Definícia.

- Nech $V(\mathbb{R})$ je vektorový priestor nad poľom reálnych čísel. Operáciu z $V \times V$ do \mathbb{R} nazveme **skalárny súčin** na $V(\mathbb{R})$ ak pre každé $\overline{a}, \overline{b}, \overline{c} \in V$ a $r \in \mathbb{R}$ sú splnené tieto podmienky:
 - $\overline{a} \cdot \overline{b} = \overline{b} \cdot \overline{a}$
 - $(\overline{a} + \overline{b}) \cdot \overline{c} = \overline{a} \cdot \overline{c} + \overline{b} \cdot \overline{c}$
 - $(r \cdot \overline{a}) \cdot \overline{b} = r \cdot (\overline{a} \cdot \overline{b})$
 - pre každý vektor $\overline{a} \neq \overline{0}$ je $\overline{a} \cdot \overline{a} > 0$.

Definícia.

- Nech $V(\mathbb{R})$ je vektorový priestor nad poľom reálnych čísel. Operáciu z $V \times V$ do \mathbb{R} nazveme **skalárny súčin** na $V(\mathbb{R})$ ak pre každé $\overline{a}, \overline{b}, \overline{c} \in V$ a $r \in \mathbb{R}$ sú splnené tieto podmienky:
 - $\overline{a} \cdot \overline{b} = \overline{b} \cdot \overline{a}$
 - $(\overline{a} + \overline{b}) \cdot \overline{c} = \overline{a} \cdot \overline{c} + \overline{b} \cdot \overline{c}$
 - $(r \cdot \overline{a}) \cdot \overline{b} = r \cdot (\overline{a} \cdot \overline{b})$
 - pre každý vektor $\overline{a} \neq \overline{0}$ je $\overline{a} \cdot \overline{a} > 0$.
- Na $V_n(\mathbb{R})$ sa skalárny súčin zvyčajne definuje takto: ak $\overline{a}=[a_1,a_2,\cdots,a_n], \overline{b}=[b_1,b_2,\cdots,b_n]$, tak

$$\overline{a} \cdot \overline{b} = a_1 \cdot b_1 + a_2 \cdot b_2 + \dots + a_n \cdot b_n.$$

Definícia.

- Nech $V(\mathbb{R})$ je vektorový priestor nad poľom reálnych čísel. Operáciu z $V \times V$ do \mathbb{R} nazveme **skalárny súčin** na $V(\mathbb{R})$ ak pre každé $\overline{a}, \overline{b}, \overline{c} \in V$ a $r \in \mathbb{R}$ sú splnené tieto podmienky:
 - $\overline{a} \cdot \overline{b} = \overline{b} \cdot \overline{a}$
 - $(\overline{a} + \overline{b}) \cdot \overline{c} = \overline{a} \cdot \overline{c} + \overline{b} \cdot \overline{c}$
 - $(r \cdot \overline{a}) \cdot \overline{b} = r \cdot (\overline{a} \cdot \overline{b})$
 - pre každý vektor $\overline{a} \neq \overline{0}$ je $\overline{a} \cdot \overline{a} > 0$.
- Na $V_n(\mathbb{R})$ sa skalárny súčin zvyčajne definuje takto: ak $\overline{a}=[a_1,a_2,\cdots,a_n], \overline{b}=[b_1,b_2,\cdots,b_n]$, tak

$$\overline{a} \cdot \overline{b} = a_1 \cdot b_1 + a_2 \cdot b_2 + \dots + a_n \cdot b_n.$$

• dĺžka vektora \overline{a} je nezáporné reálne číslo: $||\overline{a}|| = \sqrt{\overline{a} \cdot \overline{a}}$.

Zistite, či zobrazenie $f: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ dané predpisom: $f([a_1,a_2],[b_1,b_2]) = a_1.b_1 + a_1.b_2 + a_2.b_1$ je skalárny súčin na $V_2(\mathbb{R})$.

