世界知的所有権機関 国 孫 事 務 局

特許協力条約に基づいて公開された国際出願

(51) 国際特許分類6 CL2N 15/53, CL2P 13/08

A1

(11) 国際公開番号

W095/23864

(43) 国際公開日

1995年9月8日(08.09.95)

(21) 国際出願番号

PCT/JP95/00268

(22) 国際出願日

1995年2月23日(23.02.95)

(30) 優先権データ

特願平6/35019

1994年3月4日(04.03.94)

JP

(71) 出願人 (米国を除くすべての指定国について) 味の素株式会社(AJINOMOTO CO., INC.)[JP/JP]

〒104 東京都中央区京橋一丁目15番1号 Tokyo、(JP)

(72) 発明者;および

(75) 発明者/出願人(米国についてのみ)

杉本雅一(SUGIMOTO、Masakazu)[JP/JP]

〒210 神奈川県川崎市川崎区鈴木町1-1

味の素株式会社 生産技術研究所内 Kanagawa, (JP)

臼田佳弘(USUDA, Yoshihiro)[JP/JP]

鈴木智子(SUZUKI, Tomoko)[JP/JP]

田中朗子(TANAKA, Akiko)[JP/JP]

松井 裕(MATSUI, Hiroshi)[JP/JP]

〒210 神奈川県川崎市川崎区鈴木町1-1

味の素株式会社 中央研究所内 Kanagawa, (JP)

(74) 代理人

弁理士 遠山 勉,外(TOYAMA, Tsutomu et al.) 〒103 東京都中央区東日本橋3丁目4番10号

ヨコヤマビル6階 Tokyo, (JP)

(81) 指定国

添付公開書類

BR, CN, IP, US, 欧州特許(AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

.

国際調查報告書

(54) Title: PROCESS FOR PRODUCING L-LYSINE

(54) 発明の名称 L-リジンの製造法

(57) Abstract

A coryneform bacterium having a high L-lysine productivity is provided by integrating a gene coding for a coryneform-origin aspartokinase released of feedback inhibition caused by L-lysine and L-threonine into a DNA of a chromosome of a coryneform bacterium carrying attenuated homoserine dehydrogenase or a coryneform bacterium deficient in a homoserine dehydrogenase gene.

(57) 要約

弱化型ホモセリンデヒドロゲナーゼを保持するコリネホルム細菌またはホモセリンデヒドロゲナーゼ遺伝子を欠損するコリネホルム細菌の染色体DNAに、Lーリジン及びLースレオニンによるフィードバック阻害が解除されたコリネホルム細菌由来のアスパルトキナーゼをコードする遺伝子を組み込んで、Lーリジン生産性の高いコリネホルム細菌を提供する。

情報としての用途のみ

PCT」に基づいて公開される国際出願をパンフレット第一頁にPCT加盟国を同定するために使用されるコード

AMTUB BEFG JRY APT コートトドーナリーファリラス・アーナーナリー・アーカー・ドーナリー・アーカー・バーカー・バーカー・バーカー・バーカー・バーカー・バーカー・バーカ	EEFFGGGGGHIST JKKKKKLI EEFFGGGGGHIST JKKKKKKLI EEFFGGGGGHIST PEGP RU エスフフガイグギギハアアイ貝グキ朝大カリ エスフフガイグギギハアアイ貝グキ朝大カリ アン スペイラボギルニリンイイタ本ニル鮮韓ザヒ スペイラボギルニリンイイタ本ニル鮮韓ザヒ スキ国スン アン スキ国スン ストインンンリジアシガルスリ アイリグキ朝大カリ スキ国スシ スキ国スシ スキ国スシ スキ国スシ スキー スキー ストインン スキー ストインン ストインン ストイン ストインン ストインン ストインン ストインン ストイン ストイ	L L L L L L L N R R T U V C D M M C L N R W X E L O Z L T O M M M X E L O Z L T O M M M X E L O Z L T O N N R P P R O N N P P P R O N P P P P R O N P P P P R O N P P P P R O N P P P P R O N P P P P R O N P P P P R O N P P P P R O N P P P P R O N P P P P R O N P P P P R O N P P P P R O N P P P P R O N P P P P P P P P P P P P P P P P P P	RUDEGJIKNZ DGJWYJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJ
---	--	---	---

Lーリジンの製造法

発明の背景

本発明は微生物工業に関連したものであり、詳しくは、発酵法によるL-リジンの製造法及びこの製造法に好適なコリネホルム細菌に関するものである。

従来、L-リジンはブレビバクテリウム属、コリネバクテリウム属、バチルス属、またはエシェリヒア属に属するL-リジン生産菌を用いた発酵法により製造されており、これらの微生物の生合成系において、オキザロ酢酸からアスパラギン酸、アスパラギン酸 β アルデヒド等を経由して合成される。このようなL-リジン生合成経路にはホスホエノールピルビン酸カルボキシラーゼ、アスパルトキナーゼ、ジヒドロジピコリン酸合成酵素などの種々の酵素が関与しているが、これらの酵素は最終生産物であるL-リジンや中間生成物であるアスパラギン酸などによるフィードバック阻害を受けるものが多いために、発酵法によりL-リジンを製造する場合、生産性を向上させるために、このような阻害を受けないような変異株が多く用いられている。

例えば、ブレビバクテリウム属やコリネバクテリウム属のようなコリネホルム 細菌においては、アスパルトキナーゼ(以下、「AK」という)は、L-リジン及びL-リジン合成経路からの分岐経路で合成される<math>L-スレオニンによる協奏阻害を受けることが知られており、この阻害を受けないAKを保持する変異株が <math>L-リジン生産に用いられている(J. Gen. Appl. Microbiol., 16, 373-391(1970))。

また、L-リジンの発酵生産には、L-リジンの生産性に最も影響を与える酵素といわれているホモセリンデヒドロゲナーゼ(以下、「HD」という)を欠損した変異株も用いられている。これは、L-リジン合成系路からアスパラギン酸 $\beta-$ アルデヒドを介して分岐するL-スレオニン固有の合成系路において、第一の反応であるアスパラギン酸 $\beta-$ セミアルデヒドからL-ホモセリンを生成する反応を触媒するHDが欠失しているためにL-スレオニンが合成されず、その結果A K活性が阻害されずにL-リジン合成反応が進行するためである。このよう

なHD欠損株としては、コリネホルム・グルタミカムのHD完全欠損株が知られている(Nakayama, K. et al.; J. Gen. Appl. Microbiol. 7(3), 145-154(1961))

上記のようなHD完全欠損株に対し、いわゆる弱化型(leaky type)HDを保持する変異株もLーリジン生産に有効であると考えられる。HD完全欠損株はLースレオニン及びLーメチオニンを合成できないために、培地中にこれらのアミノ酸が存在しないと生育することができない。これに対して、Lーリジン生産を抑制するほどには実質的に活性を示さないが、ごく僅かにHD活性を有する弱化型HDを保持するHD弱化株を取得することができれば、培地にL-スレオニンやL-メチオニンを添加しなくても生育が可能となり、培地調製が簡便になる。

また、弱化型HDは、基質であるアスパラギン酸 β – セミアルデヒドに対する 親和性が小さくなっている。したがって、HD弱化株は生育に必要なL – スレオ ニン、L – メチオニン及びL – イソロイシンを合成するために著量のアスパラギ ン酸 β – セミアルデヒドを合成する。著量に合成されたアスパラギン酸 β – セミ アルデヒドは結果としてL – リジンへと流れることとなる。

その一方で、L-スレオニンの生成量を完全に抑える点でHD完全欠損株は今なお有用であると考えられるが、突然変異によるHDの欠損は復帰変異によって活性が戻る可能性があり、そのような可能性の極めて低いHD遺伝子が破壊されたHD欠損株が一層有用であると考えられる。尚、HD遺伝子の塩基配列は、コリネバクテリウム・グルタミカム(Corynebacterium glutamicum)についてはPeoplesらにより報告されている(Peoples, O. P. et al., Molecular Microbiology 2(1), 63-72 (1988))。

また、HD弱化株及びHD欠損株はL-スレオニンを生産しないので、AKはフィードバック阻害を受けない。したがって、HD弱化株及びHD欠損株の細胞中でAK遺伝子が増幅されれば、L-リジン合成反応が進み、L-リジン生産性が向上すると考えられる。さらに、L-リジン及びL-スレオニンによるフィードバック阻害を受けないAKの変異とHDの弱化あるいは欠損とを併せてコリネホルム細菌に導入することにより、L-リジン生産性はより一層向上すると考えられる。

発明の概要

本発明は、上記観点からなされたものであり、コリネホルム細菌のLーリジン生産性を向上させるために、HD弱化株及びHD遺伝子破壊株を得ること、及びAK遺伝子が増幅されたHD弱化株及びHD欠損株、さらにはLーリジン及びLースレオニンによるフィードバック阻害を受けないAKを保持するHD弱化株及びHD遺伝子破壊株を提供することを課題とする。

本発明者は、上記課題を解決するためにブレビバクテリウム・ラクトファーメンタム(Brevibacterium lactofermentum)のHD弱化変異株を取得し、野生型HD遺伝子及び弱化型HD遺伝子を単離してその構造を明らかにし、弱化型HD遺伝子及び一部を欠失したHD遺伝子をブレビバクテリウム・ラクトファーメンタムの野生株に導入することによってLーリジン生産性が向上したLーリジン生産株を創成し、さらにこうして得られたLーリジン生産株の細胞中でAK遺伝子を増幅することにより、あるいはLーリジン及びLースレオニンによるフィードバック阻害を受けないAKをコードする遺伝子を導入することにより一層Lーリジン生産性を向上させることに成功し、本発明に至った。

すなわち本願発明は、N末端から23番目のロイシン残基及び104番目のバリン残基の少なくとも一方が他のアミノ酸残基に変化した変異型ホモセリンデヒドロゲナーゼをコードするDNA断片、N末端から23番目のロイシン残基及び104番目のバリン残基の少なくとも一方が他のアミノ酸残基に変化した変異型ホモセリンデヒドロゲナーゼをコードする遺伝子を保持するコリネホルム細菌、及び前記変異型ホモセリンデヒドロゲナーゼをコードする遺伝子がコリネホルム細菌の染色体上のホモセリンデヒドロゲナーゼ遺伝子との相同組換えにより染色体DNAに組み込まれて形質転換されたコリネホルム細菌を提供する。

また本願発明は、コリネホルム細菌由来のホモセリンデヒドロゲナーゼの一部をコードするDNA断片が、コリネホルム細菌の染色体上のホモセリンデヒドロゲナーゼ遺伝子との相同組換えにより染色体DNAに組み込まれることによって、ホモセリンデヒドロゲナーゼ遺伝子が破壊されたことを特徴とするコリネホルム細菌を提供する。さらに本願発明は、コリネホルム細菌由来のアスパルトキナー

ゼ遺伝子とコリネホルム細菌細胞内で自律複製可能なベクターとを連結してなる 組換えDNAを細胞内に保持し、かつ、野生型ホモセリンデヒドロゲナーゼを発 現しないことを特徴とするコリネホルム細菌、コリネホルム細菌由来のアスパル トキナーゼであってLーリジン及びLースレオニンによるフィードバック阻害が 解除されたアスパルトキナーゼをコードする遺伝子が、コリネホルム細菌の染色 体DNAに組み込まれて形質転換され、かつ、野生型ホモセリンデヒドロゲナー ゼを発現しないことを特徴とするコリネホルム細菌を提供する。さらに本願発明 は、上記コリネホルム細菌を好適な培地で培養し、該培養物中にLーリジンを生 産蓄積せしめ、該培養物からLーリジンを採取することを特徴とするLーリジン の製造法を提供する。

尚、本明細書においては、野生型HDまたは野生型AKを生産する株を「野生株」、実質的にはHD活性をほとんど示さないが、ごく僅かにHD活性を有する弱化型(leaky type)の変異を有するHDを単に「変異型HD」、Lーリジン及びLースレオニンによるフィードバック阻害を受けないような変異を有するAKを「変異型AK」、さらに一部を欠失したHD遺伝子を「欠失型HD遺伝子」ということがある。また、外来HD遺伝子または外来AK遺伝子とベクターとからなる組換えDNAを宿主染色体DNA上のHD遺伝子またはAK遺伝子との相同組換えにより染色体DNAに組み込むことを「遺伝子組込み」、この組換えDNAが染色体DNAに組み込むことを「遺伝子組込み」、この組換えDNAが染色体DNAに組み込まれた状態から、1コピーのHD遺伝子またはAK遺伝子をベクターとともに脱落させることにより、染色体上のHD遺伝子またはAK遺伝子をベクターとともに脱落させることにより、染色体上のHD遺伝子またはAK遺伝子で遺伝子で遺伝子で遺伝子置換された株を単に「HD変異株」、一部を欠失したHD遺伝子で遺伝子で遺伝子置換された株を単に「HD変異株」、一部を欠失したHD遺伝子で遺伝子置換された株を単に「HD変異株」、一部を欠失した

また、本発明にいうコリネホルム細菌とは、バージーズ・マニュアル・オブ・デターミネイティブ・バクテリオロジー (Bergey's Manual of Determinative B acteriology) 第8版599頁 (1974) に定義されている一群の微生物であり、好気性、グラム陽性、非抗酸性、胞子形成能を有しない桿菌であり、コリネバクテリウム属細菌、及び従来プレビバクテリウム属に分類されていたが現在コリネバクテリ

ウム属細菌として統合されたブレビバクテリウム属細菌、さらにコリネバクテリウム属細菌と非常に近縁なブレビバクテリウム属細菌を含む。

本発明により得られるHD変異株は、L-リジン生産性にすぐれており、培地中にL-メチオニン及びL-スレオニン、またはL-ホモセリンが存在していなくても生育できる。また、本発明のHD欠損株は、HD遺伝子が発現しないのでL-リジン生産性に優れ、さらにこの性質を安定して保持することができる。

さらに、AK遺伝子が増幅されたHD変異株及びHD欠損株、変異型AK遺伝子を保持するHD変異株及びHD欠損株は、より一層L-リジン生産性に優れている。

発明の詳細な説明

以下、本発明を詳細に説明する。

< 1 >弱化型HD突然変異株及び変異型HD遺伝子の取得

弱化型変異を有するHDを生産する突然変異株は、野生型HDを生産するコリネホルム細菌を変異処理することにより得られる。コリネホルム細菌の変異処理には、紫外線照射またはN-メチル-N'-ニトロ-N-ニトロソグアニジン(NTG)等の通常人工突然変異に用いられている変異剤による処理を行う。

変異処理した菌体からシングル・コロニー・アイソレーションを行い、各々のコロニーから弱化型HDを産生するものを選択する。弱化型HD変異株は、最小培地で生育することができ、L-メチオニン及びL-スレオニンを過剰に加えた最小培地では生育できないが、L-ホモセリン、又はL-メチオニン及びL-スレオニンを加えた最小培地では生育できるので、これを指標に選択することができる(Shiio, I. & Sano, K., J. G. A. M., 15, 267-287(1969))。こうして得られた変異株が弱化型HDを生産することを確認するために、菌体から粗酵素液を抽出してHD比活性を野生型HDと比較しておくことが好ましい。

HDの酵素活性は、例えばFollettieらの方法 (Follettie, M. T. et al., Mole cular Microbiology 2, 53-62 (1988)) に従って菌体より調製した粗酵素液を用いて、Kalinowskiらの方法 (Kalinowski, J. et al., Mol. Gen. Genet., 224, 317

-324 (1990)) によって測定することができる。

得られた弱化型HD変異株から変異型HD遺伝子を単離するには、例えば、弱化型HD変異株から斎藤、三浦の方法(H. Saito and K. Miura Biochem. Biophys. Acta 72,619,(1963))等により染色体DNAを調製し、ポリメラーゼチェインリアクション法(PCR:polymerase chain reaction; White, T. J. et al; Trends Genet. 5,185(1989)参照)により、HD遺伝子を増幅することによって行うことができる。増幅反応に用いるDNAプライマーは、HD遺伝子の全領域あるいは一部領域を含有するDNA二重鎖の両3、末端に相補するものを用いる。HD遺伝子の一部領域だけを増幅した場合には、該DNA断片をプライマーとして全領域を含むDNA断片を染色体DNAライブラリーよりスクリーニングする必要がある。HD遺伝子の全領域を増幅した場合には、増幅されたHD遺伝子を含有するDNA断片を含むPCR反応液をアガロースゲル電気泳動に供した後、目的のDNA断片を抽出することによってHD遺伝子を含有するDNA断片を回収できる。

DNAプライマーとしては、例えばコリネホルム・グルタミカムについて既知となっている配列 (Peoples, O. P. et al; Molecular Microbiology, 2(1), 63 -72 (1988)) を基にして適宜作成すればよいが、具体的には、HD遺伝子をコードする1150塩基からなる領域を増幅できるプライマーが好ましく、例えば配列番号1及び2に示した2種のプライマーが適当である。プライマーDNAの合成は、ホスホアミダイト法 (Tetrahedron Letters, 22, 1859(1981)参照) 等の常法により、市販のDNA合成装置 (例えば、Applied Biosystems社製DNA合成機 model 3 80B等) を用いて合成することができる。また、PCR反応は、市販のPCR反応装置 (宝酒造 (株) 製DNAサーマルサイクラー PJ2000型等)を使用し、TaqDNAポリメラーゼ (宝酒造 (株) より供給されている)を用い、供給者により指定された方法に従って行うことができる。

PCR法により増幅された変異型HD遺伝子は、エシェリヒア・コリ(Escher ichia coli:以下、「E. coli」ともいう)及び/又はコリネホルム細菌の細胞内において自律複製可能なベクターDNAに接続して組換えDNAを調製し、これをE. coli細胞に導入しておくと、後の操作がしやすくなる。E. coli細胞内にお

いて自律複製可能なベクターとしては、プラスミドベクターが好ましく、宿主の細胞内で自立複製可能なものが好ましく、例えば pUC19、pUC18、pBR322、pHSG2 99、pHSG399、pHSG398、RSF1010等が挙げられる。

また、これらのベクターにコリネホルム細菌中でプラスミドを自律複製可能にする能力をもつDNA断片(例えば、pAM 330 (特開昭58-67699号公報参照)、pHM 1519 (特開昭58-77895号公報参照)、pCG 1 (特開昭57-134500号公報参照)、pCG 2 (特開昭58-35197号公報参照)、pCG 4 (特開昭57-183799号公報参照)、pCG 11 (特開昭57-183799号公報参照)等から調製できる)を挿入すると、E. coli及びコリネホルム細菌の両方で自律複製可能ないわゆるシャトルベクターとして使用することができる。

このようなシャトルベクターとしては、以下のものが挙げられる。尚、それぞ れのベクターを保持する微生物及び国際寄託機関の寄託番号をかっこ内に示した。

pAJ655 エシェリヒア・コリAJ11882(FERM BP-136)

コリネバ クテリウム・ク ルタミクムSR8201(ATCC39135)

コリネハ、クテリウム・ク、ルタミクムSR8202(ATCC39136)

pAJ611 エシェリヒア・コリAJ11884(FERM BP-138)

pAJ440 N° fina x° 7° fina AJ11901 (FERM BP-140)

これらのベクターは、寄託微生物から次のようにして得られる。対数増殖期に 集められた細胞をリゾチーム及びSDSを用いて溶菌し、30000×gで遠心 分離して溶解物から得た上澄液にポリエチレングリコールを添加し、セシウムク ロライドーエチジウムブロマイド平衡密度勾配遠心分離により分別精製する。

