PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2000-151355

(43)Date of publication of application: 30.05.2000

(51)Int.Cl.

HO3H 9/64 HO3H 9/145

HO3H 9/25

(21)Application number: 10-314241

(71)Applicant: TOYO COMMUN EQUIP CO LTD

(22)Date of filing:

05.11.1998

(72)Inventor: OWAKI TAKUYA

(54) LADDER-TYPE SAW FILTER

(57) Abstract:

PROBLEM TO BE SOLVED: To obtain a means for making steep the attenuation gradient of the ladder type SAW(surface acoustic wave) filter constituted by arranging plural SAW resonators on a piezoelectric substrate.

SOLUTION: This SAW filter is constituted by arranging on the piezoelectric substrates plural SAW resonators 2 to 6 formed, by arranging IDT electrodes in the propagation direction of a surface wave and grating reflectors on both their sides. Here, on electrode finger width L of the grating reflectors and a space S are so related that 0.55\(\(\(\Delta\L\)\))\(\Sigma\)).

LEGAL STATUS

[Date of request for examination]

31.03.2000

[Date of sending the examiner's decision of rejection]

02.07.2002

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

THUS PAGE BLANK (USPTO)

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-151355 (P2000-151355A)

(43)公開日 平成12年5月30日(2000.5.30)

(51) Int.Cl.7		識別記号	FΙ			テーマコード(参考)
H03H	9/64		H03H	9/64	Z	5 J O 9 7
	9/145	•		9/145	D	
	9/25			9/25	c	
					Z	

		•
		審査請求 未請求 請求項の数2 OL (全 7 頁)
(21)出願番号	特顯平10-314241	(71)出願人 000003104
		東洋通信機株式会社
(22)出願日	平成10年11月5日(1998.11.5)	·神奈川県高座郡寒川町小谷2丁目1番1号
		(72)発明者 大脇 卓弥
		神奈川県高座郡寒川町小谷二丁目1番1号
		東洋通信機株式会社内
		Fターム(参考) 5J097 AA18 AA28 BB01 BB15 CC01
	•	DD05 DD13 DD15 DD16 DD25
		DD28 GG03 KK01 KK02 KK04
		Ĭ

(54)【発明の名称】 ラダー型SAWフィルタ

(57)【要約】

【課題】 圧電基板上に複数のSAW共振子を配置して 構成するラダー型SAWフィルタの減衰傾度を急峻にす る手段を得る。

【解決手段】 圧電基板上に表面波の伝搬方向に沿って I DT電極とその両側にグレーティング反射器を配して 形成するSAW共振子を、複数個配設して構成するラダー型SAWフィルタにおいて、前記IDT電極及び前記 グレーティング反射器の電極指幅 L とスペース S との関係を

55≦L/(L+S)≦0.75
としたラダー型SAWフィルタである。

【特許請求の範囲】

【請求項1】 タンタル酸リチウム基板上に表面波の伝 搬方向に沿ってIDT電極とその両側にグレーティング 反射器を配してなるSAW共振子を複数個配設して構成 するラダー型SAWフィルタにおいて、前記IDT電極 及び前記グレーティング反射器の電極指幅しとスペース Sとの関係を

1

0. $55 \le L / (L+S) \le 0.75$ としたことを特徴とするラダー型SAWフィルタ。

【請求項2】 切断角度θが38°≤θ≤44°のタン 10 タル酸リチウム基板を用いたことを特徴とする請求項1 記載のラダー型SAWフィルタ。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明はラダー型SAWフィ ルタに関し、特に通過域近傍の減衰傾度を改善したラダ ー型SAWフィルタに関する。

[0002]

【従来の技術】近年、SAWデバイスは通信分野で広く 利用され、高性能、小型、量産性等の優れた特徴を有す 20 い、電極にアルミニウム合金の膜厚H/1を0.08、ID ることから特に携帯電話器等に多く用いられている。携 帯電話器等のRF段に用いらるSAWフィルタの1種 に、同一圧電基板上に一端子対弾性表面波共振子(以 下、SAW共振子と称す)複数個を並、直列に配置した 所謂ラダー型SAWフィルタである。ラダー型SAWフ イルタの特徴は、他の電子部品に比べてQ値の高いSA W共振子のみで構成するため、低挿入損失であると共 に、急峻な減衰傾度のフィルタを実現できることから、 近年、携帯電話等のRFフィルタとして広く用いられる

