Vector Valued Functions and Motion in Space

Gunja Sachdeva

September 12, 2024

Gunja Sachdeva Space curve September 12, 2024 1 / 126

, 78>0 if for every 600

Cdeperding 0467

$$|x-x_0| \leq \delta$$

Recall ar example

$$f(x) = \frac{(x+1) \sin x}{x} \cdot f(x) = \frac{x}{2009}$$

Properties: Limit

Theorem 1.

Let $\lim_{x\to x_0} f(x) = L$, $\lim_{x\to x_0} g(x) = M$ and k be a real number.

- Sum Rule $\lim_{x\to x_0} [f(x) + g(x)] = L + M$.
- Difference Rule $\lim_{x\to x_0} [f(x) g(x)] = L M$.
- Constant Multiple Rule $\lim_{x\to x_0} kf(x) = kL$.
- Product Rule $\lim_{x\to x_0} [f(x)\cdot g(x)] = L\cdot M$.
- Quotient Rule $\lim_{x\to x_0} \frac{f(x)}{g(x)} = \frac{L}{M}$ where $M\neq 0$.
- Power Rule $\lim_{x\to x_0} f(x)^n = L^n$ where n is a positive integer.
- Root Rule $\lim_{x\to x_0} \sqrt[n]{f(x)} = \sqrt[n]{L} = L^{\frac{1}{n}}$, where n is a positive integer.

Gunja Sachdeva Space curve September 12, 2024 3 / 126

Definition: Continuity

Definition 2.

Let $f: D \to \mathbb{R}$ be a function where $D \subseteq \mathbb{R}$. For x_0 , we say that the function is **continuous at** x_0 if the following conditions hold:

- f(x) should be defined at x_0 .
- 2 $\lim_{x\to x_0} f(x)$ exists.
- **3** $\lim_{x\to x_0} f(x) = f(x_0)$.

A function is **continuous** if it is continuous at all points of it's domain.

Gunja Sachdeva Space curve September 12, 2024 4 / 126

Example

Consider the function

$$f(x) = \begin{cases} \frac{x \sin x}{x+1} & \text{if } x > -1 \text{ and } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}$$

Is f continuous at the origin?

1) Is
$$f(0)$$
 defined?

The state of the sta

- ◆ □ ▶ ◆ □ ▶ ◆ ■ P 9 Q G

Vector valued functions

$$f: \mathbb{R} \longrightarrow \mathbb{R}^{n}$$

$$t \longmapsto f(t) \in \mathbb{R}^{n}$$

$$(x_{1}(t), x_{2}(t), -, x_{1}(t))$$

$$(x_{1}(t), x_{2}(t), -, x_{2}(t), -, x_{2}(t))$$

$$(x_{1}(t), x_{2}(t), -, x_{2}(t), -, x_{2}(t), -, x_{2}(t))$$

$$(x_{1}(t), x_{2}(t), -, x_{2}(t), -, x_{2}(t), -, x_{2}(t)$$

$$(x_{1}(t), x_{2}(t), -, x_{2}(t), -, x_{2}(t), -, x_{2}(t))$$

$$(x_{1}(t), x_{2}(t), -, x_{2}(t), -, x_{2}(t), -, x_{2}(t)$$

$$(x_{1}(t), x_{2}(t), -, x_{2}(t), -, x_{2}(t), -, x_{2}(t), -, x_{2}(t)$$

$$(x_{1}(t), x_{2}(t), -, x_{2}(t), -, x_{2}(t), -, x_{2}(t), -, x_{2}(t)$$

$$(x_{1}(t), x_{2}(t), -, x_{2}(t), -, x_{2}(t), -, x_{2}(t), -, x_{2}(t), -, x_{2}(t)$$

$$(x_{1}(t), x_{2}(t), -, x_{$$

Gunja Sachdeva Space curve September 12, 2024 6 / 126

Curve in space

Suppose a particle is moving in space during a time interval I. We think of the particle's coordinates as functions defined on I:

$$x = f(t), y = g(t), z = h(t); t \in I$$

The points $(x, y, z) = (f(t), g(t), h(t)), t \in I$, make up the curve in space is called the particle's path.

wie Saakdans

Gunja Sachdeva Space curve September 12, 2024 7 / 126

Curve in space

Suppose a particle is moving in space during a time interval I. We think of the particle's coordinates as functions defined on I:

$$x = f(t), y = g(t), z = h(t); t \in I$$

The points $(x, y, z) = (f(t), g(t), h(t)), t \in I$, make up the curve in space is called the particle's path.

A curve in space can also be represented in vector form. The vector

$$r(t) = \overrightarrow{OP} = f(t)\overrightarrow{i} + g(t)\overrightarrow{j} + h(t)\overrightarrow{k}$$

from the origin to the particle's position P(f(t), g(t), h(t)) at time t is the particle's position vector.

Gunja Sachdeva Space curve September 12, 2024 7 / 126

The functions f, g and h are the component functions (or components) of the position vector.

Remark

We think of the particle's path as the curve traced by r during the time interval I.

Gunja Sachdeva Space curve September 12, 2024 8 / 126

Examples

1. Plot the graph of the following equation in upper half space

$$A(t) = (cost, sint, t)$$

 $A(0) = (c, 0, 0)$
 $A(\pi|_{2}) = (o, 1, \pi|_{2})$

£=0

Gunja Sachdeva Space curve September 12, 2024 9 / 126

Examples

1. Plot the graph of the following equation in upper half space

$$\mathbf{r}(t) = \cos t \, \mathbf{i} + \sin t \, \mathbf{j} + t \, \mathbf{k}.$$

Gunja Sachdeva Space curve September 12, 2024 9 / 126

More Example of Curves

$$\mathbf{r}(t) = (\sin 3t)(\cos t)\mathbf{i} + (\sin 3t)(\sin t)\mathbf{j} + t\mathbf{k}$$

$$\mathbf{r}(t) = (\cos t)\mathbf{i} + (\sin t)\mathbf{j} + (\sin 2t)\mathbf{k}$$

Gunja Sachdeva Space curve September 12, 2024 10 / 126

Limit of Vector Valued Functions

Definition 0.1.

Let $\mathbf{r}(t) = x(t) \mathbf{i} + y(t) \mathbf{j} + z(t) \mathbf{k}$ be a vector-function which is defined on an interval I, and let $\mathbf{L} = x_0 \mathbf{i} + y_0 \mathbf{j} + z_0 \mathbf{k}$. We say that $\mathbf{r}(t)$ has limit \mathbf{L} as t approaches to t_0 and write

$$\lim_{t\to t_0}\mathbf{r}(t)=\mathbf{L},$$

if for every number $\varepsilon > 0$, there exists a corresponding number $\delta > 0$, such that $|r(t) - r_0|^2 + (y_1 t_1) - y_0 y_2 + (y_1 t$

Gunja Sachdeva Space curve September 12, 2024 11 / 126

Limit of Vector Valued Functions

Theorem 0.2.

Let $\mathbf{r}(t)$ be as above. The vector-function $\mathbf{r}(t)$ has a limit at $t = t_0$ if and only if the component functions $\mathbf{x}(t)$, $\mathbf{y}(t)$ and $\mathbf{z}(t)$ have the limits at $t = t_0$. Moreover,

$$\lim_{t\to t_0}\mathbf{r}(t)=\lim_{t\to t_0}x(t)\,\mathbf{i}+\lim_{t\to t_0}y(t)\,\mathbf{j}+\lim_{t\to t_0}z(t)\,\mathbf{k}.$$

Gunja Sachdeva Space curve September 12, 2024 12 / 126

Pf Given [wxie); Imyle), Imzle) exict

$$t > t_0$$
 $t > t_0$

Claim [myle) = (xo.yo.zo)

 $t > t_0$

Consider 2/3, $38.y_0 \le 20.830$ s.t

 $x = t_0$
 $x = t$

Closely $(x(t)-x_0) \leq \int (x(t)-x_0)^2 + (y(t)-y_0)^2 + (2(t)-20)^2$ $\leq \int (x(t)-x_0)^2 + (y(t)-y_0)^2 + (2(t)-20)^2$ $\leq \int (x(t)-x_0)^2 + (y(t)-y_0)^2 + (2(t)-20)^2$

Ex. In $A(\xi)$ $\begin{array}{ll}
A(\xi) = Sivtit Sm2t \int \\
+ coct k \\
- coct k \\
- coct k \\
+ ord 2
\end{array}$ $\begin{array}{ll}
+ coct k \\
+ ord 2
\end{array}$ $\begin{array}{ll}
- coct k \\
+ ord 2
\end{array}$ $\begin{array}{ll}
+ ord 3
\end{array}$ $\begin{array}{ll}
- coct k \\
+ ord 3
\end{array}$

Continuity of Vector Valued Functions

Definition 0.3.

Vector function $\mathbf{r}(t)$ is said to be continuous at $t = t_0 \in I$ if $r(t_0)$ is defined and

$$\lim_{t\to t_0}\mathbf{r}(t)=\mathbf{r}(t_0).$$

The function $\mathbf{r}(t)$ is said to be continuous if the function is continuous at every point of its domain.

We note that $\mathbf{r}(t) = x(t)\mathbf{i} + y(t)\mathbf{j} + z(t)\mathbf{k}$ is continuous at $t = t_0$ if and only if the component functions x(t), y(t) and z(t) are continuous at $t = t_0$.

