Application No. 10/705,506

After Final Office Action of October 16, 2008

AMENDMENTS TO THE CLAIMS

(Currently amended): A fuel cell power generating system for generating power by 1.

electrochemical reaction of hydrogen with oxygen, comprising:

reforming means for producing a reformed gas containing hydrogen by a steam reforming

reaction of a fuel;

a first power generating means adjacently located to the reforming means whose temperature

is maintained in a predetermined range, for generating power by electrochemical reaction of

hydrogen or hydrogen and carbon monoxide in said reformed gas with oxygen and supplying waste

heat required for said steam reforming reaction and recycling an emission containing steam

resulting from said power generation to said reforming means, an amount of said waste heat being

controlled so as to be reduced if an amount of said reformed gas supplied increases and so as to be

increased if the amount of said reformed gas supplied decreases:

converting means for converting carbon monoxide in said reformed gas into carbon dioxide

and hydrogen by reaction of said carbon monoxide with steam;

oxidizing means for converting carbon monoxide ejected from said converting means into

carbon dioxide by oxidation; and

second power generating means for generating power by electrochemical reaction of

hydrogen ejected from said oxidizing means with oxygen.

wherein an anode exhaust gas containing unreacted hydrogen from the first fuel cell stack

power generating means is supplied to the second fuel cell stack power generating means through

said converting means and said oxidizing means.

2. (Currently amended) A fuel cell power generating system for generating power by an electrochemical reaction of hydrogen with oxygen, comprising:

reforming means for producing a reformed gas containing hydrogen by a steam reforming reaction of a fuel:

adjacent said reforming means, a first power generating means for generating power by electrochemical reaction of hydrogen or hydrogen and carbon monoxide in said reformed gas with oxygen and supplying waste heat required for said steam reforming reaction and recycling an emission containing steam resulting from said power generation to said reforming means, an amount of said waste heat being controlled so as to be reduced if an amount of said reformed gas supplied increases and so as to be increased if the amount of said reformed gas supplied decreases;

converting means for converting carbon monoxide in said reformed gas into carbon dioxide and hydrogen by reaction of said carbon monoxide with steam; and

second power generating means for generating power by electrochemical reaction of hydrogen ejected from said converting means with oxygen.

3. (Currently amended) A fuel cell power generating system for generating power by an electrochemical reaction of hydrogen with oxygen, comprising:

reforming means for producing a reformed gas containing hydrogen by a steam reforming reaction of a fuel;

adjacent said reforming means, a first power generating means for generating power by electrochemical reaction of hydrogen or hydrogen and carbon monoxide in said reformed gas with oxygen and supplying waste heat required for said steam reforming reaction and recycling an emission containing steam resulting from said power generation to said reforming means, an amount of said waste heat being controlled so as to be reduced if an amount of said reformed gas supplied increases and so as to be increased if the amount of said reformed gas supplied decreases;

converting means for converting carbon monoxide in said reformed gas into carbon dioxide and hydrogen by reaction of said carbon monoxide with steam;

separating means for separating hydrogen from an emission of said converting means; and second power generating means for generating power by electrochemical reaction of the separated hydrogen with oxygen.

4. (Currently amended) A fuel cell power generating system for generating power by an electrochemical reaction of hydrogen with oxygen, comprising:

reforming means for producing a reformed gas containing hydrogen by a steam reforming reaction of a fuel;

a first power generating means adjacently located to the reforming means whose temperature is maintained in a predetermined range, for generating power by electrochemical reaction of hydrogen or hydrogen and carbon monoxide in said reformed gas with oxygen and supplying waste heat required for said steam reforming reaction and recycling an emission containing an emission containing steam resulting from said power generation to said reforming means, an amount of said waste heat being controlled so as to be reduced if an amount of said reformed gas supplied increases and so as to be increased if the amount of said reformed gas supplied decreases;

converting means for converting carbon monoxide in said emission into carbon dioxide and hydrogen by reaction of said carbon monoxide with steam;

oxidizing means for converting carbon monoxide ejected from said converting means into carbon dioxide by oxidation; and

second power generating means for generating power by electrochemical reaction of hydrogen ejected from said oxidizing means with oxygen,

wherein an anode exhaust gas containing unreacted hydrogen from the first fuel-cell stack power generating means is supplied to the second fuel cell stack power generating means through said converting means and said oxidizing means.

5. (Currently amended) A fuel cell power generating system for generating power by an electrochemical reaction of hydrogen with oxygen, comprising:

reforming means for producing a reformed gas containing hydrogen by a steam reforming reaction of a fuel;

a first power generating mean's adjacently located to the reforming means whose temperature is maintained in a predetermined range, for generating power by electrochemical reaction of hydrogen or hydrogen and carbon monoxide in said reformed gas with oxygen and supplying waste heat required for said steam reforming reaction and recycling an emission containing an emission containing steam resulting from said power generation to said reforming means, an amount of said waste heat being controlled so as to be reduced if an amount of said reformed gas supplied increases and so as to be increased if the amount of said reformed gas supplied decreases;

converting means for converting carbon monoxide in said emission into carbon dioxide and hydrogen by reaction of said carbon monoxide with steam; and

second power generating means for generating power by electrochemical reaction of hydrogen ejected from said converting means with oxygen,

wherein an anode exhaust gas containing unreacted hydrogen from the first fuel cell stack power generating means is supplied to the second fuel cell stack power generating means through said converting means.

