Computer Networks

EDA387/DIT663

Fault-tolerant Algorithms for Computer Networks

Review and Dijkstra's algorithm (Ch.2)

Goal

- We would like to understand how to design selfstabilizing network protocols
- At the end of these three lectures and after the home assignments you should be able to:
 - Define network tasks
 - leader election, token circulation, spanning tree construction (BFS) and network topology update (routing)
 - Propose methods for solving such tasks
 - with an emphasis on self-stabilizing methods
 - Argue about the correctness of their proposals

Today

- Defining system settings and tasks
- Solution for token circulation and spanning tree construction

What is a Distributed System?

- Communication networks
- Multiprocessor computers
- Multitasking single processor

A computer network is modeled by a set of n finite state machines. We call these automata processors, and say that they communicate with each other

The Distributed System Model

Denote:

• P_i - the ith processor

neighbor of P_i - a processor that can communicate with i =

directly with P_i

the Model?

Ways of communication

- message passing fits communication networks and all the rest
- shared memory fits geographically close systems

Asynchronous Distributed Systems – Message passing

- A communication link, which is unidirectional from P_i to P_j, transfers message from P_i to P_j
- For a unidirectional link we will use the abstract \mathbf{q}_{ij} (a FIFO

Asynchronous Distributed Systems - Message passing

- System configuration (configuration):
 Description of a distributed system at a particular time.
- □ A configuration will be denoted by

$$c = (s_1, s_2, ..., s_n, q_{1,2}, q_{1,3}, ..., q_{i,j}, ..., q_{n,n-1})$$
, where

 s_i = State of P_i

 $q_{i,j}$ ($i\neq j$) the message queue

Asynchronous Distributed Systems – Shared Memory

- Processors communicate by the use of shared communication registers
- The configuration will be denoted by $\mathbf{c} = (s_1, s_2, ..., s_n, r_{1,2}, r_{1,3}, ..., r_{i,j}, ..., r_{n,n-1})$ where $\mathbf{si} = \mathbf{State}$ of $\mathbf{P_i}$ $\mathbf{r_i} = \mathbf{Content}$ of communication register I

• Sometime we write c_i and sometime c[i] --- they are the same

The distributed System – A Computation Step

In shared memory model ...

And in message passing model ...

The distributed System – Communication Steps

• The book considers computation steps with a single communication operation

The distributed System – Atomic Steps

• We often assume that steps are atomic and that they have the following form

The Interleaving model

- Scheduling of events in a distributed system influences the transition made by the processors
- The interleaving model at each given time only a single processor executes a computation step
- Every state transition of a processor is due to communication-step execution
- A step will be denoted by a
- \circ $c_1 \overset{a}{\rightarrow} c_2$ denotes the fact that c_2 can be reached from c_1 by a single step a

The distributed System – more definitions

- Step a is applicable to configuration c iff $\exists c' : c \xrightarrow{a} c'$.
- An execution $E = (c_0, a_0, c_1, a_1, ...)$, an alternating sequence such that $c_{i-1} \stackrel{a}{\longrightarrow} c_i$ (i>1)
- A fair execution every step that is applicable infinitely often is executed infinitely often
- A communication channel is fair (in message passing)
 when the fact that a message is sent infinitely often
 implies that this message is it received infinitely
 often

Synchronous Distributed Systems

- A global clock pulse (pulse) triggers a simultaneous step of every processor in the system
- Fits multiprocessor systems in which the processors are located close to one another
- The execution of a synchronous system E = (c1,c2,...) is totally defined by c1, the first configuration in E

Legal Behavior

 A desired legal behavior is a set of legal executions denoted LE

legal execution

A self-stabilizing system can be started in any arbitrary configuration and will eventually exhibit a desired "legal" behavior

Self-stabilizing Systems

- Note that we define LE for a particular system and a particular task
- An execution of a self-stabilizing system has a suffix that appears in LE
- We say that configuration c is safe with regard to task LE and system, if every fair execution of the algorithm that starts from c belongs to LE
- An algorithm is self-stabilizing for a task LE if every fair execution of the algorithm reaches a safe configuration with relation to LE

Time complexity

- The first asynchronous round (round) in an execution E is the shortest prefix E' of E such that each processor executes at least one step in E', where E=E'E".
- The number of rounds = time complexity
- A Self-Stabilizing algorithm is usually a do forever loop
- The number of steps required to execute a single iteration of such a loop is $O(\Delta)$, where Δ is an upper bound on the number of neighbors of P_i
- Asynchronous cycle (cycle) the first cycle in an execution E is the shortest prefix E' of E such that each processor executes at least one complete iteration of it's do forever loop in E', E=E'E".
- O Note: each cycle spans $O(\Delta)$ rounds
- The time complexity of <u>synchronous algorithm</u> is the number of pulses in the execution

Space complexity

 The space complexity of an algorithm is the total number of (local and shared) memory bits used to implement the algorithm

Dijkstra's method

- The task of Mutual Exclusion has "other names" in message passing systems:
 - token ring
 - token passing
 - token circulation

