ESP-WROOM-02 技术规格表

版本 2.5 版权 © 2017

关于本手册

本文介绍了 ESP-WROOM-02 的产品规格,包括以下内容:

章	标题	内容
第1章	概述	概括描述 ESP-WROOM-02 模组,包括尺寸和规格。
第2章	管脚定义	管脚布局和描述。
第3章	功能描述	描述 ESP-WROOM-02 的功能模块和协议,包括 CPU、Flash、存储和接口。
第 4 章	电气参数	提供 ESP-WROOM-02 的电气数据。
第5章	原理图	提供 ESP-WROOM-02 的模组原理图和模组外围设计原理图。
第6章	模组尺寸图	提供 ESP-WROOM-02 的模组尺寸图。
附录 A	学习资源	介绍 ESP8266 相关的必读资料,必备资源和视频资源。

发布说明

日期	版本	发布说明
2015.12	V0.5	首次发布。
2016.01	V0.6	更新 3.2.2 节。
2016.02	V0.7	 增加附录—声明; 更新第 1 章。
2016.04	V0.8	修订 Flash 容量和 PAD 尺寸(底部)。
2016.06	V0.9	修订 Flash 容量。
2016.06	V1.0	 增加附录—声明—B.5; 更新图 2-1。
2016.08	V1.1	修订工作温度范围。
2016.11	V1.2	 增加附录—学习资源; 第 5 章增加了"ESP-WROOM-02 模组外围设计原理图"。
2016.11	V2.0	 增加 4.8 节"静电释放电压"; 更新图 5-1. ESP-WROOM-02 模组原理图。
2016.12	V2.1	将 ESP-WROOM-02 工作电压的最小值由 3.0V 改为 2.5V;将 Deep-sleep 模式的功耗由 10 μA 改为 20 μA。
2017.02	V2.2	更新 3.3 节。

日期	版本	发布说明
2017.04	V2.3	 增加模组尺寸误差值; 将表 4-4、4-5 中输入阻抗值由 50Ω 改为 39+j6 Ω; 增加图 4-1 ESP-WROOM-02 回流焊温度曲线图。
2017.10	V2.4	 增加文档变更通知和产品证书下载链接; 将工作电压改为 2.7 V~3.6 V; 更新图 2-1 模组管脚分布图并增加说明; 更新第 4章:将电气特性相关参数合并为表 4-1;将 Wi-Fi 射频相关参数合并为表 4-2,并更新输出功率参数;更新温度回流曲线; 更新表 4-3 功耗的说明; 更新第 5章原理图,并增加说明; 增加图 6-1 模组尺寸图; 删除附录 B — 声明。
2017.10	V2.5	更新第 5 章外围设计原理图的说明。

文档变更通知

用户可通过乐鑫官网订阅技术文档变更的电子邮件通知。

证书下载

用户可通过乐鑫官网下载产品证书。

目录

1.	产品概	[述	1
2.	管脚描	述	3
3.	功能描	述	5
	3.1.	MCU	5
	3.2.	存储描述	5
		3.2.1. 内置 SRAM 与 ROM	5
		3.2.2. SPI Flash	5
	3.3.	晶振	5
	3.4.	接口说明	6
4.	电气参	数	7
	4.1.	电气特性	7
	4.2.	Wi-Fi 射频	7
	4.3.	功耗	8
	4.4.	回流焊温度曲线	9
	4.5.	静电释放电压	10
5.	原理图]	11
6.	模组尺	【寸图	13
A.	附录-	-学习资源	14
	A.1.	必读资料	14
	A.2.	必备资源	14
	A.3.	视频资源	15

产品概述

乐鑫为客户提供集成 ESP8266EX 的贴片式模组 ESP-WROOM-02。该模组的射频性能已调试到最佳状态。建议用户在初期使用 ESP8266EX 进行测试或二次开发时,采购我司提供的模组。

道 说明:

更多关于 ESP8266EX 的信息,请参考《ESP8266EX 技术规格表》。

ESP-WROOM-02 贴片式模组的外观尺寸为 (18±0.2) mm x (20±0.2) mm x (3±0.15) mm。目前该模组配置封装为 SOP 8-150 mil 的 SPI Flash,使用 2 dBi 的 PCB 板载天线。

图 1-1. ESP-WROOM-02 模组外观

表 1-1. ESP-WROOM-02 参数表

类别	参数	说明
	RF 认证	FCC/CE/TELEC/KCC/SRRC/IC/NCC
无线参数	Wi-Fi 协议	802.11 b/g/n
	频率范围	2.4 GHz ~ 2.5 GHz (2400M ~ 2483.5M)
	*************************************	UART/HSPI/I2C/I2S/红外遥控
	数据接口	GPIO/PWM
	工作电压	2.7V ~ 3.6V
	工作电流	平均值: 80 mA
硬件参数	供电电流	最小值: 500 mA
	工作温度	-40°C ~ 85°C
	存储温度	-40°C ~ 85°C

Espressif 1/18 2017.10

类别	参数	说明
	封装大小	(18±0.2) mm x (20±0.2) mm x (3±0.15) mm
	外部接口	-
	无线网络模式	Station/SoftAP/SoftAP+Station
	安全机制	WPA/WPA2
	加密类型	WEP/TKIP/AES
软件参数	升级固件	本地串口烧录/云端升级/主机下载烧录
	软件开发	支持客户自定义服务器 提供二次开发所需的 SDK
	网络协议	IPv4, TCP/UDP/HTTP/FTP
	用户配置	AT+ 指令集,云端服务器,Android/iOS app

说明:

可另行定制通过 125℃ 条件下 2000 小时可靠性测试的高温版模组。

管脚描述

ESP-WROOM-02 贴片式模组的管脚分布如图 2-1 所示。

图 2-1. ESP-WROOM-02 模组管脚分布

ESP-WROOM-02 共接出 18 个管脚,管脚定义见表 2-1。

表 2-1. ESP-WROOM-02 管脚定义

序号	管脚名称	功能说明
		3.3V 供电 (VDD)
1	3V3	Ѿ 说明:
		外部供电电源的最大输出电流建议在 500 mA 及以上。
2	EN	芯片使能端,正常工作外部需拉高。
3	IO14	GPIO14; HSPI_CLK
4	IO12	GPIO12; HSPI_MISO
5	IO13	GPIO13; HSPI_MOSI; UARTO_CTS

序号	管脚名称	功能说明
6	IO15	GPIO15; MTDO; HSPICS; UARTO_RTS 外部需拉低。
7	102	GPIO2;UART1_TXD 悬空(内部有上拉)或外部拉高。
8	100	GPIOO ・ UART 下载: 外部拉低。 ・ Flash 启动: 悬空或外部拉高。
9	GND	接地
10	104	GPIO4
11	RXD	UARTO_RXD, UART 下载的接收端; GPIO3
12	TXD	UARTO_TXD,UART 下载的发送端,悬空或外部拉高; GPIO1
13	GND	接地
14	105	GPI05
15	RST	复位
16	TOUT	检测芯片 VDD3P3 电源电压或 TOUT 脚输入电压(二者不可同时使用)。
17	IO16	GPIO16;接到RST管脚时可做Deep-sleep的唤醒。
18	GND	接地

功能描述

3.1. MCU

ESP8266EX 内置了 Tensilica L106, 32-bit MCU 和超低功耗的 16-bit RSIC。CPU 时钟速度为 80 MHz,最高可达 160 MHz。支持实时操作系统 (RTOS)。目前 Wi-Fi 协议栈只用了 20% 的处理能力,剩下的处理能力都可以用来做应用编程和开发。CPU 包括以下接口:

- 连接存储控制器、也可以用来访问外接 Flash 的编码 RAM/ROM 接口 (iBus);
- 连接存储控制器的数据 RAM 接口 (dBus);
- 访问寄存器的 AHB 接口。

