This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

10-204332

(43)Date of publication of application: 04.08.1998

(51)Int.CI.

CO9D 5/03 CO9D133/06 CO9D163/00 // C08F220/12 C08F246/00 CO8G 59/36 CO8G 59/42 CO8G 59/68 CO9D157/06 (C08F220/12 C08F220:32 C08F212:08

(21)Application number : 09-318440

(22)Date of filing:

19.11.1997

(71)Applicant: MITSUI CHEM INC

(72)Inventor: MIYAWAKI TAKAHISA

MIZOGUCHI MITSUSACHI

SEKI SHINJI

MATSUMOTO TAKESHI

KAWASAKI EIICHI

(30)Priority

Priority number: 08310570

Priority date : 21.11.1996

Priority country: JP

(54) THERMOSETTING POWDER COATING COMPOSITION

(57)Abstract:

catalyst.

PROBLEM TO BE SOLVED: To obtain a powder coating compsn. for topcoating that is stable during its storage. exhibits excellent low-temp. meltability and low-temp. curability in its application, and can form a coating film excellent in physical properties, by making the composition contain a copolymer formed from a glycidylated monomer having a double bond, styrene, and an unsatd monomer having no carboxyl group nor tbutyl ester group, and an aliph. dicarboxylic anhydride curing agent, and a tin-base cure catalyst. SOLUTION: The copolymer used is formed from 20-60wt.% glycidylated monomer having a double bond, 1-30wt.% styrene, and 10-79wt.% ethylenically unsatd. monomer having no carboxyl group nor t-butyl ester group. A straight- chain linear fatty acid condensate represented by formula I (wherein m is 4-20; and n≥2) is used as the curing agent. A compd. represented by formula II (wherein j+k is 2; X is a halogen, etc.; and R

and R' are each an alkyl, etc.) is used as the cure

 $HO = [OC (CH) \cap COO] \cap H$

ì

R. Sn Xk

71

LEGAL STATUS

[Date of request for examination]

06.05.2003

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

特開平10-204332

最終貞に続く

(43)公開日 平成10年(1998)8月4日

(11)特許出願公開番号

(51) Int. (21.6	識別記号		F 1				
CO9D 5/03	•		C 0 9 D	5/03			
133/06				133/06			
163/00				163/00			
# C08F 220/12			C08F	220/12			
246/00				246/00			
		審查請求	未請求 請求	求項の数8	OL	(全 15 頁)	最終頁に続く
(21)出願番号	特顯平9-318440		(71) 出願	人 000005	887		
				三井化	学株式	会社	
(22) 卅願日	平成9年(1997)11月19日			東京都	千代四	区観が関三丁	月2番5号
			(72)発明	者 宮脇	孝久		
(31)優先権主張番号	特願平8-310570			神奈川	県横浜	市菜区等問町	1190番地 三井
(32)優先日	平8 (1996)11月21日			化学株	式会社	内	
(33)優先権主張国	日本(JP)		(72)発明	者 溝口	光幸		
				神奈川	県横浜i	市榮区笠間町	1190番地 三井
				化学株	式会社	内	
			(72)発明	者 関 真	志		
				神奈川	県横浜i	市榮区笠間町	1190番地 三井
				化学株	式会让	内	
			(74)代理	人 弁理士	若林	忠 (外4:	名) -

(54) 【発明の名称】 熱硬化性粉体塗料組成物

(57)【要約】

【課題】 ① ・塗膜形成前(貯蔵時)における優れた安定性、② ・塗膜形成時における優れた低温溶融性/低温硬化性、③ ・塗膜形成後における優れた塗膜特性・物性を同時発現できる熱硬化性粉体塗料組成物を提供する。 【解決手段】 グリシジル基及び不飽和二重結合を分子内に有するエチレン性不飽和単量体(単量体(a - 1))、スチレン(単量体(a - 2))及び、その他の単量体(単量体(a - 3))を特定条件で含む反応系でラジカル重合して得られる共重合体成分(A)、特定構造を有する脂肪族2 価カルボン酸の直鎖線状酸無水物からなる硬化剤成分(B)、特定構造を有する硬化触媒成分(C)を含む熱硬化性粉体塗料組成物。

1

【特許請求の範囲】

【請求項1】 共重合体成分(A)、硬化剤成分 (B)、及び、硬化触媒成分(C)を含有してなるトッ プコート用熱硬化性粉体塗料組成物であって、

単量体 (a-1)、(a-2)及び(a-3)の合計1 00重量部に対して、

単量体(a-1)として、少なくとも1つのグリシジル 基及び少なくとも1つの不飽和二重結合を分子内に有す るエチレン性不飽和単量体20~60重量部、

単量体(a-2)として、スチレン1~30重量部、及 10 び、

単量体(a-3)として、カルボキシル基及び第3ブチ ルエステル基のいずれをも分子内に有さないエチレン性 不飽和単量体10~79重量部、を含む反応系でラジカ ル重合して得られる共重合体成分(A)、

下記一般式(1)で表される脂肪族2価カルボン酸の直 鎖線状酸無水物を含有する硬化剤成分 (B)

HO-[OC(CH)mCOO]n-H

(m=4~20、n≥2の、それぞれ、自然数であ る。) 並びに、

下記一般式(2)で表される化合物を含有する硬化触媒 成分(C)

 $R_i S n X_k$ (2)

(j及びkは、j+k=2となる、0又は自然数であ る。Xは、ハロゲン、OH、OR'、SR'又はOCO R'である。R及びR'は、それぞれ独立して、アルキ ル基又はアリール基である。)を含有してなることを特 徴とするトップコート用熱硬化性粉体塗料組成物。

【請求項2】 共重合体成分(A)の共重合体の分子内 に存在する官能基と硬化剤成分(B)の硬化剤の分子内 30 に存在する官能基との当量比が、共重合体の分子内に存 在するグリシジル基1当量に対して、硬化剤の分子内に 存在するカルボキシル基及び酸無水物(アンヒドリド) 基の合計が0.5~2.0当量となるものである請求項 1 に記載の熱硬化性粉体塗料組成物。

【請求項3】 共重合体成分(A)及び硬化剤成分 (B) の合計100重量部に対して、硬化触媒成分

(C)が0.005~3重量部含まれている請求項1ま たは2に記載の熱硬化性粉体塗料組成物。

【請求項4】 一般式(1)で表される脂肪族2価カル 40 ボン酸の直鎖線状酸無水物が、(b-1) アゼライン 酸、(b-2) セバシン酸、(b-3) エイコサン 2酸、及び、(b-4) ドデカン2酸からなる群から 選択された少なくとも 1 種の化合物から脱水縮合により 誘導された化合物である請求項1~3の何れか一項に記 載の熱硬化性粉体塗料組成物。

【請求項5】 一般式(2)で表される化合物からなる 硬化触媒が、(c-1) ヘキサン酸第一錫塩、(c-とナー/fクタン酸第一錫塩、(c-3) ラウリル酸第 錫塩、及び、(c 4) ステアリン酸第 錫塩から 50 対する耐性にも問題があり、自動車車体塗装等の屋外で

なる群から選択された少なくとも1種の触媒である請求 項1~4の何れか一項に記載の熱硬化性粉体塗料組成 物。

【請求項6】 一般式(1)で表される脂肪族2価カル ボン酸の直鎖線状酸無水物の融点が40~150℃であ る請求項1~5の何れか一項に記載の熱硬化性粉体塗料 組成物。

【請求項7】 請求項1に記載の組成物を用いて熱硬化 性粉体塗料を製造するための方法であって、少なくとも 共重合体成分(A)、硬化剤成分(B)及び硬化触媒成 分(C)を含む原料を溶融混練する工程、並びに、該溶 融混練物を冷却し粉砕する工程を有することを特徴とす る熱硬化性粉体塗料の製造方法。

