Scalar curvature comparison of weakly convex rotationally symmetric sets

Xiaoxiang Chai (Korea Institute for Advanced Study, KIAS)

Workshop on Geometric Analysis and related topics, 8-13 Jan

Outline

Gauss-Bonnet theorem

Theorem Let (S, γ) be a surface with a metric γ , then

$$2\pi\chi(\Sigma) = \int_{\Sigma} K + \int_{\partial\Sigma} \kappa + \sum_{i} (\pi - \alpha_{i})$$

where K is the Gauss curvature, κ is the geodesic curvature of $\partial \Sigma$ in Σ and α_i is the interior turning angles.

Euler characteristic for surfaces: Triangulate the surface, then calculate $\chi(\Sigma) = V - E + F$; for surface, $\chi(\Sigma) = 2 - 2g - b$ where g is the genus and b is the number of the boundary components

Gauss-Bonnet theorem

Figure: A surface with piecewise smooth boundary

Important corollaries I

▶ On (T^2, g) , there exists no metrics with $K_g \ge 0$ but $K \ne 0$;

Important corollaries I

- ▶ On (T^2, g) , there exists no metrics with $K_g \ge 0$ but $K \ne 0$;
 - There is no boundary term and angle term; so $2\pi\chi(\Sigma)=0=\int_{\mathsf{T}^2}K\geq 0$, which means that K has to vanish identically

Important corollaries II

▶ On (S^2, g) , there exists no metrics with $K_g \ge 1$ with $g \ge \bar{g}$.

Important corollaries II

- ightharpoonup On (S^2, g) , there exists no metrics with $K_g \geq 1$ with $g \geq \bar{g}$.
 - $4\pi = 2\pi \chi(\Sigma) = \int_{S^2} K \operatorname{dvol}_{g} \ge \int_{S^2} \operatorname{dvol}_{\tilde{g}} = \operatorname{vol}(S^2)$

Important corollaries II

- ightharpoonup On (S^2, g) , there exists no metrics with $K_g \geq 1$ with $g \geq \bar{g}$.
 - $4\pi = 2\pi \chi(\Sigma) = \int_{S^2} K \operatorname{dvol}_g \ge \int_{S^2} \operatorname{dvol}_{\bar{g}} = \operatorname{vol}(S^2)$
 - Has to be equalities

Scalar curvature: Generalizations of Gauss curvature

On an *n*-dimensional manifold (M, g), the volume of small geodesic ball at $p \in M$ satisfies

$$vol(B_r(p)) = \omega_n r^n (1 - \frac{R_g(p)}{6(n+2)} r^2 + O(r^4))$$

► The only place where I saw an application of this definition is where L. Guth re-proved the Gromov's systolic inequality.

 $ightharpoonup (\mathbf{T}^n, g)$

- $ightharpoonup (\mathbf{T}^n, g)$
 - Schoen-Yau 75) There exists no metrics on (\mathbf{T}^3, g) with $R_g \geq 0$ but $R_{\cdot} \neq 0$.

- $ightharpoonup (\mathbf{T}^n, g)$
 - ► (Schoen-Yau 75) There exists no metrics on (\mathbf{T}^3, g) with $R_g \geq 0$ but $R_{\cdot} \neq 0$.
- $ightharpoonup (S^n, g)$

- $ightharpoonup (\mathbf{T}^n, g)$
 - (Schoen-Yau 75) There exists no metrics on (\mathbf{T}^3, g) with $R_g \geq 0$ but $R_1 \neq 0$.
- \triangleright (Sⁿ, g)
 - ▶ (Llarull 98) On (S^n, g) , there exists no metrics with $K_g \ge n(n-1)$ with $g \ge \bar{g}$.

