A.4 Fonction cube

A.4 Fonction cube

Théorème A.4 — Identités remarquables avec des cubes.

$$(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$$

$$(a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3$$

 $D\'{e}monstration.$

Théorème A.5 — Identités remarquables avec des cubes.

$$a^3 - b^3 = (a - b)(a^2 + ab + b^2)$$

$$a^{3} + b^{3} = (a+b)(a^{2} - ab + b^{2})$$

 $D\'{e}monstration.$

Définition A.3 La fonction cube est la fonction f définie sur \mathbb{R} d'expression $f(x) = x^3$

Proposition A.6 — sens de variation. La fonction cube est strictement croissante sur \mathbb{R} .

Figure A.6 – Tableau de variation de la fonction cube

x	$-\infty$		0		$+\infty$
$f(x) = x^3$	$-\infty$		_0_		$+\infty$
Signe de $f(x)$		_	0	+	

Théorème A.7 — équation $x^3=k$ d'inconnue x. Pour tout $k\in\mathbb{R}$, l'équation $x^3=k$ admet une unique solution notée $k^{\frac{1}{3}}=\sqrt[3]{k}$.

■ Exemple A.5 Résoudre l'inéquation $x^3 > 2$ d'inconnue x

Exercices: Fonction cube

Exercice 1 — calculer les images et antécédents par une fonction cube.

f est la fonction cube définie dans \mathbb{R} par $f(x) = x^3$

- a) Sans calculatrice. Calculer (et simplifier) les images de 2, -3, 4 et -5.
- b) Quels sont les antécédents éventuels de -8? de 125? de 9? de -9?
- **Exemple A.6** Résoudre équations et inéquations en isolant x^3 .

$$x^3 > 27$$

$$3x^3 + 12 \ge 204$$

$$-3x^3 + 15 \ge 207$$

Exercice 2 Résoudre dans \mathbb{R} les équations suivantes en isolant x^3 .

$$(E_1) \ x^3 = 9$$

$$(E_2) 10x^3 + 8 = -632 (E_3) -9x^3 - 1 = 575 (E_4) 3x^3 = 5$$

Exercice 3 Résoudre dans \mathbb{R} les inéquations suivantes en isolant x^3 .

$$(I_1) \ x^3 > 9$$

$$(I_3) 3x^3 > 375$$

$$(I_5) -9x^3 - 1 < 575$$

$$(I_2) \ x^3 \leqslant 27$$

$$(I_4)$$
 $2x^3 - 14 > -30$

Exercice 4 — Utiliser le sens de variation de la fonction cube. Soit a un nombre réel. En s'aidant éventuellement de la courbe de la fonction carré ou de son tableau de variation, encadrer au mieux a^3 dans chaque cas suivant:

a)
$$a \geqslant -5$$

c)
$$-3 \le a < 2$$

e)
$$2 \leqslant a \leqslant 5$$

g)
$$-5 < 2a \leqslant 1$$

b)
$$a < 2$$

d)
$$-2 < a \le 5$$

f)
$$-2 > a \ge -5$$

Exercice 5 — Comparer x^3 , x^2 et x pour différentes valeurs de $x \in \mathbb{R}$.

- a) Résoudre dans \mathbb{R} l'inéquation $x^3 > x^2$.
- b) Si x > 1, ranger dans l' ordre croissant :0, x, 1, x^3 et x^2 .
- c) Si 0 < x < 1, ranger dans l' ordre croissant 0, x, 1, x^3 et x^2 .
- d) Ci-contre les représentations graphiques des fonctions $f: x \mapsto x^2$, $q: x \mapsto x$ et $h: x \mapsto x^3$. Associer chaque courbe à la fonction correspondante.

