Liam M. Longo, Ph.D.

CONTACT INFORMATION

Tokyo Institute of Technology email: llongo@elsi.jp

Earth-Life Science Institute phone:

Tokyo, Japan webpage: liamlongo.org

PROFESSIONAL EXPERIENCE

Postdoctoral Fellow (Mar. 2020 – present)

Tokyo Institute of Technology, Earth-Life Science Institute, Tokyo, Japan

Blue Marble Space Institute of Science

Advisor: Shawn E. McGlynn

Koshland Postdoctoral Fellow (Mar. 2019 – Feb. 2020)

Weizmann Institute of Science, Department of Biomolecular Sciences, Rehovot, Israel

Advisor: Dan S. Tawfik

Senior Postdoctoral Fellow (Mar. 2018 – Feb. 2019)

Weizmann Institute of Science, Department of Biomolecular Sciences, Rehovot, Israel

Advisor: Dan S. Tawfik

Postdoctoral Fellow (Mar. 2015 – Feb. 2018)

Weizmann Institute of Science, Department of Biomolecular Sciences, Rehovot, Israel

Advisors: Dan S. Tawfik and Sarel J. Fleishman

EDUCATION

Florida State University

Ph.D., Molecular Biophysics (2014)

Dissertation: Symmetry and simplicity in protein evolution and design.

Florida State University

B.A., Biochemistry (2009)

TEACHING EXPERIENCE

Frontiers in Medicine, Protein Design Unit. (2014). Florida State University Introductory Biology Lab for Majors. (2012). Florida State University Introductory Chemistry Lab for Majors. (2009). Florida State University

GRANTS, AWARDS and FELLOWSHIPS

Innovation in Systems Biology Award (2017)

Department of Systems Biology, Weizmann Institute of Science

Koshland Prize (2015)

Feinberg Graduate School, Weizmann Institute of Science

Dean of Faculty Fellowship (2015)

Feinberg Graduate School, Weizmann Institute of Science

Dissertation Research Grant (2013)

The Graduate School, Florida State University

Kasha Award (2013)

Institute of Molecular Biophysics, Florida State University

Protein Science Best Paper Award (2012)

The Protein Society

Fisher Undergraduate Research Fellowship (2008)

American Cancer Society

Undergraduate Research and Creativity Award (2008)

The Office of Research, Florida State University

PROFESSIONAL ASSOCIATIONS

The Protein Society

The Protein Science Society of Japan (PSSJ)

PROFESSIONAL DEVELOPMENT

EMBO Laboratory Management Course (2017). Rehovot, Israel Rosetta Boot Camp, Rosetta Academy (2015). Chapel Hill, USA

INVITED TALKS

Longo, L.M. (2019). Resolving the basic amino acid problem. 19th Annual Symposium of the Protein Science Society of Japan. Kobe, Japan

Longo, L.M. (2013). Experimental support for the foldability-function tradeoff hypothesis. 27th Annual Symposium of the Protein Society. Boston, USA

INTELLECTUAL PROPERTY

Blaber, M. and **Longo, L.M.** (2017). Synthetic foldable proteins generated from peptide segments of folding nuclei of reference proteins. U.S. Patent 9,783,587

PREPRINTS

*Equal contribution

Vyas, P., Trofimyuk, O., **Longo, L.M.**, Kumar-Deshmukh, F., Sharon, M., and Tawfik, D.S. (2020). Helicase-like functions in phosphate loop containing beta-alpha polypeptides. bioRxiv.

Longo, L.M., Jabłońska, J., Vyas, P., Kolodny, R., Ben-Tal, N., Tawfik, D.S. (2020). On the emergence of Ploop NTPase and Rossmann enzymes from a beta-alpha-beta ancestral fragment. bioRxiv.

PEER-REVIEWED PUBLICATIONS

*Equal contributions

Despotović, D.*, **Longo, L.M.***, Aharon, E., Kahana, A., Scherf, T., Gruic-Sovulj, I., Tawfik, D.S. (2020). Polyamines mediate folding of primordial hyper-acidic helical proteins. Biochemistry. (Accepted)

