Limiti e continuità in \mathbb{R}^n .

Paola Mannucci e Alvise Sommariva

Università degli Studi di Padova Dipartimento di Matematica

16 dicembre 2014

Concetti di topologia

Il proposito di questa sezione è di estendere alcuni concetti propri di \mathbb{R} a \mathbb{R}^n .

Un punto chiave risulterà il concetto di limite di funzione in \mathbb{R}^n , e per fare questo necessiteremo di alcune definizione che daremo in seguito, quali quelle di

- intorno (aperto o chiuso);
- punto di accumulazione.

Da queste definizioni, introdurremo il concetto di continuità per funzioni da \mathbb{R}^n in \mathbb{R}^m .

Concetti di topologia

Definizione

Sia f una funzione di n variabili reali e Ω il più grande sottinsieme di \mathbb{R}^n per cui abbia senso scrivere f(x) per $x \in \Omega$. Tale Ω si dice dominio naturale di f.

Esempio

Sia $f(x,y) = \log(x+y)$. Il dominio naturale di f è l'insieme dei punti (x,y) per cui x+y>0, cioè per cui x>-y.

Quindi consiste delle coppie del piano sopra la bisettrice del secondo e quarto quadrante.

\mathbb{R}^n : operazioni

Siano $\mathbf{x}=(x_1,\ldots,x_n)$, $\mathbf{y}=(y_1,\ldots,y_n)$, $\lambda\in\mathbb{R}$ scelti arbitrariamente. L'insieme

$$\mathbb{R}^n = \{\mathbf{x} = (x_1, \dots, x_n), x_1, \dots, x_n \in \mathbb{R}\}\$$

è dotato di

una operazione detta addizione, per cui

$$\mathbf{x} + \mathbf{y} = (x_1 + y_1, \dots, x_n + y_n) \in \mathbb{R}^n;$$

una operazione detta moltiplicazione per uno scalare, per cui

$$\lambda \cdot \mathbf{x} = (\lambda \cdot x_1, \dots, \lambda \cdot x_n) \in \mathbb{R}^n;$$

una operazione detta prodotto scalare, per cui

$$(\mathbf{x},\mathbf{y}) = \sum_{i=1}^n x_i \cdot y_i = x_1 \cdot y_1 + \ldots + x_n \cdot y_n \in \mathbb{R};$$

\mathbb{R}^n : norme e distanze

una norma o modulo

$$\|\mathbf{x}\|_{\mathbb{R}^n} = \sqrt{(\mathbf{x}, \mathbf{x})} = \sqrt{x_1^2 + \ldots + x_n^2};$$

una distanza tra x e y

$$d(\mathbf{x},\mathbf{y}) = \|\mathbf{x} - \mathbf{y}\| = \|\mathbf{x} + (-1) \cdot \mathbf{y}\| = \sqrt{(x_1 - y_1)^2 + \ldots + (x_n - y_n)^2}$$

Esempio

Siano $\mathbf{x} = (-1, 3)$, $\mathbf{y} = (7, 2)$, $\lambda = 4$. Allora

- $\mathbf{x} + \mathbf{y} = (-1,3) + (7,2) = (-1+7,3+2) = (6,5);$
- $\lambda \cdot \mathbf{x} = 4 \cdot (-1,3) = (-4,12);$
- $(\mathbf{x},\mathbf{y}) = ((-1,3),(7,2)) = (-1\cdot7) + (3,\cdot2) = -7+6 = -1;$
- $\|\mathbf{x}\|_{\mathbb{R}^n} = \|(-1,3)\|_{\mathbb{R}^n} = \sqrt{1^2 + 3^2} = \sqrt{10};$
- $\|\mathbf{x} \mathbf{y}\|_{\mathbb{R}^n} = \|(-1,3) (7,2)\|_{\mathbb{R}^n} = \sqrt{(-1-7)^2 + (3-2)^2} = \sqrt{64+1} = \sqrt{65}.$

