UAS Big Data

```
In [1]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
```

Chapter 1: Time Series Analysis

Out [106...

		Unnamed: 0	Unnamed:	KETERANGAN	2008	2009	2010	2011	
	0	1	NaN	APBN	NaN	NaN	NaN	NaN	
	1	2	NaN	Pendapatan Negara dan Hibah	894990.6	870999.01	992398.8	1169914.4	135
	2 3		NaN	Penerimaan Dalam Negeri	892042.0	869992.51	990502.3	1165252.3	135
	3	4	NaN	Penerimaan Perpajakan	609227.5	651954.90	743325.8	878685.2	101
4		5	NaN	Pajak Dalam Negeri	580248.3	631931.80	720764.4	831745.3	96

5 rows × 25 columns

```
In [107... national_income = national_income.drop(columns=['Unnamed: 0', 'Unnamed: 1
    national_income = national_income.drop(index=[0] + list(range(27, 55)))
    national_income = national_income.set_index('KETERANGAN').T
    national_income
```

Out. [107..

KETERANGAN	Pendapatan Negara dan Hibah	Penerimaan Dalam Negeri	Penerimaan Perpajakan	Pajak Dalam Negeri	Р
2008	894990.6	892042.0	609227.5	580248.3	
2009	870999.01	869992.51	651954.9	631931.8	
2010	992398.8	990502.3	743325.8	720764.4	

	831745.3	878685.2	1165252.3	1169914.4	2011
	968293.2	1016237.3	1357379.9	1358205.0	2012
	1099943.59	1148364.68	1497521.39	1502005.02	2013
	1189826.59	1246106.97	1633053.4	1635378.52	2014
	1439998.6	1489255.49	1758330.91	1761642.82	2015
	1503294.74	1539166.24	1784249.85	1786225.03	2016
	1436730.86	1472709.86	1732952.01	1736060.15	2017
	1579395.49	1618095.49	1893523.46	1894720.33	2018
	1743056.85	1786378.65	2164676.51	2165111.82	2019
	1371020.56	1404507.51	1698648.46	1699948.46	2020
6837	1409581.01634	1444541.564794	1742745.730819	1743648.547327	2021
8136	1704957.986654	1783987.986654	2265619.082482	2266198.933402	2022

15 rows × 26 columns

KETERANGAN	Pendapatan Negara dan Hibah	Penerimaan Dalam Negeri	Penerimaan Perpajakan	Pajak Dalam Negeri	Р
2008-01-01	894990.6	892042.0	609227.5	580248.3	
2009-01-01	870999.01	869992.51	651954.9	631931.8	
2010-01-01	992398.8	990502.3	743325.8	720764.4	
2011-01-01	1169914.4	1165252.3	878685.2	831745.3	
2012-01-01	1358205.0	1357379.9	1016237.3	968293.2	

1	1148	836	4.68	}		109	994	3.59		
12	1240	610	6.97	,		118	982	6.59		
14	1489	925	5.49)		14	399	98.6		
1	1539	916	6.24	-		150	329	4.74		
14	1472	270	9.86	;		143	673	0.86		
16	1618	809	5.49)		157	939	5.49		
17	1786	637	8.65	;		174	305	6.85		
14	1404	450	7.51			137	102	0.56		
54	541.	.564	1794		140	958	1.0 ⁴	1634	6	837
98	987.	'.986	6654	- 1	704	957	.986	6654	8	136

15 rows × 26 columns

```
In [118... national_income = national_income.apply(pd.to_numeric, errors='coerce')
In [119... import matplotlib.pyplot as plt

plt.plot(national_income.index, national_income['Pendapatan Negara dan Hil plt.xlabel('Year')
    plt.ylabel('Value')
    plt.title('Time Series of Pendapatan Negara dan Hibah')
    plt.legend()
    plt.grid(True)
    plt.show()
```



```
from statsmodels.tsa.arima.model import ARIMA
       train_national_income = national_income['Pendapatan Negara dan Hibah'][:'
        test_national_income = national_income['Pendapatan Negara dan Hibah']['20
       model = ARIMA(train_national_income, order=(1, 1, 1))
        model_fit = model.fit()
       c:\Users\siswa\AppData\Local\Programs\Python\Python311\Lib\site-packages\s
       tatsmodels\tsa\base\tsa_model.py:473: ValueWarning: No frequency informati
       on was provided, so inferred frequency YS-JAN will be used.
         self._init_dates(dates, freq)
       c:\Users\siswa\AppData\Local\Programs\Python\Python311\Lib\site-packages\s
       tatsmodels\tsa\base\tsa_model.py:473: ValueWarning: No frequency informati
       on was provided, so inferred frequency YS-JAN will be used.
         self._init_dates(dates, freq)
       c:\Users\siswa\AppData\Local\Programs\Python\Python311\Lib\site-packages\s
       tatsmodels\tsa\base\tsa_model.py:473: ValueWarning: No frequency informati
       on was provided, so inferred frequency YS-JAN will be used.
         self._init_dates(dates, freq)
       c:\Users\siswa\AppData\Local\Programs\Python\Python311\Lib\site-packages\s
       tatsmodels\base\model.py:607: ConvergenceWarning: Maximum Likelihood optim
       ization failed to converge. Check mle_retvals
         warnings.warn("Maximum Likelihood optimization failed to "
In [ ]: forecast = model_fit.forecast(steps=len(test_national_income))
```

```
In []: forecast = model_fit.forecast(steps=len(test_national_income))

result = pd.DataFrame({'Actual': test_national_income, 'Forecast': forecast print(result)
```

