# Tests, Tests, Tests

Eli Gurarie

StatR 101 - Lecture 10b November 26, 2012

November 26 2012

#### Outline

|    | Distributions             | Comparisons      | Statistics                          |
|----|---------------------------|------------------|-------------------------------------|
| 1. | $Chi\text{-}squared(\nu)$ | Proportions      |                                     |
| 2. | $\mathcal{T}( u)$         | Sample means     | $\frac{\overline{X}}{s_x/\sqrt{n}}$ |
| 3. | $\mathcal{F}( u_1, u_2)$  | Sample variances | $\frac{s_1^2/n_1}{s_2^2/n_2}$       |

These three distributions are all derived from the normal distribution and are the most widely used null-distributions for hypothesis testing. You will see them pop up frequently in statistical test output.

#### The one-sample *t*-statistic

$$t = \frac{\overline{X} - \mu}{s_{\overline{X}}} = \frac{\overline{X} - \mu}{s_{X}/\sqrt{n}}$$

### The T-test for comparing means

| Question:               | Is $\mu$ different from $\mu_0$ ?                 | Is $\mu$ different from $\mu_0$ ?                         |
|-------------------------|---------------------------------------------------|-----------------------------------------------------------|
|                         | _                                                 | _                                                         |
| Data:                   | $\overline{X}$ , n                                | $\overline{X}$ , $n$ , $s_x$                              |
|                         |                                                   |                                                           |
| Assumptions:            | $\sigma_{\scriptscriptstyle X}$ is known          | $\sigma_{\scriptscriptstyle X}$ is unknown (small sample) |
|                         |                                                   |                                                           |
| <i>H</i> <sub>0</sub> : |                                                   | $\mu = \mu_0$                                             |
|                         |                                                   | ,                                                         |
| $H_A$ :                 |                                                   | $\mu \neq \mu_0$                                          |
|                         | $\overline{Y}_{-2}$                               | $\overline{X} = \mu_0$                                    |
| Test statistic:         | $z_{c}=rac{\overline{X}-a}{\sigma_{x}/\sqrt{n}}$ | $t_{c}=rac{\overline{X}-\mu_{0}}{s_{x}/\sqrt{n}}$        |
|                         |                                                   |                                                           |
| Distribution:           | N(0,1)                                            | T( u = n-1)                                               |
| 5 .                     | 0.0(7   1)                                        | 2.5(7                                                     |
| P-value:                | $2 P(Z >  z_c )$                                  | $2P(T_{\nu}> t_{c} )$                                     |
|                         |                                                   | 19 1                                                      |
| $\alpha$ -level         |                                                   | arbitrary!                                                |

This is called the **t-test**. Notice, that it is structurally identical to the *z*-test, except we use a different distribution. At low degrees of freedom (small n,  $\nu$ ), the tails will be fatter and it will be harder to get significant results.

# Example: Dogs of a different size



- Dogs come in different sizes.
- ullet There is an average dog size  $\mu$ .
- There is some standard deviation of dog size ( $\sigma = ?$  cm).



$$\overline{X} = 104$$
;  $s_X = 17$ ;  $s_{\bar{x}} = 17/\sqrt{4} = 8.5$ 

To construct a confidence interval:

$$\widehat{\mu} = \overline{X} \pm t_{c,
u} \sigma_{ar{x}}$$

Find the critical value of  $t_{c,\nu}$ 

- In this case:  $\nu = n 1 = 3$  and C is 95%, but we need the two-tailed value, so we look up  $t_{.025,3}$ :
- In R: qt(0.025, df=3) = -3.18 (note, much larger than 1.96)
- So:  $\widehat{\mu} = 104 \pm 3.18 * 8.5 = 104 \pm 27$  or: 95% C.I. = (77, 131)



$$\overline{X} = 104$$
;  $s_X = 17$ ;  $s_{\bar{x}} = 17/\sqrt{4} = 8.5$ 

To construct a confidence interval

$$\widehat{\mu} = \overline{X} \pm t_{c,
u} \sigma_{ar{x}}$$

Find the critical value of  $t_{c.\nu}$ :

- In this case:  $\nu=n-1=3$  and C is 95%, but we need the two-tailed value, so we look up  $t_{.025,3}$ :
- In R: qt(0.025, df=3) = -3.18 (note, much larger than 1.96)
- So:  $\hat{\mu} = 104 \pm 3.18 * 8.5 = 104 \pm 27$  or: 95% C.I. = (77, 131)



$$\overline{X} = 104$$
;  $s_X = 17$ ;  $s_{\bar{x}} = 17/\sqrt{4} = 8.5$ 

#### To construct a confidence interval:

$$\widehat{\mu} = \overline{X} \pm t_{c,\nu} \sigma_{\bar{x}}$$

Find the critical value of  $t_{c,\nu}$ :

