CE 363-364 Homework-1-Solution

Question 1

$$V_{Total} = 860 \ cm^3$$
 , $M_{Total} = 1500 \ g$, $M_{dry} = M_{solid} = 1200 \ g$, $G.S = 2.65$

a) For unit V_S;

Note that all soil parameters in this topic are ratios. Therefore they can be calculated using
either the actual volumes and masses, or those in the phase diagram given in terms of V_S.
However the numerator and the denominator of these ratios must both come from the same
place (both real quantities or both for unit V_S).

b) i)
$$M_{water} = M_{Total} - M_{dry} = 300 \ g$$
, $w = \frac{M_{water}}{M_{solid}} = \frac{300 \ g}{1200 \ g} = 0.25$

ii)
$$\rho_{dry} = \frac{M_{dry}}{V_{Total}} = \frac{1200 \ g}{860 \ cm^3} = 1.395 \ g/cm^3 \ , \quad \rho_{dry} = \frac{G_s}{1+e} * \rho_w = \frac{2.65}{1+e} * 1 g/cm^3$$

$$\Rightarrow e = 0.9$$

iii)
$$\rho = \frac{M_{Total}}{V_{Total}} = \frac{G_s*(1+w)}{1+e} * \rho_w = \frac{2.65*(1+0.25)}{1+0.9} = 1.74 \ g/cm^3$$

iv)
$$S_r = \frac{V_{water}}{V_{voids}}$$
, $V_{water} = \frac{M_{water}}{\rho_{water}} = \frac{300 \text{ g}}{1 \text{ g/cm}^3} = 300 \text{ cm}^3$, $V_{solids} = \frac{M_{solid}}{G_s * \rho_w} = \frac{1200 \text{ g}}{2.65 * 1 \text{ g/cm}^3} = 453 \text{ cm}^3$, $V_{voids} = 860 - 453 = 407 \text{ cm}^3$

$$S_r = \frac{300 \text{ cm}^3}{407 \text{ cm}^3} = 73.7 \%$$

OR

$$w * G_S = S_r * e$$
 , $S_r = \frac{0.25*2.65}{0.9} = 73.7 \%$

v)
$$n = \frac{e}{1+e} = \frac{0.9}{1+0.9} = 0.47$$
 OR $n = \frac{V_{voids}}{V_{Total}} = \frac{407 \text{ cm}^3}{860 \text{ cm}^3} = 0.47$

c) All voids are filled with water $\Rightarrow V_{water} = V_{voids} = e$, $M_{water} = e*\rho_w$, $W_{water} = e*\gamma_w$

$$\gamma_{sat} = \frac{G_s * \gamma_w + e * \gamma_w}{1 + e} = \frac{2.65 * 10 + 0.9 * 10}{1 + 0.9} = 18.7 \ kN/m^3$$

$$G_S * W = S_r * e \implies W = \frac{0.9 * 1}{2.65} = 0.34$$

OR

$$M_{water} = V_{voids} * \rho_w = 407 \ cm^3 * 1 \ g/cm^3 = 407 \ g$$

$$w = \frac{M_{water}}{M_{solid}} = \frac{407 \ g}{1200 \ g} = 0.34$$

Question 2

a)
$$98 \% \ of \ \rho_{dry,max} = 1.7 \ g/cm^3 * 0.98 = 1.666 \ g/cm^3$$

$$\rho_{dry} = \frac{G_s}{1+e} * \rho_w$$
 \Rightarrow

$$e = \frac{G_s * \rho_w}{\rho_{dry}} - 1 = \frac{2.65 * 1g/cm^3}{1.666 g/cm^3} = 0.59$$

$$D_R = \frac{e_{max} - e}{e_{max} - e_{min}} = \frac{0.86 - 0.59}{0.86 - 0.52} = 79 \%$$

b) Maximum Cost \Rightarrow Maximum Volume \Rightarrow e_{max}

$$V_{Total} = V_{embankment} = 1.5 \; m * 20 \; m * 20 \; m = 600 \; m^3$$

$$M_{solid} = \rho_{dry} * V_{embankment} = 1.666 \frac{10^{-6}t}{10^{-6}m^3} * 600 m^3 = 100 tons$$

