

## **Study Background**

### **Watershed**

- A geographic area that channels precipitation and snowmelt into streams and rivers, ultimately directing water to a larger water body such as a lake, sea, or ocean.
- Watersheds are fundamental units in hydrology as they integrate multiple climatic and geographic factors, making them an essential focus for understanding runoff dynamics.

Runoff efficiency: how effectively watersheds convert precipitation into runoff

Our study examines global **relationships between runoff efficiency**—the ratio of water-year runoff to water-year precipitation—and three key climatic covariates: **the Aridity Index** (AI), the Seasonality Index (SI), and the Snow Fraction (SF).



(1) How do climatic covariates affect runoff efficiency within a watershed?

## Research Questions



(2) What is the average effect of climate covariates on runoff efficiency across watersheds?



(3) To what extent do regional clusters modify the relationship between climate covariates and runoff efficiency?

## **Data**

- Level 1 Year: 38-year period 1981-2019
- Level 2 watershed: 3022 watersheds
- Level 3 BIOME based Clusters
- BIOME-based clusters: A biome is an area classified according to the species that live in that location. Which depends on. temperature range, soil type, and the amount of light and water which are unique to that place.
- E.g. Cluster 4 (Temperate Broadleaf and Mixed Forests, North America): Characterized by temperate climates with humid conditions, year-round precipitation, resulting in moderate to high runoff efficiency.



Edward Le, Joseph Janssen, John Hammond, and Ali A. Ameli. 2023. "The persistence of snow on the ground affects the shape of streamflow hydrographs over space and time: a continental-scale analysis." \*Frontiers in Environmental Science\*, 11. https://doi.org/10.3389/fenvs.2023.1207508

# Data

### Within and between clusters variability



### Within and between watersheds variability



| Level     | ICC    |
|-----------|--------|
| Watershed | 0.5024 |
| Cluster   | 0.3648 |

## **Three-Level Model**

Level 1 - Yearly Variation Within Watersheds

Runoff Efficiency<sub>tik</sub> =  $\beta_{0ik} + \beta_{1ik} (ai_{tik} - \overline{ai}_{ik}) + \beta_{2ik} (si_{tik} - \overline{si}_{ik}) + \beta_{3ik} (sf_{tik} - \overline{sf}_{ik}) + \varepsilon_{tik}$ 

<u>Level 2 - Variability Between Watersheds Within</u> Clusters

Watershed specific average

Yearly deviation from

watershed mean level

$$\beta_{0ik} = \gamma_{00k} + \gamma_{01k} a i_{ik} + \gamma_{02k} s i_{ik} + \gamma_{03k} s f_{ik} + u_{0ik}$$

$$\beta_{1ik} = \gamma_{10k} + u_{1ik}, \beta_{2ik} = \gamma_{20k} + u_{2ik}, \beta_{3ik} = \gamma_{30k} + u_{3ik}$$

<u>Level 3 - Variability Between Regional Clusters</u>

$$\gamma_{00k} = \eta_{000} + r_{0k}, \gamma_{10k} = \eta_{100} + r_{1k}, \gamma_{20k} = \eta_{200} + r_{2k}, \gamma_{30k} = \eta_{300} + r_{3k}$$

## **Model - Reduced Form**

Runoff Efficiency<sub>tik</sub> = 
$$\eta_{000} + \gamma_{01k}\overline{ai}_{ik} + \gamma_{02k}\overline{si}_{ik} + \gamma_{03k}\overline{sf}_{ik}$$
  
