Audition CRCN CNRS 2022 Efficient Exploration of Colossal Configurable Spaces

Paul TEMPLE

March 2022

Equipes: Spirals (Lille); ProGresS (Bordeaux); NaoMod (Nantes)

P TEMPLE Audition CNRS March 2022 1 / 28

Software variability & system complexity

Software variability & system complexity

Linux Kernel: **15,000** options

 $2^{15,000} \approx 10^{3,250} >> 10^{1,000} >>$ estimated # of particules

Sébastien Mosser @petitroll · 25 févr.

"the number of atoms in the visible universe is 10^80. There are 2^15000 different versions of the Linux kernel. So astrophysicists works with things way simpler than software engineers". @jmjezequel

March 2022

Software variability & performances

processing time = 2 h

processing time = 10 h

Evaluating performance is complex

	Program Variants				
		264	264		264
Inputs		12	1		5
		1	348		10
	A Cal	50	101		260

Do we need to measure?

Assumptions

- Exploring all configurations is impossible
- Measuring performances is costly

Siegmund *et al.*, Perf. Prediction with feature interaction, ICSE'12 Siegmund *et al.*, Perf.-Influence models for config. systems, FSE'15 Guo *et al.*, Var.-aware perf. prediction, ASE'13

P TEMPLE Audition CNRS March 2022

Do we need to measure?

Assumptions

- Exploring all configurations is impossible
- Measuring performances is costly

Assign a measure without measuring

- Similar configurations produce similar performances
- Performance prediction

Siegmund *et al.*, Perf. Prediction with feature interaction, ICSE'12 Siegmund *et al.*, Perf.-Influence models for config. systems, FSE'15 Guo *et al.*, Var.-aware perf. prediction, ASE'13

Do we need to measure?

Assumptions

- Exploring all configurations is impossible
- Measuring performances is costly

Scope the configuration space

- Explicit requirements
- Few configurations are acceptable

		Program Variants			
		264	264		264
Inputs		12	1		5
mputs	W	1	348		10
	ALL	50	101		260

Temple et al., Using machine learning to infer constraints for product lines, SPLC'16.

Reducing configuration space with ML

Temple et al., Using machine learning to infer constraints for product lines, SPLC'16.

P TEMPLE Audition CNRS March 2022 7/28

Adversarial configurations

Temple *et al.*, Adv. Configs for config. systems, EMSE'21
Link to PRALab website

Adversarial configurations

- 1st use of adversarial ML techniques for configurable systems
- Collaboration between:
 - Battista Biggio and Fabio Roli, PRALab, Sardinia
 - Mathieu Acher and Jean-Marc Jézéquel, IRISA, Rennes
 - Gilles Perrouin and myself, Namur
- Published at SPLC'19 → extended in EMSE'21

Temple *et al.*, Adv. Configs for config. systems, EMSE'21 Link to PRALab website

- 4 ロ b 4 個 b 4 き b 4 き b - き - め q

Reducing configuration space with ML

Machine Learning is based on statistics \rightarrow errors

- Over-constraining: lack of flexibility
- Under-constraining: waste of resources

Improving the pipeline

Robustifying the model

- Show new configurations
- Configurations with high risk of misclassification

Goodfellow et al., Adversarial examples, ICLR'15

P TEMPLE Audition CNRS March 2022

10 / 28

Improving the pipeline

Robustifying the model

- Show new configurations
- Configurations with high risk of misclassification

Goodfellow *et al.*, Adversarial examples, ICLR'15

Elsayed *et al.*, Fool both humans and computers, NeurlPS'18 + 4 = +

P TEMPLE Audition CNRS March 2022 10 / 28

Evasion attacks

- Iterative modifications of features
- Move towards the separation

predict.: acceptable

P TEMPLE Audition CNRS March 2022 11 / 28

Evasion attacks

- Iterative modifications of features
- Move towards the separation

qblur = 0.90

predict.: acceptable predict.: acceptable

P TEMPLE Audition CNRS March 2022

Evasion attacks

- Iterative modifications of features
- Move towards the separation

predict.: acceptable predict.: non-acceptable

P TEMPLE Audition CNRS March 2022 11 / 28

Evasion attacks

- Iterative modifications of features
- Move towards the separation

predict.: acceptable predict.: acceptable predict.: non-acceptable

Adversarial Configurations

- Adversarial retraining
- Analyze them to understand what is wrong

P TEMPLE Audition CNRS March 2022 11 / 28

Research project

- ML for configurable systems
 - Adversarial configurations for improvement
 - Find a more efficient representation for configurations
- ML models exploration with variability management

Adversarial configurations for improvement

Adversarial configurations

Used to improve ML model fairness

P TEMPLE Audition CNRS March 2022

13 / 28

Adversarial configurations for improvement

Adversarial configurations

Used to improve ML model fairness

Support for constraints

- Constraints on values of options and their combinations
- ullet Constraints may be complex o involve several options
- Constraint checking strategy that scales

Delobelle et al., Ethical Adversaries, SIGKDD Exploration NewsLetters 2021

P TEMPLE Audition CNRS March 2022 13 / 28

Find an efficient representation for configurations

What is wrong?

