

线性代数

张神星 (合肥工业大学)

办公室: 翡翠科教楼 B1810 东

Email: zhangshenxing@hfut.edu.cn

课件地址: https://zhangshenxing.github.io

课程信息

- 课时:
 - 10 周 40 课时:
 - 2024-09-24 ~ 2024-11-27
- 课程 QQ 群 (入群答案 1400071B)
 - 003 班 (自动化) 973042523
 - 004 班 (电气) 980820998
- 教材: 唐烁 朱士信《线性代数》

作业 15 分

作业为配套练习册,每章交一次.作业不允许迟交.没带的请当天联系助教补交,迟一天交-50%当次作业分,迟两天或以上0分.请假需提前交给我请假条.

期末考试 50 分

期末卷面需要达到 45 分 才计算总评分数, 45 分以下 直接不及格.

课堂测验 25 分

课堂测验共 3 次, 取最高的两次平均. 测验范围和时间会提前通知. 测验时在教室内作答, 否则按未考处理.

期末报告 10 分

期末之前会告知主题.请交手写纸质版,并自行留存电子版本以免意外丢失.

线性代数是一门研究线性方程、线性空间、线性变换等线性结构的课程.

线性代数是一门研究线性方程、线性空间、线性变换等线性结构的课程. 尽管真实的世界中, 例如函数关系, 往往是非线性的. 但我们可以利用线性方法去模拟、近似、逼近它.

线性代数是一门研究线性方程、线性空间、线性变换等线性结构的课程. 尽管真实的世界中, 例如函数关系, 往往是非线性的. 但我们可以利用线性方法去模拟、近似、逼近它. 这便是线性代数它的意义.

线性代数是一门研究线性方程、线性空间、线性变换等线性结构的课程. 尽管真实的世界中, 例如函数关系, 往往是非线性的. 但我们可以利用线性方法去模拟、近似、逼近它. 这便是线性代数它的意义.

线性代数的应用之广泛, 使得它成为了高等教育中大多数学科的必修数学课程.

线性代数是一门研究线性方程、线性空间、线性变换等线性结构的课程. 尽管真实的世界中, 例如函数关系, 往往是非线性的. 但我们可以利用线性方法去模拟、近似、逼近它. 这便是线性代数它的意义.

线性代数的应用之广泛, 使得它成为了高等教育中大多数学科的必修数学课程. 我们不在此处逐一列举, 在之后的课程中我们会见到它的各种应用.

课程内容

课程学习方法

第一章 行列式

- 1 行列式的定义
- 2 行列式的性质
- 3 克拉默法则

非考试内容

线性代数起源于线性方程组的求解问题.

非考试内容

线性代数起源于线性方程组的求解问题. 考虑二元线性方程组

$$3x_1 - 2x_2 = 12,$$
 (1)
 $2x_1 + x_2 = 1.$ (2)

线性代数起源于线性方程组的求解问题. 考虑二元线性方程组

$$\begin{cases} 3x_1 - 2x_2 = 12, \\ 2x_1 + x_2 = 1. \end{cases} \tag{1}$$

$$2(2)+(1)$$
 可得 $7x_1=14$.

线性代数起源于线性方程组的求解问题. 考虑二元线性方程组

$$\begin{cases} 3x_1 - 2x_2 = 12, \\ 2x_1 + x_2 = 1. \end{cases} \tag{1}$$

$$2(2)+(1)$$
 可得 $7x_1=14$. 从而 $x_1=2, x_2=-3$.

考虑一般情形:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 = b_1, \\ a_{21}x_1 + a_{22}x_2 = b_2. \end{cases}$$
 (1)

考虑一般情形:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 = b_1, \\ a_{21}x_1 + a_{22}x_2 = b_2. \end{cases}$$

分别作
$$a_{22} \times (1), a_{12} \times (2)$$
 得到

$$b_1 a_{22},$$
 (1)

$$\begin{cases} a_{22}a_{11}x_1 + a_{22}a_{12}x_2 = b_1a_{22}, \\ a_{12}a_{21}x_1 + a_{12}a_{22}x_2 = b_2a_{12}. \end{cases}$$

考虑一般情形:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 = b_1, \\ a_{21}x_1 + a_{22}x_2 = b_2. \end{cases}$$

分别作 $a_{22} \times (1), a_{12} \times (2)$ 得到

$$\begin{cases} a_{22}a_{11}x_1 + a_{22}a_{12}x_2 = b_1a_{22}, \\ a_{12}a_{21}x_1 + a_{12}a_{22}x_2 = b_2a_{12}. \end{cases}$$

$$(a_{11}a_{22} - a_{12}a_{21})x_1 = b_1a_{22} - b_2a_{12}.$$

$$x_1 = \frac{b_1 a_{22} - b_2 a_{12}}{a_{11} a_{22} - a_{12} a_{21}}.$$

$$x_1 = \frac{b_1 a_{22} - b_2 a_{12}}{a_{11} a_{22} - a_{12} a_{21}}.$$

类似地, 从 $-a_{21}(1) + a_{12}(2)$ 得到

$$x_2 = \frac{-a_{21}b_1 + a_{11}b_2}{a_{11}a_{22} - a_{12}a_{21}}.$$

$$x_1 = \frac{b_1 a_{22} - b_2 a_{12}}{a_{11} a_{22} - a_{12} a_{21}}.$$

类似地, 从 $-a_{21}(1) + a_{12}(2)$ 得到

$$x_2 = \frac{-a_{21}b_1 + a_{11}b_2}{a_{11}a_{22} - a_{12}a_{21}}.$$

有没有问题?

$$x_1 = \frac{b_1 a_{22} - b_2 a_{12}}{a_{11} a_{22} - a_{12} a_{21}}$$

类似地, 从 $-a_{21}(1) + a_{12}(2)$ 得到

$$x_2 = \frac{-a_{21}b_1 + a_{11}b_2}{a_{11}a_{22} - a_{12}a_{21}}.$$

有没有问题? 当 $a_{11}a_{22} - a_{12}a_{21} = 0$ 时, 不能使用这种方式求解.

$$x_1 = \frac{b_1 a_{22} - b_2 a_{12}}{a_{11} a_{22} - a_{12} a_{21}}$$

类似地, 从 $-a_{21}(1) + a_{12}(2)$ 得到

$$x_2 = \frac{-a_{21}b_1 + a_{11}b_2}{a_{11}a_{22} - a_{12}a_{21}}.$$

有没有问题? 当 $a_{11}a_{22}-a_{12}a_{21}=0$ 时, 不能使用这种方式求解. 实际上此时总有无穷多个解.

$$x_1 = \frac{b_1 a_{22} - b_2 a_{12}}{a_{11} a_{22} - a_{12} a_{21}}$$

类似地, 从 $-a_{21}(1) + a_{12}(2)$ 得到

$$x_2 = \frac{-a_{21}b_1 + a_{11}b_2}{a_{11}a_{22} - a_{12}a_{21}}.$$

有没有问题? 当 $a_{11}a_{22}-a_{12}a_{21}=0$ 时, 不能使用这种方式求解. 实际上此时总有无穷多个解.

当 $a_{11}a_{22} - a_{12}a_{21} \neq 0$ 时, 总有唯一解.

$$x_1 = \frac{b_1 a_{22} - b_2 a_{12}}{a_{11} a_{22} - a_{12} a_{21}}$$

类似地, 从 $-a_{21}(1) + a_{12}(2)$ 得到

$$x_2 = \frac{-a_{21}b_1 + a_{11}b_2}{a_{11}a_{22} - a_{12}a_{21}}.$$

有没有问题? 当 $a_{11}a_{22}-a_{12}a_{21}=0$ 时, 不能使用这种方式求解. 实际上此时总有无穷多个解.

当 $a_{11}a_{22}-a_{12}a_{21}\neq 0$ 时, 总有唯一解. 所以这个数值就充当了方程 ''判别式'' 的作用.

$$x_1 = \frac{b_1 a_{22} - b_2 a_{12}}{a_{11} a_{22} - a_{12} a_{21}}$$

类似地, 从 $-a_{21}(1) + a_{12}(2)$ 得到

$$x_2 = \frac{-a_{21}b_1 + a_{11}b_2}{a_{11}a_{22} - a_{12}a_{21}}.$$

有没有问题? 当 $a_{11}a_{22}-a_{12}a_{21}=0$ 时, 不能使用这种方式求解. 实际上此时总有无穷多个解.

当 $a_{11}a_{22}-a_{12}a_{21}\neq 0$ 时, 总有唯一解. 所以这个数值就充当了方程 "判别式" 的作用.

对于 n 个未知数 n 的方程的线性方程组,能不能定义出类似的量来刻画它何时有唯一解呢?

$$x_1 = \frac{b_1 a_{22} - b_2 a_{12}}{a_{11} a_{22} - a_{12} a_{21}}$$

类似地, 从 $-a_{21}(1) + a_{12}(2)$ 得到

$$x_2 = \frac{-a_{21}b_1 + a_{11}b_2}{a_{11}a_{22} - a_{12}a_{21}}.$$

有没有问题? 当 $a_{11}a_{22}-a_{12}a_{21}=0$ 时, 不能使用这种方式求解. 实际上此时总有无穷多个解.

当 $a_{11}a_{22}-a_{12}a_{21}\neq 0$ 时, 总有唯一解. 所以这个数值就充当了方程 "判别式" 的作用.

对于 n 个未知数 n 的方程的线性方程组,能不能定义出类似的量来刻画它何时有唯一解呢?这便是行列式的由来.

第一节 行列式的定义

■ 行列式的归纳定义

矩阵和方阵

首先引入矩阵的概念.

首先引入矩阵的概念. 将 mn 个数按照每行 n 个元素, 一共 m 行排列, 得到的数表称为 m 行 n 列矩阵, 或简称为 $m \times n$ 矩阵:

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}$$

首先引入矩阵的概念. 将 mn 个数按照每行 n 个元素, 一共 m 行排列, 得到的数表称为 m 行 n 列矩阵, 或简称为 $m \times n$ 矩阵:

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}.$$

其中 a_{ij} 表示 A 的第 i 行 j 列元素, 并记 $\mathbf{A} = (a_{ij})_{m \times n}$.

首先引入矩阵的概念. 将 mn 个数按照每行 n 个元素, 一共 m 行排列, 得到的数表称为 m 行 n 列矩阵, 或简称为 $m \times n$ 矩阵:

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}.$$

其中 a_{ij} 表示 **A** 的第 i 行 j 列元素, 并记 **A** = $(a_{ij})_{m \times n}$. 当 m = n 时, 称之为 n 阶方阵.

对于线性方程组

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m, \end{cases}$$

未知量 x_1, \ldots, x_n 前面的系数就构成了一个 $m \times n$ 矩阵, 称之为系数矩阵

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}.$$

对于线性方程组

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m, \end{cases}$$

未知量 x_1, \ldots, x_n 前面的系数就构成了一个 $m \times n$ 矩阵, 称之为系数矩阵

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}.$$

线性代数的主要任务之一, 就是利用矩阵理论回答线性方程组解的情况.

2 阶行列式

当 m=n 时, 方阵 $\mathbf A$ 的行列式 $\det(\mathbf A)=|A|$ 就是用于刻画上述方程组是否有唯一解的 ''判别式".

2 阶行列式

当 m=n 时, 方阵 **A** 的行列式 $\det(\mathbf{A})=|A|$ 就是用于刻画上述方程组是否有唯一解的 ''判别式". 首先约定单位矩阵

行列式为 1.

当 m=n 时, 方阵 $\mathbf A$ 的行列式 $\det(\mathbf A)=|A|$ 就是用于刻画上述方程组是否有唯一解的 ''判别式". 首先约定单位矩阵

$$\mathbf{E}_n = \mathbf{I}_n := egin{pmatrix} 1 & & & & \\ & 1 & & & \\ & & \ddots & & \\ & & & 1 \end{pmatrix}$$
 (即方程组
$$\begin{cases} x_1 = b_1, & & \\ x_2 = b_2, & & \\ \vdots & & \\ x_n = b_n \end{cases}$$

行列式为 1. 作此约定之后, 2 阶方阵的行列式就应当为

$$\det(\mathbf{A}) = |A| = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} := a_{11}a_{22} - a_{12}a_{21}$$

而不是它的一个非零倍数了.

当 m=n 时, 方阵 $\mathbf A$ 的行列式 $\det(\mathbf A)=|A|$ 就是用于刻画上述方程组是否有唯一解的 ''判别式". 首先约定单位矩阵

$$\mathbf{E}_n = \mathbf{I}_n := egin{pmatrix} 1 & & & & \\ & 1 & & & \\ & & \ddots & & \\ & & & 1 \end{pmatrix}$$
 (即方程组
$$\begin{cases} x_1 = b_1, & & \\ x_2 = b_2, & & \\ \vdots & & \\ x_n = b_n \end{cases}$$

行列式为 1. 作此约定之后, 2 阶方阵的行列式就应当为

$$\det(\mathbf{A}) = |A| = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} := a_{11}a_{22} - a_{12}a_{21}$$

而不是它的一个非零倍数了.

当 m=n 时, 方阵 ${\bf A}$ 的行列式 $\det({\bf A})=|A|$ 就是用于刻画上述方程组是否有唯一解的 ''判别式". 首先约定单位矩阵

$$\mathbf{E}_n = \mathbf{I}_n := egin{pmatrix} 1 & & & & \\ & 1 & & & \\ & & \ddots & & \\ & & & 1 \end{pmatrix} \qquad (即方程组 \left\{ egin{array}{ll} x_1 = b_1, & & \\ x_2 = b_2, & & \\ \vdots & & \\ x_n = b_n & & \end{array} \right.$$

行列式为 1. 作此约定之后, 2 阶方阵的行列式就应当为

$$\det(\mathbf{A}) = |A| = \begin{vmatrix} a_{11} \\ a_{21} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}$$

而不是它的一个非零倍数了.

对于 3 阶方阵, 可通过计算发现其行列式为 (注意 $|\mathbf{E}_3|=1$)

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} := a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33} - a_{13}a_{22}a_{31}$$

对于 3 阶方阵, 可通过计算发现其行列式为 (注意 $|\mathbf{E}_3|=1$)

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} := a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33} - a_{13}a_{22}a_{31}$$

$$= a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

对于 3 阶方阵, 可通过计算发现其行列式为 (注意 $|\mathbf{E}_3|=1$)

$$\begin{vmatrix} a_{14} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} := a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33} - a_{13}a_{22}a_{31}$$

$$= a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

对于 n 阶方阵 $\mathbf{A}=(a_{ij})$, 按照如下方式定义行列式 $|\mathbf{A}|$:

对于 n 阶方阵 $\mathbf{A} = (a_{ij})$, 按照如下方式定义行列式 $|\mathbf{A}|$:

对于 n 阶方阵 $\mathbf{A} = (a_{ij})$, 按照如下方式定义行列式 $|\mathbf{A}|$:

定义

对于 n 阶方阵 $\mathbf{A} = (a_{ij})$, 按照如下方式定义行列式 $|\mathbf{A}|$:

定义

- $\overline{a} = 1$ 时, $|\mathbf{A}| := a_{11}$;
- 对于一般的 n, 归纳定义

$$|\mathbf{A}| = a_{11}M_{11} - a_{12}M_{12} + a_{13}M_{13} - \dots + (-1)^{n+1}a_{1n}M_{1n},$$

其中 M_{ij} 表示 A 去掉第 i 行和 j 列得到的 n-1 阶方阵的行列式.

对于 n 阶方阵 $\mathbf{A} = (a_{ij})$, 按照如下方式定义行列式 $|\mathbf{A}|$:

定义

- $\exists n = 1 \text{ th}, |\mathbf{A}| := a_{11};$
- 对于一般的 n, 归纳定义

$$|\mathbf{A}| = a_{11}M_{11} - a_{12}M_{12} + a_{13}M_{13} - \dots + (-1)^{n+1}a_{1n}M_{1n},$$

其中 M_{ij} 表示 A 去掉第 i 行和 j 列得到的 n-1 阶方阵的行列式.

