David Rosenberg

New York University

October 29, 2016

Objectives

- What are neural networks?
- How do they fit into our toolbox?
- When should we consider using them?

Linear Prediction Functions

- Linear prediction functions: SVM, ridge regression, Lasso
- Generate the feature vector $\phi(x)$ by hand.

Linear Prediction Functions

- Linear prediction functions: SVM, ridge regression, Lasso
- Generate the feature vector $\phi(x)$ by hand.
- Learn weight vector w from data.

So

$$\mathsf{score} = w^T \varphi(x)$$

From Percy Liang's "Lecture 3" slides from Stanford's CS221, Autumn 2014.

• Add an extra layer with a nonlinear transformation:

Add an extra layer with a nonlinear transformation:

• We've introduced **hidden nodes** h_1 and h_2 .

$$h_i = \sigma(v_i^T \phi(x)),$$

where σ is a nonlinear activation function. (We'll come back to this.)

From Percy Liang's "Lecture 3" slides from Stanford's CS221, Autumn 2014.

Score is just

score =
$$w_1h_1 + w_2h_2$$

Score is just

score =
$$w_1 h_1 + w_2 h_2$$

= $w_1 \sigma(v_1^T \varphi(x)) + w_2 \sigma(v_2^T \varphi(x))$

- This is the basic recipe.
 - We can add more hidden nodes.
 - We can add more hidden layers.

Activation Functions

- The **nonlinearity** of the activation function is a key ingredient.
- The **logistic sigmoid** function is one of the more commonly used:

$$\sigma(x) = \frac{1}{1 + e^{-x}}.$$

Activation Functions

• More recently, the rectified linear function has been very popular:

$$\sigma(x) = \max(0, x).$$

• "RELU" is much faster to calculate, and to calculate its derivatives.

Approximation Ability: $f(x) = x^2$

- 3 hidden units; logistic activation functions
- Blue dots are training points; Dashed lines are hidden unit outputs;
 Final output in Red.

Approximation Ability: $f(x) = \sin(x)$

- 3 hidden units; logistic activation function
- Blue dots are training points; Dashed lines are hidden unit outputs;
 Final output in Red.

Approximation Ability: f(x) = |x|

- 3 hidden units; logistic activation functions
- Blue dots are training points; Dashed lines are hidden unit outputs;
 Final output in Red.

Approximation Ability: f(x) = 1(x > 0)

- 3 hidden units; logistic activation function
- Blue dots are training points; Dashed lines are hidden unit outputs;
 Final output in Red.

Neural Network: Hidden Nodes as Learned Features

• Can interpret h_1 and h_2 as nonlinear features learned from data.

Facial Recognition: Learned Features

• What hyperparameters describe a neural network?

- What hyperparameters describe a neural network?
 - Number of layers

- What hyperparameters describe a neural network?
 - Number of layers
 - Number of nodes in each hidden layer

- What hyperparameters describe a neural network?
 - Number of layers
 - Number of nodes in each hidden layer
 - Activation function (many to choose from)

- What hyperparameters describe a neural network?
 - Number of layers
 - Number of nodes in each hidden layer
 - Activation function (many to choose from)
- Example neural network hypothesis space:

$$\mathcal{F} = \left\{ f : \mathbf{R}^d \to \mathbf{R} \mid f \text{ is a NN with 2 hidden layers, 500 nodes in each} \right\}$$

- What hyperparameters describe a neural network?
 - Number of layers
 - Number of nodes in each hidden layer
 - Activation function (many to choose from)
- Example neural network hypothesis space:

$$\mathfrak{F} = \left\{ f : \mathbf{R}^d \to \mathbf{R} \mid f \text{ is a NN with 2 hidden layers, 500 nodes in each} \right\}$$

• Functions in \mathcal{F} parameterized by the weights between nodes.

• Neural networks give a **new hypothesis space**.

- Neural networks give a new hypothesis space.
- But we can use all the same loss functions we've used before.

- Neural networks give a new hypothesis space.
- But we can use all the same loss functions we've used before.
- Optimization method of choice: mini-batch gradient descent.