\mathbb{R}^n : intorni

Definizione

Dati $\mathbf{x} \in \mathbb{R}^n$ ed $\epsilon \in \mathbb{R}^+$, si dice intorno (sferico) \mathbf{x} di raggio ϵ (o palla di centro \mathbf{x} di raggio ϵ) l'insieme

$$B_{\epsilon}(\mathbf{x}) := \{ \mathbf{y} \in \mathbb{R}^n : d(\mathbf{x}, \mathbf{y}) < \epsilon \} = \{ \mathbf{y} \in \mathbb{R}^n : ||\mathbf{x} - \mathbf{y}|| < \epsilon \}$$

Esempio

L'insieme $B_{\epsilon}(\mathbf{x})$

- ▶ in R^1 è l'intervallo (aperto) $(\mathbf{x} \epsilon, \mathbf{x} + \epsilon)$;
- ▶ in R^2 è il disco di centro **x** e raggio ϵ ;
- ▶ in \mathbb{R}^3 è la palla di centro **x** e raggio ϵ .

\mathbb{R}^n : punti di accumulazione, isolati, insiemi limitati

Definizione

L'elemento $\mathbf{x} \in \mathbb{R}^n$ si dice punto di accumulazione di E se per ogni intorno B_{ϵ} di \mathbf{x} esiste qualche $\mathbf{y} \in E$ tale che $\mathbf{y} \in B_{\epsilon} \setminus \{\mathbf{x}\}$

Definizione

L'elemento $\mathbf{x} \in \mathbb{R}^n$ si dice punto isolato di \mathbf{E} se non è di accumulazione in \mathbf{E} .

Definizione

Un insieme $E \subset \mathbb{R}^n$ si dice limitato se esiste r > 0 tale che $E \subseteq B_r(\mathbf{0})$, ovvero se esiste r > 0 tale che $\|\mathbf{x}\| < r$ per ogni $\mathbf{x} \in E$.

\mathbb{R}^n : punti di accumulazione, isolati, insiemi limitati

Figura : Sia E il triangolo in magenta, avente vertici (0,0), (1.5,0), (1.5,1), non contenente i lati. L'origine (0,0) è un punto di accumulazione per E poichè ogni intorno sferico centrato in (0,0) contiene punti di E. Il punto P=(-0.5,0.35) è isolato rispetto ad E perchè il disco centrato in P e raggio 0.15 non contiene punti di E.

\mathbb{R}^n : punti interni, esterni, frontiera

Definizione

L'elemento $\mathbf{x} \in \mathbb{R}^n$ si dice

- ▶ punto interno ad E se esiste un suo intorno $B_{\epsilon}(\mathbf{x})$, $\epsilon > 0$, contenuto in E;
- ▶ punto esterno ad E se è un punto interno al complementare di E;
- punto di frontiera per E se non è ne' un punto interno ne' un punto esterno di E;

Definizione

Si dice

- ▶ interno di E, spesso denotato con È, l'insieme dei punti interni di E;
- ► frontiera di E, spesso denotato con ∂E, l'insieme dei punti di frontiera di E;
- **chiusura di E**, spesso denotato con \overline{E} , l'insieme $E \cup \partial E$.

\mathbb{R}^n : aperti e chiusi

Definizione

Un insieme $E \subseteq \mathbb{R}^n$ si dice

- ▶ aperto di \mathbb{R}^n se coincide col suo interno;
- **chiuso** di \mathbb{R}^n se il suo complementare è aperto di \mathbb{R}^n ;

Nota.

- ▶ Gli insiemi \emptyset , \mathbb{R}^n sono sia chiusi che aperti di \mathbb{R}^n ;
- L'unione e l'intersezione di aperti è ancora un aperto;
- L'unione e l'intersezione di chiusi è ancora un chiuso.

\mathbb{R}^n : sui chiusi

Teorema

Sia $E \subseteq \mathbb{R}^n$. Le seguenti affermazioni sono equivalenti:

- (i) E è chiuso;
- (ii) $\partial E \subseteq E$;
- (iii) E contiene tutti i suoi punti di accumulazione.

