5

WHAT IS CLAIMED IS:

1	1	71	aianal	nxacaccax	comprising:
1			Siunai	りてつこらつつひてい	

- 2 a signal processing unit covered with a vacuum insulation
- 3 layer in a vacuum vessel;
- 4 a cooling mechanism that cools said signal processing unit;
- a getter material of a heat-activation type that controls
- 6 increase of gas pressure inside said vacuum insulation layer;
- 7 a heater that heats to activate said getter material, and;
- an electrification controller that switches ON said heater
- 9 in advance before cooling begins.
- 1 2. The signal processor according to Claim 1, wherein said
- 2 signal processing unit comprises:
- 3 a band-pass filter for selecting a predetermined signal from
- 4 a receiving signal input from an antenna terminal; and
- a low noise amplifier for amplifying an output from said
- 6 band-pass filter to a predetermined level with low noise.
- 3. The signal processor according to Claim 1, wherein said
- 2 electrification controller comprises:
- 3 a relay that switches electrification either to said cooling
- 4 mechanism or said heater; and a sequencer that controls said relay.
- 1 4. The signal processor according to Claim 1, wherein;
- 2 all or a part of wirings of said signal processing unit makes
- 3 up of a superconductive material, and
- 4 said cooling mechanism has a capability to cool said signal
- 5 processing unit until said superconductive material becomes in

- 6 a superconductive state.
- 1 5. The signal processor according to Claim 4, wherein said
- 2 superconductive material is a high-temperature superconductor
- 3 having superconductive characteristics at a high temperature.
- 6. A signal processor, comprising:
- a signal processing unit covered with a vacuum insulation layer in a vacuum vessel;
- a cooling mechanism that cools said signal processing unit;
- a getter material of a heat-activation type that controls
- 6 increase of gas pressure inside said vacuum insulation layer;
- 7 a heater that heats to activate said getter material, and;
- an electrification controller that selectively switches ON
- 9 said heater when cooling begins and selectively switches ON said
- 10 cooling mechanism after a predetermined condition is established.
- The signal processor according to Claim 6, wherein "after
- 2 said predetermined condition is said established" equals "after
- 3 a passage of a certain period of time".
- 1 8. The signal processor according to Claim 6, wherein said
- 2 signal processing unit comprises:
- 3 a band-pass filter for selecting a predetermined signal from
- 4 a receiving signal input from an antenna terminal; and
- 5 a low noise amplifier for amplifying an output from said
- 6 band-pass filter to a predetermined level with low noise.
- 1 9. The signal processor according to Claim 6, wherein said

2	electrification controller comprises:
3.	a relay that switches electrification either to said cooling
4	mechanism or said heater; and a sequencer that controls said relay.
5	
1	10. The signal processor according to Claim 6, wherein;
2	all or a part of wirings of said signal processing unit makes
3	up of a superconductive material, and
4	said cooling mechanism has a capability to cool said signal
5	processing unit until said superconductive material becomes in
6	a superconductive state.
1	11. The signal processor according to Claim 10, wherein said
2	superconductive material is a high-temperature superconductor
3	having superconductive characteristics at a high temperature.
	•
1	12. A cooling method of a signal processor that comprises:
2	a signal processing unit covered with a vacuum insulation
3	layer;
4	a cooling mechanism that cools said signal processing unit,
5	a getter material of a heat-activation type that control:
6	increase of gas pressure inside said vacuum insulation layer; and
7	a heater that heats to activate said getter material, and
8	wherein;
9	said heater is switched ON in advance before cooling begins
10	
1	13. A cooling method of a signal processor that comprises
2	a signal processing unit covered with a vacuum insulatio

layer; 3

a cooling mechanism that cools said signal processing unit;

layer;

5	a getter material of a heat-activation type that controls
6	increase of gas pressure inside said vacuum insulation layer; and
7	a heater that heats to activate said getter material, and
8	wherein;
9	said heater is selectively switched ON when cooling begins
10	and said cooling mechanism is selectively switched ON after a
11	predetermined condition is established.
1	14. The cooling method of the signal processor according to
2	Claim 13, wherein "after said predetermined condition is said
3	established" equals "after a passage of a certain period of time".
1	15. The cooling method of the signal processor according to
2	Claim 13, implementing a change-over of switching by using a
3	sequence program.
1	16. A radio receiver comprising:
2	a signal processing unit covered with a vacuum insulation
3	layer;
4	a cooling mechanism that cools said signal processing unit;
5	a getter material of a heat-activation type that controls
6	increase of gas pressure inside said vacuum insulation layer;
7	a heater that heats to activate said getter material; and
8	an electrification controller that switches ON said heater
9	in advance before cooling begins.
10	
1	17. A radio receiver, comprising:
2	a signal processing unit covered with a vacuum insulation

21

4	a cooling mechanism that cools said signal processing unit;
5	a getter material of a heat-activation type that controls
6	increase of gas pressure inside said vacuum insulation layer;
7	a heater that heats to activate said getter material, and;
8	an electrification controller that selectively switches ON
9	said heater when cooling begins and selectively switches ON said
10	cooling mechanism after a predetermined condition is established.
1	18. A cooling method of a radio receiver that comprises:
2	a signal processing unit covered with a vacuum insulation
3	layer;
4	a cooling mechanism that cools said signal processing unit;
5	a getter material of a heat-activation type that controls
6	increase of gas pressure inside said vacuum insulation layer; and
7	a heater that heats to activate said getter material, and
8	wherein;
9	said heater is switched ON in advance before cooling begins.
10	
1	19. A cooling method of a radio receiver that comprises:
2	a signal processing unit covered with a vacuum insulation
3	layer;
4	a cooling mechanism that cools said signal processing unit;
5	a getter material of a heat-activation type that controls
6	increase of gas pressure inside said vacuum insulation layer; and
7	a heater that heats to activate said getter material, and
8	wherein;
9	said heater is selectively switched ON when cooling begins
10	and said cooling mechanism is selectively switched ON after a

predetermined condition is established.