- In this case:  $\nu = n 1 = 3$  and C is 95%, but we need the two-tailed value, so we look up  $t_{.025,3}$ :
- In R: qt(0.025, df=3) = -3.18 (note, much larger than 1.96)
- So:  $\hat{\mu} = 104 \pm 3.18 * 8.5 = 104 \pm 27$  or: 95% C.I. = (77, 131)



$$\overline{X} = 104$$
;  $s_X = 17$ ;  $s_{\overline{x}} = 17/\sqrt{4} = 8.5$ 

To construct a confidence interval:

$$\widehat{\mu} = \overline{X} \pm t_{c,\nu} \sigma_{\bar{x}}$$

Find the critical value of  $t_{c,\nu}$ :

- In this case:  $\nu = n 1 = 3$  and C is 95%, but we need the two-tailed value, so we look up  $t_{.025,3}$ :
- In R: qt(0.025, df=3) = -3.18 (note, much larger than 1.96)
- So:  $\widehat{\mu} = 104 \pm 3.18 * 8.5 = 104 \pm 27$  or: 95% C.I. = (77, 131)

# Example II: Hypothesis testing with a single mean

- We know that the global population of domestic dogs has mean length  $\mu = 100$  cm.
- We measured length of 16 Sri Lankan strays and found:  $\overline{X} = 92$  cm, and  $s_x = 19$ .



**Question:** Are Sri Lankan stray dogs smaller than the average domestic dog (at 5% significance level)?

# Example II: Hypothesis testing



- **1** Null hypothesis:  $H_0: \mu_{stray} = 100$
- 2 Alt. hypothesis:  $H_A$ :  $\mu_{stray} < 100$
- Test statistic:

$$t = \frac{\overline{X} - \mu}{s_{\overline{x}}}$$
$$= \frac{92 - 100}{19/\sqrt{16}} = \frac{-8}{4.75} = -1.68$$

- ① Distribution of t:  $t \sim \text{Students T}(\nu = 15$
- **Solution** Scholar Compare the t statistic to the  $t_{.05,15}$  critical value.

## Example II: Hypothesis testing



- **1** Null hypothesis:  $H_0: \mu_{stray} = 100$
- 2 Alt. hypothesis:  $H_A$ :  $\mu_{stray} < 100$
- Test statistic:

$$t = \frac{\overline{X} - \mu}{s_{\overline{x}}}$$
$$= \frac{92 - 100}{19/\sqrt{16}} = \frac{-8}{4.75} = -1.68$$

- ① Distribution of t:  $t \sim \text{Students T}(\nu = 15$
- Solution Compare the t statistic to the  $t_{.05,15}$  critical value.

# Example II: Hypothesis testing



- **1** Null hypothesis:  $H_0: \mu_{stray} = 100$
- 2 Alt. hypothesis:  $H_A$ :  $\mu_{stray} < 100$
- Test statistic:

$$t = \frac{\overline{X} - \mu}{s_{\overline{x}}}$$
$$= \frac{92 - 100}{19/\sqrt{16}} = \frac{-8}{4.75} = -1.68$$

- Distribution of t:  $t \sim \text{Students T}(\nu = 15)$
- **Solution** Compare the *t* statistic to the *t*<sub>.05,15</sub> critical value.