定义

称 M_{ij} 为 a_{ij} 的余子式; 称 $A_{ij} = (-1)^{i+j} M_{ij}$ 为 a_{ij} 的代数余子式.

对于 n 阶方阵 $\mathbf{A} = (a_{ij})$, 按照如下方式定义行列式 $|\mathbf{A}|$:

定义

- $\overline{a} = 1$ 时, $|\mathbf{A}| := a_{11}$;
- 对于一般的 n, 归纳定义

$$|\mathbf{A}| = a_{11}M_{11} - a_{12}M_{12} + a_{13}M_{13} - \dots + (-1)^{n+1}a_{1n}M_{1n},$$

其中 M_{ij} 表示 \mathbf{A} 去掉第 i 行和 j 列得到的 n-1 阶方阵的行列式.

定义

称 M_{ij} 为 a_{ij} 的余子式; 称 $A_{ij} = (-1)^{i+j} M_{ij}$ 为 a_{ij} 的代数余子式.

那么

$$|\mathbf{A}| = a_{11}A_{11} + a_{12}A_{12} + a_{13}A_{13} + \dots + a_{1n}A_{1n}.$$

$$\begin{vmatrix} 1 & 3 & 2 \\ 3 & -5 & 1 \\ 2 & 1 & 4 \end{vmatrix} = 1 \times (-5) \times 4 + 3 \times 1 \times 2 + 2 \times 3 \times 1 - 1 \times 1 \times 1 - 3 \times 3 \times 4 - 2 \times (-5) \times 2$$

$$\begin{vmatrix} 1 & 3 & 2 \\ 3 & -5 & 1 \\ 2 & 1 & 4 \end{vmatrix} = 1 \times (-5) \times 4 + 3 \times 1 \times 2 + 2 \times 3 \times 1 - 1 \times 1 \times 1 - 3 \times 3 \times 4 - 2 \times (-5) \times 2$$
$$= -20 + 6 + 6 - 1 - 36 + 20 = -25.$$

$$\begin{vmatrix} \overline{1} & 3 & 2 \\ 3 & -5 & 1 \\ 2 & 1 & 4 \end{vmatrix} = 1 \times (-5) \times 4 + 3 \times 1 \times 2 + 2 \times 3 \times 1 - 1 \times 1 \times 1 - 3 \times 3 \times 4 - 2 \times (-5) \times 2$$
$$= -20 + 6 + 6 - 1 - 36 + 20 = -25.$$

1	3	2
3	-5	2 1 4
2	1	4

$$\begin{vmatrix} 1 & 3 & 2 \\ 3 & -5 & 1 \\ 2 & 1 & 4 \end{vmatrix} = 1 \times (-5) \times 4 + 3 \times 1 \times 2 + 2 \times 3 \times 1 - 1 \times 1 \times 1 - 3 \times 3 \times 4 - 2 \times (-5) \times 2$$
$$= -20 + 6 + 6 - 1 - 36 + 20 = -25.$$

$$\begin{vmatrix} \overline{1} & 3 & 2 \\ 3 & -5 & 1 \\ 2 & 1 & 4 \end{vmatrix} = 1 \times \begin{vmatrix} -5 & 1 \\ 1 & 4 \end{vmatrix} - 3 \times \begin{vmatrix} 3 & 1 \\ 2 & 4 \end{vmatrix} + 2 \begin{vmatrix} 3 & -5 \\ 2 & 1 \end{vmatrix}$$

$$\begin{vmatrix} 1 & 3 & 2 \\ 3 & -5 & 1 \\ 2 & 1 & 4 \end{vmatrix} = 1 \times (-5) \times 4 + 3 \times 1 \times 2 + 2 \times 3 \times 1 - 1 \times 1 \times 1 - 3 \times 3 \times 4 - 2 \times (-5) \times 2$$
$$= -20 + 6 + 6 - 1 - 36 + 20 = -25.$$

$$\begin{vmatrix} 1 & 3 & 2 \\ 3 & -5 & 1 \\ 2 & 1 & 4 \end{vmatrix} = 1 \times \begin{vmatrix} -5 & 1 \\ 1 & 4 \end{vmatrix} - 3 \times \begin{vmatrix} 3 & 1 \\ 2 & 4 \end{vmatrix} + 2 \begin{vmatrix} 3 & -5 \\ 2 & 1 \end{vmatrix} = -21 - 3 \times 10 + 2 \times 13 = -25.$$

$$\begin{vmatrix} 1 & 3 & 2 \\ 3 & -5 & 1 \\ 2 & 1 & 4 \end{vmatrix} = 1 \times (-5) \times 4 + 3 \times 1 \times 2 + 2 \times 3 \times 1 - 1 \times 1 \times 1 - 3 \times 3 \times 4 - 2 \times (-5) \times 2$$
$$= -20 + 6 + 6 - 1 - 36 + 20 = -25.$$

例

$$\begin{vmatrix} \overline{1} & 3 & 2 \\ 3 & -5 & 1 \\ 2 & 1 & 4 \end{vmatrix} = 1 \times \begin{vmatrix} -5 & 1 \\ 1 & 4 \end{vmatrix} - 3 \times \begin{vmatrix} 3 & 1 \\ 2 & 4 \end{vmatrix} + 2 \begin{vmatrix} 3 & -5 \\ 2 & 1 \end{vmatrix} = -21 - 3 \times 10 + 2 \times 13 = -25.$$

练习

如果 k > 0 且 $\begin{vmatrix} k & 2 & 1 \\ 2 & k & 1 \\ k & 1 & 2 \end{vmatrix} = 0$, 那么 k =_____.

$$\begin{vmatrix} 1 & 3 & 2 \\ 3 & -5 & 1 \\ 2 & 1 & 4 \end{vmatrix} = 1 \times (-5) \times 4 + 3 \times 1 \times 2 + 2 \times 3 \times 1 - 1 \times 1 \times 1 - 3 \times 3 \times 4 - 2 \times (-5) \times 2$$
$$= -20 + 6 + 6 - 1 - 36 + 20 = -25.$$

例

$$\begin{vmatrix} \overline{1} & 3 & 2 \\ 3 & -5 & 1 \\ 2 & 1 & 4 \end{vmatrix} = 1 \times \begin{vmatrix} -5 & 1 \\ 1 & 4 \end{vmatrix} - 3 \times \begin{vmatrix} 3 & 1 \\ 2 & 4 \end{vmatrix} + 2 \begin{vmatrix} 3 & -5 \\ 2 & 1 \end{vmatrix} = -21 - 3 \times 10 + 2 \times 13 = -25.$$

练习

如果 k > 0 且 $\begin{vmatrix} k & 2 & 1 \\ 2 & k & 1 \\ k & 1 & 2 \end{vmatrix} = 0$,那么 k = 2.

(1) 行列式是一个数, 或者说 $\det: M_n(\mathbb{R}) \to \mathbb{R}$ 是一个映射, 其中 $M_n(\mathbb{R})$ 表示所有实系数的 n 阶方阵.

- (1) 行列式是一个数, 或者说 $\det: M_n(\mathbb{R}) \to \mathbb{R}$ 是一个映射, 其中 $M_n(\mathbb{R})$ 表示所有实系数的 n 阶方阵.
- (2) 1 阶行列式就是方阵里面唯一的那个元素, 尽管也记作 | · |, 但注意和绝对值区分.

注记

- (1) 行列式是一个数, 或者说 $\det: M_n(\mathbb{R}) \to \mathbb{R}$ 是一个映射, 其中 $M_n(\mathbb{R})$ 表示所有实系数的 n 阶方阵.
- (2) 1 阶行列式就是方阵里面唯一的那个元素, 尽管也记作 | · |, 但注意和绝对值区分.
- (3) 2,3 阶行列式可以用对角线法直接得到展开式, 但是更高阶的没有这种表示方法.

- (1) 行列式是一个数, 或者说 $\det: M_n(\mathbb{R}) \to \mathbb{R}$ 是一个映射, 其中 $M_n(\mathbb{R})$ 表示所有实系数的 n 阶方阵.
- (2) 1 阶行列式就是方阵里面唯一的那个元素, 尽管也记作 | · |, 但注意和绝对值区分.
- (3) 2,3 阶行列式可以用对角线法直接得到展开式, 但是更高阶的没有这种表示方法.

(4) 对角矩阵的行列式
$$\begin{vmatrix} a_1 & & & \\ & a_2 & & \\ & & \ddots & \\ & & & a_n \end{vmatrix}$$
 $= a_1 a_2 \cdots a_n.$

- (1) 行列式是一个数, 或者说 $\det: M_n(\mathbb{R}) \to \mathbb{R}$ 是一个映射, 其中 $M_n(\mathbb{R})$ 表示所有实系数的 n 阶方阵.
- (2) 1 阶行列式就是方阵里面唯一的那个元素, 尽管也记作 | · |, 但注意和绝对值区分.
- (3) 2,3 阶行列式可以用对角线法直接得到展开式, 但是更高阶的没有这种表示方法.
- (4) 对角矩阵的行列式 $\begin{vmatrix} a_1 \\ & a_2 \\ & & \ddots \\ & & a_n \end{vmatrix}$ $= a_1 a_2 \cdots a_n.$
- (5) 从行列式的归纳定义出发依次展开得到, $|{\bf A}|$ 是由一些 $\pm a_{1k_1}a_{2k_2}\cdots a_{nk_n}$ 相加得 到, 其中 $k_1k_2\cdots k_n$ 取遍 $1,2,\ldots,n$ 的所有排列, 一共有 n! 个这样的项, 其中一半 取 +, 一半取 -, $(n\geqslant 2)$.

*la*l

ΙVΊ				
	a_{11}			
	$\begin{vmatrix} a_{11} \\ a_{21} \end{vmatrix}$	a_{22}		
	1 :	÷	٠	
	a_{n1}	a_{n2}		a_{nn}

2

练习

判断题:

$$\begin{vmatrix} a_{11} & & & & & \\ a_{21} & a_{22} & & & \\ \vdots & \vdots & \ddots & & \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = a_{11} \begin{vmatrix} a_{22} & & & \\ \vdots & \ddots & & \\ a_{n2} & \cdots & a_{nn} \end{vmatrix}$$

练习

判断题:

$$\begin{bmatrix} 1 & & & & \\ & 2 & & \\ & & 3 & \\ & & & 4 \end{bmatrix} = - \begin{bmatrix} & & & 1 \\ & 3 & & \\ 4 & & & \end{bmatrix}.$$

 a_{nn}

例

$$\begin{bmatrix} a_{11} \\ a_{21} & a_{22} \\ \vdots & \vdots & \ddots \\ a_{n1} & a_{n2} & \cdots \end{bmatrix}$$

$$= a_{11} \begin{vmatrix} a_{22} \\ \vdots & \ddots \end{vmatrix}$$

 $|a_{n2}|$

$$=a_{11}a_{22}$$

$$\begin{vmatrix} a_{33} \\ \vdots \end{vmatrix}$$

$$\begin{vmatrix} \vdots & \ddots \\ a_{n3} & \ddots \end{vmatrix}$$

$$a_{nn}$$

$$\cdot \quad a_{nn}$$

$$\cdot \quad a_{nn}$$

练习

判断题:

$$\begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix} = - \begin{bmatrix} & & 1 \\ 3 & & \\ 4 & & & \end{bmatrix}$$

$$\begin{vmatrix} a_{11} & & & & \\ a_{21} & a_{22} & & & \\ \vdots & \vdots & \ddots & \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = a_{11} \begin{vmatrix} a_{22} & & \\ \vdots & \ddots & \\ a_{n2} & \cdots & a_{nn} \end{vmatrix} = a_{11} a_{22} \begin{vmatrix} a_{33} & & \\ \vdots & \ddots & \\ a_{n3} & \cdots & a_{nn} \end{vmatrix} = \cdots = a_{11} a_{22} \cdots a_{nn}.$$

计算
$$|\mathbf{A}|$$
, 其中 $\mathbf{A}=egin{pmatrix} &&a_1\\&&a_2\\&&a_n \end{pmatrix}$

计算
$$|\mathbf{A}|$$
, 其中 $\mathbf{A}=\begin{pmatrix} & & a_1 \\ & & a_2 \end{pmatrix}$

解

$$|\mathbf{A}| = (-1)^{n+1} a_1 \begin{vmatrix} & & & a_2 \\ a_n & & & \end{vmatrix}$$

例

计算
$$|\mathbf{A}|$$
, 其中 $\mathbf{A}=\begin{pmatrix} & & & a_1 \ & & & a_2 \ & & & & \\ a_n & & & \end{pmatrix}$

解

$$|\mathbf{A}| = (-1)^{n+1} a_1 \begin{vmatrix} & & & a_2 \\ a_n & & & \end{vmatrix} = (-1)^{n+1} a_1 \cdot (-1)^n a_3 \begin{vmatrix} & & & a_2 \\ a_n & & & \end{vmatrix}$$

例

计算
$$|\mathbf{A}|$$
, 其中 $\mathbf{A}=egin{pmatrix} &&a_1\\&&a_2\\&&\ddots\\a_n&&\end{pmatrix}$

解

$$|\mathbf{A}| = (-1)^{n+1} a_1 \begin{vmatrix} & & & a_2 \\ a_n & & \end{vmatrix} = (-1)^{n+1} a_1 \cdot (-1)^n a_3 \begin{vmatrix} & & & a_2 \\ a_n & & & \end{vmatrix}$$

$$= \dots = \prod_{n=1}^{n} (-1)^{n-i} a_i$$

反对角阵的行列式

例

计算
$$|\mathbf{A}|$$
, 其中 $\mathbf{A}=egin{pmatrix} &&a_1\ &&a_2\ &&\ddots\ &&a_n \end{pmatrix}$

解

$$|\mathbf{A}| = (-1)^{n+1} a_1 \begin{vmatrix} & & & \\ a_n & & \end{vmatrix} = (-1)^{n+1} a_1 \cdot (-1)^n a_3 \begin{vmatrix} & & & \\ a_n & & & \end{vmatrix}$$
$$= \dots = \prod_{n=1}^{n} (-1)^{n-i} a_i = (-1)^{\frac{n(n-1)}{2}} a_1 a_2 \dots a_n.$$

例

设

$$\mathbf{A} = \begin{pmatrix} a_{11} & \cdots & a_{1m} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mm} \end{pmatrix}, \quad \mathbf{B} = \begin{pmatrix} b_{11} & \cdots & b_{1n} \\ \vdots & \ddots & \vdots \\ b_{n1} & \cdots & b_{nn} \end{pmatrix},$$

$$\mathbf{C} = \begin{pmatrix} a_{11} & \cdots & a_{1m} \\ \vdots & \ddots & \vdots & & 0 \\ a_{m1} & \cdots & a_{mm} \\ * & \cdots & * & b_{11} & \cdots & b_{1n} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ * & \cdots & * & b_{n1} & \cdots & b_{nn} \end{pmatrix}.$$

证明 $|\mathbf{C}| = |\mathbf{A}| \cdot |\mathbf{B}|$.

证明 对m归纳.

证明

对 m 归纳. 当 m=1 时由行列式定义可知成立.

证明

对 m 归纳. 当 m=1 时由行列式定义可知成立. 假设命题对于 m-1 成立.

证明

对 m 归纳. 当 m=1 时由行列式定义可知成立.

假设命题对于 m-1 成立. 设 **A** 在 (1,j) 处的余子式为 M_{1j} , **C** 在 (1,j) 处的余子式为 N_{1i} .

证明

对 m 归纳. 当 m=1 时由行列式定义可知成立.

假设命题对于 m-1 成立. 设 **A** 在 (1,j) 处的余子式为 M_{1j} , **C** 在 (1,j) 处的余子式为 N_{1i} . 则由归纳假设 $N_{1i}=M_{1i}|\mathbf{B}|$.

