

Robustness, Reliability, Resilience, and Elasticity (R3E) for Big Data/Machine Learning Systems

Hong-Linh Truong
Department of Computer Science
linh.truong@aalto.fi, https://rdsea.github.io

Our focus in this course

Learning objectives

- Identify and understand commonality and complexity in endto-end Big Data/ML systems
- Understand design goals and concerns for robustness, reliability, resilience and elasticity of Big Data/ML systems
- Learn an elasticity-based approach for R3E

Commonality and complexity in Big Data and Machine Learning systems

Big Data platforms: system of systems view

Big data at large-scale: example of common stacks

Examples from Big Data Platforms

Check our github:

https://github.com/rdsea/bigdataplatforms

ML systems

Components in machine learning systems

- ML models are a kind of "data processing" programs
- many other components for data preparation, data management, data movement, experiment management, and serving

Machine learning pipelines

- complex structured components, (meta)workflows
- engineering tools: testing, monitoring, debugging, etc.

Data

- training/validation/test data, and data to be inferenced
- models and parameters, experiment settings, and experiment data
- from the big data platforms viewpoint: they are all data!

Consumers, model, services, platforms and infrastructures

- More than just ML models
- Complex design and components
- Mostly with distributed and high-performance computing systems

ML workflows

- Two possible levels:
 - meta-workflow or pipeline
 - inside each phase: pipeline/workflow or other types of programs
- All are complex, executed in distributed systems

Phases/MLOps view

Potential orchestration tools

Subsystems: different components and internal workflows

An abstract example

Classifying objects in Building Information Model (BIM) in Architecture, Construction and Engineering

System view: common characteristics of big data and ML systems?

- (Static) system structures and functions
 - include software components, algorithms, input/output data
 - viewed as a whole, sub-systems, and individual parts
- Computing and data infrastructures/platforms
 - virtual machines/containers, brokers, storage, orchestration
- Runtime quality/capability
 - fault-tolerance, high-performance, high availability, secure, etc.

Examples of As a whole: (meta)pipeline for multiple phases

common components in big data and ML systems

Subsystems: different components and internal workflows

Big data collection, ingestion, transformation

Big data processing

Resource management, workflow execution, data management tools, etc.

Integration between big data platforms and ML services

Data preparation

- For training purpose or for ML inference
- Feature engineering, including feature store
- Data quality/data concerns

Training

- Connecting big data sources to training processes
- Distributed data movement and task execution

Serving

Move data to serving processes

Data platforms and ML integration points: a high-level view

Real-world examples: Google Big Query ML, Tensorflow-IO, Azure Cosmos, mindsdb

Computing and data infrastructures

Cloud/HPC

Clusters of VMs/containers

- e.g., in Aalto we use CSC (https://www.csc.fi/)
- High performance systems
- Known accelerators
 - GPU and FPGA
- New Al Accelerators/Processing Units
 - TPU (Tensor Processing Unit)
 - Neutral Network Processor (NNP)
 - Vision Processor Unit (VPU)
 - IPU(Intelligent Processing Unit)

Figure source: https://www.lumisupercomputer.eu/deep-dive-into-thebuilding-of-the-lumi-data-center/

Edge systems

New types of edge and edge-cloud

Coral with Edge TPU System-on-Module, Google Edge TPU ML accelerator coprocessor

Distributed Edge systems

Our testbed for this course

Harnessing and orchestrating end-toend resources across edge-cloud-HPC

Examples of common infrastructural/platform components

- Data collection, ingestion, verification
 - also data versioning management
- Algorithms and serving components
 - serving platforms and infrastructures
- Configuration and workflow execution management
- Observability, monitoring and analysis
- Resource management and orchestration

Runtime abilities/capabilities

Which runtime abilities/capabilities are important for your big data/ML systems?

Examples

- Data/inference service performance
- ML model accuracy and data quality
- Cost
- Scalability
- Failure handle/incident management
- Site Reliability Engineering (SRE) concepts:
 - Service level agreement (SLA), service level objective (SLO) and service level indicator (SLI)
 - https://landing.google.com/sre/sre-book/toc/index.html

Which runtime attributes are distinguishable in big data/ML systems, compared with that in common cloud services?

Robustness, Reliability, Resilience, and Elasticity (R3E)

Objectives for end-to-end Big Data/ML systems engineering

- Deal with end-to-end aspects that the real world requires
 - e.g., not just ML models and their optimization
- Reduce software and data engineering effort
- Scale our systems
 - big data, large-scale infrastructures and high number of customers/tenants
- Optimize the system under various constraints
- Offer a production-level "reliable service" for customers/tenants

The complexity of end-to-end view

Engineering, optimizing and operating big data/ML systems

- which are key abilities that we should define, design, monitor, and measure?
- how do we manage software artefacts, data, configuration, ...?
- how to enable flexibility and execution management?
- how to prepare for "future"/"emerging" infrastructures?
- which are tools and frameworks that help reducing engineering complexity?

Key areas in our concerns

Software systems development

 testing, experimenting, benchmark, optimization, cost management

Resource management and adaptation

 execution atop multiple computing frameworks suitable for big data/ML, such as clouds, supercomputing, edges, ...

(Runtime) ability/quality assurance

 specification, monitoring and assurance of performance, availability, costs, reliability, etc.

Quality of Analytics (QoA)

QoA = f (quality of result, performance, cost)

Key attributes/indicators

Just example, can be more!

Source: https://www.researchgate.net/publication/341762862_R3E_-An_Approach_to_Robustness_Reliability_Resilience_and_Elasticity_Engineering_for_End-to-End_Machine_Learning_Systems

Our focus – R3E

Robustness

ability to cope with errors

Reliability

ability to function according to the indented specification (in a proper way)

Resilience

 "ability to provide the required capability in the face of adversity"(https://www.sebokwiki.org/wiki/System_Resilience)

Elasticity

ability to stretch and return to normal forms (under external forces)

Robustness

In ML

- overfitting
- transfer learning
- machine learning in an open-world
 - how to deal with OOD (out-of-distribution) situations?
- when can we decide to stop training if performance/robustness does not improve? (or retrain when the performance/robustness degrades)

In Big Data

how to deal with erroneous and bad data?

Reliability

- System reliability versus "reliable service" (from customer/business/production view)
- System reliability
 - reliable infrastructures, components, networks, ...
- "Reliable service" → reliable data analysis/inference
 - without failure, with specified performance
- Some hard problems
 - have good and enough data, clean data
 - build pipelines without degraded performance and accuracy

Resilience

- Common resilience issues in existing systems
 - distributed software and systems bugs
 - system attacks
- Some specific issues in big data/ML systems
 - bias in data
 - well-known problems in adversary attacks in ML phases

Elasticity

- Add and remove resources to tradeoff qualities
 - CPUs, memory, data, networks, ...
- Dynamic changes of algorithms
- Shift computation between edge and cloud infrastructures dynamically
 - cloud data centers, edge systems and edge-cloud systems
- Turn hyperparameter tradeoffs

Short summary

Attributes	Cases from big data view	Cases from machine learning view
Robustness	deal with erroneous and bad data [48], data pro-	dealing with imbalanced data, learning in an open-
	cessing job robustness	world (out of distribution) situations [36, 35, 23]
Reliability	reliable data sources, support of quality of data	reliable learning and reliable inference in terms of
	[49, 28], reliable data services [26], reliable data	accuracy and reproducibility of ML models [35, 22];
	processing workflows/tasks [50]	uncertainties/confidence in inferences; reliable ML
		service serving
Resilience	software bugs, infrastructural resource failures,	bias in data, adversary attacks in ML [25], resilience
	fault-tolerance and replication for data services and	learning [14], computational Byzantine failures [8]
	processing [47]	
Elasticity	utilizing different data resources, increasing and de-	elasticity of resources for computing [24, 21, 19],
	creasing data usage w.r.t. volume, velocity, quality;	elasticity of model parameters; performance loss
	elasticity of underling resources for data processing	versus model accuracy; elastic model services for
	[45]	performance

Source: https://www.researchgate.net/publication/341762862_R3E_-An_Approach_to_Robustness_Reliability_Resilience_and_Elasticity_Engineering_for_End-to-End_Machine_Learning_Systems

Do we need to treat

Robustness, Reliability, Resilience, and Elasticity

equally in your design? from which views?

