How to choose right pre-trained model for solving Emergency vs Non-emergency classification?

How to choose right pre-trained model for our classification problem?

VGG16 trained **BERT** on ImageNet VGG16 trained **ULMFiT** on MNIST

How to choose right pre-trained model for our classification problem?

How to choose right pre-trained model for our classification problem?

VGG16 trained on ImageNet VGG16 trained on MNIST

ImageNet vs MNIST

ImageNet vs MNIST

ImageNet Challenge

- 1,000 object classes (categories).
- Images:
 - 1.2 M train
 - o 100k test.

ilytics hya

ImageNet vs MNIST

ImageNet Challenge

- 1,000 object classes (categories).
- Images:
 - 1.2 M train
 - o 100k test.

MNIST

Right pre-trained model for Emergency vs Non-emergency classification problem

VGG16 trained on ImageNet VGG16 trained on MNIST

Training Part

Training Part

Training Part

1. Import necessary libraries

Training Part

- 1. Import necessary libraries
- 2. Load data

Training Part

- 1. Import necessary libraries
- 2. Load data
- 3. Pre-Process data

Training Part

- 1. Import necessary libraries

- 2. Load data3. Pre-Process data4. Load weights of pre-trained model

Analytics

Training Part

- 1. Import necessary libraries
- 2. Load data
- a. rre-process data4. Load weights of pre-trained model
- 5. Fine tune the model for the current problem

Analytics

Training Part

- 1. Import necessary libraries
- 2. Load data
- 3. Pre-Process data
- 4. Load weights of pre-trained model
- 5. Fine tune the model for the current problem
- 6. Validate if it works fine, iterate again if it does not

Analytics

Training Part

- 1. Import necessary libraries
- 2. Load data
- 3. Pre-Process data
- 4. Load weights of pre-trained model
- 5. Fine tune the model for the current problem
- 6. Validate if it works fine, iterate again if it does not

Prediction

1. Get predictions on new data

Analytics

Training Part

- 1. Import necessary libraries
- 2. Load data
- 3. Pre-Process data
- 4. Load weights of pre-trained model
- 5. Fine tune the model for the current problem
- 6. Validate if it works fine, iterate again if it does not

Prediction

1. Get predictions on new data