【請求項8】 溶融混練工程は、40~130℃の温度 で行なう請求項7に記載の熱硬化性粉体塗料の製造方 法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、熱硬化性粉体塗料 組成物に関し、さらに詳細には、優れた外観特性(平滑 性、鲜映性等)、物理特性(耐衝擊性、耐擦傷性、密着 性等)、耐候性や耐紫外線性、及び化学特性(耐酸性、 耐溶剤性等)を有する焼付塗膜を発現し、かつ塗料の貯 蔵安定性が優れ、低温溶融性/低温硬化性を有する熱硬 化性粉体塗料組成物に関する。

[0002]

【従来の技術】

[エコロジー等の観点からの塗料の技術分野における研 究開発動向と粉体塗料への期待] 従来、物の塗装は溶剤 型の塗料が使用され、自動車用などの厳しい品質を要求 される分野に使用するために、種々の要求が満足された 塗料が開発され、使用されてきた。

【0003】近年、塗料の技術分野において、ローカル 又はグローバルな環境保全、労働安全衛生環境改善、火 災や爆発の予防、省資源等、の観点から、溶剤型塗料に かわって、粉体塗料への変更が期待されてきた。そし て、歴史的又は社会的要請により、粉体塗料の高機能化 ・多様化への期待が大きくなるに従い、粉体塗料にも、 溶剤型塗料に匹敵する高度な塗膜性能 (例えば、耐衝撃 性、耐酸性雨性等)が要求されるようになってきた。

【0004】しかしながら、粉体塗料に要求される塗膜 性能が厳しくなってきたにもかかわらず、必ずしも、と のような要求を完全に満足する粉体塗料が上市されてき たとはいえない。

【0005】[粉体塗料一般の技術的背景] 従来型の粉 体塗料の具体例としては、例えば、ビスフェノールAを 主体とするエポキシ樹脂及びポリエステル樹脂粉体塗料 が挙げられる。しかしながら、これらは耐候性に問題が あるばかりでなく。最近特に問題となってきた酸性雨に

の使用を前提とした用途に問題があった。

【0006】 [アクリル樹脂系粉体塗料の技術的背景] 特開昭49-34546号には、グリシジル基を有するアクリル樹脂成分と、硬化剤成分である脂肪族二塩基酸との反応によって硬化させる塗料が開示されている。しかしながら、該粉体塗料は、硬化速度が必ずしも充分ではなく、高温かつ長時間の焼付け条件が不可欠であった。そして、該粉体塗料から形成した塗膜は、耐溶剤性、密着性等の物性が必ずしも充分ではなかった。

3

【0007】また、硬化触媒を用いない、このような技 10 術では、粉体塗料組成物の官能基(アクリル樹脂成分; グリシジル基、硬化剤成分;カルボキシル基)の量を増加させることにより、塗膜形成時の架橋形成を改善し、もって低温溶融/低温硬化を達成しようと意図しても、上記と同様な問題や他の問題点が生じた。

【0008】また、特開平5-112743号には、少なくとも20重量%のグリシジル基を有する単量体と35~50重量%のスチレン単量体を含む系から合成したアクリル樹脂を含む樹脂成分を含む粉体塗料が開示されている。しかしながら、スチレン量が30重量%を超え20ると、塗膜の耐候性に問題が生じた。

【0009】また、特開平5-132634号には、アクリル樹脂成分として、グリシジル基を有する単量体及び第3ブチルアクリレート又は第3ブチルメタクリレートを含む系から合成された共重合体を、硬化剤成分として、上記特開平5-112743号に記載されたものと同様のものを用いて、従来技術と同様の硬化様式によって、塗膜形成させる技術が開示されている。しかしながら、アクリル樹脂成分については、単量体として、第3ブチルメタクリレートを用いると、これらは、重合中にグリシジル基を有する他の単量体と副反応を起こしたり、重合中や回収中の脱溶剤時に熱分解を起こしたりして、好ましくない副反応の生成物であるゲル状物を生じやすい。このようなゲル状物を含有する粉体塗料組成物から塗膜を形成すると、塗膜表面に不均一なブツを生じる傾向がある。

【0010】また、米国特許3,919,346号及び 米国特許3,919,347号には、アクリル樹脂成分 として、グリシジル基を有する単量体、ヒドロキシル基 を有する単量体を含む系から構成された共重合体を、硬 40 化剤成分として、ジカルボン酸の無水物を使用し、架 橋、硬化させる方法が開示されている。しかしながら、 この発明においては、ヒドロキシル基を有している樹脂 成分とジカルボン酸の無水物からなる硬化剤を使用して いるため、塗料の貯蔵安定性に劣っていた。

【0011】 [酸無水物基を有する化合物を硬化剤として含むアクリル樹脂系粉体塗料]特開昭50-5154 2号に開示されている技術は、アクリル樹脂成分として、5~20重量%のグリシジル基を有する単量体を含む系から構成された共重合体を、ジカルボン酸、線状酸 50

無水物の硬化剤を使用して架橋、硬化させる方法である。しかし、グリシジル基を有する単量体を20重量%以下含む共重合体の場合には、得られた塗膜の架橋密度が不足しており、耐溶剤性、耐候性に劣っていた。

【0012】上記公知技術の問題点の解決を目的として多くの研究開発が推進されてきた。米国特許4,09 1,048号及び特公昭58-2983号には、グリシジル基を有する単量体を5~20重量%含むコボリマーと、酸無水物基から架橋、硬化させる塗料が開示されている。しかしながら、これらは、やはりグリシジル基を有する単量体を20重量%以下含むコボリマーを用いるので、得られた塗膜の架橋密度が不足であり、耐溶剤性や耐候性が必ずしも充分なものではなかった。

【0013】また、特に、特公昭58-2983号には、環状酸無水物(環状の酸無水物基を有する化合物)を硬化剤として採用した粉体塗料組成物に関する技術が開示されている。ここで、環状酸無水物は、芳香族系であっても、脂環族系であってもよい。しかしながら、上記環状酸無水物を硬化剤成分として採用した場合、樹脂成分/硬化剤成分間の低い相溶性、及び、樹脂成分/硬化剤成分間の低い架橋形成効率等、に関し問題があった。

【0014】欧州特許公開公報299,420号には、 グリシジル基を含有するアクリル共重合体に、硬化剤と してポリマー骨格に酸無水物結合及び複数の酸官能基を 有し、そして実質的にハロゲン原子を有しないポリオー ル変性ポリマー状ポリ酸無水物を使用した、変性ポリ酸 無水物硬化剤含有パウダー被覆組成物が開示されてい る。しかしながら、該ポリオール変性ポリマー状ポリ酸 無水物を硬化剤として用いた場合、焼き付け時の硬化が 不十分で耐溶剤性及び耐擦傷性等の塗膜物性が不十分な だけでなく、塗料の貯蔵安定性等も不十分であった。 【0015】欧州特許公開公報695,771号にはエ

【0015】欧州特許公開公報695,771号にはエボキシ官能性ペイント樹脂の硬化剤として、ポリイソシアネート変性のジカルボン酸(ポリ)無水物を使用する技術が開示されているが、該硬化剤を使用した場合、塗膜の耐候性等の耐性が不十分であった。

【0016】[硬化触媒を含むアクリル樹脂系粉体塗料の技術的背景]特開昭63-165463号には、特定のグリシジル基官能性アクリル樹脂、脂肪族二塩基酸(無水物)及びアルキルチタネート化合物を主成分とする、低温で溶融・硬化し、しかも硬度耐衝撃性、耐屈曲性等に優れた塗膜を与える熱硬化性アクリル樹脂粉体塗料組成物が開示されている。すなわち、(A)(メタ)アクリル酸の炭素原子数1~14のアルキルエステルと、(メタ)アクリル酸のグリシジルエステルとを主成分として共重合させて得られるグリシジル基官能性アクリル樹脂 (B)脂肪族二塩基酸(好ましくはアジピン酸、セバシン酸、デカン2酸、ムコン酸等)もしくはその線状酸無水物、及び(C)式Ti(OR)。(Rは、

