Rozwiązywanie układów równań liniowych metodami bezpośrednimi

Nikodem Korohoda

AGH, Wydział Informatyki, Elektroniki i Telekomunikacji Metody Obliczeniowe w Nauce i Technice 2021/2022

Kraków, 27 maja 2022

1 Zadanie 1.

- 1. Przyjmij wektor x jako dowolną n elementorą permutację ze zbioru $\{1, -1\}$ i oblicz wektor b.
- 2. Metodą eliminacji Gaussa rozwiąż układ równań $Ax{=}B$ żeby wyliczyć B
- 3. Oblicz ponownie x z wykorzystaniem A oraz B
- 4. Wyznacz błędy wyliczenia x dla różnych dokładności z użyciem normy maksimum

Dla poniższej macierzy. Za x początkowo przyjęto wektor [1, -1, 1, -1, ...]. Wyliczano dokładności dla Float oraz Decimal.

$$\begin{cases} a_{1j} = 1 \\ a_{ij} = \frac{1}{i+j-1} \quad dla \quad i \neq 1 \end{cases}$$
 $i, j = 1, \dots, n$

wielkość macierzy	float	decimal
2	0.0000e+00	0.0000e+00
3	0.0000e+00	9.0000e-27
4	0.0000e+00	7.1760e-25
5	2.8415e-12	1.0080e-23
6	3.3952e-11	1.5463e-22
7	2.0169e-09	1.4110e-20
8	5.3591e-08	4.9968e-19
9	1.8087e-06	1.0446e-17
10	1.0740e-05	2.9821e-16
11	2.9340e-04	5.2500e-15
12	3.7738e-02	8.9695e-14
13	4.0972e-01	3.4920e-13
14	2.4475e-01	2.4816e-13
15	7.2967e-01	2.2755e-12
16	1.1510e+00	2.0973e-12
17	1.0965e+00	2.6710e-12
18	1.8758e + 00	3.6640e-12
19	1.1860e+01	2.8073e-11
20	4.7742e+01	6.9392e-12

Tabela 1: Błędy różnych dokładności

2 Zadanie 2.

Eksperyment należy powtórzyć analogicznie dla poniższej macierzy, z pominięciem różnych dokładności (używano wyłącznie Float)

$$\begin{cases} a_{ij} = \frac{2i}{j} & dla \ j \ge i \\ a_{ij} = a_{ji} & dla \ j < i \end{cases}$$

$$i, j = 1, \dots, n$$

wielkość macierzy	błąd zad2.	błąd zad1.
2	0.0000e+00	0.0000e+00
3	2.2204e-16	0.0000e+00
4	2.2204e-16	0.0000e+00
5	2.2204e-16	2.8415e-12
6	2.2204e-16	3.3952e-11
7	3.3307e-16	2.0169e-09
8	1.8874e-15	5.3591e-08
9	1.5543e-15	1.8087e-06
10	4.4409e-15	1.0740e-05
11	6.2172e-15	2.9340e-04
12	6.2172e-15	3.7738e-02
13	4.8850e-15	4.0972e-01
14	7.7716e-15 8.6597e-15	2.4475e-01 7.2967e-01
16	7.9936e-15	1.1510e+00
17	7.7716e-15	1.0965e+00
18	7.9936e-15	1.8758e + 00
19	7.5495e-15	1.1860e+01
20	7.9936e-15	4.7742e+01
21	8.6597e-15	2.0347e+00
22	9.1038e-15	1.9858e+00
23	9.1038e-15	1.9154e+00
24	1.0658e-14	4.2415e+00
25	1.4877e-14	6.8819e+00
26	2.1760e-14	3.3821e+00
27	2.3981e-14	4.0484e+00
28	2.5091e-14	1.1835e+01
29	3.0864e-14	8.9705e+00
30	2.9532e-14	5.6358e+00
31	4.1744e-14	5.7459e+00
32	5.2180e-14	4.7259e+00
33	5.5067e-14	7.7611e+00
34 35	4.8184e-14	4.7802e+01
36	4.3521e-14 4.3299e-14	3.9616e+01 2.1478e+01
37	3.3529e-14 3.3529e-14	7.4225e+00
38	3.5971e-14	8.2609e+00
39	3.5527e-14	6.7373e+00
40	3.5305e-14	8.1316e+00
41	4.5963e-14	4.8372e+00
42	6.1506e-14	3.9057e+00
43	5.5289e-14	4.6604e+00
44	4.9294e-14	7.5167e+00
45	5.7954e-14	5.9154e+00
46	6.7946e-14	1.3856e+01
47	9.1926e-14	6.6348e + 01
48	9.7256e-14	3.0132e+01
49	1.0258e-13	1.2299e+02
50	8.8152e-14	7.1573e+00
51	8.9040e-14	3.5031e+01
52 53	1.1058e-13 9.8366e-14	3.3302e+02 1.2125e+01
54	9.8300e-14 1.1324e-13	1.2123e+01 1.0458e+01
55	1.1324e-13 1.1657e-13	1.6439e+01
56	1.3367e-13	7.2787e+01
57	1.4588e-13	7.2181e+01 7.4121e+00
58	1.3078e-13	3.1266e+01
59	1.3189e-13	2.7732e+01
60	1.2657e-13	8.4788e+00
61	1.1791e-13	1.0769e+01
62	1.1990e-13	4.9556e+01
63	1.3123e-13	2.5037e+02
64	1.2457e-13	1.2468e + 02
65	2.5391e-13	4.6202e+01
66	2.7978e-13	3.6702e+01
67	2.7056e-13	2.4985e+01
68	2.7767e-13	3.7130e+01
69	2.9232e-13	1.6475e + 02

Tabela 2: Błędy różnych macierzy

wielkość macierzy	błąd zad2.	błąd zad1.
70	3.1042e-13	1.1001e+02
71	3.1719e-13	2.2288e+01
72	3.1586e-13	2.3728e+01
73	3.5583e-13	1.7220e+01
74	3.0365e-13	4.1726e+01
75 76	3.2108e-13	7.0598e + 01
76 77	3.0209e-13 2.8211e-13	1.3919e+01 1.3367e+01
78	3.0387e-13	9.9354e+00
79	3.0065e-13	1.6464e+01
80	2.7767e-13	1.1503e+01
81	3.1330e-13	2.0259e+01
82	3.3096e-13	1.7766e+01
83	3.4317e-13	4.8426e+01
84	3.7848e-13	2.7513e + 02
85 86	3.3229e-13 3.1275e-13	9.2107e+01 2.5572e+01
87	3.1273e-13 3.2574e-13	2.9730e+01 2.9730e+02
88	4.1323e-13	4.6199e + 02
89	4.2677e-13	4.2862e+01
90	4.6141e-13	2.2000e+01
91	4.6230e-13	2.3352e+01
92	4.2943e-13	1.4342e+01
93	5.1492e-13	8.9943e+00
94	4.7562e-13 4.9694e-13	1.3128e+01 1.5393e+01
96	4.9694e-13 4.9383e-13	1.5393e+01 5.9971e+02
97	5.1359e-13	2.1936e+01
98	4.7962e-13	2.4319e+01
99	5.4867e-13	3.8929e+01
100	5.4934e-13	2.1625e+01
101	5.7376e-13	2.7819e+01
102	5.5134e-13	3.8490e+01
103	5.5711e-13 5.5822e-13	5.9613e+01 3.1448e+01
104	5.5844e-13	2.1000e+01
106	5.4667e-13	1.9902e+01
107	5.8664e-13	2.6889e+01
108	5.7598e-13	1.2315e+01
109	5.9575e-13	1.2353e+01
110	6.2061e-13	1.2514e+01
111 112	6.0107e-13 6.0263e-13	3.5088e+01
113	6.0203e-13 6.2195e-13	1.2878e + 01 1.4861e + 01
114	6.1440e-13	2.3924e+01
115	6.3061e-13	4.1147e+01
116	5.8265e-13	2.4548e+01
117	5.7176e-13	1.9534e+01
118	6.0218e-13	2.2071e+01
119 120	5.6422e-13 5.5778e-13	1.0976e+01 1.3211e+01
120	5.5778e-13 5.1315e-13	1.3211e+01 1.5166e+01
121	5.1315e-13 5.2358e-13	9.7690e+00
123	5.3690e-13	9.3095e+00
124	4.9760e-13	1.4788e + 01
125	5.1270e-13	1.8900e+01
126	5.4778e-13	1.5994e+01
127	5.5134e-13	9.9113e+01
128 129	5.6932e-13 8.3900e-13	2.8100e+01 3.5245e+01
130	8.3900e-13 8.1080e-13	3.5245e+01 6.4490e+01
131	8.8463e-13	2.0567e+01
132	1.0097e-12	8.8848e+00
133	9.6001e-13	1.8696e + 01
134	9.6922e-13	7.5935e+00
135	1.0089e-12	6.8953e+00
136	1.0019e-12	1.2714e+01
137	9.3503e-13	2.3934e+01

Tabela 3: Błędy różnych macierzy

wielkość macierzy	błąd zad2.	błąd zad1.
138	9.1072e-13	1.2477e + 01
139	9.0306e-13	9.4350e+00
140	9.0694e-13	4.9401e+01
141	8.9806e-13	9.8683e+02
142	8.8274e-13	6.4373e+00
143	9.3026e-13	1.0712e+01
144	9.7511e-13	6.5392e+01
145	1.0419e-12	2.5959e+01
146	1.1161e-12	5.4051e+02
147	1.1848e-12	1.1003e+01
148	1.2104e-12	7.5629e+00
149	1.1923e-12	1.1923e+01
150	1.0950e-12	7.4580e+01
151 152	1.1042e-12 1.1655e-12	1.6122e+01 1.3209e+01
153	1.1055e-12 1.0706e-12	4.7352e+01
154	1.0700e-12 1.1195e-12	3.6841e+01
155	1.0383e-12	4.1705e+01
156	1.0635e-12	1.9204e+01
157	1.0765e-12	2.3375e+01
158	1.0925e-12	3.3561e+01
159	1.1415e-12	2.1301e+01
160	1.1390e-12	6.1360e+01
161	1.1743e-12	1.8413e+01
162	1.1505e-12	1.5089e+01
163	1.1547e-12	4.4144e+01
164	1.1673e-12	1.7449e+01
165	1.1419e-12	2.1207e+01
166	1.2250e-12	2.7662e+01
167	1.1334e-12	9.3903e+01
168	1.1288e-12	3.7497e+01
169	1.0756e-12 1.1366e-12	1.1888e+01
170 171	1.1366e-12 1.2241e-12	9.3864e+01 7.1166e+02
172	1.2241e-12 1.1636e-12	3.7259e+01
173	1.1030e-12 1.0971e-12	1.3902e+01
174	1.1368e-12	1.5302e+01 1.5115e+01
175	1.2882e-12	2.0883e+01
176	1.3496e-12	2.1857e + 01
177	1.3434e-12	9.5750e + 01
178	1.6062e-12	3.2562e+02
179	1.6075e-12	7.2231e+01
180	1.6284e-12	1.9569e+01
181	1.5381e-12	1.3167e + 01
182	1.6026e-12	1.9716e + 02
183	1.6666e-12	1.5734e+01
184	1.6829e-12	3.9519e+01
185 186	1.6533e-12 1.5601e-12	2.5899e+01 2.5971e+01
187	1.5001e-12 1.5081e-12	2.3971e+01 2.4112e+02
188	1.5061e-12 1.5170e-12	3.1806e+01
189	1.6084e-12	4.4916e+01
190	1.5727e-12	5.1118e+01
191	1.5997e-12	2.2143e+01
192	1.5865e-12	5.4654e+01
193	1.5751e-12	2.2610e+01
194	1.6335e-12	9.3926e+00
195	1.6263e-12	1.1815e+01
196	1.6572e-12	8.8800e+00
197	1.6376e-12	2.7466e+01
198	1.7227e-12	2.5432e+01
199	1.6264e-12	4.4980e+01
300	1.6424e-12	4.7698e + 01 6.9383e + 01
400	4.9534e-12 7.6616e-12	6.9383e+01 8.0703e+01
500	1.1454e-11	8.0703e+01 2.9129e+01
600	1.1454e-11 1.8954e-11	6.7223e+01
	2.00010-11	J., 2230 01

Tabela 4: Błędy różnych macierzy

3 Zadanie 3.

Eksperyment należy powtórzyć analogicznie dla poniższej macierzy, dla k=4, m=4, tym razem z wykorzystaniem dwóch różnych algorytmów - Gaussa oraz Thomasa

$$\begin{cases} a_{i,i} = k \\ a_{i,i+1} = \frac{1}{i+m} \\ a_{i,i-1} = \frac{k}{i+m+1} & dla \ i > 1 \\ a_{i,j} = 0 & dla \ j < i-1 \ oraz \ j > i+1 \end{cases}$$

Poniżej znajdują się tabele z niedokładnościami wyników oraz czasem wykonywania obliczeń:

wielkość macierzy	czas obliczeń	czas obliczeń
2	0.0000e+00	0.0000e+00
3	0.0000e+00	0.0000e+00
4	1.1102e-16	2.2204e-16
5	1.1102e-16	2.2204e-16
6	1.1102e-16	2.2204e-16
7	1.1102e-16	2.2204e-16
8	1.1102e-16	2.2204e-16
9	1.1102e-16	2.2204e-16
10	1.1102e-16	2.2204e-16
11	1.1102e-16	2.2204e-16
12	1.1102e-16	2.2204e-16
13	1.1102e-16	2.2204e-16
14	1.1102e-16	2.2204e-16
15	1.1102e-16	2.2204e-16
16	1.1102e-16	2.2204e-16
17	2.2204e-16	2.2204e-16
18	2.2204e-16	2.2204e-16
	2.2204e-16	2.2204e-16
200	2.2204e-16	2.2204e-16

Tabela 5: Błędy obu algorytmów

wielkość macierzy	czas obliczeń	czas obliczeń
2	1.2636e-05	1.0252e-05
3	1.0490e-05	9.2983e-06
4	1.6451e-05	1.0252e-05
5	2.6941e-05	1.1921e-05
6	4.0531e-05	1.3113e-05
7	5.8889e-05	1.4544e-05
8	8.0824e-05	1.5736e-05
9	1.1230e-04	1.7405e-05
10	1.4853e-04	1.8835e-05
11	1.9264e-04	2.1458e-05
12	2.5463e-04	2.3603e-05
13	3.0422e-04	2.3603e-05
14	3.9530e-04	2.5749e-05
15 16	4.5705e-04 5.3811e-04	2.6703e-05 2.8849e-05
17	6.5017e-04	3.1471e-05
18	7.5912e-04	3.5524e-05
19	9.0575e-04	3.4094e-05
20	1.0622e-03	3.6478e-05
21	1.2250e-03	5.5075e-05
22	1.3747e-03	3.6716e-05
23	1.5306e-03	3.8147e-05
24	1.7903e-03	3.8862e-05
25	2.1191e-03	4.2439e-05
26	2.2225e-03	7.6294e-05
27	2.6102e-03	4.7207e-05
28	2.7061e-03	4.6253e-05
29	3.2098e-03	5.1737e-05
30	3.4468e-03	6.5565e-05
31	3.8514e-03	5.5790e-05
32	3.9518e-03	5.0783e-05
33	4.5891e-03	5.3883e-05
34	4.8707e-03	5.3883e-05
35	5.1677e-03	1.1015e-04
36	5.3232e-03	5.6744e-05
37 38	6.0258e-03 6.5975e-03	6.0797e-05 6.0081e-05
39	7.0112e-03	6.1512e-05
40	7.6327e-03	6.2227e-05
41	7.7841e-03	6.1989e-05
42	8.2781e-03	6.2704e-05
43	9.1679e-03	6.7472e-05
44	9.8529e-03	6.7949e-05
45	1.0340e-02	7.1526e-05
46	1.1070e-02	6.9857e-05
47	1.1594e-02	7.2002e-05
48	1.3496e-02	1.6260e-04
49	1.8426e-02	1.5545e-04
50	1.7958e-02	1.6260e-04
51	1.9222e-02	1.1492e-04
52	1.9046e-02	1.1063e-04
53	1.8319e-02	9.7990e-05
54	1.9068e-02	9.0599e-05
55	1.9269e-02	8.6069e-05
56	2.0023e-02	8.5354e-05
57	2.0654e-02	9.3699e-05
58 59	2.6860e-02 2.8278e-02	1.0157e-04 1.0324e-04
60	2.8278e-02 2.8695e-02	1.0324e-04 1.0037e-04
61	2.6891e-02	9.8228e-05
62	2.8952e-02	9.8228e-03 9.7275e-05
63	2.9260e-02	1.1039e-04
64	3.4147e-02	1.5545e-04
65	3.5797e-02	1.1086e-04
66	3.7061e-02	1.1230e-04
	3.5350e-02	1.0467e-04
67	J.JJJUE-UZ	1.01010.01
67 68	3.5158e-02	1.2374e-04

Tabela 6: Czasy obliczeń dla obu algorytmów

wielkość macierzy	czas obliczeń Gaussa [s]	czas obliczeń Thomasa [s
70	4.1199e-02	1.1015e-04
71	4.4925e-02	1.1945e-04
72	4.2458e-02	1.0896e-04
73	4.4128e-02	1.7047e-04
74	5.3625e-02	1.2064e-04
75	5.2609e-02	1.2469e-04
76	4.9780e-02	1.1730e-04
77	5.1463e-02	1.1420e-04
78	5.6782e-02	1.2493e-04
79	6.4463e-02	1.2922e-04
80	6.1474e-02	1.2827e-04
81	6.0908e-02	2.0242e-04
82	6.7038e-02	1.2946e-04
83	6.4827e-02	1.2350e-04
84	6.9494e-02	1.3542e-04
85	7.0461e-02	1.3590e-04
86	7.2515e-02	1.3566e-04
87	7.8563e-02	1.3876e-04
88	7.7518e-02	1.5736e-04
89	8.1549e-02	1.4067e-04
90	8.9209e-02	1.3924e-04
91	8.5561e-02	1.9550e-04
92	8.9145e-02	1.4067e-04
93	9.5186e-02	1.4353e-04
94	9.4952e-02	1.4448e-04
95	1.0055e-01	2.3150e-04
96	1.0258e-01	1.5378e-04
97	1.0605e-01	1.5664e-04
98	1.1048e-01	1.5712e-04
99		
	1.1748e-01	1.5807e-04
100	1.1558e-01	1.5402e-04
101	1.2051e-01	1.6046e-04
102	1.2276e-01	1.6856e-04
103	1.2902e-01	1.6308e-04
104	1.3615e-01	1.7953e-04
105	1.4939e-01	1.7381e-04
106	1.4061e-01	1.6713e-04
107	1.5103e-01	1.6904e-04
108	1.4792e-01	1.7142e-04
109	1.5555e-01	1.6856e-04
110	1.5585e-01	1.8406e-04
111	1.7672e-01	2.1386e-04
112	1.9895e-01	2.4486e-04
113	2.1386e-01	2.4629e-04
114	2.3399e-01	2.5487e-04
115	2.4329e-01	2.6655e-04
116	2.4979e-01	2.6584e-04
117	2.5475e-01	2.6131e-04
118	2.7906e-01	2.8253e-04
119	2.7819e-01	2.8729e-04
120	2.8994e-01	2.7585e-04
121	2.8621e-01	2.6846e-04
122	2.9492e-01	2.9492e-04
123	3.0352e-01	2.7227e-04
124	3.1276e-01	2.8563e-04
125	3.2363e-01	2.8849e-04
126	3.3552e-01	2.9111e-04
127	3.2325e-01	2.9564e-04
128	3.3921e-01	2.9349e-04 2.9349e-04
129	3.9587e-01	3.2687e-04
130		3.2091e-04
	4.0180e-01	
131	4.0310e-01	3.1877e-04
132	4.1435e-01	4.0197e-04
133	4.8243e-01	3.5548e-04
	1 4 0 5 0 5 0 4	
134	4.3507e-01	3.2926e-04
134 135 136	4.3507e-01 4.0798e-01 4.2398e-01	3.1090e-04 3.2020e-04

