

Definição dos clusters - Parte I

≡ Ciclo	Ciclo 08: Outros algoritmos Clusterização
# Aula	64
Created	@June 27, 2023 8:27 AM
☑ Done	
☑ Ready	▽

Objetivo da Aula:

L	Os	5	passos	do	tre	inam	ent	0

☐ Exemplo prático

☐ Resumo

Próxima aula

Conteúdo:

▼ 1. Os 5 passos do treinamento

Os passos para encontrar os grupos (clusters) formados pelos dados, usando o algoritmo de Affinity Propagation são os seguintes:

- 1. Definição da métrica de similaridade
- 2. Calculo da similaridade entre todos os pontos do conjunto de dados, formando a matriz de similaridade (S)
- 3. Até o número n de repetições ser alcançada ou a variação dos valores das matrizes de responsabilidade de disponibilidade for menor do que um valor e, faça:
 - a. Cálculo da matriz de responsabilidade
 - b. Cálculo da matriz de disponibilidade
- Para cada ponto, some os valores da matriz de responsabilidade e disponibilidade, formando a matriz de critério
- 5. Atribua o mesmo cluster para os pontos que possuem o mesmo valor de critério.

▼ 2. Exemplo prático

A matriz abaixo mostra a avaliação individual de 5 pessoas para cada um dos seguintes filmes: Matrix Reloaded, Coringa, Interestelar, Vingadores: Ultimato e Gladiador. As notas variam de 1 a 5, sendo: 1 - muito ruim, 2 - ruim, 3 - razoável, 4 - bom e 5 - muito bom.

Participantes	Matrix Reloaded	Coringa	Interestelar	Vingadores: Ultimato	Gladiador
Alice	3	4	3	2	1
Bob	4	3	5	1	1
Cary	3	5	3	3	3

Doug	2	1	3	3	2
Edna	1	1	3	2	3

A sua tarefa é encontrar grupos de pessoas formadas a partir da similaridade entre as avaliações atribuídas a cada filme.

▼ Passo 1: Definição da métrica de similaridade

▼ Distância Negative Squared Euclidean:

$$d_{neg\ euclidiana} = -(x_1 - y_1)^2 + (x_2 - y_2)^2 + \dots + (x_n - y_n)^2$$

▼ Distância Euclidiana:

$$d_{euclidiana} = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2 + \dots + (x_n - y_n)^2}$$

▼ Distância Manhattan:

$$d_{manhattan} = \sum_{i=1}^{n} |x_i - y_i|$$

▼ Distância Chebychev:

$$d_{chebychev} = \max_{i=1}^n (|x_i - y_i|)$$

▼ Distância Minkowski:

$$d_{minkowski} = \left(\sum_{i=1}^n |x_i - y_i|^p
ight)^{rac{1}{p}}$$

▼ Distância Cosine:

$$d_{cosine} = 1 - rac{\sum_{i=1}^{n} x_i y_i}{\sqrt{\sum_{i=1}^{n} x_i^2} \sqrt{\sum_{i=1}^{n} y_i^2}}$$

▼ Distância Pearson:

$$d_{pearson} = 1 - rac{\sum_{i=1}^{n}(x_i - ar{x})(y_i - ar{y})}{\sqrt{\sum_{i=1}^{n}(x_i - ar{x})^2}\sqrt{\sum_{i=1}^{n}(y_i - ar{y})^2}}$$

▼ Distância Mahalanobis:

$$d_{mahalanobis} = \sqrt{\left(ec{x} - ec{y}
ight)^T S^{-1} \left(ec{x} - ec{y}
ight)}$$

▼ Distância SED:

$$d_{SED}(s,t) = \sum_{i=1}^{n} egin{cases} 0 & ext{se } s_i = t_i \ 1 & ext{se } s_i
eq t_i \end{cases}$$

▼ Distância Jaccard:

$$d_{jaccard}(A,B) = rac{|A \cap B|}{|A \cup B|}$$

▼ Distância Levenshtein:

$$d_{Levenshtein}(s,t) = egin{cases} 0, & ext{if } s = t \ d_{Levenshtein}(s[1..i], t[1..j-1]) + 1, & ext{if } s[i]
eq t[j] \ d_{Levenshtein}(s[1..i-1], t[1..j-1]), & ext{if } s[i] = t[j] \ d_{Levenshtein}(s[1..i-1], t[1..j]) + 1, & ext{if } s[i] = t[j] \ d_{Levenshtein}(s[1..i], t[1..j-1]) + 1, & ext{if } s[i] = t[j] \end{cases}$$

▼ Distância Sorensen-Dice:

$$d_{sorensen}(A,B) = rac{2|A\cap B|}{|A|+|B|}$$

▼ Distância Jensen-Shannon:

$$d_{JS}(P||Q)=rac{1}{2}\left(D(P||M)+D(Q||M)
ight)$$

Onde:

$$M = rac{1}{2}(P+Q) \ D(P||Q) = \sum_i P(i) \log rac{P(i)}{Q(i)}$$

▼ Distância Canberra:

$$d_{canberra}(x,y) = \sum_{i=1}^n rac{|x_i-y_i|}{|x_i|+|y_i|}$$

▼ Distância Hamming:

$$d_{Hamming}(s,t) = \sum_{i=1}^n (s_i
eq t_i)$$

▼ Distância Spearman:

$$d_{spearman} = 1 - rac{6\sum d_i^2}{n(n^2-1)}$$

onde: \$d_i\$ é a diferença entre as posições dos elementos \$i\$ em duas sequências ordenadas, e \$n\$ é o tamanho das sequências.

▼ Distância Chi-Square:

$$d_{\chi^2}(x,y)=\sum_{i=1}^nrac{(x_i-y_i)^2}{x_i+y_i}$$

▼ Passo 2: Matriz de similaridade (S)

Calculando a matriz de similaridade (S) com a distância Euclideana, temos:

$$d_{euclidiana} = -(x_1 - y_1)^2 + (x_2 - y_2)^2 + \dots + (x_n - y_n)^2$$

▼ Exemplo:

▼ Matriz de avaliações

Participantes	Matrix Reloaded	Coringa	Interestelar	Vingadores: Ultimato	Gladiador
Alice	3	4	3	2	1
Bob	4	3	5	1	1
Cary	3	5	3	3	3
Doug	2	1	3	3	2
Edna	1	1	3	2	3

▼ Processo de construção da matriz similaridade (S)

Participantes	Matrix Reloaded	Coringa	Interestelar	Vingadores: Ultimato	Gladiador
Alice	3	4	3	2	1
Bob	4	3	5	1	1
Cary	3	5	3	3	3
Doug	2	1	3	3	2
Edna	1	1	3	2	3

▼ Matriz similaridade (S)

Participantes	Alice	Bob	Cary	Doug	Edna
Alice	-22	-7	-6	-12	-17
Bob	-7	-22	-17	-17	-22
Cary	-6	-17	-22	-18	-21
Doug	-12	-17	-18	-22	-3
Edna	-17	-22	-21	-3	-22

▼ 3. Resumo

- 1. Definição da métrica de similaridade
- 2. Calculo da similaridade entre todos os pontos do conjunto de dados, formando a matriz de similaridade (S)

▼ 4. Próxima aula

Definição dos clusters - Parte II