Week2 Assignment

Ma Yubo

Part One

(1)
$$= \sum_{w} \int_{w} \log (\widehat{J}_{w}) = -\sum_{y \neq 0} \int_{w} \log (\widehat{J}_{w}) = -\log p(0|c)$$
.

(2) $\int_{z} = -\log p(0|c) = -\log \frac{exp(H_{w}T_{k})}{\sum_{w} exp(H_{w}T_{k})}$.

 $= -H_{w}T_{k} + \log \frac{\sum_{w} exp(H_{w}T_{k})}{\sum_{w} exp(H_{w}T_{k})}$.

 $= -H_{w} + \sum_{w} \int_{w} \exp (H_{w}T_{k})$.

 $= -H_{w} + \sum_{w} \int_{w} \int_{w} \exp (H_{w}T_{k})$.

 $= -H_{w} + \sum_{w} \int_{w} \int_{w} \exp (H_{w}T_{k})$.

 $= -H_{w} + \sum_{w} \int_{w} \int_{w} \exp (H_{w}T_{k})$.

 $= -H_{w} + \sum_{w} \int_{w} \int_{w} \exp (H_{w}T_{k})$.

 $= -H_{w} + \sum_{w} \int_{w} \int_{w} \exp (H_{w}T_{k})$.

 $= -H_{w} + \sum_{w} \int_{w} \int_{w} \exp (H_{w}T_{k})$.

 $= -H_{w} + \sum_{w} \int_{w} \int_{w} \exp (H_{w}T_{k})$.

 $= -H_{w} + \sum_{w} \int_{w} \int_{w} \exp (H_{w}T_{k})$.

 $= -H_{w} + \sum_{w} \int_{w} \int_{w} \exp (H_{w}T_{k})$.

 $= -H_{w} + \sum_{w} \int_{w} \int_{w} \exp (H_{w}T_{k})$.

 $= -H_{w} + \sum_{w} \int_{w} \int_{w} \exp (H_{w}T_{k})$.

 $= -H_{w} + \sum_{w} \int_{w} \int_{w} \exp (H_{w}T_{k})$.

 $= -H_{w} + \sum_{w} \int_{w} \int_{w} \exp (H_{w}T_{k})$.

 $= -H_{w} + \sum_{w} \int_{w} \int_{w} \int_{w} \exp (H_{w}T_{k})$.

 $= -H_{w} + \sum_{w} \int_{w} \int_{w}$

Part Two

The source codes have uploaded on Github and here's the running result: