FORMULARIO CALCOLO NUMERICO

Libera Longo

2023-01-27

1 Floating Point

Si definisce insieme dei numeri macchina (floating-point) con t cifre significative, base β e range (L, U), l'insieme dei numeri reali definito nel modo seguente

$$\mathbb{F}(\beta, t, L, U) = \{0\} \cup \left\{ x \in \mathbb{R} = sign(x)\beta^p \sum_{i=1}^t d_i \beta^{-i} \right\}$$

ove t, β sono interi positivi con $\beta \geq 2$. Si ha inoltre

$$\begin{array}{ll} 0 \leq d_i \leq \beta-1, & i=1,2,\ldots \\ d_i \neq 0, & L \leq p \leq U & p \in [L,U] \end{array}$$

Usualmente U è positivo e L negativo.

I numeri dell'insieme \mathbb{F} sono ugualmente spaziati tra le successive potenze di β , ma non su tutto l'intervallo.

Esempio $\beta = 2, t = 3, L = -1, U = 2$

 $\mathbb{F} = \{0\} \cup \{0.100 \times 2^p, \ 0.101 \times 2^p, \ 0.110 \times 2^p, \ 0.111 \times 2^p, \ p = -1, 0, 1, 2\}$

dove $0.100\ 0.101\ 0.110\ 0.111$ sono tutte le possibili mantisse e p il valore dell'esponente.

- In rappresentazione posizionale un numero macchina $x \neq 0$ viene denotato con $x = \pm .d_1 d_2 ... d_t \beta^p$
- La maggior parte dei calcolatori ha la possibilità di operare con lunghezze diverse di t, a cui corrispondono, ad esempio, la semplice e la doppia precisione.
- E' importante osservare che l'insieme F non è un insieme continuo e neppure infinito.

Come rappresentare un numero reale positivo x in un sistema di numeri macchina $\mathbb{F}(\beta, t, L, U)$?

- Il numero x è tale che $L \leq p \leq U$ e $d_i = 0$ per i > t; allora x è un numero macchina ed è rappresentato esattamente $(x \in \mathbb{F})$.
- p ∉ [L, U]; il numero non può essere rappresentato esattamente (x ∉ F).
 Se p < L, si dice che si verifica un underflow; solitamente si assume come valore approssimato del numero x il numero zero.

Se p > U si verifica un overflow e solitamente non si effettua nessuna approssimazione, ma il sistema di calcolo dà un avvertimento più drastico, come ad esempio, l'arresto del calcolo.

Se una matrice A $n \times n$ ha un autovettore $\lambda = 0$, allora A è singolare.

Il costo computazionale per la risoluzione di un sistema triangolare è di: $O(\frac{n^2}{2})$

2 Condizionamento e Stabilità

- Un algoritmo è stabile se l'errore algoritmico è limitato
 - $\circ\,$ Può essere limitato da una costante co da un'espressione

- Un <u>sistema lineare</u> è mal condizionato se l'errore relativo sul risultato è grande rispetto all'errore relativo sui **dati**
- Un sistema lineare è mal condizionato se il numero di condizione della matrice è grande
- Un problema è mal condizionato se ad una piccola perturbazione sui dati corrisponde una grande perturbazione sul risultato

$$K_2 = \frac{\rho}{\lambda_{min}}$$

dove ρ è il raggio spettrale e λ_{min} è il più piccolo degli autovalori

3 Fattorizzaizone LR o LU

- Non è sempre possibile
 - $\circ\,$ Ad esempio se un perno per cui dividere è 0
 - \circ Oppure se A è singolare
- Potrebbe non essere esatta se si presentano errori di arrotondamento
- Costo computazionale di $O(\frac{n^3}{2})$

3.1 Fattorizzazione LU con pivot

Usando la fattorizzazione LU con pivoting (PA = LU) il sistema Ax = b si può risolvere risolvendo i due sistemi triangolari:

$$\begin{cases} Ly = Pb \\ Ux = y \end{cases}$$

Ogni matrice $A n \times n$ non singolare è fattorizzabile PA = LU, con P matrice di permutazione, L matrice triangolare inferiore con tutti 1 sulla diagonale e U triangolare superiore non singolare.