Actual Forecast 2020-01-01 1.699948e+06 2.278748e+06

```
2022-01-01 2.266199e+06 2.506008e+06
In [126... from sklearn.metrics import mean_squared_error, mean_absolute_error
         mse = mean_squared_error(test_national_income, forecast)
         mae = mean_absolute_error(test_national_income, forecast)
         mape = (abs((test_national_income - forecast) / test_national_income).mea
         print(f'MSE: {mse}, MAE: {mae}, MAPE: {mape}%')
        MSE: 271123044232.81827, MAE: 489113.1540396143, MAPE: 27.27847602543279%
In [138... future_forecast = model_fit.forecast(steps=10)
         print(f'Future Forecast (2023-2027): {future_forecast}')
        Future Forecast (2023-2027): 2020-01-01
                                                 2.278748e+06
        2021-01-01 2.392380e+06
        2022-01-01 2.506008e+06
        2023-01-01 2.619632e+06
        2024-01-01 2.733253e+06
        2025-01-01 2.846869e+06
        2026-01-01 2.960482e+06
                    3.074090e+06
        2027-01-01
                   3.187695e+06
        2028-01-01
        2029-01-01
                    3.301296e+06
        Freq: YS-JAN, Name: predicted mean, dtype: float64
In [139... plt.plot(national_income.index, national_income['Pendapatan Negara dan Hi]
         # plt.plot(forecast.index, forecast, label='Forecast', linestyle='--', co
         plt.plot(future_forecast.index, future_forecast, label='Forecast', linest
         plt.xlabel('Year')
         plt.ylabel('Pendapatan Negara dan Hibah')
         plt.title('Forecast vs Actual')
```

2021-01-01 1.743649e+06 2.392380e+06

plt.legend()
plt.show()

Chapter 2: NN Classification

```
In [11]: from sklearn.model_selection import train_test_split
    from sklearn.preprocessing import StandardScaler, LabelEncoder
    from tensorflow.keras.models import Sequential
    from tensorflow.keras.layers import Dense
In [10]: pegawai_train = pd.read_excel('./data/Pegawai.xlsx', engine='openpyxl', hopegawai_train
```

Out[10]:

	Name	Sex	Marital Status	Children	Education	Years Employed	Work Hours	Career Development	Salary
0	Samuel Brewster	М	М	2	Graduate Degree	4	57	2	2523
1	Ernest Brewster	М	М	2	Graduate Degree	14	48	3	5071
2	Samuel Smith	М	М	2	Graduate Degree	2	42	1	4563
3	Alex Steinman	М	S	1	Graduate Degree	11	31	2	8835
4	John Coriano	М	М	1	Graduate Degree	3	47	2	4937

195	Joan Smith	F	М	1	High School	4	60	0	3256
196	Faith Coleman	F	М	1	College	8	46	2	3350
197	John Silverman	М	М	1	High School	2	52	1	3633
198	Gary Baker	М	М	2	College	5	48	5	3157
199	Anthony Brown	М	М	1	College	2	58	1	3619

200 rows × 12 columns

Out[12]:

