

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)						
(51) International Patent Classificati n ⁶ :		(11) Internati nal Publication Number:	WO 98/08932			
C12N 1/00, 1/20, 15/00, 15/09, 15/10, 15/29, 15/31, 15/82, A01G 13/00, A01H 1/00, 3/00, 4/00, 5/00	A1	(43) International Publicati n Date:	5 March 1998 (05.03.98)			

(21) International Application Number: PCT/US97/07657

(22) International Filing Date: 5

5 May 1997 (05.05.97)

(30) Priority Data:

08/705,484

08/743,699

PCT/US96/18003

(34) Countries for which the regional or international application was filed:

VS August 1996 (29.08.96)

US (06.11.96)

US (06.11.96)

WO (34) Countries for which the regional or international application was filed:

KE et al.

(71) Applicants: DOWELANCO [US/US]; 9330 Zionsville Road, Indianapolis, IN 46268-1054 (US). WISCONSIN ALUMNI RESEARCH FOUNDATION [US/US]; 614 North Walnut Street, P.O. Box 7365, Madison, WI 53707-7365 (US).

- (72) Inventors: ENSIGN, Jerald, C.; 1810 Camelot Drive, Madison, WI 53705 (US). BOWEN, David, J.; 5668 Highway A, Oregon, WI 53575 (US). PETELL, James; 1427 Hunters Glen, Zionsville, IN 46077 (US). FATIG, Raymond; 30 Clay Court, Zionsville, IN 46077 (US). SCHOONOVER, Sue; 7142 Marstella, Brownsburg, IN 46112 (US). FFRENCH-CONSTANT, Richard, H.; 1006 University Bay Drive, Madison, WI 53705 (US). ROCHELEAU, Thomas, A.; 3100 Buena Vista Street, Madison, WI 53704 (US). BLACKBURN, Michael, B.; 2127 Luann Lane, Madison, WI 53713 (US). HEY, Timothy, D.; 1653 Catalina Way, Zionsville, IN 46077 (US). MERLO, Donald, J.; 11845 Durbin Drive, Carmel, IN 46032 (US). ORR, Gregory, L.; 1028 Saratoga Circle, Indianapolis, IN 46280 (US). ROBERTS, Jean, L.; 26035 State Road 19, Arcadia, IN 46030 (US). STRICKLAND, James, A.; 780 Mt. Zion Road, Lebanon, IN 46052 (US). GUO, Lining; 7 Nelson Circle, Brownsburg, IN 46112 (US). CICHE, Todd, A.; 1609 Chadbourne Avenue, Madison, WI 53705 (US). SUKHAPINDA, Kitisri; 4748 Ashwood Court, Zionsville, IN 46077 (US).
- (74) Agent: BORUCKI, Andrea, T.; DowElanco, 9330 Zionsville Road, Indianapolis, IN 46268-1054 (US).
- (81) Designated States: AL, AM, AT, AU, AZ, BB, BG, BR, BY, CA, CH, CN, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IL, IS, JP, KE, KG, KR, KZ, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, UZ, VN, European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Published

With international search report.

(54) Title: INSECTICIDAL PROTEIN TOXINS FROM PHOTORHABDUS

(57) Abstract

Proteins from the genus *Photorhabdus* are toxic to insects upon exposure. *Photorhabdus luminescens* (formerly *Xenorhabdus luminescens*) have been found in mammalian clinical samples and as a bacterial symbiont of entomopathogenic nematodes of genus *Heterorhabditis*. These protein toxins can be applied to, or genetically engineered into, insect larvae food and plants for insect control.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal ~
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of Americ
CA	Canada	IT	Italy	MX	Mexico	UZ.	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

f

5

10

15

35

40

INSECTICIDAL PROTEIN TOXINS FROM PHOTORHABDUS

Cross-reference to Related Application

This patent application is a continuation-in-part of U.S. Patent Application Serial Number 08/743,699 filed on November 6, 1996, which is a continuation-in-part of U.S. Patent Application Serial Number 08/705,484 filed on August 28, 1996, which is a continuation-in-part of U.S. Patent Application Serial Number 08/608,423 filed February 28, 1996, which is a continuation-in-part of U.S. Patent Application Serial Number 08/395,947 filed February 28, 1995, which was a continuation-in-part of U.S. Patent Application Serial Number 08/063,615 filed May 18, 1993. This application is also a continuation-in-part of provisional U.S. Patent Application Serial Number 60/007,255 filed November 6, 1995.

Field of the Invention

The present invention relates to toxins isolated from bacteria 20 and the use of said toxins as insecticides.

Background of the Invention

Many insects are widely regarded as pests to homeowners, to

picnickers, to gardeners, and to farmers and others whose
investments in agricultural products are often destroyed or
diminished as a result of insect damage to field crops.

Particularly in areas where the growing season is short,
significant insect damage can mean the loss of all profits to

growers and a dramatic decrease in crop yield. Scarce supply of
particular agricultural products invariably results in higher costs
to food processors and, then, to the ultimate consumers of food
plants and products derived from those plants.

Preventing insect damage to crops and flowers and eliminating the nuisance of insect pests have typically relied on strong organic pesticides and insecticides with broad toxicities. These synthetic products have come under attack by the general population as being too harsh on the environment and on those exposed to such agents. Similarly in non-agricultural settings, homeowners would be satisfied to have insects avoid their homes or outdoor meals without needing to kill the insects.

The extensive use of chemical insecticides has raised environmental and health concerns for farmers, companies that

and the second of the second o

produce the insecticides, government agencies, public interest groups, and the public in general. The development of less intrusive pest management strategies has been spurred along both by societal concern for the environment and by the development of biological tools which exploit mechanisms of insect management. Biological control agents present a promising alternative to chemical insecticides.

Organisms at every evolutionary development level have devised means to enhance their own success and survival. The use of biological molecules as tools of defense and aggression is known throughout the animal and plant kingdoms. In addition, the relatively new tools of the genetic engineer allow modifications to biological insecticides to accomplish particular solutions to particular problems.

10

15

20

25

30

35

40

One such agent, Bacillus thuringiensis (Bt), is an effective insecticidal agent, and is widely commercially used as such. In fact, the insecticidal agent of the Bt bacterium is a protein which has such limited toxicity, it can be used on human food crops on the day of harvest. To non-targeted organisms, the Bt toxin is a digestible non-toxic protein.

Another known class of biological insect control agents are certain genera of nematodes known to be vectors of transmission for insect-killing bacterial symbionts. Nematodes containing insecticidal bacteria invade insect larvae. The bacteria then kill the larvae. The nematodes reproduce in the larval cadaver. The nematode progeny then eat the cadaver from within. The bacteria-containing nematode progeny thus produced can then invade additional larvae.

In the past, insecticidal nematodes in the Steinernema and Heterorhabditis genera were used as insect control agents. Apparently, each genus of nematode hosts a particular species of bacterium. In nematodes of the Heterorhabditis genus, the symbiotic bacterium is Photorhabdus luminescens.

Although these nematodes are effective insect control agents, it is presently difficult, expensive, and inefficient to produce, maintain, and distribute nematodes for insect control.

It has been known in the art that one may isolate an insecticidal toxin from *Photorhabdus luminescens* that has activity only when injected into Lepidopteran and Coleopteran insect larvae. This has made it impossible to effectively exploit the insecticidal properties of the nematode or its bacterial symbiont. What would be useful would be a more practical, less labor-intensive wide-area delivery method of an insecticidal toxin which would retain its

biological properties after delivery. It would be quite desirous to discover toxins with oral activity produced by the genus *Photorhabdus*. The isolation and use of these toxins are desirous due to efficacious reasons. Until applicants' discoveries, these toxins had not been isolated or characterized.

Summary of the Invention

The native toxins are protein complexes that are produced and secreted by growing bacteria cells of the genus Photorhabdus, of interest are the proteins produced by the species Photorhabdus luminescens. The protein complexes, with a molecular size of approximately 1,000 kDa, can be separated by SDS-PAGE gel analysis into numerous component proteins. The toxins contain no hemolysin, lipase, type C phospholipase, or nuclease activities. The toxins exhibit significant toxicity upon exposure administration to a number of insects.

The present invention provides an easily administered insecticidal protein as well as the expression of toxin in a heterologous system.

20

25

35

40

The present invention also provides a method for delivering insecticidal toxins that are functional active and effective against many orders of insects.

Objects, advantages, and features of the present invention will become apparent from the following specification.

Brief Description of the Drawings

Fig. 1 is an illustration of a match of cloned DNA isolates 30 used as a part of sequence genes for the toxin of the present invention.

Fig. 2 is a map of three plasmids used in the sequencing process.

Fig. 3 is a map illustrating the inter-relationship of several partial DNA fragments.

Fig. 4 is an illustration of a homology analysis between the protein sequences of TcbAii and TcaBii proteins.

Fig. 5 is a phenogram of *Photorhabdus* strains. Relationship of *Photorhabdus* Strains was defined by rep-PCR.

The upper axis of Fig. 5 measures the percentage similarity of strains based on scoring of rep-PCR products (i.e., 0.0 [no similarity] to 1.0 [100% similarity]). At the right axis, the numbers and letters indicate the various strains tested; 14=W-14,

13.50 1. 12.27 12 12.57 13.38 13.38 14.38 13.38 14.48 14.68 14.58 14.58 14.58 14.58 14.58 14.58 14.58 14.58 14

Hm=Hm, H9=H9, 7=WX-7, 1=WX-1, 2=WX-2, 88=HP88, NC-1=NC-1, 4=WX-4, 9=WX-9, 8=WX-8, 10=WX-10, WIR=WIR, 3=WX-3, 11=WX-11, 5=WX-5, 6=WX-6, 12=WX-12, x14=WX-14, 15=WX-15, Hb=Hb, B2=B2, 48 through 52=ATCC 43948 through ATCC 43952. Vertical lines separating horizontal lines indicate the degree of relatedness (as read from the extrapolated intersection of the vertical line with the upper axis) between strains or groups of strains at the base of the horizontal lines (e.g., strain W-14 is approximately 60% similar to strains H9 and Hm).

Fig. 6 is an illustration of the genomic maps of the W-14 Strain.

5

Fig. 6A is an illustration of the tca and tcb loci and primary gene products.

Fig. 7 is a phenogram of Photorhabdus strains as defined by 15 rep-PCR. The upper axis of Fig. 7 measures the percentage similarity of strains based on scoring of rep-PCR products (i.e., 0.0 [no similarity] to 1.0 [100% similarity]). At the right axis, the numbers and letters indicate the various strains tested. Vertical lines separating horizontal lines indicate the degree of relatedness (as read from the extrapolated intersection of the 20 vertical line with the upper axis) between strains or groups of strains at the base of the horizontal lines (e.g., strain Indicus is approximately 30% similar to strains MP1 and HB Oswego). Note that the Photorhabdus strains on the phenogram are as follows: 14 25 = W-14; Hm = Hm; H9 = H9; 7 = WX-7; 1 = WX-1; 2 = WX-2; 88 = HP88; NC1 = NC-1; 4 = WX-4; 9 = WX-9; 8 = WX-8; 10 = WX-10; 30 = W30; WIR = WIR; 3 - WX-3; 11 = WX-11; 5 = WX-5; 6 = WX-6; 12 = WX-12; 15 = WX - 15; X14 = WX - 14; Hb = Hb; B2 = B2; 48 = ATCC 43948; 49 = ATCC43949; 50 = ATCC 43950; 51 = ATCC 43951; 52 = ATCC 43952. 30

Detailed Description of the Invention

The present inventions are directed to the discovery of a
unique class of insecticidal protein toxins from the genus
Photorhabdus that have oral toxicity against insects. A unique
feature of Photorhabdus is its bioluminescence. Photorhabdus may
be isolated from a variety of sources. One such source is
nematodes, more particularly nematodes of the genus
Heterorhabditis. Another such source is from human clinical
samples from wounds, see Farmer et al. 1989 J. Clin. Microbiol. 27

9/9

•						
per						
Š.						
						. 2
				· \$		
	19:		·		9	
,			ž			
		· .				
*						
						• .

INTERNATIONAL SEARCH REPORT

International application No. PCT/US97/07657

A. CLASSIFICATION OF SUBJECT MATTER	
IPC(6) : Please See Extra Sheet. US CL : Please See Extra Sheet.	1
According to International Patent Classification (IPC) or to both national classification and IPC	
B. FIELDS SEARCHED	
Minimum documentation scarched (classification system followed by classification symbols)	
U.S. : 435/69.1, 172.1, 172.3, 243, 252.3, 320.1, 419; 530/350, 536/23.7, 24.1; 800/205, 250	
Documentation searched other than minimum documentation to the extent that such documents are included in the fields	searched
Electronic data base consulted during the international search (name of data base and, where practicable, search term	ns used)
APS, CABA, CAPLUS, BIOSIS, MEDLINE, GENBANK, SCISEARCH	
search terms: insecticide, protein, photorhabdus, xenorhabdus, transgenic, transformed, plant	1
C. DOCUMENTS CONSIDERED TO BE RELEVANT	9
Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant	to claim No.
Y WILSON et al. Laboratory tests of the potential of 1-99	
entopathogenic nematodes for the control of field slugs.	
Journal of invertebrate Pathology. 1994, Vol. 64, pages	}
182-187.	
·]
Y CLARKE et al. Virulence mechanisms of Photorhabdus sp. 1-99	
strain K122 toward wax moth larvae. Journal of Invertebrate	İ
Pathology. 1995, Vol. 66, pages 149-155.	Ì
	ł
Y VAECK et al. Transgenic plants protected from insect 1-99	j
attack. Nature. July 1987, vol. 328, pages 33-37.	1
	{
	1
Further documents are listed in the continuation of Box C. See patent family annex.	
Special categories of cited documents: T later document published after the international filling	
"A" document defining the general state of the art which is not considered to be of particular relevance date and not in conflict with the application but cited to principle or theory underlying the invention	o understand the
"E" carlier document published on or after the international filing date "X" document of perticular retevance; the claimed invector considered povel or cannot be considered to involve a	
L document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other	
special reason (as specified) Y document of particular relevance; the claimed inventive step when the considered to involve an inventive step when the considered to inventive step when the considered to involve an inventive step when the considered to the considered to inventive step when the considered to inventiv	
O document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents, a being obvious to a person skilled in the art	uch combination
"P" document published prior to the international filing date but later than "g" document member of the same patent family the priority date claimed	
Date of the actual completion of the international search Date of mailing of the international search report	
15 AUGUST 1997 0 3 SEP 1997	
Name and mailing address of the ISA/US Authorized officer	
Commissioner of Patents and Trademarks Box PCT THOMAS HAAS	less -
1/2 . / · · · · · · · · · · · · · · · · · ·	- W
Facsimile No. (703) 305-3230 Telephone No. (703) 305-3230 Form PCT/ISA/210 (second sheet)(July 1992)*	7

INTERNATIONAL SEARCH REPORT

International application No. PCT/US97/07657

A. CLASSIFICATION OF SUBJECT MATTER: IPC (6):
C12N 1/00, 1/20, 15/00, 15/09, 15/10, 15/29, 15/31, 15/82; A01G 13/00; A01H 1/00, 3/00, 4/00, 5/00

435/69.1, 172.1, 172.3, 243, 252.3, 320.1, 419; 530/350, 536/23.7, 24.1; 800/205, 250

A. CLASSIFICATION OF SUBJECT MATTER:

US CL :

pp. 1594-1600. These saprohytic strains are deposited in the American Type Culture Collection (Rockville, MD) ATCC #s 43948, 43949, 43950, 43951, and 43952, and are incorporated herein by reference. It is possible that other sources could harbor *Photorhabdus* bacteria that produce insecticidal toxins. Such sources in the environment could be either terrestrial or aquatic based.

5

The genus Photorhabdus is taxonomically defined as a member of the Family Enterobacteriaceae, although it has certain traits atypical of this family. For example, strains of this genus are 10 nitrate reduction negative, yellow and red pigment producing and bioluminescent. This latter trait is otherwise unknown within the Enterobacteriaceae. Photorhabdus has only recently been described as a genus separate from the Xenorhabdus (Boemare et al., 1993 Int. J. Syst. Bacteriol. 43, 249-255). This differentiation is based on 15 DNA-DNA hybridization studies, phenotypic differences (e.g., presence (Photorhabdus) or absence (Xenorhabdus) of catalase and bioluminescence) and the Family of the nematode host (Xenorhabdus; Steinernematidae, Photorhabdus; Heterorhabditidae). Comparative, cellular fatty-acid analyses (Janse et al. 1990, Lett. Appl. 20 Microbiol 10, 131-135; Suzuki et al. 1990, J. Gen. Appl. Microbiol., 36, 393-401) support the separation of Photorhabdus from Xenorhabdus.

In order to establish that the strain collection disclosed herein was comprised of Photorhabdus strains, the strains were 25 characterized based on recognized traits which define Photorhabdus and differentiate it from other Enterobacteriaceae and Xenorhabdus (Farmer, 1984 Bergey's Manual of Systemic Bacteriology Vol. 1 pp.510-511; Akhurst and Boemare 1988, J. Gen. Microbiol. 134 pp. 1835-1845; Boemare et al. 1993 Int. J. Syst. Bacteriol. 43 30 pp. 249-255, which are incorporated herein by reference). traits studied were the following: gram stain negative rods, organism size, colony pigmentation, inclusion bodies, presence of catalase, ability to reduce nitrate, bioluminescence, dye uptake,___. gelatin hydrolysis, growth on selective media, growth temperature, 35 survival under anerobic conditions and motility. Fatty acid analysis was used to confirm that the strains herein all belong to the single genus Photorhabdus.

Currently, the bacterial genus *Photorhabdus* is comprised of a single defined species, *Photorhabdus luminescens* (ATCC Type strain #29999, Poinar et al., 1977, Nematologica 23, 97-102). A variety of related strains have been described in the literature (e.g., Akhurst et al. 1988 J. Gen. Microbiol., 134, 1835-1845; Boemare

المعاولة والمعاولة والمعاولة والمستناف والمعارض والمعارض والمعارض والمعارض والمعارض والمعارض والمعارض والمعارض

et al. 1993 Int. J. Syst. Bacteriol. 43 pp. 249-255; Putz et al. 1990, Appl. Environ. Microbiol., 56, 181-186). Numerous Photorhabdus strains have been characterized herein. Because there is currently only one species (luminescens) defined within the genus Photorhabdus, the luminescens species traits were used to characterize the strains herein. As can be seen in Fig. 5, these strains are quite diverse. It is not unforeseen that in the future there may be other Photorhabdus species that will have some of the attributes of the luminescens species as well as some different characteristics that are presently not defined as a trait of Photorhabdus luminescens. However, the scope of the invention herein is to any Photorhabdus species or strains which produce proteins that have functional activity as insect control agents, regardless of other traits and characteristics.

Furthermore, as is demonstrated herein, the bacteria of the genus Photorhabdus produce proteins that have functional activity as defined herein. Of particular interest are proteins produced by the species Photorhabdus luminescens. The inventions herein should in no way be limited to the strains which are disclosed herein.

These strains illustrate for the first time that proteins produced

15

20 These strains illustrate for the first time that proteins produced by diverse isolates of *Photorhabdus* are toxic upon exposure to insects. Thus, included within the inventions described herein are the strains specified herein and any mutants thereof, as well as any strains or species of the genus *Photorhabdus* that have the functional activity described herein.

There are several terms that are used herein that have a particular meaning and are as follows:

By "functional activity" it is meant herein that the protein

10 toxin(s) function as insect control agents in that the proteins are orally active, or have a toxic effect, or are able to disrupt or deter feeding, which may or may not cause death of the insect.

When an insect comes into contact with an effective amount of toxin delivered via transgenic plant expression, formulated protein compositions(s), sprayable protein composition(s), a bait matrix or other delivery system, the results are typically death of the insect, or the insects do not feed upon the source which makes the toxins available to the insects.

40 By the use of the term "genetic material" herein, it is meant to include all genes, nucleic acid, DNA and RNA.

By "homolog" it is meant an amino acid sequence that is identified as possessing homology to a reference W-14 toxin polypeptide amino acid sequence.

By "homology" it is meant an amino acid sequence that has a similarity index of at least 33% and/or an identity index of at least 26% to a reference W-14 toxin polypeptide amino acid sequence, as scored by the GAP algorithm using the Bl0sum 62 protein scoring matrix (Wisconsin Package Version 9.0, Genetics Computer Group (GCG), Madison, WI).

By "identity" is meant an amino acid sequence that contains an identical residue at a given position, following alignment with a reference W-14 toxin polypeptide amino acid sequence by the GAP algorithm.

The protein toxins discussed herein are typically referred to as "insecticides". By insecticides it is meant herein that the protein toxins have a "functional activity" as further defined herein and are used as insect control agents.

By the use of the term "oligonucleotides" it is meant a macromolecule consisting of a short chain of nucleotides of either RNA or DNA. Such length could be at least one nucleotide, but typically are in the range of about 10 to about 12 nucleotides. The determination of the length of the oligonucleotide is well within the skill of an artisan and should not be a limitation herein. Therefore, oligonucleotides may be less than 10 or greater than 12.

30

35

15

20

25

By the use of the term "Photorhabdus toxin" it is meant any protein produced by a Photorhabdus microorganism strain which has functional activity against insects, where the Photorhabdustoxin could be formulated as a sprayable composition, expressed by a transgenic plant, formulated as a bait matrix, delivered via baculovirus, or delivered by any other applicable host or delivery system.

By the use of the term "toxic" or "toxicity" as used herein it is 40 meant that the toxins produced by *Photorhabdus* have "functional activity" as defined herein.

By "truncated peptide" it is meant herein to include any peptide that is fragment(s) of the peptides observed to have functional activity.

By "substantial sequence homology" is meant either: a DNA fragment having a nucleotide sequence sufficiently similar to another DNA fragment to produce a protein having similar biochemical properties; or a polypeptide having an amino acid sequence sufficiently similar to another polypeptide to exhibit similar biochemical properties.

10

15

Fermentation broths from selected strains reported in Table 20 were used to determine the following: breadth of insecticidal toxin production by the *Photorhabdus* genus, the insecticidal spectrum of these toxins, and to provide source material to purify the toxin complexes. The strains characterized herein have been shown to have oral toxicity against a variety of insect orders. Such insect orders include but are not limited to *Coleoptera*, *Homoptera*, *Lepidoptera*, *Diptera*, *Acarina*, *Hymenoptera* and *Dictyoptera*.

20 As with other bacterial toxins, the rate of mutation of the bacteria in a population causes many related toxins slightly different in sequence to exist. Toxins of interest here are those which produce protein complexes toxic to a variety of insects upon exposure, as described herein. Preferably, the toxins are active 25 against Lepidoptera, Coleoptera, Homopotera, Diptera, Hymenoptera, Dictyoptera and Acarina. The inventions herein are intended to capture the protein toxins homologous to protein toxins produced by the strains herein and any derivative strains thereof, as well as any protein toxins produced by Photorhabdus. These homologous 30 proteins may differ in sequence, but do not differ in function from those toxins described herein. Homologous toxins are meant to include protein complexes of between 300 kDa to 2,000 kDa and are comprised of at least two (2) subunits, where a subunit is a peptide which may or may not be the same as the other subunit. 35 Various protein subunits have been identified and are taught in the Examples herein. Typically, the protein subunits are between about 18 kDa to about 230 kDa; between about 160 kDa to about 230 kDa; 100 kDa to 160 kDa; about 80 kDa to about 100 kDa; and about 50 kDa to about 80 kDa.

As discussed above, some *Photorhabdus* strains can be isolated from nematodes. Some nematodes, elongated cylindrical parasitic worms of the phylum *Nematoda*, have evolved an ability to exploit insect larvae as a favored growth environment. The insect larvae

provide a source of food for growing nematodes and an environment in which to reproduce. One dramatic effect that follows invasion of larvae by certain nematodes is larval death. Larval death results from the presence of, in certain nematodes, bacteria that produce an insecticidal toxin which arrests larval growth and inhibits feeding activity.

Interestingly, it appears that each genus of insect parasitic nematode hosts a particular species of bacterium, uniquely adapted for symbiotic growth with that nematode. In the interim since this research was initiated, the name of the bacterial genus Xenorhabdus was reclassified into the Xenorhabdus and the Photorhabdus.

Bacteria of the genus Photorhabdus are characterized as being symbionts of Heterorhabditus nematodes while Xenorhabdus species are symbionts of the Steinernema species. This change in nomenclature is reflected in this specification, but in no way should a change in nomenclature alter the scope of the inventions described herein.

10

15

20

The peptides and genes that are disclosed herein are named according to the guidelines recently published in the Journal of Bacteriology "Instructions to Authors" p. i-xii (Jan. 1996), which is incorporated herein by reference. The following peptides and genes were isolated from Photorhabdus strain W-14.

Table 1
Peptide/Gene Nomenclature
Toxin Complex

A . 5 7-26

1	2	3	4
Peptide Name	Peptide Sequence ID No.*	Gene Name	Gene Sequence ID No.*
Name	ocquence 12 no.		00440.00 12 1101
tca genomic region	34 °	t a a 3	33
TcaA	pro-peptide	t <i>caA</i> tcaA	-
TcaAi	[15]*, 34°	tcaA	_
TcaAii			
TcaAiii	[4] ^a , 35 ^c	tcaA	
TcaAiv	[62]ª	tcaA	<u></u>
TcaB	[3] ^a , (19, 20) ^b , 26 ^c [3] ^a , (19, 20) ^b , 28 ^c	tcaB tcaB	25 27
TcaBi			₹ .
TcaBii	[5] ^a , 30 ^c	tcaB	29
TcaC	[2]*, 32°	tcaC	31
tcb genomic region			
TcbA	12 ^c , [16] ^a , (21, 22, 23, 24) ^b	tcbA	11
Taba	pro-peptide	tcbA	_
TcbAi	[1]a, (21, 22, 23,	tcbA	52
TcbA _{ii}	24) ^b , 53 ^c		
TcbA _{iii}	[40] ^a , 55 ^c	tcbA	54
tcc genomic region	[8] ^a , 57 ^c	tccA	56
TCCB	[7] ^a , 59 ^c	tccB	58
TecC	61°	tccC	60
tcd genomic region			
TcdA	(17, 18, 37, 38, 39, 42, 43) ^b , 47 ^c	tcdA .	(36) ^d , 46
Tada	pro-peptide	tcdA	-
TcdAi	[13]*, (17, 18, 37,	tcdA	48
TcdA _{ii}	38, 39) ^b , 49 ^c		
TcdAiii	[41] ^a , (42, 43) ^b , 51 ^c	tcdA	50
TcdB	[14] ^a	tcdB	<u>-</u>

^{*}Sequence ID No.'s in brackets are peptide N-termini;

The sequences listed above are grouped by genomic region. More specifically, the *Photorhabdus luminesence* bacteria (W-14) has at least four distinct genomic regions- tca, tcb, tcc and tcd. As can be seen in Table 1, peptide products are produced from these distinct genomic regions. Furthermore, as illustrated in the Examples, specifically Examples 15 and 21, individual gene products produced from three genomic regions are associated with insect activity. There is also considerable homology between these four genomic regions.

^bNumbers in parentheses are N-termini of internal peptide tryptic fragments

cdeduced from gene sequence

¹⁰ dinternal gene fragment

As is further illustrated in the Examples, the tcbA gene was expressed in E. coli as two possible biological active protein fragments (TcbA and TcbAii/iii). The tcdA gene was also expressed in E. coli. As illustrated in Example 16, when the native unprocessed TcbA toxin was treated with the endogeneous metalloproteases or insect gut contents containing proteases, the TcbA protein toxin was processed into smaller subunits that were less than the size of the native peptides and Southern Corn Rootworm activity increased. The smaller toxin peptides remained associated as part of a toxin complex. It may be desirable in some situations to increase activation of the toxin(s) by proteolytic processing or using truncated peptides. Thus, it may be more desirable to use truncated peptide(s) in some applications, i.e., commercial transgenic plant applications.

10

15

20

25

30

35

40

In addition to the W-14 strain, there are other species within the Photorhabdus genus that have functional activity which is differential (specifically see Tables 20 and 36). Even though there is differential activity, the amino acid sequences in some cases have substantial sequence homology. Moreover, the molecular probes indicate that some genes contained in the strains are homologous to the genes contained in the W-14 strain. In fact all of the strains illustrated herein have one or more homologs of W-14 toxin genes. The antibody data in Example 26 and the N-terminal sequence data in Example 25 further support the conclusion that there is homology and identity (based on amino acid sequence) between the protein toxin(s) produced by these strains. At the molecular level, the W-14 gene probes indicated that the homologs or the W-14 genes themselves (Tables 37, 38, and 39) are dispersed throughout the Photorhabdus genus. Further, it is possible that new toxin genes exist in other strains which are not homologous to W-14, but maintain overall protein attributes (see specifically Examples 14 and 25).

Even though there is homology or identity between toxin genes produced by the *Photorhabdus* strains, the strains themselves are quite diverse. Using polymerase chain reaction technology further discussed in Example 22, most of the strains illustrated herein are quite distinguishable. For example as can be seen in Figs. 5, the percentage relative similarity of some of the strains, such as HP88 and NC-1, was about 0.8, which indicates that the strains are similar, while HP88 and Hb was about 0.1, which indicates substantial diversity. Therefore, even though the insect toxin genes or gene products that the strains produce are the same or similar, the strains themselves are diverse.

In view of the data further disclosed in the Examples and discussions herein, it is clear that a new and unique family of insecticidal protein toxin(s) has been discovered. It has been further illustrated herein that these toxin(s) widely exist within bacterial strains of the Photorhabdus genus. It may also be the case that these toxin genes widely exist within the family Enterobacteracaea. Antibodies prepared as described in Example 21 or gene probes prepared as described in Example 25 may be used to further screen for bacterial strains within the family Enterobacteracaea that produce the homologous toxin(s) that have functional activity. It may also be the case that specific primer sets exist that could facilitate the identification of new genes within the Photorhabdus genus or family Enterobacteracaea.

10

As stated above, the antibodies may be used to rapidly screen bacteria of the genus Photorhabdus or the family Enterbacteracaea for homologous toxin products as illustrated in Example 26. Those skilled in the art are quite familiar with the use of antibodies as an analysis or screening tool (see US Patent No. 5,430,137, which is incorporated herein by reference). Moreover, it is generally 20 accepted in the literature that antibodies are elicited against 6 to 20 amino acid residue segments that tend to occupy exposed surface of polypeptides (Current Protocols in Immunology, Coligan et al, National Institutes of Health, John Wiley & Sons, Inc.). Usually the amino acid consist of contiguous amino acid residues, however, 25 in certain cases they may be formed by non-contiguous amino acids. that are constrained by specific conformation. The amino acid segments recognized by antibodies are highly specific and commonly referred to epitopes. The amino acid fragment can be generated by chemical and/or enzymatic cleavage of the native protein, by 30 automated, solid-phase peptide synthesis, or by production from genetic engineering organisms. Polypeptide fragments can be isolated by a variety and/or combination of HPLC and FPLC chromatographic methods known in the art. Selection of polypeptide fragment can be aided by the use of algorithms, for example Kyte and 35 Doolittle, 1982, Journal of Molecular Biology 157: 105-132 and Chou and Fasman, 1974, Biochemistry 13: 222-245, that predict those sequences most likely to exposed on the surface of the protein. preparation of immunogen containing the polypeptide fragment of interest, in general, polypeptides are covalently coupled using chemical reactions to carrier proteins such as keyhole limpet 40 hemocyanin via free amino (lysine), sulfhydyl (cysteine), phenolic (tyrosine) or carboxylic (aspartate or glutamate) groups. Immunogen with an adjuvant is injected in animals, such as mice or rabbits, or

chickens to elicit an immune response against the immunogen. Analysis of antibody titer in antisera of inject animals against polypeptide fragment can be determined by a variety of immunological methods such as ELISA and Western blot. Alternatively, monoclonal antibodies can be prepared using spleen cells of the injected animal for fusion with tumor cells to produce immortalized hybridomas cells producing a single antibody species. Hybridomas cells are screened using immunological methods to select lines that produce a specific antibody to the polypeptide fragment of interest. Purification of antibodies from different sources can be performed by a variety of antigen affinity or antibody affinity columns or other chromatographic HPLC or FPLC methods.

10

15

20

25

30

35

40

The toxins described herein are quite unique in that the toxins have functional activity, which is key to developing an insect management strategy. In developing an insect management strategy, it is possible to delay or circumvent the protein degradation process by injecting a protein directly into an organism, avoiding its digestive tract. In such cases, the protein administered to the organism will retain its function until it is denatured, non-specifically degraded, or eliminated by the immune * system in higher organisms. Injection into insects of an insecticidal toxin has potential application only in the laboratory, and then only on large insects which are easily injected. The observation that the insecticidal protein toxins herein described exhibits their toxic activity after oral ingestion or contact with the toxins permits the development of an insect management plan based solely on the ability to incorporate the protein toxins into the insect diet. Such a plan could result in the production of insect baits.

The Photorhabdus toxins may be administered to insects in a purified form. The toxins may also be delivered in amounts from about 1 to about 100 mg / liter of broth. This may vary upon formulation condition, conditions of the inoculum source, techniques for isolation of the toxin, and the like. The toxins may be administered as an exudate secretion or cellular protein originally expressed in a heterologous prokaryotic or eukaryotic host. Bacteria are typically the hosts in which proteins are expressed. Eukaryotic hosts could include but are not limited to plants, insects and yeast. Alternatively, the toxins may be produced in bacteria or transgenic plants in the field or in the insect by a baculovirus vector. Typically the toxins will be introduced to the insect by incorporating one or more of the toxins into the insects' feed.

Complete lethality to feeding insects is useful but is not required to achieve useful toxicity. If the insects avoid the toxin or cease feeding, that avoidance will be useful in some applications, even if the effects are sublethal. For example, if insect resistant transgenic crop plants are desired, a reluctance of insects to feed on the plants is as useful as lethal toxicity to the insects since the ultimate objective is protection of the plants rather than killing the insect.

There are many other ways in which toxins can be incorporated into an insect's diet. As an example, it is possible to adulterate the larval food source with the toxic protein by spraying the food with a protein solution, as disclosed herein. Alternatively, the purified protein could be genetically engineered into an otherwise harmless bacterium, which could then be grown in culture, and either applied to the food source or allowed to reside in the soil in an area in which insect eradication was desirable. Also, the protein could be genetically engineered directly into an insect food source. For instance, the major food source of many insect larvae is plant material.

10

15

20 By incorporating genetic material that encodes the insecticidal properties of the Photorhabdus toxins into the genome of a plant eaten by a particular insect pest, the adult or larvae would die after consuming the food plant. Numerous members of the monocotyledonous and dictyledenous genera have been transformed. 25 Transgenic agronmonic crops as well as fruits and vegetables are of commercial interest. Such crops include but are not limited to maize, rice, soybeans, canola, sunflower, alfalfa, sorghum, wheat, cotton, peanuts, tomatoes, potatoes, and the like. Several techniques exist for introducing foreign genetic material into 30 plant cells, and for obtaining plants that stably maintain and express the introduced gene. Such techniques include acceleration of genetic material coated onto microparticles directly into cells (U.S. Patents 4,945,050 to Cornell and 5,141,131 to DowElanco). Plants may be transformed using Agrobacterium technology, see U.S. 35 Patent 5,177,010 to University of Toledo, 5,104,310 to Texas A&M, European Patent Application 0131624B1, European Patent Applications 120516, 159418B1 and 176,112 to Schilperoot, U.S. Patents 5,149,645, 5,469,976, 5,464,763 and 4,940,838 and 4,693,976 to Schilperoot, European Patent Applications 116718, 290799, 320500 40 all to MaxPlanck, European Patent Applications 604662 and 627752 to Japan Tobacco, European Patent Applications 0267159, and 0292435 and U.S. Patent 5,231,019 all to Ciba Geigy, U.S. Patents 5,463,174

and 4,762,785 both to Calgene, and U.S. Patents 5,004,863 and

5,159,135 both to Agracetus. Other transformation technology includes whiskers technology, see U.S. Patents 5,302,523 and 5,464,765 both to Zeneca. Electroporation technology has also been used to transform plants, see WO 87/06614 to Boyce Thompson Institute, 5,472,869 and 5,384,253 both to Dekalb, WO9209696 and WO9321335 both to PGS. All of these transformation patents and publications are incorporated by reference. In addition to numerous technologies for transforming plants, the type of tissue which is contacted with the foreign genes may vary as well. Such tissue would include but would not be limited to embryogenic tissue, callus tissue type I and II, hypocotyl, meristem, and the like. Almost all plant tissues may be transformed during dedifferentiation using appropriate techniques within the skill of an artisan.

10

15

20

25

30

35

40

Another variable is the choice of a selectable marker. The preference for a particular marker is at the discretion of the artisan, but any of the following selectable markers may be used along with any other gene not listed herein which could function as a selectable marker. Such selectable markers include but are not limited to aminoglycoside phosphotransferase gene of transposon Tn5 (Aph II) which encodes resistance to the antibiotics kanamycin, neomycin and G418, as well as those genes which code for resistance or tolerance to glyphosate; hygromycin; methotrexate; phosphinothricin (bialophos); imidazolinones, sulfonylureas and triazolopyrimidine herbicides, such as chlorosulfuron; bromoxynil, dalapon and the like.

In addition to a selectable marker, it may be desirous to use a reporter gene. In some instances a reporter gene may be used without a selectable marker. Reporter genes are genes which are typically not present or expressed in the recipient organism or tissue. The reporter gene typically encodes for a protein which provides for some phenotypic change or enzymatic property. Examples of such genes are provided in K. Weising et al. Ann. Rev. Genetics, 22, 421 (1988), which is incorporated herein by reference. A preferred reporter gene is the glucuronidase (GUS) gene.

Regardless of transformation technique, the gene is preferably incorporated into a gene transfer vector adapted to express the *Photorhabdus* toxins in the plant cell by including in the vector a plant promoter. In addition to plant promoters, promoters from a variety of sources can be used efficiently in plant cells to express foreign genes. For example, promoters of bacterial origin, such as the octopine synthase promoter, the nopaline synthase

5

10

15

20

25

30

35

40

promoter, the mannopine synthase promoter; promoters of viral origin, such as the cauliflower mosaic virus (35S and 19S), reengineered 35S, known as 35T (see PCT/US96/16582, WO 97/13402 published April 17, 1997, which is incorporated herein by reference) and the like may be used. Plant promoters include, but are not limited to ribulose-1,6-bisphosphate (RUBP) carboxylase small subunit (ssu), beta-conglycinin promoter, phaseolin promoter, ADH promoter, heat-shock promoters and tissue specific promoters. Promoters may also contain certain enhancer sequence elements that may improve the transcription efficiency. Typical enhancers include but are not limited to Adh-intron 1 and Adh-intron 6. Constitutive promoters may be used. Constitutive promoters direct continuous gene expression in all cells types and at all times (e.g., actin, ubiquitin, CaMV 35S). Tissue specific promoters are responsible for gene expression in specific cell or tissue types, such as the leaves or seeds (e.g., zein, oleosin, napin, ACP) and these promoters may also be used. Promoters may also be are active during a certain stage of the plants' development as well as active in plant tissues and organs. Examples of such promoters include but are not limited to pollen-specific, embryo specific, corn silk specific, cotton fiber specific, root specific, seed endosperm specific promoters and the like.

Under certain circumstances it may be desirable to use an inducible promoter. An inducible promoter is responsible for expression of genes in response to a specific signal, such as: physical stimulus (heat shock genes); light (RUBP carboxylase); hormone (Em); metabolites; and stress. Other desirable transcription and translation elements that function in plants may be used. Numerous plant-specific gene transfer vectors are known to the art.

In addition, it is known that to obtain high expression of bacterial genes in plants it is preferred to reengineer the bacterial genes so that they are more efficiently expressed in the cytoplasm of plants. Maize is one such plant where it is preferred to reengineer the bacterial gene(s) prior to transformation to increase the expression level of the toxin in the plant. One reason for the reengineering is the very low G+C content of the native bacterial gene(s) (and consequent skewing towards high A+T content). This results in the generation of sequences mimicking or duplicating plant gene control sequences that are known to be highly A+T rich. The presence of some A+T-rich sequences within the DNA of the gene(s) introduced into plants (e.g., TATA box regions normally found in gene promoters) may result in aberrant

transcription of the gene(s). On the other hand, the presence of other regulatory sequences residing in the transcribed mRNA (e.g., polyadenylation signal sequences (AAUAAA), or sequences complementary to small nuclear RNAs involved in pre-mRNA splicing) may lead to RNA instability. Therefore, one goal in the design of reengineered bacterial gene(s), more preferably referred to as plant optimized gene(s), is to generate a DNA sequence having a higher G+C content, and preferably one close to that of plant genes coding for metabolic enzymes. Another goal in the design of the plant optimized gene(s) is to generate a DNA sequence that not only has a higher G+C content, but by modifying the sequence changes, should be made so as to not hinder translation.

An example of a plant that has a high G+C content is maize. The table below illustrates how high the G+C content is in maize. As in maize, it is thought that G+C content in other plants is also high.

Table 2
Compilation of G+C Contents of Protein Coding Regions
of Maize Genes

20

10

15

Protein Class ^a	Range %G+C	Mean %G+C ^b
Metabolic Enzymes (40)	44.4-75.3	59.0 (8.0)
Storage Proteins		
Group I (23)	46.0-51.9	48.1 (1.3)
Group II (13)	60.4-74.3	67.5 (3.2)
Group I + II (36)	46.0-74.3	55.1 (9.6) ^c
Structural Proteins (18)	48.6-70.5	63.6 (6.7)
Regulatory Proteins (5)	57.2-68.9	62.0 (4.9)
Uncharacterized Proteins (9)	41.5-70.3	64.3 (7.2)
All Proteins (108)	44.4-75.3	60.8 (5.2)

a Number of genes in class given in parentheses.

Standard deviations given in parentheses.

Combined groups mean ignored in calculation of overall mean.

For the data in Table 2, coding regions of the genes were extracted from GenBank (Release 71) entries, and base compositions were calculated using the MacVectorTM program (IBI, New Haven, CT). Intron sequences were ignored in the calculations. Group I and II storage protein gene sequences were distinguished by their marked difference in base composition.

Due to the plasticity afforded by the redundancy of the genetic code (i.e., some amino acids are specified by more than one codon), evolution of the genomes of different organisms or classes or organisms has resulted in differential usage of redundant codons. This "codon bias" is reflected in the mean base composition of protein coding regions. For example, organisms with relatively low G+C contents utilize codons having A or T in the third position of redundant codons, whereas those having higher G+C contents utilize codons having G or C in the third position. It is thought that the presence of "minor" codons within a gene's mRNA may reduce the absolute translation rate of that mRNA, especially when the relative abundance of the charged tRNA corresponding to the minor codon is low. An extension of this is that the diminution of translation rate by individual minor codons would be at least additive for multiple minor codons. Therefore, mRNAs having high relative contents of minor codons would have correspondingly low translation rates. This rate would be reflected by the synthesis of low levels of the encoded protein.

10

15

20

25

30

35

40

In order to reengineer the bacterial gene(s), the codon bias of the plant is determined. The codon bias is the statistical codon distribution that the plant uses for coding its proteins. After determining the bias, the percent frequency of the codons in the gene(s) of interest is determined. The primary codons preferred by the plant should be determined as well as the second and third choice of preferred codons. The amino acid sequence of the protein of interest is reverse translated so that the resulting nucleic acid sequence codes for the same protein as the native bacterial gene, but the resulting nucleic acid sequence corresponds to the first preferred codons of the desired plant. sequence is analyzed for restriction enzyme sites that might have been created by the modification. The identified sites are further modified by replacing the codons with second or third choice preferred codons. Other sites in the sequence which could affect the transcription or translation of the gene of interest are the exon:intron 5' or 3' junctions, poly A addition signals, or RNA polymerase termination signals. The sequence is further analyzed and modified to reduce the frequency of TA or GC doublets. In

addition to the doublets, G or C sequence blocks that have more than about four residues that are the same can affect transcription of the sequence. Therefore, these blocks are also modified by replacing the codons of first or second choice, etc. with the next preferred codon of choice. It is preferred that the plant optimized gene(s) contains about 63% of first choice codons, between about 22% to about 37% second choice codons, and between 15% and 0% third choice codons, wherein the total percentage is 100%. Most preferred the plant optimized gene(s) contain about 63% of first choice codons, at least about 22% second choice codons, about 7.5% third choice codons, and about 7.5% fourth choice codons, wherein the total percentage is 100%. The method described above enables one skilled in the art to modify gene(s) that are foreign to a particular plant so that the genes are optimally expressed in plants. The method is further illustrated in application PCT/US96/16582, WO 97/13402 published April 17, 1997.

10

15

20

25

30

35

40

Thus, in order to design plant optimized gene(s) the amino acid sequence of the toxins are reverse translated into a DNA sequence, utilizing a nonredundant genetic code established from a codon bias table compiled for the gene DNA sequence for the particular plant being transformed. The resulting DNA sequence, which is completely homogeneous in codon usage, is further modified to establish a DNA sequence that, besides having a higher degree of codon diversity, also contains strategically placed restriction enzyme recognition sites, desirable base composition, and a lack of sequences that might interfere with transcription of the gene, or translation of the product mRNA.

It is theorized that bacterial genes may be more easily expressed in plants if the bacterial genes are expressed in the plastids. Thus, it may be possible to express bacterial genes in plants, without optimizing the genes for plant expression, and obtain high express of the protein. See U.S. Patent Nos. 4,762,785; 5,451,513 and 5,545,817, which are incorporated herein by reference.

One of the issues regarding commercial exploiting transgenic plants is resistance management. This is of particular concern with Bacillus thuringiensis toxins. There are numerous companies commercially exploiting Bacillus thuringiensis and there has been much concern about Bt toxins becoming resistant. One strataegy for insect resistant management would be to combine the toxins produced by Photorhabdus with toxins such as Bt, vegetative insect proteins (Ciba Geigy) or other toxins. The combinations could be formulated

5

10

15

20

25

30

35

40

for a sprayable application or could be molecular combinations. Plants could be transformed with *Photorhabdus* genes that produce insect toxins and other insect toxin genes such as *Bt* as with other insect toxin genes such as *Bt*.

European Patent Application 0400246A1 describes transformation of 2 Bt in a plant, which could be any 2 genes. Another way to produce a transgenic plant that contains more than one insect resistant gene would be to produce two plants, with each plant containing an insect resistant gene. These plants would be backcrossed using traditional plant breeding techniques to produce a plant containing more than one insect resistant gene.

In addition to producing a transformed plant containing plant optimized gene(s), there are other delivery systems where it may be desirable to reengineer the bacterial gene(s). Along the same lines, a genetically engineered, easily isolated protein toxin fusing together both a molecule attractive to insects as a food source and the insecticidal activity of the toxin may be engineered and expressed in bacteria or in eukaryotic cells using standard, well-known techniques. After purification in the laboratory such a toxic agent with "built-in" bait could be packaged inside standard insect trap housings.

Another delivery scheme is the incorporation of the genetic material of toxins into a baculovirus vector. Baculoviruses infect particular insect hosts, including those desirably targeted with the *Photorhabdus* toxins. Infectious baculovirus harboring an expression construct for the *Photorhabdus* toxins could be introduced into areas of insect infestation to thereby intoxicate or poison infected insects.

Transfer of the insecticidal properties requires nucleic acid sequences encoding the coding the amino acid sequences for the Photorhabdus toxins integrated into a protein expression vector appropriate to the host in which the vector will reside. One way to obtain a nucleic acid sequence encoding a protein with insecticidal properties is to isolate the native genetic material which produces the toxins from Photorhabdus, using information deduced from the toxin's amino acid sequence, large portions of which are set forth below. As described below, methods of purifying the proteins responsible for toxin activity are also disclosed.

Using N-terminal amino acid sequence data, such as set forth below, one can construct oligonucleotides complementary to all, or a section of, the DNA bases that encode the first amino acids of the toxin. These oligonucleotides can be radiolabeled and used as

molecular probes to isolate the genetic material from a genomic genetic library built from genetic material isolated from strains of *Photorhabdus*. The genetic library can be cloned in plasmid, cosmid, phage or phagemid vectors. The library could be transformed into *Escherichia coli* and screened for toxin production by the transformed cells using antibodies raised against the toxin or direct assays for insect toxicity.

This approach requires the production of a battery of oligonucleotides, since the degenerate genetic code allows an amino acid to be encoded in the DNA by any of several three-nucleotide combinations. For example, the amino acid arginine can be encoded by nucleic acid triplets CGA, CGC, CGG, CGT, AGA, and AGG. Since one cannot predict which triplet is used at those positions in the toxin gene, one must prepare oligonucleotides with each potential triplet represented. More than one DNA molecule corresponding to a protein subunit may be necessary to construct a sufficient number of oligonucleotide probes to recover all of the protein subunits necessary to achieve oral toxicity.

10

15

20

25

30

35

40

From the amino acid sequence of the purified protein, genetic materials responsible for the production of toxins can readily be isolated and cloned, in whole or in part, into an expression vector using any of several techniques well-known to one skilled in the art of molecular biology. A typical expression vector is a DNA plasmid, though other transfer means including, but not limited to, cosmids, phagemids and phage are also envisioned. In addition to features required or desired for plasmid replication, such as an origin of replication and antibiotic resistance or other form of a selectable marker such as the bar gene of Streptomyces hygroscopicus or viridochromogenes, protein expression vectors normally additionally require an expression cassette which incorporates the cis-acting sequences necessary for transcription and translation of the gene of interest. The cis-acting sequences required for expression in prokaryotes differ from those required in eukaryotes and plants.

A eukaryotic expression cassette requires a transcriptional promoter upstream (5') to the gene of interest, a transcriptional termination region such as a poly-A addition site, and a ribosome binding site upstream of the gene of interest's first codon. In bacterial cells, a useful transcriptional promoter that could be included in the vector is the T7 RNA Polymerase-binding promoter. Promoters, as previously described herein, are known to efficiently promote transcription of mRNA. Also upstream from the gene of interest the vector may include a nucleotide sequence encoding a

5

10

15

20

25

30

35

40

signal sequence known to direct a covalently linked protein to a particular compartment of the host cells such as the cell surface.

CONTRACTOR OF THE STATE OF THE

Insect viruses, or baculoviruses, are known to infect and adversely affect certain insects. The affect of the viruses on insects is slow, and viruses do not stop the feeding of insects. Thus viruses are not viewed as being useful as insect pest control Combining the Photorhabdus toxins genes into a baculovirus vector could provide an efficient way of transmitting the toxins while increasing the lethality of the virus. In addition, since different baculoviruses are specific to different insects, it may be possible to use a particular toxin to selectively target particularly damaging insect pests. A particularly useful vector for the toxins genes is the nuclear polyhedrosis virus. Transfer vectors using this virus have been described and are now the vectors of choice for transferring foreign genes into insects. virus-toxin gene recombinant may be constructed in an orally transmissible form. Baculoviruses normally infect insect victims through the mid-gut intestinal mucosa. The toxin gene inserted behind a strong viral coat protein promoter would be expressed and should rapidly kill the infected insect.

In addition to an insect virus or baculovirus or transgenic plant delivery system for the protein toxins of the present invention, the proteins may be encapsulated using Bacillus thuringiensis encapsulation technology such as but not limited to U.S. Patent Nos. 4,695,455; 4,695,462; 4,861,595 which are all incorporated herein by reference. Another delivery system for the protein toxins of the present invention is formulation of the protein into a bait matrix, which could then be used in above and below ground insect bait stations. Examples of such technology include but are not limited to PCT Patent Application WO 93/23998, which is incorporated herein by reference.

As is described above, it might become necessary to modify the sequence encoding the protein when expressing it in a non-native host, since the codon preferences of other hosts may differ from that of *Photorhabdus*. In such a case, translation may be quite inefficient in a new host unless compensating modifications to the coding sequence are made. Additionally, modifications to the amino acid sequence might be desirable to avoid inhibitory cross-reactivity with proteins of the new host, or to refine the insecticidal properties of the protein in the new host. A genetically modified toxin gene might encode a toxin exhibiting, for example, enhanced or reduced toxicity, altered insect

resistance development, altered stability, or modified target species specificity.

10

15

20

35

In addition to the *Photorhabdus* genes encoding the toxins, the scope of the present invention is intended to include related nucleic acid sequences which encode amino acid biopolymers homologous to the toxin proteins and which retain the toxic effect of the *Photorhabdus* proteins in insect species after oral ingestion.

For instance, the toxins used in the present invention seem to first inhibit larval feeding before death ensues. By manipulating the nucleic acid sequence of *Photorhabdus* toxins or its controlling sequences, genetic engineers placing the toxin gene into plants could modulate its potency or its mode of action to, for example, keep the eating-inhibitory activity while eliminating the absolute toxicity to the larvae. This change could permit the transformed plant to survive until harvest without having the unnecessarily dramatic effect on the ecosystem of wiping out all target insects. All such modifications of the gene encoding the toxin, or of the protein encoded by the gene, are envisioned to fall within the scope of the present invention.

Other envisioned modifications of the nucleic acid include the addition of targeting sequences to direct the toxin to particular parts of the insect larvae for improving its efficiency.

Strains W-14, ATCC 55397, 43948, 43949, 43950, 43951, 43952

have been deposited in the American Type Culture Collection, 12301

Parklawn Drive, Rockville, MD 20852 USA. Amino acid and nucleotide sequence data for the W-14 native toxin (ATCC 55397) is presented below. Isolation of the genomic DNA for the toxins from the bacterial hosts is also exemplified herein. The other strains identified herein have been deposited with the United States Department of Agriculture, 1815 North University Drive, Peoria, IL 61604.

Standard and molecular biology techniques were followed and taught in the specification herein. Additional information may be found in Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989), Molecular Cloning. A Laboratory Manual, Cold Spring Harbor Press; Current Protocalsin Molecular Biology, ed. F. M. Ausubel et al., (1997), which are both incorporated herein by reference.

The following abbreviations are used throughout the Examples: Tris = tris (hydroxymethyl) amino methane; SDS = sodium dodecyl sulfate; EDTA = ethylenediaminetetraacetic acid, IPTG = isopropylthio-B-galactoside, X-gal = 5-bromo-4-chloro-3-indoyl-B-D-galactoside,

CTAB = cetyltrimethylammonium bromide; kbp = kilobase pairs; dATP, dCTP, dGTP, dTTP, I = 2'-deoxynucleoside 5'-triphosphates of adenine, cytosine, guanine, thymine, and inosine, respectively; ATP = adenosine 5' triphosphate.

5

10

15

20

25

30

35

40

Example 1

<u>Purification of Toxin from Photorhabdus luminescens and</u> Demonstration of Toxicity after Oral Delivery of Purified Toxin

The insecticidal protein toxin of the present invention was purified from Photorhabdus luminescens strain W-14, ATCC Accession Number 55397. Stock cultures of Photorhabdus luminescens were maintained on petri dishes containing 2% Proteose Peptone No. 3 (i.e., PP3, Difco Laboratories, Detroit MI) in 1.5% agar, incubated at 25°C and transferred weekly. Colonies of the primary form of the bacteria were inoculated into 200 ml of PP3 broth supplemented with 0.5% polyoxyethylene sorbitan mono-stearate (Tween 60, Sigma Chemical Company, St. Louis, MO) in a one liter flask. The broth cultures were grown for 72 hours at 30°C on a rotary shaker. toxin proteins can be recovered from cultures grown in the presence or absence of Tween; however, the absence of Tween can affect the form of the bacteria grown and the profile of proteins produced by the bacteria. In the absence of Tween, a variant shift occurs insofar as the molecular weight of at least one identified toxin subunit shifts from about 200 kDa to about 185 kDa.

minutes to remove cells and debris. The supernatant fraction that contained the insecticidal activity was decanted and brought to 50 mM K_2HPO_4 by adding an appropriate volume of 1.0 M K_2HPO_4 . The pH was adjusted to 8.6 by adding potassium hydroxide. This supernatant fraction was then mixed with DEAE-Sephacel (Pharmacia LKB Biotechnology) which had been equilibrated with 50 mM K_2HPO_4 . The toxic activity was adsorbed to the DEAE resin. This mixture was then poured into a 2.6 x 40 cm column and washed with 50 mM K_2HPO_4 at room temperature at a flow rate of 30 ml/hr until the effluent reached a steady baseline UV absorbance at 280 nm. The column was then washed with 150 mM KCl until the effluent again reached a steady 280 nm baseline. Finally the column was washed with 300 mM KCl and fractions were collected.

Fractions containing the toxin were pooled and filter sterilized using a 0.2 micron pore membrane filter. The toxin was then concentrated and equilibrated to 100 mM KPO₄, pH 6.9, using an ultrafiltration membrane with a molecular weight cutoff of 100 kDa

at 4°C (Centriprep 100, Amicon Division-W.R. Grace and Company). A 3 ml sample of the toxin concentrate was applied to the top of a 2.6 x 95 cm Sephacryl S-400 HR gel filtration column (Pharmacia LKB Biotechnology). The eluent buffer was 100 mM KPO, pH 6.9, which was run at a flow rate of 17 ml/hr, at 4°C. The effluent was monitored at 280 nm.

Fractions were collected and tested for toxic activity. Toxicity of chromatographic fractions was examined in a biological assay using Manduca sexta larvae. Fractions were either applied directly onto the insect diet (Gypsy moth wheat germ diet, ICN Biochemicals Division - ICN Biomedicals, Inc.) or administered by intrahemocelic injection of a 5 μ l sample through the first proleg of 4th or 5th instar larva using a 30 gauge needle. The weight of each larva within a treatment group was recorded at 24 hour intervals. Toxicity was presumed if the insect ceased feeding and died within several days of consuming treated insect diet or if death occurred within 24 hours after injection of a fraction.

10

15

20

25

30

35

40

The toxic fractions were pooled and concentrated using the Centriprep-100 and were then analyzed by HPLC using a 7.5 mm x 60 cm TSK-GEL G-4000 SW gel permeation column with 100 mM potassium phosphate, pH 6.9 eluent buffer running at 0.4 ml/min. This analysis revealed the toxin protein to be contained within a single sharp peak that eluted from the column with a retention time of approximately 33.6 minutes. This retention time corresponded to an estimated molecular weight of 1,000 kDa. Peak fractions were collected for further purification while fractions not containing this protein were discarded. The peak eluted from the HPLC absorbs UV light at 218 and 280 nm but did not absorb at 405 nm. Absorbance at 405 nm was shown to be an attribute of xenorhabdin antibiotic compounds.

Electrophoresis of the pooled peak fractions in a non-denaturing agarose gel (Metaphor Agarose, FMC BioProducts) showed that two protein complexes are present in the peak. The peak material, buffered in 50 mM Tris-HCl, pH 7.0, was separated on a 1.5% agarose stacking gel buffered with 100 mM Tris-HCl at pH 7.0 and 1.9% agarose resolving gel buffered with 200 mM Tris-borate at pH 8.3 under standard buffer conditions (anode buffer 1M Tris-HCl, pH 8.3; cathode buffer 0.025 M Tris, 0.192 M glycine). The gels were run at 13 mA constant current at 15°C until the phenol red tracking dye reached the end of the gel. Two protein bands were visualized in the agarose gels using Coomassie brilliant blue staining.

The slower migrating band was referred to as "protein band 1" and faster migrating band was referred to as "protein band 2." The two protein bands were present in approximately equal amounts. The Coomassie stained agarose gels were used as a guide to precisely excise the two protein bands from unstained portions of the gels. The excised pieces containing the protein bands were macerated and a small amount of sterile water was added. As a control, a portion of the gel that contained no protein was also excised and treated in the same manner as the gel pieces containing the protein.

Protein was recovered from the gel pieces by electroelution into 100 mM Tris-borate pH 8.3, at 100 volts (constant voltage) for two hours. Alternatively, protein was passively eluted from the gel pieces by adding an equal volume of 50 mM Tris-HCl, pH 7.0, to the gel pieces, then incubating at 30°C for 16 hours. This allowed the protein to diffuse from the gel into the buffer, which was then collected.

10

15

20

25

30

35

40

Results of insect toxicity tests using HPLC-purified toxin (33.6 min. peak) and agarose gel purified toxin demonstrated toxicity of the extracts. Injection of 1.5 μ g of the HPLC purified protein kills within 24 hours. Both protein bands 1 and 2, recovered from agarose gels by passive elution or electroelution, were lethal upon injection. The protein concentration estimated for these samples was less than 50 ng/larva. A comparison of the weight gain and the mortality between the groups of larvae injected with protein bands 1 or 2 indicate that protein band 1 was more toxic by injection delivery.

When HPLC-purified toxin was applied to larval diet at a concentration of 7.5 μg /larva, it caused a halt in larval weight gain (24 larvae tested). The larvae begin to feed, but after consuming only a very small portion of the toxin treated diet they began to show pathological symptoms induced by the toxin and the larvae cease feeding. The insect frass became discolored and most larva showed signs of diarrhea. Significant insect mortality resulted when several 5 μg toxin doses were applied to the diet over a 7-10 day period.

Agarose-separated protein band 1 significantly inhibited larval weight gain at a dose of 200 ng/larva. Larvae fed similar concentrations of protein band 2 were not inhibited and gained weight at the same rate as the control larvae. Twelve larvae_were fed eluted protein and 45 larvae were fed protein-containing agarose pieces. These two sets of data indicate that protein band 1 was orally toxic to Manduca sexta. In this experiment it appeared that protein band 2 was not toxic to Manduca sexta.

Further analysis of protein bands 1 and 2 by SDS-PAGE under denaturing conditions showed that each band was composed of several smaller protein subunits. Proteins were visualized by Coomassie brilliant blue staining followed by silver staining to achieve maximum sensitivity.

The protein subunits in the two bands were very similar. Protein band 1 contains 8 protein subunits of 25.1, 56.2, 60.8, 65.6, 166, 171, 184 and 208 kDa. Protein band 2 had an identical profile except that the 25.1, 60.8, and 65.6 kDa proteins were not present. The 56.2, 60.8, 65.6, and 184 kDa proteins were present in the complex of protein band 1 at approximately equal concentrations and represent 80% or more of the total protein content of that complex.

10

The native HPLC-purified toxin was further characterized as

15 follows. The toxin was heat labile in that after being heated to
60°C for 15 minutes it lost its ability to kill or to inhibit
weight gain when injected or fed to Manduca sexta larvae. Assays
were designed to detect lipase, type C phospholipase, nuclease or
red blood cell hemolysis activities and were performed with
20 purified toxin. None of these activities were present. Antibiotic
zone inhibition assays were also done and the purified toxin failed
to inhibit growth of Gram-negative or -positive bacteria, yeast or
filamentous fungi, indicating that the toxic is not a xenorhabdin
antibiotic.

The native HPLC-purified toxin was tested for ability to kill insects other than Manduca sexta. Table 3 lists insects killed by the HPLC-purified Photorhabdus luminescens toxin in this study.

Table 3

Insects Killed by Photorhabdus luminescens Toxin

	Common Name	Order	Genus and species	Route of Delivery
35	Tobacco horn worm	Lepidoptera	Manduca sexta	Oral and injected
	Mealworm	Coleoptera	Tenebrio molitor	Oral
40	Pharaoh ant	Hymenoptera	Monomorium pharoanis	Oral
	German cockroach	Dictyoptera	Blattella germanica	Oral and injected
45	Mosquito	Diptera	Aedes aegypti	Oral

Further Characterization of the High Molecular Weight Toxin Complex

In yet further analysis, the toxin protein complex was subjected to further characterization from W-14 growth medium. The culture conditions and initial purification steps through the S-400 HR column were identical to those described above. After isolation of the high molecular weight toxin complex from the S-400 HR column fractions, the toxic fractions were equilibrated with 10 mM Tris-HCl, pH 8.6, and concentrated in the centriplus 100 (Amicon) concentrators. The protein toxin complex was then applied to a weak anion exchange (WAX) column, Vydac 301VPH575 (Hesparia, CA), at a flow rate of 0.5 ml/min. The proteins were eluted with a linear potassium chloride gradient, 0-250 mM KCl, in 10 mM Tris-HCl pH 8.6 for 50 min. Eight protein peaks were detected by absorbance at 280 nm.

10

15

20

25

30

35

40

Bioassays using neonate southern corn rootworm (Diabrotica undecimpunctata howardi, SCR) larvae and tobacco horn worm (Manduca sexta, THW) were performed on all fractions eluted from the HPLC column. THW were grown on Gypsy Moth wheat germ diet (ICN) at 25°C with a 16 hr light 8 hr dark cycle. SCR were grown on Southern Corn Rootworm Larval Insecta-Diet (BioServ) at 25°C with a 16 hr light / 8 hr dark cycle.

The highest mortality for SCR and THW larvae was observed for peak 6, which eluted with ca. 112 mM to 132mM KCl. SDS-PAGE analysis of peak 6 showed predominant peptides of 170 kDa, 66 kDa, 63 kDa, 59.5 kDa and 31 kDa. Western blot analysis was performed on peak 6 protein fraction with a mixture of polyclonal antibodies made against TcaA_{ii}-syn, TcaA_{iii}-syn, TcaB_{ii}-syn, TcaC-syn, and TcbA_{ii}-syn peptides (described in Example 21) and C5F2, a monoclonal antibody against the TcbA_{iii} peptide. Peak 6 contained immuno-reactive bands of 170 kDa, 90 kDa, 66 kDa, 59.5 kDa and 31 kDa. These are very close to the predicted sizes for the TcaC (166 kDa), TcaA_{ii}+ TcaA_{iii} (92 kDa), TcaA_{iii} (66 kDa), TcaB_{ii} (60 kDa) and TcaA_{ii} (25 kDa), respectively. Peak 6 which was further analyzed by native agarose gel electrophoresis, as described herein, migrated as a single band with similar mobility to that of band 1.

The protein concentration of the purified peak 6 toxin protein was determined using the BCA reagents (Pierce). Dilutions of the protein were made in 10 mM Tris, pH 8.6 and applied to the diet bioassays. After 240 hours all neonate larvae on diet bioassays that received 450 ng or greater of the peak 6 protein fraction were dead. The group of larvae that received 90 ng of the same fraction

had 40% mortality. After 240 hrs the survivors that received 90 ng and 20 ng of peak 6 protein fraction were ca. 10% and 70%, respectively, of the control weight.

Example 2 Insecticide Utility

5

35

40

The Photorhabdus luminescens utility and toxicity were further characterized. Photorhabdus luminescens (strain W-14) culture 10 broth was produced as follows. The production medium was 2% Bacto Proteose Peptone Number 3 (PP3, Difco Laboratories, Detroit, Michigan) in Milli-Q° deionized water. Seed culture flasks consisted of 175 ml medium placed in a 500 ml tribaffled flask with a Delong neck, covered with a Kaput and autoclaved for 20 minutes. T=250°F. Production flasks consisted of 500 mls in a 2.8 liter 500 15 ml tribaffled flask with a Delong neck, covered by a Shin-etsu silicon foam closure. These were autoclaved for 45 minutes, T=250°F. The seed culture was incubated at 28°C at 150 rpm in a qyrotory shaking incubator with a 2 inch throw. After 16 hours of growth, 1% of the seed culture was placed in the production flask 20 which was allowed to grow for 24 hours before harvest. Production of the toxin appears to be during log phase growth. The microbial broth was transferred to a 1L centrifuge bottle and the cellular biomass was pelleted (30 minutes at 2500 RPM at 4°C, [R.C.F. = about 25 1600] HG-4L Rotor RC3 Sorval centrifuge, Dupont, Wilmington, DE). The primary broth was chilled at 4°C for 8 - 16 hours and recentrifuged at least 2 hours (conditions above) to further clarify the broth by removal of a putative mucopolysaccharide which precipitated upon standing. (An alternative processing method 30 combined both steps and involved the use of a 16 hour clarification centrifugation, same conditions as above.) This broth was then stored at 4°C prior to bioassay or filtration.

Photorhabdus culture broth and protein toxin(s) purified from this broth showed activity (mortality and/or growth inhibition, reduced adult emergence) against a number of insects. More specifically, the activity is seen against corn rootworm (larvae and adult), Colorado potato beetle, and turf grubs, which are members of the insect order Coleoptera. Other members of the Coleoptera include wireworms, pollen beetles, flea beetles, seed beetles and weevils. Activity has also been observed against aster leafhopper, which is a member of the order, Homoptera. Other members of the Homoptera include planthoppers, pear pyslla, apple

sucker, scale insects, whiteflies, and spittle bugs, as well as numerous host specific aphid species. The broth and purified fractions are also active against beet armyworm, cabbage looper, black cutworm, tobacco budworm, European corn borer, corn earworm, and codling moth, which are members of the order Lepidoptera. Other typical members of this order are clothes moth, Indian mealmoth, leaf rollers, cabbage worm, cotton bollworm, bagworm, Eastern tent caterpillar, sod webworm, and fall armyworm. Activity is also seen against fruitfly and mosquito larvae, which are members of the order Diptera. Other members of the order Diptera 10 are pea midge, carrot fly, cabbage root fly, turnip root fly, onion fly, crane fly, house fly, and various mosquito species. Activity is seen against carpenter ant and Argentine ant, which are members of the order that also includes fire ants, oderous house ants, and 15 little black ants.

The broth/fraction is useful for reducing populations of insects and were used in a method of inhibiting an insect population. The method may comprise applying to a locus of the insect an effective insect inactivating amount of the active described. Results are reported in Table 4.

20

25

30

35

40

Activity against corn rootworm larvae was tested as follows. Photorhabdus culture broth (filter sterilized, cell-free) or purified HPLC fractions were applied directly to the surface (about 1.5 cm²) of 0.25 ml of artificial diet in 30 µl aliquots following dilution in control medium or 10 mM sodium phosphate buffer, pH 7.0, respectively. The diet plates were allowed to air-dry in a sterile flow-hood and the wells were infested with single, neonate Diabrotica undecimpunctata howardi (Southern corn rootworm, SCR) hatched from sterilized eggs, with second instar SCR grown on artificial diet or with second instar Diabrotica virgifera virgifera (Western corn rootworm, WCR) reared on corn seedlings grown in Metromix. Second instar larvae were weighed prior to addition to the diet. The plates were sealed, placed in a humidified growth chamber and maintained at 27°C for the appropriate period (4 days for neonate and adult SCR, 2-5 days for WCR larvae, 7-14 days for second instar SCR). Mortality and weight determinations were scored as indicated. Generally, 16 insects per treatment were used in all studies. Control mortalities were as follows: neonate larvae, <5%, adult beetles, 5%.

Activity against Colorado potato beetle was tested as follows. Photorhabdus culture broth or control medium was applied to the surface (about $2.0~\rm cm^2$) of $1.5~\rm ml$ of standard artificial diet held in the wells of a 24-well tissue culture plate. Each well received

50 µl of treatment and was allowed to air dry. Individual second instar Colorado potato beetle (*Leptinotarsa decemlineata*, CPB) larvae were then placed onto the diet and mortality was scored after 4 days. Ten larvae per treatment were used in all studies. Control mortality was 3.3%.

5

10

15

20

25

30

35

40

Activity against Japanese beetle grubs and beetles was tested as follows. Turf grubs (Popillia japonica, 2-3rd instar) were collected from infested lawns and maintained in the laboratory in soil/peat mixture with carrot slices added as additional diet. Turf beetles were pheromone-trapped locally and maintained in the laboratory in plastic containers with maple leaves as food. Following application of undiluted Photorhabdus culture broth or control medium to corn rootworm artificial diet (30 μ l/1.54 cm², beetles) or carrot slices (larvae), both stages were placed singly in a diet well and observed for any mortality and feeding. In both cases there was a clear reduction in the amount of feeding (and feces production) observed.

Activity against mosquito larvae was tested as follows. The assay was conducted in a 96-well microtiter plate. Each well contained 200 μ l of aqueous solution (Photorhabdus culture broth, control medium or H₂0) and approximately 20, 1-day old larvae (Aedes aegypti). There were 6 wells per treatment. The results were read at 2 hours after infestation and did not change over the three day observation period. No control mortality was seen.

Activity against fruitflies was tested as follows. Purchased Drosophila melanogaster medium was prepared using 50% dry medium and a 50% liquid of either water, control medium or Photorhabdus culture broth. This was accomplished by placing 8.0 ml of dry medium in each of 3 rearing vials per treatment and adding 8.0 ml of the appropriate liquid. Ten late instar Drosophila melanogaster maggots were then added to each vial. The vials were held on a laboratory bench, at room temperature, under fluorescent ceiling lights. Pupal or adult counts were made after 3, 7 and 10 days of exposure. Incorporation of Photorhabdus culture broth into the diet media for fruitfly maggots caused a slight (17%) but significant reduction in day-10 adult emergence as compared to water and control medium (3% reduction).

Activity against aster leafhopper was tested as follows. The ingestion assay for aster leafhopper ($Macrosteles\ severini$) is designed to allow ingestion of the active without other external contact. The reservoir for the active/"food" solution is made by making 2 holes in the center of the bottom portion of a 35 x 10 mm Petri dish. A 2 inch Parafilm M^{5} square is placed across the top of

the dish and secured with an "O" ring. A 1 oz. plastic cup is then infested with approximately 7 leafhoppers and the reservoir is placed on top of the cup, Parafilm down. The test solution is then added to the reservoir through the holes. In tests using undiluted Photorhabdus culture broth, the broth and control medium were dialyzed against water to reduce control mortality. Mortality is reported at day 2 where 26.5% control mortality was seen. In the tests using purified fractions (200_mg protein/ml) a final concentration of 5% sucrose was used in all treatments to improve survivability of the aster leafhoppers. The assay was held in an incubator at 28°C, 70% RH with a 16/8 photoperiod. The assay was graded for mortality at 72 hours. Control mortality was 5.5%.

10

15

20

25

30

35

40

Activity against Argentine ants was tested as follows. A 1.5 ml aliquot of 100% Photorhabdus culture broth, control medium or water was pipetted into 2.0 ml clear glass vials. The vials were plugged with a piece of cotton dental wick that was moistened with the appropriate treatment. Each vial was placed into a separate 60x16mm Petri dish with 8 to 12 adult Argentine ants (Linepithema humile). There were three replicates per treatment. Bioassay plates were held on a laboratory bench, at room temperature under fluorescent ceiling lights. Mortality readings were made after 5 days of exposure. Control mortality was 24%.

Activity against carpenter ant was tested as follows. Black carpenter ant workers (Camponotus pennsylvanicus) were collected from trees on DowElanco property in Indianapolis, IN. Tests with Photorhabdus culture broth were performed as follows. Each plastic bioassay container (7 1/8" x 3") held fifteen workers, a paper harborage and 10 ml of broth or control media in a plastic shot glass. A cotton wick delivered the treatment to the ants through a hole in the shot glass lid. All treatments contained 5% sucrose. Bioassays were held in the dark at room temperature and graded at 19 days. Control mortality was 9%. Assays delivering purified fractions utilized artificial ant diet mixed with the treatment (purified fraction or control solution) at a rate of 0.2 ml treatment/2.0 g diet in a plastic test tube. The final protein concentration of the purified fraction was less than 10 $\mu g/g$ diet. Ten ants per treatment, a water source, harborage and the treated diet were placed in sealed plastic containers and maintained in the dark at 27°C in a humidified incubator. Mortality was scored at day 10. No control mortality was seen.

Activity against various lepidopteran larvae was tested as follows. Photorhabdus culture broth or purified fractions were

5

10

15

applied directly to the surface (about 1.5 cm2) of 0.25 ml of standard artificial diet in 30 µl aliquots following dilution in control medium or 10 mM sodium phosphate buffer, pH 7.0, respectively. The diet plates were allowed to air-dry in a sterile flow-hood and the wells were infested with single, neonate larva. European corn borer (Ostrinia nubilalis) and corn earworm (Helicoverpa zea) eggs were supplied from commercial sources and hatched in-house, whereas beet armyworm (Spodoptera exigua), cabbage looper (Trichoplusia ni), tobacco budworm (Heliothis virescens), codling moth (Laspeyresia pomonella) and black cutworm (Agrotis ipsilon) larvae were supplied internally. Following infestation with larvae, the diet plates were sealed, placed in a humidified growth chamber and maintained in the dark at 27°C for the appropriate period. Mortality and weight determinations were scored at days 5-7 for Photorhabdus culture broth and days 4-7 for the purified fraction. Generally, 16 insects per treatment were used in all studies. Control mortality ranged from 4-12.5% for control medium and was less than 10% for phosphate buffer.

Table 4

Effect of Photorhabdus luminescens (Strain W-14)

Culture Broth and Purified Toxin Fraction on Mortality and Growth

Inhibition of Different Insect Orders/Species

5

10

Insect Order/Species	Bro	th	Purified	Fraction
	% Mort.	% G.I.	% Mort.	% G.I.
COLEOPTERA				
Corn Rootworm				
Southern/neonate larva	100	na	100	na
Southern/2 nd instar	na	38.5	nt	nt
Southern/adult	45	nt	nt	nt
Western/2 nd instar	na	35	nt	nt
Colorado Potato Beetle	93	nt	nt	nt
2 nd instar				
Turf Grub	na	a.f.	nt	nt
3 rd instar	na	a.f.	nt	nt
adult			-	
DIPTERA				
Fruit Fly (adult emergence)	17	nt	nt	nt
Mosquito larvae	100	na	nt	nt
HOMOPTERA				
Aster Leafhopper	96.5	na	100	na
HYMENOPTERA				
Argentine Ant	75	na	nt	na
Carpenter Ant	71	na	100	na
LEPIDOPTERA				
Beet Armyworm	12.5	36	18.75	41.4
Black Cutworm	nt	nt	0	71.2
Cabbage Looper	nt	nt	21.9	66.8
Codling Moth	nt	nt	6.25	45.9
Corn Earworm	56.3	94.2	97.9	na
European Corn Borer	96.7	98.4	100	na
Tobacco Budworm	13.5	52.5	19.4	85.6

Mort. = mortality, G.I. = growth inhibition,

na = not applicable, nt = not tested, a.f. = anti-feedant

Example 3

Insecticide Utility upon Soil Application -

Photorhabdus luminescens (strain W-14) culture broth was shown to be active against corn rootworm when applied directly to soil or a soil-mix (Metromix*). Activity against neonate SCR and WCR in

Metromix was tested as follows (Table 5). The test was run using corn seedlings (United Agriseeds brand CL614) that were germinated in the light on moist filter paper for 6 days. After roots were approximately 3-6 cm long, a single kernel/seedling was planted in a 591 ml clear plastic cup with 50 gm of dry Metromix°. Twenty neonate SCR or WCR were then placed directly on the roots of the seedling and covered with Metromix°. Upon infestation, the seedlings were then drenched with 50 ml total volume of a diluted broth solution. After drenching, the cups were sealed and left at room temperature in the light for 7 days. Afterwards, the seedlings were washed to remove all Metromix and the roots were excised and weighed. Activity was rated as the percentage of corn root remaining relative to the control plants and as leaf damage induced by feeding. Leaf damage was scored visually and rated as either -, +, ++, or +++, with - representing no damage and +++ representing severe damage.

Activity against neonate SCR in soil was tested as follows (Table 6). The test was run using corn seedlings (United Agriseeds brand CL614) that were germinated in the light on moist filter paper for 6 days. After the roots were approximately 3-6 cm long, a single kernel/seedling was planted in a 591 ml clear plastic cup with 150 gm of soil from a field in Lebanon, IN planted the previous year with corn. This soil had not been previously treated with insecticides. Twenty neonate SCR were then placed directly on the roots of the seedling and covered with soil. After infestation, the seedlings were drenched with 50 ml total volume of a diluted broth solution. After drenching, the unsealed cups were incubated in a high relative humidity chamber (80%) at 78°F. Afterwards, the seedlings were washed to remove all soil and the roots were excised and weighed. Activity was rated as the percentage of corn root remaining relative to the control plants and as leaf damage induced by feeding. Leaf damage was scored visually and rated as either -, +, ++, or +++, with - representing no damage and +++ representing severe damage.

30

10

15

20

25

PCT/US97/07657 WO 98/08932

Table 5 Effect of Photorhabdus luminescens (Strain W-14) Culture Broth on Rootworm Larvae after Post-Infestation Drenching (Metromix®)

5	Treatment	Larvae	Leaf Damage	Root Weight (g)	%
	Southern Corn Ro	otworm			
	Water		-	0.4916 ± 0.023	100
	Medium (2.0% v/v	·) —		0.4416 ± 0.029	100
10	Broth (6.25%v/v)	_		0.4641 ± 0.081	100
	Water	+	+++	0.1410 ± 0.006	28.7
	Media (2.0% v/v)	+	+++	0.1345 ± 0.028	30.4
15	Broth (1.56% v/v	·) +		0.4830 ± 0.031	104
	Western Corn Roo	tworm			
	Water	_	· 	0.4446 ± 0.019	100
20	Broth $(2.0% \sqrt{v})$	-	-	0.4069 ± 0.026	100
20	Water	+	*****	0.2202 ± 0.015	49
	Broth (2.0% v/v)	+	_	0.3879 ± 0.013	95

Table 6 25 Effect of Photorhabdus luminescens (Strain W-14) Culture Broth on Southern Corn Rootworm Larvae after Post-Infestation Drenching (Soil)

30	Treatment	Larvae	Leaf Damage	Root Weight(g)	%
	Water		-	0.2148 ± 0.014	100
	Broth (50% v/v)	_	-	0.2260 ± 0.016	103
35	Water	+	+++	0.0916 ± 0.009	43
	Broth (50% v/v)	+	_	0.2428 ± 0.032	113

40

45

Activity of Photorhabdus luminescens (strain W-14) culture broth against second instar turf grubs in Metromix was observed in tests conducted as follows (Table 7). Approximately 50 gm of dry Metromix was added to a 591 ml clear plastic cup. The Metromix was then drenched with 50 ml total volume of a 50% (v/v) diluted Photorhabdus broth solution. The dilution of crude broth was made with water, with 50% broth being prepared by adding 25 ml of crude broth to 25 ml of water for 50 ml total volume. A 1% (w/v)solution of proteose peptone #3 (PP3), which is a 50% dilution of the normal media concentration, was used as a broth control. After drenching, five second instar turf grubs were placed on the top of the moistened Metromix°. Healthy turf grub larvae burrowed rapidly into the Metromix°. Those larvae that did not burrow within 1h were 50

removed and replaced with fresh larvae. The cups were sealed and placed in a 28°C incubator, in the dark. After seven days, larvae were removed from the Metromix and scored for mortality. Activity was rated the percentage of mortality relative to control.

5

Table 7

Effect of Photorhabdus luminescens (Strain W-14) Culture Broth on
Turf Grub after Pre-Infestation Drenching (Metromix*)

10	Treatment	Mortality*	Mortality %
	Water	7/15	47
15	Control medium (1.0% w/v)	12/19	63
	Broth (50% v/v)	17/20	85

20 *expressed as a ratio of dead/living larvae

Example 4 Insecticide Utility upon Leaf Application

25

30

35

Activity of Photorhabdus broth against European corn borer was seen when the broth was applied directly to the surface of maize leaves (Table 8). In these assays Photorhabdus broth was diluted 100-fold with culture medium and applied manually to the surface of excised maize leaves at a rate of about $6.0~\mu\text{l/cm}^2$ of leaf surface. The leaves were air dried and cut into equal sized strips approximately 2 x 2 inches. The leaves were rolled, secured with paper clips and placed in 1 oz plastic shot glasses with 0.25 inch of 2% agar on the bottom surface to provide moisture. Twelve neonate European corn borers were then placed onto the rolled leaf and the cup was sealed. After incubation for 5 days at 27°C in the dark, the samples were scored for feeding damage and recovered larvae.

Table 8

Effect of Photorhabdus luminescens (Strain W-14) Culture Broth on

European Corn Borer Larvae Following Pre-Infestation Application to

Excised Maize Leaves

Treatment	Leaf Damage	Larvae Recovered	Weight (mg)
Water	Extensive	55/120	0.42 mg
Control Medium,	Extensive	40/120	0.50 mg
Broth (1.0% v/v)	Trace	3/120	0.15 mg

10

15

20

25

5

Activity of the culture broth against neonate tobacco budworm (Heliothis virescens) was demonstrated using a leaf dip methodology. Fresh cotton leaves were excised from the plant and leaf disks were cut with an 18.5 mm cork-borer. The disks were individually emersed in control medium (PP3) or Photorhabdus luminescens (strain W-14) culture broth which had been concentrated approximately 10-fold using an Amicon (Beverly, MA), Proflux M12 tangential filtration system with a 10 kDa filter. Excess liquid was removed and a straightened paper clip was placed through the center of the disk. The paper clip was then wedged into a plastic, 1.0 oz shot glass containing approximately 2.0 ml of 1% Agar. served to suspend the leaf disk above the agar. Following drying of the leaf disk, a single neonate tobacco budworm larva was placed on the disk and the cup was capped. The cups were then sealed in a plastic bag and placed in a darkened, 27°C incubator for 5 days. At this time the remaining larvae and leaf material were weighed to establish a measure of leaf damage (Table 9).

Table 9 30 Effect of Photorhabdus luminescens (Strain W-14) Culture Broth on Tobacco Budworm Neonates in a Cotton-Leaf Dip Assay

35	Treatment Control leaves	Leaf Disk 55.7 ± 1.3	Final Weights (mg) Larvae na*
	Control Medium	34.0 ± 2.9	4.3 ± 0.91
	Photorhabdus broth	54.3 ± 1.4	0.0**
	* - not applicable,	** - no live larva	e found

40

Example 5, Part A Characterization of Toxin Peptide Components

In a subsequent analysis, the toxin protein subunits of the bands isolated as in Example 1 were resolved on a 7% SDS

polyacrylamide electrophoresis gel with a ratio of 30:0.8 (acrylamide:BIS-acrylamide). This gel matrix facilitates better resolution of the larger proteins. The gel system used to estimate the Band 1 and Band 2 subunit molecular weights in Example 1 was an 18% gel with a ratio of 38:0.18 (acrylamide:BIS-acrylamide), which allowed for a broader range of size separation, but less resolution of higher molecular weight components.

In this analysis, 10, rather than 8, protein bands were resolved. Table 10 reports the calculated molecular weights of the 10 resolved bands, and directly compares the molecular weights estimated under these conditions to those of the prior example. It is not surprising that additional bands were detected under the different separation conditions used in this example. Variations between the prior and new estimates of molecular weight are also to be expected given the differences in analytical conditions. In the analysis of this example, it is thought that the higher molecular weight estimates are more accurate than in Example 1, as a result of improved resolution. However, these are estimates based on SDS PAGE analysis, which are typically not analytically precise and result in estimates of peptides and which may have been further altered due to post- and co-translational modifications.

10

15

20

25

30

Amino acid sequences were determined for the N-terminal portions of five of the 10 resolved peptides. Table 10 + correlates the molecular weight of the proteins and the identified sequences. In SEQ ID NO:2, certain analyses suggest that the proline at residue 5 may be an asparagine (asn). In SEQ ID NO:3, certain analyses suggest that the amino acid residues at positions 13 and 14 are both arginine (arg). In SEQ ID NO:4, certain analyses suggest that the amino acid residue at position 6 may be either alanine (ala) or serine (ser). In SEQ ID NO:5, certain analyses suggest that the amino acid residue at position 3 may be aspartic acid (asp).

Table .10

	ESTIMATE	NEW ESTIMATE*	SEO. LISTING
	208	200.2 kĐa	SEQ ID NO:1
5	184	175.0 kDa	SEQ ID NO:2
	65.6	68.1 kDa	SEQ ID NO:3
	60.8	65.1 kDa	SEQ ID NO:4
	56.2	58.3 kDa	SEQ ID NO:5
	25.1	23.2 kDa	SEQ ID NO:15
10	*New estimates ar gene sequences.	e based on SDS PAGI SDS PAGE is not and	E and are not based on alytically precise.

15

20

25

30

35

40

Example 5, Part B Characterization of Toxin Peptide Components

New N-terminal sequence, SEQ ID NO:15, Ala Gln Asp Gly Asn Gln Asp Thr Phe Phe Ser Gly Asn Thr, was obtained by further N-terminal sequencing of peptides isolated from Native HPLC-purified toxin as described in Example 5, Part A, above. This peptide comes from the tcaA gene. The peptide labeled TcaAii, starts at position 254 and goes to position 491, where the TcaAiii peptide starts, SEQ ID NO:4. The estimated size of the peptide based on the gene sequence is 25,240 Da.

Example 6 Characterization of Toxin Peptide Components

In yet another analysis, the toxin protein complex was reisolated from the *Photorhabdus luminescens* growth medium (after culture without Tween) by performing a 10% - 80% ammonium sulfate precipitation followed by an ion exchange chromatography step (Mono Q) and two molecular sizing chromatography steps. These conditions were like those used in Example 1. During the first molecular sizing step, a second biologically active peak was found at about 100 ± 10 kDa. Based upon protein measurements, this fraction was 20 - 50 fold less active than the larger, or primary, active peak of about 860 ± 100 kDa (native). During this isolation experiment, a smaller active peak of about 325 ± 50 kDa that retained a considerable portion of the starting biological activity was also resolved. It is thought that the 325 kDa peak is related to or derived from the 860 kDa peak.

A 56 kDa protein was resolved in this analysis. The N-terminal sequence of this protein is presented in SEQ ID NO:6. It

is noteworthy that this protein shares significant identity and conservation with SEQ ID NO:5 at the N-terminus, suggesting that the two may be encoded by separate members of a gene family and that the proteins produced by each gene are sufficiently similar to both be operable in the insecticidal toxin complex.

A second, prominent 185 kDa protein was consistently present in amounts comparable to that of protein 3 from Table 10, and may be the same protein or protein fragment. The N-terminal sequence of this 185 kDa protein is shown at SEQ ID NO:7.

10

15

20

25

30

35

40

Additional N-terminal amino acid sequence data were also obtained from isolated proteins. None of the determined N-terminal sequences appear identical to a protein identified in Table 10. Other proteins were present in isolated preparation. One such protein has an estimated molecular weight of 108 kDa and an N-terminal sequence as shown in SEQ ID NO:8. A second such protein has an estimated molecular weight of 80 kDa and an N-terminal sequence as shown in SEQ ID NO:9.

When the protein material in the approximately 325 kDa active peak was analyzed by size, bands of approximately 51, 31, 28, and 22 kDa were observed. As in all cases in which a molecular weight was determined by analysis of electrophoretic mobility, these molecular weights were subject to error effects introduced by buffer ionic strength differences, electrophoresis power differences, and the like. One of ordinary skill would understand that definitive molecular weight values cannot be determined using these standard methods and that each was subject to variation. It was hypothesized that proteins of these sizes are degradation products of the larger protein species (of approximately 200 kDa size) that were observed in the larger primary toxin complex.

Finally, several preparations included a protein having the Nterminal sequence shown in SEQ ID NO:10. This sequence was strongly homologous to known chaperonin proteins, accessory proteins known to function in the assembly of large protein complexes. Although the applicants could not ascribe such an assembly function to the protein identified in SEQ ID NO:10, it was consistent with the existence of the described toxin protein complex that such a chaperonin protein could be involved in its assembly. Moreover, although such proteins have not directly been suggested to have toxic activity, this protein may be important to determining the overall structural nature of the protein toxin, and thus, may contribute to the toxic activity or durability of the complex in vivo after oral delivery.

Subsequent analysis of the stability of the protein toxin complex to proteinase K was undertaken. It was determined that after 24 hour incubation of the complex in the presence of a 10-fold molar excess of proteinase K, activity was virtually eliminated (mortality on oral application dropped to about 5%). These data confirm the proteinaceous nature of the toxin.

The toxic activity was also retained by a dialysis membrane, again confirming the large size of the native toxin complex.

10

15

20

25

30

35

40

Example 7

Isolation. Characterization and Partial Amino Acid Sequencing of Photorhabdus Toxins

Isolation and N-Terminal Amino Acid Sequencing

In a set of experiments conducted in parallel to Examples 5 and 6, ammonium sulfate precipitation of Photorhabdus proteins was performed by adjusting Photorhabdus broth, typically 2-3 liters, to a final concentration of either 10% or 20% by the slow addition of ammonium sulfate crystals. After stirring for 1 hour at 4°C, the material was centrifuged at 12,000 x g for 30 minutes. The supernatant was adjusted to 80% ammonium sulfate, stirred at 4°C for 1 hour, and centrifuged at 12,000 x g for 60 minutes. The pellet was resuspended in one-tenth the volume of 10 mM Na₂ PO₄, pH 7.0 and dialyzed against the same phosphate buffer overnight at 4°C. The dialyzed material was centrifuged at 12,000 x g for 1 hour prior to ion exchange chromatography.

A HR 16/50 Q Sepharose (Pharmacia) anion exchange column was equilibrated with 10 mM Na₂ PO₄, pH 7.0. Centrifuged, dialyzed ammonium sulfate pellet was applied to the Q Sepharose column at a rate of 1.5 ml/min and washed extensively at 3.0 ml/min with equilibration buffer until the optical density (O.D. 280) reached less than 0.100. Next, either a 60 minute NaCl gradient ranging from 0 to 0.5 M at 3 ml/min, or a series of step elutions using 0.1 M, 0.4 M and finally 1.0 NaCl for 60 minutes each was applied to the column. Fractions were pooled and concentrated using a Centriprep 100. Alternatively, proteins could be eluted by a single 0.4 M NaCl wash without prior elution with 0.1 M NaCl.

Two milliliter aliquots of concentrated Q Sepharose samples were loaded at 0.5 ml/min onto a HR 16/50 Superose 12 (Pharmacia) gel filtration column equilibrated with 10 mM $\rm Na_2$ $\rm PO_4$, pH 7.0. The column was washed with the same buffer for 240 min at 0.5 ml/min and 2 min samples were collected. The void volume material was

10

15

20

25

30

35

40

collected and concentrated using a Centriprep 100. Two milliliter aliquots of concentrated Superose 12 samples were loaded at 0.5 ml/min onto a HR 16/50 Sepharose 4B-CL (Pharmacia) gel filtration column equilibrated with 10 mM $\rm Na_2$ $\rm PO_4$, pH 7.0. The column was washed with the same buffer for 240 min at 0.5 ml/min and 2 min samples were collected.

The excluded protein peak was subjected to a second fractionation by application to a gel filtration column that used a Sepharose CL-4B resin, which separates proteins ranging from about 30 kDa to 1000 kDa. This fraction was resolved into two peaks; a minor peak at the void volume (>1000 kDa) and a major peak which eluted at an apparent molecular weight of about 860 kDa. Over a one week period subsequent samples subjected to gel filtration showed the gradual appearance of a third peak (approximately 325 kDa) that seemed to arise from the major peak, perhaps by limited proteolysis. Bioassays performed on the three peaks showed that the void peak had no activity, while the 860 kDa toxin complex fraction was highly active, and the 325 kDa peak was less active, although quite potent. SDS PAGE analysis of Sepharose CL-4B toxin complex peaks from different fermentation productions revealed two distinct peptide patterns, denoted "P" and "S". The two patterns had marked differences in the molecular weights and concentrations of peptide components in their fractions. The "S" pattern, produced most frequently, had 4 high molecular weight peptides (> 150 kDa) while the "P" pattern had 3 high molecular weight peptides. In addition, the "S" peptide fraction was found to have 2-3 fold more activity against European Corn Borer. This shift may be related to variations in protein expression due to age of inoculum and/or other factors based on growth parameters of aged cultures.

Milligram quantities of peak toxin complex fractions determined to be "P" or "S" peptide patterns were subjected to preparative SDS PAGE, and transblotted with TRIS-glycine (SeprabuffTM to PVDF membranes (ProBlottTM, Applied Biosystems) for 3-4 hours. Blots were sent for amino acid analysis and N-terminal amino acid sequencing at Harvard MicroChem and Cambridge ProChem, respectively. Three peptides in the "S" pattern had unique N-terminal amino acid sequences compared to the sequences identified in the previous example. A 201 kDa (TcdAii) peptide set forth as SEQ ID NO:13 below shared between 33% amino acid identity and 50% similarity (similarity and identity were calculated by hand) with SEQ ID NO:1 (TcbAii) (in Table 10 vertical lines denote amino acid

identities and colons indicate conservative amino acid substitutions). A second peptide of 197 kDa, SEQ ID NO:14 (TcdB), had 42% identity and 58% similarity with SEQ ID NO:2 (TcaC) (similarity and identity were calculated by hand). Yet a third peptide of 205 kDa was denoted $TcdA_{ii}$. In addition, a limited Nterminal amino acid sequence, SEQ ID NO:16 (TcbA), of a peptide of at least 235 kDa was identical with the amino acid sequence, SEQ ID NO:12, deduced from a cloned gene (tcbA), SEQ ID NO:11, containing a deduced amino acid sequence corresponding to SEQ ID NO:1 10 This indicates that the larger 235+ kDa peptide was proteolytically processed to the 201 kDa peptide, (TcbA $_{i\,i}$), (SEQ ID NO:1) during fermentation, possibly resulting in activation of the molecule. In yet another sequence, the sequence originally reported as SEQ ID NO:5 (TcaBii) reported in Example 5 above, was 15 found to contain an aspartic acid residue (Asp) at the third position rather than glycine (Gly) and two additional amino acids Gly and Asp at the eighth and ninth positions, respectively. yet two other sequences, SEQ ID NO:2 (TcaC) and SEQ ID NO:3 (TcaB_i), additional amino acid sequence was obtained.

Densitometric quantitation was performed using a sample that was identical to the "S" preparation sent for N-terminal analysis.

This analysis showed that the 201 kDa and 197 kDa peptides represent 7.0% and 7.2%, respectively, of the total Coomassie brillant blue stained protein in the "S" pattern and are present in amounts similar to the other abundant peptides. It was speculated that these peptides may represent protein homologs, analogous to the situation found with other bacterial toxins, such as various CryI Bt toxins. These proteins vary from 40-90% similarity at their N-terminal amino acid sequence, which encompasses the toxic fragment.

Internal Amino Acid Sequencing

35

40

To facilitate cloning of toxin peptide genes, internal amino acid sequences of selected peptides were obtained as followed.

Milligram quantities of peak 2A fractions determined to be "P" or "S" peptide patterns were subjected to preparative SDS PAGE, and transblotted with TRIS-glycine (SeprabuffTM to PVDF membranes (ProBlottTM, Applied Biosystems) for 3-4 hours. Blots were sent for amino acid analysis and N-terminal amino acid sequencing at Harvard MicroChem and Cambridge ProChem, respectively. Three peptides, referred to as TcbAii (containing SEQ ID NO:1), TcdAii, and TcaBi (containing SEQ ID NO:3) were subjected to trypsin digestion by

Harvard MicroChem followed by HPLC chromatography to separate individual peptides. N-terminal amino acid analysis was performed on selected tryptic peptide fragments. Two internal peptides were sequenced for the peptide TcdAii (205 kDa peptide) referred to as TcdAii-PT111 (SEQ ID NO:17) and TcdAii-PT79 (SEQ ID NO:18). Two internal peptides were sequenced for the peptide TcaBi (68 kDa peptide) referred to as TcaBi-PT158 (SEQ ID NO:19) and TcaBi-PT108 (SEQ ID NO:20). Four internal peptides were sequenced for the peptide TcbAii (201 kDa peptide) referred to as TcbAii-PT103 (SEQ ID NO:21), TcbAii-PT56 (SEQ ID NO:22), TcbAii-PT81(a) (SEQ ID NO:23), and TcbAii-PT81(b) (SEQ ID NO:24).

Table 11

N-Terminal Amino Acid Sequences

15 (similarity and identity were calculated by hand)

10

35

40

45

Example 8

Construction of a Cosmid Library of Photorhabdus luminescens W-14

Genomic DNA and its Screening to Isolate Genes Encoding Peptides

Comprising the Toxic Protein Preparation

As a prerequisite for the production of Photorhabdus insect toxic proteins in heterologous hosts, and for other uses, it is necessary to isolate and characterize the genes that encode those peptides. This objective was pursued in parallel. One approach, described later, was based on the use of monoclonal and polyclonal antibodies raised against the purified toxin which were then used to isolate clones from an expression library. The other approach, described in this example, is based on the use of the N-terminal and internal amino acid sequence data to design degenerate oligonucleotides for use in PCR amplication. Either method can be used to identify DNA clones that contain the peptide-encoding genes so as to permit the isolation of the respective genes, and the determination of their DNA base sequence.

Genomic DNA Isolation

10

Photorhabdus luminescens strain W-14 (ATCC accession number 55397) was grown on 2% proteose peptone #3 agar (Difco Laboratories, Detroit, MI) and insecticidal toxin competence was maintained by repeated bioassay after passage, using the method described in Example 1 above. A 50 ml shake culture was produced in a 175 ml baffled flask in 2% proteose peptone #3 medium, grown at 28°C and 150 rpm for approximately 24 hours. 15 ml of this culture was pelleted and frozen in its medium at -20°C until it was thawed for DNA isolation. The thawed culture was centrifuged, (700 x g, 30 min) and the floating orange mucopolysaccharide material was removed. The remaining cell material was centrifuged (25,000 x g, 15 min) to pellet the bacterial cells, and the medium was removed and discarded.

15 Genomic DNA was isolated by an adaptation of the CTAB method described in section 2.4.1 of Current Protocols in Molecular Biology (Ausubel et al. eds, John Wiley & Sons, 1994) [modified to include a salt shock and with all volumes increased 10-fold]. The pelleted bacterial cells were resuspended in TE buffer (10 mM Tris-20 HCl, 1 mM EDTA, pH 8.0) to a final volume of 10 ml, then 12 ml of 5 M NaCl was added; this mixture was centrifuged 20 min at 15,000 x The pellet was resuspended in 5.7 ml TE and 300 ml of 10% SDS and 60 ml of 20 mg/ml proteinase K (Gibco BRL Products, Grand Island, NY; in sterile distilled water) were added to the 25 suspension. This mixture was incubated at 37°C for 1 hr; then approximately 10 mg lysozyme (Worthington Biochemical Corp., Freehold, NJ) was added. After an additional 45 min, 1 ml of 5 M NaCl and 800 ml of CTAB/NaCl solution (10% w/v CTAB, 0.7 M NaCl) were added. This preparation was incubated 10 min at 65°C, then gently agitated and further incubated and agitated for 30 approximately 20 min to assist clearing of the cellular material. An equal volume of chloroform/isoamyl alcohol solution (24:1, y/v)was added, mixed gently and centrifuged. After two extractions with an equal volume of PCI (phenol/chloroform/isoamyl alcohol; 35 50:49:1, v/v/v; equilibrated with 1 M Tris-HCl, pH 8.0; Intermountain Scientific Corporation, Kaysville, UT), the DNA was precipitated with 0.6 volume of isopropanol. The DNA precipitate was gently removed with a glass rod, washed twice with 70% ethanol, dried, and dissolved in 2 ml STE (10 mM Tris-HCl pH 8.0, 10 mM 40 NaCl, 1 mM EDTA). This preparation contained 2.5 mg/ml DNA, as determined by optical density at 260 nm (i.e., OD₂₆₀).

