PATENT ABSTRACTS OF JAPAN

(11)Publication number:

09-124471

(43)Date of publication of application: 13.05.1997

(51)Int.CI.

A61K 31/135 A61K 31/135 // A23L 1/30 A61K 7/00 A61K 7/48

(21)Application number: 07-319440

(71)Applicant: KISSEI PHARMACEUT CO LTD

(22)Date of filing:

30.10.1995

(72)Inventor: SATO FUMIYASU

IYOBE AKIRA KOIZUMI TAKASHI KATSUNO KENJI KOBAYASHI YOSHIO

(54) INHIBITOR OF MAILLARD REACTION

(57)Abstract

PROBLEM TO BE SOLVED: To obtain an inhibitor of the Maillard reaction containing a 2- hydroxyphenylalkylamine

derivative or its salt as an active ingredient.

SOLUTION: This inhibitor of the Maillard reaction contains a 2-hydroxyphenylalkylamine derivative, represented by the formula (R1 to R4 are each H, an alkyl group, an alkoxy group, hydroxyl group, mercapto group, a halogen, nitro group, amino group, an acylamino group, an acyl group or a hydroxyalkyl group; R5 is H or an alkyl group; A is a single bond, an alkylene group, etc.; Y is a single bond or an alkylene group; Z is hydroxyl group, an alkoxy group, an aryloxy group, an aralkyloxy group, a substitutable amino group, mercapto group, nitro group, etc.), having inhibiting activities against the Maillard reaction and useful as a preventing or a therapeutic agent for diseases, etc., caused by diabetic complications or aging, a cosmetic or a food as an active ingredient.

* NOTICES *

Japan Patent Office is not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2. **** shows the word which can not be translated.

3.In the drawings, any words are not translated.

CLAIMS

[Claim(s)]

[Claim 1] General formula. [Formula 1]

$$R^1$$
 R^2
 R^3
 HO
 Y
 A
 A
 Z
 R^5

Even if R1, R2, R3, and R4 in a formula are the same respectively, they may differ. A hydrogen atom, a low-grade alkyl group, a lower alkoxy group, a hydroxyl group, a sulfhydryl group, They are a halogen atom, a nitro group, the amino group, the acylamino machine, an acyl group, or a hydroxy low-grade alkyl group. R5 is a hydrogen atom or a low-grade alkyl group, and A is the low-grade alkylene machine or low-grade alkenylene group which may have the hydroxyl group as single bond or a substituent. Y is single bond or a low-grade alkylene machine. Z A hydroxyl group, a lower alkoxy group, An aryloxy group, an aralkyl oxy-basis, the amino group, a low-grade alkylamino machine, A JI low-grade alkylamino machine, an arylamino machine, the diaryl amino group, The aralkyl amino group, a JIARU alkylamino machine, a sulfhydryl group, a low-grade alkyl thio machine, an aryl thio machine, an aralkyl thio machine, or a nitro group — it is — the Maillard-reaction inhibitor which contains 2-hydroxyphenyl alkylamine derivative expressed or its salt permitted in pharmacology as an active principle

[Translation done.]

* NOTICES *

Japan Patent Office is not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2. **** shows the word which can not be translated.

3.In the drawings, any words are not translated.

DETAILED DESCRIPTION

[Detailed Description of the Invention] [0001]

[The technical field to which invention belongs] this invention relates to the Maillard-reaction inhibitor which contains 2-hydroxyphenyl alkylamine derivative or its salt permitted in pharmacology as an active principle.

[0002] this invention will be a general formula if it states in more detail. [0003] [Formula 2]

[0004] even if R1, R2, R3, and R4 in a formula are the same respectively, they may differ from each other, and they are a hydrogen atom, a low-grade alkyl group, a lower alkoxy group, a hydroxyl group, a sulfhydryl group, a halogen atom, a nitro group, the amino group, the acylamino machine, an acyl group, or a hydroxy low-grade alkyl group R5 is a hydrogen atom or a low-grade alkyl group, and A is the low-grade alkylene machine or low-grade alkenylene group which may have the hydroxyl group as single bond or a substituent. Y is single bond or a low-grade alkylene machine. Z A hydroxyl group, a lower alkoxy group, An aryloxy group, an ARUARU kill oxy-basis, the amino group, a low-grade alkylamino machine, A JI low-grade alkylamino machine, an arylamino machine, the diaryl amino group, The ARUARU kill amino group, a JIARU alkylamino machine, a sulfhydryl group, a low-grade alkyl thio machine, an aryl thio machine, an ARUARU kill thio machine, or a nitro group — it is — 2-hydroxyphenyl alkylamine derivative expressed or its salt permitted in pharmacology is contained as an active principle — As prevention and the medical treatment agent of the disease relevant to a Maillard reaction, it is related with a useful Maillard-reaction inhibitor in cosmetics and food. [0005]

[Description of the Prior Art] In the field of the food chemistry, reducing sugars, such as a glucose, react with the amino compound in food, and it is observed that brown coloring matter generates. On the other hand, it is checked that the same reaction has occurred also in in the living body in recent years, it is thought that it is involving strongly as one of the development-of-symptoms factors of diseases, such as a diabetes nature complication and arteriosclerosis, and the spotlight is captured.

[0006] It is called the Maillard reaction and the above-mentioned reaction is a Maillard reaction in the living body. Carbonyl compounds, such as reducing sugars, such as a glucose, a fructose, and a pentose, those phosphoric ester, or an ascorbic acid, react in non-enzyme with the isolation amino group of protein in the living body, and a Schiff base is formed. By reactions, such as a stage, the continuing oxidization and dehydration, a polymerization, and cleavage, the first half when this is changed into an Amadori-rearrangement product by chemistry dislocation Protein denaturalizes with intramolecular-branching formation between molecules, and it goes on by a series of reactions which consist of a later stage to which brown is presented and decomposition by the protease results in a resultant (AGE:Advanced

Glycation End Products) in poor solubility the difficult second half.

[0007] The amount of generation of AGE generated in process of the Maillard reaction concerned and its precursive product increases to the concentration and reaction time of sugar and protein correlatively. Therefore, a hyperglycemia state like diabetes continues or it is known for blood with which the protein in the living body which has the half-life of aging with the long period exposed to sugar or protein in a long organization, and path clearance fall, such as a patient of a kidney disease, or the protein under organization that it will be easy to receive a Maillard reaction.

[0008] As the protein in the living body which receives a Maillard reaction from these things For example, there is much protein, such as a glomerular basement membrane of the collagen and elastin of connective tissues, such as an eyeball lens crystalline, a serum albumin, the skin, and a blood vessel wall, nerve myelin protein, hemoglobin, and the kidney, and the Maillard reaction is considered to be one of the causes of development of symptoms of the disease resulting from diabetes nature complications caused by denaturation, abnormalities, or depression of these proteins, such as ******, ****, a cardiovascular system obstacle, neuropathy, and a cataract, arteriosclerosis, or aging. Therefore, development research is tried that it should grope for the compound which checks a Maillard reaction towards prevention and medical treatment of these diseases.

[Problem(s) to be Solved by the Invention] The purpose of this invention is offering a different new and safe Maillard-reaction inhibitor in [the compound which has the conventional Maillard-reaction inhibitory action] chemical structure.
[0010]

[Means for Solving the Problem] As a result of inquiring wholeheartedly to find out the compound which has Maillard-reaction inhibitory action, this invention persons acquire the knowledge of having the Maillard-reaction prevention activity excellent in 2-hydroxyphenyl alkylamine derivative of this invention, and came to accomplish this invention.

[0011] That is, the Maillard-reaction inhibitor of this invention is a general formula. [0012] [Formula 3]

[0013] Even if R1, R2, R3, and R4 in a formula are the same respectively, they may differ. A hydrogen atom, a low-grade alkyl group, a lower alkoxy group, a sulfhydryl group, a hydroxyl group, They are a halogen atom, a nitro group, the amino group, the acylamino machine, an acyl group, or a hydroxy low-grade alkyl group. R5 is a hydrogen atom or a low-grade alkyl group, and A is the low-grade alkylene machine or low-grade alkenylene group which may have the hydroxyl group as single bond or a substituent. Y is single bond or a low-grade alkylene machine. Z A hydroxyl group, a lower alkoxy group, An aryloxy group, an ARUARU kill oxy-basis, the amino group, a low-grade alkylamino machine, A JI low-grade alkylamino machine, an arylamino machine, the diaryl amino group, The ARUARU kill amino group, a JIARU alkylamino machine, a sulfhydryl group, a low-grade alkyl thio machine, an aryl thio machine, an ARUARU kill thio machine, or a nitro group — it is — 2-hydroxyphenyl alkylamine derivative expressed or its salt permitted in pharmacology is contained as an active principle [0014] It sets to this invention here, with a low-grade alkyl group A methyl group, an ethyl group, a propyl group, an isopropyl machine, a butyl, an isobutyl machine, A sec-butyl, a tertbutyl, a pentyl machine, an isopentyl machine, The alkyl group of the shape of a straight chain of the carbon numbers 1-6, such as a neopentyl machine, a tert-pentyl machine, and a hexyl machine, and the letter of branching is said, with a lower alkoxy group A methoxy machine, an ethoxy basis, a propoxy group, an isopropoxy group, a butoxy machine. The alkoxy group of the shape of a straight chain of the carbon numbers 1-6, such as an iso butoxy machine, a

sec-butoxy machine, a tert-butoxy machine, a cutting-pliers ROKISHI machine, an iso cutting-pliers ROKISHI machine, a neo cutting-pliers ROKISHI machine, a tert-cutting-pliers ROKISHI machine, and a hexyloxy machine, and the letter of branching is said. An aryl group means aromatic-hydrocarbon machines, such as a phenyl group and a naphthyl group, and means the above-mentioned [which was replaced by the above-mentioned aryl group] lowgrade [an aralkyl machine] alkyl group. Moreover, a halogen atom means a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom, and an acyl group means the alkyl carbonyl group of the carbon numbers 2-7 which have the alkyl group of the shape of a straight chain, such as an acetyl group, a propionyl machine, and a butyryl machine, and the letter of branching. A low-grade alkylene machine means the alkylene machine of the shape of a straight chain of the carbon numbers 1-6, such as a methylene group, an ethylene, a propylene machine, a trimethylene machine, a tetramethylen machine, a pentamethylene machine, and a hexamethylene machine, and the letter of branching, and a low-grade alkenylene group means the alkenylene group of the shape of a straight chain of the carbon numbers 2-6, such as a vinylene machine and a pro PENIREN machine, and the letter of branching.

