Math 4301 Mathematical Analysis I Lecture 8

Topic: Compact and Connected Sets

• Compact subsets of $\mathbb R$

Definition A subset $K \subseteq \mathbb{R}$ is called *sequentially compact* (or *compact*) if every sequence in K has a convergent subsequence whose limit belongs to K. **Example:** $A = (0,1) \subseteq \mathbb{R}$ is not sequentially compact.

• Consider $\{x_n\} \subset A$,

$$x_n = \frac{1}{n+1} \in (0,1)$$
.

- We see that $x_n \in A$ and since $\{x_n\}$ is convergent in \mathbb{R} to 0, i.e. $x_n \to 0$ as $n \to \infty$, every subsequence $\{x_{n_k}\}$ of $\{x_n\}$ has limit 0.
- Since 0 ∉ A, it follows that
 A is not sequentially compact.

Remark: We observe that

$$A = (0, 1)$$

is not closed subset of \mathbb{R} .

• In particular, the sequence $\{x_n\}$ is a sequence in A which converges to a point that is not in A.

Remark: We observe that $A = \mathbb{N}$ is closed but it is not bounded.

Theorem (*Bolzano-Weierstrass*) A subset $A \subset \mathbb{R}$ is sequentially compact if and only if it is closed and bounded.

Proof. Assume that $A \subset \mathbb{R}$ is sequentially compact.

- We show that A is closed and bounded.
- We show that A is closed.
- Let $\{x_n\} \subseteq A$ be a sequence in A and and assume that $x_n \to x$, where $x \in \mathbb{R}$.
- We want to show that $x \in A$.
- Since $\{x_n\}$ converges, every subsequence $\{x_{n_k}\}$ of $\{x_n\}$ also converges to x, i.e. $x_{n_k} \to x$ as $k \to \infty$.
- Since A is sequentially compact,

$$x \in A$$
.

- It follows that every convergent sequence in A has limit that belongs to A.
- Therefore, by previous theorem,
 A is closed.

- We show that A is bounded.
- Suppose that A is unbounded above, so for each $n \in \mathbb{N}$, there is

$$x_n \in A$$
,

such that $x_n > n$

• Clearly, $x_n \to \infty$ as $n \to \infty$, so every subsequence $\{x_{n_k}\}$ of $\{x_n\}$ is unbounded and

$$x_{n_k} \to \infty$$
.

- It follows that $\{x_n\}$ has no convergent subsequence.
- This contradicts the assumption that A is sequentially compact, so A must be bounded.
- We show that if A is closed and bounded then it is sequentially compact.
- Assume that $A \subseteq \mathbb{R}$ is closed and bounded.
- We want to show that if $\{x_n\}$ is a sequence in A, then $\{x_n\}$ has a convergent subsequence with its limit in A.
- Consider $\{x_n\} \subseteq A$.
- Since A is bounded, $\{x_{n_k}\}$, by Bolzano-Weierstrass theorem, $\{x_n\}$ has a convergent subsequence $\{x_{n_k}\}$ and let $x_{n_k} \to x$, $x \in \mathbb{R}$.
- We want to show that $x \in A$.
- Since $\{x_{n_k}\}$ is a subsequence of $\{x_n\}$, then $\{x_{n_k}\}$ is also a sequence in A.
- Since A is closed and $x_{n_k} \to x$ is a convergent sequence in A, it follows that

$$x \in A$$
.

• Therefore, A is sequentially compact.

This finishes our proof.

- Example: $A = \left\{ \frac{1}{n} : n \in \mathbb{N} \right\} \cup \{0\}$ is sequentially compact.
- A is closed because $A' = \{0\}$, so

$$\overline{A} = A \cup A' = A.$$

• A is also bounded because, if $n \in \mathbb{N}$, then

$$0<\frac{1}{n}\leq 1,$$

thus for every $x \in A$,

$$0 \le x \le 1$$
.

• Therefore, by the Bolzano–Weierstrass theorem, A is sequentially compact.

Proposition If $K \subseteq \mathbb{R}$, $K \neq \emptyset$ is sequentially compact, then both min K and max K exist.

Proof. Exercise.

- Let $K \subset \mathbb{R}$ be bounded.
- Define

$$\operatorname{diam}\left(K\right) = \sup\left\{\left|x - y\right| : x, y \in K\right\}$$

and we call it the diameter of K.

