On LASSO for High Dimensional Predictive Regression

Ziwei Mei and Zhentao Shi

Feb 16, 2023 @ UC Riverside

- Statistics vs. econometrics
- Nonstationary time series
- Boosted Hodrick-Prescott filter
 - Phillips and Shi (2021); Mei, Phillips and Shi (2022, wp)
- LASSO in predictive regressions

$$y_t = \beta_1^* + \beta_2^* W_{t-1} + u_t$$

- Unconventional inference with persistent W_{t-1} .
- Lee, Shi and Gao (2022): Variable selection
- Mei and Shi (2022, this paper): high dimension

- Statistics vs. econometrics
- Nonstationary time series
- Boosted Hodrick-Prescott filter
 - Phillips and Shi (2021); Mei, Phillips and Shi (2022, wp)
- LASSO in predictive regressions

$$y_t = \beta_1^* + \beta_2^* W_{t-1} + u_t$$

- Unconventional inference with persistent W_{t-1} .
- Lee, Shi and Gao (2022): Variable selection
- Mei and Shi (2022, this paper): high dimension

- Statistics vs. econometrics
- Nonstationary time series
- Boosted Hodrick-Prescott filter
 - Phillips and Shi (2021); Mei, Phillips and Shi (2022, wp)
- LASSO in predictive regressions

$$y_t = \beta_1^* + \beta_2^* W_{t-1} + u_t$$

- Unconventional inference with persistent W_{t-1} .
- Lee, Shi and Gao (2022): Variable selection
- Mei and Shi (2022, this paper): high dimension

- Statistics vs. econometrics
- Nonstationary time series
- Boosted Hodrick-Prescott filter
 - Phillips and Shi (2021); Mei, Phillips and Shi (2022, wp)
- LASSO in predictive regressions

$$y_t = \beta_1^* + \beta_2^* W_{t-1} + u_t$$

- Unconventional inference with persistent W_{t-1} .
- Lee, Shi and Gao (2022): Variable selection
- Mei and Shi (2022, this paper): high dimension

- Statistics vs. econometrics
- Nonstationary time series
- Boosted Hodrick-Prescott filter
 - Phillips and Shi (2021); Mei, Phillips and Shi (2022, wp)
- LASSO in predictive regressions

$$y_t = \beta_1^* + \beta_2^* W_{t-1} + u_t$$

- Unconventional inference with persistent W_{t-1} .
- Lee, Shi and Gao (2022): Variable selection
- Mei and Shi (2022, this paper): high dimension

Real Data Examples

Finance

- Welch and Goyal (2008); used in Lee, Shi and Gao (2022)
- Dependent variable: S&P 500 excess return
- 12 predictors
- Macroeconomics
 - Medeiros, Vasoncelos, Veiga, and Zilberman (2021)
 - FRED-MD database
 - Dependent variable: Inflation (CPI)
 - About 500 constructed predictors

Real Data Examples

- Finance
 - Welch and Goyal (2008); used in Lee, Shi and Gao (2022)
 - Dependent variable: S&P 500 excess return
 - 12 predictors
- Macroeconomics
 - Medeiros, Vasoncelos, Veiga, and Zilberman (2021)
 - FRED-MD database
 - Dependent variable: Inflation (CPI)
 - About 500 constructed predictors

LASSO Family

- Sample size n, indexed by t.
- Regressor W_{jt} , $j = 1, \ldots, p$.
- Plain LASSO (Plasso).

$$(\widehat{\alpha}, \widehat{\theta}) = \arg\min_{\alpha, \theta} \left\{ n^{-1} \| Y - \alpha \mathbb{1}_n - W \theta \|_2^2 + \lambda \| \theta \|_1 \right\},$$

Prediction is made as

$$\widehat{y}_{n+1} = \widehat{\alpha} + W_n^{\top} \widehat{\theta}$$

• Undesirable property: Estimate varies with scale of W_{jt} .

LASSO Family

- Sample size n, indexed by t.
- Regressor W_{jt} , $j = 1, \ldots, p$.
- Plain LASSO (Plasso).

$$(\widehat{\alpha},\widehat{\theta}) = \arg\min_{\alpha,\theta} \left\{ n^{-1} \|Y - \alpha \mathbf{1}_n - W\theta\|_2^2 + \lambda \|\theta\|_1 \right\},\,$$

Prediction is made as

$$\widehat{y}_{n+1} = \widehat{\alpha} + W_n^{\top} \widehat{\theta}$$

ullet Undesirable property: Estimate varies with scale of W_{jt} .

Standardized LASSO

- Default option in most statistical software
- Sample s.d. $\widehat{\sigma}_{j}$
- Transform W_{jt} into $W_{jt}/\widehat{\sigma}_j$
- Let $\tilde{W} = WD^{-1}$ where $D = \operatorname{diag}(\widehat{\sigma}_1, \widehat{\sigma}_2, \cdots, \widehat{\sigma}_p)$
- Standardized LASSO (Slasso)

$$(\tilde{\alpha}, \tilde{\theta}) = \arg\min_{\alpha, \theta} \left\{ n^{-1} \left\| Y - \alpha \mathbb{1}_n - \tilde{W}\theta \right\|_2^2 + \lambda \left\| \theta \right\|_1 \right\}$$

and makes prediction

$$\tilde{y}_{n+1} = \tilde{\alpha} + \tilde{W}_n^{\top} \tilde{\theta}$$

Standardized LASSO

- Default option in most statistical software
- ullet Sample s.d. $\widehat{\sigma}_j$
- Transform W_{jt} into $W_{jt}/\widehat{\sigma}_j$
- Let $\tilde{W} = WD^{-1}$ where $D = \operatorname{diag}(\widehat{\sigma}_1, \widehat{\sigma}_2, \cdots, \widehat{\sigma}_p)$
- Standardized LASSO (Slasso)

$$(\tilde{\alpha}, \tilde{\theta}) = \arg\min_{\alpha, \theta} \left\{ n^{-1} \left\| Y - \alpha \mathbf{1}_n - \tilde{W}\theta \right\|_2^2 + \lambda \left\| \theta \right\|_1 \right\}$$

and makes prediction

$$\tilde{y}_{n+1} = \tilde{\alpha} + \tilde{W}_n^{\top} \tilde{\theta}$$

Section 2

Setup

True Coefficients

• DGP with true parameters (α^*, θ^*) :

$$Y_t = \alpha^* + W_{t-1}^{\top} \theta^* + u_t$$

- Estimators
 - Plasso: $\widehat{\theta}$ estimates the original parameter θ^*
 - Slasso: $\tilde{\theta}$ estimates the transformed parameter $\tilde{\theta}^* = D\theta^*$.
- We will consider W being a mixture of I(1) and I(0), as in the application.
- But let us start with unit root regressors only...

