Állóhullám kötélen

Mérést végezte: Bódy Lőrinc András 2020. Március 10.

1. A mérés célja

Mindkét végén rögzített kötélen (rugalmas szálon) kialakuló állóhullám-módusokra teljesül az $L=\frac{n\lambda_n}{2}$ összefüggés (ahol L a kötél hossza, λ_n az n.-edik módus hullámhossza, n pedig természetes szám). Ezt a geometria biztosítja. Célom volt a $v=\lambda f$ (ahol f a rezgés frekvenciája és v a hullám terjedési sebessége) az összefüggés igazolása, vagyis annak megmutatása, hogy mindegyik módus esetén v azonos, a kötélre jellemző. Ellenőriztem továbbá a $v=\sqrt{\frac{F}{\mu}}$ összefüggést. (ahol F a kötelet kifeszítő erő és μ a lineáris tömegsűrűség)

2. Mérőeszközök

- Vastag kötél
- Vékony kötél
- Csiga
- Vibrátor
- Szinusz hullám generátor
- 0.02 kg-os súlyok készlete
- Mérőszalag

3. A mérés rövid leírása

A szál az egymástól körübelül másfél méterre elhelyezett csiga és vibrátor között a van kifeszítve. A csigán túl a szálra függeszett súlyok szabályozzák a feszítő-erőt, míg a vibrátor a szinusz hullám generátorra van bekötve, amely állítható amplitúdójú és frekvenciájú jelet generál, majd ezt a vibrátor függőleges irányú mechanikai rezgéssé alakítja.

A frekvencia változtatása közben (a pillanatnyi értéket a hullám generátor digitális kijelzője mutatja 0.1 Hz felbontással) figyelni kell a kialakult hullámformát, állóhullám akkor valósul meg, ha a kötél egyes pontjai (a végét kivéve) mozdulatlanok (csomópontok), míg ezek között félúton, a duzzadóhelyeken, az amplitúdó maximális.

Az első mérési feladatban állandó feszítőerő mellett különböző n-ekhez tartozó állóhullám-módusokat kellett létrehoznom, és mindegyikhez feljegyeznem a frekvenciát. Megbecsültem továbbá a mérés bizonytalanságát is, megkeresve azt a tartományt, amelyen belül még vizuálisan ugyanolyannak tűnt a hullámkép.

A második feladatban az n=3 módus frekvenciáját a feszítőerő (m_i feszítősúly) függvényében mértem, minden mérési ponthoz három párhuzamos mérést végezve.

4. Mérési adatok

Első mérés:

n	2	3	4	5	6
f_n (Hz)	10.5	15.5	20.7	25.6	31.3
$\Delta f_n \text{ (Hz)}$	0.2	0.2	0.2	0.4	0.4

Második mérés:

m_i (kg)	0.05	0.07	0.09	0.11	0.13	0.15	0.17
f_{0i} (Hz)	50.6	60.1	67.2	74.5	80.9	86.8	92.3
f_{1i} (Hz)	49.3	59.9	67.0	74.0	80.7	86.3	92.6
f_{2i} (Hz)	50.8	59.1	67.4	74.8	80.7	87.0	92.4

Az első mérésben 0.09 kg-os feszítősúlyt alkalmaztam. A csiga és a vibrátor távolsága (tehát a kötél rezgésbe jövő részének hossza) L=1.49 m volt, a g értékére 9.81 $\frac{\rm m}{\rm s^2}$ -et használtam. A mérési adatlap megadja, hogy a második méréshez használtal megegyező anyagú referencia-kötél tömege 0.8 g = 0.0008 kg, hossza pedig 4 m.

5. Számítások

Az első mérés során $\lambda_n = \frac{2L}{n}$, így $v_n = \lambda_n f_n = f_n \frac{2L}{n}$. Illetve ha v állandóságát feltételezzük, $f_n = \frac{vn}{2L}$. Ezalapján azt várjuk, hogy az f_n az f_2 $\frac{n}{2}$ -szerese. Legyen $Q_n = \frac{f_n}{f_2}$, $q_n = \frac{n}{2}$ pedig a várt elméleti érték.