E. coliにプラスミドを導入して形質転換するには D. M. Morrisonの方法 (Methods in Enzymology, 68, 326, 1979) あるいは受容菌細胞を塩化カルシウムで処理してDNAの透過性を増す方法 (Mandel, M. and Higa, A., J. Mol., Biol., 53, 159(1970)) 等により行うことができる。

弱化型HD変異株から変異型HD遺伝子を単離するには、弱化型HD変異株か

らプラスミドベクター等を用いて染色体DNAライブラリーを作製し、このライブラリーから変異型HD遺伝子を保持する株を選択し、選択された株から変異型HD遺伝子が挿入された組換えDNAを回収することによっても得られる。以下に、染色体ライブラリーの調製及びライブラリーから変異型HD遺伝子を保持する株を選択する方法の一例について述べる。

まず、弱化型HD変異株を培養して培養物を得る。用いる培地はコリネホルム 細菌が生育できるものであればよく、培地中のLースレオニン及びLーメチオニンの含有量が少ない場合には、Lースレオニン及びLーメチオニンあるいはLーホモセリンを添加しておくことが好ましい。次に培養物を遠心分離して菌体を得、この菌体より、例えば斎藤、三浦の方法(Biochem. Biophys. Acta., 72, 619, (1963))、K. S. Kirbyの方法(Biochem. J., 64, 405, (1956))等の方法により染色体DNAを得る。

こうして得られた染色体DNAから変異型HD遺伝子を単離するために、染色体DNAライブラリーを作製する。まず、染色体DNAを適当な制限酵素で部分分解して種々の断片混合物を得る。切断反応時間等を調節して切断の程度を調節すれば、幅広い種類の制限酵素が使用できる。例えば、Sau3AIを、温度30℃以上、好ましくは37℃、酵素濃度1~10ユニット/mlで様々な時間(1分~2時間)染色体DNAに作用させてこれを消化する。

ついで、切断された染色体 DNA断片を、E. coli細胞内で自律複製可能なベクターDNAに連結し、組換え DNAを作製する。具体的には、染色体 DNAの切断に用いた制限酵素 Sau3AI-と同一末端塩基配列を生じさせる制限酵素、例えばBamII Iを、温度 30 ∞ 以上、酵素濃度 $1\sim100$ 100 10

得られた組換えDNAを用いて、例えばE. coli K-12株を形質転換して染色体 DNAライブラリーを作製する。この形質転換は D.M. Morrisonの方法 (Methods in Enzymology, 68, 326, 1979) あるいは受容菌細胞を塩化カルシウムで処理してDNAの透過性を増す方法 (Mandel, M. and Higa, A., J. Mol., Biol., 53, 159(1970)) 等により行うことができる。

得られた染色体DNAライブラリーの中から、変異型HD遺伝子を保持する形質転換株を選択するには、例えばコリネバクテリウム・グルタミカムについて既知となっている配列 (Peoples, O. P. et al., Molecular Microbiology, 2(1), 63-72 (1988)) をもとにしてオリゴヌクレオチドプローブを合成し、これを用いたコロニーハイブリダイゼーションを行えばよい。E. coliのHD遺伝子は2種類(HD-1、HD-2) 存在することが知られている (Zakin, M. M. et al; J.B.C., 258, 3028-3031 (1983)) が、これらはいずれもコリネバクテリウム・グルタミカムHDのC末端側約100アミノ酸残基に対応する領域が存在しないので、この領域の中からプローブに用いる配列を選択すると、E. coli染色体上のHD遺伝子にはハイブリダイズしないので好ましい。こうして選択された形質転換株から、変異型HD遺伝子を含有する組換えDNAを、例えば P. Guerry らの方法 (J. Bacteriol., 116, 1064, (1973))、D. B. Clewell の方法 (J. Bacteriol., 110, 667, (1972)) などにより単離することができる。

また、上記と同様にしてコリネホルム細菌からクローニングされた野生型HD遺伝子を用いて、以下のようにして弱化型HDを生産する株を創成してもよい。まず、野生型HD遺伝子又は他の変異を有するHD遺伝子を含有するDNAをインビトロ変異処理し、変異処理後のDNAと宿主に適合するベクターDNAとを連結して組換えDNAを得る。組換えDNAを宿主微生物に導入して形質転換体を得、同形質転換体のうちで弱化型HDを発現するように至ったものを選択する。また、野生型HD遺伝子又は他の変異を有するHD遺伝子を含有するDNAを、宿主に適合するベクターDNAと連結して組換えDNAを得て、その後組換えDNAをインビトロ変異処理し、変異処理後の組換えDNAを宿主微生物に導入して形質転換体を得、同形質転換体のうちで弱化型HDを発現するように至ったものを選択してもよい。

DNAをインビトロ変異処理するための薬剤としては、ヒドロキシルアミン等が挙げられる。ヒドロキシルアミンは、シトシンをN⁴-ヒドロキシシトシンに変

えることによりシトシンからチミンへの変異を起こす化学変異処理剤である。

本発明に用いる変異型HD遺伝子としては、弱化型HDをコードするものであれば特に制限されないが、野生型HDのアミノ酸配列において、

- ①N末端から23番目のロイシン残基がロイシン残基以外のアミノ酸残基に変化する変異、
- ②N末端から104番目のバリン残基がバリン残基以外のアミノ酸残基に変化する変異、
- ③N末端から23番目のロイシン残基がロイシン残基以外のアミノ酸残基に変化し、かつ、104番目のバリン残基がバリン残基以外のアミノ酸残基に変化する変異、

のいずれかの変異を有するHDをコードする遺伝子が挙げられる。ここで、野生型HDのアミノ酸配列としては、具体的には配列表配列番号3及び4に示すブレビバクテリウム・ラクトファーメンタム野生株由来のHDのアミノ酸配列が挙げられる。

上記①~③に示した変異において、23番目のロイシン残基にあってはフェニルアラニン残基に変化する変異が、104番目のバリン残基にあってはイソロイシン残基に変化する変異が挙げられる。

尚、置換されたアミノ酸残基に対応するコドンは、そのアミノ酸残基をコードするものであれば種類は特に問わない。また、菌種や菌株の違いにより保持する野生型HDのアミノ酸配列がわずかに相異するものがある。このような酵素の活性に関与しない位置でのアミノ酸残基の置換、欠失あるいは挿入を有するHDも本発明に使用することができる。

例えば、後記実施例に示すように、ブレビバクテリウム・ラクトファーメンタム 2256株 (ATCC 13869) に由来するHDのアミノ酸配列を、コリネバクテリウム・グルタミカムのHDについて報告されているアミノ酸配列 (Peoples, O. P. et al; Molecular Microbiology 2(1) 63-72 (1988)) と比較したところ、N 末端から148番目のアミノ酸残基はコリネバクテリウム・グルタミカムのHDではグリシン残基であるのに対し、ブレビバクテリウム・ラクトファーメンタム HDではアラニン残基であることが明らかとなっている。このようなコリネバク

テリウム・グルタミカムのHDにおいても、上記①~③のいずれかの変異を導入すると弱化型HDが得られることが予想される。

<2>野生型AK遺伝子及び変異型AK遺伝子の取得

本発明に用いる野生型AK遺伝子は、コリネホルム細菌野生株から調製することができる。また、Lーリジン及びLースレオニンによる相乗的なフィードバック阻害が実質的に解除されたAKをコードする遺伝子は、AK活性に対するLーリジン及びLースレオニンによる相乗的なフィードバック阻害が実質的に解除された変異株から調製することができる。このような変異株は、例えば、コリネホルム細菌野生株に、通常の変異処理法、紫外線照射またはNーメチルーN'ーニトローNーニトロソグアニジン(NTG)等の変異剤処理を施し、変異処理した細胞群の中から取得することができる。AK活性の測定は、Miyajima,Retal:The Journal of Biochemistry(1968),63(2),139-148に記載される方法を用いることができる。

A K遺伝子の供与菌としては、ブレビバクテリウム・ラクトファーメンタム野生株ATCC13869、及びATCC13869株より変異処理により誘導されたレーリジン生産菌AJ3463 (FERM P-1987) が最も好ましい供与菌である。

コリネホルム細菌からAK遺伝子を単離するには、例えば、斎藤、三浦の方法 (H. Saito and K. Miura Biochem. Biophys. Acta, 72,619,(1963)) 等により染色体 DNAを調製し、ポリメラーゼチェインリアクション法 (PCR: polymerase c hain reaction; White, T. J. et al; Trends Genet. 5,185(1989)参照) により、AK遺伝子を増幅することによって行うことができる。

増幅に用いるDNAプライマーはAK遺伝子の全領域あるいは一部領域を含有するDNA二重鎖の両3'末端に相補するものを用いる。AK遺伝子の一部領域だけを増幅した場合には、該領域のDNA断片をプライマーとして用い、全領域を含むDNA断片を増幅することにより遺伝子ライブラリーよりスクリーニングする必要がある。全領域を増幅した場合には、該DNA断片をアガロースゲル電気泳動に供した後、目的のバンドを切り出すことによってAK遺伝子を含有するDNA断片を回収できる。

DNAプライマーとしては、例えば、コリネバクテリウム・グルタミカムにおいて既知となっている配列(Molecular Microbiology(1991)、5(5)、1197-1204、Mol. Gen. Genet. (1990)224、317-324参照)を基にして、AK遺伝子をコードする約1643bpの領域を増幅すべく、5'-TCGCGAAGTAGCACCTGTCACTT-3'(配列表配列番号 5)と5'-ACGGAATTCAATCTTACGGCC-3'(配列表配列番号 6)という配列の23mer及び21merの一本鎖DNAが最適である。DNAの合成はApplied Biosystems社製DNA合成機 model 380Bを使用し、ホスホアミダイト法を用いて(Tetrahedron Letters(1981)、22、1859参照)常法に従って合成できる。PCR反応は、宝酒造(株)製DNAサーマルサイクラー PJ2000型を用い、TaqDNAポリメラーゼを用い、供給者により指定された方法に従って行うことができる。

PCR法により増幅された変異型AK遺伝子は、E. coli及び/又はコリネホルム細菌の細胞内において自律複製可能なベクターDNAに接続して組換えDNAを調製し、これをE. coli細胞に導入しておくと、後の操作がしやすくなる。E. coli細胞内において自律複製可能なベクターとしては、プラスミドベクターが好ましく、宿主の細胞内で自立複製可能なものが好ましく、例えば pUC19、pUC18、pBR322、pHSG399、pHSG399、pHSG398、RSF1010等が挙げられる。

また、これらのベクターにコリネホルム細菌中でプラスミドを自律複製可能にする能力をもつDNA断片を挿入すると、E. coli及びコリネホルム細菌の両方で自律複製可能ないわゆるシャトルベクターとして使用することができる。E. coliにプラスミドを導入して形質転換するには D. M. Morrisonの方法 (Methods in Enzymology, 68, 326, 1979) あるいは受容菌細胞を塩化カルシウムで処理してDNAの透過性を増す方法 (Mandel, M. and Higa, A., J. Mol., Biol., 53, 159(1970)) 等により行うことができる。

上記のようにしてAK野生株からAK遺伝子を単離すれば野生型AK遺伝子が得られ、AK変異株からAK遺伝子を単離すれば変異型AK遺伝子が得られる。

本発明に用いる変異型AK遺伝子としては、L-リジン及びL-スレオニンによる相乗的なフィードバック阻害が解除されたAKをコードするものであれば特に制限されないが、野生型AKのアミノ酸配列において、 α サブユニットではN末端から279番目のアラニン残基がアラニン以外かつ酸性アミノ酸以外のアミ

ノ酸残基に、 β サブユニットでは30番目のアラニン残基がアラニン以外かつ酸性アミノ酸以外のアミノ酸残基に変化する変異が挙げられる。ここで、野生型AKのアミノ酸配列としては、具体的には α サブユニットでは配列表配列番号10に示すアミノ酸配列が、 β サブユニットでは配列表配列番号12に示すアミノ酸配列が挙げられる。

また、上記のアラニン以外かつ酸性アミノ酸以外のアミノ酸残基としては、スレオニン残基、アルギニン残基、システイン残基、フェニルアラニン残基、プロリン残基、セリン残基、チロシン残基及びバリン残基が挙げられる。

尚、置換されるアミノ酸残基に対応するコドンは、そのアミノ酸残基をコードするものであれば種類は特に問わない。また、菌種や菌株の違いにより保持する野生型AKのアミノ酸配列がわずかに相異するものがあると予想される。このような酵素の活性に関与しない位置でのアミノ酸残基の置換、欠失あるいは挿入を有するAKも本発明に使用することができる。

<3>HD変異株及びHD欠損株の取得

HD変異株は、<1>に記載したように、野生型HDを生産するコリネホルム 細菌を紫外線照射または変異剤による処理を行い、変異処理した菌体から変異型 HDを産生する株を選択することによって得られる。また、そのようにして得られたHD変異株から単離した変異型HD遺伝子を、野生型コリネホルム細菌細胞 に導入し、染色体上のHD遺伝子との相同組換えにより遺伝子置換を行うことによっても、野生型HDを発現しないHD変異株が得られる。

変異型HD遺伝子を、宿主染色体上のHD遺伝子と置換するには以下のようにすればよい(図1参照)。すなわち、プラスミドベクターにブレビバクテリウム・ラクトファーメンタム由来の温度感受性複製起点と変異型HD遺伝子とクロラムフェニコール等の薬剤に耐性を示すマーカー遺伝子とを挿入して組換えDNAを調製し、この組換えDNAでコリネホルム細菌を形質転換し、温度感受性複製起点が機能しない温度で形質転換株を培養し、続いてこれを薬剤を含む培地で培養することにより、組換えDNAが染色体DNAに組み込まれた形質転換株が得られる。

こうして染色体に組換えDNAが組み込まれた株は、染色体上にもともと存在するHD遺伝子配列との組換えを起こし、染色体HD遺伝子と変異型HD遺伝子との融合遺伝子2個が組換えDNAの他の部分(ベクター部分、温度感受性複製起点及び薬剤耐性マーカー)を挟んだ状態で染色体に挿入されている。したがって、この状態では野生型HDが優性であるので、最小培地で野生株と同等の生育を示す。

次に、染色体DNA上に変異型HD遺伝子のみを残すために、2個のHD遺伝子の組換えにより1コピーのHD遺伝子を、ベクター部分(温度感受性複製起点及び薬剤耐性マーカーを含む)とともに脱落させる。例えば、染色体組込み株を培養し、培養菌体を薬剤を含まない平板培地にまいて培養する。生育したコロニーを、薬剤を含む平板培地にレプリカして培養し、薬剤感受性株を取得する。得られた薬剤感受性株の染色体からベクター部分が脱落していることを、サザン・ハイブリダイゼーションにより確認し、さらに変異型HDを発現していることを確認する。

上記の変異型HD遺伝子のかわりに、HDの一部をコードするHD遺伝子、すなわち一部を欠失したHD遺伝子を用いて遺伝子置換を行うと、染色体HD遺伝子が一部を欠失したHD遺伝子に置換されたHD欠損株が得られる。

後記実施例1に示すように、HDはN末端側の領域が活性に関与していると予想される。したがって、HD遺伝子のうち欠失させる部位としては、N末端側の領域、例えばN末端から350アミノ酸以内の領域、例えば100~200番目、あるいは250~350番目のアミノ酸の領域が挙げられる。尚、HD遺伝子は、その下流に存在するホモセリンキナーゼと同一オペロン内にあるので、ホモセリンキナーゼの発現を阻害しないようにHD遺伝子のプロモーター部位は欠失させないことが好ましい。

組換えDNAをコリネホルム細菌の細胞内に導入するには、E. coli K-12 について報告されている様に受容菌細胞を塩化カルシウムで処理してDNAの透過性を増す方法(Mandel, M. and Higa, A., J. Mol., Biol., 53, 159(1970)、またはバチルス・ズブチリスについて報告されている様に細胞がDNAを取り込み得る様に増殖段階(いわゆるコンピテントセル)に導入する方法(Duncan, C. H., Wilson, G. A.

and Young, F. E., Gene, 1, 153(1977)) により可能である。あるいは、バチルス・ズブチリス、放線菌類および酵母について知られている様に(Chang, S. and Choen, S. N., Molec. Gen. Genet., 168. 111(1979); Bibb, M. J., Ward, J. M. and Hopwood, O. A., Nature, 274, 398(1978); Hinnen, A., Hicks, J. B. and Fink, G. R., Proc. Natl. Acad. Sci. USA, 75, 1929(1978))、DNA 受容菌を、組換えDNAを容易に取り込むプロトプラストまたはスフェロプラストにして組換えDNA受容菌に導入することも可能である。

プロトプラスト法では上記のバチルス・ズブチリスにおいて使用されている方法でも充分高い頻度を得ることができるし、特開昭57-183799に記載されたコリネバクテリウム属またはブレビバクテリウム属のプロトプラストにポリエチレングリコールまたはポリビニルアルコールと二価金属イオンとの存在下にDNAをとり込ませる方法も当然利用できる。ポリエチレングリコールまたはポリビニルアルコールの代りに、カルボキシメチルセルロース、デキストラン、フィコール、ブルロニックF68(セルバ社)などの添加によってDNAのとり込みを促進させる方法でも同等の結果が得られる。

さらには、電気パルス法(杉本ら、特開平2-207791号公報)によっても、組換え DNAをブレビバクテリウム属またはコリネバクテリウム属細菌に属する受容菌 へ導入できる。

変異型HD遺伝子または欠失型HD遺伝子を導入する野生型コリネホルム細菌としては、コリネバクテリウム属細菌、及び従来ブレビバクテリウム属に分類されていたが現在コリネバクテリウム属細菌として統合されたブレビバクテリウム属細菌、さらにコリネバクテリウム属細菌と非常に近縁なブレビバクテリウム属細菌が挙げられるが、特にコリネバクテリウム属(プレビバクテリウム属)のグルタミン酸生産性細菌が本発明においては、最も好ましいものである。コリネバクテリウム属(プレビバクテリウム属)のグルタミン酸生産性細菌の野性株の例としては次のようなものが挙げられ、これらの野生株、あるいは同株にLーリジン生産性の性質を付与した株も同様に本発明に使用することができる。

コリネバクテリウム・アセトアシドフィルム	ATCC	1 3 8 7 0
コリネバクテリウム・アセトグルタミクム	ATCC	1 5 8 0 6
コリネバクテリウム・カルナエ	ATCC	15991
コリネバクテリウム・グルタミカム	ATCC	1 3 0 3 2
	ATCC	1 3 0 6 0
ブレビバクテリウム・ディバリカタム	ATCC	1 4 0 2 0
ブレビバクテリウム・ラクトファーメンタム	ATCC	1 3 8 6 9
コリネバクテリウム・リリウム	ATCC	15990
コリネバクテリウム・メラセコーラ	ATCC	17965
ブレビバクテリウム・サッカロリティクム	ATCC	1 4 0 6 6
ブレビバクテリウム・インマリオフィルム	ATCC	1 4 0 6 8
ブレビバクテリウム・ロゼウム	ATCC	1 3 8 2 5
ブレビバクテリウム・フラバム	ATCC	1 3 8 2 6
ブレビバクテリウム・チオゲニタリス	АТСС	19240
ミクロバクテリウム・アンモニアフィラム	ATCC	15354

また、本発明に用いることができるコリネホルム細菌として、上記のようなグルタミン酸生産性を有する野性株のほかにグルタミン酸生産性を有するまたはグルタミン酸生産性を失った変異株も含まれる。現在、L-リジン生産菌としてコリネホルム・グルタミン酸生産菌の種々の人工変異株が用いられており、これらの株も本発明に使用することができる。このような人工変異株としては次のようなものがある。AEC(S-(2-r)) エチル)ーシステイン)耐性変異株、その成長にL-ホモセリンのようなアミノ酸を必要とする変異株(特公昭48-28078号,特公昭56-6499号),AECに耐性を示し、更にL-ロイシン、L-ホモセリン,L-プロリン,L-セリン,L-アルギニン,L-アラニン,L-バリン等のアミノ酸を要求する変異株(米国特許第3708395号及び第3825472号),DL-α-rミノー $\epsilon-$ カプロラクタム, $\alpha-$ アミノーラウリルラクタム,rスパラギン酸-rアナログ,スルファ剤,キノイド,r

