综合题:

1、在一单道批处理系统中,一组作业的提交时刻和运行时间如下表所示,试计算以下 3 种作业调度算法的平均周转时间 T 和平均带权周转时间 W。

先来先服务; (2) 短作业优先; (3) 响应比高者优先。

作业	提交时刻	运行时间
1	8.0	1.0
2	8.5	0.5
3	9.0	0.2
4	9.1	0.1

2、在一个只允许单向行驶的十字路口,分别有若干由东向西、由南向北的车辆在等待通过十字路口。为了安全,每次只允许一辆车通过(东->西或南->北)。当有车辆通过时其他车辆等待,当无车辆在路口行驶时则允许一辆车(东->西或南->北)进入。请用 P、V 操作实现能保证安全行驶的自动管理系统。

3、在一个盒子里, 混装了数量相等的围棋白子和黑子。现在要用自动分拣系统把白子和黑子分开。设系统有两个进程 P1 和 P2, 其中 P1 拣白子、P2 拣黑子。规定每个进程每次只拣一子。当一进程正在拣子时, 不允许另一进程去拣; 当一进程拣了一子时, 必须让另一进程去拣。试写出这两个并发进程能正确执行的程序。

- 4、同学们在学校餐厅就餐,餐厅共有 100 个座位, 当餐厅中少于 100 人就餐时, 同学们才能进入餐厅就餐, 否则只能在外等候就餐。如果把一个就餐的同学看作一个进程, 请问:
 - (1) 该如何怎样定义信号量解决这个问题。
 - (2) 使用 wait 和 signal 操作,使用进程同步的方法,写出同学就餐问题的解决过程。

- 5、若系统运行中出现如下表所示的资源分配情况,问:
 - (1) 当前该系统是否安全? 如果安全, 写出安全序列。
- (2) 如果进程 P2 此时提出资源申请(1,2,2,2),系统是否将资源分配给它?为什么?

进程	ALLO	CATIO	N		NEED)			AVAILABLE			
儿性	Α	В	С	D	Α	В	С	D	Α	В	С	D
P0	0	0	3	2	0	0	1	2	1	6	2	2
P1	1	0	0	0	1	7	5	0				
P2	1	3	5	4	2	3	5	6				
P3	0	3	3	2	0	6	5	2				
P4	0	0	1	4	0	6	5	6				

6、设系统中 3 种类型的资源(A,B,C)和 5 个进程(P0, P1, P2, P3, P4), A 资源的数量为 17, B 资源的数量为 5, C 资源的数量为 20。在 T0 时刻系统状态如下表所示。

T0 时刻系统状态

进程	最大资源	需求量		已分配资源数量					
	Α	В	С	Α	В	С			
P0	5	5	9	2	1	2			
P1	5	3	6	4	0	2			
P2	4	0	11	4	0	5			
P3	4	2	5	2	0	4			
P4	4	2	4	3	1	4			
剩余资源数	Α		В	С					
	2		3		3				

系统采用银行家算法实施死锁避免策略。

- (1) TO 时刻是否为安全状态? 若是, 请给出安全序列。
- (2) 在 T0 时刻若进程 P1 请求资源 (0,3,4),是否能实施资源分配?为什么?
- (3) 在 (2) 的基础上, 若进程 P3 请求资源 (2,0,1), 是否能实施资源分配? 为什么?
- (4) 在 (3) 的基础上, 若进程 P0 请求资源 (0,2,0), 是否能实施资源分配? 为什么?

7、设有一页式管理系统,向用户提供的逻辑地址空间最大为 16 页,每页 2048 字节,内存总共有 8 个存储块,试问逻辑地址至少应为多少位?物理内存有多大?

8、在一分页存储管理系统中,逻辑地址长度为 16 位,页面大小为 2048 字节,对应的页表如下表所示。现有两逻辑地址为 0A5CH 和 2F6AH,经过地址变换后所对应的物理地址各是多少?

页号	块号
0	5
1	10
2	4
3	7

9、在某个采用页式存储管理的系统中,现有 J1、J2 和 J3 共 3 个作业同驻主存,其中 J2 有 4 个页面,被分别装入到主存的第 3、4、6、8 块中。假定页面和存储块的大小均为 1024 字节,主存容量为 10KB 字节。

写出 J2 的页面映像表;

当 J2 在 CUP 上运行时,执行到其地址空间第 500 处遇到一条传送指令:

MOV 2100,3100

请计算 MOV 指令中两个操作数的物理地址。

- 10、在请求分页系统中,某用户的编程空间为 16 个页面,每页 1K,分配的内存空间为 8K。假定某时刻该用户的页表如下图所示,试问:
 - (1) 逻辑地址 084B(H)对应的物理地址是多少? (用十六进制表示)
 - (2) 逻辑地址 5000(十进制)对应的物理地址是多少? (用十进制表示)
 - (3) 当该用户进程欲访问 24A0(H)单元时, 会出现什么现象?

页号	块号
0	3
1	7
2	4
3	1
4	12
5	9
6	61
7	20

11、设一段表为:

段号	基地址	段长
0	219	600
1	2300	14
2	90	100
3	1327	580
4	1952	96

- (1) 那么,逻辑地址 (2,88) 对应的物理地址是多少?
- (2) 逻辑地址 (4,100) 对应的物理地址是多少?

