

FILE 'HCAPLUS' ENTERED AT 08:46:25 ON 30 JUN 2009
L1 STRUCTURE uploaded
 S L1

FILE 'REGISTRY' ENTERED AT 08:46:45 ON 30 JUN 2009
L2 0 S L1

FILE 'HCAPLUS' ENTERED AT 08:46:46 ON 30 JUN 2009
L3 0 S L2
 S L1

FILE 'REGISTRY' ENTERED AT 08:47:36 ON 30 JUN 2009
L4 2 S L1 SSS FUL

FILE 'HCAPLUS' ENTERED AT 08:47:37 ON 30 JUN 2009
L5 6 S L4 SSS FUL

FILE 'HCAPLUS' ENTERED AT 08:48:14 ON 30 JUN 2009
L6 0 S L2
L7 6 S L4
L8 45137 S MYCOBACTERIUM OR MYCOBACTERIAL
L9 10039 S (GLUTAMYL CYSTEINE OR GLUTAMINE OR GLUTATHIONE) (W) SYNTHETASE
L10 96 S L8 AND L9
L11 45 S L10 AND (PY<2003 OR AY<2003 OR PRY<2003)
L12 1410944 S INHIBITION OR INHIBITING OR INHIBITED OR INACTIVATED
L13 10 S L11 AND L12

```
=> file hcaplus
COST IN U.S. DOLLARS          SINCE FILE      TOTAL
                                ENTRY        SESSION
FULL ESTIMATED COST          0.22          0.22
```

FILE 'HCAPLUS' ENTERED AT 08:46:25 ON 30 JUN 2009
 USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.
 PLEASE SEE "HELP USAGETERMS" FOR DETAILS.
 COPYRIGHT (C) 2009 AMERICAN CHEMICAL SOCIETY (ACS)

Copyright of the articles to which records in this database refer is held by the publishers listed in the PUBLISHER (PB) field (available for records published or updated in Chemical Abstracts after December 26, 1996), unless otherwise indicated in the original publications. The CA Lexicon is the copyrighted intellectual property of the American Chemical Society and is provided to assist you in searching databases on STN. Any dissemination, distribution, copying, or storing of this information, without the prior written consent of CAS, is strictly prohibited.

FILE COVERS 1907 - 30 Jun 2009 VOL 151 ISS 1
 FILE LAST UPDATED: 29 Jun 2009 (20090629/ED)
 REVISED CLASS FIELDS (/NCL) LAST RELOADED: Apr 2009
 USPTO MANUAL OF CLASSIFICATIONS THESAURUS ISSUE DATE: Apr 2009

HCAplus now includes complete International Patent Classification (IPC) reclassification data for the second quarter of 2009.

CAS Information Use Policies apply and are available at:

<http://www.cas.org/legal/infopolicy.html>

This file contains CAS Registry Numbers for easy and accurate substance identification.

```
=>
Uploading C:\Program Files\STNEXP\Queries\10534660verify.str
```



```
chain nodes :
1 2 3 4 5 6 7 8 9 10
chain bonds :
1-2 2-3 2-9 2-10 3-4 4-5 5-6 5-7 5-8
exact/norm bonds :
2-9 2-10 5-7 5-8
```

exact bonds :
1-2 2-3 3-4 4-5 5-6

Connectivity :
10:1 E exact RC ring/chain

Match level :
1:CLASS 2:CLASS 3:CLASS 4:CLASS 5:CLASS 6:CLASS 7:CLASS 8:CLASS 9:CLASS
10:CLASS

Generic attributes :
10:

Saturation : Saturated

Element Count :

Node 10: Limited
C,C1-8

L1 STRUCTURE UPLOADED

=> d 11
L1 HAS NO ANSWERS
L1 STR

Structure attributes must be viewed using STN Express query preparation.

=> s 12
L2 NOT FOUND
The L-number entered has not been defined in this session, or it has been deleted. To see the L-numbers currently defined in this session, enter DISPLAY HISTORY at an arrow prompt (=>).

=> s 11
REGISTRY INITIATED
Substance data SEARCH and crossover from CAS REGISTRY in progress...

Use DISPLAY HITSTR (or FHITSTR) to directly view retrieved structures.

SAMPLE SEARCH INITIATED 08:46:45 FILE 'REGISTRY'
SAMPLE SCREEN SEARCH COMPLETED - 12 TO ITERATE

100.0% PROCESSED 12 ITERATIONS 0 ANSWERS
SEARCH TIME: 00.00.01

FULL FILE PROJECTIONS: ONLINE **COMPLETE**
BATCH **COMPLETE**
PROJECTED ITERATIONS: 33 TO 447
PROJECTED ANSWERS: 0 TO 0

L2 0 SEA SSS SAM L1

L3 0 L2

=> s l1 sss ful
REG1stry INITIATED
Substance data SEARCH and crossover from CAS REGISTRY in progress...
Use DISPLAY HITSTR (or FHITSTR) to directly view retrieved structures.

FULL SEARCH INITIATED 08:47:37 FILE 'REGISTRY'
FULL SCREEN SEARCH COMPLETED - 174 TO ITERATE

100.0% PROCESSED 174 ITERATIONS 2 ANSWERS
SEARCH TIME: 00.00.01

L4 2 SEA SSS FUL L1

L5 6 L4

=> d 15 scan

L5 6 ANSWERS HCAPLUS COPYRIGHT 2009 ACS on STN
CC 3-5 (Biochemical Interactions)
Section cross-reference(s): 7
TI Inhibition of glutathione biosynthesis by prothionine sulfoximine
(S-n-propyl homocysteine sulfoximine), a selective inhibitor of
 γ -glutamylcysteine synthetase
ST glutathione formation prothionine sulfoximine; glutamylcysteine synthetase
prothionine sulfoximine
IT Kidney, metabolism
(glutathione formation by, prothionine sulfoximine inhibition of)
IT Molecular structure-biological activity relationship
(glutamylcysteine synthetase-inhibiting, of prothionine sulfoximine
analogs)
IT 70-18-8, biological studies
RL: FORM (Formation, nonpreparative)

(formation of, by kidney, methionine sulfoximine inhibition of)
 IT 15985-39-4 66735-67-9 66735-68-0
 RL: PRP (Properties)
 (glutamylcysteine synthetase inhibition by)
 IT 9023-64-7
 RL: PROC (Process)
 (methionine sulfoximine inhibition of)
 IT 15985-39-4P 70056-00-7P 70056-01-8P 70056-02-9P 70056-03-0P
 70056-05-2P 70085-86-8P 70085-87-9P
 RL: PREP (Preparation)
 (preparation and glutamylcysteine synthetase-inhibiting activity of)
 IT 44768-66-3P
 RL: SPN (Synthetic preparation); PREP (Preparation)
 (preparation and hydantoinylation of)
 IT 70085-85-7P
 RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT
 (Reactant or reagent)
 (preparation and saponification of)
 IT 557-02-8P 2598-46-1P 2749-07-7P 16820-52-3P 16820-66-9P
 42537-72-4P 70056-04-1P 70056-06-3P 70095-14-6P
 RL: PREP (Preparation)
 (preparation of)
 IT 9023-70-5
 RL: PRP (Properties)
 (prothionine sulfoximine inhibition of glutamylcysteine synthetase in
 relation to)
 IT 107-03-9
 RL: RCT (Reactant); RACT (Reactant or reagent)
 (reaction of, with acrolein)
 IT 107-02-8, biological studies
 RL: RCT (Reactant); RACT (Reactant or reagent)
 (reaction of, with propanethiol)
 IT 14109-74-1
 RL: RCT (Reactant); RACT (Reactant or reagent)
 (reductive amination of)