Example: Let $A = \{1, 2, 3\}$, then

$$\begin{aligned} \operatorname{diam}\left(K\right) &=& \sup\left\{\left|x-y\right| : x,y \in A\right\} \\ &=& \sup\left\{\left|1-1\right|,\left|1-2\right|,\left|2-2\right|,\left|1-3\right|,\left|2-3\right|,\left|3-3\right|\right\} \\ &=& \sup\left\{0,1,2\right\} = 2. \end{aligned}$$

Theorem Let $K_n \subseteq \mathbb{R}$ be nonempty and sequentially compact, for all $n \in \mathbb{N}$.

Assume that $K_{n+1} \subseteq K_n$, for all $n \in \mathbb{N}$.

Then

$$\bigcap_{n=1}^{\infty} K_n \neq \emptyset.$$

Moreover, if diam $(K_n) \to 0$ as $n \to \infty$

then
$$\bigcap_{n=1}^{\infty} K_n$$
 consists of a single point.

Proof. Since $K_n \neq \emptyset$, let $x_n \in K_n$, $n \in \mathbb{N}$.

- Since $K_{n+1} \subseteq K_n$, for all $n \in \mathbb{N}$, then $x_n \in K_1$, for all $n \in \mathbb{N}$.
- Since K is compact, it follows that $\{x_n\}$ has a convergent subsequence.
- Let $x_{n_k} \to x$.
- Since $n_k \ge k$, then $x_{n_k} \in K_k$ and $K_{k+1} \subseteq K_k$.

$$\{x_{n_j}: j \ge k\} \subseteq K_k,$$

and since K_k is closed $x \in K_k$ for all $k \in \mathbb{N}$,

it follows that

$$x \in \bigcap_{n=1}^{\infty} K_n$$
, so $\bigcap_{n=1}^{\infty} K_n \neq \emptyset$.

• Now, let us assume that

$$\operatorname{diam}\left(K_{n}\right)\to0.$$

- Let $x, y \in \bigcap_{n=1}^{\infty} K_n$, so $x, y \in K_n$, for all n.
- Let $\epsilon > 0$ be given.
- Since diam $(K_n) \to 0$, there is $n \in \mathbb{N}$, such that

$$\operatorname{diam}(K_n) < \epsilon$$
.

• Therefore,

$$|x - y| \le \operatorname{diam}(K_n) < \epsilon.$$

• Since $\epsilon > 0$ is arbitrary, it follows that

$$|x - y| = 0,$$

so x = y.

• We showed that $\bigcap_{n=1}^{\infty} K_n$ consists of a single point.

This finishes our proof. ■

- Example: Let $\mathcal{B} = \left\{ \left[2 \frac{1}{n}, 4 + \frac{1}{n} \right] : n \in \mathbb{N} \right\}$.
- Notice that

$$A_n = \left[2 - \frac{1}{n}, 4 + \frac{1}{n}\right]$$

is both closed and bounded, so

 A_n is sequentially compact.

• Moreover,

$$2 - \frac{1}{n} < 2 - \frac{1}{n+1}$$

and

$$4 + \frac{1}{n+1} < 4 + \frac{1}{n},$$

so

$$A_{n+1} \subset A_n$$
, for all $n \in \mathbb{N}$.

• Therefore, by theorem

$$\bigcap \mathcal{B} \neq \emptyset$$
.

Example: Let $\mathcal{B} = \{(1, 1 + \frac{1}{n}] : n \in \mathbb{N}\}.$

• Notice that

$$\bigcap \mathcal{B} = \bigcap_{n=1}^{\infty} \left(1, 1 + \frac{1}{n} \right] = \emptyset.$$

- Since $1 \notin (1, 1 + \frac{1}{n}]$, then $1 \notin \bigcap \mathcal{B}$.
- If x < 1, then

$$x \notin \bigcap \mathcal{B}$$

and analogously if x > 2, then

$$x \notin \bigcap \mathcal{B}$$
.

• Moreover, if $1 < x \le 2$, then x - 1 > 0, so there is $n \in \mathbb{N}$, such that

$$x-1 > \frac{1}{n}$$
, so $x > 1 + \frac{1}{n}$.

• It follows that

$$x\notin\left(1,1+\frac{1}{n}\right],$$

- so $x \notin \bigcap \mathcal{B}$.
- In summary, there is no $x \in \mathbb{R}$, such that

$$x \in \bigcap \mathcal{B}$$
.