3.2. 存储描述

3.2.1. 内置 SRAM 与 ROM

ESP8266EX 芯片自身内置了存储控制器和存储单元,包括 ROM 和 SRAM。MCU 可以通过 iBus、dBus 和 AHB 接口访问存储单元。这些接口都可以根据要求访问存储单元。存储仲裁器以到达顺序确定运行顺序。

基于目前我司 Demo SDK 的使用 SRAM 情况,用户可用剩余 SRAM 空间为:

- RAM < 50 kB(Station 模式下,连上路由后,Heap + Data 区大致可用 50 kB 左右)。
- 目前 ESP8266EX 片上没有可编程 ROM,用户程序存放在 SPI Flash 中。

3.2.2. SPI Flash

ESP8266EX 支持使用 SPI 接口的外置 Flash, 理论上最大支持 16 MB 的 SPI Flash。 ESP-WROOM-02 配置了 2 MB 的 SPI Flash, 支持的 SPI 模式包括: Standard SPI、DIO (Dual I/O)、DOUT (Dual Output)、QIO (Quad I/O) 以及 QOUT (Quad Output)。

3.3. 晶振

在 10 pF 以内。

ESP-WROOM-02 使用 26 MHz 晶振。选用的晶振自身精度需在 ±10 PPM。 使用时请注意在下载工具中选择对应晶体类型。晶振输入输出所加的对地调节电容 C1、C2 可不设为固定值,该值范围在 6 pF ~ 22 pF,具体值需要通过对系统测试后进行调节确定。基于目前市场中主流晶振的情况,一般 26 MHz 晶振的输入输出所加电容 C1、C2

3.4. 接口说明

表 3-1. 接口说明

接口名称	管脚	功能说明
HSPI 接口	IO12 (MISO), IO13 (MOSI), IO14 (CLK), IO15 (CS)	可外接 SPI Flash、显示屏和 MCU 等。
PWM 接口	IO12 (R), IO15 (G), IO13 (B)	Demo 中提供 4 路 PWM(用户可自行扩展至 8 路),可用来控制彩灯,蜂鸣器,继电器及电机等。
IR 接口	IO14 (IR_T), IO5 (IR_R)	IR 遥控接口由软件实现,接口使用 NEC 编码及调制解调,采用 38 kHz 的调制载波。
ADC 接口	TOUT	可用于检测 VDD3P3 (Pin3, Pin4) 电源电压和 TOUT (Pin6) 的输入电压(二者不可同时使用)。可用于传感器等应用。
I2C 接口	IO14 (SCL), IO2 (SDA)	可外接传感器及显示屏等。
UART 接口	UARTO: TXD (U0TXD), RXD (U0RXD), IO15 (RTS), IO13 (CTS) UART1: IO2 (TXD)	可外接 UART 接口的设备。 下载: UOTXD + UORXD 或者 GPIO2 + UORXD 通信 (UARTO): UOTXD, UORXD, MTDO (UORTS), MTCK (UOCTS) 调试: UART1_TXD (GPIO2) 可作为调试信息的打印。 UARTO 在 ESP8266EX 上电时默认会输出一些打印信息。对此敏感的应用,可以使用 UART 的内部引脚交换功能,在初始化的时候,将 UOTXD,UORXD 分别与 UORTS,UOCTS 交换。硬件上将 MTDO MTCK 连接到对应的外部 MCU 的串口进行通信。
I2S 接口	I2S 输入: IO12 (I2SI_DATA); IO13 (I2SI_BCK); IO14 (I2SI_WS) I2S 输出: IO15 (I2SO_BCK); IO3 (I2SO_DATA); IO2 (I2SO_WS)	主要用于音频采集、处理和传输。

电气参数

说明:

如无无特殊说明,测试条件为: VDD = 3.3V,温度为 25 °C。

4.1. 电气特性

表 4-1. 电气特性

参数	名称	最小值	典型值	最大值	单位
存储温度	-	-40	正常温度	85	°C
工作温度	-	-40	20	85	°C
最大焊接温度(焊接条件: IPC/ JEDEC J-STD-020)	-	-	-	260	°C
供电电压	VDD	2.7	3.3	3.6	V
输入逻辑电平低	VIL	-0.3	-	0.25 VDD	V
输入逻辑电平高	VIH	0.75 VDD	-	VDD + 0.3	V
输出逻辑电平低	VoL	-	-	0.1 VDD	V
输出逻辑电平高	Vон	0.8 VDD	-	-	V

4.2. Wi-Fi 射频

表 4-2. Wi-Fi 射频参数

参数	最小值	典型值	最大值	单位
输入频率	2412	-	2484	MHz
芯片输入电阻	-	39+j6	-	Ω
输入反射	-	-	-10	dB
	输出功率			
72.2 Mbps下,PA 的输出功率	13	14	15	dBm
11b 模式下,PA 的输出功率	19.5	20	20.5	dBm

参数	最小值	典型值	最大值	单位
	接收灵敏度			
DSSS, 1 Mbps	-	-98	-	dBm
CCK, 11 Mbps	-	-91	-	dBm
6 Mbps (1/2 BPSK)	-	-93	-	dBm
54 Mbps (3/4 64-QAM)	-	-75	-	dBm
HT20, MCS7 (65 Mbps, 72.2 Mbps)	-	-72	-	dBm
	邻频抑制			
OFDM, 6 Mbps	-	37	-	dB
OFDM, 54 Mbps	-	21	-	dB
HT20, MCS0	-	37	-	dB
HT20, MCS7	-	20	-	dB

4.3. 功耗

下列功耗数据是基于 3.3V 的电源、25°C 的周围温度,并使用内部稳压器测得。

- 所有测量均在没有 SAW 滤波器的情况下,与天线接口处完成。
- 所有发射数据是基于 50% 的占空比,在持续发射的模式下测得的。

表 4-3. 功耗

模式	最小值	典型值	最大值	单位
传送 802.11b,CCK 11 Mbps,Pout = +17 dBm	-	170	-	mA
传送 802.11g,OFDM 54 Mbps,Pout = +15 dBm	-	140	-	mA
传送 802.11n,MCS7,Pout = +13 dBm	-	120	-	mA
接收 802.11b,包长 1024 字节,-80 dBm	-	50	-	mA
接收 802.11g,包长 1024 字节,-70 dBm	-	56	-	mA
接收 802.11n,包长 1024 字节,-65 dBm	-	56	-	mA
Modem-sleep [⊕]	-	15	-	mA
Light-sleep ^②	-	0.9	-	mA
Deep-sleep [®]	-	20	-	μΑ

模式	最小值	典型值	最大值	单位
断电	-	0.5	-	μΑ

说明:

- ① *Modem-sleep* 用于需要 *CPU* 一直处于工作状态的应用,如 *PWM* 或 *I2S* 应用等。在保持 *Wi-Fi* 连接 时,如果没有数据传输,可根据 *802.11* 标准(如 *U-APSD*),关闭 *Wi-Fi Modem* 电路来省电。例如,在 *DTIM3* 时,每睡眠 *300 ms*,醒来 *3 ms* 接收 *AP* 的 *Beacon* 包等,则整体平均电流约 *15 mA*。
- ② **Light-sleep** 用于 *CPU* 可暂停的应用,如 *Wi-Fi* 开关。在保持 *Wi-Fi* 连接时,如果没有数据传输,可根据 802.11 标准(如 *U-APSD*),关闭 *Wi-Fi Modem* 电路并暂停 *CPU* 来省电。例如,在 *DTIM3* 时,每睡 眠 300 ms,醒来 3 ms 接收 *AP* 的 *Beacon* 包等,则整体平均电流约 0.9 mA。
- ③ **Deep-sleep** 用于不需一直保持 *Wi-Fi* 连接,很长时间才发送一次数据包的应用,如每 100s 测量一次温度的传感器。例如,每 300s 醒来后需 $0.3s \sim 1s$ 连上 AP 发送数据,则整体平均电流可远小于 1 mA。电流值 $20 \mu A$ 是在 2.5V 下测得的。

