F is an integral domain; that is, F satisfies axioms A1 - A5 and M1 - M6.

(M7) Multiplicative inverse: For each a in F, except 0, there is an element a^{-1} in F such that $aa^{-1} = (a^{-1})a = 1$

Note: $a/b = a(b^{-1})$.

Familiar examples of Fields:

- Rational numbers
- Real numbers

Groups, Rings and Fields

A1 - Closure						
A2 - Associative	g g	Group				
A3 - Identity element	Group	an G		Ę.		
A4 - Inverse element		Abelian	Ring	e Ring	_	
A5 - Commutativity of Addition			æ	Commutative	Integral Domain	
M1 – Closure under multiplication				шшо	la D	Field
M2 - Associativity of multiplication				ŭ	ntegi	ιĔ
M3 - Distributive					-	
M4 - Commutativity of multiplication						
M5 - Multiplicative Identity						
M6 - No Zero Divisors						
M7 - Multiplicative Inverse						

Finite Fields

- A finite field or Galois field (so-named in honor of Évariste Galois) is a field that contains a finite number of elements.
- As with any field, a finite field is a set on which the operations of multiplication, addition, subtraction and division are defined and satisfy certain basic rules.
- The most common examples of finite fields are given by the integers (mod p) when p is a prime number.

Application areas:

Mathematics and computer science - Number theory, Algebraic geometry, Galois theory, Finite geometry, Cryptography and Coding theory.

Prime Numbers

- ★ Prime Numbers: Has exactly two divisors.
- ★ If 'N' is prime, then the divisors are 1 and N.
- ★ All numbers have prime factors.

Numbers	, 10	11	100	37	308	14688
Prime Factorization	2 ¹ x 5 ¹	1 ¹ x 11 ¹	2 ² x 5 ²	1 ¹ x 37 ¹	2 ² x 7 ¹ x 11 ¹	2 ⁵ x 3 ³ x 17 ¹
Prime Numbers	2, 5	1, 11	2, 5	1, 37	2, 7, 11	2, 3, 17

Prime Numbers

A prime number is a number greater than 1 with only two factors - itself and one. It cannot be divided further by any other numbers without leaving a remainder.

Prime Numbers - Example

- ★ 2 is a prime number.
- ★ 3 is a prime number.
- ★ 5 is a prime number.
- ★ 7 is a prime number.
- ★ 9 is not a prime number.
- ★ 9 is a composite number.
- ★ 33 is a composite number.

	9		3		1
1	9	3	9	9	9
	9		9		9
	0		0		0

Divisors of 9: 1, 3 and 9

Facts about primes

- ★ Only even prime: 2
- ★ Smallest prime number : 2
- ★ Is 1 a prime number? No.
- ★ Except for 2 and 5, all prime numbers end in the digit 1, 3, 7 or 9.

Modular Arithmetic

- ★ System of arithmetic for integers.
- ★ Wrap around after reaching a certain value called modulus.
- ★ Central mathematical concept in cryptography.

Congruence

 \star In cryptography, congruence(\equiv) instead of equality(=).

Examples:

$$15 \equiv 3 \pmod{12}$$

$$23 \equiv 11 \pmod{12}$$

	1		1		3
12	15	12	23	10	33
	12		12		30
	3		11		3

Valid or Invalid

- \star 38 \equiv 2 (mod 12)
- \star 38 = 14 (mod 12)
 - $5 \equiv 0 \pmod{5}$
 - $10 \equiv 2 \pmod{6}$
 - $13 \equiv 3 \pmod{13}$
 - $2 \equiv -3 \pmod{5}$

Properties of Modular Arithmetic

- 1. $[(a \mod n) + (b \mod n)] \mod n = (a + b) \mod n$
- 2. $[(a \mod n) (b \mod n)] \mod n = (a b) \mod n$
- 3. $[(a \mod n) \times (b \mod n)] \mod n = (a \times b) \mod n$