Definizione

Un insieme $A \subseteq E \subseteq \mathbb{R}^n$ si dice denso in E se la sua chiusura coincide con E, cioè $\overline{A} = E$.

Esempio

L'insieme \mathbb{Q} è denso in \mathbb{R} .

\mathbb{R}^n : infinito

Come in precedenza per il caso di $\mathbb R$ resta da definire quali siano gli intorni di ∞ in $\mathbb R^n$.

Definizione

Gli insiemi

$$\{\mathbf{y} \in \mathbb{R}^n, \|\mathbf{y}\|_{\mathbb{R}^n} > a, \ a \in \mathbb{R}^+\} \cup \{\infty\}$$

sono intorni di ∞ in \mathbb{R}^n , cioè i complementari di dischi centrati nell'origine e aventi raggio a.

Figura : In magenta un intorno di ∞ di \mathbb{R}^2 , visto come il complementare del disco di \mathbb{R}^2 , avente centro l'origine e raggio 1.

\mathbb{R}^n : limite, caso generale

Definizione

Siano $X \subseteq \mathbb{R}^n$, $f: X \to \mathbb{R}^m$, $\mathbf{x_0} \in \mathbb{R}^n \cup \{\infty\}$ un punto di accumulazione per X. Si scrive

$$L = \lim_{\mathbf{x} \to \mathbf{x_0}} f(\mathbf{x})$$

se per ogni intorno $\mathcal V$ di L esiste $\mathcal U$ intorno di $\mathbf x_0$ tale che $f(\mathbf x) \in \mathcal V$ per ogni $\mathbf x \in \mathcal U \backslash \mathbf x_0$.

Di seguito, a partire da questa definizione, come già visto per i limiti in \mathbb{R} , caratterizziamo questa definizione in termini di norme.

$$\mathbb{R}^n$$
: $\lim_{\mathbf{x} \to \mathbf{x_0} f(\mathbf{x})} = L \in \mathbb{R}$

Se $L \in \mathbb{R}$, $\mathbf{x_0} \in \mathbb{R}^n$, $f: X \to \mathbb{R}^m$, allora

$$L = \lim_{\mathbf{x} \to \mathbf{x_0}} f(\mathbf{x})$$

se e solo se per ogni $\epsilon>0$ esiste $\delta(\epsilon)>0$ tale che

$$\mathbf{x} \in X, \ \|\mathbf{x} - \mathbf{x_0}\|_{\mathbb{R}^n} < \delta(\epsilon) \Rightarrow \|f(\mathbf{x}) - L\|_{\mathbb{R}^m} < \epsilon.$$

$$\mathbb{R}^n$$
: $\lim_{\mathbf{x}\to\mathbf{x_0}} f(\mathbf{x}) = \infty$

Se $\mathbf{x_0} \in \mathbb{R}^n$, $f: X \to \mathbb{R}^m$, allora

$$\lim_{\mathbf{x}\to\mathbf{x_0}}f(\mathbf{x})=\infty$$

se e solo se per ogni K>0 esiste $\delta(K)>0$ tale che

$$\mathbf{x} \in X, \ \|\mathbf{x} - \mathbf{x_0}\|_{\mathbb{R}^n} < \delta(K) \Rightarrow \|f(\mathbf{x})\|_{\mathbb{R}^m} > K.$$

$$\mathbb{R}^n$$
: $\lim_{\mathbf{x}\to\infty} f(\mathbf{x}) = L \in \mathbb{R}$

Se $\mathbf{x_0} \in \mathbb{R}^n$, $f: X \to \mathbb{R}^m$, X contenente un intorno di ∞ , allora

$$L = \lim_{\mathbf{x} \to \infty} f(\mathbf{x})$$

se e solo se per ogni $\epsilon > 0$ esiste $K(\epsilon) > 0$ tale che

$$\mathbf{x} \in X, \ \|\mathbf{x}\|_{\mathbb{R}^n} > K(\epsilon) \Rightarrow \|f(\mathbf{x}) - L\|_{\mathbb{R}^m} < \epsilon.$$

