ECE-213

Tutorial

AND gate

2 Input AND gate			
В	A.B		
0	0		
1	0		
0	0		
1	1		

The AND gate is an electronic circuit that gives a **high** output (1) only if **all** its inputs are high. A dot (.) is used to show the AND operation i.e. A.B. Bear in mind that this dot is sometimes omitted i.e. AB

OR gate

2 Input OR gate			
Α	В	A+B	
0	0	0	
0	1	1	
1	0	1	
1	1	1	

The OR gate is an electronic circuit that gives a high output (1) if one or more of its inputs are high. A plus (+) is used to show the OR operation.

NOT gate

NOT gate	
Α	Ā
0	1
1	0

Applications

NAND gate

2 Inpu	2 Input NAND gate		
Α	В	Ā.B	
0	0	1	
0	1	1	
1	0	1	
1	1	0	

This is a NOT-AND gate which is equal to an AND gate followed by a NOT gate. The outputs of all NAND gates are high if any of the inputs are low. The symbol is an AND gate with a small circle on the output. The small circle represents inversion.

NOR gate

2 Input NOR gate		
Α	В	Ā+B
0	0	1
0	1	0
1	0	0
1	1	0

This is a NOT-OR gate which is equal to an OR gate followed by a NOT gate. The outputs of all NOR gates are low if **any** of the inputs are high. The symbol is an OR gate with a small circle on the output. The small circle represents inversion.

EXOR gate

2 Input EXOR gate		
Α	В	A⊕B
0	0	0
0	1	1
1	0	1
1	1	0

The 'Exclusive-OR' gate is a circuit which will give a high output if either, but not both, of its two inputs are high. An encircled plus sign (⊕) is used to show the EOR operation.

EXNOR gate

2 Input EXNOR gate		
Α	В	A⊕B
0	0	1
0	1	0
1	0	0
1	1	1

The 'Exclusive-NOR' gate circuit does the opposite to the EOR gate. It will give a low output if either, but not both, of its two inputs are high. The symbol is an EXOR gate with a small circle on the output. The small circle represents inversion.

Number System

Binary to decimal

Convert the binary whole number 1101101 to decimal.

Determine the weight of each bit that is a 1, and then find the sum of the weights to get the decimal number.

Weight:
$$2^6 \ 2^5 \ 2^4 \ 2^3 \ 2^2 \ 2^1 \ 2^0$$

Binary number: $1 \ 1 \ 0 \ 1 \ 1 \ 0 \ 1$
 $1101101 = 2^6 + 2^5 + 2^3 + 2^2 + 2^0$
 $= 64 + 32 + 8 + 4 + 1 = 109$

Convert the binary number 10010001 to decimal.

Convert to decimal from binary:

- 1011011
 - a. 27
 - b. 91
 - c. 109
 - d. -109

Convert .0111₂ to decimal

a. .875

b. .375

c. .4375

d. .0700

Convert to binary from decimal:

-65

a.110101

b.101110

c.100001

d.100000

Convert the following to base 10: 11.01100₂

- a. 3.7500
- b. 3.0300
- c. 3.1875
- d. 3.3750