

MIPS Implementations in Computer Organizations

This presentation explores the MIPS architecture, its instruction set, execution cycle, and its implementation in modern computer systems. We'll delve into pipelining techniques, hazards, and the advancements in MIPS microarchitecture.

Introduction to MIPS Architecture

Reduced Instruction Set Computing (RISC)

MIPS is a RISC architecture that emphasizes simplicity and efficiency, focusing on a small set of instructions with fixed-length formats. It has been widely used in embedded systems, networking devices, and even supercomputers.

Load-Store Architecture

MIPS is a load-store architecture, where data can only be accessed through load and store instructions. This simplifies the instruction set and allows for faster execution.

Instruction Set

at	Format	Arthentic	R-type	Memori	Controt	J-tir
	Entlode - Oet8	32	25980	090	25982	Bat6
	Entlode - Jet4	10	25778	090	29933	Bat7:
	Gatlode - Jef9	12	29441	064	25387	Rat3
	Entlode - JefS	30	29831	064	20322	Bat3
	Gatlode - Def5	10	28972	064	39922	Bat7
	EnMode - 0et3	10	26573	065	26922	Rat6
	Entlode -0et5	76	28872	0831	39973	Bat7
	Gatlode - Det 6	70	25003	0981	25377	Bat7:
	Entlode - Jef7	75	25978	0991	29706	Bat7
	Entlode - Det8	33	26802	0962	95272	Bat6
	Entlode -0ef2	55	35599	0955	16837	Bat5
	EnMode - Jet8	38	28903	9982	19935	Bet5
	EnMode - Det7	88	35723	0991	15572	Bat6
	EnMode - 0et7	16	15833	1991	15547	Bat7
	Entlede - Oet1	12	35974	1991	15203	Bat7
	Entlode - Oet3	75	16604	1986	16644	Bat3
	Ent/lode - Jet2	70	19937	3992	37103	Bat7
	Entlode - 0et6	30	18632	3092	35142	Bat7
	Entlode - Det3	54	10731	9996	33209	Rat7
	Ent/lode - Det4	36	19931	9995	36532	Bat7
	Gatlode - Oet9	106	335438	9954	667,73	Bat2
	EnMode - Det7	307	352.158	9992	664037	Rat4
	Entlode - 5et6	335	155488	9972	364481	Bat7
	EnMode - 3et6	163	1577%	9965	564338	Bat7
	EnMode -3et1	152	152794	9978	352138	Bat3
	Catlode - Jet5	155	120337	5027	355348	Bet7
	EnMode - 3ef7	184	353338	9996	363338	Bat5
	CaMode - Jet5	157	140831	9904	332431	Bet7
	CeMode - 0et7	156	357338	8061	355328	Bet7
	EnMode - 3et5	367	39409	9991	35833	Bat3
	Catlode - Oet7	311	79551	5001	79931	7993

MIPS Instruction Set and Addressing Modes

Instruction Types

MIPS instructions are categorized into arithmetic, logical, data transfer, control flow, and system instructions. These categories simplify the design and implementation of the processor.

Addressing Modes

MIPS supports various addressing modes, including register direct, immediate, register indirect, and base-offset addressing. These modes offer flexibility in accessing data in memory.

MIPS Register File and Memory Organization

Register File

MIPS has 32 general-purpose registers, providing fast access to frequently used data. These registers are used to store temporary values and program variables.

Memory Organization

MIPS memory is organized into a linear address space, with each byte having a unique address. This structure facilitates efficient memory management and data access.

MIPS Register file

MIPS Instruction Execution Cycle

Fetch: The instruction is fetched from memory and placed into the instruction register.

Decode: The instruction is decoded, identifying the operation and operands.

Execute: The operation is performed, with the result being stored in the register file or memory.

Pipelining in MIPS Processors

	1	Pipeline Stages Instruction Fetch Fetch the next instruction from memory.					
	2						
	3	Decode Decode the instruction to identify its operation and operands.					
	4	Execute Perform the arithmetic or logical operation.					
	5		Memory Access Access memory for data loads or stores.				
	6			Write Back Write the result back to the register file.			
					Made with Gamma		

Hazards and Stalls in MIPS Pipelines

Data Hazards

Occur when an instruction depends on the result of a previous instruction that hasn't completed yet.

Control Hazards

Occur when a branch instruction changes the flow of control, disrupting the pipeline's sequential execution.

Stalls

2

3

Pipeline stalls introduce delays to resolve hazards, ensuring the correct sequence of instructions.

Branch Prediction Techniques in MIPS

1

Static Prediction

Always predicts a branch to be taken or not taken, based on a predefined rule. 2

Dynamic Prediction

Uses the execution history of previous branches to predict the outcome of current branches.

3

Branch History Table

Stores recent branch outcomes, allowing for more accurate predictions based on historical patterns.

Exceptions and Interrupts in MIPS

Exceptions Synchronous events that occur during program execution, such as an arithmetic overflow. Interrupts 2 Asynchronous events that occur external to the CPU, such as a network packet arrival. **Exception Handling** 3 A mechanism to detect, handle, and resume program execution after an exception or interrupt.

Advances in MIPS Microarchitecture