### Looking up $t_{.05,15}$

#### Recall that this is a one-sided test!



TABLE B: 1-DISTRIBUTION CRITICAL VALUE

|    |       |       |       |       | Ta    | il probabi | lity p |       |       |        |       |         |
|----|-------|-------|-------|-------|-------|------------|--------|-------|-------|--------|-------|---------|
| ď  | .25   | .20   | .15   | .10   | .05   | .025       | .02    | .01   | .005  | .0025  | .001  | .0005   |
| 1  | 1.000 | 1.376 | 1.963 | 3.078 | 6.314 | 12.71      | 15.89  | 31.82 | 63.66 | 127.3  | 318.3 | 636.6   |
| 2  | .816  | 1.061 | 1.386 | 1.886 | 2.920 | 4.303      | 4.849  | 6.965 | 9.925 | 14.09  | 22.33 | 31.60   |
| 3  | .765  | .978  | 1.250 | 1.638 | 2.353 | 3.182      | 3.482  | 4.541 | 5.841 | 7.453  | 10.21 | 12.92   |
| 4  | .741  | .941  | 1.190 | 1.533 | 2.132 | 2.776      | 2.999  | 3.747 | 4.604 | 5.598  | 7.173 | 8.610   |
| 5  | .727  | .920  | 1.156 | 1.476 | 2.015 | 2.571      | 2.757  | 3.365 | 4.032 | 4.773  | 5.893 | 6.869   |
| 6  | .718  | .906  | 1.134 | 1.440 | 1.943 | 2.447      | 2.612  | 3.143 | 3.707 | 4.317  | 5.208 | 5,959   |
| 7  | .711  | .896  | 1.119 | 1.415 | 1.895 | 2.365      | 2.517  | 2.998 | 3.499 | 4.029  | 4.785 | 5,408   |
| 8  | .706  | .889  | 1.108 | 1.397 | 1.860 | 2.306      | 2.449  | 2.896 | 3.355 | 3.833  | 4.501 | 5:041   |
|    | .703  | .883  | 1.100 | 1.383 | 1.833 | 2.262      | 2.398  | 2.821 | 3.250 | 3.690  | 4.297 | 4.781   |
| 10 | .700  | .879  | 1.093 | 1.372 | 1.812 | 2,228      | 2.359  | 2.764 | 3.169 | 3.581  | 4.144 | 4.587   |
| 11 | .697  | .876  | 1.088 | 1.363 | 1.796 | 2,201      | 2.328  | 2.718 | 3.106 | 3.497  | 4.025 | 4.437   |
| 12 | .695  | .873  | 1.083 | 1.356 | 1.782 | 2.179      | 2.303  | 2.681 | 3.055 | 3.428  | 3.930 | 4.318   |
| 13 | .694  | .870  | 1.079 | -     | -     | 0          | 2.282  | 2.650 | 3.012 | 3.372  | 3.852 | 4.221   |
| 14 | .692  | .868  | 1.076 |       |       | A 5        | 2.264  | 2.624 | 2.977 | 3.326  | 3.787 | - 4 140 |
| 15 | .691  | .866  | 1.074 | 11.   | .75   | 3 1        | 2.249  | 2.602 | 2.947 | 3.286  | 3.733 | 4.073   |
| 16 | .690  | .865  | 1.071 |       |       | 0          | 2.235  | 2.583 | 2.921 | 3.252- | 3.686 | 4.015   |
| 17 | .689  | .863  | 1.069 | 1.333 | 1.740 | 2.110      | 2.224  | 2.567 | 2.898 | 3.222  | 3.646 | 3.965   |
| 18 | .688  | .862  | 1.067 | 1.330 | 1.734 | 2.101      | 2.214  | 2.552 | 2.878 | 3.197  | 3.611 | 3.922   |
| 19 | .688  | .861  | 1.066 | 1.328 | 1.729 | 2,093      | 2.205  | 2.539 | 2.861 | 3.174  | 3.579 | 3.883   |
| 20 | .687  | .860  | 1.064 | 1.325 | 1.725 | 2.086      | 2.197  | 2.528 | 2.845 | 3.153  | 3,552 | 3.850   |
|    | .674  | .841  | 1.036 | 1.282 | 1.645 | 1.960      | 2.054  | 2.326 | 2.576 | 2.807  | 3.091 | 3.291   |
|    | 50%   | 60%   | 70%   | 80%   | 90%   | 95%        | 96%    | 98%   | 99%   | 99.5%  | 99.8% | 99.9%   |

$$|t| = 1.684 < 1.753$$
  
 $Pr(T_{15} > |t|) > 0.05$ 

So we **fail to reject** null hypothesis - not enough evidence to state that Sri Lankan strays are truly smaller than the average dog.

Using R: qt(0.05, df=15)

# Example III: Comparing two small samples



- Say we have 4 thoroughbred dogs:  $\overline{X} = 104$ ,  $s_x = 17$ ,
- and 16 Sri Lankan stray dogs:  $\overline{X} = 92$ ,  $s_x = 8$ ,

**Question:** Is there a difference in their sizes?

### Test statistic for 2-sample mean test

• We are interested in the **difference**:

$$D = \overline{X_1} - \overline{X_2}$$

- Basic form of the test statistic is the same:  $t = \frac{D \mu_D}{s_D}$
- ... but there are a few more terms!:

$$t = \frac{(\overline{X_1} - \overline{X_2}) - \mu_D}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

- Note: almost always, the null hypothesis is  $\mu_D = 0$  ... this is because we are almost always just interested in comparing the means.
- Note also: for small samples, this statistic behaves properly if  $X_1$  and  $X_2$  have a roughly normal distribution small sizes mean we can't automatically invoke the central limit theorem.

### Test statistic for 2-sample mean test

• We are interested in the **difference**:

$$D = \overline{X_1} - \overline{X_2}$$

- Basic form of the test statistic is the same:  $t=rac{D-\mu_D}{s_D}$
- ... but there are a few more terms!:

$$t = rac{(\overline{X_1} - \overline{X_2}) - \mu_D}{\sqrt{rac{s_1^2}{n_1} + rac{s_2^2}{n_2}}}$$

- Note: almost always, the null hypothesis is  $\mu_D = 0$  ... this is because we are almost always just interested in comparing the means.
- Note also: for small samples, this statistic behaves properly if  $X_1$  and  $X_2$  have a roughly normal distribution small sizes mean we can't automatically invoke the central limit theorem

#### Test statistic for 2-sample mean test

• We are interested in the **difference**:

$$D = \overline{X_1} - \overline{X_2}$$

- Basic form of the test statistic is the same:  $t = \frac{D \mu_D}{s_D}$
- ... but there are a few more terms!:

$$t = \frac{(\overline{X_1} - \overline{X_2}) - \mu_D}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

- Note: almost always, the null hypothesis is  $\mu_D = 0$  ... this is because we are almost always just interested in comparing the means.
- Note also: for small samples, this statistic behaves properly if X<sub>1</sub> and X<sub>2</sub> have a roughly normal distribution - small sizes mean we can't automatically invoke the central limit theorem.

