ANNO ACCADEMICO 2024/2025

Apprendimento Automatico

Teoria

Altair's Notes

DIPARTIMENTO DI INFORMATICA

1.1	Le basi del machine learning Tasks — 7 • Modelli — 8 • Features — 9	5
CAPITOLO 2	Tasks	Pagina 11
2.1	Classificazione	11
	Roc Plots Properties — 14 \bullet Più di un Classificatore per una Singola Feature. — 15	
2.2	Scoring e ranking	16
	Loss Function — 17 • Ranking — 20	
2.3	Stima Probabilistica	21
	Squared Error — 22	
2.4	Oltre la Classificazione Binaria	23
	Regressione — 26 • Apprendimento non Supervisionato — 27 • Subgroup-discovery — 29 azione — 29	• Regole di Associ-

PAGINA 5

Capitolo 1

Introduzione_

Premessa

Licenza

Questi appunti sono rilasciati sotto licenza Creative Commons Attribuzione 4.0 Internazionale (per maggiori informazioni consultare il link: https://creativecommons.org/version4/).

Formato utilizzato

Box di "Concetto sbagliato":

Concetto sbagliato 0.1: Testo del concetto sbagliato

Testo contente il concetto giusto.

Box di "Corollario":

Corollario 0.0.1 Nome del corollario

Testo del corollario. Per corollario si intende una definizione minore, legata a un'altra definizione.

Box di "Definizione":

Definizione 0.0.1: Nome delle definizione

Testo della definizione.

Box di "Domanda":

Domanda 0.1

Testo della domanda. Le domande sono spesso utilizzate per far riflettere sulle definizioni o sui concetti.

Box di "Esempio":

Esempio 0.0.1 (Nome dell'esempio)

Testo dell'esempio. Gli esempi sono tratti dalle slides del corso.

Box di "Note":

Note:-

Testo della nota. Le note sono spesso utilizzate per chiarire concetti o per dare informazioni aggiuntive.

Box di "Osservazioni":

Osservazioni 0.0.1

Testo delle osservazioni. Le osservazioni sono spesso utilizzate per chiarire concetti o per dare informazioni aggiuntive. A differenza delle note le osservazioni sono più specifiche.

1 Introduzione

1.1 Le basi del machine learning

Gli ingredienti del machine learning:

- \Rightarrow *Task*: specifica di cosa si vuole fare;
- ⇒ *Modelli*: il modello matematico per affrontare un determinato task;
- ⇒ Features: il modo con cui sono descritti gli esempi.

Note:-

L'apprendimento automatico ruota attorno all'idea di estrarre una regola generale per risolvere un problema a partire da problemi già risolti.

Esempio 1.1.1 (Etichettatura delle email spam)

```
Test scores: { w<sub>i</sub> }
                                                                                                                                                 RBL: MXRate recommends allowing [123.45.6.789 listed in sub.mxrate.net] BODY: HTML has a low ratio of text to image area
-0.1 RCVD_IN_MXRATE_WL
 0.6 HTML_IMAGE_RATIO_02
1.2 TVD_FW_GRAPHIC_NAME_MID
0.0 HTML_MESSAGE
0.6 HTML_FONx_FACE_BAD

BODY: TVD_FW_GRAPHIC_NAME_MID
BODY: HTML included in message
BODY: HTML font face is not a verified by the second s
                                                                                                                                                  BODY: HTML font face is not a word
1.4 SARE_GIF_ATTACH
0.1 BOUNCE_MESSAGE
                                                                                                                                                  FULL: Email has a inline gif
                                                                                                                                                  MTA bounce message
 0.1 ANY_BOUNCE_MESSAGE
                                                                                                                                                  Message is some kind of bounce message
 1.4 AWL
                                                                                                                                                  AWL: From: address is in the auto white-list
                                                             Test ID
                                                                                                                                                                                                                                             Test Description
           \sum w_i > 5 \Rightarrow the message is likely to be spam
```

Spam
Assassin è un filtro open-source usato per filtrare lo spam. Esso non lavora sul testo, ma su alcune
 feature della mail.

x_1	x_2	Spam?	$4x_1 + 4x_2$
1	1	1	8
0	0	0	0
1	0	0	4
0	1	0	4
	1	1 1 0 0	0 0 0

Discrimination rule example: Spam $(x) = 4x_1 + 4x_2 > 5$

Definizione 1.1.1: Apprendimento automatico

L'apprendimento automatico è lo studio sistematico di algoritmi e sistemi che migliorano le loro conoscenze e performance con l'esperienza.

