Lecture 13 Normal (Gaussian) Distribution

BIO210 Biostatistics

Xi Chen

Spring, 2022

School of Life Sciences
Southern University of Science and Technology

The Normal (Gaussian) PDF

The PDF of a normal distribution

$$f_X(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, \qquad E[X] = \mu, \ var(X) = \sigma^2$$

The Standard Normal (Gaussian) PDF

Standard Normal Distribution: $\mathcal{N}(0,1)$: $f_X(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$

General Normal Distribution:
$$\mathcal{N}(\mu, \sigma)$$
: $f_X(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$

The Normal (Gaussian) PDF

Given that the random variable $X \sim \mathcal{N}(\mu, \sigma)$, and the random variable Y = aX + b, where a and b are constants. Compute:

•
$$E[Y] = ?$$

•
$$var(Y) = ?$$

$$\bullet \ E[Y] = a\mu + b$$

•
$$var(Y) = a^2 \sigma^2$$

Property: A linear function of a normal r.v. is also a normal r.v.

$$Y \sim \mathcal{N}(a\mu + b, a^2\sigma^2)$$

The Normal (Gaussian) PDF

Given that the random variable $X \sim \mathcal{N}(\mu, \sigma)$. Now consider the following random variable:

$$Z = \frac{X - \mu}{\sigma}$$

• What distribution does Z follow?

 $Z \sim \mathcal{N}(0,1)$

- E[Z] = ?
- var(Z) = ?

Properties of normal PDFs

Dotted line: one standard deviation away from the mean.

The Empirical Rule

Normal Distribution in real life

- Commonly observed in many natural phenomena: height, weight, blood pressure, *etc*.
 - In many cases, you need to take the log value.
- Noise or Error.
 - An assumption.
- Sum of many random variables.
 - Only if they have equal weights.
- Sample mean.

Probability Calculation

$$X \sim \mathcal{N}(\mu, \sigma)$$

$$P(a \leqslant X \leqslant b) = \int_{a}^{b} f_X(x) dx$$
$$= \int_{a}^{b} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{-(x-\mu)^2}{2\sigma^2}} dx$$

The solution is non-elementary!

Note: we know
$$P(a \leqslant X \leqslant b) = F_X(b) - F_X(a)$$
 and if $X \sim \mathcal{N}(\mu, \sigma)$, then $\frac{X - \mu}{\sigma} \sim \mathcal{N}(0, 1)$.

Pre-computed table to the rescue!

Examples of the Standard Normal Table

A Historical Fact About The First Standard Normal Table

- First computed by the French astronomer **Christian Kramp** in 1799.
- Analyse des Réfractions Astronomiques et Terrestres (Analysis of Astronomical and Terrestrial Refractions)
- Used the approximation:

$$G(x) = \int_{x}^{\infty} e^{-t^{2}} dt = \frac{1}{x} - \frac{1}{2x^{3}} + \frac{1 \cdot 3}{4x^{5}} - \frac{1 \cdot 3 \cdot 5}{8x^{7}} + \frac{1 \cdot 3 \cdot 5 \cdot 7}{16x^{9}} - \dots$$

The Table by Christian Kramp

TABLE PREMIÈRE.

Intégrales de e-tt dt, depuis une valeur quelconque de t jusqu'à t infinie.

	Integrale.	Diff. prem.	Diff. II.	Diff. II.
0,00	0,88622692	999968	201	199
0,01	0,87622724	999767	400	199
0,02	0.86622057	999367	599	200
0,03	0,85623500	998768	799	199
0,04	0,84624822	997969	998	197
0,05	0,83526853	996971	1195	199
0,06	0,82629882	995776	1394	196
0,07	0,81634106	994382	1590	495
0,08	0,80630724	992792	1785	194
0,09	0,79646032	991007	1979	195
0,10	0.78655925	989028	2174	192
0,11	0,77666897	986854	2366	190
0,12	0,76680043	984488	2556	189
0,13	0,75695555	981932	2745	188
0,14	0,74713623	979187	2933	186
0,15	0,73734436	976254	3110	184
0,16	0,72758182	973135	3303	183
0,17	0,71785047	969832	3486	180
0,18	0,70815215	966346	3666	175
0,10	0,69848869	962680	3841	178
0,20	0,68886189	958839	4019	173
0,21	0,67927350	954820	4102	171
0,22	0,66972530	950628	4363	168
0,23	0,66021902	946265	4531	166
0.24	0 6507 5637	941734	4697	163
0,25	0,64133903	937037	4860	160
0,26	0,63196866	932177	5020	157
0,27	0,62264689	927157		155
0.28	0,61337532	927137	5177	151
0,20	0,60415552	929980		
0,30	0,59498904	910048	5483	149
0,31	0,58587739			145
0,32	0,57682206	905533	5777 5919	142

