Animation, Motion Capture, Keyframing

Overview

Animation Intro

Cell Animation

Keyframing

Data-driven Animation

Physical Simulation

What is Animation?

Animation = Graphics × Time

Cell Animation

Keyframing

Figure 10.9 Inbetweening with nonlinear interpolation. Nonlinear interpolation can create equally spaced inbetween frames along curved paths. The ball still moves at a constant speed. (Note that the three keyframes used here and in Fig. 10.10 are the same as in Fig. 10.4.)

Data-driven Animation

Physics-based Animation

Traditional Cel Animation

Each frame is drawn by hand

- Film runs at 24 frames per second (fps)
 - That's 1440 pictures to draw per minute
- Artistic issues:
 - Artistic vision has to be converted into a sequence of still frames
 - Not enough to get the stills right--must look right at full speed
 - » Hard to "see" the motion given the stills
 - » Hard to "see" the motion at the wrong frame rate

Traditional Animation: The Process

- Key Frames
 - Draw a few important frames in pencil
 - » beginning of jump, end of jump and a frame in the air
- Inbetweens
 - Draw the rest of the frames
- Painting
 - -Redraw onto clear sheet of plastic called a cel, color them in

- Use one layer for background, one for object
 - Draw each separately
 - Stack them together on a copy stand
 - Transfer onto film by taking a photograph of the stack
- Can have multiple animators working simultaneously on different layers, avoid re-drawing and flickering

Principles of Traditional Animation [Lasseter, SIGGRAPH 1987]

- Stylistic conventions followed by Disney's animators and others
- From experience built up over many years
 - Squash and stretch -- use distortions to convey flexibility
 - Timing -- speed conveys mass, personality
 - Anticipation -- prepare the audience for an action
 - Followthrough and overlapping action -- continuity with next action
 - Slow in and out -- speed of transitions conveys subtleties
 - Arcs -- motion is usually curved
 - Exaggeration -- emphasize emotional content
 - Secondary Action -- motion occurring as a consequence
 - Appeal -- audience must enjoy watching it

Squash and Stretch

Use distortions to convey flexibility

Principles of Traditional Animation

Squash and Stretch

Use distortions to convey flexibility

Defines the rigidity of the material

Gives the sense that the object is made out of a soft, pliable material.

Elongating the drawings before and after the bounce increases the sense of speed, makes it easier to follow and gives more snap to the action.

Slow in and out

Speed of transitions conveys subtleties

http://www.siggraph.org/education/materials/HyperGraph/animation/character_animation/principles/bouncing_ball_example_of_slow_in_out.htm

The ball on the left moves at a constant speed with no squash/stretch. The ball in the center does slow in and out with a squash/stretch. The ball on the right moves at a constant speed with squash/stretch.

Timing & Motion

Speed conveys mass, personality

A heavier object takes a greater force and a longer time to accelerate and decelerate

A larger object moves more slowly than a smaller object and has greater inertia

Motion also can give the illusion of weight For example, consider a ball hitting a box

http://www.siggraph.org/education/materials/HyperGraph/animation/character_animation/principles/timing.htm

Timing & Motion

Timing can also indicate an emotional state

Consider a scenario with a head looking first over the right shoulder and then over the left shoulder

No in-betweens - the character has been hit by a strong force and its head almost snappedd off One in-betweens - the character has been hit by something substantial, .e.g., frying pan Two in-betweens - the character has a nervous twitch

Three in-betweens - the character is dodging a flying object

Four in-betweens - the character is giving a crisp order

Six in-betweens - the character sees something inviting

Nine in-betweens - the character is thinking about something

Ten in-betweens - the character is stretching a sore muscle

Anticipation

Prepare the audience for an action

Don't surprise the audience
Direct their attention to what's important

Follow Through and Overlapping Action

The termination of an action and establishing its relationship to the next action

Audience likes to see resolution of action Discontinuities are unsettling

Secondary Action

Motion occurring as a consequence

Example

Figure 10.5 Inbetweening with linear interpolation. Linear interpolation creates inbetween frames at equal intervals along straight lines. The ball moves at a constant speed. Ticks indicate the locations of inbetween frames at regular time intervals (determined by the number of frames per second chosen by the user).

Figure 10.9 Inbetweening with nonlinear interpolation. Nonlinear interpolation can create equally spaced inbetween frames along curved paths. The ball still moves at a constant speed. (Note that the three keyframes used here and in Fig. 10.10 are the same as in Fig. 10.4.)

Figure 10.10 Inbetweening with nonlinear interpolation and easing. The ball changes speed as it approaches and leaves keyframes, so the dots indicating calculations made at equal time intervals are no longer equidistant along the path.

- For each variable, specify its value at the "important" frames. Not all variables need agree about which frames are important.
- Hence, key values rather than key frames
- Create path for each parameter by interpolating key values

How Do You Interpolate Between Keys?

