

제17장. 전류와 저항

제17장. 전류와 저항

들어서며

정적상태(statics) → 동적상태(dynamics)[도체 내에서 이동하는 자유전자들의 정상상태(steady state)]

전류 : 전하의 이동정도: $i = \frac{dq}{dt}$ [C/sec, A] 자유전자

$$V_{A} > V_{B}$$

- \mathbf{Q} 옴의 법칙 : $i = \frac{V}{R}$
- \P 저항과 비저항 : $R =
 ho rac{l}{A}$ ho 는 비저항

요 전류 : 단위시간에 단면을 통과하는 전하량

- lacktriangle 시간 Δt 동안 단면 A를 통과하는 전하량 Δq
- * 전류 $i = \frac{\Delta q}{\Delta t}$ 순간전류 $i = \frac{dq}{dt}$ (C/sec=A: ampere)

❷ 전류밀도

$$j = \frac{i}{A}$$
 [단위면적당 전류]

예제 17.1 전류밀도

반지름이 2 mm인 도선의 한쪽 끝이 반지름이 1 mm인 도선과 용접되어 있다. 이용접된 도선에 1 A의 전류가 흐르고 있을 때 각 도선에서의 전류밀도를 구하여라.

풀이]

◉ 두 도선 모두에 1A의 전류

$$A_2 = \pi r_2^2 = \pi (2 \times 10^{-3} \text{ m})^2 = 1.256 \times 10^{-5} \text{ m}^2$$

$$A_1 = \pi r_1^2 = \pi (1 \times 10^{-3} \text{ m})^2 = 3.14 \times 10^{-6} \text{ m}^2$$

전류밀도 정의

$$J = \frac{i}{A}$$

$$J_2 = \frac{1 \text{ A}}{(1.256 \times 10^{-5} \text{ m}^2)} \approx 8 \times 10^4 \text{ A/m}^2$$

$$J_1 = \frac{1 \text{ A}}{(3.14 \times 10^{-6} \text{ m}^2)} \approx 3.2 \times 10^5 \text{ A/m}^2$$

❷ 저항

- 🍳 비저항과 저항
 - 비저항: 물질의 본질적 특성이며 모양과 관계가 없다.

(예) 구리: 1.72 × 10⁻⁸ Ω·m, 석영: 10¹⁶ Ω·m

◉ 비저항과 저항의 관계

$$i = jA$$
 and $V = El$

$$R = \frac{V}{i} = \frac{El}{jA} = \rho \frac{l}{A}$$

$$\Rightarrow R = \rho \frac{l}{A}$$

예제 17.2 탄소덩어리의 저항

50 cm

크기가 $1.0 \times 1.0 \times 50$ cm³인 직육면체의 탄소덩어리가 있다. (가) 두 정사각형의 면간의 저항은 얼마인가? (나) 서로 마주보는 직사각형 면 간의 저항은 얼마인가?

풀이]

(가) 정사각형 면적: 1.0×10-4 cm²

$$R = \rho \frac{l}{A} = \frac{(3.5 \times 10^{-5} \Omega \cdot \text{m})(0.5\text{m})}{10^{-4} \text{m}^2} = 0.18\Omega$$

11 cm

(나) 직사각형 면적 : 5.0×10⁻³ cm²

$$R = \rho \frac{l}{A} = \frac{(3.5 \times 10^{-5} \Omega \cdot m)(10^{-2} m)}{5.0 \times 10^{-3} m^2} = 7.0 \times 10^{-5} \Omega$$

🚇 물질의 저항과 온도

$$\rho = \rho_0 + \alpha \rho_0 (T - T_0)$$

- 🍳 초전도체와 반도체
 - ◉ 초전도체
 - 1911년 오네스(Kamerlingh Onnes)가 발견

▲ 그림 17.2 | 수은의 초전도 현상

◉ 반도체

V, V

▲ 그림 17.3 | 다이오드의 전류 - 전위차 특성

역 여러 물질들의 비저항

▼ 표 17.1 | 실온에서의 비저항

물 질	[Q · m]	물 질	[Ω · m]
도체		반도체	
금속-은	1.47×10^{-8}	탄소	3.5×10^{-5}
구리	1.72×10^{-8}	게르마늄	0.60
구리 금	2.44×10^{-8}	실리콘	2300
알루미늄	2.63×10^{-8}	절연체	
텅스텐	5.51×10^{-8}	호박	5 × 10 ¹⁴
철	20 × 10 ⁻⁸	유리	$10^{10} \times 10^{14}$
철 납	22 × 10 ⁻⁸	루사이트(합성수지)	> 10 ¹⁴
수은	95 × 10 ⁻⁸	운모	$10^{11} \times 10^{14}$
합금 - 망가닌	44×10^{-8}	유황	10 ¹⁴
콘스탄탄	49 × 10 ⁻⁸	테플론	> 10 ¹⁴
니크롬	100 × 10 ⁻⁸	나무	$10^8 \times 10^{11}$

