India

National Olympiad

2002

- $\boxed{1}$ For a convex hexagon ABCDEF in which each pair of opposite sides is unequal, consider the following statements.
 - (a_1) AB is parallel to DE. (a_2) AE = BD.
 - (b_1) BC is parallel to EF. (b_2) BF = CE.
 - (c_1) CD is parallel to FA. (c_2) CA = DF.
 - (a) Show that if all six of these statements are true then the hexagon is cyclic.
 - (b) Prove that, in fact, five of the six statements suffice.
- [2] Find the smallest positive value taken by $a^3 + b^3 + c^3 3abc$ for positive integers a, b, c. Find all a, b, c which give the smallest value
- 3 If x, y are positive reals such that x + y = 2 show that $x^3y^3(x^3 + y^3) \le 2$.
- 4 Is it true that there exist 100 lines in the plane, no three concurrent, such that they intersect in exactly 2002 points?
- Do there exist distinct positive integers a, b, c such that a, b, c, -a+b+c, a-b+c, a+b-c, a+b+c form an arithmetic progression (in some order).
- The numbers $1, 2, 3, ..., n^2$ are arranged in an $n \times n$ array, so that the numbers in each row increase from left to right, and the numbers in each column increase from top to bottom. Let a_{ij} be the number in position i, j. Let b_j be the number of possible values for a_{jj} . Show that

$$b_1 + b_2 + \dots + b_n = \frac{n(n^2 - 3n + 5)}{3}.$$