# Flow Control Theory for Practitioners

Steven Low EAS, Caltech





## Acknowledgments

- Caltech
  - L. Andrews, J. Doyle, S. Hegde, C. Jin, G. Lee, L. Li, H. Newman, A. Tang, J. Wang, D. Wei, B. Wydrowski
- ☐ UCLA
  - F. Paganini
- Princeton
  - M. Chiang, L. Peterson, L. Wang
- $\square$  KTH
  - K. Jacobsson











# Role of (current) theory

- ☐ It is not (yet) for
  - Automatic synthesis of new congestion control algorithms
  - Replacing intuitions, experiments, heuristics
- But for providing structure and clarity
  - To refine intuition
  - To guide design
  - To suggest ideas
  - To explore boundaries
  - To assess global structural properties, e.g. scalability
- □ Risk
  - "All models are wrong"
  - "... some are useful"

### Outline

# Samples of interactions between theory & experiments

- Duality model of TCP
  - Theory: equilibrium point characterized by an optimization problem
  - Experimental validation: Vegas
- An accurate link model
  - Theory: a new joint link model
  - Application: FAST stability
- Heterogeneous protocols
  - Motivation: FAST+Reno
  - Theory: multiple equilibria, global uniqueness

# Congestion control

- Challenge: available info must be end-to-end
- Implicit congestion feedback
  - Loss probability: likelihood of a packet being delivered correctly
  - Round-trip time: time it takes for a packet to reach its destination and for its ack to return to the sender
- Explicit congestion feedback: marks, rates

### TCP & AQM



#### **Historically**

- Packet level implemented first
- Flow level understood as after-thought
- But flow level design determines
  - performance, fairness, stability

#### **Now:** can forward engineer

- Sophisticated theory on equilibrium & stability (optimization+control)
- Given (application) utility functions, can design provably scalable TCP algorithms

### Packet level

■ RenoAIMD(1, 0.5)

ACK:  $W \leftarrow W + 1/W$ 

Loss: W  $\leftarrow$  W - 0.5W

☐ **HSTCP**AIMD(a(w), b(w))

ACK:  $W \leftarrow W + a(w)/W$ 

Loss:  $W \leftarrow W - b(w)W$ 

■ **STCP** MIMD(a, b)

ACK:  $W \leftarrow W + 0.01$ 

<u>Loss:</u> W ← W − 0.125W

□ FAST

 $RTT: W \leftarrow W \cdot \frac{baseRTT}{RTT} + \alpha$ 

### Flow level: Reno, HSTCP, STCP, FAST

**Common** flow level dynamics!

$$\dot{w}_i(t) = \kappa(t) \cdot \left(1 - \frac{p_i(t)}{U_i'(t)}\right)$$

window adjustment = control gain flow level goal

- **Different** gain  $\kappa$  and utility  $U_i$ 
  - They determine equilibrium and stability
- **Different** congestion measure  $p_i$ 
  - Loss probability (Reno, HSTCP, STCP)
  - Queueing delay (Vegas, FAST)

### Flow level: Reno, HSTCP, STCP, FAST

Similar flow level equilibrium

Reno 
$$x_i = \frac{1}{T_i} \cdot \frac{\alpha}{p_i^{0.5}}$$
 pkts/sec HSTCP  $x_i = \frac{1}{T_i} \cdot \frac{\alpha}{p_i^{0.84}}$  STCP  $x_i = \frac{1}{T_i} \cdot \frac{\alpha}{p_i}$  FAST  $x_i = \frac{\alpha}{p_i}$ 

 $\alpha = 1.225$  (Reno), 0.120 (HSTCP), 0.075 (STCP)

