

auf Basis Immowelt & Comdirect

WS 22/23 - Team Haimi Duong & Helena Schick Stuttgart, 12. Januar 2023

Betreuender Dozent: Prof. Dr. Stephan Wilczek

Auf Basis der gewonnenen Daten aus dem Webscraping sollen umfangreiche Analysen durchgeführt werden.

Erste Sichtung der Website immowelt.de über eine Suche für Häuser zum Kaufen in Berlin

Die Suchergebnisliste weist zunächst viele Neubauprojekte ohne eindeutigen Preis aus, daher Anpassung des Filters.

Die URL kann in einzelne Bestandteile aufgeteilt werden, sodass verschiedene Suchkriterien definiert werden können.

Das hat nicht funktioniert:

Idee/Ziel

Ergebnis

Auslesen der letzten Seiten pro Ort für dynamische Festlegung der zu durchsuchenden Seiten

```
#Versuche zum Auslesen letzter Seitenzahl-Button
button_v1 = tree.xpath('//div[@class="Pagination-190de"]/div[1]/button[5]/span/text()')
print("Button Versuch 1: "+str(button_v1))
button_v2 = tree.xpath('//button[@class="Button-c3851 secondary-47144 navNumberButton-d264f"]/span/text()')
print("Button Versuch 2: "+str(button_v2))
Button Versuch 1: []
Button Versuch 2: []
```

Wert konnte mit XPath nicht ausgelesen werden

Die Variabilisierung der URL ist wichtig für ein umfangreiches Webscraping der Website.

```
Website = "https://www.immowelt.de/liste/"
   Slash = "/"
   Snippet1 = "/kaufen?d=true&efs=NEW BUILDING PROJECT&efs=JUDICIAL SALE&r="
   Snippet2 = "&sd=DESC&sf=RELEVANCE&sp="
                                                                                                                                             Python
   Ort = ["berlin", "frankfurt-am-main", "hamburg", "koeln", "leipzig", "muenchen", "stuttgart"]
   Umkreis = 50
   Objekt = ["haeuser"]
   Seite = list(range(50))
                                                                                                                                            Python
   url = Website + Ort[0] + Slash + Objekt[0] + Snippet1 + str(Umkreis) + Snippet2 + str(Seite[0]+1)
   print(url)
                                                                                                                                             Python
https://www.immowelt.de/liste/berlin/haeuser/kaufen?d=true&efs=NEW BUILDING PROJECT&efs=JUDICIAL SALE&r=50&sd=DESC&sf=RELEVANCE&sp=1
```

Sichtung des HTML-Inhalts für das Auslesen verschiedener Attribute des Objektes.

Mit XPath werden die ID und die Attribute ausgelesen.

```
# URL Aufrufen
page = requests.get(url)

# Parsen der Seite URL
tree = html.fromstring(page.content)

# Alle IDs der Seite URL in der Liste id speichern. IDs sind immer eindeutig und nur einmal vergeben
id = tree.xpath(".//a/@id")
```

```
MaxOrt = tree.xpath('//div[@class="estateFacts-f11b0"]/div[1]/span/text()')
prices = tree.xpath('//div[@data-test="price"]/text()')
                                                                                                                ▼<div>
area = tree.xpath('//div[@data-test="area"]/text()')
                                                                                                                  <h2>Opulent & prachtvoll: Villa - Landhaus - Residenz
                                                                                                                  in Zehlendorf</h2>
rooms = tree.xpath('//div[@data-test="rooms"]/text()')
                                                                                                                 ▼<div class="estateFacts-f11b0">
                                                                                                                   ▼<div class="IconFact-e8a23"> flex
                                                                                                                      <i class="sd-icon-65fe6">location</i>
                                                                                                                     <span>max. 15 km | Berlin (Zehlendorf)</span> == $0
                                                                                                                    </div>
                                                                                                                   ▼ <div class="IconFact-e8a23"> flex
                                                                                                                      <i class="sd-icon-65fe6">home land area</i>
                                                                                                                      <span>1696 m² Grundstück</span>
                                                                                                                    </div>
                                                                                                                   ▶ <div class="IconFact-e8a23">...</div> flex
                                                                                                                  </div>
                                                                                                                 </div>
                                                                                                                </div>
```

Weitere Attributen können aus den einzelnen Exposés ausgelesen werden, sodass es insgesamt 11 in der Anzahl sind.

