

Wen-Wei Li

Chinese Academy of Sciences

Godement-Jacquet Theory Revisited

June 3, 2014 BIRS Workshop

14w5001 "The Future of Trace Formulas"

History

History

Review of Godement-Jacquet theory

- **History**
- **Review of Godement-Jacquet theory**
- Braverman-Kazhdan: the basic functions

- History
- 2 Review of Godement-Jacquet theory
- 3 Braverman-Kazhdan: the basic functions
- 4 The generating function

- History
- 2 Review of Godement-Jacquet theory
- 3 Braverman-Kazhdan: the basic functions
- 4 The generating function
- Outlooks

Some references

- R. Godement and H. Jacquet. Zeta functions of simple algebras.
 Springer LNM 260, 1972.
- 2 I. Satake. Theory of spherical functions on reductive algebraic groups over p-adic fields. Publ. IHES (18), 1963.
- **3** A. Braverman and D. Kazhdan. γ -functions of representations and lifting. GAFA special volume, Part I, 2000.
- L. Lafforgue. Noyaux du transfert automorphe de Langlands et formules de Poisson non linéaires, http://www.ihes.fr/~lafforgue/math/COURS2013.pdf.
- Casselman's notes on http://www.math.ubc.ca/~cass.
- W.-W. Li, Basic functions and unramified local L-factors for split groups, arXiv:1311.2434.
- The previous lectures!

An inaccurate history

Main concern

Understand the automorphic L-functions (meromorphic continuation, functional equation, bounds, etc.)

An inaccurate history

Main concern

Understand the automorphic L-functions (meromorphic continuation, functional equation, bounds, etc.)

- Abelian L-functions: Hecke.
- Paraphrase in terms of harmonic analysis on $GL(1) \subset \mathbf{A}^1$: Matchett (1946), Tate (1950).
 - Zeta integrals + adélic setup,
 - ► Fourier transform on the additive **A**¹,
 - Poisson summation formula.

An inaccurate history

Main concern

Understand the automorphic L-functions (meromorphic continuation, functional equation, bounds, etc.)

- Abelian L-functions: Hecke.
- Paraphrase in terms of harmonic analysis on $GL(1) \subset \mathbf{A}^1$: Matchett (1946), Tate (1950).
 - Zeta integrals + adélic setup,
 - ► Fourier transform on the additive **A**¹,
 - Poisson summation formula.
- Standard L-function for GL(n): Tamagawa+(Godement-Jacquet) (< 1972). Idea:
 - embed $GL(n) \subset M_n \simeq \mathbf{A}^{n^2}$;
 - Schwartz space of M_n , local and global;
 - ▶ zeta integrals + Fourier transform + Poisson formula.

Includes the case of central simple algebras, i.e. inner forms of GL(n).

In the 60's, Satake, Shimura and Tamagawa considered the similitude groups such as

where $g \mapsto {}^*g$ is the adjoint map w.r.t. some symplectic form. Here:

- $(MSp(2n), \cdot)$ is a reductive algebraic monoid;
- GSp(2n) is its unit group.

MSp(2n) is no longer linear: it is a cone!

Try to imitate the previous construction over a non-archimedean local field F, with the Schwartz space replaced by $C_c^{\infty}(\mathsf{MSp}(2n,F))$. Say take n=2.

Expectations

Obtain THE L-functions $L(s, \pi, spin)$ for the irreps of GSp(2n); spin : $\mathsf{GSpin}(5,\mathbb{C}) \to \mathsf{GL}(4,\mathbb{C})$ is the spinor representation.

Accidental isomorphism: it is also the standard representation of $\mathsf{GSp}(4,\mathbb{C}).$

Try to imitate the previous construction over a non-archimedean local field F, with the Schwartz space replaced by $C_c^{\infty}(\mathsf{MSp}(2n,F))$. Say take n=2.

Expectations

Obtain THE L-functions $L(s, \pi, \text{spin})$ for the irreps of $\mathsf{GSp}(2n)$; $\mathsf{spin} : \mathsf{GSpin}(5, \mathbb{C}) \to \mathsf{GL}(4, \mathbb{C})$ is the spinor representation.

Accidental isomorphism: it is also the standard representation of $\mathsf{GSp}(4,\mathbb{C})$.