6. (Currently amended) A fuel cell power generating system for generating power by electrochemical reaction of hydrogen with oxygen, comprising:

reforming means for producing a reformed gas containing hydrogen by a steam reforming reaction of a fuel;

a first power generating means adjacently located to the reforming means whose temperature is maintained in a predetermined range, for generating power by electrochemical reaction of hydrogen or hydrogen and carbon monoxide in said reformed gas with oxygen and supplying waste heat required for said steam reforming reaction and recycling an emission containing an emission containing steam resulting from said power generation to said reforming means, an amount of said waste heat being controlled so as to be reduced if an amount of said reformed gas supplied increases and so as to be increased if the amount of said reformed gas supplied decreases;

converting means for converting carbon monoxide in said emission into carbon dioxide and hydrogen by reaction of said carbon monoxide with steam;

separating means for separating hydrogen from an emission of said converting means; and

second power generating means for generating power by electrochemical reaction of the

separated hydrogen with oxygen,

wherein an anode exhaust gas containing unreacted hydrogen from the first fuel cell

stack power generating means is supplied to the second fuel-eell stack power generating means

through said converting means.

7. (Canceled)

8. (Canceled).

9. (Canceled).

10. (Canceled).

11. (Canceled).

12. (Previously presented) The fuel cell power generating system as claimed in claim

1, wherein said fuel cell power generating system comprises:

means for determining whether an output power of a first power generating means increases

or decreases; and

means for decreasing an amount of air supplied to said first power generating means when

said output power of said first power generating means increases, or increasing said amount of said

air when said output power of said first power generating means decreases.

13. (Previously Presented) The fuel cell power generating system as claimed in claim

1, wherein said fuel cell power generating system comprises:

means for determining whether an output power of a second power generating means

increases or decreases; and

means for decreasing an amount of air supplied to a first power generating means when said output power of said second power generating means increases, or increasing said amount of said air when said output power of said second power generating means decreases.

14. (Previously presented) A method of controlling a fuel cell power generating system as claimed in claim 1, comprising the steps of:

determining whether an output power of a first power generating means increases or decreases; and

decreasing an amount of air supplied to said first power generating means when said output power of said first power generating means increases, or increasing said amount of said air when said output power of said first power generating means decreases.

15. (Previously Presented) A method of controlling a fuel cell power generating system as claimed in claim 1, comprising the steps of:

determining whether an output power of a second power generating means increases or decreases; and

decreasing an amount of air supplied to a first power generating means when said output power of said second power generating means increases, or increasing said amount of said air when said output power of said second power generating means decreases.

16. (Previously presented). The fuel cell power generating system as claimed in claim 2, wherein said fuel cell power generating system comprises:

means for determining whether an output power of a first power generating means increases

or decreases; and

means for decreasing an amount of air supplied to said first power generating means when

Docket No.: 32307-198662

said output power of said first power generating means increases, or increasing said amount of said

air when said output power of said first power generating means decreases.

17. (Previously presented) The fuel cell power generating system as claimed in claim

2, wherein said fuel cell power generating system comprises:

means for determining whether an output power of a second power generating means

increases or decreases; and

means for decreasing an amount of air supplied to a first power generating means when said

output power of said second power generating means increases, or increasing said amount of said

air when said output power of said second power generating means decreases.

18. (Previously presented) A method of controlling a fuel cell power generating

system as claimed in claim 2, comprising the steps of:

determining whether an output power of a first power generating means increases or

decreases; and

decreasing an amount of air supplied to said first power generating means when said output

power of said first power generating means increases, or increasing said amount of said air when

said output power of said first power generating means decreases.

19. (Previously presented) A method of controlling a fuel cell power generating

system as claimed in claim 2, comprising the steps of:

determining whether an output power of a second power generating means increases or

decreases; and

decreasing an amount of air supplied to a first power generating means when said output

power of said second power generating means increases, or increasing said amount of said air when

said output power of said second power generating means decreases.

20. (Previously presented) The fuel cell power generating system as claimed in claim

3, wherein said fuel cell power generating system comprises:

means for determining whether an output power of a first power generating means increases

or decreases; and

means for decreasing an amount of air supplied to said first power generating means when

said output power of said first power generating means increases, or increasing said amount of said

air when said output power of said first power generating means decreases.

21. (Previously presented) The fuel cell power generating system as claimed in claim

3, wherein said fuel cell power generating system comprises:

means for determining whether an output power of a second power generating means

increases or decreases; and

means for decreasing an amount of air supplied to a first power generating means when said output power of said second power generating means increases, or increasing said amount of said air when said output power of said second power generating means decreases.

