## **GATE-2009-PH**

## AI24BTECH11024-Pappuri Prahladha

37)



Assuming an ideal voltage source. Thevenin's resistance and Thevenin's voltage respectively for the above circuit are

- a)  $15\Omega$  and 7.5V
- b)  $20\Omega$  and  $5\mathbf{V}$
- c)  $10\Omega$  and 10V d)  $30\Omega$  and 15V

1

- 38) Let  $|n\rangle$  and  $|p\rangle$  denote the isospin states with  $I=\frac{1}{2},\ I_3=\frac{1}{2}$  and  $I=\frac{1}{2},\ I_3=-\frac{1}{2}$  of a nucleon respectively. Which one of the following two-nucleon states has  $I = 0, I_3 =$ 0?

a)  $\frac{1}{\sqrt{2}}(|nn\rangle - |pp\rangle)$ b)  $\frac{1}{\sqrt{2}}(|nn\rangle + |pp\rangle)$ 

- c)  $\frac{1}{\sqrt{2}} (|np\rangle |pn\rangle)$ d)  $\frac{1}{\sqrt{2}} (|np\rangle + |pn\rangle)$
- 39) An amplifier of gain 1000 is made into a feedback amplifier by feeding 9.9% of its output voltage in series with the input opposing. If  $f_L = 20Hz$  and  $f_H = 200kHz$  for the amplifier without feedback, then due to the feedback
  - a) the gain decreases by 10 times
  - b) the output resistance increases by 10 times
  - c) the  $f_H$  increases by 100 times
  - d) the input resistance decreases by 100 times

40)



Pick the correct statement based on the above circuit.

- a) The maximum Zener current  $I_{Z(max)}$ , when  $R_L = 10k\Omega$  is 15mA
- b) The minimum Zener current  $I_{Z(min)}$ , when  $R_L = 10k\Omega$  is 5mA
- c) With  $V_{in} = 20V, I_L = I_Z$  when  $R_L = 2k\Omega$
- d) The power dissipated across the Zener when  $R_L = 10k\Omega$  and  $V_{in} = 20V$  is 100mW
- 41) The disintegration energy is defined to be the difference in the rest energy between the initial and final states. Consider the following process:  $^{240}_{94}Pu \rightarrow ^{236}_{92}U + ^{4}_{2}He.$

The emitted  $\alpha$  particle has a kinetic energy 5.17 MeV. The value of disintegration energy is

- a) 5.26 MeV
- b) 5.17 MeV
- c) 5.08 MeV
- d) 2.59 MeV
- 42) A classical particle is moving in an external potential field V(x, y, z) which is invariant under the following infinitesimal transformations

$$x \to x' = x + \delta x,$$
  

$$y \to y' = y + \delta y,$$
  

$$\begin{pmatrix} x \\ y \end{pmatrix} \to \begin{pmatrix} x' \\ y' \end{pmatrix} = R_z \begin{pmatrix} x \\ y \end{pmatrix},$$

where  $R_z$  is the matrix corresponding to rotation about the z axis. The conserved quantities are (the symbols have their usual meaning)

- a)  $P_r, P_z, L_z$
- b)  $P_{y}, P_{y}, L_{z}, E$  c)  $P_{y}, L_{z}, E$
- d)  $P_{y}, P_{z}, L_{y}, E$
- 43) The spin function of a free particle, in the basis in which  $S_z$  is diagonal, can be written as  $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$  and  $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$  with eigenvalues  $+\frac{\hbar}{2}$  and  $-\frac{\hbar}{2}$ , respectively. In the given basis, the normalized eigenfunction of  $S_y$  with eigenvalue  $-\frac{\hbar}{2}$  is:
  - a)  $\frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ i \end{pmatrix}$
- b)  $\frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ i \end{pmatrix}$  c)  $\frac{1}{\sqrt{2}} \begin{pmatrix} i \\ 0 \end{pmatrix}$  d)  $\frac{1}{\sqrt{2}} \begin{pmatrix} i \\ 1 \end{pmatrix}$
- 44) Let  $\hat{A}$  and  $\hat{B}$  represent two physical characteristics of a quantum system. If  $\hat{A}$  is Hermitian, then for the product  $\hat{A}\hat{B}$  to be Hermitian, it is sufficient that:

- a)  $\hat{B}$  is Hermitian
- b)  $\hat{B}$  is anti-Hermitian
- c)  $\hat{B}$  Hermitian and  $\hat{A}$  and  $\hat{B}$  commute
- d)  $\hat{B}$  is Hermitian and  $\hat{A}$  and  $\hat{B}$  anti-commute
- 45) Consider the set of vectors in three-dimensional real vector space  $\mathbb{R}^3$ ,  $S = \{(1,1,1),(1,-1,1),(1,1,-1)\}$ . Which one of the following statements is
  - a) S is not a linearly independent set.
  - b) S is a basis for  $\mathbb{R}^3$ .
  - c) The vectors in S are orthogonal.
  - d) An orthogonal set of vectors cannot be generated from S.
- 46) For a Fermi gas of N particles in three dimensions at T = 0k, the Fermi energy,  $E_F$ is proportional to
  - a)  $N_2$
  - b) *N*<sub>3</sub>
  - c)  $N_3$
  - d)  $N_3$
- 47) The Lagrangian of a diatomic molecule is given by  $L = \frac{m}{2} (\dot{x_1}^2 + \dot{x_2}^2) \frac{k}{2} x_1 x_2$ , where m is the mass of each of the atoms and  $x_1$  and  $x_2$  are the displacements of the atoms measured from the equilibrium position, and k > 0. The normal frequencies are
- a)  $\pm \left(\frac{k}{m}\right)^{1/2}$  b)  $\pm \left(\frac{k}{m}\right)^{1/4}$  c)  $\pm \left(\frac{k}{2m}\right)^{1/4}$  d)  $\pm \left(\frac{k}{2m}\right)^{1/2}$
- 48) A particle is in the normalized state  $|\psi\rangle$ , which is a superposition of the energy eigenstates  $|E_0 = 10eV\rangle$  and  $|E_1 = 30eV\rangle$ . The average value of energy of the particle in the state  $|\psi\rangle$  is 20 eV. The state  $|\psi\rangle$  is given by

- a)  $\frac{1}{2}|E_0 = 10eV\rangle + \frac{\sqrt{3}}{4}|E_1 = 30eV\rangle$  b)  $\frac{1}{\sqrt{3}}|E_0 = 10eV\rangle + \frac{\sqrt{2}}{3}|E_1 = 30eV\rangle$  c)  $\frac{1}{2}|E_0 = 10eV\rangle \frac{\sqrt{3}}{4}|E_1 = 30eV\rangle$  d)  $\frac{1}{\sqrt{2}}|E_0 = 10eV\rangle \frac{1}{\sqrt{2}}|E_1 = 30eV\rangle$