#### What are the *df* for this test?

- There's no exact answer!
- The conservative approach is to use the SMALLER of the two sample sizes (minus 1)
- The best actual approximation is:

$$df = \frac{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^2}{\left(\frac{1}{n_1 - 1}\right)\left(\frac{s_1^2}{n_1}\right)^2 + \left(\frac{1}{n_2 - 1}\right)\left(\frac{s_2^2}{n_2}\right)^2}$$

# This is what we call ...

# This is what we call ...



Hand Waving!

#### The two sample t test statistic

If the random samples are drawn, one of size  $n_1$ , unknown mean  $\mu_1$  and unknown s.d.  $\sigma_1$ , the other of size  $n_2$  with  $\mu_2$  and  $\sigma_2$ , also unknown, then to test the hypothesis  $H_0$ :  $\mu_1 = \mu_2$ , compute the **two sample t statistic**:

$$t = \frac{\overline{X_1} - \overline{X_2}}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

and use P-values or critical values of the  $t_k$  distribution, where k is whatever's smaller:  $n_1 - 1$  or  $n_2 - 1$  (or is approximated by software).

- Note: the term  $\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$  is called: **the pooled standard deviation**.
- Note also: Using the smaller degrees of freedom is the more conservative approach.
- Note finally: The t-distribution is a (very good) approximation of the true distribution of the two-sample test statistic, but it is not exact like in the one-sample case.

# Back to the dogs





- 4 domestic dogs:  $\overline{X} = 104, s_x = 17$
- 16 Sri Lankan strays:  $\overline{X} = 92, s_x = 8$ ,

$$t = \frac{\overline{X_1} - \overline{X_2}}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} = \frac{104 - 92}{\sqrt{17^2/4 + 8^2/16}} = \frac{12}{8.73} = 1.37$$

Degrees of freedom? df = (4-1) = 3 < (16-1) = 15.

# Back to the dogs





- 4 domestic dogs:  $\overline{X} = 104, s_x = 17$
- 16 Sri Lankan strays:  $\overline{X} = 92, s_x = 8$ ,

$$t = \frac{\overline{X_1} - \overline{X_2}}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} = \frac{104 - 92}{\sqrt{17^2/4 + 8^2/16}} = \frac{12}{8.73} = 1.37$$

Degrees of freedom? df = (4-1) = 3 < (16-1) = 15.

# Back to the dogs





- 4 domestic dogs:  $\overline{X} = 104, s_x = 17$
- 16 Sri Lankan strays:  $\overline{X} = 92, s_x = 8$ ,

$$t = \frac{\overline{X_1} - \overline{X_2}}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} = \frac{104 - 92}{\sqrt{17^2/4 + 8^2/16}} = \frac{12}{8.73} = 1.37$$

Degrees of freedom? df = (4-1) = 3 < (16-1) = 15.

# Recall the question: "Is there a difference in their sizes?"

• So:  $H_0: \mu_1 = \mu_2, H_A: \mu_1 \neq \mu_2$ 

• Test statistic: t = 1.37

• Test distribution:  $t \sim T(\nu = 3)$ 

• Significance:  $\alpha = 5\%$ 



1.37 < 3.182, so we **fail to reject**  $H_0$ .

# The two sample T-test for comparing means

| Question:        | Is $\mu$ different from $\mu_0$ ?           | Is $\mu_1$ different from $\mu_2$ ?                                 |  |
|------------------|---------------------------------------------|---------------------------------------------------------------------|--|
|                  |                                             |                                                                     |  |
| Test:            | Single sample <i>t</i> -test                | Two sample <i>t</i> -test                                           |  |
|                  | _                                           |                                                                     |  |
| Data:            | $\overline{X}$ , $n$ , $s$                  | $\overline{X_1}$ , $n_1$ , $s_1$ , $\overline{X_2}$ , $n_2$ , $s_2$ |  |
| Assumptions:     | Roughly normal distril                      | outions of X, small sample                                          |  |
| H <sub>0</sub> : | $\mu=\mu_0$                                 | $\mu_1=\mu_2$                                                       |  |
|                  |                                             |                                                                     |  |
| $H_A$ :          | $\mu  eq \mu_0$                             | $\mu_1 \neq \mu_2$                                                  |  |
|                  | <del></del>                                 | <del></del>                                                         |  |
| Test statistic:  | $t=\frac{\overline{X}-\mu_0}{s_X/\sqrt{n}}$ | $t = rac{x_1 - x_2}{\sqrt{rac{s_1^2}{n_1} + rac{s_2^2}{n_2}}}$   |  |
|                  |                                             |                                                                     |  |
| Distribution:    | T( u = n-1)                                 | $T(\nu \approx \min(n_1-1,n_2-1))$                                  |  |
| P-value:         | $2P(\mathit{T}_{\nu}> t )$                  |                                                                     |  |
| $\alpha$ -level: | ar                                          | bitrary!                                                            |  |

### Example IV: Taxi fleet







- Louie De Palma has a big fleet of taxis, and is very cheap.
- To save some money, he wants to see if Gasoline A is more efficient than Gasoline B (at 95% confidence).
- He reads a statistics book, and randomly assigns 50 cars to Gasoline A, and 50 cars to Gasoline B.

| Data: | Mean mileage |      |
|-------|--------------|------|
| А     | 25           |      |
|       | 26           | 4.00 |

Quick test shows:

$$t = \frac{\overline{x_1} - \overline{x_2}}{\sqrt{s_1^2/n_1 + s_2^2/n_2}} = \frac{-1}{\sqrt{\frac{25}{50} + \frac{16}{50}}} = -1.10$$

$$|t| = 1.10 < 2.01; Pr(T_{49} > |t|) > 0.05$$

Obviously, there is no difference between the gasolines!