	Sex	Marital Status	Children	Education	Years Employed	Work Hours	Career Development	Salary	Bonuses
0	М	М	2	Graduate Degree	4	57	2	2523	101
1	М	М	2	Graduate Degree	14	48	3	5071	127
2	М	М	2	Graduate Degree	2	42	1	4563	22
3	М	S	1	Graduate Degree	11	31	2	8835	265
4	М	М	1	Graduate Degree	3	47	2	4937	133
195	F	М	1	High School	4	60	0	3256	30
196	F	М	1	College	8	46	2	3350	101
197	М	М	1	High School	2	52	1	3633	127
198	М	М	2	College	5	48	5	3157	95
199	М	М	1	College	2	58	1	3619	10

```
In [13]: label_encoders = {}
         for column in ['Sex', 'Marital Status', 'Education', 'Employee Intention'
             le = LabelEncoder()
             pegawai_train[column] = le.fit_transform(pegawai_train[column])
             label encoders[column] = le
In [16]: X = pegawai_train.drop(columns=["Employee Intention"])
         y = pegawai train["Employee Intention"]
In [17]: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,
In [18]: # Scale numerical features
         scaler = StandardScaler()
         X_train = scaler.fit_transform(X_train)
         X_test = scaler.transform(X_test)
In [19]: model = Sequential([
             Dense(64, activation='relu', input_shape=(X_train.shape[1],)),
             Dense(32, activation='relu'),
             Dense(1, activation='sigmoid')
         1)
         model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['acc
        c:\Users\siswa\AppData\Local\Programs\Python\Python311\Lib\site-packages\k
        eras\src\layers\core\dense.py:87: UserWarning: Do not pass an `input_shape
        '/'input dim' argument to a layer. When using Sequential models, prefer us
        ing an `Input(shape)` object as the first layer in the model instead.
         super().__init__(activity_regularizer=activity_regularizer, **kwargs)
In [20]: history = model.fit(X_train, y_train, epochs=50, batch_size=32, validation
        Epoch 1/50
                                             - 2s 71ms/step - accuracy: 0.7406 - lo
        ss: 0.5860 - val_accuracy: 0.7188 - val_loss: 0.5851
        Epoch 2/50
        4/4 -
                                             - Os 16ms/step - accuracy: 0.8406 - lo
        ss: 0.5220 - val accuracy: 0.7188 - val loss: 0.5505
        Epoch 3/50
        4/4 -
                                          --- Os 16ms/step - accuracy: 0.8417 - lo
        ss: 0.4785 - val_accuracy: 0.7188 - val_loss: 0.5214
        Epoch 4/50
                                             - Os 16ms/step - accuracy: 0.8151 - lo
        4/4 -
        ss: 0.4681 - val_accuracy: 0.7188 - val_loss: 0.4949
        Epoch 5/50
        4/4 -
                                             - Os 15ms/step - accuracy: 0.8073 - lo
        ss: 0.4266 - val_accuracy: 0.7188 - val_loss: 0.4690
        Epoch 6/50
        4/4 -
                                            - Os 15ms/step - accuracy: 0.8250 - lo
        ss: 0.3936 - val_accuracy: 0.6875 - val_loss: 0.4465
        Epoch 7/50
                                           - Os 18ms/step - accuracy: 0.8292 - lo
        4/4 -
        ss: 0.3697 - val_accuracy: 0.6875 - val_loss: 0.4251
        Epoch 8/50
        4/4 -
                                             - Os 18ms/step - accuracy: 0.8365 - lo
        ss: 0.3454 - val_accuracy: 0.7500 - val_loss: 0.4040
        Epoch 9/50
        4/4 -
                                             - Os 14ms/step - accuracy: 0.8615 - lo
```

```
ss: 0.3349 - val accuracy: 0.8125 - val loss: 0.3842
Epoch 10/50
                                    - Os 13ms/step - accuracy: 0.8589 - lo
4/4
ss: 0.2992 - val_accuracy: 0.8125 - val_loss: 0.3658
Epoch 11/50
                                   — Os 17ms/step - accuracy: 0.8625 - lo
4/4 -
ss: 0.3153 - val accuracy: 0.8438 - val loss: 0.3467
Epoch 12/50
                             0s 14ms/step - accuracy: 0.8719 - lo
4/4 -
ss: 0.2705 - val_accuracy: 0.8438 - val_loss: 0.3291
Epoch 13/50
                                    - 0s 15ms/step - accuracy: 0.9000 - lo
ss: 0.2600 - val_accuracy: 0.8750 - val_loss: 0.3124
Epoch 14/50
                                  --- Os 12ms/step - accuracy: 0.8841 - lo
4/4 -
ss: 0.2763 - val_accuracy: 0.9062 - val_loss: 0.2950
Epoch 15/50
4/4 -
                                    - Os 16ms/step - accuracy: 0.9469 - lo
ss: 0.2181 - val_accuracy: 0.9062 - val_loss: 0.2826
4/4 -
                                  --- Os 15ms/step - accuracy: 0.9323 - lo
ss: 0.2368 - val_accuracy: 0.9062 - val_loss: 0.2687
Epoch 17/50
                                    - Os 12ms/step - accuracy: 0.9344 - lo
ss: 0.2271 - val_accuracy: 0.9375 - val_loss: 0.2573
Epoch 18/50
                                    - 0s 13ms/step - accuracy: 0.9271 - lo
4/4 -
ss: 0.2227 - val accuracy: 0.9375 - val loss: 0.2440
Epoch 19/50
                          Os 33ms/step - accuracy: 0.9260 - lo
4/4 ----
ss: 0.2118 - val_accuracy: 0.9375 - val_loss: 0.2333
Epoch 20/50
                                    - Os 13ms/step - accuracy: 0.9698 - lo
ss: 0.1790 - val_accuracy: 0.9375 - val_loss: 0.2238
Epoch 21/50
4/4 -
                                   - 0s 14ms/step - accuracy: 0.9458 - lo
ss: 0.1681 - val_accuracy: 0.9375 - val_loss: 0.2148
Epoch 22/50
4/4 -
                                  -- Os 15ms/step - accuracy: 0.9510 - lo
ss: 0.1652 - val_accuracy: 0.9375 - val_loss: 0.2065
Epoch 23/50
                                    - 0s 14ms/step - accuracy: 0.9479 - lo
4/4 -
ss: 0.1834 - val_accuracy: 0.9375 - val_loss: 0.1962
Epoch 24/50
4/4 -
                                  -- Os 12ms/step - accuracy: 0.9604 - lo
ss: 0.1684 - val_accuracy: 0.9375 - val_loss: 0.1890
Epoch 25/50
                                   - Os 14ms/step - accuracy: 0.9667 - lo
4/4 -
ss: 0.1476 - val_accuracy: 0.9375 - val_loss: 0.1844
Epoch 26/50
                             Os 14ms/step - accuracy: 0.9602 - 10
4/4 ----
ss: 0.1480 - val_accuracy: 0.9375 - val_loss: 0.1773
Epoch 27/50
                                   - 0s 16ms/step - accuracy: 0.9667 - lo
ss: 0.1181 - val_accuracy: 0.9375 - val_loss: 0.1748
Epoch 28/50
                                    - Os 14ms/step - accuracy: 0.9708 - lo
ss: 0.1356 - val_accuracy: 0.9375 - val_loss: 0.1712
Epoch 29/50
4/4 -
                                Os 15ms/step - accuracy: 0.9615 - lo
```

```
ss: 0.1234 - val accuracy: 0.9375 - val loss: 0.1698
Epoch 30/50
                                    - Os 13ms/step - accuracy: 0.9594 - lo
4/4
ss: 0.1218 - val_accuracy: 0.9375 - val_loss: 0.1647
Epoch 31/50
                                   -- Os 12ms/step - accuracy: 0.9656 - lo
4/4 -
ss: 0.1213 - val accuracy: 0.9375 - val loss: 0.1586
Epoch 32/50
                             Os 16ms/step - accuracy: 0.9604 - 10
4/4 -
ss: 0.1167 - val_accuracy: 0.9375 - val_loss: 0.1571
Epoch 33/50