Zistite, či zobrazenie $f: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ dané predpisom: $f([a_1,a_2],[b_1,b_2]) = a_1.b_1 + a_1.b_2 + a_2.b_1$ je skalárny súčin na $V_2(\mathbb{R})$.

Riešenie. Nejedná sa o skalárny súčin, lebo napr.

[-1,1].[-1,1]=-1<0, čo je v spore s podmienkou 4 z definície skalárneho súčinu.

Zistite, či zobrazenie $f: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ dané predpisom: $f([a_1,a_2],[b_1,b_2]) = a_1b_1 + 6a_2b_2 + 2a_1b_2 + 2a_2b_1$ je skalárny súčin na $V_2(\mathbb{R})$.

Zistite, či zobrazenie $f: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ dané predpisom: $f([a_1,a_2],[b_1,b_2]) = a_1b_1 + 6a_2b_2 + 2a_1b_2 + 2a_2b_1$ je skalárny súčin na $V_2(\mathbb{R})$.

Riešenie. Budeme postupovať podľa definície sk.súčinu.

- Ak budú súradnice vektorov ($[a_1,a_2],[b_1,b_2]$) reálne čísla, tak evidentne výsledok $a_1b_1+6a_2b_2+2a_1b_2+2a_2b_1\in\mathbb{R}$, teda sa jedná o operáciu **z** $V\times V$ **do** \mathbb{R} .
- Skalárny súčin musí byť komutatívny, teda

$$f([a_1, a_2], [b_1, b_2]) = a_1b_1 + 6a_2b_2 + 2a_1b_2 + 2a_2b_1 =$$

$$= b_1a_1 + 6b_2a_2 + 2b_1a_2 + 2b_2a_1 = f([b_1, b_2], [a_1, a_2]).$$

 Skalárny súčin musí byť distributívny vzhľadom na sčítanie, teda

$$\begin{split} &(\overline{a}+\overline{b})\cdot\overline{c}=([a_1,a_2]+[b_1,b_2])\cdot[c_1,c_2]=[a_1+b_1,a_2+b_2]\cdot[c_1,c_2]=\\ &=(a_1+b_1)\cdot c_1+6\cdot (a_2+b_2)\cdot c_2+2\cdot (a_1+b_1)\cdot c_2+2\cdot (a_2+b_2)\cdot c_1=\\ &a_1c_1+6a_2c_2+2a_1c_2+2a_2c_1+b_1c_1+6b_2c_2+2b_1c_2+2b_2c_1=\\ &=\overline{a}\cdot\overline{c}+\overline{b}\cdot\overline{c} \end{split}$$

• Skontrolujeme, či správne funguje aj násobenie skalárom:

$$\begin{split} &(r\cdot \overline{a})\cdot \overline{b} = (r\cdot [a_1,a_2])\cdot [b_1,b_2] = [r\cdot a_1,r\cdot a_2]\cdot [b_1,b_2] = \\ &= r\cdot a_1b_1 + 6\cdot r\cdot a_2b_2 + 2\cdot r\cdot a_1b_2 + 2\cdot r\cdot a_2b_1 = \\ &= r\cdot (a_1b_1 + 6a_2b_2 + 2a_1b_2 + 2a_2b_1) = r\cdot (\overline{a}\cdot \overline{b}) \end{split}$$

• A na záver skontrolujeme nezápornosť sk. súčinu, teda potrebujeme zistiť, či pre každý vektor $\overline{a} \neq \overline{0}$ je $\overline{a} \cdot \overline{a} > 0$. Zrejme

