

ESL-TR-80-58

(12)

AIR POLLUTION TESTING OF HYPERGOLIC FUEL VAPOR SCRUBBERS AT CAPE CANAVERAL AIR FORCE STATION, FLORIDA

W. KEITH FELTS

ENGINEERING - SCIENCE 5 : 7903 WESTPARK DRIVE MCLEAN, VIRGINIA 22103

OCTOBER 1981

FINAL REPORT
JULY 1980 - NOVEMBER 1980

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED

ENGINEERING & SERVICES LABORATORY
AIR FORCE ENGINEERING & SERVICES CENTER
TYNDALL AIR FORCE BASE, FLORIDA 32403

NOTICE

Please do not request copies of this report from HQ AFESC/RD (Engineering and Services Laboratory). Additional copies may be purchased from:

National Technical Information Service 5285 Port Royal Road Springfield, Virginia 22161

Federal Government agencies and their contractors
registered with Defense Technical Information Center
should direct requests for copies of this report to:

Defense Technical Information Center Cameron Station Alexandria, Virginia 22314 SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

		
REPORT DOCUMENTATI	ON PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER	2. GOVT ACCESSION NO.	
ESL-TR-80-58	AD-ALLO	635
4. TITLE (and Subtitle)		5. TYPE OF REPORT & PERIOD COVERED
AIR POLLUTION TESTING OF HYPER	GOLIC FUEL VAPOR	Final Report
SCRUBBERS AT CAPE CANAVERAL AI		July 1980 - November 1980
FLORIDA	. 101.02 01.1120.17	6. PERFORMING ORG. REPORT NUMBER
	•	3729.00/30
7. AUTHOR(a)	ı	8. CONTRACT OR GRANT NUMBER(s)
F,	4P:	
W. Keith Felts	17.4	F33615-80-D-4001
9. PERFORMING ORGANIZATION NAME AND ADDR	RESS	10. PROGRAM ELEMENT, PROJECT, YASK AREA & WORK UNIT NUMBERS
Engineering-Science		PE 62601F
7903 Westpark Drive		JON 19007002
McLean, Virginia 22103		
11. CONTROLLING OFFICE NAME AND ADDRESS	_	12. REPORT DATE
HQ Air Force Engineering and S		October 1981
Tyndall Air Force Base, Florid	a 32403	13. NUMBER OF PAGES
A A A A A A A A A A A A A A A A A A A	to the Company	48
14. MONITORING AGENCY NAME & ADDRESS-11 dif	terent from Controlling Office)	15. SECURITY CLASS. (of this report)
USAF Occupational Environmental	l Health Laboratory	UNCLASSIFIED
Brooks Air Force Base, Texas 7		15a DECLASSISICATION/DOWNGRADING
		15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report)		
Approved for public release; d	istribution unlimite	ed.
17. DISTRIBUTION STATEMENT (of the abstract ent	ered in Block 20, if different from	π Report)
,	•	
		į
18. SUPPLEMENTARY NOTES		
Availability of this report is	anadified an arms	5
Availability of dils report is	specified on verso	front cover.
19. KEY WORDS (Continue on reverse state if necessar		
Emissions	Packed Tower	
Nitrogen Tetroxide	Emission Control	
Monomethylhydrazine	Pollution Control	
Vapor Scrubbers	Rocket Fuel	
Hypergolic Fuel 20: ABSTRACT (Continue on toverse side if necessar,	u and Identify by black and	
Hypergolic fuel and oxidizer so	ruppers were studie	d to determine emissions
produced during actual hypergol	transfers. Scrubb	er liquor used in the fuel
scrubber was 14 percent citric	acta and the scrubb	er liquor in the oxidizer
scrubber was 5 percent NaOH - I	.2 percent Na ₂ SO3:	}
	A 1	

DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

(Reverse)

HOW 412775

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

The fuel (monomethylhydrazine-MMH) scrubber was studied during transfers from bulk tanks to a truck tanker. During fuel transfers the inlet and outlet MMH concentrations were monitored and the scrubber liquor was also sampled for pH and MMH concentration. Results obtained show excellent scrubber efficiency and detail scrubber performance over a course of many transfers. MMH concentrations at the inlet averaged approximately 89,000 ppm and outlet concentrations ranged from 1.1 to 2.3 ppm.

The oxidizer (Nitrogen Tetroxide - N_2O_4) scrubber was studied under similar transfer conditions. Inlet and outlet NO_2 concentrations were measured and scrubber liquor was analyzed for pH and SO_3 concentration. Average inlet NO_2 concentration for the test series was approximately 428,000 ppm and outlet concentrations ranged from approximately 1,100 to 60 ppm. Inlet and outlet N_2O_4 concentrations and scrubber liquor analyses are given for 11 transfer operations. Scrubber efficiency was generally good but capacity of the liquor was low only lasting approximately 2.5 hours under the test transfers.

UNCLASSIFIED

PREFACE

The work described herein was conducted by Engineering Science, 7903 Westpark Drive, McLean, Virginia 22102, under U.S. Air Force Contract Number F 33615-80-D-4001. Work was performed at the Cape Canaveral Air Force Station, Florida. Major William E. Normington managed the program for the U.S. Air Force Occupational and Environmental Health Laboratory. Mr. Thomas B. Stauffer of the Air Force Engineering and Services Center supplied technical direction.

This report has been reviewed by the Public Affairs Office and is releasable to the National Technical Information Service (NTIS). At NTIS it will be available to the general public, including foreign nationals.

This technical report has been reviewed and is approved for publication.

Thomas B. Stauffer
THOMAS B. STAUFFER, GS-13
Research Chemist

Michael J. Byan, Licol, USAF, BSC

Chief, Environics bivision

FRANCIS B. CROWLEY III, Col, USAF Director, Engineering and Services

Laboratory

Acces	sion For	
ntis	CRA&I	X
DTIC	TAB	
ปมกาก	ounced	
Justi	fication)
By Distr	ibucion	,
Avai	lability	r Codes
	Avail a	nd/or
Dist	Speci	al
A		

DTIC COPY INSPECTED

(The reverse of this page is blank.)

TABLE OF CONTENTS

Section	Title	Pag
1	INTRODUCTION	1
	Background	1
	Process Description	1
2	SUMMARY AND DISCUSSION OF RESULTS	4
	MMH Scrubber Test Results	4
	N2O4 Scrubber Test Results	4 8
3	SAMPLING EQUIPMENT	13
	Inlet Gaseous Samples	13
	Scrubber Solution Samples	13
	Outlet Gaseous Samples	13
4	SAMPLING PROCEDURES	16
	Inlet Gas and Scrubber Solution Sampling	
	MMH Outlet Gas Sampling Procedures	16
	N2O4 Outlet Gas Sampling Procedures	17 23
5	ANALYTICAL PROCEDURES	
	MMH Scrubber Analytical Techniques	27
	N ₂ O ₄ Scrubber Analytical Techniques	27
	2 4 same and the contiques	30
APPENDIX A	TEST DATA SUMMARY TABLES	_
	(INCLUDING EXAMPLE CALCULATIONS)	33

LIST OF FIGURES

Figure	Title	Page
1	Block Diagram of Scrubber System Showing Sampling Locations (Typical)	2
2	MMH Scrubber Operations, Scrubber Solution pH and MMH Concentrations versus Scrubber Operating Time	9
3	N ₂ O ₄ Scrubber Operations, Scrubber Solution pH, Sulfite Concentration, Scrubber Outlet NO ₂ Concentration versus Scrubber Operating Time	11
4	Typical MMH/NO ₂ Scrubber Outlet Sampling Train	14
5	Calibration Curve MMH Concentration versus Absorbence, DAB Prepared with Methanol	28
6	Calibration Curve MMH Concentration versus Absorbence, DAB Prepared with Water	29
7	Calibration Curve - NaNO ₂ Concentration versus Absorbence (Perkin Elmer Spectrophometer)	31
8	Calibration Curve, Sulfite Concentration versus Absorbence	32
	LIST OF TABLES	
Table	Title	Page
1	Summary of MMH Scrubber Sampling	5
2	Summary of N2O4 Scrubber Sampling	7
3	Outlet MMH Sampling Summary	19
4	Outlet N ₂ O ₄ Sampling Summary	25

SECTION I

INTRODUCTION

BACKGROUND

The National Aeronautics and Space Administration (NASA) has several wet scrubbers designed to remove hypergolic fuel vapors from various gas streams. The scrubbers are located at Cape Canaveral Air Force Station, Florida (CCAFS). The U.S. Air Force (USAF) is interested in determining if the hypergolic scrubbers are applicable to certain USAF operations involving hypergolic fuels. Towards this end, a contract was let to conduct a series of tests at the CCAFS. The purpose of these tests was to determine the effectiveness of the scrubbers in controlling hypergolic fuel vapors and to quantify the emissions from these scrubbers. The two hypergolic fuels under investigation were monomethyl hydrazine (MMH fuel) and nitrogen tetraoxide (N2O4 oxidizer). Tests were conducted during the month of August 1980. This report presents the results of the testing of the hypergolic fuel vapor scrubbers.

PROCESS DESCRIPTION

Scrubber System

Two scrubbers were presented for testing, one each for MMH and N2O4. These scrubbers were manufactured by Martin-Marietta, Model Number S70-1095, and were designed to meet Kennedy Space Center Specification No. 79K08492. Each scrubber is a portable, skid-mounted system roughly 6 by 6 by 10 feet high. The system contains four vertical-packed bed scrubbing towers. A 750-gallon scrubber liquor storage tank is located beneath the packed towers. Scrubbing liquor is pumped from the storage tank to spray heads located in the top of each tower. The liquid flows by gravity from each tower back into the storage tank. Gas flow through the towers is countercurrent to liquid flow. The gas flows through each of the towers in series. Figure 1 is a block diagram of the scrubber system.