                                    - Os 16ms/step - accuracy: 0.9385 - lo
ss: 0.1311 - val_accuracy: 0.9375 - val_loss: 0.1564
Epoch 34/50
                                  --- Os 15ms/step - accuracy: 0.9684 - lo
4/4 -
ss: 0.0993 - val_accuracy: 0.9375 - val_loss: 0.1560
Epoch 35/50
4/4 -
                                    - Os 16ms/step - accuracy: 0.9510 - lo
ss: 0.1122 - val_accuracy: 0.9375 - val_loss: 0.1512
4/4 -
                                  --- 0s 14ms/step - accuracy: 0.9719 - lo
ss: 0.0847 - val_accuracy: 0.9375 - val_loss: 0.1526
Epoch 37/50
                                    - Os 14ms/step - accuracy: 0.9698 - lo
ss: 0.0883 - val_accuracy: 0.9375 - val_loss: 0.1517
Epoch 38/50
                                    - 0s 24ms/step - accuracy: 0.9479 - lo
4/4 -
ss: 0.1066 - val accuracy: 0.9375 - val loss: 0.1486
Epoch 39/50
                          Os 14ms/step - accuracy: 0.9573 - lo
4/4 —
ss: 0.1034 - val_accuracy: 0.9375 - val_loss: 0.1463
Epoch 40/50
                                    - Os 19ms/step - accuracy: 0.9760 - lo
ss: 0.0744 - val_accuracy: 0.9375 - val_loss: 0.1477
Epoch 41/50
4/4 -
                                   - 0s 13ms/step - accuracy: 0.9802 - lo
ss: 0.0787 - val_accuracy: 0.9375 - val_loss: 0.1456
Epoch 42/50
4/4 -
                                  -- Os 13ms/step - accuracy: 0.9740 - lo
ss: 0.0840 - val_accuracy: 0.9375 - val_loss: 0.1435
Epoch 43/50
                                    - 0s 15ms/step - accuracy: 0.9719 - lo
4/4 -
ss: 0.0798 - val_accuracy: 0.9375 - val_loss: 0.1394
Epoch 44/50
4/4 -
                                   -- Os 14ms/step - accuracy: 0.9823 - lo
ss: 0.0816 - val_accuracy: 0.9375 - val_loss: 0.1365
Epoch 45/50
                                    - Os 12ms/step - accuracy: 0.9885 - lo
4/4 -
ss: 0.0613 - val_accuracy: 0.9375 - val_loss: 0.1345
Epoch 46/50
                             Os 15ms/step - accuracy: 0.9896 - 10
4/4 -
ss: 0.0686 - val_accuracy: 0.9375 - val_loss: 0.1378
Epoch 47/50
                                   - Os 15ms/step - accuracy: 0.9885 - lo
ss: 0.0661 - val_accuracy: 0.9375 - val_loss: 0.1360
Epoch 48/50
                                    - Os 13ms/step - accuracy: 0.9771 - lo
ss: 0.0677 - val_accuracy: 0.9375 - val_loss: 0.1335
Epoch 49/50
4/4 -
                                Os 15ms/step - accuracy: 0.9865 - lo
```

```
ss: 0.0636 - val_accuracy: 0.9375 - val_loss: 0.1321
        Epoch 50/50
        4/4
                                              - Os 13ms/step - accuracy: 0.9917 - lo
        ss: 0.0579 - val_accuracy: 0.9375 - val_loss: 0.1312
In [21]: loss, accuracy = model.evaluate(X_test, y_test)
         print(f"Test Accuracy: {accuracy:.2f}")
        2/2 -
                                              - 1s 13ms/step - accuracy: 0.9729 - lo
        ss: 0.0923
        Test Accuracy: 0.98
In [22]: predictions = model.predict(X test)
         predicted_classes = (predictions > 0.5).astype(int)
         decoded_predictions = label_encoders['Employee Intention'].inverse_transf
        2/2 -
                                              - 0s 38ms/step
In [32]: forecast_data = pd.read_excel('./data/Pegawai.xlsx', engine='openpyxl', he
         forecast_data
            Unnamed:
                                   Marital
                                                               Years
                                                                     Work
                                                                                Career
                                          Children Education
                        Name Sex
                                   Status
                                                           Employed Hours Development
                        Carol
         0
                 NaN
                                F
                                      M
                                               1
                                                    College
                                                                  5
                                                                        57
                                                                                     2
                       Farmer
                       Robert
                                                                                     2
                 NaN
                               M
                                      M
                                                    College
                                                                        32
                      Gorman
In [33]: forecast data = forecast data.drop(columns=['Unnamed: 0', 'Name', 'Unnamed
         forecast_data = forecast_data.rename(columns={'Unnamed: 14': 'Employee In
         forecast_data
                 Marital
                                             Years
                                                    Work
                                                              Career
                                                                                     E
            Sex
                        Children Education
                                                                      Salary Bonuses
                                          Employed Hours Development
                 Status
                                                                                      1
         0
              F
                                  College
                                                5
                                                      57
                                                                      2091
                                                                                 28
                     M
                             1
                             2
                                  College
                                                3
                                                      32
                                                                       4069
                                                                                122
              М
                     M
In [34]: actual = forecast_data['Employee Intention']
         x_forecast = forecast_data.drop(columns=['Employee Intention'])
In [35]: for column in ['Sex', 'Marital Status', 'Education']:
             x_forecast[column] = label_encoders[column].transform(x_forecast[column
In [36]: x_forecast_scale = scaler.transform(x_forecast)
        new_predictions = model.predict(x_forecast_scale)
         new_predicted_class = (new_predictions > 0.5).astype(int)
         new_decoded_prediction = label_encoders['Employee Intention'].inverse_tra
         print(f"Predicted Employee Intention: {new_decoded_prediction[0]}")
```

