Grafos Algoritmo de Kruskal Algoritmo de Dijkstra

Estructuras de Datos

Andrea Rueda

Pontificia Universidad Javeriana Departamento de Ingeniería de Sistemas

- Kruskal, J. B. (1956). "On the shortest spanning subtree and the traveling salesman problem".
 Proceedings of the AMS (7): 48-50.
- Algoritmo voraz, busca un árbol de recubrimiento mínimo a partir de un bosque expandido mínimo.
- Agrega una arista de costo mínimo que conecta dos árboles del bosque (dos componentes distintos).
- Complejidad: O(|E| log |E|)

- Pasos:
 - 1. Crear un bosque B (cada vértice un árbol)
 - 2. Crear un conjunto C con todas las aristas
 - 3. Mientras C no es vacío:
 - 3.1 eliminar una arista de costo mínimo de C
 - 3.2 si la arista conecta dos árboles diferentes, se añade a T y se combinan los árboles
 - 3.3 si no, se ignora
 - 4. T contiene el árbol de recubrimiento mínimo

Cormen, T., Leiserson, C., Rivest, R., & Stein, C. (2009). Introduction to Algorithms (Third Ed.).

Initial Configuration

step 1. choose (1,3)

step2. choose (4,6)

step3. choose (2,5)

step4. choose (3,6)

step5. choose (2,3)

Applet de demostración:

https://www.cs.usfca.edu/~galles/visualization/ Kruskal.html

- Dijkstra, E. W. (1959). "A note on two problems in connexion with graphs". Numerische Mathematik 1: 269–271.
- ¿Cómo convertir un grafo en un árbol?
 - Árbol de recubrimiento de "costos mínimos" (minimal spanning tree).
- Encontrar TODOS los caminos menos costosos entre un vértice y cualquier otro.

- Respuesta al problema de encontrar la ruta más corta a partir de un nodo en el grafo.
- Trabaja sobre un grafo con pesos G = (E,V).
- Desde un vértice s ∈ V hacia todos los vértices v ∈ V.

- Mantiene un conjunto S de vértices cuyos pesos de la ruta más corta desde el vértice origen han sido ya determinados.
- El algoritmo iterativamente selecciona un vértice u ∈ V-S con el mínimo estimado de ruta más corta, lo añade a S, y relaja todas las aristas salientes de u.
- Relajar una arista (u,v) implica verificar si se puede mejorar el estimado de costo de la ruta más corta a v a través de u.

Pseudocode

```
dist[s] \leftarrow o
                                             (distance to source vertex is zero)
for all v \in V - \{s\}
     do dist[v] \leftarrow \infty
                                             (set all other distances to infinity)
                                             (S, the set of visited vertices is initially empty)
S←Ø
O←V
                                             (Q, the queue initially contains all vertices)
while Q ≠∅
                                             (while the queue is not empty)
do u \leftarrow mindistance(Q,dist)
                                             (select the element of Q with the min. distance)
    S \leftarrow S \cup \{u\}
                                             (add u to list of visited vertices)
    for all v \in neighbors[u]
         do if dist[v] > dist[u] + w(u, v)
                                                       (if new shortest path found)
                then d[v] \leftarrow d[u] + w(u, v)
                                                       (set new value of shortest path)
                                                        (if desired, add traceback code)
```

return dist

$$(s,t) \rightarrow \infty > 0 + 10$$
 \checkmark
 $(s,y) \rightarrow \infty > 0 + 5$ \checkmark

$$(s,y) \rightarrow \infty > 0 + 5$$

$$(y,t) \to 10 > 5 + 3$$

$$(y,t) \to 10 > 5 + 3$$
 \checkmark $(y,x) \to \infty > 5 + 9 $\checkmark$$

$$(y,z) \rightarrow \infty > 5 + 2 \checkmark$$

X

Ζ

Q

$$(z,s) \to 0 > 7 + 7 x$$

 $(z,x) \to 14 > 7 + 6 \checkmark$

$$(z,x) \to 14 > 7 + 6$$

	S	t	X	У	Z
dist	0	8	13	5	7
pred	S	у	Z	S	у
- [
S	S	У	Z		
			T	I	

X

Q

$$(t,x) \to 13 > 8 + 1 \checkmark$$

$$(t,x) \to 13 > 8 + 1$$
 \checkmark
 $(t,y) \to 5 > 8 + 2$ x

	S	τ	X	У	Z
dist	0	8	9	5	7
pred	S	У	t	S	У
S	S	У	Z	t	
Q	X				

	S	t	X	У	Z
dist	0	8	9	5	7
pred	S	у	t	S	у
S	S	V	Z	t	X

$$(x,z) \rightarrow 7 > 9 + 4 x$$

	3	·	Χ	У	
dist	0	8	9	5	7
pred	S	у	t	S	У
S	S	у	Z	t	X
Q					

http://www.cosc.canterbury.ac.nz/tad.takaoka/alg/graphalg/graphalg.html

DIJKSTRA'S ALGORITHM

DIJKSTRA'S ALGORITHM

http://www.iekucukcay.com/?p=65

Applet de demostración:

https://www.cs.usfca.edu/~galles/visualization/ Dijkstra.html

Implementación:

- Uso de nodos auxiliares:
 - Vértice.
 - Padre.
 - Costo (SÓLO POSITIVOS).
- Cola de prioridades:
 - La prioridad más alta la da el costo más bajo.
 - Árboles RN, AVL, montículos (heap).
- Árbol "hacia el padre" → arreglo de predecesores.

Ejercicio

 Sobre el siguiente grafo, aplique los algoritmos de Kruskal y Dijkstra desde el nodo 0:

Ejercicio

• Algoritmo de Kruskal:

Ejercicio

• Algoritmo de Dijkstra desde el nodo 0:

Referencias

- Joyanes, L., Zahonero, I. Algoritmos y estructuras de datos. Una perspectiva en C. McGraw-Hill.
- Kolman, B., Busby, R.C., Ross, S. Estructuras de matemáticas discretas para la computación.
 Prentice-Hall, Pearson Educación.
- Cormen, T., Leiserson, C., Rivest, R., & Stein, C. (2009). Introduction to Algorithms (Third Ed.).
- www.math.cornell.edu/~mec/Winter2009/ RalucaRemus/Lecture2/lecture2.html

Referencias

- en.wikipedia.org/wiki/Dijkstra's_algorithm
- www-m3.ma.tum.de/foswiki/pub/MN0506/ WebHome/dijkstra.pdf
- math.mit.edu/~rothvoss/18.304.3PM/
 Presentations/1-Melissa.pdf
- https://en.wikipedia.org/wiki/Kruskal's_algorithm