Problems

- Where is the Fourier transform?
- Zeta integrals do not yield the "correct" L-factor in the unramified case.

This program was largely forgotten until the works of Braverman-Kazhdan, L. Lafforgue, Ngô, Casselman..... after 1999.

Local functional equation

Consider

- F: local field,
- $GL(n) \hookrightarrow M_n$,
- $S(M_n)$: the space of Schwartz functions on $M_n(F) \simeq \mathbf{A}^{n^2}(F)$, viewed as functions on GL(n, F);
- for any $\phi \in \mathcal{S}(M_n)$ and $s \in \mathbb{C}$, let $\phi_s := |\det|^s \cdot \phi$,
- for any admissible representation (π, V) of GL(n, F), let $\pi_s := |\det|^s \otimes \pi$.

Local functional equation

Consider

- F: local field.
- $GL(n) \hookrightarrow M_n$
- $S(M_n)$: the space of Schwartz functions on $M_n(F) \simeq \mathbf{A}^{n^2}(F)$, viewed as functions on GL(n, F);
- for any $\phi \in \mathcal{S}(M_n)$ and $s \in \mathbb{C}$, let $\phi_s := |\det|^s \cdot \phi$,
- for any admissible representation (π, V) of GL(n, F), let $\pi_s := |\det|^s \otimes \pi.$

Zeta integrals

Assuming absolute convergence (say Re(s) \gg 0), zeta integrals are (essentially) matrix coefficients of

$$\pi(\phi_s) = \pi_s(\phi) : V \to V.$$

Fourier transform

Fix $\psi: F \to \mathbb{C}$: \leadsto normalization of measures.

Definition

Let
$$K_0 := |\det|^n \cdot \psi(\operatorname{tr}(\cdot)) : M_n(F) \to \mathbb{C}$$
. Set

$$\mathcal{F}_0: \phi \longmapsto |\det|^{-n} \left(\mathcal{K}_0 * {}^{\iota} \phi \right)$$

for all $\phi \in \mathcal{S}(M_n)$, where ${}^{\iota}\phi(x) = \phi(x^{-1})$.

Fourier transform

Fix $\psi : F \to \mathbb{C}$: \leadsto normalization of measures.

Definition

Let $K_0 := |\det|^n \cdot \psi(\operatorname{tr}(\cdot)) : M_n(F) \to \mathbb{C}$. Set

$$\mathcal{F}_0: \phi \longmapsto |\det|^{-n} \left(\mathcal{K}_0 * {}^{\iota} \phi \right)$$

for all $\phi \in \mathcal{S}(M_n)$, where ${}^{\iota}\phi(x) = \phi(x^{-1})$.

Observation

Can check that

$$\mathcal{F}_0\phi: x \longmapsto \int_{M_n(F)} \psi(\mathsf{tr}(xy))\phi(y)\mathrm{d}y.$$

Hence $\mathcal{F}_0: \mathcal{S}(M_n) \to \mathcal{S}(M_n)$.

Invariance of \mathcal{K}_0 : it factors through the adjoint quotient

$$GL(n) \rightarrow GL(1)^n/\mathfrak{S}_n$$
.

Invariance of K_0 : it factors through the adjoint quotient

$$GL(n) \rightarrow GL(1)^n/\mathfrak{S}_n$$
.

Local functional equation

For π, ϕ as before,

$$\pi(\underbrace{\mathcal{K}_0 * {}^{\iota} \phi}_{=|\det|^n \cdot \mathcal{F}_0 \phi}) = \underbrace{\pi(\mathcal{K}_0)}_{\text{invariance}} \pi({}^{\iota} \phi) = \gamma(\pi, \psi) \check{\pi}(\phi).$$

Convergent for s in some half-plane, and $\gamma(\pi_s, \psi)$ has meromorphic continuation to all s.

Taking matrix coefficients yields the usual functional equation for local zeta integrals!

L-functions

Definition

Set $L\left(s-\frac{n-1}{2},\pi\right)$ to be the gcd of $\{\pi_s(\phi):\phi\in\mathcal{S}(M_n)\}$. Meromorphic in s.

L-functions

Definition

Set $L\left(s-\frac{n-1}{2},\pi\right)$ to be the gcd of $\{\pi_s(\phi):\phi\in\mathcal{S}(M_n)\}$. Meromorphic in s.