Example: $\mathbf{r}(t) = \cos t \, \mathbf{i} + \sin t \, \mathbf{j} + t \, \mathbf{k}$ is a continuous vector-function.

of sit) = cost (+ Sint f Lt) k - Not continuous

Differentiability

J: IR
$$\rightarrow$$
 IR

Is $f(x)$ differentiable at $x = x_0$?

In $f(x_0 + h) - f(x_0) = f'(x_0)$

has o

he for $f(x_0 + h) = f(x_0 + h)$

- ◀ □ ▶ ◀ ♬ ▶ ◀ ≣ ▶ ■ ● ~ ♡ Q (~)

Derivatives:

- Suppose that $\mathbf{r}(t) = x(t)\mathbf{i} + y(t)\mathbf{j} + z(t)\mathbf{k}$ is the position vector of a particle moving along a curve in the space and that x(t), y(t) and z(t) are differentiable functions of t.
- Then the difference between the particle's position at time t and $t + \Delta t$ is

$$\Delta \mathbf{r} = \mathbf{r}(t + \Delta t) - \mathbf{r}(t)$$

In terms of components,

$$\Delta \mathbf{r} = [x(t + \Delta t) - x(t)] \mathbf{i} + [y(t + \Delta t) - y(t)] \mathbf{j} + [z(t + \Delta t) - z(t)] \mathbf{k}$$

Gunja Sachdeva Space curve September 12, 2024 15 / 126

Derivatives

Gunja Sachdeva Space curve September 12, 2024 16 / 126

- As Δt approaches zero, three things seem to happen simultaneously. First the point Q approaches the point P along the curve.
- Second, the secant line PQ seems to approach a limiting position tangent to the curve at P.
- Third, the quotient $\Delta \mathbf{r}/\Delta t$ approaches to the limit:

$$\lim_{\Delta t o 0} rac{\Delta \mathbf{r}}{\Delta t} = \left[\lim_{\Delta t o 0} rac{x(t + \Delta t) - x(t)}{\Delta t}
ight] \mathbf{i}$$
 $+ \left[\lim_{\Delta t o 0} rac{y(t + \Delta t) - y(t)}{\Delta t}
ight] \mathbf{j}$
 $+ \left[\lim_{\Delta t o 0} rac{z(t + \Delta t) - z(t)}{\Delta t}
ight] \mathbf{k}$

Gunja Sachdeva Space curve September 12, 2024 17 / 126

Derivatives conti.

Therefore,
$$\lim_{\Delta t \to 0} \frac{\Delta \mathbf{r}}{\Delta t} = \left[\frac{dx}{dt} \right] \mathbf{i} + \left[\frac{dy}{dt} \right] \mathbf{j} + \left[\frac{dy}{dt} \right] \mathbf{k}$$

◆ロ ト ◆ 昼 ト ◆ 昼 ト ○ 昼 ・ 夕 Q ②

Gunja Sachdeva Space curve September 12, 2024 18 / 126

Derivatives conti.

The above expression lead us to define:

Definition 0.4.

The vector function $\mathbf{r}(t) = x(t) \mathbf{i} + y(t) \mathbf{j} + z(t) \mathbf{k}$ has a derivative (is differentiable) at t, if x(t), y(t) and z(t) have derivatives at t. The derivative of $\mathbf{r}(t)$ is a vector function given by

$$\mathbf{r}'(t) = \lim_{\Delta t \to 0} \frac{r(t + \Delta t) - r(t)}{\Delta t} = \frac{dx}{dt} \mathbf{i} + \frac{dy}{dt} \mathbf{j} + \frac{dz}{dt} \mathbf{k}.$$

Gunja Sachdeva Space curve September 12, 2024 19 / 126

- A vector function $\mathbf{r}(t)$ is said to be differentiable if it is differentiable at every point of its domain.
- The vector $\mathbf{r}'(t)$, when different form $\mathbf{0}$, is defined to be the vector tangent to the curve at P.
- The tangent line to the curve

$$\mathbf{r}(t) = x(t)\mathbf{i} + y(t)\mathbf{j} + z(t)\mathbf{k}$$

at a point $(x(t_0), y(t_0), z(t_0))$ is defined to be the line through the point and parallel to the vector

$$\mathbf{r}'(t_0) = x'(t_0)\mathbf{i} + y'(t_0)\mathbf{j} + z'(t_0)\mathbf{k}.$$

Therefore, equation of the tangent line is given by

$$\gamma(t) = \mathbf{r}'(t_0)t + \mathbf{r}(t_0).$$

Gunja Sachdeva Space curve September 12, 2024 20 / 126