

AUTOMATIC CONTROL GROUP

PARTICLE SWARM OPTIMIZATION

ASSISTED BY SURROGATES

A HYBRID APPROACH TO GLOBAL OPTIMIZATION

Overview

- Fundamentals
 - Global Optimization
 - > Particle Swarm Optimization
 - Bayesian Optimization
- Methods & Evaluation
 - Hybrid Approach PSO & Bayesian Optimization
 - Data Buffer
- Conclusion & Outlook

Global Optimization

- Find parameters/inputs that optimize a criterion/function in a constrained search space
- Occurs in all kinds of disciplines, universal applications
 - Completing a task with the least amount of resources
 - Finding some optimal model
- Trivial for simple examples, but complexity can grow dramatically due to:
 - > Increasing number of parameters
 - Non-convex functions / local optima
- Exploration vs. exploitation (in contrast to local optimization)

Fig: Comparison of two functions

Particle Swarm Optimization (PSO, see [2])

- Mimics swarm intelligence to solve optimization problems
- Each particle moves through search space according to:

$$\vec{V}_{n+1} = \underbrace{\omega \cdot \vec{V}_n}_{\text{r}} + \underbrace{c_1 \cdot \vec{U}_1 \otimes \left(\vec{P}_n - \vec{X}_n\right)}_{\text{r}} + \underbrace{c_2 \cdot \vec{U}_2 \otimes \left(\vec{L}_n - \vec{X}_n\right)}_{\text{r}}$$
Old velocity Personal best Swarm best

$$\vec{X}_{n+1} = \vec{X}_n + \vec{V}_{n+1}$$

Fig: Example of a particle swarm searching for the global optimum [5]

Standard PSO 2011 (SPSO2011, see [2])

- Proposed improvement to PSO
- Sample uniformly from a hypersphere

$$\vec{C}_n = \frac{\vec{X}_n + \vec{P'}_n + \vec{L'}_n}{3}$$

$$\vec{V}_{n+1} = \omega \cdot \vec{V}_n + \mathcal{H}(\vec{C}_n, \|\vec{C}_n - \vec{X}_n\|) - \vec{X}_n$$

$$\vec{X}_{n+1} = \vec{X}_n + \vec{V}_{n+1}$$

Does not use any old data other than the best points

PARTICLE SWARM OPTIMIZATION ASSISTED BY SURROGATES

Bayesian Optimization (for maximization)

- Model as an approximation of the real function
- Focus on gaussian processes
 - Model consists of mean and uncertainty/variance
- Based on the model an acquisition function is created
 - Computationally faster to evaluate
 - Yields a point of potential improvement
 - High uncertainty and high mean (for maximization)
 constitute to a good value for the acquisition function
- Alternating between fit and acquisition function optimization

Fig: Example for a maximization problem [3]

SPSO2011 + Bayesian Optimization

- Keep more of the gathered points in memory
- Swarm gathers data
- Surrogate is fit using this data
- Worst particle of the swarm replaced with result of the acquisition function optimization
- Replacement can also be repeated for the m worst points

Another Take on the Topic

- Paper using the PSO with a gaussian process-based surrogate by Jakubik et al [4]
- 3 variants which were compared to SPSO2011 and Bayesian optimization
- Benchmark test CEC2013:
 - > Standardized test, including 28 minimization problems
 - > Search space range: $[-100, 100]^D$
 - > Function evaluations: $100 \cdot D$ (1000 for D = 10)
 - > 51 runs per function
- Jakubik's Variant A3 outperforms all their other versions

Results for SPSO2011 and Variants

Mean over 51 runs

Func	Opt	SPSO	SPSO + 1 Bayesian	Jakubik SPSO	Jakubik A3
1	-1400	-651,44	-946,36	-7,89	-1395,01
2	-1300	1,5E+07	1,5E+07	1,4E+08	1,2E+07
3	-1200	2,8E+09	2,8E+09	1,1E+11	2,3E+09
4	-1100	3,3E+04	3,7E+04	4,0E+05	4,0E+05
5	-1000	-567,30	-626,03	-308,40	-381,12
6	-900	-814,04	-827,45	-764,74	-848,43
7	-800	-711,90	-715,51	-632,23	-684,63
8	-700	-679,26	-679,29	-679,29	-679,19
9	-600	-590,14	-590,24	-589,45	-594,45
10	-500	-385,22	-476,34	-264,25	-451,97
11	-400	-327,45	-325,58	-309,30	-355,27
12	-300	-225,65	-226,34	-215,63	-247,02
13	-200	-127,80	-127,96	-110,52	-146,96
14	-100	2011,62	2040,22	1957,85	1086,95