INTÉGRALES DE e-" dt.				INTÉGRALES DE ett dt.						
1 .		1 Diff. prem.	Diff. II.	[Diff. III.]	1 .	Intégrale.	Diff. prem.		Diff. III	1 nin
0,76	0,25032654	556981	8511	21	2.47	0.00042311518	2186320	105795	4724	19
0,77	0,24475673	548470	8490	25	2,48	0,00040125180	2080534	10:071	4533	18
0,78	0,23927203	530080	8465	20	2349	0,00038044655	1979463	96538	4350	
0,79	0,23387223	531515	8436	31	2,50	0.00036065192	1882925	92188	4173	17
0,80	0,22855708		8405	33	2,51	0,00034182267	17,907,37	88015	4002	16.
0,81	0,22332620	514674	8372	37	2,52	0,00032301530	1702722	84013	3838	16
0,82	0,21817955	506302	8335	30	2,53	0,00030688808	1618700	80175	3678	15:
0,83	0,21311653	497967	8206	42	2,54	0,00020070000	1538534	76497	3526	148
0,84	0,20813686	489671 -	8254	45	2,55	0,00027531565	1462037	72971	3378	
0,85	0,20324015	481417	8200	1 46	2.56	0,00026069528	1380066	69593	3236	137
0,86	0,19842598	473208	8163	50	2,57	0.00024680462	1319473	66357	3000	131
0,87	0,19369390	465045	8113	50	2,58	0,00023360980	1253116	63258	2068	138
0,88	0,18904345	456032	806r	54	2,50	0,00022107873	1180858	60200	2830	141
0,89	0,18447413	448871	8007	56	2,60	0,00020018015	1129568	57460	2740	130
0,90	0,17998542	440864	7951	58	2,61	0,00010788447	1072108	54711	2570	142
0,91	0,17557678	432013	7803	61	2,62	0,00018716339	1017307	52141	2408	118
0,92	0,17124765	425020	7832	62	2,63	0.00017698942	965256	49643	2380	105
0,93	0,16699745	417188	7770	65	2,64	0.00016733686	915613	47263	2275	101
0,94	0,16282557	400418	7705	66	2,65	0,00015818073	868350	44988	2174	95
0,95	0,15873139	401713	7630	67	2,66	0,00014949723	823362	42814	2070	
0,96	0,15471426	394074	7572	71	2,67	0,00014126361	780548	40735	1085	94
0,97	0,15077352	386502	7501	70	2,68	0.00013315813	739813	38750	1897	85
0,98	0,14690850	370001	7431	74	2.60	0,00012606000	701063	36853	1812	83
0,99	0,14311849	371570	7357	74	2,70	0,00011904937	664210	35041	1720	78
1,00	0,13940279	364213	7283	75	2,71	0,00011240727	629169	33312	1651	76
1,01	0,13576066	356930	7208	77	2,72	0,00010611558	505857	31661	1575	71
1,02	0,13219136	349722	7131	80	2,73	0,00010015701	564196	30086	1504	70
1,03	0,12869414	342501	7051	78	2,74	0,00009451505	534110	28582	1434	67
1,04	0,12526823	335540	6973	81	2,75	0,00008917395	505528	27148	1367	64
1,05	0,12191283	328567	6802	81	2,76	0,00008411867	478380	25781	1303	59
1,06	0,11862716	321675	6811	83	2,77	0,00007933487	452500	24478	1214	60
1,07	0,11541041	314864	6728	83	2,78	0,00007480888	428121	23234	1184	56
1,08	0,11226177	308136	6645	85	2,79	0,00007052767	404887	22050	1128	53
,09	0,10918041	301491	6560	85	2.80	0,00006647880	382837	20022	1075	51
1,10	0,10616550	291931	6175	86	2.81	0,00006265043	361915	19847	1024	49
1,11	0,10321619	288456	6380	85	2,82	0,00005003128	342068	18823	975	48
,12	0,10033163	282067	6304	88	2.83	0,00005561060	323245	17848	927	43
,13	0,09751096	275763	6216	87	2,84	0,00005237815	305397	16021	884	45
514	0,09475333	269547	6129	89	2,85	0,00004032418	288476	16037	839	39
,15	0,09205786	263418	6040	87	2,86	0,00004643942	272430	15:98	800	40
,16	0,08942368	257378	5953	80	2,87	0,00004371503	257241	14398	760	38
,17	0,08684990	251425	5864	89	2,88	0,00004114262	242843	13638	722	34
,18	0,08433565	245561	5775	80	2,80	0,00003871419	220205	12016	688	36

Example: Human IQ

Example: in vivo DNA fragmentation

Probability Density Function (PDF)