【0003】図5は、ラダー型SAWフィルタを形成す るSAW共振子1個の構成を示す電極パターンの平面図 であり、圧電基板11上に表面波の伝搬方向に沿ってI DT電極12とその両側にグレーティング反射器13 a、13bを配置してSAW共振子を構成したものであ る。IDT電極12はそれぞれ互いに間挿し合う複数本 の電極指を有する一対のくし形電極により構成され、I DT電極12の一方のくし形電極は入力端子とし、他方 のくし形電極は出力端子として用いる。

【0004】図5 (b) に示すラダー型SAWフィルタ は、圧電基板11上に表面波の伝搬方向に沿って、図5 (a) に示すSAW共振子と同様なSAW共振子5個 (14~18) を互いに影響を及ぼさない距離を置いて 配置し、それらを並列、直列、並列、・・と順次ラダー 構造になるように信号線19、アース電極20及びアー ス線21を用いて接続したものである。

【0005】図5(b) に示すラダー型SAWフィルタ の電気的等価回路を、圧電共振子(SAW共振子も圧電 共振子の1種)を表す符号を用いて模式的に表すと、図 6に示すラダー型回路となる。即ち、図5(b)に示し 50 Sとの関係を吟味した結果、以下のようにすれば目的を

た各素子のうち、SAW共振子14、18は入出力端子 に対し直列アームに、SAW共振子15、16、17は 並列アームに接続されている。図6に示す各SAW共振 子の周波数と電気的諸定数とをフィルタ理論に従って設 定し、適当に終端すれば、有極構成の帯域濾波器として 機能することは良く知られている。

【0006】SAWデバイスの改良は年々急速に進展し ており、例えば特開平9-167936に開示されてい るように、タンタル酸リチウム(LiTaO₃)基板上にラダ ー型SAWフィルタを形成する際の挿入損失、減衰傾度 等は、基板の切断方位と電極膜厚とに大きく依存するこ とが開示されている。即ち、電極膜厚Η/λ (λは励起 される表面波の波長) が0.07≤H/1≤0.1、基 板の切断方位Υが38°≦Υ≦44°の条件を満たすよ うにラダー型SAWフィルタを形成すると、挿入損失が 低損失になると共に、通過域近傍の減衰傾度が急峻なラ ダー型SAWフィルタが得られることが記述されてい る。

【0007】図7は、圧電基板に42°Y-X LiTaOsを用 T電極対数を100対、反射器の本数をそれぞれ100本、電 極指の交差幅Wを30 A、共振周波数を880MHz帯とした SAW共振子5個を図6に示すように並直列に接続した フィルタの濾波特性をシミュレーションによりもとめた 図で、フィルタ特性について阻止域を含めて図示したも のBと、通過域のみを拡大して図示したものAが重ね書 きされている。拡大したフィルタ特性のロス (Loss) は 右側の縦軸に、周波数 (Freg.) は下段の数値に対応し ている。尚、ハッチングで示すAsは通過域の規格を示 し、Bsは減衰域の規格を示している。尚、電極指幅 (ライン幅) Lと電極指間スペースSの寸法(以下、ス ペース幅と称す)とを等しく設定している。

【発明が解決しようとする課題】しかしながら、米国の AMPS方式では900MHz帯の周波数を用い、送受の周 波数間隔が20MHzであり、比帯域が4.5%のRFフ ィルタが必要であるに対し、新たなPCS方式では周波数 帯が1.9GHz帯に移行したにも拘わらず送受の周波 数間隔が20MHzのままであり、RFフィルタとして 40 比帯域4.0%と狭帯域かつ通過域近傍の減衰傾度は従来 のものに比べてより急峻にする必要が生じている。上記 のラダー型SAWフィルタでは、新しい規格を満たすこ とが極めて難しいという問題があった。本発明は上記問 題を解決するためになされたものであって、減衰傾度を 改善したラダー型SAWフィルタを提供することを目的 とする。

[0009]

【課題を解決するための手段】上記目的を達成するため に本発明においては、IDTの電極指幅しとスペース幅 (3)

