

การพัฒนาระบบสารสนเทศ

(Information System Development)

อ.ประเสริฐ สุทธิประภาสาขาวิชาคอมพิวเตอร์ศึกษา วิทยาลัยการศึกษามหาวิทยาลัยราชภัฏร้อยเอ็ด

วงจรการพัฒนาระบบ

วงจรการพัฒนาระบบสารสนเทศ (Systems Development Life

Cycle: SDLC)

SDLC ประกอบไปด้วยระยะต่างๆ ดังนี้

ระยะที่ 1 : การวางแผนโครงการ (Project Planning)

ระยะที่ 2 : การวิเคราะห์ (Analysis)

ระยะที่ 3 : การออกแบบ (Design)

ระยะที่ 4 : การนำไปใช้ (Implementation)

ระยะที่ 5 : การบำรุงรักษา (Maintenance)

ระยะที่ 1 การวางแผนโครงการ (Project Planning)

- กำหนดปัญหา
- กำหนดเวลาโครงการ
- ยืนยันความเป็นไปได้ของโครงการ
- จัดตั้งทีมงาน
- ดำเนินโครงการ

การกำหนดปัญหา (Problem Definition)

การเขียนแผนผู้ก้างปลา (Fishbone Diagram) เป็นอีกแนวทางหนึ่ง ที่สามารถนำมาประยุกต์ใช้ในการค้นหาสาเหตุของปัญหาได้เป็นอย่างดี อาจจะมี ชื่อเรียกแผนผู้นี้อีกหลายชื่อ เช่น Cause-and-Effect Diagram หรือ Ishikawa Diagram

การกำหนดปัญหา (Problem Definition)

รูปแบบการเขียนแผนภูมิก้างปลา (Fishbone Diagram)

การกำหนดเวลาโครงการ (Project Schedule)

เป็นการกำหนดว่าโครงการจะต้องทำอะไรบ้าง แต่ละกิจกรรมต้องใช้ ทรัพยากรอะไร และใช้ระยะเวลาเท่าไหร่ การกำหนดระยะเวลาโครงการยัง เกี่ยวข้องกับการจัดลำดับความสัมพันธ์ของแต่ละกิจกรรม โดยจะพิจารณาว่า กิจกรรมใดควรทำก่อน กิจกรรมใดควรทำที่หลัง เครื่องมือที่นักวิเคราะห์ระบบ นิยมนำมาใช้ในการจัดทำแผนกำหนดเวลาโครงการ คือ แผนภูมิ แกนต์ (Gantt Chart) และเพิร์ต (PERT)

CALLROOM - GANTT CHART

	1	
d/m/Y	Zoom In	Zoom Out

PROJECT:	SETUP BOOTH AT TRADESHOW	ESTIMATED EFFORT:	301
ASSIGNED USER:	ADMIN	ACTUAL EFFORT:	284
DESCRIPTION:	THE ANNUAL WIDGETS TRADESHOW WILL BE HE OUR COMPETITION. NO MORE FISH HEADS THRO		SIGN A BOOTH SO GOOD, IT WILL KNOCK THE SOCKS OFF

Task	User	Start	Finish	Estim. Hrs	Spent Hrs	01/06	06/06	11/06	16/06	21/06	26/06	01/07	06/07	11/07	16/07	21/07	26/07	31/07	05,
Build the marketing message theme	admin	01/06/2006	07/06/2006	32	40														_
Order tradeshow booth	admin	07/06/2006	28/06/2006	80	70						- 6								
Order tradeshow graphics	admin	07/06/2006	28/06/2006	40	50		2												
Confirm booth number with the tradeshow	admin	28/06/2006	28/06/2006	4	2						1								
Organize union help	admin	29/06/2006	05/07/2006	24	10														
Order drayage	admin	29/06/2006	01/08/2006	40	40													-	
Order chotskies	admin	29/06/2006	15/08/2006	16	40														
Order lead capture device	admin	29/06/2006	15/08/2006	4	16						0								
Assign booth duty	admin	29/06/2006	31/08/2006	4	3														
Remind booth workers to wear their uniforms	admin	29/06/2006	31/08/2006	1															
Build press kits	admin	29/06/2006	01/08/2006	16	3														
Arrange partner meetings	admin	29/06/2006	15/08/2006	40	10														

