Project Title: Forest Cover Type Prediction Using Machine Learning

Name: Muhammed Saneen Ak

Internship: Machine Learning Internship

Institution: Unified Mentor Pvt. Ltd

Date: 20/06/2025

Acknowledgment

I express my heartfelt gratitude to my mentors and peers who supported me in completing this project. I would also like to thank the internship program for providing access to real-world datasets and encouraging impactful problemsolving using machine learning.

Abstract

This project focuses on predicting forest cover types based on cartographic variables such as elevation, soil type, slope, aspect, and more. Using supervised machine learning algorithms, we train a model to classify seven different cover types found in the Roosevelt National Forest. The aim is to create a reliable and efficient predictive model to support forest management and conservation efforts.

Table of Contents

- 1. Introduction
- 2. Problem Statement
- 3. Objective
- 4. Tools and Technologies Used
- 5. Dataset Description
- 6. Methodology
- 7. Implementation
- 8. Challenges Faced
- 9. Results and Evaluation
- 10.Project Scope and Future Work
- 11.Conclusion
- 12.References

1. Introduction

Forest cover classification is crucial for resource management, wildfire prevention, and conservation. This project uses a UCI dataset to classify the type of forest cover based on 54 numerical and categorical features representing terrain, soil, and geographical attributes.

2. Problem Statement

Manual classification of forest cover is inefficient and error-prone. A predictive model can assist forest officials in identifying forest types automatically and accurately using geospatial data.

3. Objective

- To develop a machine learning model that predicts forest cover types.
- To improve classification accuracy using feature engineering and algorithm tuning.
- To evaluate the model using appropriate performance metrics.

4. Tools and Technologies Used

• Language: Python

• Libraries: NumPy, Pandas, Scikit-learn, XGBoost, Matplotlib, Seaborn

• Environment: Jupyter Notebook

• Visualization: Seaborn, Matplotlib

• Algorithm: Decision Tree, Random Forest, XGBoost, etc.

5. Dataset Description

Source: UCI Machine Learning Repository

• Target: Forest Cover Type (1–7)

- Features: 54 columns including Elevation, Aspect, Soil_Type, Wilderness Area etc.
- Preprocessing involved handling imbalanced classes, standardizing continuous variables, and encoding categorical features.

6. Methodology

- Data preprocessing: null check, normalization, label encoding
- EDA: Distribution analysis, correlation heatmaps
- Model selection and training
- Hyperparameter tuning using GridSearchCV
- Evaluation using accuracy, confusion matrix, and F1-score

7. Implementation

- Tried multiple classifiers: Random Forest, XGBoost
- XGBoost gave the best performance with tuned parameters

8. Challenges Faced

- High feature dimensionality required careful preprocessing
- Some classes were underrepresented (class imbalance)
- Model overfitting during early experimentation

9. Results and Evaluation

- **Best Accuracy**: ~87% on test data
- Model Used: XGBoost
- Confusion Matrix: Clear separation of most classes with minor confusion in neighboring forest types
- MAE: ~29
- MSE: ~99
- Visualizations included feature importance, prediction vs actual plots

10. Project Scope and Future Work

- Use satellite imagery and integrate remote sensing data
- Apply deep learning (MLP or CNN on terrain maps)
- Deploy as a web service for forest department usage
- Incorporate real-time geolocation-based predictions

11. Conclusion

This project achieved high accuracy in predicting forest cover types using structured terrain data. With proper preprocessing and model tuning, machine learning can be a reliable tool for supporting environmental sustainability and forest management.

12. References

- UCI ML Repository: Forest Cover Type Dataset
- XGBoost Documentation
- Scikit-learn Documentation
- Research articles on environmental ML models