Assignment 1

Machine Learning (SE-807)

Submitted By:-

Shahzeb Awan

Reg no:-

362585

Submitted To:-

Dr. Qasim Umar Khan

Date: - 21, March, 2022

Q: Take a 5-featured Multi-Linear Regression Problem having at least 1000 training examples, plot the cost function vs. number of iterations, after that show the surface 3D plot of Cost function having variable θ_0 and θ_1 , at the end also show the contour plot of the cost function.

I have taken a problem of climate **Temperature** prediction using other features in relation to it like, **Humidity**, **Wind direction**, **Atmospheric pressure**, **Windspeed** and **Visibility**.

First of all I downloaded the dataset from Kaggle having link as follows: - https://www.kaggle.com/datasets/zakriarehman/weather-data-for-linear-regression

Then I selected my feature for prediction as Temperature and selected other features as inputs.

After arranging in a useable format in excel as follows:-

		-									
	L1	•	f_x								
1	А	В	С	D	Е	F	G	Н	T	J	К
1	Humidity	,	Wind_Bearing_degrees	,	Pressure_millibars	,	Wind_Speed_kmh	,	Visibility_km	,	Temperature_c
2	0.92	,	130	,	1021.6	,	11.27	,	8.05	,	-0.55555556
3	0.73	,	330	,	1017	,	20.93	,	16.1	,	21.11111111
4	0.97	,	193	,	1013.99	,	5.9731	,	14.9086	,	16.6
5	0.82	,	300	,	1031.59	,	3.22	,	16.1	,	1.6
6	0.6	,	116	,	1020.88	,	10.8836	,	9.982	,	2.194444444
7	0.32	,	190	,	1015.33	,	21.4613	,	10.3523	,	27.53888889

Then I converted this excel data file to text form for usage in my MATLAB Program as shown on next page: -

File Edit	Format	View	Help										
0.92	,	130	,	1021.6	,	11.27	,	8.05	,	-0.555	555556	^	
0.73	,	330	,	1017	,	20.93	,	16.1	,	21.111	11111		
0.97	,	193	,	1013.99	,	5.9731	,	14.9086	,	16.6			
0.82	,	300	,	1031.59	,	3.22	,	16.1	,	1.6			
0.6	,	116	,	1020.88	,	10.8836	,	9.982	,	2.1944	14444		
0.32	,	190	,	1015.33	,	21.4613	,	10.3523	,	27.538	88889		
0.84	,	170	,	1009.04	,	7.9695	,	11.1251	,	19.977	77778		
0.86	,	30	,	1009.6	,	14.49	,	15.134	,	11.111	11111		
0.73	,	351	,	1018.39	,	14.007	,	15.8263	,	8.4055	55556		
0.81	,	320	,	1003.89	,	6.44	,	7.8568	,	1.7			
0.88	,	141	,	1021.28	,	14.007	,	6.0214	,	-2.222	222222		
0.6	,	204	,	1019.52	,	1.4168	,	15.8263	,	21.9			
0.87	,	1	,	1015.92	,	11.0285	,	14.9086	,	17.105	55556		
0.73	,	297	,	1013.06	,	4.0733	,	9.7566	,	17.772	22222		
0.39	,	35	,	1025.59	,	7.6636	,	9.982	,	24.95			
0.92	,	310	,	1024.3	,	3.22	,	3.4615	,	-2.711	111111		
0.78	,	180	,	1018.76	,	4.83	,	9.982	,	18.888	88889		
0 00		200	-	1000		20 2007	-	16 0060	-	4 2277	77770		