The scrubber system is designed to handle a flow rate of 400 standard cubic feet per minute, much higher than was encountered during the testing. The scrubber inlet line is 6 inches in diameter. For this test the scrubber system was modified to accept a 3/4-inch gas inlet line. Sample taps and valves were provided by Boeing Services International (BSI) on the inlet and outlet lines of the scrubber and the scrubber liquor storage tank.

Block Blagram of Scrubber System Showing Sampling Locations (typical). Figure 1.

Scrubber Liquor

When scrubbing MMH vapors, the scrubbing liquor was a 14 percent solution of sodium citrate in water (citric acid). For removing N_2O_4 varors, a water solution of 5 percent sodium hydroxide and 10 percent sodium sulfite was used.

Fuel/Oxidizer Transiers

Separate scrubber efficiency tests were conducted during fuel (MMH) and oxidizer (N_2O_4) transfer operations. The liquid propellants were transferred from a controlled storage tank to a tank truck. The transfer is a batch operation involving about 3,000 gallons per transfer. Pressurized gaseous nitrogen is used to force the propellant from one tank to the other. The tank being filled is vented through the scrubber to the atmosphere. The actual liquid transfer operation took about three quarters of an hour for MMH and about one and a quarter hours for N_2O_4 . The propellant was then transferred back into the controlled storage tank, after chemical analyses showed that the propellant was not contaminated. Samples of the scrubber inlet and outlet gas streams, as well as scrubber solution samples, were collected during each transfer.

The transfer and scrubber operations were performed by BSI personnel. These operations incorporate very stringent safety regulations. All personnel within 50 feet of the transfer operation are required to wear special pressurized life support suits, called SCAPE suits. All personnel beyond the 50-foot limit must be upwind of the transfer site. We electrical equipment is allowed within 50 feet of the transfer site.

Prior to the start of a cransfer, BSI personnel made all the piping hookups. Safety personnel then inspected all the connections. After this, safety personnel determined if the weather conditions were suitable for the transfer. (No transfers are allowed if there is an electrical storm in the area or if there is an inversion.) After the safety personnel gave their approval, the area was cleared and those working in the area put on their SCAPE suits. The transfer was then initiated. A total of 3 to 4 hours was required to complete the operations associated with a single transfer.

SECTION II

SUMMARY AND DISCUSSION OF RESULTS

Tables 1 and 2 present the results of testing conducted on the MMH and N $_2$ O $_4$ scrubbers at the CCAFS. Table 1 lists the results for the MMH scrubber tests (Run Numbers MMH-R1 through MMH-R17). Table 2 lists the N $_2$ O $_4$ scrubber test results (Run Numbers N $_2$ O $_4$ -R1 through N $_2$ O $_4$ -R10).

MMH SCRUBBER TEST RESULTS

Table 1 presents results for inlet and outlet MMH concentrations, scrubber solution MMH concentration and pH, and the gas flow rate to the scrubber. The inlet MMH concentration reported is the average of a series of grab samples, the number of samples dependent on the length of the run, collected during each run, as is the scrubber solution MMH concentration and pH. The inlet gas flow rate was calculated from the displacement effected by the transfer of liquid propellant per unit time. As part of the normal operations required during a fuel transfer, any excess pressure present in the receiving tank had to be vented through the scrubber prior to the initiation of the actual fuel transfer. This exhausted gas was not included in the air flow rate calculation since the initial tank venting operation was of short duration compared to the entire transfer time. However, gaseous sampling was conducted during this time.

The scrubber outlet MMH concentrations presented in Table 1 represent a variety of sampling conditions addressed in the footnotes to Table 1 and further explained in Section 4, Sampling Procedures. It became apparent to the test team shortly after the test program had started that measuring MMH at the low concentrations found in the scrubber outlet would be very difficult. Several variations in sampling procedures were tried. The method which proved most successful was the collection of a continuous outlet sample over the duration of four MMH transfers. This sample protocol was observed for runs MMH-R9-12, MMH-R13-16, MMH-R17, and MMH-R18. For reasons explained in Section IV, the contractor feels these results represent the most accurate MMH scrubber outlet concentrations measured during the sampling period. Values reported for the other runs should be considered approximate.

The average inlet MMH concentration for all the sampling runs was approximately 89,000 parts per million (ppm), and outlet MMH concentrations averaged 1.1 ppm (all values) and 2.3 ppm (results of four transfer samples, only). This represents a ollection efficiency for the scrubber of greater than 99 percent. Bear in mind, however, that observations made during collection of the inlet samples indicated the presence of droplets or a mist which could have

Table 1. SUMMARY OF MMH SCRUBBER SAMPLING

	ALPANIER AND FEDERAL PARTIES AND FEDERAL PROPERTY PROPERTY AND ENGINEERS			SCRUBBER SOLUTION	NOT
	INCET GAS	INIET MME	OUTLET MM!	MMI	
	5074	こう・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	NOT TOT TOT DO	CONCENTION	
		(PSB)	C SSS)	(G/L)	
MAN - KI	11.8	86,200	40.51	4.0	თ •
SZ Z	11.0	191,000	~0.31	ri ri	7.84
331-123	13.7	201,000	~0.31,2	2.2	1.98
341-R4	11.6	82,000	∿0 <u>.63</u>	3.8	2.09
	₽	83,200	۳.00 د م	7.0	2.26
	9. 0. 1.	000,00	5 4 4	2.0	2.38
Z ZZ	-	00 m	4.0	o. 0	2.46
ZH-HO	es es	188,000	0 4.	7.6	2.57
MMH-R10	73.6	008,60	0 · 0	7.2	2.61
MMI-12.1	10.3	42,700	0 0 0	8.6	2.74
ZWI-ELS	₹. M	38,200		8.7	2.82
(MMI-10-112)	(12.4)	(007,000)	(3.66)		
MAIL PLO	11.6	24,200		10.1	2.89
MMI-RIA	٠, ٧,	71,900	0.47	11.3	2.93

Average of short term samples - high sampling rate prevented good sample retention.

13 CT2 (statistically rejected via 4D Method) not employed because of inordinately high values, probable sample contemination.

Runs R4 and R5 were comparative runs, comparing collection officiency of H2SO4, citric

Starting with run R6, extended impinger train to six impingers, each analyzed separately; results reported are for the sum of all impingers in a train. Also each of these continucus trains ran at different sampling rates to investigate effects on sample retention. acid, and HCl; H2804 results are reported.

These trains ran as an adjunct to 4 transfer samples (see footnote 6).

These values represent an outlet sample collected over the last four runs (R9-R12, R13-These samples, in contractor's opinion, represent most accurate analysis R16) at reduced flow rate. Also, 6 impingers used for train; each impinger analyzed of scrubber outlat concentration. このひらかなれること。

Dual impinger train, ran as an adjunct to 4 transfer samples referred to in footnote 6. Ė

As in Runs R9-R12 and R13-R16, these samples were collected over a total of four transfors. Different values represent results from 3 separate trains, each sampled at different sampling rates. These values are considered more accurate results as in footnote 6.

9 wheat scrubber golution.

Table 1. SUMMARY OF MMH SCRUBBER SAMPLING -- Con luded

And the second control of the second control				SCRUBBER SOLUTION	TION
	INLET GAS	INLET MMH	OUTLET MMH	MMH	
	FLOW	CONCENTRATION	CONCENTRATION	CONCENTRATION	
TEST NO.	(ACFM)	(PPM)	(PPM)	(G/L)	Hď
!					
MMH-R15		45,000	0.8	13.6	3.07
MMII-R16		57,400	0.67	14.0	3.09
(MMH-R13-R16)	(12,4)	(49,600)	(1,96)		
MMII-R17		87,300	3.68	16.1	3.23
			4.38		
			2.38		
MMH-R18	12.5	141,000	1.28	3.19	2.059
			7.68 8.6.1		
			1		

Average of short term samples - high sampling rate prevented good sample retention.

R3 CT2 not employed because of inordinately high values, (statistically rejected via 4D Method) probable sample contamination.

Runs R4 and R5 were comparative runs, comparing collection efficiency of $m H_2SO_4$, citric acid, and HCl; H2SO4 results are reported.

Starting with run R6, extended impinger train to six impingers, each analyzed separately; 'so each of these continon sample retention. uous trains ran at different sampling rates to investigate effe results reported are for the sum of all impingers in a train.

5 These trains ran as an adjunct to 4 transfer samples (see footn).

These samples, in contractor's opinion, represert most accurate analysis of scrubber outlet These values represent an outlet sample collected over the last ... ur runs (R9-R12, R13-R16) at reduced flow rate. Also, 6 impingers used for train; each impinger analyzed separately. concentration.

Dual impinger train, ran as an adjunct to 4 transfer samples referred to in footnote 6.

As in Runs R9-R12 and R13-R16, these samples were collected over a total of four transfers. Differ int values represent results from 3 separate trains, each sampled at different sampling rates. These values are considered more accurate results as in footnote 6. α

Fresh scrubber solution.

Table 2. SUMMARY OF N2O4 SCRUBBER SAMPLING

				SCRUBBER SOLUTION	JTION
	INLET GAS FLOW	INLET NO ₂ CONCENTRATION	OUTLET NO2 CONCENTRATION	CONCENTRATION	
TEST NO.	(ACFM)	(PPM)	(MGG)	(8)	Hd
MON 3	,				
11204-R1	1 کی	578,000	562	7.02	13.31
N204-R2	ր 1 9	106,000	432	3.48	13.16
N204-R3	6.5	379,000	2,6902,3	2.33	12.83
N204-R4	9•9	271,000	682,4	5.82	13.454
N204-R5	7.2	660,000	6872	3.71	13.08
N204-R6	5.0	370,000	94.2,4	5.12	13.474
MON 1			1		
N_2O_4-R7	9•9	615,000	30.2	4.25	13.17
N204-R8	6*9	339,000	2,1202	06*0	11.94
			1,4205		•
N2O4-R9	2.0	514,000	6. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.	5.63	13.614
N204-R10	7.0	567,000	1022	5.06	13.16
N204-RI1	6.2	314,000	582 6,300.273	1.90	11.68

1 Approximate values, trailer site glass not gradated.

Since retentive capacity of impinger trains was low, the average of the results from the short-term impinger train samples was used to generate this value.