True Coefficients

• DGP with true parameters (α^*, θ^*) :

$$Y_t = \alpha^* + W_{t-1}^{\top} \theta^* + u_t$$

- Estimators
 - Plasso: $\widehat{\theta}$ estimates the original parameter θ^*
 - Slasso: $\tilde{\theta}$ estimates the transformed parameter $\tilde{\theta}^* = D\theta^*$.
- We will consider W being a mixture of I(1) and I(0), as in the application.
- But let us start with unit root regressors only...

OLS

Pure unit roots (Ignore the intercept for simplicity)

$$Y_t = X_{t-1}^{\top} \beta^* + u_t$$

where X_{t-1} is a vector of unit root processes

OLS with fixed p

$$n(\hat{\beta}^{ols} - \beta^*) = \left(\frac{X^{\top}X}{n^2}\right)^{-1} \frac{X^{\top}u}{n} \Longrightarrow \Omega^{-1}\zeta$$

where

- $\frac{X^{\top}X}{n^2} \Longrightarrow \Omega := \int_0^1 B_x(r)B_x(r)^{\top}dr$ (Gram matrix)
- $\frac{X^{T}u}{n} \Longrightarrow \zeta := \int_{0}^{1} B_{x}(r)dB_{u+}(r) + bias$ (Empirical process)

High Dimension

- High dimensionality allows p > n
- ullet Sparsity index: $s=|\mathcal{S}|$, where $\mathcal{S}=\{j\in[p]: heta_j^*
 eq 0\}$
- ullet Gram matrix: the sample covariance matrix $\check{\Sigma} = \check{W}^{ op} \check{W}/n$
 - Restriction is needed as $\check{\Sigma}$ rank deficient when p>n

Two Building Blocks

Definition (RE)

Restricted eigenvalue: (Bickel, Ritov and Tsybakov, 2009)

$$\kappa(\check{\Sigma}, s) = \inf_{\delta \in \mathcal{R}(s)} \frac{\delta^{\top} \check{\Sigma} \delta}{\delta^{\top} \delta}$$

where $\mathcal{R}(s) = \{\delta \in \mathbb{R}^p : \|\delta_{\mathcal{M}^c}\|_1 \leq 3\|\delta_{\mathcal{M}}\|_1$, for all $|\mathcal{M}| \leq s\}$.

Definition (DB)

Deviation bound: An upper bound of $||n^{-1}\sum_{t=1}^{n} \check{W}_{t-1}u_t||_{\infty}$.

10 / 47

Two Building Blocks

Definition (RE)

Restricted eigenvalue: (Bickel, Ritov and Tsybakov, 2009)

$$\kappa(\check{\Sigma}, s) = \inf_{\delta \in \mathcal{R}(s)} \frac{\delta^{\top} \check{\Sigma} \delta}{\delta^{\top} \delta}$$

where $\mathcal{R}(s) = \{\delta \in \mathbb{R}^p : \|\delta_{\mathcal{M}^c}\|_1 \leq 3\|\delta_{\mathcal{M}}\|_1$, for all $|\mathcal{M}| \leq s\}$.

Definition (DB)

Deviation bound: An upper bound of $||n^{-1}\sum_{t=1}^{n} \check{W}_{t-1}u_t||_{\infty}$.

10 / 47

Finite Sample Result

Lemma (Bühlmann and van der Geer, 2011)

If
$$\lambda \geq 4\|n^{-1}\sum_{t=1}^{n} \check{W}_{t-1}u_{t}\|_{\infty}$$
, then
$$n^{-1}\|\check{W}(\check{\theta}-\check{\theta}^{*})\|_{2}^{2} \leq 4\lambda^{2}s/\check{\kappa}$$

$$\|\check{\theta}-\check{\theta}^{*}\|_{1} \leq 4\lambda s/\check{\kappa}$$

$$\|\check{\theta}-\check{\theta}^{*}\|_{2} \leq 2\lambda\sqrt{s}/\check{\kappa},$$

where $\check{\kappa} = \kappa(\check{\Sigma}, s)$.

• Convergence rate depends on λ , s and $\check{\kappa}$.

11 / 47

Contributions

- Consistency of LASSO with many unit root regressors
 - Low level conditions
 - Non-Gaussian, time dependent innovations
- A new RE
 - Based on non-asymptotic deviation inequalities
- Unified framework for
 - analyzing both Plasso and Slasso
 - Unit roots

$$Y_t = \alpha + X_{t-1}^{\top} \beta^* + u_t$$

vs. mixed roots

$$Y_t = \alpha^* + X_{t-1}^{\top} \beta^* + Z_{t-1}^{\top} \gamma^* + u_t.$$

Contributions

- Consistency of LASSO with many unit root regressors
 - Low level conditions
 - Non-Gaussian, time dependent innovations
- A new RE
 - Based on non-asymptotic deviation inequalities
- Unified framework for
 - analyzing both Plasso and Slasso
 - Unit roots

$$Y_t = \alpha + X_{t-1}^{\top} \beta^* + u_t$$

vs. mixed roots

$$Y_t = \alpha^* + X_{t-1}^{\top} \beta^* + Z_{t-1}^{\top} \gamma^* + u_t.$$

Contributions

- Consistency of LASSO with many unit root regressors
 - Low level conditions
 - Non-Gaussian, time dependent innovations
- A new RE
 - Based on non-asymptotic deviation inequalities
- Unified framework for
 - analyzing both Plasso and Slasso
 - Unit roots

$$Y_t = \alpha + X_{t-1}^{\top} \beta^* + u_t$$

vs. mixed roots

$$Y_t = \alpha^* + X_{t-1}^{\top} \beta^* + Z_{t-1}^{\top} \gamma^* + u_t.$$

Literature

LASSO in predictive regression

- Koo, Anderson, Seo, and Yao (2020)
- Lee, Shi and Gao (2022)
- Fan, Lee, and Shin (2023)
- Wijler (2022, wp)
 - Pure unit roots regressors $X_t = X_{t-1} + e_t$ and dependent variable $Y_t = X_{t-1}^{\top} \beta^* + u_t$
 - RE $\widehat{\kappa} = \kappa(\widehat{\Sigma}, s)$, where $\widehat{\Sigma} = X^{\top}X/n$

