AI - PS 1

AIM

To develop a machine learning model to predict the sale prices of the houses depending on the various factors given.

DATA PROVIDED

- 1. **train.csv** the training set
- 2. **test.csv** the test set
- 3. data_description.txt full description of each column
- 4. **sample_submission.csv** a benchmark submission from a linear regression on year and month of sale, lot square footage, and number of bedrooms

DATA PREPROCESSING

- Libraries Imported: Essential libraries like pandas, numpy, matplotlib.pyplot, and seaborn were imported for data manipulation and visualization.
- 2. Data Loading:
 - The **train.csv** and **test.csv** files were loaded into pandas DataFrames.
 - A new column **Source** was added to distinguish between training and test data, and the datasets were concatenated.
- 3. Handling Missing Values:
 - Columns with more than 500 null values were dropped.
 - Missing values in numerical columns were filled using the median.

 Missing values in categorical columns were filled using mode imputation.

4. Categorical Encoding:

- One-hot encoding was applied to categorical variables to transform them into a format suitable for machine learning models.
- This method was chosen over integer mapping as it prevents the creation of an ordinal relationship between categories, which could mislead the model.

5. Feature Selection:

- A correlation matrix was used to identify the most important features correlated with the SalePrice.
- The features were then selected based on their correlation values.

6. Data Splitting:

- The combined dataset was split back into training and test datasets.
- The training data was further split into a training set (80%) and a validation set (20%) for model evaluation.

MODEL SELECTION AND TRAINING

- Model Chosen: A stacking ensemble model was used, combining three powerful base models:
 - XGBoost: Known for handling large datasets efficiently.
 - LightGBM: A gradient boosting framework that uses tree-based learning algorithms.

- CatBoost: A gradient boosting algorithm that handles categorical data without extensive preprocessing.
- Stacking Model: A **StackingRegressor** was used, with Ridge regression as the final estimator.
- Training:
 - The stacking model was trained on the training dataset.
 - After training, the model was evaluated on the validation dataset.

MODEL EVALUATION

- Evaluation Metrics:
 - Logarithmic RMSE: 0.1457
 - R² Score: 0.8862
- These metrics indicate a good fit, with the model explaining approximately 88.6% of the variance in the target variable.

PREDICTIONS ON TEST DATASET

- Final Model Training: The stacking model was retrained on the entire training dataset before predicting on the test set.
- Predictions: Predictions for the test dataset were generated and saved in test_predictions.csv.