[0015] 2-hydroxyphenyl alkylamine derivative expressed with the aforementioned general formula (I) of this invention is indicated by reference including the well-known compound in part, and can be manufactured by combining a method given [these] (for example, JP,5-208954,A, JP,7-126227,A, etc.) in reference, this and the analogous method, or other well-known methods.

[0016] For example, the general formula among the compounds of this invention. [0017] [Formula 4]

[0018] The compound expressed (with [Z1 in a formula is a hydroxyl group, a lower alkoxy group, an aryloxy group, or an aralkyl oxy-basis, and] the meaning as the above with R1, R2, R3, and R4) is a general formula. [same] [0019] [Formula 5]

[0020] the benzaldehyde derivative expressed with (they differing from each other even if R7, R8, R9, and R10 are the same respectively, and R6 in a formula being the protective group of a hydroxyl group, and being a hydrogen atom, a low-grade alkyl group, a lower alkoxy group, the protected hydroxyl group, the protected sulfhydryl group, a halogen atom, a nitro group, the protected amino group, the acylamino machine, an acyl group, or the protected hydroxy low-grade alkyl group) is reacted in an ammonium carbonate and a sodium cyanide, and an inert solvent — making — a general formula [0021]

[0022] Manufacture the hydantoin derivative expressed (with the meaning as the above with R6, R7, R8, R9, and R10 in a formula), and the obtained compound is made to understand an

added water part under an alkali condition. by request [same] After protecting the amino group etc. by the suitable protective group by the conventional method, it esterifies by the conventional method using lower alcohols, such as a methanol, and further, the need is accepted, after returning using reducing agents, such as a lithium borohydride. A general formula, R11-OH (IV)

The alcoholic compound expressed with (R11 in a formula is a low-grade alkyl group, an aryl group, or an aralkyl machine) is used, and it is O by the conventional method. – It is a general formula by alkylating. [0023]

[Formula 7]

[0024] After obtaining the compound expressed (with [R12 in a formula is an amino group which has a protective group, and] the meaning as the above with R6, R7, R8, R9, R10, and Z1), it can manufacture by removing protective groups, such as a hydroxyl group and an amino group. [same]

[0025] Let 2-hydroxyphenyl alkylamine derivative expressed with the aforementioned general formula (I) of this invention be the salt permitted in pharmacology by the conventional method. As such a salt, a salt with inorganic bases, such as an acid addition salt with organic acids, such as an acid addition salt with mineral acids, such as a hydrochloric acid, a hydrobromic acid, a hydroiodic acid, a sulfuric acid, a nitric acid, and a phosphoric acid, a formic acid, an acetic acid, methansulfonic acid, a benzenesulfonic acid, p-toluenesulfonic acid, a propionic acid, a citric acid, a succinic acid, a tartaric acid, a fumaric acid, butanoic acid, oxalic acid, a malonic acid, a maleic acid, a lactic acid, a malic acid, carbonic acid, glutamic acid, and an aspartic acid, sodium salt,

[0026] Moreover, as a compound expressed with the aforementioned general formula (I) of this invention, a hydrate and a solvate with the solvent permitted as drugs, such as ethanol, are also contained.

[0027] Since it has one or more asymmetric carbon atoms, although two optical isomerisms, R arrangement and S arrangement, exist in each asymmetrical carbon, 2-hydroxyphenyl alkylamine derivative expressed with the aforementioned general formula (I) of this invention is set to this invention, the optical isomer of a gap may be used for it, and even if it is the mixture of those optical isomers, it is not cared about.

[0028] Moreover, although two geometrical isomers exist in the compound which has a unsaturated bond among the compounds expressed with the aforementioned general formula (I) of this invention, in this invention, you may use any of the compound of a SHISU (Z) object, or the compound of a transformer (E) object.

[0029] The compound expressed with the aforementioned general formula (I) of this invention is in which used the lysozyme and the fructose. In the Maillard-reaction prevention activity examination of vitro, the prevention activity about equivalent was shown to dimerization of a lysozyme as compared with the aminoguanidine known as matter which has Maillard-reaction prevention activity.

[0030] Thus, the compound expressed with the aforementioned general formula (I) of this invention and its salt permitted in pharmacology are compounds very useful as prevention and the treatment agent of the disorder to which it has the outstanding Maillard-reaction prevention activity, and a Maillard reaction relates.

[0031] The compound expressed with the aforementioned general formula (I) of this invention and its salt permitted in pharmacology have Maillard-reaction prevention activity, and is effective to the disorder to which the Maillard reaction relates. The disease considered to be caused by aging of diabetes nature complications, such as a coronary-arteries nature disease, a peripheral disease of the circulatory, a cerebral blood vessel obstacle, diabetes nature neurosis, ****, arteriosclerosis, joint sclerosis, a cataract, ******, solidification *******, and

diabetes ********, atheroma nature arteriosclerosis, glomerulonephritis, senile cataract, ********, circumference [joint] ******, joint sclerosis, senile osteoporosis, etc. as such a disease can be mentioned, and it is very useful as prevention and the medical treatment agent of the disease concerned. Moreover, since a Maillard reaction advances also in the cosmetics and food containing protein or amino acid as everyone knows and degradation of protein and amino acid takes place, it is useful as a compound which checks the Maillard reaction concerned also in cosmetics or food.

[0032] In the acute toxicity test for which the compound expressed with the aforementioned general formula (I) of this invention used the mouse, the example of death was not observed for 2-amino-2-(2-hydroxyphenyl) ethanol and the hydrochloride by 1000mg [/kg] single time medication. Thus, the compound of this invention is a compound with very high safety, and is a compound very useful as a Maillard-reaction inhibitor.

[0033] When using 2-hydroxyphenyl alkylamine derivatives expressed with the aforementioned general formula (I) of this invention, and those pharmacology salts permitted for actual medical treatment, a medicine is prescribed for the patient taking-orally-wise as a suitable medical-supplies constituent, for example, a tablet, powder, a fine-grain agent, a granule, a capsule, liquid medicine, an injection agent, a medicine for external application, an applying-eyewash agent, a ** agent, etc., or parenterally. These medical-supplies constituents can be prepared by using the support and the excipient for a tablet which are usually used, and other additives by the tablet study-method performed in general pharmacy.

[0034] In the tablet among the above—mentioned medical—supplies constituents, powder, a fine—grain agent, a granule, a capsule, etc. An excipient, disintegrator, a binder, a lubricant, etc. can use what is usually used. as an excipient For example, D—mannitol which is sugar or sugar—alcohol, a lactose, sucrose, The wheat starch which is starch or a starch derivative, rice starch, a corn starch, Potato starch, pregelatinization starch, partial pregelatinization starch, a dextrin, cyclodextrin, The crystalline cellulose which are celluloses, such as a pullulan and hydroxypropyl starch, or a cellulosic, Others sodium alginates, such as crystalline cellulose KARUME sirloin sodium, a methyl cellulose, and a hydroxypropyl methyl cellulose, As gum arabic, agar, macro gall, an aluminum stearate, an aluminum monostearate, and an inorganic system excipient Calcium hydrogenphosphate, phosphoric—anhydride hydrogen calcium, magnesium aluminometasilicate, Although a synthetic aluminum silicate, synthetic hydrotalcite, an aluminum hydroxide, a magnesium hydroxide, calcium phosphate, dryness hydroxylation AMUMINIUMUGERU, a precipitated calcium carbonate, light anhydrous silicic acid, etc. can be used These cannot be limited as an excipient and can also be used as disintegrator or a binder.

[0035] Although the wheat starch which is KARUME sirloin calcium, a KARUME sirloin, hydroxypropylcellulose, carboxy-methyl-starch sodium, cross KARUME sirloin sodium, TORAGANTO, starch, or a starch derivative, rice starch, a corn starch, potato starch, pregelatinization starch, partial pregelatinization starch, a dextrin, a pullulan, hydroxypropyl starch, etc. can be used as disintegrator, these cannot be limited as disintegrator and can also be used as an excipient.

[0036] As a binder, the wheat starch which is a hydroxyethyl cellulose, hydroxypropylcellulose, polyvinyl alcohol, the povidone, starch, or a starch derivative, rice starch, a corn starch, potato starch, pregelatinization starch, partial pregelatinization starch, a dextrin, a pullulan, hydroxypropyl starch, etc. can be used.

[0037] As a lubricant, although a calcium stearate, a magnesium stearate, stearin acid, talc, a cetanol, the polyoxyl 40 stearate, a leucine, a RABURI wax, a sodium lauryl sulfate, paraffin, polyoxy-ethylene-glycol fatty acid ester, fatty acid ester, etc. can be used, these cannot be limited as a lubricant and can be used as an excipient.

[0038] About a tablet, you may carry out a coat with films, such as a lactose, SHU sugar, gelatin, hydroxypropylcellulose, hydroxypropyl methylcellulose, polyvinyl-acetal diethylamino acetate, a methacrylic-acid copolymer, or hydroxypropyl-methylcellulose phthalate.
[0039] As a diluent about liquid medicine, a purified water, a polyol, cane sugar, invert sugar, grape sugar, etc. can be used, for example. Moreover, in liquid medicine, you may add a

solubilizing agent, a wetting agent, a suspension agent, a sweetening agent, a flavor agent, an aromatic, antiseptics, etc. other than a diluent according to a request.

[0040] As a diluent of an injection agent, distilled water, a physiological saline, alcohol, a glycerol, a polyol, vegetable oil, etc. can be used, for example. Moreover, in an injection agent, you may add a buffer, an isotonizing agent, antiseptics, a wetting agent, an emulsifier, a dispersant, a stabilizing agent, a solubilizing agent, etc. by the request other than a diluent. [0041] As applying—eyewash liquid, you may add a buffer, an isotonizing agent, a stabilizing agent, a preservative, an antioxidant, a viscous agent, antiseptics, a solubilizing agent, etc. according to a request besides a diluent.

[0042] As support about a ** agent, a lipid, a low, a half-solid or liquefied polyol, natural oil, or hardened oil can be used. Moreover, in a ** agent, you may add a dispersant, a distributed adjuvant, an absorption accelerator, etc. other than support.

[0043] Although the amount of medication is suitably determined by the degree of the target patient's sex, age, weight, and a symptom etc., in the case of internal use, in the case of 1–1000mg of adult 1 sunny, and parenteral administration, a medicine is prescribed in general for the patient in 1 time or several steps within the limits of 0.1–100mg of adult 1 sunny. [0044] When using the compound expressed with the aforementioned general formula (I) of this invention as an applying-eyewash agent, it blends in 0.05 W/V% – 5W/V% of range, and prepares by the conventional method, and the number of times of medication is suitably determined by the degree of a patient's symptom etc.

[0045] Moreover, when using the compound expressed with the aforementioned general formula (I) of this invention as a medicine for external application or cosmetics, it can blend so that the content of the compound of this invention may serve as 0.05-10 weight section in general to the whole tablet, and can manufacture by preparing by the conventional method using a general external application basis or a cosmetics basis. Furthermore, the compound of this invention can also be prepared to a food grade by the conventional method, and can also be added and used for food.

[0046]

[Embodiments of the Invention] Although the following examples of reference, examples, and examples of prescription explain the contents of this invention to a detail further, this invention is not limited to the contents.

[0047]

[Example]

example of reference 12-methoxy methoxy benzaldehyde salichlaldehyde 15g — 150ml of methylene chlorides — dissolving — the bottom of ice-cooling — disopropyl ethylamine 23.5ml — subsequently in addition, chloromethyl-methyl-ether 10.3ml 20ml solution of methylene chlorides was dropped and stirred at the room temperature for 2 hours Reaction mixture was washed after the reaction end in order of 2 convention sodium-hydroxide solution, saturation brine, 10% citric-acid solution, and saturation brine, it dried with sulfuric-anhydride magnesium, and reduced pressure distilling off of the solvent was carried out. The silica gel column chromatography refined the residue and 2-methoxy methoxy benzaldehyde 20.4g was obtained.

[0048] Colorless oil NMR (CDCl3,270MHz)

delta ppm: — 3.52 (3H, s), 5.31 (2H, s), and 7.00— 7.15 (1H, m), 7.22 (1H, d, J= 7.9Hz), 7.45—7.60 (1H, m), and 7.85 (1H, dd, J= 7.4Hz, 2.0Hz) and 10.51 (1H, br d, J= 1.0Hz)

[0049] 20.2g of example of reference 25–(2–methoxy methoxypheny) hydantoin ammonium carbonates and 4.43g of sodium cyanides were dissolved in 75ml of water, the 2–methoxy methoxy benzaldehyde 10g ethanol 75ml solution was added, and it stirred for two days at 50 degrees C. Reduced pressure distilling off of the about 1/2 amount of a solvent was carried out after the reaction end, and the solid–state which deposits under ice–cooling was separated. After washing in order of water and the ether, reduced pressure drying was carried out under 5 oxidization 2 Lynn existence, and 5–(2–methoxy methoxypheny) hydantoin 7.4g was obtained.

[0050] White powder NMR (DMSO-d6, 400MHz)

delta 8.06 (1H, br s) ppm:3.36 (3H, s), 5.18 (2H, s) and 5.20 (1H, s), 6.96–7.04 (1H, m), 7.09 (1H, d, J= 8.2Hz) and 7.25 (1H, dd, J= 7.6Hz, 1.6Hz), 7.28–7.36 (1H, m), 10.68 (1H, br s) [0051] Example of reference 3 alpha-tert-butyloxy carbonylamino-2-methoxy methoxypheny acetic-acid 5-(2-methoxy methoxypheny) hydantoin 4.0g was added to 40ml of solution of 2.02g of sodium hydroxides, and heating reflux was carried out for two days. Reduced pressure distilling off of the solvent was carried out after a reaction end until it added 31.9ml of 2 convention hydrochloric acids and stopped having foamed to them under ice-cooling. After adding dioxane 30ml to this mixture, triethylamine 3.24ml and 2 carbonic-acid JI t-butyl 4.06g were added, and it stirred for one day at the room temperature. After the reaction end, chloroform and a small amount of methanol were added to reaction mixture, and it washed in order of citric-acid solution and saturation brine 10%, and dried with sulfuric-anhydride magnesium, and reduced pressure distilling off of the solvent was carried out. The silica gel column chromatography refined the residue and 3.65g of alpha-tert-butyloxy carbonylamino-2-methoxy methoxypheny acetic acids was obtained.

[0052] Colorless amorphous NMR (CDCl3,400MHz)

delta ppm:1.43 (9H, s), 3.46 (3H, s), 5.21 (1H, d, J= 6.7Hz), 5.25 (1H, d, J= 6.7Hz), 5.60 (1H, br), 5.66 (1H, br), 7.02 (1H, t, J= 7.5Hz) and 7.13 (1H, d, J= 8.3Hz), 7.24–7.36 (2H, m) [0053] 2.0g of example of reference 4 alpha-tert-butyloxy carbonylamino-2-methoxy methoxypheny methyl-acetate alpha-tert-butyloxy carbonylamino-2-methoxy methoxypheny acetic acids was dissolved in methanol 10ml, and the diazomethane-ether solution was dropped and added under ice-cooling. Reduced pressure distilling off of the solvent was carried out after the reaction end, the silica gel column chromatography refined the residue, and 1.91g of alpha-tert-butyloxy carbonylamino-2-methoxy methoxypheny methyl acetate was obtained.

[0054] White solid-state NMR (CDCI3,400MHz)

delta 3.46 (3H, s) ppm:1.43 (9H, s), 3.69 (3H, s), 5.18(1H,d,J=6.7Hz),5.22(1H,d,J=6.7Hz),5.53 (1H,br d,J=8.9Hz),5.65(1H,br d,J=7.9Hz),7.00(1H,dt,J=7.4Hz,1.0Hz),7.11(1H,d,J=8.3Hz),7.23-7.35 (2H,m)

[0055] Add 400mg of lithium chlorides, and 250mg of sodium borohydrides to the bottom of a room temperature, they were made to suspend, and it continued, and ethanol 12ml was added, and it dissolved [1.2g of example of reference 52-tert-butyloxy carbonylamino-2-(2-methoxy methoxypheny) ethanol alpha-tert-butyloxy carbonylamino-2-methoxy methoxypheny methyl acetate was dissolved in tetrahydrofuran 6ml, and], and stirred overnight. The saturated ammonium chloride solution was added, the reaction was stopped, and reduced pressure distilling off of the solvent was carried out. Water was added to this residue and chloroform extracted. Saturation brine washed the organic layer, it dried with magnesium sulfate, and reduced pressure distilling off of the solvent was carried out. The silica gel chromatography refined the residue and 2-tert-butyloxy carbonylamino-2-(2-methoxy methoxypheny) ethanol 1.2g was obtained.

[0056] White amorphous NMR (CDCl3,400MHz)

delta ppm: -- 1.42 (9H, s), 3.46 (3H, s), and 3.72-3.80 (1H, m) 3.83-3.89(2H,m),5.08-5.10 (1H,br),5.22(2H,s),5.48-5.50(1H,br),6.98(1H,dt,J=7.2,1.0Hz),7.12(1H,dd,J=8.3,1.1Hz),7.23-7.26 (2H,m)

[0057] Example 12-amino-2-(2-hydroxyphenyl) ethanol and hydrochloride 2-tert-butyloxy carbonylamino-2-(2-methoxy methoxypheny) ethanol 7.4g was dissolved in ethanol 10ml, 25ml of hydrogen chloride-2-propanol solutions was added, and day stirring was carried out at the room temperature. It refined by carrying out reduced pressure distilling off of the solvent, and recrystallizing the obtained solid-state in a chloroform-n-hexane, and 2-amino-2-(2-hydroxyphenyl) ethanol and 3.65g of hydrochlorides were obtained.

[0058] White solid-state NMR (DMSO-d6,400MHz)

delta ppm: -- 3.65 (2H, m) and 4.45 (1H, q, J= 4.5Hz) 5.50(1H,br s),6.84(1H,t,J=7.6Hz),6.92 (1H,d,J=8.3Hz),7.18(1H,t,J=7.6Hz),7.34(1H,d,J=7.6Hz),8.10-8.50(3H,br),10.00-10.25(1H,br) [0059] After adding 6ml of 2-tert-butyloxy carbonylamino-2-(2-methoxy methoxypheny) ethanol 1.27g tetrahydrofuran solutions to 6ml of tetrahydrofuran suspension of 189mg of

example of reference 6 N-tert-butyloxy carbonyl-alpha-methoxymethyl-2-methoxy methoxy benzylamine sodium hydrides (60% oiliness) under ice-cooling and stirring at a room temperature under ice-cooling for 30 minutes for 30 minutes, it ice-cools again and 2.7ml of dimethyl sulfates is added, and it agitates for 3 hours, and is a room temperature. It agitated overnight, carrying out a temperature up. The saturated ammonium chloride solution was added, the reaction was stopped, and chloroform extracted. Saturation brine washed the organic layer, it dried with sulfuric-anhydride magnesium, and reduced pressure distilling off of the solvent was carried out. The silica gel chromatography refined the residue and N-tert-butyloxy carbonyl-alpha-methoxymethyl-2-methoxy methoxy benzylamine 1.12g was obtained.