ーラウロイルロイシンに耐性を示すLーリジン生産変異株、オキザロ酢酸脱炭酸酵素(デカルボキシラーゼ)または呼吸系酵素阻害剤に耐性を示すLーリジン生産変異株(特開昭50-53588号、特開昭50-31093号、特開昭52-102498号、特開昭53-9394号、特開昭53-86089号特開昭55-9783号、特開昭55-9759号、特開昭56-32995号、特開昭56-39778号、特公昭53-43591号、特公昭53-1833号)、イノシトールまたは酢酸を要求するLーリジン生産変異株(特開昭55-9784号、特開昭56-8692号)、フルオロピルビン酸または34℃以上の温度に対して感受性を示すLーリジン生産変異株(特開昭55-9783号、特開昭53-86090号)、エチレングリコールに耐性を示し、Lーリジンを生産するブレビバクテリウムまたはコリネバクテリウムの変異株(米国特許出願第333455号参照)。

<4>HD変異株又はHD欠損株におけるAK遺伝子増幅

AKは、Lーリジン及びLースレオニンが共存することによってフィードバック阻害を受けるが、野生型ホモセリンデヒドロゲナーゼを発現しないコリネホルム細菌はLースレオニンを生産できないので、AKはフィードバック阻害を受けない。したがって、野生型ホモセリンデヒドロゲナーゼを発現しないコリネホルム細菌の細胞中でAK遺伝子を増幅すれば、Lーリジン生産性が向上すると考えられる。また増幅するAK遺伝子として阻害解除型AK遺伝子を用いると、一層フィードバック阻害を受けないので、さらにLーリジン生産性が向上すると考えられる。

AK遺伝子を導入する野生型ホモセリンデヒドロゲナーゼを発現しないコリネホルム細菌としては、上記<3>のようにして得られるHD変異株又はHD欠損株が挙げられるが、突然変異処理によって得られるHD完全欠損株を用いても、同様にAK遺伝子増幅によるLーリジン生産性向上効果が得られる。

これらの野生型ホモセリンデヒドロゲナーゼを発現しないコリネホルム細菌細胞中でAK遺伝子または変異型AK遺伝子を増幅するには、AK遺伝子または変異型AK遺伝子とコリネホルム細菌細胞内で自律複製可能なベクターとからなる

組換えDNAで該コリネホルム細菌を形質転換すればよい。

ここで用いるベクターは、コリネホルム細菌細胞内において自律的に複製し得るものであればどのようなものでも良い。具体的には、前述したpAJ655、pAJ1844、pAJ611、pAJ3148、pAJ440等が例示できる。

コリネホルム細菌の形質転換方法としては、E. coli K-12 について報告されている様に受容菌細胞を塩化カルシウムで処理してDNAの透過性を増す方法(Mandel, M. and Higa, A., J. Mol., Biol., 53, 159(1970)、またはバチルス・ズブチリスについて報告されている様に細胞がDNAを取り込み得る様に増殖段階(いわゆるコンピテントセル)に導入する方法(Duncan, C. H., Wilson, G. A. and Young, F. E., Gene, 1, 153(1977))等が挙げられる。あるいは、バチルス・ズブチリス、放線菌類および酵母について知られている様に(Chang, S. and Choen, S. N., Molec. Gen., Genet., 168. 111(1979); Bibb, M. J., Ward, J. M. and Hopwood, O. A., Nature, 274, 398 (1978); Hinnen, A., Hicks, J. B. and Fink, G. R., Proc. Natl. Acad. Sci. USA, 75 1929 (1978))、DNA 受容菌を、組換えDNAを容易に取り込むプロトプラストまたはスフェロプラストにして組換えDNA受容菌に導入することも可能である。

また、ベクターに薬剤耐性などのマーカー遺伝子や、宿主の栄養要求性を相補する遺伝子などを保持させることにより、組換えDNAの宿主中での安定性を向上させることができる。

さらに、AK遺伝子または変異型AK遺伝子の発現には、AK遺伝子固有のプロモーターをそのまま用いてもよいが、コリネホルム細菌で機能する他の遺伝子のプロモーターを用い、これをAKまたは変異型AKをコードするDNA配列に連結してもよい。

< 5 > HD変異株又はHD欠損株の染色体DNAへの変異型AK遺伝子の導入

上記<4>で述べたように、HD変異株又はHD欠損株の細胞中でAK遺伝子 増幅を行うと、Lーリジン生産性を向上させることができるが、HD変異株又は HD欠損株に導入したAK遺伝子の安定性を増すためには、AK遺伝子を染色体 DNA中に組み込むことが好ましい。ここで染色体DNAに組み込むAK遺伝子 としては、変異型AK遺伝子を用いることが好ましい。 変異型AK遺伝子を、宿主染色体DNAに組み込むには、変異型HD遺伝子あるいは欠失型HD遺伝子の場合と同様に遺伝子組込みを行えばよい。すなわち、プラスミドベクターにブレビバクテリウム・ラクトファーメンタム由来の温度感受性複製起点と変異型AK遺伝子とクロラムフェニコール等の薬剤に耐性を示すマーカー遺伝子とを挿入して組換えDNAを調製し、この組換えDNAでコリネホルム細菌を形質転換し、温度感受性複製起点が機能しない温度で形質転換株を培養し、続いてこれを薬剤を含む培地で培養することにより、組換えDNAが染色体DNAに組み込まれた形質転換株が得られる。

こうして染色体に組換えDNAが組み込まれた株は、染色体上にもともと存在するAK遺伝子配列との組換えを起こし、染色体AK遺伝子と変異型AK遺伝子との融合遺伝子2個が組換えDNAの他の部分(ベクター部分、温度感受性複製起点及び薬剤耐性マーカー)を挟んだ状態で染色体に挿入されている。この状態では変異型AKが優性であるので表現型は変異型となる。したがって、遺伝子組込み株のままでもよいが、染色体DNA上でほぼ同一の配列が並列に並んでいると再び組換えを起こして一方のAK遺伝子が脱落しやすいので、染色体DNA上に変異型AK遺伝子のみが残った遺伝子置換株を得ることが好ましい。すなわち、2個のAK遺伝子の和換えにより、1コピーのAK遺伝子をベクター部分(温度感受性複製起点及び薬剤耐性マーカーを含む)とともに脱落させる。例えば、染色体組込み株を培養し、培養菌体を薬剤を含まない平板培地にまいて培養する。生育したコロニーを、薬剤を含む平板培地にレプリカして培養し、薬剤感受性株を取得する。得られた薬剤感受性株の染色体からベクター部分が脱落していることを、サザン・ハイブリダイゼーションにより確認し、さらに変異型AKを発現していることを確認する。

尚、変異型HD遺伝子または欠失型HD遺伝子による遺伝子置換の場合と異なり、野生型AK遺伝子が染色体DNA上に完全な形で残っていてもさしつかえないので、変異型AK遺伝子は染色体DNA上のAK遺伝子以外の部位に組み込まれていてもよい。

<6>L-リジンの製造

上記のようにして得られるHD変異株、HD欠損株、AK遺伝子を増幅したこれらの株、または変異型AK遺伝子を組み込んだHD変異株もしくはHD欠損株を、好適な培地で培養することにより、培養物中にLーリジンを生産蓄積せしめることができる。

使用する培地としては、炭素源、窒素源、無機イオン及び必要に応じその他の 有機成分を含有する通常の培地が挙げられる。

炭素源としては、グルコース、ラクトース、ガラクトース、フラクトースやで んぷんの加水分解物などの糖類、フマール酸、クエン酸、コハク酸等の有機酸類 を用いることができる。

窒素源としては、硫酸アンモニウム、塩化アンモニウム、リン酸アンモニウム 等の無機アンモニウム塩、大豆加水分解物などの有機窒素、アンモニアガス、ア ンモニア水等を用いることができる。

有機微量栄養源としては、ビタミンB1、L-ホモセリンなどの要求物質または酵母エキス等を適量含有させることが望ましい。これらの他に、必要に応じてリン酸カリウム、硫酸マグネシウム、鉄イオン、マンガンイオン等が少量添加される。

また、HD欠損株を用いる場合には、培地中に適当量のL-スレオニン及びL-メチオニン、またはL-ホモセリンを加える。

培養は好気的条件下で16~72時間実施するのがよく、培養温度は25℃~37℃に、培養中pHは5~7に制御することが好ましい。尚、pH調整には無機あるいは有機の酸性あるいはアルカリ性物質、更にアンモニアガス等を使用することができる。 培養物からのLーリジンの採取は通常のイオン交換樹脂法、沈澱法その他の公知の方法を組み合わせることにより実施できる。

図面の簡単な説明

図1は、遺伝子組込み及び遺伝子置換の概念図、

図2は、各種微生物のHD遺伝子のアミノ酸配列を比較した図、

図3は、各種微生物のHD遺伝子のアミノ酸配列を比較した図(続き)、

図 4 は、p399AK9B及びp399AKYBの構築の過程を示す図、

図5は、HD変異株及びHD欠損株のL-リジン生産性及び培養後のODを示す図、

図6は、AK遺伝子を増幅したHD変異株及びHD欠損株のLーリジン生産性 及び培養後のODを示す図、

図7は、変異型AK遺伝子が染色体に組み込まれたHD変異株及びHD欠損株のLーリジン生産性及び培養後のODを示す図である。

好適な実施例の説明

以下、本発明を実施例によりさらに具体的に説明する。

実施例1 野生型HD遺伝子、弱化型HD遺伝子 及び阻害解除型HD遺伝子の解析

ブレビバクテリウム・ラクトファーメンタム野生株から、弱化型HD変異株及びL-スレオニンによるフィードバック阻害が解除されたHDを産生する変異株を創成し、これらの野生株及び変異株から、野生型HD遺伝子、弱化型HD遺伝子及び阻害解除型HD遺伝子を単離し、構造解析を行った。野生株としては、ブレビバクテリウム・ラクトファーメンタム AJ12036株 (FERM BP-734) を、弱化型HD変異株としてはブレビバクテリウム・ラクトファーメンタム AJ12472株及びAJ12937株を、阻害解除型HD変異株としてはブレビバクテリウム・ラクトファーメンタム AI6080株を用いた。これらの変異株は以下のようにして得た。

AJ12036株は、ブレビバクテリウム・ラクトファーメンタム 2256株 (ATCC 13869) から、もともと存在するプラスミドpAM330を脱落させた株であり、HD に関しては野生型HDを産生する株である。

一方、AJ12472株及びAJ12937株は、ブレビバクテリウム・ラクトファーメンタム 2256株 (ATCC 13869) からLーリジン生産性を指標として突然変異による育種を繰り返した結果得られた株であり、弱化型HDを産生する株である。また、AI6080株はブレビバクテリウム・ラクトファーメンタム 2256株 (ATCC 1386

9)から、L-スレオニン生産性を指標として突然変異による育種を繰り返した結果得られた株であり、阻害解除型HDを産生する株である。

<1>PCR法によるHD遺伝子の増幅

HD遺伝子の塩基配列は、コリネバクテリウム・グルタミカムにおいて報告されており (Peoples, O. P. et al; Molecular Microbiology 2(1) 63-72 (1988))、ブレビバクテリウム・ラクトファーメンタムとコリネバクテリウム・グルタミカムの各々のHD遺伝子の配列は類似性が高いことが予想されたので、コリネバクテリウム・グルタミカムの配列を基にPCR法に用いる合成プライマーDNAを作製した。

ブレビバクテリウム・ラクトファーメンタム AJ12036株、AJ12472株、AJ12937 株及びAI6080株から常法により染色体DNAを調製した。これらの染色体DNAからHD遺伝子を含む約1500bpのDNA断片をPCR法により増幅するために、ABI社製DNA合成機 model381A型を用いて、5′側プライマーH1(841)5′-CTGGGAAGGTGAATCGAATT-3′(860):配列表配列番号1)及び3′側プライマーH2(2410)5′-TCCGAGGTTTGCAGAAGATC-3′(2391):配列表配列番号2)の2種類のプライマーを合成した。尚、かっこ内の数字はPeoplesらが発表した塩基配列(Peoples, 0. P. et al., Molecular Microbiology 2(1)63-72(1988))における位置を示す。得られた合成プライマーは、逆相HPLCにて精製した。

PCR反応は、PCR増幅装置 (DNAサーマルサイクラーPJ2000: 宝酒造 (株))及びPCRキット (Takara GeneAmp™ kit:宝酒造(株))を用い、以下に示す組成で行った。

表 1

成 分	濃度	配合量
プライマーH 1 プライマーH 2 dATP, dGTP, dTTP, dCTP Taq DNA ポリメラーゼ 染色体DNA 10×反応緩衝液 水	0.25μM 0.25μM 各々200μM 2.5U/100μL	25pmol 25pmol 20nmol 0.5 μL(5U/μL) 1 μg 10 μL バランス(合計量が100 μL)

PCR反応におけるDNAの変性、DNAのアニーリング、及びポリメラーゼ 反応の条件は、各々94 $^\circ$ 、1分、37 $^\circ$ 、2分、75 $^\circ$ 、3分とし、各温度間の遷移 は1秒で行った。この反応サイクルを25サイクル繰返すことによりDNAの増幅 を行った。こうして得られた増幅反応生成物の大きさをアガロースゲル電気泳動 により確認した結果、約1.4 $^\circ$ kbpのDNA断片の増幅が認められた。

こうしてAJ12036株、AJ12472株、AJ12937株及びAI6080株の各株の染色体DNAから増幅されたDNA断片を各々制限酵素KpnIを用いて切断して得られるDNA断片を、ベクタープラスミドpHSG399(Takeshita, S. et al.; Gene(1987), 61, 63-74参照)のKpnI部位に挿入して組換えDNAを得た。AJ12036株由来の増幅断片を含む組換えDNAをpHDW、AJ12472株由来の増幅断片を含む組換えDNAをpHDMI、AJ12937株由来の増幅断片を含む組換えDNAをpHDMII、AI6080株由来の増幅断片を含む組換えDNAをpHDMII、AI6080株由来の増幅断片を含む組換えDNAをpHDMIIによの名し、各々のプラスミドをE. coli JM109株に導入して形質転換体を得た。

<2>HD遺伝子の塩基配列の決定及び変異点の解析

(1)野生型及び変異型HD遺伝子の塩基配列の比較

上記のようにして得られたブレビバクテリウム・ラクトファーメンタムAJ1203 6株、AJ12472株、AJ12937株及びAI6080株のHD遺伝子断片の塩基配列の決定をダイデオキシ法により行った。

決定されたAJ12036株の野生型HD遺伝子の塩基配列及びこの配列から推定され

るアミノ酸配列を、配列表配列番号 3 に示す。さらに、アミノ酸配列を配列表配列番号 4 に示す。この配列とPeoplesら報告したコリネバクテリウム・グルタミカムのH D遺伝子の配列(Peoples,0. P. et al.,Molecular Microbiology,2(1),63-72(1988))を比較したところ、4 ヶ所に塩基の相違があり、そのうち 1 ヶ所はアミノ酸レベルでの相違であった。この相違点をコリネバクテリウム・グルタミカムのH D遺伝子の配列を基準として以下に示す。

- ① $^{531}G \rightarrow C$ ($^{148}G1y \rightarrow ^{148}A1a$)
- ② $^{1222}G \rightarrow C$
- $(3)^{1818}G \rightarrow T$
- $(4)^{1324} C \rightarrow G$

コリネホルム細菌の各野生株のHD遺伝子の配列の間に認められるこのような相違は、HD活性に影響するものではなく、コリネバクテリウム・グルタミカムのHD遺伝子の配列も配列番号3に示されるブレビバクテリウム・ラクトファーメンタムのHD遺伝子の配列と同等のものとして扱うことができる。

また、AJ12036株の野生型HD遺伝子の塩基配列及びこの配列から推定されるアミノ酸配列をAJ12472株、AJ12937株及びAI6080株のHD遺伝子の塩基配列及びアミノ酸配列と比較した結果、AJ12472株では $2 \, r$ 所、AJ12937では $1 \, r$ 所、AI6080では $1 \, r$ 所の変異点があり、全てアミノ酸置換を伴っており、さらにAJ12472株及びAJ12937株のHD遺伝子には全く同一の変異が $1 \, r$ 所共通して存在していることがわかった。各変異点を以下に示す。

表 2

菌 株	塩基配列上の相違点	アミノ酸残基の変異
AJ12472株	$^{155}C \rightarrow T$, $^{398}G \rightarrow A$	²³ Leu→Phe, ¹⁰⁴ Val→Ile
AJ12937株	^{3 9 8} G → A	¹º⁴Val→Ile
AI6080株	1266 C → T	³ ° ° Ser→Phe

以下、¹⁵⁵ C→T (²³ Leu→Phe) の変異点を変異点 1、³⁹⁸ G→A (¹⁰⁴ Val→I1 e) の変異点を変異点 2、さらに¹²⁶⁶ C→T (⁸⁹⁸ Ser→Phe) の変異を変異点 3 という。

(2) ブレビバクテリウム・ラクトファーメンタム、バチルス・サブチリス及び E. coliのHDアミノ酸配列及び変異点の比較

E. coliにはHD遺伝子が2種類(HD-1、HD-2)存在し、いずれもAKと2機能酵素となっていることが知られている(Zakin, M. M. et al; J.B.C. 258 3028-3031 (1983))。また、バチルス・サブチリスのHD遺伝子の塩基配列も決定されている(Parsot, C and Cohen, G. N.; J.B.C. 263(29) 14654-14660 (1988))。これらのアミノ酸配列とブレビバクテリウム・ラクトファーメンタム野生型HDのアミノ酸配列を比較したものを図2及び図3に示す。

この結果から、相同性の高い部位はN末端側の領域に多く、特にブレビバクテリウム・ラクトファーメンタムHDのアミノ酸配列においてアミノ酸番号100~230の領域に相同性が高い部位が集中していることがわかる。このことと、ブレビバクテリウム・ラクトファーメンタムHDの2箇所の変異点はN末端から約100アミノ酸残基内にあり、特に変異点1はN末端から23アミノ酸残基の位置であって、しかも2つの変異点は、E. coliのHD-1、HD-2、バチルス・サブチリスのHD及びブレビバクテリウム・ラクトファーメンタムHDとの間で保存性の高いアミノ酸残基であったこと、さらに、E. coliのHD-1及びHD-2は、ブレビバクテリウム・ラクトファーメンタムHDのC末端側約100アミノ酸残基に対応する配列は存在しないことから、HDの活性領域はNー末端側にあると推定される。

一方、L-スレオニンによる阻害が解除されたコリネバクテリウム・グルタミカムHDの遺伝子の塩基配列が発表されている。すなわち、Sahmら (Reinscheid, D. J. et al; J. Bacteriol. 173(10) 3228-3230 (1991)) は点変異による C末端から68番目の1アミノ酸の置換を、またSinskeyら (Archer, J. A. C. et al; G ene 107 53-59 (1991)) は、点変異によるフレームシフトでの C末端から17番目以降のアミノ酸の変化、及び7番目以降のアミノ酸の欠失を報告している。ま

