4.2.1 – Кольца Ньютона.

Цель работы. Познакомиться с явлением интерференции в тонких плёнках (полосы равной толщины) на примере колец Ньютона и с методикой интерференционных измерений кривизны стеклянной поверхности.

В работе используются: измерительный микроскоп с опак-иллюминатором; плосковыпуклая линза; пластинка из чёрного стекла; ртутная лампа ДРШ; щель; линзы; призма прямого зрения; объектная шкала.

Теоретическая часть. Классический опыт Ньютона можно использовать для определения радиуса кривизны сферических пластин. В этом опыте свет падает нормально на пластину и интерферирует со своим отражением от стеклянной поверхности, на которой лежит линза. Можно пренебречь отклонением луча от нормали при выходе из стекла; тогда (см. рис. 1) при $R\gg d$ имеем $d=r^2/2R$. При отражении от оптически более плотной среды свет меняет фазу на π , отсюда разность хода интерферирующих лучей есть $\Delta=2d+\lambda/2$. Минимум наблюдается при $\Delta=(2m+1)\lambda/2$, отсюда радиус темных колец

Рис. 1: Схема наблюдения колец Ньютона

$$r_m = \sqrt{m\lambda R},\tag{1}$$

светлых:

$$r_m = \sqrt{(2m-1)m\lambda R/2}. (2)$$

Наша нехитрая схема для наблюдения колец изображена на рисунке:

Рис. 2: Схема установки для наблюдения колец Ньютона

Мы используем ртутную лампу с двумя основными спектральными компонентами – желтой и зеленой. Соотв. интерференционная картина представляет собой периодически чередующиеся участки четкости – «биение».

Результаты. Прямые измерения радиусов колец приведены в таблице. Здесь чередуются последовательно темные и светлые кольца. m=1 — темное кольцо, r_1 следует брать в качестве точки отсчёта.

m	1	2	3	4	5	6	7	8	9	10	11	12
r_m , MKM	4.58	3.97	3.67	3.48	3.38	3.18	3.09	2.89	2.68	2.54	2.46	2.37

На графике приведены зависимости квадрата радиуса кольца от его номера (с нормировкой на r_1).

Рис. 3: Квадрат радиуса кольца от его номера

По наклону кривых получаем оценку радиуса кривизны линзы

$$R \simeq 1.6 \pm 0.03$$
 м.

Размытия нет — график для темных колец проходит через начало координат. Для биений получаем оценку $\Delta m \simeq 6$, разность длин волн желтой и зеленой компонент ртути — 33 нанометра.

Вывод. Работа демонстрирует полезность использования колец Ньютона для измерения радиуса кривизны линз.