Dars un premer temps, robins que:

$$\frac{1}{N+1} \frac{1}{N} = \left(\sum_{k=1}^{N+1} u_k\right)^k + u_{n+1}^{N}$$

Rus, grâca à P_n , en déclappeur le carré, remarquoire que:

 $\left(\sum_{k=1}^{N+1} u_k\right)^2 = \left(\sum_{k=1}^{N+1} u_k\right)^2 + n^2 u_{n+1} \cdot \frac{n(n+1)}{N} + u_{n+1}^{N+1}$

De même,

 $\sum_{k=1}^{N+1} u_k^2 = \left(\sum_{k=1}^{N+1} u_k\right)^2 + n^2 u_{n+1} \cdot \frac{n(n+1)}{N} + u_{n+1}^{N+1}$

Grâce à attre égable, nous en déduvens que:

 $u_{n+1}^3 - u_{n+1} \cdot n(n+1) - u_{n+1}^3 = 0$

E tout donné que $u_{n+1} \cdot 0$, nous pruseru d'obset par u_{n+1} :

 $u_{n+1}^3 - u_{n+1} \cdot (n^2 + n) = 0$

Neus observement passible T^2 possète aussi duex actous, à saicle $n+1$ et $-n$.

L'unique rooms shirtement possible est $n+1$.

Rus conséquent,

 $u_{n+1} = n+4$

C'est exchement P_{n+1}

Ainse, nous verons de démarket que, nécessairement peur n class 10^2 .

 $u_n = n$

Escrice -15

a) n est dans 10^2
 $u_n = n$
 $u_{n+1} = n + 4$

C'est exchement P_{n+1}
 $u_n = n$

Escrice -15

a) n est dans 10^4
 $u_n = n$

Escrice -15

a) n est dans 10^4
 $u_n = n$

Escrice -15

a) n est dans 10^4
 $u_n = n$

Escrice -15

a) n est dans 10^4
 $u_n = n$

Escrice -15

a) n est dans 10^4
 $u_n = n$

Escrice -15

a) n est dans 10^4
 $u_n = n$

Escrice -15

a) n est dans 10^4
 $u_n = n$

Escrice -15

a) n est dans 10^4
 $u_n = n$

Escrice -15

a) n est dans 10^4
 $u_n = n$

Escrice -15

a) n est dans 10^4
 $u_n = n$

Escrice -15

a) n est dans 10^4
 $u_n = n$

Escrice -15

Consider aux proposétic de n
 $u_n = n$

Escrice -15

Consider aux proposétic de n

Escrice -15

Consider aux proposétic n

Escrice -15

Consider aux proposétic n

Escrice -15

Escrice -15