PATENT SPECIFICATION

NO DRAWINGS

922,458

Date of Application and filing Complete Specification: June 1, 1959. No. 18639/59.

Application made in Germany (No. F25875 IVb/39c) on May 31, 1958. Complete Specification Published: April 3, 1963.

Index at acceptance:—Class 2(6), G1(B1:C1), G2B, G3(A2:C2:C3), G4A. International Classification:—C08f.

COMPLETE SPECIFICATION

Modified Polyvinyl Alcohols and process for preparing same

We, FARBWERKE HOECHST AKTIEN-GESELLSCHAFT vormals Meister Lucius & Brüning, a body corporate recognised under German Law, of Frankfurt (M)-Hoechst, Germany, do hereby declare the invention, for which we pray that a patent may be granted to us, and the method by which it is to be performed, to be particularly described in and by the following statement:—

The present invention relates to modified polyvinyl alcohols and a process for preparing same.

A number of processes for the manufacture of water-soluble modified polyvinyl alcohols are known. They consist essentially in

1) partially hydrolyzing or alcoholysing polyvinyl esters in an acid or alkaline medium. Polyvinyl acetate can, for example, be alcoholised in a manner such that 10 to 15% of residual units of acetate remain in the polyvinyl alcohol with retention of the solubility in water;

2) completely or partially hydrolyzing or alcoholysing copolymers of vinyl esters or such polyvinyl esters as contain relatively large amounts of residual catalyst.

Specification No. 818,037, for example, discloses the preparation of special highly viscous, soluble polyvinyl alcohols by hydrolysis of polyvinyl acetates which have been prepared in the presence of dioleyl peroxide.

pared in the presence of dioleyl peroxide.

Specification No. 857,147 describes the manufacture of highly viscous, soluble polyvinyl alcohols by hydrolysis of copolymers of vinyl acetate and vinyl ethers containing more than 6 carbon atoms.

It is also known to prepare modified polyvinyl alcohols by partially hydrolyzing copolymers of different vinyl esters with due regard to the different speeds of hydrolysis corresponding to the different ester groups as is possible, for example, when copolymers of vinyl formate and vinyl stearate are used.

3) reacting the polyvinyl alcohol with other

reactive compounds either during hydrolysis 45 or after its isolation.

A number of processes relating to this reaction, for example a partial acetalization or ketalization of the polyvinyl alcohol with an aldehyde or a ketone, have been described. This group of processes also comprises subsequent partial esterifications, for example cyano-ethylation and oxyethylation, esterifications.

The subsequent reactions of polyvinyl alcohol are in most cases complicated and expensive processes. The oxyethylation of polyvinyl alcohol has, for example, in some cases to be carried out under pressure in an autoclave. It is often difficult to separate residual excess of the catalyst or other reagents from the reaction mixture. The products are consequently in most cases discoloured and inhomogeneous.

The general technical purposes of the modification of polyvinyl alcohol are, for example, the modification of its viscosity properties, that is to say the viscosity of its solution in water, and its surface-active or interfacially active properties. The processes described in some patent specifications are also directed to the preparation of polyvinyl alcohols insoluble in water, which is of importance as regards the use of polyvinyl alcohol as a plastic.

A quite different object of the modification of polyvinyl alcohol is the preparation of a polyvinyl alcohol having a better solubility in water as is required, for example, in the packaging industry for the preparation of water-soluble packing materials. As is known, the commercial varieties of polyvinyl alcohol do not dissolve very rapidly in cold or hot water and often they do not quite dissolve completely.

Another object of the modification of polyvinyl alcohol is the plasticizing of the polyvinyl alcohol film, which is generally brittle

and to which a good and lasting plasticizing can be imparted only with difficulty.

2

It is known that polyvinyl alcohol is a good protective colloid as results from the determination of the so-called gold number. Polyvinyl alcohol is, however, not very surface-active. If 1% by weight of polyvinyl alcohol is dissolved in water, the value of the surface tension of water which is about 72 dynes/cm 10 at 20°C. decreases to about 55 to 60 dynes/ cm. An aqueous soap solution of 1% strength, on the other hand, has a surface tension of 28 to about 33 dynes/cm. Hence it follows that soap excels polyvinyl alcohol as regards 15 surface-active properties. The surface-active properties of polyvinyl alcohol can be notably improved by modifying the latter with hydrophobic residues. If a polyvinyl alcohol containing 15% of propionyl or isobutyryl radicals 20 is dissolved in water so as to yield a solution of 1% strength, the surface tension obtained amounts to about 37 or 32 dynes/cm, respectively.

The preparation even of small quantities and certainly of large quantities of polyvinyl alcohols containing residual acyl groups is not a simple process but a process necessitating the exact observation of strictly limited reaction conditions.

Products of the aforesaid kind are, of course, very valuable as regards their industrial use since they combine the properties of a good protective colloid with those of an extremely surface-active substance and this is very important, for example, when polyvinyl alcohol is used as a textile auxiliary, for example as a dressing agent, or when it is used as an emulsifier colloid in polymerization processes carried out in the aqueous phase.

