

International workshop on energy storage in the Grid:
Low, medium and large scale requirements

UPC

8th - 10th January 2014

- 1- Main features within the rural environment
- 2- What do we need?
- 3- How do we do it?
 - 3.1-At secondary substation level
 - 3.2-Community strategic locations
 - 3.3-Isolated farm or rural houses
- 4-Cycles.
- 5-Criteria.

Main features rural environment

Large areas

Vulnerability

Low current

One way

What do we need?

Utilities will need to develop and apply technologies based on <u>storage</u> and their management, to be able to provide the minimum requirements to achieve conditions of work, thus having the conditions for the distributed micro generation operation development.

How do we do it?

According to their location

Strategic location between farms

Secondary substation

Isolated farm

Secondary substation

Transformer

Transformer	Dis
	Cap
$K_{simult} = \frac{1}{\sqrt{n-1}} \ge 0.2$	

Simultaneity	,
coefficient	

item	Value
Transformer	50 to 160 kVA
K _{simult}	150 % (Average)
Discharge time	maximum 60 min
Capacity	20 to 50 kVAh

Electric discharge time

Capacity

Community strategic locations

Communities

9	
$K_{simult} =$	$1/\sqrt{n-1} \ge 0.2$
	VIL I

Simultaneity coefficient

item	Value
P.Contract (kW)	5,5 · meter (Avg)
K _{simult}	200 % (Average)
Discharge time	maximum 60 min
Capacity	20 to 40 kVAh

Electric discharge time

Capacity

Isolated farm or rural houses

Power contract

item	Value
P.Contract (kW)	5,5 (Average)
kWh/ day	694 (Average)
Discharge time	maximum 60 min
Capacity	10 to 20 kVAh

Electric discharge time

Capacity

kWh / day

Cycles

Charging cycle

Discharge cycle

Charging when:

- Battery is unloaded
- Low price energy

Criteria

Discharging when:

- Expensive energy price
- Electrical failures
- Other short restrictions

But we need µG for keeping the electrical network operational in island mode.

Thank you

rgallart@estabanell.com