12、考虑下面的页访问串:

1,2,3,4,2,1,5,6,2,1,2,3,7,6,3,2,1,2,3,6

假定系统为进程分配了4个物理块,应用下面的页面替换算法,计算各会出现多少次缺页中断,并算成缺页率。注意,所给定的页块初始均为空,因此,首次访问一页时就会发生缺页中断。

最近未使用算法 NRU (2) 先进先出算法 FIFO

13、假定某磁盘移动方向是向磁道号减少的方向访问,目前正在 80 号柱面读信息,并且有下述请求序列等待访问磁盘,85、100、55、60、90、125、10、20、130 和 25。请写出分别采用最短寻找时间优先和扫描(电梯)调度算法处理上述请求的次序,并求出这两种磁头算法的平均寻道长度。

答案:

- 1、(1) 先来先服务执行顺序: 1、2、3、4。平均周转时间: 0.85 带权平均周转时间: 3.375
- (2) 最短作业优先执行顺序: 1、3、4、2。平均周转时间: 0.675 带权平均周转时间: 1.65
- (3) 响应比高者优先执行顺序: 1、2、4、3。平均周转时间: 0.825 带权平均周转时间: 3
- 2、 一次只允许一辆车通过,并没有要求车辆交替通过,因此进程间是互斥关系。

mutex=1;

东->西汽车: 南->北汽车: do{ do{ wait(mutex); 通过路口; signal(mutex); signal(mutex); } while(True); } while(True);

3、 一次只允许拣一子, 要求交替进行, 因此进程间是同步关系。

S1=1,S2=0;

4、

- (1) 第一步:确定进程间的关系,餐厅是各进程共享的公有资源,当餐厅中多于 100 名就餐同学时,其他同学就只能等待就餐。所以进程间是互斥的关系。
- 第二步:确定信号量及其值。只有一个公有资源:餐厅,所以设置一个信号量 s。餐厅最多容纳 100 个进程,即可用资源实体数为 100, s 的初值就设为 100。
 - (2) s=100;

do{

wait(s);

就餐;

离开;

signal(s);

}while(True);

5、(1) 此刻该系统是安全的, 存在安全序列{P0, P3, P4, P1, p2}。

系统安全	全情社	兄分	析														
PID	Wo	rk			Nee	d			Allo	cat	ior	1	Wo	rk+	All	ocatio	n
P O	1	6	2	2	0	0	1	2	0	0	3	2	1	6	5	4	
P 3	1	6	5	4	0	6	5	2	0	3	3	2	1	9	8	6	
P4	1	9	8	6	0	6	5	6	0	0	1	4	1	9	9	10	
P1	1	9	9	10	1	7	5	0	1	0	0	0	2	9	9	10	
P2	2	9	9	1.0	2	3	5	6	1	3	5	4	3	12	14	14	

系统安全!

安全序列为:03412

- (2) P2 请求不能分配,系统会进入不安全状态。
- 6、(1) T0 时刻是安全状态,存在安全序列{p3,p4,p0,p1,p2}。(安全序列不唯一)

系统安	全情视	兄分	析													
PID	Work			Nee	Need			Allocation				Work+Allocation				
P 3	2	3	3	2	2	1	2	0	4	4	3	7				
P4	4	3	7	1	1	0	3	1	4	7	4	11				
PO	7	4	11	3	4	7	2	1	2	9	5	13				
P1	9	5	13	1	3	4	4	0	2	13	5	15				
P 2	13	5	15	0	0	6	4	0	5	17	5	20				

系统安全!

安全序列为:34012

- (2) 不能分配, p1 的请求大于剩余资源。
- (3) 若进程 P3 请求资源 (2,0,1), 可以分配, 存在安全序列{p3,p4,p0,p1,p2}。(安全序列 不唯一)

输入要分配给进程 P3的资源:201

系统安全情况分析

ボジルメ	土用几	16 10	921										
PID	Work		Nee	Need			Allocation				Work+Allocation		
P 3	0	3	2	0	2	0	4	0	5	4	3	7	
P4	4	3	7	1	1	0	3	1	4	7	4	11	
PO	7	4	11	3	4	7	2	1	2	9	5	13	
P1	9	5	13	1	3	4	4	0	2	13	5	15	
P2	13	5	15	0	0	6	4	0	5	17	5	20	

系统安全!

安全序列为:34012分配成功!

当前资源剩余:032

- (4) 若进程 P0 请求资源 (0,2,0), 不能分配, 进入不安全状态。
- 7、逻辑地址空间应为 15 位。

物理内存 16K。

8、0A5CH→525CH

2F6AH的页号为 5, 已结超过页表长度, 越界。

9、2100—>6196 3100—>8220

- 10、(1) 084B 算出页号为 2, 查表在内存第 4 个物理块中。 084B—>104B
 - (2) 5000÷1024=4·····904

页号为 4, 查表在内存第 12 个物理块中, 页内地址为 904。

12×1024+904=13129

(3)24A0 算出页号为 9, 查表不在页表中,缺页现象,请求从外存调页。

11、(2,288) 对应的物理地址是 178

(4,100) 超过段长产生越界中断

- 12、(1) NRU: (10 次缺页) 缺页率 f=50%
 - (2) FIFO: (14 次缺页) 缺页率 f=70%
- 13、答: 最短寻道时间优先: 85、90、100、125、130、60、55、25、20、10 平均寻道长度为:

(85-80+90-85+100-90+125-100+130-125+130-60+60-55+55-25+25-20+20-10)/10=17 扫描调度算法: 60、55、25、20、10、85、90、100、125、130 平均寻道长度为:

(80-60+60-55+55-25+25-20+20-10+85-10+90-85+100-90+125-100+130-125)/10=19