Estimates and Estimators

Data Science for Quality Management: Sampling Distributions, Error and Estimation

with Wendy Martin

Learning objectives:

Describe types of estimates

List the criteria for "good" estimators

Types of Estimates

Point Estimate

 A single number used to estimate an unknown parameter

Types of Estimates

Interval Estimate

 A range of values used to estimate a population parameter

Types of Estimates

Estimator

• A sample statistic used to estimate a population parameter. An estimate is a specific observed value of a statistic.

- Unbiased
- Efficient
- Consistent
- Sufficient

Unbiasedness

• The mean of the Random Sampling Distribution (RSD) of the estimator is equal to the parameter it estimates.

Efficiency

•Refers to the standard error of the statistic RSD. The most efficient estimator is the one with the smallest standard error.

Consistency

•Refers to the assumption that as n increases, the value of the statistic approaches the value of its associated population parameter.

Sufficiency

•Refers to using all possible information in the sample to estimate the corresponding parameter.

Point Estimates

Point Estimate		Population Parameter	
Sample Mean	\bar{X}	Population Mean	μ
Sample Variance	s^2	Population Variance	σ^2
Sample Proportion	p	Population Proportion	π
Sample Count	С	Population Count	λ
Sample Skewness	g_3	Population Skewness	γ_3
Sample Kurtosis	g_4	Population Kurtosis	γ_4

Point Estimates

$$\bar{X} \approx \mu$$

$$s \approx \sigma \text{ and } s^2 \approx \sigma^2$$

$$p \approx \pi$$

$$c \approx \lambda$$

Estimating σ from Multiple Samples

Average Range

$$\hat{\sigma} = \frac{\bar{R}}{d_2}$$

Median Range

$$\widehat{\sigma} = rac{\widetilde{R}}{\widetilde{d}_2}$$

Average Standard Deviation

$$\hat{\sigma} = \frac{\bar{s}}{c_4}$$

Median Standard Deviation

$$\hat{\sigma} = \sqrt{\frac{(\tilde{s})^2}{\chi_{0.5, n-1df}}}$$

Estimating σ from Multiple Samples

Average Variance (equal sample size)

$$\hat{\sigma} = \sqrt{s^2}$$

(unequal sample size)

$$\hat{\sigma} = \sqrt{\frac{\sum_{j=1}^{k} (n_j - 1)s^2}{\sum_{j=1}^{k} (n_j - 1)}}$$

Estimating σ from Multiple Samples

Average Moving Range of the Mean

$$\hat{\sigma} = \frac{\overline{MR}_{\bar{X}}\sqrt{n}}{d_2}$$

Median Moving Range of the Means

$$\hat{\sigma} = \frac{\widetilde{M}R_{\bar{X}}\sqrt{n}}{\tilde{d}_2}$$

Standard Deviation of the Means $\hat{\sigma} = S_{\bar{X}} \sqrt{n}$

Point Estimates in RStudio

Point Estimate	In RStudio		
$ar{X}$	mean()		
S	sd()		
p	<pre>mean() # average proportion</pre>		
С	<pre>mean() # average count per unit</pre>		

Sources

 Luftig, J. An Introduction to Statistical Process Control & Capability. Luftig & Associates, Inc. Farmington Hills, MI, 1982