Multiclass object detection using multiclass coupled classifiers and nested classifiers

Rodrigo Verschae and Javier Ruiz-del-Solar Department of Electrical Engineering, Universidad de Chile CIARP, 2008

Introduction

Multiclass Object detection

Object detection: For a given set of object classes, to find, if any, the instances of these classes appearing on the image.

Detection Architecture: Exhaustive search over positions and scales

Adaboost [Schapire & Singer 1999]

- Build additive model: $H(x) = \sum_{t=0}^{I} h_t(x)$
- Add terms to the sum iteratively, greedy minimization of $E_{x\sim S}[\exp(-yH(x))]$.
- Drive focus to wrongly classified examples

Nested Cascade classifiers [Viola & Jones 2001], [Wu et al. 2004]

- Efficient way of organizing object detection
- Asymmetric problem: there are more non-object than object windows.
- Layers must have high true positive rates and low false positive rates, e.g.:
- if n=10, $f_i=0.2$, $d_i=0.999$, then $F=\prod_{i=1}^n f_i \simeq 10^{-6}$, $D=\prod_{i=1}^n d_i \simeq 0.99$
- Nested cascade
 - Allows to reuse information
 - Faster and more robust than the non-nested case

Proposed method

Main Idea: Coupled components

- Fast training
- Few parameters need to be estimated
- Reuse of feature and classifier evaluations

Multiclass formulation

- One class case:
- Training example: (x_i, y_i) , $y_i \in \{-1, 1\}$
- y_i represents the target halfspace:
 - H(x) is in the correct half space $\iff yH(x) \ge 0$
- Multiclass case (Vector Boosting [Huang et al 2007, PAMI])
- Training example: $(x_i, \mathbf{V}_i), \mathbf{V}_i \in \Re$.
- \mathbf{V}_i represents the target sub space defined as the intesection of halfspaces:
 - $\vec{H(x)}$ is in the correct target region $\iff \forall \vec{V_j} \in \mathbf{V}_m, \vec{V_j} \cdot \vec{H}(x) \geq 0$

Generalized Adaboost

- Training set $S = \{(x_i, \mathbf{V}_i)\}_{i=1,...,m}, \ \mathbf{V}_i = \{\vec{V}_i^j\}_i$
- Initialize Weights: $w_{i,j}(0) = 1$
- For t = 0, ..., T
 - Normalized weigths $\{w_{i,j}(t)\}_{i,j}$ so that they add to one
 - Select \vec{h}_t and f_t , such that Z_t is minimized, with
 - $Z_t = \sum_{i=1}^m \sum_{j:V_i^j \in \mathbf{V}_i} w_{i,j}(t) \exp\left(-Q\left(\vec{V}_i^j, \vec{h}_t(f_t(x_i))\right)\right)$
- Update weigths:
- $w_{i,j}(t+1) = w_{i,j}(t) \exp\left(-Q\left(\vec{V}_i^j, \vec{h}_t(f_t(x_i))\right)\right)$
- Return $\vec{H}(x) = \sum_t \vec{h}_t(f_t(x))$

Objective space: Examples

2 objects classes and a non-object class

Example 1 (left): Joint boundary

Class	Vectors	Objective region	Region on figure
Object 1	(+1,0);(+1,-1)	x > 0, x > y	Red
Object 2	(-1,0);(-1,+1)	y > 0, y > x	Green
Non Object	(-1,0); $(0,-1)$	x < 0, y < 0	Dashed Grey

Example 2 (right): Ovelapped target space

Class	Vectors	Objective region	Region on figure
Object 1	(1,0)	<i>x</i> > 0	Red
Object 2	(0, 1)	y > 0	Green
Non Object	(-1,0);(0,-1)	x<0,y<0	Dashed Grey

Multiclass Formulation

Vectorized classifier and feature sharing:

$$\vec{H}(x) = \sum_{t=0}^{T} \vec{h}_t(\vec{f}_t(x)) = \sum_{t=0}^{T} \vec{h}_t(f_t(x))$$

