University of Wrocław: Algorithms for Big Data (Fall'19)

07/10/2019

Lecture 1: Approximate Counting, Distinct Elements

Lecturer: Przemysław Uznański Scribes: Mikołaj Słupiński

1 Introduction

1.1 Topics during the course

- Streaming (counting, heavy hitters, norm estimation, sampling) (~ 4 Lectures)
- Dimensionality reduction and sparse linear algebra (eg. JL, approx matrix mul, compressed sensing) (~ 4 Lectures)
- Applications (geometry algo, coresets, graph algorithms, ANN, sliding window) (~ 4 Lectures)

1.2 Motivation

Linear time/space algorithms are not good enough with modern datasets and their volume. Typical problem we are dealing with in this course: here is a stream of data, process it in a small space to compute output X. Usually there is a lower-bound preventing us to do it in a very small space exactly. Hence we need to relax our problem to achieve very efficient (in space and time) algorithms. Examples:

- Think of any recommendation system, where each user has assigned highly dimensional vector of preferences. We want to test similarity/dissimilarity of user profiles.
- Database with approximate index (Approx Membership Queries), to quickly eliminate queries for elements that are not in the DB, except for few false positives.
- Lossy compression of audio or images selects heavy hitters in the frequency domain. How to find them without computing FFT explicitly?
- Count distinct elements in a stream, or maintain statistics in a continuous stream of updates (router + number of unique IP).

1.3 Techniques

- Probabilistic tools few probabilistic bounds are good enough 90% of the time, sometimes we will need to go a little bit deeper (fancy distributions),
- relaxing problem: $1 \pm \varepsilon$ approximation and 1δ correctness guarantee,
- linear algebra,
- trace amounts of combinatorics and "typical" A&DS that's why it might be tricky for CS students.

2 Approximate counting

The problem is to maintain a counter that supports following operations:

reset(),
$$[n \leftarrow 0]$$

inc(), $[n \leftarrow n + 1]$
query(), [output n]

Simple lowerbound of log(n) bits for exact (information-theoretic lowerbound).

Goal: algorithm that queried outputs n' such that $\Pr(|n-n'| > \varepsilon n) < \delta$.

2.1 Morris' algorithm [Sr.78]

Local state: X [int], represents $n \sim 2^X$. The crucial part of algorithm is to design how we increase X.

Inc: $X \leftarrow X + 1$ with some small probability $(\sim 2^{-X})$, with intuition being that the ppb of n being exactly $2^{X+1} - 1$ is 2^{-X} .

Let us analyze increment probability = 2^{-X} . Let X_n be random variable denoting state of algorithm after n increases.

Theorem 1.

$$\mathbf{E}[2^{X_0}] = 2^{X_0} = 1 \tag{1}$$

$$\mathbf{E}[2^{X_n}] = n + 1 \ by \ induction \tag{2}$$

Proof.

$$\mathbf{E}2^{X_{n+1}} = \sum_{j=0}^{\infty} \mathbf{Pr} \left(X_n = j \right) \cdot \mathbf{E} \left(2^{X_{n+1}} | X_n = j \right)$$

$$= \sum_{j=0}^{\infty} \mathbf{Pr} \left(X_n = j \right) \cdot \left(2^j \left(1 - \frac{1}{2^j} \right) + \frac{1}{2^j} \cdot 2^{j+1} \right)$$

$$= \sum_{j=0}^{\infty} \mathbf{Pr} \left(X_n = j \right) 2^j + \sum_j \mathbf{Pr} \left(X_n = j \right)$$

$$= \mathbf{E}2^{X_n} + 1$$

$$= (n+1) + 1$$

Morris algorithm output: $Z = 2^{X_n} - 1 \leftarrow$, which is an unbiased estimator of n (that is $\mathbf{E}[Z] = n$).

2.1.1 Analysis of variance to extract guarantees:

Theorem 2. We show inductively that $\mathbf{E}[2^{2X_n}] = 3/2n^2 + 3/2n + 1$.

Proof. see exercise

Since

$$\begin{aligned} \mathbf{Var}[Z] &= \mathbf{Var}[2^{X_n}] \\ &= \mathbf{E}[2^{2X_n}] - (\mathbf{E}[2^{X_n}])^2 \\ &= \frac{3}{2}n^2 + 3/2n + 1 - (n+1)^2 \\ &= \frac{1}{2}n^2 - \frac{1}{2}n, \end{aligned}$$

by Chebyshev's inequality $\Pr(|Z - n| > \varepsilon n) \le 1/(2\varepsilon^2)$.

