Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики УНИВЕРСИТЕТ ИТМО

Группа <u>R3137</u>	К работе допущен
Студент Ракин Илья Николаевич	_Работа выполнена
Преподаватель Смирнов А В	Отчет принят

УЧЕБНЫЙ ЦЕНТР ОБЩЕЙ ФИЗИКИ ФТФ

Рабочий протокол и отчет по лабораторной работе № 1.03

1. Цели работы:

- 1) Исследование упругого и неупругого центрального соударения тел на примере тележек, движущихся с малым трением
- 2) Исследование зависимости ускорения тележки от приложенной силы и массы тележки.

2. Задачи, решаемые при выполнении работы:

- 1) Измерение скоростей тележек до и после соударения
- Измерение скорости тележки при ее разгоне под действием постоянной силы
- 3) Исследование потерь импульса и механической энергии при упругом и неупругом соударении тел
- 4) Исследование зависимости ускорения тележки от приложенной силы и массы тележки. Проверка второго закона Ньютона.

3. Объект исследования:

упругое и неупругое центральное соударение тел.

4. Метод экспериментального исследования: многократные измерения

5. Рабочие формулы и исходные данные:

$$\begin{cases} v_{1x} = \frac{(m_1 - m_2)v_{10}}{m_1 + m_2} \\ v_{2x} = \frac{2m_1v_{10}}{m_1 + m_2} \end{cases} \begin{cases} m_1\vec{v}_{10} = (m_1 + m_2)\vec{v} \\ \frac{m_1v_{10}^2}{2} = \frac{(m_1 + m_2)v^2}{2} + W_{\text{HOT}} \end{cases}$$

$$v = \frac{m_1v_{10}}{m_1 + m_2} \quad W_{\text{HOT}} = \frac{m_1m_2v_{10}^2}{2(m_1 + m_2)}$$

$$p_{10x} = m_1v_{10x}, \quad p_{1x} = m_1v_{1x}, \quad p_{2x} = m_2v_{2x}$$

$$\delta_p = \Delta p_x / p_{10x} = \frac{(p_{1x} + p_{2x})}{p_{10x}} - 1$$

$$\delta_W = \Delta W_{\text{K}} / W_{\text{K0}} = \frac{m_1v_{1x}^2 + m_2v_{2x}^2}{m_1v_{10x}^2} - 1$$

$$\begin{split} \overline{\delta}_{p} &= \frac{\sum\limits_{i=1}^{N} \delta_{pi}}{N} \, ; \ \, \overline{\delta}_{W} = \frac{\sum\limits_{i=1}^{N} \delta_{Wi}}{N} \\ \Delta \overline{\delta}_{p} &= t_{\alpha_{\text{\tiny AOB}},N} \sqrt{\frac{\sum\limits_{i=1}^{N} \left(\delta_{pi} - \overline{\delta}_{p}\right)^{2}}{N(N-1)}} \, ; \, \Delta \overline{\delta}_{W} = t_{\alpha_{\text{\tiny AOB}},N} \sqrt{\frac{\sum\limits_{i=1}^{N} \left(\delta_{Wi} - \overline{\delta}_{W}\right)^{2}}{N(N-1)}} \\ p_{10} &= m_{1} v_{10} \, p = \left(m_{1} + m_{2}\right) v \\ \delta_{p} &= \Delta p / p_{10} = \frac{p_{1}}{p_{10}} - 1 \\ \delta_{W}^{(3)} &= \Delta W_{\text{\tiny K}} / W_{\text{\tiny K0}} = \frac{\left(m_{1} + m_{2}\right) v_{2}^{2}}{m_{1} v_{10}^{2}} - 1 \\ \delta_{W}^{(T)} &= -\frac{W_{\text{\tiny HOT}}}{\frac{m_{1} v_{10}^{2}}{2}} = -\frac{m_{2}}{m_{1} + m_{2}} \\ a &= \frac{\left(v_{2}\right)^{2} - \left(v_{1}\right)^{2}}{2\left(x_{2} - x_{1}\right)} \, , \qquad T = m\left(g - a\right) \end{split}$$

6. Измерительные приборы:

Наименовани	Предел	Цена	Класс	Погрешность
e	измерений	деления	точности	
средства				
измерения				
Линейка на	1,30 м	1 см/дел		0,5 см
рельсе				
ПКЦ-3 в	9,99 м/с	0,01 м/с.	_	0,01 м/с
режиме				
измерения				
скорости				
Лабораторные	250 г	0,01 г	_	0,01 г
весы				

7. Схема установки

1) Общий вид экспериментальной установки

Рис.1 Общий вид экспериментальной установки

- 1. Рельс с сантиметровой шкалой на лицевой стороне
- 2. Сталкивающиеся тележки
- 3. Воздушный насос
- 4. Источник питания насоса ВС 4-12
- 5. Опоры рельса
- 6. Опорная плоскость (поверхность стола)
- 7. Фиксирующий электромагнит
- 8. Оптические ворота
- 9. Цифровой измерительный прибор ПКЦ-3
- 10. Пульт дистанционного управления прибором ПКЦ-3

8. Результаты прямых измерений и их обработки:

Таблица 1.1

№ опыта	<i>m</i> 1, г	<i>m</i> 2, г	V _{10x} , м/с	V _{1x} , M/c	V _{2x} , M/c
1			0,55	0,05	0,45
2	50.2	50.1	0,53	0	0,42
3	50,2	50,1	0,53	0	0,43
4			0,55	0	0,43
5			0,52	0	0,41

Таблица 1.2

№ опыта	<i>m</i> 1, г	<i>m</i> 2, г	V_{10x} , M/c	V_{1x} , M/c	V _{2x} , _M /c
1			0,56	-0,09	0,28
2			0,55	-0,10	0,28
3	50,2	99,2	0,55	-0,10	0,29
4			0,52	-0,12	0,27
5			0,51	-0,08	0,27

Таблица 2.1

№ опыта	<i>m</i> 1, г	т2, г	V _{10x} , м/с	V _{1x} , _M /c
1			0,52	0,14
2			0,53	0,18
3	52,5	53,5	0,52	0,13
4			0,53	0,18
5			0,54	0,16

Таблица 2.2

№ опыта	<i>m</i> 1, г	<i>m</i> 2, г	V_{10x} , M/c	V_{1x} , M/c
1			0,54	0,09
2			0,54	0,10
3	52,5	102,4	0,54	0,13
4			0,54	0,11
5			0,52	0,14

Таблица 3.1

№ опыта	Состав гирьки	т, г	V ₁ , м/с	V ₂ , M/c
1	подвеска	2,5	0,15	0,55
2	подвеска + одна шайба	3,4	0,32	0,74
3	подвеска + две шайбы	4,2	0,36	0,86
4	подвеска + три шайбы	5,1	0,40	0,97
5	подвеска + четыре шайбы	5,9	0,46	1,05
6	подвеска + пять шайб	6,8	0,49	1,14

7	подвеска + шесть	7,6	0,53	1,21
	шайб			

Таблица 3.2

№ опыта	Состав гирьки	т, г	V ₁ , м/c	V ₂ , M/c
1	подвеска	2,5	0,19	0,41
2	подвеска + одна шайба	3,4	0,24	0,53
3	подвеска + две шайбы	4,2	0,28	0,63
4	подвеска + три шайбы	5,1	0,31	0,69
5	подвеска + четыре шайбы	5,9	0,34	0,73
6	подвеска + пять шайб	6,8	0,37	0,83
7	подвеска + шесть шайб	7,6	0,39	0,88

9. Расчет результатов косвенных измерений:

Таблица 4.1

№ опыта	<i>р10х</i> , мН*с	<i>р</i> _{1х} , мН*с	<i>Р</i> ₂ <i>x</i> , мН*с	δ_p	δ_W
1	27,61	2,51	22,545	-0,09254	-0,32365
2	26,606	0	21,042	-0,20913	-0,37327
3	26,606	0	21,543	-0,1903	-0,34307
4	27,61	0	21,543	-0,21974	-0,38998
5	26,104	0	20,541	-0,21311	-0,37957

