

SEQUENCE LISTING

<110> CHAE, Young-Jin
CHOI, Eun-Wha

<120> Recombinant peptide vector comprising the gene for treatment for autoimmune diseases

<130> OP04-1086

<160> 23

<170> Kopatentin 1.71

<210> 1

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> primer

<400> 1

aagacctgaa cactgctcca

20

<210> 2

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> primer

<400> 2

ttgaaattgc ctcaagtcct

20

<210> 3

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> primer

<400> 3
gataaacagtc atccgtgtca 20

<210> 4
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 4
gttagcagatg ccgtccacct 20

<210> 5
<211> 66
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 5
ctcagtcgg tccttgact cctgtttcca agcatggcga gcatgtccaa agggatgcat 60
gtggct 66

<210> 6
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 6
gaattcgtca gaatctgggc aaggttc 27

<210> 7
<211> 61
<212> DNA
<213> Artificial Sequence

<220>

<223> primer

<400> 7

aagcttcacc atgggtgtac tgctcacaca gaggacgcgtg ctcaagtctgg tccttgact 60

c

61

<210> 8

<211> 27

<212> DNA

<213> Artificial Sequence

<220>

<223> primer

<400> 8

gaattcgata acagtcatcc gtctcat 27

<210> 9

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> primer

<400> 9

tcttagatcg cagatgccgt ccac 24

<210> 10

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> primer

<400> 10

gccagatata cgcgttgaca t 21

<210> 11
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 11
gcttaatgcg ccgctaca 18

<210> 12
<211> 2213
<212> DNA
<213> Artificial Sequence

<220>
<223> therapeutic gene

<400> 12
gttgacattt attattgact agttattaaat agtaatcaat tacgggtca tttagttcata 60
gcccatatat ggagttccgc gttacataac ttacggtaaa tggcccgct ggctgaccgc 120
ccaacgaccc cggcccattt acgtcaataa tgacgtatgt tcccatagta acgccaatag 180
ggactttcca ttgacgtcaa tgggtggagt atttacggta aactgcccac ttggcagttac 240
atcaaggta tcataatgcca agtacgcccc ctattgacgt caatgacggt aaatggcccg 300
cctggcatta tgcccagtac atgaccttat gggactttcc tacttggcag tacatctacg 360
tattagtcattt cgcttattacc atggtgatgc ggttttggca gtacatcaat gggcgtggat 420
agcgggttga ctcacgggaa ttccaagtc tccaccccat tgacgtcaat gggagtttgt 480
tttggcacca aaatcaacgg gactttccaa aatgtcgtaa caactccgcc ccattgacgc 540
aaatggccgg taggcgtgtt cgggtggagg tctatataag cagagctctc tggctaacta 600
gagaacccac tgcttactgg ctatcgaaa ttaatacgac tcactatagg gagacccaag 660
ctggctagcg tttaaactta agcttacca tgggtgtact gctcacacag aggacgctgc 720
tcagtcttgtt ctttgcactc ctgtttccaa gcatggcag catgtccaaa gggatgcgtg 780
tggctcagcc tgcagtggtt ctggccagca gccgggggt tgctagcttc gtgtgtgaat 840

