

CHARACTERIZATION OF POLYNOMIALS

ABSTRACT. In 1954 it was proved if f is infinitely differentiable in the interval I and some derivative (of order depending on x) vanishes at each x , then f is a polynomial. Later it was generalized for multi-variable case. In this paper we give an extension for distributions.

1. INTRODUCTION

In [2] it was proved that if $f : \mathbf{R} \rightarrow \mathbf{R}$, $f \in C^\infty(\mathbf{R})$, and for every $x \in \mathbf{R}$ there exists $n(x) \in \mathbf{N}$ such that $f^{(n(x))}(x) = 0$, then f is a polynomial. Later, see [1] and [3] a similar result was proved for multi-variable case.

To extend this result for distributions first we introduce some notations and recall some known results, see e.g. in [4].

Let $\Omega \subseteq \mathbf{R}^n$ be a non-empty open set. In the discussion of functions of n variables, the term multi-index denotes an ordered n -tuple

$$\alpha = (\alpha_1, \dots, \alpha_n)$$

of nonnegative integers α_i ($i = 1, \dots, n$). With each multi-index α is associated the differential operator

$$D^\alpha := \left(\frac{\partial}{\partial x_1} \right)^{\alpha_1} \cdots \left(\frac{\partial}{\partial x_n} \right)^{\alpha_n}$$

whose order is $\|\alpha\| := \alpha_1 + \dots + \alpha_n$. If $\|\alpha\| = 0$ then $D^\alpha f := f$.

The support of a complex function f on any topological space is the closure of the set $\{x \mid f(x) \neq 0\}$.

If K is a compact set in Ω then \mathcal{D}_K denotes the vector subspace of all complex-valued function $f \in C^\infty(\Omega)$ whose support lies in K , $C_0^\infty(\Omega)$ is the set of all $f \in C^\infty(\Omega)$ whose support is compact and lies in Ω . It is possible to define a topology on $C^\infty(\Omega)$ (generated by the $\|D^\alpha f\|_\infty$

norms) which makes $C^\infty(\Omega)$ into a Fréchet space (locally convex topological vector space whose topology is induced by a complete invariant metric), such that \mathcal{D}_K is a closed subspace of $C^\infty(\Omega)$, τ_K denotes the Fréchet space topology of \mathcal{D}_K .

Choose the non-empty compact sets $K_i \subset \Omega$ ($i = 1, 2, \dots$) such that K_i lies in the interior of K_{i+1} and $\Omega = \cup K_i$, τ_{K_i} denotes the Fréchet space topology of \mathcal{D}_{K_i} . Denote τ the inductive limit topology of τ_{K_i} ($i = 1, 2, \dots$).

The topological vector space of test functions $\mathcal{D}(\Omega)$ is $C_0^\infty(\Omega)$ with τ . This topology is independent of the choice of K_i ($i = 1, 2, \dots$). A linear functional on $\mathcal{D}(\Omega)$ which is continuous with respect to τ is called a distribution in Ω . The space of all distributions in Ω is denoted by $\mathcal{D}'(\Omega)$.

In [2] the polynomiality was proved using Baire's theorem (\mathbf{R} is a complete metric space). In our case $\mathcal{D}(\Omega)$ is not metrizable and the topology τ is not locally compact so we can not apply Baire's theorem to $\mathcal{D}(\Omega)$ immediately.

2. RESULTS

In the next result we assume that Ω and K_i ($i = 1, 2, \dots$) are connected sets, if Ω had components then we could apply our results for each component.

Theorem 2.1. *If $u \in \mathcal{D}'(\Omega)$ and for every $\varphi \in \mathcal{D}(\Omega)$ there exists $m(\varphi) \in \mathbf{N}$ such that $(D^\alpha u)(\varphi) = 0$ for all multi-indexes α satisfying $\|\alpha\| = m(\varphi)$, then u is a polynomial (in distributional sense).*

3. PROOFS

To proof the Theorem we need lemmas.