LEGENDA

ตัวอย่างแผนภูมิแกนต์ (Gantt Chart) ที่แสดงถึงงานที่ต้องทำในโครงการ (แกนตั้ง) และระยะเวลาที่ต้องใช้ในการดำเนินงาน (แกนนอน)

Reference: http://www.sugarforge.org/projects/ganttchart

ระยะที่ 2 การวิเคราะห์ (Analysis)

เป็นการศึกษาระบบงานปัจจุบันพร้อมระบุแนวทางในการปรับปรุงการ บวนการที่ดีขึ้น เพื่อพัฒนาเป็นแนวคิดสำหรับระบบใหม่ขึ้นมา สิ่งที่สำคัญของ ระยะนี้ก็คือ "การรวบรวมความต้องการ (Requirement Gathering)" โดยจะ ตอบคำถามเกี่ยวกับสิ่งต่อไปนี้

"ใคร (Who) เป็นผู้ใช้ระบบ มีอะไรบ้าง (What) ที่จะต้องทำ และทำ ที่ไหน (Where) เมื่อไหร่ (When)"

ระยะที่ 2 การวิเคราะห์ (Analysis)

- วิเคราะห์ระบบงานปัจจุบัน
- วิเคราะห์ความต้องการในด้านต่างๆ เพื่อสรุปเป็นข้อกำหนด
- นำข้อกำหนดมาพัฒนาออกมาเป็นความต้องการของระบบใหม่
- สร้างแบบจำลองกระบวนการ (Data Flow Diagram : DFD)
- สร้างแบบจำลองข้อมูล (Entity Relationship Diagram : ERD)
- รวบรวมเอกสารที่สร้างขึ้นมาจัดทำเป็นข้อเสนอระบบ (System Proposal)

ภาพล้อเลียนเรื่อง Tire Swing ที่ลูกค้าอธิบายความต้องการออกมา แต่ถูก ตีความหมายในมุมมองที่แตกต่างกันตามแต่ละบุคคล

http://skipwalter.net/2012/02/05/walters-laws/

ระยะที่ 3 การออกแบบ (Design)

เป็นระยะที่มุ่งเน้นเกี่ยวกับวิธีการดำเนินงานระบบ ด้วยการนำ แบบจำลองเชิงตรรก (Logical Model) ที่ได้จากระยะวิเคราะห์มาพัฒนา เป็นแบบจำลองเชิงกายภาพ (Physical Model)

ระยะที่ 3 การออกแบบ (Design)

- การจัดหาระบบ
- ออกแบบสถาปัตยกรรมของระบบ (Architecture Design)
- ออกแบบเอาต์พุตและยูสเซอร์อินเตอร์เฟซ
- การออกแบบฐานข้อมมูล
- การสร้างต้นแบบ
- ออกแบบโปรแกรม

แผนภาพกระแสข้อมูล (Data Flow Diagram)

แผนภาพกระแสข้อมูล คือ เครื่องมือในการเขียนภาพการ วิเคราะห์ระบบงาน ช่วยให้การวิเคราะห์เป็นได้ง่าย และใช้เป็นเครื่องมือ หลัก ในการวิเคราะห์และการพัฒนาระบบ เป็นการสื่อสารเพื่อความเข้าใจ ในระบบงานที่พัฒนาให้ตรงกันของทีมงานผู้พัฒนาระบบด้วยกัน และใช้ ในการ ทำความเข้าใจระบบงานกับกลุ่มผู้ใช้งานหรือเจ้าของระบบงาน

