

Garantia da Qualidade, Medição e Melhoria

Leonardo Gresta Paulino Murta leomurta@ic.uff.br

Exercício motivacional

O que é um software de qualidade?

Qualidade depende da perspectiva...

Atributo 1

Atributo 2

Atributo 3

Atributo 4

Atributo 5

Atributo 6

Atributos de qualidade

Qualidade depende da perspectiva...

Baixa Qualidade (para o usuário)

Qualidade depende da perspectiva...

Alta Qualidade (para o usuário)

Frases para pensar...

• "Fazer é só uma vez, manter é para sempre"

"Você pode fazer certo ou fazer de novo"

 "Não ter tempo para pensar em qualidade agora significa ter tempo para refazer o produto no futuro"

Evolução da Garantia da Qualidade

Anos 50 e 60
O próprio
desenvolvedor avalia a
qualidade dos seus
produtos

A partir dos anos 70 Normas e equipes

próprias (SQA) para a avaliação da qualidade

Responsabilidades do desenvolvedor x SQA

- Desenvolvedor
 - Conceber produtos de qualidade
- SQA (Software Quality Assurance)
 - Apoiar às equipes de desenvolvimento
 - Garantir que os produtos gerados pela equipe de desenvolvimento de fato têm qualidade

Tarefas do SQA

- Preparar o plano de SQA
 - Identificar as normas a serem seguidas
 - Identificar as auditorias a serem feitas
- Participar na definição do processo
- Auditar as atividades de ES para assegurar compatibilidade com o processo definido

 Auditar os produtos gerados para assegurar a sua compatibilidade com os padrões definidos

- Reportar as não conformidades encontradas
- Assegurar que as correções necessárias serão de fato feitas

Medição

- Por que medir?
- O que significa uma medição?

O que medir?

Por que medir?

 Análise de Valor agregado (CPI, SPI)

 Controle estatístico de processos (veremos nesta aula) Planning Poker (estimativa de esforço)

Tipos de métricas

Diretas

 Obtidas diretamente do elemento sob medição

Indiretas

 Obtidas por formulas contendo outras métricas

Baseline de medições

- Medições isoladas usualmente são inúteis
- A partir de diversas medições em contextos semelhantes é possível
 - Estabelecer uma baseline
 - Comparar as novas medições com a baseline

Processos estáveis x capazes

- Nem sempre o processo "mais rápido" é um processo estável ou capaz
 - Um processo estável permite que o desempenho futuro seja previsível em função do desempenho passado
 - Um processo capaz é um processo estável em que o desempenho atende aos requisitos do usuário

Processos estáveis x capazes

- Problema:
 - Ir em até 20 minutos de Icaraí para São Francisco
- Processos
 - Ir de carro
 - Ir de ônibus
 - Ir de bicicleta
 - Ir a pé
- Qual é o processo mais rápido num cenário ótimo?
- Quais processos são estáveis?
- Quais processos são capazes?

Processos estáveis x capazes

Gráfico de controle

- O gráfico de controle é um artefato que nos permite analisar a estabilidade de um processo
- Foi criado em 1920 por Walter Shewhart

Algoritmo para construção do gráfico de controle

- 1. Coletar uma série temporal da métrica desejada
- 2. A partir da série temporal da métrica desejada calcular
 - 1. Média:

$$\mu = \frac{1}{n} \times \sum_{i=1}^{n} x_i$$

2. Desvio-padrão:

$$\sigma = \sqrt{\frac{1}{n-1} \times \sum_{i=1}^{n} (x_i - \mu)^2}$$

Algoritmo para construção do gráfico de controle

- 3. Desenhar um gráfico com linhas delimitando
 - Média
 - 1 desvio-padrão para cima e para baixo da média
 - 2 desvios-padrão para cima e para baixo da média
 - 3 desvios-padrão para cima e para baixo da média
- 4. Desenhar os pontos da série desejada e conectar os pontos via uma linha

Exemplo – número de solicitações corretivas por semana

Passo 1 – coleta de métricas

Semana	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Solicitações corretivas	5	6	5	9	6	5	4	6	7	5	6	5	5	7	6	3	4	5	8	6

