

EGEC 180 – Digital Logic and Computer Structures

Spring 2024

Lecture 7: Extra Example

Rakesh Mahto, Ph.D.

Office: E 314, California State University, Fullerton

Office Hour: Monday and Wednesday 2:00 - 3:30 pm

Or by appointment

Office Hour Zoom Meeting ID: 891 2907 5346

Email: <u>ramahto@fullerton.edu</u> **Phone No**: 657-278-7274

Example Problem #1

• Lets evaluate XY+Z

X	Y	Z	XY	XY+Z
0	0	0	0.0 = 0	0+0 = 0
0	0	1	0.0 = 0	0+1 = 1
0	1	0	0.1 = 0	0+0 = 0
0	1	1	0.1 = 0	0+1 = 1
1	0	0	1.0 = 0	0+0 = 0
1	0	1	1.0 = 0	0+1 = 1
1	1	0	1.1 = 1	1+0 = 1
1	1	1	1.1 =1	1+1 = 1

Lets evaluate X+YZ'

X	Y	Z	Z'	YZ'	X+YZ'
0	0	0	1	0.1 = 0	0+0 = 0
0	0	1	0	0.0 = 0	0+0 = 0
0	1	0	1	1.1 = 1	0+1 = 1
0	1	1	0	1.0 = 0	0+0 = 0
1	0	0	1	0.1 = 0	1+0 = 1
1	0	1	0	0.0 = 0	1+0 = 1
1	1	0	1	1.1 = 1	1+1 = 1
1	1	1	0	1.0 = 0	1+0 = 1

• Is XY+Z = X+YZ'

XY+Z		X+YZ'
0+0 = 0		0+0 = 0
0+1 = 1		0+0 = 0
0+0 = 0		0+1 = 1
0+1 = 1		0+0 = 0
0+0 = 0		1+0 = 1
0+1 = 1		1+0 = 1
1+0 = 1	_	1+1 = 1
1+1 = 1		1+0 = 1

So the answer is NO

Example Problem #2

- Is A+B = (A'.B')'?
- Step 1 Complete the truth table for A+B
- Step 2 Evaluate the Truth Table for (A'.B')'

Α	В	A'	B'	A'.B'	(A'.B')'
0	0	1	1	1.1 = 1	0
0	1	1	0	1.0 = 0	1
1	0	0	1	0.1 = 0	1
1	1	0	0	0.0 = 0	1
					·

Α	В	A+B
0	0	0
0	1	1
1	0	1
1	1	1

$$A \rightarrow A+B$$

• Is AB = (A'+B')'

Α	В	A'	B ′	A'+B'	(A'+B')'
0	0	1	1	1+1 = 1	0
0	1	1	0 1+0 = 1		0
1	0	0	1	0+1 = 1	0
1	1	0	0	0+0 = 0	1
		•		•	·

Α	В	A.B
0	0	0
0	1	0
1	0	0
1	1	1

$$A \rightarrow A.B$$

What is the output for the function (X+X').Y

X	Y	X'	X+X'	(X+X').Y
0	0	1	0+1 = 1	1.0=0
0	1	1	0+1 = 1	1.1=1
1	0	0	1+0 = 1	1.0=0
1	1	0	1+0 = 1	1.1=1
	•			·

Why implement the circuit It does not change Y?

Given the following truth table write the truth function for F1?

Α	В	C	F1			Α	В	C	<mark>F1</mark>	
0	0	0	0		A'B'C'	0	0	0	0	—
0	0	1	0		A'B'C	0	0	1	0	_ Truth
0	1	0	0		A'BC'	0	1	0	0	Function
0	1	1	0	_	A'BC	0	1	1	0	E1 - ADICIT ADICT ADCI
1	0	0	1		AB'C'	1	0	0	1	F1 = AB'C'+ AB'C+ ABC'
_1	0	1	1	_,	AB'C	1	0	1	1	_
1	1	0	1		ABC'	1	1	0	1	
_1	1	1	0	_	ABC	1	1	1	0	_

Given the following truth table write the truth function for F2?