### Network model



### Network model: example

#### Reno:

Jacobson 1989

```
for every RTT
{    W += 1 }
for every loss
{    W := W/2 }

(AI)
(MD)
```

$$x_i(t+1) = \frac{1}{T_i^2} - \frac{x_i^2}{2} \sum_{l} R_{li} p_l(t)$$

$$p_l(t+1) = G_l \left( \sum_{i} R_{li} x_i(t), p_l(t) \right)$$
TailDrop

### Network model: example

#### **FAST**:

Jin, Wei, Low 2004 Wei, Jin, Low, Hegde 2007

peri odi cal I y 
$$\{ \\ W \coloneqq \frac{\text{baseRTT}}{\text{RTT}} W + \alpha$$
 }

$$x_{i}(t+1) = x_{i}(t) + \frac{\gamma_{i}}{T_{i}} \left( \alpha_{i} - x_{i}(t) \sum_{l} R_{li} p_{l}(t) \right)$$

$$p_{l}(t+1) = p_{l}(t) + \frac{1}{c_{l}} \left( \sum_{i} R_{li} x_{i}(t) - c_{l} \right)$$

# Reverse engineering

Protocol (Reno, Vegas, RED, REM/PI...)

$$x(t+1) = F(p(t), x(t))$$
  
$$p(t+1) = G(p(t), x(t))$$

#### **Equilibrium**

- Performance
  - Throughput, loss, delay
- Fairness
- Utility

#### **Dynamics**

- Local stability
- Global stability

### Duality model of TCP/AQM

- $p^* = G(p^*, Rx^*)$
- $\square$  Equilibrium  $(x^*,p^*)$  primal-dual optimal:

$$\max_{x \ge 0} \sum U_i(x_i) \quad \text{subject to} \quad Rx \le c$$

- lacksquare F determines utility function U
- G guarantees complementary slackness
- $p^*$  are Lagrange multipliers

Kelly, Maloo, Tan 1998 Low, Lapsley 1999

#### Uniqueness of equilibrium

- $\blacksquare x^*$  is unique when U is strictly concave
- $p^*$  is unique when R has full row rank

## Duality model of TCP/AQM

- TCP/AQM  $x^* = F(R^T p^*, x^*)$   $p^* = G(p^*, Rx^*)$
- □ Equilibrium  $(x^*,p^*)$  primal-dual optimal:  $\max_{x\geq 0} \sum U_i(x_i) \quad \text{subject to} \quad Rx \leq c$ 
  - lacksquare F determines utility function U
  - G guarantees complementary slackness
  - $\blacksquare p^*$  are Lagrange multipliers

Kelly, Maloo, Tan 1998 Low, Lapsley 1999

The underlying concave program also leads to simple dynamic behavior

# Reverse engineering TCP

□ Equilibrium  $(x^*,p^*)$  primal-dual optimal:

$$\max_{x \ge 0} \sum U_i(x_i) \quad \text{subject to} \quad Rx \le c$$

Mo & Walrand 2000:

$$U_{i}(x_{i}) = \begin{cases} \log x_{i} & \text{if } \alpha = 1\\ (1 - \alpha)^{-1} x_{i}^{1 - \alpha} & \text{if } \alpha \neq 1 \end{cases}$$

- $\blacksquare$   $\alpha = 1$  : Vegas, FAST, STCP
- $\alpha = 1.2$ : HSTCP
- $\blacksquare \alpha = 2$  : Reno
- $\alpha = \infty$  : XCP (single link only)

## Reverse engineering TCP

□ Equilibrium  $(x^*,p^*)$  primal-dual optimal:  $\max_{x\geq 0} \sum U_i(x_i) \quad \text{subject to } Rx \leq c$ 

#### Mo & Walrand 2000:

$$U_{i}(x_{i}) = \begin{cases} \log x_{i} & \text{if } \alpha = 1\\ (1 - \alpha)^{-1} x_{i}^{1 - \alpha} & \text{if } \alpha \neq 1 \end{cases}$$

- $\alpha = 0$ : maximum throughput
- $\blacksquare$   $\alpha = 1$ : proportional fairness
- $\alpha = 2$ : min delay fairness
- $\alpha = \infty$ : maxmin fairness

### Some implications

- Equilibrium
  - Always exists, unique if R is full rank
  - Bandwidth allocation independent of AQM or arrival
  - Can predict macroscopic behavior of large scale networks
- Counter-intuitive throughput behavior
  - Fair allocation is not always inefficient
  - Increasing link capacities do not always raise aggregate throughput

