Problem Statement

- We have a set of Electric Vehicles (EVs) that are allocated to Electric Vehicle Supply Equipment (EVSE), commonly known as charging ports.
- Each EV i has a specific energy requirement (e_i) and a required charging duration (τ_i^{end})

Objective:

Over a defined time horizon **T** with discrete time steps, establish a charging schedule that:

- Ensures each EV meets its energy requirement within the specified deadline.
- Minimizes the energy consumption at each time step.

t_0	t_1	t_2	t_3 t	t_4	- 5	t_6 t	\overline{z}_7 T
		e_1			$ au_1^{end}$		
			e_2				$ au_2^{end}$
		e_3		$ au_3^{end}$			

Toy Example

- Let's assume we are optimizing for a time horizon T = 4 hours, with a timestep $\Delta T = 1$ hour, a constant voltage V = 240V, and a set of allowable charging rate currents $\rho = \{8,16,32,48,64\}$ A
- Consider that we have **4 EVs** where EV 1, 2, and 3 each have an energy requirement $e_1 = e_2 = e_3 = 26880 \, kWh$ and a required charging duration of **3 hours**. EV 4 has an energy requirement $e_4 = 7680 kWh$ and a required charging duration of **1 hour**.

		1
3 A 48 A	0	26880/26880 kWh
8A 32A	0	26880/26880 kWh
2A 48A	0	26880/26880 kWh
0 0	0	7680/7680 kWh
	8A 32A 2A 48A	8A 32A 0 2A 48A 0

EV charging station placement problem

Aman Chandra, Jitesh Lalwani, Babita Jajodia: "Towards an Optimal Hybrid Algorithm for EV Charging Stations Placement using Quantum Annealing and Genetic Algorithms"

- Buildings: Point of Interest (POI)
- Blue Cars: Existing charging stations
- Red Cars: New charging stations

EV charging station placement problem

Aman Chandra, Jitesh Lalwani, Babita Jajodia: "Towards an Optimal Hybrid Algorithm for EV Charging Stations Placement using Quantum Annealing and Genetic Algorithms"

Objective:

- Install the new chargers at the minimum possible distance from the point of interest.
- Ensure that the chargers are placed at the maximum possible distance from the existing chargers and at the maximum distance from each other.

Solved: Quantum Annealing combined with Genetic Algorithm

$$H_1 = +\sum_{i=1}^{N} x_i d_i^p$$

$$H_2 = -\sum_{i=1}^N x_i d_i^c$$

$$H_3 = -\sum_{i=1}^{N} x_i d_i^l$$

Quantum Annealing QA output Genetic Algorithm Solution

Electric Mobility Problem

Margarita Veshchezerova, Mikhail Somov, David Bertsche, Steffen Limmer, Sebastian Schmitt, Michael Perelshtein, Ayush Joshi Tripathi: "A Hybrid Quantum-Classical Approach to the Electric Mobility Problem"

Problem Statement

Suppose we have rental EVs. We use each EV to satisfy reservations.

The objective is: to satisfy all reservations while spending the least amount of energy possible.

$$\min \sum_{p \in \mathcal{P}} c_p \lambda_p + c^{uncov} \sum_{r \in R} E_r^{res} y_r$$

$$\sum_{\substack{p \in \mathcal{P}: \\ r \in p}} \lambda_p + y_r = 1, \qquad \forall r \in R$$

$$\sum_{\substack{p \in \mathcal{P}: \\ v \in p}} \lambda_p = 1, \qquad \forall v \in V$$

$$\lambda_p \in \{0, 1\}, \qquad \forall p \in \mathcal{P}$$

Electric Mobility Problem

Margarita Veshchezerova, Mikhail Somov, David Bertsche, Steffen Limmer, Sebastian Schmitt, Michael Perelshtein, Ayush Joshi Tripathi: "A Hybrid Quantum-Classical Approach to the Electric Mobility Problem"

Charging Electric Cars on a Motorway

Różycki, R.; Józefowska, J.; Kurowski, K.; Lemański, T.; Pecyna, T.; Subocz, M.; Waligóra, G. A Quantum Approach to the Problem of Charging Electric Cars on a Motorway. Energies 2023, 16, 442. https://doi.org/10.3390/en16010442

Problem Statement

We have a number of EVs and a number of charging stations along a motorway. Each EV operates in a specific driving mode.

<u>The objective is</u>: Find all the cases (driving mode and charging station to be reached by each EV) so that there will be no conflicts at the station.