Predicted Employee Intention: Leave

Accuracy: 1.00

Classification Report:

	precision	recall	f1-score	support
Leave	1.00	1.00	1.00	1
Stay	1.00	1.00	1.00	1
accuracy			1.00	2
macro avg	1.00	1.00	1.00	2
weighted avg	1.00	1.00	1.00	2

Confusion Matrix:

[[1 0]

[0 1]]

Chapter 3: DT Classification

In [42]: medical_data = pd.read_excel('./data/Diabetes_Classification.xlsx', engine medical_data

Out[42]:		Patient number	Cholesterol	Glucose	HDL Chol	Chol/HDL ratio	Age	Gender	Height	Weight	ВМІ
	0	1	193	77	49	3.9	19	female	61	119	22.5
	1	2	146	79	41	3.6	19	female	60	135	22.5 26.4 29.3 19.6
	2	3	217	75	54	4.0	20	female	67	187	29.3
	3	4	226	97	70	3.2	20	female	64	114	19.6
	4	5	164	91	67	2.4	20	female	70	141	20.2

385	386	227	105	44	5.2	83	female	59	125	25.2
386	387	226	279	52	4.3	84	female	60	192	37.5
387	388	301	90	118	2.6	89	female	61	115	21.7
388	389	232	184	114	2.0	91	female	61	127	24.0
389	390	165	94	69	2.4	92	female	62	217	39.7

390 rows × 18 columns

In [43]: medical_data = medical_data.drop(columns=['Unnamed: 16', 'Unnamed: 17', ')
medical_data

