CONTROL 2 TEMA A

1- Un capacitor con dos placas cuadradas de 20 cm de lado y separadas por aire una distancia d=1,0 cm. Se lo carga conectándolo a una fuente de 54 V. Luego se desconecta de la fuente y se introducen en su interior dos dieléctricos, cubriendo la mitad del área cada uno como indica la figura, siendo $K_1 = 2,8$ y $K_2 = 2,6$. Luego de haber introducido los dieléctricos, calcular el valor: a) de carga que adquiere el capacitor. b) del potencial que alcanza el capacitor.

Rta: Q = 35,4 pC V_{Final} =20,0V

2- Un resistor de carbono se puede utilizar como termómetro. El elemento tiene una resistencia R_0 en un día de invierno en que la temperatura está a T_0 = 4,00°C. Un día cálido de verano, cuando la temperatura es T_1 = 36,0°C la resistencia cae un valor de 3,50 Ω hasta R_1 (α = $-5.10^{-4} \frac{1}{\circ C}$) ¿Cuáles son los valores de resistencia eléctrica R_0 y R_1 ?

Rta.
$$R_0 = 218.8 \Omega y R_1 = 215.3 \Omega$$

3- El amperímetro de la figura (no ideal) acusa una corriente I_3 = 0,20 A en el sentido indicado. Se sabe que la potencia que disipa la resistencia R_2 es P_2 = 0,72 W con la caída de tensión indicada. Calcular: a) el valor y el sentido de la corriente I_1 por la resistencia R_1 , b) el valor de la fem ϵ_2 , c) la resistencia interna del amperímetro R_A .

Rta. a) I_1 =0,8A hacia la izquierda. b) E_2 =1,6V c) R_A =2 Ω

- 4– a) En la experiencia de laboratorio 3.5 se cargo con Q₀ "el capacitor que estaba" separado 6 mm y el electrómetro indicaba un V₀. Cuando se introduce en el capacitor la lámina de vidrio llenando todo el interior del capacitor y el electrómetro indica que el potencial tuvo un valor de variación/diferencia ΔV de 38% aproximadamente ¿cuál es el valor de constante dieléctrica K del vidrio?:
 - i) Kd = 2,632
 - ii) Kd = 1,613
 - iii) Kd = 1,380
 - iv) Ningún valor anterior.
 - b) En la experiencia de laboratorio 7.2, circuitos RC en proceso de carga con la fuente a 30V y con el electrómetro conectado al resistor; la lectura del electrómetro es:
 - i) arranca en 0V, crece en valor y la corriente aumenta con el tiempo.
 - ii) arranca en 30V, decrece en valor y la corriente aumenta con el tiempo.
 - iii) arranca en 30V, decrece en valor y la corriente disminuye con el tiempo.
 - iv) ninguna lectura anterior es correcta.

CONTROL 2 TEMA B

1- Un capacitor con dos placas cuadradas de 20 cm de lado y separadas <u>por aire</u> una distancia d=1,0 cm. Se lo carga conectándolo a una fuente de 54 V. Luego se desconecta de la fuente y se introducen en su interior dos dieléctricos, cubriendo la mitad del área cada uno como indica la figura, siendo $K_1=2,6$ y $K_2=2,4$. Luego de haber introducido los dieléctricos, calcular el valor: a) de carga que adquiere el capacitor. b) del potencial que alcanza el capacitor.

Rta:
$$Q = 35,4 pC$$
 $V_{Final} = 21,6V$

2- Un resistor de carbono se puede utilizar como termómetro. El elemento tiene una resistencia R_0 = 218,0 Ω en un día de invierno en que la temperatura está a T_0 . Un día cálido de verano, cuando la temperatura es nueve veces la anterior, que llamaremos T_1 , la resistencia tiene un valor R_1 = 214,5 Ω (α = -5.10⁻⁴ $\frac{1}{{}^2C}$) ¿Cuáles son los valores de temperatura T_0 y T_1 ?

