Inhaltsverzeichnis

0	Der	Vektorraum \mathbb{R}^n 2	2
	0.1	Satz (Rechenregeln in \mathbb{R}^n))
	0.2	Definition	1
	0.3	Beispiele	1
	0.4	Satz	5
	0.5	Beispiel	3
	0.6	Definition	7
	0.7	Beispiel	3
	0.9	Definition)
	0.10	Beispiel)
	0.11	Satz	2
	0.12	Satz	3
	0.13	Definition	3
	0.14	Beispiel	1
	0.15	Satz	5
	0.16	Satz	3
	0.17	Definition	3
	0.18	Satz (Basisergänzungssatz)	3
	0.19	Korollar	3
	0.20	Definition	7
	0.21	Beispiele	7
Λ.	hhil	dungovorzojohnio	
A	ווטט	dungsverzeichnis	
	1	Ein Vektor dargestellt durch seinen Ortsvektor	3
	2	Vektoraddition durch Parallelogrammbildung	}
	3	Corado dargostalli durch Vaktoran	-

0 Der Vektorraum \mathbb{R}^n

$$n \in \mathbb{N} \quad \mathbb{R}^n = \left\{ \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} : a_1 \in \mathbb{R} \right\}$$

Spaltenvektoren der Länge $n: \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} = (a_1, \dots, a_n)^t$

 a_1, \ldots, a_n Komponente der Spaltenvektoren.

Wie bei Matrizen:

$$\begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} + \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix} = \begin{pmatrix} a_1 + b_1 \\ \vdots \\ a_n + b_n \end{pmatrix}$$
 (Multiplikation entspricht der Matrixmultiplikation und ist nicht möglich falls $n > 1$)

Multiplikation eines Spaltenvektors mit einer Zahl (Skalar)

$$a \cdot \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} = \begin{pmatrix} aa_1 \\ \vdots \\ aa_n \end{pmatrix}$$

Addition+Abbildung: $\mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n$

 \mathbb{R}^n mit Addition und Multiplikation mit Skalaren : \mathbb{R} -Vektorraum

Die Vektoren im $\mathbb{R}^1(=\mathbb{R})$, \mathbb{R}^2 und \mathbb{R}^3 entsprechen Punkten auf der Zahlengerade, Ebene, dreidimensionalen Raums. Punkte des \mathbb{R}^2 , \mathbb{R}^3 lassen sich identifizieren mit, *Ortsvektoren* Pfeile mit Beginn in 0 (Komp = 0) und Ende im entsprechenden Punkt Addition von Spaltenvektoren entspricht der Addition von Ortsvektoren entsprechend der Parallelogrammregel. Multiplikation mit Skalaren a :

Streckung (falls |a| > 1)

Stauchung (falls $0 \ge |a| \ge 1$)

Richtungspunkt, falls a < 0 TODO: Steckung und Stauchung

0.1 Satz (Rechenregeln in \mathbb{R}^n)

Seien $u, v, w \in \mathbb{R}^n$, $a, b \in \mathbb{R}$ Dann gilt:

Abbildung 1: Ein Vektor dargestellt durch seinen Ortsvektor

Abbildung 2: Vektoraddition durch Parallelogrammbildung

0.2 Definition 0 Der Vektorraum \mathbb{R}^n

a)

(1.1)
$$u + (v + w) = (u + v) + w$$

(1.2)
$$v + 0 = 0 + v = v, \text{wobei } 0 \text{ Nullvektor}$$

 \mathbb{R}^n kommutative

$$(1.3) v + -v = 0$$

Gruppe

$$(1.4) u + v = v + u$$

$$(2.1) (a+b)v = av + bv$$

$$(2.2) a(u+v) = au + av$$

$$(a \cdot b)v = a(bv)$$

$$(2.4) 1 v = v$$

b) $0 \cdot v = 0 \text{ und } a \cdot 0 = 0$

Beweis folgt aus entsprechenden Rechenregeln in 0

0.2 Definition

Eine nicht-leere Teilmenge $\mathcal{U} \supset \mathbb{R}^n$ heißt Unterraum (oder Teilraum von \mathbb{R}^n), falls gilt:

