Learning Objectives - Bayes' Rule

The following questions will help you review what you learned in the Bayes' Rule lesson.

Prior knowledge

For questions 1-3, assume you already have the following knowledge:

You're interested in finding out the probability of a car stopping if it sees a *yellow* traffic light.

- Past data tells you that the probability of a car stopping at a traffic light intersection is P(S)=0.40.
- ullet You also know that the past probability of a traffic light being yellow (as opposed to red or green) is P(Y)=0.10.

Car stopping at a yellow light

Traffic Light q1

When a car is stopped at an intersection, data shows that 12% of the time the light is yellow. So if we know a car is stopped, there's a 12% chance the light is yellow. This is called a *conditional probability*.

Given P(S) and P(Y) above, how would you represent this conditional probability in notation?
$\bigcirc P(S Y) = 0.12$
○ P(S) = 0.12
$\bigcirc P(Y S) = 0.12$
○ P(Y,S) = 0.12
Traffic Light q2
Using what you know from question 1, answer the following: if the traffic light is yellow, what is the chance that the car will stop?
O 0.04
○ 0.33
O 0.40
O 0.48
○ 0.50
○ 0.52
Traffic Light q3
Knowing that a car stopping at an intersection and the presence of a yellow traffic light are related events, what are P(S) and P(Y) known as?
O Posterior probabilities
O Past probabilities
O Prior probabilities
○ Total probabilities

Questions 4 and 5 are different scenarios.

Prior knowledge for question 4: On a four-lane highway, cars are either going fast or not fast. Faster cars should go in the leftmost lanes. • At any given time, 20% of cars are in the left-most lane. • Overall, 40% of cars on the highway are classified as going fast. • Out of all the cars in the leftmost lane, 90% are going fast. Bayes q2 Given the above information, if a car is going fast, what is the probability that it will be in the leftmost lane? \bigcirc 0.125 \bigcirc 0.25 \bigcirc 0.45 \bigcirc 0.55 Bayes' rule is not only used to incorporate sensor data into an estimate; it's also often used to incorporate test data into a medical diagnosis. **Prior knowledge for question 5:** • 1% of all people have cancer. • 90% of people who have cancer test positive when given a cancer-detecting blood test, meaning the test detects cancer 90% of • 5% of people will have false positives, meaning that 5% of the time, this test will produce a positive result when people do not have cancer. Bayes q3 Given the above data, what is the probability that a person has cancer if they have a positive cancer-test result? (Note: answers are rounded to the nearest 4th decimal place). 0.1125 O.1538

 \bigcirc 0.2687

0.8924

Next Concept