DE LA RECHERCHE À L'INDUSTRIE

Master 2 SeCReTS Sécurité applicative

Kerberos

Introduction et historique

Kerberos & Herakies poterie grecque vie av JC

- kerberos vient de la mythologie grecque : chien à 3 têtes qui garde l'entrée des enfers
- nom choisi pour le service d'authentification d'un projet du MIT (Massachusetts Institute of Technology) appelé Athena (1983)
- protocole d'authentification réseau
- v1, v2, v3 : versions de developpement
- v4: 1989
- actuelle : v5, de 1993 (RFC 4120).

Qu'est ce kerberos?

Basé sur

- Needham et Schroeder "Using Encryption for Authentication in Large Networks of Computers" (1978)
- Denning et Sacco "Time stamps in Key distribution protocols" (1981).

Kerberos permet l'authentification des utilisateurs et des services sur un réseau

Qu'est ce kerberos?

Particularités de Kerberos

- Part de la supposition que le réseau peut être non sûr
 - Les données sur le réseau peuvent êtres lues ou modifiées
 - les adresses peuvent être faussées
- Utilise une tierce partie de confiance
 - Toutes les entités du réseau (utilisateurs et services) font confiance à cette tierce partie
- utilise des mécanismes de chiffrement basés sur des algorithmes à clefs symétriques
 - Tous les principaux partagent cette clef secrète avec le serveur kerberos

Intérêts du protocole

- centraliser l'authentification
 - authentification des utilisateurs et des services
- fournir un moyen sûr d'authentification à travers un réseau non-sûr
 - pas de transmission en clair de mots de passe, utilisation de *tickets* pour prouver l'identité
- méthode d'authentification unique (SSO)
 - on s'authentifie une seule fois pour accéder à l'intégralité des services *kerberisés*

Implémentations

- MIT
- Heimdal
- Microsoft (Windows 2000)
- MacOS X

Rappels de cryptographie

Chiffrement symétrique

- la même clef est utilisée pour chiffrer et déchiffrer
- exemple : DES, 3DES, AES

Chiffrement asymétrique

- utilisation d'un couple de clefs (publique et privée)
- ce qui est chiffrée par l'une ne peut être déchiffré que par l'autre
- exemple : RSA, DSA

- Authentification à l'aide d'algorithme de chiffrement à clefs secrètes
 - Alice initie la communication : client ou utilisateur
 - Bob : service ou serveur applicatif
 - Alice veut accéder au service Bob.

Authentification de Alice via la clef partagée Kab

Authentification mutuelle

Authentification de Alice et Bob via la clef partagée Kab

Authentification mutuelle autre méthode

Authentification de Alice et Bob via la clef partagée K_{ab}

Authentification mutuelle autre méthode (suite)

Authentification de Alice et Bob via la clef partagée K_{ab}

Inconvénients

- peu extensible
- la généralisation à m utilisateurs et à n services implique une distribution préalable de m x n clés partagées

Amélioration possible

- Utiliser une tierce partie avec laquelle tous les utilisateurs et les services partagent leur clé
- avantages
 - gestion centralisée de compte
 - plus facile de sécuriser une base de clés partagées que plusieurs

La charge repose sur Alice

K_{ab}, Alice

Ticket

- Données chiffrées émises par la tierce partie de confiance
- Contient notamment une clef de session unique
- Permet à un utilisateur de s'authentifier auprès d'un service
- Transmet de manière sécurisée :
 - l'identité du client
 - la clef de session partagée par le client et le service.

Protocole Needham-Schroeder

Introduction des timestamps

- utilisés dans la phase d'authentification mutuelle
- introduit les dates d'expiration (limite le rejeu)
- réduit le nombre total de messages dans le protocole
- implique la synchronisation horaire de chaque entité participant à la communication.

