Práctico 1 Regresión Lineal Simple

Modelos Lineales - 2024

EJERCICIO 1

Un equipo de investigadores se propuso evaluar la hipétesis que dice que hogares con salarios más altos poseen, en promedio, un ahorro más alto. Indique:

- 1. ¿Cuáles deberían ser las unidades de análisis a relevar en la muestra?
- 2. ¿Qué variables deberían evaluarse en las unidades de análisis del punto anterior?
- 3. ¿Cuál sería un modelo lineal apropiado para estudiar esta hipótesis?
- 4. ¿Podría forular una prueba de hipótesis sobre alguno de los parámetros del modelo que de respuesta a la interrogante de los investigadores?

EJERCICIO 2

Considere el siguiente modelo lineal:

$$y_i = \beta_0 + \epsilon_i \qquad \forall_i = 1, \dots, n$$

Emplee la expresión matricial del estimador de MCO para obtener:

- 1. La expresión de $\hat{\beta}_0$.
- 2. La expresión de $\widehat{\mathbb{V}ar(\hat{\beta_0})}$.

Relacione los resultados obtenidos con los obtenidos en el curso de Inferencia I.

EJERCICIO 3

Considere el modelo de regresión lineal simple dado por la ecuación:

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i \qquad \forall_i = 1, \dots, n$$

A partir del estimador $\hat{\beta}_{MCO} = \left(\boldsymbol{X}' \boldsymbol{X} \right)^{-1} \boldsymbol{X}' \boldsymbol{Y}$ demuestre que:

- 1. El primer elemento del vector $\hat{\beta}_{MCO}$ es $\bar{y} \hat{\beta}_1 \bar{x}$.
- 2. El segundo elemento del vector $\hat{\beta}_{MCO}$ es $\frac{\sum_i (y_i \bar{y})(x_i \bar{x})}{\sum_i (x_i \bar{x})^2}$
- 3. $\sum_{i} y_i = \sum_{i} \hat{y}_i$
- 4. Definiendo los residuos $\hat{\epsilon}_i = y_i \hat{y}_i$, compruebe que $\sum_i \hat{\epsilon}_i = 0$.

5. De manera más general, comprueba que el vector de residuos es ortogonal a todas las columnas de la matriz X.

Nota: Para la resolución del último punto, pueden resultarle conveniente las ecuaciones normales.

EJERCICIO 4

Considere el modelo de regresión lineal simple dado por la ecuación:

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i \qquad \forall_i = 1, \dots, n$$

A partir de la matriz de varianzas y covarianzas del estimador $\hat{\beta}_{MCO}$ dada por la expresión:

$$\mathbb{V}ar(\hat{\beta}) = \sigma^2 \left(X'X \right)^{-1}$$

Demuestre que:

1.
$$Var(\hat{\beta}_0) = \frac{\sigma^2}{1/n - \bar{x}^2 / \sum_i (x_i - \bar{x})^2}$$

$$2. \ \mathbb{V}ar(\hat{\beta}_1) = \frac{\sigma^2}{\sum_i (x_i - \bar{x})^2}$$

Nota: Se sugiere expresar los términos de la matrix $X^{'}X$ empleando sumatorias y luego utilizar el hecho de que:

$$\left[\begin{array}{cc} a & b \\ c & d \end{array}\right]^{-1} = \frac{1}{ad-bc} \left[\begin{array}{cc} d & -b \\ -c & a \end{array}\right]$$

EJERCICIO 5

La siguiente tabla contiene los mejores tiempos conseguidos en algunas pruebas de velocidad en atletismo en los Juegos Olímipicos de Atlanta 96. Las distancias están expresadas en metros y los tiempos en segundos.

Distancia	Tiempo (hombres)	Tiempo (mujeres)
100	9,84	10,84
200	19,32	$22,\!12$
400	43,19	$48,\!25$
800	102,58	117,73
1500	215,78	240,83
5000	787,96	899,88
10000	$1627,\!34$	1861,63
42195	7956,00	8765,00

- 1. Ajuste dos modelos de regresión lineal simple. Uno que relacione los tiempos de los hombres con las distancias y otro que relacione los tiempos de las mujeres con las distancias. Cuando obtenga las estimaciones de los coeficientes grafique las rectas de regresión.
- 2. A partir de las estimaciones calculadas en el punto anterior, obtenga la predicción del mejor tiempo para hombres y mujeres en una hipotética carrera de 3000 metros.
- 3. Calcule el valor del coeficiente de determinación R^2 en ambos casos e interprete su valor.

EJERCICIO 6

A partir de los datos del estudio de Francis Galton sobre la heredabilidad de la altura de los padres y los hijos se obtuvieron los siguientes estadísticos:

- n = 898.
- $\sum_{i} x_i = 1466, 556.$
- $\sum_{i} y_i = 1468,802.$
- $\sum_{i} x_i y_i = 2399,859.$
- $\sum_{i} x_i^2 = 2396,738.$

Siendo X la variable "Altura promedio de los padres" y Y la variable "Altura del hijo", ambas expresadas en metros. A partir de estos datos:

- 1. Plantee el modelo de regresión lineal simple en el que se pretende explicar la altura de los niños en función de la altura de los padres.
- 2. Estime el valor de los parámetros.
- 3. Obtenga la predicción de la altura de un niño cuyos padres tienen una altura promedio de 1,68m e interprete dicha predicción.