DM 5 : Thermodynamique des systèmes ouverts Éléments de correction

N°	Elts de rép.	Pts	Note
1	recherches de tous les exercices	1	
2.	propreté de la copie	0.5	
3.	rendu pour le jour demandé	0.5	

	Refroidissement du supraconducteur	
	Étude du cycle	
1	on place 1 sur $p_1 = 1$ bar et isotherme à $T_1 = 290$ K, de 1 à 2 compression isotherme donc on place 2 sur $p_2 = 200$ bar et isotherme $T_2 = T_1 = 290$ K, pour 5 on a liquide à la sortie du séparateur donc $p_5 = p_1 = 1$ bar et liquide saturant donc sur la courbe d'ébullition, pour 6 séparateur isobare donc $p_6 = p_5 = p_1 = 1$ bar et vapeur saturante donc 6 sur la courbe de rosée.	
2	$\begin{aligned} & h_1 = 505 \text{ kJ.kg}^{-1}, \ s_1 = 3,85 \text{ kJ.K}^{-1}.\text{kg}^{-1} \\ & h_2 = 470 \text{ kJ.kg}^{-1}, \ s_2 = 2,15 \text{ kJ.K}^{-1}.\text{kg}^{-1} \\ & h_5 = 80 \text{ kJ.kg}^{-1}, \ s_5 = 0,05 \text{ kJ.K}^{-1}.\text{kg}^{-1} \\ & h_6 = 280 \text{ kJ.kg}^{-1}, \ s_6 = 2,45 \text{ kJ.K}^{-1}.\text{kg}^{-1} \end{aligned}$	
3	Pour un gaz parfait, on sait que l'enthalpie ne dépend que de la température, donc si la température est constante alors l'enthalpie est constante, donc isothermes = isenthalpes Pour des pressions faibles et loin de la courbe de rosée	
4	second principe $\Delta s = \frac{q}{T_{ext}} + s_c$, isotherme donc $T_ext = T_1$ et réversible donc $s_c = 0$, donc $\Delta s = \frac{q_{1\to 2}}{T_1}$ donc $q_{1\to 2} = T_1(s_2 - s_1) = -493 \text{ kJ.kg}^{-1}$	
5	premier principe $\Delta h = w_{1\to 2} + q_{1\to 2}$ donc $w_{1\to 2} = h_2 - h_1 - q_{1\to 2} = 458 \text{ kJ.kg}^{-1}$	
6	détente sans travail utile, et adiabatique, donc $\Delta h = w_u + q = 0$ donc détente isenthalpique	
7	le titre massique de liquide est $y = \frac{h_6 - h_4}{h_6 - h_5}$ donc $h_4 = yh_5 + (1-y)h_6$	
8	La transformation de 3 vers 4 est isenthalpique donc $h_3 = h_4 = yh_5 + (1-y)h_6$ et $h_3 = h_2 - (1-y)(h_1 - h_6)$ donc $y = \frac{h_2 - h_1}{h_5 - h_1} = 0,08$	

9	$m_l iq = y m_4 = y m_e = y \frac{W_u}{w_u} \text{ donc } W_u = \frac{m_l iq w_u}{y} = 5,7 \text{ MJ}$	
10	le point 4 est à $p_4 = p_5 = p_1 = 1$ bar car séparateur isobare et	
	sur l'isotitre $x = 1 - y = 0,92$. On en déduit par lecture $h_4 = 265$	
	$kJ.kg^{-1}$ et $s_4 = 2,25 kJ.kg^{-1}$	
11	réaction de 3 à 4 isenthalpique donc on le place à $h_3 = h_4 = 265$	
	$kJ.kg^{-1}$ et échangeur isobare donc $p_3 = p_2 = 200$ bar. On lit	
	$s_3 = 1, 2 \text{ kJ.K}^{-1}.\text{kg}^{-1}$	
12	$s_4 - s_3 = 1,05 \text{ kJ.K}^{-1}.\text{kg}^{-1}$ et la détente est adiabatique donc	
	$s_c = s_4 - s_3 = 1,05 \text{ kJ.K}^{-1}.\text{kg}^{-1}$, cette irréversibilité est due	
	à l'écoulement irréversible d'un milieu de haute pression vers un	
	milieu basse pression.	
13	$W = m_e w_u = \frac{m_{liq} w_u}{y} = \frac{\rho V w_u}{y} = 48 \text{ MJ}, \text{ le coût est de } 0.15$	
	\in .(kWh) ⁻¹ donc ça donne 2 \in pour 10L d'azote liquide. C'est	
	moins cher que l'eau en bouteille.	