CONNECTEDNESS

COLTON GRAINGER (TOPOLOGY MATH 6210)

4. Assignment due 2018-10-08

- 4.1. **[1, No. 23.1].** Let \mathscr{T} and \mathscr{T}' be two topologies on X. If $\mathscr{T} \supset \mathscr{T}'$, what does connectedness of X in one topology imply about connectedness in the other?
- 4.2. [1, No. 23.4]. If X is an infinite set, it is connected in the finite complement topology.

Date: 2018-10-05. Compiled: 2018-10-08.

1

- 4.3. [1, No. 23.5]. If *X* has the discrete topology, then *X* is totally disconnected. The converse does not hold.
- 4.4. [1, No. 23.7]. \mathbf{R}_{ℓ} is a totally disconnected space.

- 4.5. [1, No. 23.11]. Let $p: X \to Y$ be a quotient map. If each set $p^{-1}(\{y\})$ is connected, and if Y is connected, then X is connected.
- 4.6. [1, No. 24.1]. Let $f: S^1 \to \mathbf{R}$ be a continuous map. We exhibit a point x of S^1 such that f(x) = f(-x).

4.7. [1, No. 24.2]. Let $f: X \to X$ be a continuous transformation of X. If X = [0, 1], then there's a point such that f(x) = x. There are continuous transformations of [0, 1) and (0, 1) without fixed points.

4.8. [1, No. 24.7].

- (a) Let X and Y be ordered sets in the order topology. If $f: X \to Y$ is order preserving and surjective, then f is a homeomorphism.
- (b) Let $X = Y = \mathbf{R}_{\geq 0}$. Given any positive integer n, the function $f: X \to Y$ defined by $f(x) := x^n$ is order preserving and surjective. Moreover, f has a continuous inverse $f^{-1}: Y \to X$ given by $f^{-1}(y) := \sqrt[n]{y}$.

4.9. [1, No. 24.10]. If U is an *open* connected subspace of \mathbb{R}^2 , then U is path connected.

4.10. **[1, No. 25.2].**

- (a) What are the components and path components of \mathbf{R}^{ω} (in the product topology)?
- (b) Let \mathbf{R}^{ω} have the uniform topology. Now x and y lie in the same component of \mathbf{R}^{ω} if and only if the sequence $x y = (x_1 y_1, x_2 y_2, ...)$ is bounded.
- (c) Suppose \mathbf{R}^{ω} has the box topology. Then x and y lie in the same component of \mathbf{R}^{ω} if and only if the sequence x-y is eventually zero.

- 4.11. [1, No. 25.4]. Let X be locally path connected. Then every connected open set in X is path connected.
- 4.12. [1, No. 25.5]. Let X denote the rational points of the interval $[0, 1] \times 0$ of \mathbb{R}^2 . Let T denote the union of all line segments joining the point $p = 0 \times 1$ to points of X.
 - (a) T is path connected—but only locally connected at the point p.
 - (b) We exhibit a subset of \mathbb{R}^2 that is path connected but is locally connected at none of it's points.

4.13. [1, No. 25.7]. The closed infinite broom X is not locally connected at the point at the endpoint p, but is weakly locally connected at p.

REFERENCES

[1] J. R. Munkres, *Topology*, 2nd ed. Hardcover; Prentice Hall, Inc., 2000 [Online]. Available: http://www.worldcat.org/isbn/0131816292