МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего порядка «Чувашский государственный университет имени И. Н. Ульянова» Факультет информатики и вычислительной техники

МИКРОПРОЦЕССОРНЫЕ СРЕДСТВА И СИСТЕМЫ

Расчетно-графическая работа №1

Выполнил: студ.ИВТ-42-18

Жижайкин К.В.

Проверил: Гильденберг Б.М.

Чебоксары, 2021 г.

Тэхас(Тэксас) Инструмэнтс
Отчет о применении
SLAA398-Сентябрь 2008
Питание MSP430 от одного элемента батареи
Метью Симэн
MSP430 Applications
Краткий обзор
Питания устройства MSP430 от одного 1.5-вольтного элемента батареи целесообразна в ряде приложений. Эти приложения требуют использовать на основе подкачки заряда преобразователь постоянного тока. В этом отчете о применении обсуждают основы и выбор преобразователя постоянного тока и представлена реализация одноэлементного термостата на основе MSP430, использующий TPS60313 преобразователь постоянного тока. Сравнивается потребление тока с одноэлементным преобразователем постоянного тока, и в итоге вычисляется ожидаемое время автономной работы
Содержание
1 Введение
2 Основы преобразования постоянного тока – PIN vs POUT
3 Решение TI DC/DC 4
4 Описание и особенности ТРS60313 5
5 MSP430 + Реализация подкачки заряда для одноэлементного термостата 6
6 Описание применения термостата 6
7 Измерение тока – двухэлементный vs одноэлементный
8 Вывод 10
9 Ссылки
Приложение А Схема
Список диаграмм
1 Обзор системы 2
2 КПД TPS60313 vs Выходной ток (VIN = 1.3 V, VOUT = 3.3 V)
3 Преобразователи постоянного тока TI
4 TPS60313 Переходная характеристика нагрузки5
5 MSP430F4794 + TPS60313 Структурная диаграмма 6
6 Блок-схема кода 7
7 Текущий контур для полного 6-секундного цикла
А-1 MSP430 + TPS60313 Схема одноэлементного термостата
Список таблиц

1 IBatt и ICC Типичное и максимальное	8
2 Потребляемый ток	
3 Типичное и минимальное ожидание автономной работы батареи	9

Все товарные знаки являются собственностью их соответствующих владельцев. SLAA398-Сентябрь 2008 Питание MSP430 от одноэлементной батареи.

1.Введение

При правильно подобранном подкачки заряда, конструктор может реализовать одноэлементное приложения с питанием и при этом поддерживать маломощную производительность и автономную работу батареи. Осуждение термостата в этом отчете об использовании основана на преобразователе подкачки заряда постоянного тока MSP430F4794 и TPS60313, который оптимизирован для маломощных одноэлементных приложений. MSP430F47X4 контроллер с большим количеством контактом с множеством внешних устройств. Эти приложения требует только одно из четырех модулей SD16 (используют для вычисления температуры) и простой таймер (используемый для периодических пробуждений). Читателю остается решить, как можно добавить функциональность, чтобы в полной мере воспользоваться набором функций устройства

Рисунок 1. Обзор системы

2. Основы преобразователя постоянного тока

При выборе преобразователя важно понимать взаимосвязь между входящей мощностью, выходной мощностью и эффективностью. Для идеальной физической системы входная мощность равна выходной мощности. Для обзора системы, изображенного на рисунке 1, можно выразить как: Vбат × Iбат = Vcc × Icc. Например, если напряжение аккумулятора Vбат = 1,3 B, ток MSP430 Icc = 10 мкА, а напряжение MSP430 Vcc = 3,3B, тогда, в идеале, из приведенного выше уравнения, решая для Iбат дает: Iбат = (Vcc × Icc) / Vбат = 25 мкА Это означает, что для идеального преобразователя постоянного тока в питание 10 мкА при напряжении 3,3 B на MSP430 аккумулятор должен обеспечивать 25 мкА при 1,3 B на преобразователь постоянного тока. Идеал подразумевает 100% эффективность, но, конечно, ни одна реальная система не может быть эффективна на 100%. Источники неэффективности включают рассеивание мощности в виде тепловыделения, коммутационные потери и ток покоя самого преобразователя постоянного тока. График на рисунке 2 (взято из таблицы данных TPS60313) показывает, что когда Vвх= 1,3 B и Ввых = 3,3 B, КПД устройства составляет примерно 75% при выходном токе 10 мкА.