[Tang, Wang, Low, ToN 2006]

- □ FAST TCP
  - Design, analysis, experiments

### Validation

|                    | Source 1    | Source 3         | Source 5    |
|--------------------|-------------|------------------|-------------|
| RTT (ms)           | 17.1 (17)   | 21.9 (22)        | 41.9 (42)   |
| Rate (pkts/s)      | 1205 (1200) | 1228 (1200)      | 1161 (1200) |
| Window (pkts)      | 20.5 (20.4) | <b>27</b> (26.4) | 49.8 (50.4) |
| Avg backlog (pkts) | 9.8 (10)    |                  |             |
|                    |             |                  |             |
| measured theory    |             |                  |             |

- Single link, capacity = 6 pkts/ms
- 5 sources with different propagation delays,  $\alpha_s$  = 2 pkts/RTT

## Persistent congestion

- □ Vegas exploits buffer process to compute prices (queueing delays)
- Persistent congestion due to
  - Coupling of buffer & price
  - Error in propagation delay estimation
- Consequences
  - Excessive backlog
  - Unfairness to older sources

#### <u>Theorem</u>

A relative error of  $\varepsilon_s$  in propagation delay estimation distorts the utility function to

$$\hat{U}_s(x_s) = (1 + \varepsilon_s)\alpha_s d_s \log x_s + \varepsilon_s d_s x_s$$

### Evidence



Without estimation error



With estimation error

- Single link, capacity = 6 pkt/ms,  $\alpha_s$  = 2 pkts/ms,  $d_s$  = 10 ms
- With finite buffer: Vegas reverts to Reno

#### Evidence

```
Source rates (pkts/ms)
#
   src1
                 src2
                               src3
                                            src4
                                                          src5
   5.98 (6)
   2.05 (2)
                 3.92 (4)
3
   0.96 (0.94)
                 1.46 (1.49) 3.54 (3.57)
   0.51 (0.50) 0.72 (0.73) 1.34 (1.35) 3.38 (3.39)
4
   0.29 (0.29) 0.40 (0.40)
                              0.68 (0.67) 1.30 (1.30) 3.28 (3.34)
5
   queue (pkts)
                       baseRTT (ms)
#
     19.8 (20)
                       10.18 (10.18)
                       13.36 (13.51)
     59.0 (60)
3
   127.3 (127)
                       20.17 (20.28)
   237.5 (238)
                       31.50 (31.50)
   416.3 (416)
5
                       49.86 (49.80)
                                           [Low, Peterson, Wang, JACM 2002]
```

#### Outline

- Duality model of TCP
  - Theory: equilibrium point characterized by an optimization problem
  - Experimental validation: Vegas
- An accurate link model
  - Theory: a new joint link model
  - Application: FAST stability

[Tang, Jacobsson, Andrew, Low, Infocom 07]

- Heterogeneous protocols
  - Motivatoin: FAST+Reno
  - Theory: multiple equilibria, global uniqueness

#### **FAST**:

Jin, Wei, Low 2004

periodically { 
$$W := \gamma \left( \frac{\text{baseRTT}}{\text{RTT}} W + \alpha \right) + (1 - \gamma)W$$
 }

$$\dot{w}_i = -\gamma \frac{q_i(t)}{\left(d_i + q_i(t)\right)^2} w_i(t) + \gamma \frac{\alpha_i}{d_i + q_i(t)}$$

$$q_i(t) = p(t - \tau_i^b)$$
 Single Link



# Link model 1: integrator model

$$\dot{p} = \frac{1}{c} \left( \sum_{i} \frac{w_{i}(t - \tau_{i}^{f})}{d_{i} + p(t)} + x_{0}(t) - c \right)$$

cross traffic rate



# Link model 1: integrator model

$$\dot{p} = \frac{1}{c} \left( \sum_{i} \frac{w_{i}(t - \tau_{i}^{f})}{d_{i} + p(t)} + x_{0}(t) - c \right)$$