22. (Previously presented) A method of controlling a fuel cell power generating system as claimed in claim 3, comprising the steps of:

determining whether an output power of a first power generating means increases or decreases; and

decreasing an amount of air supplied to said first power generating means when said output power of said first power generating means increases, or increasing said amount of said air when said output power of said first power generating means decreases.

23. (Previously presented) A method of controlling a fuel cell power generating system as claimed in claim 3, comprising the steps of:

determining whether an output power of a second power generating means increases or decreases; and

decreasing an amount of air supplied to a first power generating means when said output power of said second power generating means increases, or increasing said amount of said air when said output power of said second power generating means decreases.

24. (Previously presented) The fuel cell power generating system as claimed in claim 4, wherein said fuel cell power generating system comprises:

means for determining whether an output power of a first power generating means increases or decreases; and

means for decreasing an amount of air supplied to said first power generating means when said output power of said first power generating means increases, or increasing said amount of said air when said output power of said first power generating means decreases.

25. (Previously presented) The fuel cell power generating system as claimed in claim 4, wherein said fuel cell power generating system comprises:

means for determining whether an output power of a second power generating means increases or decreases; and

means for decreasing an amount of air supplied to a first power generating means when said output power of said second power generating means increases, or increasing said amount of said air when said output power of said second power generating means decreases.

26. (Previously presented) A method of controlling a fuel cell power generating system as claimed in claim 4, comprising the steps of:

determining whether an output power of a first power generating means increases or decreases; and

decreasing an amount of air supplied to said first power generating means when said output power of said first power generating means increases, or increasing said amount of said air when said output power of said first power generating means decreases.

27. A method of controlling a fuel cell power generating (Previously presented)

system as claimed in claim 4, comprising the steps of:

determining whether an output power of a second power generating means increases or

decreases; and

decreasing an amount of air supplied to a first power generating means when said output

power of said second power generating means increases, or increasing said amount of said air when

said output power of said second power generating means decreases.

28. (Previously presented) The fuel cell power generating system as claimed in claim

5, wherein said fuel cell power generating system comprises:

means for determining whether an output power of a first power generating means increases

or decreases; and

means for decreasing an amount of air supplied to said first power generating means when

said output power of said first power generating means increases, or increasing said amount of said

air when said output power of said first power generating means decreases.

29. (Previously presented) The fuel cell power generating system as claimed in claim

5, wherein said fuel cell power generating system comprises:

means for determining whether an output power of a second power generating means

increases or decreases; and

means for decreasing an amount of air supplied to a first power generating means when said output power of said second power generating means increases, or increasing said amount of said air when said output power of said second power generating means decreases.

Docket No.: 32307-198662

30. (Previously presented) A method of controlling a fuel cell power generating system as claimed in claim 5, comprising the steps of:

determining whether an output power of a first power generating means increases or decreases; and

decreasing an amount of air supplied to said first power generating means when said output power of said first power generating means increases, or increasing said amount of said air when said output power of said first power generating means decreases.

31. (Previously presented) A method of controlling a fuel cell power generating system as claimed in claim 5, comprising the steps of:

determining whether an output power of a second power generating means increases or decreases; and

decreasing an amount of air supplied to a first power generating means when said output power of said second power generating means increases, or increasing said amount of said air when said output power of said second power generating means decreases.

32. (Previously presented) The fuel cell power generating system as claimed in claim 6, wherein said fuel cell power generating system comprises:

means for determining whether an output power of a first power generating means increases or decreases; and

means for decreasing an amount of air supplied to said first power generating means when said output power of said first power generating means increases, or increasing said amount of said air when said output power of said first power generating means decreases.

33. (Previously presented) The fuel cell power generating system as claimed in claim 6, wherein said fuel cell power generating system comprises:

means for determining whether an output power of a second power generating means increases or decreases; and

means for decreasing an amount of air supplied to a first power generating means when said output power of said second power generating means increases, or increasing said amount of said air when said output power of said second power generating means decreases.

34. (Previously presented) A method of controlling a fuel cell power generating system as claimed in claim 6, comprising the steps of:

determining whether an output power of a first power generating means increases or decreases; and

decreasing an amount of air supplied to said first power generating means when said output power of said first power generating means increases, or increasing said amount of said air when said output power of said first power generating means decreases.

35. (Previously presented) A method of controlling a fuel cell power generating system as claimed in claim 6, comprising the steps of:

determining whether an output power of a second power generating means increases or decreases; and

decreasing an amount of air supplied to a first power generating means when said output power of said second power generating means increases, or increasing said amount of said air when said output power of said second power generating means decreases.

- 36. (Canceled).
- 37. (Canceled).
- 38. (Canceled).
- 39. (Canceled).
- 40. (Canceled).
- 41. (Canceled).
- 42. (Canceled).
- 43. (Canceled).
- 44. (Canceled).
- 45. (Canceled).
- 46. (Canceled).
- 47. (Canceled).