证明

对 m 归纳. 当 m=1 时由行列式定义可知成立.

假设命题对于 m-1 成立. 设 **A** 在 (1,j) 处的余子式为 M_{1j} , **C** 在 (1,j) 处的余子式为 N_{1j} . 则由归纳假设 $N_{1j}=M_{1j}|\mathbf{B}|$. 因此

$$|\mathbf{C}| = \sum_{j=1}^{m} (-1)^{1+j} a_{1j} N_{1j}$$
$$= \sum_{j=1}^{m} (-1)^{1+j} a_{1j} M_{1j} |\mathbf{B}| = |\mathbf{A}| \cdot |\mathbf{B}|.$$

设平面上有平行四边形 OACB, 其中 A(a,b), B(c,d).

设平面上有平行四边形 OACB, 其中 A(a,b), B(c,d).

二阶行列式 $\begin{vmatrix} a & b \\ c & d \end{vmatrix}$ 的绝对值就是它的面积.

设平面上有平行四边形 OACB, 其中 A(a,b), B(c,d).

二阶行列式 $\begin{vmatrix} a & b \\ c & d \end{vmatrix}$ 的绝对值就是它的面积. 它的符号则表示从 OA 沿最短角度旋转到 OB 方向是逆时针还是顺时针.

类似地,如果
$$A(a_1,a_2,a_3),B(b_1,b_2,b_3),C(c_1,c_2,c_3)$$
,则三阶行列式
$$\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$

的绝对值就是下述平行六面体的体积.

类似地,如果
$$A(a_1,a_2,a_3),B(b_1,b_2,b_3),C(c_1,c_2,c_3)$$
,则三阶行列式
$$\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$

的绝对值就是下述平行六面体的体积.

它的符号则表示使用右手从 OA 旋转到 OB 方向时, 大拇指所指方向与 OC 是否在平面 OAB 的同侧.

第二节 行列式的性质

- ■拉普拉斯展开
- 行列式的变换性质
- 使用初等变换和拉普拉斯展开计算行列式
- 三对角和范德蒙型行列式

为了陈述方便, 记 $c_i \leftrightarrow c_j(r_i \leftrightarrow r_j)$ 为交换 i,j 列 (行).

为了陈述方便, 记 $c_i \leftrightarrow c_j(r_i \leftrightarrow r_j)$ 为交换 i,j 列 (行). 注意 $c_i \leftrightarrow c_j$ 可以通过

$$c_j \leftrightarrow c_{j-1}, \quad c_{j-1} \leftrightarrow c_{j-2}, \quad \dots, \quad , c_{i+1} \leftrightarrow c_i, \qquad c_{i+1} \leftrightarrow c_{i+2}, \quad \dots, \quad c_{j-1} \leftrightarrow c_j$$

实现, 一共 2(j-i)+1 次.

为了陈述方便, 记 $c_i \leftrightarrow c_j(r_i \leftrightarrow r_j)$ 为交换 i,j 列 (行). 注意 $c_i \leftrightarrow c_j$ 可以通过

$$c_j \leftrightarrow c_{j-1}, \quad c_{j-1} \leftrightarrow c_{j-2}, \quad \dots, \quad , c_{i+1} \leftrightarrow c_i, \qquad c_{i+1} \leftrightarrow c_{i+2}, \quad \dots, \quad c_{j-1} \leftrightarrow c_j$$

实现, 一共 2(j-i)+1 次. 因此只需证明互换相邻的两列后, 方阵的行列式变为 -1 倍.

为了陈述方便, 记 $c_i \leftrightarrow c_j(r_i \leftrightarrow r_j)$ 为交换 i,j 列 (行). 注意 $c_i \leftrightarrow c_j$ 可以通过

$$c_j \leftrightarrow c_{j-1}, \quad c_{j-1} \leftrightarrow c_{j-2}, \quad \dots, \quad , c_{i+1} \leftrightarrow c_i, \qquad c_{i+1} \leftrightarrow c_{i+2}, \quad \dots, \quad c_{j-1} \leftrightarrow c_j$$

实现, 一共 2(j-i)+1 次. 因此只需证明互换相邻的两列后, 方阵的行列式变为 -1 倍. 对方阵的阶 n 归纳.

为了陈述方便, 记 $c_i \leftrightarrow c_j(r_i \leftrightarrow r_j)$ 为交换 i,j 列 (行). 注意 $c_i \leftrightarrow c_j$ 可以通过

$$c_j \leftrightarrow c_{j-1}, \quad c_{j-1} \leftrightarrow c_{j-2}, \quad \dots, \quad , c_{i+1} \leftrightarrow c_i, \qquad c_{i+1} \leftrightarrow c_{i+2}, \quad \dots, \quad c_{j-1} \leftrightarrow c_j$$

实现, 一共 2(j-i)+1 次. 因此只需证明互换相邻的两列后, 方阵的行列式变为 -1 倍. 对方阵的阶 n 归纳. 当 n=2 时显然成立.

为了陈述方便, 记 $c_i \leftrightarrow c_j(r_i \leftrightarrow r_j)$ 为交换 i,j 列 (行). 注意 $c_i \leftrightarrow c_j$ 可以通过

$$c_j \leftrightarrow c_{j-1}, \quad c_{j-1} \leftrightarrow c_{j-2}, \quad \dots, \quad , c_{i+1} \leftrightarrow c_i, \qquad c_{i+1} \leftrightarrow c_{i+2}, \quad \dots, \quad c_{j-1} \leftrightarrow c_j$$

实现, 一共 2(j-i)+1 次. 因此只需证明互换相邻的两列后, 方阵的行列式变为 -1 倍. 对方阵的阶 n 归纳. 当 n=2 时显然成立.

如果命题对于 n-1 成立, 对于 n 阶方阵 $\mathbf{A}=(a_{ij})$, 交换它的 k,k+1 列得到方阵 $\mathbf{B}=(b_{ij})$.

为了陈述方便, 记 $c_i \leftrightarrow c_j(r_i \leftrightarrow r_j)$ 为交换 i,j 列 (行). 注意 $c_i \leftrightarrow c_j$ 可以通过

$$c_j \leftrightarrow c_{j-1}, \quad c_{j-1} \leftrightarrow c_{j-2}, \quad \dots, \quad , c_{i+1} \leftrightarrow c_i, \qquad c_{i+1} \leftrightarrow c_{i+2}, \quad \dots, \quad c_{j-1} \leftrightarrow c_j$$

实现, 一共 2(j-i)+1 次. 因此只需证明互换相邻的两列后, 方阵的行列式变为 -1 倍. 对方阵的阶 n 归纳. 当 n=2 时显然成立.

如果命题对于 n-1 成立, 对于 n 阶方阵 $\mathbf{A}=(a_{ij})$, 交换它的 k,k+1 列得到方阵 $\mathbf{B}=(b_{ij})$. 设 \mathbf{A} 在 (i,j) 处的余子式为 M_{ij} , \mathbf{B} 在 (i,j) 处的余子式为 N_{ij} .

• 当 $j \neq k, k+1$ 时, B 去掉 1 行 j 列得到的方阵是 A 去掉 1 行 j 列得到的方阵互 换两列得到的.

• 当 $j \neq k, k+1$ 时, B 去掉 1 行 j 列得到的方阵是 A 去掉 1 行 j 列得到的方阵互 换两列得到的. 因此 $N_{1j} = -M_{1j}$.

- 当 $j \neq k, k+1$ 时, B 去掉 1 行 j 列得到的方阵是 A 去掉 1 行 j 列得到的方阵互换两列得到的. 因此 $N_{1j}=-M_{1j}$.
- 当 j = k 时, **B** 去掉 1 行 k 列得到的方阵是 **A** 去掉 1 行 k + 1 列得到的方阵.

- 当 $j \neq k, k+1$ 时, B 去掉 1 行 j 列得到的方阵是 A 去掉 1 行 j 列得到的方阵互 换两列得到的. 因此 $N_{1j}=-M_{1j}$.
- 当 j = k 时, B 去掉 1 行 k 列得到的方阵是 A 去掉 1 行 k+1 列得到的方阵. 因此 $N_{1k} = M_{1,k+1}$.

- 当 $j \neq k, k+1$ 时, B 去掉 1 行 j 列得到的方阵是 A 去掉 1 行 j 列得到的方阵互 换两列得到的. 因此 $N_{1j}=-M_{1j}$.
- 当 j=k 时, B 去掉 1 行 k 列得到的方阵是 A 去掉 1 行 k+1 列得到的方阵. 因此 $N_{1k}=M_{1,k+1}$.
- 同理 $N_{1,k+1} = M_{1k}$.

- 当 $j \neq k, k+1$ 时, B 去掉 1 行 j 列得到的方阵是 A 去掉 1 行 j 列得到的方阵互换两列得到的. 因此 $N_{1j}=-M_{1j}$.
- 当 j = k 时, **B** 去掉 1 行 k 列得到的方阵是 **A** 去掉 1 行 k+1 列得到的方阵. 因此 $N_{1k} = M_{1,k+1}$.
- 同理 $N_{1,k+1} = M_{1k}$.

故

$$|\mathbf{B}| = \sum_{j \neq k, k+1} (-1)^{1+j} a_{1j} N_{1j} + (-1)^{1+k} a_{1,k+1} N_{1k} + (-1)^{1+(k+1)} a_{1,k} N_{1,k+1}$$

$$= -\sum_{j \neq k, k+1} (-1)^{1+j} a_{1j} M_{1j} + (-1)^{1+k} a_{1,k+1} M_{1,k+1} + (-1)^k a_{1,k} M_{1k}$$

$$= -|\mathbf{A}|.$$

如果 $\mathbf{A} = (a_{ij})_{m \times n}$, 称

$$\mathbf{A}^{\mathrm{T}} = \begin{pmatrix} a_{11} & a_{21} & \cdots & a_{m1} \\ a_{12} & a_{22} & \cdots & a_{m2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{mn} \end{pmatrix}$$

为矩阵 A 的转置, 它是 $n \times m$ 矩阵.

如果 $\mathbf{A} = (a_{ij})_{m \times n}$, 称

$$\mathbf{A}^{\mathrm{T}} = \begin{pmatrix} a_{11} & a_{21} & \cdots & a_{m1} \\ a_{12} & a_{22} & \cdots & a_{m2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{mn} \end{pmatrix}$$

为矩阵 **A** 的转置, 它是 $n \times m$ 矩阵.

(1) 转置不改变行列式: $|\mathbf{A}^{\mathrm{T}}| = |\mathbf{A}|$.

根据行列式的归纳定义可知, $|\mathbf{A}|$ 是由一些 $\pm a_{1k_1}a_{2k_2}\cdots a_{nk_n}$ 相加得到, 其中 $k_1k_2\cdots k_n$ 取遍 $1,2,\ldots,n$ 的所有排列.

根据行列式的归纳定义可知, $|\mathbf{A}|$ 是由一些 $\pm a_{1k_1}a_{2k_2}\cdots a_{nk_n}$ 相加得到, 其中 $k_1k_2\cdots k_n$ 取遍 $1,2,\ldots,n$ 的所有排列. 这个 \pm 与具体的 a_{ij} 取值无关, 因此它也就是 $|\mathbf{P}|$, 其中 \mathbf{P} 的 i 行 k_i 列为 1, 其余项为零.

根据行列式的归纳定义可知, $|\mathbf{A}|$ 是由一些 $\pm a_{1k_1}a_{2k_2}\cdots a_{nk_n}$ 相加得到, 其中 $k_1k_2\cdots k_n$ 取遍 $1,2,\ldots,n$ 的所有排列. 这个 \pm 与具体的 a_{ij} 取值无关, 因此它也就是 $|\mathbf{P}|$, 其中 \mathbf{P} 的 i 行 k_i 列为 1, 其余项为零. 设 ℓ_1,\ldots,ℓ_n 是一个排列且满足 $k_{\ell_i}=i$.

根据行列式的归纳定义可知, $|\mathbf{A}|$ 是由一些 $\pm a_{1k_1}a_{2k_2}\cdots a_{nk_n}$ 相加得到, 其中 $k_1k_2\cdots k_n$ 取遍 $1,2,\ldots,n$ 的所有排列. 这个 \pm 与具体的 a_{ij} 取值无关, 因此它也就是 $|\mathbf{P}|$, 其中 \mathbf{P} 的 i 行 k_i 列为 1, 其余项为零.

设 ℓ_1,\ldots,ℓ_n 是一个排列且满足 $k_{\ell_i}=i$. 也就是说, 如果把排列看成集合 $\{1,2,\ldots,n\}$ 到自身的双射, ℓ 就是 k 的逆映射.

根据行列式的归纳定义可知, $|\mathbf{A}|$ 是由一些 $\pm a_{1k_1}a_{2k_2}\cdots a_{nk_n}$ 相加得到, 其中 $k_1k_2\cdots k_n$ 取遍 $1,2,\ldots,n$ 的所有排列. 这个 \pm 与具体的 a_{ij} 取值无关, 因此它也就是 $|\mathbf{P}|$, 其中 \mathbf{P} 的 i 行 k_i 列为 1, 其余项为零.

设 ℓ_1,\ldots,ℓ_n 是一个排列且满足 $k_{\ell_i}=i$. 也就是说, 如果把排列看成集合 $\{1,2,\ldots,n\}$ 到自身的双射, ℓ 就是 k 的逆映射. 现在

$$|\mathbf{A}| = \sum |\mathbf{P}| a_{1k_1} \cdots a_{nk_n},$$

$$|\mathbf{A}^{\mathrm{T}}| = \sum |\mathbf{P}| a_{k_1 1} \cdots a_{k_n n}$$

$$= \sum |\mathbf{P}| a_{1\ell_1} \cdots a_{1\ell_n}.$$

根据行列式的归纳定义可知, $|\mathbf{A}|$ 是由一些 $\pm a_{1k_1}a_{2k_2}\cdots a_{nk_n}$ 相加得到, 其中 $k_1k_2\cdots k_n$ 取遍 $1,2,\ldots,n$ 的所有排列. 这个 \pm 与具体的 a_{ij} 取值无关, 因此它也就是 $|\mathbf{P}|$, 其中 \mathbf{P} 的 i 行 k_i 列为 1, 其余项为零.

设 ℓ_1,\ldots,ℓ_n 是一个排列且满足 $k_{\ell_i}=i$. 也就是说, 如果把排列看成集合 $\{1,2,\ldots,n\}$ 到自身的双射, ℓ 就是 k 的逆映射. 现在

$$|\mathbf{A}| = \sum |\mathbf{P}| a_{1k_1} \cdots a_{nk_n},$$

$$|\mathbf{A}^{\mathrm{T}}| = \sum |\mathbf{P}| a_{k_1 1} \cdots a_{k_n n}$$

$$= \sum |\mathbf{P}| a_{1\ell_1} \cdots a_{1\ell_n}.$$

因此只需证明 $|\mathbf{P}| = |\mathbf{Q}|$, 其中 \mathbf{Q} 的 i 行 ℓ_i 列为 1, 其余项为零.

根据行列式的归纳定义可知, $|\mathbf{A}|$ 是由一些 $\pm a_{1k_1}a_{2k_2}\cdots a_{nk_n}$ 相加得到, 其中 $k_1k_2\cdots k_n$ 取遍 $1,2,\ldots,n$ 的所有排列. 这个 \pm 与具体的 a_{ij} 取值无关, 因此它也就是 $|\mathbf{P}|$, 其中 \mathbf{P} 的 i 行 k_i 列为 1, 其余项为零.