L'apprendimento automatico è interessato a usare le giuste features per costruire il giusto modello per ottenere buone performance sul giusto task.

Domanda 1.1

L'apprendimento automatico come può aiutarci a risolvere un task?

Dal dominio dell'applicazione arrivano degli oggetti descritti tramite features che vengono utilizzate per creare dei *training data* e un *dataset*. Questi vengono usati per costruire un modello per calcolare un output.

Note:-

Per risolvere un task bisogna sfruttare un modello. Per risolvere un problema di apprendimento bisogna trovare un algoritmo di apprendimento.

1.1.1 Tasks

Definizione 1.1.2: Tasks predittivi

Un task predittivo è focalizzato sul prevedere una variabile sulla base degli esempi. Si parte da problemi vecchi per trovare la soluzione a nuovi problemi.

Corollario 1.1.1 Overfitting

L'Overfitting è un adattamento eccessivo al dataset di allenamento per cui, messi di fronte a nuovi problemi, non si riesce a trovare una soluzione soddisfacente.

I tasks predittivi possono essere:

- Binari e Multi-classe: di categorizzazione.
- Regressivi: con un target numerico.
- Clustering: un target sconosciuto.

Note:-

IL Clustering fa anche parte dei tasks descrittivi.

Definizione 1.1.3: Tasks descrittivi

Un task descrittivo si concentra sul fornire regolarità nel dataset.

Questa matrice rappresenta i voti dati da utenti a dei film. Si vogliono estrapolare le caratteristiche di questi film che hanno generato questi voti. Guardando questa matrice individualmente è difficile, per cui si compone con altre matrici.

$$\begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 2 & 2 & 2 \\ 0 & 0 & 0 & 1 \\ 1 & 2 & 3 & 2 \\ 1 & 0 & 1 & 1 \\ 0 & 2 & 2 & 3 \end{pmatrix} = \mathcal{O} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

1.1.2 Modelli

Ci sono 3 possibili tipi di modelli:

- Geometrici: modelli che usano l'intuizione dalla geometria per risolvere il problema;
- *Probabilistici*: usano il calcolo delle probabilità;
- Logici.

Definizione 1.1.4: Modelli geometrici

Nei modelli geometrici gli esempi sono punti di uno spazio vettoriale e la loro classificazione corrisponde a trovare un iperpiano che separi i punti positivi da quelli negativi.

Esempio 1.1.2 (Modello geometrico)

Definizione 1.1.5: Modelli probabilistici

Nei modelli probabilistici si fanno delle stime con dei classificatori probabilistici. Dopo di che si usano delle regole di decisione.

Esempio 1.1.3 (Modello probabilistico)

Note:-

Uno degli algoritmi più semplici che si utilizza con i modelli probabilistici è l'assunzione di Naive Bayes. Si assume che x1 e x2 siano indipendenti tra loro per cui si possono calcolare solo i valori di x1 e di x2 individualmente.

Definizione 1.1.6: Modelli logici

Nei modelli logici si utilizza la logica. Si hanno una serie di regole.

Esempio 1.1.4 (Modello logico)

1.1.3 Features

Definizione 1.1.7: Features

Il modo in cui si descrivono i propri dati. Possono facilitare il lavoro di apprendimento se correttamente usate.

Esempio 1.1.5 (Coseno)

Due rappresentazioni della funzione coseno: a destra si utilizza una variabile di regressione, a destra un'approssimazione lineare.

I task più comuni sono:

- Classificazione.
- Punteggio e classifica.
- Stima probabilistica.
- Regressione.

2.1 Classificazione

Definizione 2.1.1: Classificazione

La classificazione è il task in cui si ha come obiettivo la costruzione di un modello ĉ: $\mathbb{X} \to \mathbb{C}$ in cui $\mathbb{C} = \{C_1, C_2, ..., C_k\}$. Questo modello è un'approssimazione del mondo reale. Un esempio è una coppia $(x, c(x)) \in \mathbb{X}x\mathbb{C}$.

Osservazioni 2.1.1 Il problema dell'induzione

L'induzione partendo dai dati di un dataset è generalmente infondata senza ulteriori informazioni.

Note:- 🛉

Il mondo non è semplice, per cui il rasoio di Occam non sempre funziona. Spesso però si utilizzano preconcetti e bias induttivi per avere apprendimento automatico.