[0060] White solid-state NMR (CDCI3,400MHz)

delta 3.32 (3H, s) ppm:1.42 (9H, s), 3.49 (3H, s), 3.52-3.65(2H,m),5.20(1H,br),5.23(2H,s),5.45 (1H,br),6.98(1H,t,J=5.5Hz),7.10(1H,dd,J=8.3,4.6Hz),7.23-7.26(2H,m)

[0061] Example 2alpha-methoxymethyl-2-hydroxy benzylamine and hydrochloride N-tert-butyloxy carbonyl-alpha-methoxymethyl-2-methoxy methoxy benzylamine 1.12g was dissolved in ethanol 10ml, 3ml of hydrogen chloride-2-propanol solutions was added, and day stirring was carried out at the room temperature. It refined by carrying out reduced pressure distilling off of the solvent, and recrystallizing the obtained solid-state in a chloroform-n-hexane, and an alpha-methoxymethyl-2-hydroxy benzylamine and 0.55g of hydrochlorides were obtained.

[0062] White solid-state NMR (DMSO-d6,400MHz)

delta ppm:3.26 (3H, s), 3.39-3.64 (2H, m), 4.56(1H,dd,J=8.4,4.2Hz),6.83(1H,t,J=7.5Hz),6.90 (1H,d,J=7.3Hz),7.17(1H,dt,J=7.3,1.6Hz),7.32(1H,dd,J=7.6,1.4Hz),8.32(3H,br)

[0063] After adding dimethyl sulfoxide 2ml and triethylamine 1ml to the bottom of a room temperature and adding gradually 2g of sulfur-trioxide pyridine complexes to 20ml of example of reference 74-tert-butyloxy carbonylamino-4-(2-methoxy methoxypheny) crotonic-acid methyl 2-tert-butyloxy carbonylamino-2-(2-methoxy methoxypheny) ethanol 1.0g methylene chlorides under ice-cooling continuously at the solution and stirring for 15 minutes, to the room temperature, the temperature up was carried out and it stirred for further 1 hour. After adding 1 convention hydrochloric acid and stopping a reaction, water was added to reaction mixture and it extracted by the methylene chloride. Saturation brine washed this organic layer, it dried with magnesium sulfate, reduced pressure distilling off of the solvent was carried out, and aldehyde object mixture was obtained. 186mg (60% oiliness) of bottom sodium hydrides of ice-cooling among an argon air current was added to 25ml of tetrahydrofuran solutions which contained phosphono acetic-acid trimethyl 0.7ml independently, and after agitating for 5 minutes and preparing, 25ml of tetrahydrofuran solutions of aldehyde object mixture was dropped. It agitated then for 10 minutes, and it agitated for 30 minutes, carrying out a temperature up to a room temperature. Saturated-ammonium-chloride water was added, the reaction was stopped, water was further added to reaction mixture, and ethyl acetate extracted. These organic layers were collected, saturation brine washed, and after drying with sulfuric-anhydride magnesium, reduced pressure distilling off was carried out. The residue was isolated with the silica gel chromatography and 780mg was obtained for the 4-tert-butyloxy carbonylamino-4-(2-methoxy methoxypheny) crotonic-acid methyl.

[0064] White solid-state NMR (CDCI3,400MHz)

delta 3.46 (3H, s) ppm:1.41 (9H, s), 3.71 (3H, s), 5.20(1H,d,J=6.8Hz),5.24(1H,d,J=6.8Hz),5.37 (1H,br d,J=7.6Hz),5.65(1H,br d,J=7.6Hz),5.93(1H,dd,J=1.8,15.8Hz),6.98(1H,t,J=7.6Hz),7.06 (1H,d,J=4.8Hz),7.11(1H,d,J=8.0Hz),7.18-7.29(2H,m)

[0065] Example of reference 84-tert-butyloxy carbonylamino-4-(2-methoxy methoxypheny) methyl-butyrate 4-tert-butyloxy carbonylamino-4-(2-methoxy methoxypheny) crotonic-acid methyl 400mg was melted to methanol 20ml, hydrogenation was performed with bottom of 100mg existence 1 atmospheric pressure in the end of a 10% palladium-carbon powder, and it agitated under the room temperature overnight. After removing the end of a palladium-carbon powder by cerite filtration, reaction filtrate was condensed, and 360mg of 4-tert-butyloxy carbonylamino-4-(2-methoxy methoxypheny) methyl butyrates was obtained.

[0066] White solid-state NMR (CDCI3,400MHz) delta ppm:1.41 (9H, s), 2.04-2.18 (2H, m), 2.20-2.38(2H,m),3.49(3H,s),3.63(3H,s),4.89 (1H,q,J=7.5Hz),5.25(2H,s),5.42(1H,br d,J=6.2Hz),6.92(1H,dt,J=7.5,1.1Hz),7.12 (1H,dd,J=6.2,1.1Hz),7.15-7.24(2H,m)

[0067] Add 200mg of lithium chlorides, and 125mg of sodium borohydrides to the bottom of a room temperature, they were made to suspend, and it continued, and ethanol 12ml was added, and it dissolved [700mg of example of reference 94-tert-butyloxy carbonylamino-4-(2-methoxy methoxypheny) butanol 4-tert-butyloxy carbonylamino-4-(2-methoxy methoxypheny) methyl butyrates was dissolved in tetrahydrofuran 4ml, and], and stirred under the room temperature overnight. After adding the saturated ammonium chloride solution and stopping a reaction, reduced pressure distilling off of the solvent was carried out, water was further added to the residue, and chloroform extracted the solution. Saturation brine washed the organic layer, it dried with magnesium sulfate, and reduced pressure distilling off of the solvent was carried out. The silica gel chromatography refined the residue and 4-tert-butyloxy carbonylamino-4-(2-methoxy methoxypheny) butanol 530mg was obtained. [0068] White solid-state NMR (CDCI3,400MHz)

delta ppm:1.41 (9H, s), 1.50-1.64 (2H, m), 1.83-1.91(2H,m),3.49(3H,s),3.67(2H,t,J=6.3Hz),4.89 (1H,q,J=7.5Hz),5.25(2H,s),5.37(1H,br d,J=7.6Hz),6.92(1H,dt,J=7.6,1.1Hz),7.12 (1H,dd,J=6.2,1.1Hz),7.18-7.22(2H,m)

[0069] Example 34-amino-4-(2-hydroxyphenyl) butanol and hydrochloride 4-tert-butyloxy carbonylamino-4-(2-methoxy methoxypheny) butanol 50mg was dissolved in ethanol 3ml, 1ml of hydrogen chloride-2-propanol solutions was added further, and day stirring was carried out under the room temperature. It refined by recrystallizing in a chloroform-n-hexane the solid-state by which reduced pressure distilling off might be carried out in the solvent, and a 4-amino-4-(2-hydroxyphenyl) butanol and 85mg of hydrochlorides were obtained.

[0070] White solid-state NMR (DMSO-d6,400MHz)

delta ppm:1.21-1.59 (2H, m), 1.83-1.94 (2H, m), 3.45(2H,m),4.39-4.54(1H,m),6.85 (1H,t,J=7.5Hz),6.92(1H,d,J=7.2Hz),7.18(1H,dt,J=8.9,1.6Hz),7.33(1H,d,J=7.2Hz),8.10-8.35 (3H,br),10.07(1H,s)

[0071] Internal use of the 2-amino-2-(2-hydroxyphenyl) ethanol and the hydrochloride (100mg/(ml)) which abstained from food for 5 hours and suspended the example 4 acute-toxicity-test 6 weeks-old male ICR mouse (29.5-31.0g) in CMC 0.5% was carried out so that it might be set to 1000mg per weight of 1kg. The control group was medicated only with CMC 0.5%.

[0072] From the 4-hour back of medication, free ingestion of food and the drinking water was carried out, and it bred until after five days. Consequently, there was no individual which died even five days after medication.

[0073] The example 5 Maillard-reaction prevention activity examination lysozyme, the fructose, and the examination compound were dissolved in the 0.5M sodium phosphate buffer solution (pH 7.4) so that it might be set to 10mg [ml] /, 200mM, and 20mM, respectively, and the incubation was carried out for one week at 37 degrees C.

[0074] SDS-PAGE separates and an incubation sample is Coomassie. Brilliant Blue The yield [as opposed to / as opposed to / after dyeing / at R-250] all proteins with a densitometer / of a dimer was measured.

[0075] It asked for the prevention activity of the yield blank-test compound of the dimer under the examination compound existence over the yield of the dimer under examination compound nonexistence.

[0076]

[Table 1]

化合物	阻害活性(%)			
実施例1	96.6			
実施例 2	92.7			
実施例3	43.0			

[0077] Example of prescription 1 tablet Chief remedy . 100mg Corn starch 50mg Lactose 70mg Hydroxypropylcellulose 7mg Magnesium stearate 3mg (a total of 230mg) [0078] Example of prescription 2 fine grain Chief remedy 100mg Mannite 190mg Corn starch 100mg Hydroxypropylcellulose 10mg (a total of 400mg) [0079] Example of prescription 3 capsule Chief remedy . 100mg Lactose 18mg Crystalline cellulose 35mg Corn starch 25mg Magnesium stearate 2mg (a total of 180mg)

[Translation done.]