According to the present state of the art the improvement of the surface-active properties of polyvinyl alcohol by an increased introduction of hydrophobic groups is limited since the solubility of such products in water soon decreases. It is known, for example, that the product obtained by hydrolyzing a copolymer of vinyl acetate with only a relatively small quantity of ethylene is insoluble in

If the content of free hydroxyl groups in the polyvinyl alcohol is decreased the latter may still be soluble in cold water but when a solution thus obtained which is at first clear is heated, phenomena of flocculation soon occur. The temperature at which the first flocculation phenomena can be observed is called the turbidity point. Due to these phenomena of flocculation the application of modified polyvinyl alcohols having improved surface-active properties is, of course, considerably limited. Polyvinyl alcohols of this kind are, for example, not suitable for use in polymerization reactions conducted in the aqueous phase at elevated temperatures. Polyvinyl alcohols containing 40% of residual acetate units dissolve in water only at room temperature and they already precipitate at a temperature of only 35°C. (cf. Kainer, "Polyvinylalkohole", page 43, Stuttgart, 1949). The turbidity point of polyvinyl alcohols containing 15% of propionyl radicals and having a solution viscosity of about 80 centipoises (determined in a solution of 4% strength in water at 20°C.) is about 50°C.; polyvinyl alcohols containing 7% of propionyl radicals and having a viscosity of 30 to 40 centipoises have a turbidity point of 65°C. The situation is even more unfavourable if the polyvinyl alcohol contains longer organic residues, for example stearyl residues.

The plasticizing of polyvinyl alcohol is in general brought about externally, for example by means of glycerol. The external plasticizing has, however, considerable disadvantages which are due to the migration of the plasticizer which occurs especially readily in the case of polyvinyl alcohol. For the reasons that have already been mentioned, it has hitherto been impossible to bring about a so-called "internal plasticizing" of polyvinyl alcohol by means of the corresponding copolymers which are used as starting material or by subsequent reactions, for example oxyethylation, in a satisfactory way.

The present invention is based on the observation that modified water-soluble polyvinyl alcohols (as hereinafter defined) having improved properties can be prepared in a very simple manner by subjecting graft-polymers which have been prepared in the homogeneous phase, for example by the process described in Specification No. 12886/59 (Serial No. 922,457), from vinyl esters and polyalkylene glycols, to an alkaline or acid hydrolysis or alcoholysis, using a method 105 known per se.

By modified polyvinyl alcohols obtained by the process of the invention are to be understood water-soluble polymeric compounds constituted by at least 50% by weight 110 of units of the formula —CH₂—CH—.

ÓΗ

The hydrolysis is carried out, either partially or completely, in batches or continuously, in known manner in the presence of solvents or mixtures of solvents, for example methanol or a mixture of methanol with methyl acetate, and, if desired, in an inert atmosphere, for

example, in the presence of nitrogen.

When an alkaline hydrolysis or alcoholysis is carried out, the catalyst is, for example, an alkali metal hydroxide, preferably sodium or potassium hydroxide, dissolved in methanol. In general it suffices to add the alkali metal in a catalytic amount. The addition, for example, of 0.2 to 5.0% by weight of sodium hydroxide, calculated on the polymer to be hydrolyzed, is sufficient. It is, however, also

922,458

possible to add larger quantities, for example molar quantities. The hydrolysis may be carried out at room temperature, for example at 20°C., or at higher temperatures, for example at the boiling temperatures of the solvent or solvents, for example at 57°C. The hydrolysis or alcoholysis in the presence of an acid is carried out, for example, by means of the usual mineral acids, for example sulphuric acid or hydrochloric acid. This operation is usually carried out at the boiling temperature of the solvent, it may, however, also be carried out at lower temperatures, for example at a temperature within the range 15 of 20 to 30°C.

The graft polymers used as starting materials in the process of the invention are prepared by the process described in Specification No. 12886/59 (Serial No. 922,457) mentioned above by polymerizing vinyl esters, for example vinyl acetate, vinyl propionate, vinyl butyrate or vinyl stearate, preferably vinyl acetate, in homogeneous phase, alone or in admixture with one another in the absence or presence of other copolymerizable compounds, in the presence of polyalkylene glycols or their derivatives, and, if desired, also using solvents. As polyalkylene glycols suitable for use in the process of the invention there may be mentioned by way of example polyethylene glycols, polypropylene glycols and the other homologues having a molecular weight within the range of about 400 to several millions, oxyethylated polypropylene glycols and deriva-35 tives of the aforesaid compounds, for example polyalkylene glycols, one or both terminal hydroxyl groups of which are etherified or esterified and polyalkylene glycols, one or both hydroxyl groups of which are substituted 40 by mono- or polyfunctional amines or amides, and the reaction products of polyalkylene

glycols with mono- or polyisocyanates. The graft polymers used as starting materials in the process of the invention contain about 0.1 to about 50% by weight, preferably 0.1 to 20% by weight of the abovementioned polyalkylene glycols which are chemically bound and which are present in the said polymers either alone or in admixture 50 one with another.

The quantities of polyalkylene glycol or glycols which have been bound in the graft polymer used as starting material are completely preserved in the hydrolysis product. It was not at all to be foreseen that the structure of the graft polymer used as starting material would be preserved when the polymer was subjected to a chemical reaction, for example hydrolysis or alcoholysis.

Due to the large number of graft polymers that may be used as starting materials, it is possible to prepare polyvinyl alcohols which have a variety of new and interesting proper-

65 The various methods that are known for

carrying out an alkaline or acid hydrolysis or alcoholysis of polyvinyl esters and which are also applicable to the above-mentioned graft polymers, offer further possibilities of modifying the properties of polyvinyl alcohols. The methods for a partial acid or alkaline hydrolysis may also be applied.

