Alfabetos, Cadenas, Lenguajes y sus Operadores

Introducción a la Logica y la Computación (3era Parte)

Docentes: Badano, Bustos, Costamagna, Tellechea, Zigaran

Año 2024

Alfabetos y Cadenas

▶ Un **alfabeto** es cualquier conjunto finito de símbolos arbitrarios y se suelen denotar con la letra griega Σ . Por ejemplo: $\Sigma_1 = \{a, b, c\}$ es un alfabeto con tres símbolos, mientras que $\Sigma_2 = \{\&, \#\}$ es un alfabeto con dos símbolos.

Alfabetos y Cadenas

- ▶ Un **alfabeto** es cualquier conjunto finito de símbolos arbitrarios y se suelen denotar con la letra griega Σ . Por ejemplo: $\Sigma_1 = \{a, b, c\}$ es un alfabeto con tres símbolos, mientras que $\Sigma_2 = \{\&, \#\}$ es un alfabeto con dos símbolos.
- ▶ Una **cadena** del alfabeto Σ es cualquier secuencia finita de símbolos de Σ . Las denotaremos con letra griegas α , β , γ . Por ejemplo: $\alpha = \text{``abb''}$ es un cadena del alfabeto Σ_1 , mientras que $\beta = \text{``\&\#\#\&''}$ es un cadena del alfabeto Σ_2 .

Alfabetos y Cadenas

- ▶ Un **alfabeto** es cualquier conjunto finito de símbolos arbitrarios y se suelen denotar con la letra griega Σ . Por ejemplo: $\Sigma_1 = \{a, b, c\}$ es un alfabeto con tres símbolos, mientras que $\Sigma_2 = \{\&, \#\}$ es un alfabeto con dos símbolos.
- ▶ Una **cadena** del alfabeto Σ es cualquier secuencia finita de símbolos de Σ . Las denotaremos con letra griegas α , β , γ . Por ejemplo: $\alpha = \text{``abb''}$ es un cadena del alfabeto Σ_1 , mientras que $\beta = \text{``\&\#\#\&''}$ es un cadena del alfabeto Σ_2 .
- Por último, denotaremos con Σ^* al conjunto de todas las cadenas posibles del alfabeto Σ (el universo de cadenas del alfabeto). Y con ϵ denotaremos a la única cadena que no contiene símbolos, llamada cadena vacia.

Operadores de Cadenas

Definimos cuatro operadores de cadenas:

- Concatenación
- Potencia
- Longitud
- Reversa

Sea $\alpha, \beta \in \Sigma^*$, definimos la concatenación:

$$\alpha.\beta = \begin{cases} \alpha & \text{si } \beta = \epsilon \\ \beta & \text{si } \alpha = \epsilon \\ a_1 \dots a_n b_1 \dots b_m \text{ si } \alpha = a_1 \dots a_n \text{ } y \text{ } \beta = b_1 \dots b_m \end{cases}$$

Sea $\alpha, \beta \in \Sigma^*$, definimos la concatenación:

$$\alpha.\beta = \begin{cases} \alpha & \text{si } \beta = \epsilon \\ \beta & \text{si } \alpha = \epsilon \\ a_1 \dots a_n b_1 \dots b_m \text{ si } \alpha = a_1 \dots a_n \text{ } y \text{ } \beta = b_1 \dots b_m \end{cases}$$

Por ejemplo, si $\alpha =$ "aa" y $\beta =$ "bb", entonces $\alpha . \beta =$ "aabb".

Sea $\alpha, \beta \in \Sigma^*$, definimos la concatenación:

$$\alpha.\beta = \begin{cases} \alpha & \text{si } \beta = \epsilon \\ \beta & \text{si } \alpha = \epsilon \\ a_1 \dots a_n b_1 \dots b_m \text{ si } \alpha = a_1 \dots a_n \text{ y } \beta = b_1 \dots b_m \end{cases}$$

Por ejemplo, si $\alpha =$ "aa" y $\beta =$ "bb", entonces $\alpha . \beta =$ "aabb".