Если мы пересмотрим уравнение $PBX = P^*B$ ых с учетом КПД преобразователя постоянного тока: Vбат \times Iбат $= (1/9 ф) \times V$ сс \times Iсс \times Iсс \times Iбат \times Iбат Xбат Xбат Xбат Xбат Xбат Xбат Xбат Xбат

Figure 3. TI DC/DC Converters

3. Решение TI постоянного тока

ТІ предлагает множество преобразователей постоянного тока, но для приложений MSP430 с низким энергопотреблением наиболее интересным семейством являются повышающие преобразователи постоянного тока с накачкой заряда. Поскольку эффективность преобразователя постоянного тока уменьшается с уменьшением выходного тока, очень важно найти устройство, оптимизированное для слаботочных приложений. Есть несколько подсемейств, которые попадают в этот слаботочный диапазон, и из них подсемейство TPS603xx предназначено для приложений с одной ячейкой.

4 TPS60313 Описание и особенности

Для приложения, описанного в этом документе, был выбран безиндукторный преобразователь постоянного тока с накачкой заряда TPS60313 из-за его низкого тока покоя и высокой эффективности при низких рабочих токах. Эти атрибуты делают его идеальным для использования с микроконтроллерами MSP430 в приложениях с одной ячейкой. Повышающий регулируемый накачки заряда TPS60313 генерирует выходное напряжение 3 В от входного напряжения 0,9–1,8 В. Всего пять маленьких 1- мкF Керамические конденсаторы необходимы для создания законченного высокоэффективного преобразователя постоянного тока с накачкой заряда. В режиме SNOOZE TPS60313 работает с типичным рабочим током 2 мкА, при этом выходное напряжение поддерживается на уровне 3 В ± 10%. Ток нагрузки в режиме SNOOZE ограничен до 2 мА. Если ток нагрузки превышает 2 мА, устройство автоматически выходит из режима SNOOZE и работает в нормальном режиме для регулирования номинального выходного напряжения с более высокими выходными токами. Хотя режим SNOOZE обеспечивает большую эффективность при малых токах, пользователи должны понимать, что пульсации выходного напряжения больше, чем при отключенном режиме SNOOZE (см. Рисунок 4).

nan when SNOOZE mode is disabled (see Figure 4).

Figure 4. TPS60313 Load Transient Response

Канал 1 показывает влияние функции SNOOZE на регулируемое выходное напряжение. Канал 2 показывает переходы выходного тока, которые заставляют устройство входить в режим SNOOZE и выходить из него. Такое поведение может повлиять на результаты преобразования АЦП или другие процессы, чувствительные к пульсации питания, поэтому рекомендуется вывести устройство из режима SNOOZE перед выполнением любых аналого-цифровых преобразований. Когда режим SNOOZE отключен, выходное напряжение регулируется с большей точностью, но ток покоя выше.

5 MSP430 + реализация нагнетательного насоса для однокамерного термостата.

Реализация зарядного насоса MSP430 + показана на следующей странице. Единственные внешние компоненты, необходимые для схемы нагнетания заряда, - это пять керамических конденсатора типа F. Вывод SNOOZE подключается к одному из выводов GPIO MSP430. В случае, если требуется более высокий ток (более 2 мА), подкачка заряда автоматически выходит из режима повтора, но в случае аналого-цифрового преобразования рекомендуется отключить SNOOZE в программном обеспечении, установив соответствующий вывод MSP430 в высокий уровень. до начала преобразования.