HOW MANY MORE ANSWERS DO YOU WISH TO SCAN? (1):0

=> d 14 scan
 YOU HAVE REQUESTED DATA FROM FILE 'REGISTRY' - CONTINUE? (Y)/N:y

L4 2 ANSWERS REGISTRY COPYRIGHT 2009 ACS on STN
 IN Butanoic acid, 2-amino-2-ethyl-4-(S-methylsulfonimidoyl)- (9CI)
 MF C7 H16 N2 O3 S

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

HOW MANY MORE ANSWERS DO YOU WISH TO SCAN? (1):1

L4 2 ANSWERS REGISTRY COPYRIGHT 2009 ACS on STN
IN Isovaline, 4-(S-methylsulfonimidoyl)- (9CI)
MF C6 H14 N2 O3 S

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

ALL ANSWERS HAVE BEEN SCANNED

=> file hcaplus	SINCE FILE	TOTAL
COST IN U.S. DOLLARS	ENTRY	SESSION
FULL ESTIMATED COST	2.85	198.46

FILE 'HCAPLUS' ENTERED AT 08:48:14 ON 30 JUN 2009
USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.
PLEASE SEE "HELP USAGETERMS" FOR DETAILS.
COPYRIGHT (C) 2009 AMERICAN CHEMICAL SOCIETY (ACS)

Copyright of the articles to which records in this database refer is held by the publishers listed in the PUBLISHER (PB) field (available for records published or updated in Chemical Abstracts after December 26, 1996), unless otherwise indicated in the original publications. The CA Lexicon is the copyrighted intellectual property of the American Chemical Society and is provided to assist you in searching databases on STN. Any dissemination, distribution, copying, or storing of this information, without the prior written consent of CAS, is strictly prohibited.

FILE COVERS 1907 - 30 Jun 2009 VOL 151 ISS 1
FILE LAST UPDATED: 29 Jun 2009 (20090629/ED)
REVISED CLASS FIELDS (/NCL) LAST RELOADED: Apr 2009
USPTO MANUAL OF CLASSIFICATIONS THESAURUS ISSUE DATE: Apr 2009

HCAplus now includes complete International Patent Classification (IPC) reclassification data for the second quarter of 2009.

CAS Information Use Policies apply and are available at:

<http://www.cas.org/legal/infopolicy.html>

This file contains CAS Registry Numbers for easy and accurate substance identification.

=> s 12
L6 0 L2

=> s 14

L7 6 L4

=> d 17 1-6 ti abs bib hitstr

L7 ANSWER 1 OF 6 HCPLUS COPYRIGHT 2009 ACS on STN

TI Anti-microbial agents derived from methionine sulfoximine analogues and use for treating mycobacterial infections

AB Novel antimicrobial compns. containing analogs of L-methionine-SR-sulfoximine (MSO) that are effective in treating intracellular pathogen infections are provided. Specifically, the compns. provided are MSO analogs having superior antimicrobial activity with significantly less toxicity as compared to MSO. These MSO analogs are suitable for use in treating infection in animals including primates, cows, pigs, horses, rabbits, mice, rats, cats, and dogs. Moreover, the MSO analogs are ideally suited for treating infections caused by the genus *Mycobacterium*. Addnl., methods for using the novel MSO analogs are also provided.

AN 2004:452975 HCPLUS <<LOGINID::20090630>>

DN 141:12262

TI Anti-microbial agents derived from methionine sulfoximine analogues and use for treating mycobacterial infections

IN Harth, Gunter; Griffith, Owen W.; Horwitz, Marcus A.

PA Regents of the University of California, USA

SO PCT Int. Appl., 40 pp.

CODEN: PIXXD2

DT Patent

LA English

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	WO 2004045539	A2	20040603	WO 2003-US36705	20031117
	WO 2004045539	A9	20040805		
	WO 2004045539	A3	20041111		
	W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW				
	RW: AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR				
	AU 2003295579	A1	20040615	AU 2003-295579	20031117
	US 20040157802	A1	20040812	US 2003-715679	20031117
	US 20060142251	A1	20060629	US 2005-534660	20051128
PRAI	US 2002-426502P	P	20021115		
	US 2002-430407P	P	20021202		
	WO 2003-US36705	W	20031117		
OS	MARPAT 141:12262				
IT	66735-67-9 66735-68-0				
	RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)				
	(anti-microbial agents derived from methionine sulfoximine analogs and use for treating mycobacterial infections)				
RN	66735-67-9 HCPLUS				
CN	Isovaline, 4-(S-methylsulfonimidoyl)- (9CI) (CA INDEX NAME)				

RN 66735-68-0 HCAPLUS
CN Butanoic acid, 2-amino-2-ethyl-4-(S-methylsulfonimidoyl)- (9CI) (CA INDEX NAME)

L7 ANSWER 2 OF 6 HCAPLUS COPYRIGHT 2009 ACS on STN
TI Pyruvate analog adducts with NAD as lactate dehydrogenase inhibitors
AB Adducts of pyruvate and NAD⁺ adducts are lactate dehydrogenase inhibitors that can pass through the blood-brain barrier and are of use in the treatment of primary systemic lactic acidosis are prepared and characterized. A series of Na arylidene pyruvates were prepared and the adducts with NAD⁺ prepared by standard chemical. These were then tested for inhibition of beef heart and rat brain lactate dehydrogenases. An NAD-pyruvate reduced the activity of the beef heart enzyme to 90% of control values and reduced the activity of the rat brain enzyme to 48% of controls in the presence of 0.24 mM pyruvate. An aldehyde analog was similarly active in the nanomolar range. Inhibition of lactate dehydrogenase activity in synaptosomes was also demonstrated.

AN 1991:38443 HCAPLUS <<LOGINID::20090630>>

DN 114:38443

OREF 114:6623a, 6626a

TI Pyruvate analog adducts with NAD as lactate dehydrogenase inhibitors

IN Cooper, Arthur J. L.

PA Cornell Research Foundation, Inc., USA

SO U.S., 8 pp.

CODEN: USXXAM

DT Patent

LA English

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	US 4950602	A	19900821	US 1987-16894	19870220
PRAI	US 1987-16894		19870220		

OS MARPAT 114:38443

IT 66735-67-9

RL: BIOL (Biological study)

(oxopentenoate from, reaction with NAD of, in preparation of lactate dehydrogenase inhibitor capable of passing blood-brain barrier, preparation of)

RN 66735-67-9 HCAPLUS

CN Isovaline, 4-(S-methylsulfonimidoyl)- (9CI) (CA INDEX NAME)

L7 ANSWER 3 OF 6 HCAPLUS COPYRIGHT 2009 ACS on STN
 TI Amino acid sulfoximines: α -ethylmethionine sulfoximine
 AB α -Ethylmethionine sulfoxime, HO₂CCET(NH₂)CH₂CH₂S(O)Me:NH, was prepared by treatment of HO₂CCET(NH₂)CH₂CH₂SMe (I) with HCl. I was prepared by treatment of EtCOCH:CH₂ with MeSH to give EtCOCH₂CH₂SMe which was converted to a hydantoin derivative with (NH₄)₂CO₃ and NaCN and the product hydrolyzed to I.
 AN 1988:132274 HCAPLUS <<LOGINID::20090630>>
 DN 108:132274
 OREF 108:21719a, 21722a
 TI Amino acid sulfoximines: α -ethylmethionine sulfoximine
 AU Griffith, Owen W.
 CS Med. Coll., Cornell Univ., New York, NY, 10021, USA
 SO Methods in Enzymology (1987), 143(Sulfur Sulfur Amino Acids), 286-91
 CODEN: MENZAU; ISSN: 0076-6879
 DT Journal
 LA English
 IT 66735-68-0P
 RL: SPN (Synthetic preparation); PREP (Preparation)
 (preparation of)
 RN 66735-68-0 HCAPLUS
 CN Butanoic acid, 2-amino-2-ethyl-4-(S-methylsulfonyimidoyl)- (9CI) (CA INDEX NAME)