The molecular size range of the isolated genomic DNA was evaluated for suitability for library construction. CHEF gel analysis was performed in 1.5% agarose (Seakem® LE, FMC BioProducts, Rockland, ME) gels with 0.5 X TBE buffer (44.5 mM Tris-HCl pH 8.0, 44.5 mM H₃BO₃, 1 mM EDTA) on a BioRad CHEF-DR II apparatus with a Pulsewave 760 Switcher (Bio-Rad Laboratories, Inc., Richmond, CA). The running parameters were: initial A time, 3 sec; final A time, 12 sec; 200 volts; running temperature, 4-18°C; run time, 16.5 hr. Ethidium bromide staining and examination of the gel under ultraviolet light indicated the DNA ranged from 30-250 kbp in size.

Construction of Library

10

A partial Sau3A 1 digest was made of this Photorhabdus genomic DNA preparation. The method was based on section 3.1.3 of Ausubel 15 (supra.). Adaptions included running smaller scale reactions under various conditions until nearly optimal results were achieved. Several scaled-up large reactions with varied conditions were run, the results analyzed on CHEF gels, and only the best large scale preparation was carried forward. In the optimal case, 200 µg of 20 Photorhabdus genomic DNA was incubated with 1.5 units of Sau3A 1 (New England Biolabs, "NEB", Beverly, MA) for 15 min at 37°C in 2 ml total volume of 1X NEB 4 buffer (supplied as 10X by the manufacturer). The reaction was stopped by adding 2 ml of PCI and centrifuging at 8000 x g for 10 min. To the supernatant were added 25 200 µl of 5 M NaCl plus 6 ml of ice-cold ethanol. This preparation was chilled for 30 min at -20°C, then centrifuged at 12,000 x g for 15 min. The supernatant was removed and the precipitate was dried in a vacuum oven at 40°C, then resuspended in 400 μ l STE. Spectrophotometric assay indicated about 40% recovery of the input 30 DNA. The digested DNA was size fractionated on a sucrose gradient according to section 5.3.2 of CPMB (op. cit.). A 10% to 40% (w/v) linear sucrose gradient was prepared with a gradient maker in Ultra-Clear™ tubes (Beckman Instruments, Inc., Palo Alto, CA) and the DNA sample was layered on top. After centrifugation, (26,000 rpm, 17 hr, Beckman SW41 rotor, 20°C), fractions (about 750 μl) 35 were drawn from the top of the gradient and analyzed by CHEF gel electrophoresis (as described earlier). Fractions containing Sau3A 1 fragments in the size range 20-40 kbp were selected and DNA was precipitated by a modification (amounts of all solutions increased 40 approximately 6.3-fold) of the method in section 5.3.3 of Ausubel (supra.). After overnight precipitation, the DNA was collected by centrifugation (17,000 x g, 15 min), dried, redissolved in TE,

pooled into a final volume of 80 μ l, and reprecipitated with the addition of 8 μ l 3 M sodium acetate and 220 μ l ethanol. The pellet collected by centrifugation as above was resuspended in 12 μ l TE. Concentration of the DNA was determined by Hoechst 33258 dye (Polysciences, Inc., Warrington, PA) fluorometry in a Hoefer TKO100 fluorimeter (Hoefer Scientific Instruments, San Francisco, CA). Approximately 2.5 μ g of the size-fractionated DNA was recovered.

10

15

20

25

3Ō

35

40

Thirty µg of cosmid pWE15 DNA (Stratagene, La Jolla, CA) was digested to completion with 100 units of restriction enzyme BamH 1 (NEB) in the manufacturer's buffer (final volume of 200 μ l, 37°C, 1 hr). The reaction was extracted with 100 μ l of PCI and DNA was precipitated from the aqueous phase by addition of 20 µl 3M sodium acetate and 550 µl -20°C absolute ethanol. After 20 min at -70°C, the DNA was collected by centrifugation (17,000 x g, 15 min), dried under vacuum, and dissolved in 180 μl of 10 mM Tris-HCl, pH 8.0. To this were added 20 µl of 10% CIP buffer (100 mM Tris-HCl, pH 8.3; 10 mM $ZnCl_2$; 10 mM $MgCl_2$), and 1 μl (0.25 units) of 1:4 diluted calf intestinal alkaline phosphatase (Boehringer Mannheim Corporation, Indianapolis, IN). After 30 min at 37°C, the following additions were made: 2 μ l 0.5 M EDTA, pH 8.0; 10 μ l 10% SDS; 0.5 µl of 20 mg/ml proteinase K (as above), followed by incubation at 55°C for 30 min. Following sequential extractions with 100 μl of PCI and 100 μl phenol (Intermountain Scientific Corporation, equilibrated with 1 M Tris-HCl, pH 8.0), the dephosphorylated DNA was precipitated by addition of 72 μl of 7.5 Mammonium acetate and 550 μl -20°C ethanol, incubation on ice for 30 min, and centrifugation as above. The pelleted DNA was washed once with 500 μ l -20°C 70% ethanol, dried under vacuum, and dissolved in 20 µl of TE buffer.

Ligation of the size-fractionated Sau3A 1 fragments to the BamH 1-digested and phosphatased pWE15 vector was accomplished using T4 ligase (NEB) by a modification (i.e., use of premixed 10X ligation buffer supplied by the manufacturer) of the protocol in section 3.33 of Ausubel. Ligation was carried out overnight in a total volume of 20 µl at 15°C, followed by storage at - 20°C.

Four µl of the cosmid DNA ligation reaction, containing about 1 µg of DNA, was packaged into bacteriophage lambda using a commercial packaging extract (Gigapack® III Gold Packaging Extract, Stratagene), following the manufacturer's directions. The packaged preparation was stored at 4°C until use. The packaged cosmid preparation was used to infect Escherichia coli XL1 Blue MR cells

(Stratagene) according to the Gigapack III Gold protocols ("Titering the Cosmid Library"), as follows. XL1 Blue MR cells were grown in LB medium (g/L: Bacto-tryptone, 10; Bacto-yeast extract, 5; Bacto-agar, 15; NaCl, 5; [Difco Laboratories, Detroit, MI]) containing 0.2% (w/v) maltose plus 10 mM MgSO4, at 37°C. After 5 hr growth, cells were pelleted at 700 x g (15 min) and resuspended in 6 ml of 10 mM MqSO4. The culture density was adjusted with 10 mM MgSO₄ to $OD_{500} = 0.5$. The packaged cosmid library was diluted 1:10 or 1:20 with sterile SM medium (0.1 M 10 NaCl, 10 mM MgSO₄ 50 mM Tris-HCl pH 7.5, 0.01% w/v gelatin), and 25 μl of the diluted preparation was mixed with 25 μl of the diluted XL1 Blue MR cells. The mixture was incubated at 25°C for 30 min (without shaking), then 200 µl of LB broth was added, and incubation was continued for approximately 1 hr with occasional gentle shaking. Aliquots (20-40 µl) of this culture were spread on LB agar plates containing 100 mg/l ampicillin (i.e., LB-Ample) and incubated overnight at 37°C. To store the library without amplification, single colonies were picked and inoculated into individual wells of sterile 96-well microwell plates; each well 20 containing 75 µl of Terrific Broth (TB media: 12 q/l Bactotryptone, 24 g/l Bacto-yeast extract, 0.4% v/v glycerol, 17 mM KH₂PO₄, 72 mM K₂HPO₄) plus 100 mg/l ampicillin (i.e., TB-Amp₁₀₀) and incubated (without shaking) overnight at 37°C. After replicating the 96-well plate into a copy plate, 75 μ l/well of filter-25 sterilized TB:glycerol (1:1, v/v; with, or without, 100 mg/l ampfcillin) was added to the plate, it was shaken briefly at 100 rpm, 37°C, and then closed with Parafilm (American National Can, Greenwich, CT) and placed in a -70°C freezer for storage. Copy plates were grown and processed identically to the master plates. A total of 40 such master plates (and their copies) were prepared. 30

Screening of the Library with Radiolabeled DNA Probes

35

To prepare colony filters for probing with radioactively labeled probes, ten 96-well plates of the library were thawed at 25°C (bench top at room temperature). A replica plating tool with 96 prongs was used to inoculate a fresh 96-well copy plate containing 75 μ l/well of TB-Amp₁₀₀. The copy plate was grown overnight (stationary) at 37°C, then shaken about 30 min at 100 rpm at 37°C. A total of 800 colonies was represented in these copy plates, due to nongrowth of some isolates. The replica tool was used to inoculate duplicate impressions of the 96-well arrays onto Magna NT (MSI, Westboro, MA) nylon membranes (0.45 micron, 220 x

5

10

15

20

30

35

40

45

250 mm) which had been placed on solid LB-Amp $_{100}$ (100 ml/dish) in Bio-assay plastic dishes (Nunc, 243 x 243 x 18 mm; Curtin Mathison Scientific, Inc., Wood Dale, IL). The colonies were grown on the membranes at 37°C for about 3 hr.

A positive control colony (a bacterial clone containing a GZ4 sequence insert, see below) was grown on a separate Magna NT membrane (Nunc, 0.45 micron, 82 mm circle) on LB medium supplemented with 35 mg/l chloramphenicol (i.e., LB-Cam35), and processed alongside the library colony membranes. Bacterial colonies on the membranes were lysed, and the DNA was denatured and neutralized according to a protocol taken from the Genius™ System User's Guide version 2.0 (Boehringer Mannheim, Indianapolis, IN). Membranes were placed colony side up on filter paper soaked with 0.5 N NaOH plus 1.5 M NaCl for 15 min to denature, and neutralized on filter paper soaked with 1 M Tris-HCl pH 8.0, 1.5 M NaCl for 15 After UV-crosslinking using a Stratagene UV Stratalinker set on auto crosslink, the membranes were stored dry at 25°C until use. Membranes were trimmed into strips containing the duplicate impressions of a single 96-well plate, then washed extensively by the method of section 6.4.1 in CPMB (op. cit.): 3 hr at 25°C in 3X SSC, 0.1% (w/v) SDS, followed by 1 hr at 65°C in the same solution, then rinsed in 2X SSC in preparation for the hybridization step (20X SSC = 3 M NaCl, 0.3 M sodium citrate, pH 7.0).

25 Amplification of a Specific Genomic Fragment of a TcaC Gene

Based on the N-terminal amino acid sequence determined for the purified TcaC peptide fraction [disclosed herein as SEQ ID NO:2], a pool of degenerate oligonucleotides (pool S4Psh) was synthesized by standard β -cyanoethyl chemistry on an Applied BioSystem ABI394 DNA/RNA Synthesizer (Perkin Elmer, Foster City, CA). The oligonucleotides were deprotected 8 hours at 55°C, dissolved in water, quantitated by spectrophotometric measurement, and diluted for use. This pool corresponds to the determined N-terminal amino acid sequence of the TcaC peptide. The determined amino acid sequence and the corresponding degenerate DNA sequence are given below, where A, C, G, and T are the standard DNA bases, and I represents inosine:

Amino Met Gln Asp Ser Pro Glu Val

S4Psh 5' ATG CA(A/G) GA(T/C) (T/A)(C/G)(T/A) CCI GA(A/G) GT 3'

Another set of degenerate oligonucleotides was synthesized (pool P2.3.5R), representing the complement of the coding strand for the determined amino acid sequence of the SEQ ID NO:17:

Amino
Acid Ala Phe Asn Ile Asp Asp Val

Codons 5' GCN TT(T/C) AA(T/C) AT(A/T/C) GA(T/C) GA(T/C) GT 3'
P2.3.5R 3'CG(A/C/G/T) AA(A/G) TT(A/G) TA(T/A/G) CT(A/G) CT(A/G) CA 5'

These oligonucleotides were used as primers in Polymerase Chain Reactions (PCR', Roche Molecular Systems, Branchburg, NJ) to amplify a specific DNA fragment from genomic DNA prepared from Photorhabdus strain W-14 (see above). A typical reaction (50 μl) 10 contained 125 pmol of each primer pool P2Psh and P2.3.5R, 253 ng of genomic template DNA, 10 nmol each of dATP, dCTP, dGTP, and dTTP, 1X GeneAmp PCR buffer, and 2.5 units of AmpliTag DNA polymerase (both from Roche Molecular Systems; 10X GeneAmp buffer is 100 mM Tris-HCl pH 8.3, 500 mM KCl, 0.01% w/v gelatin). Amplifications 15 were performed in a Perkin Elmer Cetus DNA Thermal Cycler (Perkin Elmer, Foster City, CA) using 35 cycles of 94°C (1.0 min), 55°C (2.0 min), 72°C (3.0 min), followed by an extension period of 7.0 min at 72°C. Amplification products were analyzed by electrophoresis through 2% w/v NuSieve 3:1 agarose (FMC 20 BioProducts) in TEA buffer (40 mM Tris-acetate, 2 mM EDTA, pH 8.0). A specific product of estimated size 250 bp was observed amongst numerous other amplification products by ethidium bromide (0.5 μq/ml) staining of the gel and examination under ultraviolet light.

The region of the gel containing an approximately 250 bp product was excised, and a small plug (0.5 mm dia.) was removed and used to supply template for PCR amplification (40 cycles). The reaction (50 μ l) contained the same components as above, minus genomic template DNA. Following amplification, the ends of the fragments were made blunt and were phosphorylated by incubation at 25°C for 20 min with 1 unit of T4 DNA polymerase (NEB), 1 nmol ATP, and 2.15 units of T4 kinase (Pharmacia Biotech Inc., Piscataway, NJ).

25

30

35

DNA fragments were separated from residual primers by electrophoresis through 1% w/v GTG agarose (FMC) in TEA. A gel slice containing fragments of apparent size 250 bp was excised, and the DNA was extracted using a Qiaex kit (Qiagen Inc., Chatsworth, CA).

The extracted DNA fragments were ligated to plasmid vector pBC KS(+) (Stratagene) that had been digested to completion with restriction enzyme Sma 1 and extracted in a manner similar to that described for pWE15 DNA above. A typical ligation reaction (16.3 µl) contained 100 ng of digested pBC KS(+) DNA, 70 ng of 250 bp fragment DNA, 1 nmol [Co(NH₃)₆]Cl₃, and 3.9 Weiss units of T4 DNA ligase (Collaborative Biomedical Products, Bedford, MA), in 1X

ligation buffer (50 mM Tris-HCl, pH .7.4; 10 mM MgCl2; 10 mM dithiothreitol; 1 mM spermidine, 1 mM ATP, 100 mg/ml bovine serum albumin). Following overnight incubation at 14°C, the ligated products were transformed into frozen, competent Escherichia coli $DH5\alpha$ cells (Gibco BRL) according to the suppliers' recommendations, and plated on LB-Cam₃₅ plates, containing IPTG (119 μ g/ml) and X-gal Independent white colonies were picked, and plasmid $(50 \mu q/ml)$. DNA was prepared by a modified alkaline-lysis/PEG precipitation $\texttt{method} \text{ (PRISM}^{\texttt{TM}} \text{ Ready Reaction DyeDeoxy}^{\texttt{TM}} \text{ Terminator Cycle}$ 10 Sequencing Kit Protocols; ABI/Perkin Elmer). The nucleotide sequence of both strands of the insert DNA was determined, using T7 primers [pBC KS(+) bases 601-623: TAAAACGACGGCCAGTGAGCGCG) and LacZ primers [pBC KS(+) bases 792-816: ATGACCATGATTACGCCAAGCGCGC) and protocols supplied with the PRISM™ sequencing kit (ABI/Perkin 15 Nonincorporated dye-terminator dideoxyribonucleotides were removed by passage through Centri-Sep 100 columns (Princeton Separations, Inc., Adelphia, NJ) according to the manufacturer's instructions. The DNA sequence was obtained by analysis of the samples on an ABI Model 373A DNA Sequencer (ABI/Perkin Elmer). The 20 DNA sequences of two isolates, GZ4 and HB14, were found to be as illustrated in Fig. 1.

This sequence illustrates the following features: 1) bases 1-20 represent one of the 64 possible sequences of the S4Psh degenerate oligonucleotides, ii) the sequence of amino acids 1-3 and 6-12 correspond exactly to that determined for the N-terminus of TcaC (disclosed as SEQ ID NO:2), iii) the fourth amino acid encoded is a cysteine residue rather than serine. This difference is encoded within the degeneracy for the serine codons (see above), iv) the fifth amino acid encoded is proline, corresponding to the TcaC N-terminal sequence given as SEQ ID NO:2, v) bases 257-276 encode one of the 192 possible sequences designed into the degenerate pool, vi) the TGA termination codon introduced at bases 268-270 is the result of complementarity to the degeneracy built into the oligonucleotide pool at the corresponding position, and does not indicate a shortened reading frame for the corresponding gene.

Labeling of a TcaC Peptide Gene-specific Probe

25

30

35

40

DNA fragments corresponding to the above 276 bases were amplified (35 cycles) by PCR° in a 100 µl reaction volume, using 100 pmol each of P2Psh and P2.3.5R primers, 10 ng of plasmids GZ4 or HB14 as templates, 20 nmol each of dATP, dCTP, dGTP, and dTTP, 5

units of AmpliTAq DNA polymerase, and 1% concentration of GeneAmp buffer, under the same temperature regimes as described above. The amplification products were extracted from a 1% GTG agarose gel by Qiaex kit and quantitated by fluorometry.

The extracted amplification products from plasmid HB14 template (approximately 400 ng) were split into five aliquots and labeled with ¹²P-dCTP using the High Prime Labeling Mix (Boehringer Mannheim) according to the manufacturer's instructions.

Nonincorporated radioisotope was removed by passage through NucTrap* Probe Purification Columns (Stratagene), according to the supplier's instructions. The specific activity of the labeled DNA product was determined by scintillation counting to be 3.11 x 10* dpm/µg. This labeled DNA was used to probe membranes prepared from 800 members of the genomic library.

15

10

5

Screening with a TcaC-peptide Gene Specific Probe

The radiolabeled HB14 probe was boiled approximately 10 min, then added to "minimal hyb" solution. [Note: The "minimal hyb" method is taken from a CERES protocol; "Restriction Fragment Length Polymorphism Laboratory Manual version 4.0", sections 4-40 and 4-20 47; CERES/NPI, Salt Lake City, UT. NPI is now defunct, with its successors operating as Linkage Genetics]. "Minimal hyb" solution contains 10% w/v PEG (polyethylene qlycol, M.W. approx. 8000), 7% w/v SDS; 0.6X SSC, 10 mM sodium phosphate buffer (from a 1M stock containing 95 g/l NaH₂PO₄ 1H₂O and 84.5 g/l Na₂HPO₄ 7H₂O), 5 mM EDTA, . 25 and 100 mg/ml denatured salmon sperm DNA. Membranes were blotted dry briefly then, without prehybridization, 5 strips of membrane were placed in each of 2 plastic boxes containing 75 ml of "minimal hyb" and 2.6 ng/ml of radiolabeled HB14 probe. These were incubated overnight with slow shaking (50 rpm) at 60°C. The 30 filters were washed three times for approximately 10 min each at 25°C in "minimal hyb wash solution" (0.25% SSC, 0.2% SDS), followed by two 30-min washes with slow shaking at 60°C in the same solution. The filters were placed on paper covered with Saran Wrap' 35 (Dow Brands, Indianapolis, IN) in a light-tight autoradiographic cassette and exposed to X-Omat X-ray film (Kodak, Rochester, NY) with two DuPont Cronex Lightning-Plus C1 enhancers (Sigma Chemical Co., St. Louis, MO), for 4 hr at -70°C. Upon development (standard photographic procedures), significant signals were evident in both replicates amongst a high background of weaker, more irregular 40 The filters were again washed for about 4 hr at 68°C in "minimal hyb wash solution" and then placed again in the cassettes

5

10

15

20

25

30

35

40

and film was exposed overnight at -70°C. Twelve possible positives were identified due to strong signals on both of the duplicate 96-well colony impressions. No signal was seen with negative control membranes (colonies of XL1 Blue MR cells containing pWE15), and a very strong signal was seen with positive control membranes (DH5 α cells containing the GZ4 isolate of the PCR product) that had been processed concurrently with the experimental samples.

The twelve putative hybridization-positive colonies were retrieved from the frozen 96-well library plates and grown overnight at 37°C on solid LB-Amp₁₀₀ medium. They were then patched (3/plate, plus three negative controls: XL1 Blue MR cells containing the pWE15 vector) onto solid LB-Amp₁₀₀. Two sets of membranes (Magna NT nylon, 0.45 micron) were prepared for hybridization. The first set was prepared by placing a filter directly onto the colonies on a patch plate, then removing it with adherent bacterial cells, and processing as below. Filters of the second set were placed on plates containing LB-Amp₁₀₀ medium, then inoculated by transferring cells from the patch plates onto the filters. After overnight growth at 37°C, the filters were removed from the plates and processed.

Bacterial cells on the filters were lysed and DNA denatured by placing each filter colony-side-up on a pool (1.0 ml) of 0.5 N NaOH in a plastic plate for 3 min. The filters were blotted dry on a paper towel, then the process was repeated with fresh 0.5 N NaOH. After blotting dry, the filters were neutralized by placing each on a 1.0 ml pool of 1 M Tris-HCl, pH 7.5 for 3 min, blotted dry, and reneutralised with fresh buffer. This was followed by two similar soakings (5 min each) on pools of 0.5 M Tris-HCl pH 7.5 plus 1.5 M NaCl. After blotting dry, the DNA was UV crosslinked to the filter (as above), and the filters were washed (25°C, 100 rpm) in about 100 ml of 3X SSC plus 0.1%(w/v) SDS (4 times, 30 min each with fresh solution for each wash). They were then placed in a minimal volume of prehybridization solution [6X SSC plus 1% w/v each of Ficoll 400 (Pharmacia), polyvinylpyrrolidone (av. M.W. 360,000; Sigma) and bovine serum albumin Fraction V; (Sigma)] for 2 hr at 65°C, 50 rpm. The prehybridization solution was removed, and replaced with the HB14 32P-labeled probe that had been saved from the previous hybridization of the library membranes and which had been denatured at 95°C for 5 min. Hybridization was performed at 60°C for 16 hr with shaking at 50 rpm.

Following removal of the labeled probe solution, the membranes were washed 3 times at 25° C (50 rpm, 15 min) in 3X SSC (about 150 ml each wash). They were then washed for 3 hr at 68° C (50 rpm) in

0.25% SSC plus 0.2% SDS (minimal hyb wash solution), and exposed to X-ray film as described above for 1.5 hr at 25°C (no enhancer screens). This exposure revealed very strong hybridization signals to cosmid isolates 22G12, 25A10, 26A5, and 26B10, and a very weak signal with cosmid isolate 8B10. No signal was seen with the negative control (pWE15) colonies, and a very strong signal was seen with positive control membranes (DH5 α cells containing the GZ4 isolate of the PCR product) that had been processed concurrently with the experimental samples.

10

15

40

45

Amplification of a Specific Genomic Fragment of a TcaB Gene

Based on the N-terminal amino acid sequence determined for the purified TcaB_i peptide fraction (disclosed here as SEQ ID NO:3) a pool of degenerate oligonucleotides (pool P8F) was synthesized as described for peptide TcaC. The determined amino acid sequence and the corresponding degenerate DNA sequence are given below, where A, C, G, and T are the standard DNA bases, and I represents inosine:

- Amino
 20 Acid Leu Phe_Thr Gln Thr Leu Lys Glu Ala Arg

 P8F 5' TTT ACI CA(A/G) ACI (C/T)TI AAA GAA GCI (A/C)G 3'
 (C/T)TI
- Another set of degenerate oligonucleotides was synthesized (pool P8.108.3R), representing the complement of the coding strand for the determined amino acid sequence of the TcaBi-PT108 internal peptide (disclosed herein as SEQ ID NO:20):
- 30 Amino Acid Met Tyr Tyr Ile Gln Ala Gln Gln

 Codons ATG TA(T/C) TA(T/C) AT(T/C/A) CA(A/G) GC(A/C/G/T) CA(A/G CA(A/G) P8.108.3R 3' AT(A/G) AT(A/G) TA(A/G/T) GT(T/C) CGI GT(T/C) GT 5'

 35 TAC

These oligonucleotides were used as primers for PCR using HotStart 50 TubesTM (Molecular Bio-Products, Inc., San Diego, CA) to amplify a specific DNA fragment from genomic DNA prepared from *Photorhabdus* strain W-14 (see above). A typical reaction (50 µl) contained (bottom layer) 25 pmol of each primer pool P8F and P8.108.3R, with 2 nmol each of dATP, dCTP, dGTP, and dTTP, in 1X GeneAmp PCR buffer, and (top layer) 230 ng of genomic template DNA, 8 nmol each of dATP, dCTP, dGTP, and dTTP, and 2.5 units of AmpliTaq DNA polymerase, in 1X GeneAmp PCR buffer. Amplifications were performed by 35 cycles as described for the TcaC peptide. Amplification products were analyzed by electrophoresis through

0.7% w/v SeaKem LE agarose (FMC) in TEA buffer. A specific product of estimated size 1600 bp was observed.

Four such reactions were pooled, and the amplified DNA was extracted from a 1.0% SeaKem® LE gel by Qiaex kit as described for the TcaC peptide. The extracted DNA was used directly as the template for sequence determination (PRISM™ Sequencing Kit) using the P8F and P8.108.3R primer pools. Each reaction contained about 100 ng template DNA and 25 pmol of one primer pool, and was processed according to standard protocols as described for the TcaC peptide. An analysis of the sequence derived from extension of the P8F primers revealed the short DNA sequence (and encoded amino acid sequence):

GAT GCA TTG NTT GCT Asp Ala Leu (Val) Ala

10

30

35

40

which corresponds to a portion of the N-terminal peptide sequence disclosed as SEQ ID NO:3 (TcaB_i).

Labeling of a TcaBi-peptide Gene-specific Probe

Approximately 50 ng of gel-purified TcaB_i DNA fragment was labeled with ³²P-dCTP as described above, and nonincorporated radioisotopes were removed by passage through a NICK Column³ (Pharmacia). The specific activity of the labelled DNA was determined to be 6 x 10⁹ dpm/µg. This labeled DNA was used to probe colony membranes prepared from members of the genomic library that had hybridized to the TcaC-peptide specific probe.

The membranes containing the 12 colonies identified in the TcaC-probe library screen (see above) were stripped of radioactive TcaC-specific label by boiling twice for approximately 30 min each time in 1 liter of 0.1X SSC plus 0.1 % SDS. Removal of radiolabel was checked with a 6 hr film exposure. The stripped membranes were then incubated with the TcaBi peptide-specific probe prepared above. The labeled DNA was denatured by boiling for 10 min, and then added to the filters that had been incubated for 1 hr in 100 ml of "minimal hyb" solution at 60°C. After overnight hybridization at this temperature, the probe solution was removed, and the filters were washed as follows (all in 0.3X SSC plus 0.1% SDS): once for 5 min at 25°C, once for 1 hr at 60°C in fresh solution, and once for 1 hr at 63°C in fresh solution. After 1.5 hr exposure to X-ray film by standard procedures, 4 strongly-

hybridizing colonies were observed. These were, as with the TcaC-

specific probe, isolates 22G12, 25A10, 26A5, and 26B10.

The same TcaB_i probe solution was diluted with an equal volume (about 100 ml) of "minimal hyb" solution, and then used to screen the membranes containing the 800 members of the genomic library. After hybridization, washing, and exposure to X-ray film as described above, only the four cosmid clones 22G12, 25A10, 26A5, and 26B10, were found to hybridize strongly to this probe.

Isolation of Subclones Containing Genes Encoding TcaC and YcaB; Peptides, and Determination of DNA Base Sequence Thereof

Three hybridization-positive cosmids in strain XL1 Blue MR 10 were grown with shaking overnight (200 rpm) at 30°C in 100 ml TB-Amp₁₀₀. After harvesting the cells by centrifugation, cosmid DNA was prepared using a commercially available kit (BIGprepTM, 5 Prime 3 Prime, Inc., Boulder, CO), following the manufacturer's 15 protocols. Only one cosmid, 26A5, was successfully isolated by this procedure. When digested with restriction enzyme EcoR 1 (NEB) and analyzed by gel electrophoresis, fragments of approximate sizes 14, 10, 8 (vector), 5, 3.3, 2.9, and 1.5 kbp were detected. second attempt to isolate cosmid DNA from the same three strains (8 20 ml cultures; TB-Amp₁₀₀, 30°C) utilized a boiling miniprep method (Evans G. and G. Wahl., 1987, "Cosmid vectors for genomic walking and rapid restriction mapping." in Guide to Molecular Cloning Techniques. Meth. Enzymology, Vol. 152, S. Berger and A. Kimmel, eds., pgs. 604-610). Only one cosmid, 25A10, was successfully 25 isolated by this method. When digested with restriction enzyme EcoR I (NEB) and analyzed by gel electrophoresis, this cosmid showed a fragmentation pattern identical to that previously seen with cosmid 26A5.

A 0.15 μg sample of 26A5 cosmid DNA was used to transform 50 ml of E. coli DH5α cells (Gibco BRL), by the supplier's protocols. A single colony isolate of that strain was inoculated into 4 ml of TB-Amp₁₀₀, and grown for 8 hr at 37°C. Chloramphenicol was added to a final concentration of 225 μg/ml, incubation was continued for another 24 hr, then cells were harvested by centrifugation and frozen at -20°C. Isolation of the 26A5 cosmid DNA was by a standard alkaline lysis miniprep (Maniatis et al., op. cit., p. 382), modified by increasing all volumes by 50% and with stirring or gentle mixing, rather than vortexing, at every step. After washing the DNA pellet in 70% ethanol, it was dissolved in TE containing 25 μg/ml ribonuclease A (Boehringer Mannheim).

5

10

15

20

25

30

35

40

Identification of *EcoR I* Fragments Hybridizing to GZ4-derived and TcaB_i - Probes

Approximately 0.4 μg of cosmid 25A10 (from XL1 Blue MR cells) and about 0.5 μg of cosmid 26A5 (from chloramphenicol-amplified DH5α cells) were each digested with about 15 units of EcoR I(NEB) for 85 min, frozen overnight, then heated at 65°C for five min, and electrophoresed in a 0.7% agarose gel (Seakem LE, 1X TEA, 80 volts, 90 min). The DNA was stained with ethidium bromide as described above, and photographed under ultraviolet light. The EcoR I digest of cosmid 25A10 was a complete digestion, but the sample of cosmid 26A5 was only partially digested under these conditions. The agarose gel containing the DNA fragments was subjected to depurination, denaturation and neutralization, followed by Southern blotting onto a Magna NT nylon membrane, using a high salt (20X SSC) protocol, all as described in section 2.9 of Ausubel et al. (CPMB, op. cit.). The transferred DNA was then UV-crosslinked to the nylon membrane as before.

An TcaC-peptide specific DNA fragment corresponding to the insert of plasmid isolate GZ4 was amplified by PCR $^{\circ}$ in a 100 ml reaction volume as described previously above. The amplification products from three such reactions were pooled and were extracted from a 1% GTG $^{\circ}$ agarose gel by Qiaex kit, as described above, and quantitated by fluorometry. The gel-purified DNA (100 ng) was labeled with 12 P-dCTP using the High Prime Labeling Mix (Boehringer Mannheim) as described above, to a specific activity of 6.34 x 10^{8} dpm/µg.

The ³²P-labeled GZ4 probe was boiled 10 min, then added to "minimal hyb" buffer (at 1 ng/ml), and the Southern blot membrane containing the digested cosmid DNA fragments was added, and incubated for 4 hr at 60°C with gentle shaking at 50 rpm. The membrane was then washed 3 times at 25°C for about 5 min each (minimal hyb wash solution), followed by two washes for 30 min each at 60°C. The blot was exposed to film (with enhancer screens) for about 30 min at -70°C. The GZ4 probe hybridized strongly to the 5.0 kbp (apparent size) EcoR I fragment of both these two cosmids, 26A5 and 25A10.

The membrane was stripped of radioactivity by boiling for about 30 min in 0.1X SSC plus 0.1 % SDS, and absence of radiolabel was checked by exposure to film. It was then hybridized at 60°C for 3.5 hours with the (denatured) TcaB_i probe in "minimal hyb" buffer previously used for screening the colony membranes (above), washed as described previously, and exposed to film for 40 min at -

70°C with two enhancer screens. With both cosmids, the TcaB_i probe hybridized lightly with the about 5.0 kbp *EcoR* 1 fragment, and strongly with a fragment of approximately 2.9 kbp.

The sample of cosmid 26A5 DNA previously described. (from DH5a cells) was used as the source of DNA from which to subclone the bands of interest. This DNA (2.5 µg) was digested with about 3 units of EcoR I (NEB) in a total volume of 30 µl for 1.5 hr, to give a partial digest, as confirmed by gel electrophoresis. Ten µq of pBC KS (+) DNA (Stratagene) were digested for 1.5 hr with 20 10 units of EcoR I in a total volume of 20 μ l, leading to total digestion as confirmed by electrophoresis. Both EcoR I-cut DNA preparations were diluted to 50 µl with water, to each an equal volume of PCI was added, the suspension was gently mixed, spun in a microcentrifuge and the aqueous supernatant was collected. DNA was 15 precipitated by 150 µl ethanol, and the mixture was placed at -20°C overnight. Following centrifugation and drying, the EcoR I digested pBC KS (+) was dissolved in 100 µl TE; the partially digested 26A5 was dissolved in 20 µl TE. DNA recovery was checked by fluorometry.

In separate reactions, approximately 60 ng of EcoR I -digested 20 pBC KS(+) DNA was ligated with approximately 180 ng or 270 ng of partially digested cosmid 26A5 DNA. Ligations were carried out in a volume of 20 μ l at 15°C for 5 hr, using T4 ligase and buffer from New England BioLabs. The ligation mixture, diluted to 100 µl with 25 sterile TE, was used to transform frozen, competent DH5 α cells (Gibco BRL) according to the supplier's instructions. Varying amounts (25-200 µl) of the transformed cells were plated on freshly prepared solid LB-Cam₁₅ medium with 1 mM IPTG and 50 mg/l X-gal. Plates were incubated at 37°C about 20 hr, then chilled in the dark 30 for approximately 3 hr to intensify color for insert selection. White colonies were picked onto patch plates of the same composition and incubated overnight at 37°C.

Two colony lifts of each of the selected patch plates were prepared as follows. After picking white colonies to fresh plates, round Magna NT nylon membranes were pressed onto the patch plates, the membrane was lifted off, and subjected to denaturation, neutralization and UV crosslinking as described above for the library colony membranes. The crosslinked colony lifts were vigorously washed, including gently wiping off the excess cell debris with a tissue. One set was hybridized with the GZ4(TcaC) probe solution described earlier, and the other set was hybridized with the TcaBi probe solution described earlier, according to the

35

40

'minimal hyb' protocol, followed by washing and film exposure as described for the library colony membranes.

Colonies showing hybridization signals either only with the GZ4 probe, with both GZ4 and $TcaB_1$ probes, or only with the $TcaB_1$ probe, were selected for further work and cells were streaked for single colony isolation onto LB-Cam $_{35}$ media with IPTG and X-gal as before. Approximately 35 single colonies, from 16 different isolates, were picked into liquid LB-Cam $_{35}$ media and grown overnight at 37°C; the cells were collected by centrifugation and plasmid DNA was isolated by a standard alkaline lysis miniprep according to Maniatis et al. (op. cit. p. 368). DNA pellets were dissolved in TE + 25 μ g/ml ribonuclease A and DNA concentration was determined by fluorometry. The EcoR I digestion pattern was analyzed by gel electrophoresis. The following isolates were picked as useful.

10

20

25

30

35

40

Isolate A17.2 contains religated pBC KS(+) only and was used for a (negative) control. Isolates D38.3 and C44.1 each contain only the 2.9 kbp, TcaB_i -hybridizing EcoR I fragment inserted into pBC KS(+). These plasmids, named pDAB2000 and pDAB2001, respectively, are illustrated in Fig. 2.

Isolate A35.3 contains only the approximately 5 kbp, GZ4)-hybridizing *EcoR 1* fragment, inserted into pBC KS(+). This plasmid was named pDAB2002 (also Fig. 2). These isolates provided templates for DNA sequencing.

Plasmids pDAB2000 and pDAB2001 were prepared using the BIGprepTM kit as before. Cultures (30 ml) were grown overnight in TB-Cam₃₅ to an OD₆₀₀ of 2, then plasmid was isolated according to the manufacturer's directions. DNA pellets were redissolved in 100 μ l TE each, and sample integrity was checked by *EcoR I* digestion and gel electrophoretic analysis.

Sequencing reactions were run in duplicate, with one replicate using as template pDAB2000 DNA, and the other replicate using as template pDAB2001 DNA. The reactions were carried out using the dideoxy dye terminator cycle sequencing method, as described above for the sequencing of the GZ4/HB14 DNAs. Initial sequencing runs utilized as primers the LacZ and T7 primers described above, plus primers based on the determined sequence of the TcaB_i PCR amplification product (TH1 = ATTGCAGACTGCCAATCGCTTCGG, TH12 = GAGAGTATCCAGACCGCGGGATGATCTG).

After alignment and editing of each sequencing output, each was truncated to between 250 to 350 bases, depending on the integrity of the chromatographic data as interpreted by the Perkin Elmer Applied Biosystems Division SeqEd 675 software. Subsequent

5

10

15

20

sequencing "steps" were made by selecting appropriate sequence for new primers. With a few exceptions, primers (synthesized as described above) were 24 bases in length with a 50% G+C composition. Sequencing by this method was carried out on both strands of the approximately 2.9 kbp EcoR I fragment.

To further serve as template for DNA sequencing, plasmid DNA from isolate pDAB2002 was prepared by BIGprep™ kit. Sequencing reactions were performed and analyzed as described above.

Initially, a T3 primer (pBS SK (+) bases 774-796:

CGCGCAATTAACCCTCACTAAAG) and a T7 primer (pBS KS (+) bases 621-643:

GCGCGTAATACGACTCACTATAG) were used to prime the sequencing reactions from the flanking vector sequences, reading into the insert DNA. Another set of primers, (GZ4F:

GTATCGATTACAACGCTGTCACTTCCC; TH13: GGGAAGTGACAGCGTTGTAATCGATAC;

TH14: ATGTTGGGTGCGTCAGTCACTTCCC; TH13: GGGAAGTGACAGCGTTGTAATCGATAC;

GGGAAGTGACAGCGTTGTAATCGATAC) was made to prime from internal sequences, which were determined previously by degenerate oligonucleotide-mediated sequencing of subcloned TcaC-peptide PCR products. From the data generated during the initial rounds of

sequencing, new sets of primers were designed and used to walk the entire length of the about 5 kbp fragment. A total of 55 oligo primers was used, enabling the identification of 4832 total bp of contiguous sequence.

When the DNA sequence of the Ecop I fragment insert of

When the DNA sequence of the EcoR I fragment insert of 25 pDAB2002 is combined with part of the determined sequence of the pDAB2000/pDAB2001 isolates, a total contiguous sequence of 6005 bp was generated (disclosed herein as SEQ ID NO:25). When long open reading frames were translated into the corresponding amino acids, the sequence clearly shows the TcaBi N-terminal peptide (disclosed as SEQ ID NO:3), encoded by bases 68-124, immediately following a 30 methionine residue (start of translation). Upstream lies a potential ribosome binding site (bases 51-58), and downstream, at bases 215-277 is encoded the TcaBi-PT158 internal peptide (disclosed herein as SEQ ID NO:19). Further downstream, in the 35 same reading frame, at bases 1787-1822, exists a sequence encoding the TcaBi-PT108 internal peptide (disclosed herein as SEQ ID NO:20). Also in the same reading frame, at bases 1946-1972, is encoded the TcaBii N-terminal peptide (disclosed herein as SEQ ID NO:5), and the reading frame continues uninterrupted to a 40 translation termination codon at nucleotides 3632-3634.

The lack of an in-frame stop codon between the end of the sequence encoding TcaB; -PT108 and the start of the TcaBii encoding

region, and the lack of a discernible ribosome binding site immediately upstream of the TcaBii coding region, indicate that peptides TcaBii and TcaBi are encoded by a single open reading frame of 3567 bp beginning at base pair 65 in SEQ ID NO:25), and are most likely derived from a single primary gene product TcaB of 1189 amino acids (131,586 Daltons; disclosed herein as SEQ ID NO:26) by post-translational cleavage. If the amino acid immediately preceding the TcaBii N-terminal peptide represents the C-terminal amino acid of peptide TcaBi, then the predicted mass of TcaBii (627 amino acids) is 70,814 Daltons (disclosed herein as SEQ ID NO:28), somewhat higher than the size observed by SDS-PAGE (68 This peptide would be encoded by a contiguous stretch of 1881 base pairs (disclosed herein as SEQ ID NO:27). It is thought that the native C-terminus of TcaB; lies somewhat closer to the Cterminus of TcaBi-PT108. The molecular mass of PT108 [3.438 kDa; determined during N-terminal amino acid sequence analysis of this peptide] predicts a size of 30 amino acids. Using the size of this peptide to designate the C-terminus of the TcaBi coding region [Glu at position 604 of SEQ ID NO:28], the derived size of TcaBi is determined to be 604 amino acids or 68,463 Daltons, more in agreement with experimental observations.

10

15

20

25

30

35

40

Translation of the $TcaB_{11}$ peptide coding region of 1686 base pairs (disclosed herein as SEQ ID NO:29) yields a protein of 562 amino acids (disclosed herein as SEQ ID NO:30) with predicted mass of 60,789 Daltons, which corresponds well with the observed 61 kDa.

A potential ribosome binding site (bases 3682-3687) is found 48 bp downstream of the stop codon for the tcaB open reading frame. At bases 3694-3726 is found a sequence encoding the N-terminus of peptide TcaC, (disclosed as SEQ ID NO.2). The open reading frame initiated by this N-terminal peptide continues uninterrupted to base 6005 (2361 base pairs, disclosed herein as the first 2361 base pairs of SEQ ID NO.31). A gene (tcaC) encoding the entire TcaC peptide, (apparent size about 165 kDa; about 1500 amino acids), would comprise about 4500 bp.

Another isolate containing cloned *EcoR I* fragments of cosmid 26A5, E2O.6, was also identified by its homology to the previously mentioned GZ4 and TcaB_i probes. Agarose gel analysis of *EcoR I* digests of the DNA of the plasmid harbored by this strain (pDAB2004, Fig. 2), revealed insert fragments of estimated sizes 2.9, 5, and 3.3 kbp. DNA sequence analysis initiated from primers designed from the sequence of plasmid pDAB2002 revealed that the

3.3 kbp EcoR I fragment of pDAB2004 lies adjacent to the 5 kbp EcoR I fragment represented in pDAB2002. The 2361 base pair open reading frame discovered in pDAB2002 continues uninterrupted for another 2094 bases in pDAB2004 [disclosed herein as base pairs 2362 to 4458 of SEQ ID NO:31]. DNA sequence analysis using the parent cosmid 26A5 DNA as template confirmed the continuity of the open reading frame. Altogether, the open reading frame (tcaC SEQ ID NO:31) comprises 4455 base pairs, and encodes a protein (TcaC) of 1485 amino acids [disclosed herein as SEQ ID NO:32]. The calculated molecular size of 166,214 Daltons is consistent with the estimated size of the TcaC peptide (165 kDa), and the derived amino acid sequence matches exactly that disclosed for the TcaC N-terminal sequence [SEQ ID NO:2].

10

15

20

The lack of an amino acid sequence corresponding to SEQ ID NO:17; used to design the degenerate oligonucleotide primer pool in the discovered sequence indicates that the generation of the PCR® products found in isolates GZ4 and HB14, which were used as probes in the initial library screen, were fortuitously generated by reverse-strand priming by one of the primers in the degenerate pool. Further, the derived protein sequence does not include the internal fragment disclosed herein as SEQ ID NO:18. These sequences reveal that plasmid pDAB2004 contains the complete coding region for the TcaC peptide.

Further analysis of SEQ ID NO:25 reveals the end of an open ... 25 reading frame (bases 1-43), which encodes the final 13 amino acids of the TcaA;;; peptide, disclosed herein as SEQ ID NO:35. Only 24 bases separate the end of the TcaAiii coding region and the start of the TcaB, coding region. Included within the 24 bases are sequences that may serve as a ribosome binding site. Although 30 possible, it is not likely that a Photorhabdus gene promoter is encoded within this short region. We propose that genomic region tca, which includes three long open reading frames [tcaA (SEQ ID NO:33), tcaB (SEQ ID NO:25, bases 65-36334), and tcaC (SEQ ID NO:31), which is separated from the end of tcaB by only 59 bases] is 35 regulated as an operon, with transcription initiating upstream of the start of the tcaA gene (SEQ ID NO:33), and resulting in a polycistronic messenger RNA.

Example 9

Screening of the Photorhabdus Genomic Library for Genes Encoding the TcbA; i Peptide

This example describes a method used to identify DNA clones that contain the TcbA_{ii} peptide-encoding genes, the isolation of the gene, and the determination of its partial DNA base sequence.

Primers and PCR Reactions

The TcbA_{1i} polypeptide of the insect active preparation is about 206 kDa. The amino acid sequence of the N-terminus of this peptide is disclosed as SEQ ID NO:1. Four pools of degenerate oligonucleotide primers ("Forward primers": TH-4, TH-5, TH-6, and TH-7) were synthesized to encode a portion of this amino acid sequence, as described in Example 8, and are shown below.

Table 12

	Amino									
		Phe	Ile	Gln	Gly	Tyr	Ser	Asp	Leu	Phe
20	TH-4	5'-TT(T/C)	ATI	CA(A/G)	GGI	TA(T/C)	TCI	GA(T/C)	CTI	TT-
	3′									
	TH-5	5'-TT(T/C)	ATI	CA(A/G)	GGI	TA(T/C)	AG(T/C)	GA(T/C)	CTI	TT-
	3′			-						
	TH-6	5'-TT(T/C)	ATI	CA(A/G)	GGI	TA(T/C)	TCI	GA(T/C)	TT(A/G)	TT-
25	3′				•					
	TH-7	5'-TT(T/C)	ATI	CA(A/G)	GGI	TA(T/C)	AG(T/C)	GA(T/C)	TT(A/G)	TT-
	3 ′									

In addition, a primary ("a") and a secondary ("b") sequence of an internal peptide preparation (TcbA_{ii}-PT81) have been determined and are disclosed herein as SEQ ID NO:23 and SEQ ID NO:24, respectively. Four pools of degenerate oligonucleotides ("Reverse Primers": TH-8, TH-9, TH-10 and TH-11) were similarly designed and synthesized to encode the reverse complement of sequences that encode a portion of the peptide of SEQ ID NO:23, as shown below.

٠ ٦
1
υi
ΨĮ
_
\sim 1
بہد
~~1
107
* 1

Amino	i	ı			,		•	•		,	
Acid	Thr	Tyr	Leu	Thr	Ser	Phe	Glu	Gln	Val	Val Ala	Asn
TH-8	3'TGI	AT (A/G)	GAI	TGI	AGI	AA (A/G)	AA(A/G) $CT(T/C)$ $GT(T/C)$		CAI	CGI	TT (G/A) -5
TH-9	TH-9 3'TGI	AT(A/G)	TT(A/G) TGI	IGI	AGI	AA (A/G)	AA (A/G) CT (T/C)	GT(T/C)	CAI	CGI	TT(G/A)-5
TH-10	TH-10 3'TGI	AT(A/G)	GAI	TGI	TC(G/A)	AA(A/G) ' CT(T/C)	CT(T/C)	GT(T/C)	CAI	CGI	TT (G/A) -5
TH-11	TH-11 2'TGT	AT (B/G)	TT (A/G)	TOT	TC (G/A)	(D/G)	(7/4/4)	דמט (ט/ה) אט (ט/ה) אט (מ/ט) אס (מ/ט) בטה (ט/ה) אט בטה (ט/ה) אט בטה (ט/ה) אט בטה (ט	TAN	T	7-14/5/44

Sets of these primers were used in PCR° reactions to amplify TcbAii- encoding gene fragments from the genomic Photorhabdus luminescens W-14 DNA prepared in Example 6. All PCR reactions were run with the "Hot Start" technique using AmpliWax™ gems and other perkin Elmer reagents and protocols. Typically, a mixture (total volume 11 μl) of MgCl₂, dNTP's, 10X GeneAmp° PCR Buffer II, and the primers were added to tubes containing a single wax bead. GeneAmp° PCR Buffer II is composed of 100 mM Tris-HCl, pH 8.3; and 500 mM KCl.] The tubes were heated to 80°C for 2 minutes and allowed to cool. To the top of the wax seals, a solution containing 10X GeneAmp PCR Buffer II, DNA template, and AmpliTag DNA polymerase were added. Following melting of the wax seal and mixing of components by thermal cycling, final reaction conditions (volume of 50 µl) were: 10 mM Tris-HCl, pH 8.3; 50 mM KCl; 2.5 mM MqCl₂; 200 μM each in dATP, dCTP, dGTP, dTTP; 1.25 mM in a single Forward primer pool; 1.25 µM in a single Reverse primer pool, 1.25 units of AmpliTaq° DNA polymerase, and 170 ng of template DNA.

The reactions were placed in a thermocycler (as in Example 8) and run with the following program:

20

25

10

15

Table 14

Temperature	Time	Cycle Repetition
94°C	2 minutes	1X
94°C	15 seconds	
55-65°C	30 seconds	30X
72°C	1 minute	
72°C	7 minutes	1X
15°C	Constant	

A series of amplifications was run at three different annealing temperatures (55°, 60°, 65°C) using the degenerate primer

pools. Reactions with annealing at .65°C had no amplification products visible following agarose gel electrophoresis. Reactions having a 60°C annealing regime and containing primers TH-5+TH-10 produced an amplification product that had a mobility corresponding to 2.9 kbp. A lesser amount of the 2.9 kbp product was produced under these conditions with primers .TH-7+TH-10. When reactions were annealed at 55°C, these primer pairs produced more of the 2.9 kbp product, and this product was also produced by primer pairs TH-5+TH-8 and TH-5+TH-11. Additional very faint 2.9 kbp bands were seen in lanes containing amplification products from primer pairs TH-7 plus TH-8, TH-9, TH-10, or TH-11.

To obtain sufficient PCR amplification product for cloning and DNA sequence determination, 10 separate PCR reactions were set up using the primers TH-5+TH-10, and were run using the above conditions with a 55°C annealing temperature. All reactions were pooled and the 2.9 kbp product was purified by Qiaex extraction from an agarose gel as described above.

Additional sequences determined for TcbA_{ii} internal peptides are disclosed herein as SEQ ID NO:21 and SEQ ID NO:22. As before, degenerate oligonucleotides (Reverse primers TH-17 and TH-18) were made corresponding to the reverse complement of sequences that encode a portion of the amino acid sequence of these peptides.

Table 15 From SEO ID NO:21

25

30

10

15

20

Amino
Acid Met Glu Thr Gln Asn Ile Gln Glu Pro
TH-17 3'-TAC CTT/C TGI GTT/C TTA/G TAI GTT/C GTT/C GG-5'

Table 16 From SEO ID NO:22

35

40

45

Amino
Acid Asn Pro Ile Asn Ile Asn Thr Gly Ile Asp
TH-18 3'-TT(A/G) GGI TAI TT(A/G) TAI TT(A?G) TGI CCI TAI CT(A/G)-5'

Degenerate oligonucleotides TH-18 and TH-17 were used in an amplification experiment with *Photorhabdus luminescens* W-14 DNA as template and primers TH-4, TH-5, TH-6, or TH-7 as the 5'- (Forward) primers. These reactions amplified products of approximately 4 kbp and 4.5 kbp, respectively. These DNAs were transferred from agarose gels to nylon membranes and hybridized with a ³²P-labeled probe (as described above) prepared from the 2.9 kbp product

amplified by the TH-5+TH10 primer pair. Both the 4 kbp and the 4.5 kbp amplification products hybridized strongly to the 2.9 kbp probe. These results were used to construct a map ordering the $TcbA_{ii}$ internal peptide sequences as shown in Fig. 3. Approximate distances between the primers are shown in nucleotides in Fig. 3.

DNA Sequence of the 2.9 kbp TcbA; i-encoding Fragment

10

15

1

Approximately 200 ng of the purified 2.9 kbp fragment (prepared above) was precipitated with ethanol and dissolved in 17 ml of water. One-half of this was used as sequencing template with 25 pmol of the TH-5 pool as primers, the other half was used as template for TH-10 priming. Sequencing reactions were as given in Example 8. No reliable sequence was produced using the TH-10 primer pool; however, reactions with TH-5 primer pool produced the sequence disclosed below:

	1	AATCGTGTTG	ATCCCTATGC	CGNGCCGGGT	TCGGTGGAAT	CGATGTCCTC	ACCGGGGGTT
	61	TATTNGAGGG	ANTNGTCCCG	TGAGGCCAAA	AANTGGAATG	AAAGAAGTTC	AATTTNTTAC
	121	CTAGATAAAC	GTCGCCCGGN	TTTAGAAAGN	TTANTGNTCA	GCCAGAAAAT	TTTGGTTGAG
	181	GAAATTCCAC	CGNTGGTTCT	CTCTATTGAT	TNGGGCCTGG	CCGGGTTCGA	ANNAAAACNA
20	241	GGAAATNCAC	AAGTTGAGGT	GATGGNTTTG	TNGCNANCTT	NTCGTTTAGG	TGGGGAGAAA
	301	CCTTNTCANC	ACGNTTNTGA	AACTGTCCGG	GAAATCGTCC	ATGANCGTGA	NCCAGGNTTN
	361	CGCCATTGG					

Based on this sequence, a sequencing primer (TH-21, 5'
CCGGGCGACGTTTATCTAGG-3') was designed to reverse complement bases

120-139, and initiate polymerization towards the 5' end (i.e., TH-5

end) of the gel-purified 2.9 kbp TcbA_{ii}-encoding PCR fragment. The

determined sequence is shown below, and is compared to the

biochemically determined N-terminal peptide sequence of TcbA_{ii} SEQ

ID NO:1.

<u>TcbAii 2.9 kbp PCR Fragment Sequence Confirmation</u>
[Underlined amino acids = encoded by degenerate oligonucleotides]

From the homology of the derived amino acid sequence to the biochemically determined one, it is clear that the 2.9 kbp PCR fragment represents the *TcbA* coding region. This 2.9 kbp fragment was then used as a hybridization probe to screen the *Photorhabdus* W-14 genomic library prepared in Example 8 for cosmids containing the TcbA; -encoding gene.

Screening the Photorhabdus Cosmid Library

The 2.9 kb gel-purified PCR fragment was labeled with 32 P using the Boehringer Mannheim High Prime labeling kit as described in Example 8. Filters containing remnants of approximately 800 colonies from the cosmid library were screened as described previously (Example 8), and positive clones were streaked for isolated colonies and rescreened. Three clones (8A11, 25G8, and 26D1) gave positive results through several screening and characterization steps. No hybridization of the $TcbA_{ii}$ -specific 10 probe was ever observed with any of the four cosmids identified in Example 8, and which contain the tcaB and tcaC genes. DNA from cosmids 8All, 25G8, and 26Dl was digested with restriction enzymes Bgl II, EcoR I or Hind III (either alone or in combination with one another), and the fragments were separated on an agarose gel and transferred to a nylon membrane as described in Example 8. The 15 membrane was hybridized with 32P-labeled probe prepared from the 4.5 kbp fragment (generated by amplification of Photorhabdus genomic DNA with primers TH-5+TH-17). The patterns generated from cosmid DNAs 8A11 and 26D1 were identical to those generated with similarly-cut genomic DNA on the same membrane. It is concluded 20 that cosmids 8A11 and 26D1 are accurate representations of the genomic TcbAii encoding locus. However, cosmid 25G8 has a single Bql II fragment which is slightly larger than the genomic DNA. This may result from positioning of the insert within the vector.

25

30

35

40

DNA Sequence of the tcbA-encoding Gene

The membrane hybridization analysis of cosmid 26D1 revealed that the 4.5 kbp probe hybridized to a single large EcoR I fragment (greater than 9 kbp). This fragment was gel purified and ligated into the EcoR I site of pBC KS (+) as described in Example 8, to generate plasmid pBC-S1/R1. The partial DNA sequence of the insert DNA of this plasmid was determined by "primer walking" from the flanking vector sequence, using procedures described in Example 8. Further sequence was generated by extension from new oligonucleotides designed from the previously determined sequence. When compared to the determined DNA sequence for the tcbA gene identified by other methods (disclosed herein as SEQ ID NO:11 as described in Example 12 below), complete homology was found to nucleotides 1-272, 319-826, 2578-3036, and 3068-3540 (total bases = 1712). It was concluded that both approaches can be used to identify DNA fragments encoding the TcbAii peptide.

Analysis of the Derived Amino Acid Sequence of the tcbA Gene

The sequence of the DNA fragment identified as SEQ ID NO:11 encodes a protein whose derived amino acid sequence is disclosed herein as SEQ ID NO:12. Several features verify the identity of the gene as that encoding the TcbA_{ii} protein. The TcbA_{ii} N-terminal peptide (SEQ ID NO:1; Phe Ile Gln Gly Tyr Ser Asp Leu Phe Gly Asn Arg Ala) is encoded as amino acids 88-100. The TcbA_{ii} internal peptide TcbA_{ii}-PT81(a) (SEQ ID NO:23) is encoded as amino acids 1065-1077, and TcbA_{ii}-PT81(b) (SEQ ID NO:24) is encoded as amino acids 1571-1592. Further, the internal peptide TcbA_{ii}-PT56 (SEQ ID NO:22) is encoded as amino acids 1474-1488, and the internal peptide TcbA_{ii}-PT103 (SEQ ID NO:21) is encoded as amino acids 1614-1639. It is obvious that this gene is an authentic clone encoding the TcbA_{ii} peptide as isolated from insecticidal protein preparations of Photorhabdus luminescens strain W-14.

The protein isolated as peptide TcbA_{ii} is derived from cleavage of a longer peptide. Evidence for this is provided by the fact that the nucleotides encoding the TcbA_{ii} N-terminal peptide SEQ ID NO:1 are preceded by 261 bases (encoding 87 N-terminal-proximal amino acids) of a longer open reading frame (SEQ ID NO:11). This reading frame begins with nucleotides that encode the amino acid sequence Met Gln Asn Ser Leu, which corresponds to the N-terminal sequence of the large peptide TcbA, and is disclosed herein as SEQ ID NO:16. It is thought that TcbA is the precursor protein for TcbA_{ii}.

Relationship of tcbA, tcaB and tcaC Genes

10

15

20

25

30

35

40

The tcaB and tcaC genes are closely linked and may be transcribed as a single mRNA (Example 8). The tcbA gene is borne on cosmids that apparently do not overlap the ones harboring the tcaB and tcaC cluster, since the respective genomic library screens identified different cosmids. However, comparison of the amino sequences encoded by the tcaB and tcaC genes with the tcbA gene reveals a substantial degree of homology. The amino acid conservation (Protein Alignment Mode of MacVectorTM Sequence Analysis Software, scoring matrix pam250, hash value = 2; Oxford Molecular Group, Campbell, CA) is shown in Fig. 4. On the score line of each panel in Fig. 4, up carats (^) indicate homology or conservative amino acid changes, and down carats (v) indicate nonhomology.

This analysis shows that the amino acid sequence of the TcbA peptide from residues 1739 to 1894 is highly homologous to amino acids 441 to 603 of the TcaB_i peptide (162 of the total 627 amino acids of TcaB; SEQ ID NO:28). In addition, the sequence of TcbA amino acids 1932 to 2459 is highly homologous to amino acids 12 to 531 of peptide TcaB_{ii} (520 of the total 562 amino acids; SEQ ID NO:30). Considering that the TcbA peptide (SEQ ID NO:12) comprises 2505 amino acids, a total of 684 amino acids (27%) at the C-proximal end of it is homologous to the TcaB_i or TcaB_{ii} peptides, and the homologies are arranged colinear to the arrangement of the putative TcaB preprotein (SEQ ID NO:26). A sizeable gap in the TcbA homology coincides with the junction between the TcaB_i and TcaB_{ii} portions of the TcaB preprotein. Clearly the TcbA and TcaB gene products are evolutionarily related, and it is proposed that they share some common function(s) in Photorhabdus.

Example 10

Characterization of Zinc-metalloproteases in *Photorhabdus* Broth: Protease Inhibition, Classification, and Purification

20

10

15

Protease Inhibition and Classification Assays: Protease assays were performed using FITC-casein dissolved in water as substrate (0.08% final assay concentration). Proteolysis reactions were performed at 25°C for 1 h in the appropriate buffer with 25 μ l 25 of Photorhabdus broth (150 μ l total reaction volume). Samples were also assayed in the presence and absence of dithiothreitol. After incubation, an equal volume of 12% trichloroacetic acid was added to precipitate undigested protein. Following precipitation for 0.5 h and subsequent centrifugation, 100 μ l of the supernatant was 30 placed into a 96-well microtiter plate and the pH of the solution was adjusted by addition of an equal volume of 4N NaOH. Proteolysis was then quantitated using a Fluoroskan II fluorometric plate reader at excitation and emission wavelengths of 485 and 538 nm, respectively. Protease activity was tested over a range from 35 pH 5.0-10.0 in 0.5 units increments. The following buffers were used at 50 mM final concentration: sodium acetate (pH 5.0 - 6.5); Tris-HCL (pH 7.0 - 8.0); and bis-Tris propane (pH 8.5-10.0). To identify the class of protease(s) observed, crude broth was treated with a variety of protease inhibitors (0.5 $\mu q/\mu l$ final 40 concentration) and then examined for protease activity at pH 8.0

5

10

15

20

45

using the substrate described above. The protease inhibitors used included E-64 (L-trans-expoxysaccinylleucylamido[4-,-guanidino]-butane), 3,4 dichloroisocoumarin, Leupeptin, pepstatin, amastatin, ethylenediaminetetraacetic acid (EDTA) and 1,10 phenanthroline.

Protease assays performed over a pH range revealed that indeed protease(s) were present which exhibited maximal activity at about pH 8.0 (Table 17). Addition of DTT did not have any effect on protease activity. Crude broth was then treated with a variety of protease inhibitors (Table 18). Treatment of crude broth with the inhibitors described above revealed that 1,10 phenanthroline caused complete inhibition of all protease activity when added at a final concentration of 50 μ g, with the IC50 = 5 μ g in 100 μ l of a 2 mg/ml crude broth solution. These data indicate that the most abundant protease(s) found in the *Photorhabdus* broth are from the zinc-metalloprotease class of enzymes.

Table 17

Effect of pH on the Protease Activity Found in a Day 1 Production of Photorhabdus luminescens (Strain W-14)

-20			
-	рН	Flu. Units ^a	Percent Activity ^b
	5.0	3013 ± 78	17
25	5.5	7994 ± 448	45
	6.0	12965 ± 483	74
30	6.5	14390 ± 1291	82
	7.0	14386 ± 1287	82
- 2.5	7.5	14135 ± 198	80
35	8.0	17582 ± 831	100
	8.5	16183 ± 953	92
40	9.0	16795 ± 760	96
	9.5	16279 ± 1022	93
	10.0	15225 ± 210	87

a Flu. Units = Fluorescence Units (Maximum = about 28,000; background = about 2200).

b Percent activity relative to the maximum at pH 8.0

Table 18

Effect of Different Protease Inhibitors on the Protease Activity at pH 8 Found in a Day 1 Production of Photorhabdus luminescens

(Strain W-14)

20

45

•	Inhibitor	Corrected Flu.	Units ^a Percer	nt Inhibition ^b
	Control	13053		0
•	E-64	14259		0
10	1,10 Phenanthroline ^C	15	9	9
	3,4 Dichloroisocoumari		3	-
	Leupeptin	13074	1	0 .
	Pepstatin ^C	13441	(0
	Amastatin	12474		4
15	DMSO Control	12005		8
	Methanol Control	12125		7

a Corrected Flu. Units = Fluorescence Units - background(2200 flu. units).

b Percent Inhibition relative to protease activity at pH 8.0.

c Inhibitors were dissolved in methanol.

d Inhibitors were dissolved in DMSO.

The isolation of a zinc-metalloprotease was performed by applying dialyzed 10-80% ammonium sulfate pellet to a Q Sepharose column equilibrated at 50 mM Na₂PO₄, pH 7.0 as described in Example. 25 5 for Photorhabdus toxin. After extensive washing, a 0 to 0.5 M NaCl gradient was used to elute toxin protein. The majority of biological activity and protein was eluted from 0.15 - 0.45 M NaCl. However, it was observed that the majority of proteolytic activity 30 was present in the 0.25-0.35 M NaCl fraction with some activity in the 0.15-0.25 M NaCl fraction. SDS PAGE analysis of the 0.25-0.35 M NaCl fraction showed a major peptide band of approximately 60 kDa. The 0.15-0.25 M NaCl fraction contained a similar 60 kDa band but at lower relative protein concentration. Subsequent gel filtration of this fraction using a Superose 12 HR 16/50 column 35 resulted in a major peak migrating at 57.5 kDa that contained a predominant (> 90% of total stained protein) 58.5 kDa band by SDS PAGE analysis. Additional analysis of this fraction using various protease inhibitors as described above determined that the protease was a zinc-metalloprotease. Nearly all of the protease activity 40 present in Photorhabdus broth at day 1 of fermentation corresponded to the about 58 kDa zinc-metalloprotease.

In yet a second isolation of zinc-metalloprotease(s), W-14

Photorhabdus broth grown for three days was taken and protease
activity was visualized using sodium dodecyl sulfate-polyacrylamide

gel electrophoresis (SDS-PAGE) laced with gelatin as described in Schmidt, T.M., Bleakley, B. and Nealson, K.M. 1988. SDS running gels (5.5 x 8 cm) were made with 12.5 % polyacrylamide (40% stock solution of acrylamide/bis-acrylamide; Sigma Chemical Co., St. Louis, MO) into which 0.1% gelatin final concentration (Biorad EIA grade reagent; Richmond CA) was incorporated upon dissolving in water. SDS-stacking gels (1.0 x 8 cm) were made with 5% polyacrylamide, also laced with 0.1% gelatin. Typically, 2.5 µg of protein to be tested was diluted in 0.03 ml of SDS-PAGE loading buffer without dithiothreitol (DTT) and loaded onto the gel. Proteins were electrophoresed in SDS running buffer (Laemmli, U.K. 1970. Nature 227, 680) at 0° C and at 8 mA. After electrophoresis was complete, the gel was washed for 2 h in 2.5% (v/v) Triton X-100. Gels were then incubated for 1 h at 37 °C in 0.1 M glycine (pH 8.0). After incubation, gels were fixed and stained overnight with 0.1% amido black in methanol-acetic acid- water (30:10:60, vol./vol./vol.; Sigma Chemical Co.). Protease activity was visualized as light areas against a dark, amido black stained background due to proteolysis and subsequent diffusion of incorporated gelatin. At least three distinct bands produced by proteolytic activity at 58-, 41-, and 38 kDa were observed.

10

15

20

25

30

35

Activity assays of the different proteases in W-14 day three culture broth were performed using FITC-casein dissolved in water as substrate (0.02% final assay concentration). Proteolysis experiments were performed at 37°C for 0-0.5 h in 0.1M Tris-HCl (pH 8.0) with different protein fractions in a total volume of 0.15 ml. Reactions were terminated by addition of an equal volume of 12% trichloroacetic acid (TCA) dissolved in water. After incubation at room temperature for 0.25 h, samples were centrifuged at 10,000 x g for 0.25 h and 0.10 ml aliquots were removed and placed into 96well microtiter plates. The solution was then neutralized by the addition of an equal volume of 2 N sodium hydroxide, followed by quantitation using a Fluoroskan II fluorometric plate reader with excitation and emission wavelengths of 485 and 538 nm, respectively. Activity measurements were performed using FITC-Casein with different protease concentrations at 37°C for 0-10 min. A unit of activity was arbitrarily defined as the amount of enzyme needed to produce 1000 fluorescent units/min and specific activity

was defined as units/mg of protease.

Inhibition studies were performed using two zincmetalloprotease inhibitors; 1,10 phenanthroline and N-(arhamnopyranosyloxyhydroxyphosphinyl) -Leu-Trp(phosphoramidon) with stock solutions of the inhibitors dissolved in 100% ethanol and water, respectively. Stock concentrations were typically 10 mg/ml 5 and 5 mg/ml for 1,10 phenanthroline and phosphoramidon, respectively, with final concentrations of inhibitor at 0.5-1.0 mg/ml per reaction. Treatment of three day W-14 crude broth with 1,10 phenanthroline, an inhibitor of all zinc metalloproteases, resulted in complete elimination of all protease activity while 10 treatment with phosphoramidon, an inhibitor of thermolysin-like proteases (Weaver, L.H., Kester, W.R., and Matthews, B.W. 1977. J. Mol. Biol. 114, 119-132), resulted in about 56% reduction of protease activity. The residual proteolytic activity could not be 15 further reduced with additional phosphoramidon.

The proteases of three day W-14 Photorhabdus broth were purified as follows: 4.0 liters of broth were concentrated using an Amicon spiral ultra filtration cartridge Type S1Y100 attached to an Amicon M-12 filtration device. The flow-through material having native proteins less than 100 kDa in size (3.8 L) was concentrated 20 to 0.375 L using an Amicon spiral ultra filtration cartridge Type S1Y10 attached to an Amicon M-12 filtration device. The retentate material contained proteins ranging in size from 10-100 kDa. This material was loaded onto a Pharmacia HR16/10 column which had been packed with PerSeptive Biosystem (Framington, MA) Poros® 50 HQ strong anion exchange packing that had been equilibrated in 10 mM sodium phosphate buffer (pH 7.0). Proteins were loaded on the column at a flow rate of 5 ml/min, followed by washing unbound protein with buffer until $A_{280} = 0.00$. Afterwards, proteins were eluted using a NaCl gradient of 0-1.0 M NaCl in 40 min at a flow rate of 7.5 ml/min. Fractions were assayed for protease activity, supra., and active fractions were pooled. Proteolytically active fractions were diluted with 50% (v/v) 10 mM sodium phosphate buffer (pH 7.0) and loaded onto a Pharmacia HR 10/10 Mono Q column equilibrated in 10 mM sodium phosphate. After washing the column with buffer until $A_{280} = 0.00$, proteins were eluted using a NaCl gradient of 0-0.5 M NaCl for 1 h at a flow rate of 2.0 ml/min. Fractions were assayed for protease activity. Those fractions having the greatest amount of phosphoramidon-sensitive protease

25

30

35

5

10

15

20

25

30

activity, the phosphoramidon sensitive activity being due to the 41/38 kDa protease, infra., were pooled. These fractions were found to elute at a range of 0.15-0.25 M NaCl. Fractions containing a predominance of phosphoramidon-insensitive protease activity, the 58 kDa protease, were also pooled. These fractions were found to elute at a range of 0.25-0.35 M NaCl. phosphoramidon-sensitive protease fractions were then concentrated to a final volume of 0.75 ml using a Millipore Ultrafree®-15 centrifugal filter device Biomax-5K NMWL membrane. This material was applied at a flow rate of 0.5 ml/min to a Pharmacia HR 10/30 column that had been packed with Pharmacia Sephadex G-50 equilibrated in 10 mM sodium phosphate buffer (pH 7.0) / 0.1 M NaCl. Fractions having the maximal phosphoramidon-sensitive protease activity were then pooled and centrifuged over a Millipore Ultrafree $^{\odot}$ -15 centrifugal filter device Biomax-50K NMWL membrane. Proteolytic activity analysis, supra., indicated this material to have only phosphoramidon-sensitive protease activity. Pooling of the phosphoramidon-insensitive protease, the 58 kDa protein, was followed by concentrating in a Millipore Ultrafree®-15 centrifugal filter device Biomax-50K NMWL membrane and further separation on a Pharmacia Superdex-75 column. Fractions containing the protease were pooled.

Analysis of purified 58- and 41/38 kDa purified proteases revealed that, while both types of protease were completely inhibited with 1,10 phenanthroline, only the 41/38 kDa protease was inhibited with phosphoramidon. Further analysis of crude broth indicated that protease activity of day 1 W-14 broth has 23% of the total protease activity due to the 41/38 kDa protease, increasing to 44% in day three W-14 broth.

Standard SDS-PAGE analysis for examining protein purity and obtaining amino terminal sequence was performed using 4-20% gradient MiniPlus SepraGels purchased from Integrated Separation Systems (Natick, MA). Proteins to be amino-terminal sequenced were blotted onto PVDF membrane following purification, infra.,

35 (ProBlott™ Membranes; Applied Biosystems, Foster City, CA), visualized with 0.1% amido black, excised, and sent to Cambridge Prochem; Cambridge, MA, for sequencing.

Deduced amino terminal sequence of the 58- (SEQ ID NO:45) and 41/38 kDa (SEQ ID NO:44) proteases from three day old W-14 broth

were DV-GSEKANEKLK (SEQ ID NO: 45) and DSGDDDKVTNTDIHR (SEQ ID NO:44), respectively.

Sequencing of the 41/38 kDa protease revealed several amino termini, each one having an additional amino acid removed by proteolysis. Examination of the primary, secondary, tertiary and quartenary sequences for the 38 and 41 kDa polypeptides allowed for deduction of the sequence shown above and revealed that these two proteases are homologous.

Example 11. Part A

10

15

30

35

40

Screening of Photorhabdus Genomic Library Via Use of Antibodies for Genes Encoding TcbA Peptide

In parallel to the sequencing described above, suitable probing and sequencing was done based on the TcbA_{ii} peptide (SEQ ID NO:1). This sequencing was performed by preparing bacterial culture broths and purifying the toxin as described in Examples 1 and 2 above.

Genomic DNA was isolated from the Photorhabdus luminescens

20 strain W-14 grown in Grace's insect tissue culture medium. The
bacteria were grown in 5 ml of culture medium in a 250 ml
Erlenmeyer flask at 28°C and 250 rpm for approximately 24 hours.

Bacterial cells from 100 ml of culture medium were pelleted at 5000
x g for 10 minutes. The supernatant was discarded, and the cell
pellets then were used for the genomic DNA isolation.

The genomic DNA was isolated using a modification of the CTAB method described in Section 2.4.3 of Ausubel (supra.). The section entitled "Large Scale CsCl prep of bacterial genomic DNA" was followed through step 6. At this point, an additional chloroform/isoamyl alcohol (24:1) extraction was performed followed by a phenol/chloroform/isoamyl (25:24:1) extraction step and a final chloroform/isoamyl/alcohol (24:1) extraction. The DNA was precipitated by the addition of a 0.6 volume of isopropanol. The precipitated DNA was hooked and wound around the end of a bent glass rod, dipped briefly into 70% ethanol as a final wash, and dissolved in 3 ml of TE buffer.

The DNA concentration, estimated by optical density at 280/260 nm, was approximately 2 mg/ml.

Using this genomic DNA, a library was prepared. Approximately 50 μ g of genomic DNA was partly digested with Sau3 Al. Then NaCl density gradient centrifugation was used to size fractionate the partially digested DNA fragments. Fractions containing DNA

5

10

15

20

25

30

35

40

fragments with an average size of 12 kb, or larger, as determined by agarose gel electrophoresis, were ligated into the plasmid BluScript, Stratagene, La Jolla, California, and transformed into an $E.\ coli\ DH5\alpha$ or DHB10 strain.

Separately, purified aliquots of the protein were sent to the biotechnology hybridoma center at the University of Wisconsin, Madison for production of monoclonal antibodies to the proteins. The material that was sent was the HPLC purified fraction containing native bands 1 and 2 which had been denatured at 65°C, and 20 µg of which was injected into each of four mice. Stable monoclonal antibody-producing hybridoma cell lines were recovered after spleen cells from unimmunized mouse were fused with a stable myeloma cell line. Monoclonal antibodies were recovered from the hybridomas.

Separately, polyclonal antibodies were created by taking native agarose gel purified band 1 (see Example 1) protein which was then used to immunize a New Zealand white rabbit. The protein was prepared by excising the band from the native agarose gels, briefly heating the gel pieces to 65°C to melt the agarose, and immediately emulsifying with adjuvant. Freund's complete adjuvant was used for the primary immunizations and Freund's incomplete was used for 3 additional injections at monthly intervals. For each injection, approximately 0.2 ml of emulsified band 1, containing 50 to 100 micrograms of protein, was delivered by multiple subcontaneous injections into the back of the rabbit. Serum was obtained 10 days after the final injection and additional bleeds were performed at weekly intervals for 3 weeks. The serum complement was inactivated by heating to 56°C for 15 minutes and then stored at -20°C.

The monoclonal and polyclonal antibodies were then used to screen the genomic library for the expression of antigens which could be detected by the epitope. Positive clones were detected on nitrocellulose filter colony lifts. An immunoblot analysis of the positive clones was undertaken.

An analysis of the clones as defined by both immunoblot and Southern analysis resulted in the tentative identification of four genomic regions.

In the first region was a gene encoding the peptide designated here as TcbA_{ii}. Full DNA sequence of this gene (tcbA) was obtained. It is set forth as SEQ ID NO:11. Confirmation that the sequence encodes the internal sequence of SEQ ID NO:1 is demonstrated by the presence of SEQ ID NO:1 at amino acid number 88

from the deduced amino acid sequence created by the open reading frame of SEQ ID NO:11. This can be confirmed by referring to SEQ ID NO:12, which is the deduced amino acid sequence created by SEQ ID NO:11.

The second region of toxin peptides contains the segments referred to above as $TcaB_i$, $TcaB_{ii}$ and TcaC. Following the screening of the library with the polyclonal antisera, this-second region of toxin genes was identified by several clones which produced different size proteins, all of which cross-reacted with the polyclonal antibody on an immunoblot and were also found to share DNA homology on a Southern Blot. Sequence comparison revealed that they belonged to the gene complex designated TcaB and TcaC above.

Two other regions of antibody toxin clones were also isolated in the polyclonal screen. These regions produced proteins that cross-react with a polyclonal antibody and also shared DNA homology with the regions as determined by Southern blotting. Thus, it appears that the *Photorhabdus luminescens* extracellular protein genes represent a family of genes which are evolutionarily related.

To further pursue the concept that there might be evolutionarily related variations in the toxin peptides contained within this organism, two approaches have been undertaken to examine other strains of *Photorhabdus luminescens* for the presence of related proteins. This was done both by PCR amplification of genomic DNA and by immunoblot analysis using the polyclonal and monoclonal antibodies.

The results indicate that related proteins are produced by Photorhabdus. luminescens strains WX-2, WX-3, WX-4, WX-5, WX-6, WX-7, WX-8, WX-11, WX-12, WX-15 and W-14.

30

35

40

25

5

10

15

20

Example 11. Part B Sequence and Analysis of tcc Toxin Clones

Further DNA sequencing was performed on plasmids isolated from E. coli clones described in Example 11, Part A. The nucleotide sequence from the third region of E. coli clones was shown to be three closely linked open reading frames at this genomic locus. This locus was designated tcc with the three open reading frames designated tccA SEQ ID NO:56, tccB SEQ ID NO:58 and tccC SEQ ID NO:60. The close linkage between these open reading frames is revealed by examination of SEQ ID NO:56, in which 93 bp separate the stop codon of tccA from the start codon of tccb (bases 2992-2994 of SEQ ID NO:56), and by examination of SEQ ID NO:58, in which

131 bases separate the stop codon of tccB and the tccC (bases 4930-4932 of SEQ ID NO:58). The physical map is presented in Fig. 6B.

The deduced amino acid sequence from the tccA open reading frame indicates that the gene encodes a protein of 105,459 Da. This protein was designated TccA (SEQ ID NO:57). The first 12 amino acids of this protein match the N-terminal sequence obtained from a 108 kDa protein, SEQ ID NO:8, previously identified as part of the toxin complex.

The deduced amino acid sequence from the tccB open reading

frame indicates that this gene encodes a protein of 175,716 Da.

This protein was designated TccB (SEQ ID NO:59). The first 11

amino acids of this protein match the N-terminal sequence obtained from a protein with estimated molecular weight of 185 kDa, SEQ ID NO:7. Similarity analysis revealed that the TccB protein is related to the proteins identified as TcbA SEQ ID NO:12; 37% similarity and 28% identity, TcdA SEQ ID NO:47; 35% similarity and 28% identity, and TcaB SEQ ID NO:26; 32% similarity and 26% identity (using the GAP algorithm Wisconsin Package Version 9.0, Genetics Computer Group (GCG) Madison Wisconsin).

The deduced amino acid sequence of tccC indicated that this open reading frame encodes a protein of 111,694 Da and the protein product was designated TccC (SEQ ID NO:61).

Example 12

25 <u>Characterization of Photorhabdus Strains</u>

In order to establish that the collection described herein was comprised of Photorhabdus strains, the strains herein were assessed in terms of recognized microbiological traits that are characteristic of Photorhabdus and which differentiate it from 30 other Enterobacteriaceae and Xenorhabdus spp. (Farmer, J. J. 1984. Bergey's Manual of Systemic Bacteriology, Vol 1. pp. 510-511. (ed. Kreig N. R. and Holt, J. G.). Williams & Wilkins, Baltimore; Akhurst and Boemare, 1988, Boemare et al., 1993). These 35 characteristic traits are as follows: Gram's stain negative rods, organism size of 0.5-2 μm in width and 2-10 μm in length, red/yellow colony pigmentation, presence of crystalline inclusion bodies, presence of catalase, inability to reduce nitrate, presence of bioluminescence, ability to take up dye from growth media, 40 positive for protease production, growth-temperature range below 37°C, survival under anaerobic conditions and positively motile.

```
(Table 20). Reference Escherichia coli, Xenorhabdus and
                                                                                                Photorhabdus strains were included in all tests for comparison.
                                                                                              The overall results were the the total with all strains being part of
                                                                                           the family Enterobacteriaceae and the genus photorhabdus.
                                                                                 5
                                                                                                       A luminometer was used to establish the bioluminescence of
                                                                                      each strain and provide a quantitative and relative measurement of
                                                                                                                                                                                                                                                    PCT/US97/07657
                                                                                   Light production. For measurement of relative light emitting
                                                                                Light production.

Units, the broths from measurement or relative light emitting after incomplation in limital were measured in the incomplation in limital continual (6.12).
                                                                              at three time intervals after inoculation in liquid culture (6, 12,
                                                                           and 24 hr) and compared to background luminosity (uninoculated to background to background luminosity (uninoculated to background to b
                                                                 10
                                                                         media and water). Prior to measuring light emission from the
                                                                      Various broths, cell density was established by measuring light
                                                                   absorbance (560 nM) in a Gilford Systems (Oberlin, OH)
                                                                absorbance (560 nM) in a Giliora Systems (Oberlin, OH)

than mada (to normalize ontical density to 1 n init) hasore were
                                                              then made (to normalize optical density to 1.0 unit) before
                                                   15
                                                           measuring luminosity. Aliquots of the diluted broths were then
                                                        Placed into cuvettes (300 µl each) and read in a Bio-Orbit 1251
                                                      Placed into cuvettes (300 H1 each) and read in a Blo-Orbit less of the sample was 45 seconds. The integration period
                                                    for each sample was 45 seconds. The samples were continuously
                                                 for each sample was 45 seconds.

Mixed (spun in baffled cuvettes)

A nositive tear was determined as height feed oxygen
                                      20
                                              Availability. A positive test was determined as being \( \) 5-fold
                                           background luminescence (about 5-10 units). In addition, colony
                                         Dackground 1uminescence (about 5-10 units). In addition, of the overlays and
                                      Visually, after adaptation in a darkroom. The Gram's staining
                                    Characteristics of each strain were established with a commercial
                         25
                                 Gram's stain kit (BBL, Cockeysville, MD) used in conjunction with
                               Microscopic evaluation was then performed using a Zeiss microscope

immersion objective lens (with lox
                          (Carl Zeiss, Germany) 100X oil immersion objective lens (with 10X)
                       ocular and 2X body magnification). Microscopic examination of
                    ocutar and ax pody magnification).

individual strains for organism size, cellular description and
                  inclusion bodies (the latter after logarithmic growth) was
              performed using wet mount slides (lox ocular, 2x body and 40x
             objective magnification) with oil immersion and phase contrast
          Objective magnification) with oil immersion and phase contrast formation of call Control (ed. Gaualer, R. J. 1990.
       Entomopathogenic Nematodes in Biological Control (ed. Gaugler, R. 1996)

Orc Press Roca Raron into Gaugler, R. 25-90

Orc Press Roca Raron into Gaugler, R. 
     and Kaya, H.). Pp. 75-90. CRC Press, Boca Raton, USA., Baghdiguian
  S., Boyer-Giglio M.H., Thaler, J.O., Bonnot G., Boemare N. 1993.
S., Boyer-Gigilo M.A., Indier, O.O., Bonnot G., Boendare N. 177-185.). Colony Digmentation was observed after
                                                 SUBSTITUTE SHEET (RULE 26)
```

30

35

inoculation on Bacto nutrient agar, (Difco Laboratories, Detroit, MI) prepared as per label instructions. Incubation occurred at 28°C and descriptions were produced after 5-7 days. To test for the presence of the enzyme catalase, a colony of the test organism was removed on a small plug from a nutrient agar plate and placed into the bottom of a glass test tube. One ml of a household hydrogen peroxide solution was gently added down the side of the tube. A positive reaction was recorded when bubbles of gas (presumptive oxygen) appeared immediately or within 5 seconds. Controls of uninoculated nutrient agar and hydrogen peroxide 10 solution were also examined. To test for nitrate reduction, each culture was inoculated into 10 ml of Bacto Nitrate Broth (Difco Laboratories, Detroit, MI). After 24 hours incubation at 28°C, nitrite production was tested by the addition of two drops of 15 sulfanilic acid reagent and two drops of alpha-naphthylamine reagent (see Difco Manual, 10th edition, Difco Laboratories, Detroit, MI, 1984). The generation of a distinct pink or red color indicates the formation of nitrite from nitrate. The ability of each strain to uptake dye from growth media was tested with Bacto 20 MacConkey agar containing the dye neutral red; Bacto Tergitol-7 agar containing the dye bromothymol blue and Bacto EMB Agar containing the dye eosin-Y (agars from Difco Laboratories, Detroit, MI, all prepared according to label instructions). After inoculation on these media, dye uptake was recorded after incubation at 28°C for 5 days. Growth on these latter media is 25 characteristic for members of the family Enterobacteriaceae. Motility of each strain was tested using a solution of Bacto Motility Test Medium (Difco Laboratories, Detroit, MI) prepared as per label instructions. A butt-stab inoculation was performed with 30 each strain and motility was judged macroscopically by a diffuse zone of growth spreading from the line of inoculum. In many cases, motility was also observed microscopically from liquid culture under wet mount slides. Biochemical nutrient evaluation for each strain was performed using BBL Enterotube II (Benton, Dickinson, 35 Germany). Product instructions were followed with the exception that incubation was carried out at 28°C for 5 days. Results were consistent with previously cited reports for Photorhabdus. production of protease was tested by observing hydrolysis of gelatin using Bacto gelatin (Difco Laboratories, Detroit, MI)

plates made as per label instructions. Cultures were inoculated and the plates were incubated at 28°C for 5 days. To assess growth at different temperatures, agar plates [2% proteose peptone #3 with two percent Bacto-Agar (Difco, Detroit, MI) in deionized water] were streaked from a common source of inoculum. Plates were sealed with Nesco® film and incubated at 20, 28 and 37°C for up to three weeks. Plates showing no growth at 37°C showed no cell viability after transfer to a 28°C incubator for one week. Oxygen requirements for Photorhabdus strains were tested in the following manner. A butt-stab inoculation into fluid thioglycolate broth medium (Difco, Detroit, MI) was made. The tubes_were incubated at room temperature for one week and cultures were then examined for type and extent of growth. The indicator resazurin demonstrates the level of medium oxidation or the aerobiosis zone (Difco Manual, 10th edition, Difco Laboratories, Detroit, MI). Growth zone results obtained for the Photorhabdus strains tested were consistent with those of a facultative anaerobic microorganism.

10

15

Table 19
Taxonomic Traits of Photorhabdus Strains

Trans	3 1		λα	C 0 C	sed*
114	4	LO	73	565	oseu.

W-14	Strain	A	В	C	D	E	F	G	H	T	J	K	L	М	N	0	P	Q
WX-2 = ± ± 0 ±	W-14	<u>-</u> †	±	±	rd S	±	Ξ	±	±	±	Q	±	±	±	±	±	±	Ξ
WX-3 = ± ± XX ± <td>WX-I</td> <td>E</td> <td>±</td> <td>±</td> <td>rd S</td> <td>±</td> <td>Ξ</td> <td>±</td> <td>±</td> <td>±</td> <td>Q</td> <td>±</td> <td>±</td> <td>±</td> <td>±</td> <td>±</td> <td>±</td> <td>Ξ</td>	WX-I	E	±	±	rd S	±	Ξ	±	±	±	Q	±	±	±	±	±	±	Ξ
WX-4 = ± ± 0 ±	WX-2	Ξ	+	±	ra s	±	Ξ	Ŧ	± .	主	<u>0</u>	±	±	±	土	±	±	Ξ
WX-5 = ±	WX - 3	=	±	±	rd S	±	Ξ	±	±	土	YT	土	±	±	±	±	±	Ξ
WX-6 = ± ± £ ±	WX-4	TΞ	±	±	rd S	±	Ξ	±	±	±	YT	±	±	±	±	±	±	Ξ
WX-7 = ± ± fd S ± </td <td>WX-5</td> <td>Ξ</td> <td>±</td> <td>±</td> <td>rd S</td> <td>±</td> <td>Ξ</td> <td>±</td> <td>±</td> <td>±</td> <td>TO</td> <td>±</td> <td>±</td> <td>±</td> <td>±</td> <td><u>+</u></td> <td>±</td> <td>Ξ</td>	WX-5	Ξ	±	±	rd S	±	Ξ	±	±	±	TO	±	±	±	±	<u>+</u>	±	Ξ
WX-8 = ±	WX-6	Ξ	±	±	rd S	±	Ξ	±	±	±	ΤΤ	±	±	±	±	±	±	Ξ
WX-9 = + + TQS + = + + TYT + + + + - - - + + + + - - +<	WX-7	Ξ	±	±	rd S	±	Ξ	±	±	±	R	±	±	±	±	±	±	Ξ
WX-10 = ± ± fd S ±<	WX-8	Ξ	±	±	rd S	土	Ξ	±	±	±	Ō	±	±	土	±	±	±	Ξ
WX-11 = ± ± rd s ± = ± ± ± 0 ± ± ± ± ± ± = WX-12 = ± ± rd s ± = ± ± ± Q ± ± ± ± ± ± = WX-14 = ± ± rd s ± = ± ± ± LR ± ± ± ± ± ± = WX-15 = ± ± rd s ± = ± ± ± LR ± ± ± ± ± ± = H9 = ± ± rd s ± = ± ± ± LR ± ± ± ± ± ± ± = HB = ± ± rd s ± = ± ± ± YT ± ± ± ± ± ± = Hm = ± ± rd s ± = ± ± ± YT ± ± ± ± ± ± ± = HP88 = ± ± rd s ± = ± ± ± YT ± ± ± ± ± ± = NC-1 = ± ± rd s ± = ± ± ± Q ± ± ± ± ± ± = W1R = ± ± rd s ± = ± ± ± RQ ± ± ± ± ± ± = W1R = ± ± rd s ± = ± ± ± RQ ± ± ± ± ± ± = 43948 = ± ± rd s ± = ± ± ± Q ± ± ± ± ± ± = 43950 = ± ± rd s ± = ± ± ± Q ± ± ± ± ± ± = 43951 = ± ± rd s ± = ± ± ± Q ± ± ± ± ± ± = 43952 = ± ± rd s ± = ± ± ± Q ± ± ± ± ± ± = 43952 = ± ± rd s ± = ± ± ± Q ± ± ± ± ± ± ± = 43952 = ± ± rd s ± = ± ± ± Q ± ± ± ± ± ± ± = 43952 = ± ± rd s ± = ± ± ± Q ± ± ± ± ± ± ± = 43952 = ± ± rd s ± = ± ± ± Q ± ± ± ± ± ± ± = 43952 = ± ± rd s ± = ± ± ± Q ± ± ± ± ± ± ± = 43952 = ± ± rd s ± = ± ± ± ± Q ± ± ± ± ± ± ± = 43952 = ± ± rd s ± = ± ± ± ± Q ± ± ± ± ± ± ± ± = 43952 = ± ± rd s ± = ± ± ± ± Q ± ± ± ± ± ± ± ± ± = 43952 = ± ± rd s ± = ± ± ± ± Q ± ± ± ± ± ± ± ± ± ± ± ± ±	WX-9	Ξ	±	土	rd S	±	Ξ	±	±	±	YI	±	±	±	±	±	±	Ξ
WX-12 = ± <td>WX-10</td> <td>=</td> <td>±</td> <td>±</td> <td>rd S</td> <td>±</td> <td>Ξ</td> <td>±</td> <td>±</td> <td>±</td> <td>Ro</td> <td>±</td> <td>±</td> <td>±</td> <td>±</td> <td>±</td> <td>±</td> <td>Ξ</td>	WX-10	=	±	±	rd S	±	Ξ	±	±	±	Ro	±	±	±	±	±	±	Ξ
WX-14 = ± ± Td S ±<	WX-11	=	±	±	rd S	±	Ξ	±	±	±	Ro	±	±	±	±	±	±	Ξ
WX-15 = ± ± rq s ± = ± ± ± LR ± ± ± ± ± ± = H9 = ± ± rq s ± = ± ± ± ± LY ± ± ± ± ± ± ± ± = H6 = ± ± rq s ± = ± ± ± ± TY ± ± ± ± ± ± ± = H6 = ± ± rq s ± = ± ± ± TY ± ± ± ± ± ± ± ± = H788 = ± ± rq s ± = ± ± ± ± q = ± ± ± ± ± ± ± ± ± ± ± ±	WX-12	Ξ	±	±	rd S	±	Ξ	±	±	±	Ō	±	±	±	±	±	±	Ξ
H9	WX-14	E	±	±	rd S	±	Ξ	±	+	±	LR	H	±	±	±	±	±	Ξ
Hb = ± ± rd S ± = ± ± ± TY ± ± ± ± ± ± = Hm = ± ± ± rd S ± = ± ± ± ± TY ± ± ± ± ± ± ± ± = HP88 = ± ± ± rd S ± = ± ± ± ± ± ± ± ± ± ± ± ± = NC-1 = ± ± rd S ± = ± ± ± ± Q ± ± ± ± ± ± ± = W30 = ± ± rd S ± = ± ± ± ± RQ ± ± ± ± ± ± ± = W1R = ± ± ± rd S ± = ± ± ± RQ ± ± ± ± ± ± ± = 43948 = ± ± ± rd S ± = ± ± ± Q ± ± ± ± ± ± ± = 43950 = ± ± rd S ± = ± ± ± Q ± ± ± ± ± ± ± = 43951 = ± ± rd S ± = ± ± ± Q ± ± ± ± ± ± ± = 43952 = ± ± rd S ± = ± ± ± Q ± ± ± ± ± ± ± = 43952 = ± ± rd S ± = ± ± ± Q ± ± ± ± ± ± ± =	WX-15	Ξ	±	±	rd S	±	Ξ	±	±	±	LR	土	±	±	±	±	±	Ξ
Hm	Н9	Ξ	±	±	rd S	±	Ξ	±	±	±	LΥ	±	±	±	±	±	±	Ξ
HP88	dH	Ξ	±	±	rd S	±	=	±	±	±	YT	±	±	±	±	±	±	Ξ
NC-1	Hm	=	±	土	rd S	±	=	±	±	±	TY	±	±	±	±	±	±	Ξ
W30 = ± ± rd S ± = ± ± ± YT ± ± ± ± ± ± = WIR = ± ± rd S ± = ± ± ± ± RQ ± ± ± ± ± ± ± = B2 = ± ± rd S ± = ± ± ± ± RQ ± ± ± ± ± ± ± = 43948 = ± ± ± rd S ± = ± ± ± ± Q ± ± ± ± ± ± ± = 43950 = ± ± rd S ± = ± ± ± Q ± ± ± ± ± ± ± = 43951 = ± ± rd S ± = ± ± ± Q ± ± ± ± ± ± ± = 43952 = ± ± rd S ± = ± ± ± Q ± ± ± ± ± ± ± = 43952 = ± ± rd S ± = ± ± ± Q ± ± ± ± ± ± ± =	HP88	ĪΞ	±	±	rd S	±	Ξ	±	±	土	ĽΥ	±	±	±	±	±	±	Ξ
WIR = ± ± rd S ± = ± ± ± RO ± ± ± ± ± ± = B2 = ± ± rd S ± = ± ± ± R ± ± ± ± ± ± = 43948 = ± ± rd S ± = ± ± ± Q ± ± ± ± ± ± = 43949 = ± ± rd S ± = ± ± ± Q ± ± ± ± ± ± = 43950 = ± ± rd S ± = ± ± ± Q ± ± ± ± ± ± = 43951 = ± ± rd S ± = ± ± ± Q ± ± ± ± ± ± = 43952 = ± ± rd S ± = ± ± ± Q ± ± ± ± ± ± =	NC-I	Ξ	±	±	rd S	±	Ξ	±	+	±	Ō	±	±	±	±	±	±	Ξ
B2	W30	ĪΞ	±	±	rd S	±	Ξ	±	±	±	YT	±	±	±	±	±	±	Ξ
43948 = ± <td>WIR</td> <td>Ξ</td> <td><u>+</u></td> <td>±</td> <td>rd S</td> <td>±</td> <td>Ξ</td> <td><u>+</u></td> <td>±</td> <td>±</td> <td>RO</td> <td>±</td> <td>±</td> <td>±</td> <td>±</td> <td>±</td> <td>±</td> <td>=</td>	WIR	Ξ	<u>+</u>	±	rd S	±	Ξ	<u>+</u>	±	±	RO	±	±	±	±	±	±	=
43949 = ± ± f ±	I	[Ξ_	±	±		±	=	±	±	±	R	±	±	±	±	±	±	Ξ
43950 = ± ± fQS ± <t< td=""><td></td><td>Ξ</td><td>±</td><td>±</td><td>rd S</td><td>±</td><td>Ξ</td><td>±</td><td>±</td><td>±</td><td>Ō</td><td>±</td><td>±</td><td>±</td><td>±</td><td>±</td><td>±</td><td>Ξ</td></t<>		Ξ	±	±	rd S	±	Ξ	±	±	±	Ō	±	±	±	±	±	±	Ξ
43951 <u>- + + rd S + - + + Q + + + + + + + + - + + + - + + + +</u>	· · · · · · · · · · · · · · · · · · ·	Ξ	±	±		±	=	±	±	±		+	土	±	±	±	±	Ξ
43952 <u>-</u> <u>+</u> <u>+</u> <u>+</u> <u>rd S</u> <u>+</u> <u>-</u> <u>+</u> <u>+</u> <u>+</u> <u>+</u> <u>+</u> <u>0</u> <u>+</u> <u>+</u> <u>+</u> <u>+</u> <u>+</u> <u>+</u> <u>+</u> <u>+</u> <u>+</u> .	43950	Ξ	+	±	rd S	±	=	±	±	±	Q	±	±	±	+	<u>+</u>	±	=
		=	±	±		<u>±</u>	Ξ	±	±	±		±	±	<u>+</u>	±	±	±	
	43952	ΙΞ	<u>+</u>	±		±	Ξ	±	±	±	Ō	±	±	±	±	±	±	=

* - A = Gram's stain, B=Crystatine inclusion bodies,
C=Bioluminescence, D=Cell form, E=Motility, F=Nitrate reduction,
G=Presence of catalase, H=Gelatin hydrolysis, I=Dye uptake,
J=Pigmentation, K=Growth on EMB agar, L=Growth on MacConkey agar,
M=Growth on Tergitol-7 agar, N=Facultative anaerobe, O=Growth at
20°C, P=Growth at 28°C, Q=Growth at 37°C, † - +/- = positive or
negative for trait, rd=rod, S=sized within Genus descriptors,
RO=red-orange, LR = light red, R= red, O= orange, Y= yellow, T=
tan, LY= light yellow, YT= yellow tan, and LO= light orange.

15 Cellular fatty acid analysis is a recognized tool for bacterial characterization at the genus and species level (Tornabene, T. G. 1985. Lipid Analysis and the Relationship to Chemotaxonomy in Methods in Microbiology, Vol. 18, 209-234.; Goodfellow, M. and O'Donnell, A. G. 1993. Roots of Bacterial Systematics in Handbook of New Bacterial Systematics (ed. Goodfellow, M. & O'Donnell, A. G.) pp. 3-54. London: Academic Press Ltd.), these references are incorporated herein by reference, and were used to confirm that our collection was related at the genus level. Cultures were shipped to an external, contract laboratory

for fatty acid methyl ester analysis (FAME) using a Microbial ID (MIDI, Newark, DE, USA) Microbial Identification System (MIS). The MIS system consists of a Hewlett Packard HP5890A gas chromatograph with a 25mm x 0.2mm 5% methylphenyl silicone fused silica capillary column. Hydrogen is used as the carrier gas and a flame-ionization detector functions in conjunction with an automatic sampler, integrator and computer. The computer compares the sample fatty acid methyl esters to a microbial fatty acid library and against a calibration mix of known fatty acids. As selected by the contract laboratory, strains were grown for 24 hours at 28°C on trypticase soy agar prior to analysis. Extraction of samples was performed by the contract lab as per standard FAME methodology. There was no direct identification of the strains to any luminescent bacterial group other than Photorhabdus. When the cluster analysis was performed, which compares the fatty acid profiles of a group of isolates, the strain fatty acid profiles were related at the genus level.

10

15

The evolutionary diversity of the Photorhabdus strains in our collection was measured by analysis of PCR (Polymerase Chain Reaction) mediated genomic fingerprinting using genomic DNA from 20 each strain. This technique is based on families of repetitive DNA sequences present throughout the genome of diverse bacterial species (reviewed by Versalovic, J., Schneider, M., DE Bruijn, F. J. and Lupski, J. R. 1994. Methods Mol. Cell. Biol., 5, 25-40.). Three of these, repetitive extragenic palindromic sequence (REP), 25 enterobacterial repetitive intergenic consensus (ERIC) and the BOX element are thought to play an important role in the organization of the bacterial genome. Genomic organization is believed to be shaped by selection and the differential dispersion of these elements within the genome of closely related bacterial strains can 30 be used to discriminate these strains (e.g., Louws, F. J., Fulbright, D. W., Stephens, C. T. and DE Bruijn, F. J. 1994. Appl. Environ. Micro. 60, 2286-2295). Rep-PCR utilizes oligonucleotide primers complementary to these repetitive sequences to amplify the 35 variably sized DNA fragments lying between them. The resulting products are separated by electrophoresis to establish the DNA "fingerprint" for each strain.

To isolate genomic DNA from our strains, cell pellets were resuspended in TE buffer (10 mM Tris-HCl, 1 mM EDTA, pH 8.0) to a

final volume of 10 ml and 12 ml of 5 M NaCl was then added. mixture was centrifuged 20 min. at 15,000 x g. The resulting pellet was resuspended in 5.7 ml of TE and 300 μl of 10% SDS and 60 μ l 20 mg/ml proteinase K (Gibco BRL Products, Grand Island, NY) were added. This mixture was incubated at 37 °C for 1 hr, 5 approximately 10 mg of lysozyme was then added and the mixture was incubated for an additional 45 min. One milliliter of 5M NaCl and 800 μ l of CTAB/NaCl solution (10% w/v CTAB, 0.7 M NaCl) were then added and the mixture was incubated 10 min. at 65°C, gently agitated, then incubated and agitated for an additional 20 min. to 10 aid in clearing of the cellular material. An equal volume of chloroform/isoamyl alcohol solution (24:1, v/v) was added, mixed gently then centrifuged. Two extractions were then performed with an equal volume of phenol/chloroform/isoamyl alcohol (50:49:1). Genomic DNA was precipitated with 0.6 volume of isopropanol. 15 Precipitated DNA was removed with a glass rod, washed twice with 70% ethanol, dried and dissolved in 2 ml of STE (10 mM Tris-HCl pH8.0, 10 mM NaCl, 1 mM EDTA). The DNA was then quantitated by optical density at 260 nm. To perform rep-PCR analysis of Photorhabdus genomic DNA the following primers were used, REPIR-I; 20 5'-IIIICGICGICATCIGGC-3' and REP2-1; 5'-ICGICTTATCIGGCCTAC-3'. PCR was performed using the following $25\mu l$ reaction: 7.75 μl H₂O, 2.5 μ l 10X LA buffer (PanVera Corp., Madison, WI), 16 μ l dNTP mix (2.5 mM each), 1 μ l of each primer at 50 pM/ μ l, 1 μ l DMSO, 1.5 μ l 25 genomic DNA (concentrations ranged from 0.075-0.480 $\mu g/\mu l$) and 0.25 μ l TaKaRa EX Taq (PanVera Corp., Madison, WI). The PCR amplification was performed in a Perkin Elmer DNA Thermal Cycler (Norwalk, CT) using the following conditions: $95^{\circ}\text{C}/7$ min. then 35cycles of; 94°C/1 min.,44°C/1 min., 65°C/8 min., followed by 15 min. at 65°C. After cycling, the 25 μ l reaction was added to 5 μ l of 6X 30 gel loading buffer (0.25% bromophenol blue, 40% w/v sucrose in ${
m H}_{2}{
m O}$). A 15x20cm 1%-agarose gel was then run in TBE buffer (0.09 M Tris-borate, 0.002 M EDTA) using 8 μ l of each reaction. The gel was run for approximately 16 hours at 45v. Gels were then stained in 20 $\mu\text{g/ml}$ ethidium bromide for 1 hour and destained in TBE buffer 35 for approximately 3 hours. Polaroid photographs of the gels were then taken under UV illumination.

The presence or absence of bands at specific sizes for each strain was scored from the photographs and entered as a similarity

matrix in the numerical taxonomy software program, NTSYS-pc (Exeter Software, Setauket, NY). Controls of E. coli strain HB101 and Xanthomonas oryzae pv. oryzae assayed at the same time produced PCR "fingerprints" corresponding to published reports (Versalovic, J., Koeuth, T. and Lupski, J. R. 1991. Nucleic Acids Res. 19, 6823-6831; Vera Cruz, C. M., Halda-Alija, L., Louws, F., Skinner, D. Z., George, M. L., Nelson, R. J., DE Bruijn, F. J., Rice, C. and Leach, J. E. 1995. Int. Rice Res. Notes, 20, 23-24.; Vera Cruz, C. M., Ardales, E. Y., Skinner, D. Z., Talaq, J., Nelson, R. J., Louws, F. J., Leung, H., Mew, T. W. and Leach, J. E. 1996. Phytopathology 10 (in press, respectively). The data from Photorhabdus strains were then analyzed with a series of programs within NTSYS-pc; SIMQUAL (Similarity for Qualitative data) to generate a matrix of similarity coefficients (using the Jaccard coefficient) and SAHN 15 (Sequential, Agglomerative, Heirarchical and Nested) clustering [using the UPGMA (Unweighted Pair-Group Method with Arithmetic Averages) method] which groups related strains and can be expressed as a phenogram (Fig. 5). The COPH (cophenetic values) and MXCOMP (matrix comparison) programs were used to generate a cophenetic 20 value matrix and compare the correlation between this and the original matrix upon which the clustering was based. A resulting normalized Mantel statistic (r) was generated which is a measure of the goodness of fit for a cluster analysis (r=0.8-0.9 represents a very good fit). In our case r = 0.919. Therefore, our collection 25 is comprised of a diverse group of easily distinguishable strains representative of the Photorhabdus genus.

Example 13 Insecticidal Utility of Toxin(s) Produced by Various Photorhabdus Strains

-

30

35

Initial "seed" cultures of the various Photorhabdus strains were produced by inoculating 175 ml of 2% Proteose Peptone #3 (PP3) (Difco Laboratories, Detroit, MI) liquid media with a primary variant subclone in a 500 ml tribaffled flask with a Delong neck, covered with a Kaput. Inoculum for each seed culture was derived from oil-overlay agar slant cultures or plate cultures. After inoculation, these flasks were incubated for 16 hrs at 28°C on a rotary shaker at 150 rpm. These seed cultures were then used as

uniform inoculum sources for a given fermentation of each strain. Additionally, overlaying the post-log seed culture with sterile mineral oil, adding a sterile magnetic stir bar for future resuspension and storing the culture in the dark, at room 5 temperature provided long-term preservation of inoculum in a toxincompetent state. The production broths were inoculated by adding 1% of the actively growing seed culture to fresh 2% PP3 media (e.g., 1.75 ml per 175 ml fresh media). Production of broths occurred in either 500 ml tribaffled flasks (see above), or 2800 ml baffled, convex bottom flasks (500 ml volume) covered by a silicon 10 foam closure. Production flasks were incubated for 24-48 hrs under the above mentioned conditions. Following incubation, the broths were dispensed into sterile 1 L polyethylene bottles, spun at 2600 x g for 1 hr at 10°C and decanted from the cell and debris pellet. The liquid broth was then vacuum filtered through Whatman GF/D (2.7 15 μM retention) and GF/B (1.0 μM retention) glass filters to remove debris. Further broth clarification was achieved with a tangential flow microfiltration device (Pall Filtron, Northborough, MA) using a 0.5 : \$\mu M \text{ open-channel filter. When necessary, additional} 20 clarification could be obtained by chilling the broth (to 4°C) and centrifuging for several hours at 2600 \times g. Following these procedures, the broth was filter sterilized using a 0.2 μM nitrocellulose membrane filter. Sterile broths were then used directly for biological assay, biochemical analysis or concentrated 25 (up to 15-fold) using a 10,000 MW cut-off, M12 ultra-filtration device (Amicon, Beverly MA) or centrifugal concentrators (Millipore, Bedford, MA and Pall Filtron, Northborough, MA) with a 10,000 MW pore size. In the case of centrifugal concentrators, the broth was spun at 2000 x g for approximately 2 hr. The 10,000 MW permeate was added to the corresponding retentate to achieve the 30 desired concentration of components greater than 10,000 MW. Heat inactivation of processed broth samples was acheived by heating the samples at 100°C in a sand-filled heat block for 10 minutes.

The broth(s) and toxin complex(es) from different *Photorhabdus* strains are useful for reducing populations of insects and were used in a method of inhibiting an insect population which comprises applying to a locus of the insect an effective insect inactivating amount of the active described. A demonstration of the breadth of insecticidal activity observed from broths of a selected group of

35

Photorhabdus strains fermented as described above is shown in Table 20. It is possible that additional insecticidal activities could be detected with these strains through increased concentration of the broth or by employing different fermentation methods.

Consistent with the activity being associated with a protein, the insecticidal activity of all strains tested was heat labile (see above).

Culture broth(s) from diverse Photorhabdus strains show differential insecticidal activity (mortality and/or growth 10 inhibition, reduced adult emergence) against a number of insects. More specifically, the activity is seen against corn rootworm larvae and boll weevil larvae which are members of the insect order Coleoptera. Other members of the Coleoptera include wireworms, pollen beetles, flea beetles, seed beetles and Colorado potato 15 beetle. Activity is also observed against aster leafhopper and corn plant hopper, which are members of the order Homoptera. Other members of the Homoptera include planthoppers, pear psylla, apple sucker, scale insects, whiteflies, spittle bugs as well as numerous host specific aphid species. The broths and purified toxin complex(es) are also active against tobacco budworm, tobacco 20 hornworm and European corn borer which are members of the order Lepidoptera. Other typical members of this order are beet armyworm, cabbage looper, black cutworm, corn earworm, codling moth, clothes moth, Indian mealmoth, leaf rollers, cabbage worm, cotton bollworm, bagworm, Eastern tent caterpillar, sod webworm and fall armyworm. Activity is also seen against fruitfly and mosquito larvae which are members of the order Diptera. Other members of the order Diptera are, pea midge, carrot fly, cabbage root fly, turnip root fly, onion fly, crane fly and house fly and various 30 mosquito species. Activity with broth(s) and toxin complex(es) is also seen against two-spotted spider mite which is a member of the order Acarina which includes strawberry spider mites, broad mites, citrus red mite, European red mite, pear rust mite and tomato russet mite.

Activity against corn rootworm larvae was tested as follows.

Photorhabdus culture broth(s) (0-15 fold concentrated, filter sterilized), 2% Proteose Peptone #3, purified toxin complex(es), 10 mM sodium phosphate buffer , pH 7.0 were applied directly to the surface (about 1.5 cm²) of artificial diet (Rose, R. I. and McCabe,

J. M. (1973). J. Econ. Entomol. 66, (398-400) in 40 μl aliquots. Toxin complex was diluted in 10 mM sodium phosphate buffer, pH 7.0. The diet plates were allowed to air-dry in a sterile flow-hood and the wells were infested with single, neonate Diabrotica undecimpunctata howardi (Southern corn rootworm, SCR) hatched from surface sterilized eggs. The plates were sealed, placed in a humidified growth chamber and maintained at 27°C for the appropriate period (3-5 days). Mortality and larval weight determinations were then scored. Generally, 16 insects per treatment were used in all studies. Control mortality was generally less than 5%.

10

15

20

25

30

35

Activity against boll weevil (Anthomonas grandis) was tested as follows. Concentrated (1-10 fold) Photorhabdus broths, control medium (2% Proteose Peptone #3), purified toxin complex(es) [0.23 mg/ml] or 10 mM sodium phosphate buffer, pH 7.0 were applied in 60 μ l aliquots to the surface of 0.35 g of artificial diet (Stoneville Yellow lepidopteran diet) and allowed to dry. A single, 12-24 hr boll weevil larva was placed on the diet, and the wells were sealed and held at 25°C, 50% RH for 5 days. Mortality and larval weights were then assessed. Control mortality ranged between 0-13%.

Activity against mosquito larvae was tested as follows. The assay was conducted in a 96-well microtiter plate. Each well contained 200 μ l of aqueous solution (10-fold concentrated Photorhabdus culture broth(s), control medium (2% Proteose Peptone #3), 10 mM sodium phosphate buffer, toxin complex(es) @ 0.23 mg/ml or H20) and approximately 20, 1-day old larvae (Aedes aegypti). There were 6 wells per treatment. The results were read at 3-4 days after infestation. Control mortality was between 0-20%.

Activity against fruitflies was tested as follows. Purchased Drosophila melanogaster medium was prepared using 50% dry medium and a 50% liquid of either water, control medium (2% Proteose Peptone #3), 10-fold concentrated Photorhabdus culture broth(s), purified toxin complex(es) [0.23 mg/ml] or 10 mM sodium phosphate buffer, pH 7.0. This was accomplished by placing 4.0 ml of dry medium in each of 3 rearing vials per treatment and adding 4.0 ml of the appropriate liquid. Ten late instar Drosophila melanogaster maggots were then added to each 25 ml vial. The vials were held on a laboratory bench, at room temperature, under fluorescent ceiling lights. Pupal or adult counts were made after 15 days of exposure.

Adult emergence as compared to water and control medium (0-16% reduction).

Activity against aster leafhopper adults (Macrosteles severini) and corn planthopper nymphs (Peregrinus maidis) was tested with an ingestion assay designed to allow ingestion of the active without other external contact. The reservoir for the active/"food" solution is made by making 2 holes in the center of the bottom portion of a 35X10 mm Petri dish. A 2 inch Parafilm M^{U} square is placed across the top of the dish and secured with an "O" ring. A 1 oz. plastic cup is then infested with approximately 7 10 hoppers and the reservoir is placed on top of the cup, Parafilm down. The test solution is then added to the reservoir through the holes. In tests using 10-fold concentrated Photorhabdus culture broth(s), the broth and control medium (2% Proteose Peptone #3) were dialyzed against 10 mM sodium phosphate buffer, pH 7.0 and 15 sucrose (to 5%) was added to the resulting solution to reduce control mortality. Purified toxin complex(es) [0.23 mg/ml] or 10 mM sodium phosphate buffer, pH 7.0 was also tested. Mortality is reported at day 3. The assay was held in an incubator at 28°C, 70% 20 RH with a 16/8 photoperiod. The assays were graded for mortality at 72 hours. Control mortality was less than 6%.

Activity against lepidopteran larvae was tested as follows. Concentrated (10-fold) Photorhabdus culture broth(s), control medium (2% Proteose Peptone #3), purified toxin complex(es) [0.23 mg/ml] or 10 mM sodium phosphate buffer, pH 7.0 were applied directly to the surface (about 1.5 cm²) of standard artificial lepidopteran diet (Stoneville Yellow diet) in 40 µl aliquots. diet plates were allowed to air-dry in a sterile flow-hood and each well was infested with a single, neonate larva. European corn borer (Ostrinia nubilalis) and tobacco hornworm (Manduca sexta) eggs were obtained from commercial sources and hatched in-house, whereas tobacco budworm (Heliothis virescens) larvae were supplied internally. Following infestation with larvae, the diet plates were sealed, placed in a humidified growth chamber and maintained in the dark at 27°C for the appropriate period. Mortality and weight determinations were scored at day 5. Generally, 16 insects per treatment were used in all studies. Control mortality generally ranged from about 4 to about 12.5% for control medium and was less than 10% for phosphate buffer.

25

30

35

Activity against two-spotted spider mite (Tetranychus urticae) was determined as follows. Young squash plants were trimmed to a single cotyledon and sprayed to run-off with 10-fold concentrated broth(s), control medium (2% Proteose Peptone #3), purified toxin complex(es), 10 mM sodium phosphate buffer, pH 7.0. After drying, the plants were infested with a mixed population of spider mites and held at lab temperature and humidity for 72 hr. Live mites were then counted to determine levels of control.

Table 20 Observed Insecticidal Spectrum of Broths from Different Photorhabdus Strains

5	Photorhabdus Strain	Sensitive* Insect Species
	WX-1	3**, 4, 5, 6, 7, 8
	WX - 2	2, 4
	WX - 3	1, 4
	WX - 4	1, 4
10	WX - 5	4
	WX-6	4
	WX-7	3, 4, 5, 6, 7, 8
	WX - 8	1, 2, 4
	WX-9	1, 2, 4
15	WX-10	4
	WX-11	1, 2, 4
	WX-12	2, 4, 5, 6, 7, 8
	WX-14	1, 2, 4
	WX-15	1, 2, 4
20	W30	3, 4, 5, 8
	NC-1	1, 2, 3, 4, 5, 6, 7, 8, 9
	WIR	2, 3, 5, 6, 7, 8
	HP88	1, 3, 4, 5, 7, 8
	НЬ	3, 4, 5, 7, 8
25	Hm	1, 2, 3, 4, 5, 7, 8
	Н9	1, 2, 3, 4, 5, 6, 7, 8
	W-14	1, 2, 3, 4, 5, 6, 7, 8, 10
	ATCC 43948	4
	ATCC 43949	4
30	ATCC 43950	4
	ATCC 43951	4
	ATCC 43952	4

^{* = ≥ 25%} mortality and/or growth inhibition vs. control
** = 1; Tobacco budworm, 2; European corn borer, 3; Tobacco hornworm, 4; Southern corn rootworm, 5; 35 Boll weevil, 6; Mosquito, 7; Fruit Fly, 8; Aster Leafhopper, 9; Corn planthopper, 10; Two-spotted spider mite.

Example 14

Non W-14 Photorhabdus Strains:

Purification. Characterization and Activity Spectrum

5 Purification

The protocol, as follows, is similar to that developed for the purification of W-14 and was established based on purifying those fractions having the most activity against Southern corn root worm (SCR), as determined in bioassays (see Example 13). Typically, 4-10 20 L of broth that had been filtered, as described in Example 13, were received and concentrated using an Amicon spiral ultra filtration cartridge Type S1Y100 attached to an Amicon M-12 filtration device. The retentate contained native proteins consisting of molecular sizes greater than 100 kDa, whereas the flow through material contained native proteins less than 100 kDa 15 in size. The majority of the activity against SCR was contained in the 100 kDa retentate. The retentate was then continually diafiltered with 10 mM sodium phosphate (pH = 7.0) until the filtrate reached an $A_{280} < 0.100$. Unless otherwise stated, all 20 procedures from this point were performed in buffer as defined by 10 mM sodium phosphate (pH 7.0). The retentate was then concentrated to a final volume of approximately 0.20 L and filtered using a 0.45 mm Nalgene™ Filterware sterile filtration unit. filtered material was loaded at 7.5 ml/min onto a Pharmacia HR16/10 25 column which had been packed with PerSeptive Biosystem Poros® 50 HQ strong anion exchange matrix equilibrated in buffer using a PerSeptive Biosystem Sprint® HPLC system. After loading, the column was washed with buffer until an A_{280} < 0.100 was achieved. Proteins were then eluted from the column at 2.5 ml/min using buffer with 0.4 M NaCl for 20 min for a total volume of 50 ml. 30 column was then washed using buffer with 1.0 M NaCl at the same flow rate for an additional 20 min (final volume = 50 ml). Proteins eluted with 0.4 M and 1.0 M NaCl were placed in separate dialysis bags (Spectra/Por® Membrane MWCO: 2,000) and allowed to dialyze overnight at 4° C in 12 L buffer. The majority of the 35 activity against SCR was contained in the 0.4 M fraction. M fraction was further purified by application of 20 ml to a Pharmacia XK 26/100 column that had been prepacked with Sepharose

CL4B (Pharmacia) using a flow rate of 0.75 ml/min. Fractions were

pooled based on A280 peak profile and concentrated to a final volume of 0.75 ml using a Millipore Ultrafree®-15 centrifugal filter device Biomax-50K NMWL membrane. Protein concentrations were determined using a Biorad Protein Assay Kit with bovine gamma globulin as a standard.

Characterization

10

15

20

25

30

35

The native molecular weight of the SCR toxin complex was determined using a Pharmacia HR 16/50 that had been prepacked with Sepharose CL4B in buffer. The column was then calibrated using proteins of known molecular size thereby allowing for calculation of the toxin approximate native molecular size. As shown in Table 21, the molecular size of the toxin complex ranged from 777 kDa with strain Hb to 1,900 kDa with strain WX-14. The yield of toxin complex also varied, from strain WX-12 producing 0.8 mg/L to strain Hb, which produced 7.0 mg/L.

Proteins found in the toxin complex were examined for individual polypeptide size using SDS-PAGE analysis. Typically, 20 mg protein of the toxin complex from each strain was loaded onto a 2-15% polyacrylamide gel (Integrated Separation Systems) and electrophoresed at 20 mA in Biorad SDS-PAGE buffer. After completion of electrophoresis, the gels were stained overnight in Biorad Coomassie blue R-250 (0.2% in methanol: acetic acid: water; 40:10:40 v/v/v). Subsequently, gels were destained in methanol:acetic acid: water; 40:10:40 (v/v/v). The gels were then rinsed with water for 15 min and scanned using a Molecular Dynamics Personal Laser Densitometer. Lanes were quantitated and molecular sizes were calculated as compared to Biorad high molecular weight standards, which ranged from 200-45 kDa.

Sizes of the individual polypeptides comprising the SCR toxin complex from each strain are listed in Table 22. The sizes of the individual polypeptides ranged from 230 kDa with strain WX-1 to a size of 16 kDa, as seen with strain WX-7. Every strain, with the exception of strain Hb, had polypeptides comprising the toxin complex that were in the 160-230 kDa range, the 100-160 kDa range, and the 50-80 kDa range. These data indicate that the toxin complex may vary in peptide composition and components from strain to strain, however, in all cases the toxin attributes appears to consist of a large, oligomeric protein complex.

Table 21
Characterization of a Toxin Complex from
Non W-14 Photorhabdus Strains

10

15

20

Strain	Approx. Native Molecular Wt. ^a	Yield Active Fraction (mg/L) ^b
Н9	972,000	1.8
Hb	777,000	7.0
Hm	1,400,000	1.1
HP88	813,000	2.5
NCl	1,092,000	3.3
WIR	979,000	1.0
WX-1	973,000	0.8
WX-2	951,000	2.2
WX-7	1,000,000	1.5
WX-12	898,000	0.4
WX-14	1,900,000	1.9
W-14	860,000	7.5

a Native molecular weight determined using a Pharmacia HR 16/50 column packed with Sepharose CL4B

Activity Spectrum

As shown in Table 23, the toxin complexes purified from strains Hm and H9 were tested for activity against a variety of insects, with the toxin complex from strain W-14 for comparison. The assays were performed as described in Example 13. The toxin complex from all three strains exhibited activity against tobacco bud worm, European corn borer, Southern corn root worm, and aster leafhopper. Furthermore, the toxin complex from strains Hm and W-14 also exhibited activity against two-spotted spider mite. In addition, the toxin complex from W-14 exhibited activity against mosquito larvae. These data indicate that the toxin complex, while having similarities in activities between certain orders of insects, can also exhibit differential activities against other orders of insects.

b Amount of toxin complex recovered from culture broth.

Table 22

The Approximate Sizes (in kDa) of Peptides in a Purified Toxin Complex From Non W-14 Photorhabdus

W-14	190	180	170	160	150	130	120	110	93	90	77	69	65	63	9	51	46	40	39	29
WX-14	210	180	160	120	110	100	95	80	69	4.9	41	33								
WX-12	180	160	140	139	130	110	92	87	80	73	59	26	51	3.7	33	32	26			
WX-7	200	180	110	. 48	75	43	33	28	26	23	22	21	19	18	16				٠.	
WX-2	200	170	150	120	110	82	64	37	30											
WX-1	230	190	170	160	110	98	92	58	53	41	35	31	28	24	22					
WIR	170	160	120	110	89	42	74	62	51	40	39	37	33	30	28	27	25	23		
NC-1	180	170	140	110	44	16														
НР 88	170	160	140	130	129	110	100	98	81	77	73	09	58	45	39	35				
Hm	170	140	100	81	72	68	49	46	30	22	20	19								
НЪ	150	140	139	130	120	100	98	88	81	75	69	09	57	54	49	44	39	37	32.	
63	180	170	091	40	20	98	87	84	19	72	68	09	57	52	46	40	37			

Table 23

Observed Insecticidal Spectrum of a Purified Toxin Complex from
Photorhabdus Strains

5	
	Photorhabdus Strain Sensitive* Insect Species
10	Hm Toxin Complex 1**, 2, 3, 5, 6, 7, 8 H9 Toxin Complex 1, 2, 3, 6, 7, 8 W-14 Toxin Complex 1, 2, 3, 4, 5, 6, 7, 8
	* = > 25% mortality or growth inhibition * = > 25% mortality or growth inhibition
15	<pre>** = 1, Tobacco bud worm; 2, European corn borer; 3, Southern corn root worm; 4, Mosquito; 5, Two-spotted spider mite; 6, Aster Leafhopper; 7, Fruit Fly; 8, Boll Weevil</pre>

Example 15

Sub-Fractionation of Photorhabdus Protein Toxin Complex

20

25

30

35

40

45

The Photorhabdus protein toxin complex was isolated as described in Example 14. Next, about 10 mg toxin was applied to a MonoQ 5/5 column equilibrated with 20 mM Tris-HCl, pH 7.0 at a flow rate of lml/min. The column was washed with 20 mM Tris-HCl, pH 7.0 until the optical density at 280 nm returned to baseline absorbance. The proteins bound to the column were eluted with a linear gradient of 0 to 1.0 M NaCl in 20 mM Tris-HCl, pH 7.0 at 1 ml/min for 30 min. One ml fractions were collected and subjected to Southern corn rootworm (SCR) bioassay (see Example 13). Peaks of activity were determined by a series of dilutions of each fraction in SCR bioassays. Two activity peaks against SCR were observed and were named A (eluted at about 0.2-0.3 M NaCl) and B (eluted at 0.3-0.4 M NaCl). Activity peaks A and B were pooled separately and both peaks were further purified using a 3-step procedure described below.

Solid (NH₄)₂SO₄ was added to the above protein fraction to a final concentration of 1.7 M. Proteins were then applied to a phenyl-Superose 5/5 column equilibrated with 1.7 M (NH₄)₂SO₄ in 50 mM potassium phosphate buffer, pH 7 at 1 ml/min. Proteins bound to the column were eluted with a linear gradient of 1.7 M (NH₄)₂SO₄, 0% ethylene glycol, 50 mM potassium phosphate, pH 7.0 to 25% ethylene glycol, 25 mM potassium phosphate, pH 7.0 (no (NH₄)₂SO₄) at 0.5 ml/min. Fractions were dialyzed overnight against 10 mM sodium phosphate buffer, pH 7.0. Activities in each fraction against SCR were determined by bioassay.

The fractions with the highest activity were pooled and applied to a MonoQ 5/5 column which was equilibrated with 20 mM Tris-HCl, pH 7.0 at 1 ml/min. The proteins bound to the column were eluted at 1 ml/min by a linear gradient of 0 to 1M NaCl in 20 mM Tris-HCl, pH 7.0.

For the final step of purification, the most active fractions above (determined by SCR bioassay) were pooled and subjected to a second phenyl-Superose 5/5/ column. Solid (NH₄)₂SO₄ was added to a final concentration of 1.7 M. The solution was then loaded onto the column equilibrated with 1.7 M (NH₄)₂SO₄ in 50 mM potassium phosphate buffer, pH 7 at lml/min. Proteins bound to the column were eluted with a linear gradient of 1.7 M (NH₄)₂SO₄, 50 mM potassium phosphate, pH 7.0 to 10 mM potassium phosphate, pH 7.0 at 0.5 ml/min. Fractions were dialyzed overnight against 10 mM sodium phosphate buffer, pH 7.0. Activities in each fraction against SCR were determined by bioassay.

The final purified protein by the above 3-step procedure from peak A was named toxin A and the final purified protein from peak B was named toxin B.

20

35

40

10

15

Characterization and Amino Acid Sequencing of Toxin A and Toxin B

In SDS-PAGE, both toxin A and toxin B contained two major (> 90% of total Commassie stained protein) peptides: 192 kDa (named A1 and B1, respectively) and 58 kDa (named A2 and B2,

25 respectively). Both toxin A and toxin B revealed only one major band in native PAGE, indicating Al and A2 were subunits of one protein complex, and B1 and B2 were subunits of one protein complex. Further, the native molecular weight of both toxin A and toxin B were determined to be 860 kDa by gel filtration

30 chromatography. The relative molar concentrations of A1 to A2 was

chromatography. The relative molar concentrations of A1 to A2 was judged to be a 1 to 1 equivalence as determined by densiometric analysis of SDS-PAGE gels. Similarly, B1 and B2 peptides were present at the same molar concentration.

Toxin A and toxin B were electrophoresed in 10% SDS-PAGE and transblotted to PVDF membranes. Blots were sent for amino acid analysis and N-terminal amino acid sequencing at Harvard MicroChem and Cambridge ProChem, respectively. The N-terminal amino sequence of B1 was determined to be identical to SEQ ID NO:1, the TcbAii region of the tcbA gene (SEQ ID NO:12, position 87 to 99). A unique N-terminal sequence was obtained for peptide B2 (SEQ ID NO:40). The N-terminal amino acid sequence of peptide B2 was identical to the TcbAiii region of the derived amino acid sequence

for the tcbA gene (SEQ ID NO:12, position 1935 to 1945). Therefore, the B toxin contained predominantly two peptides, $TcbA_{ii}$ and $TcbA_{ii}$, that were observed to be derived from the same gene product, TcbA.

The N-terminal sequence of A2 (SEQ ID NO:41) was unique in comparison to the $TcbA_{iii}$ peptide and other peptides. The A2 peptide was denoted $TcdA_{iii}$ (see Example 17). SEQ ID NO:6 was determined to be a mixture of amino acid sequences SEQ ID NO:40 and 41.

Peptides Al and A2 were further subjected to internal amino acid sequencing. For internal amino acid sequencing, 10 µg of toxin A was electrophoresized in 10% SDS-PAGE and transblotted to PVDF membrane. After the blot was stained with amido black, peptides A1 and A2, denoted $TcdA_{ii}$ and $TcdA_{iii}$, respectively, were excised from the blot and sent to Harvard MicroChem and Cambridge Peptides were subjected to trypsin digestion followed by ProChem. HPLC chromatography to separate individual peptides. N-terminal amino acid analysis was performed on selected tryptic peptide fragments. Two internal amino acid sequences of peptide A1 (TcdAii-PK71, SEQ ID NO:38 and TcdAii-PK44, SEQ ID NO:39) were found to have significant homologies with deduced amino acid sequences of the TcbAii region of the tcbA gene (SEQ ID NO:12). Similarly, the N-terminal sequence (SEQ ID NO:41) and two internal sequences of peptides A2 (TcdA;ii-PK57, SEQ ID NO:42 and TcdA;ii-PK20, SEQ ID NO.43) also showed significant homology with deduced amino acid sequences of TcbAiii region of the tcbA gene (SEQ ID NO:12).

In summary of above results, the toxin complex has at least two active protein toxin complexes against SCR; toxin A and toxin B. Toxin A and toxin B are similar in their native and subunits molecular weight, however, their peptide compositions are different. Toxin A contained peptides TcdAii and TcdAiii as the major peptides and the toxin B contains TcbAii and TcbAiii as the major peptides.

35

40

5

10

15

20

25

30

Purification and Characterization of Toxin C, Tca Peptides

The Photorhabdus protein toxin complex was isolated as described above. Next, about 50 mg toxin was applied to a MonoQ 10/10 column equilibrated with 20 mM Tris-HCl, pH 7.0 at a flow rate of 2 ml/min. The column was washed with 20 mM Tris-HCl, pH7.0

until the optical density at 280 nm returned to baseline level. The proteins bound to the column were eluted with a linear gradient of 0 to 1M NaCl in 20 mM Tris-HCl, pH 7.0 at 2 ml/min for 60 min. 2 ml fractions were collected and subjected to Western analysis using pAb TcaBii-syn antibody (see Example 21) as the primary antibody. Fractions reacted with pAb TcaBii-syn antibody were combined and solid (NH₄)₂SO₄ was added to a final concentration of 1.7 M. Proteins were then applied to a phenyl-Superose 10/10 column equilibrated with 1.7 M (NH4)2SO4 in 50 mM potassium phosphate buffer, pH 7 at lml/min. Proteins bound to the column were eluted with a linear gradient of 1.7 M (NH4)2SO4, 50 mM potassium phosphate, pH 7.0 to 10 mM potassium phosphate, pH 7.0 at 1 ml/min for 120 min. 2ml Fractions were collected, dialyzed overnight against 10 mM sodium phosphate buffer, pH 7.0, and analyzed by Western blots using pAb TcaBii-syn antibody as the primary antibody.

10

15

20

25

30

35

Fractions cross-reacted with the antibody were pooled and applied to a MonoQ 5/5 column which was equilibrated with 20 mM Tris-HCl, pH 7.0 at 1ml/min. The proteins bound to the column were eluted at 1ml/min by a linear gradient of 0 to 1M NaCl in 20 mM Tris-HCl, pH 7.0 for 30 min.

Fractions above reacted with pAb TcaB_{ii}-syn antibody were pooled and subjected to a phenyl-Superose 5/5/ column. Solid (NH₄)₂SO₄ added to a final concentration of 1.7 M. The solution was then applied onto the column equilibrated with 1.7 M (NH₄)₂SO₄ in 50 mM potassium phosphate buffer, pH 7 at lml/min. Proteins bound to the column were then eluted with a linear gradient of 1.7 M (NH₄)₂SO₄, 50 mM potassium phosphate, pH 7.0 to 10 mM potassium phosphate, pH 7.0 at 0.5 ml/min for 60 min. Fractions were dialyzed overnight against 10 mM sodium phosphate buffer, pH 7.0.

For the final purification step, fractions reacted with pAb TcaB_{ii}-syn antibody above determined by Western analysis were combined and applied to a Mono Q 5/5 column equilibrated with 20 mM Tris-HCl, pH 7.0 at lml/min. The proteins bound to the column were eluted at lml/min by a linear gradient of 0 to 1M NaCl in 20 mM Tris-HCl, pH 7.0 for 30 min.

The final purified protein fraction contained 6 major peptides examined by SDS-PAGE: 165 kDa, 90 kDa, 64 kDa, 62 kDa, 58 kDa, and 22 kDa. The LD50 of the insecticidal activities of this purified

fraction were determined to be 100 ng and 500 ng against SCR and ECB, respectively.

The above peptides were blotted to PVDF membranes and blots were sent for amino acids analysis and 5 amino acid long N-terminal sequencing at Harvard MicroChem and Cambridge ProChem, respectively. The N-terminal amino acid sequence of the 165 kDa peptide was determined to be identical to peptide TcaC (SEQ ID 2, position 1 to 5). The N-terminal amino acid sequence of the 90 kDa peptide was determined to be TcaAii region of the derived amino 10 acid sequence for the tcaA gene (SEQ ID NO 33, position 254 to The N-terminal amino acid sequence of 64 kDa peptide was determined to be identical to peptide TcaBi (SEQ ID 3, position 1 The N-terminal amino acid sequence of the 62 kDa peptide was determined to be TcaAii region of the derived amino acid 15 sequence for the tcaA gene (SEQ ID NO 33, position 489 to 493). The N-terminal amino acid sequence of 58 kDa peptide was determined to be identical to peptide TcaBii (SEQ ID 5, position 1 to 5). N-terminal amino acid sequence of the 22 kDa peptide (SEO ID NO 62) was determined to be TcaAi region, denoted TcaAiv, of the derived 20 amino acid sequence for the tcaA gene (SEQ ID NO 34, position 98 to 102). It is noted that all tcaA, tcaB, and tcaC genes reside in the same tca operon (Fig. 6A).

Five µg of purified Tca fraction, purified toxin A, and purified toxin B were analyzed by Western blot using the following antibodies individually as primary antibody: pAb TcaBii-syn antibody, mAb CF52 antibody, pAb TcdAii-syn antibody, and pAb Tcdiii-syn antibody (Example 21). With pAb TcaBii-syn antibody only the purified Tca peptides fraction reacted, but not toxin A or toxin B. With mAb CF52 antibody, only toxin B reacted but not Tca peptides fraction or toxin A. With either pAb TcdAii-syn antibody or pAb Tcdiii-syn antibody only toxin A reacted, but not Tca peptides fraction or toxin B. This indicated that the insecticidal activity observed in the purified Tca peptides fraction is independent of toxin A and toxin B. The purified Tca peptide fraction is a third unique protein toxin, denoted toxin C.

25

30

35

Example 16 Cleavage and Activation of TcbA Peptide

In the toxin B complex, peptide TcbAii and TcbAiii originate from the single gene product TcbA (Example 15). The processing of TcbA peptide to TcbAii and TcbAiii is presumably by the action of Photorhabdus protease(s), and most likely, the metalloproteases described in Example 10. In some cases, it was noted that when Photorhabdus W-14 broth was processed, TcbA peptide was present in toxin B complex as a major component, in addition to peptides TcbA;; and TcbA;ii. Identical procedures, described for the purification of toxin B complex (Example 15), were used to enrich peptide TcbA from toxin complex fraction of W-14 broth. The final purified material was analyzed in a 4-20% gradient SDS-PAGE and major peptides were quantified by densitometry. It was determined that TcbA, TcbAii and TcbAiii comprised 58%, 36%, and 6%, respectively, of total protein. The identities of these peptides were confirmed by their respective molecular sizes in SDS-PAGE and Western blot analysis using monospecific antibodies. The native molecular weight of this fraction was determined to be 860 kDa.

10

15

20

25

30

35

The cleavage of TcbA was evaluated by treating the above purified material with purified 38 kDa and 58 kDa W-14 Photorhabdus metalloproteases (Example 10), and trypsin as a control enzyme (Sigma, MO). The standard reaction consisted 17.5 μ g the above purified fraction, 1.5 unit protease, and 0.1 M Tris buffer, pH 8.0 in a total volume of 100 μ l. For the control reaction, protease was omitted. The reaction mixtures were incubated at 37°C for 90 min. At the end of the reaction, 20 μ l was taken and boiled with SDS-PAGE sample buffer immediately for electrophoresis analysis in a 4-20% gradient SDS-PAGE. It was determined from SDS-PAGE that in both 38 kDa and 58 kDa protease treatments, the amount of peptides TcbAii and TcbAiii increased about 3-fold while the amount of TcbA peptide decreased proportionally (Table 24). The relative reduction and augmentation of selected peptides was confirmed by Western blot analyses. Furthermore, gel filtration of the cleaved material revealed that the native molecular size of the complex remained the same. Upon trypsin treatment, peptides TcbA and TcbAii were nonspecifically digested into small peptides. This indicated that 38 kDa and 58 kDa Photorhabdus proteases can

specifically process peptide TcbA into peptides $TcbA_{ii}$ and $TcbA_{iii}$. Protease treated and untreated control of the remaining 80 μl reaction mixture were serial diluted with 10 mM sodium phosphate buffer, pH 7.0 and analyzed by SCR bioassay. By comparing activity in several dilution, it was determined that the 38 kDa protease treatment increased SCR insecticidal activity approximately 3 to 4 fold. The growth inhibition of remaining insects in the protease treatment was also more severe than control (Table 24).

Table 24

Conversion and Activation of Peptide TcbA into Peptides TcbA_{ii} and

TcbA_{iii} by Protease Treatment

10

20

25

30

35

40

		Control	38 kDa protease treatment
	TcbA (% of total protein)	58	18
15	TcbA _{ii} (% of total protein)	36	64
	TcbA _{iii} (% of total protein) 6	18
	LD50 (µg protein)	2.1	0.52
	SCR Weight (mg/insect)*	0.2	0.1

*: an indication of growth inhibition by measuring the average weight of live insect after 5 days on diet in the assay.

Activation and Procession of Toxin B by SCR Gut Proteases

In yet a second demonstration of proteolytic activation, it was examined whether W-14 toxins are processed by insects. Toxin B purified from *Photorhabdus* W-14 broth (see Example 15) was comprised of predominantly intact TcbA peptides as judged by SDS-PAGE and Western blot analysis using monoclonal antibody. The LD50 of this fraction against SCR was determined to be around 700 ng.

SCR larva were grown on coleopteran diet until they reached the fourth instar stage (about 100-125 mg total weight each insect). SCR gut content was collected as follows: the guts were removed using dissecting scissors and forceps. After removing the excess fatty material that coats the gut lining, about 40 guts were homogenized in a microcentrifuge tube containing 100 μ l sterile water. The tube was then centrifuged at 14,000 rpm for 10 minutes and the pellet discarded. The supernatant was stored at a -70°C freezer until use.

The processing of toxin B by insect gut was evaluated by treating the above purified toxin B with the SCR gut content collected. The reaction consisted 40 μg toxin B (1 mg/ml), 50 μl

SCR gut content, and 0.1M Tris buffer, pH 8.0 in a total volume of 100 μ l. For the control reaction, SCR gut content was omitted. The reaction mixtures were incubated at 37°C for overnight. At the end of reaction, 10 μ l was withdraw and boiled with equal volume 2x SDS-PAGE sample buffer for SDS-PAGE analysis. The remaining 90 μ l reaction mixture was serial diluted with 10 mM sodium phosphate buffer, pH 7.0 and analyzed by SCR bioassay. SDS-PAGE analysis indicated in SCR gut content treatment, peptide TcbA was digested completely into smaller peptides. Analysis of the undenatured toxin fraction showed that the native size, about 860 kDa, remained the same even though larger peptides were fragmented. In SCR bioassays, it was found that the LD50 of SCR gut treated toxin B to be about 70 ng; representing a 10-fold increase. In a separate experiment, protease K treatment completely eliminated toxin activity.

Example 17

Screening of the Library for a Gene Encoding the TcdAii Peptide

The cloning and characterization of a gene encoding the TcdA_{ii} peptide, described as SEQ ID NO:17 (internal peptide TcdA_{ii}-PT111 N-terminal sequence) and SEQ ID NO:18 (internal peptide TcdA_{ii}-PT79 N-terminal sequence) was completed. Two pools of degenerate oligonucleotides, designed to encode the amino acid sequences of SEQ ID NO:17 (Table 25) and SEQ ID NO:18 (Table 26), and the reverse complements of those sequences, were synthesized as described in Example 8. The DNA sequence of the oligonucleotides is given below:

10

15

Ę

Table 25

			Degener	ate Oligo	<u> Degenerate Oligonucleotide for SEO ID NO:17</u>	for SEO	ID NO:17		
P2-PT111	7		2	3	4	5	9	7	8
Amino Acid Ala	A1	B	Phe		Ile	Asp	Asp	Val	Ser
Codons	2.	5 GCN		AA (T/C)	AT(T/C/A)	GA(T/C)	GA(T/C)	GTN 3'	
P2.3.6.CB	2	GC(A/C/G/T)	c/g/r) rr(r/c)	AAT	ATT	GAT	GAT	GT 3'	
P2.3.5	2.	S' GC(A/C/G/T)	c/G/T) TT(T/C)	AA(T/C)	AT(T/C/A) GA(T/C)	1 1	GA(T/C)	GT 3'	
P2.3.5R	5 .	5' AC	(G/A) TC	(G/A) TC	(G/A)TC (T/G/A)AT		(G/A) AA	(G/A) TT (G/A) AA (A/C/G/T) GC 3'	
P2.3.5RI	5	ACI	TCI	TCI	ATI	LLI	AAI	GC 31	

Table 26

Degenerate Oligonucleotide for SEO ID NO:18

AAA 3'

ATT

AAT

ATC

ATC

(A/C) AC

(A/G) CT

5' CAG

P2.3R.CB

Amino Phe Acid Codons* 5' TTY A P2.79.2 5' TTY A	Ile	Val					0	,	77 TT OT	1	3 1	T 3
5' TTY 5' TTY	ATH		Tyr	Thr	Ser	Leu	Gly	Val	Asn	Pro	Asn	Asn
5' TTY	_	GTN	TAY	ACN	9	9	GGN	GTN	AAX	CCN	AAY	AAY 3'
	ATY	GTK	TAT	ACY	TCI	YTR	GGX	GTK	AAT	CCR	AAT	AAT 3
P2.79.3 5' TTT A	ATT	GTK	TAT	ACY	AGY	YTR	GGY	GTK	AAT	CCR	AAT	AAT 3
P2.79.R.1 5' ATT A	ATT	YGG	ATT	MAC	RCC	YAR	RCT	RGT	ATA	MAC	AAT	AAA 3'
P2.79R.CB 5' ATT A	ATT	YGG	ATT	MAC	ACC	CAG	RCT	GGT	ATA	MAC	AAT	AAA 3

or Ü , A 二 or or Σ Gor T, K = Gor T, R = Aor G, and According to IUPAC-IUB codes for nucleotides,

Polymerase Chain Reactions (PCR) were performed essentially as Volymerase chain reactions (FCK) were performed essential were performed essential primers p2.3.6.CB or in all described in Example 8, raimers p2 70 p 1 or p2 70p Cp. described in Example 8, using as rorward primers P2.3.6.CB in all p2.3.5, and as reverse primers pains pharamakan 6.3.6. P2.3.5; and as reverse primers using photorhabdus W-14 genomic using photorhabdus will provide the forward/reverse combinations. rorward/reverse compinations, using rhotornabdus w-14 genomic in another set of reactions, primers p2.79.2 or as template. as template. used as forward primers, and P2.3.5R, p2.3.5R, p2.79.3 were used as forward primers. WO 98/08932 p2.79.3 were used as reverse primers in all forward/reverse p2.3R.CB were used as reverse primers in all forward/reverse p2.3R.CB were used as reverse primers in all forward/reverse p2.3R.CB were used as reverse primers in all forward/reverse p2.79.3 which is the reverse primers and p2.3 which is the reverse primers. p2.3R.CB were used as reverse primers in all rorward/reverse the combinations. combinations.

combinations combined with p2.79.R.1 or p2.79R.CB as the reverse forward primers combined with p2.79.R.1 or p2.79R.CB as the reverse forward primers combined with p2.79.R.1 or p2.79R.CB as the reverse combined with p2.79R.1 or p2.79R.1 or p2.79R.CB as the reverse combined with p2.79R.1 or p2.7 rorward primers compined with FX. 19.K.1 or FX. 19K. LB as the reverse of estimated product seen, who order of primers was a non-artifactual amplified product seen, who order of primers was a non-artifactual amplified product seen, who order of primers was a non-artifactual amplified product seen, who order of primers was a non-artifactual amplified product seen, who order of primers was a non-artifactual amplified product seen, who order of primers was a non-artifactual amplified product seen, who order of primers was a non-artifactual amplified product seen, who order of primers was a non-artifactual amplified product seen, who order of primers was a non-artifactual amplified product seen, who order of primers was a non-artifactual amplified product seen, who order of primers was a non-artifactual amplified product seen, who order of primers was a non-artifactual amplified product seen, who order of primers was a non-artifactual amplified product seen, who order of primers was a non-artifactual amplified product seen, who order of primers was a non-artifactual amplified product seen, which is not provided that the primers was a non-artifactual amplified product seen, which is not provided that the primers of the primers was a non-artifactual amplified product seen, which is not provided that the primers was a non-artifactual amplified product seen, which is not provided that the primers was a non-artifactual amplified product seen, and the primers was a non-artifactual amplified product seen, and the primers was a non-artifactual amplified product seen, and the primers was a non-artifactual amplified product seen, and the primers was a non-artifactual amplified product seen, and the primers was a non-artifactual amplified product seen, and the primers was a non-artifactual amplified product seen, and the primers was a non-artifactual amplified product seen, and the primers was a non-artifactual amplified product seen, and the primers was a non-artifactual amplified product seen, and the primers was a non-arti primers was a non-artifactual amplified product seen, or estimated of 2500 base pairs. The order of size (mobility on agarose gels) of 2500 base pairs. Size (mobility on agarose gels) or 2500 pase Pairs, indicates indicates the primers used fracment Toda: - Drill lies amino-proving the primers have the primer to the primers used fracment toda: - Drill lies amino-proving the primers used fracment toda: - Drill lies amino-proving the primers the primers and proving the primers are proving to the primers are proving to the primers are proving the primers are proving to the primers are primers are proving to the primers are primers are proving to the primers are proving to the primers are primers are proving to the primers are proving the primers used to obtain this amplification product indicates the the pertial fragment rockii product indicates that the pertial fragment rockii product indicates that the fragment rockii product indicates amino product indicates the that the fragment rockii product indicates amino product indicates the that the primers rockii product indicates amino product indicates the primers used to obtain this amplification product indicates the the primers used to obtain this amplification product indicates the contract the primers used to obtain this amplification product indicates the primers used to obtain this amplification product indicates the contract the primers used to obtain this amplification product indicates the primers used to obtain this amplification product indicates the primers used to obtain this amplification product indicates the primers used to obtain the pri The 2500 bp PCR products were ligated to the plasmid vector PCR"II (Invitrogen, and the num gomeone force of the supplier and the number of the supplier and the su PCK-11 (Invitrogen, San Diego, CA) according to the ends of the insert to the pNA sequences across the ends of the insert to the pNA sequences across the ends of the insert to the pNA sequences across the ends of the insert to the pNA sequences across the ends of the insert to the pNA sequences across the ends of the insert to the pNA sequences across the ends of the insert to the insert to the insert to the pNA sequences across the ends of the insert to the i instructions, and the DNA sequences across the ends of the using the (HS24 and HS27) were determined using the fragments of two isolates or the sequences and the sequences are the sequences across the sequences. peptide fragment TodAii-PT79. tragments of two isolates (HBZ4 and HBZ1) were determined using the sequencing methods described was supplied to recommended primers and the sequencing was the earner of both isolates when the earner of both isolates was the earner of both isolates when the earner of both isolates was the earner of both isolates was the earner of both isolates when the earner of both isolates was the earner of both isolates when the earner of both isolates was the earner of both isolates when the earner of both isol 10 supplier: a recommended primers and the sequencing methods described the same.

The sequence of both isolates was the same.

Previously. previously. The sequence of porn isolates was the same. New used on the determined sequence, or acra of acra primers were synthesized based on the determined to acrain a primers were synthesized based on the determined sequence. Primers were synchesized pased on the determined sequence, and used total of 2557 to obtain a total of 2557 to prime additional sequencing reactions to obtain a the narried to prime additional sequencing reactions to prime additional sequencing reactions to be a sequence, and used to prime additional sequencing reactions to obtain a total of the narried to prime additional sequence, and used total of the narried to prime additional sequence, and used total of 2557 to obtain a total obtain a tota to prime additional sequencing reactions to optain a total or and sequence of the partial sequencing reactions to optain of the partial to prime additional (SEQ ID NO: 36). Translation of the partial bases of the insert of the bases of the insert SEQ ID No: 36 Yields the 845 amino acid sequence peptide encoded by SEQ ID No. 37 profeir homology analysis of this disclosed as can to No. 37 15 disclosed as SEQ ID NO:37. Protein homology analysis of this substantial amino portion of the Todaii peptide fragment reveals substantial portion of the Todaii peptide fragment reveals. portion of the similarity, and 53% identity using the Wisconsin will to acid homology (68% similarity, and 53% identity was madian was committed to the wisconsine acid homology (68% similarity, and 53% identity was madian was a committed to the wisconsine was a committed to the acid homology ((68% similarity, and 53% identity using the Wisconsin to Madison, WI) to Package Version 8.0, Genetics Computer Town 1200 Or (Angle Package 200 to 1200 of professor Town 1200 of professor Tow . 20 rackage version b.v. senecics computer group NO:12] or (60% residues 542 to 1390 of protein TchA (SEQ ID NO:22) residues 342 to 1390 or protein topy the Wisconsin package version using the Wisconsin package version madical with the madical was and 54% identity using madical was a residue to residue disclosed as SEQ ID NO:37. similarity, and 54% identity using the Wisconsin vackage version to residues 567 to Madison, WI to residues in narrant similarity, and 54% identity using the Wisconsin vackage version to residues 567 to Madison, WI to residues in narrant special section of the second representation of the second represent ecics computer group (gus), wadison, wi to residues not part that the gene represented in part by SEQ animal actid semience as the manh marketin and which lively has by SEQ ID NO:36 produces a protein or similar, our nor likely has and which likely has arino acid sequence as the TcbA protein, and which remains a sequence as the TcbA protein. amino acid sequence as the instance. a dene encoding the peotides Today:

similar, vet another instance. ar, but not identical biological activity as the TCDA protein.

In yet another instance, who were a gene encoding the peptides are another instance, who were another instance, who were another anoth In yet another Instance, a gene encoding the peptides as SEQ ID

PK44 and the Todail nenrine Toda: -pk44 camence)

NO. 20 (incornal nenrine Toda: -pk44 camence) PK44 and the roahil peptide TodAil PK44 sequence) and SEQ ID

NO:39 (internal peptide TodAil PK44) NO:39 (Internal peptide reminal peptide sequence) was isolated.
NO:41 (TcdAili 58 kDa N-terminal peptide sequence) SUBSTITUTE SHEET (RULE 26) 35

5

Two pools of degenerate oligonucleotides, designed to encode the amino acid sequences described as SEQ ID NO:39 (Table 28) and SEQ ID NO:41 (Table 27), and the reverse complements of those sequences, were synthesized as described in Example 8, and their DNA sequences.

Table 27

Degenerate Oligonucleotide for SEO ID NO:41

Œln	GA 3'	CA 3'	RCG 31	ICC 31
Pro	æ	IΩ	RCT	AIT
Iæu	YIR	YIR	100	IGF
Phe	TII	TIT	RIT	CAG
Leu	YIR	YIR	RGT	IGL
Asp	_IMĐ	GAY	YPR	ECIC
Thr	ACY	Ħ	RGI	CAC
Leu	YIR	YIR	RIC	AAA
#	ACY	덫	XA.	SAS.
Asm	AAT	AMT	AAA	Œ
Ala	<u>p</u>	B	YAR	5' TG
Ser	MGY		SS.	
Arrg	ZES.		2, TG	
Leu	5' YIR			
Amino Acid	A2.1	A2.2	A2.3.R	A2.4.R
	Leu Arg Ser Ala Asn Thr Leu Thr Asp Leu Phe Leu Pro	Lear Arg Ser Ala Asm Thr Lear Thr Asp Lear Phe Lear Pro Gla 5° YIR GN AGY YIR ACY YIR ACY YIR ACY YIR TIT YIR GCR GCR	Lear Arg Ser Ala Asn Thr Lear Thr Asp Lear Phe Lear Pro Gla 5' YIR GGY AGY YIR ACY YIR ACY YIR YIR YIR YIR CA GA	Lear Arg Ser Ala Asn Thr Lear Thr Asp Lear Pho Lear Pro GI 5' YIR GSY AGY YIR ACY YIR ACY YIR TTY YIR CX CX

Table 28 Degenerate Oligonucleotide for SEO ID NO:39

Amino Acid	(8)	(6)	(10)	(11)	(12)	(13)	(11) (12) (13) (14) (15)	(15)	(16)
Codon #	1	2	3	4	2	9	7	8	6
Amino Acid	Gly	Pro	Val	Glu	Ile	Asn	Thr	Ala	Ile
A1.44.1	S' GGY	CCR	GTK	GAA	ATT	AAT	ACC	GCI	AT 3'
A1.44.1R	5' ATI	ອວອ	GTA	TTA	ATT	TCM	ACY	GGR	CC 31
, A1.44.2	2, GGI	CCI	GTI	GAR	ATY	AAY	ACI	GCI	AT 3'
A1.44.2R	5' ATI	CCI	GTR	TTR	ATY	IOL	ACI	ISS	CC 34

5

10

15

20

25

30

35

Polymerase Chain Reactions (PCR) were performed essentially as described in Example 8, using as forward primers A1.44.1 or A1.44.2, and reverse primers A2.3R or A2.4R, in all forward/reverse combinations, using Photorhabdus W-14 genomic DNA as template. In another set of reactions, primers A2.1 or A2.2 were used as forward primers, and A1.44.1R, and A1.44.2R were used as reverse primers in all forward/reverse combinations. Only in the reactions containing A1.44.1 or A1.44.2 as the forward primers combined with A2.3R as the reverse primer was a non-artifactual amplified product seen, of estimated size (mobility on agarose gels) of 1400 base pairs. The order of the primers used to obtain this amplification product indicates that the peptide fragment TcdAii-PK44 lies amino-proximal to the 58 kDa peptide fragment of TcdAii-PK44 lies amino-proximal

The 1400 bp PCR products were ligated to the plasmid vector pCR[™]II according to the supplier's instructions. The DNA sequences across the ends of the insert fragments of four isolates were determined using primers similar in sequence to the supplier's recommended primers and using sequencing methods described previously. The nucleic acid sequence of all isolates differed as expected in the regions corresponding to the degenerate primer sequences, but the amino acid sequences deduced from these data were the same as the actual amino acid sequences for the peptides determined previously, (SEQ ID NOS:41 and 39).

Screening of the W-14 genomic cosmid library as described in Example 8 with a radiolabeled probe comprised of the DNA prepared above (SEQ ID NO:36) identified five hybridizing cosmid isolates, namely 17D9, 20B10, 21D2, 27B10, and 26D1. These cosmids were distinct from those previously identified with probes corresponding to the genes described as SEQ ID NO:11 or SEQ ID NO:25.

Restriction enzyme analysis and DNA blot hybridizations identified three *EcoR I* fragments, of approximate sizes 3.7, 3.7, and 1.1 kbp, that span the region comprising the DNA of SEQ ID NO:36. Screening of the W-14 genomic cosmid library using as probe the radiolabeled 1.4 kbp DNA fragment prepared in this example identified the same five cosmids (17D9, 20B10, 21D2, 27B10, and 26D1). DNA blot

hybridization to *EcoR I*-digested cosmid DNAs also showed hybridization to the same subset of *EcoR I* fragments as seen with the 2.5 kbp TcdA_{ii} gene probe, indicating that both fragments are encoded on the genomic DNA.

DNA sequence determination of the cloned EcoR I fragments revealed an uninterrupted reading frame of 7551 base pairs (SEQ ID NO:46), encoding a 282.9 kDa protein of 2516 amino acids (SEQ ID NO:47). Analysis of the amino acid sequence of this protein revealed all expected internal fragments of peptides TcdA; (SEQ ID NOS:17, 18, 37, 38 and 39) and the $TcdA_{\mbox{iii}}$ peptide N-terminus (SEQ ID NO:41) and all $TcdA_{\mbox{iii}}$ internal peptides (SEQ ID NOS:42 and 43). The peptides isolated and identified as $TcdA_{ii}$ and $TcdA_{iii}$ are each products of the open reading frame, denoted tcdA, disclosed as SEQ ID NO:46. Further, SEQ ID NO:47 shows, starting at position 89, 10 the sequence disclosed as SEQ ID NO:13, which is the N-terminal sequence of a peptide of size approximately 201 kDa, indicating that the initial protein produced from SEQ ID NO: 46 is processed in a manner similar to that previously disclosed for SEQ ID NO:12. In addition, the protein is further cleaved to generate a product 15 of size 209.2 kDa, encoded by SEQ ID NO:48 and disclosed as SEQ ID NO:49 (TcdA $_{\mbox{ii}}$ peptide), and a product of size 63.6 kDa, encoded by SEQ ID NO:50 and disclosed as SEQ ID NO:51 (TcdAiii peptide). Thus, it is thought that the insecticidal activity identified as toxin A (Example 15) derived from the products of SEQ ID NO:46, as 20 exemplified by the full-length protein of 282.9 kDa disclosed as SEQ ID NO:47, is processed to produce the peptides disclosed as SEQ ID NOS:49 and 51. It is thought that the insecticidal activity identified as toxin B (Example 15) derives from the products of SEQ ID NO:11, as exemplified by the 280.6 kDa protein disclosed as SEQ 25 This protein is proteolytically processed to yield the 207.6 kDa peptide disclosed as SEQ ID NO:53, which is encoded by SEQ ID NO:52, and the 62.9 kDa peptide having N-terminal sequence disclosed as SEQ ID NO:40, and further disclosed as SEQ ID NO:55, 30 which is encoded by SEQ ID NO:54.

Amino acid sequence comparisons between the proteins disclosed as SEQ ID NO:12 and SEQ ID NO:47 reveal that they have 69% similarity and 54% identity using the Wisconsin Package Version 8.0, Genetics Computer Group (GCG), Madison, WI or 60% similarity and 54% identity using version 9.0 of the program. This high degree of evolutionary relationship is not uniform throughout the entire amino acid sequence of these peptides, but is higher towards the carboxy-terminal end of the proteins, since the peptides disclosed as SEQ ID NO:51 (derived from SEQ ID NO:47) and SEQ ID

NO:55 (derived from SEQ ID NO:12) have 76% similarity and 64% identity using the Wisconsin Package Version 8.0, Genetics Computer Group (GCG), Madison, WI or 71% similarity and 64% identity using version 9.0 of the program.

5

Example 18

Control of European Cornborer-Induced Leaf Damage on Maize Plants by Spray Application of Photorhabdus (Strain W-14) Broth

10

15

20

25

30

35

The ability of Photorhabdus toxin(s) to reduce plant damage caused by insect larvae was demonstrated by measuring leaf damage caused by European corn borer (Ostrinia nubilalis) infested onto maize plants treated with Photorhabdus broth. Fermentation broth from Photorhabdus strain W-14 was produced and concentrated approximately 10-fold using ultrafiltration (10,000 MW pore-size) as described in Example 13. The resulting concentrated broth was then filter sterilized using 0.2 micron nitrocellulose membrane filters. A similarly prepared sample of uninoculated 2% proteose peptone #3 was used for control purposes. Maize plants (an inbred line) were grown from seed to vegetative stage 7 or 8 in pots containing a soilless mixture in a greenhouse (27°C day; 22°C night, about 50%RH, 14 hr day-length, watered/fertilized as needed). The test plants were arranged in a randomized complete block design (3 reps/treatment, 6 plants/treatment) in a greenhouse with temperature about 22°C day; 18°C night, no artificial light and with partial shading, about 50%RH and watered/fertilized as needed. Treatments (uninoculated media and concentrated Photorhabdus broth) were applied with a syringe sprayer, 2.0 mls applied from directly (about 6 inches) over the whorl and 2.0 additional mls applied in a circular motion from approximately one foot above the whorl. In addition, one group of plants received no treatment. After the treatments had dried (approximately 30 minutes), twelve neonate European corn borer larvae (eggs obtained from commercial sources and hatched in-house) were applied directly to the whorl. After one week, the plants were scored for damage to the leaves using a modified Guthrie Scale (Koziel, M. G., Beland, G. L., Bowman, C., Carozzi, N. B., Crenshaw, R., Crossland, L., Dawson, J., Desai, N., Hill, M., Kadwell, S., Launis, K., Lewis,

K., Maddox, D., McPherson, K., Meghji, M. Z., Merlin, E., Rhodes, R., Warren, G. W., Wright, M. and Evola, S. V. 1993).

Bio/Technology, 11, 194-195.) and the scores were compared statistically [T-test (LSD) p<0.05 and Tukey's Studentized Range (HSD) Test p<0.1]. The results are shown in Table 29. For reference, a score of 1 represents no damage, a score of 2 represents fine "window pane" damage on the unfurled leaf with no pinhole penetration and a score of 5 represents leaf penetration with elongated lesions and/or mid rib feeding evident on more than three leaves (lesions < 1 inch). These data indicate that broth or other protein containing fractions may confer protection against specific insect pests when delivered in a sprayable formulation or when the gene or derivative thereof, encoding the protein or part thereof, is delivered via a transgenic plant or microbe.

15

35

10

Table 29

Effect of Photorhabdus Culture Broth on European Corn Borer-Induced Leaf Damage on Maize

20 Treatment Average Guthrie Score

No Treatment 5.02^a

Uninoculated medium 5.15^a

Photorhabdus Broth 2.24^b

Means with different letters are statistically different 25 (p<0.05 or p<0.1).

Example 19

Genetic Engineering of Genes for Expression in E. coli

30 <u>Summary of Constructions</u>

A series of plasmids were constructed to express the tcbA gene of Photorhabdus W-14 in Escherichia coli. A list of the plasmids is shown in Table 30. A brief description of each construction follows as well as a summary of the E. coli expression data obtained.

Table 30
Expression Plasmids for the tcbA Gene

Plasmid	Gene	Vector/Selection	Compartment
DDAB2025	tcbA	pBC/Ch1	Intracellular
pDAB2026	tcbA	pAcGP67B/Amp	Baculovirus, secreted
pDAB2027	tcbA	pET27b/Kan	Periplasm
pDAB2028	tcbA	pET15-tcbA	Intracellular

Abbreviations: Kan=kanamycin, Chl=chloramphenicol, Amp=ampicillin

5

Construction of pDAB2025

In Example 9, a large EcoR I fragment which hybridizes to the TcbA_{ii} probe is described. This fragment was subcloned into pBC (Stratagene, La Jolla CA) to create pDAB2025. Sequence analysis indicates that the fragment is 8816 base pairs. The fragment encodes the tcbA gene with the initiating ATG at position 571 and the terminating TAA at position 8086. The fragment therefore carries 570 base pairs of Photorhabdus DNA upstream of the ATG and 730 base pairs downstream of the TAA.

15

20

25

30

10

Construction of Plasmid pDAB2026

The tcbA gene was PCR amplified from plasmid pDAB2025 using the following primers; 5' primer (S1Ac51) 5' TTT AAA CCA TGG GAA ACT CAT TAT CAA GCA CTA TC 3' and 3' primer (S1Ac31) 5' TTT AAA GCG GCC-GCT TAA CGG ATG GTA TAA CGA ATA TG 3'. PCR was performed using a TaKaRa LA PCR kit from PanVera (Madison, WI) in the following reaction: 57.5 microliters water, 10 microliters 10X LA buffer, 16 microliters dNTPs (2.5 mM each stock solution), 20 microliters each primer at 10 pmoles/ microliters, 300 ng of the plasmid pDAB2025 containing the W-14 tcbA gene and one microliter of TaKaRa LA Tag polymerase. The cycling conditions were 98°C/20 sec, 68°C/5 min, 72°C/10 min for 30 cycles. A PCR product of the expected about 7526 bp was isolated in a 0.8% agarose gel in TBE (100 mM Tris, 90 mM boric acid, 1 mM EDTA) buffer and purified using a Qiaex II kit from Qiagen (Chatsworth, CA). The purified tcbA gene was digested with Nco I and Not I and ligated into the baculovirus transfer vector pAcGP67B (PharMingen (San Diego, CA)) and transformed into DH5α E. coli. The resulting recombinant is called pDAB2026. tcbA gene was then cut from pDAB2026 and transferred to pET27b to

create plasmid pDAB2027. A missense mutation in the tcbA gene was repaired in pDAB2027.

The repaired tcbA gene contains two changes from the sequence shown in Sequence ID NO:11; an A>G at 212 changing an asparagine 71 to serine 71 and a G>A at 229 changing an alanine 77 to threonine 77. These changes are both upstream of the proposed TcbAii N-terminus.

Construction of pDAB2028

The tcbA coding region of pDAB2027 was transferred to vector pET15b. This was accomplished using shotgun ligations, the DNAs were cut with restriction enzymes Nco I and Xho I. The resulting recombinant is called pDAB2028.

15 Expression of TcbA in E. coli from Plasmid pDAB2028

Expression of tcbA in E. coli was obtained by modification of the methods previously described by Studier et al. (Studier, F.W., Rosenberg, A., Dunn, J., and Dubendorff, J., (1990) Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol., 20 185: 60-89.). Competent E. coli cells strain BL21(DE3) were transformed with plasmid pDAB2028 and plated on LB agar containing 100 μg/mL ampicillin and 40 mM glucose. The transformed cells were plated to a density of several hundred isolated colonies/plate. Following overnight incubation at 37°C the cells were scraped from 25 the plates and suspended in LB broth containing 100 $\mu g/mL$ ampicillin. Typical culture volumes were from 200-500 mL. At time zero, culture densities (OD600) were from 0.05-0.15 depending on the experiment. Cultures were shaken at one of three temperatures (22°C, 30°C or 37°C) until a density of 0.15-0.5 was obtained at 30 which time they were induced with 1 mM isopropylthio- β -galactoside (IPTG). Cultures were incubated at the designated temperature for 4-5 hours and then were transferred to 4°C until processing (12-72 hours).

Purification and Characterization of TcbA Expressed in E.coli from Plasmid pDAB2028

 $E.\ coli$ cultures expressing TcbA peptides were processed as follows. Cells were harvested by centrifugation at 17,000 x G and the media was decanted and saved in a separate container.

The media was concentrated about 8x using the M12 (Amicon, Beverly MA) filtration system and a 100 kD molecular mass cut-off filter. The concentrated media was loaded onto an anion exchange column and the bound proteins were eluted with 1.0 M NaCl. The 1.0 M NaCl elution peak was found to cause mortality against Southern corn rootworm (SCR) larvae Table 30). The 1.0 M NaCl fraction was dialyzed against 10 mM sodium phosphate buffer pH 7.0, concentrated, and subjected to gel filtration on Sepharose CL-4B (Pharmacia, Piscataway, NJ). The region of the CL-4B elution 10 profile corresponding to calculated molecular weight (about 900 kDa) as the native W-14 toxin complex was collected, concentrated and bioassayed against larvae. The collected 900 kDa fraction was found to have insecticidal activity (see Table 31 below), with symptomology similar to that caused by native W-14 toxin complex. 15 This fraction was subjected to Proteinase K and heat treatment, the activity in both cases was either eliminated or reduced, providing evidence that the activity is proteinaceous in nature. In addition, the active fraction tested immunologically positive for the TcbA and TcbA; ii peptides in immunoblot analysis when tested 20 with an anti-TcbAiii monoclonal antibody (Table 31).

Table 31
Results of Immunoblot and SCR Bioassays

Fraction	SCR ACTIVI	ty	Immunoblot	Native Size
	% Mortalit Y	Inhibit.	Peptides Detected	[CL-4B Estimate d Size]
TcbA Media 1.0 M	+++	+++	TcbA	
Ion Exchange				
TcbA Media CL-48	+++	+++	TcbA, TcbA _{iii}	about 900 kDa
TcbA Media CL-4B + Proteinase K	++	+++	NT	
TcbA Media CL-4B + heat treatment	-	-	NT	
TcbA Cell Sup CL-4B	-	+++	NT	about 900 kD

25 PK = Proteinase K treatment 2 hours; Heat treatment = 100°C for 10 minutes; ND = None Detected; NT = Not Tested. Scoring system for mortality and growth inhibition as compared to control samples; 5-24%="+", 25-49%="++", 50-100%="+++".

The cell pellet was resuspended in 10 mM sodium phosphate buffer, pH=7.0, and lysed by passage through a Bio-Neb™ cell nebulizer (Glas-Col Inc., Terra Haute, IN). The pellets were

30

treated with DNase to remove DNA and centrifuged at 17,000 x g to separate the cell pellet from the cell supernatant. The supernatant fraction was decanted and filtered through a 0.2 micron filter to remove large particles and subjected to anion exchange chromatography. Bound proteins were eluted with 1.0 M NaCl, dialyzed and concentrated using Biomax[™] (Millipore Corp, Bedford, MA) concentrators with a molecular mass cut-off of 50,000 Daltons. The concentrated fraction was subjected to gel filtration chromatography using Sepharose CL-4B beaded matrix. Bioassay data for material prepared in this way is shown in Table 30 and is denoted as "TcbA Cell Sup".

10

15

20

25

35

In yet another method to handle large amounts of material, the cell pellets were re-suspended in 10 mM sodium phosphate buffer, pH = 7.0 and thoroughly homogenized by using a Kontes Glass Company (Vineland, NJ) 40 ml tissue grinder. The cellular debris was pelleted by centrifugation at 25,000 x g and the cell supernatant . was decanted, passed through a 0.2 micron filter and subjected to anion exchange chromatography using a Pharmacia 10/10 column packed with Poros HQ 50 beads. The bound proteins were eluted by performing a NaCl gradient of 0.0 to 1.0 M. Fractions containing the TcbA protein were combined and concentrated using a 50 kDa concentrator and subjected to gel filtration chromatography using Pharmacia CL-4B beaded matrix. The fractions containing TcbA oligomer, molecular mass of approximately 900 kDa, were collected and subjected to anion exchange chromatography using a Pharmacia Mono Q 10/10 column equilibrated with 20 mM Tris buffer pH = 7.3. A gradient of 0.0 to 1.0 M NaCl was used to elute recombinant TcbA protein. Recombinant TcbA eluted from the column at a salt concentration of approximately 0.3-0.4 M NaCl, the same molarity at which native TcbA oligomer is eluted from the Mono Q 10/10 column. The recombinant TcbA fraction was found to cause SCR mortality in bioassay experiments similar to those in Table 31.

A second set of expression constructions were prepared and tested for expression of the TcbA protein toxin.

Construction of pDAB2030: An Expression Plasmid for the tcbA Coding Region

The plasmid pDAB2028 (see herein) contains the tcbA coding region in the commercial vector pET15 (Novagen, Madison, WI),

encodes an ampicillin selection marker. The plasmid pDAB2030 was created to express the *tcbA* coding region from a plasmid which encodes a kanamycin selection marker. This was done by cutting pET27 (Novagen, Madison, WI) a kanamycin selection plasmid, and pDAB2028 with Xba I and Xho I. This releases the entire multiple cloning site, including the *tcbA* coding region from plasmid pDAB2028. The two cut plasmids, were mixed and ligated. Recombinant plasmids were selected on kanamycin and those containing the pDAB2028 fragment were identified by restriction analysis. The new recombinant plasmid is called pDAB2030.

Construction of Plasmid pDAB2031: Correction of Mutations in tcbA;

10

35

40

The two mutations in the N-terminus of the tcbA coding region as described in Example 19 (Sequence ID NO:11; A>G at 212 changing 15 an asparagine 71 to serine 71; G>A at 229 changing an alanine 77 to threonine 77) were corrected as follows: A PCR product was generated using the primers TH50 (5' ACC GTC TTC TTT ACG ATC AGT G 3') and S1Ac51(5' TTT AAA CCA TGG GAA ACT CAT TAT CAA GCA CTA TC 3') and pDAB2025 as template to generate a 1778 bp product. This PCR 20 product was cloned into plasmid pCR2.1 (Invitrogen, San Diego, CA) and a clone was isolated and sequenced. The clone was digested with Nco I and Pin AI and a 1670 bp fragment was purified from a 1% agarose gel. A plasmid containing the mutated tcbA coding region (pDAB2030) was digested with Nco I and Not I and purified away from 25 the 1670 bp fragment in a 0.8% agarose with Qiaex II (Qiagen, Chatsworth, CA). The corrected Nco I/Pin AI fragment was then ligated into pDAB2030. The ligated DNA was transformed into $\text{DH}5\alpha$ E. coli. A clone was isolated, sequenced and found to be correct. This plasmid, containing the corrected tcbA coding region, is 30 called pDAB2031.

Construction of pDAB2033 and pDAB2034: Expression Plasmids for tcbA

The expression plasmids pDAB2025 and pDAB2027-2031 all rely on the Bacteriophage T7 expression system. An additional vector system was used for bacterial expression of the tcbA gene and its derivatives. The expression vector Trc99a (Pharmacia Biotech, Piscataway, NJ) contains a strong trc promoter upstream of a multiple cloning site with a 5' Nco I site which is compatible with the tcbA coding region from pDAB2030 and 2031. However, the plasmid does not have a compatible 3' site. Therefore, the Hind III site of Trc99a was cut and made blunt by treatment with T4 DNA

polymerase (Boehringer Mannheim, Indianapolis, IN). The vector plasmid was then cut by $Nco\ I$ followed by treatment with alkaline phosphatase. The plasmids pDAB2030 and pDAB2031 were each cut with $Xho\ I$ (cuts at the 3' end of the tcbA coding region) followed by treatment with T4 DNA polymerase to blunt the ends. The plasmids were then cut with $Nco\ I$, the DNAs were extracted with phenol, ethanol precipitated and resuspended in buffer. The Trc99a and pDAB2030 and pDAB2031 plasmids were mixed separately, ligated and transformed into DH5 α cells and plated on LB media containing ampicillin and 50 mM glucose. Recombinant plasmids were identified by restriction digestion. The new plasmids are called pDAB2033 (contains the tcbA coding sequence with the two mutations in $tcbA_i$) and pDAB2034 (contains the corrected version of tcbA from pDAB2031).

15

35

10

Construction of Plasmid pDAB2032: An Expression Plasmid for tcbA; iA; ii

A plasmid encoding the TcbA; A; A; portion of TcbA was created in a similar way as plasmid pDAB2031. A PCR product was generated using TH42 (5' TAG GTC TCC ATG GCT TTT ATA CAA GGT TAT AGT GAT CTG 20 3') and TH50 (5' ACC GTC TTC TTT ACG ATC AGT G 3') primers and plasmid pDAB2025 as template. This yielded a product of 1521 bp having an initiation codon at the beginning of the coding sequence of tcbA;;. This PCR product was isolated in a 1% agarose gel and 25 purified. The purified product was cloned into pCR2.1 as above and a correct clone was identified by DNA sequence analysis. This clone was digested with Nco I and Pin AI, a 1414 bp fragment was isolated in a 1% agarose gel and ligated into the Nco I and Pin AI sites of plasmid pDAB2030 and transformed into DH5a E. coli. This new plasmid, designed to express TcbAiiAiii in E. coli, is called 3-0 pDAB2032.

Expression of tcbA and $tcbA_{ii}A_{iii}$ from Plasmids pDAB2030, pDAB2031 and pDAB2032

Expression of tcbA in $E.\ coli$ from plasmids pDAB2030, pDAB2031 and pDAB2032 was as described herein, except expression of $tcbA_{ii}A_{iii}$ was done in $E.\ coli$ strain HMS174(DE3)(Novagen, Madison, WI).

Expression of tcbA from Plasmid pDAB2033

The plasmid pDAB2033 was transformed into BL21 cells (Novagen, Madison, WI) and plated on LB containing 100 micrograms/mL ampicillin and 50 mM glucose. The plates were spread such that several hundred well separated colonies were present on each plate following incubation at either 30°C or 37°C overnight. The colonies were scraped from the plates and suspended in LB containing 100 micrograms/mL ampicillin, but no glucose. Typical culture volume was 250 mL in a single 1 L baffle bottom flask. The cultures were induced when the culture reached a density of 0.3-0.6 OD600 nm. Most often this density was achieved immediately after suspension of the cells from the plates and did not require a growth period in liquid media. Two induction methods were used. Method 1: cells were induced with 1 mM IPTG at 37°C. The cultures were shaken at 200 rpm on a platform shaker for 5 hours and harvested. Method 2: The cultures were induced with 25 micromolar IPTG at 30°C and shaken at 200 rpm for 15 hours at either 20°C or 30°C. The cultures were stored at 4°C until used for purification.

20 Purification of TcbA from E. coli

10

15

25

Purification, bioassay and immunoblot analysis of TcbA and $TcbA_{ii}A_{iii}$ was as described herein. Results of several representative $E.\ coli$ expression experiments are shown in Table 32. All materials shown in Table 32 were purified from the media fraction of the cultures. The predicted native molecular weight is approximately 900 kD as described herein. The purity of the samples, the amount of TcbA relative to contaminating proteins, varied with each preparation.

Table 32

Bioassay Activity and Immunoblot Analysis of TcbA and Derivatives

Produced in E. coli and Purified from the Culture Media

Plasmid	Coding Region	E. coli Strain	Rootworm I Activity		Peptides Detected by Immunoblot	Micrograms Protein Applied to Diet
			% Growth Inhibit.	% Mortal.		
pDABZ030	tcbA	BL21 (DE3)	-	+++	TcbA + TcbA _{iii}	1-8
pDAB2031	ECDA	BL21 (DE3)	-	+++	TcbA + TcbA _{iii}	1-10
pDAB2033	tcbA	BL21	-	+++	TCDA + TCDA _{iii}	1-2
pDAB2032	tcbA _{ii} A _{iii}	HMS174 (DE3)	+++	+	TcbA _{ii} A _{iii} + TcbA _{iii}	13-27

Scoring system for mortality and growth inhibition on Southern Corn Rootworm as compared to control samples; 5-24%="+", 25-49%="++", 50-100%="+++".

5

10

Example 20

Characterization of Toxin Peptides with Matrix-Assisted Laser Desorption Ionization Time-of-Flight Mass Spectroscopy

Toxins isolated from W-14 broth were purified as described in Example 15. In some cases, the TcaB protein toxin was pretreated with proteases (Example 16) that had been isolated from W-14 broth 15 as previously described (Example 15). Protein molecular mass was determined using matrix-assisted laser desorption ionization timeof-flight mass spectroscopy, hereinafter MALDI-TOF, on a VOYAGER BIOSPECTROMETRY workstation with DELAYED EXTRACTION technology 20 (PerSeptive Biosystems, Framingham, MA). Typically, the protein of interest (100-500 pmoles in 5 μ l) was mixed with 1 μ l of acetonitrile and dialyzed for 0.5 to 1 h on a Millipore VS filter having a pore size of 0.025 μM (Millipore Corp. Bedford, MA). Dialysis was performed by floating the filter on water(shinny side 25 up) followed by adding protein-acetonitrile mixture as a droplet to the surface of the filter. After dialysis, the dialyzed protein removed using a pipette and was then mixed with a matrix consisting of sinapinic acid and trifluoroacetic acid according to manufacturers instructions. The protein and matrix were allowed to co-crystallize on a about 3 cm² gold-plated sample plate 30 (PerSeptive Corp.). Excitation of the crystals and subsequent mass analysis was performed using the following conditions: setting of 3050; pressure of 4.55e-07; low mass gate of 1500.0; negative ions off; accelerating voltage of 25,000; grid voltage of

90.0%; guide wire voltage of 0.010%; linear mode; and a pulse delay time of 350 ns.

Protein mass analysis data are shown in Table 33. The data obtained from MALDI-TOF was compared to that hypothesized from gene sequence information and as previously determined by SDS-PAGE.

Table 33

Molecular Analysis of Peptides by MALDI-TOF, SDS-PAGE and Predicted

Determination Based on Gene Sequence

TcbA 280,634 Da 240,000 Da 281,040 TcbA _{i/ii} 217,710 Da not resolved 216,812 15 TcbA _{ii} 207,698 Da 201,000 Da 206,473 TcbA _{iii} 62,943 Da 58,000 Da 63,520	OF
	Da Da
TcdA _{ii} 209,218 Da 188,000 Da 208,186 TcdA _{iii} 63,520 Da 56,000 Da 63,544	
TcbAii Protease Generated 201,000 Da 216,614 215,123 210,391 208,680	Da^ Da^
25 TcbA _{iii} Protease Generated 56,000 Da 64,111	

10

35

40

30 Example 21
Production of Peptide Specific Polyclonal Antibodies

Nine peptide components of the W-14 toxin complex, namely, TcaA, TcaAii, TcaBi, TcaBi, TcaC, TcbAii, TcbAii, TcdAii, and TcdAiii were selected as targets against which antibodies were produced. Comprehensive DNA and deduced amino acid sequence data for these peptides indicated that the sequence homology between some of these peptides was substantial. If a whole peptide was used as the immunogen to induce antibody production, the resulting antibodies might bind to multiple peptides in the toxin preparation. To avoid this problem antibodies were generated that would bind specifically to a unique region of each peptide of interest. The unique region (subpeptide) of each target peptide was selected based on the analyses described below.

Protein Analysis Tool (IBI Sequence was analyzed using MacVector Protein Analysis Tool (IBI Sequence Analysis Software,
International Biotechnologies, Inc., P. O. Box 9558, New Haven, CT 06535) to determine its antigenicity index. This program was designed to locate possible externally-located amino acid

Data normalized TcbA, multiple fragments observed at TcbAi/ii

5

10

15

20

25

30

sequences, i.e., regions that might be antigenic sites. This method combined information from hydrophilicity, surface probability, and backbone flexibility predictions along with the secondary structure predictions in order to produce a composite prediction of the surface contour of a protein. The scores for each of the analyses were normalized to a value between -1.0 and +1.0 (MacVector Manual). The antigenicity index value was obtained for the entire sequence of the target peptide. From each peptide, an area covering 19 or more amino acids that showed a high antigenicity index from the original sequence was re-analyzed to determine the antigenicity index of the subpeptide without the flanking residues. This re-analysis was necessary because the antigenicity index of a peptide could be influenced by the flanking amino acid residues. If the isolated subpeptide sequence did not maintain a high antigenicity index, a new region was chosen and the analysis was repeated.

Each selected subpeptide sequence was aligned and compared to all seven target peptide sequences using MacVector™ alignment program. If a selected subpeptide sequence showed identity (greater than 20%) to another target peptide, a new 19 or more amino acid region was isolated and re-analyzed. Unique subpeptide sequences covering 19 or more amino acid showing high antigenicity index were selected from all target peptides.

The sequences of seven subpeptides were sent to Genemed
Biotechnology Inc. The last amino acid residue on each subpeptide
was deleted because it showed no apparent effect on the
antigenicity index. A cysteine residue was added to the N-terminal
of each subpeptide sequence, except TcaBi-syn which contains an
internal cysteine residue. The present of a cysteine residue
facilitates conjugation of a carrier protein (KLH). The final
peptide products corresponding to the appropriate toxin peptides
and SEQ ID NO.s are shown in Table 34.

Table 34
Amino Acid Sequences for Synthetic Peptides

-	_	SEO ID I	No.	Pepide	Amino	Acid	Segue	nce			
5											
		63	TcaA _{ii} -syn	NH2-(C)	LRGI	NSPI	NPD	KDG:	IFA	QVA	
		64	TcaA _{iii} -syn	NH2-(C)	YTPI	DQTP	SFY	ETA	RS	ADG	
		65	TcaB _i -syn	NH2-H G C	NYZÇ	DNN	CNF	TLS	INT		
		66	TcaB _{iii} -syn	NH2-(C)	A D b 1	ктьо	RQQ	AGGI	GT	GSS	
10		67	TcaC-syn	NH2-(C)	YKAI	PQRQ	EDG	DSNA	TVF	YDK	
		68	TcbA _{ii} -syn	NH2-(C)	YNEI	V P S S	EDK	KWY1	7 S S	KDD	
		69	TcbA _{iii} -syn	NH2-(C)	FDS	YSQL	YEE	NINA	AGE	QRA	
		70	TcdA _{ii} -syn	NH2-(C)	NPNI	NSSN	KLM	FYPV	ĮΥQ	YSG	ΝT
		71	TcdA _{iii} -syn	NH2-(C)	VSQ	SSGS	AGS	GNNI	ILA	FGA	G
										-	

15

20

25

30

35

40

Each conjugated synthetic peptide was injected into two rabbits according to Genemed accelerated program. The pre- and post-immune sera were available for testing after one month.

The preliminary test of both pre- and post-immune sera from each rabbit was performed by Genemed Biotechnologies Inc. Genemed reported that by using both ELISA and Western blot techniques, they detected the reaction of post-immune sera to the respective synthetic peptides. Subsequently, the sera were tested with the whole target peptides, by Western blot analysis. Two batches of partially purified *Photorhabdus* strain W-14 toxin complex was used as the antigen. The two samples had shown activity against the Southern corn rootworm. Their peptide patterns on an SDS-PAGE gel were slightly different.

Pre-cast SDS-polyacrylamide gels with 4-20% gradient (Integrated Separation Systems, Natick, MA 01760) were used. Between 1 to 8 μ g of protein was applied to each gel well. Electrophoresis was performed and the protein was electroblotted onto $\texttt{Hybond-ECL}^{\mathsf{M}}$ nitrocellulose membrane (Amersham International). The membrane was blocked with 10% milk in TBST (25 mM Tris HCl pH 7.4, 136 mM NaCl, 2.7 mM KCl, 0.1% Tween 20) for one hour at room temperature. Each rabbit serum was diluted in 10% milk/TBST to 1:500. Other dilutions between 1:50 to 1:1000 were also used. serum was added to the membrane and placed on a platform rocker for at least one hour. The membrane was washed thoroughly with the blocking solution or TBST. A 1:2000 dilution of secondary antibodies (goat anti-mouse IgG conjugated to horse radish peroxidase; BioRad Laboratories) in 10% milk/TBST was applied to the membrane placed on a platform rocker for one hour. membrane was subsequently washed with excess amount of TBST.

detection of the protein was performed by using an ECL (Enhanced Chemiluminescence) detection kit (Amersham International).

Western blot analyses were performed to identify binding specificity of each anti-synthetic_peptide antibodies. All synthetic polyclonal antibodies showed specificity toward to processed and, when applicable, unprocessed target peptides from protein fractions derived from Photorhabdus culture broth. Various antibodies were shown to recognize either unprocessed or processed recombinant proteins derived from heterologous expression systems such as bacteria or insect cells, using baculovirus expression constructs. In one case, the anti-TcbAiii-syn antibody showed some cross-reactivity to anti-TcdAiii peptide. In a second case, the anti-TcaC-syn antibody, recognized an unidentified 190 kDa peptide in W-14 toxin complex fractions.

15

10

Example 22 Characterization of Photorhabdus Strains

In order to establish that the collection described herein was 20 comprised of Photorhabdus strains, the strains herein were assessed in terms of recognized microbiological traits that are characteristic of the bacterial genus Photorhabdus and which differentiate it from other Enterobacteriaceae and Xenorhabdus spp. (Farmer, J. J. 1984. Bergey's Manual of Systemic Bacteriology, Vol. 25 1. pp. 510-511. (ed. Kreig N. R. and Holt, J. G.). Williams & Wilkins, Baltimore.; Akhurst and Boemare, 1988, J. Gen. Microbiol. 134, 1835-1845; Forst and Nealson, 1996. Microbiol. Rev. 60, 21-These characteristic traits are as follows: Gram stain negative rods, organism size of 0.3-2 μ m in width and 2-10 μ m in 30 length [with occasional filaments (15-50 μ m) and spheroplasts], yellow to orange/red colony pigmentation on nutrient agar, presence of crystalline inclusion bodies, presence of catalase, inability to reduce nitrate, presence of bioluminescence, ability to take up dye from growth media, positive for protease production, growth at 35 temperatures below 37°C, survival under anaerobic conditions and positively motile. (Table 33). Test methods were checked using reference Escherichia coli, Xenorhabdus and Photorhabdus strains. The overall results are consistent with all strains being part of the family Enterobacteriaceae and the genus Photorhabdus. Note 40 that DEP1, DEP2, and DEP3 refer to Photorhabdus strains obtained

from the American Type Culture Collection, 12301 Parklawn Drive, Rockville, MD 20852 USA (#29304, 29999 and 51583, respectively).

A luminometer was used to establish the bioluminescence associated with these Photorhabdus strains. To measure the presence or absence of relative light emitting units, the broths from each strain (cells and media) were measured at three time intervals after inoculation in liquid culture (24, 48, 72 hr) and compared to background luminosity (uninoculated media). Several Xenorhabdus strains were tested as negative controls for luminosity. Prior to measuring light emission from the various 10 broths, cell density was established by measuring light absorbance (560 nM) in a Gilford Systems (Oberlin, OH) spectrophotometer using The resulting light emitting units could then be a sipper cell. normalized to density of cells. Aliquots of the broths were placed into 96-well microtiter plates (100 μl each) and read in a Packard 15 Lumicount™ luminometer (Packard Instrument Co., Meriden, CT). measurement period for each sample was 0.1 to 1.0 second. samples were agitated in the luminometer for 10 sec prior to taking readings. A positive test was determined as being about 5-fold background luminescence (about 1-15 relative light units). 20 addition, degree of colony luminosity was confirmed with photographic film overlays and by eye, after visual adaptation in a The Gram's staining characteristics of each strain were established with a commercial Gram's stain kit (BBL, Cockeysville, 25 MD) used in conjunction with Gram's stain control slides (Fisher Scientific, Pittsburgh, PA). Microscopic evaluation was then performed using a Zeiss microscope (Carl Zeiss, Germany) 100% oil immersion objective lens (with 10% ocular and 2% body magnification). Microscopic examination of individual strains for 30 organism size, cellular description and inclusion bodies (the latter two observations after logarithmic growth) was performed using wet mount slides (10% ocular, 2% body and 40% objective magnification) and phase contrast microscopy with a micrometer (Akhurst, R. J. and Boemare, N. E. 1990. Entomopathogenic Nematodes 35 in Biological Control (ed. Gaugler, R. and Kaya, H.). pp. 75-90. CRC Press, Boca Raton, USA.; Baghdiguian S., Boyer-Giglio M. H., Thaler, J. O., Bonnot G., Boemare N. 1993. Biol. Cell 79, 177-185.). Colony pigmentation was observed after inoculation on Bacto nutrient agar, (Difco Laboratories, Detroit, MI) prepared as per

label instructions. Incubation occurred at 28°C and descriptions were produced after 5 days. To test for the presence of the enzyme catalase, a colony of the test organism was removed on a small plug from a nutrient agar plate and placed into the bottom of a glass 5 test tube. One ml of a household hydrogen peroxide solution was gently added down the side of the tube. A positive reaction was recorded when bubbles of gas (presumptive oxygen) appeared immediately or within 5 seconds. Controls of uninoculated nutrient agar and hydrogen peroxide solution were also examined. To test for nitrate reduction, each culture was inoculated into 10 ml of 10 Bacto Nitrate Broth (Difco Laboratories, Detroit, MI). After 24 hours incubation with gentle agitation at 28°C, nitrite production was tested by the addition of two drops of sulfanilic acid reagent and two drops of alpha-naphthylamine reagent (see Difco Manual, 10th edition, Difco Laboratories, Detroit, MI, 1984). 15 generation of a distinct pink or red color indicates the formation of nitrite from nitrate whereas the lack of color formation indicates that the strain is mitrate reduction negative. In the latter case, finely powdered zinc was added to further confirm the 20 presence of unreduced nitrate; established by the formation of nitrite and the resultant red color. The ability of each strain to uptake dye from growth media was tested with Bacto MacConkey agar containing the dye neutral red; Bacto Tergitol-7 agar containing the dye bromothymol blue and Bacto EMB Agar containing the dye 25 eosin-Y (formulated agars from Difco Laboratories, Detroit, MI, all prepared according to label instructions). After inoculation on these media, dye uptake was recorded after incubation at 28°C for 5 days. Growth on these latter media is characteristic for members of the family Enterobacteriaceae. Motility of each strain was 30 tested using a solution of Bacto Motility Test Medium (Difco Laboratories, Detroit, MI) prepared as per label instructions. A butt-stab inoculation was performed with each strain and motility was judged macroscopically by a diffuse zone of growth spreading from the line of inoculum. The production of protease was tested 35 by observing hydrolysis of gelatin using Bacto gelatin (Difco Laboratories, Detroit, MI) made as per label instructions. Cultures were inoculated and the tubes or plates were incubated at 28°C for 5 days. Gelatin hydrolysis was then checked at room temperature, i.e. less than 22°C. To assess growth at different

temperatures, agar plates [2% proteose peptone #3 with two percent Bacto-Agar (Difco, Detroit, MI) in deionized water] were streaked from a common source of inoculum. Plates were incubated at 20, 28 and 37°C for up to three weeks. The incubator temperature levels were checked with an electronic thermocouple and meter to insure valid temperature settings. Oxygen requirements for Photorhabdus strains were tested in the following manner. A butt-stab inoculation into fluid thioglycolate broth medium (Difco, Detroit, MI) was made. The tubes were incubated at room temperature for one week and cultures were then examined for type and extent of growth. The indicator resazurin demonstrates the presence of medium oxygenation or the aerobiosis zone (Difco Manual, 10th edition, Difco Laboratories, Detroit, MI). Growth zone results obtained for the Photorhabdus strains tested were consistent with those of a facultative anaerobic microorganism. In the case of unclear results, the final agar concentration of fluid thioglycolate broth medium was raised to 0.75% and the growth characteristics rechecked.

10

15

20

	[ab]	le_35	
Taxonomic Traits	of	Photorhabdus	Strains

Strain	A*	В	C	D	E	F	G	H	I	٦٠	K	L	M	N	0	P	Q
Ρ.	_ †	+	+	ra s	+	-	+	+	+	PO	+	+	+	+	+	+	-
zealandica																	
P. nepialus	-	+	+	rd S	+		+	+	+	Y	+	+	+	+	+	+	-
HB-Arg	-	+	+	rd S	+		+	+	+	W	+	+	+	+	+	+	-
HB Oswego	-	+	+	rd S	+	-	+	+	+	W	+	+	+	+	+	+	-
HB Lewiston	-	+	+	rd S	+	-	+	+	+	T	+	+	+	+	+	+	-
K-122	-	+	+	rd S	+	-	+	+	+	Y	+	+	+	+	+	+	-
HMGD	Γ-	+	+	rd S	+	-	+	+	+	Rd	+	+	+	+	+	+	-
Indicus	-	+	+	rd S	+	=	+	+	+	W	+	+	+	+	+	+	-
GD	-	+	+	rd S	+	-	+	+	+	YT	+	+	+	+	+	+	-
PWH-5	-	+	+	rd S	+	=	+	+	+	Y	+	+	+	+	+	+	-
Megidis	-	+	+	rd S	+	=	+	+	+	R	+	+	+	+	+	+	-
HF-85	-	+	+	ra s	+	-	+	+	+	R	+	+	+	+	+	+	-
A. Cows	-	+	+	ra S	+	=	+	+	+	PR	+	+	+	+	+	+	-
MPI	-	+	+	rd S	+	-	+	+	+	T	+	+	+	+	+	+	=
MP2	-	+	+	ra S	+	-	+	+	+	T	+	+	+	+	+	+	-
MP3	-	+	+	ra s	+	-	+	+	+	R	+	+	+	+	+	+	-
MP4	-	+	+	ra s	+	-	+	+	+	Y	+	+	+	+	+	+	-
MP5	-	+	+	ra s	+	-	+	+	+	PR	+	+	+	+	+	+	
GL98	-	+	+	rd S	+	-	+	+	+	W	+	+	+	+	+	+	-
GL101	-	+	+	rd S	+	-	+	+	+	W	+	+	+	+	+	+	-
GL138	-	+	+	rd S	+	-	+	+	+	W	+	+	+	+	+	+	=
GL155	-	+	+	rd S	+	-	+	+	+	W	+	+	+	+	+	+	-
GL217	-	+	+	ra S	+	-	+	+	+	Y	+	+	+	+	+	+	=
GL257	-	+	+	ra s	+	-	+	+	+	0	+	+	+	+	+	+	
DEPI	-	+	+	rd S	+	-	+	+	+	W	+	+	+	+	+	+	-
DEP2	-	+	+	rd S	+	-	+	+	+	PR	+	+	+	+	+	+	=
DEP3	-	+	+	rd S	+	-	+	+	+	CR	+	+	+	+	+	+	-

*: A=Gram's stain, B=Crystaline inclusion bodies, C=Bioluminescence, D=Cell form, E=Motility, F=Nitrate reduction, G=Presence of catalase, H=Gelatin hydrolysis, I=Dye uptake, J=Pigmentation on Nutrient Agar (some color shifts after Day 5), K=Growth on EMB agar, L=Growth on MacConkey agar, M=Growth on Tergitol-7 agar, N =Facultative anaerobe, O=Growth at 20°C, 10 P=Growth at 28°C, Q=Growth at 37°C. t: +=positive for trait, - =negative for trait; rd=rod, S=sized within Genus descriptors. &: W = white, CR = cream, Y =yellow, YT=yellow tan, T=tan PO=pale orange, O=orange, PR=pale red, R=red. 15

The evolutionary diversity of the Photorhabdus strains in our collection was measured by analysis of PCR (Polymerase Chain Reaction) mediated genomic fingerprinting using genomic DNA from each strain. This technique is based on families of repetitive DNA sequences present throughout the genome of diverse bacterial species (reviewed by Versalovic, J., Schneider, M., DE Bruijn, F. J. and Lupski, J. R. 1994. Methods Mol. Cell. Biol., 5, 25-40). Three of these, repetitive extragenic palindromic sequence (REP), enterobacterial repetitive intergenic consensus (ERIC) and the BOX 25

element are thought to play an important role in the organization of the bacterial genome. Genomic organization is believed to be shaped by selection and the differential dispersion of these elements within the genome of closely related bacterial strains can be used to discriminate these strains (e.g., Louws, F. J., Fulbright, D. W., Stephens, C. T. and DE Bruijn, F. J. 1994. Appl. Environ. Micro. 60, 2286-2295). Rep-PCR utilizes oligonucleotide primers complementary to these repetitive sequences to amplify the variably sized DNA fragments lying between them. The resulting products are separated by electrophoresis to establish the DNA "fingerprint" for each strain.

10

15

20

25

30

35

To isolate genomic DNA from our strains, cell pellets were resuspended in TE buffer (10 mM Tris-HCl, 1 mM EDTA, pH 8.0) to a final volume of 10 ml and 12 ml of 5 M NaCl was then added. This mixture was centrifuged 20 min. at 15,000 x g. The resulting pellet was resuspended in 5.7 ml of TE and 300 μ l of 10% SDS and 60 μl 20 mg/ml proteinase K (Gibco BRL Products, Grand Island, NY) were added. This mixture was incubated at 37°C for 1 hr, approximately 10 mg of lysozyme was then added and the mixture was incubated for an additional 45 min. One milliliter of 5M NaCl and 800 μ l of CTAB/NaCl solution (10% w/v CTAB, 0.7 M NaCl) were then added and the mixture was incubated 10 min. at 65°C, gently agitated, then incubated and agitated for an additional 20 min. to aid in clearing of the cellular material. An equal volume of chloroform/isoamyl alcohol solution (24:1, v/v) was added, mixed gently then centrifuged. Two extractions were then performed with an equal volume of phenol/chloroform/isoamyl alcohol (50:49:1). Genomic DNA was precipitated with 0.6 volume of isopropanol. Precipitated DNA was removed with a glass rod, washed twice with 70% ethanol, dried and dissolved in 2 ml of STE (10 mM Tris-HCl pH8.0, 10 mM NaCl, 1 mM EDTA). The DNA was then quantitated by optical density at 260 nm. To perform rep-PCR analysis of Photorhabdus genomic DNA the following primers were used, REP1R-I; 5'-IIIICGICGICATCIGGC-3' and REP2-I; 5'-ICGICTTATCIGGCCTAC-3'. PCR was performed using the following $25\mu l$ reaction: 7.75 μl H₂O, 2.5 μ l 10X LA buffer (PanVera Corp., Madison, WI), 16 μ l dNTP mix (2.5 mM each), 1 μ l of each primer at 50 pM/ μ l, 1 μ l DMSO, 1.5 μ l genomic DNA (concentrations ranged from 0.075-0.480 $\mu g/\mu l$) and 0.25 μ l TaKaRa EX Taq (PanVera Corp., Madison, WI). The PCR

amplification was performed in a Perkin Elmer DNA Thermal Cycler (Norwalk, CT) using the following conditions: 95°C/7 min. then 35 cycles of; 94°C/1 min., 44°C/1 min., 65°C/8 min., followed by 15 min. at 65°C. After cycling, the 25 μ l reaction was added to 5 μ l of 6X gel loading buffer (0.25% bromophenol blue, 40% w/v sucrose in H₂O). A 15x20cm 1%-agarose gel was then run in TBE buffer (0.09 M Tris-borate, 0.002 M EDTA) using 8 μ l of each reaction. The gel was run for approximately 16 hours at 45v. Gels were then stained in 20 μ g/ml ethidium bromide for 1 hour and destained in TBE buffer for approximately 3 hours. Polaroid® photographs of the gels were then taken under UV illumination.

