Санкт-Петербургский национальный исследовательский институт

информационных технологий, механики и оптики

Факультет фотоники и оптоинформатики

ИІТМО

ОТЧЁТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №4.04

"Определение показателя преломления стеклянной пластины интерференционным методом"

Группа: V3203	К работе допущен:	
Студент: Срывкин Н.А., Ганиева И.И.	Работа выполнена:	
Преподаватель: Сидельников А.А.	К отчёту допущен:	
•	, , <u></u>	

1. Цель работы

• Опредедение показателя преломления стеклянной пластины с помощью интерференционной картины полос равного наклона и расчет порядка интерференции для центра картины

Задачи

- Определение координат минимумов интерференционных колец
- Определение показателя преломления пластины
- Измерение толщины пластины

3. Объект исследования

• Плоскопараллельная стеклянная пластина

4. Метод исследования

• При изменении положения стеклянной пластины наблюдается картина интерференции. Далее, при помощи измеренных диаметров интерференционных колец, находится показатель преломления пластины

5. Рабочие формулы и исходные данные

• Показатель преломления пластины n:

$$n = \frac{d(D_2^2 - D_1^2)}{16L^2 \Delta m \lambda} \tag{1}$$

где d – толщина пластины, L – расстояние от пластины до экрана, D – диаметр колец, λ – длина волны

• Порядок интерференции в центре интерференционной картины:

$$m = \frac{2dn}{\lambda} \tag{2}$$

• Относительная погрешность для величины вида: $z=Ka^{\alpha}b^{\beta}...$, где K – постоянная величина; a,b – символы прямо измеренных величин; α,β – показатели степени, выраженные целыми, дробными, отрицательными или положительными числами:

$$\varepsilon_z = \sqrt{\left(\alpha \frac{1}{a} \Delta_a\right)^2 + \left(\beta \frac{1}{b} \Delta_b\right)^2 + \dots \cdot 100\%} \tag{3}$$

• Абсолютная погрешность:

$$\Delta_z = \frac{\hat{Z}\varepsilon_z}{100} \tag{4}$$

• Абсолютная погрешность функции вида z = z(a, b):

$$\Delta_z = \sqrt{\left(\frac{\delta f}{\delta a} \Delta_a\right)^2 + \left(\frac{\delta f}{\delta b} \Delta_b\right)^2} \tag{5}$$

• Среднеквадратичное отклонение:

$$\sigma = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \hat{x})^2}{n(n-1)}}$$
 (6)

• Доверительный интервал случайной погрешности:

$$\Delta_x = t_{a,n} S_x \tag{7}$$

- $d = 15.610 \pm 0.005$ mm
- $L = 53.00 \pm 0.01$ см
- $\lambda = 632.82 \pm 0.01$ нм

6. Измерительные приборы

№	Наименование Используемый диапазон		Погрешность
1	Линейка	70 см	0.01 см

7. Экспериментальная установка (перечень схем, которые составляют Приложение 1):

Figure 1: Схема экспериментальной установки. 1 – лазер, 2 – микрообъектив, 3 – плоскопараллельная пластина, 4 – экран

8. Результаты измерений и их обработки (таблицы, примеры расчётов):

Nº	Х, мм	Ү, мм	L, мм	d, мм	D, мм	$m{D^2}$, mm 2
1	6	6	- 530		12	144
2	10	11			21	441
3	13	14.5			27.5	756.25
4	15	16		15 (1	31	961
5	17	18		15.61	35	1225
6	19	20			39	1521
7	20	21			41	1681
8	22	22			44	1936

- Диаметры колец могут быть получены с помощью суммы координат X и Y
- Пример расчёта для кольца №1: $D_1 = 6 + 6$ мм = 12 мм
- Для расчета показателя преломления стеклянной пластины были выбраны три пары колец, отличающихся на по порядку интерференции на 3, а именно: (1, 4), (3, 6), (5, 8)
- Разность квадратов диаметров колец:

