Foundations of Modern Optics

Dimitris Papazoglou

dpapa@materials.uoc.gr

Materials Science and Technology Department University of Crete

Licenses

This educational material is subject to the Creative Commons license and in particulal:

Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)

-For educational materials, such as images, subject to another type of license, the license is expressly stated.

Curriculum

Introduction-Basic Principles

Imaging

Geometrical Optics

Simple Optical systems

The Matrix method

Image Illumination

Optical Aberrations

Detection and Sources of Radiation

Gaussian Beams

1

Introduction

Historical introduction

Ancient times

Rectilinear propagation of light

Pythagoras, Demokritos, Empedoklis, Platon, Aristotle

Law of reflection

300 BC Euclid «Κατοπτρικά» ~ 50 AD Heron:

"The path that light follows from one point to another is the smallest."

Refraction

50 BC Kleomedes, 130 AD Claudius Ptolemaeus (refraction tables)

Mirrors

1900 BC Egypt

424 BC (Aristophanes "Νεφέλες")

~ 30 A.C. Seneka

Middle ages

1000 AC. Alhazen

(Plane of Incidence, spherical and parabolic mirrors, detailed description of the human eye)

~1230 AC. Bacon

Correction of vision with lenses.
We can build a telescope by combining lenses!

~ 1500 AC. Lenardo Da Vinci Camera Obscura

~ **1250 AC.** eyeglasses

~1300 AC. Coated Mirrors

~1500 AC. Camera Obsura (The first photographic camera!)

Dimitris Papazoglou dpapa@materials.uoc.gr

17th -18th Century

1611 Kepler Dioptrice Total reflection

1621 Snell Refraction Law

1637 Descartes La Dioptrique,

«Light is a disturbance that propagates through an elastic medium!»

~ 1657 Fermat

Principle of Least Time

~1650 Grimaldi & Hooke Diffraction, *«Light is a rapid vibration of the medium that travels at a great speed»*

~1665 Newton Spectral analysis, Mirror Telescopes, corpuscular nature of Light

~ **1665 Huygens** Polarization, "Light is a wave"

~1676 Romer

Measurement of the speed of light

1608 Lippershey Refractive telescope

1610 Janssen Microscope

1668 Newton Reflective telescope

1758 Dollond Achromatic Lens

19th century

1801 Young, interference principle

~1820 Fresnel, wave propagation (longitudinal waves), diffraction, interference

1825 Young, Light is a transverse wave

1845 Faraday, Magneto-Optical effect

~ 1849 Fizeau, terrestrial measurement of the speed of light

1870 Maxwell, «Light is an electromagnetic wave!»

1881,1887 Michelson, Morely

«Ether is stationary in relation to the earth»

20th century

- **1900 Poincare**, «Ether does not exist!»
- 1900 Planck, Beginning of Quantum Mechanics
- **1905 Einstein**, "Light propagates in vacuum at a constant speed independent of the movement of the source" Light behaves as a particle when interacts with matter
- **1913 Bohr**, Quantum mechanical description of Hydrogen atom
- 1948 Gabor, Holography
- **1950 Fourier Optics**, Optics & telecommunication theory
- 1958 Townes, Laser (1917 Einstein Theoretical Prediction)
- 1966 Kao, Optical Fibers
- 1966 Ashkin, Photorefractive materials
- 1969 Boyle, Smith, CCD camera
- 1987 Yablonovitch, Sajeev, Photonic materials
- 1999 Pedry, Meta-materials
 (1967 Veselago Theoretical prediction)

Wave equation

$$\nabla^{2}\Psi - \frac{1}{\upsilon^{2}} \frac{\partial^{2}\Psi}{\partial t^{2}} = 0$$
disturbance
$$\Psi(\mathbf{r}, t)$$
propagation speed

the sum of solutions is a solution

Linearity and superposition principle

$$\nabla^{2}\Psi_{1} - \frac{1}{\upsilon^{2}} \frac{\partial^{2}\Psi_{1}}{\partial t^{2}} = 0$$

$$\nabla^{2}\Psi_{2} - \frac{1}{\upsilon^{2}} \frac{\partial^{2}\Psi_{2}}{\partial t^{2}} = 0$$

$$\vdots$$

$$\nabla^{2}\Psi_{N} - \frac{1}{\upsilon^{2}} \frac{\partial^{2}\Psi_{N}}{\partial t^{2}} = 0$$

$$Their superposition is a wave
$$\nabla^{2}\Psi_{N} - \frac{1}{\upsilon^{2}} \frac{\partial^{2}\Psi_{N}}{\partial t^{2}} = 0$$$$