10

The presence or absence of bands at specific sizes for each strain was scored from the photographs and entered as a similarity matrix in the numerical taxonomy software program, NTSYS-pc (Exeter 15 Software, Setauket, NY). Controls of E. coli strain HB101 and Kanthomonas oryzae pv. oryzae assayed under the same conditions produced PCR fingerprints corresponding to published reports (Versalovic, J., Koeuth, T. and Lupski, J. R. 1991. Nucleic Acids Res. 19, 6823-6831; Vera Cruz, C. M., Halda-Alija, L., Louws, F., 20 Skinner, D. Z., George, M. L., Nelson, R. J., DE Bruijn, F. J., Rice, C. and Leach, J. E. 1995. Int. Rice Res. Notes, 20, 23-24.; Vera Cruz, C. M., Ardales, E. Y., Skinner, D. Z., Talag, J., Nelson, R. J., Louws, F. J., Leung, H., Mew, T. W. and Leach, J. E. 1996. Phytopathology 86, 1352-1359). The data from Photorhabdus 25 strains were then analyzed with a series of programs within NTSYSpc; SIMQUAL (Similarity for Qualitative data) to generate a matrix of similarity coefficients (using the Jaccard coefficient) and SAHN (Sequential, Agglomerative, Heirarchical and Nested) clustering [using the UPGMA (Unweighted Pair-Group Method with Arithmetic 30 Averages) method] which groups related strains and can be expressed as a phenogram (Fig. 7). The COPH (cophenetic values) and MXCOMP (matrix comparison) programs were used to generate a cophenetic value matrix and compare the correlation between this and the original matrix upon which the clustering was based. A resulting 35 normalized Mantel statistic (r) was generated which is a measure of the goodness of fit for a cluster analysis (r=0.8-0.9 represents a very good fit). In our case r=0.924. Therefore, the collection is comprised of a diverse group of easily distinguishable strains representative of the Photorhabdus genus.

Example 23 Insecticidal Utility of Toxin(s) Produced by Various Photorhabdus Strains

5

10

15

20

25

30

35

40

Initial "storage" cultures of the various Photorhabdus strains were produced by inoculating 175 ml of 2% Proteose Peptone #3 (PP3) (Difco Laboratories, Detroit, MI) liquid medium with a primary variant colony in a 500 ml tribaffled flask with a Delong neck, covered with a Kaput closure. After inoculation, the flask was incubated for between 24-72 hrs at 28°C on a rotary shaker at 150 rpm, until stationary phase was reached. The culture was transferred to a sterile bottle containing a sterile magnetic stir bar and the culture was overlayered with sterile mineral oil, to limit exposure to air. The storage culture was kept in the dark, at room temperature. These cultures were then used as inoculum sources for the fermentation of each strain.

"Seed" flasks or cultures were produced by either inoculating 2 mls of an oil overlayered storage culture or by transferring a primary variant colony into 175 ml sterile medium in a 500 ml tribaffled flask covered with a Kaput closure. (The use of other inoculum sources is also possible.) Typically, following 16 hours incubation at 28°C on a rotary shaker at 150 rpm, the seed culture was transferred into production flasks. Production flasks were usually inoculated by adding about 1% of the actively growing seed culture to sterile 2% PP3 medium (e.g. 2.0 ml per 175 ml sterile medium). Production of broths occurred in 500 ml tribaffled flasks covered with a Kaput. Production flasks were agitated at 28°C on a rotary shaker at 150 rpm. Production fermentations were terminated after 24-72 hrs although successful fermentation is not confined to this time duration. Following appropriate incubation, the broths were dispensed into sterile 1.0 L polyethylene bottles, spun at 2600xg for 1 hr at 10°C and decanted from the cell and debris pellet. Further broth clarification was achieved with a tangential flow microfiltration device (Pall Filtron, Northborough, MA) using a 0.5 μM open-channel poly-ether sulfone (PES) membrane filter. The resulting broths were then concentrated (up to 10-fold) using a 10,000 or 100,000 MW cut-off membrane, M12 ultra-filtration device (Amicon, Beverly MA) or centrifugal concentrators (Millipore, Bedford, MA and Pall Filtron, Northborough, MA) with a 10,000 or

100,000 MW pore size. In the case of centrifugal concentrators, the broth was spun at 2000xg for approximately 2 hr. The membrane permeate was added to the corresponding retentate to achieve the desired concentration of components greater than the pore size used. Following these procedures, the broth was used for biochemical analysis or filter sterilized using a 0.2 μ M cellulose nitrate membrane filter for biological assessment. Heat inactivation of processed broth samples was achieved by heating the samples at 100°C in a sand-filled heat block for 10 minutes.

10

15

20

25

30

35

The broth(s) and toxin complex(es) from different Photorhabdus strains are useful for reducing populations of insects and were used in a method of inhibiting an insect population which comprises applying to a locus of the insect an effective insect inactivating amount of the active described. A demonstration of the breadth of insecticidal activity observed from broths of a selected group of Photorhabdus strains fermented as described above is shown in Table 36. It is possible that improved or additional insecticidal activities could be detected with these strains through increased concentration of the broth or by employing different fermentation methods. Consistent with the activity being associated with a protein, the insecticidal activity of all strains tested was heat labile.

Culture broth(s) from diverse Photorhabdus strains show differential insecticidal activity (mortality and/or growth inhibition) against a number of insects. More specifically, the activity is seen against corn rootworm which is a member of the insect order Coleoptera. Other members of the Coleoptera include boll weevils, wireworms, pollen beetles, flea beetles, seed beetles and Colorado potato beetle. The broths and purified toxin complex(es) are also active against tobacco budworm, tobacco hornworm and European corn borer which are members of the order Lepidoptera. Other typical members of this order are beet armyworm, cabbage looper, black cutworm, corn earworm, codling moth, clothes moth, Indian mealmoth, leaf rollers, cabbage worm, cotton bollworm, bagworm, Eastern tent caterpillar, sod webworm and fall armyworm. Activity is also observed against German cockroach which is a member of the order Dictyoptera (or Blattodea). Other members of this order are oriental cockroach and American cockroach.

5

10

15

35

Activity against corn rootworm larvae was tested as follows. Photorhabdus culture broth(s) (10 fold concentrated, filter sterilized), 2% Proteose Peptone #3 (10 fold concentrated), purified toxin complex(es), 10 mM sodium phosphate buffer, pH 7.0 were applied directly to the surface (about 1.5 cm²) of artificial diet (Rose, R. I. and McCabe, J. M. 1973. J. Econ. Entomol. 66, 398-400) in 40 μl aliquots. Toxin complex was diluted in 10 mM sodium phosphate buffer, pH 7.0. The diet plates were allowed to air-dry in a sterile flow-hood and the wells were infested with single, neonate Diabrotica undecimpunctata howardi (Southern corn rootworm, SCR) hatched from surface sterilized eggs. The plates were sealed, placed in a humidified growth chamber and maintained at 27°C for the appropriate period (3-5 days). Mortality and larval weight determinations were then scored. Generally, 16 insects per treatment were used in all studies. Control mortality was generally less than 5%.

Activity against lepidopteran larvae was tested as follows. Concentrated (10-fold) Photorhabdus culture broth(s), control medium (2% Proteose Peptone #3), purified toxin complex(es), 10 mM sodium phosphate buffer, pH 7.0 were applied directly to the 20 surface (about 1.5 cm²) of standard artificial lepidopteran diet (Stoneville Yellow diet) in 40 μ l aliquots. The diet plates were allowed to air-dry in a sterile flow-hood and each well was infested with a single, neonate larva. European corn borer 25 (Ostrinia nubilalis) and tobacco hornworm (Manduca sexta) eggs were obtained from commercial sources and hatched in-house, whereas tobacco budworm (Heliothis virescens) larvae were supplied internally. Following infestation with larvae, the diet plates were sealed, placed in a humidified growth chamber and maintained in the dark at 27°C for the appropriate period. Mortality and 30 weight determinations were scored at day 5. Generally, 16 insects per treatment were used in all studies. Control mortality generally ranged from about 0 to about 12.5% for control medium and was less than 10% for phosphate buffer.

Activity against cockroach was tested as follows. Concentrated (10-fold) *Photorhabdus* culture broth(s) and control medium (2% Proteose Peptone #3) were applied directly to the surface (about 1.5 cm²) of standard artificial lepidopteran diet (Stoneville Yellow diet) in 40 μ l aliques. The diet plates were allowed to

air-dry in a sterile flow-hood and each well was infested with a single, CO₂ anesthetized first instar German cockroach (*Blatella germanica*). Following infestation, the diet plates were sealed, placed in a humidified growth chamber and maintained in the dark at 27°C for the appropriate period. Mortality and weight determinations were scored at day 5. Control mortality less than 10%.

Table 36 Observed Insecticidal Spectrum of Broths from Different Photorhabdus Strains

5	Photorhabdus Strain	Sensitive* Insect Species
	P. zealandica	1**, 2, 4
	P. hepialus	1, 2, 4
	HB-Arg	1, 2, 4
	HB Oswego	1, 2, 4
10	HB Lewiston	1, 2, 4
	K-122	1, 4
	HMGD	1, 4
	Indicus	1, 2, 4
	GD	2, 4
15	PWH-5	1, 2, 4
	Megidis	1, 2, 4
	HF-85	1, 2, 4
	A. Cows	1, 4
	MP1	1, 2, 4
20	MP2	1, 2, 4
	MP3	4
	MP4	1, 4
	MP5	4
	GL98	1, 4
25	GL101	1, 4, 5
	GL138	1, 2, 4
	GL155	1, 4
	GL217	1, 2, 4
	GL257	1, 4
30	DEP1	1, 4
	DEP2	1, 2, 3, 4
	DEP3	4

35

^{* = 3 25%} mortality and/or growth inhibition vs. control
** = 1; Tobacco budworm, 2; European corn borer, 3;
 Tobacco hornworm, 4; Southern corn rootworm, 5; German cockroach.

Example 24

Southern Analysis of Non-W-14 Photorhabdus Strains Using W-14 Gene Probes

Detroitabdus strais were grown on 2% proteose peptone #3 agar (Difco Laboratories, Detroit, MI) and insecticidal toxin competence was maintained by repeated bioassay after passage. A 50 ml shake culture was produced in 175 ml baffled flasks in 2% proteose peptone #3 medium, grown at 28° and 150 rpm for approximately 24 hours. Fifteen ml of this culture were centrifuged (700 x g, 30 min) and frozen in its medium at -20° until it was thawed (slowly in ice water) for DNA isolation. The thawed W-14 culture was centrifuged (900 x g, 15 min 4°), and the floating orange mucopolysaccharide material was removed. The remaining cell material was centrifuged (25,000 x g, 4°) to pellet the bacterial cells, and the medium was removed and discarded.

Total DNA was isolated by an adaptation of the CTAB method described in section 2.4.1 of Ausubel et al. (1994). The modifications included a high salt shock, and all volumes were 20 increased ten-fold over the "miniprep" recommended volumes. All centrifugations were at 4°C unless otherwise specified. pelleted bacterial cells were resuspended in TE buffer (10 mM Tris-HCl, 1 mM EDTA, pH 8) to a final volume of 10 ml, then 12 ml 5 M NaCl were added; this mixture was centrifuged 20 min at 15,000 x g. 25 The pellet was resuspended in 5.7 ml TE, and 300 μ l of 10% SDS and 60 μl of 20 mg/ml proteinase K (in sterile distilled water, Gibco BRL Products, Grand Island, NY) were added to the suspension. mixture was incubated at 37°C for 1 hr; then approximately 10 mg lysozyme (Worthington Biochemical Corp., Freehold, NJ) were added. After an additional 45 min incubation, 1 ml of 5 M NaCl and 800 µl of CTAB/NaCl solution (10% w/v CTAB, 0.7 M NaCl) were added. This preparation was incubated 10 min at 65°C, then gently agitated and further incubated and agitated for approximately 20 min to assist clearing of the cellular material. An equal volume of 35 chloroform/isoamyl alcohol solution (24:1, v:v) was added, mixed very gently, and the phases separated by centrifugation at 12,000 \times g for 15 min. The upper (aqueous) phase was gently removed with a wide-bore pipette and extracted twice as above with an equal volume of PCI (phenol/choloroform/ isoamyl alcohol; 50:49:1, v:v:v; 40 equilibrated with 1M Tris-HCl, pH 8.0; Intermountain Scientific Corporation, Kaysville, UT). The DNA precipitated with 0.6 volume of isopropanol was gently removed on a glass rod, washed twice with

70% ethanol, dried, and dissolved in 2 ml STE (10 mM Tris-HCl, 10

mM NaCl, 1 mM EDTA, pH 8). This preparation contained 2.5 mg/ml DNA, as determined by optical density at 260nm.

Identification of Bal II/Hind III Fragments Hybridizing to tc-gene Specific Probes

<u>.</u>

5

15

20

25

30

35

40

Approximately 10 µg of genomic DNA was digested to completion with about 30 units each of Bgl II and Hind III (NEB) for 180 min, frozen overnight, then heated at 65°C for five min, and electrophoresed in a 0.8% agarose gel (Seakem® LE. 1X TEA. 80 10 volts, 90 min). The DNA was stained with ethidium bromide (50 μ g/ml) as described earlier, and photographed under ultraviolet The DNA fragments in the agarose gel were subjected to depurination (5 min in 0.2 M HCl), denaturation (15 min in 0.5 M NaOH, 1.5 M NaCl), and neutralization (15 min in 0.5 M Tris HCl pH 8.0, 1.5 M NaCl), with 3 rinses of distilled water-between each step. The DNA was transferred by Southern blotting from the gel onto a NYTRAN nylon membrane (Amersham, Arlington Heights, IL) using a high salt (20% SSC) protocol, as described in section 2.9 of Ausubel et al. (CPMB, op. cit.). The transferred DNA was then UV-crosslinked to the nylon membrane using a Stratagene UV Stratalinker set on auto crosslink. The membranes were stored dry at 25°C until use.

Hybidization was performed using the ECL™direct (Amersham, Arlington Heights, IL) labeling and detection system following protocols provided by the manufacturer. In brief, probes were prepared by covalently linking the denatured DNA to the enzyme horseradish peroxidase. Once labeled the probe was used under hybridization conditions which maintain the enzymatic activity. Unhybridized probe was removed by two gentle washes 20 minutes each at 42°C in 0.5xSSC, 0.4% SDS, and 6M Urea. This was followed by two washes 5 minutes each at room temperature in 2xSSC. As directed by the manufacturer, $\mathsf{ECL^{TM}}$ reagents were used to detect the hybridizing DNA bands. There are several factors which influence the ability to detect gene relatedness between various Photorhabdus strains and strain W-14. First, high stringency conditions have not been employed in these hybridizations. It is known in the art that varying the stringency of hybridization and wash conditions will influence the pattern and intensity of hybridizing bands. Second, Southern blots' blot to blot variation will influence the mobility of hybridizing bands and molecular weight estamates. Therefore, W-14 was included as a standard on all Southern blots.

Gene specific probes derived from the W-14 toxin genes were used in these hybridizations. The following lists the specific coordinates within each gene sequence to which the probe corresponds. A probe specific for $tcaB_i/B_{ii}$: 1174 to 3642 of Sequence ID #25, a probe specific for tcaC: 3637 to 6005 of Sequence ID #25, a probe specific for tcbA: 2097 to 4964 of Sequence ID #11, and a probe specific for tcdA: 1660 to 4191 of sequence ID #46. The following tables summarize Southern Blot analyses of Photorhabdus strains. In the event that hybridization of probes occurred, the hybridized fragment(s) were noted as either identical or different from the pattern observed for the W-14 strain.

10

Table 37
Southern Analysis of Photorhabdus Strains

Strains	tcdA	t <i>cb</i> A	-tcaC	tcaB $_{i/ii}$
WX-1	D	D	Ū	D
WX-2	D	Д	-	מ
WX-3	D	ם	a	Q
WX-4	D	D	ND	D
WX-5	D	D	D	D
WX-6	D	D	D	D
WX-7	D	D	ND	D
WX-8	D	Д	D	D
WX-9	ND	D	D	D
WX-10	ND	D	D	<u>D</u>
WX-II	ДИ	D.	D	D
WX-12	О	D	d	D
WX-14	D	D	D	D
WX-15	D	D	D	D
нрвв	О	-	D	D
Hm	D	-	D	D
нь	D	-	D	-
Н9	D		I	D
В2	Q		D	
NC-I		-	D	, D
WIR	D		D	D
W30	D	D	D	D
W-14	I		I	

ND = Not determined; - = no detectable hybridization product;

5 I = Identical fragment pattern; D = Different fragment pattern.

Table 38
Southern Analysis of Photorhabdus Strains

Strains	tcdA	tcbA	tcaC	tcaB _{i/ii}
K-122	3.3,2.8	D	-	ИD
PWH-5	+	D	D	-
Indicus	D	ע	3.0	1
Megidis	D	ם	D	-
GD	D	D	D	-
HF-85	D	D	D	3
MP 3	D		D	-
MP I	D	+	D	-
A. Cows	. D	+	_ D	-
HB-Arg	D	ДИ	D	-
HMGD	D	D	Д	-
HB Lewiston	D	D	D	
HB Oswego	D	ע	D	-
W-14	I	1	I	I

ND = Not determined; - = no detectable hybridization product;

⁵ I = Identical fragment pattern; D = Different fragment pattern.

^{+ =} Hybridization fragment pattern not determined.

Table 39
Southern Analysis of Photorhabdus Strains

Strains	tcdA	tcbA	tcaC	tcaB _i /B _{ii}
GL98	+	+	D	
GLI01		+	D	
GLI38		+	а	
GL155	_		-	
GL217	+		D	
GL257	+	+	D	
MP4	•	+		
MP5	-	_		
P hepialus	+		D	
P zealandia	+	_	11.0	
DEP1				
DEP2				
DEP3				
	3 0 0			
W-14	3.8,2.8	2.8	2.8	

ND = Not determined; - = no detectable hybridization product;

- I = Identical fragment pattern; D = Different fragment pattern.
 - + = Hybridization fragment pattern not determined.

15

From these analyses it is apparent that homologs of W-14 genes are dispersed throughout these diverse *Photorhabdus* strains, as evidenced by differences in gene fragment sizes between W-14 and the other strains.

Example 25

N-Terminal Amino Acid Sequences of Toxin Complex Peptides from <u>Different Photorhabdus Strains</u>

The relationship of peptides isolated from different Photorhabdus strains, as described in Example 14, were subjected to

N-terminal amino acid sequencing. The N-terminal amino acid sequences of toxin peptides in several strains were compared to W-14 toxin peptides. In Table 40, a comparison of toxin peptides compared to date showed that identical or homologous (at least 40% similarity to W14 gene/peptides) toxin peptides were present in all of the strains. For example, the N-terminal amino acid sequence of TcaC, SEQ ID NO: 2, was found to be identical to that for 160 kDa peptide in HP88 but also homologs were present in strains WIR, H9, Hb, WX-1, and Hm. Some W-14 peptides or homologs have not been observed in other strains; however, not all peptides have been sequenced for toxin complexes from other strains due to N-terminal blockage or low abundance. In addition, many other N-terminal amino acid sequences (SEQ ID NOS: 82 to 88) have been obtained for toxin complex peptides from other strains that have no similarity to peptides from W-14 and in some case were identical to each other. For example, an identical amino acid sequence, SEQ ID NO: 82, was obtained for 64 kDa peptide present in both HP88 and Hb strains and a homologous sequence for a 70 kDa peptide in NC-1 strain (SEQ ID NO: 83).

10

15

Table 40

A Comparison of Amino Terminal Sequence Homology Between Proteins

Isolated From Non-W-14 Strains

	W-14	w-14	W-14	SEQ ID	Strain	Identical	Нотооду
Pe	eptide	Gene	SEQ ID	NO:			
]]	CcaAii	tcaA	15				
T	caAiii	tcaA	4 3				~
	TcaBi	tcaB	3	76	—н9	-	74 kDa
-				76	Hm	_	71 kDa
1	CcaBii	tcaB	5		Н9	61 kDa	-
1				•	Hm	61 kDa	-
	TcaC	tcaA	2	72	Hb	-	160 kDa
					HP88	160 kDa	-
				73	WIR	-	170 kDa
)				74	н9	-	180 kDa
1				75	Hm	-	170 kDa
-				80	WX-1	- '	170 kDa
11 -	CcbAii	tcbA	1				
T	cbAiii	tcbA	40				
	TCCA	tccA	8	77	Hb	~	81 kDa
			_				
	TCCB	tccB	7		WX-1	170 kDa	-
1					WX-2	180 kDa	-
1					WX-14	180 kDa	~
1			;		WIR	170 kDa	-
\ \				78	Н9		170 kDa
l l					NC-1	140 kDa	-
				79 .	Hm	-	190 kDa
- 11	rcdAii	tcdA					
T	cdAiii	tcdA	41		Нb	57 kDa	-
ì	_	_		81	Н9	-	69 kDa
1	?	?	9	!	Hb	86 kDa	-
					HP88	86 kDa	(A C

Homology refers to amino acid sequences that were at least 40% similarity to W14 gene / peptides. Similar residues were identified as being a member in one of the following five groups: (P, A, G, S, T); (Q, N, E, B, D, Z); (H, K, R); (I, I, V, M); and (F, Y, W).

Example 26 Immunological Analysis of Photorhabdus Strains

10

15

20

Culture broths of *Photorhabdus* strains were concentrated 10 to 15 times using Centriprep-10 ultrafiltration device (Amicon, Inc. Beverly, MA 01915). The concentration of the protein ranges from 0.3 to 3.0 mg per ml. Ten to 20 μ g of total protein was loaded in each well of a precast 4-20% polyacrylamide gel (Integrated Separation Systems, Natick, MA 01760). Gel electrophoresis was performed for 1.25 hours using a constant current set at 25 ma per gel. The gel was electro-blotted on to Hybond-ECLTM nitrocellulose membrane (Amersham Corporation, Arlington Hts, Il 60005) using a semi-dry electro-blotter (Pharmacia Biotech Inc., Piscataway , NJ

08854). A constant current was applied at 0.75 ma per cm for 2.5 hours. The membrane was blocked with 10% milk in TBST (25 mM Tris HCl pH 7.4, 136 mM NaCl, 2.7 mM KCl, 0.1% Tween 20) for one hour at room temperature. Each primary antibody was diluted in 10% milk/TBST to 1:500. Other dilution between 1:50 to 1:1000 was also used. The membrane was incubated in primary antibody for at least one hour. Then it was washed thoroughly with the blocking solution or TBST. A 1:2000 dilution of secondary antibodies (goat antimouse IgG or goat anti rabbit TgG conjugated to horseradish peroxidase; BioRad Laboratories, Hercules, CA 94547) in 10% milk/TBST was applied to the membrane which was placed on a platform rocker for one hour. The membrane was subsequently washed with excess amount of TBST. The detection of the protein was performed by-using an ECL (Enhanced Chemiluminescence) detection 15 kit (Amersham International).

A panel of peptide specific-antibodies generated against W-14 peptides were used to characterize the protein composition of broths from nine non-W-14 Photorhabdus strains using Western blot analysis. In addition, one monoclonal antibody (MAb-C5F2) which 20 recognizes TcbA;; protein in W-14-derived toxin complex was used. The results (Table 39) showed cross recognition of the antibodies to some of the proteins in these broths. In some cases, the proteins that were recognized by the antibodies were the same size as the W-14 target peptides. In other cases, the proteins that 25 were recognized by the antibodies were smaller than the W-14 target peptides. This data indicate that some of the non-W-14 Photorhabdus strains may produce similar proteins to the W-14 strain. The difference could be due to deletion or protein processing or degradation process. Some of the strains did not 30 contain protein(s) that could be recognized by some antibodies, however, it is possible that the concentration is significantly lower than those observed for W-14 peptides. When compared for various toxin peptide homologs these results showed peptide diversity among the Photorhabdus strains.

35

10

Table 41

Cross Recognition by Monoclonal Antibodies or Polyclonal Antibodies

Generated Against W-14 Peptides to Protein(s) in Broths of Selected

Non-W-14 Photorhabdus

Photo-	MAb	PAb	PAb	PAb	PAb-	PAb	PAb	PAb	PAb
rhabdus	C5F2	TcdA	TcdA	TcaC	TcaB	TcbA	TcaB	TcaA	TcaA
Strain	·	ii-	iii-	-syn	ii-	iii-	i-	ii-	iii-
		syn	syn		syn	syn	syn	syn	syn
MPI	-	+	+	+	-	+	+	+	+
MP2	+	+	+	+	-	+	+	+	+
MP3		+	+	+	-	NT	+	+	-
A. Cows	-	+	+	+		NT	+	+	+
Hb-osw			NT	+	+	NT	+	+	+
H-Arg		+	+	+ .		NT	+	+	+
Hb-leu		+	+	+		NT	+	+	+
Indicus	+	+	+	+	+	N.I.	+	+	+ .
HF85		+	+	+	-	+	+	+	+
W-14	+	+	+	+	+	+	+	+	+

+: Positive reaction; -: Negative reaction; NT: Not Tested

Additional non-W-14 Photorhabdus strains were characterized by Western blot analysis using the culture broth and/or partial purified protein fractions as antigen. The panel of antibodies include MAb-C5F2, MAb-DE1 (recognizing TcdA_{ii}), PAb-DE2 (recognizing TcaB), PAb-TcbA_{ii}-syn, PAb- TcaC-syn, PAb TcaB_{ii}-syn, PAb-TcbA_{iii}-syn, PAb-TcaB_i-syn. These antibodies showed cross-reactivity with proteins in the broth and in the partial purified fractions of non-15 W-14 strains.

The data indicate that antibodies could be used to identify proteins in the broth as well as in the partially purified protein fractions.

Table 42

Cross Recognition by Monoclonal Antibodies or Plyclonal Antibodies

Generated Against W-14 Peptides to Protein(s) in Broths and/or

Partial Purified Protein Fractions of Selected Non-W14 Photorhabdus

_

10

15

20

25

Photo- rhabdus Strain	Monoc Antib			Po	olyclona	l Antibo	dies					
	Mab	Mab-	PAb-	PAb	PAb	PAb	PAb-	PAb-				
	C5F2	DE1	DE2	TcbAii	TcaC-	TcaBii	TcbAiii	TcaB;				
	1	}		-syn	syn	-syn	-syn	-syn				
WX-I	+	+	+	+	+	+	+	+				
WX-2	+	+	+	+	+	+	NT	+				
WX-3	+	NT	+	NT	NT	NT	N'I'	NT				
WX-5	+	NT	+	NT	NT	NT	NT	NT				
WX-6	+	NT	NT	NT	NT	NT	NT	NT				
WX-7	+	+	+	+	+	+	NT	+				
WX-8	+	NT	NT	NT	TN	NT	NT	NT				
WX-9	+	NT	NT	NT	NT	NT	NT	NT				
WX-10	-	NT	NT	NT	NT	NT	NT	NT				
WX-12	+	+	+	+	+	+	+	+				
WX-14	+	+	+	+	NT	+	NT	+				
WX-15	+	NT	NT	NT	NT	NT	N.I.	NT				
W30	+	+	+	NT	NT	NT	NT	NT				
Иb	1 -	NT	+	NT	+	NT	-	+				
Н9	-	-	+	NT	+	+	NT	NT				
Hm		NT	+	+	+	+	N.I.	++				
HP88	 	NT	+	-	+	-	-	+				
NC-I	+		+	+	+	+	N.I.	+				
WIR	 	NT	+	+	+	+	+	+				
W-14	+	+	+ + + + + +									

-: Negative reaction; +: Positive reaction; NT: Not tested

Example 27 Bacterial Expression of the tcdA Coding Region

Engineering of the tcdA Gene for Bacterial Expression

The 5' and 3' ends of the tcdA coding region (SEQ ID NO:46) were modified to add useful cloning sites for inserting the segment into heterologous expression vectors. The ends were modified using unique primers in Polymerase Chain Reactions (PCR), performed essentially as described in Example 8. Primer sets, as described below, were used in conjunction with cosmid 21D2.4 as template, to created products with the appropriately modified ends.

The first primer set was used to modify the 5' end of the gene, to insert a unique NCO I site at the initiator codon using the forward primer AOF1 (5' GAT CGA TCG ATC CAT GGC CAA CGA GTC TGT AAA AGA GAT ACC TGA TG TAT TAA AAA GCC AGT GTG 3') and to add unique Bgl II, Sal I and Not I sites to facilitate insertion of the remainder of the gene using the reverse primer AOR1 (5' GAT CGA TCG TAC GCG

GCC GCT CGA TCG ATC GTC GAC CCA TTG ATT TGA GAT CTG GGC GGC GGG TAT CCA GAT AAA CGG AGT CAC 3').

Another PCR reaction was designed to modify the 3' end of the gene by adding an additional stop codon and convenient restriction sites for cloning. The forward primer AOF2 (5' ACT GGC TGC GTG GTC GAC TGG CGG CGA TTT ACT 3') was used to amplify across a unique Sal I site in the gene, later used to clone the modified 3' end. The reverse primer AOR2 (5' CGA TGC ATG CTG CGG CCG CAG GCC TTC CTC GAG TCA TTA TTT AAT GGT GTA GCG AAT ATG CAA AAT 3') was used to insert a second stop codon (TGA) and cloning sites Xho I, Stu I and Not I. Bacterial expression vector pET27b (Novagen, Madison, WI), was modified to delete the Bgl II site at position 446, according to standard molecular biology techniques.

10

15

20

25

30

35

40

The 497 bp PCR product from the first amplification reaction (AOF1+AOR1), to modify the 5' end of the gene, was ligated to the modified pET27b vector according to the supplier's instructions. The DNA sequences of the amplified portion of three isolates were determined using the supplier's recommended primers and the sequencing methods described previously. The sequence of all isolates was the same.

One isolate was then used as a cloning vector to insert the middle portion of the tcdA gene on a 6341 bp Bgl II to Sal I fragment. The resulting clone was called MC4 and contained all but the 3' most portion of the tcdA coding sequence. Finally, to complete the full-length coding region, the 832 bp PCR product from the second PCR amplification (AOF2+AOR2), to modify the 3' end of the gene, was ligated to isolate MC4 on a Sal I to Not I fragment, according to standard molecular biology techniques. The tcdA coding region was sequenced and found to be complete, the resulting plasmid is called pDAB2035.

Construction of Plasmids pDAB2036, pDAB2037 and pDAB2038 for Bacterial Expression of tcdA

The tcdA coding region was cut from plasmid pDAB2035 with restriction enzymes Nco I and Xho I and gel purified. The fragment was ligated into the Nco I and Xho I sites of the expression vector pET15 to create plasmid pDAB2036. Additionally, pDAB2035 was cut with Nco I and Not I to release the tcdA coding region which was ligated into the Nco I and Not I sites of the expression vector pET28b to create plasmid pDAB2037. Finally, plasmid pDAB2035 was cut with Nco I and Stu I to release the tcdA coding region. This fragment was ligated into the expression vector Trc99a which was cut with Hind III followed by treatment with T4 DNA polymerase to blunt

the ends. The vector was then cut with Nco I and ligated with the $Nco\ I/Stu\ I$ cut tcdA fragment. The resulting plasmid is called pDAB2038.

5 Expression of tcdA from Plasmid pDAB2038

Plasmid pDAB2038 was transformed into *BL21* cells and expressed as described above for plasmid pDAB2033 in Example 19.

Purification of tcdA from E. coli

10

15

The expression culture was centrifuged at 10,300 g for 30 min and the supernatant was collected. It was diluted with two volumes of H₂O and applied at a flow rate of 7.5 ml/min to a poros 50 H_Q (Perspective Systems, MA) column (1.6 cm x 10 cm) which was preequilibrated with 10 mM sodium phosphate buffer, pH 7.0 (Buffer A). The column was washed with Buffer A until the optical density at 280 nm returned to baseline level. The proteins bound to the column were then eluted with 1M NaCl in Buffer A.

The fraction was loaded in 20 ml aliquots onto a gel filtration column, Sepharose CL-4B (2.6 x 100 cm), which was equilibrated with 20 Buffer A. The protein was eluted in Buffer A at a flow rate of 0.75 mL/min. Fractions with a retention time between 260 minutes and 460 minutes were pooled and applied at 1 mL/min to a Mono Q 5/5 column which was equilibrated with 20 mM Tris-HCl, pH 7.0 (Buffer B). The column was washed with Buffer B until the optical density at 280 nm 25 returned to baseline level. The proteins bound to the column were eluted with a linear gradient of 0 to 1 M NaCl in Buffer B at lmL/min for 30 min. One milliliter fractions were collected, serial diluted, and subjected to SCR bioassay. Fractions eluted out between 0.1 and 0.3 M NaCl were found to have the highest 30 insecticidal activity. Western analysis of the active fractions using pAb TcdA; -syn antibody and pAb Tcd; -syn antibody indicated the presence of peptides TcdA;; and TcdA;;;.

SEQUENCE LISTING

5	(1) GENE	RAL INFORMATION:
J	(i)	APPLICANT: Ensign, Jerald C Bowen, David J Petell, James
10		Fatig, Raymond Schoonover, Sue ffrench-Constant, Richard Orr, Gregory L Merlo, Donald J
15		Roberts, Jean L Rocheleau, Thomas A
	(ii)	TITLE OF INVENTION: Insecticidal Protein Toxins from Photorhabdus
20	(iii)	NUMBER OF SEQUENCES: 88
	(iv)	CORRESPONDENCE ADDRESS: (A) ADDRESSEE: DowElanco (B) STREET: 9330 Zionsville Road
25		(C) CITY: Indianapolis (D) STATE: IN (E) COUNTRY: US (F) ZIP: 46268
30	(v)	COMPUTER READABLE FORM: (A) MEDIUM TYPE: Floppy disk (B) COMPUTER: IBM PC compatible (C) OPERATING SYSTEM: PC-DOS/MS-DOS (D) SOFTWARE: PatentIn Release #1.0, Version #1.30
35	(vi)	CURRENT APPLICATION DATA:
		(A) APPLICATION NUMBER: (B) FILING DATE: (C) CLASSIFICATION:
40	(wii)	PRIOR APPLICATION DATA:
	(1 1 1	(A) APPLICATION NUMBER: US 08/063,615 (B) FILING DATE: 18-MAY-1993
45	(vii)	PRIOR APPLICATION DATA: (A) APPLICATION NUMBER: US 08/395,497 (B) FILING DATE: 28-FEB-1995
50	(vii)	PRIOR APPLICATION DATA: (A) APPLICATION NUMBER: US 60/007,255 (B) FILING DATE: 06-NOV-1995
55	(vii)	PRIOR APPLICATION DATA: (A) APPLICATION NUMBER: US 08/608,423 (B) FILING DATE: 28-FEB-1996
66	(vii)	PRIOR APPLICATION DATA: (A) APPLICATION NUMBER: US 08/705,484 (B) FILING DATE: 28-AUG-1996
60	(vii)	PRIOR APPLICATION DATA: (A) APPLICATION NUMBER: US 08/743,699 (B) FILING DATE: 06-NOV-1996

```
(viii) ATTORNEY/AGENT INFORMATION:
                (A) NAME: Borucki, Andrea T.(B) REGISTRATION NUMBER: 33651
                (C) REFERENCE/DOCKET NUMBER: 50301E
 5
          (ix) TELECOMMUNICATION INFORMATION:
                (A) TELEPHONE: 317-337-4846
                (B) TELEFAX: 317-337-4847
10
     (2) INFORMATION FOR SEQ ID NO:1:
           (i) SEQUENCE CHARACTERISTICS:
                (A) LENGTH: 11 amino acids
15
                (B) TYPE: amino acid
                (C) STRANDEDNESS:
                (D) TOPOLOGY: linear
         (ii) MOLECULE TYPE: protein
           (v) FRAGMENT TYPE: N-terminal
20
         (xi) SEQUENCE DESCRIPTION: SEQ ID NO:1 (TcbA; N-terminus):
          Phe Ile Gln Gly Tyr Ser Asp Leu Phe Gly Asn
25
     (2) INFORMATION FOR SEQ ID NO:2:
           (i) SEQUENCE CHARACTERISTICS:
30
                (A) LENGTH: 12 amino acids
                (B) TYPE: amino acid
                (C) STRANDEDNESS:
                (D) TOPOLOGY: linear
         (ii) MOLECULE TYPE: protein
35
          (v) FRAGMENT TYPE: N-terminal
          (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2 (TcaC N-terminus):
          Met Gln Asp Ser Pro Glu Val Ser Ile Thr Thr Trp
40
                          5
     (2) INFORMATION FOR SEQ ID NO:3:
45
           (i) SEQUENCE CHARACTERISTICS:
                (A) LENGTH: 19 amino acids
                (B) TYPE: amino acid
                (C) STRANDEDNESS:
                (D) TOPOLOGY: linear
          (ii) MOLECULE TYPE: protein
50
           (v) FRAGMENT TYPE: N-terminal
          (xi) SEQUENCE DESCRIPTION: SEQ ID NO:3 (TcaB<sub>i</sub> N-terminus):
55
          Ser Glu Ser Leu Phe Thr Gln Thr Leu Lys Glu Ala Arg Arg Asp Ala
                                             10
          Leu Val Ala
60
```

(2) INFORMATION FOR SEQ ID NO:4: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 14 amino acids (B) TYPE: amino acid 5 (C) STRANDEDNESS: (D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein (v) FRAGMENT TYPE: N-terminal 10 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4 (TcaAiii N-terminus): Ala Ser Pro Leu Ser Thr Ser Glu Leu Thr Ser Lys Leu Asn 15 (2) INFORMATION FOR SEQ ID NO:5: (i) SEQUENCE CHARACTERISTICS: 20 (A) LENGTH: 9 amino acids (B) TYPE: amino acid
(C) STRANDEDNESS: (D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein
(v) FRAGMENT TYPE: N-terminal 25 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:5 (TcaBii N-terminus): Ala Gly Asp Thr Ala Asn Ile Gly Asp 30 (2) INFORMATION FOR SEQ ID NO:6: 35 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 15 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 40 (ii) MOLECULE TYPE: protein (v) FRAGMENT TYPE: N-terminal (xi) SEQUENCE DESCRIPTION: SEQ ID NO:6: 45 Leu Gly Gly Ala Ala Thr Leu Leu Asp Leu Leu Leu Pro Gln Ile (2) INFORMATION FOR SEQ ID NO:7: 50 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 11 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: 55 (D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein (v) FRAGMENT TYPE: N-terminal (xi) SEQUENCE DESCRIPTION: SEQ ID NO:7 (TccB N-terminus): 60 Met Leu Ser Thr Met Glu Lys Gln Leu Asn Glu

```
(2) INFORMATION FOR SEQ ID NO:8:
           (i) SEQUENCE CHARACTERISTICS:
                (A) LENGTH: 9 amino acids
 5
                (B) TYPE: amino acid
                (C) STRANDEDNESS:
                (D) TOPOLOGY: linear
         (ii) MOLECULE TYPE: protein
(v) FRAGMENT TYPE: N-terminal
10
         (xi) SEQUENCE DESCRIPTION: SEQ ID NO:8 (TccA N-terminus):
          Met Asn Leu Ala Ser Pro Leu Ile Ser
15
     (2) INFORMATION FOR SEQ ID NO:9:
          (i) SEQUENCE CHARACTERISTICS:
20
                (A) LENGTH: 16 amino acids
                (B) TYPE: amino acid
                (C) STRANDEDNESS:
                (D) TOPOLOGY: linear
         (ii) MOLECULE TYPE: protein
          (v) FRAGMENT TYPE: N-terminal
25
         (xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:
         Met Ile Asn Leu Asp Ile Asn Glu Gln Asn Lys Ile Met Val Val Ser
30
                                            10 -
     (2) INFORMATION FOR SEQ ID NO:10:
35
          (i) SEQUENCE CHARACTERISTICS:
                (A) LENGTH: 20 amino acids
                (B) TYPE: amino acid
                (C) STRANDEDNESS:
                (D) TOPOLOGY: linear
         (ii) MOLECULE TYPE: protein
40
          (v) FRAGMENT TYPE: N-terminal
         (xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:
45
          Ala Ala Lys Asp Val Lys Phe Gly Ser Asp Ala Arg Val Lys Met Leu
          Arg Gly Val Asn
                     20
50
     (2) INFORMATION FOR SEQ ID NO:11:
           (i) SEQUENCE CHARACTERISTICS:
55
                (A) LENGTH: 7515 base pairs
                (B) TYPE: nucleic acid
                (C) STRANDEDNESS: double
                (D) TOPOLOGY: linear
         (ii) MOLECULE TYPE: DNA (genomic)
60
         (ix) FEATURE:
                (A) NAME/KEY: CDS
```

(B) LOCATION: 1..7515

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11 (tcbA gene): ATG CAA AAC TCA TTA TCA AGC ACT ATC GAT ACT ATT TGT CAG AAA CTG Met Gln Asn Ser Leu Ser Ser Thr Ile Asp Thr Ile Cys Gln Lys Leu CAA TTA ACT TGT CCG GCG GAA ATT GCT TTG TAT CCC TTT GAT ACT TTC 96 Gln Leu Thr Cys Pro Ala Glu Ile Ala Leu Tyr Pro Phe Asp Thr Phe 10 CGG GAA AAA ACT CGG GGA ATG GTT AAT TGG GGG GAA GCA AAA CGG ATT Arg Glu Lys Thr Arg Gly Met Val Asn Trp Gly Glu Ala Lys Arg Ile TAT GAA ATT GCA CAA GCG GAA CAG GAT AGA AAC CTA CTT CAT GAA AAA 15 Tyr Glu Ile Ala Gln Ala Glu Gln Asp Arg Asn Leu Leu His Glu Lys CGT ATT TTT GCC TAT GCT AAT CCG CTG CTG AAA AAC GCT GTT CGG TTG 20 Arg Ile Phe Ala Tyr Ala Asn Pro Leu Leu Lys Asn Ala Val Arg Leu 65 GGT ACC CGG CAA ATG TTG GGT TTT ATA CAA GGT TAT AGT GAT CTG TTT Gly Thr Arg Gln Met Leu Gly Phe Ile Gln Gly Tyr Ser Asp Leu Phe 25 GGT AAT CGT GCT GAT AAC TAT GCC GCG CCG GGC TCG GTT GCA TCG ATG Gly Asn Arg Ala Asp Asn Tyr Ala Ala Pro Gly Ser Val Ala Ser Met 105 30 TTC TCA CCG GCG GCT TAT TTG ACG GAA TTG TAC CGT GAA GCC AAA AAC Phe Ser Pro Ala Ala Tyr Leu Thr Glu Leu Tyr Arg Glu Ala Lys Asn 120 TTG CAT GAC AGC AGC TCA ATT TAT TAC CTA GAT AAA CGT CGC CCG GAT 35 Leu His Asp Ser Ser Ser Ile Tyr Tyr Leu Asp Lys Arg Arg Pro Asp 135 130 TTA GCA AGC TTA ATG CTC AGC CAG AAA AAT ATG GAT GAG GAA ATT TCA 40 Leu Ala Ser Leu Met Leu Ser Gln Lys Asn Met Asp Glu Glu Ile Ser ACG CTG GCT CTC TCT AAT GAA TTG TGC CTT GCC GGG ATC GAA ACA AAA Thr Leu Ala Leu Ser Asn Glu Leu Cys Leu Ala Gly Ile Glu Thr Lys 45 170 ACA GGA AAA TCA CAA GAT GAA GTG ATG GAT ATG TTG TCA ACT TAT CGT Thr Gly Lys Ser Gln Asp Glu Val Met Asp Met Leu Ser Thr Tyr Arg 50 TTA AGT GGA GAG ACA CCT TAT CAT CAC GCT TAT GAA ACT GTT CGT GAA Leu Ser Gly Glu Thr Pro Tyr His His Ala Tyr Glu Thr Val Arg Glu 195 200 205 ATC GTT CAT GAA CGT GAT CCA GGA TTT CGT CAT TTG TCA CAG GCA CCC 55 Ile Val His Glu Arg Asp Pro Gly Phe Arg His Leu Ser Gln Ala Pro ATT GTT GCT GCT AAG CTC GAT CCT GTG ACT TTG TTG GGT ATT AGC TCC 60 Ile Val Ala Ala Lys Leu Asp Pro Val Thr Leu Leu Gly Ile Ser Ser 230 235 CAT ATT TCG CCA GAA CTG TAT AAC TTG CTG ATT GAG GAG ATC CCG GAA His Ile Ser Pro Glu Leu Tyr Asn Leu Leu Ile Glu Glu Ile Pro Glu 65 AAA GAT GAA GCC GCG CTT GAT ACG CTT TAT AAA ACA AAC TTT GGC GAT Lys Asp Glu Ala Ala Leu Asp Thr Leu Tyr Lys Thr Asn Phe Gly Asp 70 ATT ACT ACT GCT CAG TTA ATG TCC CCA AGT TAT CTG GCC CGG TAT TAT

	Ile	Thr	Thr 275	Ala	Gln	Leu	Met	Ser 280	Pro	Ser	.Tyr	Leu	Ala 285	Arg	Tyr	Tyr	
5				CCG Pro													912
10	GTT Val 305	GGA Gly	TAT Tyr	AGC Ser	AGT Ser	GAT Asp 310	ATT Ile	CTG Leu	GTT Val	ATT Ile	CCG Pro 315	TTG Leu	GTC Val	GAT Asp	GGT Gly	GTG Val 320	960
1.5	GGT Gly	AAG Lys	ATG Met	GAA Glu	GTA Val 325	GTT Val	CGT Arg	GTT Val	ACC Thr	CGA Arg 330	ACA Thr	CCA Pro	TCG Ser	GAT Asp	AAT Asn 335	TAT Tyr	1008
15	ACC Thr	AGT Ser	CAG Gln	ACG Thr 340	AAT Asn	TAT Tyr	ATT Ile	GAG Glu	CTG Leu 345	TAT Tyr	CCA Pro	CAG Gln	GGT Gly	GGC Gly 350	GAC Asp	AAT Asn	1056
20	TAT Tyr	TTG Leu	ATC Ile 355	AAA Lys	TAC Tyr	AAT Asn	CTA Leu	AGC Ser 360	AAT Asn	AGT Ser	TTT Phe	GGT Gly	TTG Leu 365	GAT Asp	GAT Asp	TTT Phe	1104
25	TAT Tyr	CTG Leu 370	CAA Gln	TAT Tyr	AAA Lys	GAT Asp	GGT Gly 375	TCC Ser	GCT Ala	GAT Asp	TGG Trp	ACT Thr 380	GAG Glu	ATT Ile	GCC Ala	CAT His	1152
30	AAT Asn 385	CCC Pro	TAT Tyr	CCT Pro	GAT Asp	ATG Met 390	GTC Val	ATA Ile	AAT Asn	CAA Gln	AAG Lys 395	TAT Tyr	GAA Glu	TCA Ser	CAG Gln	GCG Ala 400	1200
2.5	ACA Thr	ATC Ile	AAA Lys	CGT Arg	AGT Ser 405	GAC Asp	TCT Ser	GAC Asp	AAT Asn	ATA Ile 410	CTC Leu	AGT Ser	ATA Ile	GGG Gly	TTA Leu 415	CAA Gln	1248
35	AGA Arg	TGG Trp	CAT His	AGC Ser 420	GGT Gly	AGT Ser	TAT Tyr	AAT Asn	TTT Phe 425	GCC Ala	GCC Ala	GCC Ala	AAT Asn	TTT Phe 430	AAA Lys	ATT Ile	1296
40	GAC Asp	CAA Gln	TAC Tyr 435	TCC Ser	CCG Pro	AAA Lys	GCT Ala	TTC Phe 440	CTG Leu	CTT Leu	AAA Lys	ATG Met	AAT Asn 445	AAG Lys	GCT Ala	ATT Ile	1344
45				AAA Lys													1392
50				GTT Val													1440
5.5	AAG Lys	GTT Val	TAT Tyr	CGG Arg	GTA Val 485	AAA Lys	TTC Phe	TAT Tyr	ATT Ile	GAT Asp 490	CGT Arg	TAT Tyr	GGC Gly	ATC Ile	AGT Ser 495	GAA Glu	1488
55				GCT Ala 500									-				1536
60				CTT Leu													1584
65				CGC Arg													1632
70				CTG Leu													1680

				TTA Leu													1728
5				TTG Leu 580													1776
10				AAT Asn													1824
15				CTG Leu													1872
20				GAC Asp													1920
20				GAA Glu													1968
25				GTT Val 660													2016
30				ACG Thr													2064
35				GGC Gly													2112
40	ATG Met 705	GCG Ala	CCT Pro	TGC Cys	TTC Phe	ACT Thr 710	TCG Ser	GCT Ala	TTG Leu	CAT His	TTG Leu 715	ACT Thr	TCT Ser	CAA Gln	GAA Glu	GTT Val 720	2160
				CTG Leu													2208
45				GGG Gly 740													2256
50	AAG Lys	GTG Val	ATT Ile 755	ACC Thr	TTT Phe	GCT Ala	CAG Gln	GTG Val 760	CTG Leu	GCA Ala	CAA Gln	TTG Leu	AGC Ser 765	CTG Leu	ATC Ile	TAT Tyr	2304
55	CGT Arg	CGT Arg 770	ATT Ile	GGG Gly	TTA Leu	AGT Ser	GAA Glu 775	ACG Thr	GAA Glu	CTG Leu	TCA Ser	CTG Leu 780	ATC Ile	GTG Val	ACT Thr	CAA Gln	2352
60	TCT Ser 785	TCT Ser	CTG Leu-	CTA -Leu	GTG Val	GCA Ala 790	GGC Gly	AAA Lys	AGC Ser	ATA Ile	CTG Leu 795	GAT Asp	CAC His	GGT Gly	CTG Leu	TTA Leu 800	2400
				GCC Ala													2448
65	CAA Gln	CAT His	GCC Ala	TCC Ser 820	TTG Leu	ATA Ile	TTG Leu	GCG Ala	GCG Ala 825	TTG Leu	AAA Lys	GAC Asp	GGA Gly	GCC Ala 830	TTG Leu	ACA Thr	2496
70	GTT Val	ACC "hr	GAT Asp 835	GTA Val	GCA Ala	CAA Gln	GCT Ala	ATG Met 840	AAT Asn	AAG Lys	GAG Glu	GAA Glu	TCT Ser 845	CTC Leu	CTA Leu	CAA Gln	2544

					GTG Val											2592
:	 				ATT Ile 870											2640
10					GAT Asp											2688
15					GCT Ala											2736
20					CAG Gln											2784
25					TAT Tyr											2832
	 				AAC Asn 950											2880
30					GTG Val											2928
35					GTT Val											2976
40				_	AGT Ser	_		Gln					Trp			3024
45		Lys			AGT Ser		Trp					Glu				3072
43	Pro				GTT Val 1030	Asp					Ile					3120
50					Leu					Gln					Ala	3168
55				Asp	GCT Ala				Tyr					Glu		3216
60			Leu		GTA Val			Ala					Val			3264
65		Gly			TAT Tyr		Ile					Ala				3312
0.5	Tyr				AGT Ser 1110	Val					Cys					3360
70					TGG Trp											3408

1125 1130 1135 AAT CCT TGG AAA AAT ATC ATC CGT CCG GTT GTT TAT ATG TCC CGC TTA 3456 Asn Pro Trp Lys Asn Ile Ile Arg Pro Val Val Tyr Met Ser Arg Leu 5 1140 1145 TAT CTG CTA TGG CTG GAG CAG CAA TCA AAG AAA AGT GAT GAT GGT AAA 3504 Tyr Leu Leu Trp Leu Glu Gln Gln Ser Lys Lys Ser Asp Asp Gly Lys 1160 1165 10 ACC ACG ATT TAT CAA TAT AAC TTA AAA CTG GCT CAT ATT CGT TAC GAC 3552 Thr Thr Ile Tyr Gln Tyr Asn Leu Lys Leu Ala His Ile Arg Tyr Asp 1175 1170 1180 GGT AGT TGG AAT ACA CCA TTT ACT TTT GAT GTG ACA GAA AAG GTA AAA 3600 15 Gly Ser Trp Asn Thr Pro Phe Thr Phe Asp Val Thr Glu Lys Val Lys 1190 1195 1185 1200 AAT TAC ACG TCG AGT ACT GAT GCT GCT GAA TCT TTA GGG TTG TAT TGT 3648 Asn Tyr Thr Ser Ser Thr Asp Ala Ala Glu Ser Leu Gly Leu Tyr Cys 20 1205 1210 ACT GGT TAT CAA GGG GAA GAC ACT CTA TTA GTT ATG TTC TAT TCG ATG 3696 Thr Gly Tyr Gln Gly Glu Asp Thr Leu Leu Val Met Phe Tyr Ser Met 25 1225 1230 CAG AGT AGT TAT AGC TCC TAT ACC GAT AAT AAT GCG CCG GTC ACT GGG 3744 Gln Ser Ser Tyr Ser Ser Tyr Thr Asp Asn Ala Pro Val Thr Gly 1240 30 CTA TAT ATT TTC GCT GAT ATG TCA TCA GAC AAT ATG ACG AAT GCA CAA 3792 Leu Tyr Ile Phe Ala Asp Met Ser Ser Asp Asn Met Thr Asn Ala Gln 1250 GCA ACT AAC TAT TGG AAT AAC AGT TAT CCG CAA TTT GAT ACT GTG ATG 3840 Ala Thr Asn Tyr Trp Asn Asn Ser Tyr Pro Gln Phe Asp Thr Val Met 1265 1275 GCA GAT CCG GAT AGC GAC AAT AAA AAA GTC ATA ACC AGA AGA GTT AAT 3888 Ala Asp Pro Asp Ser Asp Asn Lys Lys Val Ile Thr Arg Arg Val Asn 40 AAC CGT TAT GCG GAG GAT TAT GAA ATT CCT TCC TCT GTG ACA AGT AAC 3936 Asn Arg Tyr Ala Glu Asp Tyr Glu Ile Pro Ser Ser Val Thr Ser Asn 45 AGT AAT TAT TCT TGG GGT GAT CAC AGT TTA ACC ATG CTT TAT GGT GGT 3984 Ser Asn Tyr Ser Trp Gly Asp His Ser Leu Thr Met Leu Tyr Gly Gly 1315 50 AGT GTT CCT AAT ATT ACT TTT GAA TCG GCG GCA GAA GAT TTA AGG CTA 4032 Ser Val Pro Asn Ile Thr Phe Glu Ser Ala Ala Glu Asp Leu Arg Leu 1335 55 TCT ACC AAT ATG GCA TTG AGT ATT ATT CAT AAT GGA TAT GCG GGA ACC 4080 Ser Thr Asn Met Ala Leu Ser Ile Ile His Asn Gly Tyr Ala Gly Thr 1350 1355 CGC CGT ATA CAA TGT AAT CTT ATG AAA CAA TAC GCT TCA TTA GGT GAT 4128 60 Arg Arg Ile Gln Cys Asn Leu Met Lys Gln Tyr Ala Ser Leu Gly Asp 1370 AAA TTT ATA ATT TAT GAT TCA TCA TTT GAT GAT GCA AAC CGT TTT AAT 4176 Lys Phe Ile Ile Tyr Asp Ser Ser Phe Asp Asp Ala Asn Arg Phe Asn 65 1380 1390 CTG GTG CCA TTG TTT AAA TTC GGA AAA GAC GAG AAC TCA GAT GAT AGT 4224 Leu Val Pro Leu Phe Lys Phe Gly Lys Asp Glu Asn Ser Asp Asp Ser

-158-

ATT TGT ATA TAT AAT GAA AAC CCT TCC TCT GAA GAT AAG AAG TGG TAT 4272

70

	Ile	Cys 1410		Tyr	Asn	Glu	Asn 1415		Ser	Ser	Glu	Asp 1420	-	Lys	Trp	Tyr	
5	TTT Phe 1425	Ser	TCG Ser	AAA Lys	GAT Asp	GAC Asp 1430	Asn	AAA Lys	ACA Thr	GCG Ala	GAT Asp 1435	Tyr	AAT Asn	GGT Gly	GGA Gly	ACT Thr 1440	4320
10	CAA Gln	TGT Cys	ATA Ile	GAT Asp	GCT Ala 1445	Gly	ACC Thr	AGT Ser	AAC Asn	AAA Lys 1450	Asp	TTT Phe	TAT Tyr	TAT Tyr	AAT Asn 1455	Leu	4368
15	CAG Gln	GAG Glu	ATT Ile	GAA Glu 1460	Val	ATT Ile	AGT Ser	GTT Val	ACT Thr 1465	Gly	GGG Gly	TAT Tyr	TGG Trp	TCG Ser 1470	Ser	TAT Tyr	4416
13	AAA Lys	ATA Ile	TCC Ser 1475	Asn	CCG Pro	ATT Ile	TAA Asn	ATC Ile 1480	Asn	ACG Thr	GGC Gly	ATT Ile	GAT Asp 1485	Ser	GCT Ala	AAA Lys	4464
20	GTA Val	AAA Lys 1490	Val	ACC Thr	GTA Val	AAA Lys	GCG Ala 1495	Gly	GGT Gly	GAC Asp	GAT Asp	CAA Gln 1500	Ile	TTT Phe	ACT Thr	GCT Ala	4512
25	GAT Asp 1505	Asn	AGT Ser	ACC Thr	TAT Tyr	GTT Val 1510	Pro	CAG Gln	CAA Gln	CCG Pro	GCA Ala 1515	Pro	AGT Ser	TTT Phe	GAG Glu	GAG Glu 1520	4560
30	ATG Met	ATT Ile	TAT Tyr	CAG Gln	TTC Phe 1525	Asn	AAC Asn	CTG Leu	ACA Thr	ATA Ile 1530	Asp	TGT Cys	AAG Lys	AAT Asn	TTA Leu 1535	Asn	4608
35					Gln		CAT His			Ile					Thr		4656
JJ				Arg			GGT Gly		Glu					Pro			4704
40			Val				GAG Glu 1575	Asn					Tyr				4752
45		Gly					Gln					Arg					4800
50	ACG Thr	TTA Leu	TTC Phe	GCT Ala	CAA Gln 1605	Gln	TTG Leu	GTT Val	AGC Ser	CGT Arg 1610	Ala	AAT Asn	CGT Arg	GGC Gly	ATT Ile 1615	Asp	4848
55	GCA Ala	GTG Val	CTC Leu	AGT Ser 1620	Met	GAA Glu	ACT Thr	CAG Gln	AAT Asn 1625	Ile	CAG Gln	GAA Glu	CCG Pro	CAA Gln 1630	Leu	GGA Gly	4896
	GCG Ala	GGC Gly	ACA Thr 1635	Tyr	GTG Val	CAG Gln	CTT Leu	GTG Val 1640	Leu	GAT Asp	AAA Lys	TAT Tyr	GAT Asp 1645	Glu	TCT Ser	ATT Ile	4944
60	CAT His	GGC Gly 1650	Thr	AAT Asn	AAA Lys	AGC Ser	TTT Phe 1655	Ala	ATT Ile	GAA Glu	TAT Tyr	GTT Val 1660	Asp	ATA Ile	TTT Phe	AAA Lys	4992
65	GAG Glu 1665	Asn	GAT Asp	AGT Ser	TTT Phe	GTG Val 1670	Ile	TAT Tyr	CAA Gln	GGA Gly	GAA Glu 1679	Leu	AGC Ser	GAA Glu	ACA Thr	AGT Ser 1680	5040
70						Val	TTC Phe				Phe					Gly	5088

		AG AAC ys Asn		Leu					Lys					Thr		5136
5	GAT AAAASp Ly	AG ATC ys Ile 171	Leu :	TTC Phe	GAC Asp	CGT Arg	ACT Thr 1720	Asp	GAG Glu	AAA Lys	GAT Asp	CCG Pro 1725	His	GGT Gly	TGG Trp	5184
10	Phe Le	rc AGC eu Ser 730					Thr					Ser				5232
15		TA AAG eu Lys				Glu					Ser					
20		AT TTC yr Phe	Trp		Leu					Pro			Met		His	5328
20		rg Trg eu Leu		Glu					Ala					Phe		5376
25		rc TGG al Trp 1799	Ser					Ile					Ile			5424
30	Tyr H	AC TGG is Trp 310					Leu					Ser				5472
35		AA CTG ln Leu				Asp					Ala					
40		AC TAC is Tyr	Lys		Ala					Thr					Met	5568
40		GT GGT rg Gly		Ala					Leu					Leu		5616
45		CT AAA la Lys 187	Met '					Ala					Gly			5664
50	Pro G	AA GTG ln Val 890					Thr					Thr				5712
55		CT TCA la Ser				Gln					Gln					
60		GT CTC rg Leu	Asn		Arg					Leu					Asn	5808
		rg ACC eu Thr		Leu					Glu					Lys		5856
65		GG CGG rp Arg -195	Thr					Met					His			5904
70	Ser I	IT GAC le Asp 970					Ser					Ala				5952

	GAT CCA													6000
5	Asp Pro 1985	-	19	90				1999	5				2000	
	GCC GAC Ala Asp							His					Met	6048
10	CTA GAA Leu Glu		Arg Gl				Gln					Gly		6096
15	TCA CTA Ser Leu					Gln					Met			6144
20	CTA CTG Leu Leu 205				Glu					Ser				6192
25	CAG GAT Gln Asp 2065	AAC CAA Asn Gln		a Glu					Lys					
~~	GTC TCT Val Ser							Asp					Leu	6288
30	TAT GAG Tyr Glu	GAG AAC Glu Asn 210	Ile As				Gln					Leu		6336
35		TCT GCT Ser Ala 2115				Gly					Arg			6384
40	GGC GCG Gly Ala 213				Pro					Leu				6432
45	GGC ATG Gly Met 2145	CAT TAT		a Ile					Ala					
.0	TTG AGT Leu Ser	GCT TCT Ala Ser						Glu					Ser	6528
50	GAA ATA Glu Ile		Arg Ar				Trp					Asp		6576
55	GCA CAA Ala Gln	GCG GAG Ala Glu 2195				Asn					Ser			6624
60	ATT CGC Ile Arg 221	Arg Glu	GCC GC Ala Al	GAA Glu 2215	Met	CAA Gln	AAA Lys	GAG Glu	TAC Tyr 2220	Leu	AAA Lys	ACC Thr	CAG Gln	6672
65	CAA GCT Gln Ala 2225	CAG GCG Gln Ala	CAG GC. Gln Al. 22	a Gln	CTT Leu	ACT Thr	TTC Phe	TTA Leu 2235	Arg	AGC Ser	AAA Lys	TTC Phe	AGT Ser 2240	
- 0	AAT CAA Asn Gln	GCG TTA Ala Leu	TAT AG Tyr Se 2245	TGG Trp	TTA Leu	CGA Arg	GGG Gly 2250	Arg	TTG Leu	TCA Ser	GGT Gly	ATT Ile 2255	Tyr	6768
70	TTC CAG Phe Gln	TTC TAT	GAC TTO	G GCC	GTA Val	TCA Ser	CGT Arg	TGC Cys	CTG Leu	ATG Met	GCA Ala	GAG Glu	CAA Gln	6816

				2260)				2269	5.				227	D		
5				Trp				GAT Asp 2280	Asn					Val			6864
10			Trp					Ala					Gly				6912
10	ATA Ile 2305	${\tt Gln}$	AAT Asn	CTG Leu	GCA Ala	CAA Gln 2310	Met	GAA Glu	GAG Glu	GCA Ala	TAT Tyr 2315	Leu	AAA Lys	TGG Trp	GAA Glu	TCT Ser 2320	6960)
15						Glu		ACG Thr			Leu					Asp	7008
20					Asn			TTT Phe		Leu					Pro		7056
25	TTA Leu	TTG Leu	GAT Asp 2355	Lys	GGG Gly	GAG Glu	GGA Gly	ACA Thr 2360	Ala	GGA Gly	ACT Thr	AAA Lys	GAA Glu 2365	Asn	GGG Gly	TTA Leu	7104
30	TCA Ser	TTG Leu 2370	Ala	AAT Asn	GCT Ala	ATC Ile	CTG Leu 2375	Ser	GCT Ala	TCG Ser	GTC Val	AAA Lys 2380	Leu	TCC Ser	GAC Asp	TTG Leu	7152
30	AAA Lys 2385	Leu	GGA Gly	ACG Thr	GAT Asp	TAT Tyr 2390	Pro	GAC Asp	AGT Ser	ATC Ile	GTT Val 2395	Gly	AGC Ser	AAC Asn	AAG Lys	GTT Val 2400	7200
35						Ile		GTT Val			Pro					Pro	7248
40	TAT Tyr	CAG Gln	GAT Asp	GTT Val 2420	Gln	GCT Ala	ATG Met	CTC Leu	AGC Ser 2425	Tyr	GGT Gly	GGC Gly	AGT Ser	ACT Thr 2430	Gln	TTG Leu	7296
45	CCG Pro	AAA Lys	GGT Gly 2435	Cys	TCA Ser	GCG Ala	TTG Leu	GCT Ala 2440	Val	TCT Ser	CAT His	GGT Gly	ACC Thr 2445	Asn	GAT Asp	AGT Ser	7344
50	GGT Gly	Gln	TTC Phe	Gln	Leu	Asp	Phe	Asn	GAC Asp	GGC Gly	Lys	TAC Tyr 2460	Leu	CCA Pro	TTT Phe	GAA Glu	7392
33	GGT Gly 2465	Ile	GCT Ala	CTT Leu	GAT Asp	GAT Asp 2470	Gln	GGT Gly	ACA Thr	CTG Leu	AAT Asn 2475	Leu	CAA Gln	TTT Phe	CCG Pro	AAT Asn 2480	7440
55	GCT Ala	ACC Thr	GAC Asp	AAG Lys	CAG Gln 2485	Lys	GCA Ala	ATA Ile	TTG Leu	CAA Gln 2490	Thr	ATG Met	AGC Ser	GAT Asp	ATT Ile 2495	Ile	7488
60			ATT Ile		Tyr			CGT Arg	TAA * 2505	;							7515

(2) INFORMATION FOR SEQ ID NO:12:

5

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2504 amino acids
 - (B) TYPE: amino acid
- (D) TOPOLOGY: linear
 (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:12 (TcbA protein):
- Met Gln Asn Ser Leu Ser Ser Thr Ile Asp Thr Ile Cys Gln Lys Leu

 1 5 10 15
- Gln Leu Thr Cys Pro Ala Glu Ile Ala Leu Tyr Pro Phe Asp Thr Phe
 20 25 30
 - Arg Glu Lys Thr Arg Gly Met Val Asn Trp Gly Glu Ala Lys Arg Ile 35 40
- 20 Tyr Glu Ile Ala Gln Ala Glu Gln Asp Arg Asn Leu Leu His Glu Lys
 50 55 60
- Arg Ile Phe Ala Tyr Ala Asn Pro Leu Leu Lys Asn Ala Val Arg Leu 65 70 75 80
- Gly Thr Arg Gln Met Leu Gly Phe Ile Gln Gly Tyr Ser Asp Leu Phe
 85
 90
 95
- Gly Asn Arg Ala Asp Asn Tyr Ala Ala Pro Gly Ser Val Ala Ser Met 30 100 105 110
 - Phe Ser Pro Ala Ala Tyr Leu Thr Glu Leu Tyr Arg Glu Ala Lys Asn 115 120 125
- 35 Leu His Asp Ser Ser Ser Ile Tyr Tyr Leu Asp Lys Arg Arg Pro Asp 130 135 140
- Leu Ala Ser Leu Met Leu Ser Gln Lys Asn Met Asp Glu Glu Ile Ser 145 150 155 160 40
- Thr Leu Ala Leu Ser Asn Glu Leu Cys Leu Ala Gly Ile Glu Thr Lys 165 170 175
- Thr Gly Lys Ser Gln Asp Glu Val Met Asp Met Leu Ser Thr Tyr Arg
 45 180 185 190
 - Leu Ser Gly Glu Thr Pro Tyr His His Ala Tyr Glu Thr Val Arg Glu

 200
 205
- 50 Ile Val His Glu Arg Asp Pro Gly Phe Arg His Leu Ser Gln Ala Pro 210 215 220
- Ile Val Ala Ala Lys Leu Asp Pro Val Thr Leu Leu Gly Ile Ser Ser 225 230 235 240
- His Ile Ser Pro Glu Leu Tyr Asn Leu Leu Ile Glu Glu Ile Pro Glu 245 250 255
- Lys Asp Glu Ala Ala Leu Asp Thr Leu Tyr Lys Thr Asn Phe Gly Asp 60 260 265 270
 - Ile Thr Thr Ala Gln Leu Met Ser Pro Ser Tyr Leu Ala Arg Tyr Tyr
 275 280 285
- 65 Gly Val Ser Pro Glu Asp Ile Ala Tyr Val Thr Thr Ser Leu Ser His 290 295 300
- Val Gly Tyr Ser Ser Asp Ile Leu Val Ile Pro Leu Val Asp Gly Val 305 310 315 320

	Gly	Lys	Met	Glu	Val 325	Val	Arg	Val	Thr	Arg 330	Thr	Pro	Ser	Asp	Asn 335	Tyr
5	Thr	Ser	Gln	Thr 340	Asn	Tyr	Ile	Glu	Leu 345	Tyr	Pro	Gln	Gly	Gly 350	Asp	Asn
	Tyr	Leu	Ile 355	Lys	Tyr	Asn	Leu	Ser 360	Asn	Ser	Phe	Gly	Leu 365	Asp	Asp	Phe
10	Tyr	Leu 370	Gln	Tyr	Lys	Asp	Gly 375	Ser	Ala	Asp	Trp	Thr 380	Glu	Ile	Ala	His
15	Asn 385	Pro	Tyr	Pro	Asp	Met 390	Val	Ile	Asn	Gln	Lys 395	Tyr	Glu	Ser	Gln	Ala 400
13	Thr	Ile	Lys	Arg	Ser 405	Asp	Ser	Asp	Asn	Ile 410	Leu	Ser	Ile	Gly	Leu 415	Gln
20	Arg	Trp	His	Ser 420	Gly	Ser	Tyr	naA	Phe 425	Ala	Ala	Ala	Asn	Phe 430	Lys	Ile
	Asp	Gln	Tyr 435	Ser	Pro	Lys	Ala	Phe 440	Leu	Leu	Lys	Met	Asn 445	Lys	Ala	Ile
25	Arg	Leu 450	Leu	Lys	Ala	Thr	Gly 455	Leu	Ser	Phe	Ala	Thr 460	Leu	Glu	Arg	Ile
30	Val 465	Asp	Ser	Val	Asn	Ser 470	Thr	Lys	Ser	Ile	Thr 475	Val	Glu	Val	Leu	Asn 480
30	Lys	Val	Tyr	Arg	Val 485	Lys	Phe	Tyr	Ile	Asp 490	Arg	Tyr	Gly	Ile	Ser 495	Glu
35	Glu	Thr	Ala	Ala 500	Ile	Leu	Ala	Asn	Ile 505	Asn	Ile	Ser	Gln	Gln 510	Ala	Val
	Gly	Asn	Gln 515	Leu	Ser	Gln	Phe	Glu 520	Gln	Leu	Phe	Asn	His 525	Pro	Pro	Leu
40	Asn	Gly 530	Ile	Arg	Tyr	Glu	Ile 535	Ser	Glu	Asp	Asn	Ser 540	Lys	His	Leu	Pro
45	Asn 545	Pro	Asp	Leu	Asn	Leu 550	Lys	Pro	Asp	Ser	Thr 555	Gly	Asp	Asp	Gln	Arg 560
	Lys	Ala	Val	Leu	Lys 565	Arg	Ala	Phe	Gln	Val 570	Asn	Ala	Ser	Glu	Leu 575	Tyr
50	Gln	Met	Leu	Leu 580	Ile	Thr	Asp	Arg	Lys 585	Glu	Asp	Gly	Val	Ile 590	Lys	Asņ
	Asn	Leu	Glu 595	Asn	Leu	Ser	Asp	Leu 600	Tyr	Leu	Val	Ser	Leu 605	Leu	Ala	Gln
55	Ile	His 610	Asn	Leu	Thr	Ile	Ala 615	Glu	Leu	Asn	Ile	Leu 620	Leu	Val	Ile	Cys
60	Gly 625	Tyr	Gly	Asp	Thr	Asn 630	Ile	Tyr	Gln	Ile	Thr 635	Asp	Asp	Asn	Leu	Ala 640
	Lys	Ile	Val	Glu	Thr 645	Leu	Leu	Trp	Ile	Thr 650	Gln	Trp	Leu	Lys	Thr 655	Gln
65	Lys	Trp	Thr	Val 660	Thr	Asp	Leu	Phe	Leu 665	Met	Thr	Thr	Ala	Thr 670	Tyr	Ser
	Thr	Thr	Leu 675	Thr	Pro	Glu	Ile	Ser 680	Asn	Leu	Thr	Ala	Thr 685	Leu	Ser	Ser
70	Thr	Leu 690		Gly	Lys	Glu	Ser 695	Leu	Ile	Gly	Glu	Asp 700	Leu	Lys	Arg	Ala

	Met 705	Ala	Pro	Cys	Phe	Thr 710	Ser	Ala	Leu	His	Leu 715	Thr	Ser	Gln	Glu	Val 720
5	Ala	Tyr	Asp	Leu	Leu 725	Leu	Trp	Ile	Asp	Gln 730	Ile	Gln	Pro	Ala	Gln 735	Ile
10	Thr	Val	qaA	Gly 740	Phe	Trp	Glu	Glu	Val 745	Gln	Thr	Thr	Pro	Thr 750	Ser	Leu
	Lys	Val	Ile 755	Thr	Phe	Ala	Gln	Val 760	Leu	Ala _	Gln	Leu	Ser 765	Leu	Ile	Tyr
15	Arg	Arg 770	Ile	Gly	Leu	Ser	Glu 775	Thr	Glu	Leu	Ser	Leu 780	Ile	Val	Thr	Gln
	Ser 785	Ser	Leu	Leu	Val	Ala 790	Gly	Lys	Ser	Ile	Leu 795	Asp	His	Gly	Leu [.]	Leu 800
20	Thr	Leu	Met	Ala	Leu 805	Glu	Gly	Phe	His	Thr 810	Trp	Val	Asn	Gly	Leu 815	Gly
25	Gln	His	Ala	Ser 820	Leu	Ile	Leu	Ala	Ala 825	Leu	Lys	Asp	Gly	Ala 830	Leu	Thr
	Val	Thr	Asp 835	Val	Ala	Gln	Ala	Met 840	Asn	Lys	Glu	Glu	Ser 845	Leu	Leu	Gln
30	Met	Ala 850	Ala	Asn	Gln	Val	Glu [.] 855	Lys	Asp	Leu	Thr	Lys 860	Leu	Thr	Ser	Trp
	Thr 865	Gln	Ile	Asp	Ala	Ile 870	Leu	Gln	Trp	Leu	Gln 875	Met	Ser	Ser	Ala	Leu 880
35	Ala	Val	Ser	Pro	Leu 885	Asp	Leu	Ala	Gly	Met 890	Met	Ala	Leu	Lys	Tyr 895	Gly
40	Ile	Asp	His	Asn 900	Tyr	Ala	Ala	Trp	Gln 905	Ala	Ala	Ala	Ala	Ala 910	Leu	Met
	Ala	Asp	His 915	Ala	Asn	Gln	Ala	Gln 920	Lys	Lys	Leu	Asp	Glu 925	Thr	Phe	Ser
45	Lys	Ala 930	Leu	Cys	Asn	Tyr	Tyr 935	Ile	Asn	Ala	Val	Val 940	Asp	Ser	Ala	Ala
	Gly 945	Val	Arg	Asp	Arg	Asn 950	Gly	Leu	Tyr	Thr	Tyr 955	Leu	Leu	Ile	Asp	Asn 960
50	Gln	Val	Ser	Ala	Asp 965	Val	Ile	Thr	Ser	Arg 970	Ile	Ala	Glu	Ala	Ile 975	Ala
55	Gly	Ile	Gln	Leu 980	Tyr	Val	Asn	Arg	Ala 985	Leu	Asn	Arg	Asp	Glu 990	Gly	Gln
	Leu	Ala	Ser 995	Asp	Val	Ser	Thr	Arg 1000		Phe	Phe	Thr	Asp 1005	_	Glu	Arg
60	Tyr	Asn 1010		Arg	Tyr	Ser	Thr 1015		Ala	Gly	Val	Ser 1020		Leu	Val	Tyr
	Tyr 1025		Glu	Asn	Tyr	Val 1030	Asp)	Pro	Thr	Gln	Arg 1035		Gly	Gln	Thr	Lys 1040
65	Met	Met	Asp	Ala	Leu 1045		Gln	Ser	Ile	Asn 1050		Ser	Gln	Leu	Asn 1055	
70	Asp	Thr	Val	Glu 1060		Ala	Phe	Lys	Thr 1065	-	Leu	Thr	Ser	Phe 1070		Gln
	Val	Ala	Asn	Leu	Lys	Val	Ile	Ser	Ala	Tyr	His	Asp	Asn	Val	Asn	Val

			1075	5				1080)				1085	5		
5	Asp	Gln 1090	Gly)	Leu	Thr	Tyr	Phe 1095		Gly	Ile	Asp	Gln 1100		Ala	Pro	Gly
	Thr 1105		Tyr	Trp	Arg	Ser 1110		Asp	His	Ser	Lys 1115		Glu	Asn	Gly	Lys 1120
10	Phe	Ala	Ala	Asn	Ala 1125		Gly	Glu	Trp	Asn 1130		Ile	Thr	Сув	Ala 1139	
	Asn	Pro	Trp	Lys 1140		Ile	Ile	Arg	Pro 1145		Val	Tyr	Met	Ser 1150		Leu
15	Tyr	Leu	Leu 1155		Leu	Glu	Gln	Gln 1160		Lys	Lys	Ser	Asp 1165		Gly	Lys
20	Thr	Thr 1170	Ile	Tyr	Gln	Tyr	Asn 1175		Lys	Leu	Ala	His 1180		Arg	Tyr	Asp
20	Gly 1185		Trp	Asn	Thr	Pro 1190		Thr	Phe	Asp	Val 1195		Glu	Lys	Val	Lys 1200
25	Asn	Tyr	Thr	Ser	Ser 1205		Asp	Ala	Ala	Glu 1210		Leu	Gly	Leu	Tyr 1215	
	Thr	Gly	Tyr	Gln 1220		Glu	Asp	Thr	Leu 1225		Val	Met	Phe	Tyr 1230		Met
30	Gln	Ser	Ser 1235		Ser	Ser	Tyr	Thr 1240		Asn	Asn	Ala	Pro 1245		Thr	Gly
35	Leu	Tyr 1250	Ile	Phe	Ala	qaA	Met 1255		Ser	qsA	Asn	Met 1260		Asn	Ala	Gln
	Ala 1265		Asn	Tyr	Trp	Asn 1270		Ser	Tyr	Pro	Gln 1275		Asp	Thr	Val	Met 1280
40	Ala	Asp	Pro	Asp	Ser 1285	-	Asn	Lys	Lys	Val 1290		Thr	Arg	Arg	Val 1295	
	Asn	Arg	Tyr	Ala 1300		Asp	Tyr	Glu	Ile 1305		Ser	Ser	Val	Thr 1310		Asn
45	Ser	Asn	Tyr 1315		Trp	Gly	Asp	His 1320		Leu	Thr	Met	Leu 1325	_	Gly	Gly
50	Ser	Val 1330	Pro	Asn	Ile	Thr	Phe 1335		Ser	Ala	Ala	Glu 1340		Leu	Arg	Leu
	1345	5	Asn			1350)				1355	5				1360
55			Ile		1365	5				1370)				1375	5
	Lys	Phe	Ile	Ile 1380		Asp	Ser	Ser	Phe 1389		Asp	Ala	Asn	Arg 1390		Asn
60	Leu	Val	Pro 1395		Phe	Lys	Phe	Gly 1400	-	Asp	Glu	Asn	Ser 1409	_	Asp	Ser
65	Ile	Cys 1410	Ile)	Tyr	Asn	Glu	Asn 1415		Ser	Ser	Glu	Asp 1420	-	Lys	Trp	Tyr
**	1425	5	Ser			1430)				1439	5				1440
70	Gln	Cys	Ile	Asp	Ala 1445		Thr	Ser	Asn	Lys 1450		Phe	Tyr	Tyr	Asn 145	

	Gln	Glu	Ile	Glu 146	Val 0	Ile	Ser	· Val	Thr 146	Gly	.Gly	Tyr	Trp	Ser 147		Tyr
5	Lys	Ile	Ser 147	Asn 5	Pro	Ile	Asn	11e	Asn 0	Thr	Gly	Ile	Asp 148		Ala	Lys
	Val	Lys 149	Val 0	Thr	Val	Lys	Ala 149	Gly 5	Gly	Asp	Asp	Gln 150	lle 0	Phe	Thr	Ala
10	Asp 150	Asn 5	Ser	Thr	Tyr	Val 151	Pro 0	Gln	Gln	Pro	Ala 151		Ser	Phe	Glu	Glu 152
15	Met	Ile	Tyr	Gln	Phe 152	Asn 5	Asn	Leu	Thr	Ile 153		Суѕ	Lys	Asn	Leu 153	Asn 5
	Phe	Ile	Asp	Asn 154	Gln 0	Ala	His	Ile	Glu 154	Ile 5	Asp	Phe	Thr	Ala 155		Ala
20	Gln	Asp	Gly 155	Arg 5	Phe	Leu	Gly	Ala 156	Glu 0	Thr	Phe	Ile	Ile 156		Val	Thr
	Lys	Lys 1570	Val	Leu	Gly	Thr	Glu 157	Asn 5	Val	Ile	Ala	Leu 158		Ser	Glu	Asn
25	Asn 1585	Gly	Val	Gln	Tyr	Met 159	Gln O	Ile	Gly	Ala	Tyr 159		Thr	Arg	Leu	Asn 1600
30	Thr	Leu	Phe	Ala	Gln 1605	Gln 5	Leu	Val	Ser	Arg 161	Ala O	Asn	Arg	Gly	Ile 161	Asp 5
	Ala	Val	Leu	Ser 1620	Met) 	Glu	Thr	Gln	Asn 1625	Ile 5	Gln	Glu	Pro	Gln 163		Gly
35	Ala	Gly	Thr 1635	Tyr	Val	Gln	Leu	Val 1640	Leu)	Asp	Lys	Tyr	Asp 1649		Ser	Ile
	His	Gly 1650	Thr	Asn	Lys	Ser	Phe 1655	Ala 5	Ile	Glu	Tyr	Val 1660		Ile	Phe	Lys
40	Glu 1665	Asn	Asp	Ser	Phe	Val 1670	Ile	Tyr	Gln	Gly	Glu 1675	Leu	Ser	Glu	Thr	Ser 1680
45	Gln	Thr	Val	Val	Lys 1685	Val	Phe	Leu	Ser	Tyr 1690	Phe)	Ile	Glu	Ala	Thr 1699	Gly
	Asn	Lys	Asn	His 1700	Leu	Trp	Val	Arg	Ala 1705	Lys	Tyr	Gln	Lys	Glu 1710		Thr
50	Asp	Lys	Ile 1715	Leu	Phe	Asp	Arg	Thr 1720	Asp)	Glu	Lys	Asp	Pro 1725		Gly	Trp
	Phe	Leu 1730	Ser	Asp	Asp	His	Lys 1735	Thr	Phe	Ser	Gly	Leu 1740		Ser	Ala	Gln
55	Ala 1745	Leu	Lys	Asn	Asp	Ser 1750	Glu	Pro	Met	Asp	Phe 1755		Gly	Ala	Asn	Ala 1760
60	Leu	Tyr	Phe	Trp	Glu 1765	Leu	Phe	Tyr	Tyr	Thr 1770	Pro	Met	Met	Met	Ala 1775	
	Arg	Leu	Leu	Gln 1780	Glu	Gln	Asn	Phe	Asp 1785	Ala	Ala	Asn	His	Trp 1790		Arg
65	Tyr	Val	Trp 1795	Ser	Pro	Ser	Gly	Tyr 1800	Ile	Val	Asp	Gly	Lys 1805		Ala	Ile
	Tyr	His 1810	Trp	Asn	Val	Arg	Pro 1815	Leu	Glu	Glu	Asp	Thr 1820		Trp	Asn	Ala
70	Gln 1825	Gln	Leu	Asp	Ser	Thr 1830	Asp	Pro	Asp	Ala	Val 1835		Gln	Asp	Asp	Pro 1840

	Met	His	Tyr	Lys	Val 1845		Thr	Phe	Met	Ala 1850		Leu	Asp	Leu	Leu 1855	
5	Ala	Arg	Gly	Asp 1860		Ala	Tyr	Arg	Gln 1865		Glu	Arg	Asp	Thr 1870		Ala
10	Glu	Ala	Lys 1875		Trp	Tyr	Thr	Gln 1880		Leu	Asn	Leu	Leu 1885		Asp	Glu
	Pro	Gln 1890	Val	Met	Leu	Ser	Thr 1895		Trp	Ala —	Asn _	Pro 1900		Leu	Gİy	Asn
15	Ala 1905		Ser	Lys	Thr	Thr 1910		Gln	Val	Arg	Gln 1919		Val	Leu	Thr	Gln 1920
	Leu	Arg	Leu	Asn	Ser 1925		Val	Lys	Thr	Pro 1930		Leu	Gly	Thr	Ala 1935	
20	Ser	Leu	Thr	Ala 1940		Phe	Leu	Pro	Gln 1945		Asn	Ser	Lys	Leu 1950		Gly
25	Tyr	Trp	Arg 1955		Leu	Ala	Gln	Arg 1960		Phe	Asn	Leu	Arg 1965		Asn	Leu
	Ser	Ile 1970	Asp)	Gly	Gln	Pro	Leu 1975		Leu	Pro	Leu	Tyr 1980		Lys	Pro	Ala
30	Asp 1985		rys	Ala	Leu	Leu 1990		Ala	Ala	Val	Ser 1999		Ser	Gln	Gly	Gly 2000
	Ala	Asp	Leu	Pro	Lys 2009		Pro	Leu	Thr	Ile 2010		Arg	Phe	Pro	Gln 2015	
35	Leu	Glu	Gly	Ala 2020		Gly	Leu	Val	Asn 2025		Leu	Ile	Gln	Phe 2030		Ser
40	Ser	Leu	Leu 2035		Tyr	Ser	Glu	Arg 2040		Asp	Ala	Glu	Ala 2045		Ser	Gln
	Leu	Leu 2050	Gln	Thr	Gln	Ala	Ser 2055		Leu	Ile	Leu	Thr 2060		Ile	Arg	Met
45	Gln 2065		Asn	Gln	Leu	Ala 2070		Leu	Asp	Ser	Glu 2075		Thr	Ala	Leu	Gln 2080
	Val	Ser	Leu	Ala	Gly 2089		Gln	Gln	Arg	Phe 2090		Ser	Tyr	Ser	Gln 2095	
50	Tyr	Glu	Glu	Asn 210	Ile O	Asn	Ala	Gly	Glu 210	Gln	Arg	Ala	Leu	Ala 211		Arg
55	Ser	Glu	Ser 211		Ile	Glu	Ser	Gln 2120		Ala	Gln	Ile	Ser 212		Met	Ala
	Gly	Ala 213	Gly	Val	Asp	Met	Ala 213		Asn	Ile	Phe	Gly 214		Ala	Asp	Gly
60	Gly 2149		Hìs	Tyr	Gly	Ala 2150		Ala	Tyr	Ala	Ile 215		Asp	Gly	Ile	Glu 2160
	Leu	Ser	Ala	Ser	Ala 216		Met	Val	Asp	Ala 217		Lys	Val	Ala	Gln 2175	
65	Glu	Ile	Tyr	Arg 218		Arg	Arg	Gln	Glu 2189		Lys	Ile	Gln	Arg 219		Asn
70	Ala	Gln	Ala 219		Ile	Asn	Gln	Leu 220		Ala	Gln	Leu	Glu 220		Leu	Ser
•	Ile	Arg	Arg	Glu	Ala	Ala	Glu	Met	Gln	Lys	Glu	Tyr	Leu	Lys	Thr	Gln

		2210)				2215	;				2220)				
-	Gln 2225		Gln	Ala	Gln	Ala 2230		Leu	Thr	Phe	Leu 2235		Ser	Lys	Phe	Ser 2240	
5	Asn	Gln	Ala	Leu	Tyr 2245		Trp	Leu	Arg	Gly 2250		Leu	Ser	Gly	Ile 2255		
10	Phe	Gln	Phe	Tyr 2260		Leu	Ala	Val	Ser 2265		Cys	Leu	Met	Ala 2270		Gln	
	Ser	Tyr	Gln 2275	Trp	Glu	Ala	Asn	Asp 2280		Ser	Ile	Ser	Phe 2285		Lys	Pro	
15	Gly	Ala 2290	_	Gln	Gly	Thr	Tyr 2295		Gly	Leu	Leu	Cys 2300		Glu	Ala	Leu	
20	Ile 230		Asn	Leu	Ala	Gln 2310		Glu	Glu	Ala	Tyr 2315		Lys	Trp		Ser 2320	
20	Arg	Ala	Leu	Glu -	Val 2325		Arg	Thr	Val	Ser 2330		Ala	Val	Val	Tyr 2335		
25	Ser	Leu	Glu	Gly 2340		Asp	Arg	Phe	Asn 2345		Ala	Glu	Gln	Ile 2350		Ala	
	Leu	Leu	Asp 2355	Lys	Gly	Glu	Gly	Thr 2360		Gly	Thr	Lys	Glu 2365		Gly	Leu	
30	Ser	Leu 2370		Asn	Ala	Ile	Leu 2375		Ala	Ser	Val	Lys 2380		Ser	Asp	Leu	
35	Lys 238		Gly	Thr	Asp	Tyr 2390		Asp	Ser	Ile	Val 2399		Ser	Asn	Lys	Val 2400	
30	Arg	Arg	Ile	Lys	Gln 240		Ser	Val	Ser	Leu 241		Ala	Leu	Val	Gly 2415		
40	Tyr	Gln	Asp	Val 2420		Ala	Met	Leu	Ser 242		Gly	Gly	Ser	Thr 2430		Leu	
	Pro	Lys	Gly 243	Cys 5	Ser	Ala	Leu	Ala 2440		Ser	His	Gly	Thr 2445		Asp	Ser	
45	Gly	Gln 245		Gln	Leu	Asp	Phe 245		Asp	Gly	Lys	Tyr 246		Pro	Phe	Glu	
50	Gly 246	Ile 5	Ala	Leu	Asp	Asp 247	Gln O	Gly	Thr	Leu	Asn 247	Leu 5	Gln	Phe	Pro	Asn 2480	• •
20	Ala	Thr	Asp	Lys	Gln 248		Ala	Ile	Leu	Gln 249		Met	Ser	Asp	Ile 2495		
55	Leu	His	Ile	Arg 250		Thr	Ile	Arg	* 250	5			~				
	(2)	INI	FORM	ATIO	N F	OR S	EQ I	D NO	0:13	:							
60		(:		(B) (C) (D)	LENG TYPI STRI TOPG	STH: E: a ANDE OLOG	12 minc DNES Y: 1	amin ac: S: :	no a id sing ar	cids	3						
65		·	-	OLEC				_		E0 7	[D 17	3. 2. 3. 3	/m -	. d ^	NT 4		· · · ·
															. 14 - (termi	.iius /
		Le	u Il	e Gl	у Ту	r As	n As:	n Gl	n Ph	e Se	r Gl	у Ха	a Ala	a			

-169-

Control of the Contro

1 5 . . . 10 (2) INFORMATION FOR SEQ ID NO:14: 5 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 12 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 10 (ii) MOLECULE TYPE: peptide (xi) SEQUENCE DESCRIPTION: SEQ ID NO:14 (TcdB N-terminus): 15 Met Gln Asn Ser Gln Thr Phe Ser Val Gly Glu Leu (2) INFORMATION FOR SEQ ID NO:15: 20 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 14 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 25 (ii) MOLECULE TYPE: peptide (xi) SEQUENCE DESCRIPTION: SEQ ID NO:15 (TcaA_{ii} N-terminus): 30 Ala Gln Asp Gly Asn Gln Asp Thr Phe Phe Ser Gly Asn Thr (2) INFORMATION FOR SEQ ID NO:16: 35 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 5 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single 40 (D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide (xi) SEQUENCE DESCRIPTION: SEQ ID NO:16 (TcbA N-terminus): 45 Met Gln Asn Ser Leu (2) INFORMATION FOR SEQ ID NO:17: 50 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 10 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single 55 (D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide

> Ala Phe Asn Ile Asp Asp Val Ser Leu Phe 1 5 10

peptide):

60

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:17 (TcdA; -PTlll internal

(2) INFORMATION FOR SEQ ID NO:18: . (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 16 amino acids 5 (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide (xi) SEQUENCE DESCRIPTION: SEQ ID NO:18 (TcdA; - PT79 internal 10 peptide): Phe Ile Val Tyr Thr Ser Leu Gly Val Asn Pro Asn Asn Ser Ser Asn 15 (2) INFORMATION FOR SEQ ID NO:19: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 21 amino acids 20 (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide 25 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:19 (TcaBi - PT158 internal peptide): Ile Ser Asp Leu Val Thr Thr Ser Pro Leu Ser Glu Ala Ile Gly Ser 30 Leu Gln Leu Phe Ile 20 35 (2) INFORMATION FOR SEQ ID NO:20: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 12 amino acids 40 (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide 45 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:20 (TcaBi- PT 108 internal peptide): Met Tyr Tyr Ile Gln Ala Gln Gln Leu Leu Gly Pro 50 (2) INFORMATION FOR SEQ ID NO:21: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 26 amino acids 55 (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide 60 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:21 (TcbA; - PT103 internal peptide):

```
Gly Ile Asp Ala Val Leu Ser Met Glu Thr Gln Asn Ile Gln Glu Pro
                                              10
          Gln Leu Gly Ala Gly Thr Tyr Val Gln Leu
 5
      (2) INFORMATION FOR SEQ ID NO:22:
           (i) SEQUENCE CHARACTERISTICS:
10
                (A) LENGTH: 15 amino acids
                (B) TYPE: amino acid
                (C) STRANDEDNESS: single
                (D) TOPOLOGY: linear
15
          (ii) MOLECULE TYPE: peptide
          (xi) SEQUENCE DESCRIPTION: SEQ ID NO:22 (TcbAii- PT56 internal
     peptide):
20
          Ile Ser Asm Pro Ile Asm Ile Asm Thr Gly Ile Asp Ser Ala Lys
     (2) INFORMATION FOR SEQ ID NO:23:
25
           (i) SEQUENCE CHARACTERISTICS:
                (A) LENGTH: 13 amino acids
                (B) TYPE: amino acid
                (C) STRANDEDNESS: single
30
                (D) TOPOLOGY: linear
          (ii) MOLECULE TYPE: peptide
          (xi) SEQUENCE DESCRIPTION: SEQ ID NO:23 (TcbA- PT81 (a)
     internal peptide):
35
          Thr Tyr Leu Thr Ser Phe Glu Gln Val Ala Asn Leu Lys
40
     (2) INFORMATION FOR SEQ ID NO:24:
           (i) SEQUENCE CHARACTERISTICS:
                (A) LENGTH: 22 amino acids
                (B) TYPE: amino acid(C) STRANDEDNESS: single
45
                (D) TOPOLOGY: linear
          (ii) MOLECULE TYPE: peptide
          (xi) SEQUENCE DESCRIPTION: SEQ ID NO:24 (TcbAii- PT81 (b)
50
     internal peptide):
          Val Leu Gly Thr Glu Asn Val Ile Ala Leu Tyr Ser Glu Asn Asn Gly
55
          Val Gln Tyr Met Gln Ile
```

(2) INFORMATION FOR SEQ ID NO:25: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 6054 base pairs (B) TYPE: nucleic acid 5 (C) STRANDEDNESS: double (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic) (ix) FEATURE: 10 (A) NAME/KEY: CDS (B) LOCATION: 1..43 (D) OTHER INFORMATION: /product = "end of TcaA;;;" (ix) FEATURE: (A) NAME/KEY: RBS 15 (B) LOCATION: 51 (ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 65 3634 (D) OTHER INFORMATION: /product= "TcaBi" 20 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:25: A GTA GCC CAA AAC TTA AGT GCC GCA ATC AGC AAT CGT CAG TAACCGGATA 50 Val Ala Gln Asn Leu Ser Ala Ala Ile Ser Asn Arg Gln ••• 25 AAGAAGGAAT TGATT ATG TCT GAA TCT TTA TTT ACA CAA ACG TTG AAA GAA Met Ser Glu Ser Leu Phe Thr Gln Thr Leu Lys Glu 30 GCG CGC CGT GAT GCA TTG GTT GCT CAT TAT ATT GCT ACT CAG GTG CCC Ala Arg Arg Asp Ala Leu Val Ala His Tyr Ile Ala Thr Gln Val Pro 35 GCA GAT TTA AAA GAG AGT ATC CAG ACC GCG GAT GAT CTG TAC GAA TAT Ala Asp Leu Lys Glu Ser Ile Gln Thr Ala Asp Asp Leu Tyr Glu Tyr CTG_TTG CTG GAT ACC AAA ATT AGC GAT CTG GTT ACT ACT TCA CCG CTG 40 Leu Leu Leu Asp Thr Lys Ile Ser Asp Leu Val Thr Thr Ser Pro Leu TCC GAA GCG ATT GGC AGT CTG CAA TTG TTT ATT CAT CGT GCG ATA GAG Ser Glu Ala Ile Gly Ser Leu Gln Leu Phe Ile His Arg Ala Ile Glu 45 GGC TAT GAC GGC ACG CTG GCA GAC TCA GCA AAA CCC TAT TTT GCC GAT Gly Tyr Asp Gly Thr Leu Ala Asp Ser Ala Lys Pro Tyr Phe Ala Asp 50 GAA CAG TTT TTA TAT AAC TGG GAT AGT TTT AAC CAC CGT TAT AGC ACT Glu Gln Phe Leu Tyr Asn Trp Asp Ser Phe Asn His Arg Tyr Ser Thr 100 55 TGG GCT GGC AAG GAA CGG TTG AAA TTC TAT GCC GGG GAT TAT ATT GAT Trp Ala Gly Lys Glu Arg Leu Lys Phe Tyr Ala Gly Asp Tyr Ile Asp CCA ACA TTG CGA TTG AAT AAG ACC GAG ATA TTT ACC GCA TTT GAA CAA 60 Pro Thr Leu Arg Leu Asn Lys Thr Glu Ile Phe Thr Ala Phe Glu Gln 125 130 GGT ATT TCT CAA GGG AAA TTA AAA AGT GAA TTA GTC GAA TCT AAA TTA Gly Ile Ser Gln Gly Lys Leu Lys Ser Glu Leu Val Glu Ser Lys Leu 65 150

CGT GAT TAT CTA ATT AGT TAT GAC ACT TTA GCC ACC CTT GAT TAT ATT

	Arg	Asp	Tyr	Leu 160	Ile	Ser	Tyr	Asp	Thr 165	Leų	Ala	Thr	Leu	Asp 170	туr	Ile	
5						AAA Lys											628
10						TAT Tyr											676
1.5						TTG Leu 210											724
15						AGT Ser											772
20						CTG Leu											820
25						GTT Val											868
30						AAG Lys											916
35						GCA Ala 290											964
33						GAT Asp											1012
40						AAT Asn											1060
45	ACG Thr	TTA Leu	TGT Cys 335	TAT Tyr	GAC Asp	TCT Ser	GGC Gly	AAC Asn 340	GTG Val	ATT Ile	AAG Lys	AAC Asn	CTA Leu 345	TCT Ser	AGT Ser	ACA Thr	1108
50	GGA Gly	AGT Ser 350	GCA Ala	AAT Asn	TTA Leu	TCG Ser	TCA Ser 355	AAG Lys	GAT Asp	TAT Tyr	GCC Ala	ACA Thr 360	ACT Thr	AAA Lys	TTA Leu	CGC Arg	1156
55	ATG Met 365	TGT Cys	CAT His	GGA Gly	CAA Gln	AGT Ser 370	TAC Tyr	AAT Asn	GAT Asp	AAT Asn	AAC Asn 375	TAC Tyr	TGC Cys	AAT Asn	TTT Phe	ACA Thr 380	1204
33	CTC Leu	TCT Ser	ATT Ile	AAT Asn	ACA Thr 385	ATA Ile	GAA Glu	TTC Phe	ACC Thr	TCC Ser 390	TAC Tyr	GGC Gly	ACA Thr	TTC Phe	TCA Ser 395	TCA Ser	1252
60	GAT Asp	GGA Gly	AAA Lys	CAA Gln 400	TTT Phe	ACA Thr	CCA Pro	CCT Pro	TCT Ser 405	GGT Gly	TCT Ser	GCC Ala	ATT Ile	GAT Asp 410	TTA Leu	CAC His	1300
65	CTC Leu	CCT Pro	AAT Asn 415	TAT Tyr	GTA Val	GAT Asp	CTC Leu	AAC Asn 420	GCG Ala	CTA Leu	TTA Leu	GAT Asp	ATT Ile 425	AGC Ser	CTC Leu	GAT Asp	1348
70	TCA Ser	CTA Leu 430	CTT Leu	AAT Asn	TAT Tyr	GAC Asp	GTT Val 435	CAG Gln	GGG Gly	CAG Gln	TTT Phe	GGC Gly 440	GGA Gly	TCT Ser	AAT Asn	CCG Pro	1396