Таблица 4.2

№ опыта	<i>р_{10х}</i> , мН*с	<i>р</i> _{1х} , мН*с	P_{2x} , мН*с	δ_p	δ_W
1	28,112	-4,518	27,776	-0,17267	-0,48015
2	27,61	-5,02	27,776	-0,17581	-0,45479
3	27,61	-5,02	28,768	-0,13988	-0,41755
4	26,104	-6,024	26,784	-0,20472	-0,41399
5	25,602	-4,016	26,784	-0,11069	-0,42154

Таблица 5.1

№ опыта	<i>р</i> 10, мН*с	<i>p</i> , мН*с	δ_p	$\delta_{W(\Im)}$	$\delta_{W(T)}$
1	27,3	14,84	-0,45641	-0,92751	-0,50472
2	27,825	19,08	-0,31429	-0,88466	-0,50472
3	27,3	13,78	-0,49524	-0,9375	-0,50472
4	27,825	19,08	-0,31429	-0,88466	-0,50472
5	28,35	16,96	-0,40176	-0,91221	-0,50472

Таблица 5.2

№ опыта	<i>р</i> 10, мН*с	<i>p</i> , мН*с	δ_p	$\delta_{W(\Im)}$	$\delta_{W(T)}$
1	28,35	13,941	-0,50825	-0,97222	-0,66107
2	28,35	15,49	-0,45362	-0,96571	-0,66107
3	28,35	20,137	-0,2897	-0,94204	-0,66107
4	28,35	17,039	-0,39898	-0,9585	-0,66107
5	27,3	21,686	-0,20564	-0,92751	-0,66107

Таблица 6.1

№ опыта	m , Γ	a, м/c ²	Т, мН
1	2,5	0,215385	24,01154
2	3,4	0,342462	32,22363
3	4,2	0,469231	39,27323
4	5,1	0,600692	47,01847
5	5,9	0,685308	53,89468
6	6,8	0,815	61,234
7	7,6	0,910154	67,71483

Таблица 6.2

№ опыта	m, Γ	$a, m/c^2$	Т, мН
1	2,5	0,101538	24,29615
2	3,4	0,171769	32,80398
3	4,2	0,245	40,215
4	5,1	0,292308	48,59123
5	5,9	0,321	56,0441
6	6,8	0,424615	63,88862
7	7,6	0,478692	70,99394

10. Расчет результатов и погрешностей косвенных измерений:

Таблица 4.1:

$$t_{a_{\text{ДоВ}},N} = 2,78;$$

$$a_{\text{ДоВ}} = 0,95; \ N = 5$$

$$\overline{\delta_p} = \frac{\sum_{i=1}^N \delta_{pi}}{N} = \frac{(-0,09254 - 0,20913 - 0,1903 - 0,21974 - 0,21311)}{5} = -0,184964$$

$$\overline{\delta_W} = \frac{\sum_{i=1}^N \delta_{Wi}}{N} = \frac{(-0,32365 - 0,37327 - 0,34307 - 0,38998 - 0,37957)}{5} = -0,361908$$

$$\Delta \overline{\delta_p} = t_{a_{\text{ДоВ}},N} \int \frac{\sum_{i=1}^N (\delta_{pi} - \overline{\delta_p})^2}{N(N-1)} = 0,0656581$$

$$\Delta \overline{\delta_W} = t_{a_{\text{дов}}, N} \sqrt{\frac{\sum_{i=1}^{N} (\delta_{Wi} - \overline{\delta_W})^2}{N(N-1)}} = 0.0343171$$

Доверительные интервалы для δ_p и δ_W : $\delta_p = (-0.185 \pm 0.066); \; \delta_W = (-0.362 \pm 0.034);$

Таблица 4.2:

$$t_{a_{\text{дов}},N}=$$
 2,78; $a_{\text{дов}}=$ 0,95; $N=$ 5

$$\overline{\delta_p} = \frac{\sum_{i=1}^N \delta_{pi}}{N} = \frac{(-0.17267 - 0.17581 - 0.13988 - 0.20472 - 0.11069)}{5} = -0.160754$$

$$\overline{\delta_W} = \frac{\sum_{i=1}^N \delta_{Wi}}{N} = \frac{(-0.48015 - 0.45479 - 0.41755 - 0.41399 - 0.42154)}{5} = -0.437604$$

$$\Delta \overline{\delta_p} = t_{a_{\text{дов}},N} \sqrt{\frac{\sum_{i=1}^{N} (\delta_{pi} - \overline{\delta_p})^2}{N(N-1)}} = 0,0450146$$

$$\Delta \overline{\delta_W} = t_{a_{\text{дов}},N} \sqrt{\frac{\sum_{i=1}^{N} (\delta_{Wi} - \overline{\delta_W})^2}{N(N-1)}} = 0,0358359$$