The new modified polyvinyl alcohols are colourless or only slightly coloured loose powders which can easily be dissolved in water.

Polyalkylene glycols, especially polyethylene glycol and its derivatives, have the general property of being soluble in alcohols and of being at the same time hydrophilic. This property is imparted to a certain extent to the graft polymers and accordingly to the hydrolysis products obtained from the graft poly-

This property involves a technical advantage even as regards the hydrolysis process, since the viscosities of the reaction mixtures obtained by the hydrolysis of graft polymers are far smaller than the temporarily high viscosity of the hydrolysis or alcoholysis mixtures of ordinary polyvinyl esters which leads to the formation of the so-called thick phase.

In order to suppress this highly viscous phase it has hitherto been necessary to use agitators having extraordinarily strong driving mechanisms or to add certain solvents, for example gasoline, to the reaction mix-tures. The addition of these solvents necessitates a subsequent fractional distillation of solvent for recovery. Both measures have hitherto much increased the cost of the preparation of polyvinyl alcohol.

The hydrophilic properties of the polyalkylene glycols contained in the hydrolysis 105 products obtained by the process of the invention improve the solubility in water of the hydrolysis products. For example, when a graft polymer is partially hydrolyzed or hydrolyzed and simultaneously or subsequently partially acetalized by one of the known methods mentioned above, products are formed which are completely soluble in water even in cases in which corresponding hydrolysis products obtained from ordinary polyvinyl esters exhibit phenomena of turbidity and flocculation in water at an elevated tem-

In this connection it should be mentioned that the rate of solution in water of the new modified polyvinyl alcohols is high as compared to the rate of solution of the polyvinyl alcohols or derivatives thereof which have hitherto been known. This is another technical advantage.

For the reasons that have already been mentioned, the new modified polyvinyl alcohols are used with special advantage as surface-active and interfacially active substances and as protective colloids, for 130

3

example as emulsifiers for dispersion poly-

With regard to the use of the new products as surface-active agents it must also be mentioned that polyvinyl alcohols, preferably those containing polypropylene glycols or their derivatives in a chemically bound form, are excellent surface-active protective colloids. For example, at 20°C. in an aqueous solution of 1% strength, a polyvinyl alcohol containing 20% by weight of residues of polypropylene glycol having a molecular weight of 2,000 reduces the surface tension of the water to about 37 dynes/cm (the initial value of the surface tension of the water being 72 dynes/cm), whereas an aqueous solution of 1% strength of a polyvinyl alcohol containing 15% by weight of residual acetyl groups reduces the surface tension of the water only to about 45 dynes/cm. Moreover, the preparation of the first-mentioned polyvinyl alcohol is much easier than that of the polyvinyl alcohol containing acetyl groups.

Another technical advantage of the process of the invention is that foils prepared from polyvinyl alcohols which preferably contain chemically bound long-chain polyalkylene glycols, are softer when exposed to air than the corresponding usual foils of polyvinyl alcohol.

A small quantity of water which is bound very firmly like oxonium to the units of the polyglycollic ether contained in the modified polyvinyl alcohols obtained by the process of the invention and which cannot easily be removed by usual drying, can be regarded as an efficient "plasticizer" for the foils pre-pared from the aforesaid modified polyvinyl alcohols. Moreover, the new modified polyvinyl alcohols retain an additional plasticizer which is usually glycerol or glycol more firmly than the polyvinyl alcohols which have hitherto been known were able to do. The disadvantages of a migration and the volatility of the plasticizer are thus avoided to 45 a large extent.

Such soft types of polyvinyl alcohol are very valuable as regards use for technical purposes; they constitute, for example, a valuable material for the preparation of watersoluble packing foils.

Modified polyvinyl alcohols may be used above all as sizing and finishing agents in the industry of textile auxiliaries; in addition they may be used for the preparation of cosmetic articles.

To sum up: The process according to the invention offers the following technical advantages and the new modified polyvinyl alcohols have the following properties:

1) The formation of the "thick phase"

occurring during the hydrolysis or alcoholysis is reduced;

2) the water-solubility, especially that of polyvinyl alcohols containing organic (hydrophobic) residues, is improved;

the rate of solution in water is increased; 4) it is possible to prepare well plasticized

foils of polyvinyl alcohol;

5) a wide variety of properties may be attained due to the many possibilities of applying the numerous known methods of preparing polyvinyl alcohol or modified polyvinyl alcohols to the preparation of hydrolysis products from graft polymers which can in their turn be prepared in various ways;

6) the modified polyvinyl alcohols can be prepared in a particularly simple way, they have a good effect as protective colloids, a good surface-activity and no or only a high 75

85

point of turbidity.

Specification No. 874,130 describes and claims a process for preparing a hydrolyzed derivative of a copolymer of vinyl acetate and a polyoxyalkylene compound as defined comprising preparing a copolymer by the process claimed in any of Claims 4 to 7 dissolving the copolymer in methanol or ethanol mixing with the resultant solution an alkaline alcoholysis catalyst for polyvinyl acetate and recovering the resultant hydrolyzed product. The term "polyoxyalkylene" compound is

defined in that Specification as meaning polyethylene glycol; polypropylene glycol; poly-butylene glycol; a block copolymer of ethylene glycol and propylene glycol; a monoether of a lower alkyl alcohol with any of the said glycols or block copolymers, or a monoester of an aliphatic carboxylic acid with any of said glycols or block copolymer.