- **Longo, L.M.***, Despotović, D.*, Weil-Ktorza, O.*, Walker, M.J., Jabłońska, J., Fridmann-Sirkis, Y., Varani, G., Metanis, N., Tawfik, D.S. (2020). Primordial emergence of a nucleic acid-binding protein via phase separation and statistical ornithine-to-arginine conversion. Proceedings of the National Academy of Sciences USA. 117:15731-15739
 - Faculty Opinions Recommendation
- **Longo, L.M.**, Petrović, D., Kamerlin, S.C.L. and Tawfik, D.S. (2020). Short and simple sequences favored the emergence of N-helix phospho-ligand binding sites in the first enzymes. Proceedings of the National Academy of Sciences USA. 117:5310-5318
- Tenorio, C.A., **Longo**, **L.M.**, Parker, J.B., Lee, J., Blaber, M. (2020). Ab initio folding of a trefoil-fold motif reveals structural similarity with a β-propeller blade motif. Protein Science. 29:1172-1185
- Davidi D, **Longo**, **L.M.**, Jabłońska, J., Milo, R., and Tawfik D.S. (2018). A bird's-eye view of enzyme evolution: chemical, physicochemical, and physiological considerations. Chemical Reviews. 118:8786-8797
- **Longo, L.M.***, Gao, Y.*, Tenorio, C.A., Wang, G., Paravastu, A.K. and Blaber, M. (2018). The folding nucleus structure persists in thermally-aggregated FGF-1. Protein Science. 27:431-440
- Noda-Garcia, L., Romero-Romero, M.L., **Longo, L.M.**, Kolodkin-Gal, I. and Tawfik, D.S. (2017). *Bacilli* glutamate dehydrogenases diverged via coevolution of transcription and enzyme regulation. EMBO Reports. **7**:1139-1149
- Xia, X.*, **Longo, L.M.***, Sutherland, M.A. and Blaber, M. (2016). Evolution of a protein folding nucleus. Protein Science. 25:1227-1240
- **Longo, L.M.**, Tenorio, C.A., Kumru, O.S., Middaugh, C.R. and Blaber, M. (2015). Emergence of aromatic amino acid biosynthesis enables halophile to mesophile protein adaptation. Protein Science. 24:27-37
- Xia, X., **Longo, L.M.** and Blaber, M. (2015). Mutation choice to eliminate buried free cysteines in protein therapeutics. Journal of Pharmaceutical Science. 104:566-576
- **Longo, L.M.** and Blaber, M. (2015). Proteins: folding, misfolding, disordered proteins, and related diseases. Encyclopedia of Cell Biology. Academic Press, Oxford. 108-114
- **Longo, L.M.**, Kumru, O.S., Middaugh, C.R. and Blaber, M. (2014). Evolution and Design of Protein Structure by Folding Nucleus Symmetric Expansion. Structure. 22:1377-1384
- **Longo, L.M.** and Blaber, M. (2014). Symmetric protein architecture in protein design: top-down symmetric deconstruction. Methods in Molecular Biology. 1216:161-182
 - Cover Article
- **Longo, L.M.** and Blaber, M. (2014). Prebiotic protein design supports a halophile origin of foldable proteins. Frontiers in Microbiology. 4:418-419
- Stefanovic, L., **Longo, L.M.**, Zhang, Y., and Stefanovic, B. (2014). Characterization of binding of LARP6 to the 5' stem-loop of collagen mRNAs: implications for synthesis of type I collagen. RNA Biology. 11:1386-1401
- **Longo, L.M.**, Lee, J. and Blaber, M. (2013). Simplified protein design biased for prebiotic amino acids yields a foldable, halophilic protein. Proceedings of the National Academy of Sciences USA. 110:2135-2139
 - 2013 Kasha Award
 - Faculty Opinions Recommendation
- **Longo, L.M.***, Lee, J.*, Tenorio, C.A. and Blaber, M. (2013). Alternative folding nuclei definitions facilitate the evolution of a symmetric protein fold from a smaller peptide motif. Structure 21:2042-2050

Longo, L.M., Şanlı-Mohamed, G. and Blaber, M. (2013). Biophysical characterization of a thermoalkalophilic esterase from *Geobacillus sp.* Journal of Proteins and Proteomics. 4:123-128

Phipps, H., **Longo, L.M**, Blaber, S.I., Blaber, M. and VanLandingham, J. (2013). Kallikrein-related peptidase 6: a biomarker for traumatic brain injury in rat. Journal of Brain Injury. 27:1698-1706

Longo, L.M., Lee, J. and Blaber, M. (2012). Experimental support for the foldability-function tradeoff hypothesis: segregation of the folding nucleus and functional regions in FGF-1. Protein Science. 21:1911-1920

• 2012 Protein Science Best Paper Award

Longo, L.M. and Blaber, M. (2012). Protein design at the interface of the prebiotic and biotic worlds. Archives of Biochemistry and Biophysics. 526:16-21

Blaber, M., Lee, J. and **Longo, L.M.** (2012). Emergence of symmetric protein architecture from a simple peptide motif: evolutionary models. Cellular and Molecular Life Sciences. 69:3999-4006

Longo, L.M. and Blaber, M. (2012). Protein design—a vast unexploited resource. Journal of Proteins and Proteomics. 3:78-83

Lee, J., Dubey, V.K., **Longo, L.M.** and Blaber, M. (2008). A logical OR redundancy within the Asx-Pro-Asx-Gly type I β-turn motif, Journal of Molecular Biology. 377:1251-1264

Hacisalihoglu, G., Ji, P., **Longo, L.M.**, Olson, S., and Momol, T.M. (2007). Bacterial wilt induced changes in nutrient distribution and biomass and the effect of acibenzolar-S-methyl on bacterial wilt in tomato. Crop Protection. 26:978-982

Hacisalihoglu, G., Duke, E. and **Longo, L.M.** (2005). Differential response of common bean genotypes to mycorrhizal colonization. Proceedings of the Florida State Horticultural Society. 118:150-152

REFERENCES

Dan S. Tawfik, Ph.D.

Professor
Department of Biomolecular Sciences
Weizmann Institute of Science
Rehovot, Israel
dan.tawfik@weizmann.ac.il

Shawn E. McGlynn, Ph.D.

Associate Professor Earth-Life Science Institute Tokyo Institute of Technology Tokyo, Japan mcglynn@elsi.jp

Michael Blaber, Ph.D.

Professor Department of Biomedical Sciences Florida State University Tallahassee, USA michael.blaber@med.fsu.edu

Shina Caroline Lynn Kamerlin, Ph.D.

Professor Department of Chemistry-BMC Uppsala University Uppsala, Sweden lynn.kamerlin@kemi.uu.se