Definition 3.1. If $\mathbf{a} = (a_1, \dots, a_n)$, $\mathbf{b} = (b_1, \dots, b_n) \in \mathbf{R}^n$ then $\mathbf{a} < \mathbf{b}$ means $a_i < b_i$, $i = 1, \dots, n$. The set $(\mathbf{a}, \mathbf{b}) := \{\mathbf{x} \mid \mathbf{a} < \mathbf{x} < \mathbf{b}\}$ is the n -dimensional open interval.

Lemma 3.2. *Suppose Γ is an open cover of an open set $\Omega \subseteq \mathbf{R}^n$, and suppose that to each $\omega \in \Gamma$ corresponds a distribution, $\Lambda_\omega \in \mathcal{D}'(\omega)$ such that*

$$\Lambda_{\omega'} = \Lambda_{\omega''} \quad \text{in } \omega' \cap \omega''$$

whenever $\omega' \cap \omega'' \neq \emptyset$.

Then there exists a unique $\Lambda \in \mathcal{D}'(\Omega)$ such that

$$\Lambda = \Lambda_\omega \quad \text{in } \omega$$

for every $\omega \in \Gamma$.

Proof. See e.g. [4] 6.21 Theorem. □

Lemma 3.3. *Assume $I \subseteq \mathbf{R}^n$ and $J \subseteq \mathbf{R}^m$ are n -dimensional intervals, $\varphi \in \mathcal{D}(I \times J)$. Then there exists $\varphi_k \in \mathcal{D}(I \times J)$ such that*

$$\varphi_k = \sum_{j=1}^k \psi_j \chi_j,$$

where $\psi_j \in \mathcal{D}(I)$, $\chi_j \in \mathcal{D}(J)$ and φ_k converges to φ in $\mathcal{D}(I \times J)$.

Proof. See e.g. [5] page 111-113. □

Proof of Theorem 2.1:

In the first step we prove that for each $i = 1, 2, \dots$ there exists a number $\gamma^{(i)} \in \mathbf{N}$ such that $D^\alpha u \equiv 0$ for all multi-indexes α satisfying $\|\alpha\| = \gamma^{(i)}$ in \mathcal{D}_{K_i} . Denote

$$Z^{(m)} := \{\varphi \in \mathcal{D}_{K_i} \mid (D^\alpha u)(\varphi) = 0, \|\alpha\| = m\}, \quad m \in \mathbf{N}.$$

Obviously

$$\mathcal{D}_{K_i} = \bigcup_{m \in \mathbf{N}} Z^{(m)}.$$

Here $Z^{(m)}$ is closed, because

$$Z^{(m)} = \bigcap_{\|\alpha\|=m} \{\varphi \in \mathcal{D}_{K_i} \mid (D^\alpha u)(\varphi) = 0\}$$

and $D^\alpha u$ is continuous. Since \mathcal{D}_{K_i} is a complete metrizable space, Baire's theorem gives there exists $\gamma^{(i)} \in \mathbf{N}$ such that $\text{int } Z^{(\gamma^{(i)})} \neq \emptyset$ (int

is in the topology τ_i). Since $Z^{(m)}$ is a linear subspace in \mathcal{D}_{K_i} , we obtain $\mathcal{D}_{K_i} \equiv Z^{(\gamma^{(i)})}$.

In the second step we consider the one variable case.

If $n = 1$ then $D^{\gamma^{(i)}} u \equiv 0$ implies u is a polynomial (in distributional sense) in \mathcal{D}_{K_i} , see [6], Exercise 7.23, p. 99. Since $K_i \subset \text{int } K_{i+1}$ and $\mathcal{D}_{K_i} \subset \mathcal{D}_{K_{i+1}}$ we obtain the theorem in this case.

In the third step we consider the multivariable case.

Since open intervals form a base for open sets in \mathbf{R}^n , we can write $\text{int } K_{i+1} = \cup_{\omega \in \Gamma} \omega$, where Γ is an open cover of $\text{int } K_{i+1}$. If we prove that u is a polynomial (in distributional sense) in each ω , then by Lemma 3.2 we obtain that u is a polynomial (in distributional sense) in $\text{int } K_{i+1} \supset K_i$. Since $\mathcal{D}_{K_i} \subset \mathcal{D}_{K_{i+1}}$ we obtain the theorem.