Section 3

Theory

From Innovation to Unit Root

$$X_{(n \times p)} = \begin{pmatrix} 1 & 0 & \cdots & 0 & 0 \\ 1 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & 1 & \cdots & 1 & 0 \\ 1 & 1 & \cdots & 1 & 1 \end{pmatrix} e_{(n \times p)} = R_{(n \times n)} e$$

ullet Consider the special case $\displaystyle rac{e_t}{(p imes 1)} \sim iid\, \mathcal{N}(0,\Omega)$

15 / 47

Unit Root Transformation

• Set $\Omega = I_p$ for simplification.

$$\begin{split} \delta^{\top}\widehat{\Sigma}\delta &= \delta^{\top}(X^{\top}X/n)\delta = n^{-1}\delta^{\top}\left[e^{\top}R^{\top}Re\right]\delta \\ &= n^{-1}\delta^{\top}[e^{\top}V]\mathrm{diag}(\lambda_{1},\lambda_{2},\cdots,\lambda_{n})[V^{\top}e]\delta \\ &\geq n^{-1}\delta^{\top}[e^{\top}V_{1:\ell}]\mathrm{diag}(\lambda_{1},\cdots,\lambda_{\ell})[V_{1:\ell}^{\top}e]\delta \\ &= n^{-1}\delta^{\top}\tilde{e}_{\ell}^{\top}\mathrm{diag}(\lambda_{1},\cdots,\lambda_{\ell})\tilde{e}_{\ell}\delta \\ &\geq n^{-1}\lambda_{\ell}\cdot\delta^{\top}\tilde{e}_{\ell}^{\top}\tilde{e}_{\ell}\delta \\ &\sim \left[\lambda_{\ell}\frac{\ell}{n}\right]\cdot\delta^{\top}\frac{\mathrm{Wishart}_{p}\left(I,\ell\right)}{\ell}\delta \end{split}$$

where $V_{1:\ell}$ is the first ℓ columns of V. It reduces $V^{ op}_{(n imes n)(n imes p)}$ to

$$\tilde{e}_\ell = V_{1:\ell}^\top \underset{(\ell \times n)^{(n \times p)}}{e} \text{ of iid } \mathcal{N}(0,1) \text{ entries}.$$

Order of RE

Fact (Smeekes and Wijler, 2021)

The ℓ th eigenvalue of $R^{\top}R$ is

$$\lambda_{\ell} = 0.5 / \left[1 - \cos\left(\frac{(2\ell - 1)\pi}{2n + 1}\right) \right] \approx \frac{n^2}{\ell^2}.$$

As a result, $\frac{\lambda_{\ell}}{n} \simeq \frac{n}{\ell}$.

• Next, consider restricted sparse δ such that $\|\delta\|_0 \leq 2s$:

$$\delta^{\top} \left[\text{Wishart}_{p} \left(I, \ell \right) / \ell \right] \delta \overset{\text{spar.}}{\sim} \delta^{\top} \left[\text{Wishart}_{2s} \left(I, \ell \right) / \ell \right] \delta$$

17 / 47

Order of RE

Fact (Smeekes and Wijler, 2021)

The ℓ th eigenvalue of $R^{\top}R$ is

$$\lambda_{\ell} = 0.5 / \left[1 - \cos\left(\frac{(2\ell - 1)\pi}{2n + 1}\right) \right] \approx \frac{n^2}{\ell^2}.$$

As a result, $\frac{\lambda_{\ell}}{n} \simeq \frac{n}{\ell}$.

• Next, consider restricted sparse δ such that $\|\delta\|_0 \leq 2s$:

$$\delta^{\top} \left[\text{Wishart}_p \left(I, \ell \right) / \ell \right] \delta \overset{\text{spar.}}{\sim} \delta^{\top} \left[\text{Wishart}_{2s} \left(I, \ell \right) / \ell \right] \delta$$

◆□▶ ◆□▶ ◆□▶ ◆■▶ ■ 9000

Key Tool: Random Matrix Theory

- A generic result.
- If $e_s \sim iid \ \mathcal{N} \left(0,\Omega\right)$ for some full rank Ω , then

$$\widehat{\Omega} = \ell^{-1} \sum_{s=1}^{\ell} e_s e_s^{\top} \sim \text{Wishart}_q (\Omega, \ell) / \ell$$

Fact (Wainright, 2019)

When $\ell > q$, for all $c \in (0,1)$:

$$\Pr\left(\lambda_{\min}^{1/2}(\widehat{\Omega}) \le \lambda_{\min}^{1/2}(\Omega) \left(1 - c\right) - \sqrt{\operatorname{tr}(\Omega)/\ell}\right) \le e^{-\ell c^2/2}$$

- For all 2s-submatrices, there are $\binom{p}{2s} \leq p^{2s}$ choices
- Uniform bound for minimum eigenvalues of all 2s-submatrices

Key Tool: Random Matrix Theory

- A generic result.
- If $e_{s} \sim iid \ \mathcal{N} \left(0,\Omega \right)$ for some full rank Ω , then

$$\widehat{\Omega} = \ell^{-1} \sum_{s=1}^{\ell} e_s e_s^{\top} \sim \text{Wishart}_q (\Omega, \ell) / \ell$$

Fact (Wainright, 2019)

When $\ell > q$, for all $c \in (0,1)$:

$$\Pr\left(\lambda_{\min}^{1/2}(\widehat{\Omega}) \le \lambda_{\min}^{1/2}(\Omega)(1-c) - \sqrt{\operatorname{tr}(\Omega)/\ell}\right) \le e^{-\ell c^2/2}$$