This only gives failure probability $\delta < \frac{1}{2}$ for $\varepsilon > 1$, which is not very informative: (large) constant approximation with constant probability. But that was to be expected: our algorithm only outputs powers of two, so it cannot do much better job.

2.2 Morris+

Repeat k times independently, take average of estimations. Since variance is additive: $\mathbf{Var}(Z') = \frac{1}{k^2}(\mathbf{Var}(Z_1) + \mathbf{Var}(Z_2) + \cdots + \mathbf{Var}(Z_k)) = 1/k\mathbf{Var}(Z)$ so number of iterations necessary becomes: $k = \mathcal{O}(\frac{1}{\varepsilon^2\delta})$ (ok for 9/10 ppb of correctness, bad for whp correctness).

2.3 Morris++

Run t copies of Morris+ algorithm, each with $\delta=\frac{1}{3}$ and take median of estimations as a final estimation. Each estimation is ok with probability $\geq \frac{2}{3}$, so for the median to fail at least $\frac{1}{6}$ fraction of estimations need to fail (all too large or all too small) Chernoff bound gives us:

$$\mathbf{Pr}\left(\sum_{i=1}^{t} Y_i \le \frac{t}{2}\right) \le \mathbf{Pr}\left(\left|\sum_{i=1}^{t} Y_i - \mathbf{E}\sum_{i=1}^{t} Y_i\right| \ge \frac{t}{6}\right) \le 2e^{-t/3} < \delta \tag{3}$$

for $t = \Theta(\lg(1/\delta))$. Final **bit** complexity $\mathcal{O}(\log\log(n/(\varepsilon\delta))\frac{1}{\varepsilon^2}\log(\frac{1}{\delta}))$.

Lowerbound: $\Omega(\log \log_{1+\varepsilon} n) = \Omega(\log(1/\varepsilon) + \log \log n)$ (for $\delta = 0$, its trickier to prove lowerbound involving δ)

3 Distinct elements

Input: Stream of values i_1, i_2, \dots, i_m from [n] query() \leftarrow number of distinct elements

Trivial solution: remember the stream, bitvector

3.1 Flajolet Martin [FM85]

Pick a hash function $h:[n] \to [0,1]$ (for a moment let us assume ideal real numbers, and perfectly random hash function).

- 1. initially Z=1
- 2. input $X: Z = \min(Z, h(X))$

3. estimator: Y = 1/Z - 1

Observation 3. Repeats do not affect Z.

If t is the number of distinct elements, then $Z = \min(r_1, r_2, \dots, r_t)$ where r_i are all independent and from [0, 1].

Lemma 4.

$$\mathbf{E}[Z] = \frac{1}{t+1} \tag{4}$$

Proof. Pick fresh A at random from [0,1]. By symmetry,

$$\mathbf{E}[Z] = \mathbf{Pr}[A < Z] = \mathbf{Pr}[A \text{ is minimal among } A, r_1, \dots, r_t] = \frac{1}{(t+1)}.$$

Lemma 5.

$$\mathbf{E}[Z^2] \le \frac{2}{(t+1)(t+2)} \tag{5}$$

Proof. Pick fresh A, B at random from [0, 1]. By symmetry, $\mathbf{E}[Z^2] = \mathbf{Pr}[A < Z \land B < Z] = \frac{2}{(t+1)(t+2)}$ \Box Alternative proof.

$$\mathbf{E}\left[Z^{2}\right] = \int_{0}^{\infty} \mathbf{Pr}\left(Z^{2} > \lambda\right) d\lambda$$

$$= \int_{0}^{\infty} \mathbf{Pr}(Z > \sqrt{\lambda}) d\lambda$$

$$= \int_{0}^{1} (1 - \sqrt{\lambda})^{t} d\lambda$$

$$= 2 \int_{0}^{1} u^{t} (1 - u) du \quad [u = 1 - \sqrt{\lambda}] \quad = \frac{2}{(t+1)(t+2)}$$

 $\mathbf{Var}[Z] = \frac{2}{(t+1)(t+2)} - \frac{1}{(t+1)^2} = \frac{t}{(t+1)^2(t+2)} < (\mathbf{E}[Z])^2$ (6)

Remark 6. Applying Chebyshev's inequality \rightarrow results in a guarantee of a (large) constant approximation with lets say $\frac{9}{10}$ probability.

