Processamento de Sinais aplicado à Engenharia Mecânica

Flavius P. R. Martins, Prof. Dr. Flávio C. Trigo, Prof. Dr.

Importância da propriedade

Utilizando-se essa propriedade, que será descrita a seguir, pode-se obter a transformada de Fourier da maioria dos sinais analíticos sem a necessidade de se recorrer à equação de análise.

Para apresentá-la, utilizaremos o operador $D \equiv \frac{d}{dt}$, de Heavyside, definido da seguinte maneira:

$$Dx(t) = \frac{d}{dt}x(t) = x'(t)$$
$$D^{2}x(t) = \frac{d}{dt}\frac{d}{dt}x(t) = x''(t)$$

Provaremos que: Se $f(t) \Leftrightarrow F(\omega) \Rightarrow Df(t) = i\omega F(\omega)$, ou seja:

a diferenciação no domínio do tempo corresponde à multiplicação por $i\omega$ no domínio das freqüências.

Demonstração

Sabemos que

$$f(t) = \frac{1}{2\pi} \int_{\omega = -\infty}^{\infty} F(\omega)e^{i\omega} \ d\omega$$
 Equação de síntese

Logo, tem-se:

$$Df(t) = \frac{1}{2\pi} \frac{d}{dt} \int_{\omega = -\infty}^{\infty} F(\omega) e^{i\omega t} d\omega = \frac{1}{2\pi} \int_{\omega = -\infty}^{\infty} F(\omega) [i\omega e^{i\omega t}] d\omega = \frac{1}{2\pi} \int_{\omega = -\infty}^{\infty} [i\omega F(\omega)] e^{i\omega t} d\omega$$

E, assim, emerge o par de Fourier: $Df(t) \Leftrightarrow i\omega F(\omega)$

Fazendo-se sucessivas derivações, chega-se ao par: $D^n f(t) \Leftrightarrow (i\omega)^n F(\omega)$

Demonstração:

$$D^{n}f(t) = \frac{1}{2\pi} \int_{\omega = -\infty}^{\infty} F(\omega) [(i\omega)^{n} e^{i\omega}] d\omega = \frac{1}{2\pi} \int_{\omega = -\infty}^{\infty} [(i\omega)^{n} F(\omega)] e^{i\omega} d\omega \iff (i\omega)^{n} F(\omega)$$

Exemplo de aplicação

Consideremos o cálculo da transformada de Fourier do sinal

$$f(t) = ax''(t) + bx'(t) + cx(t)$$

Aplicando-se o operador de Heavyside, tem-se:

$$f(t) = aD^{2}x(t) + bDx(t) + cx(t) = [aD^{2} + bD + C]x(t)$$

Chamemos de P(D) à expressão entre colchetes acima, ou seja: $P(D) = aD^2 + bD + c$ Dessa forma, resulta que: $f(t) = P(D) \cdot x(t)$

Calculemos, agora, a transformada de Fourier de f(t):

$$F(\omega) = [a(i\omega)^2 + b(i\omega) + c]X(\omega) = P(i\omega) \cdot X(\omega)$$

Chegamos, assim, ao par de Fourier:

$$P(D) \cdot x(t) \Leftrightarrow P(i\omega) \cdot X(\omega)$$

Diferenciação de funções descontínuas

Com a introdução do conceito de funções generalizadas, torna-se possível diferenciar funções que apresentam descontinuidades. Examinemos a função **degrau unitário**.

Notemos que

$$\int\limits_{\tau=-\infty}^{\infty}\delta(\tau)d\tau=\begin{cases} 0 & \text{se } t<0\\ 1 & \text{se } t>0 \end{cases}$$
 ou seja,
$$\int\limits_{\tau=-\infty}^{t}\delta(\tau)d\tau=U(\tau), \forall t$$

 $t=-\infty$ Derivando-se a equação acima, resulta: $DU(t) = \delta(t), \qquad \forall t$

Em outras palavras: a derivada da função degrau unitário é a função impulso unitário.

Diferenciação de funções descontínuas (cont)

Podemos chegar a esse mesmo resultado por um caminho distinto.

Lembremo-nos do par de Fourier: $U(t) \Leftrightarrow \frac{1}{i\omega} + \pi\delta(\omega)$

Derivemos a expressão acima:

$$DU(t) \iff i\omega \left[\frac{1}{i\omega} + \pi \delta(\omega) \right] = 1 + \pi i\omega \delta(\omega)$$

Aplicando-se a propriedade de seleção da função $\delta(\omega)$, tem-se:

$$(\pi i\omega) \cdot \delta(\omega) = (\pi i \cdot 0) \cdot \delta(0) = 0$$

Assim, resulta o seguinte par de Fourier:

$$DU(t) \Leftrightarrow 1 \Leftrightarrow \delta(t)$$

Vê-se, novamente, que a derivada da função degrau unitário é a função impulso unitário, isto é: $DU(t) = \delta(t)$

Diferenciação de funções descontínuas (cont)

Examinemos agora a mesma função **degrau unitário**, porém sujeita a um **atraso** temporal, ou seja, $f(t) = \delta(t - \tau)$.

Mostraremos que $DU(t-\tau) = \delta(t-\tau)$

<u>Demonstração</u>:

Aplicando-se a propriedade de translação da transformada de Fourier, ou seja,

$$f(t-\tau) \Leftrightarrow e^{-i\omega\tau}F(\omega)$$

tem-se, para a função degrau:

$$U(t-\tau) \iff e^{-i\omega\tau} \left[\frac{1}{i\omega} + \pi\delta(\omega) \right] = \frac{e^{-i\omega\tau}}{i\omega} + \pi e^{-i\omega\tau}\delta(\omega)$$

Aplicando-se, em seguida, a propriedade de seleção da função $\delta(\omega)$, resulta:

$$U(t-\tau) \Leftrightarrow \frac{e^{-i\omega\tau}}{i\omega} + \pi e^{-i\cdot 0\cdot \tau} \delta(\omega) = \frac{e^{-i\omega}}{i\omega} + \pi \delta(\omega)$$

Diferenciação de funções descontínuas (cont)

Apliquemos à expressão anterior a propriedade da derivação da transformada de Fourier, ou seja:

$$Df(t) \Leftrightarrow i\omega F(\omega)$$

Com isso, resulta:

$$DU(t-\tau) \iff i\omega \left[\frac{e^{-i\omega\tau}}{i\omega} + \pi\delta(\omega) \right] = e^{-i\omega\tau} + \pi i\omega\delta(\omega)$$

Aplicando-se, em seguida, a propriedade de seleção da função $\delta(\omega)$, resulta:

$$DU(t-\tau) \iff e^{-i\omega\tau} + \pi i \cdot 0 \cdot \delta(\omega) = e^{-i\omega\tau} \iff \delta(t-\tau)$$

Conclui-se, portanto, que

$$DU(t-\tau) = \delta(t-\tau)$$

Exemplo de aplicação

Determine a derivada da função $f(t) = \cos t \cdot U(t)$

Aplicando-se o operador de Heavyside, tem-se:

$$D[\cos t \cdot U(t)] = -\sin t \cdot U(t) + \cos t \cdot DU(t) = -\sin t \cdot U(t) + \cos t \cdot \delta(t)$$

Aplicando-se a propriedade de seleção da função $\delta(t)$, resulta:

$$D[\cos t \cdot U(t)] = -\sin t \cdot U(t) + \cos 0 \cdot \delta(t) = -\sin t \cdot U(t) + \delta(t)$$

Explicaremos esse método a partir de um exemplo: o sinal x(t) ilustrado ao lado. Essa função pode ser expressa como:

$$x(t) = U(t) - U(t-1) + U(t) - U(t+1)$$

x(t)

Logo, a derivada desse sinal é:

$$Dx(t) = -\delta(t+1) + 2\delta(t) - \delta(t-1)$$

No domínio das freqüências, tem-se:

$$i\omega X(\omega) = -e^{i\omega} + 2 - e^{-i\omega}$$

ou seja:

$$X(\omega) = \frac{-e^{i\omega} + 2 - e^{-i}}{i\omega} \qquad (\tau = 1)$$

Podemos realizar sucessivas derivações, conforme o exemplo a seguir, referente ao sinal x(t) ilustrado na figura ao lado.