No claim is made herein to the process 100 claimed in claim 8, of Specification No. 874,130, or to a copolymer of vinyl alcohol and a polyoxyalkylene compound as defined in that Specification.

The following Examples illustrate the in- 105

vention, the parts being by weight:

EXAMPLE 1.

Preparation of a polyvinyl alcohol containing units of polyethylene glycol;

The graft polymer used as starting material 110 was prepared in the manner described in Specification No. 12886/59 (Serial No. 922,457).

In a glass bottle provided at its top with a reflux condenser and with a dropping fun-115 nel, 5 to 10 parts of a solution consisting

89 parts of vinyl acetate,

10 parts of polyethylene glycol having a molecular weight of about 4,000 and 1 part of dibenzoyl peroxide were polymerized by being heated on a water bath at 80°C.

After the beginning of the polymerization, the rest of the solution was added drop by drop within about 2 hours. When the introduction of the polymerization mixture was

	922,	458 5	
5	complete, the temperature of the bath was increased for 1 to 2 hours to 90°C. During this time the reflux ceased and the polymerization was completed. Monomer that had not undergone conversion was then eliminated at	280 parts of a methanolic solution of sodium hydroxide of 15% strength by weight. A solution of	
10	the aforesaid temperature by applying a pulsating vacuum. 97 parts of a glass-clear graft polymer having a K value (according to Fikentscher, "Cellulosechemie" 13, 58 (1932)) of 42 (determined as a solution of 1% strength in	1,000 parts of the graft polymer described above in 4,000 parts of methanol and 1,670 parts of petroleum ether (boiling range 60 to 90°C.) was added.	65
15	ethyl acetate) and containing 5% by weight of bound oxyethyl groups were obtained. Hydrolysis or alcoholysis: A solution of	The hydrolysis mixture was stirred for another 4 hours at 20°C. and then worked up as described in Example 1. 455 parts of a water-soluble white powder containing 0.5% by weight of residual acetyl	70
20	565 parts of the graft polymer described above in 1695 parts of methanol and 753 parts of petroleum ether (boiling range 60 to 90°C.) was added at 20°C. while stirring to 168.7 parts of methanolic sodium hydroxide solution of 15% strength by weight	groups were obtained. The oxyethyl content amounted to 17% by weight. The rate of solution in water of this product was about 3 times as high as the rate of solution of ordinary polyvinyl alcohol having the same K value, the rate of solution being measured in both cases under the same conditions.	75 80
25	which were contained in an enamelled vessel heated by means of a water bath and provided with a horseshoe stirrer, a reflux condenser and a thermometer. The stirring of the mixture was continued for 3 hours at 20°C., the resulting product was separated by filtration from the mother	EXAMPLE 3. Preparation of a polyvinyl alcohol containing units of polyethylene glycol by acid hydrolysis or alcoholysis: The apparatus was the same as that used in Example 1.	85
30	liquor, washed several times with methanol and dried in a vacuum drier at 40°C. 270 parts of a water-soluble white powder having a K value of 47 (determined as a solution of 1% strength in water) and containing 0.9% by weight of residual acetyl groups were	740 parts of the graft polymer of vinyl acetate on polyethylene glycol having a molecular weight of 25,000, which graft polymer is described in the first part of Example 2,	90
40	obtained. The content of oxyethyl which was determined by the method according to Morgan (cf. P. W. Morgan, Ind. Engng. Chem., 18, 500 (1946)) amounted to 10.8% by weight. Under the same conditions the product dissolved in water about 3 times as quickly as a usual polyvinyl alcohol of the same K value.	were dissolved in 950 parts of methanol and 425 parts of methyl acetate. 32.75 parts of sulphuric acid of 78% strength by weight in 32.75 parts of methanol	95
45	Example 2. Preparation of a polyvinyl alcohol containing units of polyethylene glycol. The graft polymer used as starting material was prepared in the manner described in the first part of Example 1 from	were introduced into the above-mentioned solution. The mixture was stirred at a rate of 40 revolutions per minute, the temperature of the water bath being 54°C. After 12 hours the	100
50	89 parts of vinyl acetate, 10 parts of polyethylene glycol having a molecular weight of 25,000 and 1 part of dibenzoyl peroxide.	hydrolysis was complete, the product was filtered off, washed with methanol until free from acid and dried in vacuo at 40°C. 295 parts of a white, water-soluble powder having a K value of 80 and containing 0.9% by weight of residual acetyl groups and 17%	105
55	The glass-clear product had a K value of 56 and contained 9% by weight of chemically bound oxyethyl groups. The hydrolysis or alcoholysis was carried out in the same apparatus and in the same	by weight of oxyethyl were obtained. EXAMPLE 4. Direct preparation of an aqueous solution of a polyvinyl alcohol containing units of	110
60	manner as in Example 1.	polyethylene glycol: Apparatus: Enamelled vessel on a water-	115

bath, provided with a stirrer and with a reflux condenser capable of being transformed into a distilling condenser, a thermometer and an inlet tube for steam so that a steam dis-

tillation could be carried out.

1,330 parts of a graft polymer that had been prepared in the manner described in the first part of Example 1 from 80% by weight of vinyl acetate on 20% by weight of poly-ethylene glycol of a molecular weight of 25,000 and which had a K value of 54, were dissolved in 5,310 parts of methanol and the resulting solution was introduced into a solution of

15 372 parts of a methanolic sodium hydroxide solution of 15% strength by weight.

