

a 2
Figure 1 (A). Sequence alignment of predicted KUZ proteins from Drosophila (DKUZ, SEQ ID NO:2), mouse (MKUZ, SEQ ID NO:8) and Xenopus (XKUZ, SEQ ID NO:10). The full length amino acid sequence of MKUZ was deduced from the nucleotide sequence of two overlapping cDNA clones. Partial amino acid sequence of XKUZ was deduced from the nucleotide sequence of a PCR product that includes parts of the disintegrin and Cys-rich domains. The alignments were produced using Geneworks software (IntelliGenetics). Residues identical among two species are highlighted. Predicted functional domains are indicated. Amino acid sequences from which degenerate PCR primers were designed are indicated with arrows. Orthologs of *kuz* are also present in *C. elegans* (GenBank accession nos. D68061 and M79534), rat (Z48444), bovine (Z21961) and human (Z48579).

At p.5, line 14, before the paragraph beginning "The subject domains...", please insert the following paragraph:

a 3
Ordinarily, the allelic variants, the conservative substitution variants and the members of the *kuz* family of proteins, will have an amino acid sequence having at least 75% amino acid sequence identity with one or more of the disclosed human full length, human secreted form, mouse and *Drosophila kuz* protein sequences, more preferably at least 80%, even more preferably at least 90%, and most preferably at least 95%. Identity or homology with respect to such sequences is defined herein as percentage of amino acid residues in the candidate sequence that are identical with the known peptides, after aligning the sequences and introducing gaps, if necessary, to achieve the maximum percent homology, and not considering any conservative substitutions as part of the sequence identity. N-terminal, C-terminal or internal extensions, deletions, or insertions into the peptide sequence shall not be construed as affecting homology.

Please replace the paragraph bridging p.26 and 27 with the following paragraph:

a 4
Xenopus *kuz* was cloned by PCR using degenerate primers (XK1) and (XK4) which correspond to Drosophila KUZ sequence HNFGSPHD (SEQ ID NO:2, residues 609-616) and GYCDVF (SEQ ID NO:2, residues 870-875), respectively. First strand cDNA from stage 18

Xenopus embryos was used as template in a standard PCR reaction with an annealing temperature of 50°C. A PCR product of expected size was purified and used as template for another PCR reaction using a nested primer (XK3), corresponding to Drosophila KUZ sequence EECDCG (SEQ ID NO:2, residues 688-693), and XK4. The PCR product was subcloned into Bluescript and sequenced. Anti-sense RNA was used as a probe for whole mount *in situ* hybridization of Xenopus embryos according to standard procedures (Harland, R. (1991). Meth. Cell Biol. 36, 685-695).

At page 41, line 42, please insert the following text:

(2) INFORMATION FOR SEQ ID NO:9:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 486 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

TACAGCGACC	AATGTAAGGA	TGAATGTTGC	TATGATGCCA	ATCAGCCAGA	AAACCTAAAG	60	
TGCA	CATTAA	AGCCTGGAAA	ACAGTGCAGT	CCCAGCCAGG	GCCCTTGTG	CACCACTGGA	120
TGTA	CCTTC	AGCGAGCAGG	TGAGAACTGT	CGGGAGGAAT	CTGACTGTGC	CAAGATGGGA	180
ACTTGCAATG	GCAACTCTGC	TCAGTGTCCA	CCATCCGAAC	CAAGAGAGAA	CCTGACTGAG	240	
TGTAACAGGG	CAACCCAAGT	TTGCATCAAG	GGGCAATGCT	CAGGATCTAT	CTGTGAGAGG	300	
TATGACTTGG	AAGAGTGCAC	TTGCGGCAGT	ACTGATGAAA	AAGATGACAA	AGAGCTGTGC	360	
CACGTTGCT	GCATGGAGAA	AATGATACCG	CACACATGTG	CTAGCACTGG	TTCAGAAAGTA	420	
TGAAAGCTT	ACTTTAAAGG	AAAGACTATT	ACGTTACAAC	CAGGATCAC	TTGCAATGAA	480	
TTTAAA						486	

(2) INFORMATION FOR SEQ ID NO:10:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 162 amino acids
(B) TYPE: amino acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

Tyr	Ser	Asp	Gln	Cys	Lys	Asp	Glu	Cys	Tyr	Asp	Ala	Asn	Gln	Pro	
1									5	10				15	
Glu	Asn	Leu	Lys	Cys	Thr	Leu	Lys	Pro	Gly	Lys	Gln	Cys	Ser	Pro	Ser
									20	25				30	
Gln	Gly	Pro	Cys	Cys	Thr	Thr	Gly	Cys	Thr	Phe	Lys	Arg	Ala	Gly	Glu
									35	40				45	
Asn	Cys	Arg	Glu	Glu	Ser	Asp	Cys	Ala	Lys	Met	Gly	Thr	Cys	Asn	Gly
									50	55				60	
Asn	Ser	Ala	Gln	Cys	Pro	Pro	Ser	Glu	Pro	Arg	Glu	Asn	Leu	Thr	Glu
									65	70				75	80
Cys	Asn	Arg	Ala	Thr	Gln	Val	Cys	Ile	Lys	Gly	Gln	Cys	Ser	Gly	Ser
									85	90				95	
Ile	Cys	Glu	Arg	Tyr	Asp	Leu	Glu	Glu	Cys	Thr	Cys	Gly	Ser	Thr	Asp
									100	105				110	
Glu	Lys	Asp	Asp	Lys	Glu	Leu	Cys	His	Val	Cys	Cys	Met	Glu	Lys	Met
									115	120				125	
Ile	Pro	His	Thr	Cys	Ala	Ser	Thr	Gly	Ser	Glu	Val	Trp	Lys	Ala	Tyr
									130	135				140	
Phe	Lys	Gly	Lys	Thr	Ile	Thr	Leu	Gln	Pro	Gly	Ser	Pro	Cys	Asn	Glu
									145	150				155	160