Pandas Data Frames

DSE5002, HD Sheets, July 2024

Pandas is a python implementation of the R or SQL style data frame or data table

Indexing is a bit different, and there are some other "wrinkles" to id

There are a lot of member functions (aka methods) in Pandas to do a lot of basic data processing

Pandas data frames have variables along columns, which can be of different types

More resources

https://pandas.pydata.org/

```
In [6]: import pandas as pd
```

we will load a data frame descriping public wifi access sites in Boston

the file is called wicked_free_wifi_boston.csv

There is a read_csv function in pandas, that will attempt to assign variable types to columns

You will need to insert the full file path into the variable infile below, or make sure that the file is in the current working directory

below is the command from the os library to show the current working directory

we can use os.chdir() to change the current working directory

```
In [8]: import os
    os.getcwd()

Out[8]: 'C:\\Users\\Luke\\Documents\\Class5002\\Module_2\\Pair Programming'

In [9]: infile="Wicked_Free_WiFi_Locations.csv"
    wifi=pd.read_csv(infile)

In [10]: # head function, called as a methd belonging to the dataframe (a python object) ca
    # wifi is said to be an instance of a python dataframe
    wifi.head(7)
```

Out[10]:		Х	Υ	neighborhood_id	neighborhood_name	device_serial
	0	NaN	NaN	L_601230550253963849	Mobile WiFi Kit 1	Q3AK-SUL7- 7FC4
	1	NaN	NaN	L_601230550253963849	Mobile WiFi Kit 1	Q2ZY-RF99- YN45
	2	-7.912255e+06	5.206228e+06	L_601230550253964116	Nubian-Bus-Stop	Q3AE-QFTK- E55W
	3	NaN	NaN	L_601230550253964116	Nubian-Bus-Stop	Q3AK-DU9C- 2UXZ
	4	NaN	NaN	L_601230550253964116	Nubian-Bus-Stop	Q3AK-FGAN- 3AR9
	5	-7.913037e+06	5.209642e+06	N_568579452955527921	Parks	Q2EK- 4PWN-GALS
	6	-7.913800e+06	5.210828e+06	N_579275502070532581	Roxbury	Q2CK-SSY2- PBYW
	4					•
In [11]:	#			ad doesn't show us the , looking at the attri		
Out[11]:	ne de de de de et is or or ir la Ob	eighborhood_id eighborhood_nam evice_serial evice_connected evice_lat evice_lat evice_long evice_tags el_updatedtimes e_current eg1 eg2 eside_outside endmark ejectId eype: object	obje Ito obje obje float float obje	64 ct ct ct ct 64 64 ct ct ct ct ct		

What is the data type "object" in Pandas

An object is a string storage form

```
In [13]: # Generating a Summary
    # describes only numeric values
wifi.describe()
```

Out[13]:		Х	Υ	device_lat	device_long	is_current	ObjectId
	count	2.830000e+02	2.830000e+02	283.000000	283.000000	297.0	297.000000
	mean	-7.912135e+06	5.210210e+06	42.327796	-71.075917	1.0	149.000000
	std	3.034883e+03	4.447129e+03	0.029537	0.027263	0.0	85.880731
	min	-7.922403e+06	5.198613e+06	42.250739	-71.168161	1.0	1.000000
	25%	-7.913761e+06	5.207725e+06	42.311295	-71.090520	1.0	75.000000
	50%	-7.912078e+06	5.210305e+06	42.328431	-71.075407	1.0	149.000000
	75%	-7.910171e+06	5.214371e+06	42.355431	-71.058271	1.0	223.000000
	max	-7.904348e+06	5.218989e+06	42.386080	-71.005970	1.0	297.000000

Subsetting and slicing in pandas

Pandas series

If we extract a column it is in the form of a pandas data series, which still has a lot of pandas style member functions

```
print(n_name.shape)
        (297, 17)
        (297,)
In [20]:
         #indexing several columns
         wifi[["X","Y"]].head()
Out[20]:
                       X
                                     Υ
         0
                     NaN
                                   NaN
                     NaN
                                   NaN
             -7.912255e+06
                           5.206228e+06
          3
                     NaN
                                   NaN
          4
                     NaN
                                   NaN
```