Break through observed at the end of this run. (Visual indication of NO2 gas exiting scrubber outlet.)

4 Replaced scrubber solution.

This value represents the NO concentration for the scrubber outlet (see Section IV).

[] [] [] [] [] [] [] [] []

been liquid MMH. The presence of the liquid MMH in the inlet sample would cause the concentration of gaseous MMH to appear very high. This would also cause the collection of iciency of the scrubber (on a gaseous basis) to be inordinately high.

Figure 2 represents a plot of scrubber solution MMH concentration and pH versus scrubber opera — "inc. Predictably, the MMH concentration increased with opera" g time. I so predictably, considering that an acid-base rea c = 1. . been theorized by Kennedy Space Center personnel as the convolling reaction in the MMH scrubber, the scrubber solution pH also increased. After run MMH-R17, the scrubber solution was replaced with fresh citric acid. As can be seen in Table 1, the scrubber outlet concentration dropped considerably (from an average concentration for MMH-R17 of 3.4 ppm to 1.6 ppm for run MMH-R18), indicating that the scrubber solution may have been approaching exhaustion prior to its replacement.

N2O4 SCRUBBER TEST RESULTS

Table 2 presents the inlet and outlet nitrogen dioxide (NO₂) concentrations, the scrubber solution sulfite (SO₃) concentration and pH, and the inlet gas flow rate for tests conducted during a series of N₂O₄ transfers. As for the MMH transfers, the inlet gas flow rate was calculated from the displacement effected by the liquid N₂O₄ transfer. Inlet NO₂ concentrations and scrubber solution values are the average of several grab samples collected during each transfer.

As explained in the footnotes to Table 2 and further explained in Section IV- Sampling Procedures, only those outlet NO_2 samples collected over intervals of an N_2O_4 transfer were used to determine the scrubber outlet NO_2 concentration for that transfer (i.e., scrubber outlet NO_2 samples collected over the duration of the transfer were not used in determining the outlet concentration).

As part of the sampling protocol, two blends of N_2O_4 were to be investigated: MON 1 (99 percent N_2O_4 and 1 percent NO) and MON 3 (97 percent N_2O_4 and 3 percent NO). Transfers NO_2 -R1 through -R6 were conducted while MON 3 was being transferred. Runs NO_2 -R7 through -R12 were conducted on MON 1.

As part of the sampling protocol, scrubber outlet samples were analyzed for nitric oxide (NO) during runs $\rm N_2O_4\text{--}R8$, -R9, and -R10. These results are presented in Table 2 as the second outlet concentration value reported for these runs.

The inlet NO₂ concentration measured during the N₂O₄ transfer averaged 428,000 ppm. This value represents not only NO₂ gas, but also N₂O₄ droplets in the inlet gas stream, as droplets of N₂O₄ were observed during inlet sample collection (see Section IV, Sample Procedures). N₂O₄ reacts with the NO₂ absorbing solution as NO₂ does, thus giving the appearance of very high NO₂ concentrations in the inlet gas stream.

• ρίί Θ ΜΜΉ CONC. (g/1)

FIGURE 2. MMH Scrubber Operations, Scrubber Solution pH and MMH Concentrations versus Scrubber Operating Time

Figure 3a, 3b is a plot of scrubber liquor SO_3^{\pm} concentration and pH, and scrubber outlet NO_2 concentrations versus scrubber operating time. The most obvious observation is the rapidity with which the scrubber solution was exhausted. (Each fresh charge of 10 percent SO_3^{\pm} lasted for approximately 2.5 hours of scrubber operation.) At the completion of Runs N_2O_4 -R3, -R5, -R8, and -R11, the scrubber solution appeared depleted, as as determined from three separate observations: the high NO_2 concentrations measured towards the end of these runs, the low SO_3^{\pm} concentration measured in the scrubber solution at the same times, and the observation of a reddish-orange plume of gas (presumably NO_2) exiting the scrubber exhaust towards the end of Runs N_2O_4 -R3 and -R11.

For Runs N_2O_4 -R4 and -R6, it will be observed that outlet NO_2 concentration started high and dropped to lower values before the scrubber solution was depleted. No explanation can be given for this observation; however, it can be speculated that the scrubber system exhibits a lag effect due to the large scrubber volume in comparison to the gas flow rates.

Referring to Table 2, the outlet NO_2 concentration averaged 1,109 ppm for the 11 transfers conducted during this test program. If the results from those runs where the scrubber liquor $SO_3^{\mbox{\mbox{\mbox{$^{\circ}}}}}$ appeared exhausted are excluded the outlet NO_2 concentration averaged 57 ppm. Referring to Run N_2O_4 -R9, the scrubber outlet concentration was only 6 ppm NO_2 during the run. This sample was collected during a special transfer in which the inlet gas flow rate was only 2.0 actual cubic feet per minute (ACFM) versus an average of 6.5 ACFM for the other 10 transfers. Since it can be assumed that the reaction of NO_2 gas with an aqueous $SO_3^{\mbox{\mbox{$^{\circ}$}}}$ solution is a mass transfer limited reaction, the reduced gas flow rate may have enhanced the removal of NO_2 from the gas stream.

FIGURE 3. N204 Scrubber Operations, Scrubber Solution pH, Sulfite Concentration, Scrubber Outlet NO2 Concentration versus Scrubber Operating Time

(a)

FIGURE 3. N204 Scrubber Operations, Scrubber Solution pH, Sulfite Concentration, Scrubber Outlet NO2 Concentration versus Scrubber Operating Time (concluded)

SECTION III

SAMPLING EQUIPMENT

The equipment employed for sampling both the MMH and $\kappa_2 o_4$ gas scrubbers during this survey was identical.

INLET GASEOUS SAMPLES

For sampling the inlet gas, a 1/4-inch valved stainless steel tap with a rubber septum on the end was placed in the scrubber inlet line. Gaseous samples were extracted from this line using a 30-millimeter (ml) hypodermic syringe with a 2-inch Luer-Lok® needle. After the gaseous sample was collected and the sample absorbing solution (0.1 N HCl for MMH and Saltzman reagent for NO₂) was drawn into the syringe, the syringe was capped by setting a rubber cork on the end of the needle.

SCRUBBER LIQUOR SAMPLES

To collect scrubber liquor samples, a valved 1/4-inch stainless steel tap with a 1/4-inch sample line was placed in the discharge line of the scrubber solution recycle pump. Solution samples were drawn from this line into 500-ml borosilicte glass bottles with Teflon® lined caps. The 1/4-inch sample line extended to the bottom of the sample jar; efforts were made to ensure that the sample line was kept below the sample jar liquid level during sampling. This was done to minimize loss of MMH in the MMH scrubber solution and oxidation of SO_3^- in the N_2O_4 scrubber solution during sample collection.

OUTLET GASEOUS SAMPLES

Figure 4 is a generalized diagram of the equipment employed to collect the outlet gaseous samples. A 1/4-inch stainless steel valved tap was placed in the outlet line of the scrubber. To this, the upstream manifold shown in Figure 4 was attached. To the manifold, a series of glass midget impinger trains containing the appropriate absorbing solution was coupled. The midget impingers were standard impingers fitted with glass bubbler tips rather than frits. All connecting tubing upstream of the glass impingers was either Teflon® or stainless steel.

Gas exiting the midget impinger trains passed through a silica gel drying tube to a polypropylene vacuum line of approximately 75 feet in length. This length was needed to ensure that all unprotected personnel and all electrical equipment was at least 50 feet

FIGURE 4. Typical MMH/NO₂ Scrubber Outlet Sampling Train

upwind from any potential MMH or N_2O_4 leaks, as required by safety regulations. Outlet gas samples were drawn through this assemblage using a RAC® (Research Appliance Corp.) vacuum pump — dry gas meter rotometer assembly for measuring sample flow rates and total gas volume sampled.

SECTION IV

SAMPLING PROCEDURES

This section addresses procedures employed for sampling the MMH and $\rm N_2O_4$ scrubbers at the CCAFS. Procedures for sampling the inlet gas concentrations and scrubber liquors were basically the same for both MMH scrubber testing and $\rm N_2O_4$ scrubber testing. Because of differences in the nature of the gases sampled, sampling for outlet gas concentrations varied considerably between MMH and $\rm N_2O_4$ scrubbers. The first subsection of this section explains the procedures employed for sampling the inlet gas and scrubber liquors for both the MMH and $\rm N_2O_4$ scrubbers. The second subsection describes sampling procedures for MMH scrubber outlet gas concentrations, and the third subsection addresses $\rm N_2O_4$ scrubber outlet NO2 gas concentration sampling.

INLET GAS AND SCRUBBER LIQUOR SAMPLING PROCEDURES

Inlet Gas Sampling Procedures

As originally planned, sampling for inlet gas concentrations was to have employed a midget impinger train assembly similar to the ones used for sampling the outlet gas. Prior to initiation of the test survey at the CCAFS, an investigation of the potential gas concentrations of MMH and NO₂ that might be encountered, based on vapor pressures, revealed that gas concentrations higher than could be effectively sampled with an impinger train would be encountered. Therefore, the decision was made to sample the inlet gas with 30-ml Luer-Lok® syringes.