た、ブレビバクテリウム・ラクトファーメンタムAI6080株の阻害解除型HDでは、アミノ酸残基の変異はC末端から53アミノ酸残基目の位置であった。さらに、E. coliのHD-1及びHD-2には存在しないC-末端側の領域が、ブレビバクテリウム・ラクトファーメンタムHDと同様にL-スレオニンによるフィードバック阻害を受けるバチルス・サブチリスのHDには存在することから、HDのL-スレオニンによるフィードバック阻害に関わる領域はC-末端側にあると推定される。

実施例2 野生型AK遺伝子及び変異型AK遺伝子の取得と解析

< 1 >野生型及び変異型 A K遺伝子、及びそれらを含有するプラスミドの作製

ブレビバクテリウム・ラクトファーメンタム 2256株 (ATCC 13869)、及び 2256株より変異処理により得られたLーリジン生産性変異株AJ3463 (FERM P-1987) より常法に従い、染色体DNAを調製した。染色体DNAよりPCR法 (polymera se chain reaction; White, T. J. et al; Trends Genet. 5, 185(1989)参照)によりAK遺伝子を増幅した。増幅に用いたDNAプライマーはコリネバクテリウム・グルタミカムにおいて既知となっている配列 (Molecular Microbiology(1991)5(5), 1197-1204, Mol. Gen. Genet. (1990)224, 317-324参照)を基にしてAK遺伝子をコードする約1643bpの領域を増幅すべく、5'-TCGCGAAGTAGCACCTGTCACTT-3'(配列番号5)と5'-ACGGAATTCAATCTTACGGCC-3'(配列番号6)という配列の23mer及び21merの一本鎖DNAを合成した。DNAの合成はApplied Biosystems社製DNA合

PCR反応は、宝酒造(株)製DNAサーマルサイクラー PJ2000型を用い、TaqD NAポリメラーゼを用い、供給者により指定された方法に従って遺伝子増幅を行なった。増幅された1643kbの遺伝子断片をアガロースゲル電気泳動により確認した後、ゲルより切り出した該断片を常法により精製し、制限酵素NruI(宝酒造(株)製)及びEcoRI(宝酒造(株)製)にて切断した。

成機 model 380Bを使用し、ホスホアミダイト法を用いて(Tetrahedron Letters

(1981), 22, 1859参照) 常法に従って合成した。

遺伝子断片のクローン化用ベクターにはpHSG399 (Takeshita, S et al;Gene(1987),61,63-74参照)を用いた。pHSG399を制限酵素SmaI (宝酒造(株)製)及び

制限酵素EcoRIにて切断し、増幅されたAK遺伝子断片と接続した。DNAの接続はDNAライゲーションキット(宝酒造(株)製)を用い、指定された方法にて行なった。この様にしてpHSG399にブレビバクテリウム染色体より増幅されたAK遺伝子断片が接続されたプラスミドを作製した。野生株である2256株(ATCC 13869)由来のAK遺伝子を有するプラスミドをp399AKY、Lーリジン生産菌であるAJ3463由来のAK遺伝子を有するプラスミドをp399AK9と命名した。

p399AKYおよびp399AK9に、それぞれコリネバクテリウム属細菌中でプラスミド を自律複製可能にする能力をもつDNA断片(以下「Coryne.-ori」と記す)を導 入し、コリネバクテリウム属細菌中で自律複製可能なAK遺伝子を搭載したプラ スミドを作製した。Coryne. -oriは、エシェリヒア・コリと、コリネバクテリウム 属細菌の双方の菌体中で自律複製可能なプラスミドベクターからCoryne. -oriを調 製した。このようなプラスミドベクターはいくつか報告があるが、ここでは、コ リネホルム細菌細胞内で自律複製可能なプラスミドpAJ1844(特開昭58-216199参照) とエシェリヒア・コリ細胞内で自律複製可能なプラスミドpHSG298(S. Takeshita et a1: Gene 61,63-74(1987)参照)から作製したシャトルベクターpHK4を用いた。 pHK4の作製法については、特開平5-7491号公報に詳細に記載されている が、概略を示せば以下の通りである。pAJ1844を制限酵素Sau3AIで部分切断し、制 限酵素BamHIで完全切断したpHSG298と連結した。連結後のDNAをブレビバクテ リウム・ラクトファーメンタム AJ12036(FERM-P7559)に導入した。形質転換の方 法は、電気パルス法(特開平2-207791参照)を用いた。形質転換体の選択は、カナ マイシン25μg/mlを含むM-CM2Gプレート(グルコース5g、ポリペプトン10g、酵母エ キス10g、NaC15g、DL-メチオニン0.2g、寒天15gを純水11に含む。pH7.2) にて行った。 形質転換体からプラスミドを調製し、大きさの最も小さいものを選択し、pHK4と 命名した。このプラスミドは、エシェリヒア・コリと、コリネホルム細菌中で自 律複製でき、宿主にカナマイシン耐性を付与する。

上記のようにして得られたpHK4を、制限酵素KpnI(宝酒造(株)製)にて切断し、切断面を平滑末端化した。平滑末端化はDNA Blunting kit(宝酒造(株)製)を用い、指定された方法にて行なった。平滑末端化後、リン酸化済みBamHIリンカー(宝酒造(株)製)を接続し、pHK4よりCoryne.-ori部分のDNA断片をBamHIのみ

による切断によって切り出される様改変した。このプラスミドをBamHIにより切断し、生じたCoryne. -ori D N A 断片を同じくBamHIにて切断したp399AKY、p399AK9に接続し、コリネバクテリウム属細菌中で自律複製可能でかつ A K遺伝子を含むプラスミドを作製した。

p399AKY由来の野生型AK遺伝子を含むプラスミドをp399AKYBと命名し、p399AK9B K9由来の変異型AK遺伝子を含むプラスミドをp399AK9Bと命名した。p399AK9B、p399AKYB構築の過程を図4に示す。ブレビバクテリウム・ラクトファーメンタム野生型株であるAJ12036株(FERM-P7559)に変異型AKプラスミドp399AK9Bを導入した株AJ12691は、1992年4月10日に通商産業省工業技術院生命工学工業技術研究所に受託番号FERM-P12918として寄託され、1995年2月10日にブダペスト条約に基づく国際寄託に移管され、FERM BP-4999の受託番号で寄託されている。

< 2 > ブレビバクテリウム・ラクトファーメンタムの野生型AK及び変異型AK 遺伝子の塩基配列の決定

野生型AK遺伝子を含むプラスミドp399AKY及び変異型AK遺伝子を含むプラスミドp399AK9を各々の形質転換体から調製し、野生型及び変異型AK遺伝子の塩基配列の決定を行なった。塩基配列の決定はサンガーらの方法 (F. Sanger et al: Proc. Natl. Acad. Sci. 74, 5463(1977)などがある)によった。

p399AKYにコードされている野生型AK遺伝子の塩基配列を配列表の配列番号7に示す。一方、<math>p399AK9にコードされている変異型AK遺伝子の塩基配列は野生型AKと比べ、配列番号7において1051番目のGがAに変化しているという1塩基の変異のみを有していた。AK遺伝子は、同一のDNA鎖に α 、 β の2本のサブユニットが同一のリーディングフレームでコードされていることが知られているが(Kalinowski, Jet al; Molecular Microbiology(1991)5(5), 1197-1204参照)、相同性から判断して本遺伝子も同一のDNA鎖に α 、 β の2本のサブユニットが同一のリーディングフレームでコードされていると考えられる。

DNA塩基配列より推定される野生型AKタンパク質のαサブユニットのアミノ酸配列をDNA配列と同時に配列表の配列番号8に示す。このアミノ酸配列の

一方、変異型 A K遺伝子配列上の変異は、野生型 A K タンパク質のアミノ酸配列 (配列番号 8、10)において、 α サブユニットでは 2 7 9 番目のアラニン残基がスレオニン残基に、 β サブユニットでは 3 0 番目のアラニン残基がスレオニン残基にというアミノ酸残基置換を起こしていることを意味する。

<3>変異型AK遺伝子発現産物のAK活性及び阻害解除の評価

ブレビバクテリウム・ラクトファーメンタム(コリネバクテリウム・グルタミ カム) 野生型株であるAJ12036株 (FERM-P7559) に野生型AKプラスミドp399AKY B及び変異型AKプラスミドp399AK9Bを各々導入した株を作製した。コリネバク テリウムへの遺伝子導入は、電気パルス法によった。宿主のブレビバクテリウム ・ラクトファーメンタム(コリネバクテリウム・グルタミカム)AJ12036株、野 生型AKプラスミドを保持するAJ12690株および、変異型AKプラスミドを保持 するAJ12691(FERM-P12918)株のAK活性を測定した。活性測定は、常法に従った (Miyajima, R et al; The Journal of Biochemistry (1968) 63(2), 139-148参照)。 表3に示す様にAKプラスミド導入によりAKの比活性が約10~15倍に増 大していること、及び変異型AKプラスミド導入株についてのみ、L-リジン及 びL-スレオニンによる相乗阻害が解除していることを確認した。表3は、ブレ ビバクテリウム・ラクトファーメンタム 野生型株AJ12036株、及びそれに野生型 AKプラスミドを保持させたAJ12690株、変異型AKプラスミドを保持させたAJ1 2691株の菌体破砕液のAK比活性、及びそのL-リジン及びL-スレオニンによ る相乗阻害の程度を表わしたものである。阻害剤のL-リジン、及びL-スレオ ニンは各々最終濃度1mMとなるよう添加した。

表 3

菌株	AK比活性(mU/mg タンパク)		
	無添加	+1mM L-リシ゛ン, +1mML-スレオニン	
AJ12036	19.0	2. 6	
AJ12690	235.3	34.6	
AJ12691	210.5	145.3	

< 4 >変異型AK遺伝子の部位特異的変異による改良

上記のようにして得られた変異型 A K をさらに改良するために、部位特異的変異により、変異型 A K の変異点 ($^{27\,\theta}$ Ala \rightarrow Thr) を他のアミノ酸残基に置換することにした。目的部位に目的の変異を起こす部位特異的変異法としては P C R を用いる方法(Higuchi, R., 61, in PCR technology (Erlich, H. A. Eds., Stockton press (1989)))、ファージを用いる方法(Kramer, W. and Frits, H. J. Meth. in Enzymol., 154, 350(1987); Kunkel, T. A. et al., Meth. in Enzymol., 154, 367(1987))などがある。

変異によって導入されるアミノ酸残基の種類としては、20種類のアミノ酸を極性や分子構造などの各々の性質により分類し、代表的なもの8種(Arg, Asp, Cys, Phe, Pro, Ser, Tyr, Val)を選んだ。各々の変異点のアミノ酸変異、及び塩基置換を表4に示す。

表 4

変異名	変異点及びアミノ酸変化				
Thr	²⁷⁹ Ala	GCT	 >	Thr	A*CT
Arg	²⁷⁹ Ala	GCT	\rightarrow	Arg	C*G*T
Asp	²⁷⁹ Ala	GCT	\rightarrow	Аsр	GA*T
Сув	²⁷⁹ Ala	GCT	\rightarrow	Суѕ	T*G*T
Phe	²⁷⁹ Ala	GCT	>	Рhе	T^*T^*T
Pro	²⁷⁹ Ala	GCT	\rightarrow	Pro	C*CT
Ser	²⁷⁹ Ala	GCT	>	Ser	T*CT
Tyr	²⁷⁹ Ala	G C T	\rightarrow	Туr	T*A*T
Val	²⁷⁹ Ala	GCT	→	Val	GT*T

変異の導入方法としては、変異が導入される279番目のAla残基のコドンを目的のアミノ酸残基のコドンに置換した23merの合成DNA8種を考案し(Arg 導入用合成DNAは5'-GCCAGGCGAG CGT GCCAAGGTTT-3':配列番号12、Asp 導入用合成DNAは5'-GCCAGGCGAG GAT GCCAAGGTTT-3':配列番号13、Cys 導入用合成DNAは5'-GCCAGGCGAG TGT GCCAAGGTTT-3':配列番号14、Phe 導入用合成DNAは5'-GCCAGGCGAG TTT GCCAAGGTTT-3':配列番号15、Pro 導入用合成DNAは5'-GCCAGGCGAG CCT GCCAAGGTTT-3':配列番号15、Pro 導入用合成DNAは5'-GCCAGGCGAG TCT GCCAAGGTTT-3':配列番号16、Ser 導入用合成DNAは5'-GCCAGGCGAG TCT GCCAAGGTTT-3':配列番号17、Tyr 導入用合成DNAは5'-GCCAGGCGAG TAT GCCAAGGTTT-3':配列番号17、Tyr 導入用合成DNAは5'-GCCAGGCGAG TAT GCCAAGGTTT-3':配列番号18、Val 導入用合成DNAは5'-GCCAGGCGAG GTT GCCAAGGTTT-3':配列番号19である)、その相補配列と併せて16種類の23mer 一本鎖DNAを合成した。

たとえばArg残基を導入する場合、5'-GCCAGGCGAG CGT GCCAAGGTTT-3'(配列番号12)なる配列を有する一本鎖DNA、その相補鎖一本鎖DNA、配列番号5の配列を有する一本鎖DNA、及び配列番号6の配列を有する一本鎖DNAをプライマーとし、p399AKYを鋳型にしてPCR 法を行った。非特異的変異の導入を除くため、作製されたDNAから変異点を含む約280塩基対を制限酵素(NaeI-AvaII)を用いて切り出し、p399AKYの該当部位と置換して組換えプラスミドを作製した。置換した領域については塩基配列の確認を行った。

得られた 8 種類の各々の組換えプラスミドが保持する変異型 A Kの酵素活性を測定、評価するにあたり、宿主としてE. coliの A K完全欠損株 Gif106M1 を用いた (Boy, E and Patte, J. C., J. Bacteriol. 112, 84-92 (1972), Theze, J. et al., J. Bacteriol. 117, 133-143 (1974))。 コリネホルム細菌には A K 欠損株が知られていないために、宿主の A K とプラスミド由来の A K が混在してしまい、正確に測定できないと考えられたためである。多くのコリネホルム細菌の遺伝子はE. coli中で発現することが知られており、また A K遺伝子は pHSG399 上の 1ac プロモーター下流に連結されているため、エシェリヒア・コリ中で発現可能であると予想された。

野生型及び8種類の組換えプラスミドでE. coli Gif106M1を形質転換し、各々の形質転換株から無細胞抽出液を調製し、酵素解析を行った。AK活性の測定は、Miyajima, R et al; The Journal of Biochemistry(1968)63(2), 139-148に記載される方法により行った。表5にLーリジン 5mM、Lースレオニン 5mM、あるいはLーリジン及びLースレオニン 2mMづつ添加したときの阻害解除度及び比活性を示す。

表 5

	比活性(mU/mgタンパク)	5mM Lys(%)	5mM Thr(%)	2mM Lys +Thr (%)
АЈ12036	5. 6	52.0	87.0	7. 0
野生型 Thr Arg Cys Phe Pro Ser Tyr Val	3 1 6. 4 3 7 4. 4 1 9 7. 4 2 6 7. 0 4 4 7. 7 1 2 5. 0 4 0 6. 8 4 2 5. 6 4 4 8. 9	52. 7 58. 7 41. 4 66. 5 14. 6 77. 5 55. 0 16. 1 60. 5	86.8 109.1 106.8 135.7 105.0 123.2 114.4 104.8	6. 2 78. 3 58. 6 60. 6 32. 4 85. 2 37. 0 32. 2 75. 5

その結果、Asp のような酸性アミノ酸に変化させた場合はAKは失活したが、

その他のいずれのアミノ酸に変化させた場合もL-リジン及びL-スレオニンによる阻害は解除された。

実施例3 HD変異株及びHD欠損株のL-リジン生産性の評価

2種類の変異型HD及びHD欠損がL-リジン生産性に与える効果を比較するために、変異型HD遺伝子又は配列の一部を欠失させたHD遺伝子を同じ宿主の染色体に組込んだ遺伝子置換株を作製し、各々をHD変異株及びHD欠損株としてL-リジン生産性を評価した。

<1>変異型HD遺伝子置換用プラスミド及び欠失型HD遺伝子置換用プラスミドの作製

ブレビバクテリウム・ラクトファーメンタム AJ12036株 (FERM BP-734) (ブレビバクテリウム・ラクトファーメンタム 2 2 5 6 株 (ATCC 13869) から、クリプティックプラスミドpAM330を脱落させたもの) の染色体 DNAに、変異型 H D遺伝子又は配列の一部を欠失させた H D遺伝子を相同組換えにより導入するために遺伝子置換用プラスミドを作製した。

(1)変異点1を有するHD遺伝子の作製

実施例1で得られた変異型HD遺伝子は、変異点 $1(^{156}\text{C} \rightarrow \text{T}(^{23}\text{Leu} \rightarrow \text{Phe}))$ 及び変異点 $2(^{388}\text{G} \rightarrow \text{A}(^{164}\text{Val} \rightarrow \text{Ile}))$ を有する変異型HD遺伝子(AJ12472株由来)、及び変異点2のみを有する変異型遺伝子(AJ12937株由来)の2種類であった。変異点1がHD活性およびL-リジン生産性に与える影響を調べるために、変異点1のみを有する変異型HD遺伝子を作製した。以下、変異点1を有する変異型HDをHD-M1、変異点2を有する変異型HDをHD-M2、変異点1及び変異点2を共に有するHDをHDM-12と呼ぶ。

HDM-12遺伝子を含むプラスミドpHDMIを、変異点1及び変異点2の両変異点の間を切断する制限酵素 TthIII1、及びベクターとHD遺伝子との連結点を切断する KpnI を用いて切断し、変異点1を持つ5、側HD断片を得た。同様に野生型HD遺伝子を有する pHDW を TthIII1及び KpnI で切断して3、側HD断片を得た。こうして得られた5、側HD断片と3、側HD断片とを結合することによって、

変異点1のみを有するHD-M1遺伝子を得た。

(2)遺伝子置換用プラスミドの構築

上記のようにして得られた変異点1のみを有するHD-M1遺伝子を、クロラムフェ ニコール耐性 (Cm') 遺伝子を有するベクタープラスミドpHSG398のKpnI 部位に挿 入し、さらに、ブレビバクテリウム・ラクトファーメンタム 野生株由来の温度感 受性複製起点 (TSori) を pHSG398のBamHI 部位に挿入することによって、HD-M1 遺伝子置換用プラスミド pTSHDMlを構築した。TSoriは、Coryne. -oriを有するプ ラスミドpHK4をインビトロでヒドロキシルアミン処理し、処理後のプラスミドD NAでブレビバクテリウム・ラクトファーメンタム AJ12036を形質転換し、高温 (34°C)で生育できない形質転換株から回収して得られたプラスミドpHSC4(特 開平5-7491号公報参照)から調製した。尚、Coryne. -oriは、pHSC4からB amHIとKpnIで切り出すことができるが、BamHI切断のみでCoryne. -oriを切り出せ るようにプラスミドを改変した。pHSC4を制限酵素KpnI(宝酒造(株)製)にて切 断し、切断面を平滑末端化した。平滑末端化はDNA Blunting kit (宝酒造 (株) 製)を用い、指定された方法にて行なった。平滑末端化後、リン酸化済みBamHIリ ンカー(宝酒造(株)製)を接続し、pHSC4よりTSori部分のDNA断片をBamHIのみ による切断によって切り出される様改変した。pHSC4を保持するエシェリヒア・コ リ AJ12571は、1990年10月11日に通商産業省工業技術院生命工学工業技 術研究所に受託番号FERM P-11763 として寄託され、1991年8月26日にブダ ペスト条約に基づく国際寄託に移管され、FERM BP-3524 の受託番号で寄託されて いる。

次に、同様にして、変異点2のみを持つHD-M2遺伝子を有するプラスミド pHDI IをKpnIで切断してHD-M2遺伝子断片を得、これをpHSG398のKpnI 部位に挿入し、さらに、TSori をBamHI 部位に挿入することによりHD-M2遺伝子置換用プラスミド pTSHDM2を構築した。

また、変異点1及び変異点2を共に有するHD-M12遺伝子を有するプラスミド p HDMIをKpnIで切断してHD-M12遺伝子断片を得、これをpHSG398 の KpnI 部位に挿入し、さらに、TSori を BamHI 部位に挿入することによりHD-M12遺伝子置換用プ

ラスミド pTSHDM12を構築した。

さらに、野生型HD遺伝子を有するプラスミド pHDWを AatIIで切断し、HD遺伝子内に存在する2つの AatII 部位(配列番号3において塩基番号716~722、1 082~1087)間を欠失させることにより一部を欠失したHD遺伝子(HD- Δ 遺伝子)を含むプラスミドを作製した。このプラスミドを KpnIで切断してHD- Δ 遺伝子断片を得、これをpHSG398 の KpnI 部位に挿入し、次に TSori を BamHI 部位に挿入することによりHD- Δ 遺伝子置換用プラスミド pTSHD Δ を構築した。

(3) HD変異株及びHD欠損株の作製

上記で得られた変異型HD遺伝子置換用プラスミド pTSHDM1、pTSHDM2、pTSHD M12、及び欠失型HD遺伝子置換用プラスミドpTSHD Δを用いて、ブレビバクテリウム・ラクトファーメンタム AJ12036株の形質転換を、電気パルス法(杉本ら,特 開平2-207791号公報)によって行った。

得られた形質転換株を、M-CM2G培地を用いて25℃にてフルグロース(約1~2×10⁸/ml)になるまで培養した。培養菌体を、プレート1枚あたり10⁵細胞となるよう希釈し、クロラムフェニコール(5 μg/mL)を含むM-CM2G平板培地にまき、34℃にて2~7日培養してコロニーを取得した。得られたコロニーについて、細胞中にプラスミドが含まれていないことを確認し、さらに直鎖状のpHSG398をプローブに用いたサザン・ハイブリダイゼーション解析により、遺伝子置換用プラスミドの染色体への組込みを確認した。

上記のようにして得られた染色体組込み株は、染色体上にもともと存在するH D遺伝子と変異型もしくは欠失型HD遺伝子との融合遺伝子2個が、ベクター (TSoriを含む)を挟んだ状態で挿入されている。

次に、変異型HD遺伝子あるいは欠失型HD遺伝子のみを染色体に残すために、 野生型HD遺伝子及びベクターを染色体DNAから脱落させて、変異型HD遺伝 子置換株及び欠失型HD遺伝子置換株を得た。野生型HD遺伝子及びベクターの 脱落は次のようにして行った。

各組込み株を、クロラムフェニコール($10 \mu g/mL$)を含むM-CM2G培地で34℃に てフルグロース($1\sim2\times10^9/ml$)になるまで培養した。培養菌体を、クロラムフ ェニコールを含まないM-CM2G平板培地に1枚あたり50~200 コロニーとなるようにまき、34℃にて培養した。生育したコロニーを、クロラムフェニコール(5 μg/mL)を含むM-CM2G平板培地にレプリカし、34℃にて培養してクロラムフェニコール感受性株を取得した。得られたクロラムフェニコール感受性株の染色体からベクターが脱落していることを、サザン・ハイブリダイゼーションにより確認し、さらに変異型HDあるいは欠失型HDを発現していることを確認した。こうして得られた遺伝子置換株は、染色体DNAの塩基配列決定により、変異点が導入されていることを確認した。

こうして得られたHD-M1遺伝子置換株をHDM1株、HD-M2遺伝子置換株をHDM2株、HDM-12遺伝子置換株をHDM12株、HD-Δ遺伝子置換株をHDΔ株と呼ぶ。

<2>HD変異株及びHD欠損株のL-リジン生産性

HD変異株であるHDM1株、HDM2株、HDM12株、及びHD欠損株であるHD Δ株のL-リジン生産性を検討した。シングルコロニーアイソレーションを行ったこれらのHD変異株、HD欠損株及びHDに関しては野生株であるAJ12036株を、下記に示すL-リジン生産培地20mLを入れた500mLフラスコ中で、31.5℃にて72時間振盪培養し、最終OD(OD562)及びL-リジン蓄積量を調べた。

(Lーリジン生産培地)

下記成分(1 L中)を溶解し、KOHでpH8.0に調製し、115℃で15 分殺菌した後、別に乾熱殺菌したCaCO₃を50g/L加える。

グルコース	100g
(NH ₄) ₂ SO ₄	5 5 g
KH ₂ PO ₄	1 g
MgSO4 · 7 H2O	1 g
d-b i o t i n	$500\mu g$
thiamin-HCl	$2\ 0\ 0\ 0\ \mu\ g$
F e S O 4 · 7 H 2 O	0. 01g
MnSO4 · 7H2O	0. 01g
Nicotinamide	5 m g
豆濃 (T-N)	1. 05 g
GD113	0.05ml

結果を図5に示す。尚、残糖はいずれの株でも認められなかった。この結果から明らかなように、L-リジンの蓄積はAJ12036株ではほとんど認められないのに対して、HDM1株では約 4 g/1、HDM2株では約 17 g/1、HDM12株では約 7.5 g/1、 $HD\Delta$ 株では約 30 g/1 であり、いずれの株でもL-リジンの蓄積が認められ、特に $HD\Delta$ 株ではL-リジン生産性が飛躍的に向上した。また、 $HD\Delta$ の変異点1のみの導入によってもL-リジンが蓄積されることが明らかとなった。

尚、HD Δ株は最小培地またはL-スレオニンもしくはL-メチオニンを単独 で添加した最小培地では生育せず、L-ホモセリンまたはL-スレオニン及びL -メチオニンの添加により生育が回復した。また、HDM 1 株、HDM 2 株及び HDM 1 2 株は、いずれもL-スレオニン及びL-メチオニンを含まない最小培 地で生育が可能であった。

尚、ブレビバクテリウム・ラクトファーメンタムHD Δ株は、ブレビバクテリウム・ラクトファーメンタム AJ12846と命名され、1994年3月1日に通商産業省工業技術院生命工学工業技術研究所に受託番号FERM P-14197として寄託され、1995年2月9日にブダペスト条約に基づく国際寄託に移管され、FERM BP-49

95の受託番号で寄託されている。

実施例4 HD変異株及びHD欠損株におけるAK遺伝子の増幅効果

実施例3に示したように、変異型HD遺伝子及び欠失型HD遺伝子を野生株に導入すると、Lーリジンの生産性が向上することが明らかとなったが、さらにこれらの変異型HD遺伝子及び欠失型HD遺伝子とAK遺伝子増幅との組合せによる効果を調べた。

AKはLーリジン及びLースレオニンによる協奏阻害を受けるが、各々単独では阻害の程度は低いことが知られている。したがって、HD変異株及びHD欠損株ではLースレオニンが生産されないので、野生型AK遺伝子の増幅によってもLーリジンの生産性が向上することが予想される。さらに、実施例2で得られたLーリジン及びLースレオニンによる阻害を受けない変異型AKをコードする遺伝子を導入すれば、より一層Lーリジン生産性が向上することが期待される。

このような変異型HD遺伝子あるいは欠失型HD遺伝子の導入とAK遺伝子増幅との組合せ効果を検討するため、実施例3で得られたHD変異株及びHD欠損株にAK遺伝子を含むプラスミドを導入し、L-リジン生産性を評価した。

野生株であるAJ12036、HD変異株であるHDM1、HDM2及びHDM12、及びHD欠損株であるHD Δ の各株を各々宿主として、野生型AK遺伝子及びCoryne. -oriを持つプラスミド(p399AKYB))と変異型AKを持つプラスミド(p399AK9B)を用いて形質転換した。すなわち、宿主5株について2種類のプラスミドで形質転換を行い、合計10種類の形質転換株を得た。

AJ12036、HDM1、HDM2、HDM12、HDA及び各々の形質転換株について2株づつを前述のL-リジン生産培地を用いて培養し、L-リジン生産性を調べた。但し、p399AKYBプラスミド及びp399AK9Bプラスミドを保持する形質転換株については、前培養に用いた培地及びL-リジン生産培地ともに $10~\mu g/mL$ のクロラムフェニコールを添加して培養した。培養は、培地20mLを入れた500mLフラスコ中で、31.5℃にて7.2時間振盪しながら行った。

結果を図6に示したように、AJ12036株では、野生型AKプラスミドを導入してもL-リジン生産性の向上は認められないのに対し、HD変異株及びHD欠損株

では、野生型AKプラスミド導入によりL-リジン蓄積量の増加がみられた。また、変異型AKプラスミドを導入した場合には、HD変異株及びHD欠損株のいずれにおいても野生型AKプラスミドを導入したときよりもL-リジン生産性がさらに向上した。さらに、野生型HD遺伝子を保持するAJ12036株でも、変異型AKプラスミドの導入により、約22g/LのL-リジン蓄積が認められた。

実施例 5 HD変異株及びHD欠損株における変異型AK遺伝子置換の効果

< 1 > 変異型AK遺伝子及び変異型HD遺伝子置換株、及び変異型AK遺伝子及び欠失型HD遺伝子置換株の創成

実施例4ではHD変異及びHD欠損とAK遺伝子増幅との組合せの効果を調べたが、本実施例では変異型HD遺伝子あるいは欠失型HD遺伝子が染色体上に組み込まれるとともに変異型AK遺伝子が染色体上に組み込まれた株を創成し、Lーリジン生産性を評価した。

変異型AK遺伝子を染色体DNAに組み込むための遺伝子置換用プラスミドは 次のようにして得た。

実施例2で得られたプラスミドをp399AK9 (pHSG399に染色体より増幅されたブレビバクテリウム・ラクトファーメンタムAJ3463株由来の変異型AK遺伝子断片が接続されたプラスミド)のベクター部分に存在するBamHI部位に、ブレビバクテリウム・ラクトファーメンタムの温度感受性複製起点 (TSori)を挿入することによって、変異型AK遺伝子置換用プラスミド pAK9Tを構築した。

変異型 A K遺伝子及びHD-M1遺伝子が導入された株〔(AKFBR+HDM1)株〕は、実施例 4 で得られた H D M 1 株を親株として、変異型 A K遺伝子置換用プラスミド pAK9Tを用いて変異型 A K遺伝子を組み込むことによって得た。 H D M 1 株にpAK 9Tを電気パルス法(杉本ら、特開平2-207791号公報)によって導入し、得られた形質転換株を、M-CM2G培地を用いて25℃にてフルグロース(約1~2×10 $^{\circ}$ /m1)になるまで培養した。培養菌体を、プレート 1 枚あたり10 $^{\circ}$ 細胞となるよう希釈し、クロラムフェニコール(5 μ g/mL)を含むM-CM2G平板培地にまき、34℃にて2~7日培養してコロニーを取得した。得られたコロニーについて、細胞中にプラスミド

が含まれていないことを確認し、さらに直鎖状のpHSG399をプローブに用いたサザン・ハイブリダイゼーション解析により、pAK9Tの染色体への組込みを確認した。

上記のようにして得られた染色体組込み株は、染色体上にもともと存在するA K遺伝子と変異型AK遺伝子との融合遺伝子2個が、ベクター(TSoriを含む)を 挟んだ状態で染色体に挿入されている。次に、変異型AK遺伝子のみを染色体D NA上に残すために、野生型AK遺伝子及びベクターを脱落させて、変異型AK 遺伝子置換株を得た。ベクターの脱落は次のようにして行った。

同様に、変異型AK遺伝子とHD-M12遺伝子を持つ株〔(AKFBR+HDM12)株〕は、HDM12株を親株として、pAK9Tを用いた遺伝子置換を上記と同様にして行い、HDM12株よりもL-リジン生産性が向上している株を選択した。

一方、変異型 A K遺伝子とHD-M2遺伝子を導入した株〔(AKFBR+HDM2)株〕は、ブレビバクテリウム・ラクトファーメンタム AJ12036株にpAK9Tを導入して親株として変異型 A K遺伝子が導入された A KFBR株を創成し、続いてHD-M2遺伝子の導入を行った。すなわち、AJ12036株にpAK9Tを電気パルス法(杉本ら,特開平2-207791号公報)によって導入し、得られた形質転換株を、M-CM2G培地を用いて25℃にてフルグロース(約1~2×10 9 /m1)になるまで培養した。培養菌体を、プレート1枚あたり10 5 細胞となるよう希釈し、クロラムフェニコール(5 μ g/mL)を含むM-CM2G平板培地にまき、34℃にて2~7日培養してコロニーを取得した。得られたコロニーについて、細胞中にプラスミドが含まれていないことを確認し、さらに直鎖状のpHSG399をプローブに用いたサザン・ハイブリダイゼーション解析により、pAK9Tの染色体への組込みを確認した。

次に、変異型 A K遺伝子組込み株を、クロラムフェニコール($10 \mu g/mL$)を含むM-CM2G培地で34 ℃にてフルグロース($1\sim2\times10^{\circ}/m1$)になるまで培養した。培養菌体を、クロラムフェニコールを含まないM-CM2G平板培地に1 枚あたり $50\sim20$

0 コロニーとなるようにまき、34℃にて培養した。生育したコロニーを、クロラムフェニコール (5 µg/mL) を含むN-CM2G平板培地にレプリカし、34℃にて培養してクロラムフェニコール感受性株を取得した。得られたクロラムフェニコール感受性株を取得した。得られたクロラムフェニコール感受性株の染色体からベクターが脱落していることを、サザン・ハイブリダイゼーションにより確認し、さらに変異型AKを発現していることを確認した。こうして得られた遺伝子置換株は、染色体DNAの塩基配列決定により、変異点が導入されていることを確認した。

こうして得られた変異型AK遺伝子置換株AKFBR株の染色体に、HD-M2遺伝子 置換用プラスミドpTSHDM2を上記と同様に電気パルス法にて導入し、さらにプラス ミドが脱落した遺伝子置換株を得た。遺伝子置換株の選択は、Lーリジン生産性 の向上及びL-スレオニン又はL-メチオニンに対する感受性により行った。

同様に、変異型AK遺伝子とHD- Δ 遺伝子を導入した株〔($AK^{FBR}+HD\Delta$)株〕は、変異型AK遺伝子置換株AK FBR 株を親株とし、 $pTSHD\Delta$ を用いた遺伝子置換を上記と同様にして行い、HD欠損によるL-メチオニン及びL-スレオニン要求性のクローンを選択した。

上記のようにして得られた各遺伝子置換株は、最終的に染色体DNAの塩基配列決定によって変異点が導入されていることを確認し、さらにサザンハイブリダイゼーションによるプラスミド脱落の確認を行った。

<2>変異型AK遺伝子及び変異型HD遺伝子置換株、及び変異型AK遺伝子及び欠失型HD遺伝子置換株のLーリジン生産性の評価

上記で得られた 4 株、すなわち($AK^{FBR}+HDM1$)株、($AK^{FBR}+HDM2$)株、($AK^{FBR}+HDM2$)株、($AK^{FBR}+HDM1$ 2)株、及び($AK^{FBR}+HD\Delta$)株について、L-リジン生産性の評価を行った。

これらの各株を、前述のL-リジン生産培地20mLを入れた500mLフラスコ中で、 31.5℃にて72時間振盪培養し、培養後の培養液のOD及びL-リジン蓄積量を測 定した。

結果を図7に示す。L-リジン生産量は、 $A K^{FBR}$ 株が約 19 g/Lであったのに対し、 (AK^{FBR} +HDM1) 株では約 21 g/L 、 (AK^{FBR} +HDM2) 株では約 22 g/L、 (AK^{FBR} + AK^{FBR}

 $K^{FBR}+HDM12$)株では約 20 g/L、($AK^{FBR}+HD\Delta$)株では約 35 g/L であり、変異型 HD遺伝子あるいは欠失型HD遺伝子を単独で導入した場合よりも、これらの遺伝子と変異型 AK遺伝子と組み合わせて導入した方がL-リジン生産性がより一層向上することが示された。

培養終了後の培地のODに関しては、($AK^{FBR}+HDM1$)株、($AK^{FBR}+HDM2$)株、及び($AK^{FBR}+HDM12$)株ではいずれも AK^{FBR} 株との差はほとんど無かったが、($AK^{FBR}+HD\Delta$)株では欠失型HD遺伝子単独による遺伝子置換株の場合よりもさらにODは低下した。尚、培養終了後の残糖はいずれの株においても認められなかった。

(AKFBR+HDM2) 株はAJ12848 (FERM P-14198)、(AKFBR+HDM12) 株はAJ12849 (FERM P-14199)、及び(AKFBR+HDA) 株はAJ12850 (FERM P-14200) と命名され、各々かっこ内の受託番号で、1994年3月1日に通商産業省工業技術院生命工学工業技術研究所に寄託され、1995年2月9日にブダペスト条約に基づく国際寄託に移管され、それぞれ順にFERM BP-4996、FERM BP-4997、FERM BP-4998の受託番号で寄託されている。

実施例 6 HD完全欠失株の復帰変異頻度の測定

染色体上の遺伝子置換により取得したHDの完全欠失株であるHD△株及びAK^{FB} "+HDΔ株について、ホモセリン要求性の復帰変異頻度を、通常の変異処理剤であるN-メチル-N'-ニトロ-N-ニトロソグアニジン(NTG)により生菌体を処理して得られたHD欠損株であるATCC13287と比較した。

それぞれの保存菌株を栄養培地にて前培養し、Lーリジン生産培地に植菌し、72時間振盪培養した後に培養液を適宜希釈し、MーCM2G平板培地にてコロニーを形成させた後、Lーメチオニン、Lースレオニンを含まないプレビバクテリウム用最小培地にレプリカし、最小培地に生育したコロニーの数と、栄養培地に生育したコロニーの数との比率を復帰変異率とした。この方法で復帰変異株のコロニーが観察できない場合には、最小培地に途布する菌数を増やし、他方栄養培地には希釈したものを塗布し、そのコロニー形成数から最小培地に塗布した菌数を推定し、復帰変異率を算出した。

この方法によって、上記3株の復帰変異率を測定した結果を表6に示す。ATCC13287株では、培養終了時に顕著な復帰変異株の出現を認めたのに対し、染色上の遺伝子置換により作製したHD△株及びAKFBR+HD△株では復帰変異株が全く認められなかった。また、Lーリジン蓄積量は、復帰変異の出現しないHD△株及びAKFBR+HD△株の方が、ATCC13287株より多かった。

表 6

菌 株	復帰変異率(%)	L-リジン蓄積量(g/1)
ATCC13287	4 0	20.0
HDΔ	0	30.0
AK ^{FBR} +HDΔ	0	35.0

配列表

配列番号:1

配列の長さ:20

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:合成 DNA

配列

CTGGGAAGGT GAATCGAATT

配列番号:2

配列の長さ:20

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:合成 DNA

配列

TCCGAGGTTT GCAGAAGATC 20

配列番号:3

配列の長さ:1478

配列の型:核酸

鎖の数:二本鎖

トポロジー:直鎖状

配列の種類: genomic DNA

起源

生物名:プレビバクテリウム・ラクトファーメンタム (Brevibacterium lactofermentum)