 $+ \eta_{100}(ai_{tik} - \overline{ai}_{ik}) + \eta_{200}(si_{tik} - \overline{si}_{ik}) + \eta_{300}(sf_{tik} - \overline{sf}_{ik})$   
 $+ r_{0k} + r_{1k}(ai_{tik} - \overline{ai}_{ik}) + r_{2k}(si_{tik} - \overline{si}_{ik}) + r_{3k}(sf_{tik} - \overline{sf}_{ik})$   
 $+ u_{0ik} + u_{1ik}(ai_{tik} - \overline{ai}_{ik}) + u_{2ik}(si_{tik} - \overline{si}_{ik}) + u_{3ik}(sf_{tik} - \overline{sf}_{ik}) + \epsilon_{tik}$ 

$$\begin{bmatrix} r_{0k} \\ r_{1k} \\ r_{2k} \\ r_{3k} \end{bmatrix} \sim N \begin{pmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \tau_{r_0}^2 & \tau_{r_0r_1} & \tau_{r_0r_2} & \tau_{r_0r_3} \\ & \tau_{r_1}^2 & \tau_{r_1r_2} & \tau_{r_1r_3} \\ & & \tau_{r_2}^2 & \tau_{r_2r_3} \\ & & & \tau_{r_3}^2 \end{bmatrix} \end{pmatrix} \begin{bmatrix} u_{0ik} \\ u_{1ik} \\ u_{2ik} \\ u_{3ik} \end{bmatrix} \sim N \begin{pmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \sigma_{u_0}^2 & \sigma_{u_0u_1} & \sigma_{u_0u_2} & \sigma_{u_0u_3} \\ & \sigma_{u_1}^2 & \sigma_{u_1u_3} \\ & & \sigma_{u_2u_3}^2 \\ & & & \sigma_{u_2}^2 \end{bmatrix} \end{pmatrix}$$

## Results - Fixed Effect



Effect of Climate Factor on Runoff Efficiency of an 'Average' Watershed From Each Cluster

- All other climate factors held at cluster average level
- No yearly fluctuations in all other covariates

| Term        | Estimate | Std. Error | t-value | p-value |
|-------------|----------|------------|---------|---------|
| (Intercept) | 0.498    | 0.026      | 18.983  | < 0.001 |
| mean ai     | -0.149   | 0.005      | -29.067 | < 0.001 |
| centered ai | -0.119   | 0.026      | -4.524  | 0.002   |
| mean si     | -0.089   | 0.007      | -12.161 | < 0.001 |
| centered si | -0.042   | 0.021      | -2.012  | 0.079   |
| mean sf     | 0.241    | 0.022      | 10.787  | < 0.001 |
| centered sf | 0.210    | 0.056      | 3.757   | 0.019   |

Table.1 Fixed Effects Summary



- Some watersheds have greater fluctuations (wider range of x)
- Some clusters are less prone to climate fluctuation (y changes a lot when x change a little, depends on cluster)

## Results - Random Effect

| Group     | Effect      | Variance | Std. Dev. | Correlation          |
|-----------|-------------|----------|-----------|----------------------|
| watershed | (Intercept) | 0.022    | 0.148     |                      |
| watershed | centered ai | 0.019    | 0.138     | -0.24                |
| watershed | centered si | 0.007    | 0.084     | $0.02\ 0.25$         |
| watershed | centered sf | 0.027    | 0.164     | $0.13\ 0.34\ 0.50$   |
| cluster   | (Intercept) | 0.005    | 0.073     |                      |
| cluster   | centered ai | 0.006    | 0.078     | -0.04                |
| cluster   | centered si | 0.004    | 0.062     | 0.27  0.43           |
| cluster   | centered sf | 0.021    | 0.144     | 0.15 - $0.36$ $0.36$ |
| Residual  |             | 0.006    | 0.079     |                      |

### Table.2 Random Effects Summary



## **Conclusions**

Both long-term climatic averages and yearly deviations significantly influence runoff efficiency

### 1. How do climatic covariates affect runoff efficiency within a watershed?

Yearly deviations in climatic covariates significantly influence runoff efficiency. For example, deviations in aridity index negatively impact runoff efficiency, while deviations in snow fraction positively influence it.

### 2. What is the average effect of climatic covariates on runoff efficiency across watersheds?

Watersheds with higher average aridity and seasonality exhibit lower runoff efficiency, whereas those with higher average snow fractions demonstrate improved efficiency.

#### 3. To what extent do regional clusters modify the relationship?

Clusters introduce additional variability, as indicated by random effects at the cluster level, which modify the sensitivity of runoff efficiency to both long-term averages and yearly climatic deviations.

## Thank you!