$$\begin{array}{l} \overline{a} \cdot \overline{a} = a_1 a_1 + 6 a_2 a_2 + 2 a_1 a_2 + 2 a_2 a_1 = a_1^2 + 6 a_2^2 + 4 a_1 a_2 = \\ = a_1^2 + +4 a_1 a_2 + 4 a_2^2 + 2 a_2^2 = \left(a_1 + 2 a_2\right)^2 + a_2^2. \\ \text{Zrejme } (a_1 + 2 a_2)^2 + a_2^2 \geq 0 \text{ pre l'ubovoln\'e } a_1, a_2. \text{ Rovnos\'e plat\'e pr\'evedy, ked' } (a_1 + 2 a_2)^2 = 0 \wedge a_2^2 = 0. \text{ Ale } \\ (a_1 + 2 a_2)^2 = 0 \wedge a_2^2 = 0 \iff a_1 + 2 a_2 = 0 \wedge a_2 = 0. \text{ Z tohto už priamo vyplýva, že } a_1 = a_2 = 0. \text{ Teda } \overline{a} \cdot \overline{a} = 0 \text{ plat\'e jedine pre nulov\'e vektor.} \end{array}$$

 Zobrazenie f spĺňa všetky požadované vlastnosti, teda sa jedná o sk. súčin.

Dĺžka vektora, príklad

Určte veľkosť vektora [1,2,0,-1,3] euklidovského priestoru $V_5(\mathbb{R})$ s obvyklým skalárnym súčinom.

Dĺžka vektora, príklad

Určte veľkosť vektora [1,2,0,-1,3] euklidovského priestoru $V_5(\mathbb{R})$ s obvyklým skalárnym súčinom.

Riešenie. Zrejme

$$||[1, 2, 0, -1, 3]|| = \sqrt{1.1 + 2.2 + 0.0 + (-1).(-1) + 3.3} = \sqrt{15}.$$

Euklidovský priestor

Definícia. Vektorový priestor nad poľom reálnych čísel, na ktorom je definovaný skalárny súčin, nazývame **euklidovským priestorom**.

Lema. Nech $V(\mathbb{R})$ je euklidovský priestor. Ak $\overline{a} \in V$, tak $\overline{0} \cdot \overline{a} = 0$.

Tvrdenie. V euklidovskom priestore $V(\mathbb{R})$ platí pre každé $\overline{x}, \overline{y} \in V, \alpha \in \mathbb{R}$

- $\bullet ||\alpha \cdot x|| = |\alpha| \cdot ||x||,$
- $|x \cdot y| \le ||x|| \cdot ||y||$, (Schwarzova nerovnosť)
- $||x+y|| \le ||x|| + ||y||$, (trojuholníkova nerovnosť)
- $||x+y||^2 = ||x||^2 + ||y||^2$. (Pythagorova rovnosť pre x ortogonálne na y)

Odchýlka vektorov

Definícia. Ak $\overline{a}\neq 0, \overline{b}\neq 0,$ tak **odchýlkou vektorov** $\overline{a}, \overline{b}$ nazývame uhol x, o ktorom platí

$$\cos x = \frac{\overline{a}.\overline{b}}{||\overline{a}||.||\overline{b}||}$$

a zároveň $0 \le x \le \pi$.

Odchýlka vektorov

Definícia. Ak $\overline{a}\neq 0, \overline{b}\neq 0,$ tak **odchýlkou vektorov** $\overline{a}, \overline{b}$ nazývame uhol x, o ktorom platí

$$\cos x = \frac{\overline{a}.\overline{b}}{||\overline{a}||.||\overline{b}||}$$

a zároveň $0 \le x \le \pi$.

Poznámka. Ak $\cos x=0$, teda ak $\overline{a}.\overline{b}=0$, budeme hovoriť, že vektory $\overline{a},\overline{b}$ sú **kolmé (ortogonálne)**.

Odchýlka vektorov

Definícia. Ak $\overline{a} \neq 0, \overline{b} \neq 0$, tak **odchýlkou vektorov** $\overline{a}, \overline{b}$ nazývame uhol x, o ktorom platí

$$\cos x = \frac{\overline{a}.\overline{b}}{||\overline{a}||.||\overline{b}||}$$

a zároveň $0 \le x \le \pi$.

Poznámka. Ak $\cos x = 0$, teda ak $\overline{a}.\overline{b} = 0$, budeme hovoriť, že vektory $\overline{a}, \overline{b}$ sú **kolmé (ortogonálne)**.

