

Prévision de durées d'hospitalisation aux Hospices Civils de Lyon (HCL)

Grégoire MASSOT

21/01/2016

Déroulement du projet

- Entreprise : Hospices civils de Lyon
- Tuteur entreprise : Antoine DUCLOS Médecin à Lyon
- Tuteur école : Thierry GARAIX

Déroulement du projet

4 venues à Lyon : 20 Octobre, 6 Novembre, 11 Décembre, 15 Janvier.

Contexte du projet

Les HCL doivent optimiser la gestion de leurs ressources pour accueillir le plus de patients avec les ressources disponibles.

Contexte du projet

Prévoir la durée d'hospitalisation des patients permet de maximiser l'occupation des lits

Contexte du projet

Les HCL souhaitent utiliser leur base de données sur les patients précédents pour prédire les durées d'hospitalisation des nouveaux patients.

Position du problème

Objectif du PI : déterminer la durée d'hospitalisation d'un patient à partir des données recueillies lors de son arrivée à l'hôpital et des statistiques sur les patients précédents.

Position du problème

Schéma de la Base de données anonymisée des HCL

Duree du séjour	Âge du patient	Diagnostic principal	Service hospitalier	
duree1	age1	dp1	service1	
duree2	age2	dp2	service2	
duree3	age3	dp3	service3	

Reprise du code R du challenge "Éolienne" de la majeure Data Science

There is a better way

Démarche

Inscription au challenge Walmart sur kaggle.com

Code R - Chargement et sélection des données

```
1 # Chargement de la BDD
| donnees_hcl <- read.csv2(file = "base_ano.txt", header =
      TRUE, sep = " \setminus t")
3 # Sélection des séjours de durée supérieure ou égale á 1
       jour
| donnees_hcl <- donnees_hcl [donnees_hcl$duree >= 1,]
5 #Selection des prédicteurs effectivement disponibles
     lors de l'entrée du patient
donnees_hcl <- donnees_hcl [,-seq(8,57)]
7 donnees_hcl <- subset(donnees_hcl, select = -c(moissor))
s| donnees_hcl <- subset(donnees_hcl, select = -c(sortie))</pre>
9| donnees_hcl <- subset(donnees_hcl, select = -c(ID))</pre>
10
11 # Transformation du facteur "age" en variable continue
| donnees_hcl age <- as.character(donnees_hcl age)
donnees_hcl age <- as.numeric(donnees_hcl age)
```


Code R - Split de la BDD

```
1 # Création des jeux de Train et de Test
2 TrainData <- donnees_hcl[donnees_hcl$Selected == 1,]</pre>
TestData <- donnees_hcl[donnees_hcl$Selected == 0,]</pre>
5 | predicteurs_Train <- subset(TrainData, select = -c(duree
     ))
6 duree_Train <- subset(TrainData, select = c(duree))
s| predicteurs_Test <- subset(TestData, select = -c(duree))</pre>
g duree_Test <- subset(TestData, select = c(duree))</pre>
```


Code R - Métrique de performance RMSE

```
# Déclaration de la fonction RMSE

RMSE <- function(y, pred)
{
    sqrt(mean((y - pred)^2))
}</pre>
```

$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - y_i^{pred})^2}$$


```
# Tuning des paramètres de xgboost avec caret
 library(caret)
3 library (foreach)
4 library (doParallel)
5 cl <- makeCluster(8)
_{7} tuneGrid <- expand.grid(max_depth = c(1,2,3,4,5,6,7,8,9)
                            nrounds = 100,
8
                            eta = c
                                10
  fitControl <- trainControl (method = "repeatedcv",
                               number = 3.
12
                               repeats = 1)
13
14
  xvalXGB <- train(TrainData$duree ~ .,</pre>
                    data = TrainData,
16
                    method = "xgbTree",
17
                    tuneGrid = tuneGrid,
18
                    trControl = fitControl)
19
20 xvalXGB
   21/01/2016
             Grégoire MASSOT
                                    Soutenance projet industriel
```

Code R - Construction du modèle

```
# Construction du modèle
2 library (xgboost)
param <- list("objective" = "reg:linear",</pre>
                  "eta"=0.5.
4
                  max.depth=5,
                  "nthread" = 8)
s | modelXgboost <- xgboost(data = as.matrix(predicteurs_</pre>
      Train)
                              . label = as.matrix(duree Train)
10
                              , params=param
                              \frac{1}{1} nrounds = 100)
11
predictionXGBoost <- predict(modelXgboost,</pre>
                                   as.matrix(predicteurs_Test)
13
14
15 RMSE (duree_Test, predictionXGBoost)
```


Code R - Visualisation des résultats

```
# feature importance

names <- dimnames(predicteurs_Train)[[2]]

importance_matrix <- xgb.importance(names, model = modelXgboost)

xgb.plot.importance(importance_matrix)

xgb.plot.tree(feature_names = names, model = modelXgboost, n_first_tree = 2)</pre>
```


Analyse des résultats

Méthode		
Régression linéaire (étude précédente menée par les HCL)		
Machine learning - sans la variable ID		
Machine learning - avec la variable ID	5.73	

Analyse des résultats

Analyse de l'importance des prédicteurs - Sans ID

Analyse des résultats

Analyse de l'importance des prédicteurs - Avec ID

Fin

