Name	Centre/Index No
Name of School	. Signature

P530/1 BIOLOGY PAPER 1 July/August 2023 2¹/₂ hours

WAKISSHA JOINT MOCK EXAMINATIONS

Uganda Advanced Certificate of Education BIOLOGY (Theory)

Paper 1

2 hours 30 minutes

INSTRUCTIONS TO CANDIDATES:

This paper consists of 40 questions in section A and 6 questions in section B.

Answer all questions in both sections A and B

Section A: Answers to this section must be written in the boxes provided.

Section B: Answers to this section should be written in the spaces provided and not anywhere else.

No additional sheet(s) of paper should be inserted in this booklet.

FOR EXAMINERS' USE ONLY				
SECTION		MARKS	Examiners' initials & No.	
Section A:	1-40			
1	41			
	42		1	
Section B:	43			
Section B:	44			
· ·	45			
	46			
TOTAL				

WAKISSHA Joint Mock Examinations 2023

SECTION A (40 MARKS)

Write the letter corresponding to the most correct answer in the box provided on the right of each question.

1.	Monocotyledonous roots differ from dicotyledonous roots because of having A. a large cortex.	
	B. an endodermis.	
	C. central pith.	1-3
	D. a stele.	
2.	Which of these pigments is not likely to be found in annelids blood?	
	A. Haemoerythrin	4
	B. Chlonocroucrin C. Haemo cyanin	
	C. Haemo cyanin D. Haemoglobin	
3.	Which one of the following statements is not true during control of breathing in humans?	
	A. Cerebral cortex allows voluntary control over breathing.	
	B. Vagus nerve carries impulses from the respiratory centre to stretch	
	receptors to stimulate inhalation.	
	C. Stretch receptors in the bronchioles and bronchi monitor the amount of lung inflation.	
	D. Impulses from chemoreceptors in the aorta and central arteries stimulate the respiratory centre to increase the rate of inhalation.	
4.	Which of the following is the most important factor that determines how much of	xygen
	is transported by haemoglobin? A. level of oxygen in the blood	
	A. level of oxygen in the blood.B. level of carbon dioxide in the blood.	
	C. temperature of the blood.D. level of calcium ions in the blood.	
	D. level of calcium ions in the blood.	
5.	Which of the following epithehal tissues is found in the fallopian tube?	
	A. Simple columnar ciliated.	
	B. Simple columnar.	
	C. Simple cuboidal. D. Pseudo stratified columnar	
	D. Pseudo stratified columnar.	
6.	Which of these is a short term physiological adaptation by humans to high altitu	4-2
	71. Hereased rate of heart beat,	ue:
	B. Increased concentration of blood.	
	C. Increased red blood cell production.	
	D. Increased capillary density.	
7.	Which one of the following determines the biological role of proteins in cells?	
	A. Sequence of amino acids in them.	
	B. Pattern of folding of the amino acids	
	C. Other protein molecules with which it is associated.	
	D. The three dimensional shape.	
	1	

δ.	which of the following would directly lead to stomatal opening?	
	A. K actively pumped into guard cells.	
	B. K actively pumped out of guard cells.	
	C. Water absorbed by osmosis.	
	D. Water lost from the guard cells.	
9.	Which of the following is the most efficient method of minimizing water los	s in
	terrestrial animals?	
	A. Burrowing in desert frog.	
	B. Think fur in Kangaroos.	
	C. Waxy chitinous exoskeleton in insects.	
	D. Humidity seeking behavior in woodlice.	
10.	Which one of the following is not an adaptation for photosynthesis in shade	plants?
	A. High chlorophyll content.	
	B. Thin leaves.	
	C. Low compensation point.	
	D. Thick leaves.	
11.	Which of the organisms below exchange gases through the general body sur	face?
	A. Earthworm	
	B. Amoeba	
	C. Hydra	
	D. Aquatic Annelids.	
12.	A homeostatic role played by the gut involves removal of	
	A. water.	
	B. salt.	
	C. undigested food.	
	D. bile pigments.	
12	In the Coluin explessment is required during the	
13.	In the Calvin cycle energy is required during the	
	A. conversation of glycerate phosphate to triose phosphate.B. fixation of cabondioxide by ribulose phosphate.	
	B. fixation of cabondioxide by ribulose phosphate.C. conversion of triose phosphate to ribulose biphosphate.	
	D. activation of the enzymes ribulose biphosphate carboxylase.	
14.	The substance absorbed passively in the proximal convoluted tubule but	
	activity in the distal convoluted tubule is	
	A. glucose.	
	B. sodium ions.	
	C. water.	
	D. chloride ions.	
15.	During mitosis chromosomes	
	A. attach to the spindle fibres to contain them within nucleus.	
	B. condense to prevent further translation of genes.	
	C. reach the poles of cell and begin to uncoil.	
	D. replicate to reproduce sufficient DNA to form two new nuclei.	
		Turn Over