แผนภาพกระแสข้อมูล (Data Flow Diagram) สัญลักษณ์ที่ใช้ในแผนภาพกระแสข้อมูล

สัญลักษณ์	ความหมาย	คำอธิบาย
	Process	การประมวลผล
	Data Flow	กระแสข้อมูล
	External Entity	แหล่งที่มา / ปลายทาง หรือ สิ่ง ที่อยู่ภายนอกขอบเขตระบบ
	Data Store	แหล่งเก็บข้อมูล
	Real-Time Link	การเชื่อโยงสื่อสารระยะไกลที่มี การโต้ตอบกันแบบทันทีทันใด

แผนภาพกระแสข้อมูล (Data Flow Diagram) วิธีการเขียนแผนภาพการไหลข้อมูลในรูปแบบที่ถูกต้อง

แผนภาพกระแสข้อมูล (Data Flow Diagram) วิธีการเขียนแผนภาพการไหลข้อมูลในรูปแบบที่ถูกต้อง

แผนภาพกระแสข้อมูล (Data Flow Diagram) วิธีการเขียนแผนภาพการไหลข้อมูลในรูปแบบที่ถูกต้อง

การพัฒนาแผนภาพกระแสข้อมูล (Development data flow diagrams)

- 1. รวบรวบข้อมูลจากระบบงานที่ต้องการวิเคราะห์ระบบ เนื้อหาข้อมูลที่ ต้องการคือ
 - แหล่งกำเนิด (External entity)
 - โพรเซสหรือการประมวลผล (Process)
 - การใหลของข้อมูล (Data flow)
 - การเก็บข้อมูลหรือแหล่งข้อมูล (Data store)

การพัฒนาแผนภาพกระแสข้อมูล (Development data flow diagrams)

2. สร้างแผนภาพกระแสข้อมูลระดับสูงสุด (Context Diagram)

การสร้างแผนภาพกระแสข้อมูลสูงสุดขั้นตอนนี้แสดง แหล่งกำเนิด (External entity) และ การไหลของข้อมูล (data flow) ไม่แสดง รายละเอียดการทำงานของโพรเซส (Process) และในขั้นนี้ไม่ต้องแสดง แหล่งเก็บข้อมูลให้เห็น

การพัฒนาแผนภาพกระแสข้อมูล (Development data flow diagrams)

3. สร้างแผนภาพกระแสข้อมูลระดับภาพรวม (Diagram 0)

สร้างแผนภาพกระแสข้อมูลระดับภาพรวม แสดงโพรเซส (Process) โดยภาพรวมให้เห็นว่ามี โพรเซสหลักของระบบมีอะไร และใน ขั้นนี้ต้องแสดงแหล่งเก็บข้อมูลให้เห็น

3. สร้างแผนภาพกระแสข้อมูลระดับภาพรวม (Diagram 0)

ตัวอย่างการวิเคราะห์ระบบปัจจุบัน การออกเกรดให้กับนักศึกษา Logical Data flow Diagram แผนภาพกระแสข้อมูลระดับสูงสุด (Context Diagram)

แผนภาพกระแสข้อมูลระดับภาพรวม (Diagram 0)

โพรเซสระบบลูก (Child diagram) จาก โพรเซสที่ 2

แบบจำลอง E-R

ในปี ค.ศ. 1976 Peter Chen ได้พัฒนา แบบจำลอง E-R ขึ้นมาเพื่อใช้ในการออกแบบ ฐานข้อมูล และนับจากนั้นเป็นต้นมาแผนภาพ E-R ก็ได้ มีการนำไปใช้อย่างกว้างขวางและแพร่หลาย และใน ปัจจุบันได้รับการพัฒนาแบบจำลอง E-R ในรูปแบบ ของ Crow's Foot Model

โครงสร้างข้อบังคับ (Structural Constraints)

Cardinality Constraints ประกอบด้วย

- One to One (1:1)
- One to Many (1:M)
- Many to Many (M:N)

