

Министерство науки и высшего образования Российской Федерации федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский Томский политехнический университет» (ТПУ)

Инженерная школа природных ресурсов Направление подготовки Химическая технология Отделение химической инженерии

РҮТНО ДЛЯ ЗАДАЧ ХИМИЧЕСКОЙ ТЕХНОЛОГИИ

Отчет по лабораторной работе № 3 Введение в библиотеки NumPy, SciPy и Matplotlib (продолжение)

Выполнил студент гр. <u>2ДМ24</u>	(Подпись)	Иванцов П.С.
	_	2023 г.
Отчет принят:		
Преподаватель доцент ОХИ ИШПР, к.т.н.	(Подпись)	В.А. Чузлов
		2023 г.

Задание 1

Дана зависимость давления паров вещества от температуры:

T, °C	p, атм
40	0.2453
50	0.5459
60	1.2151
70	2.7042
80	6.0184
90	13.3943
100	29.8096

Определить значения давления паров при $T \in [40; 100]$ с шагом 5 °C, используя:

- Кубический сплайн;
- Одну из аппроксимирующих функций: проверить линейную, степенную и экспоненциальную аппроксимирующие функции, выбрать наиболее подходящую (по значению суммарной ошибки) и провести расчеты с использованием данной функции.

Программная реализация:

```
import numpy as np
        from scipy.interpolate import CubicSpline
        from scipy.optimize import least_squares
        import matplotlib.pyplot as plt
        def linear(x: float | np.ndarray, params: tuple[float, float]) -> float | np.ndarray:
            a0, a1 = params
            return a0 + a1 * x
        def power(x: float | np.ndarray, params: tuple[float, float]) -> float | np.ndarray:
            a, b = params
            return a * x ** b
        def exponent(x: float | np.ndarray, params: tuple[float, float]) -> float | np.ndarray:
            a, b = params
            return a * np.exp(b * x)
        def residuals(params: tuple[float, float], x: np.ndarray, y: np.ndarray, func: callable) -> np.ndar-
ray:
            return y - func(x, params)
        # Data preparation
        temperatures = np.array([40, 50, 60, 70, 80, 90, 100])
        pressures = np.array([0.2453, 0.5459, 1.2151, 2.7042, 6.0184, 13.3943, 29.8096])
        interpolation_temperatures = np.arange(40, 101, 5)
        x0 = (0.01, 0.01)
        results_linear = least_squares(residuals, x0=x0, args=(temperatures, pressures, linear))
```

```
results_power = least_squares(residuals, x0=x0, args=(temperatures, pressures, power))
results_exponent = least_squares(residuals, x0=x0, args=(temperatures, pressures, exponent))
cubic_spline = CubicSpline(temperatures, pressures)
cubic_spline_pressures = cubic_spline(interpolation_temperatures)
linear_pressures = linear(interpolation_temperatures, results_linear.x)
power_pressures = power(interpolation_temperatures, results_power.x)
exponent_pressures = exponent(interpolation_temperatures, results_exponent.x)
cubic_spline_model = CubicSpline(temperatures, pressures)
plt.figure(figsize=(12, 8))
plt.plot(temperatures, pressures, 'o', label='Исходные данные')
plt.plot(interpolation_temperatures, linear_pressures, label='Линейная аппроксимация')
plt.plot(interpolation_temperatures, cubic_spline_pressures, label='Kyбический сплайн')
plt.plot(interpolation_temperatures, power_pressures, label='Степенная аппроксимация')
plt.plot(interpolation_temperatures, exponent_pressures, label='Экспоненциальная аппроксимация')
plt.xlabel('Температура (°C)')
plt.ylabel('Давление паров (atm)')
plt.title('Оценка давления пара с помощью различных методов')
plt.legend()
plt.grid(True)
plt.show()
```

Ответ:

Рисунок 1 — Оценка давления пара с помощью различных методов Кубическая сплайн-интерполяция представляет собой гладкую кривую, проходящую через все исходные точки данных.

Этот метод известен своей гладкостью и способностью точно моделировать нелинейные данные. Он создает кусочно-непрерывную кривую, что особенно полезно для отражения нелинейной зависимости между температурой и давлением паров.

Линейное приближение изображается в виде прямой линии.

Эта модель предполагает постоянную скорость изменения давления пара в зависимости от температуры. Это самая простая форма аппроксимации, но она может не совсем точно отражать нелинейную природу данных.

Степенная аппроксимация выглядит как кривая линия, потенциально более подходящая к точкам данных по сравнению с линейной моделью, но менее гладкая, чем кубический сплайн.

Степенная аппроксимация вводит нелинейную зависимость между температурой и давлением пара. Она сложнее линейной модели и может более эффективно моделировать нелинейные тенденции.

Экспоненциальная аппроксимация представлена кривой, которая сначала медленно растет, а затем более резко увеличивается.

Эта модель подходит для данных, в которых скорость изменения возрастает экспоненциально. Она хорошо подходит для данных, полученных при высоких температурах, но может расходиться при более низких температурах.

Кубический сплайн отлично подходит для плавной и точной интерполяции, если известно, что точки данных следуют нелинейному графику.

Линейная модель, несмотря на свою простоту, может не подойти для этого набора данных из-за своей нелинейной природы.