Issue: $\mathbf{E}[\frac{1}{Z}] \neq \frac{1}{\mathbf{E}[Z]}$, but concentrating Z with $1 + \varepsilon$ multiplicative error will give $1 + \varepsilon$ multiplicative error for $\frac{1}{Z}$.

3.2 FM+

To reach better approximation guarantee, we need to concentrate our output around expected value.

Approach 1 copy approach from Morris' algorithm - "repeat k times and take average" to improve variance, set $k = \mathcal{O}(\frac{1}{\varepsilon^2})$ for $\frac{9}{10}$ probability of $1 + \varepsilon$ approximation.

Approach 2 replace "take minimum" with "take k-th smallest value" (to be analyzed \rightarrow exercise).

3.3 FM++

To improve probability of success, repeat FM+ algorithm $t = \mathcal{O}(\log \delta^{-1})$ times, and take median of answers. This boosts probability of success to $1 - \delta$.

Total memory complexity is

 $\mathcal{O}(\log n \frac{1}{\varepsilon^2} \log \delta^{-1})$ of words (each word is $\log n$ bits).

3.4 Issues

Recall "for a moment let us assume ideal real numbers".

We only care about relative order of hashes, and use actual value as an estimator. Using hash-functions of form $h:[n] \to \{\frac{0}{M},\frac{1}{M},\dots,\frac{M-1}{M},\frac{M}{M}\}$ for some $M=n^3$, as it only introduces small relative error (whp each hash is $\geq \frac{1}{n}$ thus relative error introduced is at most $(1+\frac{1}{n})$, and wlog $\varepsilon > \frac{1}{n}$), and whp there are no collisions of hashes.

Recall "and perfectly random hash function".

Randomness vs. pseudorandomness \rightarrow c.f. exercises

4 Further reading

- hyperloglog algorithm, which very efficient in theory and practice, but has extremely nontrivial analysis [DF03] [HNH13]
- [Bla18] optimal $\Theta(\log n + \frac{\log \delta^{-1}}{\varepsilon^2})$ bits.

A Probability recap

Definition 7. 1. The empty set is an event, $\emptyset \in \mathcal{F}$

- 2. Given a countable set of events A_1, A_2, \ldots , its union is as an event, $\bigcup_{i \in \mathbf{N}} A_i \in \mathcal{F}$
- 3. if A is an event, then so is the complementary set A^c

Definition 8. 1. $Pr(\emptyset) = 0, Pr(\Omega) = 1$

2. if A_1, A_2, \ldots are mutually excluding events, then $\mathbf{Pr}(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} \mathbf{Pr}(A_i)$ $A \mathbf{Pr} : \mathcal{F} \mapsto [0, 1]$ satysfying these is called a probability. The triple $(\Omega, \mathcal{F}, \mathbf{Pr})$ is called a probability space.

Definition 9. We define coditional probability as

$$\mathbf{Pr}(A|B) = \frac{\mathbf{Pr}(A \cap B)}{\mathbf{Pr}(B)}$$

Theorem 10. Let B_1, \ldots, B_n be a partition of Ω , then

$$\mathbf{Pr}(A) = \sum_{i=1}^{n} \mathbf{Pr}(A|B_i) \mathbf{Pr}(B_i)$$
(7)

Definition 11. Events A and B are called independent if

$$\mathbf{Pr}(A \cap B) = \mathbf{Pr}(A)\mathbf{Pr}(B). \tag{8}$$

When $0 < \mathbf{Pr}(B) < 1$, this is the same as

$$\mathbf{Pr}(A|B) = \mathbf{Pr}(A) = \mathbf{Pr}(A|B^c) \tag{9}$$

A family $\{A_i : i \in I\}$ of events is called independent if

$$\mathbf{Pr}\left(\cap_{i\in J} A_i\right) = \prod_{i\in J} \mathbf{Pr}\left(A_i\right) \tag{10}$$

for any finite subset J of I.

Definition 12. A random variable is Informally: A quantity which is assigned by a random experiment. Formally: A mapping $X : \Omega \to \mathbf{R}$.