# Link model 2: static model

D. Wei, 2003:

$$\sum_{i} \frac{w_{i}(t - \tau_{i}^{f})}{d_{i} + p(t)} + x_{0}(t) = c$$

#### **Motivations**

- Ack-clocking: input rate = capacity after 1 RTTFast link dynamics



### Link model 2: static model

$$\sum_{i} \frac{w_{i}(t - \tau_{i}^{f})}{d_{i} + p(t)} + x_{0}(t) = c$$



# Link model 3: joint model

K. Jacobsson etc, 2006:

$$\dot{p} = \frac{1}{c} \left[ \left( \sum_{i} \frac{w_{i}(t - \tau_{i}^{f})}{d_{i} + p(t)} + \dot{w}_{i}(t - \tau_{i}^{f}) \right) + x_{0}(t) - c \right]$$

: Reduces to integrator model  $\dot{w}_i(t-\tau_i^f)=0$ 

 $\underline{\text{and}}$   $\dot{p} = 0$  : Reduces to static model



# Link model 3: joint model

$$\dot{p} = \frac{1}{c} \left[ \left( \sum_{i} \frac{w_{i}(t - \tau_{i}^{f})}{d_{i} + p(t)} + \dot{w}_{i}(t - \tau_{i}^{f}) \right) + x_{0}(t) - c \right]$$



#### Source model:

$$\dot{w}_i = -\gamma \frac{q_i(t)}{\left(d_i + q_i(t)\right)^2} w_i(t) + \gamma \frac{\alpha_i}{d_i + q_i(t)}$$

$$q_i(t) = p(t - \tau_i^b)$$
 Single Link

#### Link (joint) model:

$$\dot{p} = \frac{1}{c} \left[ \left( \sum_{i} \frac{w_{i}(t - \tau_{i}^{f})}{d_{i} + p(t)} + \dot{w}_{i}(t - \tau_{i}^{f}) \right) + x_{0}(t) - c \right]$$

#### **Theorem**

FAST TCP is linearly stable for arbitrary delay provided

$$\gamma < 0.94$$

Resolves a major discrepancy between previous predictions and empirical experience

# FAST TCP: linearized model

#### Loop gain:

$$L(s) = \sum_{i} \mu_{i} L_{i}(s)$$

$$L_{i}(s) = \frac{s + \frac{1}{\tau_{i}}}{s + \frac{1}{\hat{\tau}}} \cdot \frac{\gamma d_{i} e^{-\tau_{i} s}}{\tau_{i}^{2} s + \gamma q}$$

$$\mu_i = \frac{\alpha_i}{c \sum_{i} \alpha_i} \qquad \frac{1}{\hat{\tau}} = \sum_{i} \mu_i \frac{1}{\tau_i}$$



# Nyquist stability analysis

$$L(j\omega) = \sum_{i} \mu_{i}L_{i}(j\omega)$$





# Stability condition can be "tight"

Linearly stable if  $\gamma < 0.94$ 





### Comparison of 3 link models

- □ Single link with capacity 10,000 pkts/s
- Propagation delays: 400ms, 700ms
- $\square$   $\alpha$  = 50 pkts

Critical step size

- Integrator model: 1.23
- ☐ Static model: 1.80
- □ Joint model: 1.69



### Comparison of 3 link models



Integrator model too conservative

Static model too aggressive



### Comparison of 3 link models



Joint model prediction:  $\gamma < 1.69$ 

#### Commercial Deployment: FAST in a box









## Outline

- Duality model of TCP
  - Theory: equilibrium point characterized by an optimization problem
  - Experimental validation: Vegas
- An accurate link model
  - Theory: a new joint link model
  - Application: FAST stability
- Heterogeneous protocols
  - Motivatoin: FAST+Reno
  - Theory: multiple equilibria, global uniqueness

[Tang, Wang, Low, Chiang, ToN 2007] [Tang, Wang, Hegde, Low, Comp Networks, 2005]

### The world is heterogeneous...

- □ Linux 2.6.13 allows users to choose congestion control algorithms
- Many protocol proposals
  - Loss-based: Reno and a large number of variants
  - Delay-based: CARD (1989), DUAL (1992), Vegas (1995), FAST (2004), ...
  - ECN: RED (1993), REM (2001), PI (2002), AVQ (2003), ...
  - Explicit feedback: MaxNet (2002), XCP (2002), RCP (2005), ...



