Assignment -3

Assignment Date	21 October 2022
Student Name	YUVARAJ SAI S
Student Roll Number	210519205060
Maximum Marks	2 Marks

Data Visualization and Pre-processing

Building a Regression Model

1. Perform Below Visualizations.

Univariate Analysis

1. Summary Statistics

```
In [2]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import statsmodels.api as sm
```

In [5]: file_data = pd.read_csv(r'C:\Users\Guru\Desktop\abalone\abalone.csv')
 file_data

Out[5]:

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
0	М	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.1500	15
1	М	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.0700	7
2	F	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.2100	9
3	М	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.1550	10
4	I	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.0550	7
4172	F	0.565	0.450	0.165	0.8870	0.3700	0.2390	0.2490	11
4173	М	0.590	0.440	0.135	0.9660	0.4390	0.2145	0.2605	10
4174	М	0.600	0.475	0.205	1.1760	0.5255	0.2875	0.3080	9
4175	F	0.625	0.485	0.150	1.0945	0.5310	0.2610	0.2960	10
4176	М	0.710	0.555	0.195	1.9485	0.9455	0.3765	0.4950	12

4177 rows x 9 columns

Add a Age column in a dataset

In [6]: file_data['Age']=''
file_data.head()

Out[6]:

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings Age	
0	М	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.150	15	
1	М	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.070	7	
2	F	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.210	9	
3	М	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.155	10	
4	1	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.055	7	

```
In [7]: file_data['Age']=file_data['Rings']+1.5
    file_data.head()
```

Out[7]:

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings	Age
0	М	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.150	15	16.5
1	М	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.070	7	8.5
2	F	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.210	9	10.5
3	М	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.155	10	11.5
4	1	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.055	7	8.5

Drop the Rings Column

```
In [8]: file_data = file_data.drop(columns=['Rings'],axis=1)
file_data
```

Out[8]:

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Age
0	M	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.1500	16.5
1	М	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.0700	8.5
2	F	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.2100	10.5
3	М	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.1550	11.5
4	1	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.0550	8.5
4172	F	0.565	0.450	0.165	0.8870	0.3700	0.2390	0.2490	12.5
4173	М	0.590	0.440	0.135	0.9660	0.4390	0.2145	0.2605	11.5
4174	М	0.600	0.475	0.205	1.1760	0.5255	0.2875	0.3080	10.5
4175	F	0.625	0.485	0.150	1.0945	0.5310	0.2610	0.2960	11.5
4176	M	0.710	0.555	0.195	1.9485	0.9455	0.3765	0.4950	13.5

4177 rows × 9 columns

```
In [9]: file_data['Height'].mean()
```

Out[9]: 0.1395163993296614

```
In [10]: file_data['Height'].median()
```

Out[10]: 0.14

```
In [11]: file_data['Height'].std()
Out[11]: 0.04182705660725703
```

2. Frequency Table

3. Create Charts


```
In [15]: sns.kdeplot(file_data['Length'])
```

Out[15]: <AxesSubplot:xlabel='Length', ylabel='Density'>

Bi - Variate Analysis

1. Barplot

Out[17]: <AxesSubplot:xlabel='Sex', ylabel='Age'>

2. Correlation Coefficients

In [18]: file_data.corr()

Out[18]:

	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Age
Length	1.000000	0.986812	0.827554	0.925261	0.897914	0.903018	0.897706	0.556720
Diameter	0.986812	1.000000	0.833684	0.925452	0.893162	0.899724	0.905330	0.574660
Height	0.827554	0.833684	1.000000	0.819221	0.774972	0.798319	0.817338	0.557467
Whole weight	0.925261	0.925452	0.819221	1.000000	0.969405	0.966375	0.955355	0.540390
Shucked weight	0.897914	0.893162	0.774972	0.969405	1.000000	0.931961	0.882617	0.420884
Viscera weight	0.903018	0.899724	0.798319	0.966375	0.931961	1.000000	0.907656	0.503819
Shell weight	0.897706	0.905330	0.817338	0.955355	0.882617	0.907656	1.000000	0.627574
Age	0.556720	0.574660	0.557467	0.540390	0.420884	0.503819	0.627574	1.000000

