

rítulo: Configuración avanzada de VLANs con Enrutamiento Inter-VLAN

③ Objetivo del ejercicio:

Aplicar técnicas de **subnetting**, **configuración avanzada de VLANs** y **enrutamiento entre VLANs**. Los estudiantes aprenderán cómo segmentar una red en varias subredes y configurar el enrutamiento entre ellas para permitir la comunicación entre departamentos.

Escenario:

Una pequeña empresa desea segmentar su red para mejorar la seguridad y el rendimiento. La red principal 192.168.1.0/24 debe ser dividida en **4 subredes** (una para cada departamento), utilizando **subnetting**. Además, se necesita **enrutamiento entre VLANs** para que los dispositivos de diferentes departamentos puedan comunicarse.

La configuración inicial es la siguiente:

• Red principal: 192.168.1.0/24

VLAN 10: Administración

VLAN 20: Finanzas

VLAN 30: Recursos Humanos

VLAN 40: Marketing

Cada departamento debe tener al menos **50 direcciones IP** disponibles.

Paso 1 - Subnetting y Asignación de Direcciones IP:

- 1. **Divide la red 192.168.1.0/24** en **4 subredes** que soporten al menos 50 dispositivos cada una.
 - Calcula la nueva máscara de subred.
 - Especifica las direcciones de red, el primer y último host, y las direcciones de broadcast para cada subred.

VLAN	Dirección de Red	Primer Host	Último Host	Dirección de Broadcast	
10					
20					
30					
40					

Paso 2 – Configuración de VLANs en el Switch:

- 1. Crea las siguientes VLANs en el switch y asigna los puertos a cada VLAN:
 - o VLAN 10 (Administración): Puertos Fa0/1 a Fa0/10
 - o VLAN 20 (Finanzas): Puertos Fa0/11 a Fa0/20
 - o VLAN 30 (Recursos Humanos): Puertos Fa0/21 a Fa0/30
 - VLAN 40 (Marketing): Puertos Fa0/31 a Fa0/40

Paso 3 – Configuración de Enrutamiento entre VLANs:

- 1. Si tienes un **router o switch de capa 3**, configura **enrutamiento entre VLANs** utilizando el **router-on-a-stick**.
 - Crea subinterfaces en el router para cada VLAN y asigna las direcciones IP de cada subred.
 - o Por ejemplo:

- Subinterfaz para VLAN 10: 192.168.1.1/26
- Subinterfaz para VLAN 20: 192.168.1.65/26
- Subinterfaz para VLAN 30: 192.168.1.129/26
- Subinterfaz para VLAN 40: 192.168.1.193/26
- 2. Habilita el enrutamiento IP en el router y configura la **interfaz troncal** entre el router y el switch para que el tráfico de las VLANs pueda pasar a través del enlace trunk.

Paso 4 – Verificación de Conectividad:

- 1. Verifica la conectividad dentro de la misma VLAN utilizando el comando ping:
 - PC1 (VLAN 10): Realiza un ping a PC2 (VLAN 10).
 - PC3 (VLAN 20): Realiza un ping a PC4 (VLAN 20).
- 2. Verifica la conectividad entre VLANs utilizando el comando ping:
 - Realiza un ping de PC1 (VLAN 10) a PC3 (VLAN 20). El ping debería ser exitoso si el enrutamiento entre VLANs está correctamente configurado.

Paso 5 – Resolución de Problemas (si es necesario):

- 1. Si no puedes hacer ping entre VLANs, verifica lo siguiente:
 - ¿Está configurada correctamente la subinterfaz en el router para cada VLAN?
 - ¿Está configurado correctamente el enlace trunk entre el switch y el router?
 - ¿Están asignados correctamente los puertos de switch a sus respectivas VLANs?

Solución – Ejercicio Práctico

Configuración avanzada de VLANs con Enrutamiento Inter-VLAN

Objetivo cumplido:

Se realizó el subnetting, la creación de VLANs, la configuración de router-on-a-stick y la verificación de conectividad entre dispositivos de distintas VLANs.

Paso 1 – Subnetting y Asignación de Direcciones IP

Red base asignada: 192.168.1.0/24

Requerimiento: 4 subredes de al menos 50 hosts → mínimo 64 direcciones → /26

(255.255.255.192)

VLAN	Dirección de Red	Primer Host	Último Host	Broadcast
10	192.168.1.0	192.168.1.1	192.168.1.62	192.168.1.63
20	192.168.1.64	192.168.1.65	192.168.1.12 6	192.168.1.12 7
30	192.168.1.128	192.168.1.12 9	192.168.1.19 0	192.168.1.19 1
40	192.168.1.192	192.168.1.19 3	192.168.1.25 4	192.168.1.25 5

Paso 2 – Configuración de VLANs en el Switch

Comandos utilizados en el switch:

Switch> enable
Switch# configure terminal
! Crear VLANs
vlan 10
name Administracion
exit
vlan 20
name Finanzas
exit
vlan 30
name RecursosHumanos
exit
vlan 40
name Marketing
exit
! Asignar puertos
interface range fa0/1 - 10
switchport mode access
switchport access vlan 10
exit

interface range fa0/11 - 20 switchport access vlan 20 exit

interface range fa0/21 - 30

switchport access vlan 30

exit

interface range fa0/31 - 40

switchport access vlan 40

exit

✓ Paso 3 – Configuración de Enrutamiento entre VLANs (Router-on-a-Stick)

Conexión entre router y switch por el puerto G0/0 del router

Router> enable

Router# configure terminal

! Subinterfaces

interface g0/0.10

encapsulation dot1Q 10

ip address 192.168.1.1 255.255.255.192

exit

interface g0/0.20

encapsulation dot1Q 20

ip address 192.168.1.65 255.255.255.192

exit

interface g0/0.30

encapsulation dot1Q 30

ip address 192.168.1.129 255.255.255.192

exit

interface g0/0.40

encapsulation dot1Q 40

ip address 192.168.1.193 255.255.255.192

exit

interface g0/0

no shutdown

Configuración del puerto trunk en el switch:

Switch(config)# interface fa0/24

switchport trunk encapsulation dot1Q

switchport mode trunk

- PC1 (VLAN 10) → Ping a PC2 (VLAN 10) → Éxito
- PC3 (VLAN 20) → Ping a PC4 (VLAN 20) → Éxito

Pruebas entre VLANs

- PC1 (VLAN 10) → Ping a PC3 (VLAN 20) → Éxito
- PC2 (VLAN 10) → Ping a PC5 (VLAN 40) → Éxito

Resultado esperado: El enrutamiento entre VLANs funciona correctamente gracias al router-on-a-stick.

Paso 5 – Resolución de Problemas (si aplicara)

- ⚠ Si el ping entre VLANs falla, verificar:
 - ¿Están configuradas correctamente las subinterfaces con la encapsulación dot10?
 - ¿Está el puerto del switch que conecta al router en modo trunk?
 - ¿Están los puertos de PCs correctamente asignados a sus VLANs?
 - ¿Están las direcciones IP correctamente asignadas?

Reflexión Final

Este ejercicio me ayudó a consolidar mis conocimientos en VLANs, subnetting y enrutamiento inter-VLAN. Aprendí cómo dividir una red eficientemente y cómo permitir la comunicación entre segmentos de red usando un router-on-a-stick. Es una habilidad esencial para el diseño de redes escalables y seguras.