• It follows that

$$\bigcap \mathcal{B}=\emptyset.$$

• Notice that although

$$\left(1,1+\frac{1}{n+1}\right]\subset \left(1,1+\frac{1}{n}\right],$$

for all $n \in \mathbb{N}$,

however each $(1, 1 + \frac{1}{n}]$ is not sequentially compact (because it is not closed).

Exercise: Let $\{a_n\}$ and $\{b_n\}$ be sequences of real numbers such that

$$a_n \leq b_n$$

for all $n \in \mathbb{N}$ and

$$a_n \leq a_{n+1},$$

$$b_{n+1} \leq b_n.$$

Define

$$\mathcal{B} = \{ [a_n, b_n] : n \in \mathbb{N} \}.$$

Show that $\bigcap \mathcal{B} \neq \emptyset$.

Exercise: Let

$$A_k = \left\{ \frac{1}{n} : n \ge k \right\} \cup \left\{ 0 \right\}, \ k \in \mathbb{N}.$$

Show that $\bigcap_{k=1}^{\infty} A_k = \{0\}.$

• Compactness can also be defined in terms of open set.

Definition Let $A \subseteq \mathbb{R}$ and \mathcal{B} be a family of subsets of \mathbb{R} .

We say that \mathcal{B} covers A is

$$A\subseteq\bigcup_{B\in\mathcal{B}}B=\bigcup\mathcal{B}.$$

Example: Let

$$A = \left\{\frac{1}{n} : n \in \mathbb{N}\right\} \subseteq \mathbb{R}$$

and

$$\mathcal{B} = \left\{ A_k : k \in \mathbb{N} \right\},\,$$

where

$$A_k = \left[\frac{1}{k}, 1\right].$$

- We show that \mathcal{B} covers A.
- Notice that $\frac{1}{k} \in A_k$, so $\left\{\frac{1}{k}\right\} \subset A_k$.
- Therefore,

$$A = \left\{ \frac{1}{k} : k \in \mathbb{N} \right\} \subseteq \bigcup_{k=1}^{\infty} \left\{ \frac{1}{k} \right\}$$
$$\subset \bigcup_{k=1}^{\infty} \left[\frac{1}{k}, 1 \right] = \bigcup_{B \in \mathcal{B}} B = \bigcup \mathcal{B}.$$

• Hence, \mathcal{B} covers A.

Definition Let \mathcal{B} be a covering of A.

A subfamily $\mathcal{C} \subseteq \mathcal{B}$ is called a subcovering of A if

 \mathcal{C} is a covering of A, i.e.

$$A\subseteq\bigcup_{B\in\mathcal{C}}B=\bigcup\mathcal{C}.$$

If $\mathcal{C} \subseteq \mathcal{B}$ and \mathcal{C} is finite,

we call it a *finite subcovering* of A, i.e.

Definition 0.1 i) $C = \{C_1, C_2, ..., C_n\} \subseteq \mathcal{B}$ and

$$ii) \ A \subset \bigcup_{i=1}^n C_i$$

• Example: Let A = (0, 1] then

$$\mathcal{B} = \left\{ \left(\frac{1}{n}, 2 \right] : n \in \mathbb{N} \right\}$$

is a covering of A that has no finite subcovering.

• We show that

$$A \subseteq \bigcup \mathcal{B},$$

i.e. \mathcal{B} covers A.

• If $x \in A = (0, 1]$, then there is $N \in \mathbb{N}$, such that

$$\frac{1}{N} < x$$

so $x \in \left(\frac{1}{N}, 2\right]$.

• Therefore,

$$A\subseteqigcup_{n=1}^{\infty}\left(rac{1}{n},2
ight]=igcup\mathcal{B},$$

so \mathcal{B} covers A.

• Notice that if

$$\mathcal{C} = \left\{ \left(\frac{1}{n_1}, 2\right], \ \left(\frac{1}{n_2}, 2\right], \ ..., \ \left(\frac{1}{n_k}, 2\right] \right\} \subset \mathcal{B},$$

then C is not a subcovering of A.

- Let $N = \max\{n_i : i = 1, 2, ..., k\}$.
- Then

$$\bigcup_{C \in \mathcal{C}} C = \bigcup_{j=1}^k \left(\frac{1}{n_j}, 2\right] = \left(\frac{1}{N}, 2\right].$$

• Since

$$0<\frac{1}{2N}<\frac{1}{N},$$

then $\frac{1}{2N} \in (0,1] = A$ but

$$\frac{1}{2N} \notin \bigcup_{C \in \mathcal{C}} C = \left(\frac{1}{N}, 2\right].$$

- Therefore, $A \nsubseteq \bigcup_{C \in \mathcal{C}} C$.
- It follows that C is not a subcovering of A.