Пара (1, 4):
$$D_2^2-D_1^1=(961-144)\ \mathrm{mm^2}=817\ \mathrm{mm^2}$$
 Пара (3, 6): $D_6^2-D_3^1=(1521-765.25)\ \mathrm{mm^2}=755.75\mathrm{mm^2}$ Пара (5, 8): $D_8^2-D_5^1=(1936-1225)\ \mathrm{mm^2}=711\ \mathrm{mm^2}$

• Среднее значение разности квадратов:

$$\hat{D} = \frac{D_{1,4} + D_{3,6} + D_{5,8}}{3} = \frac{817 + 755.75 + 711}{3} \text{ mm}^2 = 761.25 \text{ mm}^2$$
 (8)

• По формуле (1) рассчитаем показатель преломления пластины:

$$n = \frac{15.61 \cdot 761.25}{16 \cdot 530^2 \cdot 632.82 \cdot 10^{-6} \cdot 3} = 1.39 \tag{9}$$

• По формуле (2) рассчитаем порядок интерференции в центре:

$$m = \frac{2 \cdot 15.61 \cdot 1.39}{632.82 \cdot 10^{-6}} = 68575 \tag{10}$$

9. Расчёт погрешностей измерений (для прямых и косвенных измерений)

• Абсолютная погрешность диаметра колец может быть найдена по формуле:

$$\Delta_D = 2.36 \cdot \sqrt{\frac{1}{N(N-1)} \sum_{n=1}^{8} \left(D_n - \hat{D} \right)^2} = 9.3 \text{ mm}^2$$
 (11)

• По формуле (3) найдем относительную погрешность для показателя преломления:

$$\varepsilon_n = \sqrt{\left(\frac{1}{d}\Delta_d\right)^2 + \left(-2\cdot\frac{1}{L}\Delta_L\right)^2 + \left(-\frac{1}{\lambda}\Delta_\lambda\right)^2 + \left(\frac{1}{D}\Delta_D\right)^2} \cdot 100\% = \qquad (12)$$

$$=\sqrt{\left(\frac{1}{15.61}\cdot 0.1\right)^2+\left(-2\cdot \frac{1}{530}\cdot 0.1\right)^2+\left(-\frac{1}{632.82}\cdot 0.01\right)^2+\left(\frac{1}{761.25}\cdot 9.3\right)^2}\cdot 100\%=1.26\%$$

• По формуле (4) абсолютная погрешность равна:

$$\Delta_n = \frac{1.26 \cdot 1}{100} = 0.013 \tag{13}$$

• Аналогично найдем погрешность для порядка интерференции:

$$\varepsilon_m = \sqrt{\left(\frac{1}{d}\Delta_d\right)^2 + \left(-\frac{1}{\lambda}\Delta_\lambda\right)^2 + \left(\frac{1}{n}\Delta_n\right)^2} \cdot 100\% \tag{14}$$

$$\varepsilon_{m} = \sqrt{\left(\frac{1}{15.61} \cdot 0.1\right)^{2} + \left(-\frac{1}{632.82} \cdot 0.01\right)^{2} + \left(\frac{1}{1.39} \cdot 0.013\right)^{2}} \cdot 100\% = 1.134\% (15)$$

$$\Delta_m = \frac{68575 \cdot 1.134}{100} = 777.64 \tag{16}$$

10. Окончательные результаты

- Показатель преломления: $n = (1390 \pm 13) \cdot 10^{-3}$
- Порядок интерференции: $m = (68.6 \pm 0.8) \cdot 10^3$

11. Выводы и анализ результатов работы

• В ходе лабораторной работы был определен показатель преломления стеклянной пластины и порядок интерференции в центре картины с помощью интерференционного метода. Порядок интерференции $m=(68.6\pm0.8)\cdot10^3$. Показатель преломления: $n=(139\pm13)\cdot10^{-3}$, что не совсем совпадает с $n_{\text{табл}}=1.50$ из-за трудностей измерения радиусов колец, так как их размер очень маленький.