#### **Data Preprocessing**

### การเตรียมข้อมูล

Data Preprocessing เป็นขั้นตอนในการเตรียมข้อมูลเพื่อที่จะนำไปประมวลผลขั้นตอนต่อ โดยขั้นตอนที่ต้อง ทำขึ้นอยู่กับข้อมูลที่เราได้มาต้องทำอะไรกับมันบ้าง เช่น หากมีข้อมูลหายเราสามารถลบข้อมูลแถวนั้นได้ (ไม่แนะนำ สามารถดูการจัดการแบบอื่นได้) หรือข้อมูลของคลาส target มี ชนิดเป็น string เราสามารถทำencoding เป็นตัวเลขได้

### ขั้นตอนการเตรียมข้อมูล

1) เริ่มแรกให้ทำการนำชุดข้อมูลที่กำหนดให้มาจากเว็บ UCI DATASET



# 2) เลือกข้อมูล iris

| Iris | Multivariate | Classification | Real | 150 | 4 | 1988 |  |
|------|--------------|----------------|------|-----|---|------|--|

3) ให้เลือกดาวน์โหลดข้อมูลตรง Data Folder



#### 4) เลือก iris.data



5) เมื่อเข้ามาจะมีข้อมูลของ iris น้องๆ สามารถคัดลอกข้อมูลทั้งหมดแล้วไปวางลง Notepad พร้อมทั้งบันทึกให้เป็นชื่อ iris.txt หรือ สามารถคลิกขวา แล้วกด save as พร้อมเปลี่ยนชื่อเป็น iris.txt (กรณีนี้อาจมีปัญหาข้อมูลแต่ละแถวจะเข้า มาบรรทัดเดียวกันสำหรับบางคนมั้ง 555)



5.1) กรณีข้อมูลมีปัญหาหลังคลิกขวาแล้ว save as หรือ บันทึกเป็น

```
File Edit Format View Help

[5.1,3.5,1.4,0.2,Iris-setosa4.9,3.0,1.4,0.2,Iris-setosa4.7,3.2,1.3,0.2,Iris-seto
4.6,3.1,1.5,0.2,Iris-setosa5.0,3.6,1.4,0.2,Iris-setosa5.4,3.9,1.7,0.4,Iris-seto
4.6,3.4,1.4,0.3,Iris-setosa5.0,3.4,1.5,0.2,Iris-setosa4.4,2.9,1.4,0.2,Iris-seto
4.9,3.1,1.5,0.1,Iris-setosa5.4,3.7,1.5,0.2,Iris-setosa4.8,3.4,1.6,0.2,Iris-seto
4.8,3.0,1.4,0.1,Iris-setosa4.3,3.0,1.1,0.1,Iris-setosa5.8,4.0,1.2,0.2,Iris-seto
5.7,4.4,1.5,0.4,Iris-setosa5.4,3.9,1.3,0.4,Iris-setosa5.1,3.5,1.4,0.3,Iris-seto
5.7,3.8,1.7,0.3,Iris-setosa5.1,3.8,1.5,0.3,Iris-setosa5.4,3.4,1.7,0.2,Iris-seto
5.1,3.7,1.5,0.4,Iris-setosa4.6,3.6,1.0,0.2,Iris-setosa5.1,3.3,1.7,0.5,Iris-seto
4.8,3.4,1.9,0.2,Iris-setosa5.0,3.0,1.6,0.2,Iris-setosa5.0,3.4,1.6,0.4,Iris-seto
5.2,3.5,1.5,0.2,Iris-setosa5.2,3.4,1.4,0.2,Iris-setosa4.7,3.2,1.6,0.2,Iris-seto
4.8,3.1,1.6,0.2,Iris-setosa5.4,3.4,1.5,0.4,Iris-setosa5.2,4.1,1.5,0.1,Iris-seto
5.5,4.2,1.4,0.2,Iris-setosa4.9,3.1,1.5,0.1,Iris-setosa5.0,3.2,1.2,0.2,Iris-seto
```

6) หลังจากทำการเซฟข้อมูลเสร็จแล้วเราเห็นได้ว่ามีข้อมูล target เราเป็น string เราจึงทำ Encoding ให้มันเป็นตัวเลข ซะ โดยใช้วิธี One Hot (google ช่วยท่านได้)