4.4. 回流焊温度曲线

图 4-1. ESP-WROOM-02 回流焊温度曲线图

4.5. 静电释放电压

表 4-4. 静电释放参数

名称	符号	参照	等级	最大值	单位
静电释放电压 (人体模型)	Vesd (HBM)	温度: 23 ± 5°C 遵守 ANSI / ESDA / JEDEC JS - 001 - 2014	2	2000	\/
静电释放电压 (充电器件模型)	VESD (CDM)	温度: 23 ± 5℃ 遵守 JEDEC EIA / JESD22 - C101F	C2	500	V

原理图

5.

图 5-1. ESP-WROOM-02 模组原理图

图 5-2. ESP-WROOM-02 模组外围设计原理图

说明:

ESP-WROOM-02 管脚 19,可以不焊接到底板。若用户将该管脚焊接到底板,请确保使用适量的焊锡膏。

模组尺寸图

图 6-1. ESP-WROOM-02 模组尺寸图

Α.

附录-学习资源

A.1. 必读资料

• ESP8266 快速入门指南

说明:该手册指导用户快速上手使用 ESP8266,包括软硬件准备、编译准备、程序烧录,还提供了 ESP8266 的学习资源、介绍了 RTOS SDK 的框架与调试方法。

• ESP8266 SDK 入门指南

说明:该手册以 ESP-LAUNCHER 和 ESP-WROOM-02 为例,介绍 ESP8266 SDK 相关的使用方法,包括编译前的准备、Flash 布局、硬件和软件的准备、SDK 的编译和固件的下载。

• ESP-WROOM-02 PCB 设计和模组摆放指南

说明:该手册细说了六种天线摆放位置的比较,以及设计 PCB 时的一些注意事项。

• ESP8266 硬件资源

说明:该压缩包的内容主要是硬件原理图,包括板和模组的制造规范,物料清单和原理图。

• ESP8266 AT 指令使用示例

说明:该手册介绍几种常见的 Espressif AT 指令使用示例,包括单链接 TCP Client、UDP 传输、透传、多链接 TCP Service 等。

• ESP8266 AT 指令集

说明:该手册提供了ESP8266_NONOS_SDK的AT指令说明,包括烧录AT固件、自定义AT命令、基本AT指令、Wi-Fi相关的AT指令和TCP/IP相关的AT指令等。

• TCP/UDP UART 透传测试演示指南

本演示指南主要作用: 客户可以快速、直观地体验 ESP8266 物联网平台实现 TCP & UDP吞吐量测试的演示。

• 常见问题

A.2. 必备资源

ESP8266 SDK

说明:该页面提供了 ESP8266 所有版本 SDK。

• ESP8266 工具

说明:该页面提供了 ESP8266 Flash 下载工具以及 ESP8266 性能评估工具。

- ESP8266 APK
- ESP8266 认证测试指南
- ESP8266 官方论坛
- ESP8266 资源合集

A.3. 视频资源

- ESP8266 开发板使用教程
- ESP8266 Non-OS SDK 编译教程

乐鑫 IoT 团队 www.espressif.com

免责申明和版权公告

本文中的信息,包括供参考的 URL 地址,如有变更,恕不另行通知。

文档"按现状"提供,不负任何担保责任,包括对适销性、适用于特定用途或非侵权性的任何担保,和任何提案、规格或样品在他处提到的任何担保。本文档不负任何责任,包括使用本文档内信息产生的侵犯任何专利权行为的责任。本文档在此未以禁止反言或其他方式授予任何知识产权使用许可,不管是明示许可还是暗示许可。

Wi-Fi 联盟成员标志归 Wi-Fi 联盟所有。蓝牙标志是 Bluetooth SIG 的注册商标。 文中提到的所有商标名称、商标和注册商标均属其各自所有者的财产,特此声明。

版权归 © 2017 乐鑫所有。保留所有权利。