Hydrolysis was brought about within 3 hours while stirring at 20°C. After the refluxing operation had been changed to a distillation operation, the methyl acetate that had formed was separated by distillation from the reaction mixture at a water bath temperature of 65°C. Subsequently the whole of the methanol present was expelled, while stirring, by direct introduction of steam. At the same time an aqueous solution of the polyvinyl alcohol that had formed was obtained. The solution was filtered while hot through a pressure filter. It contained 15% by weight of dry substances.

Example 5.

Preparation of a polyvinyl alcohol containing units of polyethylene glycol from a graft polymer of vinyl propionate:

The apparatus and the mode of operation were the same as those of Example 1. Solution present in the apparatus:

42.5 parts of methanolic sodium hydroxide solution of 15% strength by weight.

40 A polymer solution consisting of

45

50

146.0 parts of a graft polymer prepared as described in the first part of Example 1 from vinyl propionate and poly-ethylene glycol of a modecular weight of 4,000 and containing 6% by weight of chemically bound oxyethyl groups and having a K value of 47

in 583.0 parts of methanol and 253.0 parts of petroleum ether (boiling range 60 to 90°C.) was added.

The hydrolysis mixture was stirred for 6 hours at 20°C. When worked up as described in Example 1 the mixture yielded a polyvinyl alcohol containing 1.5% by weight of residual propionyl groups and 11.5% by weight of oxyethyl.

Example 6.

Preparation of a polyvinyl alcohol containing units of polypropylene glycol.

A graft polymer was prepared from vinyl acetate, polypropylene glycol of a molecular weight of 2,000 and dibenzoyl peroxide according to the process described in Specification No. 12886/59 (Serial No. 922,457). 10 parts of polypropylene glycol having a molecular weight of 2,000 and 1 part of dibenzoyl peroxide were dissolved in 89 parts of vinyl acetate and polymerized at a temperature within the range of 75 to 80°C. in an appropriate vessel provided with a reflux condenser in a manner such that first 5 to 10% by weight of the reaction mixture were introduced into the vessel and after the beginning of the polymerization the remaining 95 to 90% by weight of the polymerization mixture was then added within about 2 hours. Soon after the introduction of the monomer was completed the reflux also ceased. In order to complete the polymerization the temperature was increased for 2 hours to 90°C, and the monomer that had not undergone conversion was then eliminated in a pulsating vacuum.

About 97 parts of graft polymer were obtained. The graft polymer had a K value of about 37 and a relative viscosity of 1.47, both values being determined in a solution of 1% strength by weight in ethyl acetate.

Hydrolysis or alcoholysis:

In a vessel provided with a suitable stirrer 170 parts of methanolic sodium hydroxide solution of 15.5% strength by weight were diluted with four times their weight of methanol.

600 parts of the graft polymer prepared in a manner described in the beginning of this example were dissolved in 2,400 parts of methanol and the resulting solution was introduced at room temperature in four por-tions, while stirring, into the aforesaid methanolic sodium hydroxide solution. Each of the 4 portions was introduced in the course of ½ hour. The interval comprised between the end of the introduction of one portion and the beginning of the introduction of the next portion was likewise ½ hour. After the introduction of the last portion the whole was stirred for another 4 hours.

The polyvinyl alcohol that had precipitated was filtered off with suction, washed with 110 methanol until free from alkali and dried at 50°C. in a vacuum drier until its weight was constant. There were obtained 410 parts of a colourless fine-grained polyvinyl alcohol whose viscosity amounted to 4.3 centipoises 115 in an aqueous solution of 4% strength by weight and to 6.5 centipoises in an aqueous solution of 5% strength by weight. At 20°C. the surface tension of an aqueous solution of 1% strength by weight of the polyvinyl alcohol 120

9.1%

38.64%

obtained was 38 to 39 dynes/cm. When heated to 100°C, the polyvinyl alcohol did not exhibit any phenomena of flocculation.

hibit any phenomena of flocculation.

The following table indicates the values obtained by the analysis of the product obtained by the above-described experiment

Content of C

Content of H

Content of OH

and the corresponding values of a normal saponified polyvinyl alcohol. (The products used for analysis were purified by dissolving them in water and reprecipitating with acetone (three times).)

Ordinary Graft
polyvinyl alcohol polyvinyl alcohol

54.6% 53.6%

The product obtained by this experiment contained about 1% by weight of residual 5 acetyl groups and had a K value of 42, determined in an aqueous solution of 1% strength by weight.

Example 7.

Preparation of a polyvinyl alcohol contain-20 ing units of oxyethylated polypropylene oxide.

A graft polymer was prepared from 10 parts of an oxyethylated polypropylene oxide (molecular weight: 4,500; hydroxyl value: 25; content of ethylene oxide: about 75% by weight), 1 part of dibenzoyl peroxide and 89 parts of vinyl acetate in the manner described in the first part of Example 1. The polymer so obtained had a K value of about

40.
In order to alcoholyse the product, 700 parts of it were dissolved in 2,800 parts of methanol and the alcoholysis was brought

about in a manner analogous to that of Example 1 with 200 parts of methanolic sodium hydroxide solution of 15.7% strength by weight.

9.0%

34.9%

by weight.

The polyvinyl alcohol thus obtained had the following values:

1) K value: 41;

2) viscosity in an aqueous solution of 4% 40 strength by weight: 4.4 centipoises;

3) viscosity in an aqueous solution of 5% strength by weight: 6.7 centipoises;

4) surface tension of an aqueous solution of 1% strength by weight at 20°C.:
47 dynes/cm;
5) phenomena of flocculation when an

 phenomena of flocculation when an aqueous solution was heated up to 100°C.: none.

