Extensions

- Extensions to the basic model allow it to handle more realistic production scenarios:
 - Multiple identical machines
 - Serial production lines
 - Non-Poisson demand and production

Multiple Identical Machines

Most production capacity only available in discrete (lumpy) units of machines (M/C)

- assume identical M/C at W/S
- different base and peak units possible
- failure (preemptive) $outages) \Rightarrow increasing$ process time
- k_i = machine i cost

$$r_a = r \Rightarrow \gamma = 1 \Rightarrow \text{scrap at end (default assumption)}$$

 t_0 = natural mean process time

$$t_e = \frac{t_0}{A} = \text{effective mean process time with failures}$$

$$A = \frac{MTTF}{MTTF + MTTR} = \text{availability}$$

MTTF = mean time to failure

MTTR = mean time to repair

$$r_e = \frac{m}{t_e}$$
 = effective capacity of *m*-machine workstation

$$m_{\min} = \lfloor r_a t_e + 1 \rfloor = \min \text{mum number of machines needed}$$

- bottom-up:
$$k r_e = k_i m$$
, $u = \frac{r_a}{r_e} = \frac{r_a t_e}{m}$ = utilization of workstation

"Machine" Hours

- General method of determining resource requirements
 - resources can be machines, people, etc.
 - can be used to determine operating costs for economic justification

$$m =$$
 number of machines, $H =$ hours of operation

$$mH$$
 = available machine hours = (processing + repair + idle) hours

$$m_{\min} = \left[\frac{\text{machine hours needed to meet demand}}{\text{productive hours per machine}} + 1 \right]$$

$$= \left| \frac{r_a t_0 H}{AH} + 1 \right| = \left| r_a \frac{t_0}{A} + 1 \right| = \left| r_a t_e + 1 \right|$$

 $r_a t_0 H = \text{total processing hours}$

$$r_a(t_e - t_0)H = \text{total repair hours}$$

$$(m-r_at_e)H$$
 = total idle hours

Line Yield

Given n operations at n workstations, each with yield fractions $y_1,...,y_n$ and known $r_{d,n}$,

$$r_{a,1} = \frac{r_{d,n}}{Y_n}$$
, where $Y_i = \prod_{j=1}^i y_j$ is the cumulative line yield from 1 to *i*.

Example:

$$r_{a,1} = \frac{r_{d,4}}{Y_4} = \frac{10}{0.85 \cdot 0.9 \cdot 0.95 \cdot 0.98} = \frac{10}{0.71222} = 14.0407$$

W/S	1	2	3	4
Arrival Rate (<i>r_a</i> , q/hr)	14.0407	11.9346	10.7411	10.2041
Yield (y)	0.85	0.9	0.95	0.98
Departure Rate (r _d , q/hr)	11.9346	10.7411	10.2041	10

Throughput Feasible Capacity Plan

• Throughput feasible \Rightarrow all $m_i = m_{\min,i}$

W/S	1	2	3	4
Arrival Rate (r _a , q/hr)	14.0407	11.9346	10.7411	10.2041
Natural Process Time (t ₀ , hr)	0.2	0.5	0.25	0.15
MTTF (hr)	40		100	
MTTR (hr)	2	0	5	0
Availability (<i>A</i>)	0.95238	1	0.95238	1
Effective Process Time (te, hr)	0.21	0.5	0.2625	0.15
Number of $M/C(m)$	3	6	3	2
Utilization (u)	0.98285	0.99455	0.93985	0.76531
Yield (y)	0.85	0.9	0.95	0.98
Departure Rate (r _d , q/hr)	11.9346	10.7411	10.2041	10

	A B	С	D	
1	W/S	1	2	
2	Arrival Rate (<i>r_a</i> , q	/hr)=C11/C10	=D11/D10	
3	Natural Process Time (t ₀ , hı	0.2	0.5	
4	MTTF(hr)	40		
5	MTTR(hr)	2	0	
6	Availability(<i>A</i>)	=IF(ISBLANK(C4), 1, C4/(C4 + C5))=IF(ISBLANK(D4), 1, D4/(D4 + D5))		
7	Effective Process Time (te, hi	c) =C3/C6	=D3/D6	
8	Number of M/C(m)	=FLOOR(C2*C7 + 1,1)	=FLOOR(D2*D7 + 1,1)	
9	Utilization (<i>u</i>)	=C2*C7/C8	=D2*D7/D8	
10 11	Yield (y)	0.85	0.9	
11	Departure Rate (r _d , q _d	/hr)=D2	=E2	