设 ℓ_1,\ldots,ℓ_n 是一个排列且满足 $k_{\ell_i}=i$. 也就是说, 如果把排列看成集合 $\{1,2,\ldots,n\}$ 到自身的双射, ℓ 就是 k 的逆映射. 现在

$$|\mathbf{A}| = \sum |\mathbf{P}| a_{1k_1} \cdots a_{nk_n},$$

$$|\mathbf{A}^{\mathrm{T}}| = \sum |\mathbf{P}| a_{k_1 1} \cdots a_{k_n n}$$

$$= \sum |\mathbf{P}| a_{1\ell_1} \cdots a_{1\ell_n}.$$

因此只需证明 $|\mathbf{P}| = |\mathbf{Q}|$, 其中 \mathbf{Q} 的 i 行 ℓ_i 列为 1, 其余项为零. 换言之, $\mathbf{Q} = \mathbf{P}^{\mathrm{T}}$.

注意到交换 \mathbf{P} 的 k_i, k_j 列和交换 i, j 行是一回事.

注意到交换 ${\bf P}$ 的 k_i,k_j 列和交换 i,j 行是一回事. 如果 ${\bf P}$ 可通过 a 次互换列变成 单位矩阵 ${\bf E}_n$, 那么 $|{\bf P}|=(-1)^a$ 且 ${\bf P}$ 可通过 a 次互换行变成单位矩阵.

注意到交换 ${\bf P}$ 的 k_i,k_j 列和交换 i,j 行是一回事. 如果 ${\bf P}$ 可通过 a 次互换列变成单位矩阵 ${\bf E}_n$, 那么 $|{\bf P}|=(-1)^a$ 且 ${\bf P}$ 可通过 a 次互换行变成单位矩阵. 所以 ${\bf Q}$ 可通过 a 次互换列变成单位矩阵, $|{\bf Q}|=(-1)^a=|{\bf P}|$. 从而命题得证.

注意到交换 ${\bf P}$ 的 k_i,k_j 列和交换 i,j 行是一回事. 如果 ${\bf P}$ 可通过 a 次互换列变成单位矩阵 ${\bf E}_n$,那么 $|{\bf P}|=(-1)^a$ 且 ${\bf P}$ 可通过 a 次互换行变成单位矩阵. 所以 ${\bf Q}$ 可通过 a 次互换列变成单位矩阵, $|{\bf Q}|=(-1)^a=|{\bf P}|$. 从而命题得证. 由此可知:

注意到交换 ${\bf P}$ 的 k_i,k_j 列和交换 i,j 行是一回事. 如果 ${\bf P}$ 可通过 a 次互换列变成单位矩阵 ${\bf E}_n$,那么 $|{\bf P}|=(-1)^a$ 且 ${\bf P}$ 可通过 a 次互换行变成单位矩阵. 所以 ${\bf Q}$ 可通过 a 次互换列变成单位矩阵, $|{\bf Q}|=(-1)^a=|{\bf P}|$. 从而命题得证. 由此可知:

(2) 互换两行 (列) 后, 方阵的行列式变为 -1 倍.

注意到交换 ${\bf P}$ 的 k_i,k_j 列和交换 i,j 行是一回事. 如果 ${\bf P}$ 可通过 a 次互换列变成单位矩阵 ${\bf E}_n$,那么 $|{\bf P}|=(-1)^a$ 且 ${\bf P}$ 可通过 a 次互换行变成单位矩阵. 所以 ${\bf Q}$ 可通过 a 次互换列变成单位矩阵, $|{\bf Q}|=(-1)^a=|{\bf P}|$. 从而命题得证. 由此可知:

(2) 互换两行 (列) 后, 方阵的行列式变为 -1 倍.

如果方阵有相同的两行, 那么交换这两行方阵不变但行列式变为 -1 倍.

注意到交换 ${\bf P}$ 的 k_i,k_j 列和交换 i,j 行是一回事. 如果 ${\bf P}$ 可通过 a 次互换列变成单位矩阵 ${\bf E}_n$,那么 $|{\bf P}|=(-1)^a$ 且 ${\bf P}$ 可通过 a 次互换行变成单位矩阵. 所以 ${\bf Q}$ 可通过 a 次互换列变成单位矩阵, $|{\bf Q}|=(-1)^a=|{\bf P}|$. 从而命题得证. 由此可知:

(2) 互换两行 (列) 后, 方阵的行列式变为 -1 倍.

如果方阵有相同的两行, 那么交换这两行方阵不变但行列式变为 -1 倍. 于是行列式只能为 0.

推论

具有相同的两行 (列) 的方阵的行列式为 0.

上三角阵的行列式

例

计算
$$|\mathbf{A}|$$
, 其中 $\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ & a_{22} & \cdots & a_{2n} \\ & & \ddots & \vdots \\ & & & a_{nn} \end{pmatrix}$ 是上三角阵.

上三角阵的行列式

例

计算 $|\mathbf{A}|$, 其中 $\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ & a_{22} & \cdots & a_{2n} \\ & & \ddots & \vdots \end{pmatrix}$

是上三角阵.

解

由于

$$\mathbf{A}^{ ext{T}} = egin{pmatrix} a_{11} & & & & & & & & & & \ a_{12} & & a_{22} & & & & & & & & & \ dots & dots &$$

是下三角阵,

上三角阵的行列式

例

计算 $|\mathbf{A}|$, 其中 $\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ & a_{22} & \cdots & a_{2n} \\ & & \ddots & \vdots \end{pmatrix}$ 是上三角阵.

是下三角阵, 因此 $|\mathbf{A}| = |\mathbf{A}^{\mathrm{T}}| = a_{11}a_{22}\cdots a_{nn}$.

定理 (行列式沿任一行 (列) 展开, 拉普拉斯展开)

方阵的行列式等于任一行 (列) 的元素与其对应的代数余子式乘积的和:

$$|\mathbf{A}| = a_{i1}A_{i1} + a_{i2}A_{i2} + \dots + a_{in}A_{in}$$

= $a_{1j}A_{1j} + a_{2j}A_{2j} + \dots + a_{nj}A_{nj}$.

拉普拉斯展开

定理 (行列式沿任一行 (列) 展开, 拉普拉斯展开)

方阵的行列式等于任一行 (列) 的元素与其对应的代数余子式乘积的和:

$$|\mathbf{A}| = a_{i1}A_{i1} + a_{i2}A_{i2} + \dots + a_{in}A_{in}$$

= $a_{1j}A_{1j} + a_{2j}A_{2j} + \dots + a_{nj}A_{nj}$.

证明

设将方阵的第i行移动到第一行的前面得到的方阵为B.

拉普拉斯展开

定理 (行列式沿任一行 (列) 展开, 拉普拉斯展开)

方阵的行列式等于任一行 (列) 的元素与其对应的代数余子式乘积的和:

$$|\mathbf{A}| = a_{i1}A_{i1} + a_{i2}A_{i2} + \dots + a_{in}A_{in}$$

= $a_{1j}A_{1j} + a_{2j}A_{2j} + \dots + a_{nj}A_{nj}$.

证明

设将方阵的第i行移动到第一行的前面得到的方阵为 B. 那么 B 就是 A 通过

$$r_i \leftrightarrow r_{i-1}, r_{i-1} \leftrightarrow r_{i-2}, \dots, r_2 \leftrightarrow r_1$$

定理 (行列式沿任一行 (列) 展开, 拉普拉斯展开)

方阵的行列式等于任一行 (列) 的元素与其对应的代数余子式乘积的和:

$$|\mathbf{A}| = a_{i1}A_{i1} + a_{i2}A_{i2} + \dots + a_{in}A_{in}$$

= $a_{1j}A_{1j} + a_{2j}A_{2j} + \dots + a_{nj}A_{nj}$.

证明

设将方阵的第i 行移动到第一行的前面得到的方阵为 B. 那么 B 就是 A 通过

$$r_i \leftrightarrow r_{i-1}, r_{i-1} \leftrightarrow r_{i-2}, \dots, r_2 \leftrightarrow r_1$$

一共i-1次行互换得到的.

定理 (行列式沿任一行 (列) 展开, 拉普拉斯展开)

方阵的行列式等于任一行 (列) 的元素与其对应的代数余子式乘积的和:

$$|\mathbf{A}| = a_{i1}A_{i1} + a_{i2}A_{i2} + \dots + a_{in}A_{in}$$

= $a_{1j}A_{1j} + a_{2j}A_{2j} + \dots + a_{nj}A_{nj}$.

证明

设将方阵的第i 行移动到第一行的前面得到的方阵为 B. 那么 B 就是 A 通过

$$r_i \leftrightarrow r_{i-1}, r_{i-1} \leftrightarrow r_{i-2}, \dots, r_2 \leftrightarrow r_1$$

一共 i-1 次行互换得到的. 从而 $|\mathbf{B}| = (-1)^{i-1}|\mathbf{A}|$.

 \mathbf{B} 在 (1,j) 处的元素是 a_{ij} , 余子式是 M_{ij} , 因此

$$|\mathbf{B}| = a_{i1}M_{i1} - a_{i2}M_{i2} + \dots + (-1)^{n+1}a_{in}M_{in}.$$

由此也可以看出 $i \neq k$ 时,

$$a_{i1}A_{k1} + a_{i2}A_{k2} + \dots + a_{in}A_{kn} = 0,$$

因为它是第 i,k 行相同的方阵的行列式.

 \mathbf{B} 在 (1,j) 处的元素是 a_{ij} , 余子式是 M_{ij} , 因此

$$|\mathbf{B}| = a_{i1}M_{i1} - a_{i2}M_{i2} + \dots + (-1)^{n+1}a_{in}M_{in}.$$

两边同时乘以 $(-1)^{i+1}$ 得到

$$|\mathbf{A}| = (-1)^{i+1} M_{i1} + (-1)^{i+2} M_{i2} + \dots + (-1)^{i+n} M_{in}$$

= $a_{i1} A_{i1} + a_{i2} A_{i2} + \dots + a_{in} A_{in}$.

由此也可以看出 $i \neq k$ 时,

$$a_{i1}A_{k1} + a_{i2}A_{k2} + \dots + a_{in}A_{kn} = 0,$$

因为它是第 i, k 行相同的方阵的行列式.

 \mathbf{B} 在 (1,j) 处的元素是 a_{ij} , 余子式是 M_{ij} , 因此

$$|\mathbf{B}| = a_{i1}M_{i1} - a_{i2}M_{i2} + \dots + (-1)^{n+1}a_{in}M_{in}.$$

两边同时乘以 $(-1)^{i+1}$ 得到

$$|\mathbf{A}| = (-1)^{i+1} M_{i1} + (-1)^{i+2} M_{i2} + \dots + (-1)^{i+n} M_{in}$$

= $a_{i1} A_{i1} + a_{i2} A_{i2} + \dots + a_{in} A_{in}$.

再根据转置不改变行列式得到行列式沿一列展开的形式.

 \mathbf{B} 在 (1,j) 处的元素是 a_{ij} , 余子式是 M_{ij} , 因此

$$|\mathbf{B}| = a_{i1}M_{i1} - a_{i2}M_{i2} + \dots + (-1)^{n+1}a_{in}M_{in}.$$

两边同时乘以 $(-1)^{i+1}$ 得到

$$|\mathbf{A}| = (-1)^{i+1} M_{i1} + (-1)^{i+2} M_{i2} + \dots + (-1)^{i+n} M_{in}$$

= $a_{i1} A_{i1} + a_{i2} A_{i2} + \dots + a_{in} A_{in}$.

再根据转置不改变行列式得到行列式沿一列展开的形式.

由此也可以看出 $i \neq k$ 时,

$$a_{i1}A_{k1} + a_{i2}A_{k2} + \dots + a_{in}A_{kn} = 0,$$

 \mathbf{B} 在 (1,j) 处的元素是 a_{ij} , 余子式是 M_{ij} , 因此

$$|\mathbf{B}| = a_{i1}M_{i1} - a_{i2}M_{i2} + \dots + (-1)^{n+1}a_{in}M_{in}.$$

两边同时乘以 $(-1)^{i+1}$ 得到

$$|\mathbf{A}| = (-1)^{i+1} M_{i1} + (-1)^{i+2} M_{i2} + \dots + (-1)^{i+n} M_{in}$$

= $a_{i1} A_{i1} + a_{i2} A_{i2} + \dots + a_{in} A_{in}$.

再根据转置不改变行列式得到行列式沿一列展开的形式.

由此也可以看出 $i \neq k$ 时,

$$a_{i1}A_{k1} + a_{i2}A_{k2} + \dots + a_{in}A_{kn} = 0,$$

因为它是第 i, k 行相同的方阵的行列式.

如果方阵某一行元素均乘 k, 那么沿着这一行展开会发现行列式乘 k.

如果方阵某一行元素均乘 k, 那么沿着这一行展开会发现行列式乘 k.

如果方阵某一行元素均乘 k, 那么沿着这一行展开会发现行列式乘 k.

(3) 方阵的某一行 (列) 乘 k 后, 方阵的行列式变为 k 倍.

如果方阵某一行元素均乘 k, 那么沿着这一行展开会发现行列式乘 k.

(3) 方阵的某一行 (列) 乘 k 后, 方阵的行列式变为 k 倍.

如果方阵某一行元素均乘 k, 那么沿着这一行展开会发现行列式乘 k.

(3) 方阵的某一行 (列) 乘 k 后, 方阵的行列式变为 k 倍.

如果方阵某一行元素均乘 k, 那么沿着这一行展开会发现行列式乘 k.

(3) 方阵的某一行 (列) 乘 k 后, 方阵的行列式变为 k 倍.

推论

如果方阵某一行元素均乘 k, 那么沿着这一行展开会发现行列式乘 k.

(3) 方阵的某一行 (列) 乘 k 后, 方阵的行列式变为 k 倍.

推论

• 行列式中某一行 (列) 的公因子可以提到行列式外面.

如果方阵某一行元素均乘 k, 那么沿着这一行展开会发现行列式乘 k.

(3) 方阵的某一行 (列) 乘 k 后, 方阵的行列式变为 k 倍.

练习 ka_{11} ka_{12} ka_{1n} a_{11} a_{12} a_{1n} ka_{2n} ka_{21} a_{21} a_{22} a_{2n} 判断题: ka_{n1} ka_{n2} ka_{nn} a_{n1} a_{n2} a_{nn}

推论

- 行列式中某一行 (列) 的公因子可以提到行列式外面.
- 如果方阵有一行(列)全为零,则行列式为零.

如果方阵某一行元素均乘 k, 那么沿着这一行展开会发现行列式乘 k.

(3) 方阵的某一行 (列) 乘 k 后, 方阵的行列式变为 k 倍.

练习 ka_{11} ka_{12} ka_{1n} a_{11} a_{12} a_{1n} ka_{2n} ka_{21} a_{21} a_{22} a_{2n} 判断题: ka_{n1} ka_{n2} ka_{nn} a_{n1} a_{n2} a_{nn}

推论

- 行列式中某一行 (列) 的公因子可以提到行列式外面.
- 如果方阵有一行 (列) 全为零, 则行列式为零.
- 如果方阵有两行 (列) 成比例, 则行列式为零.

行列式的线性性

(5) 将方阵一行 (列) 每一个元素都写成两个数之和, 则行列式也可拆成两个行列式之和:

$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i1} + a'_{i1} & a_{i2} + a'_{i2} & \cdots & a_{in} + a'_{in} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{in} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} + \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a'_{i1} & a'_{i2} & \cdots & a'_{in} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}$$

行列式的线性性

(5) 将方阵一行 (列) 每一个元素都写成两个数之和, 则行列式也可拆成两个行列式之和:

$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i1} + a'_{i1} & a_{i2} + a'_{i2} & \cdots & a_{in} + a'_{in} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{in} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} + \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i1} & a'_{i2} & \cdots & a'_{in} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}.$$

(5) 将方阵一行 (列) 每一个元素都写成两个数之和,则行列式也可拆成两个行列式之和:

$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i1} + a'_{i1} & a_{i2} + a'_{i2} & \cdots & a_{in} + a'_{in} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{in} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} + \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a'_{i1} & a'_{i2} & \cdots & a'_{in} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}$$

(4) 将方阵一行 (列) 乘常数 k 再加到另一行 (列), 行列式不变.

