A few Bayesian lectures for the Uninitiated

Part 4: priors

Carsten F. Dormann

Biometry & Environmental System Analysis, University of Freiburg

1. März 2022

Bayes?!

Remember Bayes' Theorem in terms of fitting a model:

$$P(\theta|\text{data}) = \frac{P(\text{data}|\theta)P(\theta)}{P(\text{data})}$$
 (1)

Bayes?!

Remember Bayes' Theorem in terms of fitting a model:

$$P(\theta|\text{data}) = \frac{P(\text{data}|\theta)P(\theta)}{P(\text{data})}$$
(1)

Now: how to choose the *prior*, $P(\theta)$?

Name

uninformative/vague/diffuse improper conjugate Jeffreys (scale invariant) shrinkage savvy (AIC-like) hyperprior

See here for more:

https://jrnold.github.io/bayesian_notes/priors.html

Name	Comment
uninformative/vague/diffuse	avoids imposing information

-	ord Sarore.	
	Name	Comment
	uninformative/vague/diffuse	avoids imposing information
	Jeffreys	uninformative prior, scale invariant
		(and cumbersome: $p(\vec{\theta}) \sim \sqrt{\det \mathcal{I}(\vec{\theta})}$)

7070 707070		
Name		Comment
uninformative/va	ague/diffuse	avoids imposing information
Jeffreys		uninformative prior, scale invariant
improper		(and cumbersome: $p(\vec{\theta}) \sim \sqrt{\det \mathcal{I}(\vec{\theta})}$) prior distribution not integrating to 1 (e.g. infinitive uniform)

Name	Comment
uninformative/vague/diffuse	avoids imposing information
Jeffreys	uninformative prior, scale invariant
·	(and cumbersome: $p(\vec{\theta}) \sim \sqrt{\det \mathcal{I}(\vec{\theta})}$)
improper	prior distribution not integrating to 1
	(e.g. infinitive uniform)
conjugate	such that posterior is same
, ,	distribution as prior

Name	Comment
uninformative/vague/diffuse	avoids imposing information
Jeffreys	uninformative prior, scale invariant
	(and cumbersome: $p(\vec{\theta}) \sim \sqrt{\det \mathcal{I}(\vec{\theta})}$)
improper	prior distribution not integrating to 1
	(e.g. infinitive uniform)
conjugate	such that posterior is same
	distribution as prior
shrinkage	to implement model selection

Name	Comment
uninformative/vague/diffuse	avoids imposing information
Jeffreys	uninformative prior, scale invariant
	(and cumbersome: $p(\vec{\theta}) \sim \sqrt{\det \mathcal{I}(\vec{\theta})}$)
improper	prior distribution not integrating to 1
	(e.g. infinitive uniform)
conjugate	such that posterior is same
	distribution as prior
shrinkage	to implement model selection
savvy (K-L-model)	to yield AIC-weight for model <i>i</i> :
	$p_i = c \cdot e^{\frac{1}{2}k_i \ln(n) - k_i}$

Name	Comment
uninformative/vague/diffuse	avoids imposing information
Jeffreys	uninformative prior, scale invariant
	(and cumbersome: $p(\vec{\theta}) \sim \sqrt{\det \mathcal{I}(\vec{\theta})}$)
improper	prior distribution not integrating to 1
	(e.g. infinitive uniform)
conjugate	such that posterior is same
	distribution as prior
shrinkage	to implement model selection
savvy (K-L-model)	to yield AIC-weight for model <i>i</i> :
	$p_i = c \cdot e^{\frac{1}{2}k_i \ln(n) - k_i}$
hyperprior	prior for a hyper-parameter

1. Informative or not? \longrightarrow informative if possible!¹

¹Lemoine, N. (2019) Moving beyond noninformative priors: why and how to choose weakly informative priors in Bayesian analyses. *Oikos* 128, 912.

1. Informative or not? \longrightarrow informative if possible!¹

Uniform(-10, 10) as prior for binomial model's intercept: it is no longer uninformative at the response scale! (Jeffreys priors *remain* uninformative!)

¹Lemoine, N. (2019) Moving beyond noninformative priors: why and how to choose weakly informative priors in Bayesian analyses. *Oikos* 128, 912.

- 1. Informative or not? \longrightarrow informative if possible!²
- 2. Is parameter a "location" (i.e. mean or slope) or a "scale" (i.e. variance-like)? \longrightarrow normal/t vs. γ /half-Cauchy¹

²Lemoine, N. (2019) Moving beyond noninformative priors: why and how to choose weakly informative priors in Bayesian analyses. *Qikos* 128, 912.

- 1. Informative or not? \longrightarrow informative if possible!²
- 2. Is parameter a "location" (i.e. mean or slope) or a "scale" (i.e. variance-like)? \longrightarrow normal/t vs. γ /half-Cauchy¹
- 3. Does parameter have upper/lower limits? \longrightarrow think of β , γ and truncated distributions (e.g. half-normal)

²Lemoine, N. (2019) Moving beyond noninformative priors: why and how to choose weakly informative priors in Bayesian analyses. *Qikos* 128, 912.

- 1. Informative or not? \longrightarrow informative if possible!²
- 2. Is parameter a "location" (i.e. mean or slope) or a "scale" (i.e. variance-like)? \longrightarrow normal/t vs. γ /half-Cauchy¹
- 3. Does parameter have upper/lower limits? \longrightarrow think of β , γ and truncated distributions (e.g. half-normal)
- 4. Are parameters correlated? → multivariate priors (e.g. inverse (!) Wishart for MVN)

²Lemoine, N. (2019) Moving beyond noninformative priors: why and how to choose weakly informative priors in Bayesian analyses. *Qikos* 128, 912.

▶ The prior quantifies your expectation *before* seeing the data.

- ▶ The prior quantifies your expectation *before* seeing the data.
- It forces us to think about such expectation, which is a good thing.

- ▶ The prior quantifies your expectation *before* seeing the data.
- ▶ It forces us to think about such expectation, which is a good thing.
- When pretending to knowing nothing, uninformative priors are used.

- ▶ The prior quantifies your expectation *before* seeing the data.
- ▶ It forces us to think about such expectation, which is a good thing.
- When pretending to knowing nothing, uninformative priors are used.
- Priors are our friends: we can use them to our advantage!

- ▶ The prior quantifies your expectation *before* seeing the data.
- It forces us to think about such expectation, which is a good thing.
- When pretending to knowing nothing, uninformative priors are used.
- ▶ Priors are our friends: we can use them to our advantage!
- We may not like priors, but they are inevitable in Bayesian analysis.

Next time:

Mixed effect models from a Bayesian perspective (with R)