- (1) $\forall u_1, u_2 \in \mathcal{U} : u_1 + u_2 \in \mathcal{U}$ (Abgeschlossenheit bezüglich +)
- (2) $\forall u \in \mathcal{U} \forall a \in \mathbb{R} : au \in \mathcal{U}$ (Abgeschlossenheit bezüglich Mult. mit Skalaren)

 $\mathcal U$ enthält Nullvektor $\{0\}$ Unterraum von $\mathbb R^n$ (Nullraum) $\mathbb R^n$ ist Unterraum von $\mathbb R$

0.3 Beispiele

$$(a_1 v, a_2 v \in G, (a_1 + a_2) v \in$$

a) $0 \neq \nu \in \mathbb{R}^2$ $G = \{a\nu : a \in \mathbb{R}\}$ ist Unterraum von $\mathbb{R}^n G$ 2.1 in 0.2

$$av \in G, b \in \mathbb{R}(ba)v \in G$$

G = Ursprungsgerade durch $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$ und v = $\begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$ n = 2:

b) $v, w \in \mathbb{R}^n$

 $E = \{av + bw : a, b \in \mathbb{R}\}$ ist Unterraum von \mathbb{R}^n

4

0 Der Vektorraum \mathbb{R}^n 0.4 Satz

Abbildung 3: Gerade dargestellt durch Vektoren

$$v = o, w = o : E = \{o\}$$

 $v \neq o \quad w \notin \{av : a \in \mathbb{R}\}$

$$E = \mathbb{R}^2$$
 $n = 3$: Ebene durch $\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ und durch v, w

Ist $w \in \{av : a \in \mathbb{R}\}$, so ist E = G (aus a))

c) $v, w \neq o$ $G' = \{w + av : a \in \mathbb{R}\}$ $[v \in G' \iff \exists a \in \mathbb{R} : w + av \in o \iff \exists a \in \mathbb{R} : w = (-a)v \in G]$

0.4 Satz

Seien $\mathcal{U}_1, \mathcal{U}_2$ Unterräume von \mathbb{R}^n

- a) $\mathcal{U}_1 \cap \mathcal{U}_2$ ist Unterraum von \mathbb{R}^n
- b) $\mathcal{U}_1 \cup \mathcal{U}_2$ ist im Allgemeinen KEIN Unterraum von \mathbb{R}^n
- c) $\mathcal{U}_1 + \mathcal{U}_2 := \{u_1 + u_2 : u_1 : \mathcal{U}_1, u_2 : \mathcal{U}_2\}$ (Summe von \mathcal{U}_1 und \mathcal{U}_2) ist Unterraum von \mathbb{R}^n .
- d) $\mathcal{U}_1 \subseteq \mathcal{U}_1 + \mathcal{U}_2$ $\mathcal{U}_2 \subseteq \mathcal{U}_1 + \mathcal{U}_2$ und $\mathcal{U}_1 + \mathcal{U}_2$ ist der kleinste Unterraum von \mathbb{R}^n , der \mathcal{U}_1 und \mathcal{U}_2 enthält. (d.h ist w Unterraum von \mathbb{R}^n mit $\mathcal{U}_1, \mathcal{U}_2 \in w$, so $\mathcal{U}_1 + \mathcal{U}_2 \subseteq W$)

