Problem 1.

Proof. $x_n \rightharpoonup x_0$ implies that $\langle x_n, y \rangle \to \langle x_0, y \rangle$ for all $y \in \mathcal{H}$. Furthermore, every weakly convergence sequence is uniformly bounded, i.e., $||x_n|| \leq M$.

 $y_n \to y_0$ implies that $||y_n - y_0|| \leqslant \frac{\varepsilon}{2M}$. Then by the Cauchy Schwarz inequality:

$$\begin{aligned} |\langle x_n, y_n \rangle - \langle x_0, y_0 \rangle| &\leq |\langle x_n, y_n \rangle - \langle x_n, y_0 \rangle| + |\langle x_n, y_0 \rangle - \langle x_0, y_0 \rangle| \\ &\leq |\langle x_n, y_n - y_0 \rangle| + \frac{\varepsilon}{2} \\ &\leq ||x_n|| ||y_n - y_0|| + \frac{\varepsilon}{2} \\ &\leq M \frac{\varepsilon}{2M} + \frac{\varepsilon}{2} \\ &= \varepsilon. \end{aligned}$$

Problem 2. A strong lower-semicontinuous convex function is weakly lower-semicontinuous as well.

Proof. First, we prove the following equivalent definitions of lower semicontinuity:

Claim: Given a function $f:(X,\mathcal{T})\mapsto [-\infty,\infty]$ is said to be lower semicontinuous if and only if

- $f^{-1}[-\infty, t]$ is closed $(f^{-1}(t, \infty)] \in \mathcal{T}$) for any $t \in \mathbb{R}$;
- for all $x \in X$ and every sequence x_n converges to x with respect to topology \mathcal{T} , we have

$$f(x) \leqslant \liminf_{n \to \infty} f(x_n).$$

Assume that x_n converges to x w.r.t \mathcal{T} and pick any t such that t < f(x), then $x \in f^{-1}(t, \infty]$ and as $f^{-1}(t, \infty]$ is open, there exists a N such that for all $n \ge N$, $x_n \in f^{-1}(t, \infty]$, that is, $f(x_n) > t$, which implies that $\lim \inf_{n \to \infty} f(x_n) \ge t$. Since this is true for all t < f(x), hence we have $f(x) \le \lim \inf_{n \to \infty} f(x_n)$.

Assume that for all $x \in X$ and x_n converges to x w.r.t \mathcal{T} , we have $f(x) \leqslant \liminf_{n \to \infty} f(x_n)$. Given $t \in \mathbb{R}$, let $A = f^{-1}[-\infty, t]$. For any $x \in \bar{A}$, there exists a sequence $(x_n) \subset A$ that converges to x w.r.t \mathcal{T} , then $f(x) \leqslant \liminf_{n \to \infty} f(x_n) \leqslant t$, which shows that $x \in A$ as well. Then A is closed.

As a result, for any $t \in \mathbb{R}$, since f is strong lower-semicontinuous, $f^{-1}[-\infty, t]$ is closed w.r.t strong topology.

Since f is convex, for any $x, y \in f^{-1}[-\infty, t]$, we have

$$f(\alpha x + (1 - \alpha)y) \leqslant \alpha f(x) + (1 - \alpha)f(y) \leqslant t,$$

which yields that $\alpha x + (1 - \alpha)y \in f^{-1}[-\infty, t]$. This shows that $f^{-1}[-\infty, t]$ is convex.

Now, we prove that any convex closed set K in Hilbert space is weakly closed. (Another version of Mazur's theorem).

Let $x_0 \in \mathcal{H} \setminus K$, by Hahn-Banach theorem, there exists a bounded linear functional $T_y \in \mathcal{H}^*$ such that:

$$\langle y, x_0 \rangle = T_y(x_0) < c = \inf_{x \in K} T_y(x) = \inf_{x \in K} \langle y, x \rangle.$$

Then x_0 must be in the weakly interior of $\mathcal{H} \setminus K$, which shows that $\mathcal{H} \setminus K$ is weakly open, thus K is weakly closed.

As a result, $f^{-1}[-\infty, t]$ is weakly closed. By the equivalent definition, f is weakly lower-semicontinuous.

Problem 3.

