Introduction to Probability Midterm I

15:30-17:20, November 1, 2022

Note: You have to answer the questions with supporting explanations if needed.

- 1. (a) State and explain the three probability axioms. (5%)
 - (b) let $A_1, \dots, A_n, \dots, A_N$ be disjoint events that form a partition of the sample space and assume that $P(A_n) > 0$, for all n. Then, for any event B, show that: $P(B) = \sum_{i=1}^{N} P(A_i) P(B|A_i)$. (5%)
- 2. Allen has the habit of collecting different types of hats made by a company named FashionX. There are n types of hats made by FashionX, and each new one Allen collects will belong to type i with probability p_i , $\sum_{i=1}^n p_i = 1$. Furthermore, the types of different hats Allen will collect are independent of one another. Suppose that m hats are to be collected by Allen. If H_i is the event that there is at least one type i hat among those collected.
 - (1) Find $P(H_i)$. (10%)
 - (2) Find $P(H_i \cup H_i)$, where $i \neq j$. (5%)
 - (3) Find $P(H_i|H_j)$, where $i \neq j$. (5%)
- $_{3}$ 3. Two random variables X and Y whose joint probability mass function (PMF) is given in the right figure.
 - (1) Calculate E[X] and E[Y]. (10%)
 - (2) Determine whether X and Y are independent of each other or not. (10%)
 - (3) Given an event $A = \{X \le 2, Y \ge 2\}$ occurs, determine whether X and Y are independent of each other or not. (10%)
- Joint PMF $p_{X,Y}(x,y)$ 3 1/4 1/6 1/12
 2 1/6 1/9 1/18
 4 2
 1/12 1/18 1/36
 3 2 1
 3 2 3 x
- 4. A pair of fair four-sided dice is thrown once. Each die has faces labeled 1, 2, 3, and 4.

 Discrete random variable X is defined to be the product of the down-face values (四面骰子面朝下那一面的数值).
 - (1) Determine probability mass function (PMF) of X. (10%)
 - (2) Determine the conditional expectation and variance of X, given that the sum of the down-face values is greater than the product of the down-face values (denoted by event D); that is, E[X|D] and var(X|D). (10%)
- 5. Let X and Y be independent random variables, both of which take values in the set $\{1, 2, 3\}$ with equal probability. Let V = X + Y, and W = X Y.

- (1) Find the PMF V. (10%)
- (2) Determine E[V] and var(V). (10%)
- var [v)=E[· Ecv]
- (3) Are V and W independent of each other? Explain (no calculations needed). (10%)

$$\frac{1}{7}\frac{4}{7}\frac{1}{5}\frac{1}{5}$$
 $\frac{1}{9}\frac{1}{7}\frac{1}{7}\frac{1}{7}\frac{1}{7}$
 $\frac{1}{9}\frac{1}{9}\frac{1}{9}$
 $\frac{1}{9}\frac{1}{9}\frac{1}{9}\frac{1}{9}$
 $\frac{1}{9}\frac{1}{9}\frac{1}{9}\frac{1}{9}$
 $\frac{1}{9}\frac{1}{9}\frac{1}{9}\frac{1}{9}$
 $\frac{1}{9}\frac{1}{9}\frac{1}{9}\frac{1}{9}$
 $\frac{1}{9}\frac{1}{9}\frac{1}{9}\frac{1}{9}$
 $\frac{1}{9}\frac{1}{9}\frac{1}{9}\frac{1}{9}\frac{1}{9}$
 $\frac{1}{9}\frac{1}{9}\frac{1}{9}\frac{1}{9}\frac{1}{9}$
 $\frac{1}{9}\frac{1}{9}\frac{1}{9}\frac{1}{9}\frac{1}{9}\frac{1}{9}$
 $\frac{1}{9}\frac{1}\frac{1}{9}\frac{1}{9}\frac{1}{9}\frac{1}{9}\frac{1}{9}\frac{1}{9}\frac{1}{9}\frac{1}{9}\frac{1}{9}$