Informe — Proceso de Registro y Actualización de Historia Clínica

11 Integrantes del equipo

Edwin Gutierrez

Samuel Espitia

Nicolas Ortiz

Mateo Gonzales

Santiago Sanchez

Santiago Santafe

Descripción general del trabajo

Este taller tuvo como objetivo modelar el proceso de verificación de identidad y actualización/sincronización de la historia clínica electrónica en una organización con múltiples sedes y sistemas desconectados. Se incluyeron flujos alternos para manejo de historia clínica duplicada, datos desactualizados y notificaciones al paciente, aplicando criterios de buenas prácticas BPMN.

Proceso de desarrollo

El trabajo inició con la revisión del caso base y la identificación de los actores clave. Se optó por modelar primero el flujo principal y luego integrar flujos alternos y eventos de excepción. Se utilizó una herramienta de modelado compatible con BPMN 2.0, aplicando lineamientos de Camunda y Signavio. Se decidió separar el registro de nueva consulta como subproceso para mantener el diagrama principal enfocado.

Análisis del modelo propuesto

- **Estructura:** Tres lanes principales (Paciente, Sistema Local, Sistema Central) con gateways bien definidos y eventos de excepción.
- Representación de necesidades: Se garantiza la verificación de identidad, la consistencia de datos y el manejo de errores antes de mostrar la historia clínica.
- **Supuestos:** El sistema central siempre está disponible; la validación de duplicados es automática y confiable.

Justificaciones clave (resumen)

- Convención de nombres: mejora la lectura y alineación entre negocio y TI
- Cumple semántica de colaboración BPMN
- Colocar controles donde ocurren evita errores posteriores
- Facilita capacitación y revisión por pares
- Evidencia interoperabilidad y puntos de integración
- Menos reprocesos, mayor seguridad clínica
- Excepciones explícitas (duplicados): usar eventos/actividades de excepción mejora la claridad del control de errores y evita continuar con datos corruptos.
- Sincronización condicional: modelar la desactualización como gateway hace visible el criterio de actualización y reduce cargas innecesarias.
- Modularidad mediante subprocesos: separar "Registrar nueva consulta" evita sobrecargar el flujo de identidad/sincronización y favorece la reutilización.
- Mensajes y límites claros: representar la interacción Sede
 ⇔Central con mensajes hace auditable la integración y los SLA asociados.
- Nomenclatura y finales unificados: incrementa la legibilidad y previene ambigüedades en el cierre del proceso.

Diagrama final entregado

Tabla de actores, entidades o componentes

Nombre	Tipo	Descripción	Responsable
Paciente	Actor	Usuario que solicita acceso a la historia clínica	Cliente
Sistema local (Sede)	Sistema	Gestiona la identidad y datos locales	Área TI local
Sistema central	Sistema	Repositorio clínico corporativo	Área TI central

Buenas prácticas BPMN aplicadas (síntesis)

- **Líneas de nado claras** (Paciente / Sistema local / Sistema central) para separar responsabilidades y mensajes.
- Gateways con salidas rotuladas ("Sí/No") y unificación de finales cuando representan el mismo cierre lógico, evitando merges implícitos.
- Eventos/actividades de excepción para casos como duplicados, en lugar de sobrecargar gateways con lógica de error.
- **Subprocesos** para mantener nivel de detalle manejable (p. ej., "Registrar nueva consulta").

• **Nombres consistentes**: verbo + objeto en actividades (p. ej., "Verificar identidad", "Sincronizar historia clínica").

Investigación complementaria

Tema investigado: Buenas prácticas BPMN y ejemplos en la industria.

Resumen: La especificación BPMN 2.0 (OMG) y guías de Camunda y Signavio recomiendan diagramas claros, gateways etiquetados y uso de eventos intermedios para interacciones externas. En salud, BPMN se usa para modelar procesos hospitalarios, como admisión y triage, reduciendo tiempos de espera y mejorando la trazabilidad. En otras industrias, se aplica en finanzas (gestión de reclamaciones) y logística (orquestación de pedidos), demostrando versatilidad y eficacia.

Salud — Vías clínicas y guías médicas

Conversión de guías clínicas a BPM: Estudios publicados demuestran cómo transformar algoritmos médicos (como en cardiología) en modelos BPMN vinculados con DMN y CMMN, mejorando la trazabilidad y reutilización.

Revisión de desafíos hospitalarios: Identifica problemas comunes (variabilidad clínica, datos incompletos, cumplimiento) y propone patrones y gobernanza de modelos BPMN en el sector salud. Pufahl et al., 2022.

Otros sectores (breve)

Finanzas/seguros: Procesos de KYC, onboarding y gestión de siniestros modelados con subprocesos y eventos de mensaje/tiempo (patrones de espera y SLA).

Logística/retail: Orquestación de pedidos, devoluciones y compensaciones (combinando transacciones y eventos temporales) en cadenas con múltiples actores.

Referencias

[1] Object Management Group. (2011). Business Process Model and Notation (BPMN) Version 2.0. https://www.omg.org/spec/BPMN/2.0/

[2] Camunda. (s. f.). *Best practices overview*. https://docs.camunda.io/docs/components/best-practices/best-practices-overview/

- [3] Signavio. (2020). *BPMN modeling conventions: A comprehensive guide*. https://www.signavio.com/post/bpmn-modeling-conventions/
- [4] Pufahl, L., et al. (2022). BPMN in healthcare: Challenges and best practices. Information Systems.

https://www.sciencedirect.com/science/article/pii/S0306437922000217