Analyse fonctionnelle 2

2023-2024

TABL		\mathbf{M}	1DDDC
-1ABL	6, 11F,7	IVI A I	

1	Rap	Rappels et complements sur les EVN			
	1.1	Les séries dans les EVN	Į.		
	1.2	Les espaces de Hilbert	6		
	1.3	Théorème de la projection orthogonale	۶		

CHAPITRE 1

RAPPELS ET COMPLEMENTS SUR LES EVN

1.1 Les séries dans les EVN

Soit $(E, \|\cdot\|)$ un EVN. 30-01-2024

Définition 1.1.1. On appelle série de terme général x_n dans E la suite $(S_n)_{n\in\mathbb{N}}$ telle que

$$\forall n \in \mathbb{N}, S_n = \sum_{k=0}^n x_k$$
, où x_k est une suite d'éléments de E .

La série est convergente (cv) si la suite $(S_n)_{n\in\mathbb{N}}$ admet une limite dans E.

Remarque 1.1.1. En général on note $\sum x_n$, la somme de la série est $S = \sum_{k=0}^{+\infty} x_n = \sum_{k\geq 0} x_n$.

Définition 1.1.2. La série $\sum x_n$ est dite **normalement convergente** si la série $\sum \|x_n\|_E$ est convergente dans \mathbb{R}^+ .

Théorème 1.1.1. Soit $(E, \|\cdot\|)$ un espace de **Banach**, alors toute série normalement convergente est convergente. De plus, on a

$$\left\| \sum_{k=0}^{+\infty} x_n \right\| \le \sum_{k=0}^{+\infty} \|x_n\|.$$

Démonstration. La série $\sum \|x_n\|$ est convergente dans \mathbb{R} , donc de Cauchy : soit $s_n = \sum_{k=0}^n \|x_n\|$, $n \in \mathbb{N}$ la somme partielle, alors

$$\forall \varepsilon > 0, \exists N \text{ tel que } \forall p, q \geq N, \text{ on a } |s_p - s_q| = \sum_{k=p+1}^q ||x_k|| \leq \varepsilon.$$

Dans ces conditions

$$||s_p - s_q|| = \left| \sum_{k=p+1}^q \right| \le \sum_{k=p+1}^q ||x_k|| \le \varepsilon,$$

ce qui entraı̂ne que S_n est de Cauchy dans E. Mais E est complet, donc il existe S tel que $\lim_{n\to\infty}S_n=S$.

Mais par définition $\lim_{n\to\infty} S_n = \sum_{k=0}^{+\infty} x_k = s$, donc elle est convergente.

D'autre part, $\forall n$, on a que

$$\left\| \sum_{k=0}^{n} x_k \right\| \le \sum_{k=0}^{n} \left\| x_k \right\|.$$

On a que
$$\lim_{n\to\infty} \left\| \sum_{k=0}^n x_k \right\| = \left\| \lim_{n\to\infty} \sum_{k=0}^n x_k \right\| = \left\| \sum_{k=0}^{+\infty} x_k \right\|$$
 (par continuité), et $\lim_{n\to\infty} \sum_{k=0}^n \|x_k\| = \left\| \sum_{k=0}^{+\infty} x_k \right\|$

$$\sum_{k=0}^{+\infty} ||x_k||.$$

Par passage à la limite, on obtient le résultat demandé.

1.2 Les espaces de Hilbert

Définition 1.2.1.

- 1. Soit E un \mathbb{C} -espace. Une application $\varphi: E \times E \longrightarrow \mathbb{C}$ est une forme hermitienne sur E si :
 - (a) $\forall y \in E, x \in E \longmapsto \varphi(x, y)$ est linéaire;
 - (b) $\forall x, y \in E, \varphi(x, y) = \overline{\varphi(y, x)}.$
- 2. Un **produit scalaire** sur E est une forme hermitienne définie positive :

$$\forall x \in E, \varphi(x, x) > 0 \text{ et } \varphi(x, x) = 0 \iff x = 0_E.$$

3. Un espace préhilbertien est un \mathbb{C} -espace muni d'un produit scalaire : (E,φ) .

Remarque 1.2.1. $\varphi(x, y) = (x \mid y)$.

Comme conséquence : $\forall x \in E, \, \varphi^{1/2}(x,x) = (x|x)^{1/2}$ est une norme sur E (le vérifier en exercice).

Proposition 1.2.1 (Cauchy-Schwarz). On rappelle que l'on a

$$\forall x, y \in E, |(x|y)| \le ||x||_E ||y||_E$$

et on a égalité dans le cas où x, y sont colinéaires.

7

Un espace préhilbertien est un EVN, et donc un espace métrique avec la distance

$$\forall x, y \in E, d_E(x, y) = ||x - y||_E = (x - y|x - y)_E^{1/2}.$$

Définition 1.2.2. Un espace de Hilbert est un espace préhilbertien complet.

