Analyzing Campaign Finance Data in California using SAS & R

By Robby Born

Background Info

- → In the US in every even year, Americans cast their vote in all 50 states in national, state, and local elections
- → This data was collected on kaggle from the Federal Election Commission (FEC) for campaign finance data from 2019-2020 leading up to the 2020 election for all major US house of representatives candidates
- → I chose to further analysis campaign finance data for my home state of California to better understand where each party was collecting their political campaign contributions from

Voting!

Live in California

Difference in campaign finance contributions by political party?

Pertinent as the 2022 midterm elections occurred this month

The Data

The LOGISTIC Procedure

Model Information			
Data Set	WORK.CALI		
Response Variable	CAND_PTY_AFFILIATION		
Number of Response Levels	3		
Model	generalized logit		
Optimization Technique Newton-Raphson			

Number of Observations Read	330
Number of Observations Used	330

Response Profile		
Ordered Value	CAND_PTY_AFFILIATION	Total Frequency
1	DEM	180
2	IND	5
3	REP	145

Variables ~

- **CAND_PTY_AFFILIATION** = political party
- **CAND_LOANS** = loans from the candidate
- Receipts = total \$ receipts for the candidate
- **TTL_INDIV_CONTRIB** = contributions made from the candidate themselves

Data Cleaning


```
proc import out=cand
  datafile="/home/u60876478/410Project/All candidates.csv"
   dbms=csv replace;
run;
proc sql;
    create table cali as
    select *
    from cand
   where CAND OFFICE ST = 'CA';
proc sql;
   delete
     from cali
      where CAND PTY AFFILIATION = 'UNK' or CAND PTY AFFILIATION = 'OTH'
      or CAND PTY AFFILIATION = 'NON' or CAND PTY AFFILIATION = 'GRE' or
      CAND PTY AFFILIATION = 'NPA' or CAND PTY AFFILIATION = 'NNE' or
      CAND PTY AFFILIATION = 'LIB';
```

```
library(dplyr)
library(tidyverse)
Cali = All candidates %>%
  rename(state = CAND_OFFICE_ST)
cali = cali %>%
  filter(state == "CA") %>%
  rename(party = CAND_PTY_AFFILIATION) %>%
  rename(receipts = TTL_RECEIPTS)
Cali = Cali %>%
  filter(party != "GRE")
cali = cali %>%
  filter(party != "NPA")
Cali = Cali %>%
  filter(party != "NON")
cali = cali %>%
  filter(party != "LIB")
cali = cali %>%
  filter(party != "OTH")
cali = cali %>%
  filter(party != "UNK")
cali = cali %>%
  filter(party != "NNE")
```

SAS and R Codes

SAS:

SAS and R Outputs

R

```
call:
multinom(formula = party ~ receipts + CAND_LOANS + TTL_INDIV_CONTRIB,
                                                                        print(deviance
   data = Cali)
                                                                       1] 24.57901
Coefficients:
                    receipts
    (Intercept)
                               CAND_LOANS TTL_INDIV_CONTRIB
IND -2.8902295 -3.840985e-04 3.049641e-04
                                               3.853073e-04
                                                                         print(p.value
REP -0.2283919 -9.474754e-07 1.277966e-05
                                               1.040096e-06
                                                                       1] 0.01694874
Std. Errors:
     (Intercept)
                    receipts
                               CAND_LOANS TTL_INDIV_CONTRIB
IND 1.033757e-08 5.809849e-05 1.063057e-04
                                               5.825450e-05
REP 4.579551e-09 4.865105e-07 4.817382e-06
                                               5.806167e-07
Residual Deviance: 474.0105
AIC: 490.0105
```

SAS and R Outputs

SAS

Parameter	CAND_PTY_AFFILIATION	DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq
Intercept	IND	1	-2.9924	0.4967	36.2889	<.0001
Intercept	REP	1	-0.2284	0.1242	3.3808	0.0660
TTL_RECEIPTS	IND	1	-0.00012	0.000180	0.4178	0.5181
TTL_RECEIPTS	REP	1	-9.47E-7	4.977E-7	3.6248	0.0569
CAND_LOANS	IND	1	0.000043	0.000244	0.0306	0.8610
CAND_LOANS	REP	1	0.000013	4.857E-6	6.9215	0.0085
TTL_INDIV_CONTRIB	IND	1	0.000117	0.000181	0.4196	0.5171
TTL_INDIV_CONTRIB	REP	1	1.04E-6	5.875E-7	3.1338	0.0767

23.9767	6	0.0005
	23.9767	23.9767 6

AIC	502.590	490.613

Fitted model:

$$\frac{\widehat{p}(IND)}{\widehat{p}(DEM)} = exp(-2.9924 - .00012(receipts) + .000244(candidate loans) + .000117(individual contributions)$$

$$\frac{\widehat{p}(\textit{REP})}{\widehat{p}(\textit{DEM})} = exp(-0.2284 - 9.47E - 7(\textit{receipts}) + .000013(\textit{candidate loans}) + 1.04E - 6(\textit{individual contributions})$$

Significant Predictor - CAND_LOANS for the odds of REP vs. DEM

As candidate loans increase by \$1, the estimated odds in favor of republicans against democrats increase by (exp(.000013)-1)*100% = 0.0013%

Prediction SAS & R

SAS

```
Prediction Output
data pred;
input TTL RECEIPTS CAND LOANS TTL INDIV CONTRIB;
                                                                DEM
                                                                            0.30802
cards;
570000 123450 300
                                                                IND
                                                                            0.00000
                                                                REP
                                                                            0.69198
data Cali;
set cali pred;
run;
proc logistic;
model CAND_PTY_AFFILIATION(ref="DEM") = TTL_RECEIPTS CAND_LOANS TTL_INDIV_CONTRIB / link=glogit;
output out=outdata p=poutcome;
run;
proc print data=outdata noobs;
var level poutcome;
run;
```

Prediction SAS & R

R

Thank you!

I would like to thank

My professor, Dr Olga

All of my STAT 410 class

 The United States Federal Election Commission (FEC) for providing data on campaign finance contributions for all parties