$$\mathbb{R}^n$$
: $\lim_{\mathbf{x}\to\infty} f(\mathbf{x}) = \infty$

Se $f: X \to \mathbb{R}^m$, X contenente un intorno di ∞ , allora

$$\lim_{\mathbf{x}\to\infty}f(\mathbf{x})=\infty$$

se e solo se per ogni M > 0 esiste K(M) > 0 tale che

$$\mathbf{x} \in X, \ \|\mathbf{x}\|_{\mathbb{R}^n} > K(M) \Rightarrow \|f(\mathbf{x})\|_{\mathbb{R}^m} > M.$$

\mathbb{R}^n : nota

Nota.

Si dimostra che

- ▶ il limite, se esiste, è unico;
- i limiti della somma e del prodotto scalare sono uguali rispettivamente alla somma e al prodotto scalare dei limiti, qualora questi ultimi esistano finiti;
- ▶ siano $f: X \subseteq \mathbb{R}^n \to \mathbb{R}^k$, $g: Im(f) \subseteq \mathbb{R}^k \to \mathbb{R}^m$. Siano $\mathbf{x_0} \in X$, $\mathbf{y_0} \in Im(f)$ punti di accumulazione rispettivamente in $X \in Im(f)$. Se

$$\lim_{\mathbf{x}\to\mathbf{x}_0}f(\mathbf{x})=\mathbf{y}_0,\ \lim_{\mathbf{y}\to\mathbf{y}_0}g(\mathbf{y})=\mathbf{z}_0$$

allora

$$\lim_{\mathsf{x}\to\mathsf{x}_0}g\circ f(\mathsf{x})=\mathsf{z}_0.$$

\mathbb{R}^n : restrizione a curve

Definizione

Sia $I \subseteq \mathbb{R}$. Una curva in \mathbb{R}^m $(m \ge 2)$ è una funzione $\gamma : I \to \mathbb{R}^m$ continua in I.

Teorema

Sia $\mathbf{x_0}$ un punto di accumulazione per $X \subseteq \mathbb{R}^n$ e $f: X \to \mathbb{R}$. Allora

$$\lim_{\mathbf{x}\to\mathbf{x}_0} f(\mathbf{x}) = L \Rightarrow \lim_{t\to t_0} f(\gamma(t)) = L$$

per ogni curva $\gamma:I \to X$ tale che $\gamma(t_0)=\mathbf{x_0}$ per un certo $t_0 \in I$.

\mathbb{R}^n : restrizione a rette

Visto che una retta passante per x_0 è ovviamente una curva verificante le precedenti ipotesi, abbiamo:

Corollario

Una condizione necessaria per l'esistenza del limite (finito o infinito) di una funzione $f: X \subseteq \mathbb{R}^2 \to \mathbb{R}$ per $\mathbf{x} \to \mathbf{x_0}$ è che la funzione ristretta a ogni retta passante per $\mathbf{x_0}$ ammetta lo stesso limite.

- Questa osservazione viene spesso usata per dimostrare la non esistenza di un limite.
- Sottolineiamo che <u>esistono</u> funzioni che ristrette a ogni retta passante per x₀ ammettono lo stesso limite, pur non <u>esistendo</u> il <u>limite</u> di f in x₀.

\mathbb{R}^n : restrizione a rette

Esempio

Mostrare che la funzione

$$f(x,y) = \frac{x^3 + y^2}{x^2 + y^2}$$

non ammette limite per $(x, y) \rightarrow (0, 0)$.

Svolgimento.

Le rette per (0,0) sono tutte del tipo y=mx. Allora, fissato m, la funzione su questa retta vale

$$f(x,y) = f(x,mx) = \frac{x^3 + (mx)^2}{x^2 + (mx)^2} = \frac{x^2(x+m^2)}{x^2(1+m^2)} = \frac{(x+m^2)}{(1+m^2)}$$

e quindi per $x \to 0$, il limite vale $\frac{m^2}{1+m^2}$. Siccome varia al variare di m, il limite non esiste.