Properties of Modular Arithmetic

Property	Expression	
Commutative Laws	$(a + b) \mod n = (b + a) \mod n$ $(a \times b) \mod n = (b \times a) \mod n$	
Associative Laws	$[(a + b) + c] \mod n = [a + (b + c)] \mod n$ $[(a \times b) \times c] \mod n = [a \times (b \times c)] \mod n$	
Distributive Laws	[a x (b + c)] mod n = [(a x b) + (a x c)] mod n	
Identities	(0 + a) mod n = a mod n (1 x a) mod n = a mod n	
Additive Inverse	For each a∈Z _n , there exists a '-a' such that a + (-a) ≡ 0 mod n	

Modular Exponentiation

- It is a type of exponentiation performed over a modulus.
- ❖ a^b mod m or a^b (mod m).

Examples:

2³³ mod 30

Example 1

Solve 233 mod 30.

```
= -7<sup>3</sup> mod 30 || 23 mod 30 can be 23 or -7.
23<sup>3</sup> mod 30
                 = -7^3 \mod 30
                  = -7^2 \times -7 \mod 30
                  = 49 \times -7 \mod 30
                  = -133 \mod 30
                  = -13 \mod 30
                  = 17 \mod 30
23^3 \mod 30 = 17
```

Example 2

Solve 31500 mod 30.

```
31^{500} \mod 30 = 1^{500} \mod 30
= 1 mod 30
= 1
31^{500} \mod 30 = 1
```

$$11^7 \mod 13 = (-2)^7 \mod 13$$

Solve 242³²⁹ mod 243.

```
242^{329} \mod 243 = -1^{329} \mod 243
= -1^{329} \mod 243 \parallel -1^{328} \times -1^{1}
= -1 \mod 243
= 242
242^{329} \mod 243 = 242
```

Understanding GCD – Example 2

	25	150
Divisors	1, 5, 25	1, 2, 3, 5, 6, 10, 15, 25, 30, 50, 75, 150
Common Divisors	1	, 5, 25 •
Greatest Common Divisor (GCD)		

Find the GCD(12, 33).

Q	Α	В	R

Q	A	В	R
2	33	12	9
	12	9	3
3	9	3	0
Х	3	0	Х

Find the GCD(750, 900).

Q	Α	В	R

Find the GCD(750, 900).

Q	Α	В	R
1	900	750	150
5	750	150	0
Х	150	0	Х

Find the GCD(252, 105).

Q	Α	В	R
	252	105	

```
Prerequisite: a > b

Euclid_GCD (a, b):

if b = 0 then

return a;

else

return Euclid_GCD (b, a mod b);
```

Euclid's Algorithm - Example 1

```
Example 1: Find the GCD (50, 12).
```

Solution:

```
Here a=50, b=12

GCD (a, b) = GCD (b, a mod b)

GCD (50, 12) = GCD (12, 50 mod 12) = GCD(12, 2)

GCD (12, 2) = GCD (2, 12 mod 2) = GCD(2, 0) = 2

GCD (50, 12) = 2
```

Euclid's Algorithm – Example 2

Example 2: Find the GCD (83, 19).

```
Solution:
Here a=83, b=19
GCD(a, b) = GCD(b, a mod b)
              = GCD (19, 83 \mod 19) = GCD(19, 7)
GCD (83, 19)
GCD (19, 7)
              = GCD (7, 19 \mod 7) = GCD(7, 5)
GCD (7, 5)
              = GCD (5, 7 \bmod 5) = GCD(5, 2)
GCD(5, 2) = GCD(2, 5 \mod 2) = GCD(2, 1)
GCD (2, 1)
              = GCD (1, 2 mod 1)
                                  = GCD(1, 0) = 1
```

Relatively Prime Numbers

Two numbers are said to be relatively prime, if they have no prime factors in common, and their only common factor is 1.

❖ If GCD(a, b) = 1 then 'a' and 'b' are relatively prime numbers.

Relatively Prime Numbers

Question 1: Are 4 and 13 relatively prime?