Definition 13. The cumulated distribution function(cdf) is:

$$F(x) = \mathbf{Pr}(X \le x) \tag{11}$$

If satisfies following properties:

- 1. $\lim_{x \to -\infty} F(x) = 0$, $\lim_{x \to +\infty} F(x) = 1$
- 2. $x < y \Rightarrow F(x) \le F(y)$
- 3. F is right-continuous, ie. $F(x+h) \rightarrow F(x)$ as $h \downarrow 0$

Definition 14. The mean of a stochastic variable is

$$\mathbf{E}X = \sum_{i \in \mathbb{Z}} i \mathbf{Pr}(X = i)$$

in the discrete case, and

$$\mathbf{E}X = \int_{-\infty}^{+\infty} f(x)dx$$

in the continuous case. In both cases we assume that the sum/integral exists absolutely. The variance of X is

$$\mathbf{Var}X = \mathbf{E}(X - \mathbf{E}x)^2 = \mathbf{E}X^2 - (\mathbf{E}X)^2$$

Definition 15. The conditional expectation is the mean in the conditional distribution

$$\mathbf{E}(Y|X=x) = \sum_{y} y f_{Y|X}(y|x) \tag{12}$$

It can be seen as a stochastic variable: Let $\psi(x) = \mathbf{E}(Y|X=x)$, then $\psi(X)$ is the conditional expectation of Y given X

$$\psi(X) = \mathbf{E}(Y|X) \tag{13}$$

We have

$$\mathbf{E}(\mathbf{E}(Y|X)) = \mathbf{E}Y\tag{14}$$

Definition 16. Conditional variance Var(Y|X) is the variance in the conditional distribution.

$$Var(Y|X = x) = \sum_{y} (y - \psi(x))^{2} f_{Y|X}(y|x)$$
(15)

This can also be written as

$$\mathbf{Var}(Y|X) = \mathbf{E}\left(Y^2|X\right) - (\mathbf{E}(Y|X))^2$$

and can be manipulated into

$$Var = EVar(Y|X) + VarE(Y|X)$$

which partitions the variance of Y.

Theorem 17 (Markov's inequality). Let $X \geq 0$ be a random variable. Then for any $k \geq 1$:

$$\mathbf{Pr}(X \ge k \cdot \mathbf{E}[X]) \le \frac{1}{k} \tag{16}$$

Theorem 18 (Chebyshev's inequality). Let X be a random variable. For any k > 0:

$$\mathbf{Pr}(|X - \mathbf{E}[X]| \ge k \cdot \sqrt{\mathbf{Var}[X]}) \le \frac{1}{k^2}$$
(17)

Theorem 19. Hoeffding bound] Let $X_1, X_2, ..., X_n \in \{0, 1\}$ be fully independent ran-dom variables. Let $X = \sum_i X_i$. Then:

$$\mathbf{Pr}(|X - \mathbf{E}[X]| \ge t) \le 2\exp\left(-\frac{t^2}{n}\right) \tag{18}$$

References

- [Bla18] Jaroslaw Blasiok. Optimal streaming and tracking distinct elements with high probability. In Artur Czumaj, editor, *Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, New Orleans, LA, USA, January 7-10, 2018*, pages 2432–2448. SIAM, 2018.
- [DF03] Marianne Durand and Philippe Flajolet. Loglog counting of large cardinalities (extended abstract). In Giuseppe Di Battista and Uri Zwick, editors, Algorithms ESA 2003, 11th Annual European Symposium, Budapest, Hungary, September 16-19, 2003, Proceedings, volume 2832 of Lecture Notes in Computer Science, pages 605-617. Springer, 2003.
- [FM85] Philippe Flajolet and G. Nigel Martin. Probabilistic counting algorithms for data base applications. J. Comput. Syst. Sci., 31(2):182–209, 1985.
- [HNH13] Stefan Heule, Marc Nunkesser, and Alexander Hall. Hyperloglog in practice: algorithmic engineering of a state of the art cardinality estimation algorithm. In Giovanna Guerrini and Norman W. Paton, editors, *Joint 2013 EDBT/ICDT Conferences, EDBT '13 Proceedings, Genoa, Italy, March 18-22, 2013*, pages 683–692. ACM, 2013.
- [Sr.78] Robert H. Morris Sr. Counting large numbers of events in small registers. Commun. ACM, 21(10):840–842, 1978.