Improving red tide detection machine learning models with ship movement data

Lab seminar 02 March 2023 Dominic Soh (B4)

Motivation

Damage caused by harmful algal blooms (HABs)

Need for monitoring and pre-emptive measures

Sustainability of monitoring efforts

- Resource intensity
- Consistency

Idea to incorporate shipping data from thesis advisor, Prof. Takeuchi

200,000 fish in farms off Pasir Ris dead

Plankton bloom causes losses reaching hundreds of thousands of dollars

By CAROLIN QUICK

He largery per they have last how-Block of Storangels of distant Boats Mana-He tape gainsper had have presed for subage the effection Assessed that head stoodby's Chinese Store.

Research Question and hypothesis

Question: Can maritime vessel movement be used to improve Red tide prediction models?

Hypothesis: Introduction of maritime vessel movement as training parameters will increase Red tide prediction accuracy.

What are HABs (Harmful Algal Blooms)?

Phytoplankton + Excessive nutrients = Algal blooms

Phytoplankton:

- inhabit ocean waters all around the world.
- Species can vary based on region.

Proliferate based on various environmental conditions like:

- dissolved oxygen, temperature
- nitrogen
- phosphorous

Benign VS Harmful

- Some blooms algal are relatively benign (but obstructs sunlight when bloomed etc.)
- Some directly kill fish by blocking their gills or poisoning birds when in sufficient concentration.

Detection of HABs

Red tide Detection Index (RDI)

RDI =
$$\left(\frac{1}{R_{rs}(\lambda_1)} - \frac{1}{R_{rs}(\lambda_2)}\right) \times R_{rs}(\lambda_3)$$

Band 1: should be maximally sensitive to absorption by chlorophyll a (660-690nm)

Band 2: Modified to 550-570nm from 710-730nm

Band 3:740–760 nm, considering the scattering effects of particulate matter.

Threshold value: > 0.175 signifies positive ID for algal bloom (ChI a $\sim 10 \mu g/L$)

How do ships affect phytoplankton growth?

Approach

Features of interest: euphotic depth (ED), Secchi disk depth, chlorophyll-a, chlorophyll-gsm, chlorophyll-giop, diffuse attenuation coefficient (Kd_490), SST, FLH, particulate backscattering coefficient at 547 nm (bbp_547_giop), and turbidity index. (MODIS)

New feature: Global shipping lane traffic data (AIS) / nighttime light data that can determine ship profile

Model: GBDT? ANN? DBN? Particular model is TBD but the focus is not on the type of model but the use of shipping lane traffic data as a new feature.

Detection: Red tide Detection Index (RDI)

Why use Machine Learning (ML)?

relationship between phytoplankton growth + environmental variables: complicated and nonlinear

traditional methods for forecasting like time series regression analysis is insufficient - eg: ARIMA (autoregressive integrated moving average)

ARIMA

flawed as a linear correlation structure is assumed among the time series values, meaning NO nonlinear patterns can be captured by the ARIMA model

Feature explanation

Euphotic depth / Secchi disk depth (m)

Chlorophyll a (mg/m3)

Diffuse attenuation coefficient (Kd_490; m-1)

Sea surface temperature (° C)

Fluorescence line height

$$b_{bp}(\lambda_0) = b_{bp}(55x) = \frac{u(\lambda_0) \times a(\lambda_0)}{1 - u(\lambda_0)} - b_{bw}(55x)$$

Particulate backscattering coefficient

Turbidity index

How would shipping lane data be used?

Data collected from AIS/nighttime light can determine the size of ship that passed and the number of ships passing through.

We can classify the ships into several categories

(assuming that **size of ship** is proportional to **emissions**)

Analysis to do:

Decide on maximum distance from region of interest for ships to be counted.

Integrate number and type of ships as a new feature and compare prediction accuracy with base model.

Training to be done via supervised learning using RDI for cross validation of algal blooms.

Questions and Future work

Formulate methodology:

- Select a region of interest to analyse.
- Determine distance from ROI for ships to be considered to have passed through.
- Choose type of machine learning model.

Research:

- Read more on machine learning theory.
- Understand more on characteristics and data from MODIS Aqua/Terra.
- Investigate more on how HAB occurs and forcing mechanisms.