CHECK CHECK

수준별 자료집 (중)

소단원별 기출 문제

1. 삼각형의 성질	01 이등변삼각형의 성질 03 삼각형의 외심	2	02 직각삼각형의 합동 조건 04 삼각형의 내심	3
 2. 사각형의 성질	01 평행사변형	6	02 여러 가지 사각형	7
 3. 도형의 닮음	● 3 여러 가지 사각형 사이의 관계 ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●	10	4 평행선과 넓이 2 삼각형의 닮음 조건	11
4. 닮음의 응용	01 삼각형과 평행선 03 삼각형의 중선과 무게중심	12 14	02 평행선과 선분의 길이의 비 04 닮은 도형의 넓이의 비와 부피의 비	13
5. 피타고라스 정리	01 피타고라스 정리 03 피타고라스 정리의 활용	16 18	② 피타고라스 정리의 성질	17
6. 경우의 수	01 사건과 경우의 수	19	(2 여러 가지 경우의 수	20
	01 확률의 뜻과 성질	21	02 확률의 계산	22

01 이등변삼각형의 성질

1. 삼각형의 성질

① 기 오른쪽 그림에서 △ABC는 AB=AC이고, AD는 ∠A의 이등분선이다. CD=5 cm, ∠C=60°일 때, 다음 중 옳지 않은 것은?

- ① ∠B=60°
- ② ∠ADC=90°
- $\Im \overline{BD} = 5 \text{ cm}$
- $\bigcirc AC = 10 \text{ cm}$
- ⑤ ∠BAD=20°

 Q
 오른쪽 그림과 같이

 AB=AC인 이등변삼각형

 ABC에서 ∠B의 이등분선과

 ∠C의 외각의 이등분선의 교점을 D라 하자. ∠A=44°일

 때, ∠x의 크기는?

- ① 22°
- $(2)25^{\circ}$
- $(3)28^{\circ}$

- 4 30°
- ⑤ 32°

02 오른쪽 그림과 같이 $\overline{AB} = \overline{AC}$ 인 이등변삼각형 ABC에서 $\overline{BC} = \overline{BD}$ 이고 $\angle CDB = 68$ °일 때, $\angle x$ 의 크기는?

 $(2)24^{\circ}$

 326°

4 28°

(5) 30°

05 오른쪽 그림에서 \triangle ABC는 $\overline{AB}=\overline{AC}$ 인 이등변삼각형이다. \overline{AD} 는 \angle A의 이등분선이고 \overline{AD} 위의 한 점 P에 대하여 \angle BAP=25°, \angle PBD=30°일 때, $\angle x+\angle y$ 의 값을 구하시오.

06 오른쪽 그림과 같이 폭이 일정한 종이 띠를 접었다. $\overline{AC} = 6 \text{ cm}, \overline{BC} = 5 \text{ cm}$ 일 때, \overline{AB} 의 길이를 구하시오.

소단원별 기출 문제

02 직각삼각형의 합동 조건

다음은 「 $\angle C = \angle F = 90^\circ$ 인 두 직각삼각형 ABC와 DEF에서 $\overline{AB} = \overline{DE}$, $\overline{AC} = \overline{DF}$ 이면 $\triangle ABC = \triangle DEF$ 이다.」를 설명한 것이다. \square 안에 들어갈 내용으로 옳지 않은 것은?

위 그림과 같이 $\triangle DEF$ 를 뒤집어 길이가 같은 두 변 AC와 DF가 서로 겹치도록 놓으면

 $\angle ACB + \angle ACE = \boxed{1}$

즉 세 점 B, C(F), E는 한 직선 위에 있다.

이때 \overline{AB} = ② 이므로 $\triangle ABE$ 는 ③ 이다.

∴ ∠B= (4)

△ABC와 △DEF에서

 $\overline{AB} = \overline{DE}, \overline{AC} = \overline{DF}$

 $\angle BAC = 90^{\circ} - \angle B = 90^{\circ} - \boxed{4} = \angle EDF$

∴ △ABC≡△DEF (⑤ 합동)

- $\bigcirc 90^{\circ}$
- \bigcirc \overline{AE}
- ③ 이등변삼각형

- ④ ∠E
- ③ SAS

02 다음 〈보기〉 중 서로 합동인 직각삼각형끼리 짝 지으시오.

03 오른쪽 그림과 같이 ∠C=∠F=90°인 두 직 가사가첩이 하도이 되느

- $\bigcirc \overline{AB} = \overline{DE}, \overline{AC} = \overline{DF}$
- $\bigcirc \overline{AB} = \overline{DE}, \overline{BC} = \overline{EF}$
- $\Im \overline{BC} = \overline{EF}, \angle A = \angle D$
- $\textcircled{4} \angle B = \angle E, \overline{AB} = \overline{DE}$
- \bigcirc $\angle A = \angle D, \angle B = \angle E$

 Q4
 오른쪽 그림과 같이

 AB=AC인 직각이등변삼

 각형 ABC의 두 꼭짓점 B,

 C에서 점 A를 지나는 직선

 I에 내린 수선의 발을 각각

D, E라 하자. \overline{BD} =15, \overline{DE} =27일 때, \overline{CE} 의 길이를 구하시오.

오른쪽 그림과 같이 ∠B=90°
 인 직각이등변삼각형 ABC에서 BC 위의 한점 D에서 AC에 내린 수선의 발을 E라 하자.
 AB=AE일 때, ∠BAD의 크기를 구하시오.

○ 오른쪽 그림에서 점 O가△ ABC의 외심일 때, 다음 중옳은 것을 모두 고르면?(정답 2개)

 $\bigcirc \overline{OA} = \overline{OC}$

- $\bigcirc \overline{OL} = \overline{ON}$
- $3\overline{\text{CL}} = \overline{\text{CN}}$
- $\textcircled{4} \angle OAM = \angle OAL$
- \bigcirc \triangle OAM \equiv \triangle OBM

 \bigcirc 4 오른쪽 그림에서 점 \bigcirc 7가 \triangle ABC의 외심일 때, $\angle x$ 의 크기는?

- $\textcircled{2} \ 122^\circ$
- 3120°
- (4) 118°
- $\textcircled{5}115^{\circ}$

○2 오른쪽 그림에서 점 O가

 직각삼각형 ABC의 외심

 일 때, OA의 길이를 구하

 시오.

05 오른쪽 그림에서 점 O가 \triangle ABC의 외심일 때, $\angle x + \angle y$ 의 값을 구하시오.

 $\mathbf{O3}$ 오른쪽 그림에서 점 O는 \triangle ABC의 외심이다. \angle OAB= 60° , \angle OBC= 10° 일 때, $\angle x$ 의 크기를 구하시오.

 ○4
 오른쪽 그림에서 점 O가

 △ABC의 외심이고
 ∠AOB: ∠BOC: ∠COA

 =4:6:5
 일 때, ∠ABC의 크기를 구

하시오.

04 삼각형의 내심

1. 삼각형의 성질

 $13\,\mathrm{cm}$

소단원별 기출 문제

- 1 오른쪽 그림에서 점 I가△ABC의 내심일 때,∠ICB의 크기는?
 - ① 28°
- $\bigcirc 30^{\circ}$
- ③ 32°
- (4) 34°
- $\bigcirc 36^{\circ}$

34° A

02 오른쪽 그림에서 점 I가 △ABC의 내심일 때, ∠x의 크기는?

- ② 130°
- ③ 132°
- ④ 134°
- ⑤ 136°

03 오른쪽 그림에서 점 I는 △ABC의 내심이고 <u>DE</u> // BC이다. AB=13 cm,

△ADE의 둘레의 길이를 구하시오.

 04
 오른쪽 그림에서 점 I

 는 △ABC의 내심이

 고 DE //BC이다.

 $\overline{AD} = 5 \, \text{cm},$

 $\overline{\rm DB}$ = $4\,{\rm cm}$, $\overline{\rm AC}$ = $13\,{\rm cm}$ 일 때, $\triangle {\rm ADE}$ 의 둘레의 길이를 구하시오.

05 오른쪽 그림에서 점 I는 △ABC의 내심이다. ĀD=3 cm, BD=5 cm, BC=11 cm일 때, ĀC의 길이는?

- ① 8 cm
- ② 9 cm
- ④ 11 cm
- ⑤ 12 cm
- ③ 10 cm

- 06 오른쪽 그림에서 점 I는 직 각삼각형 ABC의 내심일 때, 다음을 구하시오.
 - (1) 내접원의 반지름의 길이

(2) 어두운 부분의 넓이

오른쪽 그림과 같은 평행
 사변형 ABCD에서 AD
 의 길이를 구하시오.

- **①2** 평행사변형 ABCD에서 ∠B: ∠C=2:3일 때, ∠A의 크기는?
 - $\textcircled{1}102^\circ$
- $\bigcirc 104^{\circ}$
- ③ 106°

- (4) 108°
- ⑤ 110°

03 오른쪽 그림과 같은 평행사변형 ABCD에서 BC의 중점을 E라하고, AE의 연장선이 DC의 연장선과 만나는 점을 F라하자.

 \overline{AD} = $10 \, \mathrm{cm}$, \overline{CD} = $5 \, \mathrm{cm}$ 일 때, \overline{CF} 의 길이를 구하시 오.

○4 오른쪽 그림과 같은 평행

 사변형 ABCD에서 DE
 7

 는 ∠D의 이등분선이다.
 AB=7 cm, AD=11 cm

 일 때, BE의 길이를 구하시오.

○5 다음은 「OA=OC, OB=OD이면 □ABCD는 평행 사변형이다.」를 설명한 것이다. □ 안에 들어갈 내용 으로 옳지 않은 것은? (단, 점 O는 두 대각선의 교점)

△ODA와 △OBC에서

 $\overline{OA} = \overline{OC}$

 $\boxed{ \bigcirc \overline{OD} } = \overline{OB}$

∠AOD=<u>②∠COB</u> (맞꼭지각)

이므로 \triangle ODA \equiv \triangle OBC (SAS 합동) 따라서 \angle OAD= \angle OCB (③ 엇각))이므로

 $4 \overline{AB} / \overline{DC}$

같은 방법으로 △OAB와 △OCD에서

∠OAB=⑤ ∠OCD (엇각)이므로

 $\overline{AB} /\!\!/ \overline{DC}$

.....(L)

.....

따라서 ⊙, ⓒ에 의해 □ABCD는 평행사변형이다.

06 오른쪽 그림의 평행사변형
ABCD의 넓이는 60 cm²이다.
□ABCD의 내부의 한 점 P
에 대하여 △PAB=14 cm²
일 때, △PCD의 넓이는?

- $\textcircled{1} \ 10 \ cm^2$
- ② 12 cm^2
- $(4) 16 \text{ cm}^2$
- $(5) 30 \text{ cm}^2$
- ③ 14 cm²
- ○7 다음 조건 중 오른쪽 그림의 □ABCD가 평행사변형이 될 수 없는 것은? (단, 점 O는 두 대각선의 교점)

- \bigcirc $\triangle A = \angle C, \angle B = \angle D$
- $\bigcirc \overline{OA} = \overline{OC}, \overline{OB} = \overline{OD}$
- $\Im \overline{AB} / \overline{DC}, \overline{AD} = \overline{BC}$
- $\bigcirc \overline{AD} = \overline{BC}, \overline{AB} = \overline{DC}$
- $\bigcirc \overline{AD} / \overline{BC}, \overline{AB} / \overline{DC}$

- 다음 중 옳지 않은 것은?
 - ① 평행사변형의 두 쌍의 대변의 길이는 각각 같다.
 - ② 직사각형의 네 내각의 크기는 같다.
 - ③ 마름모의 두 대각선은 서로 다른 것을 수직이등분 한다.
 - ④ 평행사변형의 두 대각선의 길이는 같다.
 - ⑤ 정사각형은 네 변의 길이와 네 내각의 크기가 각각 같다.

04 다음 중 오른쪽 그림의 마름모 ABCD가 정사각형이 되기 위해 추가되어야할 조건은? (단, 점 O는 두대각선의 교점)

- ${\tiny\textcircled{1}}\,\overline{AC}{=}\overline{BD}$
- $\bigcirc \overline{AB} = \overline{CD}$
- $\Im \overline{AO} = \overline{CO}$
- \bigcirc \angle AOB=90°
- \bigcirc \triangle AOB \equiv \triangle AOD \equiv \triangle COB \equiv \triangle COD

02 오른쪽 그림과 같은 직사각 형 ABCD에서 $\overline{BE} = \overline{DE}$, $\angle BDE = \angle CDE$ 일 때, $\angle DEC$ 의 크기는?

- ① 50°
- ② 55°
- 4 65°
- ⑤ 70°

05 오른쪽 그림과 같은 정사각형 ABCD에서 $\overline{AD} = \overline{AE}$ 이고 $\angle ABE = 26^{\circ}$ 일 때, $\angle FDE$ 의 크 기를 구하시오.

03 오른쪽 그림의 □ABCD는 마름모이다. ∠ADB=32° 일 때, ∠BCA의 크기는? (단, 점 O는 두 대각선의 교 점)

- $\bigcirc 160^{\circ}$
- $(2)58^{\circ}$
- 356°

- (4) 54°
- ⑤ 52°

06 오른쪽 그림의 □ABCD는 AD // BC인 등변사다리꼴이다. ∠ABC=80°이고 AB=8 cm일 때, 다음 중옳은 것은? (단, 점 O는 두 대 각선의 교점)

- \bigcirc $\overline{AO} = \overline{DO}$
- ② $\overline{AC} = 8 \text{ cm}$
- $3 \angle BAD = 80^{\circ}$
- $\textcircled{4} \overline{AC} \bot \overline{BD}$
- $(5) \triangle ABO \equiv \triangle AOD$

오.

■ 보기 II—

② 마름모

○ 다음은 여러 가지 사각형 사이의 관계를 그림으로 나타낸 것이다. 조건 (개) ~ (매)에 들어갈 내용으로 옳지 않은 것은?

- (1) (7)) $\overline{AB} /\!\!/ \overline{CD}$
- ② (ப) $∠A = 90^{\circ}$
- (3) (4) $\overline{AC} = \overline{BD}$
- ④(라) $\overline{AB} = \overline{BC}$
- (5) (11) $\angle B = 90^{\circ}$

(1) 두 대각선이 서로 다른 것을 이등분하는 사각형을 모두 고르시오.

3 다음 〈보기〉에 주어진 사각형에 대하여 물음에 답하시

○ 등변사다리꼴 ○ 평행사변형 ○ 직사각형

🛈 정사각형

- (2) 두 대각선의 길이가 서로 같은 사각형을 모두 고르시오.
- (3) 두 대각선이 서로 수직으로 만나는 사각형을 모두 고르시오.
- (4)(1)~(3)의 조건을 모두 만족하는 사각형을 고르시오.

- **02** 다음 중 평행사변형이 직사각형이 되는 조건은?
 - ① 두 대각선이 수직으로 만난다.
 - ② 이웃하는 두 변의 길이가 같다.
 - ③ 두 대각선이 서로 다른 것을 이등분한다.
 - ④ 두 쌍의 대변의 길이가 각각 같다.
 - ⑤ 한 내각이 직각이다.

- 04 다음 중 사각형과 그 사각형의 각 변의 중점을 연결하여 만든 사각형을 짝 지은 것으로 옳지 않은 것은?
 - ① 직사각형 ➡ 마름모
 - ② 사각형 ➡ 평행사변형
 - ③ 등변사다리꼴 ➡ 마름모
 - ④ 평행사변형 ➡ 직사각형
 - ⑤ 마름모 ➡ 직사각형

 \bigcirc 오른쪽그림과같이 $\overline{AD}/\overline{BC}$ 인 사다리꼴 ABCD에서 △AOD=30 cm²이고 BO: OD=3:2일 때,

△DOC의 넓이를 구하시오.

(단, 점 O는 두 대각선의 교점)

□▲ 오른쪽 그림에서 평행사변형 ABCD의 두 대각선의 교점 O 를 지나는 직선과 \overline{AD} , \overline{BC} 의 교점을 각각 E, F라 하자. □ABFE의 넓이가 24 cm²일

때, △DOC의 넓이는?

 $\bigcirc 1$ 6 cm²

② 8 cm²

(4) 12 cm²

 $(5) 14 \text{ cm}^2$

 $(3) 10 \text{ cm}^2$

○ 오른쪽 그림에서 $\overline{AC}/\overline{DE}$, $\angle B = 90^{\circ}$ 이고 $\overline{AB} = 8 \text{ cm}, \overline{BC} = 5 \text{ cm},$ TE=7 cm일 때, □ABCD 의 넓이는?

(1) 32 cm²

 $240\,\mathrm{cm}^{2}$

(4) 56 cm²

(5) 64 cm²

(3) 48 cm²

05 오른쪽 그림에서 $\overline{AC}/\overline{DF}$ 이고 BE: EC=2:3이다. △DBE 의 넓이가 16 cm²일 때, □ADEF의 넓이는?

- $\bigcirc 16 \, \text{cm}^2$
- (2) 18 cm²
- $30 20 \, \text{cm}^2$
- $\bigcirc 4$ 22 cm²

 $(5) 24 \text{ cm}^2$

13 오른쪽 그림과 같이 넓이가 40 cm²인 평행사변형 ABCD에서

BP: PC=1:3일 때, △DPC의 넓이는?

(1) 12 cm² (4) 21 cm² $(2) 15 \, \text{cm}^2$ $(5) 24 \text{ cm}^2$

 $318 \, \text{cm}^2$

1 오른쪽 그림과 같이 AD // BC인 등변사다리꼴 ABCD에서 $\overline{OA}:\overline{OC}=3:4$ 이고 △AOD=12 cm²일 때.

□ABCD의 넓이를 구하시오.

(단, 점 O는 두 대각선의 교점)

○] 다음 그림에서 △ABC∞ △DEF일 때, BC의 대응 변과 ∠D의 대응각을 순서대로 나열한 것은?

- ① \overline{DE} , $\angle A$
- ② DE, ∠B
- $\Im \overline{\mathrm{EF}}$, $\angle A$

- $\textcircled{4}\overline{\mathrm{EF}}, \angle C$
- $\bigcirc \overline{\mathrm{DF}}, \angle \mathrm{C}$

○2 아래 그림에서 □ABCD∞□EFGH일 때, 다음 중 옳은 것은?

- ① \overline{DC} : \overline{HG} = 3 : 4
- ②∠H=75°
- $\Im \overline{FG} = 6 \text{ cm}$
- $\textcircled{4}\overline{\text{DC}} = \frac{8}{3}\text{cm}$
- ⑤ □ABCD와 □EFGH의 닮음비는 1:3이다.

이 다음 그림에서 두 삼각기둥은 서로 닮은 도형이다. \overline{AC} 에 대응하는 모서리가 $\overline{A'C'}$ 일 때, x+y+z의 값을 구하시오.

○4 아래 그림에서 두 직육면체는 서로 닮은 도형이다. □ABCD∞□IJKL일 때, 다음을 구하시오.

- (1) 면 EFGH에 대응하는 면
- (2) 두 직육면체의 닮음비
- (3) OP의 길이

- **15** 다음 중 닮은 도형에 대한 설명으로 옳지 <u>않은</u> 것은?
 - ① 모든 원은 서로 닮은 도형이다.
 - ② 모든 정육면체는 서로 닮은 도형이다.
 - ③ 중심각의 크기가 같은 두 부채꼴은 서로 닮은 도형이다.
 - ④ 한 예각의 크기가 같은 두 직각삼각형은 서로 닮은 도형이다.
 - ⑤ 한 내각의 크기가 같은 두 이등변삼각형은 서로 닮은 도형이다.

○ T음에서 서로 닮음인 삼각형을 찾고, 각각의 닮음 조건을 말하시오.

(1) 4 cm 5 cm

8 cm 45 12 cm

○2 다음 그림의 △ABC와 △DEF가 서로 닮은 도형이 되기 위해 필요한 조건은?

- ① $\angle A=75^{\circ}$, $\angle E=45^{\circ}$
- \bigcirc \angle C=80°, \angle E=45°
- $\Im \overline{AB} = 8 \text{ cm}, \overline{DE} = 6 \text{ cm}$
- $\bigcirc \overline{AC} = 16 \text{ cm}, \overline{DF} = 12 \text{ cm}$
- \bigcirc $\overline{AB} = 15 \text{ cm}, \overline{DE} = 12 \text{ cm}$
- \bigcirc 3 오른쪽 그림에서 $\angle B = \angle CAD$ 일 때, x의 값을 구하시오.

 \bigcirc 4 오른쪽 그림에서 \overline{BD} 의 길이 를 구하시오.

05 오른쪽 그림에서 ∠ABC=∠FDC=90°일 때, 다음 중 옳지 <u>않은</u> 것은?

- \bigcirc \triangle AED= \angle ACB
- \bigcirc \angle DFC= \angle BAC
- \bigcirc \triangle AED \bigcirc \triangle FEB
- $\textcircled{4} \triangle ABC \circ \triangle FDC$
- ⑤ 서로 닮음인 직각삼각형은 모두 2개이다.

06 오른쪽 그림과 같이 $\angle B=90^{\circ}$ 인 직각삼각형 ABC에서 $\overline{BH}\bot\overline{AC}$ 일 때, x+y의 값을 구하시오.

01 삼각형과 평행선

 \bigcirc 오른쪽 그림에서 $\overline{DE}/\overline{BC}$ 일 때, x+y의 값을 구하시 오.

14 오른쪽 그림과 같은 △ABC 에서 \overline{AB} 의 중점을 D, \overline{AC} 의 삼등분점을 각각 E, F라 하 고, $\overline{\text{CD}}$ 와 $\overline{\text{BF}}$ 의 교점을 $\overline{\text{MO}}$ 라 하자. $\overline{BM} = 21 \text{ cm}$ 일 때, MF의 길이는?

- ① 7 cm
- ② 8 cm
- 3 9 cm

- ④ 10 cm
- (5) 11 cm

 \bigcirc 다음 중 \overline{BC} $//\overline{DE}$ 인 것은?

(3)

○5 오른쪽 그림과 같이 △ABC 에서 \overline{AB} 의 연장선 위에 $\overline{AB} = \overline{AD}$ 가 되도록 점 D를 잡고, \overline{AC} 의 중점 M에 대하여 $\overline{\mathrm{DM}}$ 의 연장선과 $\overline{\mathrm{BC}}$ 의 교점

을 E라 하자. $\overline{BE} = 6 \text{ cm}$ 일 때, \overline{EC} 의 길이를 구하시 오.

○3 오른쪽 그림과 같은 △ABC 에서 세 점 D, E, F는 각각 \overline{AB} , \overline{BC} , \overline{CA} 의 중점이다. △DEF의 둘레의 길이가 14 cm일 때, △ABC의 둘레 의 길이를 구하시오.

06 오른쪽 그림과 같은 △ABC에서 ∠A의 외각 의 이등분선과 $\overline{\mathrm{BC}}$ 의 연장 선의 교점을 D라 하자.

 $\overline{AB}=3$ cm, $\overline{BC}=2$ cm, $\overline{CD}=4$ cm일 때, \overline{AC} 의 길 이를 구하시오.

4. 닮음의 응용

소단원별 기출 문제

- 오른쪽 그림에서 $k /\!\!/ l /\!\!/ m /\!\!/ n$ 일 때, x+y의 값은?
 - ① 10
- (2) 11
- ③ 12
- (4) 13
- **(5)** 14

02 평행선과 선분의 길이의 비

 \bigcirc 4 오른쪽 그림과 같이 $\overrightarrow{AD}//\overrightarrow{BC}$ 인 사다리꼴 ABCD에서 $\overline{AE} = \overline{EB}, \overline{DF} = \overline{FC}$ 일때, xy의 값을 구하시오.

- 02 오른쪽 그림에서 $l /\!\!/ m /\!\!/ n$ 일 때, *x*의 값은?
- $3\frac{48}{5}$ $4\frac{54}{5}$
- $\bigcirc \frac{72}{5}$

05 오른쪽 그림에서 $\overline{AB} /\!\!/ \overline{EF} /\!\!/ \overline{DC}$ 일 때, x의 값을 구하시오.

03 오른쪽 그림과 같이 $\overline{\mathrm{AD}}/\!\!/\overline{\mathrm{BC}}$ 인 사다리꼴 ABCD에서 두 점 M, N은 각각 \overline{AB} , \overline{DC} 의 중점일 때, x+y의 값을 구하시오.

06 오른쪽 그림에서 \overline{AB} , \overline{EF} , \overline{DC} 는 모두 \overline{BC} 에 수직일 때, x-y의 값 은?

- 27
- 4 12
- **(5)** 14

310

① 1 오른쪽 그림에서 점 1 G가 1 ABC 의 무게중심일 때, 1 1 1 값을 구하시오.

 \bigcirc 4 오른쪽 그림에서 두 점 G, G'은 각각 \triangle ABD, \triangle ADC의무게중심이다. $\overline{BD}=8$ cm, $\overline{NC}=5$ cm일 때, $\overline{GG'}$ 의 길이를 구하시오.

02 오른쪽 그림에서 점 G가 직각삼 각형 ABC의 무게중심일 때, \overline{BG} 의 길이를 구하시오.

오른쪽 그림에서 점 G는
 △ABC의 무게중심이다.
 EF // BC이고 △GDF=2 cm²
일 때, △ABC의 넓이를 구하시오.

 $m{O3}$ 오른쪽 그림에서 두 점 G,G'은 각각 \triangle ABC, \triangle GBC의 무게중심이다. $\overline{AD} = 12~\mathrm{cm}$ 일 때, $\overline{GG'}$ 의 길이를 구하시 오.

06 오른쪽 그림에서 두 점 G, G'은 각각 △ABC, △GBC의 무게중심이다. △ABC의 넓이가 90 cm²일 때, △GBG'의 넓이는?

- ① 10 cm^2
- ② $15 \, \text{cm}^2$
- $(4) 25 \text{ cm}^2$
- $(5) 30 \text{ cm}^2$

 30 cm^2

소단원별 기출 문제

04 닮은 도형의 넓이의 비와 부피의 비

소단원별 기출 문제

이 아래 그림과 같이 서로 닮음인 두 삼각기둥의 닮음비 가 1:2일 때, 다음을 구하시오.

- (1) \triangle ABC의 넓이가 $6\,\mathrm{cm}^2$ 일 때, \triangle A'B'C'의 넓이
- (2) 작은 삼각기둥의 부피가 24 cm³일 때, 큰 삼각기둥 의 부피

☐ 두 직육면체 P, Q는 서로 닮은 도형이다. P의 부피는 250 cm³, Q의 부피는 128 cm³일 때, 두 직육면체 P, Q의 겉넓이의 비를 구하시오.

12 오른쪽 그림과 같은 △ABC 에서 $\overline{AC} /\!\!/ \overline{DE}$ 이고 $\overline{BE} = 3 \text{ cm}, \overline{EC} = 2 \text{ cm}$ 이다. △DBE의 넓이가 18 cm²일 때, □ADEC의 넓이는?

- (1) 18 cm²
- (2) 24 cm²
- (4) 32 cm²
- $(5) 36 \text{ cm}^2$

05 오른쪽 그림과 같이 높이가 8 m 인 원뿔 모양의 통에 일정한 속도 로 물을 채우고 있다. 물을 채우기 시작한 지 10분 후의 물의 깊이가 4 m일 때, 물을 가득 채우는데 몇 분이 더 걸리는지 구하시오.

 \bigcirc 3 오른쪽 그림과 같이 $\overline{AD}/\overline{BC}$ 인 사다리꼴 ABCD에서 \triangle ODA의 넓이가 $27 \, \text{cm}^2$ 일 때, △OBC의 넓이를 구하시오.

★ 축척이 1:5000인 지도에서 가로, 세로의 길이가 각각 3 cm, 6 cm인 직사각형 모양의 땅의 실제 넓이는 몇 m²인지 구하시오.

01 피타고라스 정리

5. 피타고라스 정리

 이 모른쪽 그림과 같은 직각삼

 각형 ABC에서 x의 값을

 구하시오.

Q4 오른쪽 그림과 같이 AB=AC=5 cm, BC=6 cm인 △ABC가 있다. 꼭짓점 A에서 BC에 내린 수선의 발을 H라할때, AH의 길이를 구하시오.

02 오른쪽 그림과 같은 $\triangle ABC$ 에서 $\overline{AH} \bot \overline{BC}$ 이 고 $\overline{AH} = 5$, $\overline{BH} = 6$, $\overline{CH} = 4$ 일 때, $\overline{AB}^2 - \overline{AC}^2$ 의 값은?

2 2032

0

3 24

05 오른쪽 그림과 같이 AB=3, BC=4인 직각삼 각형 ABC의 각 변을 한 변 으로 하는 세 정사각형을 그 렸을 때, □ACHI의 넓이 를 구하시오.

03 오른쪽 그림과 같이 AB=13 cm, AD=10 cm, BC=15 cm인 사다리꼴 ABCD의 둘레의 길이는?

- ① 50 cm
- ② 52 cm
- ③ 54 cm
- ④ 56 cm
- (5) 58 cm

O6 오른쪽 그림과 같은 정사각형
ABCD에서
AE=BF=CG=DH=3 cm,
AH=BE=CF=DG=5 cm
일 때, □EFGH의 넓이를 구하

소단원별 기출 **문제**

02 피타고라스 정리의 성질

소단원별 기출 문제

- - ① 3, 4, 6
- 2 4, 12, 13
- 36, 7, 9

- **4** 7, 8, 14
- **⑤** 8, 15, 17

- ①4 세 변의 길이가 각각 다음과 같이 주어졌을 때, 예각삼 각형인 것을 모두 고르면? (정답 2개)
 - ① 1 cm, 3 cm, 3 cm
 - ② 2 cm, 2 cm, 3 cm
 - ③ 2 cm, 4 cm, 5 cm
 - 4 5 cm, 6 cm, 7 cm
 - ⑤ 12 cm, 16 cm, 20 cm

- **①2** 세 변의 길이가 각각 7, 24, *a*인 삼각형이 직각삼각형 일 때, *a*의 값을 구하시오. (단, *a*>24)
- **05** 6 cm, 8 cm, *x* cm가 둔각삼각형의 세 변의 길이라 할 때, 다음 중 *x*의 값이 될 수 없는 것은?
 - ①3
- 25
- 3 6

- (4) 12
- (5)13

06 세 변의 길이가 각각 15, 8, *a*인 삼각형이 예각삼각형이 되도록하는 자연수 *a*의 값을 구하시오. (단, *a*>15)

03 피타고라스 정리의 활용

 \bigcirc 오른쪽 그림과 같이 $\angle B=90^\circ$ 인 직각삼각형 $\triangle B$ C에서 $\triangle B$ 2의 값을 구하시오.

 $egin{array}{ll} egin{array}{ll} 2 = 90^\circ \\ 0 & 2 + 2 + 3 + 3 \\ 0 & 2 + 4 + 3 \\ 0 & 3 + 4 \\ 0 & 3 + 4 \\ 0 & 4 + 3 \\ 0 & 4 + 4 \\ 0 & 4$

- $\bigcirc 16\pi \text{ cm}^2$
- ② $24\pi \text{ cm}^2$
- $40\pi \, \text{cm}^2$
- (5) $48\pi \text{ cm}^2$

 $32\pi \text{ cm}^2$

오른쪽 그림과 같이
 AC⊥BD인 □ABCD에서
 두대각선의 교점을 O라하자.
 AB=4, BC=7일 때,
 CD²-AD²의 값을 구하시오.

오른쪽 그림은 ∠A=90°인
 직각삼각형 ABC에서 AB,
 AC를 각각 지름으로 하는 두
 반원을 그린 것이다.

BC=16 cm일 때, 어두운 부분의 넓이를 구하시오.

03 오른쪽 그림과 같이 사각형 ABCD의 내부에 한 점 P가 있을 때, x^2-y^2 의 값은?

2 15

3 20

4 25

(5) 30

○6 오른쪽 그림은 ∠A=90°인 직각삼각형 ABC의 세 변 을 각각 지름으로 하는 세 반원을 그린 것이다.

 \overline{AB} =6, \overline{AC} =8일 때, 어두운 부분의 넓이는?

① 48

2 42

③ 36

4 30

(5)24

소단원별 기출 문제

소단원별 기출 **문제**

01 사건과 경우의 수

① 100원짜리 동전 5개, 500원짜리 동전 2개를 가지고 있다. 1000원짜리 과자를 한 봉지 사려고 할때, 지불하는 경우의 수를 구하시오.

05 다음 그림과 같이 세 지점 A, B, C가 연결되어 있을 때, A 지점에서 B 지점을 거쳐 C 지점으로 가는 방법의 수를 구하시오. (단, 한 번 지나간 지점은 다시 지나가지 않는다.)

- **①2** 1에서 20까지의 자연수가 각각 적힌 카드 20장이 있다. 이 중에서 한 장을 뽑을 때, 4의 배수 또는 10의 배수가 적힌 카드가 나오는 경우의 수는?
 - \bigcirc 2
- **②** 5
- **3** 6

- **4** 7
- **⑤** 8

- **06** 동전 1개와 서로 다른 주사위 2개를 동시에 던질 때, 일 어나는 모든 경우의 수는?
 - ① 24 ④ 64
- 2 36
- 352

- **⑤** 72

- **03** 서로 다른 두 개의 주사위를 동시에 던질 때, 두 눈의 수의 차가 2 또는 3이 되는 경우의 수는?
 - 1)6
- 28
- 3 10

- **4** 12
- **⑤** 14

- ○4 송편을 만들기 위해 3종류의 반죽과 5종류의 소를 준비하였다. 이때 반죽과 소를 각각 한 개씩 골라 송편을 만드는 경우의 수를 구하시오.
- **07** 로아, 준효, 서현 세 사람이 가위바위보를 할 때, 일어 나는 모든 경우의 수를 구하시오.

02 여러 가지 경우의 수

- **()** A, B, C, D, E 5명을 한 줄로 세울 때, A와 D가 양 끝에 서는 경우의 수는?
 - ①6
- ② 12
- ③ 24

- **4** 36
- **(5)** 48

- 05 수연, 태우, 현아, 보라 4명의 친구들이 한 사람도 빠짐 없이 서로 한 번씩 팔씨름을 하려고 할 때, 치러야 할 경기의 수는?
 - 1 4
- **2** 6
- **3** 8

- **4** 10
- **(5)** 12

- **02** 0, 1, 2, 3, 4, 5의 숫자가 각각 적힌 6장의 카드 중에서 2장을 뽑아 만들 수 있는 두 자리의 자연수의 개수는?
 - 1 10
- **②** 15
- ③ 20

- **4** 25
- **(5)** 30

○6 오른쪽 그림과 같이 반원 위에 4개의 점이 있다. 이 중에서 서로 다른 세점을 이어 만들수 있는 삼각형의 개수를 구하시오.

1, 2, 3, 4, 5의 숫자가 각각 적힌 5장의 카드 중에서 2장을 뽑아 두 자리의 자연수를 만들 때, 25보다 큰 자 연수의 개수를 구하시오.

- ○4 A, B, C, D, E 5명의 후보 중에서 학급 임원을 뽑으려고 한다. 다음을 구하시오.
 - (1) 회장 1명, 부회장 1명을 뽑는 경우의 수
 - (2) 회장 1명, 부회장 2명을 뽑는 경우의 수
 - (3) 임원 3명을 뽑는 경우의 수

07 오른쪽 그림의 A, B, C, D, E 다섯 부분에 빨강, 주황, 노 랑, 초록, 파랑의 5가지 색을 이용하여 칠하려고 한다. 서로 다른 색을 칠하려고 할 때,

칠할 수 있는 모든 경우의 수를 구하시오.

소단원별 기출 문제

소단원별 기출 **문제**

01 확률의 뜻과 성질

↑ 하진이네 학교에서는 신입생 300명을 대상으로 선호 하는 아이스크림 종류를 조사하여 다음 표와 같은 결 과를 얻었다. 이 학교 신입생 중 임의로 한 명을 선택할 때, 초콜릿 맛 아이스크림을 선호하는 학생일 확률을 구하시오.

종류	딸기 맛	바닐라 맛	초콜릿 맛	녹차 맛
학생 수 (명)	135	50	72	43

↑ 조업생 5명과 재학생 6명으로 구성된 농촌봉사대를 만 들었다. 조장과 부조장을 모두 재학생으로 뽑을 확률 을 구하시오

○2 오른쪽은 어느 반 학생 20명의 음악 실기 점수 를 조사하여 나타낸 도 수분포표이다. 이 학생 들 중에서 임의로 한

명을 선택할 때, 그 학

	=1.11 A /DJ\
음악 실기 점수 (점)	학생 수 (명)
60 ^{이상} ~ 70 ^{미만}	2
70 ~ 80	6
80 ~ 90	8
90 ~ 100	4
합계	20

생의 음악 실기 점수가 80점 미만일 확률을 구하시오

 \bigcirc 5 사건 A가 일어날 확률을 p라 할 때, 다음 중 옳지 않은

①
$$p = \frac{(사건 A)^2}{(모든 경우의 수)}$$

- ② 0
- ③ (사건 A가 일어나지 않을 확률)=1-p
- ④ (반드시 일어나는 사건의 확률)=1
- ⑤ (절대로 일어나지 않는 사건의 확률)=0

 서로 다른 두 개의 주사위를 동시에 던질 때, 두 눈의 수의 합이 3이 아닐 확률을 구하시오.

1 0, 1, 2, 3, 4, 5의 숫자가 각각 적힌 6장의 카드에서 임 의로 2장을 뽑아 두 자리의 자연수를 만들 때. 그 수가 30 이하일 확률은?