Remark. Define $K := \psi(\operatorname{tr}(\cdot))|\det|^{n/2}$ so that

$$\mathcal{F}: \phi \mapsto \mathbf{K} * {}^{\iota}\phi$$

preserves $|\det|^{n/2}S(M_n)$. Some advantages:

- the Fourier transform \mathcal{F} looks cute;
- taking gcd $\left\{\pi(\phi): \phi \in |\det|^{n/2} \mathcal{S}(M_n)\right\}$ yields the central value $L(\frac{1}{2},\pi)$;
- ullet similarly, we get the central value of γ -factors.

Justification

Look at the unramified case. Take

$$\phi^{\circ} := \mathbf{1}_{M_n(\mathfrak{o}_F)} \in \mathcal{S}(M_n).$$

Justification

Look at the unramified case. Take

$$\phi^{\circ} := \mathbf{1}_{M_n(\mathfrak{o}_F)} \in \mathcal{S}(M_n).$$

- **2** recall: $L(s,\pi) = \det(1-cq_F^{-s})^{-1}$ for unramified π with Satake parameter $c \in GL(n,\mathbb{C})_{ss}/conj$;
- **3** for unramified π , the restriction of $\pi_s(\phi^\circ)$ to the spherical vectors is the scalar $L(s-\frac{n-1}{2},\pi)$;

Conclusion: zeta integrals yield the desired L-factors.

Summary

Local inputs

- Schwartz space $S(M_n)$. Requirement: the gcd of $\{\pi_s(\phi): \phi \in S(M_n)\}$ yields L-factors for $Re(s) \gg 0$.
- ② (Fourier transform \mathcal{F}_0) \leftrightarrow (kernel \mathcal{K}_0) \leftrightarrow (γ -factor $\gamma(\pi, \psi)$).

The ϵ -factors are secondary objects in this story!

Summary

Local inputs

- Schwartz space $S(M_n)$. Requirement: the gcd of $\{\pi_s(\phi): \phi \in S(M_n)\}$ yields L-factors for $Re(s) \gg 0$.
- **②** (Fourier transform \mathcal{F}_0) \leftrightarrow (kernel \mathcal{K}_0) \leftrightarrow (γ -factor $\gamma(\pi, \psi)$).

The ϵ -factors are secondary objects in this story!

Global inputs

To obtain the global functional equation, we need the Poisson formula:

$$\sum_{\gamma \in M_n(F)} \phi(\gamma) = \sum_{\gamma \in M_n(F)} \mathcal{F}_0 \phi(\gamma)$$

for F: global field, $\phi \in \mathcal{S}(M_n(\mathbb{A}_F))$ and normalized measures.

In [Satake 1963]:

- $\mathsf{GSp}(4) \hookrightarrow \mathsf{MSp}(4)$ instead of $\mathsf{GL}(n) \hookrightarrow M_n$;
- $\nu : \mathsf{GSp}(4) \to \mathsf{GL}(1)$ (the similitude character) instead of det;
- $S(\mathsf{MSp}(4))$ instead of $S(M_n)$, with $\phi^\circ := \mathbf{1}_{\mathsf{MSp}(4,\mathfrak{o}_F)}$ in the unramified case;
- the spinor L-function for GSp(4) instead of the standard L-function for GL(n).

In [Satake 1963]:

- $\mathsf{GSp}(4) \hookrightarrow \mathsf{MSp}(4)$ instead of $\mathsf{GL}(n) \hookrightarrow M_n$;
- $\nu : \mathsf{GSp}(4) \to \mathsf{GL}(1)$ (the similitude character) instead of det;
- $S(\mathsf{MSp}(4))$ instead of $S(M_n)$, with $\phi^\circ := \mathbf{1}_{\mathsf{MSp}(4,\mathfrak{o}_F)}$ in the unramified case;
- the spinor L-function for GSp(4) instead of the standard L-function for GL(n).

Oops

In the unramified case $\pi_s(\phi^\circ)$ does not give L-functions: the denominator matches but the numerator becomes messy!