Algunas propiedades de la operación:

- 1. Asociativa: $\alpha \cdot (\beta \cdot \gamma) = (\alpha \cdot \beta) \cdot \gamma$
- 2. No conmuta, pues en gral $\alpha.\beta \neq \beta.\alpha$
- 3. El elemento neutro de la operación es la cadena vacia, pues $\alpha.\epsilon=\epsilon.\alpha=\alpha$

Sea $\alpha, \beta \in \Sigma^*$, definimos la concatenación:

$$\alpha.\beta = \begin{cases} \alpha & \text{si } \beta = \epsilon \\ \beta & \text{si } \alpha = \epsilon \\ a_1 \dots a_n b_1 \dots b_m \text{ si } \alpha = a_1 \dots a_n \text{ y } \beta = b_1 \dots b_m \end{cases}$$

Por ejemplo, si $\alpha =$ "aa" y $\beta =$ "bb", entonces $\alpha . \beta =$ "aabb".

Algunas propiedades de la operación:

- 1. Asociativa: $\alpha \cdot (\beta \cdot \gamma) = (\alpha \cdot \beta) \cdot \gamma$
- 2. No conmuta, pues en gral $\alpha.\beta \neq \beta.\alpha$
- 3. El elemento neutro de la operación es la cadena vacia, pues $\alpha.\epsilon=\epsilon.\alpha=\alpha$

De aquí en adelante, denotamos la concatenacion de α y β , escribiendo simplemente $\alpha\beta$ (omitimos el ".")

Potencia de una Cadena

Sea $\alpha \in \Sigma^*$ y $n \in \mathbb{N}$, definimos la potencia n-esima de la cadena α :

$$\alpha^n = \begin{cases} \epsilon & \text{si } n = 0\\ \alpha \dots \alpha & \text{si } n \ge 1 \end{cases}$$

Potencia de una Cadena

Sea $\alpha \in \Sigma^*$ y $n \in \mathbb{N}$, definimos la potencia n-esima de la cadena α :

$$\alpha^n = \begin{cases} \epsilon & \text{si } n = 0 \\ \alpha \dots \alpha & \text{si } n \ge 1 \end{cases}$$

Por ejemplo: $\alpha = ab$, entonces $\alpha^3 = ababab$.

Potencia de una Cadena

Sea $\alpha \in \Sigma^*$ y $n \in \mathbb{N}$, definimos la potencia n-esima de la cadena α :

$$\alpha^n = \begin{cases} \epsilon & \text{si } n = 0 \\ \alpha \dots \alpha & \text{si } n \ge 1 \end{cases}$$

Por ejemplo: $\alpha = ab$, entonces $\alpha^3 = ababab$.

Algunas propiedades de la operación:

- 1. $\alpha^n \alpha^m = \alpha^{n+m}$
- 2. $(\alpha^n)^m = \alpha^{n.m}$

Sea $\alpha \in \Sigma^*$, definimos la longitud de la cadena α :

$$|\alpha| = \begin{cases} 0 & \text{si } \alpha = \epsilon \\ n & \text{si } \alpha = a_1 \dots a_n \end{cases}$$

Sea $\alpha \in \Sigma^*$, definimos la longitud de la cadena α :

$$|\alpha| = \begin{cases} 0 & \text{si } \alpha = \epsilon \\ n & \text{si } \alpha = a_1 \dots a_n \end{cases}$$

Por ejemplo: |abbab| = 5 y $|\epsilon| = 0$.

Sea $\alpha \in \Sigma^*$, definimos la longitud de la cadena α :

$$|\alpha| = \begin{cases} 0 & \text{si } \alpha = \epsilon \\ n & \text{si } \alpha = a_1 \dots a_n \end{cases}$$

Por ejemplo: |abbab| = 5 y $|\epsilon| = 0$.

Algunas propiedades de la operación:

- 1. $|\alpha\beta| = |\alpha| + |\beta|$
- $2. |\alpha^n| = n.|\alpha|$
- $3. |\alpha^{n+m}| = |\alpha^n| + |\alpha^m|$
- 4. $|(\alpha^n)^m| = |\alpha|^{n.m}$

Sea $\alpha \in \Sigma^*$, definimos la longitud de la cadena α :

$$|\alpha| = \begin{cases} 0 & \text{si } \alpha = \epsilon \\ n & \text{si } \alpha = a_1 \dots a_n \end{cases}$$

Por ejemplo: |abbab| = 5 y $|\epsilon| = 0$.

Algunas propiedades de la operación:

- 1. $|\alpha\beta| = |\alpha| + |\beta|$
- 2. $|\alpha^n| = n. |\alpha|$
- 3. $|\alpha^{n+m}| = |\alpha^n| + |\alpha^m|$
- 4. $|(\alpha^n)^m| = |\alpha|^{n.m}$

Finalmente, con $|\alpha|_a$ denotaremos la cantidad de ocurrencias del símbolo "a" en la cadena α . Por ejemplo: $|abbab|_a=2$ y $|abbab|_b=3$.

