Sampling Distributions

Mainak Thakur

07.09.2020

Snowball Sampling

Researchers recruit initial subjects

Sampling Distributions

- Statistic is a random variable. The value of a statistic may vary from sample to sample
- Imagine collecting a number of samples (each of size n) from a population and calculating the statistic for each sample. This series of realizations of statistic may be plotted in a histogram to see its frequency distribution.
- For large number of samples (each of size n), this distribution is called the sampling distribution of the statistic.
- Sampling distribution: mean, s.d, moments of higher orders
- Standard deviation of statistic is known as standard error of the statistic

Question

• What is the expectation and the standard error of the statistic sample mean if n i.i.d samples are taken from a population with mean μ and s.d. σ ?

Question

• What is the expectation and the standard error of the statistic sample mean if n i.i.d samples are taken from a population with mean μ and s.d. σ ?

Ans: Expectation = μ

Standard Error =
$$\frac{\sigma}{\sqrt{n}}$$

Four fundamental distributions derived from normal

- Standard normal distribution (Z)
- Chi-square (χ^2) distributiom
- t distribution
- F distribution

Standard Normal Distribution (Z)

Def. Standard normal leariable (s.n.v.) is a normal variable with means 0 and s.d. 1.

Theorem and Results

Theorem: If X is normally distributed
se with mean 14 and rearriance o?
Then y=a+bx, where b≠0, is also
normally distributed with mean
at byt and variance 672.
Results: X~N(M, 52)
=> x-re ~ N(0.1)
Converse is also true.

Ref: Fundamentals of Statistics, Vol 1 by Gun, Gupta, Dasgupta

Notation

```
Zoe: the realise of 2 s.t. P(272)=oc.
Za is called the upper a-point (or the upper 100 a 1/0 - point) of 2.
  Sympnetry of 2 distribution about o
  ensures: 21-x=-2x. [...b(3>2x)
                              = P(2<-2a)
Zi-a: the howev a-point.
 P(2(21-\alpha)=0)
                             LP(27-2x)
```

Graph

Chi-square Distribution

2° distribution	DATE
Let X, X2,, X3 be	2 mutualle
indoendant coming	hon
independent s.n.v. J Zxi'is known to ha	· · · · · · · · · · · · · · · · · · ·
$\frac{1}{1}$	and aust
Deth degrees of	reedom (or df=1).
$pdf: f(x^*) = \frac{1}{2^{1/2}} \cdot e^{\frac{1}{2}}$	2/2/2/2-1
2/2 [(1/2)	
	DXXXXXX.

Ref: Fundamentals of Statistics, Vol 1 by Gun, Gupta, Dasgupta

Properties

Mean: 7 Variance: 27 A X(1) -, mean=1 variance=2 The term "degrees of freedom" refers to the no. of independent S.n.u. precent.

Example

Results

Particular Case

$$|\lambda_{2}| \rightarrow |x_{1}-\overline{x}| = |x_{1}-x_{2}|$$

$$|x_{2}-\overline{x}| = |x_{2}-x_{1}|$$

$$|x_{1}-x_{2}| = |x_{1}-x_{2}|$$

$$|x_{1}-x_{2}| = |x_{$$

Properties

Notation

Graph