株名: AJ12036

配列の特徴

特徴を表す記号: CDS

存在位置:89..1423

特徴を決定した方法:S

自己列	į																
GGTA	CCCI	TT 1	TGTI	TTG(GA CA	CATO	TAG(GT(GCC(GAAA	CAA	AGTA/	ATA (GGAC.	AACAA	C	60
GCTC	GACC	CGC (GATT/	TTT	TT G(GAGAA	TC A	ATG A	ACC 7	CA (GCA 7	CT (GCC (CCA .	AGC		112
							À	let :	Chr S	Ser A	11a \$	Ser 1	\la l	Pro :	Ser		
								1				5					
TTT	AAC	CCC	GGC	AAG	GGT	CCC	GGC	TCA	GCA	GTC	GGA	ATT	GCC	CTT	TTA		160
Phe	Asn	Pro	G1y	Lys	Gly	Pro	Gly	Ser	Ala	Va1	Gly	He	Ala	Leu	Leu		
	10					15					20						
GGA	TTC	GGA	ACA	GTC	GGC	ACT	GAG	GTG	ATG	CGT	CTG	ATG	ACC	GAG	TAC		208
Gly	Phe	G1y	Thr	Val	Gly	Thr	G1u	Val	Met	Arg	Leu	Met	Thr	G1u	Tyr		
25					30					35					40		
GGT	GAT	GAA	CTT	GCG	CAC	CGC	ATT	GGT	GGC	CCA	CTG	GAG	GTT	CGT	GGC		256
Gly	Asp	G1u	Leu	Ala	His	Arg	Ile	Gly	G1y	Pro	Leu	Glu	Val	Arg	G1y		
				45					50					55			
ATT	GCT	GTT	TCT	GAT	ATC	TCA	AAG	CCA	CGT	GAA	GGC	GTT	GCA	CCT	GAG		304
Ile	A1a	Va1	Ser	Asp	Ile	Ser	Lys	Pro	Arg	Glu	Gly	Va1	Ala	Pro	G1u		
			60					65					70				
CTG	CTC	ACT	GAG	GAC	GCT	TTT	GCA	CTC	ATC	GAG	CGC	GAG	GAT	GTT	GAC		352
Leu	Leu	Thr	G1u	Asp	Ala	Phe	Ala	Leu	I1e	G1u	Arg	G1u	Asp	Val	Asp		
		75					80					85					
ATC	GTC	GTT	GAG	GTT	ATC	GGC	GGC	ATT	GAG	TAC	CCA	CGT	GAG	GTA	GTT		400
Ile	Val	Va1	G1u	Val	Ile	G1y	G1y	Ile	G1u	Tyr	Pro	Arg	G1u	Val	Va1		
	90					95					100						•
CTC	GCA	GCT	CTG	AAG	GCC	GGC	AAG	TCT	GTT	GTT	ACC	GCC	AAT	AAG	GCT		448
Leu	Ala	Ala	Leu	Lys	Ala	G1y	Lys	Ser	Va1	Va1	Thr	Ala	Åsn	Lys	Ala		
105					110	•				115					120		

CTT	GTT	GCA	GCT	CAC	TCT _.	GCT	GAG	CTT	GCT	GAT	GCA	GCG	GAA	GCC	GCA	496
Leu	Va1	Ala	Ala	His	Ser	Ala	Glu	Leu	Ala	Asp	Ala	Ala	G1u	Ala	Ala	
				125					130					135		
AAC	GTT	GAC	CTG	TAC	TTC	GAG	GCT	GCT	GTT	GCA	GCC	GCA	ATT	CCA	GTG	544
Asn	Val	Asp	Leu	Tyr	Phe	Glu	Ala	Ala	Va1	A1a	Ala	Ala	Ile	Pro	Va1	
			140					145					150			
GTT	GGC	CCA	CTG	CGT	CGC	TCC	CTG	GCT	GGÇ	GAT	CAG	ATC	CAG	TCT	GTG	592
Va1	G1y	Pro	Leu	Arg	Arg	Ser	Leu	Ala	G1y	Asp	G1n	Ile	G1n	Ser	Va1	
		155					160					165				
ATG	GGC	ATC	GTT	AAC	GGC	ACC	ACC	AAC	TTC	ATC	TTG	GAC	GCC	ATG	GAT	640
Met	Gly	Ile	Val	Asn	Gly	Thr	Thr	Asn	Phe	Ile	Leu	Asp	Ala	Met	Asp	
	170					175					180					
TCC	ACC	GGC	GCT	GAC	TAT	GCA	GAT	TCT	TTG	GCT	GAG	GCA	ACT	CGT	TTG	688
Ser	Thr	Gly	Ala	Asp	Tyr	A1a	Asp	Ser	Leu	Ala	Glu	Ala	Thr	Arg	Leu	
185					190					195					200	
GGT	TAC	GCC	GAA	GCT	GAT	CCA	ACT	GCA	GAC	GTC	GAA	GGC	CAT	GAC	GCC	736
Gly	Tyr	Ala	G1u	Ala	Asp	Pro	Thr	Ala	Asp	Val	Glu	Gly	His	Лsр	Ala	
				205					210					215		
GCA	TCC	AAG	GCT	GCA	ATT	TTG	GCA	TCC	ATC	GCT	TTC	CAC	ACC	CGT	GTT	784
Ala	Ser	Lys	Ala	Ala	Ile	Leu	Ala	Ser	Ile	Ala	Phe	His	Thr	Arg	Val	
			220					225					230			
ACC	GCG	GAT	GAT	GTG	TAC	TGC	GAA	GGT	ATC	AGC	AAC	ATC	AGC	GCT	GCC	832
Thr	Ala	Asp	Asp	Va1	Tyr	Cys	G1u	G1y	Ile	Ser	Asn	He	Ser	Ala	Ala	
		235					240					245				
GAC	ATT	GAG	GCA	GCA	CAG	CAG	GCA	GGC	CAC	ACC	ATC	AAG	TTG	TTG	GCC	880
Asp	Ile	G1u	Ala	Ala	Gln	G1n	A1a	Gly	His	Thr	He	Lys	Leu	Leu	Ala	
	250					255					260					
ATC	TGT	GAG	AAG	TTC	ACC	AAC	AAG	GAA	GGA	AAG	TCG	GCT	ATT	TCT	GCT	928
Ile	Cys	Glu	Lys	Phe	Thr	Asn	Lys	G1u	Gly	Lys	Ser	Ala	Ile	Ser	A1a	
265					270					275					280 .	

CGC	GTG	CAC	CCG	ACT	CTA	TTA	CCT	GTG	TCC	CAC	CCA	CTG	GCG	TCG	GTA	976
Arg	Val	His	Pro	Thr	Leu	Leu	Pro	Va1	Ser	His	Pro	Leu	Ala	Ser	Val	
				285					290					295		
AAC	AAG	TCC	TTT	AAT	GCA	ATC	TTT	GTT	GAA	GCA	GAA	GCA	GCT	GGT	CGC	1024
Åsn	Lys	Ser	Phe	Asn	Ala	He	Phe	Val	G1u	Ala	G1u	Ala	Ala	Gly	Arg	
			300					305					310			
CTG	ATG	TTC	TAC	GGA	AAC	GGT	GCA	GGT	GGC	GCG	CCA	ACC	GCG	TCT	GCT	1072
Leu	Met	Phe	Tyr	G1y	Asn	G1y	A1a	Gly	G1y	Ala	Pro	Thr	Ala	Ser	Ala	
		315					320					325				
GTG	CTT	GGC	GAC	GTC	GTT	GGT	GCC	GCA	CGA	AAC	AAG	GTG	CAC	GGT	GGC	1120
Val	Leu	G1y	Asp	Va1	Va1	Gly	Ala	Ala	Arg	Asn	Lys	Val	His	Gly	G1y	
	330					335					340					
CGT	GCT	CCA	GGT	GAG	TCC	ACC	TAC	GCT	AAC	CTG	CCG	ATC	GCT	GAT	TTC	1168
Arg	Ala	Pro	Gly	G1u	Ser	Thr	Tyr	A1a	Asn	Leu	Pro	Ile	Ala	Asp	Phe	
345					350					355					360	
GGT	GAG	ACC	ACC	ACT	CGT	TAC	CAC	CTC	GAC	ATG	GAT	GTG	GAA	GAT	CGC	1216
Gly	Glu	Thr	Thr	Thr	Arg	Tyr	His	Leu	Asp	Met	Asp	Val	G1u	Лsp	Arg	
				365					370					375		
GTG	GGC	GTT	TTG	GCT	GAA	TTG	GCT	AGC	CTG	TTC	TCT	GAG	CAA	GGA	ATC	1264
Val	G1y	Va1	Leu	Ala	G1u	Leu	Ala	Ser	Leu	Phe	Ser	Glu	Gln	G1y	Ile	
			380					385					390			
TCC	CTG	CGT	ACA	ATC	CGA	CAG	GAA	GAG	CGC	GAT	GAT	GAT	GCA	CGT	CTG	1312
Ser	Leu	Arg	Thr	Ile	Arg	G1n	G1u	G1u	Arg	Asp	Asp	Asp	Ala	Arg	Leu	
		395					400					405				
ATC	GTT	GTC	ACG	CAC	TCT	GCG	CTG	GAA	TCT	GAT	CTT	TCC	CGC	ACC	GTT	1360
Ile	Val	Val	Thr	His	Ser	Ala	Leu	G1u	Ser	Asp	Leu	Ser	Arg	Thr	Val	
	410					415					420					
GAA	CTG	CTG	AAG	GCT	AAG	CCT	GTT	GTT	AAG	GCA	ATC	AAC	AGT	GTG	ATC	1408
Glu	Leu	Leu	Lys	Ala	Lys	Pro	Va1	Val	Lys	Ala	I1e	Asn	Ser	Val	Ile	
425					430					435					440	

	222	0.00	011	100	010	m 1 (7	Vnovn i	O/D 0		2001	ı man			O O T	YO O O T	ነውውም	1.400
					GAC	TAAT	TTTA	Cr G	ACAT	GGCA	A 11	GAAC	IGAA	ւ ՄՄ1	Լենե	CUI	1463
	Arg	Leu	G1u	Arg					•								
	AACC	<u>ነ</u> ግጥል <i>ር</i>	CG T	ዮልሮር	445												1478
	AAGG	IIIAC	<i>.</i>	Onco	•												1210
	配列	番号	: 4														
	配列	の長	さ:	445													
	配列	の型	!:ア	ミノ	酸												
	トポ	ロジ	·-:	直針	狄												
	配列	の種	類:	タン	パク	質											
	配列	l															
	Met	Thr	Ser	Ala	Ser	Ala	Pro	Ser	Phe	Asn	Pro	G1y	Lys	G1y	Pro	Gly	
	1				5					10					15		
	Ser	Ala	Val	G1y	Ile	Ala	Leu	Leu	Gly	Phe	G1y	Thr	Va1	G1y	Thr	Glu	
				20					25					30			
	Va1	Met	Arg	Leu	Met	Thr	Glu	Tyr	G1y	Asp	G1u	Leu	Ala	His	Arg	Ile	
			35					40					45				
	Gly	G1y	Pro	Leu	G1u	Val	Årg	G1y	I1e	A1a	Va1	Ser	Asp	Ile	Ser	Lys	
		50					55					60					
	Pro	Arg	G1u	G1y	Val	Ala	Pro	Glu	Leu	Leu	Thr	Glu	Asp	Ala	Phe	Ala	
	65					70					75					80	
٠	Leu	Ile	Glu	Arg	G1u	Asp	Val	Asp	Ile	Va1	Va1	G1u	Va1	Ile	G1y	G1y	
					85					90					95		
	Ile	Glu	Tyr	Pro	Arg	G1u	Val	Val	Leu	Ala	Ala	Leu	Lys	Ala	Gly	Lys	
				100					105					110			
	Ser	Val	Va1	Thr	Ala	Asn	Lys	A1a	Leu	Val	Ala	Ala	His	Ser	Ala	G1u	
			115					120					125				
	Leu	Ala	Asp	Ala	Ala	Glu	Ala	Ala	Asn	Val	Asp	Leu	Tyr	Phe	Glu	Ala	
		130					135					140					
٠.	Ala	Vạ1	Ala	Ala	Ala	Ile	Pro	Val	Val	G1y	Pro	Leu	Arg	Arg	Ser	Leu	

145			,		150					155					160
Ala	Gly	Asp	G1n	He	Gln	Ser	Val	Met	Gly	He	Val	Asn	Gly	Thr	Thr
				165					170					175	
Asn	Phe	Ile	Leu	Asp	Ala	Met	Asp	Ser	Thr	Gly	A1a	Asp	Tyr	Ala	Asp
			180					185					190		
Ser	Leu	A1a	G1u	Ala	Thr	Arg	Leu	G1y	Tyr	Ala	G1u	Ala	Asp	Pro	Thr
		195					200					205			
Ala	Asp	Val	G1u	Gly	His	Asp	Ala	Ala	Ser	Lys	A1a	Ala	Ile	Leu	Ala
	210					215					220				
Ser	Ile	Ala	Phe	His	Thr	Arg	Va1	Thr	Ala	Asp	Asp	Va1	Tyŗ	Cys	Glu
225					230					235					240
G1y	Ile	Ser	Asn	Ile	Ser	Ala	Ala	Asp	Ile	G1u	Ala	Ala	G1n	G1n	Ala
				245					250					255	
Gly	His	Thr	Ile	Lys	Leu	Leu	Ala	Ile	Cys	Glu	Lys	Phe	Thr	Asn	Lys
			260					265					270		
G1u	Gly	Lys	Ser	Ala	Ile	Ser	Ala	Arg	Va1	His	Pro	Thr	Leu	Leu	Pro
		275					280					285			
Va1	Ser	His	Pro	Leu	Ala	Ser	Val	Asn	Lys	Ser	Phe	Asn	Лlа	Ile	Phe
	290					295					300				
Va1	G1u	Ala	G1u	Ala	Ala	G1y	Arg	Leu	Met	Phe	Tyr	G1y	Asn	Gly	Ala
305					310					315					320
G1y	G1y	Ala	Pro	Thr	Ala	Ser	Ala	Val	Leu	G1y	Asp	Val	Va1	Gly	A1a
				325					330					335	
A1a	Årg	Asn	Lys	Va1	His	G1y	G1y	Arg	Ala	Pro	G1y	G1u	Ser	Thr	Tyr
			340					345					350		
Ala	Asn	Leu	Pro	Ile	Ala	Asp	Phe	G1y	G1u	Thr	Thr	Thr	Arg	Tyr	His
		355					360					365	ı		
Leu	Asp	Met	Asp	Va1	Glu	Asp	Arg	Val	Gly	Val	Leu	A1a	G1u	Leu	Ala
-	370					375	ı				380	1			
Ç0~	· Lau	Dho	Con	C1+	615	ω (21 τ	. 116	Ser	Еди	Arn	Thr	116	Aro	Ġ1n	G1:

385 390 395 400

Glu Arg Asp Asp Ala Arg Leu Ile Val Val Thr His Ser Ala Leu

405 410 415

Glu Ser Asp Leu Ser Arg Thr Val Glu Leu Leu Lys Ala Lys Pro Val

420 425 430

Val Lys Ala Ile Asn Ser Val Ile Arg Leu Glu Arg Asp

435 440 445

配列番号:5

配列の長さ:23

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:合成 DNA

配列

TCGCGAAGTA GCACCTGTCA CTT 23

配列番号:6

配列の長さ:21

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:合成 DNA

配列

ACGGAATTCA ATCTTACGGC C 21

配列番号:7

配列の長さ:1643

配列の型:核酸

鎖の数:二本鎖

トポロジー:直鎖状

配列の種類: genomic DNA

起源

生物名:コリネバクテリウム・グルクミカム(Corynebacterium glutamicum)

株名: ATCC 13869

配列

H-7 4						
TCGCGAAGTA	GCACCTGTCA	CTTTTGTCTC	AAATATTAAA	TCGAATATCA	ATATACGGTC	60 ·
TGTTTATTGG	AACGCATCCC	AGTGGCTGAG	ACGCATCCGC	TAAAGCCCCA	GGAACCCTGT	120
GCAGAAAGAA	AACACTCCTC	TGGCTAGGTA	GACACAGTTT	ATAAAGGTAG	AGTTGAGCGG	180
GTAACTGTCA	GCACGTAGAT	CGAAAGGTGC	ACAAAGGTGG	CCCTGGTCGT	ACAGAAATAT	240
GGCGGTTCCT	CGCTTGAGAG	TGCGGAACGC	ATTAGAAACG	TCGCTGAACG	GATCGTTGCC	300
ACCAAGAAGG	CTGGAAATGA	TGTCGTGGTT	GTCTGCTCCG	CAATGGGAGA	CACCACGGAT	360
GAACTTCTAG	AACTTGCAGC	GGCAGTGAAT	CCCGTTCCGC	CAGCTCGTGA	AATGGATATG	420
CTCCTGACTG	CTGGTGAGCG	TATTTCTAAC	GCTCTCGTCG	CCATGGCTAT	TGAGTCCCTT	480
GGCGCAGAAG	CTCAATCTTT	CACTGGCTCT	CAGGCTGGTG	TGCTCACCAC	CGAGCGCCAC	540
GGAAACGCAC	GCATTGTTGA	CGTCACACCG	GGTCGTGTGC	GTGAAGCACT	CGATGAGGGC	600
AAGATCTGCA	TTGTTGCTGG	TTTTCAGGGT	GTTAATAAAG	AAACCCGCGA	TGTCACCACG	660
TTGGGTCGTG	GTGGTTCTGA	CACCACTGCA	GTTGCGTTGG	CAGCTGCTTT	GAACGCTGAT	720
GTGTGTGAGA	TTTACTCGGA	CGTTGACGGT	GTGTATACCG	CTGACCCGCG	CATCGTTCCT	780
AATGCACAGA	AGCTGGAAAA	GCTCAGCTTC	GAAGAAATGC	TGGAACTTGC	TGCTGTTGGC	840
TCCAAGATTT	TGGTGCTGCG	CAGTGTTGAA	TACGCTCGTG	CATTCAATGT	GCCACTTCGC	900
GTACGCTCGT	CTTATAGTAA	TGATCCCGGC	ACTTTGATTG	CCGGCTCTAT	GGAGGATATT	960
CCTGTGGAAG	AAGCAGTCCT	TACCGGTGTC	GCAACCGACA	AGTCCGAAGC	CAAAGTAACC	1020
GTTCTGGGTA	TTTCCGATAA	GCCAGGCGAG	GCTGCCAAGG	TTTTCCGTGC	GTTGGCTGAT	1080
GCAGAAATCA	ACATTGACAT	GGTTCTGCAG	AACGTCTCCT	CTGTGGAAGA	CGGCACCACC	1140
GACATCACGT	TCACCTGCCC	TCGCGCTGAC	GGACGCCGTG	CGATGGAGAT	CTTGAAGAAG	1200
CTTCAGGTTC	AGGGCAACTG	GACCAATGTG	CTTTACGACG	ACCAGGTCGG	CAAAGTCTCC	1260
CTCGTGGGTG	CTGGCATGAA	GTCTCACCCA	GGTGTTACCG	CAGAGTTCAT	GGAAGCTCTG	1320
CGCGATGTCA	ACGTGAACAT	CGAATTGATT	TCCACCTCTG	AGATCCGCAT	TTCCGTGCTG	1380
ATCCGTGAAG	ATGATCTGGA	TGCTGCTGCA	CGTGCATTGC	ATGAGCAGTT	CCAGCTGGGC	1440