- Neural networks give a new hypothesis space.
- But we can use all the same loss functions we've used before.
- Optimization method of choice: mini-batch gradient descent.
 - In practice, lots of little tweaks; see e.g. AdaGrad and Adam

Neural Network: Objective Function

• In our simple network, the output score is given by

$$f(x) = w_1 \sigma(v_1^T \phi(x)) + w_2 \sigma(v_2^T \phi(x))$$

Neural Network: Objective Function

In our simple network, the output score is given by

$$f(x) = w_1 \sigma(v_1^T \phi(x)) + w_2 \sigma(v_2^T \phi(x))$$

Objective with square loss is then

$$J(w, v) = \sum_{i=1}^{n} (y_i - f_{w,v}(x_i))^2$$

Neural Network: Objective Function

In our simple network, the output score is given by

$$f(x) = w_1 \sigma(v_1^T \phi(x)) + w_2 \sigma(v_2^T \phi(x))$$

Objective with square loss is then

$$J(w, v) = \sum_{i=1}^{n} (y_i - f_{w,v}(x_i))^2$$

- Note: J(w, v) is **not convex**.
 - makes optimization much more difficult
 - accounts for many of the "tricks of the trade"

• Back-propagation is an algorithm for computing the gradient

- Back-propagation is an algorithm for computing the gradient
- Mathematically, it's not necessary.
- With lots of chain rule, you can work out the gradient by hand.

- Back-propagation is an algorithm for computing the gradient
- Mathematically, it's not necessary.
- With lots of chain rule, you can work out the gradient by hand.
- Back-propagation is
 - a clean way to organize the computation of the gradient
 - an efficient way to compute the gradient

- Back-propagation is an algorithm for computing the gradient
- Mathematically, it's not necessary.
- With lots of chain rule, you can work out the gradient by hand.
- Back-propagation is
 - a clean way to organize the computation of the gradient
 - an efficient way to compute the gradient
- Nice introduction to this perspective:
 - Stanford CS221 Lecture 3, Slides 63-96
 - http:
 - //web.stanford.edu/class/cs221/lectures/learning2.pdf

Neural Network Regularization

- Neural networks are very expressive.
- Correspond to big hypothesis spaces.
- Many approaches are used for regularization.

Tikhonov Regularization? Sure.

• Can add an ℓ_2 and/or ℓ_1 regularization terms to our objective:

$$J(w, v) = \sum_{i=1}^{n} (y_i - f_{w,v}(x_i))^2 + \lambda_1 ||w||^2 + \lambda_2 ||v||^2$$

Tikhonov Regularization? Sure.

• Can add an ℓ_2 and/or ℓ_1 regularization terms to our objective:

$$J(w, v) = \sum_{i=1}^{n} (y_i - f_{w,v}(x_i))^2 + \lambda_1 ||w||^2 + \lambda_2 ||v||^2$$

• In neural network literature, this is often called weight decay.

• As we train, check performance on validation set every once in a while.

- As we train, check performance on validation set every once in a while.
- Don't stop immediately after validation error goes back up.

- As we train, check performance on validation set every once in a while.
- Don't stop immediately after validation error goes back up.
- The "patience" parameter: the number training rounds to continue after finding a minimum of validation error.

- As we train, check performance on validation set every once in a while.
- Don't stop immediately after validation error goes back up.
- The "patience" parameter: the number training rounds to continue after finding a minimum of validation error.
 - Start with patience = 10000.
 - Whenever we find a minimum at iteration T,
 - Set patience \leftarrow patience + cT, for some constant c.
 - Then run at least patience extra iterations before stopping.

$$||w||_2 \leqslant c$$
.

 Max-norm regularization: Enforce max norm of incoming weight vector at every hidden node to be bounded:

$$||w||_2 \leqslant c$$
.

Project any w that's too large onto ball of radius c.

$$||w||_2 \leqslant c$$
.

- Project any w that's too large onto ball of radius c.
- It's like ℓ_2 -complexity control, but locally at each node.

$$||w||_2 \leqslant c$$
.

- Project any w that's too large onto ball of radius c.
- It's like ℓ_2 -complexity control, but locally at each node.
- Why?

$$||w||_2 \leqslant c$$
.