Solution:

	4	13	
Divisors	1, 2, 4	1, 13	
Common Divisors	1		
Greatest Common Divisor (Greatest Common Divisor (Francisco (A), 19)	1		

GCD(4, 13) = 1

Yes, 4 and 13 are relatively prime numbers.

Relatively Prime Numbers

Question 2: Are 15 and 21 relatively prime?

Multiplicative Inverse

$$5 \times 5^{-1} = 1$$

$$5 \times \frac{1}{5} = 1$$

$$A \times \frac{1}{A} = 1$$

$$A \times A^{-1} = 1$$

Multiplicative Inverse

Under mod n

$$A \times A^{-1} \equiv 1 \mod n$$

$$3 \times ? \equiv 1 \mod 5$$

$$3 \times 2 \equiv 1 \mod 5$$

$$2 \times ? \equiv 1 \mod 11$$

$$2 \times 6 \equiv 1 \mod 11$$

$$4 \times ? \equiv 1 \mod 5$$

$$4 \times 4 \equiv 1 \mod 5$$

Multiplicative Inverse using EEA

Q	Α	В	R	T ₁	T ₂	Т

Points to Ponder

$$T_1 = 0 \text{ and } T_2 = 1$$

$$T = T_1 - T_2 \times Q$$

$$\mathsf{T}_1$$
 is the M.I.

Multiplicative Inverse using EEA

Example 1: What is the multiplicative inverse of 3 mod 5.

Q	Α	В	R	T ₁	T ₂	Т
1	5	3	2	0	1	-1
1	3	2	1	1	-1	2
2	2	1	0	-1	2	-5
Х	1	0	Х	2	-5	Х

∴ 2 is the M.I of 3 mod 5.

Multiplicative Inverse using EEA

Example 3: Find the M.I of 11 mod 26.

Q	A	В	R	T ₁	T ₂	Т
2	26	11	4	0	1	-2
2	11	4	3	1	-2	5
1	4	3	1	-2	5	-7
3	3	1	0	5	-7	26
Х	1	o *	Х	-7	26	Х

The Chinese Remainder Theorem

The Chinese Remainder Theorem (CRT) is used to solve a set of different congruent equations with one variable but different moduli which are relatively prime as shown below:

$$X \equiv a_1 \pmod{m_1}$$

$$X \equiv a_2 \pmod{m_2}$$

. . .

$$X \equiv a_n \pmod{m_n}$$

CRT states that the above equations have a unique solution of the moduli are relatively prime.

$$X = (a_1M_1 M_1^{-1} + a_2M_2M_2^{-1} + ... + a_nM_nM_n^{-1}) \mod M$$

The Chinese Remainder Theorem

Example 1: Solve the following equations using CRT

 $X \equiv 2 \pmod{3}$

 $X \equiv 3 \pmod{5}$

 $X \equiv 2 \pmod{7}$

$X \equiv a_1 \pmod{m_1}$

 $X \equiv 2 \pmod{3}$

$$X \equiv a_2 \pmod{m_2}$$

 $X \equiv 3 \pmod{5}$

$$X \equiv a_3 \pmod{m_3}$$

 $X \equiv 2 \pmod{7}$

Solution:

$$X = (a_1M_1 M_1^{-1} + a_2M_2M_2^{-1} + a_3M_3M_3^{-1}) \mod M$$

$$X = (a_1M_1 M_1^{-1} + a_2M_2M_2^{-1} + a_3M_3M_3^{-1}) \mod M$$

Given		To Find		
a ₁ = 2	$m_1 = 3$	M ₁	M ₁ -1	
$a_2 = 3$	$m_2 = 5$	M ₂	M ₂ -1	м
a ₃ = 2	$m_3 = 7$	M ₃	M ₃ -1	

Given		To Find		
a ₁ = 2	$m_1 = 3$	M ₁	M ₁ -1	
$a_2 = 3$	$m_2 = 5$	M ₂	M ₂ -1	M=105
a ₃ = 2	$m_3 = 7$	M ₃	M ₃ -1	