Question/Action

use head to show the first 5 rows of the neighborhood id and name

In [22]: wifi.head

```
<bound method NDFrame.head of</pre>
                                                                       neighborhood i
                                                Χ
d
   neighborhood_name \
0
              NaN
                                  L 601230550253963849
                                                         Mobile WiFi Kit 1
                             NaN
                                  L 601230550253963849
1
              NaN
                             NaN
                                                         Mobile WiFi Kit 1
    -7.912255e+06
2
                    5.206228e+06
                                  L_601230550253964116
                                                           Nubian-Bus-Stop
                                  L 601230550253964116
3
                                                           Nubian-Bus-Stop
              NaN
                             NaN
4
              NaN
                             NaN
                                  L 601230550253964116
                                                           Nubian-Bus-Stop
292 -7.910789e+06
                   5.214371e+06
                                  N_601230550253961607
                                                                Maintenance
                                  N_601230550253961809
293 -7.912997e+06
                   5.210562e+06
                                                                    Bolling
294 -7.912997e+06
                   5.210562e+06
                                  N_601230550253961809
                                                                    Bolling
295 -7.912997e+06
                   5.210562e+06
                                  N_601230550253961809
                                                                    Bolling
296 -7.912997e+06
                   5.210562e+06
                                  N 601230550253961809
                                                                    Bolling
      device_serial
                        device_connectedto
0
     Q3AK-SUL7-7FC4
                                    MR76-1
     Q2ZY-RF99-YN45
                                    MG41-1
1
2
     Q3AE-QFTK-E55W
                            ROX-Nubian-AP1
3
     Q3AK-DU9C-2UXZ
                            ROX-Nubian AP6
4
     Q3AK-FGAN-3AR9
                            ROX-Nubian_AP7
292 Q2CK-N8A5-VD4F
                      PARKS-COMMONWEST-AP3
293
     Q2FD-MTWE-FN62
                      BOL-WELCOMELOBBY-AP1
294
     Q2FD-6RML-C4S6
                          BOL-SCHLOBBY-AP1
295
                          BOL-PUBLOBBY-AP1
     Q2FD-3YYZ-LW7E
                             BOL-FOYER-AP1
     Q2FD-3Q7F-9C4J
                           device_address
                                            device_lat device_long
0
                                      NaN
                                                   NaN
                                                                 NaN
1
                                       NaN
                                                   NaN
                                                                 NaN
2
                                                          -71.077000
     247 Washington St, Boston, MA 02121
                                             42.301350
3
                                       NaN
                                                   NaN
                                                                 NaN
4
                                       NaN
                                                   NaN
                                                                 NaN
                                                   . . .
. .
292
        139 Tremont St, Boston, MA 02111
                                             42.355431
                                                          -71.063828
293
      2300 Washington St., Roxbury 02119
                                             42.330141
                                                         -71.083664
294
      2300 Washington St., Roxbury 02119
                                             42.330141
                                                          -71.083664
      2300 Washington St., Roxbury 02119
295
                                             42.330141
                                                          -71.083664
296
      2300 Washington St., Roxbury 02119
                                             42.330141
                                                          -71.083664
                                                etl updatedtimestamp
                                device_tags
0
                                          []
                                              2024/08/20 04:31:34+00
1
                                          []
                                              2024/08/20 04:31:34+00
2
                         ['recently-added']
                                              2024/08/20 04:31:38+00
3
                                          2024/08/20 04:31:38+00
4
                                          []
                                              2024/08/20 04:31:38+00
. .
292
                         ['recently-added']
                                              2024/08/20 04:31:46+00
     ['Bolling', 'CoB-Employee', 'Inside']
293
                                              2024/08/20 04:31:46+00
     ['Bolling', 'CoB-Employee', 'Inside']
294
                                              2024/08/20 04:31:46+00
                      ['Bolling', 'Inside']
295
                                              2024/08/20 04:31:46+00
296
     ['Bolling', 'CoB-Employee', 'Inside']
                                              2024/08/20 04:31:46+00
     is current org1 org2 inside outside
                                                        landmark ObjectId
0
                 NaN
                      NaN
                                      NaN
                                                              NaN
                                                                          1
              1
                                                                          2
1
                 NaN
                                      NaN
                      NaN
                                                              NaN
```

```
2
             1 NaN NaN
                                    NaN
                                                          NaN
                                                                      3
3
                                    NaN
                                                                      4
                NaN
                     NaN
                                                          NaN
                                                                      5
4
             1 NaN NaN
                                    NaN
                                                          NaN
                                    . . .
                                                                    . . .
292
             1 NaN
                    NaN
                                    NaN
                                                          NaN
                                                                    293
293
             1 NaN NaN
                                 Inside Bolling CoB Employee
                                                                    294
294
             1 NaN NaN
                                 Inside Bolling CoB Employee
                                                                    295
295
                                 Inside
             1 NaN
                     NaN
                                                      Bolling
                                                                    296
296
                                 Inside Bolling CoB Employee
             1 NaN NaN
                                                                    297
```

[297 rows x 17 columns]>

```
In [23]: #Basic calculations

print(wifi.device_lat.max())
print(wifi.device_lat.min())
print(wifi.device_lat.mean())
```

- 42.38608
- 42.2507393
- 42.32779576223686

In [24]: # filtering rows using conditional dependence
 #let's find all devices with latitude above 42.3271405
 above_wifi=wifi[wifi.device_lat>=42.3271405]
 above_wifi.head()

Out[24]:		Х	Υ	neighborhood_id	neighborhood_name	device_serial
	6	-7.913800e+06	5.210828e+06	N_579275502070532581	Roxbury	Q2CK-SSY2- PBYW
	7	-7.913800e+06	5.210828e+06	N_579275502070532581	Roxbury	Q2CK-SU8N- 5VU8
	15	-7.912357e+06	5.210581e+06	N_579275502070532581	Roxbury	Q2CK-HDFV- VYBC
	18	-7.912846e+06	5.210317e+06	N_579275502070532581	Roxbury	Q2CK-SF4S- 8JL2
	20	-7.912858e+06	5.210361e+06	N_579275502070532581	Roxbury	Q2CK-MR56- 4QY6
	4					•

In [25]: #slicing by values in a set, notice that pandas has a isin() member function for th
 wifi[wifi.neighborhood_name.isin(["Parks","Charlestown"])]

Out[25]:		х	Υ	neighborhood_id	neighborhood_name	device_seri
	5	-7.913037e+06	5.209642e+06	N_568579452955527921	Parks	Q2Ek 4PWN-GAL
	28	-7.910979e+06	5.214437e+06	N_568579452955527921	Parks	Q3AK-CVAI CUZ
	44	-7.916707e+06	5.202882e+06	N_568579452955527921	Parks	Q2AK-U4T1 J95
	188	-7.910482e+06	5.218089e+06	N_568579452955538062	Charlestown	Q2CK-V3L5 5V6
	202	-7.910805e+06	5.214387e+06	N_568579452955527921	Parks	Q3AK-DGSZ GM7
	203	-7.911261e+06	5.214274e+06	N_568579452955527921	Parks	Q3AK-EK6L T4F\
	205	-7.910482e+06	5.218089e+06	N_568579452955538062	Charlestown	Q2Ck CWU\ RBG\
	214	-7.911012e+06	5.214442e+06	N_568579452955527921	Parks	Q3AK-DRLE LEZ
	223	-7.910482e+06	5.218089e+06	N_568579452955538062	Charlestown	Q2CK-SNTE WJW
	226	-7.911133e+06	5.214283e+06	N_568579452955527921	Parks	Q3AK-CR6k YPB
	227	-7.916761e+06	5.208413e+06	N_568579452955527921	Parks	Q2CK-7ANL RF7
	228	-7.910954e+06	5.213995e+06	N_568579452955527921	Parks	Q3AK-CR92 A99
	229	-7.916761e+06	5.208413e+06	N_568579452955527921	Parks	Q2CD-6YGI H7P\

	X	Υ	neighborhood_id	neighborhood_name	device_seria
230	-7.910787e+06	5.214274e+06	N_568579452955527921	Parks	Q3Ak DGWD-NEF
231	-7.910746e+06	5.214357e+06	N_568579452955527921	Parks	Q3Ał CVAW H5UI
240	-7.916761e+06	5.208413e+06	N_568579452955527921	Parks	Q2CK-7CSF NUQ
241	-7.911216e+06	5.214476e+06	N_568579452955527921	Parks	Q3Aŀ CRWB-RX\
242	-7.910801e+06	5.214373e+06	N_568579452955527921	Parks	Q3Ał CQWK-ZYF