- $2\frac{11}{25}$
 - $3\frac{12}{25}$
- $4\frac{13}{25}$
- $\bigcirc \frac{14}{25}$

- 7 서로 다른 두 개의 주사위를 동시에 던질 때, 적어도 하 나는 2의 배수의 눈이 나올 확률은?
 - ① $\frac{5}{18}$ ② $\frac{1}{3}$

- $4\frac{5}{9}$
- $\bigcirc \frac{3}{4}$

- ↑ 기 각 면에 1에서 20까지의 숫자가 적힌 정이십면체 모양 의 주사위를 던질 때, 윗면에 나오는 눈의 수가 4의 배 수 또는 9의 배수일 확률은?

 - $\bigcirc \frac{3}{10}$ $\bigcirc \frac{7}{20}$ $\bigcirc \frac{2}{5}$
 - $4\frac{9}{20}$ $5\frac{1}{2}$

02 서로 다른 두 개의 주사위를 동시에 던질 때, 두 눈의 수의 곱이 짝수가 될 확률을 구하시오.

- **13** 명중률이 90 %인 사격 선수가 두 번 사격을 할 때, 두 번 모두 명중시킬 확률은?

- $4\frac{39}{50}$ $5\frac{81}{100}$

△ 제현, 규현, 민호 세 사람이 풍선 터트리기 게임을 하는 데 명중률이 각각 $\frac{1}{2}$, $\frac{1}{3}$, $\frac{2}{3}$ 이다. 이 세 사람이 동시에 한 풍선을 향하여 활을 쏘았을 때, 풍선이 터질 확률을 구하시오

- 05 지유와 민수가 야구 게임에서 공을 맞출 확률이 각각 $\frac{1}{3}$, $\frac{3}{4}$ 일 때, 두 사람 중 한 사람만 공을 맞출 확률은?

- $4\frac{2}{3}$ $5\frac{3}{4}$

16 주머니 속에 흰 공 3개와 노란 공 5개가 들어 있다. 이 주머니에서 공 1개를 임의로 꺼내 확인하고 다시 넣은 후 1개를 임의로 꺼낼 때, 2개 모두 노란 공일 확률을 구하시오

7 주머니 속에 파란 공 5개, 초록 공 4개, 노란 공 6개가 들어 있다. 이 주머니에서 연속하여 3개의 공을 임의 로 꺼낼 때, 첫 번째와 두 번째는 노란 공이 나오고, 세 번째는 초록 공이 나올 확률은?

(단. 꺼낸 공은 다시 넣지 않는다.)

- $4\frac{4}{15}$ $5\frac{8}{15}$

CHECK CHECK

수준별 자료집 (중)

중단원 테스트

24
28
32
34
38
42
46

 \bigcirc 오른쪽 그림과 같이 $\overline{AB} = \overline{AC}$ 인 이등변삼각형 ABC에서 BC=BD이고 ∠BDA=110°일 때, $\angle x$ 의 크기는?

 $\bigcirc 20^{\circ}$

 $(2)25^{\circ}$

호

 30°

 $(4)35^{\circ}$

 $(5)40^{\circ}$

02 오른쪽 그림과 같이 $\overline{AB} = \overline{AC}$ 인 이등변삼각형 ABC에서 $\overline{DA} = \overline{DB} = \overline{BC}$ 일 때, $\angle x$ 의 크기를 구하시 오.

미3 다음은 「△ABC에서 ∠B=∠C이면 AB=AC이다.」 를 설명한 것이다. □ 안에 알맞은 것을 써넣으시오.

△ 오른쪽 그림과 같이 ∠B=∠C 이고 \overline{AB} =10인 △ABC의 \overline{BC} 위의 점 P에서 \overline{AB} , \overline{AC} 에 내린 수선의 발을 각각 D, E라 하자. △ABC의 넓이가 40일 때.

①8

29 (5)12 ③ 10

(4) 11

PD+PE의 값은?

1 다음 〈보기〉 중 서로 합동인 직각삼각형끼리 기호를 사용하여 나타내시오.

○6 오른쪽 그림에서 △ABC는 ∠A=90°이고 \overline{AB} = \overline{AC} 인 직 각이등변삼각형이다 $\overline{AB} = \overline{BD}$ 이고 $\overline{ED} \perp \overline{BC}$ 일 때, $\angle x$ 의 크기를 구하시오.

07 오른쪽 그림과 같이 $\overline{AB} = \overline{AC}$ 인 직각이등변 삼각형 ABC의 꼭짓점 B, C에서 꼭짓점 A를 지나는 직선 l에 내린 수선

의 발을 각각 D, E라 하자. $\overline{\rm BD}=6~{\rm cm},$ $\overline{\rm DE}=10~{\rm cm}$ 일 때, $\overline{\rm CE}$ 의 길이를 구하시오.

○8 오른쪽 그림에서 점 O가△ABC의 외심일 때, ∠x의크기는?

- 235°
- 340°
- 45°
- $\bigcirc 50^{\circ}$

09 오른쪽 그림과 같이 ∠C=90°인 직각삼각형 ABC에서 AB의 중 점을 M이라 하자. ∠B=52°일 때, ∠x의 크기는?

- $\bigcirc{2}102^{\circ}$
- 3 104°
- 40106°
- ⑤ 110°

10 오른쪽 그림에서 점 ○는△ABC의 외심일 때,△ABC의 둘레의 길이를 구하시오.

- - ① 20°
- $(2)25^{\circ}$
- 30°
- 435°
- ⑤ 40°

- **12** 오른쪽 그림에서 점 I는 △ABC 의 내심일 때, ∠x의 크기는?
 - $\textcircled{1} 48^\circ$
- \bigcirc 52°
- 356°
- 4 60°
- $\bigcirc 564^{\circ}$

13 오른쪽 그림에서 점 I는
△ABC의 내심이다.
DE // BC이고 AB=18 cm,
AC=14 cm일 때, △ADE
의 둘레의 길이는?

- ① 26 cm
- ② 28 cm
- ④ 32 cm
- ⑤ 34 cm
- ③ 30 cm

14 오른쪽 그림에서 점 O와 점 I는 각각 △ABC의 외심, 내심이다. ∠BOC=96°일 때, ∠y-∠x의 값을 구하시오.

1. 삼각형의 성질

이름

| 점수

다음은 「이등변삼각형의 꼭지각의 이등분선은 밑변을 수직이등분한다.」를 설명한 것이다. 안에 들어갈 내용으로 옳지 않은 것은?

△ABD와 △ACD에서

 $\overline{AB} = \overline{AC}$

.....(¬)

① 는 공통

····· ①

 $\angle BAD = \boxed{2}$

····· (E)

(기, L), E)에서

 $\triangle ABD \equiv \triangle ACD$ (③ 합동)이므로

 $\overline{\mathrm{BD}} = \boxed{4}$

또 ∠ADB=∠ADC이고

∠ADB+∠ADC=180°이므로

 $\angle ADB = \angle ADC = \boxed{5}$

 $\therefore \overline{AD} \perp \overline{BC}$

 $\widehat{\text{1}}$ $\overline{\text{AD}}$

② ∠CAD

③ ASA

4 $\overline{\text{CD}}$

 $(5)90^{\circ}$

2 오른쪽 그림과 같이 폭이 일 정한 종이테이프를 접었을 때, ∠ x의 크기를 구하시오.

○ 오른쪽 그림과 같이 $\overline{AB} = \overline{AC}$ 인 이등변삼각형 ABC에서 ∠B의 이등분선과 ∠C의 외각의 이등분선의 교 점을 D라 하자. ∠A=32°일 때. ∠BDC의 크기는?

- ① 12°
- $\bigcirc 14^{\circ}$
- 316°

- (4) 18°
- $(5)20^{\circ}$

이등분선 위의 한 점 P에서 \overline{OA} , \overline{OB} 에 내린 수선의 발을 각 각 C, D라 할 때, 다음 중 옳지 않은 것은?

△ 오른쪽 그림과 같이 ∠AOB의

- \bigcirc \bigcirc OPC= \angle OPD
- \bigcirc \triangle COP= \triangle DOP
- $\Im \overline{PC} = \overline{PD}$
- \bigcirc \triangle COP \equiv \triangle DOP
- $\bigcirc \overline{OC} = \overline{OP} = \overline{OD}$

○5 오른쪽 그림과 같이 ∠B=90° 인 직각삼각형 $\overline{\mathrm{ABC}}$ 에서 $\overline{\mathrm{AD}}$ 는 ∠A의 이등분선이다. $\overline{AC} = 40 \, \text{cm}, \, \overline{BD} = 12 \, \text{cm}$ 일 때. △ADC의 넓이는?

- $\bigcirc{1}220~\text{cm}^2$
- (2) 240 cm²
- 4 280 cm²
- $(5) 300 \text{ cm}^2$
- 3260 cm^2

- □6 다음 중 삼각형의 내심과 외심에 대한 설명으로 옳지 않은 것은?
 - ① 외심으로부터 세 꼭짓점에 이르는 거리는 같다.
 - ② 외심은 항상 삼각형의 외부에 있다.
 - ③ 내심과 외심이 항상 일치하는 삼각형은 정삼각형이 다
 - ④ 내심은 세 내각의 이등분선의 교점이다.
 - ⑤ 내심으로부터 세 변에 이르는 거리는 같다.

- **7** 오른쪽그림에서 점O는 △ABC 의 외심일 때, $\angle x$ 의 크기는?
 - $(1)20^{\circ}$
- $(2)30^{\circ}$
- 340°
- (4) 50°
- $\bigcirc 50^{\circ}$

○8 오른쪽 그림과 같은 △ABC 에서 \overline{BC} 위의 한 점 M에 대 하여 $\overline{AM} = \overline{BM} = \overline{CM}$ 일 때, ∠BAC의 크기는?

- $\bigcirc 10^{\circ}$
- 275°
- $(4)85^{\circ}$
- $(5)90^{\circ}$
- - 380°

9 오른쪽그림과같이∠A=90° 인 직각삼각형 ABC에서 \overline{BC} 의 중점을 M이라 하자. ∠ABC=34°일 때, ∠*x*의크 기는?

- $(1)68^{\circ}$
- $(2)70^{\circ}$
- $(3)72^{\circ}$

- $\bigcirc 4$ 74°
- (5)76

1 오른쪽 그림에서 점 I는 △ABC 의 내심이다. ∠A=60°일 때, ∠BIC의 크기를 구하시오.

집 고른쪽 그림에서 점 I는 △ABC의 내심일 때, ∠A 의 크기는?

- 260°
- $(3)65^{\circ}$
- $(4)70^{\circ}$
- $\bigcirc 75^{\circ}$

12 오른쪽 그림에서 점 I는 △ABC의 내심이고 세 점 D, E, F는 각각 접점이다. $\overline{AB}=5$, $\overline{BC}=8$, $\overline{AC}=7$ 일 때, x의 값을 구하시오.

13 오른쪽 그림에서 점 I는 △ABC의 내심이다. $\overline{AB} = 12 \text{ cm}$. $\overline{BC} = 15 \text{ cm}, \overline{AC} = 9 \text{ cm}$ 이고 △ABC의 넓이가

14 오른쪽 그림에서 △ABC는 ∠C=90°인 직각삼각형이고, 두 점 O, I는 각각 직각삼각형 ABC의 외심, 내심이다. $\overline{AB} = 10 \text{ cm}, \overline{BC} = 6 \text{ cm},$

AC=8 cm일 때, △ABC의 외

접원과 내접원의 반지름의 길이의 합을 구하시오.

54 cm²일 때, 내접원의 반지름의 길이를 구하시오.

중단원 테스트

호

2. 사각형의 성질

| 점수

○ 오른쪽 그림과 같은 평행사 변형 ABCD에서 $\angle x + \angle y$ 의 값은? (단, 점 O는 두 대 각선의 교점)

 $(3)90^{\circ}$

- $(1)80^{\circ}$
- $(2)85^{\circ}$
- (4) 95°
- $(5)100^{\circ}$

○ 오른쪽 그림과 같은 평행사 변형 ABCD에서 $\overline{AB} / / \overline{GH} / / \overline{DC}$. AD // EF // BC일 때, 다음 중 옳은 것은?

- \bigcirc $\angle x = 120^{\circ}$
 - $2 \angle y = 60^{\circ}$
- ③ a = 3

- (4) b = 6
- $\bigcirc c = 4$

○3 오른쪽 그림과 같은 평행사 변형 ABCD에서 ∠B의 이 등분선이 CD의 연장선과 만나는 점을 E라 할 때, DE의 길이를 구하시오.

■ 오른쪽 그림과 같은 평행사 변형 $ABCD에서 \overline{DC}$ 의 중 점을 E, \overline{AE} 의 연장선이 BC의 연장선과 만나는 점 을 F라 할 때, 다음 중 옳지 않은 것은?

- \bigcirc $\overline{AD} = \overline{CF}$
- ② $\overline{BC} = \overline{CF}$
- $\Im \overline{AB} = \overline{BF}$
- $\bigcirc \overline{AE} = \overline{EF}$
- \bigcirc \triangle AED \equiv \triangle FEC

○5 오른쪽 그림과 같은 평행사 변형 ABCD의 내부에 한 점 P를 잡았다.

 $\triangle PAD = 17 \text{ cm}^2$,

△PBC=13 cm², △PCD=18 cm²일 때, △PAB 의 넓이를 구하시오.

다음 사각형 중 평행사변형이 아닌 것은?

(단, 점 O는 두 대각선의 교점)

7 오른쪽 그림과 같은 직사각형 ABCD에서 $\angle x$, $\angle y$ 의 크기 를 각각 구하시오.

8 다음 중 오른쪽 그림의 평행사 변형 ABCD가 직사각형이 되기 위한 조건이 아닌 것은? (단, 점 O는 두 대각선의 교점)

- \bigcirc $\overline{AC} = \overline{BD}$
- \bigcirc \angle A=90°
- $\Im \angle A = \angle B$
- $\textcircled{4} \angle AOD = 90^{\circ}$
- $\bigcirc \overline{OA} = \overline{OB}$

09 다음 중 오른쪽 그림의 평행 사변형 ABCD가 마름모가 되기 위한 조건을 모두 고르 면? (단, 점 O는 두 대각선 의 교점) (정답 2개)

- ① $\overline{\mathrm{AD}}$ =6 cm
- \bigcirc \angle A=90°
- ③ ∠AOB=90°
- \bigcirc $\overline{AC} = 6 \text{ cm}$
- \bigcirc \overline{AD} =8 cm

10 오른쪽 그림과 같은 직사각형 ABCD에서 대각선 AC의 수 직이등분선이 AD, BC와 만나는 점을 각각 E, F라 하자. AE=6 cm일 때, AF의 길이를 구하시오.

기 오른쪽 그림과 같은 정사각형 ABCD에서 BE=CF이고 ∠AEC=110°일 때, ∠FBC 의 크기는?

- ① 15°
- $(2)20^{\circ}$
- $(3)25^{\circ}$
- (4) 30°
- $(5)35^{\circ}$
- 12 오른쪽 그림과 같은 평행사변형 ABCD에서 $\overline{AD}=2\overline{AB}$ 이다. \overline{CD} 의 연장선 위에 $\overline{EC}=\overline{CD}=\overline{DF}$ 가 되도록 두 점 E, F를 잡고 \overline{AE} 와 \overline{BF} 의 교 점을 P라 할 때, $\angle x+\angle y$ 의 값을 구하시오.

13 오른쪽 그림과 같이 $\overline{AD}/\!\!/\overline{BC}$ 인 등변사다리꼴 \overline{ABCD} 에서 \overline{AB} =7 cm, \overline{AD} =5 cm이고

 $\angle A = 120^{\circ}$ 일 때, \overline{BC} 의 길이를 구하시오.

14 오른쪽 그림과 같이 $\overline{AD}/\!\!/\overline{BC}$ 인 등변사다리꼴 \overline{ABCDM} 에서 $\overline{AB}=\overline{AD}=\overline{DC}$ 이고 $\angle DBC=36^\circ$ 일 때, $\angle x$ 의 크기를 구하시오.

15 오른쪽 그림에서 AC // DE이 고 △ABC의 넓이가 23 cm², □ABCD의 넓이가 32 cm² 일 때, △ACE의 넓이를 구하시오.

16 오른쪽 그림과 같이 AD//BC인사다라꼴 ABCD에서 AO: OC=2: 3이고 △OBC=24 cm²일 때, △DBC의 넓이는?

- $\bigcirc 36 \text{ cm}^2$
- ② 38 cm^2
- 42 cm^2
- (5) 44 cm²
- $3 40 \text{ cm}^2$

중단원 테스트

2. 사각형의 성질

| 점수

○ 오른쪽 그림과 같은 평행 사변형 ABCD에서 ∠A 의 이등분선이 \overline{BC} 와 만 나는 점을 E라 하자.

 \overline{AB} =10 cm, \overline{AD} =16 cm일 때, \overline{CE} 의 길이를 구하 시오.

12 오른쪽 그림과 같은 평행사 변형 ABCD에서

> ∠A: ∠B=2:3일 때, ∠C의 크기는?

- $\bigcirc 1066^{\circ}$
- $(2)68^{\circ}$
- $(3)70^{\circ}$

- $(4)72^{\circ}$
- $(5)74^{\circ}$

3 오른쪽 그림과 같은 평행사변 형 ABCD에서 ∠A의 이등 분선이 BC와 만나는 점을 E, ∠B의 이등분선이 AD와 만나는 점을 F라 하자.

∠BFD=140°일 때, ∠AEC의 크기를 구하시오.

16 오른쪽 그림과 같은 평행사 변형 ABCD에서 ∠x의 크 기를 구하시오. (단, 점 O는 두 대각선의 교점)

○7 오른쪽 그림과 같은 평행사 변형 ABCD에서 $\overline{AD} = 2\overline{AB}$ 이고. \overline{CD} 의 연 장선 위에 $\overline{EC} = \overline{CD} = \overline{DF}$ 가 되도록 두 점 E, F를 잡았 다. 다음 중 옳지 않은 것은?

- \bigcirc \triangle BPG=90°
- $\bigcirc \overline{AH} = \frac{1}{2}\overline{AD}$
- \bigcirc \triangle ABH \equiv \triangle DFH
- $\textcircled{4}\overline{AP} = \overline{PG}, \overline{BP} = \overline{PH}$
- ⑤ □ABGH는 정사각형이다.

- **△** 다음 중 □ABCD가 평행사변형이 아닌 것은?

 - ② $\angle A = 100^{\circ}$, $\angle B = 80^{\circ}$, $\angle C = 100^{\circ}$
 - $\Im \overline{AB} / \overline{DC}$, $\overline{AB} = 5$ cm, $\overline{DC} = 5$ cm
 - $4 \angle A = 70^{\circ}, \angle B = 110^{\circ}, \overline{AD} = 3 \text{ cm}, \overline{BC} = 3 \text{ cm}$
 - \bigcirc $\overline{AB} = 3 \text{ cm}, \overline{BC} = 3 \text{ cm}, \overline{CD} = 5 \text{ cm}, \overline{DA} = 5 \text{ cm}$
- **□ ABCD는** 어떤 사각형 다음 조건을 모두 만족하는 □ABCD는 어떤 사각형 인가?

(7) $\overline{AB}/\!\!/\overline{CD}$

(L)) $\overline{AD} / / \overline{BC}$

 $(\Box) \overline{AB} = \overline{AD}$

(라) $\angle A = 90^{\circ}$

- ① 평행사변형 ② 마름모
- ③ 직사각형
- ④ 정사각형
- ⑤ 등변사다리꼴

 $\bigcirc \mathbf{9}$ 오른쪽 그림과 같이 $\overline{\mathrm{AC}} \perp \overline{\mathrm{BD}}$ 이고, 한 대각선의 길이가 8 cm 인 □ABCD의 넓이는? (단, 점 O는 두 대각선의 교점)

- $\bigcirc 12 \text{ cm}^2$
- $(2) 16 \text{ cm}^2$
- 32 cm^2
- (4) 48 cm²
- $(5) 64 \text{ cm}^2$

1 오른쪽 그림과 같이 $\overline{\mathrm{AD}}/\!\!/\overline{\mathrm{BC}}$ 인 등변사다리꼴

ABCD에서 AB=14 cm, \overline{AD} =10 cm, $\angle A$ =120° 일 때, \overline{BC} 의 길이를 구하시오.

오른쪽 그림과 같이 $\overline{\mathrm{AD}}/\!\!/\overline{\mathrm{BC}}$ 인 등변사다리꼴 ABCD의 한 점 A에서 \overline{BC} 에 내린 수선의 발을 H라 하자. \overline{AD} =4 cm, $\overline{AH} = 6 \text{ cm}, \overline{BH} = 2 \text{ cm}$ 일때, □ABCD의 넓이를 구하시오.

- **12** 다음 중 옳지 않은 것은?
 - ① 등변사다리꼴의 두 대각선의 길이는 서로 같다.
 - ② 마름모는 평행사변형이다.
 - ③ 한 내각의 크기가 90°인 평행사변형은 정사각형이 다
 - ④ 직사각형의 두 대각선의 길이는 같다.
 - ⑤ 직사각형의 각 변의 중점을 연결하여 만든 사각형 은 마름모이다.

13 오른쪽 그림과 같은 평행사 변형 ABCD의 넓이가 80 cm²일 때, 어두운 부분의 넓이를 구하시오. (단, 점 O 는 두 대각선의 교점)

1 오른쪽 그림과 같은 △ABC 에서 점 M은 \overline{BC} 의 중점이 다. \overline{AP} : \overline{PM} =4:1이고 △ABC의 넓이가 20일 때. △PMC의 넓이를 구하시오.

15 오른쪽 그림과 같은 평행사 변형 ABCD에서 \overline{BD} // \overline{EF} 일 때, 다음 중 넓이가 나머 지 넷과 다른 하나는?

- \bigcirc \triangle ABE
- ② △BFD
- ④ △DBE
- ⑤ △ECD
- \bigcirc \triangle AFD

16 오른쪽 그림과 같이 $\overline{AD}/\overline{BC}$ 인 사다리꼴 ABCD에서

 $\triangle DOC = 15 \text{ cm}^2$ 일 때,

- △OBC의 넓이는? (단, 점 O는 두 대각선의 교점)
- $(1) 15 \text{ cm}^2$
- 20 cm^2
- 325 cm^2

- $40 30 \text{ cm}^2$
- (5) 35 cm²

○ 다음 중 닮은 도형에 대한 설명으로 옳지 않은 것은?

호

- ① 닮음인 두 도형의 대응각의 크기는 서로 같다.
- ② 닮은 도형에서 닮음비란 대응변의 길이의 비이다.
- ③ 서로 합동인 두 도형은 닮은 도형이며 닮음비는 1:1이다.
- ④ 항상 닮음인 두 평면도형은 원, 이등변삼각형, 정사 각형 등이 있다.
- ⑤ 한 도형을 일정한 비율로 확대 또는 축소하면 이 두 도형은 서로 닮음인 관계에 있다고 한다.

- **14** 오른쪽 그림에서 $\overline{\text{CD}}$ 의 길 이는?
 - (1) 9 cm
- ② 10 cm
- ③ 11 cm
- (4) 12 cm
- (5) 13 cm

- 05 오른쪽 그림에서 다음 중 나머 지 네 삼각형과 닮은 삼각형이 아닌 것은?
 - \bigcirc \triangle ADE \bigcirc \triangle FCE
 - \bigcirc \triangle ACB \bigcirc \bigcirc \triangle FDB
 - \bigcirc \triangle BEC

1 아래 그림에서 △ABC∞ △DEF일 때, 다음을 구하 시오.

- (1) DE의 길이
- (2) ∠E의 크기

○6 오른쪽 그림과 같이 ∠A=90°인 직각삼각형 $ABC에서 \overline{AH} \bot \overline{BC}$ 이고 \overline{BH} =9, \overline{CH} =3일 때, x의 값을 구하시오.

○3 오른쪽 그림과 같은 △ABC 에서 ∠ACD=∠ABC이고 $\overline{AC}=4$, $\overline{AD}=2$ 일 때, x의 값을 구하시오.

○7 오른쪽 그림과 같이 정삼각형 ABC의 꼭짓점 A가 \overline{BC} 위의 점 E에 오도록 접었을 때, x의 값을 구하시오.

- 다음 중 항상 닮은 도형이 아닌 것은?
 - ① 두 정삼각형
- ② 두 원
- ③ 두 원기둥
- ④ 두 정사면체
- ⑤ 중심각의 크기가 같은 두 부채꼴
- 다음 그림의 두 직육면체는 서로 닮은 도형이다. $\square ABCD \square A'B'C'D'$ 일 때, x+y의 값은?

- ①6
- 37

- $4\frac{22}{3}$
- (5)8

○3 오른쪽 그림과 같은 △ABC 에서∠ADC=∠BEC=90° 이다. $\overline{AC} = 16 \text{ cm}$. BC=20 cm일 때,

 $\overline{AD}: \overline{BE} = ?$

- $\widehat{1}$ 2:3
- ② 3:4
- (4) 4:5
- ⑤ 5:4

(3)4:3

∩⊿ 오른쪽 그림과 같은 \triangle ABC에서 x의 값을 구하시오.

- 05 오른쪽 그림에서 $\overline{AD}/\overline{BC}$, $\overline{AB}//\overline{DE}$ 일 때, x의 값은?
 - $\bigcirc 1$
- \bigcirc 7
- 3 8
- (4)9
- ⑤ 10
- **16** 오른쪽 그림과 같은 직사각 형 ABCD에서 $\overline{AB} = 6 \text{ cm}$. \overline{AD} =8 cm, \overline{BD} =10 cm 이고 $\overline{AH} \perp \overline{BD}$ 일 때, △ABH의 넓이를 구하시오.

7 오른쪽 그림과 같은 직사각 형 $ABCD에서 점 E는 \overline{BC}$ 의 중점이고 점 F는 \overline{AE} 와 BD의 교점이다.

> \overline{AD} =12 cm, \overline{BD} =15 cm 일 때, *x*의 값을 구하시오.

○8 오른쪽 그림은 직사각형 ABCD를 점 B가 점 B'에 오도록 대각선 AC를 접은 것이다. $\overline{CB'}$ 과 \overline{AD} 의 교점 을 P라 할 때, △ACP의 넓이는?

- $\bigcirc \frac{65}{4} \text{ cm}^2$ $\bigcirc \frac{75}{4} \text{ cm}^2$
- $3 20 \text{ cm}^2$
- $4\frac{102}{5}$ cm² 525 cm²

중단원 테스트

호

4. 닮음의 응용

이름

| 점수

 \bigcirc 기 오른쪽 그림에서 $\overline{BC}/\!\!/\overline{DE}$ 일 때, x의 값을 구하시오.

○5 오른쪽 그림의 △ABC 에서 ĀD가 ∠A의 이등 분선일 때, *x*의 값을 구하시오.

02 오른쪽 그림에서 \overline{BC} $/\!/ \overline{DE}$ 일 때, \overline{BD} 의 길이는?

① 10

2 11

3 12

(4) 13

 \bigcirc 14

06 오른쪽그림에서 p//q//r//s 일 때, x, y의 값을 각각 구하시오.

 Q
 오른쪽 그림의 △ABC에서 AE=EF=FC, BD=DC 이다. AD와 BE의 교점을 이다. AD와 PE=2 cm일 때, BP의 길이를 구하시오.

07 오른쪽 그림과 같이 $\overline{AD}/\overline{BC}$ 인 사다리꼴 ABCD에서 \overline{AB} , \overline{DC} 의 중점을 각각 M, N이라 할 때, \overline{MN} 의 길이를 구하시오.

 Q4
 오른쪽 그림의 □ABCD에서 AB, BC, CD, DA의 중점을 각각 P, Q, R, S라 할 때, □PQRS의 둘레의 길이를 구하시오.

 $egin{array}{ll} egin{array}{ll} $Q = $\mathbb{Q} & \mathbb{Q} & \mathbb{Q} \\ & \mathbb{Q} & \mathbb{Q} & \mathbb{Q} & \mathbb{Q} \\ & \mathbb{Q} & \mathbb{Q} & \mathbb{Q} & \mathbb{Q} \\ & \mathbb{Q} & \mathbb{Q} & \mathbb{Q} & \mathbb{Q} \\ & \mathbb{Q} & \mathbb{Q} & \mathbb{Q} & \mathbb{Q} \\ & \mathbb{Q} & \mathbb{Q} & \mathbb{Q} & \mathbb{Q} \\ & \mathbb{Q} & \mathbb{Q} & \mathbb{Q} & \mathbb{Q} \\ & \mathbb{Q} & \mathbb{Q} & \mathbb{Q} & \mathbb{Q} \\ & \mathbb{Q} & \mathbb{Q} & \mathbb{Q} & \mathbb{Q} \\ & \mathbb{Q} & \mathbb{Q} & \mathbb{Q} & \mathbb{Q} \\ & \mathbb{Q} & \mathbb{Q} & \mathbb{Q} & \mathbb{Q} \\ & \mathbb{Q} & \mathbb{Q} & \mathbb{Q} & \mathbb{Q} \\ & \mathbb{Q} & \mathbb{Q} & \mathbb{Q} & \mathbb{Q} \\ & \mathbb{Q} & \mathbb{Q} & \mathbb{Q} & \mathbb{Q} \\ & \mathbb{Q} & \mathbb{Q} & \mathbb{Q} & \mathbb{Q} \\ & \mathbb{Q} & \mathbb{Q} & \mathbb{Q} & \mathbb{Q} \\ & \mathbb{Q} & \mathbb{Q} & \mathbb{Q} & \mathbb{Q} \\ & \mathbb{Q} & \mathbb{Q} & \mathbb{Q} & \mathbb{Q} & \mathbb{Q} \\ & \mathbb{Q} & \mathbb{Q} & \mathbb{Q} & \mathbb{Q} & \mathbb{Q} \\ & \mathbb{Q} & \mathbb{Q} & \mathbb{Q} & \mathbb{Q} & \mathbb{Q} \\ & \mathbb{Q} & \mathbb{Q} & \mathbb{Q} & \mathbb{Q} & \mathbb{Q} \\ & \mathbb{Q} & \mathbb{Q} & \mathbb{Q} & \mathbb{Q} & \mathbb{Q} \\ & \mathbb{Q} & \mathbb{Q} & \mathbb{Q} & \mathbb{Q} & \mathbb{Q} \\ & \mathbb{Q} & \mathbb{Q} & \mathbb{Q} & \mathbb{Q} & \mathbb{Q} \\ & \mathbb{Q} & \mathbb{Q} & \mathbb{Q} & \mathbb{Q} & \mathbb{Q} \\ & \mathbb{Q} & \mathbb{Q} & \mathbb{Q} & \mathbb{Q} & \mathbb{Q} \\ & \mathbb{Q} & \mathbb{Q} & \mathbb{Q} & \mathbb{Q} & \mathbb{Q} \\ & \mathbb{Q} & \mathbb{Q} & \mathbb{Q} & \mathbb{Q} & \mathbb{Q} \\ & \mathbb{Q} & \mathbb{Q} & \mathbb{Q} & \mathbb{Q} & \mathbb{Q} \\ & \mathbb{Q} & \mathbb{Q} & \mathbb{Q} & \mathbb{Q} & \mathbb{Q} \\ & \mathbb{Q} & \mathbb{Q} & \mathbb{Q} & \mathbb{Q} & \mathbb{Q} \\ & \mathbb{Q} & \mathbb{Q} & \mathbb{Q} & \mathbb{Q} \\ & \mathbb{Q} & \mathbb{Q} & \mathbb{Q} & \mathbb{Q} & \mathbb{Q} \\ & \mathbb{Q} & \mathbb{Q} & \mathbb{Q} \\ & \mathbb{Q} & \mathbb{Q} & \mathbb{Q} & \mathbb{Q} \\ & \mathbb{Q} & \mathbb{Q} & \mathbb{Q} & \mathbb{Q} \\ & \mathbb{Q} & \mathbb{Q} & \mathbb{Q} & \mathbb{Q} \\ & \mathbb{Q} & \mathbb{Q} & \mathbb{Q} & \mathbb{Q} \\ & \mathbb{Q} & \mathbb{Q} & \mathbb{Q} & \mathbb{Q} \\ & \mathbb{Q} & \mathbb{Q} & \mathbb{Q} & \mathbb{Q} \\ & \mathbb{Q} & \mathbb{Q} & \mathbb{Q} & \mathbb{Q} \\ & \mathbb{Q} & \mathbb{Q} & \mathbb{Q} & \mathbb$

② 10 cm

④ 14 cm

⑤ 16 cm

③ 12 cm

○ 오른쪽 그림에서 $\overline{AB} / \overline{PQ} / \overline{DC}$ 일 때. DC의 길이는?

- ① 3.5 cm
- ② 4.5 cm
- ③ 5.5 cm
- 4 6.5 cm
- ⑤ 7.5 cm
- 은 각각 △ABC, △GBC의 무게중심이다. \overline{AD} =18 cm 일 때, $\overline{GG'}$ 의 길이를 구하시 오.

 \overline{AB} , \overline{AB} , \overline{PH} , \overline{DC} 는 모두 \overline{BC} 에 수직이 다. $\overline{AB} = 4$ cm, $\overline{DC} = 6 \text{ cm}, \overline{BC} = 8 \text{ cm}$ 때, △PBC의 넓이를 구하 시오.

14 오른쪽 그림에서 점 G는 △ABC의 무게중심이다. GE=EC이고 △ABC의 넓 이가 48 cm²일 때, △GDE 의 넓이를 구하시오.

13 오른쪽 그림에서 두 점 G, G'

 \triangle ABC의 무게중심일 때, x의 값은?

(2) 8.5

39

4 9.5

(5)10

 $\overline{15}$ 오른쪽 그림에서 \overline{BC} $//\overline{ED}$ 이고, \overline{AD} : \overline{AB} =3:4이다. $\triangle ABC$ 의 넓이가 32 cm²일 때, △ADE 의 넓이를 구하시오.

12 오른쪽 그림과 같은 평행사 변형 ABCD에서 BC, CD 의 중점을 각각 E, F라 하 자. \overline{BD} =12 cm일 때, \overline{PQ} 의 길이를 구하시오.

16 두 입체도형 P, Q는 서로 닮은 도형이고 닮음비는 1:2이다. 입체도형 Q의 부피가 32 cm³일 때, 입체도 형 P의 부피는?

 $\bigcirc 1 4 \text{ cm}^3$

 $\bigcirc 6 \text{ cm}^3$

3 8 cm³

4) 16 cm³

(5) 20 cm³

4. 닮음의 응용

| 점수

이 오른쪽 그림에서 $\overline{DE}/\overline{BC}$ 일 때, x+y의 값을 구하시오.

오른쪽 그림과 같은
 △ABC에서 AD가 ∠A
 의 외각의 이등분선일 때,
 x의 값을 구하시오.

○2 오른쪽 그림과 같은 △ABC 에서 DE //BC, FE //DC이고 AD=18 cm, DB=12 cm 일 때, AF의 길이를 구하시오.

06 오른쪽 그림에서 $l /\!\!/ m /\!\!/ n$ 일

 때, x의 값을 구하시오.

 ○ABC에서 세 점 D, E,

 F는 각각 AB, BC, CA의

 중점일 때, △DEF의 둘

 레의 길이를 구하시오.

07 오른쪽 그림과 같이 AD // BC

 인 사다리꼴 ABCD에서

 AP: PB=3: 2이고

 AD // PQ일 때, PQ의 길이를

 구하시오.

 \bigcirc 4 오른쪽 그림에서 $\overline{AE} = \overline{EB}$, $\overline{EG} = \overline{DG}$ 이고 $\overline{BC} = 18$ cm 일 때, \overline{CD} 의 길이를 구하시 오.

O8 오른쪽 그림과 같이 $\overline{AD}/\!\!/\overline{BC}$ 인 사다리꼴 ABCD에서 \overline{AB} , \overline{DC} 의 중점을 각각 M, N이라 할 때, \overline{PQ} 의 길이는?

① 2.5 cm

② 3 cm

③ 3.5 cm

④ 4 cm

⑤ 4.5 cm

○9 오른쪽 그림에서 $\overline{AB} / \overline{PQ} / \overline{DC}$ 일 때. PQ의 길이는?

② 3.6 cm

- ③ 3.4 cm
- (4) 3.2 cm
- ⑤ 3 cm

는 \overline{AB} 의 중점이다. $\triangle ABC$ 의 넓이가 72 cm²일 때, △AGE의 넓이는? $\bigcirc{1}$ 12 cm² ② 14 cm²

(4) 18 cm²

③ 16 cm²

- **1** 오른쪽 그림에서 점 G가

△ABC의 무게중심일 때,

AD의 길이는?

② 18 cm

- ③ 20 cm
- ④ 22 cm
- ⑤ 24 cm

14 오른쪽 그림과 같은 △ABC 에서 $\overline{DE} //\overline{BC}$ 이고. □DBCE=63 cm²일 때,

13 오른쪽 그림에서 두 점 D, E

는 \overline{BC} 의 3등분점이고, 점 F

(5) 20 cm²

은 각각 △ABC, △AGC의 무게중심이다. \overline{BG} =8 cm일 때, $\overline{GG'}$ 의 길이를 구하시오.

15 오른쪽 그림과 같은 원뿔 모양의 그 릇에 일정한 속도로 물을 채우고 있 다. 그릇의 높이의 $\frac{2}{3}$ 까지 물을 채우 는 데 8분이 걸린다고 할 때, 물을 가 득 채우는 데 몇 분이 더 걸리겠는가?

- ① 8분
- ② 16분
- ③ 18분

- ④ 19분
- ⑤ 27분

12 오른쪽 그림에서 두 점 G, G' 은 각각 △ABD, △ADC의 무게중심이다. \overline{BC} =24 cm일 때, $\overline{GG'}$ 의 길이를 구하시오.

