Course: Deep Learning

Unit 2: Computer Vision

Encoder-decoder architectures. Applications.

Luis Baumela

Universidad Politécnica de Madrid

Computer Vision applications

- 1. Introduction
- 2. Encoder-decoder architectures. Semantic Segmentation
 - Sliding window approach
 - Fully Convolutional Neural Net (FCNN)
 - Encoder-decoder architectures
 - U-Net
 - Stacked hourglass
- 3. Object detection
 - Single Step approaches
 - Two-step approaches
 - Evaluating object detection
- 4. Instance segmentation

Introduction

A deep NN is a powerful image description model

Image classification task

Image classification CNN: AlexNet

AlexNet, VGG, ResNet, ... are

- hiearchical models
- composed of various layers
- each layer extracts image features at different levels of abstraction

These features may be used for solving many other CV problems

Introduction

General CNN computer vision pipeline

The performance of the final system will depend on both:

- Selected backbone architecture (VGG, GoogLeNet, ResNet, ...)
- Task-specific model

Introduction

Problems considered

Semantic segmentation

Pixels + labels

Object localization and detection

Single object + localization + class label

Classification + Localization Object Detection

CAT, DOG, DUCK

Multiple object + localizations + class labels

Instance segmentation

Pixels + instance class labels

CAT

Problem statement

Attach to each pixel in an image a label from a set of predefined classes.

All pixels from the same class have the same label!

Naive approach: sliding window

The model only classifies one pixel per run. Center a sliding window onto each pixel and push it thought the net to establish its label.

- + Lots of training data
- computationally very inefficient
- unable to use large neighbourhoods
- no parameter reuse

Better approach: use a fully convolutional NN

A fully connected layer is a convolutional layer with a receptive field whose size is the full spatial extent of the previous layer

standard fully connected layer

standard convolutional layer

Better approach: use a fully convolutional NN

A fully connected layer is a convolutional layer with a receptive field whose size is the full spatial extent of the previous layer

standard fully connected layer

convolutional layer equivalent to a fully connected layer

Better approach: use a fully convolutional NN

What is the result of the convolutionalization?

A fully CNN behaves like a huge filter:

- input image size is arbitrary,
- output size depends on input.

Better approach: use a fully convolutional NN

Why is a fully-CNN better for segmentation?

A fCNN provides a "heat map" for each class, and

- efficient evaluation and end-to-end training of a large images,
- large receptive field (depending on CNN depth)
- re-use of shared parameters.
- less parameters.

Transposed convolution

The size of the upsampled matrix

$$M = (r-1) * s + m$$

Better approach: use a fully convolutional NN

Recover initial image resolution with transposed convolution.

New network architecture

Results

no skips

• Better approach: use a fully convolutional NN What is the problem?

spectrum of deep features

combine where (local, shallow) with what (global, deep)

Better approach: use a fully convolutional NN

Solution: add "skip connections" from finer convolutional layers

Better approach: use a fully convolutional NN

Solution: add "skip connections" from finer convolutional layers

Results:

Alternative approach: Encoder-decoder

Symmetric encoder-decoder type of architecture

Three components:

- encoder
- decoder
- pixelwise classifier

Alternative approach: Encoder-decoder

Symmetric encoder-decoder type of architecture

Encoder

Encoder

- VGG16-based (13 conv layers)
- conv layer 3x3, stride 1 + batch normalization + ReLU
- max pooling 2x2, stride 2
- stored max pool indices (for later upsampling)

Alternative approach: Encoder-decoder

Symmetric encoder-decoder type of architecture

Decoder

Decoder:

- unpooling sparse feature map (from memorized indices)
- batch normalization + ReLU

Unpooling

Bed of nails unpooling

Nearest neighbor unpooling

Max unpooling with memory

Alternative approach: Encoder-decoder

Symmetric encoder-decoder type of architecture

Classification

Classification:

- multiclass soft-max trainable classifier (each pixel is a soft-max!).
- class frequency balancing

Alternative approach: Encoder-decoder

Segmentation results

Eclectic approach: Encoder-decoder + skip connections
 U-Net

Eclectic approach: Encoder-decoder + skip connections

U-Net. Results

Result on the ISBI cell tracking challenge. (a) part of an input image of the "PhC-U373" data set. (b) Segmentation result (cyan mask) with manual ground truth (yellow border) (c) input image of the "DIC-HeLa" data set. (d) Segmentation result (random colored masks) with manual ground truth (yellow border).

Segmentation results (IOU) on the ISBI cell tracking challenge 2015.

Name	PhC-U373	DIC-HeLa
IMCB-SG (2014)	0.2669	0.2935
KTH-SE (2014)	0.7953	0.4607
HOUS-US (2014)	0.5323	<u> </u>
second-best 2015	0.83	0.46
u-net (2015)	0.9203	0.7756

Eclectic approach: Encoder-decoder + skip connections

Stacked Hourglass

- encoder-decoder network architecture for pose estimation
- features are processed across all scales to capture spatial relationships
- repeated bottom-up, top-down processing
- intermediate supervision

Eclectic approach: Encoder-decoder + skip connections

Stacked Hourglass

hourglass module

Nearest neighbour unpooling

Eclectic approach: Encoder-decoder + skip connections

Stacked Hourglass

Residual module
 Each architecture block is a residual module

Intermediate supervision

Eclectic approach: Encoder-decoder + skip connections

Stacked Hourglass

Ablation

Eclectic approach: Encoder-decoder + skip connections
 Stacked Hourglass

Results

Eclectic approach: Encoder-decoder + skip connections

Stacked Hourglass

Results

Object localization and detection

Problem statement

Object localization

Classify the single object in the image and locate it with a bounding box.

Object detection

Detect multiple objects in the image, locate each of them with a bounding box and attach to each bounding box an object label.

Classification + Localization

CAT

Object Detection

CAT, DOG, DUCK

Object localization

Multi-task solution (classification + regression)