Definizione 2.1.2: Classificazione binaria

La classificazione binaria è il caso in cui si hanno solo 2 opzioni (spesso 0 e 1).

Note:-

Dalla classificazione binaria si può passare alla classificazione multi-classe senza sviluppare nuovi algoritmi.

Definizione 2.1.3: Alberi di decisione

Alberi per visualizzare i dati. Ogni nodo corrisponde a una features.

Definizione 2.1.4: Alberi di Features

Alberi per visualizzare i dati. Si ha una suddivisione dei vari esempi divisi per etichette.

Definizione 2.1.5: Tavola di contingenza

Tavola in cui le colonne corrispondono alle predizioni e le righe al mondo reale. Nella loro intersezione si ha il numero di esempi predetti in un certo modo e hanno una certa etichetta (TP, TN, FT, FN).

Definizione 2.1.6: Grafico di copertura

Grafico per visualizzare le informazioni della tavola di contingenza.

	Predicted 🕀	Predicted 🖯			Predicted 🕀	Predicted 🖯	
Actual 🕀	30	20	50	Actual 🕀	20	30	50
Actual 🖯	10	40	50	Actual 🖯	20	30	50
	40	60	100		40	60	100

Note:-

I classificatori che si trovano sulla bisettrice del piano cartesiano sono imprevedibili e quindi poco interessanti. Più un classificatore ha la coordinata x bassa e y alta più è preciso.

Note:-

Tutti i classificatori che stanno su una retta con pendenza 1 hanno la stessa accuratezza.

Definizione 2.1.7: Avg recall

 $avg\ recall = (recall + specificity) / 2 = (TP/POS + TN/NEG)/2$

Se due classificatori hanno la stessa avg recall allora sono su linee parallele alla diagonale principale.

$$\operatorname{avgrec}(z) = \left(\frac{y}{\operatorname{Pos}} + \frac{\operatorname{Neg} - x}{\operatorname{Neg}}\right)/2$$
FP
Neg
$$\left(\frac{y + g\Delta x}{\operatorname{Neg} - x} - \Delta x\right)$$

$$\left(\frac{y}{\operatorname{Neg} - x} - \Delta x\right)$$

$$\operatorname{avgrec}(z') = \left(\frac{y + \alpha \Delta x}{\operatorname{Pos}} + \frac{\operatorname{Neg} - x - \Delta x}{\operatorname{Neg}}\right) / 2 = \left(\frac{y}{\operatorname{Pos}} + \alpha \frac{\Delta x}{\operatorname{Pos}} + \frac{\operatorname{Neg} - x}{\operatorname{Neg}} - \frac{\Delta x}{\operatorname{Neg}}\right) / 2$$

z and z' have the same avg-rec if and only if $\alpha = \frac{\text{Pos}}{\text{Neg}}$

2.1.1 Roc Plots Properties

Se si vogliono confrontare le performance di un classificatore su un dataset o su un altro si deve *normalizzare* gli assi dividendo l'asse x per il numero di esempi negativi e l'asse y per il numero di esempi positivi. Così facendo 14

si otterrà un quadrato con gli assi compresi tra 0 e 1.

Note:
Il clr è il class ratio.

2.1.2 Più di un Classificatore per una Singola Feature.

Domanda 2.1

Come si considera il caso in cui il costo per FP (falsi positivi) e FN (falsi negativi) sono differenti?

$$\operatorname{acc}_{C}(x,y) = \frac{y + C \times \operatorname{Neg} - Cx}{Pos + C \times Neg}$$

$$\operatorname{acc}_{C}(x + \Delta x, y + \alpha \Delta x) =$$

$$= \frac{y + \alpha \Delta x + C \times \operatorname{Neg} - C(x + \Delta x)}{Pos + C \times Neg}$$

$$= \frac{y + C \times \operatorname{Neg} - Cx}{Pos + C \times \operatorname{Neg}} + \frac{\alpha \Delta x - C \Delta x}{Pos + C \times \operatorname{Neg}}$$

$$\operatorname{if} \alpha = C, \operatorname{then:} \frac{\alpha \Delta x - C \Delta x}{Pos + C \times \operatorname{Neg}} = \frac{C \Delta x - C \Delta x}{Pos + C \times \operatorname{Neg}} = 0$$

In ROC plots, as is customary, one still needs to multiply by 1/clr.

