Zadatak 1. Neka su A, B i C proizvoljni skupovi i U univerzum. Koristeći svaki od načina dokazivanja, dokazati skupovne jednakosti,

1.
$$(A \setminus B) \cup (A \cap B) \cup (B \setminus A) = A \cup B$$
.

2.
$$A \setminus (B \setminus C) = (A \setminus B) \cup (A \cap C)$$
.

Primjer 1. Dokažimo skupovnu jednakost $(A \setminus B) \cup (A \cap B) \cup (B \setminus A) = A \cup B$.

DOKAZ:

(I način - aksion ekstenzionalnosti)

Dokažimo inkluziju "⊆"

a) Neka je $x \in (A \setminus B) \cup (A \cap B) \cup (B \setminus A)$ proizvoljan. Tada na osnovu aksioma unije slijedi da x pripada skupu $A \setminus B$ ili skupu $A \cap B$ ili skupu $B \setminus A$,

$$x \in A \setminus B \lor x \in A \cap B \lor x \in B \setminus A$$
.

b) Sada na osnovu definicije razlike skupova imamo da x pripada skupu A, a ne pripada skupu B i x pripada skupu B, a ne pripada skupu A,

$$(x \in A \land x \notin B) \lor (A \cap B) \lor (x \in B \land x \notin A).$$

c) Na osnovu definicije presjeka, x pripada skupu A i x pripada skupu B,

$$(x \in A \land x \notin B) \lor (x \in A \land x \in B) \lor (x \in B \land x \notin A). \tag{1}$$

d) Prema zakonu distributivnosti $(p \land \neg q) \lor (p \land q) \iff p \land (\neg q \lor q)$, i kako je $(\neg q \lor q)$ uvijek tačno,

Ovo je dalje prema zakonu distributivnosti $p \lor (q \land \neg p) \iff (p \lor q) \land (p \lor \neg p)$, i kako je $(p \lor \neg p)$ uvijek tačno, ekvivalentno sa,

e) Konačno na osnovu aksioma unije zaključujemo $x \in (A \cup B)$, te vrijedi

$$(A \setminus B) \cup (A \cap B) \cup (B \setminus A) \subseteq A \cup B. \tag{2}$$

Dokažimo inkluziju "⊇"

a) Neka je $x \in (A \cup B)$ proizvoljan. Prema aksiomu unije x pripada skupu A ili pripada skupu B,

$$x \in A \vee x \in B$$

b) Ako prema tautologiji $(p \vee \neg p) \Longleftrightarrow \top$ na prethodni izraz dodamo tako da vrijedi,

$$(x \in A \lor x \in B) \land (x \in A \lor x \notin A)$$

Dalje prema zakonu distributivnosti $(p \lor q) \land (p \lor \neg p) \Longleftrightarrow p \lor (q \land \neg p)$ slijedi,

$$x \in A \lor (x \in B \land x \notin A).$$

Ako još jednom prema tautologiji $(p \vee \neg p) = \top$ dodamo, ali sada sa lijeve strane,

$$(x \in B \lor x \notin B) \land x \in A \lor (x \in B \land x \notin A).$$

Dalje uz zakon distributivnosti $(q \vee \neg q) \wedge p \iff (p \wedge \neg q) \vee (p \wedge q)$ slijedi,

$$(x \in A \land x \notin B) \lor (x \in A \land x \in B) \lor (x \in B \land x \notin A)$$

c) Na osnovu definicije razlike zaključujemo da $x \in (A \setminus B)$ i $x \in (B \setminus A)$, te na osnovu definicije presjeka slijedi da $x \in (A \cap B)$,

$$x \in A \setminus B \lor x \in A \cap B \lor x \in B \setminus A$$
.

d) Konačno na osnovu aksioma unije vrijedi,

$$(A \setminus B) \cup (A \cap B) \cup (B \setminus A) \supseteq A \cup B. \tag{3}$$

Iz (2) i (3) na osnovu aksioma ekstenzionalnosti zaključujemo jednakost skupova i vrijedi

$$(A \setminus B) \cup (A \cap B) \cup (B \setminus A) = A \cup B.$$

(II način - algebarski dokaz)