É fácil notar que Dx(t) é o sinal estudado no tópico anterior, ilustrado no gráfico ao lado. Portanto, diferenciando-se duas vezes x(t) obtém-se:

$$D^2x(t) = \delta(t+1) - 2\delta(t) + \delta(t-1)$$

Logo, no domínio das freqüências, tem-se:

$$(i\omega)^2 X(\omega) = e^{i\omega} - 2 + e^{-i\omega}$$

ou seja:

$$X(\omega) = \frac{e^{i\omega} - 2 + e^{-i\omega}}{(i\omega)^2}$$

Derivação da função delta de Dirac

Para derivar $f(t) = \delta(t)$, lembremos do par de Fourier:

$$\delta(t) \Leftrightarrow 1$$

Portanto, usando a propriedade da diferenciação da transformada de Fourier, escrevemos:

$$D\delta(t) \iff i\omega$$

A função $g(\omega)=i\omega$ é chamada de **dipolo**, e seu gráfico é apresentado a seguir, juntamente com o da função $\delta(t)$.

Exemplo de aplicação

Determine a transformada de Fourier do sinal ilustrado na figura ao lado. Para resolver esse problema, aplicaremos a propriedade da derivação da transformada de Fourier. Os gráficos da primeira e da segunda derivadas de x(t) são apresentados abaixo:

Portanto, no domínio do tempo, temos: $D^2x(t) = D\delta(t) - \delta(t) + \delta(t-1)$ E, no domínio das freqüências, resulta: $(i\omega)^2X(\omega) = i\omega - 1 + e^{-i\omega}$ ou seja:

$$X(\omega) = \frac{i\omega - 1 + e^{-i}}{(i\omega)^2}$$

Conforme já mencionado anteriormente, sistemas são processos que resultam na transformação de sinais, conforme esquema da figura abaixo, onde x(t) é a excitação, S representa o sistema e y(t) é a resposta.

A análise de Fourier é particularmente útil a todo sistema passível de ser descrito por equações diferenciais lineares de coeficientes constantes.

A seguir, examinaremos algumas importantes propriedades dos sistemas, a saber:

- Linearidade
- Invariância no tempo
- Causalidade

Linearidade

Sistemas lineares apresentam duas características marcantes, a saber:

- 1. A resposta de uma soma ponderada de excitações é a soma ponderada das respostas das excitações (princípio da superposição).
- 2. A resposta a uma excitação nula é nula.

Examinemos a primeira dessas características.

Sejam $x_1(t)$ e $x_2(t)$ duas excitações e sejam $y_1(t)$ e $y_2(t)$ as respectivas respostas do sistema S. Então, espera-se que a excitação $ax_1(t) + bx_2(t)$ produza como resposta $ay_1(t) + by_2(t)$.

O esquema abaixo ilustra essa característica fundamental dos sistemas lineares.

Linearidade (cont)

Examinemos agora a resposta à excitação nula.

$$x(t)$$
 $y(t)$

Para tanto consideraremos o sistema S, esquematizado ao lado, e duas equações relacionando a excitação x(t) com a resposta y(t):

- y(t) = x(t)
- y(t) = 2x(t) + 3

A primeira das equações representa um sistema linear, pois, se x(t) = 0, então y(0) = 0O mesmo não ocorre com a segunda, pois, se $x(t) = 0 \Rightarrow y(t) = 3 \neq 0$.

Embora y(t) = 2x(t) + 3 tenha a **forma linear**, essa equação **não** representa um sistema linear, mas sim um sistema da classe de sistemas ditos **incrementalmente lineares**.

Linearidade (cont)

Vejamos o que acontece quando S recebe as excitações

$$x_1(t) = 0 e x_2(t) = 1$$
,

produzindo, respectivamente, as respostas

$$y_1(t) = 3 e y_2(t) = 5$$

Se S fosse linear, satisfaria ao princípio da superposição, devendo existir coeficientes a, b independentes tais que $ax_1(t) + bx_2(t) = ay_1(t) + by_2(t)$, ou seja:

$$a \cdot 0 + b \cdot 1 = a \cdot 3 + b \cdot 5 \Longrightarrow b = -\frac{3}{5}a$$

Como a,b, **não** são independentes, S **não** satisfaz ao princípio de superposição; logo, S **não** é um sistema linear, mas apenas incrementalmente linear, pois

$$y_2(t) - y_1(t) = 2[x_2(t) - x_1(t)]$$

Produz resposta nula se a entrada $x_2(t) - x_1(t)$ for nula

Invariância no tempo

Um sistema S é **invariante no tempo** se a função que relaciona os sinais de entrada e de saída não é **explicitamente** dependente do tempo, apresentando, portanto, a forma

$$y(t) = f(x(t))$$
 ao invés da forma $y(t) = f(x(t), t)$

Quando o sistema é invariante no tempo, um atraso na excitação causa na resposta um atraso correspondente. Ilustremos esse fato com um exemplo:

Seja o sistema dado por $y(t) = \sin(x(t))$

Atrasando-se a entrada: $x_a(t) = x(t - \Delta t)$, gera-se a saída $y_1(t) = \sin(x_a(t)) = \sin(x(t - \Delta t))$ Atrasando-se agora a saída: $y_2(t) = y(t - \Delta t) = \sin(x(t - \Delta t))$ constatamos que $y_2(t) = y_1(t)$

Invariância no tempo (cont)

Consideremos agora o sinal $y(t) = t \cdot x(t)$

Atrasando-se a entrada, obtém-se: $x_a(t) = x(t - \Delta t)$, gerando-se a saída $y_1(t) = t \cdot x_a(t) = t \cdot x(t - \Delta t)$

Atrasando-se a saída, obtém-se:

$$y_2(t) = y(t - \Delta t) = (t - \Delta t) \cdot x(t - \Delta t)$$

Constatamos, então, que $y_1(t) \neq y_2(t)$

e concluímos que o sinal $y(t) = t \cdot x(t)$ foi gerado por um sistema variante no tempo.

Para uma relação entrada/saída mais geral, da forma y(t) = f(x(t),t), a variação no tempo é dada por $\frac{dy(t)}{dt} = \frac{\partial f(x(t),t)}{\partial t} + \frac{\partial f(x(t),t)}{\partial x} \cdot \frac{dx}{dt}$

Sistemas invariantes no tempo satisfazem à equação: $\frac{\partial f(x(t),t)}{\partial t}=0$

Causalidade

Um sistema S é chamado de **causal**, se a sua saída y(t) depende apenas dos valores **passados** e **presente** da entrada x(t).

Os sistemas a seguir são causais:

•
$$y(t) = x(t) \cdot \sin(\omega t)$$

•
$$y[n] = \frac{1}{2}x[n-2] + x[n-1] + 2x[n]$$

•
$$y(t) = \int_{-\infty}^{\infty} x(t-\tau)e^{-\omega} d\tau$$

E os que seguem abaixo são **não-causais**:

•
$$y(t) = \int_{-\infty}^{\infty} x(t+\tau)e^{-\omega\tau}d\tau$$

•
$$y[n] = x[n-1] + 2x[n] + x[n+1]$$

Sistemas LTI

Sistemas Lineares e invariantes no tempo

Conforme o próprio nome o indica, esses sistemas, designados como LTI, apresentam duas características essenciais: linearidade e invariância no tempo.