Generally, the procedure for sampling inlet gas with the syringes was as follows. Within 5 minutes of the initiation of an MMH or N_2O_4 transfer, the first gas sample was extracted with a syringe. Immediately after this gas sample was collected, a known aliquot of absorbing solution was drawn into the syringe containing the gas sample. The syringe was then capped with a rubber cork and. shaken to ensure good mixing between the gas and absorbing solution. Generally, for the MMH transfers, subsequent syringe samples were collected at approximately 10-minute intervals after the first sample collection. For N2O4 transfers, syringe samples were collected at 10- to 15-minute intervals after the first sample was collected. Gas sample volumes for MMH were were 15 ml and 10 ml for NO2 samples. The absorbing solution for the MMH samples was 0.1 N HCl, and the amount of HCl drawn into the syringe after sample collection was 15 ml. For NO2 samples, the absorbing solution was Saltzman Reagent, and the reagent aliquot was 20 ml.

After the completion of a transfer, the syringes containing gas sample and absorbing solution were transported to the field laboratory for sample recovery. Each syringe was vigorously shaken for about one minute, after which the liquid contents were expelled into a volumetric flask. Subsequently, the syringe was washed thoroughly with the appropriate absorbing solution; the wash contents were placed in the appropriate volumetric flask, and the flask contents were then taken up to volume with absorbing solution.

Scrubber Liquor Samples

The scrubber liquor samples were collected 1 to 2 minutes after the inlet gas samples. As explained in Section II, Sampling Equipment, borosilicate glass bottles were used to collect the scrubber solution samples. These samples were capped immediately after collection and were transported at the completion of a transfer to the field laboratory for analysis.

MMH OUTLET GAS SAMPLING PROCEDURES

At the inception of this test survey, the contractor's intent was to sample the outlet MMH concentration using midget impinger trains. The contractor proposed to take a total of six to eight outlet samples during each transfer. Two samples were to have been integrated samples collected throughout the entire transfer operation. The remaining four to six samples were to have been collected individually at 10- to 15-minute intervals during the transfer. These samples would have indicated if the concentration changed during the transfer.

At the completion of the first MMH transfer, results indicated that the outlet concentrations were very low, almost at the lower limit of detectability for the methodology employed to analyze the samples: Subsequently, for runs MMH-R2 and MMH-R3, the contents of each of the impingers was analyzed separately in an attempt to determine if the impinger trains were exhibiting good collection efficiency. Also, since the quantity of MMH being collected in the impinger trains was apparently so low, it was decided to increase the sampling time for each short-term impinger train. Although the results from runs R-2 and R-3 were not conclusive, indications were that two factors were effecting the low values observed for Run MMH-Rl outlet: poor retention of the subject MMH in the absorbing solution (0.1 N hydrochloric acid), and poor retention caused by high sampling flow rates which appeared to strip collected MMH from the lead impingers. Thus, the sampling team was confronted with the difficulty of collecting sufficient sample MMH for analysis in the time required to complete a transfer.

Runs MMH-R4 and -R5 were conducted to investigate different absorbing solutions: 0.1 N sulfuric acid (H_2SO_4), 0.1 N citric acid, and 0.1 N hydrochloric acid (HCl). The results of these runs indicated that the H_2SO_4 solutions were the best absorbing solutions. Subsequent sampling for MMH in the scrubber outlet

gas stream employed $0.1~\underline{N}$ H₂SO₄ as the absorbing solution in the impinger trains. Also investigated during runs MMH-R4 and -R5 was the alteration of the impinger train from a total of three impingers to four impingers per train; this was done in an attempt to improve retention of MMH in the impinger train; however, the results were inconclusive.

Runs MMH-R6 and -R7 featured an expanded impinger train (six impingers) as well as variations in the sampling flow rates in order to investigate the effects flow rate had on collection efficiency. The results of these runs indicated that a lower flow rate effected better sample MMH retention, and the additional impingers were required to retain the MMH collected. Also, starting with these runs, no further short-term impinger train samples were collected.

Runs MMH-R9 through -R12, MMH-R13 through -R16, MMH-R17, and MMH-R18 represent scrubber outlet samples collected over the duration of four transfers. These samples were collected at a lower flow rate than attempted during any of the previous runs; since the sample flow rate was so low, it was necessary to collect a single sample over four transfers, thereby ensuring sufficient sample volume collection. These samples were analyzed by impinger (i.e., each impinger was analyzed individually); results indicated better sample MMH collection efficiency than had been previously observed. Because of this higher efficiency, the contractor believes that these outlet samples (Runs MMH-R12, -R16, -R17, and -R18) represent the most accurate values for scrubber outlet MMH concentrations. As an adjunct to the samples collected during these four transfers, runs MMH-R9 through +R16 featured two impinger trains of two impingers each, run parallel to the impinger train sample collected during the four transfers. These impinger trains were analyzed at the completion of each individual transfer. This was not done during runs MMH-R17 and -R18; instead, these two impinger trains were replaced with two impinger trains, each with six impingers per train, which were run for the duration of the four transfers. The results for each impinger train are reported individually as the outlet MMH concentration for runs MMH-R17 and -R18.

Table 3 presents a summary of sampling techniques, flow rates, etc., employed during the testing for MMH in the scrubber outlet gas stream.

Prior to the initiation of each sampling run, a series of impinger trains was charged with 20 ml of absorbing solution in each impinger at the field laboratory. The impinger trains were then transported to the transfer area and connected to the sampling manifold (Section III, Sampling Equipment) in preparation for sampling. After plumbing was accomplished, but before sampling, a leak check was performed using the following technique. The valve at the scrubber outlet sample line was closed and all intermediate valves were opened, and the RACO vacuum pump was turned on. The vacuum pump was allowed to run until 10 inches of vacuum was developed in

Table 3. OUTLET MMI SAMPLING SUMMARY

THE PROPERTY OF THE PERSON NAMED IN THE PERSON	**************************************	The Control of the Co				
RUN NO.	SAMPLE TYPEL	SAMPLE FLOW RATE?	ABSORB . SCLUTION	NO. OF IMPINGERS	HOW3	COMMENTS
RI-CTI CT2 T1-T5	Continuous Continuous Short Term	1.85 0.55 0.92	HC1 TC1	ପ୍ଟେମ	Together Together Together	Very low MMH concentrations measured, at lower limits of detectability. TI-TS reported.
R2-CT1 CT2 T4-T6	Continuous Continuous Short Term	0.87 0.68 0.89	HG1 HG1	୍ ମ ମ ମ	Separately Together Separately	Impingers analyzed independently as a check of impinger train collection efficiency. T4-T6 reported.
R3-CT1 CT2 T1-T3	Continuous Continuous Short Term	1.77 0.73 0.81	HC1 HC1	ጥ ጠ ጠ	Separately Separately Separately	Average of Tl-T3 reported.
74-041 042 043	Continuous Continuous	0 0 0 0 0 0 0 0 0	H2SO4 Citric Acid HCl	दिखक्	Separately Separately Separately	Chack for absorbing solution applicability. Crl reported.
25 25 25 25 25	Continuous Continuous Continuous	20°50 80°50 80°50	H2SOW Citric Acid HCl	च च च	Separately Separately Separately	Check for absorbing solution applicability. Cul reported.
ACCRECATION OF THE OWNERS AND SOUTHWIND NAMED OF THE OWNER, WHEN THE OWNER, WH						

Sample type - Continuous - samples collected over the entire transfer.

Sample rate - standard literators (Sample rate - standard literators minute (68°F, 29.92 inches mercury).

Neported values refer to results shown on Table 1.

Table 3. OUTLET MMH SAMPLING SUMMARY -- Continued

COMMENTED	Extended impinyer train to check on collection efficiency. Also varied sampling flow rates. CTl reported.	Continued investigation of varied sample flow rates. CT1, CT2, and CT3 results averaged and reported.	Scratched because scrubber solv- tion recycle pump was not started at the beginning of transfer.	These samples were collected as an adjunct to four transfer samples collected. Averágo of CTl and CT2 results reported for each run.
HOW3	Separately Separately Separately	Separately Separately Separately		Together Together Together Together Together Together
NO. OF IMPINGERS	υυυ	ယ္လပ္	!	00000000
ABSORB. SOLUTION.	H2SO4 H2SO4 H2SO4	H ₂ SO ₄ H ₂ SO ₄ H ₂ SO ₄		12 SO4 H2 SO4 H2 SO4 H2 SO4 H2 SO4 H2 SO4 H2 SO4
SAMPLE FLOW RATE ²	0.84 0.65 0.47	0.85 0.64 0.50		0.82 0.66 0.82 0.66 0.79 0.87
SAMPLE TYPEL	Continuous Continuous Continuous	Continuous Continuous Continuous	**	Continuous Continuous Continuous Continuous Continuous Continuous
RUN NO.	R6-CT1 CT2 CT3	R7-CT1 CT2 CT3	32	R9-CT1 CT2 K10-CT1 CT2 R11-CT1 CT2 CT2

Sample type - Continuous - Samples collected over the entire transfer. Short Term - Samples collected over a portion of a transfer; samples collected consecu-

tively for duration of transfer.

Sample rate - standard liters per minute (68°F, 29.92 inches mercury).

How analyzed - contents of impingers analyzed independently or added together and analyzed as one. Reported values refer to results shown on Table 1.

OUTLET MMH SAMPLING SUMMARY -- Continued Table 3.

RUN NO.	SAMPLE TYPE1	FLOW RATE ²	ABSORB. SOLUTION	NO. OF IMPINGERS	HOW ³ ANALYZED	COMMENTS4
R9 thru R12-C.3	Continuous	0.28	H ₂ SO ₄	v	Separately	This sample was collected during K9 through R12 transfers at a greatly reduced sampling flow rate. This result reported independently.
R13-CT1 CT2 R14-CT1 CT2 R15-CT1 CT2 R16-CT1	Continuous Continuous Continuous Continuous Continuous Continuous	0.79 0.67 1.74 0.62 0.85 0.66	112504 12504 12504 12504 12504 12504 12504 12504	0000000	Separately Separately Separately Separately Separately Separately Separately	These samples were collected as an adjunct to four transfer samples collected. Average of CTI and CT2 results reported for each run.
R13 thru R16-C13	Continuous	0.28	H2 SO4.	v	Separately	This sample was collected as R9 through R12 sample. This result reported independently.