โครงสร้างข้อบังคับ (Structural Constraints)

สรุปสัญลักษณ์ข้อบังคับบนความสัมพันธ์

Cardinality Inerpretation	Graphic Notation	Multiplicity Constraints (UML)
Mandatory one (one and only one)		11
Mandatory Many (one or more)	+	1*
zero or one	-0+	01
zero or more	-04	0*

ตัวอย่างการเขียน ER Diagram

ระยะที่ 4 การนำไปใช้ (Implementation Phase)

ระยะของการนำไปใช้จะเกี่ยวข้องกับการสร้างระบบ การทดสอบและการ ติดตั้งระบบ

- สร้างส่วนประกอบซอฟต์แวร์
- ตรวจสอบความถูกต้องและทดสอบระบบ
- แปลงข้อมูล
- ติดตั้งระบบ
- จัดทำเอกสารระบบ
- ฝึกอบรมและสนับสนุนผู้ใช้
- ทบทวนและประเมินผลระบบภายหลังการติดตั้ง

ระยะที่ 5 การบำรุงรักษา (Maintenance)

โดยปกติแล้ว ระยะการบำรุงรักษา จะไปถูกนำเข้าไปรวมไว้ใน ขั้นตอนของ SDLC จนกว่าระบบจะทำการติดตั้งเรียบร้อยแล้วเท่านั้น ระยะนี้จะใช้เวลานานที่สุดเมื่อเทียบกับระยะอื่นๆ เนื่อจากระบบจะต้อง ได้รับการบำรุงรักษาตลอดระยะเวลาที่มีการใช้งาน

ระยะที่ 5 การบำรุงรักษา (Maintenance)

กิจกรรมในระยะการบำรุงรักษา ประกอบด้วย

- การบำรุงรักษาระบบ

- การเพิ่มเติมคุณสมบัติใหม่ๆ เข้าไปในระบบ

- การสนับสนุนงานผู้ใช้

เครื่องมือสนับสนุนการพัฒนาระบบ

ปัจจุบันมีเครื่องมือหลากหลายชนิด ที่ สามารถนำมาประยุกต์ใช้กับการพัฒนาระบบให้สำ เร็วได้ด้วยความรวดเร็วและมีคุณภาพ นั่นก็คือ Computer-Aided Software Engineering (Case Tools) หรือที่มักเรียกกันว่า เคสทูลส์

เครื่องมือสนับสนุนการพัฒนาระบบ

Computer-Aided Software Engineering (Case Tools)

- เครื่องมือสร้างแผนภาพ (Diagramming Tools)
- เครื่องมือพจนานุกรม (Dictionary Tools)
- เครื่องมือออกแบบ (Design Tools)
- เครื่องจัดการคุณภาพ (Quality Management Tools)
- เครื่องมือจัดทำเอกสาร (Document Tools)
- เครื่องมือออกแบบและสร้างชุดคำสั่ง (Design and Code Generator Tools)
- เครื่องมือทกสอบ (Testing Tools)

ตัวอย่างโปรแกรม MS-Visio เครื่องมือช่วยวาด (Drawing Tool)

Reference: http://holowczak.com/drawing-e-r-diagrams-with-crows-foot-notation-using-microsoft-visio-tutorial/

เอกสารอ้างอิง:

โอภาส เอี่ยมสิริวงศ์ (2555). การวิเคราะห์และออกแบบระบบ กรุงเทพฯ : ซีเอ็ดยูเคชั่น จำกัด สมศักดิ์ โชคชัยชุติกุล (2553). การวิเคราะห์และออกแบบระบบ. กรุงเทพฯ : โปรวิชั่น สกาวรัตน์ จงพัฒนากร (2551). การวิเคราะห์และออกแบบระบบสารสนเทศ กรุงเทพฯ : มหาวิทยาลัยเกษตรศาสตร์

THE END