三种初等变换

计算行列式可以通过下列变换来进行化简:

三种初等变换

计算行列式可以通过下列变换来进行化简:

初等变换

计算行列式可以通过下列变换来进行化简:

初等变换

(1) 互换两行 (列): $r_i \leftrightarrow r_j, c_i \leftrightarrow c_j$, 行列式变号;

计算行列式可以通过下列变换来进行化简:

初等变换

- (1) 互换两行 (列): $r_i \leftrightarrow r_j, c_i \leftrightarrow c_j$, 行列式变号;
- (2) 一行 (列) 乘常数 $k: r_i \times k, c_i \times k$, 行列式变为 k 倍;

计算行列式可以通过下列变换来进行化简:

初等变换

- (1) 互换两行 (列): $r_i \leftrightarrow r_j, c_i \leftrightarrow c_j$, 行列式变号;
- (2) 一行 (列) 乘常数 k: $r_i \times k$, $c_i \times k$, 行列式变为 k 倍;
- (3) j 行 (列) 乘 k 加到 i 行 (列): $r_i + kr_j, c_i + kc_j$.

$$\begin{bmatrix} -4 & -5 & 1 & 3 \\ -3 & 1 & -5 & 3 \\ 1 & -2 & 0 & -1 \end{bmatrix}$$

$$\begin{vmatrix} 2 & 3 & 1 & -1 \\ -4 & -5 & 1 & 3 \\ -3 & 1 & -5 & 3 \\ 1 & -2 & 0 & -1 \end{vmatrix} \xrightarrow{r_1 \leftrightarrow r_4}$$

$$\begin{vmatrix} 2 & 3 & 1 & -1 \\ -4 & -5 & 1 & 3 \\ -3 & 1 & -5 & 3 \\ 1 & -2 & 0 & -1 \end{vmatrix} \xrightarrow{r_1 \leftrightarrow r_4} - \begin{vmatrix} 1 & -2 & 0 & -1 \\ -4 & -5 & 1 & 3 \\ -3 & 1 & -5 & 3 \\ 2 & 3 & 1 & -1 \end{vmatrix}$$

$$\begin{vmatrix} 2 & 3 & 1 & -1 \\ -4 & -5 & 1 & 3 \\ -3 & 1 & -5 & 3 \\ 1 & -2 & 0 & -1 \end{vmatrix} \xrightarrow{r_1 \leftrightarrow r_4} - \begin{vmatrix} 1 & -2 & 0 & -1 \\ -4 & -5 & 1 & 3 \\ -3 & 1 & -5 & 3 \\ 2 & 3 & 1 & -1 \end{vmatrix} \xrightarrow{r_2 + 4r_1, r_3 + 3r_1} \xrightarrow{r_4 - 2r_1}$$

$$\begin{vmatrix} 2 & 3 & 1 & -1 \\ -4 & -5 & 1 & 3 \\ -3 & 1 & -5 & 3 \\ 1 & -2 & 0 & -1 \end{vmatrix} \xrightarrow{r_1 \leftrightarrow r_4} - \begin{vmatrix} 1 & -2 & 0 & -1 \\ -4 & -5 & 1 & 3 \\ -3 & 1 & -5 & 3 \\ 2 & 3 & 1 & -1 \end{vmatrix} \xrightarrow{r_2 + 4r_1, r_3 + 3r_1} - \begin{vmatrix} 1 & -2 & 0 & -1 \\ 0 & -13 & 1 & -1 \\ 0 & -5 & -5 & 0 \\ 0 & 7 & 1 & 1 \end{vmatrix}$$

$$\begin{vmatrix} 2 & 3 & 1 & -1 \\ -4 & -5 & 1 & 3 \\ -3 & 1 & -5 & 3 \\ 1 & -2 & 0 & -1 \end{vmatrix} \xrightarrow{r_1 \leftrightarrow r_4} - \begin{vmatrix} 1 & -2 & 0 & -1 \\ -4 & -5 & 1 & 3 \\ -3 & 1 & -5 & 3 \\ 2 & 3 & 1 & -1 \end{vmatrix} \xrightarrow{r_2 + 4r_1, r_3 + 3r_1} - \begin{vmatrix} 1 & -2 & 0 & -1 \\ 0 & -13 & 1 & -1 \\ 0 & -5 & -5 & 0 \\ 0 & 7 & 1 & 1 \end{vmatrix}$$
$$= - \begin{vmatrix} -13 & 1 & -1 \\ -5 & -5 & 0 \\ 7 & 1 & 1 \end{vmatrix}$$

$$\begin{vmatrix} 2 & 3 & 1 & -1 \\ -4 & -5 & 1 & 3 \\ -3 & 1 & -5 & 3 \\ 1 & -2 & 0 & -1 \end{vmatrix} \xrightarrow{r_1 \leftrightarrow r_4} - \begin{vmatrix} 1 & -2 & 0 & -1 \\ -4 & -5 & 1 & 3 \\ -3 & 1 & -5 & 3 \\ 2 & 3 & 1 & -1 \end{vmatrix} \xrightarrow{r_2 + 4r_1, r_3 + 3r_1} - \begin{vmatrix} 1 & -2 & 0 & -1 \\ 0 & -13 & 1 & -1 \\ 0 & -5 & -5 & 0 \\ 0 & 7 & 1 & 1 \end{vmatrix}$$

$$= - \begin{vmatrix} -13 & 1 & -1 \\ -5 & -5 & 0 \\ 7 & 1 & 1 \end{vmatrix} \xrightarrow{r_3 + r_1}$$

$$\begin{vmatrix} 2 & 3 & 1 & -1 \\ -4 & -5 & 1 & 3 \\ -3 & 1 & -5 & 3 \\ 1 & -2 & 0 & -1 \end{vmatrix} \xrightarrow{r_1 \leftrightarrow r_4} - \begin{vmatrix} 1 & -2 & 0 & -1 \\ -4 & -5 & 1 & 3 \\ -3 & 1 & -5 & 3 \\ 2 & 3 & 1 & -1 \end{vmatrix} \xrightarrow{r_2 + 4r_1, r_3 + 3r_1} - \begin{vmatrix} 1 & -2 & 0 & -1 \\ 0 & -13 & 1 & -1 \\ 0 & -5 & -5 & 0 \\ 0 & 7 & 1 & 1 \end{vmatrix}$$

$$= - \begin{vmatrix} -13 & 1 & -1 \\ -5 & -5 & 0 \\ 7 & 1 & 1 \end{vmatrix} \xrightarrow{r_3 + r_1} - \begin{vmatrix} -13 & 1 & -1 \\ -5 & -5 & 0 \\ -6 & 2 & 0 \end{vmatrix}$$

$$\begin{vmatrix} 2 & 3 & 1 & -1 \\ -4 & -5 & 1 & 3 \\ -3 & 1 & -5 & 3 \\ 1 & -2 & 0 & -1 \end{vmatrix} \xrightarrow{r_1 \leftrightarrow r_4} - \begin{vmatrix} 1 & -2 & 0 & -1 \\ -4 & -5 & 1 & 3 \\ -3 & 1 & -5 & 3 \\ 2 & 3 & 1 & -1 \end{vmatrix} \xrightarrow{r_2 + 4r_1, r_3 + 3r_1} - \begin{vmatrix} 1 & -2 & 0 & -1 \\ 0 & -13 & 1 & -1 \\ 0 & -5 & -5 & 0 \\ 0 & 7 & 1 & 1 \end{vmatrix}$$
$$= - \begin{vmatrix} -13 & 1 & -1 \\ -5 & -5 & 0 \\ 7 & 1 & 1 \end{vmatrix} \xrightarrow{r_3 + r_1} - \begin{vmatrix} -13 & 1 & -1 \\ -5 & -5 & 0 \\ -6 & 2 & 0 \end{vmatrix} = (-1)^{1+3} \begin{vmatrix} -5 & -5 \\ -6 & 2 \end{vmatrix} = -40.$$

第3

$$-2$$
 0

 501
 200
 200
 299
 $=$ -200

证明:
$$\begin{vmatrix} a_1 + b_1 & b_1 + c_1 & c_1 + a_1 \\ a_2 + b_2 & b_2 + c_2 & c_2 + a_2 \\ a_3 + b_3 & b_3 + c_3 & c_3 + a_3 \end{vmatrix} = 2 \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$$

利用初等列变换来化简.

利用初等列变换来化简.

证明 $\begin{vmatrix} a_1 + b_1 & b_1 + c_1 & c_1 + a_1 \\ a_2 + b_2 & b_2 + c_2 & c_2 + a_2 \end{vmatrix} \xrightarrow{c_1 - c_2} \begin{vmatrix} a_1 - c_1 & b_1 + c_1 & c_1 + a_1 \\ a_2 - c_2 & b_2 + c_2 & c_2 + a_2 \end{vmatrix}$ $\begin{vmatrix} a_3 + b_3 & b_3 + c_3 & c_3 + a_3 \end{vmatrix}$ $\begin{vmatrix} a_3 - c_3 & b_3 + c_3 & c_3 + a_3 \end{vmatrix}$

利用初等列变换来化简.

证明 $\begin{vmatrix} a_1 + b_1 & b_1 + c_1 & c_1 + a_1 \\ a_2 + b_2 & b_2 + c_2 & c_2 + a_2 \end{vmatrix} \xrightarrow{c_1 - c_2} \begin{vmatrix} a_1 - c_1 & b_1 + c_1 & c_1 + a_1 \\ a_2 - c_2 & b_2 + c_2 & c_2 + a_2 \end{vmatrix}$ $\begin{vmatrix} a_3 + b_3 & b_3 + c_3 & c_3 + a_3 \end{vmatrix}$ $\begin{vmatrix} a_3 - c_3 & b_3 + c_3 & c_3 + a_3 \end{vmatrix}$

利用初等列变换来化简.

$$\begin{vmatrix} a_1 + b_1 & b_1 + c_1 & c_1 + a_1 \\ a_2 + b_2 & b_2 + c_2 & c_2 + a_2 \\ a_3 + b_3 & b_3 + c_3 & c_3 + a_3 \end{vmatrix} \stackrel{c_1 - c_2}{=} \begin{vmatrix} a_1 - c_1 & b_1 + c_1 & c_1 + a_1 \\ a_2 - c_2 & b_2 + c_2 & c_2 + a_2 \\ a_3 - c_3 & b_3 + c_3 & c_3 + a_3 \end{vmatrix}$$

$$\stackrel{c_1 + c_3}{=} \begin{vmatrix} 2a_1 & b_1 + c_1 & c_1 + a_1 \\ 2a_2 & b_2 + c_2 & c_2 + a_2 \\ 2a_3 & b_3 + c_3 & c_3 + a_3 \end{vmatrix} = 2 \begin{vmatrix} a_1 & b_1 + c_1 & c_1 + a_1 \\ a_2 & b_2 + c_2 & c_2 + a_2 \\ a_3 & b_3 + c_3 & c_3 + a_3 \end{vmatrix}$$

利用初等列变换来化简.

证明
$$\begin{vmatrix} a_1 + b_1 & b_1 + c_1 & c_1 + a_1 \\ a_2 + b_2 & b_2 + c_2 & c_2 + a_2 \\ a_3 + b_3 & b_3 + c_3 & c_3 + a_3 \end{vmatrix} \stackrel{c_1 - c_2}{=} \begin{vmatrix} a_1 - c_1 & b_1 + c_1 & c_1 + a_1 \\ a_2 - c_2 & b_2 + c_2 & c_2 + a_2 \\ a_3 - c_3 & b_3 + c_3 & c_3 + a_3 \end{vmatrix}$$

$$\stackrel{c_1 + c_3}{=} \begin{vmatrix} 2a_1 & b_1 + c_1 & c_1 + a_1 \\ 2a_2 & b_2 + c_2 & c_2 + a_2 \\ 2a_3 & b_3 + c_3 & c_3 + a_3 \end{vmatrix} = 2 \begin{vmatrix} a_1 & b_1 + c_1 & c_1 + a_1 \\ a_2 & b_2 + c_2 & c_2 + a_2 \\ a_3 & b_3 + c_3 & c_3 + a_3 \end{vmatrix}$$

$$\stackrel{c_3 - c_1}{=} 2 \begin{vmatrix} a_1 & b_1 + c_1 & c_1 \\ a_2 & b_2 + c_2 & c_2 \\ a_3 & b_3 + c_3 & c_3 \end{vmatrix}$$

利用初等列变换来化简.

证明
$$\begin{vmatrix} a_1 + b_1 & b_1 + c_1 & c_1 + a_1 \\ a_2 + b_2 & b_2 + c_2 & c_2 + a_2 \\ a_3 + b_3 & b_3 + c_3 & c_3 + a_3 \end{vmatrix} \stackrel{c_1 - c_2}{=} \begin{vmatrix} a_1 - c_1 & b_1 + c_1 & c_1 + a_1 \\ a_2 - c_2 & b_2 + c_2 & c_2 + a_2 \\ a_3 - c_3 & b_3 + c_3 & c_3 + a_3 \end{vmatrix}$$

$$\stackrel{c_1 + c_3}{=} \begin{vmatrix} 2a_1 & b_1 + c_1 & c_1 + a_1 \\ 2a_2 & b_2 + c_2 & c_2 + a_2 \\ 2a_3 & b_3 + c_3 & c_3 + a_3 \end{vmatrix} = 2 \begin{vmatrix} a_1 & b_1 + c_1 & c_1 + a_1 \\ a_2 & b_2 + c_2 & c_2 + a_2 \\ a_3 & b_3 + c_3 & c_3 + a_3 \end{vmatrix}$$

$$\stackrel{c_3 - c_1}{=} 2 \begin{vmatrix} a_1 & b_1 + c_1 & c_1 \\ a_2 & b_2 + c_2 & c_2 \\ a_3 & b_3 + c_3 & c_3 \end{vmatrix} \stackrel{c_2 - c_3}{=} 2 \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}.$$

练习

$$\begin{vmatrix} \overline{a_1 + b_1} & b_1 + c_1 & c_1 + d_1 & d_1 + a_1 \\ a_2 + b_2 & b_2 + c_2 & c_2 + d_2 & d_2 + a_2 \\ a_3 + b_3 & b_3 + c_3 & c_3 + d_3 & d_3 + a_3 \\ a_4 + b_4 & b_4 + c_4 & c_4 + d_4 & d_4 + a_4 \end{vmatrix} = \underline{\qquad}$$

$$\begin{vmatrix} a_1 + b_1 & b_1 + c_1 & c_1 + d_1 & d_1 + a_1 \\ a_2 + b_2 & b_2 + c_2 & c_2 + d_2 & d_2 + a_2 \\ a_3 + b_3 & b_3 + c_3 & c_3 + d_3 & d_3 + a_3 \\ a_4 + b_4 & b_4 + c_4 & c_4 + d_4 & d_4 + a_4 \end{vmatrix} = \underline{\qquad 0}$$

$$\begin{vmatrix} a_1 + b_1 & b_1 + c_1 & c_1 + d_1 & d_1 + a_1 \\ a_2 + b_2 & b_2 + c_2 & c_2 + d_2 & d_2 + a_2 \\ a_3 + b_3 & b_3 + c_3 & c_3 + d_3 & d_3 + a_3 \\ a_4 + b_4 & b_4 + c_4 & c_4 + d_4 & d_4 + a_4 \end{vmatrix} = \underline{\qquad 0}.$$

练习

$$\begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ c + c & c + a & a + b \end{vmatrix} = \underline{\qquad}.$$

$$\begin{vmatrix} a_1 + b_1 & b_1 + c_1 & c_1 + d_1 & d_1 + a_1 \\ a_2 + b_2 & b_2 + c_2 & c_2 + d_2 & d_2 + a_2 \\ a_3 + b_3 & b_3 + c_3 & c_3 + d_3 & d_3 + a_3 \\ a_4 + b_4 & b_4 + c_4 & c_4 + d_4 & d_4 + a_4 \end{vmatrix} = \underline{ 0}.$$

练习

$$\begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ b+c & c+a & a+b \end{vmatrix} = \underline{0}.$$

解方程
$$\begin{vmatrix} x+1 & 2 & -1 \\ 2 & x+1 & 1 \\ -1 & 1 & x+1 \end{vmatrix} = 0.$$

练习

解方程
$$\begin{vmatrix} x+1 & 2 & -1 \\ 2 & x+1 & 1 \\ -1 & 1 & x+1 \end{vmatrix} = 0.$$

答案

$$x = -3, \pm \sqrt{3}.$$

练习

解方程
$$\begin{vmatrix} x+1 & 2 & -1 \\ 2 & x+1 & 1 \\ -1 & 1 & x+1 \end{vmatrix} = 0.$$

$$x = -3, \pm \sqrt{3}.$$

如果
$$abcd=1$$
, 证明 $\mathbf{A}=egin{pmatrix} a^2+\frac{1}{a^2} & a & \frac{1}{a} & 1 \\ b^2+\frac{1}{b^2} & b & \frac{1}{b} & 1 \\ c^2+\frac{1}{c^2} & c & \frac{1}{c} & 1 \\ d^2+\frac{1}{d^2} & d & \frac{1}{d} & 1 \end{pmatrix}$ 行列式为零.

