1. The purpose of this experiment is to illustrate that QR factorization by Householder reflector (MATLAB command [Q, R] = qr(A)) is better than modified Gram-Schmidt scheme (MGS) and classical Gram-Schmidt scheme (CGS).

Consider the *n*-by-*n* Hilbert matrix H (use MATLAB command H = hilb(n) to generate H). Your task is to use different methods listed below to orthonormalize the columns of H for n = 7 and n = 12.

(a) Write a MATLAB function implementing classical Gram-Schmidt method (CGS).

```
function [Q, R] = cgsqr(A) % [Q, R] = cgsqr(A) employs classical Gram-Schmidt scheme to compute % an isometry Q, an upper triangular matrix R such that A=QR.
```

```
[m, n] = size(A); % Assume that m >= n 

Q = A; R = zeros(n); 

for k = 1:n 

R(1:k-1,k) = Q(:,1:k-1), * A(:,k); 

Q(:,k) = A(:,k) - Q(:,1:k-1), * R(1:k-1,k); 

R(k,k) = norm(Q(:,k)); 

Q(:,k) = Q(:,k)/R(k,k); end
```

(b) Write a MATLAB function implementing modified Gram-Schmidt method (MGS).

```
function [Q, R] = mgsqr(A)
% [Q, R] = mgsqr(A) employs modified Gram-Schmidt scheme to compute
% an isometry Q, an upper triangular matrix R such that A=QR.
```

(c) QR decomposition with reflectors. Use MATLAB command [Q,R] = qr(H, 0), which produces an 'economy size' QR decomposition of H with Q being an isometry.

Examine the deviation from orthonormality by computing $\|Q'*Q-\operatorname{eye}(\mathbf{n})\|_2$ in each case (MATLAB command $\operatorname{norm}(\operatorname{eye}(\mathbf{n})-\mathsf{Q'*Q})$). Setting E:=QR-H, we have H+E=QR. Check the residual norm $\|E\|_2=\operatorname{norm}(\mathbf{H}-\mathsf{Q*R})$. The small residual error of order $\mathcal{O}(\mathbf{u})$ as well as small deviation from orthonormality of order $\mathcal{O}(\mathbf{u})$ imply that the algorithm is backward stable. In other words, the algorithm computes QR factroization of a slightly perturbed matrix which is indistinguishable from A. Test the backward stability of CGS, MGS and Householder QR factorization.

Find the condition number of H and check whether or not the matrix Q obtained from the MGS program satisfies $\|Q' * Q - \operatorname{eye}(\mathbf{n})\|_2 \approx u * \operatorname{cond}(\mathbf{H})$.

Did you get what you would expect in light of the values of unit roundoff \mathbf{u} and $\operatorname{cond}(H)$? Which among all the above methods produces the smallest deviation from orthonormality?

This experiment is about detecting nearly rank deficiency of a matrix A via QR factorization A = QR by monitoring the size of diagonal entries of R. Generate the test matrix A as follows.
 [U, X] = qr(randn(80));

```
[V, X] = qr(randn(80));
S = diag( 2 .^ (-1:-1:-80));
```

A = U*S*V; % Note A has small singular values and is nearly rank deficient.

Now compute QR factorization of A using cgsqr, mgsqr and the matlab function qr:

```
[QC, RC] = cgsqr(A);
[QM, RM] = mgsqr(A);
[Q, R] = qr(A);
```

To test how close these matrices are to being unitary, compute norm(QC*QC-eye(80)), norm(QM*QM-eye(80)), norm(Q`*Q-eye(80)).

Which method is worse? Which method gives better result?

To explain your results, plot the absolute values of the diagonal entries of RC, RM, R. Use commands

```
x= (1:80)';
hold off
semilogy(x, abs(diag( RC ) ), 'bo')
hold on
semilogy(x, abs(diag( RM ) ), 'rx')
semilogy(x, abs(diag( R ) ), 'k+')
title('abs(diag(R)) for cgs, mgs and qr')
gtext('cgs=o, mgs = x, qr=+')
```

Do the diagonal entries of R show near rank deficiency of A. Which method is better?

- 3. Assignment. Your task is to find polynomials $p_5(t)$ and $p_{18}(t)$ of degree 5 and 18, respectively, that best fit the function $f(t) = \sin(\pi t/5) + \frac{t}{5}$ for $t_1 = -5, t_2 = -4.5, \dots, t_{23} = 6$, that is, t = (-5:.5:6)'. For k = 5, 18, determine the polynomial p_k whose coefficients are given by x (that is, $p_k(t) := \sum_{j=1}^{k+1} x_j t^{j-1}$) by solving LSP Ax = b in two different ways: solve LSP Ax = b using QR factorization of A and QR factorization of the augmented matrix $\begin{bmatrix} A & b \end{bmatrix}$. Here are the details. Let $[Q, R] = \operatorname{cgsqr}(A)$ and $[Q, R] = \operatorname{mgsqr}(A)$ be MATLAB functions implementing classical Gram-Schmidt and modified Gram-Schmidt methods. For k = 5 and k = 18, perform the following computations.
 - (a) Compute [Q, R] = cgsqr([A b]) and use R to solve the LSP Ax = b. Compute the residual res1 := $||Ax b||_2$ from the matrix R. Call the polynomial $p_1(t)$.

 Next compute [QC, RC] = cgsqr(A) and use QC and RC to solve the LSP Ax = b. Compute the residual res2 := $||Ax b||_2$. Call the polynomial $p_2(t)$. Which method gives a better fit (small residual error)? Plot $p_1(t), p_2(t)$ and f(t) in a single plot and comment on the result.
 - (b) Compute [Q, R] = mgsqr([A b]) and use R to solve the LSP Ax = b. Compute the residual res3 := $||Ax b||_2$ from the matrix R. Call the polynomial $p_3(t)$. Next compute [QM, RM] = mgsqr(A) and use QM and RM to solve the LSP Ax = b. Compute the residual res4 := $||Ax - b||_2$. Call the polynomial $p_4(t)$. Which method gives a better fit (small residual error)? Plot $p_3(t)$, $p_4(t)$ and f(t) in a single plot and comment on the result.
 - (c) Compute [Q, R] = qr([A b]) and use R to solve the LSP Ax = b. Compute the residual res5 := $||Ax b||_2$ from the matrix R. Call the polynomial $p_5(t)$. Next solve the LSP Ax = b using MATLAB command $x = A \setminus b$ and compute the residual res6 := $||Ax - b||_2$. Call the polynomial $p_6(t)$. Which method gives a better fit (small residual error)? Plot $p_5(t)$, $p_6(t)$ and f(t) in a single plot and comment on the result.

(d) Plot the data points (t_i, f_i) , f(t), and the best fit polynomials of degree 5 and 18 obtained from (c) in a single plot. Use the command axis([-10 10 -3 3]) to set the axes. Which polynomial gives a better fit?

Among the six methods, which method provides the best fit? What is the impact of the condition number of A on these methods?

12 marks

*** End ***