2.2 Scoring e ranking

Definizione 2.2.1: Scoring classifier

Uno scoring classifier è una mappatura ŝ: $\mathbb{X} \to \mathbb{R}^k$ il cui output è un vettore (ŝ (x) = ŝ1(x),...,ŝi(x)) dove i-esimo componente è lo score assegnato alla classe Ci per l'istanza x.

Note:- 🛉

Se si hanno solo due classi si può considerare solo uno score. Gli score vanno interpretati nel contesto di un classificatore, sono misure della confidenza in una determinata predizione.

A **feature tree** with training set class distribution on the leaves

A scoring tree using the logarithm of the class ratio as scores

Definizione 2.2.2: Margine

Il margine assegnato dallo scoring classifier è positivo se ŝ è corretto, negativo altrimenti. Il margine è il prodotto tra la classe dell'esempio e lo score.

$$z(x) = c(x)\hat{\mathbf{s}}(x) = \begin{cases} z(x) > 0 & \text{se la classificazione è corretta (cioè, } c(x) \text{ corrisponde alla classe prevista)} \\ z(x) < 0 & \text{se la classificazione è incorretta (cioè, } c(x) \text{ non corrisponde alla classe prevista)} \\ z(x) = 0 & \text{se lo score è esattamente al confine di decisione} \end{cases}$$

2.2.1 Loss Function

Definizione 2.2.3: Loss Function

La funzione di loss cerca di pesare l'impatto degli esempi negativi. In 0 la funzione di loss vale 1, tende a infinito con margini molto piccoli (molto negativi).

$$L:\mathbb{R}\to [0,\infty)$$

Note:-

Le loss function sono importanti durante l'apprendimento perché sono usate per guidare la ricerca della soluzione ottimale.

Tipi di loss

Corollario 2.2.1 0-1 loss

Si perde un'unità se si sbaglia e non si perde nulla se si indovina.

Corollario 2.2.2 Hinge loss

La Hinge loss è una loss che è lineare per valori minori di 1 e vale 0 per valori maggiori di 1.

Corollario 2.2.3 Logistic loss

Approssimazione continua della Hinge loss.

Corollario 2.2.4 Loss esponenziale

Cresce rapidamente quando si stanno facendo errori.

Corollario 2.2.5 Loss quadratica

Se viene ottimizzata troppo si hanno modelli incogniti, funziona meglio con la regressione.

2.2.2 Ranking

Definizione 2.2.4: Ranking

Ordina sulla base di uno score. Dall'esempio che è di classe più positiva a quello di classe meno positiva.

Corollario 2.2.6 Ranking Error Rate

The ranking error rate is defined as:

$$rank\text{-}err = \frac{\sum_{x \in Te^{\oplus}, x' \in Te^{\ominus}} I[\hat{s}(x) < \hat{s}(x')] + \frac{1}{2}I[\hat{s}(x) = \hat{s}(x')]}{Pos \cdot Neg}$$

1 point of penality due to a ranking error: a positive example is ranked below a negative example

1/2 point of penality for tying examples having different classes

Esempio 2.2.1 (Ranking Error Rate)

rank-err
$$(x_1^+, x_2^+, x_3^-, x_4^+, x_5^+, x_6^-, x_7^-, x_8^-) = \frac{2}{16} = \frac{1}{8}$$

rank-err
$$(x_1^-, x_2^-, x_3^-, x_4^-, x_5^-, x_6^+, x_7^+, x_8^+) = \frac{15}{5 \times 3} = 1$$

Esempio 2.2.2 (Spam)

- ◆ The 5 negatives in the right leaf are scored higher than the 10 positives in the middle leaf and the 20 positives in the left leaf, resulting in
 - 50 + 100 = 150 ranking errors.
- ◆ The 5 negatives in the middle leaf are scored higher than the 20 positives in the left leaf, giving a further 100 ranking errors.
- ◆ In addition, the left leaf makes 800 half ranking errors (because 20 positives and 40 negatives get the same score), the middle leaf 50 and the right leaf 100.
- ◆ In total we have 725 ranking errors out of a possible 50·50=2500, corresponding to a ranking error rate of 29% or a ranking accuracy of 71%.

2.3 Stima Probabilistica

Definizione 2.3.1: Stimatore probabilistico di classi

Uno stimatore probabilistico di classi è un classificatore di scoring il cui output è un vettore di probabilità.

$$\hat{p}: \mathbb{X} \to [0,1]^k$$

Scriviamo:

$$\hat{p}(x) = (\hat{p}_1(x), \dots, \hat{p}_k(x))$$

dove l'i-esimo componente è la probabilità assegnata alla classe C_i e $\sum_{i=1}^{\kappa} \hat{p}_i(x) = 1$

♦ Note:- •

Se si hanno solo 2 classi allora $\hat{p}(x)$ denota la probabilità stimata per le classi positive.