L7 ANSWER 4 OF 6 HCAPLUS COPYRIGHT 2009 ACS on STN
 TI Inhibition of glutathione biosynthesis by prothionine sulfoximine (S-n-propyl homocysteine sulfoximine), a selective inhibitor of γ -glutamylcysteine synthetase
 AB DL-Prothionine SR-sulfoximine [70085-86-8] and α -methyl-DL-prothionine-SR-sulfoximine [70056-05-2] were prepared and found to markedly inhibit γ -glutamylcysteine synthetase [9023-64-7] but to not significantly affect glutamine synthetase [9023-70-5]. After injection of prothionine sulfoximine into mice, the level of kidney glutathione [70-18-8] decreased rapidly to .apprx.20% of the control level indicating that a large fraction, rather than a small pool, of glutathione participates in rapid turnover. The rapid decline of the glutathione level that occurs after inhibition of glutathione synthesis reflects the normal rate of intracellular glutathione utilization by the γ -glutamyl cycle. A number of related sulfoximines were synthesized and tested as inhibitors of glutamine and γ -glutamylcysteine synthetases.
 AN 1979:198299 HCAPLUS <<LOGINID::20090630>>
 DN 90:198299
 OREF 90:31455a, 31458a
 TI Inhibition of glutathione biosynthesis by prothionine sulfoximine (S-n-propyl homocysteine sulfoximine), a selective inhibitor of γ -glutamylcysteine synthetase
 AU Griffith, Owen W.; Anderson, Mary E.; Meister, Alton
 CS Med. Coll., Cornell Univ., New York, NY, USA
 SO Journal of Biological Chemistry (1979), 254(4), 1205-10

DT CODEN: JBCHA3; ISSN: 0021-9258
LA Journal
IT English
IT 66735-67-9 66735-68-0
RL: PRP (Properties)
(glutamylcysteine synthetase inhibition by)
RN 66735-67-9 HCAPLUS
CN Isovaline, 4-(S-methylsulfonimidoyl)- (9CI) (CA INDEX NAME)

RN 66735-68-0 HCAPLUS
CN Butanoic acid, 2-amino-2-ethyl-4-(S-methylsulfonimidoyl)- (9CI) (CA INDEX NAME)

L7 ANSWER 5 OF 6 HCAPLUS COPYRIGHT 2009 ACS on STN
TI Differential inhibition of glutamine and γ -glutamylcysteine synthetases by α -alkyl analogs of methionine sulfoximine that induce convulsions
AB α -Methyl-DL-methionine (SR)-sulfoximine [66735-67-9] and α -ethyl-DL-methionine (SR)-sulfoximine [66735-68-0], like L-methionine (SR)-sulfoximine [15985-39-4], induced convulsions in mice and inhibited glutamine synthetase [9023-70-5] irreversibly; α -ethylmethionine sulfoximine was .apprx.50% as inhibitory as methionine sulfoximine and α -methylmethionine sulfoximine. However, whereas α -methylmethionine sulfoximine and methionine sulfoximine inhibited γ -glutamylcysteine synthetase [9023-64-7] markedly, α -ethylmethionine sulfoximine did not, nor did administration of the α -Et analog produce the decrease in tissue glutathione [70-18-8] levels found after giving methionine sulfoximine or its α -Me analog. The α -alkyl methionine sulfoximine analogs cannot be catabolized via the corresponding α -keto or α -imino acids, and, like other α -substituted amino acids, are probably not metabolized to a significant extent in vivo; this suggests that the amino acid sulfoximine mols. themselves, rather than their metabolites, are directly involved in the induction of convulsions. Possible explanations for the reported lack of correlation between the occurrence of convulsions and the levels of glutamine synthetase activity (and its substrates and product) are considered.
AN 1978:500916 HCAPLUS <<LOGINID::20090630>>
DN 89:100916
OREF 89:15375a,15378a
TI Differential inhibition of glutamine and γ -glutamylcysteine synthetases by α -alkyl analogs of methionine sulfoximine that induce

AU convulsions
 Griffith, Owen W.; Meister, Alton
 CS Dep. Biochem., Cornell Univ. Med. Coll., New York, NY, USA
 SO Journal of Biological Chemistry (1978), 253(7), 2333-8
 CODEN: JBCHA3; ISSN: 0021-9258
 DT Journal
 LA English
 IT 66735-68-0
 RL: PRP (Properties)
 (glutamine synthetase and glutamylcysteine synthetase inhibition by,
 convulsions in relation to)
 RN 66735-68-0 HCPLUS
 CN Butanoic acid, 2-amino-2-ethyl-4-(S-methylsulfonimidoyl)- (9CI) (CA INDEX NAME)

IT 66735-67-9P
 RL: PREP (Preparation)
 (preparation and glutamine synthetase and glutamylcysteine synthetase
 inhibition by)
 RN 66735-67-9 HCPLUS
 CN Isovaline, 4-(S-methylsulfonimidoyl)- (9CI) (CA INDEX NAME)

L7 ANSWER 6 OF 6 HCPLUS COPYRIGHT 2009 ACS on STN
 TI Sulfur-containing amino acids
 GI For diagram(s), see printed CA Issue.
 AB MeCH:CHCHO (140 g.) and 96 g. MeSH in the presence of 2 drops of
 piperidine stirred 0.5 hr. at 5-10° and 3 hrs. at room temperature, the
 mixture treated with an addnl. 28 g. MeSH, heated about 1 hr. at 90°,
 diluted with 500 cc. Et2O, washed with dilute HCl and H2O, dried, and
 evaporated,
 and the residue distilled gave 201 g. MeSCHMeCH2CHO (I), b23 80°.
 AcCH:CH2 (27 g.) and 18 g. MeSH yielded 35.4 g. Ac(CH2)2SMe, b55
 106°, nd25 1.4711. I (48.5 g.), 113 g. (NH4)3SO3, 25.5 g. NaCN,
 335 cc. EtOH, and 335 cc. H2O heated 5 hrs. with stirring at 55°,
 the mixture concentrated to about 300 cc., treated cautiously with 50 cc.
 concentrated
 HCl, heated 7 min. at about 90°, refrigerated, and filtered, and
 the residue washed with 200 cc. H2O yielded 49 g.
 5-(β-benzylmercapto)propylhydantoin, m. 117-18°(from EtOAc).
 Similarly were prepared the following compds. RR'C.CO.NH.CO.NH (R, R', m.p.,
 and % yield given): MeS(CH2)2, Me, 109.5-10.5°, 93.8; MeSCHMeCH2,
 H, 191-2°, 50.1; MeSCHPhCH2, H, 173-4°, 491.