- ightharpoonup (T^n, g)
 - (Schoen-Yau 75) There exists no metrics on (\mathbf{T}^3, g) with $R_g \geq 0$ but $R_1 \neq 0$.
- \triangleright (Sⁿ, g)
 - Llarull 98) On (S^n, g) , there exists no metrics with $K_g \ge n(n-1)$ with $g \ge \bar{g}$.
 - Llarull used spinors

Rigidity of $\mathbf{T}^2 \times \mathbf{R}$ with negative scalar curvature bound

Metric $dt^2 + e^{2t}g_{T^2}$

Rigidity of $\mathbf{T}^2 \times \mathbf{R}$ with negative scalar curvature bound

- Metric $dt^2 + e^{2t}g_{\mathbf{T}^2}$
- lacktriangle Easy to check that it is of constant sectional curvature -1

Rigidity of $\mathbf{T}^2 \times \mathbf{R}$ with negative scalar curvature bound

- Metric $dt^2 + e^{2t}g_{\mathbf{T}^2}$
- ightharpoonup Easy to check that it is of constant sectional curvature -1
- \triangleright Observation Each t slice is of mean curvature -2

Rigidity of $T^2 \times R$ with negative scalar curvature bound

- Metric $dt^2 + e^{2t}g_{\mathbf{T}^2}$
- \triangleright Easy to check that it is of constant sectional curvature -1
- \triangleright Observation Each t slice is of mean curvature -2
- ▶ Theorem Let g be another metric on $M^3 = \mathbf{T}^2 \times [0,1]$, if $H_0 \geq 2$, $H_1 \geq -2$ and $R_g \geq -6$, then g is hyperbolic. (Min Oo 95, Andersson-Cai-Galloway 08)

Figure of $\textbf{T}^2 \times [0,1]$

Figure: Figure of $\boldsymbol{T}^2 \times [0,1]$

► R³ and H³ do not admit compact deformations of metric which increases the scalar curvature

- ▶ R³ and H³ do not admit compact deformations of metric which increases the scalar curvature
 - lt is implied by the compact case:

- ▶ R³ and H³ do not admit compact deformations of metric which increases the scalar curvature
 - It is implied by the compact case:
 - ► For R³ identify cubes and get the torus

- ▶ R³ and H³ do not admit compact deformations of metric which increases the scalar curvature
 - It is implied by the compact case:
 - ► For R³ identify cubes and get the torus
 - ► For H³ identify cubes on horospheres and get a "band"

Min-Oo conjecture for half-sphere S^3_+

▶ ∂S_+^3 sort of infinity

Min-Oo conjecture for half-sphere S^3_+

- $ightharpoonup \partial S_+^3$ sort of infinity
- ▶ (Min-Oo 95) There is no deformation of metric fixing the induced metric on the boundary and $H_{\partial \mathbf{S}_{+}^{3}} \geq 0$ such that the scalar curvature is increased.

Min-Oo conjecture for half-sphere S^3_+

- ▶ ∂S_+^3 sort of infinity
- (Min-Oo 95) There is no deformation of metric fixing the induced metric on the boundary and $H_{\partial S_+^3} \ge 0$ such that the scalar curvature is increased.
- Not true: Brendle-Marques 2010; true with $g \geq \bar{g}$

Figure of half-sphere S^3_+

Figure: Figure of S_+^3

Easier case with proof: non-rigidity

Schoen-Yau (1975) proof of nonexistence dimension 3

ightharpoonup Mean curvature $\Sigma \subset M$

$$\mathsf{vol}(\Sigma') = \mathsf{vol}(\Sigma) + t \int_{\Sigma} \phi H + O(t^2)$$

where Σ' is the normal variation with magtitude ϕ

ightharpoonup Mean curvature $\Sigma \subset M$

$$\mathsf{vol}(\Sigma') = \mathsf{vol}(\Sigma) + t \int_{\Sigma} \phi H + \mathit{O}(t^2)$$

where $oldsymbol{\Sigma}'$ is the normal variation with magtitude ϕ

ightharpoonup minimal $H \equiv 0$

ightharpoonup Mean curvature $\Sigma \subset M$

$$\mathsf{vol}(\Sigma') = \mathsf{vol}(\Sigma) + t \int_{\Sigma} \phi H + O(t^2)$$

where Σ' is the normal variation with magtitude ϕ

- ightharpoonup minimal $H \equiv 0$
- ▶ Stable: $\frac{\mathrm{d}^2\mathrm{vol}(\Sigma_t)}{\mathrm{d}t^2} \geq 0$ for all $\phi \in C^\infty(\Sigma)$.

ightharpoonup Mean curvature $\Sigma \subset M$

$$\mathsf{vol}(\Sigma') = \mathsf{vol}(\Sigma) + t \int_{\Sigma} \phi H + O(t^2)$$

where Σ' is the normal variation with magtitude ϕ

- ightharpoonup minimal $H \equiv 0$
- ▶ Stable: $\frac{\mathrm{d}^2 \mathrm{vol}(\Sigma_t)}{\mathrm{d} t^2} \geq 0$ for all $\phi \in C^{\infty}(\Sigma)$.
- Explicitly

$$\int_{\Sigma} (\mathsf{Ric}(\nu) + |A|^2) \phi^2 \leqslant \int_{\Sigma} |\nabla \phi|^2$$

μ -bubble or prescribed mean curvature surface

Given a function $h \in C^{\infty}(M)$, we say that Σ is of prescribed mean curvature h if the mean curvature H agrees with h along Σ .

Stability: There exists a nonzero nonnegative $C^{2,\alpha}$ function such that $\nabla_{\phi\nu}(H-h)\geq 0$.

μ -bubble or prescribed mean curvature surface

Given a function $h \in C^{\infty}(M)$, we say that Σ is of prescribed mean curvature h if the mean curvature H agrees with h along Σ .

- Stability: There exists a nonzero nonnegative $C^{2,\alpha}$ function such that $\nabla_{\phi\nu}(H-h)\geq 0$.
- Explicitly $-\Delta \phi (\operatorname{Ric}(\nu) + |A|^2 + \nabla_{\nu} h)\phi \ge 0$

μ -bubble or prescribed mean curvature surface

Given a function $h \in C^{\infty}(M)$, we say that Σ is of prescribed mean curvature h if the mean curvature H agrees with h along Σ .

- Stability: There exists a nonzero nonnegative $C^{2,\alpha}$ function such that $\nabla_{\phi\nu}(H-h)\geq 0$.
- Explicitly $-\Delta \phi (\operatorname{Ric}(\nu) + |A|^2 + \nabla_{\nu} h)\phi \geq 0$
- Equivalent to

$$\int_{\Sigma} (\nabla_{\nu} h + \operatorname{Ric}(\nu) + |A|^2) \phi^2 \leqslant \int_{\Sigma} |\nabla \phi|^2$$

for all smooth ϕ .

Central example

Metric $dt^2 + \phi(t)^2 g$

Central example

- ightharpoonup Metric $dt^2 + \phi(t)^2g$
- lacktriangle Each level set is of mean curvature $(n-1)\phi'/\phi$

Central example

- ightharpoonup Metric $dt^2 + \phi(t)^2g$
- **Each** level set is of mean curvature $(n-1)\phi'/\phi$
- lt is also stable $\phi = \langle \partial_t, \nu \rangle$

Notes μ -bubble

I will only talk about the case with h being a constant. However, I would like to mention for general h, it is used in

Nonnexistence of positive scalar curvature on aspherical manifolds in 4,5 dimensions (Chodosh-Li 20, Gromov 20)

By choosing suitable h.

Notes μ -bubble

I will only talk about the case with h being a constant. However, I would like to mention for general h, it is used in

- Nonnexistence of positive scalar curvature on aspherical manifolds in 4,5 dimensions (Chodosh-Li 20, Gromov 20)
- Classification of complete 3-manifolds with uniformly PSC (Jian Wang 22)

By choosing suitable h.

Notes μ -bubble

I will only talk about the case with h being a constant. However, I would like to mention for general h, it is used in

- Nonnexistence of positive scalar curvature on aspherical manifolds in 4,5 dimensions (Chodosh-Li 20, Gromov 20)
- Classification of complete 3-manifolds with uniformly PSC (Jian Wang 22)
- Nonnexistence of PSC metrics on Tⁿ♯M where M is not compact

By choosing suitable h.

Restatement of Geroch conjecture

Schoen-Yau 75 There exists no metrics on (\mathbf{T}^3, g) with $R_g \geq 0$ but $R_g \neq 0$.

ln dimension 3, assume strict R > 0

- ln dimension 3, assume strict R > 0
- ▶ Find a minimal hypersurface Σ in $H_2(M; \mathbb{Z})$, the surface is stable.