			AAT Asn														1444
5	TTC Phe	CAT His	ATT Ile	CCG Pro	TTC Phe 465	CTT Leu	GTT Val	ACG Thr	GTC Val	CGT Arg 470	ATG Met	CAA Gln	ACC Thr	GAA Glu	CAA Gln 475	CGT Arg	1492
10	TAC Tyr	GAA Glu	Asp	GCG Ala 480	GAC Asp	ACT Thr	TGG Trp	TAC Tyr	AAA Lys 485	TAT Tyr	ATT Ile	TTC Phe	CGC Arg	AGC Ser 490	GCC Ala	GGT Gly	1540
15			GAT Asp 495														1588
20			AAT Asn														1636
20			GCC Ala														1684
25			AAG Lys														1732
30			GAC Asp														1780
35			ATG Met 575														1828
40			CAT His														1876
10			GCT Ala														1924
45			GCT Ala														1972
50			TTC Phe														2020
55.			GAG Glu 655														2068
60			CCG ⁻ Pro														2116
			CAA Gln														2164
65	GCT Ala	GGT Gly	GGT Gly	CAA Gln	GGC Gly 705	AGT Ser	GTT Val	CAG Gln	GGC Gly	TGG Trp 710	CGC Arg	TAT Tyr	CCG Pro	TTA Leu	TTG Leu 715	GTA Val	2212
70			GCC Ala														2260

5	TTA Leu	CAA Gln	ACA Thr 735	ACG Thr	TTA Leu	GAA Glu	CAT His	CAG Gln 740	GAT Asp	AAT Asn	GAA Glu	AAA Lys	ATG Met 745	ACG Thr	ATA Ile	CTG Leu	2308
J	TTG Leu	CAG Gln 750	ACT Thr	CAA Gln	CAG Gln	GAA Glu	GCC Ala 755	ATC Ile	CTG Leu	AAA Lys	CAT His	CAG Gln 760	CAC His	GAT Asp	ATA Ile	CAA Gln	2356
10	CAA Gln 765	AAT Asn	AAT Asn	CTA Leu	AAA Lys	GGA Gly 770	TTA Leu	CAA Gln	CAC His	AGC Ser	CTG Leu 775	ACC Thr	GCA Ala	TTA Leu	CAG Gln	GCT Ala 780	2404
15	AGC Ser	CGT Arg	GAT Asp	GGC Gly	GAC Asp 785	ACA Thr	TTG Leu	CGG Arg	CAA Gln	AAA Lys 790	CAT His	TAC Tyr	AGC Ser	GAC Asp	CTG Leu 795	ATT Ile	2452
20	Asn	Gly	Gly	Leu 800	Ser	Ala	Ala	Glu	Ile 805	Ala	Gly	Leu	Thr	Leu 810	Arg	Ser	2500
25	Thr	Ala	Met 815	Ile	Thr	Asn	Gly	Val 820	Ala	Thr	Gly	Leu	Leu 825	Ile 	Ala	Gly	2548
	GGA Gly	ATC Ile 830	GCC Ala	AAC Asn	GCG Ala	GTA Val	CCT Pro 835	AAC Asn	GTC Val	TTC Phe	GGG Gly	CTG Leu 840	GCT Ala	AAC Asn	GGT Gly	GGA Gly	2596
30	TCG Ser 845	GAA Glu	TGG Trp	GGA Gly	GCG Ala	CCA Pro 850	TTA Leu	ATT Ile	GGC Gly	TCC Ser	GGG Gly 855	CAA Gln	GCA Ala	ACC Thr	CAA Gln	GTT Val 860	2644
35	GGC Gly	GCC Ala	GGC Gly	ATC Ile	CAG Gln 865	GAT Asp	CAG Gln	AGC Ser	GCG Ala	GGC Gly 870	ATT Ile	TCA Ser	GAA Glu	GTG Val	ACA Thr 875	GCA Ala	2692
40	GGC Gly	TAT Tyr	CAG Gln	CGT Arg 880	CGT Arg	CAG Gln	GAA Glu	GAA Glu	TGG Trp 885	GCA Ala	TTG Leu	CAA Gln	CGG Arg	GAT Asp 890	ATT Ile	GCT Ala	2740
45	GAT Asp	AAC Asn	GAA Glu 895	ATA Ile	ACC Thr	CAA Gln	CTG Leu	GAT Asp 900	GCC Ala	CAG Gln	ATA Ile	CAA Gln	AGC Ser 905	CTG Leu	CAA Gln	GAG Glu	2788
	CAA Gln	ATC Ile 910	ACG Thr	ATG Met	GCA Ala	CAA Gln	AAA Lys 915	CAG Gln	ATC Ile	ACG Thr	CTC Leu	TCT Ser 920	GAA Glu	ACC Thr	GAA Glu	CAA Gln	2836
50	GCG Ala 925	AAT Asn	GCC Ala	CAA Gln	GCG Ala	ATT Ile 930	TAT Tyr	GAC Asp	CTG Leu	CAA Gln	ACC Thr 935	ACT Thr	CGT Arg	TTT Phe	ACC Thr	GGG Gly 940	2884
55	CAG Gln	GCA Ala	CTG Leu	TAT Tyr	AAC Asn 945	TGG Trp	ATG Met	GCC Ala	GGT Gly	CGT Arg 950	CTC Leu	TCC Ser	GCG Ala	CTC Leu	TAT Tyr 955	TAC Tyr	2932
60	CAA Gln	ATG Met	TAT Tyr	GAT Asp 960	TCC Ser	ACT Thr	CTG Leu	CCA Pro	ATC Ile 965	TGT Cys	CTC Leu	CAG Gln	CCA Pro	AAA Lys 970	GCC Ala	GCA Ala	2980
65	TTA Leu	GTA Val	CAG Gln 975	GAA Glu	TTA Leu	GGC Gly	GAG Glu	AAA Lys 980	GAG Glu	AGC Ser	GAC Asp	AGT Ser	CTT Leu 985	TTC Phe	CAG Gln	GTT Val	3028
	CCG Pro	GTG Val 990	TGG Trp	AAT Asn	GAT Asp	CTG Leu	TGG Trp 995	CAA Gln	GGG Gly	CTG Leu	TTA Leu	GCA Ala 1000	Gly	GAA Glu	GGT Gly	TTA Leu	3076
70	AGT Ser	TCA Ser	GAG Glu	CTA Leu	CAG Gln	AAA Lys	CTG Leu	GAT Asp	GCC Ala	ATC Ile	TGG Trp	CTT Leu	GCA Ala	CGT Arg	GGT Gly	GGT Gly	3124

	1005	1010	.1015	1020
5	ATT GGG CTA GAA GCC Ile Gly Leu Glu Ala 102	Ile Arg Thr Val Se	er Leu Asp Thr Leu	
10	ACA GGG ACG TTA AGT Thr Gly Thr Leu Ser 1040			Glu Thr
10	GTA TCT CCA TCC GGT Val Ser Pro Ser Gly 1055	GGC GTC ACT CTG GC Gly Val Thr Leu Al 1060	CG CTG ACA GGG GAT a Leu Thr Gly Asp 1065	ATC TTC 3268 Ile Phe
15	CAA GCA ACA CTG GAT Gln Ala Thr Leu Asp 1070			
20	TTG GGT AAC GAG AAG Leu Gly Asn Glu Lys 1085			
25	CCA ACA CTT CTG GGG Pro Thr Leu Leu Gly 110	Pro Tyr Gln Asp Le	eu Glu Ala Thr Leu	
30	GGT GCG GAA ATC GCC Gly Ala Glu Ile Ala 1120	GCC TTA TCA CAC GG Ala Leu Ser His Gl 1125	T GTG AAT GAC GGA y Val Asn Asp Gly 1130	GGC CGG 3460 Gly Arg
30	TTT GTT ACC GAC TTT Phe Val Thr Asp Phe 1135			
35	GAT GCA ACA ACC GGC Asp Ala Thr Thr Gly 1150			
40	GAG GGA ACG CAA CAC Glu Gly Thr Gln His 1165			
45	CAT CTG AAT TAC ATC His Leu Asn Tyr Ile 118	Ile Arg Asp Ala *		CGATT 3654
	ACAGGTCCCT ATCAGGGG	CC TGTTATTAAG GAGTA	ACTTTA TGCAGGATTC A	CCAGAAGTA 3714
50	TCGATTACAA CGCTGTCA	CT TCCCAAAGGT GGCGG	STGCTA TCAATGGCAT G	GGAGAAGCA 3774
	CTGAATGCTG CCGGCCCT	GA TGGAATGGCC TCCCT	TATCTC TGCCATTACC C	CTTTCGACC 3834
	GGCAGAGGGA CGGCTCCT	GG ATTATCGCTG ATTTA	ACAGCA ACAGTGCAGG T	AATGGGCCT 3894
55	TTCGGCATCG GCTGGCAA	TG CGGTGTTATG TCCAT	TTAGCC GACGCACCCA A	CATGGCATT 3954
	CCACAATACG GTAATGAC	GA CACGTTCCTA TCCCC	CACAAG GCGAGGTCAT G	AATATCGCC 4014
60	CTGAATGACC AAGGGCAA	CC TGATATCCGT CAAGA	ACGTTA AAACGCTGCA A	GGCGTTACC 4074
	TTGCCAATTT CCTATACC	GT GACCCGCTAT CAAGO	CCCGCC AGATCCTGGA T	TTCAGTAAA 4134
	ATCGAATACT GGCAACCT	GC CTCCGGTCAA GAAGO	BACGCG CTTTCTGGCT G	ATATCGACA 4194
65	CCGGACGGGC ATCTACAC			
	AATGACCAAC AAATCGCC			
70	GTCAGCTATC AATATCGA			
	CATCCCAATG TTACCGCA	CA GCGCTATCTG GTAC	AGGTGA ACTACAGGCA A	CATCAAACC 4434

	ACAAGCCAGC	CTGTTCGTAC	TGGATAACGC	ACCTCCCGCA	CCGGAAGAGT	GGCTGTTTCA	4494
5	TCTGGTCTTT	GACCACGGTG	AGCGCGTACC	TCACTTCATA	CCGTGCCAAC	ATGGGATGCA	4554
3	GGTACAGCGC	AATGGTCTGT	ACGCCCGGAT	ATCTTCTCTC	GCTATGAATA	TGGTTTTGAA	4614
	GTGCGTACTC	GCCGCTTATG	TCAACAAGTG	CTGATGTTTC	ACCGCACCGC	GCTCATGGCC	4674
10	GGAGAAGCCA	GTACCAATGA	CGCCCCGGAA	CTGGTTGGAC	GCTTAATACT	GGAATATGAC	4634
	AAAAACGCCA	GCGTCACCAC	GTTGATTACC	ATCCGTCAAT	TAAGCCATGA	ATCGGACGGG	4794
15	AGGCCAGTCA	CCCAGCCACC	ACTAGAACTA	GCCTGGCAAC	GGTTTGATCT	GGAGAAAATC	4854
13	CCGACATGGC	AACGCTTTGA	CGCACTAGAT	AATTTTAACT	CGCAGCAACG	TTATCAACTG	4865
•	GTTGATCTGC	GGGGAGAAGG	GTTGCCAGGT	ATGCTGTATC	AAGATCGAGG	CGCTTGGTGG	4914
20	TATAAAGCTC	CGCAACGTCA	GGAAGACGGA	GACAGCAATG	CCGTCACTTA	CGACAAAATC	4974
	GCCCCACTGC	CTACCCTACC	CAATTTGCAG	GATAATGCCT	CATTGATGGA	TATCAACGGA	5034
25	GACGGCCAAC	TGGATTGGGT	TGTTACCGCC	TCCGGTATTC	GCGGATACCA	TAGTCAGCAA	5094
25	CCCGATGGAA	AGTGGACGCA	CTTTACGCCA	ATCAATGCCT	TGCCCGTGGA	ATATTTTCAT	5214
	CCAAGCATCC	AGTTCGCTGA	CCTTACCGGG	GCAGGCTTAT	CTGATTTAGT	GTTGATCGGG	5274
30	CCGAAAAGCG	TGCGTCTATA	TGCCAACCAG	CGAAACGGCT	GGCGTAAAGG	AGAAGATGTC	5334
	CCCCAATCCA	CAGGTATCAC	CCTGCCTGTC	ACAGGGACCG	ATGCCCGCAA	ACTGGTGGCT	5394
35	TTCAGTGATA	TGCTCGGTTC	CGGTCAACAA	CATCTGGTGG	AAATCAAGGG	TAATCGCGTC	5454
	ACCTGTTGGC	CGAATCTAGG	GCATGGCCGT	TTCGGTCAAC	CACTAACTCT	GTCAGGATTT	5514
	AGCCAGCCCG	AAAATAGCTT	CAATCCCGAA	CGGCTGTTTC	TGGCGGATAT	CGACGGCTCC	5574
40	GGCACCACCG	ACCTTATCTA	TGCGCAATCC	GGCTCTTTGC	TCATTTATCT	CAACCAAAGT	5634
	GGTAATCAGT	TTGATGCCCC	GTTGACATTA	GCGTTGCCAG	AAGGCGTACA	ATTTGACAAC	5694
4.5	ACTTGCCAAC	TTCAAGTCGC	CGATATTCAG	GGATTAGGGA	TAGCCAGCTT	GATTCTGACT	5754
	GTGCCACATA	TCGCGCCACA	TCACTGGCGT	TGTGACCTGT	CACTGACCAA	ACCCTGGTTG	5814
	TTGAATGTAA	TGAACAATAA	CCGGGGCGCA	CATCACACGC	TACATTATCG	TAGTTCCGCG	5874
50	CAATTCTGGT	TGGATGAAAA	ATTACAGCTC	ACCAAAGCAG	GCAAATCTCC	GGCTTGTTAT	5934
	CTGCCGTTTC	CAATGCATTT	GCTATGGTAT	ACCGAAATTC	AGGATGAAAT	CAGCGGCAAC	5994
55	CGGCTCACCA	GTGAAGTCAA	CTACAGCCAC	GGCGTCTGGG	ATGGTAAAGA	GCGGGAATTC	6054

(2) INFORMATION FOR SEQ ID NO:26:

60

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1189 amino acids
 - (B) TYPE: amino acid(D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- 65 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:26 (TcaB protein):

Met Ser Glu Ser Leu Phe Thr Gln Thr Leu Lys Glu Ala Arg Arg Asp 1 5 10 15

	Ala	Leu	Val	Ala 20	His	Tyr	lle	Ala	Thr 25	Gln	Val	Pro	Ala	Asp 30	Leu	Lys
5	Glu	Ser	Ile 35	G1n	Thr	Ala	qaA	Asp 40	Leu	Tyr	Glu	Tyr	Leu 45	Leu	Leu	Asp
	Thr	Lys 50	Ile	Ser	Asp	Leu	Val 55	Thr	Thr	Ser	Pro	Leu 60	Ser	Glu	Ala	Ile
10	Gly 65	Ser	Leu	Gln	Leu	Phe 70	Ile	His	Arg	Ala	Ile 75	Glu	Gly	Tyr	Asp	Gly 80
15	Thr	Leu	Ala	Asp	Ser 85	Ala	Lys	Pro	Tyr	Phe ⁻ 90	Ala	Asp	Glu	Gln	Phe 95	Leu
10	Tyr	Asn	Trp	Asp 100	Ser	Phe	Asn	His	Arg 105	Tyr	Ser	Thr	Trp	Ala 110	Gly	Lys
20	Glu	Arg	Leu 115	Lys	Phe	Tyr	Ala	Gly 120	Asp	Tyr	Ile	Asp	Pro 125	Thr	Leu	Arg
	Leu	Asn 130	Lys	Thr	Glu	Ile	Phe 135	Thr	Ala	Phe	Glu	Gln 140	Gly	Ile	Ser	Gl'n
25	Gly 145	Lys	Leu	Lys	Ser	Glu 150	Leu	Val	Glu	Ser	Lys 155	Leu	Arg	Asp	Tyr	Leu 160
30	Ile	Ser	Tyr	Asp	Thr 165	Leu	Ala	Thr	Leu	Asp 170	Tyr	Ile	Thr	Ala	Cys 175	Gln
30	Gly	Lys	Asp	Asn 180	Lys	Thr	Ile	Phe	Phe 185	Ile	Gly	Arg	Thr	Gln 190	Asn	Ala
35	Pro	Tyr	Ala 195	Phe	Tyr	Trp	Arg	Lys 200	Leu	Thr	Leu		Thr 205	Asp	Gly	Gly
	Lys	Leu 210	Lys	Pro	Asp	Gln	Trp 215	Ser	Glu	Trp	Arg	Ala 220	Ile	Asn	Ala	Gly
40	Ile 225	Ser	Glu	Ala	Tyr	Ser 230	Gly	His	Val	Glu	Pro 235	Phe	Trp	Glu	Asn	Asn 240
45	Lys	Leu	His	Ile	Arg 245	Trp	Phe	Thr	Ile	Ser 250	Lys	Glu	Asp	Lys	Ile 255	Asp
	Phe	Val	Tyr	Lys 260	Asn	Ile	Trp	Val	Met 265	Ser	Ser	Asp	Tyr	Ser 270	Trp	Ala
50	Ser	Lys	Lys 275	Lys	Ile	Leu	Glu	Leu 280	Ser	Phe	Thr	Asp	Tyr 285	Asn	Arg	Val
	Gly	Ala 290	Thr	Gly	Ser	Ser	Ser 295	Pro	Thr	Glu	Val	Ala 300	Ser	Gln	Tyr	Gly
55	Ser 305	Asp	Ala	Gln	Met	Asn 310	Ile	Ser	Asp	qaA	Gly 315	Thr	Val	Leu	Ile	Phe 320
60	Gln	Asn	Ala	-Gly	Gly 325	Ala	Thr	Pro	Ser	Thr 330	Gly	Val	Thr	Leu	Cys 335	Tyr
	Asp	Ser	Gly	Asn 340	Val	Ile	Lys	Asn	Leu 345	Ser	Ser	Thr	Gly	Ser 350	Ala	Asn
65	Leu	Ser	Ser 355	Lys	Asp	Tyr	Ala	Thr 360	Thr	Lys	Leu	Arg	Met 365	Cys	His	Gly
		370			•		375					380		Ser		
70	Thr 385	Ile	Glu	Phe	Thr	Ser 390	Tyr	Gly	Thr	Phe	Ser 395	Ser	Asp	Gly	Lys	Gln 400

	Phe	Thr	Pro	Pro	Ser 405	Gly	Ser	Ala	Ile	Asp 410	Leu	His	Leu	Pro	Asn 415	Tyr
5	Val	Asp	Leu	Asn 420	Ala	Leu	Leu	Asp	Ile 425	Ser	Leu	Asp	Ser	Leu 430	Leu	Asn
10	Tyr	Asp	Val 435	Gln	Gly	Gln	Phe	Gly 440	Gly	Ser	Asn	Pro	Val 445	Asp	Asn	Phe
10	Ser	Gly 450	Pro	Tyr	Gly	Ile	Tyr 455	Leu	Trp	Glu	Ile	Phe 460	Phe	His	Ile	Pro
15	Phe 465	Leu	Val	Thr	Val	Arg 470	Met	Gln	Thr	Glu	Gln 475	Arg	Tyr	Glu	Asp	Ala 480
	Asp	Thr	Trp	Tyr	Lys 485	Tyr	Ile	Phe	Arg	Ser 490	Ala	Gly	Tyr	Arg	Asp 495	Ala
20	Asn	Gly	Gln	Leu 500	Ile	Met	Asp	Gly	Ser 505	Lys	Pro	Arg	Tyr	Trp 510	Asn	Val
25	Met	Pro	Leu 515	Gln	Leu	Asp.	Thr	Ala 520	Trp	Asp	Thr	Thr	Gln 525	Pro	Ala	Thr
	Thr	Asp 530	Pro	Asp	Val	Ile	Ala 535	Met	Ala	Asp	Pro	Met 540	His	Tyr	Lys	Leu
30	Ala 545	Ile	Phe	Leu	His	Thr 550	Leu	Asp	Leu	Leu	Ile 5 5 5	Ala	Arg	Gly	Asp	Ser 560
	Ala	Tyr	Arg	Gln	Leu 565	Glu	Arg	Asp	Thr	Leu 570	Val	Glu	Ala	Lys	Met 575	Tyr
35	Tyr	Ile	Gln	Ala 580	Gln	Gln	Leu	Leu	Gly 585	Pro	Arg	Pro	Asp	Ile 590	His	Thr
40	Thr	Asn	Thr 595	Trp	Pro	Asn	Pro	Thr 600	Leu	Ser	Lys	Glu	Ala 605	Gly	Ala	Ile
	Ala	Thr 610	Pro	Thr	Phe	Leu	Ser 615	Ser	Pro	Glu	Val	Met 620	Thr	Phe	Ala	Ala
45	Trp 625	Leu	Ser	Ala	Gly	Asp 630	Thr	Ala	Asn	Ile	Gly 635	Asp	Gly	Asp	Phe	Leu 640
	Pro	Pro	Tyr	Asn	Asp 645	Val	Leu	Leu	Gly	Tyr 650	Trp	Asp	Lys	Leu	Glu 655	Leu
50	Arg	Leu	Tyr	Asn 660	Leu	Arg	His	Asn	Leu 665	Ser	Leu	Asp	Gly	Gln 670	Pro	Leu
55	Asn	Leu	Pro 675	Leu	Tyr	Ala	Thr	Pro 680	Val	Asp	Pro	Lys	Thr 685	Leu	Gln	Arg
	Gln	Gln 690	Ala	Gly	Gly	Asp	Gly 695	Thr	Gly	Ser	Ser	Pro 700	Ala	Gly	Gly	Gln
60	Gly 705	Ser	Val	Gln	Gly	Trp 710	Arg	Tyr	Pro	Leu	Leu 715	Val	Glu	Arg	Ala	Arg 720
	Ser	Ala	Val	Ser	Leu 725	Leu	Thr	Gln	Phe	Gly 730	Asn	Ser	Leu	Gln		Thr
65	Leu	Glu	His	Gln 740	Asp	Asn	Glu	Lys	Met 745	Thr	Ile	Leu	Leu	Gln 750	Thr	Gln
70	Gln	Glu	Ala 755	Ile	Leu	Lys	His	Gln 760	His	Asp	Ile	Gln	Gln 765	Asn	Asn	Leu
	\mathbf{L}_T 3	Gly	Leu	Gln	His	Ser	Leu	Thr	Ala	Leu	Gln	Ala	Ser	Arg	Asp	Gly

770 775 780 Asp Thr Leu Arg Gln Lys His Tyr Ser Asp Leu Ile Asn Gly Gly Leu 5 Ser Ala Ala Glu Ile Ala Gly Leu Thr Leu Arg Ser Thr Ala Met Ile Thr Asn Gly Val Ala Thr Gly Leu Leu Ile Ala Gly Gly Ile Ala Asn 10 825 Ala Val Pro Asn Val Phe Gly Leu Ala Asn Gly Gly Ser Glu Trp Gly 15 Ala Pro Leu Ile Gly Ser Gly Gln Ala Thr Gln Val Gly Ala Gly Ile Gln Asp Gln Ser Ala Gly Ile Ser Glu Val Thr Ala Gly Tyr Gln Arg 875 20 Arg Gln Glu Glu Trp Ala Leu Gln Arg Asp Ile Ala Asp Asn Glu Ile _ 885 Thr Gln Leu Asp Ala Gln Ile Gln Ser Leu Gln Glu Gln Ile Thr Met 25 Ala Gln Lys Gln Ile Thr Leu Ser Glu Thr Glu Gln Ala Asn Ala Gln 30 Ala Ile Tyr Asp Leu Gln Thr Thr Arg Phe Thr Gly Gln Ala Leu Tyr 935 Asn Trp Met Ala Gly Arg Leu Ser Ala Leu Tyr Tyr Gln Met Tyr Asp 35 Ser Thr Leu Pro Ile Cys Leu Gln Pro Lys Ala Ala Leu Val Gln Glu Leu Gly Glu Lys Glu Ser Asp Ser Leu Phe Gln Val Pro Val Trp Asn 40 Asp Leu Trp Gln Gly Leu Leu Ala Gly Glu Gly Leu Ser Ser Glu Leu 1000 45 Gln Lys Leu Asp Ala Ile Trp Leu Ala Arg Gly Gly Ile Gly Leu Glu 1015 Ala Ile Arg Thr Val Ser Leu Asp Thr Leu Phe Gly Thr Gly Thr Leu 1030 50 Ser Glu Asn Ile Asn Lys Val Leu Asn Gly Glu Thr Val Ser Pro Ser 1050 Gly Gly Val Thr Leu Ala Leu Thr Gly Asp Ile Phe Gln Ala Thr Leu 55 1060 1065 Asp Leu Ser Gln Leu Gly Leu Asp Asn Ser Tyr Asn Leu Gly Asn Glu 1080 60 Lys Lys Arg Arg Ile Lys Arg Ile Ala Val Thr Leu Pro Thr Leu Leu 1095 Gly Pro Tyr Gln Asp Leu Glu Ala Thr Leu Val Met Gly Ala Glu Ile 1120 1115 65 Ala Ala Leu Ser His Gly Val Asn Asp Gly Gly Arg Phe Val Thr Asp 1125 1130 Phe Asn Asp Ser Arg Phe Leu Pro Phe Glu Gly Arg Asp Ala Thr Thr 70 1140 1145

Gly Thr Leu Glu Leu Asn Ile Phe His Ala Gly Lys Glu Gly Thr Gln 1160 His Glu Leu Val Ala Asn Leu Ser Asp Ile Ile Val His Leu Asn Tyr 5 1175 Ile Ile Arg Asp Ala 1190 10 (2) INFORMATION FOR SEQ ID NO:27: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1881 base pairs (B) TYPE: nucleic acid 15 (C) STRANDEDNESS: double (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic) (ix) FEATURE: 20 (A) NAME/KEY: CDS (B) LOCATION: 1..1881 (D) OTHER INFORMATION: tcaB; (xi) SEQUENCE DESCRIPTION: SEQ ID NO:27 (tcaB; coding region): 25 ATG TCT GAA TCT TTA TTT ACA CAA ACG TTG AAA GAA GCG CGC CGT GAT Met Ser Glu Ser Leu Phe Thr Gln Thr Leu Lys Glu Ala Arg Arg Asp GCA TTG GTT GCT CAT TAT ATT GCT ACT CAG GTG CCC GCA GAT TTA AAA 30 Ala Leu Val Ala His Tyr Ile Ala Thr Gln Val Pro Ala Asp Leu Lys GAG AGT ATC CAG ACC GCG GAT GAT CTG TAC GAA TAT CTG TTG CTG GAT 35 Glu Ser Ile Gln Thr Ala Asp Asp Leu Tyr Glu Tyr Leu Leu Leu Asp ACC AAA ATT AGC GAT CTG GTT ACT TCA CCG CTG TCC GAA GCG ATT Thr Lys Ile Ser Asp Leu Val Thr Thr Ser Pro Leu Ser Glu Ala Ile 40 GGC AGT CTG CAA TTG TTT ATT CAT CGT GCG ATA GAG GGC TAT GAC GGC Gly Ser Leu Gln Leu Phe Ile His Arg Ala Ile Glu Gly Tyr Asp Gly 45 ACG CTG GCA GAC TCA GCA AAA CCC TAT TTT GCC GAT GAA CAG TTT TTA Thr Leu Ala Asp Ser Ala Lys Pro Tyr Phe Ala Asp Glu Gln Phe Leu 85 50 TAT AAC TGG GAT AGT TTT AAC CAC CGT TAT AGC ACT TGG GCT GGC AAG Tyr Asn Trp Asp Ser Phe Asn His Arg Tyr Ser Thr Trp Ala Gly Lys 105 GAA CGG TTG AAA TTC TAT GCC GGG GAT TAT ATT GAT CCA ACA TTG CGA Glu Arg Leu Lys Phe Tyr Ala Gly Asp Tyr Ile Asp Pro Thr Leu Arg 55 120 TTG AAT AAG ACC GAG ATA TTT ACC GCA TTT GAA CAA GGT ATT TCT CAA Leu Asn Lys Thr Glu Ile Phe Thr Ala Phe Glu Gln Gly Ile Ser Gln 60 135 130 GGG AAA TTA AAA AGT GAA TTA GTC GAA TCT AAA TTA CGT GAT TAT CTA Gly Lys Leu Lys Ser Glu Leu Val Glu Ser Lys Leu Arg Asp Tyr Leu 150 65 ATT AGT TAT GAC ACT TTA GCC ACC CTT GAT TAT ATT ACT GCC TGC CAA

170

Ile Ser Tyr Asp Thr Leu Ala Thr Leu Asp Tyr Ile Thr Ala Cys Gln

5	GGC A	AAA Lys	GAT Asp	AAT Asn 180	AAA Lys	ACC Thr	ATC Ile	TTC Phe	TTT Phe 185	ATT Ile	GGC Gly	CGT Arg	ACA Thr	CAG Gln 190	AAT Asn	GCA Ala	576
J	CCC '																624
10	AAG '																672
15	ATT I	AGT Ser	GAG Glu	GCA Ala	TAT Tyr	TCA Ser 230	GGG Gly	CAT His	GTC Val	GAG Glu	CCT Pro 235	TTC Phe	TGG Trp	GAA Glu	AAT Asn	AAC Asn 240	720
20	AAG (768
25	TTT (816
	TCA A																864
30	GGA (912
35	Ser 2																960
40	CAG	TAA naA	GCC Ala	GGC Gly	GGA Gly 325	GCT Ala	ACT Thr	CCC Pro	AGT Ser	ACT Thr 330	GGA Gly	GTG Val	ACG Thr	TTA Leu	TGT Cys 335	TAT Tyr	1008
45	GAC 'Asp																1056
	TTA '																1104
50	Gln																1152
55	ACA Thr 385																1200
60	TTT . Phe																1248
65	GTA Val																1296
	TAT Tyr	GAC Asp	GTT Val 435	CAG Gln	GGG Gly	CAG Gln	TTT Phe	GGC Gly 440	GGA Gly	TCT Ser	TAA nsA	CCG Pro	GTT Val 445	GAT Asp	AAT Asn	TTC Phe	1344
70	AGT Ser																1392

		450					455					460					
5						CGT Arg 470											1440
1.0						TAT Tyr											1488
10						ATG Met											1536
15						GAT Asp											1584
20						ATC Ile											1632
25						ACC Thr 550											1680
30	GCT Ala	TAC Tyr	CGT Arg	CAA Gln	CTT Leu 565	GAA Glu	CGC Arg	GAT Asp	ACT Thr	CTA Leu 570	GTC Val	GAA Glu	GCC Ala	AAA Lys	ATG Met 575	TAC Tyr	1728
30						CAG Gln											1776
35						AAT Asn											1824
40						CTC Leu											1872
45		CTA Leu															1881
	(2)	INF	ORMI	OITA	N FC	R SI	EQ I	D NC):28	:							,
50			(i)	(.	A) I B) I	E CI ENG	TH: : am	627 ino	ami:	no a d	cids	\$					
55		(ii)			OPOI E T							-				
33		(xi)	SEQ	UENC	E DI	ESCR	IPTI	ON:	SEQ	ID	NO:	28 (Tcal	B _i p	rote	in):
60	1				5	Phe				10					15		
	Ala	Leu	Val	Ala 20	His	Tyr	Ile	Ala	Thr 25	Gln	Val	Pro	Ala	Asp 30	Leu	Lys	
65	Glu	Ser	Ile . 35	Gln	Thr	Ala	Asp	Asp 40	Leu	Tyr	Glu	Tyr	Leu 45	Leu	Leu	Asp	
	Thr	Lys 50	Ile	Ser	Asp	Leu	Val 55	Thr	Thr	Ser	Pro	Leu 60	Ser	Glu	Ala	Ile	

	Gly 65	Ser	Leu	Gln	Leu	Phe 70	Ile	His	Arg	Ala	.Ile 75	Glu	Gly	Tyr	Asp	Gly 80
5	Thr	Leu	Ala	Asp	Ser 85	Ala	Lys	Pro	Tyr	Phe 90	Ala	Asp	Glu	Gln	Phe 95	Leu
	Tyr	Asn	Trp	Asp 100	Ser	Phe	Asn	His	Arg 105	Tyr	Ser	Thr	Trp	Ala 110	Gly	Lys
10	Glu	Arg	Leu 115	Lys	Phe	Tyr	Ala	Gly 120	Asp	Tyr	Ile	Asp	Pro 125	Thr	Leu	Arg
15	Leu	Asn 130	Lys	Thr	Glu	Ile	Phe 135	Thr	Ala	Phe	Glu	Gln 140	Gly	Ile	Ser	Gln
	Gly 145	Lys	Leu	Lys	Ser	Glu 150	Leu	Val	Glu	Ser	Lys 155	Leu	Arg	Asp	Tyr	Leu 160
20	Ile	Ser	Tyr	Asp	Thr 165	Leu	Ala	Thr	Leu	Asp 170	Tyr	Ile	Thr	Ala	Cys 175	Gln
	Gly	Lys	Asp	Asn 180	Lys	Thr	Ile	Phe	Phe 185	Ile	Gly	Arg	Thr	Gln 190	Asn	Ala
25	Pro	Tyr	Ala 195	Phe	Tyr	Trp	Arg	Lys 200	Leu	Thr	Leu	Val	Thr 205	Asp	Gly	Gly
30	Lys	Leu 210	Lys	Pro	Asp	Gln	Trp 215	Ser	Glu	Trp	Arg	Ala 220	Ile	Asn	Ala	Gly
	Ile 225	Ser	Glu	Ala	Tyr	Ser 230	Gly	His	Val	Glu	Pro 235	Phe	Trp	Glu	Asn	Asn 240
35	Lys	Leu	His	Ile	Arg 245	Trp	Phe	Thr	Ile	Ser 250	Lys	Glu	Asp	Lys	Ile 255	Asp
	Phe	Val	Tyr	Lys 260	Asn	Ile	Trp	Val	Met 265	Ser	Ser	Asp	Tyr	Ser 270	Trp	Ala
40	Ser	Lys	Lys 275	Lys	Ile	Leu	Glu	Leu 280	Ser	Phe	Thr	Asp	Tyr 285	Asn	Arg	Val
45	Gly	-Ala 290	Thr	Gly	Ser	Ser	Ser 295	Pro	Thr	Glu	Val	Ala 300	Ser	Gln	Tyr	Gly
	Ser 305	Asp	Ala	Gln	Met	Asn 310	Ile	Ser	Asp	Asp	Gly 315	Thr	Val	Leu	Ile	Phe 320
50	Gln	Asn	Ala	Gly	Gly 325	Ala	Thr	Pro	Ser	Thr 330	Gly	Val	Thr	Leu	Cys 335	Tyr
	Asp	Ser	Gly	Asn 340	Val	Ile	Lys	Asn	Leu 345	Ser	Ser	Thr	Gly	Ser 350	Ala	Asn
55	Leu	Ser	Ser 355	Lys	Asp	Tyr	Ala	Thr 360	Thr	Lys	Leu	Arg	Met 365	Cys	His	Gly
60	Gln	Ser 370	Tyr	Asn.	Asp	Asn	Asn 375	Tyr	Cys	Asn	Phe	Thr 380	Leu	Ser	Ile	Asn
	Thr 385	Ile	Glu	Phe	Thr	Ser 390	Tyr	Gly	Thr	Phe	Ser 395	Ser	Asp	Gly	Lys	Gln 400
65	Phe	Thr	Pro	Pro	Ser 405	Gly	Ser	Ala	Ile	Asp 410	Leu	His	Leu	Pro	Asn 415	Tyr
	Val	Asp	Leu	Asn 420	Ala	Leu	Leu	Asp	Ile 425	Ser	Leu	Asp	Ser	Leu 430	Leu	Asn
70	Tyr	Asp	Val 435	Gln	Gly	Gln	Phe	Gly 440	Gly	Ser	Asn	Pro	Val 445	Asp	Asn	Phe

	Ser	Gly 450	Pro	Tyr	Gly	Ile	Tyr 455	Leu	Trp	Glu	Ile	Phe 460	Phe	His	Ile	Pro	
5	Phe 465	Leu	Val	Thr	Val	Arg 470	Met	Gln	Thr	Glu	Gln 475	Arg	Tyr	Glu	Asp	Ala 480	
10	Asp	Thr	Trp	Tyr	Lys 485	Tyr	Ile	Phe	Arg	Ser 490	Ala	Gly	Tyr	Arg	Asp 495	Ala	
10	Asn	Gly	Gln	Leu 500	Ile	Met	Asp	Gly	Ser 505	Lys	Pro	Arg	Tyr	Trp 510	Asn	Val	
15	Met	Pro	Leu 515	Gln	Leu	Asp	Thr	Ala 520	Trp	Asp	Thr	Thr	Gln 525	Pro	Ala	Thr	
	Thr	Asp 530	Pro	Asp	Val	Ile	Ala 535	Met	Ala	Asp	Pro	Met 540	His	Tyr	Lys.	Leu	
20	Ala 545	Ile	Phe	Leu	His	Thr 550	Leu	Asp	Leu	Leu	Ile 555	Ala	Arg	Gly	Asp	Ser 560	
25	Ala	Tyr	Arg	Gln	Leu 565	Glu	Arg	Āsp	Thr	Leu 570	Val	Glu	Ala	Lys	Met 575	Tyr	
2 J	Tyr	Ile	Gln	Ala 580	Gln	Gln	Leu	Leu	Gly 585	Pro	Arg	Pro	Asp	Ile 590	His	Thr	
30	Thr	Asn	Thr 595	Trp	Pro	Asn	Pro	Thr 600	Leu	Ser	Lys	Glu	Ala 605	Gly	Ala	Ile	
	Ala	Thr 610	Pro	Thr	Phe	Leu	Ser 615	Ser	Pro	Glu	Val	Met 620	Thr	Phe	Ala	Ala	
35	Trp 625	Leu	Ser														
40	(2)	INF	ORM	ATIO	N FC	R S	EQ I	D NO	0:29	:							
		(i		EQUE (A) (B) (C)	LENC TYPE	TH:	168 ucle	9 ba	ase cid	pair	s						
45		(ii (ix	.) M((D) OLEC EATU (A)	TOPO ULE RE: NAME	TYP: TYP: KE	Y: 1 E: D Y: C	inea NA DS	ar (gen		:)						
50				(B) (D)						tca	B _{ii}						
		(xi	.) SI	EQUE	NCE	DES	CRIP	TIOI	1: S	EQ I	D NO	0:29	(to	aB_i	i co	ding	regaion):
55	GCA Ala 1	GGC Gly	GAT Asp	ACC Thr	GCA Ala 5	AAT Asn	ATT Ile	GGC Gly	GAC Asp	GGT Gly 10	GAT Asp	TTC Phe	TTG Leu	CCA Pro	CCG Pro 15	TAC Tyr	48
60				CTA Leu 20													96
65	AAC Asn	CTG Leu	CGC Arg 35	CAC His	AAT Asn	CTG Leu	AGT Ser	CTG Leu 40	GAT Asp	GGT Gly	CAA Gln	CCG Pro	CTA Leu 45	AAT Asn	CTG Leu	CCA Pro	144
65				ACG Thr													192

							AGT Ser										
5							TTA Leu										288
10							GGC Gly										
15							ACG Thr										
20							GAT Asp 135										
25							TTA Leu										
							GAC Asp										528
30							CTA Leu										576
35							ATT Ile										624
40							AAC Asn 215										672
45							ACC Thr										720
							GTG Val										768
50							GAT Asp										816
55	GAT Asp	GCC Ala	CAG Gln 275	ATA Ile	CAA Gln	AGC Ser	CTG Leu	CAA Gln 280	GAG Glu	CAA Gln	ATC Ile	ACG Thr	ATG Met 285	GCA Ala	CAA Gln	AAA Lys	864
60	CAG Gln	ATC Ile 290	ACG Thr	CTC Leu	TCT Ser	GAA Glu	ACC Thr 295	GAA Glu	CAA Gln	GCG Ala	AAT Asn	GCC Ala 300	CAA Gln	GCG Ala	ATT Ile	TAT Tyr	912
65	GAC Asp 305	CTG Leu	CAA Gln	ACC Thr	ACT Thr	CGT Arg 310	TTT Phe	ACC Thr	GGG Gly	CAG Gln	GCA Ala 315	CTG Leu	TAT Tyr	AAC Asn	TGG Trp	ATG Met 320	960
	GCC Ala	GGT Gly	CGT Arg	CTC Leu	TCC Ser 325	GCG Ala	CTC Leu	TAT Tyr	TAC Tyr	CAA Gln 330	ATG Met	TAT Tyr	GAT Asp	TCC Ser	ACT Thr 335	CTG Leu	1008
70	CCA Pro	ATC Ile	TGT Cys	CTC Leu	CAG Gln	CCA Pro	AAA Lys	GCC Ala	GCA Ala	TTA Leu	GTA Val	CAG Gln	GAA Glu	TTA Leu	GGC Gly	GAG Glu	1056

PCT/US97/07657 WO 98/08932

				340					345					350			
5		GAG Glu															1104
10	CAA Gln	GGG Gly 370	CTG Leu	TTA Leu	GCA Ala	GGA Gly	GAA Glu 375	GGT Gly	TTA Leu	AGT Ser	TCA Ser	GAG Glu 380	CTA Leu	CAG Gln	AAA Lys	CTG Leu	1152
10		GCC Ala															1200
15	ACC Thr	GTG Val	TCG Ser	CTG Leu	GAT Asp 405	ACC Thr	CTG Leu	TTT Phe	GGC Gly	ACA Thr 410	GGG Gly	ACG Thr	TTA Leu	AGT Ser	GAA Glu 415	AAT Asn	1248
20		AAT Asn															1296
25		CTG Leu															1344
30	CAG Gln	CTA Leu 450	GGT Gly	TTG Leu	GAT Asp	AAC Asn	TCT Ser 455	TAC Tyr	AAC Asn	TTG Leu	GGT Gly	AAC Asn 460	GAG Glu	AAG Lys	AAA Lys	CGT Arg	1392
30	CGT Arg 465	ATT Ile	AAA Lys	CGT Arg	ATC Ile	GCC Ala 470	GTC Val	ACC Thr	CTG Leu	CCA Pro	ACA Thr 475	CTT Leu	CTG Leu	GGG Gly	CCA Pro	TAT Tyr 480	1440
35	CAA Gln	GAT Asp	CTT Leu	GAA Glu	GCC Ala 485	ACA Thr	CTG Leu	GTA Val	ATG Met	GGT Gly 490	GCG Ala	GAA Glu	ATC Ile	GCC Ala	GCC Ala 495	TTA Leu	1488
40		CAC His															1536
45		CGT Arg															1584
50		CTC Leu 530	Asn	Ile		His	Ala		Lys	Glu	Gly	Thr	Gln				1632
J U		GCG Ala															1680
55		GCG Ala	TAA *														1689
60	(2)	INF	ORM	ATIO	N FC	R SI	EQ I	D NO):30	:							

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 562 amino acids
 (B) TYPE: amino acid
 (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein

65

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:30 (TcaB; protein): Ala Gly Asp Thr Ala Asn Ile Gly Asp Gly Asp Phe Leu Pro Pro Tyr

1 10 15 5 Asn Asp Val Leu Leu Gly Tyr Trp Asp Lys Leu Glu Leu Arg Leu Tyr Asn Leu Arg His Asn Leu Ser Leu Asp Gly Gln Pro Leu Asn Leu Pro 10 Leu Tyr Ala Thr Pro Val Asp Pro Lys Thr Leu Gln Arg Gln Gln Ala 15 Gly Gly Asp Gly Thr Gly Ser Ser Pro Ala Gly Gly Gln Gly Ser Val Gln Gly Trp Arg Tyr Pro Leu Leu Val Glu Arg Ala Arg Ser Ala Val 20 Ser Leu Leu Thr Gln Phe Gly Asn Ser Leu Gln Thr Thr Leu Glu His Gln Asp Asn Glu Lys Met Thr Ile Leu Leu Gln Thr Gln Gln Glu Ala 25 Ile Leu Lys His Gln His Asp Ile Gln Gln Asn Asn Leu Lys Gly Leu 30 Gln His Ser Leu Thr Ala Leu Gln Ala Ser Arg Asp Gly Asp Thr Leu Arg Gln Lys His Tyr Ser Asp Leu Ile Asn Gly Gly Leu Ser Ala Ala 35 Glu Ile Ala Gly Leu Thr Leu Arg Ser Thr Ala Met Ile Thr Asn Gly Val Ala Thr Gly Leu Leu Ile Ala Gly Gly Ile Ala Asn Ala Val Pro 40 Asn Val Phe Gly Leu Ala Asn Gly Gly Ser Glu Trp Gly Ala Pro Leu 45 Ile Gly Ser Gly Gln Ala Thr Gln Val Gly Ala Gly Ile Gln Asp Gln Ser Ala Gly Ile Ser Glu Val Thr Ala Gly Tyr Gln Arg Arg Gln Glu 50 Glu Trp Ala Leu Gln Arg Asp Ile Ala Asp Asn Glu Ile Thr Gln Leu 265 Asp Ala Gln Ile Gln Ser Leu Gln Glu Gln Ile Thr Met Ala Gln Lys 55 Gln Ile Thr Leu Ser Glu Thr Glu Gln Ala Asn Ala Gln Ala Ile Tyr 295 60 Asp Leu Gln Thr Thr Arg Phe Thr Gly Gln Ala Leu Tyr Asn Trp Met Ala Gly Arg Leu Ser Ala Leu Tyr Tyr Gln Met Tyr Asp Ser Thr Leu 65 Pro Ile Cys Leu Gln Pro Lys Ala Ala Leu Val Gln Glu Leu Gly Glu 345 Lys Glu Ser Asp Ser Leu Phe Gln Val Pro Val Trp Asn Asp Leu Trp 70 360

	Gln	Gly 370	Leu	Leu	Ala	Gly	Glu 375	Gly	Leu	Ser	Ser	Glu 380	Leu	Gln	Lys	Leu	
5	Asp 385	Ala	Ile	Trp	Leu	Ala 390	Arg	Gly	Gly	Ile _	Gly 395	Leu	Glu	Ala	Ile	Arg 400	
10	Thr	Val	Ser	Leu	Asp 405	Thr	Leu	Phe	Gly	Thr 410	Gly	Thr	Leu	Ser	Glu 415	Asn	
	Ile	Asn	Lys	Val 420	Leu	Asn	Gly	Glu	Thr 425	Val	Ser	Pro	Ser	Gly 430	Gly	Val	
15	Thr	Leu	Ala 435	Leu	Thr	Gly	Asp	Ile 440	Phe	Gln	Ala	Thr	Leu 445	Asp	Leu	Ser	
	Gln	Leu 450	Gly	Leu	Asp	Asn	Ser 455	Tyr	Asn	Leu	Gly	Asn 460	Glu	Lys	Lys	Arg	
20	Arg 465	Ile	Lys	Arg	Ile	Ala 470	Val	Thr	Leu	Pro	Thr 475	Leu	Leu	Gly	Pro	Tyr 480	
25 .	Gln	Asp	Leu	Glu	Ala 485	Thr	Leu	Val	Met	Gly 490	Ala	Glu	Ile	Ala	Ala 495	Leu	
	Ser	His	Gly	Val 500	Asn	Asp	Gly	Gly	Arg 505	Phe	Val	Thr	Asp	Phe 510	Asn	Asp	
30	Ser	Arg	Phe 515	Leu	Pro	Phe	Glu	Gly 520	Arg	Asp	Ala	Thr	Thr 525	Gly	Thr	Leu	
	Glu	Leu 530	Asn	Ile	Phe	His	Ala 535	Gly	Lys	Glu	Gly	Thr 540	Gln	His	Glu	Leu	
35	Val 545	Ala	Asn	Leu	Ser	Asp 550	Ile	Ile	Val	His	Leu 555	Asn	Tyr	Ile	Ile	Arg 560	
40	Asp	Ala	*														
10	(2)	INF	'ORM	OITA	N FC	R SI	EQ I	D NO):31	:							
45		(i		(A) (B)	LENC TYPE	CHAI TH: : ni	445 cle	8 ba	se ;	pair	's						
50	ت ــــ ٠	(ii (ix) M(OLEC EATU (A)	ULE RE : NAME	LOG TYPI KE TIOI	E: D Y: C	na Ds	gen	omic	:)						
55		(xi	.) Si	EQUE	NCE	DES	CRIP	TION	1: S	EQ I	D NO	0:31	(to	cac g	gene):	
						GAA Glu											48
60						AAT Asn											96
65						TCC Ser											144
						GGA Gly											192

		50					55					60					
5			CCT Pro														240
10			ACC Thr														288
10			CCA Pro														336
15			GAT Asp 115														384
20	CCA Pro	ATT Ile 130	TCC Ser	TAT Tyr	ACC Thr	GTG Val	ACC Thr 135	CGC Arg	TAT Tyr	CAA Gln	GCC Ala	CGC Arg 140	CAG Gln	ATC Ile	CTG Leu	GAT Asp -	432
25			AAA Lys														480
30			TGG Trp														528
			GCG Ala														576
35			TGG Trp 195														624
40			CAA Gln														672
45			GCT Ala														720
50	AAC Asn	TAC Tyr	GGC Gly	AAC Asn	ATC Ile 245	AAA Lys	CCA Pro	CAA Gln	GCC Ala	AGC Ser 250	CTG Leu	TTC Phe	GTA Val	CTG Leu	GAT Asp 255	AAC Asn	768
			CCC Pro		Pro												816
55			CGC Arg 275														864
60			CAA Gln														912
65			GAA Glu														960
70			ACC Thr														1008
. •	GAA	CTG	GTT	GGA	CGC	TTA	ATA	CTG	GAA	TAT	GAC	AAA	AAC	GCC	AGC	GTC	1056

	Glu	Leu	Val	Gly 340	Arg	Leu	Ile	Leu	Glu 345	Tyr	Asp	Lys	Asn	Ala 350		Val	
5	ACC Thr	ACG Thr	TTG Leu 355	Ile	ACC Thr	ATC Ile	CGT Arg	CAA Gln 360	Leu	AGC Ser	CAT His	GAA Glu	TCG Ser 365	GAC Asp	GGG Gly	AGG Arg	1104
10	CCA Pro	GTC Val 370	ACC Thr	CAG Gln	CCA Pro	CCA Pro	CTA Leu 375	GAA Glu	CTA Leu	GCC Ala	TGG Trp	CAA Gln 380	CGG Arg	TTT Phe	GAT Asp	CTG Leu	1152
15	GAG Glu 385	AAA Lys	ATC Ile	CCG Pro	ACA Thr	TGG Trp 390	CAA Gln	CGC Arg	TTT Phe	GAC Asp	GCA Ala 395	CTA Leu	GAT Asp	AAT Asn	TTT Phe	AAC Asn 400	1200
Ţ	TCG Ser	CAG Gln	CAA Gln	CGT Arg	TAT Tyr 405	CAA Gln	CTG Leu	GTT Val	GAT Asp	CTG Leu 410	CGG Arg	GGA Gly	GAA Glu	GGG Gly	TTG Leu 415	CCA	1248
20	GGT Gly	ATG Met	CTG Leu	TAT Tyr 420	CAA Gln	GAT Asp	CGA Arg	GGC Gly	GCT Ala 425	TGG Trp	TGG Trp	TAT Tyr	AAA Lys	GCT Ala 430	CCG Pro	CAA Gln	1296
25	CGT Arg	CAG Gln	GAA Glu 435	GAC Asp	GGA Gly	GAC Asp	AGC Ser	AAT Asn 440	GCC Ala	GTC Val	ACT Thr	TAC Tyr	GAC Asp 445	AAA Lys	ATC Ile	GCĆ Ala	1344
30	CCA Pro	CTG Leu 450	CCT Pro	ACC Thr	CTA Leu	CCC Pro	AAT Asn 455	TTG Leu	CAG Gln	GAT Asp	AAT Asn	GCC Ala 460	TCA Ser	TTG Leu	ATG Met	GAT Asp	1392
35	ATC Ile 465	AAC Asn	GGA Gly	GAC Asp	GGC Gly	CAA Gln 470	CTG Leu	GAT Asp	TGG Trp	GTT Val	GTT Val 475	ACC Thr	GCC Ala	TCC Ser	GGT Gly	ATT Ile 480	1440
	CGC Arg	GGA Gly	TAC Tyr	CAT His	AGT Ser 485	CAG Gln	CAA Gln	CCC Pro	GAT Asp	GGA Gly 490	AAG Lys	TGG Trp	ACG Thr	CAC His	TTT Phe 495	ACG Thr	1488
40	CCA Pro	ATC Ile	AAT Asn	GCC Ala 500	TTG Leu	CCC Pro	GTG Val	GAA Glu	TAT Tyr 505	TTT Phe	CAT His	CCA Pro	AGC Ser	ATC Ile 510	CAG Gln	TTC Phe	1536
45	GCT Ala	GAC Asp	CTT Leu 515	ACC Thr	GGG Gly	GCA Ala	GGC Gly	TTA Leu 520	TCT Ser	GAT Asp	TTA Leu	GTG Val	TTG Leu 525	ATC Ile	GGG Gly	CCG Pro	1584
50	AAA Lys	AGC Ser 530	GTG Val	CGT Arg	CTA Leu	TAT Tyr	GCC Ala 535	AAC Asn	CAG Gln	CGA Arg	AAC Asn	GGC Gly 540	TGG Trp	CGT Arg	AAA Lys	GGA Gly	1632
55	GAA Glu 545	GAT Asp	GTC Val	CCC Pro	CAA Gln	TCC Ser 550	ACA Thr	GGT Gly	ATC Ile	ACC Thr	CTG Leu 555	CCT Pro	GTC Val	ACA Thr	GGG Gly	ACC Thr 560	1680
	GAT Asp	GCC Ala	CGC Arg	AAA Lys	CTG Leu 565	GTG Val	GCT Ala	TTC Phe	AGT Ser	GAT Asp 570	ATG Met	CTC Leu	GGT Gly	TCC Ser	GGT Gly 575	CAA Gln	1728
60	CAA Gln	CAT His	CTG Leu	GTG Val 580	GAA Glu	ATC Ile	AAG Lys	GGT Gly	AAT Asn 585	CGC Arg	GTC Val	ACC Thr	TGT Cys	TGG Trp 590	CCG Pro	AAT Asn	1776
65	CTA Leu	GGG Gly	CAT His 595	GGC Gly	CGT Arg	TTC Phe	GGT Gly	CAA Gln 600	CCA Pro	CTA Leu	ACT Thr	CTG Leu	TCA Ser 605	GGA Gly	TTT Phe	AGC Ser	1824
70	CAG Gln	CCC Pro 610	GAA Glu	AAT Asn	AGC Ser	TTC Phe	AAT Asn 615	CCC Pro	GAA Glu	CGG Arg	Leu	TTT Phe 620	CTG Leu	GCG Ala	GAT Asp	ATC Ile	1872

				GGC Gly													1920
5				CTC Leu													1968
10	TTA Leu	GCG Ala	TTG Leu	CCA Pro 660	GAA Glu	GGC Gly	GTA Val	CAA Gln	TTT Phe 665	GAC Asp	AAC Asn	ACT Thr	TGC Cys	CAA Gln 670	CTT Leu	CAA Gln	2016
15				ATT Ile													2064
20				GCG Ala													2112
				TTG Leu													2160
25				CGT Arg													2208
30				GCA Ala 740													2256
35				TGG Trp													2304
40				GAA Glu													2352
10				AGA Arg													2400
45				GGC Gly													2448
50				GCC Ala 820													2496
55				CAG Gln													2544
60				TGG Trp													2592
	AAT Asn 865	GAG Glu	ACA Thr	CAA Gln	CGT Arg	AAC Asn 870	TGG Trp	CTG Leu	ACG Thr	CGA Arg	GCG Ala 875	CTT Leu	AAA Lys	GGC Gly	CAA Gln	CTG Leu 880	2640
65				GAG Glu													2688
70	CCT Pro	TAT Tyr	ACC Thr	GTC Val 900	AGT Ser	GAA Glu	TCG Ser	CGC Arg	TAT Tyr 905	CAG Gln	GTA Val	CGC Arg	TCT Ser	ATT Ile 910	CCC Pro	GTA Val	2736

5	AAT Asn	AAA Lys	GAA Glu 915	ACT Thr	GAA Glu	TTA Leu	TCT Ser	GCC Ala 920	TGG Trp	GTG Val	ACT Thr	GCT Ala	ATT Ile 925	GAA Glu	AAT Asn	CGC Arg	2784
3	AGC Ser	TAC Tyr 930	CAC His	TAT Tyr	GAA Glu	CGT Arg	ATC Ile 935	ATC Ile	ACT Thr	GAC Asp	CCA Pro	CAG Gln 940	TTC Phe	AGC Ser	CAG Gln	AGT Ser	2832
10	ATC Ile 945	AAG Lys	TTG Leu	CAA Gln	CAC His	GAT Asp 950	ATC Ile	TTT Phe	GGT Gly	CAA Gln	TCA Ser 955	CTG Leu	CAA Gln	AGT Ser	GTC Val	GAT Asp 960	2880
15	ATT Ile	GCC Ala	TGG Trp	CCG Pro	CGC Arg 965	CGC Arg	GAA Glu	AAA Lys	CCA Pro	GCA Ala 970	GTG Val	AAT Asn	CCC Pro	TAC Tyr	CCG Pro 975	CCT Pro	2928
20	Thr	Leu	Pro	Glu 980	Thr	Leu	Phe	Asp	Ser 985	Ser	Tyr	Asp	Asp	Gln 990	Gln	Gln	2976
25	Leu	Leu	Arg 995	Leu	Val	Arg	Gln	Lys 1000	Asn)	Ser	Trp	His	His 1005	Leu	Thr	Asp	3024
	GGG Gly	GAA Glu 1010	Asn	TGG Trp	CGA Arg	TTA Leu	GGT Gly 1015	Leu	CCG Pro	AAT Asn	GCA Ala	CAA Gln 1020	Arg	CGT Arg	GAT Asp	GTT Val	3072
30	TAT Tyr 1025	Thr	TAT Tyr	GAC Asp	CGG Arg	AGC Ser 1030	Lys	ATT Ile	CCA Pro	ACC Thr	GAA Glu 1035	Gly	ATT Ile	TCC Ser	CTT Leu	GAA Glu 1040	3120
35	ATC Ile	TTG Leu	CTG Leu	AAA Lys	GAT Asp 1045	Asp	GGC Gly	CTG Leu	CTA Leu	GCA Ala 1050	Asp	GAA Glu	AAA Lys	GCG Ala	GCC Ala 1055	Val	3168
40	TAT Tyr	CTG Leu	GGA Gly	CAA Gln 1060	Gln	CAG Gln	ACG Thr	TTT Phe	TAC Tyr 1069	Thr	GCC Ala	GGT Gly	CAA Gln	GCG Ala 1070	Glu	GTC Val	3216
45	ACT Thr	CTA Leu	GAA Glu 1075	Lys	CCC Pro	ACG Thr	TTA Leu	CAA Gln 1080	Ala	CTG Leu	GTC Val	GCG Ala	TTC Phe 1085	Gln	GAA Glu	ACC Thr	3264
	GCC Ala	ATG Met 1090	Met	GAC Asp	GAT Asp	ACC Thr	TCA Ser 1095	Leu	CAG Gln	GCG Ala	TAT Tyr	GAA Glu 1100	Gly	GTG Val	ATT Ile	GAA Glu	3312
50	GAG Glu 1105	Gln	GAG Glu	TTG Leu	AAT Asn	ACC Thr 1110	Ala	CTG Leu	ACA Thr	CAG Gln	GCC Ala 1115	Gly	TAT Tyr	CAG Gln	CAA Gln	GTC Val 1120	3360
55	GCG Ala	CGG Arg	TTG Leu	TTT Phe	AAT Asn 1125	Thr	AGA Arg	TCA Ser	GAA Glu	AGC Ser 1130	Pro	GTA Val	TGG Trp	GCG Ala	GCA Ala 1135	Arg	3408
60	CAA Gln	GGT Gly	TAT- Tyr	ACC Thr 1140	Asp	TAC Tyr	GGT Gly	GAC Asp	GCC Ala 1145	Ala	CAG Gln	TTC Phe	TGG Trp	CGG Arg 1150	Pro	CAG Gln	3456
65	GCT Ala	CAG Gln	CGT Arg 1155	Asn	TCG Ser	TTG Leu	CTG Leu	ACA Thr 1160	Gly	AAA Lys	ACC Thr	ACA Thr	CTG Leu 1165	Thr	TGG Trp	GAT Asp	3504
- 3	ACC Thr	CAT His 1170	His	TGT Cys	GTA Val	ATA Ile	ATA Ile 1175	Gln	ACT Thr	CAA Gln	GAT Asp	GCC Ala 1180	Ala	GGA Gly	TTA Leu	ACG Thr	3552
70	ACG Thr	CAA Gln	GCC Ala	CAT His	TAC Tyr	GAT Asp	TAT Tyr	CGT Arg	TTC Phe	CTT Leu	ACA Thr	CCG Pro	GTA Val	CAA Gln	CTG Leu	ACA Thr	3600

	1185	1190	. 1195	1200
5	GAT ATT AAT GA Asp Ile Asn As	T AAT CAA CAT AT p Asn Gln His Il 1205	T GTG ACT CTG GAC GCG e Val Thr Leu Asp Ala 1210	CTA GGT CGC 3648 Leu Gly Arg 1215
10		r Arg Phe Trp Gl	C ACA GAG GCA GGA CAA y Thr Glu Ala Gly Gln 1225	
10			A CCG GAC TCC GTA GAT o Pro Asp Ser Val Asp 40 1245	Lys Ala Leu
15	GCA TTA ACC GG Ala Leu Thr Gl 1250	C GCA CTC CCT GT y Ala Leu Pro Va 1255	T GCC CAA TGT TTA GTC l Ala Gln Cys Leu Val 1260	TAT GCC GTT 3792 Tyr Ala Val
20			T TTG TCT CAG CTT TCT r Leu Ser Gln Leu Ser 1275	
25			G CAA CTG CGT GCC GCT a Gln Leu Arg Ala Ala 1290	
30		y Lys Val Cys Ala	G TTA AGC GGG AAA CGA a Leu Ser Gly Lys Arg 1305	
30			T ATT TCG CTA TTG GCA u Ile Ser Leu Leu Ala 20 1325	Ser Ile Pro
35			G ATC ACC ACT GAT CGC y Ile Thr Thr Asp Arg 1340	
40			G ACG GTG AGC TTT AGT n Thr Val Ser Phe Ser 1355	
45			T CGT CAT GAG TCA GGT a Arg His Glu Ser Gly 1370	
50	CAA CGT AAA GA Gln Arg Lys Gl 13	u Asp Gly Gly Let	G GTC GTG GAT GCA AAT u Val Val Asp Ala Asn 1385	GGC GTT CTG 4176 Gly Val Leu 1390
20	GTC AGT GCC CC Val Ser Ala Pr 1395	r ACA GAC ACC CG o Thr Asp Thr Arc 14	A TGG GCC GTT TCC GGT g Trp Ala Val Ser Gly 00 1405	Arg Thr Glu
55			G CGT ACT TAT CAA CCC l Arg Thr Tyr Gln Pro 1420	
60			T GAC AGC GCA CGA GAT p Asp Ser Ala Arg Asp 1435	
65			A TTG GGA CGG GAA TAC o Leu Gly Arg Glu Tyr 1450	
70		s Tyr Leu Arg Gl	A AAG CTG TAC ACC CCG u Lys Leu Tyr Thr Pro 1465	
•	GTC AGT GAG GA	T GAA AAC GAT AC	A GCA TCA AGA ACC CCA	TAG 4458

Val Ser Glu Asp Glu Asn Asp Thr Ala Ser Arg Thr Pro * 1475 1480 1485

5 (2) INFORMATION FOR SEQ ID NO:32:

10

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1485 amino acids
 - (B) TYPE: amino acid
- (D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:32 (TcaC protein):
- 15 Met Gln Asp Ser Pro Glu Val Ser Ile Thr Thr Leu Ser Leu Pro Lys 1 10 15
 - Gly Gly Gly Ala Ile Asn Gly Met Gly Glu Ala Leu Asn Ala Ala Gly
 20 25 30
- Pro Asp Gly Met Ala Ser Leu Ser Leu Pro Leu Pro Leu Ser Thr Gly
- Arg Gly Thr Ala Pro Gly Leu Ser Leu Ile Tyr Ser Asn Ser Ala Gly 50 55 60
 - Asn Gly Pro Phe Gly Ile Gly Trp Gln Cys Gly Val Met Ser Ile Ser 65 70 75 80
- 30 Arg Arg Thr Gln His Gly Ile Pro Gln Tyr Gly Asn Asp Asp Thr Phe 85 90 95
 - Leu Ser Pro Gln Gly Glu Val Met Asn Ile Ala Leu Asn Asp Gln Gly
 100 105 110
- 35
 Gln Pro Asp Ile Arg Gln Asp Val Lys Thr Leu Gln Gly Val Thr Leu
 115
 120
 125
- Pro Ile Ser Tyr Thr Val Thr Arg Tyr Gln Ala Arg Gln Ile Leu Asp 130 135 140
 - Phe Ser Lys Ile Glu Tyr Trp Gln Pro Ala Ser Gly Gln Glu Gly Arg 145 150 155 160
- 45 Ala Phe Trp Leu Ile Ser Thr Pro Asp Gly His Leu His Ile Leu Gly 165 170 175
- Lys Thr Ala Gln Ala Cys Leu Ala Asn Pro Gln Asn Asp Gln Gln Ile 180 185 190
- Ala Gln Trp Leu Leu Glu Glu Thr Val Thr Pro Ala Gly Glu His Val 195 200 205
- Ser Tyr Gln Tyr Arg Ala Glu Asp Glu Ala His Cys Asp Asp Asn Glu 55 210 215 220
 - Lys Thr Ala His Pro Asn Val Thr Ala Gln Arg Tyr Leu Val Gln Val 225 230 235 240
- 60 Asn Tyr Gly Asn Ile Lys Pro Gln Ala Ser Leu Phe Val Leu Asp Asn 245 250 255
 - Ala Pro Pro Ala Pro Glu Glu Trp Leu Phe His Leu Val Phe Asp His
 260 265 270
- Gly Glu Arg Asp Thr Ser Leu His Thr Val Pro Thr Trp Asp Ala Gly 275 280 285
 - Thr Ala Gln Trp Ser Val Arg Pro Asp Ile Phe Ser Arg Tyr Glu Tyr

		290					295					300				
5	Gly 305	Phe	Glu	Val	Arg	Thr 310	Arg	Arg	Leu	Cys	Gln 315	Gln	Val	Leu	Met	Phe 320
J	His	Arg	Thr	Ala	Leu 325	Met	Ala	Gly	Glu	Ala 330	Ser	Thr	Asn	Asp	Ala 335	Pro
10	Glu	Leu	Val	Gly 340	Arg	Leu	Ile	Leu	Glu 345	Tyr	Asp	Lys	Asn	Ala 350	Ser	Val
	Thr	Thr	Leu 355	Ile	Thr	Ile	Arg	Gln 360	Leu	Ser	His	Glu	Ser 365	Asp	Gly	Arg
15	Pro	Val 370	Thr	Gln	Pro	Pro	Leu 375	Glu	Leu	Ala	Trp	Gln 380	Arg	Phe	Asp	Leu
20	385					390		Arg		_	395		_			400
					405			Val		410					415	
25				420				Gly	425	_		_	-	430		
2.0			435					Asn 440				-	445	-		
30		450					455	Leu				460				
35	465					470		Asp	_		475				-	480
					485			Pro		490		_			495	
40				500				Glu	505					510		
45			515					Leu 520		_			525		-	
40		530					535	Asn Gly				540				
50	545					550					555				-	560
					565			Phe		570					575	
55				580				Gln	585					590		
60			595					600 Pro					605			
		610					615	Leu				620			_	
65	625					630		Gly			635					640
					645			Gln		650					655	
70	u			660		J-y	141	-	665	voh	USII	THE	cys	670	neu	GIII

	Val	Ala	Asp 675	Ile	Gln	Gly	Leu	Gly 680	Ile	Ala	Ser	Leu	Ile 685	Leu	Thr	Val
5	Pro	His 690	Ile	Ala	Pro	His	His 695	Trp	Arg	Cys	Asp	Leu 700	Ser	Leu	Thr	Lys
	Pro 705	Trp	Leu	Leu	Asn	Val 710	Met	Asn	Asn	Asn	Arg 715	Gly	Ala	His	His	Thr 720
10	Leu	His	Tyr	Arg	Ser 725	Ser	Ala	Gln	Phe	Trp 730	Leu	Asp	Glu	Lys	Leu 735	Gln
15	Leu	Thr	Lys	Ala 740	Gly	Lys	Ser	Pro	Ala 745	Cys	Tyr	Leu	Pro	Phe 750	Pro	Met
	His	Leu	Leu 755	Trp	Tyr	Thr	Glu	Ile 760	Gln	Asp	Glu	Ile	Ser 765	Gly	Asn	Arg
20	Leu	Thr 770	Ser	Glu	Val	Asn	Tyr 775	Ser	His	Gly	Val	Trp 780	Asp	Gly	Lys	Glu
	Arg .785	Glu	Phe	Arg	Gly	Phe 790	Gly	Cys	Ile	Lys	Gln 795	Thr	Asp	Thr	Thr	Thr 800
25	Phe	Ser	His	Gly	Thr 805	Ala	Pro	Glu	Gln	Ala 810	Ala	Pro	Ser	Leu	Ser 815	Ile
30	Ser	Trp	Phe	Ala 820	Thr	Gly	Met	Asp	Glu 825	Val	Asp	Ser	Gln	Leu 830	Ala	Thr
			Trp 835					840					845			_
35		850	Val				855					860				
	865		Thr			870					875					880
40			Thr		885				_	890		_			895	
45	Pro	Tyr	Thr	Val 900	Ser	Glu	Ser	Arg	Tyr 905	Gln	Val	Arg	Ser	Ile 910	Pro	Val
			Glu 915					920	-				925			-
50		930	His				935					940				
	945		Leu			950					955					960
55			Trp		965					970					975	
60			Pro	980					985					990		
			Arg 995					1000	}				1009	,		
65		1010					1015	5				1020)			
	1025	5	Tyr			1030)				1035	, ·				1040
70	Ile	Leu	Leu	Lys	Asp 1045		Gly	Leu	Leu	Ala 1050		Glu	Lys	Ala	Ala 1055	

	Tyr	Leu	Gly	Gln 1060		Gln	Thr	Phe	Tyr 1065		Ala	Gly	Gln	Ala 1070		Val
5	Thr	Leu	Glu 1075		Pro	Thr	Leu	Gln 1080		Leu	Val	Ala	Phe 1085		Glu	Thr
10	Ala	Met 1090		Asp	Asp	Thr	Ser 1095		Gln	Ala	Tyr	Glu 1100		Val	Ile	Glu
10	Glu 1105		Glu	Leu	Asn	Thr 1110	Ala	Leu	Thr	Gln	Ala 1119		Tyr	Gln	Gln	Val 112
15	Ala	Arg	Leu	Phe	Asn 1125		Arg	Ser	Glu	Ser 1130		Val	Trp	Ala	Ala 1135	
	Gln	Gly	Tyr	Thr 1140		Tyr	Gly	Asp	Ala 1145		Gln	Phe	Trp	Arg 1150		Gln
20	Ala	Gln	Arg 1155		Ser	Leu	Leu	Thr 1160		Lys	Thr	Thr	Leu 1165		Trp	Asp
25	Thr	His 1170		Cys	Val	Ile	Ile 1175		Thr	Gln	Asp	Ala 1180		Gly	Leu	Thr
23	Thr 1185		Ala	His	Tyr	Asp 1190	Tyr	Arg	Phe	Leu	Thr 1195		Val	Gln	Leu	Thr 120
30	Asp	Ile	Asn	Asp	Asn 1205		His	Ile	Val	Thr 1210		Asp	Ala	Leu	Gly 1215	
	Val	Thr	Thr	Ser 1220	-	Phe	Trp	Gly	Thr 1225		Ala	Gly	Gln	Ala 1230		Gly
35	Tyr	Ser	Asn 1235		Pro	Phe	Thr	Pro 1240		Asp	Ser	Val	Asp 1245		Ala	Leu
40	Ala	Leu 125		Gly	Ala	Leu	Pro 1255		Ala	Gln	Cys	Leu 1260		Tyr	Ala	Val
40	Asp 1265		Trp	Met	Pro	Ser 1270	Leu)	Ser	Leu	Ser	Gln 1275		Ser	Gln	Ser	Gln 128
45	Glu	Glu	Ala	Glu	Ala 1285		Trp	Ala	Gln	Leu 1290		Ala	Ala	His	Met 1295	
	Thr	Glu	_	Gly 1300		Val	Cys	Ala	Leu 1305		Gly	Lys	Arg	Gly 1310		Ser
50	His				Thr	Ile	Gln	Leu 1320		Ser	Leu	Leu	Ala 1325		Ile	Pro
55	Arg	Leu 133		Pro	His	Val	Leu 1335	Gly	Ile	Thr	Thr	Asp 1340		Tyr	Asp	Ser
	Asp 134		Gln	Gln	Gln	His 1350	Gln)	Gln	Thr	Val	Ser 1359		Ser	Asp	Gly	Phe 136
60	Gly	Arg	Leu	Leu	Gln 1365		Ser	Ala	Arg	His 1370		Ser	Gly	Asp	Ala 1375	
	Gln	Arg	Lys	Glu 1380		Gly	Gly	Leu	Val 1385		Asp	Ala	Asn	Gly 1390		Leu
65	Val	Ser	Ala 139		Thr	Asp	Thr	Arg 1400		Ala	Val	Ser	Gly 1405		Thr	Glu
70	Tyr	Asp 141		Lys	Gly	Gln	Pro 1415		Arg	Thr	Tyr	Gln 1420		Tyr	Phe	Leu
-	Asn	Asp	Trp	Arg	Tyr	Val	Ser	Asp		Ser 99-	Ala	Arg	Asp	Asp	Leu	Phe

	142	5				1430)				143	5				1440	
_	Ala	Asp	Thr	His	Leu 1445		Asp	Pro	Leu	Gly 1450		Glu	Tyr	Lys	Val 145		
	Thr	Ala	Lys	Lys 1460	Tyr	Leu	Arg	Glu	Lys 146		Tyr	Thr	Pro	Trp 1470		Ile	
10	Val	Ser	Glu 1475		Glu	Asn	Asp	Thr 1480		Ser	Arg	Thr	Pro 1485				
	(2)	INF	'ORM	ATIO	N FC	R SI	EQ I	D NO	33:33	:							
15				(A) (B) (C) (D)	LEN TYP STR	IGTH PE: 1 PANDI POLO(: 3 nucl EDNE GY:	288 eic SS: line	bas aci doul	e pa d ble					٠		
20					ECUL! JENC!					enor SEO		г . ОИ	3 (tcaA	ger	ne).	
25	ATG Met 1	GTG	ACT	GTT	ATG Met 5	CAA	AAT	AAA	ATA	TCA	TTT	TTA	TCA	- GGT	ACA	TCC	48
30					CTT Leu											GCA Ala	96
35					GCT Ala												144
33					ACC Thr												192
40					TAC Tyr												240
45					AAA Lys 85												288
50					GAG Glu												336
55					AGT Ser												384
					CGT Arg												432
60					GAT Asp										_		480
65					ATA Ile 165												528
					TTG Leu												576

				180					185					190	o		
5						GCA Ala											624
1.0						GAT Asp											672
10						ACT Thr 230											720
15						ACG Thr											768
20						TTT Phe										GCG Ala	816
25						CAA Gln											864
30						GGC Gly											912
30						GTC Val 310											960
35						CTC Leu											1008
40						GGC Gly											1056
45						ATT Ile										AGT Ser	1104
50						AGC Ser											1152
						TAC Tyr 390											1200
55						CAG Gln											1248
60	GGG Gly	ACA Thr	AAA Lys	GAC Asp 420	AAG Lys	GGG Gly	CTG Leu	TTA Leu	TTA Leu 425	ACC Thr	TTT Phe	TGC Cys	AGC Ser	GAT Asp 430	AGC Ser	TCA Ser	1296
65	GGC Gly	ACT Thr	CCG Pro 435	ACA Thr	AAC Asn	CCT Pro	GAT Asp	GAT Asp 440	GTG Val	ATT Ile	CCT Pro	CCC Pro	GCT Ala 445	ATC Ile	AAT Asn	GAT Asp	1344
70	ATT Ile	CCA Pro 450	TCG Ser	CCG Pro	CCA Pro	GCC Ala	CGC Arg 455	GAA Glu	ACA Thr	CTG Leu	TCA Ser	CTG Leu 460	ACG Thr	CCG Pro	GTC Val	AGT Ser	1392
, 5	TAT	CAA	TTG	ATG	ACC	AAT	CCG	GCA	CCG	ACA	GAA	GAT	GAT	ATT	ACC	AAC	1440

- [海底.

	Tyr 465	Gln	Leu	Met	Thr	Asn 470	Pro	Ala	Pro	Thr	.Glu 475	Asp	Asp	Ile	Thr	Asn 480	
5	CAT His	TAT Tyr	GGT Gly	TTT Phe	AAC Asn 485	GGC Gly	GCT Ala	AGC Ser	TTA Leu	CGG Arg 490	Ala	TCT Ser	CCA Pro	TTG Leu	TCA Ser 495	ACC Thr	1488
10	AGC Ser	GAG Glu	TTG Leu	ACC Thr 500	AGC Ser	AAA Lys	CTG Leu	AAT Asn	TCT Ser 505	ATC Ile	GAT Asp	ACT Thr	TTC Phe	TGT Cys 510	GAG Glu	AAG Lys	1536
15	ACC Thr	CGG Arg	TTA Leu 515	AGC Ser	TTC Phe	AAT Asn	CAG Gln	TTA Leu 520	ATG Met	GAT Asp	TTG Leu	ACC Thr	GCT Ala 525	CAG Gln	CAA Gln	TCT Ser	1584
13	TAC Tyr	AGT Ser 530	CAA Gln	AGC Ser	AGC Ser	ATT Ile	GAT Asp 535	GCG Ala	AAA Lys	GCA Ala	GCC Ala	AGC Ser 540	CGC Arg	TAT Tyr	GTT Val	CGT	1632
20	TTT Phe 545	GGG Gly	GAA Glu	ACC Thr	ACC Thr	CCA Pro 550	ACC Thr	CGC Arg	GTC Val	AAT Asn	GTC Val 555	TAC Tyr	GGT Gly	GCC Ala	GCT Ala	TAT Tyr 560	1680
25	CTG Leu	AAC Asn	AGC Ser	ACA Thr	CTG Leu 565	GCA Ala	GAC Asp	GCG Ala	GCT Ala	GAT Asp 570	GGT Gly	CAA Gln	TAT Tyr	CTG Leu	TGG Trp 575	ATT Ile	1728
30	CAG Gln	ACT Thr	GAT Asp	GGC Gly 580	AAG Lys	AGC Ser	CTA Leu	AAT Asn	TTC Phe 585	ACT Thr	GAC Asp	GAT Asp	ACG Thr	GTA Val 590	GTC Val	GCC Ala	1776
35	TTA Leu	GCC Ala	GGT Gly 595	CGC Arg	GCT Ala	GAA Glu	AAG Lys	CTG Leu 600	GTA Val	CGT Arg	TTA Leu	TCA Ser	TCC Ser 605	CAG Gln	ACC Thr	GGG Gly	1824
	CTA Leu	TCA Ser 610	TTT Phe	GAA Glu	GAA Glu	TTG Leu	GAC Asp 615	TGG Trp	CTG Leu	ATT Ile	GCC Ala	AAT Asn 620	GCC Ala	AGT Ser	CGT Arg	AGT Ser	1872
40	GTG Val 625	CCG Pro	GAC Asp	CAC His	CAC His	GAC Asp 630	AAA Lys	ATT Ile	GTG Val	CTG Leu	GAT Asp 635	AAG Lys	CCG Pro	GTC Val	CTT Leu	GAA Glu 640	1920
45	GCA Ala	CTG Leu	GCA Ala	GAG Glu	TAT Tyr 645	GTC Val	AGC Ser	CTA Leu	AAA Lys	CAG Gln 650	CGC Arg	TAT Tyr	GGG Gly	CTT Leu	GAT Asp 655	GCC Ala	1968
50	AAT Asn-	ACC Th	TTT Phe	GCG Ala 660	ACC Thr	TTC Phe	ATT Ile	AGT Ser	GCA Ala 665	GTA Val	AAT Asn	CCT Pro	TAT Tyr	ACG Thr 670	CCA Pro	Asp	2016
55	CAG Gln	ACA Thr	CCC Pro 675	AGT Ser	TTC Phe	TAT Tyr	GAA Glu	ACC Thr 680	GCT Ala	TTC Phe	CGC Arg	TCT Ser	GCC Ala 685	GAC Asp	GGT Gly	AAT Asn	2064
	CAT His	GTC Val 690	ATT Ile	GCG Ala	CTA Leu	GGT Gly	ACA Thr 695	GAG Glu	GTG Val	AAA Lys	TAT Tyr	GCA Ala 700	GAA Glu	AAT Asn	GAG Glu	CAG Gln	2112
60	GAT Asp 705	GAG Glu	TTA Leu	GCC Ala	GCC Ala	ATA Ile 710	TGC Cys	TGC Cys	AAA Lys	GCA Ala	TTG Leu 715	GGT Gly	GTC Val	ACC Thr	AGT Ser	GAT Asp 720	2160
65	GAA Glu	CTG Leu	CTC Leu	CGT Arg	ATT Ile 725	GGT Gly	CGC Arg	TAT Tyr	TGC Cys	TTC Phe 730	GGT Gly	AAT Asn	GCA Ala	GGC Gly	AGT Ser 735	TTT Phe	2208
70	ACC Thr	TTG Leu	GAT Asp	GAA Glu 740	TAT Tyr	ACC Thr	GCC Ala	AGT Ser	CAG Gln 745	TTG Leu	TAT Tyr	CGC Arg	TTC Phe	GGC Gly 750	GCC Ala	ATT Ile	2256

			TTG Leu 755													CGT Arg	2304
5			GAA Glu													GCA Ala	2352
10			CTG Leu														2400
15	GAT Asp	TGG Trp	ATG Met	TCG Ser	TCC Ser 805	GTA Val	AAT Asn	CTA Leu	AGT Ser	CTG Leu 810	ACT Thr	TAT Tyr	CTG Leu	CAA Gln	GGG Gly 81	Met	2448
20			ACG Thr														2496
	TTG Leu	GAA Glu	AAC Asn 835	GTT Val	TGT Cys	GAC Asp	AGC Ser	GTG Val 840	AAT Asn	AGT Ser	CAA Gln	GCT Ala	GCC Ala 845	ACT Thr	AAA Lys	GAA Glu	2544
25	ACA Thr	ATG Met 850	GAT Asp	TCG Ser	GCG Ala	TTA Leu	CAG Gln 855	CAG Gln	AAA Lys	GTG Val	CTG Leu	CGG Arg 860	GCG Ala	CTA Leu	AGC Ser	GCC Ala	2592
30	GGT Gly 865	TTC Phe	GGC Gly	ATT Ile	AAG Lys	AGC Ser 870	AAT Asn	GTG Val	ATG Met	GGT Gly	ATC Ile 875	GTC Val	ACC Thr	TTC Phe	TGG Trp	CTG Leu 880	2640
35			ATC Ile														2688
40			GAT Asp														2736
	TCC Ser	TTA Leu	CAA Gln 915	ACC Thr	GAC Asp	ACT Thr	TCT Ser	CTG Leu 920	GTA Val	ATT Ile	GCT Ala	ACT Thr	CAG Gln 925	CAA Gln	CTT Leu	AGC Ser	2784
45	CAG Gln	CTA Leu 930	GTG Val	TTA Leu	ATT Ile	GTG Val	AAA Lys 935	TGG Trp	CTG Leu	AGC Ser	CTG Leu	ACC Thr 940	GAG Glu	CAG Gln	GAT Asp	CTG Leu	2832
50			CTG Leu														2880
55			GTA Val														2928
60			GAA Glu														2976
			CAA Gln 995						Met					Ala			3024
65			GCC Ala					Met					Gly				3072
70		Thr	TTG Leu				Glu					Lys					3120

5	CTC Leu	TGG Trp	CAA Gln	CTT Leu	CTG Leu 1045	Thr	TGG Trp	TTA Leu	CGC Arg	GTC Val 1050	Gly	CAA Gln	AGA Arg	CTG Leu	AAT Asn 105	Val	3168
J			ACC Thr		Leu					Ser					Asp		3216
10			GAG Glu 1079	Ser					Ala					Asn			3264
15			ATC Ile			Arg											3288
20	(2)		ORM/	EQUE		СНА	RACI	reri	STIC	S:	.cids	3					
25			ii)	(B) (C) MOLE	TYF TOF CUL	E: 6 OLOGE TY	amin GY: PE:	o ac line pro	cids ear tein	L							
30			xi) Feati		F 2	E DE 'rom :54 :54		To 267 492	,	De SE	ID scr: Q II aA _{ij}	ipti NO	on :15		pro	otein	1):
35	Met 1	Val	Thr	Val	Met 5	Gln	Asn	Lys	Ile	Ser 10	Phe	Leu	Ser	Gly	Thr 15	Ser	
33	Glu	Gln	Pro	Leu 20	Leu	Asp	Ala	Gly	Tyr 25	Gln	Asn	Val	Phe	Asp 30	Ile	Ala	
40	Ser	Ile	Ser 35	Arg	Ala	Thr	Phe	Val 40	Gln	Ser	Val	Pro	Thr 45	Leu	Pro	Val	
	Lys	Glu 50	Ala	His	Thr	Val	Tyr 55	Arg	Gln	Ala	Arg	Gln 60	Arg	Ala	Glu	Asn	
45	65		Ser			70					75					80	
50	Lys	Gly	Leu	Ala	Lys 85	Leu	Asn	Leu	Gln	Ser 90	Asn	Val	Ser	Val	Leu 95	Gln	
	Asp	Ala	Leu	Val 100	Glu	Asn	Ile	Gly	Gly 105	Asp	Gly	Asp	Phe	Ser 110	Asp	Leu	
55	Met	Asn	Arg 115	Aļa	Ser	Gln	Tyr	Ala 120	Asp	Ala	Ala	Ser	Ile 125	Gln	Ser	Leu	
	Phe	Ser 130	Pro	Gly	Arg	Tyr	Ala 135	Ser	Ala	Leu	Tyr	Arg 140	Val	Ala	Lys	Asp	
60	Leu 145	His	Lys	Ser	Asp	Ser 150	Ser	Leu	His	Ile	Asp 155	Asn	Arg	Arg	Ala	Asp 160	
65	Leu	Lys	Asp	Leu	Ile 165	Leu	Ser	Glu	Thr	Thr 170	Met	Asn	Lys	Glu	Val 175	Thr	
-	Ser	Leu	Asp	Ile 180	Leu	Leu	Asp	Val	Leu 185	Gln	Lys	Gly	Gly	Lys 190	-	Ile	
	Thr	Glu	Leu	Ser	Gly	Ala	Phe	Phe	Pro	Met	Thr	Leu	Pro	Tyr	Asp	Asp	

			195					200					205			
5	His	Leu 210	Ser	Gln	Ile	Asp	Ser 215	Ala	Leu	Ser	Ala	Gln 220	Ala	Arg	Thr	Leu
J	Asn 225	Gly	Va1	Trp	Asn	Thr 230	Leu	Thr	Asp	Thr	Thr 235	Ala	Gln	Ala	Val	Ser 240
10	Glu	Gln	Thr	Ser	Asn 245	Thr	Asn	Thr	Arg	Lys 250	Leu	Phe	Ala	Ala	Gln 255	Asp
	Gly	Asn	Gln	Asp 260	Thr	Phe	Phe	Ser	Gly 265	Asn	Thr	Phe	Tyr	Phe 270	Lys	Ala
15	Val	Gly	Phe 275	Ser	Gly	Gln	Pro	Met 280	Val	Tyr	Leu	Ser	Gln 285	Tyr	Thr	Ser
20		290					295	Gln				300			-	
	305					310		Pro			315					320
25					325			Ala		330					335	
				340				Phe	345					350 -		
30			355					Ala 360					365		-	
35		370					375	His				380				
	385					390		Leu			395		_			400
40					405			Asn		410					415	
4.5				420				Leu	425					430		
45			435					Asp 440					445			
50		450					455	Glu				460				
	465					470		Ala			475		_			480
55					485			Ser		490			W4 x	>	495	
60				500				Asn	505					510		
			515					Leu 520					525			
65		530					535	Ala				540			•	
	545					550		Arg			555		_			560
70	Leu	Asn	Ser	Thr	Leu 565	Ala	Asp	Ala	Ala	Asp 570	Gly	Gln	Tyr	Leu	Trp 575	Ile

	Gln	Thr	Asp	Gly 580	Lys	Ser	Leu	Asn	Phe 585	Thr.	Asp	Asp	Thr	Val 590	Val	Ala
5	Leu	Ala	Gly 595	Arg	Ala	Glu	Lys	Leu 600	Val	Arg	Leu	Ser	Ser 605	Gln	Thr	Gly
	Leu	Ser 610	Phe	Glu	Glu	Leu	Asp 615	Trp	Leu	Ile	Ala	Asn 620	Ala	Ser	Arg	Ser
10	Val 625	Pro	Asp	His	His	Asp 630	Lys	Ile	Val	Leu	Asp 635	Lys	Pro	Val	Leu	Glu 640
15	Ala	Leu	Ala	Glu	Tyr 645	Val	Ser	Leu	Lys	Gln- 650	Arg	Tyr	Gly	Leu	Asp 655	Ala
	Asn	Thr	Phe	Ala 660	Thr	Phe	Ile	Ser	Ala 665	Val	Asn	Pro	Tyr	Thr 670	Pro	Asp
20	Gln	Thr	Pro 675	Ser	Phe	Tyr	Glu	Thr 680	Ala	Phe	Arg	Ser	Ala 685	Asp	Gly	Asn
	His	Val 690	Ile	Ala	Leu	Gly	Thr 695	Glu	Val	Lys	Tyr	Ala 700	Glu	Asn	Glu	Głn
25	Asp 705	Glu	Leu	Ala	Ala	Ile 710	Cys	Cys	Lys	Ala	Leu 715	Gly	Val	Thr	Ser	Asp 720
30	Glu	Leu	Leu	Arg	Ile 725	Gly	Arg	Tyr	Cys	Phe 730	Gly	Asn	Ala	Gly	Ser 735	Phe
	Thr	Leu	Asp	Glu 740	Tyr	Thr	Ala	Ser	Gln 745	Leu	Tyr	Arg	Phe	Gly 750	Ala	Ile
35	Pro	Arg	Leu 755	Phe	Gly	Leu	Thr	Phe 760	Ala	Gln	Ala	Glu	Ile 765	Leu	Trp	Arg
	Leu	Met 770	Glu	Gly	Gly	Lys	Asp 775	Ile	Leu	Leu	Gln	Gln 780	Leu	Gly	Gln	Ala
40	Lys 785	Ser	Leu	Gln	Pro	Leu 790	Ala	Ile	Leu	Arg	Arg 795	Thr	Glu	Gln	Val	Leu 800
45	Asp	Trp	Met	Ser	Ser 805	Val	Asn	Leu	Ser	Leu 810	Thr	Tyr	Leu	Gln	Gly 815	
	Val	Ser	Thr	Gln 820	Trp	Ser	Gly	Thr	Ala 825	Thr	Ala	Glu	Met	Phe 830	Asn	Phe
50	Leu	Glu	Asn 835	Val	Cys	Asp	Ser	Val 840	Asn	Ser	Gln	Ala	Ala 845	Thr	Lys	Glu
	Thr	Met 850	Asp	Ser	Ala	Leu	Gln 855	Gln	Lys	Val	Leu	Arg 860	Ala	Leu	Ser	Ala
55	Gly 865	Phe	Gly	Ile	Lys	Ser 870	Asn	Val	Met	Gly	Ile 875	Val	Thr	Phe	Trp	Leu 880
60	Glu	Lys	Ile-	-Thr	Ile 885	Gly	Ser	Asp	Asn	Pro 890	Phe	Thr	Leu	Ala	Asn 895	Tyr
	Trp	His	Asp	Ile 900	Gln	Thr	Leu	Phe	Ser 905	His	Asp	Asn	Ala	Thr 910	Leu	Glu
65	Ser	Leu	Gln 915	Thr	Asp	Thr	Ser	Leu 920	Val	Ile	Ala	Thr	Gln 925	Gln	Leu	Ser
	Gln	Leu 930	Val	Leu	Ile	Val	Lys 935	Trp	Leu	Ser	Leu	Thr 940	Glu	Gln	Asp	Leu
70	Gln 945	Leu	Leu	Thr	Thr	Tyr 950	Pro	Glu	Arg	Leu	Ile 955	Asn	Gly	Ile	Thr	Asn 960

	Val	Pro	Val	Pro	Asn 965	Pro	Glu	Leu	Leu	Leu 970	Thr	Leu	.ser	Arg	Phe 975	Lys	
5	Gln	Trp	Glu	Thr 980	Gln	Val	Thr	Val	Ser 985	Arg	Asp	Glu	Ala	Met 990	Arg	Cys	
10	Phe	Asp	Gln 995	Leu	Asn	Ala	Asn	Asp 1000	Met)	Thr	Thr	Glu	Asn 100		Gly	Ser	
10	Leu	Ile 1010	Ala O	Thr	Leu	Tyr	Glu 1015	Met	Asp	Lys	Gly	Thr 1020		Ala	Gln	Val	
15	Asn 1025		Leu	Leu	Leu	Gly 1030	Glu)	Asn	Asn	Trp	Pro 1035		Ser	Phe	Thr	Ser 1040	
	Leu	Trp	Gln	Leu	Leu 1045	Thr	Trp	Leu	Arg	Val 1050		Gln	Arg	Leu	Asn 1055		
20	Gly	Ser	Thr	Thr 1060		Gly	Asn	Leu	Leu 1065		Met	Met	Gln	Ala 1070	_	Pro	
25	Ala	Ala	Glu 1075		Ser	Ala	Leu	Leu 1080		Ser	Val	Ala	Gln 1085		Leu	Ser	
	Ala	Ala 1090		Ser	Asn	_	Gln 1095	•••									
30	(2)	INF	'ORM	ATIO	N FO	R SI	EQ I	D NC	:35								
35				(A) (B) (C)	LEN TYP TOP	GTH: E: a OLOC	RACT : 60 amin GY: PE:	3 am o ac line	ino id ar	aci	ds						
		(2	xi)	SEQU	JENCI	E DE	SCRI	PTI	: MC	SEQ	ID 1	X0:3	5 (I	[caA	iii []]	protei	n):
40	Pro 1	Leu	Ser	Thr	Ser 5	Glu	Leu	Thr	Ser	Lys 10	Leu	Asn	Ser	Ile	Asp 15	Thr	
45	Phe	Cys	Glu	Lys 20	Thr	Arg	Leu	Ser	Phe 25	Asn	Gln	Leu	Met	Asp 30	Leu	Thr	
43	Ala	Gln	Gln 35	Ser	Tyr	Ser	Gln	Ser 40	Ser	Ile	Asp	Ala	Lys 45	Ala	Ala	Ser	
50	Arg	Tyr 50	Val	Arg	Phe	Gly	Glu 55	Thr	Thr	Pro	Thr	Arg 60	Val	Asn	Val	Tyr	
	Gly 65	Ala	Ala	Tyr	Leu	Asn 70	Ser	Thr	Leu	Ala	Asp 75	Ala	Ala	Asp	Gly	Gln 80	
55	Tyr	Leu	Trp	Ile	Gln 85	Thr	Asp	Gly	Lys	Ser 90	Leu	Asn	Phe	Thr	Asp 95	Asp	
60	Thr	Val	Val	Ala 100	Leu	Ala	Gly	Arg	Ala 105	Glu	Lys	Leu	Val	Arg 110	Leu	Ser	
	Ser	Gln	Thr 115	Gly	Leu	Ser	Phe	Glu 120	Glu	Leu	Asp	Trp	Leu 125	Ile	Ala	Asn	
65	Ala	Ser 130.		Ser	Val	Pro	Asp 135	His	His	Asp	Lys	Ile 140	Val	Leu	Asp	Lys	
	Pro 145	Val	Leu	Glu	Ala	Leu 150	Ala	Glu	Tyr	Val	Ser 155	Leu	Lys	Gln	Arg	Tyr 160	

	Gly	Leu	Asp	Ala	Asn 165	Thr	Phe	Ala	Thr	Phe 170	.Ile	Ser	Ala	Val	Asn 175	Pro
5	Tyr	Thr	Pro	Asp 180	Gln	Thr	Pro	Ser	Phe 185	Tyr	Glu	Thr	Ala	Phe 190	Arg	Ser
	Ala	Asp	Gly 195	Asn	His	Val	Ile	Ala 200	Leu	Gly	Thr	Glu	Val 205	Lys	Tyr	Ala
10	Glu	Asn 210	Glu	Gln	Asp	Glu	Leu 215	Ala	Ala	Ile	Cys	Cys 220	Lys	Ala	Leu	Gly
15	Val 225	Thr	Ser	Asp	Glu	Leu 230	Leu	Arg	Ile	Gly	Arg 235	Tyr	Cys	Phe	Gly	Asn 240
10	Ala	Gly	Arg	Phe	Thr 245	Leu	Asp	Glu	Tyr	Thr 250	Ala	Ser	Gln	Leu	Tyr 255	
20	Phe	Gly	Ala	Ile 260	Pro	Arg	Leu	Phe	Gly 265	Leu	Thr	Phe	Ala	Gln 270	Ala	Glu
	Ile	Leu	Trp 275	Arg	Leu	Met	Glu	Gly 280	Gly	Lys	Asp	Ile	Leu 285	Leu	Gln	Gln
25	Xxx	Gly 290	Gln	Ala	Lys	Ser	Leu 295	Gln	Pro	Leu	Ala	Ile 300	Leu	Arg	Arg	Thr
30	Glu 305	Gln	Val	Leu	Asp	Trp 310	Met	Ser	Pro	Val	Asn 315	Leu	Ser	Leu	Thr	Tyr 320
	Leu	Gln	Gly	Met	Val 325	Ser	Thr	Gln	Trp	Ser 330	Gly	Thr	Ala	Thr	Ala 335	Glu
35	Met	Phe	Asn	Phe 340	Leu	Glu	Asn	Val	Cys 345	Asp	Ser	Val	Asn	Ser 350	Gln	Ala
•	Xxx	Thr	Lys 355	Glu	Thr	Met	Asp	Ser 360	Ala	Leu	Gln	Gln	Lys 365	Val	Leu	Arg
40	Ala	Leu 370	Ser	Ala	Gly	Phe	Gly 375	Ile	Lys	Ser	Asn	Val 380	Met	Gly	Ile	Val
45	Thr 385	Phe	Trp	Leu	Glu	Lys 390	Ile	Thr	Ile	Gly	Arg 395	Asp	Asn	Pro	Phe	Thr 400
	Leu	Ala	Asn	Tyr	Trp 405	His	Asp	Ile	Gln	Thr 410	Leu	Phe	Ser	His	Asp 415	Asn
50	Ala	Thr	Leu	Glu 420	Ser	Leu	Gln	Thr	Asp 425	Thr	Ser	Leu	Val	Ile 430	Ala	Thr
	Gln	Gln	Leu 435	Ser	Gln	Leu	Val	Leu 440	Ile	Val	Lys	Trp	Val 445	Ser	Leu	Thr
55	Glu	Gln 450	Asp	Leu	Gln	Leu	Leu 455	Thr	Thr	Tyr	Pro	Glu 460	Arg	Leu	Ile	Asn
60	Gly 465	Ile	Thr	Asn	Val	Pro 470	Val	Pro	Asn	Pro	Glu 475	Leu	Leu	Leu	Thr	Leu 480
	Ser	Arg	Phe	Lys	Gln 485	Trp	Glu	Thr	Gln	Val 490	Thr	Val	Ser	Arg	Asp 495	Glu
65	Ala	Met	Arg	Cys 500	Phe	Asp	Gln	Leu	Asn 505	Ala	Asn	Asp	Met	Thr 510	Thr	Glu
			Gly 515					520		_			525	-	-	
70	Gly	Ala 530	Gln	Val	Asn	Thr	Leu 535	Leu	Leu	Gly	Glu	Asn 540	Asn	Trp	Pro	Lys

Ser Phe Thr Ser Leu Trp Gln Leu Leu Thr Trp Leu Arg Val Gly Gln 545 550 555 5 Arg Leu Asn Val Gly Ser Thr Thr Leu Gly Asn Leu Leu Ser Met Met Gln Ala Asp Pro Ala Ala Glu Ser Ser Ala Leu Leu Ala Ser Val Ala 585 10 Gln Asn Leu Ser Ala Ala Ile Ser Asn Arg Gln * 15 (2) INFORMATION FOR SEQ ID NO:36: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2557 base pairs (B) TYPE: nucleic acid 20 (C) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic) (xi) SEQUENCE DESCRIPTION: SEQ ID NO:36 (tcdA internal fragment): 25 GAATTCGGCT TGCGTTTAAT ATTGATGATG TCTCGCTCTT CCGCCTGCTT AAAATTACCG 60 ACCATGATAA TAAAGATGGA AAAATTAAAA ATAACCTAAA GAATCTTTCC AATTTATATA 120 TTGGAAAATT ACTGGCAGAT ATTCATCAAT TAACCATTGA TGAACTGGAT TTATTACTGA TTGCCGTAGG TGAAGGAAAA ACTAATTTAT CCGCTATCAG TGATAAGCAA TTGGCTACCC 30 TGATCAGAAA ACTCAATACT ATTACCAGCT GGCTACATAC ACAGAAGTGG AGTGTATTCC AGCTATTTAT CATGACCTCC ACCAGCTATA ACAAAACGCT AACGCCTGAA ATTAAGAATT TGCTGGATAC CGTCTACCAC GGTTTACAAG GTTTTGATAA AGACAAAGCA GATTTGCTAC ATGTCATGGC GCCCTATATT GCGGCCACCT TGCAATTATC ATCGGAAAAT GTCGCCCACT CGGTACTCCT TTGGGCAGAT AAGTTACAGC CCGGCGACGG CGCAATGACA GCAGAGGGAN