- For all 2s-submatrices, there are $\binom{p}{2s} \leq p^{2s}$ choices
- Uniform bound for minimum eigenvalues of all 2s-submatrices

Key Tool: Random Matrix Theory

- A generic result.
- If $e_{s} \sim iid \ \mathcal{N} \left(0,\Omega \right)$ for some full rank Ω , then

$$\widehat{\Omega} = \ell^{-1} \sum_{s=1}^{\ell} e_s e_s^{\top} \sim \text{Wishart}_q (\Omega, \ell) / \ell$$

Fact (Wainright, 2019)

When $\ell > q$, for all $c \in (0,1)$:

$$\Pr\left(\lambda_{\min}^{1/2}(\widehat{\Omega}) \le \lambda_{\min}^{1/2}(\Omega)\left(1 - c\right) - \sqrt{\operatorname{tr}(\Omega)/\ell}\right) \le e^{-\ell c^2/2}$$

- For all 2s-submatrices, there are $\binom{p}{2s} \leq p^{2s}$ choices
- Uniform bound for minimum eigenvalues of all 2s-submatrices

- Demonstration with $\Omega = I$.
- Set c = 0.5, $\ell = \frac{32s \log p}{r}$
- $\lambda_{\min}(\widehat{\Omega}_k) \geq 0.16$ uniformly for all 2s-submatrices w.p.a.1.

$$\Pr\left(\bigcup_{k \leq p^{2s}} \left\{ \lambda_{\min}^{1/2}(\widehat{\Omega}_k) \leq 0.4 \right\} \right)$$

$$\leq \Pr\left(\bigcup_{k \leq p^{2s}} \left\{ \lambda_{\min}^{1/2}(\widehat{\Omega}_k) \leq 0.5 - \sqrt{2s/\ell} \right\} \right)$$

$$\leq \sum_{k \leq p^{2s}} \Pr\left(\lambda_{\min}^{1/2}(\widehat{\Omega}_k) \leq 0.5 - \sqrt{2s/\ell} \right)$$

$$\leq p^{2s} \times e^{-32s \log p \cdot 0.5^2/2} = p^{-2s} \to 0.$$

As a result, w.p.a.1

$$\frac{\delta^{\top} \widehat{\Sigma} \delta}{\delta^{\top} \delta} \ge \frac{n}{\delta^{\top} \delta \ell} \cdot \delta^{\top} \frac{\text{Wishart}_{2s}(I_{2s}, \ell)}{\ell} \delta \ge \frac{0.16 \times n}{32s \log p} = \frac{0.005n}{s \log p}$$

- Demonstration with $\Omega = I$.
- Set c = 0.5, $\ell = 32s \log p$
- $\lambda_{\min}(\widehat{\Omega}_k) \geq 0.16$ uniformly for all 2s-submatrices w.p.a.1.

$$\Pr\left(\bigcup_{k \leq p^{2s}} \left\{ \lambda_{\min}^{1/2}(\widehat{\Omega}_k) \leq 0.4 \right\} \right)$$

$$\leq \Pr\left(\bigcup_{k \leq p^{2s}} \left\{ \lambda_{\min}^{1/2}(\widehat{\Omega}_k) \leq 0.5 - \sqrt{2s/\ell} \right\} \right)$$

$$\leq \sum_{k \leq p^{2s}} \Pr\left(\lambda_{\min}^{1/2}(\widehat{\Omega}_k) \leq 0.5 - \sqrt{2s/\ell} \right)$$

$$\leq p^{2s} \times e^{-32s \log p \cdot 0.5^2/2} = p^{-2s} \to 0.$$

As a result, w.p.a.1

Mei-Shi

$$\frac{\delta^{\top} \widehat{\Sigma} \delta}{\delta^{\top} \delta} \ge \frac{n}{\delta^{\top} \delta \ell} \cdot \delta^{\top} \frac{\text{Wishart}_{2s}(I_{2s}, \ell)}{\ell} \delta \ge \frac{0.16 \times n}{32s \log p} = \frac{0.005n}{s \log p}$$

 4 □ ▷ ◆ ♂ ▷ ◆ 薓 ▷ ◆ 薓 ▷ 薓 ◆ ♡ ℚ ҈

 HD Predictive Reg.
 19 / 47

RE Bound under Gaussian Shocks

- Asymptotic framework: $n \to \infty$, and $s, p \to \infty$.
- Innovation

$$\begin{pmatrix} e_t \\ u_t \end{pmatrix} = \Phi \underbrace{\epsilon_t}_{(p+1)\times(p+1)(p+1)} \underbrace{\epsilon_t}_{(p+1)}$$

• Assumption (Cross sectional dependence): All singular values of Φ bounded away from 0 and ∞ . ($\Omega = \Phi_{1:p}\Phi_{1:p}^{\top}$)

Proposition

If $\varepsilon_{jt} \sim iid \ \mathcal{N}(0,1)$ and $s/(p \wedge n) \to 0$, then under Assumption as $n \to \infty$:

$$\widehat{\kappa}/n \gtrsim (s \log p)^{-1}$$

RE Bound under Gaussian Shocks

- Asymptotic framework: $n \to \infty$, and $s, p \to \infty$.
- Innovation

$$\begin{pmatrix} e_t \\ u_t \end{pmatrix} = \Phi \underbrace{\varepsilon_t}_{(p+1)\times(p+1)(p+1)}$$

• Assumption (Cross sectional dependence): All singular values of Φ bounded away from 0 and ∞ . ($\Omega = \Phi_{1:p}\Phi_{1:p}^{\top}$)

Proposition

If $\varepsilon_{jt} \sim iid \ \mathcal{N}(0,1)$ and $s/(p \wedge n) \to 0$, then under Assumption as $n \to \infty$:

$$\widehat{\kappa}/n \stackrel{\mathrm{p}}{\succcurlyeq} (s \log p)^{-1}.$$

Gaussian Approximation

- Linear process $\varepsilon_{jt}=\sum_{d=0}^\infty \psi_{jd}\eta_{j,t-d}$ for all j, with iid shocks (η_{jt}) is iid.
- Functional central limit theorem:

$$\frac{1}{\sqrt{n}} \sum_{s=0}^{\lfloor n \cdot \rfloor} \varepsilon_{js} \Longrightarrow \psi_j(1) B_j(\cdot)$$

- Skorokhod's representation theorem.
- RE under normal distribution carries over to non-Gaussian case if approximation holds uniformly over all j.