Sistemas LTI podem ser descritos por equações diferenciais lineares de coeficientes constantes, com resposta nula para entrada nula.

Mostraremos, então, que a transformada de Fourier pode ser utilizada para **resolver** essa categoria de equações diferenciais.

Utilizando o operador D de Heavyside, representamos tais equações diferenciais como:

$$P_1(D)y(t) = P_2(D)x(t)$$

onde $P_1(D)$ e $P_2(D)$ são polinômios em D.

O exemplo a seguir esclarecerá o método.

Sejam
$$P_1(D)$$
 e $P_2(D)$ dados por $P_1(D) = 5D^2 + 6D + 1$ $P_2(D) = 3D + 2$

Assim, a equação diferencial característica do sistema é:

$$(5D^2 + 6D + 1)y(t) = (3D + 2)x(t), \quad \forall t$$

Sabemos que, se $f(t) \Leftrightarrow F(\omega) \Rightarrow Df(t) \Leftrightarrow i\omega F(\omega)$

Apliquemos, então, a transformada de Fourier à equação diferencial dada:

$$\int_{t=-\infty}^{\infty} (5D^2 + 6D + 1)y(t)e^{-i\omega t}dt = \int_{t=-\infty}^{\infty} (3D + 2)x(t)e^{-i\omega t}dt$$
 ou seja:
$$[5(i\omega)^2 + 6i\omega + 1]Y(\omega) = (3i\omega + 2)X(\omega)$$

Assim, resulta que:

$$Y(\omega) = \frac{3i\omega + 2}{5(i\omega)^2 + 6i\omega + 1}X(\omega) = H(i\omega) \cdot X(\omega)$$

onde

$$H(i\omega) = \frac{P_2(i\omega)}{P_1(i\omega)}$$

$$X(\omega)$$
 $H(i\omega)$ $Y(\omega)$

é a função de transferência do sistema ou resposta em frequência do sistema.

Aplicando a transformada de Fourier inversa (equação de síntese), obtemos, finalmente:

$$y(t) = \frac{1}{2\pi} \int_{\omega = -\infty}^{\infty} H(i\omega)X(\omega)e^{i\omega}d\omega$$

que é a solução da equação diferencial original, ou seja, de

$$5\ddot{y} + 6\dot{y} + y = 3\dot{x} + 2x$$

Exemplo de aplicação

Consideremos um sistema LTI cuja resposta em freqüência é $\frac{e^{-i}U(t)}{1} = \frac{1}{2+i\omega}$

$$\frac{e^{-t}U(t)}{2+i\omega} \qquad y(t)$$

$$H(i\omega) = \frac{1}{2 + i\omega}$$

Determinar a resposta desse sistema no domínio das fregüências para a entrada $x(t) = e^{-t}U(t)$

A análise desse problema será mais simples utilizando-se a forma polar de

$$H(i\omega) = \frac{1}{2+i\omega} = \frac{2-i\omega}{4+\omega^2} = \frac{2}{4+\omega^2} - i\frac{\omega}{4+\omega^2}$$

Assim, tem-se:

$$|H(i\omega)| = \sqrt{H(i\omega) \cdot H^*(i\omega)} = \frac{1}{\sqrt{4 + \omega^2}}$$

$$\arg\left(\frac{2-i\omega}{4+\omega^2}\right) = \theta_H(\omega) = \tan^{-1}\left(-\frac{\omega}{2}\right)$$

Portanto, na forma polar, a resposta em frequência do sistema é:

$$H(i\omega) = \frac{1}{\sqrt{4+\omega^2}} e^{i t} e^{-1\left(-\frac{\omega}{2}\right)}$$

Consideremos agora a excitação $x(t) = e^{-t}U(t)$. Sabemos que sua transformada de Fourier é:

$$X(\omega) = \frac{1}{1 + i\omega}$$

(Lembremo-nos do par $e^{-\beta t} \cdot U(t) \Leftrightarrow \frac{1}{\beta+i}$)

Representemos $X(\omega)$ na forma polar:

$$|X(\omega)| = \frac{1}{\sqrt{1+\omega^2}}$$
; $\arg\left(\frac{1}{1+i\omega}\right) = \arg\left(\frac{1-i\omega}{1+\omega^2}\right) = \tan^{-1}(-\omega)$

Portanto, no domínio das freqüências a resposta do sistema à entrada x(t) é:

$$\begin{split} Y(\omega) &= H(i\omega) \cdot X(\omega) = |H(i\omega)| e^{i\theta_H(\omega)} \cdot |X(\omega)| e^{i\theta_X(\omega)} = |H(i\omega)| \cdot |X(\omega)| e^{i[\theta_H(\omega) + \theta_X(\omega)]} \\ &= \frac{1}{\sqrt{(4+\omega^2)(1+\omega^2)}} e^{i[\theta_H(\omega) + \theta_X(\omega)]} \end{split}$$

É importante destacar que :

- A magnitude da transformada de Fourier do sinal de saída é o produto das magnitudes da função de transferência e da transformada de Fourier do sinal de entrada;
- A fase da transformada de Fourier do sinal de saída é a soma das fases da função de transferência e da transformada de Fourier do sinal de entrada.

Exemplo de aplicação

Um sistema S é governado pela equação diferencial

$$12\ddot{y}(t) + 7\dot{y}(t) + y(t) = 2\dot{x}(t) + x(t), \quad \forall t$$

Pede-se: (a) a resposta em freqüência $H(i\omega)$; (b) os espectros de magnitude e de fase de y(t) para a entrada $x(t) = e^{-t}U(t)$; c) a expressão de y(t) no domínio do tempo.

A equação diferencial acima pode ser escrita como:

$$(12D^2 + 7D + 1)y(t) = (2D + 1)x(t)$$

Logo, tem-se:

$$H(i\omega) = \frac{2(i\omega) + 1}{12(i\omega)^2 + 7(i\omega) + 1} = \frac{1 + 2i\omega}{(1 - 12\omega^2) + 7i\omega}$$

Os espectros de magnitude e de fase de $H(i\omega)$ são dados, respectivamente, por:

$$|H(i\omega)| = \sqrt{\frac{1 + 4\omega^2}{(1 - 12\omega^2)^2 + 49\omega^2}}$$

$$\arg[H(i\omega)] = \tan^{-1} 2\omega - \tan^{-1} \left(\frac{7\omega}{1 - 12\omega^2}\right)$$

Exemplo de aplicação (cont)

Para o sinal de entrada $x(t)=e^{-t}\cdot U(t)$, a transformada de Fourier é $X(i\omega)=\frac{1}{1+i\omega}$ cujas magnitude e fase são, respectivamente $|X(i\omega)|=\frac{1}{\sqrt{1+\omega^2}}$ e $\theta(\omega)=\tan^{-1}(-\omega)$ Portanto, a magnitude e a fase da transformada de Fourier do sinal de saída serão, respectivamente:

$$|Y(i\omega)| = |H(i\omega)| \cdot |X(\omega)| = \sqrt{\frac{1 + 4\omega^2}{[(1 - 12\omega^2)^2 + 49\omega^2] \cdot (1 + \omega^2)}}$$

$$\theta_Y(\omega) = \theta_H(\omega) + \theta_X(\omega) = \tan^{-1} 2\omega - \tan^{-1} \left(\frac{7\omega}{1 - 12\omega^2}\right) + \tan^{-1}(-\omega)$$

e a transformada de Fourier da resposta y(t) é:

$$Y(\omega) = H(i\omega) \cdot X(\omega) = \frac{1 + 2i\omega}{12(i\omega)^2 + 7i\omega + 1} \cdot \frac{1}{1 + i\omega}$$

Exemplo de aplicação (cont)

A expressão anterior pode ser escrita como:

$$Y(\omega) = \frac{1 + 2i\omega}{(1 + 4i\omega) \cdot (1 + 3i\omega) \cdot (1 + i\omega)} = \frac{2/3}{1/4 + i\omega} - \frac{1/2}{1/3 + i\omega} - \frac{1/6}{1 + i\omega}$$

Aplicando-se a transformada de Fourier inversa a $Y(\omega)$ obtém-se, finalmente:

$$y(t) = \left[\frac{2}{3}e^{-\frac{1}{4}t} - \frac{1}{2}e^{-\frac{1}{3}t} - \frac{1}{6}e^{-t}\right] \cdot U(t)$$

Resposta de um sistema LTI a uma exponencial complexa

Teorema: exponenciais complexas são autofunções de sistemas LTI.