4

達成し得ることを見出した。即ち、請求項1記載の発明は、圧電基板上に表面波の伝搬方向に沿ってIDT電極とその両側にグレーティング反射器を配してなるSAW共振子を複数個配設して構成するラダー型SAWフィルタにおいて、IDT電極及びグレーティング反射器の電極指幅LとスペースSとの関係を

3

0. $5.5 \le L/(L+S) \le 0.75$ 小値よりも少し大きな値のSAW 型SAWフィルタである。請求項2記載の発明は、切断角度 θ が $3.8° \le \theta \le 4.4° のタンタル酸リチウム基板を用いたことを特徴と 10 むしろ急峻になることを見出した。する請求項<math>1$ 記載のラダー型SAWフィルタである。 【0.0.1.0】 【0.0.1.4】そこで、上記のことを に42° Y-X LiTaO₃ を用い、電極にア

【発明の実施の形態】以下本発明を図面に示した実施の形態に基づいて詳細に説明する。図1は本発明に係るラダー型SAWフィルタの構成を示す平面図であって、圧電基板1上に図5で説明したようなSAW共振子5個(SAW共振子2~6)を配し、リード電極7及び複数の電極パッド8a~eを用いて、並、直列に接続してラダー型SAWフィルタを構成したものである。それぞれのSAW共振子2~6は互いに影響を及ぼさない距離を20隔して配置されている。また、電極パッド8aと入力端子IN、電極パッド8bと出力端子OUTとをワイヤボンディングを用いて電気的に接続し、電極パッド8c~8eはそれぞれ接地してラダー型SAWフィルタを構成する。

【0011】ラダー型SAWフィルタの挿入損失、通過 域近傍の減衰傾度を改善するには、フィルタを構成して いるSAW共振子の特性、例えば電気的等価抵抗R、容 量比y等を改善する必要がある。そこで発明者は、SA W共振子の断面図の一部を示す図2のように、電極指幅 (ライン幅) Lとスペース幅Sとを定義したとき、両者の 和に対する電極指幅Lの比、即ちライン占有率L/(L+S) とSAW共振子の電気的等価抵抗R及び容量比γの関係 を求めるべく、種々実験を重ねた。尚、同図においてん は一波長に相当し、Hは電極膜の厚みであり、一般にS AW共振子の膜厚をH/2で表現する。圧電基板に42°Y -X LiTaO₃を用い、電極にアルミニウム合金の膜厚H/A を0.08、IDT電極対数を100対、反射器の本数をそれ ぞれ100本、電極指の交差幅Wを30 A とし、周波数は900 MHz帯とした。ライン占有率L/(L+S)を0.3から0.7ま 40 で0.1きざみで変化させ、その時の円線図と共振特性と を測定して、共振周波数f.、反共振周波数f.、容量比 y、等価抵抗R及びスプリアスを測定した。

【0012】図2(b)、(c)に示した円線図及び共振特性は測定した一例であり、点 α は共振周波数、点 β は反共振周波数を示している。図3(a)、(b)は、以上の測定から得られたデータを、それぞれ容量比 γ と電気的等価抵抗Rとに分け、ライン占有率L/(L+S)に対してプロットした図である。図3(a)から容量比 γ はライン占有率L/(L+S)が約0.47のとき最小値となること 50

が分かる。また、図3 (b) からライン占有率の増加に つれて電気的等価抵抗Rは概ね減少する傾向にある。

【0013】発明者は容量比γが小さく、等価抵抗Rも小さいSAW共振子を用いてラダー型SAWフィルタを構成した場合に、挿入損失が小さく、通過域近傍の減衰傾度が急峻になると考え実験してきたが、容量比γが最小値よりも少し大きな値のSAW共振子を用いてラダー型SAWフィルタを構成したところ、通過域帯域幅は容量比γが最小なものと同等で、通過域近傍の減衰傾度はむしろ急峻になることを見出した。