Dijkstra's method

- O Stations on a token ring LAN are logically organized in a ring topology with data being transmitted sequentially from one ring station to the next with a control token circulating around the ring controlling access
- A station that holds the token may access the network, i.e., mutual exclusion

Mutual Exclusion

The root changes it's state if equal to it's neighbor

The rest - each processor copies it's neighbor's state if it is different

Legal Behavior of Mutual Exclusion

- The set $LE_{\rm ME}$ includes all the executions in which each processor may access the critical section infinitely often
 - Namely, let p_i be a processor in the network, E be an execution in $LE_{\rm ME}$ and E' be a suffix of E. Then, p_i may access the critical section infinitely many times
- Moreover, while p_i is accessing the critical section no other processor may concurrently access that critical section

Dijkstra's method

```
01 P_1: do forever

02 if x_1 = x_n then

03 x_1 := (x_1 + 1) \mod (n + 1)

04 P_i(i \neq 1): do forever

05 if x_i \neq x_{i-1} then

06 x_i := x_{i-1}
```

Dijkstra's alg. is Self-Stabilizing

- A configuration of the system is a vector of *n* integer values (the processors in the system)
- The task ME:
 - exactly one processor can change its state in any configuration,
 - every processor can change its state in infinitely many configurations in every sequence in ME
- One of the safe configurations in ME and Dijkstra's algorithm is a configuration in which all the *x* variables have the same value

Dijkstra's alg. is Self-Stabilizing

- A configuration in which all x variables are equal, is a safe configuration for ME (Lemma 2.2)
- For every configuration there exists at least one integer j such that for every i $x_i \neq j$ (Lemma 2.3)
- For every configuration c, in every fair execution that starts in c, P_1 changes the value of x_1 at least once in every n rounds (Lemma 2.4)
- For every possible configuration c, every fair execution that starts in c reaches a safe configuration with relation to ME within $O(n^2)$ rounds (Theorem 2.1)

Lemma 2.4

For every configuration c, in every fair execution that starts in c, processor p_1 changes the value of x_1 at least once in every n rounds

- Assume, in a way of a proof by contradiction, that there exists a configuration c and a fair execution that starts in c and in which p_1 does not change that value of x_1 during the first n rounds.
- Lets c_2 be the configuration that immediately follows the first time p_2 executes an atopic step during the first round.

Lemma 2.4

- Clearly, $x_1=x_2$ in c_2 and in every configuration that follows c_2 in the next n-l rounds. Let c_3 be the configuration that immediately follows the first time p_3 executes a computation step during the second round.
- It holds in c_3 that $x_1=x_2=x_3$. The same arguments repeats itself until we arrive at the configuration c_n , which is reached in the (n-1)-th round and in which $x_1=x_2=...=x_n$.
- The *n*-th round, p_1 is activated and changes the value of x_1 , a contradiction. \square

For every possible configuration c, every fair execution that starts in c reaches a safe configuration with relation to ME within $O(n^2)$ rounds

• In accordance with Lemma 2.3 for every possible configuration c there exists at least one integer $0 \le j \le n$ such that, for every $1 \le i \le n$ $x_i \ne j$ in c.

- In accordance with lemma 2.4, for every possible configuration c, in every fair execution that starts in c, the special processor p_1 changes the value of x_1 in every n rounds.
- Every time p_1 changes the value of x_1 , p_1 increments the values of x_1 module n+1.
- Thus, it must hold that every possible value, and in particular the value j, is assigned to x_1 during any fair execution that starts in c.

- Let c_j be the configuration that immediately follows the first assignment of j in x_j .
- Every processor p_i , $2 \le i \le n$ copies the value x_{i-1} to x_i .
- Thus, it holds for $1 \le i \le n$ that $x_i \ne j$ in every configuration that follows c and precedes c_j ; it also holds that in c_j , that the only x variables to hold the value j is x_1 .
- Processor p_1 does not change the value of x_1 until $x_n = j$.

- The only possible sequence of changes of the values of the *x* variables to the value of *j* is:
 - p_2 changes x_2 to the values of x_1 (which is j), then p_3 changes the value of x_3 to j and so on until p_n changes the value of x_n to j.
- Only at this stage is p_1 able to change value again (following c_i).
- Let c_n be the configuration reached following the assignment of $x_n := j$. c_n is a safe configuration.

- In accordance with Lemma 2.4, p_1 must assign j to x_1 in every n^2 rounds.
- Thus a safe configuration must be reached in n^2+n rounds. \Box

Summary

- Revised our system settings
 - Added message passing
 - Added asynchrony
- Presented solutions and proved for mutual exclusion
- And also mutual exclusion for general communication graphs via fair composition

Review Questions

- 1. Rewrite the proof of the convergence and closure of the Leader Election program in the <u>message passing</u> model
- 2. Show that in a synchronous uniform ring, there is no deterministic self-stabilizing method for token circulating
 - Hint: The answer is similar to the leader election impossibility lemma