Func	Opt	SPSO	SPSO + 1 Bayesian	Jakubik SPSO	Jakubik A3
15	0	2136,09	2162,76	2220,26	1615,87
16	100	202,52	202,52	202,65	202,46
17	200	415,35	380,63	416,11	301,89
18	300	507,99	479,54	521,40	401,50
19	400	513,44	513,57	628,37	507,32
20	500	604,25	604,21	604,31	604,27
21	600	1162,25	1150,31	1176,77	1473,88
22	700	3141,37	3143,18	3090,08	2247,24
23	800	3212,69	3227,08	3368,55	2646,50
24	900	1228,09	1226,85	1231,84	1210,11
25	1000	1326,01	1326,11	1330,75	1334,72
26	1100	1415,51	1399,33	1398,62	1409,85
27	1200	1896,74	1904,12	1922,83	1641,31
28	1300	2218,45	2253,96	2346,69	2043,26

Data buffer to reduce the amount of data

- Problems with global surrogate:
 - Good fit in high dimensions needs lots of data
 - > Fit itself takes a lot of time with increasing number of data points
 - > Areas where the swarm does not explore stay somewhat uncertain
- Use a data buffer to reduce the amount of data for the fit.
- Type 1: Time Buffer
 - > "First in, first out"
 - Data in the surrogate memory follows the swarm
- Type 2: Value Buffer
 - "Best in, worst out"
 - New values are compared with the worst elements of the buffer

Results for SPSO2011 with Buffer

Mean over 51 runs

Func	Opt	SPSO	SPSO + 5 Bayesian + Time Buffer	SPSO + 5 Bayesian + Value Buffer	Jakubik A3
1	-1400	-651,44	-1272,60	-1255,33	-1395,01
2	-1300	1,5E+07	1,6E+07	1,5E+07	1,2E+07
3	-1200	2,8E+09	2,7E+09	2,7E+09	2,3E+09
4	-1100	3,3E+04	3,6E+04	3,1E+04	4,0E+05
5	-1000	-567,30	-586,46	-676,45	-381,12
6	-900	-814,04	-843,75	-886,80	-848,43
7	-800	-711,90	-711,78	-719,40	-684,63
8	-700	-679,26	-679,27	-679,26	-679,19
9	-600	-590,14	-590,08	-590,03	-594,45
10	-500	-385,22	-489,17	-489,36	-451,97
11	-400	-327,45	-341,16	-348,96	-355,27
12	-300	-225,65	-232,34	-249,45	-247,02
13	-200	-127,80	-128,77	-146,57	-146,96
14	-100	2011,62	2019,93	2014,32	1086,95

Func	Opt	SPSO	SPSO + 5 Bayesian + Time Buffer	SPSO + 5 Bayesian + Value Buffer	Jakubik A3
15	0	2136,09	2192,53	2180,21	1615,87
16	100	202,52	202,46	202,42	202,46
17	200	415,35	372,77	373,78	301,89
18	300	507,99	471,47	477,80	401,50
19	400	513,44	512,64	511,10	507,32
20	500	604,25	604,23	604,21	604,27
21	600	1162,25	1124,19	1114,98	1473,88
22	700	3141,37	3124,40	3135,47	2247,24
23	800	3212,69	3227,38	3227,00	2646,50
24	900	1228,09	1227,09	1227,05	1210,11
25	1000	1326,01	1328,74	1325,47	1334,72
26	1100	1415,51	1396,74	1393,98	1409,85
27	1200	1896,74	1913,74	1920,73	1641,31
28	1300	2218,45	2240,62	2182,84	2043,26

Convergence Behavior

- Time-based Buffer
- One Bayesian optimization step
- Averaged over 15 runs

Conclusion

- Github repository with evaluation framework (https://github.com/upb-lea/PSOAS)
- Baseline SPSO2011 implementation
- Surrogate addition fairly effective for predictable / convex examples
- No significant improvement over the baseline for other tested functions
 - > A large portion of the surrogate propositions are not helpful currently
- Only applicable if the function evaluation is expensive

Outlook

- Looking at Jakubik there should be room for improvement
- Global surrogate approach:
 - > Filtering the data is necessary
 - > Recognizing appropriate points needs to be improved
- Local surrogate approach:
 - Constraints, regularization are necessary
 - How to choose these constraints?

Sources

- [1] https://mathworld.wolfram.com/GlobalOptimization.html (Accessed 06.10.2021 13:54)
- [2] M. Zambrano-Bigiarini, M. Clerc and R. Rojas, "Standard Particle Swarm Optimisation 2011 at CEC-2013: A baseline for future PSO improvements." (2013)
- [3] B. Shahriari, et al. "Taking the human out of the loop: A review of Bayesian optimization." (2015)
- [4] J. Jakubik, A. Binding, and S. Feuerriegel. "Directed particle swarm optimization with Gaussian-process-based function forecasting." (2021)
- [5] https://commons.wikimedia.org/wiki/File:ParticleSwarmArrowsAnimation.gif (Accessed 10.10.2021 18:57)