 $\frac{1}{30000}$ 인 지도에서 가로의 길이가 8 cm, 세로 의 길이가 5 cm인 직사각형 모양의 공원이 있다. 이 공원의 실제 넓이는 몇 km²인지 구하시오.

중단원 테스트

5. 피타고라스 정리

| 점수

○ 오른쪽 그림과 같이 ∠B=90°인 직각삼각형 ABC에서 x, y의 값을 각각 구하시오.

호

05 오른쪽 그림과 같이 \overline{AB} =3 cm, \overline{AD} =4 cm인 직사각형 ABCD의 꼭짓점 A에서 대각선 BD에 내린 수 선의 발을 H라 할 때, \overline{AH} 의 길이는?

 $4\frac{16}{5}$ cm $3\frac{24}{5}$ cm

- ① $\frac{9}{5}$ cm ② $\frac{12}{5}$ cm
- $3\frac{13}{5}$ cm

○2 오른쪽 그림에서 점 G가 직 각삼각형 ABC의 무게중심 일 때, \overline{DG} 의 길이를 구하시

- 오.

○3 오른쪽 그림과 같은 △ABC 에서 $\overline{\mathrm{AD}} \perp \overline{\mathrm{BC}}$ 이고 $\overline{AB} = 13, \overline{BD} = 5, \overline{CD} = 16$ 일 때, \overline{AC} 의 길이를 구하시 오.

○6 오른쪽 그림과 같은 □ABCD 에서 $\overline{AC} \bot \overline{BD}$ 이고 두 대각선의 교점을 O라 하자. $\overline{AO} = 6 \text{ cm}$, $\overline{\mathrm{AD}} = 10 \,\mathrm{cm}, \overline{\mathrm{CD}} = 17 \,\mathrm{cm}$ 일때, △OCD의 넓이를 구하시오.

4 가로의 길이가 24 cm, 세로의 길이가 20 cm인 직사각형 모양의 종이를 한 귀퉁이를 잘라 오른 쪽 그림과 같이 만들었 을 때, x의 값을 구하시오.

○7 오른쪽 그림과 같이 $\overline{AB} = \overline{AC} = 13 \text{ cm}$ BC=10 cm인 이등변삼각형 ABC의 넓이를 구하시오.

○8 오른쪽 그림은 ∠A=90°인 직각삼각형 ABC에서 세 변 을 각각 한 변으로 하는 세 정사각형 ADEB, BFGC, ACHI를 그린 것이다. 다음 중 옳지 <u>않은</u> 것은?

- \bigcirc \triangle EBC \equiv \triangle ABF
- \bigcirc \triangle AEB= \triangle JBF
- \bigcirc \triangle ABF = \triangle JBF
- ④ □JKGC=□ACHI
- \bigcirc \triangle BFJ= \square ADEB
- **○9** 오른쪽 그림은 ∠A=90°인 직각삼각형 ABC의 세 변을 각각 한 변으로 하는 세 정사 각형을 그린 것이다.

□ACHI의 넓이가 9 cm²일 때. □ADEB의 넓이는?

 $\bigcirc 124 \text{ cm}^2$

- $\bigcirc 4$ 18 cm² $(5) 16 \text{ cm}^2$
- (2) 22 cm²

 $3 20 \text{ cm}^2$

 25 cm^2

- 【 】 오른쪽 그림과 같은 정사각형 ABCD의 넓이가 169 cm²이고 $\overline{AE} = \overline{BF} = \overline{CG} = \overline{DH} = 5 \text{ cm}$ 일 때, □EFGH의 넓이를 구하 시오.
- 11 다음 중 직각삼각형의 세 변의 길이가 될 수 있는 것을 모두 고르면? (정답 2개)
 - ① 5 cm, 6 cm, 8 cm
 - ② 8 cm, 10 cm, 13 cm
 - ③ 9 cm, 12 cm, 15 cm
 - 4 9 cm, 15 cm, 18 cm
 - ⑤ 15 cm, 20 cm, 25 cm

12 오른쪽 그림과 같은 △ABC 에서 \overline{AB} =8, \overline{AC} =6일 때, ∠C<90°가 되도록 하는 자 연수 x의 개수를 구하시오. (단, x > 8)

13 오른쪽 그림과 같이 ∠B=90° 인 직각삼각형 ABC에서 $\overline{AE}^2 + \overline{CD}^2$ 의 값을 구하시오.

14 오른쪽 그림은 ∠A=90° 인 직각삼각형 ABC의 세 변을 각각 지름으로 하는 세 반원을 그린 것이다.

| AB = 12 cm, BC = 15 cm 일 때, 어두운 부분의 넓이 를 구하시오.

15 오른쪽 그림과 같은 직육면 체의 꼭짓점 B에서 출발하 여 $\overline{\text{CD}}$ 를 지나 점 H에 이 르는 최단 거리를 구하시

오.

중단원 테스트 회

5. 피타고라스 정리

이름 | 점수

- \bigcirc 오른쪽 그림에서 \overline{CD} 의 길이는?
 - ① 8 cm
- ② 9 cm
- ③ 10 cm
- ④ 11 cm
- ⑤ 12 cm

05 오른쪽 그림과 같은 $\triangle ABC$ 에서 $\overline{AC}=6$ cm, $\overline{BC}=10$ cm이고 $\angle A=90^\circ$, $\angle BAD=\angle CAD$ 일 때, x의 값을 구하시오.

02 오른쪽 그림과 같이 $\overline{OA} = \overline{AB} = \overline{BC}$ $= \overline{CD} = \overline{DE} = 1$ 일 때, \overline{OE}^2 의 값을 구하시오.

 ○ 오른쪽 그림과 같은

 △ABC에서 AD⊥BC이

 고 AB=17, BD=15,

 CD=6일 때, x+y의 값

 은?

- ① 10
- 2 14
- ③ 18

- **4**) 22
- $\bigcirc 26$

07 오른쪽 그림과 같은 직사각형 모양의 종이 ABCD에서 AE를 접는 선으로 하여 꼭 짓점 D가 BC 위의 점 F에 오게 접었다. AB=9,

 $\overline{\mathrm{AD}}{=}15$ 일 때, $\overline{\mathrm{EF}}$ 의 길이를 구하시오.

 04
 오른쪽 그림과 같이 넓이가
 4

 36 cm²인 정사각형 ABCD
 와 넓이가 4 cm²인 정사각형

 GCEF를 세 점 B, C, E가
 한 직선 위에 있도록 이어 붙

 였을 때, AE의 길이를 구하시오.

○8 오른쪽 그림은 직각삼각형
 ABC의 세 변을 각각 한 변으로 하는세 정사각형 P,Q,R를
 그린 것이다. P의 넓이가
 169 cm²,Q의 넓이가 25 cm²일
 때, BC의 길이를 구하시오.

○9 오른쪽 그림과 같이 ∠A=90°인 직각삼각형 ABC에서 \overline{BC} 를 한 변 으로 하는 정사각형 BDEC를 그 렸다. $\overline{AC} = 6 \text{ cm}$, $\overline{BC} = 10 \text{ cm}$ 이고 점 A에서 \overline{BC} 에 그은 수선의 발을 H라 할 때, △BDH의 넓이 를 구하시오.

집 오른쪽 그림과 같은 정사각형 ABCD에서 $\overline{AE} = \overline{BF} = \overline{CG} = \overline{DH} = 4$. $\overline{AH} = \overline{BE} = \overline{CF} = \overline{DG} = 3$ 때, 사각형 EFGH의 둘레의 길이를 구하시오.

기 오른쪽 그림과 같은 사다리꼴 ABCD에서 ∠APD=90°이 고 $\triangle ABP \equiv \triangle PCD$ 이다. 이때 △APD의 넓이를 구하 B 6 cm P 8 cm 시오.

- 12 세 변의 길이가 각각 다음과 같은 삼각형 중에서 직각 삼각형인 것을 모두 고르면? (정답 2개)
 - (1) 2, 3, 4

26, 9, 12

3 8, 15, 17

4 9, 40, 41

(5) 10, 13, 15

13 세 변의 길이가 각각 3, 5, a인 삼각형이 둔각삼각형이 되도록 하는 자연수 a의 값의 합을 구하시오.

(단, a > 5)

1 소른쪽 그림과 같이 AC⊥BD인 □ABCD에서 $\overline{AB} = 7 \text{ cm}, \overline{AD} = 5 \text{ cm},$ $\overline{\text{CD}}$ =3 cm일 때, $\overline{\text{BC}}^2$ 의 값 을 구하시오.

(단, 점 O는 두 대각선의 교점)

15 오른쪽 그림과 같이 ∠A=90°이고 BC=16 cm 인 직각삼각형 ABC의 각 변 을 지름으로 하는 세 반원을 그렸다. 이때P+Q+R의 값 을 구하시오.

16 오른쪽 그림과 같이 ∠A=90°인 직각삼각형 ABC의 세 변을 각각 지름 으로 하는 세 반원을 그렸다.

 \overline{AB} =10 cm, \overline{AC} =8 cm일 때, 어두운 부분의 넓이 를 구하시오.

5000원짜리 지폐 4장, 10000원짜리 지폐 4장으로 20000원을 지불하는 방법의 수를 구하시오.

호

05 서로 다른 종류의 수학 문제집 5권, 영어 문제집 4권이 있다. 이 중에서 수학 문제집과 영어 문제집을 각각 한 권씩 총 2권을 고르는 경우의 수는?

① 9

2 10

③ 12

4 20

⑤ 24

02 1에서 20까지의 숫자가 각각 적힌 20장의 카드 중에서 한 장을 뽑을 때, 3의 배수가 적힌 카드가 나오는 경우의 수는?

 \bigcirc 4

- **②** 5
- 36

- **4** 7
- **(5)** 8

명훈이네 가족은 광주를 출발하여 대전을 거쳐서 서울 까지 가기로 하였다. 다음 그림에서 광주에서 서울까 지 가는 방법의 수를 구하시오.

(단, 한 번 지나간 지점은 다시 지나지 않는다.)

03 한 개의 주사위를 두 번 던질 때, 두 눈의 수의 합이 4 또는 5가 되는 경우의 수는?

① 5

- **②** 6
- 3)7

(4) 8

(5) 9

07 P, Q, R, S 4개의 알파벳을 일렬로 나열할 때, P가 맨 앞에 오는 경우의 수는?

 $\bigcirc 3$

- 24
- 36

- **4** 8
- (5)12

- ○4 서로 다른 두 개의 주사위를 동시에 던질 때, 서로 다른 두 눈이 나오는 경우의 수를 구하시오.
- **()8** 여학생 2명, 남학생 3명을 한 줄로 세울 때, 여학생끼리 이웃하여 서는 경우의 수는?
 - $\bigcirc 6$
- ② 12
- ③ 24

- **4** 36
- (5)48

- **9** 1, 2, 3, 4, 5의 숫자가 각각 적힌 5장의 카드 중에서 3장을 뽑아 만들 수 있는 세 자리의 자연수의 개수는?
 - $\bigcirc{1}60$
- (2) **5**4
- ③ 50

- **4** 30
- ⑤ 20

- 10 1, 2, 3, 4의 숫자가 각각 적힌 4장의 카드가 있다. 이 중에서 2장을 뽑아 만들 수 있는 두 자리의 자연수 중 짝수의 개수는?
 - $\bigcirc 2$
- 2)4
- (3) **6**

- **4** 8
- ⑤ 10

- **]]** 0, 1, 2, 3, 4의 숫자가 각각 적힌 5장의 카드 중에서 3 장을 뽑아 만들 수 있는 세 자리의 자연수의 개수는?
 - $\widehat{1}$ 12
- (2) 24
- ③ 30

- **(4)** 48
- **(5) 60**

- **12** 남학생 3명과 여학생 4명이 있다. 이 중에서 남녀 대표 를 각각 1명씩 뽑는 경우의 수는?
 - \bigcirc 3
- 2 4
- 3 7

- 4) 12
- **(5)** 16

13 6명의 대의원 가운데 회장 1명, 부회장 2명을 뽑는 경우의 수를 구하시오.

각 나라 10명의 정상들이 한 사람도 빠짐없이 서로 한 번씩 악수를 했다면 모두 몇 번의 악수를 했는지 구하 시오.

15 오른쪽 그림과 같이 원위에 A, B, C, D, E, F 6개의 점이 있 다. 이 중에서 서로 다른 세 점 을 이어 만들 수 있는 삼각형의 개수는?

- 1 10
- 2 20
- **4** 40
- **(5) 60**
- ③ 30

16 오른쪽 그림과 같이 A, B, C 세 부분에 빨강, 노랑, 초록의 3가지 색을 칠하여 깃발을 만들려고 한 다. 같은 색을 여러 번 칠할 수는 있으나 이웃한 부분은 서로 다른

색을 칠하려고 할 때, 깃발을 만들 수 있는 경우의 수를 구하시오.

③ 16

① 1 한 개의 주사위를 던질 때, 6의 약수의 눈이 나오는 경우의 수는?

 \bigcirc 1

2 2

③3

4 4

(5) 5

05 서로 다른 두 개의 주사위를 동시에 던질 때, 두 눈의 수의 차가 1 또는 2가 되는 경우의 수는?

① 14

② 15

(4) 17 (5) 18

02 50원, 100원, 500원짜리 동전이 각각 5개씩 있다. 이 동전을 사용하여 1750원을 지불하는 방법의 수는?

 $\textcircled{1}\,2$

②3

3 4

4 5

(5) 6

03 연우는 방과 후 수업 중 하나를 신청하려고 한다. 음악과 관련된 수업이 4가지, 체육과 관련된 수업이 5가지라 할 때, 연우가 신청할 수 있는 모든 경우의 수를 구하시오.

1에서 15까지의 숫자가 각각 적힌 15개의 공이 들어 있는 상자에서 한 개의 공을 꺼낼 때, 3의 배수 또는 4 의 배수가 적힌 공이 나오는 경우의 수는?

①7

28

39

 $\textcircled{4} \, 10$

(5) 11

A 지점에서 B 지점까지 가는 방법이 4가지, B 지점에서 C 지점까지 가는 방법이 3가지가 있다. 이때 A 지점에서 B 지점을 거쳐 C 지점까지 가는 방법의 수는?
 (단, 한 번 지나간 지점은 다시 지나지 않는다.)

①3

2 4

37

(4) 12

⑤ 20

어로 다른 동전 2개와 주사위 1개를 동시에 던질 때, 동전은 서로 같은 면이 나오고 주사위는 소수의 눈이 나오는 경우의 수를 구하시오.

08 A, B 두 사람이 가위바위보를 할 때, 한 번에 승부가 나는 경우의 수를 구하시오.

09 오른쪽 그림과 같은 모양의 도로가 있다. A 지점에서 P 지점을 거쳐 B 지점까지 최단 거리로 가는 방법의 수를 구하시오.

- 10 엄마, 아빠와 자녀 2명이 한 줄로 서서 가족 사진을 찍을 때, 엄마와 아빠가 서로 이웃하여 서는 경우의 수는?
 - ① 12
- **②** 18
- ③ 24

- **4** 36
- **(5)** 48

- **]** 1 0, 1, 2, 3의 숫자가 각각 적힌 4장의 카드 중에서 2장을 뽑아 만들 수 있는 두 자리의 자연수의 개수는?
 - 1)4
- **②** 7
- 39

- (4) 12
- (5)16

- **12** 0에서 5까지의 숫자가 각각 적힌 6장의 카드 중에서 2 장을 뽑아 만들 수 있는 20 이상의 자연수의 개수는?
 - ① 20
- (2) 24
- 3 25

- **4** 30
- **⑤** 36

13 어느 지역 선거에서 시장 후보가 2명, 시의원 후보가 4명이다. 이 중에서 시장 1명, 시의원 2명을 뽑는 경우의 수를 구하시오.

- **] 4** 5개의 농구팀이 서로 한 번씩 경기를 갖는다면 모두 몇 번의 경기를 해야 하는가?
 - ① 8번
- ② 10번
- ③ 12번

- ④ 14번
- ⑤ 16번

15 오른쪽 그림과 같이 여섯 개의 마을이 원형으로 위치하고 있다. 각 마을을 직선으로 잇는 길을 만든 다고 할 때, 모두 몇 개의 길을 만 들 수 있는지 구하시오.

16 오른쪽 그림의 A, B, C, D 네 부분에 빨강, 주황, 노랑, 초록 의 4가지 색을 이용하여 칠하 려고 한다. 같은 색을 여러 번 칠할 수는 있으나 이웃한 부분

은 서로 다른 색을 칠하려고 할 때, 칠할 수 있는 경우의 수를 구하시오.

↑ 주머니속에 모양과 크기가 같은 5개의 흰 바둑돌과 10 개의 검은 바둑돌이 들어 있다. 이 중에서 임의로 한 개 의 바둑돌을 꺼낼 때, 검은 바둑돌일 확률은?

호

- $\bigcirc 0$
- $2\frac{1}{3}$
- $3\frac{1}{2}$

- $(4)\frac{2}{3}$
- (5)1

- 02 서로 다른 두 개의 주사위를 동시에 던질 때, 나온 두 뉴의 수의 합이 9가 될 확률은?
- $0\frac{1}{9}$ $0\frac{1}{6}$ $0\frac{1}{3}$
- $4\frac{1}{2}$ 50

- **3** 갑, 을 두 사람이 가위바위보를 할 때, 갑이 이길 확률
 - $(1)\frac{1}{2}$ $(2)\frac{1}{3}$
- $3\frac{1}{4}$
- $4\frac{1}{5}$ $5\frac{2}{3}$

- □4 1에서 9까지의 자연수가 각각 적힌 9장의 카드 중에서 임의로 한 장을 뽑을 때. 10 이상의 자연수가 적힌 카 드가 나올 확률은?
 - $\bigcirc 0$
- $2\frac{1}{10}$ $3\frac{1}{9}$

- $4\frac{9}{10}$
- **(5)** 1

- **05** 0, 1, 2, 3의 숫자가 각각 적힌 4장의 카드가 있다. 이 중에서 임의로 2장을 뽑아 두 자리의 자연수를 만들 때. 그 수가 20 이상일 확률은?

 - $0\frac{1}{5}$ $0\frac{1}{4}$ $0\frac{1}{3}$
 - $4\frac{1}{2}$ $5\frac{2}{3}$

 $\bigcirc 6$ 두 개의 주사위 A, B를 동시에 던져서 A 주사위에서 나온 눈의 수를 x, B 주사위에서 나온 눈의 수를 y라 할 때, 방정식 3x+y=10을 만족할 확률을 구하시오.

7 서로 다른 세 개의 동전을 동시에 던질 때, 적어도 하나 는 앞면이 나올 확률을 구하시오

8 1에서 10까지의 숫자가 각각 적힌 10장의 카드에서 임 의로 한 장을 뽑을 때, 소수 또는 4의 배수가 적힌 카드 가 나올 확률을 구하시오.

- **1**에서 20까지의 숫자가 각각 적힌 20장의 카드가 있 다. 이 중에서 임의로 한 장을 뽑을 때, 4의 배수 또는 5 의 배수가 적힌 카드가 뽑힐 확률은?

- $4\frac{1}{2}$ $5\frac{3}{4}$

1 ↑ 동전 한 개와 주사위 한 개를 동시에 던질 때, 동전은 앞면이 나오고 주사위는 소수의 눈이 나올 확률을 구 하시오.

- **]]** 일기 예보에 따르면 내일 비가 올 확률이 20 %. 황사 가 올 확률이 30 %라 한다. 이때 내일 비가 오지 않고 황사가 올 확률은?
 - ① 10 %
- ② 14 %
- ③ 18 %

- **4** 20 %
- (5) 24 %

- 12 정일이와 재호가 만나기로 약속하였다. 정일이와 재호 가 약속 장소에 나갈 확률이 각각 $\frac{1}{5}$, $\frac{1}{4}$ 일 때, 두 사람 이 약속 장소에서 만나지 못할 확률은?
- $\bigcirc \frac{19}{20}$ $\bigcirc \frac{9}{10}$ $\bigcirc \frac{17}{20}$
- $4\frac{4}{5}$ $5\frac{3}{4}$

- 13 은수는 수학 시험에서 객관식 2문제를 풀지 못해 임의 로 답을 체크하여 답안지를 제출하였다. 이때 적어도 한 문제를 맞힐 확률은? (단, 객관식 문제는 5개의 보 기 중에서 하나를 고르는 문제이다.)

 - ① $\frac{3}{25}$ ② $\frac{6}{25}$
- $4\frac{12}{25}$ $5\frac{3}{5}$

에서 연속하여 2개의 공을 임의로 꺼낼 때, 둘 다 흰 공 을 꺼낼 확률을 구하시오. (단, 꺼낸 공은 다시 넣는다.)

15 8개의 제비 중 당첨 제비가 2개 있다. 갑, 을 두 사람이 차례로 제비를 한 개씩 임의로 뽑을 때, 두 사람 모두 당첨 제비를 뽑을 확률은?

(단, 뽑은 제비는 다시 넣지 않는다.)

- $4\frac{1}{7}$ $5\frac{5}{28}$

16 오른쪽 그림과 같이 세 개의 동심 원으로 이루어진 과녁에 화살을 쏘았을 때, B 부분에 맞출 확률을 구하시오 (단. 화살이 원판을 벗 어나거나 경계선 위에 놓이는 경 우는 생각하지 않는다.)

- ① 1 · 흰 공 3개와 검은 공 4개가 들어 있는 주머니에서 임의 로 한 개의 공을 꺼낼 때, 검은 공이 나올 확률은?

 - $(1)\frac{2}{7}$ $(2)\frac{3}{7}$
- $3\frac{4}{7}$
- $4\frac{5}{7}$ $5\frac{6}{7}$

- **①2** 2에서 10까지의 숫자가 각각 적힌 9장의 카드 중에서 임의로 1장을 뽑았을 때 나오는 수를 a라 하자. 이때 $\frac{1}{a}$ 이 유한소수로 나타내어질 확률은?
- $4\frac{4}{9}$ $5\frac{5}{9}$

- **13** 서로 다른 두 개의 주사위를 동시에 던질 때, 나온 두 눈의 수의 차가 4가 될 확률은?
 - $\bigcirc \frac{1}{2}$ $\bigcirc \frac{1}{4}$
- $3\frac{1}{6}$
- $4\frac{1}{9}$ $5\frac{1}{10}$

1 1에서 4까지의 숫자가 각각 적힌 4장의 카드에서 임의 로 2장을 뽑아 두 자리의 자연수를 만들 때, 40보다 클 확률을 구하시오.

- $igode{05}$ A, B, C, D 4명 중에서 임의로 3명을 뽑아 한 줄로 세 울 때, A가 맨 앞에 설 확률은?

 - $(1)\frac{1}{6}$ $(2)\frac{1}{4}$ $(3)\frac{2}{7}$

- $4\frac{3}{8}$ $5\frac{2}{5}$

- ██ 남학생 3명, 여학생 2명 중에서 임의로 대표 2명을 뽑 을 때, 적어도 여학생이 한 명 뽑힐 확률은?

 - $\bigcirc \frac{1}{2}$ $\bigcirc \frac{3}{5}$
- $3\frac{7}{10}$

- $4\frac{4}{5}$ $5\frac{9}{10}$

- **7** 서로 다른 두 개의 주사위를 동시에 던져서 나온 두 눈 의 수를 각각 a, b라 할 때, 방정식 ax-b=0의 해가 2 또는 6일 확률은?
 - $\bigcirc \frac{1}{9}$ $\bigcirc \frac{1}{6}$ $\bigcirc \frac{1}{3}$
- $4\frac{2}{3}$ $5\frac{5}{6}$

- **()8** 서로 다른 두 개의 주사위를 동시에 던질 때, 나온 두 눈의 수의 합이 12 이하가 될 확률은?
- $0\frac{1}{2}$ $0\frac{2}{3}$ $0\frac{3}{4}$
- $4\frac{5}{6}$ 51

- **9** 1에서 15까지의 숫자가 각각 적힌 15장의 카드에서 임 의로 한 장의 카드를 뽑을 때, 3의 배수 또는 7의 배수 가 나올 확률은?
- $0\frac{1}{5}$ $0\frac{2}{5}$ $0\frac{7}{15}$
- $4\frac{8}{15}$ $5\frac{3}{5}$

10 서로 다른 두 개의 주사위를 동시에 던질 때, 나온 두 눈의 수의 합이 홀수가 될 확률을 구하시오.

- 수의 곱 ab가 홀수일 확률은?
- $(1)\frac{4}{5}$ $(2)\frac{3}{5}$ $(3)\frac{2}{5}$
- $4\frac{4}{15}$ $5\frac{1}{5}$

- 12 미경이와 수현이가 만나기로 약속하였다. 두 사람이 약속 장소에 나가지 못할 확률이 각각 $\frac{3}{5}$, $\frac{2}{3}$ 일 때, 두 사람이 약속 장소에서 만날 확률은?
 - $(1)\frac{1}{15}$ $(2)\frac{2}{15}$ $(3)\frac{1}{5}$

- $4\frac{4}{15}$ $5\frac{1}{3}$

- $\frac{1}{3}$ 어떤 문제를 풀 확률이 갑은 $\frac{3}{4}$, 을은 $\frac{4}{5}$ 라 할 때, 적어 도 한 사람이 문제를 풀 확률은?

- $4\frac{3}{5}$ $5\frac{19}{20}$
- ┓ 입기 예보에서 어느 지역의 날씨가 월요일에 비가 올 확률은 40 %, 화요일에 비가 올 확률은 30 %라 한다. 월요일에는 비가 오고, 화요일에는 비가 오지 않을 확 률은?
 - ① 12 %
- 2 18 %
- 3 28 %

- (4) 32 %
- (5) 42 %
- 15 흰 구슬 4개와 빨간 구슬 6개가 들어 있는 주머니에서 연속하여 2개의 구슬을 임의로 꺼낼 때, 처음에는 흰 구슬, 두번째에는 빨간 구슬을 꺼낼 확률은?

(단, 꺼낸 구슬은 다시 넣지 않는다.)

- $(1)\frac{1}{5}$ $(2)\frac{4}{15}$ $(3)\frac{2}{5}$
- $4\frac{5}{9}$
 - $\Im \frac{2}{3}$
- **16** A 주머니에는 흰 공과 검은 공이 각각 2개, 3개가 들어 있고. B 주머니에는 흰 공과 검은 공이 각각 5개씩 들 어 있다. 두 주머니 A. B에서 각각 공을 1개씩 임의로 꺼낼 때, 두 공의 색깔이 같을 확률은?

 - $1\frac{1}{2}$ $2\frac{3}{10}$ $3\frac{1}{5}$
 - $4\frac{1}{10}$ $5\frac{3}{50}$

CHECK CHECK

핵심 정리 & 핵심 테스트

수업을 다 하고 시험 직전 등 내용을 정리할 때 사용할 수 있습니다.

1. 이등변삼각형의 성질	52
2. 직각삼각형의 합동 조건	54
3. 삼각형의 외심과 내심	56
4. 평행사변형의 성질	58
5. 평행사변형이 되는 조건	60
6. 여러 가지 사각형	62
7. 여러 가지 사각형의 활용	64
8. 여러 가지 사각형 사이의 관계	66
9. 닮음의 뜻과 성질	68

 10. 삼각형의 닮음 조건	70
- 11. 삼각형과 평행선	72
12. 평행선과 선분의 길이의 비	74
13. 삼각형의 무게중심과 닮음의 활용	76
14. 피타고라스 정리	78
- 15. 피타고라스 정리의 성질	80
16. 경우의 수 (1)	82
17. 경우의 수 ⁽²⁾	84
18. 확률	86

1. 이등변삼각형의 성질

● 이등변삼각형

- (1) 이등변삼각형: 두 변의 길이가 서로 같은 삼각형
- (2) 이등변삼각형의 성질
 - ① 이등변삼각형의 두 밑각의 크기는 서로 같다.

[참고] \triangle ABD \equiv \triangle ACD(SAS 합동)이므로 \angle B = \angle C

② 이등변삼각형의 꼭지각의 이등분선은 밑변을 수직이등분한다.

참고 $\triangle ABD \equiv \triangle ACD(SAS$ 합동)이므로 $\overline{BD} = \overline{CD}$, $\overline{AD} \bot \overline{BC}$

(3) 이등변삼각형이 되는 조건

두 내각의 크기가 같은 삼각형은 이등변삼각형이다. 참고 △ABD≡ △ACD(ASA 합동)이므로 AB=AC

● 이등변삼각형의 성질의 활용

(1) △ABE≡△ACD(SAS 합동)

 \triangle BCD \equiv \triangle CBE(SAS 합동)

 $\triangle BDO \equiv \triangle CEO(ASA$ 합동)

(2)

 $\overline{AB} = \overline{AC}$

 $5 \angle x = 180^{\circ}$

 $\therefore \angle x = 36^{\circ}$

이등변삼각형 ABC ∴ ∠A=36°, ∠B=∠C=72°

 $\Rightarrow \angle x = 3 \angle a$

- (4)
 - $\Rightarrow \angle x = 2 \angle a$

(5) △ABC는 AB=AC인 이등변삼각형

 $\Rightarrow \angle x = 180^{\circ} - 2 \angle a$

(6) △BDF≡△CED(SAS 합동)

 $\Rightarrow \angle x = \angle B = \angle C$

오른쪽 그림과 같이 AB=AC
 인 이등변삼각형 ABC에서 ∠A
 의 이등분선이 BC와 만나는 점
 을 D라 하자. 다음 중 옳지 않은
 것은?

- \bigcirc \angle B= \angle C
- $\Im \overline{AB} = \overline{BC}$
- \bigcirc AD \perp BC
- \bigcirc \triangle ABD \equiv \triangle ACD
- 2
 오른쪽 그림과 같이 $\overline{AB} = \overline{AC}$

 인 이등변삼각형 ABC에서

 $\overline{AD} = \overline{AE}$ 가 되도록 두 점 D, E

 를 잡을 때, 다음 중 옳지 않은 것

 은?

- \bigcirc \triangle ABE \equiv \triangle ACD
- \bigcirc \triangle BCD \equiv \triangle CBE
- \bigcirc \triangle BDF \equiv \triangle CEF
- \bigcirc \triangle ABE \equiv \triangle CBE
- \bigcirc \triangle ADF \equiv \triangle AEF
- 3 오른쪽 그림과 같은 $\triangle ABC$ 에서 $\overline{AD} = \overline{BD} = \overline{CD}$ 이고 $\angle B = 40^\circ$ 일 때, $\angle x$ 의 크기를 구하시오.

4 오른쪽 그림과 같이 $\overline{AB} = \overline{AC}$ 인 이 등변삼각형 \overline{ABC} 에서 $\overline{AD} = \overline{DC} = \overline{BC}$ 일 때, ∠x의 크기를 구하시오.

오른쪽 그림과 같이
 AB=AC인 이등변삼각형
 ABC에서 ∠B의 이등분선과
 ∠C의 외각의 이등분선의 교점을 D라 하자. ∠A=50°일
 때. ∠x의 크기를 구하시오.

7 다음 그림과 같이 직사각형 모양의 종이를 접었다. $\angle FGE = 56^{\circ}$ 일 때, $\angle x$ 의 크기를 구하시오.

8 오른쪽 그림의 $\triangle ABC$ 는 $\angle A=30^\circ$ 이고 $\overline{AB}=\overline{AC}$ 인 이등변삼각형이다. 세 점 D, E, F는 각각 \overline{BC} , \overline{AC} , \overline{AB} 위의 점이고 $\overline{BF}=\overline{CD}$, $\overline{BD}=\overline{CE}$ 일 때, $\angle x$ 의 크기를 구하시오.

2. 직각삼각형의 합동 조건

● 직각삼각형의 합동 조건

(1) RHA 합동: 빗변의 길이와 한 예각의 크기가 각각 같을 때

참고 △ABC와 △DEF에서

 $\overline{AB} = \overline{DE}$, $\angle C = \angle F = 90^{\circ}$, $\angle B = \angle E0 | \Box \Xi$

 $\angle A=90^{\circ}-\angle B=90^{\circ}-\angle E=\angle D$

 \therefore \triangle ABC \equiv \triangle DEF(ASA 합동)

(2) RHS 합동: 빗변의 길이와 다른 한 변의 길이가 각각 같을 때

 $^{\Delta D}$ $^{\Delta DEF}$ 를 오른쪽으로 뒤집어 $^{\overline{AC}}$ 와 $^{\overline{DF}}$ 를 맞닿도록 놓으면

 $\triangle ABE = \overline{AB} = \overline{AE}$ 인 이등변삼각형이다.

따라서 $\overline{AB} = \overline{DE}$, $\angle B = \angle E$, $\angle C = \angle F = 90^{\circ}$ 이므로

△ABC≡△DEF(RHA 합동)

● 직각삼각형의 합동 조건의 활용 – RHA 합동

 $\triangle BAD \equiv \triangle ACE(RHA 합동)$

 $\therefore \overline{DE} = \overline{DA} + \overline{AE} = \overline{EC} + \overline{BD}$

 $\triangle ABD \equiv \triangle CAE(RHA 합동)$

 $\therefore \overline{DE} = \overline{AE} - \overline{AD} = \overline{BD} - \overline{CE}$

● 직각삼각형의 합동 조건의 활용 – RHS 합동

 $\triangle ACD \equiv \triangle AED(RHS 합동)$

 $\therefore \overline{CD} = \overline{ED}$

 $\triangle ACD \equiv \triangle AED(RHS 합동)$

 $\therefore \overline{CD} = \overline{ED} = \overline{EB}$

● 각의 이등분선과 활용

(1)

 $\triangle PAO \equiv \triangle PBO(RHA 합동)$

 $\therefore \overline{PA} = \overline{PB}$

(2)

 $\triangle ACD \equiv \triangle AED(RHA 합동)$

 $\therefore \overline{\text{CD}} = \overline{\text{ED}}$

고른쪽 그림과 같은 두 직각 삼각형 ABC, DEF가 서 로 합동이 되기 위한 조건을 다음 □ 안에 써넣으시오.

- $\overline{AB} = \overline{DE}, \overline{AC} = \overline{DE}, \overline{DE}$ 합동
- (2) $\overline{AB} = \overline{DE}$, $\angle A =$ _____, 합동
- 2 오른쪽 그림의 두 직각삼각 형 ABC, DEF가 서로 합 동이 되는 경우가 <u>아닌</u> 것 은?

- ① $\overline{AB} = \overline{DE}$, $\overline{AC} = \overline{DF}$
- \bigcirc $\angle A = \angle D, \angle B = \angle E$
- $\Im \overline{AB} = \overline{DE}, \angle B = \angle E$
- $\textcircled{4} \angle A = \angle D, \overline{AB} = \overline{DE}$
- \bigcirc $\overline{AB} = \overline{DE}, \overline{BC} = \overline{EF}$
- 오른쪽 그림과 같이

 AB=AC인
 직각이등변

 삼각형 ABC의 꼭짓점

 B, C에서 꼭짓점 A를 지

나는 직선 l에 내린 수선의 발을 각각 D, E라 할 때, \overline{DE} 의 길이를 구하시오.

4 오른쪽 그림과 같이 AB=AC이고 ∠A=90°인 직각이등변삼각형 ABC의 두 점 B, C에서 점 A를 지나 는 직선 *l* 에 내린 수선의 발 을 각각 D, E라 하자.

 $\overline{\mathrm{BD}}{=}14~\mathrm{cm},$ $\overline{\mathrm{CE}}{=}9~\mathrm{cm}$ 일 때, $\overline{\mathrm{DE}}$ 의 길이를 구하시오.

5 오른쪽 그림과 같이
∠C=90°인 직각삼각형
ABC에서 ĀD=ĀC이고
DE⊥ĀB일 때, △DBE의
둘레의 길이를 구하시오.

오른쪽 그림에서 △ABC는
 AC=BC인 직각이등변삼각형이
 다. AC=AE이고 DE⊥AB일
 때, 다음 중 옳지 않은 것은?

- \bigcirc \triangle EAD= \triangle CAD
- $\bigcirc \overline{EB} = \overline{ED} = \overline{CD}$
- \bigcirc \triangle AED \equiv \triangle ACD
- \bigcirc $\overline{BD} = \overline{CD}$
- \bigcirc \angle EDB= \angle BAC
- 오른쪽 그림과 같이 ∠AOB의 이등분선 위의 한 점 P에서 OA, OB에 내린 수선의 발을 각각 Q, R라 할 때, 다음 중 옳 지 않은 것은?

- \bigcirc \angle POQ= \angle POR
- \bigcirc \angle OQP= \angle ORP
- ③ △POQ≡△POR
- $\bigcirc \overline{PQ} = \overline{PR}$
- $\bigcirc \overline{OQ} = \overline{OP} = \overline{OR}$
- 오른쪽 그림에서 ∠C=90°인
 직각삼각형 ABC의 ∠A의 이등
 분선과 BC의 교점을 D라 하자.
 AB=14 cm, CD=4 cm일 때,
 △ABD의 넓이를 구하시오.

3. 삼각형의 외심과 내심

● 삼각형의 외심

(1) ① 삼각형의 세 변의 수직이등 분선은 한 점(외심)에서 만난 다.

- ➡ 외접원의 중심 O
- ② 외심에서 삼각형의 세 꼭짓 점에 이르는 거리는 모두 같다.
 - $\rightarrow \overline{OA} = \overline{OB} = \overline{OC}$

△OAF≡△OBF(SAS 합동) △OBD≡△OCD(SAS 합동) △OCE≡△OAE(SAS 합동)

(2) 삼각형의 외심의 위치

① 예각삼각형 : 삼각형의 내부 ② 둔각삼각형 : 삼각형의 외부

③ 직각삼각형: 빗변의 중점

 $=(빗변의 길이) \times \frac{1}{2}$

(3) 외심에서 각의 크기 구하기

 $\angle x = 2 \angle a$

● 이등변삼각형과 정삼각형의 외심과 내심

(1) **이등변삼각형**: 외심과 내심은 꼭지각의 이등분선 위에 있다.