By analysis the following values were 50 found:

	Normal polyvinyl alcohol	Graft polyvinyl alcohol
Content of C	54.6%	52.8%
Content of H	9.1%	9.0%
Content of OH	38.64%	32.3%

Content of residual acetyl groups: about

1% by weight.
Content of oxyethyl groups determined according to Morgan 7.0% by weight (calculated as OC₂H₄).

It should also be mentioned that when graft polymers are used in a alcoholysis of this kind in which the whole of the hydrolysis solution is admixed in one operation with the whole of the catalyst solution, the increase of the viscosity of the reaction mixture is very small as compared to the increase of the viscosity of a reaction mixture of pure

polyvinyl acetate having a K value of 40 and which is alcoholysed under the same conditions. In the latter case part of the reaction takes place in a very highly viscous phase.

EXAMPLE 8.

Preparation of a polyvinyl alcohol containing units of polyethylene glycol whose terminal hydroxyl groups have been reacted with a di-isocyanate:

The graft polymer used as starting material was prepared in the manner described in the first part of Example 1 from

	8 922,458		
5	175 parts of vinyl acetate, 25 parts of polyethylene glycol whose terminal hydroxyl groups had been reacted with toluylene-diisocyanate; molecular weight greater than 30,000, and 2 parts of dibenzoyl peroxide.	90 parts of vinyl acetate and 10 parts of polyethylene glycol having a molecular weight greater than 1,000,000 in 75 parts of methanol and 1 part of diacetyl peroxide. The mixture so obtained was stirred for	65
10	113 parts of the graft polymer thus obtained were dissolved in 339 parts of methanol and 151 parts of petroleum ether (boiling range 60 to 90°C.), filtered and introduced into 33 parts of a methanolic sodium hydroxide solution of 15% strength by weight and the experiment was continued in the manner des-	3 hours at 70°C. until the polymerization was complete. The solution was then poured into water and the polymer that had precipitated was filtered off with suction, washed well with water, dissolved once more in methanol, again precipitated with water, filtered off with suction and dried in vacuo	70
15	cribed in Example 1. 52 parts of a polyvinyl alcohol powder that was readily soluble in water were obtained. EXAMPLE 9.	at 50°C. The graft polymer had a K value of 42 and contained 9% by weight of chemically bound oxyethyl groups.	75
20	Preparation of polyvinyl alcohol containing units of polyethylene glycol and having subsequently been subjected to a partial cyanoethylation: Apparatus: Vessel provided with stirrer,	The hydrolysis or alcoholysis was brought about in the manner described in Example 1. Solution introduced into the vessel before the beginning of the reaction:	80
	reflux device and distillation device and heated by means of a water bath.	15.1 parts of sodium hydroxide solution of 15% strength by weight in methanol.	
25	422 parts of acrylonitrile and 49 parts of an aqueous sodium hydroxide solution of 30% strength by weight	Polymer solution: 54.0 parts of the graft polymer described above in	85
30	were added, while stirring, at 20°C. to 4,330 parts of an aqueous solution of 15% strength by weight of a hydrolyzed graft polymer prepared as described	216.0 parts of methanol and 90.0 parts of petroleum ether (boiling range 60 to 90°C.).	00
35	in Example 4. The mixture was kept for 20 hours while stirring at 35°C. Then the solution was neutralized with phosphoric acid of 85% strength by weight.	The hydrolysis product thus obtained was washed with methanol until free from alkali and it was then dried in a vacuum drier at 40°C. A modified polyvinyl alcohol having a K	90
40	In order to eliminate the residues of acrylo- nitrile that had not undergone conversion, the content of the vessel was quickly heated to	value of 66 was obtained. The portion of remaining acetyl groups amounted to 0.4% by weight and that of chemically bound oxyethyl groups to 17%	95
40	95°C. and steam was introduced into the reaction mixture until the steam distillate that passed over did not contain any more acrylnonitrile (about 30 minutes).	EXAMPLE 11. Preparation of a vinyl alcohol copolymer containing units of polyethylene glycol:	100
45	A polymer solution containing about 14% by weight of dry substances was obtained. The plastic film obtained by drying the aforesaid solution contained 7% by weight of	In the manner described in Example 1 a graft polymer was prepared from 90 parts of vinyl acetate,	105
50	chemically bound nitrogen in addition to small quantities of salts. The solution could be further used as a valuable textile auxiliary. In this case the residues of neutral salts are not disturbing, in some cases they are even desirable.	 90 parts of vinyl propionate, 20 parts of polyethylene glycol having a molecular weight of 4,000 and 2 parts of dibenzoyl peroxide. 141 parts of the graft polymer so obtained were dissolved in 	110
55	EXAMPLE 10. Preparation of a polyvinyl alcohol containing units of polyethylene glycol having a particularly high molecular weight:	 424 parts of methanol and 188 parts of petroleum ether (boiling range 60 to 90°C.) and introduced into 42 parts of methanolic sodium hydroxide solution of 15% strength by weight. 	115
60	The graft polymer used as starting material was prepared by the solution polymerization of	The mixture was worked up as described in Example 1. 55 parts of a modified water-soluble poly-	

vinyl alcohol containing 13% by weight of oxyethyl groups were obtained.

Example 12.