- Project any w that's too large onto ball of radius c.
- It's like ℓ_2 -complexity control, but locally at each node.
- Why?
 - There are heuristic justifications, but proof is in the performance.
 - We'll see below.

• A recent trick for improving generalization performance is dropout.

- A recent trick for improving generalization performance is dropout.
- A fixed probability p is chosen.
- Before every stochastic gradient step,

- A recent trick for improving generalization performance is dropout.
- A fixed probability p is chosen.
- Before every stochastic gradient step,
 - each node is selected for "dropout" with probability p
 - a dropout node is removed, along with its links

- A recent trick for improving generalization performance is dropout.
- A fixed probability p is chosen.
- Before every stochastic gradient step,
 - each node is selected for "dropout" with probability p
 - a dropout node is removed, along with its links
 - after the stochastic gradient step, all nodes are restored.

- A recent trick for improving generalization performance is dropout.
- A fixed probability p is chosen.
- Before every stochastic gradient step,
 - each node is selected for "dropout" with probability p
 - a dropout node is removed, along with its links
 - after the stochastic gradient step, all nodes are restored.

(a) Standard Neural Net

(b) After applying dropout.

Figure from http://www.cs.toronto.edu/~rsalakhu/papers/srivastava14a.pdf.

- At prediction time
 - all nodes are present
 - outgoing weights are multiplied by p.

- At prediction time
 - all nodes are present
 - outgoing weights are multiplied by p.

- Dropout probability set using a validation set, or just set at 0.5.
 - Closer to 0.8 usually works better for input units.

Dropout: Why might this help?

- Since any node may randomly disappear,
 - forced to "spread the knowledge" across the nodes.

Dropout: Why might this help?

- Since any node may randomly disappear,
 - forced to "spread the knowledge" across the nodes.
- Each hidden only gets a randomly chosen sample of its inputs,
 - so won't become too reliant on any single input.
 - More robust.

Dropout: Does it help?

Method	Unit Type	Architecture	Error %
Standard Neural Net (Simard et al., 2003)	Logistic	2 layers, 800 units	1.60
SVM Gaussian kernel	NA	NA	1.40
Dropout NN	Logistic	3 layers, 1024 units	1.35
Dropout NN	ReLU	3 layers, 1024 units	1.25
Dropout $NN + max$ -norm constraint	ReLU	3 layers, 1024 units	1.06
Dropout $NN + max-norm constraint$	ReLU	3 layers, 2048 units	1.04
Dropout $NN + max-norm constraint$	ReLU	2 layers, 4096 units	1.01
Dropout $NN + max-norm constraint$	ReLU	2 layers, 8192 units	0.95
Dropout NN $+$ max-norm constraint (Goodfellow et al., 2013)	Maxout	2 layers, (5×240) units	0.94

How big a network?

- How many hidden units?
- With proper regularization, too many doesn't hurt.
 - Except in computation time.

Multiple Output Neural Networks

Very easy to add extra outputs to neural network structure.

From Andrew Ng's CS229 Deep Learning slides (http://cs229.stanford.edu/materials/CS229-DeepLearning.pdf)

Multitask Learning

- Suppose $\mathfrak{X} = \{ \text{Natural Images} \}.$
- We have two tasks:
 - Does the image have a cat?
 - Does the image have a dog?

Multitask Learning

- Suppose $\mathfrak{X} = \{ \text{Natural Images} \}.$
- We have two tasks:
 - Does the image have a cat?
 - Does the image have a dog?
- Can have one output for each task.

Multitask Learning

- Suppose $\mathfrak{X} = \{ \text{Natural Images} \}.$
- We have two tasks:
 - Does the image have a cat?
 - Does the image have a dog?
- Can have one output for each task.
- Seems plausible that basic pixel features would be shared by tasks.
- Learn them on the same neural network benefit both tasks.

• Only one task we're interested in.

- Only one task we're interested in.
- Gather data from related tasks.
- Train them along with the task you're interested in.

- Only one task we're interested in.
- Gather data from related tasks.
- Train them along with the task you're interested in.
- No related tasks? Another trick:

- Only one task we're interested in.
- Gather data from related tasks.
- Train them along with the task you're interested in.
- No related tasks? Another trick:
 - Choose any input feature.
 - Change it's value to zero.
 - Make the prediction problem to predict the value of that feature.
 - Can help make model more robust (not depending too heavily on any single input).