Reversa de una Cadena

Sea $\alpha \in \Sigma^*$, definimos la reversa de la cadena α :

$$\alpha^{R} = \begin{cases} \epsilon & \text{si } \alpha = \epsilon \\ a_{n} \dots a_{1} & \text{si } \alpha = a_{1} \dots a_{n} \end{cases}$$

Reversa de una Cadena

Sea $\alpha \in \Sigma^*$, definimos la reversa de la cadena α :

$$\alpha^{R} = \begin{cases} \epsilon & \text{si } \alpha = \epsilon \\ a_{n} \dots a_{1} & \text{si } \alpha = a_{1} \dots a_{n} \end{cases}$$

Por ejemplo: si $\alpha = abb$, entonces $\alpha^R = bba$.

Reversa de una Cadena

Sea $\alpha \in \Sigma^*$, definimos la reversa de la cadena α :

$$\alpha^{R} = \begin{cases} \epsilon & \text{si } \alpha = \epsilon \\ a_{n} \dots a_{1} & \text{si } \alpha = a_{1} \dots a_{n} \end{cases}$$

Por ejemplo: si $\alpha = abb$, entonces $\alpha^R = bba$.

Algunas propiedades de la operación:

- 1. $(\alpha\beta)^R = \beta^R \alpha^R$
- $2. \ (\alpha^R)^R = \alpha$
- 3. $|\alpha^R| = |\alpha|$

Subcadena, Prefijo y Sufijo de una cadena

Sean $\alpha, \alpha' \in \Sigma^*$, diremos que:

- $ightharpoonup \alpha'$ es subcadena de α sii $\exists \beta_1, \beta_2 \in \Sigma^*$ tal que $\alpha = \beta_1 \alpha' \beta_2$.
- ▶ α' es **prefijo** de α sii $\exists \beta \in \Sigma^*$ tal que $\alpha = \alpha'\beta$.
- α' es **sufijo** de α sii ∃β ∈ Σ* tal que α = βα'.

Subcadena, Prefijo y Sufijo de una cadena

Sean $\alpha, \alpha' \in \Sigma^*$, diremos que:

- $ightharpoonup \alpha'$ es subcadena de α sii $\exists \beta_1, \beta_2 \in \Sigma^*$ tal que $\alpha = \beta_1 \alpha' \beta_2$.
- ▶ α' es **prefijo** de α sii $\exists \beta \in \Sigma^*$ tal que $\alpha = \alpha'\beta$.
- α' es **sufijo** de α sii ∃β ∈ Σ* tal que α = βα'.

Por ejemplo: si $\alpha="abb"$, entonces "b" es subcadena, "ab" prefijo y "bb" sufijo de α .

Lenguajes

▶ Un **lenguaje** en el alfabeto Σ es cualquier conjunto de cadenas de Σ . Más formalmente, un **lenguaje** es cualquier conjunto $L \subseteq \Sigma^*$.

Lenguajes

- ▶ Un **lenguaje** en el alfabeto Σ es cualquier conjunto de cadenas de Σ . Más formalmente, un **lenguaje** es cualquier conjunto $L \subseteq \Sigma^*$.
- Por ejemplo, si $\Sigma = \{a, b\}$:
 - ▶ $L_1 = \emptyset$ es el lenguaje que no contiene cadenas (lenguaje vacio).
 - $ightharpoonup L_2 = Σ^*$ es el lenguaje de todas la cadenas en el alfabeto.
 - ▶ $L_3 = \{aa, ab, ba, bb\}$ es el lenguaje de todas la cadenas de longitud 2.
 - L₄ = $\{\epsilon, a, a^2, a^3, a^4, \dots\}$ es el lenguaje de todas la cadenas que no tienen un símbolo "b".
 - ▶ $L_5 = \{\alpha \in \Sigma^* : |\alpha|_a \text{ es par}\}$ es el lenguaje de todas la cadenas que tienen una cantidad par de símbolos "a".
 - ▶ $L_6 = \{\alpha \in \Sigma^* : \alpha = \alpha^R\}$ es el lenguaje de todas la cadenas capicuas.

