Virtual Lab

NAME: Ayush Jain **SAP ID:** 60004200132

Experiment 1.

Aim:

1. To Study the diffraction occurring due to single slit.

2. To determine Δ Y1 the distance between two dark bands surrounding the central bright spot.

Apparatus: Laser, screen & ruler.

Theory:

When a monochromatic beam of light of wavelength λ arrives at a slit of the width 'a' the diffracted light leaving the slits forms a pattern in space. This pattern on the screen is called the diffraction pattern. The number of bands and their distances from the central maximum depends on the width of the slit.

Diagram:

Observation Table:

a(mm)	Λ(nm)	ΔS1(mm)	ΔY1(mm)= f*
			ΔS1(mm)
0.04	511	18.5	24.605
0.04	550	20	26.6
0.04	600	22	29.26
0.04	650	23	30.59

Simulations:

Result:

• Thus ΔY (distance between the dark fringes) increases with increase in wavelength of light