证明
$$|\mathbf{A}| = \begin{vmatrix} a^2 & a & \frac{1}{a} & 1 \\ b^2 & b & \frac{1}{b} & 1 \\ c^2 & c & \frac{1}{c} & 1 \\ d^2 & d & \frac{1}{d} & 1 \end{vmatrix} + \begin{vmatrix} \frac{1}{a^2} & a & \frac{1}{a} & 1 \\ \frac{1}{b^2} & b & \frac{1}{b} & 1 \\ \frac{1}{c^2} & c & \frac{1}{c} & 1 \\ \frac{1}{d^2} & d & \frac{1}{d} & 1 \end{vmatrix}$$

$$|\mathbf{A}| = \begin{vmatrix} a^2 & a & \frac{1}{a} & 1 \\ b^2 & b & \frac{1}{b} & 1 \\ c^2 & c & \frac{1}{c} & 1 \\ d^2 & d & \frac{1}{d} & 1 \end{vmatrix} + \begin{vmatrix} \frac{1}{a^2} & a & \frac{1}{a} & 1 \\ \frac{1}{b^2} & b & \frac{1}{b} & 1 \\ \frac{1}{c^2} & c & \frac{1}{c} & 1 \\ \frac{1}{d^2} & d & \frac{1}{d} & 1 \end{vmatrix} = abcd \begin{vmatrix} a & 1 & \frac{1}{a^2} & \frac{1}{a} \\ b & 1 & \frac{1}{b^2} & \frac{1}{b} \\ c & 1 & \frac{1}{c^2} & \frac{1}{c} \\ d & 1 & \frac{1}{d^2} & \frac{1}{d} \end{vmatrix} + \begin{vmatrix} a & \frac{1}{a^2} & 1 & \frac{1}{a} \\ b & \frac{1}{b^2} & 1 & \frac{1}{b} \\ c & \frac{1}{c^2} & 1 & \frac{1}{c} \\ d & 1 & \frac{1}{d^2} & \frac{1}{d} \end{vmatrix}$$

$$|\mathbf{A}| = \begin{vmatrix} a^2 & a & \frac{1}{a} & 1 \\ b^2 & b & \frac{1}{b} & 1 \\ c^2 & c & \frac{1}{c} & 1 \\ d^2 & d & \frac{1}{d} & 1 \end{vmatrix} + \begin{vmatrix} \frac{1}{a^2} & a & \frac{1}{a} & 1 \\ \frac{1}{b^2} & b & \frac{1}{b} & 1 \\ \frac{1}{c^2} & c & \frac{1}{c} & 1 \\ \frac{1}{d^2} & d & \frac{1}{d} & 1 \end{vmatrix} = abcd \begin{vmatrix} a & 1 & \frac{1}{a^2} & \frac{1}{a} \\ b & 1 & \frac{1}{b^2} & \frac{1}{b} \\ c & 1 & \frac{1}{b^2} & \frac{1}{b} \\ c & 1 & \frac{1}{c^2} & \frac{1}{c} \\ d & 1 & \frac{1}{d^2} & \frac{1}{d} \end{vmatrix} + \begin{vmatrix} a & \frac{1}{a^2} & 1 & \frac{1}{a} \\ b & \frac{1}{b^2} & 1 & \frac{1}{b} \\ c & \frac{1}{c^2} & 1 & \frac{1}{c} \\ d & 1 & \frac{1}{d^2} & \frac{1}{d} \end{vmatrix}$$

$$= 0.$$

例: 特殊形状行列式

计算 n 阶矩阵的行列式可以使用初等变换将其变为三角型,也可以使用拉普拉斯展开来对其进行降阶。

例: 特殊形状行列式

计算 n 阶矩阵的行列式可以使用初等变换将其变为三角型,也可以使用拉普拉斯展开来对其进行降阶。

```
例
```

例: 特殊形状行列式

计算 n 阶矩阵的行列式可以使用初等变换将其变为三角型,也可以使用拉普拉斯展开来对其进行降阶。

计算 n 阶矩阵的行列式可以使用初等变换将其变为三角型,也可以使用拉普拉斯展开来对其进行降阶。

计算 n 阶矩阵的行列式可以使用初等变换将其变为三角型,也可以使用拉普拉斯展开来对其进行降阶。

计算 n 阶矩阵的行列式可以使用初等变换将其变为三角型,也可以使用拉普拉斯展开来对其进行降阶。

$$\begin{vmatrix} a & 1 & \cdots & 1 \\ 1 & a & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \cdots & a \end{vmatrix} = \underbrace{\begin{vmatrix} a+n-1 & 1 & \cdots & 1 \\ a+n-1 & a & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ a+n-1 & 1 & \cdots & a \end{vmatrix}}_{\begin{array}{c} \vdots & \vdots & \ddots & \vdots \\ a+n-1 & 1 & \cdots & 1 \\ 0 & a-1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a-1 \end{vmatrix}} = (a+n-1) \begin{vmatrix} 1 & 1 & \cdots & 1 \\ 1 & a & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \cdots & a \end{vmatrix}$$

例

$$\begin{vmatrix} 1 & 1 & \cdots & 1 \\ 1 & 2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 0 & \cdots & n \end{vmatrix} \xrightarrow{\underbrace{r_1 - \frac{1}{i}r_i}{i\geqslant 2}} \begin{vmatrix} 1 - \frac{1}{2} - \cdots - \frac{1}{n} & 1 & \cdots & 1 \\ 0 & 2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & n \end{vmatrix}$$

$$\begin{vmatrix} 1 & 1 & \cdots & 1 \\ 1 & 2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 0 & \cdots & n \end{vmatrix} = \underbrace{\frac{r_1 - \frac{1}{i}r_i}{i \geqslant 2}}_{\substack{i \geqslant 2}} \begin{vmatrix} 1 - \frac{1}{2} - \cdots - \frac{1}{n} & 1 & \cdots & 1 \\ 0 & 2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & n \end{vmatrix} = \left(1 - \frac{1}{2} - \cdots - \frac{1}{n}\right)n!.$$

例

$$\begin{vmatrix} 1 & 1 & \cdots & 1 \\ 1 & 2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 0 & \cdots & n \end{vmatrix} \xrightarrow{\begin{array}{c} r_1 - \frac{1}{i}r_i \\ i \geqslant 2 \end{array}} \begin{vmatrix} 1 - \frac{1}{2} - \cdots - \frac{1}{n} & 1 & \cdots & 1 \\ 0 & 2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & n \end{vmatrix} = \left(1 - \frac{1}{2} - \cdots - \frac{1}{n}\right) n!.$$

练习

计算 n 阶行列式 $\begin{vmatrix} 1+a_1 & a_2 & \cdots & a_n \\ a_1 & 1+a_2 & \cdots & a_n \\ \vdots & \vdots & \ddots & \vdots \end{vmatrix}$

 a_1

 a_2

例

$$\begin{vmatrix} 1 & 1 & \cdots & 1 \\ 1 & 2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 0 & \cdots & n \end{vmatrix} \xrightarrow{r_1 - \frac{1}{i}r_i} \begin{vmatrix} 1 - \frac{1}{2} - \cdots - \frac{1}{n} & 1 & \cdots & 1 \\ 0 & 2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & n \end{vmatrix} = \left(1 - \frac{1}{2} - \cdots - \frac{1}{n}\right)n!.$$

 $\cdots 1 + a_n$

练习

计算
$$n$$
 阶行列式
$$\begin{vmatrix} 1+a_1 & a_2 & \cdots & a_n \\ a_1 & 1+a_2 & \cdots & a_n \\ \vdots & \vdots & \ddots & \vdots \end{vmatrix}$$

 a_1

 a_2

性代数 ▶第一章 行列式 ▶2 行列式的性质 ▶C 使用初等变换和拉普拉斯展开计算行列式

```
|a_1-b|
              a_2
                         a_3
                                           a_n
           a_2 - b
                         a_3
   a_1
                                  . . .
                                           a_n
                      a_3 - b
              a_2
   a_1
                                           a_n
   a_1
              a_2
                         a_3
```

$$\begin{vmatrix} a_1 - b & a_2 & a_3 & \cdots & a_n \\ a_1 & a_2 - b & a_3 & \cdots & a_n \\ a_1 & a_2 & a_3 - b & \cdots & a_n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_1 & a_2 & a_3 & \cdots & a_n - b \end{vmatrix} = \frac{r_i - r_{i+1}}{\stackrel{i=1,2,\dots,n-1}{=i+1}} \begin{vmatrix} -b & b & 0 & \cdots & 0 \\ 0 & -b & b & \cdots & 0 \\ 0 & 0 & -b & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_1 & a_2 & a_3 & \cdots & a_n - b \end{vmatrix}$$

$$\begin{vmatrix} a_1 - b & a_2 & a_3 & \cdots & a_n \\ a_1 & a_2 - b & a_3 & \cdots & a_n \\ a_1 & a_2 & a_3 - b & \cdots & a_n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_1 & a_2 & a_3 & \cdots & a_n - b \end{vmatrix} = \begin{bmatrix} -b & b & 0 & \cdots & 0 \\ 0 & -b & b & \cdots & 0 \\ 0 & 0 & -b & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_1 & a_2 & a_3 & \cdots & a_n - b \end{vmatrix}$$

$$\frac{c_{i+1}+c_i}{\stackrel{\longleftarrow}{i=1,2,\dots,n-1}} \begin{vmatrix} -b & 0 & 0 & \cdots & 0 \\ 0 & -b & 0 & \cdots & 0 \\ 0 & -b & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_1 & a_1+a_2 & a_1+a_2+a_3 & \cdots & a_1+\cdots+a_n-b \end{vmatrix}$$

$$\begin{vmatrix} a_1 - b & a_2 & a_3 & \cdots & a_n \\ a_1 & a_2 - b & a_3 & \cdots & a_n \\ a_1 & a_2 & a_3 - b & \cdots & a_n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_1 & a_2 & a_3 & \cdots & a_n - b \end{vmatrix} \xrightarrow{\underbrace{r_i - r_{i+1}}_{i=1,2,\dots,n-1}} \begin{vmatrix} -b & b & 0 & \cdots & 0 \\ 0 & -b & b & \cdots & 0 \\ 0 & 0 & -b & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_1 & a_2 & a_3 & \cdots & a_n - b \end{vmatrix}$$

$$\underbrace{\begin{bmatrix} -b & 0 & 0 & \cdots & 0 \\ 0 & -b & 0 & \cdots & 0 \\ 0 & -b & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_1 & a_1 + a_2 & a_1 + a_2 + a_3 & \cdots & a_1 + \cdots + a_n - b \end{vmatrix}}_{= (a_1 + \cdots + a_n - b)(-b)^{n-1}}.$$

练习

计算
$$n$$
 阶行列式
$$\begin{vmatrix} -1 & 0 & 3 & \cdots & n-1 & n \\ -1 & -2 & 0 & \cdots & n-1 & n \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ -1 & -2 & -3 & \cdots & 0 & n \end{vmatrix}$$

n-1

n

练习

计算
$$n$$
 阶行列式
$$\begin{vmatrix} -1 & 0 & 3 & \cdots & n-1 & n \\ -1 & -2 & 0 & \cdots & n-1 & n \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ -1 & -2 & -3 & \cdots & 0 & n \\ -1 & -2 & -3 & \cdots & -(n-1) & 0 \end{vmatrix}$$

n-1

n

练习

计算矩阵
$$\mathbf{A}_n = \begin{pmatrix} 0 & x & -1 & \cdots & 0 & 0 \\ 0 & 0 & x & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & x & -1 \\ a_n & a_{n-1} & a_{n-2} & \cdots & a_2 & x + a_1 \end{pmatrix}$$

-1

0

的行列式.

练习

计算矩阵
$$\mathbf{A}_n = \begin{pmatrix} x & -1 & 0 & \cdots & 0 & 0 \\ 0 & x & -1 & \cdots & 0 & 0 \\ 0 & 0 & x & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & x & -1 \\ a_n & a_{n-1} & a_{n-2} & \cdots & a_2 & x + a_1 \end{pmatrix}$$

72

沿着第一列展开得到

$$|\mathbf{A}_n| = x|\mathbf{A}_{n-1}| + (-1)^{1+n}a_n(-1)^{n-1} = x|\mathbf{A}_{n-1}| + a_n,$$

的行列式

练习

计算矩阵
$$\mathbf{A}_n = \begin{pmatrix} x & -1 & 0 & \cdots & 0 & 0 \\ 0 & x & -1 & \cdots & 0 & 0 \\ 0 & 0 & x & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & x & -1 \\ a_n & a_{n-1} & a_{n-2} & \cdots & a_2 & x + a_1 \end{pmatrix}$$

解

沿着第一列展开得到

$$|\mathbf{A}_n| = x|\mathbf{A}_{n-1}| + (-1)^{1+n}a_n(-1)^{n-1} = x|\mathbf{A}_{n-1}| + a_n,$$

的行列式

因此 $|\mathbf{A}_n| = x^n + a_1 x^{n-1} + a_2 x^{n-2} + \dots + a_n$.

练习

计算矩阵
$$\mathbf{A}_n = \begin{pmatrix} 1 & 2 & 1 & \cdots & 0 & 0 \\ 0 & 1 & 2 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 2 & 1 \\ 0 & 0 & 0 & \cdots & 1 & 2 \end{pmatrix}$$

的行列式.

解

设 $\overline{D_n} = |\mathbf{A}_n|$.