### Example IV: Taxi fleet







- Louie De Palma has a big fleet of taxis, and is very cheap.
- To save some money, he wants to see if Gasoline A is more efficient than Gasoline B (at 95% confidence).
- He reads a statistics book, and randomly assigns 50 cars to Gasoline A, and 50 cars to Gasoline B.

|   | Data: | Sample size | Mean mileage | SD   |
|---|-------|-------------|--------------|------|
| • | Α     | 50          | 25           | 5.00 |
|   | В     | 50          | 26           | 4.00 |

Quick test shows:

$$t = \frac{\overline{x_1} - \overline{x_2}}{\sqrt{s_1^2/n_1 + s_2^2/n_2}} = \frac{-1}{\sqrt{\frac{25}{50} + \frac{16}{50}}} = -1.10$$

$$|t| = 1.10 < 2.01; Pr(T_{49} > |t|) > 0.05$$

Obviously, there is no difference between the gasolines!

### Example IV: Taxi fleet







- Louie De Palma has a big fleet of taxis, and is very cheap.
- To save some money, he wants to see if Gasoline A is more efficient than Gasoline B (at 95% confidence).
- He reads a statistics book, and randomly assigns 50 cars to Gasoline A, and 50 cars to Gasoline B.

|   | Data: | Sample size | Mean mileage | SD   |
|---|-------|-------------|--------------|------|
| • | Α     | 50          | 25           | 5.00 |
|   | В     | 50          | 26           | 4.00 |

Quick test shows:

$$t = \frac{\overline{x_1} - \overline{x_2}}{\sqrt{s_1^2/n_1 + s_2^2/n_2}} = \frac{-1}{\sqrt{\frac{25}{50} + \frac{16}{50}}} = -1.10$$

$$|t| = 1.10 < 2.01; Pr(T_{49} > |t|) > 0.05$$

• Obviously, there is no difference between the gasolines!

#### **But Wait!**





- Latka Gravas (who is very smart) says: "But wait! Gas B looked a little better than Gas A - but the standard deviation was very wide."
  - Why? Because taxis (and taxi drivers) are all very different.
- Maybe a better experiment is to use the same cab but assign Gas A and Gas B to the same cab on different days!

| Cab                   | Gas A | Gas B | Difference |
|-----------------------|-------|-------|------------|
| 1                     | 27.01 | 26.95 | 0.06       |
| 2                     | 20.00 | 20.44 | -0.44      |
| 3                     | 23.41 | 25.05 | -1.64      |
| 4                     | 2.22  | 26.32 | -24.10     |
| 5                     | 30.11 | 29.56 | 0.55       |
| 6                     | 5.55  | 26.60 | -21.05     |
| 7                     | 22.23 | 22.93 | -0.70      |
| 8                     | 19.78 | 20.23 | -0.45      |
| 9                     | 33.45 | 33.95 | -0.50      |
| 10                    | 25.22 | 26.01 | -0.79      |
| $\overline{X}$        | 25.2  | 25.8  | -0.60      |
| <b>S</b> <sub>X</sub> | 4.27  | 4.10  | 0.61       |

- Note: to do this right you randomize the order of Gas A and Gas B (by flipping a coin) - but control for driver.
- Note: the standard deviations and means are similar as before, but the difference has a very small standard deviation
- Note: The sample size here is quite a bit smaller than before.

| Cab            | Gas A | Gas B | Difference |
|----------------|-------|-------|------------|
| 1              | 27.01 | 26.95 | 0.06       |
| 2              | 20.00 | 20.44 | -0.44      |
| 3              | 23.41 | 25.05 | -1.64      |
| 4              | 25.22 | 26.32 | -1.10      |
| 5              | 30.11 | 29.56 | 0.55       |
| 6              | 25.55 | 26.60 | -1.05      |
| 7              | 22.23 | 22.93 | -0.70      |
| 8              | 19.78 | 20.23 | -0.45      |
| 9              | 33.45 | 33.95 | -0.50      |
| 10             | 25.22 | 26.01 | -0.79      |
| $\overline{X}$ | 25.2  | 25.8  | -0.60      |
| S <sub>X</sub> | 4.27  | 4.10  | 0.61       |
|                |       |       |            |