Über eine dynamisch allokierte Matrix und vielen Loops wird ein Dataframe mit ca. 7000 Objekten erzeugt.

df														Python
	ID	Ort	Umkreis	MaxOrt	Preis	Fläche	Zimmer	Grundstücksfläche	Kategorie	Etagen	Baujahr	Effizienzklasse	Energieträger	Heizungsart
0	28zn659	berlin	50	max. 15 km	7.790.000 €	[780 m ²]	[30 Zi.]	[1.696 m ²]	[Villa]	[5 Geschosse]	[1890]	n.a	n.a	n.a
1	28jr359	berlin	50	max. 30 km	450.000 €	[111 m ²]	[5 Zi.]	[1.100 m ²]	[Einfamilienhaus]	[2 Geschosse]	[1936]	[H]	[Gas, Kohle]	[Zentralheizung]
2	274he5l	berlin	50	max. 10 km	690.000 €	[323 m ²]	[8 Zi.]	[393 m ²]	[Mehrfamilienhaus]	n.a	[1990]	[D]	[Gas]	[Zentralheizung]
3	277z85u	berlin	50	max. 10 km	1.950.000 €	[212.58 m²]	[7 Zi.]	[941 m²]	[Einfamilienhaus]	n.a	[1956]	[C]	n.a	[offener Kamin, Zentralheizung]
4	26zkl56	berlin	50	max. 10 km	429.000 €	[97 m ²]	[4 Zi.]	[407 m ²]	[Einfamilienhaus]	n.a	[1958]	(E)	[Öl]	[Zentralheizung]
6995	27szw5w	stuttgart	50	max. 30 km	745.000 €	[103 m ²]	[4.5 Zi.]	[314 m ²]	[Reihenendhaus]	n.a	n.a	n.a	[Öl]	n.a
6996	2722w5t	stuttgart	50	max. 30 km	680.000 €	[213 m ²]	[8 Zi.]	[331 m²]	[Doppelhaushälfte]	n.a	[1904]	(E)	[Gas]	[Zentralheizung]
6997	28z8g52	stuttgart	50	max. 30 km	378.000 €	[104 m ²]	[6 Zi.]	[447 m ²]	[Mehrfamilienhaus]	n.a	[1958]	[F]	[Öl]	[Ofen]
6998	27fps5t	stuttgart	50	max. 30 km	659.000 €	[169 m ²]	[6 Zi.]	[223 m ²]	n.a	n.a	[1995]	n.a	[Gas]	[Zentralheizung]
6999	27l3p5z	stuttgart	50	max. 30 km	450.000 €	[114 m ²]	[5 Zi.]	[249 m²]	[Reihenmittelhaus]	n.a	[1968]	[D]	[Öl]	[offener Kamin, Zentralheizung]
7000 ro	ws × 14 col	umns												

Als weitere Datenquelle werden Infos für aktuelle Bauzinsen über die Website comdirect.de betrachtet.

Über XPath werden die Werte ausgelesen und in ein Dataframe gebracht.

```
url = "https://www.comdirect.de/kredit/bauzinsen.html#Bauzinsen"
   page = requests.get(url)
   tree = html.fromstring(page.content)
   eff5 = tree.xpath('//div[@class="table container--scroll"]/table/tbody/tr[1]/td[4]/eff5/text()')
   eff10 = tree.xpath('//div[@class="table_container--scroll"]/table/tbody/tr[2]/td[4]/eff10/text()')
   eff15 = tree.xpath('//div[@class="table container--scroll"]/table/tbody/tr[3]/td[4]/eff15/text()')
   eff20 = tree.xpath('//div[@class="table container--scroll"]/table/tbody/tr[4]/td[4]/eff20/text()')
   eff25 = tree.xpath('//div[@class="table container--scroll"]/table/tbody/tr[5]/td[4]/eff25/text()')
   stand = tree.xpath('//div[@class="col content outer-spacing--xlarge-bottom"]/p/date/text()')
   print(eff5)
   print(eff10)
   print(eff15)
   print(eff20)
   print(eff25)
   print(stand)
['3,53']
['3,60']
['3,69']
['3,78']
['3,86']
 '30.12.2022 16:30']
```