Sample type - Continuous - sample collected over the entire transfer. Short Term - samples collected over a portion of a transfer; samples collected consecu-

tively for duration of transfer. Sample rate - standard liters per minute (68°F, 29.92 inches mercury).

How analyzed - contents of impingers analyzed independently or added together and analyzed as one. Reported values refer to results shown on Table 1.

OUTLET MMH SAMPLING SUMMARY--Concluded Table 3.

RUN NO.	SAMPLE TYPE1	FLOW RATE2	ABSORB. SOLUTION	NO. OF IMPINGERS	HOW ³	COMMENTS ⁴
R17-CT1 CT2 CT3	Continuous Continuous Continuous	0.29 0.22 0.25	H ₂ SO ₄ H ₂ SO ₄ H ₂ SO ₄	တ ပ ပ	Separately Separately Separately	Run MMH Rl7 was collected during four transfers. Results of each impinger train reported (i.e., CTl, CT2, CT3)
R18-CT1 CT2 CT3	Continuous Continuous Cortinuous	0.30 0.23 0.20	H ₂ SO ₄ H ₂ SO ₄ H ₂ SO ₄	യയ	Separately Separately Separately	Run MMH R18 collected and re- ported as Run MMH R17.

Sample type - Continuous - sample collected over the entire transfer.

Sample rate - standard liters per minute (68°F, 29.92 inches mercury). tively for duration of transfer.

How analyzed - contents of impingers analyzed independently or added together and analyzed as one. Reported values refer to results shown on Table 1.

the impinger train, as measured via a vacuum gauge installed in the inlet manifold assembly. After the appropriate vacuum had been established, the impinger contents were checked for bubbling, and the dry gas meter register was observed for movement. If no bubbling was observed, and if the dry-gas meter registered less than 0.02 cubic feet in one minute, the system was considered leak tight. In no case was sampling allowed to proceed unless this leak check had been conducted satisfactorily. During sampling, the vacuum did not exceed 2 inches of vacuum.

At completion of a transfer, the impinger trains were disconnected from the sampling manifold, sealed with rubber caps, and transported to the field laboratory for sample recovery and analysis.

Sample recovery was accomplished by transferring the impinger contents into an appropriately sized volumetric flask. The impingers were then washed with the solution employed as the absorbing solution for that impinger train. The wash contents were then transferred to the volumetric flask, and the flask was brought up to volume with absorbing solution.

N2O4 OUTLET GAS SAMPLING PROCEDURES

As was the case with MMH sampling, the sampling team encountered difficulties in using impinger trains effectively to sample the scrubber outlet for the subject gas. For the $\rm N_2O_4$ scrubber, the difficulty encountered resulted from the fairly high $\rm NO_2$ gas concentration present in the scrubber outlet, and the poor transfer of $\rm NO_2$ gas into the aqueous medium present in the impingers (Saltzman reagent).

Continuous impinger train samples were collected for the duration of this phase of the test program, as were short-term impinger trains. Not until after evaluation of the data at the completion of the test program, however, did it become obvious that the retention capacity of the continuous trains had been exceeded. For example, NO₂-Rl impinger trains CTl and CT2 measured NO₂ concentrations in the scrubber outlet of 12 ppm and 28 ppm, respectively. Short term impinger trains T3 through T6 measured an average NO₂ concentration of 56 ppm for the same time period. This pattern repeated itself for continuous samples collected of the N₂O₄ scrubber outlet gas; for this reason, results reported for the N₂O₄ scrubber outlet NO₂ concentrations were calculated using the average of the short term impinger train results for each of the N₂O₄ transfers.

The techniques employed for setting up, leak checking, and recovering the impinger trains used to sample the $\rm N_2O_4$ scrubber outlet were identical to those used for the MMH scrubber. (See previous heading, MMH Outlet Gas Sampling Procedures.)

For Run NO_2 -Rl, each impinger was filled with 20 ml of Saltzman reagent; however, due to the high NO_2 concentrations measured during

this run, the decision was made to increase the amount of Saltzman reagent to 30 ml in each impinger. After analysis of NO₂-R4 had been completed, results indicated that three impingers per train, as originally planned, were not sufficient. The decision was made to increase the number of impingers per train to six for run NO₂-R5 and all subsequent N₂O₄ transfers. However, even with six impingers in series, small amounts of NO₂ were observed in the last impinger of all trains. (Saltzman reagent turns pink upon contact with low concentrations of NO₂.)

While the test program was underway, the desire was expressed for a quantification of the amount of nitric oxide (NO) being discharged from the N₂O₄ scrubber. Employed was a method from Air Pollution Sampling and Analysis, 2nd Edition, for sampling NO (Method 405 - Tentative Method of Analysis for Nitric Oxide Content of the Atmosphere), whereby an oxidation chamber is placed in a sampling train for converting NO to NO₂, and the NO₂ formed is measured using the standard Saltzman technique. This was done during runs NO₂-R8, -R9, and -R10, plumbing this NO sampling train at the end of an NO₂ sampling train (Train T6). The oxidation chamber was plumbed in after the NO₂ impinger train, and the NO train followed the oxidation chamber.

Table 4 presents a summary of sampling techniques, flow rates, etc., employed during the testing for ${\rm NO}_2$ in the scrubber outlet gas stream.

Table 4. OUTLET N2O4 SAMPLING SUMMARY

RUN NO.	SAMPLE TYPE1	SAMPLE FLOW RATE ²	ABSORB. SOLUTION	ORB.	NO. OF IMPINGERS	HOW ³ ANALYZED	COMMENTS4
R1-CT1	Continuous	0.49	Ę	Saltzman	m	Together	Average of T3-T4
CT2	Continuous	0.22		Saltzman	m	Together	reported.
T3-T6	Short Term	0.29	mJ	Saltzman	m	Together	
R2-CT1	Continuous	0.23	딭	Saltzman	ĸ	Together	Average of Tl-T5
Ci.	Continuous	0.22	30 ml 8	Saltzman	ო	Together	reported
T1-T5	Short Term	0.30	겉	Saltzman	е	Together	
R3-CT1	Continuous	0.22	겉	Saltzman	m	Together	Average of Tl-T5
CT2	Continuous	0.21	30 ml. s	Saltzman	ო	Together	reported
T1-T5	Short Term	0.32	TH.	Saltzman	m	Together	•
R4-CT1	Continuous	0.22	Ę	Saltzman	m	Together	Average of Tl-T6
CT2	Continuous	0.21	TII	Saltzman	٣	Together	reported
T1-T6	Short Term	0.26	30 ml s	Saltzman	e	Together	
R5-CT1	Continuous	0.23	Ę	Saltzman	9	Together	Average of T3-T5
T3-T5	Short Term	0.27	30 ml 8	Saltzman	v	Together	reported
R6-CT2	Continuous	0.22	30 mJ S	Saltzman	v	Together	Average of T3-T6
T3-T6	Short Term	0.25	30 ml 9	Saltzman	9	Together	reported

Sample type - Continuous - samples collected over the entire transfer.

Short Term - samples collected over a portion of a transfer; samples collected consectutantion of transfer.

Sample rate - standard liters per minute (68°F, 29.92 inches mercury). Now analyzed - contents of impingers analyzed independently or added together and analyzed as one. Reported values refer to results shown on Table 2.

语列

Table 4. OUTLET N204 SAMPLING SUMMARY -- Concluded

RUN NO.	SAMPLE TYPE1	SAMPLE FLOW RATE ²	ABSORB. SOLUTION	NO. OF IMPINGERS	HOW ³ ANALYZED	COMMENTS4
R7-CT2	Continuous	0.21	30 ml Saltzman	v	Together	Average of many
T3-T6	Short Term	0.24	30 ml Saltzman	· v	Together	reported
R8-CT2	Continuous	0.20	30 ml Saltzman	φ	Together	Average of T4-T6
T4-T6	Short Term	0.25	30 ml Saltzman	Q	Together	reported
16	Short Term	0.25		7		NO sample
R9-CT2	Continuous	0.42	30 ml Saltzman	Q	Together	Average of T4-T6
T4-T6	Short Term	0.24	30 ml Saltzman	9	Together	reported
16	Short Term	0.24	30 ml Saltzman	61	Together	NO sample
R10-CT2	Continuous	0.21	30 ml Saltzman	g	Together	Average of T4.T6
T4-T6	Short Term	0.25	30 ml Saltzman	G	Together	reported
16	Short Term	0.25	30 ml Saltzman	7	·	NO sample
R11-CT2	Continuous	0.20	30 ml Saltzman	ø	Together	Average of T4-T6
T4-T6	Short Term	0.25	30 ml Saltzman	g	Together	reported

Sample type - Continuous - samples collected over the entire transfer. ~

Short Term - samples collected over a portion of a transfer; samples collected consec-

utively for duration of transfer.

Sample rate - standard liters per minute (68°F, 29.92 inches mercury).

How analyzed - contents of impingers analyzed independently or added together and analyzed as one. 0 m 4

Reported values refer to results shown on Table 2.

SECTION V

ANALYTICAL PROCEDURES

This section describes the analytical methods employed during the hypergolic vapor scrubber testing conducted at the CCAFS. The first subsection addresses the analytical techniques employed during MMH scrubber testing, while the second subsection addresses the N_2O_4 scrubber testing analytical methods. Test data summary tables, including example calculations, are presented in Appendix A.

MMH SCRUBBER ANALYTICAL TECHNIQUES

MMH Analysis

The analytical method for MMH determinations was the colormetric procedure whereby MMH reacts with p-dimethyl amino benzaldehyde (DAB) in an aqueous acid medium to form a highly colored product. Using a Perkir Elmer or Spectronic 20 spectrophotometer, with the instrument set to zero absorbence using a reagent blank, the absorbence was read at 460 namometers (nm) This absorbence was then compared with a calibration curve prepared using aqueous solutions of MMH and DAB.