解

设 $D_n = |\mathbf{A}_n|$. 沿着第一列展开得到

$$|\mathbf{A}_n| = 2|\mathbf{A}_{n-1}| - \begin{vmatrix} 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 2 & 1 & \cdots & 0 & 0 \\ 0 & 1 & 2 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 2 & 1 \\ 0 & 0 & 0 & \cdots & 1 & 2 \end{vmatrix} = 2|\mathbf{A}_{n-1}| - |\mathbf{A}_{n-2}|,$$

解

设 $D_n = |\mathbf{A}_n|$. 沿着第一列展开得到

$$|\mathbf{A}_n| = 2|\mathbf{A}_{n-1}| - \begin{vmatrix} 1 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 2 & 1 & \cdots & 0 & 0 \\ 0 & 1 & 2 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 2 & 1 \\ 0 & 0 & 0 & \cdots & 1 & 2 \end{vmatrix} = 2|\mathbf{A}_{n-1}| - |\mathbf{A}_{n-2}|,$$

因此

$$|\mathbf{A}_n| - |\mathbf{A}_{n-1}| = |\mathbf{A}_{n-1}| - |\mathbf{A}_{n-2}| = \dots = |\mathbf{A}_2| - |\mathbf{A}_1| = 1,$$

解

设 $D_n = |\mathbf{A}_n|$. 沿着第一列展开得到

$$|\mathbf{A}_n| = 2|\mathbf{A}_{n-1}| - \begin{vmatrix} 1 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 2 & 1 & \cdots & 0 & 0 \\ 0 & 1 & 2 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 2 & 1 \\ 0 & 0 & 0 & \cdots & 1 & 2 \end{vmatrix} = 2|\mathbf{A}_{n-1}| - |\mathbf{A}_{n-2}|,$$

因此

$$|\mathbf{A}_n| - |\mathbf{A}_{n-1}| = |\mathbf{A}_{n-1}| - |\mathbf{A}_{n-2}| = \dots = |\mathbf{A}_2| - |\mathbf{A}_1| = 1,$$

从而 $|\mathbf{A}_n| = n - 1 + |\mathbf{A}_1| = n + 1.$

如果主对角线元素均为 2a, 上下副对角线元素均为 b 和 c, 则

$$|\mathbf{A}_n| - 2a|\mathbf{A}_{n-1}| + bc|\mathbf{A}_{n-2}| = 0.$$

如果主对角线元素均为 2a, 上下副对角线元素均为 b 和 c, 则

$$|\mathbf{A}_n| - 2a|\mathbf{A}_{n-1}| + bc|\mathbf{A}_{n-2}| = 0.$$

这种线性递推数列有通用解法.

如果主对角线元素均为 2a, 上下副对角线元素均为 b 和 c, 则

$$|\mathbf{A}_n| - 2a|\mathbf{A}_{n-1}| + bc|\mathbf{A}_{n-2}| = 0.$$

这种线性递推数列有通用解法. 设 $\lambda^2-2a\lambda+bc=0$ 的两个根为 λ_1,λ_2 , 则

$$|\mathbf{A}_n| = \begin{cases} \frac{\lambda_1^{n+1} - \lambda_2^{n+1}}{\lambda_1 - \lambda_2}, & \text{min } \lambda_1 \neq \lambda_2; \\ (n+1)a^n, & \text{min } \lambda_1 = \lambda_2 = a. \end{cases}$$

练习

口果
$$\mathbf{A} = egin{pmatrix} a_1 & a_2 & a_3 & f \ b_1 & b_2 & b_3 & f \ c_1 & c_2 & c_3 & f \ d_1 & d_2 & d_3 & f \end{pmatrix}$$
,那么 $A_{11} + A_{21} + A_{31} + A_{41} =$ _

练习

$$\mathbf{A} = \begin{pmatrix} a_1 & a_2 & a_3 & f \\ b_1 & b_2 & b_3 & f \\ c_1 & c_2 & c_3 & f \\ d_1 & d_2 & d_3 & f \end{pmatrix}, 那么 A_{11} + A_{21} + A_{31} + A_{41} = \underline{\quad 0 \quad }.$$

练习

如果
$$\mathbf{A} = \begin{pmatrix} a_1 & a_2 & a_3 & f \\ b_1 & b_2 & b_3 & f \\ c_1 & c_2 & c_3 & f \\ d_1 & d_2 & d_3 & f \end{pmatrix}$$
, 那么 $A_{11} + A_{21} + A_{31} + A_{41} = \underline{\quad 0 \quad}$.

例 (范德蒙行列式)

设
$$\mathbf{A}_n = \begin{pmatrix} 1 & 1 & 1 & \cdots & 1 \\ x_1 & x_2 & x_3 & \cdots & x_n \\ x_1^2 & x_2^2 & x_3^2 & \cdots & x_n^2 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ x_1^{n-1} & x_2^{n-1} & x_3^{n-1} & \cdots & x_n^{n-1} \end{pmatrix}$$
. 证明 $|\mathbf{A}_n| = \prod_{1 \leq i < j \leq n} (x_j - x_i)$.

证明 归纳证明.

证明

归纳证明. 当 n=1,2 时显然成立.

证明

p 归纳证明. 当 n=1,2 时显然成立. 设 $n\geqslant 3$, 则由 $r_i-x_1r_{i-1}, i=n,n-1,\ldots,2$ 得到

$$|\mathbf{A}_n| = \begin{vmatrix} 1 & 1 & 1 & \cdots & 1 \\ 0 & x_2 - x_1 & x_3 - x_1 & \cdots & x_n - x_1 \\ 0 & x_2(x_2 - x_1) & x_3(x_3 - x_1) & \cdots & x_n(x_n - x_1) \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & x_2^{n-2}(x_2 - x_1) & x_3^{n-2}(x_3 - x_1) & \cdots & x_n^{n-2}(x_n - x_1) \end{vmatrix}$$

续证

沿着第一列展开,然后提取每一列的公因式 (x_j-x_1) 得到

$$|\mathbf{A}_n| = \prod_{j=2}^n (x_j - x_1) \begin{vmatrix} 1 & 1 & \cdots & 1 \\ x_2 & x_3 & \cdots & x_n \\ \vdots & \vdots & \ddots & \vdots \\ x_2^{n-1} & x_3^{n-1} & \cdots & x_n^{n-1} \end{vmatrix}$$

续证

沿着第一列展开,然后提取每一列的公因式 (x_j-x_1) 得到

$$|\mathbf{A}_n| = \prod_{j=2}^n (x_j - x_1) \begin{vmatrix} 1 & 1 & \cdots & 1 \\ x_2 & x_3 & \cdots & x_n \\ \vdots & \vdots & \ddots & \vdots \\ x_2^{n-1} & x_3^{n-1} & \cdots & x_n^{n-1} \end{vmatrix}.$$

由归纳假设可知

$$|\mathbf{A}_n| = \prod_{j=2}^n (x_j - x_1) \cdot \prod_{2 \le i < j \le n} (x_j - x_i) = \prod_{1 \le i < j \le n} (x_j - x_i).$$

5性代数 ▶第一草 行列式 ▶2 行列式的性质 ▶D 三对角和沧德家型行列式

例: 范德蒙行列式的应用

例: 范德蒙行列式的应用

例: 范德蒙行列式的应用

例: 范德蒙行列式的应用

(1) 2,3 阶行列式可用对角线法直接展开.

- (1) 2,3 阶行列式可用对角线法直接展开.
- (2) 上 (下) 三角阵行列式等于对角元的乘积.

- (1) 2,3 阶行列式可用对角线法直接展开.
- (2) 上(下)三角阵行列式等于对角元的乘积.
- (3) 行列式的计算一般需要用到三类初等变换, 创造出足够多的零.

- (1) 2,3 阶行列式可用对角线法直接展开.
- (2) 上 (下) 三角阵行列式等于对角元的乘积.
- (3) 行列式的计算一般需要用到三类初等变换, 创造出足够多的零.
- (4) 行列式沿一行 (列) 的展开往往是降阶法的必要手段.

- (1) 2,3 阶行列式可用对角线法直接展开.
- (2) 上(下)三角阵行列式等于对角元的乘积.
- (3) 行列式的计算一般需要用到<mark>三类初等变换</mark>, 创造出足够多的零.
- (4) 行列式沿一行 (列) 的展开往往是降阶法的必要手段.
- (5) 范德蒙型行列式可处理方阵为元素幂次递增的情形。

第三节 克拉默法则

- 拉普拉斯展开的应用
- 克拉默法则

回顾下拉普拉斯展开:

定理 (行列式沿任一行 (列) 展开, 拉普拉斯展开)

方阵的行列式等于任一行 (列) 的元素与其对应的代数余子式乘积的和:

$$|\mathbf{A}| = a_{i1}A_{i1} + a_{i2}A_{i2} + \dots + a_{in}A_{in}$$

= $a_{1j}A_{1j} + a_{2j}A_{2j} + \dots + a_{nj}A_{nj}$.

回顾下拉普拉斯展开:

定理 (行列式沿任一行 (列) 展开, 拉普拉斯展开)

方阵的行列式等于任一行 (列) 的元素与其对应的代数余子式乘积的和:

$$|\mathbf{A}| = a_{i1}A_{i1} + a_{i2}A_{i2} + \dots + a_{in}A_{in}$$

= $a_{1j}A_{1j} + a_{2j}A_{2j} + \dots + a_{nj}A_{nj}$.

其中代数余子式 A_{ij} 是指去掉方阵 ${\bf A}$ 的 i 行 j 列得到的方阵的行列式的 $(-1)^{i+j}$ 倍.

段
$$\mathbf{A} = \begin{pmatrix} 3 & 0 & 4 & 0 \\ 2 & 2 & 2 & 2 \\ 0 & -7 & 0 & 0 \\ 5 & 2 & 2 & 2 \end{pmatrix}$$

 $\begin{pmatrix} 3 & 0 & 4 & 0 \\ 2 & 2 & 2 & 2 \\ 0 & -7 & 0 & 0 \\ 5 & 3 & -2 & 2 \end{pmatrix}.$ 计算 $A_{41} + A_{42} + A_{43} + A_{44}$ 和 $M_{41} + M_{42} + M_{43} + M_{44}$.

$$\mathbf{A} = \begin{pmatrix} 3 & 0 & 4 & 0 \\ 2 & 2 & 2 & 2 \\ 0 & -7 & 0 & 0 \end{pmatrix}$$

设 $\mathbf{A} = \begin{pmatrix} 3 & 0 & 4 & 0 \\ 2 & 2 & 2 & 2 \\ 0 & -7 & 0 & 0 \\ 5 & 3 & -2 & 2 \end{pmatrix}$. 计算 $A_{41} + A_{42} + A_{43} + A_{44}$ 和 $M_{41} + M_{42} + M_{43} + M_{44}$.

由拉普拉斯展开可知

$$A_{41} + A_{42} + A_{43} + A_{44} = \begin{vmatrix} 3 & 0 & 4 & 0 \\ 2 & 2 & 2 & 2 \\ 0 & -7 & 0 & 0 \\ 1 & 1 & 1 & 1 \end{vmatrix} = 0.$$

续解

$$M_{41} + M_{42} + M_{43} + M_{44} = -A_{41} + A_{42} - A_{43} + A_{44} = \begin{vmatrix} 3 & 0 & 4 & 0 \\ 2 & 2 & 2 & 2 \\ 0 & -7 & 0 & 0 \\ -1 & 1 & -1 & 1 \end{vmatrix}$$

续解

$$M_{41} + M_{42} + M_{43} + M_{44} = -A_{41} + A_{42} - A_{43} + A_{44} = \begin{vmatrix} 3 & 0 & 4 & 0 \\ 2 & 2 & 2 & 2 \\ 0 & -7 & 0 & 0 \\ -1 & 1 & -1 & 1 \end{vmatrix}$$
$$= 7 \begin{vmatrix} 3 & 4 & 0 \\ 2 & 2 & 2 \\ -1 & -1 & 1 \end{vmatrix} = -28.$$

定理 (克拉默法则)

设线性方程组

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\vdots$$

$$a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n,$$

的系数矩阵为 \mathbf{A} , 将 \mathbf{A} 的第 j 列换成 b_1, \ldots, b_n 得到的方阵为 \mathbf{A}_j . 那么当 $|\mathbf{A}| \neq 0$, 该线性方程组有唯一解

$$x_1 = \frac{|\mathbf{A}_1|}{|\mathbf{A}|}, \quad x_2 = \frac{|\mathbf{A}_2|}{|\mathbf{A}|}, \quad \dots, \quad x_n = \frac{|\mathbf{A}_n|}{|\mathbf{A}|}.$$

线性代数 ▶第一章 行列式 ▶3 克拉默法则 ▶B 克拉默法则 田□□□□□□□□□□□□

证明

设 $|\mathbf{A}| \neq 0$. 注意到 $i \neq k$ 时,

$$a_{i1}A_{k1} + a_{i2}A_{k2} + \dots + a_{in}A_{kn} = 0,$$

因为它是第 i,k 行相同的方阵的行列式.

证明

设 $|\mathbf{A}| \neq 0$. 注意到 $i \neq k$ 时,

$$a_{i1}A_{k1} + a_{i2}A_{k2} + \dots + a_{in}A_{kn} = 0,$$

因为它是第 i,k 行相同的方阵的行列式. 方阵 \mathbf{A}_j 沿着第 j 列展开得到

$$|\mathbf{A}_j| = b_1 A_{1j} + b_2 A_{2j} + \dots + b_n A_{nj}.$$

证明

设 $|\mathbf{A}| \neq 0$. 注意到 $i \neq k$ 时,

$$a_{i1}A_{k1} + a_{i2}A_{k2} + \dots + a_{in}A_{kn} = 0,$$

因为它是第 i,k 行相同的方阵的行列式. 方阵 A_j 沿着第 j 列展开得到

$$|\mathbf{A}_j| = b_1 A_{1j} + b_2 A_{2j} + \dots + b_n A_{nj}.$$

因此

$$\sum_{j=1}^{n} a_{ij} |\mathbf{A}_j| = \sum_{j=1}^{n} a_{ij} \sum_{k=1}^{n} b_k A_{kj} = \sum_{k=1}^{n} b_k \sum_{j=1}^{n} a_{ij} A_{kj} = b_i |\mathbf{A}|.$$

证明

设 $|\mathbf{A}| \neq 0$. 注意到 $i \neq k$ 时,

$$a_{i1}A_{k1} + a_{i2}A_{k2} + \dots + a_{in}A_{kn} = 0,$$

因为它是第i,k 行相同的方阵的行列式. 方阵 A_j 沿着第j 列展开得到

$$|\mathbf{A}_j| = b_1 A_{1j} + b_2 A_{2j} + \dots + b_n A_{nj}.$$

因此

$$\sum_{j=1}^{n} a_{ij} |\mathbf{A}_j| = \sum_{j=1}^{n} a_{ij} \sum_{k=1}^{n} b_k A_{kj} = \sum_{k=1}^{n} b_k \sum_{j=1}^{n} a_{ij} A_{kj} = b_i |\mathbf{A}|.$$

所以 $x_i = |\mathbf{A}_i|/|\mathbf{A}|$ 是题述方程的解.

续证 —

再证唯一性. 如果方程有解 x_1,\ldots,x_n ,

续证

再证唯一性. 如果方程有解 x_1,\ldots,x_n ,

$$x_i|\mathbf{A}| = \begin{vmatrix} a_{11} & \cdots & x_i a_{1i} & \cdots & a_{n1} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{n1} & \cdots & x_i a_{ni} & \cdots & a_{nn}. \end{vmatrix}$$

续证

再证唯一性. 如果方程有解 x_1, \ldots, x_n ,

$$x_i|\mathbf{A}| = \begin{vmatrix} a_{11} & \cdots & x_i a_{1i} & \cdots & a_{n1} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{n1} & \cdots & x_i a_{ni} & \cdots & a_{nn}. \end{vmatrix}$$

将所有的 $j \neq i$ 列乘 x_j 并加到第 i 列,则第 i 列元素变成了 b_1, \ldots, b_n .

再证唯一性. 如果方程有解 x_1, \ldots, x_n ,

$$x_i|\mathbf{A}| = \begin{vmatrix} a_{11} & \cdots & x_i a_{1i} & \cdots & a_{n1} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{n1} & \cdots & x_i a_{ni} & \cdots & a_{nn}. \end{vmatrix}$$

将所有的 $j \neq i$ 列乘 x_i 并加到第 i 列,则第 i 列元素变成了 b_1, \ldots, b_n . 因此

 $x_i|\mathbf{A}| = |\mathbf{A}_i|.$

续证

再证唯一性. 如果方程有解 x_1, \ldots, x_n ,

$$x_i|\mathbf{A}| = \begin{vmatrix} a_{11} & \cdots & x_i a_{1i} & \cdots & a_{n1} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{n1} & \cdots & x_i a_{ni} & \cdots & a_{nn}. \end{vmatrix}$$

将所有的 $j \neq i$ 列乘 x_j 并加到第 i 列,则第 i 列元素变成了 b_1, \ldots, b_n . 因此 $x_i | \mathbf{A} | = | \mathbf{A}_i |$.