Out[26]:		х	Υ	neighborhood_id	neighborhood_name	device_seria
	53	-7 910171e+06	5 215103e+06	N 601230550253961310	Downtown Boston -	Q3AE-4FL <i>F</i>

uctice_5ciii	neighberneed_name	g	•		
Q3AE-4FL/ SJ(Downtown Boston - City Hall - Quincy Market	N_601230550253961310	5.215103e+06	-7.910171e+06	53
Q3AE-HJRC D68	Downtown Boston - City Hall - Quincy Market	N_601230550253961310	5.215103e+06	-7.910171e+06	54
Q3AE-ARNE HFA	Downtown Boston - City Hall - Quincy Market	N_601230550253961310	5.215107e+06	-7.909698e+06	55
Q3AI PMFQ-JUX	Downtown Boston - City Hall - Quincy Market	N_601230550253961310	5.215082e+06	-7.909702e+06	56
Q3AE-3S8E CZF	Downtown Boston - City Hall - Quincy Market	N_601230550253961310	5.215103e+06	-7.910171e+06	57
Q3AK-C98I JUR	Downtown Boston - City Hall - Quincy Market	N_601230550253961310	5.215065e+06	-7.909943e+06	58
Q3AE-TBT! D72	Downtown Boston - City Hall - Quincy Market	N_601230550253961310	5.215103e+06	-7.910171e+06	59
Q3Ak D5DU-9HS	Downtown Boston - City Hall - Quincy Market	N_601230550253961310	5.215065e+06	-7.909943e+06	61
Q3AE-ZUF: Y73	Downtown Boston - City Hall - Quincy Market	N_601230550253961310	5.215103e+06	-7.910171e+06	62
Q3AE-F6R\ VVH	Downtown Boston - City Hall - Quincy Market	N_601230550253961310	5.215063e+06	-7.909890e+06	69
Q3AE-ZXW{ H9Z\	Downtown Boston - City Hall - Quincy Market	N_601230550253961310	5.215103e+06	-7.910171e+06	70
Q3AE-3A2\ JNV	Downtown Boston - City Hall - Quincy Market	N_601230550253961310	5.215103e+06	-7.910171e+06	71
Q3AE-JBPI DSN	Downtown Boston - City Hall Plaza and Pavilion	N_601230550253966673	5.215103e+06	-7.910171e+06	152
Q3AE-ZDPZ 2LN	Downtown Boston - City Hall Plaza and Pavilion	N_601230550253966673	5.215103e+06	-7.910171e+06	153

	х	Υ	neighborhood_id	neighborhood_name	device_seri
154	-7.910171e+06	5.215103e+06	N_601230550253966673	Downtown Boston - City Hall Plaza and Pavilion	Q3AE-QYJ! RXI
155	-7.910171e+06	5.215103e+06	N_601230550253966673	Downtown Boston - City Hall Plaza and Pavilion	Q3AI 2N4N BWU
156	-7.910171e+06	5.215103e+06	N_601230550253966673	Downtown Boston - City Hall Plaza and Pavilion	Q3AE-TF7L TX4
157	-7.910171e+06	5.215103e+06	N_601230550253966673	Downtown Boston - City Hall Plaza and Pavilion	Q3AE-95XZ 766
158	-7.910171e+06	5.215103e+06	N_601230550253966673	Downtown Boston - City Hall Plaza and Pavilion	Q3AE-M6T/ MFV
159	-7.910171e+06	5.215103e+06	N_601230550253966673	Downtown Boston - City Hall Plaza and Pavilion	Q3AE-R6BC D5K
160	-7.910171e+06	5.215103e+06	N_601230550253966673	Downtown Boston - City Hall Plaza and Pavilion	Q3AE-M9YS PAT
161	-7.910171e+06	5.215103e+06	N_601230550253966673	Downtown Boston - City Hall Plaza and Pavilion	Q3AE-E751 LLQ
162	-7.910171e+06	5.215103e+06	N_601230550253966673	Downtown Boston - City Hall Plaza and Pavilion	Q3AE-BFV! YGN
163	-7.910171e+06	5.215103e+06	N_601230550253966673	Downtown Boston - City Hall Plaza and Pavilion	Q3AE-8YN1 BM6
164	-7.910171e+06	5.215103e+06	N_601230550253966673	Downtown Boston - City Hall Plaza and Pavilion	Q3AI CANN-4NE
167	-7.910171e+06	5.215103e+06	N_601230550253966673	Downtown Boston - City Hall Plaza and Pavilion	Q3AE-2F27 DVJ
168	-7.910171e+06	5.215103e+06	N_601230550253966673	Downtown Boston - City Hall Plaza and Pavilion	Q3AE-EETC KYU