S-Benzyl-4-methylhomocysteine (7.17 g.), m. 222.5-3.5° (decomposition) (from H₂O) (obtained in 94% yield from the hydantoin) (0.69, 0.74, 0.93) (the figures given in parentheses through out this abstract represent the R_f values of the resp. compds. obtained by ascending paper chromatography with BuOH-AcOH, lutidine-collidine, and PhOH-H₂O, resp.) in 300 cc. liquid NH₃ treated with about 1.7 g. Na, the solution decolorized with about 1 g. NH₄Cl, treated with 5 cc. MeI, and evaporated, the residue treated with 125 cc. H₂O, washed with Et₂O, filtered, neutralized with concentrated HCl to pH about 6, concentrated to about 50 cc., diluted with 50 cc. Me₂CO, and refrigerated, and the crystalline deposit recrystd. from aqueous MeOH yielded

4 . 1

g. MeSCHMeCH₂CH(NH₂)CO₂H (II), m. 236-7° (decomposition), (0.44, 0.53, 0.79). Similarly were prepared: MeS(CH₂)₂CMe(NH₂)CO₂H, 61%, m. 284-5° (decomposition) (from aqueous MeOH), (0.45, 0.50, 0.77); MeSCHPh(CH₂)₂CH(NH₂)CO₂H, 49.3%, m. 201-2° (decomposition) (from H₂O). BzCH₂SM_e (21.8 g.) in 50 cc. dry Et₂O added with stirring to 1.4 g. LiAlH₄ in 10 cc. dry Et₂O, the mixture refluxed 1 hr. with stirring, cooled, and treated with stirring with 200 cc. ice water and 100 cc. 5N H₂SO₄, the aqueous layer washed with Et₂O, the combined Et₂O solns. washed, dried, and evaporated under a jet of dry air, and the residue distilled gave 18.4 g. MeSCH₂CH(OH)Ph (III), b1.8 113-14.5°. III (170 mg.) treated with MeI yielded III. MeI, m. 134-5° (decomposition). III (15.8 g.) in 25 cc. dry CHCl₃ treated with cooling with 9.2 g. SOCl₂ in 15 cc. dry CHCl₃, the mixture cooled 0.5 hr., kept at room temperature overnight and evaporated, the residue heated gently with 5 cc. dry CHCl₃ and 5 cc. SOCl₂, and the mixture distilled gave 14.3 g. MeSCH₂CHClPh (IV), b2.8 106-7°, nD₂₅ 1.5692. AcNHCH(CO₂Et)₂ (11.6 g.) and 200 mg. KI added with stirring to 1.23 g. Na in 100 cc. absolute EtOH, the mixture treated with 10 g. IV in 1 portion, stirred 2 hrs. at room temperature, refluxed 5 hrs., and filtered hot, the residue washed with about 50 cc. hot EtOH, the combined alc. solns. evaporated to dryness in vacuo, the residual oil kept at room temperature overnight, and the crystalline material washed with dilute HCl and H₂O and dried in vacuo over KOH pellets yielded 16 g. MeSCH₂CHPhC(NHAc)(CO₂Et)₂ (V), m. 95-6° (from Et₂O-pentane). Crude V (14.4 g.), 40 cc. H₂O, and 10 cc. concentrated

HCl

refluxed 6 hrs. with stirring, the mixture treated with 40 cc. H₂O and 10 cc. concentrated HCl, refluxed 1.5 hrs. with stirring, cooled to room temperature, the

solid refluxed 8 hrs. with stirring with 80 cc. glacial AcOH and 10 cc. concentrated HCl, treated with Norit, and filtered, the residue washed with

H₂O,
the combined filtrates evaporated in vacuo, the residue (about 10 g.) triturated with 50 cc. Me₂CO and filtered, and the residue washed with Me₂CO and dried yielded 5 g. MeSCH₂CHPhCH(NH₂)CO₂H.HCl (VI.HCl), m. 208-9° (decomposition); the Me₂CO solns. combined and evaporated to dryness, the residue refluxed 6.5 hrs. with 25 cc. H₂O, 25 cc. glacial AcOH, and 10 cc. concentrated HCl, the solution evaporated to dryness in vacuo, the residue washed

washed with Me₂CO and neutralized with AmNH₂, and a 1-g. portion dissolved in 8 cc. H₂O and neutralized with AmNH₂ to pH 6, diluted with 25 cc. Me₂CO, and filtered, and the residue washed with 15 cc. Me₂CO yielded 300 mg. VI; the filtrate diluted with Me₂CO gave a 2nd crop, 350 mg. MeSH (14 g.) passed with stirring and cooling into 1.2 g. Na in 150 cc. absolute MeOH, the mixture treated with stirring and cooling with 50 g. Me α -benzamidosenecioate, diluted with 200 cc. absolute MeOH and 200 cc. dry C₆H₆, stirred 1 hr. at room temperature, allowed to stand overnight, treated with 3.12 g. glacial AcOH, and evaporated to dryness in vacuo at room temperature,

the residue washed with warm dry C₆H₆, the C₆H₆ evaporated, the residue (58 g.), 300 cc. 85% HCO₂H, 300 cc. concentrated HCl, and 300 cc. H₂O refluxed 6 hrs., the solution concentrated to about 50 cc., washed with Et₂O, neutralized with

AmNH₂ to pH 6, diluted with 350 cc. Me₂CO, and refrigerated 2 days, and the white crystals washed with 300 cc. Me₂CO and 200 cc. Et₂O yielded 16.8 g. S-methylpenicillamine, m. 281-2° (0.38, 0.50, 0.80); it was also obtained in the same manner from 2-phenyl-4-isopropylidene-5-oxazolone and 30 g. MeSH. MeSH (16 g.) passed into 1.2 g. Na in 300 cc. absolute MeOH, the solution treated with cooling and stirring with 62.3 g. 2-phenyl-4-benzal-5-oxazolone in 500 cc. warm, dry C₆H₆, the mixture stirred about 1 hr., kept at room temperature, treated with 3.12 g. glacial AcOH, and evaporated to dryness in vacuo, the residue treated with 100 cc. warm C₆H₆ and filtered, the filtrate diluted with 100 cc. warm C₆H₆ and 500 cc. pentane, and chilled, and the deposit washed with 150 cc. pentane yielded 74 g. PhCH(SMe)CH(NHBz)CO₂Me (VII), m. 97-8.5° (from EtOAc-pentane). Crude VII (32.9 g.) hydrolyzed with 150 cc. H₂O, 150 cc. concentrated HCl, and 150 cc. 90% HCO₂H, the solution concentrated in vacuo to near dryness, and the precipitate

washed with three 100-cc. portions H₂O, dissolved in 75 cc. H₂O, neutralized to pH 6 with AmNH₂, and chilled yielded 12.5 g. S-methyl-3-phenylcysteine, m. 178-9° (decomposition) (0.51, 0.65, 0.88). The following sulfoxides were prepared by oxidation of the appropriate sulfides with H₂O₂ by the method of Toennies and Kolb (C.A. 33, 5359.9) (% yield, m.p., and R_f values given): PhCH₂S(O)CHMeCH₂CH(NH₂)CO₂H, 64.7, 214-15° (decomposition) (from H₂O), (0.45, 0.60, 0.92); MeS(O)CH₂CH₂CMe(NH₂)CO₂H, 91.8, 239.5-40.5° (decomposition) (from aqueous MeOH), (0.14, 0.35, 0.77); MeS(O)CHMeCH₂CH(NH₂)CO₂H (VIII), 84.4, 213.5-14.5° (from aqueous MeOH), (0.13, 0.40, 0.80); MeS(O)CH₂CHPhCH(NH₂)CO₂H, 74.4, 205-6° (decomposition) (from aqueous MeOH), (0.33, 0.59, 0.87); MeS(O)CHPhCH₂CH(NH₂)CO₂H, 87.7, 189-90° (decomposition) (from aqueous MeOH), (0.33, 0.47, 0.85); Me₂CHCH[S(O)Me]CH(NH₂)CO₂H, 77.7, 166-7° (from aqueous MeOH), (0.14, 0.40, 0.76); PhCH[S(O)Me]CH(NH₂)CO₂H, 73.2, 147-8° (decomposition) (from aqueous MeOH), (0.29, 0.54, 0.82). VIII (600 mg.), 3 cc. H₂O, 2 cc. MeOH, 0.2 cc. concentrated HCl, and 2 cc. 30% H₂O₂ refluxed 2 hrs., treated with 1 cc.

