ASSIGNMENT1

EE24BTECH11028-JADHAV RAJESH

- 1) Let $S(K) = 1+3+5\cdots+(2K-1) = 3+k^2$. Then which of the following is true (2004)
 - a) Principal of mathematical statement can be used to prove this formula
 - b) $S(K) \Rightarrow S(K+1)$
 - c) $S(K) \Rightarrow S(K+1)$
 - d) S(1) is correct
- 2) The coefficient of the middle term in the binomial expansion in powers of x of $(1 + \alpha x)^4$ and of $(1 \alpha x)^6$ is the same if equals (2004)
 - a) $\frac{3}{5}$
 - b) $\frac{10}{3}$
 - c) $\frac{-3}{10}$
 - d) $\frac{-5}{3}$
- 3) The coefficient of x^n in expansion of $(1+x)(1-x)^n$ is (2004)
 - a) $(-1)^{n-1} n$
 - b) $(-1)^n (1-n)$
 - c) $(-1)^{n-1} (n-1)^2$
 - d) (n-1)
- 4) The value of ${}^{50}C_4 + \sum_{r=1}^{6} {}^{56-r}C_3$ is (2005)
 - a) ${}^{55}C_4$
 - b) ${}^{55}C_3$
 - c) ${}^{56}C_3$
 - d) ${}^{56}C_4$

5) If $A = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$ and $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, then which of the following holds for all $n \ge 1$, by the principle of mathematical induction (2005)

1

- a) $A^{n} = nA (n-1)I$
- b) $A^n = 2^{n-1}A (n-1)I$
- c) $A^n = nA + (n-1)I$
- d) $A^n = 2^{n-1} + (n-1)I$
- 6) If the coefficient of x^7 in $\left[ax^2 + \left(\frac{1}{bx}\right)\right]^{11}$ equals the coefficient of x^{-7} in $\left[ax \left(\frac{1}{bx^2}\right)\right]^{11}$, then a and b satisfy the relation (2005)
 - a) a b = 1
 - b) a + b = 1
 - c) $\frac{a}{b} = 1$
 - d) ab = 1
- 7) The circle $x^2 + y^2 = 4x + 8y +$ intersects the line 3x 4y = m at two distinct points if (2010)
 - a) -35 < m < 15
 - b) 15 < m < 65
 - c) 35 < m < 85
 - d) -85 < m < -35
- 8) The two circles $x^2 + y^2 = ax$ and $x^2 + y^2 = c^2$ (c > 0) touch each other if (2011)
 - a) |a| = c
 - b) a = 2c
 - c) |a| = 2c

- d) 2|a| = c
- 9) The lenght of the diameter of the circle which toughes the *x*-axis at the point (1,0) and passes through the point (2,3) is: (2012)
 - a) $\frac{10}{3}$
 - b) $\frac{3}{5}$
 - c) $\frac{6}{5}$
 - d) $\frac{5}{3}$
- 10) The circle passing through (1, 2) and toughing the axis of *x* at (3, 0) and also passes the point (JEE M 2013)
 - a) (-5,2)
 - b) (2, -5)
 - c) (5, -2)
 - d) (-2,5)
- 11) Let C be the Circle with centre at (1,1) and radius equal to 1. If T is the centre of the at (0,y), passing through orgin and toughing the circle C externally, then the radius of T is equal to (JEE M 2014)
 - a) $\frac{1}{2}$
 - b) $\frac{1}{4}$
 - c) $\frac{\sqrt{3}}{\sqrt{2}}$
 - d) $\frac{\sqrt{3}}{2}$
- 12) LOCUS of the image of the point (2, 3) in the line $(2x 3y + 4) + K(x 2y + 3) = 0, K \in \mathbb{R}$, is a: (JEE M 2015)
 - a) circle of radius $\sqrt{2}$
 - b) circle of radius $\sqrt{3}$
 - c) straight line parallel to x-axis
 - d) straight line parallel to y-axis

- 13) The number of common tangents to the circles $x^2 + y^2 4x 6y 12 = 0$ and $x^2 + y^2 + 6x + 18y + 26 = 0$, is : (JEE M 2015)
 - a) 3
 - b) 4
 - c) 1
 - d) 2
- 14) The centres of the those circles which tough the circle, $x^2 + y^2 8x 8y 4 = 0$, externally and also tough the *x*-axis, lie on: (JEE M 2016)
 - a) a hyperbola
 - b) a parabole
 - c) a circle
 - d) an ellipse which is not a circle
- 15) If one of the diameter of the circle, given by the equation, $x^2+y^2-4x+6y-12=0$, is a chord of the circle S, whose centre is at (-3,2), then the radius of S is: (JEE M 2016)
 - a) 5
 - b) 10
 - c) $5\sqrt{2}$
 - d) $5\sqrt{3}$
- 16) If a tangent to the circle $x^2 + y^2 = 1$ intersects the coordinate axes at distinct point P and Q, then the locus of the mid-point of PQ is:(JEE M 2019-9 April)
 - a) $x^2 + y^2 4x^2y^2 = 0$
 - b) $x^2 + y^2 2xy = 0$
 - c) $x^2 + y^2 16x^2y^2 = 0$
 - d) $x^2 + Y^2 2x^2y^2 = 0$