Lenguajes

- ▶ Un **lenguaje** en el alfabeto Σ es cualquier conjunto de cadenas de Σ . Más formalmente, un **lenguaje** es cualquier conjunto $L \subseteq \Sigma^*$.
- Por ejemplo, si $\Sigma = \{a, b\}$:
 - ▶ $L_1 = \emptyset$ es el lenguaje que no contiene cadenas (lenguaje vacio).
 - $ightharpoonup L_2 = Σ^*$ es el lenguaje de todas la cadenas en el alfabeto.
 - ▶ $L_3 = \{aa, ab, ba, bb\}$ es el lenguaje de todas la cadenas de longitud 2.
 - ▶ $L_4 = \{\epsilon, a, a^2, a^3, a^4, \dots\}$ es el lenguaje de todas la cadenas que no tienen un símbolo "b".
 - ▶ $L_5 = \{\alpha \in \Sigma^* : |\alpha|_a \text{ es par}\}$ es el lenguaje de todas la cadenas que tienen una cantidad par de símbolos "a".
 - ▶ $L_6 = \{\alpha \in \Sigma^* : \alpha = \alpha^R\}$ es el lenguaje de todas la cadenas capicuas.
- Notar que un lenguaje puede ser finito (como L₁ y L₃) o infinito (como L₂, L₄, L₅, L₆).

Operadores de Lenguajes

Como los lenguajes son conjuntos (de cadenas), entonces todo operador de conjuntos es tambien un operador de lenguajes.

Operadores de Lenguajes

Como los lenguajes son conjuntos (de cadenas), entonces todo operador de conjuntos es tambien un operador de lenguajes.

- ▶ Si L_1 y L_2 son lenguajes, entonces:
 - $ightharpoonup L_1 \cup L_2$ es un lenguaje (unión).
 - ▶ $L_1 \cap L_2$ es un lenguaje (intersección).
 - $ightharpoonup L_1 L_2$ es un lenguaje (resta).
 - $ightharpoonup \overline{L_1}$ es un lenguaje (complemento).

Operadores de Lenguajes

Como los lenguajes son conjuntos (de cadenas), entonces todo operador de conjuntos es tambien un operador de lenguajes.

- ightharpoonup Si L_1 y L_2 son lenguajes, entonces:
 - $ightharpoonup L_1 \cup L_2$ es un lenguaje (unión).
 - ▶ $L_1 \cap L_2$ es un lenguaje (intersección).
 - $ightharpoonup L_1 L_2$ es un lenguaje (resta).
 - ightharpoonup es un lenguaje (complemento).

Además, definimos los operadores de concatenación, potencia, clausura y reversa de lenguajes.

Sean $L_1, L_2 \subseteq \Sigma^*$, definimos la **concatenación**:

$$L_1.L_2 = \{\alpha\beta : \alpha \in L_1 \ y \ \beta \in L_2\}$$

Sean $L_1, L_2 \subseteq \Sigma^*$, definimos la **concatenación**:

$$L_1.L_2 = \{\alpha\beta : \alpha \in L_1 \ y \ \beta \in L_2\}$$

Por ejemplo, si $L_1 = \{a, aa\}$ y $L_2 = \{b, bb\}$, entonces $L_1.L_2 = \{ab, abb, aab, aabb\}$.

Sean $L_1, L_2 \subseteq \Sigma^*$, definimos la **concatenación**:

$$L_1.L_2 = \{\alpha\beta : \alpha \in L_1 \ y \ \beta \in L_2\}$$

Por ejemplo, si $L_1 = \{a, aa\}$ y $L_2 = \{b, bb\}$, entonces $L_1.L_2 = \{ab, abb, aab, aabb\}$.

También omitiremos escribir "." para denotar la operación de concatenación de lenguajes.

Sean $L_1, L_2 \subseteq \Sigma^*$, definimos la **concatenación**:

$$L_1.L_2 = \{\alpha\beta : \alpha \in L_1 \ y \ \beta \in L_2\}$$

Por ejemplo, si $L_1 = \{a, aa\}$ y $L_2 = \{b, bb\}$, entonces $L_1.L_2 = \{ab, abb, aab, aabb\}$.

También omitiremos escribir "." para denotar la operación de concatenación de lenguajes.