Main code:-

```
%% Load Data
data = load('Shahzeb Awan data weather.txt');
X = data(:, 1:5);% input features
y = data(:, 6); % output column is number 6
m = length(y); % length of dataset
%% ======= Part 1: Feature Normalization ============
% Scale features and set them to zero mean
fprintf('Normalizing Features ...\n');
[X mu sigma] = featureNormalize(X); % This function is explained in this
%report on later pages in detail
% Add intercept term to X
X = [ones(m, 1) X];
%% ========= Part 2: Gradient Descent =========
fprintf('Running gradient descent ...\n');
% Choosing some alpha value
alpha = 0.01;
num iters = 1000;
% Init Theta and Running Gradient Descent
theta = [1;44;9;2;5;1]; % nice then zeros (comparitively better)
%gradient decent function is also explained later on
[theta, J1] = gradientDescentMulti2(X, y, theta, alpha, num iters);
```

```
% Plot the convergence graph
figure;
plot(1:numel(J1), J1, 'b');
xlabel('Number of iterations');
ylabel('Cost J');
% Display gradient descent's result
fprintf('Theta computed from gradient descent: \n');
fprintf(' %f \n', theta);
fprintf('\n');
%if Humidity is 0.88 , Wind bearing degrees 141, pressure in mb is 1021.28,
wind speed in km/h is 14.007
% and visibility in km is 6.0214 then Temperature should be round about :-2.22
Temperature=[1, (0.88-mu(1))/sigma(1), (141-mu(2))/sigma(2), (1021.28-mu(1))/sigma(2), (1021.28-mu(1))/sigma(2), (1021.28-mu(1))/sigma(2), (1021.28-mu(1))/sigma(1), (141-mu(2))/sigma(2), (1021.28-mu(1))/sigma(1), (141-mu(2))/sigma(2), (1021.28-mu(1))/sigma(1), (141-mu(2))/sigma(2), (1021.28-mu(1))/sigma(1), (141-mu(2))/sigma(2), (1021.28-mu(1))/sigma(1), (141-mu(2))/sigma(2), (1021.28-mu(1))/sigma(2), (
mu(3))/sigma(3),(14.007-mu(4))/sigma(4),(6.0214-mu(5))/sigma(5)]*theta;
fprintf(['Predicted Temperature ' ...
                  '(using gradient descent): \n %f\n'], Temperature);
%% ========= Part 3: Normal Equations ==========
%% Analytical solution through ordinary least squares
fprintf('Solving with normal equations...\n');
%% Load Data
data = csvread('Shahzeb Awan data weather.txt');
X = data(:, 1:5);
y = data(:, 6);
m = length(y);
% Add intercept term to X
X = [ones(m, 1) X];
% Calculate the parameters from the normal equation
theta = normalEqn(X, y); %this is also explained separately in following pages
% Display normal equation's result
fprintf('Theta computed from the normal equations: \n');
fprintf(' %f \n', theta);
fprintf('\n');
%if Humidity is 0.88 , Wind bearing degrees 141, pressure in mb is 1021.28,
wind speed in km/h is 14.007
% and visibility in km is 6.0214 then Temperature should be round about :-2.22
Temperature = [1,0.88, 141, 1021.28, 14.007, 6.0214]*theta;
```

```
fprintf(['Predicted Temperature ' ...
         '(using normal equations):\n %f\n'], Temperature);
%% ======= Part 4: Visualizing J(theta 0, theta 1) =========
fprintf('Visualizing J(theta 0, theta 1) ...\n')
% Grid over which we will calculate J
theta0 vals = linspace(-60, 100, 100);
theta1 vals = linspace(-60, 60, 100);
% initialize J vals to a matrix of 0's
J vals = zeros(length(theta0 vals), length(theta1 vals));
% Fill out J vals
for i = 1:length(theta0 vals)
    for j = 1:length(theta1 vals)
     t = [theta0 vals(i); theta1_vals(j); 0.002519; -0.003176; -
0.179258; 0.361726];
     J vals(i,j) = computeCostMulti(X, y, t);
end
% Because of the way meshgrids work in the surf command, we need to
% transpose J vals before calling surf, or else the axes will be flipped
J vals = J vals';
% Surface plot
figure;
surf(theta0 vals, theta1 vals, J vals)
xlabel('\theta 0'); ylabel('\theta 1');
% Contour plot
figure;
% Plot J vals as 15 contours spaced logarithmically between 0.01 and 100
contour(theta0 vals, theta1 vals, J vals, logspace(-2, 3, 20))
xlabel('\theta 0'); ylabel('\theta 1');
hold on;
plot(theta(1), theta(2), 'rx', 'MarkerSize', 10, 'LineWidth', 2);
%my minimum cost Function Result at my Selected thetas from gradient decent:-
J=computeCostMulti(X, y, theta)
```

Gradient-decent function:-

```
function [theta, J history] = gradientDescentMulti2(X, y, theta, alpha,
num iters)
% Initialize some useful values
m = length(y); % number of training examples
J history = zeros(num iters, 1);
for iter = 1:num iters
% Perform a single gradient step on the parameter vector theta.
gradient=zeros(6,1);
  for i=1:m,
   for j=1:6,
   gradient(j,1)=gradient(j,1)+(theta'*X(i,:)'-y(i))*X(i,j);
    end
  end
theta=theta-alpha/m*gradient;
    % Save the cost J in every iteration
    J history(iter) = computeCostMulti(X, y, theta);
end
```

Feature normalization:-

```
function [X_norm, mu, sigma] = featureNormalize(X)
%    the mean value of each feature is 0 and the standard deviation
%    is 1.
X_norm = X;
mu = zeros(1, 5);
sigma = zeros(1, 5);

mu=mean(X);
sigma=std(X);
X_norm=(X-mu)./sigma;
end
```

Closed Form Solution using normal Eqn:-

```
function [theta] = normalEqn(X, y)
%Computes the closed-form solution to linear regression
theta = zeros(5, 1);
theta=pinv(X'*X)*X'*y;
end
```

My Cost function:-

```
function J = computeCostMulti(X, y, theta)
m = length(y); % number of training examples
J = 0;
J=1/(2*m)*(X*theta-y)'*(X*theta-y);
end
```

Command Window Result:-

Figure 1 Cost function vs number of iterations

Figure 2 Cost Function vs variable Theta 0 and Theta 1

.

Figure 3 Contour plot of Cost function for theta 0 and theta 1

Following is my Github repository link for this project: -

https://github.com/Shahzeb-Awan/Multi-Linear-Regression

I have made this repository Private but after the marks allotment of this assignment I will make this repository public.

References:-

I have taken help from following two Github repositories and also through my Machine leaning class knowledge: -

https://github.com/kk289/ML-Linear Regression-MATLAB

https://github.com/antoinevlt/Multivariate-linear-regression