- ln dimension 3, assume strict R > 0
- ▶ Find a minimal hypersurface Σ in $H_2(M; \mathbb{Z})$, the surface is stable.
- Stability

$$\int_{\Sigma} (\mathsf{Ric}(\nu) + |A|^2) \zeta^2 \leqslant \int_{\Sigma} |\nabla \zeta|^2$$

- ln dimension 3, assume strict R > 0
- ▶ Find a minimal hypersurface Σ in $H_2(M; \mathbb{Z})$, the surface is stable.
- Stability

$$\int_{\Sigma} (\mathsf{Ric}(\nu) + |A|^2) \zeta^2 \leqslant \int_{\Sigma} |\nabla \zeta|^2$$

Schoen-Yau Rewrite (essentially Gauss equation)

$$Ric(\nu, \nu) = \frac{1}{2}R - \frac{1}{2}R_{\Sigma} - \frac{1}{2}|A|^2 + \frac{1}{2}H^2$$

- ln dimension 3, assume strict R > 0
- ▶ Find a minimal hypersurface Σ in $H_2(M; \mathbb{Z})$, the surface is stable.
- Stability

$$\int_{\Sigma} (\mathsf{Ric}(\nu) + |A|^2) \zeta^2 \leqslant \int_{\Sigma} |\nabla \zeta|^2$$

Schoen-Yau Rewrite (essentially Gauss equation)

$$Ric(\nu, \nu) = \frac{1}{2}R - \frac{1}{2}R_{\Sigma} - \frac{1}{2}|A|^2 + \frac{1}{2}H^2$$

► So

$$\frac{1}{2}\int_{\Sigma}(R-R_{\Sigma}+|A|^2)\zeta^2\leqslant\int_{\Sigma}|\nabla\zeta|^2$$

► Take the test function to be 1

$$0 \geq \frac{1}{2} \int_{\Sigma} R - R_{\Sigma} + |A|^2$$

▶ Take the test function to be 1

$$0 \geq \frac{1}{2} \int_{\Sigma} R - R_{\Sigma} + |A|^2$$

► Apply the Gauss-Bonnet theorem

$$2\pi\chi(\Sigma) \geq rac{1}{2}\int_{\Sigma}R + |A|^2 > 0$$

▶ Take the test function to be 1

$$0 \geq \frac{1}{2} \int_{\Sigma} R - R_{\Sigma} + |A|^2$$

► Apply the Gauss-Bonnet theorem

$$2\pi\chi(\Sigma) \geq \frac{1}{2} \int_{\Sigma} R + |A|^2 > 0$$

▶ But by construction $\chi(\Sigma) = 0$

▶ Due to Andersson-Cai-Galloway 08

- ▶ Due to Andersson-Cai-Galloway 08
- ▶ Find a stable surface of prescribed mean curvature −2

- ► Due to Andersson-Cai-Galloway 08
- \blacktriangleright Find a stable surface of prescribed mean curvature -2
- ▶ Use

$$\int_{\Sigma} (\mathsf{Ric}(\nu) + |A|^2) \phi^2 \leqslant \int_{\Sigma} |\nabla \phi|^2$$

- Due to Andersson-Cai-Galloway 08
- ightharpoonup Find a stable surface of prescribed mean curvature -2
- ▶ Use

$$\int_{\Sigma} (\mathsf{Ric}(\nu) + |A|^2) \phi^2 \leqslant \int_{\Sigma} |\nabla \phi|^2$$

for all smooth ϕ .

Schoen-Yau Rewrite

- ▶ Due to Andersson-Cai-Galloway 08
- \blacktriangleright Find a stable surface of prescribed mean curvature -2
- ▶ Use

$$\int_{\Sigma} (\mathsf{Ric}(\nu) + |A|^2) \phi^2 \leqslant \int_{\Sigma} |\nabla \phi|^2$$

- Schoen-Yau Rewrite
 - $Ric(\nu, \nu) = \frac{1}{2}R \frac{1}{2}R_{\Sigma} \frac{1}{2}|A|^2 + \frac{1}{2}H^2$

- Due to Andersson-Cai-Galloway 08
- \triangleright Find a stable surface of prescribed mean curvature -2
- Use

$$\int_{\Sigma} (\mathsf{Ric}(\nu) + |A|^2) \phi^2 \leqslant \int_{\Sigma} |\nabla \phi|^2$$

- Schoen-Yau Rewrite
 - ► Ric(ν, ν) = $\frac{1}{2}R \frac{1}{2}R_{\Sigma} \frac{1}{2}|A|^2 + \frac{1}{2}H^2$ ► $|A|^2 = \frac{1}{2}H^2 + |A^0|^2$