3.Linear Plot

```
In [19]: data = sns.lineplot(x = file_data["Length"], y = file_data["Age"])
    data
```

```
Out[19]: <AxesSubplot:xlabel='Length', ylabel='Age'>
```


4. Scatter Plot

```
In [20]: data = sns.scatterplot(x = file_data['Age'],y = file_data['Diameter'], colo
    r="green")
    data
```

Out[20]: <AxesSubplot:xlabel='Age', ylabel='Diameter'>

Multi - Variate Analysis

```
In [21]: x = sns.scatterplot(x=file_data['Whole weight'],y=file_data['Age'],hue=file
    _data["Sex"])
x
```

Out[21]: <AxesSubplot:xlabel='Whole weight', ylabel='Age'>

4. Perform descriptive statistics on the dataset

```
In [22]:
         file data.shape
Out[22]: (4177, 9)
In [23]: file_data.info()
          <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 4177 entries, 0 to 4176
         Data columns (total 9 columns):
               Column
                                Non-Null Count
                                                Dtype
          0
                                                object
               Sex
                                4177 non-null
          1
               Length
                                4177 non-null
                                                float64
               Diameter
                                4177 non-null
                                                float64
          2
                                                float64
          3
               Height
                                4177 non-null
              Whole weight
                                4177 non-null
                                                float64
          4
               Shucked weight
                                4177 non-null
                                                float64
          5
          6
               Viscera weight
                                4177 non-null
                                                float64
               Shell weight
                                4177 non-null
                                                float64
          7
                                4177 non-null
                                                float64
         dtypes: float64(8), object(1)
         memory usage: 293.8+ KB
```

In [24]: | file_data.describe()

Out[24]:

	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell we
count	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000
mean	0.523992	0.407881	0.139516	0.828742	0.359367	0.180594	0.238
std	0.120093	0.099240	0.041827	0.490389	0.221963	0.109614	0.139
min	0.075000	0.055000	0.000000	0.002000	0.001000	0.000500	0.001
25%	0.450000	0.350000	0.115000	0.441500	0.186000	0.093500	0.130
50%	0.545000	0.425000	0.140000	0.799500	0.336000	0.171000	0.234
75%	0.615000	0.480000	0.165000	1.153000	0.502000	0.253000	0.329
max	0.815000	0.650000	1.130000	2.825500	1.488000	0.760000	1.005

In [25]: file_data.head()

Out[25]:

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Age
0	М	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.150	16.5
1	М	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.070	8.5
2	F	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.210	10.5
3	М	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.155	11.5
4	I	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.055	8.5

In [26]: file_data.tail()

Out[26]:

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Age
4172	F	0.565	0.450	0.165	0.8870	0.3700	0.2390	0.2490	12.5
4173	М	0.590	0.440	0.135	0.9660	0.4390	0.2145	0.2605	11.5
4174	М	0.600	0.475	0.205	1.1760	0.5255	0.2875	0.3080	10.5
4175	F	0.625	0.485	0.150	1.0945	0.5310	0.2610	0.2960	11.5
4176	М	0.710	0.555	0.195	1.9485	0.9455	0.3765	0.4950	13.5

```
In [27]: file_data.mean(numeric_only=True)
```

Out[27]: Length 0.523992 Diameter 0.407881 Height 0.139516 Whole weight 0.828742 Shucked weight 0.359367 Viscera weight 0.180594 Shell weight 0.238831 Age 11.433684

dtype: float64

In [28]: file_data.median(numeric_only=True)

Out[28]: Length 0.5450 Diameter 0.4250 Height 0.1400 Whole weight 0.7995 Shucked weight 0.3360 Viscera weight 0.1710 Shell weight 0.2340 10.5000 Age dtype: float64

In [29]: file_data.mode()

Out[29]:

	Sex	Length	gth Diameter Height Whole Shucked weight weight			Viscera weight	Shell weight	Age	
0	М	0.550	0.45	0.15	0.2225	0.175	0.1715	0.275	10.5
1	NaN	0.625	NaN	NaN	NaN	NaN	NaN	NaN	NaN

In [30]: file_data.var(numeric_only=True)

Out[30]:	Length	0.014422
	Diameter	0.009849
	Height	0.001750
	Whole weight	0.240481
	Shucked weight	0.049268
	Viscera weight	0.012015
	Shell weight	0.019377
	Age	10.395266
	dtype: float64	

```
file_data.std(numeric_only=True)
In [31]:
Out[31]: Length
                             0.120093
          Diameter
                             0.099240
          Height
                             0.041827
          Whole weight
                             0.490389
          Shucked weight
                             0.221963
          Viscera weight
                             0.109614
          Shell weight
                             0.139203
          Age
                             3.224169
          dtype: float64
In [32]: | file data.skew(numeric only=True)
                            -0.639873
Out[32]: Length
          Diameter
                            -0.609198
          Height
                             3.128817
          Whole weight
                             0.530959
          Shucked weight
                             0.719098
          Viscera weight
                             0.591852
          Shell weight
                             0.620927
          Age
                             1.114102
          dtype: float64
In [33]: file_data.kurt(numeric_only=True)
Out[33]: Length
                              0.064621
          Diameter
                             -0.045476
          Height
                             76.025509
          Whole weight
                             -0.023644
          Shucked weight
                              0.595124
          Viscera weight
                              0.084012
          Shell weight
                              0.531926
                              2.330687
          Age
          dtype: float64
          quantile = file_data['Whole weight'].quantile(q=[0.75, 0.25])
In [34]:
          quantile
Out[34]: 0.75
                  1.1530
          0.25
                  0.4415
          Name: Whole weight, dtype: float64
```

```
In [35]: x = file_data.Diameter
sns.boxplot(x=x)
```

Out[35]: <AxesSubplot:xlabel='Diameter'>

5. Handle the Missing values

```
print(file_data.isnull())
In [36]:
                                                      Whole weight
                   Sex
                        Length
                                  Diameter
                                             Height
                                                                      Shucked weight \
                          False
                                     False
                                              False
                                                              False
                                                                                False
          0
                 False
                          False
                                                              False
                                                                                False
          1
                 False
                                     False
                                              False
          2
                 False
                          False
                                     False
                                              False
                                                              False
                                                                                False
          3
                 False
                          False
                                     False
                                              False
                                                              False
                                                                                False
          4
                 False
                          False
                                     False
                                              False
                                                              False
                                                                                False
                   . . .
                           . . .
                                       . . .
                                                . . .
                                                                 . . .
                                                                                   . . .
          4172
                 False
                          False
                                                              False
                                                                                False
                                     False
                                              False
          4173
                 False
                          False
                                     False
                                              False
                                                              False
                                                                                False
          4174
                 False
                          False
                                     False
                                              False
                                                              False
                                                                                False
          4175
                 False
                          False
                                     False
                                              False
                                                              False
                                                                                False
                                     False
                                                              False
                                                                                False
          4176
                 False
                          False
                                              False
                 Viscera weight
                                  Shell weight
                                                     Age
          0
                           False
                                           False
                                                   False
                           False
                                           False
          1
                                                   False
          2
                           False
                                           False
                                                   False
          3
                           False
                                           False
                                                   False
          4
                           False
                                           False
                                                   False
                                             . . .
          . . .
          4172
                           False
                                           False
                                                  False
          4173
                           False
                                           False
                                                   False
          4174
                           False
                                           False
                                                   False
                                                   False
          4175
                           False
                                           False
          4176
                           False
                                           False
                                                  False
```