In [Satake 1963]:

- $\mathsf{GSp}(4) \hookrightarrow \mathsf{MSp}(4)$ instead of $\mathsf{GL}(n) \hookrightarrow M_n$;
- $\nu : \mathsf{GSp}(4) \to \mathsf{GL}(1)$ (the similitude character) instead of det;
- $S(\mathsf{MSp}(4))$ instead of $S(M_n)$, with $\phi^\circ := \mathbf{1}_{\mathsf{MSp}(4,\mathfrak{o}_F)}$ in the unramified case;
- the spinor L-function for GSp(4) instead of the standard L-function for GL(n).

Oops

In the unramified case $\pi_s(\phi^\circ)$ does not give L-functions: the denominator matches but the numerator becomes messy!

Question

To generalize Godement-Jacquet, one should begin by pinning down the Schwartz space $\ni \phi^{\circ}$ in the unramified case via unramified L-factors.

The setup of Braverman-Kazhdan (2000)

F: non-archimedean local field. Everything being unramified.

$$1 o extit{G}_0 o extit{G} \stackrel{\mathsf{det}_G}{\longrightarrow} \mathsf{GL}(1) o 1$$

where G is split and G_0 is its derived subgroup.

The dual side. Fix a "transfer representation" (ρ, V) so that

$$\hat{G} \xrightarrow{
ho} \operatorname{GL}(n, \mathbb{C})$$
 $\widehat{\det_G}$ $\widehat{\int}$ $\widehat{\operatorname{GL}}(1, \mathbb{C}) = \operatorname{GL}(1, \mathbb{C})$

commutes. Let $K := G(\mathfrak{o}_F)$: hyperspecial.

Let \hat{T} be the "universal maximal torus" of \hat{G} . The abstract Weyl group W acts on \hat{T} .

L-factor

Let π : unramified of Satake parameter $c \in \hat{G}_{ss}/conj$. Set

$$L(s,\pi,\rho) := \det(1-\rho(c)q_F^{-s}|V)^{-1}$$

Then $L(0,\cdot,\rho)$ is rational on $\hat{G}/\!/\hat{G}\simeq \hat{T}/W$.

Let \hat{T} be the "universal maximal torus" of \hat{G} . The abstract Weyl group W acts on \hat{T} .

L-factor

Let π : unramified of Satake parameter $c \in \hat{G}_{ss}/conj$. Set

$$L(s,\pi,\rho) := \det(1-\rho(c)q_F^{-s}|V)^{-1}$$

Then $L(0,\cdot,\rho)$ is rational on $\hat{G}/\!/\hat{G}\simeq \hat{T}/W$.

The basic function

We seek for $f_{\rho}: K \backslash G(F)/K \to \mathbb{C}$ so that

$$\operatorname{tr}(\pi(f_{\rho,s})) = \underbrace{\pi(f_{\rho,s}) = \pi_s(f_{\rho})}_{\text{on spherical vectors}} = L(s, \pi, \rho)$$

for unramified π and $\operatorname{Re}(s) \gg 0$, where $\pi_s := |\det_G|^s \otimes \pi$ and $f_{\rho,s} := |\det_G|^s f_{\rho}$.

The Satake isomorphism $\mathscr{S}: C_c(K\backslash G(F)/K) \to \mathbb{C}[\hat{T}/W]$ is defined over $\mathbb{Z}[q_F^{\pm 1/2}]$.

Idea: try to invert $L(0,\cdot,\rho) \in \mathbb{C}(\hat{T}/W)$.

The Satake isomorphism $\mathscr{S}: C_c(K\backslash G(F)/K) \to \mathbb{C}[\hat{T}/W]$ is defined over $\mathbb{Z}[q_F^{\pm 1/2}]$.

Idea: try to invert $L(0,\cdot,\rho) \in \mathbb{C}(\hat{T}/W)$.

$$\det(1-\rho(c)q_F^{-s}|V) = \sum_{k\geq 0} \operatorname{tr}(\operatorname{Sym}^k \rho))(c)q_F^{-ks}$$

$$f_{\rho,k} := \mathscr{S}^{-1}\left(\operatorname{tr}(\operatorname{Sym}^k \rho))(\cdot)\right),$$

$$\operatorname{Supp}(f_{\rho,k}) \subset \left\{x \in G(F) : v_F(\det_G(x)) = k\right\},$$

$$f_\rho := \sum_{k\geq 0} f_{\rho,k} \in C^\infty(G(F)).$$

This gives a spectral definition of f_{ρ} .

