Model & Dataset Selection

Selected Models for Forgery Detection

Based on the requirements (Al-generated speech detection, real-time potential, real conversation analysis), I've chosen these three models:

1. RawNet2

- Key Innovation: Uses raw waveform input instead of spectrograms, leveraging deep residual networks for feature extraction.
- Performance: Strong performance on ASVspoof datasets with high EER (Equal Error Rate) reduction.
- Why It's Promising: Efficient feature learning directly from waveforms, reducing preprocessing overhead.
 - Limitations: Requires large-scale training data for generalization.

2. LCNN (Light Convolutional Neural Network)

- Key Innovation: Uses depth-wise separable convolutions with max-feature mapping for robustness.
- Performance: Achieves high accuracy in detecting synthetic speech in benchmark datasets.
- Why It's Promising: Lightweight and computationally efficient, making it suitable for real-time applications.
 - Limitations: Performance can vary across unseen deepfake generation methods.

3. AASIST (Audio Anti-Spoofing using Integrated Spectro-Temporal Features)

- Key Innovation: Jointly models temporal and spectral information using convolutional recurrent networks.
 - Performance: State-of-the-art accuracy on ASVspoof2021 dataset.
- Why It's Promising: Designed explicitly for anti-spoofing, incorporating frequency and time-based detection.
 - Limitations: Higher computational cost compared to LCNN.

Chosen Model for Implementation

I'll go with RawNet2, as it eliminates the need for handcrafted spectrogram features and operates directly on raw audio, making it suitable for diverse speech scenarios.