Rta.
$$T_0 = 4,01$$
 °C y $T_1 = 36,12$ °C

3- El amperímetro de la figura es no ideal. Se sabe que la potencia que disipa la resistencia R_1 es P_1 = 2,56 W y que la fuente ε_2 almacena energía. Calcular: a) el valor y el sentido de la corriente I_3 por la resistencia R_3 , b) el valor de la fem ε_2 , c) la resistencia interna del amperímetro R_A .

b)
$$\epsilon_{2}=1.6V$$
 c) $R_{A}=2\Omega$

- 4- a) En el laboratorio 3 y con sólo aire entre placas; no realizamos actividades para las relaciones C=f(Q) [V=cte] ni para C=f(V) [Q=cte] porque:
 - i) Debemos tener una regla con mayor precisión.
 - ii) Necesitamos un medidor de carga eléctrica.
 - iii) Necesitamos un electrómetro de mayor precisión.
 - iv) Ninguna anterior es correcta.
 - b) En la experiencia de laboratorio 5.2: óhmetro analógico. Para el calibrado de este instrumento se procede de la manera siguiente:
 - i) sin realizar cortocircuito, se lleva la aguja a fondo de escala (0) variando R_(shunt).
 - ii) se realiza cortocircuito y se lleva la aguja al fondo de la escala (0).
 - iii) se realiza cortocircuito y se lleva la aguja al inicio de la escala (∞) .
 - iv) ninguna anterior es correcta.

CONTROL 2 TEMA C

1- Un capacitor con dos placas cuadradas de 20 cm de lado y separadas por aire una distancia d = 1,0 cm. Se lo carga conectándolo a una fuente de 54 V. Luego se desconecta de la fuente y se introducen en su interior dos dieléctricos, cubriendo la mitad del área cada uno como indica la figura, siendo $K_1 = 2.5$ y $K_2 = 2.3$. Luego de haber introducido los dieléctricos, calcular el valor: a) de carga que adquiere el capacitor. b) del potencial que alcanza el capacitor.

Rta: Q = 35,4 pC
$$V_{Final}$$
=22,5V

2- A dos resistores, a una misma temperatura inicial, se les miden las resistencias resultando $R_{1lnicial} = 1048 \Omega$, $R_{2lnicial} = 472,0 \Omega$. Se incrementa la temperatura hasta un cierto valor final, y al medirles nuevamente las resistencias, resultan: $R_{1Final} = 1024 \Omega y R_{2Final} = 570,0 \Omega$. Calcular el coeficiente α_2 de R_2 sabiendo que R_1 es un resistor de carbono ($\alpha_1 = -5.10^{-4} \frac{1}{\text{ s}}$)

Rta.
$$\alpha_2$$
= 0,0045 °C⁻¹

3- El amperímetro de la figura es no ideal. Se sabe que la fuente ε_1 entrega energía a razón de $P_{\varepsilon 1}$ = 4,8 W. Calcular: a) el valor y el sentido de la corriente I₃ por la resistencia R₃, b) el valor de la fem ε_2 , c) la resistencia interna del amperímetro R_A

Rta. a)
$$I_3$$
=0,2A hacia la derecha b) \mathcal{E}_2 =1,6V c) R_A =2 Ω

b)
$$\varepsilon_2=1.6$$

c)
$$R_A=2\Omega$$

4 - a) En la experiencia de laboratorio 4.1: capacitores en paralelo. En la propuesta 4.1.c se usan los de capacitancia C_1 = 0,22 μF y el de C_2 = 0,47 μF . Entonces después de conectarlos se tiene que la C_{eq} y la carga neta Q´₀ son:

i)
$$C_{eq} = C_1 - C_2$$
 $Q'_0 = Q_1 + Q_2$

ii)
$$C_{eq} = C_1 - C_2$$
 $Q'_0 = Q_1 - Q_2$

iii)
$$C_{eq} = C_1 + C_2$$
 $Q'_0 = Q_1 + Q_2$

- iv) Ninguna anterior
- b) En la experiencia de laboratorio 6.1: Puente de Wheatstone. Cuando el puente está equilibrado ($I_a = 0$):
 - i) los cuatro resistores quedan a la misma diferencia de potencial (ddp).
 - ii) entre los extremos del micro amperímetro hay una ddp ε , la misma que la fuente.
 - iii) el micro amperímetro es parte de un nodo.
 - iv) ninguna anterior es correcta.