ПО МАТЕРИАЛАМ V РОССИЙСКОЙ КОНФЕРЕНЦИИ ПО МОЛНИЕЗАЩИТЕ

Предложения по совершенствованию стандартов молниезащиты, заземления, электромагнитной совместимости

ШИШИГИН С. Л., Вологодский государственный университет 160000, г. Вологда, ул. Ленина, д. 15 ctod28@yandex.ru

Российские стандарты молниезащиты, заземления, электромагнитной совместимости (ЭМС) далеко несовершенны. Указаны некоторые проблемы, которые связаны с зонами защиты молниеотводов, значениями тока молнии в задачах ЭМС, выбором модели земли при расчёте заземлителей, определением кондуктивных помех, а также с требованиями к компьютерным программам расчёта заземления и ЭМС.

Ключевые слова: молниезащита, заземление, ЭМС, стандарты проектирования, совершенствование стандартов.

оссийские стандарты молниезащиты РД 34.21.122-87 [1] (далее РД) и СО 153-34.21.122-2003 [2] (далее СО) устанавливают зоны защиты типовых молниеотводов, базируясь на экспериментальных данных канд. техн. наук А. А. Акопяна и расчётах статистическим методом, разработанным доктором техн. наук Э. М. Базеляном. Результаты современных крупномасштабных экспериментов по исследованию молниезащиты под руководством доктора техн. наук В. М. Куприенко повысили адекватность выбора молниеотводов и стали основой при разработке норм ВСП 22-02-07/МО РФ [3] (далее ВСП). Впервые в нормативах закреплён факт зависимости зон защиты молниеотводов от размеров и формы защищаемого объекта.

К сожалению, все российские стандарты содержат частные решения для отдельных молниеотводов (одиночных, двойных). Их нельзя применить для нестандартных объектов, например, наклонного грозозащитного троса, крыши здания сложной формы и даже разновысоких молниеотводов. При проектировании электрических подстанций таких задач множество, они скорее типовые, чем нестандартные. Для их решения в СО предполагалось создать программное обеспечение (ПО), которое так и не было разработано.

При расчётах зон защиты молниеотводов на крышах зданий использование РД и СО может привести к неадекватному результату. Пусть на крыше высотой H=8,5 м расположен молниеотвод высотой h=1,5 м. Поскольку отсчёт высоты в РД и СО ведётся от поверхности земли, расчётная высота молниеотвода следующая: H+h=10 м. Зона защиты начинается с высоты 0,85(h+H), поэтому на уровне крыши её нет. Получается, что молниеотвод по условиям РД и СО ничего не защищает, что противоречит экспериментальным данным ВСП (и здравому смыслу).

Проектировщику придётся существенно увеличить высоту молниеотводов для защиты крыши, что (помимо дополнительных затрат) ведёт к увеличению площади стягивания молнии. Стандарты СО и РД не пригодны для работы с многократными молниеотводами малой высоты на крышах зданий, а именно подобные конструкции хорошо зарекомендовали себя в европейских странах [4].

В большинстве промышленно развитых стран мира расчёт внешней молниезащиты производится методом катящейся сферы (МКС), что предусмотрено стандартом МЭК 62305 (далее МЭК). Применение МКС допускается и СО, однако в электроэнергетике этот метод используется редко. Основные недостатки (ограничения) МКС: 1. Не учитывается взаимное влияние молниеотводов, т. е. внутренний защитный угол равен внешнему углу, сужая зоны защиты; 2. Зона защиты молниеотвода малой высоты неправдоподобно велика; 3. Зона защиты высокого молниеотвода не превышает радиуса катящейся сферы R, поэтому увеличение высоты молниеотвода более R не приводит к расширению зоны защиты.

Таким образом, российские и международные нормы имеют разные ограничения, поэтому их следует применять совместно. Одновременное выполнение разных норм — дополнительная гарантия обоснованности выбора молниезащиты.

Предложение. Рассматривать МКС как ПО, которое предполагалось создать в СО для решения нестандартных задач. Для российских стандартов рекомендовать ввести положение об использовании МКС (с учётом указанных ограничений).

