

Department of Foundation Year

= UK True

Prove that $n \in \mathbb{N}$, $1 + (-1)^n (2n - 1)$ is a multiple of 4.

if nodd and
$$(-1)^n = 1$$
 $N = 2k+1$
 $1 + (-1)^N (2n+1) = 1 - (2(2k+1)-1)$
 $= 1 - (4k+2-1)$
 $= 1-4k-1$
 $= 1-4k-1$
 $= -4k$ True

for $n \in \mathbb{N}$.

Prove that if $x \in \mathbb{Q}$ and $y \notin \mathbb{Q}$ then $x + y \notin \mathbb{Q}$

Prove that if
$$x \in \mathbb{Q}$$
 and $y \notin \mathbb{Q}$ then $x + y \notin \mathbb{Q}$
 $y \notin \mathbb{Q}$
 $y \notin \mathbb{Q}$
 $y \in \mathbb{Q}$

$$y = \frac{k}{m} - \frac{q}{b}$$

Prove that
$$n \in \mathbb{N}$$
, $4 \dagger (n^2 + 2)$.

Prove that if 7x + 9 is even then x is odd for all $x \in \mathbb{Z}$. if we want to solve p= q true we just solve q=1p is true 9: 4 is even p: 714+9 is odd U= OK-CO 7149 = 14K+9

Suppose
$$x, y \in \mathbb{Z}$$
 if $5 + xy$, prove that $5 + x$ and $5 + y$

Assume $G \mid P$
 $P = G \mid P$

Suppose
$$a, b \in \mathbb{Z}$$
 and $n \in \mathbb{N}$, if $12a \not\equiv 12b \pmod{n}$ prove that $n + 12$.

Assume $n \mid 12$

$$12 = nk \quad (k \in \mathbb{N})$$

$$12(a.b) = nk(a.b)$$

$$12a - 12b = kn(a.b)$$

$$12a - 12b = 12a = 12b$$

$$kn(a.b) = \begin{bmatrix} 12a = 12b \end{bmatrix}$$

$$from \quad |2 = nk \quad we get \quad |2a = 12b$$

mod n 120 = 125 120 - 125 = Kn 12(a-b) = Kn

if
$$n \in \mathbb{N}$$
, prove that $1 + 3 + 5 + \dots + (2n - 1) = n^2$.

P(n) = $1 + 5 + 5 + \dots + (2n - 1) = n^2$

P(n) = $(2n - 1) = n^2$

If $n = 1 : 1 = 1$
 $n : 2 : 1 + 3 = 2$
 $n : 3 : 1 + 3 + 5 = 3$
 $n : 4 : 1 + 3 + 5 + 7 : 4$

Pssume $n = K$:

 $1 + 3 + 5 + \dots + (2K - 1) = K$

1. Induction prox P(K) = 2K-L

We will solve
$$P(K+1) = 2(1K+1) - 1$$

If $n = k+1$ where $p(K+1) = 2(1K+1) - 1$

If $n = k+1$ where $p(K+1) = 2(1K+1) - 1$

If $p(K) = 1 + 2 + 5 + 7 + \cdots + (2K-1)$

P(K+1) = $1 + 3 + 5 + 7 + \cdots + (2K-1) + (2K+1)$

P(K+1) = $1 + 3 + 5 + 7 + \cdots + (2K-1) + (2K+1)$

P(K+1) = $1 + 3 + 5 + 7 + \cdots + (2M-1) + (2K+1)$

P(K+1) = $1 + 3 + 5 + 7 + \cdots + (2M-1) + (2K+1)$

P(K+1) = $1 + 3 + 5 + 7 + \cdots + (2M-1) + (2K+1)$

P(K+1) = $1 + 3 + 5 + 7 + \cdots + (2M-1) + (2K+1)$

P(K+1) = $1 + 3 + 5 + \cdots + (2M-1) + (2M-1) + (2M-1)$