Passo 2 – cálculo de média e desvio padrão

μ	5,65
σ	1,39

Exemplo – número de solicitações corretivas por semana

Passos 3 e 4 – desenho do gráfico de controle

Semana	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Solicitações	5	6	5	9	6	5	4	6	7	5	6	5	5	7	6	3	4	5	8	6
corretivas	<u> </u>	O	٥	פ	ס	ე	4	O	/)	O)	ر	/	O	3	4)	0	O
+3σ	9,8	9,8	9,8	9,8	9,8	9,8	9,8	9,8	9,8	9,8	9,8	9,8	9,8	9,8	9,8	9,8	9,8	9,8	9,8	9,8
+2σ	8,4	8,4	8,4	8,4	8,4	8,4	8,4	8,4	8,4	8,4	8,4	8,4	8,4	8,4	8,4	8,4	8,4	8,4	8,4	8,4
+1σ	7,0	7,0	7,0	7,0	7,0	7,0	7,0	7,0	7,0	7,0	7,0	7,0	7,0	7,0	7,0	7,0	7,0	7,0	7,0	7,0
μ	5,7	5,7	5,7	5,7	5,7	5,7	5,7	5,7	5,7	5,7	5,7	5,7	5,7	5,7	5,7	5,7	5,7	5,7	5,7	5,7
-1σ	4,3	4,3	4,3	4,3	4,3	4,3	4,3	4,3	4,3	4,3	4,3	4,3	4,3	4,3	4,3	4,3	4,3	4,3	4,3	4,3
-2σ	2,9	2,9	2,9	2,9	2,9	2,9	2,9	2,9	2,9	2,9	2,9	2,9	2,9	2,9	2,9	2,9	2,9	2,9	2,9	2,9
-3σ	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5

Exemplo – número de solicitações corretivas por semana

Passos 3 e 4 – desenho do gráfico de controle

Assumindo uma distribuição normal para as medidas coletadas

Intervalo	Probabilidade do intervalo	Eventos esperados fora do intervalo (medidas diárias)
μ ± 1σ	68%	Dois por semana
μ ± 2σ	95%	Um a cada três semanas
μ ± 3σ	99,7%	Um por ano

- Causa comum de variação
 - Dentro dos limites de probabilidade
 - Existe em todo processo estável e previsível
- Causa especial de variação
 - Foge os limites de probabilidade
 - Precisa ser analisada e evitada para que o processo possa ser estável e previsível

- Quando o comportamento do gráfico foge do esperado...
 - É necessário achar uma causa atribuível
 - O processo pode estar instável
- Situações a serem analisadas
 - -1 evento além de $\mu \pm 3\sigma$
 - 2 de 3 eventos sucessivos do mesmo lado além de μ ± 2σ
 - 4 de 5 eventos sucessivos do mesmo lado além de $\mu \pm 1\sigma$
 - 8 eventos sucessivos do mesmo lado de μ

Processo instável?

Causa atribuível: adoção de testes automatizados

Ação: Contextualizar a medição com e sem os testes automatizados

Processos estáveis, antes e depois da adição de testes automatizados

Modelos de maturidade

 Crença principal: A qualidade do produto está intimamente ligada à qualidade do processo

Modelos de maturidade

- Servem para guiar empresas na busca por qualidade
- Não determinam como algo deve ser feito, mas sim o que deve ser feito
- Não são incompatíveis com métodos ágeis
 - Existem empresas que usam XP e SCRUM e já avaliaram em algum modelo de maturidade
- Principais modelos em uso no Brasil
 - CMMI
 - MPS.BR

- Modelo brasileiro semelhante ao CMMI
 - Foco nas pequenas e médias empresas brasileiras
 - Menor custo para implementação e avaliação
 - Mais degraus intermediários, ajudando na melhoria progressiva
- Modelo com 19 processos e 9 atributos de processo divididos em 7 níveis de maturidade
- Mapeamento para o CMMI
 - Nível 5 = A
 - Nível 4 = B
 - Nível 3 = C
 - Nível 2 = F

- Nível G Parcialmente Gerenciado
 - Gerência de Projetos
 - Gerência de Requisitos
 - Atributo: O processo é executado
 - Atributo: O processo é gerenciado
- Nível F Gerenciado
 - Aquisição
 - Gerência de Configuração
 - Garantia de Qualidade
 - Gerência de Portfólio de Projetos
 - Medição
 - Atributo: Os produtos de trabalho do processo são gerenciados

- Nível E Parcialmente Definido
 - Avaliação e Melhoria do Processo Organizacional
 - Definição do Processo Organizacional
 - Gerência de Recursos Humanos
 - Gerência de Reutilização
 - Atributo: O processo é definido
 - Atributo: O processo está implementado
- Nível D Largamente Definido
 - Desenvolvimento de Requisitos
 - Integração do Produto
 - Projeto e Construção do Produto
 - Validação
 - Verificação

- Nível C Definido
 - Desenvolvimento para Reutilização
 - Gerência de Decisões
 - Gerência de Riscos
- Nível B Gerenciado Quantitativamente
 - Atributo: O processo é medido
 - Atributo: O processo é controlado
- Nível A Em Otimização
 - Atributo: O processo é objeto de melhorias e inovações
 - Atributo: O processo é otimizado continuamente

Principais Referências Bibliográficas

- Anne Hass, 2003. Configuration Management Principles and Practices, Boston, MA, Pearson Education, Inc.
- Florac, W. A., Carleton, A. D., 1999. Measuting the Software Process. Addison Wesley
- Pressman, R. S., 2004. Software Engineering: A Practitioner's Approach. 6 ed. McGraw-Hill.
- SOFTEX, 2009. MPS.BR Melhoria de Processo do Software Brasileiro – Guia Geral. http://www.softex.br/mpsbr

Garantia da Qualidade, Medição e Melhoria

Leonardo Gresta Paulino Murta leomurta@ic.uff.br