

Институт прикладной математики им. М.В. Келдыша РАН

Якобовский Михаил Владимирович
Заместитель директора по научной работе
Института прикладной математики
имени М.В. Келдыша Российской академии наук
таil: lira@imamod.ru

Параллельные алгоритмы 20250204

Введение

Якобовский Михаил Владимирович

Число вычислительных ядер суперкомпьютеров top-500 2023.11

Производительность систем top500 (2020)

Производительность систем top500 (2020-2022)

Некоторые рассматриваемые вопросы

- □ Введение, области применения многопроцессорных систем
- □ Виды систем, топологии интерконнекта
- Модель Фон-Неймана, архитектура процессора
- Базовые параллельные алгоритмы
- Режимы обмена сообщениями, семафоры
- Оценка времени выполнения алгоритмов
- Декомпозиция расчётных сеток
- □ Динамическая балансировка загрузки
- Адаптивные расчётные сетки
- □ Параллельные алгоритмы сортировки
- □ Псевдослучайные числа для параллельных приложений
- □ Вычислительный эксперимент, визуализация результатов
- □ Отказоустойчивые параллельные алгоритмы

Что в центре внимания курса

- Изучение общих принципов построения параллельных алгоритмов
- Оценка основных свойств параллельных алгоритмов:
 - Число выполняемых операций
 - Время выполнения
 - Объём обрабатываемых данных
 - Ускорение
 - Эффективность
 - Масштабируемость

— ...

Цена производительности – сложность использования

- □ Вычислительная производительность суперкомпьютеров:
 - Сумма производительностей множества исполнительных устройств
- □ Увеличение производительности компьютера архитектуры фон-Неймана автоматически приводило к снижению времени работы программ. Для параллельных архитектур это не так:
 - Последовательные программы не могут работать на суперкомпьютерах быстрее, чем на однопроцессорных (одноядерных) компьютерах

Области применения многопроцессорных систем

- 1) сокращение времени решения вычислительно сложных задач
- 2) сокращение времени обработки больших объемов данных

- 3) решение задач реального времени
- 4) создание систем высокой надежности

Задачи большого вызова

(Kenneth G. Wilson, Cornell University, 1987)

- Вычислительная газовая динамика:
 - the design of hypersonic aircraft, efficient automobile bodies, and extremely quiet submarines
 - Предсказания погоды, и глобальных климатических изменений
 - Оптимизация нефтедобычи и множество других приложений
- □ Молекулярная динамика:
 - Создание материалов с заданными свойствами
 - Разработка новых лекарственных соединений
 - Сверхпроводимость, Свойства веществ в экстремальных состояниях, ...
- □ Символьные вычисления
 - Распознавание речи
 - Компьютерное зрение
 - Изучение сложных систем
 - Автономные системы управления
- □ Квантовая хромодинамика и теория конденсированных сред
- □ Управляемый термоядерный синтез, Геном человека, ...

Области применения многопроцессорных систем

1) сокращение времени решения выч сложных задач

2) сокращение времени обработки больших

Дозвуковая аэродинамическая труба Т-104, ЦАГИ

- □ Скорость потока 10–120 м/с
- □ Диаметр сопла 7 м
- Длина рабочей части 13 м
- Мощностьвентилятора 28.4 МВтhttp://www.tsagi.ru/rus/base/t104
- 1. Сопло
 2. Двухступенчатый вентилятор
 3. Рабочая часть
 4. Форкамера
 5. Кабина аэродинамических весов
 6. Кабина оператора
 7. Диффузор
 8. Шахта приточной вентиляции
 9. Шахта вытяжной вентиляции
 10. Газоотводящее устройство

Суперкомпьютер СКИФ МГУ «ЧЕБЫШЁВ»

- Пиковая производительность 60 TFlop/s
- Мощность комплекса 0.72 МВт

http://parallel.ru/cluster/skif_msu.html

Области применения многопроцессорных систем

https://pikabu.ru/story/sortirovochnaya_yasinovataya_6617139

- 3) решение задач реального времени
- 4) создание систем высокой надежности

Области применения многопроцессорных систем

4) создание систем высокой надежности

http://www.aspectspb.ru/solutions/it/highavailability/failover.html

АСПЕКТ СПб**, 2020**

Транспьютер и оперативная память

Структура транспьютера Т-800

Транспьютерная материнская плата МТБ-8

Три транспьютера на плате МТБ-8

Многопроцессорные системы с общей памятью

Многопроцессорные системы с распределенной памятью

Контакты

Якобовский М.В.

чл.-корр. РАН, проф., д.ф.-м.н., заместитель директора по научной работе Института прикладной математики им. М.В. Келдыша Российской академии наук

mail: lira@imamod.ru

web: http://lira.imamod.ru