6. Описание применения термостата.

Программное обеспечение термостата основано на периодических односекундных прерываниях и счетчике, значение которого увеличивается от 0 до 6, чтобы определить, какой из процессов (А, В или С) должен быть выполнен. Поскольку сегменты ЖК-дисплея, которые используются для отображения времени и температуры, являются общими, время отображается в течение трех секунд, а затем температура отображается в течение трех секунд. Прерывание от базового таймера происходит для выполнения процесса А, функции RTC, и увеличения счетчика. Если счетчик равен 3, то также выполняется процесс В для обновления времени на ЖК-дисплее. Если счетчик равен 6, также выполняется процесс С, во время которого производится выборка термистора, температура рассчитывается и отображается на ЖК-дисплее вместо времени, и счетчик сбрасывается до нуля, завершая шестисекундный цикл.

Для получения температуры опорное напряжение 1,2В SD16 подается на термистор плюс 47-киломОм комбинаций последовательных резисторов, и напряжение термистора измеряется через SD16 для получения необработанного значения. Это необработанное значение затем преобразуется в напряжение, сначала вычитая из результата 8000h, потому что 8000h соответствует уровню напряжения 0 В. Затем это значение умножается на шаг напряжения на бит, который равен 1,2 В / (2 16 - 18 мкВ / бит. Vтермистора= (RawValue - 8000 ч) × 18 мкВ / бит Как только напряжение известно, сопротивление определяется путем вычисления значения термистора, которое дает измеренное напряжение термистора на основе уравнения делителя напряжения. V термистор = Vссылка × (Rтермистор / (Rтермистор + 47КОМ)) Преобразуя уравнение для решения относительно R термистор дает Rтермистор = V термистор × (47 КОМ / (V ссылка - V термистор)) Как только сопротивление термистора известно, используется справочная таблица из технических данных производителя термистора для определения соответствующей температуры.

7. Текущее измерение – два элемента против одного

Текущие измерения проводились для определения Ісс и Ібат системы однокамерных термостатов

Table 1	. Ina	and L	cc Tvr	ical	and	Max
Idolo	- Har	and	CC IV	n-cai	and	ITICIA

MSP430 State	Icc	(μ Α)	I _{Batt} (μA)		
MSF430 State	Тур	Max	Тур	Max	
LPM3	1.3	3	6	8	
LCD_A (2 mux)	2.7	3.5	11	15	
VMID+REF	385	600	1570	2446	
SD16	730	1050	2700	3883	
AM	420	560	1660	1876	

MSP43

0 + ТРЅ60313. Они

кратко изложены в Таблице 1 для условия Vcc = 3,0 В и Vбат = 1,5 В

Рисунок 7 показывает, когда каждый из односекундных процессов выполняется по времени. Общее время, необходимое для прохождения count = 1 до count = 6, составляет шесть секунд.

Среднее потребление тока за каждую секунду рассчитывается путем нахождения площади на графике зависимости I (t) от t. Ток, необходимый для каждого из односекундных процессов, рассчитывается на основе количества времени, проведенного устройством MSP430 в каждом из состояний, для которых измерялось потребление тока (см. Таблица 2).