Algunas propiedades de la concatenación:

- 1. Elemento absorvente: $L\emptyset = \emptyset L = \emptyset$
- 2. Elemento neutro: $L\{\epsilon\} = \{\epsilon\}L = L$
- 3. Asociatividad: $L_1(L_2L_3) = (L_1L_2)L_3$
- 4. Distributividad con \cup por izquierda y por derecha: $L_1(L_2 \cup L_3) = (L_1L_2) \cup (L_1L_3)$ y $(L_2 \cup L_3)L_1 = (L_2L_1) \cup (L_3L_1)$
- 5. No es conmutativa y tampoco es distributiva con ∩

Potencia de Lenguajes (L^n)

Sea $L \subseteq \Sigma^*$ y $n \in \mathbb{N}$, definimos la **potencia** n-**esima** de L:

$$L^{n} = \begin{cases} \{\epsilon\} & \text{si } n = 0\\ L \dots L & \text{si } n \ge 1 \end{cases}$$

Potencia de Lenguajes (L^n)

Sea $L \subseteq \Sigma^*$ y $n \in \mathbb{N}$, definimos la **potencia** n-**esima** de L:

$$L^{n} = \begin{cases} \{\epsilon\} & \text{si } n = 0\\ L \dots L & \text{si } n \ge 1 \end{cases}$$

 L^n es el conjunto de todas las posibles concatenaciones de n cadenas de L.

Potencia de Lenguajes (L^n)

Sea $L \subseteq \Sigma^*$ y $n \in \mathbb{N}$, definimos la **potencia** n-**esima** de L:

$$L^{n} = \begin{cases} \{\epsilon\} & \text{si } n = 0 \\ L \dots L & \text{si } n \ge 1 \end{cases}$$

 L^n es el conjunto de todas las posibles concatenaciones de n cadenas de L.

Por ejemplo, si $L = \{a, bb\}$, entonces $L^2 = \{aa, abb, bba, bbbb\}$.

Clausura de un Lenguaje (L^* y L^+)

Sean $L \subseteq \Sigma^*$, definimos la **clausura** de L:

$$L^* = \{\alpha_1 \dots \alpha_n : \alpha_i \in L \ y \ n \ge 0\}$$

Clausura de un Lenguaje (L^* y L^+)

Sean $L \subseteq \Sigma^*$, definimos la **clausura** de L:

$$L^* = \{\alpha_1 \dots \alpha_n : \alpha_i \in L \ y \ n \ge 0\}$$

 L^* es el conjunto de todas las posibles concatenaciones de cadenas de L. Por lo tanto, L^* es un lenguaje infinito (salvo que $L=\emptyset$ ó $L=\{\epsilon\}$) y siempre contiene a la cadena ϵ .

Sean $L \subseteq \Sigma^*$, definimos la **clausura** de L:

$$L^* = \{\alpha_1 \dots \alpha_n : \alpha_i \in L \ y \ n \ge 0\}$$

 L^* es el conjunto de todas las posibles concatenaciones de cadenas de L. Por lo tanto, L^* es un lenguaje infinito (salvo que $L=\emptyset$ ó $L=\{\epsilon\}$) y siempre contiene a la cadena ϵ .

Por ejemplo, si $L = \{a\}$, entonces $L^* = \{\epsilon, a, aa, aaa, aaaa, \dots\}$

Sean $L \subseteq \Sigma^*$, definimos la **clausura** de L:

$$L^* = \{\alpha_1 \dots \alpha_n : \alpha_i \in L \ y \ n \ge 0\}$$

 L^* es el conjunto de todas las posibles concatenaciones de cadenas de L. Por lo tanto, L^* es un lenguaje infinito (salvo que $L=\emptyset$ ó $L=\{\epsilon\}$) y siempre contiene a la cadena ϵ .

Por ejemplo, si $L=\{a\}$, entonces $L^*=\{\epsilon,a,aa,aaa,aaaa,\dots\}$

Tambien, definimos la clausura positiva de L:

$$L^+ = \{\alpha_1 \dots \alpha_n : \alpha_i \in L \ y \ n \ge 1\}$$

Sean $L \subseteq \Sigma^*$, definimos la **clausura** de L:

$$L^* = \{\alpha_1 \dots \alpha_n : \alpha_i \in L \ y \ n \ge 0\}$$

 L^* es el conjunto de todas las posibles concatenaciones de cadenas de L. Por lo tanto, L^* es un lenguaje infinito (salvo que $L=\emptyset$ ó $L=\{\epsilon\}$) y siempre contiene a la cadena ϵ .