WAKISSHA Joint Mock Examinations 2023

6,	Chemicals used to sto helix from uncoiling a would they act?	op tumor growth, wand separating. Du	ork by preventing which stage	of the cell cycle	
	A. Anaphase,				
	B. Interphase. C. Metaphase				
	C. Metaphase.D. Prophase.				
	P.M.SC.				
7.	The cause of resistance	ce to antibiotics in	bacteria is		
	A. genetic mutation	١.			
	B. over use of antib	piotics.			
	The selection				
	partition not mine	shing a course of ar			
8.	If blood pressure falls	far below the osm	otic pressure of	plasma proteins	
	in the kidney:		•		
	A. Urine formation B. Ultrafiltration re	stops.			
	B. Ultrafiltration reC. Filtration slits w	duces.			
	THE THE STILL W	iden.			
0	Ther th	rough the basemen			
9.	Which of the following	ng is the general for	rınula for amylos	se?	
	$A_{i} = \left(C_{i}H_{10}O_{i}\right)_{i}$				
	B. $(C, H_{10}O_{\epsilon})_n$				111
	$C. \left(C_{6}H_{12}O_{6}\right)_{11}$				
	D. $(C_{\iota}H_{\iota 0}O_{\iota})_{\iota}$				
n					
0.	Table 1, below shows	the growth measu	rements by heigh	nt of a plant.	- 7.
0.	Table 1. below shows Days after planting	rieight in CM	rements by heigh	nt of a plant.	
0.	Table 1. below shows Days after planting 10	reight in CM	Growth rate	nt of a plant.	
0,	Table 1, below shows Days after planting 10 20	reight in CM	Growth rate 2 5	at of a plant.	
0.	Table 1, below shows Days after planting 10 20 30	2 7 20	2 5 13	at of a plant.	
0.	Table 1. below shows Days after planting 10 20 30 40	2 7 20 40	2 5 13 20	nt of a plant.	
0.	Table 1, below shows Days after planting	2 7 20 40	2 5 13 20	at of a plant.	
0.	Table 1, below shows Days after planting 10 20 30 40 50 The relative growth ra A. 07	2 7 20 40	2 5 13 20	nt of a plant.	
0.	Table 1. below shows Days after planting 10 20 30 40 50 The relative growth ra A. 07 B. 43	2 7 20 40	2 5 13 20	at of a plant.	
0.	Table 1, below shows Days after planting 10 20 30 40 50 The relative growth ra A. 07 B. 43 C. 65	2 7 20 40	2 5 13 20	nt of a plant.	
0.	Table 1, below shows Days after planting 10 20 30 40 50 The relative growth ra A. 07 B. 43 C. 65 D. 100	2 7 20 40 75 ate at 30 days will I	Growth rate 2 5 13 20 35 be		
0.	Table 1, below shows Days after planting 10 20 30 40 50 The relative growth ra A. 07 B. 43 C. 65 D. 100	2 7 20 40 75 ate at 30 days will I	Growth rate 2 5 13 20 35 be		
	Table 1, below shows Days after planting 10 20 30 40 50 The relative growth ra A. 07 B. 43 C. 65 D. 100 Which one of the followaters A. Golgi apparatus	2 7 20 40 75 ate at 30 days will I	Growth rate 2 5 13 20 35 be		
