Оглавление

1	1 Кольца и поля	2
	1.1 Алшебраические расширения	 2

Глава 1

Кольца и поля

1.1. Алшебраические расширения

Определение 1. L — расширение K, $\alpha \in L$ α называется алгебраическим над K, сели $\exists \, P(x) \in K[x]$ такой, что $P(\alpha) = 0$, P(x) — не нулевой. Если такого P(x) не существует, то α называется трансцендентным.

Определение 2. α — алгебраическое над $K, \qquad P(x) \in K[x], \qquad P(\alpha) = 0.$ Тогда

- P(x) алгебраический над α
- P(x) аннулирует α

Минимальным многочленом α над K называется ненулевой аннулирующий многочлен наименьшей степени со старшим коэффициентом, равным 1

Определение 3. Алгебраическим числом называется комплексное число, алгебраическое над $\mathbb Q$

Примеры. $K = \mathbb{Q}, \quad L = \mathbb{C}$

- 1. $\alpha = i$ алгебраическое Минимальный многочлен $P(x) = x^2 + 1$
- 2. $\alpha = \sqrt[3]{5}$ $P(x) = x^3 5$ аннулирующий, минимальный
- 3. $\alpha = 1 + \sqrt[3]{5}$ алгебраическое Найдём аннулирующий многочлен:

$$(\alpha - i)^3 = 5$$

$$\alpha^3 - 3\alpha^2 i + 3\alpha i^2 - i^3 = 5$$

$$(\alpha^3 - 3\alpha - 5) + (-3\alpha + 1)i = 0$$

$$\alpha^3 - 3\alpha - 5 = (-3\alpha + 1)i$$

$$(\alpha^2 - 3\alpha - 5)^2 = -(-3\alpha + 1)^2$$

$$(\alpha^3 - 3\alpha + 5)^2 + (3\alpha + 1)^2 = 0$$

$$P(x) = (x^3 - 3x + 5)^2 + (3x + 1)^2$$

4.
$$\alpha = \sqrt[3]{2 + 4\sqrt[4]{5}}$$
 — алгераич.

$$\alpha^{3} = 2 + 4\sqrt[4]{5}$$

$$\alpha^{3} - 2 = 4\sqrt[4]{5}$$

$$(\alpha^{3} - 2)^{4} = 4^{4} \cdot 5$$

$$(\alpha^3 - 2)^4 - 4^4 \cdot 5 = 0$$
$$P(x) = (x^3 - 2)^4 - 4^4 \cdot 5$$

5. e, π — трансцендентные

Свойства (минимального многочлена). K- поле, L- расширение K, $\alpha \in L,$ α алг. над K

1. Пусть P(x) — минимальный для α . Тогда

$$F(\alpha) = 0 \iff F(x) \vdots P(x)$$

Доказательство.

$$F(x) = P(x)Q(x) + R(x), \qquad \deg R < \deg P$$

• =

$$F(x) : P(x) \implies R(x) = 0$$

 $F(x) = P(x)Q(x)$

Подставим α :

$$F(\alpha) = \underbrace{P(\alpha)}_{0} Q(x) = 0$$

 $\bullet \implies$

$$\underbrace{P(\alpha)}_{0}Q(\alpha) + R(\alpha) = 0$$

$$R(\alpha) = 0 \implies R$$
— нулевой

2. Минимальный многочлен для α единственен

Доказательство. Пусть P_1P_2 — минимальные

$$\xrightarrow[\text{CB-BO 1}]{P_1(x) \vdots P_2(x)} \begin{cases} P_1(x) \vdots P_2(x) \\ P_2(x) \vdots P_1(x) \end{cases} \implies P_1(x) = P_2(x)$$

3. Минимальный многочлен неприводим над K

Доказательство. Пусть $P(x) = S(x)T(x), \quad 0 < \deg S, \deg T < \deg P$

$$0 = P(\alpha) = \underbrace{S(\alpha)}_{\in L} \underbrace{T(\alpha)}_{\in L} \underbrace{L - \text{поле}}_{\in L} \left[\begin{array}{c} S(\alpha) = 0 \\ T(\alpha) = 0 \end{array} \right. \qquad \not z \qquad \deg S, \deg T < \deg P$$

4. Если P(x) неприводим над $K, P(x) \neq 0, P(\alpha) = 0$

$$\implies P(x)$$
 — минимальный для α

Доказательство.

$$P(x)$$
: миним. $P(x)$ — непривод. $\Longrightarrow P(x)$ — миним.