0.5 Beispiel 0 Der Vektorraum \mathbb{R}^n

Beweis. a) √

b) TODO

c) TODO

0.5 Beispiel

a) **??**b)
$$G_1 = \{av : a \in \mathbb{R}\}$$

 $G_2 = \{aw : a\}$
 $G_1 + G_2 = E$

b)
$$\mathbb{R}^3$$

$$E_1 = \left\{ r \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + s \cdot \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \colon r, s \in \mathbb{R} \right\}$$

$$= \left\{ \begin{pmatrix} r \\ 0 \\ s \end{pmatrix} \colon r, s \in \mathbb{R} \right\}$$

$$E_2 = \left\{ t \cdot \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + u \cdot \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right\}$$

$$= \left\{ \begin{pmatrix} u \\ t + u \\ u \end{pmatrix} \right\}$$

 $E_1 + E_2$ Unterräume von \mathbb{R}^3 (10.3.b)

$$E_1 \cap E_2 = ?$$

$$v \in E_1 \cap E_2 \iff v = \begin{pmatrix} r \\ 0 \\ s \end{pmatrix} = \begin{pmatrix} u \\ t+u \\ u \end{pmatrix} \iff r = u, t+u = 0, s = u$$

$$E_1 \cap E_2 = \left\{ \begin{pmatrix} u \\ 0 \\ u \end{pmatrix} : u \in \mathbb{R} \right\}$$
$$= \left\{ u \cdot \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} : u \in \mathbb{R} \right\}$$

6

$$E_{1} + E_{2} = ?$$

$$E_{1} + E_{2} = \mathbb{R}^{3}, \text{ denn} :$$
Es gilt sogar:
$$\mathbb{R}^{3} = E_{1} + G_{2}, \text{ wobei}$$

$$G_{2} = \left\{ t \cdot \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} : t \in \mathbb{R} \right\} \subseteq E_{@}$$

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = x \cdot \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} z \cdot \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} + y \cdot \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} x \\ 0 \\ z \end{pmatrix} + \begin{pmatrix} 0 \\ y \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = (x - y) \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + (z - y) \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} + y \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

$$= \begin{pmatrix} x - y \\ 0 \\ z - y \end{pmatrix} + \begin{pmatrix} y \\ y \\ y \end{pmatrix}$$

0.6 Definition

a) $v_1, \dots, v_m \in \mathbb{R}^n, a_1, \dots a_m \in \mathbb{R}$ Dann heißt $a_1 v_1 + \dots + a_m v_m = \sum_{i=1}^m a_i v_i$

Linearkombination von v_1, \ldots, v_m (mit Koeffizienten a_1, \ldots, a_m).

[Zwei formal verschiedene Linearkombinationen der gleichen v_1, \ldots, v_m können den gleichen Vektor darstellen

$$1 \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix} + 2 \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix} + 3 \cdot \begin{pmatrix} 1 \\ 1 \end{pmatrix} = 2 \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix} + 3 \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix} + 2 \cdot \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 4 \\ 5 \end{pmatrix} \end{bmatrix}$$

b) Ist $M \subseteq \mathbb{R}^n$, so ist der von M *erzeugte* (oder *aufgespannte*) Unterraum $\langle M \rangle_{\mathbb{R}}$ (oder $\langle M \rangle$) die Menge aller (endlichen) Linearkombinationen, die man mit Vektoren aus M bilden kann.

$$\langle M \rangle_{\mathbb{R}} = \left\{ \sum_{i=1}^{n} a_{i} v_{i} : n \in \mathbb{N}, a_{i} \in \mathbb{R}, v_{i} \in M \right\} \text{ falls } M \neq \emptyset$$

$$\langle \emptyset \rangle_{\mathbb{R}} := \{ \emptyset \}$$

$$M = \{v_1, \dots v_m\}$$
, so TODO...

0.7 Beispiel

a)
$$e_i = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} \in \mathbb{R}^n$$

$$\langle e_1, \dots e_n \rangle = \mathbb{R}^n$$

$$\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = x_1 e_1 + x_2 e_2 + \dots + x_n e_n$$

b)
$$\mathcal{U} = \left\langle \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix} \right\rangle_{\mathbb{R}}$$
Ist $\mathcal{U} = \mathbb{R}^3$?