Write $\omega := I_1 \times \cdots \times I_n$, where $I_i \subseteq \mathbf{R}$, $i = 1, \dots, n$ are open intervals. Let $\varphi \in \mathcal{D}(\omega)$. By an obvious generalization of Lemma 3.3 there exists a sequence of $\varphi_k \in \mathcal{D}(\omega)$ such that φ_k has the form

$$\sum_{j=1}^N \psi_j^{(1)} \cdots \psi_j^{(n)}$$

with $N := N(k)$, where $\psi_j^{(m)} \in \mathcal{D}(I_i)$, $m = 1, \dots, n$, $j = 1, \dots, N$ and φ_k converges to φ in $\mathcal{D}(\omega)$. Since u is continuous, $u(\varphi_k) \rightarrow u(\varphi)$. Hence it is enough to prove, that u acts on φ_k as a polynomial (in distributional sense).

We proved that $D^{(\gamma^{(i)}, 0, \dots, 0)} u \equiv 0$ in $\mathcal{D}(\omega)$. It means

$$\left(D^{(\gamma^{(i)}, 0, \dots, 0)} u \right) \left(\psi_j^{(1)} \cdots \psi_j^{(n)} \right) \equiv 0, \quad j = 1, \dots, N.$$

If we define $v_j \in \mathcal{D}'(I_1)$ such that

$$v_j(\psi^{(1)}) := u(\psi^{(1)} \psi_j^{(2)} \cdots \psi_j^{(n)}),$$

where $\psi^{(1)} \in \mathcal{D}(I_1)$, (we consider $\psi_j^{(2)}, \dots, \psi_j^{(n)}$ as parameters), then we obtain $D^{\gamma^{(i)}} v_j \equiv 0$. The one variable case implies that $v_j \equiv p_j$, where p_j is a polynomial of degree at most $\gamma^{(i)} - 1$,

$$p_j(x_1) = \sum_{r=0}^{\gamma^{(i)}-1} c_r x_1^r,$$

where

$$c_r = c_r(\psi_j^{(2)}, \dots, \psi_j^{(n)}),$$

and

$$x_1 \in I_1.$$

Continuing this idea, we know that $D^{(\gamma^{(i)}-1, 1, 0, \dots, 0)} u \equiv 0$ in $\mathcal{D}(\omega)$. From this and one variable case we obtain

$$c_{\gamma^{(i)}-1} = d_{\gamma^{(i)}-1}(\psi_j^{(3)}, \dots, \psi_j^{(n)}).$$

Similarly, we have

$$c_r(\psi_j^{(2)}, \dots, \psi_j^{(n)}) = \sum_{s=0}^{\gamma^{(i)}-1-r} d_s x_2^s,$$

where

$$d_s = d_s(\psi_j^{(3)}, \dots, \psi_j^{(n)}),$$

and

$$x_2 \in I_2.$$

Repeating this process with $D^{(0, \gamma^{(i)}, 0, \dots, 0)} u, D^{(0, \gamma^{(i)}-1, 1, 0, \dots, 0)} u, \dots, D^{(0, 0, \gamma^{(i)}, 0, \dots, 0)} u, \dots, D^{(0, \dots, 0, \gamma^{(i)})} u$ we obtain that u acts on φ_k as a polynomial (in distributional sense) indeed, and the proof of the theorem has completed. ■

REFERENCES

- [1] A. B. Bochner and P. D. Johnson jun., A pointwise condition for an infinitely differentiable function of several variables to be a polynomial, *J. Math. Anal. Appl.* **151** (1990), no. 1, 17-19.
- [2] E. Corominas and F. S. Balaguer, Conditions for an infinitely differentiable function to be a polynomial, *Revista Mat. Hisp.-Amer.(4)* **14** (1954), 26-43.
- [3] W. Pleśniak, *Zbl. 0684.26009*
- [4] W. Rudin, *Functional Analysis*, McGraw-Hill, 1973.
- [5] L. Simon and E. A. Baderko, *Linear second order partial differential equations*, Tankönyvkiadó Budapest, 1983, (in Hungarian)
- [6] V. S. Vladimirov, *A Collection of Problems on the Equations of Mathematical Physics*, Mir Publishers Moscow, 1986.