

Digitec Galaxus' Shopping Assistant

Data Science Lab - Fall 2018 Mélanie Bernhardt, Mélanie Gaillochet, Laura Manduchi

Goal

Currently, customers browsing on Galaxus Digitec's website can filter out products by using up to 27 different filters. This is not very convenient for the user.

The goal of this project was to provide the most comfortable and efficient way for customers to find the product they need, by asking the optimal sequence of questions such that they are given a reduced subset of products as fast as possible.

From Digitec's database, we had access to:

- **Product catalog**, with information on the products
- **Purchase table**, with history of past purchased products
- **Traffic table**, with all filters used by the user in a session

	ilters	Ju	i i Oi itti	, ,	<i>3111111</i> 0			
Brands	Application range		Operating system		Windows sersion		Display size	
		794	Chrome :		Win 10		49.9	3
Please choose	Surjess /	417	Chrome OS	16	Win 10 Pro	433	10-10-0	17
	Gamino /	24	FreeDOS		Win 7 Day		11-11.9"	26
Resolution	Home Office /	626	Linux		Win 7 Pag / Win 10 m	18	12 - 12.91	78
	↓ Multimedia i	997	Mar	- 02	Windows 10 Horse	999	11,110"	110
	Pertable i	224	Remix OS 2.0		Windows 10 in Smode	25	14-140"	164
			Windows (813			15-15.9"	129
Touchscreen	Screen surface				Screen technology		×171	94
No	Arti-clare	506	Processor family		9-Sans	13		
Yes	271 High gloss	110			DO.	146	Processor type	
	ragi gana			~	PS with WLED backle.	71		
Memory					PSOFF	222		~
2 GB	SSD capacity		HDO capacity		LCD (5		
4 GB	16 08	4	32 GB		LCD with WLED backs	4	Craphics performance	
808	407 S2 68 64 68	13	64 08	2	LCD/LED	101	High-end	96
12 08	11 120 68	17	500 68	27	LED backlight /	107	low end	56
16 08	128 68	72	1000 68	545	DLED		Low midrange	536
20 68	180 68	- "	1500 GB		Sure View	21	Mid-range	198
24 GB	255.09	430	2000 GB	10	TFT	11	Ultra High End	2
32 GB	265 08				TFT with LED backlight	10	Workstation Graphics	
	500 68		Dedicated graphics r	semory	WLED	3		
Graphics card model	512 68	253	0.08				Optical drive type	
	U 1000 GB	50	108		Connections		Bluroy burner r	- 1
	1500 GB	3	298	109		~	Blu-ray reader / DVD _	(1
			2 GB	4			DVD writer i	93
Wireless connectivity (Input device		4 GB	119			DVD-RDM /	- 4
96	38 Key Humination	593	4.10 GB 5.08	2	Safety		No drive	790
4G	74 Number pad	330	508	1 25	Drive encryption Fingerprint reader	41		
Bluetooth	Pen enabled	164	808	25	Intel anti-theft	407	Weight	
Intel WIDI	29 Touchped buttons	290	0.00		Intel vPro	21	<0.99 kg	61
NFC	17 TrackPoint	140			Kensington lock	622	1 - 1.49 kg	292
			Colour		Smart Cord	134	1.5 - 1.99 kg	258
			Beige		TIM	954	2 - 2.49 kg	186
			Black	419		334	2.5 - 2.99 kg	66
			Blue	24			3 - 3.49 kg	26
			Bronze				3.5 - 3.99 kg	17

Stage 1: Greedy Algorithm

<u>Purpose:</u> Obtain the most informative data (i.e. small subset of meaningful products) with the minimum amount of actions (i.e. questions asked).