Für welche $\begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3$ gibt es geeignete Skalare $a, b, c \in \mathbb{R}$ mit $a \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + b \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix} + c \begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix}$?

$$a +3b +2c = x$$

$$2a +2b +3c = y$$

$$3a +b +4c = z$$

LGS für die Unbekannten a, b, c mit variabler rechter Seite : Gauß

$$\begin{pmatrix} 1 & 3 & 2 & x \\ 2 & 2 & 3 & y \\ 3 & 1 & 4 & z \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 3 & 2 & x \\ 2 & -4 & -1 & y - 2x \\ 0 & -8 & -2 & z - 3x \end{pmatrix}$$

$$\rightarrow \begin{pmatrix}
1 & 3 & 2 & x \\
0 & 1 & \frac{1}{4} & \frac{2x-y}{4} \\
0 & 0 & 0 & x-2y+z
\end{pmatrix}$$

LGS ist lösbar $\Leftrightarrow x - 2y + z = 0$.

Dass heißt
$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathcal{U} \iff x - 2y = z = 0$$

$$\mathcal{U} = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} : x - 2y + z = 0, x, y, z \in \mathbb{R} \right\}$$

$$= \left\{ \begin{pmatrix} x \\ y \\ -x + 2y \end{pmatrix} : x, y \in \mathbb{R} \right\}$$

$$\begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix} \in \mathcal{U}$$

Lösungen des LGS: c frei wählen, b, a ergeben sich, (falls x-2y+z=0) z.B $c=0,b=\frac{1}{2}x-\frac{1}{4}y$, $a=x-3b=-\frac{1}{2}x+\frac{3}{4}y$

Ist x - 2y + z = 0, so ist

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \left(-\frac{1}{2}x + \frac{3}{4}y\right) \begin{pmatrix} x \\ y \\ z \end{pmatrix} + \left(\frac{1}{2}x - \frac{1}{4}y\right) \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + \frac{1}{4} \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}$$

$$\mathcal{U} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}_{\mathbb{R}}$$

$$6x^{2} -3xy + y^{3} = 5$$

$$7x^{3} +3x^{2}y^{2} -xy = 7$$

0.9 Definition

 $v_1,\ldots,v_n\in\mathbb{R}^n$ heißen *linear abhängig.* falls $a_1,\ldots,a_n\in\mathbb{R}$ existieren, *nicht alle* = 0, mit $a_1v_1+\ldots+a_nv_n$ = 0.

Gibt es solche Skalare nicht, so hei
SSen v_1, \ldots, v_m linear unabhängig (d.h. aus $a_1 v_1 \ldots a_n v_n =$

 $0 folgt a_1 = ... = a_n = 0).$

(Entsprechend $\{v_1 \dots v_n\}$ linear abhängig/linear unabhängig)

Per Definition: Ø is linear unabhängig.

0.10 Beispiel

a) $\sigma + v \in \mathbb{R}^n$ Dann ist v linear unabhängig:

Zu zeigen : Ist av =
$$\sigma \Rightarrow a = 0$$

Sei
$$v \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix}$$
 Da $v \neq \sigma$,

existiert mindestens ein i mit $b_i \neq 0$.

Angenommen
$$\sigma v = \begin{pmatrix} 0b_1 \\ \vdots \\ 0b_n \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} = \sigma.$$

Dann $ab_i = 0$ Da $b_i \neq 0$, folgt a = 0.

 σ ist linear abhängig:

$$1 \cdot \sigma = \sigma$$

b) $v_1 = \sigma. v_2..., v_m$ ist linear abhängig:

$$\sigma = 1 \cdot \sigma + 0 \cdot v_2 + \dots + 0 \cdot v_m$$

c) $v, w \in \mathbb{R}^n$

$$v \neq \sigma \neq w$$

- $v \neq \sigma \neq w$ v,w sind linear \Leftrightarrow abhängig
- $(2) v \in \langle w \rangle_{\mathbb{R}} \Leftrightarrow$
- $(3) w \in \langle v \rangle_{\mathbb{R}} \Leftrightarrow$
- $(4)\langle v \rangle_{\mathbb{R}} = \langle w \rangle_{\mathbb{R}}$
- (1)

