### **Memory Interleaving**

- As CPU processing speed increased, it started to outpace memory access speed. This resulted in longer wait times as the CPU idled as the slower memory unit retrieved data.
- One strategy developed to overcome this was memory interleaving. It is a design which compensates for the slow speed of RAM by spreading memory addresses across multiple chips.

# **Memory Interleaving**

- Computer memory consists of a linear array of addressable storage cells that are similar to registers.
- Memory can be byte-addressable, or wordaddressable, where a word typically consists of two or more bytes.
- Memory is constructed of RAM chips, often referred to in terms of length × width (L x W).
- A 4M × 8 RAM chip gives us 4,194,304 8-bit memory locations.

- How does the computer access a memory location corresponding to a particular address?
- We observe that 4MB can be expressed as  $2^2 \times 2^{20} = 2^{22}$  words.
- The memory locations for this memory are numbered 0 through 2<sup>22</sup> - 1.
- Thus, the memory bus of this system requires 22 address lines.
  - The address lines "count" from 0 to  $2^{22}$  1 in binary. Each line is either "on" or "off" indicating the location of the desired memory element.

- Physical memory usually consists of more than one RAM chip.
- Access is more efficient when memory is organized into banks of chips with the addresses interleaved across the chips.





Connect 16 rows of chips together:

| Row 15 | 2K x 8 |
|--------|--------|
| Row 14 | 2K x 8 |
|        | ••••   |
| Row 1  | 2K x 8 |
| Row 0  | 2K x 8 |

- Each chip addresses 2K bytes.
- Because we have a total of 32K addresses for this memory, must have 15 bits ( $2^5 \times 2^{10} = 2^{15}$  bytes to access).
- Each chip only holds  $2^{11}$  bytes, so 4 bits are used to determine the address of each chip (16 of them =  $2^4$ ).

- Either the leftmost bits or the rightmost bits are used, depending on the architecture.
- A decoder is used to decode these 4 bits to determine which chip holds the desired data.
- Once the proper chip has been located, the remaining 11 bits are used to determine the offset on the chip (where the data is).

- A single memory module can only be accessed sequentially so memory is normally split across multiple modules (or banks) which can be accessed simultaneously.
- This process is called Memory Interleaving.
- With low-order interleaving, the low-order bits are used to address the banks.
- With high-order interleaving, the high-order bits are used to address the banks.

- Suppose we have a byte-addressable memory consisting of 8 modules of 4 bytes each, giving a total of 32 bytes of memory.
- We need 5 bits to uniquely identify each byte (32 = 2<sup>5</sup>) in the total memory space.
- We have 8 modules so we need 3 bits to address each of them  $(2^3 = 8)$ .
- The remaining 2 bits are used to determine the offset within the module.

- High-order interleaving distributes the addresses so that each module contains consecutive addresses.
- Module 0 contains the data stored at addresses 0, 1, 2 and 3
- Module 1 contains the data stored at addresses 4, 5, 6 and 7.
- Module 7 contains the data stored at addresses 28, 29, 30 and 31



 High-order interleaving uses the first 3 bits to determine the address of the memory module and the remaining 2 bits are used to determine the offset within the module.



| 0 |  |
|---|--|
|   |  |
|   |  |

| Module   | Decimal<br>Address | Binary<br>Address | Split  | Module<br>Number | Offset |
|----------|--------------------|-------------------|--------|------------------|--------|
| Module 0 | 0                  | 00000             | 000 00 | 0                | 0      |
|          | 1                  | 00001             | 000 01 | 0                | 1      |
|          | 2                  | 00010             | 000 10 | 0                | 2      |
|          | 3                  | 00011             | 000 11 | 0                | 3      |
| Module 1 | 4                  | 00100             | 001 00 | 1                | 0      |
|          | 5                  | 00101             | 001 01 | 1                | 1      |
|          | 6                  | 00110             | 001 10 | 1                | 2      |
|          | 7                  | 00111             | 001 11 | 1                | 3      |