5

炭素原子数15~20のアルキル基)で示されるアルキルチタネート化合物(例;テトラベンタデシルチタネート等)、を主成分とする熱硬化性アクリル樹脂粉体塗料が開示されている。

【0017】とこにおいて、アルキルチタネート化合物は、粉体塗料組成物の塗膜形成時において、低温における樹脂成分/硬化剤成分間の架橋形成反応を触媒する機能を有し、低温溶融性/低温硬化性を有意に発現する効果を有するものと思料される。しかしながら、この発明に関しては、必ずしも、低温溶融性/低温硬化性、貯蔵 10安定性等に関し充分なものではなかった。

【0018】特開平8-231893号にはグリシジル 基含有アクリル共重合体(A)、脂肪族多価カルボン酸 (B)、並びに、脂肪族多価カルボン酸線状酸無水物

- (C) またはこれに3級アミン化合物と有機酸との塩
- (D)及び/又は融点が20℃~150℃の3級アミン 化合物(E)を含む熱硬化性粉体塗料組成物が開示され ている。

【0019】しかしながら、との発明に関しても貯蔵安定性や低温硬化性に関し、充分だと言えるものではな 20 く、特開平8-231893号に開示されているように、脂肪族多価カルボン酸が共存している粉体塗料組成物に3級アミン化合物と有機酸との塩及び/又は融点が20℃~150℃の3級アミン化合物を硬化触媒として用いた場合、気温40℃、相対湿度90%程度の比較的高温多湿条件での貯蔵条件下では、貯蔵中にグリシジル基とカルボキシル基の高い反応性により、ゲル化を起こしたり、塗膜外観が不良になるなどの問題が生じた。また、通常の焼き付け条件よりもさらに厳しい温度で焼き付けた際に塗膜の黄変が顕著になるなどの問題点があっ 30 た。

[0020]

【発明が解決しようとする課題】本発明の目的は、上記 従来技術の問題点に鑑み、従来技術によっては達成する てとが困難であった、

- ① 塗膜形成前(貯蔵時)における、優れた安定性、
- ② 塗膜形成時における、優れた低温溶融性/低温硬化 性
- ③ 塗膜形成後における、優れた塗膜特性・物性、 を同時発現することができる熱硬化性粉体塗料組成物を 40 提供することにある。

【0021】また、本発明の更なる目的は、その様な優れた熱硬化性粉体塗料を良好に製造できる方法を提供することにある。

[0022]

【課題を解決するための手段】本発明の目的は、共重合体成分(A)、硬化剤成分(B)、及び、硬化触媒成分(C)を含有してなるトップコート用熱硬化性粉体塗料組成物であって、単量体(a-1)、(a-2)及び(a-3)の合計100重量部に対して、単量体(a

1)として、少なくとも1つのグリシジル基及び少なくとも1つの不飽和二重結合を分子内に有するエチレン性不飽和単量体20~60重量部、単量体(a-2)として、スチレン1~30重量部、及び、単量体(a-3)として、カルボキシル基及び第3ブチルエステル基のいずれをも分子内に有さないエチレン性不飽和単量体10~79重量部、を含む反応系でラジカル重合して得られる共重合体成分(A)、下記一般式(1)で表される脂肪族2価カルボン酸の直鎖線状酸無水物を含有する硬化剤成分(B)

HO-[OC(CH)mCOO]n-H (1) $(m=4\sim20, n\geq20, それぞれ、自然数である。)並びに、下記一般式(2)で表される化合物を含有する硬化触媒成分(C) <math>R_1SnX_1$ (2)

(j及びkは、j+k=2となる、0又は自然数である。Xは、Nロゲン、OH、OR'、SR'又はOCOR'である。R及びR'は、それぞれ独立して、アルキル基又はアリール基である。)を含有してなるととを特徴とするトップコート用熱硬化性粉体塗料組成物により

【0023】また、本発明の本発明の更なる目的は、上記本発明の組成物を用いて熱硬化性粉体塗料を製造するための方法であって、少なくとも共重合体成分(A)、硬化剤成分(B)及び硬化触媒成分(C)を含む原料を溶融混練する工程、並びに、該溶融混練物を冷却し粉砕する工程を有することを特徴とする熱硬化性粉体塗料の製造方法により達成できる。

【0024】本発明は、上記成分(A)、(B)及び (C)を併用する点、並びに、特定のスチレン含有率の 成分(A)を使用する点、特定の硬化触媒成分(C)を 使用する点において、特に特徴的であり、これらの組 成、組成比を制御するととにより、より高度な作用効果 を発揮することができる。

【0025】本発明の熱硬化性粉体塗料組成物は、特に、自動車の車体、及び、自動車部品(アルミホイール、ワイパー、ビラー、ドアハンドル、フェンダー、ボンネット、エアスポイラー、スタビライザー、フロントグリル等)の塗装-特に、上塗り塗装(トップコート)ーに好適に適用される。

【0026】上記トップコートの塗膜には、

- ① 外観特性(平滑性、鲜映性等)、
- ② 物理特性(耐衝擊性、耐擦傷性、密着性等)、
- ① 化学特性(耐酸性、耐酸性雨、耐溶剤性、耐ビッチ等)、

の 耐候性や耐紫外線性、

達成できる。

に関し、厳しい品質を要求されるが、本発明の熱硬化性 粉体塗料組成物は、粉体塗料であるにもかかわらず。そ のような要求に充分に応えることができる。

50 【0027】また、本発明の熱硬化性粉体塗料組成物

6

(5)

8

は、水性下塗り塗料の上に塗装、焼き付けした場合においても、上記の優れた性能を発揮することができる。 【0028】

【発明の実施の形態】

[共重合体成分(A)]本願の特許請求の範囲及び明細書において、共重合体とは、ランダム共重合体、交替共重合体、ブロック共重合体、グラフト共重合体等のいずれでもよく、また高分子は線状、大環状、分岐状、星形、三次元網目状等のいずれでもよい。

【0029】[単量体(a-1)]本発明において共重 10合体成分(A)中に共重合されるグリシジル基と不飽和二重結合を有する単量体(a-1)としては、グリシジル基及び不飽和二重結合を実質的に併せ有する化合物であれば特に制限されない。

【0030】単量体(a-1)の具体例としては、例えば、グリシジルアクリレート、グリシジルメタクリレート、β-メチルグリシジルアクリレート、β-メチルグリシジルメタクリレート、N-グリシジルアクリル酸アミド、アリルグリシジルエーテル、ビニルスルフォン酸グリシジル等が挙げられる。この中では、グリシジルアクリレート、グリシジルメタクリレートが好ましい。これらは、単独で又は2種類以上を併せて用いることができる。

【0031】単量体(a-1)の使用量は、単量体(a-1)、(a-2)及び(a-3)の合計100重量部 に対して、20~60重量部であり、25~50重量部 が好ましい。単量体(a-1)の使用量が20重量部を 超えれば、得られる塗膜の架橋密度が高く、耐衝撃性や 耐擦傷性、耐溶剤性等の塗膜特性が良好で好ましい。単量体(a-1)の使用量が60重量部以下にすれば、平 30 滑性や鮮映性等の塗膜外観が良好で好ましい。

【0032】[単量体(a-2)]共重合体成分(A)中に共重合されるスチレン成分(単量体(a-2))の使用量は、単量体(a-1)、(a-2)及び(a-3)の合計100重量部に対して、1~30重量部であり、10~30重量部が好ましく、10~20重量部がさらに好ましい。スチレン成分は、塗膜の光沢性や平滑性等の特性、塗料組成物の貯蔵安定性に寄与する。スチレン成分の使用量が1重量部未満では、スチレンに起因する効果が減少し、30重量部を超えると、塗膜の耐候40性が低下する傾向がある。