Veta. Nech $W=\langle \overline{a_1},\overline{a_2},\dots,\overline{a_n}\rangle$ je podpriestor euklidovského priestoru $V(\mathbb{R})$. Ak $\overline{a}\in W$ a $\overline{b}.\overline{a_i}=0$ pre každé $i\in\{1,2,\dots,n\}$ tak $\overline{a},\overline{b}$ sú kolmé.

Ortogonálny priemet

- ullet \overline{u} je ortogonálny k priestoru $W\iff orall \overline{x}\in W; \overline{x}\cdot \overline{u}=0.$
- ortogonálny priemet \overline{v} do W je $\overline{w} \in W; \overline{v} = \overline{w} + \overline{u}$ a \overline{u} je ortogonálny k W.

Ortogonálny priemet, príklad

V priestore $W = \langle \overline{a}, \overline{b} \rangle, \overline{a} = [-1, 1, 1], \overline{b} = [1, 1, 1]$ nájdite ortogonálny priemet vektora $\overline{v} = [1, 2, 3].$

Ortogonálny priemet, príklad

V priestore $W=\langle \overline{a},\overline{b}\rangle,\overline{a}=[-1,1,1],\overline{b}=[1,1,1]$ nájdite ortogonálny priemet vektora $\overline{v}=[1,2,3].$

Riešenie. Zrejme $\overline{w} \in W$, preto $\overline{w} = r \cdot \overline{a} + s \cdot \overline{b}$. Ďalej vieme, že $\overline{v} = \overline{w} + \overline{u}$ a teda $\overline{v} = r \cdot \overline{a} + s \cdot \overline{b} + \overline{u}$. Poslednú rovnicu vynásobíme postupne \overline{a} a \overline{b} a využijeme to, že \overline{u} je ortogonálny k W (teda $\overline{u} \cdot \overline{a} = \overline{u} \cdot \overline{b} = 0$). Dostaneme:

$$\overline{v}\cdot\overline{a}=r\cdot\overline{a}\cdot\overline{a}+s\cdot\overline{b}\cdot\overline{a}+\overline{u}\cdot\overline{a}$$

а

$$\overline{v}\cdot\overline{b}=r\cdot\overline{a}\cdot\overline{b}+s\cdot\overline{b}\cdot\overline{b}+\overline{u}\cdot\overline{b}$$

Upravíme

$$\overline{v} \cdot \overline{a} = r \cdot \overline{a} \cdot \overline{a} + s \cdot \overline{b} \cdot \overline{a}$$

а

$$\overline{v}\cdot\overline{b}=r\cdot\overline{a}\cdot\overline{b}+s\cdot\overline{b}\cdot\overline{b}.$$

Ortogonálny priemet, príklad-pokračovanie

Dosadíme

$$4 = 3 \cdot r + s$$

$$6 = r + 3 \cdot s$$

a pre r, s máme:

$$r = \frac{3}{4}, s = \frac{7}{4}$$

teda

$$\overline{w} = \frac{3}{4} \cdot [-1, 1, 1] + \frac{7}{4} \cdot [1, 1, 1] = \left[1, \frac{5}{2}, \frac{5}{2}\right].$$

Definícia. Nech $\overline{a_1}, \overline{a_2}, \ldots, \overline{a_n}$ sú vektory euklidovského priestoru. Hovoríme, že vektory $\overline{a_1}, \overline{a_2}, \ldots, \overline{a_n}$ sú (navzájom) ortogonálne, ak pre všetky $i, j \in \{1, 2, \ldots, n\}, i \neq j$, je $\overline{a_i}.\overline{a_j} = 0$.

Definícia. Nech $\overline{a_1},\overline{a_2},\ldots,\overline{a_n}$ sú vektory euklidovského priestoru. Hovoríme, že vektory $\overline{a_1},\overline{a_2},\ldots,\overline{a_n}$ sú (navzájom) ortogonálne, ak pre všetky $i,j\in\{1,2,\ldots,n\}, i\neq j$, je $\overline{a_i}.\overline{a_j}=0$.