The Satake isomorphism $\mathscr{S}: C_c(K\backslash G(F)/K) \to \mathbb{C}[\hat{T}/W]$ is defined over $\mathbb{Z}[q_F^{\pm 1/2}]$.

Idea: try to invert $L(0,\cdot,\rho) \in \mathbb{C}(\hat{T}/W)$.

$$\begin{split} \det(1-\rho(c)q_F^{-s}|V) &= \sum_{k\geq 0} \operatorname{tr}(\operatorname{Sym}^k\rho))(c)q_F^{-ks} \\ f_{\rho,k} &:= \mathscr{S}^{-1}\left(\operatorname{tr}(\operatorname{Sym}^k\rho))(\cdot)\right), \\ \operatorname{Supp}(f_{\rho,k}) &\subset \left\{x \in G(F) : v_F(\det_G(x)) = k\right\}, \\ f_\rho &:= \sum_{k\geq 0} f_{\rho,k} \in C^\infty(G(F)). \end{split}$$

This gives a spectral definition of f_{ρ} .

Goal: a geometric description, cf. the Godement-Jacquet case.

- $X_*(T)_- = X^*(\hat{T})_-$ is the anti-dominant chamber (i.e. dominant for B^-), and \leq is the anti-dominant Bruhat order;
- $\chi_{\mu} \in \mathbb{C}[\hat{T}/W]$ is the character of the irrep of \hat{G} with extremal weight $\mu \in X_*(T)$;
- our *q*-partition function $\mathcal{P}(\cdot; q) \in \mathbb{Z}[q]$:

$$\prod_{\mathrm{root}\; lpha > 0} \left(1 - q \mathrm{e}^{-lpha^ee}
ight)^{-1} = \sum_{
u} \mathcal{P}(
u; q) \mathrm{e}^{
u}.$$

- $X_*(T)_- = X^*(\hat{T})_-$ is the anti-dominant chamber (i.e. dominant for B^-), and \leq is the anti-dominant Bruhat order;
- $\chi_{\mu} \in \mathbb{C}[\hat{T}/W]$ is the character of the irrep of \hat{G} with extremal weight $\mu \in X_*(T)$;
- our *q*-partition function $\mathcal{P}(\cdot; q) \in \mathbb{Z}[q]$:

$$\prod_{\mathsf{root}\ lpha>0} \left(1-q \mathsf{e}^{-lpha^ee}
ight)^{-1} = \sum_{
u} \mathcal{P}(
u;q) \mathsf{e}^{
u}.$$

Lusztig's q-analogue/Kostka-Foulkes polynomial

For
$$\mu, \lambda \in X_*(T)_-$$
,

$$egin{aligned} m^{\mu}_{\lambda}(q) &:= \sum_{w \in W} (-1)^{\ell(w)} \mathcal{P}(w(\lambda + \check{
ho}_{B^-}) - (\mu + \check{
ho}_{B^-}); q) \ &= q^{\langle
ho_{B^-}, \lambda - \mu \rangle} P_{n_{\mu}, n_{\lambda}}(q^{-1}) \quad ext{(KL-polynomials)} \end{aligned}$$

Kato's formula

For every $\lambda \in X_*(T)_-$,

$$\mathscr{S}^{-1}(\chi_{\lambda}) = \sum_{\substack{\mu \in X_*(T)_- \\ \mu \leq \lambda}} m_{\lambda}^{\mu}(q_F^{-1}) \delta_{B^-}^{\frac{1}{2}}(\mu(\varpi_F)) \mathbf{1}_{K\mu(\varpi_F)K}.$$

Kato's formula

For every $\lambda \in X_*(T)_-$,

$$\mathscr{S}^{-1}(\chi_{\lambda}) = \sum_{\substack{\mu \in X_{*}(T)_{-} \\ \mu \leq \lambda}} m_{\lambda}^{\mu}(q_{F}^{-1}) \delta_{B^{-}}^{\frac{1}{2}}(\mu(\varpi_{F})) \mathbf{1}_{K\mu(\varpi_{F})K}.$$

Two apparent difficulties for applying this to f_{ρ} Take a look:

- must know the decomposition of every $\operatorname{Sym}^k(\rho)$ the usual recipe for \otimes -multiplicities (via crystal bases, etc.) does not apply;
- 2 must know the relevant m_{λ}^{μ} or the KL-polynomials.