(19)日本国特許庁(JP)

(12) 公開特許公報 (A) (11)特許出願公開番号

特開平9-124471

(43) 公開日 平成9年(1997) 5月13日

(51) Int. Cl. °		識別記号	庁内整理都	番号	FI				技術表示箇所
A 6 1 K	31/135	AED			A 6 1 K	31/135	AED		
		ADP					ADP		
// A23L	1/30				A 2 3 L	1/30		Z	
A 6 1 K	7/00				A 6 1 K	7/00		C	
	7/48					7/48			
		審査請求	未請求	請求項の数	女1 年	書面		(全9頁)	
					(= .) . I				
(21)出願番号	特願	i平7-319	440		(71)出願			MALIC AS A LE	
				}			セイ薬品工		
(22)出願日	平成	7年(1995)10月	30日	Ì		長野!	県松本市芳!	野19番48号	r
					(72)発明:	者 佐藤	文康		
						長野!	具松本市筑	摩2-12-3	3
					(72)発明:	者 伊與語	部 亮		
						長野!	具南安曇郡	穂高町大字	□穂髙5049−6
						MEI	DIOホタ.	カ A101	
					(72)発明:	者 小泉	隆		
						長野!	具南安曼郡	豊科町大学	□豊科4061-1
						レジ	デンス千野	F-202号	
					(72)発明:	者 勝野	健次		
						長野!	具上伊那郡.	辰野町小野	F272 — I
									最終頁に続く

(54) 【発明の名称】メイラード反応阻害剤

(57)【要約】

【課題】 2-ヒドロキシフェニルアルキルアミン誘導 体又はその塩を有効成分として含有するメイラード反応 阻害剤を提供する。

【解決手段】メイラード反応阻害活性を有しており、糖 尿病性合併症や老化によって引き起こされる疾患等の予 防剤又は治療剤、化粧品、食品として有用な、

【化1】

(式中のR¹~R⁴はH、アルキル基、アルコキシ基、 水酸基、メルカプト基、ハロゲン、ニトロ基、アミノ 基、アシルアミノ基、アシル基、ヒドロキシアルキル 基、R5はH、アルキル基、Aは単結合、アルキレン基 等、Yは単結合、アルキレン基、Zは水酸基、アルコキ シ基、アリールオキシ基、アルアルキルオキシ基、置換 可アミノ基、メルカプト基、ニトロ基等)で表される2 - ヒドロキシフェニルアルキルアミン誘導体を有効成分 として含有する。

【特許請求の範囲】 【請求項1】一般式

【化1】

(式中のR╹、Rº、RºおよびR⁴は、それぞれ同じ 10 た、化粧品および食品において有用なメイラード反応阻 でも異なっていてもよく、水素原子、低級アルキル基、 低級アルコキシ基、水酸基、メルカプト基、ハロゲン原 子、ニトロ基、アミノ基、アシルアミノ基、アシル基ま たはヒドロキシ低級アルキル基であり、Rらは水素原子 または低級アルキル基であり、Aは単結合または置換基 として水酸基を有していてもよい低級アルキレン基また は低級アルケニレン基であり、Yは単結合または低級ア ルキレン基であり、Zは水酸基、低級アルコキシ基、ア リールオキシ基、アルアルキルオキシ基、アミノ基、低 級アルキルアミノ基、ジ低級アルキルアミノ基、アリー 20 ルアミノ基、ジアリールアミノ基、アルアルキルアミノ 基、ジアルアルキルアミノ基、メルカプト基、低級アル キルチオ基、アリールチオ基、アルアルキルチオ基また はニトロ基である)で表される2-ヒドロキシフェニル アルキルアミン誘導体又はその薬理学的に許容される塩 を有効成分として含有するメイラード反応阻害剤。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、2-ヒドロキシフ ェニルアルキルアミン誘導体又はその薬理学的に許容さ れる塩を有効成分として含有するメイラード反応阻害剤 に関するものである。

【0002】さらに詳しく述べれば、本発明は、一般式 [0003]

【化2】

【0004】 (式中のR¹、R²、R³およびR⁴は、 それぞれ同じでも異なっていてもよく、水素原子、低級 アルキル基、低級アルコキシ基、水酸基、メルカプト 基、ハロゲン原子、ニトロ基、アミノ基、アシルアミノ 基、アシル基またはヒドロキシ低級アルキル基であり、 R5は水素原子または低級アルキル基であり、Aは単結 合または置換基として水酸基を有していてもよい低級ア ルキレン基または低級アルケニレン基であり、Yは単結 合または低級アルキレン基であり、2は水酸基、低級ア 50 に向けて、メイラード反応を阻害する化合物を模索すべ

ルコキシ基、アリールオキシ基、アルアルキルオキシ 基、アミノ基、低級アルキルアミノ基、ジ低級アルキル アミノ基、アリールアミノ基、ジアリールアミノ基、ア ルアルキルアミノ基、ジアルアルキルアミノ基、メルカ プト基、低級アルキルチオ基、アリールチオ基、アルア ルキルチオ基またはニトロ基である)で表される2-ヒ ドロキシフェニルアルキルアミン誘導体又はその薬理学 的に許容される塩を有効成分として含有する、メイラー ド反応に関連する疾患の予防および治療剤として、ま 害剤に関するものである。

[0005]

【従来の技術】食品化学の分野では、食品中でグルコー ス等の還元糖がアミノ化合物と反応し、褐色色素が生成 することが観察されている。一方、近年、生体内におい ても同様の反応が生起していることが確認され、糖尿病 性合併症や動脈硬化症などの疾患の発症要因の一つとし て強く関与していると考えられて注目を浴びている。

【0006】上記の反応はメイラード反応と呼ばれてお り、生体内のメイラード反応は、グルコース、フルクト ースやペントースなどの還元糖、それらのリン酸エステ ルあるいはアスコルビン酸等のカルボニル化合物が生体 内蛋白質の遊離アミノ基と非酵素的に反応してシッフ塩 基が形成され、これが化学転位によりアマドリ転位生成 物に変換される前期段階と、続く酸化、脱水、重合、開 裂等の反応により、蛋白が分子間および分子内架橋形成 を伴い変性し、褐色を呈し難溶性でプロテアーゼによる 分解が困難である後期反応生成物(AGE:Advan ced Glycation End Product s)に至る後期段階からなる一連の反応により進行す

【0007】当該メイラード反応の過程で生成するAG Eおよびその前駆生成物の生成量は、糖と蛋白の濃度お よび反応時間に相関して増加する。従って、糖尿病のよ うな高血糖状態が持続したり、糖に暴露される期間が長 い加齢により、または、蛋白質の半減期が長い組織にあ る生体内の蛋白質、クリアランスが低下するような腎臓 疾患の患者等の血液や組織中の蛋白質ではメイラード反 応を受けやすいことが知られている。

【0008】これらのことより、メイラード反応を受け る生体内の蛋白質としては、例えば、眼球レンズクリス タリン、血清アルブミン、皮膚や血管壁等の結合組織の コラーゲンやエラスチン、神経ミエリン蛋白質、ヘモグ ロビン、腎臓の糸球体基底膜等の多くの蛋白質があり、 メイラード反応は、これらの蛋白の変性、異常または機 能低下により引き起こされる網膜症、腎症、心臓血管系 障害、神経障害や白内障等の糖尿病性合併症や動脈硬化 症あるいは老化に起因する疾患の発症原因の一つと考え られている。そのため、これらの疾患の予防および治療

く開発研究が試みられている。

[0009]

【発明が解決しようとする課題】本発明の目的は、従来 のメイラード反応阻害作用を有する化合物とは化学構造 的に異なる新規で安全なメイラード反応阻害剤を提供す ることである。

[0010]

【課題を解決するための手段】本発明者らは、メイラー ド反応阻害作用を有する化合物を見出すべく鋭意研究し ン誘導体が優れたメイラード反応阻害活性を有するとい う知見を得、本発明を成すに至った。

【0011】すなわち、本発明のメイラード反応阻害剤 は、一般式

[0012]

【化3】

【0013】 (式中のR¹、R²、R³およびR⁴は、 それぞれ同じでも異なっていてもよく、水素原子、低級 アルキル基、低級アルコキシ基、メルカプト基、水酸 基、ハロゲン原子、ニトロ基、アミノ基、アシルアミノ 基、アシル基またはヒドロキシ低級アルキル基であり、 R5は水素原子または低級アルキル基であり、Aは単結 合または置換基として水酸基を有していてもよい低級ア ルキレン基または低級アルケニレン基であり、Yは単結 30 合または低級アルキレシ基であり、乙は水酸基、低級ア ルコキシ基、アリールオキシ基、アルアルキルオキシ 基、アミノ基、低級アルキルアミノ基、ジ低級アルキル アミノ基、アリールアミノ基、ジアリールアミノ基、ア ルアルキルアミノ基、ジアルアルキルアミノ基、メルカ プト基、低級アルキルチオ基、アリールチオ基、アルア ルキルチオ基またはニトロ基である)で表される2-ヒ ドロキシフェニルアルキルアミン誘導体又はその薬理学 的に許容される塩を有効成分として含有するものであ る。

【0014】ここで、本発明において、低級アルキル基 とは、メチル基、エチル基、プロピル基、イソプロピル 基、ブチル基、イソブチル基、secーブチル基、te rtーブチル基、ペンチル基、イソペンチル基、ネオペ ンチル基、tert-ペンチル基、ヘキシル基等の炭素 数1~6の直鎖状または枝分かれ状のアルキル基をい い、低級アルコキシ基とは、メトキシ基、エトキシ基、 プロポキシ基、イソプロポキシ基、ブトキシ基、イソブ トキシ基、sec-ブトキシ基、tert-ブトキシ

ロキシ基、tert-ペンチロキシ基、ヘキシルオキシ 基等の炭素数1~6の直鎖状または枝分かれ状のアルコ キシ基をいう。アリール基とは、フェニル基、ナフチル 基等の芳香族炭化水素基をいい、アルアルキル基とは上 記アリール基で置換された上記低級アルキル基をいう。 また、ハロゲン原子とはフッ素原子、塩素原子、臭素原 子、ヨウ素原子をいい、アシル基とは、アセチル基、プ ロピオニル基、ブチリル基等の直鎖状または枝分かれ状 のアルキル基を有する炭素数2~7のアルキルカルボニ た結果、本発明の2-ヒドロキシフェニルアルキルアミ 10 ル基をいう。低級アルキレン基とは、メチレン基、エチ レン基、プロピレン基、トリメチレン基、テトラメチレ ン基、ペンタメチレン基、ヘキサメチレン基等の炭素数 1~6の直鎖状または枝分かれ状のアルキレン基をい い、低級アルケニレン基とは、ビニレン基、プロペニレ ン基等の炭素数2~6の直鎖状または枝分かれ状のアル ケニレン基をいう。

> 【0015】本発明の前記一般式(1)で表される2-ヒドロキシフェニルアルキルアミン誘導体は、一部公知 化合物を含み文献に記載されており、この文献記載(例 20 えば、特開平5-208954号公報、特開平7-12 6227号公報等)の方法またはこれと類似の方法、ま たは他の公知な方法を組み合わせることにより製造する ことができる。

【0016】例えば、本発明の化合物のうち、一般式 [0017]