3. 전도의 미시이론

- 🎱 저항력 (마찰력)
 - $oldsymbol{\circ}$ 전하의 속도에 비례 $oldsymbol{F}_r = -b oldsymbol{v}$

◉ 전하의 운동방정식

$$m\frac{dv}{dt} = qE - bv$$

3. 전도의 미시이론

 \mathbf{Q} 유동속도(drift velocity) \mathbf{v}_d

$$qE = bv_d$$
 \Rightarrow $v_d = \frac{qE}{b} = \frac{qE}{m} \tau$ $[\tau = \frac{m}{b} : \mathbb{E} \text{림} (평균자유) 시간]$

🍳 전류밀도와 유동속도

$$i = n A v_d q \implies j = n q v_d$$

$$\rho = \frac{m}{nq^2\tau}$$

(n:단위부피당 전하수)

예제 17.3 전자의 유동속도

한 변이 1.0mm인 정사각형의 단면적을 갖고 있는 구리선에 0.2A의 전류가 흐르고 있을 때, 도선 내 전자들의 유동속도를 구하여라.

풀이]

◉ 유동속도

$$v_d = \frac{j}{nq} \quad \left(\because j = \sigma E = nqv_d\right)$$

전류밀도

$$j = i/A = (0.2 \text{ A})/(1 \times 10^{-6} \text{ m}^2) = 2 \times 10^5 \text{ A/m}^2$$

구리 내의 자유전자수 밀도

$$n = \frac{N}{V} \approx 10^{29} \,\mathrm{m}^{-3} \quad \left[\because \text{ od } \text{ od } 15 \text{ -1} \right) \, m = 1 \,\mathrm{g}, \, N = 9.4 \times 10^{21} \,\mathrm{(atoms)} \,\mathrm{]}$$
$$\left[\because V = m \,/\, \rho = (1\mathrm{g}) \,/\, (8.94\mathrm{g} \,/\,\mathrm{cm}^3) = 0.112\mathrm{cm}^3 = 1.12 \times 10^{-7} \,\mathrm{m}^3 \,\mathrm{]}$$

$$v_d = \frac{j}{nq} = \frac{2 \times 10^5 \text{ A/m}^2}{(10^{29} \text{ m}^{-3})(1.6 \times 10^{-19} \text{ C})} = 1.25 \times 10^{-5} \text{ m/s} = 12.5 \ \mu\text{m/s}$$

4. 전기회로에서의 에너지 전환

높은 전위에서 낮은 전위로의 전하 이동

● 전기 위치에너지 감소 → 에너지 발생 (열에너지, 기계에너지)

- - 전기에너지의 감소량 : dq V = i dt V (i=dq/dt)
 - black box가 외부에 한 일 : dU = i dt V
 - 단위 시간당 black box가 한 일 : P = dU/dt = i V (power)
 - black box: 저항(열에너지 손실), 전동기(기계에너지 창출)
- [줄의 법칙(Joule's law)] P=i~V (V·A=W: watt) 음의 법칙 사용 \Rightarrow $P=i~V=i^2R=rac{V^2}{R}$

예제 17.4 열선의 전력

특별한 합금 니크롬으로 만들어진 4.0 m 길이의 도선이 있다. 이 도선의 저항은 24Ω 이다. 이 도선 전체를 하나의 열선으로 사용하는 경우와, 도선을 반으로 잘라서 두 개의 열선을 만들어 사용하는 경우, 각각 얼마만큼의 열을 얻을 수 있는 가? 외부 전원은 110 V로 같다고 한다.

풀이]

◉저력

$$P = \frac{V^2}{R}$$

• 자르기 전:
$$P = \frac{V^2}{R} = \frac{(110\text{V})^2}{24\Omega} = 0.5 \text{ kW}$$

• 자른 후 : 저항은 길이에 비례

$$P = \frac{V^2}{R} = \frac{(110V)^2}{12\Omega} = 1.0 \text{ kW}$$