Somme inferiori e superiori

Figura : La funzione $f(x,y) = \frac{x^3+y^2}{x^2+y^2}$ in un intorno dell'origine.

Somme inferiori e superiori

Figura : La funzione $f(x,y) = \frac{x^3 + y^2}{x^2 + y^2}$ in $[-0.1, 0.1] \times [-0.1, 0.1]$.

\mathbb{R}^n : restrizione a rette

Esempio

Mostrare che la funzione

$$f(x,y) = \begin{cases} x \cdot e^{x/y}, & \text{se } y \neq 0 \\ 0, & \text{se } y = 0 \end{cases}$$

non ammette limite per $(x, y) \rightarrow (0, 0)$.

Traccia.

Si vede che se restringiamo la funzione alle rette y = mx passanti per l'origine, allora se $y \neq (0,0)$, $m \neq 0$

$$f(x,y)=f(x,mx)=x\cdot \mathrm{e}^{x/mx}=x\cdot \mathrm{e}^{1/m}\to 0$$
 mentre se $m=0$, cioè $y=0$, per definizione $f(x,y)=0$.

Tuttavia sull'arco $y = x^2$, abbiamo

$$f(x,y) = f(x,x^2) = x \cdot e^{x/x^2} = x \cdot e^{1/x} \to +\infty.$$

Quindi il limite non esiste, perchè altrimenti coninciderebbe su tutte le curve passanti per l'origine.

\mathbb{R}^n : continuità

Definizione

Siano $X\subseteq \mathbb{R}^n$, $f:X\to \mathbb{R}^m$. Allora f si dice continua in $\mathbf{x_0}\in \mathbb{R}^n$ se vale una delle seguenti

- (i) x₀ è un punto isolato;
- (ii) x_0 è un punto di accumulazione per X e

$$\lim_{\mathbf{x}\to\mathbf{x}_0}f(\mathbf{x})=f(\mathbf{x}_0).$$

Inoltre f si dice continua in X se è continua in ogni $x \in X$.

\mathbb{R}^n : continuità

Nota.

Si dimostra che

- La somma e il prodotto scalare di funzioni continue sono funzioni continue;
- ▶ Siano $f: X \subset \mathbb{R}^n \to \mathbb{R}^k$, $g: Im(f) \subset \mathbb{R}^k \to \mathbb{R}^m$ funzioni continue. Allora $h = g \circ f$ è una funzione continua;
- ▶ I polinomi di \mathbb{R}^n sono funzioni continue;
- ▶ Siano $f: X \subset \mathbb{R}^n \to \mathbb{R}$, $g: X \subset \mathbb{R}^n \to \mathbb{R}$ funzioni continue. Allora h = f/g è una funzione continua in tutti i punti $\mathbf{x} \in X$ in cui $g(\mathbf{x}) \neq 0$;

\mathbb{R}^n : continuità

Esempio

La funzione $f(x,y) = e^{x \cdot y^3 + x^4}$ è una funzione continua, in quanto lo è il polinomio $x \cdot y^3 + x^4$ composto con l'esponenziale (che è funzione continua).

Esempio

La funzione $f(x,y) = \sin(x \cdot y^3 + x^4 + \cos(x \cdot y))/(1 + x^2 \cdot y^4 + e^y)$ è continua nel dominio naturale \mathbb{R}^2 , in quanto

- lo è il polinomio $x \cdot y^3 + x^4$;
- ▶ lo è cos(x · y) (composizione polinomio in due variabili con funzione continua);
- ▶ lo è sin(z) (funzione continua);
- lo è la somma di funzioni continue;
- ▶ lo è il denominatore $1 + x^2 \cdot y^4 + e^y$, che non si annulla mai in \mathbb{R}^2 .