Supplementary Methods 1

Chris Terry

Contents

1	Sun	nmary	1			
2 Loading and looking at data						
	2.1	How much data?	2			
	2.2	How much uncertainty in types of parameters	2			
3	Plo	tting raw data with model best-fit	4			
4	Fitting set of models with different levels of parameterisation					
	4.1	AIC Tables	7			
5	Full	Posteriors	8			
	5.1	Plotting	9			
	5.2	Determining fraction of pairs that follow identified pattern	10			
	5.3	Repeating across the whole bootstrap sample	11			
6	Sess	sion Info	13			

1 Summary

This document is a knit .rmd file that works through the steps of the reanalysis of *Small rainfall changes drive substantial changes in plant coexistence* by Van Dyke et al 2022 (Nature), to support a 'Matters Arising' response. Original data from the authors is available at https://doi.org/10.5281/zenodo.7083314

Section 4 details the methods used to conduct a model comparison analysis to examine the level of statistical support for the treatment impacting the key model parameters and subsequent key coexistence quantities.

Section 5 propagates forward the authors original full bootstrap through to the final assessment of whether the predicted coexistence outcome species pair differs between treatments.

2 Loading and looking at data

2.1 How much data?

```
nrow(seed_data)
## [1] 1677
count(seed_data, background, focal, treat) %>% arrange(n) %>% head()
##
    background focal treat n
## 1
          FEMI URLI
## 2
          URLI SACO
                         W 10
          PLER HOMU
                         W 11
## 3
## 4
          URLI HOMU
                         D 11
## 5
          URLI PLER
                         W 11
## 6
          ACWR HOMU
                         D 12
```

2.2 How much uncertainty in types of parameters

```
### no lambda sd saved, so will need to reconstruct, following original code

spp_treat_boot_combos <-read.csv(paste0(Path_to_Orig, "output/final_output_nls_boot_1000.csv"))

#Data frame with medians and sds for parameters----

spp_list <- sort(na.omit( unique(seed_data$focal)))

treat_list <- sort( na.omit( unique(seed_data$Tr)))

spp_treat_combos <- expand.grid(species = spp_list, treatment = treat_list)

comp_labels <- sort( na.omit( unique(seed_data$background) ))</pre>
```

```
spp_treat_boot_combos$sp_pair <- paste(spp_treat_boot_combos$focal,</pre>
                                        spp_treat_boot_combos$competitor, sep = "_")
spp_treat_comp_combos <- expand.grid(focal = spp_list,</pre>
                                      competitor = comp_labels,
                                      treatment = treat_list)
boot NEW <- spp treat comp combos %>% mutate(alpha = 0, alpha sd = 0,
         lambda = 0, lambda sd = 0)
boot NEW$sp pair <- paste(boot NEW$focal, boot NEW$competitor, sep = " ")
for( i in 1:nrow(spp_treat_comp_combos)) {
  sp1 <- spp_treat_comp_combos[i, "focal"] %>% unlist
  sp2 <- spp_treat_comp_combos[i, "competitor"] %>% unlist
  treatt <- spp_treat_comp_combos[i , "treatment"] %>% unlist
  boot_NEW[i, "alpha"] <- median(with(spp_treat_boot_combos,</pre>
                                       alpha[treatment == treatt &
                                               focal == sp1 &
                                                competitor == sp2
                                       ]), na.rm=TRUE)
  boot_NEW[i, "alpha_sd"] <- sd(with(spp_treat_boot_combos,</pre>
                                      alpha[treatment == treatt &
                                              focal == sp1 &
                                              competitor == sp2
                                      ]), na.rm=TRUE)
  boot_NEW[i, "lambda"] <- median(with(spp_treat_boot_combos,</pre>
                                        lambda[focal == sp1 & competitor == sp2 &
                                                  treatment == treatt]), na.rm=TRUE)
  boot_NEW[i, "lambda_sd"] <- sd(with(spp_treat_boot_combos,</pre>
                                       lambda[focal == sp1 & competitor == sp2 &
                                                 treatment == treatt]), na.rm=TRUE)
}
boot_NEW %>%
  filter(focal==competitor ) %>%
  mutate(LamCV= lambda_sd/lambda) %>%
  summarise(mean(LamCV))
     mean(LamCV)
##
       0.3195691
## 1
boot_NEW %>%
  mutate(AlpCV= alpha_sd/alpha)%>%
  summarise(mean(AlpCV))
##
     mean(AlpCV)
```

