Exercice 1. Quelle est la contraposée des implications suivantes? Même question avec la négation.

- (i) Si x > 0, alors $f(x) \le 0$.
- (ii) Si ab = 0, alors (a = 0 ou b = 0).

Exercice 2. Expliquer verbalement ce que signifient les assertions suivantes et écrire leur négation.

- (i) $\forall x \in \mathbb{R}, x^2 < 0$.
- (ii) $\forall x, y \in \mathbb{Q}, [x < y \implies \exists z \in \mathbb{Q}, x < z < y].$
- (iii) $\forall A \in \mathbb{R}, \exists n \in \mathbb{N}, n > A.$
- (iv) $\forall n \in \mathbb{N}, \exists p \geq n, \forall r \mathbb{N}, \forall s \mathbb{N}, [p = rs \implies (r = 1) \lor (s = 1)].$

Exercice 3. Écrire la négation des assertions suivantes.

- (i) $\forall x, y \in E, xy = yx$.
- (ii) $\exists x \in E, \forall y \in E, xy = yx.$
- (iii) $\forall a, b \in A, [ab = 0 \implies (a = 0) \lor (b = 0)].$
- (iv) $\forall x \in \mathbb{R}, \forall y \in \mathbb{R}, [x < y \implies f(x) < f(y)]$ (où f est une fonction de \mathbb{R} dans \mathbb{R}).
- $(\mathbf{v}) \ \forall \epsilon > 0, \exists N \in \mathbb{N}, [n \geq N \implies |u_n \ell| < \epsilon] \ (\text{où } (u_n) \text{ est une suite réelle et } \ell \in \mathbb{R}).$
- (vi) $\exists \ell \in \mathbb{R}, \forall \epsilon > 0, \exists N \in \mathbb{N}, [n \geq N \implies |u_n \ell| \epsilon]$ (où (u_n) est une suite réelle).

Exercice 3

(i)
$$\neg [V_{x,y} \in E, xy = yx] \iff \forall x \in F, xy \neq yx$$

(ii) $\neg [V_{x,y} \in E, xy = yx] \iff \forall x \in F, \exists y \in E, xy \neq yx$

(ii) $\neg [V_{x,y} \in E, \forall y \in E, xy = yx] \iff \forall x \in F, \exists y \in E, xy \neq yx$

(ii) $\neg [V_{x,y} \in A, [ab = 0 \Rightarrow) (a = 0) \lor (b = 0)] \iff \exists a, b \in A, [ab = 0) \land (b \neq 0)]$

(iv) $\neg [V_{x,y} \in B, \forall y \in R, [x < y \Rightarrow F (x) < F(y)] \iff \exists x \in R, \exists y \in R, [x < y) \land [x < y) \land [x < y \Rightarrow F(x)] \land [x$

Exercice 4. Soient E, F et G trois ensembles. Montrer que si $E \subset F$ et $F \subset G$, alors $E \subset G$.

Exercice 4

Soit
$$x \in E$$
. Puisque $E \subset F$, alors $x \in F$. De plus, comme $F \subset G$, $x \in G$.

Donc, $\left[\forall x \in E \mid (E \subset F) \land (F \subset G) \Rightarrow x \in G \right] \iff E \subset G$.

Exercice 5. Soient A, B et C trois ensembles.

(i) Montrer que $A = B \iff (A \cap B = A \cup B)$.

(ii) Montrer que $A = B \iff (\mathcal{P}(A) = \mathcal{P}(B))$.

(iii) Montrer que $(A \cup B = A \cup C) \land (A \cap B = A \cap C) \implies (B = C)$.

```
Exercice 5 (cont)

(ii) Preuve par contraposée: 7 (B=C) => 7 [(AUB=AUC) \(\lambda\) (ANB=ANC)] (*)

Puisque B \(\pi\) C, sons perte de généralité il existe \(\chi\) \(\epsilon\), \(\epsilon\) (Considérons les cas suivants:

• \(\chi\) \(\epsilon\) A alors \(\chi\) \(\epsilon\) AUB mais \(\chi\) \(\epsilon\) AUC, donc \(\chi\) AUB \(\pi\) AUC.

• \(\chi\) \(\epsilon\) A \(\epsilon\) \(\chi\) \(\epsilon\) \
```

Exercice 6. Dites si les assertions suivantes sont VRAIES ou FAUSSES.

- (i) $\mathbb{N} \in \mathbb{Z}$.
- (ii) $\mathbb{N} \subset \mathbb{Z}$.
- (iii) $\emptyset \in \mathbb{N}$.
- (iv) $\emptyset \subset \mathbb{N}$.
- (v) $\{1,2\} \in \mathcal{P}(\{1,2,3\})$.
- (vi) $\{1,2\} \subset \mathcal{P}(\{1,2,3\})$.
- (vii) $\{\{1\}\}\subset \mathcal{P}(\{1,2,3\}).$

Exercice 7. Considérons les sous-ensembles de N

$$A = \{1, 2, 3, 4, 5, 6, 7\}, \quad B = \{1, 3, 5, 7\}, \quad C = \{2, 4, 6\}, \quad D = \{3, 6\}.$$

- (i) Déterminer $B \cap D$ et $C \cap D$.
- (ii) Déterminer $B \cup D$ et $C \cup D$. L'une de ces deux unions est-elle disjointe?
- (iii) Déterminer les complémentaires dans A de B, C et D.