(2) 정삼각형: 외심과 내심은 일치한다.

● 삼각형의 내심

(1) ① 삼각형의 세 내각의 이등 분선은 한 점(내심)에서 만 난다.

- ② 내심에서 삼각형의 세 변 에 이르는 거리는 모두 같다.
 - $\rightarrow \overline{ID} = \overline{IE} = \overline{IF}$

△IAD≡ △IAF(RHA 합동)

△IBD≡ △IBE(RHA 합동)

 \triangle ICE \equiv \triangle ICF(RHA 합동)

(2) 삼각형의 내심과 평행선

- $\bullet \overline{DI} = \overline{DB}, \overline{EI} = \overline{EC}$
- (△ADE의 둘레의 길이) =AB+AC

(3) 내심에서 각의 크기 구하기

 $\angle x + \angle y + \angle z = 90^{\circ}$

$$\angle x = 90^{\circ} + \frac{1}{2} \angle a$$

(4) 삼각형의 넓이와 내접원의 반지름의 길이

$$\triangle ABC = \triangle IBC + \triangle ICA + \triangle IAB$$

$$= \frac{1}{2}ar + \frac{1}{2}br + \frac{1}{2}cr$$

$$= \frac{1}{2}r(a+b+c)$$

(5) 내접원과 접선의 길이

$$\overline{AD} = \overline{AF} = x$$

$$\overline{BD} = \overline{BE} = y$$

 $\overline{\text{CE}} = \overline{\text{CF}} = z$

핵심 정리 & 테스트

오른쪽 그림에서 점 O는△ABC의 외심이다. 다음 중 옳지 않은 것은?

- $\bigcirc \overline{CF} = \overline{AF}$
- $\Im \overline{OE} = \overline{OF}$
- ④ ∠OBC=∠OCB
- \bigcirc \triangle OAD \equiv \triangle OBD
- **2** 다음 그림에서 점 O가 \triangle ABC의 외심일 때, $\angle x$ 의 크기를 구하시오.

3 오른쪽 그림의 △ABC에서 외 접원의 반지름의 길이를 구하시 오.

4 오른쪽 그림에서 점 I는
 △ABC의 내심이다. 다음 중
 옳지 않은 것은?

- $\textcircled{1}\overline{\text{ID}} = \overline{\text{IE}} = \overline{\text{IF}}$
- ${\tiny \textcircled{2}}\,\overline{AD}{=}\overline{AF}$
- $\Im \overline{BE} = \overline{EC}$
- $\textcircled{4} \angle ECI = \angle FCI$
- \bigcirc \triangle ADI \equiv \triangle AFI

5 다음 그림에서 점 I가 \triangle ABC의 내심일 때, $\angle x$ 의 크기를 구하시오.

소른쪽 그림과 같이 △ABC 의 내심 I를 지나고 BC에 평 행한 직선이 AB, AC와 만 나는 점을 각각 D, E라 할 때, △ADE의 둘레의 길이를 구 하시오.

7 오른쪽 그림에서 점 I는
 △ABC의 내심이고 세 점
 D, E, F는 접점일 때, BC
 의 길이를 구하시오.

8 오른쪽 그림에서 점 I는 직각삼각 형 ABC의 내심일 때, 내접원 I의 반지름의 길이를 구하시오.

4. 평행사변형의 성질

● 평행사변형

두 쌍의 대변이 각각 평행한 사각형

 $\Rightarrow \overline{AB} / / \overline{DC}, \overline{AD} / / \overline{BC}$

◎ 평행사변형의 성질

(1) 두 쌍의 대변의 길이는 각각 같다.	(2) 두 쌍의 대각의 크기는 각각 같다.	(3) 두 대각선은 서로 다른 것을 이등분한다.
$\Rightarrow \overline{AB} = \overline{DC}, \overline{AD} = \overline{BC}$	$\Rightarrow \angle A = \angle C, \angle B = \angle D$	$\Rightarrow \overline{OA} = \overline{OC}, \overline{OB} = \overline{OD}$
B + C	B C	A D D C

● 평행사변형의 성질의 활용

(1) ∠BAE=∠DAE일 때 ∠AEB=∠DAE(엇각)이므

로 $\triangle ABE$ 는 $\overline{BA} = \overline{BE}$ 인 이 등변삼각형이다.

(2) 대각선에 의해생기는 엇각의 크 기는 같으므로

 $\angle A + \angle B = \angle C + \angle D$

 $=180^{\circ}$

● 평행사변형에서 합동인 삼각형

△AOE≡△COF (ASA 합동)

△AED≡△FEC (ASA 합동)

- (3) ① $\triangle ABE = \triangle CDF$
 - $\bigcirc \triangle AEF \equiv \triangle CFE$
 - \bigcirc \triangle AFD \equiv \triangle CEB
 - $\triangle ABF = \triangle CDE$
 - $\triangle AED \equiv \triangle CFB$
 - \bigcirc △ABD \equiv △CDB

◎ 평행사변형과 넓이

(1)
$$\triangle OAB = \triangle OBC$$

= $\triangle OCD$

 $= \triangle ODA$

(2)
$$\triangle PDA + \triangle PBC$$

$$= \triangle PAB + \triangle PCD$$

$$=\frac{1}{2}\Box ABCD$$

다음 그림과 같은 평행사변형 ABCD에서 x, y의 값을 각각 구하시오. (단, 점 O는 두 대각선의 교점)

오른쪽 그림과 같은 평행사변형 ABCD에서
 ∠A: ∠B=4:5일 때, ∠C의 크기를 구하시오.

3 오른쪽 그림과 같은 평행 사변형 ABCD에서 ∠A 의 이등분선이 BC와 만나 는 점을 E라 할 때, EC의 길이를 구하시오.

4 오른쪽 그림과 같은 평행사변 형 ABCD에서 다음 중 옳지 <u>않은</u> 것은?

(단, 점 O는 두 대각선의 교점)

- ② ∠BAD=∠DCB
- $\bigcirc \overline{OB} = \overline{OD}$
- $\textcircled{4} \angle ABD = \angle DBC$
- \bigcirc \triangle OAB \equiv \triangle OCD

5 오른쪽 그림과 같이 평행사변 형 ABCD의 두 대각선의 교점 O를 지나는 직선이 AD, BC 와 만나는 점을 각각 P, Q라 할 때, 다음 중 옳지 <u>않은</u> 것은?

- $\bigcirc \overline{OB} = \overline{OC}$
- $\Im \overline{OP} = \overline{OQ}$
- $\bigcirc \overline{OD} = \overline{OB}$
- \bigcirc \triangle AOP \equiv \triangle COQ
- 소른쪽 그림과 같은 평행사변형 ABCD에서 점 E가 TD의 중점이고 AE의 연장 선과 BC의 연장선이 만나는 점을 F라 하자. AB=8,

 $\overline{
m AD} =$ 6일 때, $\overline{
m BF}$ 의 길이를 구하시오.

 7
 오른쪽 그림과 같은 평행사변
 A

 형 ABCD의 두 꼭짓점 A, C
 에서 대각선 BD에 내린 수선

 의 발을 각각 E, F라 할 때, 합
 B

 동인 삼각형은 모두 몇 쌍인지 구하시오.

 오른쪽 그림과 같은 평행사 변형 ABCD의 내부에 한 점 P를 잡을 때, △PAB와 △PCD의 넓이의 합을 구 하시오.

5. 평행사변형이 되는 조건

◎ 평행사변형이 되는 조건

다음 조건 중 어느 하나를 만족하면 □ABCD는 평행사변형이다.

(1) 두 쌍의 대변이 각각 평행하다.

 $\rightarrow \overline{AB} / / \overline{DC}, \overline{AD} / / \overline{BC}$

(2) 두 쌍의 대변의 길이가 각각 같다.

 $\rightarrow \overline{AB} = \overline{DC}, \overline{AD} = \overline{BC}$

(3) 두 쌍의 대각의 크기가 각각 같다.

 $\Rightarrow \angle A = \angle C, \angle B = \angle D$

(4) 한 쌍의 대변이 평행하고 그 길이가 같다.

 $\Rightarrow \overline{AD} / / \overline{BC}, \overline{AD} = \overline{BC}$

(5) 두 대각선이 서로 다른 것을 이등분한다.

 $\rightarrow \overline{OA} = \overline{OC}, \overline{OB} = \overline{OD}$

◎ 평행사변형이 되기 위한 조건의 활용

다음 그림의 □ABCD가 평행사변형일 때, □EBFD는 항상 평행사변형이다.

 $\angle EBF = \angle EDF, \angle BED = \angle BFD$

➡ 두 쌍의 대각의 크기가 각각 같다.

 $\overline{OE} = \overline{OF}, \overline{OB} = \overline{OD}$

➡ 두 대각선이 서로 다른 것을 이등분한다.

 $\overline{EB} / / \overline{DF}$, $\overline{EB} = \overline{DF}$

➡ 한 쌍의 대변이 평행하고 그 길이가 같다.

 $\overline{EB} / / \overline{DF}, \overline{EB} = \overline{DF}$

➡ 한 쌍의 대변이 평행하고 그 길이가 같다.

다음 사각형 중 평행사변형이 아닌 것은?

(단, 점 O는 두 대각선의 교점)

- 다음 조건을 만족하는 □ABCD 중에서 평행사변형 인 것을 모두 고르면? (정답 2개)
 - \bigcirc $\overline{AB} = \overline{DC}$, $\overline{AD} = \overline{BC}$
 - ② $\overline{AB} = \overline{BC}$. $\overline{AC} \perp \overline{BD}$
 - $(3) \overline{AD} / \overline{BC}$, $\overline{AB} = \overline{DC} = 4$ cm
 - $\bigcirc 4 \angle A = 50^{\circ}, \angle B = 130^{\circ}, \angle C = 50^{\circ}$
 - \bigcirc $\overline{AB} = 5 \text{ cm}, \overline{BC} = 5 \text{ cm}, \overline{DC} = 7 \text{ cm}, \overline{AD} = 7 \text{ cm}$

오른쪽 그림의 □ABCD가 평 행사변형이 되는 조건을 다음 □ 안에 알맞게 써넣으시오. (단, 점 O는 두 대각선의 교점)

- $(1) \overline{AB} / \overline{|}$ $\overline{AD} / \overline{|}$
- $(2) \overline{AB} = \overline{} \cdot \overline{AD} = \overline{}$
- $(4) \overline{OA} = \overline{OB} = \overline{OB}$

Δ 오른쪽 그림과 같은 평행사 변형 ABCD에서 ∠B와 $\angle D$ 의 이등분선이 \overline{AD} . \overline{BC} 와 만나는 점을 각각 E. F라 하자. $\overline{AB} = 5 \text{ cm}$. \overline{BC} =7 cm일 때, \overline{ED} 의 길이를 구하시오.

5 오른쪽 그림과 같은 평행사변 형 ABCD에서 대각선 BD 위에 $\overline{BE} = \overline{DF}$ 가 되도록 두 점 E, F를 각각 잡았을 때, 다 음 중 옳지 않은 것은?

- \bigcirc $\overline{AF} = \overline{CE}$
- \bigcirc $\overline{AE} = \overline{CF}$
- \bigcirc \angle BAE= \angle DCF
- \bigcirc $\overline{AB} = \overline{EF}$
- \bigcirc \triangle ABE \equiv \triangle CDF

[6~8] 오른쪽 그림과 같은 평행사변형 ABCD에서 다음의 사각형은 모두 평 행사변형이 된다. 이때 평행사변형이 되 는 조건을 〈보기〉에서 각각 고르시오.

-⊪ 보기 ⊩-

- 두 쌍의 대변이 각각 평행하다.
- 두 쌍의 대변의 길이가 각각 같다.
- © 두 쌍의 대각의 크기가 각각 같다.
- ② 한 쌍의 대변이 평행하고 그 길이가 같다.
- ① 두 대각선이 서로 다른 것을 이등분한다.
- 6 \square AFCH
- 7 \square AGCE
- 8 \square APCQ

6. 여러 가지 사각형

● 여러 가지 사각형의 뜻과 성질

	<u></u> ب		성질	
직사각형	네 내각의 크기가 모두 같은 사각형		두 대각선은 길이가 같고, 서로 다른 것을 이동 분한다.	
마름모	네 변의 길이가 모두 같은 사각형	\Diamond	두 대각선은 서로 다른 것을 수직이등분한다.	
정사각형	네 내각의 크기가 모두 같고, 네 변의 길이가 모 두 같은 사각형	# #	두 대각선은 길이가 같고, 서로 다른 것을 수직 이등분한다.	
등변사다리꼴	아랫변의 양 끝 각의 크기가 같은 사다리꼴		평행하지 않은 한 쌍의 대변의 길이가 같고, 두 대각선의 길이가 같다.	# No. 1

● 여러 가지 사각형의 조건

- (1) 평행사변형이 직사각형이 되는 조건
 - ① 한 내각이 직각이다.
 - ② 두 대각선의 길이가 같다.
- (2) 평행사변형이 마름모가 되는 조건
 - ① 이웃하는 두 변의 길이가 같다.
 - ② 두 대각선이 수직이다.
- (3) 직사각형이 정사각형이 되는 조건
 - ① 이웃하는 두 변의 길이가 같다.
 - ② 두 대각선이 수직이다.
- (4) 마름모가 정사각형이 되는 조건
 - ① 한 내각이 직각이다.
 - ② 두 대각선의 길이가 같다.

 $\frac{\angle A=90^{\circ}}{\overline{AC}=\overline{BD}}$

● 등변사다리꼴의 성질의 활용

 $\Rightarrow \angle A + \angle B = 180^{\circ}$

△ABC≡△DCB (SAS 합동) (3) 오른쪽 그림과 같이

 \overline{AD} $//\overline{BC}$ 인 등변사다리꼴 \overline{ABCD} 의 점 \overline{DM} \overline{AB} 와 평행한 직선 \overline{DE} 를 그으면

- ① \square ABED는 평행사변형이므로 $\overline{AB} = \overline{DE}$
- ② $\triangle DEC$ 는 이등변삼각형이므로 $\overline{DE} = \overline{DC}$

The 그림과 같은 직사각형 ABCD에서 x, y의 값을 각각 구하시오. (단, 점 O는 두 대각선의 교점)

2 다음 그림과 같은 마름모 ABCD에서 *x*, *y*의 값을 각 각 구하시오. (단, 점 O는 두 대각선의 교점)

 $\mathbf{3}$ 다음 그림과 같이 $\overline{\mathrm{AD}}/\!\!/\overline{\mathrm{BC}}$ 인 등변사다리꼴 ABCD 에서 x,y의 값을 각각 구하시오.

- **4** 평행사변형 ABCD에 다음 조건을 추가할 때, 직사각 형이 되지 않는 것은?
- $\overline{\text{AC}} = \overline{\text{BD}}$
- ③∠A=90°
- $\textcircled{4} \overline{AB} \bot \overline{BC}$
- $\bigcirc \overline{AB} = \overline{BC}$

5 오른쪽 그림의 평행사변형 ABCD가 마름모가 되기 위 한 조건은?

- $\textcircled{1} \; \overline{AC} \bot \overline{BD}$
- \bigcirc $\overline{AC} \perp \overline{AD}$
- \bigcirc $\angle B + \angle C = 180^{\circ}$
- 4 $\overline{\text{BD}} = 2\overline{\text{OD}}$
- \bigcirc $\triangle A = \angle C$
- 6 오른쪽 그림의 직사각형 ABCD 가 정사각형이 되기 위한 조건을 모두 고르면? (단, 점 O는 두 대각 선의 교점) (정답 2개)

- \bigcirc $\overline{AB} = \overline{BC}$
- $\bigcirc \overline{AC} = \overline{BD}$
- \bigcirc \angle AOD= \angle BOC
- \bigcirc \angle AOB= \angle AOD
- $\bigcirc \overline{OA} = \overline{OC}$
- 오른쪽 그림의 마름모 ABCD가 정사각형이 되기 위한 조건을 모 두 고르면? (단, 점 O는 두 대각선 의 교점) (정답 2개)

- \bigcirc \triangle BAC= \angle DAC
- \bigcirc \angle ABD= \angle CBD
- \bigcirc \angle DAB= \angle ABC
- $\bigcirc \overline{OA} = \overline{OC}$
- $\bigcirc \overline{OA} = \overline{OB}$

- $\widehat{\mathbf{1}} \angle \mathbf{A} = \angle \mathbf{D}$
- \bigcirc $\overline{AB} = \overline{AD}$
- $\bigcirc \overline{AC} = \overline{DB}$
- ④ ∠ACB=∠DBC
- \bigcirc \triangle BAC= \triangle CDB

7. 여러 가지 사각형의 활용

● 여러 가지 사각형의 활용

(1) 평행사변형 ABCD에서 $\angle A$ 와 $\angle B$ 의 이등분선이 \overline{BC} , \overline{AD} 와 만나는 점을 각각 E,F라 할 때, $\Box ABEF$ 는

 \overline{AB} = \overline{BE} ➡ 마름모

(2) 평행사변형 ABCD에서 네 내 각의 이등분선의 교점으로 이 루어진 □EFGH는

∠E=∠F=∠G=∠H=90° **⇒** 직사각형

(3) 직사각형 ABCD에서 \overline{AD} , \overline{BC} 위에 \overline{BE} = \overline{DF} 인 두 점 E, F를 잡을 때, □EBFD는

△ABE≡△CDF(RHS 합동)이므로 $\overline{\mathrm{ED}} = \overline{\mathrm{AD}} - \overline{\mathrm{AE}} = \overline{\mathrm{BC}} - \overline{\mathrm{CF}} = \overline{\mathrm{BF}} \Rightarrow 평행사변형$

(4) 직사각형 ABCD의 대각선 BD 의 수직이등분선과 \overline{AD} , \overline{BC} 의 교점을 각각 E, F라 할 때,

□EBFD는

BD⊥EF ⇒ 마름모

(5) 평행사변형 ABCD에서 $\overline{AM} = \overline{MD}, \overline{BM} = \overline{CM}$ 일 때,
□ABCD는

∠A=∠D=90° **⇒** 직사각형

(6) 정사각형 ABCD에서 $\overline{AE} = \overline{BF} = \overline{CG} = \overline{DH}$ 인 네 점 E, F, G, H 를 잡을 때,□EFGH는

EF=FG=GH=HE, ∠E=∠F=∠G=∠H=90° ➡ 정사각형

(7) 직사각형 ABCD에서 $\overline{AD} = 2\overline{AB}$ 이고 \overline{AD} 와 \overline{BC} 의 중점을 각각 M, N이라
할 때, □MPNQ는

 $\angle M$ = $\angle P$ = $\angle N$ = $\angle Q$ = 90° , \overline{MP} = \overline{PN} = \overline{NQ} = \overline{QM} ⇒ 정사각형

(8) 평행사변형 ABCD에서 $\overline{AD}{=}2\overline{AB}$ 이고 \overline{AD} 와 \overline{BC} 의 중점을 각각 M, N이라
할 때, □MPNQ는

 $\angle M = \angle P = \angle N = \angle Q = 90^{\circ}$ 의사각형

오른쪽 그림과 같은 평행사변 형 ABCD에서 ∠A와 ∠B의 이등분선이 \overline{BC} , \overline{AD} 와 만나 는 점을 각각 E, F라 할 때,

5

오른쪽 그림과 같은 평행사변

형 ABCD에서 MB=MC일

때, □ABCD는 어떤 사각형

오른쪽 그림과 같은 정사각형

 $\overline{AE} = \overline{BF} = \overline{CG} = \overline{DH}$ 가 되도록

□EFGH는 어떤 사각형인지 말

네 점 E, F, G, H를 잡을 때,

ABCD의 각 변 위에

하시오.

인지 말하시오.

- □ABEF는 어떤 사각형인지 말하시오.
- 오른쪽 그림과 같은 평행사변 형 ABCD의 네 내각의 이등 분선의 교점을 E, F, G, H라 할 때, 다음 중 옳지 않은 것 은?

- \bigcirc \triangle HEF= \triangle FGH
- $\bigcirc \overline{EH} = \overline{FG}$
- $\Im \overline{EF} = \overline{HG}$
- \bigcirc 4 \angle FGH=90°
- $\bigcirc \overline{EH} = \overline{EF}$

오른쪽 그림과 같은 평행사 변형 ABCD에서

 $\overline{AD} = 2\overline{AB}$ 이고 \overline{AD} 와

 \overline{BC} 의 중점을 각각 M, N이

라 할 때. □MPNQ는 어떤 사각형인지 말하시오.

오른쪽 그림과 같은 직사각형 ABCD에서 $\overline{BE} = \overline{DF}$ 일 때, □EBFD는 어떤 사각형인지 말하시오.

▲ 오른쪽 그림과 같은 직사각 형 ABCD에서 대각선 BD 의 수직이등분선이 AD, BC 와 만나는 점을 각각 E. F라

하자. $\overline{ED} = 6 \text{ cm}$ 일 때, \overline{DF} 의 길이를 구하시오.

(단, 점 O는 두 대각선의 교점)

8 오른쪽 그림에서 □ABCD는 $\overline{AD} = 2\overline{AB}$ 인 평행사변형이다. CD를 연장하여 $\overline{EC} = \overline{CD} = \overline{DF}$ 가 되도록 두 점 E. F를 잡고 \overline{AE} 와 \overline{BF} 의 교 점을 P라 할 때, □ABGH는

어떤 사각형인지 말하시오.

8. 여러 가지 사각형 사이의 관계

● 여러 가지 사각형 사이의 관계

(1) 여러 가지 사각형 사이의 관계

- ① 한 쌍의 대변이 서로 평행하다.
- ② 다른 한 쌍의 대변이 서로 평행하다.
- ③ 한 내각이 직각이다. 또는 두 대각선의 길이가 같다.
- ④ 이웃하는 두 변의 길이가 서로 같다. 또는 두 대각선은 서로 수직 이다.

(2) 여러 가지 사각형의 대각선의 성질

◎ 평행선과 넓이

- (1) 평행선과 삼각형의 넓이
 - ① l // m이면

$$\triangle ABC = \triangle DBC = \triangle EBC = \frac{1}{2}ah$$

② AC // DE일 때, □ABCD=△ABE

(2) 높이가 같은 삼각형의 넓이의 비

다음 표는 여러 가지 사각형의 성질을 나타낸 것이다. 옳으면 ○표, 옳지 않으면 ×표를 하시오.

사각형의 종류 사각형의 성질	사다 리꼴	평행 사변형	직사 각형	마름모	정사 각형
(1) 두 쌍의 대변이 각각					
평행하다.					
(2) 두 쌍의 대변의 길이					
가 각각 같다.					
(3) 두 쌍의 대각의 크기					
가 각각 같다.					
(4) 두 대각선이 서로 다					
른 것을 이등분한다.					
(5) 두 대각선의 길이가					
서로 같다.					
(6) 두 대각선이 서로수					
직이다.					

- **2** 다음 중 옳지 <u>않은</u> 것은?
 - ① 평행사변형의 한 내각의 크기가 90°이면 직사각형 이다.
 - ② 평행사변형의 두 대각선의 길이가 같으면 마름모이다.
 - ③ 직사각형의 두 대각선이 서로 수직이면 정사각형이 다.
 - ④ 평행사변형의 두 대각선이 서로 수직이면 마름모이 다.
 - ⑤ 평행사변형의 이웃하는 두 변의 길이가 같으면 마름모이다.
- **3** 다음 〈보기〉 중 두 대각선의 길이가 같은 사각형을 모두 고르시오.

✓ 보기 II—

- ⊙ 평행사변형
- © 등변사다리꼴
- ⓒ 마름모
- ② 정사각형
- 교 직사각형
- ⊕ 사다리꼴

- **4** 다음 중 사각형과 그 사각형의 각 변의 중점을 연결하 여 만든 사각형을 짝 지은 것으로 옳지 않은 것은?
 - ① 사각형 ➡ 평행사변형
 - ② 정사각형 ➡ 정사각형
 - ③ 평행사변형 ➡ 평행사변형
 - ④ 직사각형 ➡ 마름모
 - ⑤ 등변사다리꼴 ➡ 등변사다리꼴
- 5 오른쪽 그림과 같이 □ABCD 의 꼭짓점 D를 지나고 AC에 평행한 직선이 BC의 연장선과 만나는 점을 E라 하자.

 \triangle ABC=21 cm²,

△ACE=15 cm²일 때, □ABCD의 넓이를 구하시오.

6 오른쪽 그림에서 BD: DC=1: 3이고 △ABC=40 cm²일 때, △ABD의 넓이를 구하시오.

 7
 오른쪽 그림과 같은 평행사변 형 ABCD에서 BD // EF일 때, 다음 중 넓이가 나머지 넷과 다른 하나는?

- \bigcirc \triangle ABE
- ② △DAF
- \bigcirc \triangle BED
- ⑤ △DEC
- \bigcirc \triangle DBF

9. 닮음의 뜻과 성질

● 닮음의 뜻

(1) 닮음: 한 도형을 일정한 비율로 확대 또는 축소한 것이 다른 도형과 합동이 될 때, 이 두 도형은 서로 닮음인 관계에 있다고 한다.

(2) 닮은 도형: 서로 닮음인 관계에 있는 두 도형

(3) 기호 : $\triangle ABC$ 와 $\triangle DEF$ 가 닮은 도형일 때, 이것을 기호로

 $\triangle ABC \circ \triangle DEF$

와 같이 나타낸다. 이때 꼭짓점의 기호는 대응하는 순서대로 쓴다.

참고 △ABC와 △DEF에서

① 두 삼각형의 넓이가 같다. ⇒ △ABC=△DEF

② 두 삼각형이 합동이다. ⇒ △ABC = △DEF

③ 두 삼각형이 닮음이다. \Rightarrow \triangle ABC \bigcirc \triangle DEF

(4) 닮은 도형의 예

① 항상 닮은 도형: 모든 원, 모든 정다각형, 모든 구, 모든 정다면체, 모든 직각이등변삼각형

② 두 이등변삼각형이 닮음이 되는 경우 : 두 꼭지각의 크기가 같을 때

③ 두 부채꼴이 닮음이 되는 경우 : 두 부채꼴의 중심각의 크기가 같을 때

닮은 두 평면도형에서

(1) 대응하는 변의 길이의 비는 일정하다.

 $\rightarrow \overline{AB} : \overline{DE} = \overline{BC} : \overline{EF} = \overline{AC} : \overline{DF}$

(2) 대응하는 각의 크기는 각각 같다.

 $\Rightarrow \angle A = \angle D, \angle B = \angle E, \angle C = \angle F$

(3) (평면도형의 닮음비)=(대응하는 변의 길이의 비)

참고 닮음비가 1:1인 두 닮은 도형은 서로 합동이다.

● 입체도형에서 닮음의 성질

닮은 두 입체도형에서

(1) 대응하는 모서리의 길이의 비는 일정하다.

 $\rightarrow \overline{AB} : \overline{EF} = \overline{AC} : \overline{EG} = \overline{BC} : \overline{FG} = \cdots$

(2) 대응하는 면은 닮은 도형이다.

 \rightarrow \triangle ABC \bigcirc \triangle EFG, \triangle BCD \bigcirc \triangle FGH, \cdots

(3) (입체도형의 닮음비)=(대응하는 모서리의 길이의 비)

- 다음 중 옳지 않은 것은?
 - ① 닮음인 두 도형은 모양이 같다.
 - ② 합동인 두 도형은 서로 닮음이다.
 - ③ 닮음인 두 도형의 대응각의 크기는 같다.
 - ④ 닮음인 두 도형의 넓이는 같다.
 - ⑤ 닮음은 기호 ∞를 사용하여 나타낸다.
- 2 다음 중 옳은 것은?
 - ① 한 도형을 일정한 비율로 확대 또는 축소한 것이 다 른 도형과 합동일 때, 이 두 도형은 서로 합동인 관 계에 있다.
 - ② 두 닮은 도형에서 대응하는 변의 길이의 비를 그 두 도형의 닮음이라고 한다.
 - ③ 대응하는 변의 길이의 비가 일정할 때 두 삼각형은 서로 합동인 도형이다.
 - ④ 두 부채꼴의 중심각의 크기가 같을 때 서로 닮음이 다
 - ⑤ 대응하는 각의 크기가 서로 같을 때 두 사각형은 서 로 닮은 도형이다.
- 3 다음 〈보기〉 중 항상 닮은 도형인 것을 모두 고르시오.

-⊪ 보기 ⊪-

- 두 원
- ① 두 정삼각형
- ⓒ 두 평행사변형
- ② 두 정사면체
- 교 두 직각삼각형
- ⓑ 두 등변사다리꼴
- 4 다음 그림에서 두 삼각형이 서로 닮은 도형일 때, 닮음 비는?

③ b:d

- ① a:d
- $\bigcirc a:f$
- (4) c : d
- $\bigcirc c:f$

5 아래 그림에서 □ABCD∞□A'B'C'D'일 때, 다음 중 옳은 것을 모두 고르면? (정답 2개)

- ① □ABCD와 □A'B'C'D'의 닮음비는 5:3이다.
- ② \overline{AD} 에 대응하는 변은 $\overline{A'D'}$ 이다.
- ③ ∠B'=85°, ∠D'=70°이다.
- ④ $\overline{A'B'}$ 의 길이는 5 cm이다.
- \bigcirc \overline{DC} : $\overline{D'C'}$ =2 : 3이다.
- 오른쪽 그림에서 두 삼각기 등은 서로 닮은 도형이다. \overline{AB} 에 대응하는 모서리가 $\overline{A'B'}$ 일 때, 다음 중 옳지 않 은 것은?

- \bigcirc $\triangle DEF \circ \triangle D'E'F'$
- ② \square BEFC \square B'E'F'C'
- \bigcirc \triangle ABC = \triangle A'B'C' = \triangle D'E'F'
- $\overline{A'B'}$ B'E' $\overline{\mathrm{BE}}$ \overline{AB}
- \bigcirc \triangle ABC \equiv \triangle A'B'C'
- 다음 그림에서 두 직육면체는 서로 닮은 도형이다. \overline{AB} 와 \overline{II} 가 서로 대응하는 모서리일 때. x+y의 값을 구하시오.

10. 삼각형의 닮음 조건

● 삼각형의 닮음 조건

(1) SSS 닮음: 세 쌍의 대응 하는 변의 길이의 비가 같다.

참고 $\overline{AB} : \overline{BC} = \overline{BD} : \overline{CD} = \overline{AD} : \overline{BD} = 2 : 1$ $\therefore \triangle ABD \hookrightarrow \triangle BCD$

(2) SAS 닮음 : 두 쌍의 대응 하는 변의 길이의 비가 같고, 그 끼인각의 크기

가 같다.

참고 \overline{AB} : $\overline{AD} = \overline{AC}$: $\overline{AB} = 3:2$, $\angle A \vdash \overline{AS}$ $\therefore \triangle ABC \circ \triangle ADB$

(3) AA **닮음**: 두 쌍의 대응하는 각의 크기가 각각 같다.

● 직각삼각형의 닮음

- (1) ① △ABC ∽ △FDC (AA 닮음)
 - ② △ABC∽ △ADE(AA 닮음)
 - ③ $\triangle FDC \circ \triangle FBE(AA 닮음)$

 $\triangle ABC \Leftrightarrow \triangle FDC \Leftrightarrow \triangle ADE \Leftrightarrow \triangle FBE$

- (2) ① \triangle ABD \bigcirc \triangle ACE(AA 닮음)
 - ② △ABD∽ △FBE(AA 닮음)
 - ③ △FBE∽ △FCD(AA 닮음)

 $\triangle ABD \Leftrightarrow \triangle ACE \Leftrightarrow \triangle FBE \Leftrightarrow \triangle FCD$

직각삼각형에서 닮음의 활용

- (1) $\triangle ABC \infty \triangle HBA(AA 닮음)$ $c: d=a: c=b: h \Rightarrow c^2=ad$
- (3) \triangle HBA \bigcirc \triangle HAC(AA 닮음) $d:h=h:e=c:b\Rightarrow h^2=de$
- (2) △ABC∽ △HAC(AA 닮음)

$$c: h=a: b=b: e \Rightarrow b^2=ae$$

 $(4) \triangle ABC = \frac{1}{2} \times b \times c = \frac{1}{2} \times a \times h$ ∴ bc = ah

 $\triangle ABC \Leftrightarrow \triangle HBA \Leftrightarrow \triangle HAC$

● 사각형에서 닮음인 삼각형 찾기

(1) $\triangle ADO \sim \triangle CBO(AA$ 닮음)

(2) △ABE∽ △ADF(AA 닮음)

● 접힌 도형에서 삼각형의 닮음

(1) 직사각형

 \triangle BEC' \equiv \triangle BEC(ASA 합동) \triangle ABC' \wp \triangle DC'E(AA 닮음)

 $\triangle ABE \equiv \triangle C'DE(ASA 합동)$ $\triangle BCD \sim \triangle BFE(AA 닮음)$ $\triangle EBD$ 는 이등변삼각형

(2) 정삼각형

 \triangle ADF \equiv \triangle EDF(SSS 합동) \triangle DBE \bowtie \triangle ECF(AA 닮음) 오른쪽 그림에서
 △ABC와 △DEF가
 서로 닮은 도형이 되려
 면 다음 중 어느 조건을
 만족해야 하는가?

- ① $\angle A=85^{\circ}$, $\angle D=40^{\circ}$
- \bigcirc \angle C=55°, \angle F=80°
- $\Im \overline{AB} = 6 \text{ cm}, \overline{DE} = 8 \text{ cm}$
- $\bigcirc \overline{AC} = 4 \text{ cm}, \overline{DF} = 6 \text{ cm}$
- $\odot \overline{AB} = 15 \text{ cm}, \overline{DF} = 12 \text{ cm}$
- $\mathbf{2}$ 다음 그림에서 x의 값을 구하시오.

3 오른쪽 그림에서 서로 닮음인 삼각형이 <u>잘못</u> 짝 지어진 것 은?

- \bigcirc \triangle ABC \bigcirc \triangle FDC
- ② $\triangle ADE \Leftrightarrow \triangle FBE$
- \bigcirc \triangle ABC \bigcirc \triangle FBE
- $\textcircled{4} \triangle EBC \circ \triangle EDC$
- \bigcirc \triangle FDC \bigcirc \triangle ADE
- 4 오른쪽 그림과 같은 △ABC에 서 다음 중 나머지 네 삼각형과 닮은 삼각형이 <u>아닌</u> 것은?

- \bigcirc \triangle ABD
- ② △ACE
- ③ △CBE
- ④ △FBE
- ⑤ △FCD

오른쪽 그림과 같이 AD // BC
 인 사다리꼴 ABCD에서 x의
 값을 구하시오.
 (단, 점 ○는 두 대각선의 교점)

 7
 오른쪽 그림은 직사각형

 ABCD를 BP를 접는 선으로
 하여 꼭짓점 C가 AD 위의 점

 C'에 오도록 접은 것이다.
 AB=3, AC'=4, BC=5일

 때, PC'의 길이를 구하시오.

 8
 오른쪽 그림은 정삼각형

 ABC를 DF를 접는 선으로 하여 꼭짓점 A가 BC 위의 점 E

 에 오도록 접은 것이다.

 $\overline{\rm DB}$ =8 cm, $\overline{\rm BE}$ =5 cm,

 $\overline{\mathrm{DE}}$ = $7\,\mathrm{cm}$ 일 때, $\overline{\mathrm{AF}}$ 의 길이를 구하시오.

11. 삼각형과 평행선

● 삼각형에서 평행선과 선분의 길이의 비

 \triangle ABC에서 한 직선이 \overline{AB} , \overline{AC} 또는 그 연장선과 만나는 점을 각각 D, E라 할 때, 다음이 성립한다.

(1) $\overline{\mathrm{BC}} / / \overline{\mathrm{DE}}$ 이면 a:b=c:d=e:f 또는 a:b=c:d

(2) a:b=c:d=e:f 또는 a:b=c:d이면 \overline{BC} // \overline{DE} 이다.

삼각형에서 선분의 길이의 비의 응용

(1)

 $\overline{AD} : \overline{AB} = \overline{AE} : \overline{AC} = \overline{AG} : \overline{AF}$

 $=\overline{\mathrm{DG}}:\overline{\mathrm{BF}}=\overline{\mathrm{GE}}:\overline{\mathrm{FC}}$

(2)

 $\overline{\mathrm{AD}}:\overline{\mathrm{DB}}$

 $=\overline{AE}:\overline{EC}$

 $\overline{\mathrm{AD}}:\overline{\mathrm{DB}}$

 $=\overline{AF}:\overline{FE}$

삼각형의 두 변의 중점을 연결한 선분

(1)

 $\overline{AM} = \overline{MB}, \overline{AN} = \overline{NC} \implies \overline{MN} / \overline{BC}, \overline{MN} = \frac{1}{2}\overline{BC}$

(2)

 $\overline{AM} = \overline{MB}, \overline{MN} / / \overline{BC} \rightarrow$

● 삼각형의 각의 이등분선

(1) 삼각형의 내각의 이등분선

△ABC에서 ∠A의 이등분선이 BC와 만나는 점을 D라 하면

 \overline{AB} : \overline{AC} = \overline{BD} : \overline{CD}

 $\overline{BA} : \overline{AE} = \overline{BD} : \overline{DC}$

 $ightharpoonup \overline{AB} : \overline{AC} = \overline{BD} : \overline{CD}$

(2) 삼각형의 외각의 이등분선

△ABC에서 ∠A의 외각의 이등분선이 \overline{BC} 의 연장선과 만나는 점을 D라 하면

 $\overline{AB} : \overline{AC} = \overline{BD} : \overline{CD}$

 $\rightarrow \overline{AB} : \overline{AC} = \overline{BD} : \overline{CD}$

이등변삼각형

다음 그림에서 $\overline{\mathrm{BC}} / / \overline{\mathrm{DE}}$ 일 때, x의 값을 구하시오.