v, w linear abhängig $\rightarrow \exists a_1, a_2 \in \mathbb{R}$, nicht beide = 0, $a_1v + a_2w = \sigma$. Dann beide

$$(a_1, a_2) \neq 0$$

$$a_1 v = -a_2 w \mid \cdot \frac{1}{a_1}$$

$$a_1 v = -a_2 w \mid \frac{1}{a_1}$$
$$v = -\frac{a_2}{-a_1} w \in \langle w \rangle_{\mathbb{R}} (2)$$

 $v \in \langle w \rangle_{\mathbb{R}}$ dass heißt v = aw für ein $a \in \mathbb{R}$ Dann $a \neq 0$, da $v \neq \sigma$. $w = \frac{1}{a} \cdot v \in \langle v \rangle_{\mathbb{R}}$ ③

w = bv für ein $b \in \mathbb{R}b \neq 0$, da $w \neq \sigma$.

$$aw \in \langle w \rangle_{\mathbb{R}} \Rightarrow aW = (ab)v \in \langle v \rangle_{\mathbb{R}}$$

$$\langle w \rangle_{\mathbb{R}} \subseteq \langle v \rangle_{\mathbb{R}}$$

 $w = \frac{1}{h}w$ Dann analog $\langle v \rangle \mathbb{R} \subseteq \langle w \rangle_{\mathbb{R}}$

Also
$$\langle v \rangle \mathbb{R} = \langle w \rangle_{\mathbb{R}}$$

(4)

 $v \in \langle v \rangle_{\mathbb{R}} = \langle w \rangle_{\mathbb{R}}$, dass heißt.

 $v = a \cdot w$ für ein $a \in \mathbb{R}$

 $a \cdot v + (-a)w = \sigma \Rightarrow v$, w sind linear abhängig ①

d)
$$e_i = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} \in \mathbb{R}^n$$

 e_1, \dots, e_n sind linear unabhängig.

$$\sigma = a_1 e_1 + \dots + a_n e_n = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ \vdots \\ 0 \\ a_2 \\ 0 \\ 0 \\ 0 \end{pmatrix} \Rightarrow a_1 = a_2 = \dots = a_n = 0$$

e)
$$\binom{1}{2}$$
, $\binom{-3}{1}$, $\binom{6}{2}$ sind linear abhängig \mathbb{R}^2 :

Gesucht sind alle $a_i, b_i \in \mathbb{R}$ mit $a \cdot \begin{pmatrix} 1 \\ 2 \end{pmatrix} + b \cdot \begin{pmatrix} -3 \\ 1 \end{pmatrix} + c \cdot \begin{pmatrix} 6 \\ 2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$

Führt auf LGS für a,b,c:

0.11 Satz 0 Der Vektorraum \mathbb{R}^n

$$\begin{pmatrix} 1 & -3 & 6 & 0 \\ 2 & 1 & 2 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -3 & 6 & 0 \\ 0 & 7 & -10 & 0 \end{pmatrix}$$
c ist frei wählbar

f)
$$\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$
, $\begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix}$ sind linear abhängig in \mathbb{R}^3 ,

10.8b):
$$\frac{5}{4} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + \frac{1}{4} \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix} + (-1) \begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

0.11 Satz

Seien $v_1, \ldots, v_n \in \mathbb{R}^n$

a) $v_1, ..., v_m$ sind linear abhängig ①

$$\Leftrightarrow \exists i \dots v_i = \sum_{\substack{j=1\\j \neq i}}^m b_j v_j ②$$

$$\Leftrightarrow \exists i : \langle v_1, \dots, v_m \rangle_{\mathbb{R}} = \langle v_1, \dots v_{i-1}, v_{i+!}, \dots, v_m \rangle_{\mathbb{R}} ③$$