Webscraping

(Automatisierung

Analysen

Über die Einrichtung eines Cronjobs läuft das Python-Skript täglich über den AWS-Server

Der Cronjob läuft täglich um 19:24 und generiert dabei die entsprechende CSV-Datei.

```
ec2-user@ip-172-31-94-214:~
  19 * * * python3 daily zins.py
                                                                  ec2-user@ip-172-31-94-214:~
                                                                    Using username "ec2-user".
                                                                    Authenticating with public key "Immokey"
                                                                 Last login: Tue Jan 3 21:36:58 2023 from ip-046-005-231-107.um12.pools.vodafone
                                                                 -ip.de
                                                                                      Amazon Linux 2 AMI
                                                                 https://aws.amazon.com/amazon-linux-2/
                                                                 [ec2-user@ip-172-31-94-214 ~]$ ls -1
                                                                 -rw-r--r 1 ec2-user ec2-user 264 Dec 30 19:24 2022-12-30 Zinsen.csv
                                                                 -rw-r--r- 1 ec2-user ec2-user 264 Dec 31 19:24 2022-12-31 Zinsen.csv
                                                                 -rw-r--r- 1 ec2-user ec2-user 264 Jan 1 19:24 2023-01-01 Zinsen.csv
                                                                 -rw-r--r- 1 ec2-user ec2-user 264 Jan 2 19:24 2023-01-02 Zinsen.csv
                                                                 -rw-r--r- 1 ec2-user ec2-user 264 Jan 3 19:24 2023-01-03 Zinsen.csv
                                                                 -rw-r--r- 1 ec2-user ec2-user 264 Jan 4 19:24 2023-01-04 Zinsen.csv
"/tmp/crontab.XOID7S" 23L, 56B
                                                                  -rwxrwxrwx 1 ec2-user ec2-user 1765 Dec 30 19:21 daily zins.py
                                                                 [ec2-user@ip-172-31-94-214 ~]$
```


Das hat nicht funktioniert:

Idee/Ziel

Ergebnis

Python-Skript für Webscraping Immowelt läuft täglich über einen Cronjob auf AWS Server

```
Complete served: the size limit, does the full output data in a text editor

Complete served: the size limit, does the full output data in a text editor

The claimst violated the served of the serve
```

Verbindungsprobleme stoppen Lauf vom Python Skript

Webscraping

Automatisierung

Analysen

Bearbeitung einzelner Attribute für korrekte Datentypzuordnung und Entfernen obsoleter Spalten.

df														
														Python
	ID	Ort	Umkreis	MaxOrt	Preis	Fläche	Zimmer	Grundstücksfläche	Kategorie	Etagen	Baujahr	Effizienzklasse	Energieträger	Heizungsart
0	28zn659	berlin	50	max. 15 km	7.790.000 €	[780 m ²]	[30 Zi.]	[1.696 m ²]	[Villa]	[5 Geschosse]	[1890]	n.a	n.a	n.a
1	28jr359	berlin	50	max. 30 km	450.000 €	[111 m²]	[5 Zi.]	[1.100 m ²]	[Einfamilienhaus]	[2 Geschosse]	[1936]	[H]	[Gas, Kohle]	[Zentralheizung]
2	274he5l	berlin	50	max. 10 km	690.000 €	[323 m ²]	[8 Zi.]	[393 m²]	[Mehrfamilienhaus]	n.a	[1990]	[D]	[Gas]	[Zentralheizung]
3	277z85u	berlin	50	max. 10 km	1.950.000 €	[212.58 m²]	[7 Zi.]	[941 m²]	[Einfamilienhaus]	n.a	[1956]	[C]	n.a	[offener Kamin, Zentralheizung]
4	26zkl56	berlin	50	max. 10 km	429.000 €	[97 m²]	[4 Zi.]	[407 m ²]	[Einfamilienhaus]	n.a	[1958]	[E]	[Öl]	[Zentralheizung]