 $M = m_1 x m_2 x m_3$

$$M_1 = \frac{M}{m_1}$$

$$M_1 = \frac{105}{3}$$

 $M_1^{-1} = 2$

$$M_2 = \frac{M}{m_2}$$

$$M_3 = \frac{M}{m_3}$$

$$M_2 = \frac{105}{5}$$

 $M_2 = 21$

$$M_3 = \frac{105}{7}$$

$$M_1 = 35$$

$$M_1 \times M_1^{-1} = 1 \mod m_1$$

35 x $M_1^{-1} = 1 \mod 3$
35 x 2 = 1 mod 3

$$M_2 \times M_2^{-1} = 1 \mod m_2$$

 $21 \times M_2^{-1} = 1 \mod 5$
 $21 \times 1 = 1 \mod 5$
 $M_2^{-1} = 1$

$$M_3 \times M_3^{-1} = 1 \mod m_3$$

 $15 \times M_3^{-1} = 1 \mod 7$
 $15 \times 1 = 1 \mod 7$
 $M_3^{-1} = 1$

The Chinese Remainder Theorem

Example 1: Solve the following equations using CRT

$$X \equiv 2 \pmod{3}$$

$$X \equiv 3 \pmod{5}$$

$$X \equiv 2 \pmod{7}$$

Solution:

a ₁ = 2	$m_1 = 3$	$M_1 = 35$	$M_1^{-1} = 2$	
a ₂ = 3	$m_2 = 5$	M ₂ = 21	M ₂ -1= 1	M=105
a ₃ = 2	$m_3 = 7$	$M_3 = 15$	$M_3^{-1}=1$	

$$X = (a_1M_1 M_1^{-1} + a_2M_2M_2^{-1} + a_3M_3M_3^{-1}) \mod M$$

$$= (2x35x2 + 3x21x1 + 2x15x1) \mod 105$$

$$= 233 \mod 105$$

$$X = 23$$

- Denoted as Φ(n).
- Φ(n) = Number of positive integers less than 'n' that are relatively prime to n.

Euler's Totient Function

Example 1: Find $\Phi(5)$.

Solution:

Here n=5.

Numbers less than 5 are 1, 2, 3 and 4.

GCD	Relatively Prime?
GCD (1, 5) = 1	✓
GCD (2, 5) = 1	✓
GCD (3, 5) = 1	✓
GCD (4, 5) = 1	✓

Example 2: Find $\Phi(11)$.

Solution:

Here n=11.

Numbers less than 11 are 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10.

GCD	Relatively Prime?
GCD (1, 11) = 1	✓
GCD (2, 11) = 1	✓
GCD (3, 11) = 1	✓
GCD (4, 11) = 1	✓
GCD (5, 11) = 1	✓

GCD	Relatively Prime?
GCD (6, 11) = 1	✓
GCD (7, 11) = 1	✓
GCD (8, 11) = 1	✓
GCD (9, 11) = 1	✓
GCD (10, 11) = 1	✓

Example 3: Find $\Phi(8)$.

Solution:

Here n=8.

Numbers less than 8 are 1, 2, 3, 4, 5, 6, and 7.

GCD	Relatively Prime?
GCD (1, 8) = 1	✓
GCD (2, 8) = 2	×
GCD (3, 8) = 1	✓
GCD (4, 8) = 4	×

GCD	Relatively Prime?
GCD (5, 8) = 1	✓
GCD (6, 8) = 2	×
GCD (7, 8) = 1	✓

	Criteria of 'n'	Formula
	'n' is prime.	$\Phi(n) = (n-1)$
Φ(n)	n = p x q. 'p' and 'q' are primes.	$\Phi(n) = (p-1) \times (q-1)$
	n = a x b. Either 'a' or 'b' is composite. Both 'a' and 'b' are composite.	$\Phi(n) = n \times \left(1 - \frac{1}{p_1}\right) \left(1 - \frac{1}{p_2}\right) \dots$ where p_1, p_2, \dots are distinct primes.

Example 2: Find $\Phi(31)$.