【0014】そこで、上記のことを確認すべく圧電基板 に42°Y-X LiTaOsを用い、電極にアルミニウム合金の膜 厚H/1を0.08、IDT電極対数を100対、反射器の本数 をそれぞれ100本、電極指の交差幅Wを30ん、共振周波数 を880MHz帯としたSAW共振子5個を図6のによう に並直列に接続したフィルタの濾波特性を、前記のSA W共振子の容量比γ、電気的等価抵抗R等の実験値を用 いて、シミュレーションによって求めた。図4は、SA W共振子の容量比ッが最小値より少し大きな値を呈する ライン占有率0.7に設定した場合の濾波特性を示した図 で、フィルタ特性について阻止域を含めて図示したもの Bと、通過域のみを拡大して図示したものAが重ね書き されている。拡大したフィルタ特性のロス(Loss)は右 - 側の縦軸に、周波数(Freq.)は下段に数値に対応して いる。尚、ハッチングを施したAsは通過域の規格、B s は減衰域の規格を示したものである。図4と図7とか ら明らかなように、ライン占有率が0.7を用いたラダー 型SAWフィルタの方が通過域近傍の減衰傾度が急峻で -あることが分かる。

【0015】さらに、図4、7を詳細に検討すると最小損失から1.5dB減衰した所の通過帯域幅は両者ともほぼ同じ値を示すが、30dB減衰した所の帯域幅はライン占有率0.7を用いたラダー型SAWフィルタの方が、ライン占有率0.5のフィルタより約7%ほど狭くなっていることが分かった。即ち、ライン占有率を0.7に設定したラダー型SAWフィルタの方がライン占有率を0.5に設定したフィルタより通過域近傍の減衰傾度が急峻になるということである。さらに、容量比γ、電気的等価抵抗R等に実験値を用い、ライン占有率をパラメータにしてラダー型SAWフィルタの濾波特性をシミュレーションにより求めたところ、ライン占有率L/(L+S)が0.55≦ L/(L+S) ≦0.75の関係を満たすときにライン占有率0.5とした従来のフィルタより減衰傾度が改善されることが分かった。

【0016】以上の説明では圧電基板上に配列したSA W共振子のIDT電極及びグレーティング反射器のライン占有率を同じ比で変化させた場合について、通過域近傍の減衰傾度が改善される関係を求めたが、ライン占有率を変化させると共振周波数も変化するため、グレーティング反射器が形成するストップバンドの中心地をフィ

6

ルタの帯域幅に対して最適になるようにグレーティング 反射器の波長を調整することはいうまでもない。

【0017】また、以上の説明では、タンタル酸リチウム基板の切断角度 θ を42度を用いた場合について説明したが、切断角度が $38^\circ \le \theta \le 44^\circ$ の範囲の切断角度を用いても上記と同様な結果が得られた。また、電極膜厚H/ λ について0.08の場合について説明したが、この値に限ることなく $0.07 \le H/\lambda \le 0.1$ の範囲に設定したものについても同様な結果が得られた。

[0018]

【発明の効果】本発明は、以上説明したように構成したので、通過域近傍の減衰傾度を急峻にすることが可能となった。従って、本発明になるフィルタを1.9GHz帯の携帯電話等のRFフィルタに用いれば通信品質の優れた携帯電話が実現できるという優れた効果を奏す。

【図面の簡単な説明】

【図1】本発明に係るラダー型SAWフィルタの構成を示す平面図である。

【図2】(a) ライン占有率を説明する図、(b) 円線図、(c) 共振特性を示す図である。

【図3】(a)ライン占有率L/(L+S)と容量比γとの関係を示す図、(b)ライン占有率L/(L+S)と電気的等価抵抗Rとの関係を示す図である。

*【図4】本発明に係るラダー型SAWフィルタの濾波特性を示す図である。

【図5】(a) SAW共振子の構成を示す図、(b) ラダー型SAWフィルタの構成を示す図である。

【図6】ラダー型SAWフィルタの電気的等価回路である。

【図7】従来のラダー型SAWフィルタの濾波特性を示す図である。

【符号の説明】

10 1・・圧電基板

2、3、4、5、6··SAW共振子

7・・リード電極

8 a 、 8 b 、 8 c 、 8 d 、 8 e ・ ・電極パッド

L・・電極指幅 (ライン幅)

S・・スペース

λ・・波長

H・・電極膜厚

α・・共振点

β・・反共振点

20 A・・通過域特性

B・・減衰域特性

As・・通過帯域の規格 Bs・・減衰域の規格

【図1】

【図6】

[図4]

【図7】

THIS PAGE BLANK (USPTO)