Tabela 7: Czasy obliczeń dla obu algorytmów

wielkość macierzy 138	czas obliczeń Gaussa [s] 5.3174e-01	czas obliczeń Thomasa [s
139	4.7388e-01	3.5167e-04
140	4.5330e-01	3.4690e-04
141	4.5546e-01	3.1447e-04
142	4.5005e-01	3.4094e-04
143	4.7170e-01	3.2806e-04
144	4.6863e-01	3.1638e-04
145	4.8586e-01	3.2282e-04
146	5.0286e-01	3.4213e-04
147	5.0503e-01	3.2759e-04
148	5.1134e-01	3.4404e-04
149	5.7232e-01	4.1986e-04
150	7.1736e-01	5.0688e-04
151	8.0849e-01	6.1846e-04
152	7.7659e-01	4.7255e-04
153	6.7024e-01	4.1127e-04
154	6.1361e-01	3.7146e-04
155	6.0249e-01	3.5834e-04
156	6.1274e-01	3.5596e-04
157	8.0958e-01	4.1389e-04
158	7.4533e-01	8.1849e-04
159	8.2814e-01	3.9959e-04
160	7.0860e-01	3.7432e-04
161	7.4193e-01	3.6931e-04
162	7.1449e-01	3.6764e-04
163	6.9272e-01	8.0681e-04
164	7.9153e-01	3.7313e-04
165	7.6295e-01	3.8934e-04
166	7.3437e-01	5.6624e-04
167	7.3578e-01	4.0913e-04
168	7.4973e-01	3.7575e-04
169	7.6191e-01	3.9124e-04
170	7.6983e-01	3.7289e-04
171	7.8279e-01	3.7432e-04
172	8.0153e-01	3.9458e-04
173	8.1470e-01	3.9005e-04
174	8.2577e-01	3.8171e-04
175	8.4051e-01	3.8433e-04
176	8.6249e-01	4.3035e-04
177 178	8.6822e-01	3.8791e-04 3.8886e-04
	8.8378e-01	
179	8.9677e-01	3.9244e-04
180	9.1511e-01	4.0483e-04
181 182	9.2279e-01 9.3751e-01	3.9601e-04 3.8242e-04
183	9.5881e-01	3.8242e-04 4.0197e-04
184	9.7231e-01	3.9053e-04
185	9.7251e-01 9.9262e-01	3.9053e-04 4.1509e-04
186	9.9202e-01 1.0073e+00	4.3678e-04
187	1.0221e+00	4.0030e-04 4.0030e-04
188	1.0422e+00 1.0422e+00	4.1699e-04
189	1.0422e+00 1.0604e+00	4.1509e-04 4.1509e-04
190	1.0672e+00	4.1905e-04 4.2915e-04
191	1.0972e+00 1.0997e+00	4.0269e-04
192	1.1067e+00	4.3988e-04
193	1.1180e+00	5.2142e-04
194	1.1628e+00	4.2367e-04
195	1.1657e+00	4.3225e-04
196	1.1803e+00	4.2915e-04
197	1.1939e+00	4.3082e-04
198	1.2190e+00	4.3678e-04
199	1.2332e+00	4.5896e-04
200	1.2622e+00	5.1093e-04
300	3.0570e+00	5.2023e-04
$\frac{300}{400}$	9.6909e+00	8.9860e-04
500	2.0677e+01	1.2257e-03
600	3.5770e+01	1.3947e-03
700	5.9108e+01	1.6799e-03
	8.2323e+01	1.8961e-03

Tabela 8: Czasy obliczeń dla obu algorytmów $9\,$

Porównanie czasów za pomocą mapy cieplnej

Rysunek 1: Porównanie czasów

4 Wnioski

4.1 Zadanie 1.

Dokładność Decimal jest znacznie lepsza niż Float.

4.2 Zadanie 2.

Dokładność wyliczeń drugiej macierzy jest dużo lepsza, ponieważ w trakcie wykonywania algorytmu Gaussa nie powstają tak duże ułamki (a to one powodują największe niedokładności).

4.3 Zadanie 3.

Dla macierzy trójdiagonalnej znacznie bardziej efektywny niż algorytm Gaussa jest algorytm Thomasa. Nawet dla bardz dużych rozmiarów macierzy dla tego drugiego czas jest nieznaczny.