D-K59	518635	$n_d = 1.51760$	$v_d = 63.50$	$n_F - n_C = 0.008150$
		$n_e = 1.51954$	$v_{\rm e} = 63.40$	$n_{F'} - n_{c'} = 0.008200$

Re	Relat			
	λ (nm)		$P_{d,c}$	
n_{t}	1014.0	1.50793	$P_{e,d}$	
$n_{\rm r}$	706.5	1.51362	$P_{g,F}$	
n_c	656.3	1.51508		
$n_{c^{\prime}}$	643.8	1.51550		
n _{He-Ne}	632.8	1.51587		
n_{D}	589.3	1.51753	RC(S	
n_d	587.6	1.51760	RA(S	
$n_{\rm e}$	546.1	1.51954	D_{W}	
n_{F}	486.1	1.52323	D_A	
$n_{F'}$	480.0	1.52370		
ng	435.8	1.52760	T	
n_h	404.7	1.53120	T _g (°	
n _i	365.0	1.53732	T _s (°	
			$T_{10}^{14.5}$	
			T_{10}^{13}	
Const	$T_{10}^{7.6}$			
Formula			α 20/12	
A_0	2.27	2.2704227		
A_1	-8.7648	-8.7648181×10 ⁻³		
A_2	1.3241	1.3241433×10 ⁻²		
A_3	-5.4858	-5.4858082×10 ⁻⁴		
A_4	9.3735	9.3735842×10 ⁻⁵		
A_5	-4.4191	-4.4191155×10 ⁻⁶		
			E (1	
Deviation of Relative Partial				
Dispersions Δ P from				
the"Normal Line"			В (1	
ΔP _{F,e}	-0.0023			
ΔPg,F	-(-0.0016		
Temperature Coefficients of Re				
Rang	Rang of dn/dt relativ			

Relative Partial Dispersions					
$P_{d,c}$	0.3092		d,c′	0.2561	
$P_{e,d}$	0.2380	Ρ′	e,d	0.2366	
$P_{g,F}$				0.4754	
	Chemical	Pro	pert	ties	
			(Grade	
RC(S)			1		
RA(S	S)			1	
D_{W}				1	
D _A				1	
T	hermal	Pr	ope	rties	
T _g (T_g (°C)			497	
T _s (551	
T_{10}^{14}	^{.5} (℃)		460		
T_{10}^{13}	(℃)		492		
$T_{10}^{7.6}(^{\circ}C)$					
α _{20/120°} (10 ⁻⁷ /K))	65		
α 100/300°C (10 ⁻⁷ /K)		80			
λ (W/m • K)					
'					
M	lechanica	ıl P	rope	erties	
H_K (10 ⁷ Pa)			609	
F _A					
E $(10^7 Pa)$					
$G (10^7 Pa)$					
μ					
B $(10^{-12}/Pa)$					
Other Properties					
p (g	g/cm ³)			2.41	
of Refractive Index					
of Morro Much					

Temperature Coefficients of Refractive Index						
Rang of	dn/dt relative(10 ⁻⁶ /°C)					
Temperature	t	\mathbf{C}'	d	e	F'	g
-40~-20	2.7	3.0	3.2	4.1	4.3	4.8
-20~0	3.8	4.1	4.2	4.4	4.6	4.9
0~20	4.1	4.2	4.3	4.6	4.7	4.9
20~40	4.1	4.3	4.4	4.5	4.7	5.0
40~60	4.0	4.3	4.4	4.5	4.7	5.1
60~80	4.1	4.5	4.5	4.6	5.0	5.4

Intern	Internal Transmittance			
λ (nm)	τ 5 mm	τ 10 mm		
2400	0.900	0.81		
2200	0.933	0.87		
2000	0.987	0.975		
1800	0.994	0.989		
1600	0.997	0.995		
1400	0.987	0.975		
1200	0.999	0.998		
1060	0.999	0.998		
1000	0.999	0.998		
950	0.999	0.998		
900	0.999	0.998		
850	0.999	0.998		
800	0.997	0.995		
700	0.997	0.994		
650	0.996	0.993		
600	0.996	0.993		
550	0.997	0.994		
500	0.996	0.993		
480	0.996	0.992		
460	0.996	0.992		
440	0.995	0.990		
420	0.995	0.990		
400	0.995	0.990		
390	0.994	0.988		
380	0.991	0.983		
370	0.989	0.979		
360	0.982	0.964		
350	0.966	0.933		
340	0.927	0.86		
330	0.83	0.69		
320	0.62	0.38		
310	0.28	0.08		
300				
290				
280				
Coloration Code				
λ_{80}/λ_{5}	34/	/31		