Preparation of a partially hydrolyzed polyvinyl acetate containing units of polyethylene glycol:

As starting material there was used the graft polymer prepared in the manner described in Example 1 from vinyl acetate and polyethylene glycol having a molecular weight of 4,000.

> 480 parts of the graft polymer so obtained were dissolved in 2,893 parts of methanol and

800 parts of petroleum ether (boiling range 15 60 to 90°C.).

12 parts of methanolic sodium hydroxide solution of 20% strength by weight in 600 parts of methanol

were introduced at 20°C, into the aforesaid

solution of the graft polymer while stirring slowly.

After 2½ hours exactly, the reaction mixture was neutralized by the introduction of 2Nacetic acid. The product was separated from the mother liquor by centrifuging, washed several times with methanol and dried in vacuo at 35°C.

The product had a K value of 44. It contained 9.8% by weight of residual acetyl groups and 10.2% by weight of bound oxyethyl groups.

The following table comprises the values of surface-tension (σ) in water at 20°C. and the turbidity point (measured in a solution of 1% strength by weight with the addition of 2 cc. of common salt solution of 20% strength by weight) of the modified polyvinyl alcohol and, for purposes of comparison, of a corresponding partially hydrolyzed polyvinyl alcohol having the same K value but containing no bound oxyethyl groups.

	σ in a solution of $4^{0}_{/0}$ strength	6 in a solution of 5% strength	turbidity point
modified polyvinyl alcohol	45	46	72°C.
Comparison polyvinyl alcohol	45	47	31°C.

EXAMPLE 13.

45 Preparation of polyvinyl alcohol contain-

ing units of oxyethylated nonyl phenol: In the manner described in the first part of Example 1 a graft polymer was prepared from

50 89 parts of vinyl acetate,

10 parts of oxyethylated nonyl phenol (formed by oxyethylation of 1 mole of nonyl phenol with 45 moles of ethyl oxide)

55 1 part of dibenzoyl peroxide.

The graft polymer that had three times been precipitated with water from a methanolic solution had a K value of 37 and containing 2.5% by weight of bound oxyethyl groups and 48.5% by weight of acetyl residues.

Hydrolysis or alcoholysis:-

44.6 parts of the above-mentioned graft polymer dissolved in 178.4 parts of methanol

were introduced at 20°C. while stirring into a solution of

12.5 parts of methanolic sodium hydroxide solution of 15% strength by weight.

The mixture was stirred for another 3 hours. The product was then filtered off with suction from the mother liquor, washed with methanol until free from alkali and dried in vacuo at 35°C.

A modified, very readily water-soluble polyvinyl alcohol having a K value of 43 and containing 0.6% by weight of residual acetyl groups and 3% by weight of bound oxyethyl groups was obtained.

EXAMPLE 14.

Preparation of a polyvinyl alcohol containing units of an oxyethylated stearic acid:

In the manner described in the first part of Example 1 a graft polymer was prepared

30

80

	722,470		
;	94 parts of vinyl acetate, 5 parts of oxyethylated stearic acid (formed by reacting 1 mole of stearic acid with 30 moles of ethylene oxide) and	vinyl alcohol containing units of polyethylene	: 55
	1 part of dibenzoyl peroxide. Hydrolysis or alcoholysis:	reflux condenser 300 parts of polyethylene glycol having a molecular weight of 25,000 were melted at 70°C. A solution of	
)	44.6 parts of the above-mentioned graft polymer dissolved in 178.4 parts of methanol		
	were introduced at 20°C. while stirring into a solution of	was introduced slowly and while stirring into the aforesaid polyethylene glycol. The rate of introduction was determined by the rate of	
	12.5 parts of methanolic sodium hydroxide solution of 15% strength by weight.	polymerization. Care had to be taken that a certain excess of the monomer was always present in the reaction chamber.	
	The mixture was stirred for about 3 hours. Then the product was filtered off with suction from the mother liquor, washed with methanol until free from alkali and dried in vacuo at	Immediately after the introduction of the aforesaid solution, 600 parts of methanol were slowly added. When the exothermic	70
	35°C. A modified polyvinyl alcohol which was readily soluble in water and contained 4% by weight of bound oxyethyl groups was obtained.	polymerization was finished, polymerization was completed while stirring for 4 hours at a temperature within the range of 80 to 90°C. under an internal pressure of about 1 atmo-	75
	EXAMPLE 15. Preparation of a modified polyvinyl alcohol containing carboxyl groups and residual acetate groups: In the manner described in the first part of Example 1 a graft polymer was prepared	sphere (gauge). Hydrolysis or alcoholysis: The above-mentioned solution of the graft polymer was diluted in the same reaction vessel with	80
	from	3,660 parts of methanol and 514 parts of water and	
	400 parts of vinyl acetate, 32 parts of crotonic acid, 40 parts of polyethylene glycol having a	1,900 parts of methanolic sodium hydroxide solution of 5.03% strength by weight	85
	molecular weight of 15,000 and 6 parts of dibenzoyl peroxide. Hydrolysis or alcoholysis: 74 parts of methanolic sodium hydroxide solution of 5% strength by weight	were added at 20°C., while stirring. After the formation of the thick phase, stirring was interrupted and the mass was allowed to stand for 4 hours at 31°C. Subsequently steam was introduced into the mass, stirring was continued and the	90
	were introduced at 25°C., while stirring, into	whole of the methyl acetate and methanol was distilled off, the distillation being ter- minated when the solution had a temperature	95
	350 parts of the above-mentioned graft polymer dissolved in641 parts of methanol and9 parts of water.	of 99°C, the refluxing operation having been changed into a distilling operation. A clear solution of the modified polyvinyl alcohol remained behind.	
	After the beginning of the formation of the thick phase stirring was interrupted and the mass was allowed to stand for 4 hours	being exposed for 1 hour to a temperature of 100°C., a film cast from the aforesaid solution was clear, soft and capable of being	100
	at 30°C. Then steam was introduced into the mass, stirring was continued and the whole of the methyl acetate and methanol was distilled off; the steam distillation was termin-	heat sealed. Even in cold water it dissolved	105
	ated when the solution had a temperature of 99°C. A solution of the modified polyvinyl alcohol remained behind.	Content of acetyl groups 9.3% content of oxyethyl groups 28.0% content of polyvinyl alcohol 53.1%	

