#### МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

# ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «МАГНИТОГОРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

ИМ. Г. И. НОСОВА» (ФГБОУ ВО «МГТУ ИМ. Г.И. НОСОВА»)

Кафедра вычислительной техники и программирования

#### КУРСОВАЯ РАБОТА

по дисциплине «Алгоритмы и теория сложности»

на тему: «Оптимальное размещение: центра на нагруженном неориентированном взвешенном графе»

| Исполнитель: Варламов М.Н. студен | нт 3 курса, группа АВб-19-1  |
|-----------------------------------|------------------------------|
| Руководитель: Файнштейн С.И, стар | рший преподаватель каф. ВТиП |
| Работа допущена к защите «» _     | 2021 г                       |
| Работа защищена «»                | 2021 г. с оценкой            |

#### МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

# ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «МАГНИТОГОРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

ИМ. Г.И. НОСОВА» (ФГБОУ ВО «МГТУ ИМ. Г.И. НОСОВА»)

Кафедра вычислительной техники и программирования

#### ЗАДАНИЕ НА КУРСОВУЮ РАБОТУ

Тема: «Оптимальное размещение: центра на нагруженном взвешенном неориентированном графе»

Обучающемуся Варламову Максиму Николаевичу

Исходные данные: <u>необходимо реализовать алгоритм нахождения центра на нагруженном взвешенном неориентированном графе (рёбрам приписаны положительные длины, вершинам – неотрицательные веса)</u>

| Срок сдачи: «»   | 2021 г.          |  |  |  |
|------------------|------------------|--|--|--|
| Руководитель:    | /С.И. Файнштейн/ |  |  |  |
| Задание получил: | /М.Н. Варламов/  |  |  |  |

### Содержание

| 1 TE | ЕОРЕТИЧЕСКОЕ ОБОСНОВАНИЕ РЕАЛИЗАЦИИ                | АЛГОРИТМА  |
|------|----------------------------------------------------|------------|
| ПОИС | СКА ЦЕНТРА                                         | 4          |
| 1.1  | Задача размещения автоматизированной почтовой стан | нции4      |
| 1.2  | Математическая постановка задачи                   | 5          |
| 1.3  | Описание алгоритма поиска центра графа             | 6          |
| 2 П  | РАКТИЧЕСКАЯ РЕАЛИЗАЦИЯ АЛГОРИТМА ПОИСК             | А ЦЕНТРА 8 |
| 2.1  | Листинг реализации алгоритма                       | 8          |
| 2.2  | Результаты работы программы                        | 9          |
| ЗАКЛ | ЮЧЕНИЕ                                             | 11         |
| БИБЛ | ИОГРАФИЧЕСКИЙ СПИСОК                               | 12         |

## 1 ТЕОРЕТИЧЕСКОЕ ОБОСНОВАНИЕ РЕАЛИЗАЦИИ АЛГОРИТМА ПОИСКА ЦЕНТРА

#### 1.1 Задача размещения станции пожаротушения

Необходимо разместить станцию пожаротушения так, чтобы расстояние от станции до самого удаленного жилого дома было наименьшим. Также необходимо учитывать вероятность возгорания каждого дома.

#### 1.2 Математическая постановка задачи

Дан нагруженный взвешенный неориентированный граф  $G = \langle V, E \rangle$ . Рёбрам приписаны положительные длины, вершинам — неотрицательные веса.

Требуется разместить в одном из районов станцию скорой помощи так, чтобы расстояние от станции до самого удалённого района было оптимально.

Результатом работы алгоритма является оптимально размещенный центр графа.

#### 1.3 Описание алгоритма поиска центра графа

На рисунке 1.1 представлен модельный граф.



Рисунок 1.1 — Модельный граф

Данном графу соответствует матрица неотрицательных весов, представленная в таблице 1.1.

Таблица 1.1 — Матрица неотрицательных весов графа

| 0        | 11       | 0        | 0        | 8        | $\infty$ | 11       | $\infty$ | 17       | $\infty$ |
|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| 11       | 0        | 9        | $\infty$ | $\infty$ | 15       | $\infty$ | $\infty$ | $\infty$ | 16       |
| $\infty$ | 9        | 0        | $\infty$ | $\infty$ | $\infty$ | $\infty$ | 1        | $\infty$ | $\infty$ |
| $\infty$ | $\infty$ | $\infty$ | 0        | $\infty$ | 4        | 6        | $\infty$ | ∞        | $\infty$ |
| 8        | $\infty$ | $\infty$ | $\infty$ | 0        | $\infty$ | 8        | $\infty$ | $\infty$ | 2        |
| $\infty$ | 15       | $\infty$ | 4        | $\infty$ | 0        | 8        | 17       | $\infty$ | $\infty$ |
| 11       | $\infty$ | $\infty$ | 6        | 8        | 8        | 0        | $\infty$ | $\infty$ | $\infty$ |
| $\infty$ | $\infty$ | 1        | $\infty$ | $\infty$ | 17       | $\infty$ | 0        | 9        | $\infty$ |
| 17       | $\infty$ | $\infty$ | $\infty$ | $\infty$ | $\infty$ | $\infty$ | 9        | 0        | 12       |
| $\infty$ | 16       | $\infty$ | $\infty$ | 2        | $\infty$ | $\infty$ | $\infty$ | 12       | 0        |

Алгоритм поиска центра на неориентированном графе состоит из следующих шагов [1]:

- 1) алгоритмом Флойда найдём матрицу расстояний между всеми парами вершин;
  - 2) умножим элементы каждой строки матрицы на вектор весов;
- 3) найдём в каждой строке максимальный элемент (расстояние от центра до самой удалённой вершины) и запишем его в массив Мах;
  - 4) найдём в столбце Мах наименьший элемент;

# **2** ПРАКТИЧЕСКАЯ РЕАЛИЗАЦИЯ АЛГОРИТМА ПОИСКА ЦЕНТРА

#### 2.1 Листинг реализации алгоритма

Разработка алгоритма осуществлялась на языке Java.