О зоне защиты тройного и многократного молниеотвода. При построении зоны защиты указанного молниеотвода вероятна ситуация, когда при внешнем замкнутом контуре защиты, внутри зоны защиты, образуется множество незащищённых «дыр» разной площади. Стандарт РД относит «дыры» к погрешностям построений — вся внутренняя область для каждого тройного молниеотвода считается защищённой, если каждая пара молниеотводов имеет общую зону защиты на данном уровне. В стандарте СО подобных указаний нет, поэтому в примере, представленном на рисунке, к зоне защиты относится только выделенная (значительно меньшая) область. Конфликт между РД и СО в этом вопросе очевиден. Применение МКС, где нет различия между внутренними и внешними защитными углами, ясности не внесёт.

По методике [5] внутренняя зона защищена при условии $D \le 8p$ ($h-h_x$), где D — диаметр окружности, проходящей через вершины треугольника; h — высота молниеотвода; h_x — высота объекта; коэффициент p=1 (при h<<30 м). Для варианта D=69<84 (см. рисунок), т. е. внутренняя зона защищена, как и предусмотрено в РД.

Согласно ВСП, где защитные углы одиночных, двойных и четырёхкратных молниеотводов определены экспериментально, с увеличением числа молниеотводов внутренний защитный угол заметно возрастает, т. е. незащищённая

Зоны защиты тройного молниеотвода высотой 20 м расстоянием 60 м между молниеотводами по РД (зона A) на уровне 9,5 м

(по CO) внутренняя зона сужается, но для задачи, представленной на рисунке, не исчезает как в РД. Однако при меньшей площади «дыр» возможен и обратный вариант.

Предложение. В новой редакции норм молниезащиты ввести тройной молниеотвод. Экспериментально определить внутренние углы защиты произвольных тройных молниеотводов (в значительной мере эта задача решена в [6]). Рассматривать многократный молниеотвод как совокупность тройных молниеотводов.

О значении тока молнии в задачах ЭМС. По российским нормативам и стандарту МЭК амплитуда первого импульса тока молнии в задачах ЭМС принимается равной 100 кА (для третьего и четвёртого уровня молниезащиты). На подстанции значительная часть молниеотводов располагается на её территории (порталах, зданиях). Они экранируются от сильных молний более высокими молниеотводами, расположенными по периметру объекта [7], поэтому в них может ударить молния только с меньшим током.

К такому выводу приходим и расчётным путём с использованием МКС. При «обкатке» подстанции сферой радиусом 200 м (для тока 100 кА) внутренние молниеотводы защищены от прямого удара молнии. Уменьшая радиус сферы, находим максимальный ток молнии, который может поразить данный молниеотвод. При расчёте по МКС токи молнии получаем с запасом, поскольку внутренние защитные углы в МКС, как уже отмечалось, занижены.

Проблема в том, что моделирование удара молнии с завышенным током во внутренние молниеотводы, приводит к избыточным и затратным техническим решениям задач ЭМС, связанным с ограничением кондуктивных и электромагнитных помех.

Предложение. Амплитуда тока молнии каждого молниеотвода в задачах ЭМС должна рассчитываться с учётом экранирующего действия других молниеотводов. Для этого применяется МКС, где установлена связь между током молнии и радиусом катящейся сферы, или методы имитационного моделирования.

О модели земли при расчёте заземлителей. Согласно [8] для расчёта заземлителей «рекомендуется использовать двухслойную модель грунта с учётом сезонных изменений верхнего слоя». В действительности число слоёв, получаемых в результате вертикального электрического зондирования, обычно не менее трёх [9] плюс слой сезонных изменений. Выполняемая в настоящее время замена многоспойной модели двухслойной проводится по условию неизменности сопротивления точечного заземлителя, который не является адекватной моделью сеточного заземлителя подстанции.

Существует проблема с потерей точности расчётов заземлителей при переходе к двухслойной модели земли (без слоя сезонных изменений — однослойной). Однако она легко устранима, поскольку ещё в 80-х годах прошлого века на основе теории электроразведки решены все вопросы по использованию многослойной горизонтально слоистой модели земли для расчёта заземлителей [10].

Ресурсы вычислительной техники не позволили тогда внедрить многослойные модели в практику проектирования заземлителей, но сейчас этих сложностей нет. Для сравнения: фирма SES (sestech.com) — мировой лидер в области заземления и молниезащиты — использует многослойные модели (с вертикальными и горизонтальными границами) с 3D неоднородностями.

Предложение. При расчёте заземлителей следует использовать модель земли, полученную в результате вертикального электрического зондирования, без упрощения. Многослойная горизонтально-слоистая модель земли должна стать основной.