1 0.7400443

3 Plotting raw data with model best-fit

```
spp_list <- sort(na.omit( unique(seed_data$focal)))</pre>
set.seed(3)
AddPreds<- function(focalsp){
  focal_data <- filter(seed_data, focal == focalsp)</pre>
 fit<- nls(log(num_seeds)~log(lambda[Tr]/(1+a_ACWR[Tr]*N_acwr+a_FEMI[Tr]*N_femi+
                                               a_HOMU[Tr]*N_homu+a_PLER[Tr]*N_pler+
                                               a_SACO[Tr]*N_saco+a_URLI[Tr]*N_urli)),
            data=focal_data,
            start=list('lambda'= c(100,100),
                        a_ACWR=c(0.1, 0.1), a_FEMI=c(0.1, 0.1),
                        a_HOMU=c(0.1, 0.1), a_PLER=c(0.1, 0.1),
                        a_SACO=c(0.1, 0.1),a_URLI=c(0.1, 0.1)),
            lower = c(1, 1, rep(.001, 12)),
            upper = c(10000, 10000, rep(2, 12)),
            control = list(maxiter = 100000),
            algorithm = 'port')
  focal_data$Prediction <- predict(fit)</pre>
  return(focal_data)
data_predict <- map_df( spp_list,AddPreds)</pre>
```



```
ggsave('ExFig1_RawPredict.png', height = 8, width = 8, dpi = 200)
```

4 Fitting set of models with different levels of parameterisation

```
a_SACO[Tr]*N_saco+a_URLI[Tr]*N_urli)),
                data=focal_data,
                start=list('lambda'= c(100,100),
                           a_ACWR=c(0.1, 0.1), a_FEMI=c(0.1, 0.1),
                           a_{\text{HOMU}} = c(0.1, 0.1), a_{\text{PLER}} = c(0.1, 0.1),
                           a_SACO=c(0.1, 0.1),a_URLI=c(0.1, 0.1)),
               lower = c(1, 1, rep(.001, 12)),
                upper = c(10000, 10000, rep(2, 12)),
                control = list(maxiter = 100000),
                algorithm = 'port')
fit_test_nosplit<- nls(log(num_seeds)~log(lambda/(1+a_ACWR*N_acwr+a_FEMI*N_femi+
                                                      a_HOMU*N_homu+a_PLER*N_pler+
                                                      a_SACO*N_saco+a_URLI*N_urli)),
                        data=focal_data,
                        start=list('lambda'= c(100),
                                   a_ACWR=c(0.1), a_FEMI=c(0.1),
                                   a_HOMU=c(0.1), a_PLER=c(0.1),
                                   a_SACO = c(0.1), a_URLI = c(0.1)),
                        lower = c(1, rep(.001, 6)),
                        upper = c(10000, rep(2, 6)),
                        control = list(maxiter = 100000),
                        algorithm = 'port')
fit test justA<- nls(log(num seeds)~log(lambda/(1+a ACWR[Tr]*N acwr+a FEMI[Tr]*N femi+
                                                    a HOMU[Tr]*N homu+a PLER[Tr]*N pler+
                                                    a_SACO[Tr]*N_saco+a_URLI[Tr]*N_urli)),
                      data=focal_data,
                      start=list('lambda'= c(100),a_ACWR=c(0.1, 0.1), a_FEMI=c(0.1, 0.1),
                                 a_{\text{HOMU}} = c(0.1, 0.1), a_{\text{PLER}} = c(0.1, 0.1),
                                 a_SACO=c(0.1, 0.1), a_URLI=c(0.1, 0.1)),
                      lower = c(1, rep(.001, 12)),
                      upper = c(10000, rep(2, 12)),
                      control = list(maxiter = 100000),
                      algorithm = 'port')
fit_test_justLam<- nls(log(num_seeds)~log(lambda/(1+a_ACWR[Tr]*N_acwr+a_FEMI[Tr]*N_femi+
                                                      a_HOMU[Tr]*N_homu+a_PLER[Tr]*N_pler+
                                                      a_SACO[Tr]*N_saco+a_URLI[Tr]*N_urli)),
                        data=focal data,
                        start=list('lambda'= c(100,100),a_ACWR=c(0.1, 0.1), a_FEMI=c(0.1, 0.1),
                                   a_{\text{HOMU}} = c(0.1, 0.1), a_{\text{PLER}} = c(0.1, 0.1),
                                    a SACO=c(0.1, 0.1), a URLI=c(0.1, 0.1)),
                        lower = c(1,1, rep(.001, 12)),
                        upper = c(10000, 10000, rep(2, 12)),
                        control = list(maxiter = 100000),
                        algorithm = 'port')
XX <- data.frame(FocalSp = focalsp,
                 LogL_NoTre = logLik(fit_test_nosplit),
                  LogL_JustA = logLik(fit_test_justA),
                 LogL_JustL = logLik(fit_test_justLam),
                  LogL_Orig = logLik(fit_test)) %>%
```