- ▶ Due to Andersson-Cai-Galloway 08
- \blacktriangleright Find a stable surface of prescribed mean curvature -2
- ▶ Use

$$\int_{\Sigma} (\mathsf{Ric}(\nu) + |A|^2) \phi^2 \leqslant \int_{\Sigma} |\nabla \phi|^2$$

- Schoen-Yau Rewrite
 - $Ric(\nu, \nu) = \frac{1}{2}R \frac{1}{2}R_{\Sigma} \frac{1}{2}|A|^2 + \frac{1}{2}H^2$
 - $|A|^2 = \frac{1}{2}H^2 + |A^0|^2$
 - $\operatorname{Ric}(\nu) + |A|^2 = \frac{1}{2}(R + 6 2K + |A^0|^2)$

Boundary version

What is the boundary version?

Result with a free boundary proof

▶
$$T^{n-1} \times [0,1]$$
?

Figure: Finding a free boundary minimal surface in a cube

Result with a free boundary proof

- ▶ $T^{n-1} \times [0,1]$?
- ► Cube $[0,1]^{n-k} \times \mathbf{T}^k$ (Li 2020)

Figure: Finding a free boundary minimal surface in a cube

Results with capillary (constant angle) surface proof

► Euclidean tetrahedron (Li 2020)

Figure: Finding a capillary minimal surface in a tetrahedron

Results with capillary (constant angle) surface proof

- ► Euclidean tetrahedron (Li 2020)
- ▶ hyperbolic tetrahedron (Chai-Wang 22)

Figure: Finding a capillary minimal surface in a tetrahedron

Results with capillary (varying angles) surface proof

 Rotationally symmetric weakly convex body (Chai-Wang 22~23)

Results with capillary (varying angles) surface proof

- Rotationally symmetric weakly convex body (Chai-Wang 22~23)
- ➤ The method is suggested by Gromov 19 in his Four Lectures on Scalar Curvature

More previous Results

▶ (Miao 02) If ∂M is isometric to a surface in the Euclidean 3-space and $H_{\partial M} \geqslant \bar{H}_{\partial M}$ with $R_g \geq 0$, then M is isometric to the region bounded by ∂M .

More previous Results

- ▶ (Miao 02) If ∂M is isometric to a surface in the Euclidean 3-space and $H_{\partial M} \geqslant \bar{H}_{\partial M}$ with $R_g \geq 0$, then M is isometric to the region bounded by ∂M .
- (Shi-Tam 03) If ∂M is isometric to a surface in the Euclidean 3-space and $R_g \geq 0$, then

$$\int_{\partial M} (\bar{H}_{\partial M} - H_{\partial M}) \ge 0$$

.

More previous Results

- ▶ (Miao 02) If ∂M is isometric to a surface in the Euclidean 3-space and $H_{\partial M} \geqslant \bar{H}_{\partial M}$ with $R_g \geq 0$, then M is isometric to the region bounded by ∂M .
- lacksquare (Shi-Tam 03) If ∂M is isometric to a surface in the Euclidean 3-space and $R_g \geq 0$, then

$$\int_{\partial M} (\bar{H}_{\partial M} - H_{\partial M}) \ge 0$$

▶ Lott 21: with extra assumption $g \ge \bar{g}$; used spinors in spirit of Llarull

Compact 3-manifolds (M,g) which are bounded by a weakly convex surface and also rotationally symmetric with respect to the x^3 -coordinate axis in 3.

- Compact 3-manifolds (M,g) which are bounded by a weakly convex surface and also rotationally symmetric with respect to the x^3 -coordinate axis in 3 .
- ightharpoonup Surface ∂M lies between the two coordinate planes and has nonempty intersection with them

$$P_{\pm} = \{x \in \mathbb{R}^3 : x^3 = \pm 1\}$$

depending on the geometry of

- Compact 3-manifolds (M,g) which are bounded by a weakly convex surface and also rotationally symmetric with respect to the x^3 -coordinate axis in 3 .
- ightharpoonup Surface ∂M lies between the two coordinate planes and has nonempty intersection with them

$$P_{\pm} = \{ x \in \mathbb{R}^3 : x^3 = \pm 1 \}$$

depending on the geometry of

1. The set $\partial M \cap P_{\pm}$ is a disk;

- ▶ Compact 3-manifolds (M, g) which are bounded by a weakly convex surface and also rotationally symmetric with respect to the x^3 -coordinate axis in 3 .
- ightharpoonup Surface ∂M lies between the two coordinate planes and has nonempty intersection with them

$$P_{\pm} = \{x \in \mathbb{R}^3 : x^3 = \pm 1\}$$

depending on the geometry of

- 1. The set $\partial M \cap P_{\pm}$ is a disk;
- 2. The set $\partial M \cap P_{\pm}$ contains only p_{\pm} and ∂M is conical at p_{\pm} ;

