Curtin University Department of Computing Quiz 1 – Semester 2, 2017

Subject: Foundations of Computer Science 1006

Index No.: COMP1006

Name:

Student ID:

Practical Time:

Time Allowed: 45 MINUTES

- 1. Represent the following statements in a propositional logic. You are required to define all necessary **propositions and predicates** used in your answers.
 - (i) There is no smallest negative integer.
 - (ii) I will pay the rent only if you fix the garage.
 - (iii) All visitors to Australia from China need a visa.
 - (iv) Every student in this class has a calculator or has a friend with a calculator.
 - (v) There is only one student in department of computing can obtain the highest distinction.

(5 marks)

2. Prove the assertion: $(p \land r) \rightarrow q \equiv p \rightarrow (r \rightarrow q)$. (4 marks)

3. Using Mathematical Induction to prove that the sum of the first n odd positive integers is n^2

(4 marks)

- 4. **Justify whether** the following statements are true and give your justifications.
- (1) $\exists x \in D, P(x) \land Q(x) \equiv (\exists x \in D, P(x)) \land (\exists x \in D, Q(x))$
- (2) $\forall x \in D, (P(x) \land Q(x)) \equiv (\forall x \in D, P(x)) \land (\forall x \in D, Q(x))$
- (3) If there is no COMP1006 unit in computing department, then everyone can obtain a bachelor degree in computer science.

(6 marks)

- 5. Find the negations for the following propositions or statements and simplify them if possible.
 - a) Some students have a laptop.
 - b) If you pass this quiz, I will give you award.

c) $\neg(\neg p \land (r \lor s \lor t \lor \neg p)) = ?$

d) $\neg (\exists \varepsilon > 0, \forall t > 0, (|x - d| < t) \land (|f(x) - f(d)| > \eta)) =$

(6 marks)

Rule of Inference

Rule of Inference	Tautology	Name
$\frac{p}{\therefore (p \lor q)}$	$p \to (p \lor q)$	Addition
<u>(p ∧ q)</u> ∴ p	$(p \land q) \to p$	Simplification
$\begin{array}{c} p \\ p \to q \\ \hline \therefore q \end{array}$	$[\ p \wedge (p \to q)] \to q$	Modus Ponens
$ \begin{array}{c} \neg q \\ p \to q \\ \hline \vdots \neg p \end{array} $	$[\neg \ q \land (p \to q)] \to \neg \ p$	Modus Tollens
$ \begin{array}{c} p \to q \\ q \to r \\ \hline \therefore p \to r \end{array} $	$[(p \to q) \land (q \to r)]$ $\to (p \to r)$	Hypothetical syllogism
p∨q p ∴ q	$[(p \lor q) \land \neg p] \to q$	Disjunctive syllogism

$$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$$
$$p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$$

$$(p \lor q) \lor r \equiv p \lor (q \lor r)$$

$$(p \land q) \land r \equiv p \land (q \land r)$$