	Current Sink		Batt	
			Тур	Max
Process A	AM	7.50E-05 s	0.12	0.14
Process A	LPM3	1 - (7.50E-05) s	6	8
	LCD_A (2 mux)	1 s	11	15
		Total	17.1245	23.14
	T			
	Current Sink		I _{Batt}	
Process B			Тур	Max
Process B	AM	7.17E-04 s	1.19	1.35
		Total	1.19	1.35
	_			
	Curren	nt Sink	I _{Batt}	
	ourient onk		Тур	Max
	AM	4.67E-03 s	7.75	8.76
D		4.07 2 00 0		
Process C	VMID+REF	9.00E-04 s	1.41	2.2
Process C			1.41 2.43	2.2 2.43
Process C	VMID+REF	9.00E-04 s		
Process C	VMID+REF	9.00E-04 s 9.00E-04 s	2.43 11.6	2.43 13.39
Process C	VMID+REF SD16	9.00E-04 s 9.00E-04 s	2.43	2.43 13.39 (µA)
Process C	VMID+REF SD16	9.00E-04 s 9.00E-04 s	2.43 11.6	2.43 13.39
Process C	VMID+REF SD16	9.00E-04 s 9.00E-04 s	2.43 11.6	2.43 13.39 (µA)

Finally, the expected betters life of the single call thermostat is coloulated based on the mA-by estimate

Наконец, ожидаемое время автономной работы одноэлементного термостата рассчитывается на основе мА.

• Номинальные значения в часах указаны для батареек Duracell AA и AAA. Методика расчета срока службы батареи следующая. Сначала преобразуйте номинал батареи в мА * час до мкА * сек

MKA * CEK = (MA * VAC) (1000 MKA / 1 MA) (60 MUH / 1 VAC) (60 CEK / 1 MUH)

Затем разделите мощность батареи на мкА * сек на среднее потребление тока в мкА в течение одной секунды, чтобы получить приблизительное количество секунд, на которое хватит заряда батареи. сек = мкА • сек / мкА Теперь, когда известны секунды, рассчитайте эквивалентные годы: лет = (сек) (1 мин / 60 сек) (1 час / 60 мин) (1 день / 24 часа) (1 год / 365 дней).

Table 3. Typical and Minimum Expected Battery Life

Batton: Tuna	Batton, Bating (mAsh)	Battery Life (yrs)		
Battery Type	Battery Rating (mA+h)	Typical	Min	
AA	2850	16.90	12.71	
AAA	1000	5.93	4.46	

Результаты в Таблица 3 основаны на предположении, что Vбат остается постоянным 1,5 В на протяжении всего срока службы батареи. На самом деле напряжение падает со временем по мере разряда батареи, поэтому TPS60313 имеет был разработан с расчетом на максимальную эффективность при 1,2 В, так как это среднее напряжение аккумулятора за весь срок его службы. Оптимизация для работы при 1,2 В помогает максимально продлить общий срок службы системы.

8 Заключение

Ожидаемый срок службы одноэлементного термостата MSP430 + TPS60313 довольно хороший, в худшем случае около 4,5 лет для батареи AAA и почти 13 лет для батареи AA. На практике скорость саморазряда батареи ограничивает срок службы приложения больше, чем потребление тока микроконтроллером + преобразователем постоянного тока. В заключение, семейство преобразователей постоянного тока с накачкой заряда TPS603xx представляет собой отличное решение для преобразователей постоянного , позволяющее использовать одноэлементные приложения MSP430, которые могут поддерживать очень хорошие характеристики с низким энергопотреблением при отличном сроке службы батарей

- 9. Рекомендации
- 1. лист данных MSP430F4794 (SLAS545)
- 2.Технический паспорт термистора Vishay 2322640 3/4/6
- 3. техническое описание TPS603xx (SLVS362)
- 4. Руководство по управлению питанием (SLVT145)

