Homework 2 of Stochastic Processes

姓名: 林奇峰 学号: 19110977 2019 年 9 月 13 日

- 1 Let $S_n = X_1 + \cdots + X_N$ where X_1, \dots, X_n are i.i.d binary rv.s with PMF $p_x(0) = \frac{3}{4}$ and $p_x(1) = \frac{1}{4}$.
 - 1. Plot the CDF of $Yn = \frac{S_n n\overline{X}}{n}$ for n = 4, 20 and 50.
 - 2. Plot the CDF of $Z_n = \frac{S_n n\overline{X}}{\sqrt{n}}$ for n = 4, 20 and 50.

Solutions:

1. The figure of CDF of $Y_n = \frac{Sn - n\overline{X}}{n}$ is showed as following:

图 1: CDF of
$$Y_n = \frac{Sn - n\overline{X}}{n}$$

2. The figure of CDF of $Z_n = \frac{Sn - n\overline{X}}{\sqrt{n}}$ is showed as following:

2 掷一个骰子

- a) 写出样本空间 S
- b) $\mathcal{F}_0 = \{S, \emptyset, A\}$ 是一个事件类吗? 其中 $A = \{1, 3, 5\}$
- c) $\mathcal{F}_1 = \{S, \emptyset, A, A^c\}$ 是一个事件类吗? $\mathcal{F} = 2^S$ 呢?
- d) 定义 X = 骰子面上的点数
 - i. 若我们考察的概率模型是以 \mathcal{F}_1 为事件类, X 是随机变量吗?
 - ii. 若我们考察的概率模型是以F为事件类,X是随机变量吗?
- e) 定义 $Y = X \mod 2$, 讨论 d) 所讨论的问题。
- f) 思考题:随机变量的定义与概率 $P(\cdot)$ 有关吗?

答:

事件的公理定义如下:

Given a sample space Ω , the class of subsets of Ω that consititue the set of events satisfies the following axioms:

- 1. Ω is an events
- 2. For every sequence of events A_1, A_2, \ldots , the union $\bigcup_{n=1}^{\infty} A_n$ is an event.
- 3. For every event A, the complement A^c is an event.
- a) $S = \{1, 2, 3, 4, 5, 6\}$

- b) $\mathcal{F}_0 = \{S, \emptyset, A\}$ 不是一个事件类。因为它违反了事件公理中的第三条,即 A^c 不在事件类中,构不成事件。
- c) I. $\mathcal{F}_1 = \{S, \emptyset, A, A^c\}$ 是一个事件类。因为它满足所有的事件公理。
 - i. 首先, 样本空间 S 在事件类中, 满足第一条事件公理。
 - ii. 其次,对任意一个事件序列 $E_1, E_2 \dots$, $\bigcup_{n=1}^{\infty} E_n$ 也是一个事件,满足第二条事件公理。
 - (1) $\forall E_n = \emptyset, \cup_{n=1}^{\infty} E_n = \emptyset \in \mathcal{F}_1$.
 - $(2) \exists E_n = S, \cup_{n=1}^{\infty} E_n = S \in \mathcal{F}_1.$
 - (3) $\forall E_n = A, \cup_{n=1}^{\infty} E_n = A \in \mathcal{F}_1$.
 - (4) $\forall E_n = A^c, \cup_{n=1}^{\infty} E_n = A^c \in \mathcal{F}_1$
 - (5) $\exists E_i = A, E_j = A^c \underline{\exists} i \neq j, \cup_{n=1}^{\infty} E_n = S \in \mathcal{F}_1.$
 - (6) $B = \{m | A_m = \emptyset\}$, 则 $\bigcup_{n=1}^{\infty} A_n = (\bigcup A_i) \cup (\bigcup A_j) = \bigcup A_j$ 其中 $i \in B, j \notin B$ 。 $\bigcup A_i$ 是上面 (2)-(5) 中的其中一种情况,因此 $\bigcup_{n=1}^{\infty} E_n \in \mathcal{F}_1$ 。

综上, $\cup_{n=1}^{\infty} E_n$ 是一个事件。

- iii. 对于任意一个事件 E, 其补集 E^c 也是一个事件, 满足第三条事件公理
 - (1) 当 $E = \emptyset$ 时, $E^c = S \in \mathcal{F}_1$ 。
 - (2) 当 E = S 时, $E^c = \emptyset \in \mathcal{F}_1$ 。
 - (3) 当 E = A 时, $E^c = A^c \in \mathcal{F}_1$ 。
 - (4) 当 $E = A^c$ 时, $E^c = A \in \mathcal{F}_1$ 。

综上, \mathcal{F}_1 满足所有的事件公理。因此, \mathcal{F}_1 是一个事件类。

- II. 当 $\mathcal{F} = 2^S$ 时, \mathcal{F} 是一个事件类。
 - i. 首先, $S \in \mathcal{F}$, 满足第一条事件公理。
 - ii. 其次,对于任意一个事件序列 $E_1, E_2 \dots, \bigcup_{n=1}^{\infty} E_n$ 也是一个事件,满足第二条事件公理。因为 \mathcal{F} 是 \mathcal{S} 的幂集,即 \mathcal{S} 的所有子集都在 \mathcal{F} 中。
 - iii. 对于任意一个事件 E, 其补集都在 F 中, 因此满足第三条事件公理。