Kato's formula

For every $\lambda \in X_*(T)_-$,

$$\mathscr{S}^{-1}(\chi_{\lambda}) = \sum_{\substack{\mu \in X_{*}(T)_{-} \\ \mu \leq \lambda}} m_{\lambda}^{\mu}(q_{F}^{-1}) \delta_{B^{-}}^{\frac{1}{2}}(\mu(\varpi_{F})) \mathbf{1}_{K\mu(\varpi_{F})K}.$$

Two apparent difficulties for applying this to f_{ρ} \bigcirc Take a look \bigcirc :

- must know the decomposition of every $\operatorname{Sym}^k(\rho)$ the usual recipe for \otimes -multiplicities (via crystal bases, etc.) does not apply;
- **②** must know the relevant m_{λ}^{μ} or the KL-polynomials.

Question

Can we find out some structure in the coefficient of $\mathbf{1}_{K\mu(\varpi_F)K}$?

Ngô's conjectures

- Attach a reductive monoid M_{ρ} to ρ , containing G as its unit group (Vinberg's approach, assuming G_{der} simply connected, etc.)
- ullet Consider the case $\mathfrak{o}_{\mathit{F}} = \mathbb{F}_q[\![t]\!].$

Conjecture

The function f_{ρ} (or $f_{\rho,s}$ for some s...) comes from a certain $IC(M_{\rho}(\mathfrak{o}_F))$ via the function-sheaf dictionary.

Note: M_{ρ} is usually singular!

Ngô's conjectures

- Attach a reductive monoid M_{ρ} to ρ , containing G as its unit group (Vinberg's approach, assuming G_{der} simply connected, etc.)
- Consider the case $\mathfrak{o}_F = \mathbb{F}_q[\![t]\!].$

Conjecture

The function f_{ρ} (or $f_{\rho,s}$ for some s...) comes from a certain $IC(M_{\rho}(\mathfrak{o}_F))$ via the function-sheaf dictionary.

Note: M_{ρ} is usually singular!

Aside

There is a such an interpretation of $m_{\lambda}^{\mu}(q)$ for a fixed λ (Kazhdan-Lusztig, 1980).

- For the case G = GL(n), $\rho = Std : GL(n, \mathbb{C}) = GL(n, \mathbb{C})$: the monoid is just M_n .
- For the case $G = \mathsf{GSp}(4)$, $\rho = \mathsf{spinor} : \mathsf{GSpin}(5,\mathbb{C}) \to \mathsf{GL}(4,\mathbb{C})$: the monoid should be $\mathsf{MSp}(2n)$ Take a look.

- For the case G = GL(n), $\rho = Std : GL(n, \mathbb{C}) = GL(n, \mathbb{C})$: the monoid is just M_n .
- For the case $G = \mathsf{GSp}(4)$, $\rho = \mathsf{spinor} : \mathsf{GSpin}(5,\mathbb{C}) \to \mathsf{GL}(4,\mathbb{C})$: the monoid should be $\mathsf{MSp}(2n)$ Take a look.

The theory of reductive monoids was

- 10 initiated by Putcha and Renner around 1980,
- 2 taken up by Vinberg (1995), and
- \odot recast in the framework of spherical varieties by Rittatore, Brion et al. (≥ 1998)

[Connected reductive monoids with unit group G] = [($G \times G$)-equivariant affine embeddings]!

Invariant-theoretic constructions

Geometric interpretation of m_{λ}^{μ} on the dual side: by the Dutch school (Hesselink, Broer... from the late 70's) and R. Brylinski (1989). **Setup**. $\hat{B} = \hat{T} \hat{U}$: a Borel subgroup of \hat{G} .

For $\lambda, \mu \in X^*(\hat{T}) = X_*(T)$, let

- $V(\lambda)$ be the irrep of \hat{G} with extremal weight λ ;
- $\mathscr{L}(\mu)$ be the \hat{G} -linearized invertible sheaf on \hat{G}/\hat{B} attached to μ .