4 Fattorizzazione di Cholesky

- Ogni matrice A simmetrica e definita positiva si può fattorizzare come prodotto di due matrici triangolari L e L' dove $\underline{L'}$ è la trasposta di \underline{L}
- Costo computazionale di $O(\frac{n^3}{6})$ è minore della fattorizzazione LR

5 Interpolazione

- Interpolando punti equispaziati l'errore di interpol. aumenta all'aumentare dei punti.
- Per ogni insieme di coppie $\{x_i, y_i\}$ con i = 0...n e i nodi x_i distinti tra loro, esiste un unico polinomio di $grado \le n$, che chiamiamo polinomio interpolatore degli y_i negli x_i
- Esistono infiniti polinomi di grado n che interpolano n punti
 - $\circ\,$ ma solo uno che ne interpola n+1

Vi è un numero arbitrario grande di funzioni matematiche che interpolano un dato insieme di punti.

6 Chebyshev

- NON si trovano per forza in [-5, 5], ma attenzione
- Non sono equispaziati
- Scelta dei punti di Chebyshev come ascisse dei dati = interpolazione più stabile.

7 Numero di Condizionamento

In generale:

- $K(A) = ||A^{-1}|| * ||A||$ (commutativa) \rightarrow dipende solo dalla matrice
- \bullet K(A) esiste solo per matrici quadrate non singolari
 - o K(A) piccolo $n^p, p=0,1,2,3 \rightarrow$ Problema ben condizionato.
 - o K(A) grande $10^n \to \text{Problema}$ mal condizionato
 - \diamond Es: la matrice di Hilbert $\rightarrow h_{i,j} = \frac{1}{i+j-1}$ con i,j=1...n
- $\bullet~K(A)$ dipende dalla norma usata ma l'ordine di grandezza è sempre lo stesso
- Si dimostra che per tutte le norme p, $K(A) \ge 1$
- Si dimostra che $\frac{1}{K(A)}$ è la minima distanza tra $A^{n\times n}$ e B, dove B è la più vicina matrice appartenente all'insieme delle matrici singolari
 - Questo significa che se K(A) è alto, la matrice A si comporta <u>quasi</u> come una matrice singolare (il sistema non ha soluzioni) quindi, in questo caso, la soluzione è molto sensibile ai dati

8 Norme

• Le norme p sono tutte equivalenti, ovvero:

$$\circ \exists c_1, c_2 \text{ tali che: } c_1 * ||x||_p \le ||x||_q \le c_2 * ||x||_p \text{ con } 1 < p, q < \infty$$

La classe più importante di norme vettoriali è costituita dalle norme p:

$$||x||_p = \left(\sum_{i=1}^m |x_i|^p\right)^{\frac{1}{p}}. \quad 1 \le p < q$$

altre norme importanti sono:

NORMA	DEFINIZIONE	ESEMPIO
Norma Euclidea $p=2$	$ x _2 = \sqrt{\sum_{i=1}^m x_i ^2} = x^T x$	$\begin{vmatrix} x = (-1, 2, 3) \\ x _2 = \sqrt{1^2 + 2^2 + 3^2} = \sqrt{1 + 4 + 9} = \sqrt{14} \end{vmatrix}$
Norma 1 $p = 1$	$ x _1 = \sum_{i=1}^m x_i $	$ x = (-1, 2, 3) x _1 = 1 + 2 + 3 = 6 $
Norma infinito	$ x _{\infty} = \max_{1 \le i \le m} x_i $	$ x = (-1, 2, 3) x _{\infty} = \max(1 , 2 , 3) = 3 $