21 / 47

Mei-Shi HD Predictive Reg.

Gaussian Approximation

- Linear process $\varepsilon_{jt} = \sum_{d=0}^{\infty} \psi_{jd} \eta_{j,t-d}$ for all j, with iid shocks (η_{jt}) is iid.
- Functional central limit theorem:

$$\frac{1}{\sqrt{n}}\sum_{s=0}^{\lfloor n\cdot\rfloor}\varepsilon_{js} \Longrightarrow \psi_j(1)B_j(\cdot)$$

- Skorokhod's representation theorem.
- RE under normal distribution carries over to non-Gaussian case if approximation holds uniformly over all j.

All symbols of c_{\sup} are absolute constants.

• **Assumption** (sub-exponential tail): for all j.

$$\Pr(|\eta_{jt}| > \mu) \le C_{\eta} \exp[-\mu/c_{\eta}].$$

• Assumption (temporal dependence): There is r > 0 such that for all j

$$|\psi_{jd}| \le C_{\psi} \exp\left(-c_{\psi}d^r\right), \ \ d \in \mathbb{N}.$$

- Assumption (Size of model): $s \to \infty$ and $s^9/n \to 0$, and $p = O(n^{\nu})$ for some $\nu \in (0, \infty)$.
- Done with RE. Move on DB.

Mei-Shi

All symbols of c_{\sup} are absolute constants.

• **Assumption** (sub-exponential tail): for all *j*.

$$\Pr(|\eta_{jt}| > \mu) \le C_{\eta} \exp[-\mu/c_{\eta}].$$

• Assumption (temporal dependence): There is r>0 such that for all j

$$|\psi_{jd}| \le C_{\psi} \exp\left(-c_{\psi}d^r\right), \ \ d \in \mathbb{N}.$$

- Assumption (Size of model): $s \to \infty$ and $s^9/n \to 0$, and $p = O(n^{\nu})$ for some $\nu \in (0, \infty)$.
- Done with RE. Move on DB.

All symbols of c_{sup} are absolute constants.

• **Assumption** (sub-exponential tail): for all *j*.

$$\Pr(|\eta_{jt}| > \mu) \le C_{\eta} \exp[-\mu/c_{\eta}].$$

• Assumption (temporal dependence): There is r>0 such that for all j

$$|\psi_{jd}| \le C_{\psi} \exp\left(-c_{\psi}d^r\right), \ \ d \in \mathbb{N}.$$

- Assumption (Size of model): $s \to \infty$ and $s^9/n \to 0$, and $p = O(n^{\nu})$ for some $\nu \in (0, \infty)$.
- Done with RE. Move on DB.

All symbols of c_{sup} are absolute constants.

• **Assumption** (sub-exponential tail): for all *j*.

$$\Pr(|\eta_{jt}| > \mu) \le C_{\eta} \exp[-\mu/c_{\eta}].$$

• Assumption (temporal dependence): There is r>0 such that for all j

$$|\psi_{jd}| \leq C_{\psi} \exp\left(-c_{\psi}d^r\right), \ \ d \in \mathbb{N}.$$

- Assumption (Size of model): $s \to \infty$ and $s^9/n \to 0$, and $p = O(n^{\nu})$ for some $\nu \in (0, \infty)$.
- Done with RE. Move on DB.

Deviation Bound

Proposition

Under above Assumptions:

$$\left\| \frac{1}{n} \sum_{t=1}^{n} X_{t-1} u_{t} \right\|_{\infty} \leq C_{\text{DB}} (\log p)^{1 + \frac{1}{2r}}$$

w.p.a.1.

• RE and DB ready. Move on to Plasso.

Mei-Shi

Deviation Bound

Proposition

Under above Assumptions:

$$\left\| \frac{1}{n} \sum_{t=1}^{n} X_{t-1} u_{t} \right\|_{\infty} \leq C_{\text{DB}} (\log p)^{1 + \frac{1}{2r}}$$

w.p.a.1.

• RE and DB ready. Move on to Plasso.

Mei-Shi

Plasso for unit roots

Theorem

If we choose $\lambda = C_{DB}(\log p)^{1+\frac{1}{2r}}$ the Plasso estimator satisfies

$$\frac{1}{n} \|X(\widehat{\beta} - \beta^*)\|_2^2 = O_p \left(\frac{s^2}{n} (\log p)^{3 + \frac{1}{r}} \right)$$
$$\|\widehat{\beta} - \beta^*\|_1 = O_p \left(\frac{s^2}{n} (\log p)^{2 + \frac{1}{2r}} \right)$$
$$\|\widehat{\beta} - \beta^*\|_2 = O_p \left(\frac{s^{3/2}}{n} (\log p)^{2 + \frac{1}{2r}} \right)$$

- Cf. Under iid cross sectional regressions: L_1 error bound is $s \times \sqrt{(\log p)/n}$
- Super-consistency

Plasso for unit roots (cont.)

- Faster than Wijler (2022)'s rates
- In reality C_{DB} is unknown. Admissible λ :

$$\frac{(\log p)^{1+\frac{1}{2r}}}{\lambda} + \lambda s \sqrt{\frac{\log p}{n}} \to 0$$

RE and DB under Transformation

- For a unit root process, $\widehat{\sigma}_j/\sqrt{n} = O_p(1)$
- Sample variance

$$\frac{1}{(\log p)^{1/(4r)}} \stackrel{\mathsf{p}}{\preccurlyeq} \frac{\widehat{\sigma}_{\min}^2}{n} \leq \frac{\widehat{\sigma}_{\max}^2}{n} \stackrel{\mathsf{p}}{\preccurlyeq} \log p.$$

For the Gram matrix $\tilde{\Sigma} = D^{-1} \hat{\Sigma} D^{-1}$:

• RE:
$$\tilde{\kappa} \rightleftharpoons \frac{1}{s(\log p)^{3+\frac{1}{4r}}}$$

• DB: $||n^{-1/2}\sum_{t=1}^{n} \tilde{X}_{t-1}u_t||_{\infty} \leq \tilde{C}_{DB}(\log p)^{1+\frac{3}{4r}}$

