Coordinate Geometry and Lines

EXAMPLE 1 Describe and sketch the regions given by the following sets.

(a)
$$\{(x, y) \mid x \ge 0\}$$

(b)
$$\{(x, y) \mid y = 1\}$$

(a)
$$\{(x, y) \mid x \ge 0\}$$
 (b) $\{(x, y) \mid y = 1\}$ (c) $\{(x, y) \mid |y| < 1\}$

(b)
$$y = 1$$

(c)
$$|y| < 1$$

1 Distance Formula The distance between the points $P_1(x_1, y_1)$ and $P_2(x_2, y_2)$ is

$$|P_1P_2| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

EXAMPLE 2 The distance between (1, -2) and (5, 3) is

$$\sqrt{(5-1)^2 + [3-(-2)]^2} = \sqrt{4^2 + 5^2} = \sqrt{41}$$

Lines

2 Definition The **slope** of a nonvertical line that passes through the points $P_1(x_1, y_1)$ and $P_2(x_2, y_2)$ is

$$m = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1}$$

The slope of a vertical line is not defined.

3 Point-Slope Form of the Equation of a Line An equation of the line passing through the point $P_1(x_1, y_1)$ and having slope m is

$$y - y_1 = m(x - x_1)$$

EXAMPLE 3 Find an equation of the line through (1, -7) with slope $-\frac{1}{2}$.

SOLUTION Using $\boxed{3}$ with $m=-\frac{1}{2}, x_1=1$, and $y_1=-7$, we obtain an equation of the line as

$$y + 7 = -\frac{1}{2}(x - 1)$$

which we can rewrite as

$$2y + 14 = -x + 1$$
 or $x + 2y + 13 = 0$

EXAMPLE 4 Find an equation of the line through the points (-1, 2) and (3, -4).

4 Slope-Intercept Form of the Equation of a Line An equation of the line with slope m and y-intercept b is

$$y = mx + b$$

$$Ax + By + C = 0$$

$$y = -\frac{A}{R}x - \frac{C}{R}$$

EXAMPLE 5 Sketch the graph of the equation 3x - 5y = 15.

EXAMPLE 6 Graph the inequality x + 2y > 5.

$$x + 2y > 5$$

$$2y > -x + 5$$

$$y > -\frac{1}{2}x + \frac{5}{2}$$

Parallel and Perpendicular Lines

6 Parallel and Perpendicular Lines

- 1. Two nonvertical lines are parallel if and only if they have the same slope.
- **2.** Two lines with slopes m_1 and m_2 are perpendicular if and only if $m_1m_2 = -1$; that is, their slopes are negative reciprocals:

$$m_2 = -\frac{1}{m_1}$$

EXAMPLE 7 Find an equation of the line through the point (5, 2) that is parallel to the line 4x + 6y + 5 = 0.

SOLUTION The given line can be written in the form

$$y = -\frac{2}{3}x - \frac{5}{6}$$

which is in slope-intercept form with $m=-\frac{2}{3}$. Parallel lines have the same slope, so the required line has slope $-\frac{2}{3}$ and its equation in point-slope form is

$$y-2=-\frac{2}{3}(x-5)$$

We can write this equation as 2x + 3y = 16.

EXAMPLE 8 Show that the lines 2x + 3y = 1 and 6x - 4y - 1 = 0 are perpendicular.

SOLUTION The equations can be written as

$$y = -\frac{2}{3}x + \frac{1}{3}$$
 and $y = \frac{3}{2}x - \frac{1}{4}$

from which we see that the slopes are

$$m_1 = -\frac{2}{3}$$
 and $m_2 = \frac{3}{2}$

Since $m_1m_2 = -1$, the lines are perpendicular.

Circles

1 Equation of a Circle An equation of the circle with center (h, k) and radius r is

$$(x - h)^2 + (y - k)^2 = r^2$$

In particular, if the center is the origin (0, 0), the equation is

$$x^2 + y^2 = r^2$$

EXAMPLE 1 Find an equation of the circle with radius 3 and center (2, -5).

EXAMPLE 2 Sketch the graph of the equation $x^2 + y^2 + 2x - 6y + 7 = 0$ by first showing that it represents a circle and then finding its center and radius.

Parabolas

The geometric properties of parabolas are reviewed in Section 10.5. Here we regard a parabola as a graph of an equation of the form $y = ax^2 + bx + c$.

EXAMPLE 3 Draw the graph of the parabola $y = x^2$.

X	$y = x^2$
0	0
± 1/2	$\frac{1}{4}$
±1	1
±2	4
±3	9

(b)
$$x = ay^2$$
, $a < 0$

The curve with equation

2

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

EXAMPLE 5 Sketch the graph of $9x^2 + 16y^2 = 144$.

Hyperbolas

The curve with equation

3

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

FIGURE 10

The hyperbola
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

FIGURE 11

The hyperbola
$$\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1$$

EXAMPLE 6 Sketch the curve $9x^2 - 4y^2 = 36$.

Shifted Conics

Recall that an equation of the circle with center the origin and radius r is $x^2 + y^2 = r^2$, but if the center is the point (h, k), then the equation of the circle becomes

$$(x - h)^2 + (y - k)^2 = r^2$$

Similarly, if we take the ellipse with equation

4

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

and translate it (shift it) so that its center is the point (h, k), then its equation becomes

5

$$\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$$

$$y - k = a(x - h)^2$$

$$y - k = a(x - h)^2$$
 or $y = a(x - h)^2 + k$

EXAMPLE 7 Sketch the graph of the equation $y = 2x^2 - 4x + 1$.

EXAMPLE 8 Sketch the curve $x = 1 - y^2$.

(b)
$$x = 1 - y^2$$