	Х	Υ	neighborhood_id	neighborhood_name	device_seria
169	-7.910171e+06	5.215103e+06	N_601230550253966673	Downtown Boston - City Hall Plaza and Pavilion	Q3AE-A94: FES
170	-7.910171e+06	5.215103e+06	N_601230550253966673	Downtown Boston - City Hall Plaza and Pavilion	Q3AI WU87-WVG
171	-7.910171e+06	5.215103e+06	N_601230550253966673	Downtown Boston - City Hall Plaza and Pavilion	Q3AE-JXU ² QPC
172	-7.910171e+06	5.215103e+06	N_601230550253966673	Downtown Boston - City Hall Plaza and Pavilion	Q3AE-A79: TEM
188	-7.910482e+06	5.218089e+06	N_568579452955538062	Charlestown	Q2CK-V3L\$ 5V6
205	-7.910482e+06	5.218089e+06	N_568579452955538062	Charlestown	Q2Ck CWU\ RBG\
223	-7.910482e+06	5.218089e+06	N_568579452955538062	Charlestown	Q2CK-SNTE WJW
256	-7.910171e+06	5.215103e+06	N_601230550253961310	Downtown Boston - City Hall - Quincy Market	Q3AE-GDTF 3C3\
257	-7.910171e+06	5.215103e+06	N_601230550253961310	Downtown Boston - City Hall - Quincy Market	Q3AI MULH-9V9
258	-7.910171e+06	5.215103e+06	N_601230550253961310	Downtown Boston - City Hall - Quincy Market	Q3AE-JLUI 293
275	-7.910171e+06	5.215103e+06	N_601230550253966673	Downtown Boston - City Hall Plaza and Pavilion	Q3AI QMTD-57L
278	-7.910171e+06	5.215103e+06	N_601230550253966673	Downtown Boston - City Hall Plaza and Pavilion	Q3AE-Q4LC 6Hk
289	-7.909896e+06	5.215085e+06	N_601230550253961310	Downtown Boston - City Hall - Quincy Market	Q3AE-Q7Y0 V97

```
In [27]: # notna returns true or false depending on whether there are Nan values in the local
         # the list of True/False values produced by notna can be used to slice
         wifi[wifi.X.notna()].head()
Out[27]:
                       Χ
                                     Υ
                                             neighborhood_id neighborhood_name device_serial
                                                                                  Q3AE-QFTK-
         2 -7.912255e+06 5.206228e+06 L 601230550253964116
                                                                 Nubian-Bus-Stop
                                                                                       E55W
                                                                                       O2EK-
         5 -7.913037e+06 5.209642e+06 N_568579452955527921
                                                                           Parks
                                                                                  4PWN-GALS
                                                                                  Q2CK-SSY2-
         6 -7.913800e+06 5.210828e+06 N_579275502070532581
                                                                         Roxbury
                                                                                       PBYW
                                                                                 Q2CK-SU8N-
         7 -7.913800e+06 5.210828e+06 N_579275502070532581
                                                                         Roxbury
                                                                                       5VU8
                                                                                 Q2CK-H5VS-
         8 -7.913466e+06 5.208391e+06 N_579275502070532581
                                                                        Roxbury
                                                                                        5UKS
In [28]: # Row and column specification
         # use paired conctions on [row,column]
         # we now have to use the method .loc[] to do this
         wifi.loc[wifi.X.notna(),"X"].head()
Out[28]: 2
            -7.912255e+06
            -7.913037e+06
             -7.913800e+06
          7 -7.913800e+06
            -7.913466e+06
         Name: X, dtype: float64
In [29]: # you have to have a boolean return type in the row indexing function or a set of i
         # we can send a list of column names to get several of them
         wifi.loc[wifi.neighborhood_name.str.contains("Charlestown"),['device_lat','device_l
```