Доверительные интервалы для
$$\delta_p$$
 и δ_W : $\delta_p = (-0.161 \pm 0.045); \; \delta_W = (-0.438 \pm 0.036);$

Таблица 5.1:

$$t_{a_{\text{ДОВ}},N} = 2,78;$$

$$a_{\text{ДОВ}} = 0,95; \ N = 5$$

$$\overline{\delta_p} = \frac{\sum_{i=1}^N \delta_{pi}}{N} = \frac{(-0,45641 - 0,31429 - 0,49524 - 0,31429 - 0,40176)}{5} = -0,396398$$

$$\overline{\delta_{W(3)}} = \frac{\sum_{i=1}^N \delta_{W(3)i}}{N} = \frac{(-0,92751 - 0,88466 - 0,9375 - 0,88466 - 0,91221)}{5} = -0,909308$$

$$\Delta \overline{\delta_p} = t_{a_{\text{ДОВ}},N} \sqrt{\frac{\sum_{i=1}^N (\delta_{pi} - \overline{\delta_p})^2}{N(N-1)}} = 0,101923$$

$$\Delta \overline{\delta_{W(3)}} = t_{a_{\text{ДОВ}},N} \sqrt{\frac{\sum_{i=1}^N (\delta_{W(3)i} - \overline{\delta_{W(3)}})^2}{N(N-1)}} = 0,0301317$$

Доверительные интервалы для δ_p и $\delta_{W(3)}$: $\delta_p = (-0.396 \pm 0.102); \; \delta_{W(3)} = (-0.909 \pm 0.030);$

Таблица 5.2:

$$t_{a_{\text{ДОВ}},N} = 2,78;$$

$$a_{\text{ДОВ}} = 0,95; \ N = 5$$

$$\overline{\delta_p} = \frac{\sum_{i=1}^N \delta_{pi}}{N} = \frac{(-0,50825 - 0,45362 - 0,2897 - 0,39898 - 0,20564)}{5} = -0,371238$$

$$\overline{\delta_{W(3)}} = \frac{\sum_{i=1}^N \delta_{W(3)i}}{N} = \frac{(-0,97222 - 0,96571 - 0,94204 - 0,9585 - 0,92751)}{5} = -0.9531960$$

$$\Delta \overline{\delta_p} = t_{a_{\text{ДОВ}},N} \sqrt{\frac{\sum_{i=1}^N (\delta_{pi} - \overline{\delta_p})^2}{N(N-1)}} = 0,152773$$

$$\Delta \overline{\delta_{W(3)}} = t_{a_{\text{ДОВ}},N} \sqrt{\frac{\sum_{i=1}^N (\delta_{W(3)i} - \overline{\delta_{W(3)}})^2}{N(N-1)}} = 0,0226776$$

Доверительные интервалы для δ_p и $\delta_{W(\Im)}$: $\delta_p=(-0.371\pm0.153);\;\delta_{W(\Im)}=(-0.953\pm0.023);\;$

Таблица 6.1:

График зависимости силы натяжения нити *Т* от ускорения *а* тележки

$$\begin{split} & \bar{a} = \frac{(0.215385 + 0.342462 + 0.469231 + 0.600692 + 0.685308 + 0.815 + 0.910154)}{7} = 0,577 \text{ m/}c^2 \\ & \bar{T} = \frac{(24.01154 + 32.22363 + 39.27323 + 47.01847 + 53.89468 + 61.234 + 67.71483)}{7} = 46,48 \text{ mH} \\ & b = \frac{\sum (a_i - \bar{a})(T_i - \bar{T})}{\sum (a_i - \bar{a})^2} = 62,67 \\ & a = \bar{T} - b\bar{a} = 46,48 - 62,67 * 0,577 = 10,319 \\ & d_i = T_i - (10,319 + 62,67a_i) \\ & D = \sum (a_i - \bar{a})^2 = 1,176 \\ & S_{\bar{b}}^2 = \frac{1}{D} \cdot \frac{\sum d_i^2}{N-2} = \frac{1}{1,176} \cdot \frac{1.880}{5} = 0,32 \text{ r}^2 \\ & S_a^2 = \left(\frac{1}{N} + \frac{\bar{a}^2}{D}\right) \cdot \frac{\sum d_i^2}{N-2} = \left(\frac{1}{7} + \frac{0.332929}{1,176}\right) \cdot \frac{1.880}{5} = 0,16 \text{ H}^2 \\ & \Delta \bar{a} = t_{\alpha,N} \cdot s_{\bar{a}} = 2,45 * 0,4 = 0,98 \text{ H} \\ & \Delta \bar{b} = t_{\alpha,N} \cdot s_{\bar{b}} = 2,45 * 0,57 = 1,4 \text{ r} \\ & F_{mp} = a = (10,319 \pm 0,98) \text{ H} \\ & M = b = (62,67 \pm 1,4) \text{ r} \end{split}$$

T = 62,67a + 10,319

Табличное значение $M_1=48,4~\Gamma$ не попадает в доверительный интервал.

Таблица 6.2:

График зависимости силы натяжения нити *T* от ускорения *а при разгоне утяжелённой тележки*:

$$\begin{split} & \bar{a} = \frac{2,035}{7} = 0,29 \text{ m/c}^2 \\ & \bar{T} = \frac{336,833}{7} = 48,12 \text{ mH} \\ & b = \frac{\sum (a_i - \bar{a})(T_i - \bar{T})}{\sum (a_i - \bar{a})^2} = \frac{13,342}{0,106} = 125,61 \\ & a = \bar{T} - b\bar{a} = 48,12 - 125,61 * 0,29 = 11,69 \\ & D = \sum (a_i - \bar{a})^2 = 0,106 \\ & d_i = T_i - (11,69 + 125,61a_i) \\ & S_{\bar{b}}^2 = \frac{1}{D} \cdot \frac{\sum d_i^2}{N-2} = \frac{1}{0,106} \cdot \frac{23,57004}{5} = 44,47 \text{ r}^2 \\ & S_a^2 = \left(\frac{1}{N} + \frac{\bar{a}^2}{D}\right) \cdot \frac{\sum d_i^2}{N-2} = \left(\frac{1}{7} + \frac{0,0841}{0,106}\right) \cdot \frac{23,57004}{5} = 4,41 \text{ H}^2 \\ & \Delta \bar{a} = t_{\alpha,n} \cdot s_{\bar{a}} = 2,45 * 2,1008 = 5,15 \text{ H} \\ & \Delta \bar{b} = t_{\alpha,n} \cdot s_{\bar{b}} = 2,45 * 6,6687 = 16,34 \text{ r} \\ & F_{mp} = a = (11,69 \pm 5,15) \text{ H} \\ & M = b = (125,61 \pm 16,34) \text{ r} \end{split}$$

$$T = 125,61a + 11,69$$

Табличное значение $M_1 = 97,6$ г не попадает в доверительный интервал.

11. Выводы и анализ результатов работы.

В ходе лабораторной работы были измерены скорости двух тележек до и после центрального упругого и центрального неупругого соударений. Были получены результаты измерений скорости тележки при ее разгоне под действием постоянной силы. При обработке результатов измерений были исследованы потери импульса и механической энергии при упругом и неупругом соударении двух тележек. Так же были сравнены значения теоретического относительного измерения энергии и экспериментального относительного изменения энергии $\delta_w^{(T)}$ при неупругом соударении. В каждом случае теоретическое значение не попадает в экспериментальные доверительные интервалы. Была исследована зависимость ускорения тележки от приложенной силы и массы тележки. По второму закону Ньютона если сила трения тележки не изменяется во время эксперимента, то зависимость T(a) является линейной. С помощью метода наименьших квадратов были найдены M и F_{mp} и их погрешности. Были сравнены табличные значения масс тележек с доверительными интервалами.