	meai	.cai_data									
Out[43]:		Cholesterol	Glucose	HDL Chol	Chol/HDL ratio	Age	Gender	Height	Weight	ВМІ	Systolic BP
	0	193	77	49	3.9	19	female	61	119	22.5	118
	1	146	79	41	3.6	19	female	60	135	26.4	108
	2	217	75	54	4.0	20	female	67	187	29.3	110
	3	226	97	70	3.2	20	female	64	114	19.6	122
	4	164	91	67	2.4	20	female	70	141	20.2	122
	385	227	105	44	5.2	83	female	59	125	25.2	150
	386	226	279	52	4.3	84	female	60	192	37.5	144
	387	301	90	118	2.6	89	female	61	115	21.7	218
	388	232	184	114	2.0	91	female	61	127	24.0	170
	389	165	94	69	2.4	92	female	62	217	39.7	160

```
In [46]: medical_label_encoders = {}
         for column in ['Gender', 'Diabetes']:
            le = LabelEncoder()
             medical_data[column] = le.fit_transform(medical_data[column])
             medical_label_encoders[column] = le
In [47]: y_medicine = medical_data['Diabetes']
         X_medicine = medical_data.drop(columns=['Diabetes'])
In [48]: X_medicine_train, X_medicine_test, y_medicine_train, y_medicine_test = train
In [49]: scaler = StandardScaler()
         X_medicine_train = scaler.fit_transform(X_medicine_train)
         X_medicine_test = scaler.transform(X_medicine_test)
In [50]: from sklearn.tree import DecisionTreeClassifier
In [51]: dt_classifier = DecisionTreeClassifier(criterion="gini", max_depth=5, rand
         dt_classifier.fit(X_medicine_train, y_medicine_train)
Out[51]:
                        DecisionTreeClassifier
         DecisionTreeClassifier(max depth=5, random state=42)
In [53]: y_medicine_pred = dt_classifier.predict(X_medicine_test)
         accuracy = accuracy_score(y_medicine_test, y_medicine_pred)
         print(f"Accuracy: {accuracy:.2f}")
         print("\nClassification Report:")
         print(classification_report(y_medicine_test, y_medicine_pred, target_name)
         # Generate a confusion matrix
         conf_matrix = confusion_matrix(y_medicine_test, y_medicine_pred)
         print("\nConfusion Matrix:")
         print(conf_matrix)
        Accuracy: 0.83
        Classification Report:
                     precision recall f1-score support
                         0.59
                                  0.62
           Diabetes
                                             0.61
                                                         16
        No diabetes
                         0.90
                                   0.89
                                             0.89
                                                         62
                                              0.83
                                                         78
           accuracy
                         0.74 0.76 0.75
0.84 0.83 0.84
          macro avg
                                             0.75
                                                         78
        weighted avg
                                                         78
        Confusion Matrix:
        [[10 6]
        [ 7 55]]
In [55]: from sklearn.tree import plot_tree
         plt.figure(figsize=(15, 10))
```


Chasper 4: Clustering

In [140... rent = pd.read_csv('./data/LondonBikeJourneyAug2023.csv')
rent

Out [140...

	Number	Start date	Start station number	Start station	End date	End station number	End station	nu
0	132825189	8/1/2023 0:00	1190	Kennington Lane Rail Bridge, Vauxhall	8/1/2023 0:17	1059	Albert Embankment, Vauxhall	2
1	132825190	8/1/2023 0:00	1190	Kennington Lane Rail Bridge, Vauxhall	8/1/2023 0:17	1059	Albert Embankment, Vauxhall	4
2	132825191	8/1/2023 0:00	983	Euston Road, Euston	8/1/2023 0:11	3500	Baldwin Street, St. Luke's	٤
3	132825192	8/1/2023 0:01	3479	Old Brompton Road, South Kensington	8/1/2023 0:12	1140	Grosvenor Road, Pimlico	Ę

4	132825193	8/1/2023 0:01	1219	Lower Marsh, Waterloo	8/1/2023 0:17	200056	Vauxhall Walk, Vauxhall	5
776522	133624570	8/31/2023 23:59	988	Great Russell Street, Bloomsbury	9/1/2023	200071	Hoxton Street, Hoxton	2
776523	133624571	8/31/2023 23:59	2660	Frith Street, Soho	9/1/2023 0:10	3496	St Mary's Hospital, Paddington	Ę
776524	133624572	8/31/2023 23:59	200190	Queen's Circus, Battersea Park	9/1/2023 0:13	3435	Gloucester Road (Central), South Kensington	Ę
776525	133624573	8/31/2023 23:59	959	Milroy Walk, South Bank	9/1/2023	1142	Tooley Street, Bermondsey	5
776526	133624569	8/31/2023 23:59	200163	Jubilee Plaza, Canary Wharf	9/1/2023	200123	Burdett Road, Mile End	Ę

776527 rows × 11 columns

```
In [141... rent['Start date'] = pd.to_datetime(rent['Start date'])
    rent['End date'] = pd.to_datetime(rent['End date'])

In [142... rent['Total duration (m)'] = rent['Total duration (ms)'].apply(lambda x: ]

In [143... rent

Out[143... Find
```

	Number	Start date	Start station number	Start station	End date	End station number	End station	nun
0	132825189	2023- 08-01 00:00:00	1190	Kennington Lane Rail Bridge, Vauxhall	2023- 08-01 00:17:00	1059	Albert Embankment, Vauxhall	23

