

Data Distributions (Part 4)

Prof. Ricardo Sovat
sovat@ifsp.edu.br
Prof. Samuel Martins (Samuka)
samuel.martins@ifsp.edu.br

Problems with Traditional Confidence Intervals

- Assumptions about distribution or sample size:
 - Normal distribution
 - Sample size is large enough (central limit theorem)
 - What is a large sample for a specific problem?
 - Population standard deviation σ is known
 - Otherwise, we approximate it from the sample standard deviation s
 - Calculating the standard error for some statistcs can be difficult
 - E.x: Estimate the range between the 80th to 90th percentiles

$$\overline{X} \sim N(\mu, \frac{\sigma}{\sqrt{n}})$$

$$\mu = \overline{x} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$

Problems with Traditional Confidence Intervals

- Assumptions about **distribution** or **sample size:**
 - Normal distribution
 - Sample size is large enough (central limit theorem)
 - What is a large sample for a specific problem?
 - Population standard deviation σ is known
 - Otherwise, we approximate it from the sample standard deviation s
 - Calculating the standard error for some statistics can be difficult
 - E.x: Estimate the range between the 80th to 90th percentiles

We can estimate population parameters without these assumptions.

$$\overline{X} \sim N(\mu, \frac{\sigma}{\sqrt{n}})$$

$$\mu = \overline{x} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$

Problems with Traditional Confidence Intervals

- Assumptions about distribution or sample size:
 - Normal distribution
 - Sample size is large enough (central limit theorem)
 - What is a large sample for a specific problem?
 - Population standard deviation σ is known
 - Otherwise, we approximate it from the sample standard deviation s
 - Calculating the standard error for some statistics can be difficult
 - E.x: Estimate the range between the 80th to 90th percentiles

We can estimate population parameters without these assumptions.

Bootstrap

$$\overline{X} \sim N(\mu, \frac{\sigma}{\sqrt{n}})$$

$$\mu = \overline{x} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$

Bootstrap

Bootstrap (1979)

"The bootstrap is rarely the star of statistics, but it is the best supporting actor"

Bradley Efron

Bootstrap Confidence Interval

- 1. Get a sample **S** from the population
- 2. Repeat k times (~10000 times):
 - Generate a bootstrap sample by resampling S
 - 2. Calculate the desired **statistic** for the bootstrap sample
- 3. Build the **sampling distribution** for the statistic
- 4. Compute the interval around the mean with the concentration of c% observations/values
 - 1. c% is the confidence level = 1α
 - 2. The interval consists of the $\alpha/2$ percentile and $(1 \alpha/2)$ percentile
 - 3. Thus, just sort the statistics and return the values of theses percentiles

Exercise

Given a dataset from stroke patients, we want to study their mean glucose level.

Provide a 95% bootstrap confidence intervals for sample sizes of 100 and 1000.