### Throughputs depend on AQM



- FAST and Reno share a single bottleneck router
- **NS2** simulation
- Router: DropTail with variable buffer size
- With 10% heavy-tailed noise traffic



# Multiple equilibria: throughput depends on arrival







Tang, Wang, Hegde, Low, Telecom Systems, 2005



## Multiple equilibria: throughput depends on arrival







Tang, Wang, Hegde, Low, Telecom Systems, 2005

|                                       | homogeneous | heterogeneous |
|---------------------------------------|-------------|---------------|
| equilibrium                           | unique      | non-unique    |
| bandwidth<br>allocation<br>on AQM     | independent | dependent     |
| bandwidth<br>allocation<br>on arrival | independent | dependent     |



■ Duality model:

$$\max_{x \ge 0} \sum_{i=1}^{3} U_i(x_i) \quad \text{s.t. } Rx \le c \qquad x_i^* = F_i \left( \sum_{l=1}^{3} R_{li} p_l^*, x_i^* \right)$$

 $\square$  Why can't use  $F_i$ 's of FAST and Reno in duality model?

They use different prices!

$$F_i = x_i + \frac{\gamma_i}{T_i} \left( \alpha_i - x_i \sum_{l} R_{li} p_l \right) \qquad \text{delay for FAST}$$

$$F_i = \frac{1}{T_i^2} - \frac{x_i^2}{2} \sum_{l} R_{li} p_l \leftarrow loss \text{ for Reno}$$



■ Duality model:

$$\max_{x \ge 0} \sum_{i=1}^{3} U_i(x_i) \quad \text{s.t. } Rx \le c \qquad x_i^* = F_i \left( \sum_{l} R_{li} p_l^*, x_i^* \right)$$

 $\square$  Why can't use  $F_i$ 's of FAST and Reno in duality model?

They use different prices!

$$F_{i} = x_{i} + \frac{\gamma_{i}}{T_{i}} \left( \alpha_{i} - x_{i} \sum_{l} R_{li} p_{l} \right) \qquad \dot{p}_{l} = \frac{1}{c_{l}} \left( \sum_{i} R_{li} x_{i}(t) - c_{l} \right)$$

$$F_{i} = \frac{1}{T_{i}^{2}} - \frac{x_{i}^{2}}{2} \sum_{l} R_{li} p_{l} \qquad \dot{p}_{l} = g_{l} \left( p_{l}(t), \sum_{i} R_{li} x_{i}(t) \right)$$



### Maria Homogeneous protocol





### Heterogeneous protocol



$$x_i(t+1) = F_i \left( \sum_{l} R_{li} p_l(t), x_i(t) \right)$$

$$x_i^j(t+1) = F_i^j \left( \sum_l R_{li} m_l^j (p_l(t)), x_i^j(t) \right)$$

heterogeneous prices for type j sources

### Meterogeneous protocols

☐ Equilibrium: *p* that satisfies

$$x_i^j(p) = f_i^j \left( \sum_l R_{li} m_l^j(p_l) \right)$$

$$y_l(p) := \sum_{i,j} R_{li}^j x_i^j(p) \begin{cases} \leq c_l \\ = c_l & \text{if } p_l > 0 \end{cases}$$

Duality model no longer applies!

lacksquare  $p_i$  can no longer serve as Lagrange multiplier



### Meterogeneous protocols

☐ Equilibrium: *p* that satisfies

$$x_i^j(p) = f_i^j \left( \sum_l R_{li} m_l^j(p_l) \right)$$

$$y_l(p) := \sum_{i,j} R_{li}^j x_i^j(p) \begin{cases} \leq c_l \\ = c_l & \text{if } p_l > 0 \end{cases}$$

#### Need to re-examine all issues

- Equilibrium: exists? unique? efficient? fair?
- Dynamics: stable? limit cycle? chaotic?
- Practical networks: typical behavior? design guidelines?