4 오른쪽 그림에서 $\overline{DE} / / \overline{BC}$, $\overline{FE} / / \overline{DC}$ 일 때, x의 값을 구하시오.

 $\mathbf{2}$ 다음 중 $\overline{\mathrm{BC}} / / \overline{\mathrm{DE}}$ 가 <u>아닌</u> 것은?

5 오른쪽 그림에서 점 D는 \overline{AB} 의 중점이고 $\overline{AE} = \overline{EF} = \overline{FC}$ 이다. \overline{BF} 와 \overline{CD} 의 교점을 G라 할 때, x의 값을 구하시오.

소른쪽 그림과 같은 △ABC
 에서 ∠A의 이등분선이 BC
 와만나는 점을 D라 할 때, x의
 값을 구하시오.

 $\mathbf{3}$ 오른쪽 그림에서 $\overline{\mathrm{EF}}/\!\!/\overline{\mathrm{BC}}$ 일 때, x의 값을 구하시오.

오른쪽 그림과 같은
 △ABC에서 BC의 연장
 선과 ∠A의 외각의 이등
 분선의 교점을 D라 할 때,
 CD의 길이를 구하시오.

핵심 정리

12. 평행선과 선분의 길이의 비

● 평행선과 선분의 길이의 비

세 개의 평행선이 다른 두 직선과 만나서 생기는 선분의 길이의 비는 같다.

→ *l* // *m* // *n*이면 *a* : *b*=*a'* : *b'*

● 사다리꼴에서 평행선과 선분의 길이의 비(1)

 \overline{AD} $//\overline{BC}$ 인 사다리꼴 \overline{ABCDM} \overline{EF} $//\overline{BC}$ 일 때, \overline{EF} 의 길이 구하기

[방법 1] 평행선 이용

① △ABH에서

$$\overline{\mathrm{EG}}:\overline{\mathrm{BH}}=m:(m+n)$$

$$\therefore \overline{\mathrm{EG}} = \frac{m(b-a)}{m+n}$$

② \square AHCD에서

$$\overline{\text{GF}} = \overline{\text{AD}} = \overline{\text{HC}} = a$$

$$\therefore \overline{\mathrm{EF}} = \underline{\overline{\mathrm{EG}}} + \underline{\overline{\mathrm{GF}}} = \frac{an + bm}{m + n}$$

$$\overline{\mathrm{EG}}$$
: $\overline{\mathrm{BC}}$ = m : $(m+n)$

$$\therefore \overline{\mathrm{EG}} = \frac{bm}{m+n}$$

② △CDA에서

$$\overline{GF}$$
: $\overline{AD} = n$: $(m+n)$

$$\therefore \overline{\mathrm{GF}} = \frac{an}{m+n}$$

$$\therefore \overline{\mathrm{EF}} = \underline{\overline{\mathrm{EG}}}_{\bigcirc} + \underline{\overline{\mathrm{GF}}}_{\bigcirc} = \frac{an + bm}{m + n}$$

● 사다리꼴에서 평행선과 선분의 길이의 비(2)

 $\overline{\mathrm{AD}} / / \overline{\mathrm{EF}} / / \overline{\mathrm{BC}}$ 이면

$$\bigcirc \overline{\text{EF}} = \frac{2ab}{a+b}$$

● 사다리꼴에서 두 변의 중점을 연결한 선분

 \overline{AD} // \overline{MN} // \overline{BC} 이고 두 점 M. N이 각각 \overline{AB} . \overline{DC} 의 중 점일 때

$$\overline{MN} = \frac{1}{2}b + \frac{1}{2}a$$

$$=\frac{1}{2}(a+b)$$

$$\overline{PQ} = \frac{1}{2}b - \frac{1}{2}a$$

$$=\!\!\frac{1}{2}(b\!-\!a)$$

● 평행선과 선분의 길이의 비의 응용

 \overline{AC} 와 \overline{BD} 의 교점을 E라 할 때. $\overline{AB}/\overline{EF}/\overline{DC}$ 이면

(1) $\triangle ABE \triangle \triangle CDE(AA 닮음)$ 이므로 $\overline{AE} : \overline{CE} = \overline{BE} : \overline{DE} = \overline{AB} : \overline{CD} = a : b$

(2) $\triangle BEF$ $\bigcirc \triangle BDC(AA 닮음)$ 이므로 $\overline{BE}:\overline{BD}=\overline{EF}:\overline{DC}$ 에서

$$a:(a+b)=\overline{\mathrm{EF}}:b$$
 $\therefore \overline{\mathrm{EF}}=\frac{ab}{a+b}$

$$\overline{\text{EF}} = \frac{ab}{a+b}$$

다음 그림에서 l // m // n일 때, x의 값을 구하시오.

 \overline{AB} , \overline{DC} 의 중점을 각각 M, N이라 할 때, x의 값을 구하시오.

 $\mathbf{2}$ 다음 그림에서 a // b // c // d일 때, x+y의 값을 구하시오.

6 오른쪽 그림과 같이 AD // BC 인 사다리꼴 ABCD에서 두 점 M, N은 각각 AB, DC의 중점 이다. MP=PQ=QN이고 AD=4 cm일 때, BC의 길이 를 구하시오.

3 오른쪽 그림과 같이 $\overline{AD}/\overline{BC}$ 인 사다리꼴 \overline{ABCD} 에서 $\overline{EF}/\overline{BC}$ 일 때, x의 값을 구하시오.

7 오른쪽 그림에서 AB // EF // DC일 때, x의 값을 구하시오.

4 오른쪽 그림에서 AD // EF // BC이고 AD=6, BC=12일 때, EF의 길이를 구하시오.

핵심 정리

13. 삼각형의 무게중심과 닮음의 활용

● 삼각형의 중선

(1) 중선: 삼각형의 한 꼭짓점과 그 대변의 중점을 이은 선분

(2) 성질: 중선에 의해 나누어진 두 삼각형의 넓이는 같다.

 $=\frac{1}{2}\triangle ABC$

참고 $\triangle PBD = \triangle PCD$, $\triangle ABP = \triangle ACP$

● 삼각형의 무게중심

(1) 무게중심: 삼각형의 세 중선

의 교점

(2) 성질: 삼각형의 무게중심은 세 중선의 길이를 각 꼭짓점

으로부터 2:1로 나눈다.

 $\rightarrow \overline{AG} : \overline{GD} = \overline{BG} : \overline{GE} = \overline{CG} : \overline{GF} = 2 : 1$

● 삼각형의 무게중심과 넓이

세 중선에 의해 나누어진 6개의 삼각형의 넓이는 모두 같다.

(1) $\triangle AFG = \triangle BFG = \triangle BDG = \triangle CDG = \triangle CEG = \triangle AEG = \frac{1}{6} \triangle ABC$

(2) $\triangle GAB = \triangle GBC = \triangle GCA = \frac{1}{3} \triangle ABC$

삼각형의 무게중심의 응용

(1) △ABC의 무게중심을 G라 할 때 $\overline{\text{CG}}$: $\overline{\text{GF}}$ =2:10]⊋.

 \triangle GHF \bigcirc \triangle GDC(AA 닮음)이므

星 $\overline{GH}:\overline{GD}=1:2.\overline{AH}=\overline{HD}$

 \rightarrow \overline{AH} : \overline{HG} : \overline{GD} =3:1:2

(2) 평행사변형 ABCD에서

① 점 E는 △ABC의 무게중심. 점 F는 △ACD의 무게중심

② $\overline{\text{BE}}$: $\overline{\text{EO}}$ = $\overline{\text{DF}}$: $\overline{\text{FO}}$ =2:1

이고, $\overline{BO} = \overline{DO}$ 이므로

 $\overline{BE} = \overline{EF} = \overline{FD}$

● 닮은 도형의 넓이의 비와 부피의 비

(1) 닮음비가 m:n인 두 평면도형에서

① 둘레의 길이의 비 **⇒** *m* : *n*

② 넓이의 비 **⇒** m^2 : n^2

(2) 닮음비가 m:n인 두 입체도형에서

① 겉넓이의 비 **⇒** m^2 : n^2

② 부피의 비 **→** m^3 : n^3

◎ 닮음의 활용

직접 측정하기 어려운 높이, 거리 등을 도형의 닮음을 이용하여 간접적인 방법으로 측량할 수 있다.

(1) 축도: 어떤 도형을 일정한 비율로 줄인 그림

(2) 축척 : 축도에서 실제 도형을 줄인 비율

① (축척)= (축도에서의 거리)

② (축도에서의 거리)=(실제 거리)×(축척)

③ (실제 거리)= (축도에서의 거리)

다음 그림에서 점 G가 \triangle ABC의 무게중심일 때, x, y의 값을 각각 구하시오.

(1)

(2)

5 오른쪽 그림과 같은 평행사변 형 $ABCD에서 \overline{BC}$, \overline{CD} 의 중 점을 각각 M, N이라 하자. BD=36 cm일 때, EF의 길이 를 구하시오.

오른쪽 그림에서 점 G는 △ABC의 무게중심이고 △ABC=60 cm²일 때, 어두 운 부분의 넓이를 구하시오.

오른쪽 그림과 같은 △ABC 에서 두 점 M, N은 각각 \overline{AB} , \overline{AC} 의 중점이다. $\triangle AMN = 3 \text{ cm}^2 \text{ g} \text{ m}$.

☐ MBCN의 넓이를 구하시오.

오른쪽 그림에서 △ABC의 세 중선의 교점을 G라 할 때, 다음 중 옳지 않은 것은?

$$3 \triangle ABG = \frac{1}{3} \triangle ABC$$

- $\textcircled{4} \triangle ABC = 6 \triangle BDG$
- \bigcirc \triangle BDG \equiv \triangle CDG

서로 닮음인 두 직육면체의 겉넓이의 비가 16:25이 다. 큰 직육면체의 부피가 1000 cm³일 때, 작은 직육 면체의 부피를 구하시오.

▲ 오른쪽 그림에서 점 G는 △ABC의 무게중심이다. HG=2 cm일 때, AD의 길이 를 구하시오.

8 축척이 $\frac{1}{1000}$ 인 지도에서 실제 거리가 $400 \, \text{m}$ 인 두 지 점 사이의 지도상의 거리를 구하시오.

핵심 정리

14. 피타고라스 정리

● 피타고라스 정리

직각삼각형에서 직각을 낀 두 변

- 의 길이를 a, b라 하고 빗변의 길
- 이를 c라 하면

참고 암기하면 편한 피타고라스의 수

 \Rightarrow (3, 4, 5), (5, 12, 13), (6, 8, 10), (8, 15, 17), (9, 40, 41), ...

$a^2 = c \times \overline{\text{DB}}$

◎ 피타고라스 정리의 설명(1)

$$b^2 = c \times \overline{AD}$$

.....(¬)(L)

①+①을 하면

$$a^2+b^2=c\times(\overline{\rm DB}+\overline{\rm AD})$$

$$a^2+b^2=c\times c$$

$$\therefore a^2 + b^2 = c^2$$

피타고라스 정리의 설명 (2)

 $\triangle EBC \equiv \triangle ABF \quad \triangle EBC = \triangle EBA$

 $\triangle EBA = \triangle LBF$

 $\triangle BCH \equiv \triangle GCA$ $\triangle BCH = \triangle ACH$ $\triangle GCA = \triangle GCL$ $\therefore \Box ACHI = \Box LMGC$

 $\triangle ACH = \triangle GCL$

 $\triangle ABF = \triangle LBF$ $\therefore \Box ADEB = \Box BFML$

(SAS 합동)

(큰 정사각형의 넓이)

- =(작은 두 정사각형의 넓이의 합)
- \square BFGC
- $=\Box ADEB + \Box ACHI$
- $\therefore c^2 = a^2 + b^2$

● 피타고라스 정리의 설명(3)

$\Box \text{CDEF}$

 $=\Box AGHB + 4 \triangle ABC$

 $\therefore c^2 = a^2 + b^2$

● 피타고라스 정리의 설명 (4)

 \square ABDE

 $=\Box CFGH + 4 \triangle ABC$

 $\therefore c^2 = a^2 + b^2$

◎ 종이접기

 $\triangle ABP \circ \triangle PCQ$ (AA 닮음)

△EBD는 이등변삼각형이므로

 $\triangle EAB \equiv \triangle EC'D$

다음 그림에서 x의 값을 구하시오.

다음 그림에서 x+y의 값을 구하시오.

3오른쪽 그림과 같은 사다리꼴ABCD에서 AD=4,BC=7, CD=5일 때, x의 값을 구하시오.

4오른쪽 그림과 같이 $\overline{AB}=6$,
 $\overline{BC}=8$ 인 직사각형 ABCD의
꼭짓점 A에서 대각선 BD에
내린 수선의 발을 H라 할 때,
 \overline{AH} 의 길이를 구하시오.

5 오른쪽 그림은 ∠A=90°인 직각삼각형 ABC의 각 변을 한 변으로 하는 3개의 정사각 형을 그린 것이다. 다음 중 옳 지 않은 것은?

- \bigcirc \triangle GCA= \triangle BCH
- \bigcirc \triangle GCA= \triangle ACH
- \bigcirc \square ADEB= \square BFML
- $\textcircled{4} \triangle EBC = \triangle EBA$
- \bigcirc BFGC = \triangle ABC
- 오른쪽 그림과 같이 한 변의 길이가 21인 정사각형 ABCD에서 ĀE=BF=CG=DH=9일때, □EFGH의 둘레의 길이를 구하시오.

오른쪽 그림에서 □ABCD는 한 변의 길이가 13 cm인 정사각 형이고
 ĀE=BF=CG=DH=5 cm 일 때, □EFGH의 넓이를 구하시오.

8 오른쪽 그림과 같이 ĀB=9, BC=15인 직사각형 ABCD 에서 ĀP를 접는 선으로 하여 꼭짓점 D가 BC 위의 점 Q에 오도록 접었을 때, △CPQ의 넓이를 구하시오.

핵심 정리

15. 피타고라스 정리의 성질

● 삼각형의 각의 크기와 변의 길이 사이의 관계

 \triangle ABC에서 $\overline{AB}=c$, $\overline{BC}=a$, $\overline{CA}=b$ 일 때 (단, c가 가장 긴 변의 길이)

(1) $\angle C < 90^\circ \iff c^2 < a^2 + b^2$: 예각삼각형 (2) $\angle C = 90^\circ \iff c^2 = a^2 + b^2$: 직각삼각형

(3) ∠C>90° ← c²>a²+b² : 둔각삼각형

● 사각형에서 피타고라스 정리의 활용

(1) $\overline{AB}^2 + \overline{CD}^2 = \overline{BC}^2 + \overline{AD}^2$

(2) 직사각형 ABCD의 내부에 임의의 한 점 P가 있을 때 $\overline{PA}^2 + \overline{PC}^2 = \overline{PB}^2 + \overline{PD}^2$

● 직각삼각형에서 피타고라스 정리의 활용

 $\overline{DE}^2 + \overline{BC}^2 = \overline{BE}^2 + \overline{CD}^2$

◎ 반원에서 피타고라스 정리의 활용

(1) P+Q=R

(2) $S_1 + S_2 = \triangle ABC = \frac{1}{2}bc$

◎ 최단 거리

선이 지나간 부분의 전개도를 그린다.

- 세 변의 길이가 각각 다음과 같이 주어진 삼각형 중에 서 직각삼각형인 것을 모두 고르면? (정답 2개)
 - ① 3 cm, 5 cm, 7 cm
 - ② 5 cm, 6 cm, 7 cm
 - 3 6 cm, 8 cm, 9 cm
- ④ 7 cm, 24 cm, 25 cm
 - ⑤ 9 cm, 12 cm, 15 cm

5 오른쪽 그림과 같이
∠A=90°인 직각삼각형
ABC에서 BE=7,
CD=9일 때, BC²+DE²
의 값을 구하시오.

 $\mathbf{2}$ 오른쪽 그림과 같은 $\triangle ABC$ 에서 $\overline{AB}=5$, $\overline{AC}=4$ 일 때, $\angle A<90^{\circ}$ 가 되도록 하는 자연수 a의 값을 구하시오.

(단, a>5)

6 오른쪽 그림과 같이 ∠B=90° 인 직각삼각형 ABC의 세 변을 지름으로 하는 세 반원의 넓이를 각각 *P*, *Q*, *R*라 하자. *Q*의 넓이 가 15π cm², *R*의 넓이가 20π cm²일 때, *P*의 넓이를 구하시오.

3 오른쪽 그림과 같은 사각형 ABCD에서 AC⊥BD이고 두 대각선의 교점을 O라 하자. AB=3, AD=4, BC=5일 때, x^2 의 값을 구하시오.

7 오른쪽 그림과 같이 ∠A=90°
 인 직각삼각형 ABC의 세 변을
 각각 지름으로 하는 세 반원을
 그렸다. AB=3 cm,

 $\overline{\mathrm{AC}}$ = $4~\mathrm{cm}$ 일 때, 어두운 부분의 넓이를 구하시오.

4 오른쪽 그림과 같이 사각형 ABCD의 내부에 한 점 P가 있다. $\overline{PA} = 5$, $\overline{PB} = 4$, $\overline{PC} = 3$ 일 때, x^2 의 값을 구하시오.

8 오른쪽 그림과 같은 직육면체의 겉면을 따라 꼭짓점 B에서출발하여 CG를 지나 꼭짓점 H에 이르는 최단 거리를 구하시오.

핵심 정리

16. 경우의 수(1)

● 사건과 경우의 수

(1) 사건: 동일한 조건에서 반복할 수 있는 실험이나 관찰에 의해 나타나는 결과

(2) 경우의 수 : 어떤 사건이 일어날 수 있는 경우의 가짓수

● 두 사건이 동시에 일어나지 않을 때

사건 A가 일어나는 경우의 수가 m, 사건 B가 일어나는 경우의 수가 n이면

(사건 A 또는 사건 B가 일어나는 경우의 수)=m+n

● 두 사건이 동시에 일어날 때

사건 A가 일어나는 경우의 수가 m, 그 각각의 경우에 대하여 사건 B가 일어나는 경우의 수가 n이면 (사건 A와 사건 B가 동시에 일어나는 경우의 수 $)=m\times n$

- ⓓ 3종류의 볼펜과 5종류의 색연필이 있다.
 - ┌이 중에서 한 자루를 선택하는 경우의 수 ➡ 3+5=8
 - _볼펜과 색연필을 각각 한 자루씩 선택하는 경우의 수 ➡ 3×5=15

● 서로 다른 두 개의 주사위를 동시에 던질 때, 두 눈의 수의 합과 차

- 모든 경우의 수 **⇒** 6×6=36
- 두 눈의 수의 합

두 눈의 수의 합	2	3	4	5	6	7	8	9	10	11	12
경우의 수	1	2	3	4	5	6	5	4	3	2	1

• 두 눈의 수의 차

두 눈의 수의 차	0	1	2	3	4	5
경우의 수	6	10	8	6	4	2

● 가위바위보

A, B 두 명이 가위바위보를 할 때 A, B, C 세 명이 가위바위보를 할 때 • 모든 경우의 수 ➡ 3×3=9 • 모든 경우의 수 ⇒ 3×3×3=27 • 승부가 결정되는 경우의 수 : 18 ① 한 사람만 이기는 경우의 수:9 ② 두 사람이 이기는 경우의 수:9 ⊢A가 이기는 경우 : 3가지 ⊢A, B가 이기는 경우: 3가지 −B가 이기는 경우 : 3가지 -B. C가 이기는 경우 : 3가지 • A가 이기는 경우의 수 : 3 └C가 이기는 경우 : 3가지 └C, A가 이기는 경우 : 3가지 • B가 이기는 경우의 수 : 3 • 비기는 경우의 수 : 9 • 비기는 경우의 수 : 3 → 모두 같은 것을 내는 경우: 3가지 모두 다른 것을 내는 경우: 6가지

- 주머니에 1에서 20까지의 숫자가 각각 적힌 20개의 구슬이 들어 있다. 이 중에서 한 개의 구슬을 꺼낼 때, 20의 약수가 나오는 경우의 수를 구하시오.
- 5 서로 다른 두 개의 주사위를 동시에 던질 때, 두 눈의 수의 합이 4 또는 8이 나오는 경우의 수를 구하시오.

2 다음 그림과 같이 A 지점에서 B 지점으로 가는 방법 이 버스로 2가지, 기차로 3가지가 있을 때, 버스 또는 기차를 이용하여 A 지점에서 B 지점으로 가는 방법의 수를 구하시오.

6 서로 다른 두 개의 주사위를 동시에 던질 때, 두 눈의 수의 차가 4 이상인 경우의 수를 구하시오.

- 7 A, B 두 사람이 가위바위보를 할 때, A가 지는 경우의 수를 구하시오.
- 3 다음 그림과 같이 A 지점에서 B 지점으로 가는 방법은 3가지, B 지점에서 C 지점으로 가는 방법은 5가지이다. 이때 A 지점에서 B 지점를 거쳐 C 지점로 가는 방법의 수를 구하시오.

(단, 한 번 지나간 지점은 다시 지나가지 않는다.)

8 A, B, C 세 사람이 가위바위보를 할 때, 세 사람이 모두 비기게 되는 경우의 수를 구하시오.

- 4 서로 다른 두 개의 주사위를 동시에 던질 때, 두 눈의 수의 차가 0인 경우의 수를 구하시오.
- **9** A, B, C 세 사람이 가위바위보를 할 때, 승부가 결정되는 경우의 수를 구하시오.

핵심 정리

17. 경우의 수 (2)

○ 한 줄로 세우기

- (1) n명을 한 줄로 세우는 경우의 수 $\rightarrow n \times (n-1) \times (n-2) \times \cdots \times 2 \times 1$
- (2) n명 중 2명을 뽑아 한 줄로 세우는 경우의 수 $\rightarrow n \times (n-1)$
- (3) n명 중 3명을 뽑아 한 줄로 세우는 경우의 수 $\rightarrow n \times (n-1) \times (n-2)$

◎ 이웃하여 세우기

- (이웃하는 것을 하나로 묶어서 한 줄로 세우는 경우의 수)×(묶음 안에서 자리를 바꾸는 경우의 수)
- **(4)** A, B, C, D, E 5명을 한 줄로 세울 때, B와 C가 서로 이웃하는 경우의 수
 - ▶ B와 C를 하나로 묶어서 한 줄로 세우는 경우의 수는 4명을 한 줄로 세우는 경우의 수와 같으므로 $4\times3\times2\times1=24$ B와 C가 자리를 바꾸는 경우의 수는 $2\times1=2$ 따라서 구하는 경우의 수는 $24\times2=48$

● 자연수 만들기

- (1) 0을 포함하지 않는 경우
 - n장의 카드에서 3장을 뽑아 만들 수 있는 세 자리의 자연수의 개수 $\Rightarrow n \times (n-1) \times (n-2)$
- (2) 0을 포함하는 경우
 - n장의 카드에서 3장을 뽑아 만들 수 있는 세 자리의 자연수의 개수 \rightarrow $(n-1) \times (n-1) \times (n-2)$

● 대표 뽑기

- (1) 자격이 다른 경우(회장, 부회장 등)
 - n명 중 자격이 다른 대표 2명을 뽑는 경우의 수 $\Rightarrow n \times (n-1)$ n명 중 자격이 다른 대표 3명을 뽑는 경우의 수 $\Rightarrow n \times (n-1) \times (n-2)$
- (2) 자격이 같은 경우(대표, 임원 등)
 - n명 중 자격이 같은 대표 2명을 뽑는 경우의 수 \Rightarrow $\frac{n \times (n-1)}{2}$
 - n명 중 자격이 같은 대표 3명을 뽑는 경우의 수 \Rightarrow $\frac{n \times (n-1) \times (n-2)}{3 \times 2 \times 1}$
- (3) 반드시 포함되어야 하는 조건이 있는 경우
 - 반드시 포함되어야 하는 것을 이미 뽑았다고 생각하고 나머지에서 필요한 것을 뽑는다.
 - $oldsymbol{\emptyset}$ A,B,C,D,E 5명 중 3명의 대표를 뽑는데 반드시 B가 뽑히는 경우의 수
 - ➡ B를 뽑았다고 생각하면 구하는 경우의 수는 A, C, D, E 4명 중 2명의 대표를 뽑는 경우와 같다. 따라서 구하는 경우의 수는 $\frac{4\times3}{2}$ =6

● 선분과 삼각형의 개수

- 원 위에 n개의 점이 있을 때
- (1) 두 점을 이은 선분의 개수 $\Rightarrow \frac{n \times (n-1)}{2}$
- (2) 세 점을 이은 삼각형의 개수 \Rightarrow $\frac{n \times (n-1) \times (n-2)}{3 \times 2 \times 1}$

- A, B, C, D 4명을 한 줄로 세우는 경우의 수를 구하시 오
- **6** A, B, C, D, E 5명의 학생 중에서 대표 2명을 뽑는 경우의 수를 구하시오.

- **2** A, B, C, D, E, F 6명 중 4명을 뽑아 한 줄로 세우는 경우의 수를 구하시오.
- **7** A, B, C, D, E 5명의 학생 중에서 회장, 부회장, 총무를 각각 1명씩 총 3명을 뽑는 경우의 수를 구하시오.

- **3** A, B, C, D 4명을 한 줄로 세울 때, A와 B가 이웃하 도록 세우는 경우의 수를 구하시오.
- **8** A, B, C, D, E 5명 중 대표 3명을 뽑을 때, A가 반드 시 뽑히는 경우의 수를 구하시오.

- 4 1에서 4까지의 숫자가 각각 적힌 4장의 카드에서 3장을 뽑아 만들 수 있는 세 자리의 자연수의 개수를 구하시오.
- **9** 원 위에 6개의 점이 있을 때, 두 점을 이어 만든 선분의 개수를 구하시오.

- **5** 0, 1, 2, 3, 4의 숫자가 각각 적힌 5장의 카드가 있다. 이 중에서 2장을 뽑아 만들 수 있는 두 자리의 자연수의 개수를 구하시오.
- 10 서로 다른 4개의 윷짝을 동시에 던져서 윷놀이를 할 때, 개가 나오는 경우의 수를 구하시오.

핵심 정리

18. 확률

● 확률의 뜻

(사건 A가 일어날 확률) $= \frac{(사건 A \text{가 일어나는 경우의 수)}}{(모든 경우의 수)}$

● 확률의 성질

어떤 사건이 일어날 확률을 *p*라 하면

0≤*p*≤**1** 절대로 일어나지 **←**

절대로 일어나지 ← □ 나도시 일어나는 않는 사건의 확률 사건의 확률

● 어떤 사건이 일어나지 않을 확률

사건 A가 일어날 확률이 p일 때, (사건 A가 일어나지 않을 확률)=1-p

◎ '적어도 ~'일 확률

(적어도 하나는 ~일 확률)=1-(모두 ~가 아닐 확률)

○ 확률의 계산

두 사건 A, B가 일어날 확률을 각각 p, q라 하면

- (1) 두 사건 A, B가 동시에 일어나지 않을 때, 사건 A 또는 사건 B가 일어날 확률
 - $\Rightarrow p+q$
 - 접시에 같은 모양의 깨 송편 3개, 밤 송편 2개, 콩 송편 5개가 놓여 있다. 이 중에서 임의로 송편 한 개를 먹을 때, 깨 송편 또 는 밤 송편을 먹을 확률은

 $\frac{3}{10} + \frac{2}{10} = \frac{5}{10} = \frac{1}{2}$

- (2) 두 사건 A, B가 서로 영향을 끼치지 않을 때, 사건 A와 사건 B가 동시에 일어날 확률
 - $\Rightarrow p \times q$
 - ① 집에서 학교까지 가는데 버스를 이용할 확률이 $\frac{2}{5}$, 지하철을 이용할 확률이 $\frac{3}{5}$ 이다. 이때 집에서 학교까지 갈 때에는 버스를, 학교에서 집까지 올 때에는 지하철을 이용할 확률은 $\frac{2}{5} \times \frac{3}{5} = \frac{6}{25}$

연속하여 뽑을 때의 확률

(1) 꺼낸 것을 다시 넣는 경우

➡ (처음에 뽑을 때의 조건)=(나중에 뽑을 때의 조건)

(2) 꺼낸 것을 다시 넣지 않는 경우

➡ (처음에 뽑을 때의 조건)≠(나중에 뽑을 때의 조건)

- 서로 다른 세 개의 동전을 동시에 던질 때, 뒷면이 한 개 나올 확률을 구하시오.
- 6 1에서 12까지의 숫자가 각각 적힌 12장의 카드에서 임의로 한 장의 카드를 뽑을 때, 3의 배수이거나 5의 배수일 확률을 구하시오.
- **2** 0, 1, 2, 3의 숫자가 각각 적힌 4장의 카드 중에서 임의로 2장을 뽑아 만들 수 있는 두 자리의 자연수 중에서 홀수가 나올 확률을 구하시오.
- 현 공 3개, 검은 공 4개가 들어 있는 주머니에서 차례로 1개씩 두 개의 공을 임의로 꺼낼 때, 처음에는 흰 공, 두 번째는 검은 공을 꺼낼 확률을 구하시오.

(단, 꺼낸 공은 다시 넣지 않는다.)

- **3** 어떤 사건 *A*가 일어날 확률을 *p*, 일어나지 않을 확률을 *q*라 할 때, 다음 중 옳지 않은 것은?
 - ① $0 \le p \le 1$
- ② $0 \le q \le 1$
- 3p+q=1
- 4p=1-q
- ⑤ q=0이면 사건 A는 절대로 일어나지 않는다.
- **8** A 주머니에는 흰 공 2개와 검은 공 4개, B 주머니에는 흰 공 3개와 검은 공 2개가 들어 있다. A, B 두 주머니에서 각각 공을 1개씩 임의로 꺼낼 때, 서로 같은 색의 공을 꺼낼 확률을 구하시오.

- 4 10개의 제비 중 당첨 제비가 3개 있다. 이 중에서 임의로 1개의 제비를 뽑을 때, 당첨 제비가 아닐 확률을 구하시오.
- 4발을 쏘아 3발을 명중시키는 선수가 있다. 이 선수가 2발을 쏘았을 때, 두 발 중 적어도 한 발을 명중시킬 확 률을 구하시오.

- 5 서로 다른 두 개의 주사위를 동시에 던질 때, 적어도 한 개의 주사위에서 짝수의 눈이 나올 확률을 구하시오.
- **10** 어떤 문제를 A가 풀 확률은 $\frac{3}{4}$, B가 풀 확률은 $\frac{2}{3}$ 라 할 때, 두 사람 중 적어도 한 사람이 문제를 풀 확률을 구하시오.

교사 부록 I T-BOOK

정답과 해설

소단원별 기출 문제 88 중단원 테스트 98 핵심 정리 & 핵심 테스트 111

소단원별 기출 문제

1. 삼각형의 성질

01 이등변삼각형의 성질

p.2

01 ⑤ **02** ② **03** 34° **04** ① **05** 95° **06** 6 cm

- ① 이등변삼각형의 두 밑각의 크기는 서로 같으므로∠B=∠C=60°
 - ②, ③ 이등변삼각형의 꼭지각의 이등분선은 밑변을 수직이 등분한다.
 - ④ 두 밑각의 크기가 60° 이므로 $\triangle ABC$ 는 정삼각형이다. $\therefore \overline{AC} = \overline{BC} = 2\overline{DC} = 10 \text{ (cm)}$

$$\bigcirc$$
 \angle BAD= $\frac{1}{2}\angle$ BAC= $\frac{1}{2}\times60^{\circ}=30^{\circ}$

02 △BCD는 BC=BD이므로

$$\angle C = \angle BDC = 68^{\circ}$$

이때 ∠DBC=180°-(68°+68°)=44°이고, △ABC는

 $\overline{AB} = \overline{AC}$ 이므로

$$\angle ABC = \angle C = 68^{\circ}$$

$$\therefore \angle x = \angle ABC - \angle DBC$$
$$= 68^{\circ} - 44^{\circ} = 24^{\circ}$$

03 ∠B=∠*x*라 하면

 $\triangle DBC에서 \overline{DB} = \overline{DC}$ 이므로

$$\angle DCB = \angle B = \angle x$$

$$\therefore \angle ADC = \angle B + \angle DCB$$

$$= \angle x + \angle x = 2 \angle x$$

 $\triangle \mathrm{CAD}$ 에서 $\overline{\mathrm{CA}} \! = \! \overline{\mathrm{CD}}$ 이므로

$$\angle A = \angle ADC = 2 \angle x$$

△ABC에서

$$\angle ACE = \angle A + \angle B$$

$$=2\angle x+\angle x=3\angle x$$

따라서 $3\angle x=102^{\circ}$ 이므로 $\angle x=34^{\circ}$

04 △ABC는 AB=AC이므로

$$\angle ABC = \angle ACB = \frac{1}{2} \times (180^{\circ} - 44^{\circ}) = 68^{\circ}$$

$$\therefore \angle DBC = \frac{1}{2} \angle ABC = \frac{1}{2} \times 68^{\circ} = 34^{\circ}$$

이메
$$\angle ACD = \frac{1}{2} \angle ACE = \frac{1}{2} \times (180^{\circ} - 68^{\circ}) = 56^{\circ}$$
이므로

△DBC에서

$$\angle x = 180^{\circ} - (34^{\circ} + 68^{\circ} + 56^{\circ})$$

 $=22^{\circ}$

- **05** AD는 이등변삼각형 ABC의 꼭지각의 이등분선이므로 AD⊥BC, BD=CD이다.
 - 즉 ∠ADB=90°이므로 △ABD에서
 - $\angle x = 180^{\circ} (25^{\circ} + 30^{\circ} + 90^{\circ}) = 35^{\circ}$
 - △PBD와 △PCD에서
 - BD=CD. ∠PDB=∠PDC=90°. PD는 공통이므로
 - $\triangle PBD \equiv \triangle PCD$ (SAS 합동)
 - ∴ ∠PCD=∠PBD=30°
 - △PDC에서
 - $\angle y = 180^{\circ} (90^{\circ} + 30^{\circ}) = 60^{\circ}$
 - $\therefore \angle x + \angle y = 35^{\circ} + 60^{\circ} = 95^{\circ}$
- **06** ∠ABC=∠CBD (접은 각).
 - ∠ACB=∠CBD (엇각)이므로
 - $\angle ABC = \angle ACB$
 - 즉 \triangle ABC는 $\overline{AB} = \overline{AC}$ 인 이등변삼각형이다.
 - $\therefore \overline{AB} = \overline{AC} = 6 \text{ cm}$

02 직각삼각형의 합동 조건

- 01 ① 02 ③라ⓒ, ⓒ라@ 03 ⑤ 04 12 05 22.5°
- **01** ① 180°
- 02 의과 교에서

$$\angle C = \angle H = 90^{\circ}, \overline{AB} = \overline{GI} = 5,$$

- $\angle B = \angle I$
- ∴ △ABC≡△GIH (RHA 합동)
- (L)과 (Đ)에서
- $\angle E = \angle J = 90^{\circ}, \overline{DF} = \overline{KL} = 5,$
- $\overline{DE} = \overline{KJ} = 3$
- ∴ △DEF≡△KJL (RHS 합동)
- **03** ① RHS 합동
 - ② RHS 합동
 - ③ ∠B=∠E이므로 ASA 합동
 - ④ RHA 합동
- **04** △ADB와 △CEA에서

 $\angle ADB = \angle CEA = 90^{\circ}, \overline{AB} = \overline{CA},$

∠DBA=90°-∠DAB=∠EAC이므로

 $\triangle ADB \equiv \triangle CEA (RHA 합동)$

따라서 $\overline{AE} = \overline{BD} = 15$ 이므로

 $\overline{\text{CE}} = \overline{\text{AD}} = 27 - 15 = 12$

05 △ABD와 △AED에서

 $\angle B = \angle AED = 90^{\circ}$, \overline{AD} 는 공통, $\overline{AB} = \overline{AE}$ 이므로

 $\triangle ABD \equiv \triangle AED (RHS 합동)$

이때 ∠BAC=45°, ∠BAD=∠EAD이므로

$$\angle BAD = \frac{1}{2} \angle BAC = \frac{1}{2} \times 45^{\circ} = 22.5^{\circ}$$

03 삼각형의 외심

n 4

- **01** ①, ⑤ **02** 5 cm
- **03** 20°
- **04** ①

05 174°

06 60°

- - ⑤ △OAM과 △OBM에서

AM=BM, ∠OMA=∠OMB, OM은 공통이므로

△OAM≡△OBM (SAS 합동)

따라서 옳은 것은 ①, ⑤이다.