- The differences d<sub>i</sub> is a single measure of the difference of each taxi.
- We can narrow the question to: "Is the true  $\mu_d = 0$ ?" and apply a single sample *t*-test!
- Let's calculate a 95% CI:

$$\mu_d = \overline{d} \pm t_{c,\nu} \frac{s_d}{\sqrt{n}}$$

$$= -.6 \pm (2.26)(\frac{.61}{\sqrt{10}})$$

$$= -.6 \pm 0.44$$

| Cab            | Gas A | Gas B | Difference |
|----------------|-------|-------|------------|
| 1              | 27.01 | 26.95 | 0.06       |
| 2              | 20.00 | 20.44 | -0.44      |
| 3              | 23.41 | 25.05 | -1.64      |
| 4              | 25.22 | 26.32 | -1.10      |
| 5              | 30.11 | 29.56 | 0.55       |
| 6              | 25.55 | 26.60 | -1.05      |
| 7              | 22.23 | 22.93 | -0.70      |
| 8              | 19.78 | 20.23 | -0.45      |
| 9              | 33.45 | 33.95 | -0.50      |
| 10             | 25.22 | 26.01 | -0.79      |
| $\overline{X}$ | 25.2  | 25.8  | -0.60      |
| S <sub>X</sub> | 4.27  | 4.10  | 0.61       |

- The differences d<sub>i</sub> is a single measure of the difference of each taxi.
- We can narrow the question to: "Is the true  $\mu_d = 0$ ?" and apply a single sample *t*-test!
- Let's calculate a 95% CI:

$$\mu_d = \overline{d} \pm t_{c,\nu} \frac{s_d}{\sqrt{n}}$$

$$= -.6 \pm (2.26)(\frac{.61}{\sqrt{10}})$$

$$= -.6 \pm 0.44$$

| Cab            | Gas A | Gas B | Difference |
|----------------|-------|-------|------------|
| 1              | 27.01 | 26.95 | 0.06       |
| 2              | 20.00 | 20.44 | -0.44      |
| 3              | 23.41 | 25.05 | -1.64      |
| 4              | 25.22 | 26.32 | -1.10      |
| 5              | 30.11 | 29.56 | 0.55       |
| 6              | 25.55 | 26.60 | -1.05      |
| 7              | 22.23 | 22.93 | -0.70      |
| 8              | 19.78 | 20.23 | -0.45      |
| 9              | 33.45 | 33.95 | -0.50      |
| 10             | 25.22 | 26.01 | -0.79      |
| $\overline{X}$ | 25.2  | 25.8  | -0.60      |
| S <sub>X</sub> | 4.27  | 4.10  | 0.61       |

- The differences d<sub>i</sub> is a single measure of the difference of each taxi.
- We can narrow the question to: "Is the true  $\mu_d = 0$ ?" and apply a single sample *t*-test!
- Let's calculate a 95% CI:

$$\mu_d = \overline{d} \pm t_{c,\nu} \frac{s_d}{\sqrt{n}}$$

$$= -.6 \pm (2.26)(\frac{.61}{\sqrt{10}})$$

$$= -.6 \pm 0.44$$

| Cab            | Gas A | Gas B | Difference |
|----------------|-------|-------|------------|
| 1              | 27.01 | 26.95 | 0.06       |
| 2              | 20.00 | 20.44 | -0.44      |
| 3              | 23.41 | 25.05 | -1.64      |
| 4              | 25.22 | 26.32 | -1.10      |
| 5              | 30.11 | 29.56 | 0.55       |
| 6              | 25.55 | 26.60 | -1.05      |
| 7              | 22.23 | 22.93 | -0.70      |
| 8              | 19.78 | 20.23 | -0.45      |
| 9              | 33.45 | 33.95 | -0.50      |
| 10             | 25.22 | 26.01 | -0.79      |
| $\overline{X}$ | 25.2  | 25.8  | -0.60      |
| S <sub>X</sub> | 4.27  | 4.10  | 0.61       |
|                |       |       |            |

- The differences d<sub>i</sub> is a single measure of the difference of each taxi.
- We can narrow the question to: "Is the true  $\mu_d = 0$ ?" and apply a single sample *t*-test!
- Let's calculate a 95% CI:

$$\mu_d = \overline{d} \pm t_{c,\nu} \frac{s_d}{\sqrt{n}}$$

$$= -.6 \pm (2.26)(\frac{.61}{\sqrt{10}})$$

$$= -.6 \pm 0.44$$

## Visualizing paired Comparisons



Variability swamps the signal

## Visualizing paired Comparisons



#### Variability swamps the signal



# Paired comparison of means

| Question:                 | Is $\mu$ different from $\mu_0$ ?                               | Is $\mu_d$ different from 0?            |
|---------------------------|-----------------------------------------------------------------|-----------------------------------------|
| Test:                     | Single sample <i>t</i> -test                                    | Paired comparison test                  |
| Data:                     | $\overline{X}$ , $n$ , $s_x$                                    | $\overline{d}$ , $n$ , $s_d$            |
| Assumptions:              | Roughly normal distributions of $X$ , small sample              |                                         |
| <i>H</i> <sub>0</sub> :   | $\mu=\mu_0$                                                     | $\mu_d = 0$                             |
| H <sub>A</sub> :          | $\mu  eq \mu_0$                                                 | $\mu_d \neq 0$                          |
| Test statistic:           | $t = rac{\overline{X} - \mu_0}{s_X / \sqrt{n}}$                | $t = \frac{\overline{d}}{s_d/\sqrt{n}}$ |
| Distribution:             | $s_{\mathrm{x}}/\sqrt{n}$ $s_{\mathrm{d}}/\sqrt{n}$ $T( u=n-1)$ |                                         |
|                           | ,                                                               |                                         |
|                           | ( - 1 //                                                        |                                         |
| P-value: $\alpha$ -level: | $2P(\mathcal{T}_ u> t )$ arbitrary!                             |                                         |