Basics

- ▶ Compact 3-manifolds (M, g) which are bounded by a weakly convex surface and also rotationally symmetric with respect to the x^3 -coordinate axis in 3 .
- ightharpoonup Surface ∂M lies between the two coordinate planes and has nonempty intersection with them

$$P_{\pm} = \{ x \in \mathbb{R}^3 : x^3 = \pm 1 \}$$

depending on the geometry of

- 1. The set $\partial M \cap P_{\pm}$ is a disk;
- 2. The set $\partial M \cap P_{\pm}$ contains only p_{\pm} and ∂M is conical at p_{\pm} ;
- 3. The set $\partial M \cap P_{\pm}$ contains only p_{\pm} and ∂M is smooth at p_{\pm} .

Structure of vertex

Figure: Structure at p_+

Theorem

Theorem (Chai and Wang 22~23) Let (M^3,g) be a compact 3-manifold with nonnegative scalar curvature such that its boundary ∂M is diffeomorphic to a weakly convex rotationally symmetric surface in \mathbb{R}^3 . The boundary ∂M bounds a region \bar{M} (which we call a model or a reference) in \mathbb{R}^3 , let the induced metric of the flat metric be $\bar{\sigma}$ and the induced metric of g on ∂M be σ . We assume that $\sigma \geqslant \bar{\sigma}$ and $H_{\partial M} \geqslant \bar{H}_{\partial M}$ on $\partial M \cap \{x \in \mathbb{R}^3 : -1 < x^3 < 1\}$.

1. If $\partial M \cap P_{\pm}$ is a disk, we further assume that $H_{\partial M} \geqslant 0$ at $\partial M \cap P_{\pm}$ and the dihedral angles forming by P_{\pm} and $\partial M \setminus (P_{+} \cup P_{-})$ are no greater than the Euclidean reference.

Then (M, g) is flat.

Theorem

Theorem (Chai and Wang 22~23) Let (M^3,g) be a compact 3-manifold with nonnegative scalar curvature such that its boundary ∂M is diffeomorphic to a weakly convex rotationally symmetric surface in \mathbb{R}^3 . The boundary ∂M bounds a region \bar{M} (which we call a model or a reference) in \mathbb{R}^3 , let the induced metric of the flat metric be $\bar{\sigma}$ and the induced metric of g on ∂M be σ . We assume that $\sigma \geqslant \bar{\sigma}$ and $H_{\partial M} \geqslant \bar{H}_{\partial M}$ on $\partial M \cap \{x \in \mathbb{R}^3 : -1 < x^3 < 1\}$.

- 1. If $\partial M \cap P_{\pm}$ is a disk, we further assume that $H_{\partial M} \geqslant 0$ at $\partial M \cap P_{\pm}$ and the dihedral angles forming by P_{\pm} and $\partial M \setminus (P_{+} \cup P_{-})$ are no greater than the Euclidean reference.
- 2. If ∂M is conical at p_{\pm} , we further assume that $\sigma=\bar{\sigma}$ at p_{\pm} . Then (M,g) is flat.

Finding a capillary minimal surface

Figure: Finding a capillary surface with varying contact angle (Usually $\gamma_1 \neq \gamma_2$

Comment

Assume that ∂M is isometric to the model, we can remove weak convexity

Notations

▶ Use bar to denote every geometric quantites of the model

Figure: Labelling of various vectors

Notations

- ▶ Use bar to denote every geometric quantites of the model
- See the following figure:

Figure: Labelling of various vectors

Model

▶ The angles $\cos \bar{\gamma} = \langle \bar{X}, \frac{\partial}{\partial x^3} \rangle$

Model

- ▶ The angles $\cos \bar{\gamma} = \langle \bar{X}, \frac{\partial}{\partial x^3} \rangle$
- ▶ Each level set $\bar{M} \cap \{x^3 = s\}$ is minimal and meeting ∂M with angle $\bar{\gamma}$