Por ejemplo, si $L = \{a\}$, entonces $L^* = \{\epsilon, a, aa, aaa, aaaa, \dots\}$

Tambien, definimos la **clausura positiva** de L:

$$L^+ = \{\alpha_1 \dots \alpha_n : \alpha_i \in L \ y \ n \ge 1\}$$

Siguiendo el ejemplo anterior, $L^+ = \{a, aa, aaa, aaaa, \dots\}$

Sean $L \subseteq \Sigma^*$, definimos la **clausura** de L:

$$L^* = \{\alpha_1 \dots \alpha_n : \alpha_i \in L \ y \ n \ge 0\}$$

 L^* es el conjunto de todas las posibles concatenaciones de cadenas de L. Por lo tanto, L^* es un lenguaje infinito (salvo que $L=\emptyset$ ó $L=\{\epsilon\}$) y siempre contiene a la cadena ϵ .

Por ejemplo, si $L = \{a\}$, entonces $L^* = \{\epsilon, a, aa, aaa, aaaa, \dots\}$

Tambien, definimos la **clausura positiva** de *L*:

$$L^+ = \{\alpha_1 \dots \alpha_n : \alpha_i \in L \ y \ n \ge 1\}$$

Siguiendo el ejemplo anterior, $L^+ = \{a, aa, aaa, aaaa, \dots\}$

Notar que $L^+ = L^* - \{\epsilon\}$, para todo L

Propiedades de la Clausura

Sea $L \subseteq \Sigma^*$, entonces se cumplen:

$$1. L^* = \bigcup_{i=0}^{\infty} L^i$$

$$2. L^+ = \bigcup_{i=1}^{\infty} L^i$$

- 3. $L^*L^* = L^*$
- 4. $L^+L^+=L^+$
- 5. $(L^*)^* = L^*$
- 6. $(L^+)^+ = L^+$
- 7. $L^+ = LL^*$
- 8. $(L^+)^* = L^*$
- 9. $(L^+)^* = L^*$

Sea $L \subseteq \Sigma^*$, definimos la **reversa** de L:

$$L^R = \{\alpha^R : \alpha \in L\}$$

Sea $L \subseteq \Sigma^*$, definimos la **reversa** de L:

$$L^R = {\alpha^R : \alpha \in L}$$

 L^R es el conjunto de todas las reversas de las cadenas de L.

Sea $L \subseteq \Sigma^*$, definimos la **reversa** de L:

$$L^R = \{\alpha^R : \alpha \in L\}$$

 L^R es el conjunto de todas las reversas de las cadenas de L.

Por ejemplo, si $L = \{a, ab, babb\}$ entonces $L^R = \{a, ba, bbab\}$

Sea $L \subseteq \Sigma^*$, definimos la **reversa** de L:

$$L^R = \{\alpha^R : \alpha \in L\}$$

 L^R es el conjunto de todas las reversas de las cadenas de L.

Por ejemplo, si $L = \{a, ab, babb\}$ entonces $L^R = \{a, ba, bbab\}$

Algunas propiedades de la reversa:

1.
$$(L_1 \cup L_2)^R = L_1^R \cup L_2^R$$

2.
$$(L_1 \cap L_2)^R = L_1^R \cap L_2^R$$

3.
$$(L_1L_2)^R = L_2^R L_1^R$$

4.
$$(L^R)^R = L$$

5.
$$(L^*)^R = (L^R)^*$$

6.
$$(L^+)^R = (L^+)^*$$

Precedencia de los Operadores

En asusencia de paréntesis, las operadores siguen el siguiente orden de precedencia:

- 1. Potencia, Reversa, Clausura
- 2. Concatención
- 3. Unión, Intersección, Resta

Resumen

▶ Definimos formalmente la noción de lenguaje a partir del concepto de alfabeto y cadenas del alfabeto.

Resumen

- Definimos formalmente la noción de lenguaje a partir del concepto de alfabeto y cadenas del alfabeto.
- Definimos operadores a nivel de las cadenas y luego la extendimos a nivel de los lenguajes.

Resumen

- ▶ Definimos formalmente la noción de lenguaje a partir del concepto de alfabeto y cadenas del alfabeto.
- Definimos operadores a nivel de las cadenas y luego la extendimos a nivel de los lenguajes.
- Enunciamos las principales propiedades que satisfacen dichas operaciones y su orden de precedencia.

Bibliografía

Rodrigo De Castro Korgi.

"Teoria de la Computación". Lenguajes, Autómatas, Gramáticas.

Capítulo 1: Alfabetos, cadenas y lenguajes. Sección 1.1 hasta 1.12.