1 Einleitung

In diesem Übung werden Filterungen für einstein.tif jeweils in Ortsraum und Frequenzraum mit Boxfilter, Binomialfilter, Laplace-Filter und Sobelfilter gemacht.

Frequenztransfromatierles Bild nach Zentrierung

- (a) Einstein.tif
- (b) Frequenztransforatierles Bild nach Zentrierung

1.1 Ortsraum

Ein zweidimensionale Faltung erreicht man durch Summation über beide Koordinaten der zweidimensionalen Eingangsfunktion I und des Kerns K. Die Rechnungen lautet:

$$I'(x,y) = K \cdot I = \sum_{m = -\frac{M-1}{2}}^{\frac{M-1}{2}} \sum_{n = -\frac{N-1}{2}}^{\frac{N-1}{2}} K(m,n) \cdot I(x-m,y-m)$$

wobei M und N sind die Anzahl des Kerns K bzw. des Filters, sie sind normalerweise ungerade Zahlen. In Matlab darf man dieser Schritt mit Funktion 'imfilter' machen.

1.2 Frequenzraum

Die notwendige Transformation der Funktionen zwischen Orts- und Frequenzraum erfolgt durch die Fouriertransformation. Der Filtermaske und der Graph werden mit Fouriertransformation in Frequenzraum geführt und in Bildgröße erweitert. Statt Faltung ist eine Multiplikation zu machen.

$$f(x,y) \times h(x,y) \hat{=} F(u,v) \cdot H(u,v)$$

Am Ende wird gefiltetes Bild im Frequenzraum mit inverse Fouriertransformation wieder in den Ortsraum transformiert.

2 Boxfilter

Beide Boxfilter und Binomialfilter sind Glättungsfilter, das Rauschen wird geringer aber der Bild wird unschärfer.

2.1 Ortsraum

Ein 5×5 Boxfilter stellt darunter:

$$\frac{1}{25} \begin{bmatrix}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1
\end{bmatrix}$$

Mit der Methode in 1.1

(c) Boxfilter in Ortsraum

2.2 Frequenzraum

Filter in Frequenzraum in 2D und 3D Darstellung

gefilteter Bild ist heller als in Ortsraum, die Auflösung ist gleich.

(f) Boxfilter in Frequenzraum

3 Binomialfilter

3.1 Ortsraum

 5×5 Maske für Binomialfilterung:

$$\frac{1}{256} \begin{bmatrix}
1 & 4 & 6 & 4 & 1 \\
4 & 16 & 24 & 16 & 4 \\
6 & 24 & 36 & 24 & 6 \\
4 & 16 & 24 & 16 & 4 \\
1 & 4 & 6 & 4 & 1
\end{bmatrix}$$

analog:

(g) Binomialfilter in Ortsraum

3.2 Frequenzraum

Filter in Frequenzraum in 2D und 3D Darstellung

gefilteter Bild ist heller als in Ortsraum, die Auflösung ist gleich.

BinoFilter im Frequenzraum

(j) Binomialfilter in Frequenzraum

4 Laplace-Filter

Laplace-Filter und Sobel-Filter werden genutzt durch Kanteverstärkung für Bildverbesserung.

4.1 Ortsraum

Maske:

$$\begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

Laplacefilter im Ortsraum

(k) Laplace-Filter in Ortsraum

Filter in Frequenzraum in 2D und 3D Darstellung

gefilteter Bild

(n) Laplace-Filter in Frequenzraum

Das Ergebnis sieht gleich wie in Ortsraum

5 Sobel-Filter

5.1 Ortsraum

Maske in x- und y- Richtungen:

$$\begin{bmatrix} 1 & 0 & -1 \\ 2 & 0 & -2 \\ 1 & 0 & -1 \end{bmatrix} \quad \begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix}$$

(o) Sobel x Filter in Ortsraum

(p) Sobel y Filter in Ortsraum

(q) Gradient in Ortsraum

5.2 Frequenzraum

Filter in Frequenzraum in 2D und 3D Darstellung

gefilteten Bilden

(v) Sobel x Filter in Frequenzraum (w) Sobel y Filter in Frequenzraum (x) Gradient in Frequenzraum

Die Ergebnisse sehen gleich wie in Ortsraum