Компьютерная практика 4, Васильев Павел ФТ-104-1

1 задание

Для начала найду линейное многообразие $\vec{c}+M$ размерности не больше k=2, для которого сумма квадратов расстояний $\sum_{i=1}^n d(\vec{x_i},c+M)^2$ минимальна. Есть теорема, которая говорит следующее: Пусть для $\vec{x_1},...,\vec{x_n}$ в пространстве со скалярным произведением имеем $\vec{c}+M$ - это линейное

Пусть для $\vec{x_1},...,\vec{x_n}$ в пространстве со скалярным произведением имеем $\vec{c}+M$ - это линейное многобразие размерности не больше k такое, что для любого многообразия $\vec{c}'+M'$ размерности не больше k выполняется

$$\sum_{i=1}^{n} d(\vec{x_i}, c+M)^2 \le \sum_{i=1}^{n} d(\vec{x_i}, c'+M')^2$$

Тогда выполняется:

$$\vec{c} + M = \left(\frac{1}{n} \sum_{i=1}^{n} \vec{x_i}\right) + M$$

To есть
$$\vec{c} = \frac{1}{n} \left(\sum_{i=1}^{n} \vec{x_i} \right)$$

Для поиска наилучшего приближения $\vec{x_1},...,\vec{x_n}$ многообразием достаточно найти для векторов $\vec{x_1} - \vec{c},...,\vec{x_n} - \vec{c}$ приближение подпространством M и тогда искомое многообразие имеет вид $\vec{c} + M$. А подпространство M я получу через сингулярное разложение и использую следующую теорему:

Пусть координаты векторов $\vec{x_1}, \vec{x_2}, ..., \vec{x_n}$ в некотором ортонормированном базисе записаны в строках $n \times m$ матрицы B с сингулярным разложением $B = RAS^*$ и $\vec{s_1}, \vec{s_2}, ..., \vec{s_m}$ - это векторы, чьи координаты $[\vec{s_1}], [\vec{s_2}], ..., [\vec{s_m}]$ в том же базисе записаны в столбцах матрицы S (так что $||B[\vec{s_1}]|| \ge ... \ge ||B[\vec{s_m}||)$). Тогда для любого подпространства M размерности не больше k имеем

$$\sum_{i=1}^{n} d(\vec{x_i}, \langle \vec{s_1}, \vec{s_2}, ..., \vec{s_k} \rangle)^2 \le \sum_{i=1}^{n} d(\vec{x_i}, M)^2$$

Таким образом, для получения ответа мы нормируем исходные вектора и из каждого вектора вычтем $q=\frac{1}{n}\left(\sum_{i=1}^n \vec{x_i}\right)$. Затем выполним сингулярное разложение и возьмём первые два вектора из столбцов матрицы S (так как мы просто в теорему подставим k=2.

А так как функция должна вернуть два вектора: точка и нормаль плоскости, то вернём q и векторное произведение первых двух первых векторов из столбцов матрицы S.

2 задание

Заметим, что, максимизируя
$$\sum_{q \in Q} d(q, \langle p_1, ..., p_k \rangle^{\perp})^2$$
, мы минимизируем $\sum_{q \in Q} d(q, \langle p_1, ..., p_k \rangle)^2$.

Мы можем использовать теоремы, изложенные выше (на пространстве матриц в формулировке задания определено скалярное произведение, а пространство матриц $m \times n$ со скалярным произведением: $(p,q) = \sum_{i=1}^m \sum_{j=1}^n p_{ij}q_{ij}$ (где $p,q \in \mathbb{R}^{m \times n}$) изоморфно пространству строк длины $n \cdot m$).

Тогда построим матрицу, составленную из матриц (которые являются аргументом нашей функции), преобразованных в строки, и для неё найдём сингулярное разложение. Затем возьмём первые k векторов из матрицы S и обратно "превратим" их в матрицы.