Because of an equipment malfunction encountered during the test period involving the Perkin Elmer spectrophotometer, the field laboratory personnel were forced to use a Spectronic 20 single-beam spectrophotometer for a portion of the test period. Figures 5 and 6 show the calibration curves employed for MMH analysis using the two different spectrophotometers. Observe that these figures also address the use of DAB prepared: (1) in methanol, and (2) in water. Due to the shortage of methanol available at the field laboratory, it was necessary to analyze some of the MMH samples using DAB prepared in water instead of the specified methanol. The calibration curves drawn in Figures 5 and 6 were determined using linear regression.

pH Analysis

The MMH scrubber solution pH was measured using a standard glass pH electrode and an Orion pH meter. Samples were shaken well before measurement; samples were stirred with a magnetic stirring bar during measurement. The pH calibrations were done using standard buffer solutions.

* p - Dimethylaminobenzeldehyde

FIGURE 5. Calibration Curve MMH Concentration versus Absorbance, DAB Prepared with Methanol

* p - Dimethylam nobenzeldehyde

FIGURE 6. Calibration Curve MMH Concentration versus Absorbance, DAB Prepared with Water

FIGURE 7. Calibration Curve - NaNO₂ Concentration versus Absorbance (Perkin Elmer Spectrophotometer)

FIGURE 8. Calibration Curve, Sulfite Concentration versus Absorbance

31 (The reverse of this page is blank.)

A PENDIX A

FFST DATA SUMMARY TABLES (INCLUDING ELAMPLE CALCULATIONS)

MMH/NO2 GASE OS EMITSTORS

Example Calculations

Sumple No. N204 OUT-R10-14

PRESANTONAL DATA

a. Volume of dry gas sampled, meter conditions	(v _m) 0.079 CF
b. Dry gis mater calibration coefficient (Y)	0.96
c. Average gas meter temperature $(T_{\rm m})$	561°R
d. Barometric pressure (P _b)	29.93 in. Hg
e. Sample absorbence (x)	0.049 ABS Units
f. Sample dilution factor (DF)	1.2,500
g. Slope of calibration curve (m)	648.833
h. Y-intercept of calibration curve (b)	1.4308 x 10 ⁻³

CORSTANTS

- a. Saltzman factor (empirical observation where one mole of NO₂ gas yields the absorbance of 0.72 moles of sodium nitrite) (K)
- b. Conversion factor liters per cubic 'oot (C_f) 28.3118 liters

0.72

DERIVED DATA

1. Conversion of dry gas sampled to standard liters

$$v_{mst} = (Y)(v_m) \left(\frac{T_{st}}{T_m}\right)\left(\frac{P_m}{P_{st}}\right) (C_f)$$

Where: $T_{\rm St}$ is the temperature at standard conditions (528°R) and $P_{\rm St}$ is the pressure at standard conditions (29.92 in. Hg).

 $V_{\text{mst}} = (0.96)(0.079) \left(\frac{528}{561}\right) \left(\frac{29.93}{29.92}\right) (28.3)18) = \frac{2.02 \text{ dry}}{\text{standard leters}}$

2. Calculation of millig-ams of NaNO2 collocked in impiager train during saunting.

From the equation for a straight line, y : ax + b:

$$\underset{2}{\text{ing NoNO}} = (\frac{x - b}{m}) \text{ DF}$$

mg NaNO
$$(0.049 - 1.4308 \times 10^{-3})$$
 12,500 = 0.9164 mg

3. Conversion of milligrams of MaNO $_2$ to PPM of NO $_2$

$$ppm = \frac{mg \ NaNO_2}{V_{mst}} \frac{V_{stp}}{M} \frac{1}{K} \frac{1}{1,000} \frac{g/mg}{(1,000,000)}$$
 parts/million)

Where $V_{\rm stp}$ is the volume in liters occupied by one mole at standard temperature and pressure (68°F, and 29.92 in. Hg), and M is the molecular weight of NaNO2 (69 g/mole).

ppm =
$$(\frac{0.0164}{2.02})$$
 $(\frac{24.04}{69})$ $(\frac{1}{6.72})$ 1000 = 219 ppm

MMH/SULFITE CONCENTRATIONS IN SCRUBBER LIQUORS

Example Calculations

Simple No. MMH-R1-SS1

OPERATIONAL DATA

a.	Sample absorbence (x)	0.337 ABS Units
b.	Sample dilution factor (DF)	500
c.	Slope of calibration curve (m)	0.98963
đ.	Y-intercept of calibration curve (b)	3.9667 × 10 ⁻³

DERIVED DATA

1. Calculate ug of MMH contained in 1 ml of scrubber liquor

$$\frac{ug}{ml}$$
 MMH = $(\frac{x-b}{m})$ DF

$$\frac{\text{ug}}{\text{ml}} \text{ MMH} = (\frac{0.337 - 3.9667 \times 10^{-3}}{0.98963}) 500 = 168 \text{ ug}$$

2. Convert to grams MMH per liter

$$g/1 \text{ MMH} = \frac{ug/m1 \text{ MMH}}{10^6 \text{ ug/g}}$$
 (1000 m1/1)

$$g/1$$
 MMH = $\frac{168}{10^6}$ (1000) = 0.168 $g/1$

MMH SCRUBBER SAMPLES

	-	~ -	Salkoniner		<u>.</u>
		MMH	LIQUOR	HMM	
SAMPLE	GAS SAMPLE	CONC.	SAMPLE	CONC.	
RUN TIME	NUMBER	(PPM)	NUMBER	(G/L)	рН
1050-1131					
7/31/80					
1052	MMH-IN-R1-S1	23,300	WMH-R1-SS1	0.2	1.53
1107	\$2	138,000	SS2	0.4	1.59
1117	\$3	17,500	SS3	0.2	1.59
1127	\$4	46,000	SS3	0.7	1.65
1102-1131.5	MMH-OUP-R1-CT1	0.1			
1104-1131.7	CT2	0.2			
1050-1100	'rl	0.4			
1105-1115	T2	0.3			
1115-1125	'T3	0.2			
1125-1127.8	T4	0.6			
1128-1131.7	Т5	1.0			
0950-1037					
8/1/80					
0951	MMH-IN-R2-S1	251,000	MMH-R2-SS1	0.6	1.71
1002.5	S2	242,000	SS2	1.0	1.82
1012.5	S3	166,000	SS3	1.1	1.85
1023.5	S 4	210,000	SS4	1.4	1.90
1033.5	S5	88,000	SS5	1.5	1.94
0946-1039	MMH-OUT-R2-CT1-A	0.1	203	2.03	1.74
	В	0			
	С				
0947-1039	CT2	0.2			
0947.5-1000	T4A	0.1			
	В	0.1			
	С	0.1			
1001-1021	MMH-OUT-R2-" -4	0.1			
	7	0			
	C	0.1			
1021-1038	TG-A	0.1			
	В	0.1			
	С	0.1			
1222-1258					
8/1/80					
1224	MMH-IN-R3-S1	135,000	MMH-R3-SS1	1.8	1.92
1234.5	\$2	90,000	SS2	2.0	1.96
1245	S3	47,900	SS3	2.3	1.97
1251	54	131,000	SS4	2.4	2.00
1256.5	\$5	600,000	SS5	2.4	2.94
		÷		-	· • -

MMH SCRUBBER : MPLES (Continued)

	SCPUBBER						
		MMH	LIQUOR	нмм			
SAMPLE	GAS SAMPLE	CONC.	SAMPLE	CONC.			
RUN TIME	NUMBER	(PPM)	No MBER	(G/L)	рН		
1221-1300	MMH-OUT-R3-CT1-A	0					
1221-1300	B	0					
	C						
	C	0	,				
1222 1224		-					
1222-1300	CT2-A	6.5					
	В	7.2					
	C	5.3					
1222-1231.5	T1-A	0.1					
	В	0.1					
	С	0.1					
1231.5-1247.5	T2-A	0.1					
	В	0.1					
	С	0.2					
1247.5-1300	M:MI-OUT-R3-T3-A	0.1					
	В	0					
	C	0.1					
1226-1304.8							
8/4/80							
	1000 -TN -DA -C3	22 520	10.81 54 . (2)	2.1	2 01		
1228	MMH-JN-R4-Sl	33,300	15-1-4-4-13-11	3.1	2.01		
1236	S2	87,700	.33	3.4	2.04		
1242	S3	97,200	0S3	3.9	2.07		
1253	\$4 	91,900	412 د	4.1	2.15		
1258	\$5	100,000	<i>s</i> 5	4.4	2.17		
1224-1309	MMH-OUT-R4-CT1-A	0.2					
	£ .	0.1					
	С	0.2					
	D	0.1					
1225-1310	CT2-A	0.3					
	В	0.1					
	С	0.1					
	D	0.1					
1225-1310	CT3-A	0.1					
	В	0.1					
	С	0.1					
	D	0.1					
1351.5-1417							
8/4/80							
1353	MMH-IN-R5-S1	93,900	MMH-R5-SSl	4 3	2 24		
	MMH-1N-R5-51 S2	93,900 89,700		4.3	2.24 2.25		
1403			SS2	4.8			
1408	S3	82,300	SS3	2.4	2.26		
1413	S4	86,500	SS4	3.7	2.27		
1417.5	S5	63,700	SS5	5.2	2.27		

IMH SCRUBBER SAMPLES (Continued)