N waves

Wave equation in one dimension

$$\frac{\partial^2 \Psi}{\partial z^2} - \frac{1}{\upsilon^2} \frac{\partial^2 \Psi}{\partial t^2} = 0$$

wave attributes

- Wavelength
- Period
- Amplitude
- velocity
- phase

(periodicity in space)

(periodicity in time)

Wave types

Longitudinal

scalar $\Psi(\mathbf{r},t)$

Typical example: sound waves

Transverse

 $-\mathbf{A}(\mathbf{r},t)$

Typical example: vibrations of a string

Harmonic waves

The disturbance $\Psi(\mathbf{r}, t)$ is a harmonic function of time

$$\Psi(\mathbf{r},t) = a(\mathbf{r})\cos[g(\mathbf{r}) - \omega t]$$

phase

Iso-phase surface

$$g(\mathbf{r}) - \omega t = const$$

Surface of constant amplitude

$$\alpha(\mathbf{r}) = const$$

Phase velocity

Phase velocity υ_p refers to the propagation velocity of the isophase surfaces

$$\varphi(\mathbf{r},t) \equiv g(\mathbf{r}) - \omega t = const \Rightarrow d\varphi(\mathbf{r},t) = 0 \Rightarrow$$

$$\frac{\nabla g(\mathbf{r}) \cdot d\mathbf{r} - \omega \, dt = 0}{d\mathbf{r} = dr \, \hat{\mathbf{q}}} \Rightarrow (\nabla g(\mathbf{r}) \cdot \hat{\mathbf{q}}) dr = \omega dt \Rightarrow \frac{dr}{dt} = \frac{\omega}{\nabla g(\mathbf{r}) \cdot \hat{\mathbf{q}}}$$

$$\hat{\mathbf{q}} \perp isosurface \Rightarrow \hat{\mathbf{q}} = \frac{\nabla g(\mathbf{r})}{\left|\nabla g(\mathbf{r})\right|} \Rightarrow \nabla g(\mathbf{r}) \cdot \hat{\mathbf{q}} = \left|\nabla g(\mathbf{r})\right| \Rightarrow$$

$$\upsilon_p \equiv \frac{\omega}{|\nabla g(\mathbf{r})|}$$

Harmonic plane waves

The disturbance $\Psi(\mathbf{r}, t)$ is harmonic both in **Time** and in **Space**. The amplitude is constant.

Phase velocity of a harmonic wave

 $\upsilon_{p} \equiv \frac{\omega}{\left|\nabla g(\mathbf{r})\right|} = \frac{\omega}{\left|\nabla (\mathbf{k} \cdot \mathbf{r})\right|} = \frac{\omega}{k} = \frac{2\pi \nu}{2\pi/\lambda} \Longrightarrow$

$$\upsilon_p = \frac{\omega}{k} = \nu \cdot \lambda$$

 $\nabla(\mathbf{k} \cdot \mathbf{r}) = \nabla(k_x x + k_y y + k_z z) = k_x \hat{\mathbf{x}} + k_y \hat{\mathbf{y}} + k_z \hat{\mathbf{z}} = \mathbf{k}$

Complex description of a harmonic wave

$$\Psi(\mathbf{r},t) = a(\mathbf{r})\cos[g(\mathbf{r}) - \omega t]$$

$$= \operatorname{Re}\{a(\mathbf{r})e^{ig(\mathbf{r})}e^{-i\omega t}\} = \operatorname{Re}\{A(\mathbf{r})e^{-i\omega t}\}$$

$$= \frac{1}{2} [A(\mathbf{r})e^{-i\omega t} + A^*(\mathbf{r})e^{+i\omega t}] = \frac{1}{2} A(\mathbf{r})e^{-i\omega t} + c.c.$$

Re{..} can be omitted in linear calculations!

Complex description and wave equation

$$\nabla^{2}\Psi - \frac{1}{\upsilon^{2}} \frac{\partial^{2}\Psi}{\partial t^{2}} = 0 \Rightarrow e^{-i\omega t} \nabla^{2} A(\mathbf{r}) - \frac{1}{\upsilon^{2}} (-\omega^{2}) e^{-i\omega t} A(\mathbf{r}) \Rightarrow$$

$$\nabla^2 A(\mathbf{r}) + \frac{\omega^2}{\upsilon^2} A(\mathbf{r}) = 0$$

If the wave is plane and harmonic:

$$\nabla^2 A(\mathbf{r}) + k^2 A(\mathbf{r}) = 0$$

Helmholtz equation