A figura ao lado ilustra esse teorema

Demonstração

$$\begin{array}{c|c} e^{i\omega_0 t} & H(i\omega_0) \cdot e^{i\omega_0 t} \\ \hline \end{array}$$

Para mostrar que a resposta a um fasor $x(t)=e^{i\omega_0t}$ é $y(t)=H(i\omega_0)e^{i\omega_0t}$ escrevemos a resposta em freqüência do sistema LTI na forma polar: $H(i\omega)=|H(i\omega)|\cdot e^{i\theta(\omega)}$

Sabemos que
$$X(\omega) = \mathcal{F}\{e^{i\omega_0 t}\} = 2\pi\delta(\omega - \omega_0)$$
 e que $Y(\omega) = H(i\omega) \cdot X(\omega) = H(i\omega) \cdot 2\pi\delta(\omega - \omega_0)$

Aplicando-se a equação de síntese, tem-se:

$$y(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} Y(\omega) e^{i\omega} \ d\omega = \frac{1}{2\pi} \int_{-\infty}^{\infty} H(i\omega) \cdot 2\pi \delta(\omega - \omega_0) e^{i\omega t} d\omega = \int_{-\infty}^{\infty} H(i\omega) \delta(\omega - \omega_0) e^{i\omega t} d\omega$$

Resposta de um sistema LTI a uma exponencial complexa (cont)

A partir da propriedade de seleção da função delta, chega-se a $y(t)=H(i\omega_0)e^{i\omega_0t}$, onde $H(i\omega_0)$ é um **autovalor** do sistema e $e^{i\omega_0t}$ é uma **autofunção**.

Escrevendo $H(i\omega_0)$ na forma polar, tem-se: $H(i\omega_0) = |H(i\omega_0)|e^{i\theta(\omega_0)}$ de modo que $y(t) = |H(i\omega_0)|e^{i\theta(\omega_0)} \cdot e^{i\omega_0 t} = |H(i\omega_0)|e^{i[\omega_0 t + \theta(\omega_0)]}$

Vê-se, assim que a resposta a uma exponencial complexa é uma exponencial complexa de **mesma freqüência** θ_0 , com amplitude multiplicada por uma constante complexa (o autovalor) e fase acrescida de um ângulo $\theta(\omega_0)$ em relação à entrada.

Por esse motivo, dizemos que:

- Exponenciais complexas são autofunções de sistemas LTI.
- A resposta em freqüência a uma exponencial complexa é um autovalor de um sistema LTI.

Resposta de um sistema LTI a uma excitação periódica

Sabemos que uma função periódica pode ser sintetizada por uma série de Fourier, ou seja:

$$x_p(t) = \sum_{n=-\infty}^{\infty} X(n)e^{in\omega_0 t}$$

Vê-se, assim, que $x_p(t)$ é uma **combinação linear das autofunções** de um certo sistema LTI Por outro lado, sabemos que a cada entrada $e^{in\omega_0t}$, a resposta no domínio das freqüências de um sistema LTI é dada por:

$$Y(n\omega_0) = H(in\omega_0)X(n\omega_0)$$

Consequentemente, a resposta do sistema LTI para a entrada periódica $x_p(t)$ será:

$$y_p(t) = \sum_{n=-\infty}^{\infty} H(in\omega_0)X(n)e^{in\omega_0 t}$$

ou seja, uma combinação linear das autofunções desse mesmo sistema LTI.

Exemplo de aplicação

A resposta em freqüência de um sistema LTI é:

$$H(i\omega) = \frac{2i\omega + 1}{12(i\omega)^2 + 7i\omega + 1}$$

Determine a saída do sistema para a entrada $x_p(t) = \begin{cases} 0 & \text{se } -1 < t < -1/2 \\ 1 & \text{se } -1/2 < t < 1/2 \\ 0 & \text{se } 1/2 < t < 1 \end{cases}$

Solução: Sabemos que a onda quadrada acima pode ser decomposta na série de Fourier

$$x_p(t) = \frac{1}{2} \sum_{n=-\infty}^{\infty} \operatorname{sc}\left(\frac{n\pi}{2}\right) e^{in\pi t}$$

Notemos, também, que $\omega_0 = \frac{2\pi}{T_0} = \frac{2\pi}{2} = \pi$. Assim, a resposta em freqüência do sistema é:

$$H(in\omega_0) = H(in\pi) = \frac{2in\pi + 1}{12(in\pi)^2 + 7in\pi + 1}$$

Logo, resposta do sistema será:

$$y_p(t) = \frac{1}{2} \sum_{n=-\infty}^{\infty} \frac{2in\pi + 1}{12(in\pi)^2 + 7in\pi + 1} \cdot \text{sc}\left(\frac{n\pi}{2}\right) e^{in\pi t}$$

Sistemas LTI – Análise no domínio do tempo

Resposta impulsiva

Sabemos que, no domínio das freqüências, um sistema LTI transforma um sinal x(t) em y(t) de acordo com a equação $Y(\omega) = H(i\omega) \cdot X(\omega)$, em que $H(i\omega)$ é a resposta em freqüência do sistema.

Examinemos, agora, a representação temporal de $H(i\omega)$ e chamemos a ela de h(t), ou seja, $H(i\omega) \Leftrightarrow h(t)$. Dessa forma, escrevemos:

$$h(t) = \frac{1}{2\pi} \int_{\omega = -\infty}^{\infty} H(i\omega)e^{i\omega} \ d\omega$$

Suponhamos, agora, que o sinal de entrada do sistema LTI seja $x(t) = \delta(t)$. Em tal caso, $X(\omega) = 1$, de modo que a expressão $Y(\omega) = H(i\omega) \cdot X(\omega)$ se transforma em

$$Y(\omega) = H(i\omega)$$
 $h(t)$

Aplicando-se a transformação de Fourier inversa à expressão acima, concluímos que y(t) = h(t) é a **resposta impulsiva** do sistema LTI.

Em outras palavras: a resposta em freqüência de um sistema LTI é a transformada de Fourier de sua resposta impulsiva.

Convolução

Produto de convolução

Consideremos um sistema LTI com resposta impulsiva h(t) sujeito a uma entrada x(t) e gerando uma saída y(t). Pretende-se determinar a expressão temporal de y(t) em função de x(t) e h(t).