atgggtcttc aggcaacgca gccgagggcc gggtgacagt gctgcggcag gctggcagcc	900
agaatgactga agtctgtgcc gcgcataaca cagtgaggaa tgagtggcc ttccctggatg	960
attctacccg cactggcacc tccagtgaa acaaagtgaa cctcaccatc caagggttga	1020
gggcatgga cacggggctc tacatctgca aggtggagct catgtaccca ccaccctact	1080
atgtaggcat gggaaatgga acccagattt atgtcatgca tcctgaacct tgcccagatt	1140
ctgacgaatt cgataacagt catccgtctc atccatctcc ctgcgtccaaat gagccccgcc	1200
tgtcaactaca gaagccagcc ctgcaggatc tgcttttagg ctccaatgcc agcctcacat	1260
gcacactgag tggctgaaa gaccccaagg gtgccacctt caccgttggaaac ccctccaaag	1320
ggaaggaacc catccagaag aatccctgagc gtgactcctg tggctgtac agtgtgtcca	1380
gtgtcctacc aggctgtgct gatccatgga accatgggaa caccttcctcc tgcacagcca	1440
cccacccctga atccaagagc ccgatcactg tcagcatcac caaaaccaca gagcacatcc	1500
cgcggccagg ccacctgctg ccggccgggt cgaaagagct ggccctcaat gagctggtga	1560
cactgacgtg ctgggtgagg ggcttcaaac caaaagatgt gctgtacga tggctgcaag	1620
ggacccagga gctacccaa gagaagtact tgacctggga gcccctgaag gagccctgacc	1680
agaccaacat gtttgcgtg accagcatgc tgagggtgac agccgaagac tggaaagcagg	1740
gggagaagtt ctccctgcatg gtggggccacg aggctctgcc catgtccctc acccagaaga	1800
ccatcgaccg cctggcggtt aaacccaccc acgtcaacgt gtctgtggtc atggcagagg	1860
tggacggcat ctgctactaa tctagagggc ccgtttaaac ccgctgtatca gcctcgactg	1920
tgccttcttag ttgccagcca tctgttgtt gcccctcccc cgtgccttcc ttgaccctgg	1980
aagggtccac tcccactgtc ctttcctaat aaaatgagga aattgtcatcg cattgtctga	2040
gttaggtgtca ttctattctg ggggggtgggg tggggcagga cagcaagggg gaggattggg	2100
aagacaatacg caggcatgct ggggatgcgg tgggtcttat ggcttctgag gcgaaagaa	2160
ccagctgggg ctctaggggg tatccccacg cgccctgttag cggcgcattaa agc	2213

<210> 13
 <211> 20

<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 13
aagacctgaa caccgctccc

20

<210> 14
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 14
gttagaaatg cctcagctct t

21

<210> 15
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 15
gagcccaaat ctttgtacaa aac

23

<210> 16
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 16
agcatccctcg tgcgaccgcg

20

<210> 17
<211> 65
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 17
ctcagtctgg tccttgact cctgtttcca agcatggcga gcatggcaat gcacgtggcc 60
cagcc 65

<210> 18
<211> 66
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 18
gaattcgagc ccaaatcttc tgacaaaact cacacatccc caccgtcccc agcacctgaa 60
ctcctg 66

<210> 19
<211> 31
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 19
tctagaagca tcctcgtgcg accgcgagag c 31

<210> 20
<211> 2446
<212> DNA
<213> Artificial Sequence

<220>
<223> therapeutic gene

<400> 20
 gttgacattt attattgact agttatataat agtaatcaat tacgggtca ttagttcata 60
 gcccatatat ggagttccgc gttacataac ttacgtaaa tggcccgct ggctgaccgc 120
 ccaacgaccc ccgcccattt acgtcaataa tgacgtatgt tcccatagta acgccaatag 180
 ggactttcca ttgacgtcaa tgggtggagt atttacggta aactgcccac ttggcagttac 240
 atcaagtgtatcataatgcca agtacgcccc ctattgacgt caatgacggt aaatggcccg 300
 cctggcatta tgcccaagtac atgacccttat gggactttcc tacttggcag tacatctacg 360
 tatttagtcat cgcttattacc atggtgatgc ggttttggca gtacatcaat gggcgtggat 420
 agcggtttga ctcacgggaa ttccaaggc tccacccat tgacgtcaat gggagtttgt 480
 ttggcacca aaatcaacgg gactttccaa aatgtcgtaa caactccgcc ccattgacgc 540
 aaatggccgg taggcgtgta cggtoggagg tctatataag cagagctctc tggctaacta 600
 gagaacccac tgcttactgg ctatcgaaa ttaatacgac tcactatagg gagacccaag 660
 ctggctagcg ttaaactta agcttacca tgggtgtact gctcacacag aggacgctgc 720
 tcagtcgtt ctttgactc ctgtttccaa gcatggcgag catggcaatg cacgtggccc 780
 agcctgctgt ggtactggcc agcagccgag gcatcgccag ctttgggtgt gaggatgcat 840
 ctccaggcaa agccactgag gtccgggtga cagtgcctcg gcaggctgac agccagggtga 900
 ctgaagtctg tgccggcaacc tacatgtatgg ggaatgagtt gaccttccta gatgattcca 960
 tctgcacggg cacctccagt gggaaatcaag tgaacctcac tatccaagga ctgaggggcca 1020
 tggacacggg actctacatc tgcagggtgg agctcatgta cccaccgcca tactaccgg 1080
 gcataggcaa cggaaacccag atttatgtaa ttgatccaga accgtggccca gattctgacg 1140
 aattcgagcc caaatcttgt gacaaaactc acacatgccc accgtggccca ggtaaaggccag 1200
 cccaggccctc gcccctccagc tcaaggcggg acaggtggccca tagagtagcc tgcattccagg 1260
 gacaggcccccc agccgggtgc tgacacgtcc accctccatct ctccctcagc acctgaactc 1320
 ctggggggac cgtcagtctt cctcttcccc cccaaacccca aggacaccct catgatctcc 1380
 cggacccctt aggtcacatg cgtgggtgg gacgtgagcc acgaagaccc tgaggtaag 1440