【化4】

$$R^1$$
 R^3
 R^4
 R^4
 R^4
 R^4
 R^4

【0018】 (式中の2'は水酸基、低級アルコキシ 基、アリールオキシ基またはアルアルキルオキシ基であ り、R¹、R²、R゚およびR⁴は前記と同じ意味をも つ) で表される化合物は、一般式

[0019]

【化5】

40

【0020】(式中のRいは水酸基の保護基であり、R 7、R8、R9およびR19は、それぞれ同じでも異な っていてもよく、水素原子、低級アルキル基、低級アル コキシ基、保護された水酸基、保護されたメルカプト 基、ハロゲン原子、ニトロ基、保護されたアミノ基、ア シルアミノ基、アシル基または保護されたヒドロキシ低 級アルキル基である)で表されるベンズアルデヒド誘導 基、ペンチロキシ基、イソペンチロキシ基、ネオペンチ 50 体を、炭酸アンモニウムおよびシアン化ナトリウムと不

活性溶媒中で反応させ、一般式

[0021]

【化6】

【0022】 (式中のR^c、R^c、R^c、R^c、R^cおよびR 10 使用してもよい。 1°は前記と同じ意味をもつ)で表されるヒダントイン 誘導体を製造し、得られた化合物をアルカリ条件下に加 水分解させ、所望により、アミノ基等を常法により適当 な保護基で保護した後、メタノール等の低級アルコール を用いて常法によりエステル化し、さらに、水素化ホウ 素リチウム等の還元剤を用いて還元した後、必要に応 じ、一般式、

(IV) $R^{-1} - OH$

(式中のR''は、低級アルキル基、アリール基または アルアルキル基である)で表されるアルコール化合物を 20 用いて常法により〇ーアルキル化することにより、一般 式

[0023] 【化7】

【0024】 (式中のR ' 2は保護基を有するアミノ基 30 であり、R^G、R⁷、R⁸、R⁹、R¹⁰およびZ¹は 前記と同じ意味をもつ) で表される化合物を得た後、水 酸基およびアミノ基等の保護基を除去することにより製 造することができる。

【0025】本発明の前記一般式(1)で表される2-ヒドロキシフェニルアルキルアミン誘導体は、常法によ り、薬理学的に許容される塩とすることができる。この ような塩としては、塩酸、臭化水素酸、ヨウ化水素酸、 硫酸、硝酸、リン酸などの鉱酸との酸付加塩、ギ酸、酢 酸、メタンスルホン酸、ベンゼンスルホン酸、p-トル 40 エンスルホン酸、プロピオン酸、クエン酸、コハク酸、 酒石酸、フマル酸、酪酸、シュウ酸、マロン酸、マレイ ン酸、乳酸、リンゴ酸、炭酸、グルタミン酸、アスパラ ギン酸等の有機酸との酸付加塩、ナトリウム塩、カリウ ム塩、カルシウム塩等の無機塩基との塩を挙げることが できる。

【0026】また、本発明の前記一般式(1)で表され る化合物としては、水和物や、エタノール等の医薬品と して許容される溶媒との溶媒和物も含まれる。

ヒドロキシフェニルアルキルアミン誘導体は、1個以上 の不斉炭素原子を有するため、各不斉炭素においてR配 置およびS配置の2つの光学異性が存在するが、本発明 においてはいずれの光学異性体を使用してもよく、それ らの光学異性体の混合物であっても構わない。

【0028】また、本発明の前記一般式(I)で表され る化合物のうち、不飽和結合を有する化合物には2つの 幾何異性体が存在するが、本発明においてはシス(Z) 体の化合物またはトランス(E)体の化合物のいずれを

【0029】本発明の前記一般式(1)で表される化合 物は、リゾチームとフルクトースを用いたin vit roのメイラード反応阻害活性試験において、メイラー ド反応阻害活性を有する物質として知られているアミノ グアニジンに比して、リゾチームの二量化に対して同等 程度の阻害活性を示した。

【0030】このように、本発明の前記一般式(I)で 表される化合物およびその薬理学的に許容される塩は優 れたメイラード反応阻害活性を有するものであり、メイ ラード反応が関連する疾患の予防および治療剤として非 常に有用な化合物である。

【0031】本発明の前記一般式(I)で表される化合 物およびその薬理学的に許容される塩は、メイラード反 応阻害活性を有しており、メイラード反応が関連してい る疾患に対して有効である。このような疾患としては、 冠動脈性疾患,末梢循環障害、脳血管障害、糖尿病性神 経症, 腎症, 動脈硬化症, 関節硬化症, 白内障, 網膜 症, 凝固障害症, 糖尿病性骨減少症等の糖尿病性合併 症、アテローム性動脈硬化症、糸球体腎炎、老人性白内 障,骨関節症,関節周囲硬直症、関節硬化症、老人性骨 粗鬆症等の老化によって引き起こされると考えられてい る疾患等を挙げることができ、当該疾患の予防および治 療剤として非常に有用である。また、周知の通り、蛋白 質やアミノ酸を含有する化粧品、食品においてもメイラ ード反応が進行し、蛋白質やアミノ酸の劣化が起こるた め、化粧品や食品においても当該メイラード反応を阻害 する化合物として有用である。

【0032】本発明の前記一般式(1)で表される化合 物は、マウスを用いた急性毒性試験において、例えば、 2-アミノー2-(2-ヒドロキシフェニル) エタノー ル・塩酸塩は1000mg/kg単回投与により死亡例 は観察されなかった。このように、本発明の化合物は、 非常に安全性の高い化合物であり、メイラード反応阻害 剤として非常に有用な化合物である。

【0033】本発明の前記一般式(1)で表される2-ヒドロキシフェニルアルキルアミン誘導体およびそれら の薬理学的の許容される塩を実際の治療に用いる場合、 適当な医薬品組成物、例えば、錠剤、散剤、細粒剤、顆 粒剤、カプセル剤、液剤、注射剤、外用剤、点眼剤、坐 【0027】本発明の前記一般式(1)で表される2- 50 剤などとして経口的あるいは非経口的に投与される。こ

ムで被膜してもよい。

れらの医薬品組成物は一般の調剤において行われる製剤 学的方法により、通常用いられている製剤用の担体や賦 形剤、その他の添加剤を用いることにより調製すること ができる。

【0034】上記医薬品組成物のうち、錠剤、散剤、細 粒剤、顆粒剤、カプセル剤等においては、賦形剤、崩壊 剤、結合剤、滑沢剤等は通常使用されるものを使用する ことができ、賦形剤としては、例えば、糖もしくは糖ア ルコールであるD-マンニトール、乳糖、白糖、澱粉も しくは澱粉誘導体である小麦澱粉、米澱粉、トウモロコ 10 シ澱粉、馬鈴薯澱粉、α化澱粉、部分α化澱粉、デキス トリン、シクロデキストリン、プルラン、ヒドロキシプ ロピルスターチ等、セルロースもしくはセルロース誘導 体である結晶セルロース、結晶セルロース・カルメロー スナトリウム、メチルセルロース、ヒドロキシプロピル メチルセルロース等およびその他アルギン酸ナトリウ ム、アラビアゴム、カンテン、マクロゴール、ステアリ ン酸アルミニウム、モノステアリン酸アルミニウム、無 機系賦形剤としては、リン酸水素カルシウム、無水リン 酸水素カルシウム、メタケイ酸アルミン酸マグネシウ ム、合成ケイ酸アルミニウム、合成ヒドロタルサイト、 水酸化アルミニウム、水酸化マグネシウム、リン酸カル シウム、乾燥水酸化アムミニウムゲル、沈降炭酸カルシ ウム、軽質無水ケイ酸等を使用することができるが、こ れらは賦形剤として限定するものではなく崩壊剤または 結合剤として用いることもできる。

【0035】崩壊剤としては、カルメロースカルシウ ム、カルメロース、低置換度ヒドロキシプロピルセルロ ース、カルボキシメチルスターチナトリウム、クロスカ ルメロースナトリウム、トラガント、澱粉もしくは澱粉 30 れる。 ょ 誘導体である小麦澱粉、米澱粉、トウモロコシ澱粉、馬 鈴薯澱粉、α化澱粉、部分α化澱粉、デキストリン、プ ルラン、ヒドロキシプロピルスターチ等を使用すること ができるが、これらは崩壊剤として限定するものではな く賦形剤として用いることもできる。

【0036】結合剤としては、ヒドロキシエチルセルロ ース、ヒドロキシプロピルセルロース、ポリビニルアル コール、ポビドン、澱粉もしくは澱粉誘導体である小麦 澱粉、米澱粉、トウモロコシ澱粉、馬鈴薯澱粉、α化澱 粉、部分α化澱粉、デキストリン、プルラン、ヒドロキ 40 製造することができる。さらに、本発明の化合物は常法 シプロピルスターチ等を使用することができる。

【0037】滑沢剤としては、ステアリン酸カルシウ ム、ステアリン酸マグネシウム、ステアリン酸、タル ク、セタノール、ステアリン酸ポリオキシル40、ロイ シン、ラブリワックス、ラウリル硫酸ナトリウム、パラ フィン、ポリオキシエチレングリコール脂肪酸エステル および脂肪酸エステル等を使用することができるが、こ れらは滑沢剤として限定するものではなく賦形剤として 用いることができる。

【0038】錠剤については、乳糖、シュ糖、ゼラチ

ン、ヒドロキシプロピルセルロース、ヒドロキシプロピ ルメチルセルロース、ポリビニルアセタールジエチルア ミノアセテート、メタアクリル酸コポリマーまたはヒド ロキシプロピルメチルセルロースフタレート等のフィル

【0039】液剤についての希釈剤としては、例えば、 精製水、ポリオール、ショ糖、転化糖、ブドウ糖等を用 いることができる。また、液剤においては、希釈剤の他 に、所望に応じ、溶解補助剤、湿潤剤、懸濁剤、甘味 剤、風味剤、芳香剤、防腐剤等を添加してもよい。

【0040】注射剤の希釈剤としては、例えば、蒸留 水、生理食塩水、アルコール、グリセロール、ポリオー ル、植物油等を用いることができる。また、注射剤にお いては、希釈剤の他に、所望により、緩衝剤、等張化 剤、防腐剤、湿潤剤、乳化剤、分散剤、安定化剤、溶解 補助剤等を添加してもよい。