	immodf.he	ead()														
	ID	Ort	MaxOrt	Preis	Stand	Flaeche	Raeume	Grundstuecksflaeche	Art	Geschosse	Jahr	Effizienz	Energietraeger	Heizung		
0	28zn659	berlin	15.0	7790000	2022-12-28	780.0	30.0	1696.0	Villa	5.0	1890.0					
1	28jr359	berlin	30.0	450000	2022-12-28	111.0	5.0	1100.0	Einfamilienhaus	2.0	1936.0	Н	Gas, Kohle	Zentralheizung		
2	274he5l	berlin	10.0	690000	2022-12-28	323.0	8.0	393.0	Mehrfamilienhaus	NaN	1990.0	D	Gas	Zentralheizung		
3	26zkl56	berlin	10.0	429000	2022-12-28	97.0	4.0	407.0	Einfamilienhaus	NaN	1958.0	E	Öl	Zentralheizung		
4	279kt5y	berlin	10.0	1700000	2022-12-28	18662.0	8.0	502.0	Mehrfamilienhaus	NaN	1936.0		Fernwärme	Zentralheizung		

Die Verteilungsanalyse weist bei einigen Attributen auf Ausreißer hin, wenn man den Mittelwert mit dem Median vergleicht.

df.	describe().applymap('{	:,.2f}'.for	rmat)			
	MaxOrt	Preis	Flaeche	Raeume	Grundstuecksflaeche	Geschosse	Jahr
count	8,169.00	8,169.00	8,169.00	8,169.00	8,169.00	8,169.00	8,169.00
mean	20.48	1,054,410.19	3,410.98	11.00	733.42	2.42	1,967.25
std	13.03	1,399,783.44	10,733.07	17.40	3,705.69	0.38	54.46
min	0.50	0.00	1.00	1.00	0.00	1.00	23.00
25%	10.00	495,617.00	133.00	5.00	259.50	2.42	1,955.00
50%	15.00	725,000.00	180.00	6.00	460.00	2.42	1,967.56
75%	30.00	1,143,000.00	519.00	9.00	735.00	2.42	1,995.00
max	50.00	30,000,000.00	307,673.00	415.00	195,940.00	8.00	2,024.00

Das Objekt mit dem höchsten Preis ist in Leipzig.

Visualisierung der Lagemaße einzelner Attribute.

Korrelationsanalyse zwischen den numerischen Attributen führt zu folgenden Erkenntnissen:

- Positive Korrelation von zwei Variablen zu Preis zu verzeichnen, jedoch nicht stark: Fläche bei 0,19 und Grundstücksfläche bei 0,12
- Stärkste (negative) Korrelation zu Preis hat MaxOrt, jeoch mit -0,22 nicht besonders stark ausgeprägt
- Korrelation von Fläche zu Räume mit 0,07 unerwartet nicht bedeutend

Visualisierung der Ausprägungen von kategorischen Features mit einem Parallel Categories Plot.

- Am häufigsten stehen
 Einfamilienhäuser zu Verkauf
- Ausprägung bei niedrigeren Energieeffizienzklassen hoch
- Zentralheizung mit Abstand die häufigste Heizungsart

Conditional Probabilities zwischen den Hausarten und Ort führt zu folgenden Erkenntnissen:

Art	Bauernhaus	Bungalow	Burg/Schloss	Doppelhaushälfte	Einfamilienhaus	Finca	Herrenhaus	Mehrfamilienhaus	Reihenendhaus
Ort									
berlin	0.068182	0.163180	0.000000	0.116134	0.197913	0.0	0.4	0.097475	0.101868
frankfurt- am-main	0.113636	0.129707	0.000000	0.120306	0.130783	0.0	0.2	0.189665	0.159593
hamburg	0.136364	0.267782	0.000000	0.118915	0.155826	0.0	0.2	0.099824	0.149406
koeln	0.022727	0.150628	0.666667	0.160640	0.134957	0.0	0.0	0.167352	0.157895
leipzig	0.500000	0.125523	0.333333	0.077191	0.171130	1.0	0.0	0.165003	0.040747
muenchen	0.090909	0.075314	0.000000	0.251043	0.093913	0.0	0.0	0.081033	0.256367
stuttgart	0.068182	0.087866	0.000000	0.155772	0.115478	0.0	0.2	0.199648	0.134126

- Die häufigste Hausart Einfamilienhaus ist in allen Städten verfügbar, am häufigsten jedoch in Leipzig und Berlin.
- 48% der Bauernhäuser liegen rund um Leipzig
- 44% der inserierten Stadthäuser sind in Hamburg.

Korrelationsanalyse zwischen Preis und Ort führt zu folgenden Erkenntnissen:

- Median der Preise in Leipzig liegt unterhalb der 25% günstigsten Häuser in allen anderen betrachteten Städten
- Whisker bei Leipzig, Köln und Stuttgart vergleichsweise kurz
- Größte Preisspanne in München

df.groupby(by	="Ort").m	edian().appl	ymap('{:,	, .2f}' .for	rmat)		
	MaxOrt	Preis	Flaeche	Raeume	Grundstuecksflaeche	Geschosse	Jahr
Ort							
berlin	15.00	749,000.00	169.50	5.00	562.00	2.42	1,972.00
frankfurt-am-main	15.00	749,000.00	185.00	6.00	415.00	2.42	1,967.56
hamburg	15.00	695,000.00	161.50	5.00	550.50	2.42	1,969.00
koeln	15.00	619,000.00	167.00	6.00	432.00	2.42	1,968.00
leipzig	30.00	395,000.00	190.50	6.00	583.00	2.42	1,967.56
muenchen	15.00	1,295,000.00	200.00	6.00	387.23	2.42	1,981.00
stuttgart	20.00	750,000.00	199.00	8.00	368.00	2.42	1,967.50

Mit Statsmodel erstes OLS Modell mit Feature Fläche erstellt, da höchste Korrelation bei numerischen Features.

- R squared gibt die Verbesserung der Vorhersage durch das Modell an (Optimum: 1) --> 0,1 ist nicht gut
- Adjusted R squared bezieht die Freiheitsgrade in R2 ein --> 0,1 ist auch nicht gut
- F-Statistic beschreibt wie das Modell die Vorhersage verbessert hat im Vergleich zum Level der Ungenauigkeit im Modell (Optimum: > 1) --> 16 > 1, also gut
- Hypothese H0 wird verworfen, da t groß ist P>t =
 0 --> Effekt von Fläche auf Preis ist bedeutend

Nach Entfernung der Ausreißer mit der Cook's Distance Methode wird erneut ein OLS Modell erstellt. Die Performance hat sich nicht gebessert.


```
#statsmodel mit einem Feature und ohne Ausreißer
   lm2 = ols("Preis ~ Flaeche", data=dfOH, subset=subset).fit()
   print(lm2.summary())
                           OLS Regression Results
Dep. Variable:
                               Preis R-squared:
                                                                        0.038
Model:
                                  OLS Adj. R-squared:
                                                                        0.038
Method:
                       Least Squares F-statistic:
                                                                        319.4
Date:
                     Thu, 05 Jan 2023
                                       Prob (F-statistic):
                                                                     4.23e-70
                             12:06:45
                                       Log-Likelihood:
Time:
                                                                   -1.2700e+05
No. Observations:
                                       AIC:
                                                                     2.540e+05
                                8166
Df Residuals:
                                       BIC:
                                8164
                                                                     2.540e+05
Df Model:
Covariance Type:
                                                P>|t|
                 coef
                        std err
                                                            [0.025
                                                                        0.975]
Intercept 9.682e+05
                       1.59e+04
                                     60.710
                                                0.000
                                                          9.37e+05
                                                                      9.99e+05
Flaeche
              25.3055
                           1.416
                                     17.871
                                                0.000
                                                            22.530
                                                                        28.081
Omnibus:
                           11010.814 Durbin-Watson:
                                                                        1.517
Prob(Omnibus):
                                       Jarque-Bera (JB):
                                                                   3139703.091
                                       Prob(JB):
Skew:
                               7.653
                                                                         0.00
Kurtosis:
                              97.833
                                      Cond. No.
                                                                      1.18e+04
```