Пример. $x^3 - 5$ — минимальный для $\sqrt[3]{5}$ над \mathbb{Q} , т. к. он неприводим над \mathbb{Q}

Определение 4. Расширение L над K называется алгебраическим, если любой элемент L является

Теорема 1. Конечное расширение полей является алгебраическим

Доказательство. Пусть L — конечное расширение K, $n\coloneqq |L:K|, \quad \alpha\in L$.

Докажем, что α — алгебраическое:

Элементы $\underbrace{1,\alpha,\dots,\alpha^{n-1},\alpha^n}_{n+1}\in L$ ЛЗ над K, т. е.

$$\exists k_0, k_1, \dots, k_{n-1}k_n \in K \notin \bigcirc$$
: $k_0 \cdot 1 + k_1 \alpha + \dots + k_{n-1} \alpha^{n-1} + k_n \alpha^n = 0$

Пусть $P(x) = k_0 + k_1 x + \dots + k_{n-1} x^{n-1} + k_n x^n$.

Тогда $P(x) \in K[x]$, P(x) — ненулевой, $P(\alpha) = 0 \implies \alpha$ — алгебраичсекое.

K — подполе L, **Определение 5.** L — поле, $\alpha_1, \dots \alpha_n \in L$

Через $K(\alpha_1,\ldots,\alpha_n)$ будем обозначать наимеьшее подполе L, содержащее K и α_1,\ldots,α_n .

Если $M = K(\alpha_1, \dots \alpha_n)$, то говорят, что M получено из K присоединением $\alpha_1, \dots, \alpha_n$.

Поле, полученное из K присоединением оного элемента, называется простым расширением K.

Пример. $\mathbb{Q}(\sqrt{2})$ — простое расширение \mathbb{Q}

Теорема 2 (строение простого алгебраического расширения). L- поле, K — подполе L, $\alpha \in$ P(x) — минимальный многочлен для α над K α алг. над K, Тогда

- 1. $K(\alpha) \simeq K[x]/\langle P(x) \rangle$ $\overline{F(x)} \mapsto F(\alpha)$ является изоморфизмом.
- 2. $K(\alpha)$ конечно над K, $|K(\alpha):K|=\deg P$ $1, \alpha, \dots, \alpha^{n-1}$ образуют базис $K(\alpha)$ над K.

Доказательство. Определим $f:K[x]\to K(\alpha)$ как $f(F):=F(\alpha)$ $(x\mapsto\alpha)$, т. к.

$$f(c_0 + c_1 x + \dots c_k x^k) = c_0 + c_1 \alpha + \dots c_k \alpha^k, \qquad c_i \in K$$

• Проверим, что f — гомоморфизм:

$$f(F+G) = (F+G)(\alpha) = F(\alpha) + G(\alpha) = f(F) + f(G)$$

$$f(FG) = (FG)(\alpha) = F(\alpha)G(\alpha) = f(F)f(G)$$

Найдём ker f:

$$F(x) \in \ker f \iff f(F) = 0 \iff F(\alpha) = 0 \iff F(x) : P(x)$$

 $\implies \ker f = \langle P(x) \rangle$

• Применим теорему о гомомрфизме:

$$\operatorname{Im} f \simeq K[x]/\ker f$$

Изоморфизм $\varphi(\overline{F}) = f(F) = F(\alpha)$ Получили изоморфизм $K[x]/\langle P(x) \rangle \to \operatorname{Im} f$

• Проверим, что Im $f \stackrel{?}{=} K(\alpha)$:

$$\left. \begin{array}{l} \alpha \in \operatorname{Im} f, \text{ т. } \kappa.\alpha = f(x) \\ K \subset \operatorname{Im} f, \text{ т. } \kappa. \mathop{k}_{\in K} = f(k) \end{array} \right\} \xrightarrow[\operatorname{Im} f - \operatorname{noje}]{} \operatorname{Im} f \supset K(\alpha)$$

- Проверим, что $1, \alpha, \dots, \alpha^{\deg P 1}$ базис: Пусть $n \coloneqq \deg P$
 - ЛНЗ:

Пусть ЛЗ:

$$a_0 \cdot 1 + a_1 \alpha + \dots + a_{n-1} \alpha^{n-1} = 0, \quad a_i \in K$$

Пусть $F(x) := a_0 + a_1 x + \dots + a_{n-1} x^{n-1} \implies F(\alpha) = 0$

- Попрождающий:

$$K(\alpha) = \operatorname{Im} f$$

Пусть $u \in K(\alpha) \implies \exists \, F \in K[x] : \quad f(F) = u \implies F(\alpha) = u$

Делим с остатком:

$$F(x) = Q(x)P(x) + R(x), \qquad \deg R < \deg P$$

$$\implies \deg R \le n+1$$

$$F(\alpha) = Q(\alpha)\underbrace{P(\alpha)}_{0} + R(\alpha) = R(\alpha)$$

$$R(x) = a_0 + a_1 x + \dots + a_{n-1} x^{n-1} \implies F(\alpha) = a_0 + a_1 \alpha + \dots + a_{n-1} \alpha^{n-1}$$

Примеры.

1. $\mathbb{Q}(\sqrt[3]{2})$, $\alpha = \sqrt[3]{2}$

$$1, \sqrt[3]{2}, (\sqrt[3]{2})^2$$
 — базис $\mathbb{Q}(\sqrt[3]{2})$ _0.

Любой элемент можно представить в виде $a + b\sqrt[3]{2} + c(\sqrt[3]{2})^2$, $a, b, c \in \mathbb{Q}$.

Пример сложения:

$$\left(1 + 2\sqrt[3]{2} + 3(\sqrt[3]{2})^2\right) + (-1 + \sqrt[3]{2}) = 3\sqrt[3]{2} + 3(\sqrt[3]{2})^2$$

Пример умножения:

$$(1+\sqrt[3]{2})(2\sqrt[3]{2}+3\sqrt[3]{2})^2 = 2\sqrt[3]{2}+3(\sqrt[3]{2})^2+2\sqrt[3]{2}^2+3(\sqrt[3]{2})^3 = 2\sqrt[3]{2}+5(\sqrt[3]{2})^2+6$$

2. $P(x) = x^5 - 5x^4 + 5$ — неприводимый над ${\mathbb Q}$ по критерию Эйзенштейна

$$x^{5} - 5x^{4} + 0x^{3} + 0x^{2} + 0x + 5$$

 \vdots
 \vdots
 \vdots
 \vdots

 α — комплексный корень

$$K = \mathbb{O}, \quad L = \mathbb{C}$$

Рассмотрим $\mathbb{Q}(\alpha)$:

$$|\mathbb{Q}(\alpha):\mathbb{Q}|=5$$

 $1, \alpha, \alpha^2, \alpha^3, \alpha^4$ — базис $\mathbb{Q}(L)$ над \mathbb{Q} .

Следствие. α — алгебраический над K, $F,G\in K[x]$, $G(\alpha)\neq 0$, $\beta=\frac{F(\alpha)}{G(\alpha)}$ Тогда β — алгебраический над K

Доказательство. L — расширение K, $\alpha \in L$

$$\implies \beta \subset L$$

Существует поле $K(\beta)$.

При этом $\beta \in K(\alpha)$.

$$K \subset K(\beta) \subset K(\alpha)$$

Применим одно из следствий из теоремы о мультипликативности расширения:

 $K(\alpha)$ над K конечно $\Longrightarrow K(\beta)$ над K конечно \Longrightarrow все элементы $K(\beta)$ алгебраичны над K

Примеры.

- 1. α алг. над K. Тогда $\frac{\alpha^2+3}{\alpha+1}$ алг. над K
- $2. \ \frac{\sqrt[3]{2}+1}{(\sqrt[3]{2})^2+5}$ алг. число

Следствие. α_1,\dots,α_n алгебраичны над K Тогда $K(\alpha_1,\dots,\alpha_n)$ конечно над K

Доказательство.

$$K \subset K(\alpha_1) \subset K(\alpha_1, \alpha_2) \subset \ldots \subset K(\alpha_1, \ldots, \alpha_n)$$

Достаточно доказать, что $K(\alpha_1, \dots, \alpha_i, \alpha_{i+1})$ кончено над $K(\alpha_1, \dots, \alpha_i)$:

......ТОДО: Дописать доказательство

Следствие. α,β алгебраичны над K $\implies \alpha+\beta, \quad \alpha-\beta, \quad \alpha\beta, \quad \alpha/\beta$ алгебраичны над K

доказательство. ТООО: дописать доказательство