Note: \mathbb{G}_m acts on $\hat{G} \overset{\hat{B}}{\times} \hat{\mathfrak{u}}$ by $(z, v) \mapsto z^{-1}v$ along the fibers of p.

Theorem

For $\mu, \lambda \in X_*(T)_-$, the $\mathbb{Z}_{\geq 0}$ -graded (\rightsquigarrow q) Poincaré series of the "covariant"

$$\operatorname{Hom}_{\hat{G}}\left(V(\lambda), \Gamma\left(\hat{G} \overset{\hat{B}}{\times} \hat{\mathfrak{u}}, \rho^* \mathscr{L}(\mu)\right)\right)$$

equals $m_{\lambda}^{\mu}(q)$.

Crucial ingredient: a vanishing theorem due to Grauert-Riemenschneider-Kempf in characteristic 0.

Generalized Kostka-Foulkes polynomials

The q-partition function for the positive roots relative to \hat{B}^- is defined by

$$\prod_{ ext{roots }lpha>0top B}\left(1-qe^{-lpha^ee}
ight)^{-1}=\sum_
u \mathcal{P}(
u;q)e^
u.$$

Generalized Kostka-Foulkes polynomials

The q-partition function for the positive roots relative to \hat{B}^- is defined by

$$\prod_{\mathsf{roots}\ lpha > 0 top B} \left(1 - q e^{-lpha^ee}
ight)^{-1} = \sum_{
u} \mathcal{P}(
u;q) e^{
u}.$$

Stembridge + (Panyushev (2010))

Replace $\left\{ \text{roots } \alpha \geq 0 \right\}$ by a multiset Ψ satisfying

- $oldsymbol{0}$ Ψ contained in some strictly convex cone,
- Ψ = weights of a \hat{B} -stable subspace N of some finite-dimensional \hat{G} -module V.

Can well-define $\mathcal{P}_{\Psi}(\cdot;q)$ and $m^{\mu}_{\lambda,\Psi}(q)!$

Again, we have equivariant morphisms

Again, we have equivariant morphisms

Under some conditions on p, μ etc., $m^\mu_{\lambda,\Psi}(q)$ becomes the Poincaré series of

$$\operatorname{Hom}_{\hat{G}}\left(V(\lambda), \Gamma\left(\hat{G}\overset{\hat{B}}{\times}N, p^*\mathscr{L}(\mu)\right)\right)$$

(Details omitted)

Back to the basic function

Use Kato's formula to write

$$f_{\rho} = \sum_{\mu \in X_*(T)_-} c_{\mu}(q_F) \delta_{B^-}^{\frac{1}{2}}(\mu(\varpi_F)) \mathbf{1}_{K\mu(\varpi_F)K}$$

with $c_{\mu}(q) \in \mathbb{Z}[q^{-1}]$ expressed in terms of

- decomposition of $\operatorname{Sym}^k \rho$ $(k = \det_G(\mu))$,
- ullet the Kostka-Foulkes polynomials $m_\lambda^\mu(q).$

Recall: \P_{ρ} and \P_{κ} formula ...

Back to the basic function

Use Kato's formula to write

$$f_{
ho} = \sum_{\mu \in X_*(\mathcal{T})_-} c_{\mu}(q_F) \delta_{B^-}^{\frac{1}{2}}(\mu(\varpi_F)) \mathbf{1}_{K\mu(\varpi_F)K}$$

with $c_{\mu}(q) \in \mathbb{Z}[q^{-1}]$ expressed in terms of

- decomposition of $\operatorname{Sym}^k \rho$ $(k = \det_G(\mu))$,
- ullet the Kostka-Foulkes polynomials $m_\lambda^\mu(q)$.

Recall: • f_p and • Kato's formula ...

To understand(?) c_{μ} , take

$$\Psi := \left\{ lpha^{ee} : lpha \geqslant \mathsf{0}, \ \mathsf{root}
ight\} \sqcup \left\{ \mathsf{weights} \ \mathsf{of} \
ho
ight\}$$

to define generalized Kostka-Foulkes polynomials $m^{\mu}_{\lambda | \Psi}(q)$.