【0041】点眼液としては、希釈剤の他、所望に応 じ、緩衝剤、等張化剤、安定化剤、保存剤、酸化防止 剤、粘稠剤、防腐剤、溶解補助剤等を添加してもよい。 【0042】坐剤についての担体としては、脂質、ロ ウ、半固形または液状のポリオール、天然油または硬化 油等を用いることができる。また、坐剤においては、担 体の他に、分散剤、分散補助剤、吸収促進剤等を添加し てもよい。

【0043】その投与量は対象となる患者の性別、年 齢、体重、症状の度合いなどによって適宜決定される が、経口投与の場合、概ね成人1日当たり1~1000 mg、非経口投与の場合、概ね成人1日当たり0.1~ 100mgの範囲内で、一回または数回に分けて投与さ

【0044】本発明の前記一般式(1)で表される化合 物を点眼剤として使用する場合、0.05W/V%~5 W/V%の範囲で配合して常法により調製し、その投与 回数は患者の症状の度合い等により適宜決定される。

【0045】また、本発明の前記一般式(1)で表され る化合物を外用剤または化粧品として使用する場合、製 剤全体に対して本発明の化合物の含有量が概ね0.05 ~10重量部となるように配合し、一般的な外用基剤ま たは化粧品基剤を用いて常法により調製することにより により食品用に調製することもでき、食品に添加して使 用することもできる。

[0046]

【発明の実施の形態】本発明の内容を以下の参考例、実 施例および処方例でさらに詳細に説明するが、本発明は その内容に限定されるものではない。

[0047]

【実施例】

参考例1

- -----

50 2-メトキシメトキシベンズアルデヒド

サリチルアルデヒド15gを塩化メチレン150mlに 溶解し、氷冷下でジイソプロピルエチルアミン23.5 ml、次いでクロロメチルメチルエーテル10.3ml の塩化メチレン20m 1溶液を滴下して加え室温で2時 間攪拌した。反応終了後、反応混合物を2規定水酸化ナ トリウム溶液、飽和食塩水、10%クエン酸水溶液、飽 和食塩水の順に洗浄し、無水硫酸マグネシウムで乾燥し 溶媒を減圧留去した。残渣をシリカゲルカラムクロマト グラフィーにて精製し、2-メトキシメトキシベンズア ルデヒド20.4gを得た。

【0048】無色オイル

NMR (CDC1:, 270MHz)

δ ppm: 3.52 (3H, s), 5.31 (2H, s), 7.00-7.15(1H, m), 7.22(1H, d, J = 7.9 Hz), 7. 45-7.60 (1) H, m), 7. 85 (1H, dd, J=7.4Hz, 2. OHz), 10. 51 (1H, br d, J=1. 0 H z)

【0049】参考例2

5-(2-メトキシメトキシフェニル) ヒダントイン 炭酸アンモニウム20.2gとシアン化ナトリウム4. 43gを水75mlに溶解し、2-メトキシメトキシベ ンズアルデヒド10gのエタノール75ml溶液を加 え、50℃で2日間攪拌した。反応終了後、溶媒の約1 /2量を減圧留去し、氷冷下で析出する固体を濾取し た。水、エーテルの順に洗浄した後、五酸化二リン存在 下で減圧乾燥し、5-(2-メトキシメトキシフェニ ル) ヒダントイン7: 4gを得た。

【0050】白色粉末

NMR $(DMSO-d_G, 400MHz)$ δ ppm: 3. 36 (3H, s), 5. 18 (2H, s), 5. 20 (1H, s), 6. 96-7. 04 (1 H, m), 7. 09 (1H, d, J=8.2Hz), 7. 25 (1H, dd, J = 7. 6Hz, 1. 6H z), 7. 28-7. 36 (1H, m), 8. 06 (1 H, br s), 10.68 (1H, br s)

【0051】参考例3

α-tert-ブチルオキシカルボニルアミノー2-メ トキシメトキシフェニル酢酸

5-(2-メトキシメトキシフェニル)ヒダントイン 4. 0gを水酸化ナトリウム2. 02gの水溶液40m 1に加え、2日間加熱還流した。反応終了後、氷冷下で 2規定塩酸31.9m1を加え、発泡しなくなるまで溶 媒を減圧留去した。この混合物にジオキサン30mlを 加えた後、トリエチルアミン3.24mlと二炭酸ジt ープチル4.06gを加え室温で1日間攪拌した。反応 終了後、反応混合物にクロロホルムと少量のメタノール を加え10%クエン酸水溶液、飽和食塩水の順に洗浄 し、無水硫酸マグネシウムで乾燥し溶媒を減圧留去し た。残渣をシリカゲルカラムクロマトグラフィーにて精 50 3.89(2H,m),5.08-5.10(1H,b

10

製し、α-tert-ブチルオキシカルボニルアミノー 2-メトキシメトキシフェニル酢酸3.65gを得た。 【0052】無色アモルファス

NMR (CDCl₃, 400MHz)

 δ ppm: 1. 43 (9H, s), 3. 46 (3H, s), 5. 21 (1H, d, J = 6.7 Hz), 5. 2 5 (1H, d, J = 6. 7Hz), 5. 60 (1H, b) r), 5. 66 (1H, br), 7. 02 (1H, t, J = 7.5 Hz), 7.13 (1H, d, J = 8.3 H10 z), 7. 24-7. 36 (2H, m)

【0053】参考例4

α-tert-ブチルオキシカルボニルアミノ-2-メ トキシメトキシフェニル酢酸メチル

α-tert-ブチルオキシカルボニルアミノ-2-メ トキシメトキシフェニル酢酸2.0gをメタノール10 mlに溶解し、氷冷下でジアゾメタンーエーテル溶液を 滴下して加えた。反応終了後、溶媒を減圧留去し、残渣 をシリカゲルカラムクロマトグラフィーにて精製し、α -tert-ブチルオキシカルボニルアミノ-2-メト 20 キシメトキシフェニル酢酸メチル1.91gを得た。

【0054】白色固体

NMR (CDC 13, 400MHz)

 δ ppm: 1. 43 (9H, s), 3. 46 (3H, s), 3. 69 (3H, s), 5. 18 (1H, d. J =6.7 Hz), 5. 22 (1H, d, J=6.7 Hz), 5.53 (1H, br d, J = 8.9Hz), 5. 65 (1H, br d, J = 7.9 Hz), 7. 0 0 (1 H, dt, J=7.4 Hz, 1.0 Hz), 7.11 (1H, d, J=.8.3Hz), 7.23-7.3 30 5 (2 H, m)

【0055】参考例5

2-tert-プチルオキシカルボニルアミノ-2-(2-メトキシメトキシフェニル) エタノール α-tert-プチルオキシカルボニルアミノ-2-メ トキシメトキシフェニル酢酸メチル1.2gをテトラヒ ドロフラン6m1に溶解し、塩化リチウム400mg、 水素化ホウ素ナトリウム250mgを室温下に加えて懸 濁させ、続いてエタノール12mlを加えて溶解し一晩 攪拌した。飽和塩化アンモニウム水溶液を加え反応を停 40 止し、溶媒を減圧留去した。この残渣に水を加えクロロ ホルムで抽出した。有機層を飽和食塩水で洗浄し、硫酸 マグネシウムで乾燥し溶媒を減圧留去した。残渣をシリ カゲルクロマトグラフィーにて精製し、2-tert-ブチルオキシカルボニルアミノー2-(2-メトキシメ トキシフェニル) エタノール1.2 gを得た。

【0056】白色アモルファス

NMR (CDCl₃, 400MHz)

ppm: 1. 42 (9H, s), 3. 46 (3H, s), 3.72-3.80(1H, m), 3.83r), 5. 22 (2H, s), 5. 48-5. 50 (1 H, br), 6. 98 (1H, dt, J = 7. 2, 1. 0 Hz), 7. 12 (1H, dd, J = 8.3, 1. 1 Hz), 7. 23-7. 26 (2H, m)

【0057】実施例1

2-アミノ-2-(2-ヒドロキシフェニル) エタノー ル・塩酸塩

2-tert-ブチルオキシカルボニルアミノ-2-(2-メトキシメトキシフェニル) エタノール7. 4g をエタノール10mlに溶解し、塩化水素-2-プロパ 10 ノール溶液25mlを加え室温で一日攪拌した。溶媒を 減圧留去し、得られた固体をクロロホルム-n-ヘキサ ンで再結晶することにより精製し、2-アミノー2-(2-ヒドロキシフェニル) エタノール・塩酸塩3.6 5 g を得た。

【0058】白色固体

 $NMR (DMSO-d_{e}, 400MHz)$

 δ ppm: 3. 65 (2H, m), 4. 45 (1H, q, J=4.5Hz), 5.50 (1H, br s), 6. 84 (1 H, t, J = 7. 6 H z), 6. 92 (1 20 4 - tert- \vec{J} + $\vec{J$ H, d, J = 8.3 Hz), 7.18 (1H, t, J =7. 6 H z), 7. 34 (1H, d, J = 7. 6 Hz), 8. 10-8. 50 (3H, br), 10. 00 -10.25(1H, br)

【0059】参考例6

N-tert-ブチルオキシカルボニル-α-メトキシ メチルー2-メトキシメトキシベンジルアミン 水素化ナトリウム (60%油性) 189mgのテトラヒ ドロフラン懸濁液6mlに、氷冷下2-tertープチ ルオキシカルボニルアミノー2- (2-メトキシメトキ 30 塩水で洗浄し、硫酸マグネシウムで乾燥し溶媒を減圧留 シフェニル) エタノール1. 27gのテトラヒドロフラ ン溶液 6 m l を加え、氷冷下で30分、室温で30分機 拌した後、再度氷冷しジメチル硫酸 2. 7 m l を加え 3 時間撹拌し、室温まで昇温させながら一晩撹拌した。飽 和塩化アンモニウム水溶液を加え反応を停止させクロロ ホルムで抽出した。有機層を飽和食塩水で洗浄し、無水 硫酸マグネシウムで乾燥し溶媒を減圧留去した。残渣を シリカゲルクロマトグラフィーにて精製し、N-ter t-ブチルオキシカルボニル-α-メトキシメチル-2 -メトキシメトキシベンジルアミン1. 12gを得た。 【0060】白色固体