Model

- ▶ The angles $\cos \bar{\gamma} = \langle \bar{X}, \frac{\partial}{\partial x^3} \rangle$
- ▶ Each level set $\bar{M} \cap \{x^3 = s\}$ is minimal and meeting ∂M with angle $\bar{\gamma}$
- ► It is stable

Variational problem

► Consider the following functional

$$F(E) := \mathcal{H}^2(\partial E \cap \mathrm{int} M) - \int_{\partial E \cap \partial M} \cos \bar{\gamma}$$

Variational problem

Consider the following functional

$$F(E) := \mathcal{H}^2(\partial E \cap \mathrm{int} M) - \int_{\partial E \cap \partial M} \cos \bar{\gamma}$$

▶ First variation of F: Letting $f = \langle Y, N \rangle$,

$$\mathcal{A}'(0) = \int_{\Sigma} \mathit{H} f + \int_{\partial \Sigma} \langle Y,
u - \eta \cos ar{\gamma}
angle$$

Second variation

Assume that Σ is minimal capillary, we have the second variation formula

$$\mathcal{A}''(0) = Q(f, f) := -\int_{\Sigma} (f \Delta f + (|A|^2 + \operatorname{Ric}(N))f^2) + \int_{\partial \Sigma} f(\frac{\partial f}{\partial \nu} - qf),$$

where q is defined to be

$$q = \frac{1}{\sin \bar{\gamma}} A_{\partial M}(\eta, \eta) - \cot \bar{\gamma} A(\nu, \nu) + \frac{1}{\sin^2 \bar{\gamma}} \partial_{\eta} \cos \bar{\gamma}.$$

Second variation

Assume that Σ is minimal capillary, we have the second variation formula

$$\mathcal{A}''(0) = Q(f, f) := -\int_{\Sigma} (f \Delta f + (|A|^2 + \operatorname{Ric}(N))f^2) + \int_{\partial \Sigma} f(\frac{\partial f}{\partial \nu} - qf),$$

where q is defined to be

$$q = \frac{1}{\sin \bar{\gamma}} A_{\partial M}(\eta, \eta) - \cot \bar{\gamma} A(\nu, \nu) + \frac{1}{\sin^2 \bar{\gamma}} \partial_{\eta} \cos \bar{\gamma}.$$

▶ Rewrite of q: Along the boundary $\partial Σ$,

$$\tfrac{1}{\sin\bar{\gamma}}A_{\partial M}(\eta,\eta)-\cot\bar{\gamma}A(\nu,\nu)=-H\cot\bar{\gamma}+\tfrac{H_{\partial M}}{\sin\bar{\gamma}}-\kappa$$

where κ is the geodesic curvature of $\partial \Sigma$ in Σ .

Second variation

Assume that Σ is minimal capillary, we have the second variation formula

$$\mathcal{A}''(0) = Q(f, f) := -\int_{\Sigma} (f \Delta f + (|A|^2 + \operatorname{Ric}(N))f^2) + \int_{\partial \Sigma} f(\frac{\partial f}{\partial \nu} - qf),$$

where q is defined to be

$$q = \frac{1}{\sin \bar{\gamma}} A_{\partial M}(\eta, \eta) - \cot \bar{\gamma} A(\nu, \nu) + \frac{1}{\sin^2 \bar{\gamma}} \partial_{\eta} \cos \bar{\gamma}.$$

Proof Rewrite of q: Along the boundary $\partial \Sigma$,

$$\tfrac{1}{\sin\bar{\gamma}}A_{\partial M}(\eta,\eta)-\cot\bar{\gamma}A(\nu,\nu)=-H\cot\bar{\gamma}+\tfrac{H_{\partial M}}{\sin\bar{\gamma}}-\kappa$$

where κ is the geodesic curvature of $\partial \Sigma$ in Σ .