30%

H₂O₂, refluxed again 2 hrs., neutralized with AmNH₂ to pH 6.5, diluted with 100 cc. Me₂CO and filtered, and the residue washed with 50 cc. Me₂CO yielded 550 mg. MeS(O₂)CHMeCH₂CH(NH₂)CO₂H, m. 230-1° (decomposition) (from aqueous MeOH), (0.14, 0.50, 0.72). In the same manner was prepared PhCH₂S(O₂)CH₂CH₂CH(NH₂)CO₂H, 70.6%, m. 229-30° (decomposition) (from H₂O), (0.50, 0.65, 0.84). The following sulfones were prepared by the oxidation on the appropriate sulfides with H₂O₂ in the presence of NH₄ molybdate and HClO₄ by the method of Toennies and Kolb (C.A. 35, 6571.1) (% yield, m.p., and R_f values given): MeS(O₂)CH₂CH₂CMe(NH₂)CO₂H, 73.6, 288-9° (decomposition) (from aqueous MeOH), (0.16, 0.45, 0.65); MeS(O₂)CH₂CHPhCH(NH₂)CO₂H (IX), 50.8, 222-3° (decomposition) (from H₂O), (0.32, 0.61, 0.79); MeS(O₂)CHPhCH₂CH(NH₂)CO₂H (X), 95.4, 196.5-7.5° (decomposition), (0.37, 0.55, 0.79); Me₂CHCH[S(O₂)Me]CH(NH₂)CO₂H, 77.7, 166-7° (from aqueous MeOH), (0.14, 0.53, 0.68); MeS(O₂)CHPhCH(NH₂)CO₂H, 51.2, 141-2° (decomposition) (from aqueous MeOH), (0.30, 0.52, 0.70). VIII (6.0 g.) treated dropwise with stirring at 3° with 10.4 cc. concentrated H₂SO₄, the mixture heated with stirring to 45°, treated during 1 hr. at 48° with 54 cc. 1.4N HN₃ in CHCl₃, then heated with stirring 5 hrs. at 48°, treated with 13.5 cc. HN₃ solution, heated 5 hrs. with stirring at 50°, stirred overnight at room temperature, poured with stirring onto 75 g. crushed ice, neutralized with solid Ba(OH)₂ to about pH 2.5 then to pH 5 with solid BaCO₃, and centrifuged, the supernatant decanted, the residue mixed with H₂O, centrifuged, and decanted, this operation repeated until free of amino acid, the combined aqueous solns. concentrated in vacuo at 50° to about 100 cc., treated with C, and filtered, and the filtrate concentrated to about 40 cc., filtered, and evaporated to dryness yielded 6.4 g. MeS(:NH)CHMeCH₂CH(NH₂)CO₂H, m. 199-200°

(decomposition) (from aqueous MeOH), (0.08, 0.38, 0.71). In the same manner was prepared: $\text{MeS}(\text{:NH})\text{CH}_2\text{CH}_2\text{CHMe}(\text{NH}_2)\text{CO}_2\text{H}$, 100, 199–200° (decomposition) (from aqueous MeOH), (0.10, 0.35, 0.67). IX (100 mg.) treated with about 60 mg. N-bromosuccinimide gave $\text{MeS}(\text{O}_2)\text{CH}_2\text{CHPhCHO}$, isolated as the 2,4-dinitrophenylhydrazone, m. 188–9° (decomposition). X gave similarly $\text{MeS}(\text{O}_2)\text{CHPhCH}_2\text{CHO}$, isolated as the 2,4-dinitrophenylhydrazone, decomposed at 196–8° with a change from yellow to red at 169°. Only 4 of the amino acids suppressed the multiplication of T2 bacteriophage of Escherichia coli strain A.T.C.C. number 11303 at pH 7 and 37° at 100 p.p.m. or less.

AN 1956:73727 HCAPLUS <<LOGINID::20090630>>
DN 50:73727
OREF 50:13802g-i,13803a-i,13804a-g
TI Sulfur-containing amino acids
AU Reisner, David B.
CS Wallace & Tiernan, Inc., Newark, NJ
SO Journal of the American Chemical Society (1956), 78, 2132–5
CODEN: JACSAT; ISSN: 0002-7863
DT Journal
LA Unavailable
OS CASREACT 50:73727
IT 66735-67-9P, Sulfoximine, 3-amino-3-carboxybutyl methyl
RL: PREP (Preparation)
(preparation of)
RN 66735-67-9 HCAPLUS
CN Isovaline, 4-(S-methylsulfonimidoyl)- (9CI) (CA INDEX NAME)

=> d his

(FILE 'HOME' ENTERED AT 08:46:17 ON 30 JUN 2009)
FILE 'HCAPLUS' ENTERED AT 08:46:25 ON 30 JUN 2009
L1 STRUCTURE uploaded
S L1
FILE 'REGISTRY' ENTERED AT 08:46:45 ON 30 JUN 2009
L2 O S L1
FILE 'HCAPLUS' ENTERED AT 08:46:46 ON 30 JUN 2009
L3 O S L2
S L1
FILE 'REGISTRY' ENTERED AT 08:47:36 ON 30 JUN 2009
L4 2 S L1 SSS FUL
FILE 'HCAPLUS' ENTERED AT 08:47:37 ON 30 JUN 2009
L5 6 S L4 SSS FUL
FILE 'REGISTRY' ENTERED AT 08:48:03 ON 30 JUN 2009

FILE 'HCAPLUS' ENTERED AT 08:48:06 ON 30 JUN 2009

FILE 'HCAPLUS' ENTERED AT 08:48:14 ON 30 JUN 2009

L6 0 S L2
L7 6 S L4

=> log hold

COST IN U.S. DOLLARS	SINCE FILE ENTRY	TOTAL SESSION
FULL ESTIMATED COST	36.69	235.15
DISCOUNT AMOUNTS (FOR QUALIFYING ACCOUNTS)	SINCE FILE ENTRY	TOTAL SESSION
CA SUBSCRIBER PRICE	-4.92	-4.92

SESSION WILL BE HELD FOR 120 MINUTES

STN INTERNATIONAL SESSION SUSPENDED AT 08:48:42 ON 30 JUN 2009

Connecting via Winsock to STN

Welcome to STN International! Enter x:X

LOGINID:SSPTAEX01623

PASSWORD:

* * * * * RECONNECTED TO STN INTERNATIONAL * * * * *
SESSION RESUMED IN FILE 'HCAPLUS' AT 09:32:25 ON 30 JUN 2009
FILE 'HCAPLUS' ENTERED AT 09:32:25 ON 30 JUN 2009
COPYRIGHT (C) 2009 AMERICAN CHEMICAL SOCIETY (ACS)f

COST IN U.S. DOLLARS	SINCE FILE ENTRY	TOTAL SESSION
FULL ESTIMATED COST	36.69	235.15
DISCOUNT AMOUNTS (FOR QUALIFYING ACCOUNTS)	SINCE FILE ENTRY	TOTAL SESSION
CA SUBSCRIBER PRICE	-4.92	-4.92

=> s mycobacterium or mycobacterial

44112 MYCOBACTERIUM
8023 MYCOBACTERIAL

L8 45137 MYCOBACTERIUM OR MYCOBACTERIAL

=> s (glutamylcysteine or glutamine or glutathione) synthetase
MISSING OPERATOR TATHIONE) SYNTHETASE

The search profile that was entered contains terms or
nested terms that are not separated by a logical operator.