Dokažimo skupovnu jednakost

$$(A \setminus B) \cup (A \cap B) \cup (B \setminus A) = A \cup B.$$

$$(A \setminus B) \cup (A \cap B) \cup (B \setminus A) = (A \cap B^c) \cup (A \cap B) \cup (B \cap A^c) \qquad \qquad \text{(jer je } X \setminus Y = X \cap Y^c)$$

$$= A \cap (B^c \cup B) \cup (B \cap A^c) \qquad \qquad \text{(distributivnosti presjeka prema uniji)}$$

$$= A \cap U \cup (B \cap A^c) \qquad \qquad \text{(jer je } X^c \cup X = U \text{ [univerzum]})$$

$$= A \cup (B \cap A^c) \qquad \qquad \text{(jer je } X \cap U = X)$$

$$= (A \cup B) \cap (A \cup A^c) \qquad \qquad \text{(distributivnosti unije prema presjeku)}$$

$$= (A \cup B) \cap U \qquad \qquad (X^c \cup X = U)$$

$$= A \cup B \qquad \qquad (X \cap U = X)$$

(III način - vennovim dijagramima)

Dakle skup $A=\{2,3\}$ i skup $B=\{1,3\}$. Dalje, skup $A \setminus B=\{2\}$, skup $A \cap B=\{3\}$ i skup $B \setminus A=\{1\}$. Koristeći se aksiomom unije za ta tri skupa imamo

$$(A \setminus B) \cup (A \cap B) \cup (B \setminus A) = \{2\} \cup \{3\} \cup \{1\} = \{1, 2, 3\},\$$

i

$$A \cup B = \{2,3\} \cup \{1,3\} = \{1,2,3\}.$$

Kako se obje strane svode na isti skup regiona $\{1,2,3\}$, to je data skupovna jednaksot tačna.

(IV način - tabelarni metod)

4	A	B	$A \setminus B$	$A \cap B$	$B \setminus A$	Lijevo	Desno	
N	Vе	Ne	Ne	Ne	Ne	Ne	Ne	
N	Vе	Da	Ne	Ne	Da	Da	Da	
	Эa	Ne	Da	Ne	Ne	Da	Da	
	Эa	Da	Da	Da	Da	Da	Da	

Kako su odgovori na svim pozicijama (Lijevo i Desno) indentični, to nam govori da je data skupovna jednakost tačna.

Primjer 2. Dokažimo skupovnu jednakost $A \setminus (B \setminus C) = (A \setminus B) \cup (A \cap C)$.

DOKAZ:

(I način - aksion ekstenzionalnosti)

Dokažimo inkluziju "⊂"

a) Neka je $x \in A \setminus (B \setminus C)$ proizvoljan. Tada na osnovu definicije razlike x pripada skupu A, a ne pripada skupu $B \setminus C$, i pripada skupu B, a ne pripada skupu C,

$$x \in A \land x \notin (x \in B \land x \notin C),$$

što je ekvivalentno sa,

$$x \in A \land (x \notin B \lor x \in C).$$

b) Prema zakonu distributivnosti slijedi,

$$(x \in A \land x \notin B) \lor (x \in A \land x \in C).$$

c) Na osnovu definicija presjeka i razlike skupova imamo sljedeće,

$$x \in A \setminus B \lor x \in A \cap C$$

d) Konačno na osnovu askioma unije vrijedi,

$$x \in (A \setminus B) \cup (A \cap C),$$

prema tome,

$$A \setminus (B \setminus C) \subseteq (A \setminus B) \cup (A \cap C). \tag{4}$$