Out[29]:		device_lat	device_long
	188	42.380109	-71.06107
	205	42.380109	-71.06107
	223	42.380109	-71.06107

In [30]: # Indexing using integer values is done using the iloc[] function
so remember- used .loc for boolean and named columns, .iloc for Integer locatio
wifi.iloc[0:8,0:6]

t[30]:		Х	Υ	neighborhood_id	neighborhood_name	device_serial
	0	NaN	NaN	L_601230550253963849	Mobile WiFi Kit 1	Q3AK-SUL7- 7FC4
	1	NaN	NaN	L_601230550253963849	Mobile WiFi Kit 1	Q2ZY-RF99- YN45
	2	-7.912255e+06	5.206228e+06	L_601230550253964116	Nubian-Bus-Stop	Q3AE-QFTK- E55W
	3	NaN	NaN	L_601230550253964116	Nubian-Bus-Stop	Q3AK-DU9C- 2UXZ
	4	NaN	NaN	L_601230550253964116	Nubian-Bus-Stop	Q3AK-FGAN- 3AR9
	5	-7.913037e+06	5.209642e+06	N_568579452955527921	Parks	Q2EK- 4PWN-GALS
	6	-7.913800e+06	5.210828e+06	N_579275502070532581	Roxbury	Q2CK-SSY2- PBYW
	7	-7.913800e+06	5.210828e+06	N_579275502070532581	Roxbury	Q2CK-SU8N- 5VU8
	4 (

Plotting with Pandas functions

Pandas has basic plotting built in

I typically use Matplotlib, but Pandas has the basics

```
In [32]: #Pandas built in plots
wifi.plot.scatter(x="device_long",y="device_lat")
```

```
ImportError
                                          Traceback (most recent call last)
Cell In[32], line 3
     1 #Pandas built in plots
---> 3 wifi.plot.scatter(x="device_long",y="device_lat")
File ~\anaconda3\envs\Class5002\Lib\site-packages\pandas\plotting\ core.py:1748, in
PlotAccessor.scatter(self, x, y, s, c, **kwargs)
  1660 def scatter(
  1661
           self,
  1662
            x: Hashable,
  (\ldots)
  1666
           **kwargs,
  1667 ) -> PlotAccessor:
  1668
            0.00\,0
  1669
            Create a scatter plot with varying marker point size and color.
  1670
  (…)
  1746
                                          colormap='viridis')
            0.00
  1747
-> 1748
            return self(kind="scatter", x=x, y=y, s=s, c=c, **kwargs)
File ~\anaconda3\envs\Class5002\Lib\site-packages\pandas\plotting\ core.py:947, in P
lotAccessor.__call__(self, *args, **kwargs)
    946 def __call__(self, *args, **kwargs):
--> 947
            plot_backend = _get_plot_backend(kwargs.pop("backend", None))
   949
            x, y, kind, kwargs = self._get_call_args(
    950
                plot_backend.__name__, self._parent, args, kwargs
    951
    953
            kind = self._kind_aliases.get(kind, kind)
File ~\anaconda3\envs\Class5002\Lib\site-packages\pandas\plotting\_core.py:1944, in
_get_plot_backend(backend)
  1941 if backend_str in _backends:
            return backends[backend str]
-> 1944 module = _load_backend(backend_str)
  1945 _backends[backend_str] = module
  1946 return module
File ~\anaconda3\envs\Class5002\Lib\site-packages\pandas\plotting\_core.py:1874, in
_load_backend(backend)
  1872
                module = importlib.import_module("pandas.plotting._matplotlib")
  1873
            except ImportError:
-> 1874
                raise ImportError(
                    "matplotlib is required for plotting when the "
  1875
                    'default backend "matplotlib" is selected.'
  1876
  1877
                ) from None
  1878
            return module
  1880 found_backend = False
ImportError: matplotlib is required for plotting when the default backend "matplotli
b" is selected.
```

```
In [ ]: #here is a boxplot
```

```
wifi[["device_long"]].plot.box()

In []: #histogram
    wifi[["device_long"]].plot.hist()

In []: #creating new columns
    #just name the column and assign a value
    # this is a nonsensical value, but it shows the idea
    wifi["x over y"]= wifi.X/wifi.Y
    wifi.head()
```

