Queueing Networks for a Healthcare System Deadlocking, Reinforcement Learning & Workforce Planning

Geraint Palmer Paul Harper, Vincent Knight

EURO 2015 - Glasgow

Aneurin Bevan University Health Board

Map of Healthcare System

Upload Parameters

Run Analysis

Run Simulation

Nodes:

EMS - EDIT

A&E - EDIT
Acute - EDIT

Community & Social Care - EDIT

Community Hospital - EDIT

Nursing Homes - EDIT

View Results

COMMUNITY & SOCIAL CARE

Winter Workforce Requirements:

Summer Workforce Requirements: Skill 1: #### WTEs Skill 2: #### WTEs

Skill 1: ##### WTEs Skill 2: ##### WTEs Skill 3: ##### WTEs

Skill 4: ##### WTEs

Skill 4: ##### WTEs Skill 5: ##### WTEs

Skill 5: #### WTEs

Spring Workforce Requirements:

Autumn Workforce Requirements:

Skill 1: ##### WTEs Skill 2: #### WTEs Skill 1: ##### WTEs Skill 2: ##### WTEs

Skill 3: #### WTEs Skill 4: #### WTEs Skill 5: #### WTEs Skill 3: ##### WTEs Skill 4: ##### WTEs

Skill 5: ##### WTEs

Performance Measures:

Winter Expected Occupancy: ####

Spring Exprected Occupancy: #####

Summer Expected Occupancy: #####

Autumn Expected Occupancy: #####

Jackson Networks

Jackson Networks

$$\lambda_i = \Lambda_i + \sum_j r_{ji} \lambda_j$$
 λ_2 Community Care λ_2

$$P(k_1, k_2, \ldots, k_M) = \prod_{i=1}^M P_i(k_i)$$

Restricted Networks

Restricted Networks

- Markov Chain Models
- Approximation Methods
- Simulation

Deadlock

Markovian Model of Deadlock

$$S = \{(i,j) \in \mathbb{N}^{(n_1+2 \times n_2+2)} | 0 \le i+j \le n_1+n_2+2 \} \cup \{(-1)\}$$
Define $\delta = (i_2,j_2) - (i_1,j_1)$

$$\begin{cases} \Lambda_1 & \text{if } i_1 \le n_1 \\ 0 & \text{otherwise} \end{cases} & \text{if } \delta = (1,0)$$

$$\Lambda_2 & \text{if } j_1 \le n_2 \\ 0 & \text{otherwise} \end{cases}$$
of $\delta = (0,1)$

$$q_{(i_1,j_1),(i_2,j_2)} = \begin{cases} & \Lambda_1 & \text{if } i_1 \leq n_1 \\ & 0 & \text{otherwise} \\ & \Lambda_2 & \text{if } j_1 \leq n_2 \\ & 0 & \text{otherwise} \\ (1-r_{12})\mu_1 & \text{if } j_1 < n_2 + 2 \\ & 0 & \text{otherwise} \\ (1-r_{21})\mu_2 & \text{if } i_1 < n_1 + 2 \\ & 0 & \text{otherwise} \\ & r_{12}\mu_1 & \text{if } j_1 < n_2 + 2 \\ & 0 & \text{otherwise} \\ & r_{12}\mu_1 & \text{if } j_1 < n_2 + 2 \\ & 0 & \text{otherwise} \\ & r_{21}\mu_2 & \text{if } i_1 < n_1 + 2 \\ & 0 & \text{otherwise} \\ & r_{21}\mu_2 & \text{if } i_1 < n_1 + 2 \\ & 0 & \text{otherwise} \\ \end{cases} & \text{if } \delta = (-1,1) \\ & \text{otherwise} \end{cases}$$

$$q_{(i_1,j_1),(-1)} = \begin{cases} r_{21}\mu_2 & \text{if } (i,j) = (n_1, n_2 + 2) \\ r_{12}\mu_1 & \text{if } (i,j) = (n_1 + 2, n_2) \\ 0 & \text{otherwise} \end{cases}$$

$$q_{-1,s} = 0$$

Times to Deadlock - Λ_1

Times to Deadlock - μ_1

Times to Deadlock – r_{12}

Times to Deadlock – n_1

Reinforcement Learning

Reinforcement Learning

Reinforcement Learning

Q-Learning

$$Q(s,a) \leftarrow Q(s,a) + \alpha[r + \gamma \max_{a'} Q(s',a') - Q(s,a)]$$

Diolch - Thank You

 $https://github.com/geraintpalmer/Presentations\\palmergi1@cardiff.ac.uk$