Mit der Forward Selection werden 5 Features für das nächste OLS Modell ermittelt. Performance hat sich verbessert, jedoch immer noch nicht gut.

```
from sklearn.feature selection import SequentialFeatureSelector
   from time import time
   tic fwd = time()
   sfs forward = SequentialFeatureSelector(
       reg, n features to select=5,
       direction="forward").fit(X train, y train)
   toc_fwd = time()
   print(
       "Features selected by forward sequential selection: "
       f"{feature names[sfs forward.get support()]}"
   print(f"Done in {toc_fwd - tic_fwd:.3f}s")
                                                             Python
Features selected by forward sequential selection:
Index(['MaxOrt', 'Flaeche', 'Ort_muenchen',
'Art Mehrfamilienhaus',
       'Art Villa'],
```


Output exceeds the <u>si</u>			full output data <u>i</u> on Results	in a tex	t editor	
Dep. Variable:	,		R-squared:		0.191	
Model:	1t C		Adj. R-squared:		0.191	
			F-statistic:		385.6	
Date: Time:			Prob (F-statistic)		0.00 -1.2629e+05	
			Log-Likelihood:			
No. Observations: Df Residuals:		8166 / 8160			2.526e+05 2.526e+05	
Df Model:		9100	BIC:		2.5200+05	
Covariance Type:						
	coef	std e	rr t	P> t	[0.025	0.975]
Intercept	1.121e+06	2.84e+	 04 39.411	0.000	1.06e+06	1.18e+06
MaxOrt	-2.124e+04	1072.6	08 -19.802	0.000	-2.33e+04	-1.91e+04
Flaeche	19.3178	1.3	14 14.707	0.000	16.743	21.893
Ort_muenchen	9.922e+05	4.02e+	94 24.681	0.000	9.13e+05	1.07e+06
Art_Mehrfamilienhaus	5.344e+05	3.49e+	04 15.313	0.000	4.66e+05	6.03e+05
Art_Villa	1.599e+06	7.98e+	04 20.029		1.44e+06	1.76e+06
 Omnibus:	11287	7.361	 Durbin-Watson:		1.691	
Prob(Omnibus):	(0.000	Jarque-Bera (JB):		4109440.829	
Skew:		7.926	Prob(JB):		0.00	
Kurtosis:	111	1.749	Cond. No.		6.47e+04	