Como $Y(\omega) = H(i\omega) \cdot X(\omega)$, resulta que

$$y(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} H(i\omega) \cdot X(\omega) e^{i\omega t} d\omega$$

expressão que não envolve nem h(t) nem x(t)

Para alcançar o objetivo proposto, utilizaremos o seguinte procedimento:

- a. Partiremos da expressão $x(\tau) \cdot h(t-\tau)$
- b. Construiremos a integral de convolução ou integral de Duhamel, abaixo descrita:

$$f(t) = \int_{\tau=-\infty}^{\infty} x(\tau) \cdot h(t-\tau) d\tau$$
 (Mostraremos que a **convolução** de dois sinais no domínio do tempo corresponde à **multiplicação** de suas transformadas de Fourier no domínio das freqüências)

c. Determinaremos a transformada de Fourier de f(t), ou seja:

$$\mathcal{F}\{f(t)\} = \int_{t=-\infty}^{\infty} \left[\int_{\tau=-\infty}^{\infty} x(\tau) \cdot h(t-\tau) \right] e^{-i\omega t} dt = \int_{\tau=-\infty}^{\infty} \left[\int_{t=-\infty}^{\infty} h(t-\tau) e^{-i\omega t} dt \right] x(\tau) d\tau$$

Convolução

Produto de convolução (cont)

d. Faremos a substituição de variáveis: $t=z+\tau \Longrightarrow dt=dz$

$$\mathcal{F}\{f(t)\} = \int_{\tau=-\infty}^{\infty} \left[\int_{t=-\infty}^{\infty} h(z)e^{-i\omega(z+\tau)}dz \right] x(\tau)d\tau = \int_{\tau=-\infty}^{\infty} \left[\int_{t=-\infty}^{\infty} h(z)e^{-i\omega z}dz \right] e^{-i\omega \tau}x(\tau)d\tau$$

$$\therefore \mathcal{F}\left\{ \int_{\tau=-\infty}^{\infty} x(\tau)h(t-\tau)d\tau \right\} = \int_{\tau=-\infty}^{\infty} H(i\omega)x(\tau)e^{-i\omega\tau}d\tau = H(i\omega) \int_{-\infty}^{\infty} x(\tau)e^{-i\omega\tau}d\tau = H(i\omega) \cdot X(\omega)$$

Chegamos, portanto, ao par de Fourier:

$$\int_{-\infty}^{\infty} x(\tau)h(t-\tau)d\tau \iff H(i\omega) \cdot X(\omega)$$

A integral de convolução entre duas funções no domínio do tempo corresponde ao produto das transformadas de Fourier dessas funções no domínio das freqüências. (IMPORTANTÍSSIMO)

Convolução

Produto de convolução (cont)

Lembrando que $Y(\omega) = H(i\omega) \cdot X(\omega)$, concluímos que

$$y(t) = \int_{\tau = -\infty}^{\infty} x(\tau)h(t - \tau)d\tau \stackrel{\triangle}{=} x(t) * h(t)$$

(ou seja, a resposta do sistema à excitação foi expressa em função de sua resposta impulsiva)

Portanto, um sistema LTI com resposta impulsiva h(t), ao ser estimulado por um sinal x(t), produz um sinal y(t) dado por

$$y(t) = h(t) * x(t) = \mathcal{F}^{-1} \{ H(i\omega) \} * \mathcal{F}^{-1} \{ X(\omega) \}$$

e sua transformada de Fourier é $Y(\omega) = H(i\omega) \cdot X(\omega)$

E assim, fica evidenciado que o produto de duas funções no domínio das freqüências corresponde à convolução de suas transformadas inversas de Fourier no domínio do tempo (Teorema de Convolução).

Propriedades algébricas da convolução

• Distributiva: a(t) * [b(t) + c(t)] = a(t) * b(t) + a(t) * c(t)

• Comutativa: $a(t) * b(t) * c(t) = a(t) * c(t) * b(t) = b(t) * c(t) * a(t) = \cdots$

• Associativa: [a(t) * b(t)] * c(t) = a(t) * [b(t) * c(t)] = a(t) * b(t) * c(t)

Existência da integral de convolução

A integral

$$y(t) = \int_{\tau=-\infty}^{\infty} f(\tau) g(t-\tau) d\tau$$

existe se

- $f \in g$ são funções contínuas e de suporte compacto (ou seja, nulas no exterior do domínio compacto)
- f é uma função contínua de suporte compacto e g é uma função localmente integrável (sua integral é finita em qualquer subconjunto de seu domínio compacto)

Sintetização de um sinal por um trem de impulsos

Teorema: Qualquer sinal x(t) pode ser representado como uma combinação linear de infinitos impulsos, o que é o mesmo que dizer que qualquer sinal x(t) pode ser expresso como:

$$x(t) = \int_{\tau = -\infty}^{\infty} x(\tau)\delta(t - \tau)d\tau$$

<u>Demonstração</u>:

Para demonstrar esse teorema, basta aplicar a propriedade seletiva da função $\delta(t)$, ou seja:

$$\int_{\tau=-\infty}^{\infty} x(\tau)\delta(t-\tau)d\tau = \int_{\tau=-\infty}^{\infty} x(t)\delta(t-\tau)d\tau = x(t)\int_{\tau=-\infty}^{\infty} \delta(t-\tau)d\tau = x(t)$$

Desse teorema decorre um **importantíssimo** resultado: se x(t) é a entrada de um sistema LTI com resposta impulsiva h(t), a saída y(t) será uma combinação linear da resposta impulsiva:

$$y(t) = \int_{\tau = -\infty}^{\infty} x(\tau) h(t - \tau) d\tau$$

O significado da expressão acima ficará ainda mais **claro** após a apresentação da interpretação geométrica do produto de convolução.

Propriedade de simetria da convolução

Mostraremos que

$$\int_{\tau=-\infty}^{\infty} x(\tau)h(t-\tau)d\tau = \int_{\tau=-\infty}^{\infty} x(t-\tau)h(\tau)d\tau$$

Para tanto, faremos a mudança de variáveis: $t - \tau = z$, da qual decorre que :

- $\tau = t z \Longrightarrow d\tau = -dz$
- $\tau \to -\infty \Longrightarrow z \to \infty$ $\tau \to \infty \Longrightarrow z \to -\infty$

Portanto, tem-se:

$$\int_{\tau=-\infty}^{\infty} x(\tau)h(t-\tau)d\tau = \int_{z=\infty}^{-\infty} x(t-z)h(z)(-dz) = \int_{z=-\infty}^{\infty} x(t-z)h(z)dz$$

Notando que a variável z que comparece na integral acima é uma variável qualitativa ou postiça, podemos substituí-la por uma letra qualquer, como, por exemplo, τ . Assim, fica demonstrada a propriedade de simetria da convolução:

$$x(t) * h(t) = \int_{\tau = -\infty}^{\infty} x(\tau)h(t - \tau)d\tau = \int_{\tau = -\infty}^{\infty} x(t - \tau)h(\tau)d\tau$$

Interpretação geométrica do produto de convolução

Para interpretarmos geometricamente a integral

$$\int_{\tau=-\infty}^{\infty} x(t-\tau)h(\tau)d\tau$$

consideraremos o sinal x(t) ilustrado na figura ao lado

Consideraremos também a imagem especular $x(-\tau)$, do sinal x(t), porém expresso em termos da variável τ (figura ao lado).

Finalmente, consideraremos a resposta impulsiva h(t) dada por:

$$h(t) = \begin{cases} 2 \text{ se } 0 < t < 1 \\ 0 \text{ se } t \notin (0,1) \end{cases}$$

Interpretação geométrica do produto de convolução (cont)

Agora localizaremos no mesmo gráfico os sinais $x(t - \tau)$ e $h(\tau)$.

Consideraremos os seguintes instantes:

a)
$$t < -1$$
; b) $t = 0$; c) $t = 0.5$; d) $t = 1$; e) $t = 1.5$; f) $t = 2$

Interpretação geométrica do produto de convolução (cont)

É importante observar que o valor da integral

$$f(t) = \int_{\tau = -\infty}^{\infty} x(t - \tau)h(\tau)d\tau$$

no instante t corresponde à área delimitada pela intersecção das regiões sob os gráficos de $x(t-\tau)$ e h(t) (zona hachurada nos gráficos (a) a (f) anteriores).

Dessa forma, os valores de f(t) para os instantes

são, respectivamente,

Convolução de um pulso com um pente de Dirac

Seja f(t) um pulso de extensão **limitada no tempo** e seja $\delta_{T_0}(t)$ um pente de Dirac de período T_0

A convolução $\mathbf{g}(t)=f(t)*\delta_{T_0}(t)$ gera um sinal periódico de período T_0 :

Convolução no domínio da frequência

Sabemos que $x(t) * h(t) \Leftrightarrow X(\omega) \cdot H(i\omega)$

Em outras palavras: multiplicação no domínio das freqüências corresponde a convolução no domínio do tempo.

Mostraremos agora a propriedade **dual** da anterior, isto é: multiplicação no domínio do tempo corresponde a convolução no domínio das freqüências, ou seja:

$$x(t) \cdot g(t) \Leftrightarrow \frac{1}{2\pi} \int_{\theta = -\infty}^{\infty} X(\theta) G(\omega - \theta) d\theta = \frac{1}{2\pi} \int_{\theta = -\infty}^{\infty} G(\theta) X(\omega - \theta) d\theta = \frac{1}{2\pi} X(\omega) * G(\omega)$$

<u>Demonstração</u>

Aplicando-se a transformada inversa de Fourier à função

$$\frac{1}{2\pi} \int_{\theta=-\infty}^{\infty} X(\theta) G(\omega - \theta) d\theta$$

tem-se:

$$\left[\frac{1}{2\pi}\int_{\omega=-\infty}^{\infty}\left[\frac{1}{2\pi}\int_{\theta=-\infty}^{\infty}X(\theta)G(\omega-\theta)d\theta\right]e^{i\omega}\ d\omega = \frac{1}{2\pi}\int_{\theta=-\infty}^{\infty}\left[\frac{1}{2\pi}\int_{\omega=-\infty}^{\infty}G(\omega-\theta)e^{i\omega}\ d\omega\right]X(\theta)d\theta$$

Convolução no domínio da fregüência (cont)

Fazendo-se a substituição de variáveis a seguir

$$\omega-\theta=\beta\Longrightarrow\omega=\theta+\beta\Longrightarrow d\omega=d\beta$$
, resulta

$$\frac{1}{2\pi} \int_{\theta=-\infty}^{\infty} \left[\frac{1}{2\pi} \int_{\omega=-\infty}^{\infty} G(\omega - \theta) e^{i\omega} d\omega \right] X(\theta) d\theta = \frac{1}{2\pi} \int_{\theta=-\infty}^{\infty} \left[\frac{1}{2\pi} \int_{\beta=-\infty}^{\infty} G(\beta) e^{i(\beta+\theta)} d\beta \right] X(\theta) d\theta = \frac{1}{2\pi} \int_{\theta=-\infty}^{\infty} \left[\frac{1}{2\pi} \int_{\beta=-\infty}^{\infty} G(\beta) e^{i\beta t} d\beta \right] X(\theta) e^{i\theta t} d\theta = \frac{1}{2\pi} \int_{\beta=-\infty}^{\infty} G(\beta) e^{i\beta t} d\beta \frac{1}{2\pi} \int_{\theta=-\infty}^{\infty} X(\theta) e^{i\theta t} = g(t) \cdot x(t)$$

$$\frac{1}{2\pi} \int_{\theta=-\infty}^{\infty} \left[\frac{1}{2\pi} \int_{\beta=-\infty}^{\infty} G(\beta) e^{i\beta t} d\beta \right] X(\theta) e^{i\theta t} d\theta = \frac{1}{2\pi} \int_{\beta=-\infty}^{\infty} G(\beta) e^{i\beta t} d\beta \frac{1}{2\pi} \int_{\theta=-\infty}^{\infty} X(\theta) e^{i\theta t} = g(t) \cdot x(t)$$

Dessa forma, fica evidenciado o par de Fourier

$$x(t) \cdot g(t) \Leftrightarrow \frac{1}{2\pi} X(\omega) * G(\omega)$$

ou seja, a multiplicação de dois sinais no domínio do tempo corresponde à convolução das transformadas de Fourier desses mesmos sinais no domínio das fregüências.

Exemplo de aplicação: modulação em freqüência

Determine a transformada de Fourier do sinal $y(t) = x(t) \cdot \cos(\omega_0 t)$, em que x(t) é o sinal de interesse e $\cos(\omega_0 t)$ desempenha o papel de **portadora do sinal** de interesse.

Resolução

A partir do par de Fourier $\cos(\omega_0 t) \Leftrightarrow \pi[\delta(\omega - \omega_0) + \delta(\omega + \omega_0)]$ e das considerações do tópico anterior, chegamos ao seguinte par de Fourier:

$$x(t) \cdot \cos(\omega_0 t) \Longleftrightarrow \frac{1}{2\pi} \int_{\theta = -\infty}^{\infty} X(\theta) \pi [\delta(\omega - \omega_0 - \theta) + \delta(\omega + \omega_0 - \theta)] d\theta =$$

$$=\frac{1}{2}\int_{\theta=-\infty}^{\infty}X(\theta)\cdot\delta(\omega-\omega_{0}-\theta)d\theta+\frac{1}{2}\int_{\theta=-\infty}^{\infty}X(\theta)\cdot\delta(\omega+\omega_{0}-\theta)d\theta$$

Da propriedade seletiva da função $\delta(t)$ concluímos que:

•
$$X(\theta) \cdot \delta(\omega - \omega_0 - \theta) = X(\omega - \omega_0) \cdot \delta(\omega - \omega_0 - \theta)$$

•
$$X(\theta) \cdot \delta(\omega + \omega_0 - \theta) = X(\omega + \omega_0) \cdot \delta(\omega + \omega_0 - \theta)$$

Exemplo de aplicação: modulação em frequência (cont)

Assim, resulta:

$$\frac{1}{2} \int_{\theta=-\infty}^{\infty} X(\omega - \omega_0) \delta(\omega - \omega_0 - \theta) d\theta + \frac{1}{2} \int_{\theta=-\infty}^{\infty} X(\omega + \omega_0) \delta(\omega + \omega_0 - \theta) d\theta =$$

$$= \frac{1}{2} X(\omega - \omega_0) \int_{\theta=-\infty}^{\infty} \delta(\omega - \omega_0 - \theta) d\theta + \frac{1}{2} X(\omega + \omega_0) \int_{\theta=-\infty}^{\infty} \delta(\omega + \omega_0 - \theta) d\theta =$$

$$= \frac{1}{2} X(\omega - \omega_0) + \frac{1}{2} X(\omega + \omega_0)$$

Chega-se, portanto, ao par de Fourier:

$$x(t) \cdot \cos(\omega_0 t) \Leftrightarrow \frac{1}{2}X(\omega - \omega_0) + \frac{1}{2}X(\omega + \omega_0)$$

Exemplo de aplicação: modulação em freqüência (cont)

Admitiremos, a título de ilustração, que o espectro de magnitude de x(t) tenha a forma indicada na figura ao lado:

Nas figuras (b) e (c) abaixo apresentam-se, respectivamente, os gráficos de

$$\pi[\delta(\omega-\omega_0)+\delta(\omega+\omega_0)] \in de^{\frac{1}{2}}X(\omega-\omega_0)+\frac{1}{2}X(\omega+\omega_0).$$

<u>Utilidade da modulação em freqüência</u>: Um sinal como o da figura (a) é difícil de irradiar, devido ao fato de sua banda de freqüências ser muito baixa. Já o mesmo não ocorre com o sinal da figura (c), desde que ω_0 seja suficientemente grande.

