Inteligência Artificial

Guilherme Henrique de Souza Nakahata

Universidade Estadual do Paraná - Unespar

13 de Abril de 2024

- Subárea da Inteligência Artificial;
- Desenvolver modelos;
- Técnicas;
- Construção de **sistemas**;

- Subárea da Inteligência Artificial;
- Desenvolver modelos;
- Técnicas;
- Construção de sistemas computacionais;
- Relacionados à capacidade de aquirir conhecimento a partir de dados;

INTELIGÊNCIA ARTIFICIAL

Qualquer técnica que permite o computador a imitar a inteligência humana, usando a lógica, regras matemáticas, árvores de decisão e machine learning(incluindo deep learning)

MACHINE LEARNING

Subconjunto da IA que inclui técnicas estatísticas que permitem maquinas de melhorar tarefas através da experiência. Está incluso o deep learning

DEEP LEARNING

Subconjunto de machine learning composto por algoritmos que permitem o software treinar a si mesmo para desempenhar tarefas, como reconhecimento de imagem e voz, por meio de múltiplas camadas de redes neurais artificiais

- Em geral usamos Aprendizagem de máquina em diferentes situações:
 - Existe um padrão a ser aprendido;
 - Existe dados disponíveis sobre o problema em questão;

- Aprendendo a partir de dados;
- Dados são baratos e abundantes;
 - Transações de todos os clientes de um banco;
- Conhecimento é caro e escasso;
 - Qual é o perfil de clientes com baixo risco para a concessão de crédito?

- Algoritmos de AM são indutores:
 - Induzem uma função ou hipótese capaz de resolver um problema;
 - Empregam um princípio de inferência (indução);
 - A partir de dados do problema já resolvido se obtém uma função que será utilizado para resolver instâncias futuras não vistas.

Tipos de Aprendizagem

- Supervisionada;
- Não supervisionada;
- Semi-supervisionada;
- Aprendizagem por Reforço;

Tipos de Aprendizagem

- Supervisionada
 - Treina um modelo usando um conjunto de dados rotulados;
 - O objetivo é prever a saída a partir de novas entradas com base nas entradas e saídas anteriores;
- Não supervisionada
 - Treina um modelo usando dados que não possuem rótulos;
 - O objetivo é encontrar padrões ou estruturas ocultas nos dados;
- Semi-supervisionada
 - Utiliza uma pequena quantidade de dados rotulados e uma grande quantidade de dados não rotulados;
 - Combinando os benefícios de aprendizagem supervisionada e não supervisionada.
- Aprendizagem por Reforço
 - Treina um agente para tomar decisões em um ambiente;
 - Recebendo recompensas ou penalidades com base em suas ações;
 - Ajusta suas estratégias para maximizar a recompensa total.

Preparação de dados

- Preparação de dados;
- Transformação de dados brutos;
- Formato mais apropriado;
- Aprendizado;

Conjunto de dados

- Formados por objetos;
- Representam entidades físicas ou abstratas;
- Podem ser gerados por diversos processos:
 - Transações financeiras;
 - Monitoramento ambiental;
 - Registros clínicos;
 - Navegação;
- Assumir vários formatos:
 - Valores numéricos:
 - Simbólicos;
 - Textos;
 - Imagens;
 - Áudios.

Instância

- Os objetos de um conjunto são chamados de instâncias, amostras ou exemplos;
- Conjunto de atributos ou características;
- Vetor de atributos o conjunto de valores que definem os atributos de um exemplo.

Atributo

- Atributo ou Característica descreve uma propriedade do exemplo:
 - Pode ser valor categórico ou número;
 - Pode ter valores desconhecidos, ou que não-se-aplica.
- Atributos numéricos podem ser discretos ou contínuos:
 - Discreto: Assume um número finito de valores entre quaisquer dois valores:
 - Contínuo: Assume um número infinito de valores entre quaisquer dois valores;

Exemplo

	Idade	Diagnóstico	Astigmatismo	Taxa lacrimal	Lente
1	infantil	miopia	não	re duzida	nenhuma
2	infantil	miopia	sim	normal	gelatinosa
3	infantil	hipermetropia	não	normal	gelatinosa