• Therefore, one cannot find a finite family $C \subseteq B$ that covers A.

Exercise: Let A = (0, 1] and $\epsilon > 0$.

Define $\mathcal{D} = \mathcal{B} \cup \{(-\epsilon, \epsilon)\}$,

$$\mathcal{B} = \left\{ \left(\frac{1}{n}, 2\right] : n \in \mathbb{N} \right\}.$$

Show that \mathcal{D} is a covering of A that has a finite subcovering.

Definition We say that a covering \mathcal{B} of A is an open covering if each $B \in \mathcal{B}$ is an open subset of \mathbb{R} .

Definition Let $K \subseteq \mathbb{R}$. We say that K is *compact* if every open covering \mathcal{B} of K has a finite subcovering $\mathcal{C} \subseteq \mathcal{B}$.

Example: We show that

$$A = [a, b] \subset \mathbb{R}$$

is compact.

- Suppose that \mathcal{B} is an open covering A that has no finite subcovering.
- Define

 $X = \{x \in A : [a, x] \text{ is covered by a finite number number of } B's \text{ form } \mathcal{B}\}.$

 \bullet We show that X is nonempty and bounded so

$$\alpha = \sup X$$

exists.

• Since \mathcal{B} covers A, there is $B \in \mathcal{B}$, such that

$$a \in B$$
.

- It follows that $X \neq \emptyset$.
- Since $X \subseteq A$ and A is bounded, then X is bounded.
- By completeness

$$\alpha = \sup X \in \mathbb{R}.$$

• Since, for all $x \in X$,

$$a \le x \le b$$
,

it follows that $a \leq \alpha \leq b$.

- Suppose that $a \le \alpha < b$ and $\alpha \in X$.
- Then there are

$$B_1, B_2, ..., B_k \in \mathcal{B},$$

such that

$$[a,\alpha] \subseteq \bigcup_{i=1}^k B_i$$

• There is a finite collection

$$\mathcal{C} = \{B_1, B_2, ..., B_k\} \subseteq \mathcal{B}$$

that covers $[a, \alpha]$.

• Since C covers $[a, \alpha]$, there is $B_j \in C$, such that

$$\alpha \in B_j$$
.

• However, B_j is open, so there is $\epsilon > 0$ and $\epsilon < b - \alpha$, such that,

$$(\alpha - \epsilon, \alpha + \epsilon) \subseteq B_j$$
.

• Therefore,

$$\left[a, \alpha + \frac{\epsilon}{2}\right] \subseteq \bigcup_{i=1}^{k} B_i$$

so

$$\alpha + \frac{\epsilon}{2} \in X$$
 and $\alpha < \alpha + \frac{\epsilon}{2} < b$,

a contradiction since

$$\alpha = \sup X$$
.

• Assume that

$$a \leq \alpha < b$$

and $\alpha \notin X$.

- Notice that $\alpha \in A$ since $a \leq \alpha < b$.
- Since \mathcal{B} is an open covering A, there is $B \in \mathcal{B}$ such that

$$\alpha \in B$$
.

• Since B is open, there is $\epsilon > 0$, such that

$$(\alpha - \epsilon, \alpha + \epsilon) \subseteq B$$
.

• Since $\alpha < b$,

$$(\alpha - \epsilon, \alpha + \epsilon) \cap [a, \alpha] \neq \emptyset.$$

• Since $\alpha = \sup X$, there is $x \in X$, such that

$$\alpha - \epsilon < x \le \alpha$$
.

• Since $x \in X$, there are

$$B_1, B_2, ..., B_k \in \mathcal{B},$$

such that

$$[a,x] \subseteq \bigcup_{i=1}^k B_i.$$

$$\mathcal{C} = \{B_1, B_2, ..., B_k, B\} \subseteq \mathcal{B}$$

and

$$[a,\alpha]\subseteq\bigcup_{C\in\mathcal{C}}C.$$

- It follows that $\alpha \in X$.
- Contradiction since we assumed that $\alpha \notin X$.
- Assume that $\alpha = b$ and $\alpha \notin X$.
- Since \mathcal{B} is an open covering A, there is $B \in \mathcal{B}$ such that

$$\alpha \in B$$
.