Slightly slower than Plasso due to randomness from $\widehat{\sigma}_{j}.$

Mei-Shi

RE and DB under Transformation

- For a unit root process, $\widehat{\sigma}_j / \sqrt{n} = O_p(1)$
- Sample variance

$$\frac{1}{(\log p)^{1/(4r)}} \stackrel{\mathsf{p}}{\preccurlyeq} \frac{\widehat{\sigma}_{\min}^2}{n} \leq \frac{\widehat{\sigma}_{\max}^2}{n} \stackrel{\mathsf{p}}{\preccurlyeq} \log p.$$

For the Gram matrix $\tilde{\Sigma} = D^{-1} \hat{\Sigma} D^{-1}$:

- RE: $\tilde{\kappa} \succcurlyeq \frac{1}{s(\log p)^{3+\frac{1}{4r}}}$
- DB: $||n^{-1/2}\sum_{t=1}^{n} \tilde{X}_{t-1}u_t||_{\infty} \leq \tilde{C}_{DB}(\log p)^{1+\frac{3}{4r}}$

Slightly slower than Plasso due to randomness from $\widehat{\sigma}_{j}$.

Mei-Shi

Slasso for unit roots

$\mathsf{Theorem}$

Specify
$$\lambda = \frac{\tilde{C}_{DB}}{\sqrt{n}} (\log p)^{1+\frac{3}{4r}}$$
, and under the Assumptions we have

$$\frac{1}{n} \|\tilde{X}(\tilde{\beta} - \tilde{\beta}^*)\|_2^2 = O_p \left(\frac{s^2}{n} (\log p)^{5 + \frac{3}{2r}} \right)
\|\tilde{\beta} - \tilde{\beta}^*\|_1 = O_p \left(\frac{s^2}{\sqrt{n}} (\log p)^{4 + \frac{1}{r}} \right)
\|\tilde{\beta} - \tilde{\beta}^*\|_2 = O_p \left(\frac{s^{3/2}}{\sqrt{n}} (\log p)^{4 + \frac{1}{r}} \right).$$

ullet Remind $ar{eta}_i^* = \widehat{\sigma}_i eta_i^*$. Super-consistency remains for the original parameter β^* .

27 / 47

Mixed roots

- Pure unit root is a toy model.
- Complex patterns in reality.
- Study a mixture of I(1) and I(0) regressors

• Let
$$(e_t^\top, Z_t^\top, u_t)^\top = \Phi \varepsilon_t$$
:

$$Y_{t} = \alpha^{*} + X_{t-1}^{\top} \beta^{*} + Z_{t-1}^{\top} \gamma^{*} + u_{t}$$

$$= \alpha^{*} + \begin{pmatrix} X_{t-1} \\ Z_{t-1} \end{pmatrix}^{\top} \begin{pmatrix} \beta^{*} \\ \gamma^{*} \end{pmatrix} + u_{t}$$

$$= \alpha^{*} + W_{t-1}^{\top} \theta^{*} + u_{t}$$

OLS for the original data

$$\widehat{\theta}^{ols} - \theta^* = (W^\top W)^{-1} W^\top u$$

Mixed roots

- Pure unit root is a toy model.
- Complex patterns in reality.
- Study a mixture of I(1) and I(0) regressors
- Let $(e_t^\top, Z_t^\top, u_t)^\top = \Phi \varepsilon_t$:

$$Y_{t} = \alpha^{*} + X_{t-1}^{\top} \beta^{*} + Z_{t-1}^{\top} \gamma^{*} + u_{t}$$

$$= \alpha^{*} + \begin{pmatrix} X_{t-1} \\ Z_{t-1} \end{pmatrix}^{\top} \begin{pmatrix} \beta^{*} \\ \gamma^{*} \end{pmatrix} + u_{t}$$

$$= \alpha^{*} + W_{t-1}^{\top} \theta^{*} + u_{t}$$

OLS for the original data

$$\widehat{\theta}^{ols} - \theta^* = (W^\top W)^{-1} W^\top u$$

OLS for Mixed roots

• (Lee, Shi and Gao, 2022): Under fixed p, asymptotic distribution of OLS is

$$\begin{pmatrix} n(\widehat{\beta}^{ols} - \beta^*) \\ \sqrt{n}(\widehat{\gamma}^{ols} - \gamma^*) \end{pmatrix} = \begin{pmatrix} \frac{X^{\top}X}{n^2} & \frac{X^{\top}Z}{n^{3/2}} \\ \frac{Z^{\top}X}{n^{3/2}} & \frac{Z^{\top}Z}{n} \end{pmatrix}^{-1} \begin{pmatrix} \frac{X^{\top}u}{n} \\ \frac{Z^{\top}u}{\sqrt{n}} \end{pmatrix}$$

$$\implies \begin{pmatrix} ran.mat & 0 \\ 0 & const \end{pmatrix}^{-1} \begin{pmatrix} ran.vec \\ normal \end{pmatrix}$$

29 / 47

Mei-Shi HD Predictive Reg.

Plasso for Mixed Roots

- Admissible λ :
 - I(1) part: $\frac{(\log p)^{1+\frac{1}{2r}}}{\lambda} + \lambda s \sqrt{\frac{\log p}{n}} \to 0$, implies

$$\lambda \succeq (\log p)^{1+\frac{1}{2r}} \to \infty$$

• I(0) part: $\sqrt{\frac{\log p}{n}}/\lambda + s\lambda \to 0$, implies

$$\lambda \leq 1/s \rightarrow 0$$

- Lee, Shi and Gao (2022):
 - Under fixed p, variable selection effect and consistent estimation are incompatible in two parts.
- Effects to be seen in numerical works.

Slasso for Mixed Roots

• If $\lambda = \frac{\tilde{C}_{\mathrm{DB}}^w}{\sqrt{n}} (\log p)^{1+\frac{3}{4r}}$, then the same rates for Slasso above apply to $n^{-1} \|\tilde{W}(\tilde{\theta} - \tilde{\theta}^*)\|_2^2$, $\|\tilde{\theta} - \tilde{\theta}^*\|_1$ and $\|\tilde{\theta} - \tilde{\theta}^*\|_2$.

