Chem III	Group Hw2	Joey Gawron
Problem 1: Ca HbOc	Group Hw2 5 = 162.3 g/mol	
Experiment 3 ana	lisis: . 156 grams 16	mole = 9.61x10-4 moles of all cir
(02= 44 g/ma	1 H20 = 189/mol So	2=64 2/mol
9.61x10-4a	11cin + 0 -> .0058	3=64 2/mol CO2 + .0048 H20 + 7502
· 156 grams :60 = .093	36 grams non sulfer.	0,36
· 254 g @ ag · .27 = .069.	~ / /	0624grams of Sulfer
Experiment 4 analysi	16	C A ILZS
	.254 g of Allcin M	Allcin = . 00157 moles of aking it 40% sulfer
Grams to mole	Conversion = .0058 moles of car	mole Fraction Cornersian bon .0058/9.19 x10-4= 6.311
	1= .00953 moles of hy = .00 1946 moles of 19 x10-4 moles of oxy	
G H10052		gen D rounding errors As well as the Emperical
	Formula	