EQ2330 – Image and Video Processing

Solution #9

Solution

- 1. Let the quantization cells be indexed by $i \in \{0, 1, ..., I-1\}$ with centroids \hat{x}_i . A value x is mapped to cell index i if $x \in [b_i, b_{i+1})$, where t_i are quantization thresholds. Define $t_0 = -\infty$ and $t_I = \infty$.
 - Step 1. Initiate the centroids \hat{x}_i arbitrarily. For example, distribute the centroids uniformly over the support of f(x).
 - Step 2. Update the quantization thresholds according to

$$t_i = \frac{1}{2}(\hat{x}_{i-1} + \hat{x}_i), \quad i \in \{1, 2, \dots, I - 1\}.$$

Step 3. Update the cell centroids according to

$$\hat{x}_i = \frac{\int_{t_i}^{t_{i+1}} x f(x) \, dx}{\int_{t_i}^{t_{i+1}} f(x) \, dx}, \quad i \in \{0, 1, \dots, I - 1\}.$$

Step 4. If expected distortion has not converged continue with Step 2.

Table 1: The Lloyd-Max Algorithm.

- 2. Figure shows the centroids and thresholds after 0, 1, 2, 3, 4 and 9 iterations.
- 3. The average codeword length is 2 bits, as implied by the name "2-bit Lloyd-Max quantizer".
- 4. The probability that a realization of X belongs to cell i is given by

$$p_i = \int_{t_i}^{t_{i+1}} f(x) \, \mathrm{d}x. \tag{1}$$

5. The variance of X is 1.5, while the variance of \hat{X} is 1.36. They are not equal as the difference of X and \hat{X} (the quantization noise) is not correlated with \hat{X} and has non-zero variance. The difference between the variances is called the distortion.

- 6. The mean squared error contribution of the cells evaluates to 0.036, 0.034, 0.034, 0.036. These values show the (approximate) equidistortion principle for Lloyd-Max quantizers.
- 7. The entropy evaluates to 1.96 bits.
- 8. A Huffman code gives the average codeword length 2.0 bits.
- 9. The Lloyd-Max algorithm for quantizer design is based on necessary conditions for rate-distortion optimality under the constraint that the same codeword length is used for all symbols. Hence, we expect better performance if the quantizer is optimized for a system with an entropy coder.