Приложение А

Важное замечание

Texas Instruments Incorporated и ее дочерние компании (TI) оставляют за собой право вносить исправления, модификации, улучшения, улучшения и другие изменения в свои продукты и услуги в любое время и прекращать выпуск любого продукта или услуги без предварительного уведомления. Клиенты должны получить самую последнюю актуальную информацию перед размещением заказов и должны убедиться, что такая информация актуальна и полна. Все продукты продаются в соответствии с условиями продажи ТІ, предоставленными на момент подтверждения заказа. ТІ гарантирует соответствие своей аппаратной продукции техническим характеристикам, действующим на момент продажи, в соответствии со стандартной гарантией ТІ. Испытания и другие методы контроля качества используются в той степени, в которой ТІ считает необходимыми для поддержки данной гарантии. За исключением случаев, предусмотренных государственными требованиями, тестирование всех параметров каждого продукта не обязательно проводится. TI не несет ответственности за помощь в использовании приложений или разработку продукта для клиентов. Заказчики несут ответственность за свои продукты и приложения, использующие компоненты ТІ. Чтобы свести к минимуму риски, связанные с продуктами и приложениями клиентов, заказчики должны обеспечить соответствующие меры безопасности при проектировании и эксплуатации. ТІ не гарантирует и не заявляет, что какая-либо лицензия, явная или подразумеваемая, предоставляется в соответствии с какими-либо патентными правами TI, авторскими правами, правами на маскировку или другими правами интеллектуальной собственности ТІ, относящимися к любой комбинации, машине или процессу, в которых используются продукты или услуги TI. используются. Информация, опубликованная TI о сторонних продуктах или услугах, не является лицензией ТІ на использование таких продуктов или услуг, а также гарантией или подтверждением их. Для использования такой информации может потребоваться лицензия от третьей стороны в соответствии с патентами или другой интеллектуальной собственностью третьей стороны или лицензия от TI в соответствии с патентами или другой интеллектуальной собственностью TI. Воспроизведение информации TI в справочниках или таблицах данных ТІ допустимо только в том случае, если воспроизведение без изменений и сопровождается всеми соответствующими гарантиями, условиями, ограничениями и уведомлениями. Воспроизведение этой информации с изменениями является недобросовестной и вводящей в заблуждение деловой практикой. TI не несет ответственности за такую измененную документацию. Информация третьих лиц может подвергаться дополнительным ограничениям. Перепродажа продуктов или услуг TI с заявлениями, отличающимися от параметров, заявленных TI для этого продукта или услуги, или за их пределами, аннулирует все явные и любые подразумеваемые гарантии на соответствующий продукт или услугу ТІ и является несправедливой и вводящей в заблуждение деловой практикой. ТІ не несет ответственности за подобные заявления. Продукты TI не разрешены для использования в критически важных для безопасности приложениях (таких как жизнеобеспечение), где можно разумно ожидать, что отказ продукта TI приведет к серьезным травмам или смерти, если только должностные лица сторон не заключили соглашение, конкретно регулирующее такое использование. Покупатели заявляют, что они обладают всем необходимым опытом в области безопасности и нормативных последствий своих приложений, а также признают и соглашаются с тем, что они несут исключительную ответственность за все юридические, нормативные и связанные с безопасностью требования, касающиеся их продуктов и любого использования продуктов ТІ в такой безопасности: критически важные приложения, независимо от любой информации, связанной с приложениями, или поддержки, которую может предоставить ТІ. Способствовать, Продукты ТІ не предназначены и не предназначены для использования в военных или аэрокосмических приложениях или средах, если только продукты TI специально не обозначены TI как военные или «улучшенные пластмассы». Только продукты, обозначенные TI как военные, соответствуют военным спецификациям. Покупатели признают и соглашаются с тем, что любое такое использование продуктов TI, которые TI не считает военными, осуществляется исключительно на риск Покупателя и что они несут исключительную ответственность за соблюдение всех юридических и нормативных требований в связи с таким использованием. Продукты TI не предназначены и не предназначены для использования в автомобильных приложениях или средах, если только

конкретные продукты TI не обозначены TI как соответствующие требованиям ISO / TS 16949. Покупатели признают и соглашаются с тем, что, если они используют какие-либо неуказанные продукты в автомобильной промышленности, TI не будет нести ответственности за любое невыполнение таких требований. Ниже приведены URL-адреса, по которым можно получить информацию о других продуктах и прикладных решениях Texas Instruments.