An Approach with Elasticity Principles for R3E

Elasticity engineering

Designing and programming elastic components

Automatic deployment and configuration

Coordinated elasticity control

Elasticity monitoring and analysis

Elasticity engineering for ML

- Identifying, conceptualizing, and modeling elastic objects
 - ML models, computing resources, data and QoA metrics
- Defining and capturing elasticity primitive operations
 - change resources, QoA metrics, model parameters, input data
- Programming features for elastic objects
 - with ML flows, coordinating QoA adjustment, dynamic serving models
- Runtime deploying, control, and monitoring techniques for elastic objects

Multi-level cross platforms monitoring and analysis

We will have a hands-on on observability and monitoring

Detecting/learning elasticity

Alessio Gambi, Daniel Moldovan, Georgiana Copil, Hong Linh Truong, Schahram Dustdar: On estimating actuation delays in elastic computing systems. SEAMS 2013: 33-42

Using control process to ensure QoA

Control process: can be Al/ML-based

Related hands-on: elastic ML serving

Beyond elasticity

 Can we apply similar techniques and methods for other attributes? E.g., resilience or reliability

- Specialization for some aspects
 - Continuous ML model performance improvement (detect the accuracy degradation and retrain the model)
 - Performance of ML inferences and service with ensemble models elasticity and load balancing?

Examples of ML systems built by our PhD/master students

ML classification for BIM (with Solibri data)

Source: Minjung Ryu, "Machine Learning-based Classification System for Building Information Models", Aalto CS Master thesis, 2020 Ryu, M., Truong, HL. & Kannala, M. Understanding quality of analytics trade-offs in an end-to-end machine learning-based classification system for building information modeling. J Big Data 8, 31 (2021). https://doi.org/10.1186/s40537-021-00417-x

ML classification for BIM (with Solibri data)

Source: Minjung Ryu, "Machine Learning-based Classification System for Building Information Models", Aalto CS Master thesis, 2020 Ryu, M., Truong, HL. & Kannala, M. Understanding quality of analytics trade-offs in an end-to-end machine learning-based classification system for building information modeling. J Big Data 8, 31 (2021). https://doi.org/10.1186/s40537-021-00417-x

Results

- Data set: 591 classification cases from 146 models
- Machines: AWS/Local with/out GPUs
- Different cases and settings

Figure 5: Impact of object counts on DC time and on ML time

Reveal various relationships between types of data, extracting data resolution, machines and the accuracy of classifications

CS-E4

End-to-end edge-cloud ML serving

- Dynamic inferences of load of power grid using LSTM,
 TensorFlow
 - IoT data from Base Transceiver Station (BTS)
- Training in cloud and export to the edge (BTS-model-edge) and retraining several times in the cloud (BTS-model-cloud)
- Deployment
- Contracts:
 - ResponseTime
 - Inference Accuracy
 - Data Quality

Effect of edge and cloud serving platform deployment

Both consumer and service are in the same edge; 3000 records per 15 minutes

Broker Deployment	Broker Type	Violation Rate
Edge (Raspberry PI, local	MQTT	12%
network)	AMQP	8%
CSC - Cloud	MQTT	41%
	AMQP	16%

Broker is in the cloud

Both consumer and broker are in the same edge

ML Service Deployment	Broker Type	Violation Rate
Edge (container, Google	MQTT	20%
Cloud)	AMQP	18%
CSC - Cloud	MQTT	38%
	AMQP	21%

Source: Hong-Linh Truong, Minh-Tri Nguyen, QoA4ML – A Framework for Supporting Contracts in Machine Learning Services, 2021 IEEE International Conference on Web Services (ICWS), September 5-10, 2021.

Data and inference accuracies monitoring

80% attributes: 60% data quality

accuracy

among

Help to detect outdated models in ML services: violation changes when retraining models

Time	Violation Rate (training	Violation Rate (training
Period	once)	every 2-hour)
0am-2am	2%	2%
2am-4am	4%	3%
4am-6am	18%	4%
6am-8am	15%	6%
8am-10am	10%	4%
10am-12pm	7%	4%
12pm-2pm	3%	3%
2pm-4pm	5%	5%
4pm-6pm	10%	7%
6pm-8pm	15%	5%
8pm-10pm	4%	2%
10pm-0am	1%	3%

Study log for this week

Think about

- What does it mean R3E for YOUR big data and machine learning systems?
- Read one of the papers in the reading list for today lecture

Then

- in your experience/work, which ones of R3E concern you most? Why? What would you do? What do you look for?
- ~1-2 page submit it to the MyCourses for comments/feedback (keep it in your git)

Thanks!

Hong-Linh Truong
Department of Computer Science

rdsea.github.io