Charging Electric Cars on a Motorway

Różycki, R.; Józefowska, J.; Kurowski, K.; Lemański, T.; Pecyna, T.; Subocz, M.; Waligóra, G. A Quantum Approach to the Problem of Charging Electric Cars on a Motorway. Energies 2023, 16, 442. https://doi.org/10.3390/en16010442

Let $r_i(t_k)$ be the charging current rate for EV i at time t_k and N the number of currently plugged EVs

Cost Function

$$C(r) = \sum_{k=0}^{T} \left(\sum_{i=0}^{N} r_i(t_k) \right)^2 + \rho \sum_{i=0}^{N} \left(\sum_{t_k=0}^{\tau_i^{end}} (V \cdot r_i(t_k) \cdot \Delta T) - e_i \right)^2$$

Let $r_i(t_k)$ be the charging current rate for EV i at time t_k and N the number of currently plugged EVs

Cost Function

$$C(r) = \sum_{k=0}^{T} \left(\sum_{i=0}^{N} r_i(t_k) \right)^2 + \rho \sum_{i=0}^{N} \left(\sum_{t_k=0}^{\tau_i^{end}} (V \cdot r_i(t_k) \cdot \Delta T) - e_i \right)^2$$

Let
$$\delta_{ik}=1$$
 if $t_k \leq \tau_i^{end}$ Else $\delta_{ik}=0$

Let $r_i(t_k)$ be the charging current rate for EV i at time t_k and N the number of currently plugged EVs

Cost Function

$$C(r) = \sum_{k=0}^{T} \left(\sum_{i=0}^{N} r_i(t_k) \right)^2 + \rho \sum_{i=0}^{N} \left(\sum_{t_k=0}^{\tau_i^{end}} (V \cdot r_i(t_k) \cdot \Delta T) - e_i \right)^2$$

Let
$$\delta_{ik}=1$$
 if $t_k \leq \tau_i^{end}$
Else $\delta_{ik}=0$

$$C(r) = \sum_{k=0}^{T} \left(\sum_{i=0}^{N} r_i(t_k) \right)^2 + \rho \sum_{i=0}^{N} \left(\sum_{t_k=0}^{T} (V \cdot \delta_{ik} \cdot r_i(t_k) \cdot \Delta T) - e_i \right)^2$$

$$C(r) = \sum_{i=0}^{N} \sum_{k=0}^{T} (r_i(t_k))^2 + 2 \sum_{i,j=0}^{N} \sum_{k=0}^{T} r_i(t_k) r_j(t_k) + \rho \sum_{i=0}^{N} \sum_{k=0}^{T} (V \delta_{ik} r_i(t_k) \Delta T)^2 + \rho \sum_{i=0}^{N} 2 \sum_{k,l=0}^{T} V^2 \Delta T^2 \delta_{ik} r_i(t_k) \delta_{il} r_i(t_l) + \rho \sum_{i=0}^{N} 2 e_i \sum_{k=0}^{T} V \Delta T \delta_{ik} r_i(t_k)$$

$$C(r) = \sum_{i=0}^{N} \sum_{k=0}^{T} (r_i(t_k))^2 + 2 \sum_{i,j=0}^{N} \sum_{k=0}^{T} r_i(t_k) r_j(t_k) + \rho \sum_{i=0}^{N} \sum_{k=0}^{T} (V \delta_{ik} r_i(t_k) \Delta T)^2 + \rho \sum_{i=0}^{N} 2 \sum_{k,l=0}^{T} V^2 \Delta T^2 \delta_{ik} r_i(t_k) \delta_{il} r_i(t_l) + \rho \sum_{i=0}^{N} 2 e_i \sum_{k=0}^{T} V \Delta T \delta_{ik} r_i(t_k)$$

Convert to binary.

Simplify set of allowable current to $\{0,16,32,48\}$ \longrightarrow $r_i(t_k) = 16\sum_{q=0}^{\infty} 2^q x_{ikq}$

$$\qquad \qquad \Box \! \rangle$$

$$C(r) = \sum_{i=0}^{N} \sum_{k=0}^{T} (r_i(t_k))^2 + 2 \sum_{i,j=0}^{N} \sum_{k=0}^{T} r_i(t_k) r_j(t_k) + \rho \sum_{i=0}^{N} \sum_{k=0}^{T} (V \delta_{ik} r_i(t_k) \Delta T)^2 + \rho \sum_{i=0}^{N} 2 \sum_{k,l=0}^{T} V^2 \Delta T^2 \delta_{ik} r_i(t_k) \delta_{il} r_i(t_l) + \rho \sum_{i=0}^{N} 2 e_i \sum_{k=0}^{T} V \Delta T \delta_{ik} r_i(t_k)$$

Convert to binary.