Leakage

É a modificação causada no espectro de freqüências de um sinal quando o mesmo é submetido a uma operação de 'janelamento' (windowing).

Para ilustrar esse efeito, consideremos o sinal periódico

$$x(t) = \cos \omega_0 t$$

o qual, como sabemos, tem por transformada de Fourier

$$\mathcal{F}\{x(t)\} = \pi[\delta(\omega - \omega_0) + \delta(\omega + \omega_0)]$$

Ao se multiplicar esse sinal por uma **janela** w(t), obtém-se

$$y(t) = w(t) \cdot x(t) = w(t) \cdot \cos \omega_0 t$$

cuja transformada de Fourier é

$$\mathcal{F}(w(t)\cdot\cos\omega_0 t) = \frac{1}{2}W(\omega - \omega_0) + \frac{1}{2}W(\omega + \omega_0)$$

Logicamente, a equação de síntese da transformada de Fourier produzirá um sinal distinto de $x(t)=\cos\omega_0 t$, ou seja,

$$\mathcal{F}^{-1}\{y(t)\} = \mathcal{F}^{-1}\left\{\frac{1}{2}W(\omega - \omega_0) + \frac{1}{2}W(\omega + \omega_0)\right\} \neq \cos\omega_0 t$$

Leakage

Na figura abaixo, extraída da Wikipedia, mostra-se, claramente, a diferença entre as transformadas de Fourier do sinal original e dos sinais janelados

Leakage

Janelas de ponderação

Uma forma de se diminuir o 'leakage' consiste em se utilizar uma janela de ponderação distinta da porta retangular, como, por exemplo, a janela de Hamming da figura a seguir:

Motivação

Muitas vezes é necessário modificar as amplitudes relativas das freqüências componentes de um sinal, ou, ainda, eliminar completamente faixas inteiras de freqüência.

A esse tipo de operação denomina-se filtragem.

O uso de filtros permite também a extração de informações de um sinal.

Classificações

Os filtros são classificados segundo diversos critérios.

a) Segundo o método de implementação

- Analógicos: se construídos a partir de componentes eletrônicos.
- <u>Digitais</u>: se implementados por meio de algoritmos computacionais.

b) Segundo a linearidade

- <u>Lineares</u>: comportam-se como sistemas lineares, e, em geral, invariantes no tempo.
- Não-lineares: geram um sinal de saída que não é uma função linear do sinal de entrada.

c) Segundo a causalidade

- <u>Causais</u>: se se comportam como sistemas causais; esses filtros são usados em processamento em tempo real.
- Não causais: em caso contrário.

d) Segundo a duração da resposta impulsiva

- <u>FIR</u>: se sua resposta impulsiva tem duração finita (filtros digitais sem feedback).
- <u>IIR</u>: se sua resposta impulsiva tem duração infinita (quase todos os filtros analógicos, alguns digitais).

e) Segundo a agudeza da zona de transição entre as freqüências de interesse

- <u>Ideais</u>: se a transição entre as faixas de freqüência passantes e não passantes é abrupta;
- <u>Não ideais</u>: se a transição entre as faixas de freqüência passantes e não passantes é suave.

Para os filtros analógicos cabe ainda uma classificação extra, podendo estes serem:

- <u>Passivos</u>: se <u>não</u> têm componentes que amplificam a potência do sinal, compondo-se de capacitores, indutores, resistores, diodos, transformadores, fontes de voltagem e de corrente.
- Ativos: se dispensam o uso de indutores e incluem <u>amplificadores</u> em sua composição.

Exemplos de filtros analógicos

Passa baixa

Passa banda

Exemplos de filtros analógicos

Passa alta

• Rejeita banda

Filtros ideais

Trata-se de modelos matemáticos que **não** podem ser implementados a partir de circuitos analógicos, dada a impossibilidade de se prever o passado e o futuro por um tempo infinito.

Esses filtros podem ser facilmente construídos utilizando-se algoritmos computacionais.

Filtro passa-baixa ideal

Esse filtro apresenta resposta em freqüência $H(i\omega)$ que admite exponenciais complexas tais que $\omega \in [-\omega_c, \omega_c]$, rejeitando as demais, ou seja:

$$H(i\omega) = \begin{cases} 1 \text{ se } |\omega| \le \omega_c \\ 0 \text{ se } |\omega| > \omega_c \end{cases}$$

 ω_c é chamada de freqüência de corte ("cutoff frequency").

Notemos que o filtro passa baixa ideal é real; logo, seu plano de fase é nulo.

Conforme já visto, a operação de filtragem consiste, simplesmente, na multiplicação da resposta em freqüência pela transformada de Fourier do sinal a ser filtrado, ou seja:

$$Y(\omega) = H(i\omega) \cdot X(\omega)$$

Assim, o sinal filtrado é dado por: $y'(t) = \mathcal{F}^{-1}\{H(i\omega) \cdot X(\omega)\}$

Lembremos que o par de Fourier do filtro passa-baixa ideal é: $\operatorname{Rect}\left(\frac{\omega}{2\omega_c}\right) \Longleftrightarrow \frac{1}{\pi}\operatorname{sc}(t)$

No domínio do tempo, h(t) é dada, portanto, por $h(t)=\frac{1}{\pi}sc(t)$, e a operação dual da multiplicação é a convolução.

Logo, ocorrerá convolução de h(t) com x(t) e será observado um efeito indesejado chamado 'ringing'.

Por se tratar de um filtro de fase zero, a multiplicação $H(i\omega) \cdot X(\omega)$ não afeta o plano de fase de $X(\omega)$

Filtro passa-alta ideal

A resposta em freqüência desse filtro é dada por

$$H(i\omega) = \begin{cases} 1 \text{ se } \omega \le -\omega_c \text{ ou } \omega \ge \omega_c \\ 0 & \text{se } \omega < |\omega_c| \end{cases}$$
$$H(i\omega) \in \mathbb{R} \Longrightarrow \theta(i\omega) = 0$$

Filtro passa-banda ideal

A resposta em freqüência desse filtro é dada por:

$$H(i\omega) = \begin{cases} 1 \text{ se } \omega \in [\omega_{c_1}, \omega_{c_2}] \text{ ou } \omega \in [-\omega_{c_1}, -\omega_{c_2}] \\ 0 \text{ se } \omega \notin [\omega_{c_1}, \omega_{c_2}] \text{ e } \omega \notin [-\omega_{c_2}, -\omega_{c_1}] \end{cases}$$

$$H(i\omega)$$
 $-\omega_{c_2}$ $-\omega_{c_1}$ ω_{c_1} ω_{c_2} ω

$$H(i\omega) \in \mathbb{R} \Longrightarrow \theta(i\omega) = 0$$

Principais parâmetros de um filtro

Tomando-se como referência um filtro passa-banda real, analógico ou digital, os principais parâmetros

que o caracterizam, são:

Faixa de passagem (Pass band)

- Faixas de rejeição (Stop bands)
- Faixas de transição (Transition bands)
- Atenuação das faixas de rejeição (Stop band attenuation)
- Ondulação da faixa de passagem (Pass band ripple)
- Ondulação das faixas de rejeição (Stop band ripple)

Ordem de um filtro

É determinada pela forma da equação diferencial que governa o comportamento do filtro. Examinaremos melhor esse conceito por meio de dois exemplos: um circuito RC e um sistema de suspensão automotiva.