【0033】[単量体(a-3)]共重合体成分(A) に共重合されるエチレン性不飽和単量体(a-3)としては、実質的に、単量体(a-1)及び(a-2)と異なり、カルボキシル基及び第3ブチルエステル基のいずれをも分子内に有さず、ラジカル重合可能な不飽和基を有する化合物であれば使用することができ、1種又はそれ以上を併用してもよい。

【0034】単量体(a-3)の具体例としては、例えば、カルボン酸エステル類、不飽和炭化水素類、ニトリ 50

ル類、アミド類等が挙げられ、これらの中では、カルボン酸エステル類が好ましく、第1級又は第2級アルコールとアクリル酸又はメタクリル酸とのエステルがより好ましい。

【0035】第1級又は第2級アルコールとアクリル酸 又はメタクリル酸とのエステルの具体例としては、メチ ルアクリレート、エチルアクリレード、プロピルアクリ レート、イソプロピルアクリレート、ブチルアクリレー ト、イソブチルアクリレート、2-エチルヘキシルアク リレート、ドデシルアクリレート、ステアリルアクリレ ート、シクロヘキシルアクリレート、ベンジルアクリレ ート、フェニルアクリレート、ヒドロキシエチルアクリ レート、ヒドロキシプロピルアクリレート、ヒドロキシ ブチルアクリレート、1,4-ブタンジオールモノアク リレート、ジメチルアミノエチルアクリレートのような アクリル酸誘導体、メチルメタクリレート、エチルメタ クリレート、プロピルメタクリレート、イソプロピルメ タクリレート、ブチルメタクリレート、イソブチルメタ クリレート、2-エチルヘキシルメタクリレート、ドデ シルメタクリレート、ステアリルメタクリレート、シク ロヘキシルメタクリレート、ベンジルメタクリレート、 フェニルメタクリレート、ヒドロキシエチルメタクリレ ート、ヒドロキシプロビルメタクリレート、ヒドロキシ ブチルメタクリレート、1,4-ブタンジオールモノメ タクリレート、ジメチルアミノエチルメタクリレートの ようなメタクリル酸誘導体、酢酸ビニル、プロビオン酸 ビニル等のビニルエステル類、マレイン酸、イタコン酸 などのジカルボン酸エステル類、α-メチルスチレン、 ビニルトルエン、t-ブチルスチレン、ビニルアニソー ル、ビニルナフタレン、ジビニルベンゼン、クロルスチ レン等のような不飽和炭化水素類、アクリロニトリル、 メタアクリロニトリル等のニトリル類、アクリルアミ ド、メタクリルアミド、ピニルアミド、Nーメチロール アクリルアミド、N-メチロールメタクリルアミド、ジ アセトンアクリルアミド、ジアセトンメタクリルアミド 等のアミド類、塩化ビニル、塩化ビニリデン、ふっ化ビ ニル、モノクロロトリフルオロエチレン、テトラフルオ ロエチレン、クロロプレン等のハロゲン化エチレン系不 飽和単量体類、エチレン、プロピレン、イソプレン、ブ タジエン、炭素原子数4乃至20のα-オレフィン又は ジエン類、ラウリルビニルエーテル等のアルキルビニル エーテル類、ビニルピロリドン、4~ビニルピロリドン 等の含窒素ビニル類などを包含するエチレン系不飽和単 量体が挙げられ、とれらは1種又は2種以上を組み合わ せて使用することができる。

【0036】単量体(a-3)の使用量は、単量体(a-1)、(a-2)及び(a-3)の合計100重量部に対して、10~79重量部であり、10~70重量部が好ましく、30~65電量部がさらに好ましい。

【003.7】 [共重合] 共重合体成分(A) の共重合の

ができる。

際に、一般的には、単量体(a-3)として、アクリル 酸、メタクリル酸、マレイン酸、イタコン酸等のカルボ キシル基を有する化合物を用いる場合、重合中にゲル化 したり、塗膜形成後の塗膜上にブツが発生ずる場合があ るので好ましくない。

【0038】また、共重合体成分(A)の共重合の際 に、通常、単量体(a-3)として、t-ブチル(メ タ)アクリレートを用いる場合、脱溶剤時や塗料組成物 調製時の加熱により共重合体成分(A)のt-ブチル基 の分解が起こり、カルボキシル基を発生し、上記と同様 10 の問題が生ずる場合があるので好ましくない。

【0039】共重合体成分(A)のFoxの式により得 たガラス転移点 (Tg)計算値は、約20~約100℃ が好ましく、約30~約90℃がさらに好ましく、約5 0~約80℃が特に好ましい。Tgを20℃以上にすれ ば、塗料組成物の貯蔵安定性が向上する傾向がある。

【0040】[ガラス転移点計算値~ヘテロポリマーの ガラス転移点(Tg)の評価]特定の単量体組成を有す る重合体のガラス転移点(Tg)は、Foxの式により 計算により求めることができる。ここで、Foxの式と は、共重合体を形成する個々の単量体について、その単 量体の単独重合体のTg に基づいて、共重合体のTg を 算出するためのものであり、その詳細は、Bullet in of the American Physic al Society, Series2 1巻·3号· 123頁(1956年)に記載されている。

【0041】Foxの式による共重合体のTgを評価す るための基礎となる各種エチレン性不飽和単量体につい てのTgは、例えば、新高分子文庫・第7巻・塗料用合 成樹脂入門(北岡協三著、高分子刊行会、京都、197 4年) 168~169頁の表10-2 (塗料用アクリル 樹脂の主な原料単量体)に記載されている数値を採用す るととができる。

【0042】その記載は全て、引用文献及び引用範囲を 明示したことにより本出願明細書の開示の一部とし、明 示した引用範囲を参照するととにより、本出願明細書に 記載した事項又は開示からみて、当業者が直接的かつ一 義的に導き出せる事項又は開示とする。

【0043】[共重合体成分(A)の合成法]共重合体 成分(A)の合成法は、実質的に所望の特性を有するも 40 のが得られるのであれば、特に限定されない。

[0044] 共重合体成分(A) は、公知・公用の常法 により合成することができる。例えば、溶液重合法、乳 化重合法、懸濁重合法、塊状重合法を包含するラジカル 重合法により調製することができるが、特に、溶液重合 法が好適に用いられる。

【0045】[共重合体成分(A)の分子量]共重合体 成分(A)の分子量を調整する方法としては、ドデシル メルカプタンなどのメルカプタン類。ジベンゾイルスル フィドなどのジスルフィド類。チオグリコール酸2 エ 50 酸、セパシン酸、ドデカン2酸。エイコサン2酸の脱水

チルヘキシルなどのチオグリコール酸の炭素原子数1~ 18のアルキルエステル類、四臭化尿素などのハロゲン 化炭化水素類の連鎖移動剤、イソプロピルアルコール、 イソプロピルベンゼン、トルエン等の連鎖移動効果の大 なる有機溶剤の存在下に重合する等の手段を用いること

10

【0046】共重合体成分(A)の数平均分子量は、約 1,000~約30,000が好ましく、約2,000~ 約20,000がより好ましく、約2,500~約6,0 00が特に好ましい。数平均分子量が約1,000以上 であると、一般的には、塗料組成物の貯蔵安定性が良好 で好ましい。

【0047】共重合体成分(A)の数平均分子量は、ゲ ルパーミエーションクロマトグラフィー (GPC) によ り、ポリスチレンを標準として評価した。

【0048】 [硬化剤成分(B)] 本発明において、脂 肪族2価カルボン酸の直鎖線状酸無水物は、実質的に、 分子内にカルボキシル基を有する、線状のオリゴ又はボ リの脂肪族の酸無水物(アンヒドリド)であって、分子 内に実質的に存在するカルボキシル基及び酸無水物(ア ンヒドリド) 基を少なくとも2個有する化合物であれ ば、特に制限されず、1種類又は2種類以上を用いると とができる。

【0049】また、脂肪族2価カルボン酸等の脂肪族多 価カルボン酸等が直鎖線状酸無水物に不純物として残存 している場合があるが、熱硬化性粉体塗料組成物に悪影 響を与えない範囲であれば残存していても良い。

【0050】脂肪族2価カルボン酸の直鎖線状酸無水物 は、融点が約40~約150℃の範囲にあるように調製 することが好ましい。一般的には、脂肪族2価カルボン 酸の直鎖線状酸無水物の融点が約40℃以上で塗料組成 物の耐ブロッキング性が向上する傾向にある。また一般 的には、脂肪族2価カルボン酸の直鎖線状酸無水物の融 点が約150℃以下で塗料の加熱流動性が向上する傾向 があり、得られる塗膜について、平滑性等の外観特性が 向上する傾向にある。

【0051】との脂肪族2価カルボン酸の直鎖線状酸無 水物は、下記一般式(1)で表される。

[0052]

HO-[OC(CH2)mCOO]n-H(1)(m=4~20、n≥2の、それぞれ、自然数であ る。) なお、nの上限は20程度であることが好まし £1.

