CIS 510 Assignment 3

Steven Walton

June 6, 2019

Problem P1

Problem Q1

Part 3)

Consider a first price sealed-bid auction with n risk-neutral agents whose valuations, v_1, \dots, v_n , are independently drawn from a uniform distribution on the interval [0, b]. Prove that $\left(\frac{n-1}{n}v_1, \dots, \frac{n-1}{n}v_n\right)$ is a Bayes-Nash equilibrium.

We will follow a similar formula to the two player game that we did in class. We will let \mathcal{V} be the space of players.

$$\int_{\mathcal{V},0}^{b} u_1(s_1)dv$$

$$= \int_{\mathcal{V},j}^{s_1} u_1(s_1)dv + \int_{\mathcal{V},s_1}^{b} u_1(s_1)dv$$

$$= \int_{\mathcal{V},0}^{s_1} u_1(s_1)dv + 0$$

$$= \int_{\mathcal{V},0}^{s_1} (v_1 - s_1)dv$$

$$= (v_1 - s_1) \int_{\mathcal{V},0}^{s_1} dv$$

$$= (v_1 - s_1)(s_1^{n-1} - a)$$

$$= s_1^{n-1} v_1 - s_1^n - av_1 + as_1$$

$$\left(\frac{d}{ds_1} \{s_1^{n-1} - s_1^n\}\right)$$

$$= (n-1)v_1 - ns_1$$

$$ns_1 = (n-1)v_1 + a$$

$$s_1 = \frac{n-1}{n}v_1$$

This method can similarly be used for each player following the same pattern. We should see that v_1, s_1 can be replaced with v_i, s_i and we will get a similar result.

Original problem had bounds [a, b] which creates an offset by a. This results in the profit smaller than a being obtained.

Problem Q2

Image an unknown game which has three states $\{A, B, C\}$ and in each state the agent has two actions to choose from $\{Up, Down\}$. Suppose a game agent chooses actions according to some policy π and generates the following sequence of actions and rewards in the unknown game:

t	s_t	$a_t s_{t+1}$		r_t
0	A	Down B		2
1	В	Down C		3
2	С	Up B		-2
3	В	Down B		0
4	В	UP A		1
5	A	Down C		-3
6	С	Down A		2
7	A	Up C		1
8	С	Down B		2
9	В	Down A		2
10	A	Up	Up B	

Table 1: $\gamma = 0.5$ and $\alpha = 0.5$

Part a)

Assume that all Q-values are initialized to 0. What are the Q-values learned by running Q-learning with the above experience sequence?

We have the algorithm for updating values

$$Q(s, a) = T(s, a, s')[R(s, a, s') + \gamma V(s')]$$

and

$$V^{\pi}(s) = (1 - \alpha)V(s) + \alpha[R(s, \pi(s), s') + \gamma V^{\pi}(s')]$$

Using these we will iterate over the values

$$Q_{init}(s,a) = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$V = (1 - 0.5)0 + 0.5(2 + 0.5 * 0) = 1$$

$$Q_0(s,a) = \begin{bmatrix} 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$V = (1 - 0.5)0 + 0.5(3 + 0.5 * 0) = 1.5$$

$$Q_1(s,a) = \begin{bmatrix} 0 & 1 \\ 0 & \frac{3}{2} \\ 0 & 0 \end{bmatrix}$$

$$V = (1 - 0.5)0 + 0.5(-2 + 0.5 * \frac{3}{2}) = -\frac{5}{8}$$

$$Q_2(s,a) = \begin{bmatrix} 0 & 1 \\ 0 & \frac{3}{2} \\ -\frac{5}{8} & 0 \end{bmatrix}$$

$$V = (1 - 0.5)\frac{3}{2} + 0.5(0 + 0.5 * \frac{3}{2}) = \frac{9}{8}$$

$$Q_3(s,a) = \begin{bmatrix} 0 & 1 \\ 0 & \frac{9}{8} \\ -\frac{5}{8} & 0 \end{bmatrix}$$

$$V = (1 - 0.5)0 + 0.5(1 + 0.5 * 1) = \frac{3}{4}$$

$$Q_4(s,a) = \begin{bmatrix} 0 & 1 \\ \frac{3}{4} & \frac{9}{8} \\ -\frac{5}{8} & 0 \end{bmatrix}$$

$$V = (1 - 0.5)1 + 0.5(-3 + 0.5 * 0) = -1$$

$$Q_5(s,a) = \begin{bmatrix} 0 & -1 \\ \frac{3}{4} & \frac{9}{8} \\ -\frac{5}{8} & 0 \end{bmatrix}$$

$$V = (1 - 0.5)0 + 0.5(2 + 0.5 * 0) = 1$$

$$Q_6(s,a) = \begin{bmatrix} 0 & -1 \\ \frac{3}{4} & \frac{9}{8} \\ -\frac{5}{8} & 1 \end{bmatrix}$$

$$V = (1 - 0.5)0 + 0.5(1 + 0.5 * 1) = \frac{3}{4}$$

$$Q_7(s,a) = \begin{bmatrix} \frac{3}{4} & -1 \\ \frac{3}{4} & \frac{9}{8} \\ -\frac{5}{8} & 1 \end{bmatrix}$$

