Quantum Computing and Cryptography

Damien, Théo, Matthieu

University

February 12, 2025

Outline

- Intro
- **RSA**
- Quantum computing
 - Introduction to the quantum world
 - Quantum algorithms
- Post-Quantum cryptography
 - Intro to PQ cryptography
 - Lattice cryptography
 - Limits of PQ cryptography
- Conclusion

Introduction

- Cryptography=TODO
- TODO: secret

Introduction

- Cryptography=TODO
- TODO: secret
- → Science of secret

RSA

Classical bit

 $b \in \{0,1\}$

Classical bit

 $b \in \{0,1\}$

• 0

Classical bit

 $b \in \{0,1\}$

- 0
- 1

Classical bit

 $b \in \{0, 1\}$

- 0
- 1

Quantum bit

 $|\psi\rangle \in \mathbb{C}^2$

Classical bit

 $b \in \{0, 1\}$

- 0
- 1

$$|\psi\rangle\in\mathbb{C}^2$$

$$\bullet |0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

Classical bit

 $b \in \{0, 1\}$

- 0
- 1

$$|\psi\rangle\in\mathbb{C}^2$$

- $\bullet \ |0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ $\bullet \ |1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$

Classical bit

 $b \in \{0, 1\}$

- 0
- 1

$$|\psi\rangle\in\mathbb{C}^2$$

$$\bullet |0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$ullet$$
 $|1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$

$$\bullet \mid + \rangle = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

Classical bit

 $b \in \{0, 1\}$

- 0
- 1

$$|\psi\rangle\in\mathbb{C}^2$$

$$\bullet |0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$ullet$$
 $|1
angle = egin{bmatrix} 0 \ 1 \end{bmatrix}$

$$ullet$$
 $|+
angle=rac{1}{\sqrt{2}}egin{bmatrix}1\\1\end{bmatrix}$

$$\bullet \ |-\rangle = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

•
$$\langle 0| => 0 \ (100\%)$$

•
$$\langle 0| => 0 \ (100\%)$$

•
$$\langle 1| => 1 \ (100\%)$$

- $\langle 0| => 0 \ (100\%)$
- $\langle 1| => 1 \ (100\%)$
- $\langle +| => 0 (50\%), 1 (50\%)$

- $\langle 0| => 0 \ (100\%)$
- $\langle 1| => 1 \ (100\%)$
- $\langle +| => 0 (50\%), 1 (50\%)$
- $\langle -| => 0 (50\%), 1 (50\%)$

• Gate X

- Gate X
 - $X|0\rangle \rightarrow |1\rangle$

- Gate X
 - $X |0\rangle \rightarrow |1\rangle$
 - $X|1\rangle \rightarrow |0\rangle$

- Gate X
 - $X |0\rangle \rightarrow |1\rangle$
 - $X|1\rangle \rightarrow |0\rangle$
- Circuit $|0\rangle$

• Gate H

- Gate H
 - $H|0\rangle \rightarrow |+\rangle$

- Gate H
 - $H|0\rangle \rightarrow |+\rangle$
 - $H|1\rangle \rightarrow |-\rangle$

- Gate H
 - $H|0\rangle \rightarrow |+\rangle$
 - $H|1\rangle \rightarrow |-\rangle$
- Circuit $|0\rangle$

Problème B.V

Given the oracle of a function f: $f: \{0,1\}^n \to \{0,1\} \ f(x) = x \cdot s$ Find s in the few request possible.

Algo classique - Slide 1

with
$$n = 2$$
 try:

•
$$f(10) = s_0$$

2 requests.

Algo classique - Slide 1

with n = 2 try :

- $f(10) = s_0$
- $f(01) = s_1$

2 requests.

Algo classique - Slide 2

in general : $\mathcal{O}(n) \to \text{Try every } x \text{ that contains one bit to } 1$. At each query, we get the value of that bit in s

Algo Quantique - Slide 1

 $\mathcal{O}(1) \to \mathsf{Just}$ try every x at the same time. Not only the x with only one bit at one but every possible x.

Algo Quantique - Slide 2

Shor

• Gain de complexité : $\mathcal{O}(e^b) o \mathcal{O}(b)$

Shor

- ullet Gain de complexité : $\mathcal{O}(e^b) o \mathcal{O}(b)$
- combien de qubit il faut

Shor

- Gain de complexité : $\mathcal{O}(e^b) o \mathcal{O}(b)$
- combien de qubit il faut
- combien de cubit on as

What is PQ cryptography

- Based on (other) mathematical problems
- Considered unsolvable by a quantum computer

What it is not:

Cryptography using quantum technologies

The problems

- Codes
- Hash functions
- Multivariates polynomials systems
- Isogenies
- Lattices

The problems

- Codes
- Hash functions
- Multivariates polynomials systems
- Isogenies
- Lattices

Why lattices ?

- Well spread
- Good results

Encryption/Key encapsulation	
Crystals-Kyber	Lattices
Signatures	
Crystals-Dilithium	Lattices
Falcon	Lattices
Sphincs+	Hash

What is a lattice?

 A discret subgroup of RRⁿ abc akpgzsfkeokf akozckdp kpzgkfs pkzapgfkpkde pzkpkd czgks gkp kfsdkvoesd, okpze kswkw k Like vector spaces, we have :

- Vectors and matrices
- Linear combination

What is a lattice ? (cont'd)

Learning with error problem

TODO

(Fully) homomorphic encryption

TODO

Size TODO

Not necessarly robust to classical computer

• Example : Supersingular isogenies Diffie-Hellman key exchange

Conclusion

Quantum Computing and Cryptography