Question – 1 Solution:

a) General Integer Linear Programming for Minimum Vertex Cover

- A decision variable x_a is taken ∀ a ∈ Vertices V
- $x_a = 1$ -> we place the 'a' vertex into the cover $x_a = 0$ -> we don't place the 'a' vertex into the cover
- We used Linear cost function and linear constraints on the variables x_a
 To formulate Weighted Vertex Cover Problem

Weights (W) = (w_1, w_2, \dots, w_a) are the weights for the vertices.

- Minimize the total weights of the vertices in the Cover which subject to the vertices in C form a cover
- Total Weight = $\sum_{a \in C}$ weight (V) = $\sum_{a \in V}$ weight (V) * x_a

Instead of taking the sum over vertices in the cover, we can take the formulated variable weight multiplied by the vertex x_a

- If a is in cover x_a = 1 else x_a = 0
- Constraints:

Vertices form a cover $a \in C$ or $b \in C \forall (a, b) \in Edges E$ $x_a + x_b >= 1 \forall (a, b) \in Edges E$ $x_a \in \{0,1\} \forall a \in Vertices V$

Minimize $\Sigma_{a \in V}$ weight (V) * x_a subject to $x_a + x_b >= 1 \forall (a, b) \in Edges E$ and $x_a \in \{0,1\} \forall a \in Vertices V$

Algorithm:

Begin: Weighted_Vertex_Cover_LP(G)

- 1) Generate the linear programming corresponding to graph G.
- 2) Minimize $\Sigma_{a \in V}$ weight (V) * x_a subject to $x_a + x_b >= 1 \forall (a, b) \in Edges E and <math>x_a \in \{0,1\} \forall a \in Vertices V$
- 3) Solve the 0/1 Linear programming
- 4) Cover C <- $\{a \in Vertices V: x_a = 1\}$
- 5) Return Cover C

End

0/1 Linear Programming is NP-Hard (not a feasible solution)

b) Integer Linear Programming for the given graph

1) Objective: Minimize $\sum_{a \in V}$ weight $(V) * x_a$

$$1 * x_1 + 2 * x_2 + 3 * x_3 + 4 * x_4 + 5 * x_5 + 6 * x_6$$

2) Subject to:

$$x_1 + x_2 >= 1$$

 $x_2 + x_3 >= 1$
 $x_3 + x_4 >= 1$
 $x_3 + x_6 >= 1$
 $x_4 + x_6 >= 1$
 $x_4 + x_5 >= 1$
 $x_1 + x_6 >= 1$
 $x_5 + x_6 >= 1$

Such that
$$x_2 = x_4 = x_6 = 1$$

 $x_1 = x_3 = x_5 = 0$

the above can be written in matrix form as where variables = vertices = columns in A and constraints = edges = rows in A

$$AX >= b$$

$$A = \begin{pmatrix} 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \end{pmatrix} X = \begin{pmatrix} x & 1 \\ x & 2 \\ x & 3 \\ x & 4 \\ x & 5 \\ x & 6 \end{pmatrix} B = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$$

3) Considering the greedy approach, we get $x_1 = x_3 = x_5 = x_4 = 1$ and $x_2 = x_6 = 0$ so the suboptimal cost is 13 whereas optimal $x_2 = x_4 = x_6 = 1$ and $x_1 = x_3 = x_5 = 0$ cost is 12

Sub-optimal value <= 2 * optimal value 13 <= 2*12 13 <= 24

Question 2 Solution:

a. General ILP for Minimum Dominating Set

- a decision variable x_a , $\forall a \in V$ (vertices)
 - a) $x_a = 1 => we place a in the cover$
 - **b)** $x_a = 0 \Rightarrow$ we don't place a in cover
- We then formulate the weighted vertex cover using cost functions and linear constraints on the variables x_a as Weights (W) = (w_1, w_2, \dots, w_a)
- Minimize total weight of vertices in V subject to vertices in D form a dominant set of total weight = $\Sigma_{a\in D}\,d_a$
- Instead of taking the weight for every vertex we take the formulated variable weight multiplied by vertex x_a (if it is in x_a we take $x_a = 1$ and 0 otherwise)
- Minimize $\Sigma_{a \in D} W_a$. x_a , subject to the vertices form a cover if
 - c) $a \in Dominant Set or all the adjacent vertices in Dominant set, <math>\forall (a, b) \in E$
 - **d)** Implies that $x_a=1$, $x_a\in Dominant$ Set, $x_a+\Sigma_{j\in N(a)}$ $x_j\geq 1$, $N=\{Neighboring vertices of i\}$
 - e) $X_a + \Sigma_{j \in N(a)} x_j \ge 1$, \forall neighboring edges $\in E \rightarrow$ this condition is to ensure the domination
- $X_a \in \{0, 1\}, \forall a \in V$

Algorithm:

Begin: Weighted Dominating Set LP(G)

1. while there exist, non-dominated vertices do

randomly select a vertex a from all non-dominated vertices; select a vertex $u \in N[a]$ with the highest degree. W := W U {a};

- 2. Generate LP corresponding to G
 - Minimize $\sum_{a \in D} W_a$. x_a

- Subject to $x_a + \sum_{j \in N(a)} x_j \ge 1$, $N = \{\text{Neighboring vertices of a}\}$
- $x_a \in \{0, 1\}$, \forall $a \in V$ -> this is not a linear constraint and that's why it is called as integer linear programming
- 3. Solve the linear programming problem
- 4. Dominating Set \leftarrow {a \in V: $x_a = 1$ }
- 5. return Dominating Set

End

Given graph:

Objective: We want to minimize the number of vertices in the dominating set. So, the objective is to minimize $1 \cdot x_1 + 2 \cdot x_2 + 3 \cdot x_3 + 4 \cdot x_4 + 5 \cdot x_5 + 6 \cdot x_6$

Each vertex needs to be in the set or have a neighbor in the set. So, we get a constraint for each vertex of the form $\Sigma_{a\in N(v)}$ $x_a\geq 1$, for all $v\in V$.

Subject to

$$x_1 + x_2 + x_6 >= 1$$
, $x_1 + x_2 + x_3 >= 1$, $x_2 + x_3 + x_4 + x_6 >= 1$, $x_3 + x_4 + x_5 + x_6 >= 1$, $x_4 + x_5 + x_6 >= 1$, $x_1 + x_3 + x_4 + x_5 + x_6 >= 1$
 $x_4 \in \{0, 1\}$

if we represent this as a matrix form, we get $AX \ge B$

$$A = \begin{pmatrix} 1 & 1 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 1 & 1 \end{pmatrix} X = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \end{pmatrix} B = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$$

Solving the Dominating set problem, we get {1, 6}

thus, we have the integer constraints as $x_1 = x_6 = 1$ and $x_2 = x_3 = x_4 = x_5 = 0$

Considering the greedy approach (starting with the vertex having minimal weight), we get $x_1 = x_4 = 1$ and $x_2 = x_3 = x_5 = x_6 = 0$ so, optimal cost is 5.