- No - Add The second section of the second section se	ள்ள மன்னரையுள்ள முன்ன அள்ள கூண்ணு இது	- ,	SCRUBBER	·	
		ммн			
SAMPLE	GAS SAMPLE	CONC.	LIQUOR	ним	
RUN TIME	NUMBER	(PPM)	SAMPLE	CONC.	
*****	TO TO THE PARTY OF	(TPA)	NUMBER	(G/I ₂)	PH _
1350-1418	MMH-OUT-R5-CT1-A	0.1			
	В	0.2			
	č	0.1			
	D	0.1			
1351-1418	CT2-A	0			
	В	0			
	C				
	D				
1351-1418.5					
1331 1410.3	CT3-A	0.2			
	В	0			
	С	0			
	D	0			
0005 1000					
0926-1009					
8/5/80					
0931	MMH-IN-RG-S1	31,800	MM-R6-SS1	5.7	2.35
0941	S2	46,500	SS2	6.0	2.36
0947	S3	53,600	\$\$3	6.1	2.39
0954	\$4	65,700	SS4	6.5	2.39
1003	S 5	79,300	SS5	6.8	2.41
1010	S6	84,800			
0925-1012	MMH-OUT-R6-CT1-A	0.1			
	В	0.1			
	С	0.1			
	Ď	0.1			
	E				
	F	0.1			
0925-1012	CT2-A	0.2			
	В	0.1			
	c	0.1			
	D	0.1			
_	E	0.1			
•	F	0.1			
0926-1011.5	CT3-A				
		0.1			
	В	0.1			
	C	0			
	D	0.1			
	E	0			
	F	0			
1150-1222					
8/5/80					
1155	MMU_TN_D7 G1	70 44-			
1200	MMH-IN-R7-S1	78,600	M1H-R7-SS1	6.5	2.42
~200	S2	53,300	SS2	6.5	2.43
		·			

MMH SCPUBBER SAMPLES (Continued)

	nakie aramenemassa a anakine inakas		20000000		
			SCRUBBER	141417	
	0.0 0.4010	MMH	LIQUOR	MMH CONC.	
SAMPLE	GAS SAMPLE	CONC. (PPM)	SAMPLE NUMBER	(G/L)	рН
RUN TIME	NUMBER	(PPH)	NUMBER		<u></u>
1207.5	MMH-IN-R7-S3	62,100	MMH - 27 - 853	6.9	2.46
1212.5	54	24,500	5.54	7.4	2.48
1218.5	s5	63,500	885	7.0	2.50
1221.5	s 6	39,800			
1150-1223	MINI-OUT-R7-CT1-A	0.1			
	В	0			
	c	0			
	D	0			
	E	0			
	7	0.1			
1150-1223	CT2-A	0.1			
1150 1220	В	0.1			
	Ċ	0.1			
	D	0			
	E	0			
	F	0			
1151-1223	CT3-A	0.1			
1201 1110	В	0			
	С	0			
	D	0			
	E	0			
	F	Э			
1120-1147					
8/6/80					
1128	::::::::::::::::::::::::::::::::::::::	99,400	MMH-R9-SS1	7.0	2.54
1134	S2	121,000	SS2	7.4	2.57
1139	S3	65,800	5\$3	7.9	2.57
1144	S4	466,000	S S4	7.9	2.59
	S 5	188,000			
1120.5-1148.7		0.4			
	CT2-A	0.4			
1257-1328					
8/6/80		40 400	www. p3.0, d03	0.0	2.60
1300.3	MMH-IN-R10-S1	49,400	MMH-R10-SS1 SS2	8.0 8.4	2.60
1304.5	S2	133,000		6.5	2.61
1310	S3	131,000	S\$3	7.1	2.62
1316	\$4 SE	109,000	S S4	6.2	2.63
1320.5	S5	96,200	SS5	0.2	4.03
1328.8	S6	44,400			
1257-1330.3	MMH-OUT-R10-CT1	0.3			
1257.5-1330	CT2	0.4			

MEH SCRUBBER SAMPLES (Continued)

ب المستقد			SCRUBBER			
		MMH	LIQUOR	MMH		
SAMPLE	GAS SAMPLE	conc.	SAMPLE	CONC.		
RUN TIME	NUMBER	(PPM)	NUMBER	(G/L)	рН	
0850-0929.9						
8/7/80						
0854.5	MMH-IN-Rll-Sl	71,700	MMH-R11-SS1	8.3	2.70	
0859.5	\$2	25,900	SS2	8.7	2.71	
0908	53	22,900	SS3	9.3	2.74	
0915.5	\$4	29,900	SS4	9.1	2.76	
0923	\$5	68,900	SS5	8.9	2.76	
0929.5	S6	37,000	SS6	7.5	2.76	
0850-0933	MMH-OUT-R11-CT1	0.4				
0850.5-0933	CT2	0.6				
1055-1126.15						
8/7/80						
1058.8	MMH-IN-R12-S1	17,000	MMH-R12-SS1	4.8	2.80	
1103.8	\$2	16,800	SS2	9.7	2.81	
1109.5	S3	17,000	SS3	9.2	2.82	
1115	S4	80,500	SS4	9.6	2.84	
1121.3	S5	41,900	SSS	10.2	2.84	
1125.3	S6	56,100				
1055-1127	MH-OUT-K12-CT1	0.6				
1056-1127	CT2	0.6				
	CT3-A	0.5				
1122-1148-8	В	0.4				
1258-1330	C	0.3				
0851-0933	D	0.2				
1057-1127	E	0.1				
	F	0.1				
0844-0924.8						
8/8/80						
0847	MMH-IN-Fl3-Sl	10 000	MMH-Rl3-SS1	0 5	2 00	
0359.5	\$2	18,900 12,400		8.5 8.7	2.86	
0907	52 S3	35,900	5S2 SS3	11.2	2.88	
0913	54	21,300	553 SS4	10.7	2.89	
0921	S5	32,300			2.90	
0844-0925	MMH-OUT-R13-CT1-A	0-2	SS5	11.6	2.92	
0044-0525	B	0.2				
0844.5-0925	C T 2-A					
0044.5 0325	от 2 л В	0.2				
	~	342				
1036.8-1109.8						
8/8/80						
1040	MMH-IN-R14-S1	257,000	MMH-R14-SS1	10.7	2.92	
1047	S2	25,700	SS2	10.1	2.92	

MIH SCRIPPER SAMPLES (Continued)

			SCFUBBER		
		MMH	LlQUOR	HMM	
SAMPLE	GAS SAMPLE	CONC.	SAMPLE	CONC.	
RUN TIME	NUMBER	(PPM)	NUMBER	(G/L)	рН
,					
1053.7	M::::-IN-R14-S3	33,500	MIH-R14-983	12.1	2.92
1100.7	54	19,500	SS4	9.8	2.93
1105.5	S 5	23,200	SS5	12.9	2.96
1037-1110	MMH-OUT-R14-CT1-A	0.2			
	В	9.1			
1037.5-1100	CT2-A	0.3			
	CT2-B	0.1			
1005.8-1044.8					
8/11/90					
1008.8	MMH-IN-R15-S1	94,500	MMH-R15-SS1	12.6	3.02
1013	S2	20,700	SS2	13.2	3.05
1020.3	S3	18,600	SS3	13.4	3.07
1026.5	\$4	23,700	SS4	14.5	3.09
1034.3	S5	22,100	SS5	14.1	3.10
1040.5	s 6	90,100			
1006-1045	MMH-OUT-R15-CT1-A	0.5			
	В	0.2			
1006.5-1045	СТ2-А	0.5			
	В	0.3			
1206-1236-2					
8/11/80					
1203.3	MMH-IN-R16-S1	97,000	MMH-R16-SS1	15.1	3.07
121?.3	S2	57,200	3S2	14.0	3.08
1219.5	S3	77,600	SS3	13.8	3.10
1226.7	S4	12,700	SS4	12.3	3.11
1233.7	S 5	25,700	ss5	14.7	3.11
1236	s6	74,300			
1206-1237	MMH-OUT-R16-CT1-A	0.5			
	В	0.2			
1206.5-1237	CT2-A	0.3			
	В	0.2			
	MMII-OUT-RIG-CT3-A	0.6			
0845-0925)	В	0.5			
1038-1110	c	0.3			
1007-1045	D	0.3			
1207-1237	E	0.1			
1207 1237)	F	0.1			
	F	0.1			
1039.5-1148 &					
1311.5-1415.5					
8/26/80					
1046	VV::-1M_D) 7-61	1,170	898_p17_cc1	15.8	3 00
1101.5	MMH-IN-R17-S1		MMH-R17-SS1		3.09
1110.7	S2	71,100	SS2	15.2	3.18 3.19
TITO • 1	53	71,400	SS3	15.9	3.12

MMH SCRUBBER SAMPLES (Continued)

			ēr atta pe a		
		*****	SCRUBEER	*****	
erun n	and country	MUH	LIQUOR	HMM	
SAMPLE	GAS SAMPLE	CONC.	SAMPLE	CONC.	
RUN TIME	NUV YER	(PPM)	NUMBER	(G/L)	<u>PH</u>
1110.7	um 11 117 C4	00.400	WW 517 664		
1118.7	MMH-IN-R17-S4	80,600	:::::-R17-SS4	15.4	3.20
1132.7	\$5	79,400	SS5	15.9	3.22
1145.5	8 6	103,000	SS6	16.2	3.24
1316	\$7	69,600	SS7	15.8	3.23
1328.7	59	93,300	SS8	16.0	3.24
1334	£9	82,500	SS9	15.2	3.25
1340	S10	86,900	ss10	16.6	3.26
1401.8	511	198,000	ssll	17.5	3.30
1415	£ 12	111,000	SS12	16.7	3.33
	mmh-out-rl7-crl-a	1.2			
	В	0.7			
1039.5-1148) c	0.5			
1311.5-1416.7	פ	0.5			
	Ε	0.4			
	F	0.3			
	CT2-A	1.7			
	В	1.0			
1040-1148	С	0.6			
1312-1416.7	D	0.3			
	E	0.2			
1041-1148	T6-A	2.3			
1312.5-1418					
,					
1055.5-1207.3	&				
1327.3-1431.5					
8/27/80					
1058	MMM-IN-E13-S1	598,000	MMI-R18-SS1	1.9	1.91
1108	\$2	121,000	SS2	1.9	1.89
1117	s3	105,000	SS3	2.0	1.79
1121.8	S4	107,000	5\$4	2.3	1.94
1152	\$5	120,000	SS5	3.0	1.93
1201.7	\$6 \$6	101,000	SS6		
1331	s'	122,000		3.2	1.95
1344			SS7	3.2	2.11
	\$3 \$9	98,000	SS8	3.3	2.14
1352.5		83,000	SS9	3+8	2.18
1355.9	\$10	79,000	SS10	3.8	2.20
1419	S11	77,000	SS11	4.1	2.26
1427.3	\$12	84,000	SS12	4.3	2.29
	MMH-OUT-R18-CT1-A	0.4			
	B	0.2			
1055.5-1207.5	C	0.2			
1327.5-1432.8		0.2			
	E	0.1			
	F	0.1			