A második mérésben $F=mg,\ \lambda=\frac{2L}{n}$ és $v=\sqrt{\frac{F}{\mu}}$ képleteket használva az:

$$f_i^2 = \frac{n^2 g}{4L^2 \mu} m_i$$

egyenletet nyerjük. (lásd mérési leírás) Ezért f_i^2 -et m_i függvényében ábrázoltam, amire azután egyenest illesztettem. Ennek a meredekségéből kapom μ -t következő átrendezéssel: $\mu = \frac{3^2 g}{4L^2 a}$.

n	2	3	4	5	6
f_n (Hz)	10.5	15.5	20.7	25.6	31.3
$\Delta f_n \text{ (Hz)}$	0.2	0.2	0.2	0.4	0.4
$\lambda_n = 2L/n \text{ (m)}$	1.4900	0.9933	0.7450	0.5960	0.4967
$v_n = f_n \lambda_n (\text{m/s}^2)$	15.6450	15.3967	15.4215	15.2576	15.5457
$\Delta v_n = \lambda_n \Delta f_n$	0.2980	0.1987	0.1490	0.2384	0.1987
$Q_n = f_n/f_2$	1.000	1.476	1.971	2.438	2.981
$\Delta Q_n = Q_n(\delta(f_n) + \delta(f_2))$	0.038	0.047	0.057	0.085	0.095
$q_n = n/2$	1.0	1.5	2.0	2.5	3.0

$m_i ext{ (kg)}$	0.05	0.07	0.09	0.11	0.13	0.15	0.17
f_{0i} (Hz)	50.6	60.1	67.2	74.5	80.9	86.8	92.3
f_{1i} (Hz)	49.3	59.9	67.0	74.0	80.7	86.3	92.6
f_{2i} (Hz)	50.8	59.1	67.4	74.8	80.7	87.0	92.4
$f_i = (f_{1i} + f_{2i} + f_{3i})/3 \text{ (Hz)}$	50.233	59.700	67.200	74.433	80.767	86.700	92.433
$f_i^2 (\mathrm{Hz}^2)$	2523.4	3564.1	4515.8	5540.3	6523.3	7516.9	8543.9

6. Eredmények

Az első kötélen a hullám sebességét $v=15.45\,\frac{\rm m}{\rm s}$ -nek találtam (egy kb $0.2\,\frac{\rm m}{\rm s}$ szélességű tartomány van, amely minden adatponhoz képest hibán belül esik. A második mérésben $a=49\,954.7\,\frac{1}{\rm kgs^2}$, így $\mu=1.99\times 10^{-4}\,\frac{\rm kg}{\rm m}$.

7. Hibaszámítás

A mérési bizonytalanság legfőbb forrása az állóhullám meglétének szubjektív megállapítása. A méréseim során gyakran az a frekvenciaérték ahol az amplitúdó a maximális volt, és az ahol a vibrátorhoz legközelebbi csomópont a "legpontszerűbb", nem esett pontosan egybe, ez okozza a második mérés során fölvett párhuzamos mérések közötti eltéréseket.

További hibaforrás, hogy a frekvenciát csak 0.1 Hz-es lépésekkel lehetett állítani, illetve egy kevés hiba származik a rezgő hossz méréséből is.

Az első mérésben a frekvencia-bizonytalaságokból a hibaterjedés képletei szerint becsültem meg a sebességek bizonytalaságát. (L és így λ_n igen kicsi relatív hibáját elhanyagoltam.) Így $\Delta v = \lambda_n \Delta f_n$ és $\Delta Q_n = Q_n (\frac{\Delta f_n}{f_n} + \frac{\Delta f_2}{f_2})$

8. Konklúzó

Az első kötélhez mért hullámterjedési sebesség értékei konzisztensek egymással (minden mérési pont hibán belül van ha egymástól nem is, egy közös értéktől). Hasonlóan a módusok frekvencia-arányai is hibán belül egyeznek az elméleti

A második mérésből számított $\mu=1.99\times 10^{-4}\,\frac{\mathrm{kg}}{\mathrm{m}}$ jó egyezést mutat a referencia-kötél szerinti $\mu_{ref}=M/l=\frac{0.0008\,\mathrm{kg}}{4\,\mathrm{m}}=2\times 10^{-4}\,\frac{\mathrm{kg}}{\mathrm{m}}$ -el. Így a $v=\sqrt{\frac{F}{\mu}}$ igazolódott a vizsgált kötélre.