Note the free boundary version: $A_{\partial M}(\eta, \eta) = H_{\partial M} - \kappa$

Using rewrites

Taking $f \equiv 1$ in the second variation and use the rewrites we obtain that we have that

$$\int_{\Sigma} K + \int_{\partial \Sigma} \kappa \geqslant \int_{\partial \Sigma} \frac{H_{\partial M}}{\sin \bar{\gamma}} + \frac{1}{\sin^2 \bar{\gamma}} \partial_{\eta} \cos \bar{\gamma} + \frac{1}{2} \int_{\Sigma} R_{g} + |A|^{2}.$$

Using the bounds $R_g + |A|^2 \geqslant 0$, $H_{\partial M} \geqslant \bar{H}_{\partial M}$ and the Gauss-Bonnet theorem,

$$2\pi\chi(\Sigma)\geqslant \int_{\partial\Sigma}\left(\frac{H_{\partial M}}{\sin\bar{\gamma}}+\frac{1}{\sin^2\bar{\gamma}}\partial_{\eta}\cos\bar{\gamma}\right)\mathrm{d}\lambda.$$

What is
$$\frac{\bar{H}_{\partial M}}{\sin \bar{\gamma}} + \frac{1}{\sin^2 \bar{\gamma}} \partial_{\bar{\eta}} \cos \bar{\gamma}$$
?

Everything is computed with respect to the flat metric

What is
$$\frac{\bar{H}_{\partial M}}{\sin\bar{\gamma}} + \frac{1}{\sin^2\bar{\gamma}} \partial_{\bar{\eta}} \cos\bar{\gamma}$$
?

- Everything is computed with respect to the flat metric
- ▶ Recall that $M \cap \{x^3 = s\}$ is stable

What is
$$\frac{\bar{H}_{\partial M}}{\sin \bar{\gamma}} + \frac{1}{\sin^2 \bar{\gamma}} \partial_{\bar{\eta}} \cos \bar{\gamma}$$
?

- Everything is computed with respect to the flat metric
- ▶ Recall that $M \cap \{x^3 = s\}$ is stable
- Very quickly, we have that

$$rac{ar{H}_{\partial M}}{\sinar{\gamma}} + rac{1}{\sin^2ar{\gamma}}\partial_{ar{\eta}}\cosar{\gamma} = \kappa_{\it S}$$

where κ_s is the geodesic curvature of $\partial M \cap \{x^3 = s\}$ in $\{x^3 = s\}$

What is
$$\frac{\bar{H}_{\partial M}}{\sin \bar{\gamma}} + \frac{1}{\sin^2 \bar{\gamma}} \partial_{\bar{\eta}} \cos \bar{\gamma}$$
?

- Everything is computed with respect to the flat metric
- ▶ Recall that $M \cap \{x^3 = s\}$ is stable
- Very quickly, we have that

$$\frac{\bar{H}_{\partial M}}{\sin\bar{\gamma}} + \frac{1}{\sin^2\bar{\gamma}} \partial_{\bar{\eta}} \cos\bar{\gamma} = \kappa_s$$

where κ_s is the geodesic curvature of $\partial M \cap \{x^3 = s\}$ in $\{x^3 = s\}$

▶ The boundary curve is a circle, κ_s is the inverse of the radius; then

$$\int_{\partial \Sigma} \left(\frac{H_{\partial M}}{\sin \bar{\gamma}} - \frac{1}{\sin \bar{\gamma}} \frac{\partial \bar{\gamma}}{\partial \eta} \right) d\lambda \geqslant 2\pi$$

What is
$$\frac{\bar{H}_{\partial M}}{\sin \bar{\gamma}} + \frac{1}{\sin^2 \bar{\gamma}} \partial_{\bar{\eta}} \cos \bar{\gamma}$$
?

- Everything is computed with respect to the flat metric
- ▶ Recall that $M \cap \{x^3 = s\}$ is stable
- ► Very quickly, we have that

$$rac{ar{H}_{\partial M}}{\sinar{\gamma}} + rac{1}{\sin^2ar{\gamma}}\partial_{ar{\eta}}\cosar{\gamma} = \kappa_{s}$$

where κ_s is the geodesic curvature of $\partial M \cap \{x^3 = s\}$ in $\{x^3 = s\}$

▶ The boundary curve is a circle, κ_s is the inverse of the radius; then

$$\int_{\partial \Sigma} \left(\frac{H_{\partial M}}{\sin \bar{\gamma}} - \frac{1}{\sin \bar{\gamma}} \frac{\partial \bar{\gamma}}{\partial \eta} \right) d\lambda \geqslant 2\pi$$

Now we can trace back inequalities

Thank you

Thank you!