Atributo Meta

- Tarefas preditivas possuem atributo especial denominado atributo meta ou atributo alvo;
- Descreve o que se deseja aprender e fazer previsões;
- Classificação Binária ou Multi classe;
- Classificação multi rótulo;

ld	Débito	Colateral	Risco
1	Alto	Nenhum	Alto
2	Alto	Nenhum	Alto
3	Baixo	Nenhum	Moderado
4	Baixo	Nenhum	Alto
5	Baixo	Nenhum	Baixo
6	Baixo	Adequado	Baixo
7	Baixo	Nenhum	Alto
8	Baixo	A dequa do	Moderado

Treino e Teste

- A indução do modelo é chamado de treinamento;
- Objetivo é aprender a partir dos exemplos;
- A avaliação do modelo é chamado de teste;
- Prever atributos meta dos exemplos de testes;
- Métricas de desempenho são coletadas;
- Estimar o desempenho do modelo na previsão de casos novos.

Avaliação de modelos

- Não é utilizado os mesmos exemplos utilizado no aprendizado e na avaliação;
- Precisamos dividir os exemplos em conjuntos de treino e teste;
- Duas estratégias mais utilizadas nos modelos supervisionados:
 - Holdout;
 - Validação cruzada;
- Ambos são relacionados à amostragem, visando a avaliação.

Holdout

- Consiste em dividir os exemplos em uma porcentagem fixa:
 - Exemplos;
 - Treinamentos;
- Valores comuns de divisão:
 - 80 % para treino e 20 % de teste;
 - 66 % para treino e 33 % de teste;
- Valores empíricos;
- Quanto maior a amostra de teste, maior a confiança;
- Não é uma boa estrategia para conjuntos pequenos;

Holdout

- Os exemplos do conjuntos de testes devem ser selecionadas aleatoriamente;
- Simples;
- Estratificada;

Validação Cruzada

- Diminuir o impacto das diferentes amostras;
- Executar k rodadas de holdout;
- Média dos k resultados;
- Validação cruzada sistematiza a execução;
- Amostra de teste diferentes;
- Garante que ao final do processo todos os exemplos terão sido utilizados para teste;

Validação Cruzada

- É o método de avaliação mais adequado para pequenos conjuntos;
- Dividir os exemplos em k partições de tamanho próximos;
- Utilizar os k-1 fold para treinamento e avaliar o modelo com o fold remanescente;
- Repetir o processo k vezes;
- Valor comum para k é 10;

Avaliação Cruzada

Avaliação Cruzada

- Processo de amostragem:
 - Simples;
 - Estratificada;
- Validação cruzada estratificada;
- As classes são consideradas durante a amostragem das partições;
- As partições terão valores próximos durante a distribuição das classes;

Análise de dados

- Informações úteis;
- Extraídas do conjunto de dados por meio de exploração;
- Podendo ser utilizada no:
 - Pré processamento;
 - Aprendizado;
 - Interpretação dos resultados;
- Estatística descritiva:
 - Resumem de forma quantitativa as principais características do conjunto:
 - Frequência;
 - Tendência central;
 - Dispersão.

Frequência

- Mede a proporção de vezes que um atributo assume um dado valor;
- Tarefas de classificação a frequência das classes é importante;
- Frequências muito diferentes, o conjunto é desbalanceado;
- Distribuição das classes do conjunto.

Distribuição de Classes

- Exemplo: um conjunto de 150 exemplos com 100 exemplos da classe A e 50 exemplos da classe B, tem a seguinte distribuição de classes:
 - distribuição(A, B) = (0, 67, 0, 33) = (67%, 33%)
- A classe A é chamada de majoritária;
- A classe B é chamada de minoritária;

Medidas de posição

- Média;
- Mediana;
- Moda;
- Separatrizes;
- Quartil;
 - 1° Quartil: 25 %;
 - 2° Quartil: Mediana;
 - 3° Quartil: Valor que tem 75 % dos demais valores abaixo dele;
- Percentil.