[4177 rows x 9 columns]

```
In [37]:
          print(file_data.isnull().sum())
          Sex
          Length
                             0
          Diameter
                             0
          Height
          Whole weight
                             0
          Shucked weight
          Viscera weight
                             0
          Shell weight
                             0
                             0
          Age
          dtype: int64
In [38]:
         file_data.isna().any()
Out[38]:
          Sex
                             False
          Length
                             False
          Diameter
                             False
          Height
                             False
          Whole weight
                             False
          Shucked weight
                             False
          Viscera weight
                             False
          Shell weight
                             False
          Age
                             False
          dtype: bool
```

6. Find the outliers and replace the outliers

Out[40]: <AxesSubplot:xlabel='Age'>


```
In [41]: x = file_data.Age
sns.boxplot(x=x)
```

```
Out[41]: <AxesSubplot:xlabel='Age'>
```



```
In [42]: x = np.where(file_data['Age']>57,39, file_data['Age'])
In [43]: sns.boxplot(x=x)
```

Out[43]: <AxesSubplot:>

7. Check for Categorical columns and perform encoding.

```
In [44]: import warnings
warnings.filterwarnings('ignore')
x = pd.Categorical(file_data["Whole weight"])
x
```

Out[44]: [0.5140, 0.2255, 0.6770, 0.5160, 0.2050, ..., 0.8870, 0.9660, 1.1760, 1.094 5, 1.9485]

Length: 4177

Categories (2429, float64): [0.0020, 0.0080, 0.0105, 0.0130, ..., 2.5550,

2.6570, 2.7795, 2.8255]

In [45]: pd.get_dummies(file_data["Height"]).head(10)

Out[45]:

	0.000	0.010	0.015	0.020	0.025	0.030	0.035	0.040	0.045	0.050	 0.210	0.215	0.220	0
0	0	0	0	0	0	0	0	0	0	0	 0	0	0	
1	0	0	0	0	0	0	0	0	0	0	 0	0	0	
2	0	0	0	0	0	0	0	0	0	0	 0	0	0	
3	0	0	0	0	0	0	0	0	0	0	 0	0	0	
4	0	0	0	0	0	0	0	0	0	0	 0	0	0	
5	0	0	0	0	0	0	0	0	0	0	 0	0	0	
6	0	0	0	0	0	0	0	0	0	0	 0	0	0	
7	0	0	0	0	0	0	0	0	0	0	 0	0	0	
8	0	0	0	0	0	0	0	0	0	0	 0	0	0	
9	0	0	0	0	0	0	0	0	0	0	 0	0	0	

10 rows x 51 columns

```
In [46]: pd.get_dummies(file_data).head(10)
```

Out[46]:

	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Age	Sex_F	Sex_I	Sex_M
0	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.150	16.5	0	0	1
1	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.070	8.5	0	0	1
2	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.210	10.5	1	0	0
3	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.155	11.5	0	0	1
4	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.055	8.5	0	1	0
5	0.425	0.300	0.095	0.3515	0.1410	0.0775	0.120	9.5	0	1	0
6	0.530	0.415	0.150	0.7775	0.2370	0.1415	0.330	21.5	1	0	0
7	0.545	0.425	0.125	0.7680	0.2940	0.1495	0.260	17.5	1	0	0
8	0.475	0.370	0.125	0.5095	0.2165	0.1125	0.165	10.5	0	0	1
9	0.550	0.440	0.150	0.8945	0.3145	0.1510	0.320	20.5	1	0	0

8. Split the data into dependent and independent variables.

```
In [48]: X = file_data.iloc[:, :-1].values
    print(X)

[['M' 0.455 0.365 ... 0.2245 0.101 0.15]
        ['M' 0.35 0.265 ... 0.0995 0.0485 0.07]
        ['F' 0.53 0.42 ... 0.2565 0.1415 0.21]
        ...
        ['M' 0.6 0.475 ... 0.5255 0.2875 0.308]
        ['F' 0.625 0.485 ... 0.531 0.261 0.296]
        ['M' 0.71 0.555 ... 0.9455 0.3765 0.495]]
In [49]: Y = file_data.iloc[:, -1].values
    print(Y)

[16.5 8.5 10.5 ... 10.5 11.5 13.5]
```

9. Scale the independent variables

```
In [50]: from sklearn.preprocessing import scale
```

10. Split the data into training and testing

Name: Age, Length: 4177, dtype: float64

```
In [55]: from sklearn.model_selection import train_test_split
In [56]: x = file_data.iloc[:, 1:7]
Out[56]:
                  Length Diameter Height Whole weight Shucked weight Viscera weight
               0
                   0.455
                             0.365
                                     0.095
                                                 0.5140
                                                                 0.2245
                                                                                0.1010
                   0.350
                             0.265
               1
                                     0.090
                                                 0.2255
                                                                 0.0995
                                                                                0.0485
               2
                   0.530
                             0.420
                                     0.135
                                                 0.6770
                                                                 0.2565
                                                                                0.1415
                   0.440
                             0.365
                                     0.125
                                                 0.5160
                                                                 0.2155
                                                                                0.1140
               4
                   0.330
                             0.255
                                     0.080
                                                 0.2050
                                                                 0.0895
                                                                                0.0395
            4172
                   0.565
                             0.450
                                     0.165
                                                 0.8870
                                                                 0.3700
                                                                                0.2390
            4173
                   0.590
                             0.440
                                                 0.9660
                                                                 0.4390
                                                                                0.2145
                                     0.135
            4174
                   0.600
                             0.475
                                     0.205
                                                 1.1760
                                                                 0.5255
                                                                                0.2875
            4175
                   0.625
                             0.485
                                     0.150
                                                 1.0945
                                                                 0.5310
                                                                                0.2610
            4176
                   0.710
                             0.555
                                    0.195
                                                 1.9485
                                                                 0.9455
                                                                                0.3765
           4177 rows x 6 columns
           y = file data.iloc[:, -1]
In [57]:
Out[57]:
                     16.5
                      8.5
           1
                     10.5
           3
                     11.5
                      8.5
                     . . .
           4172
                     12.5
           4173
                     11.5
           4174
                     10.5
           4175
                     11.5
           4176
                     13.5
```

```
In [58]: x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.25,random_st
    ate =42)
In [59]: x_train
```

Out[59]:

	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight
3823	0.615	0.455	0.135	1.0590	0.4735	0.2630
3956	0.515	0.395	0.140	0.6860	0.2810	0.1255
3623	0.660	0.530	0.175	1.5830	0.7395	0.3505
0	0.455	0.365	0.095	0.5140	0.2245	0.1010
2183	0.495	0.400	0.155	0.8085	0.2345	0.1155
3444	0.490	0.400	0.115	0.5690	0.2560	0.1325
466	0.670	0.550	0.190	1.3905	0.5425	0.3035
3092	0.510	0.395	0.125	0.5805	0.2440	0.1335
3772	0.575	0.465	0.120	1.0535	0.5160	0.2185
860	0.595	0.475	0.160	1.1405	0.5470	0.2310

3132 rows x 6 columns

```
In [60]:
          y_train
Out[60]:
          3823
                  10.5
          3956
                  13.5
          3623
                  11.5
                  16.5
          0
          2183
                   7.5
                   . . .
          3444
                  10.5
          466
                  13.5
          3092
                  12.5
          3772
                  10.5
          860
                   7.5
          Name: Age, Length: 3132, dtype: float64
In [61]: print(x_train.shape, x_test.shape)
          (3132, 6) (1045, 6)
```

11. Build the Model

```
In [62]: from sklearn.linear_model import LinearRegression
```

```
In [63]: model=LinearRegression()
In [64]: model.fit(x_train,y_train)
Out[64]: LinearRegression()
```

12. Train the Model

13.Test the Model

14. Measure the performance using Metrics

```
In [67]: from sklearn.metrics import mean_squared_error
    import math
    print(mean_squared_error(y_test, y_predict))
    print(math.sqrt(mean_squared_error(y_test, y_predict)))

4.862459933051859
2.205098622069285
In [ ]:
```