Simplify set of allowable current to {0,16,32,48} \longrightarrow $r_i(t_k) = 16 \sum_{i=1}^{n} 2^q x_{ikq}$

$$r_i(t_k) = 16 \sum_{q=0}^{1} 2^q x_{ikq}$$

$$C(x) = \sum_{i=0}^{N} \sum_{k=0}^{T} \left(16 \sum_{q=0}^{1} 2^{q} x_{ikq} \right)^{2} + 2 \sum_{i,j=0}^{N} \sum_{k}^{T} 256 \sum_{q=0}^{1} 2^{q} x_{ikq} \sum_{q=0}^{1} 2^{q} x_{jkq} + \rho \sum_{i=0}^{N} \sum_{k=0}^{T} \left(V \delta_{ik} 16 \sum_{q=0}^{1} 2^{q} x_{ikq} \Delta T \right)^{2} + \rho \sum_{i=0}^{N} 2 \sum_{k,l=0}^{T} 256 V^{2} \Delta T^{2} \delta_{ik} \sum_{q=0}^{1} 2^{q} x_{ikq} \delta_{il} \sum_{q=0}^{1} 2^{q} x_{ilq} + \rho \sum_{i=0}^{N} 2 e_{i} \sum_{k=0}^{T} V \Delta T \delta_{ik} 16 \sum_{q=0}^{1} 2^{q} x_{ikq}$$

Split vector x to n clusters of equal length $x_1, x_2, ..., x_n$

Then
$$x^T Q x = \begin{bmatrix} x_1^T & x_2^T & \dots & x_n^T \end{bmatrix} \begin{bmatrix} Q_{11} & Q_{12} & \dots & Q_{1n} \\ 0 & Q_{22} & \dots & Q_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & Q_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \rightarrow$$

Split vector x to n clusters of equal length $x_1, x_2, ..., x_n$

Then
$$x^TQx = \begin{bmatrix} x_1^T & x_2^T & \dots & x_n^T \end{bmatrix} \begin{bmatrix} Q_{11} & Q_{12} & \dots & Q_{1n} \\ 0 & Q_{22} & \dots & Q_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & Q_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \rightarrow x^TQx = x_1^TQ_{11}x_1 + x_2^TQ_{22}x_2 + \dots + x_n^TQ_{nn}x_n + x_1^TQ_{12}x_2 + \dots + x_1^TQ_{1n}x_n + \dots + x_2^TQ_{2n}x_n + \dots$$

Split vector x to n clusters of equal length $x_1, x_2, ..., x_n$

$$E[x^{T}Qx] = \sum_{i=1}^{n} E[x_{i}^{T}Q_{ii}x_{i}] + \sum_{i=1}^{n} \sum_{j\neq i}^{n} E[x_{i}^{T}Q_{ij}x_{j}]$$

$$\theta$$
 HEA $x \to E[x^TQx]$

$$\theta$$
 HEA $x \to E[x^TQx]$

$$E[\mathbf{x}^T \mathbf{Q} \mathbf{x}] = \dots$$

Apply ClusterVQE to EV charging problem

Advantages of ClusterVQE

- Reduce the number of qubits by a factor of N
- Increase the number of measurements by a factor of N

*Can also be used with qubit compression

Comparison

For an example with *T=4 hours*, *Evs = 4* and **2 layer** HAE

Algorithm	#Classical Variables	#Qubits	#measurme nts	#paramet ers θ	Elapsed time (sec)
VQE	16	32	10000	64	610
CompressedVQE	16	6	10000	12	6
ClusterVQE	16	8	40000	64	250
ClusterCompresse dVQE	16	4	40000	32	27

Comparison

Comparison

CompressedVQE				Clust	ClusterCompressedVQE				
16 16 48 32	48 48 16 0	48 48 48 0	$\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$	26880/26880 26880/26880 26880/26880 7680/7680	[48 32 32 32	48 32 48 0	16 48 48 0	$\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$	26880/26880 26880/26880 32720/26880 7680/7680
Clust	erVQE				VQE				
Γ48	48	16	01	26880/26880	Г32	48	32	01	26880/26880