Theorem

For every $\mu \in X_*(T)_-$ such that $\det_G(\mu) \geq 0$,

$$c_{\mu}(q) = m_{0,\Psi}^{\mu}(q^{-1})q^{\det_G(\mu)}.$$

Theorem

For every $\mu \in X_*(T)_-$ such that $\det_G(\mu) \geq 0$,

$$c_{\mu}(q) = m_{0,\Psi}^{\mu}(q^{-1})q^{\det_{G}(\mu)}.$$

$$\mathsf{P} := \sum_{\mu \in X_*(T)_-} c_\mu(q) e^\mu X^{\mathsf{det}_G(\mu)}.$$

Specialization $q \rightsquigarrow q_F$, $X \rightsquigarrow q_F^s$ gives the Fourier transform of $f_{\rho,s}|_{T(F)/T(\mathfrak{o}_F)}$.

Theorem

For every $\mu \in X_*(T)_-$ such that $\det_G(\mu) \geq 0$,

$$c_{\mu}(q) = m_{0,\Psi}^{\mu}(q^{-1})q^{\det_{G}(\mu)}.$$

$$\mathbf{P} := \sum_{\mu \in X_*(T)_-} c_\mu(q) e^\mu X^{\mathsf{det}_G(\mu)}.$$

Specialization $q \rightsquigarrow q_F$, $X \rightsquigarrow q_F^s$ gives the Fourier transform of $f_{\rho,s}|_{T(F)/T(\mathfrak{o}_F)}$.

Theorem

P is rational.

Rationale. **P** is the Poincaré series of an affine variety $Spec(\mathcal{Z}^{\hat{G}})$ with $\hat{T} \times \mathbb{G}_{m}$ -action.

Remark

The cone generated by Ψ defines a normal reductive monoid M_{ρ} by Luna-Vust theory (colors = simple coroots).

Remark

The cone generated by Ψ defines a normal reductive monoid M_{ρ} by Luna-Vust theory (colors = simple coroots).

• At the classical limit $q \to 1$:

$$\sum_{\mu} c_{\mu}(1)e^{\mu} = \sum_{\mu} \mathsf{mult}(\mathsf{Sym}(
ho)|_{\hat{\mathcal{T}}} : \mu)e^{\mu}.$$

Get the weight-multiplicities of the symmetric algebra $\mathsf{Sym}(\rho)$ — not so hard...

• At the limit $q \to \infty$

$$\sum_{\mu} c_{\mu}(0) e^{\mu} = \sum_{\mu: \hat{B}^- ext{weights of Sym}(
ho)} ext{mult}(\cdots) e^{\mu}.$$

Get the decomposition of $Sym(\rho)$ into irreducibles.

Questions

So ${f P}$ seems to be inherently complicated.....

Questions

So **P** seems to be inherently complicated.....

• Finer structural properties about $f_{\rho,s}$ or \mathbf{P} , such as functional equations? Cf. the case of $m_{\lambda}^{\mu}(q)$.

Questions

So **P** seems to be inherently complicated......

- Finer structural properties about $f_{\rho,s}$ or **P**, such as functional equations? Cf. the case of $m_{\lambda}^{\mu}(q)$.
- Efficient computations? (Casselman, ...)

Outlooks

To further the Braverman-Kazhdan program:

- **1** Try to define the Schwartz space $C_c^{\infty}(G(F)) \subset S_{\rho} \subset C^{\infty}(G(F))$ using our knowledge about f_{ρ} .
- ② Try to define the "evaluation maps" $S_{\rho} \ni f \mapsto f(\gamma)$, for $\gamma \in (M_{\rho} \setminus G)(F)$. Needed for stating the Poisson formula for ρ .
- **3** The case $F = \mathbb{R}$? Define S_{ρ} by prescribing asymptotic behaviours. Try differential equations, etc.
- **1** Try to define the kernel $\mathcal K$ and the Fourier transform $\mathcal F:\mathcal S_\rho\to\mathcal S_\rho.$ Maybe the real case is worth a try since the Subrepresentation Theorem furnishes explicit γ -factors.
- **5** Finally, formulate a precise Poisson formula for ρ .

And then... study those automorphic L-functions!

Bonus

Some other uses of basic functions (just to mention a few):

- Plug into in the trace formula (cf. Matz's thesis).
- 2 L. Lafforgue's program the Poisson formula plays a crucial rôle there.
- 3 And... the previous lectures.