О расчёте кондуктивных помех контрольного кабеля. Двустороннее заземление экрана контрольного кабеля снижает уровень импульсных и высокочастотных кондуктивных помех $U_{\rm k} = U/k$, где U — напряжение между точками заземления экрана; k — коэффициент экранирования (ослабления) [8].

Проблема в том, что коэффициент k зависит не только от параметров самого экрана, но и места ввода тока, точек заземления экрана, характеристик заземляющего устройства, трассы прокладки кабеля, наличия параллельных проводников [11], длины кабеля [12]. Этот коэффициент — функция частоты или времени при импульсных процессах. По этой причине расчёт кондуктивной помехи при нормативных значениях $k = 6 \div 10$ сопряжён с погрешностью, а проектные решения по её снижению могут быть не достаточно обоснованы.

Предложение. Использовать классическую формулу определения кондуктивных помех «жила — экран» $U_{\rm k}=Z_{\rm f}ll$, где $Z_{\rm f}$ — известное передаточное сопротивление «экран — жила»; l — длина кабеля; l — ток экрана. При первом импульсе тока молнии можно принять $Z_{\rm f}=R_0$, где R_0 — погонное сопротивление экрана, которое легко измерить или вычислить, имея заданное сечение. При установленном в [8] эквивалентном сечении экрана S=1 мм² (материал — медь) типового кабеля КВВГэ сопротивление составит $R_0=0,0178$ Ом/м.

О компьютерных программах расчёта ЗУ. Согласно [8] для расчёта ЗУ при проектировании и реконструкции подстанций допускается использование любого ПО, которое (помимо прочих требований) обеспечивает «решение тестовых задач с погрешностью не более 5 %». Проблема в том, что тесто-

вых задач не предложено, а расчёты по разным компьютерным программам зачастую приводят к различным результатам.

<u>Предложение.</u> Разработать и принять набор тестовых задач, решение которых подтверждает достоверность компьютерных программ и демонстрирует их функциональные возможности.

Вывод

Выдвинутые предложения по совершенствованию российских стандартов молниезащиты, заземления, ЭМС легко реализуемы и могут быть учтены при переработке стандартов.

СПИСОК ЛИТЕРАТУРЫ

- 1. РД 34.21.122—87. Инструкция по устройству молниезащиты зданий и сооружений. Минэнерго СССР. М.: Энергоатомиздат, 1989.
- 2. СО 153-343.21.122—2003. Инструкция по устройству молниезащиты зданий, сооружений и промышленных коммуникаций. М.: Изд-во МЭИ, 2004. 57 с.
- 3. ВСП 22-02-07/МО РФ. Нормы по проектированию, устройству и эксплуатации молниезащиты объектов военной инфраструктуры, 2007.
- 4. Базелян Э. М. Опыт Германии по практическому применению молние-отводов малого превышения для внешней молниезащиты оборудования, установленного на крыше // IV Междунар. конф. по молниезащите. Санкт-Петербург, 2014.
- 5. Кужекин И. П., Ларионов Е. Н., Прохоров В. П. Молния и молниезащита. М.: Знак, 2003. 330 с.
- 6. Куприенко В. М. Особенности защиты зданий и сооружений тремя стержневыми молниеотводами // Электричество. 2016. № 6. С. 4 9.
- 7. *Акопян А. А.* Защитное действие двойного и многократного молниеотвода // Электричество. 1938. № 1. С. 22 29
- 8. СТО 56947007-29.130.15.114—2012. Руководящие указания по проектированию заземляющих устройств подстанций напряжением 6 750 кВ. М.: ОАО «ФСК ЕЭС», 2012.
- 9. Коструба С. И. Измерение электрических параметров земли и заземляющих устройств. М.: Энергоатомиздат, 1983.
- 10. Делянов А. Г., Ослон А. Б. Расчёт поля в многослойной земле методом оптической аналогии // Известия академии наук СССР. Энергетика и транспорт. 1984. № 2. С. 146 153.
- 11. Электромагнитная совместимость в электроэнергетике и электротехнике // Дьяков А. Ф., Максимов Б. К., Борисов Р. К. и др. М.: Энергоатомиздат, 2003. 768 с.
- 12. Экранирующие кабельные конструкции. Средство экономичного решения проблем ЭМС / М. Матвеев, М. Кузнецов, В. Березовский, И. Косарев // Новости электротехники. 2013. № 1(79).