2.3.1 Squared Error

Corollario 2.3.1 Squared Error

The **squared error** (SE) of the predicted probability vector on an example x is defined as:

$$SE(x) = \frac{1}{2} ||\hat{\mathbf{p}}(x) - I_{c(x)}||_{2}^{2}$$
$$= \frac{1}{2} \sum_{i=1}^{k} (\hat{p}_{i}(x) - I[c(x) = C_{i}])^{2}$$

where $I_{c(x)}$ is a vector having 1 in the position corresponding to label c(x) and 0 in all other positions.

Corollario 2.3.2 Mean Squared Error

Il mean squared error è la media aritmetica degli squared error.

Definizione 2.3.2: Probabilità Empiriche

Le probabilità empiriche consentono di ottenere probabilità stimate da classificatori o rankers. Se si ha un insieme S di esempi etichettati e il numero di esempi in S di classe C_i è scritto n_i il vettore di probabilità empiriche associato ad S sarà:

$$\hat{p}(S) = (n_1/|S|, \dots, n_k/|S|)$$

Corollario 2.3.3 Correzione di Laplace

Se si ha un insieme S e dentro si hanno n_i elementi di classe C_i per ogni classe si fa finta di avere un esempio aggiuntivo.

$$\hat{p}_i(S) = \frac{n_i + 1}{|S| + k}$$

Si può applicare anche:

$$\hat{p}_i(S) = \frac{n_i + m * \pi_i}{|S| + m}$$

La Correzione di Laplace è un caso speciale in cui m=k e la distribuzione è uniforme $(\pi_i=\frac{1}{k})$

2.4 Oltre la Classificazione Binaria

Schemi per estendere la classificazione binaria al caso multi-classe:

- one-vs-rest:
 - apprendimento non ordinato;
 - apprendimento in ordine fisso.
- one-vs-one:
 - simmetrici;
 - asimmetrici.

One-vs-Rest (non ordinato)

Train *k* classifiers:

Note:-

Si può costruire una matrice con il codice di output: in ogni riga si mette una classe, in ogni colonna si mette un classificatore che si vuole costruire e in ogni cella il valore che si vuole in output.

One-vs-Rest (ordinato)

One-vs-one (simmetrico)

One-vs-one (asimmetrico)

Note:-

Per classificare un nuovo esempio (vettore) si cerca la riga più simile.

Osservazioni 2.4.1 Difficoltà nell'applicare one-vs-rest e one-vs-one

- Nel caso one-vs-rest il singolo classificatore vede un dataset molto sbilanciato sebbene il dataset di partenza fosse bilanciato.
- Nel caso one-vs-one il problema è mitigato assegnando 0 agli esempi che non appartengono alle due etichette scelte. Però è problematico quando si ha scarsità nei dati.

Domanda 2.2

Come si rompono i pareggi?

- 1. Si aggiungono classificatori.
- 2. Se si ha un algoritmo di apprendimento in grado di assegnare uno score si può scegliere il valore su cui si è più confidenti.

2.4.1Regressione

Definizione 2.4.1: Stimatore di funzione

Uno stimatore di funzione, chiamato regressore, è una mappatura:

$$\hat{f}: \mathbb{X} \to \mathbb{R}$$

Il problema dell'apprendimento con la regressione è imparare uno stimatore di funzione dagli esempi $(x_i, f(x_i))$

Note:-

In questo caso, a differenza dei precedenti, si passa a etichette di tipo reale (infinito non numerabile).

Funzione continua

Funzione costante a tratti

Note:-

Se si vuole "fittare" n + 1 punti si può utilizzare un polinomio di grado n (quindi con n + 1 parametri). Per evitare l'overfitting il numero dei parametri stimati dai dati deve essere molto minore del numero dei punti.

Definizione 2.4.2: Bias-Variance Dilemma

Un modello a bassa complessità si ha bassa variabilità a causa della variazione casuale nei dati. Però viene introdotto un bias sistematico che nemmeno un modello più grande può risolvere.