Aggregation or grouping for tables and statistics

Pandas as a nice groupby function, reminiscent of the dplyr methods

Multiple grouping variables

```
In [ ]: # we can use groupby to get counts per grouping variable as well
# I tried using is_current as a grouping variable, but they are all 1, indicating c
wifi[["device_long","device_lat","neighborhood_name","is_current"]].groupby(["neigh")
```

Categorical data

We can set data to be of type Categorical, which is akin to a factor

It is also possible to use integer group codes or dummy coding to represent categories or factors, this is done using utility tools in libraries such as scikit-learn or keras that focus on modeling

```
In [ ]: wifi['neighborhood_name']=pd.Categorical(wifi.neighborhood_name)
```

```
wifi.head()
In []: # did this work
wifi.dtypes
```

Question/Action

What other variables should be Categorical variables (there aren't many)

Convert this variable to a category

```
In [ ]: wifi['neighborhood_id']=pd.Categorical(wifi.neighborhood_id)
    wifi.head()
```

Dummy Coding

It looks like Pandas can generate dummy codes for us

Pandas does not have a 'factor' variable, so in models like multiple regression, logisitic regression or neural networks, we use dummy coding to code categorical variables. You will see more on this later.

What does this look like?

What does a True in this table seem to mean?

This is also called "one-hot" encoding, since there is only one "True" per row of the table

```
In [ ]: pd.get_dummies(wifi.neighborhood_name)
```

Question/Action

Create a dummy coding for the variable that you turned into a Categorical variable in the Ouestion above

```
In [59]: pd.get_dummies(wifi.neighborhood_id)
```

Out[59]:		L_601230550253962684	L_601230550253962688	L_601230550253963849	L_601230550
	0	False	False	True	
	1	False	False	True	
	2	False	False	False	
	3	False	False	False	
	4	False	False	False	
	•••				
	292	False	False	False	
	293	False	False	False	
	294	False	False	False	
	295	False	False	False	
	296	False	False	False	
	297 rd	ows × 34 columns			
	4				•

date-time values

It looks like we have one date-time variable in the dataset right now

etl_updatedtimestamp

it looks like a fairly standard format

```
In [ ]: wifi.etl_updatedtimestamp.head(5)
In [ ]: wifi.etl_updatedtimestamp=pd.to_datetime(wifi.etl_updatedtimestamp)
    wifi.etl_updatedtimestamp.head()
In [ ]: # We can now get days, months, years
    wifi.etl_updatedtimestamp.dt.day.head()
In [ ]: wifi.etl_updatedtimestamp.dt.month.head()
In [ ]: wifi.etl_updatedtimestamp.dt.year.head()
```

Converting to Long form

uses the melt function

https://pandas.pydata.org/docs/reference/api/pandas.melt.html

Form more ideas on wide to long, look up

Pandas pivot pandas pivot_table pandas unstack pandas wide_to_long

Question/Action

Melt df2 to wide form, using D and A as the index variables, assign the other two columns as values

Joins

A join connects two dataframes (or SQL data tables) together based on matching values of keys (identifiers) in the two data frames or tables. You may have seen this in R, and we will

see it again in SQL.

Joins are done on two dataframes (or tables) at a time, the first is called the "left" table and the second is called the "right" table and several different forms of joins exist.

Joins are done on Pandas data frames are done using the merge function

You can specify the type of join desired, inner, outer, left, right etc

https://pandas.pydata.org/docs/reference/api/pandas.merge.html

```
In [ ]: df1 = pd.DataFrame({'lkey': ['foo', 'bar', 'baz', 'foo', "bix"], 'value': [1, 2, 3, 5
        df2 = pd.DataFrame({'rkey': ['foo', 'bar', 'baz', 'foo'],'value': [5, 6, 7, 8]})
        df1
In [ ]:
In [ ]:
        df2
In [ ]: # this is an inner join of the left frame df1 and the right frame df2
        # notice that "bix" was dropped
        df1.merge(df2, left_on='lkey', right_on='rkey')
In [ ]: # here is a left join
        # what happens to "bix"?
        df1.merge(df2, how="left",left_on='lkey', right_on='rkey')
In [ ]:
```