180 240 360 420 480 540 35 TCTGGGACTG GTTGAATACT AAGTATACGC CGGGTTCATC GGAAGCCGTA GAAACGCAGG 600 AACATATCGT TCAGTATTGT CAGGCTCTGG CACAATTGGA AATGGTTTAC CATTCCACCG 660 GCATCAACGA AAACGCCTTC CGTCTATTTG TGACAAAACC AGAGATGTTT GGCGCTGCAA 720 CTGGAGCAGC GCCCGCGCAT GATGCCCTTT CACTGATTAT GCTGACACGT TTTGCGGATT GGGTGAACGC ACTAGGCGAA AAAGCGTCCT CGGTGCTAGC GGCATTTGAA GCTAACTCGT 840 40 TAACGGCAGA ACAACTGGCT GATGCCATGA ATCTTGATGC TAATTTGCTG TTGCAAGCCA 900 GTATTCAAGC ACAAAATCAT CAACATCTTC CCCCAGTAAC TCCAGAAAAT GCGTTCTCCT 960 GTTGGACATC TATCAATACT ATCCTGCAAT GGGTTAATGT CGCACAACAA TTGAAATGTC 1020 GCCCCACAGG GCGTTTCCGC TTTGGTCGGG CTGGATTATA TTCAATCAAT GAAAGAGACA 1080 CCGACCTATG CCCAGTGGGA AAACGCGGCA GGCGTATTAA CCGCCGGGTT GAATTCAACA 1140 45 ACAGGCTAAT ACATTACAAC GCTTTTCTGG ATGAATCTCG CAGTGCCGCA TTAAGCACCT 1200 ACTATATCCG TCAAGTCGCC AAGGCAGCGG CGGCTATTAA AAGCCGTGAT GACTTGTATC AATACTTACT GATTGATAAT CAGGTTTCTG CGGCAATAAA AACCACCCGG ATCGCCGAAG 1320 CCATTGCCAG TATTCAACTG TACGTCAACC GGGCATTGGA AAATGTGGAA GAAAATGCCA 1380 ATTCGGGGGT TATCAGCCGC CAATTCTTTA TCGACTGGGA CAAATACAAT AAACGCTACA 50 GCACTTGGGC GGGTGTTTCT CAATTAGTTT ACTACCCGGA AAACTATATT GATCCGACCA 1500 TGCGTATCGG ACAAACCAAA ATGATGGACG CATTACTGCA ATCCGTCAGC CAAAGCCAAT TAAACGCCGA TACCGTCGAA GATGCCTTTA TGTCTTATCT GACATCGTTT GAACAAGTGG 1620 CTAATCTTAA AGTTATTAGC GCATATCACG ATAATATTAA TAACGATCAA GGGCTGACCT 1680 ATTTTATCGG ACTCAGTGAA ACTGATGCCG GTGAATATTA TTGGCGCAGT GTCGATCACA 1740 55 GTAAATTCAA CGACGGTAAA TTCGCGGCTA ATGCCTGGAG TGAATGGCAT AAAATTGATT

	CTCCA AT	ממיזי		מ גייי הי	N N C	ירא כיז	יא ידירים	·	70300	יים איים	מיית	יא א אר	000	7000	roma mo	1060
	GTCCAAT								•							1860
	TGCTCTG															1920
	AAACTGA															1980
_	GGAATAC															2040
5	ATAGAGC	GCC (CGGAC	TCTA?	r TG	TGCC	GGT	TATO	CAAGO	FTGA	AGAT	'ACG'	TTG (CTGGT	GATGT	2100
	TTTATAA	CCA 2	ACAAG	ACAC	A CI	'AGA'I	AGT	ATA	AAAA	CGC	TTC	ATG	CAA	GAC?	CATATA	2160
	TCTTTGC	TGA :	TATGG	CATC	C AA	AGAT	TATG	CCC	CAGA	ACA	GAGO	CAATO	TT	CATCO	GGATA	2220
	ATAGCTA	TCA A	ACAAT	TTGA!	r AC	CAAT	TAAT	TC	GAAC	AGT	GAAT	CAACO	CGC 7	ratgo	CAGAGG	2280
	ATTATGA	GAT :	rcctt	CTTC	G GI	'AAG'I	AGC	GTA	LAAGA	CTA	TGGT	TGG	GA (ATT!	TTACC	2340
10	TCAGCAT	GGT 1	ATATA	ACGG	A GA	TTAT	CCA	CTA	ATCAP	ATTA	CAAA	GCCC	CA 1	CAAC	STGATT	2400
	TAAAAAT	TTA 7	TATTT	CACC	A AA	ATTA	AGAZ	TT	TTC	AATA	TGGA	TATO	AA (GAC	AGAAGC	2460
	GCAATCA	ATG (CAATT	TGAT	3 AA	TAAA	TATO	GCA	AACT	AGG	TGAT	'AAA'	TT A	ATTGT	GTATA	2520
	CCAGCCT	GGG (CGTTA	ATCC	G AA	TAAT	'AAGO	CGA	ATTO	:						2557
15																
	(2) IN	FORM	ATIO	V FOE	R SE	EQ I	D NC	:37	:							
	(i)	SEOU	ENCE	CH	ARAC	TER	TSTT	CS :							
	,	-,	(A)	LENC	TH:	8	45 a	mino		ids						
20				TYPE												
	(ii)	MOLE	TOPO					(pa	rti.	al)					
	`	,					PTO		. , pc		~ _,					
٥.			SEQU	ENCE	DE	SCRI	PTI	: MC	SEQ	ID :	NO:3	7 (3	CdA	int	ernal	
25	peptide	3):														
	Ala Phe	Asn	Ile	Asp A	Asp	Val	Ser	Leu	Phe	Arg	Leu	Leu	Lys	Ile	Thr	
	1			5					10					15		
30	Asp His	Asp	Asn	Lys A	Asp	Gly	Lys	Ile	Lys	Asn	Asn	Leu	Lys	Asn	Leu	
			20					25					30			
	Ser Asn	Leu	Tyr	Ile (31y	Lys	Leu	Leu	Ala	Asp	Ile	His	Gln	Leu	Thr	
35		35					40					45				
33	Ile Asp	Glu	Leu	Asp 1	Leu	Leu	Leu	Ile	Ala	Val	Gly	Glu	Gly	Lys	Thr	
	50			_		55					60		•	-		
	Asn Leu	Ser	Ala	Ile :	Ser	Asp	Lvs	Gln	Leu	Ala	Thr	Leu	Ile	Arq	Lvs	
40	65				70	•	•			75					80	
	Leu Asn	Thr	Ile	Thr :	Ser	Tro	Leu	His	Thr	Gln	Lvs	Tro	Ser	Val	Phe	
	200			85					90		-,,			95		
45	Gln Leu	Dha	Tla	Met '	Thr	Ser	Thr	Sar	ጥረታ	Acn	Tare	Thr	T.e.u	Thr	Dro	
33	GIN Dea	FIIC	100	MCC		001	1111	105	TYL	non	цуз	1111	110	1111	110	
	Clu Tla		N a m	Lou	Len	Acn	Thr	17-1	Tree	uic	C1.,	Tour	Cln	C111	Dhe	
	Glu Ile	115		Leu .	Leu	Asp	120	vai	ıyı	птэ	GIÅ	125	GIII	GIY	PHE	
50	• •		•	27-	N	T	Y	TT -	11-3	W		D		T1.	71-	
	Asp Lys	-	гуз	Ala .	ASP	135	теп	HIS	vaı	Met	140	Pro	туг	TTE	Ala	
				_	_							_		_	_	
55	Ala Thr	· Leu	Gln		Ser 150	Ser	Glu	Asn	Val	A1a 155	His	Ser	Val	Leu	Leu 160	
J J													_			
	Trp Ala	Asp	Lys	Leu 165	Gln	Pro	Gly	Asp	Gly 170	Ala	Met	Thr	Ala	Glu 175	Gly	
60	Phe Trp	Asp	Trp 180	Leu	Asn	Thr	Lys	Tyr 185	Thr	Pro	Gly	Ser	Ser 190	Glu	Ala	
	Val Glu	Thr	Gln	Glu	His	Ile	Val	Gln	Tyr	Cys	Gln	Ala	Leu	Ala	Gln	

			195					200					205			
5	Leu	Glu 210	Met	Val	Tyr	His	Ser 215	Thr	Gly	Ile	Asn	Glu 220	Asn	Ala	Phe	Arg
J	Leu 225	Phe	Val	Thr	Lys	Pro 230	Glu	Met	Phe	Gly	Ala 235	Ala	Thr	Gly	Ala	Ala 240
10	Pro	Ala	His	Asp	Ala 245	Leu	Ser	Leu	Ile	Met 250	Leu	Thr	Arg	Phe	Ala 255	Asp
	Trp	Val	Asn	Ala 260	Leu	Gly	Glu	Lys	Ala 265	Ser	Ser	Val	Leu	Ala 270	Ala	Phe
15	Glu	Ala	Asn 275	Ser	Leu	Thr	Ala	Glu 280	Gln	Leu	Ala	Asp	Ala 285	Met	Asn	Leu
20	Asp	Ala 290	Asn	Leu	Leu	Leu	Gln 295	Ala	Ser	Ile	Gln	Ala 300	Gln	Asn	His	Gln
	His 305	Leu	Pro	Pro	Val	Thr 310	Pro	Glu	Asn	Ala	Phe 315	Ser	Cys	Trp	Thr	Ser 320
25			Thr		325		_			330					335	_
			Thr	340	*				345					350		
30	Asn	Glu	Arg 355	Asp	Thr	Asp	Leu	Cys 360	Pro	Val	Gly	Lys	Arg 365	Gly	Arg	Arg
35	Ile	Asn 370	Arg	Arg	Val	Glu	Phe 375	Asn	Asn	Arg	Leu	Ile 380	His	Tyr	Asn	Ala
	385		Asp			390					395		-	_		400
40			Ala		405					410			-		415	
			Leu	420		_			425					430		
45			Ala 435					440				-	445			
50		450	Asn				455					460				
	465		Ile			470					475					480
55			Ser		485					490					495	
60			Ile	500					505	_				510		
60			Ser 515					520					525			
65		530	Thr				535					540				
	545		Asp			550					555		-			560
70	Leu	ser	Glu	Thr	Asp 565	Ala	Gly	Glu	Tyr	Tyr 570	Trp	Arg	Ser	Val	Asp 575	His

	Ser	Lys	Phe	Asn 580	Asp	Gly	Lys	Phe	Ala 585	Ala	Asn	Ala	Trp	Ser 590	Glu	Trp
5	His	Lys	Ile 595	Asp	Cys	Pro	Ile	Asn 600	Pro	Tyr	Lys	Ser	Thr 605	Ile	Arg	Pro
	Val	Ile 610	Tyr	Lys	Ser	Arg	Leu 615	Tyr	Leu	Leu	Trp	Leu 620	Glu	Gln	Lys	Glu
10	Ile 625	Thr	Lys	Gln	Thr	Gly 630	Asn	Ser	Lys	Asp	Gly 635	Tyr	Gln	Thr	Glu	Thr 640
15	Asp	Tyr	Arg	Tyr	Glu 645	Leu	Lys	Leu	Ala	His 650	Ile	Arg	Tyr	Asp	Gly 655	Thr
13	Trp	Asn	Thr	Pro 660	Ile	Thr	Phe	Asp	Val 665	Asn	Lys	Lys	Ile	Ser 670	Glu	Leu
20	Lys	Leu	Glu 675	Lys	Asn	Arg	Ala	Pro 680	Gly	Leu	Tyr	Cys	Ala 685	Gly	Tyr	Gln
	Gly	Glu 690	Asp	Thr	Leu	Leu	Val 695		Phe	Tyr	Asn	Gln 700	Gln	Asp	Thr	Leu
25	Asp 705	Ser	Tyr	Lys	Asn	Ala 710	Ser	Met	Gln	Gly	Leu 715	Tyr	Ile	Phe	Ala	Asp 720
2.0	Met	Ala	Ser	Lys	Asp 725	Met	Thr	Pro	Glu	Gln 730	Ser	Asn	Val	Tyr	Arg 735	Asp
30	Asn	Ser	Tyr	Gln 740	Gln	Phe	Asp	Thr	Asn 745	Asn	Val	Arg	Arg	Val 750	Asn	Asn
35	Arg	Tyr	Ala 755	Glu	Asp	Tyr	Glu	Ile 760	Pro	Ser	Ser	Val	Ser 765	Ser	Arg	Lys
	Asp	Tyr 770	Gly	Trp	Gly	Asp	Tyr 775	Tyr	Leu	Ser	Met	Val 780	Tyr	Asn	Gly	Āŝp
40	Ile 785	Pro	Thr	Ile	Asn	Tyr 790	Lys	Ala	Ala	Ser	Ser 795	Asp	Leu	Lys	Ile	Tyr 800
45	Ile	Ser	Pro	Lys	Leu 805	Arg	Ile	Ile	His	Asn 810	Gly	Tyr	Glu	Gly	Gln 815	Lys
4.5	Arg	Asn	Gln	Cys 820	Asn	Leu	Met	Asn	Lys 825	Tyr	Gly	Lys	Leu	Gly 830	Asp	Lys
50	Phe	Ile	Val 835	Tyr	Thr	Ser	Leu	Gly 840	Val	Asn	Pro	Asn	Asn 845			

(2) INFORMATION FOR SEQ ID NO:38:

55 (i) SEQUENCE CHARACTERISTICS:

60

- (A) LENGTH: 16 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULAR TYPE: protein
- (v) FRAGMENT TYPE: N-terminal
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:38 (TcdA $_{ii}$ pk71 internal peptide):
- Arg Tyr Tyr Asn Leu Ser Asp Glu Glu Leu Ser Gln Phe Ile Gly

Lys

```
(2) INFORMATION FOR SEQ ID NO:39:
 5
           (i) SEQUENCE CHARACTERISTICS:
                 (A) LENGTH: 20 amino acids
                 (B) TYPE: amino acid
                 (C) STRANDEDNESS: single
                 (D) TOPOLOGY: linear
10
          (ii) MOLECULAR TYPE: protein
           (v) FRAGMENT TYPE: N-terminal
          (xi) SEQUENCE DESCRIPTION: SEQ ID NO:39 (TcdA<sub>ii</sub>- pK44 internal
15
     peptide):
     Gly Thr Ala Thr Asp Val Ser Gly Pro Val Glu Ile Asn Thr Ala
20
     Ile Ser Pro Ala Lys
     (2) INFORMATION FOR SEQ ID NO:40:
25
           (i) SEQUENCE CHARACTERISTICS:
                 (A) LENGTH: 11 amino acids
                 (B) TYPE: amino acid
                 (C) STRANDEDNESS: single
30
                 (D) TOPOLOGY: linear
          (ii) MOLECULAR TYPE: protein
           (v) FRAGMENT TYPE: N-terminal
          (xi) SEQUENCE DESCRIPTION: SEQ ID NO:40 (TcbA<sub>ii</sub> N-terminus):
35
     Ala Asn Ser Leu Thr Ala Leu Phe Leu Pro Gln
40
     (2) INFORMATION FOR SEQ ID NO:41:
           (i) SEQUENCE CHARACTERISTICS:
                 (A) LENGTH: 14 amino acids
                 (B) TYPE: amino acid(C) STRANDEDNESS: single
45
                 (D) TOPOLOGY: linear
          (ii) MOLECULAR TYPE: protein
           (v) FRAGMENT TYPE: N-terminal
50
          (xi) SEQUENCE DESCRIPTION: SEQ ID NO:41 (TcdA_{iii} N-terminus):
     Leu Arg Ser Ala Asn Thr Leu Thr Asp Leu Phe Leu Pro Gln
55
```

(2) INFORMATION FOR SEQ ID NO:42: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 19 amino acids 5 (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULAR TYPE: protein (v) FRAGMENT TYPE: N-terminal 10 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:42 (TcdA-pk57 internal peptide): Arg Ala Leu Glu Val Glu Arg Thr Val Ser Leu Ala Glu Val Tyr 15 Ala Gly Leu Glu 20 (2) INFORMATION FOR SEQ ID NO:43: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 11 amino acids (B) TYPE: amino acid 25 (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULAR TYPE: protein (v) FRAGMENT TYPE: N-terminal 30 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:43 (TcdA;ii-pK20 internal peptide): Ile Arg Glu Asp Tyr Pro Ala Ser Leu Gly Lys 35 (2) INFORMATION FOR SEQ ID NO:44: (i) SEQUENCE CHARACTERISTICS: 40 (A) LENGTH: 16 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULAR TYPE: protein 45 (v) FRAGMENT TYPE: N-terminal (xi) SEQUENCE DESCRIPTION: SEQ ID NO:44: Asp Asp Ser Gly Asp Asp Asp Lys Val Thr Asn Thr Asp Ile His Arg 50 (2) INFORMATION FOR SEQ ID NO:45: 55 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 13 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULAR TYPE: protein 60 (v) FRAGMENT TYPE: N-terminal (xi) SEQUENCE DESCRIPTION: SEQ ID NO:45:

Asp Val Xaa Gly Ser Glu Lys Ala Asn Glu Lys Leu Lys 1 10

5	(2)	INF	ORMA	ATIO	N FC	R SI	EQ I	D NC	:46	:						
10		(ii) MC	(A) (B) (C) (D) (LEC)	LENC TYPE STRA TOPO ULE	STH: E: n' ANDE DLOG TYPI	755 ucle DNES Y: 1 E: D		ase acid doub ar gend	pair le omic	7					
15		AAC) SI GAG Glu	TCT	GTA	AAA	GAG	ATA	CCT	GAT	GTA	TTA	AAA	AGC	CAG	48
20			AAT Asn													96
25			CAA Gln 35													144
30			GAT Asp													192
35			CTC Leu													240
33			CTC Leu													288
40			AGA Arg													336
45			CCC Pro 115													384
50			GCA Ala													432

55	CTC AAL Leu Ly 145	 				Asp			480
23									

ACA	CTC	TCT	TTG	TCC	AAT	GAG	CTG	TTA	TTG	GAA	AGC	ATT	AAA	ACT	GAA	528
		Ser														
1	100	501	200	165					170				-,-	175		

60	TCT	AAA	CTG	GAA	AAC	TAT	ACT	AAA	GTG	ATG	GAA	ATG	CTC	TCC	ACT	TTC	576
	Ser	Lys	Leu	Glu	Asn	Tyr	Thr	Lys	Val	Met	Glu	Met	Leu	Ser	Thr	Phe	
		_		180					185					190			

65 Arg Pro Ser Gly Ala Thr Pro Tyr His Asp Ala Tyr Glu Asn Val Arg 195 200 205	65			Ser	Gly				Tyr					Glu			CGT	62	4
--	----	--	--	-----	-----	--	--	--	-----	--	--	--	--	-----	--	--	-----	----	---

GAA GTT ATC CAG CTA CAA GAT CCT GGA CTT GAG CAA CTC AAT GCA TCA 672 Glu Val Ile Gln Leu Gln Asp Pro Gly Leu Glu Gln Leu Asn Ala Ser

		210					215					220					
5		GCA Ala															720
10		TCA Ser															768
10	GAA Glu	GGT Gly	AAT Asn	GCT Ala 260	GAG Glu	GAA Glu	CTT Leu	TAT Tyr	AAG Lys 265	AAA Lys	AAT Asn	TTT Phe	GGT Gly	AAT Asn 270	ATC Ile	GAA Glu	816
15	CCG Pro	GCC Ala	TCA Ser 275	TTG Leu	GCT Ala	ATG Met	CCG Pro	GAA Glu 280	TAC Tyr	CTT Leu	AAA Lys	CGT Arg	TAT Tyr 285	TAT Tyr	AAT Asn	TTA Leu	864
20	AGC Ser	GAT Asp 290	GAA Glu	GAA Glu	CTT Leu	AGT Ser	CAG Gln 295	TTT Phe	ATT Ile	GGT Gly	AAA Lys	GCC Ala 300	AGC Ser	AAT Asn	TTT Phe	GGT Gly	912
25	CAA Gln 305	CAG Gln	GAA Glu	TAT Tyr	AGT Ser	AAT Asn 310	AAC Asn	CAA Gln	CTT Leu	ATT Ile	ACT Thr 315	CCG Pro	GTA Val	GTC Val	AAC Asn	AGC Ser 320	960
30	AGT Ser	GAT Asp	GGC Gly	ACG Thr	GTT Val 325	AAG Lys	GTA Val	TAT Tyr	CGG Arg	ATC Ile 330	ACC Thr	CGC Arg	GAA Glu	TAT Tyr	ACA Thr 335	ACC Thr	1008
30	AAT Asn	GCT Ala	TAT Tyr	CAA Gln 340	ATG Met	GAT Asp	GTG Val	GAG Glu	CTA Leu 345	TTT Phe	CCC Pro	TTC Phe	GGT Gly	GGT Gly 350	GAG Glu	AAT Asn	1056
35	TAT Tyr	CGG Arg	TTA Leu 355	GAT Asp	TAT Tyr	AAA Lys	TTC Phe	AAA Lys 360	AAT Asn	TTT Phe	TAT Tyr	AAT Asn	GCC Ala 365	TCT Ser	TAT Tyr	TTA Leu	1104
40	TCC Ser	ATC Ile 370	AAG Lys	TTA Leu	AAT Asn	GAT Asp	AAA Lys 375	AGA Arg	GAA Glu	CTT Leu	GTT Val	CGA Arg 380	ACT Thr	GAA Glu	GGC Gly	GCT Ala	1152
45	CCT Pro 385	CAA Gln	GTC Val	AAT Asn	ATA Ile	GAA Glu 390	TAC Tyr	TCC Ser	GCA Ala	AAT Asn	ATC Ile 395	ACA Thr	TTA Leu	AAT Asn	ACC Thr	GCT Ala 400	1200
50	GAT Asp	ATC Ile	AGT Ser	CAA Gln	CCT Pro 405	TTT Phe	GAA Glu	ATT Ile	GGC Gly	CTG Leu 410	ACA Thr	CGA Arg	GTA Val	CTT Leu	CCT Pro 415	TCC Ser	1248
30	GGT Gly	TCT Ser	TGG Trp	GCA Ala 420	TAT Tyr	GCC Ala	GCC Ala	GCA Ala	AAA Lys 425	TTT Phe	ACC Thr	GTT Val	GAA Glu	GAG Glu 430	TAT Tyr	AAC Asn	1296
55	CAA Gln	TAC Tyr	TCT Ser 435	TTT Phe	C T G Leu	CTA Leu	AAA Lys	CTT Leu 440	AAC Asn	AAG Lys	GCT Ala	ATT Ile	CGT Arg 445	CTA Leu	TCA Ser	CGT Arg	1344
60	GCG Ala	ACA Thr 450	GAA Glu	TTG Leu	TCA Ser	CCC Pro	ACG Thr 455	ATT Ile	CTG Leu	GAA Glu	GGC Gly	ATT Ile 460	GTG Val	CGC Arg	AGT Ser	GTT Val	1392
65	AAT Asn 465	CTA Leu	CAA Gln	CTG Leu	GAT Asp	ATC Ile 470	AAC Asn	ACA Thr	GAC Asp	GTA Val	TTA Leu 475	GGT Gly	AAA Lys	GTT Val	TTT Phe	CTG Leu 480	1440
- 70	ACT Thr	AAA Lys	TAT Tyr	TAT Tyr	ATG Met 485	CAG Gln	CGT Arg	TAT Tyr	GCT Ala	ATT Ile 490	CAT His	GCT Ala	GAA Glu	ACT Thr	GCC Ala 495	CTG Leu	1488
, 0	ATA	CTA	TGC	AAC	GCG	CCT	TTA	TCA	CAA	CGT	TCA	TAT	GAT	TAA	CAA	CCT	1536

	Ile	Leu	Cys	Asn 500	Ala	Pro	Ile	Ser	Gln 505	Arg	Ser	Tyr	Asp	Asn 510	Gln	Pro	
5				GAT Asp													1584
10				GGC Gly													1632
1.5				AAA Lys													1680
15				CGC Arg													1728
20				AAT Asn 580													1776
25				GAT Asp													1824
30				GTA Val													1872
35	AAG Lys 625	CAA Gln	TTG Leu	GCT Ala	ACC Thr	CTG Leu 630	ATC Ile	AGA Arg	AAA Lys	CTC Leu	AAT Asn 635	ACT Thr	ATT Ile	ACC Thr	AGC Ser	TGG Trp 640	1920
33				CAG Gln													1968
40				AAC Asn 660													2016
45				CAC His													2064
50	CTA Leu	CAT His 690	GTC Val	ATG Met	GCG Ala	CCC Pro	TAT Tyr 695	ATT Ile	GCG Ala	GCC Ala	ACC Thr	TTG Leu 700	CAA Gln	TTA Leu	TCA Ser	TCG Ser	2112
55				GCC Ala													2160
33				GCA Ala													2208
60				CCG Pro 740													2256
65				TGT Cys													2304
70				AAC Asn													2352

			GGC Gly													TCA Ser 800	2400
5	CTG Leu	ATT Ile	ATG Met	CTG Leu	ACA Thr 805	CGT Arg	TTT Phe	GCG Ala	GAT Asp	TGG Trp 810	GTG Val	AAC Asn	GCA Ala	CTA Leu	GGC Gly 815	GAA Glu	2448
10			TCC Ser														2496 -··
15	GAA Glu	CAA Gln	CTG Leu 835	GCT Ala	GAT Asp	GCC Ala	ATG Met	AAT Asn 840	CTT Leu	GAT Asp	GCT Ala	AAT Asn	TTG Leu 845	CTG Leu	TTG Leu	CAA Gln	2544
20	GCC Ala	AGT Ser 850	ATT Ile	CAA Gln	GCA Ala	CAA Gln	AAT Asn 855	CAT His	CAA Gln	CAT His	CTT Leu	CCC Pro 860	CCA Pro	GTA Val	ACT Thr	CCA Pro	2592
	GAA Glu 865	AAT Asn	GCG Ala	TTC Phe	TCC Ser	TGT Cys 870	TGG Trp	ACA Thr	TCT Ser	ATC Ile	AAT Asn 875	ACT Thr	ATC Ile	CTG Leu	CAA Gln	TGG Trp 880	2640
25	GTT Val	AAT Asn	GTC Val	GCA Ala	CAA Gln 885	CAA Gln	TTG Leu	AAT Asn	GTC Val	GCC Ala 890	CCA Pro	CAG Gln	GGC Gly	GTT Val	TCC Ser 895	GCT Ala	2688
30	TTG Leu	GTC Val	GGG Gly	CTG Leu 900	GAT Asp	TAT Tyr	ATT Ile	CAA Gln	TCA Ser 905	ATG Met	AAA Lys	GAG Glu	ACA Thr	CCG Pro 910	ACC Thr	TAT Tyr	2736
35	GCC Ala	CAG Gln	TGG Trp 915	GAA Glu	AAC Asn	GCG Ala	GCA Ala	GGC Gly 920	GTA Val	TTA Leu	ACC Thr	GCC Ala	GGG Gly 925	TTG Leu	AAT Asn	TCA Ser	2784
40	CAA Gln	CAG Gln 930	GCT Ala	AAT Asn	ACA Thr	TTA Leu	CAC His 935	GCT Ala	TTT Phe	CTG Leu	GAT Asp	GAA Glu 940	TCT Ser	CGC Arg	AGT Ser	GCC Ala	2832
10	GCA Ala 945	TTA Leu	AGC Ser	ACC Thr	TAC Tyr	TAT Tyr 950	ATC Ile	CGT Arg	CAA Gln	GTC Val	GCC Ala 955	AAG Lys	GCA Ala	GCG Ala	GCG Ala	GCT Ala 960	2880
45	ATT Ile	AAA Lys	AGC Ser	CGT Arg	GAT Asp 965	GAC Asp	TTG Leu	TAT Tyr	CAA Gln	TAC Tyr 970	TTA Leu	CTG Leu	ATT Ile	GAT Asp	AAT Asn 975	CAG Gln	2928
50	GTT Val	TCT Ser	GCG Ala	GCA Ala 980	ATA Ile	AAA Lys	ACC Thr	ACC Thr	CGG Arg 985	ATC Ile	GCC Ala	GAA Glu	GCC Ala	ATT Ile 990	GCC Ala	AGT Ser	2976
55	ATT Ile	CAA Gln	CTG Leu 995	TAC Tyr	GTC Val	AAC Asn	CGG Arg	GCA Ala 1000	Leu	GAA Glu	AAT Asn	GTG Val	GAA Glu 1009	Glu	AAT Asn	GCC Ala	3024
60	AAT Asn	TCG Ser 101	GGG Gly O	GTT Val	ATC Ile	AGC Ser	CGC Arg 1015	Gln	TTC Phe	TTT Phe	ATC Ile	GAC Asp 1020	Trp	GAC Asp	AAA Lys	TAC Tyr	3072
00	AAT Asn 1025	Lys	CGC Arg	TAC Tyr	AGC Ser	ACT Thr 1030	Trp	GCG Ala	GGT Gly	GTT Val	TCT Ser 1035	Gln	TTA Leu	GTT Val	TAC Tyr	TAC Tyr 1040	3120
65	CCG Pro	GAA Glu	AAC Asn	TAT Tyr	ATT Ile 1045	Asp	CCG Pro	ACC Thr	ATG Met	CGT Arg 1050	Ile	GGA Gly	CAA Gln	ACC Thr	AAA Lys 1055	Met	3168
70	ATG Met	GAC Asp	GCA Ala	TTA Leu 106	Leu	CAA Gln	TCC Ser	GTC Val	AGC Ser 1065	Gln	AGC Ser	CAA Gln	TTA Leu	AAC Asn 1070	Ala	GAT Asp	3216

5	ACC Thr			Asp					Tyr					Glu			3264
J	GCT Ala		Leu					Ala					Ile				3312
10	CAA Gln 1105	Gly					Ile					Thr					3360
15	TAT Tyr			-		Val					Phe					Phe	3408
20	GCG Ala				Trp					Lys					Ile		3456
25	CCT Pro			Ser					Val					Arg			3504
20	CTG Leu		Trp					Glu					Thr				3552
30	AAA Lys 1185	Asp					Glu					Tyr					3600
35	GCG Ala					Asp					Thr					Asp	3648
40	GTC Val				Ile					Leu					Ala		3696
45	GGA Gly	CTC Leu	TAT Tyr 123	Cys	GCC Ala	GGT Gly	TAT Tyr	CAA Gln 1240	Gly	GAA Glu	GAT Asp	ACG Thr	TTG Leu 1245	Leu	GTG Val	ATG Met	3744
43			Asn	CAA Gln				Leu					Asn				3792
50_		Gly		TAT Tyr			Ala					Lys					3840
55				AAT Asn		Tyr					Tyr					Thr	3888
60				AGA Arg 130	Arg					Tyr					Glu		3936
65				GTA Val 5					Asp					Asp			3984
03			Met	GTA Val				Asp					Asn				4032
70				GAT Asp													4080

	1345		13	50		.1355		1360	
5	CAT AAT His Asr	GGA TAT	GAA GG Glu Gl 1365	A CAG AA y Gln Ly:	s Arg As	AT CAA TGC sn Gln Cys 370	AAT CTG Asn Leu	ATG AAT Met Asn 1375	4128
10	AAA TAT Lys Tyr	GGC AAA Gly Lys	Leu Gl	r GAT AA y Asp Ly:	A TTT AT s Phe II 1385	TT GTT TAT e Val Tyr	ACT AGC Thr Ser 139	Leu Gly	4176
10	GTC AAT Val Asn	CCA AAT Pro Asr 1395	AAC TC Asn Se	TCA AAT r Ser Ası 140	n Lys Le	C ATG TTT u Met Phe	TAC CCC Tyr Pro 1405	GTC TAT Val Tyr	4224
15	CAA TAT Gln Tyr 141	Ser Gly	AAC AC Asn Th	C AGT GGA r Ser Gly 1415	A CTC AA / Leu As	AT CAA GGG in Gln Gly 142	Arg Leu	CTA TTC Leu Phe	4272
20	CAC CGT His Arg 1425	GAC ACC Asp Thr	ACT TA' Thr Ty:	r Pro Sei	r AAA GT Lys Va	A GAA GCT 1 Glu Ala 1435	TGG ATT	CCT GGA Pro Gly 1440	4320
25	GCA AAA Ala Lys	CGT TCT Arg Ser	CTA ACC Leu Th	C AAC CAA C Asn Glr	n Asn Al	C GCC ATT a Ala Ile 50	GGT GAT Gly Asp	GAT TAT Asp Tyr 1455	4368
30	GCT ACA Ala Thr	GAC TCT Asp Ser 146	Leu Ası	AAA CCC Lys Pro	GAT GA Asp As 1465	T CTT AAG p Leu Lys	CAA TAT Gln Tyr 147	Ile Phe	4416
30	ATG ACT Met Thr	GAC AGT Asp Ser 1475	AAA GGG Lys Gly	ACT GC1 Thr Ala	Thr As	T GTC TCA p Val Ser	GGC CCA Gly Pro 1485	GTA GAG Val Glu	4464
35	ATT AAT Ile Asn 149	Thr Ala	ATT TC	CCA GCA Pro Ala 1495	A AAA GT A Lys Va	T CAG ATA 1 Gln Ile 1500	Ile Val	AAA GCG Lys Ala	4512
40	GGT GGC Gly Gly 1505	AAG GAG Lys Glu	CAA ACT	Phe Thr	GCA GA Ala As	T AAA GAT p Lys Asp 1515	GTC TCC Val Ser	ATT CAG Ile Gln 1520	4560
45	CCA TCA Pro Ser	CCT AGC Pro Ser	TTT GAT Phe Asy 1525	GAA ATO	Asn Ty	T CAA TTT r Gln Phe 30	AAT GCC Asn Ala	CTT GAA Leu Glu 1535	4608
50	ATA GAC Ile Asp	GGT TCT Gly Ser 154	Gly Let	AAT TTI Asn Phe	TATT AA E Ile As 1545	C AAC TCA n Asn Ser	GCC AGT Ala Ser 1550	Ile Asp	4656
	GTT ACT Val Thr	TTT ACC Phe Thr 1555	GCA TTT Ala Phe	GCG GAG Ala Glu 156	ı Asp Gl	C CGC AAA y Arg Lys	CTG GGT Leu Gly 1565	TAT GAA Tyr Glu	4704
55	AGT TTC Ser Phe 157	Ser Ile	CCT GTT Pro Val	ACC CTC Thr Lev 1575	AAG GT. Lys Va	A AGT ACC 1 Ser Thr 1580	Asp Asn	GCC CTG Ala Leu	4752
60	ACC CTG Thr Leu 1585	CAC CAT His His	AAT GAA Asn Glu 159	Asn Gly	GCG CA Ala Gl	A TAT ATG n Tyr Met 1595	CAA TGG Gln Trp	CAA TCC Gln Ser 1600	4800
65	TAT CGT Tyr Arg	ACC CGC Thr Arg	CTG AAT Leu Asr 1605	ACT CTA	TTT GC Phe Al 16	C CGC CAG a Arg Gln 10	TTG GTT Leu Val	GCA CGC Ala Arg 1615	4848
70	GCC ACC Ala Thr	ACC GGA Thr Gly 162	Ile Asp	ACA ATT	CTG AG Leu Se 1625	T ATG GAA r Met Glu	ACT CAG Thr Gln 1630	Asn Ile	4896
	CAG GAA	CCG CAG	TTA GGO	: AAA GGI	TTC TA	T GCT ACG	TTC GTG	ATA CCT	4944

	Gln (Glu	Pro 1635		Leu	Gly	Lys	Gly 1640		Tyr	Ala	Thr	Phe 164		Ile	Prc	
5	CCC ?		Asn					Gly					Phe				4992
10	ATC I Ile I 1665	Lys	CAT His	GTT Val	GTT Val	GAT Asp 1670	Asn	AAT Asn	TCA Ser	His	ATT Ile 1675	ATC Ile	TAT Tyr	TCA Ser	GGC Gly	CAG Gln 1680	5040
1.5	CTA L	ACA Thr	GAT Asp	ACA Thr	AAT Asn 1685	Ile	AAC Asn	ATC Ile	ACA Thr	TTA Leu 1690	Phe	ATT Ile	CCT Pro	CTT Leu	GAT Asp 1695	Asp	5088
15	GTC (Gln					Lys					Phe		5136
20	AAA : Lys :	TCA Ser	CCA Pro 1715	Ser	GAT Asp	GGT Gly	ACC Thr	TGG Trp 1720	Trp	GGC Gly	CCT Pro	CAC His	TTT Phe 1725	Val	AGA Arg	GAT Asp	5184
25	GAT A		Gly					Asn					Leu				5232
30	GAG A Glu S 1745						Asn					Glu					5280
35	AGC (GGC Gly	GCT Ala	AAC Asn	AGC Ser 1765	Leu	TAT Tyr	TTC Phe	TGG Trp	GAA Glu 1770	Leu	TTC Phe	TAC Tyr	TAT Tyr	ACC Thr 1775	Pro	5328
33	ATG (Gln					Glu					Glu	GCC. Ala	5376
40	AAC (Asn)			Leu					Ser					Ile			5424
45	GGC (Ile					Trp					Leu				5472
50	ACC Thr 1825						Pro					Asp					5520
55	GCA (Met					Ser					Thr	5568 "
33	TTG (Ile					His					Leu		5616
60	CGA (Leu					Met					Ala			5664
65	CTA Leu		Gly					Leu					Thr				5712
70	CCA Pro 1905	Arg					Ala					Gln					5760

	AGC GCA Ser Ala	ATA GTC Ile Val	GCT CTO Ala Le	G CGG 1 Arg	CAG Gln	AAT Asn	ATA Ile 1930	Pro	ACA Thr	CCG Pro	GCA Ala	CCT Pro 193	Leu	5808
5	TCA TTG Ser Leu	CGC AGC Arg Ser 194	Ala As	r ACC n Thr	CTG Leu	ACT Thr 1945	Asp	CTC Leu	TTC Phe	CTG Leu	CCG Pro 1950	Gln	ATC Ile	5856
10	AAT GAA Asn Glu	GTG ATG Val Met 1955	ATG AA' Met Ası	TAC Tyr	TGG Trp 1960	Gln	ACA Thr	TTA Leu	GCT Ala	CAG Gln 1965	Arg	GTA Val	TAC Tyr	5904
15	AAT CTG Asn Leu 197	CGT CAT Arg His O	AAC CTO Asn Leo	C TCT 1 Ser 1975	Ile	GAC Asp	GGC Gly	CAG Gln	CCG Pro 1980	Leu	TAT Tyr	CTG Leu	CCA Pro	5952
20	Ile Tyr 1985	GCC ACA Ala Thr	Pro Ala	Asp 90	Pro	Lys	Ala	Leu 1995	Leu	Ser	Ala	Ala	Val 2000	6000
	GCC ACT Ala Thr	TCT CAA Ser Gln	GGT GGA _Gly Gly 2005	A GGC / Gly	AAG Lys	CTA Leu	CCG Pro 2010	Glu	TCA Ser	TTT Phe	ATG Met	TCC Ser 2015	Leu	6048
25	TGG CGT Trp Arg	TTC CCG Phe Pro 202	His Me	CTG Leu	GAA Glu	AAT Asn 2025	Ala	CGC Arg	GGC Gly	ATG Met	GTT Val 2030	Ser	CAG Gln	6096
30	CTC ACC Leu Thr	CAG TTC Gln Phe 2035	GGC TCC Gly Se	C ACG	TTA Leu 2040	Gln	AAT Asn	ATT Ile	ATC Ile	GAA Glu 2045	Arg	CAG Gln	GAC Asp	6144
35	GCG GAA Ala Glu 205	GCG CTC Ala Leu O	AAT GCC Asn Ala	TTA Leu 2055	Leu	CAA Gln	AAT Asn	CAG Gln	GCC Ala 2060	Ala	GAG Glu	CTG Leu	ATA Ile	6192
40	TTG ACT Leu Thr 2065	AAC CTG Asn Leu	AGC ATT Ser Ile 20	Gln	GAC Asp	AAA Lys	ACC Thr	ATT Ile 2075	Glu	GAA Glu	TTG Leu	GAT Asp	GCC Ala 2080	6240
		ACG GTG Thr Val						Gly					Phe	6288
45	GAT AGC Asp Ser	TAC GGC Tyr Gly 210	Lys Le	TAC Tyr	GAT Asp	GAG Glu 2105	Asn	ATC Ile	AAC Asn	GCC Ala	GGT Gly 2110	Glu	AAC Asn	6336
50_	CAA GCC Gln Ala	ATG ACG Met Thr 2115	CTA CGA	A GCG g Ala	TCC Ser 2120	Ala	GCC Ala	GGG Gly	CTT Leu	ACC Thr 2125	Thr	GCA Ala	GTT Val	6384
55	CAG GCA Gln Ala 213	TCC CGT Ser Arg 0	CTG GCG Leu Ala	GGT Gly 213	Ala	GCG Ala	GCT Ala	GAT Asp	CTG Leu 2140	Val	CCT Pro	AAC Asn	ATC Ile	6432
60	TTC GGC Phe Gly 2145	TTT GCC Phe Ala	GGT GGG Gly Gl	y Gly	AGC Ser	CGT Arg	TGG Trp	GGG Gly 2155	Ala	ATC Ile	GCT Ala	GAG Glu	GCG Ala 2160	6480
		TAT GTG Tyr Val						Val					Ala	6528
65		ATT AGC Ile Ser 218	Gln Se				Arg					Glu		6576
70	GAG ATC	CAG CGG	AAT AA								ATC Ile			6624

5	CAG CTC Gln Leu 221	Lys					Arg					Val				6672
J	ACC AGT Thr Ser 2225					Gln					Ser					6720
10	CTG CAA Leu Gln				Ser					Tyr					Gly	6768
15	CGA CTG Arg Leu	Ala		Ile					Tyr					Ala		6816
20	TGC CTG Cys Leu		Ala					Arg					Asp			6864
25	GCC CGC Ala Arg 229	Phe	Ile	Lys	Pro	Gly 2295	Ala	Trp	Gln	Gly	Thr 2300	Tyr	Ala	Gly	Leu	6912
	CTT GCA Leu Ala 2305	GGT Gly	GAA Glu	ACC Thr	TTG Leu 2310	Met	CTG Leu	AGT Ser	CTG Leu	GCA Ala 2315	Gln	ATG Met	GAA Glu	GAC Asp	GCT Ala 2320	6960
30	CAT CTG His Leu				Lys					Val					Ser	7008
35	CTG GCC Leu Ala			Tyr					Lys					Phe		7056
40	CTG GCT Leu Ala		Glu					Val					Gly			7104
45	GGC AGT Gly-Ser 2370	Gly					Ala					Thr				7152
	ACC TCT Thr Ser 2385					Val					Leu			-		7200
50	GAT TAC Asp Tyr	CCG Pro	GCA Ala	TCG Ser 2405	Leu	GGC Gly	AAA Lys	ATT Ile	CGA Arg 2410	Arg	ATC Ile	AAA Lys	CAG Gln	ATC Ile 2415	Ser	7248
55	GTC ACT Val Thr	TTG Leu	CCC Pro 2420	Ala	CTA Leu	CTG Leu	GGA Gly	CCG Pro 2425	Tyr	CAG Gln	GAT Asp	GTA Val	CAG Gln 2430	Ala	ATA Ile	7296
60	TTG TCT Leu Ser	TAC Tyr 2435	Gly	GAT Asp	AAA Lys	GCC Ala	GGA Gly 2440	Leu	GCT Ala	AAC Asn	GGC Gly	TGT Cys 2445	Glu	GCG Ala	CTG Leu	7344
65	GCA GTT Ala Val 2450	Ser	CAC His	GGT Gly	ATG Met	AAT Asn 2455	Asp	AGC Ser	GGC Gly	CAA Gln	TTC Phe 2460	Gln	CTC Leu	GAT Asp	TTC Phe	7392
	AAC GAT Asn Asp 2465	GGC Gly	AAA Lys	TTC Phe	CTG Leu 2470	Pro	TTC Phe	GAA Glu	GGC Gly	ATC Ile 2475	Ala	ATT Ile	GAT Asp	CAA Gln	GGC Gly 2480	7440
70	ACG CTG Thr Leu	ACA Thr	CTG Leu	AGC Ser	TTC Phe	CCA Pro	AAT Asn	GCA Ala	TCT Ser	ATG Met	CCG Pro	GAG Glu	AAA Lys	GGT Gly	AAA Lys	7488

2485 2490 2495 CAA GCC ACT ATG TTA AAA ACC CTG AAC GAT ATC ATT TTG CAT ATT CGC Gln Ala Thr Met Leu Lys Thr Leu Asn Asp Ile Ile Leu His Ile Arg 5 2500 2505 2510 7551 TAC ACC ATT AAA TAA Tyr Thr Ile Lys •••• 2516 10 (2) INFORMATION FOR SEQ ID NO: 47: (i) SEQUENCE CHARACTERISTICS: 15 (A) LENGTH: 2516 amino acids (B) TYPE: amino acids (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein 20 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:47 (TcdA): · Features From To Description Peptide 1 2516 TcdA proteins 89 Peptide 1937 TcdAii peptide 25 89 Fragment 100 TcdAii N-terminus (SEQ ID NO:13) 284 299 (SEQ ID NO:38) Fragment 563 (SEQ ID NO:17) 554 Fragment 1080 1092 (SEQ ID NO:23; 12/13) Fragment 1385 1400 (SEQ ID NO:18) Fragment 30 1478 1497 (SEQ ID NO:39) Fragment Fragment 1620 1642 (SEQ ID NO:21; 19/23) Fragment 1938 1948 (SEQ ID NO:41) Peptide 1938 2516 TcdA_{iii} peptide Fragment 2327 2345 (SEQ ID NO:42) 35 2398 2408 Fragment (SEQ ID NO:43) Met Asn Glu Ser Val Lys Glu Ile Pro Asp Val Leu Lys Ser Gln Cys 40 Gly Phe Asn Cys Leu Thr Asp Ile Ser His Ser Ser Phe Asn Glu Phe Arg Gln Gln Val Ser Glu His Leu Ser Trp Ser Glu Thr His Asp Leu 45 Tyr His Asp Ala Gln Gln Ala Gln Lys Asp Asn Arg Leu Tyr Glu Ala Arg Ile Leu Lys Arg Ala Asn Pro Gln Leu Gln Asn Ala Val His Leu 65 70 75 80 50 Ala Ile Leu Ala Pro Asn Ala Glu Leu Ile Gly Tyr Asn Asn Gln Phe 55 Ser Gly Arg Ala Ser Gln Tyr Val Ala Pro Gly Thr Val Ser Ser Met Phe Ser Pro Ala Ala Tyr Leu Thr Glu Leu Tyr Arg Glu Ala Arg Asn 60 Leu His Ala Ser Asp Ser Val Tyr Tyr Leu Asp Thr Arg Arg Pro Asp Leu Lys Ser Met Ala Leu Ser Gln Gln Asn Met Asp Ile Glu Leu Ser 65 150 155 Thr Leu Ser Leu Ser Asn Glu Leu Leu Glu Ser Ile Lys Thr Glu

					165					170					175	
_	Ser	Lys	Leu	Glu 180	Asn	Tyr	Thr	Lys	Val 185	Met	Glu	Met	Leu	Ser 190	Thr	Phe
5	Arg	Pro	Ser 195	Gly	Ala	Thr	Pro	Tyr 200	His	Asp	Ala	Tyr	Glu 205	Asn	Val	Arg
10	Glu	Val 210	Ile	Gln	Leu	Gln	Asp 215	Pro	Gly	Leu	Glu	Gln 220	Leu	Asn	Ala	Ser
	Pro 225	Ala	Ile	Ala	Gly	Leu 230	Met	His	Gln	Ala	Ser 235	Leu	Leu	Gly	Ile	Asn 240
15	Ala	Ser	Ile	Ser	Pro 245	Glu	Leu	Phe	Asn	Ile 250	Leu	Thr	Glu	Glu	Ile 255	Thr
20	Glu	Gly	Asn	Ala 260	Glu	Glu	Leu	Tyr	Lys 265	Lys	Asn	Phe	Gly	Asn 270	Ile	Glu
20	Pro	Ala	Ser 275	Leu	Ala	Met	Pro	Glu 280	Tyr	Leu	Lys	Arg	Tyr 285	Tyr	Asn	Leu
25	Ser	Asp 290	Glu	Glu	Leu	Ser	Gln 295	Phe	Ile	Gly	Lys	Ala 300	Ser	Asn	Phe	Gly
	Gln 305	Gln	Glu	Tyr	Ser	Asn 310	Asn	Gln	Leu	Ile	Thr 315	Pro	Val	Val	Asn	Ser 320
30	Ser	Asp	Gly	Thr	Val 325	Lys	Val	Tyr	Arg	Ile 330	Thr	Arg	Glu	Tyr	Thr 335	Thr
35	Asn	Ala	Tyr	Gln 340	Met	Asp	Val	Glu	Leu 345	Phe	Pro	Phe	Gly	Gly 350	Glu	Asn
33	Tyr	Arg	Leu 355	Asp	Tyr	Lys	Phe	Lys 360	Asn	Phe	Tyr	Asn	Ala 365	Ser	Tyr	Leu
40	Ser	Ile 370	Lys	Leu	Asn	Asp	Lys 375	Arg	Glu	Leu	Val	Arg 380	Thr	Glu	Gly	Ala
	Pro 385	Gln	Val	Asn	Ile	Glu 390	Tyr	Ser	Ala	Asn	Ile 395	Thr	Leu	Asn	Thr	Ala 400
45	Asp	Ile	Ser	Gln	Pro 405	Phe	Glu	Ile	Gly	Leu 410	Thr	Arg	Val	Leu	Pro 415	Ser
50	Gly	Ser		Ala -420	Tyr	Ala	Ala	Ala	Lys 425	Phe	Thr	Val	Glu	Glu 430	Tyr	Asn
	Gln	Tyr	Ser 435	Phe	Leu	Leu	Lys	Leu 440	Asn	Lys	Ala	Ile	Arg 445	Leu	Ser	Arg
55 _.	Ala	Thr 450	Glu	Leu	Ser	Pro	Thr 455	Ile	Leu	Glu	Gly	Ile 460	Val	Arg	Ser	Val
	Asn 465	Leu	Gln-	Leu	Asp	Ile 470	Asn	Thr	Asp	Val	Leu 475	Gly	Lys	Val	Phe	Leu 480
60	Thr	Lys	Tyr	Tyr	Met 485	Gln	Arg	Tyr	Ala	Ile 490	His	Ala	Glu	Thr	Ala 495	Leu
65	Ile	Leu	Cys	Asn 500	Ala	Pro	Ile	Ser	Gln 505	Arg	Ser	Tyr	Asp	Asn 510	Gln	Pro
-	Ser	Gln	Phe 515	Asp	Arg	Leu	Phe	Asn 520	Thr	Pro	Leu	Leu	Asn 525	Gly	Gln	Tyr
70	Phe	Ser 530	Thr	Gly	Asp	Glu	Glu 535	Ile	Asp	Leu	Asn	Ser 540	Gly	Ser	Thr	Gly

	Asp 545	Trp	Arg	Lys	Thr	Ile 550	Leu	Lys	Arg	Ala	.Phe 555	Asn	Ile	Asp	Asp	Val 560
5	Ser	Leu	Phe	Arg	Leu 565	Leu	Lys	Ile	Thr	Asp 570	His	Asp	Asn	Lys	Asp 575	Gly
	Lys	Ile	Lys	Asn 580	Asn	Leu	Lys	Asn	Leu 585	Ser	Asn	Leu	Туг	Ile 590	Gly	Lys
10	Leu	Leu	Ala 595	Asp	Ile	His	Gln	Leu 600	Thr	Ile	Asp	Glu	Leu 605	Ąsp	Leu	Leu
15	Leu	Ile 610	Ala	Val	Gly	Glu	Gly 615	Lys	Thr	Asn	Leu	Ser 620	Ala.	Ile	Ser	Asp
	Lys 625	Gln	Leu	Ala	Thr	Leu 630	Ile	Arg	Lys	Leu	Asn 635	Thr	Ile	Thr	Ser	Trp 640
20	Leu	His	Thr	Gln	Lys 645	Trp	Ser	Val	Phe	Gln 650	Leu	Phe	Ile	Met	Thr 655	Ser
	Thr	Ser	Tyr	Asn 660	Lys	Thr	Leu	Thr	Pro 665	Glu	Ile	Lys		Leu 670	Leu	Asp
25	Thr	Vāl	Tyr 675	His	Gly	Leu	Gln	Gly 680	Phe	Asp	Lys	Asp	Lys 685	Ala	Asp	Leu
30	Leu	His 690	Val	Met	Ala	Pro	Tyr 695	Ile	Ala	Ala	Thr	Leu 700	Gln	Leu	Ser	Ser
33	Glu 705	Asn	Val	Ala	Kis	Ser 710	Val	Leu	Leu	Trp	Ala 715	Asp	Lys	Leu	Gln	Pro 720
35	Gly	Asp	Gly	Ala	Met 725	Thr	Ala	Glu	Lys	Phe 730	Trp	Asp	Trp	Leu	Asn 735	Thr
	Lys	Tyr	Thr	Pro 740	Gly	Ser	Ser	Glu	Ala 745	Val	Glu	Thr	Gln	Glu 750	His	Ile
40	Val	Gln	Tyr 755	Cys	Gln	Ala	Leu	Ala 760	Gln	Leu	Glu	Met	Val 765	Tyr	His	Ser
45	Thr-	6 1у 770	Ile	Asn	Glu	Asn	Ala 775	Phe	Arg	Leu	Phe	Val 780	Thr	Lys	Pro	Glu
	Met 785	Phe	Gly	Ala	Ala	Thr 790	Gly	Ala	Ala	Pro	Ala 795	His	Asp	Ala	Leu	Ser 800
50	Leu	Ile	Met	Leu	Thr 805	Arg	Phe	Ala	Asp	Trp 810	Val	Asn	Ala	Leu	Gly 815	Glu
	Lys	Ala	Ser	Ser 820	Val	Leu	Ala	Ala	Phe 825	Glu	Ala	Asn	Ser	Leu 830	Thr	Ala
55	Glu	Gln	Leu 835	Ala	Asp	Ala	Met	Asn 840	Leu	Asp	Ala	Asn	Leu 845	Leu	Leu	Gln
60	Ala	Ser 850	Ile	Gln	Ala	Gln	Asn 855	His	Gln	His	Leu	Pro 860	Pro	Val	Thr	Pro
	Glu 865	Asn	Ala	Phe	Ser	Cys 870	Trp	Thr	Ser	Ile	Asn 875	Thr	Ile	Leu	Gln	Trp 880
65	Val	Asn	Val	Ala	Gln 885	Gln	Leu	Asn	Val	Ala 890	Pro	Gln	Gly	Val	Ser 895	Ala
	Leu	Val	Gly	Leu 900	Asp	Tyr	Ile	Gln	Ser 905	Met	Lys	Glu	Thr	Pro 910	Thr	Tyr
70	Ala	Gln	Trp 915	Glu	Asn	Ala	Ala	Gly 920	Val	Leu	Thr	Ala	Gly 925	Leu	Asn	Ser

	Gln	Gln 930	Ala	Asn	Thr	Leu	His 935	Ala	Phe	Leu	Asp	Glu 940	Ser	Arg	Ser	Ala
5	Ala 945	Leu	Ser	Thr	Tyr	Tyr 950	Ile	Arg	Gln	Val	Ala 955	Lys	Ala	Ala	Ala	Ala 960
	Ile	Lys	Ser	Arg	Asp 965	Asp	Leu	Tyr	Gln	Tyr 970	Leu	Leu	Ile	Asp	Asn 975	Gln
10	Val	Ser	Ala	Ala 980	Ile	Lys	Thr	Thr	Arg 985	Ile	Ala	Glu	Ala	Ile 990	Ala	Ser
15	Ile	Gln	Leu 995	Tyr	Val	Asn	Arg	Ala 1000		Glu	Asn	Val	Glu 1009		Asn	Ala
	Asn	Ser 1010	Gly)	Val	Ile	Ser	Arg 101		Phe	Phe	Ile	Asp 1020		Asp	Lys	Tyr
20	Asn 1025		Arg	Tyŗ	Ser	Thr 1030		Ala	Gly	Val	Ser 1039		Leu	Val	Tyr	Tyr 1040
3.5	Pro	Glu	Asn	Tyr	Ile 1045		Pro	Thr	Met	Arg 1050		Gly	Gln	Thr	Lys 1055	
25	Met	Asp	Ala	Leu 1060		Gln	Ser	Val	Ser 1065		Ser	Gln	Leu	Asn 1070		Asp
30	Thr	Val	Glu 1075		Ala	Phe	Met	Ser 1080		Leu	Thr	Ser	Phe 1085		Gln	Val
	Ala	Asn 1090	Leu)	Lys	Val	Ile	Ser 1095		Tyr	His	Asp	Asn 1100		Asn	Asn	Asp
35	Gln 1105		Leu	Thr	Tyr	Phe 1110		Gly	Leu	Ser	Glu 1115		Asp	Ala	Gly	Glu 1120
4.0	Tyr	Tyr	Trp	Arg	Ser 112		Asp	His	Ser	Lys 1130		Asn	Asp	Gly	Lys 1135	
40	Ala	Ala	Asn	Ala 1140		Ser	Glu	Trp	His 1145		Ile	Asp	Cys	Pro 1150		Asn
4 5	Pro	Tyr	Lys 1155	Ser	Thr	Ile	Arg	Pro 1160		Ile	Tyr	Lys	Ser 1165		Leu	Tyr
	Leu	Leu 1170	Trp	Leu	Glu	Gln	Lys 1175		Ile	Thr	Lys	Gln 1180		Gly	Asn	Ser
50	Lys 1185		Gly	Tyr	Gln	Thr 1190		Thr	Asp	Tyr	Arg 1195		Glu	Leu	Lys	Leu 1200
. .	Ala	His	Ile	Arg	Tyr 1205		Gly	Thr	Trp	Asn 1210		Pro	Ile	Thr	Phe 1215	
55	Val	Asn	Lys	Lys 1220		Ser	Glu	Leu	Lys 1225		Glu	Lys	Asn	Arg 1230		Pro
60	Gly	Leu	Tyr 1235		Ala	Gly	Tyr	Gln 1240		Glu	Asp	Thr	Leu 1245		Val	Met
	Phe	Tyr 1250	Asn)	Gln	Gln	Asp	Thr 1255	Leu	Asp	Ser	Tyr	Lys 1260		Ala	Ser	Met
65	Gln 1265		Leu	Tyr	Ile	Phe 1270		Asp	Met	Ala	Ser 1275		Asp	Met	Thr	Pro 1280
	Glu	Gln	Ser	Asn	Val 1285		Arg	Asp	Asn	Ser 1290		Gln	Gln	Phe	Asp 1295	
70	Asn	Asn	Val	Arg	Arg	Val	Asn	Asn	Arg	Tyr	Ala	Glu	Asp	Tyr	Glu	Ile
									2	27						

				1300)				1305	5				1310)	
5	Pro	Ser	Ser 1315		Ser	Ser	Arg	Lys 1320		Tyr	Gly	Trp	Gly 1325		Tyr	Tyr
5	Leu	Ser 1330	Met)	Val	Tyr	Asn	G1y 1335		Ile	Pro	Thr	Ile 1340		Tyr	Lys	Ala
10	Ala 1345		Ser	Asp	Leu	Lys 1350		Tyr	Ile	Ser	Pro 1355		Leu	Arg	Ile	Ile 1360
	His	Asn	Gly	Tyr	Glu 1365		Gln	Lys	Arg	Asn 1370		Cys	Asn	Leu	Met 1375	
15	Lys	Tyr	Gly	Lys 1380		Gly	Asp	Lys	Phe 1385		Val	Tyr	Thr	Ser 1390		Gly
20	Val	Asn	Pro 1395		Asn	Ser	Ser	Asn 1400		Leu	Met	Phe	Tyr 1405		Val	Tyr
20	Gln	Tyr 1410	Ser	Gly	Asn	Thr	Ser 1415		Leu	Asn	Gln	Gly 1420		Leu	Leu	Phe
25	His 1425		Asp	Thr	Thr	Tyr 1430		Ser	Lys	Val	Glu 1435		Trp	Ile	Pro	Gly 1440
	Ala	Lys	Arg	Ser	Leu 1445		Asn	Gln	Asn	Ala 1450		Ile	Gly	Asp	Asp 1455	
30	Ala	Thr	Asp	Ser 1460		Asn	Lys	Pro	Asp 1465		Leu	Lys	Gln	Tyr 1470		Phe
35	Met	Thr	Asp 1475		Lys	Gly	Thr	Ala 1480		Asp	Val	Ser	Gly 1485		Val	Glu
	Ile	Asn 1490	Thr	Ala	Ile	Ser	Pro 1495		Lys	Val	Gln	Ile 1500		Val	Lys	Ala
40	Gly 1505	Gly	Lys	Glu	Gln	Thr 1510		Thr	Ala	Asp	Lys 1515		Val	Ser	Ile	Gln 1520
			Pro		1525)				1530)				1535	i
45			Gly	1540)				1545	,				1550)	
50			Phe :155 5					Glu 1560							Tyr	Glu
		1570					1575	5				1580)			
55_	1585	>	His			1590)				1595	•				1600
			Thr		1605	i				1610)				1615	5
60			Thr	1620)				1625	5				1630)	
65			Pro 1635	5				1640)				1645	.		
		1650					1655	5				1660)			
70	Ile 1665		His	Vāl	Val	Asp 1670		Asn	Ser		Ile .675	Ile	Tyr	Ser	Gly	Gln 1680

	Leu	Thr	Asp	Thr	Asn 1685		Asn	Ile	Thr	Leu. 1690		Ile	Pro	Leu	Asp 169	
5	Val	Pro	Leu	Asn 1700		Asp	Tyr	His	Ala 170		Val	Tyr	Met	Thr 171		Lys
	Lys	Ser	Pro 1715		Asp	Gly	Thr	Trp 1720		Gly	Pro	His	Phe 172		Arg	Asp
10	Asp	Lys 1730	Gly)	Ile	Val	Thr	Ile 1735		Pro	Lys	Ser	Ile 1740		Thr	His	Phe
15	Glu 1745		Val	Asn	Val	Leu 1750		Asn	Ile	Ser	Ser 175		Pro	Met	Asp	Phe 176
10	Ser	Gly	Ala	Asn	Ser 1765		Tyr	Phe	Trp	Glu 1770		Phe	Tyr	Tyr	Thr 1775	
20	Met	Leu	Val	Ala 1780		Arg	Leu	Leu	His 1785		Gln	Asn	Phe	Asp 1790		Ala
	Asn	Arg	Trp 1795		Lys	Tyr	Val	Trp 1800		Pro	Ser	Gly	Tyr 1805		Val	His
25	Gly	Gln 1810	Ile	Gln	Asn	Tyr	Gln 1815		Asn	Val	Arg	Pro 1820		Leu	Glu	Asp
30	Thr 1825		Trp	Asn	Ser	Asp 1830		Leu	Asp	Ser	Val 1839		Pro	Asp	Ala	Val 1840
30	Ala	Gln	His	Asp	Pro 1845		His	Tyr	Lys	Val 1850		Thr	Phe	Met	Arg 1855	_
35	Leu	Asp	Leu	Leu 1860		Ala	Arg	Gly	Asp 1865		Ala	Tyr	Arg	Gln 1870		Glu
	Arg	Asp	Thr 1875		Asn	Glu	Ala	Lys 1880		Trp	Tyr	Met	Gln 1885		Leu	His
40	Leu	Leu 1890	Gly)	Asp	Lys	Pro	Tyr 1895		Pro	Leu	Ser	Thr 1900		Trp	Ser	Asp
45	Pro 1905		Leu	Asp	Arg	Ala 1910		Asp	Ile	Thr	Thr 1915		Asn	Ala	His	Asp 1920
	Ser	Ala	Ile	Val	Ala 1925		Arg	Gln	Asn	Ile 1930		Thr	Pro	Ala	Pro 1935	
50	Ser	Leu	Arg	Ser 1940		Asn	Thr	Leu	Thr 1945		Leu	Phe	Leu	Pro 1950		Ile
	Asn	Glu	Val 1955		Met	Asn	Tyr	Trp 1960		Thr	Leu	Ala	Gln 1965		Val	Tyr
55	Asn	Leu 1970	Arg)	His	Asn	Leu	Ser 1975		qzA	Gly	Gln	Pro 1980		Tyr	Leu	Pro
60	Ile 1985	Tyr	Ala	Thr	Pro	Ala 1990	Asp)	Pro	Lys	Ala	Leu 1995		Ser	Ala	Ala	Val 2000
	Ala	Thr	Ser	Gln	Gly 2005		Gly	Lys	Leu	Pro 2010		Ser	Phe	Met	Ser 2015	
65	Trp	Arg	Phe	Pro 2020		Met	Leu	Glu	Asn 2025		Arg	Gly	Met	Val 2030		Gln
	Leu	Thr	Gln 2035	Phe	Gly	Ser	Thr	Leu 2040	Gln)	Asn	Ile	Ile	Glu 2045		Gln	Asp
70	Ala	Glu 2050	Ala)	Leu	Asn	Ala	Leu 2055		Gln	Asn	Gln	Ala 2060		Glu	Leu	Ile

	Leu 2065		Asn	Leu	Ser	11e 2070		Asp	Lys	Thr	Ile 2075		Glu	Leu	Asp	Ala 2080
5	Glu	Lys	Thr	Val	Leu 2085		Lys	Ser	Lys	Ala 2090		Ala	Gln	Ser	Arg 2095	
10	Asp	Ser	Tyr	Gly 2100		Leu	Tyr	Asp	Glu 2105		Ile	Asn	Ala	Gly 2110	Glu)	Asn
10	Gln	Ala	Met 2115		Leu	Arg	Ala	Ser 2120		Ala	Gly -	Leu	Thr 2125		Ala	Val
15	Gln	Ala 2130		Arg	Leu	Ala	Gly 2135		Ala	Ala	Asp	Leu 2140		Pro	Asn	Ile
	Phe 2145		Phe	Ala	Gly	Gly 2150		Ser	Arg	Trp	Gly 2155		Ile	Ala	Glu	Ala 2160
20	Thr	Gly	Tyr	Val	Met 2165		Phe	Ser	Ala	Asn 2170		Met	Asn	Thr	Glu 2175	
25	Asp	Lys	Ile	Ser 2180		Ser	Glu	Thr	Tyr 2185		Arg	Arg	Arg	Gln 2190	Glu)	Trp
23	Glu	īle	Gln 2195		Asn	Asn	Ala	Glu 2200		Glu	Leu	Lys	Gln 2205		Asp	Ala
30	Gln	Leu 2210		Ser	Leu	Ala	Val 2215		Arg	Glu	Ala	Ala 2220		Leu	Gln	Lys
	Thr 2225		Leu	Lys	Thr	Gln 2230		Glu	Gln	Thr	Gln 2235		Gln	Leu	Ala	Phe 2240
35	Leu	Gln	Arg	Lys	Phe 2245		Asn	Gln	Ala	Leu 2250		Asn	Trp	Leu	Arg 2255	
40	Arg	Leu	Ala	Ala 2260	Ile	Tyr	Phe	Gln	Phe 2265		Asp	Leu	Ala	Val 2270	Ala)	Arg
40	Cys	Leu	Met 2275		Glu	Gln	Ala	Tyr 2280		Trp	Glu	Leu	Asn 2285		Asp	Ser
45	Ala	Arg 2290		Ile	Lys	Pro	Gly 2295		Trp	Gln	Gly	Thr 2300		Ala	Gly	Leu
	Leu 2305		Gly	Glu	Thr	Leu 2310		Leu	Ser	Leu	Ala 2315		Met	Glu	Asp	Ala 2320
50	His	Leu	Lys	Arg	Asp 2325	Lys	Arg	Ala	Leu	Glu 2330		Glu	Arg	Thr	Val 2335	Ser
55	Leu	Ala	Glu	Val 2340		Ala	Gly	Leu	Pro 2345		Asp	Asn	Gly	Pro 2350	Phe)	Ser
J J	Leu	Ala	Gln 2355		Ile	Asp	Lys	Leu 2360		Ser	Gln	Gly	Ser 2365		Ser	Ala
60	Gly	Ser 2370		Asn	Asn	Asn	Leu 2375		Phe	Gly	Ala	Gly 2380		Asp	Thr	Lys
	Thr 2385		Leu	Gln	Ala	Ser 2390		Ser	Phe	Ala	Asp 2395		Lys	Ile	Arg	Glu 2400
65	Asp	Tyr	Pro	Ala	Ser 2405		Gly	Lys	Ile	Arg 2410		Ile	Lys	Gln	Ile 2415	
70	Val	Thr	Leu	Pro 2420		Leu	Leu	Gly	Pro 2425		Gln	Asp	Val	Gln 2430	Ala)	Ile
, 0	Leu	Ser	Tyr	Gly	Asp	Lys	Ala	Gly	Leu	Ala	Asn	Gly	Cys	Glu	Ala	Leu

2440 2435 2445 Ala Val Ser His Gly Met Asn Asp Ser Gly Gln Phe Gln Leu Asp Phe 5 Asn Asp Gly Lys Phe Leu Pro Phe Glu Gly Ile Ala Ile Asp Gln Gly 2470 2475 Thr Leu Thr Leu Ser Phe Pro Asn Ala Ser Met Pro Glu Lys Gly Lys 10 2485 2490 2495 Gln Ala Thr Met Leu Lys Thr Leu Asn Asp Ile Ile Leu His Ile Arg 2500 15 Tyr Thr Ile Lys 2516 (2) INFORMATION FOR SEQ ID NO:48: 20 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 5547 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double 25 (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic) SEQUENCE DESCRIPTION: SEQ ID NO:48 (tcdAii coding region): 30 CTG ATA GGC TAT AAC AAT CAA TTT AGC GGT AGA GCC AGT CAA TAT GTT 48 Leu Ile Gly Tyr Asn Asn Gln Phe Ser Gly Arg Ala Ser Gln Tyr Val 35 GCG CCG GGT ACC GTT TCT TCC ATG TTC TCC CCC GCC GCT TAT TTG ACT 96 Ala Pro Gly Thr Val Ser Ser Met Phe Ser Pro Ala Ala Tyr Leu Thr GAA CTT TAT CGT GAA GCA CGC AAT TTA CAC GCA AGT GAC TCC GTT TAT 144 40 Glu Leu Tyr Arg Glu Ala Arg Asn Leu His Ala Ser Asp Ser Val Tyr 40 TAT CTG GAT ACC CGC CGC CCA GAT CTC AAA TCA ATG GCG CTC AGT CAG 192 Tyr Leu Asp Thr Arg Arg Pro Asp Leu Lys Ser Met Ala Leu Ser Gln 45 CAA AAT ATG GAT ATA GAA TTA TCC ACA CTC TCT TTG TCC AAT GAG CTG 240 Gln Asn Met Asp Ile Glu Leu Ser Thr Leu Ser Leu Ser Asn Glu Leu 50 TTA TTG GAA AGC ATT AAA ACT GAA TCT AAA CTG GAA AAC TAT ACT AAA 288 Leu Leu Glu Ser Ile Lys Thr Glu Ser Lys Leu Glu Asn Tyr Thr Lys 55 GTG ATG GAA ATG CTC TCC ACT TTC CGT CCT TCC GGC GCA ACG CCT TAT 336 Val Met Glu Met Leu Ser Thr Phe Arg Pro Ser Gly Ala Thr Pro Tyr 105 CAT GAT GCT TAT GAA AAT GTG CGT GAA GTT ATC CAG CTA CAA GAT CCT 384 60 His Asp Ala Tyr Glu Asn Val Arg Glu Val Ile Gln Leu Gln Asp Pro 115 120 GGA CTT GAG CAA CTC AAT GCA TCA CCG GCA ATT GCC GGG TTG ATG CAT 432 Gly Leu Glu Gln Leu Asn Ala Ser Pro Ala Ile Ala Gly Leu Met His 65 130. 135 CAA GCC TCC CTA TTG GGT ATT AAC GCT TCA ATC TCG CCT GAG CTA TTT 480 Gln Ala Ser Leu Leu Gly Ile Asn Ala Ser Ile Ser Pro Glu Leu Phe

150

155

د			CTG Leu														528
5			AAT Asn														576
10	TAC Tyr	CTT Leu	AAA Lys 195	CGT Arg	TAT Tyr	TAT Tyr	AAT Asn	TTA Leu 200	AGC Ser	GAT Asp	GAA Glu	GAA Glu	CTT Leu 205	AGT Ser	CAG Gln	TTT Phe	624
15	ATT Ile	GGT Gly 210	AAA Lys	GCC Ala	AGC Ser	AAT Asn	TTT Phe 215	GGT Gly	CAA Gln	CAG Gln	GAA Glu	TAT Tyr 220	AGT Ser	AAT Asn	AAC Asn	CAA Gln	672
20			ACT Thr														720
25			ACC Thr														768
	CTA Leu	TTT Phe	CCC Pro	TTC Phe 260	GGT Gly	GGT Gly	GAG Glu	AAT Asn	TAT Tyr 265	CGG Arg	TTA Leu	GAT Asp	TAT Tyr	AAA Lys 270	TTC Phe	AAA Lys	816
30	AAT Asn	TTT Phe	TAT Tyr 275	AAT Asn	GCC Ala	TCT Ser	TAT Tyr	TTA Leu 280	TCC Ser	ATC Ile	AAG Lys	TTA Leu	AAT Asn 285	GAT Asp	AAA Lys	AGA Arg	864
35			GTT Val														912
40			ATC Ile														960
45			ACA Thr														1008
			ACC Thr														1056
50			GCT Ala 355														1104
55	CTG Leu	GAA Glu 370	GGC Gly	ATT Ile	GTG Val	CGC Arg	AGT Ser 375	GTT Val	AAT Asn	CTA Leu	CAA Gln	CTG Leu 380	GAT Asp	ATC Ile	AAC Asn	ACA Thr	1152
60			TTA Leu														1200
65			CAT. His														1248
.			TCA Ser														1296
70			TTA Leu														1344

			435					440					445				
5	GAT Asp	TTA Leu 450	AAT Asn	TCA Ser	GGT Gly	AGC Ser	ACC Thr 455	GGC Gly	GAT Asp	TGG Trp	CGA Arg	AAA Lys 460	ACC Thr	ATA Ile	CTT Leu	AAG Lys	1392
10			TTT Phe														1440
10			CAT His														1488
15			AAT Asn														1536
20			GAT Asp 515														1584
25			TTA Leu														1632
30			AAT Asn														1680
30			CTA Leu														1728
35			ATT Ile														1776
40	TTT Phe	GAT Asp	AAA Lys 595	GAC Asp	AAA Lys	GCA Ala	GAT Asp	TTG Leu 600	CTA Leu	CAT His	GTC Val	ATG Met	GCG Ala 605	CCC Pro	TAT Tyr	ATT Ile	1824
45	GCG Ala	GCC Ala 610	ACC Thr	TTG Leu	CAA Gln	TTA Leu	TCA Ser 615	TCG Ser	GAA Glu	AAT Asn	GTC Val	GCC Ala 620	CAC His	TCG Ser	GTA Val	CTC Leu	1872
50	CTT Leu 625	TGG Trp	GCA Ala	GAT Asp	AAG Lys	TTA Leu 630	CAG Gln	CCC Pro	GGC Gly	GAC Asp	GGC Gly 635	GCA Ala	ATG Met	ACA Thr	GCA Ala	GAA Glu 640	1920
30	AAA Lys	TTC Phe	TGG Trp	GAC Asp	TGG Trp 645	TTG Leu	AAT Asn	ACT Thr	AAG Lys	TAT Tyr 650	ACG Thr	CCG Pro	GGT Gly	TCA Ser	TCG Ser 655	GAA Glu	1968
55	GCC Ala	GTA Val	GAA Glu	ACG Thr 660	CAG Gln	GAA Glu	CAT His	ATC Ile	GTT Val 665	CAG Gln	TAT Tyr	TGT Cys	CAG Gln	GCT Ala 670	CTG Leu	GCA Ala	2016
60	CAA Gln	TTG Leu	GAA Glu 675	ATG Met	GTT Val	TAC Tyr	CAT His	TCC Ser 680	ACC Thr	GGC Gly	ATC Ile	AAC Asn	GAA Glu 685	AAC Asn	GCC Ala	TTC Phe	2064
65	CGT Arg	CTA Leu 690	Phe	GTG Val	ACA Thr	AAA Lys	CCA Pro 695	GAG Glu	ATG Met	TTT Phe	GGC Gly	GCT Ala 700	GCA Ala	ACT Thr	GGA Gly	GCA Ala	2112
70	GCG Ala 705	CCC Pro	GCG Ala	CAT His	GAT Asp	GCC Ala 710	CTT Leu	TCA Ser	CTG Leu	ATT Ile	ATG Met 715	CTG Leu	ACA Thr	CGT Arg	TTT Phe	GCG Ala 720	2160
, 0	GAT	TGG	GTG	AAC	GCA	CTA	GGC	GAA		GCG	TCC	TCG	GTG	CTA	GCG	GCA	2208

	Asp	Trp	Val	Asn	Ala 725	Leu	Gly	Glu	Lys	Ala. 730	Ser	Ser	Val	Leu	Ala 735	Ala	
5	TTT Phe	GAA Glu	GCT Ala	AAC Asn 740	TCG Ser	TTA Leu	ACG Thr	GCA Ala	GAA Glu 745	CAA Gln	CTG Leu	GCT Ala	GAT Asp	GCC Ala 750	ATG Met	AAT Asn	2256
10	CTT Leu	GAT Asp	GCT Ala 755	AAT Asn	TTG Leu	CTG Leu	TTG Leu	CAA Gln 760	GCC Ala	AGT Ser	ATT Ile	CAA Gln	GCA Ala 765	CAA Gln	AAT Asn	CAT His	2304
	CAA Gln	CAT His 770	CTT Leu	CCC Pro	CCA Pro	GTA Val	ACT Thr 775	CCA Pro	GAA Glu	AAT Asn	GCG Ala	TTC Phe 780	TCC Ser	TGT Cys	TGG Trp	ACA Thr	2352
15							CAA Gln										2400
20	GTC Val	GCC Ala	CCA Pro	Gln	GGC Gly 805	GTT Val	TCC Ser	GCT Ala	TTG Leu	GTC Val 810	GGG Gly	CTG Leu	GAT Asp	TAT Tyr	ATT Ile 815	CAA Gln	2448
25	TCA Ser	ATG Met	AAA Lys	GAG Glu 820	ACA Thr	CCG Pro	ACC Thr	TAT Tyr	GCC Ala 825	CAG Gln	TGG Trp	GAA Glu	AAC Asn	GCG Ala 830	GCA Ala	GGC Gly	2496
30	GTA Val	TTA Leu	ACC Thr 835	GCC Ala	GGG Gly	TTG Leu	AAT Asn	TCA Ser 840	CAA Gln	CAG Gln	GCT Ala	AAT Asn	ACA Thr 845	TTA Leu	CAC His	GCT Ala	2544
35	TTT Phe	CTG Leu 850	GAT Asp	GAA Glu	TCT Ser	CGC Arg	AGT Ser 855	GCC Ala	GCA Ala	TTA Leu	AGC Ser	ACC Thr 860	TAC Tyr	TAT Tyr	ATC Ile	CGT Arg	2592
33	CAA Gln 865	GTC Val	GCC Ala	AAG Lys	GCA Ala	GCG Ala 870	GCG Ala	GCT Ala	ATT Ile	AAA Lys	AGC Ser 875	CGT Arg	GAT Asp	GAC Asp	TTG Leu	TAT Tyr 880	2640
40	CAA Gln	TAC Tyr	TTA Leu	CTG Leu	ATT Ile 885	GAT Asp	AAT Asn	CAG Gln	GTT Val	TCT Ser 890	GCG Ala	GCA Ala	ATA Ile	AAA Lys	ACC Thr 895	ACC Thr	2688
45							GCC Ala										2736
50						Glu	AAT Asn					-		-			2784
cc							AAA Lys 935										2832
55	GGT Gly 945	GTT Val	TCT Ser	CAA Gln	TTA Leu	GTT Val 950	TAC Tyr	TAC Tyr	CCG Pro	GAA Glu	AAC Asn 955	TAT Tyr	ATT Ile	GAT Asp	CCG Pro	ACC Thr 960	2880
60							AAA Lys										2928
65							GCC Ala										2976
70							CAA Gln		Ala					Ile			3024

	TAT Tyr	CAC His 1010	Asp	AAT Asn	ATT Ile	AAT Asn	AAC Asn 1015	Asp	CAA Gln	GGG Gly	CTG Leu	ACC Thr 1020	Tyr	TTT Phe	ATC Ile	GGA Gly	3072
5	CTC Leu 1025	Ser	GAA Glu	ACT Thr	GAT Asp	GCC Ala 1030	Gly	GAA Glu	TAT Tyr	TAT Tyr	TGG Trp 1035	Arg	AGT Ser	GTC Val	GAT Asp	CAC His 1040	3120
10	AGT Ser	AAA Lys	TTC Phe	AAC Asn	GAC Asp 1045	Gly	AAA Lys	TTC Phe	GCG Ala	GCT Ala 1050	Asn	GCC Ala	TGG Trp	AGT Ser	GAA Glu 1055	Trp	3168
15					Cys		ATT Ile			Tyr					Arg		3216
20	GTG Val	ATA Ile	TAT Tyr 1075	Lys	TCC Ser	CGC Arg	CTG Leu	TAT Tyr 1080	Leu	CTC Leu	TGG Trp	TTG Leu	GAA Glu 1085	Gln	AAG Lys	GAG Glu	3264
20			Lys				AAT Asn 1095	Ser					Gln				3312
25		Tyr					Lys					Arg					3360
30						Thr	TTT Phe				Lys					Leu	3408
35					Asn		GCG Ala			Leu					Tyr		3456
40				Thr			GTG Val		Phe					Asp			3504
40	Asp		Tyr				TCA Ser 1175	Met					Ile				3552
45		Ala					Thr					Asn					3600
50						Phe	GAT Asp				Val					Asn	3648
55					Asp		GAG Glu			Ser					Arg		3696
60				Trp			TAT Tyr		Leu					Asn			3744
00			Thr				AAA Lys 1255	Ala					Leu				3792
65		Ser					Ile					Tyr					3840
70						Leu	ATG Met				Gly					Lys	3888

19 1212, 35000

5			GTT Val		Thr					Asn					Ser		3936
J			ATG Met 1315	Phe					Gln					Thr			3984
10.			Gln					Phe					Thr				4032
15	AAA Lys 1345	Val	GAA Glu	GCT Ala	TGG Trp	ATT Ile 1350	Pro	GGA Gly	GCA Ala	AAA Lys	CGT Arg 1355	Ser	CTA Leu	ACC Thr	AAC Asn	CAA Gln 1360	4080
20			GCC Ala			Asp					Asp					Pro	4128
25			CTT Leu		Gln					Thr					Thr		4176
			GTC Val 1395	Ser			Val					Ala					4224
30			Gln					Ala					Gln				4272
35	GCA Ala 1425	Asp	AAA Lys	GAT Asp	GTC Val	TCC Ser 1430	Ile	CAG Gln	CCA Pro	TCA Ser	CCT Pro 1435	Ser	TTT Phe	GAT Asp	GAA Glu	ATG Met 1440	4320
40	AAT Asn	TAT Tyr	CAA Gln	TTT Phe	AAT Asn 1445	Ala	CTT Leu	GAA Glu	ATA Ile	GAC Asp 1450	Gly	TCT Ser	GGT Gly	CTG Leu	AAT Asn 1455	Phe	4368
45			AAC Asn		Ala					Thr					Ala		4416
	GAT Asp	GGC Gly	CGC Arg 1475	Lys	CTG Leu	GGT Gly	TAT Tyr	GAA Glu 1480	Ser	TTC Phe	AGT Ser	ATT Ile	CCT Pro 1485	Val	ACC Thr	CTC Leu	4464
50	AAG Lys	GTA Val 1490	AGT Ser)	ACC Thr	GAT Asp	AAT Asn	GCC Ala 1495	Leu	ACC Thr	CTG Leu	CAC His	CAT His 1500	Asn	GAA Glu	AAT Asn	GGT Gly	4512
55	GCG Ala 1505	Gln	TAT Tyr	ATG Met	CAA Gln	TGG Trp 1510	Gln	TCC Ser	TAT Tyr	CGT Arg	ACC Thr 1515	Arg	CTG Leu	AAT Asn	ACT Thr	CTA Leu 1520	4560
60	TTT Phe	GCC Ala	CGC Arg	CAG Gln	TTG Leu 1525	Val	GCA Ala	CGC Arg	GCC Ala	ACC Thr 1530	Thr	GGA Gly	ATC Ile	GAT Asp	ACA Thr 1535	Ile	4608
65	CTG Leu	AGT Ser	ATG Met	GAA Glu 1540	Thr	CAG Gln	AAT Asn	ATT Ile	CAG Gln 1545	Glu	CCG Pro	CAG Gln	TTA Leu	GGC Gly 1550	Lys	GGT Gly	4656
	TTC Phe	TAT Tyr	GCT Ala 1555	Thr	TTC Phe	GTG Val	ATA Ile	CCT Pro 1560	Pro	TAT Tyr	AAC Asn	CTA Leu	TCA Ser 1565	Thr	CAT His	GGT Gly	4704
70	GAT Asp	GAA Glu	CGT Arq	TGG	TTT Phe	AAG Lvs	CTT Leu	TAT	ATC Ile	AAA Lvs	CAT	GTT Val	GTT Val	GAT Asp	AAT Asn	AAT	4752

	1570	15	575	. 1580	1580				
5			GC CAG CTA ACA		ATA AAC ATC 4800 Ile Asn Ile 1600				
1.0			AT GAT GTC CCA sp Asp Val Pro 161	Leu Asn Gln	GAT TAT CAC 4848 Asp Tyr His 1615				
10	Ala Lys Val		TC AAG AAA TCA he Lys Lys Ser 1625		GGT ACC TGG 4896 Gly Thr Trp 1630				
15		His Phe Val A	GA GAT GAT AAA arg Asp Asp Lys 1640						
20	CCT AAA TCC . Pro Lys Ser 1650	Ile Leu Thr H:	AT TTT GAG AGC is Phe Glu Ser .655	GTC AAT GTC Val Asn Val 1660	CTG AAT AAT 4992 Leu Asn Asn				
25			AT TTC AGC GGC sp Phe Ser Gly		CTC TAT TTC 5040 Leu Tyr Phe 1680				
30			ACC CCG ATG CTG hr Pro Met Leu 169	Val Ala Gln	CGT TTG CTG 5088 Arg Leu Leu 1695				
30	His Glu Gln		AA GCC AAC CGT lu Ala Asn Arg 1705		TAT GTC TGG 5136 Tyr Val Trp 1710				
35		Gly Tyr Ile Va	STC CAC GGC CAG al His Gly Gln 1720						
40		Pro Leu Leu G	GAA GAC ACC AGT Glu Asp Thr Ser .735		GAT CCT TTG 5232 Asp Pro Leu				
45			GCG GTA GCA CAG		ATG CAC TAC 5280 Met His Tyr 1760				
50	Lys Val Ser		GT ACC TTG GAT arg Thr Leu Asp 177	Leu Leu Ile	GCA CGC GGC 5328 Ala Arg Gly 1775				
30	Asp His Ala		CTG GAA CGA GAT Leu Glu Arg Asp 1785		GAA GCG AAG 5376 Glu Ala Lys 1790				
55 _.		Met Gln Ala L	CTG CAT CTA TTA Leu His Leu Leu 1800						
60	CCG CTG AGT Pro Leu Ser 1810	Thr Thr Trp S	AGT GAT CCA CGA Ser Asp Pro Arg .815	CTA GAC AGA Leu Asp Arg 1820	GCC GCG GAT 5472 Ala Ala Asp				
65	ATC ACT ACC Ile Thr Thr 1825	CAA AAT GCT CA Gln Asn Ala H 1830	CAC GAC AGC GCA His Asp Ser Ala	ATA GTC GCT Ile Val Ala 1835	CTG CGG CAG 5520 Leu Arg Gln 1840				
70		ACA CCG GCA Co Thr Pro Ala Pi 1845		547					

I Commission of the Commission

(2) INFORMATION FOR SEQ ID NO:49:

> %

```
(i) SEQUENCE CHARACTERISTICS:
                 (A) LENGTH: 1849 amino acids
 5
                 (B) TYPE: amino acids
                 (C) STRANDEDNESS: single
                 (D) TOPOLOGY: linear
          (ii) MOLECULE TYPE: protein
          (xi) SEQUENCE DESCRIPTION: SEQ ID NO:49 (TcdAii):
10
                                 To
                        From
                                         Description
           Features
           Peptide
                        1
                                1849
                                          TcdA<sub>ii</sub> peptide
                                12
           Fragment
                                          TcdAii N-terminus (SEQ ID NO:13)
                        196
                                211
                                          (SEQ ID NO:38)
           Fragment
15
                        466
                                 475
                                          (SEQ ID NO:17)
           Fragment
                                          (SEQ ID NO:23; 12/13)
                        993
                                 1004
           Fragment
                        1297
                                1312
                                          (SEQ ID NO:18)
           Fragment
                        1390
                                1409
           Fragment
                                          (SEQ ID NO:39)
                        1532
                                1554
                                          (SEQ ID NO:21; 19/23)
           Fragment
20
     Leu Ile Gly Tyr Asn Asn Gln Phe Ser Gly Arg Ala Ser Gln Tyr Val 10 10 15
     Ala Prc Gly Thr Val Ser Ser Met Phe Ser Pro Ala Ala Tyr Leu Thr 20 25 30
25
     Glu Leu Tyr Arg Glu Ala Arg Asn Leu His Ala Ser Asp Ser Val Tyr
30
     Tyr Leu Asp Thr Arg Arg Pro Asp Leu Lys Ser Met Ala Leu Ser Gln
     Gln Asn Met Asp Ile Glu Leu Ser Thr Leu Ser Leu Ser Asn Glu Leu
35
     Leu Leu Glu Ser Ile Lys Thr Glu Ser Lys Leu Glu Asn Tyr Thr Lys
     Val Met Glu Met Leu Ser Thr Phe Arg Pro Ser Gly Ala Thr Pro Tyr
40
     His Asp Ala Tyr Glu Asn Val Arg Glu Val Ile Gln Leu Gln Asp Pro
45
     Gly Leu Glu Gln Leu Asn Ala Ser Pro Ala Ile Ala Gly Leu Met His
                             135
     Gln Ala Ser Leu Leu Gly Ile Asn Ala Ser Ile Ser Pro Glu Leu Phe
                                              155
50
     Asn Ile Leu Thr Glu Glu Ile Thr Glu Gly Asn Ala Glu Glu Leu Tyr
     Lys Lys Asn Phe Gly Asn Ile Glu Pro Ala Ser Leu Ala Met Pro Glu
55
     Tyr Leu Lys Arg Tyr Tyr Asn Leu Ser Asp Glu Glu Leu Ser Gln Phe
                                 200
60
     Ile Gly Lys Ala Ser Asn Phe Gly Gln Glu Tyr Ser Asn Asn Gln
     Leu Ile Thr Pro Val Val Asn Ser Ser Asp Gly Thr Val Lys Val Tyr
65
     Arg Ile Thr Arg Glu Tyr Thr Thr Asn Ala Tyr Gln Met Asp Val Glu
```

250

	Leu	Phe	Pro	Phe 260	Gly	Gly	Glu	Asn	Tyr 265	Arg.	Leu	Asp	Tyr	Lys 270	Phe	Lys
5	Asn	Phe	Tyr 275	Asn	Ala	Ser	Tyr	Leu 280	Ser	Ile	Lys	Leu	Asn 285	Asp	Lys	Arg
	Glu	Leu 290	Val	Arg	Thr	Glu	Gly 295	Ala	Pro	Gln	Val	Asn 300	Ile	Glu	Tyr	Ser
10	Ala 305	Asn	Ile	Thr	Leu	Asn 310	Thr	Ala	Asp	Ile	Ser 315	Gln	Pro	Phe	Glu	Ile 320
15	Gly	Leu	Thr	Arg	Val 325	Leu	Pro	Ser	Gly	Ser 330	Trp	Ala	Tyr	Ala	Ala 335	Ala
10	Lys	Phe	Thr	Val 340	Glu	Glu	Tyr	Asn	Gln 345	Tyr	Ser	Phe	Leu	Leu 350	Lys	Leu
20	Asn	Lys	Ala 355	Ile	Arg	Leu	Ser	Arg 360	Ala	Thr	Glu	Leu	Ser 365	Pro	Thr	Ile
	Leu	Glu 370	Gly	Ile	Val	Arg	Ser 375	Val	Asn	Leu	Gln	Leu 380	Asp	Ile	Asn	Thr
25	Asp 385	Val	Leu	Gly	Lys	Val 390	Phe	Leu	Thr	Lys	Tyr 395	Tyr	Met	Gln	Arg	Tyr 400
30	Ala	Ile	His		Glu 405	Thr	Ala	Leu	Ile	Leu 410	Cys	Asn	Ala	Pro	Ile 415	Ser
30	Gln	Arg	Ser	Tyr 420	Asp	Asn	Gln	Pro	Ser 425	Gln	Phe	Asp	Arg	Leu 430	Phe	Asn
35	Thr	Pro	Leu 435	Leu	Asn	Gly	Gln	Tyr 440	Phe	Ser	Thr	Gly	Asp 445	Glu	Glu	Ile
	Asp	Leu 450	Asn	Ser	Gly	Ser	Thr 455	Gly	Asp	Trp	Arg	Lys 460	Thr	Ile	Leu	Lys
40	Arg 465	Ala	Phe	Asn	Ile	Asp 470	Asp	Val	Ser	Leu	Phe 475	Arg	Leu	Leu	Lys	Ile 480
45	Thr	Asp	His	Asp	Asn 485	Lys	Asp	Gly	Lys	Ile 490	Lys	Asn	Asn	Leu	Lys 495	Asn
.5	Leu	Ser	Asn	Leu 500	Tyr	Ile	Gly	Lys	Leu 505	Leu	Ala	Asp	Ile	His 510	Gln	Leu
50	Thr	Ile	Asp 515	Glu	Leu	Asp	Leu	Leu 520	Leu	Ile	Ala	Val	Gly 525	Glu	Gly	Lys
	Thr	Asn 530	Leu	Ser	Ala	Ile	Ser 535	Asp	Lys	Gln	Leu	Ala 540	Thr	Leu	Ile	Arg
55	Lys 545	Leu	Asn	Thr	Ile	Thr 550	Ser	Trp	Leu	His	Thr 555	Gln	Lys	Trp	Ser	Val 560
60	Phe	Gln	Leu	Phe	11e 565	Met	Thr	Ser	Thr	Ser 570	Tyr	Asn	Lys	Thr	Leu 575	Thr
	Pro	Glu	Ile	Lys 580	Asn	Leu	Leu	Asp	Thr 585	Val	Tyr	His	Gly	Leu 590	Gln	Gly
65	Phe	Asp	Lys 595	Asp	Lys	Ala	Asp	Leu 600	Leu	His	Val	Met	Ala 605	Pro	Tyr	Ile
.•	Ala	Ala 610	Thr	Leu	Gln	Leu	Ser 615	Ser	Glu	Asn	Val	Ala 620	His	Ser	Val	Leu
70	Leu 625	Trp	Ala	Asp	Lys	Leu 630	Gln	Pro	Gly	Asp	Gly 635	Ala	Met	Thr	Ala	Glu 640

	Lys	Phe	Trp	Asp	Trp 645	Leu	Asn	Thr	Lys	Tyr 650	Thr	Pro	Gly	Ser	Ser 655	Glu
5	Ala	Val	Glu	Thr 660	Gln	Glu	His	Ile	Val 665	Gln	Tyr	Cys	Gln	Ala 670	Leu	Ala
10	Gln	Leu	Glu 675	Met	Val	Tyr	His	Ser 680	Thr	Gly	Ile	Asn	Glu 685	Asn	Ala	Phe
10	Arg	Leu 690	Phe	Val	Thr	Lys	Pro 695	Glu	Met	Phe	Gly	Ala 700	Ala	Thr	Gly	Ala
15	705		Ala Val			710					715			_		720
0.0	Phe	Glu	Ala		725 Ser	Leu	Thr	Ala		730 Gln	Leu	Ala	Asp		735 Met	
20	Leu	Asp	Ala 755	740 Asn	Leu	Leu	Leu	Gln 760	745 Ala	Ser	Ile	Gln	Ala 765	750 Gln	Asn	His
25	.Gln	His	Leu	Pro	Pro	Val	Thr 775		Glu	Asn	Ala	Phe 780		Cys	Trp	Thr
	Ser 785	Ile	Asn	Thr	Ile	Leu 790	Gln	Trp	Val	Asn	Val 795	Ala	Gln	Gln	Leu	Asn 800
30	Val	Ala	Pro	Gln	Gly 805	Val	Ser	Ala	Leu	Val 810	Gly	Leu	Asp	Tyr	Ile 815	Gln
35	Ser	Met	Lys	Glu 820	Thr	Pro	Thr	Tyr	Ala 825	Gln.	Trp	Glu	Asn	Ala 830	Ala	Gly
	Val	Leu	Thr 835	Ala	Gly	Leu	Asn	Ser 840	Gln	Gln	Ala	Asn	Thr 845	Leu	His	Ala
40	Phe	Leu 850	Asp	Glu	Ser	Arg	Ser 855	Ala	Ala	Leu	Ser	Thr 860	Tyr	Tyr	Ile	Arg
45	865		Ala	-		870				-	875		•	-		880
		-	Leu		885					890				-	895	
50	,		Ala Asn	900				,	905			-		910		
55			915 Ile					920					925			
-		930	Ser				935					940				
60	945 Met	Arg	Ile	Gly		950 Thr	Lys	Met	Met		955 Ala	Leu	Leu	Gln		960 Val
65	Ser	Gln	Ser	Gln 980	965 Leu	Asn	Ala	Asp	Thr 985	970 Val	Glu	Asp	Ala	Phe 990	975 Met	Ser
	Tyr	Leu	Thr 995		Phe	Glu	Gln	Val	Ala	Asn	Leu	Lys	Val 100	Ile	Ser	Ala
70	Tyr	His 101	Asp 0	Asn	Ile	Asn	Asn 101		Gln	Gly	Leu	Thr 102		Phe	Ile	Gly

	Leu 1025		Glu	Thr	Asp	Ala 1030		Glu	Tyr	Tyr	Trp 1035		Ser	Val	Asp	His 1040
5	Ser	Lys	Phe	Asn	Asp 1045		Lys	Phe	Ala	Ala 1050		Ala	Trp	Ser	Glu 105	
1.0	His	Lys	Ile	Asp 1060		Pro	Ile	Asn	Pro 1065		Lys	Ser	Thr	Ile 1070		Pro
10	Val	Ile	Tyr 1075		Ser	Arg	Leu	Tyr 1080		Leu	Trp	Leu	Glu 1085		Lys	Glu
15	Ile	Thr 1090	Lys)	Gln	Thr	Gly	Asn 1095		Lys	Asp	Gly	Tyr 1100		Thr	Glu	Thr
	Asp 1105		Arg	Tyr	Glu	Leu 1110		Leu	Ala	His	Ile 1115		Tyr	Asp	Gly	Thr 1120
20	Trp	Asn	Thr	Pro	Ile 1125		Phe	Asp	Val	Asn 1130		Lys	Ile	Ser	Glu 113	
0.5	Lys	Leu	Glu	Lys 1140		Arg	Ala	Pro	Gly 1145		Tyr	Cys	Ala	Gly 1150		Gln
25	Gly	Glu	Asp 1155		Leu	Leu	Val	Met 1160		Tyr	Asn	Gln	Gln 1165		Thr	Leu
30	Asp	Ser 1170	Tyr	Lys	Asn	Ala	Ser 1175		Gln	Gly	Leu	Tyr 1180		Phe	Ala	Asp
	Met 1185	Ala	Ser	Lys	Asp	Met 1190		Pro	Glu	Gln	Ser 1195		Val	Tyr	Arg	Asp 1200
35	Asn	Ser	Tyr	Gln	Gln 1205		Asp	Thr	Asn	Asn 1210		Arg	Arg	Val	Asn 1215	
	Arg	Tyr	Ala	Glu 1220		Tyr	Glu	Ile	Pro 1225		Ser	Val	Ser	Ser 1230		Lys
40	Asp	Tyr	Gly 1235		Gly	Asp	Tyr	Tyr 1240		Ser	Met	Val	Tyr 1245		Gly	Asp
45	Ile	Pro 1250	Thr	Ile	Asn	Tyr	Lys 1255		Ala	Ser	Ser	Asp 1260		Lys	Ile	Tyr
	Ile 1265	Ser	Pro	Lys	Leu	Arg 1270		Ile	His	Asn	Gly 1275		Glu	Gly	Gln	Lys 1280
50	Arg	Asn	Gln	Cys	Asn 1285	Leu	Met	Asn	Lys	Tyr 1290		Lys	Leu	Gly	Asp 129	
c	Phe	Ile	Val	Tyr 1300		Ser	Leu	Gly	Val 1305		Pro	Asn	Asn	Ser 1310		Asn
55	Lys	Leu	Met 1315	Phe	Tyr	Pro	Val	Tyr 1320		Tyr	Ser	Gly	Asn 1325		Ser	Gly
60	Leu	Asn 1330	Gln)	Gly	Arg	Leu	Leu 1335		His	Arg	Asp	Thr 1340		Tyr	Pro	Ser
	Lys 1345		Glu	Ala	Trp	Ile 1350		Gly	Ala	Lys	Arg 1355		Leu	Thr	Asn	Gln 1360
65	Asn	Ala	Ala	Ile	Gly 1365		Asp	Tyr	Ala	Thr 1370		Ser	Leu	Asn	Lys 1375	
70	Asp	Asp	Leu	Lys 1380		Tyr	Ile	Phe	Met 1385		Asp	Ser	Lys	Gly 1390		Ala
70	Thr	Asp	Val	Ser	Gly	Pro	Val	Glu	Ile	Asn	Thr	Ala	Ile	Ser	Pro	Ala