$$V_{solid} = \frac{M_{solid}}{\rho_{solid}} = \frac{1000 \ tons}{2.65 * 1 \ g/cm^3} = 377 \ m^3$$

$$V_{void} = V_{solid} * e = 378 \, m^3 * 0.86 = 325 \, m^3$$

$$V_{Total} = 377 \, m^3 + 325 \, m^3 = 702 \, m^3$$

$$Cost = 702 \ m^3 * 15 \frac{lira}{m^3} = 10530 \ TL$$

OR

After compaction;
$$e = 0.59$$
 and $V_{solid} = 1$ (unity), $V_{Total} = 1 + 0.59 = 1.59$ units

Before comp., in loosest state;
$$e_{max} = 0.86$$
 and $V_{solid} = 1$ (unity), $V_{Total} = 1.86$ units

1.59 units volume
$$\Rightarrow 600 \text{ m}^3$$
 , 1.86 units $\Rightarrow 600 * \frac{1.86}{1.59} = 702 \text{ m}^3$

$$Cost = 702 \ m^3 * 15 \frac{lira}{m^3} = 10530 \ TL$$

Question 3

Plotting the given data:

b) Soil A

Gravel percentage (> 4.75 mm) = 100 - 93 = 7 %

Sand percentage (<4.75 mm, >0.074 mm) = 93 - 3 = 90 %

Fines (< 0.074 mm) = 3 %

Soil B

Gravel percentage (> 4.75 mm) = 0 %

Sand percentage (<4.75 mm, >0.074 mm) = 100 - 38 = 62 %

Fines (<0.074 mm) = 38 %

c) Soil A

$$D_{10} = 0.16 \, mm$$

$$D_{30} = 0.63 \ mm$$

$$D_{60} = 1.5 \ mm$$

$$C_U = \frac{D_{60}}{D_{10}} = \frac{1.5 \ mm}{0.16 \ mm} = 9.4 > 6$$

$$C_z = \frac{(D_{30})^2}{D_{60} * D_{10}} = \frac{(0.63 \text{ mm})^2}{1.5 \text{ mm} * 0.16 \text{ mm}} = 1.7$$

$$C_u > 6$$
 and $1 < C_z < 3$ \Rightarrow Well Graded

Soil B

$$D_{10} = 0.0045 \ mm$$

$$D_{30} = 0.045 \, mm$$

$$D_{60} = 0.17 \ mm$$

$$C_U = \frac{D_{60}}{D_{10}} = \frac{0.17 \ mm}{0.0045 \ mm} = 37.8 > 6$$

$$C_z = \frac{(D_{30})^2}{D_{60} * D_{10}} = \frac{(0.045 \, mm)^2}{0.17 \, mm * 0.0045 \, mm} = 2.6$$

$$C_u > 6$$
 and $1 < C_z < 3$ \Rightarrow Well Graded

d) Soil A

- More than 50 % is coarse (97 %)
- More than 50 % of coarse fraction is sand
- Small amount of fines
- Well Graded \Rightarrow SW, well graded sand

Soil B

- More than 50 % is coarse (62 %)
- More than 50 % of coarse fraction is sand
- Fines > 12 (38 %)
- Non Plastic \Rightarrow SM, silty sand, sand with non plastic fines

Soil C

- More than 50 % is fine (72 %).
- LL = 27 %, PI = 27-19 = 8 %
- Above A-line \Rightarrow CL (clay with low plasticity)

Soil D

- More than 50 % is fine (98 %)
- LL = 75%, PI = 75 38 = 37%
- Below A-line \Rightarrow MH (silt with high plasticity)
- e) $w_n = 55 \%$ is between PL (38 %) and LL (75 %), so soil D is in plastic consistency.

$$PI = LL - PL = 75 - 38 = 37 \%$$
 , $I_L = \frac{55 - 38}{37} = 0.46 = 46 \%$