4.1 AIC Tables

```
AICTable<- map_df( spp_list, FindFourAICs)
knitr::kable(t(AICTable), digits = 1)</pre>
```

FocalSp	ACWR	FEMI	HOMU	PLER	SACO	URLI
$LogL_NoTre$	-438.2903	-417.4120	-268.7606	-440.4331	-407.5359	-332.6062
$LogL_JustA$	-432.2594	-413.8134	-263.8901	-421.0175	-392.0230	-326.2338
$LogL_JustL$	-432.1867	-413.6031	-262.7776	-420.4936	-392.0226	-325.7340
$LogL_Orig$	-432.0466	-407.1755	-263.6904	-420.9895	-391.1440	-325.8967
k _NoTre	7	7	7	7	7	7
k_JustA	13	13	13	13	13	13
k_JustL	8	8	8	8	8	8
k_Orig	14	14	14	14	14	14
aic_NoTre	890.5807	848.8241	551.5213	894.8662	829.0719	679.2124
aic_JustA	890.5187	853.6269	553.7802	868.0349	810.0460	678.4675
aic_JustL	880.3734	843.2062	541.5552	856.9872	800.0453	667.4680
aic_Orig	892.0933	842.3510	555.3809	869.9789	810.2881	679.7933

knitr::kable(select(AICTable,FocalSp , starts_with('aic')), digits = 1)

FocalSp	aic_NoTre	aic_JustA	aic_JustL	aic_Orig
ACWR	890.6	890.5	880.4	892.1
FEMI	848.8	853.6	843.2	842.4
HOMU	551.5	553.8	541.6	555.4
PLER	894.9	868.0	857.0	870.0
SACO	829.1	810.0	800.0	810.3
URLI	679.2	678.5	667.5	679.8

5 Full Posteriors

5.0.1 Which pair-directions to plot?

5.0.2 Data Preparation

```
nls_boot_pairs$sp_pair <- paste(nls_boot_pairs$focal, nls_boot_pairs$competitor, sep = "_")
nls_boot_pairs %>%
  filter(sp_pair %in% PairsToPlot) %>%
  mutate( Treatment = ifelse(treatment ==1, 'WET', 'DRY')) -> OriginalErrorBarsForAdding
```

5.0.3 Create coexistence area for plot - min/max fitness difference that permits coexistence

5.1 Plotting

```
spp_treat_boot_combos %>%
  filter(sp_pair %in% PairsToPlot) %>%
  mutate( Treatment = ifelse(treatment ==1, 'WET', 'DRY')) %>%
  arrange(snd) %>%
  ggplot()+
  geom_line(data = coexistarea_df, aes(x = niche_diff, y = max_fitness_ratio)) +
  geom\_line(data = coexistarea\_df, aes(x = niche\_diff, y = min\_fitness\_ratio)) +
  geom_ribbon(data = coexistarea_df, aes(x = niche_diff, ymin = min_fitness_ratio,
                                         ymax = max_fitness_ratio), fill = 'grey80') +
  geom_point(aes(x = snd, y = fd, col = Treatment), alpha = 0.1, size = 0.1)+
  facet_wrap(~sp_pair, nrow = 3)+
  scale_y_log10()+
  coord_cartesian(xlim = c(-0.2,1), ylim = c(0.01, 100)) +
  theme_classic()+
  geom_point(aes(x = snd, y = fd, color = Treatment),
             data= OriginalErrorBarsForAdding) +
  geom_errorbar(aes(x = snd, ymin = fd_low, ymax = fd_high),
                data= OriginalErrorBarsForAdding) +
  geom_errorbarh(aes(y = fd, xmin = snd_low, xmax = snd_high),
                 data= OriginalErrorBarsForAdding)+
  scale color manual(values=c('WET' ="#4E84C4", 'DRY' = "#D16103"),
                     name = "Treatment:",
                     labels = c("Ambient", "Reduced Rain"))+
  theme(legend.position = 'bottom', axis.text.x = element_text(angle = -90))+
  ylab('Maximum Fitness Ratio')+
  xlab('Stabilising Niche Difference')
```



```
ggsave('ExFig2_CoexistPlots.png', height = 10, width = 8, dpi = 200)
```