【0053】脂肪族2価カルボン酸の直鎖線状酸無水物 の具体例としては、例えば、コハク酸、アジピン酸、ア ゼライン酸、セパシン酸、エイコサン2酸及びドデカン 2酸等の脂肪族2価カルボン酸の中から選択された少な くとも1種の化合物から脱水縮合により誘導された直鎖 線状縮合物が挙げられる。これらのうち、アゼライン

直鎖線状縮合物がさらに好ましい。

【0054】脂肪族2価カルボン酸の直鎖線状酸無水物として、2種類以上の脂肪族2価カルボン酸の脱水縮合により誘導された直鎖線状酸無水物を使用することもできる。

11

【0055】 [脂肪族2価カルボン酸の直鎖線状酸無水物] 「脂肪族2価カルボン酸の直鎖線状酸無水物」なる語の概念には、「ポリマー状ポリ酸無水物」、「ポリマー骨格に酸無水物基を含有し、かつ、複数の酸官能基を含有する、ポリマー状ポリ酸無水物」、「脂肪族カルボ 10ン酸のポリ酸無水物」、「polymeric polyanhydride containing anhydride linkages in the polymeric backbone」及び「polyanhydride of aliphatic carboxylic acids」等をも包含する。

【0056】無水とはく酸や無水フタル酸のような、多価カルボン酸の環状酸無水物を、共重合体成分(A)と反応させると、該酸無水物は、共重合体成分(A)分子 20中の特定のグリシジル基のエポキシ環とのみ反応する確率が高いため、複数の共重合体成分(A)分子を橋架けする効果が小さいので、この化合物の使用は、通常、好ましくない。

【0057】本出願の明細書で用いる「アンヒドリド」、「アンヒドリド基」、「アンヒドリド結合」及び「ポリアンヒドリド」なる語の概念には、「MARUZ EN高分子大辞典—Concise Encyclopedia of PolymerScience and Engineering (Kroschwitz編、三田 達監訳、丸善、東京、1994年)」・996~998頁の「ポリアンヒドリド」の項に記載されているそれぞれの語に関する概念をも包含する。

【0058】その記載は全て、引用文献及び引用範囲を明示したことにより本出願明細書の開示の一部とし、明示した引用範囲を参照することにより、本出願明細書に記載した事項又は開示からみて、当業者が直接的かつ一義的に導き出せる事項又は開示とする。

【0059】なお、ボリアンヒドリドは、生分解性バイオ (メディカル) ボリマー材料及び該材料のドラッグデリバリーシステムへの応用に関する研究開発が旺盛であった1980年代初頭、MITの研究者たちにより精力的に研究され、注目されるようになった。

【0060】脂肪族2価カルボン酸の直鎖線状酸無水物は、例えば、溶融重縮合、溶液重縮合、界面重縮合などの方法によって合成することができる。

【0061】脂肪族2価カルボン酸の線状酸無水物の使用量は、共重合体成分(A)中のグリシシル基1当量に対して、脂肪族2価カルボン酸の直鎖線状酸無水物の分子内に存在するカルボキシル基及び酸無水物基が約0.

5~約2.0当量が好ましく、約0.7~約1.2当量がより好ましい。脂肪族2価カルボン酸の直鎖線状酸無水物の使用量が上記範囲であれば、得られた塗膜は外観が良好で、耐溶剤性、耐衝撃性、耐候性等の特性が優れている。

【0062】[硬化触媒成分(C)]硬化触媒成分

(C)は、共重合体成分(A)及び硬化剤成分(B)と 併用することによって、塗料の貯蔵安定性を損なわず に、成分(C)を用いない場合と比較して、塗料焼き付 け条件がより低温、短時間で、かつ良好な塗膜物性のも のを実質的に得ることができるものであれば特に制限さ れない。

【0063】本発明において、硬化触媒成分(C)は、 下記一般式(2)

 $R_1 S n X_k$ (2)

(j及びkは、j+k=2となる、0又は自然数である。Xは、Nロゲン、OH、OR'、SR'又はOCOR'である。R及びR'は、それぞれ独立して、アルキル基又はTリール基である。)で示される化合物からなり、1種類又は2種類以上を用いることができる。なおR及びR'がアルキル基の場合、その炭素原子数は6~18程度が好ましい。

【0064】上記の化合物の好ましい具体例としては、例えば、ヘキサン酸第一錫塩、オクタン酸第一錫塩、ラウリル酸第一錫塩、ステアリン酸第一錫塩、2-エチルヘキサン酸第一錫塩、塩化第一錫塩、臭化第一錫塩等が挙げられる。

【0065】特に、より好ましい具体例としては、例えば、ヘキサン酸第一錫塩、オクタン酸第一錫塩、ラウリル酸第一錫塩、ステアリン酸第一錫塩等が挙げられる。 【0066】硬化触媒の他の具体例としては、例えば、4級アンモニウム塩、ホスホニウム塩、ホスフィン、イミダゾール、アミン、メラミン系の化合物が挙げられるが、粉体塗料組成物の態様によっては、これらの化合物が、粉体塗料組成物の貯蔵安定性や塗膜特性(平滑性等の外観)に関し、問題となる場合がある。

【0067】一方、本発明に使用する硬化触媒成分(C)は、粉件涂料の貯益時には硬化促進効果を発

(C)は、粉体塗料の貯蔵時には硬化促進効果を殆ど示さず、粉体塗料の貯蔵安定性(化学的安定性)も良好であるが、100℃以上の粉体塗料の焼き付け温度領域では硬化促進効果が顕著に発現する。

【0068】硬化触媒成分(C)の使用量は、一般的には、共重合体成分(A)及び硬化剤成分(B)の合計 I 00重量部に対して、約0.005~約3重量部が好ましく、約0.01~約2重量部がより好ましい。硬化触媒成分(C)の使用量を3重量部以下にすれば、一般に、塗料組成物の貯蔵安定性が良好で、硬化反応が適当な速さで、塗膜の平滑性、塗料の貯蔵安定性が保たれる。

1 【0069】] 硬化触媒成分(C)の特徴] 硬化触媒成

(8)

分(C)は、特に温度40℃、相対湿度90%以上のような、温度及び湿度の高い条件下においても塗料の貯蔵安定性が損なわれない点、塗料の焼き付け温度領域に達すると硬化促進効果が顕著に発現する点で特徴的である。硬化触媒として、特開平5-112743号及び特開平5-132634号に開示されているような、第三アミン又は、カルボン酸の金属塩であるオクタン酸ナトリウムやステアリン酸カルシウムを、成分(A)及び

(B) と併用した場合、低温溶融性/低温硬化性と貯蔵 安定性の両方を満足することは困難である。

【0070】[添加剤]本発明においては、通常、塗料 に添加される種々の添加剤を使用できる。

【0071】例えば、本発明の粉体塗料組成物には、目的に応じ、適宜、エポキシ樹脂、ポリエステル樹脂、ポリアミドなどを包含する合成樹脂組成物、繊維素又は繊維素誘導体などを包含する天然樹脂又は半合成樹脂組成物を配合して塗膜外観又は塗膜物性を向上させるととができる。

