

Summary of previous lecture

Summary of previous lecture

Agenda

- Introduction to Density-Based clustering
- DBScan
- HDBscan and OPTICS
- Final considerations and wrap-up on clustering techniques

Density-based clustering

- Density based clustering are based on connectivity and density functions!
 - 🖒 Discovers clusters of arbitrary shape
 - 👍 Handle noise
 - 👍 No initial assumption on the n. of clusters

• P Requires to tune density parameters

Density-based clustering

Main concepts

- Core objects: Objects with at least m other objects within a radius (neighborhood).
- Direct Density Reachable: An object i is DDR to a core object j if it lies in j neighborhood.
- Density reachable: A point i is DR to j if there is a chain of DDR objects between i and j.
- Density-Based Cluster: Connected objects w.r.t a maximum reachability

- Example with m = 3
 - a and b are directly density reachable
 - a and c are density reachable
 - a and d are not density reachable

Density-based clustering

Main concepts

- Core objects: Objects with at least m other objects within a radius (neighborhood).
- Direct Density Reachable: An object i is DDR to a core object j if it lies in j neighborhood.
- Density reachable: A point i is DR to j if there is a chain of DDR objects between i and j.
- Density-Based Cluster: Connected objects w.r.t a maximum reachability

- Example with m = 3
 - a and b are directly density reachable
 - a and c are **not** density reachable
 - a and d are not density reachable

DBScan

Density-BaSed Clustering for Application with Noise

- Two parameters
 - **Eps**: Maximum radius of the neighborhood.
 - MinPts: Minimum number of points in an Eps-neighborhood (including the core point).
- A point is a core point if it has more than MinPts points within Eps
- A point is a **border** point if it has fewer than *MinPts* points within *Eps*, but is in the neighborhood of a core point
- A **noise** point is any point that is not a core point or a border point

DBScan

The algorithm

```
Identify all core points
cluster_label ← 0

for all core points in data do
   if core point has no cluster_label then
        cluster_label ← cluster_label + 1
        assign cluster_label to core point
   endif
   for all points in eps-neighborhood(core point)) do
        if point has no cluster_label then
            assign cluster_label to point
        endif
   endfor
endfor
```


Eps = 1 cm, MinPTS = 3

Identify all core points cluster_label ← 0

- border points
- core pointsnoise points

Eps = 1 cm, MinPTS = 3

if core point has no cluster_label then cluster_label ← cluster_label + 1 assign cluster_label to core point for all points in eps-neighborhood(core point)) do if point has no cluster label then assign cluster_label to point

endif endfor

- border points core points
- noise points

Eps = 1 cm, MinPTS = 3

border pointscore pointsnoise points

Eps = 1 cm, MinPTS = 3

Eps = 1 cm, MinPTS = 3

border pointscore pointsnoise points

Eps = 1 cm, MinPTS = 3

border pointscore pointsnoise points

Eps = 1 cm, MinPTS = 3

- border pointscore points
- onoise points

Eps = 1 cm, MinPTS = 3

- border pointscore points
- onoise points


```
Eps = 1 cm, MinPTS = 3
```


border pointscore pointsnoise points

Eps = 1 cm, MinPTS = 3

border pointscore pointsnoise points

DBSCAN: Determining EPS and MinPts

MinPts

- Conceptually it translates to the min. desired cluster size
- MinPts = 1 does not make sense
- Rule-of-Thumb: minPts ~= num_features * 2
- In any case: minPts >= num_features + 1

Eps

- Calculate the average of the distances of every point to its *k*-nearest neighbors (with K = MinPts).
- Next, these k-distances are plot in ascending order.
- A knee corresponds to a threshold where a sharp change occurs along the k-distance curve. Hence it indicates the optimal eps parameter.

Example: MinPts = $4 \rightarrow$ Eps \sim = 10

Effect of varying Eps

Eps = 1 cm, MinPts = 3

Larger eps → larger clusters

Smaller eps → more noise

Coding session

fpc::dbscan(...)

dbscan::dbscan(...)

Hdbscan

• To understand Hdbscan we are going to take a synthetic example in **one dimension**

Hdbscan

Hierarchical representation of densities

OPTICS (just a short mention)

Main concept

OPTICS

Extracting clusters

Static threshold (eps)

- Extract clusters by setting an eps threshold.
- Result is equivalent to dbscan, with the exception of border points (here marked as noise)

OPTICS

Extracting clusters

Dynamic threshold (Xi)

- Extract clusters hierarchically based on the steepness of the reachability plot.
- Xi = Change in relative cluster density. T

Coding session

dbscan::hdbscan(...)

dbscan::optics(...)

One last word on clustering

On the similarity measure

- The choice of the similarity measure has a large impact in the clustering results
- The choice is not easy and at the beginning there will be a lot of trial & error.
 - Do not use the same similarity measure if features are of different type (unless it was designed for this purpose). One-hot-encoding must be used only with extreme caution!
 - **Euclidean** and **Manhattan** are very good for compact and isolated clusters. They are sensible to outliers and to the number of dimensions, they should not be used for many dimensions.
 - Cosine is very popular for very large number of dimensions (documents, webpages, trajectories)
 - Jaccard or Dice are very popular and almost always a good choice for binary features.
 - **Correlation**-based (**Pearson**, **Spearman**) measures can also be used when we are not interested in the geometrical distance but rather in their correlation.
 - Gower is a popular distance for mixed data types.
 - For very large number of dimensions, other clustering techniques exist (e.g. *subspace* clustering)

Coding session

daisy::gower()