Solution:

Here n=31.

'n' is a prime number.

$$\Phi(n) = (n-1)$$

$$\Phi(31) = (31-1)$$

$$\Phi(31) = 30$$

So, there are 30 numbers that are lesser than 31 and relatively prime to 31.

Example 3: Find $\Phi(35)$.

Solution:

Here n=35.

'n' is a product of two prime numbers 5 and 7.

Let us assign p=5 and q=7.

$$\Phi(n) = (p-1) \times (q-1)$$

$$\Phi(35) = (5-1) \times (7-1)$$

$$\Phi(35) = 4 \times 6$$

$$\Phi(35) = 24$$

So, there are 24 numbers that are lesser than 35 and relatively prime to 35.

Example 4: Find $\Phi(1000)$.

Solution:

Here $n = 1000 = 2^3 \times 5^3$.

Distinct prime factors are 2 and 5.

$$\Phi(n) = n \times \left(1 - \frac{1}{p_1}\right) \left(1 - \frac{1}{p_2}\right) \dots$$

$$\Phi(1000) = 1000 \times \left(1 - \frac{1}{2}\right) \left(1 - \frac{1}{5}\right)$$

$$\Phi(1000) = 1000 \times \left(\frac{1}{2}\right) \left(\frac{4}{5}\right)$$

$$\Phi(1000) = 400$$

Example 5: Find $\Phi(7000)$.

Solution:

Here
$$n = 7000 = 2^3 \times 5^3 \times 7^1$$

Distinct prime factors are 2, 5 and 7.

$$\Phi(n) = n \times \left(1 - \frac{1}{p_1}\right) \left(1 - \frac{1}{p_2}\right) \left(1 - \frac{1}{p_3}\right) \dots$$

$$\Phi(7000) = 7000 \times \left(1 - \frac{1}{2}\right) \left(1 - \frac{1}{5}\right) \left(1 - \frac{1}{7}\right)$$

$$\Phi(7000) = 7000 \times \left(\frac{1}{2}\right) \left(\frac{4}{5}\right) \left(\frac{6}{7}\right)$$

$$\Phi(7000) = 2400$$

Euler's Theorem

For every positive integer 'a' & 'n', which are said to be relatively prime, then $a^{\Phi(n)} \equiv 1 \mod n$.

Example 1: Prove Euler's theorem hold true for a=3 and n=10.

Solution:

```
Given: a=3 and n=10.

a^{\Phi(n)} \equiv 1 \pmod{n}

3^{\Phi(10)} \equiv 1 \pmod{10}

\Phi(10) = 4

3^4 \equiv 1 \pmod{10}

81 \equiv 1 \pmod{10}
```

Therefore, Euler's theorem holds true for a=3 and n=10.

Example 2: Does Euler's theorem hold true for a=2 and n=10?

Solution:

```
Given: a=2 and n=10.

a^{\Phi(n)} \equiv 1 \pmod{n}
2^{\Phi(10)} \equiv 1 \pmod{10}
\Phi(10) = 4
2^4 \equiv 1 \pmod{10}
16 \equiv 1 \pmod{10}
Therefore, Euler's theorem does not hold for a=2 and n=10.
```

Example 3: Does Euler's theorem hold true for a=10 and n=11?

```
Solution:
Given: a=10 and n=11.
a^{\Phi(n)} \equiv 1 \pmod{n}
10^{\Phi(11)} \equiv 1 \pmod{11}
\Phi(11) = 10
10^{10} \equiv 1 \pmod{11}
-1^{10} \equiv 1 \pmod{11}
       \equiv 1 \pmod{11}
```

Fermat's Little Theorem

If 'p' is a prime number and 'a' is a positive integer not divisible by 'p' then $a^{p+1} \equiv 1 \pmod{p}$

Example 1: Does Fermat's theorem hold true for p=5 and a=2?

Solution:

Given: p=5 and a=2.