=> s (glutamylcysteine or glutamine or glutathione) (w) synthetase
2126 GLUTAMYLCSSTEINE
55095 GLUTAMINE
108419 GLUTATHIONE
54698 SYNTHETASE

L9 10039 (GLUTAMYLCSSTEINE OR GLUTAMINE OR GLUTATHIONE) (W) SYNTHETASE

=> s 18 and 19

L10 96 L8 AND L9

=> s l10 and (PY<2003 or AY<2003 or PRY<2003)
 22984217 PY<2003
 4508023 AY<2003
 3977562 PRY<2003

L11 45 L10 AND (PY<2003 OR AY<2003 OR PRY<2003)

=> s inhibition or inhibiting or inhibited or inactivated
 878206 INHIBITION
 208599 INHIBITING
 635642 INHIBITED
 56184 INACTIVATED

L12 1410944 INHIBITION OR INHIBITING OR INHIBITED OR INACTIVATED

=> s l11 and l12
 L13 10 L11 AND L12

=> d l13 1-10 ti abs bib

L13 ANSWER 1 OF 10 HCAPLUS COPYRIGHT 2009 ACS on STN
 TI Use of antisense oligonucleotides to glutamine synthetase, aroA, ask, groES and antigen 85 complex genes of Mycobacterium tuberculosis in treatment of infections
 AB Methods of inhibiting the proliferation of Mycobacterium tuberculosis comprising contacting Mycobacterium tuberculosis with an effective amount of a polynucleotide complementary to an mRNA transcript expressed by Mycobacterium tuberculosis are provided. Typical methods of the invention utilize phosphorothioate modified antisense polynucleotides (PS-ODNs) against the mRNA of M.tuberculosis genes such as glutamine synthetase, aroA, ask, groES, and the genes of the Antigen 85 complex. Optionally, the methods employ multiple antisense polynucleotides targeting different Mycobacterium tuberculosis transcripts. In preferred embodiments of the invention, the antisense polynucleotides are complementary to the 5' regions of the Mycobacterium tuberculosis transcripts.

AN 2002:906259 HCAPLUS <<LOGINID::20090630>>
 DN 138:2188
 TI Use of antisense oligonucleotides to glutamine synthetase, aroA, ask, groES and antigen 85 complex genes of Mycobacterium tuberculosis in treatment of infections
 IN Horwitz, Marcus A.; Harth, Gunter; Zamecnik, Paul C.; Tabatadze, David
 PA The Regents of the University of California, USA
 SO PCT Int. Appl., 113 pp.
 CODEN: PIXXD2
 DT Patent
 LA English
 FAN.CNT 2

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	WO 2002094848	A1	20021128	WO 2002-US15963	20020520 <--
	W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW				
	RW: GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW, AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG				
	WO 2001046473	A1	20010628	WO 2000-US34688	20001220 <--
	W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN,				

CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR,
HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT,
LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU,
SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN,
YU, ZA, ZW
RW: GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW, AT, BE, CH, CY,
DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR, BF,
BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG
AU 2002257301 A1 20021203 AU 2002-257301 20020520 <--
US 20060183676 A1 20060817 US 2003-478268 20031118 <--
PRAI WO 2000-US34688 A2 20001220 <--
US 2001-292096P P 20010518 <--
US 1999-171929P P 19991222 <--
WO 2002-US15963 W 20020520 <--

RE.CNT 4 THERE ARE 4 CITED REFERENCES AVAILABLE FOR THIS RECORD
ALL CITATIONS AVAILABLE IN THE RE FORMAT

L13 ANSWER 2 OF 10 HCPLUS COPYRIGHT 2009 ACS on STN
TI Production of avirulent mutants of *Mycobacterium bovis* with
vaccine properties by the use of illegitimate recombination and screening
of stationary-phase cultures
AB A better tuberculosis vaccine is urgently required to control the
continuing epidemic. Mol. techniques are now available to produce a
better live vaccine than BCG by producing avirulent strains of the
Mycobacterium tuberculosis complex with known gene deletions. In
this study, 1000 illegitimate recombinants of *Mycobacterium*
bovis were produced by illegitimate recombination with fragments of
mycobacterial DNA containing a kanamycin resistance gene. Eight
recombinant strains were selected on the basis of their inability to grow
when stationary-phase cultures were inoculated into minimal medium. Five
of these recombinants were found to be avirulent when inoculated into
guinea pigs. Two of the avirulent recombinants produced vaccine efficacy
comparable to BCG against an aerosol challenge in guinea pigs with *M.*
bovis. One of these recombinants had an inactivated *glnA2* gene
encoding a putative glutamine synthetase.
Transcriptional anal. showed that inactivation of *glnA2* did not affect
expression of the downstream *glnE* gene. The other recombinant had a block
of 12 genes deleted, including the sigma factor gene *sigG*. Two avirulent
recombinants with an inactivated *pckA* gene, encoding
phosphoenolpyruvate carboxykinase which catalyzes the first step of
gluconeogenesis, induced poor protection against tuberculosis. It is
clear that live avirulent strains of the *M. tuberculosis* complex vary
widely in their ability as vaccines to protect against tuberculosis.
Improved models may be required to more clearly determine the difference in
protective effect between BCG and potential new tuberculosis vaccines.
AN 2002:818554 HCPLUS <>LOGINID::20090630>>
DN 139:31419
TI Production of avirulent mutants of *Mycobacterium bovis* with
vaccine properties by the use of illegitimate recombination and screening
of stationary-phase cultures
AU Collins, D. M.; Wilson, T.; Campbell, S.; Buddle, B. M.; Wards, B. J.;
Hotter, G.; de Lisle, G. W.
CS AgResearch, Wallaceville Animal Research Centre, Upper Hutt, N. Z.
SO Microbiology (Reading, United Kingdom) (2002), 148(10),
3019-3027
CODEN: MROBEO; ISSN: 1350-0872
PB Society for General Microbiology
DT Journal
LA English

RE.CNT 39 THERE ARE 39 CITED REFERENCES AVAILABLE FOR THIS RECORD
ALL CITATIONS AVAILABLE IN THE RE FORMAT

L13 ANSWER 3 OF 10 HCAPLUS COPYRIGHT 2009 ACS on STN

TI Materials and methods to modulate ligand binding/enzymic activity of α/β proteins containing an allosteric regulatory site

AB Methods of modulating binding between an α/β protein and a binding partner are provided, along with methods of identifying modulators and their use. The methods comprise contacting the α/β protein with an allosteric effector mol. which binds to an allosteric site of the α/β protein and alters the conformation of the α/β protein such that the binding of the α/β protein to a binding partner is modulated. Thus, a primary screen for inhibitors of the classical pathway complement protein C2 and alternative pathway complement protein factor B involving modifications of standard hemolytic CH50 and AH50 assays in a microtiter plate format was carried out. Lead compds. identified in this screen were submitted to a second screening using purified complement proteins to determine which stage of complement activation the compds. inhibited. Five diaryl sulfides were identified. Numerous other assays, e.g., to identify inhibitors of integrin $\alpha E\beta 3$ interaction with E cadherin, inhibitors of Rac1 GDP-GTP exchange, or antagonists of E. coli 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase, were conducted as well.

AN 2002:293978 HCAPLUS <<LOGINID::20090630>>

DN 136:337341

TI Materials and methods to modulate ligand binding/enzymic activity of α/β proteins containing an allosteric regulatory site

IN Stauton, Donald E.