Степенная аппроксимация обеспечивает баланс между простотой линейной модели и сложностью кубического сплайна.

Экспоненциальная аппроксимация может быть более подходящей для данных, которые показывают экспоненциальный рост, но может быть менее точной при более низких температурах.

Задание 2

Дана схема химических превращений:

$$A \stackrel{k_1}{\longleftarrow} B \stackrel{k_2}{\stackrel{k_3}{\longleftarrow}} C$$
 $C_{A_0} = 0.8 \, (\text{моль}/\pi); \qquad k_1 = 0.8 \, (c^{-1}); \ C_{B_0} = 0.2 \, (\text{моль}/\pi); \qquad k_2 = 0.96 \, (c^{-1}); \ C_{C_0} = 0.0 \, (\text{моль}/\pi); \qquad k_3 = 0.1 \, (c^{-1}).$

Решите систему дифференциальных уравнений изменения концентраций веществ во времени при помощи функции **scipy.integrate.solve_ivp()** на отрезке [0; 5] с шагом h = 0.1. По результатам расчетов постройте зависимость C(t) для каждого компонента при помощи библиотеки **matplotlib**.

Программная реализация:

```
from scipy.integrate import solve_ivp
        import numpy as np
        import matplotlib.pyplot as plt
        def chemical_system(t, concentrations, k1, k2, k3):
           A, B, C = concentrations
           dAdt = -k1 * B + k3 * C
           dBdt = k1 * B - k2 * B + k3 * C
           dCdt = k2 * B - k3 * C
           return [dAdt, dBdt, dCdt]
       C A 0 = 0.8
       C_B_0 = 0.2
       C_{0} = 0.0
       initial concentrations = [C A 0, C B 0, C C 0]
       k1 = 0.8
       k2 = 0.96
       k3 = 0.1
       time = (0, 5)
       t_eval = np.arange(0, 5.1, 0.1)
       solution = solve_ivp(chemical_system, time, initial_concentrations, args=(k1, k2,
                                                                                                     k3),
t_eval=t_eval)
       plt.figure(figsize=(10, 6))
       plt.plot(solution.t, solution.y[0], label='Концентрация A [A]')
       plt.plot(solution.t, solution.y[1], label='Концентрация В [В]')
       plt.plot(solution.t, solution.y[2], label='Концентрация С [С]')
       plt.xlabel('Время (c)')
       plt.ylabel('Концентрация (моль/л)')
       plt.title('Изменения концентрации со временем для A, B, C')
       plt.legend()
       plt.grid(True)
       plt.show()
```

Ответ:

Рисунок 2 – Изменение концентрации со временем

На графике показаны динамические изменения концентраций химических видов A, B и C с течением времени. Концентрация вида A постоянно растет благодаря его образованию из В. Концентрация В сначала немного повышается, но затем снижается, поскольку он расходуется на образование A и C. Концентрация C постоянно растет, поскольку он образуется из В. Такое поведение подчеркивает взаимодействие химических реакций, в которых В выступает в качестве ключевого промежуточного продукта, и подчеркивает влияние скорости реакции на эволюцию системы к динамическому равновесию.

Задание 3

Используя функцию scipy.integrate.quad() для вычисления значения энтропии воды при ее нагревании от 400 до 500 K по формуле:

$$\Delta S = \eta \int_{400}^{500} \frac{C_{v}(T)dT}{T}$$

$$C_{v}(T) = R \sum_{j=1}^{12} Aj\tau^{j-1}$$

```
где Т — температура, К; \eta = 3 - \text{количество молей;} C_v - \text{теплоемкость, } Дж/(\text{моль K}); R - \text{универсальная газовая постоянная;} T_c = 647,126 - \text{критическая температура, K.} \text{Коэффициенты полинома A}(1) - \text{A}(12):
```

Коэффициент	Значение
A_1	7.4305055
A_2	-24.93618016
A_3	195.5654567
A_4	1986.485797
A_5	-53305.43411
A_6	505697.1723
A_7	-2724774.677
A_8	9167737.673
A_9	-19622033.78
A_{10}	25984725.33
A_{11}	-19419431.35
A_{12}	6263206.554

Программная реализация:

```
from scipy.integrate import quad
def heat_capacity(T, coefficients, Tc, R):
    tau = 1 - T / Tc
    Cv = R * sum([coeff * tau**(j - 1) for j, coeff in enumerate(coefficients)])
    return Cv
# Given data
coefficients = [7.4305055, -24.93618016, 195.5654567, 1986.485797, -53305.43411,
505697.1723, -2724774.677, 9167737.673, -19622033.78, 25984725.33, -19419431.35,
6263206.554]
R = 8.314
Tc = 647.126
eta = 3
def integrand(T):
    return heat_capacity(T, coefficients, Tc, R) / T
Delta_S, error = quad(integrand, 400, 500)
Delta_S_total = eta * Delta_S
print(Delta_S_total, error)
Ответ:
```

Рассчитанное изменение энтропии 136,59 Дж/К при нагревании 3 молей воды с 400 до 500 К является количественным выражением этого рассеивания энергии. Оно отражает увеличение беспорядка или случайности на молекулярном уровне по мере нагревания воды.