- **02** $\overline{OA} = \overline{OB} = \overline{OC} = \frac{1}{2} \overline{BC} = \frac{1}{2} \times 10 = 5 \text{ (cm)}$
- **03** $60^{\circ} + 10^{\circ} + \angle x = 90^{\circ}$ $\therefore \angle x = 20^{\circ}$
- **04** OA = OC이므로

 $\angle OAC = \angle OCA = 36^{\circ}$

 $\angle BAC = \angle BAO + \angle OAC$

 $=26^{\circ}+36^{\circ}=62^{\circ}$

 $\therefore \angle x = 2 \angle BAC = 2 \times 62^{\circ} = 124^{\circ}$

05 오른쪽 그림과 같이 OC를 그으면

$$\overline{OA} = \overline{OB} = \overline{OC}$$
이므로

 \triangle OAC에서

∠OCA=∠OAC=26°

△OBC에서

∠OCB=∠OBC=32°

 $\angle x = \angle OCA + \angle OCB$

 $=26^{\circ}+32^{\circ}=58^{\circ}$

 $\angle y = 2 \angle x = 2 \times 58^{\circ} = 116^{\circ}$

 $\therefore \angle x + \angle y = 58^{\circ} + 116^{\circ} = 174^{\circ}$

06 ∠AOB+∠BOC+∠COA=360°○]고

∠AOB: ∠BOC: ∠COA=4:6:5이므로

 $\angle COA = 360^{\circ} \times \frac{5}{4+6+5} = 120^{\circ}$

 $\therefore \angle ABC = \frac{1}{2} \angle COA = \frac{1}{2} \times 120^{\circ} = 60^{\circ}$

04 삼각형의 내심

01 ⑤ **02** ③ **03** 28 cm **04** 22 cm **05** ② **06** (1) 2 cm $(2)(24-4\pi)$ cm²

- **01** 34°+20°+∠ICA=90°에서 ∠ICA=36° ∴ ∠ICB=∠ICA=36°
- $\mathbf{02} \quad \angle BAC = 2 \angle IAC = 2 \times 42^{\circ} = 84^{\circ}$

$$\therefore \angle x = 90^{\circ} + \frac{1}{2} \angle BAC$$
$$= 90^{\circ} + \frac{1}{2} \times 84^{\circ} = 132^{\circ}$$

- **03** 점 I는 △ABC의 내심이므로 ∠DBI=∠IBC 또 DE //BC이므로 ∠IBC=∠DIB (엇각)
 - ∴ ∠DBI=∠IBC=∠DIB

같은 방법으로

 $\angle ECI = \angle ICB = \angle EIC$

즉 △DBI, △EIC는 각각 이등변삼각형이므로

 $\overline{\mathrm{DI}} = \overline{\mathrm{DB}}, \overline{\mathrm{EI}} = \overline{\mathrm{EC}}$

- ∴ (△ADE의 둘레의 길이)
 - $=\overline{AD}+\overline{DE}+\overline{EA}$
 - $=\overline{AD}+(\overline{DI}+\overline{EI})+\overline{EA}$
 - $=(\overline{AD}+\overline{DB})+(\overline{EC}+\overline{EA})$
 - $=\overline{AB}+\overline{AC}$
 - =13+15
 - $=28 \, (cm)$
- 오른쪽그림과같이 IC를 그
 으면 점 I는 △ABC의 내 심이므로

13 cm

∠DBI=∠IBC

또 $\overline{DE} / / \overline{BC}$ 이므로

∠IBC=∠DIB (엇각)

∴ ∠DBI=∠IBC=∠DIB

같은 방법으로

 $\angle ECI = \angle ICB = \angle EIC$

즉 △DBI, △EIC는 각각 이등변삼각형이므로

 $\overline{\mathrm{DI}} = \overline{\mathrm{DB}}, \overline{\mathrm{EI}} = \overline{\mathrm{EC}}$

- ∴ (△ADE의 둘레의 길이)
 - $=\overline{AD}+\overline{DE}+\overline{EA}$
 - $=\overline{AD}+(\overline{DI}+\overline{EI})+\overline{EA}$
 - $=(\overline{AD}+\overline{DB})+(\overline{EC}+\overline{EA})$
 - $=\overline{AD}+\overline{DB}+\overline{AC}$
 - =5+4+13
 - =22 (cm)

- **05** $\overline{BE} = \overline{BD} = 5 \text{ cm}$ 이므로 $\overline{EC} = \overline{BC} \overline{BE} = 11 5 = 6 \text{ (cm)}$ 따라서 $\overline{AF} = \overline{AD} = 3 \text{ cm}$, $\overline{CF} = \overline{CE} = 6 \text{ cm}$ 이므로 $\overline{AC} = \overline{AF} + \overline{CF} = 3 + 6 = 9 \text{ (cm)}$
- 06 (1) 내접원의 반지름의 길이를 $r \, \mathrm{cm}$ 라 하면 $\frac{1}{2} \times 8 \times 6 = \frac{1}{2} \times r \times (10 + 8 + 6) \qquad \therefore r = 2$ 따라서 내접원의 반지름의 길이는 $2 \, \mathrm{cm}$ 이다.
 - (2) (어두운 부분의 넓이) $=\frac{1}{2} \times 8 \times 6 \pi \times 2^2$ $=24 4\pi \text{ (cm}^2\text{)}$

2. 사각형의 성질

01 평행사변형

p.5

p.6

01 22	02 ④	03 5 cm	04 4 cm	05 ④	
06 ④	07 ③				

- 01 2x+3=3x-4에서 x=7 $\therefore \overline{AD} = \overline{BC} = 3 \times 7 + 1 = 22$
- 02 $\angle B + \angle C = 180^{\circ}$ 이고 $\angle B : \angle C = 2 : 3$ 이므로 $\angle C = 180^{\circ} \times \frac{3}{2+3} = 108^{\circ}$ $\therefore \angle A = \angle C = 108^{\circ}$
- 03 $\triangle ABE$ 와 $\triangle FCE$ 에서 $\overline{BE} = \overline{CE}$, $\angle BEA = \angle CEF$ (맞꼭지각), $\angle ABE = \angle FCE$ (엇각)이므로 $\triangle ABE = \triangle FCE$ (ASA 합동) $\therefore \overline{CF} = \overline{BA} = \overline{CD} = 5$ cm
- Q4 ∠ADE=∠CDE이고 ∠DEC=∠ADE (엇각)이므로 ∠CDE=∠DEC 즉 △CDE는 CD=CE인 이등변삼각형이다. CE=CD=AB=7 cm이고 BC=AD=11 cm이므로 BE=BC-CE=11-7=4 (cm)
- **05** ④ $\overline{AD} / / \overline{BC}$
- **06** $\triangle PAB + \triangle PCD = \frac{1}{2} \square ABCD$ 이므로 $14 + \triangle PCD = \frac{1}{2} \times 60$ $\therefore \triangle PCD = 16 \text{ (cm}^2\text{)}$
- **07** ③ \overline{AB} $/\!/\overline{DC}$, \overline{AB} = \overline{DC} 또는 \overline{AD} $/\!/\overline{BC}$, \overline{AD} = \overline{BC} 이어야 $\Box ABCD$ 가 평행사변형이 된다.

02 여러 가지 사각형

01 4 **02** ③ **03** ② 04 1 **05** 71°

- **06** ①
- **02** \triangle BED는 $\overline{\text{BE}}$ = $\overline{\text{DE}}$ 인 이등변삼각형이므로

 $\angle DBE = \angle BDE$

또 \overline{AD} // \overline{BC} 이므로 ∠ADB=∠DBE (엇각)

즉 $\angle ADB = \angle BDE = \angle EDC = \frac{1}{3} \times 90^{\circ} = 30^{\circ}$ 이므로

△DEC에서

 $\angle DEC = 180^{\circ} - (30^{\circ} + 90^{\circ}) = 60^{\circ}$

- **03** ∠AOD=90°이므로
 - △AOD에서

 $\angle DAO = 180^{\circ} - (90^{\circ} + 32^{\circ}) = 58^{\circ}$

이때 $\overline{\mathrm{AD}}/\!\!/\overline{\mathrm{BC}}$ 이므로

∠BCA=∠DAO=58° (엇각)

05 $\overline{AB} = \overline{AD} = \overline{AE}$ 이므로 $\triangle ABE = \overline{AB} = \overline{AE}$ 인 이등변삼 각형이다.

따라서 ∠EAB=180°-(26°+26°)=128°이므로

 $\angle EAD = 128^{\circ} - 90^{\circ} = 38^{\circ}$

이때 $\triangle ADE$ 는 $\overline{AD} = \overline{AE}$ 인 이등변삼각형이므로

 $\angle FDE = \frac{1}{2} \times (180^{\circ} - 38^{\circ}) = 71^{\circ}$

- **06** ② AC의 길이는 알 수 없다.
 - $3 \angle BAD = 180^{\circ} 80^{\circ} = 100^{\circ}$
 - ④ $\overline{AC} \perp \overline{BD}$ 인지는 알 수 없다.
 - \bigcirc \triangle ABO \equiv \triangle DCO

따라서 옳은 것은 ①이다.

03 여러 가지 사각형 사이의 관계

p.8

p.7

01 ③ **02** (5)

03 (1) (L), (C), (R), (D) (2) (T), (C), (D) (3) (R), (D) (4) (D)

03 2

04 (4)

- **01** ③ 때 $\overline{AB} = \overline{BC}$ 또는 $\overline{AC} \perp \overline{BD}$
- 04 ④ 평행사변형 ➡ 평행사변형

04 평행선과 넓이

p.9

01 45 cm² **02** ③

04 4 **05** (5)

06 $\frac{196}{3}$ cm²

01 AD // BC이므로 △ABD=△ACD

 $\triangle DOC = \triangle ACD - \triangle AOD$

 $= \triangle ABD - \triangle AOD = \triangle ABO$

 $\triangle ABO : \triangle AOD = \overline{BO} : \overline{OD} = 3 : 2$ 이므로

 $\triangle ABO : 30=3:2$ $\therefore \triangle ABO=45 \text{ (cm}^2)$

 $\therefore \triangle DOC = \triangle ABO = 45 \text{ cm}^2$

- **02** $\Box ABCD = \triangle ABC + \triangle ACD$ $= \triangle ABC + \triangle ACE$ $= \land ABE$ $=\frac{1}{2}\times(5+7)\times8=48 \text{ (cm}^2)$
- 03 오른쪽 그림과 같이 BD를 그으면

 $\triangle DBC = \frac{1}{2} \square ABCD$

 $=\frac{1}{2}\times40=20 \text{ (cm}^2)$

이때 $\triangle DBP$: $\triangle DPC = \overline{BP}$: $\overline{PC} = 1$: 3이므로

 $\triangle DPC = \frac{3}{4} \triangle DBC = \frac{3}{4} \times 20 = 15 \text{ (cm}^2\text{)}$

04 △BOF = △DOE (ASA 합동)이므로

 $\triangle BOF = \triangle DOE$

 $\square ABFE = \triangle ABD = \frac{1}{2} \square ABCD$ 이므로

 $\square ABCD = 2 \square ABFE$

 $=2\times24=48 \text{ (cm}^2)$

 $\therefore \triangle DOC = \frac{1}{4} \Box ABCD$

 $=\frac{1}{4} \times 48 = 12 \text{ (cm}^2)$

05 $\Box ADEF = \triangle DEF + \triangle ADF$

 $= \triangle DEF + \triangle DFC$

 $= \land DEC$

이때 $\triangle DBE$: $\triangle DEC = \overline{BE}$: $\overline{EC} = 2$: 3이므로

 $16: \triangle DEC = 2:3 \quad \therefore \triangle DEC = 24 \text{ (cm}^2)$

 \triangle AOD: \triangle DOC= $\overline{OA}:\overline{OC}=3:4$ 이므로

 $12: \triangle DOC = 3:4 \quad \therefore \triangle DOC = 16 \text{ (cm}^2)$

이때 $\triangle ABO = \triangle DOC = 16 \text{ cm}^2$ 이고

 $\triangle ABO : \triangle OBC = \overline{OA} : \overline{OC} = 3 : 4$ 이므로

 $16: \triangle OBC = 3:4 \quad \therefore \triangle OBC = \frac{64}{2} (cm^2)$

- $\therefore \Box ABCD = \triangle AOD + \triangle ABO + \triangle OBC + \triangle DOC$ $=12+16+\frac{64}{3}+16$
 - $=\frac{196}{2}$ (cm²)

3. 도형의 닮음

01 닮음의 뜻과 성질

p.10

01 ③ **02** (4) **04**(1) 면 MNOP (2) 2:3 (3) 12 cm **05** (5)

02 ① \overline{DC} : \overline{HG} = 2 : 3

② ∠G=∠C=70°이므로 □EFGH에서 $\angle H = 360^{\circ} - (125^{\circ} + 75^{\circ} + 70^{\circ}) = 90^{\circ}$

 $32:3=3:\overline{FG}$ 에서 $\overline{FG}=\frac{9}{2}$ (cm)

④ 2: $3 = \overline{DC}$: 4에서 $\overline{DC} = \frac{8}{3}$ (cm)

⑤ □ABCD와 □EFGH의 닮음비는 2:3이다. 따라서 옳은 것은 ④이다.

03 두 삼각기둥의 닮음비는 \overline{AC} : $\overline{A'C'}$ =8:12=2:3

6: x=2: 3에서 x=9

10: y=2: 3에서 y=15

z:30=2:3에서 z=20

 $\therefore x+y+z=9+15+20=44$

 $\overline{NO} = \overline{IL} = 18 \text{ cm}$ 이므로 두 직육면체의 닮음비는

 $\overline{\text{FG}}: \overline{\text{NO}} = 12:18 = 2:3$

(3) 8: \overline{OP} =2: 3에서 \overline{OP} =12 (cm)

05 (5)

02 삼각형의 닮음 조건

01 (1)과(6): SSS 닮음, (2)와(4): AA 닮음, (3)과(5): SAS 닮음

02 ①

04 $\frac{14}{3}$ cm **05** \bigcirc

02 ① AA 닮음

03 △ABC와 △DAC에서

∠C는 공통. ∠B=∠CAD이므로

 $\triangle ABC \sim \triangle DAC$ (AA 닮음)

즉 4: x=5: 4에서 $x=\frac{16}{5}$

04 △ABC와 △BDC에서

∠C는 공통.

 $\overline{BC}:\overline{DC}=6:4=3:2$

 $\overline{AC}:\overline{BC}=9:6=3:2$ 이므로

△ABC∞ △BDC (SAS 닮음)

즉 $7 : \overline{BD} = 3 : 2$ 에서 $\overline{BD} = \frac{14}{3}$ (cm)

05 (i)△ABC와 △FDC에서

∠C는 공통. ∠ABC=∠FDC=90°이므로

 $\triangle ABC \circ \triangle FDC$ (AA 닮음)

(ii) △ABC와 △ADE에서

∠A는 공통, ∠ABC=∠ADE=90°이므로

 \triangle ABC ∞ \triangle ADE (AA 닮음)

(iii) △FDC와 △FBE에서

∠F는 공통, ∠FDC=∠FBE=90°이므로

 \triangle FDC \bigcirc \triangle FBE (AA 닮음)

(i), (ii), (iii)에 의하여

 \triangle ABC \circ \triangle FDC \circ \triangle FBE \circ \triangle ADE (AA 닮음)

⑤ 서로 닮음인 직각삼각형은 모두 4개이다.

06 6²= $x \times 10$ 에서 $x = \frac{18}{5}$

 $8\times6=10\times y$ 에서 $y=\frac{24}{5}$

 $\therefore x+y=\frac{18}{5}+\frac{24}{5}=\frac{42}{5}$

4. 닮음의 응용

○1 삼각형과 평행선

p.12

01 10 **02** (4)

03 28 cm

04 ①

05 3 cm

06 2 cm

01 x:9=8:12에서 x=6

(12-y):12=8:12에서 y=4

x+y=6+4=10

02 ① \overline{AD} : $\overline{AB} = 3 : (3+8) = 3 : 110$] $\overline{AB} = 3 : 110$]

 $\overline{AE} : \overline{AC} = 2 : (2+6) = 2 : 8 = 1 : 4$ 이므로

 \overline{AD} : $\overline{AB} \neq \overline{AE}$: \overline{AC}

② \overline{AD} : \overline{AB} =4:8=1:2○]고

DE: BC=5: 9이므로

 \overline{AD} : $\overline{AB} \neq \overline{DE}$: \overline{BC}

③ \overline{AD} : \overline{AB} = 5 : (5+2) = 5 : 7 ○ 1 \overline{AB}

 \overline{DE} : \overline{BC} =6:9=2:3이므로

 \overline{AD} : $\overline{AB} \neq \overline{DE}$: \overline{BC}

 $(4) \overline{AD} : \overline{AB} = 12 : (12+4) = 12 : 16 = 3 : 4 \circ]$

 $\overline{AE}:\overline{AC}=9:12=3:4$ 이므로

 $\overline{AD} : \overline{AB} = \overline{AE} : \overline{AC} \quad \therefore \overline{BC} / \!\!/ \overline{DE}$

⑤ 알수 없다.

따라서 $\overline{BC} // \overline{DE}$ 인 것은 ④이다.

- 03 $\overline{AB} = 2\overline{FE}, \overline{BC} = 2\overline{DF}, \overline{CA} = 2\overline{ED}$ 이므로 $(\triangle ABC$ 의 둘레의 길이)= $\overline{AB} + \overline{BC} + \overline{CA}$ $= 2\overline{FE} + 2\overline{DF} + 2\overline{ED}$ $= 2(\overline{FE} + \overline{DF} + \overline{ED})$ $= 2 \times 14 = 28 \text{ (cm)}$
- 04 $\triangle ABF$ 에서 $\overline{AD} = \overline{DB}$, $\overline{AE} = \overline{EF}$ 이므로 $\overline{DE} = \frac{1}{2}\overline{BF}$, $\overline{DE}/\!\!/BF$ $\triangle CED$ 에서 $\overline{CF} = \overline{FE}$ 이고 $\overline{DE}/\!\!/MF$ 이므로 $\overline{DE} = 2\overline{MF}$ $\stackrel{?}{=} \frac{1}{2}\overline{BF} = 2\overline{MF}$ 이므로 $\frac{1}{2}(21 + \overline{MF}) = 2\overline{MF}$ $21 + \overline{MF} = 4\overline{MF}$, $3\overline{MF} = 21$ $\therefore \overline{MF} = 7$ (cm)
- 05 오른쪽 그림과 같이 점 A에서 \overline{BC} 에 평행한 직선을 그어 \overline{DE} 와 만나는 점을 F라 하면 $\triangle DBE$ 에서 $\overline{DA} = \overline{AB}, \overline{AF} / \overline{BE}$ 이므로 $\overline{AF} = \frac{1}{2} \overline{BE} = \frac{1}{2} \times 6 = 3 \text{ (cm)}$ 이때 $\triangle AMF = \triangle CME \text{ (ASA 합동)}$ 이므로 $\overline{EC} = \overline{FA} = 3 \text{ cm}$
- **06** $\overline{AB} : \overline{AC} = \overline{BD} : \overline{CD}$ 에서 $3 : \overline{AC} = (2+4) : 4 \quad \therefore \overline{AC} = 2 \text{ (cm)}$

02 평행선과 선분의 길이의 비

p.13

- 01 ④ 02 ④
- **03** 11
- **04** 4
- **05** $\frac{45}{8}$

06 ①

- 01 2: x=3:6 $\therefore x=4$ (2+x): 6=(3+6): y $\Rightarrow y=9$ $\therefore x+y=4+9=13$
- **02** 5: (5+8)=3: (x-3) $\therefore x = \frac{54}{5}$

03 $x=2\overline{\text{PN}}=2\times 3=6$ $y=\frac{1}{2}\overline{\text{BC}}=\frac{1}{2}\times 10=5$ $\therefore x+y=6+5=11$

- **04** $\overline{EM} = \frac{1}{2} \overline{AD} = \frac{1}{2} \times 4 = 2$ $\therefore x = 2$ $\overline{EN} = \frac{1}{2} \overline{BC} = \frac{1}{2} \times 8 = 4$ 이므로 $\overline{MN} = \overline{EN} \overline{EM} = 4 2 = 2 \qquad \therefore y = 2$ $\therefore xy = 2 \times 2 = 4$
- 05 $\triangle ABE \otimes \triangle CDE (AA 닮음)$ 이므로 $\overline{BE}: \overline{DE} = \overline{AB}: \overline{CD} = 9: 15 = 3: 5$ $\therefore \overline{BE}: \overline{BD} = 3: (3+5) = 3: 8$ $\overline{EF}: \overline{DC} = \overline{BE}: \overline{BD}$ 에서 x: 15 = 3: 8 $\therefore x = \frac{45}{8}$
- $\overline{\text{CF}}:\overline{\text{CB}}=\overline{\text{EF}}:\overline{\text{AB}}$ 이므로 $14:(14+y)=4:6 \qquad \therefore y=7$ $\triangle BCD에서$ $\overline{\text{BF}}:\overline{\text{BC}}=\overline{\text{EF}}:\overline{\text{DC}}$ 이므로 $7:(7+14)=4:x \qquad \therefore x=12$ $\therefore x-y=12-7=5$

06 △ABC에서

03 삼각형의 중선과 무게중심

n 14

- **01** 14 **02** $\frac{20}{3}$ cm **03** $\frac{8}{3}$ cm **04** 6 cm **05** 18 cm² **06** ①
- 01 $x=2\overline{BD}=2\times4=8$ $y=2\overline{GD}=2\times3=6$ $\therefore x+y=8+6=14$
- **02** 점 D는 빗변의 중점이므로 직각삼각형 ABC의 외심이다. $\overline{DB} = \overline{DA} = \overline{DC} = \frac{1}{2} \overline{AC} = \frac{1}{2} \times 20 = 10 \text{ (cm)}$ $\therefore \overline{BG} = \frac{2}{3} \overline{DB} = \frac{2}{3} \times 10 = \frac{20}{3} \text{ (cm)}$
- 03 점 G가 \triangle ABC의 무게중심이므로 $\overline{GD} = \frac{1}{3}\overline{AD} = \frac{1}{3} \times 12 = 4 \text{ (cm)}$ 또 점 G'이 \triangle GBC의 무게중심이므로 $\overline{GG'} = \frac{2}{3}\overline{GD} = \frac{2}{3} \times 4 = \frac{8}{3} \text{ (cm)}$

05 $\overline{AG}:\overline{GD}=2:1$ 이므로

 $\triangle AGF : 2=2:1$ $\therefore \triangle AGF=4 (cm^2)$

한편, $\triangle ADC$ 에서 $\overline{GF} / /\overline{DC}$ 이므로

 $\overline{AF}:\overline{FC}{=}\overline{AG}:\overline{GD}{=}2:1$

즉 $\triangle ADF : \triangle FDC = 2 : 1$ 에서

(4+2): $\triangle FDC = 2:1$ $\therefore \triangle FDC = 3 \text{ (cm}^2)$

이때

 $\triangle ADC = \triangle ADF + \triangle FDC = 6 + 3 = 9 (cm^2)$ 이므로

 $\triangle ABC = 2 \triangle ADC = 2 \times 9 = 18 \text{ (cm}^2)$

06 점 G'이 △GBC의 무게중심이므로

$$\triangle GBG' = \frac{1}{3} \triangle GBC$$

또 점 G가 △ABC의 무게중심이므로

$$\triangle GBG' = \frac{1}{3} \triangle GBC = \frac{1}{3} \times \frac{1}{3} \triangle ABC$$

 $=\frac{1}{9}\triangle ABC = \frac{1}{9} \times 90 = 10 \text{ (cm}^2)$

04 닮은 도형의 넓이의 비와 부피의 비

p.15

01 (1) 24 cm² (2) 192 cm³ **02** (4)

03 48 cm² **04** 25 : 16

05 70분 **06** 45000 m²

(1) 두 삼각기둥의 닮음비가 1 : 2이므로 넓이의 비는 1² : 2²이다

즉 $6: \triangle A'B'C'=1:4$ 에서 $\triangle A'B'C'=24$ (cm²)

(2) 두 삼각기둥의 닮음비가 1:2이므로 부피의 비는 $1^3:2^3$ 이다

즉 24 : (큰 삼각기둥의 부피)=1 : 8에서

(큰 삼각기둥의 부피)=192 (cm³)

02 △DBE ∞ △ABC (AA 닮음)이고 닮음비가

BE: BC=3: (3+2)=3: 5이므로

 $\triangle DBE : \triangle ABC = 3^2 : 5^2 = 9 : 25$

즉 18: △ABC=9: 25에서 △ABC=50 (cm²)

 $\therefore \Box ADEC = \triangle ABC - \triangle DBE$

 $=50-18=32 \, (cm^2)$

03 △ODA ∽ △OBC (AA 닮음)이고 닮음비는

AD : CB=3 : 4이므로

 \triangle ODA: \triangle OBC=3 2 : 4 2 =9:16

즉 27: \triangle OBC=9: 16에서 \triangle OBC=48 (cm²)

04 (P의 부피) : (Q의 부피)=250 : 128=125 : 64=5³ : 4³ 이므로

 $(P의 겉넓이): (Q의 겉넓이)=5^2: 4^2=25: 16$

05 높이가 4 m인 원뿔의 부피와 높이가 8 m인 원뿔의 부피의 비는

 $1^3:2^3=1:8$

따라서 높이가 $4 \,\mathrm{m}$ 인 원뿔의 부피와 더 채워야 할 물의 부피의 비는

1:(8-1)=1:7

이때 물을 가득 채우기 위해 더 필요한 시간을 x분이라 하면

10: x=1:7 $\therefore x=70$

따라서 물을 가득 채우는데 70분이 더 걸린다.

06 $3 \text{ (cm)} \times 5000 = 15000 \text{ (cm)} = 150 \text{ (m)}$

 $6 \text{ (cm)} \times 5000 = 30000 \text{ (cm)} = 300 \text{ (m)}$

따라서 땅의 실제 넓이는

 $150 \times 300 = 45000 \, (\text{m}^2)$

5. 피타고라스 정리

01 피타고라스 정리

p.16

01 3 02 ② 03 ① 04 4 cm 05 25 06 34 cm²

- **01** $x^2 = 5^2 4^2 = 9 = 3^2$ $\therefore x = 3 \ (\because x > 0)$
- **02** △ABH에서

 $\overline{AB}^2 = 6^2 + 5^2 = 61$

△ACH에서

 $\overline{AC}^2 = 4^2 + 5^2 = 41$

 $\therefore \overline{AB}^2 - \overline{AC}^2 = 61 - 41 = 20$

03 오른쪽 그림과 같이 점 A에서 BC에 내린 수선의 발을 H라 하면 HC=AD=10 cm이므로 BH=BC−HC=15−10=5 (cm) △ABH에서

 $\overline{AH}^2 = 13^2 - 5^2 = 144 = 12^2$

 $\therefore \overline{AH} = 12 \text{ (cm)} (\because \overline{AH} > 0)$

따라서 $\overline{\text{CD}} = \overline{\text{AH}} = 12 \text{ cm}$ 이므로

사다리꼴 ABCD의 둘레의 길이는

13+15+12+10=50 (cm)

04 이등변삼각형의 꼭지각에서 밑변에 내린 수선은 밑변을 수직 이등분하므로

$$\overline{BH} = \overline{CH} = \frac{1}{2}\overline{BC} = \frac{1}{2} \times 6 = 3 \text{ (cm)}$$

△ABH에서

 $\overline{AH}^2 = 5^2 - 3^2 = 16 = 4^2$

 $\therefore \overline{AH} = 4 \text{ (cm)} (\because \overline{AH} > 0)$

- **05** \square ACHI= \square ADEB+ \square BFGC = $3^2+4^2=25$
- 06 △AEH≡△BFE≡△CGF≡△DHG (SAS 합동) 이므로 □EFGH는 정사각형이다. 이때 △AEH에서 EH²=5²+3²=34이므로 □EFGH=EH²=34 (cm²)

02 피타고라스 정리의 성질

p.17

01 ⑤	02 25	03 30	04 ①, ④	05 ③
06 16				

- ①1 ① 6²≠3²+4²
 ② 13²≠4²+12²
 ③ 9²≠6²+7²
 ④ 14²≠7²+8²
 ⑤ 17²=8²+15²
 따라서 직각삼각형인 것은 ⑤이다.
- **02** 가장 긴 변의 길이가 *a*이므로 a^2 = 7^2 + 24^2 =625= 25^2 ∴ a=25 (∵ a>0)
- 03 $13^2 = 5^2 + 12^2$, 즉 $\overline{BC}^2 = \overline{AB}^2 + \overline{CA}^2$ 이므로 $\triangle ABC$ 는 $\angle A = 90^\circ$ 인 직각삼각형이다. $\therefore \triangle ABC = \frac{1}{2} \times \overline{AB} \times \overline{AC} = \frac{1}{2} \times 5 \times 12 = 30$
- ① 3²<1²+3²이므로 예각삼각형이다.
 ② 3²>2²+2²이므로 둔각삼각형이다.
 ③ 5²>2²+4²이므로 둔각삼각형이다.
 - ④ 7²<5²+6²이므로 예각삼각형이다. ⑤ 20²=12²+16²이므로 직각삼각형이다. 따라서 예각삼각형인 것은 ①, ④이다.
- ① x=3일 때, 8²>6²+3²이므로 둔각삼각형이다.
 ② x=5일 때, 8²>6²+5²이므로 둔각삼각형이다.
 ③ x=6일 때, 8²<6²+6²이므로 예각삼각형이다.
 ④ x=12일 때, 12²>6²+8²이므로 둔각삼각형이다.
 ⑤ x=13일 때, 13²>6²+8²이므로 둔각삼각형이다.
 따라서 x의 값이 될 수 없는 것은 ③이다.
- 06
 a가 가장 긴 변의 길이이므로 삼각형의 세 변의 길이 사이의 관계에 의하여 15−8<a<15+8</td>
 ∴ 7<a<23</td>

 이때 a>15이므로 15<a<23</td>
 ⑤

 예각삼각형이 되려면
 a²<15²+8²</td>
 ∴ a²<289</td>
 ⑥

 ⑤, ⑥에서 자연수 a의 값은 16이다.

03 피타고라스 정리의 활용

p.18

- **01** 31 **02** 33 **03** ③ **04** ① **05** 32π cm² **06** ⑤
- **01** $\overline{AE}^2 + \overline{DC}^2 = \overline{AC}^2 + \overline{DE}^2$ 에서 $\overline{AE}^2 + 7^2 = 8^2 + 4^2 \quad \therefore \overline{AE}^2 = 31$
- **02** $\overline{AB}^2 + \overline{CD}^2 = \overline{AD}^2 + \overline{BC}^2$ 에서 $4^2 + \overline{CD}^2 = \overline{AD}^2 + 7^2$ $\therefore \overline{CD}^2 - \overline{AD}^2 = 7^2 - 4^2 = 33$
- **03** $\overline{PA}^2 + \overline{PC}^2 = \overline{PB}^2 + \overline{PD}^2$ 에서 $6^2 + y^2 = 4^2 + x^2$ $\therefore x^2 - y^2 = 6^2 - 4^2 = 20$
- 04 $S_1+S_2=S_3$ 이므로 $S_1+S_2+S_3=S_3+S_3=2\times\left(\frac{1}{2}\times\pi\times4^2\right)$ $=16\pi\;(\mathrm{cm}^2)$
- **05** (어두운 부분의 넓이) $=(\overline{BC}$ 를 지름으로 하는 반원의 넓이) $=\frac{1}{2}\times\pi\times8^2=32\pi~(\mathrm{cm}^2)$
- **06** (어두운 부분의 넓이)=△ABC =\frac{1}{2} × 6 × 8 = 24

6. 경우의 수

01 사건과 경우의 수

p.19

01 2	02 ③	03 ⑤	04 15	05 12	_
06 ⑤	07 27				

- 지불하는 동전의 개수를 순서쌍(100원짜리 동전의 개수, 500원짜리 동전의 개수)로 나타내면(5, 1), (0, 2)의 2가지
- **02** (i) 4의 배수가 적힌 카드가 나오는 경우는 4, 8, 12, 16, 20의 5가지
 - (ii) 10의 배수가 적힌 카드가 나오는 경우는 10, 20의 2가지
 - (iii) 4의 배수이면서 10의 배수가 적힌 카드가 나오는 경우는 20의 1가지 따라서 구하는 경우의 수는

- **03** 두 눈의 수의 차가 2인 경우는 (1,3), (2,4), (3,1), (3,5), (4,2), (4,6), (5,3), (6,4)의 8가지 두 눈의 수의 차가 3인 경우는 (1,4), (2,5), (3,6), (4,1), (5,2), (6,3)의 6가지 따라서 구하는 경우의 수는 8+6=14
- 반죽을 고르는 경우의 수는 3이고, 그 각각의 경우에 대하여
 소를 고르는 경우의 수는 5이다.
 따라서 구하는 경우의 수는
 3×5=15
- **05** (A 지점에서 B 지점으로 가는 방법의 수) \times (B 지점에서 C 지점으로 가는 방법의 수) $= 3 \times 4 = 12$
- **06** $2 \times 6^2 = 72$
- **07** $3 \times 3 \times 3 = 27$

02 여러 가지 경우의 수

p.20

01 ②	02 ④	03 12	04 (1) 20 (2) 30 (3) 10
05 ②	06 4	07 120	

A, D를 제외한 3명의 학생을 한 줄로 세우는 경우의 수는 3×2×1=6
 이때 A, D가 양 끝에 서는 경우는 A□□□D, D□□□A

의 2가지

따라서 구하는 경우의 수는

 $6 \times 2 = 12$

02 십의 자리에 올 수 있는 숫자는 0을 제외한 5가지, 일의 자리에 올 수 있는 숫자는 십의 자리에 놓인 숫자를 제외 한 5가지이다.

따라서 구하는 경우의 수는

 $5\times 5=25$

03 (i) 3□인 경우: 31, 32, 34, 35의 4개

(ii) 4□인 경우: 41, 42, 43, 45의 4개

(iii) 5□인 경우: 51, 52, 53, 54의 4개

따라서 구하는 자연수의 개수는

4+4+4=12

- **04** (1) $5 \times 4 = 20$
 - (2) 5명 중에서 회장 1명을 뽑는 경우의 수는 5이고, 회장으로 뽑힌 1명을 제외한 나머지 4명 중에서 부회장 2명을 뽑는 경우의 수는

$$\frac{4\times3}{2\times1} = 6$$

따라서 구하는 경우의 수는

 $5 \times 6 = 30$

$$(3) \frac{5 \times 4 \times 3}{3 \times 2 \times 1} = 10$$

05 4명 중 자격이 같은 대표 2명을 뽑는 경우의 수와 같다. 따라서 구하는 경기의 수는

$$\frac{4\times3}{2\times1}$$
=6

4명 중 자격이 같은 대표 3명을 뽑는 경우의 수와 같다. 따라서 구하는 삼각형의 개수는

$$\frac{4 \times 3 \times 2}{3 \times 2 \times 1} = 4$$

A → B → C → D → E의 순서로 색을 칠하면
 A 부분에는 5가지, B 부분에는 4가지, C 부분에는 3가지, D
 부분에는 2가지, E 부분에는 1가지를 칠할 수 있다.

