

Modularity through Clients and Services, RPC Techniques for Performance

PCSD, Marcos Vaz Salles

Do-it-yourself Recap: Fundamental abstractions

- Which were the three fundamental abstractions?
- What were their APIs?
- Must these abstractions be implemented in a single node or can they be distributed? Give an example!

(loop (print (eval (read))))

Source: Saltzer & Kaashoek & Morris (partial)

What should we learn today?

- Recognize and explain modular designs with clients and services
- Predict the functioning of service calls under different RPC semantics and failure modes
- Identify different mechanisms to achieve RPCs
- Implement RPC services with an appropriate mechanism, such as web services
- Explain performance metrics such as latency, throughput, overhead, utilization, capacity, and scalability
- List common hardware parameters that affect performance
- Apply performance improvement techniques, such as concurrency, batching, dallying, and fastpath coding

Interperters

- Interpreter
 - Instruction repertoire
 - Environment
 - Instruction pointer

(loop (print (eval (read))))

Your own programs often implement specialized interpreters!

Layers and Modules

 Interpreters often organized in layers

- Book glossary:
 Components that can be separately designed / implemented / managed / replaced
- "Instructions" of higher-level interpreters
- Recursive: Can be whole interpreters themselves!

Cloud-Power @ Yahoo!

What happens when modules fail with (unintended) errors?

Cloud-Power @ Yahoo!

What happens when modules fail with (unintended) errors?

Isolating Errors: Enforced Modularity

Clients & Services

- Restrict communication to messages only
- Client request / Service response (or reply)
- Conceptually client and service in different computers

OS Virtualization

- Create virtualized versions of fundamental abstractions
- Client and services remain isolated even on same computer
- VMs: Virtualize the virtualizer ©

RPC: Remote Procedure Call

- Client-service request / response interactions
- Automate marshalling and communication

RPC: Remote Procedure Call

- How do RPC semantics differ from local procedure calls?
- What can go wrong? How can you fix it?

RPC Semantics

At-least-once

- Operation is *idempotent*
 - Naturally occurs if side-effect free
- Stub just retries operation → failures can still occur!
- Example: calculate SQRT

At-most-once

- Operation does have side-effects
- Stub must ensure duplicate-free transmission
- Example: transfer \$100 from my account to yours

Exactly-once

- Possible for certain classes of failures
- Stub & service keep track (durably) of requests and responses
- Example: bank cannot develop amnesia! ©

How to achieve RPCs?

- Special-purpose request-reply protocol, e.g., as in DNS
 - Developer must design protocol and marshalling scheme
- Classic RPC protocols, e.g., DCE, Sun RPC
 - Special APIs and schemes for marshalling
- RMI: Remote Method Invocation
 - RPCs for methods in OO languages
 - Compiler-generated proxies

Web Services

- Many modes of communication possible, including RPCstyle communication
- Tools available to compile proxies, e.g., JAX-WS
- Generic marshalling (e.g., XML, JSON, Protocol Buffers) over HTTP transport → programming-language independence!

RPC and Naming

- Most basic extension to the synchronous interaction pattern
 - Avoid having to name the destination
 - Ask where destination is
 - Then bind to destination
- Advantages:
 - Development is independent of deployment properties (e.g., network address)
 - More flexibility:
 - Change of address
 - Can be combined with:
 - Load balancing
 - Monitoring
 - Routing
 - Advanced service search

Source: Gustavo Alonso, ETH Zurich (partial)

RPC Example: Domain Name Service (DNS)

DNS: Translates domain names into IP addresses

```
    www.diku.dk → 130.225.96.3 →
    d.root-servers.net → 128.8.10.90 →
    p.nic.dk → 204.61.216.36 →
    dns2.diku.dk → 130.225.96.4 →
    web-aggregator.diku.dk → 130.225.96.108
```

 DNS typically implemented as a request-reply service, i.e., equivalent to RPC at high level

RPC Example: Domain Name Service (DNS)

DNS interface

RESOLVE(domain name, recursive) → value

DNS Implementation

- DNS does not keep whole name database in a single server → hierarchy of servers
 - Not surprisingly, integrates **naming** into the service itself! ☺
- DNS uses delegation
 - Repeated RPCs to different servers
 - Recursive resolution and caching on some servers

Source:

DNS Operation and Caching

 host at cis.poly.edu wants IP address for gaia.cs.umass.edu

Iterated query

- contacted server replies with name of server to contact
- Caching at local server can improve performance significantly
- But what about semantics?

gaia.cs.umass.edu

Common Issues in Designing Services

Consistency

• How to deal with *updates* from multiple clients?