GGCGAAGACG AAGCCGTCGT TTATGCAGGC ACCGGACGCT AAAGTTTTAA AGGAGTAGTT	1500
TTACAATGAC CACCATCGCA GTTGTTGGTG CAACCGGCCA GGTCGGCCAG GTTATGCGCA	1560
CCCTTTTGGA AGAGCGCAAT TTCCCAGCTG ACACTGTTCG TTTCTTTGCT TCCCCGCGTT	1620
CCGCAGGCCG TAAGATTGAA TTC	1643
配列番号:8	
配列の長さ:1643	
配列の型:核酸	
鎖の数:二本鎖	
トポロジー:直鎖状	
配列の種類: genomic DNA	
起源	
生物名:コリネバクテリウム・グルクミカム(Corynebacterium glutamicum)	
株名: ATCC13869	
配列の特徴: mat peptide	
存在位置: 2171479	
特徴を決定した方法:S	
配列	
TCGCGAAGTA GCACCTGTCA CTTTTGTCTC AAATATTAAA TCGAATATCA ATATACGGTC	60
TGTTTATTGG AACGCATCCC AGTGGCTGAG ACGCATCCGC TAAAGCCCCA GGAACCCTGT	120
GCAGAAAGAA AACACTCCTC TGGCTAGGTA GACACAGTTT ATAAAGGTAG AGTTGAGCGG	180
GTAACTGTCA GCACGTAGAT CGAAAGGTGC ACAAAG GTG GCC CTG GTC GTA CAG	234
Met Ala Leu Val Val Gln	
1 5	-
AAA TAT GGC GGT TCC TCG CTT GAG AGT GCG GAA CGC ATT AGA AAC GTC	282
Lys Tyr Gly Gly Ser Ser Leu Glu Ser Ala Glu Arg Ile Arg Asn Val	
10 15 20	
GCT GAA CGG ATC GTT GCC ACC AAG AAG GCT GGA AAT GAT GTC GTG GTT	330
Ala Glu Arg Ile Val Ala Thr Lys Lys Ala Gly Asn Asp Val Val	
25 30 35	. *

GTC	TGC	TCC	GCA	ATG	GGA	GAC	ACC	ACG	GAT	GAA	CTT	CTA	GAA	CTT	GCA	378
Va1	Cys	Ser	Ala	Met	G1y	Asp	Thr	Thr	Asp	G1u	Leu	Leu	Glu	Leu	A1a	*
	40					45					50					
GCG	GCA	GTG	AAT	CCC	GTT	CCG	CCA	GCT	CGT	GAA	ATG	GAT	ATG	CTC	CTG	426
Ala	Ala	Val	Asn	Pro	Va1	Pro	Pro	A1a	Arg	G1u	Met	Asp	Met	Leu	Leu	
55					60					65					70	
ACT	GCT	GGT	GAG	CGT	ATT	TCT	AAC	GCT	CTC	GTC	GCC	ATG	GCT	ATT	GAG	474
Thr	Ala	G1y	G1u	Arg	Ile	Ser	Asn	Ala	Leu	Va1	Ala	Met	Ala	Ile	Glu	
				75					80					85		
TCC	CTT	GGC	GCA	GAA	GCT	CAA	TCT	TTC	ACT	GGC	TCT	CAG	GCŢ	GGT	GTG	522
Ser	Leu	G1y	Ala	G1u	Ala	Gln	Ser	Phe	Thr	G1y	Ser	Gln	Ala	Gly	Va1	
			90					95					100			
CTC	ACC	ACC	GAG	CGC	CAC	GGA	AAC	GCA	CGC	ATT	GTT	GAC	GTC	ACA	CCG	570
Leu	Thr	Thr	G1u	Arg	His	Gly	Asn	A1a	Arg	Ile	Va1	Asp	Val	Thr	Pro	
		105					110					115				
GGT	CGT	GTG	CGT	GAA	GCA	CTC	GAT	GAG	GGC	AAG	ATC	TGC	ATT	GTT	GCT	618
G1y	Arg	Va1	Arg	G1u	A1a	Leu	Asp	Glu	G1y	Lys	Ile	Cys	Ile	Val	Ala	
	120					125			•		130					
GGT	TTT	CAG	GGT	GTT	AAT	AAA	GAA	ACC	CGC	GAT	GTC	ACC	ACG	TTG	GGT	666
G1y	Phe	G1n	G1y	Val	Asn	Lys	G1u	Thr	Arg	Asp	Val	Thr	Thr	Leu	G1y	
135					140					145					150	
			TCT													714
Arg	Gly	G1y	Ser	_		Thr	A1a	Val			Ala	Ala	Ala		Asn	
				155					160					165		
			TGT													762
Ala	Asp	Val	Cys	G1u	He	Tyr	Ser		Val	Asp	Gly	Val		Thr	Ala	
			170					175					180			
															TTC	810
Asp	Pro	Arg	Ile	Val	Pro	Asn	Ala	Gln	Lys	Leu	G1u			Ser	Phe	
•		185					190					195			•	

GAA	GAA	ATG	CTG	GAA	CTT	GCT	GCT	GTT	GGC	TCC	AAG	ATT	TTG	GTG	CTG	858
Glu	G1u	Met	Leu	G1u	Leu	Аlа	Ala	Va1	Gly	Ser	Lys	Ile	Leu	Va1	Leu	
	200					205					210					
CGC	AGT	GTT	GAA	TAC	GCT	CGT	GCA	TTC	AAT	GTG	CCA	CTT	CGC	GTA	CGC	906
Arg	Ser	Va1	G1u	Tyr	Ala	Arg	Ala	Phe	Asn	Val	Pro	Leu	Arg	Va1	Arg	
215					220					225					230	
TCG	TCT	TAT	AGT	AAT	GAT	CCC	GGC	ACT	TTG	ATT	GCC	GGC	TCT	ATG	GAG	954
Ser	Ser	Tyr	Ser	Asn	Asp	Pro	Gly	Thr	Leu	Ile	Ala	Gly	Ser	Met	G1u	
				235					240					245		
GAT	ATT	CCT	GTG	GAA	GAA	GCA	GTC	CTT	ACC	GGT	GTC	GCA	VCĆ	GAC	AAG	1002
Asp	Ile	Pro	Va1	Glu	Glu	A1a	Va1	Leu	Thr	G1y	Val	A1a	Thr	Asp	Lys	
			250					255					260			
TCC	GAA	GCC	AAA	GTA	ACC	GTT	CTG	GGT	ATT	TCC	GAT	AAG	CCA	GGC	GAG	1050
Ser	Glu	Ala	Lys	Val	Thr	Val	Leu	G1y	Ile	Ser	Asp	Lys	Pro	Gly	G1u	
		265					270					275				
GCT	GCC	AAG	GTT	TTC	CGT	GCG	TTG	GCT	GAT	GCA	GAA	ATC	AAC	ATT	GAC	1098
Ala	Ala	Lys	Val	Phe	Arg	Ala	Leu	Ala	Asp	Ala	Glu	Ile	Asn	I1e	Лsp	
	280					285					290					
ATG	GTT	CTG	CAG	AAC	GTC	TCC	TCT	GTG	GAA	GAC	GGC	ACC	ACC	GAC	ATC	1146
Met	Va1	Leu	G1n	Asn	Va1	Ser	Ser	Va1	G1u	Asp	Gly	Thr	Thr	Asp	Ile	
295					300					305					310	
ACG	TTC	ACC	TGC	CCT	CGC	GCT	GAC	GGA	CGC	CGT	GCG	ATG	GAG	ATC	TTG	1194
Thr	Phe	Thr	Cys	Pro	Arg	Ala	Asp	G1y	Arg	Arg	Ala	Met	G1u	Ile	Leu	
				315					320					325		
AAG	AAG	CTT	CAG	GTT	CAG	GGC	AAC	TGG	ACC	AAT	GTĢ	CTT	TAC	GAC	GAC	1242
Lys	Lys	Leu	Gln	Val	Gln	Gly	Asn	Trp	Thr	Asn	Va1	Leu	Tyr	Asp	Asp	
			330					335					340			
CAG	GTC	GGC	AAA	GTC	.TCC	CTC	GTG	GGT	GCT	GGC	ATG	AAG	TCT	CAC	CCA	1290
Gln	Va1	Gly	Lys	Val	Ser	Leu	Va1	G1y	Ala	G1y	Met	Lys	Ser	His	Pro	
		345					350	•				355				

GGT	GTT	ACC	GCA	GAG	TTC	ATG	GAA	GCT	CTG	CGC	GAT	GTC	AAC	GTG	AAC	1338
G1y	Val	Thr	A1a	G1u	Phe	Met	G1u	Ala	Leu	Arg	Asp	Val	Asn	Val	Asn	
	360					365					370					•
ATC	GAA	TTG	ATT	TCC	ACC	TCT	GAG	ATC	CGC	ATT	TCC	GTG	CTG	ATC	CGT	1386
Ile	G1u	Leu	Ile	Ser	Thr	Ser	G1u	I1e	Arg	Ile	Ser	Val	Leu	Ile	Arg	
375					380					385					390	
GAA	GAT	GAT	CTG	GAT	GCT	GCT	GCA	CGT	GCA	TTG	CAT	GAG	CAG	TTC	CAG	1434
G1u	Asp	Asp	Leu	Asp	Ala	Аlа	Аlа	Arg	Ala	Leu	His	G1u	Gln	Phe	Gln	
				395					400					405		
CTG	GGC	GGC	GAA	GAC	GAA	GCC	GTC	GTT	TAT	GCA	GGC	ACC	GGA.	CGC		1479
Leu	G1y	G1y	Glu	Åsp	Glu	Ala	Val	Va1	Tyr	Ala	Gly	Thr	G1y	Arg		
			410					415					420			
TAA	\GTT]	TA A	AGG/	GTA(T T	TACA	ATGA	CC/	ACCAT	CGC	AGTT	GTT	GT (GCAAC	CCGGCC	1539
AGGT	rcggc	CA (GTTA	TGC	SC AC	CCTT	TTG(AA(GAGC(GCAA	TTTC	CCAC	CT (GACAC	CTGTTC	1599
GTT]	CTT	GC 1	TCCC	CCGC	T T	CCGCA	\GGC(GTA	AGAT	TGA	ATTO)				1643
配列	番号	: 9														
配列	の長	: さ:	421	ė												
配列	の型	!:ア	ミノ	酸												•
トポ	ミロジ	·— :	直錐	锹												
配列	Jの種	類:	タン	パク	質											
配列	J															
Met	Ala	Leu	Va1	Va1	G1n	Lys	Tyr	G1y	Gly	Ser	Ser	Leu	G1u	Ser	Ala	
1				5					10					15		
G1u	Arg	Ile	Arg	Asn	Va1	Ala	G1u	Arg	He	Val	Ala	Thr	Lys	Lys	Ala	
			20					25					30			
Gly	Asn	Asp	Val	Va1	Val	Val	Cys	Ser	Ala	Met	G1y	Asp	Thr	Thr	Asp	
•		35					40					45				
Glu	Leu	Leu	G1u	Leu	Ala	Ala	Ala	Val	Asn	Pro	Val	Pro	Pro	Ala	Arg	
	50			,		55			-		60					

Glu	Met	Asp	Met	Leu	Leu	Thr	Ala	Gly	Glu	Arg	He	Ser	Asn	Ala	Leu
65					70					75					80
Va1	Ala	Met	Ala	He	G1u	Ser	Leu	Gly	Ala	G1u	Ala	Gln	Ser	Phe	Thr
				85					90					95	
Gly	Ser	Gln	Ala	Gly	Val	Leu	Thr	Thr	G1u	Arg	His	G1y	Asn	Ala	Arg
			100					105					110		
Ile	Val	Asp	Va1	Thr	Pro	G1y	Arg	Va1	Arg	G1u	Ala	Leu	Asp	Glu	Gly
		115					120					125			
Lys	Ile	Cys	Ile	Va1	Ala	G1y	Phe	G1n	Gly	Val	Asn	Lys	Glu	Thr	Arg
	130					135					140				
Asp	Val	Thr	Thr	Leu	G1y	Arg	G1y	Gly	Ser	Asp	Thr	Thr	Ala	Val	Ala
145					150					155					160
Leu	Ala	Ala	Ala	Leu	Asn	A1a	Asp	Va1	Cys	Glu	Ile	Tyr	Ser	Asp	Val
-				165					170					175	
Asp	G1y	Va1	Tyr	Thr	Ala	Asp	Pro	Arg	Ile	Va1	Pro	Asn	Ala	G1n	Lys
			180					185					190		
Leu	G1u	Lys	Leu	Ser	Phe	G1u	Glu	Met	Leu	Glu	Leu	Ala	Ala	Val	G1y
		195					200					205			
Ser	Lys	Ile	Leu	Va1	Leu	Arg	Ser	Va1	Glu	Tyr	Ala	Arg	Ala	Phe	Asn
	210					215					220				
Val	Pro	Leu	Arg	Va1	Arg	Ser	Ser	Tyr	Ser	Asn	Asp	Pro	G1y	Thr	Leu
225					230					235					240
Ile	Ala	G1y	Ser	Met	G1u	Asp	Ile	Pro	Va1	G1u	G1u	Ala	Val	Leu	Thr
				245			,		250					255	
G1y	Val	Ala	Thr	Asp	Lys	Ser	G1u	Ala	Lys	Val	Thr	Va1	Leu	Gly	Ile
			260					265					270		
Ser	Asp	Lys	Pro	Gly	G1u	Ala	Ala	Lys	Val	Phe	Arg	Ala	Leu	Ala	Asp
		275					280					285			
A1a	Glu	Ile	Asn	Ile	Asp	Met	Val	Leu	Gln	Asn	Va1	Ser	Ser	Va1	G1u
	290					-295					300				

Asp Gly Thr Thr Asp Ile Thr Phe Thr Cys Pro Arg Ala Asp Gly Arg 305 310 320 315 Arg Ala Met Glu Ile Leu Lys Lys Leu Gln Val Gln Gly Asn Trp Thr 325 330 335 Asn Val Leu Tyr Asp Asp Gln Val Gly Lys Val Ser Leu Val Gly Ala 340 345 350 Gly Met Lys Ser His Pro Gly Val Thr Ala Glu Phe Met Glu Ala Leu 355 360 365 Arg Asp Val Asn Val Asn Ile Glu Leu Ile Ser Thr Ser Glu Ile Arg 370 375 380 lle Ser Val Leu Ile Arg Glu Asp Asp Leu Asp Ala Ala Ala Arg Ala 385 390 395 400 Leu His Glu Gln Phe Gln Leu Gly Gly Glu Asp Glu Ala Val Val Tyr 405 410 415 Ala Gly Thr Gly Arg 420

配列番号:10

配列の長さ:1643

配列の型:核酸

鎖の数:二本鎖

トポロジー:直鎖状

配列の種類: genomic DNA

起源

生物名:コリネバクテリウム グルタミカム(Corynebacterium glutamicum)

株名: ATCC13869

配列の特徴:mat peptide

存在位置:964..1479

特徴を決定した方法:S

配列

TCGCGAAGTA GCACCTGTCA CTTTTGTCTC AAATATTAAA TCGAATATCA ATATACGGTC	60
TGTTTATTGG AACGCATCCC AGTGGCTGAG ACGCATCCGC TAAAGCCCCA GGAACCCTGT	120
GCAGAAAGAA AACACTCCTC TGGCTAGGTA GACACAGTTT ATAAAGGTAG AGTTGAGCGG	180
GTAACTGTCA GCACGTAGAT CGAAAGGTGC ACAAAGGTGG CCCTGGTCGT ACAGAAATAT	240
GGCGGTTCCT CGCTTGAGAG TGCGGAACGC ATTAGAAACG TCGCTGAACG GATCGTTGCC	300
ACCAAGAAGG CTGGAAATGA TGTCGTGGTT GTCTGCTCCG CAATGGGAGA CACCACGGAT	360
GAACTTCTAG AACTTGCAGC GGCAGTGAAT CCCGTTCCGC CAGCTCGTGA AATGGATATG	420
CTCCTGACTG CTGGTGAGCG TATTTCTAAC GCTCTCGTCG CCATGGCTAT TGAGTCCCTT	480
GGCGCAGAAG CTCAATCTTT CACTGGCTCT CAGGCTGGTG TGCTCACCAC CGAGCGCCAC	540
GGAAACGCAC GCATTGTTGA CGTCACACCG GGTCGTGTGC GTGAAGCACT CGATGAGGGC	600
AAGATCTGCA TTGTTGCTGG TTTTCAGGGT GTTAATAAAG AAACCCGCGA TGTCACCACG	660
TTGGGTCGTG GTGGTTCTGA CACCACTGCA GTTGCGTTGG CAGCTGCTTT GAACGCTGAT	720
GTGTGTGAGA TTTACTCGGA CGTTGACGGT GTGTATACCG CTGACCCGCG CATCGTTCCT	780
AATGCACAGA AGCTGGAAAA GCTCAGCTTC GAAGAAATGC TGGAACTTGC TGCTGTTGGC	840
TCCAAGATTT TGGTGCTGCG CAGTGTTGAA TACGCTCGTG CATTCAATGT GCCACTTCGC	900
GTACGCTCGT CTTATAGTAA TGATCCCGGC ACTTTGATTG CCGGCTCTAT GGAGGATATT	960
CCT GTG GAA GAA GCA GTC CTT ACC GGT GTC GCA ACC GAC AAG TCC GAA	1008
Met Glu Glu Ala Val Leu Thr Gly Val Ala Thr Asp Lys Ser Glu	
1 5 10 15	
GCC AAA GTA ACC GTT CTG GGT ATT TCC GAT AAG CCA GGC GAG GCT GCC	1056
Ala Lys Val Thr Val Leu Gly Ile Ser Asp Lys Pro Gly Glu Ala Ala	
20 25 30	
AAG GTT TTC CGT GCG TTG GCT GAT GCA GAA ATC AAC ATT GAC ATG GTT	1104
Lys Val Phe Arg Ala Leu Ala Asp Ala Glu Ile Asn Ile Asp Met Val	
35 40 45	
CTG CAG AAC GTC TCC TCT GTG GAA GAC GGC ACC ACC GAC ATC ACG TTC	1152
Leu Gln Asn Val Ser Ser Val Glu Asp Gly Thr Thr Asp Ile Thr Phe	
50 55 60	

ACC	TGC	CCT	CGC	GCT	GAC	GGA	CGC	CGT	GCG	ATG	GAG	ATC	TTG	AAG	AAG	1200
Thr	Cys	Pro	Arg	A1a	Asp	G1y	Arg	Arg	Ala	Met	G1u	He	Leu	Lys	Lys	
	65					70					75					
CTT	CAG	GTT	CAG	GGC	AAC	TGG	ACC	AAT	GTG	CTT	TAC	GAC	GAC	CAG	GTC	1248
Leu	G1n	Val	Gln	Gly	Asn	Trp	Thr	Asn	Val	Leu	Tyr	Asp	Asp	G1n	Val	
80					85					90					95	
GGC	AAA	GTC	TCC	CTC	GTG	GGT	GCT	GGC	ATG	AAG	TCT	CAC	CCA	GGT	GTT	1296
G1y	Lys	Val	Ser	Leu	Va1	Gly	Ala	Gly	Met	Lys	Ser	His	Pro	G1y	Val	
				100					105					110		
ACC	GCA	GAG	TTC	ATG	GAA	GCT	CTG	CGC	GAT	GTC	AAC	GTG	AAÇ	ATC	GAA	1344
Thr	Ala	G1u	Phe	Met	G1u	Ala	Leu	Arg	Asp	Va1	Asn	Va1	Asn	Ile	G1u	
			115					120					125			
TTG	ATT	TCC	ACC	TCT	GAG	ATC	CGC	ATT	TCC	GTG	CTG	ATC	CGT	GAA	GAT	1392
Leu	Ile	Ser	Thr	Ser	G1u	Ile	Arg	I1e	Ser	Val	Leu	He	Arg	G1u	Asp	
		130					135					140				
GAT	CTG	GAT	GCT	GCT	GCA	CGT	GCA	TTG	CAT	GAG	CAG	TTC	CAG	CTG	GGC	1440
Asp	Leu	Asp	Ala	Ala	Ala	Arg	A1a	Leu	His	G1u	G1n	Phe	G1n	Leu	G1y	
	145					150					155					
GGC	GAA	GAC	GAA	GCC	GTC	GTT	TAT	GCA	GGC	ACC	GGA	CGC	TAA	AGTT	TTA	1489
Gly	Glu	Asp	G1u	Ala	Val	Val	Tyr	Ala	Gly	Thr	G1y	Arg				
160					165					170						
AAG	GAGT.	AGT '	TTA	CAAT	GA C	CACC	ATCG	C AG	TTGT	TGGT	GCA	ACCG	GCC	AGGT	CGGCCA	1549
GGT	TATG	CGC .	ACCC	TTTT	GG A	AGAG	CGCA	A TT	TCCC	AGCT	GAC	ACTG	TTC	GTTT	CTTTGC	1609
TTC	CCCG	CGT '	TCCG	CAGG	CC G	TAAG	ATTG	A AT	TC							1643