• Since B is open there is $\epsilon > 0$, such that

$$(\alpha - \epsilon, \alpha + \epsilon) \subseteq B$$

and

$$(\alpha - \epsilon, \alpha + \epsilon) \cap [a, \alpha] \neq \emptyset.$$

• Since $\alpha = \sup X$, there is $x \in X$, such that

$$\alpha - \epsilon < x \le \alpha = b.$$

• Since $x \in X$, there are

$$B_1, B_2, ..., B_k \in \mathcal{B}$$

such that

$$[a,x] \subseteq \bigcup_{i=1}^k B_i.$$

• Therefore,

$$\mathcal{C} = \{B_1, B_2, ..., B_k, B\} \subseteq \mathcal{B}$$

and

$$[a,\alpha]\subseteq\bigcup_{C\in\mathcal{C}}C.$$

- Therefore, $\alpha \in X$. Contradiction because we assumed that $\alpha \notin X$.
- It follows that $\alpha = b$ and $\alpha \in X$.

 \bullet Since

$$[a, \alpha] = [a, b] \subseteq \bigcup_{i=1}^k B_i,$$

for some

$$B_1, B_2, ..., B_k \in \mathcal{B},$$

so [a, b] is covered by a finite family

$$\mathcal{C} = \{B_1, B_2, ..., B_k\} \subseteq \mathcal{B}.$$

• It follows that every open covering \mathcal{B} of A has a finite subcovering

$$C \subseteq \mathcal{B}$$
.

• Therefore, A = [a, b] is compact.

Exercise: Let A = (0, 1] and

$$\mathcal{B} = \left\{ \left(\frac{1}{n}, 2\right) : n \in \mathbb{N} \right\}.$$

Show that \mathcal{B} is an open covering of A that has no finite subcovering.

Exercise: Let $A = \mathbb{N}$ and

$$\mathcal{B} = \{(n-1, n+1) \subset \mathbb{R} : n \in \mathbb{N}\}.$$

Show that \mathcal{B} is an open covering of \mathbb{N} that has no finite subcovering.

Theorem (*Heine-Borel*) A subset K of \mathbb{R} is *compact*

if and only if

K is closed and bounded.

Proof. We show that if K is closed and bounded then K is compact.

- Assume that *K* is closed and bounded.
- Let \mathcal{B} be an open covering of K.
- Since K is bounded, there are $a, b \in \mathbb{R}$, such that

$$K\subseteq [a,b]$$
 .

• Since K is closed, $\mathbb{R}\backslash K$ is open and

$$\mathcal{D} = \mathcal{B} \cup \{\mathbb{R} \backslash K\}$$

is an open covering of [a, b].

• Indeed, if $x \in K$ then since \mathcal{B} be an open covering of K, there is $B \in \mathcal{B}$, such that

$$x \in B$$
.

$$x\in\bigcup_{B\in\mathcal{B}}B\subset\bigcup_{D\in\mathcal{D}}D.$$

• If $x \in [a, b] \setminus K$, then $x \notin K$, so

$$x \in \mathbb{R} \backslash K$$
.

• Since $\mathbb{R}\backslash K\in\mathcal{D}$,

$$x\in\bigcup_{D\in\mathcal{D}}D.$$

• As we proved, [a, b] is compact, so there is a finite subcovering

$$\mathcal{C}\subseteq\mathcal{D}$$
.

• Since $K \subset [a, b]$, C is also a finite subcovering of K.

• Let

$$\mathcal{C}_K = \{ C \in \mathcal{C} : C \cap K \neq \emptyset \}.$$

• We observe that C_K is finite and

$$\mathbb{R}\backslash K\notin \mathcal{C}_K$$
,

so
$$\mathcal{C}_K \subseteq \mathcal{B}$$
.

• Furthermore,

$$K\subseteq\bigcup_{C\in\mathcal{C}_K}C.$$

• Indeed, if $x \in K$, since $\mathcal{C} \subseteq \mathcal{D}$ covers K and $x \notin \mathbb{R} \backslash K$, there is $C \in \mathcal{C}$ such that

$$C \neq \mathbb{R} \backslash K$$
 and $x \in C$.

• Therefore,

$$C \cap K \neq \emptyset$$

and $C \in \mathcal{C}$, so

$$C \in \mathcal{C}_K$$

 \bullet Therefore, ${\mathcal B}$ has a finite subcollection

$$C_K \subseteq \mathcal{B}$$

that covers K.