따라서 구하는 경우의 수는

 $5\times4\times3\times2\times1=120$

7. 확률

01 확률의 뜻과 성질

p.21

01	$\frac{6}{25}$	$02\frac{2}{5}$	03 ②	04 $\frac{3}{11}$	05 ②
06	$\frac{17}{18}$	07 ⑤			

01 신입생 300명 중 초콜릿 맛 아이스크림을 선호하는 학생은 72명이므로

(구하는 확률)= $\frac{72}{300}$ = $\frac{6}{25}$

02 20명의 학생들 중 음악 실기 점수가 80점 미만인 학생은 2+6=8(명)

 $\therefore (구하는 확률) = \frac{8}{20} = \frac{2}{5}$

- **03** 두 자리의 자연수의 개수는 5×5=25 이때 30 이하인 두 자리의 자연수는 10, 12, 13, 14, 15, 20, 21, 23, 24, 25, 30의 11개
 - ∴ (구하는 확률)=¹¹/₂₅
- $oldsymbol{04}$ 총 11명 중에서 조장 1명, 부조장 1명을 뽑는 경우의 수는 $11 \times 10 = 110$

이때 조장, 부조장을 모두 재학생으로 뽑는 경우의 수는 $6 \times 5 = 30$

- ∴ (구하는 확률)= 30/110 = 3/11
- **05** ② 0≤*p*≤1
- **06** 모든 경우의 수는 $6 \times 6 = 36$ 두 눈의 수의 합이 3인 경우는 (1, 2), (2, 1)의 2가지
 - ∴ (두 눈의 수의 합이 3이 아닐 확률)

=1-(두 눈의 수의 합이 3일 확률)

$$=1-\frac{2}{36}=\frac{17}{18}$$

- **07** 모든 경우의 수는 $6 \times 6 = 36$ 모두 2의 배수가 아닌 눈이 나오는 경우는 (1,1),(1,3),(1,5),(3,1),(3,3),(3,5),(5,1),(5,3),(5,5)의 9가지
 - \therefore (적어도 하나는 2의 배수의 눈이 나올 확률) =1-(모두 2의 배수가 아닌 눈이 나올 확률) $=1-\frac{9}{36}=\frac{3}{4}$

02 확률의 계산

p.22

01 ② 02 $\frac{3}{4}$ 03 ⑤ 04 $\frac{8}{9}$ 05 ③ 06 $\frac{25}{64}$ 07 ③

01 모든 경우의 수는 20

눈의 수가 4의 배수인 경우는 4, 8, 12, 16, 20의 5가지이므로

그 확률은
$$\frac{5}{20}$$

눈의 수가 9의 배수인 경우는 9, 18의 2가지이므로

- 그 확률은 $\frac{2}{20}$
- \therefore (구하는 확률)= $\frac{5}{20}+\frac{2}{20}=\frac{7}{20}$

02 모든 경우의 수는 6×6=36 두 눈의 수의 곱이 홀수인 경우는 (1, 1), (1, 3), (1, 5),

(3,1), (3,3), (3,5), (5,1), (5,3), (5,5)의 9가지이므로

- 그 확률은 $\frac{9}{36} = \frac{1}{4}$
- ∴ (구하는 확률)=1-(두 눈의 수의 곱이 홀수일 확률) $=1-\frac{1}{4}=\frac{3}{4}$
- 03 첫 번째 사격에서 명중시킬 확률은 $\frac{9}{10}$ 두 번째 사격에서 명중시킬 확률은 $\frac{9}{10}$ \therefore $(구하는 확률) = \frac{9}{10} \times \frac{9}{10} = \frac{81}{100}$
- 04 (풍선이 터질 확률) = (적어도 한 사람이 명중시킬 확률) = 1 (세 사람 모두 명중시키지 못할 확률) $= 1 \left(1 \frac{1}{2}\right) \times \left(1 \frac{1}{3}\right) \times \left(1 \frac{2}{3}\right)$ $= 1 \frac{1}{2} \times \frac{2}{3} \times \frac{1}{3}$ $= 1 \frac{1}{9}$ $= \frac{8}{3}$
- **05** (한 사람만 공을 맞출 확률) =(지유만 공을 맞출 확률)+(민수만 공을 맞출 확률) = $\frac{1}{3} \times \left(1 - \frac{3}{4}\right) + \left(1 - \frac{1}{3}\right) \times \frac{3}{4}$ = $\frac{1}{3} \times \frac{1}{4} + \frac{2}{3} \times \frac{3}{4}$ = $\frac{1}{12} + \frac{6}{12} = \frac{7}{12}$
- **06** 처음에 노란 공을 꺼낼 확률은 $\frac{5}{8}$ 이고, 꺼낸 공을 다시 넣으므로 두 번째에 노란 공을 꺼낼 확률도 $\frac{5}{8}$ 이다.
 - \therefore (구하는 확률)= $\frac{5}{8} \times \frac{5}{8} = \frac{25}{64}$
- 전 번째에 노란 공을 꺼낼 확률은 6/15,
 두 번째에 노란 공을 꺼낼 확률은 5/14이고,
 세 번째에 초록 공을 꺼낼 확률은 4/13이다.
 ∴ (구하는 확률)=6/15 × 5/14 × 4/13 = 4/91

중단원 테스트

¶ 회 1. 삼각형의 성질

p.24~p.25

- 01 ③ 02 36° 03 ∠CAD, ∠ADB, △ACD 04 ①
 05 △ABC≡ △HIG, △DEF≡ △RQP, △JKL≡ △ONM
 06 67.5° 07 4 cm 08 ② 09 ③ 10 42 cm
 11 ③ 12 ⑤ 13 ④ 14 66°
- **01** ∠CDB=180°−110°=70°이므로 △BCD에서 ∠BCD=∠CDB=70° 따라서 △DBC에서 ∠DBC=180°−(70°+70°)=40° △ABC에서 ∠ABC=∠BCD=70°이므로 ∠x=∠ABC−∠DBC=70°−40°=30°
- 02 $\triangle DAB$ 에서 $\angle DBA = \angle DAB = \angle x$ 이므로 $\angle CDB = 2\angle x$ $\triangle BCD$ 에서 $\angle BCD = \angle CDB = 2\angle x$, $\triangle ABC$ 에서 $\angle ABC = \angle BCA = 2\angle x$ 이므로 $2\angle x + \angle x + 2\angle x = 180^\circ$, $5\angle x = 180^\circ$ $\therefore \angle x = 36^\circ$
- 04 $\triangle ABC$ 는 이동변삼각형이므로 $\overline{AC} = \overline{AB} = 10$ $\triangle ABC = \triangle PAB + \triangle PCA$ 이므로 $40 = \frac{1}{2} \times 10 \times \overline{PD} + \frac{1}{2} \times 10 \times \overline{PE}$ $40 = 5(\overline{PD} + \overline{PE})$ $\therefore \overline{PD} + \overline{PE} = 8$
- 06 $\triangle ABC$ 는 직각이등변삼각형이므로 $\angle B = \angle C = 45^\circ$ $\triangle ABE$ 와 $\triangle DBE$ 에서 \overline{BE} 는 공통, $\overline{AB} = \overline{DB}$, $\angle A = \angle D = 90^\circ$ 이므로 $\triangle ABE = \triangle DBE$ (RHS 합동) $\therefore \angle DBE = \angle ABE = \frac{1}{2} \angle B = \frac{1}{2} \times 45^\circ = 22.5^\circ$ 따라서 $\triangle EBD$ 에서 $\angle x = 180^\circ (90^\circ + 22.5^\circ) = 67.5^\circ$
- 07 △BAD와 △ACE에서
 ∠D=∠E=90°,
 ∠DBA=90°-∠BAD=∠EAC,
 BA=ĀC이므로
 △BAD=△ACE (RHA 합동)
 이때 ĀE=BD=6 cm이므로
 DA=DE-ĀE=10-6=4 (cm)
 ∴ CE=ĀD=4 cm

- **08** $\angle BAC = \frac{1}{2} \angle BOC = \frac{1}{2} \times 130^{\circ} = 65^{\circ}$ 이므로 $\angle OAC = \angle BAC \angle BAO = 65^{\circ} 30^{\circ} = 35^{\circ}$ $\triangle OCA$ 에서 $\overline{OA} = \overline{OC}$ 이므로 $\angle x = \angle OAC = 35^{\circ}$
- **09** $\overline{\rm AM}=\overline{\rm BM}$ 이므로 점 M은 직각삼각형 ABC의 외심이다. $\therefore \ \angle x{=}2\angle {\rm B}{=}2\times 52^{\circ}{=}104^{\circ}$
- 10 점 O카 △ABC의 외심이므로
 BD=AD=7 cm, CE=BE=8 cm,
 CF=AF=6 cm
 ∴ (△ABC의 둘레의 길이)=7+7+8+8+6+6
 =42 (cm)
- 11 점 I가 \triangle ABC의 내심이므로 $90^{\circ} + \frac{1}{2} \angle BAC = 120^{\circ} \text{에서 } \angle BAC = 60^{\circ}$ 이때 $\angle BAI = \angle CAI$ 이므로 $\angle x = \frac{1}{2} \angle BAC = \frac{1}{2} \times 60^{\circ} = 30^{\circ}$
- 12 점 I가 \triangle ABC의 내심이므로 \angle IBC= \angle IBA=32° 즉 \triangle IBC에서 \angle BIC=180°-(32°+26°)=122° 따라서 90°+ $\frac{1}{2}$ \angle x=122°이므로 $\frac{1}{2}$ \angle x=32° \therefore \angle x=64°
- 고 2x=32 ··· 2x=64

 13 점 I가 △ABC의 내심이므로

 ∠DBI = ∠IBC

 또 DE //BC이므로

 ∠IBC = ∠DIB (엇각)

 ∴ ∠DBI = ∠IBC = ∠DIB

 같은 방법으로 ∠ECI = ∠ICB = ∠EIC

 즉 △DBI, △EIC는 각각 이등변삼각형이므로

 DI = DB, EI = EC

 ∴ (△ADE의 둘레의 길이) = ĀD + DE + EĀ

 = (ĀD + (DI + EI) + EĀ

 = (ĀD + DB) + (ĒC + EĀ)

 = ĀB + ĀC

 = 18 + 14

 = 32 (cm)
- **14** $\angle x = \frac{1}{2} \angle BOC = \frac{1}{2} \times 96^{\circ} = 48^{\circ}$ 이므로 $\angle y = 90^{\circ} + \frac{1}{2} \angle x = 90^{\circ} + \frac{1}{2} \times 48^{\circ} = 114^{\circ}$ $\therefore \angle y - \angle x = 114^{\circ} - 48^{\circ} = 66^{\circ}$

<u>)</u> 회 1. 삼각형의 성질

p.26~p.27

05 ②
10 120°
cm

- **01** ③ SAS
- 02 오른쪽 그림에서

이므로

40 cm

 $\angle ABC = \angle x$

즉 \triangle ABC는 $\overline{AB} = \overline{AC}$ 인 이등변삼각형이고

$$\angle x = \frac{1}{2} \times (180^{\circ} - 60^{\circ}) = 60^{\circ}$$

03 $\triangle ABC$ 가 $\overline{AB} = \overline{AC}$ 인 이등변삼각형이므로

$$\angle B = \angle ACB = \frac{1}{2} \times (180^{\circ} - 32^{\circ}) = 74^{\circ}$$

$$\therefore \angle DBC = \frac{1}{2} \angle B = \frac{1}{2} \times 74^{\circ} = 37^{\circ}$$

$$\angle ACD = \frac{1}{2} \angle ACE = \frac{1}{2} \times 106^{\circ} = 53^{\circ}$$

따라서 △DBC에서

$$\angle BDC = 180^{\circ} - (37^{\circ} + 74^{\circ} + 53^{\circ}) = 16^{\circ}$$

04 △COP와 △DOP에서

∠COP=∠DOP이므로

 $\triangle COP \equiv \triangle DOP (RHA 합동) (④)$

$$\therefore \angle OPC = \angle OPD(\textcircled{1}), \overline{PC} = \overline{PD}(\textcircled{3})$$

또 합동인 두 삼각형의 넓이는 서로 같으므로

 $\triangle COP = \triangle DOP(2)$

따라서 옳지 않은 것은 ⑤이다.

 05
 오른쪽 그림과 같이 점 D에서 AC에

 내린 수선의 발을 E라 하면

△ABD와 △AED에서

$$\angle ABD = \angle AED = 90^{\circ}$$
,

AD는 공통, ∠DAB=∠DAE이므로

 $\triangle ABD \equiv \triangle AED (RHA 합동)$

따라서 $\overline{\mathrm{ED}} = \overline{\mathrm{BD}} = 12 \,\mathrm{cm}$ 이므로

$$\triangle ADC = \frac{1}{2} \times 40 \times 12 = 240 \ (cm^2)$$

- **06** ② 예각삼각형의 외심은 삼각형의 내부, 직각삼각형의 외심은 삼각형의 빗변의 중점에 있다.
- **07** $\angle x + 20^{\circ} + 30^{\circ} = 90^{\circ}$ $\therefore \angle x = 40^{\circ}$

- 08 점 M은 $\triangle ABC$ 의 빗변의 중점이면서 외심이므로 $\triangle ABC$ 는 직각삼각형이다.
 - ∴ ∠BAC=90°
- **09** BM=CM이므로 점 M은 △ABC의 외심이다. ∴ ∠x=2∠B=2×34°=68°
- **10** $\angle BIC = 90^{\circ} + \frac{1}{2} \times 60^{\circ} = 120^{\circ}$
- 11 점 I가 △ABC의 내심이므로

$$\angle IBC = \angle IBA = 25^{\circ}, \angle ICB = \angle ICA = 30^{\circ}$$

즉 △IBC에서

$$\angle BIC = 180^{\circ} - (25^{\circ} + 30^{\circ}) = 125^{\circ}$$

따라서
$$90^{\circ} + \frac{1}{2} \angle A = 125^{\circ}$$
이므로

$$\frac{1}{2} \angle A = 35^{\circ}$$
 $\therefore \angle A = 70^{\circ}$

12 $\overline{\mathrm{BD}} = \overline{\mathrm{BE}} = x$ 이므로

$$\overline{AF} = \overline{AD} = 5 - x$$
.

$$\overline{\text{CF}} = \overline{\text{CE}} = 8 - x$$

즉
$$\overline{AC} = \overline{AF} + \overline{CF} = (5-x) + (8-x) = 13 - 2x$$
이므로

$$13-2x=7$$
 $\therefore x=3$

13 내접원의 반지름의 길이를 $r \, \text{cm}$ 라 하면

$$\triangle ABC = \frac{1}{2} r(\overline{AB} + \overline{BC} + \overline{CA})$$
이므로

$$54 = \frac{1}{2} \times r \times (12 + 15 + 9), 54 = 18r$$
 $\therefore r = 3$

따라서 내접원의 반지름의 길이는 3 cm이다.

14 \triangle ABC의 외접원과 내접원의 반지름의 길이를 각각 R cm, r cm라 하면

$$R = \frac{1}{2} \times 10 = 5$$

$$\frac{1}{2} \times r \times (10 + 6 + 8) = \frac{1}{2} \times 6 \times 8$$
에서

$$24r = 48$$
 $\therefore r = 2$

$$\therefore R + r = 5 + 2 = 7 \text{ (cm)}$$

¶ 회 2. 사각형의 성질

p.28~p.29

01 ④	02 ④	03 2 cm	04 ③	05 12 cm ²
06 ④	07 ∠ <i>x</i> =5	50°, ∠ <i>y</i> =80°	08 ④	09 ①, ③
10 6 cm	11②	12 90°	13 12 cm	1472°
15 9 cm ²	16③			

Ol AD //BC이므로

$$\angle$$
BCO= $\angle x$ (엇각), \angle OCD= \angle BAC=55° (엇각)

△BCD에서

$$\angle x + \angle y = 180^{\circ} - (30^{\circ} + 55^{\circ}) = 95^{\circ}$$

- **02** ① □AEIG가 평행사변형이므로 ∠*x*=60°
 - ② □IHCF가 평행사변형이고 ∠FIH=∠GIE=60°(맞꼭지각)이므로 $\angle y = 180^{\circ} - 60^{\circ} = 120^{\circ}$
 - ③ \square EBHI가 평행사변형이므로 $a=\overline{BH}=4$
 - ④ \square AEFD가 평행사변형이므로 $\overline{AE} = \overline{DF} = 3$ $\therefore \overline{EB} = \overline{AB} - \overline{AE} = 9 - 3 = 6$ 이때 \square EBHI가 평행사변형이므로 $b=\overline{\mathrm{EB}}=6$
 - ⑤ □AEFD가 평행사변형이므로 $\overline{EF} = \overline{AD} = 10$ $\therefore c = \overline{EF} - \overline{EI} = 10 - 4 = 6$

따라서 옳은 것은 ④이다.

- **03** ∠BEC=∠ABE (엇각)이므로 △EBC는 이등변삼각형이다. $\therefore \overline{CE} = \overline{BC} = \overline{AD} = 6 \text{ cm}$
 - 또 $\Box ABCD$ 가 평행사변형이므로 $\overline{CD} = \overline{AB} = 4$ cm
 - $\therefore \overline{DE} = \overline{CE} \overline{CD} = 6 4 = 2 \text{ (cm)}$
- **04** AD // BF이므로

 $\angle ADE = \angle FCE$ (엇각), $\angle AED = \angle FEC$ (맞꼭지각). $\overline{\mathrm{ED}} = \overline{\mathrm{EC}}$ 이므로

- $\triangle AED \equiv \triangle FEC (ASA 합동) (⑤)$
- $\therefore \overline{AD} = \overline{FC} = \overline{BC} (1, 2), \overline{AE} = \overline{FE} (4)$
- **05** $\triangle PAD + \triangle PBC = \triangle PAB + \triangle PCD$ 이므로 $17+13 = \triangle PAB+18$ $\therefore \triangle PAB = 12 (cm^2)$
- 06 ④ 두 대각선이 서로 다른 것을 이등분하지 않으므로 평행사 변형이 아니다.
- **07** □ABCD가 직사각형이므로

 $\angle CAB = 90^{\circ} - 40^{\circ} = 50^{\circ}$

이때 $\overline{OA} = \overline{OB}$ 이므로

 $\angle x = \angle OAB = 50^{\circ}$

 $\angle y = \angle BOA = 180^{\circ} - (50^{\circ} + 50^{\circ}) = 80^{\circ}$

- **10** $\triangle AOE \equiv \triangle COF (ASA 합동) 이므로 <math>\overline{AE} = \overline{CF}$ 또 $\overline{AE}/\overline{CF}$ 이므로 $\square AFCE$ 는 평행사변형이다. 이때 □AFCE의 두 대각선이 수직으로 만나므로 □AFCE 는 마름모이다.
 - $\therefore \overline{AF} = \overline{AE} = 6 \text{ cm}$
- 11 △ABE와 △BCF에서

 $\angle B = \angle C = 90^{\circ}, \overline{AB} = \overline{BC}, \overline{BE} = \overline{CF}$ 이므로

 $\triangle ABE \equiv \triangle BCF (SAS 합동)$

 $\therefore \angle BFC = \angle AEB = 180^{\circ} - 110^{\circ} = 70^{\circ}$

따라서 △BCF에서

 \angle FBC=180 $^{\circ}$ -(90 $^{\circ}$ +70 $^{\circ}$)=20 $^{\circ}$

12 △ABH와 △DFH에서

 $\overline{AB} = \overline{DF}$, $\angle ABH = \angle DFH$ (엇각).

∠BAH=∠FDH (엇각)이므로

 $\triangle ABH \equiv \triangle DFH (ASA 합동)$

 $\therefore \overline{AH} = \overline{DH}$

이때 $\overline{AD} = 2\overline{AB}$ 이므로 $\overline{AB} = \overline{AH} = \overline{DH}$

마찬가지 방법으로 $\triangle ABG = \triangle ECG (ASA 합동)이므로$

 $\overline{AB} = \overline{BG} = \overline{CG}$

따라서 오른쪽 그림과 같이 \overline{HG} 를 그

으면 □ABGH는 $\overline{AH} = \overline{BG}$,

 $\overline{AH}/\overline{BG}$ 이므로 평행사변형이고

 $\overline{AB} = \overline{AH}$ 이므로 마름모가 된다.

즉 ∠FPE=90°이므로 △PEF에서

 $\angle x + \angle y = 180^{\circ} - 90^{\circ} = 90^{\circ}$

13 오른쪽 그림과 같이 점 \overline{AB}

에 평행한 직선을 그어 \overline{BC} 와 만나

는 점을 E라 하면 □ABED는 평

행사변형이므로

 $\overline{BE} = \overline{AD} = 5 \text{ cm}, \angle B = 180^{\circ} - 120^{\circ} = 60^{\circ}$

또 ∠DEC=∠B=60° (동위각), ∠C=∠B=60°이므로

 $\angle EDC = 180^{\circ} - (60^{\circ} + 60^{\circ}) = 60^{\circ}$

즉 △DEC는 정삼각형이므로

 $\overline{EC} = \overline{DC} = \overline{AB} = 7 \text{ cm}$

 $\therefore \overline{BC} = \overline{BE} + \overline{EC} = 5 + 7 = 12 \text{ (cm)}$

14 AD // BC이므로

∠ADB=∠DBC=36° (엇각)

 $\overline{AB} = \overline{AD}$ 이므로

 $\angle ABD = \angle ADB = 36^{\circ}$

∴ ∠ABC=36°+36°=72°

이때 □ABCD가 등변사다리꼴이므로

∠DCB=∠ABC=72°

따라서 △DBC에서

 $\angle x = 180^{\circ} - (36^{\circ} + 72^{\circ}) = 72^{\circ}$

15 $\Box ABCD = \triangle ABC + \triangle ACD$

 $= \triangle ABC + \triangle ACE$

이므로 $32=23+\triangle ACE$:: $\triangle ACE=9$ (cm²)

16 AO: OC=2: 3이므로

 $\triangle ABO : \triangle OBC = 2 : 3$

즉 $\triangle ABO: 24=2:3$ 이므로 $\triangle ABO=16$ (cm²)

이때 $\overline{\mathrm{AD}}/\!\!/\overline{\mathrm{BC}}$ 이므로

 $\triangle DBC = \triangle ABC = \triangle ABO + \triangle OBC$

 $=16+24=40 \text{ (cm}^2)$

🎾 🤋 2. 사각형의 성질

p.30~p.31

01 6 cm	02 ④	03 130°	04 ⑤	
05 평행사변	형	06 60°	07 ⑤	08 ④
09 ③	10 24 cm	11 36 cm ²	12 ③	13 20 cm ²
14 2	15 ⑤	163		

- **01** □ABCD는 평행사변형이므로
 ∠DAE=∠AEB (엇각), $\overline{BC} = \overline{AD} = 16 \text{ cm}$ 이때 △BEA는 이등변삼각형이므로 $\overline{BE} = \overline{AB} = 10 \text{ cm}$ ∴ $\overline{CE} = \overline{BC} \overline{BE} = 16 10 = 6 \text{ (cm)}$
- **02** $\angle C = \angle A = 180^{\circ} \times \frac{2}{2+3} = 72^{\circ}$
- 04 ⑤ 대변의 길이가 각각 같지 않으므로 평행사변형이 아니다.
- **05** △AEH와 △CGF에서

 ĀĒ=CG, ĀĦ=ĀD-DH=BC-BF=CF

 ∠A=∠C이므로

 △AEH=△CGF (SAS 합동)

 ∴ EH=GF
 ①

 같은 방법으로 하면 △BFE=△DHG (SAS 합동)이므로

 EF=GH
 ②

 ③, ②에서 □EFGH는 평행사변형이다.
- **06** \overline{AD} // \overline{BC} 이므로 ∠BDC=∠ABD=30° △DOC에서 ∠DOC=180°-(30°+60°)=90° 즉 \overline{AC} \bot \overline{BD} 이므로 \Box ABCD는 마름모이다. 따라서 △DBC는 \overline{CB} = \overline{CD} 인 이등변삼각형이므로 ∠DBC=∠BDC=30° ∴ ∠x=180°-(30°+30°+60°)=60°
- 07 $\triangle ABH$ 와 $\triangle DFH$ 에서 $\overline{AB} = \overline{DF}$, $\angle ABH = \angle DFH$ (엇각), $\angle BAH = \angle FDH$ (엇각)이므로 $\triangle ABH = \triangle DFH$ (ASA 합동) (③) 즉 $\overline{AH} = \overline{DH}$ 이므로 $\overline{AH} = \frac{1}{2}\overline{AD}$ (②) 같은 방법으로 하면 $\triangle ABG = \triangle ECG$ (ASA 합동)이므로 $\overline{BG} = \overline{CG}$

- 이때 \overline{AD} =2 \overline{AB} 이므로 \overline{AH} = \overline{AB} = \overline{BG} = \overline{GH} 즉 $\square ABGH는 마름모이므로$ $<math>\angle BPG$ = 90° (①), \overline{AP} = \overline{PG} , \overline{BP} = \overline{PH} (④) 따라서 옮지 않은 것은 ⑤이다.
- **○9** □ABCD는 두 대각선의 길이가 같고, 서로 다른 것을 수직 이등분하므로 정사각형이다.
 - $\therefore \Box ABCD = \frac{1}{2} \times 8 \times 8 = 32 \ (cm^2)$
- 11 오른쪽 그림과 같이 점 D에서 BC에 내린 수선의 발을 H'이라 하면 △ABH≡△DCH' (RHS 합동)이 므로 CH'=BH=2 cm, HH'=4 cm
 ∴ □ABCD=½×(4+8)×6=36 (cm²)
- 12 ③ 한 내각의 크기가 90°인 평행사변형은 직사각형이다.
- 13 \triangle BOE \equiv \triangle DOF (ASA 합동)이므로 (어두운 부분의 넓이) = \triangle AEO + \triangle DOF = \triangle AEO + \triangle BOE = \triangle ABO = $\frac{1}{4}\Box$ ABCD = $\frac{1}{4}\times80=20~(cm^2)$
- 14 $\triangle PMC = \frac{1}{5} \triangle AMC$ $= \frac{1}{5} \times \frac{1}{2} \triangle ABC$ $= \frac{1}{5} \times \frac{1}{2} \times 20 = 2$
- **15** △ABE=△DBE=△BFD=△AFD이므로 넓이가 나머지 넷과 다른 하나는 ⑤이다.
- 16 $\triangle ABO = \triangle DOC = 15 \text{ cm}^2$ 이므로 $\triangle OBC = \triangle ABC \triangle ABO$ $= 40 15 = 25 \text{ (cm}^2)$

1 회 3. 도형의 닮음

p.32

01 ④	02 (1) $\frac{21}{4}$	(2) 55°	03 6	04 ③
05 ⑤	06 6	07 7		

- **01** ④ 두 이등변삼각형은 항상 닮음인 평면도형이 아니다.
- **02** (1) 7 : \overline{DE} =8 : 6에서 \overline{DE} = $\frac{21}{4}$
- 03 \triangle ACD와 \triangle ABC에서 \angle A는 공통, \angle ACD= \angle ABC이므로 \triangle ACD \bigcirc \triangle ABC (AA 닮음) 즉 4:(2+x)=2:4에서 4+2x=16,2x=12 $\therefore x=6$
- **05** △ADE와 △ACB에서

 ∠A는 공통, ∠ADE=∠ACB=90°이므로

 △ADE∞ △ACB (AA 닮음)

 △ACB와 △FDB에서

 ∠B는 공통, ∠ACB=∠FDB=90°이므로

 △ACB∞ △FDB (AA 닮음)

 △FDB와 △FCE에서

 ∠F는 공통, ∠FDB=∠FCE=90°이므로

 △FDB∞ △FCE (AA 닮음)

 따라서 나머지 네 삼각형과 닮은 삼각형이 아닌 것은 ⑤이다.
- **06** $x^2 = 3 \times (3+9) = 36 = 6^2$ $\therefore x = 6 \ (\because x > 0)$
- 07 △DBE와 △ECF에서
 ∠DBE=∠ECF=60°,
 ∠EDB+∠BED=∠BED+∠FEC=120°
 이므로 ∠EDB=∠FEC
 ∴ △DBE∞△ECF (AA 닮음)
 즉 DB: 12=3: 4.5에서 DB=8
 ∴ x=15-8=7

호 3. 도형의 닮음 p.33 01 ③ 02 ⑤ 03 ④ 04 ½ 05 ④ 06 $\frac{216}{25}$ cm² 07 5 08 ②

- 02 두 직육면체의 닮음비는 FG: F'G'=6: 4=3: 2 4: x=3: 2에서 3x=8 ∴ x=\frac{8}{3} 8: y=3: 2에서 3y=16 ∴ y=\frac{16}{3} ∴ x+y=\frac{8}{3}+\frac{16}{3}=8

 03 △ADC와 △BEC에서 ∠C는 공통, ∠ADC=∠BEC=90°이므로 △ADC∞ △BEC (AA 닮음) ∴ AD: BE=AC: BC=16: 20=4: 5
- **04** △BDA와 △BAC에서 ∠B는 공통, BD: BA=BA: BC=2: 3이므로 △BDA ∞ △BAC (SAS 닮음) 즉 3: x=2: 3에서 2x=9 ∴ x= $\frac{9}{2}$
- **05** △DAE와 △BCA에서 ∠DAE=∠BCA (엇각), ∠DEA=∠BAC (엇각)이므로 △DAE∞ △BCA (AA 닮음) 즉 x:(x+3)=6:8에서 6(x+3)=8x, 2x=18 ∴ x=9
- **06** $6 \times 8 = 10 \times \overline{AH}$ 에서 $\overline{AH} = \frac{24}{5}$ (cm) 또, $6^2 = \overline{BH} \times 10$ 에서 $\overline{BH} = \frac{18}{5}$ (cm) $\therefore \triangle ABH = \frac{1}{2} \times \frac{24}{5} \times \frac{18}{5} = \frac{216}{25}$ (cm²)
- **07** △BEF와 △DAF에서
 ∠BEF=∠DAF (엇각), ∠FBE=∠FDA (엇각)이므로
 △BEF ∞ △DAF (AA 닮음)
 즉 x: (15-x)=6: 12에서
 6(15-x)=12x, 18x=90 ∴ x=5
- 08 오른쪽 그림에서 $\angle ACB = \angle PAC \ (\mbox{엇각}) \mbox{이고}$ $\angle PCA = \angle ACB \ (\mbox{접은 각}) \mbox{이므로}$ $\angle PAC = \angle PCA$ 즉 $\triangle PAC \mbox{는 } \overline{PA} = \overline{PC} \mbox{인 ol 등 th}$ $\mbox{삼각형이다.}$ 이때 점 P에서 \overline{AC} 에 내린 수선의 발을 Q라 하면 $\overline{AQ} = \overline{CQ} = \frac{1}{2} \overline{AC} = \frac{1}{2} \times 10 = 5 \ (\mbox{cm})$ 한편 $\triangle PQC \mbox{$\triangle$} \triangle ABC \ (\mbox{AA III he}) \mbox{이므로}$ $\overline{PQ} : 6 = 5 : 8 \mbox{MM} \mbox{\overline{PQ}} = \frac{15}{4} \ (\mbox{cm})$

 $\therefore \triangle ACP = \frac{1}{2} \times 10 \times \frac{15}{4} = \frac{75}{4} (cm^2)$

1 회 4. 닮음의 응용

p.34~p.35

01 4 06 x =16, x	02 ③ y=8	03 6 cm 07 15 cm	04 24 cm 08 ⑤	05 9 09 ⑤
$10\frac{48}{5} \text{ cm}^2$	113	12 4 cm	13 4 cm	14 4 cm ²
15 18 cm ²	16 ①			

- **01** (3+3):3=8:x에서 6x=24 $\therefore x=4$
- **02** 10:5=8: AD에서 AD=4 ∴ BD=8+4=12
- 03 \triangle CEB에서 $\overline{CF} = \overline{FE}$, $\overline{CD} = \overline{DB}$ 이므로 $\overline{BE} = 2\overline{DF}$, $\overline{BE}//\overline{DF}$ \triangle ADF에서 $\overline{AE} = \overline{EF}$, $\overline{PE}//\overline{DF}$ 이므로 $\overline{DF} = 2\overline{PE} = 2 \times 2 = 4$ (cm) $\overline{BE} = 2\overline{DF} = 2 \times 4 = 8$ (cm)이므로 $\overline{BP} = \overline{BE} \overline{PE} = 8 2 = 6$ (cm)
- **04** $\overline{PS} = \overline{QR} = \frac{1}{2} \overline{BD} = \frac{1}{2} \times 10 = 5 \text{ (cm)}$ $\overline{SR} = \overline{PQ} = \frac{1}{2} \overline{AC} = \frac{1}{2} \times 14 = 7 \text{ (cm)}$ $\therefore (\Box PQRS의 둘레의 길이) = \overline{PQ} + \overline{QR} + \overline{RS} + \overline{SP}$ = 7 + 5 + 7 + 5 = 24 (cm)
- **05** \overline{AB} : \overline{AC} = \overline{BD} : \overline{CD} 예사 16 : 12=(21-x) : x, 16x=12(21-x) 16x=252-12x, 28x=252 ∴ x=9
- **06** x: 24=20: 30 $\therefore x=16$ 30: 10=24: y $\therefore y=8$
- **07** $\overline{MN} = \frac{1}{2} \times (12 + 18) = 15 \text{ (cm)}$
- **08** $\triangle ABD$ 에서 $\overline{MP} = \frac{1}{2}\overline{AD} = \frac{1}{2} \times 8 = 4 \text{ (cm)}$ $\overline{PQ} = \overline{MP} = 4 \text{ cm}$ 이므로 $\overline{MQ} = \overline{MP} + \overline{PQ} = 4 + 4 = 8 \text{ (cm)}$ $\triangle ABC$ 에서 $\overline{BC} = 2\overline{MQ} = 2 \times 8 = 16 \text{ (cm)}$
- **09** \overline{QC} : $\overline{BC} = \overline{PQ}$: $\overline{AB} = 3$: 5이므로 \overline{PQ} : $\overline{DC} = \overline{BQ}$: $\overline{BC} = 2$: 5 $\overline{GC} = 3$: $\overline{DC} = 2$: 5이므로 $\overline{DC} = \frac{15}{2} = 7.5$ (cm)
- **10** $\overline{PB} : \overline{PD} = \overline{AB} : \overline{CD} = 4 : 6 = 2 : 3$ 이므로 $\overline{PH} : \overline{DC} = \overline{BP} : \overline{BD} = 2 : 5$

즉
$$\overline{PH}$$
: $6=2$: 5 이므로 $\overline{PH} = \frac{12}{5}$ (cm)
 $\therefore \triangle PBC = \frac{1}{2} \times \overline{BC} \times \overline{PH}$
 $= \frac{1}{2} \times 8 \times \frac{12}{5} = \frac{48}{5}$ (cm²)

- 11 6: x=2: 3에서 2x=18 $\therefore x=9$
- 12 오른쪽 그림과 같이 \overline{AC} 를 그으면 점 P는 $\triangle ABC$ 의 무게중심이므로 $\overline{PO} = \frac{1}{3}\overline{BO} = \frac{1}{3} \times \frac{1}{2}\overline{BD}$ $= \frac{1}{6}\overline{BD} = \frac{1}{6} \times 12 = 2 \text{ (cm)}$ 또, 점 Q는 $\triangle ACD$ 의 무게중심이므로 $\overline{OQ} = \frac{1}{3}\overline{DO} = \frac{1}{3} \times \frac{1}{2}\overline{BD} = \frac{1}{6}\overline{BD} = \frac{1}{6} \times 12 = 2 \text{ (cm)}$ $\therefore \overline{PQ} = \overline{PO} + \overline{OQ} = 2 + 2 = 4 \text{ (cm)}$
- 13 점 G는 \triangle ABC의 무게중심이므로 $\overline{\text{GD}} = \frac{1}{3} \overline{\text{AD}} = \frac{1}{3} \times 18 = 6 \text{ (cm)}$ 점 G'은 \triangle GBC의 무게중심이므로 $\overline{\text{GG'}} = \frac{2}{3} \overline{\text{GD}} = \frac{2}{3} \times 6 = 4 \text{ (cm)}$
- 14 $\triangle GDE = \frac{1}{2} \triangle GDC$ $= \frac{1}{2} \times \left(\frac{1}{6} \triangle ABC\right)$ $= \frac{1}{12} \triangle ABC$ $= \frac{1}{12} \times 48 = 4 \text{ (cm}^2)$
- 15 △ADE ∽ △ABC (AA 닮음)이고 닮음비가 3: 4이므로 넓이의 비는 3²: 4²=9: 16 즉 △ADE: 32=9: 16에서 △ADE=18 (cm²)
- 16 (입체도형 P의 부피) : (입체도형 Q의 부피)=1³ : 2³=1 : 8 이므로 (입체도형 P의 부피) : 32=1 : 8

∴ (입체도형 P의 부피)=4 (cm³)

01 8:4=6:x에서 x=3

8:(8+4)=y:15에서 y=10

x+y=3+10=13

 $\overline{AE}:\overline{EC}=\overline{AD}:\overline{DB}=18:12=3:2$ 이므로

 $\overline{AF} = x \text{ cm}$ 라 하면

 $\overline{AF}:\overline{FD}=\overline{AE}:\overline{EC}$ 에서

x: (18-x)=3:2, 2x=54-3x

$$5x = 54$$
 : $x = \frac{54}{5}$

따라서 \overline{AF} 의 길이는 $\frac{54}{5}$ cm이다.

03
$$(\triangle DEF$$
의 둘레의 길이)= $\overline{DE}+\overline{EF}+\overline{FD}$

$$=\frac{1}{2}(\overline{AC}+\overline{BA}+\overline{CB})$$

$$=\frac{1}{2}\times(6+8+10)$$

=12 (cm)

$$\overline{CD} {=} \overline{FE} {=} \frac{1}{2} \overline{BC} {=} \frac{1}{2} {\times} 18 {=} 9 \ (cm)$$

05 $\overline{AB} : \overline{AC} = \overline{BD} : \overline{CD}$ 에서

6:3=(4+x):x

6x=3(4+x), 6x=12+3x

3x=12 $\therefore x=4$

06 12: x=14: 28에서 x=24

07 오른쪽 그림과 같이 사다리꼴 ABCD의 대각선 AC와 \overline{PQ} 가 만 나는 점을 R라 하면

△ABC에서

 $\overline{AP} : \overline{AB} = \overline{PR} : \overline{BC}$

즉
$$3:5=\overline{PR}:15$$
에서 $\overline{PR}=9$ (cm)
 $\triangle CDA$ 에서 $\overline{CQ}:\overline{CD}=\overline{RQ}:\overline{AD}$
즉 $2:5=\overline{RQ}:10$ 에서 $\overline{RQ}=4$ (cm)
 $\therefore \overline{PQ}=\overline{PR}+\overline{RQ}=9+4=13$ (cm)

O8 △ABC에서

$$\overline{MQ} = \frac{1}{2}\overline{BC} = \frac{1}{2} \times 12 = 6 \text{ (cm)}$$

△BDA에서

$$\overline{\text{MP}} = \frac{1}{2}\overline{\text{AD}} = \frac{1}{2} \times 7 = 3.5 \text{ (cm)}$$

$$\therefore \overline{PQ} = \overline{MQ} - \overline{MP} = 6 - 3.5 = 2.5 \text{ (cm)}$$

09 $\overline{BP}:\overline{DP}=\overline{AB}:\overline{CD}=9:6=3:2$ 이므로

 $\overline{PQ}:\overline{DC}=\overline{BP}:\overline{BD}=3:5$

즉 $\overline{PQ}:6=3:5$ 이므로

$$\overline{PQ} = \frac{18}{5} = 3.6 \text{ (cm)}$$

10 $\overline{AD} = 3\overline{GD} = 3 \times 6 = 18 \text{ (cm)}$

11
$$\overline{\text{GD}} = \frac{1}{2}\overline{\text{BG}} = \frac{1}{2} \times 8 = 4 \text{ (cm)}$$
이므로

$$\overline{GG'} = \frac{2}{3}\overline{GD} = \frac{2}{3} \times 4 = \frac{8}{3}$$
 (cm)

12
$$\overline{\text{EF}} = \overline{\text{ED}} + \overline{\text{DF}} = \frac{1}{2}\overline{\text{BD}} + \frac{1}{2}\overline{\text{CD}} = \frac{1}{2}\overline{\text{BC}}$$

$$=\frac{1}{2} \times 24 = 12 \text{ (cm)}$$

 $\overline{GG'}: \overline{EF} = \overline{AG}: \overline{AE} = 2:3$ 이므로

 $\overline{GG'}$: 12=2:3 $\therefore \overline{GG'}$ =8 (cm)

13 $\triangle ABE = \frac{2}{3} \triangle ABC = \frac{2}{3} \times 72 = 48 \text{ (cm}^2)$

이때 점 G는 △ABE의 무게중심이므로

$$\triangle AGE = \frac{1}{3} \triangle ABE = \frac{1}{3} \times 48 = 16 \text{ (cm}^2)$$

14 △ADE ∞ △ABC (AA 닮음)이고. 닮음비가

6:15=2:5이므로 넓이의 비는 $2^2:5^2=4:25$

즉 \triangle ADE: \triangle ABC=4:25에서

 \triangle ADE: $(\triangle$ ADE+63)=4:25

 $\therefore \triangle ADE = 12 (cm^2)$

15 물이 담겨진 부분과 전체 그릇의 닮음비는 2:3이므로 부피

의 비는 2³: 3³=8:27

물을 가득 채우는 데 x분이 걸린다고 하면

8:27=8:x : x=27

따라서 앞으로 27-8=19(분)이 더 걸린다.