Dokažimo inkluziju "⊇"

a) Neka je $x \in (A \setminus B) \cup (A \cap C)$ proizvoljno. Prema aksiomu unije x pripada skupu $A \setminus B$ ili skupu $A \cap C$,

$$A \setminus B \vee A \cap C$$

b) Na osnovu definicija presjeka i razlike skupova x pripada skupu A, a ne pripada skupu B ili pripada skupu A i skupu B,

$$(x \in A \land x \notin B) \lor (x \in A \land x \in C)$$

c) Na osnovu zakona distributivnosti slijedi,

$$x \in A \land (x \notin B \lor x \in C),$$

što još možemo zapisati kao,

$$x \in A \land x \notin (x \in B \land x \notin C)$$

d) Ako primjenimo definiciju razlike skupova vrijedi sljedeće,

$$x \in A \land x \notin (x \in B \land x \notin C)$$
$$x \in A \land x \notin (A \setminus C)$$
$$x \in A \setminus (A \setminus C),$$

prema tome vrijedi,

$$A \setminus (B \setminus C) \supseteq (A \setminus B) \cup (A \cap C). \tag{5}$$

Iz (4) i (5) na osnovu aksioma ekstenzionalnosti zaključujemo jednakost skupova i vrijedi

$$A \setminus (B \setminus C) = (A \setminus B) \cup (A \cap C).$$

(II način - algebarski dokaz)

Dokažimo skupovnu jednakost

$$A \setminus (B \setminus C) = (A \setminus B) \cup (A \cap C).$$

$$\begin{array}{ll} A \setminus (B \setminus C) = A \cap (B \cap C^c)^c & \text{(jer je } X \setminus Y = X \cap Y^c) \\ &= A \cap (B^c \cup (C^c)^c) & \text{(DeMorganov zakon za skupove)} \\ &= A \cap (B^c \cup C) & \text{(zakon idempotentnosti komplemenata)} \\ &= (A \cap B^c) \cup (A \cap C) & \text{(zakon distributivnosti presjeka prema uniji)} \\ &= (A \setminus B) \cup (A \cap C) & \text{(}X \setminus Y = X \cap Y^c) \end{array}$$

(III način - vennovim dijagramima)

Dakle skup $A = \{4, 5, 6, 7\}$, skup $B = \{2, 3, 6, 7\}$ i skup $C = \{1, 3, 5, 7\}$. Dalje, skup $B \setminus C = \{2, 6\}$, skup $A \setminus B = \{4, 5\}$ i skup $A \cap C = \{5, 7\}$. Na osnovu aksioma unije i definicije razlike skupova imamo

$$A \setminus (B \setminus C) = \{4, 5, 6, 7\} \setminus \{2, 6\} = \{4, 5, 7\}$$

i

$$(A \setminus B) \cup (A \cap C) = \{4, 5\} \cup \{5, 7\} = \{4, 5, 7\}$$

Kako se obje strane svode na isti skup regiona {4,5,7}, to je data skupovna jednaksot tačna.

(IV način - tabelarni metod)

$\mid A$	B	C	$B \setminus C$	$A \setminus B$	$A \cap C$	Lijevo	Desno	
Ne	Ne	Ne	Ne	Ne	Ne	Ne	Ne	
Da	Ne	Na	Ne	Da	Ne	Da	Da	
Ne	Da	Ne	Da	Ne	Ne	Ne	Ne	
Ne	Ne	Da	Ne	Ne	Ne	Ne	Ne	
Da	Da	Ne	Da	Da	Ne	Da	Da	
Da	Ne	Da	Ne	Da	Da	Da	Da	
Ne	Da	Da	Da	Ne	Ne	Ne	Ne	
Da	Da	Da	Da	Da	Da	Da	Da	

Kako su odgovori na svim pozicijama (Lijevo i Desno) indentični, to nam govori da je data skupovna jednakost tačna.

Zadatak 2. Neka su A, B i C proizvoljni skupovi i U univerzum. Tada vrijedi,

- 1. $(A^c)^c = A$. (zakon idempotentnosti komplemenata)
- 2. $U^c = \varnothing$; $\varnothing^c = U$.
- 3. $A \cup A^c = U$; $A \cap A^c = \emptyset$. (zakoni komplemenata)
- 4. $A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$; $A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$.
- 5. $A \setminus B = A \cap B^c$. (zakon skupovne razlike)

Primjer 3. Dokažimo skupovnu jednakost $(A^c)^c = A$.