- Consequently, K is compact.
- Conversely, assume that $K \subseteq \mathbb{R}$ is compact.
- Let $\mathcal{B} = \{(-n, n) \subseteq \mathbb{R} : n \in \mathbb{N}\}.$
- Observe that

$$\mathbb{R} = \bigcup_{n=1}^{\infty} (-n, n) = \bigcup_{B \in \mathcal{B}} B.$$

- Since $K \subseteq \mathbb{R}$, \mathcal{B} is also an open covering of K.
- Since K is compact, there is $\mathcal{C} \subset \mathcal{B}$ such that \mathcal{C} covers K and \mathcal{C} is finite.
- Let $C = \{(-n_i, n_i) : i = 1, 2, ..., k\}.$
- Define

$$N = \max\{n_1, n_2, ..., n_k\}$$
.

$$\bigcup_{C \in \mathcal{C}} C = (-N, N).$$

• Consequently,

$$K \subseteq \bigcup_{C \in \mathcal{C}} C = (-N, N), \text{ so}$$

$$K \subset [-N, N].$$

- \bullet Therefore, K is bounded.
- To finish our proof we show that K is closed.
- It suffices to show that $\mathbb{R}\backslash K$ is open.
- Let $x \in \mathbb{R} \backslash K$ and let

$$\mathcal{B} = \left\{ \mathbb{R} \setminus \left[x - \frac{1}{n}, x + \frac{1}{n} \right] : n \in \mathbb{N} \right\}$$

$$= \left\{ \left(-\infty, x - \frac{1}{n} \right) \cup \left(x + \frac{1}{n}, \infty \right) : n \in \mathbb{N} \right\}.$$

 \bullet Since

$$\bigcap_{n=1}^{\infty} \left[x - \frac{1}{n}, x + \frac{1}{n} \right] = \left\{ x \right\},\,$$

it follows

$$\begin{array}{lcl} \displaystyle \bigcup_{B \in \mathcal{B}} B & = & \displaystyle \bigcup_{n=1}^{\infty} \mathbb{R} \backslash \left[x - \frac{1}{n}, x + \frac{1}{n} \right] \\ \\ & = & \displaystyle \mathbb{R} \backslash \bigcap_{n=1}^{\infty} \left[x - \frac{1}{n}, x + \frac{1}{n} \right] = \mathbb{R} \backslash \left\{ x \right\}. \end{array}$$

• Furthermore, because $x \notin K$,

$$K\subseteq\bigcup_{B\in\mathcal{B}}B.$$

• Moreover,

$$\left(-\infty, x - \frac{1}{n}\right) \cup \left(x + \frac{1}{n}, \infty\right) \subseteq \mathbb{R}$$

is open for all $n \in \mathbb{N}$, so

 \mathcal{B} is an open covering of K.

• Since K is compact, there is a finite subcollection

$$\mathcal{C}\subseteq\mathcal{B}$$

that covers K.

• Let

$$\mathcal{C} = \left\{ \left(-\infty, x - \frac{1}{n_i} \right) \cup \left(x + \frac{1}{n_i}, \infty \right) : i = 1, 2, ..., k \right\}$$

and

$$N = \max\{n_1, n_2, ..., n_k\}$$
.

• Because

$$K\subseteq\bigcup_{C\in\mathcal{C}}C=\mathbb{R}\backslash\left[x-\frac{1}{N},x+\frac{1}{N}\right],$$

we see that

$$\mathbb{R}\backslash K\supseteq\left[x-\frac{1}{N},x+\frac{1}{N}\right]\supset\left(x-\frac{1}{N},x+\frac{1}{N}\right),$$

• Hence

$$x \in \left(x - \frac{1}{N}, x + \frac{1}{N}\right) \subset \mathbb{R} \backslash K.$$

• So, $\mathbb{R}\backslash K$ is open, so K is closed.

This finishes our proof. ■

• Corollary A subset K of \mathbb{R} is compact iff K is sequentially compact.

Proof. We apply Heine-Borel theorem and Bolzano-Weierstrass theorem.

• By Heine-Borel theorem $K \subseteq \mathbb{R}$ is compact iff

K is closed and bounded.

 \bullet By Bolzano-Weierstrass theorem K is closed and bounded iff

K is sequentially compact.

 \bullet Therefore, K is compact

iff

K is sequentially compact.

This finishes our proof. \blacksquare