NOTES ON LAMBDA CALCULUS

VAIBHAV KARVE

These notes were last updated September 13, 2018. They are notes taken from my reading of *Haskell Programming from First Principles* by *Chris Allen, Julie Moronuki*. I plan on expanding these notes further by reading the following at some unspecified time in the future:

- A tutorial introduction to the Lambda Calculus by Raúl Rojas.
- Introduction to Lambda Calculus by Henk Barendregt and Erik Barendsen.
- Proofs and Types by Jean-Yves Girard, Paul Taylor and Yves Lafont.

Contents

1.	Basics and definitions	1
2.	Equivalences and reductions	1
3.	Examples	3

1. Basics and definitions

- (1) Lambda calculus has three basic components or lambda terms expressions, variables and abstractions.
- (2) Expressions are variable names, abstractions, or combinations of other expression. Variables have no meaning or value, they are only names for potential inputs to functions. An abstraction is a function it is a lambda term that has a head (a lambda) and a body and is applied to an argument. An argument is an input value.
- (3) Abstractions have two parts a *head* and a *body*. The head of the function is a λ followed by a variable name. The body of the function is another expression. For example: $\lambda x...x^2$ Lambda abstractions are anonymous functions.
- (4) The variable named in the head is the *parameter* and *binds* all instances of that same variable in the body of the function. The dot (.) separates the parameters of the lambda from the function body.

2. Equivalences and reductions

(1) Alpha equivalence states that $\lambda x..x$ is the same as $\lambda y..y$, that is, the variables x and y are not semantically meaningful except in their role in their single expressions.

(2) Beta reduction: when applying a function to an argument, substitute the input expression for all instances of bound variables within the body of the abstraction.

$$(\lambda x.xx)3 = xx[x := 3] = 33$$

Hence, Beta reduction is the process of applying a lambda term to an argument, replacing the bound variables with the value of the argument, and eliminating the head.

$$(\lambda x.x)\lambda y.y = x[x := (\lambda y.y)]$$
$$= \lambda y.y$$

(3) Application in lambda calculus is left-associative.

$$(\lambda x.x)(\lambda y.y)z = ((\lambda x.x)(\lambda y.y))z$$
 left-associativity
 $= (x[x := \lambda y.y])z$ beta reduction step 1
 $= (\lambda y.y)z$ beta reduction step 2
 $= y[y := z]$ beta reduction step 1
 $= z$ beta reduction step 2

(4) Variables in the body that are not bound by the head are called *free variables*. For example, y is a free variable in the expression $\lambda x.xy$

$$(\lambda x.xy)z = xy[x := z] = zy$$

- (5) The alpha equivalence does not apply to free variables.
- (6) Currying: named after Haskell Curry is the shorthand notation of the type $\lambda xy..xy$ for multiple lambda functions $\lambda x.(\lambda y.xy)$.

$$\lambda xy.xy \ 1 \ 2 = \lambda x.(\lambda y.xy) \ 1 \ 2$$

$$= (\lambda y.xy)[x := 1] \ 2$$

$$= (\lambda y.1y) \ 2$$

$$= (1y) \ [y := 2]$$

$$= 1 \ 2$$

or by using currying we perform the same calculation in fewer steps,

$$\lambda xy.xy \ 1 \ 2 = (\lambda y.xy)[x := 1] \ 2$$

$$= (\lambda y.1y)2$$

$$= (1y)[y := 2]$$

$$= 1 \ 2$$

- (7) A lambda term is in *beta normal form* when one cannot beta reduce (apply lambdas to arguments) its expressions any further. This corresponds to a fully evaluated function or fully executed program. The identity function $\lambda x.x$ is in normal form.
- (8) A combinator is a lambda term with no free variables. Combinators serve only to combine the arguments that are given. The following are combinators: $\lambda x.x$, $\lambda xy.x$, $\lambda xy.x$, $\lambda xy.xz$ and the following are not: $\lambda y.x$, $\lambda x.xz$. The point of combinators is that they can only combine the arguments they are given, without injecting any new values or random data.
- (9) A lambda term whose beta reduction never terminates is said to diverge. The lambda term omega defined as $(\lambda x.xx)(\lambda x.xx)$ diverges because

$$(\lambda x.xx)(\lambda x.xx) = (\lambda x.xx)(\lambda y.yy) = xx[x := \lambda y.yy] = (\lambda y.yy)(\lambda y.yy).$$

3. Examples

$$(\lambda xyz.xz(yz))(\lambda x.z)(\lambda x.a) \qquad (\lambda y.y)(\lambda x.xx)(\lambda z.zq)$$

$$= (\lambda xyb.xb(yb))(\lambda c.z)(\lambda d.a) \qquad = (\lambda x.xx)(\lambda z.zq)$$

$$= (\lambda y.(\lambda z.a)y)1 \qquad = (\lambda yb.(\lambda c.z)b(yb))(\lambda d.a) \qquad = (\lambda z.zq)(\lambda z.zq)$$

$$= (\lambda z.a)1 \qquad = \lambda b.(\lambda c.z)b((\lambda d.a)b) \qquad = (\lambda z.zq)(\lambda x.xq)$$

$$= a \qquad = \lambda b.z((\lambda d.a)b) \qquad = (\lambda x.xq)q$$

$$= \lambda b.za \qquad = qq$$

$(\lambda a.aa)(\lambda b.ba)c$		$(\lambda xy.xxy)(\lambda x.xy)(\lambda x.xz)$
$= (\lambda d. dd)(\lambda b. ba)c$	$(\lambda xyz.xz(yz))(\lambda mn.m)(\lambda p.p)$	$= (\lambda xy.xxy)(\lambda a.ay)(\lambda b.bz)$
$= (\lambda b.ba)(\lambda b.ba)c$	$= (\lambda yz.(\lambda mn.m)z(yz))(\lambda p.p)$	$= (\lambda y.(\lambda a.ay)(\lambda c.cy)y)(\lambda b.bz)$
$= (\lambda b.ba)(\lambda d.da)c$	$= \lambda z. (\lambda mn.m) z ((\lambda p.p) z)$	$= (\lambda a.a(\lambda b.bz))(\lambda c.c(\lambda b.bz))(\lambda b.bz)$
$= (\lambda d.da)a)c$ $= ((\lambda d.da)a)c$	$= \lambda z.(\lambda n.z)((\lambda p.p)z)$	$= (\lambda a.a(\lambda b.bz))(\lambda c.c(\lambda d.dz))(\lambda e.ez)$
$= ((\lambda a.aa)a)c$ $= aac$	$=\lambda z.z$	$= ((\lambda c.c(\lambda d.dz))(\lambda b.bz))(\lambda e.ez)$
		$= ((\lambda b.bz)(\lambda d.dz))(\lambda e.ez)$
		$= ((\lambda d.dz)z)(\lambda e.ez)$
	$(\lambda abc.cba)zz(\lambda wv.w)$	$=(zz)(\lambda e.ez)$

 $=yy(\lambda b.bz)$