

COLLEGE OF ENGINEERING, PUNE

(An Autonomous Institute of Government of Maharashtra.)

END Semester Examination

Programme: B.Tech

Course Code: PH 19001

Branch: F. Y. B Tech (All branches+Backlogs)

Duration: 3 Hrs

Student PRN No.

Semester :II

Course Name: Optics and Modern Physics

Academic Year: 2021-22

Max Marks: 60

11	2	1	1	0	0	5	6
The second second	100000	Name and Address of the Owner, where	-	_			

Instructions:

- 1. Figures to the right indicate the full marks.
- 2. Mobile phones and programmable calculators are strictly prohibited.
- 3. Writing anything on question paper is not allowed.
- 4. Exchange/Sharing of stationery, calculator etc. not allowed.
- 5. Write your PRN Number on Question Paper.

Q1	а	Obtain the condition for maxima and minima in case wedge shaped thin film with neat labelled diagram.	6	1
	b	Write expression for intensity as a function of phase angle ϕ for single slit diffraction and show that relative intensity varies with order of diffraction.	4	1
		OR		
		Diffraction grating has 4000 lines per cm. The angle between the central maximum and the third order maximum is 36°. What is the wavelength of the light?	4	1
Q2	a	Find out the state of polarization represented by the following set of equations:	4	2
		$E_x=E \cos(\omega t-kz)$ & $E_y=E \cos(\omega t-kz+\pi/4)$		
	b	What is Quarter wave plate and half wave plate? Explain the use of Quarter wave plate in conversion of plane polarized light to Circularly/Elliptically polarized light.	3	2
	c	A plane polarized light is incident perpendicularly on a quartz plate cut with faces parallel to optic axis. Find the thickness of quartz plate, which introduces phase difference of 60° between o-ray and e-ray.($\mu_e = 1.553$, $\mu_e = 1.544$, $\lambda = 5400 \text{Å}$)	3	2
Q3	a	Explain the principle, construction and working of Helium Neon Laser.	6	3
	b	A three level laser emits laser light at a wavelength of 550 nm, if optical pumping mechanism is shut down what will be the ratio of population of upper level to that of lower level, ($T = 300^{\circ}$ K). Given ($k = 1.38 \times 10^{-23}$ J/°k, $h = 6.62 \times 10^{-34}$ J–Sec, $c = 3 \times 10^{8}$ m/s)	4	3

COLLEGE OF ENGINEERING, PUNE

(An Autonomous Institute of Government of Maharashtra.)

Q4 a In following figure (a)-(d), wave functions are sketched as a function of x, which is/are 4 acceptable wave function and give justification for each plot?

- b What is the de Broglie wavelength associated with an electron accelerated through 54V 3 volts. Given: $h=6.625 \times 10^{-34}$ J-s, mass of electron =9.1 x 10^{-31} kg, $e=1.6 \times 10^{-19}$ C
- c What are operators? Obtain an expression for momentum and energy operator. 3
- Q5 a A particle travelling with energy E > V₀, has a potential barrier defined as 4 4

$$V = 0 x < 0$$

$$V = V_0 0 \le x \le a$$

V = 0 x > a

Write the Schrödinger's wave equations and its solutions for all the three regions.

b Lowest energy of an electron trapped in a infinite potential well is 38 electron Volt. 3

Calculate the width of the well.

Given: $h = 6.625 \times 10^{-34} \text{ J-s}$, mass of electron = 9.1 x 10⁻³¹ kg, $e = 1.6 \times 10^{-19} \text{ C}$

c A small object of mass 1 µg is confined to move between two rigid walls separated by a 3 distance of 1mm. Calculate the minimum speed of the object.

Given: $h=6.625 \times 10^{-34} \text{ J-s}$

Q6 a What is Piezo-electric effect? Explain principle, construction and working of Piezo- 6 electric oscillator.

b If Young's modulus of iron is 115 x 10⁹ N/m² and its density is 7.25 x 10³ kg/m³. Find 4 5 the length of an iron rod which can produce ultrasonic waves of 20 kHz.

OR

Suppose a wedge shaped air film is made between two sheets of glass with a piece of paper 7.618 x 10⁻⁵ m thick used a the spacer at their very ends. If light of wavelength 500nm is incident normally. Determine the number of fringes that will be seen across the wedge.