Функция, реализующая алгоритм Флойда:

Умножение элементов каждой строки матрицы на вектор весов:

```
for (int i = 0; i < 10; i++)
  for (int j = 0; j < 10; j++)
    rasst[i][j] *= vesa[j];</pre>
```

Поиск в каждой строке максимального элемента:

```
int[] max = new int[10];
    for (int i = 0; i < 10; i++) {
        int temp = 0;
        for (int j = 0; j < 10; j++)
            if (rasst[i][j] > temp)
                 temp = rasst[i][j];

max[i] = temp;
}
```

Поиск в столбце Мах наименьшего элемента:

```
int res = Arrays.stream(max).min().getAsInt();
```

#### 2.2 Результаты работы программы

На рисунке 2.1 представлена матрица расстояний между всеми парами вершин.

```
[0, 11, 20, 17, 8, 19, 11, 21, 17, 10]
[11, 0, 9, 19, 18, 15, 22, 10, 19, 16]
[20, 9, 0, 28, 27, 18, 26, 1, 10, 22]
[17, 19, 28, 0, 14, 4, 6, 21, 30, 16]
[8, 18, 27, 14, 0, 16, 8, 28, 14, 2]
[19, 15, 18, 4, 16, 0, 8, 17, 26, 18]
[11, 22, 26, 6, 8, 8, 0, 25, 22, 10]
[21, 10, 1, 21, 28, 17, 25, 0, 9, 21]
[17, 19, 10, 30, 14, 26, 22, 9, 0, 12]
[10, 16, 22, 16, 2, 18, 10, 21, 12, 0]
```

Рисунок 2.1 — Матрица расстояний между всеми парами вершин На рисунке 2.2 представлен результат перемножения строк матрицы расстояний и вектора весов, а также наибольший элемент в строке.

```
max[0, 11, 40, 51, 32, 95, 66, 147, 136, 90] = 147
max[0, 0, 18, 57, 72, 75, 132, 70, 152, 144] = 152
max[0, 9, 0, 84, 108, 90, 156, 7, 80, 198] = 198
max[0, 19, 56, 0, 56, 20, 36, 147, 240, 144] = 240
max[0, 18, 54, 42, 0, 80, 48, 196, 112, 18] = 196
max[0, 15, 36, 12, 64, 0, 48, 119, 208, 162] = 208
max[0, 22, 52, 18, 32, 40, 0, 175, 176, 90] = 176
max[0, 10, 2, 63, 112, 85, 150, 0, 72, 189] = 189
max[0, 19, 20, 90, 56, 130, 132, 63, 0, 108] = 132
max[0, 16, 44, 48, 8, 90, 60, 147, 96, 0] = 147
```

Рисунок 2.2 — Результат перемножения строк матрицы расстояний и вектора весов

На рисунке 2.3 представлен результат работы программы для поиска центра графа

```
Матрица расстояний

[0, 11, 20, 17, 8, 19, 11, 21, 17, 10]

[11, 0, 9, 19, 18, 15, 22, 10, 19, 16]

[20, 9, 0, 28, 27, 18, 26, 1, 10, 22]

[17, 19, 28, 0, 14, 4, 6, 21, 30, 16]

[8, 18, 27, 14, 0, 16, 8, 28, 14, 2]

[19, 15, 18, 4, 16, 0, 8, 17, 26, 18]

[11, 22, 26, 6, 8, 8, 0, 25, 22, 10]

[21, 10, 1, 21, 28, 17, 25, 0, 9, 21]

[17, 19, 10, 30, 14, 26, 22, 9, 0, 12]

[10, 16, 22, 16, 2, 18, 10, 21, 12, 0]

Перемножение строк матрицы на вектор весов вершин мах[0, 11, 40, 51, 32, 95, 66, 147, 136, 90] = 147

мах[0, 9, 0, 84, 108, 90, 156, 7, 80, 198] = 198

мах[0, 19, 56, 0, 56, 20, 36, 147, 240, 144] = 240

мах[0, 18, 54, 42, 0, 80, 48, 196, 112, 18] = 196

мах[0, 15, 36, 12, 64, 0, 48, 119, 208, 162] = 208

мах[0, 22, 52, 18, 32, 40, 0, 175, 176, 90] = 176

мах[0, 10, 2, 63, 112, 85, 150, 0, 72, 189] = 189

мах[0, 19, 20, 90, 56, 130, 132, 63, 0, 108] = 132

мах[0, 16, 44, 48, 8, 90, 60, 147, 96, 0] = 147

Оптимальный центр: 9 вершина со значением 132
```

Рисунок 2.3 — Результат работы программы для поиска центра графа

#### **ЗАКЛЮЧЕНИЕ**

В результате выполнения курсовой работы был реализован алгоритм оптимального размещения: центра на нагруженном взвешенном неориентированном графе (рёбрам приписаны положительные длины, вершинам – неотрицательные веса).

Если учитывать алгоритм Флойда — сложность алгоритма поиска центра составляет  $O(n^5)$ .

Если считать, что матрица расстояний уже каким-то образом получена (не учитывать Флойда), то сложность будет составлять  $O(n^2)$ .

Таким образом, алгоритм поиска центра графа можно использовать для графов большой размерности.

### БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Алгоритмы на сетях и графах, Миков А.Ю., Файнштейн С.И., МГТУ им. Носова, 2016 г.