Recitation 26 Solutions

1. (a) Solution 1:
$$\frac{x^2-1}{x^2-3x+2} = \frac{(x-1)(x+1)}{(x-1)(x-2)} = \frac{x+1}{x-2}$$

Thus
$$\lim_{x\to 1} \frac{x^2-1}{x^2-3x+2} = \lim_{x\to 1} \frac{x+1}{x-2} = \frac{1+1}{1-2} = -2$$

Solution 2:
$$\lim_{x\to 1} x^2-1=0= \lim_{x\to 1} x^2-3x+2$$

$$\lim_{x \to 1} \frac{x^{\frac{1}{2}-1}}{x^{\frac{1}{2}}3x+2} = \lim_{x \to 1} \frac{2x}{2x-3} = \frac{2}{2-3} = -2$$

(b) as
$$x \rightarrow 0^+$$
, $e^{x^1+1} \rightarrow e$ and $\sin(x) \rightarrow 0^+$

(c) Solution 1: If x>0
$$\frac{-2x}{\sqrt{2x^2-3}} = \frac{-2x}{\sqrt{2-3x^2}} = \frac{-2}{\sqrt{2-3x^2}}$$

$$\lim_{X \to \infty} \frac{-2x}{\sqrt{2x^2-3}} = \lim_{X \to \infty} \left(\frac{8x}{\sqrt{2x^2-3}} \right) = \lim_{X \to \infty} -\frac{\sqrt{2x^2-3}}{x} = \lim_{X \to \infty} -\sqrt{2x-3}x^2 = -\sqrt{2}$$

$$\lim_{x\to 0^{-}} g(x) = \lim_{x\to 0^{-}} u^{x} = 1$$

To be differentiable, we need
$$\lim_{x\to 0^+} \frac{g(x)-g(0)}{x} = \lim_{x\to 0^+} \frac{g(x)-g(0)}{x}$$

$$\lim_{x\to 0^+} \frac{y(x)-y(x)}{x} = \lim_{x\to 0^+} \frac{x+1-1}{x} = 1$$

$$\lim_{x\to 0^{-}} \frac{g(x)-g(x)}{x} = \lim_{x\to 0^{-}} \frac{a^{x}-1}{x} = \ln(a)$$

thus we need In(a)=1, i.e. a=e.

3. Let V be the sounce of the balloon and n be the radius.

Then V= 41 13 1 thus when V= 100 cm, r= (3/4100) cm

Inglicitly differentiation dv = 4 m n2 dr

thus
$$\frac{dr}{dt} = \frac{1}{4\pi} r^{-2} \frac{dV}{dt} = \frac{1}{4\pi} \left(\frac{3}{4\pi} 100 \right)^{-\frac{2}{3}} (5) \text{ cm/s}$$

21-120: Differential and Integral Calculus Recitation #26 Outline: 12/5/24

4. Let $a, b, c \in (-\infty, +\infty)$. Show that there exists $x \in (0, 1)$ such that:

$$4ax^3 + 3bx^2 + 2cx = a + b + c$$

Solution:

Let φ : $[0,1] \to \mathbb{R}$ defined by

$$\varphi(x) = ax^4 + bx^3 + cx^2 - (a+b+c)x$$

 φ is differentiable, and $\varphi(0) = 0 = \varphi(1)$. It follows that we can apply Rolle's Theorem and thus it exists it exists some $x \in (0,1)$ such that $\varphi'(x) = 0$ which is exactly what we had to show.

5. Determine the following antiderivatives:

(a)
$$\int \frac{dt}{\sqrt{t} + \sqrt{t^3}}$$

(b)
$$\int \frac{\ln t}{t + t(\ln t)^2} dt$$

(c)
$$\int \frac{e^{2t}}{e^t + 1} dt$$

Solution:

(a)
$$\int \frac{1}{\sqrt{t} + \sqrt{t^3}} dt = \int \frac{2u du}{u + u^3} = \int \frac{2 du}{1 + u^2} = 2 \arctan(u) + C = 2 \arctan(t) + C$$

(b)

$$\int \frac{\ln t}{t + t(\ln t)^2} dt = \int \frac{ue^u du}{e^u + e^u u^2} = \int \frac{u du}{1 + u^2} = \frac{1}{2}\ln(1 + u^2) + C = \frac{1}{2}\ln(1 + (\ln t)^2) + C$$

(c)
$$\int \frac{e^{2t}}{e^t + 1} dt = \int \frac{u du}{u + 1} = \int \left(1 - \frac{1}{u + 1}\right) du = u - \ln(1 + u) + C = e^t - \ln(1 + e^t) + C$$

6. Calculate the following integrals:

(a)
$$\int_0^1 \arctan t \, dt$$

(b)
$$\int_0^{1/2} \arcsin t \, dt$$

(c)
$$\int_0^1 t \arctan t \, dt$$

Solution:

By integration by parts with $u = \arctan(t)$, $du = \frac{1}{1+t^2}dt$, dv = 1 and v = t one has:

(a)

$$\int_0^1 \arctan(t) \, dt = \left[t \arctan(t) \right]_0^1 - \int_0^1 \frac{t}{1+t^2} \, dt$$
$$= \frac{\pi}{4} - \frac{1}{2} \left[\ln(1+t^2) \right]_0^1$$
$$= \frac{\pi}{4} - \frac{\ln 2}{2}.$$

(b) By integration by parts with $u = \arcsin(t)$, $du = \frac{1}{\sqrt{1-t^2}}dt$, dv = 1 and v = t one has:

$$\int_0^{1/2} \arcsin(t) \, dt = \left[t \arcsin(t)\right]_0^{1/2} - \int_0^{1/2} \frac{t}{\sqrt{1 - t^2}} \, dt$$
$$= \frac{\pi}{12} + \left[\sqrt{1 - t^2}\right]_0^{1/2}$$
$$= \frac{\pi}{12} + \frac{\sqrt{3}}{2} - 1.$$

(c) By integration by parts, with $u = \arctan(t)$, $du = \frac{1}{1+t^2}dt$, dv = tdt and $v = \frac{t^2}{2}$ one has

$$\int_0^1 t \arctan(t) dt = \frac{1}{2} \left[t^2 \arctan(t) \right]_0^1 - \frac{1}{2} \int_0^1 \frac{t^2}{1 + t^2} dt$$
$$= \frac{\pi}{8} - \frac{1}{2} \left[t - \arctan(t) \right]_0^1 = \frac{\pi}{4} - \frac{1}{2}.$$

7. Let $f:(-\infty,+\infty)\to(-\infty,+\infty)$ be a continuous function. The function F(x) is defined as follows

$$F(x) = \int_{1}^{x} \left(t \int_{1}^{t} f(s) \, ds \right) dt.$$

Compute F'(1).

Solution:

By the Fundamental Theorem of Calculus, we have that

$$F'(x) = x \int_1^x f(s) \, ds,$$

from which we can see that

$$F'(1) = 1 \cdot \int_{1}^{1} f(s) ds = 0.$$