后面我们将会知道, $|\mathbf{A}| \neq 0$ 实际上方程有唯一解的充分必要条件.

续证

再证唯一性. 如果方程有解 x_1, \ldots, x_n ,

$$x_i|\mathbf{A}| = \begin{vmatrix} a_{11} & \cdots & x_i a_{1i} & \cdots & a_{n1} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{n1} & \cdots & x_i a_{ni} & \cdots & a_{nn}. \end{vmatrix}$$

将所有的 $j \neq i$ 列乘 x_j 并加到第 i 列,则第 i 列元素变成了 b_1, \ldots, b_n . 因此 $x_i | \mathbf{A} | = | \mathbf{A}_i |$.

后面我们将会知道, $|\mathbf{A}| \neq 0$ 实际上方程有唯一解的充分必要条件. 因此我们定义的行列式确实起到了线性方程组的"判别式"的作用.

续证

再证唯一性. 如果方程有解 x_1,\ldots,x_n ,

$$x_i|\mathbf{A}| = \begin{vmatrix} a_{11} & \cdots & x_i a_{1i} & \cdots & a_{n1} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{n1} & \cdots & x_i a_{ni} & \cdots & a_{nn}. \end{vmatrix}$$

将所有的 $j \neq i$ 列乘 x_j 并加到第 i 列,则第 i 列元素变成了 b_1, \ldots, b_n . 因此 $x_i | \mathbf{A} | = | \mathbf{A}_i |$.

后面我们将会知道, $|\mathbf{A}| \neq 0$ 实际上方程有唯一解的充分必要条件. 因此我们定义的行列式确实起到了线性方程组的 "判别式"的作用.

注意到如果 (a_1,\ldots,a_n) 和 (b_1,\ldots,b_n) 都是上述方程组的解, 那么 $x_i=\lambda a_i+(1-\lambda)b_i$ 也是该方程组的解.

续证

再证唯一性. 如果方程有解 x_1, \ldots, x_n ,

$$x_i|\mathbf{A}| = \begin{vmatrix} a_{11} & \cdots & x_i a_{1i} & \cdots & a_{n1} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{n1} & \cdots & x_i a_{ni} & \cdots & a_{nn}. \end{vmatrix}$$

将所有的 $j \neq i$ 列乘 x_j 并加到第 i 列,则第 i 列元素变成了 b_1, \ldots, b_n . 因此 $x_i | \mathbf{A} | = | \mathbf{A}_i |$.

后面我们将会知道, $|\mathbf{A}| \neq 0$ 实际上方程有唯一解的充分必要条件. 因此我们定义的行列式确实起到了线性方程组的 "判别式"的作用.

注意到如果 (a_1,\ldots,a_n) 和 (b_1,\ldots,b_n) 都是上述方程组的解, 那么 $x_i=\lambda a_i+(1-\lambda)b_i$ 也是该方程组的解. 也就是说, 如果上述方程组解不唯一, 那么一定有无穷多解.

续证

再证唯一性. 如果方程有解 x_1, \ldots, x_n ,

$$x_i|\mathbf{A}| = \begin{vmatrix} a_{11} & \cdots & x_i a_{1i} & \cdots & a_{n1} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{n1} & \cdots & x_i a_{ni} & \cdots & a_{nn}. \end{vmatrix}$$

将所有的 $j \neq i$ 列乘 x_j 并加到第 i 列,则第 i 列元素变成了 b_1, \ldots, b_n . 因此 $x_i | \mathbf{A} | = | \mathbf{A}_i |$.

后面我们将会知道, $|\mathbf{A}| \neq 0$ 实际上方程有唯一解的充分必要条件. 因此我们定义的行列式确实起到了线性方程组的 "判别式"的作用.

注意到如果 (a_1,\ldots,a_n) 和 (b_1,\ldots,b_n) 都是上述方程组的解, 那么 $x_i=\lambda a_i+(1-\lambda)b_i$ 也是该方程组的解. 也就是说, 如果上述方程组解不唯一, 那么一定有无穷多解. 所以当 $|\mathbf{A}|=0$, 那么方程无解或有无穷多解.

如果
$$\begin{cases} \lambda x_1 + x_2 + x_3 = 1 \\ x_1 + \lambda x_2 + x_3 = 1 \\ x_1 + x_2 + \lambda x_3 = -2 \end{cases}$$
 有无穷多解, 则 $\lambda =$ _____

例

如果 $\begin{cases} \lambda x_1 + x_2 + x_3 = 1 \\ x_1 + \lambda x_2 + x_3 = 1 \\ x_1 + x_2 + \lambda x_3 = -2 \end{cases}$ 有无穷多解, 则 $\lambda =$ _____.

解

$$0 = \begin{vmatrix} \lambda & 1 & 1 \\ 1 & \lambda & 1 \\ 1 & 1 & \lambda \end{vmatrix} = \lambda^3 + 2 - 3\lambda = (\lambda - 1)^2 (\lambda + 2).$$

例

如果 $\begin{cases} \lambda x_1 + x_2 + x_3 = 1 \\ x_1 + \lambda x_2 + x_3 = 1 \\ x_1 + x_2 + \lambda x_3 = -2 \end{cases}$ 有无穷多解,则 $\lambda =$ _____.

解

$$0 = \begin{vmatrix} \lambda & 1 & 1 \\ 1 & \lambda & 1 \\ 1 & 1 & \lambda \end{vmatrix} = \lambda^3 + 2 - 3\lambda = (\lambda - 1)^2 (\lambda + 2).$$

因此 $\lambda = 1$ 或 -2.

例

如果
$$\begin{cases} \lambda x_1 + x_2 + x_3 = 1 \\ x_1 + \lambda x_2 + x_3 = 1 \\ x_1 + x_2 + \lambda x_3 = -2 \end{cases}$$
 有无穷多解,则 $\lambda =$ _____.

解

$$0 = \begin{vmatrix} \lambda & 1 & 1 \\ 1 & \lambda & 1 \\ 1 & 1 & \lambda \end{vmatrix} = \lambda^3 + 2 - 3\lambda = (\lambda - 1)^2 (\lambda + 2).$$

因此 $\lambda = 1$ 或 -2. 显然 $\lambda = 1$ 时无解.

如果
$$\begin{cases} \lambda x_1 + x_2 + x_3 = 1 \\ x_1 + \lambda x_2 + x_3 = 1 \\ x_1 + x_2 + \lambda x_3 = -2 \end{cases}$$
 有无穷多解, 则 $\lambda =$ _____.

$$0 = \begin{vmatrix} \lambda & 1 & 1 \\ 1 & \lambda & 1 \\ 1 & 1 & \lambda \end{vmatrix} = \lambda^3 + 2 - 3\lambda = (\lambda - 1)^2 (\lambda + 2).$$

因此 $\lambda = 1$ 或 -2. 显然 $\lambda = 1$ 时无解. $\lambda = -2$ 时. $x_1 = t, x_2 = -t, x_3 = 1$ 是方程 的解.

例

如果
$$\begin{cases} \lambda x_1 + x_2 + x_3 = 1 \\ x_1 + \lambda x_2 + x_3 = 1 \\ x_1 + x_2 + \lambda x_3 = -2 \end{cases}$$
 有无穷多解,则 $\lambda =$ _____.

解

$$0 = \begin{vmatrix} \lambda & 1 & 1 \\ 1 & \lambda & 1 \\ 1 & 1 & \lambda \end{vmatrix} = \lambda^3 + 2 - 3\lambda = (\lambda - 1)^2 (\lambda + 2).$$

因此 $\lambda = 1$ 或 -2. 显然 $\lambda = 1$ 时无解. $\lambda = -2$ 时, $x_1 = t, x_2 = -t, x_3 = 1$ 是方程的解. 因此 $\lambda = -2$.

如果线性方程组的常数都是零,即

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = 0 \\ \vdots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = 0, \end{cases}$$

称之为齐次线性方程组. 否则称之为非齐次线性方程组.

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = 0 \\ \vdots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = 0, \end{cases}$$

称之为齐次线性方程组. 否则称之为非齐次线性方程组.

显然 $x_1 = \cdots = x_n = 0$ 是齐次线性方程组的解, 称为零解. 其它解被称为非零解.

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = 0 \\ \vdots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = 0, \end{cases}$$

称之为齐次线性方程组. 否则称之为非齐次线性方程组.

显然 $x_1 = \cdots = x_n = 0$ 是齐次线性方程组的解, 称为零解. 其它解被称为非零解. 因此此时系数矩阵行列式 $|\mathbf{A}| = 0 \iff$ 方程有 (无穷多) 非零解.

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = 0 \\ \vdots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = 0, \end{cases}$$

称之为齐次线性方程组. 否则称之为非齐次线性方程组.

显然 $x_1 = \cdots = x_n = 0$ 是齐次线性方程组的解, 称为零解. 其它解被称为非零解. 因此此时系数矩阵行列式 $|\mathbf{A}| = 0 \iff$ 方程有 (无穷多) 非零解.

练习

如果
$$\begin{cases} \lambda x_1 + x_2 + x_3 = 0 \\ x_1 + \lambda x_2 + x_3 = 0 \end{cases}$$
 有非零解,则 $\lambda =$ _____.

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = 0 \\ \vdots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = 0, \end{cases}$$

称之为齐次线性方程组. 否则称之为非齐次线性方程组.

显然 $x_1 = \cdots = x_n = 0$ 是齐次线性方程组的解, 称为零解. 其它解被称为非零解. 因此此时系数矩阵行列式 $|\mathbf{A}| = 0 \iff$ 方程有 (无穷多) 非零解.

练习

如果
$$\begin{cases} \lambda x_1 + x_2 + x_3 = 0 \\ x_1 + \lambda x_2 + x_3 = 0 \\ x_1 + x_2 + \lambda x_3 = 0 \end{cases}$$
 有非零解,则 $\lambda = 2, -1$.

例

证明: 如果三条不同的直线

$$ax + by + c = 0$$
$$bx + cy + a = 0$$
$$cx + ay + b = 0$$

相交于一点,则 a+b+c=0.

例

证明: 如果三条不同的直线

$$ax + by + c = 0$$
$$bx + cy + a = 0$$
$$cx + ay + b = 0$$

相交于一点,则 a+b+c=0.

证明

线性方程组
$$\begin{cases} ax_1 + bx_2 + cx_3 = 0 \\ bx_1 + cx_2 + ax_3 = 0 \end{cases}$$
 有非零解 $(x, y, 1)$. $cx_1 + ax_2 + bx_3 = 0$

例

证明: 如果三条不同的直线

$$ax + by + c = 0$$
$$bx + cy + a = 0$$
$$cx + ay + b = 0$$

相交于一点,则 a+b+c=0.

证明

线性方程组
$$\begin{cases} ax_1 + bx_2 + cx_3 = 0 \\ bx_1 + cx_2 + ax_3 = 0 \\ cx_1 + ax_2 + bx_3 = 0 \end{cases}$$
 有非零解 $(x, y, 1)$. 因此
$$\begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \end{vmatrix} = 0.$$

$$\begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \end{vmatrix} = (a+b+c) \begin{vmatrix} 1 & 1 & 1 \\ b & c & a \\ c & a & b \end{vmatrix}$$

续证

$$\begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \end{vmatrix} = (a+b+c) \begin{vmatrix} 1 & 1 & 1 \\ b & c & a \\ c & a & b \end{vmatrix}$$
$$= (a+b+c)(bc+ac+ab-a^2-b^2-c^2)$$

续证

$$\begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \end{vmatrix} = (a+b+c) \begin{vmatrix} 1 & 1 & 1 \\ b & c & a \\ c & a & b \end{vmatrix}$$
$$= (a+b+c)(bc+ac+ab-a^2-b^2-c^2)$$
$$= -\frac{1}{2}(a+b+c)[(a-b)^2+(b-c)^2+(c-a)^2].$$

续证

$$\begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \end{vmatrix} = (a+b+c) \begin{vmatrix} 1 & 1 & 1 \\ b & c & a \\ c & a & b \end{vmatrix}$$
$$= (a+b+c)(bc+ac+ab-a^2-b^2-c^2)$$
$$= -\frac{1}{2}(a+b+c)[(a-b)^2+(b-c)^2+(c-a)^2].$$

由于这是三条不同直线, 因此 a,b,c 不可能全部相等, 从而 a+b+c=0.

续证

$$\begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \end{vmatrix} = (a+b+c) \begin{vmatrix} 1 & 1 & 1 \\ b & c & a \\ c & a & b \end{vmatrix}$$
$$= (a+b+c)(bc+ac+ab-a^2-b^2-c^2)$$
$$= -\frac{1}{2}(a+b+c)[(a-b)^2+(b-c)^2+(c-a)^2].$$

由于这是三条不同直线, 因此 a,b,c 不可能全部相等, 从而 a+b+c=0.

想一想: 为什么 a+b+c=0 时, 三条直线一定相交于一点?

小结

使用克拉默法则解线性方程组需要: (1) 方程组的数量和未知数数量相同; (2) 系数矩阵行列式非零.

小结

使用克拉默法则解线性方程组需要: (1) 方程组的数量和未知数数量相同; (2) 系数矩阵行列式非零. 但由于使用克拉默法则计算量较大, 一般不使用该方法解方程, 仅用于理论研究.

使用克拉默法则解线性方程组需要: (1) 方程组的数量和未知数数量相同; (2) 系数矩阵行列式非零. 但由于使用克拉默法则计算量较大, 一般不使用该方法解方程, 仅用于理论研究.

练习

设 $a_1 + \cdots + a_n \neq 0$. 何时线性方程组

$$\begin{cases} (a_1 + b)x_1 + a_2x_2 + \dots + a_nx_n = 0 \\ a_1x_1 + (a_2 + b)x_2 + \dots + a_nx_n = 0 \\ \vdots \\ a_1x_1 + a_2x_2 + \dots + (a_n + b)x_n = 0 \end{cases}$$

零解?

使用克拉默法则解线性方程组需要: (1) 方程组的数量和未知数数量相同; (2) 系数矩阵行列式非零. 但由于使用克拉默法则计算量较大, 一般不使用该方法解方程, 仅用于理论研究.

练习

设 $a_1 + \cdots + a_n \neq 0$. 何时线性方程组

$$(a_1 + b)x_1 + a_2x_2 + \dots + a_nx_n = 0$$

$$a_1x_1 + (a_2 + b)x_2 + \dots + a_nx_n = 0$$

$$\vdots$$

$$a_1x_1 + a_2x_2 + \dots + (a_n + b)x_n = 0$$

零解? b = 0.

练习

设 a_i 两两不同. 解方程组

$$\begin{cases} x_1 + a_1 x_2 + \dots + a_1^{n-1} x_n = 1 \\ x_1 + a_2 x_2 + \dots + a_2^{n-1} x_n = 1 \\ \vdots \\ x_1 + a_n x_2 + \dots + a_n^{n-1} x_n = 1 \end{cases}$$

练习

设 a_i 两两不同. 解方程组

$$\begin{cases} x_1 + a_1 x_2 + \dots + a_1^{n-1} x_n = 1 \\ x_1 + a_2 x_2 + \dots + a_2^{n-1} x_n = 1 \\ \vdots \\ x_1 + a_n x_2 + \dots + a_n^{n-1} x_n = 1 \end{cases}$$

答案

由于系数矩阵行列式为范德蒙行列式

$$\prod_{1 \le i < j \le n} (a_j - a_i) \ne 0,$$

因此方程有唯一解 $x_1 = 1, x_2 = \cdots = x_n = 0.$