Veta. Nenulové ortogonálne vektory euklidovského priestoru sú lineárne nezávislé.

Definícia. Nech $\overline{a_1},\overline{a_2},\ldots,\overline{a_n}$ sú vektory euklidovského priestoru. Hovoríme, že vektory $\overline{a_1},\overline{a_2},\ldots,\overline{a_n}$ sú (navzájom) ortogonálne, ak pre všetky $i,j\in\{1,2,\ldots,n\}, i\neq j$, je $\overline{a_i}.\overline{a_j}=0$.

Veta. Nenulové ortogonálne vektory euklidovského priestoru sú lineárne nezávislé.

Definícia. Vektory $\overline{a_1},\overline{a_2},\dots,\overline{a_n}$ euklidovského priestoru nazývame **ortonormálne**, keď

- $ullet \ ||\overline{a_i}||=1$ pre všetky $i\in\{1,2,\ldots,n\}$
- $\overline{a_i}.\overline{a_j} = 0$ pre ľubovoľné $i \neq j$.

Definícia. Nech $\overline{a_1},\overline{a_2},\ldots,\overline{a_n}$ sú vektory euklidovského priestoru. Hovoríme, že vektory $\overline{a_1},\overline{a_2},\ldots,\overline{a_n}$ sú (navzájom) ortogonálne, ak pre všetky $i,j\in\{1,2,\ldots,n\}, i\neq j$, je $\overline{a_i}.\overline{a_j}=0$.

Veta. Nenulové ortogonálne vektory euklidovského priestoru sú lineárne nezávislé.

Definícia. Vektory $\overline{a_1}, \overline{a_2}, \dots, \overline{a_n}$ euklidovského priestoru nazývame **ortonormálne**, keď

- $ullet ||\overline{a_i}|| = 1$ pre všetky $i \in \{1, 2, \dots, n\}$
- \bullet $\overline{a_i}.\overline{a_j}=0$ pre ľubovoľné $i\neq j.$

Dôsledok. Ortonormálne vektory, ktoré generujú euklidovský priestor $V(\mathbb{R})$, tvoria bázu $V(\mathbb{R})$.

Lema. Nech $\overline{a}, \overline{b}$ sú ortogonálne vektory euklidovského priestoru. Potom vektory $\frac{\overline{a}}{||\overline{a}||}, \frac{\overline{b}}{||\overline{b}||}$ sú ortonormálne vektory.

Lema. Nech $\overline{a}, \overline{b}$ sú ortogonálne vektory euklidovského priestoru. Potom vektory $\frac{\overline{a}}{||\overline{a}||}, \frac{\overline{b}}{||\overline{b}||}$ sú ortonormálne vektory.

Veta. Nech W je podpriestor konečnorozmerného euklidovského priestoru $V(\mathbb{R})$. Potom existuje ortonormálna báza podpriestoru W.

Lema. Nech $\overline{a}, \overline{b}$ sú ortogonálne vektory euklidovského priestoru. Potom vektory $\frac{\overline{a}}{||\overline{a}||}, \frac{\overline{b}}{||\overline{b}||}$ sú ortonormálne vektory.

Veta. Nech W je podpriestor konečnorozmerného euklidovského priestoru $V(\mathbb{R})$. Potom existuje ortonormálna báza podpriestoru W.

Dôkaz vety je konštruktívny, teda dáva návod, ako bázu hľadať. My si to vyskúšame na konkrétnej úlohe.

Ortonormálna báza, príklad

Nájdite ortonormálnu bázu podpriestoru $S=\langle [1,0,1,0], [1,1,3,0], [1,0,2,2], [3,1,6,2] \rangle$ euklidovského priestoru $V_4(\mathbb{R})$ s obvyklým skalárnym súčinom.

Ortonormálna báza, príklad

Nájdite ortonormálnu bázu podpriestoru $S = \langle [1,0,1,0], [1,1,3,0], [1,0,2,2], [3,1,6,2] \rangle$ euklidovského priestoru $V_4(\mathbb{R})$ s obvyklým skalárnym súčinom.

