GEOMETRIA

A geometria é provavelmente a área mais antiga da matemática, precursora da própria álgebra e sendo um dos pilares da matemática. A palavra geometria é resultado da combinação das palavras gregas geo e metron/metri, significando respectivamente Terra e medição, pois a área da geometria consiste da medição e entendimento das relações e propriedades contidas nas fíguras geométricas: comprimento, distância, ângulo, área, volume e perímetro, as fíguras geométricas por sua vez são parte integrante da natureza e da Terra (qeo).

DEFINIÇÕES GERAIS

Antes do estudo da geometria devemos ter ciência das definições de conceitos presentes nesse ramo da matemática, dentro destes conceitos se enquadram as medidas, os ângulos, as fíguras geométricas e suas componentes.

FÍGURAS GEOMÉTRICAS E SUAS COMPONENTES

A primeira componente das fíguras geométricas e a mais simples delas é o ponto, o mesmo deve ser imaginado como um ponto infinitesimal, não possuindo comprimento, área ou perímetro.

Quando um ponto é integrante de uma fígura geométrica o mais comum é chamarmos ele de *vértice*

Figura 1: Vértice de um triângulo

A linha por sua vez é o elemento que liga dois pontos P_1 e P_2 em uma reta, assim como o ponto é idealmente infinitesimal a linha idealmente não possui espessura. Quando uma linha é parte integrante de uma fígura geométrica sua denominação é aresta.

Figura 2: Aresta de um quadrado

Quando se tem 3 ou mais pontos o resultado da conexão deles é tido como superfície, plano ou fígura geométrica dependendo da área da matemática e do contexto de estudo, porém vale ter em mente que também existem superfícies não bidimensionais. Uma excessão a isso são os círculos e as elipses que não possuem vértices. No contexto da geometria a ser estudado nesse capítulo a conexão de 3 ou mais vértices geram exclusivamente fíguras geométricas.

Figura 3: Um quadrilátero com as arestas realçadas em vermelho

No contexto de fíguras geométricas tridimenssionais, ou chamados sólidos, os sólidos podem ser fígurados por 4 ou mais pontos ou através manipulação de fíguras geométricas bidimensionais num espaço tridimenssional.

Grandezas notórias das componentes citadas:

- Ponto, vértice: distância relativo a outro objeto.
- Reta: comprimento, distância e ângulo relativos a outro objeto.
- Superfície: área, perímetro.
- · Sólido: volume.

Figura 4: Tetraedro, o objeto tridimenssional com menos faces

GRANDEZAS E UNIDADES DE MEDIDA

DISTÂNCIA E COMPRIMENTO

Distância e comprimento medem o quão longe dois pontos estão entre si, e no caso de arestas essa medida é denotada como comprimento. A unidade de medida base utilizada para comprimento é o metro (símbolo m), além do metro existem seus múltiplos que são igualmente utilizados dependendo da distância/comprimento aferido.

Nome	Sigla	Equivalência
picometro	pm	$10^{-12}m$
nanometro	nm	$10^{-9}m$
micrometro	μm	$10^{-6}m$
milimetro	mm	$10^{-3}m$
centímetro	cm	$10^{-2}m$
decímetro	dm	$10^{-1}m$
metro	m	1m
decâmetro	dam	10m
hêctometro	hm	100m
quilometro	km	1000m

Outras medidas de comprimento são:

Perímetro: comprimento do contorno de uma fígura geométrica.

Raio: distância entre o centro de uma circunferência até seu contorno ou superfície.

Diâmetro: comprimento de reta que passe pelo centro da circunferência e cujo seus pontos de início e fim estejam sobre a circunferência

Circunferência: perímetro de uma circunferência.

Figura 5: Raio, diâmetro e circunferência de um círculo

ÁREA

Área é a medida que expressa a quantidade de espaço bidimenssional ocupado por uma fígura geométrica, área de superfície é o equivalente da área para uma superfície ou face de um objeto tridimenssional. A unidade base para área é o metro quadrado (símbolo m^2). Seus múltiplos também acompanham o termo 'quadrado', e a equivalência é a mesma do metro, porém elevada ao quadrado. Ex.:

 $1m = 10^2 cm$ e $1m^2 = (10^2 cm)^2 = 10^4 cm^2$, lembrar essa regra pode facilitar na hora da conversão de área.

Nome	Sigla	Equivalência
picometro quadrado	pm^2	$10^{-24}m^2$
nanometro quadrado	nm^2	$10^{-18}m^2$
micrometro quadrado	μm	$10^{-12}m^2$
milimetro quadrado	mm^2	$10^{-6}m^2$
centímetro quadrado	cm^2	$10^{-4}m^2$
decímetro quadrado	dm^2	$10^{-2}m^2$
metro quadrado	m^2	$1m^2$
decâmetro quadrado	dam^2	$100m^2$
are	are	100711
hêctometro quadrado	hm^2	$10^4 m^2$
hectare	ha	10 711
quilometro quadrado	km^2	$10^6 m^2$

VOLUME