### Meterogeneous protocols

☐ Equilibrium: *p* that satisfies

$$x_i^j(p) = f_i^j \left( \sum_l R_{li} m_l^j(p_l) \right)$$

$$y_l(p) := \sum_{i,j} R_{li}^j x_i^j(p) \begin{cases} \leq c_l \\ = c_l & \text{if } p_l > 0 \end{cases}$$

Dynamic: dual algorithm

$$x_i^j(p(t)) = f_i^j \left( \sum_l R_{li} m_l^j(p_l(t)) \right)$$

$$\dot{p}_l = \gamma_l \left( y_l(p(t)) - c_l \right)$$



#### **Theorem**

Equilibrium p exists, despite lack of underlying utility maximization

- □ Generally non-unique
  - There are networks with unique bottleneck set but infinitely many equilibria
  - There are networks with multiple bottleneck set each with a unique (but distinct) equilibrium

### Regular networks

#### **Definition**

A regular network is a tuple (R, c, m, U) for which all equilibria p are locally unique, i.e.,

$$\det \mathbf{J}(p) := \det \frac{\partial y}{\partial p}(p) \neq 0$$

#### **Theorem**

- Almost all networks are regular
- A regular network has finitely many and odd number of equilibria (e.g. 1)

### Global uniqueness

$$\dot{m}_l^j \in [a_l, 2^{1/L} a_l] \text{ for any } a_l > 0$$
  
 $\dot{m}_l^j \in [a^j, 2^{1/L} a^j] \text{ for any } a^j > 0$ 

#### **Theorem**

If price heterogeneity is small, then equilibrium is globally unique

#### **Corollary**

- If price mapping functions  $m_i$  are linear and linkindependent, then equilibrium is globally unique
- e.g. a network of RED routers with slope inversely proportional to link capacity almost always has globally unique equilibrium

### Global uniqueness

$$\dot{m}_l^j \in [a_l, 2^{1/L} a_l] \text{ for any } a_l > 0$$
  
 $\dot{m}_l^j \in [a^j, 2^{1/L} a^j] \text{ for any } a^j > 0$ 

#### **Theorem**

If price heterogeneity is small, then equilibrium is globally unique

#### Remarks:

- Condition independent of *U*, *R*, *c*
- Depends on m and size L of network
- "Tight" from Index Theorem

### Local stability: `uniqueness' → stability

$$\dot{m}_{l}^{j} \in [a_{l}, 2^{1/L} a_{l}] \text{ for any } a_{l} > 0$$
  
 $\dot{m}_{l}^{j} \in [a^{j}, 2^{1/L} a^{j}] \text{ for any } a^{j} > 0$ 

#### Theorem

If price heterogeneity is small, then the unique equilibrium p is locally stable

Linearized dual algorithm:  $\delta \dot{p} = \gamma \mathbf{J}(p^*) \delta p(t)$ 

Equilibrium p is *locally stable* if

$$\operatorname{Re} \lambda(\mathbf{J}(p)) < 0$$

#### **Theorem**

 $\square$  If all equilibria p are locally stable, then it is globally unique

#### Proof idea:

- $\square$  For all equilibrium p:  $I(p) = (-1)^L$
- Index theorem:

$$\sum_{\text{eq }p} I(p) = (-1)^L$$

#### Future directions

- Dynamics of TCP
  - Global stability of networks in the presence of delay
  - Rate of convergence
  - Characterize/bound instability
- Heterogeneous congestion control protocols
  - Local and global stability in the presence of delay
  - Stability with slow-timescale control
  - Dynamic behavior in the presence of multiple equilibria
- Non-convex utility functions
  - Estimating duality gap and asymptotic behavior
  - Instability of dual algorithm as network size tends to infinity

#### Future directions

- ☐ TCP/IP interactions
  - Connection between duality gap and NP hardness
  - Connection between duality gap and multi-path gain
- □ Routing/economics interactions
  - Inter-domain routing: interplay between routing protocols and economics
  - Optimizations and games over routes, traffic demands, and pricing