Α	В	C	F2		Α	В	C	F2		
0	0	0	1	A'B'C'	0	0	0	1		Truth
0	0	1	1	 A'B'C	0	0	1	1	_	Function
0	1	0	1	 A'BC'	0	1	0	1	_	Function
0	1	1	1	A'BC	0	1	1	1		FO AUDICUL AUDIC
1	0	0	0	AB'C'	1	0	0	0	_	F2 = A'B'C'+ A'B'C
1	0	1	0	AB'C	1	0	1	0		+ A'BC' + A'BC
1	1	0	1	 ABC'	1	1	0	1	_	+ABC'
1	1	1	0	ABC	1	1	1	0		

Given the following truth table write the truth function for F1?

Α	В	С	D	F3	
0	0	0	0	1	
0	0	0	1	1	
0	0	1	0	1	
0	0	1	1	1	
0	1	0	0	0	
0	1	0	1	0	
0	1	1	0	1	
0	1	1	1	0	
1	0	0	0	1	
1	0	0	1	1	
1	0	1	0	1	
_1	0	1	1	1	
1	1	0	0	0	
1	1	0	1	0	
1	1	1	0	1	
_1	1	1	1	0	

					i
	Α	В	C	D	F3
A'B'C'D'	0	0	0	0	1
A'B'C'D	0	0	0	1	1
A'B'CD'	0	0	1	0	1
A'B'CD	0	0	1	1	1
A'BC'D'	0	1	0	0	0
A'BC'D	0	1	0	1	0
A'BCD'	0	1	1	0	1
A'BCD	0	1	1	1	0
AB'C'D'	1	0	0	0	1
AB'C'D	1	0	0	1	1
AB'CD'	1	0	1	0	1
AB'CD	1	0	1	1	1
ABC'D'	1	1	0	0	0
ABC'D	1	1	0	1	0
ABCD'	1	1	1	0	1
ABCD	1	1	1	1	0

Truth Function

F3 = A'B'C'D' + A'B'C'D + A'B'CD' + A'B'CD + A'BCD' + AB'C'D + AB'CD' + ABCD'

Expressions/Boolean Functions

- A literal means we need to provide a wire to move the signal to the gate.
 - Each appearance of a variable or its complement in an expression will be referred to as a literal.
 - Thus, each literal in an expression corresponds to a gated input.

Gates are the Boolean operations

AB'C+A'B: 3 variables, 5 literals, 6 Gates

What is this systems SOM Function and What is the number of variable, literals, and gates?

AB'+C: 3 variables, 3 literals, 3 Gates

What is this systems SOM Function and What is the number of variable, literals, and gates?

(A(C+D)'+BE: 5 variables, 5 literals, 5 Gates

Given the following truth table Draw the Gate Logic?

A	В	C	F1	
C	0	0	0	
0	0	1	0	_
C	1	0	0	
C	1	1	0	
1	. 0	0	1	
_1	. 0	1	1	
1	. 1	0	1	
1	1	1	0	

	Α	В	C	<mark>F1</mark>
A'B'C'	0	0	0	0
A'B'C	0	0	1	0
A'BC'	0	1	0	0
A'BC	0	1	1	0
AB'C'	1	0	0	1
AB'C	1	0	1	1
ABC'	1	1	0	1
ABC	1	1	1	0

Truth Function

F1 = AB'C'+ AB'C+ ABC'

Truth Function

F1 = AB'C' + AB'C + ABC'

Given the following truth table write the truth function for F2?

Α	В	C	F2			Α	В	C	F2	
0	0	0	1		A'B'C'	0	0	0	1	Truth
0	0	1	1		A'B'C	0	0	1	1	
0	1	0	1		A'BC'	0	1	0	1	Function
0	1	1	1		A'BC	0	1	1	1	F2 = A'B'C' + A'B'C
1	0	0	0		AB'C'	1	0	0	0	+ A'BC' + A'BC
1	0	1	0		AB'C	1	0	1	0	+ ABC'
1	1	0	1		ABC'	1	1	0	1	Abo
1	1	1	0		ABC	1	1	1	0	J
			•	_		<u> </u>				_

Truth Function

Q&A