- ullet Similar configurations o similar performances
- Options as a feature vector → interactions?

14 / 28

P TEMPLE Audition CNRS March 2022,

Find an efficient representation for configurations

What is wrong?

- Similar configurations → similar performances
- Options as a feature vector → interactions?

ML models design with variability management tools

Modern ML models

- 100 epochs ImageNet to train AlexaNet in 24minutes for only 1.2M dollars
- \Rightarrow Impossible if you are not GAFAM

P TEMPLE Audition CNRS March 2022 15 / 28

ML models design with variability management tools

Modern ML models

- 100 epochs ImageNet to train AlexaNet in 24minutes for only 1.2M dollars
- ⇒ Impossible if you are not GAFAM

Explicitly managing variability to reduce costs

- Many models exist
- ullet Neural Architecture Search o subparts can be combined
- → PhD Antoine Gratia: manage the exploration of DL design space

You et al., ImageNet trained in 24 Minutes, ICPP'18 () () () () () ()

P TEMPLE Audition CNRS March 2022 15 / 28

ML models design with variability management tools

Modern ML models

- 100 epochs ImageNet to train AlexaNet in 24*minutes* for **only 1.2M dollars**
- ⇒ Impossible if you are not GAFAM

Explicitly managing variability to reduce costs

- Many models exist
- ullet Neural Architecture Search o subparts can be combined
- ightarrow PhD Antoine Gratia: manage the exploration of DL design space

Goal of variability management

- Green computing
- Reduce complexity of models → explainability

Integration

- Spirals, Lille
- ProGresS, Bordeaux
- NaoMod, Nantes

Teams

- Software Engineering teams with lack of ML background
- Centered around variability

March 2022

Teams

- Software Engineering teams with lack of ML background
- Centered around variability

Spirals

- Run-time adaptation // Performance
- Different aspects of SE

ProGresS

- Evolution
- Towards collaborations with the BKB team

NaoMod

- Architecture
- Projects in collaboration with companies

Efficient Exploration of Colossal Configurable Spaces

- Software variability; Machine learning; Performance
- Testing performances of configurable systems is difficult
- Adversarial configurations
- Research Project:
 - representation problem
 - ullet adversarial for improvement o fairness; adversarial sampling
 - ullet var. management for models o green computing, reducing complexity
- Possible Teams:
 - Spirals, Lille
 - ProGresS, Bordeaux
 - NaoMod, Nantes

Infering constraints with ML

!(signal_quality.blur_level > 0 &&
signal_quality.static_noise_level <=0.135519)</pre>

P TEMPLE Audition CNRS March 2022 19 / 28

Adversarial configurations

Adversarial configurations

Adversarial retraining

25 adversarial configurations added to the training set (video variants) Initial accuracy: 90.766% (red); 92.315% (blue)

March 2022

Ethical adversaries

Ethical adversaries: architecture

23 / 28

Ethical adversaries: results

Ethical adversaries: results

Learning Contextual Variability

Multimorphic Testing: process

Multimorphic Testing: definition of score

Properties

- P1: Be positive
- P2: Given 2 test suites A and B, $A \subseteq B$, $score(A) \le score(B)$
- P3: \forall test suites A and B, $score(A \cup B) \ge max(score(A), score(B))$

27 / 28

Multimorphic Testing: definition of score

Properties

- P1: Be positive
- P2: Given 2 test suites A and B, $A \subseteq B$, $score(A) \le score(B)$
- P3: \forall test suites A and B, $score(A \cup B) \ge max(score(A), score(B))$

Multimorphic Testing: evaluation

Case	App. Domain	# morphs	# test suites
OpenCV	Tracking in videos	252	49
coco	Obj. rec. in images	52	12
Haxe	Code generation	21	84

Multimorphic Testing: evaluation

Case	App. Domain	# morphs	# test suites
OpenCV	Tracking in videos	252	49
coco	Obj. rec. in images	52	12
Haxe	Code generation	21	84

COCO

- 12 categories \rightarrow 40k images
- Can we keep a similar ranking with a smaller test suite
- 5 categories → few permutations (Spearman correl: 0.998)

Haxe

- 84 test suites
- 1 bug (wrong data structure)
- With 5 test suites, the bug is found