Un modello ad alta complessità elimina questo bias, ma è soggetto a errori dovuti alla varianza.

$$E[(f - \hat{f})^2] = (f - E[\hat{f}])^2 + E[(\hat{f} - E[\hat{f}])^2] = Bias^2(\hat{f}) + Var(\hat{f})$$

- $(f E[\hat{f}])^2$, zero se il regressore è mediamente corretto, altrimenti ha un bias sistematico.
- $E[(\hat{f} E[\hat{f}])^2]$, errore dovuto alla fluttuazione attorno alla media (errore dovuto alla varianza).

$$E\left[(f-\hat{f})^{2}\right] = E\left[f^{2} - 2f\hat{f} + \hat{f}^{2}\right]$$

$$= f^{2} - 2fE[\hat{f}] + E[\hat{f}^{2}]$$

$$= f^{2} - 2fE[\hat{f}] + E[\hat{f}^{2}] - E[\hat{f}]^{2} + E[\hat{f}]^{2}$$

$$= E[\hat{f}^{2}] - E[\hat{f}]^{2} + f^{2} - 2fE[\hat{f}] + E[\hat{f}]^{2}$$

$$= E\left[(\hat{f} - E[\hat{f}])^{2}\right] + \left(f - E[\hat{f}]\right)^{2}$$

$$= Var(\hat{f}) + Bias^{2}(\hat{f})$$

Corollario 2.4.1 Bias

Errore sistematico dovuto al fatto che il modello on è in grado di "fittare" perfettamente i dati (e.g. si sta cercando di "fittare" una parabola usando una retta).

Corollario 2.4.2 Variance

Errore per cui i modelli sono instabili (si ha del rumore). Anche con una minima variazione il modello può cambiare completamente.

2.4.2 Apprendimento non Supervisionato

Definizione 2.4.3: Apprendimento non Supervisionato

Nell'apprendimento non supervisionato non ci sono etichette associate ai dati. Il task consiste nel trovare regolarità nei dati usando solo i dati stessi.

Note:-

Un task non supervisionato è il Clustering che può essere sia predittivo che descrittivo.

Definizione 2.4.4: Clustering

Il task del Clustering è guadagnare maggiore comprensione dei dati dividendo i dati stessi in gruppi tra loro omogenei.

Corollario 2.4.3 Clustering predittivo

Nel Clustering predittivo si può modellare il problema con la mappatura:

$$\hat{q}: \mathbb{X} \to \mathbb{C}$$

Dove $\mathbb{C} = \{\mathbb{C}_1, \dots, \mathbb{C}_k\}$ è un nuovo insieme di etichette.

Corollario 2.4.4 Clustering descrittivo

Nel Clustering descrittivo si può modellare il problema con la mappatura:

$$\hat{q}:D\to\mathbb{C}$$

dove D è il dataset usato.

2.4.3 Subgroup-discovery

Definizione 2.4.5: Subgroup-discovery

Dato il dataset $\{(x, l(x))\}$ si vuole trovare una funzione:

$$\hat{g}: D \rightarrow \{true, false\}$$

tale che $G = \{x \in D | \hat{g}(x) = true\}$ ha una distribuzione di classe molto diversa dalla popolazione iniziale.

Note:-

G è un *estensione* del sottogruppo.

Osservazioni 2.4.2 Subgroup-discovery

- In generale i Subgroup-discovery sono guidati da una valutazione delle misure;
- Tendono a favorire sottogruppi più grandi;
- Sono solitamente simmetrici (hanno lo stesso valore sia per il sottogruppo che per il suo completamento);
- Il risultato tenderà a dividere lo spazio in due parti uguali.

2.4.4 Regole di Associazione

Definizione 2.4.6: Regole di Associazione

Si ha un dataset non etichettato D e si vuole trovare un insieme di regole $\{b \to h\}$ tale che l'oggetto $b \cup h$ sia frequente e che h sia vera quando b è vera,

Note:-

b e h sono insieme di coppie attributo/valore.

Esempio 2.4.1 (Supermercato)

If we set 0.6 as our support threshold (i.e., an itemset is frequent whenever it appears in 60% of the transactions). The following frequent itemsets can be extracted:

{Bread} (supp:0.8), {Milk} (supp: 0.6), {Water} (supp:0.6), {Bread, Milk} (supp:0.6)

allowing one to generate the following rules:

 $Bread \rightarrow Milk \ (conf: 0.6/0.8=0.75)$ $Milk \rightarrow Bread \ (conf: 0.6/0.6=1)$

id	Product
1	Bread
1	Milk
1	Water
2	Bread
2	Milk
3	Water
3	Bread
3	Ham
4	Water
4	Eggs
5	Bread
5	Milk
	· ·