DOKAZ:

$$(A^c)^c = (U \setminus A)^c \qquad \qquad (\text{jer jer } X^c = U \setminus X)$$

$$= U \setminus (U \setminus A) \qquad \qquad (X^c = U \setminus X)$$

$$= U \cap (U \cap A^c)^c \qquad \qquad (X \setminus Y = X \cap Y^c)$$

$$= U \cap (U^c \cup A) \qquad \qquad (\text{DeMorganov zakon za skupove})$$

$$= U \cap (U^c \cup A) \qquad \qquad (\text{zakon idempotentnosti komplemenata})$$

$$= (U \cap U^c) \cup (U \cap A) \qquad \qquad (\text{distributivnost presjeka prema uniji})$$

$$= \varnothing \cup A \qquad \qquad (\text{jer je } U \cap U^c = \varnothing i \ U \cap A = A)$$

$$= A$$

T

Primjer 4. Dokažimo skupovnu jednakost $U^c = \varnothing$, $\varnothing^c = U$.

DOKAZ:

Neka je $x \in U^c$,

$$x \in U^c \iff x \in U \land x \notin U$$
 (definicija komplementa)
$$\iff \bot$$

$$(p \land \neg p = \bot)$$

Kako je $x \in U^c \iff \bot$ i x bilo proizvoljno, slijedi da je $(\forall x)x \in U^c \iff \bot$. Kako je $\bot \iff x \in \varnothing$, jer $(\forall x)x \notin \varnothing$ slijedi da je

$$U^c \iff \varnothing$$

Neka je $y \in \emptyset^c$,

$$y \in \varnothing^c \iff y \in U \land y \notin \varnothing \qquad \qquad \text{(definicija komplementa)}$$

$$\iff y \in U \land \top \qquad \qquad (y \notin \varnothing \iff \top, \text{ jer } (\forall x) x \notin \varnothing)$$

$$\iff y \in U \qquad \qquad (p \land \top \iff p)$$

Kako je y bilo proizvoljno vrijedi,

$$\varnothing^c = U$$

Primjer 5. Dokažimo skupovnu jednakost $A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$ i $A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$. DOKAZ:

$$\begin{split} A \setminus (B \cap C) &= A \cap (B \cap C)^c & (X \setminus Y = X \cap Y^c) \\ &= A \cap (B^c \cup C^c) & (\text{DeMorganov zakon za skupove}) \\ &= (A \cap B^c) \cup (A \cap C^c) & (\text{distributivnost presjeka prema uniji}) \\ &= (A \setminus B) \cup (A \setminus C) & (X \setminus Y = X \cap Y^c) \end{split}$$

$$\begin{split} A \setminus (B \cup C) &= A \cap (B \cup C)^c & \left(X \setminus Y = X \cap Y^c \right) \\ &= A \cap (B^c \cap C^c) & \left(\text{DeMorganov zakon za skupove} \right) \\ &= (A \cap B^c) \cap (A \cap C^c) & \left(\text{distributivnost presjeka} \right) \\ &= (A \setminus B) \cap (A \setminus C) & \left(X \setminus Y = X \cap Y^c \right) \end{split}$$

*

Primjer 6. Dokažimo skupovnu jednakost $A \setminus B = A \cap B^c$.

DOKAZ:

Neka je $x \in A \setminus B$,

$$x \in A \setminus B \iff x \in A \land x \notin B \qquad \qquad \text{(definicija razlike)}$$

$$\iff (x \in A \land x \notin B) \land \top \qquad \qquad (p \land \top \iff p)$$

$$\iff (x \in A \land x \notin B) \land x \in U \qquad \qquad ((\forall x)x \in Upajex \in U \iff \top)$$

$$\iff x \in A \land (x \notin B \land x \in U) \qquad \qquad \text{(asocijativnost konjukcije)}$$

$$\iff x \in A \land x \in B^c \qquad \qquad \text{(definicija komplementa)}$$

$$\iff x \in A \cap B^c \qquad \qquad \text{(definicija razlike)}$$

Kako je x bilo proizvoljno, $(\forall x)(x \in A \setminus B)$ i $(\forall x)(x \in A \cap B^c)$ i kako su ova dva skupa ekvivalentna vrijedi $A \setminus B = A \cap B^c$