- Is one of the most effective ways to compare treatments while controlling for natural variability.
- Allows for much greater power, because:  $s_d \ll s_{x_1}$ .
- Used for natural pairings where the effect might be smaller than the variability, for example:
  - Effectiveness of two hand creams: compare Right and Left hands (randomized) to control for different skin types.
  - Aggressive behevior of dementia patients on full moon: compare Full moon and non-full moon days to control for variability in aggression.
  - Effect of caffeine (or flower smelling) on student's brains: compare treatment and lack of treatment with a randomized repeated measure.

- Is one of the most effective ways to compare treatments while controlling for natural variability.
- Allows for much greater power, because:  $s_d \ll s_{x_1}$ .
- Used for natural pairings where the effect might be smaller than the variability, for example:
  - Effectiveness of two hand creams: compare Right and Left hands (randomized) to control for different skin types.
  - Aggressive behevior of dementia patients on full moon: compare Full moon and non-full moon days to control for variability in aggression.
  - Effect of caffeine (or flower smelling) on student's brains: compare treatment and lack of treatment with a randomized repeated measure.

- Is one of the most effective ways to compare treatments while controlling for natural variability.
- Allows for much greater power, because:  $s_d \ll s_{x_1}$ .
- Used for natural pairings where the effect might be smaller than the variability, for example:
  - Effectiveness of two hand creams: compare Right and Left hands (randomized) to control for different skin types.
  - Aggressive behevior of dementia patients on full moon: compare Full moon and non-full moon days to control for variability in aggression.
  - Effect of caffeine (or flower smelling) on student's brains: compare treatment and lack of treatment with a randomized repeated measure.

- Is one of the most effective ways to compare treatments while controlling for natural variability.
- Allows for much greater power, because:  $s_d \ll s_{x_1}$ .
- Used for natural pairings where the effect might be smaller than the variability, for example:
  - Effectiveness of two hand creams: compare Right and Left hands (randomized) to control for different skin types.
  - Aggressive behevior of dementia patients on full moon: compare Full moon and non-full moon days to control for variability in aggression.
  - Effect of caffeine (or flower smelling) on student's brains: compare treatment and lack of treatment with a randomized repeated measure.

- Is one of the most effective ways to compare treatments while controlling for natural variability.
- Allows for much greater power, because:  $s_d \ll s_{x_1}$ .
- Used for natural pairings where the effect might be smaller than the variability, for example:
  - Effectiveness of two hand creams: compare Right and Left hands (randomized) to control for different skin types.
  - Aggressive behevior of dementia patients on full moon: compare Full moon and non-full moon days to control for variability in aggression.
  - Effect of caffeine (or flower smelling) on student's brains: compare treatment and lack of treatment with a randomized repeated measure.

- Is one of the most effective ways to compare treatments while controlling for natural variability.
- Allows for much greater power, because:  $s_d \ll s_{x_1}$ .
- Used for natural pairings where the effect might be smaller than the variability, for example:
  - Effectiveness of two hand creams: compare Right and Left hands (randomized) to control for different skin types.
  - Aggressive behevior of dementia patients on full moon: compare Full moon and non-full moon days to control for variability in aggression.
  - Effect of caffeine (or flower smelling) on student's brains: compare treatment and lack of treatment with a randomized repeated measure.

## The F-statistic for comparing sample variances

$$egin{array}{lll} {\cal F}_{obs} &=& rac{s_1^2}{s_2^2} \ &\sim & {\cal F}(
u_1=n_1-1, 
u_2=n_2-1) \end{array}$$

The *F*-statistic allows us to compare two *sample variances*.