MMH SCRUPBER SAMPLES -- Concluded

			S 'RUBBER		
		MMH	JQUOR	MMH	
SAMPLE	GAS SAMPLE	CONC.	AMPLE	CONC.	
RUN TIME	NUMBER	(PPM)	CMBER	(G/L)	рн
	MINI-OUT-R18-CT2-A	0.5			
	В	0.4			
1056-1207.51	С	0.1			
1329-1433	D	0.2			
•	E	0.2			
	F	0.2			
	MMH-OUT-R18-T6-A	0.6			
	В	0.5			
1056.5-1207.8	C	9.2			
1328.5-1433.2	D	0.2			
	E	0.2			
	F	0.2			

N204 CRUBBER SAMPLES

			SCHUBBER		-
		NO ₂	LIQUOR	so ₃ =	
SAMPLE	GAS SAMPLE	conč.	SAMPLE	conc.	
RUN TIME	NUFBER	(PPM)	NUMBER	(8)	:*g
1304-1355-6					
8/13/80					
1321	NO ₂ -IN-R1-S1	312,000	110 ₂ -R1-SS1	7.23	13.39
133`	\$2	245,000	SS2	7.23	13.33
1344	\$3	1,170,000	SS3	6.93	13.29
1349	S4	584,000	SS4	6.69	13.24
1304-1355	NO ₂ -OUT-R1-C Fl	12			
1316-1355	CF2	28			
1316.5-1326.5	76	47			
1326.5-1336.5	r5	34			
1336.5-1345.5	F4	70			
1345.5-1355.6	T3	72			
0907.5-1020.5					
8/14/80					
0937.5	NO ₂ -IN-R2-S1	104,000	NO ₂ -R2-SS1	4.43	13.23
0947.3	S2	144,000	SS2	2.52	13.21
0957.8	S3	118,000	SS3	3.97	13.18
1006.5	S4	130,000	SS4	3.71	13.15
1014.8	S5	131,000	SS5	3.45	13.12
1025	S6	11,400	SS6	2.79	13.09
0907.5-0959.5	NO2-OUT-R2-C r1	56			
0932-1020	Cr2	5			
0933-0950	Tl	156			
0950-1000	Т2	21			
1000-1010	T3	21			
1010-1018.8	T4	20			
1023-1029.5	T 5	39			
1247.8-1333.3					
8/14/80					
1253	NO2IN-R3-S1	82,000	NO ₂ R3-SS1	2.68	13.09
1301.5	S2	191,000	SS2	2.86	13.07
1311.5	S3	405,000	SS3	2.66	12.99
1323	S4	550,000	SS4	1.97	12.75
1332.5	S 5	664,000	\$\$5	1.47	12.25
1248-1333-3	NO2-OUT-R3-CT1	373			
1248-1333.5	Cr2	345			
1249-1259	71	208			
1259-1309	:72	176			
1309-1319	T 3	377			
1319-1329	74	1,386			
1329-1333.8	?5	11,320			

N204 SCPURBER STUPLES (Continued)

			STRUBBER		
CTHOLO	71.6	::0 ₂	∵1QUOR	so ₃ =	
SAMPLE	GAS SAMPLE	ONC.	AMPLE	conc.	
RUN TIME	NUMBER	(РРМ)	JMRER	(5)	<u>Rq</u>
1303-1408					
8/15/80					
1307.8	NO2-1N-R4-S1	257 200	110		
1326.3	\$2	257,000	ଅନ୍ -R4-SS <u>1</u>	6.51	13.53
1335.1	S3	256,000 295,000	SS2	6.44	13.50
1344.8	53 S4		SS3	6.13	13.47
1354.7	S5	295,000	SS4	5.55	13.45
1405.3	S6	285,000	SS5	5.19	13.41
1303-1409	NO ₂ -0UT-F4-CT1	236,000	356	5.12	13.33
1304-1409	Cr2	148			
1305-1323	Tl	64			
1323-1333		120			
1333-1343	T2	48			
1343-1353	T3	61			
1353-1403	T4	59			
1403-1408	T5	37			
1403-1400	T 6	85			
1248-1343.3					
8/18/80					
1250.5	WO2-IN-R5-S1	333.000			
1303	S2 NJ 31	332,000	NO ₂ R5-SS1	5.09	13.33
1314	S3	373,000	SS2	4.38	13.29
1328	S5	373,100	SS3	3.98	13.21
1337.5	\$6	1,060,000	£\$4	3-48	13.11
1248-1343.6	::0 ₂ -0UT-R5-CT1	1,140,000	S S 5	2.82	12.36
1249-1300.5	-	1,020	£36	2.52	12.66
1300.5-1313	T3	1,350			
1313~1325.5	T4	421			
1313 1323.3	T 5	292			
1056.5-1215					
8/19/80					
1100	NO2-18-R6-S1	315,000	NO DE ME		_
1116.5	\$2	389,000	NO ₂ -R6-SS1	6.58	13.62
1132	S3		SS2	6.31	13.57
1151	S4	421,000 355,000	S\$3	5.41	13.51
1053-1215	NO2-OUT-R6-CT2	86	SS4	4.86	13.44
1057.5-1114.3	T6		SS5	4-18	13.37
1114.3-1129.3	T5	170	SS6	3.39	13.33
1129.3-1149.3	15 T4	92			
1149.3-1215.3	T3	87 26			

1424.5-1525.5					
8/19/80					
1427	NO ₂ -IN-R7-S1	6,710	NO2-F7-SS1	4.59	13.27
1435	S2	28,600	-	4.98	

\$204 SCHUBBER SAMPLES (Continued)

			SCRUBAER		
		NO ₂	LIQUOR	.a =	
SAMPLE	GAS SAMPLE	CONC.	SAMPLE	so ₃	
RUN TIME	NUMBER	(PPM)	NUMBER	(§)	nii
1449.5	NO				PH
1505.5	NO ₂ -1::-R7-S3	87,300	NO ₂ -R7-SS3	4.73	13.29
1518.5	S4	1,540,000	\$ \$ 4	4.33	13.20
1425-1525.7	S5	1,320,000	SS5	3.45	13.02
1425-1525.7	NO ₂ -OUT-R7-C72	11	585	3.39	12.92
1432.5-1447.5		53			
1447-1502.5	• •	35			
1502.2-1525.8	.75	17			
1502-1525-1525-1	36	13			
0921.5-1013.9	5				
8/20/80	_				
0926	NO2-IM-R8-S1	334,000	NO2-R3-SS1	3 47	10.00
0931.5	S2	311,000	SS2	1.47	12.83
0948	S3	351,000	\$52 \$\$3	1.25	12.76
1006	S4	363,000	\$53 \$54	0.83	12.22
1011.8	S5	337,000	SS5	0.50 0.45	11.11
0920.5-1013.5	NO2-OUT-R8-C '2	1,452	333	9+40	10.78
0921-0929		2,573			
0929-1004	75	1,136			
1004-1014	76	2,636			
1004-1014	(NO sample) 76	1,417			
0922.3-1013					
8/22/80					
0925.5	NO ₂ -IN-R9-S1	150.000			
0938	S2	152,000	::0 ₂ -29-351	F.14	13.65
0948.3	S3	463,000	SS2	5.83	13.50
0957	53 S4	891,000	SS 3	5.73	13.60
1007	S5	633,000	SS4	5.38	13.63
0922-1012	NO ₂ -OUT-R9-C12	429,000	SSS	5.35	13.56
0923-0942	~4	4	SS6	5.37	13.50
0942-0955		12			
0955-1013	. ɔ õ	6			
0955-1013	(NO sample) 76	1 1			
	<u>.</u> ,	1			
1346.8-1439					
8/22/80					
1350.8	NO ₂ -IN-R10-SI	313,000	NO2-R10-SS1	6.08	13.36
1357.7	S:	280,000	SS2	5.41	13.35
1415	S3	441,000	SS3	5.17	13.29
1426.8	5.1	742,900	SS4	4.32	13.29
1436.7	\$5	1,060,000	SS5	4.91	13.00
1347-1439.5	NO ₂ -OUT-R10- :T2	76	SS6	4.48	12.75
1347.5-1355.9	74	219	·		

N2O4 SCRUBBER SAMPLES (Concluded)

,		SCRUBBER				
		NO ₂	L1QUOR	50³=		
SAMPLE	GAS SAMPLE	conč.	SAMPLE	ထက်င.		
RUN TIME	NUMBER	(PPM)	NUMBER	(3)	рH	
1355.9-1413.5	NO2-OUT-R10-T5	63				
1413.5-1439.3	T 6	24				
1413.5-1439.3	(NO) T6	58				
1325-1438						
8/25/80						
1329	NO2-IN-R11-S1	332,000	NO2-R11-SS1	3-13	12.98	
1335	52	354,000	SS2	2.87	12.85	
1354	S3	327,000	SS3	1.89	12.12	
1410.5	54	231,000	554	1.40	11.20	
1423	S 5	389,000	ss5	1.21	10.69	
1434	S6	252,000	ss6	0-92	10.25	
1326-1438	NO2-OUT-R11-CT2	3,860				
1326.5-1333	T4	9.650				
1333-1419	Т5	2,390				
1419-1438	т6	6,850				