Fonctions Numériques Oprations sur les fonctions

MPSI 2

Oprations sur les fonctions admettant des limites 1

Limites finies

Soit
$$x_0 \in \mathbb{R}$$
, tel que $x \in I$ ou que x soit une extrmit de I .

• $f(x) \underset{x \to x_0}{\longrightarrow} 0 \iff |f(x)| \underset{x \in I}{\longrightarrow} 0$

• Si
$$f(x) \underset{x \in I}{\longrightarrow} l$$
 et si $g(x) \underset{x \in I}{\longrightarrow} l'$,
Alors $(f+g)(x) \underset{x \in I}{\longrightarrow} l + l'$

• Si
$$f(x) \underset{x \to x_0}{\longrightarrow} 0$$
 et si g est borne au voisinage de x_0 ,

Alors
$$(f \times g)(x) \underset{x \in I}{\underset{x \to x_0}{\longrightarrow}} 0$$

• Si
$$f(x) \underset{x \to x_0}{\longrightarrow} l$$
 et $g(x) \underset{x \to x_0}{\longrightarrow} l'$,
Alors $(f \times g)(x) \underset{x \to x_0}{\longrightarrow} l \times l'$

• Si
$$f(x) \underset{\substack{x \to x_0 \\ x \in I}}{\longrightarrow} l \text{ et } l \neq 0,$$

Alors
$$\frac{1}{f}$$
 existe au voisinage V de x_0 , et $\frac{1}{f(x)} \underset{x \to x_0}{\longrightarrow} \frac{1}{l}$

1.2 Limites infinies

Soit $x_0 \in \mathbb{R}$, tel que $x \in I$ ou que x soit une extrmit de I.

• Si
$$f(x) \xrightarrow[x \in I]{} +\infty$$
 et si g est minore au voisinage de x_0 ,

Alors
$$(f+g)(x) \underset{x \to x_0}{\longrightarrow} +\infty$$

• Si
$$f(x) \underset{x \to x_0}{\longrightarrow} +\infty$$
 et si g est minore par un rel strictement positif au voisinage de x_0 ,

Alors
$$(f \times g)(x) \xrightarrow[x \in I]{} +\infty$$

1.3 Composition de limites

Soient I et J deux intervalles.

Soient $f: I \to \mathbb{R}$ et $g: J \to \mathbb{R}$ telles que $f(I) \subset J$

Soit $x_0 \in \mathbb{R}$ tel que $x_0 \in I$ ou que x_0 soit une extrmit de I.

Soit $y_0 \in \overline{\mathbb{R}}$ tel que $y_0 \in J$ ou que y_0 soit une extrmit de J.

Soit $l \in \overline{\mathbb{R}}$

Alors:

$$\begin{cases} f(x) \underset{x \to x_0}{\underset{x \in I}{\longrightarrow}} y_0 \\ g(y) \underset{y \in J}{\underset{y \to y_0}{\longrightarrow}} l \\ g(y) \underset{y \in J}{\underset{x \to x_0}{\longrightarrow}} l \end{cases} \Longrightarrow (g \circ f)(x) \underset{x \in I}{\underset{x \to x_0}{\longrightarrow}} l$$

2 Oprations sur les fonctions continues

Propriété 2.0.1

Soit I un intervalle rel non vide.

L'ensemble des applications continues sur I a valeurs dans \mathbb{R} est not $\mathcal{C}(I,\mathbb{R})$ ou $\mathcal{C}^0(I,\mathbb{R})$ $(\mathcal{C}(I,\mathbb{R}),+,\cdot)$ est un espace vectoriel.

Montrer que:

- $\mathcal{C}(I,\mathbb{R})$ est non vide.
- $C(I, \mathbb{R})$ est stable par combinaison linaire.

Propriété 2.0.2

- Si f et g sont continues en x_0 , alors $f \times g$ est continue en x_0 .
- $Si\ g(x_0) \neq 0$ et si g est continue en x_0 , alors $\frac{1}{g}$ a un sens au voisinage de x_0 et $\frac{1}{g}$ est continue en x_0 .
- Si f et g sont continues en x_0 et si $g(x_0) \neq 0$, alors $\frac{f}{g}$ a un sens au voisinage de x_0 , et $\frac{f}{g}$ est continue en x_0 .

Corollaire 2.0.1

- Si f est continue en x_0 , alors $\forall n \in \mathbb{N}$, f^n est continue en x_0 .
- Si de plus, $f(x_0) \neq 0$, alors $\forall n \in \mathbb{Z}^*$, f^n est continue en x_0 .

Par consquence, toutes les fonctions polynomiales sont continues sur \mathbb{R} . De plus, les fonctions rationnelles sont continues sur leur ensemble de dfinition.

Propriété 2.0.3

Si f est continue sur I, et si g est continue sur f(I), alors $g \circ f$ est continue sur I.