- Low-order interleaving places consecutive memory addresses in different modules
- Module 0 contains the data stored at addresses 0, 8, 16 and 24
- Module 1 contains the data stored at addresses 1, 9, 17 and 25.
- •
- Module 7 contains the data stored at addresses 7, 15, 23 and 31



 Low-order interleaving uses the last 3 bits to determine the address of the memory module and the remaining 2 bits are used to determine the offset within the module.





| Module   | Decimal<br>Address | Binary<br>Address | Split  | Offset | Module<br>Number |
|----------|--------------------|-------------------|--------|--------|------------------|
| Module 0 | 0                  | 00000             | 00 000 | 0      | 0                |
|          | 8                  | 01000             | 01 000 | 1      | 0                |
|          | 16                 | 10000             | 10 000 | 2      | 0                |
|          | 24                 | 11000             | 11 000 | 3      | 0                |
| Module 1 | 1                  | 00001             | 00 001 | 0      | 1                |
|          | 9                  | 01001             | 01 001 | 1      | 1                |
|          | 17                 | 10001             | 10 001 | 2      | 1                |
|          | 25                 | 11001             | 11 001 | 3      | 1                |

- The order of interleaving refers to the number of memory banks used in the memory:
  - 4-way uses 4 banks
  - 8-way uses 8 banks
  - 16-way uses 16 banks, etc.
- The number of bits needed to identify the banks is k
  where 2<sup>k</sup> = the number of memory banks.
- So, for 8-way interleaving, k=3 as 2<sup>3</sup> = 8, so we need 3 bits.
- For 16-way interleaving, we need 4 bits.

 So for n-way interleaving, we need n = 2<sup>k</sup> bits for addressing the memory banks.

#### **EXAMPLE**:

Suppose we have a 128 byte memory and we are using **8-way**, **low-order interleaving**. What is the structure of the addresses for this memory?

- We have 128 bytes, so we need 7 bits for each individual address (128 2<sup>7</sup>).
- The interleaving is low order, so the lowest-order bits are used for the memory bank address.
- We are using 8-way interleaving, so we have 8 memory banks (modules), so we need 3 bits to address all of them (8 = 2<sup>3</sup>).



19



- Note that each module must be of size 2<sup>4</sup>.
- This can be concluded in two ways:
  - 1. We have 128 bytes and we have 8 modules, so each module will hold 16 bytes:  $(128/8 = 2^7/2^3 = 2^4 = 16)$ .
  - 2. We can also see from the address structure that the offset in the module requires 4 bits, allowing for  $2^4 = 16$  bytes per module.

#### High-Order Interleave

- Good if Modules can be accessed independently by different units, e.g. by the CPU and a Hard Disk (or a second CPU) AND the units use different Modules
- > => Parallel operation => Higher Performance



#### Low-Order Interleave

Good if the CPU (or other unit) can request multiple adjacent memory locations.



- Since adjacent memory locations lie in different Modules an "advanced" memory system can perform the accesses in parallel. Such adjacent accesses often occur in practice, e.g.
  - i) Elements in an array, e..g Array[N], Array[N+1], Array[N+2], ....
  - ii) Instructions in a Programs, InstructionN, InstructionN+1,...
- In the above situations, an "advanced" CPU can pre-fetch the adjacent memory locations => higher performance.



#### Exercise 1:

For a 32K x 8 memory that uses **16-way**, **high-order interleaving**, find the location (chip and offset) of the following address:

001000000100111



#### Answer:

32K memory by 16-way =  $16 \times 2K$  chips.

 $32K = 2^5 \times 2^{10} = 2^{15} = 15$  bits for all addresses.

 $16 = 2^4 = 4$  bits for chip addresses.

15 - 4 = 11 bits for offset in each chip.

0010 00000100111

Chip: 2, Offset: 39.

Exercise 2: Repeat for 8-way, low-order interleaving.



#### Answer:

32K memory by 8-way =  $8 \times 4$ K chips.

 $32K = 2^5 \times 2^{10} = 2^{15} = 15$  bits for all addresses.

 $18 = 2^3 = 3$  bits for chip addresses.

15 - 3 = 12 bits for offset in each chip.

001000000100 111

Chip: 7, Offset: 516.