5.2 Determining fraction of pairs that follow identified pattern

```
(1-1/nls_boot_pairs_unique$fd_superior)),
                                          1, 0)
##Stabilizing niche and fitness differences: (Table ED3)
pars_boot <- nls_boot_pairs_unique %>%
  select(focal,competitor,treatment,snd,
         fd,fd_superior,coexist, fd_sup_sp)
pars_boot$species <- paste0(substr(pars_boot$focal, 1, 2),</pre>
                             "-".
                             substr(pars_boot$competitor, 1, 2))
pars_boot$outcome <- ifelse(pars_boot$coexist == 1, "coexist",</pre>
                             ifelse(pars_boot$fd_sup_sp == 2,
                                    paste0(substr(pars_boot$species, 4, 5), " wins"),
                                    paste0(substr(pars_boot$species, 1, 2), " wins")))
pair_labels <- pars_boot %>%
  filter(treatment == 1 ) %>%
  filter(fd > 1)
pair_labels <- unique(pair_labels$species)</pre>
pars_boot <- pars_boot %>% filter(species %in% pair_labels)
pars_boot <- subset(pars_boot, select = -c(focal, competitor, coexist,</pre>
                                              fd sup sp, fd superior))
pars_boot_wide<-pivot_wider(data = pars_boot,</pre>
                             names_from = treatment,
                             values_from = c(snd, fd, outcome))%>%
  arrange(species)
```

5.3 Repeating across the whole bootstrap sample

```
spp_treat_boot_combos %>%
 filter(sp_pair %in% PairsToPlot) %>%
 mutate(fd_superior <- ifelse(fd < 1, 1/fd,fd) ,</pre>
         fd sup sp \leftarrow ifelse(fd \leftarrow 1, 1, 2),
         coexist = ifelse((snd > (1-1/fd_superior)), 1, 0 ),
         outcome = ifelse(coexist == 1, "coexist",
                           ifelse(fd_sup_sp == 2,
                                  pasteO(focal , " wins"),
                                  pasteO(competitor , " wins")))) %>%
  group_by(treatment, sp_pair) %>%
  count(outcome) %>%
  pivot_wider(id_cols = c(treatment, sp_pair), names_from = outcome,
              values_from = n, values_fill = 0) -> PosteriorResults
## Just looking at change in 'coexist' result
PosteriorResults %>%
 mutate( Treatment = ifelse(treatment ==1, 'WET', 'DRY'))%>%
```

```
mutate(coexist_frac = coexist/1000) %>%
  ungroup() %>%
  select(Treatment, sp_pair, coexist_frac) %>%
  pivot_wider(id_cols = sp_pair, names_from = Treatment, values_from = coexist_frac) %>%
  mutate( AbsoluteChange = WET-DRY) %>%
  mutate(species = paste0(substr(sp_pair
                                             , 1, 2), ## For Joining with pars_boot_wide
                           substr(sp_pair
                                             , 6, 7))) %>%
 left_join(pars_boot_wide, by = "species") -> JoinResults
JoinResults$OriginalFindsChange <- JoinResults$outcome_1 != JoinResults$outcome_2</pre>
## probability of each draw showing switch from coexistence = prob(coexist1) *prob
## Assuming just two outcomes: coexist, or something else
# If change from victory -> coexist, probability observe change = 1-prob(coexist1) * prob(coexist)
# If change from coexist -> victory, probability observe change = prob(coexist1) * 1-prob(coexist)
JoinResults %>%
  filter(OriginalFindsChange) %>%
  mutate(LikelihoodObserveChange = ifelse(outcome_1 == 'coexist',
                                          WET *(1-DRY),
                                          (1-WET)*DRY)) %>%
  select(SpeciesPair =species,
        LikelihoodCoexist Wet= WET,
        LikelihoodCoexist_Dry = DRY,
         outcome_Wet=outcome_1, outcome_Dry=outcome_2,
        LikelihoodObserveChange )-> JoinResults2
knitr::kable(JoinResults2,digits =3)
```