$ A _1$	$\max \sum_{i=1}^{m} a_{i,j} \text{ per } 1 \le j \le n$
$ A _{\infty}$	$\max \sum_{j=1}^{n} a_{i,j} \text{ per } 1 \le i \le m$
Norma di Frobenius	$ A _F = \sqrt{\sum_{i=1}^m \sum_{j=1}^n a_{i,j} ^2}$
$ A _2$	$\sqrt{\rho(A^TA)}$ Dove ρ è il raggio spettrale ovvero l'autovalore massimo in modulo

Se A è una matrice quadrata $n \times n$, allora:

$$||A||_2 = \sqrt{\max_{\lambda \in A^T A} \lambda} \qquad ||A||_2 = \sqrt{\rho(A^T A)}$$
$$||A||_{\infty} = \max_i \sum_{j=1}^n |a_{i,j}|$$

9 Punti di massimo e minimo

- Teorema (Condizioni necessarie del primo ordine): se x^* è un punto di minimo locale e f è differenziabile con continuità in un intorno aperto di x^* , allora $\nabla f(x^*) = 0$. Un punto x^* tale che $\nabla f(x^*) = 0$ si chiama punto stazionario (minimo, massimo, sella).
- Teorema (Condizioni necessarie del secondo ordine): se x^* è un punto di minimo locale di f e f è <u>due volte</u> differenziabile con continuità in un intorno aperto di x^* , allora $\nabla f(x^*) = 0$ e $\nabla^2 f(x^*)$ è semidefinita positiva.
- Teorema (Condizioni sufficienti del secondo ordine): se:
 - o f è due volte differenziabile con continuità in un intorno aperto di x^* ;
 - $\circ \nabla f(x^*) = 0$ (condizione di punto stazionario);
 - o $\nabla f(x^*)$ è definita positiva.

Allora x^* è un punto di minimo in senso streto di f.

- ullet Se f è convessa, un punto di minimo locale è un punto di minimo globale. In particolare:
 - o f convessa \rightarrow ogni punto di minimo locale x^* è punto di minimo globale di f.
 - o f strettamente convessa \rightarrow esiste un unico punto di minimo globale.
 - ♦ E OGNI PUNTO STAZIONARIO E' MINIMO GLOBALE

10 direzione e metodi di discesa

Definizione: Il vettore p è una direzione di discesa in f se esiste un m > 0 tale che

$$f(x + \alpha p) < f(x) \forall \alpha \in]0, m]$$

Lemma: Sia $f \in C^1$, il vettore p è una direzione di discesa di f se $p^T \nabla f(x) < 0$

- Un metodo di discesa garantisce $f(x_{k+1}) < f(x_k), k = 0, 1, 2...$
- Nei metodi di discesa si calcola $x_{k+1} = x_k + a_k p_k$
- Nel metodo del gradiente la dir. di discesa di f in $x_k \ ext{è} \nabla f(x_k)$
- $-\nabla f(x_k)$ ($\neq 0$) è sempre una direzione di discesa
- Un m. di discesa convergente converge al minimo locale (se str. convessa è globale)

11 minimi quadrati

Sia A una matrice $m \times n$, con m > n e $rg(A) = k \le n$. Allora il problema $min ||Ax - b||_2^2$

- Ammette sempre almeno una soluzione;
- Se k = n (rango massimo) il problema ha una ed una sola soluzione;
 - o Si risolve con equazioni normali $\rightarrow A^T * Ax = A^Tb$
- Se k < n il problema ha infinite soluzioni;
 - o Tali soluzioni formano un sottospazio di \mathbb{R}^n di dimensione n-k
 - Si risolve con scomposizione SVD (in valori singolari)
 - ♦ SVD SI PUO' FARE SU QUALUNQUE MATRICE (anche per decomprimerla)
 - \diamond Valori singolari $\sigma_1 \geq \sigma_2 \geq ... \geq \sigma_k > \sigma_k + 1 = ... = \sigma_n = 0$ dove k = rg(A) "ha esattamente r (r = rg(A)) valori singolari > 0"