Kerberos (presque)

Kerberos utilise ce schéma

- la tierce partie s'appelle le KDC (Key Distribution Center)
- chaque utilisateur et service partage une clé secrète avec le KDC
- à la demande, le KDC génère une clé de session qu'il distribue de manière sécurisée aux parties communicantes
- les parties communicantes se prouvent réciproquement qu'elles connaissent la clé de session

Remarques

- les parties communicantes doivent avoir confiance dans le KDC
- la clé de l'utilisateur est dérivée du mot de passe par l'utilisation d'une fonction de hachage
- la clé d'un service est un nombre aléatoire stocké sur le serveur.

Kerberos simplifié

Royaumes et principaux

- un REALM correspond au domaine géré et controlé par un serveur Kerberos. Par convention, le REALM kerberos correspond au nom du domaine dns en majuscule. Les REALM sont sensibles à la casse.
- principal:
 - chaque entité (utilisateur, ordinateur, service) ont un principal
 - un principal commence par un nom d'utilisateur (ou le nom d'un service) suivi d'une instance optionnelle. Leurs association est unique pour un royaume (REALM) donné
 - pour un service, le principal commence par le type de service suivi de son fqdn

Exemples

- bob@UVSQ.ORG
- HTTP/www.uvsq.org@UVSQ.ORG
- krbtgt/UVSQ.ORG@UVSQ.ORG

Kerberos

Le KDC se décompose en trois parties

- une base de tous les principaux et leurs clefs de chiffrement associées
- l'Authentication Server (AS) :
 - fourni les Ticket Granting Ticket (TGT) chiffrés aux utilisateurs qui se connectent au royaume kerberos.
 - Une fois déchiffré, c'est le TGT qui sera utilisé pour prouver son identité
- le Ticket Granting Service (TGS) :
 - fourni les tickets de services aux utilisateurs
 - il faut fournir un TGT valide ainsi que le nom du service demandé pour obtenir un ticket de service.

TGS (Ticket Granting Service)

 service situé sur le KDC qui permet à l'utilisateur d'obtenir des tickets de service (TS).

Ticket Granting Ticket (TGT)

- ticket utilisé pour accéder au TGS et obtenir des tickets de service
- permet l'échange d'un clé de session
- durée de vie limitée
- partagée par l'utilisateur et le TGS
- le TGT et la clé de session pour le TGS sont stockés sur la station de Alice.

Intérêts

- Permet (avec l'option forwardable) le SSO (Single Sign On)
- Limite l'utilisation du mot de passe :
 - moins de données chiffrées avec la clé secrète de l'utilisateur traverse le réseau
 - on limite l'accès aux données susceptibles d'être soumises à des attaque offline par dictionnaire

Chiffré avec la clef de Alice (K)

Chiffré avec la clef de Bob (K)

Bob Serveur

La pré-authentification

Constat

- dans le schéma précédent, n'importe qui peut obtenir un TGT pour Alice
- et de lancer une attaque off-line par dictionnaire

La Pré-authentification

- impose au client de prouver préalablement son identité au KDC
- Alice doit fournit un timestamp chiffré avec sa clé secrète
- empêche un attaquant d'obtenir facilement des données chiffrées avec la clé secrète d'un utilisateur

Remarque

de telles attaques sont toujours possibles si on "sniff" un TGT...

Quelques captures réseau

Capture AS_REQ

Capture TGS_REQ

Ce qu'il faut retenir

- Kerberos fournit un service réseau jouant le rôle de tierce partie de confiance pour toutes les entités à authentifier
- Kerberos tient une base de données des clefs secrètes des clients de ce service
- Pour un utilisateur, sa clef secrète est son mot de passe haché
- Kerberos connaissant la clef secrète de tout le monde, peut créer des messages pour convaincre une entité de l'identité d'une autre entité
- Kerberos crée aussi des clefs de sessions (clefs secrètes temporaires), distribuées aux clients et aux serveurs (tous deux clients du service Kerberos) :
 - utilisées pour chiffrées les messages entre les deux participants
 - détruites à la fin de la communication.

Références

- Emmanuel Bouillon
- Kerberos, The Definitive Guide, Jason Garman, O'REILLY

Schéma général