Exercice 1. Montrer que les applications suivantes sont continues :

- 1. $\forall y \in E, x \in E \longmapsto (x|y)$;
- 2. $\forall x \in E, y \in E \longmapsto (x|y)$.

Définition 1.2.3. Deux vecteurs $x, y \in E$ sont dits **orthogonaux** si $(x \mid y) = 0$ (on note aussi $x \perp y$). Plus généralement, soit $A \subset E$, $x \in E$ est orthogonal à A si

$$\forall y \in A, (x|y) = 0$$

ou encore si $A, B \subset E$, A est orthogonal à B si

$$\forall x \in A, \forall y \in B, (x \mid y) = 0.$$

En particulier, on notera par $A^{\perp} = \{x \in E, x \perp A\}.$

Exercice 2. Montrer que $\forall A \subset E, A^{\perp}$ est un sous-espace vectoriel. Montrer aussi que A^{\perp} est un sous-espace fermé de E.

FIGURE 1.1 – Le produit scalaire et les orthogonaux dans \mathbb{R}^2 .

Exemple. Soit $E = \mathbb{C}^N$, alors $x, y \in E$, les composantes sont $i \in 1, ..., N$ telles que $x(i) \in \mathbb{C}, y(i) \in \mathbb{C}$. On a le produit scalaire sur \mathbb{C}^N :

$$(x \mid y) = \sum_{i=1}^{N} x(i) \overline{y(i)},$$

on déduit la norme associée. Il satisfait l'inégalité de Cauchy-Schwarz :

$$|(x \mid y)| = \left| \sum_{i=1}^{N} x(i) \overline{y(i)} \right| \le ||x|| \, ||y|| = \sqrt{\sum_{i=1}^{n} |x(i)|^2} \sqrt{\sum_{i=1}^{n} |y(i)|^2}.$$

1.3 Théorème de la projection orthogonale

Soit \mathcal{H} un espace de Hilbert. On rappelle que $C \subset \mathcal{H}$ est convexe si

$$\forall (x,y) \in \mathcal{H} \times \mathcal{H}, \lambda x + (1-\lambda)y \in \mathcal{H}, \forall \lambda \in [0,1].$$

Théorème 1.3.1. Dans ces conditions, soit \mathbb{C} un convexe fermé non vide de \mathcal{H} . Alors pour tout $x \in \mathcal{H}$, il existe un unique point $y_0 \in C$ tel que

$$dist(x, C) = \inf_{y \in C} ||x - y||_{\mathcal{H}} = ||x - y_0||.$$

et pour tout $y \in \mathbb{C}$, $\Re(x - y_0 \mid y - y_0) \le 0$.

 y_0 s'appelle la **projection orthogonale** de x sur \mathbb{C} .

FIGURE 1.2 – Illustrion du théorème de la projection orthogonale. I_3 est la plus petite distance.

Exercice 3. Soit F un sous-espace fermé de \mathcal{H} . Montrer que $\mathcal{H} = F \oplus F^{\perp}$.

Définition 1.3.1. Soit F un sous-espace fermé. On appelle **projection orthogonale** sur F l'application définie de la manière suivante : $\forall x \in \mathcal{H}, x = x_1 + x_2, x_1 \in F, x_2 \in F^{\perp}, x_1, x_2$ uniques :

$$P_F x = x_1 (P_{F^{\perp}} = x_2).$$

Proposition 1.3.1. $P_F: \mathcal{H} \longrightarrow \mathcal{H}$ est linéaire et continue.

FIGURE 1.3 – Deux projections orthogonales. L'unicité est contredite.

 $D\'{e}monstration.$ On calcule :

$$||P_F x||^2 = (P_F x | P_F x) = (x_1 | x_1) = ||x_1||^2 \le ||x_1||^2 + ||x_2||^2 = ||x||^2.$$

(théorème de Pythagore).

On a donc $\forall x \in \mathcal{H}, ||P_F x|| \leq ||x||$.

Remarque 1.3.1. Si $x \in F$, alors la projection orthogonale est $y_0 = x$.

Remarque 1.3.2. Ici $P_F x = x$, ce qui implique que $||P_F x|| = ||x|| \le ||P_F|| ||x||$, donc $||P_F|| \ge 1$ et donc $||P_F|| = 1$.

<u>Définition</u> 1.3.2. Une partie $A \subset \mathcal{H}$ est totale si le plus petit sous-espace fermé contenant A est $\overline{\text{vect}\{A\}} = \mathcal{H}$.

Exercice 4. De manière générale, si $A \subset \mathcal{H}$, montrer que le plus petit sous-espace fermé contenant A est $(A^{\perp})^{\perp} = A^{\perp \perp}$. En déduire que A est totale si et seulement si $A^{\perp} = \{0_{\mathcal{H}}\}$.

Définition 1.3.3. \mathcal{H} est séparable s'il admet une famille totale dénombrable.

Exercice 5. Montrer que $l^2(\mathbb{N})$ est séparable.

Dans ce cours, on considérera en général des espaces de Hilbert séparables.