Proof. By Riesz representation theorem, let $\phi(x) = \langle y, x \rangle$ for some fixed y.

f is strongly lower-semicontinuous: f(x) is continuous with respect to norm topology in fact.

f is coercive:

$$f(x) = \frac{1}{2} \|x\|^2 - \langle y, x \rangle \geqslant \frac{1}{2} \|x\|^2 - \|y\| \|x\| = \|x\| \left(\frac{1}{2} \|x\| - \|y\|\right) \to \infty, \text{ as } \|x\| \to \infty.$$

f is strictly convex: Let $x_1 \neq x_2$ and $\alpha \in [0, 1]$, recall that norm is strictly convex,

$$f(\alpha x_{1} + (1 - \alpha)x_{2}) = \frac{1}{2} \|\alpha x_{1} + (1 - \alpha)x_{2}\|^{2} - \langle y, \alpha x_{1} + (1 - \alpha)x_{2} \rangle$$

$$< \frac{1}{2} (\alpha \|x_{1}\| + (1 - \alpha)\|x_{2}\|)^{2} - \alpha \langle y, x_{1} \rangle - (1 - \alpha)\langle y, x_{2} \rangle$$

$$= \frac{\alpha^{2}}{2} \|x_{1}\|^{2} + \frac{2\alpha(1 - \alpha)}{2} \|x_{1}\| \|x_{2}\| + \frac{(1 - \alpha)^{2}}{2} \|x_{2}\|^{2} - \alpha \langle y, x_{1} \rangle - (1 - \alpha)\langle y, x_{2} \rangle$$

$$< \left(\frac{\alpha^{2}}{2} + \frac{\alpha(1 - \alpha)}{2}\right) \|x_{1}\|^{2} - \alpha \langle y, x_{1} \rangle$$

$$+ \left(\frac{(1 - \alpha)^{2}}{2} - \frac{\alpha(1 - \alpha)}{2}\right) \|x_{2}\|^{2} - (1 - \alpha)\langle y, x_{2} \rangle$$

$$= \alpha f(x_{1}) + (1 - \alpha)f(x_{2}).$$

Apply Theorem 8.50, we conclude that f attains its infimum at a unique point \bar{x} .

Problem 4.

Proof.

- a) Unit closed balls in any infinite dimensional Hilbert space is not compact.
- b) It is obvious that Q is a closed subset of a complete space ℓ_2 , thus Q is complete as well. What we need to show is Q is totally bounded.

Since $(c_k) \in \ell_2$, there exists an N > 0, such that $\sum_{k>N} (c_k)^2 \leqslant \frac{\varepsilon}{2}$, which implies that $\sum_{k>N} (a_k)^2 \leqslant \frac{\varepsilon}{2}$ for any $(a_k) \in Q$.

Now define $Q^N=\{(a_k)\in Q: a_k=0 \text{ for } k\geqslant N+1\}$, then Q^N is a closed bounded subset of \mathbb{R}^N , which is compact. As a result, there exists an $\frac{\varepsilon}{2}$ -net A of Q^N . Note that A is an ε -net of Q, then Q is totally bounded.

Problem 5.

Proof.

a) Recall Corollary 6.15, we can decompose $\mathcal{H}=[S]\oplus[S]^{\perp}$. Once we show that $[S]^{\perp}=\{0\}$, we draw that $[S]=\mathcal{H}$.

For any $x \in \mathcal{H}$, there exists $(x_n) \subset S$ such that $x_n \rightharpoonup x$. For any $y \in [S]^{\perp} \subset \mathcal{H}$, there exist $(x_n) \subset S$ such that $x_n \rightharpoonup y$. Thus,

$$|\langle y, y \rangle| = \lim_{n \to \infty} |\langle x_n, y \rangle| = \lim_{n \to \infty} 0 = 0,$$

which yields that y = 0. As a result, $[S]^{\perp} = \{0\}$ and $[S] = \mathcal{H}$.

b) Assume $\mathcal H$ is weakly separable, then there is a countable subset S which is weakly dense. By part a), we know $[S] = \mathcal H$. Now let $[S]_{\mathbb Q}$ denote the closed linear span of S with rational coefficients. By the density argument, we know that $[S]_{\mathbb Q}$ is in fact dense in $\mathcal H$. As $[S]_{\mathbb Q}$ is countable, $\mathcal H$ is separable.

Assume \mathcal{H} is strongly separable, then there is a countable subset S which is dense in \mathcal{H} . Since the strong convergence implies weak convergence, S must be weakly dense as well. As S is countable, S is weakly separable.