 $a^{p-1} \equiv 1 \pmod{p}$

 $2^{5-1} \equiv 1 \pmod{5}$

 $2^4 \equiv 1 \pmod{5}$

 $16 \equiv 1 \pmod{5}$

Therefore, Fermat's theorem holds true for p=5 and a=2.

Example 3: Prove Fermat's theorem does not hold for p=6 and a=2.

Solution:

```
a^{p-1} \equiv 1 \pmod{p}
2^{6-1} \equiv 1 \pmod{6}
2^5 \equiv 1 \pmod{6}
32 \equiv 1 \pmod{6}
32 \equiv 1 \pmod{6}
```

Therefore, Fermat's theorem does not hold true for p=6 and a=2.

Question: Does Fermat's theorem hold true for the prime number 11 with the integer 5?

Fermat's Primality Test

Is 'p' prime?

Test:

 a^p - $a \rightarrow p'$ is prime if this is a multiple of p' for all $1 \le a < p$.

Example

Question 1: Is 5 prime?

Solution:

 a^{p} - $a \rightarrow p'$ is prime if this is a multiple of p' for all $1 \le a < p$.

$$1^5 - 1 = 1 - 1 = 0$$

$$2^5 - 2 = 32 - 2 = 30$$

$$3^5 - 3 = 243 - 3 = 240$$

$$4^5 - 4 = 1024 - 4 = 1020$$

∴ 5 is prime

Example

Question 2: Is 3753 prime?

Solution:

```
a^p- a \rightarrow 'p' is prime if this is a multiple of 'p' for all 1 \le a < p 1^{3753}- 1 2^{3753}- 2 3^{3753}- 3 4^{3753}- 4
```

Question: Is 561 prime?

Miller-Rabin Primality Test

- Miller-Rabin primality test or Rabin-Miller primality test.
- Probabilistic primality test.
- Similar to Fermat primality test and the Solovay–Strassen primality test.
- Checks whether a specific property, which is known to hold for prime values, holds for the number under testing.

Miller-Rabin Primality Test

Algorithm

```
Step 1: Find n-1 = 2^k \times m

Step 2: Choose 'a' such that 1 < a < n-1

Step 3: Compute b_0 = a^m \pmod{n}, ..., b_i = b_{i-1}^2 \pmod{n}

+1 \longrightarrow Composite

-1 \longrightarrow Probably Prime
```

Example

Question: Is 561 prime?

Solution:

Given n = 561.

Step 1:

$$n-1 = 2^k \times m$$

$$560 = 2^4 \times 35$$

So
$$k = 4$$
, and $m = 35$

$$\frac{560}{2^1} = 280$$

So k = 4, and m = 35
$$\frac{560}{2^1} = 280$$
 $\frac{560}{2^2} = 140$ $\frac{560}{2^3} = 70$ $\frac{560}{2^4} = 35$ $\frac{560}{2^5} = 17.5$

$$\frac{560}{2^3} = 70$$

$$\frac{560}{2^4} = 35$$

$$\frac{560}{2^5} = 17.5$$

Step 2:

Choosing a = 2; 1 < 2 < 560

Step 3:

Compute $b_0 = a^m \pmod{n}$

 $b_0 = a^m \pmod{n}$

Compute
$$b_0 = a^m \pmod{n}$$

$$b_0 = a^m \pmod{n}$$

$$b_0 = 2^{35} \pmod{561} = 263$$

Is
$$b_0 = \pm 1 \pmod{561}$$
? NO

So calculate b

$$b_1 = b_0^2 \pmod{n}$$

$$b_1 = 263^2 \pmod{561}$$

$$b_1 = 166$$

Is
$$b_1 = \pm 1 \pmod{561}$$
? NO

$$b_2 = b_1^2 \pmod{n}$$

$$b_2 = 166^2 \pmod{561}$$

$$b_0 = 67$$

Is
$$b_2 = \pm 1 \pmod{561}$$
? NO

$$b_3 = b_2^2 \pmod{n}$$

$$b_3 = 67^2 \pmod{561}$$

$$b_3 = 1 \rightarrow Composite$$