Riešenie. Úlohu budeme riešiť v troch hlavých krokoch:

- ullet Nájdeme bázu podpriestoru S.
- Nájdeme ortogonálnu bázu podpriestoru S.
- Nájdeme ortonormálnu bázu podpriestoru S.

1. krok-eliminácia

 Úpravou matice podpriestoru na trojuholníkovy tvar dostaneme vektory bázy podpriestoru:

$$\begin{pmatrix} 1 & 0 & 1 & 0 \\ 1 & 1 & 3 & 0 \\ 1 & 0 & 2 & 2 \\ 3 & 1 & 6 & 2 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Teda
$$S = \langle [1, 0, 1, 0], [0, 1, 2, 0], [0, 0, 1, 2] \rangle.$$

Označme:

$$\overline{a_1} = [1, 0, 1, 0], \overline{a_2} = [0, 1, 2, 0], \overline{a_3} = [0, 0, 1, 2].$$

Potom

$$\overline{b_1} = \overline{a_1}, \overline{b_2} = a_2 + x.\overline{b_1}, \overline{b_3} = \overline{a_3} + y.\overline{b_1} + z.\overline{b_2}.$$

Treba si uvedomiť, že vektory $\overline{b_1},\overline{b_2},\overline{b_3}$ vznikli ako lin. kombinácie vektorov $\overline{a_1},\overline{a_2},\overline{a_3}$, generujú teda ten istý priestor.

• Určíme vektor $\overline{b_2}$. Rovnicu pre $\overline{b_2}$ vynásobíme vektorom $\overline{b_1}$, pritom myslíme na to, že chceme, aby $\overline{b_1}, \overline{b_2}$ boli ortogonálne a preto

$$\overline{b_2}.\overline{b_1} = \overline{a_2}.\overline{b_1} + x.\overline{b_1}.\overline{b_1},$$

$$0 = a_2.\overline{b_1} + x.\overline{b_1}.\overline{b_1}.$$

Po dosadení:

$$0 = [0,1,2,0].[1,0,1,0] + x[1,0,1,0].[1,0,1,0] \iff 0 = 2 + 2x \iff x = -1.$$

Potom

$$\overline{b_2} = [0, 1, 2, 0] + (-1) \cdot [1, 0, 1, 0] = [-1, 1, 1, 0].$$

- ullet V rovnici pre $\overline{b_3}$ sú dve neznáme, budeme ich určovať v dvoch krokoch.
- (1) rovnicu vynásobíme vektorom $\overline{b_1}$,

$$\overline{b_3}.\overline{b_1} = \overline{a_3}.\overline{b_1} + y.\overline{b_1}.\overline{b_1} + z.\overline{b_2}.\overline{b_1}.$$

Vektory $\overline{b_3},\overline{b_1}$ aj $\overline{b_1},\overline{b_2}$ majú byť navzájom ortogonálne, teda dostaneme:

$$0 = \overline{a_3}.\overline{b_1} + y.\overline{b_1}.\overline{b_1}.$$

Po dosadení:

$$0 = [0, 0, 1, 2] \cdot [1, 0, 1, 0] + y[1, 0, 1, 0] \cdot [1, 0, 1, 0] \iff 0 = 1 + 2 \cdot y \iff y = -\frac{1}{2}.$$

(2) rovnicu vynásobíme vektorom $\overline{b_2}$,

$$\overline{b_3}.\overline{b_2} = \overline{a_3}.\overline{b_2} + y.\overline{b_1}.\overline{b_2} + z.\overline{b_2}.\overline{b_2}.$$

Vektory $\overline{b_3}, \overline{b_1}$ aj $\overline{b_1}, \overline{b_2}$ majú byť navzájom ortogonálne, teda dostaneme:

$$0 = \overline{a_3}.\overline{b_2} + z.\overline{b_2}.\overline{b_2}.$$

Po dosadení:

$$\begin{split} 0 &= [0,0,1,2].[-1,1,1,0] + .z[-1,1,1,0].[-1,1,1,0] \iff \\ \iff 0 &= 1 + 3 \cdot z \iff z = -\frac{1}{3}. \end{split}$$