41	Albert Embankment, Vauxhall	1059	2023- 08-01 00:17:00	Kennington Lane Rail Bridge, Vauxhall	1190	2023- 08-01 00:00:00	132825190	1
53	Baldwin Street, St. Luke's	3500	2023- 08-01 00:11:00	Euston Road, Euston	983	2023- 08-01 00:00:00	132825191	2
53	Grosvenor Road, Pimlico	1140	2023- 08-01 00:12:00	Old Brompton Road, South Kensington	3479	2023- 08-01 00:01:00	132825192	3
54	Vauxhall Walk, Vauxhall	200056	2023- 08-01 00:17:00	Lower Marsh, Waterloo	1219	2023- 08-01 00:01:00	132825193	4
21	Hoxton Street, Hoxton	200071	2023- 09-01 00:21:00	Great Russell Street, Bloomsbury	988	2023- 08-31 23:59:00	133624570	776522
59	St Mary's Hospital, Paddington	3496	2023- 09-01 00:10:00	Frith Street, Soho	2660	2023- 08-31 23:59:00	133624571	776523
53	Gloucester Road (Central), South Kensington	3435	2023- 09-01 00:13:00	Queen's Circus, Battersea Park	200190	2023- 08-31 23:59:00	133624572	776524
56	Tooley Street, Bermondsey	1142	2023- 09-01 00:06:00	Milroy Walk, South Bank	959	2023- 08-31 23:59:00	133624573	776525
53	Burdett Road, Mile End	200123	2023- 09-01 00:06:00	Jubilee Plaza, Canary Wharf	200163	2023- 08-31 23:59:00	133624569	776526

776527 rows × 12 columns

```
In [145... from sklearn.cluster import KMeans
   from sklearn.preprocessing import StandardScaler

In [146... rent['Start hour'] = rent['Start date'].dt.hour
   features = rent[['Total duration (m)', 'Start hour']]
```

```
In [147... features
Out [147...
                 Total duration (m) Start hour
               0
                             17
                                        0
                             17
               2
                              11
                                        0
                             12
                                        0
               4
                             16
                                        0
          776522
                             22
                                       23
          776523
                              11
                                       23
          776524
                             14
                                       23
          776525
                              7
                                       23
          776526
                              7
                                       23
         776527 rows × 2 columns
In [148... scaler = StandardScaler()
          scaled_features = scaler.fit_transform(features)
In [149... kmeans = KMeans(n_clusters=3, random_state=42)
         rent['Cluster'] = kmeans.fit_predict(scaled_features)
         print(rent[['Total duration (m)', 'Start hour', 'Cluster']].head())
           Total duration (m) Start hour Cluster
        0
                            17
                                        0
        1
                            17
                                          0
                                                   1
        2
                            11
                                          0
                                                   1
        3
                            12
                                          0
                                                   1
        4
                            16
In [150... rent['Cluster'].value_counts()
Out[150... Cluster
          0 482703
          1
              293822
          Name: count, dtype: int64
In [151... import matplotlib.pyplot as plt
          plt.scatter(rent['Total duration (m)'], rent['Start hour'], c=rent['Clust
          plt.xlabel('Total Duration (m)')
         plt.ylabel('Start Hour')
```

plt.title('Clustering Borrowing Behavior')

Chapter 5: Association Rule Mining

In [2]: online_shop = pd.read_csv('./data/Bakery.csv')
 online_shop

[2]:		TransactionNo	Items	DateTime	Daypart	DayType
20	0	1	Bread	2016-10-30 09:58:11	Morning	Weekend
	1	2	Scandinavian	2016-10-30 10:05:34	Morning	Weekend
	2	2	Scandinavian	2016-10-30 10:05:34	Morning	Weekend
	3	3	Hot chocolate	2016-10-30 10:07:57	Morning	Weekend
	4	3	Jam	2016-10-30 10:07:57	Morning	Weekend
	20502	9682	Coffee	2017-09-04 14:32:58	Afternoon	Weekend
	20503	9682	Tea	2017-09-04 14:32:58	Afternoon	Weekend
	20504	9683	Coffee	2017-09-04 14:57:06	Afternoon	Weekend
	20505	9683	Pastry	2017-09-04 14:57:06	Afternoon	Weekend

20507 rows × 5 columns

9684

In [4]:	online_shop	= online_s	hop.drop((columns=	['DateTir	ne', '	Daypar	t', 'Day	Type']
In [20]:	transaction_	_data = onl	ine_shop.	pivot_ta	ıble(index	x='Tra	nsacti	onNo', co	olumns:
In [21]:	transaction_	_data							
Out[21]:	Items	Adjustment	Afternoon with the baker	Alfajores	Argentina Night	Art Tray	Bacon	Baguette	Bakew
	TransactionNo								
	1	0	0	0	0	0	0	0	
	2	0	0	0	0	0	0	0	
	3	0	0	0	0	0	0	0	
	4	0	0	0	0	0	0	0	
	5	0	0	0	0	0	0	0	
	9680	0	0	0	0	0	0	0	
	9681	0	0	0	0	0	0	0	
	9682	0	0	0	0	0	0	0	
	9683	0	0	0	0	0	0	0	
	9684	0	0	0	0	0	0	0	