Summary:

	Plasso	Slasso
Pure I(1)	consistent	consistent
Mix I(1) and I(0)	inconsistent	consistent

Slasso for Mixed Roots

• If $\lambda = \frac{\tilde{C}_{\mathrm{DB}}^w}{\sqrt{n}} (\log p)^{1+\frac{3}{4r}}$, then the same rates for Slasso above apply to $n^{-1} \|\tilde{W}(\tilde{\theta} - \tilde{\theta}^*)\|_2^2$, $\|\tilde{\theta} - \tilde{\theta}^*\|_1$ and $\|\tilde{\theta} - \tilde{\theta}^*\|_2$.

Summary:

	Plasso	Slasso
Pure I(1)	consistent	consistent
Mix I(1) and I(0)	inconsistent	consistent

Variable Selection

Karush-Kuhn-Tucker condition:

$$\frac{2}{n}\check{W}_{j}^{\top}\check{u} = \lambda \times \operatorname{sign}(\check{\theta}_{j}) \quad \text{if } \check{\theta}_{j} \neq 0$$
$$\left|\frac{2}{n}\check{W}_{j}^{\top}\check{u}\right| < \lambda \quad \text{if } \check{\theta}_{j} = 0$$

- More likely to select variables with large s.d.
- Observed in empirical application and simulations.

Section 4

Empirical Application

Our Application: UNRATE

• FRED-MD database

• Data: 1960:Jan-2019:Dec

121 Predictors

• TCODE for stationarity: (1) "nil", (2) Δy_t , (3) $\Delta^2 y_t$, (4) $\log(y_t)$, (5) $\Delta \log(y_t)$, (6) $\Delta^2 \log(y_t)$, (7) $\Delta(y_t/y_{t-1}-1)$

S.D. of Variables

Note: y-axis is $logarithm\ base\ 10$

LASSO Implementation

- Data-driven tuning parameter
 - Block 10-fold cross validation (CV)
- 121 predictors
 - All other variables in database

RMSPE

				121 Predictors					
h	n	Benchr	narks	N	Т	ST			
		RWwD	AR	Plasso	Slasso	Plasso	Slasso		
	120	0.154	0.150	0.639	0.144	0.889	0.511		
1	240	0.154	0.149	0.614	0.145	0.632	0.647		
	360	0.154	0.144	0.518	0.150	1.864	1.920		
	120	0.230	0.214	0.689	0.195	0.903	0.536		
2	240	0.230	0.205	0.821	0.173	0.635	0.643		
	360	0.229	0.199	0.600	0.189	0.744	1.561		
	120	0.306	0.281	0.732	0.266	0.953	0.563		
3	240	0.306	0.262	0.726	0.242	0.641	0.654		
	360	0.305	0.255	0.654	0.225	0.741	1.177		

- Slasso better than Plasso
- NT better than ST

Construct More Predictors

- 504 predictors
 - lagged y (Bai and Ng, 2008)
 - 4 factors (Stock and Watson, 2002)
 - 121 + 1 + 4 = 126
 - $126 \times 4 = 504$

		Benchmarks			121 Pre	dictors		504 Predictors			
h n		Dencimarks		NT		S	ST		NT		T
		RWwD	AR	Plasso	Slasso	Plasso	Slasso	Plasso	Slasso	Plasso	Slasso
	120	0.154	0.150	0.639	0.144	0.889	0.511	0.578	0.141	0.470	0.148
1	240	0.154	0.149	0.614	0.145	0.632	0.647	0.766	0.129	0.239	0.134
	360	0.154	0.144	0.518	0.150	1.864	1.920	0.736	0.129	0.192	0.134
	120	0.230	0.214	0.689	0.195	0.903	0.536	0.642	0.192	0.548	0.203
2	240	0.230	0.205	0.821	0.173	0.635	0.643	0.878	0.165	0.306	0.176
	360	0.229	0.199	0.600	0.189	0.744	1.561	0.753	0.169	0.259	0.176
	120	0.306	0.281	0.732	0.266	0.953	0.563	0.710	0.320	0.644	0.264
3	240	0.306	0.262	0.726	0.242	0.641	0.654	1.011	0.218	0.389	0.212
	360	0.305	0.255	0.654	0.225	0.741	1.177	0.786	0.212	0.330	0.218

Selected Variables

Macroeconomic domain knowledge is important for machine learning applications!

- Choose NT or ST
- Choose sets of regressors (factor, lagged y, lagged w, ...)

	(a) 121 Predictors									
	N	Т	ST							
n	Plasso	Slasso	Plasso	Slasso						
120	4.553	16.206	4.833	26.228						
240	12.381	22.764	21.275	62.458						
360	12.867	32.808	24.092	66.156						

(b) 504 Predictors

\overline{n}	N	Т	ST			
	Plasso	Slasso	Plasso	Slasso		
120	10.428	13.058	4.858	21.150		
240	9.494	8.786	3.847	22.958		
360	8.542	8.747	3.875	23.933		

Section 5

Simulations

DGP Design: Leading Case

- Innovation $v_t = 0.4v_{t-1} + \epsilon_t$, where $\epsilon_t \sim iid \ \mathcal{N}(0, 0.84\Sigma)$, with $\Sigma_{ij} = 0.8^{|j-j'|}$.
- $n \in \{120, 240, 360\}$, p = 2n, $p_x = \{0.5n, 0.8n, 1.2n, 1.5n\}$ and $s_x = s_z = 2\lceil \log n \rceil$
- $\gamma^* = (0.3 \times [s_z]^\top, 0_{p_z s_z}^\top)^\top$ DGP1 $\theta^*_{(1)} = (\beta^{*\top}_{(1)}, \gamma^{*\top})^\top$ DGP2 $\theta^*_{(2)} = (\beta^{*\top}_{(2)}, \gamma^{*\top})^\top$
- CV λ
- Calibrated λ