Potom

$$\overline{b_3} = [0,0,1,2] + \left(-\frac{1}{2}\right)[1,0,1,0] + \left(-\frac{1}{3}\right)[-1,1,1,0] = \left[-\frac{1}{6},-\frac{1}{3},\frac{1}{6},2\right].$$

Teda ortogonálna báza je $[\overline{b_1}, \overline{b_2}, \overline{b_3}]$, kde

$$\overline{b_1} = [1, 0, 1, 0],$$

$$\overline{b_2} = [-1, 1, 1, 0],$$

$$\overline{b_3} = \left[-\frac{1}{6}, -\frac{1}{3}, \frac{1}{6}, 2 \right].$$

3. krok-ortonormálna báza

Z ortogonálnej bázy jednoducho dostaneme ortonormálnu bázu:

$$\overline{c_1} = \frac{\overline{b_1}}{||\overline{b_1}||} = \frac{\sqrt{2}}{2} [1, 0, 1, 0],$$

$$\overline{c_2} = \frac{\overline{b_2}}{||\overline{b_2}||} = \frac{\sqrt{3}}{3} [-1, 1, 1, 0],$$

$$\overline{c_3} = \frac{\overline{b_3}}{||\overline{b_3}||} = \frac{\sqrt{6}}{5} \left[-\frac{1}{6}, -\frac{1}{3}, \frac{1}{6}, 2 \right].$$

Bolo nutné na začiatku zisťovať, či je S báza? Aký by bol výsledok, keby sme 1. krok vynechali?

Vektorový súčin

Vektorový súčin je binárna operácia \times z $V \times V \to V$, teda výsledkom je vektor, o ktorom platí:

- $||\overline{c}|| = ||\overline{a}|| \cdot ||\overline{b}|| \cdot \sin \theta$, kde θ je odchýlka vektorov $\overline{a}, \overline{b}$.
- ullet smer vektora \overline{c} je kolmý na smery vektorov $\overline{a},\overline{b}.$
- vektor \overline{c} je orientovaný tak, že usporiadaná trojica vektorov $[\overline{a},\overline{b},\overline{c}]$ tvorí pravotočivú sústavu vektorov.

Vektorový súčin, geometrický význam

Vektorový súčin, výpočet

$$\bullet \ \overline{a} \times \overline{b} = \left(\begin{vmatrix} a_2 & a_3 \\ b_2 & b_3 \end{vmatrix}, - \begin{vmatrix} a_1 & a_3 \\ b_1 & b_3 \end{vmatrix}, \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} \right)$$

• $\overline{b} \times \overline{a} = ?$

Zmiešaný súčin

Zmiešaný súčin vektorov $\overline{u},\overline{v},\overline{w}$ je súčin $(\overline{u}\times\overline{v})\cdot\overline{w},$ teda výsledkom je číslo.

- Čo toto číslo predstavuje?
- Ako ho vypočítať?

Zmiešaný súčin, geometrický význam

$$V = S \cdot h = |\overline{u} \times \overline{v}| \cdot h = |\overline{u} \times \overline{v}| \cdot ||\overline{w}||.\cos\alpha = (\overline{u} \times \overline{v}) \cdot \overline{w}.$$

Zmiešaný súčin, prekvapenie?

$$V = (\overline{u} \times \overline{v}) \cdot \overline{w} = \begin{pmatrix} \begin{vmatrix} u_2 & u_3 \\ v_2 & v_3 \end{vmatrix}, - \begin{vmatrix} u_1 & u_3 \\ v_1 & v_3 \end{vmatrix}, \begin{vmatrix} u_1 & u_2 \\ v_1 & v_2 \end{vmatrix} \cdot (w_1, w_2, w_3) = ?$$