	Table 1, below shows Days after planting 10 20 30 40 50 The relative growth ra A. 07 B. 43 C. 65 D. 100 Which one of the followaters A. Golgi apparatus B. Ribosome	2 7 20 40 75 ate at 30 days will I	Growth rate 2 5 13 20 35 be		
	Table 1, below shows Days after planting 10 20 30 40 50 The relative growth ra A. 07 B. 43 C. 65 D. 100 Which one of the follo A. Golgi apparatus B. Ribosome C. Nucleus	2 7 20 40 75 ate at 30 days will I	Growth rate 2 5 13 20 35 be		
	Table 1, below shows Days after planting 10 20 30 40 50 The relative growth ra A. 07 B. 43 C. 65 D. 100 Which one of the follo A. Golgi apparatus B. Ribosome C. Nucleus D. Mitochondria	2 7 20 40 75 ate at 30 days will l	Growth rate 2 5 13 20 35 be	genetic material?	
	Table 1, below shows Days after planting 10 20 30 40 50 The relative growth ra A. 07 B. 43 C. 65 D. 100 Which one of the follo A. Golgi apparatus B. Ribosome C. Nucleus D. Mitochondria	2 7 20 40 75 ate at 30 days will l	Growth rate 2 5 13 20 35 be	genetic material?	
1.	Table 1, below shows Days after planting 10 20 30 40 50 The relative growth ra A. 07 B. 43 C. 65 D. 100 Which one of the follo A. Golgi apparatus B. Ribosome C. Nucleus D. Mitochondria The organelle which s synthesized protein is	2 7 20 40 75 ate at 30 days will l	Growth rate 2 5 13 20 35 be	genetic material?	
1.	Table 1, below shows Days after planting 10 20 30 40 50 The relative growth ra A. 07 B. 43 C. 65 D. 100 Which one of the follo A. Golgi apparatus B. Ribosome C. Nucleus D. Mitochondria The organelle which s synthesized protein is A. Golgi complex	2 7 20 40 75 ate at 30 days will I	Growth rate 2 5 13 20 35 be	genetic material?	
1.	Table 1, below shows Days after planting 10 20 30 40 50 The relative growth ra A. 07 B. 43 C. 65 D. 100 Which one of the follo A. Golgi apparatus B. Ribosome C. Nucleus D. Mitochondria The organelle which s synthesized protein is A. Golgi complex B. Rough endoplast	2 7 20 40 75 ate at 30 days will I	Growth rate 2 5 13 20 35 be	genetic material?	
1.	Table 1, below shows Days after planting 10 20 30 40 50 The relative growth ra A. 07 B. 43 C. 65 D. 100 Which one of the follo A. Golgi apparatus B. Ribosome C. Nucleus D. Mitochondria The organelle which s synthesized protein is A. Golgi complex B. Rough endoplast C. Smooth endoplast	2 7 20 40 75 ate at 30 days will I	Growth rate 2 5 13 20 35 be	genetic material?	
1.	Table 1, below shows Days after planting 10 20 30 40 50 The relative growth ra A. 07 B. 43 C. 65 D. 100 Which one of the follo A. Golgi apparatus B. Ribosome C. Nucleus D. Mitochondria The organelle which s synthesized protein is A. Golgi complex B. Rough endoplast	2 7 20 40 75 ate at 30 days will I	Growth rate 2 5 13 20 35 be	genetic material?	

