PG-bundles

Pranat

July 2021

1 Prelimnaries

A) If (G, \circ) is a lie group and P is a smooth manifold and there exists a smooth map satisfying:

$$L:G\times P\to P$$

such that:

1) $\forall x \in P : eLx = x$

2) $\forall g_1, g_2 \in G, \forall x \in P \text{ such that } (g_1 \circ g_2)L(x) = g_1L(g_2Lx)$

Then L is called the left G-action.sly, one can define right G-action.

B) Let L be a left G-action. We can define orbit for each $x\in P$ such that: $G_x\equiv\{q\in P:\exists g\in G:q=gLx\}$

We can define an equivalence relation such that x y iff $G \in G$: y = g(L)x

Then, $M/G \equiv M/=\{G_x|x\in P\}$. This is called the orbit space of p.

We define the stablizer of $x \in P$ such that:

 $S_x \equiv \{g \in G | g(L)p = p\}$ $S_x \text{ is a subgroup of G}$

Left G-action is said to be free if:

 $\forall x \in P, S_x = \{e\}$

If a left G-action is free, then:

 $\forall y \in G \text{ then } G_y \cong_{diff} G$

2 Principle Fibre Bundles

Definition: If G is a lie group and (E, π, M) is a smooth bundle and E is equipped with free right action of G and $E - \pi \to M$ is isomorphic to $E - \rho \to E/G$

where E/G is the orbit space and ρ is the inclusion map.

Careful observation: We know that E is equipped with FREE right action of G, this means $Preim_{\rho}(G_p) = G_p \cong_{diff} G$ where $p \in E$.

Thus we can contemplate that Principle bundle is bundle which is isomorphic to a bundle whose fibres are the orbits under the free right action of G, which again is isomorphic to G since, the action is free. More intuitively, Principle G-bundle is a bundle whose fibres at each point is a lie group.

Definition: Let (P,π,M) and (Q,π,N) be two principle G-bundles. A principle bundle morphism $(P,\pi,M)--->(Q,\Pi,N)$ is set of smooth maps (u,f) such that the following commutes: $(u:P\to Q)$ and $f:M\to N$ $(f\circ\pi)(p)=(\Pi\circ u)(p)$ u(P(R)g)=u(p)(R')g

Definition: A Principle bundle morphism is said to be an isomorphism if it is also bundle isomorphism.

Important Theorem: A principle G-bundle (P, π, M) is trivial iff there exists a smooth section $\sigma \in \Gamma(P)(\sigma : M - - > P)$ such that $\pi \circ \sigma = id_M$

3 Associated Fibre Bundles

Definition: If (P, π, M) be a principle G-bundle and F be a manifold equipped with left action of G (L): $1)P_F \equiv (P \times F)/-G$, -G is the quivalence relation $(p, f)_G(p', f')$ iff $\exists g \in G : p' = p(R)g$ and $f' = g^{-1}(L)f$ and we use a bit of notation from now on P_F as [p, f]

2)
$$\pi_F: P_F - --> M, [p, f] - --> \pi(p)$$

Then, (P_F, π_F, M) is called the associated bundle to (P, π, M)

Definition: (P_F, π_F, M) and (Q_F, π_F, N) be the associated bundles of two principle G-bundles (P, π, M) and (Q, π, N) . An associated bundle map between the associated bundles is bundle map (u', v), the pair (u, v) is a principle bundle map between underlying Principle bundles and : $u'([p, f]) \equiv [u(p), f]$

Definition: An associated map (u',v) is said to be isomorphsim if u' and v are invertible and (u'^{-1},v^{-1}) is also an associated bundle map.

An associated bundle (P_F, π_F, M) is trivial if the underlying principle G-bundle (P, π, M) is trivial.

4 An Example(Frame Bundles)

If M is a smooth manifold. Consider this space of it's tangent space's basis vectors:

$$L_pM \equiv \{(e_1,...,e_{\dim(M)}) \mid e_1,...,e_{\dim(M)} \text{ is basis of } T_pM\} \cong_{vec} GL(dim(M),R)$$

Frame Bundle is defined as:

 $LM \equiv \bigcup_{p \in M} L_p M$, with the projection map $\pi : LM - --- > M$, where \cup denotes the disjoint union.

Then, (LM, π, M) is called the frame-bundle of M $dim(LM) = dim(M) + dim(T_pM)$

Definition: Let (LM, π, M) be frame bundle of the smooth bundle of M, With right GL(d, R)-action, $F \equiv (R^d)^{\times p} \times (R^{d*})^{\times q}$ and define left GL(d, R)-action on F by,:

$$(g(L)f)_{b_1,\dots,b_q}^{a_1,\dots,a_p} \equiv (\det g^{-1})^{\omega} g_{a'_1}^{a_1} \dots g_{a'_p}^{a_p} (g^{-1})_{b_1}^{b'_1} \dots (g^{-1})_{b_q}^{b'_q} f_{b'_1,\dots,b'_q}^{a'_1,\dots,a'_p}, \, \omega \in Z$$

Then, associated bundle (LM_F, π_F, M) is called the (p,q)-tensor ω -density bundle on M, and its sections are (p,q)-tensor densities of weight ω .

- 1. If $\omega = 0$, we recover the (p,q)-tensor bundle on M.
- 2. If F = R(p = q = 0), the left action is $(g(L)f) = (\det g^{-1})^{\omega} f$
- 3. If GL(d,R) is restricted such that $\det g^{-1}=1$, then tensor densities can't be differentiated from ordinary tensor fields. This is the why we don't encounter tensor densities in special relativity.