【0072】また例えば、本発明の粉体塗料には、目的 に応じ、適宜、顔料、流動調整剤、チクソ剤(チクソト 20 ロピー調整剤)、帯電調整剤、表面調整剤、光沢付与 剤、ブロッキング防止剤、可塑剤、紫外線吸収剤、ワキ 防止剤、酸化防止剤等の添加剤を配合することもでき る。

【0073】 [粉体塗料組成物の混練について] 成分(A) 及び(B)、又は成分(A)、(B) 及び(C) を含む組成物を機械的に混練する際の被混練物の温度は、実質的に均一な粉体塗料組成物を調製できれば特に制限されない。

【0074】溶融混練装置としては、通常、加熱ロール機、加熱ニーダー機、押出機 (エクストルーダー)等を使用する。

【0075】本発明の熱硬化性粉体塗料組成物を配合する方法の具体例としては、ロール機、ニーダー機、ミキサー(バンバリー型、トランスファー型等)、カレンダー設備、押出機(エクストルーダー)等の混練機や捏和機を、適宜、組み合わせ、各工程の条件(温度、溶融若しくは非溶融、回転数、真空雰囲気、不活性ガス雰囲気等)を、適宜、設定して、充分に均一に混合し、その後、粉砕装置により、均一な微細粉末状態の粉体塗料組 40成物を得る方法を採用することができるが、これらに限定されるものではない。

【0076】本発明の粉体塗料組成物に添加剤等を加える配合混練工程の一態様を例示すると、本発明の熱硬化性粉体塗料組成物に、必要に応じ、ブロッキング防止剤、表面調整剤、可塑剤、帯電調整剤、顔料、充填剤、增量剤等の添加剤を加え、約40~約130°Cの範囲で、充分に溶融混錬し、冷却後、適当な粒度(通常、約100メッシュ以下)に均一に粉砕し、粉体塗料を得る。

【0077】[塗装方法及び焼付方法]粉砕により得られた粉体塗料は、塗装対象物に付着せしめ、加熱、熱硬化させ塗膜を形成させる。

【0078】本発明の熱硬化性粉体塗料組成物を塗装する方法の具体例としては、例えば、静電塗装法、流動浸積法等、公知の塗装方法が挙げられる。

【0079】また、本発明の熱硬化性粉体塗料組成物を上塗り塗料として用いる場合、その下塗り塗料として、従来の溶剤型塗料のみならず、水性塗料を用いた場合に 10 おいても、焼き付け後の塗膜は溶剤型塗料を用いた場合と同様に、本発明の塗料は優れた特性を有する。

【0080】即ち、水性下塗り塗料(顔料入り及び/又は金属粉入りを含む)を塗装し、所定の時間乾燥させた後、本発明の熱硬化性粉体塗料組成物を上記の方法によって下塗り塗料の上に付着せしめ、加熱して熱硬化させ塗膜を形成させる。

【0081】本発明の熱硬化性粉体塗料組成物の焼付けは、通常100~200℃の範囲内の温度で行なう。好ましくは約100~約160℃、さらに好ましくは約120~約150℃の温度において、通常約10~約60分間行なうことにより、共重合体成分(A)と硬化剤成分(B)の架橋反応を行なうことができる。焼付け後、室温まで冷却し、優れた特性を有する塗膜を得ることができる。

【0082】本発明の熱硬化性粉体塗料組成物を適用し得る塗装方法は、自動車の車体又は自動車部品へも用いられる。特に、この自動車の車体又は自動車部品のトップコートとして、非常に有用である。

【0083】[語「誘導体」の概念]本出願の特許請求 30 の範囲及び明細書において用いる「誘導体」なる語の概 念には、特定の化合物の水素原子が、他の原子あるいは 原子団Zによって置換されたものを包含する。

【0084】とこで Z は、少なくとも 1 個の炭素原子を含む 1 価の炭化水素基であり、より具体的には、脂肪族、実質的に芳香族度の低い脂環族、これらを組み合わせた基、又はこれらが水酸基、カルボキシル基、アミノ基、窒素、硫黄けい素、りんなどで結合されるような残基であってもよく、これらのうち特に、狭義の脂肪族系の構造のものが好ましい。

〇 【0085】 Zは、上記のものに、例えば、水酸基、アルキル基、シクロアルキル基、アリル基、アルコキシル基、シクロアルコキシル基、アリルオキシル基、ハロゲン(F、C1、Br等)基等が置換した基であってもよい。

【0086】これらの置換基を適宜選択することにより、本発明の粉体塗料組成物により形成される塗膜の諸特性を制御することができる。

【0087】[語「貯蔵安定性」の概念]本出願の明細書において用いる「貯蔵安定性」なる語の概念には、粉50体塗料の物理的な安定性(耐ブロッキング性)及び化学

(9)

16

的な安定性(耐固相反応性)を包含する。

[8800]

【実施例】以下に説明する実施例、製造例及び態様は、 本発明の内容の理解を支援するためのものであって、そ の記載によって、本発明が何ら限定される性質のもので はない。説明中「部」及び「%」は、特に説明のない限 り重量での値である。

15

【0089】[製造例1] 共重合体成分(A)の製造 撹拌機、温度計、還流コンデンサー及び窒素導入管を備 えた4つ口フラスコにキシレン66.7部を装入し、遠 10 Foxの式に計算により求めた。 流温度まで撹拌しながら昇温した。還流温度まで達した 後、表-1に示す単量体と、重合開始剤である t -ブチ ルーパーオキシー2ーエチルヘキサノエート(商品名パ ープチル〇、日本油脂株式会社製)を、5時間にわたり 滴下し、さらにその後1時間保持した後、100℃にて*

*パーブチル〇を0.5部滴下し2時間保持した。得られ た重合溶液から溶剤を除去することにより、共重合体成 分(A-1)を得た。

【0090】また、表-1に示すように、モノマーの種 類及びモノマー組成を変化させて各種の共重合体成分 (A-2)~(A-5)を得た。

【0091】共重合体の諸物性は、以下の方法により測 定した。

- (1)ガラス転移温度(Tg);モノマー組成に基き、
 - (2)数平均分子量(Mn);GPCにより、ポリスチ レンを標準として測定した。

[0092]

【表】】

表-1 製造例1:共重合体成分(A)の製造

	A-1	A-2	A-3	A-4	A – 5
ST	10.0	20.0	0	45.0	10.0
MMA	39. 3	32.1	43.5	10.6	0
nBMA	10.7	0	16.5	4.4	0
iBMA	0	17.9	0	0	75.0
GMA	40.0	30.0	40.0	40.0	15.0
PB-O	4.0	3.8	3.5	4.2	3.8
Тg	70	71	65	75	60
Mn	3200	2700	2800	3800	2500
1		1		l	

[凡例]

ST: スチレン

MMA: メチルメタクリレート

nBMA:n-ブチルメタクリレート i BMA: iso プチルメタクリレート GMA: グリシジルメタクリレート

PB-O:t-ブチルーパーオキシー2ーエチルヘキサノエート。

【0093】 [製造例2] 脂肪族2価カルボン酸の直 鎖線状酸無水物の製造

ドデカン2酸1モル、無水酢酸0.8モルを反応容器に 装入し、150℃まで昇温し、無水酢酸が系外に流失し ないように、生成してくる酢酸を真空ラインで除去しな 40 がら、5時間反応させた。その後、直ちに冷却し、白色 の固形物を回収し、ドデカン2酸の直鎖線状無水物を得 た。この化合物の融点は73~82℃であった。

【0094】また、セバシン酸の直鎖線状無水物につい ても、セパシン酸を用いて同様の方法で製造して融点7 2~81℃のものを得た。さらに、他のカルボン酸直鎖 線状無水物についても同様の方法で製造した。

