Worksheet 6: Finite-Size Scaling and the Ising Model

April Cooper, Patrick Kreissl und Sebastian Weber

February 5, 2013 University of Stuttgart

Contents

1	\mathbf{Fini}	ite Size Scaling	2
	1.1	Determinig $T_{\rm C}$	2
		Estimating β_m	2

1 Finite Size Scaling

1.1 Determinig $T_{\rm C}$

In this task the Binder parameter $U=1-\frac{1}{3}<\mu^4>/<\mu^2>^2$ was implemented. The resulting plot of the Binder parameter over the Temperature for different L can be seen below:

Figure 1: Plot of the Binder parameter for different lattice sizes L. From the intersection point of the different curves the critical Temperature can be determined as $T_{\rm C}=2.27K$. In order to get a good result a 100000 sweeps and a temperature step size of $\Delta t=0.005$ K were used.

1.2 Estimating β_m

Here we performed different simulations at $T_C = 2.27K$ were performed for $L \in \{8, 16, 32, 64, 128\}$. The resulting plot of the magnetization M over L is as follows:

Figure 2: Plot of the magnetization M over L with double logarithmic scale. From the linear fit through the computet magnetizations $\beta_{\rm m}$ can be determined as -0.1576.

The formula which connects the magnetization M, lattice size L and $\beta_{\rm m}$ is the following:

$$M = L^{-\beta_{\rm m}/\nu} \tag{1}$$

It was also used in order to get a value for $\beta_{\rm m}$ from the plot.