NMR (CDCla, 400MHz)

 δ ppm: 1. 42 (9H, s), 3. 32 (3H, s), 3. 49 (3H, s), 3. 52-3. 65 (2 H, m), 5. 20 (1H, br), 5. 23 (2H, s), 5. 45 (1H, br), 6. 98 (1H, t, J = 5.5 Hz), 7.10 (1H, dd, J = 8. 3, 4. 6 Hz), 7. 23-7. 26 (2H, m) 【0061】実施例2

塩酸塩

(7)

N-tert-ブチルオキシカルボニル-α-メトキシ メチルー2-メトキシメトキシベンジルアミン1.12 gをエタノール10mlに溶解し、塩化水素-2-プロ パノール溶液3mlを加え室温で一日攪拌した。溶媒を 減圧留去し、得られた固体をクロロホルム-n-ヘキサ ンで再結晶することにより精製し、αーメトキシメチル -2-ヒドロキシベンジルアミン・塩酸塩0.55gを 得た。

12

【0062】白色固体

NMR (DMSO- d_{ii} , 400MHz)

 δ ppm: 3. 26 (3H, s), 3. 39-3. 6 4 (2H, m), 4.56 (1H, dd, J=8.4,4. 2Hz), 6. 83 (1H, t, J=7. 5H z), 6. 90 (1H, d, J = 7.3 Hz), 7. 1 7 (1H, dt, J = 7.3, 1.6Hz), 7.32 (1 H, dd, J=7.6, 1.4 Hz), 8.32(3H, br)

【0063】参考例7

(2-メトキシメトキシフェニル) クロトン酸メチル 2-tert-ブチルオキシカルボニルアミノ-2-(2-メトキシメトキシフェニル) エタノール1. Og の塩化メチレン20mlに溶液に、ジメチルスルホキシ ド2mlとトリエチルアミン1mlを室温下に加え、続 いて氷冷下にて三酸化硫黄ピリジン錯体2gを徐々に加 えて15分攪拌した後、室温まで昇温し更に1時間攪拌 した。1規定塩酸を加え反応を停止させた後、反応液に 水を加え塩化メチレンで抽出した。この有機層を飽和食 去してアルデヒド体混合物を得た。別にホスホノ酢酸ト リメチル 0. 7mlを含んだテトラヒドロフラン溶液 2 5mlにアルゴン気流中氷冷下水素化ナトリウム (60 %油性) 186mgを加え5分撹拌し調製した後、アル デヒド体混合物のテトラヒドロフラン溶液25mlを滴 下した。そのまま10分撹拌し、室温まで昇温しながら 30分撹拌した。飽和塩化アンモニウム水を加え反応を 停止させ、更に反応液に水を加え酢酸エチルで抽出し た。この有機層を集めて飽和食塩水で洗浄し、無水硫酸 40 マグネシウムで乾燥した後減圧留去した。残渣をシリカ ゲルクロマトグラフィーにより単離し、4-tert-ブチルオキシカルボニルアミノー4- (2-メトキシメ トキシフェニル) クロトン酸メチルを780mgを得 た。

【0064】白色固体

NMR (CDCla, 400MHz)

δ ppm: 1. 41 (9H, s), 3. 46 (3H, s), 3. 71 (3H, s), 5. 20 (1H, d, J =6.8 Hz), 5. 24 (1H, d, J=6.8 H α ーメトキシメチルー2-ヒドロキシベンジルアミン・50 z), 5.37(1H, br d, J=7.6Hz),

5. 65 (1H, br d, J=7.6Hz), 5. 9 3 (1H, dd, J=1.8, 15.8Hz), 6.98 (1 H, t, J = 7.6 Hz), 7.06 (1 H,d, J = 4. 8 H z), 7. 11 (1 H, d, J = 8. 0 H z), 7. 18-7. 29 (2H, m)

【0065】参考例8

4-tert-ブチルオキシカルボニルアミノ-4-(2-メトキシメトキシフェニル) 酪酸メチル 4-tertープチルオキシカルボニルアミノー4-00mgをメタノール20mlに溶かし、10%パラジ ウムー炭素粉末100mg存在下1気圧で水素添加を行 い室温下で一晩撹拌した。セライト濾過によりパラジウ ムー炭素粉末を除いた後反応濾液を濃縮し、4-ter t-ブチルオキシカルボニルアミノ-4-(2-メトキ シメトキシフェニル) 酪酸メチル360mgを得た。 【0066】白色固体

NMR (CDCla, 400MHz)

 δ ppm: 1. 41 (9H, s), 2. 04-2. 1 8 (2H, m), 2.20-2.38 (2H, m), 3. 49 (3H, s), 3. 63 (3H, s), 4. 8 9 (1 H, q, J=7.5 Hz), 5. 25 (2 H,s), 5. 42 (1H, br d, J = 6.2 Hz), 6. 92 (1H, dt, J = 7.5, 1. 1Hz), 7. 12 (1H, dd, J=6.2, 1. 1Hz), 7. 15-7. 24 (2H, m)

【0067】参考例9

4-tert-ブチルオキシカルボニルアミノ-4-(2-メトキシメトキシフェニル) ブタノール 4-tertーブチルオキシカルボニルアミノー4-(2-メトキシメトキシフェニル) 酪酸メチル700m gをテトラヒドロフラン4mlに溶解し、塩化リチウム 200mg、水素化ホウ素ナトリウム125mgを室温 下に加えて懸濁させ、続いてエタノール12mlを加え て溶解し室温下で一晩攪拌した。飽和塩化アンモニウム 水溶液を加え反応を停止させた後、溶媒を減圧留去し、 更に残査に水を加えその溶液をクロロホルムで抽出し た。有機層を飽和食塩水で洗浄し、硫酸マグネシウムで 乾燥し溶媒を減圧留去した。残渣をシリカゲルクロマト グラフィーにて精製し、4 – tert-ブチルオキシカ 40 3 7℃で 1 週間インキュベーションした。 ルボニルアミノー4ー(2ーメトキシメトキシフェニ ル)ブタノール530mgを得た。

【0068】白色固体

NMR (CDCl a, 400MHz)

 δ ppm: 1. 41 (9H, s), 1. 50-1. 6 4 (2H, m), 1.83-1.91 (2H, m), 3. 49 (3H, s), 3. 67 (2H, t, J=6. 3Hz), 4. 89 (1H, q, J=7. 5Hz), 5. 25 (2H, s), 5. 37 (1H, br d, J = 7.6 Hz), 6.92 (1H, dt, J= 7.6, 50 【表1】

1. 1 H z), 7. 12 (1 H, dd, J = 6. 2, 1. 1 H z), 7. 18 - 7. 22 (2H, m)

14

. 【0069】実施例3

4-アミノ-4-(2-ヒドロキシフェニル)ブタノー ル・塩酸塩

4-tert-ブチルオキシカルボニルアミノ-4-(2-メトキシメトキシフェニル) ブタノール50mg をエタノール3mlに溶解し、更に塩化水素-2-プロ パノール溶液1mlを加え室温下で一日攪拌した。溶媒 (2-メトキシメトキシフェニル) クロトン酸メチル 4 10 を減圧留去し得られた固体をクロロホルムー n - ヘキサ ンで再結晶することにより精製し、4-アミノー4-(2-ヒドロキシフェニル) ブタノール・塩酸塩85m gを得た。

【0070】白色固体

NMR (DMSO-d α , 400MHz) δ ppm: 1. 21-1. 59 (2H, m), 1. 8 3-1. 94 (2H, m), 3. 45 (2H, m), 4. 39-4. 54 (1H, m), 6. 85 (1H, t, J = 7.5 Hz), 6. 92 (1H, d, J = 7.20 2 H z), 7. 18 (1H, dt, J = 8. 9, 1. 6 Hz), 7. 33 (1H, d, J=7. 2Hz), 8. 10-8. 35 (3H, br). 10. 07 (1H.

【0071】実施例4

急性靠性試験

6週令雄性 I C R マウス (29.5~31.0g) を5 時間絶食し、0.5%CMCで懸濁した2-アミノ-2 - (2-ヒドロキシフェニル) エタノール・塩酸塩(1 OOmg/ml)を体重lkgあたり1000mgとな 30 るよう経口投与した。対照群には0.5%CMCのみを

【0072】投与4時間後より餌、飲水を自由摂取さ せ、5日後まで飼育した。その結果、投与5日後までに 死亡した個体はなかった。

【0073】実施例5

メイラード反応阻害活性試験

リゾチーム、フルクトース並びに試験化合物をそれぞれ 10mg/ml、200mM、20mMになるよう0. 5Mリン酸ナトリウム緩衝液(pH7.4)に溶解し、

【0074】インキュベーションサンプルはSDS-P AGEによって分離し、Coomassie Bril liant Blue R-250で染色後、デンシト メーターにて全蛋白に対する二量体の生成率を測定し た。

【0075】試験化合物非存在下の二量体の生成率に対 する試験化合物存在下の二量体の生成率から試験化合物 の阻害活性を求めた。

[0076]

16

15

化合物	阻害活性(%)
実施例 1	96.6
実施例 2	92. 7
実施例 3	43.0

【0077】処方例1

錠剤

 主薬
 100mg

 トウモロコシデンプン
 50mg

 乳糖
 70mg

 ヒドロキシプロピルセルロース
 7mg

 ステアリン酸マグネシウム
 3mg

 (合計230mg)

【0078】処方例2

細粒

主薬	100 m g
マンニット・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	190 m g
トウモロコシデンプン	1 0 0 m g
ヒドロキシプロピルセルロース	10 m g
	(合計400mg)

【0079】処方例3

カプセル

主薬	100mg
乳糖	18 mg
結晶セルロース	35 mg
トウモロコシデンプン	25 mg
ステアリン酸マグネシウム	2 m g
	(合計180mg)

フロントページの続き

(72) 発明者 小林 美穂

長野県南安曇郡豊科町南穂高2583