16 8 (cm)
$$\div \frac{1}{30000}$$
 = 8 (cm) \times 30000

$$=240000 (cm)=2.4 (km)$$

$$5 \text{ (cm)} \div \frac{1}{30000} = 5 \text{ (cm)} \times 30000$$

$$=150000 (cm)=1.5 (km)$$

따라서 공원의 실제 넓이는

 $2.4 \times 1.5 = 3.6 \text{ (km}^2)$

┧│회 5. 피타고라스 정리

p.38~p.39

01 x=8, y=17

02 $\frac{13}{6}$

03 20

10 49 cm²

11 3, 5

06 60 cm² **07** 60 cm² 12 5개

08 (5) **13** 101

14 54 cm²

15 20 cm

- 01 $\triangle ABC$ 에서 $x^2 = 10^2 6^2 = 64 = 8^2$ $\therefore x = 8 \ (\because x > 0)$ $\triangle ABD$ 에서 $y^2 = 8^2 + 15^2 = 289 = 17^2$ $\therefore y = 17 \ (\because y > 0)$
- 02 $\triangle ABC$ 에서 $\overline{AB}^2 = 5^2 + 12^2 = 169 = 13^2$ $\therefore \overline{AB} = 13 \, (\because \overline{AB} > 0)$ 이때 점 D는 $\triangle ABC$ 의 외심이므로 $\overline{CD} = \overline{AD} = \overline{BD} = \frac{1}{2} \, \overline{AB} = \frac{13}{2}$ $\therefore \overline{DG} = \frac{1}{3} \, \overline{CD} = \frac{1}{3} \times \frac{13}{2} = \frac{13}{6}$
- **03** $\triangle ABD$ 에서 $\overline{AD}^2 = 13^2 5^2 = 144 = 12^2$ $\therefore \overline{AD} = 12 \ (\because \overline{AD} > 0)$ $\triangle ADC$ 에서 $\overline{AC}^2 = 12^2 + 16^2 = 400 = 20^2$ $\therefore \overline{AC} = 20 \ (\because \overline{AC} > 0)$
- **04** 오른쪽 그림의 △ABC에서 A8 cm.C. 16 cm. AB²=10²−8²=36=6² B 10 cm ∴ \overline{AB} =6 (cm) (∵ \overline{AB} >0) x cm ∴ x=20−6=14

20 cm

- **05** $\triangle ABD$ 에서 $\overline{BD}^2 = 3^2 + 4^2 = 25 = 5^2$ $\therefore \overline{BD} = 5 \ (\because \overline{BD} > 0)$ $\overline{AB} \times \overline{AD} = \overline{BD} \times \overline{AH}$ 이므로 $3 \times 4 = 5 \times \overline{AH}$ $\therefore \overline{AH} = \frac{12}{5} \ (cm)$
- 06 $\triangle AOD$ 에서 $\overline{OD}^2 = 10^2 6^2 = 64 = 8^2$ $\therefore \overline{OD} = 8 \text{ (cm)} (\because \overline{OD} > 0)$ $\triangle DOC$ 에서 $\overline{OC}^2 = 17^2 8^2 = 225 = 15^2$ $\therefore \overline{OC} = 15 \text{ (cm)} (\because \overline{OC} > 0)$ $\therefore \triangle OCD = \frac{1}{2} \times \overline{OD} \times \overline{OC}$ $= \frac{1}{2} \times 8 \times 15 = 60 \text{ (cm}^2)$
- 린 수선의 발을 H라 하면 $\overline{BH} = \overline{CH} = \frac{1}{2} \overline{BC} = \frac{1}{2} \times 10 = 5 \text{ (cm)}$ $\triangle ABH 에서$ $\overline{AH}^2 = 13^2 5^2 = 144 = 12^2$ $\therefore \overline{AH} = 12 \text{ (cm)} (\because \overline{AH} > 0)$ $\therefore \triangle ABC = \frac{1}{2} \times \overline{BC} \times \overline{AH}$ $= \frac{1}{2} \times 10 \times 12 = 60 \text{ (cm}^2)$

 $\mathbf{07}$ 오른쪽 그림과 같이 점 \mathbf{A} 에서 $\overline{\mathbf{BC}}$ 에 내

08 △EBC와 △ABF에서 EB=AB, BC=BF, ∠EBC=∠ABF

- 이므로 $\triangle EBC \equiv \triangle ABF$ (SAS 합동) (①) $\therefore \triangle AEB = \triangle EBC = \triangle ABF = \triangle JBF$ (②, ③) $\triangle AEB = \frac{1}{2} \Box ADEB \cap \Box, \triangle JBF = \frac{1}{2} \Box BFKJ \cap \Box$ $\Box ADEB = \Box BFKJ$ 같은 방법으로 하면 $\Box ACHI = \Box JKGC$ (④)
 따라서 옳지 않은 것은 ⑤이다.
- □BFGC=□ADEB+□ACHI이므로
 □ADEB=□BFGC-□ACHI
 =25-9=16 (cm²)
- 10 △AED≡△BFA≡△CGB≡△DHC (RHS 합동)이고, $\overline{AE} = \overline{BF} = \overline{CG} = \overline{DH}$ 이므로 □EFGH는 정사각형이다. 이때 정사각형 ABCD의 넓이가 169 cm²이므로 $\overline{AD}^2 = 169 = 13^2$ ∴ $\overline{AD} = 13$ (cm) (∵ $\overline{AD} > 0$) $\triangle AED에서$ $\overline{ED}^2 = 13^2 5^2 = 144 = 12^2$ ∴ $\overline{ED} = 12$ (cm) (∵ $\overline{ED} > 0$) 따라서 $\overline{EH} = \overline{ED} \overline{DH} = 12 5 = 7$ (cm)이므로 □EFGH= $\overline{EH}^2 = 7^2 = 49$ (cm²)
- 11 ① 8²≠5²+6²
 ② 13²≠8²+10²
 ③ 15²=9²+12²
 ④ 18²≠9²+15²
 ⑤ 25²=15²+20²
 따라서 직각삼각형의 세 변의 길이가 될 수 있는 것은 ③, ⑤
 이다
- 12 x가 가장 긴 변의 길이이므로 삼각형의 세 변의 길이 사이의 관계에 의하여 8-6< x<8+6 ∴ 2< x<14 이때 x>8이므로 8< x<14 ······ □
 ∠C<90°가 되려면
 8²<6²+x² ∴ x²>28 ····· □
 □, □에서 자연수 x는 9, 10, 11, 12, 13의 5개이다.
- 13 △DBE에서 $\overline{DE}^{2}=4^{2}+2^{2}=20$ $\therefore \overline{AE}^{2}+\overline{CD}^{2}=\overline{DE}^{2}+\overline{AC}^{2}$ $=20+9^{2}=101$
- 14 $\triangle ABC$ 에서 $\overline{AC}^2 = 15^2 12^2 = 81 = 9^2 \quad \therefore \overline{AC} = 9 \text{ (cm)} \text{ (} \because \overline{AC} > 0\text{)}$ $\therefore \text{ (어무한 부분의 넓이)} = \triangle ABC = \frac{1}{2} \times \overline{AB} \times \overline{AC}$ $= \frac{1}{2} \times 12 \times 9 = 54 \text{ (cm}^2\text{)}$
- 15 최단 거리는 오른쪽 그림과 같으 므로 △HBG에서 $\overline{HB}^2 = 16^2 + 12^2 = 400 = 20^2$ ∴ $\overline{HB} = 20 \text{ (cm)} \text{ (∵ } \overline{HB} > 0 \text{)}$

<u>______</u> 회 5. 피타고라스 정리

p.40~p.41

01 ②	02 5	03 ③	04 10 cm	05 $\frac{30}{7}$
06 156 cm ²	07 5	08 12 cm	09 32 cm ²	10 20
11 50 cm ²	12 3, 4	13 13	14 33	

15 64π cm² **16** 40 cm²

O1 △ABC에서

$$\overline{BC}^2 = 13^2 - 5^2 = 144 = 12^2$$

$$\therefore \overline{BC} = 12 \text{ (cm) } (\because \overline{BC} > 0)$$

△CBD에서

$$\overline{\text{CD}}^2 = 15^2 - 12^2 = 81 = 9^2$$

$$\therefore \overline{CD} {=} 9 (cm) (\because \overline{CD} {>} 0)$$

02
$$\triangle OAB에서 \overline{OB}^2 = 1^2 + 1^2 = 2$$
,

$$\triangle OBC$$
에서 $\overline{OC}^2 = 2 + 1^2 = 3$,

$$\triangle$$
OCD에서 $\overline{OD}^2 = 3 + 1^2 = 4$ 이므로

$$\triangle ODE$$
에서 $\overline{OE}^2 = 4 + 1^2 = 5$

03 △ABD에서

$$x^2 = 17^2 - 15^2 = 64 = 8^2$$
 $\therefore x = 8 \ (\because x > 0)$

△ADC에서

$$y^2 = 8^2 + 6^2 = 100 = 10^2$$
 $\therefore y = 10 \ (\because y > 0)$

x+y=8+10=18

04 □ABCD가 정사각형이므로

$$\overline{AB}^2 = 36 = 6^2$$
 $\therefore \overline{AB} = 6 \text{ (cm)} (\because \overline{AB} > 0)$

$$\therefore \overline{BC} = \overline{AB} = 6 \text{ cm}$$

□GCEF가 정사각형이므로

$$\overline{\text{CE}}^2 = 4 = 2^2$$
 $\therefore \overline{\text{CE}} = 2 \text{ (cm)} (\because \overline{\text{CE}} > 0)$

따라서 <ABE에서

$$\overline{AE}^2 = 6^2 + (6+2)^2 = 100 = 10^2$$

$$\therefore \overline{AE} = 10 \text{ (cm)} (\because \overline{AE} > 0)$$

05 △ABC는 ∠A=90°인 직각삼각형이므로

$$\overline{AB}^2 = 10^2 - 6^2 = 64 = 8^2$$

$$\therefore \overline{AB} = 8 \text{ (cm)} (\because \overline{AB} > 0)$$

이때 $\overline{\mathrm{AD}}$ 가 ∠A의 이등분선이므로

 $\overline{AB}:\overline{AC}=\overline{BD}:\overline{CD}$ 에서

8:6=(10-x):x

$$8x = 6(10-x), 14x = 60$$
 $\therefore x = \frac{30}{7}$

오른쪽 그림과 같이 두 꼭짓점 A, D에서 BC에 내린 수선을 발을 각 각 H, H'이라 하면 □ABCD가 등 변사다리꼴이므로

$$\overline{HH'}{=}\overline{AD}{=}8$$

$$\therefore \overline{BH} = \overline{CH'} = \frac{1}{2} \times (18 - 8) = 5$$

$$\overline{AH}^2 = 13^2 - 5^2 = 144 = 12^2 \quad \therefore \overline{AH} = 12 \ (\because \overline{AH} > 0)$$

$$\therefore \Box ABCD = \frac{1}{2} \times (8+18) \times 12 = 156$$

07 $\overline{AF} = \overline{AD} = 15$ 이므로

△ABF에서

$$\overline{BF}^2 = 15^2 - 9^2 = 144 = 12^2$$
 $\therefore \overline{BF} = 12 \ (\because \overline{BF} > 0)$

$$\therefore \overline{\text{CF}} = 15 - 12 = 3$$

△ABF∞ △FCE (AA 닮음)이므로

$$9:3=15:\overline{EF}, 9\overline{EF}=45$$
 $\therefore \overline{EF}=5$

P=Q+R이므로

$$R = \overline{BC}^2 = 169 - 25 = 144 = 12^2 \text{ (cm}^2\text{)}$$

$$\therefore \overline{BC} = 12 \text{ (cm) } (\because \overline{BC} > 0)$$

09 △ABC에서

$$\overline{AB}^2 = 10^2 - 6^2 = 64 = 8^2$$

$$\therefore \overline{AB} = 8 \text{ (cm)} (\because \overline{AB} > 0)$$

오른쪽 그림과 같이 \overline{AB} 를 한 변으

로 하는 정사각형 AFGB를 그리면

$$\triangle BDH = \triangle ABD$$

$$= \triangle GBC$$

$$= \triangle GBA$$

$$=\frac{1}{2}\Box AFGB$$

$$=\frac{1}{2}\overline{AB}^2$$

$$=\frac{1}{2}\times8^{2}=32 \text{ (cm}^{2})$$

□EFGH는 정사각형이다.

△AEH에서

$$\overline{EH}^2 = 3^2 + 4^2 = 25 = 5^2$$
 $\therefore \overline{EH} = 5 \ (\because \overline{EH} > 0)$

∴ (□EFGH의 둘레의 길이)=4×5=20

11 △ABP≡△PCD이므로

$$\overline{AB} = \overline{PC} = 8 \text{ cm}$$

$$\overline{AP}^2 = 8^2 + 6^2 = 100 = 10^2$$

$$\therefore \overline{AP} = 10 \text{ (cm)} (\because \overline{AP} > 0)$$

즉 △APD는 ∠APD=90°인 직각이등변삼각형이므로

$$\triangle APD = \frac{1}{2} \times \overline{AP}^2 = \frac{1}{2} \times 10^2 = 50 \text{ (cm}^2)$$

- **12** ① $4^2 \neq 2^2 + 3^2$
 - (2) $12^2 \neq 6^2 + 9^2$
 - (3) 17²=8²+15²
 - $41^2 = 9^2 + 40^2$
 - $\bigcirc 15^2 \neq 10^2 + 13^2$

따라서 직각삼각형인 것은 ③, ④이다.

- 13
 a가 가장 긴 변의 길이이므로 삼각형의 세 변의 길이 사이에 관계에 의하여 5-3<a<5+3</td>
 ∴ 2<a<8</td>

 이때 a>5이므로 5<a<8</td>
 ······ ⑤

 둔각삼각형이 되려면
 a²>3²+5²
 ∴ a²>34
 ····· ⑥

 ⑤, ⑥에서 자연수 a의 값은 6, 7이므로 그 합은
 6+7=13
- **14** $\overline{AB}^2 + \overline{CD}^2 = \overline{BC}^2 + \overline{AD}^2$ 이므로 $7^2 + 3^2 = \overline{BC}^2 + 5^2$ $\therefore \overline{BC}^2 = 33$
- 15 R=P+Q이므로 P+Q+R=R+R=2R $=2\times\left(\frac{1}{2}\times\pi\times8^2\right)$ $=64\pi\ (\mathrm{cm}^2)$
- **16** (어두운 부분의 넓이)= \triangle ABC $= \frac{1}{2} \times 10 \times 8 = 40 \ (cm^2)$

- **01** 지불하는 지폐의 장수를 순서쌍 (5000원짜리 지폐의 장수, 10000원짜리 지폐의 장수)로 나타내면 (4,0), (2,1), (0,2) 의 3가지
- **02** 3의 배수가 적힌 카드가 나오는 경우는 3, 6, 9, 12, 15, 18의 6가지
- 03 두 눈의 수의 합이 4인 경우는 (1,3), (2,2), (3,1)의 3가지 두 눈의 수의 합이 5인 경우는 (1,4), (2,3), (3,2), (4,1) 의 4가지 따라서 구하는 경우의 수는 3+4=7
- (서로 다른 두 눈이 나오는 경우의 수)
 =(모든 경우의 수)-(서로 같은 두 눈이 나오는 경우의 수)
 이다. 이때 서로 같은 두 눈이 나오는 경우는 (1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)의 6가지이므로 구하는 경우의 수는
 36-6=30
- 수학 문제집을 고르는 경우의 수는 5이고, 그 각각의 경우에 대하여 영어 문제집을 고르는 경우의 수는 4이다.따라서 구하는 경우의 수는5×4=20

- **06** (광주에서 대전으로 가는 방법의 수)×(대전에서 서울로 가는 방법의 수) =2×3=6
- P를 맨 앞에 놓고, 그 뒤에 Q, R, S를 일렬로 나열하면 된다.즉 3명을 한 줄로 세우는 경우의 수와 같으므로 구하는 경우의 수는 3×2×1=6
- 이용 여학생 2명을 하나로 묶어서 생각하고 4명을 한 줄로 세우는 경우의 수는 4×3×2×1=24
 이때 묶음 안에서 여학생 2명이 자리를 바꾸는 경우의 수는 2×1=2
 따라서 구하는 경우의 수는 24×2=48
- 백의 자리에 올 수 있는 숫자는 1, 2, 3, 4, 5의 5가지, 십의 자리에 올 수 있는 숫자는 백의 자리에 놓인 숫자를 제외 한 4가지, 일의 자리에 올 수 있는 숫자는 백의 자리와 십의 자리를 놓인 숫자를 제외한 3가지이다. 따라서 구하는 자연수의 개수는 5×4×3=60
- 10 일의 자리에 올 수 있는 숫자는 2, 4의 2가지이다.
 (i) □2인 경우: 12, 32, 42의 3개
 (ii) □4인 경우: 14, 24, 34의 3개
 따라서 구하는 짝수의 개수는 3+3=6
- 백의 자리에 올 수 있는 숫자는 0을 제외한 4가지,
 십의 자리에 올 수 있는 숫자는 백의 자리에 놓인 숫자를 제외한 4가지,
 일의 자리에 올 수 있는 숫자는 백의 자리와 십의 자리에 놓인 숫자를 제외한 3가지이다.
 따라서 구하는 자연수의 개수는 4×4×3=48
- **12** 남학생 3명 중에서 대표 1명을 뽑는 경우의 수는 3 여학생 4명 중에서 대표 1명을 뽑는 경우의 수는 4 따라서 구하는 경우의 수는 3×4=12
- 6명 중에서 회장 1명을 뽑는 경우의 수는 6이고 회장으로 뽑힌 1명을 제외한 나머지 5명 중에서 부회장 2명을 뽑는 경우의 수는 5×4 2×1 =10
 따라서 구하는 경우의 수는 6×10=60
- 14 10명 중에서 자격이 같은 대표 2명을 뽑는 경우의 수와 같다.
 따라서 구하는 경우의 수는
 10×9 2×1
- 15 6명 중 대표 3명을 뽑는 경우의 수와 같다. 따라서 구하는 삼각형의 개수는 $\frac{6\times5\times4}{3\times2\times1} \!=\! 20$

A → B → C의 순서로 색을 칠하면
 A 부분에는 3가지
 B 부분에는 A 부분에 칠한 색을 제외한 2가지
 C 부분에는 B 부분에 칠한 색을 제외한 2가지
 따라서 구하는 경우의 수는
 3×2×2=12

2 ছা 6. ব	경우의 수			p.44~p.45
01 ④	02 ③	03 9	04 ①	05 ⑤
06 ④	07 6	08 6	09 6	10 ①
11 ③	12 ①	13 12	142	15 15개
16 48				

- 01 6의 약수의 눈이 나오는 경우의 수는 1, 2, 3, 6의 4
- **02** 지불하는 동전의 개수를 순서쌍 (500원짜리 동전의 개수, 100원짜리 동전의 개수, 50원짜리의 동전의 개수)로 나타내면 (3, 2, 1), (3, 1, 3), (3, 0, 5), (2, 5, 5)의 4가지
- **03** 4+5=9
- **04** (i) 3의 배수가 적힌 공이 나오는 경우는 3, 6, 9, 12, 15의 5가지
 - (ii) 4의 배수가 적힌 공이 나오는 경우는 4, 8, 12의 3가지
 - (ii) 3의 배수이면서 4의 배수, 즉 12의 배수가 적힌 공이 나오는 경우는12의 1가지

따라서 구하는 경우의 수는

5+3-1=7

- **05** (i) 두 눈의 수의 차가 1인 경우는 (1, 2), (2, 1), (2, 3), (3, 2), (3, 4), (4, 3), (4, 5), (5, 4), (5, 6), (6, 5)의 10가지
 - (ii) 두 눈의 수의 차가 2인 경우는 (1, 3), (2, 4), (3, 1), (3, 5), (4, 2), (4, 6), (5, 3), (6, 4)의 8가지

따라서 구하는 경우의 수는

10+8=18

- **06** $4 \times 3 = 12$
- 5전이 서로 같은 면이 나오는 경우는 (앞, 앞), (뒤, 뒤)의 2가지
 주사위에서 소수의 눈이 나오는 경우는 2, 3, 5의 3가지 따라서 구하는 경우의 수는 2×3=6
- 08 한 번에 승부가 나려면 비기지 않아야 한다.모든 경우의 수는 3×3=9

A, B 두 사람이 비기는 경우를 순서쌍 (A, B)로 나타내면 (가위, 가위), (바위, 바위), (보, 보)의 3가지 따라서 구하는 경우의 수는 (모든 경우의 수)—(비기는 경우의 수)=9-3=6

- A 지점에서 P 지점으로 가는 경우: 2가지
 P 지점에서 B 지점으로 가는 경우: 3가지
 따라서 구하는 방법의 수는
 2×3=6
- 10 엄마, 아빠를 하나로 묶어서 생각하고 3명을 한 줄로 세우는 경우의 수는 3×2×1=6
 이때 묶음 안에서 엄마, 아빠를 한 줄로 세우는 경우의 수는 2×1=2
 따라서 구하는 경우의 수는 6×2=12
- 11 십의 자리에 올 수 있는 숫자는 0을 제외한 3가지 일의 자리에 올 수 있는 숫자는 십의 자리에 놓인 숫자를 제외 한 3가지 따라서 구하는 경우의 수는 3×3=9
- 12 십의 자리에 올 수 있는 숫자는 2, 3, 4, 5의 4가지 일의 자리에 올 수 있는 숫자는 십의 자리에 놓인 숫자를 제외 한 5가지 따라서 구하는 경우의 수는 4×5=20
- 13시장 1명을 뽑는 경우의 수는 2가지, 시의원 2명을 뽑는 경우의 수는 $\frac{4 \times 3}{2 \times 1} = 6$ 따라서 구하는 경우의 수는 $2 \times 6 = 12$
- 14 5명 중에서 자격이 같은 대표 2명을 뽑는 경우의 수와 같다. 따라서 구하는 경기의 수는 $\frac{5\times 4}{2\times 1} \!=\! 10(\texttt{번})$
- 15 서로 다른 두 마을을 이어 만들 수 있는 길의 개수는 6명 중에 서 자격이 같은 대표 2명을 뽑는 경우의 수와 같다. 따라서 구하는 길의 개수는 $\frac{6\times 5}{2\times 1} = 15$
- A → B → C → D의 순서로 색을 칠하면
 A 부분에는 4가지
 B 부분에는 A 부분에 칠한 색을 제외한 3가지
 C 부분에는 A와 B 부분에 칠한 색을 제외한 2가지
 D 부분에는 A와 C 부분에 칠한 색을 제외한 2가지
 따라서 구하는 경우의 수는 4×3×2×2=48

<u> </u>	률			p.46~p.47
01 4	02 ①	03 ②	04 ①	05 ⑤
06 $\frac{1}{18}$	07 $\frac{7}{8}$	08 $\frac{3}{5}$	09 ③	10 $\frac{1}{4}$
11 ⑤	12 ①	13③	14 $\frac{9}{25}$	15 ①
$16\frac{1}{3}$				

- **02** 모든 경우의 수는 6×6=36 두 눈의 수의 합이 9가 되는 경우는 (3, 6), (4, 5), (5, 4), (6, 3)의 4가지
 - ∴ (구하는 확률)=⁴/₃₆=¹/₉
- 모든 경우의 수는 3×3=9
 갑이 이기는 경우를 순서쌍 (갑, 을)로 나타내면
 (가위, 보), (바위, 가위), (보, 바위)의 3가지
 ∴ (구하는 확률)=3/0 = 1/2
- 04 10 이상의 자연수는 나올 수 없으므로 구하는 확률은 0이다.
- **05** 두 자리의 자연수의 개수는 3×3=9이때 20 이상인 두 자리의 자연수는 20, 21, 23, 30, 31, 32의6개
 - \therefore (구하는 확률)= $\frac{6}{9}$ = $\frac{2}{3}$
- **06** 모든 경우의 수는 6×6=36 이때 3x+y=10을 만족하는 순서쌍 (x, y)는 (2, 4), (3, 1)의 2가지
 - ∴ (구하는 확률)=²/₃₆=¹/₁₈
- 모든 경우의 수는 2×2×2=8
 모두 뒷면이 나오는 경우는 (뒤, 뒤, 뒤)의 1가지
 ∴ (적어도 하나는 앞면이 나올 확률)
 =1-(모두 뒷면이 나올 확률)
 =1-¹/_○=⁷/_○
- 모든 경우의 수는 10
 소수가 나오는 경우는 2, 3, 5, 7의 4가지이므로
 그 확률은 4/10
 4의 배수가 나오는 경우는 4, 8의 2가지이므로
 그 확률은 2/10
 ∴ (구하는 확률)=4/10+2/10=6/10=3/5
- 모든 경우의 수는 20
 4의 배수가 나오는 경우는 4, 8, 12, 16, 20의 5가지이므로
 그 확률은 5/20

- \therefore (구하는 확률)= $\frac{5}{20}+\frac{4}{20}-\frac{1}{20}=\frac{8}{20}=\frac{2}{5}$
- 10 동전이 앞면이 나올 확률은 1/2
 주사위가 소수의 눈이 나오는 경우는 2, 3, 5의 3가지이므로 그 확률은 3/6 = 1/2
 ∴ (구하는 확률)=1/2 × 1/2 = 1/4
- 내일 비가 오지 않을 확률은 1 20/100 = 8/10
 내일 황사가 올 확률은 30/100 = 3/10
 ∴ (구하는 확률) = 8/10 × 3/10 = 24 (%)
- 12 (두 사람이 약속 장소에서 만나지 못할 확률) =1-(두 사람이 약속 장소에서 만날 확률) $=1-\frac{1}{5}\times\frac{1}{4}$ $=1-\frac{1}{20}=\frac{19}{20}$
- 13 (적어도 한 문제를 맞힐 확률)=1-(두 문제 모두 틀릴 확률) $=1-\frac{4}{5} \times \frac{4}{5}$ $=1-\frac{16}{25} = \frac{9}{25}$
- 14 처음에 흰 공을 꺼낼 확률은 $\frac{3}{5}$ 이고, 꺼낸 공을 다시 넣으므로 두 번째에 흰 공을 꺼낼 확률은 $\frac{3}{5}$ $\therefore (구하는 확률) = \frac{3}{5} \times \frac{3}{5} = \frac{9}{25}$
- 15 갑이 당첨 제비를 뽑을 확률은 $\frac{2}{8}$ 이고, 뽑은 제비는 다시 넣지 않으므로 을이 당첨 제비를 뽑을 확률은 갑이 당첨 제비 하나를 뽑았으므로 $\frac{1}{7}$
 - \therefore (구하는 확률) $=\frac{2}{8} \times \frac{1}{7} = \frac{1}{28}$
- 16 (구하는 확률) $= \frac{(B 부분의 넓이)}{(전체 넓이)}$ $= \frac{\pi \times 2^2 \pi \times 1^2}{\pi \times 3^2}$ $= \frac{3\pi}{9\pi} = \frac{1}{3}$

\\ \frac{\frac{1}{2}}{1} \\ \frac{1}{2} \\ \frac{1} \\ \frac{1}{2} \\ \frac{1} \\ \frac{1} \\ \frac{1} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac	7=			p. 10 p.
01 3	02 ⑤	03 ④	04 $\frac{1}{4}$	05 ②
06 ③	07 ①	08 ⑤	09 ③	10 $\frac{1}{2}$
11 ④	12②	13 ⑤	143	15 ②
16 ①				

- **02** $\frac{1}{a}$ 이 유한소수가 되는 경우는 $\frac{1}{2}$, $\frac{1}{4}$, $\frac{1}{5}$, $\frac{1}{8}$, $\frac{1}{10}$ 의 5가지이 므로 구하는 확률은 $\frac{5}{9}$
- **03** 모든 경우의 수는 $6 \times 6 = 36$ 두 눈의 수의 차가 4가 되는 경우는 (1,5), (2,6), (5,1), (6,2)의 4가지
 - $\therefore (구하는 확률) = \frac{4}{36} = \frac{1}{9}$
- **04** 두 자리의 자연수의 개수는 4×3=12
 두 자리의 자연수가 40보다 큰 경우는 41, 42, 43의 3가지
 ∴ (구하는 확률)=3/12=1/4
- **05** 모든 경우의 수는 4×3×2=24 A가 맨 앞에 서는 경우는 A를 맨 앞에 고정시킨 후 3명 중 2명을 뽑아 한 줄로 세우는 경우이므로 3×2=6 (가지)
 - $\therefore (구하는 확률) = \frac{6}{24} = \frac{1}{4}$
- **06** 모든 경우의 수는 $\frac{5\times 4}{2\times 1}$ =10 이때 2명 모두 남학생이 뽑히는 경우의 수는 $\frac{3\times 2}{2\times 1}$ =3
 - ∴ (적어도 여학생이 한 명 뽑힐 확률)
 =1-(2명 모두 남학생이 뽑힐 확률)
 =1-3/10=7/10
- **07** 모든 경우의 수는 6×6=36
 - (i) 해가 2인 경우

ax-b=0에 x=2를 대입하면

2a-b=0에서 2a=b

이를 순서쌍 (a,b)로 나타내면 (1,2),(2,4),(3,6)의 3가지

(ii) 해가 6인 경우

ax-b=0에 x=6을 대입하면

6a-b=0에서 6a=b

이를 순서쌍 (a, b)로 나타내면 (1, 6)의 1가지

- (i), (ii)에서 구하는 경우의 수는 3+1=4
- $\therefore (구하는 확률) = \frac{4}{36} = \frac{1}{9}$
- **09** 3의 배수가 나오는 경우는 3, 6, 9, 12, 15의 5가지이므로 그 확률은 <u>5</u>

7의 배수가 나오는 경우는 7, 14의 2가지이므로

- 그 확률은 $\frac{2}{15}$
- \therefore (구하는 확률)= $\frac{5}{15}+\frac{2}{15}=\frac{7}{15}$
- **10** 모든 경우의 수는 6×6=36

(i) 두 눈의 수의 합이 3이 되는 경우는 (1, 2), (2, 1)의 2가지

- (ii) 두 눈의 수의 합이 5가 되는 경우는 (1, 4), (2, 3), (3, 2), (4, 1)의 4가지
- (iii) 두 눈의 수의 합이 7이 되는 경우는 (1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)의 6가지
- (iv) 두 눈의 수의 합이 9가 되는 경우는 (3,6), (4,5), (5,4), (6,3)의 4가지
- (v) 두 눈의 수의 합이 11이 되는 경우는 (5, 6), (6, 5)의 2가지
- (i)~(v)에서 구하는 경우의 수는 2+4+6+4+2=18
- ∴ (구하는 확률)=¹⁸/₃₆=¹/₂
- 11 $\frac{2}{5} \times \frac{2}{3} = \frac{4}{15}$
- **12** 두 사람이 약속 장소에서 만나려면 두 사람 모두 약속 장소에 나와야 한다.

$$\therefore$$
 (구하는 확률)= $\left(1-\frac{3}{5}\right)\times\left(1-\frac{2}{3}\right)$
$$=\frac{2}{5}\times\frac{1}{3}=\frac{2}{15}$$

- 13 (적어도 한 사람이 문제를 풀 확률)=1-(두 사람 모두 문제를 풀지 못할 확률) $=1-\left(1-\frac{3}{4}\right)\times\left(1-\frac{4}{5}\right)$ $=1-\frac{1}{4}\times\frac{1}{5}=1-\frac{1}{20}=\frac{19}{20}$
- 월요일에 비가 올 확률은 40/100 = 4/10
 화요일에 비가 오지 않을 확률은 1 30/100 = 70/100 = 7/10
 ∴ (구하는 확률) = 4/10 × 7/10 = 28/100 = 28 (%)
- **15** 처음에 흰 구슬을 꺼낼 확률은 $\frac{4}{10}$ 이고, 꺼낸 구슬은 다시 넣지 않으므로 두 번째에 빨간 구슬을 꺼낼 확률은 $\frac{6}{9}$
 - \therefore (구하는 확률) $=\frac{4}{10} \times \frac{6}{9} = \frac{4}{15}$
- 16 (두 공의 색깔이 같을 확률) =(두 주머니 A, B에서 모두 흰 공을 꺼낼 확률) +(두 주머니 A, B에서 모두 검은 공을 꺼낼 확률) = $\frac{2}{5} \times \frac{5}{10} + \frac{3}{5} \times \frac{5}{10} = \frac{1}{5} + \frac{3}{10} = \frac{5}{10} = \frac{1}{2}$

핵심 테스트

1. 이등변삼각형의 성질 p.53				
13	2 ④	3 50°	4 72°	5 24°
6 25°	7 68°	8 75°		

2. 직각삼각형의 합동 조건				
1 (1) DF , I	$1 (1) \overline{DF}$, RHS (2) $\angle D$, RHA			3 12 cm
4 5 cm 5 12 cm 6 ④		7 ⑤	8 28 cm ²	

3. 삼각형의 외심과 내심 p.57				
13	2 (1) 20° (2) 66°	$3\frac{5}{2}$	43	
5 (1) 35° (2)	0 70° 6 20 cm	7 9	8 1 cm	

4. 평행사변형의 성질				p.59
$\begin{bmatrix} 1 & (1) & x = 3, y = 5 & (2) & x = 65, y = 25 \end{bmatrix}$			2 80°	3 5 cm
4 ④	5 ②	6 12	7 6쌍	8 30 cm ²

5. 평행사변형이 되는 조건				p.61
15	2 ①, ④			Ì
3 (1) $\overline{\mathrm{DC}}$, $\overline{\mathrm{BC}}$	\overline{C} (2) \overline{DC} , \overline{F}	\overline{BC} (3) $\angle BCD$,	∠ADC (4) O	$\overline{\mathbb{C}}, \overline{\mathrm{OD}}$
4 2 cm	5 ④	6 🖹	7 🖹	8 🗇

6. 여러 가지 사각형					
1 (1) x=30, y=60 (2) x=3, y=3					
2 (1) $x=5$,	2 (1) $x=5, y=55$ (2) $x=110, y=35$				
3 (1) $x=5$,	3 (1) $x=5, y=70$ (2) $x=80, y=100$				
4 ⑤	5 ①	6 ①, ④	7 ③, ⑤	82	

7. 여러 가지	p.65		
1 마름모	2 ⑤	3 평행사변형 4 6 cm	5 직사각형
6 정사각형	7 직사각형	8 마름모	

8. 여러 2	8. 여러 가지 사각형 사이의 관계			
1 (1) ×, (), (), (), (2) x , (), (), (), ()	(3) x, (), (), ())
(4) ×, ○,	○, ○, ○ (5) ×, ×, (), ×, () (6) ×, ×, ×, ○, ○	
2②	3 □, ⊜, 回	45	5 36 cm ²	6 10 cm ²
7 ⑤				

9. 닮음으	l 뜻과 성질			p.69
1 4	2 ④	3 ⑦, ℂ, ⊜	4 ④	5 ②, ④
6 ⑤	7 28			

10. 삼각형의	닮음 조건			p.71
1 ①	2 (1) 6 (2) 6	3 ④	43	
5 (1) 20 (2) 3	6 6	7 $\frac{5}{3}$	8 $\frac{35}{4}$ cm	

11. 삼각형과 평행선				p.73
1 (1) 2 (2) 3 2 ①	$3\frac{21}{5}$	$4\frac{18}{5}$	5 8	
6 2 7 10				

12. 평행선	p.75			
1 (1) 15 (2)	<u>15</u> 2	2 (1) 4.5 (2	2) 20	3 8
48	5 (1) 8 (2) 4	6 8 cm	7 $\frac{24}{5}$	8 $\frac{16}{3}$ cm

13. 삼각형	p.77			
$\begin{bmatrix} 1 & (1) & x = 3, 3 \end{bmatrix}$	y=5 (2) $x=4$	$y = \frac{8}{3}$	2 20 cm ²	3 ⑤
4 12 cm	5 12 cm	6 9 cm ²	7 512 cm ³	8 40 cm

14. 피타고	라스 정리			p.	.79
1 (1) 12 (2)	10 2 (1) 21 (2) :	23 3 4	4 $\frac{24}{5}$	5 ⑤	
6 60	7 49 cm ²	8 6	Ü		

15. 피타고라스 정리의 성질 p.81						
1 4, 5	2 6	3 32	4 18	5 130		
6 $5\pi \text{ cm}^2$	7 6 cm ²	8 13				

16. 경우	의 수(1)			p.83
16	2 5	3 15	4 6	5 8
6 6	7 3	8 9	9 18	

17. 경우의 수 (2) p.8						
1 24	2 360	3 12	4 24	5 16		
6 10	7 60	8 6	9 15	10 6		

18. 확률				p.87
$1\frac{3}{8}$	$2\frac{4}{9}$	3 ⑤	4 $\frac{7}{10}$	5 $\frac{3}{4}$
$oldsymbol{6} rac{1}{2}$	$7\frac{2}{7}$	$8\frac{7}{15}$	$9\frac{15}{16}$	$10\frac{11}{12}$