配列番号:11

配列の長さ:172

配列の型:アミノ酸

トポロジー:直鎖状

配列の種類: タンパク質

配列	J														
Met	G1u	G1u	Ala	Val	Leu	Thr	Gly	Val	Ala	Thr	Asp	Lys	Ser	Glu	Ala
1				5					10					15	
Lys	Val	Thr	Va1	Leu	G1y	I1e	Ser	Asp	Lys	Pro	Gly	G1u	Ala	A1a	Lys
			20					25					30		
Va1	Phe	Arg	Ala	Leu	Ala	Asp	A1a	G1u	Ile	Asn	Ile	Asp	Met	Va1	Leu
		35					40					45			
G1n	Asn	Va1	Ser	Ser	Val	G1u	Asp	Gly	Thr	Thr	Asp	Ile	Thr	Phe	Thr
	50			e		55					60				
Cys	Pro	Arg	Ala	Asp	G1y	Arg	Årg	A1a	Met	Glu	Ile	Leu	Lys	Lys	Leu
65					70					75					80
G1n	Val	Gln	Gly	Asn	Trp	Thr	Asn	Va1	Leu	Tyr	Asp	Asp	G1n	Val	G1y
				85					90					95	
Lys	Val	Ser	Leu	Val	Gly	Ala	Gly	Met	Lys	Ser	His	Pro	G1y	Va1	Thr
			100					105					110		
Ala	Glu	Phe	Met	Glu	Ala	Leu	Arg	Asp	Val	Asn	Va1	Asn	Ile	Glu	Leu
		115					120					125			
He	Ser	Thr	Ser	G1u	I1e	Arg	Ile	Ser	Val	Leu	Ile	Arg	G1u	Asp	Asp
·	130					135					140				
Leu	Asp	Лlа	Лlа	Аlа	Arg	Ala	Leu	His	G1u	G1n	Phe	G1n	Leu	Gly	G1y
145					150					155					160
G1u	Asp	Glu	Ala	Va1	Va1	Tyr	A1a	Gly	Thr	Gly	Arg				
				165					170						

配列番号:12

配列の長さ:23

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:合成 DNA

配列

GCCAGGCGAG CGTGCCAAGG TTT 23

配列番号:13

配列の長さ:23

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:合成 DNA

配列

GCCAGGCGAG GATGCCAAGG TTT 23

配列番号:14

配列の長さ:23

配列の型:核酸

鎖の数:一本鎖

トポロジー: 直鎖状

配列の種類:合成 DNA

配列

GCCAGGCGAG TGTGCCAAGG TTT 23

配列番号:15

配列の長さ:23

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:合成 DNA

配列

GCCAGGCGAG TTTGCCAAGG TTT 23

配列番号:16

配列の長さ:23

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:合成 DNA

配列

GCCAGGCGAG CCTGCCAAGG TTT 23

配列番号:17

配列の長さ:23

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:合成 DNA

配列

GCCAGGCGAG TCTGCCAAGG TTT 23

配列番号:18

配列の長さ:23

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:合成 DNA

配列

GCCAGGCGAG TATGCCAAGG TTT 23

配列番号:19

配列の長さ:23

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:合成 DNA

配列

GCCAGGCGAG GTTGCCAAGG TTT 23

請求の範囲

- 1. N末端から23番目のロイシン残基及び104番目のバリン残基の少なくとも一方が他のアミノ酸残基に変化したコリネホルム細菌由来のホモセリンデヒドロゲナーゼをコードするDNA断片。
- 2. N末端から23番目のロイシン残基及び104番目のバリン残基の少なくとも一方が他のアミノ酸残基に変化した変異型ホモセリンデヒドロゲナーゼをコードする遺伝子を保持するコリネホルム細菌。
- 3. 前記変異型ホモセリンデヒドロゲナーゼをコードする遺伝子がコリネホルム細菌の染色体上のホモセリンデヒドロゲナーゼ遺伝子との相同組換えにより染色体DNAに組み込まれて形質転換されたことを特徴とする請求項2記載のコリネホルム細菌。
- 4. 前記他のアミノ酸残基が、23番目のロイシン残基にあってはフェニルア ラニン残基であり、104番目のバリン残基にあってはイソロイシン残基である 請求項2または3記載のコリネホルム細菌。
- 5. コリネホルム細菌由来のホモセリンデヒドロゲナーゼの一部をコードする DNA断片が、コリネホルム細菌の染色体上のホモセリンデヒドロゲナーゼ遺伝 子との相同組換えにより染色体DNAに組み込まれることによって、ホモセリン デヒドロゲナーゼ遺伝子が破壊されたことを特徴とするコリネホルム細菌。
- 6. コリネホルム細菌由来のアスパルトキナーゼ遺伝子とコリネホルム細菌細胞内で自律複製可能なベクターとを連結してなる組換えDNAを細胞内に保持し、かつ、野生型ホモセリンデヒドロゲナーゼを発現しないことを特徴とするコリネホルム細菌。
- 7. 前記アスパルトキナーゼ遺伝子が、L-リジン及びL-スレオニンによるフィードバック阻害が実質的に解除されたアスパルトキナーゼをコードする遺伝子である請求項6記載のコリネホルム細菌。
- 8. コリネホルム細菌由来のアスパルトキナーゼであってLーリジン及びL-スレオニンによるフィードバック阻害が解除されたアスパルトキナーゼをコードする遺伝子が、コリネホルム細菌の染色体DNAに組み込まれて形質転換され、かつ、野生型ホモセリンデヒドロゲナーゼを発現しないことを特徴とするコリネ

ホルム細菌。

- 9. L-リジン及びL-スレオニンによるフィードバック阻害が解除されたアスパルトキナーゼが、 α サブユニットではN末端から 2 7 9 番目のアラニン残基がアラニン以外かつ酸性アミノ酸以外のアミノ酸残基に、 β サブユニットでは 3 0 番目のアラニン残基がアラニン以外かつ酸性アミノ酸以外のアミノ酸残基に変化した変異型アスパルトキナーゼであることを特徴とする請求項 7 又は 8 記載のコリネホルム細菌。
- 10. 請求項6~9のいずれか一項において、コリネホルム細菌由来のホモセリンデヒドロゲナーゼであってN末端から23番目のロイシン残基及び104番目のバリン残基の少なくとも一方が他のアミノ酸残基に変化した変異型ホモセリンデヒドロゲナーゼ遺伝子がコリネホルム細菌の染色体上のホモセリンデヒドロゲナーゼ遺伝子との相同組換えにより染色体に組み込まれて形質転換されたことにより、野生型ホモセリンデヒドロゲナーゼを発現しないことを特徴とするコリネホルム細菌。
- 11. 請求項6~9のいずれか一項において、コリネホルム細菌由来のホモセリンデヒドロゲナーゼの一部をコードするDNA断片がコリネホルム細菌の染色体上のホモセリンデヒドロゲナーゼ遺伝子との相同組換えにより染色体に組み込まれることによって、ホモセリンデヒドロゲナーゼ遺伝子が破壊され、野生型ホモセリンデヒドロゲナーゼを発現しないことを特徴とするコリネホルム細菌。
- 12. 請求項2~11のいずれか一項に記載のコリネホルム細菌を好適な培地で培養し、該培養物中にLーリジンを生産蓄積せしめ、該培養物からLーリジンを採取することを特徴とするLーリジンの製造法。

1/7

Fig. 1

E	3 3 5 5	S 1	٧	R		S A ' T i L	. H	l Q	M	L	F	N	T	M D	K O	0	_	-	_	Λ	٠ ١	G R	V	P	L Y	L	G	L	G	T T G	Y	G G	T S G	G. A	4	3 2 1 7 7 9 7 1
8 E	3 3	S I	V L	. V	K	i Q	l L	Q	E D R	H	Q	D D	K	* L L L	М	H	Q K	Y -	G	С	P	· _		V L	- R	T	1 1 C L	A K - A	K G G	٧	S A V	- N		- S	5	63 42 06 99
B E		S 1	ĸ	-	Ā	- - L	- L	- Т	E	Y		G	L	- N	L	Y E	N	D W	l. O	E	K	K	F R A N	E	L V A E	¥	EFA	R P P	E K F Q	D E N D	Y L E	L	T R S	Y T L	5	9 0 6 2 3 7 3 0
B E	1 5	3 I		R	V L	Y	Đ	٧	I Y	D	L	P	N	E Y - D	D P	Y	* Y Y 1	Į V	A E N D	A V C V	l T	S	G	γ Q Q	A	Y	- T A A	D	- Q Q	* - Y Y	ī. A L	v D D	Ð	L A L	5 (0 8 9 3 6 8 5 1
В	L S 1	3	L -	R	S	# G K G	K F	H	٧	‡ Y Y I	† T T S	* A A P A	N N	* K K	K	L	M	Å	- S	S	ж	D.	A V Y K	Y	G	- S Q Q	E	1.	D L Y D	å	A E A F	* E A E E	K	A E S	13 12 59 59	19
		3	N R	V G R R	C K	D F	‡ L L	* * Y Y Y Y	F F	E D	A A I A	S	* * Y Y Y	A G	A G A	‡ A G G	I L	# P P P	y i y	¥ L I	R	T	‡ L L V	9	E N	ŧ	L		A		* * D D D	Q R E T	* ! ! ! !	Q T M L	1 6 1 5 6 3 6 2	2 3 0
8 8 E E	1	;	K K	Y . M F I	M M S S	* G G G	* * 1 1 1	Y V L F	и 2 2	# G G G G	* T S T	T T L	S	F F Y	‡ ! ! ! !	F	T G	A K K Q	M	- 1 L F	X	3	K	S	S	D - -	Y Y F	A E S T	D - -	S - -	ե - - -	A - -	E E	A V A L	19 17 65 64	6
B B E E	S		ፒ ኒ ፒ ፕ	K R	L	* - A A A	R	D E	L M	G G	Y F Y. L	Ţ	E E	A A P P	* D D D	* * P P P	T T R	A S D	* D D D D	YYL	E E S S	# G G G G	II L M K		A V	* A A A S	R R	* * X X X K	М	A A Ł V	* * ! ! !	l.	A	R R	2 2 2 1 6 8 6 8	1 8
					Bi	L:	7	٠ ا	ť,	۷,	クテ	ijĠ	A.	ラク	ታ ት	77	-	75	7 h		83	S :	ν,	FI	は	• "	۵,	チリ	ス					-	•	•

Fig. 2

E1: E. coli HDII E2: E. coli HDII

*: 3種に共通なアミノ酸 **: 4種に共通なアミノ酸

3/7

B B E E	S 1	I E E	A T A	F G G	H F R Y		R M L	Y E E	T Y L P	D A	L D	D E I V	E D	¥ J	C K E E	E Y P S	K V		l P	S A	Q E	I F	A T H C	A D A E	D E E G	I D G G	E D S	S V	A F A D	A A H	Q F F	Q - M F	<u>-</u>	•	25 23 72 71	38
8 8 E E	S 1	G - N N	- L	T - S D	1 - Q E	- - - -	- D	- D E	- - L Q	- F M	A	٨	- R R	S Y L	٨	- R K A	٨	G R	Y D	T E	М	K K	C L V	E 1 L L	X G R	F I Y Y	Υ Α γ	N Q G A	K R N R	E D I F	G G D	K S E A	S K D N		75	5 8
B E	L S 1 2	1 G	i E Y K	-	A V C A	‡ R S R	* * V V V	H Q K G	P P 1	T T A E	L L E A	L L V	P P D R	Y D G E	S II N D	H H	# # P P P	‡ 1. 1.	A S F A	S A K S	‡ Y Y L	N H K L	K N N P	S E G C	F F E D	* * N N N N N N N N N N N N N N N N N N	* A A V	I Y L F	F Y A A	у У 3	E Y Y E	S	EEHR		28 78	0 8 3 9 3 3 7 5
B E	L S 1 2	A Y	V Y Y	G G Q R		T L	М М Р	F F L L	Y Y Y	- - - 	- R R	G	11 P Y P	G		G	G S N R	M D	P P V	‡ T T	# # A A A	T	A S G A	* V V V I	L Y F Q	G S A S	# D D D	Y L L	Y Y L N	G A R R	A Y T L	M	K		3 1 8 1	3 8 1 9 1 4 0 6
B	L S 1 2	N W	K M K		H L	G	G .Y		A G		G \$		S											G P	E	Ť D	Ť	Ţ	R A		H Q		D L		3 : 8 :	70 51 17 06
	L S		D I		Y						8	i. F	A S	K E	l. I	A T	S S	i Y	F F	2	E E	Q R	G	Ų	s s	L F	R E	T K	1	R L		E	E P			0 1 8 3
	L	R	D K				Ē	D L			L	l V		Y Y	Ţ	H	S	A T	L S	3	S	D D	i j	S	R		V L		L			۸ D	K L			30 15
	L	P E				A E		H K	S				L V	E		D N		ж	s																	4 5 3 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP95/00268

A. CLA	SSIFICATION OF SUBJECT MATTER		
Int.	C16 C12N15/53, C12P13/08		j
According t	to International Patent Classification (IPC) or to both	national classification and IPC	
B. FIEL	LDS SEARCHED		
	ocumentation searched (classification system followed by	classification symbols)	
Int.	Cl ⁶ Cl2N15/53, Cl2P13/08		
Documentati	ion searched other than minimum documentation to the e:	xtent that such documents are included in th	e fields searched
		· · · · · · · · · · · · · · · · · · ·	<u> </u>
	ata base consulted during the international search (name o	of data base and, where practicable, search t	erms used)
CAS	BIOSIS WPI, WPI/L		
C. DOCU	MENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where ap	ppropriate, of the relevant passages	Relevant to claim No.
Y/A	Mol. Microbiol. Vol. 2, No	. 1 (1988), Peoples,	5, 6, 7, 8/
	O. P. et al. "Nucleotide se structural analysis of the		1-4, 9-12
2-	glutamicum hom-thr B opero		
Y/A	Mol Migrobiol Vol E No	5 (1001)	6,7,8/9-12
1/A	Mol. Microbiol. Vol. 5, No Kalinowski, J. et al. "Gen	etic biochemical	0,1,0/9-12
	analysis of the aspartoking	ase from	
	Corynebacterium glutamicum	" p. 1197-1204	
Y/A	JP, A, 3-219885 (Degussa A		6,7,8/12
	September 27, 1991 (27. 09 & EP, A1, 387527	. 91),	
	& EF, A1, 30/32/	·	
A	J, Gen. Appl. Microbiol. V	ol. 7, No. 3 (1961)	1 - 12
	Nakayama et al. p. 145-154		
Y/A	EP, A, 435132 (FORSCHUNGSZ	ENT JUELICH GMBH),	6,7,8/9-12
	July 3, 1991 (03. 07. 91), & DE, A, 3943117		
	& DE, A, 3943117		
Furthe	er documents are listed in the continuation of Box C.	See patent family annex.	<u> </u>
			mational filing data considerity
"A" docume	categories of cited documents: an defining the general state of the art which is not considered	data and not in conflict with the appli	cation but cited to understand
i	particular relevance locument but published on or after the international filing date	"X" document of particular relevance; the	claimed invention cannot be
"L" docume	ent which may throw doubts on priority claim(s) or which is establish the publication date of another citation or other	considered novel or cannot be considered novel or cannot be considered when the document is taken along the considered novel or cannot be considered novel or considered novel or cannot be considered novel or cannot b	
special	reason (as specified) int referring to an oral disclosure, use, exhibition or other	"Y" document of particular relevance; the	claimed invention cannot be step when the document is
means		combined with one or more other such being obvious to a person skilled in (documents, such combination
	ent published prior to the international filing date but later than rity date claimed	"&" document member of the same paten	
Date of the	actual completion of the international search	Date of mailing of the international sea	rch report
April	. 13, 1995 (13. 04. 95)	May 2, 1995 (02. 0	5. 95)
Name and n	nailing address of the ISA/	Authorized officer	
ŧ	ese Patent Office	•	
Facsimile N		Telephone No.	

A. 発明の属する分野の分類(国際特許分類(IPC)) Int. CL6 C12N15/53, C12P13/08 B. 調査を行った分野 調査を行った最小限資料(国際特許分類(IPC)) Int. CL6 C12N15/53, C12P13/08 最小限資料以外の資料で調査を行った分野に含まれるもの 国際調査で使用した電子データベース(データベースの名称、調査に使用した用語) CAS BIOSIS WPI, WPI/L C. 関連すると認められる文献 引用文献の 関連する カテゴリー* 引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示 請求の範囲の番号 Y/A Mol. Microbiol. 第2巻第1号(1988), Peoples, O. P. et al. | Nucleotide sequence and fine structural analysis of the Corynebacterium glutamicum hom-thr Boperon $\int p.63-72$ Y/A Mol. Microbiol. 第5巻第5号(1991), Kalinowski, J. et al. Genetic and biochemical analysis of the aspartokinase from Corynebacterium glutamicum] p. 1197-1204 V C欄の続きにも文献が列挙されている。 「 パテントファミリーに関する別紙を参照。 * 引用文献のカテゴリー 「T」国際出願日又は優先日後に公表された文献であって出願と 「A」特に関連のある文献ではなく、一般的技術水準を示すもの 矛盾するものではなく、発明の原理又は理論の理解のため 「E」先行文献ではあるが、国際出願日以後に公表されたもの に引用するもの 「L」優先権主張に疑義を提起する文献又は他の文献の発行日 「X」特に関連のある文献であって、当該文献のみで発明の新規 若しくは他の特別な理由を確立するために引用する文献 性又は進歩性がないと考えられるもの (理由を付す) 「Y」特に関連のある文献であって、当該文献と他の1以上の文 「〇」口頭による開示、使用、展示等に言及する文献 献との、当業者にとって自明である組合せによって進歩性 「P」国際出願目前で、かつ優先権の主張の基礎となる出願の日 がないと考えられるもの の後に公表された文献 「&」同一パテントファミリー文献 国際調査報告の発送日 国際調査を完了した日 02.05.95 13, 04, 95 名称及びあて先 特許庁審査官(権限のある職員) 4 B 9 3 5 9 日本国特許庁(ISA/JP) 郵便番号100 種村慈樹 東京都千代田区霞が関三丁目4番3号 電話番号 03-3581-1101 内線 3 4 4 9

C (続き).	関連すると認められる文献	
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
Y/A	JP, A, 3-219885(デグッサ・アクチェンゲゼルシャフト), 27. 9月、1991(27. 09. 91) &EP, A1, 387527	6,7,8/12
A	J. Gen. Appl. Microbiol. 第7巻第3号(1961) Nakayama et al. p. 145-154	1-12
Y/A	EP, A, 435132(FORSCHUNGSZENT JUELICH GMBH), 3. 7月, 1991(03. 07. 91) &DE, A, 3943117	6, 7, 8/9—12
	-	
		<u> </u>