Homework 8 Statistics 200B Due Apr 4, 2019

1. Consider a Bayesian model in which, conditional on unknown parameter λ , X_1, \ldots, X_n are iid with exponential PDF

$$f(x|\lambda) = \frac{1}{\lambda}e^{-x/\lambda}$$

for x > 0.

- (a) Find the Jeffreys prior for λ .
- (b) Is the Jeffreys prior proper? Why or why not?
- (c) Find the posterior distribution for λ using the Jeffreys prior.
- (d) Is this posterior proper? Why or why not?
- 2. Consider again the earthquake example from Homework 7, Problem 2. Calculate the posterior distribution for λ , this time using the Jeffreys prior. Make a plot of the two posterior densities, under your subjective prior and under the Jeffreys prior. Include a sentence comparing the two.
- 3. Suppose $X|p_1 \sim Bin(n, p_1)$ and $Y|p_2 \sim Bin(m, p_2)$, with X and Y independent given p_1 and p_2 . Let $H_0: p_1 = p_2$, and suppose under H_0 we assign prior distribution $p_1 \sim Unif(0,1)$ (and $p_2 = p_1$) and under $H_1: p_1 \neq p_2$ we assign independent priors $p_1 \sim Unif(0,1)$ and $p_2 \sim Unif(0,1)$.
 - (a) Calculate $f(x, y|H_1)$. Hint: Use the independence assumptions.
 - (b) Calculate $f(x, y|H_0)$.
 - (c) Use (a) and (b) to compute the Bayes factor BF_{10} for comparing H_1 to H_0 .
 - (d) Let p_1 denote the "true" batting average for Albert Pujols and p_2 denote the "true" batting average for Ichiro Suzuki. Consider the data

Pujols: 5146 at bats; 1717 hits

Suzuki: 6099 at bats; 2030 hits

treating each at bat as a Bernoulli trial with probability p_1 or p_2 of getting a hit. Calculate BF_{10} for $H_1: p_1 \neq p_2$ to $H_0: p_1 = p_2$. Explain the level of evidence this indicates for H_1 relative to H_0 .

- 4. The owner of a ski shop must order skis for the upcoming season. Orders must be placed in quantities of 25 pairs of skis. The cost per pair of skis is \$50 if 25 are ordered, \$45 if 50 are ordered, and \$40 if 75 are ordered. The skis will be sold at \$75 per pair. Any skis left over at the end of the year can be sold (for sure) at \$25 per pair. If the owner runs out of skis during the season, she will suffer a loss of "goodwill" among unsatisfied customers. She rates this loss at \$5 per unsatisfied customer. For simplicity, suppose the owner feels that demand for the skis will be 30, 40, 50, or 60 pairs of skis, with probabilities 0.2, 0.4, 0.2, and 0.2, respectively.
 - (a) Describe the parameter space Θ and the space of possible actions A.
 - (b) What is the prior distribution?
 - (c) For each possible $\theta \in \Theta$ and $a \in \mathcal{A}$, compute the loss. (The loss in this case may be negative, representing a good outcome for the shop owner.) Display these possibilities in a matrix.
 - (d) What is the Bayes rule? That is, what action minimizes the Bayes risk? Note that in this example, there is no data, so the frequentist risk is the same as the loss.
- 5. Suppose $X|p \sim Binomial(n,p)$ and $p \sim Beta(\alpha,\beta)$. Suppose also that the loss function $L(p,\hat{p}(x)) = (p \hat{p}(x))^2$.
 - (a) Calculate the posterior risk $r(\hat{p}|x)$ for an arbitrary estimator \hat{p} .
 - (b) For a given x, what value of $\hat{p}(x)$ minimizes the posterior risk? Use this to construct a Bayes estimator.
 - (c) What is the posterior risk for the Bayes estimator you found in (b)? How does it relate to the posterior distribution?
- 6. Let $\Theta = \{\theta_1, \dots, \theta_k\}$ be a finite parameter space. Prove that the posterior mode is the Bayes estimator under zero-one loss.