

planetmath.org

Math for the people, by the people.

loop algebra

Canonical name LoopAlgebra

Date of creation 2013-03-22 15:30:07 Last modified on 2013-03-22 15:30:07

Owner rspuzio (6075) Last modified by rspuzio (6075)

Numerical id 12

Author rspuzio (6075)
Entry type Definition
Classification msc 22E60
Classification msc 22E65
Classification msc 22E67
Defines loop algebra

Let \mathfrak{g} be a Lie algebra over a field \mathbb{K} . The **loop algebra** based on \mathfrak{g} is defined to be $\mathcal{L}(\mathfrak{g}) := \mathfrak{g} \otimes_{\mathbb{K}} \mathbb{K}[t, t^{-1}]$ as a vector space over \mathbb{K} . The Lie bracket is determined by

$$\left[X\otimes t^k,Y\otimes t^l\right]=\left[X,Y\right]_{\mathfrak{g}}\otimes t^{k+l}$$

where $[\,,\,]_{\mathfrak{g}}$ denotes the Lie bracket from $\mathfrak{g}.$

This clearly determines a Lie bracket. For instance the three term sum in the Jacobi identity (for elements which are homogeneous in t) simplifies to the three term sum for the Jacobi identity in \mathfrak{g} tensored with a power of t and thus is zero in $\mathcal{L}(\mathfrak{g})$.

The name "loop algebra" comes from the fact that this Lie algebra arises in the study of Lie algebras of loop groups. For the time being, assume that \mathbb{K} is the real or complex numbers so that the familiar structures of analysis and topology are available. Consider the set of all mappings from the circle S^1 (we may think of this circle more concretely as the unit circle of the complex plane) to a finite-dimensional Lie group G with Lie algebra is \mathfrak{g} . We may make this set into a group by defining multiplication pointwise: given $a, b \colon S^1 \to G$, we define $(a \cdot b)(x) = a(x) \cdot b(x)$.

References

[1] Victor Kac, *Infinite Dimensional Lie Algebras*, Third edition. Cambridge University Press, Cambridge, 1990.