【0095】「性能評価」後に説明する実施例及び比較 例で得た粉体塗料は、下記の方法で評価した。

(1) 平滑性

塗膜外観を観察し、特に平滑性の優れているものを向。 僅かに凸凹のあるものを○、平滑性の劣るものを×とし た。

(2)鲜映性

DO I メーター(Paul N. Gardner社製)を用い、GM91 013に準拠して塗膜の評価を行った。DOI値が90 以上100以下のものを鮮映性が優れている塗膜として ◎の判定とし、70以上90未満のものを○、70未満 を鮮映性の劣っている塗膜として×とした。

(3)光沢

光沢計での測定(60) グロス)値で示した。

(4) 耐衝撃性試験 (デュポン式衝撃性試験)

JIS K5400 6.13.3に従って実施した。 ととで採用したおもりの重量は、500gである。評価

50 結果の数値は、途膜に割れやはがれの発生した落下高さ

•

で示した。

(5) 密着性

エリクセン試験機にて測定し、塗膜が剥離したときの値 (mm)を示した。

17

(6) 耐溶剤性

キシロールを含浸させたガーゼで、塗膜表面を往復50回擦った後観察を行った。痕跡の無いものを⑤、僅かに痕跡の付いているものを〇、痕跡のあるものを×とした。

(7) 耐擦傷性

塗膜表面を、0.3%のクレンザー懸濁液を用いて、ブラシで摩擦する擦傷試験を行い、該摩擦の前後で光沢値を評価し、光沢保持率を算出した。光沢保持率が60%以上のものを、耐擦傷性がある塗膜として◎の判定をし、50~60%を○、40~50%を△、それ以下を擦傷性の無い塗膜として×と判定した。

(8) 耐候性試験

QUVテスターによる4000時間の促進テストを行い、促進テスト前後の塗膜の光沢(60°)を測定し、 光沢残存率(%)を求めた。光沢残存率は次式により計 20 算した。

光沢残存率(%) = (促進試験後の60°光沢度)÷ (促進試験前の60°光沢度)×100

光沢保持率が80%以上のものを◎、70~80%のものを○、60~70%のものを△、それ以下のものを×とした。

(9)粉体塗料の貯蔵安定性試験①(耐ブロッキング性 試験)

粉体塗料を、温度40°C、相対湿度90%で14日間貯蔵後のブロッキング状態を目視及び指触で観察した。そ 30の結果、全く異常のないものを◎、やや劣るものを○、劣るものを×とした。

(10)粉体塗料の貯蔵安定性試験**②**(耐固相反応性試験)

粉体塗料を上記条件にて貯蔵後、10mmφ、0.3gのペレット状粉体塗料を調製し、プレート上に貼着した後、垂直に保ち、140℃で、30分間、焼付けした際のペレットの垂れ状態を測定した。150mm以上垂れているものを耐固相反応性が優れている粉体塗料として◎の判定をし、100~150mmを○、それ以下を× 40とした。

(11) 塗膜の耐黄変性試験

粉体塗料を白色アクリル系ペースコート上に塗装し、140℃で、30分間又は150℃、60分間焼き付けをした際の塗膜の黄変状態を、色差計(東京電色(株)製)を用いて、粉体塗装を行っていない白色アクリル系ペースコートに対する色差(△E=デルタE)を算出した。数値が小さい方が塗膜の耐黄変性に対して良好であ

【0096】<実施例1~8、比較例1~13>

[粉体塗料の調製] 共重合体成分(A)、硬化剤成分

18

(B)及び硬化触媒成分(C)を表-2及び表-3に示す割合で配合し、成分(A)及び(B)の合計100部に対して、商品名レジミックスRL-4(三井東圧化学株式会社製、低粘度アクリル樹脂、流動調整剤)、商品名チヌピン144(チバガイギー社製、光安定化剤)、ベンゾイン(ワキ防止剤)を各1部ずつ、商品名チヌピン900(チバガイギー社製、紫外線吸収剤)を2部添加し、充分に均一混合させた後、上記混合物を二軸押出機を用いて、60℃の条件下で溶融混練し、冷却後、粉砕機にて微粉砕して、150メッシュのふるいを通過した区分を回収し、粉体塗料を調製した。

【0097】[下地処理鋼板の調製] 燐酸亜鉛処理を施した0.8mm厚の梨地鋼板に、ボリエステルーメラミン架橋の黒色塗料を20μmの膜厚で塗装し、その後焼付して下地処理鋼板を調製した。

【0098】[テスト板の調製、塗装及び焼付け]本発明の方法で得た粉体塗料及び比較例で得た粉体塗料を、上記下地処理鋼板上に膜厚が60~70μmになるように静電塗装し、140°Cで30分間焼き付けを行い、テスト板を得た。

【0099】実施例 $1\sim8$ で形成した粉体塗料及び塗膜の評価を行った結果を表-4、表-6 に示す。またこれに関連する比較例 $1\sim13$ で形成した粉体塗料及び塗膜の評価を行った結果を表-5、表-7 に示す。

【0100】表-2に示した実施例1~8の粉体塗料は本発明の特許請求の範囲内であり、硬化剤成分(B)の種類や、硬化触媒成分(C)の種類及び重量を変化させた実験であり、これらの結果は優れた塗膜の外観、物性及び耐候性、塗料組成物の優れた貯蔵安定性を示している。

【0101】比較例1、3は硬化触媒を使用しなかった例であり、この場合塗膜の焼き付けが不十分であり塗膜の物性及び耐候性が劣っている。

【0102】比較例1、2は硬化剤として脂肪族2価カルボン酸を使用した例であり、この場合外観及び耐擦傷性が劣っている。

【0103】比較例4はスチレンを含まない共重合体を 使用した例であり、この場合塗膜の外観及び塗料の貯蔵 安定性が劣っている。

【0104】比較例5は共重合体中にスチレンを過剰に含む場合であるが、この場合塗膜の耐候性が劣っている。

【0105】比較例6は共重合体のグリシジル基が本発明の範囲外の場合で、グリシジル基が少なすぎるので塗験物性と耐候性が劣っている。

【0106】比較例7は硬化剤として芳香族の酸無水物を使用した例であり、この場合種々の性能が劣っている。

50 【0107】比較例8.9は硬化触媒として、本発明外

20

のカルボン酸の金属塩を使用した例であり、この場合塗 膜の耐擦傷性及び耐候性が劣っている。

19

【0108】比較例10、11は硬化触媒として、本発明外のアミン系の化合物やその塩を使用した例であり、 この場合は塗料の貯蔵安定性や過熱時の耐黄変性が劣っている。

【0109】比較例12は、テトラペンタデシルチタネ

*安定性が劣っている。

【0110】比較例13は、硬化触媒として本発明の範囲外であるジブチル錫ジラウレートを硬化触媒として用いた例であり、硬化促進が不十分で耐溶剤性や耐擦傷性が劣っている。

[0111]

【表2】

ートを塗料の成分として使用した例であり、塗料の貯蔵*

表-2 実施例1~8における強料組成

	共重合体(A)	硬化剤 (B)	触媒(C)
実施例1	A-1	DDA無水物	so
1	(67.6)	(32.4=1.0当量)	(0.5)
実施例2	A-1	DDA無水物	SS
	(67.6)	(32.4=1.0当量)	(0.5)
実施例3	A-1	DDA無水物	so
	(69.1)	(30.9=0.8当量)	(0.5)
実施例4	A-2	DDA無水物	so
	(73.3)	(26.7=1.0当量)	(0.5)
実施例 5	A-1 .	DDA無水物	so
	(67.6)	(32.4=1.0当量)	(0.1)
実施例 6	A1	DDA無水物	so
	(67.6)	(32.4=1.0当量)	(1. D)
実施例 7	A-1	セパシン酸無水物	so
	(71.7)	(28.3=1.0当量)	(0.5)
実施例8	A-1	セパシン酸無水物	SS
	(71.7)	(28.3=1.0当量)	(0.5)