23.	Whi A.		the following geneti ter's syndrome,	e abnormalities	does not result from non	disjunction?
	В.		s syndrome			
	C.	Haemor				
	D.	Down's	syndrome			
24.			ncreases the speed of			
	A.		g an endergonic react	ion to an exergo	nic one.	
	В.	_	ectivation energy.			-
	C,		g activation energy re			
	D.	increasi	ng the concentration of	of reactants.		
25.	The	water no	tential of a colution u	hasa prassura p	otential is 0.3 mpa and so	Juta
	pote	ential – 0.	45 mpa is;	mose pressure p	Mendal is 0.5 life and se	Tute
	A.	+0.75 m	•			
	В.	-0.75 m	•			
	C.	-0.15 m	pa			
	D.	+0.16 m	ıpa			
26.					nan marries a carrier wor	nan for
			the probability of the	couple producii	ng a normal son is;	
	A. B.	0% 25%				
	Б. С.	25% 50%				
	D.	75%				
	D.	7370				
27.	Whi	ch one of	the following organi	sms A. B. C or l	D would require a vascul	ar system?
	Or	ganism	Surface area (cm ²)	Volume (cm ³)		
		Α	1	0.25	•	
		В	6	3	•	
		C	16	10		
		D	12	8		
28.	throv	vn 50 tin	the population of a wnes and the total numbulation of the weed?	reed in an area o ber of weeds cou	of 1000 m ² , a 1 m ² quadra unted were 60. What was	at was s the
	B.	300				
	C.	833				
	D.	1200				
29.	Most	t of the ca	arbon-dioxide is trans	sported in blood		
	B.		on. minohaemoglobin ins	ide red blood a	ماله	
	C.		xyhaemoglobin insid			
	D.	as hydro	gen carbonate ions in	side red blood cells	rells	
			o om oonate tons II	iorae rea bibba (,Ciia,	
						Turn Over
			© WAKISSHA .	Joint Mock Examina	tions 2023	5

30.	Which of the following components are found both lymph and tissue fluid? A. Antibodies, Red blood cells, White blood cells. B. Antibodies, Sodium ion and white blood cells. C. Red blood cells, sodium ions, white blood cell. D. Red blood cells, antibodies, sodium ions.	
31.	Mosses are more vulnerable to air pollution then ferns because they A. cannot tolerate air pollution. B. lack a waxy cuticle. C. are more distributed in industrial areas. D. lack glands that can store pollutants.	
32.	 Xylem is arranged in bundles around the periphery of the stem to A. Increase rigidity. B. Counteract the pull of shoots. C. Resist compression. D. Allow increase in girth of the stem. 	
33.	 Which one of the following is a type of post –mating reproductive isolation? A. An embryo is unable to develop further. B. Males are isolated from females by geographical barriers. C. External genitalia of females and males prevent mating. D. Courtship behavior of males does not elicit the proper response is females. 	
34.	Figure 1 below shows the conduction of an action potential when recorded on an oscilloscope. Time in milliseconds	
	The membrane at T is said to be A. resting. B. depolarized. C. repolarized. D. hyperpolarized.	
35.	During seed germination, the synthesis of hydrolytic enzymes is triggered by the hormone A. Cytokinins. B. Gibberellic acid. C. Ethane, D. Abscissic acid.	

36.	The main cause of a ch	ustered population distribution within a habitat is?	
	A. highly territorial p	resources in small areas.	
	B. concentration of rC. sexual reproduction		
	D. random distribution	on of resources.	
37.	Which one of the folloplants?	owing is not a phytocrone controlled physiological r	esponse in
	A. Root branching		
	B. Seed germination	ı	
	C. On set of senesce	ence	
	D. Flowering.		
38.	Which of these aids sp	perm penetration into the ovum during the process of	of fertilization?
	A. Enzymes in the ac	crosome dissolving the jelly coat. of the tail forces it through the vitelline membrane	
	B. Forward pressureC. Chemical attraction	on by the every	
		s membrane using its nucleic acid.	
	D. Admity to men no	s memorate using its marries	
39.	Which of the following A. Electric organs in	g effectors can respond to direct stimulation.	
	B. Pigment cells.		
	C. Muscles.		
	D. Glands of the sma	all intestine.	
40.	Figure 2 below shows	some of the stages of protein synthesis.	
	Fig. 2	NA \longrightarrow DNA \longrightarrow	Protein
	7_3		

The process represented by X is important in

- A. recycling of DNA.
- B. forming mDNA.
- C. forming more DNA.
- D. cell division.

