台灣科技大學一百零九學年度下學期期末考

科目名稱:電路學(二) 開課系所:電子系 ET2103301 地點:視聽館 AU101 考試時間:110年6月17日 下午13:20至15:20(可使用工程計算機)

1. (8%) Assume the following two circuits in Figs. 1(a) and Fig. 1(b) have the same driving point impedances, please determine R_{eq} and L_{eq} in terms of L_1 , L_2 and R. The mutual inductance M is assumed to be the maximum value.

- 2. (20%) There is a critically-damped RLC 2nd order parallel resonant circuit. The R is the equivalent resistor R_{ab} in Fig. 2(a), the L is the equivalent inductor L_{ae} of the three-winding structure transformer in Fig. 2(b), and the C is the equivalent capacitor C_{eq} in Fig. 2(c), please answer the following questions:
 - (7%) (a) Please derive the equivalent inductor L_{ae} in Fig. 2(b) and the equivalent capacitor C_{eq} in Fig. 2(c). (3%) (b) Please design the approximate value of R_x in Fig. 2(a) for this system.
 - (10%) (c) What is the resonant angular frequency ω_0 , quality factor Q, bandwidth B_w , impedance pole-zero locations, half-power angular frequency ω_H and ω_L of this system?

- 3. (14%) Consider a circuit arrangement where two same values R of the resistors and one reactance value jX_L of the inductor as the three-phase Y-connected load. Two resistors form the loads in two lines A and B; while the inductor forms a load in line C. All line impedances are negligible. Let $V_{AB}=V_A-V_B=V \angle 45^\circ V$, $V_{BC}=V_B-V_C=V \angle -75^\circ V$ and $V_{CA}=V_C-V_A=V \angle 165^\circ V$. Please answer the following questions:
 - (2%) (a) Please draw three-phase load with the appropriate circuit parameter data. Note that the symbol and parameter must be specified clearly.
 - (8%) (b) Assume that $X_L=R$. Please calculate the total apparent power consumptions at the three-phase load side and verify that whether the neutral current is zero or not.
 - (4%) (c) Please determine the appropriate reactive power to upgrade the overall power factor of the load to 0.98 for $X_L=R=1$. Moreover, what's the advantage or disadvantage of raising the load power factor?
- 4. (13%) Please write the output voltage $v_o(t)$ in Fig. 3 if the initial voltage in the capacitor is zero.

Fig. 3.

- 5. (18%) In Fig. 4, a system is composed of an active filter and a convolution operation unit. Please answer the following questions:
 - (6%) (a) Please construct asymptotic Bode plot of the magnitude for the transfer function G(s). Note that the critical points, slopes and amplitude gain in dB must be specified clearly.
 - (3%) (b) Please identify the filter properties. Let the coefficient n is a positive real variable to modulate the resistance value.
 - (3%) (c) Please design the first coner frequency to be 50 Hz with passband gain to be 21. Let the coefficient n be in the range of 0.001 to 12, all the resistors be in the range of 15 to 150 k Ω and the capacitors be in the range of 35 to 350 nF.
 - (6%) (d) If n=1, C=1mF, R=10k Ω , $X(t)=t^2\delta(t-2)V$ and change g(t) to 5u(t-1)u(t+1), what's the value of Z(3)?

Fig. 4.

6. (7%) In Fig. 5, $v_2(0^+)=20$ V and there is no initial energy stored in the inductor. For t < 2, what's the value range of μ making the circuit stable and s-domain circuit? For $t \ge 2$, please find the voltage $v_1(t)$ as $\mu=4$.

- 7. (13%) As for Fig. 6(b), two-port A and two-port B are connected in series, two-port B is also the network in Fig. 6(a), and the angular frequency is two radians per second. Please answer the following questions:
 - (2%) (a) Please sketch an equivalent circuit by using one dependent current source and one dependent voltage source to model the ideal transformer of Fig. 6(a).
 - (11%) (b) What is the total Z parameters of the series two-port network and the maximum active power transferred to R_L ?

8. (7%) Please plot the waveform of the inverse transform f(t) for the following frequency domain function.

$$F(j\omega) = \frac{1}{j\omega(1 - e^{\frac{j\omega\pi}{2}})} + \frac{j\omega e^{\frac{-j\omega\pi}{2}} - 1}{(1 - \omega^2)(1 - e^{\frac{-j\omega\pi}{2}})}$$