9465 rows × 94 columns

support

0.004543

```
In [7]: from mlxtend.frequent_patterns import apriori, association_rules
In [25]: min_support = 0.001
    frequent_itemsets = apriori(transaction_data, min_support=min_support, usoc:\Users\siswa\AppData\Local\Programs\Python\Python311\Lib\site-packages\m lxtend\frequent_patterns\fpcommon.py:161: DeprecationWarning: DataFrames w ith non-bool types result in worse computationalperformance and their supp ort might be discontinued in the future.Please use a DataFrame with bool t ype warnings.warn(
In [26]: print(frequent_itemsets)
```

itemsets

(Afternoon with the baker)

```
1 0.036344
                                        (Alfajores)
2
   0.004015
                                         (Art Tray)
   0.016059
3
                                         (Baguette)
4
   0.005071
                                         (Bakewell)
. .
        . . .
466 0.001585
                              (Tea, Soup, Sandwich)
467 0.001373
                          (Tea, Coffee, Cake, Bread)
468 0.001057 (Bread, Pastry, Coffee, Hot chocolate)
469 0.001162 (Coffee, Pastry, Medialuna, Bread)
470 0.001057
                       (Tea, Coffee, Cake, Sandwich)
```

[471 rows x 2 columns]

In [31]: min_confidence = 0.7

rules = association_rules(frequent_itemsets, metric="confidence", min_thre
rules

Out[31]:

	antecedents	consequents	antecedent support	consequent support	support	confidence	lift	r
0	(Extra Salami or Feta)	(Coffee)	0.004015	0.478394	0.003275	0.815789	1.705267	
1	(Keeping It Local)	(Coffee)	0.006656	0.478394	0.005388	0.809524	1.692169	
2	(Toast)	(Coffee)	0.033597	0.478394	0.023666	0.704403	1.472431	
3	(Salad, Cake)	(Coffee)	0.001373	0.478394	0.001057	0.769231	1.607944	
4	(Toast, Cake)	(Coffee)	0.002219	0.478394	0.001585	0.714286	1.493091	
5	(Vegan mincepie, Cake)	(Coffee)	0.001268	0.478394	0.001057	0.833333	1.741939	
6	(Scone, Cookies)	(Coffee)	0.002007	0.478394	0.001585	0.789474	1.650258	
7	(Salad, Extra Salami or Feta)	(Coffee)	0.001690	0.478394	0.001479	0.875000	1.829036	
8	(Hearty & Seasonal, Sandwich)	(Coffee)	0.001479	0.478394	0.001268	0.857143	1.791709	
9	(Pastry, Juice)	(Coffee)	0.002324	0.478394	0.001796	0.772727	1.615253	

10	(Juice, Spanish Brunch)	(Coffee)	0.002747	0.478394	0.002007	0.730769	1.527547
11	(Pastry, Toast)	(Coffee)	0.001585	0.478394	0.001373	0.866667	1.811617
12	(Salad, Sandwich)	(Coffee)	0.001902	0.478394	0.001585	0.833333	1.741939
13	(Tea, Cake, Sandwich)	(Coffee)	0.001479	0.478394	0.001057	0.714286	1.493091

Chapter 6: Harvest

In [89]: harvest = pd.read_csv('./data/soybean.csv')
harvest

Out[89]:

	Season	Cultivar	Repetition	PH	IFP	NLP	NGP	NGL	NS	MHG	
0	1	NEO 760 CE	1	58.80	15.20	98.20	177.80	1.81	5.20	152.20	3232
1	1	NEO 760 CE	2	58.60	13.40	102.00	195.00	1.85	7.20	141.69	351
2	1	NEO 760 CE	3	63.40	17.20	100.40	203.00	2.02	6.80	148.81	339 [,]
3	1	NEO 760 CE	4	60.27	15.27	100.20	191.93	1.89	6.40	148.50	3312
4	1	MANU IPRO	1	81.20	18.00	98.80	173.00	1.75	7.40	145.59	3230
315	2	FTR 4288 IPRO	4	88.33	16.33	75.73	139.00	1.84	3.67	135.19	334{
316	2	FTR 3190 IPRO	1	64.40	16.60	76.00	168.00	2.21	3.60	145.69	3418
317	2	FTR 3190 IPRO	2	64.60	17.60	116.80	271.20	2.32	3.80	147.24	365 ⁻
318	2	FTR 3190 IPRO	3	58.80	14.80	86.40	180.60	2.09	2.20	156.32	348

FTR
319 2 3190 4 62.60 16.33 93.07 206.60 2.21 3.20 157.61 360!
IPRO

320 rows × 11 columns

```
In [90]: season_1 = harvest[harvest['Season'] == 1]['GY']
season_2 = harvest[harvest['Season'] == 2]['GY']

In [92]: from scipy.stats import ttest_ind

t_stat, p_value = ttest_ind(season_1, season_2)

print("T-Statistic:", t_stat)
print("P-Value:", p_value)

if p_value < 0.05:
    print("Ada perbedaan yang signifikan antara hasil panen Season 1 dan else:
    print("Tidak ada perbedaan yang signifikan antara hasil panen Season</pre>
```

T-Statistic: 0.35154600089854243 P-Value: 0.7254115857412808

Tidak ada perbedaan yang signifikan antara hasil panen Season 1 dan Season 2