$$V = (1 - 0.5)1 + 0.5(2 + 0.5 * \frac{9}{8}) = \frac{57}{32}$$

$$Q_8(s,a) = \begin{bmatrix} \frac{3}{4} & -1 \\ \frac{3}{4} & \frac{9}{8} \\ -\frac{5}{8} & \frac{57}{32} \end{bmatrix}$$

$$V = (1 - 0.5)\frac{9}{8} + 0.5(2 + 0.5 * \frac{3}{4}) = \frac{28}{16}$$

$$Q_9(s,a) = \begin{bmatrix} \frac{3}{4} & -1 \\ \frac{3}{4} & \frac{28}{16} \\ -\frac{5}{8} & \frac{57}{32} \end{bmatrix}$$

$$V = (1 - 0.5)\frac{3}{4} + 0.5(3 + 0.5 * \frac{28}{16}) = \frac{37}{16}$$

$$Q_9(s,a) = \begin{bmatrix} \frac{37}{16} & -1 \\ \frac{3}{4} & \frac{28}{16} \\ -\frac{5}{2} & \frac{57}{22} \end{bmatrix}$$

Part b)

In a model-based reinforcement learning, we first estimate the transition function T(s, a, s') and the reward function R(s, a, s'). Write down the estimates of T and R, estimated from the experience above. Write "n/a" if not applicable or undefined.

To figure this out we're going to reorder the above table for more clarity Here we can start calculating

s_t	a_t	s_{t+1}	r_t
Α	Down	В	2
Α	Down	С	-3
Α	Up	В	3
Α	Up	С	1
В	Down	A	2
В	Down	В	0
В	Down	С	3
В	UP	A	1
С	Down	A	2
С	Down	В	2
С	Up	В	-2

Table 2: Sorted by states and actions

the transition states by taking a given (s, a) pair and determining the probability of going to another state, s_{t+1} . We can determine the reward by normalizing.

$T(A, Down, B) = \frac{1}{2}$
$T(A, Down, C) = \frac{1}{2}$
R(A, Down, B) = 1
$R(A, Down, C) = -\frac{3}{2}$
$T(A, Up, B) = \frac{1}{2}$
$T(A, Up, C) = \frac{1}{2}$
$R(A, Up, B) = \frac{3}{4}$
$R(A, Up, C) = \frac{1}{4}$
$T(B, Down, A) = \frac{1}{3}$

$$T(B, Down, B) = \frac{1}{3}$$

$$T(B, Down, C) = \frac{1}{3}$$

$$R(B, Down, A) = \frac{2}{5}$$

$$R(B, Down, B) = 0$$

$$R(B, Down, C) = \frac{3}{5}$$

$$T(C, Down, A) = \frac{1}{2}$$

$$T(C, Down, B) = \frac{1}{2}$$

$$R(C, Down, A) = \frac{1}{2}$$

$$R(C, Down, B) = \frac{1}{2}$$

$$T(C, Up, B) = 1$$

$$R(C, Up, B) = -2$$

Part c)

Assume we had a different experience and ended up with the following estimates of the transition and reward functions

s	a	s'	$\hat{T}(s, a, s')$	$\hat{R}(s,a,s')$
A	Up	Α	1	12
A	Down	В	0.5	2
A	Down	С	0.5	-3
В	Up	В	1	8
В	Down	С	1	-6
С	Down	С	1	12
С	Up	С	0.5	2
С	Up	В	0.5	-2

(i) Give the optimal policy $\hat{\pi}^*(s)$ and $\hat{V}^*(s)$ for the MDP with transition function \hat{T} and reward function \hat{R} . Explain your answers.

Our two easiest policies are for being in states A and C where we already have the maximal reward in the MDP.

So given state A, $\hat{\pi}^*(A) = \text{Up}$ we always pick A and similarly in state C we have the policy $\hat{\pi}^*(C) = \text{Down to stay in C}$. Where in A we will always pick Up and in state C we will always pick Down. Because they have the same reward we know that finding one will result in the other.

We have the infinite equation

$$V^* = \hat{R}(s, a, s')(1 + \gamma + \gamma^2 + \cdots)$$
$$= \hat{R}(s, a, s') \left(\frac{1}{1 - \frac{1}{2}}\right)$$
$$= \hat{R}(s, a, s')2$$
$$= 24$$

This gives us the value for both A and C, where $\hat{R}(A, Up, s') = \hat{R}(C, Down, s')$.

B is a little more difficult to find, but we can see that once we get to A or C we will use the above values.

We can simply look at $\pi(B) = \text{Up}$ and see that we will always get a reward of 8, giving us V(B, Up) = 16, similarly to above. We need to also look at $\pi(B) = \text{Down}$. We see that we get $-6 + \gamma V^*(C) = 6$. Here we know that $16 > 8 : \hat{\pi}^*(B) = \text{Up}$ with $V^*(B) = 16$.

(ii) If we repeatedly feed this new experience sequence through our Q-learning algorithm, what values will it converget to? Assume that convergence is guarenteed.