Hw7

Hw7

- Q1: Viterbi algorithm
 - viterbi.sh input_hmm test_file output_file
 - input_hmm: the same format as in Hw6
 - test_file: "o₁ o₂ ... o_k"
 - output_file: " $o_1 o_2 ... o_k => x_1 x_2 ... x_{k+1}$ | Igprob"
 - Igprob is Ig $P(o_1 o_2 ... o_k, x_1 x_2 ... x_{k+1})$
 - The output symbols are generated by the to-states.
 - Do not smooth the probs in input_hmm. They might have been smoothed already.
 - You can reuse some code from check_hmm.sh in Hw6.
 - You can assume that the input_hmm does NOT allow the emission of epsilon from a state.

Q2: run trigram POS taggers

- The trigram POS tagging models are provided to you as hmm1, ..., hmm5
- decoding: "w1 w2 ... => x1 x2 ... logprob"
 - viterbi.sh hmm1 test.word sys1
- convert format: "w1/t1 w2/t2 ..." : you need to write conv_format.sh
 - cat sys1 | conv_format.sh > sys1_res
- evaluation: calc_tagging_accuracy.pl is provided to you.
 - calc_tagging_accuracy.pl test.word_pos sys1_res > sys1_res.acc 2>&1

Table 1: Tagging accuracy

HMM model	tagging accuracy
hmm1	
$_{ m hmm2}$	
hmm3	
hmm4	
hmm5	