Sheaves on stacks

Jackson Van Dyke

November 2, 2020

Table of contents

- Review: prestacks, stacks
- Sheaves on a prestack
- Artin stacks
- Quotient stacks

Preliminaries, reminders, and notation

- S is a site, i.e. a category equipped with a Grothendieck topology.
- E.g. S = schemes over a fixed scheme B.
- ullet A category ${f X}$ fibered over ${f S}$ is a **prestack**.
- For $U \in S$, write $\mathbf{X}(U)$ for the fiber.
- If $\mathbf{X}\left(U\right)$ is a **groupoid** for all $U\in\mathbf{S}$ we say this is fibered in groupoids.
- In this case we have a functor:

$$\mathbf{S}^{\mathsf{op}} \longrightarrow \mathbf{Grpd}$$
 . (1) $U \mapsto X(U) \subset \mathbf{X}$.

• In order for a prestack to be a **stack** we require that, for all $U \in S$ with a covering $\{U_i \to U\}_{i \in I}$, the functor

$$\mathbf{X}(U) \to \mathbf{X}(\{U_i \to U\}_{i \in I})$$

is an equivalence of categories.

Quasi-coherent sheaves on a prestack

Let $\mathbf{X} \xrightarrow{p} \mathbf{Sch}/B$ be a category fibered in groupoids over schemes over B.

Definition

A quasi-coherent sheaf ${\mathcal F}$ on ${\mathbf X}$ is

- **1** a quasi-coherent sheaf \mathcal{F}_x on p(x) for all $x \in \mathbf{X}$,
- 2 and for all $f \colon x \to y$ in \mathbf{X} , an isomorphism

$$\alpha_f \colon \mathcal{F}_y \xrightarrow{\simeq} (pf)^* \mathcal{F}_x$$
.

which satisfy the cocycle condition: for any two morphism $f\colon x\to y$ and $g\colon y\to z$, the following diagram commutes:

$$pf^* \circ pg^* \mathcal{F}_z = (pg \circ pf)^* \mathcal{F}_z$$

$$\downarrow^{pf^* \alpha_g} \qquad \downarrow^{\alpha_{g \circ f}}$$

$$pf^* \mathcal{F}_y = \xrightarrow{\alpha_f} \mathcal{F}_x.$$

Artin stacks

Definition (Artin stack)

An $\operatorname{\textbf{Artin}}$ stack is a stack in groupoids X over the fppf site $\operatorname{\textbf{a}}$ such that

- 1 the diagonal map of X is representable, and
- $oldsymbol{2}$ there exists a smooth surjection from (the stack associated to) a scheme to $oldsymbol{X}$.

- Let $A, B \to S$ be categories fibered in groupoids. A morphism $f \colon A \to B$ is **representable** if for every scheme U and morphism of stacks $U \to B$, the fiber product $A \times_B U$ is representable.¹
- The diagonal morphism $\Delta \colon \mathbf{X} \to \mathbf{X} \times \mathbf{X}$ is representable if and only if for any pair of morphisms of algebraic spaces $\mathbf{A}, \mathbf{B} \to \mathbf{X}$, the fiber product $\mathbf{A} \times_{\mathbf{X}} \mathbf{B}$ is representable.

^aThe underlying category is the category \mathbf{Aff}/S for a fixed scheme S.

¹I.e. isomorphic to (the stack associated to) some algebraic space.

```
{affine B-schemes}
      \{\text{separated } B\text{-schemes}\}
            \{B\text{-schemes}\}
        \{B-algebraic spaces\}
     {algebraic stacks over S}
           \{ stacks over S \}
{categories fibered in groupoids} .
```

Quotient stacks

- Let G be an affine smooth group scheme over a scheme B.
- Let X be an S-scheme with an action of G.
- Define [X/G] to be the following category fibered over \mathbf{Sch}/B .
 - An object over U is a principal G-bundle $E \to U$ together with an equivariant map $E \to X$.
 - A morphism from $E \to U$ to $E' \to U$ is a bundle map that is compatible with the corresponding equivariant maps.
- This forms an Artin stack.
- If the stabilizers of the geometric points are finite and reduced, then this is a Deligne-Mumford stack.

Quotient stack vs. quotient space

Proposition (Stacks Project, Lemma 64.34.1)

Let X be an algebraic space over a scheme. If the stabilizers are **trivial** (i.e. the action is **free**) the quotient $\overline{X/G}$ exists as an **algebraic space**.

- There is a (destructive) functor $\Gamma \colon \mathbf{QC}\left([X/G]\right) \to \mathbf{QC}\left(\overline{X/G}\right)$.
- The quotient space is generally more **coarse** than the quotient stack.
- We can detect this at the level of QC:

$$\begin{aligned} \mathbf{QC}\left([X/G]\right) &= \{M \in \mathcal{O}_X\text{-}\mathbf{Mod} \,|\, M \text{ is } G \text{ equivariant}\} \\ \mathbf{QC}\left(X/G\right) &= \mathcal{O}_X^G\text{-}\mathbf{Mod} \ . \end{aligned}$$

• E.g. if $X = \bullet$ then $\overline{\bullet/G} = \bullet$ and

$$\begin{aligned} \mathbf{QC}\left(\left[\bullet/G\right]\right) &= \mathbf{Rep}\left(G\right) \\ \mathbf{QC}\left(\bullet\right) &= \mathbf{Vect} \ . \end{aligned}$$