- b) v_1, \ldots, v_m sind linear unabhängig \Leftrightarrow Jedes $v \in \langle v_1, \ldots, v_m \rangle_{\mathbb{R}}$ lässt sich auf genau *eine* Weise als Linearkombination von v_1, \ldots, v_m schreiben.
- c) Sind $v_1, ..., v_m$ linear unabhängig und es existiert $v \in \mathbb{R}^n mit v \neq \langle v_1, ..., v_m \rangle_{\mathbb{R}}$ dann sind auch v_1, \ldots, v_m, v linear unabhängig

Beweis. a)
$$(1) \Rightarrow (2)$$

 $v_1, \dots v_m$ sind linear abhängig

$$\Rightarrow \exists a_1, \dots, a_m \text{ nicht alle} = 0,$$

$$a_a v_i + \ldots + a_m v_m = 0$$

Sei
$$a_i \neq 0$$

Set
$$a_i \neq 0$$

$$a_i v_i = \sum_{\substack{j=1 \ j \neq i}}^{m} -a_j v_j$$

$$v_i = \sum_{\substack{j=1 \ j \neq i}}^{m} -\frac{a_j}{a_i} v_j \ ②$$

$$(2) \Rightarrow (3)$$

0 Der Vektorraum \mathbb{R}^n

Klar: $\langle v_1, \dots v_{i-1}, v_{i+1}, v_m \rangle_{\mathbb{R}} \subseteq \langle v_1, \dots, v_m \rangle_{\mathbb{R}}$

Zeige
$$\supseteq v = \langle v_1, \dots, v_m \rangle_{\mathbb{R}}, d.h$$

$$\begin{split} \text{Zeige} &\supseteq \quad \boldsymbol{v} = \langle \boldsymbol{v}_1, \dots, \boldsymbol{v}_m \rangle_{\mathbb{R}}, \, \text{d.h} \\ \boldsymbol{v} &= \sum_{j=1}^m a_j \, \boldsymbol{v}_j = \sum_{\substack{j=1 \\ j \neq i}}^m a_j \, \boldsymbol{v}_j + a_i (\sum_{\substack{j=1 \\ j \neq i}}^m b_j \, \boldsymbol{v}_j) = \sum_{\substack{j=1 \\ j \neq i}}^m (a_j + a_i b_j) \boldsymbol{v}_j \in \langle \boldsymbol{v}_1, \dots \boldsymbol{v}_{i-1}, \boldsymbol{v}_{i+1}, \dots, \boldsymbol{v}_m \rangle_{\mathbb{R}} \text{ (2)} \end{split}$$

 $v_i \in \langle v_1 \dots v_m \rangle_{\mathbb{R}} = \langle v_1 \dots v_{i-1}, v_{i+1}, \rangle_{\mathbb{R}}$, dass heißt es existiert

 $a_1, \ldots a_{i-1}, a_{i+1}, \ldots a_m \in \mathbb{R}$ mit

$$v_i = \sum_{\substack{j=1\\j\neq i}}^m a_j v_j$$

 $\Rightarrow \sigma = a_1 + v_1 + ... + a_{i-1}v_{i-1} + (-1)v_i + a_{i+1}v_{i+1} + ... + a_mv_m$ $v_1 ... v_m$ linear abhängig

0.12 Satz

Sind $v_i, \ldots, v_{n+1} \in \mathbb{R}^n$, so

 $\sin v_i, \dots, v_{n+1}$ linear abhängig.

(Insbesondere ist m > n und $v_i, v_m \in \mathbb{R}^n$, so sind v_1, \dots, v_m linear abhängig)

Beweis. Such alle $a_1, \ldots, a_{n+1} \in \mathbb{R}$ mit $a_i v_1 + \ldots a_{n+1} v_{n+1} = \begin{pmatrix} 0 \\ \ldots \\ 0 \end{pmatrix}$

Führt zu LGS für $a_1, ..., a_{n+1}$ mit Koeffizientenmatrix $(v_1, ..., v_2, ..., v_{n+1}) = A$

Frage: Hat $A \cdot \begin{pmatrix} a_i \\ \vdots \\ c \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ c \end{pmatrix} \in \mathbb{R}^n$ nicht triviale Lösung?

