Teorema de Thévenin

Julio C. B. Gardona

4 de abril de 2025

Resumo

Este documento tem por objetivo servir como estudo de caso sobre o Teorema de Thévenin e prover alguns exercícios de simplificação de circuitos com fontes dependentes e independentes.

1 Introdução

O teorema de Thévenin afirma que um circuito linear com dois terminais pode ser substituído por um circuito equivalente formado por uma fonte de tensão V_{th} em série com um resistor R_{th} , onde V_{th} é a tensão de circuito aberto nos terminais, e R_{th} é a resistência de entrada ou equivalente nos terminais quando as fontes independentes forem desativadas.

O teorema é amplamente utilizado onde a carga R_l é variável, obrigando o circuito a ser recalculado sempre que a carga for modificada.

Figura 1: Circuito Original

Figura 2: Circuito Equivalente de Thévenin

2 Estudo com Fontes Dependentes e Independentes

Para encontrarmos R_{th} , os terminais a e b devem ser desconectados, dessa forma, nenhuma corrente fluirá por eles. Precisamos desligar todas as fontes de tensão e fontes de corrente independentes. As fontes dependentes necessitam de variáveis do circuito e não podem ser desligadas. Uma fonte de tensão **desligada** significa ser trocada por um *curto circuito*, enquanto uma fonte de corrente **desligada** significa ser trocada por um *circuito* aberto. A resistência equivalente desse circuito medida nos terminais deve ser igual a R_{th} , ou seja,

$$R_{th} = R_{oc}$$

A tensão medida nos terminais a e b, com a **carga desconectada** e suas **fontes ativadas**, deverão ser iguais a V_{th} , ou seja,

$$V_{th} = V_{oc}$$

O teorema de Thévenin é muito importante na análise de circuitos, porque ajuda a simplificar circuitos complexos, e um circuito complexo pode ser substituído por uma fonte de tensão independente e um único resistor.

Consideraremos um circuito linear terminado por uma carga R_l conforme mostra a figura 3. A corrente I_l através da carga e a tensão V_l na carga são facilmente determinadas, uma vez que seja obtido o circuito equivalente.

2.1 Problema Prático 4.8

Usando o teorema de Thévenin, determine o circuito equivalente à esquerda dos terminais do circuito da figura 3. Em seguida determine I.

Figura 3: Esquema para problema prático 4.8

Determinamos R_{th} desativando a fonte de 12V (substituindo-a por um curto circuito) e a fonte de corrente de 2A (substituindo-a por um circuito aberto). Terminamos com dois resistores de 6 Ω em série, e um de 4 Ω em paralelo. O circuito torna-se aquele mostrado na figura 4.

$$(6 \Omega + 6 \Omega) \parallel 4 \Omega = 3 \Omega$$

$$R_{th} = 3 \Omega$$
(1)

Figura 4: Circuito com as fontes desativadas.

Para determinar V_{th} consideraremos o circuito da figura 5. Aplicando análise nodal, obtemos

$$i_1 + 2 A = i_2$$

$$\frac{12 - V}{6} + 2 = \frac{V}{6 + 4} = 15 V$$
(2)

Encontramos o nó $V=15~V.~{\rm O}$ nó de V_{th} está no divisor de tensão, ou seja, acima do resistor de 4 $\Omega.~{\rm Logo}$

$$V_{th} = 15 \cdot \frac{4}{6+4} = 6 \ V \tag{3}$$

A corrente I é simplesmente $I=\frac{V_{th}}{R_{th}+1}=1.5~A.$ Esse cálculo é baseado no circuito equivalente da figura 6.

Figura 5: Determinando V_{th} .

Figura 6: Circuito equivalente.

2.2 Problema Prático 4.9

Determine o circuito equivalente de Thévenin da figura 7, à esquerda dos terminais $a \in b$.

Esse circuito contém uma fonte dependente. Diferentemente do anterior, não podemos desligar todas as fontes. Nesse caso desligamos somente a fonte de tensão e excitamos a rede com uma fonte de tensão $v_0=1V$ conectado aos terminais a e b para podermos encontrar R_{th} . Logo, nossa análise se torna mais complicada pois precisaremos de mais processos para resolver o circuito equivalente. Abaixo, seguiremos passo a passo.

2.2.1 Encontrando V_{th}

Para encontrar V_{th} , utilizaremos o circuito da figura 7. Iremos utilizar **LKC** para encontrar a tensão no nó p, e toda configuração da rede, como a direção das correntes e os nós estão de acordo com a figura 8.