• Could make each class a separate task / output.

- Could make each class a separate task / output.
- Suppose we have K classes.
- Use a one-hot encoding of each $y_i \in \{1, ..., K\}$:

$$y_i = (y_{i1}, \dots, y_{ik})$$
 with $y_{ik} = 1(y_i = k)$.

- Could make each class a separate task / output.
- Suppose we have K classes.
- Use a one-hot encoding of each $y_i \in \{1, ..., K\}$:

$$y_i = (y_{i1}, \dots, y_{ik})$$
 with $y_{ik} = 1(y_i = k)$.

- K output scores: $f_1(x), \ldots, f_K(x)$. Each f_k is trained to predict 1 if class is k, 0 otherwise.
- Predict with $f^*(x) = \operatorname{arg\,max}_k [f_k(x)]$.

- Could make each class a separate task / output.
- Suppose we have K classes.
- Use a one-hot encoding of each $y_i \in \{1, ..., K\}$:

$$y_i = (y_{i1}, \dots, y_{ik})$$
 with $y_{ik} = 1(y_i = k)$.

- K output scores: $f_1(x), \ldots, f_K(x)$. Each f_k is trained to predict 1 if class is k, 0 otherwise.
- Predict with $f^*(x) = \arg\max_k [f_k(x)]$.
- Old days: train each output separately, e.g. with square loss.

Multiclass Classification: Cross-Entropy Loss

• Network can do better if it "knows" that classes are mutually exclusive.

Multiclass Classification: Cross-Entropy Loss

- Network can do better if it "knows" that classes are mutually exclusive.
- Need to introduce a joint loss across the outputs.
- Joint loss function (cross-entropy/deviance):

$$\ell(w, v) = -\sum_{i=1}^{n} \sum_{i=1}^{K} y_{ik} \log f_k(x_i),$$

where $y_{ik} = 1(y_i = k)$.

Multiclass Classification: Cross-Entropy Loss

- Network can do better if it "knows" that classes are mutually exclusive.
- Need to introduce a joint loss across the outputs.
- Joint loss function (cross-entropy/deviance):

$$\ell(w, v) = -\sum_{i=1}^{n} \sum_{i=1}^{K} y_{ik} \log f_k(x_i),$$

where $y_{ik} = 1(y_i = k)$.

• Same loss as for multinomial logistic regression.

OverFeat: Features

- OverFeat is a neural network for image classification
 - Trained on the huge ImageNet dataset
 - Lots of computing resources into training the network.

OverFeat: Features

- OverFeat is a neural network for image classification
 - Trained on the huge ImageNet dataset
 - Lots of computing resources into training the network.
- All those hidden layers of the network are very valuable features.

OverFeat: Features

- OverFeat is a neural network for image classification
 - Trained on the huge ImageNet dataset
 - Lots of computing resources into training the network.
- All those hidden layers of the network are very valuable features.
 - Paper: "CNN Features off-the-shelf: an Astounding Baseline for Recognition"
 - Showed that using features from OverFeat makes it easy to achieve state-of-the-art performance on new vision tasks.

Neural Networks Benefit from Big Data

From Andrew Ng's CS229 Deep Learning slides (http://cs229.stanford.edu/materials/CS229-DeepLearning.pdf)

Big Data Requires Big Resources

- Best results always involve GPU processing.
- Typically on huge networks.

From Andrew Ng's CS229 Deep Learning slides (http://cs229.stanford.edu/materials/CS229-DeepLearning.pdf)

Neural Networks: When to Use?

- Computer vision problems
 - All state of the art methods use neural networks

Neural Networks: When to Use?

- Computer vision problems
 - All state of the art methods use neural networks
- Speech recognition
 - All state of the art methods use neural networks

Neural Networks: When to Use?

- Computer vision problems
 - All state of the art methods use neural networks
- Speech recognition
 - All state of the art methods use neural networks
- Natural Language problems?
 - Maybe. Check out "word2vec" https://code.google.com/p/word2vec/.
 - Represents words using real-valued vectors.
 - Potentially much better than bag of words.