ให้ Iris-setosa -> 0,0,1

Iris-versicolor -> 0,1,0

Iris-virginica -> 1,0,0

ทำได้ที่ Notepad เลย กด Ctrl + H และทำการเปลี่ยนข้อมูล



6.1) ข้อมูลใหม่ที่ได้มี 150 แถว 7 คอลัมน์



7) เมื่อเตรียมข้อมูลเสร็จแล้วให้เราเข้า octave (หรือ matlab) ให้ไฟล์ iris กับไฟล์โค้ดเราอยู่ด้วยกัน



8) ยังคงอยู่กระบวนการจัดการข้อมูลที่ได้มา ตอนนี้จะพูดถึงกระบวนการ feature scaling หรือการปรับระดับค่าของตัว feature นั้นเอง (feature ในนี้คือค่า input ที่ไม่ใช่ตัว target ) เราจะเรียกการทำนี้ว่า normalization หรือ normalize ข้อมูล โดยปรับสเกลของมันให้อยู่ระหว่าง 0 กับ 1 ซึ่งจะส่งผลให้การประมวลผลเร็วขึ้น

### ขั้นตอนการทำ

- 1) โหลดข้อมูลไฟล์ iris เข้ามา
- 2) ใช้สูตรในการทำ normalize ใส่ตัวแปร Xnorm โดยการนำค่า dataset จากคอลัมล์ที่ 1 ถึง 4
- 3) T เป็นตัวแปรสำหรับเก็บค่าTarget (คอลัมน์ 5 ถึง 7)

```
1  dataset = load('iris.txt');
2
3  x = dataset(:,1:4);
4  xmax = max(x);
5  xmin = min(x);
6  Xnorm = (x-xmin)./(xmax-xmin);
7
8  T = dataset(:,5:end);
9
```

<u>หมายเหตุ</u> จะใช้ตัวแปร Xnorm แทน X ในหนังสือหน้า 117 (หนังสือโครงข่ายประสาทเทียม(Artificial Neural Network) เขียนโดย ผศ.ดร. สิรภัทร เชี่ยวชาญวัฒนา)

# 8.1) เปรียบเทียบข้อมูลที่ได้จากข้อมูลเดิมและข้อมูลที่ทำการ normalize แล้ว

| 1      | 2      | 3      | 4      |
|--------|--------|--------|--------|
| 5.1000 | 3.5000 | 1.4000 | 0.2000 |
| 4.9000 | 3      | 1.4000 | 0.2000 |
| 4.7000 | 3.2000 | 1.3000 | 0.2000 |
| 4.6000 | 3.1000 | 1.5000 | 0.2000 |
| 5      | 3.6000 | 1.4000 | 0.2000 |
| 5.4000 | 3.9000 | 1.7000 | 0.4000 |

| 1      | 2      | 3      | 4      |
|--------|--------|--------|--------|
| 0.2222 | 0.6250 | 0.0678 | 0.0417 |
| 0.1667 | 0.4167 | 0.0678 | 0.0417 |
| 0.1111 | 0.5000 | 0.0508 | 0.0417 |
| 0.0833 | 0.4583 | 0.0847 | 0.0417 |
| 0.1944 | 0.6667 | 0.0678 | 0.0417 |
| 0.3056 | 0.7917 | 0.1186 | 0.1250 |

ภาพ ก ภาพ ข

จะเห็นว่าภาพ ข เป็นข้อมูลจากภาพ ก ที่ถูกปรับให้อยู่ระหว่าง 0 – 1

9) ทำการแบ่งข้อมูลให้เป็น train และ test โดยการแบ่งส่วนที่แนะนำให้เป็น 70:30 นั้นคือ train จะมีข้อมูล 150\*70/100 ได้ 105 แต่หนังสือเอา 100 เราก็จะเอา 100 ส่วน test จะมีข้อมูล 150\*30/100 ได้ 45 หนังสือเอา 50

```
sz = size(dataset,1);
I = randperm(sz);
xTrain = Xnorm (I(1:100),:);
xTest = Xnorm (I(101:end),:);
tTrain = T(I(1:100),:);
tTest = T(I(101:end),:);
```

<u>Tip</u> การแบ่งข้อมูลมีการแบ่งแบบ 50:50 , 70:30 , 90:10 โดยการแบ่งข้อมูล 70:30 เป็นที่นิยมใช้ 50:50 ไม่แนะนำ เพราะการ Train ควรมีข้อมูลมากกว่า