Mei-Shi HD Predictive Reg. 42 / 47

DGP Design: Leading Case

- Innovation $v_t = 0.4v_{t-1} + \epsilon_t$, where $\epsilon_t \sim iid \ \mathcal{N}(0, 0.84\Sigma)$, with $\Sigma_{ij} = 0.8^{|j-j'|}$.
- $n \in \{120, 240, 360\}$, p = 2n, $p_x = \{0.5n, 0.8n, 1.2n, 1.5n\}$ and $s_x = s_z = 2\lceil \log n \rceil$
- $\gamma^* = (0.3 \times [s_z]^\top, 0_{p_z s_z}^\top)^\top$ DGP1 $\theta^*_{(1)} = (\beta^{*\top}_{(1)}, \gamma^{*\top})^\top$ DGP2 $\theta^*_{(2)} = (\beta^{*\top}_{(2)}, \gamma^{*\top})^\top$
- CV λ
- Calibrated λ

Mei-Shi

DGP Design: Leading Case

- Innovation $v_t = 0.4v_{t-1} + \epsilon_t$, where $\epsilon_t \sim iid \ \mathcal{N}(0, 0.84\Sigma)$, with $\Sigma_{ij} = 0.8^{|j-j'|}$.
- $n \in \{120, 240, 360\}$, p = 2n, $p_x = \{0.5n, 0.8n, 1.2n, 1.5n\}$ and $s_x = s_z = 2\lceil \log n \rceil$
- $\gamma^* = (0.3 \times [s_z]^\top, 0_{p_z s_z}^\top)^\top$ DGP1 $\theta^*_{(1)} = (\beta^{*\top}_{(1)}, \gamma^{*\top})^\top$ DGP2 $\theta^*_{(2)} = (\beta^{*\top}_{(2)}, \gamma^{*\top})^\top$
- CV λ
- Calibrated λ

Outcomes for DGP1

					RMSPE			RMSE for estimated coefficients				
n	p_x	p_z	Oracle	CV	λ	Calibrated λ		Oracle	CV	7 λ	Calibrated λ	
			Oracie	Plasso	Slasso	Plasso	Slasso	Oracle	Plasso	Slasso	Plasso	Slasso
DGP1												
	60	180	1.149	1.678	1.269	1.527	1.256	0.846	1.232	0.913	1.108	0.899
120	96	144	1.139	1.760	1.253	1.524	1.239	0.846	1.298	0.906	1.122	0.891
120	144	96	1.136	1.791	1.257	1.570	1.245	0.847	1.316	0.897	1.131	0.882
	180	60	1.143	1.852	1.240	1.561	1.232	0.843	1.345	0.879	1.132	0.864
	120	360	1.069	2.218	1.229	1.546	1.167	0.610	1.425	0.710	0.968	0.685
240	192	288	1.071	2.221	1.219	1.538	1.161	0.612	1.464	0.710	0.978	0.682
240	288	192	1.071	2.261	1.221	1.528	1.159	0.610	1.522	0.705	0.981	0.673
	360	120	1.066	2.340	1.227	1.569	1.163	0.607	1.545	0.700	0.985	0.662
	180	540	1.059	2.397	1.202	1.531	1.141	0.483	1.448	0.575	0.867	0.554
360	288	432	1.048	2.474	1.211	1.547	1.138	0.478	1.491	0.569	0.871	0.545
300	432	288	1.051	2.531	1.200	1.547	1.132	0.478	1.536	0.569	0.877	0.539
	540	180	1.039	2.591	1.198	1.554	1.125	0.482	1.549	0.571	0.880	0.537

Variable Selection in Categories

- Plasso makes more mistakes in both active and inactive X than Slasso
 - X variables are more influential
 - Substantial bias in active Z variables
 - Positive side effect: almost perfect in inactive Z
- Slasso keeps balance in both X and Z

DGP Design: Pure Unit Root

• $p_x = \{0.5n, 0.8n, 1.2n, 1.5n\}$ and $s_x = 2\lceil \log n \rceil$ DGP3 $\theta_{(3)}^* = \beta_{(1)}^{*\top}$. DGP4 $\theta_{(4)}^* = \beta_{(2)}^{*\top}$.

Outcomes for DGP3

					RMSE for estimated coefficients							
n	p_x	Oracle	CV λ		Calibra	Calibrated λ		CV	7 λ	Calibrated λ		
		Oracie	Plasso	Slasso	Plasso	Slasso	Oracle	Plasso	Slasso	Plasso	Slasso	
	DGP3											
	60	1.108	1.111	1.127	1.084	1.106	0.383	0.328	0.350	0.284	0.302	
120	96	1.088	1.103	1.109	1.073	1.085	0.384	0.323	0.347	0.283	0.309	
120	144	1.075	1.133	1.110	1.070	1.082	0.384	0.285	0.323	0.282	0.315	
	180	1.067	1.135	1.118	1.079	1.093	0.382	0.288	0.325	0.283	0.316	
	120	1.042	1.058	1.068	1.044	1.058	0.228	0.211	0.233	0.195	0.216	
240	192	1.062	1.079	1.095	1.063	1.081	0.226	0.212	0.238	0.196	0.221	
240	288	1.046	1.140	1.089	1.056	1.072	0.226	0.206	0.231	0.196	0.226	
	360	1.046	1.155	1.104	1.070	1.084	0.226	0.207	0.234	0.197	0.229	
	180	1.024	1.043	1.051	1.033	1.042	0.151	0.155	0.176	0.146	0.166	
360	288	1.031	1.054	1.079	1.045	1.064	0.150	0.157	0.181	0.147	0.171	
300	432	1.037	1.142	1.082	1.050	1.065	0.149	0.161	0.178	0.148	0.174	
	540	1.024	1.122	1.066	1.035	1.052	0.150	0.162	0.181	0.149	0.178	

Conclusion

- LASSO in high dimensional predictive regression
- RE and DB
- Plasso vs. Slasso
 - Plasso possesses smaller error bounds for pure unit roots
 - Slasso enjoys theoretical guarantees and better numerical performances for mixed roots
- Extensions
 - Inference
 - Local unit roots and cointegrated predictors
 - Other machine learning methods

Conclusion

- LASSO in high dimensional predictive regression
- RE and DB
- Plasso vs. Slasso
 - Plasso possesses smaller error bounds for pure unit roots
 - Slasso enjoys theoretical guarantees and better numerical performances for mixed roots
- Extensions
 - Inference
 - Local unit roots and cointegrated predictors
 - Other machine learning methods