Regressionsmodelle mit Sklearn haben teilweise unplausible Ergebnisse. Das beste Modell ist Decision Tree mit R2=0,43

```
pipe4 = Pipeline([('sgd', SGDRegressor(loss='squared_error',
pipe1 = Pipeline([('lr', LinearRegression(fit_intercept=True,
                                                                                                                penalty='12',
                                                                                                                 alpha=0.0001,
                                             n jobs=None,
                                                                                                                 11 ratio=0.15,
                                             positive=False))])
                                                                                                                 fit_intercept=True,
                                                                                                                max iter=1000,
#Bayesian Ridge
                                                                                                                tol=0.001,
pipe2 = Pipeline([('br', BayesianRidge(n_iter=300,
                                                                                                                 shuffle=True.
                                                                                                                 verbose=0.
                                         alpha_1=1e-06,
                                                                                                                epsilon=0.1,
                                         alpha 2=1e-06,
                                                                                                                random_state=None,
                                        lambda_1=1e-06.
                                                                                                                 learning rate='invscaling',
                                         lambda 2=1e-06.
                                                                                                                eta0=0.01,
                                         alpha_init=None,
                                                                                                                power_t=0.25,
                                        lambda_init=None,
                                                                                                                early_stopping=False,
                                         compute_score=False,
                                                                                                                 validation_fraction=0.1,
                                         fit intercept=True.
                                                                                                                n_iter_no_change=5,
                                         copy_X=True,
                                                                                                                warm start=False,
                                         verbose=False))])
                                                                                                                average=False))])
                                                                        #Decision Tree Regressor
pipe3 = Pipeline([('svr', SVR(kernel='rbf',
                                                                        pipe5 = Pipeline([('dtr', DecisionTreeRegressor(criterion='squared_error',
                                                                                                                         splitter='best',
                                 gamma='scale',
                                                                                                                        max depth=None,
                                 coef0=0.0,
                                                                                                                        min_samples_split=2,
                                 tol=0.001.
                                                                                                                        min_samples_leaf=1,
                                C=1.0,
                                                                                                                        min_weight_fraction_leaf=0.0,
                                 epsilon=0.1,
                                                                                                                        max_features=None,
                                 shrinking=True,
                                                                                                                        random_state=None,
                                 cache size=200,
                                                                                                                         max leaf nodes=None,
                                 verbose=False,
                                                                                                                         min_impurity_decrease=0.0,
                                 max_iter=-1))])
                                                                                                                         ccp alpha=0.0))])
```

```
#R2 aus tatsächlichen vs. vorhergesagten Werten
   R2_1 = r2_score(y_train, y_pred_1)
   R2_2 = r2_score(y_train, y_pred_2)
   R2_3 = r2_score(y_train, y_pred_3)
   R2 4 = r2 score(y train, y pred 4)
   R2.5 = r2.score(y.train, y.pred.5)
   print("R2 Linear Regression:", R2 1.round(2))
   print("R2 Bayesian Ridge:", R2_2.round(2))
   print("R2 Support Vector Machine:", R2 3.round(2))
   print("R2 Stochastic Gradient Descent Regressor:", R2_4.round(2))
   print("R2 Decision Tree Regressor:", R2_5.round(2))
R2 Linear Regression: 0.26
R2 Bayesian Ridge: 0.26
R2 Support Vector Machine: -0.06
R2 Stochastic Gradient Descent Regressor: -0.6
R2 Decision Tree Regressor: 0.43
```


Das hat nicht funktioniert:

Idee/Ziel

Ergebnis

R2: -1.5e+23 (+/- 1.3e+23), Linear Regression

R2: 0.24 (+/- 0.054), Bayesian Ridge

R2: -0.064 (+/- 0.016), Support Vector Regression

R2: -0.68 (+/- 0.2), Stochastic Gradient Descent Regressor

R2: 0.29 (+/- 0.088), Decision Tree Regressor

Verschiedene Regressionsmodell miteinander vergleichen

Performance Regressionsmodell unplausibel

Die Inventardauer kann über die ID ermittelt werden. Aktuell geringe Aussagekraft, da Datenzeitraum zu gering und nicht alle Suchergebnisseiten inkludiert.

Korrelationsanalyse Bauzinsen mit Hauspreis über Zeitreihenvergleich.

- Hypothese mit Daten zu belegen: Bei steigenden Zinsen sinken die Hauspreise
- Entwicklungen bei Zinsen und Hauspreise im Datenzeitraum vorhanden
- Datenzeitraum zu kurz für aussagekräftige Korrelationsanalyse

Fazit

Fazit zum Webscraping Projekt

Projektergebnisse

- Ausführliches Webscraping
- Automatisierung auf Server
- Spannende Erkenntnisse zu inserierten Häusern bei EDA und Inventardauer
- Zeitlicher Verlauf Hauspreise zu Bauzinsen

- Automatisierung von Immowelt Webscraping funktioniert nicht
- Ergebnisse von Regression sind nicht plausibel

