Simulation with Python Experiment Data (Contextual)

2024-10-20

1. Preparing the data

```
library(reticulate)
## Warning: package 'reticulate' was built under R version 4.3.3
library(banditsCI)
# Read in data generated in python notebook
gammahat <- as.matrix(read.csv('gammahat.csv', header = FALSE))</pre>
muxs <- as.matrix(read.csv('muxs.csv', header = FALSE))</pre>
# probabilities
np <- import("numpy")</pre>
# 3 dimensions: time, contexts, treatment arms
probs_array <- np$load("probs.npy")</pre>
# Define the policies we want to evaluate
policy1 main <- list(</pre>
  # includes all matrices in policy1 and policy0
  matrix(
    c(rep(1, nrow(gammahat)),
      rep(0, nrow(gammahat)),
      rep(0, nrow(gammahat)),
      rep(0, nrow(gammahat))),
    nrow = nrow(gammahat)),
  matrix(
    c(rep(0, nrow(gammahat)),
      rep(1, nrow(gammahat)),
      rep(0, nrow(gammahat)),
      rep(0, nrow(gammahat))),
    nrow = nrow(gammahat)),
  matrix(
    c(rep(0, nrow(gammahat)),
      rep(0, nrow(gammahat)),
      rep(1, nrow(gammahat)),
      rep(0, nrow(gammahat))),
    nrow = nrow(gammahat)),
  matrix(
    c(rep(0, nrow(gammahat)),
      rep(0, nrow(gammahat)),
      rep(0, nrow(gammahat)),
      rep(1, nrow(gammahat))),
```

```
nrow = nrow(gammahat)))
```

2. Estimation

2.1 Main Effects

```
best_mtx <- matrix(0, nrow = nrow(gammahat), ncol = ncol(gammahat))</pre>
best mtx[, which.max(colMeans(muxs))] <- 1</pre>
output_estimates_best <- output_estimates(policy1 = list(best_mtx),</pre>
                                            gammahat = gammahat,
                                            probs_array = probs_array,
                                            floor decay = 0.8)
uniform_var <- estimate(0:(nrow(gammahat)-1),
                         gammahat,
                         best_mtx)
output_estimates_best[[1]] <- rbind(output_estimates_best[[1]],</pre>
                                      'uniform_var' = c(uniform_var['estimate'],
                                                         sqrt(uniform_var['var'])))
optimal_mtx <- matrix(0, nrow = nrow(gammahat), ncol = ncol(gammahat))</pre>
optimal_mtx[cbind(1:nrow(gammahat), apply(muxs, 1, which.max))] <- 1</pre>
output_estimates_optimal <- output_estimates(policy1 = list(optimal_mtx),</pre>
                                                gammahat = gammahat,
                                                probs_array = probs_array,
                                                floor_decay = 0.8)
uniform var <- estimate(0:(nrow(gammahat)-1),
                         gammahat,
                         optimal_mtx)
output_estimates_optimal[[1]] <- rbind(output_estimates_optimal[[1]],</pre>
                                          'uniform_var' = c(
                                           uniform_var['estimate'],
                                           sqrt(uniform_var['var'])))
```

2.2 Treatment effects in contrast to control

```
\delta(w_1, w_2) = E[Y_t(w_1) - Y_t(w_2)].
```

The first approach: use the difference in AIPW scores as the unbiased scoring rule for $\delta(w_1, w_2)$.

The following function implements the first approach by subtracting policy0, the control arm, from all the arms in policy1, except for the control arm itself.

```
out_full_te1 <- output_estimates(
  policy0 = best_mtx,
  policy1 = list(optimal_mtx),
  contrasts = "combined",
  gammahat = gammahat,
  probs_array = probs_array,
  floor_decay = 0.8)</pre>
```

The second approach takes asymptotically normal inference about $\delta(w_1, w_2)$: $\delta^h at(w_1, w_2) = Q^h at(w_1) - Q^h at(w_2)$

3. Compare the results

```
# Compare the two approaches for uniform and non_contextual_two_point
comparison_df <- data.frame(method = character(),</pre>
                             estimate = numeric(),
                             std_error = numeric(),
                             var = numeric(),
                             contrasts = character(),
                             policy = integer(),
                             stringsAsFactors = FALSE)
# Function to process and append data
process_data <- function(data, policy_num, contrasts) {</pre>
  for (method in c("non_contextual_minvar", "contextual_minvar",
                    "non_contextual_stablevar", "contextual_stablevar",
                    "uniform_var")) {
    if (method %in% rownames(data)) {
      row <- data.frame(</pre>
        method = method.
        estimate = data[method, "estimate"],
        std_error = data[method, "std.error"],
        var = data[method, "std.error"]^2,
        contrasts = contrasts,
        policy = policy num,
        stringsAsFactors = FALSE
      )
      comparison_df <<- rbind(comparison_df, row)</pre>
```

```
}
}

# Process and append data for each subset and condition
process_data(output_estimates_best[[1]], "best", "main effect")
process_data(output_estimates_optimal[[1]], "optimal", "main effect")
process_data(out_full_te1[[1]], "(best,optimal)", "combined")
process_data(out_full_te2[[1]], "(best,optimal)", "separate")

comparison_df <- comparison_df[order(comparison_df$policy, decreasing = TRUE),]

# print the comparison data frame as a table
knitr::kable(comparison_df)</pre>
```

	method	estimate	std_error	var	contrasts	policy
6	non_contextual_minvar	0.4017075	0.0563778	0.0031785	main effect	optimal
7	$contextual_minvar$	0.5147350	0.0181728	0.0003303	main effect	optimal
8	$non_contextual_stablevar$	0.4450447	0.0577781	0.0033383	main effect	optimal
9	$contextual_stablevar$	0.5011886	0.0222223	0.0004938	main effect	optimal
10	uniform_var	0.4646648	0.0569579	0.0032442	main effect	optimal
1	$non_contextual_minvar$	0.1876929	0.0395924	0.0015676	main effect	best
2	$contextual_minvar$	0.1950278	0.0261016	0.0006813	main effect	best
3	$non_contextual_stablevar$	0.1369466	0.0624188	0.0038961	main effect	best
4	$contextual_stablevar$	0.1656435	0.0367070	0.0013474	main effect	best
5	uniform_var	-0.0529567	0.3033878	0.0920442	main effect	best
11	$non_contextual_minvar$	0.3175327	0.0794133	0.0063065	combined	(best,optimal)
12	$contextual_minvar$	0.2869980	0.0545568	0.0029764	combined	(best,optimal)
13	$non_contextual_stablevar$	0.3751744	0.1153043	0.0132951	combined	(best,optimal)
14	$contextual_stablevar$	0.3403858	0.0908967	0.0082622	combined	(best,optimal)
15	uniform_var	0.5176216	0.3027359	0.0916490	combined	(best,optimal)
16	$non_contextual_minvar$	0.2140146	0.0688913	0.0047460	separate	(best,optimal)
17	$contextual_minvar$	0.3197071	0.0318048	0.0010115	separate	(best,optimal)
18	$non_contextual_stablevar$	0.3080981	0.0850554	0.0072344	separate	(best,optimal)
19	$contextual_stable var$	0.3355451	0.0429096	0.0018412	separate	(best,optimal)