Análise e Projeto Orientados a Objetos

Modelagem de Classes do Domínio

Aspectos dinâmico e estático

- Uma colaboração pode ser vista sob o aspecto dinâmico e sob o aspecto estrutural estático.
- Aspecto dinâmico:
 - Descreve a troca de mensagens entre os objetos e sua reação a eventos que ocorrem no sistema.
- Aspecto estrutural estático
 - Permite compreender como o sistema está estruturado internamente.
 - Este é <u>estrutural</u>, pois seu foco encontra-se na representação da estrutura das classes e nas relações entre estas.
 - Este é <u>estático</u>, pois não apresenta informações sobre as interações dos objetos no decorrer do tempo

Aspectos dinâmico e estático

Lembre-se:

Os aspectos estático e dinâmico de um SW não são independentes!

Na verdade, a construção de um serve para adicionar detalhes ao outro.

Modelo de classes

- O modelo de classes de domínio
 - Representa as classes no domínio do negócio em questão.
 - Este modelo é construído na fase de análise.
 - Por definição, este modelo é abstrato e não deve considerar restrições inerentes à tecnologia a ser utilizada na solução de um problema.
- O modelo de classes de especificação
 - É obtido através da adição de detalhes (classes da solução tecnológica, tipos, visibilidades, parâmetros,...) ao modelo anterior.
 - Este modelo é construído (por iteração) na fase de projeto
- O modelo de classes de implementação
 - Corresponde à implementação de classes anteriores em alguma LPOO
 - Este modelo é construído (por iteração) na fase de implementação

Classes

Exemplo: classe ContaBancaria

ContaBancaria

ContaBancaria

numero saldo dataAbertura

ContaBancaria

numero saldo dataAbertura

criar() bloquear() desbloquear() creditar() debitar()

Associações

- Representa relacionamentos que são formados entre objetos.
 - Embora as associações sejam representadas entre classes, tais associações representam ligações entre objetos das classes envolvidas.
- São representadas através de um segmento de reta.
- Exemplos:

Multiplicidades das Associações

- Representam os limites inferior e superior da quantidade de objetos aos quais um outro objeto pode estar associado.
- Cada associação em um diagrama de classes possui duas multiplicidades, uma em cada extremo da linha de associação.

Nome	Simbologia
Apenas Um	11 (ou 1)
Zero ou Muitos	0* (ou *)
Um ou Muitos	1*
Zero ou Um	01
Intervalo Específico	

Multiplicidades das Associações

Exemplo 1:

- Pode haver um cliente que esteja associado a vários pedidos.
- Pode haver um cliente que n\u00e3o esteja associado a pedido algum.
- Um pedido está associado a um, e somente um, cliente.

Multiplicidades das Associações

Exemplo 2:

- Uma corrida está associada a, no mínimo, dois velocistas
- Uma corrida está associada a, no máximo, seis velocistas.
- Um velocista pode estar associado a várias corridas.

- Uma lista de intervalos pode ser especificada na multiplicidade de uma associação
 - EX: "1,3,5..9,11" equivale a um intervalo {1,3,5,6,7,8,9,11}

Conectividade das Associações

- A conectividade corresponde ao tipo de associação entre duas classes:
 - um para um;
 - um para muitos;
 - muitos para muitos.

Conectividade das Associações

Exemplo:

Conectividade das Associações

 A conectividade da associação entre duas classes depende da multiplicidade da associação.

Conectividade	Em um extremo	No outro extremo
Um para um	01 ou 1	01 ou 1
Um para muitos	01 ou 1	* ou 1* ou 0*
Muitos para muitos	* ou 1* ou 0*	* ou 1* ou 0*

Participação das Associações

- Indica a necessidade da existência da associação.
- A participação pode ser
 - Obrigatória.
 - Se o valor mínimo da multiplicidade de uma associação é igual a 1
 - Opcional
 - Se o valor mínimo da multiplicidade de uma associação é igual a 0.
- Por exemplo:

Detalhando uma associação

- Para melhor esclarecer o significado de uma associação no diagrama de classes, a UML define três recursos de notação:
 - Nome da associação: fornece algum significado semântico a mesma.
 - Direção de leitura: indica como a associação deve ser lida
 - Papel: para representar um papel específico em uma associação.

Detalhando uma associação

Atenção:

É preferível não nomear associações a usar nomes vagos ou óbvios demais.

O mesmo vale para papéis!

O objetivo é ter diagramas claros e não "poluídos".

Isto é, equilibrar o entendimento e a concisão!

Detalhando uma associação

- Embora ocorra com pouca freqüência, pode-se definir mais de uma associação entre duas classes.
- Nestes casos, já que as duas classes envolvidas são as mesmas, o detalhamento das associações (uso de papéis, nomes de associações e/ou direção de leitura) é apropriado para aumentar a legibilidade.

Associação de Agregação

Notação :

 Um segmento de reta que conecta as classes relacionadas e possui um losango branco perto da classe que representa o todo.

Exemplo:

Obs:

- Na associação de agregação não há dependência existencial entre as partes e o todo.
 - Se uma Equipe for extinta, o Jogador ainda pode ser membro de outras

Classe Associativa

- Notação:
 - Mesma da classe, entretanto a classe é ligada a uma associação.

- OBS:
 - Não se descreve a linha de associação de uma classe associativa
 - Uma classe associativa pode participar de outros relacionamentos

Classe Associativa

 De forma geral, pode-se substituir, sem perda de informação, uma classe associativa por uma classe ordinária

 Note que a classe emprego tem participação obrigatória em ambas as associações

Associações Reflexivas (auto-associação)

Exemplo:

