ullet Er testet Hypothesen für die unbekannte Wahrscheinlichkeit p eines Merkmals in der Grundgesamtheit.

- Er testet Hypothesen für die unbekannte Wahrscheinlichkeit *p* eines Merkmals in der Grundgesamtheit.
- Mögliche Hypothesen:

- Er testet Hypothesen für die unbekannte Wahrscheinlichkeit *p* eines Merkmals in der Grundgesamtheit.
- Mögliche Hypothesen:
 - zweiseitig: $H_0: p = p_0$ und $H_1: p \neq p_0$

- Er testet Hypothesen für die unbekannte Wahrscheinlichkeit *p* eines Merkmals in der Grundgesamtheit.
- Mögliche Hypothesen:
 - zweiseitig: $H_0: p=p_0$ und $H_1: p
 eq p_0$
 - linksseitig: $H_0: p \leq p_0$ und $H_1: p > p_0$

- Er testet Hypothesen für die unbekannte Wahrscheinlichkeit *p* eines Merkmals in der Grundgesamtheit.
- Mögliche Hypothesen:
 - zweiseitig: $H_0: p=p_0$ und $H_1: p \neq p_0$
 - linksseitig: $H_0: p \le p_0$ und $H_1: p > p_0$
 - rechtsseitig: $H_0: p \ge p_0$ und $H_1: p < p_0$

- Er testet Hypothesen für die unbekannte Wahrscheinlichkeit *p* eines Merkmals in der Grundgesamtheit.
- Mögliche Hypothesen:
 - zweiseitig: $H_0: p = p_0$ und $H_1: p \neq p_0$
 - linksseitig: $H_0: p \le p_0$ und $H_1: p > p_0$
 - rechtsseitig: $H_0: p \ge p_0$ und $H_1: p < p_0$
- Die Teststatistik ist die Anzahl, wie oft das Merkmal in einer zufälligen Stichprobe vom Umfang *n* vorkommt.

- Er testet Hypothesen für die unbekannte Wahrscheinlichkeit *p* eines Merkmals in der Grundgesamtheit.
- Mögliche Hypothesen:
 - zweiseitig: $H_0: p = p_0$ und $H_1: p \neq p_0$
 - linksseitig: $H_0: p \leq p_0$ und $H_1: p > p_0$
 - rechtsseitig: $H_0: p \ge p_0$ und $H_1: p < p_0$
- Die Teststatistik ist die Anzahl, wie oft das Merkmal in einer zufälligen Stichprobe vom Umfang *n* vorkommt.
- Verteilung der Teststatistik unter H_0 : Binomialverteilung mit n und p_0

Aufgabe

Ein Losverkäufer behauptet, dass mindestens 20% der Lose aus seiner Lostrommel Gewinne seien. Die Käufer meinen aber, dass der Anteil wesentlich geringer ist. Es werden daraufhin 100 Lose überprüft.

Führe einen Binomialtest zu dem Irrtumsniveau 5% durch.

Aufgabe

Ein Losverkäufer behauptet, dass mindestens 20% der Lose aus seiner Lostrommel Gewinne seien. Die Käufer meinen aber, dass der Anteil wesentlich geringer ist. Es werden daraufhin 100 Lose überprüft.

Führe einen Binomialtest zu dem Irrtumsniveau 5% durch.

- Nullhypothese $H_0: p \ge 0, 2$
- Gegenhypothese $H_1: p < 0, 2$
- Stichprobenumfang n = 100
- Testgröße X: Anzahl der Gewinnlose in der Stichprobe
- Verteilung von X unter H_0 : Binomialverteilung mit n = 100 und $p_0 = 0, 2$

Aufgabe

Ein Losverkäufer behauptet, dass mindestens 20% der Lose aus seiner Lostrommel Gewinne seien. Die Käufer meinen aber, dass der Anteil wesentlich geringer ist. Es werden daraufhin 100 Lose überprüft.

Führe einen Binomialtest zu dem Irrtumsniveau 5% durch.

- Nullhypothese $H_0: p \ge 0, 2$
- Gegenhypothese $H_1: p < 0, 2$
- Stichprobenumfang n = 100
- Testgröße X: Anzahl der Gewinnlose in der Stichprobe
- Verteilung von X unter H_0 : Binomialverteilung mit n = 100 und $p_0 = 0, 2$
- Ablehnungsbereich: $\{0, \ldots, a\}$
- Annahmebereich: $\{a+1,\ldots,100\}$

• Irrtumsniveau $\alpha = 5\%$ = Fehler 1. Art (d.h. H_0 verwerfen, obwohl H_0 stimmt)

- Irrtumsniveau $\alpha = 5\%$ = Fehler 1. Art (d.h. H_0 verwerfen, obwohl H_0 stimmt)
- $P(X \in \{0, ..., a\}) = P(X \le a) \le 0,05$ sofern H_0 stimmt

- Irrtumsniveau $\alpha = 5\%$ = Fehler 1. Art (d.h. H_0 verwerfen, obwohl H_0 stimmt)
- $P(X \in \{0, ..., a\}) = P(X \le a) \le 0,05$ sofern H_0 stimmt

а	$\mathbf{P}(X \leq a) = \text{pbinom(a, size = 100, prob = 0.2)}$
20	0.5595
15	0.1285
10	0.0056
13	0.0469
14	0.0804

- Irrtumsniveau $\alpha = 5\%$ = Fehler 1. Art (d.h. H_0 verwerfen, obwohl H_0 stimmt)
- $P(X \in \{0, ..., a\}) = P(X \le a) \le 0,05$ sofern H_0 stimmt

• Ablehnungsbereich: $\{0, \ldots, 13\}$, Annahmebereich: $\{14, \ldots, 100\}$

- Irrtumsniveau $\alpha = 5\%$ = Fehler 1. Art (d.h. H_0 verwerfen, obwohl H_0 stimmt)
- $P(X \in \{0, ..., a\}) = P(X \le a) \le 0,05$ sofern H_0 stimmt

$$a$$
 $P(X \le a) = pbinom(a, size = 100, prob = 0.2)$ 20 0.5595 15 0.1285 10 0.0056 13 0.0469 14 0.0804

Ablehnungsbereich: {0,...,13}, Annahmebereich: {14,...,100}
 Das heißt: Wenn wir höchstens 13 Gewinne in den 100 gezogenen Losen finden, haben wir den Losverkäufer (zu dem Irrtumsniveau von 5%) überführt.