Our greedy algorithm is inspired by [1], [2] and finds the optimal next question to ask by maximizing **Shannon's mutual information** between the question \mathcal{Q}_i and the products Y_i given the history h_t of questions and answers provided until then.

$$\begin{split} Q_{opt[t]} &= \arg \max_{\mathbf{Q_i} \in setQ(t)} I(\mathbf{Q_i}; Y \mid \mathbf{H_t} = h_t) \\ &= \arg \max_{\mathbf{Q_i} \in setQ(t)} \left[H(Y \mid h_t) - H(Y \mid \mathbf{Q_i}, h_t) \right] \\ &= \arg \max_{\mathbf{Q_i} \in setQ(t)} \left[-H(Y \mid \mathbf{Q_i}, h_t) \right] \quad \text{since } H(Y \mid h_t) \text{ is the same for all questions, for a given } \mathbf{Y} \\ &= \arg \max_{\mathbf{Q_i} \in setQ(t)} \left[-\sum_{a \in \mathbf{Q_i}} p\left(\mathbf{Q_i} = a \mid \mathbf{H_t} = h_t\right) \sum_{y \in Y} p(y \mid \mathbf{Q_i} = a, \mathbf{H_t} = h_t) \cdot \log \left(p\left(y \mid \mathbf{Q_i} = a, \mathbf{H_t} = h_t\right) \right) \right] \end{split}$$

Some questions available in the database are very specific — High probability of asking questions that a real user would not be able to answer (e.g. "model of computer's battery").

Hence, we introduced a prior on filters, and we gave more weight to questions that had previously been used by users (from the real historical data).

This made our algorithm more user-friendly.

Notations:	
Y	final product
Q_i	question n°i (possible
	answers are its realizations)
setQ(t)	set of available questions at
	timestep t
H_t	history of questions and
	answers asked before
	timestep t.
$H(Y h_t)$	entropy of Y given the
	history.
$H(Y Q_i, h_t)$	conditional entropy between
	Q_i and Y given the history.

Interestingly, this method also gave optimal results in various noisy settings.

Stage 2: Imitation Learning

<u>Purpose</u>: **Increase the computational speed** of our system, by training a deep neural network (DNN) to imitate the policy of our greedy algorithm ("teacher") for finding the next question.

We implemented the **DAgger algorithm** [3], that first pre-trains a DNN with an initial dataset, generated from our teacher. It then runs its newly learned policy to explore new states. For each one, the pair [state, q], where q is the next question predicted by the teacher, is added to the initial dataset to retrain the model iteratively.

Since we were able to generate enough initial training data (> 70,000 states and labels), DAgger could not significantly improve classical imitation learning (i.e. there is no exploration of new states after initial training).

Therefore, to avoid overfitting, we decided to only use the model trained during initial training.

Algorithm:

- 1) Collect the initial training data, D_0 , in the form of [state, next question] by running the Greedy Algorithm on 7000 products. States are defined as the collection of all previously asked questions and their corresponding answers.
- 2) Train the DNN on D_0 to get the first policy.

Stage 3: User interface

The interactive interface we created uses our model to compute the next question that is asked to the user. It keeps asking questions until the number of products left is less than a predetermined threshold (50 products). Finally it returns the reduced list of products to choose

Results

The evaluation of our algorithm's performance is based on the total number of questions asked (Q) to output a subset of less that 50 products. We compare our algorithm's performance with a random baseline (where the next question is selected uniformly at random among the questions not already asked).

To add **robustness** to our model, we used several noise settings that simulated different kinds of users.

Evaluation procedure:

For a predetermined number of iterations:

- Sample one product (representing the target product of our fake user)
- Sample the answers to all possible questions according to the chosen
- Run the Greedy or Imitation algorithm to get the predicted list of questions to ask to the simulated user.

For all the noise settings both our algorithms outperformed the random baseline and the median of Q is mostly 3 times lower than the one of our baseline.

Evaluation of the number of question asked per user: Test set size: 1000 simulated users. Outliers not shown.

Additional P('I don't know')= 0 P(2 answers)=0 P(3 answers)=0

Setting 1 (medium noise) Additional P('I don't know')= 0 P(2 answers)=0.2 P(3 answers)=0.1

We can observe that the results are nearly identical to those obtained in the non-noisy setting.

Setting 2 (very noisy) Additional P('I don't know')= 0.1 P(2 answers)=0.4 P(3 answers)=0.3

References