## Example 5: NBA games

Question: Are teams playing less consistently this season than last season because of a compressed schedule?

| Game  | 2010-2011 | 2011-2012 |
|-------|-----------|-----------|
| 1     | 100       | 111       |
| 2     | 95        | 108       |
| 3     | 97        | 99        |
| 4     | 101       | 94        |
| 5     | 100       | 115       |
| 6     | 94        | 100       |
| 7     | 110       | 88        |
| 8     | 105       | 75        |
| 9     | 98        | 98        |
| 10    | 109       | 90        |
| means | 100.90    | 97.80     |
| s.d.  | 6.0       | 12.0      |



## An example: NBA games

### Hypotheses

- $H_0$ :  $\sigma_1 = \sigma_2$ ;
- $H_1$ :  $\sigma_2 > \sigma_1$ ;

#### Data:

- $s_1 = 6, n = 10$
- $s_2 = 12, n = 10$



## An example: NBA games

### Hypotheses

- $H_0$ :  $\sigma_1 = \sigma_2$ ;
- $H_1$ :  $\sigma_2 > \sigma_1$ ;

#### Data:

- $s_1 = 6, n = 10$
- $s_2 = 12, n = 10$

#### Test statistic:

- $f_{obs} = s_2^2/s_1^2 = 4$
- $f_{obs} \sim F_{n_1-1=9, n_2-1=9}$
- P-value:
  - $Pr(F_{9,9} > f_{obs}) = 0.025$





## An example: NBA games

- Hypotheses
  - $H_0$ :  $\sigma_1 = \sigma_2$ ;
  - $H_1$ :  $\sigma_2 > \sigma_1$ :
- Data:
  - $s_1 = 6, n = 10$
  - $s_2 = 12, n = 10$
- Test statistic:
  - $f_{obs} = s_2^2/s_1^2 = 4$
  - $f_{obs} \sim F_{n_1-1=9, n_2-1=9}$
- P-value:
  - $Pr(F_{9,9} > f_{obs}) = 0.025$





Conclusion: reject null-hypothesis, games ARE more inconsistent this year than last

# Testing the differences between variances

| Question:               | Is $\mu_1$ greater than $\mu_2$ ?                                        | Is $\sigma_1$ greater than $\sigma_2$ ? |  |
|-------------------------|--------------------------------------------------------------------------|-----------------------------------------|--|
|                         |                                                                          |                                         |  |
| Test:                   | Two sample <i>t</i> -test                                                | F-test                                  |  |
|                         |                                                                          |                                         |  |
| Data:                   | $X_1, n_1, s_1, X_2, n_2, s_2$                                           | $s_1, s_2$                              |  |
|                         |                                                                          |                                         |  |
| Assumptions:            | X is roughly normal, samples are small                                   |                                         |  |
|                         |                                                                          |                                         |  |
| <i>H</i> <sub>0</sub> : | $\mu_1 = \mu_2$                                                          | $\sigma_1 = \sigma_2$                   |  |
| $H_A$ :                 | >                                                                        | $\sigma_1 > \sigma_2$                   |  |
| IIA.                    | $\mu_1 > \mu_2$                                                          | $o_1 > o_2$                             |  |
|                         | <u>v.</u> <u>v.</u>                                                      | s <sup>2</sup>                          |  |
| Test statistic:         | $t_{test} = rac{X_1 - X_2}{\sqrt{rac{s_1^2}{p_1} + rac{s_2^2}{p_2}}}$ | $F_{test} = \frac{s_1^2}{s_2^2}$        |  |
|                         | $\sqrt{\frac{s_1}{n_1} + \frac{s_2}{n_2}}$                               | -2                                      |  |
|                         | 1 1 2                                                                    |                                         |  |
| Distribution:           | $T(\nu \approx \min(n_1-1,n_2-1))$                                       | $F(\nu_1 = n_1 - 1, \nu_2 = n_2 - 2$    |  |
|                         |                                                                          |                                         |  |
| P-value:                | $P(T_{ u} >  t_{test} )$                                                 | $P(F_{\nu_1,\nu_2} > F_{test})$         |  |

- All statistical test rest on assumptions.
  - Most common assumption: the test statistic has a normal distribution
  - variances are equal in populations being compared
  - samples are drawn independently and randomly
- What if the assumptions are violated do the tests still work?
  - i.e. Can they provide valid inference from a sample?
- If yes, the the test is **robust** to violations of the assumptions
  - A test may be robust to some violations, but not others
  - Violations include: presence of outliers, inappropriate distributions, unequal variances, etc.

- All statistical test rest on assumptions.
  - Most common assumption: the test statistic has a normal distribution
  - variances are equal in populations being compared
  - samples are drawn independently and randomly
- What if the assumptions are violated do the tests still work?
  - i.e. Can they provide valid inference from a sample?
- If yes, the the test is **robust** to violations of the assumptions
  - A test may be robust to some violations, but not others
  - Violations include: presence of outliers, inappropriate distributions, unequal variances, etc.

- All statistical test rest on assumptions.
  - Most common assumption: the test statistic has a normal distribution
  - variances are equal in populations being compared
  - samples are drawn independently and randomly
- What if the assumptions are violated do the tests still work?
  - i.e. Can they provide valid inference from a sample?
- If yes, the the test is **robust** to violations of the assumptions
  - A test may be robust to some violations, but not others.
  - Violations include: presence of outliers, inappropriate distributions, unequal variances, etc.

#### Some rules of thumb:

- Two-sample T-procedures are more robust than one-sample T-procedures.
- T-tests are most robust when both sample sizes are equal and both sample distributions are similar.
- ... but even when we deviate from this, two-sample tests tend to remain quite robust.
- F-tests tend to be very sensitive (opposite of robust) to non-normality assumptions.