Circuito RC: filtro de primeira ordem

A equação diferencial que governa esse circuito é:

$$RC\frac{dV_c(t)}{dt} + V_c(t) = V_s(t)$$

Portanto, sua resposta em freqüência é o filtro passa-baixa de **primeira ordem**

$$H(i\omega) = \frac{V_c(\omega)}{V_s(\omega)} = \frac{1}{1 + i\omega RC}$$

Representaremos a resposta em freqüência desse filtro em um **diagrama de Bode**, onde as freqüências ω são representadas em uma escala <u>logarítmica</u>, a magnitude $|H(i\omega)|$ é medida em <u>decibéis</u>, na forma $20 \log_{10} |H(i\omega)|$ e a fase $\theta(\omega)$ é medida em uma escala linear.

Circuito RC: filtro de primeira ordem (cont)

É importante destacar que esses filtros de primeira ordem não apresentam uma rápida transição entre a faixa de passagem e a faixa de rejeição.

Se $\omega_1 = 2\omega_2$

diz-se que $\,\omega_1$ está a uma **oitava** acima de $\,\omega_2$

Se $\omega_1 = 10\omega_2$

diz-se que ω_1 está uma **década** acima de ω_2

A atenuação é medida, em geral, em dB/década (Na figura:20dB/década)

Freqüência de corte: -3dB de ganho

Suspensão automotiva: filtro de segunda ordem ordem

A equação diferencial que governa o movimento do chassis é:

$$M\frac{d^2y(t)}{dt^2} + b\frac{dy(t)}{dt} + ky(t) = kx(t) + b\frac{dx(t)}{dt}$$

A resposta em freqüência desse sistema é o filtro de **segunda ordem**

$$H(i\omega) = \frac{k + ib\omega}{(i\omega)^2 M + b(i\omega) + k}$$

ou

$$H(i\omega) = \frac{\omega_n^2 + 2\zeta\omega_n(i\omega)}{(i\omega)^2 M + 2\zeta\omega_n(i\omega) + \omega_n^2}$$

onde
$$\omega_n=\sqrt{\frac{k}{M}}$$
 e $\zeta=\frac{b}{2\omega_n M}$ são, respectivamente, a freqüência natural e o fator de amortecimento

Suspensão automotiva: filtro de segunda ordem (cont)

A resposta em freqüência de um sistema massa mola amortecedor é apresentada na figura abaixo.

Ordem do filtro versus zona de transição

O gráfico ao lado ilustra esse efeito.

Quanto maior a ordem do filtro, maior é atenuação e mais estreita é a zona de transição.

Resposta de fase

Consideremos o sistema LTI descrito pela equação $y(t) = x(t - \tau)$

Esse sistema produz um sinal de saída que é igual ao sinal de entrada, mas atrasado de τ segundos.

A resposta em freqüência (desse sistema) é:

$$H(i\omega) = \frac{Y(\omega)}{X(\omega)} = \frac{\mathcal{F}\{x(t-\tau)\}}{\mathcal{F}\{x(t)\}} = \frac{\mathcal{F}\{x(t)\}e^{-i\omega}}{\mathcal{F}\{x(t)\}} = e^{-i\omega\tau}$$

$$\frac{X(\omega)}{H(i\omega)} = \frac{Y(\omega)}{H(i\omega)}$$

A magnitude e a fase de $H(i\omega)$ são, respectivamente:

$$|H(i\omega)| = 1$$
 $\theta(i\omega) = -\omega \tau$

Podemos considerar esse sistema LTI como um filtro **passa-tudo** (all band filter) com **resposta de fase linear**, dado que $\theta(i\omega) = -\omega\tau$, ou seja,

Esse filtro não atenua nenhum dos componentes do sinal de entrada; apenas desloca-os no tempo de um **mesmo** atraso

$$\Delta t = -\frac{d}{d\omega}(-\omega\tau) = \tau$$

Como todos esses componentes são igualmente atrasados, o sinal de saída **não sofre qualquer alteração na sua forma**.

Resposta de fase (cont)

Consideremos o filtro $H(i\omega) = e^{-i\omega^2\tau}$

Trata-se de um filtro **passa-tudo**, com resposta de fase **não linear**, pois $\theta(i\omega)=-\tau\omega^2$, de modo que o atraso imposto aos componentes do sinal de entrada é

$$\Delta t = -\frac{d}{d\omega}(-\tau\omega^2) = 2\omega\tau$$

Logo, as componentes do sinal de entrada sofrerão distintos atrasos e a forma do sinal de saída será alterada.

Filtro Butterworth

A magnitude de sua resposta em freqüência (ganho do filtro) é dada por:

$$|H(i\omega)| = \frac{1}{\sqrt{1 + \left(\frac{\omega}{\omega_c}\right)^{2n}}}$$

onde n é a ordem do filtro e ω_c a freqüência de corte.

As principais características desse filtro, são:

- Zona de transição relativamente longa
- Não apresenta ondulações na banda passante
- Distorção de fase moderada
- Quando $n \to \infty$, $|H(i\omega)| \to \text{Rect}\left(\frac{\omega_c}{2}\right)$
- Atenuação: 20dB/Década
- Pode ser implementado analógica ou digitalmente

Filtro Chebyshev Tipo 1

O ganho desse filtro é dado por

$$|H(i\omega)| = \frac{1}{\sqrt{1 + \varepsilon^2 \left\{ T_n \left(\frac{\omega}{\omega_c} \right) \right\}^2}}$$

onde $|\varepsilon|<1$ e $T_n(x)$ é um polinômio de Chebyshev de n-ésima ordem Para $0\leq\omega\leq\omega_c$ tem-se:

$$T_n\left(\frac{\omega}{\omega_c}\right) = \cos\left[n \cdot \cos^{-1}\left(\frac{\omega}{\omega_c}\right)\right]$$

Para $\omega > \omega_c$ tem-se:

$$T_n\left(\frac{\omega}{\omega_c}\right) = \frac{\left\{\frac{\omega}{\omega_c}\sqrt{\left(\frac{\omega}{\omega_c}\right)^2 - 1}\right\}^n + \left\{\frac{\omega}{\omega_c}\sqrt{\left(\frac{\omega}{\omega_c}\right)^2 - 1}\right\}^{-n}}{2}$$

Type1 Chebyshev Filter

Características:

- Ondulação na banda de passagem
- Zona de transição mais estreita se comparado com o filtro Butterworth

Filtro Chebyshev tipo 2

O ganho desse filtro é dado por:

$$|H(i\omega)|^2 = \frac{1}{\sqrt{1 + \frac{1}{\varepsilon^2 \left\{ T_n \left(\frac{\omega_c}{\omega} \right) \right\}^2}}}$$

Características

- Ondulação na banda de rejeição
- Distorção de fase mais acentuada que o tipo 1

EXERCÍCIO 3

Considere os sinais f(t) e h(t) dados por:

$$f(t) = \begin{cases} e^{-\lambda t} & \text{se } t > 0\\ 0 & \text{se } t \le 0 \end{cases}$$

$$f(t) = \begin{cases} e^{-\lambda t} & \text{se } t > 0 \\ 0 & \text{se } t \le 0 \end{cases}$$
$$h(t) = \begin{cases} 1 & \text{se} & |t| \le 1 \\ 0 & \text{se} & |t| > 1 \end{cases}$$

(a) Calcule a integral de convolução

$$g(t) = \int_{\tau = -\infty}^{\infty} f(\tau) \cdot h(t - \tau) d\tau$$

(b) Aplique o Teorema da Convolução para determinar g(t).