

Design Compiler

Synthesis with Design Compiler

- This manual will go through a step-by-step process for performing synthesis using Design Compiler
- It is assumed that the reader has basic understanding about
 - RTL Design (Verilog, VHDL)
 - Syntax and grammar of Verilog/VHDL
 - Standard cell libraries
 - Basics of synthesis process
- Its is assumed that the reader is not familiar with the design compiler tool
- This manual will go through basic synthesis process to synthesize a AES encryption core

Design Compiler

- Design Compiler is developed by Synopsys and widely used in industry for ASIC design
- It comprises tools that synthesize your HDL descriptions into optimized, technology-dependent, gate-level designs
- It supports a wide range of flat and hierarchical design styles and can optimize both combinational and sequential designs for speed, area, and power

Necessary Files

Make sure that the following files are present

Folder Name	File Name	Description
AES/rtl/	aes_128.v round.v table.v	Verilog RTL files for the AES crypto module
AES/synthesis/	run_compiler.tcl	Script file for synthesis All the synthesis commands are located here
AES/constraints/	constraints_AES.tcl Dft_constraints_AES. tcl	Contains constraints of a design
SAED_EDK90nm/synopsys/	saed90nm_typ.db	90nm Library file

Setup enviornment

Change directory to the synthesis folder

```
[adib1991@ece-n288-lnx20 ~]$ cd /home/UFAD/adib1991/Desktop/HS 2018/AES/synthesis/
```

Make sure that run_compile.tcl is located in the folder

```
[adib1991@ece-n288-lnx20 synthesis]$ ls
run compile.tcl
```

Run the following command: source /apps/settings

```
[adib1991@ece-n288-lnx20 synthesis]$ source /apps/settings
```

Click here for more discussion on source /apps/settings command

dc_shell

 Open the design compiler by the following command: dc_shell

```
[adib1991@ece-n288-lnx20 synthesis]$ dc_shell
```

 You can also use the following command to invoke the gui of design compiler: dc_shell -gui

```
[adib1991@ece-n288-lnx20 synthesis]$ dc_shell -gui
```

dc_shell: gui

run_compile.tcl

Sourcing the run_compile.tcl file will perform the synthesis

- I will go through each command step-by-step to explain each command's operation
- The detailed description of all commands can be found <u>here</u>
- Also, you invoke the man pages as follows: Help → Man pages

Library Set-up

Type the following commands

- <u>search_path</u>: Specifies directories that the tool searches for files
- target_library: the ASIC technology which the design is mapped
- <u>link_library:</u> Specifies the list of design files and libraries used to interpret the input files
- <u>Click here</u> to see the difference between target_library and link_library

Working Directory

Type the following command

```
dc_shell> define_design_lib work -path ./work
```

 define design lib: Creates a directory and stores intermediate representations of designs in that directory

Read files

Type the following commands to read the Verilog or VHDL files

- analyze: command reads the design files
- All the design files need to be read, otherwise the un-read designs will be used as black-box
- You can also use the command to -autoread mode to automatically read all the files; to learn more <u>click here</u>

Top module

 Type the following commands to read and elaborate the top module

```
set top "aes_128"
elaborate -lib work $top
current_design $top
```

- \$top is a tcl variable. Use set command to define it
- <u>elaborate</u>: command builds a design from its intermediate representation
- current_design: command sets the name of top module

Link and Constraints

- Use <u>link</u> command to resolve design references
- Source the constraints_AES.tcl file

```
link
source /home/UFAD/adib1991/Desktop/HS_2018/AES/constraints/constraints_AES.tcl
```

- This file applies constraints into the synthesis process
- For example, the command shown below, sets the maximum clock period of 200ns

```
set clock_name_1 [get_attribute [get_ports -nocase clk] full_name]
create_clock -name $clock_name_1 -period 200 -waveform [list 0 100] [get_port $clock_name_1]
```

Click here to see all the constraint commands

Compile

- compile command performs logic-level and gate-level synthesis and optimization on the current design
- Has the following options
 - -power_effort: Effort for power optimization
 - -area_effort: Effort for area optimization
 - -scan: Replaces all sequential elements with scan elements (DfT) during optimization
- If scan-chain inserted design is required, then the additional commands <u>shown here</u>
- If a flatten design is needed, then the additional commands shown here

Save Files

- Always use the change_names -rules [verilog|vhdl] -hierarchy command whenever you want to write out a Verilog/VHDL
- Use <u>write_file</u> command to save the following files
- .v: gate-level netlist write -format verilog -hierarchy -output "aes_128_netlist.v"
- .sdc: timing constraint file for P&R write_sdc aes_128_netlist.sdc
- .sdf: timing file for Verilog simulation write_sdf -version 1.0 aes_128_netlist.sdf
- .spf: test protocol file for Tetramax (for DfT design)

Synthesis Report

- Use following commands to:
- Report area
 report_area -hierarchy > "aes_128_report.out"
- Report reference <u>report_reference</u> >> "aes_128_report.out"
- Reports dynamic and static power for the design report_power >> "aes_128_report.out"
- Reports timing information about a design report_timing >> "aes_128_report.out"

Some Useful Commands

Command Names	Description
get_object_name	Returns a list of names of the objects in a collection
all_fanin	Reports pins, ports, or cells in the fanin of specified sinks
all_fanout	Returns a set of pins, ports, or cells in the fanout of the specified sources
all_registers	Returns a collection of sequential cells or pins in the current design

 You can use the following commands to get approximated switching activity

report_power -net -analysis_effort high -nosplit > report.txt

source /apps/settings

- You are sourcing the settings file located in the /apps folder
- You can view the file using: gedit /apps/settings

```
export SYNOPSYS_HOME="/apps/syn"
export SYNOPSYS_SYN="$SYNOPSYS_HOME/synthesis"
```


- export command is used to export a variable or function to the environment of all the child processes running in the current shell
- This allows us to invoke dc_shell and other tools

target_library and link_library

- Say you have a design synthesized with 180nm library and you want to re-synthesize it to 90nm library
- Then you need to write set link_library [list 180nm.db] set target_library [list 90nm.db]
- The figure describes the process

Constraint Commands

 The following table shows the commands used in the constraints_AES.tcl file

Command Names	Description
create_clock	Create clock for the current design
set_clock_latency	Specifies the clock latency for clocks
set_input_delay	Sets input delay on pins or input ports relative to a clock signal
set_driving_cell	sets attributes on the specified input to associate an external driving cell with the ports
set_max_capacitance	sets the max_capacitance attribute to a specified value on the specified clocks, ports or designs
set_operating_conditions	Defines the operating conditions for the current design.

Autoread

- use the -autoread mode for script-free analysis of whole HDL source directories or directory trees
- All HDL source files located in those directories are processed
- Use the following code for -autoread

Scan Chain Insertion

- Comment out the compile command of the original script
- Uncomment the following commands

 The details of the dft/scan chain insertion command can be in this slide

DfT Constraint Commands

 The following table shows the commands used for the dft/scan chain insertion

Command Names	Description
compile -scan	Replace sequential elements with its scan equivalent elements
set_scan_configuration	Specifies the scan chain design.
set_dft_signal	Specifies the DFT signal types for DFT insertion
set_dft_configuration	Sets the DFT configuration for the current design
create_test_protocol	Creates a test protocol based on user specifications
dft_drc	Checks the current design against test design rules
insert_dft	Inserts DFT logic in the current design

Flatten Netlist

 Uncomment the following commands for generating a flatten netlist

Remove –hierarchy from the following command

```
write -format verilog -hierarchy -output "aes_128_netlist.v"
```