H FORMULA SHEET

	,	1. Linearity	$a \cdot f(t) + b \cdot g(t)$	$a \cdot F(s) + b \cdot G(s)$
1. A·1(t)	$\frac{A}{s}$	2. Frequency shift	$e^{-\alpha t} \cdot f(t)$	F(s+a)
2. $\delta(t) \cdot l(t)$	I n!	3. Time shift	$f(t-a) \cdot l(t-a)$	$e^{-\alpha s} \cdot F(s)$
3. $t^n \cdot I(t)$	s^{n+1} 1	4. Scaling	f(at)	1/a F(s/a)
4. $e^{at} \cdot I(t)$	$\overline{s-a}$	5. Differentiation	$f^{(n)}(t)$	$s^n \cdot F(s) - s^{n-1} \cdot f(0) - s^{n-2} \cdot f'(0) - \dots - s^0 \cdot f^{n-1}(0)$
5. $sin(\omega t) \cdot l(t)$	$\frac{\omega}{s^2 + \omega^2}$	6. Initial	$f(0) = \lim_{t \to 0} f(t)$	$f(0) = \lim_{s \to \infty} sF(s)$
6. $cos(\omega t) \cdot I(t)$	$\frac{s}{s^2+\omega^2}$	7. Final	$f(\infty) = \lim_{t \to \infty} f(t)$	$f(\infty) = \lim_{s \to 0} sF(s)$

Physical properties of RLC circuit components

Components	Voltage – Current Relationship		
Resistor	U(t) = I(t)R		
Capacitor	$U(t) = \frac{1}{C} \int_0^t I(\tau) \ d\tau$		
Inductor	$U(t) = L \frac{d I(t)}{d t}$		

Transfer function delayed first order process

$$H_P(s) = \frac{K_P \ e^{-\tau_V \, s}}{\tau_P \, s + 1} \label{eq:hp}$$

Figure H.1: The formula sheet