1凡例

DDA無水物:ドデカン2酸の脱水縮合物 物 92酸無水物:セパシン酸の脱水縮合物

SO:オクタン酸第一錫塩 SS:ステアリン酸第一錫塩

[0112]

【表3】

21 表-3 比較例1~13における塗料組成

		T	<u> </u>
	共革合体(A)	硬化剤 (B)	触媒 (C)
比較例1	A – 1	DDA	
70,771	(76.8)	(23.2=1.0当量)	
比較例2	A-1	DDA	so
ICECP1 Z	(76.8)	(23.2=1.0当量)	(0. 5)
比較例3	A-1	'	(0. 5)
TERCON 2		DDA無水物	
	(67.6)	(32.4=1.0当量)	
比較例 4	A – 3	DDA無水物	so
	(67.6)	(32.4=1.0当量)	(0.5)
比較例 5	A-4	DDA無水物	so
	(67.6)	(32, 4=1,0当量)	(0.5)
比較例6	A – 5	DDA無水物	so
	(85.8)	(14.2=1.0当量)	(0.5)
比較例7	A – 1	テレフタル酸無水物	so
	(74. 5)	(25.5=1.0当量)	(0.5)
比較例8	A – 1	DDA無水物	DSO
	(67.6)	(32.4=1,0当量)	(0.5)
比較例9	A – 1	DDA無水物	cs
	(67.6)	(32, 4=1,0当量)	(0. 5)
比較例10	A-1	DDA無水物	M-2HT
	(67. 6)	(32, 4=1,0当量)	(0, 5)
比較例11	A-1	DDA無水物	DBU-Fa
	(67.6)	(32. 4=1.0当量)	(0, 5)
比較例12	A-1	DDA無水物	TPT
707273 1 0	(67. 6)	(32.4=1.0当量)	(0. 5)
比較例13	A-1	DDA無水物	DTL
N'EX DAI T 2			
	(67.6)	(32. 4=1.0当量)	(0.5)

[凡例]

DDA:ドデカン2酸

DDA無水物:ドデカン2酸の脱水縮合物 ポックチ酸無水物:デレフタル酸の脱水縮合物

SO:オクタン酸第一錫塩

DSO: オクタン酸ナトリウム塩 CS: ステアリン酸カルシウム塩

M 2 H T: A R M E E N M 2 H T (アミン系触媒、ライオンロクツ 株式会社製) D B U - Fa: D B U + 酸塩 (1, 8 ジアザ ビシクロ酸 [5, 4, 0] ウンデ

センー?と蟻酸から生成するアミン塩) TPT:テトラベンタデシルチタネート DTL:ジプチル錫ジラウレート

[0113]

【表1】

表-4 実施例1~8における評価結果-(1)

	平滑性	鮮映性	光沢	耐衝擊性	密 着性	溶剤性	耐擦傷性
実施例1	0	©	95	50<	8<	0	©
実施例2	0	0	93	15	8<	0	0
実施例3	©	0	96	50<	8<	©	0
実施例4	0	0	8 5	45	7. 0	0	©
実施例5	0	0	86	4 5	7. 0	0	©
実施例6	0	0	8 5	50<	7. 0	0	٥
実施例7	0	0	96	50<	8<	0	0
実施例8	0	0	90	50<	7. 5	0	0

[0114]

* * (表5)

表-5	比較例1~1	3における評価結果-	(1)
-----	--------	------------	-----

	平滑性	鮮殃性	光沢	耐衝擊性	密着性	溶剤性	耐擦傷性
比較例1	0	6	90	20	2. 0	×	×
比較例2	Δ	×	76	30	4. 5	0	Δ
比較例3	Q	0	83	30	4.0	×	Δ
比較例4	0	0	78	45	8<	0	•
比較例5	Ø	©	92	50<	8<	0	0
比較何6	0	O	93	<15	1.5	×	×
比較例7	×	×	45	20	2. 0	×	×
比較例8	0	0	8.3	30	6.5	×	Δ
比較例9	0	0	79	4.5	8<	×	Δ
比較例10	O	Δ	58	30	4.0	0	Δ
比較例11	0	0	8 5	20	3.5	×	Δ
比較例12	Ø	0	8 1	30	7. 0	0	Δ
比較例13	0	0	84	3 0	4. 0	×	Δ

[0115]

※ ※【表6】

表-6 実施例1~8における評価結果-(2)

	耐候性	貯蔵3	安定性	耐黄変性	(ΔE)
		耐プロッテング	耐固相反応 性	通常条件下 140℃,30分	過熱条件下 150℃,60分
実施例1 実施例2	O	O	O	1. 4 1. 5	1. 8
実施例3	O .	O	0	1.3	1. 7
実施例4	0	0	©	1.3	1.7
実施例5	0	0	Ø	1.4	1.7
実施例6	0	Ø	•	1. 5	1.8
実施例7	0	©	•	1. 3	1.5
実施例8	0	0	•	1. 4	1.8

[0116]

表-7 比較例1~13における評価結果- (2)

	耐候性	貯蔵安定性		耐黄変性	(ΔE)
		耐プロゥキンク゚ 性	耐固相反応 性	通常条件下 140℃,30分	加热条件下 150℃,60分
比較例1	×	©	0	2. 0	2.8
比較例2	0	0	0	1. 3	1.7
比較例3	×	0	•	1.5	1. 9
比較例4	0	×	×	1. 3	1.9
比較例5	×	©	•	1.6	2. 2
比較例6	×	0	0	1. 2	1.6
比較例7	×	0	0	2. 0	3.6
比較例8	×	•	0	1.3	1.7
比較例9	×	•	•	1.4	1.8
比較例10	Δ	×	×	1.4	3.8
比較例11	×	×	×	1.5	3.9
比較例12	Δ	×	×	1.8	2.4
比較例13	×	0	0	1. 4	1. 6

[0117]

【発明の効果】本発明によれば、 粉体塗料に関する従来 技術によっては達成することが困難であった。

25

- ① 塗膜形成前(貯蔵時)における、優れた安定性、
- ② 塗膜形成時における、優れた低温溶融性/低温硬化性
- ③ 塗膜形成後における、優れた塗膜特性・物性、 を同時発現することができる熱硬化性粉体塗料組成物を 提供できる。

【0118】本発明の熱硬化性粉体塗料組成物は、特に、自動車の車体、及び、自動車部品(アルミホイール、ワイパー、ビラー、ドアハンドル、フェンダー、ボンネット、エアスポイラー、スタビライザー、フロントグリル等)の塗装-特に、上塗り塗装(トップコート)*

*一に好道に適用される。

【0119】上記トップコートの塗膜には、

- ① 外觀特性(平滑性、鮮映性等)、
- ② 物理特性(耐衝撃性、耐擦傷性、密着性等)、
- ③ 化学特性(耐酸性、耐酸性雨、耐溶剤性、耐ビッチ等)、
- ② 耐候性や耐紫外線性、
- に関し、厳しい品質を要求されるが、本発明の熱硬化性 30 粉体塗料組成物は、粉体塗料であるにもかかわらず、そ のような要求に充分に応えることができる。

【0120】また、本発明の熱硬化性粉体塗料組成物は、水性下塗り塗料の上に塗装、焼き付けした場合においても、上記の優れた性能を発揮することができる。

フロントページの続き

212:08)

(51)Int.Cl.		識別記号	ΓI	
C 0 8 G	59/36		C 0 8 G	59/36
	59/42			59/42
	59/68			59/68
C09D1	57/06		C 0 9 D	157/06
(C08F2	20/12			
2	20:32			

(72)発明者 松本 剛

神奈川県横浜市栄区笠間町1190番地 三井 化学株式会社内 (72)発明者 川崎 栄

大分県別府市ルミエールの丘 H=88