Examenul de bacalaureat național 2020 Proba E. c)

Matematică M_tehnologic

Test 3

(30 de puncte)

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I

- **1.** Arătați că $\left(5 + \frac{1}{2}\right) \left(5 \frac{1}{2}\right) = \frac{99}{4}$. 5p
- 2. Determinați coordonatele punctului de intersecție a graficelor funcțiilor $f: \mathbb{R} \to \mathbb{R}$, f(x) = 3x + 4**5p** $\operatorname{si} g: \mathbb{R} \to \mathbb{R}, \ g(x) = 8 - x.$
- 3. Rezolvați în mulțimea numerelor reale ecuația $\log_5(2x+1) = 2$. **5p**
- 4. După o ieftinire cu 10%, prețul unei tablete este 630 de lei. Determinați prețul tabletei înainte de ieftinire.
- 5. În reperul cartezian xOy se consideră punctele A(3,1) și B(3,5). Calculați lungimea segmentului **5p** AM, unde M este mijlocul segmentului AB.
- **6.** Arătați că $\cos^2 45^\circ \sin^2 30^\circ = \frac{1}{4}$

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră matricele $M = \begin{pmatrix} 8 & 6 \\ 6 & 5 \end{pmatrix}$ și $A(a) = \begin{pmatrix} 2+a & 2 \\ 2 & 1+a \end{pmatrix}$, unde a este număr real.
- 5p a) Arătați că $\det M = 4$.
- **b**) Arătați că $A(a) \cdot A(-a) + a^2 \cdot I_2 = M$, pentru orice număr real a, unde $I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$. **5**p
- c) Determinați matricea $X \in \mathcal{M}_2(\mathbb{R})$, știind că $M \cdot X = A(0)$. 5p
 - 2. Pe mulțimea numerelor reale se definește legea de compoziție asociativă x * y = x + y 10.
- a) Arătați că 5*5=0. **5p**
- **b)** Determinați numerele naturale n pentru care $n^2 * n < -4$. 5p
- c) Determinați numerele reale x pentru care $x * x * x = x^2 18$.

SUBIECTUL al III-lea (30 de puncte)

- **1.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = 2x^3 3x^2 + 1$.
- a) Arătați că $f'(x) = 6x(x-1), x \in \mathbb{R}$. 5p
- **b)** Arătați că $\lim_{x\to 1} \frac{f(x)-x^3+2x^2+x-2}{x-1} = 2$. 5p
- 5p c) Determinați abscisele punctelor situate pe graficul funcției f în care tangenta la graficul funcției f este paralelă cu dreapta de ecuație y = 12x + 2020.
 - **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x(x^2 + 1) 2$.
- a) Arătați că $\int_{-1}^{1} (f(x) x + 2) dx = 0.$ b) Calculați $\int_{0}^{1} (f(x) x^3 + 2) e^x dx.$
- c) Determinați numărul real pozitiv m, știind că $\int_{0}^{\infty} f(x) dx = m^2 + 1$. 5p