11 Example 17. Preparation of a polyvinyl alcohol contain-89 parts of vinyl acetate, 10 parts of an oxyethylated polypropylene ing units of an oxyethylated polypropylene glycol containing nitrogen and having glycol containing nitrogen: In the manner described in the first part the following constitution: of Example 1 a graft polymer was prepared $\begin{array}{l} H(OC_2H_4)_Y(OC_3H_6)_x \\ > N - CH_2CH_2 - N < \\ (C_3H_6O)_x(C_2H_4O)_YH \\ (C_2H_6O)_x(C_2H_4O)_YH \end{array}$ X = 5were added to the mixture. Measures had to Y = 216be taken to prevent the acetaldehyde from and 1 part of dibenzoyl peroxide. volatilizing (the apparatus had to be tight and Hydrolysis or alcoholysis: the reflux condenser to be cooled well). After the reaction the modified polyvinyl At 21°C. alcohol that had formed was washed with 14 parts of a methanolic sodium hydroxide methanol in a centrifuge until it was free solution of 15.1% strength by weight from acid. The product, while still moist with methanol, was treated with steam in a vessel 20 were introduced, while stirring, into a solution of provided with a stirrer. During this operation 50 parts of the above-mentioned graft all the methanol was distilled off and replaced polymer in by water. 200 parts of methanol. An aqueous solution of a partially acetalized Stirring was continued for 4 hours. 70 modified polyvinyl alcohol remained behind. The modified polyvinyl alcohol that had Foils cast from this solution were soft and formed was filtered off with suction, washed very readily soluble in water. with methanol until free from alkali and dried Subject to the foregoing disclaimer WHAT in vacuo at 40°C. WE CLAIM IS: 1. A process for the manufacture of a 30 water-soluble modified polyvinyl alcohol as EXAMPLE 18. Preparation of a polyvinyl alcohol containhereinbefore defined, wherein a graft-polymer, ing units of a polyethylene glycol and its prepared in a homogeneous phase from one partial acetalization: or more vinyl esters and one or more poly-In the manner described in the first part alkylene glycols, is subjected to an alkaline or acid hydrolysis or alcoholysis. of Example 1 a graft polymer was prepared 2. A process as claimed in claim 1, wherein the graft-polymer used is a co-polymer 160 parts of vinyl acetate, obtained from vinyl ester together with one 40 parts of polyethylene glycol having a molecular weight of 25,000 and or more compounds co-polymerisable therewith. 4 parts of dibenzoyl peroxide. 40 3. A process as claimed in claim 1 or 2, wherein the graft-polymer used contains a polyalkylene glycol component constituting 0.1 Acid hydrolysis or alcoholysis: A solution of to 50 per cent by weight thereof. 90 4. A process as claimed in any one of 247 parts of the above-mentioned graft claims 1-3, wherein the graft-polymer used is derived from a polyethylene glycol. polymer in 317 parts of methanol and 5. A process as claimed in any one of 142 parts of methyl acetate claims 1-3, wherein the graft-polymer used is derived from a polypropylene glycol or higher was introduced, while stirring, into a solution homologue thereof. 6. A process as claimed in any one of claims 1-3, wherein the graft-polymer used is derived from one or more oxyethylated 100 21.4 parts of sulphuric acid of 80% strength by weight in polypropylene glycols.

7. A process as claimed in any one of claims 1-3, wherein the graft-polymer used is derived from one or more polyalkylene gly-cols one or both terminal hydroxyl groups

of which are etherified or esterified, or one

or both hydroxyl groups of which are sub-

22.0 parts of methanol.

After about 10 hours

9.3 parts of acetaldehyde

53°C.

55

The mixture was stirred for 20 hours at

stituted by mono- or polyfunctional amines or amides, or from a reaction product of a polyalkylene glycol with a mono- or polyisocyanate.

8. A process as claimed in any one of claims 1—3, wherein the graft-polymer used is derived from one or more polyalkylene

glycols that are organically substituted.

9. A process for the manufacture of a water-soluble modified polyvinyl alcohol, con-

ducted substantially as described in any one

of the Examples herein.

10. Water - soluble modified polyvinyl alcohols, when made by the process claimed in any one of claims 1—9.

ABEL & IMRAY, Agents for the Applicants, Quality House, Quality Court, Chancery Lane, London, W.C.2.

Leamington Spa: Printed for Her Majesty's Stationery Office, by the Courier Press (Leamington) Ltd.—1963. Published by The Patent Office, 25 Southampton Buildings, London, W.C.2, from which copies may be obtained.