Gauß:

0.13 Definition

Sei \mathscr{U} ein Unterraum von \mathbb{R}^n

 $B \subseteq \mathcal{U}$ heißt Basis von \mathcal{U} falls:

- (1) $\langle B \rangle_{\mathbb{R}} = U$
- (2) B ist linear unabhängig

$$(\mathcal{U} = \{\sigma\}, B = \emptyset)$$

0.14 Beispiel

a) e_1, \ldots, e_n ist Basis von \mathbb{R}^n (kanonische Basis)

a)
$$e_1, \dots, e_n$$
 ist Basis von \mathbb{R}^n (kanonische Basis)
$$e_1 = \begin{pmatrix} 0 \\ \vdots \\ 1 \\ 0 \\ 0 \end{pmatrix} \leftarrow i$$

$$\begin{pmatrix} a_i \\ \vdots \\ a_n \end{pmatrix} = \sum_{i=1}^n a_i e_i$$

b) $\binom{1}{2}$, $\binom{3}{2}$ ist Basis von R^2 : Sei $\begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2$. Gesucht: $a, b \in \mathbb{R}$ mit $a \begin{pmatrix} 1 \\ 2 \end{pmatrix} + b \begin{pmatrix} 3 \\ 2 \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix}$ LGS mit variabler rechter Seite

$$1a +3b = x$$
$$2a +2b = y$$

$$\begin{pmatrix}
1 & 3 & x \\
2 & 2 & y
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & 3 & x \\
0 & -4 & y - 2x
\end{pmatrix}$$
Eindeutige Lösung: $b = -\frac{1}{4}y + \frac{1}{2}x$ $a = x - 3b = x + \frac{3}{4}y - \frac{3}{2}x = -\frac{1}{2}x + \frac{3}{4}y$

$$z.B \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} 1 \\ 0 \end{pmatrix} = -\frac{1}{2} \begin{pmatrix} 1 \\ 2 \end{pmatrix} + \frac{1}{2} \begin{pmatrix} 3 \\ 2 \end{pmatrix} \mathbb{R}^2 \langle \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 3 \\ 2 \end{pmatrix} \rangle$$

0 Der Vektorraum \mathbb{R}^n 0.15 Satz

$$\binom{1}{2}$$
, $\binom{3}{2}$ sind linear unabhängig nach 0.10c) $\left\{\binom{1}{2}$, $\binom{3}{2}\right\}$ Basis.

c)
$$\mathcal{U} = \left\langle \begin{pmatrix} 1\\2\\3\\4 \end{pmatrix}, \begin{pmatrix} 3\\2\\1 \end{pmatrix}, \begin{pmatrix} 2\\3\\4 \end{pmatrix} \right\rangle_{\mathbb{R}}$$

$$\begin{pmatrix} 2\\3\\4 \end{pmatrix} = \frac{5}{4} \begin{pmatrix} 1\\2\\3 \end{pmatrix} + \frac{1}{4} \begin{pmatrix} 3\\2\\1 \end{pmatrix}$$

$$\mathcal{U} = \left\langle \begin{pmatrix} 1\\2\\3 \end{pmatrix}, \begin{pmatrix} 3\\2\\1 \end{pmatrix} \right\rangle_{\mathbb{R}}$$

$$\begin{pmatrix} 1\\2\\3 \end{pmatrix}, \begin{pmatrix} 3\\2\\1 \end{pmatrix}$$
 linear unabhängig (0.10c))
$$\left\{ \begin{pmatrix} 1\\2\\3 \end{pmatrix}, \begin{pmatrix} 3\\2\\1 \end{pmatrix} \right\}$$
 Basis von \mathcal{U}

0.15 Satz

Jeder Unterraum \mathcal{U} des \mathbb{R}^n besitzt eine Basis.

