

# GTU Electronics Engineering

# ELEC 331 Electronic Circuits 2

### Fall Semester

**Instructor:** Assist. Prof. Önder Şuvak

# HW 2 Questions

Updated October 20, 2017 - 13:37

Assigned:

Due:

**Answers Out:** 

Late Due:

## Contents

| Title Page |    |
|------------|----|
| Contents   | 1  |
| Question 1 | 6  |
| Question   |    |
| Question 2 | ę. |
| Question   |    |
| Question 3 | 4  |
| Question   |    |
| Question 4 | Ę  |
| Question   |    |
| Question 5 | (  |
| Question   | (  |
| Question 6 | 7  |
| Question   |    |

## **BJT Differential Amplifier Design**

**31.** The circuit of Fig. 10.68 must provide a gain of 50 with  $R_1=R_2=5~{\rm k}\Omega.$  If  $V_{A,n}=5~{\rm V}$  and  $V_{A,p}=4$  V, calculate the required tail current.



**Figure 10.68** 

**Necessary Knowledge and Skills:** BJT small signal analysis, differential mode half circuit analysis, output impedance calculation, voltage gain calculation, parameter selection for design specification

#### **MOS Amplifier**

**51.** A student who has a single-ended voltage source constructs the circuit shown in Fig. 10.75, hoping to obtain differential outputs. Assume perfect symmetry but  $\lambda = 0$  for simplicity.



Figure 10.75

- (a) Viewing  $M_1$  as a common-source stage degenerated by the impedance seen at the source of  $M_2$ , calculate  $v_X$  in terms of  $v_{in}$ .
- (b) Viewing  $M_1$  as a source follower and  $M_2$  as a common-gate stage, calculate  $v_Y$  in terms of  $v_{in}$ .
- (c) Add the results obtained in (a) and (b) with proper polarities. If the voltage gain is defined as  $(v_X v_Y)/v_{in}$ , how does it compare with the gain of differentially-driven pairs?

**Necessary Knowledge and Skills:** Common source/gate amplifiers, small signal equivalent MOS, differential pair gain and other calculations, performance comparisons

#### **MOS Differential Pair**

53. Calculate the differential voltage gain of the circuits depicted in Fig. 10.77. Assume perfect symmetry and  $\lambda > 0$ . You may need to compute the gain as  $A_v = -G_m R_{out}$  in some cases.



**Necessary Knowledge and Skills:** MOS small signal analysis, output impedance calculation, common/differential mode half circuits, cascode structure, virtual ground in differential mode, voltage gain computation

#### **BJT Differential Amplifier with Parasitics**

**55.** Due to a manufacturing error, a parasitic resistance,  $R_P$ , has appeared in the circuit of Fig. 10.78. Calculate the voltage gain.



Figure 10.78

**Necessary Knowledge and Skills:** BJT small signal analysis, differential mode half circuit analysis, voltage gain computation, virtual ground in differential mode

#### MOS Diff. Amp. (Mismatch)

**7.14** A design error has resulted in a gross mismatch in the circuit of Fig. P7.14. Specifically,  $Q_2$  has twice the W/L ratio of  $Q_1$ . If  $v_{id}$  is a small sine-wave signal, find:

- (a)  $I_{D1}$  and  $I_{D2}$ .
- (b)  $V_{OV}$  for each of  $Q_1$  and  $Q_2$ .
- (c) The differential gain  $A_d$  in terms of  $R_D$ , I, and  $V_{OV}$ .



FIGURE P7.14

**Necessary Knowledge and Skills:** MOS differential, transistor mismatch, differential gain computation

#### **BJT Differential Amp. With Current Source**

9.39 A differential amplifier is shown in Fig. P9.39. The transistors are identical. Assume  $V_{\rm BE}=0.7$  V,  $V_{\rm T}=26$  mV,  $\beta_{\rm F}=50$ , and  $V_{\rm A}=40$  V. Calculate the values of  $A_{\rm d}$ ,  $R_{\rm id}$ ,  $A_{\rm c}$ ,  $R_{\rm ic}$ , and CMRR.



#### FIGURE P9.39



Necessary Knowledge and Skills: Current source output current and impedance computation, BJT differential pair, BJT small signal analysis, common/differential mode half circuit analysis, voltage gain computations in common/differential modes, CMRR calculation