PA Icos Corporation, USA

SO PCT Int. Appl., 163 pp.
CODEN: PIXXD2

DT Patent

LA English

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	WO 2002031511 WO 2002031511	A2 A3	20020418 20030313	WO 2001-US32047	20011012 <--
	W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW RW: GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW, AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG CA 2425581 AU 2002013196 US 20030088061 EP 1325341				
	R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, LT, LV, FI, RO, MK, CY, AL, TR JP 2004511496 MX 2003003207			CA 2001-2425581 AU 2002-13196 US 2001-976935 EP 2001-981560	20011012 <-- 20011012 <-- 20011012 <-- 20011012 <--
PRAI	US 2000-239750P WO 2001-US32047	P W	20001012 <-- 20011012 <--		

L13 ANSWER 4 OF 10 HCAPLUS COPYRIGHT 2009 ACS on STN

TI Crystal structures of glutamine synthetase from *Mycobacterium tuberculosis* & *Salmonella typhimurium*: illumination of enzymatic inhibition, reaction mechanism, and regulation

AB Unavailable

AN 2001:852652 HCAPLUS <<LOGINID::20090630>>
 DN 136:365688
 TI Crystal structures of glutamine synthetase from
 Mycobacterium tuberculosis & Salmonella typhimurium: illumination
 of enzymatic inhibition, reaction mechanism, and regulation
 AU Gill, Harindarpal Singh
 CS Univ. of California, Los Angeles, CA, USA
 SO (2001) 158 pp. Avail.: UMI, Order No. DA9998978
 From: Diss. Abstr. Int., B 2001, 61(12), 6299
 DT Dissertation
 LA English

L13 ANSWER 5 OF 10 HCAPLUS COPYRIGHT 2009 ACS on STN
 TI Treatment of Mycobacterium tuberculosis with antisense
 polynucleotides
 AB Methods of inhibiting the proliferation of Mycobacterium
 tuberculosis comprising contacting Mycobacterium tuberculosis
 with an effective amount of a polynucleotide complementary to an mRNA
 transcript expressed by Mycobacterium tuberculosis are provided.
 Typical methods of the invention utilize phosphorothioate modified
 antisense polynucleotides (PS-ODNs) against the mRNA of M. tuberculosis
 genes such as glutamine synthetase, aroA, ask, groES,
 and the genes of the Antigen 85 complex.
 AN 2001:472980 HCAPLUS <<LOGINID::20090630>>
 DN 135:73948
 TI Treatment of Mycobacterium tuberculosis with antisense
 polynucleotides
 IN Zamecnik, Paul C.; Horwitz, Marcus A.; Harth, Gunter
 PA The Regents of the University of California, USA
 SO PCT Int. Appl., 80 pp.
 CODEN: PIXXD2
 DT Patent
 LA English

FAN.CNT 2

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	WO 2001046473	A1	20010628	WO 2000-US34688	20001220 <--
	W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW RW: GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW, AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG				
	AU 2001024446	A	20010703	AU 2001-24446	20001220 <--
	WO 2002094848	A1	20021128	WO 2002-US15963	20020520 <--
	W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW RW: GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW, AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG				
	US 20040033972	A1	20040219	US 2002-168244	20020829 <--
PRAI	US 1999-171929P	P	19991222	<--	
	WO 2000-US34688	W	20001220	<--	
	US 2001-292096P	P	20010518	<--	

RE.CNT 3 THERE ARE 3 CITED REFERENCES AVAILABLE FOR THIS RECORD
ALL CITATIONS AVAILABLE IN THE RE FORMAT

L13 ANSWER 6 OF 10 HCPLUS COPYRIGHT 2009 ACS on STN
TI Treatment of *Mycobacterium tuberculosis* with antisense oligonucleotides to glutamine synthetase mRNA inhibits glutamine synthetase activity, formation of the poly-L-glutamate/glutamine cell wall structure, and bacterial replication
AB New antibiotics to combat the emerging pandemic of drug-resistant strains of *Mycobacterium tuberculosis* are urgently needed. We have investigated the effects on *M. tuberculosis* of phosphorothioate-modified antisense oligodeoxyribonucleotides (PS-ODNs) against the mRNA of glutamine synthetase, an enzyme whose export is associated with pathogenicity and with the formation of a poly-L-glutamate/glutamine cell wall structure. Treatment of virulent *M. tuberculosis* with 10 μ M antisense PS-ODNs reduced glutamine synthetase activity and expression by 25-50% depending on whether one, two, or three different PS-ODNs were used and the PS-ODNs' specific target sites on the mRNA. Treatment with PS-ODNs of a recombinant strain of *Mycobacterium smegmatis* expressing *M. tuberculosis* glutamine synthetase selectively inhibited the recombinant enzyme but not the endogenous enzyme for which the mRNA transcript was mismatched by 2-4 nt. Treatment of *M. tuberculosis* with the antisense PS-ODNs also reduced the amount of poly-L-glutamate/glutamine in the cell wall by 24%. Finally, treatment with antisense PS-ODNs reduced *M. tuberculosis* growth by 0.7 logs (1 PS-ODN) to 1.25 logs (3 PS-ODNs) but had no effect on the growth of *M. smegmatis*, which does not export glutamine synthetase nor possess the poly-L-glutamate/glutamine (P-L-glx) cell wall structure. The expts. indicate that the antisense PS-ODNs enter the cytoplasm of *M. tuberculosis* and bind to their cognate targets. Although more potent ODN technol. is needed, this study demonstrates the feasibility of using antisense ODNs in the antibiotic armamentarium against *M. tuberculosis*.

AN 2000:38532 HCPLUS <>LOGINID::20090630>>

DN 132:219405

TI Treatment of *Mycobacterium tuberculosis* with antisense oligonucleotides to glutamine synthetase mRNA inhibits glutamine synthetase activity, formation of the poly-L-glutamate/glutamine cell wall structure, and bacterial replication

AU Harth, Gunter; Zamecnik, Paul C.; Tang, Jin-Yan; Tabatadze, David; Horwitz, Marcus A.

CS Division of Infectious Diseases, Department of Medicine, 37-121 CHS, School of Medicine, University of California, Los Angeles, CA, 90095, USA

SO Proceedings of the National Academy of Sciences of the United States of America (2000), 97(1), 418-423

CODEN: PNASA6; ISSN: 0027-8424

PB National Academy of Sciences

DT Journal

LA English

RE.CNT 25 THERE ARE 25 CITED REFERENCES AVAILABLE FOR THIS RECORD
ALL CITATIONS AVAILABLE IN THE RE FORMAT

L13 ANSWER 7 OF 10 HCPLUS COPYRIGHT 2009 ACS on STN

TI Cloning and characterization of the genes encoding a cytochrome P450 (PipA) involved in piperidine and pyrrolidine utilization and its regulatory protein (PipR) in *Mycobacterium smegmatis* mc2155

AB Transposon mutagenesis of *Mycobacterium smegmatis* mc2155 enabled the isolation of a mutant strain (called LGM1) altered in the regulation of piperidine and pyrrolidine utilization. The complete nucleotide sequence of the gene inactivated in mutant LGM1 was determined from the wild-type strain. This gene (pipR) encoded a member of the GntR

family of bacterial regulatory proteins. An insertion element (IS1096), previously described for *M. smegmatis*, was detected downstream of the gene pipR. Three addnl. open reading frames were found downstream of IS1096. The first open reading frame (pipA) appeared to encode a protein identified as a cytochrome P 450 enzyme. This gene is the first member of a new family, CYP151. By a gene replacement experiment, it was demonstrated that the cytochrome P 450 pipA gene is required for piperidine and pyrrolidine utilization in *M. smegmatis* mc2155. Genes homologous to pipA were detected by hybridization in several, previously isolated, morpholine-degrading mycobacterial strains. A gene encoding a putative [3Fe-4S] ferredoxin (orf1) and a truncated gene encoding a putative glutamine synthetase (orf2') were found downstream of pipA.

