Generalized Boosted Models: A guide to the gbm package

Greg Ridgeway

November 8, 2004

1 Available distributions

For non-zero offset terms, replace all $f(\mathbf{x}_i)$ with $o_i + f(\mathbf{x}_i)$

1.1 Gaussian

Loss function $\frac{1}{\sum w_i} \sum_{i=1}^{N} w_i (y_i - f(\mathbf{x}_i))^2$ Initial value $f(\mathbf{x}) = \frac{\sum y_i - o_i}{\sum w_i}$ Gradient $z_i = y_i - f(\mathbf{x}_i)$ Terminal node estimates $\frac{\sum w_i (y_i - f(\mathbf{x}_i))}{\sum w_i}$

1.2 AdaBoost

Loss function

Gradient $z_i =$

Terminal node estimates

1.3 Bernoulli

Loss function

Gradient z_i

Terminal node estimates

1.4 Laplace

Loss function

Gradient $z_i =$

Terminal node estimates

Cox Proportional Hazard 1.5

Loss function

Gradient $z_i =$

Terminal node estimates

1.6 Poisson

 $-2\frac{1}{\sum w_i} \sum w_i (y_i f(\mathbf{x}_i) - \exp(f(\mathbf{x}_i)))$ $f(\mathbf{x}) = \log \left(\frac{\sum w_i y_i}{\sum w_i e^{o_i}}\right)$ $z_i = y_i - \exp(f(\mathbf{x}_i))$ $\frac{\sum w_i y_i}{\sum w_i \exp \mathbf{x}_i}$ Loss function

Initial value

 ${\bf Gradient}$

Terminal node estimates

1.7

Loss function

Gradient $z_i =$

Terminal node estimates