${\bf Species Pair}$	$LikelihoodCoexist_We \rlap{\rlap{$L}} ikelil$	noodCoexist_Dry	${ m outcome}_{_}$	$_{ m Wetoutcome_}$	$_DryLikelihoodObserveChange$
AC-FE	0.554	0.069	coexist	FE wins	0.516
AC-HO	0.715	0.004	coexist	HO wins	0.712
AC-PL	0.361	0.855	PL wins	coexist	0.546
HO-FE	0.901	0.225	coexist	HO wins	0.698
PL-FE	0.005	0.551	FE wins	coexist	0.548
SA-AC	0.729	0.095	coexist	AC wins	0.660
SA-PL	0.285	0.998	PL wins	coexist	0.714
UR-AC	0.191	0.830	AC wins	coexist	0.671
UR-FE	0.032	0.521	FE wins	coexist	0.504
UR-SA	0.092	0.800	SA wins	coexist	0.726

JoinResults2\$LikelihoodObserveChange %>% mean

[1] 0.6296292

6 Session Info

sessionInfo()

```
## R version 4.1.1 (2021-08-10)
## Platform: x86_64-w64-mingw32/x64 (64-bit)
## Running under: Windows 10 x64 (build 19045)
## Matrix products: default
##
## locale:
## [1] LC_COLLATE=English_United Kingdom.1252
## [2] LC_CTYPE=English_United Kingdom.1252
## [3] LC_MONETARY=English_United Kingdom.1252
## [4] LC NUMERIC=C
## [5] LC_TIME=English_United Kingdom.1252
## attached base packages:
## [1] stats
                 graphics grDevices utils
                                                datasets methods
                                                                    base
##
## other attached packages:
## [1] forcats_0.5.2
                       stringr_1.4.1
                                        dplyr_1.0.10
                                                        purrr 0.3.5
## [5] readr_2.1.3
                       tidyr_1.2.1
                                        tibble_3.1.8
                                                        ggplot2_3.3.6
## [9] tidyverse_1.3.2
##
## loaded via a namespace (and not attached):
  [1] tidyselect_1.2.0
                            xfun_0.34
                                                 haven_2.5.1
  [4] gargle 1.2.1
                            colorspace 2.0-3
                                                 vctrs 0.5.0
                                                 yaml_2.3.6
## [7] generics_0.1.3
                            htmltools_0.5.3
## [10] utf8_1.2.2
                            rlang_1.0.6
                                                 pillar_1.8.1
## [13] withr_2.5.0
                            glue_1.6.2
                                                 DBI_1.1.3
## [16] dbplyr_2.2.1
                            modelr_0.1.9
                                                 readxl_1.4.1
## [19] lifecycle 1.0.3
                            munsell 0.5.0
                                                 gtable 0.3.1
## [22] cellranger_1.1.0
                            ragg_1.2.4
                                                 rvest_1.0.3
## [25] evaluate_0.17
                            labeling_0.4.2
                                                 knitr_1.40
## [28] tzdb_0.3.0
                            fastmap_1.1.0
                                                 fansi_1.0.3
## [31] highr_0.9
                            broom_1.0.1
                                                 scales_1.2.1
## [34] backports_1.4.1
                            googlesheets4_1.0.1 jsonlite_1.8.3
## [37] systemfonts_1.0.4
                            farver_2.1.1
                                                 fs_{1.5.2}
## [40] textshaping_0.3.6
                            hms_1.1.2
                                                 digest_0.6.30
## [43] stringi_1.7.8
                            grid_4.1.1
                                                 cli_3.4.1
## [46] tools_4.1.1
                            magrittr_2.0.3
                                                 crayon_1.5.2
## [49] pkgconfig_2.0.3
                            ellipsis_0.3.2
                                                 xm12_1.3.3
## [52] reprex_2.0.2
                            googledrive_2.0.0
                                                 lubridate_1.8.0
## [55] assertthat 0.2.1
                            rmarkdown_2.17
                                                 httr 1.4.4
## [58] rstudioapi_0.14
                            R6_2.5.1
                                                 compiler_4.1.1
```