To find the following Machine Learning Regression using r2 value

Sample dataset: "50_Startups.csv"

1. Multiple Linear Regression: {r2 value = 0.8766}

2. SVM – Support Vector Machine Regression:

S.NO	HYPER PARAMETER	LINEAR (r value)	RBF (NON- LINEAR) (r value)	POLY (r value)	SIGMOID (r value)
1	C=10	-0.0396	-0.0568	-0.05366	-0.0547
2	C=100	0.10646	-0.05072	-0.01980	-0.0304
3	C=500	0.59289	-0.02432	0.1146	0.0705
4	C=1000	0.78028	0.00676	0.2661	0.1850
5	C=2000	0.87677	0.06751	0.48100	0.3970
<mark>6</mark>	C=3000	<mark>0.89567</mark>	0.12322	0.63700	0.5913

SVM Regression - R² value ("linear" & hyper parameter C=3000) = 0.89567

3. Decision Tree Regressor:

Criterion List = {"squared_error", "friedman_mse", "absolute_error", "poisson"}

Mse = Mean squared error

Mae = Mean absolute error

S.NO	CRITERION	MAX	SPLITTER	R VALUE
	LIST	FEATURES		
1	squared_error	None	best	0.9205
2	squared_error	None	random	0.74905
3	squared_error	sqrt	best	0.19420
4	squared_error	sqrt	random	0.7042
5	squared_error	log2	best	0.31072
6	squared_error	log2	random	0.5671
7	Mae	None	best	0.96987
8	Mae	None	random	0.5584
9	Mae	sqrt	best	0.4185
10	Mae	sqrt	random	-0.3008
11	Mae	log2	best	0.34099

12	Mae	log2	random	-0.8970
13	friedman_mse	None	best	0.9093
14	friedman_mse	None	random	0.8607
15	friedman_mse	sqrt	best	0.15668
16	friedman_mse	sqrt	random	0.8029
17	friedman_mse	log2	best	-1.0025
18	friedman_mse	log2	random	0.42074
<mark>19</mark>	<mark>poisson</mark>	<mark>None</mark>	<mark>best</mark>	<mark>0.9289</mark>
20	poisson	None	random	0.91345
21	poisson	sqrt	best	0.39281
22	poisson	sqrt	random	0.39206
23	poisson	log2	best	0.8921
24	poisson	log2	random	0.4512

Decision Tree Regressor - R² value (Criterion list = "poisson", Max feature = "None", Splitter=best) = 0.9289