

Distributed Processing and Optimisations for Genomic Data

Andrea Gulino

PHD CANDIDATE - XXXIII CYCLE (3rd YEAR)

Thesis-related Publications

Other Publications

Research Timeline

Genomic Data

- Genome sequencing is a prolific source of big data.
- Opens new opportunities for biological research.
- DNA regions can be represented in a file by means of their start and stop positions.
- Genomic Datasets are big collections of such files.

GMQL (GenoMetric Query Language)

- A language for querying big genomic datasets.
- Standard operations (SQL-like) + domain-specific operations for mapping and joining billions of genomic regions.
- Cloud-computing processing system based on Apache Spark.
- Publicly accessible through a user-friendly web interface.

Optimal Binning (1st year)

Binning splits the genomic space into portions (bins) of equal size so as to enable parallel processing of regions in different bins.

Federated GMQL (2nd year)

Performance Prediction (ongoing)

- Objective: use ML to model the execution time of each GMQL operator and estimate the response time of an entire GMQL query (DAG).
- In general, we would like to predict the execution time of Scientific Workflows implemented on cloud frameworks (e.g. Spark).

 v_1 v_1 v_3 v_4 v_4 v_4 v_4 v_4 v_4 v_4 v_4 v_5 v_6 v_8 v_8

- Exploiting those models:
 - we can predict optimal execution parameters (e.g. bin size, number of CPUs, memory)
 - we can produce optimal query plans for Federated GMQL queries.

_	Input Data	Task Parameters	Environment	Execution Time	Output Data
Granularity	data_size	-	CPUs	ti	data_size
				t_i	
5	data_size, num_rows, num_cols	selectivity	CPUs, RAM, partitions	ti	data_size, num_rows, num_cols
				t_i	