Figura 7: Esquema para o problema prático 4.9

Temos duas correntes, I_1 e $1.5I_x$ entrando no nó $p.~I_x$ sai do nó. De acordo com a $LKC, \sum I_{in} = \sum I_{out}.$

$$I_{1} + 1.5 \cdot I_{x} = I_{x}$$

$$\frac{6 - V_{p}}{5} + 1.5 \cdot I_{x} = \frac{V_{p}}{3 + 4}$$

$$V_{p} \approx 9.333 \,\text{V}$$
(4)

Lembrando, $I_x=\frac{V_p}{3+4}$. Nesse caso, iremos encontrar V_{th} no divisor de tensão(entre os resistores de $3\,\Omega$ e $4\,\Omega$), no nó a.

$$V_{th} = V_p \cdot \frac{4}{4+3}$$

$$V_{th} \approx 5.333 \,\Omega$$
(5)

Figura 8: Esquema preparado para análise nodal

2.2.2 Encontrando R_{th}

Para encontrar R_{th} , precisaremos desligar a fonte de tensão de 6 V e excitar a rede inserindo uma tensão (que pode ser da nossa escolha) entre os terminais a e

b. Conforme já foi mencionado acima, não podemos desligar fontes dependentes, pois essas dependem de variáveis de circuito.

Figura 9: Encontrando R_{th}

O objetivo é encontrar a corrente I_0 , e usá-la para calcular R_{th} .

$$R_{th} = \frac{v_a}{I_0} = \frac{1}{I_0}$$

$$1.5 \cdot I_x = I_1 + I_x$$

$$1.5 \cdot \frac{v_p - v_a}{3} = \frac{v_p}{5} + \frac{v_p - v_a}{3}$$

$$1.5 \cdot \frac{v_p - 1}{3} = \frac{v_p}{5} + \frac{v_p - 1}{3}$$

$$v_p \approx -5.0 \text{ V}$$

$$I_x + I_0 = I_2$$

$$\frac{v_p - 1}{3} + I_0 = \frac{1}{4}$$

$$\frac{-5 - 1}{3} + I_0 = \frac{1}{4}$$

$$I_0 \approx 2.250 \text{ A}$$

$$R_{th} = \frac{v_a}{I_0}$$

$$R_{th} = \frac{1}{2.250} \approx 0.444 \Omega$$

2.3 Problema Prático 4.10

Encontre o equivalente de Thévenin do circuito da figura 10.

2.3.1 Definição

O primeiro fato a ser considerado é que, uma vez que não há nenhuma fonte independente no circuito, temos de excitá-lo externamente. Quando não há ne-

nhuma fonte independente, não teremos um valor para V_{th} . Podemos encontrar apenas R_{th} .

Figura 10: Esquema para o problema prático 4.10

A forma mais simples é excitar o circuito com uma fonte de tensão de 1 V, ou uma fonte de corrente de 1 A. Utilizaremos uma fonte de tensão, juntamente com análise de malhas, conforme a figura 11.

Figura 11: Circuito excitado pela fonte de tensão de 1 V

Teremos duas correntes, I_0 e I_1 fluindo no sentido contrário pelas duas malhas. Elas se encontram e seguem o mesmo sentido no resistor de $15\,\Omega$, em direção à referência (0 do circuito). É importante notar quê:

$$R_{th} = \frac{v_a}{I_0} = \frac{1}{I_0}$$

Escrevemos a primeira LKT, para a corrente de malha I_1 , conforme a equação 7.

$$-v_x + 10i_1 + 4vx + 15(i_1 + i_0) = 0$$

$$3v_x + 10i_1 + 15i_1 + 15i_0 = 0$$

$$3v_x + 25i_1 + 15i_0 = 0$$

$$v_x = -5 \cdot i_1$$

$$3(-5i_1) + 25i_1 + 15i_0 = 0$$

$$-15i_1 + 25i_1 + 15i_0 = 0$$

$$15i_0 + 10i_1 = 0$$

$$(7)$$

Iremos escrever a segunda LKT, para a corrente de malha I_0 , conforme a equação 8.

$$15(i_0 + i_1) - 1 = 0$$

$$15i_0 + 15i_1 = 1$$
(8)

Com as duas equações para as correntes de malhas i_1 e i_0 , resolvemos o sistema de equações 9.

$$\begin{cases} 15i_0 + 10i_1 = 0\\ 15i_0 + 15i_1 = 1 \end{cases}$$
 (9)

Logo, com o valor de i_0 , podemos calcular $R_{th} = \frac{1}{-0.133} \approx -7.52\,\Omega$.