Trzy użyteczne twierdzenia z rachunku różniczkowego odwzorowań

Łukasz Woźny*

9 lutego 2006

Twr. 1 (O różniczkowalności złożenia odwzorowań) Niech $T_1: U \to \mathbb{R}^m$, gdzie $U \subset \mathbb{R}^n$ jest otwartym podzbiorem przestrzeni \mathbb{R}^n , oraz niech $T_2: V \to \mathbb{R}^k$, gdzie V jest otwartym podzbiorem przestrzeni \mathbb{R}^m i $T_1(U) \subset V$, będą odwzorowaniami różniczkowalnymi odpowiednio w x i $T_1(x)$. Wówczas złożenie $T_2 \circ T_1: U \to \mathbb{R}^k$ jest odwzorowaniem różniczkowalnym w x oraz

$$(T_2 \circ T_1)'(x) = T_2'(T_1(x))T_1'(x).$$

Twr. 2 (O lokalnej odwracalności odwzorowania różniczkowalnego) Niech $T: U \to \mathbb{R}^n$, gdzie U jest otwartym podzbiorem przestrzeni \mathbb{R}^n , będzie odwzorowaniem różniczkowalnym w sposób ciągły w pewnej kuli $K(x_0, r) \subset U$ oraz det $T'(x_0) \neq 0$. Wówczas:

- istnieje takie otoczenie $O = K(x_0, \varepsilon)$, gdzie $\varepsilon < r$, punktu x_0 , że odwzorowanie $\tilde{T}: O \to V$, gdzie $\tilde{T} = T|_{O}$ i V = T(O) jest odwracalne;
- odwzorowanie $\tilde{T}^{-1}: V \to O$ odwrotne do odwzorowania \tilde{T} jest różniczkowalne w punkcie $y_0 = T(x_0)$ oraz $(\tilde{T}^{-1})'(y_0) = (T'(x_0))^{-1}$.

Twr. 3 (O pochodnej funkcji uwikłanej) Niech $X = \mathbb{R}^n$, $Y = \mathbb{R}^m$, $H: O \to Y$, $gdzie\ O \subset X \times Y$ jest otwartym podzbiorem $\mathbb{R}^n \times \mathbb{R}^m$, będzie odwzorowaniem klasy \mathscr{C}^1 . Niech H'_x i H'_y oznaczają macierze pochodnej odwzorowania H po x i y. Jeśli istnieje taki punkt $(x_0, y_0) \in O$, że $H(x_0, y_0) = 0$ oraz det $H'_y(x_0, y_0) \neq 0$, to odwzorowanie H lokalnie generuje odwzorowanie F pewnej kuli $K(x_0, r)$ w Y (czyli H(x, F(x)) = 0 dla $x \in K(x_0, r)$), które jest różniczkowalne, a pochodna odwzorowania uwikłanego w punkcie x_0 dana jest wzorem:

$$F'(x_0) = -H'_y(x_0, y_0)^{-1}H'_x(x_0, y_0).$$

Opracowane na podstawie:

Dubnicki W., J. Kłopotowski, T. Szapiro, Analiza matematyczna. Podręcznik dla ekonomistów, Warszawa 1999.

^{*}lukasz.wozny@sgh.waw.pl.