Coherence

How to refresh caches while respecting consistency?

Scalability

 What happens to resource usage if we increase the #clients or the #operations?

Fault Tolerance

 Under what circumstances will the service be unavailable?

Other Examples of Services

- File systems: NFS, GFS
- Object stores: Dynamo, PNUTS
- Databases: pick your favorite relational DB ©
- Configuration: Zookeeper
- Even whole computing clouds!
 - Infrastructure-as-a-service (IaaS), e.g., Amazon EC2, Rackspace, Windows Azure
 - Platform-as-a-service (PaaS), e.g., Windows Azure, Google AppEngine
 - Software-as-a-service (SaaS), e.g., Salesforce.com, Gmail
- And many, many others
- Differences in semantics are significant!

Questions so far?

Abstractions, Implementation and Performance

- Let I₁ and I₂ be two implementations of an abstraction
- Examples
 - Web service with or without HTTP proxies
 - Virtual memory with or without paging
 - Transactions via concurrency or serialization

How can we choose between I_1 and I_2 ?

Performance Metrics

throughput 8 scalability

Discussion: What do these metrics mean?

Common Issues with Performance Metrics

- Properties of machines vs. properties of programs
 - Utilization, capacity
 - Overhead, throughput
 - Latency, scalability
- Relationship between *latency* and *throughput*
 - In serial case: latency = 1 / throughput
 - Not true when there is concurrency!

Performance and Hardware Trends

OS-provided illusion of a computer:

computer?

How about this one?

But the picture is not to scale!

Size of memory

What about the size of disk?

Storage Hierarchy

And only getting worse...

- Riding Moore's Law
 - CPU clock speed
 - Memory size
 - Memory bandwidth
 - Disk size
 - Disk bandwidth
- Going way slower
 - Memory latency
 - Disk latency
- What does that do to random accesses?

RAM = NQSRAM?!

What we call
 Random Access Memory
 actually behaves as
 Not-Quite-So-Random Access Memory
 because of the memory hierarchy

• Access to nearby cell **much faster** than to a far away cell!

(1 word)

Cache lines
(64 B)

Memory
(GBs)

Mem pages
(4 KB)

- Fast-path coding
 - Split processing into two code paths
 - One optimized path for common requests → fast path
 - One slow but comprehensive path for all other requests → slow path
 - Caching is an example of fast-path coding

- Concurrency
 - Run multiple requests in different threads
 - Example: different web requests run in different threads or even servers
 - May improve both throughput and latency, but must be careful with locking, correctness
 - Can be hidden under abstractions, e.g.,
 MapReduce and transactions

Remember RPC?

Batching

- Run multiple requests at once
- Example: batch I/Os and use elevator algorithm
- May improve latency and throughput

Dallying

- Wait until you accumulate some requests and then run them
- Example: group commit
- May improve throughput when used together with batching, but typically incurs a latency penalty

- Speculation, i.e., predict the future ©
 - Guess the next requests and run them in advance
 - Example: prefetching
 - May overlap expensive operations, instead of waiting for their completion

Sounds good with reads, but can you speculate writes?

What should we learn today?

- Recognize and explain modular designs with clients and services
- Predict the functioning of service calls under different RPC semantics and failure modes
- Identify different mechanisms to achieve RPCs
- Implement RPC services with an appropriate mechanism, such as web services
- Explain performance metrics such as latency, throughput, overhead, utilization, capacity, and scalability
- List common hardware parameters that affect performance
- Apply performance improvement techniques, such as concurrency, batching, dallying, and fastpath coding

