Transformaciones de datos

Alberto Benavides 20 de octubre de 2020

1. Introducción

En esta práctica se ha desarrollado una metodología computacional que permite comparar las correlaciones de ciertas funciones después de transformar sus variables de entrada y salida mediante las transformadas de Tuckey y de Box-Cox.

2. Transformadas

Las transformadas de Tuckey [1] parten de la idea de transformar variables independientes X o dependientes Y = f(X) en potencias de dichas variables X^{λ}, Y^{λ} a partir de los distintos valores que pueda tomar λ , tal que

$$z_{\lambda} = \begin{cases} x^{\lambda}, & \text{si } \lambda > 0, \\ \log(x), & \text{si } \lambda = 0, \\ -(x^{\lambda}), & \text{si } \lambda < 0. \end{cases}$$
 (2.1)

Por otro lado, las transformadas de Box-Cox [2], por su cuenta, se realizan a partir de la ecuación

$$z_{\lambda} = \frac{x^{\lambda} - 1}{\lambda}.\tag{2.2}$$

3. Correlaciones

Ambas transformadas suelen usarse para mejorar la correlación de las funciones resultantes con respecto a la función original. Para ello, es posible transformar sólo $X,\,Y$

o ambas al mismo tiempo y luego calcular las correlaciones entre dichas variables. Así, una manera de encontrar la mejor transformada para una determinada función sería definir algunos valores de λ , transformarla mediante ambas transformadas y graficar las correlaciones de las funciones con transformaciones en X, Y o ambas variables.

4. Diseño de experimentos

Se realiza un diseño de experimentos para comparar las correlaciones de las funciones transformadas a partir de las transformaciones de Tuckey y Box–Cox. Como ejemplo, se utilizan las funciones

- -1/x,
- $-x^2$.
- \mathbf{x}^3
- $\log(x)$
- \bullet e^x ,
- $\bullet \sin(x \cdot \frac{180}{\pi}),$
- $\bullet \cos(x \cdot \frac{180}{\pi}),$
- $\bullet \ \tan(x \cdot \frac{180}{\pi}).$

La variable $\lambda = [-3.0, -2.5, -2.0, \dots, 2.0, 2.5, 3.0]$, mientras que las transformaciones se aplican sobre sólo X, sólo Y y ambas simultáneamente. Se generan mil valores de X a partir de una distribución uniforme $\mathcal{U}(-100, 100)$ y se calculan Y para cada función. Luego, se grafican las funciones de las transformadas de Tuckey y Box–Cox para cada una de estas variantes. Por último, se grafican las correlaciones con los distintos λ tanto para las transformaciones de Tuckey como las de Box–Cox.

5. Resultados

Se muestran algunos ejemplos de esta práctica. Primero 1/x. La función se muestra en la figura 5.1 (p. 3). El despliegue de correlaciones para las transformaciones de X, Y y ambas se muestra en la figura 5.2 (p. 4). En dicha figura se puede apreciar que los valores de las correlaciones para ambas transformadas con los mismos valores λ son iguales. Además, una animación de las diferentes transformaciones a lo largo de los cambios en λ puede consultarse en PENDIENTE.

Figura 5.1: Función 1/x a partir de mil valores de X desde una distribución uniforme con valores [-100,100].

Figura 5.2: Gráficas de las correlaciones para la función 1/x con transformaciones para X, Y y ambas. En el eje horizontal se grafican los valores de λ , la mitad roja corresponde a transformación de Tuckey, mientras que la azul a la de Box–Cox.

(c) X y Y transformadas.

Referencias

- [1] Elisa Schaeffer. Modelos Probabilísticos Aplicados Curso en Línea. https://elisa.dyndns-web.com/teaching/prob/pisis/prob.html, 2020.
- [2] David Scott. Box-Cox Transformations. http://onlinestatbook.com/2/transformations/box-cox.html, 2020.