Beweis. Ist $\mathcal{U} = {\sigma}$, so $b = \emptyset$.

Sei also $\mathcal{U} \neq \{\sigma\}$.

 v_1 ist linear unabhängig.

 $\langle v_1 \rangle_{\mathbb{R}} \subseteq \mathcal{U}$.

Ist $\mathcal{U} = \langle v_1 \rangle_{\mathbb{R}}$, so ist $\{v_1\}$ Basis von \mathcal{U}

Ist $\langle v_1 \rangle_{\mathbb{R}} \subsetneq \mathcal{U}$.

Sei $v_2 \in \mathcal{U} \setminus \langle v_1 \rangle_{\mathbb{R}}$.

Nach 0.11c) ist $\{v_1, v_2\}$ linear unabhängig. Ist $\langle v_1, v_2 \rangle = \mathcal{U}$, so ist $\{v_1, v_2\}$ Basis von \mathcal{U} . Ist $\langle v_1, v_2 \rangle_{\mathbb{R}} \subsetneq U$ so wähle v_3 usw.

Es existiert $m \neq n$ mit $\langle v_1, \dots v_m \rangle_{\mathbb{R}} = \mathcal{U}$ und v_1, \dots, v_m sind linear unabhängig. (Denn noch 0.12 gibt es im \mathbb{R}^n keine n+1 linear unabhängige Vektoren)

0.16 Satz

Je zwei Basen B_1, B_2 eines Unterraums \mathcal{U} des \mathbb{R}^n enthalten die gleiche Anzahl von Vektoren $|B_1| = |B_2|$.

Insbesondere:

Je zwei Basen des \mathbb{R}^n enthalten n Vektoren

0.17 Definition

Ist \mathscr{U} Unterraum von \mathbb{R}^n , B Basis von \mathscr{U} , |B| = m. Dann ist m die Dimension von \mathscr{U} , $\dim(u) = m$. $\dim(\mathbb{R}^n) = n$, $\dim(\mathscr{U}) \neq n$.

0.18 Satz (Basisergänzungssatz)

Sei $\mathcal U$ Unterraum der $\mathbb R^n$, $M\subseteq \mathcal U$ eine Menge m linear unabhängiger Vektoren. Dann lässt sich M zu einer Basis von $\mathcal U$ ergänzen.

Beweis. Analog zu 0.15

0.19 Korollar

Ist $\mathscr U$ Unterraum des $\mathbb R^n$ und dim $(\mathscr U) = n$, dann ist $\mathscr U = \mathbb R^n$

Beweis. Sei B Basis von \mathcal{U} , also |B| = n.

Nach 0.18 (dort mit $\mathcal{U} = \mathbb{R}^n$, M = B) lässt sich B zu Basis B' von \mathbb{R}^n ergänzen.

$$\dim(\mathbb{R}^n) = n \Rightarrow |B'| = n.$$

Also B = B'

$$\mathbb{R}^n = \langle B' \rangle_{\mathbb{R}} = \langle B \rangle_{\mathbb{R}} = \mathscr{U}$$

Definition 0.20

Ist $\mathcal U$ Unterraum von $\mathbb R^n$, B = (u_1,\ldots,u_m) eine geordnete Basis von $\mathcal U$. Nach 0.11b), lässt sich jeder Vektorraum $\mathcal{U} = \langle B \rangle_{\mathbb{R}}$ eindeutig als Linearkombination

$$\mathscr{U} = \sum_{i=1}^{m} a_i u_i \quad , a_i \in \mathbb{R}$$

schreiben.

 $(a_1...,a_m)$ heißen *Koordinaten* von u bzgl. der Basis B.

0.21 Beispiele

a) $B(e_1..., e_m)$ kanonische Basis von \mathbb{R}^n .

Koordinaten von
$$\begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} \in \mathbb{R}^n$$
 bzgl. B: $(a_1 \dots, a_n)$ *kartesische* Koordinaten.

(Rene Descartes, 1596-1650)