Notation:

$$H(x,c) = \sum_{t=0}^{T} h_t(f_t(x),c), c = 1,\ldots,M$$

Structure of the multiclass weak classifier h_k

• Independent classifiers [Huang et al 2007]

$$H(x,c) = \sum_{t=1}^{T} h_t(f_t(x),c)$$

Joint classifiers [Torralba et al 2007]

$$H(x,c) = \sum_{t=1}^{T} \beta_t^c h_t(f_t(x)), \beta_t^c \in \{0,1\}$$

Coupled classifiers (Proposed)

$$H(x,c) = \sum_{t=1}^{T} \gamma_t^c h_t(f_t(x)), \gamma_t^c \in \mathbb{R}$$

Features and Weak classifiers

Weak Classifiers:

- Domain Partitioning weak classifiers [Shapire and Singer 1999]
- Fast evaluation thanks to the use of look up tables: O(1).
- Well fitted for different types of features

Features:

Haar-like and mLBP features

Optimization problem

Method	Problem	Solution	N. of Problems	Vars per Problem	Order O()
Adaboost	$min_{c_j} \sum_j w_+^j e^{-c_j} + w^j e^{+c_j}$	Analitic	J	1	N+J
Joint	$\min_{c_j,b_m\in\{0,1\}}\sum_{j,m}w_+^{j,m}e^{-b_mc_j}+w^{j,m}e^{b_mc_j}$	Analytic	2 ^M	J(+M)	$N + J2^M$
Independent	$\min_{c_{j,m}} \sum_{m} \sum_{j} w_{+}^{j,m} e^{-c_{j,m}} + w_{-}^{j,m} e^{c_{j,m}}$	Analytic	J	M	N + JM
Coupled	$\min_{c_j,b_m\in\mathbb{R}}\sum_{j,m}w_+^{j,m}e^{-\gamma_mc_j}+w^{j,m}e^{\gamma_mc_j}$	Newton *	1	J+M	N+(J+M)
	Most desifier demain nextitioning	· (/ bina).	M classes M	training avamala	

Results and conclusions

Experiment set up

- In plane Rotated Faces
- Nested Cascade
- Rectangular and mLBP features
- Vectorized weak classifiers trained with :
- Independent, joint and coupled classifiers Number of classes (n)
 - 1 class: Frontal faces without in-plane rotation
 - 2 classes: 0 and 180 in-plane rotation
 - 4 classes: 0, 90, 180 and 270 in-plane rotation
 - 8 classes: 0, 45, 90, 135, 180, 225, 270 and 315
- Number of training examples:
 - Positives: n * 5000; Negative: n * 5000

Method Comparision

Coupled

Table: Detection rate [%] for 5 false positives. Weak classifier's Number of classes training method 88.36 | 71.07 | **60.88** Independent 93.56 93.82 | 79.55 | 62.72 | 18.94 Jointly trained

Processing time

Table: Average processing time [sec] for a 384x286 pixels image

	-	•		•
Weak classifier's	Number of classes			
training method	1	2	4	8
Independent	0.99	1.16	1.59	19.17
Jointly trained	0.99	1.57	3.99	2.85
Coupled	0.93	2.86	10.48	15.28

Roc curves

Multiclass object detection

Training time

Table: Training time [Hours].

Weak classifier's training method 1 class 8 classes Independent 111 Jointly trained 218

8

103

CIARP, 2008

Conclusions

Coupled

- Summary:
 - A multiclass object detection system was proposed
- Main ideas:
 - An extention of Vector Boosting is introduced.
 - A multiclass boostrapping procedure is proposed. The concept of coupled components on multiclass
- classifiers is proposed. Three training methods of multiclass weak classifiers are
 - evaluated: Independent weak classifiers:
 - It works well even when the classes are very different.
 - Joint weak classifiers
 - The training time does not scales well with the number of classes.
 - Coupled weak classifiers (proposed): Fast training. Good performace when the features can represent all classes

95.27 95.07 88.63 46.94