CLAIMS

What is claimed is:

1. An active energy beam-curable composition for an optical material comprising (A) a di(meth)acrylate represented by the following general formula (1) and (B) a mono(meth)acrylate represented by the following general formula (2):

wherein R_1 and R_2 independently represent a hydrogen atom or a methyl group, R_3 and R_5 independently represent a hydrogen atom, a methyl group or an ethyl group, R_4 and R_6 independently represent a hydrogen atom, a methyl group or a bromine atom;

$$H_2C = C - C - (O - CH - CH_2)O - (2)$$

wherein R_9 and R_{10} independently represent a hydrogen atom or a methyl group, R_{11} represents a hydrogen atom, a phenyl group or a cumyl group, and \underline{n} represents 0 or an integer of 1-5.

- 2. The active energy beam-curable composition for an optical material according to Claim 1, wherein the composition contains 10 to 90 parts by weight of the component (A) and 90 to 10 parts by weight of the component (B).
- 3. The active energy beam-curable composition for an optical material according to either Claim 1 or 2, wherein each of R_1 and R_2 is a compound having a hydrogen atom in the general formula (1).
- 4. The active energy beam-curable composition for an optical material according to any one of Claims 1 to 3, wherein \underline{n} is 0 and R_{11} is a phenyl group or a cumyl group in the general formula (2).
- 5. The active energy beam-curable composition for an optical material according to any one of Claims 1 to 4, wherein the composition further

comprises (C) a photoinitiator.

6. A method for producing an optical material comprising:

a step of applying or pouring the composition described in any one of Claims 1 to 5 to a casting mold having a predetermined shape, and a step of irradiating an active energy beam to the composition.