المنظمة المنظمة المسطة مراكب الأراكب المناطقة المسطحة المسط

			1395	5			3	400				1	405			
5	Lys	Val 1410	Gln	Ile	Ile	Val	Lys 1415		Gly	Gly	Lys	Glu 1420		Thr	Phe	Thr
J	Ala 1425		Lys	Asp	Val	Ser 1430		Gln	Pro	Ser	Pro 1435		Phe	Asp	Glu	Met 1440
10	Asn	Tyr	Gln	Phe	Asn 1445		Leu	Glu	Ile	Asp 1450		Ser	Gly	Leu	Asn 1455	
	Ile	Asn	Asn	Ser 1460		Ser	Ile	Asp	Val 1465		Phe	Thr	Ala	Phe 1470		Glu
15	Asp	Gly	Arg 1475		Leu	Gly	Tyr	Glu 1480		Phe	Ser	Ile	Pro 1485		Thr	Leu
20	Lys	Val 1490	Ser	Thr	Asp	Asn	Ala 1495		Thr	Leu	His	His 1500		Glu	Asn	Gly
	Ala 1505		Tyr	Met	Gln	Trp 1510		Ser	Tyr	Arg	Thr 1515		Leu	Asn	Thr	Leu 1520
25	Phe	Ala	Arg	Gln	Leu 1525		Ala	Arg	Ala	Thr 1530		Gly	Ile	Asp	Thr 1535	
	Leu	Ser	Met	Glu 1540		Gln	Asn	Ile	Gln 1545		Pro	Gln	Leu	Gly 1550		Gly
30	Phe	Tyr	Ala 1555		Phe	Val	Ile	Pro 1560		Tyr	Asn	Leu	Ser 1569		His	Gly
35	Asp	Glu 1570	Arg)	Trp	Phe	Lys	Leu 1575		Ile	Lys	His	Val 1580		Asp	Asn	Asn
30	Ser 1585		Ile	Ile	Tyr	Ser 1590		Gln	Leu	Thr	Asp 1595		Asn	Ile	Asn	Ile 1600
40	Thr	Leu	Phe	Ile	Pro 1605		Asp	Asp	Val	Pro 1610		Asn	Gln	Asp	Tyr 1615	
	Ala	Lys	Val	Tyr 1620		Thr	Phe	Lys	Lys 1625		Pro	Ser	Asp	Gly 1630		Trp
45	Trp	Gly	Pro 1635		Phe	Val	Arg	Asp 1640		Lys	Gly	Ile	Val 1645		Ile	Asn
50	Pro	Lys 1650	Ser	Ile	Leu	Thr	His 1655		Glu	Ser	Val	Asn 1660		Leu	Asn	Asn
	Ile 1665		Ser	Glu	Pro	Met 1670		Phe	Ser	Gly	Ala 1675		Ser	Leu	Tyr	Phe 168
55	Trp	Glu	Leu	Phe	Tyr 1685		Thr	Pro	Met	Leu 1690		Ala	Gln	Arg	Leu 1695	
	His	Glu	Gln	Asn 1700		Asp	Glu	Ala	Asn 1705		Trp	Leu	Lys	Tyr 1710		Trp
60	Ser	Pro	Ser 1715		Tyr	Ile	Val	His 1720		Gln	Ile	Gln	Asn 1725		Gln	Trp
65	Asn	Val 1730	Arg)	Pro	Leu	Leu	Glu 1735		Thr	Ser	Trp	Asn 1740		Asp	Pro	Leu
	Asp 1745		Val	Asp	Pro	Asp 1750		Val	Ala	Gln	His 1755		Pro	Met	His	Tyr 176

Lys Val Ser Thr Phe Met Arg Thr Leu Asp Leu Leu Ile Ala Arg Gly 1765 1770 1775

70

Asp His Ala Tyr Arg Gln Leu Glu Arg Asp Thr Leu Asn Glu Ala Lys 1780 1785 Met Trp Tyr Met Gln Ala Leu His Leu Leu Gly Asp Lys Pro Tyr Leu 5 1800 Pro Leu Ser Thr Trp Ser Asp Pro Arg Leu Asp Arg Ala Ala Asp 1815 10 Ile Thr Thr Gln Asn Ala His Asp Ser Ala Ile Val Ala Leu Arg Gln 1830 1835 Asn Ile Pro Thr Pro Ala Pro Leu Ser 1845 15 (2) INFORMATION FOR SEQ ID NO:50: (i) SEQUENCE CHARACTERISTICS: 20 (A) LENGTH: 1740 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic) 25 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:50 (tcdAiii coding region): TTG CGC AGC GCT AAT ACC CTG ACT GAT CTC TTC CTG CCG CAA ATC AAT 48 30 Leu Arg Ser Ala Asn Thr Leu Thr Asp Leu Phe Leu Pro Gln Ile Asn GAA GTG ATG ATT AAT TAC TGG CAG ACA TTA GCT CAG AGA GTA TAC AAT 96 Glu Val Met Met Asn Tyr Trp Gln Thr Leu Ala Gln Arg Val Tyr Asn 35 CTG CGT CAT AAC CTC TCT ATC GAC GGC CAG CCG TTA TAT CTG CCA ATC 144 Leu Arg His Asn Leu Ser Ile Asp Gly Gln Pro Leu Tyr Leu Pro Ile 40 40 TAT GCC ACA CCG GCC GAT CCG AAA GCG TTA CTC AGC GCC GCC GTT GCC 192 Tyr Ala Thr Pro Ala Asp Pro Lys Ala Leu Leu Ser Ala Ala Val Ala 50 45 ACT TCT CAA GGT GGA GGC AAG CTA CCG GAA TCA TTT ATG TCC CTG TGG 240 Thr Ser Gln Gly Gly Lys Leu Pro Glu Ser Phe Met Ser Leu Trp CGT TTC CCG CAC ATG CTG GAA AAT GCG CGC GGC ATG GTT AGC CAG CTC 288 50 Arg Phe Pro His Met Leu Glu Asn Ala Arg Gly Met Val Ser Gln Leu ACC CAG TTC GGC TCC ACG TTA CAA AAT ATT ATC GAA CGT CAG GAC GCG 336 Thr Gln Phe Gly Ser Thr Leu Gln Asn Ile Ile Glu Arg Gln Asp Ala 55 100 105 GAA GCG CTC AAT GCG TTA TTA CAA AAT CAG GCC GCC GAG CTG ATA TTG 384 Glu Ala Leu Asn Ala Leu Leu Gln Asn Gln Ala Ala Glu Leu Ile Leu 115 120 60 ACT AAC CTG AGC ATT CAG GAC AAA ACC ATT GAA GAA TTG GAT GCC GAG 432 Thr Asn Leu Ser Ile Gln Asp Lys Thr Ile Glu Glu Leu Asp Ala Glu 140 AAA ACG GTG TTG GAA AAA TCC AAA GCG GGA GCA CAA TCG CGC TTT GAT 480 65 Lys Thr Val Leu Glu Lys Ser Lys Ala Gly Ala Gln Ser Arg Phe Asp

AGC TAC GGC AAA CTG TAC GAT GAG AAT ATC AAC GCC GGT GAA AAC CAA 528

	Ser	Tyr	Gly	Lys	Leu 165	Tyr	Asp	Glu	Asn	Ile 170	Asn	Ala	Gly	Glu	Asn 175	Gln	
5	GCC Ala	ATG Met	ACG Thr	CTA Leu 180	CGA Arg	GCG Ala	TCC Ser	GCC Ala	GCC Ala 185	GGG Gly	CTT Leu	ACC Thr	ACG Thr	GCA Ala 190	GTT Val	CAG Gln	576
10			CGT Arg 195														624
15	GGC Gly	TTT Phe 210	GCC Ala	GGT Gly	GGC Gly	GGC Gly	AGC Ser 215	CGT Arg	TGG Trp	GGG Gly	GCT Ala	ATC Ile 220	GCT Ala	GAG Glu	GCG Ala	ACA Thr	672
13	GGT Gly 225	TAT Tyr	GTG Val	ATG Met	GAA Glu	TTC Phe 230	TCC Ser	GCG Ala	AAT Asn	GTT Val	ATG Met 235	AAC Asn	ACC Thr	GAA Glu	GCG Ala	GAT Asp 240	720
20	AAA Lys	ATT Ile	AGC Ser	CAA Gln	TCT Ser 245	GAA Glu	ACC Thr	TAC Tyr	CGT Arg	CGT Arg 250	CGC Arg	CGT Arg	CAG Gln	GAG Glu	TGG Trp 255	GAG Glu	768
25	ATC Ile	CAG Gln	CGG Arg	AAT Asn 260	AAT Asn	GCC Ala	GAA Glu	GCG Ala	GAA Glu 265	TTG Leu	AAG Lys	CAA Gln	ATC Ile	GAT Asp 270	GCT Ala	CAG Gln	816
30	CTC Leu	AAA Lys	TCA Ser 275	CTC Leu	GCT Ala	GTA Val	CGC Arg	CGC Arg 280	GAA Glu	GCC Ala	GCC Ala	GTA Val	TTG Leu 285	CAG Gln	AAA Lys	ACC Thr	864
35	AGT Ser	CTG Leu 290	AAA Lys	ACC Thr	CAA Gln	CAA Gln	GAA Glu 295	CAG Gln	ACC Thr	CAA Gln	TCT Ser	CAA Gln 300	TTG Leu	GCC Ala	TTC Phe	CTG Leu	912
JJ			AAG Lys														960
40	CTG Leu	GCG Ala	GCG Ala	ATT Ile	TAC Tyr 325	TTC Phe	CAG Gln	TTC Phe	TAC Tyr	GAT Asp 330	TTG Leu	GCC Ala	GTC Val	GCG Ala	CGT Arg 335	TGC Cys	1008
45	CTG Leu	ATG Met	GCA Ala	GAA Glu 340	CAA Gln	GCT Ala	TAC Tyr	CGT Arg	TGG Trp 345	GAA Glu	CTC Leu	AAT Asn	GAT Asp	GAC Asp 350	TCT Ser	GCC Ala	1056
50	CGC Arg	TTC Phe	ATT Ile 355	AAA Lys	CCG Pro	GGC Gly	GCC Ala	TGG Trp 360	CAG Gln	GGA Gly	ACC Thr	TAT Tyr	GCC Ala 365	GGT Gly	CTG Leu	CTT Leu	1104
55	GCA Ala	GGT Gly 370	GAA Glu	ACC Thr	TTG Leu	ATG Met	CTG Leu 375	AGT Ser	CTG Leu	GCA Ala	CAA Gln	ATG Met 380	GAA Glu	GAC Asp	GCT Ala	CAT His	1152
33			CGC Arg														1200
60			GTT Val														1248
65			GAA Glu														1296
70			AAT Asn 435														1344

TCT TTG CAG GCA TCA GTT TCA TTC GCT GAT TTG AAA ATT CGT GAA GAT 1392 Ser Leu Gln Ala Ser Val Ser Phe Ala Asp Leu Lys Ile Arg Glu Asp 455 TAC CCG GCA TCG CTT GGC AAA ATT CGA CGT ATC AAA CAG ATC AGC GTC 1440 Tyr Pro Ala Ser Leu Gly Lys Ile Arg Arg Ile Lys Gln Ile Ser Val ACT TTG CCC GCG CTA CTG GGA CCG TAT CAG GAT GTA CAG GCA ATA TTG 1488 Thr Leu Pro Ala Leu Leu Gly Pro Tyr Gln Asp Val Gln Ala Ile Leu 10 485 490 TCT TAC GGC GAT AAA GCC GGA TTA GCT AAC GGC TGT GAA GCG CTG GCA 1536 Ser Tyr Gly Asp Lys Ala Gly Leu Ala Asn Gly Cys Glu Ala Leu Ala 15 505 500 GTT TCT CAC GGT ATG AAT GAC AGC GGC CAA TTC CAG CTC GAT TTC AAC 1584 Val Ser His Gly Met Asn Asp Ser Gly Gln Phe Gln Leu Asp Phe Asn 520 20 GAT GGC AAA TTC CTG CCA TTC GAA GGC ATC GCC ATT GAT CAA GGC ACG 1632 Asp Gly Lys Phe Leu Pro Phe Glu Gly Ile Ala Ile Asp Gln Gly Thr 25 CTG ACA CTG AGC TTC CCA AAT GCA TCT ATG CCG GAG AAA GGT AAA CAA 1680 Leu Thr Leu Ser Phe Pro Asn Ala Ser Met Pro Glu Lys Gly Lys Gln 550 555 GCC ACT ATG TTA AAA ACC CTG AAC GAT ATC ATT TTG CAT ATT CGC TAC 1728 Ala Thr Met Leu Lys Thr Leu Asn Asp Ile Ile Leu His Ile Arg Tyr 30 ACC ATT AAA TAA 1740 Thr Ile Lys · · · 35 (2) INFORMATION FOR SEQ ID NO:51: (i) SEQUENCE CHARACTERISTICS: 40 (A) LENGTH: 579 amino acids (B) TYPE: amino acids (C) STRANDEDNESS: single (D) TOPOLOGY: linear 45 (ii) MOLECULE TYPE: protein (xi) SEQUENCE DESCRIPTION: SEQ ID NO:51 (TcdAiii): Leu Arg Ser Ala Asn Thr Leu Thr Asp Leu Phe Leu Pro Gln Ile Asn 50 Glu Val Met Met Asn Tyr Trp Gln Thr Leu Ala Gln Arg Val Tyr Asn

55 Leu Arg His Asn Leu Ser Ile Asp Gly Gln Pro Leu Tyr Leu Pro Ile 35 40 45

60

65

Tyr Ala Thr Pro Ala Asp Pro Lys Ala Leu Leu Ser Ala Ala Val Ala 50 60

Thr Ser Gln Gly Gly Gly Lys Leu Pro Glu Ser Phe Met Ser Leu Trp 65 70 75 80

Arg Phe Pro His Met Leu Glu Asn Ala Arg Gly Met Val Ser Gln Leu 85 90 95

Thr Gln Phe Gly Ser Thr Leu Gln Asn Ile Ile Glu Arg Gln Asp Ala 100 105 110

	Glu	Ala	Leu 115	Asn	Ala	Leu	Leu	Gln 120	Asn	Gln	Ala	Ala	Glu 125		İle	Leu
5	Thr	Asn 130	Leu	Ser	Ile	Gln	Asp 135	Lys	Thr	Ile	Glu	Glu 140	Leu	Asp	Ala	Glu
	Lys 145	Thr	Val	Leu	Glu	Lys 150	Ser	Lys	Ala	Gly	Ala 155	Gln	Ser	Arg	Phe	Asp 160
10	Ser	Tyr	Gly	Lys	Leu 165	Tyr	Asp	Glu	Asn	Ile 170	Asn	Ala	Gly	Glu	Asn 175	Gln
15	Ala	Met	Thr	Leu 180	Arg	Ala	Ser	Ala	Ala 185	Gly	Leu	Thr	Thr	Ala 190	Val	Gln
13	Ala	Ser	Arg 195	Leu	Ala	Gly	Ala	Ala 200	Ala	Asp	Leu	Val	Pro 205	Asn	Ile	Phe
20	Gly	Phe 210	Ala	Gly	Gly	Gly	Ser 215	Arg	Trp	Gly	Ala	Ile 220	Ala	Glu	Ala	Thr
	Gly 225	Tyr	Val	Met	Glu	Phe 230	Ser	Ala	Asn	Val	Met 235	Asn	Thr	Glu	Ala	Asp 240
25	Lys	Ile	Ser	Gln	Ser 245	Glu	Thr	Tyr	Arg	Arg 250	Arg	Arg	Gln	Glu	Trp 255	Glu
30	Ile	Gln	Arg	Asn 260	Asn	Ala	Glu	Ala	Glu 265	Leu	Lys	Gln	Ile	Asp 270	Ala	Gln
30	Leu	Lys	Ser 275	Leu	Ala	Val	Arg	Arg 280	Glu	Ala	Ala	Val	Leu 285	Gln	Lys	Thr
35	Ser	Leu 290	Lys	Thr	Gln	Gln	Glu 295	Gln	Thr	Gln	Ser	Gln 300	Leu	Ala	Phe	Leu
	Gln 305	Arg	Lys	Phe	Ser	Asn 310	Gln	Ala	Leu	Tyr	Asn 315	Trp	Leu	Arg	Gly	Arg 320
40	Leu	Ala	Ala	Ile	Tyr 325	Phe	Gln	Phe	Tyr	Asp 330	Leu	Ala	Val	Ala	Arg 335	Cys
<u>4</u> 5	Leu	Met	Ala	Glu 340	Gln	Ala	Tyr	Arg	Trp 345	Glu	Leu	Asn	Asp	Asp 350	Ser	Ala
.0	Arg	Phe	Ile 355	Lys	Pro	Gly	Ala	Trp 360	Gln	Gly	Thr	Tyr	Ala 365	Gly	Leu	Leu
50	Ala	Gly 370	Glu	Thr	Leu	Met	Leu 375	Ser	Leu	Ala	Gln	Met 380	Glu	Asp	Ala	His
	Leu 385	Lys	Arg	Asp	Lys	Arg 390	Ala	Leu	Glu	Val	Glu 395	Arg	Thr	Val	Ser	Leu 400
55	Ala	Glu	Val	Tyr	Ala 405	Gly	Leu	Pro	Lys	Asp 410	Asn	Gly	Pro	Phe	Ser 415	Leu
60	Ala	Gln	Glu	Ile 420	Asp	Lys	Leu	Val	Ser 425	Gln	Gly	Ser	Gly	Ser 430	Ala	Gly
	Ser	Gly	Asn 435	Asn	Asn	Leu	Ala	Phe 440	Gly	Ala	Gly	Thr	Asp 445	Thr	Lys	Thr
65	Ser	Leu 450	Gln	Ala	Ser	Val	Ser 455	Phe	Ala	Asp	Leu	Lys 460	Ile	Arg	Glu	Ąsp
	Tyr 465	Pro	-Ala	Ser	Leu	Gly 470	Lys	Ile	Arg	Arg	Ile 475	Lys	Gln	Ile	Ser	Val 480
70	Thr	Leu	Pro	Ala	Leu 485	Leu	Gly	Pro	Tyr	Gln 490	Asp	Val	Gln	Alā	Ile 495	Leu

Ser Tyr Gly Asp Lys Ala Gly Leu Ala Asn Gly Cys Glu Ala Leu Ala 500 505 Val Ser His Gly Met Asn Asp Ser Gly Gln Phe Gln Leu Asp Phe Asn Asp Gly Lys Phe Leu Pro Phe Glu Gly Ile Ala Ile Asp Gln Gly Thr 10 Leu Thr Leu Ser Phe Pro Asn Ala Ser Met Pro Glu Lys Gly Lys Gln 550 Ala Thr Met Leu Lys Thr Leu Asn Asp Ile Ile Leu His Ile Arg Tyr 15 Thr Ile Lys ••• 579 20 (2) INFORMATION FOR SEQ ID NO:52: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 5532 base pairs 25 (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic) 30 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:52 (tcbAii coding region): TTT ATA CAA GGT TAT AGT GAT CTG TTT GGT AAT CGT GCT GAT AAC TAT 48 Phe Ile Gln Gly Tyr Ser Asp Leu Phe Gly Asn Arg Ala Asp Asn Tyr 35 GCC GCG CCG GGC TCG GTT GCA TCG ATG TTC TCA CCG GCG GCT TAT TTG 96 Ala Ala Pro Gly Ser Val Ala Ser Met Phe Ser Pro Ala Ala Tyr Leu 20 25 40 ACG..GAA TTG TAC CGT GAA GCC AAA AAC TTG CAT GAC AGC AGC TCA ATT 144 Thr Glu Leu Tyr Arg Glu Ala Lys Asn Leu His Asp Ser Ser Ser Ile 45 TAT TAC CTA GAT AAA CGT CGC CCG GAT TTA GCA AGC TTA ATG CTC AGC 192 Tyr Tyr Leu Asp Lys Arg Arg Pro Asp Leu Ala Ser Leu Met Leu Ser 55 50 CAG AAA AAT ATG GAT GAG GAA ATT TCA ACG CTG GCT CTC TCT AAT GAA 240 50 Gln Lys Asn Met Asp Glu Glu Ile Ser Thr Leu Ala Leu Ser Asn Glu TTG TGC CTT GCC GGG ATC GAA ACA AAA ACA GGA AAA TCA CAA GAT GAA 288 Leu Cys Leu Ala Gly Ile Glu Thr Lys Thr Gly Lys Ser Gln Asp Glu 55 90 GTG ATG GAT ATG TTG TCA ACT TAT CGT TTA AGT GGA GAG ACA CCT TAT 336 Val Met Asp Met Leu Ser Thr Tyr Arg Leu Ser Gly Glu Thr Pro Tyr 100 60 CAT CAC GCT TAT GAA ACT GTT CGT GAA ATC GTT CAT GAA CGT GAT CCA 384 His His Ala Tyr Glu Thr Val Arg Glu Ile Val His Glu Arg Asp Pro 115 GGA TTT CGT CAT TTG TCA CAG GCA CCC ATT GTT GCT GCT AAG CTC GAT 432 Gly Phe Arg His Leu Ser Gln Ala Pro Ile Val Ala Ala Lys Leu Asp

CCT GTG ACT TTG TTG GGT ATT AGC TCC CAT ATT TCG CCA GAA CTG TAT 480

	Pro 145	Val	Thr	Leu	Leu	Gly 150	Ile	Ser	Ser	His	.Ile 155	Ser	Pro	Glu	Leu	Tyr 160	
5	AAC Asn	TTG Leu	CTG Leu	ATT Ile	GAG Glu 165	GAG Glu	ATC Ile	CCG Pro	GAA Glu	AAA Lys 170	GAT Asp	GAA Glu	GCC Ala	GCG Ala	CTT Leu 175	GAT Asp	528
10			TAT Tyr														576
			AGT Ser 195														624
15			GTG Val														672
20			ATT Ile														720
25			CGA Arg														768
30			TAT Tyr														816
			AGT Ser 275														864
35			GAT Asp														912
40			CAA Gln														960
45			ATA Ile														1008
50			GCC Ala														1056
	TTC Phe	CTG Leu	CTT Leu 355	AAA Lys	ATG Met	AAT Asn	AAG Lys	GCT Ala 360	ATT Ile	CGG Arg	TTG Leu	CTC Leu	AAA Lys 365	GCT Ala	ACC Thr	GGC Gly	1104
55			TTT Phe														1152
60	AAA Lys 385	TCC Ser	ATC Ile	ACG Thr	GTT Val	GAG Glu 390	GTA Val	TTA Leu	AAC Asn	AAG Lys	GTT Val 395	TAT Tyr	CGG Arg	GTA Val	AAA Lys	TTC Phe 400	1200
65			GAT Asp														1248
70			AAT Asn														1296

		TTT Phe							1344
5		AAC Asn							1392
10		ACC Thr							1440
15		AAC Asn							1488
20		GAC Asp 500							1536
20		GTT Val							1584
25		ATT Ile							1632
30		ACC Thr						Leu	1680
35		CAA Gln							1728
40		ACC Thr 580							1776
10		ACG Thr							1824
45		GAA Glu							1872
50		TTG Leu						Leu	1920
55 _		ATT Ile							1968
60		ACA Thr 660							2016
		CAA Gln							2064
65		TCA Ser							2112
70		CTG Leu							2160

r	TTT Phe	CAT His	ACC Thr	TGG Trp	GTT Val 725	AAT Asn	GGC Gly	TTG Leu	GGG Gly	CAA Gln 730	CAT His	GCC Ala	TCC Ser	TTG Leu	ATA Ile 735	TTG Leu	2208
5	GCG Ala	GCG Ala	TTG Leu	AAA Lys 740	GAC Asp	GGA Gly	GCC Ala	TTG Leu	ACA Thr 745	GTT Val	ACC Thr	GAT Asp	GTA Val	GCA Ala 750	CAA Gln	GCT Ala	2256
10				GAG Glu													2304
15				ACA Thr													2352
20				CAG Gln													2400
25				ATG Met													2448
23				GCG Ala 820													2496
30				CTG Leu													2544
35				GTT Val													2592
40				TAT Tyr													2640
45				ATT Ile													2688
13				AAC Asn 900													2736
50	CGT Arg	CAG Gln	TTC Phe 915	TTC Phe	ACT Thr	GAC Asp	TGG Trp	GAA Glu 920	CGT Arg	TAC Tyr	AAT Asn	AAA Lys	CGT Arg 925	TAC Tyr	AGT Ser	ACT Thr	2784
55				GTC Val													2832
60	CCC Pro 945	ACT Thr	CAG Gln	CGC Arg	ATT Ile	GGG Gly 950	CAA Gln	ACC Thr	AAA Lys	ATG Met	ATG Met 955	GAT Asp	GCG Ala	CTG Leu	TTG Leu	CAA Gln 960	2880
65				CAG Gln													2928
00	AAA Lys	ACT Thr	TAT Tyr	TTG Leu 980	ACC Thr	AGC Ser	TTT Phe	GAG Glu	CAG Gln 985	GTA Val	GCA Ala	AAT Asn	CTG Leu	AAA Lys 990	GTA Val	ATT Ile	2976
70				CAC His													3024

	995	5	1000		1005	
5		C GAC CAA GCA e Asp Gln Ala			Trp Arg Ser	
1.0	GAT CAC AGG Asp His Ser 1025	C AAA TGT GAA r Lys Cys Glu 1030	Asn Gly Lys	TTT GCC GCT Phe Ala Ala 1035	AAT GCT TGG Asn Ala Trp	GGT 3120 Gly 1040
10		r AAA ATT ACC n Lys Ile Thr 1045				Ile
15		r GTT TAT ATG l Val Tyr Met 1060		Tyr Leu Leu		
20		G AAA AGT GAT s Lys Ser Asp 75				
25		G GCT CAT ATT			Asn Thr Pro	
30		F GTG ACA GAA o Val Thr Glu 1110	Lys Val Lys			
30	GCT GCT GAM	A TCT TTA GGG u Ser Leu Gly 1125	TTG TAT TGT Leu Tyr Cys	ACT GGT TAT Thr Gly Tyr 1130	CAA GGG GAA Gln Gly Glu 1135	Asp
35		A GTT ATG TTC u Val Met Phe 1140		Gln Ser Ser		
40		r AAT GCG CCG n Asn Ala Pro 55				
45		C AAT ATG ACG p Asn Met Thr			Tyr Trp Asn	
50		G CAA TTT GAT o Gln Phe Asp 1190	Thr Val Met			
		C ATA ACC AGA 1 Ile Thr Arg 1205				Tyr
55		T TCC TCT GTG o Ser Ser Val 1220		Ser Asn Tyr		
60		A ACC ATG CTT u Thr Met Leu 35				
65		G GCA GAA GAT a Ala Glu Asp			Met Ala Leu	
70		T AAT GGA TAT s Asn Gly Tyr 1270	Ala Gly Thr			
. •	ATG AAA CA	A TAC GCT TCA	TTA GGT GAT	AAA TTT ATA	ATT TAT GAT	TCA 3888

بالمهامل والمعطور والمام والمعارض

Met Lys Gln Tyr Ala Ser Leu Gly Asp Lys Phe Ile Ile Tyr Asp Ser TCA TTT GAT GAT GCA AAC CGT TTT AAT CTG GTG CCA TTG TTT AAA TTC 3936 Ser Phe Asp Asp Ala Asn Arg Phe Asn Leu Val Pro Leu Phe Lys Phe 1300 1305 --GGA AAA GAC GAG AAC TCA GAT GAT AGT ATT TGT ATA TAT AAT GAA AAC 3984 Gly Lys Asp Glu Asn Ser Asp Asp Ser Ile Cys Ile Tyr Asn Glu Asn 10 CCT TCC TCT GAA GAT AAG AAG TGG TAT TTT TCT TCG AAA GAT GAC AAT 4032 Pro Ser Ser Glu Asp Lys Lys Trp Tyr Phe Ser Ser Lys Asp Asp Asn 1335 1340 15 AAA ACA GCG GAT TAT AAT GGT GGA ACT CAA TGT ATA GAT GCT GGA ACC 4080 Lys Thr Ala Asp Tyr Asn Gly Gly Thr Gln Cys Ile Asp Ala Gly Thr 1350 1355 20 AGT AAC AAA GAT TTT TAT TAT AAT CTC CAG GAG ATT GAA GTA ATT AGT 4128 Ser Asn Lys Asp Phe Tyr Tyr Asn Leu Gln Glu Ile Glu Val Ile Ser 1365 1370 GTT ACT GGT GGG TAT TGG TCG AGT TAT AAA ATA TCC AAC CCG ATT AAT 4176 Val Thr Gly Gly Tyr Trp Ser Ser Tyr Lys Ile Ser Asn Pro Ile Asn 25 1380 1385 1390 ATC AAT ACG GGC ATT GAT AGT GCT AAA GTA AAA GTC ACC GTA AAA GCG 4224 Ile Asn Thr Gly Ile Asp Ser Ala Lys Val Lys Val Thr Val Lys Ala 30 1395 1400 GGT GGT GAC GAT CAA ATC TTT ACT GCT GAT AAT AGT ACC TAT GTT CCT 4272 Gly Gly Asp Asp Gln Ile Phe Thr Ala Asp Asn Ser Thr Tyr Val Pro 1410 35 CAG CAA CCG GCA CCC AGT TTT GAG GAG ATG ATT TAT CAG TTC AAT AAC 4320 Gln Gln Pro Ala Pro Ser Phe Glu Glu Met Ile Tyr Gln Phe Asn Asn 1430 1435 CTG ACA ATA GAT TGT AAG AAT TTA AAT TTC ATC GAC AAT CAG GCA CAT 4368 40 Leu Thr Ile Asp Cys Lys Asn Leu Asn Phe Ile Asp Asn Gln Ala His 1445 1450 ATT GAG ATT GAT TTC ACC GCT ACG GCA CAA GAT GGC CGA TTC TTG GGT 4416 45 Ile Glu Ile Asp Phe Thr Ala Thr Ala Gln Asp Gly Arg Phe Leu Gly GCA GAA ACT TTT ATT ATC CCG GTA ACT AAA AAA GTT CTC GGT ACT GAG 4464 Ala Giu Thr Phe Ile Ile Pro Val Thr Lys Lys Val Leu Gly Thr Glu 50 1475 1480 1485 ___ AAC GTG ATT GCG TTA TAT AGC GAA AAT AAC GGT GTT CAA TAT ATG CAA 4512 Asn Val Ile Ala Leu Tyr Ser Glu Asn Asn Gly Val Gln Tyr Met Gln 1495 55 ATT GGC GCA TAT CGT ACC CGT TTG AAT ACG TTA TTC GCT CAA CAG TTG 4560 Ile Gly Ala Tyr Arg Thr Arg Leu Asn Thr Leu Phe Ala Gln Gln Leu 1510 60 GTT AGC CGT GCT AAT CGT GGC ATT GAT GCA GTG CTC AGT ATG GAA ACT 4608 Val Ser Arg Ala Asn Arg Gly Ile Asp Ala Val Leu Ser Met Glu Thr 1525 1530 CAG AAT ATT CAG GAA CCG CAA TTA GGA GCG GGC ACA TAT GTG CAG CTT 4656 65 Gln Asn Ile Gln Glu Pro Gln Leu Gly Ala Gly Thr Tyr Val Gln Leu GTG TTG GAT AAA TAT GAT GAG TCT ATT CAT GGC ACT AAT AAA AGC TTT 4704 Val Leu Asp Lys Tyr Asp Glu Ser Ile His Gly Thr Asn Lys Ser Phe 70 1560

	GCT ATT GA Ala Ile Gl 1570	A TAT GTT G u Tyr Val A	AT ATA TTT sp Ile Phe 1575	AAA GAG AAC Lys Glu Asn	GAT AGT Asp Ser 1580	TTT GTG Phe Val	ATT 4752 Ile
5		y Glu Leu S		AGT CAA ACT Ser Gln Thr 1595	Val Val		
10				GGA AAT AAG Gly Asn Lys 1610			Val
15	CGT GCT AA Arg Ala Ly	A TAC CAA A s Tyr Gln L 1620	AG GAA ACG ys Glu Thr	ACT GAT AAG Thr Asp Lys 1625	Ile Leu	TTC GAC Phe Asp 1630	CGT 4896 Arg
20	ACT GAT GA Thr Asp Gl 16	u Lys Asp P:	CG CAC GGT ro His Gly 1640	TGG TTT CTC Trp Phe Leu	AGC GAC Ser Asp 1	GAT CAC Asp His	AAG 4944 Lys
20	ACC TTT AG Thr Phe Se 1650	T GGT CTC TO r Gly Leu So	CT TCC GCA er Ser Ala 1655	CAG GCA TTA Gln Ala Leu	AAG AAC (Lys Asn 1 1660	GAC AGT Asp Ser	GAA 4992 Glu
25	CCG ATG GA Pro Met As 1665	p Phe Ser G	GC GCC AAT ly Ala Asn 670	GCT CTC TAT Ala Leu Tyr 1675	Phe Trp	GAA CTG Glu Leu	TTC 5040 Phe 1680
30	TAT TAC AC	G CCG ATG A' r Pro Met Me 1685	TG ATG GCT et Met Ala	CAT CGT TTG His Arg Leu 1690	TTG CAG (Leu Gln (GAA CAG Glu Gln 1695	Asn
35			is Trp Phe	CGT TAT GTC Arg Tyr Val 1705	Trp Ser		
40		l Asp Gly L		ATC TAC CAC Ile Tyr His			
40	CTG GAA GA Leu Glu Gl 1730	A GAC ACC AG u Asp Thr So	GT TGG AAT er Trp Asn 1735	GCA CAA CAA Ala Gln Gln	CTG GAC S Leu Asp S 1740	TCC ACC Ser Thr	GAT 5232 Asp
45		a Val Ala G		CCG ATG CAC Pro Met His 1755	Tyr Lys V		
50				ATG GCC CGT Met Ala Arg 1770			Tyr
55	CGC CAG TT. Arg Gln Le	A GAG CGT G u Glu Arg A 1780	AT ACG TTG sp Thr Leu	GCT GAA GCT Ala Glu Ala 1785	Lys Met '	IGG TAT Irp Tyr 1790	ACA 5376 Thr
60		u-Asn Leu L		GAG CCA CAA Glu Pro Gln			
	ACT TGG GC Thr Trp Al 1810	T AAT CCA A a Asn Pro T	CA TTG GGT hr Leu Gly 1815	AAT GCT GCT Asn Ala Ala	TCA AAA A Ser Lys ' 1820	ACC ACA Thr Thr	CAG 5472 Gln
65	CAG GTT CG Gln Val Ar 1825	g Gln Gln V	IG CTT ACC al Leu Thr 830	CAG TTG CGT Gln Leu Arg 1835	Leu Asn	AGC AGG Ser Arg	GTA 5520 Val 1840
70	AAA ACC CC Lys Thr Pr		2				

Control of the Samuel Mark Control of the

```
(2) INFORMATION FOR SEQ ID NO:53:
 5
            (i) SEQUENCE CHARACTERISTICS:
                       LENGTH: 1844 amino acids
                  (A)
                  (B)
                       TYPE: amino acids
                  (C)
                       STRANDEDNESS: single
                       TOPOLOGY: linear
                  (D)
10
         (ii) MOLECULE TYPE: protein
          (xi) SEQUENCE DESCRIPTION: SEQ ID NO:53 (TcbAii):
             Features From
                                   To
                                              Description
                          1
                                   1844
             Peptide
                                              TcbAii peptide
                                  11
15
             Fragment
                           1
                                               (SEQ ID NO:1)
                           978
                                   990
             Fragment
                                               (SEQ ID NO:23)
                                   1401
                           1387
             Fragment
                                               (SEQ ID NO:22)
                           1484
                                   1505
             Fragment
                                               (SEQ ID NO:24)
             Fragment
                           1527
                                   1552
                                               (SEQ ID NO:21)
20
     Phe Ile Gln Gly Tyr Ser Asp Leu Phe Gly Asn Arg Ala Asp Asn Tyr
     Ala Ala Pro Gly Ser Val Ala Ser Met Phe Ser Pro Ala Ala Tyr Leu 20 25 30
25
     Thr Glu Leu Tyr Arg Glu Ala Lys Asn Leu His Asp Ser Ser Ser Ile 35 \hspace{1cm} 40 \hspace{1cm} 45
     Tyr Tyr Leu Asp Lys Arg Arg Pro Asp Leu Ala Ser Leu Met Leu Ser 50 55 60
30
     Gln Lys Asn Met Asp Glu Glu Ile Ser Thr Leu Ala Leu Ser Asn Glu 65 70 75 80
35
     Leu Cys Leu Ala Gly Ile Glu Thr Lys Thr Gly Lys Ser Gln Asp Glu 85 90 95
     Val Met Asp Met Leu Ser Thr Tyr Arg Leu Ser Gly Glu Thr Pro Tyr
40
     His His Ala Tyr Glu Thr Val Arg Glu Ile Val His Glu Arg Asp Pro
45
     Gly Phe Arg His Leu Ser Gln Ala Pro Ile Val Ala Ala Lys Leu Asp
      Pro Val Thr Leu Leu Gly Ile Ser Ser His Ile Ser Pro Glu Leu Tyr
50
     Asn Leu Leu Ile Glu Glu Ile Pro Glu Lys Asp Glu Ala Ala Leu Asp 165 170 175
     Thr Leu Tyr Lys Thr Asn Phe Gly Asp Ile Thr Thr Ala Gln Leu Met
55
                                        185
                   180
      Ser Pro Ser Tyr Leu Ala Arg Tyr Tyr Gly Val Ser Pro Glu Asp Ile
195 200 205
60
      Ala Tyr Val Thr Thr Ser Leu Ser His Val Gly Tyr Ser Ser Asp Ile
      Leu Val Ile Pro Leu Val Asp Gly Val Gly Lys Met Glu Val Val Arg 225 230 235 240
65
      Val Thr Arg Thr Pro Ser Asp Asn Tyr Thr Ser Gln Thr Asn Tyr Ile
```

	Glu	Leu	Tyr	Pro 260	Gln	Gly	Gly	Asp	Asn 265	Tyr	. Leu	Ile	Lys	Tyr 270	Asn	Leu
5	Ser	Asn	Ser 275	Phe	Gly	Leu	Asp	Asp 280	Phe	Tyr	Leu	Gln	Tyr 285	Lys	Asp	Gly
	Ser	Ala 290	Asp	Trp	Thr	Glu	Ile 295	Ala	His	Asn	Pro	Tyr 300	Pro	Asp	Met	Val
10	11e 305	Asn	Gln	Lys	Tyr	Glu 310	Ser	Gln	Ala	Thr	Ile 315	Lys	Arg	Ser	Asp	Ser 320
15	Asp	Asn	Ile	Leu	Ser 325	Ile	Gly	Leu	Gln	Arg 330	Trp	His	Ser	Gly	Ser 335	Tyr
	Asn	Phe	Ala	Ala 340	Ala	Asn	Phe	Lys	Ile 345	Asp	Gln	Tyr	Ser	Pro 350	Lys	Ala
20	Phe	Leu	Leu 355	Lys	Met	Asn	Lys	Ala 360	Ile	Arg	Leu	Leu	Lys 365	Ala	Thr	Gly
	Leu	Ser 370	Phe	Ala	Thr	Leu	Glu 375	Arg	Ile	Val	Asp	Ser 380	Val	Asn	Ser	Thr
25	Lys 385	Ser	Ile	Thr	Val	Glu 390	Val	Leu	Asn	Lys	Val 395	Tyr	Arg	Val	Lys	Phe 400
30	Tyr	Ile	Asp	Arg	Tyr 405	Gly	Ile	Ser	Glu	Glu 410	Thr	Ala	Ala	Ile	Leu 415	Ala
	Asn	Ile	Asn	Ile 420	Ser -	Gln	Gln	Ala	Val 425	Gly	Asn	Gln	Leu	Ser 430	Gln	Phe
35	Glu	Gln	Leu 435	Phe	Asn	His	Pro	Pro 440	Leu	Asn	Gly	Ile	Arg 445	Tyr	Glu	Ile
	Ser	Glu 450	Asp	Asn	Ser	Lys	His 455	Leu	Pro	Asn	Pro	Asp 460	Leu	Asn	Leu	Lys
40	Pro 465	Asp	Ser	Thr	Gly	Asp 470	Asp	Gln	Arg	Lys	Ala 475	Val	Leu	Lys	Arg	Ala 480
45	Phe	Gln	Val	Asn	Ala 485	Ser	Glu	Leu	Tyr	Gln 490	Met	Leu	Leu	Ile	Thr 495	Asp
	Arg	Lys	Glu	Asp 500	Gly	Val	Ile	Lys	Asn 505	Asn	Leu	Glu	Asn	Leu 510	Ser	Asp
50	Leu	Tyr	Leu 515	Val	Ser	Leu	Leu	Ala 520	Gln	Ile	His	Asn	Leu 525	Thr	Ile	Ala
	Glu	Leu 530	Asn	Ile	Leu	Leu	Val 535	Ile	Cys	Gly	Tyr	Gly 540	Asp	Thr	Asn	Ile
55	Tyr 545	Gln	Ile	Thr	Asp	Asp 550	Asn	Leu	Ala	Lys	Ile 555	Val	Glu	Thr		Leu 60
60	Trp	Ile	Thr	Gln	Trp 565	Leu	Lys	Thr	Gln	Lys 570	Trp	Thr	Val	Thr	Asp 575	Leu
	Phe	Leu	Met	Thr 580	Thr	Ala	Thr	Tyr	Ser 585	Thr	Thr	Leu	Thr	Pro 590	Glu	Ile
65	Ser	Asn	Leu 595	Thr	Ala	Thr	Leu	Ser 600	Ser	Thr	Leu	His	Gly 605	Lys	Glu	Ser
	Leu	Ile 610	Gly	Glu	Asp	Leu	Lys 615	Arg	Ala	Met	Ala	Pro 620	Cys	Phe	Thr	Ser
70	Ala 625	Leu	His	Leu	Thr	Ser 630	Gln	Glu	Val	Ala	Tyr 635	Asp	Leu	Leu	Leu	Trp 640

	Ile	Asp	Gln	Ile	Gln 645	Pro	Ala	Gln	Ile	Thr 650	Val	Asp	Gly	Phe	Trp 655	Glu
5	Glu	Val	Gln	Thr 660	Thr	Pro	Thr	Ser	Leu 665	Lys	Val	Ile	Thr	Phe 670	Ala	Gln
10	Val	Leu	Ala 675	Gln	Leu	Ser	Leu	Ile 680	Tyr	Arg	Arg	Ile	Gly 685	Leu	Ser	Glu
10	Thr	Glu 690	Leu	Ser	Leu	Ile	Val 695	Thr	Gln	Ser -	Ser —	Leu 700	Leu	Val	Ala	Gly
15	Lys 705	Ser	Ile	Leu	Asp	His 710	Gly	Leu	Leu	Thr	Leu 715	Met	Ala	Leu	Glu	Gly 720
	Phe	His	Thr	Trp	Val 725	Asn	Gly	Leu	Gly	Gln 730	His	Ala	Ser	Leu	Ile 735	Leu
20	Ala	Ala	Leu	Lys 740	Asp	Gly	Ala	Leu	Thr 745	Val	Thr	Asp	Val	Ala 750	Gln	Ala
25	Met	Asn	Lys 755	Glu	Glu	Ser	Leu	Leu 760	Gln	Met	Ala	Ala	Asn 765	Gln	Val	Glu
23	Lys	Asp 770	Leu	Thr	Lys	Leu	Thr 775	Ser	Trp	Thr	Gln	Ile 780	Asp	Ala	Ile	Leu
30	Gln 785	Trp	Leu	Gln	Met	Ser 790	Ser	Ala	Leu	Ala	Val 795	Ser	Pro	Leu	Asp	Leu 800
	Ala	Gly	Met	Met	Ala 805	Leu	Lys	Tyr	Gly	Ile 810	Asp	His	Asn	Tyr	Ala 815	Ala
35	Trp	Gln	Ala	Ala 820	Ala	Ala	Ala	Leu	Met 825	Ala	Asp	His	Ala	Asn 830	Gln	Ala
40	Gln	Lys	Lys 835	Leu	Asp	Glu	Thr	Phe 840	Ser	Lys	Ala	Leu	Cys 845	Asn	Tyr	Tyr
40	Ile	Asn 850	Ala	Val	Val	Asp	Ser 855	Ala	Ala	Gly	Val	Arg 860	Asp	Arg	Asn	Gly
45	Leu 865	Tyr	Thr	Tyr	Leu	Leu 870	Ile	Asp	Asn	Gln	Val 875	Ser	Ala	Asp	Val	11e 880
	Thr	Ser	Arg	Ile	Ala 885	Glu	Ala	Ile	Ala	Gly 890	Ile	Gln	Leu	Tyr	Val 895	Asn
50	Arg	Ala	Leu	Asn 900	Arg	Asp	Glu	Gly	Gln 905	Leu	Ala	Ser	Asp	Val 910	Ser	Thr
55	Arg	Gln	Phe 915	Phe	Thr	Asp	Trp	Glu 920	Arg	Tyr	Asn	Lys	Arg 925	Tyr	Ser	Thr
	Trp	Ala 930	Gly	Val	Ser	Glu	Leu 935	Val	Tyr	Tyr	Pro	Glu 940	Asn	Tyr	Val	Asp
60	Pro 945	Thr	Gln	Arg	Ile	Gly 950	Gln	Thr	Lys	Met	Met 955	Asp	Ala	Leu	Leu	Gln 960
	Ser	Ile	Asn	Gln	Ser 965	Gln	Leu	Asn	Ala	Asp 970	Thr	Val	Glu	Asp	Ala 975	Phe
65	Lys	Thr	Tyr	Leu 980	Thr	Ser	Phe	Glu	Gln 985	Val	Ala	Asn	Leu	Lys 990	Val	Ile
70	Ser	Ala	Tyr 995	His	Asp	Asn	Val	Asn 1000		Asp	Gln	Gly	Leu 1005		Tyr	Phe
. •	Ile	Gly	Ile	qzA	Gln	Ala	Ala	Pro	Gly	Thr	Tyr	Tyr	Trp	Arg	Ser	Val

		1010)				1015	5		•		1020)			
5	Asp 1025		Ser	Lys	Cys	Glu 1030		Gly	Lys	Phe	Ala 1035		Asn	Ala	Trp	Gly 1040
5	Glu	Trp	Asn	Lys	Ile 1045		Cys	Ala	Val	Asn 1050		Trp	Lys	Asn	Ile 1055	
10	Arg	Pro	Val	Val 1060		Met	Ser	Arg	Leu 1065		Leu	Leu	Trp	Leu 1070		Gln
	Gln	Ser	Lys 1075	_	Ser	Asp	Asp	Gly 1080		Thr	Thr	Ile	Tyr 1085		Tyr	Asn
15	Leu	Lys 1090	Leu)	Ala	His	Ile	Arg 1095		Asp	Gly	Ser	Trp 1100		Thr	Pro	Phe
20	Thr 1105		Asp	Val	Thr	Glu 1110		Val	Lys	Asn	Tyr 1115		Ser	Ser		Asp 1120
20	Ala	Ala	Glu		Leu 1125		Leu	Tyr	Cys	Thr 1130		Tyr	Gln	Gly	Glu 1135	
25	Thr	Leu	Leu	Val 1140		Phe	Tyr	Ser	Met 1145		Ser	Ser	Tyr	Ser 1150		Tyr
	Thr	Asp	Asn 1155		Ala	Pro	Val	Thr 1160		Leu	Tyr	Ile	Phe 1165		Asp	Met
30	Ser	Ser 1170	Asp)	Asn	Met	Thr	Asn 1175		Gln	Ala	Thr	Asn 1180		Trp	Asn	Asn
35	Ser 1185		Pro	Gln	Phe	Asp 1190		Val	Met	Ala	Asp 1195		Asp	Ser	Asp	Asn 1200
	Lys	Lys	Val	Ile	Thr 1205	_	Arg	Val	Asn	Asn 1210	_	Tyr	Ala	Glu	Asp 1215	-
40	Glu	Ile	Pro	Ser 1220		Val	Thr	Ser	Asn 1225		Asn	Tyr	Ser	Trp 1230		Asp
	His	Ser	Leu 1235		Met	Leu	Tyr	Gly 1240		Ser	Val	Pro	Asn 1245		Thr	Phe
45	Glu	Ser 1250	Ala)	Ala	Glu	Asp	Leu 1255		Leu	Ser	Thr	Asn 1260		Ala	Leu	Ser
50	Ile 1265		His			Tyr 1270										Leu 1280
	Met	Lys	Gln	Tyr	Ala 1285		Leu	Gly	Asp	Lys 1290		Ile	Ile	Tyr	Asp 1295	
55	Ser	Phe	Asp	Asp 1300		Asn	Arg	Phe	Asn 1305		Val	Pro	Leu	Phe 1310		Phe
	Gly	Lys	Asp 1315		Asn	Ser	Asp	Asp 1320		Ile	Cys	Ile	Tyr 1325		Glu	Asn
60	Pro	Ser 1330	Ser O	Glu	Asp	Lys	Lys 1335		Tyr	Phe	Ser	Ser 1340		Asp	Asp	Asn
65	Lys 1345		Ala	Asp	Tyr	Asn 1350		Gly	Thr	Gln	Cys 1355		Asp	Ala	Gly	Thr 1360
	Ser	Asn	Lys	Asp	Phe 1369		Tyr	Asn	Leu	Gln 1370		Ile	Glu	Val	Ile 1375	
70	Val	Thr	Gly	Gly 138		Trp	Ser	Ser	Tyr 1385		Ile	Ser	Asn	Pro 1390		Asn

 $\mathcal{F}_{\mathrm{start}} = \mathbb{E}_{\mathrm{start}} \left(\mathbb{E}_{\mathrm{start}} \left(\mathbb{E}_{\mathrm{start}} \right) \right) = \mathbb{E}_{\mathrm{start}} \left(\mathbb{E}_{\mathrm{start}} \right) = \mathbb{E}_{\mathrm{start}} \left(\mathbb{E}_{\mathrm{start}} \right)$

	Ile	Asn	Thr 1395		Ile	Asp	Ser	Ala 1400		Val.	Lys	Val	Thr 1405		Lys	Ala
5	Gly	Gly 1410	-	Asp	Gln	Ile	Phe 1415	Thr	Ala	Asp	Asn	Ser 1420		Tyr	Val	Pro
	Gln 1425		Pro	Ala	Pro	Ser 1430		Glu	Glu	Met	Ile 1435		Gln	Phe	Asn	Asn 1440
10	Leu	Thr	Ile	Asp	Cys 1445		Asn	Leu	Asn	Phe 1450		Asp	Asn	Gln	Ala 1455	
15	Ile	Glu	Ile	Asp 1460		Thr	Ala	Thr	Ala 1465		Asp	Gly	Arg	Phe 1470		Gly
13	Ala	Glu	Thr 1475		Ile	Ile	Pro	Val 1480		Lys	Lys	Val	Leu 1485	-	Thr	Glu
20	Asn	Val 1490		Ala	Leu	Tyr	Ser 1495	Glu	Asn	Asn	Gly	Val 1500		Tyr	Met	Gln
	Ile 1505		Ala	Tyr	Arg	Thr 1510		Leu	Asn	Thr	Leu 1515		Ala	Gln	Gln	Leu 1520
25	Val	Ser	Arg	Ala	Asn 1525		Gly	Ile	Asp	Ala 1530		Leu	Ser	Met	Glu 1535	
30	Gln	Asn	Ile	Gln 1540		Pro	Gln	Leu	Gly 1545		Gly	Thr	Tyr	Val 1550		Leu
30	Val	Leu	Asp 1555		Tyr	Asp	Glu	Ser 1560		His	Gly	Thr	Asn 1565		Ser	Phe
35	Ala	Ile 1570		Tyr	Val	Asp	Ile 1575	Phe	Lys	Glu	Asn	Asp 1580		Phe	Val	Ile
	Tyr 1585		Gly	Glu	Leu	Ser 1590		Thr	Ser	Gln	Thr 1595		Val	Lys	Val	Phe 1600
40	Leu	Ser	Tyr	Phe	Ile 1605		Ala	Thr	Gly	Asn 1610		Asn	His	Leu	Trp 1615	
45	Arg	Ala	Lys	Tyr 1620		Lys	Glu	Thr	Thr 1625		Lys	Ile	Leu	Phe 1630		Arg
15	Thr	Asp	Glu 1635		Asp	Pro	His	Gly 1640	Trp	Phe	Leu	Ser	Asp 1645		His	Lys
50	Thr	Phe 1650	Ser	Gly	Leu	Ser	Ser 1655	Ala	Gln	Ala	Leu	Lys 1660		Asp	Ser	Glu
	Pro 1665		Asp	Phe	Ser	Gly 1670		Asn	Ala	Leu	Tyr 1675	Phe	Trp	Glu	Leu	Phe 1680
55	Tyr	Tyr	Thr	Pro	Met 1685		Met	Ala	His	Arg 1690		Leu	Gln	Glu	Gln 1695	
60	Phe	Asp	Ala	Ala 1700		His	Trp	Phe	Arg 1705		Val	Trp	Ser	Pro 1710		Gly
	Tyr	Ile	Val 1715	Asp	Gly	Lys	Ile	Ala 1720	Ile	Tyr	His	Trp	Asn 1725		Arg	Pro
65	Leu	Glu 1730		Asp	Thr	Ser	Trp 1735	Asn	Ala	Gln	Gln	Leu 1740		Ser	Thr	Asp
	Pro 1745		Ala	Val	Ala	Gln 1750	Asp	Asp	Pro	Met	His 1755		Lys	Val	Ala	Thr 1760
70	Phe	Met	Ala	Thr	Leu 1765	Asp	Leu	Leu	Met	Ala 1770		Gly	Asp	Ala	Ala 1775	

Arg Gln Leu Glu Arg Asp Thr Leu Ala Glu Ala Lys Met Trp Tyr Thr 1780 1785 1790

- 5 Gln Ala Leu Asn Leu Leu Gly Asp Glu Pro Gln Val Met Leu Ser Thr 1795 1800 1805
- Thr Trp Ala Asn Pro Thr Leu Gly Asn Ala Ala Ser Lys Thr Thr Gln 1810 1815 1820
- Gln Val Arg Gln Gln Val Leu Thr Gln Leu Arg Leu Asn Ser Arg Val 1825 1830 1835 1840
- Lys Thr Pro Leu 15 1844

45

- (2) INFORMATION FOR SEQ ID NO:54:
- 20 (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1722 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- 25 (ii) MOLECULE TYPE: DNA (genomic)
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:54 ($tcbA_{ii}$ coding region):
- 30 CTA GGA ACA GCC AAT TCC CTG ACC GCT TTA TTC CTG CCG CAG GAA AAT 48
 Leu Gly Thr Ala Asn Ser Leu Thr Ala Leu Phe Leu Pro Gln Glu Asn
 1 5 10
- AGC AAG CTC AAA GGC TAC TGG CGG ACA CTG GCG CAG CGT ATG TTT AAT 96
 35 Ser Lys Leu Lys Gly Tyr Trp Arg Thr Leu Ala Gln Arg Met Phe Asn
 20 25 30
- TTA CGT CAT AAT CTG TCG ATT GAC GGC CAG CCG CTC TCC TTG CCG CTG 144
 Leu Arg His Asn Leu Ser Ile Asp Gly Gln Pro Leu Ser Leu Pro Leu
 40 35 40 45
 - TAT GCT AAA CCG GCT GAT CCA AAA GCT TTA CTG AGT GCG GCG GTT TCA 192
 Tyr Ala Lys Pro Ala Asp Pro Lys Ala Leu Leu Ser Ala Ala Val Ser
 50 55 60
 - GCT TCT CAA GGG GGA GCC GAC TTG CCG AAG GCG CCG CTG ACT ATT CAC 240 Ala Ser Gln Gly Gly Ala Asp Leu Pro Lys Ala Pro Leu Thr Ile His 65 70 75 80
- 50 CGC TTC CCT CAA ATG CTA GAA GGG GCA CGG GGC TTG GTT AAC CAG CTT 288 Arg Phe Pro Gln Met Leu Glu Gly Ala Arg Gly Leu Val Asn Gln Leu 85 90 95
- ATA CAG TTC GGT AGT TCA CTA TTG GGG TAC AGT GAG CGT CAG GAT GCG 336

 11e Gln Phe Gly Ser Ser Leu Leu Gly Tyr Ser Glu Arg Gln Asp Ala
 100 105 110
- GAA GCT ATG AGT CAA CTA CTG CAA ACC CAA GCC AGC GAG TTA ATA CTG 384
 Glu Ala Met Ser Gln Leu Leu Gln Thr Gln Ala Ser Glu Leu Ile Leu
 115 120 125
 - ACC AGT ATT CGT ATG CAG GAT AAC CAA TTG GCA GAG CTG GAT TCG GAA 432
 Thr Ser Ile Arg Met Gln Asp Asn Gln Leu Ala Glu Leu Asp Ser Glu
 130
 135
 140
- AAA ACC GCC TTG CAA GTC TCT TTA GCT GGA GTG CAA CAA CGG TTT GAC 480 Lys Thr Ala Leu Gln Val Ser Leu Ala Gly Val Gln Gln Arg Phe Asp 145 150 155 160

	AGC Ser	TAT Tyr	AGC Ser	CAA Gln	CTG Leu 165	TAT Tyr	GAG Glu	GAG Glu	AAC Asn	ATC Ile 170	.AAC Asn	GCA Ala	GGT Gly	GAG Glu	CAG Gln 175	CGA Arg	528
5			GCG Ala														576
10	ATT Ile	TCC Ser	CGT Arg 195	ATG Met	GCA Ala	GGC Gly	GCG Ala	GGT Gly 200	GTT Val	GAT Asp	ATG Met	GCA Ala	CCA Pro 205	AAT Asn	ATC Ile	TTC Phe	624
15	GGC Gly	CTG Leu 210	GCT Ala	GAT Asp	GGC Gly	GGC Gly	ATG Met 215	CAT His	TAT Tyr	GGT Gly	GCT Ala	ATT Ile 220	GCC Ala	TAT Tyr	GCC Ala	ATC Ile	672
20	GCT Ala 225	GAC Asp	GGT Gly	ATT Ile	GAG Glu	TTG Leu 230	AGT Ser	GCT Ala	TCT Ser	GCC Ala	AAG Lys 235	ATG Met	GTT Val	GAT Asp	Ala	GAG Glu 240	720
	AAA Lys	GTT Val	GCT Ala	CAG Gln	TCG Ser 245	GAA Glu	ATA Ile	TAT Tyr	CGC Arg	CGT Arg 250	CGC Arg	CGT Arg	CAA Gln	GAA Glu	TGG Trp 255	AAA Lys	768
25	ATT Ile	CAG Gln	CGT Arg	GAC Asp 260	AAC Asn	GCA Ala	CAA Gln	GCG Ala	GAG Glu 265	ATT Ile	AAC Asn	CAG Gln	TTA Leu	AAC Asn 270	GCG Ala	CAA Gln	816
30			TCA Ser 275														864
35	TAC Tyr	CTG Leu 290	AAA Lys	ACC Thr	CAG Gln	CAA Gln	GCT Ala 295	CAG Gln	GCG Ala	CAG Gln	GCA Ala	CAA Gln 300	CTT Leu	ACT Thr	TTC Phe	TTA Leu	912
40	AGA Arg 305	AGC Ser	AAA Lys	TTC Phe	AGT Ser	AAT Asn 310	CAA Gln	GCG Ala	TTA Leu	TAT Tyr	AGT Ser 315	TGG Trp	TTA Leu	CGA Arg	GGG Gly	CGT Arg 320	960
10	TTG Leu	TCA Ser	GGT Gly	ATT Ile	TAT Tyr 325	TTC Phe	CAG Gln	TTC Phe	TAT Tyr	GAC Asp 330	TTG Leu	GCC Ala	GTA Val	TCA Ser	CGT Arg 335	TGC Cys	1008
45	CTG Leu	ATG Met	GCA Ala	GAG Glu 340	CAA Gln	TCC Ser	TAT Tyr	CAA Gln	TGG Trp 345	GAA Glu	GCT Ala	AAT Asn	GAT Asp	AAT Asn 350	TCC Ser	ATT Ile	1056
50	AGC Ser	TTT Phe	GTC Val 355	AAA Lys	CCG Pro	GGT Gly	GCA Ala	TGG Trp 360	CAA Gln	GGA Gly	ACT Thr	TAC Tyr	GCC Ala 365	GGC Gly	TTA Leu	TTG Leu	1104
55	TGT Cys	GGA Gly 370	GAA Glu	GCT Ala	TTG Leu	ATA Ile	CAA Gln 375	AAT Asn	CTG Leu	GCA Ala	CAA Gln	ATG Met 380	GAA Glu	GAG Glu	GCA Ala	TAT Tyr	1152
60	CTG Leu 385	AAA Lys	TGG Trp	GAA Glu	TCT Ser	CGC Arg 390	GCT Ala	TTG Leu	GAA Glu	GTA Val	GAA Glu 395	CGC Arg	ACG Thr	GTT Val	TCA Ser	TTG Leu 400	1200
00	GCA Ala	GTG Val	GTT Val	TAT Tyr	GAT Asp 405	TCA Ser	CTG Leu	GAA Glu	GGT Gly	AAT Asn 410	GAT Asp	CGT Arg	TTT Phe	AAT Asn	TTA Leu 415	GCG Ala	1248
65	GAA Glu	CAA Gln	ATA Ile	CCT Pro 420	GCA Ala	TTA Leu	TTG Leu	GAT Asp	AAG Lys 425	GGG Gly	GAG Glu	GGA Gly	ACA Thr	GCA Ala 430	GGA Gly	ACT Thr	1296
70	AAA Lys	GAA Glu	AAT Asn 435	GGG Gly	TTA Leu	TCA Ser	TTG Leu	GCT Ala 440	AAT Asn	GCT Ala	ATC Ile	CTG Leu	TCA Ser 445	GCT Ala	TCG Ser	GTC Val	1344

5															ATC Ile		1392
J															CTA Leu		1440
10															TAT Tyr 495		1488
15															TCT Ser		1536
20															GGC Gly		1584
25 .															CTG Leu		1632
25 .															CAA Gln		1680
30	ATG Met	AGC Ser	GAT Asp	ATT Ile	ATT Ile 565	TTG Leu	CAT His	ATT Ile	CGT Arg	TAT Tyr 570	ACC Thr	ATC Ile	CGT Arg 573	TAA		1722	
35	(2)	INF	ORM	OITA	N FC	R SI	EQ I	D NC):55	:							
40		,	•	(A) (B) (C) (D)	LENC TYPE STRA TOPO	CHAIGH: and and and and and and and and and and	573 minc DNES Y: 1	am ac: S: s	ino ids sing ar	acid	ls						
45		(xi) 5	SEQU	ENCE	DES	SCRI	PTIC	n:	SEQ	ID N	10:5	5 (T	cbAj	Lii)	:	
40		Gly	Thr	Ala	Asn 5	Ser	Leu	Thr	Ala	Leu 10	Phe	Leu	Pro	Gln	Glu 15	Asn	
50	Ser	Lys	Leu	Lys 20	Gly	Tyr	Trp	Arg	Thr 25	Leu	Ala	Gln	Arg	Met_ 30	Phe.	Asn	
	Leu	Arg	His 35	Asn	Leu	Ser	Ile	Asp 40	Gly	Gln	Pro	Leu	Ser 45	Leu	Pro	Leu	
55	Tyr	Ala 50	ГАЗ	Pro	Ala	Asp	Pro 55	Lys	Ala	Leu	Leu	Ser 60	Ala	Ala	Val	Ser	
60	Ala 65	Ser	Gln	Gly	Gly	Ala 70	Asp	Leu	Pro	Lys	Ala 75	Pro	Leu	Thr	Ile	His 80	
	Arg	Phe	Pro	Gln	Met 85	Leu	Glu	Gly	Ala	Arg 90	Gly	Leu	Val	Asn	Gln 95	Leu	
65	Ile	Gln	Phe	Gly 100	Ser	Ser	Leu	Leu	Gly 105	Tyr	Ser	Glu	Arg	Gln 110	Asp	Ala	
	Glu	Ala	Met 115	Ser	Gln	Leu	Leu	Gln 120	Thr	Gln	Ala	Ser	Glu 125	Leu	Ile	Leu	

	Thr	Ser 130	Ile	Arg	Met	Gln	Asp 135	Asn	Gln	Leu	.Ala	Glu 140	Leu	Asp	Ser	Glu
5	Lys 145	Thr	Ala	Leu	Gln	Val 150	Ser	Leu	Ala	Gly	Val 155	Gln	Gln	Arg	Phe	Asp 160
	Ser	Tyr	Ser	Gln	Leu 165	Tyr	Glu	Glu	Asn	Ile 170	Asn	Ala	Gly	Glu	Gln 175	Arg
10	Ala	Leu	Ala	Leu 180	Arg	Ser	Glu	Ser	Ala 185	Ile	Glu	Ser	Gln	Gly 190	Ala	Gln
15	Ile	Ser	Arg 195	Met	Ala	Gly	Ala	Gly 200	Val	Asp	Met	Ala	Pro 205	Asn	Ile	Phe
10	Gly	Leu 210	Ala	Asp	Gly	Gly	Met 215	His	Tyr	Gly	Ala	Ile 220	Ala	Tyr	Ala	Ile
20	Ala 225	Asp	Gly	Ile	Glu	Leu 230	Ser	Ala	Ser	Ala	Lys 235	Met	Val	Asp	Ala	Glu 240
	Lys	Val	Ala	Gln	Ser 245	Glu	Ile	Tyr	Arg	Arg 250	Arg	Arg	Gln	Glu	Trp 255	Lys
25	Ile	Gln	Arg	Asp 260	Asn	Ala	Gln	Ala	Glu 265	Ile	Asn	Gln	Leu	Asn 270	Ala	Gln
30	Leu	Glu	Ser 275	Leu	Ser	Ile	Arg	Arg 280	Glu	Ala	Ala	Glu	Met 285	Gln	Lys	Glu
	Tyr	Leu 290	Lys	Thr	Gln	Gln	Ala 295	Gln	Ala	Gln	Ala	Gln 300	Leu	Thr	Phe	Leu
35	Arg 305	Ser	Lys	Phe	Ser	Asn 310	Gln	Ala	Leu	Tyr	Ser 315	Trp	Leu	Arg	Gly	Arg 320
	Leu	Ser	Gly	Ile	Tyr 325	Phe	Gln	Phe	Tyr	Asp 330	Leu	Ala	Val	Ser	Arg 335	Cys
40	Leu	Met	Ala	Glu 340	Gln	Ser	Tyr	Gln	Trp 345	Glu	Ala	Asn	Asp	Asn 350	Ser	Ile
45	Ser.	.Phe	Val 355	Lys	Pro	Gly	Ala	Trp 360	Gln	Gly	Thr	Tyr	Ala 365	Gly	Leu	Leu
	Cys	Gly 370	Glu	Ala	Leu	Ile	Gln 375	Asn	Leu	Ala	Gln	Met 380	Glu	Glu	Ala	Tyr
50	Leu 385	Lys	Trp	Glu	Ser	Arg 390	Ala	Leu	Glu	Val	Glu 395	Arg	Thr	Val	Ser	Leu 400
	Ala	Val	Val	Tyr	Asp 405	Ser	Leu	Glu	Gly	Asn 410	Asp	Arg	Phe	Asn	Leu 415	Ala
55	Glu	Gln	Ile	Pro 420	Ala	Leu	Leu	Asp	Lys 425	Gly	Glu	Gly	Thr	Ala 430	Gly	Thr
60	Lys	Glu	Asn 435	Gly	Leu	Ser	Leu	Ala 440	Asn	Ala	Ile	Leu	Ser 445	Ala	Ser	Val
	Lys	Leu 450	Ser	Asp	Leu	Lys	Leu 455	Gly	Thr	Asp	Tyr	Pro 460	Asp	Ser	Ile	Val
65	465		Asn			470					475					480
			Val		485					490					495	
70	Gly	Ser	Thr	Gln 500	Leu	Pro	Lys	Gly	Cys 505	Ser	Ala	Leu	Ala	Val 510	Ser	His

	Gly	Thr	Asn 515	Asp	Ser	Gly	Gln	Phe 520	Gln	Leu.	Asp	Phe	Asn 525	qzA	Gly	Lys		
5	Tyr	Leu 530	Pro	Phe	Glu	Gly	Ile 535	Ala	Leu	Asp	Asp	Gln 540	Gly	Thr	Leu	Asn		
10	Leu 545	Gln	Phe	Pro	Asn	Ala 550	Thr	Asp	Lys	Gln	Lys 555	Ala	Ile	Leu	Gln	Thr 560		
10	Met	Ser	Asp	Ile	Ile 565	Leu	His	Ile	Arg	Tyr 570	Thr	Ile	Arg 573	•••				
15	(2)	INF	ORMA	TIO	v FO	R SE	EQ I	D NC	:56									
20		·) SI	(A) (B) (C) (D)	TYP STR TOP	GTH: E: n ANDE OLOG	299 ucle DNES	94 b eic SS: Line	ase acio doul ar	pai: i						ia.		
25		TG A		AA C	TC G	CC A	GT C	מכ כ	TG A	ATT I	raa o	GC 1		AA G	AG A	TC C		48 16
30																TTT (96 32
35																GCT (144 48
40	145 49															TAT		192 64
	193 65															GCT Ala		240 80
45	241 81															TAC Tyr		288 96
50	289 97															CCA Pro		336 112
55	337 113															CAT His		384 128
60	385 129	TAT Tyr	CAA Gln	TTC Leu	GCC Ala	CTT Leu	GAA	CAC Glr	GAZ Glu	A AAC 1 Lys	AAT AST	GGG Gly	C GCC / Ala	ACT Thr	ACC Thr	ATT Ile	ATG Met	432 144
	433 145															ATT Ile		480 160
65	481 161															AAT Asn		528 176

	529 177		CTG Leu															576 192
5	577 193	GCG Ala	GTA Val	AAC Asn	GCC Ala	AGA Arg	CTT Leu	TCC Ser	ACT Thr	ACC Thr	CGT Arg	TAC Tyr	CCG Pro	AAT Asn	AAT Asn	CTG Leu	CCG Pro	624 208
10	625 209	TAT Tyr	CAT His	TAT Tyr	GGT Gly	CAT His	CAG Gln	CAG Gln	ATT Ile	CAG Gln	ACA Thr	GCT Ala	CAA Gln	TCG Ser	GTA Val	TTG Leu	GGT Gly	672 224
15	673 225		ACG Thr															720 240
	721 241		TTC Phe															768 256
20	769 257		TTG Leu															816 272
25	817 273	CAG Gln	AAA Lys	ATC Ile	ATT Ile	ACG Thr	GAG Glu	ACT Thr	GTC Val	GGT Gly	CAG Gln	GAT Asp	TTC Phe	TAT Tyr	CAG Gln	CTT Leu	AAC Asn	864 288
30	865 289	TAT Tyr	GGT Gly	GAC Asp	AGT Ser	TCG Ser	CTT Leu	ACT Thr	GTG Val	AAT Asn	AGT Ser	TTC Phe	AGC Ser	GAC Asp	ATG Met	ACC Thr	ATA Ile	912 304
35	913 305		ACT Thr															960 320
	961	TGT	TCA	ACT	GTC	GGA	GGT	TCT	ACG	GTT	GTT	AAG	TCT	GAT	AAT	GTG	AGT	
	1008																	
40			Ser								Val	Lys	Ser	Asp	Asn		Ser	336
40	1008	Cys	Ser	Thr	Val	Gly	Gly	Ser	Thr	Val						Val	Ser T ATT	336
40	1008 321 1009	Cys	Ser	Thr	Val : ACG	Gly B ACA	Gly . GCG	Ser ACG	Thr CCA	Val TTT	GCG	TAT	· GGC	: GCC	CGC	Val		336 352
	1008 321 1009 1056 337	Cys TCT Ser	Ser GGT Gly	Thr GAC Asp	Val ACG Thr	Gly ACA Thr	Gly GCG Ala GAG	Ser ACG Thr	Thr CCA Pro	Val TTT Phe	GCG Ala	TAT Tyr	GGC	GCC Ala	GGC Arg	Val C TTT g Phe	T ATT	352
	1008 321 1009 1056 337	Cys TCT Ser	Ser GGT Gly	Thr GAC Asp	Val ACG Thr	Gly ACA Thr	Gly GCG Ala GAG	Ser ACG Thr	Thr CCA Pro	Val TTT Phe	GCG Ala	TAT Tyr	GGC	GCC Ala	GGC Arg	Val C TTT g Phe	T ATT	352
45	1008 321 1009 1056 337 1057 1104 353	Cys TCT Ser CAT	Ser GGT GCC Ala	Thr GAC Asp GGT Gly	Val ACG Thr AAG Lys	Gly ACA Thr CCG Pro	Gly GCG Ala GAG Glu	Ser ACG Thr GCG Ala	Thr CCA Pro ATT	Val TTT Phe ACC Thr	GCG Ala CTG Leu	TAT Tyr AGT Ser	GGC Gly CGC Arg	Ala AGT Ser	GGT Gly	Val C TTT G Phe C GCC Ala G TTC	ATT GAG GAG GAG GAC	352 368
45	1008 321 1009 1056 337 1057 1104 353	Cys TCT Ser CAT	Ser GGT GCC Ala	Thr GAC Asp GGT Gly	Val ACG Thr AAG Lys	Gly ACA Thr CCG Pro	Gly GCG Ala GAG Glu	Ser ACG Thr GCG Ala	Thr CCA Pro ATT	Val TTT Phe ACC Thr	GCG Ala CTG Leu	TAT Tyr AGT Ser	GGC Gly CGC Arg	Ala AGT Ser	GGT Gly	Val C TTT G Phe C GCC Ala G TTC	T ATT e Ile G GAG	352 368
45	1008 321 1009 1056 337 1057 1104 353	Cys TCT Ser CAT His	Ser GGT GGY GCC Ala GCAT His	Thr GAC Asp GGT TTT Phe	Val ACG Thr AAG Lys GCT Ala	Gly ACA Thr CCG Pro CTG Leu ACA	Gly GCG Ala GAG Glu ACG Thr	Ser ACG Thr GCG Ala GTT Val	Thr CCA Pro ATT AAC AST	Val TTT Phe ACC Thr AAT Asn	GCG Ala CTG Leu CTG	TAT Tyr AGT Ser ACA Thr	GGC Gly CGC Arg Asp	GCC Ala	GGT Gly	Val C TTT G Phe C GCC Ala G TTC G Lev	TATT GAG GAG GAC GAC Asp	352 368
45	1008 321 1009 1056 337 1057 1104 353 1105 1152 369	Cys TCT Ser CAT His	Ser GGT GGY GCC Ala GCAT His	Thr GAC Asp GGT TTT Phe	Val ACG Thr AAG Lys GCT Ala	Gly ACA Thr CCG Pro CTG Leu ACA	Gly GCG Ala GAG Glu ACG Thr	Ser ACG Thr GCG Ala GTT Val	Thr CCA Pro ATT AAC AST	Val TTT Phe ACC Thr AAT Asn	GCG Ala CTG Leu CTG	TAT Tyr AGT Ser ACA Thr	GGC Gly CGC Arg Asp	GCC Ala	GGT Gly	Val C TTT G Phe C GCC Ala G TTC G Lev	G GAG G GAC G GAC	352 368
45 50 55	1008 321 1009 1056 337 1057 1104 353 1105 1152 369 1153 1200 385	Cys TCT Ser CAT His GCG Ala CGT Arg	Ser GGT GGY GCC Ala His His	Thr GAC Asp Gly TTT AAC Asn	Val ACG Thr AAG Lys CGC Ala CGC Arg	Gly ACA Thr CCG Pro CTG Leu ACA Thr	Gly GCG Ala GAG Glu ACG Thr CTG Val	Ser ACG ACG Ala CGC Arg	Thr CCA Pro ATT Ile AAC Asn CTG	Val TTT Phe ACC Thr AAT ASI CAA Glin	GCG Ala CTG Leu CTG Leu AAA Lys	AGT ACA Thr	GGC Gly CGC Arg GAT Asp CTG Leu	GCC ASP	GGT GGT AAG	Val C TTT G Phe C GCC Ala C TTC G TTC G TTC G ACA ACA	G GAG GGAC GAC ASP TAT TYT A GGA	352 368 384 400
45 50 55	1008 321 1009 1056 337 1057 1104 353 1105 1152 369 1153 1200 385	Cys TCT Ser CAT His GCG Ala CGT Arg	Ser GGT GGY GCC Ala His His	Thr GAC Asp Gly TTT AAC Asn	Val ACG Thr AAG Lys CGC Ala CGC Arg	Gly ACA Thr CCG Pro CTG Leu ACA Thr	Gly GCG Ala GAG Glu ACG Thr CTG Val	Ser ACG ACG Ala CGC Arg	Thr CCA Pro ATT Ile AAC Asn CTG	Val TTT Phe ACC Thr AAT ASI CAA Glin	GCG Ala CTG Leu CTG Leu AAA Lys	AGT ACA Thr	GGC Gly CGC Arg GAT Asp CTG Leu	GCC ASP	GGT GGT AAG	Val C TTT G Phe C GCC Ala C TTC G TTC G TTC G ACA ACA	G ATT G GAG G GAC G GAC G ASP G TAT G TYT	352 368 384 400
45 50 55 60	1008 321 1009 1056 337 1057 1104 353 1105 1152 369 1153 1200 385	Cys TCT Ser CAT His GCG Ala CGT Arg GAG	Ser GGT GGY GCC Ala His ATT J lle GGT ASp	Thr GAC Asp GGI GI GI AAC AAC AAT Ile	Val ACG Thr AAG Lys GCT Ala CGC Arg GAC	Gly ACA Thr CCG Pro CTG ACA Thr CTG	Gly GCG Ala GAG Glu ACG Thr Val TTA Leu	Ser ACG ACG ATG CGC ATG ATG AACG	Thr CCA Pro ATT Ile AAC Asn CTG Leu ACT Thr	Val TTT Phe ACC Thr AAT ASN CAA Gln TCT Ser	GCG Ala CTG Leu AAA Lys GCT Ala	AGT ACA Thr TGG Trp ATG Met	GGC Gly CGC Arg	GCC Ala	GGT Gly CTG GAP GIV	Val C TTT I Phe C GCC Ala C TTC I Pro A ACA I Thi	G GAG GGAC GAC ASP TAT TYT A GGA	352 368 384 400

	1297	TTC	AAA	CAT	TAT	CAG	GCG	AAG	TAT	GĢT	GTT	AGC	GCT	AAA	CAA	TTT	GCT	
	1344 433	Phe	Lys	His	Tyr	Gln	Ala	Lys	Tyr	Gly	Val	Ser	Ala	Lys	Gln	Phe	Ala	448
5 `	1345 1392	GGC	TGG	CTG	CGC	GTA	GTG	GCC	CCG	TTT	GCC	ATT	ACA	CCG	GCA	ACG	CCG	
	449	Gly	Trp	Leu	Arg	Val	Val	Ala	Pro	Phe	Ala	Ile	Thr	Pro	Ala	Thr	Pro	464
10	1393 1440	TTT	TTA	GAC	CAA	GTG	TTT	AAC	TCC	GTC	GGC	ACC	TTT	GAT	ACA	CCG.	_TTT	
	465	Phe	Leu	Asp	Gln	Val	Phe	Asn	Ser	Val	Gly	Thr	Phe	Asp	Thr	Pro	Phe	480
15	1441 1488	GTG	ATA	GAT	AAT	CAG	GAT	TTT	GTC	TAT	ACA	TTG	ACC	ACC	GGG	GGC	GAT	
2.0	481	Val	Ile	Asp	Asn	Gln	Asp	Phe	Val	Tyr	Thr	Leu	Thr	Thr	Gly	Gly	Asp	496
20	1489 1536	GGG	GCG	CGT	GTT	AAG	CAT	ATC	AGC	ACG	GCA	CTG	GGC	CTC	AAT	CAT	CGT	
25	497	Gly	Ala	Arg	Val	Lys	His	Ile	Ser	Thr	Ala	Leu	Gly	Leu	Asn	His	Arg	512
23	1537 1584	CAG	TTC	CTG	ATT	TTG	GCG	GAT	TAA	ATT	GCC	CGT	CAA	CAG	GGG	TAA	GTC	
30	513	Gln	Phe	Leu	Leu	Leu	Ala	Asp	Asn	Ile	Ala	Arg	Gln	Gln	Gly	Asn	Val	528
50	1585 1632		CAA															
35	529	Thr	Gln	Ser	Thr	Leu	Asn	Cys	Asn	Leu	Phe	Val	Val	Ser	Ala	Phe	Tyr	544
33	1633 1680		CTG															
40	545	Arg	Leu	Ala	Asn	Leu	Ala	Arg	Thr	Leu	GIY	Ile	Asn	Pro	GLu	Ser	Phe	560
	1681 1728		GCC															504
4.5	561	Cys	Ala	Leu	vai	Asp	Arg	Leu	Asp	ATA	Gly	Tnr	GIY	ile	vaı	Trp	Gin	576
	1729 1776		TTG															592
50	577	GIII	neu	ATA	Gry	пуъ	PIO	IIIT	116	1111	val	PIO	GIII	nys	Asp	Ser	PIO	332
	1777 1824		GCG														GCT Ala	600
55	593				_													000
	1825 1872 609		TGG														CTG Leu	624
60			-															
	1873 1920 625		AGT Ser															640
65				-								_		-	_			
	1921 1968 641		TTT Phe														GGT	656
70								-				-					_	

and the control of th

	1969	GCA	ACA	TTG	TTG	TCC	CGC	AGT	GGG	GÇA	CCA	TTA	GTC	GAT	ACC	AAC	GGC	
	2016 657	Ala	Thr	Leu	Leu	Ser	Arg	Ser	Gly	Ala	Pro	Leu	Val	Asp	Thr	Asn	Gly	672
5	2017	ראר	GCT	ልጥጥ	GAC	TGG	ىلىنلىنك	GCT	התפ	כיזיכ	TCA	GC A	CCT	א מע	ልርጥ	ccc	ملسك	
	2064 673															-	Leu	688
10	• • • • • • • • • • • • • • • • • • • •												U _1		-		200	300
	2065 2112				GTT													
	689	Ile	Asp	Lys	Val	Gly	Leu	Val	Thr	Asp	Ala	Gly	Ile	Gln	Ser	Val	Ile	704
15	2113	GCA	ACG	GTG	GTC	AAT	ACA	CAA	AGC	TTA	TCT	GAT	GAA	GAT	AAG	AAG	CTG	
	2160 705	Ala	Thr	Val	Val	Asn	Thr	Gln	Ser	Leu	Ser	Asp	Glu	Asp	rys	Lys	Leu	720
20	27.61	CCN	7 m.c	7. C'07	ACT	CTC	አረጥ	አአጥ	7.CC	mma	3 3 CD	03.0	CM3	an a		3 Cm	~~~	
	2161 2208 721				Thr													736
25	,21	ALG	110	1112		2 Cu	****	AU.	1111	Deu	AOII	GIII	var	GIII	шys	TITE	GIII	/36
	2209 2256	CAG	GGC	GTG	GCC	GTC	AGT	CTG	TTG	GCG	CAG	ACT	CTG	AAC	GTG	AGT	CAG	
	737	Gln	Gly	Val	Ala	Val	Ser	Leu	Leu	Ala	Gln	Thr	Leu	Asn	Val	Ser	Gln	752
30	2257	TCA	CTG	CCT	GCG	TTA	TTG	TTG	CGC	TGG	AGT	GGA	CAA	ACA	ACC	TAC	CAG	
	2304 753	Ser	Leu	Pro	Ala	Leu	Leu	Leu	Arg	Trp	Ser	Gly	Gln	Thr	Thr	Tyr	Gln	768
35	2225	maa	#IMO	1 CM	000	7) CTT	maa	aan.	mma	220	03.m	999	omm.	220	» om	000	a aa	
	2305 2352 769				GCG Ala													784
40	163	IIP	neu	Ser	Ala	1111	110	AIG	neu	Lys	wsh	AIG	val	пуз	IIII	мта	Ala	704
7.0	2353 2400	GAT	ATT	CCC	GCT	GAC	TAT	CTG	CGT	CAA	TTA	CGT	GAA	GTG	GTA	CGC	CGC	
	785	Asp	Ile	Pro	Ala	Asp	Tyr	Leu	Arg	Gln	Leu	Arg	Glu	Val	Val	Arg	Arg	800
45	2401	TCC	TTG	TTG	ACC	CAA	CAA	TTC	ACG	CTG	AGT	CCT	GCA	ATG	GTG	CAA	ACC	
	2448 801	Ser	Leu	Leu	Thr	Gln	Gln	Phe	Thr	Leu	Ser	Pro	Ala	Met	Val	Gln	Thr	816
50				~~ ~		663	500	m. m	MACHEN .					~ ~ ~ ~	. ~.		200	
	2449 2496				TAT												Thr	832
55	817	neu	Leu	АБР	ıyı	PIO	VIG	ıyı	FILE	GIĀ	Ala	Ser	HIG	GIU	1111	Val	1111	032
33	2497 2544	GAT	ATC	AGT	TTG	TGG	ATG	CTT	TAT	ACC	CTG	AGC	TGT	TAT	AGC	GAT	TTA	
	833	Asp	Ile	Ser	Leu	Trp	Met	Leu	Tyr	Thr	Leu	Ser	Cys	Tyr	Ser	Asp	Leu	848
60	2545	TTG	CTC	CAA	ATG	GGT	GAA	GCT	GGT	GGT	ACC	GAA	GAT	GAT	GTA	CTG	GCC	
	2592 849	Leu	Leu	Gln	Met	Gly	Glu	Ala	Gly	Gly	Thr	Glu	Asp	Asp	Val	Leu	Ala	864
65	0.5.5	m> -	m	aa-	3.63	a.c.	3 2 2	~~~	200		00-			<i>a</i>	m~~			
	2593 2640				ACA													900
70	865	TÄL	ned	wid	TILL	VIG	VSII	wid	THE	THE	FIO	neu	96I.	GIII	Ser	чэр	Ala	880
٠, ٠																		

	2641 2688	GCA	CAG	ACG	TTG	GCA	ACG	CIA	116	GGI	TGG	GAG	GTT	AAC	GAG	TIG	CAA	
	881	Ala	Gln	Thr	Leu	Ala	Thr	Leu	Leu	Gly	Trp	Glu	Val	Asn	Glu	Leu	Gln	896
5			~~~		maa	cm.	mma	222						3.63	222		ama.	
	2689 2736																CTG	
	897	Ala	Ala	Trp	Ser	Val	Leu	Gly	Gly	Ile	Ala	Lys	Thr	Thr	Pro	Gln	Leu	912
10	2737	GAT	GCG	CTT	CTG	CGT	TTG	CAA	CAG	GCA	CAG	AAC	CAA	ACT	GGT	CTT	GGC	
	2784 913	Asp	Ala	Leu	Leu	Arg	Leu	Gln	Gln	. Ala	Gln	Asn	Gln	Thr	Gly	Leu	Gly	928
15															_			
	2785 2832	GTT	ACA	CAG	CAA	CAG	CAA	GGC	TAT	CTC	CTG	AGT	CGT	GAC	AGT	GAT	TAT	
	929	Val	Thr	Gln	Gln	Gln	Gln	Gly	Tyr	Leu	Leu	Ser	Arg	Asp	Ser	Asp	Tyr	944
20	2022	3 CC	Cathada	TCC	C	N.C.C	N.C.C	COT	. כאכ		OTTO	CTTC	CCT	ccc	COTTA	TO C	CAT	
	2833 2880																	0.50
. .	945	Thr	ren	Trp	GIN	ser	Thr	GIÀ	GIN	. Ala	Leu	var	Ala	GIY	vaı	Ser	His	960
25	2881	GTC	AAG	GGC	AGT	AAC	TGA	GCA	TGGC	AGA	GCTC	ACTA	.CC T	GAGT	GGAT	T TG	ATTT	
	2934 961	Val	Lys	Gly	Ser	Asn	End											965
30																		
	2935 2994	TTCC	GTAT	GG C	CTAA	TGAG	G CT	ATTT	CTAA	ACC	GCCA	TTT	AAGT	AAGG	CA G	ATAA	TTATC	3
					-													
35	(2)	INFO	RMAT	ON	FOR	SEÇ	ID	NO:	57									
		(i)				HARA												
			•			H: 9				cids								
40		(ii)	•	C) T	OPOL	OGY:	: li	near	:									
							_							_				
		(xi)			ure:		Fron			;o 10			(TCC. ptio	-	pti	ie)		
45							1	•	1	.0	SEC) ID	NO:	8				
	1	Met .	Asn	Gln	Leu	Ala	Ser	Pro	Leu	Ile	Ser	Arg	Thr	Glu	Glu	Ile	His	16
50	17	Asn	Leu	Pro	Gly	Lys	Leu	Thr	Asp	Leu	Gly	Tyr	Thr	Ser	Val	Phe	Asp	32
50	33	Val	Val	Arg	Met	Pro	Arg	Glu	Arg	Phe	Ile	Arg	Glu	His	Arg	Ala	Asp	48
	49	Leu	Gly	Arg	Ser	Ala	Glu	Lys	Met	Tyr	Asp	Leu	Ala	Val	Gly	Tyr	Ala	64
55	65	His	Gln	Val	Leu	His	His	Phe	Arg	Arg	Asn	Ser	Leu	Ser	Glu	Ala	Val	80
	81	Gln	Phe	Gly	Leu	Arg	Ser	Pro	Phe	Ser	Val	Ser	Gly	Pro	Asp	Tyr	Ala	96
	97	Asn	Gln	Phe	Leu	Asp	Ala	Asn	Thr	Gly	Trp	Lys	Asp	Lys	Ala	Pro	Ser	112
60	113	Gly	Ser	Pro	Glu	Ala	Asn	Asp	Ala	Pro	Val	Ala	Tyr	Leu	Thr	His	Ile	128
	129	Tyr	Gln	Leu	Ala	Leu	Glu	Gln	Glu	Lys	Asn	Gly	Ala	Thr	Thr	Ile	Met	144
65	145	Asn								_		_						160
	161	Asp								_		_						176
	177	Ile	-															192
	1,,	C	u		-, 3				_, 5	_,5	u		_~~		1			

	193	Ala	Val	Asn	Ala	Arg	Leu	Ser	Thr	Thr	Arg	Tyr	Pro	Asn	Asn	Leu	Pro	208
_	209	Tyr	His	Tyr	Gly	His	Gln	Gln	Ile	Gln	Thr	Ala	Gln	Ser	Val	Leu	Gly	224
5	225	Thr	Thr	Leu	Gln	Asp	Ile	Thr	Leu	Pro	Gln	Thr	Leu	Asp	Leu	Pro	Gln	240
	241	Asn	Phe	Trp	Ala	Thr	Ala	Lys	Gly	Lys	Leu	Ser	Asp	Thr	Thr	Ala	Ser	256
10	257	Ala	Leu	Thr	Arg	Leu	Gln	Ile	Met	Ala	Ser	Gln	Phe	Ser	Pro	Glu	Gln	272
	273	Gln	Lys	Ile	Ile	Thr	Glu	Thr	Val	Gly	Gln	Asp	Phe	Tyr	Glņ	Leu	Asn	288
15	289	Tyr	Gly	Asp	Ser	Ser	Leu	Thr	Val	Asn	Ser	Phe	Ser	Asp	Met	Thr	Ile	304
13	305	Met	Thr	Asp	Arg	Thr	Ser	Leu	Thr	Val	Pro	Gln	Val	Glu	Leu	Met	Leu	320
	321	Cys	Ser	Thr	Val	Gly	Gly	Ser	Thr	Val	Val	Lys	Ser	Asp	Asn	Val	Ser	336
20	337	Ser	Gly	Asp	Thr	Thr	Ala	Thr	Pro	Phe	Ala	Tyr	Gly	Ala	Arg	Phe	Ile	352
	353	His	Ala	Gly	Lys	Pro	Glu	Ala	Ile	Thr	Leu	Ser	Arg	Ser	Gly	Ala	Glu	368
25	369	Ala	His	Phe	Ala	Leu	Thr	Val	Asn	Asn	Leu	Thr	Asp	Asp	Lys	Leu	Asp	384
23	385	Arg	Ile	Asn	Arg	Thr	Val	Arg	Leu	Gln	Lys	Trp	Leu	Asn	Leu	Pro	Tyr	400
	401	Glu	Asp	Ile	Asp	Leu	Leu	Val	Thr	Ser	Ala	Met	Asp	Ala	Glu	Thr	Gly	416
30	417	Asn	Thr	Ala	Leu	Ser	Met	Asn	Asp	Asn	Thr	Leu	Arg	Met	Leu	Gly	Val	432
	433	Phe	Lys	His	Tyr	Gln	Ala	Lys	Tyr	Gly	Val	Ser	Ala	Lys	Gln	Phe	Ala	448
35	449	Gly	Trp	Leu	Arg	Val	Val	Ala	Pro	Phe	Ala	Ile	Thr	Pro	Ala	Thr	Pro	464
33	465	Phe	Leu	Asp	Gln	Val	Phe	Asn	Ser	Val	Gly	Thr	Phe	Asp	Thr	Pro	Phe	480
	481	Val	Ile	Asp	Asn	Gln	Asp	Phe	Val	Tyr	Thr	Leu	Thr	Thr	Gly	Gly	Asp	496
40	497	Gly	Ala	Arg	Val	Lys	His	Ile	Ser	Thr	Ala	Leu	Gly	Leu	Asn	His	Arg	512
	513	Gln	Phe	Leu	Leu	Leu	Ala	Asp	Asn	Ile	Ala	Arg	Gln	Gln	Gly	Asn	Val	528
45	529	Thr	Gln	Ser	Thr	Leu	Asn	Суз	Asn	Leu	Phe	Val	Val	Ser	Ala	Phe	Tyr	544
10	545	Arg	Leu	Ala	Asn	Leu	Ala	Arg	Thr	Leu	Gly	Ile	Asn	Pro	Glu	Ser	Phe	560
	561	Cys	Ala	Leu	Val	Asp	Arg	Leu	Asp	Ala	Gly	Thr	Gly	Ile	Val	Trp	Gln	576
50	577	Gln	Leu	Ala	Gly	Lys	Pro	Thr	Ile	Thr	Val	Pro	Gln	Lys	Asp	Ser	Pro	592
	593	Leu	Ala	Ala	Asp	Ile	Leu	Ser	Leu	Leu	Gln	Ala	Leu	Ser	Ala	Ile	Ala	608
55	609	Gln	Trp	Gln	Gln	Gln	His	Asp	Leu	Glu	Phe	Ser	Ala	Leu	Leu	Leu	Leu	624
33	625	Leu	Ser	Asp	Asn	Pro	Ile	Ser	Thr	Ser	Gln	Gly	Thr	Asp	Asp	Gln	Leu	640
	641	Asn	Phe	_Ile	Arg	Gln	Val	Trp	Gln	Asn	Leu	Gly	Ser	Thr	Phe	Val	Gly	656
60	657	Ala	Thr	Leu	Leu	Ser	Arg	Ser	Gly	Ala	Pro	Leu	Val	Asp	Thr	Asn	Gly	672
	673	His	Ala	Ile	Asp	Trp	Phe	Ala	Leu	Leu	Ser	Ala	Gly	Asn	Ser	Pro	Leu	688
65	689	Ile	Asp	Lys	Val	Gly	Leu	Val	Thr	Asp	Ala	Gly	Ile	Gln	Ser	Val	Ile	704
	705	Ala	Thr	Val	Val	Asn	Thr	Gln	Ser	Leu	Ser	Asp	Glu	Asp	Lys	Lys	Leu	720
	721	Ala	Ile	Thr	Thr	Leu	Thr	Asn	Thr	Leu	Asn	Gln	Val	Gln	Lys	Thr	Gln	736
70	737	Gln	Gly	Val	Ala	Val	Ser	Leu	Leu	Ala	Gln	Thr	Leu	Asn	Val	Ser	Gln	752

Ser Leu Pro Ala Leu Leu Leu Arg Trp Ser Gly Gln Thr Thr Tyr Gln Trp Leu Ser Ala Thr Trp Ala Leu Lys Asp Ala Val Lys Thr Ala Ala 5 Asp Ile Pro Ala Asp Tyr Leu Arg Gln Leu Arg Glu Val Val Arg Arg 800 785 Ser Leu Leu Thr Gln Gln Phe Thr Leu Ser Pro Ala Met Val Gln Thr 816 801 Leu Leu Asp Tyr Pro Ala Tyr Phe Gly Ala Ser Ala Glu Thr Val Thr 832 10 Asp Ile Ser Leu Trp Met Leu Tyr Thr Leu Ser Cys Tyr Ser Asp Leu Leu Leu Gln Met Gly Glu Ala Gly Gly Thr Glu Asp Asp Val Leu Ala 864 Tyr Leu Arg Thr Ala Asn Ala Thr Thr Pro Leu Ser Gln Ser Asp Ala 15 880 Ala Gln Thr Leu Ala Thr Leu Leu Gly Trp Glu Val Asn Glu Leu Gln 896 881 Ala Ala Trp Ser Val Leu Gly Gly Ile Ala Lys Thr Thr Pro Gln Leu 20 Asp Ala Leu Leu Arg Leu Gln Gln Ala Gln Asn Gln Thr Gly Leu Gly 913 Val Thr Gln Gln Gln Gly Tyr Leu Leu Ser Arg Asp Ser Asp Tyr 25 Thr Leu Trp Gln Ser Thr Gly Gln Ala Leu Val Ala Gly Val Ser His 945 Val Lys Gly Ser Asn 965 961 30 (2) INFORMATION FOR SEQ ID NO:58 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 4932 base pairs (B) TYPE: nucleic acid 35 (C) STRANDEDNESS: double (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic) (xi) SEQUENCE DESCRIPTION: SEQ ID NO:58 (tccB) 40 1 ATG TTA TCG ACA ATG GAA AAA CAA CTG AAT GAA TCC CAG CGT GAT GCG 48 1 Met Leu Ser Thr Met Glu Lys Gln Leu Asn Glu Ser Gln Arg Asp Ala 16 49 TTG GTG ACT GGC TAT ATG AAT TTT GTG GCG CCG ACG TTG AAA GGC GTC 96 45 17 Leu Val Thr Gly Tyr Met Asn Phe Val Ala Pro Thr Leu Lys Gly Val 32 97 AGT GGT CAG CCG GTG ACG GTG GAA GAT TTA TAC GAA TAT TTG CTG ATT 144 50 33 Ser Gly Gln Pro Val Thr Val Glu Asp Leu Tyr Glu Tyr Leu Leu Ile GAC CCG GAA GTG GCT GAT GAG GTT GAG ACG AGT. CGG GTA GCA CAA GCG 145 192 Asp Pro Glu Val Ala Asp Glu Val Glu Thr Ser Arg Val Ala Gln Ala 55 ATT GCC AGC ATA CAG CAA TAT ATG ACT CGT CTG GTC AAC GGC TCT GAA 193 Ile Ala Ser Ile Gln Gln Tyr Met Thr Arg Leu Val Asn Gly Ser Glu 80 CCG GGG CGT CAG GCG ATG GAG CCT TCT ACA GCT AAC GAA TGG CGT GAT 288 241 60 Pro Gly Arg Gln Ala Met Glu Pro Ser Thr Ala Asn Glu Trp Arg Asp AAT GAT AAC CAA TAT GCT ATC TGG GCT GCG GGG GCT GAG GTT CGA AAT 289 336 Asn Asp Asn Gln Tyr Ala Ile Trp Ala Ala Gly Ala Glu Val Arg Asn 112 97 65 TAC GCT GAA AAC TAT ATT TCA CCC ATC ACC CGG CAG GAA AAA AGC CAT 337 Tyr Ala Glu Asn Tyr Ile Ser Pro Ile Thr Arg Gln Glu Lys Ser His

113

WO 98/08932	PCT/US97/07657
-------------	----------------

	385 129	TAT Tyr	TTC Phe	TCG Ser	GAG Glu	CTG Leu	GAG Glu	ACG Thr	ACT Thr	TTA Leu	AAT Asn	CAG Gln	AAT Asn	CGA Arg	CTC Leu	GAT Asp	CCG Pro	432 144
5	433 145				CAG Gln													480 160
10	481 161	GTG Val	AGT Ser	AAT Asn	CTA Leu	TAT Tyr	GTG Val	CTC Leu	AGT Ser	GGT Gly	TAT Tyr	ATT Ile	AAT Asn	CAG Gln	GAT Asp	AAA Lys	TTT Phe	528 176
15	529 177				ATC Ile													576 192
2.0	577 193				TGG Trp													624 208
20	625 209	GCA Ala	GGG Gly	AAT Asn	CCG Pro	GTG Val	ACG Thr	CCA Pro	AAT Asn	TGC Cys	TGG Trp	AAT Asn	GAT Asp	TGG Trp	CAG Gln	GAA Glu	ATC Ile	672 224
25	673 225				CTG Leu													720 240
30	721 241				AAT Asn													768 256
35	769 257				AAG Lys													816 272
40	817 273				AAG Lys													864 288
10	865 289				ACC Thr													912 304
45	913 305	ACA Thr	CAG Gln	CGA Arg	TCC Ser	AGC Ser	CTG Leu	CTG Leu	ATT Ile	GAT Asp	GAA Glu	TCT Ser	AGC Ser	ACC Thr	ACA Thr	TTG Leu	CGC Arg	960 320
50	961 1008 321				CTG Leu													336
55	1009 1056 337				AGT Ser													352
60	1057 1104				gaa													
	353 1105				Glu													368
65	1152 369				Leu													384
70	1153 1200 385				AAG Lys													400