Problems with Interpolation

- Splines don't always do the right thing
- Classic problems
 - -Important constraints may break between keyframes
 - » feet sink through the floor
 - » hands pass through walls
 - –3D rotations
 - » Euler angles don't always interpolate in a natural way
- Classic solutions:
 - –More keyframes!
 - Quaternions help fix rotation problems

Keyframing: Issues

- What should the key values be?
- When should the key values occur?
- How can the key values be specified?
- How are the key values interpolated?
- What kinds of BAD THINGS can occur from interpolation?
 - Invalid configurations (pass through objects)
 - Unnatural motions (painful twists/bends)
 - Jerky motion

Data-Driven Animation

- Capturing the data or effect we want to animate.
- The classic example is humans.

source: http://www.3eop.com/data/3d/images/08_05_26_anatomy_study_male.jpg

Body Representation

How to represent a human body on a computer?

Body Representation

- Kinematic Skeleton
- Anatomical
- Pure Mesh
- What are the advantages and disadvantages?

- Animation
- Interactive characters
- Robot control

Record movements of actors

Motion capture lab at CMU (1ST Floor of Wean):

Vicon M camera system, 12 cameras

9mm markers

Motion capture

- -track motion of reference points
 - » body or face
 - » magnetic
 - » optical
 - » exoskeletons
- convert to joint angles (not so straightforward)
- use these angles to drive an articulated3-D model
- –modify the motion for the situation
- –give the user control

Technologies: Optical Passive

Vicon, Motion Analysis
Position of markers only

Articulated Models

Articulated models:

- rigid parts
- connected by joints

They can be animated by specifying the joint angles (or other display parameters) as functions of time.

Lecture 21 Slide 25 6.837 Fall 2001

Forward Kinematics

Describes the positions of the body parts as a function of the joint angles.

1 DOF: knee

2 DOF: wrist

3 DOF: arm

Lecture 21 Slide 26 6.837 Fall 2001

Skeleton Hierarchy

Each bone transformation described relative to the parent in the hierarchy:

Lecture 21 Slide 27 6.837 Fall 2001

Forward Kinematics

$$X_h, Y_h, Z_h, \theta_h, \phi_h, \sigma_h$$

Transformation matrix for a sensor/effecter \mathbf{v}_s is a matrix composition of all joint transformation between the sensor/effecter and the root of the hierarchy.

$$\mathbf{v}_w = \mathbf{T}(x_{\!_h}, y_{\!_h}, z_{\!_h}) \mathbf{R}(\theta_{\!_h}, \phi_{\!_h}, \sigma_{\!_h}) \ \mathbf{T} \mathbf{R}(\theta_{\!_t}, \phi_{\!_t}, \sigma_{\!_t}) \ \mathbf{T} \mathbf{R}(\theta_{\!_e}) \ \mathbf{T} \mathbf{R}(\theta_{\!_f}, \phi_{\!_f}) \ \mathbf{v}_s$$

$$\mathbf{v}_{w} = \mathbf{S}\left(\underbrace{\mathbf{x}_{h}, \mathbf{y}_{h}, \mathbf{z}_{h}, \boldsymbol{\theta}_{h}, \boldsymbol{\phi}_{h}, \boldsymbol{\sigma}_{h}, \boldsymbol{\theta}_{t}, \boldsymbol{\phi}_{t}, \boldsymbol{\sigma}_{t}, \boldsymbol{\theta}_{c}, \boldsymbol{\theta}_{f}, \boldsymbol{\phi}_{f}}\right) \mathbf{v}_{s} = \mathbf{S}(\mathbf{p}) \mathbf{v}_{s}$$

Lecture 21 Slide 28 6.837 Fall 200

Inverse Kinematics

Forward Kinematics

- Given the skeleton parameters (position of the root and the joint angles) p and the position of the sensor/effecter in local coordinates v_s, what is the position of the sensor in the world coordinates v_w.
- Not too hard, we can solve it by evaluating $\mathbf{S}(\mathbf{p}) \mathbf{V}_s$

Inverse Kinematics

- Given the position of the sensor/effecter in local coordinates v_s and the position of the sensor in the world coordinates v_w what are the skeleton parameters p.
- Much harder requires solving the inverse of the non-linear function S(p)
- We can solve it by root-finding **p**? such that $\mathbf{S}(\mathbf{p})v_s v_{\mathbf{w}} = 0$
- We can solve it by optimization minimize $(\mathbf{S}(\mathbf{p})v_s v_w)^2$

Kinematics vs. Dynamics

Kinematics

Describes the positions of the body parts as a function of the joint angles.

Dynamics

Describes the positions of the body parts as a function of the applied forces.

Lecture 21 Slide 30 6.837 Fall 2001

Motion Graphs

Interpolated Motion Graphs

Hand Animation to 3D Animation

Dense Body Capture

Laser Range Scanning

Performance Capture from Sparse Multi-view Video

Bird Flight

source: Wu and Popović [2003]

Uncanny Valley

Bird Flight

source: Wu and Popović [2003]