AutoIncrement性能测试报告

修订历史

版本	修订日期	修订描述	作者	备注	
0.1	2017-09-28	AutoIncrement性能测试报告	李捷荧		

简洁测试结果

负载 类型	MySQL	Cedar 0.3	备注
300线程,单点写	25066	5400	主键自增
300线程,单点写	31575	107867	非主键自增

1测试环境

1.1 每台机器配置

CPU: Intel(R)Xeon(R) CPU E5-2620 * 2, 2 * 6 *2个线程, 主频2000MHz-2500MHz, L3缓存15MB;

内存: 168GB、152GB、158 GB、168GB、80GB、144GB、128 GB、112 GB、144 GB、128 GB;

网络带宽: 1000Mb/s (有少数部分机器之间的网络带宽为100Mb/s);

磁盘IOPS: 76*4=304, 磁盘带宽400MB/s、6500MB/s(读缓存)

1.2 部署情况

三集群,主集群使用1台机器部署UPS和RS,7台机器各部署MS和CS。备集群,每台机器部署一个集群

2测试方法

2.1 自增与非自增性能对比

非主键自增表结构: create table t0(c1 int primary key auto increment, c2 int, c3 varchar(20));

主键自增表结构: create table t1(c1 int primary key auto_increment, c2 int, c3 varchar(20));

分别使用MySQL和Cedar0.3,往表中插入300万行数据,对比QPS和latency

3 结果分析

3.3 自增与非自增性能对比结果

MySQL

非主键自增结果

线程	QPS	QRS (ms)
100	31575	3.1848
90	31959	2.8261
80	31882	2.5194
70	31686	2.2210

主键自增结果

线程	QPS	QRS (ms)
100	25066	4.0016
90	26312	3.4111
80	27126	2.9697
70	29684	2.3703

MySQL性能差别:使用自增QPS约为原来的80%

Cedar0.3三集群

非主键自增结果

线程	QPS	QRS (ms)
100	107867	2.8374
90	101070	2.7221
80	94445	2.5767

主键自增结果

线程	QPS	QRS (ms)
100	5400	54.0884
90	5321	49.7806
80	5292	42.9619

Cedar性能差别:使用自增QPS约为原来的5%