										•								
_	1201 1248							TTT										
5	401	Gly	Gln	Asn	Ser	Leu	Gln	Phe	Ala	Val	Tyr	Asp	Lys	Lys	Tyr	Val	Ile	416
	1249 1296	ACT	AAG	GTT	GTT	ACA	GGT	GCA	ACG	GAA	GAT	CCC	GAA	AAT	ACA	GGA	TGG	
10	417	Thr	Lys	Val	Val	Thr	Gly	Ala	Thr	Glu	Asp	Pro	Glu	Asn	Thr	Gly	Trp	432
	1297	GTA	AGT	AAA	GTT	GAT	GAC	TTG	AAA	CAA	GGC	ACT	ACT	GGG	GCC	TAT	GTG	
15	1344 433	Val	Ser	Lys	Val	Asp	Asp	Leu	Lys	Gln	Gly	Thr	Thr	Gly	Ala	Tyr	Val	448
	1345	TAT	ATC	GAT	CAA	GAT	GGC	CTG	ACG	CTT	CAT	ATA	CAA	ACC	ACA	ACT	AAT	
20	1392 449	Tyr	Ile	Asp	Gln	Asp	Gly	Leu	Thr	Leu	His	Ile	Gln	Thr	Thr	Thr	Asn	464
	1393 1440	GGG	GAT	TTT	ATT	AAC	CGT	CAT	ACG	TTT	GGA	TAT	AAC	GAT	CTT	GTA	TAT	
25	465	Gly	Asp	Phe	Ile	Asn	Arg	His	Thr	Phe	Gly	Tyr	Asn	Asp	Leu	Val	Tyr	480
	1441 1488	GAT	TCT	AAG	TCT	GGT	TAT	GGT	TTC	ACG	TGG	TCA	GGA	AAT	GAA	GGT	TTT	
30	481	Asp	Ser	Lys	Ser	Gly	Tyr	Gly	Phe	Thr	Trp	Ser	Gly	Asn	Glu	Gly	Phe	496
	1489 1536	TAT	CTG	GAT	TAC	CAT	GAT	GGA	AAT	TAT	TAC	ACC	ттт	CAT	AAT	GCA	ATA	
35	497	Tyr	Leu	Asp	Tyr	His	Asp	Gly	Asn	Tyr	Tyr	Thr	Phe	His	Asn	Ala	Ile	512
	1537	ATC	AAC	TAC	TAT	CCG	TCT	GGA	ТАТ	GGT	GGT	GGA	тст	GTT	ССТ	- ДДТ	GGA	•
40	1584 513							Gly										528
4.5	1585 1632							AGG										
45	529	Thr	Trp	Ala	Leu	Glu	Gin	Arg	Ile	Asn	Glu	Gly	Trp	Ala	Ile	Ala	Pro	544
	1633 1680							ACT										
50	545	Leu	Leu	Asp	Thr	Leu	His	Thr	Val	Thr	Val	Lys	Gly	Ser	Tyr	Ile	Ala	560
	1681 1728	TGG	GAA	GGG	GAA	ACA	CCT	ACC	GGT	TAT	AAT	CTG	TAT	ATT	CCA	GAT	GGT	
55	561	Trp	Glu	Gly	Glu	Thr	Pro	Thr	Gly	Tyr	Asn	Leu	Tyr	Ile	Pro	Asp	Gly	576
	1729	ACC	GTG	TTG	CTA	GAT	TGG	TTT	GAT	AAA	ATA	AAT	TTT	GCT	ATT	GGT	CTT	
60	1776 577	Thr	Val	Leu	Leu	Asp	Trp	Phe	Asp	Lys	Ile	Asn	Phe	Ala	Ile	Gly	Leu	592
	1777	AAT	AAG	CTT	GAG	TCT	GTA	TTT	ACG	TCG	CCA	GAT	TGG	CCA	ACA	CTA	ACC	
65	1824 593	Asn	Lys	Leu	Glu	Ser	Val	Phe	Thr	Ser	Pro	Asp	Trp	Pro	Thr	Leu	Thr	608
	1825	ACT	ATC	AAA	AAT	TTC	AGT	AAA	ATC	GCC	GAT	AAC	CGC	AAA	TTC	TAT	CAG	
70	1872 609	Thr	Ile	Lys	Asn	Phe	Ser	Lys	Ile	Ala	Asp	Asn	Arg	Lys	Phe	Tyr	Gln	624

	1873	GAA	ATC	AAT	GCT	GAG	ACG	GCG	GAT	GGA	CGC	AAC	CTG	TTT	AAA	CGT	TAC	
-	1920 625	Glu	Ile	Asn	Ala	Glu	Thr	Ala	Asp	Gly	Arg	Asn	Leu	Phe	Lys	Arg	Tyr	640
5																		
	1921 1968				ACT													
10	641	Ser	Thr	Gln	Thr	Phe	Gly	Leu	Thr	Ser	Gly	Ala	Thr	Tyr	Ser	Thr	Thr	656
	1969	TAT	ACT	TTG	TCT	GAG	GCG	GAT	TTC	TCC	ACT	GAT	CCG	GAC	AAA	AAC	TAC	
	2016 657	Tyr	Thr	Leu	Ser	Glu	Ala	Asp	Phe	Ser	Thr	Asp	Pro	Asp	Lys	Asn	Tyr	672
15																		
	2017 2064				TGT													
20	673	Leu	Gln	Val	Cys	Leu	Asn	Val	Val	Trp	Asp	His	Tyr	Asp	Arg	Pro	Ser	688
	2065	GGG	AAA	AAA	GGG	GCT	TAT	TCT	TGG	GTC	AGT	AAG	TGG	TTT	AAC	GTC	TAT	
	2112 689	Gly	Lys	Lys	Gly	Ala	Tyr	Ser	Trp	Val	Ser	Lys	Trp	Phe	Asn	Val	Tyr	704
25																		
	2113 2160	GTT	GCG	TTG	CAA	GAT	AGC	AAA	GCT	CCG	GAT	GCC	TTA	CCT	CGA	TTA	GTT	
30	705	Val	Ala	Leu	Gln	Asp	Ser	Lys	Ala	Pro	Asp	Ala	Ile	Pro	Arg	Leu	Val	720
	2161	TCC	CGT	TAC	GAT	AGT	AAA	CGT	GGT	CTG	GTG	CAA	TAT	CTG	GAC	TTC	TGG	
	2208 721	Ser	Arg	Tyr	Asp	Ser	Lys	Arg	Gly	Leu	Val	Gln	Tyr	Leu	Asp	Phe	Trp	736
35				-	_				_				-		•		_	
	2209 2256	ACC	TCA	TCA	ATT	CCC	GCG	AAA	ACC	CGT	CTT	AAC	ACC	ACC	TTT	GTG	CGT	
40	737	Thr	Ser	Ser	Leu	Pro	Ala	Lys	Thr	Arg	Leu	Asn	Thr	Thr	Phe	Val	Arg	752
	2257	ACT	TTG	ATT	GAG	AAG	GCT	AAT	CTG	GGG	CTG	GAT	AGT	TTG	CTG	GAT	TAC	
	2304 753	Thr	Leu	Ile	Glu	Lys	Ala	Asn	Leu	Gly	Leu	Asp	Ser	Leu	Leu	qzA	Tyr	768
45																		
	2305 2352	ACC	TTG	CAG	GCA	GAT	CCT	TCT	CTG	GAA	GCA	GAT	TTA	GTG	ACT	GAC	GGC	
50	769	Thr	Leu	Gln	Ala	Asp	Pro	Ser	Leu	Glu	Ala	Asp	Leu	Val	Thr	Asp	Gly	784
	2353	AAA	AGC	GAA	CCA	ATG	GAC	TTT	AAT	GGT	TCA	AAC	GGT	CTC	TAT	TTC	TGG	
	2400 785	Lys	Ser	Glu	Pro	Met	Asp	Phe	Asn	Gly	Ser	Asn	Gly	Leu	Tyr	Phe	Trp	800
55												•						
	2401 2448				TTT													
60	801	Glu	Leu	Phe	Phe	His	Leu	Pro	Phe	Leu	Val	Ala	Thr	Arg	Phe	Ala	Asn	816
	2449	GAA	CAG	CAA	TTT	TCG	CCG	GCA	CAA	AAG	AGT	TTG	CAT	TAC	ATC	TTT	GAC	
	2496 817	Glu	Gln	Gln	Phe	Ser	Pro	Ala	Gln	Lys	Ser	Leu	His	Tyr	Ile	Phe	Asp	832
65																		
	2497 2544	-			AAA													
70	833	Pro	Ala	Met	Lys	Asn	Lys	Pro	His	Asn	Ala	Pro	Ala	Tyr	Trp	Asn	Val	848

	2545 2592 849							AAC Asn		•								864
5	2593 2640	TCT	ATA	GAC	CCA	GAT	ACT	CAA	GCT	TAT	GCT	CAT	CCG	GTG	ATA	TAC	CAG	
10	865			-		-		Gln		-						•		880
	2641 2688 881							TAT Tyr										896
15	2689 2736							ACT										
20	897 2737		•	•				Thr			-					_		912
0.5	2784 913							Glu										928
25	2785 2832 929							CCG									GGG Gly	944
30	2833					_		GAT				•					•	
35	2880 945	Gln	Lys	Ala	Val	Leu	Arg	Asp	Phe	Glu	His	Gln	Leu	Ala	Asn	Ser	Asp	960
	2881 2928 961							CCG Pro										976
40	2929 2976	GCA	GAT	AAT	GGC	TAC	TTT	AAT	GAA	CCG	CTC	AAT	GTT	CTG	ATG	TTG	TCT	-
45	977_ 2977		•			_		Asn GCA										992
	3024 993 1008																	
50	3025 3072	ACC	GTT	GAT	GGC	AAG	CCG	CTT	TCG	CTG	CCG	CTG	TAT	GCT	GCG	CCT	GTT	
55	1009	Thr	Val	Asp	Gly	Lys	Pro	Leu	Ser	Leu	Pro	Leu	Tyr	Ala	Ala	Pro	Val	
60	3073 3120 1025							GCT Ala										
	1040										٠							
65	3121 3168 1041 1056							ATG Met										
70	3169 3216	GCT	ATG	TTG	CCG	CGA	GCT	TAC	AGC	GCC	GTG	GGT	ACG	TTG	ACC	AGT	TTT	

	1057 1072	Ala	Met	Leu	Pro	Arg	Ala	Tyr	Ser	Ala	Val	Gly	Thr	Leu	Thr	Ser	Phe
5	3217	GGT	CAG	AAC	CTG	CTT	AGT	TTG	TTG	GAA	CGT	AGC	GAA	CGA	GCC	TGT	CAA
	3264 1073 1088	Gly	Gln	Asn	Leu	Leu	Ser	Leu	Leu	Glu	Arg	Ser	Glu	Arg	Ala	Cys	Gln
10	3265	GAA	GAG	TTG	GCG	CAA	CAG	CAA	CTG	TTG	GAT	ATG	TCC	AGC	TAT	GCC	ATC
15	3312 1089 1104	Glu	Glu	Leu	Ala	Gln	Gln	Gln	Leu	Leu	Asp	Met	Ser	Ser	Tyr	Ala	Ile
	3313	ACG	TTG	CAA	CAA	CAG	GCG	CTG	GAT	GGA	TTG	GCG	GCA	GAT	CGT	CTG	GCG
20	3360 1105 1120	Thr	Leu	Gln	Gln	Gln	Ala	Leu	Asp	Gly	Leu	Ala	Ala	Asp	Arg	Leu	Ala
	3361	CTG	CTA	GCT	AGT	CAG	GCT	ACG	GCA	CAA	CAG	CGT	CAT	GAC	CAT	TAT	TAC
25	3408 1121 1136	Leu	Leu	Ala	Ser	Gln	Ala	Thr	Ala	Gln	Gln	Arg	His	Asp	His	Tyr	Tyr
30	3409	ACT	CTG	TAT	CAG	AAC	AAC	ATC	TCC	AGT	GCG	GAA	CAA	CTG	GTG	ATG	GAC
30	3456 1137 1152	Thr	Leu	Tyr	Gln	Asn	Asn	Ile	Ser	Ser	Ala	Glu	Gln	Leu	Val	Met	Asp
35	3457	ACC	CAA	ACG	TCA	GCA	CAA	TCC	CTG	TTA	TCT	TCT	TCC	ACT	GGT	GTA	CAA
	3504 1153 1168	Thr	Gln	Thr	Ser	Ala	Gln	Ser	Leu	Ile	Ser	Ser	Ser	Thr	Gly	Val	Gln
40	2505	a com	000	3.Cm	000	car	ama		ama	3 ma			3 mg				
	3505 3552 1169				GGG Glv												Ala
45	1184				1			-1-								Dea	
	3553 3600				TCG												
50	1185 1200	Asp	Gly	Gly	Ser	Arg	Tyr	Glu	Gly	Val	Thr	Glu	Ala	Ile	Ala	Ile	Gly
	3601 3648	TTA	ATG	GCT	GCC	GGA	CAA	GCC	ACC	AGC	GTG	GTG	GCC	GAG	CGT	CTG	GCA
55	1201 1216	Leu	Met	Ala	Ala	Gly	Gln	Ala	Thr	Ser	Val	Val	Ala	Glu	Arg	Leu	Ala
60	3649 3696	ACC	ACG	GAG	AAT	TAC	CGC	CGC	CGC	CGT	GAA	GAG	TGG	CAA	DTA	CAA	TAC
	1217 1232	Thr	Thr	Glu	Asn	Tyr	Arg	Arg	Arg	Arg	Glu	Glu	Trp	Gln	Ile	Gln	Tyr
65	3697 3744	CAG	CAG	GCA	CAG	TCT	GAG	GTC	GAC	GCA	TTA	CAG	AAA	CAG	TTG	GAT	GCG
	1233 1248	Gln	Gln	Ala	Gln	Ser	Glu	Val	Asp	Ala	Leu	Gln	Lys	Gln	Leu	Asp	Ala
70																	

	3745 3792	CTG	GCA	GTG	CGC	GAG	AAA	GCA	GCT	CAA	ACT	TCC	CTG	CAA	CAG	GCG	AAG
5	1249 1264	Leu	Ala	Val	Arg	Glu	Lys	Ala	Ala	Gln	Thr	Ser	Leu	Gln	Gln	Ala	Lys
•	3793	GCA	CAG	CAG	GTA	CAA	Δጥጥ	CGG	ACC	ĀTG	CTG	۵ (۳۳	ጥ ል <i>ር</i>	ττα	<u>አ</u> ርጥ	ΔСТ	CGT
	3840 1265																Arg
10	1280	Ata		GIII	var	0111	110	Arg	1111	Met	Leu	1111	IYL	Deu	1111	1111	Arg
	3841 3888	TTC	ACC	CAG	GCG	ACT	CTG	TAC	CAG	TGG	CTG	AGT	GGT	CAA	TTA	TCC	GCG
15	1281 1296	Phe	Thr	Gln	Ala	Thr	Leu	Tyr	Gln	Trp	Leu	Ser	Gly	Gln	Leu	Ser	Ala
0.0	3889	TTG	TAT	TAT	CAA	GCG	TAT	GAT	GCC	GTG	GTT	GCT	CTC	TGC	CTC	TCC	GCC
20	3936 1297 1312	Leu	Tyr	Tyr	Gln	Ala	Tyr	Asp	Ala	Val	Val	Ala	Leu	Cys	Leu	Ser	Ala
25	3937	CAA	GCT	TGC	TGG	CAG	TAT	GAA	TTG	GGT	GAT	TAC	GCT	ACC	ACT	TTT	ATC
	3984 1313 1328	Gln	Ala	Cys	Trp	Gln	Tyr	Glu	Leu	Gly	Asp	Tyr	Ala	Thr	Thr	Phe	Ile
30		a. a				maa											
	3985 4032						AAC										
35	1329 1344	Gln	Thr	Gly	Thr	Trp	Asn	Asp	His	Tyr	Arg	Gly	Leu	Gln	Val	Gly	Glu
	4033 4080	ACA	CTG	CAA	CTC	AAT	TTG	CAT	CAG	ATG	GAA	GCG	GCC	TAT	TTA	GTT	CGT
40	1345 1360	Thr	Leu	Gln	Leu	Asn	Leu	His	Gln	Met	Glu	Ala	Ala	Tyr	Leu	Val	Arg
	4081	CAC	GAA	CGC	CGT	CTT	TAA	GTG	ATC	CGT	ACT	GTG	TCG	CTC	AAA	AGC	CTA
45	4128 1361 1376	His	Glu	Arg	Arg	Leu	Asn	Val	Ile	Arg	Thr	Val	Ser	Leu	Lys	Ser	Leu
	4129-	TTG	-GGT	GAT	GAT	GGT	TTT	GGT	AAG	TTA	AAA	ACC	GAA	GGC	AAA	GTC	GAC
50	4176 1377 1392																Asp
55	4177	TTT	CCA	TTA	AGC	GAA	AAG	CTG	TTT	GAC	AAC	GAC	TAT	CCG	GGG	CAC	TAT
-	4224 1393 1408						Lys										
60																	
	4225 4272						ACT										
	1409 1424	Leu	Arg	Gln	Ile	Lys	Thr	Val	Ser	Val	Thr	Leu	Pro	Thr	Leu	Val	Gly
65																	
	4273 4320						AAG										
70	1425 1440	Pro	Tyr	Gln	Asn	Val	Lys	Ala	Thr	Leu	Thr	Gln	Thr	Ser	Ser	Ser	Ile

	4321 4368	TTG	TTA	GCA	GCA	GAT	ATC	AAT	ggt	ĠTT	AAA	CGT	CTC	AAT	GAT	CCG	ACA	
5	1441 1456	Leu	Leu	Ala	Ala	Asp	Ile	Asn	Gly	Val	Lys	Arg	Leu	Asn	Asp	Pro	Thr	
	4369	GGT	AAA	GAG	GGT	GAT	GCG	ACG	CAT	ATT	GTC	ACC	AAT	CTG	CGT	GCC	AGC	
10	4416 1457 1472	Gly	Lys	Glu	Gly	Asp	Ala	Thr	His	Ile	Val	Thr	Asn	Leu	Arg	Ala	Ser	
15	4417 4464	CAG	CAG	GTG	GCG	CTC	TCT	TCT	GGC	ATT	AAT	GAT	GCC	GGT	AGC	TTT	GAG	
10	1473 1488	Gln	Gln	Val	Ala	Leu	Ser	Ser	Gly	Ile	Asn	Asp	Ala	Gly	Ser	Phe	Glu	•
20	4465 4512	TTG	CGT	TTG	GAA	GAT	GAG	CGC	TAT	CTA	TCA	TTT	GAG	GGG	ACT	GGA	GCT	
	1489 1504	Leu	Arg	Leu	Glu	Asp	Glu	Arg	Tyr	Leu	Ser	Phe	Glu	Gly	Thr	Gly	Ala	
25	4513	GTT	TCC	AAA	TGG	ACT	CTT	AAC	TTC	CCG	CGT	TCT	GTG	GAT	GAG	CAT	ATT	
	4560 1505 1520				Trp													
30																		
25	4561 4608 1521				ACA Thr													
35	1536																	
	4609 4656	AAT	ATG	GAT	GAT	GTG	CTG	GTG	CAG	GTG	CAT	TAT	ACC	GCC	TGC	GAC	GGC	
40	1537 1552	Asn	Met	Asp	Asp	Val	Leu	Val	Gln	Val	His	Tyr	Thr	Ala	Cys	Asp	Gly	-
45	4657 1553	GGC (GCC Ala S	AGT : Ser !	TTC (Phe 1	SCA /	AAC (Asn (CAG (Gln '	FTC P Val I	AAG /	AAA A	ACA (Thr I	CTC T	CT Ter E	TAA (End	CATT	ACTTT	4708 1565
	4709	TAAC	CTAA	rcc (CTCC	CACTO	CT G	rtcg	CCAG	A GTO	GGAC	BAAG	GTTT	GTC	ATA T	CTA	AATCA	4768
50	4770	ATC:	TTGC	GAT (CTTT	CTCC	AT T	CAT:	rggaz	A GGC	AAGO	CTGT	AAA	CAAZ	ATA A	AGGA	\TATGA	4828
55	4829	TAT	G															4932
	(2)	INFO	TAMS	ION	FOR	SEQ	ID	№:	59									
60				(E CH (A) I (B) T	LENG TYPE TOPO	TΗ: : aπ LOGY	1569 ino : 1:	am aci inea	d	acio	ds						
65		(ii) (xi)								חז	NO - 1	=0 /	ጥረሩ፣	ne	a+ 4 4	۱۵)		
55			Fea	atur	es	F	rom		Го		Des	crip	tion	1				
	16	Met	Leu	Ser	Thr	Met	Glu	Lys	Gln	Leu	Asn	Glu	Ser	Gln	Arg	Asp	Ala	

	17 32	Leu	Val	Thr	Gly	Tyr	Met	Asn	Phe	Val	Ala	Pro	Thr	Leu	Lys	Gly	Val
5	33 48	Ser	Gly	Gln	Pro	Val	Thr	Val	Glu	Asp	Leu	Tyr	Glu	Tyr	Leu	Leu	Ile
10	49 64	Asp	Pro	Glu	Val	Ala	Asp	Glu	Val	Glu	Thr	Ser	Arg	Val	Ala	Gln	Ala
10	65 80	Ile	Ala	Ser	Ile	Gln	Gln	Tyr	Met	Thr	Arg	Leu	Val	Asn	Gly	Ser	-Glu
15	81 96	Pro	Gly	Arg	Gln	Ala	Met	Glu	Pro	Ser	Thr	Ala	Asn	Glu	Trp	Arg	Asp
	97 112	Asn	Asp	Asn	Gln	Tyr	Ala	Ile	Trp	Ala	Ala	Gly	Ala	Glu	Val	Arg	Asn
20	113 128	Tyr	Ala	Glu	Asn	Tyr	Ile	Ser	Pro	Ile	Thr	Arg	Gln	Glu	Lys	Ser	His
25	129 144	Tyr	Phe	Ser	Glu	Leu	Glu	Thr	Thr	Leu	Asn	Gln	Asn	Arg	Leu	Asp	Pro
23	145 160	Asp	Arg	Val	Gln	Asp	Ala	Val	Leu	Ala	Tyr	Leu	Asn	Glu	Phe	Glu	Ala
30	161 176	Val	Ser	Asn	Leu	Tyr	Val	Leu	Ser	Gly	Tyr	Ile	Asn	Gln	Asp	Lys	Phe
	177 192	Asp	Gln	Ala	Ile	Tyr	Tyr	Phe	Ile	Gly	Arg	Thr	Thr	Thr	Lys	Pro	Tyr
35	193 208	Arg	Tyr	Tyr	Trp	Arg	Gln	Met	Asp	Leu	Ser	Lys	Asn	Arg	Gln	Asp	Pro
40	209 224	Ala	Gly	Asn	Pro	Val	Thr	Pro	Asn	Cys	Trp	Asn	Asp	Trp	Gln	Glu	Ile
40	225 240	Thr	Leu	Pro	Leu	Ser	Gly	Asp	Thr	Val	Leu	Glu	His	Thr	Val	Arg	Pro
45	241 256	Val	Phe	Tyr	Asn	Asp	Arg	Leu	Tyr	Val	Ala	Trp	Val	Glu	Arg	Asp	Pro
	257 272	Ala	Val	Gln	Lys	Asp	Ala	Asp	Gly	Lys	Asn	Ile	Gly	Lys	Thr	His	Ala
50	273 288	Tyr	Asn	Ile	Lys	Phe	Gly	Tyr	Lys	Arg	Tyr	Asp	Asp	Thr	Trp	Thr	Ala
55	289 304	Pro	Asn	Thr	Thr	Thr	Leu	Met	Thr	Gln	Gln	Ala	Gly	Glu	Ser	Ser	Glu
J J	305 320	Thr	Gln	Arg	Ser	Ser	Leu	Leu	Ile	Asp	Glu	Ser	Ser	Thr	Thr	Leu	Arg
60	321 336	Gln	Val	Asn	Leu	Leu	Ala	Thr	Thr	Asp	Phe	Ser	Ile	Asp	Pro	Thr	Glu
	337 352	Glu	Thr	Asp	Ser	Asn	Pro	Tyr	Gly	Arg	Leu	Met	Leu	Gly	Val	Phe	Val
65	353 368	Arg	Gln	Phe	Glu	Gly	Asp	Gly	Ala	Asn	Arg	Lys	Asn	Lys	Pro	Val	Val
70	369 384	Tyr	Gly	Tyr	Leu	Tyr	Cys	Asp	Ser	Ala	Phe	Asn	Arg	His	Val	Leu	Arg

	385 400	Pro	Leu	Ser	Lys	Asn	Phe	Leu	Phe	Ser	Thr	Tyr	Arg	Asp	Glu	Thr	Asp
5	401 416	Gly	Gln	Asn	Ser	Leu	Gln	Phe	Ala	Val	Tyr	Asp	Lys	Lys	Tyr	Val	Ile
	417 432	Thr	Lys	Val	Val	Thr	Gly	Ala	Thr	Glu	Asp	Pro	Glu	Asn	Thr	Gly	Trp
10	433 448	Val	Ser	Lys	Val	Asp	Asp	Leu	Lys	Gln	Gly	Thr	Thr	Gly	Ala	Tyr	Val
15	449 464	Tyr	Ile	Asp	Gln	Asp	Gly	Leu	Thr	Leu	His	Ile	Gln	Thr	Thr	Thr	Asn
13	465 480	Gly	Asp	Phe	Ile	Asn	Arg	His	Thr	Phe	Gly	Tyr	Asn	Asp	Leu	Val	Tyr
20	481 496	Asp	Ser	Lys	Ser	Gly	Tyr	Gly	Phe	Thr	Trp	Ser	Gly	Asn	Glu	Gly	Phe
	497 512	Tyr	Leu	Asp	Tyr	His	Asp	Gly	Asn	Tyr	Tyr	Thr	Phe	His	Asn	Ala -	Ile
25	513 528	Ile	Asn	Tyr	Tyr	Pro	Ser	Gly	Tyr	Gly	Gly	Gly	Ser	Val	Pro	Asn	Gly
30	529 544	Thr	Trp	Ala	Leu	Glu	Gln	Arg	Ile	Asn	Glu	Gly	Trp	Ala	Ile	Ala	Pro
30	545 560	Leu	Leu	Asp	Thr	Leu	His	Thr	Val	Thr	Val	Lys	Gly	Ser	Tyr	Ile	Ala
35	561 576	Trp	Glu	Gly	Glu	Thr	Pro	Thr	Gly	Tyr	Asn	Leu	Tyr	Ile	Pro	Asp	Gly
	577 592	Thr	Val	Leu	Leu	Asp	Trp	Phe	Asp	Lys	Ile	Asn	Phe	Ala	Ile	Gly	Leu
40	593 608	Asn	Lys	Leu	Glu	Ser	Val	Phe	Thr	Ser	Pro	Asp	Trp	Pro	Thr	Leu	Thr
45	609 624	Thr	Ile	Lys	Asn	Phe	Ser	Lys	Ile	Ala	Asp	Asn	Arg	Lys	Phe	Tyr	Gln
10	625 640	Glu	Ile	Asn	Ala	Glu	Thr	Ala	Asp	Gly	Arg	Asn	Leu	Phe	Lys	Arg	Tyr
50	641 656	Ser	Thr	Gln	Thr	Phe	Gly	Leu	Thr	Ser	Gly	Ala	Thr	Tyr	Ser	Thr	Thr
	657 672	Tyr	Thr	Leu	Ser	Glu	Ala	Asp	Phe	Ser	Thr	Asp	Pro	Asp	Lys	Asn	Tyr
55	673 688	Leu	Gln	Val	Cys	Leu	Asn	Val	Val	Trp	Asp	His	Tyr	Asp	Arg	Pro	Ser
60	689 704	Gly	Lys	Lys	Gly	Ala	Tyr	Ser	Trp	Val	Ser	Lys	Trp	Phe	Asn	Val	Tyr
	705 720	Val	Ala	Leu	Gln	Asp	Ser	Lys	Ala	Pro	Asp	Ala	Ile	Pro	Arg	Leu	Val
65	721 736	Ser	Arg	Tyr	Asp	Ser	Lys	Arg	Gly	Leu	Val	Gln	Tyr	Leu	Asp	Phe	Trp
,	737 752	Thr	Ser	Ser	Leu	Pro	Ala	Lys	Thr	Arg	Leu	Asn	Thr	Thr	Phe	Val	Arg
70	753 768	Thr	Leu	Ile	Glu	Lys	Ala	Asn	Leu	Gly	Leu	Asp	Ser	Leu	Leu	Asp	Tyr

	769 784	Thr	Leu	Gln	Ala	Asp	Pro	Ser	Leu	Glu	Ala	Asp	Leu	Val	Thr	Asp	Gly
5	785 800	Lys	Ser	Glu	Pro	Met	Asp	Phe	Asn	Gly	Ser	Asn	Gly	Leu	туг	Phe	Trp
10	801 816	Glu	Leu	Phe	Phe	His	Leu	Pro	Phe	Leu	Val	Ala	Thr	Arg	Phe	Ala	Asn
10	817 832	Glu	Gln	Gln	Phe	Ser	Pro	Ala	Gln	Lys	Ser	Leu	His	Tyr	Ile	Phe	Asp
15	833 848	Pro	Ala	Met	Lys	Asn	Lys	Pro	His	Asn	Ala	Pro	Ala	Tyr	Trp	Asn	Val
	849 864	Arg	Pro	Leu	Val	Glu	Gly	Asn	Ser	Asp	Leu	Ser	Arg	His	Leu	Asp	Asp
20	865 880	Ser	Ile	Asp	Pro	Asp	Thr	Gln	Ala	Tyr	Ala	His	Pro	Val	Ile	Tyr	Gln
25	881 896	Lys	Ala	Val	Phe	Ile	Ala	Tyr	Val	Ser	Asn	Leu	Ile	Ala	Gln	Gly	Asp
25	897 912	Met	Trp	Tyr	Arg	Gln	Leu	Thr	Arg	Asp	Gly	Leu	Thr	Gln	Ala	Arg	Val
30	913 928	Tyr	Tyr	Asn	Leu	Ala	Ala	Glu	Leu	Leu	Gly	Pro	Arg	Pro	Asp	Val	Ser
	929 944	Leu	Ser	Ser	Ile	Trp	Thr	Pro	Gln	Thr	Leu	Asp	Thr	Leu	Ala	Ala	Gly
35	945 960	Gln	Lys	Ala	Val	Leu	Arg	Asp	Phe	Glu	His	Gln	Leu	Ala	Asn	Ser	Asp
40	961 976	Thr	Ala	Leu	Pro	Ala	Leu	Pro	Gly	Arg	Asn	Val	Ser	Tyr	Leu	Lys	Leu
40	977 992	Ala	Asp	Asn	Gly	Tyr	Phe	Asn	Glu	Pro	Leu	Asn	Val	Leu	Met	Leu	Ser
45	993 1008	His	Trp	Asp	Thr	Leu	Asp	Ala	Arg	Leu	Tyr	Asn	Leu	Arg	His	Asn	Leu
	1009 1024	Thr	Val	Asp	Gly	Lys	Pro	Leu	Ser	Leu	Pro	Leu	Tyr	Ala	Ala	Pro	Val
50	1025 1040	Asp	Pro	Val	Ala	Leu	Leu	Ala	Gln	Arg	Ala	Gln	Ser	Gly	Thr	Leu	Thr
55	1041 1056	Asn	Gly	Val	Ser	Gly	Ala	Met	Leu	Thr	Val	Pro	Pro	Tyr	Arg	Phe	Ser-
33	1057 1072	Ala	Met	Leu	Pro	Arg	Ala	Tyr	Ser	Ala	Val	Gly	Thr	Leu	Thr	Ser	Phe
60	1073 1088	Gly	Gln	Asn	Leu	Leu	Ser	Leu	Leu	Glu	Arg	Ser	Glu	Arg	Ala	Cys	Gln
	1089 1104	Glu	Glu	Leu	Ala	Gln	Gln	Gln	Leu	Leu	Asp	Met	Ser	Ser	Tyr	Ala	Ile
65	1105 1120	Thr	Leu	Gln	Gln	Gln	Ala	Leu	Asp	Gly	Leu	Ala	Ala	Asp	Arg	Leu	Ala
70	1121 1136	Leu	Leu	Ala	Ser	Gln	Ala	Thr	Ala	Gln	Gln	Arg	His	Asp	His	Tyr	Tyr

	1137 1152	Thr	Leu	Tyr	Gln	Asn	Asn	Ile	Ser	Ser	Ala	Glu	Gln	Leu	Val	Met	Asp
5	1153 1168	Thr	Gln	Thr	Ser	Ala	Gln	Ser	Leu	Ile	Ser	Ser	Ser	Thr	Gly	Val	Gln
	1169 1184	Thr	Ala	Ser	Gly	Ala	Leu	Lys	Val	Ile	Pro	Asn	Ile	Phe	Gly	Leu	Ala
10	1185 1200	Asp	Gly	Gly	Ser	Arg	Tyr	Glu	Gly	Val	Thr	Glu	Ala	Ile	Ala	Ile	Gly
15	1201 1216	Leu	Met	Ala	Ala	Gly	Gln	Ala	Thr	ser	Val	Val	Ala	Glu	Arg	Leu	Ala
10	1217 1232	Thr	Thr	Glu	Asn	Tyr	Arg	Arg	Arg	Arg	Glu	Glu	Trp	Gln	Ile	Gln	Tyr
20	1233 1248	Gln	Gln	Ala	Gln	Ser	Glu	Val	Asp	Ala	Leu	Gln	Lys	Gln	Leu	Asp	Ala
	1249 1264	Leu	Ala	Val	Arg	Glu	Lys	Ala	Ala	Gln	Thr	Ser	Leu	Gln	Gln-	Ala	Lys
25	1265 1280	Ala	Gln	Gln	Val	Gln	Ile	Arg	Thr	Met	Leu	Thr	Tyr	Leu	Thr	Thr	Arg
30	1281 1296	Phe	Thr	Gln	Ala	Thr	Leu	Tyr	Gln	Trp	Leu	Ser	Gly	Gln	Leu	Ser	Ala
	1297 1312	Leu	Tyr	Tyr	Gln	Ala	Tyr	Asp	Ala	Val	Val	Ala	Leu	Cys	Leu	Ser	Ala
35	1313 1328	Gln	Ala	Cys	Trp	Gln	Tyr	Glu	Leu	Gly	Asp	Tyr	Ala	Thr	Thr	Phe	Ile
	1329 1344	Gln	Thr	Gly	Thr	Trp	Asn	Asp	His	Tyr	Arg	Gly	Leu	Gln	Val	Gly	Glu
40	1345 1360	Thr	Leu	Gln	Leu	Asn	Leu	His	Gln	Met	Glu	Ala	Ala	Tyr	Leu	Val	Arg
45	1361 1376	His	Glu	Arg	Arg	Leu	Asn	Val	Ile	Arg	Thr	Val	Ser	Leu	Lys	Ser	Leu
	1377 1392	Leu	Gly	Asp	Asp	Gly	Phe	Gly	Lys	Leu	Lys	Thr	Glu	Gly	Lys	Val	Asp
50	1393 1408	Phe	Pro	Leu	Ser	Glu	Lys	Leu	Phe	Asp	Asn	Asp	Tyr	Pro	Gly	His	Tyr
	1409 1424	Leu	Arg	Gln	Ile	Lys	Thr	Val	Ser	Val	Thr	Leu	Pro	Thr	Leu	Val	Gly
55	1425 1440	Pro	Tyr	Gln	Asn	۷al	Lys	Ala	Thr	Leu	Thr	Gln	Thr	Ser	Ser	Ser	Ile
60	1441 1456	Leu	Leu	Ala	Ala	Asp	Ile	Asn	Gly	Val	Lys	Arg	Leu	Asn	Asp	Pro	Thr
	1457 1472	Gly	Lys	Glu	Gly	Asp	Ala	Thr	His	Ile	Val	Thr	Asn	Leu	Arg	Ala	Ser
65	1473 1488	Gln	Gln	Val	Ala	Leu	Ser	Ser	Gly	Ile	Asn	Asp	Ala	Gly	Ser	Phe	Glu
	1489 1504	Leu	Arg	Leu	Glu	Asp	Glu	Arg	Tyr	Leu	Ser	Phe	Glu	Gly	Thr	Gly	Ala
70	1505 1520	Val	Ser	rys	Trp	Thr	Leu	Asn	Phe	Pro	Arg	Ser	Val	Asp	Glu	His	Ile

	1521 1536	Asp	Asp	Lys	Thr	Leu	Lys	Ala	Asp	Glu	Met	Glņ	Ala	Ala	Leu	Leu	Ala	
5	1537 1552	Asn	Met	Asp	Asp	Val	Leu	Val	Gln	Val	His	Tyr	Thr	Ala	Cys	Asp	Gly	
	1553	Gly	Ala	Ser	Phe	Ala	Asn	Gln	Val	Lys	Lys	Thr	Leu	Ser	1	565		
10	(2)	INFOR	TAMS	ION	FOR	SEQ	ID	NO:	60									
15		(i) (ii)	(A (B (C (D	() LE () T? () S? () T(E CHENGT! CPE: CRAN! CPOLO E T	H: 3 nuc DEDN OGY:	132 leid ESS lin	bas cac do near	e pa id uble	:					. مست			
20		(xi)	SEQ	UENC	E DI	ESCR	IPTI	ON:	SEQ	ID	NO:	60 (tcc	C)				
	1	ATG A																48 16
25	49 17				AAT Asn													96 32
30	97 144	ATT	GTA	ATC	GGG	GGG	GAT	ACT	GAC	ACC	CGC	GTC	ACC	CGT	CAC	CAG	TAT	
	33	Ile	Val	Ile	Gly	Gly	Asp	Thr	Asp	Thr	Arg	Val	Thr	Arg	His	Gln	Tyr	48
35	145 192 49				GGA												GAT Asp	64
40	193	-			GCT											-	-	-
	240 65				Ala													80
45	241 288	GAT	CTG	GCC	GGT	CAT	GCC	CTG	CGG	ACA	GAG	AGT	GTC	GAT	GCT	GGT	CGT	
	81	Asp	Leu	Ala	Gly	His	Ala	Leu	Arg	Thr	Glu	Ser	Val	Asp	Ala	Gly	Arg	96
50	289 336	ACT	GTT	GCA	TTG	AAT	GAT	ATT	GAA	GGT	CGT	TCG	GTA	ATG	ACA	ATG	AAT	
	97 112	Thr	Val	Ala	Leu	Asn	Asp	Ile	Glu	Gly	Arg	Ser	Val `	Met	Thr	Met	Asn	
55	337	GCG	ACC	GGT	GTT	CGT	CAG	ACC	CGT	CGC	TAT	GAA	GGC	AAC	ACC	TTG	ccc	
60	384 113 128	Ala	Thr	Gly	Val	Arg	Gln	Thr	Arg	Arg	Tyr	Glu	Gly	Asn	Thr	Leu	Pro	
60	385	GGT	CGC	TTG	TTA	TCT	GTG	AGC	GAG	CAA	GTT	TTC	AAC	CAA	GAG	AGT	GCT	
65	432 129 144	Gly	Arg	Leu	Leu	Ser	Val	Ser	Glu	Gln	Val	Phe	Asn	Gln	Glu	Ser	Ala	
	433 480	AAA	GTG	ACA	GAG	CGC	TTT	ATC	TGG	GCT	GGG	AAT	ACA	ACC	TCG	GAG	AAA	

	145 160	Lys	Val	Thr	Glu	Arg	Phe	Ile	Trp	Ala	Gly	Asn	Thr	Thr	Ser	Glu	Lys	
5	481 528	GAG	TAT	AAC	CTC	TCC	GGT	CTG	TGT	ATA	CGC	CAC	TAC	GAC	ACA	GCG	GGA	
	161 176	Glu	Tyr	Asn	Leu	Ser	Gly	Leu	Cys	Ile	Arg	His	Tyr	Asp	Thr	Ala	Gly	
10	529	GTG	ACC	CGG	TTG	ATG	AGT	CAG	TCA	CTG	GCG	GGC	GCC	ATG	CTA	TCC	CAA	
	576 177 192	Val	Thr	Arg	Leu	Met	Ser	Gln	Ser	Leu	Ala	Gly	Ala	Met	Leu	Ser	Gln	
15	577	тст	CAC	CAA	TTG	CTG	GCG	GAA	GGG	CAG	GAG	ርር ጥ	AAC	TGG	AGC	GGT	GAC	
20	624 193		His															
20	208																	
25	625 672 209		GAA Glu															
	224							0 27		200		501	014	,,,,	-1-	****	****	
30	673 720		AGT															
	225 240	Gln	Ser	Thr	Thr	Asn	Ala	Ile	Gly	Ala	Leu	Leu	Thr	Gln	Thr	Asp	Ala	
35	721 768	AAA	GGC	AAT	ATT	CAG	CGT	CTG	GCT	TAT	GAC	ATT	GCC	GGT	CAG	TTA	AAA	
	241 256	Lys	Gly	Asn	Ile	Gln	Arg	Leu	Ala	Tyr	Asp	Ile	Ala	Gly	Gln	Leu	Lys	
40	769	GGG	AGT	TGG	TTG	ACG	GTG	AAA	GGC	CAG	AGT	GAA	CAG	GTG	ATT	GTT	AAG	
	816 257 272		Ser														-	
45																		
	817 864 273		CTG Leu															
50	288				•						-4-		J					
r c	865 912	,															CTG	
55	289 304	Asn	Gly	Val	Val	Tnr	Glu	Tyr	Ser	Tyr	Glu	Pro	Glu	Thr	Gln	Arg	Leu	#1 Name(April)
60	913 960	ATA	GGT	ATC	ACC	ACC	CGG	CGT	GCC	GAA	GGG	AGT	CAA	TCA	GGA	GCC	AGA	
- •	305 320	Ile	Gly	Ile	Thr	Thr	Arg	Arg	Ala	Glu	Gly	Ser	Gln	Ser	Gly	Ala	Arg	
65	961	GTA	TTG	CAG	GAT	CTA	CGC	TAT	AAG	TAT	GAT	CCG	GTG	GGG	AAT	GTT	ATC	
	1008 321		Leu															336
70	1009 1056	AGT	ATC	CAT	AAT	GAT	GCC	GAA	GCT	ACC	CGC	TTT	TGG	CGT	AAT	CAG	AAA	

	337	Ser	Ile	His	Asn	Asp	Ala	Glu	Ala	Thr	Arg	Phe	Trp	Arg	Asn	Gln	Lys	352
5	1057 1104		GAG															
	353																Met	368
10	1105 1152 369		GCG Ala														CAA Gln	
	384				•							- '•						
15	1153 1200		CCC															400
	385																Thr	400
20	1201 1248 401		TAC														CAA Gln	416
0.5			•						•	•	J	•	-					
25	1249 1296 417		CGA Arg														ATC Ile	432
30	1297	ACC	GTT	ጥሮል	AGC	CGC	agt	ልልሮ	CGG	GCG	GTΔ	ጥጥር	ΔGT	ACA	מידים	∆ CG	ACA	
30	1344																Thr	448
35	1345	GAT	CCA	ACC	CGA	GTG	GAT	GCG	CTA	TTT	GAT	TCC	GGC	GGT	CAT	CAG	AAG	
	1392 449	Asp	Pro	Thr	Arg	Val	Asp	Ala	Leu	Phe	Asp	Ser	Gly	Gly	His	Gln	Lys	464
40	1393 1440	ATG	TTA	ATA	CCG	GGG	CAA	AAT	CTG	GAT	TGG	AAT	ATT	CGG	GGT	GAA	TTG	
	465	Met	Leu	Ile	Pro	Gly	Gln	Asn	Leu	Asp	Trp	Asn	Ile	Arg	Gly	Glu	Leu	480
45	1441 1488	CAA	CGA	GTC	ACA	CCG	gtg	AGC	CGT	GAA	AAT	AGC	AGT	GAC	AGT	GAA	TGG	
	481	Gln	Arg	Val	Thr	Pro	Val	Ser	Arg	Glu	Asn	Ser	Ser	Asp	Ser	Glu	Trp	496
50	1489 1536		CGC															
	497																Gln.	512
55	1537 1584 513		ACG Thr														GGA Gly	528
60											J			•			_	323
60	1585 1632 529		GAG Glu														Leu	544
65	1633	CAG	GTG	ATT	ACG	GTA	GGT	GAA	GCG	GGT	CGC	GCA	CAG	GTA	AGG	GTA	TTG	
- -	1680 545		Val															560
70	1681 1728	CAC	TGG	GAA	AGT	GGT	AAG	CCG	ACA	GAT	ATT	GAC	AAC	AAT	CAG	GTG	CGC	

	561	His	Trp	Glu	Ser	Gly	Lys	Pro	Thr	Asp	Ile	Asp	Asn	Asn	Gln	Val	Arg	576
5	1729 1776	TAC	AGC	TAC	GAT	AAT	CTG	CTT	GGC	TCC	AGC	CAG	CTT	GAA	CTG	GAT	AGC	
J	577	Tyr	Ser	Tyr	Asp	Asn	Leu	Leu	Gly	Ser	Ser	Gln	Leu	Glu	Leu	Asp	Ser	592
10	1777 1824	GAA	GGG	CAG	ATT	CTC	AGT	CAG	GAA	GAG	TAT	TAT	CCG	TAT	GGC	GGT	ACG	
10	593	Glu	Gly	Gln	Ile	Leu	Ser	Gln	Glu	Glu	Tyr	Tyr	Pro	Tyr	Gly	Gly	Thr	608
15	1825 1872	GCG	ATA	TGG	GCG	GCG	AGA	AAT	CAG	ACA	GAA	GCC	AGC	TAC	AAA	TTT	ATT	
13	609	Ala	Ile	Trp	Ala	Ala	Arg	Asn	Gln	Thr	Glu	Ala	Ser	Tyr	Lys	Phe	Ile	624
20	1873 1920	CGT	TAC	TCC	GGT	AAA	GAG	CGG	GAT	GCC	ACT	GGA	TTG	TAT	ŢAT	TAC	GGC	
	625	Arg	Tyr	Ser	Gly	Lys	Glu	Arg	Asp	Ala	Thr	Gly	Leu	Tyr	Tyr	Tyr	Gly	640
25	1921 1968	TAC	CGT	TAT	TAT	CAA	CCT	TGG	GTG	GGT	CGA	TGG	TTG	AGT	GCT	GAT	CCG	
	641	Tyr	Arg	Tyr	Tyr	Gln	Pro	Trp	Val	Gly	Arg	Trp	Leu	Ser	Ala	Asp	Pro	656
30	1969 2016	GCG	GGA	ACC	GTG	GAT	GGG	CTG	TAA	TTG	TAC	CGA	ATG	GTG	AGG	TAA	AAC	
	657	Ala	Gly	Thr	Val	Asp	Gly	Leu	Asn	Leu	Tyr	Arg	Met	Val	Arg	Asn	Asn	672
35	2017 2064	CCC	ATC	ACA	TTG	ACT	GAC	CAT	GAC	GGA	TTA	GCA	CCG	TCT	CCA	AAT	AGA	
	673	Pro	Ile	Thr	Leu	Thr	Asp	His	Asp	Gly	Leu	Ala	Pro	Ser	Pro	Asn	Arg	688
40	2065 2112	AAT	CGA	AAT	ACA	TTT	TGG	TTT	GCT	TCA	TTT	TTG	TTT	CGT	AAA	CCT	GAT	
	689	Asn	Arg	Asn	Thr	Phe	Trp	Phe	Ala	Ser	Phe	Leu	Phe	Arg	Lys	Pro	Asp	704
45	2113 2160	GAG	GGA	ATG	TCC	GCG	TCA	ATG	AGA	CGG	GGA	CAA	AAA	ATT	GGC	AGA	GCC	
	705	Glu	Gly	Met	Ser	Ala	Ser	Met	Arg	Arg	Gly	Gln	Lys	Ile	Gly	Arg	Ala	720
50	2161 2208	ATT	GCC	GGC	GGG	ATT	GCG	ATT	GGC	GGT	CTT	GCG	GCT	ACC	ATT	GCC		
_	721	Ile	Ala	Gly	Gly	Ile	Ala	Ile	Gly	Gly	Leu	Ala	Ala	Thr	Ile	Ala	Ala	736
55	2209 2256	ACG	GCT	GGC	GCG	GCT	ATC	CCC	GTC	ATT	CTG	GGG	GTT	GCG	GCC	GTA	GGC	
	737	Thr	Ala	Gly	Ala	Ala	Ile	Pro	Val	Ile	Leu	Gly	Val	Ala	Ala	Val	Gly	752
60	2257 2304	GCG	GGG	ATT	GGC	GCG	TTG	ATG	GGA	TAT	AAC	GTC	GGT	AGC	CTG	CTG	GAA	
	753	Ala	Gly	Ile	Gly	Ala	Leu	Met	Gly	Tyr	Asn	Val	Gly	Ser	Leu	Leu	Glu	768
65	2305 2352	AAA	GGC	GGG	GCA	ATT	CTT	GCT	CGA	CTC	GTA	CAG	GGG	AAA	TCG	ACG	TTA	
	769	Lys	Gly	Gly	Ala	Leu	Leu	Ala	Arg	Leu	Val	Gln	Gly	Lys	Ser	Thr	Leú	784
70	2353 2400	GTA	CAG	TCG	GCG	GCT	GGC	GCG	GCT	GCC	GGA	GCG	AGT	TCA	GCC	GCG	GCT	
	785	Val	Gln	Ser	Ala	Ala	Gly	Ala	Ala	Ala	Gly	Ala	Ser	Ser	Ala	Ala	Ala	800

	2401	TAT	GGC	GCA	CGG	GCA	CAA	GGT	GTC	GGT	GTT	GCA	TCA	GCC	GCC	GGG	GCG	
5	2448 801	Tyr	Gly	Ala	Arg	Ala	Gln	Gly	Val	Gly	Val	Ala	Ser	Ala	Ala	Gly	Ala	816
			2.02	222	0.0T	cc	<i>a</i> a.		maa	>				 -				
1.0	2449 2496		ACA															
10	817	vaı	unr	GIA	Ala	vai	GIY	ser	Trp	116	Asn	Asn	Ala	Asp	Arg	GIA	Ile	832
	2497	GGC	GGC	GCT	ATT	GGG	GCC	GGG	AGT	GCG	GTA	GGC	ACC	ATT	GAT	ACT	ATG	
15	2544 833	Gly	Gly	Ala	Ile	Gly	Ala	Gly	Ser	Ala	Val	Gly	Thr	Ile	Asp	Thr	Met	848
	2545	ע ידיירי	GGG	a Cm	ccc	TOT	אככ	CTTT	3 CC	CVU	C22	cmo	ccc	CCA		000	CCT	
20	2592 849																	961
20	043	neu	GIĀ	1111	MIA	261	1111	neu	1111	·ŭτ2	GIU	val	GIY	WIG	AIA	HIG	Gly	864
	2593 2640	GGG	GCG	GCG	GGT	GGG	ATG	ATC	ACC	GGT	ACG	CAA	GGG	AGT	ACT	CGG	GCA	
25	865	Gly	Ala	Ala	Gly	Gly	Met	Ile	Thr	Gly	Thr	Gln	Gly	Ser	Thr	Arg	Ala	880
	2641	GGT	ATC	CAT	GCC	GGT	ATT	GGC	ACC	тат	тат	GGC	TCC	TGG	αππ	GGT	باسلسل	
30	2688 881		Ile															: 896
		2				2		1		-1-	-1-	/				0-7		
	2689 2736	GGT	TTA	GAT	GTC	GCT	AGT	AAC	CCC	GCC	GGA	CAT	TTA	GCG	TAA	TAC	GCA	
35	897	Gly	Leu	Asp	Val	Ala	Ser	Asn	Pro	Ala	Gly	His	Leu	Ala	Asn	Tyr	Ala	912
	2737	GTG	GGT	TAT	GCC	GCT	GGT	TTG	GGT	GCT	GAA	ATG	GCT	GTC	AAC	AGA	ATA	
40	2784 913	Val	Gly	Tyr	Ala	Ala	Gly	Leu	Gly	Ala	Glu	Met	Ala	Val	Asn	Arg	Ile	928
																		~
4.5	2785 ⁻ 2832					•												
45	929	Met	GIA	GIY	СТА	Pne	Leu	Ser	Arg	Leu	Leu	Gly	Arg	Val	Val	Ser	Pro	944
	2833	TAT	GCC	GCC	GGT	TTA	GCC	AGA	CAA	TTA	GTA	CAT	TTC	AGT	GTC	GCC	AGA	
50	2880 945	Tyr	Ala	Ala	Gly	Leu	Ala	Arg	Gln	Leu	Val	His	Phe	Ser	Val	Ala	Arg	960
	2881	ССТ	GTC	ماساسات	GAG	רכפ	ልሞአ	مكمدلميل	አርም	مست	CTC	מממ	ccc	Crom	CmC	CCM	com	
55	2928 961																Gly	976
	301	110	vui	1110	014	110		2110	Der	vai	Deu	GIY	GIY	nea	vaı	GIY	GIY	910
	2929 2976	ATT	GGA	ACT	GGC	CTG	CAC	AGA	GTG	ATG	GGA	AGA	GAG	AGT	TGG	ATT	TCC	
60	977	Ile	Gly	Thr	Gly	Leu	His	Arg	Val	Met	Gly	Arg	Glu	Ser	Trp	Ile	Ser	992
	2977	AGA	GCG	TTA	AGT	GCT	GCC	GGT	AGT	GGT	АТА	GAT	CAT	GTC	GCT	GGC	ATG	
65	3024 993		Ala															
	1008	J						4		3		F				1		
	3025	ATT	GGT	AAT	CAG	ATC	AGA	GGC	AGG	GTC	TTG	ACC	ACA	ACC	GGG	ATC	GCT	
70	3072														•			

Ile Gly Asn Gln Ile Arg Gly Arg Val Leu Thr Thr Thr Gly Ile Ala AAT GCG ATA GAC TAT GGC ACC AGT GCT GTG GGA GCC GCA CGA GTT Asn Ala Ile Asp Tyr Gly Thr Ser Ala Val Gly Ala Ala Arg Arg Val TTT TCT TTG TAA Phe Ser Leu End (2) INFORMATION FOR SEQ ID NO:61 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1043 amino acids (B) TYPE: amino acid (C) TOPOLOGY: linear (ii) MOLECULE TYPE: protein (xi) SEQUENCE DESCRIPTION: SEQ ID NO:61 (TccC peptide) Met Ser Pro Ser Glu Thr Thr Leu Tyr Thr Gln Thr Pro Thr Val Ser Val Leu Asp Asn Arg Gly Leu Ser Ile Arg Asp Ile Gly Phe His Arg Ile Val Ile Gly Gly Asp Thr Asp Thr Arg Val Thr Arg His Gln Tyr Asp Ala Arg Gly His Leu Asn Tyr Ser Ile Asp Pro Arg Leu Tyr Asp Ala Lys Gln Ala Asp Asn Ser Val Lys Pro Asn Phe Val Trp Gln His Asp Leu Ala Gly His Ala Leu Arg Thr Glu Ser Val Asp Ala Gly Arg Thr Val Ala Leu Asn Asp Ile Glu Gly Arg Ser Val Met Thr Met Asn Ala Thr Gly Val Arg Gln Thr Arg Arg Tyr Glu Gly Asn Thr Leu Pro Gly Arg Leu Leu Ser Val Ser Glu Gln Val Phe Asn Gln Glu Ser Ala Lys Val Thr Glu Arg Phe Ile Trp Ala Gly Asn Thr Thr Ser Glu Lys Glu Tyr Asn Leu Ser Gly Leu Cys Ile Arg His Tyr Asp Thr Ala Gly Val Thr Arg Leu Met Ser Gln Ser Leu Ala Gly Ala Met Leu Ser Gln Ser His Gln Lew Leu Ala Glu Gly Gln Glu Ala Asn Trp Ser Gly Asp - 208 Asp Glu Thr Val Trp Gln Gly Met Leu Ala Ser Glu Val Tyr Thr Thr Gln Ser Thr Thr Asn Ala Ile Gly Ala Leu Leu Thr Gln Thr Asp Ala Lys Gly Asn Ile Gln Arg Leu Ala Tyr Asp Ile Ala Gly Gln Leu Lys Gly Ser Trp Leu Thr Val Lys Gly Gln Ser Glu Gln Val Ile Val Lys Ser Leu Ser Trp Ser Ala Ala Gly His Lys Leu Arg Glu Glu His Gly Asn Gly Val Val Thr Glu Tyr Ser Tyr Glu Pro Glu Thr Gln Arg Leu Ile Gly Ile Thr Thr Arg Arg Ala Glu Gly Ser Gln Ser Gly Ala Arg Val Leu Gln Asp Leu Arg Tyr Lys Tyr Asp Pro Val Gly Asn Val Ile Ser Ile His Asn Asp Ala Glu Ala Thr Arg Phe Trp Arg Asn Gln Lys

	353	Val	Glu	Pro	Glu	Asn	Arg	Tyr	Val	Tyr	Asp	Ser	Leu	Tyr	Gln	Leu	Met	368
	369	Ser	Ala	Thr	Gly	Arg	Glu	Met	Ala	Asn	Ile	Gly	Gln	Gln	Ser	Asn	Gln	384
5	385	Leu	Pro	Ser	Pro	Val	Ile	Pro	Val	Pro	Thr	Asp	Asp	Ser	Thr	Tyr	Thr	400
	401	Asn	Tyr	Leu	Arg	Thr	Tyr	Thr	Tyr	Asp	Arg	Gly	Gly	Asn	Leu	Val	Gln	416
10	417	Ile	Arg	His	Ser	Ser	Pro	Ala	Thr	Gln	Asn	Ser	Tyr	Thr	Thr	Asp	Ile	432
10	433	Thr	Val	Ser	Ser	Arg	Ser	Asn	Arg	Ala	Val	Leu	Ser	Thr	Leu	Thr	Thr	448
	449	Asp	Pro	Thr	Arg	Val	Asp	Ala	Leu	Phe	Asp	Ser	Gly	Gly	His	Gln	Lys	464
15	465	Met	Leu	Ile	Pro	Gly	Gln	Asn	Leu	Asp	Trp	Asn	Ile	Arg	Gly	Glu	Leu	480
	481	Gln	Arg	Val	Thr	Pro	Val	Ser	Arg	Glu	Asn	Ser	Ser	Asp	Ser	Glu	Trp	496
20	497	Tyr	Arg	Tyr	Ser	Ser	Asp	Gly	Met	Arg	Leu	Leu	Lys	Val	Ser	Glu	Gln	512
20	513	Gln	Thr	Gly	Asn	Ser	Thr	Gln	Val	Gln	Arg	Val	Thr	Tyr	Leu	Pro	Gly	528
	529	Leu	Glu	Leu	Arg	Thr	Thr	Gly	Val	Ala	Asp	Lys	Thr	Thr	Glu	Asp	Leu	544
25	545	Gln	Val	Ile	Thr	Val	Gly	Glu	Ala	Gly	Arg	Ala	Gln	Val	Arg	Val	Leu	560
	561	His	Trp	Glu	Ser	Gly	Lys	Pro	Thr	Asp	Ile	Asp	Asn	Asn	Gln	Val	Arg	576
30	577	Tyr	Ser	Tyr	Asp	Asn	Leu	Leu	Gly	Ser	Ser	Gln	Leu	Glu	Leu	Asp	Ser	592
20	593	Glu	Gly	Gln	Ile	Leu	Ser	Gln	Glu	Glu	Tyr	Tyr	Pro	Tyr	Gly	Gly	Thr	608
	609	Ala	Ile	Trp	Ala	Ala	Arg	Asn	Gln	Thr	Glu	Ala	Ser	Tyr	Lys	Phe	Ile	624
35	625	Arg	Tyr	Ser	Gly	Lys	Glu	Arg	Asp	Ala	Thr	Gly	Leu	Tyr	Tyr	Tyr	Gly	640
	641	Tyr	Arg	Tyr	Tyr	Gln	Pro	Trp	Val	Gly	Arg	Trp	Leu	Ser	Ala	Asp	Pro	656
40	657	Ala	Gly	Thr	Val	Asp	Gly	Leu	Asn	Leu	Tyr	Arg	Met	Val	Arg	Asn	Asn	672
40	673	Pro	Ile	Thr	Leu	Thr	Asp	His	Asp	Gly	Leu	Ala	Pro	Ser	Pro	Asn	Arg	688
	689	Asn	Arg	Asn	Thr	Phe	Trp	Phe	Ala	Ser	Phe	Leu	Phe	Arg	Lys	Pro	Asp	704
45	705	Glu	Gly	Met	Ser	Ala	Ser	Met	Arg	Arg	Gly	Gln	Lys	Ile	Gly	Arg	Ala	720
	721	Ile	Ala	Gly	Gly	Ile	Ala	Ile	Gly	Gly	Leu	Ala	Ala	Thr	Ile	Ala	Ala	736
5 0	737=	Thr	Ala.	Gly	Ala	Ala	Ile	Pro	Val	Ile	Leu	Gly	Val	Ala	Ala	Val	Gly	752
50	753	Ala	Gly	Ile	Gly	Ala	Leu	Met	Gly	Tyr	Asn	Val	Gly	Ser	Teŭ	Leu	Glu	768
	769	Lys	Gly	Gly	Ala	Leu	Leu	Ala	Arg	Leu	Val	Gln	Gly	Lys	Ser	Thr	Leu	784
55	785	Val	Gln	Ser	Ala	Ala	Gly	Ala	Ala	Ala	Gly	Ala	Ser	Ser	Ala	Ala	Ala	800
	801	Tyr	Gly	Ala	Arg	Ala	Gln	Gly	Val	Gly	Val	Ala	Ser	Ala	Ala	Gly	Ala	816
60	817	Val	Thr	Gly	Ala	Val	Gly	Ser	Trp	Ile	Asn	Asn	Ala	Asp	Arg	Gly	Ile	832
60	833	Gly	Gly	Ala	Ile	Gly	Ala	Gly	Ser	Ala	Val	Gly	Thr	Ile	Asp	Thr	Met	848
	849	Leu	Gly	Thr	Ala	Ser	Thr	Leu	Thr	His	Glu	Val	Gly	Ala	Ala	Ala	Gly	864
65	865	Gly	Ala	Ala	Gly	Gly	Met	Ile	Thr	Gly	Thr	Gln	Gly	Ser	Thr	Arg	Ala	880
	881	Gly	Ile	His	Ala	Gly	Ile	Gly	Thr	Tyr	Tyr	Gly	Ser	Trp	Ile	Gly	Phe	896
7.0	897	Gly	Leu	Asp	Val	Ala	Ser	Asn	Pro	Ala	Gly	His	Leu	Ala	Asn	Tyr	Ala	912
70	913	Val	Gly	Tyr	Ala	Ala	Gly	Leu	Gly	Ala	Glu	Met	Ala	Val	Asn	Arg	Ile	928

929 Met Gly Gly Phe Leu Ser Arg Leu Leu Gly Arg Val Val Ser Pro 944 945 Tyr Ala Ala Gly Leu Ala Arg Gln Leu Val His Phe Ser Val Ala Arg 960 5 961 Pro Val Phe Glu Pro Ile Phe Ser Val Leu Gly Gly Leu Val Gly Gly 976 Ile Gly Thr Gly Leu His Arg Val Met Gly Arg Glu Ser Trp Ile Ser 992 977 10 Arg Ala Leu Ser Ala Ala Gly Ser Gly Ile Asp His Val Ala Gly Met 1008 993 1009 Ile Gly Asn Gln Ile Arg Gly Arg Val Leu Thr Thr Gly Ile Ala 1024 1025 Asn Ala Ile Asp Tyr Gly Thr Ser Ala Val Gly Ala Ala Arg Arg Val 1040 15 1041 Phe Ser Leu 1043 (2) INFORMATION FOR SEQ ID NO:62: TcaAiv 20 (i) SEOUENCE CHARACTERISTICS: (A) LENGTH: 5 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single 25 (D) TOPOLOGY: linear (ii) MOLECULAR TYPE: protein (v) FRAGMENT TYPE: internal (xi) SEQUENCE DESCRIPTION: SEQ ID NO:62: TcaAiv 30 Asn Ile Gly Gly Asp (2) INFORMATION FOR SEQ ID NO:63: TcaA;;-syn 35 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single 40 (D) TOPOLOGY: linear (ii) MOLECULAR TYPE: protein (v) FRAGMENT TYPE: internal (xi) SEQUENCE DESCRIPTION: SEQ ID NO:63: TcaA; -syn 45 Cys Leu Arg Gly Asn Ser Pro Thr Asn Pro Asp Lys Asp Gly Ile Phe Ala Gln Val Ala 50 (2) INFORMATION FOR SEQ ID NO:64: TcaA;;;-syn (i) SEQUENCE CHARACTERISTICS; (A) LENGTH: 20 amino acids 55 (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULAR TYPE: protein (v) FRAGMENT TYPE: Internal 60 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:64: TcaAiii-syn Cys Tyr Thr Pro Asp Gln Thr Pro Ser Phe Tyr Glu Thr Ala Phe

```
. 10
             Arg Ser Ala Asp Gly
                                                                   15
   5
          (2) INFORMATION FOR SEQ ID NO:65: TcaB:-syn
             (i) SEQUENCE CHARACTERISTICS:
                   (A) LENGTH: 19 amino acids
                   (B)
                        TYPE: amino acid
  10
                   (C) STRANDEDNESS: single
                   (D) TOPOLOGY: linear
           (ii) MOLECULAR TYPE: protein
            (v) FRAGMENT TYPE: Internal
           (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 65: TcaBi-syn
 15
             His Gly Gln Ser Tyr Asn Asp Asn Asn Tyr Cys Asn Phe Thr Leu
             Ser Ile Asn Thr
 20"
                         19
      (2) INFORMATION FOR SEQ ID NO:66: TcaBii-syn
            (i) SEQUENCE CHARACTERISTICS:
 25
                 (A) LENGTH: 20 amino acids
                 (B) TYPE: amino acid
                 (C) STRANDEDNESS: single
                 (D) TOPOLOGY: linear
          (ii) MOLECULAR TYPE: protein
 30
           (v) FRAGMENT TYPE: internal
          (xi) SEQUENCE DESCRIPTION: SEQ ID NO:66: TcaBii-syn
           Cys Val Asp Pro Lys Thr Leu Gln Arg Gln Gln Ala Gly Gly Asp
35
           Gly Thr Gly Ser Ser
      (2) INFORMATION FOR SEQ ID NO:67: TcaC-syn
40
           (i) SEQUENCE CHARACTERISTICS:
                 (A) LENGTH: 20 amino acids
                 (B) TYPE: amino acid
                 (C) STRANDEDNESS: single
45
                 (D) TOPOLOGY: linear
          (ii) MOLECULAR TYPE: protein
          (v) FRAGMENT TYPE: internal
         (xi) SEQUENCE DESCRIPTION: SEQ ID NO:67: TcaC-syn
50
           Cys Tyr Lys Ala Pro Gln Arg Gln Glu Asp Gly Asp Ser Asn Ala
           Val Thr Tyr Asp Lys
55
```

	(2)	INFORMATION FOR SEQ ID NO:68: TcbA; -syn
5		(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULAR TYPE: protein (v) FRAGMENT TYPE: internal
10		(xi) SEQUENCE DESCRIPTION: SEQ ID NO:68: TcbA;;-syn
15		Cys Tyr Asn Glu Asn Pro Ser Ser Glu Asp Lys Lys Trp Tyr Phe 1 5 10 15 Ser Ser Lys Asp Asp 20
	(2)	INFORMATION FOR SEQ ID NO:69: TcbA;ii-syn
20	·	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear
25		(ii) MOLECULAR TYPE: protein (v) FRAGMENT TYPE: internal
		(xi) SEQUENCE DESCRIPTION: SEQ ID NO:69: TcbA;;;-syn
30		Cys Phe Asp Ser Tyr Ser Gln Leu Tyr Glu Glu Asn Ile Asn Ala 1 5 10 15 Gly Glu Gln Arg Ala 20
2.5	(2)	INFORMATION FOR SEQ ID NO:70: TcdA; -syn
35		(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 22 amino acids(B) TYPE: amino acid(C) STRANDEDNESS: single
40	•-	(D) TOPOLOGY: linear (ii) MOLECULAR TYPE: protein (v) FRAGMENT TYPE: internal
45		(xi) SEQUENCE DESCRIPTION: SEQ ID NO:70: TcdAii syn
	-	Cys Asn Pro Asn Asn Ser Ser Asn Lys Leu Met Phe Tyr Pro Val 1 5 10 15 Tyr Gln Tyr Ser Gly Asn Thr 20
50	(2)	INFORMATION FOR SEQ ID NO:71: TcdA;ii-syn
55		 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear
60		(ii) MOLECULAR TYPE: protein (v) FRAGMENT TYPE: internal
		(xi) SEQUENCE DESCRIPTION: SEQ ID NO:71: TcdA;ii-syn

Val Ser Gln Gly Ser Gly Ser Ala Gly Ser Gly Asn Asn Leu Ala Phe Gly Ala Gly 5 (2) INFORMATION FOR SEQ ID NO:72: (i) SEQUENCE CHARACTERISTICS: 10 (A) LENGTH: 12 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single -(D) TOPOLOGY: linear (ii) MOLECULAR TYPE: protein 15 (v) FRAGMENT TYPE: N-terminal (xi) SEQUENCE DESCRIPTION: SEQ ID NO:72: 160 kDa - Hb Met Gln Asp Ser Pro Glu Val Ala Ile Thr Thr Leu 20 (2) INFORMATION FOR SEQ ID NO:73: (i) SEQUENCE CHARACTERISTICS: 25 (A) LENGTH: 8 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULAR TYPE: protein 30 (v) FRAGMENT TYPE: N-terminal (xi) SEQUENCE DESCRIPTION: SEQ ID NO:73: 170 kDa - WIR Met Gln Arg Ser Ser Glu Val Ser 35 5 (2) INFORMATION FOR SEQ ID NO:74: (i) SEQUENCE CHARACTERISTICS: 40 (A) LENGTH: 12 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULAR TYPE: protein 45 (v) FRAGMENT TYPE: N-terminal (xi) SEQUENCE DESCRIPTION: SEQ ID NO:74: 180 kDa - H9 Met Gln Asp Ile Pro Glu Val Gln Leu Asn 50 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:75: 170 kDa - Hm(2) INFORMATION FOR SEQ ID NO:75: 55 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 12 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single 60 (D) TOPOLOGY: linear (ii) MOLECULAR TYPE: protein (v) FRAGMENT TYPE: N-terminal 65 Met Gln Asp Ser Pro Glu Val Ser Val Thr Gln Asn

. 10 (2) INFORMATION FOR SEQ ID NO:76: 5 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 15 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single 10 (D) TOPOLOGY: linear (ii) MOLECULAR TYPE: protein (v) FRAGMENT TYPE: N-terminal (xi) SEQUENCE DESCRIPTION: SEQ ID NO:76: 74 kDa - H9 15 Ser Glu Ser Leu Phe Thr Gln Ser Leu Lys Glu Ala Arg Arg Asp 10 20 (2) INFORMATION FOR SEQ ID NO:77: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 14 amino acids (B) TYPE: amino acid 25 (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULAR TYPE: protein (v) FRAGMENT TYPE: N-terminal 30 (xi) SEQUENCE DESCRIPTION: SEO ID NO:77: 71 kDa - Hb Met Asn Leu Ile Glu Ala Lys Leu Gln Glu Asn Arg Asp Ala 35 (2) INFORMATION FOR SEQ ID NO:78: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 15 amino acids 40 (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULAR TYPE: protein (v) FRAGMENT TYPE: N-terminal 45 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:78: 170 kDa - H9 Met Leu Ser Thr Met Glu Lys Gln Leu Asn Glu Ser Gln Arg Asp 5 50 (2) INFORMATION FOR SEQ ID NO:79: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 15 amino acids 55 (B) TYPE: amino acid(C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULAR TYPE: protein 60 (v) FRAGMENT TYPE: N-terminal (xi) SEQUENCE DESCRIPTION: SEO ID NO:79: 109 kDa - Hm Met Leu Asp Ile Met Glu Lys Gln Leu Asn Glu Ser Glu Arg Asp

	(2)	INFORMATION FOR SEQ ID NO:80:
5		 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 8 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear
10		(ii) MOLECULAR TYPE: protein (v) FRAGMENT TYPE: N-terminal
		(xi) SEQUENCE DESCRIPTION: SEQ ID NO:80: 170 kDa - WX-1
15		Met Gln Asp Ser Arg Glu Val Ser 1 5
20	(2)	INFORMATION FOR SEQ ID NO:81:
		(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 12 amino acids(B) TYPE: amino acid(C) STRANDEDNESS: single
25		(D) TOPOLOGY: linear (ii) MOLECULAR TYPE: protein (v) FRAGMENT TYPE: N-terminal
30		(xi) SEQUENCE DESCRIPTION: SEQ ID NO:81: 69 kDa - H9
30		Leu Arg Ser Ala Xxx Ser Ala Leu Thr Thr Leu Leu 1 5 10
35	(2)	INFORMATION FOR SEQ ID NO:82:
40		(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 15 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULAR TYPE: protein (v) FRAGMENT TYPE: N-terminal
45		(xi) SEQUENCE DESCRIPTION: SEQ ID NO:82: 64 kDa - HP88
-		Leu Lys Leu Ala Asp Asn Gly Tyr Phe Asn Glu Pro Leu Asn Val 1 5 10 15
50	(2)	INFORMATION FOR SEQ ID NO:83:
55		(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 15 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULAR TYPE: protein
60		(v) FRAGMENT TYPE: N-terminal
		(xi) SEQUENCE DESCRIPTION: SEQ ID NO:83: 70 kDa - NC-1
65		Leu Lys Leu Ala Asp Asn Ser Tyr Phe Asn Glu Pro Leu Asn 1 5 10 15

	(2)	INFORMATION FOR SEQ ID NO:84:
5		 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 15 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear
10		<pre>(ii) MOLECULAR TYPE: protein (v) FRAGMENT TYPE: N-terminal</pre>
		(xi) SEQUENCE DESCRIPTION: SEQ ID NO:84: 60 kDa - WIR
15		Ser Lys Asp Glu Ser Lys Ala Asp Ser Gln Leu Val Tyr His Thr 1 5 10 15
	(2)	INFORMATION FOR SEQ ID NO:85:
20		 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 14 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear
25		(ii) MOLECULAR TYPE: protein(v) FRAGMENT TYPE: N-terminal
		(xi) SEQUENCE DESCRIPTION: SEQ ID NO:85: 58 kDa - NC-1
30		Met Lys Lys Arg Gly Leu Thr Thr Asn Ala Gly Ala Pro Val 1 5 10
35	(2)	INFORMATION FOR SEQ ID NO:86:
		(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 15 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single
40		(D) TOPOLOGY: linear (ii) MOLECULAR TYPE: protein (v) FRAGMENT TYPE: N-terminal
45		(xi) SEQUENCE DESCRIPTION: SEQ ID NO:86: 60 kDa - WX-12
		Met Leu Asn Pro Ile Val Arg Lys Phe Glu Tyr Gly Glu His Thr 1 5 10 15
50	(2)	INFORMATION FOR SEQ ID NO:87:
55		(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 15 amino acids(B) TYPE: amino acid(C) STRANDEDNESS: single
		(D) TOPOLOGY: linear (ii) MOLECULAR TYPE: protein (v) FRAGMENT TYPE: N-terminal
60		(xi) SEQUENCE DESCRIPTION: SEQ ID NO:87: 60 kDa - Hm
		Ala Glu Ile Tyr Asn Lys Asp Gly Asn Lys Leu Asp Leu Tyr Gly 1 5 10 15
55		

	(2) IN	FORMATION FOR SEQ ID NO:88:
5	,	 i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 15 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear i) MOLECULAR TYPE: protein
10	(v) FRAGMENT TYPE: N-terminal
	(x	i) SEQUENCE DESCRIPTION: SEQ ID NO:88: 140 kDa - Hn
15	<i>1</i>	asn Leu Ile Glu Ala Thr Leu Glu Gln Asn Leu Arg Asp Ala 5 10 19

We claim:

5

10

1. A composition, comprising an effective amount of a *Photorhabdus* protein toxin that has functional activity against an insect.

- 2. The composition of Claim 1, wherein the *Photorhabdus* toxin is produced by a purified culture of *Photorhabdus*, a transgenic plant, baculovirus, or heterologous microbial host.
- 3. The composition of Claim 2, wherein the *Photorhabdus* toxin produced by a purified culture of *Photorhabdus* luminescens.
- 15 4. The composition of Claim 2, wherein the toxin is produced from a purified culture of *Photorhabdus luminescens* strain designated ATCC 55397.
- 5. The composition of Claim 2, wherein the toxin is produced by a purified culture of *Photorhabdus luminescens* strain designated W-14.
- The composition of Claim 1, wherein the toxin is produced by a purified culture of Photorhabdus strain
 designated WX-1, WX-2, WX-3, WX-4, WX-5, WX6, WX-7, WX-8, WX-9, WX-10, WX-11, WX-12, WX-14, WX-15, H9, Hb, Hm, HP88, NC-1, W30, WIR, B2, ATCC# 43948, ATCC# 43949, ATCC# 43950, ATCC# 43951, ATCC# 43952, DEP1, DEP2, DEP3, P. zealandrica, P. hepialus, HB-Arg, HB Oswego, HB Oswego, HB Lewiston, K-122, HMGD, Indicus, GD, PWH-5, Megidis, HF-85, A. Cows, MP1, MP2, MP3, MP4, MP5, GL98, GL101, GL138, GL55, GL217, Or GL257.
- 7. The composition of Claim 2, wherein the toxin is produced from a purified culture of Photorhabdus luminescens strain designated WX-1, WX-2, WX-3, WX-4, WX-5, WX-6, WX-7, WX-8, WX-9, WX-10, WX-11, WX-12, WX-14, WX-15, H9, Hb, Hm, HP88, NC-1, W30, WIR, B2, ATCC# 43948, ATCC# 43949, ATCC# 43950, ATCC# 43951, ATCC# 43952, DEP1, DEP2, DEP3, P. zealandrica, P. hepialus, HB-Arg, HB Oswego, HB Oswego, HB Lewiston, K-122, HMGD, Indicus, GD, PWH-5, Megidis, HF-85, A. Cows, MP1, MP2, MP3, MP4, MP5, GL98, GL101, GL138, GL55, GL217, or GL257.

8. The composition of Claim 1, wherein the toxin is represented by amino acid sequence is SEQ ID NO:12.

- 5 9. The composition of Claim 6, wherein the composition is a mixture of one or more toxins produced from purified cultures of *Photorhabdus*.
- 10. The composition of Claim 1 or 6, wherein the insect is of the order Lepidoptera, Coleoptera, Hymenoptera, Diptera, Dictyoptera, Acarina or Homoptera.
 - 11. The composition of Claim 1 or 6, wherein the insect species is from order Coleoptera and is Southern Corn Rootworm, Western Corn Rootworm, Colorado Potato Beetle, Mealworm, Boll Weevil or Turf Grub.

15

20

25

- 12. The composition of Claim 1 or 6, wherein the insect species is from order *Lepidoptera* and is Beet Armyworm, Black Cutworm, Cabbage Looper, Codling Moth, Corn Earworm, European Corn Borer, Tobacco Hornworm, or Tobacco Budworm.
 - 13. The composition of Claim 1 or 6, wherein the toxin is formulated as a sprayable insecticide.
 - 14. The composition of Claim 1 or Claim 6, wherein the toxin is formulated as a bait matrix and delivered in an above ground or below ground bait station.
- 30 15. A method of controlling an insect, comprising orally delivering to an insect an effective amount of a protein toxin that has functional activity against an insect, wherein the protein is produced by a purified bacterial culture of the genus *Photorhabdus*.
 - 16. The method of Claim 15, wherein the bacterium is a purified culture of *Photorhabdus luminescens*.
- 17. The method of Claim 15, wherein the toxin is produced from a purified culture of *Photorhabdus luminescens* strain designated ATCC 55397.

18. The method of Claim 16, wherein the toxin is produced from a purified culture of *Photorhabdus luminescens* strain designated W-14.

19. The method of Claim 15, wherein the toxin is
produced from a purified culture of Photorhabdus strains
designated WX-1, WX-2, WX-3, WX-4, WX-5, WX-6, WX-7, WX-8, WX9, WX-10, WX-11, WX-12, WX-14, WX-15, H9, Hb, Hm, HP88, NC-1,
W30, WIR, B2, ATCC# 43948, ATCC# 43949, ATCC# 43950, ATCC#
10 43951, ATCC# 43952, DEP1, DEP2, DEP3, P. zealandrica, P.
hepialus, HB-Arg, HB Oswego, HB Oswego, HB Lewiston, K-122,
HMGD, Indicus, GD, PWH-5, Megidis, HF-85, A. Cows, MP1, MP2,
MP3, MP4, MP5, GL98,
GL101, GL138, GL155, GL217, or GL257.

15

20

25

30

20. The method of Claim 15, wherein the toxin is produced from a purified culture of Photorhabdus luminescens strains designated WX-1, WX-2, WX-3, WX-4, WX-5, WX-6, WX-7, WX-8, WX-9, WX-10, WX-11, WX-12, WX-14, WX-15, H9, Hb, Hm, HP88, NC-1, W30, WIR, B2, ATCC# 43948, ATCC# 43949, ATCC# 43950, ATCC# 43951, ATCC# 43952, DEP1, DEP2, DEP3, P. zealandrica, P. hepialus, HB-Arg, HB Oswego, HB Oswego, HB Lewiston, K-122, HMGD, Indicus, GD, PWH-5, Megidis, HF-85, A. Cows, MP1, MP2, MP3, MP4, MP5, GL98, GL101, GL138, GL155, GL217, or GL257.

21. The method of Claim 19, wherein a mixture of one or more toxins is produced from a purified culture of Photorhabdus and said toxins are orally delivered to an insect.

22. The method of Claim 15, wherein the toxin is produced by a prokaryotic host transformed with a gene encoding the toxin.

- 23. The method of Claim 15, wherein the toxin is produced by a eukaryotic host transformed with a gene encoding the toxin.
- 40 24. The method of Claim 23, wherein the eukaryotic host is baculovirus.

25. The method of Claim 15 or 19, wherein the insect is of the order Lepidoptera, Coleoptera, Hymenoptera, Diptera, Dictyoptera, Acarina or Homoptera.

- 5 26. The method of Claim 15 or 19, wherein the insect species is from order Coleoptera and is Southern Corn Rootworm, Western Corn Rootworm, Colorado Potato Beetle, Mealworm, Boll Weevil or Turf Grub.
- 27. The method of Claim 15 or 19, wherein the insect species is from order Lepidoptera and is Beet Armyworm, Black Cutworm, Cabbage Looper, Codling Moth, Corn Earworm, European Corn Borer, Tobacco Hornworm, or Tobacco Budworm.
- 15 28. The method of Claim 15 or 19, wherein the toxin is formulated as a sprayable insecticide.
- 29. The method of Claim 15 or Claim 19, wherein the toxin is formulated as a bait matrix and delivered in an above ground or below ground bait station.
 - A method of isolating a gene coding for a protein subunit, comprising the steps of: constructing at least one RNA or DNA oligonucleotide molecule that corresponds to at least a part of a DNA coding region of an amino acid sequence selected from a group consisting of SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO: 13, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:19, SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:22, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:36, SEQ ID NO:37, SEQ ID NO:38, SEQ ID NO:39, SEQ ID NO:40, SEQ ID NO:41, SEQ ID NO:42, SEQ ID NO:43, SEQ ID NO:62, SEQ ID NO:72, SEQ ID NO:73, SEQ ID NO:74, SEQ ID NO:75, SEQ ID NO:76, SEQ ID NO:77, SEQ ID NO:78, SEQ ID NO:79, SEQ ID NO:80, SEQ ID NO:81, SEQ ID NO:82, SEQ ID NO:83, SEQ ID NO:84, SEQ ID NO:85, SEQ ID NO:86, SEQ ID NO:87, and SEQ ID NO:88, wherein the nucleotide molecule is used to isolate genetic material from Photorhabdus or Photorhabdus luminescens.

40

25

30

35

31. A method for expressing a protein produced by a purified bacterial culture of the genus *Photorhabdus* in a prokaryotic or eukaryotic host in an effective amount so that

the protein has functional activity against an insect, wherein the method comprises: constructing a chimeric DNA construct having 5' to 3' a promoter, a DNA sequence encoding a protein, a transcription terminator, and then transferring the chimeric DNA construct into the host.

32. The method of Claim 31, wherein the protein has functional activity against insects selected from a group consisting of Coleoptera, Lepidoptera, Diptera, Homoptera, Hymenoptera, Dictyoptera, and Acarina.

5

- The method of Claim 31, wherein the protein encoded by the DNA sequence has an N-terminal amino acid sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ 15 ID NO:7, SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO: 13, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:19, SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:22, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:36, SEQ ID NO:37, SEQ ID NO:38, SEQ ID NO:39, SEQ ID NO:40, SEQ ID NO:41, SEQ ID 20 NO:42, SEQ ID NO:43, SEQ ID NO:62, SEQ ID NO:72, SEQ ID NO:73, SEQ ID NO:74, SEQ ID NO:75, SEQ ID NO:76, SEQ ID NO:77, SEQ ID NO:78, SEQ ID NO:79, SEQ ID NO:80, SEQ ID NO:81, SEQ ID NO:82, SEO ID NO:83, SEQ ID NO:84, SEQ ID NO:85, SEQ ID NO:86, SEQ ID 25 NO:87, and SEQ ID NO:88.
- 34. The method of Claim 31, wherein the protein encoded by the DNA sequence includes the amino acid sequence selected from the group consisting of SEQ ID NO:12, SEQ ID NO:26, SEQ ID NO:28, SEQ ID NO:30, SEQ ID NO:32, SEQ ID NO:34, SEQ ID NO:35, SEQ ID NO:47, SEQ ID NO:49, SEQ ID NO:51, SEQ ID NO:53, SEQ ID NO:55, SEQ ID NO:57, SEQ ID NO:59, and SEQ ID NO:61.
- 35. A chimeric DNA construct, adapted for expression in a prokaryotic or eukaryotic host comprising, 5' to 3' a transcriptional promoter active in the host; a DNA sequence encoding a *Photorhabdus* protein that has functional activity against an insect; and a transcriptional terminator.
- 36. A chimeric DNA construct of Claim 35, wherein the protein encoded by the DNA sequence has an N-terminal amino acid sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ

ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO: 13, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:19, SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:22, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:36, SEQ ID NO:37, SEQ ID NO:38, SEQ ID NO:39, SEQ ID NO:40, SEQ ID NO:41, SEQ ID NO:42, SEQ ID NO:43, SEQ ID NO:62, SEQ ID NO:72, SEQ ID NO:73, SEQ ID NO:74, SEQ ID NO:75, SEQ ID NO:76, SEQ ID NO:77, SEQ ID NO:78, SEQ ID NO:79, SEQ ID NO:80, SEQ ID NO:81, SEQ ID NO:82, SEQ ID NO:83, SEQ ID NO:84, SEQ ID NO:85, SEQ ID NO:86, SEQ ID NO:87, and SEQ ID NO:88.

- 37. The chimeric DNA construct of Claim 35, wherein the protein encoded by the DNA sequence has an amino acid sequence selected from the group consisting of SEQ ID NO:12, SEQ ID NO:26, SEQ ID NO:28, SEQ ID NO:30, SEQ ID NO:32, SEQ ID NO:34, SEQ ID NO:35, SEQ ID NO:47, SEQ ID NO:49, SEQ ID NO:51, SEQ ID NO:53, SEQ ID NO:55, SEQ ID NO:57, SEQ ID NO:59, and SEQ ID NO:61.
- 20 38. The chimeric DNA construct of Claim 35, wherein the DNA sequence encoding the *Photorhabdus luminescens* protein is selected from the group comprising SEQ ID NO:11, SEQ ID NO:25, SEQ ID NO:27, SEQ ID NO:29, SEQ ID NO:31, SEQ ID NO:33, SEQ ID NO:46, SEQ ID NO:48, SEQ ID NO:50, SEQ ID NO:52, SEQ ID NO:54, SEQ ID NO:56, SEQ ID NO: 58, and SEQ ID NO:60.
 - 39. The chimeric DNA construct of Claim 35, wherein the host is baculovirus or a plant cell.
- 40. An isolated and substantially purified preparation comprising, a DNA molecule capable of encoding an effective amount of a protein that is produced by a bacterium of the genus *Photorhabdus* and that has functional activity against an insect.

35

10

- 41. The preparation of Claim 40, wherein the bacterium is Photorhabdus luminescens.
- 42. A purified preparation comprising, a protein
 40 produced by *Photorhabdus* or *Photorhabdus luminescens* having an N-terminal amino acid sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ

ID NO:9, SEQ ID NO:10, SEQ ID NO: 13, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:19, SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:22, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:36, SEQ ID NO:37, SEQ ID NO:38, SEQ ID NO:39, SEQ ID NO:40, SEQ ID NO:41, SEQ ID NO:42, SEQ ID NO:43, SEQ ID NO:62, SEQ ID NO:72, SEQ ID NO:73, SEQ ID NO:74, SEQ ID NO:75, SEQ ID NO:76, SEQ ID NO:77, SEQ ID NO:78, SEQ ID NO:79, SEQ ID NO:80, SEQ ID NO:81, SEQ ID NO:82, SEQ ID NO:83, SEQ ID NO:84, SEQ ID NO:85, SEQ ID NO:86, SEQ ID NO:87, and SEQ ID NO:88.

10

15

43. A purified protein preparation comprising, a protein that has an N-terminal amino acid sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, and SEQ ID NO:10, SEQ ID NO: 13, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:19, SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:22, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:38, SEQ ID NO:39, SEQ ID NO:40, SEQ ID NO:41, SEQ ID NO:42, SEQ ID NO:43, SEQ ID NO:62, SEQ ID NO:72, SEQ ID NO:73, SEQ ID NO:74, SEQ ID NO:75, SEQ ID NO:76, SEQ ID NO:77, SEQ ID NO:78, SEQ ID NO:79, SEQ ID NO:80, SEQ ID NO:81, SEQ ID NO:82, SEQ ID NO:83, SEQ ID NO:84, SEQ ID NO:85, SEQ ID NO:86, SEQ ID NO:87, and SEQ ID NO:88.

25

30

35

- 44. A purified protein preparation comprising, a protein selected from the group of SEQ ID NO:12, SEQ ID NO:26, SEQ ID NO:28, SEQ ID NO:30, SEQ ID NO:32, SEQ ID NO:34, SEQ ID NO:35, SEQ ID NO:47, SEQ ID NO:49, SEQ ID NO:51, SEQ ID NO:53, SEQ ID NO:55, SEQ ID NO:57, SEQ ID NO:59, and SEQ ID NO:61.
- 45. A purified DNA preparation comprising, a DNA sequence selected from the group consisting of SEQ ID NO:11, SEQ ID NO:25, SEQ ID NO:27, SEQ ID NO:29, SEQ ID NO:31, SEQ ID NO:33, SEQ ID NO:46, SEQ ID NO:48, SEQ ID NO:50, SEQ ID NO:52, SEQ ID NO:54, SEQ ID NO:56, SEQ ID NO:58 and SEQ ID NO:60, wherein the DNA sequence is isolated from its native host.
- 46. A purified protein preparation comprising, a
 40 Photorhabdus luminescens protein with at least one subunit
 having an approximate molecular weight between 18 kDa to about
 230 kDa; between about 160 kDa to about 230 kDa; 100 kDa to

160 kDa; about 80 kDa to about 100 kDa; or about 50 kDa to about 80 kDa.

- 47. A purified protein preparation comprising, a Photorhabdus luminescens protein with at least one subunit having an approximate molecular weight of about 280 kDa.
 - 48. A substantially pure microorganism culture comprising, ATCC 55397.

10

30

35

49. The culture of Claim 48, wherein the culture is a derivative of ATCC 55397 that produces a protein toxin that has functional activity against an insect.

- 15 50. A transgenic plant comprising in its genome, a chimeric artificial gene construction imbuing the plant with an ability to express an effective amount of a *Photorhabdus* protein that has functional activity against an insect.
- 20 51. The transgenic plant of Claim 50, wherein the plant is transformed using acceleration of genetic material coated onto microparticles directly into cells, Agrobacteria, whiskers, or electroporation techniques
- 52. The transgenic plant of Claim 50, wherein the selectable marker is selected from the group consisting of kanamycin, neomycin, glyphosate, hygromycin, methotrexate, phosphinothricin (bialophos), chlorosulfuron, bromoxynil, dalapon and the like.
 - 53. The transgenic plant of Claim 50, wherein the promoter is selected from the group consisting of octopine synthase, nopaline synthase, mannopine synthase, 35S, 19S, 35T, ribulose-1,6-bisphosphate (RUBP) carboxylase small subunit (ssu), beta-conglycinin, phaseolin, alcohol dehydrogenase (ADH), heat-shock, ubiquitin, zein, oleosin, napin, or acyl carier protein (ACP).
- 54. The transgenic plant of Claim 50, wherein
 40 embryogenic tissue, callus tissue type I or II, hypocotyl,
 meristem, or plant tissue during dedifferentiation is used in
 preparing the transgenic plant.

55. The transgenic plant of Claim 50, wherein the chimeric gene is a DNA sequence which encodes a *Photorhabdus* protein that has functional activity against an insect and at least one codon of the gene has been modified so that the codon is a plant preferred codon.

- 56. A method of controlling an insect comprising orally delivering to an insect an effective amount of a protein toxin, wherein the protein is produced by a transgenic plant, which said insect feeds.
- 57. A composition of matter, comprising a purified DNA sequence from a purified bacterial culture from the genus.

 15. Photorhabdus.
 - 58. A substantially pure microorganism culture comprising,
- 20 H9.

10

59. A substantially pure microorganism culture comprising,
Hb.

- $\,$ 60. A substantially pure microorganism culture comprising, $\,$ Hm.
- 30 61. A substantially pure microorganism culture comprising,
 HP88.
- 62. A substantially pure microorganism culture 35 comprising, NC-1.
 - 63. A substantially pure microorganism culture comprising,
- 40 W30.
 - 64. A substantially pure microorganism culture comprising,

WIR.

65. A substantially pure microorganism culture comprising,

- 5 B2.
 - 66. A substantially pure microorganism culture comprising, P. zealandrica.
- 10 67. A substantially pure microorganism culture comprising, P. hepialus.
 - 68. A substantially pure microorganism culture comprising, HB-Arg.

15

- 69. A substantially pure microorganism culture comprising, HB Oswego.
- 70. A substantially pure microorganism culture 20 comprising, HB Lewiston.
 - 71. A substantially pure microorganism culture comprising, K-122.
- 25 72. A substantially pure microorganism culture comprising, HMGD.
 - 73. A substantially pure microorganism culture comprising, Indicus.

- 74. A substantially pure microorganism culture comprising, GD.
- 75. A substantially pure microorganism culture 35 comprising, PWH-5.
 - 76. A substantially pure microorganism culture comprising, Megidis.
- 40 77. A substantially pure microorganism culture comprising, HF-85.

78. A substantially pure microorganism culture comprising, A. Cows.

- 79. A substantially pure microorganism culture 5 comprising, MP1.
 - 80. A substantially pure microorganism culture comprising, MP2.
- 10 81. A substantially pure microorganism culture comprising, MP3.
 - 82. A substantially pure microorganism culture comprising, MP4.
- 83. A substantially pure microorganism culture comprising, MP5.

15

30

- 84. A substantially pure microorganism culture 20 comprising, GL98.
 - 85. A substantially pure microorganism culture comprising, GL155.
- 25 86. A substantially pure microorganism culture comprising, GL101.
 - 87. A substantially pure microorganism culture comprising, GL138.
 - 88. A substantially pure microorganism culture comprising, GL217.
- 89. A substantially pure microorganism culture 35 comprising, -GL257.
 - 90. A method of making an antibody against a protein fragment that is part of a protein having functional activity, where the protein is produced by bacteria of the Enterobacteracaea family, wherein the method comprises:
 - a) isolating a fragment of the protein, where the protein fragment is at least six amino acids;

b) immunizing a mammalian species with the protein fragment; and

- c) harvesting serum containing antibody or antibody from the spleen of the mammalian species, where the antibody harvested is antibody to the protein fragment having functional activity.
- 91. The method of Claim 1, wherein the protein fragment is selected from the group consisting of SEQ ID NO:63, SEQ ID NO:64, SEQ ID NO:65, SEQ ID NO:66, SEQ ID NO:67, SEQ ID NO:68, SEQ ID NO:69, SEQ ID NO:70, and SEQ ID NO:71.
- 15 92. The method of Claim 90, wherein the bacteria is from the genus *Photorhabdus*.
 - 93. The method of Claim 90, wherein the bacteria is from the genus *Photorhabdus luminescens*.
 - 94. A method of selecting a DNA fragment which encodes a portion of a protein that has functional activity, where the protein is produced from a bacteria of the Enterobacteracaea family, wherein the method comprises:
 - a) isolating a fragment of the DNA sequence having at least 30 nucleotides;
- b) tagging the DNA fragment with a radioactive or 30 chemical agent;

20

25

- c) hybridizing the DNA fragment to a DNA library, where the DNA library is an Enterobacteracaea cDNA or Enterobacteracaea genomic library; and.
- d) selecting the fragment that is hybridized to the DNA in the library that encodes for the protein that has functional activity.
- 40 95. The method of Claim 94, wherein the bacteria is from the genus *Photorhabdus*.

96. The method of Claim 95, wherein the bacteria is from the genus Photorhabdus luminescens.

- 97. A method of selecting a DNA fragment which encodes a portion of a protein that has functional activity, where the protein is produced from a bacteria of the *Enterobacteracaea* family, wherein the method comprises:
- a) isolating at least two primers, where a primer is a 10 fragment of DNA having at least twelve nucleotides;
 - b) using the primers from step a), amplifying a DNA fragment from Enterobacteracaea by using primers with polymerase chain reaction technology and purifying the DNA fragment;
 - c) tagging the purified DNA fragment with a radioactive or chemical agent;
- d) hybridizing the purified DNA fragment to a DNA library, where the DNA library is an *Enterobacteracaea* cDNA or *Enterobacteracaea* genomic library; and
- e) selecting a DNA fragment that is equal or larger in size to the purified DNA fragment from the library, where the selected DNA fragment or portion thereof encodes for a protein that has functional activity.
- 98. The method of Claim 97, wherein the bacteria is from 30 the genus *Photorhabdus*.
 - 99. The method of Claim 98, wherein the bacteria is fromthe genus Photorhabdus luminescens.

g	8	Gly		ğ	ğ	Ser	9	3	ren Len	FE	3	Val				
ည္တ	ည္ပ	Gly		89	ဗ္ဗ	Ala	35	Ag	Ser	GGT	ర్ట	Gly				
g	8	Gly		ATG	TAC	Net	TA	A	Leu	160	KG	ς ζ				
¥	E	Lys		g	8	Gly	8	g	Ωγ	3	E	អូ	8	g	Arg	-
8	89	Pro		GAT	CIA	Asp	ដូ	g	6	18	88	Trp	g	ដូ	Arg	
CTT	\$	Leu		8	g	Pro	g	8	Ala	သင္တ	8	G L Y	TGA	ACT	:	1
g	Ş	Ser		8	g	Cly.	ğ	ध्र	五	M	9	II P			된	P2.3.5R
g	ဗ္ဗ	Leu				Ala							8	E	นูซ	8
AB	អ៊ី	Thr		ដូ	g	Ala	ğ	ដ្ឋ	Arg	170	25	200	CII	₹5	Leu	
K	121	Thr				Asn						Pro				*
Ħ	B	118		g	မွ	Leu	ğ	B	¥	8	8	ਬੁ	g	F	His	
ន្ត	88	Ser		ర్ట	ខ្ល	Ala	18	ğ	Ser	AAT	444	Asn	3	H	Gh	
ST.	ğ	Val				ยาก										
3	E	Glu		8	8	Ωλ	8	8	Pro	g	8	A.	8	8	Arg	
8	ဗ္ဗ	Pro		ATG	130	Met	TTA	M	Leu	BA	ğ	Ser	ð	ដូ	Arg	
TGT	KZ	Çγs	2Psh	ဗ္ဗ	8	Gly	8	8	Pro	AC.	110	Z L	200	35	Ser	
ধ	S T	Asp		AAT	TA	Asn	23	S	<u>2</u>	AGC	170	8	ATT	₹	116	
3	g	นุย		ATC	35	116	ğ	ğ	3	3	AIG	4	ğ	ध्र	Ser	
ATG	130	Met		gg	g g	Ala	CTA			ATT	2	110	ATG	35	Met	
-		^		28		20₽	115	•	38	172	•	28	229		17	

FIG

4			
•			
	•		
			· <u>-</u>

FIG. 2 Plasmids used in sequencing the Ica locus. CM = Chloramphenicol resistance gene. ORF = Open Reading Frame,

			f ^a			
						-
						v*-
	***			•		
					ş	
				Ţ.		
*					i.	
						•

FIG. 3 Physical Map of DNA fragments of *tcb* locus. Estimated distance between fragments given in nucleotides.

			Control of the San San San San San San San San San San
			· .
			Y_
			•
	₹.		*
•			
			-
			• -
			-
			•

FIG. 4A

			* -
			• -
		• 1	
4.			
•			
**			• -
			• -
- F			
			,

TcbA	2090 DSYSQLYEEN		2110 LRSESAIESQ	2120 GAQISRMAGA	2130 GVDMAPNIFG
TcaBii	170 khYSdLingg	180 lsAaEiagLt	190 LRStamI-tn	200 Gvatglliag	210 GinavPNvFG>
TcbA	2140 LADGGMHYGA		2160 LSASAKMVDA	2170 EKVAQSEIYR	
TcaBii	220 LAnGGsewGA	230 pligsgqatq	240 vgAgiqdqsA	250 gisevtagYq -vv-v^-v^^	260 RRGeEWalQR>
TcbA	2190 DNAQAEINQL		2210 REAAEMQKEY	2220 LKTQQAQAQA	
TcaBii	270 DiAdnEItQL	280 dAQiqSLqeq	290 itmAqkQitl v-v^^-^v-v	300 seTeQAnAQA	310 iydlqttrFt>
TcbA	2240 NQALYSWLRG	2250 RLSGIYFQFY	2260 DLAVSRCLMA	2270 EQSYQWEAND	2280 NSISFVKPGA
TcaBii	320 gQALYnWmaG	330 RLSalYyQmY	340 DstlpiClqp	kaalvqEgek	360 eSdSlfqvpv> ^^v^^v^v-
TcbA	2290 WQGTYAGLLC	2300 GEALIONLAO		2320 RALEVERTVS	
TcaBii	370 WndlwqGLLa	380 GEgLsseLqk	390 ldaiwLargg	400 igLEaiRTVS	410 LdtlfgtG>
TcbA	2340 NDRFNLAEQI	2350 PALLDKGEGT		2370 ANAILSASVK	2380 LSDLKLGTDY
TcaBii	tLsEnI	420 nkvLn-GEtv	430 spsggvtLaL	440 tgdIfgAtld	450 LSqLgLdnsY>
TcbA	2390 PDSIVGSNKV			2420 QAMLSYGGST	
TcaBii				490 eAtLvmGaea	500 aLshGvndgg>
TcbA	2440 VSHGTNDSGQ	2450 FOLDFNDGKY			
TcaBii		520 F-LpF-eGrd			

FIG. 4B

5/9

		and the second s
		•
		5 ~
<i>y</i>	â)	
		٠.
		• •
		į

•

6/9

• • , .

FIG.6A loci tca and tcb, primary gene products, and derived peptides

	•
7 -	• -
•	
,	
·	
•	
	. :

FIG. 6B Loci tcc and tcd, primary gene products, and derived peptides.

8/9

and the second

•