Medidas de dispersão

- Medem a variabilidade (espalhamento):
 - Amplitude;
 - Variância;
 - Desvio padrão;
 - Intervalo interquartil (IQR).

Boxplot

- Diagramas de caixa (Boxplot);
- Representa a distribuição empírica dos dados;
- As caixas representam o 1° e 3° quartil e a mediana;
- Hastes inferiores e superiores estendem até o limite inferior e superior;

Dados multivariados

- Análise de cada atributo de forma individual;
- Analisar a relação de par-a-par entre atributos;
- Medidas de dispersão;
- Covariância;
 - Mede o grau com que esses atributos variam juntos;
- Correlação;
 - Corrige a covariância retirando a influência da magnitude dos atributos.
- Gráfico para visualizar correlação;
- Scatter plot.

Scatter plot

Pré-Processamento

- Melhorar a qualidade dos dados;
- Possibilita a indução de modelos melhores;
- Reduz complexidade computacional;
- Adequar os dados para determinado algoritmo;
 - Algoritmos que só aceitar atributos numéricos;

Pré-processamento

- Amostragem;
- Transformação;
- Limpeza;
- Seleção de atributos;

Pré-processamento

- Amostragem;
 - Dificuldades em lidar com volume alto de instâncias;
 - Baseados em distâncias;
 - Problemas de memória;
 - Maior quantidade de dados tende a aumentar o desempenho;
 - Diminui a eficiência computacional do processo indutivo;
- Amostragem aleatória simples:
 - Escolhe aleatoriamente n elementos que farão parte da amostra;
- Amostragem aleatória estratificada:
 - Respeita a mesma distribuição de classes.

Dados desbalanceados

- Comum haver dados desbalanceados;
- Os algoritmos têm problema de desempenho com dados desbalanceados;
- Tendem a favorecer a classificação na classe majoritária;
- Reamostragem:
 - Subamostragem: Remove instâncias da classe majoritária;
 - Sobreamostragem: Adiciona instâncias da classe minoritária;

Transformação '

- Vários algoritmos de aprendizagem de máquina são limitadas à manipulação de determinados tipos:
 - Valores números;
 - Valores simbólicos;
- Conversão de tipos;

Transformação

• Codificação one-hot;

Exemplo	Cor	Fabrica nte	#portas
#1	Branco	Honda	4P
#2	Verde	Honda	2P
#3	Preto	Ford	4P
#4	Preto	GM	4P

Exemplo							#porta = 4P	#porta = 2P
#1	1	0	0	1	0	0	1	0
#2	0	1	0	1	0	0	0	1
#3	0	0	1	0	1	0	1	0
#4	0	0	1	0	0	1	1	0

Transformação

Codificação one-hot;

Exemplo	Tem peratura
#1	Baixa
#2	Média
#3	Alta
#4	Muito Alta

Exemplo	Temp1	Temp2	Temp3
#1	0	0	0
#2	0	0	1
#3	0	1	1
#4	1	1	1

Limpeza de dados

- Amenizar problemas advindos de processos imprecisos de aquisição de dados;
 - Valores ausentes;
 - Valores ruidosos;
- Remoção das instâncias com valores ausentes;
- Preenchimento manual dos valores;
 - Reexecutar o processo;
 - Especialista do domínio;
- Preenchimento automático dos valores;
 - Atribuição de um valor constante (?, desconhecido, !);
 - Valor médio:
 - Utilizar algum modelo preditivo.

Valores ruidosos

- Consistem em valores muito diferentes dos demais;
- Casos atípicos;
- Erros de aquisição;
- Inspeção e correção manual;
- Identificação e limpeza automática;
- Redundância;
- Eliminação de exemplos redundantes;
- Atributos redundantes;

Atividade

- Implementar um algoritmo que:
 - Leia um arquivo CSV;
 - Identifique e remova instâncias repetidas;
 - Trate valores ausentes (Imputação ou remoção);
 - Transforme atributos categóricos;
 - Divida dos dados em conjuntos de treinamento e teste;

Obrigado! Dúvidas?

Guilherme Henrique de Souza Nakahata

guilhermenakahata@gmail.com

https://github.com/GuilhermeNakahata/UNESPAR-2024