综上、 $\mathcal{F}=2^S$ 是一个事件类。

- d) i. 当考察的概率模型是以 \mathcal{F}_1 为事件类时,X 不是一个随机变量。因为它不满足随机变量的一个性质: $\{\omega \in \Omega : X(\omega) \leq x\}$ is an event for each $x \in \mathbb{R}$ 。如 $\{\omega \in \Omega : X(\omega) \leq 2\} = \{1,2\} \notin \mathcal{F}_1$ 。
 - ii. 当考察的概率模型是以 \mathcal{F} 为事件类时,X 是随机变量。首先,因为 \mathcal{F} 是 S 的所有 子集的集合,则 $\forall x \in \mathbb{R}$, $C = \{\omega \in \Omega : X(\omega) \leq x\}$ 都在 \mathcal{F} 中,即为一个事件。其次, $\forall x_1 \in \mathbb{R}, \ldots, x_n \in \mathbb{R}$, $D = \{\omega : X_1(\omega) \leq x_1, \ldots, X_n(\omega)\}$ 也都在 \mathcal{F} 中,即为一个事件。因此,X 是随机变量。
- e) i. 当 $Y = X \mod 2$ 且以 \mathcal{F}_1 为事件类时,Y 是一个随机变量。根据定义,Y 的取值为 0 或 1。
 - (1) 当 $y \in \mathbb{R}$ 且y < 0 时, $\{\omega : Y(\omega) \le y\} = \emptyset \in \mathcal{F}_1$ 。
 - (2) 当 $y \in \mathbb{R}$ 且 $0 \le y < 1$ 时, $\{\omega : Y(\omega) \le y\} = A^c \in \mathcal{F}_1$ 。

- (3) $\underline{\text{\text{$\geqref{y}$}}}$ $y \in \mathbb{R}$ 且1 $\underline{\text{$Y$}}$ $y \in \mathbb{R}$ $\underline{\text{$Y$}}$ $\underline{\text{$Y$$
- (4) 从上面的讨论中我们已经可以知道,对于任意一个映射 Y,它都满足以下性质: $\forall y \in \mathbb{R}, \{\omega : Y(\omega) < y\}$ 是一个事件。

则, $\forall y_1 \in \mathbb{R}, \ldots, y_n \in \mathbb{R}$,令 $D = \{\omega : Y_1(\omega) < y_1, \ldots, Y_n(\omega) < y_n, \} = \bigcap_{i=1}^n D_i$,其中 $D_i = \{\omega : Y_i(\omega) < y_1\}$ 。根据上述楞知 $D_i \in \mathcal{F}_1$ 为一个事件,且根据事件公理 $D_i^c \in \mathcal{F}_1$ 也是一个事件,所以根据事件公理, $\bigcap_{i=1}^n D_i = \bigcup_{i=1}^n D_i^c$ 也是一个事件。

综上, Y 都满足随机变量的两个条件, 是一个随机变量。

- ii. 当 $Y = X \mod 2$ 且以 \mathcal{F} 为事件类时,Y 是一个随机变量。根据定义,Y 的取值为 0 或 1。
 - (1) 当 $y \in \mathbb{R}$ 且y < 0 时, $\{\omega : Y(\omega) \le y\} = \emptyset \in \mathcal{F}$ 。
 - (2) 当 $y \in \mathbb{R}$ 且 $0 \le y < 1$ 时, $\{\omega : Y(\omega) \le y\} = \{2, 4, 6\} \in \mathcal{F}$ 。
 - (3) 当 $y \in \mathbb{R}$ 且 $1 \le y$ 时, $\{\omega : Y(\omega) \le y\} = S \in \mathcal{F}$ 。
 - (4) 从上面的讨论中我们已经可以知道,对于任意一个映射 Y,它都满足以下性质: $\forall y \in \mathbb{R}, \{\omega: Y(\omega) < y\} \text{ 是一个事件}。$ 则, $\forall y_1 \in \mathbb{R}, \ldots, y_n \in \mathbb{R}, \diamondsuit D = \{\omega: Y_1(\omega) < y_1, \ldots, Y_n(\omega) < y_n, \} = \cap_{i=1}^n D_i,$

其中 $D_i = \{\omega: Y_i(\omega) < y_1\}$ 。根据上述楞知 $D_i \in \mathcal{F}$ 为一个事件,且根据事件公理 $D_i^c \in \mathcal{F}$ 也是一个事件,所以根据事件公理, $\bigcap_{i=1}^n D_i = \bigcup_{i=1}^n D_i^c$ 也是一个事件。

- f) 随机变量的定义并不依赖于概率模型 $P(\cdot)$,但是 $P(\cdot)$ 决定了随机变量的一些统计特性。 除此之外,两者依赖于同一个事件类 \mathcal{F} 。
 - i. 概率模型 $P(\cdot)$ 将事件类 \mathcal{F} 中的一个事件 A 映射到一个实数。
 - ii. 随机变量 X 将样本空间 Ω 中的样本点映射到一个实数,但是集合 $\{\omega: X(\omega) \leq x\}$ 必须是一个隶属于事件类 $\mathcal F$ 的事件。不同的随机变量 X 和 Y 可以给样本空间 Ω 中相同的样本点以不同的值,但是对于同一个值 a, $\{\omega: X(\omega) \leq a\}$ 和 $\{\omega: Y(\omega) \leq a\}$ 可能不相等。
 - iii. 对于一个随机变量 X,不同的概率模型 $P_1(\cdot)$ 和 $P_2(\cdot)$ 对于同一个事件 $\{\Omega: X(\omega) \leq x\}$ 的值可能不同,进而导致不同的统计特性,如累积分布函数(CDF)。