AN 1999:368885 HCPLUS <<LOGINID::20090630>>
DN 131:154332
TI Cloning and characterization of the genes encoding a cytochrome P450 (PipA) involved in piperidine and pyrrolidine utilization and its regulatory protein (PipR) in *Mycobacterium smegmatis* mc2155
AU Poupin, Pascal; Ducrocq, Veronique; Hallier-Soulier, Sylvie; Truffaut, Nicole
CS Laboratoire de Genetique Microbienne, Universite de Technologie de Compiegne, Centre de Recherches, Compiegne, 60205, Fr.
SO Journal of Bacteriology (1999), 181(11), 3419-3426
CODEN: JOBAAY; ISSN: 0021-9193
PB American Society for Microbiology
DT Journal
LA English
RE.CNT 54 THERE ARE 54 CITED REFERENCES AVAILABLE FOR THIS RECORD
ALL CITATIONS AVAILABLE IN THE RE FORMAT

L13 ANSWER 8 OF 10 HCPLUS COPYRIGHT 2009 ACS on STN
TI An inhibitor of exported *Mycobacterium tuberculosis* glutamine synthetase selectively blocks the growth of pathogenic mycobacteria in axenic culture and in human monocytes: extracellular proteins as potential novel drug targets
AB *Mycobacterium tuberculosis* and other pathogenic mycobacteria export abundant quantities of proteins into their extracellular milieu when growing either axenically or within phagosomes of host cells. One major extracellular protein, the enzyme glutamine synthetase, is of particular interest because of its link to pathogenicity. Pathogenic mycobacteria, but not nonpathogenic mycobacteria, export large amts. of this protein. Interestingly, export of the enzyme is associated with the presence of a poly-L-glutamate/glutamine structure in the mycobacterial cell wall. In this study, we investigated the influence of glutamine synthetase inhibitors on the growth of pathogenic and nonpathogenic mycobacteria and on the poly-L-glutamate/glutamine cell wall structure. The inhibitor L-methionine-S-sulfoximine rapidly inactivated purified *M. tuberculosis* glutamine synthetase, which was 100-fold more sensitive to this inhibitor than a representative mammalian glutamine synthetase. Added to cultures of pathogenic mycobacteria, L-methionine-S-sulfoximine rapidly inhibited extracellular glutamine synthetase in a concentration-dependent manner but had only a minimal effect on cellular glutamine synthetase, a finding consistent with failure of the drug to cross the mycobacterial cell wall. Remarkably, the inhibitor selectively blocked the growth of pathogenic mycobacteria, all of which release glutamine synthetase extracellularly, but had no effect on nonpathogenic mycobacteria or nonmycobacterial microorganisms, none of which release glutamine synthetase extracellularly. The inhibitor was also bacteriostatic

for *M. tuberculosis* in human mononuclear phagocytes (THP-1 cells), the pathogen's primary host cells. Paralleling and perhaps underlying its bacteriostatic effect, the inhibitor markedly reduced the amount of poly-L-glutamate/glutamine cell wall structure in *M. tuberculosis*. Although it is possible that glutamine synthetase inhibitors interact with addnl. extracellular proteins or structures, our findings support the concept that extracellular proteins of *M. tuberculosis* and other pathogenic mycobacteria are worthy targets for new antibiotics. Such proteins constitute readily accessible targets of these relatively impermeable organisms, which are rapidly developing resistance to conventional antibiotics.

AN 1999:295798 HCPLUS <<LOGINID::20090630>>
DN 131:82606
TI An inhibitor of exported *Mycobacterium tuberculosis* glutamine synthetase selectively blocks the growth of pathogenic mycobacteria in axenic culture and in human monocytes: extracellular proteins as potential novel drug targets
AU Harth, Gunter; Horwitz, Marcus A.
CS Department of Medicine, University of California at Los Angeles School of Medicine, Los Angeles, CA, 90095, USA
SO Journal of Experimental Medicine (1999), 189(9), 1425-1435
CODEN: JEMEAV; ISSN: 0022-1007
PB Rockefeller University Press
DT Journal
LA English
RE.CNT 21 THERE ARE 21 CITED REFERENCES AVAILABLE FOR THIS RECORD
ALL CITATIONS AVAILABLE IN THE RE FORMAT

L13 ANSWER 9 OF 10 HCPLUS COPYRIGHT 2009 ACS on STN
TI Physical and chemical characterization of glutamine synthetase purified from *Mycobacterium phlei*
AB Glutamine synthetase (EC 6.3.1.2) was purified from a Gram-pos., acid-fast bacterium, *M. phlei*, by simple procedures with 57% recovery. The enzyme resembled that from *M. smegmatis* in the subunit size (56,000), mol. weight (670,000), amino acid composition, the amino acid sequence of the N-terminal, and the secondary structure. The enzyme activity was regulated by adenylylation of each subunit in the dodecameric mol. *M. phlei* glutamine synthetase possesses 2 useful characteristics: high thermostability and resistance to protease digestion. The enzyme was not inactivated on exposure to 60° for 2 h or 37° for 72 h, or after incubation with 1% trypsin or chymotrypsin at 37° for 12 h, pH 7.8. With saturating substrate levels, the Arrhenius plot was nonlinear and concave downward with an intersection point at 45°, and the activation energies were 3.2 and 9.6 cal/mol from the slopes. The specific activity of the highly adenylylated enzyme (E10.7) was remarkably lower than that of the slightly adenylylated enzyme (E2.5); however, both enzymes show similar profiles of the Arrhenius plot. Thus, the adenylylation of the enzyme does not affect its activation energies.

AN 1989:208260 HCPLUS <<LOGINID::20090630>>
DN 110:208260
OREF 110:34475a,34478a
TI Physical and chemical characterization of glutamine synthetase purified from *Mycobacterium phlei*
AU Kimura, Kinuko; Suzuki, Hazumi; Nakano, Yoshio
CS Coll. Sci., Rikkyo (St. Paul's) Univ., Tokyo, 171, Japan
SO Journal of Biochemistry (1989), 105(4), 648-52
CODEN: JOBIAO; ISSN: 0021-924X
DT Journal
LA English

L13 ANSWER 10 OF 10 HCAPLUS COPYRIGHT 2009 ACS on STN

TI Glutamine synthetase from *Mycobacterium avium*

AB *M. avium* was previously shown to be dependent upon NH₃ or glutamine as a N source. In an effort to assess the physiol. of NH₃ assimilation by *M. avium*, a characterization of its glutamine synthetase was performed. The enzyme from *M. avium* was purified by streptomycin sulfate treatment, (NH₄)₂SO₄ precipitation, and affinity chromatog. The enzyme was unusual in that it had a pH optimum of 6.4 and maximum enzyme activity was obtained at 50-60°. The glutamine synthetase activity from batch-cultured cells decreased with increasing concentration of NH₄Cl in the range of 0.25-5 μmol/mL of medium, which demonstrated a response to environmental supply of a N source. The mycobacterial enzyme was similar to the other bacterial glutamine synthetases in terms of mol. weight and sedimentation coefficient, which were 600,000 and 19.5 S, resp., and enzyme activity was lost by treatment with a glutamate analog, methionine sulfoximine. The isoelec. point was, however, pH 4.5. Treatment of the enzyme with snake venom phosphodiesterase resulted in an increase in specific activity. AMP was released by the phosphodiesterase treatment, thus demonstrating that *M. avium* glutamine synthetase was regulated by adenylylation modification.

AN 1984:171294 HCAPLUS <>LOGINID::20090630>>

DN 100:171294

OREF 100:25997a,26000a

TI Glutamine synthetase from *Mycobacterium avium*

AU Alvarez, Maria E.; McCarthy, C. M.

CS Biol. Dep., New Mexico State Univ., Las Cruces, NM, 88003, USA

SO Canadian Journal of Microbiology (1984), 30(3), 353-9

CODEN: CJMIAZ; ISSN: 0008-4166

DT Journal

LA English