Characterizing Heat Transfer From Impinging Jet Flow

March 11, 2025

Group TR9

Taihar Tsengel, Alexander Tam, Vincent Kwok, and Matthew Lokhonia

Impinging Jet Flow Paramount in Industry

Industrial Applications:1

- Temperature control and core cooling in nuclear power plants and foundries
- Temperature regulation in electronic devices

Objectives:

- Determine how the heat-transfer coefficient, h, scales with jet velocity, v
- Compare experimental heat transfer coefficient with theoretical values

⁽¹⁾ Mills A.F., Basic Heat and Mass Transfer; Prentice Hall Inc.: Upper Saddle River, NJ, 1999.

⁽²⁾ Wendling, L., & Marathe, S.. Impinging jet benchmark for E-motor cooling applications. 2010. https://www.fifty2.eu/innovation/impinging-jet-benchmark-for-e-motor-cooling-applications/(accessed March 6, 2025).

Experimental Methods Uses Brass Rod Apparatus

(3)
$$h = \frac{-k_{\text{brass}} \left(\frac{dT}{dz}\right)}{(T_{\text{surface}} - T_{\text{air}})}$$

<u>Independent Variable</u>

Jet Velocity

Constants

- Heater Temperature
- Air Temperature
- Fluid & Material Properties

Dependent Variables

Thermistor Temperatures

<u>Calculate</u>

- Temperature Gradient (linear)
- Surface Temperature

Experimental Convective Heat Transfer Coefficient

Determining Surface Temperature and Gradient

Jet Velocity (m/s)	dT/dz (C/m)	Surface Temperature (C)
2.38 ± 0.07	-140 ± 20	107.2 ± 1.9
1.78 ± 0.07	-130 ± 20	110 ± 2
1.19 ± 0.07	-110 ± 30	112 ± 2
0.59 ± 0.07	-90 ± 30	115 ± 2

Extrapolate to surface, x = 0.085 m

Convective Heat-transfer Coefficient scales with v^{0.41}

(3)
$$h = \frac{-k_{\text{brass}} \left(\frac{dT}{dz}\right)}{(T_{\text{surface}} - T_{\text{air}})}$$

Jet Velocity (m/s)	h (W/m²K)
2.38 ± 0.07	210 ± 30
1.78 ± 0.07	180 ± 30
1.19 ± 0.07	150 ± 40
0.59 ± 0.07	120 ± 40

From Experimental Data: $h = 142v^{0.41\pm0.04}$

Theoretical Heat Transfer Coefficient Model Predicts v^{0.5}

(4)
$$\frac{Nu}{Re^{1/2}Pr^{1/3}} = a_1 \left(\frac{z}{d}\right)^{-0.11} \left(1 - \frac{\left(\frac{r}{d}\right)^2 \left(\frac{z}{d}\right)^{-0.2}}{b_1}\right)^{1.2}$$

$$Nu_{(r/D=0)} = a_1 Re^{1/2} Pr^{1/3} \left(\frac{z}{d}\right)^{-0.11}$$

z/d	0.5	0.75	1.0	2.0	3.0	4.0	6.0	8.0
a ₁	5.3	5.1	4.6	3.6	3.2	3.2	2.9	2.3

$$Nu = \frac{hD_{\text{nozzle}}}{k_{air}}$$
 $Pr_{\text{air}} = \frac{\nu}{\alpha} = \frac{c_p \mu}{k} = 0.707$

Independent Variable

Jet Velocity

Constants

- Air Fluid Properties
- z/d
- r/d
- a₁

Dependent Variables

• Nu

<u>Calculate</u>

h

Theoretical Convective Heat Transfer Coefficient

Theoretical Model Underestimates Experimental h

Jet Velocity (m/s)	Predicted h (W/m²K)
2.38 ± 0.07	68.3 ± 0.3
1.78 ± 0.07	59.1 ± 0.4
1.19 ± 0.07	48.3 ± 0.5
0.59 ± 0.07	34.1 ± 0.7