Turn Over

SECTION B (60 MARKS)

41.	(a)	Wha	t is meant by the term compensation point?	(02 marks)
				,,
			,	
	(b)	Acco plant	ount for the relevance of the leaf anatomical differences.	nce between C ₄ and C ₃ (04 marks)
		••••		
	(c)	Figur body	re 2 below shows interconversions of absorbed food. Study it carefully and answer the questions that fo	l products in a human llow.
			PROTEIN	
			+ COA	6 Carbon Amino acids
		Carbot	nydrate Pyruvic acid 2	—→ B
		Fat —	Glycerol + fatty acids	Fig. 2
		(i)	Name compounds 1, 2 and pathy way B.	$(01^{1}/_{2} \text{ marks})$
			1	
			2	
			В	
		(ii)	Explain the importance of pathway B.	$(02^1/_2 \text{ marks})$
42.	(a)	Descri	ibe the following towns in a Let Days	
	()	(i)	ibe the following terms in relation to DNA. Double helix	(02
				(03 marks)
		(ii)	Semi conservative replication	
				(02 marks)

			***************************************	••••••

			© WAKISSHA Joint Mock Examinations 2023	

	(1.)	of ba	azes are adenine. What percentage of the bases is guanine?	hat 38% (02 marks)
		****	The state of the state of granific.	,

	(c)	Disc	USS why Kata-	
		new	species.	olution of (03 marks)

43.	(a)	(i)	What is an after ripening period?	(02 marks)
		(ii)	State formula	
		(11)	State four changes that occur in a seed during after ripening.	

	(b)	Expl	ain why seeds of certain plants only germinate when exposed to	(4 marks)
		,		

				••••••
				•••••
44.	Sickl hered (a)	e-cell o litary h (i)	disease is a prime example of genetic pleitropy, a condition resamoglobin defects that occur among people of African desce How does the structure of sickle-cell haemoglobin (HbS) did normal haemoglobin (HbA).	nt,
			,	
			Explain why the erythrocytes of a person suffering from sich	kle cell
		(ii)	anaemia appear curved and pointed at the ends.	(02 marks)
				Turn Ov

		(iii)	List any other 2 symptoms exhibited by a person with sickle	cell anaemia. (01 marks)
				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	(b)	(i)	Describe the structure of a haemoglobin molecule.	(03 marks)
		(ii)	Suggest why the affinity of haemoglobin for oxygen increas after combining with oxygen.	es drastically (02 marks)
45.	(a)	(i)	Distinguish between water potential and solute potential.	(02 marks)
			······	
	(b)	Figur poten	re 4 shows the variation of water potential, solute potential an Itial in a plant cell immersed in pure water.	d pressure

Study the figure and answer the question that follow.

© WAKISSHA Joint Mock Examinations 2023

		(i)	The changes in water potential.		102
			***************************************		(03 marks)

			***************************************		,
		(;;)	The state of the s		
		(ii)	The relationship between pressure	potential and solute poten	tial.
				***************************************	(02 marks)

				***************************************	<mark></mark>

	(c)	Expl	ain the relationship between solute	potential and water potenti	al. (03 marks)
			***************************************		•••••
		•••••			
		,			
6.	(a)	Wha	t is meant by the term Action poten	tial?	(02 marks)
				.,	
	(b)	State	e the differences between Somatic a	nd Autonomic Nervous sy	stem.
			Somatic	Autonomi	(04 marks)
			Omitte		
				- 1	
					T

Describe;

Turn Over

11

r stones are temporal observations	
(i)	Paraxy supathetic nervous division affects target organs more selectively than the sympathetic division. (02 marks)
	processing the contract of the
	the second of th
(11)	Somatic motor fibers have faster conduction speeds than autonomic post gaughonic nerve fibres. (02 marks)
	FND