Carrera: Licenciatura en Sistemas Informáticos - / 2015

Cátedra: Calculo Diferencial e Integral

EXAMEN FINAL TEORÌA

Nombre y apellido del alumno:

Ejercicio1: Dar: Condiciones de hipótesis, Tesis, e Interpretación geométrica del Teorema del Valor medio del Calculo

Diferencial.

Ejercicio2: Resolución de Integral Indefinida mediante el Método de Integración por Partes. Demostrar.

Ejercicio3: Definición formal de límite finito para variable que tiende a valor finito. Interpretación geométrica.

Ejercicio4: A) Definir incremento de una función. Interpretación geométrica; B) Definir Diferencial de una función. Interpretación geométrica; C) Relación entre Incremento y Diferencial.

Ejercicio5 a) **Definir** Antiderivada o primitiva de la función f(x). b) **Definir** Integral Indefinida de f(x). c) **Simbolizar** y **describir** sus componentes. d) **Definir** la derivada de una integral indefinida y **demostrar**.

Ejercicio6: Dar **Condición necesaria** y **suficiente** para la existencia de un extremo relativo. **Interpretar geométricamente**.

Ejercicio7: a) **Definir** valor absoluto | x |. b) Dada | x – a | < b, **resolver** analíticamente y mostrar gráficamente la solución.

c) Graficar la función f(x) = |x|, dar Dominio y Rango de la función, dar intervalo de crecimiento y decrecimiento de la misma y extremos.

Ejercicio8: Demostrar aplicando derivación logarítmica, la derivada de a) $y = a^x$, con $a \in \Re$; b) y = f(x) g(x).

E-1: Dada la desigualdad: | a x - b | > a, con a > 0 y b < 0. a) Expresarla sin el símbolo de valor absoluto;

b) Graficar en el eje real la desigualdad obtenida.

E-2: Dada la gráfica:

a) Completar: $\lim_{x \to \infty} f(x) = \cdots \dots \dots$

c) ¿Qué permite definir el límite calculado anteriormente?

E-3: a) Dar Hipótesis y Tesis del Teorema del Valor medio del Cálculo Diferencial o Teorema de Lagrange.

b) Realizar la interpretación geométrica.

E-4: a) Definir la derivada de una integral indefinida. Demostrar. b) Definir diferencial de una integral indefinida. Demostrar.

c) Definir antiderivada o primitiva de una función f(x). d) Indicar los elementos de una integral indefinida.

E-5: a) Definir Integral Impropia; b) Definir Integral impropia de primera especie, demostrar su cálculo e interpretar geométricamente.

E-1: Dada la desigualdad: $|a \times b| < c$, con a, b, c > 0, b < c. a) Expresarla sin el símbolo de valor absoluto;

b) Graficar en el eje real la desigualdad obtenida. c) Si es posible expresarla como entorno.

E-2: Dada la gráfica:

- a) Completar: $\lim_{x \to a} f(x) = \cdots \dots \dots$
- b) Definir simbólicamente el límite calculado en el ítem a.
- c) ¿Qué permite definir el límite calculado anteriormente?

E-3: i) Definir función exponencial de base b. ii) Realizar la gráfica. iii) Dar características de la misma.

E-4: Teorema del Valor Medio del Cálculo Integral. Hipótesis, tesis y demostración. Realizar la interpretación geométrica.

E-1: Mediante Derivación Logarítmica demostrar la derivadas de las funciones: a) $y = x^n$; b) $y = a^x$

E-1: Continuidad de una función en un punto. a) Definición. b) Clasificación de discontinuidad. c) Representar gráficamente.

E-2: a) Derivada de una función. (Función derivada). Gráfica. b) Derivada de una función en un punto. c) Interpretación gráfica de la derivada.

E-3: Integrales Indefinidas. a) Definición. b) Enunciar tres propiedades.