From Experimental Data: $h = 142v^{0.41\pm0.04}$

From Theoretical Predictions: $h = 44.3v^{0.5}$

Thermal boundary layer thickness decreases with v, resulting in increased heat transfer

Radial Heat Transfer Coefficient larger than h

Volumetric Flow Rate (scfm)	U (W/m²/K)	h (W/m²/K)
4	713.31	207.82
3	701.98	180.22
2	689.11	146.10
1	649.49	117.41

$$q_{
m heater} = q_{
m radial} + q_{
m axial} \ q_{
m heater} = rac{P}{A_{
m heater}} \quad q_{
m axial} = rac{T_{
m surface} - T_{
m \infty}}{rac{L}{k} + rac{1}{h}} \ U = rac{q_{
m heater} - q_{
m axial}}{T_{
m surface} - T_{
m air}}$$

Possible reasons:

- Insulation does not fully cover the rod.
- 2. Alternate conductive paths that bypass insulation.
- 3. Systematic errors when measuring temperatures.
- 1. Poor Nylon insulation efficiency at high temperatures.

Axial Heat Flux Becomes More Prominent As Flow Rate Increases

Volumetric Flow Rate (scfm)	Radial Heat Flux (%)	Axial Heat Flux (%)
4	83.22	16.78
3	84.99	15.01
2	86.74	13.26
1	87.79	12.21

Thermal boundary layer thickness decreases with v, resulting in increased heat transfer

Volumetric Flow Rate (scfm)	$q_{axial} + q_{radial}$ (W/m^2)	q _{heater} (W/m ²)	Difference (%)
4	89839.78	91953.92	2.32
3	91062.09	92724.85	1.80
2	87802.59	88950.29	1.29
1	80265.02	81041.26	0.96

The unaccounted energy loss could be due to radiation or conduction losses from structural supports.

Conclusions

- 1. Convective heat transfer coefficient h increases as jet velocity v increases with a scaling of $h = 142v^{0.41\pm0.04}$.
- 2. The experimental scaling, $h \propto v^{0.41}$, is slightly lower than the theoretical correlation, $h \propto v^{0.5}$.
- 3. Radial heat transfer coefficient U is much higher than h, suggesting poor insulation performance. $q_{radial} > q_{axial}$.

Appendix A: Error Analysis

Derived from:
$$\delta y = \sqrt{\sum_{i=1}^{N} (\frac{\partial f}{\partial x_i})^2 (\delta x_i)^2}$$

$$\Delta (T_{surface} - T_{air}) = \sqrt{(\Delta T_{surface})^2 + (\Delta T_{air})^2}$$

$$\Delta h = h \sqrt{\left(\frac{\Delta (dT/dz)}{(dT/dz)}\right)^2 + \left(\frac{\Delta (T_{surface} - T_{air})}{(T_{surface} - T_{air})}\right)^2}$$

Appendix B: Theoretical Model Concepts

Fig. 6. Distribution of local Nusselt number at Re = 28,000 for z/d = 0.5, 1.0, 4.0 and 8.0.

Table 1 Values of constants a_1 and b_1 for different z/d used in Eq. (9)

z/d	0.5	0.75	1.0	2.0	3.0	4.0	6.0	8.0
a_1	1.15	1.2	1.2	1.32	1.4	1.42	1.6	1.63
b_1	5.3			3.6				

Appendix C: Definition of Constants

Variable	Value	Description	
k _{brass}	120 W/(m*K)	Thermal Conductivity of Brass	
k _{air}	0.025 W/(m*K)	Thermal Conductivity of Air	
d	0.0318 m	Diameter of Jet Nozzle	
а	2.062 * 10 ⁻⁵ kg/m ³	Thermal Diffusivity of Air	
μ	1.66 * 10 ⁻⁵ Pa*s	Kinematic Viscosity of Air	
ρ	1.205 kg/m³	Density of Air	
L	0.081 m	Effective Length Along the Brass Rod	
Z	0.01 m	Distance Between Jet Nozzle and Brass Rod	