ttcaactggt acgtggacgg cggtggagggtg cataatgccca agacaaagcc gcggggaggag 1500
cagtacaaca gcacgttaccg gggtttcagc gtcctcaccc tcctgcacca ggactggctg 1560
aatggcaagg agtacaagtg caaggcttcc aacaaagccc tcccagcccc catcgagaaa 1620
accatctcca aagccaaagg tgggaccctgt ggggtgcgag ggccacatgg acagaggccg 1680
gctcggccca cccctgtccc tgagagtgtac ccgtgtacca acctctgtcc tacagggcag 1740
ccccgagaac cacagggtta caccctgtccc ccatcccggt atgagctgtac caagaaccag 1800
gtcagcctga cctgccttgtt caaaggcttc tatcccagcg acatcgccgt ggagtggag 1860
agcaatggc agccggagaa caactacaag accacgcctc ccgtgttgaa ctccgacggc 1920
tccttcttcc tctacagcaa gtcaccgtg gacaagagca ggtggcagca gggaaacgtc 1980
ttctcatgtt ccgtgtatgtca tgaggctctg cacaaccact acacgcagaa gagcctctcc 2040
ctgtctccgg gttaatgagt ggcacggccg gcaagcccg ctcccccggc tctcgccgtc 2100
gcacgaggat gcttcttagag ggcccgttta aacccgctga tcagcctcga ctgtgccttc 2160
tagttgccag ccattgttg ttgtccctc ccccggtcct tccttgaccc tggaaagggtgc 2220
cactcccaact gtccttctt aataaaatgtt gaaattgtca tcgcattgtc tgagttaggtg 2280
tcattctatt ctgggggttggggca ggacagcaag ggggaggatt gggaaagacaa 2340
tagcaggcat gctggggatg cggtggctc tatggcttctt gaggcgaaaa gaaccagctg 2400
gggtcttagg ggttatcccc acgcgccttg tagcggcgca ttaagc 2446

<210> 21

<211> 16

<212> PBT

<213> Artificial Sequence

220

<223> N-terminal Gly is acetylated, 2nd a.a can be replaced by Ile. 4th a.a can be replaced by Leu. 10th a.a can be replaced by Arg. 11th a.a can be replaced by Lys. 13th a.a can be replaced by one of the Leu, Ile, Arg, Gln, Asn and Ser.

<400> 21

Gly Leu Gly Ile Ser Tyr Gly Arg Lys Lys Arg Arg Gly Arg Arg Cys

1

5

10

15

<210> 22
<211> 17
<212> DNA
<213> Artificial Sequence

<220>
<223> Linker-1 DNA: 5' end of C forms ester bond with Cys

<400> 22
cttaatacgac tcactat

17

<210> 23
<211> 16
<212> DNA
<213> Artificial Sequence

<220>
<223> Linker-2 DNA

<400> 23
gattatgcgtg agtgat

16