HW3 - Gal Kaptsenel 209404409

Q1

1.1

Let $C = \{v_1, v_2, v_3, v_4, v_5\}$ points in \mathbb{R}^2 .

There is a subset $S \subset C$ of at \underline{most} 4 points, each of the points in S has an extreme value in at least one of the x/y axes (if there are two points with the same max/min value, take one of them). The size of S is at most 4 because there are two axes (x and y), and for each of them we will take a point with maximum value and (maybe another) point with minimum value. Any rectangle that contains S must contain all the points in C because given a point $v_i \in C$,

$$\begin{split} \exists v_j, v_k \in S, v_{j_x} \leq v_{i_x} \leq v_{k_x} \\ \exists v_j, v_k \in S, v_{j_y} \leq v_{i_y} \leq v_{k_y} \end{split}$$

Because S contains the points from C with the maximum and minimum coordinates in both axes.

S is at most with size 4, therefore there is $v_i \in C \setminus S$, given the labeling that labels v_i with **false** and the rest of the points with **true**.

Suppose there exists a rectangle that contains all the points with the **true** label and does not contain the single point (v_i) with the **false** label. This rectangle contains all points in the set $C\setminus\{v_i\}$, and because $v_i\notin S$, $S\subset C$, the rectangle contains all the points in S. Therefore, this rectangle contains all points in C, and explicitly also $v_i\in C$, which contradicts the assumption that the rectangle does not contain v_i . Thus, the assumption is incorrect and there is no such rectangle.

Therefore, H_{rec} cannot shatter C, and because C is subset of any 5 points in \mathbb{R}^2 , we can conclude that $VCdim(H_{rect}) < 5$.

1.2

Given two hypothesis classes such that $H_1 \subseteq H_2$. Let C be a set with size of $VCdim(H_1)$ that is shattered by H_1 , exists such set by the definition of $VCdim(H_1)$.

Given labeling for set C, there exists a hypothesis $h \in H_1 \subseteq H_2$ which completely agrees with the labeling, and therefore H_2 shatters C.

Therefore, $VCdim(H_2) \ge |C| = VCdim(H_1)$, because there exists a set with size $VCdim(H_1)$ which shattered by H_2

1.3

It could be said that $VCdim(H_{DT}) \ge 4$.

Given $h = h_{(a_1, a_2, b_1, b_2)} \in H_{rect}$, we could construct a decision tree h_t that implements h(i.e. makes the exact same prediction as h).

The tree, which has a depth of 4, will make the following decision for a given (x,y), Check whether the x coordinate is between a_1 and a_2 , if no, return -1 (2 comparisons, therefore this check requires a depth of 2), <u>afterwards</u>, check whether the y coordinate is between b_1 and b_2 , if no return -1, otherwise return 1 (2 comparisons, therefore requires additional depth of 2). The total depth of this tree will be 4, $h_t \in H_{DT}$.

For any given point (x,y) for prediction, the described tree will return a prediction of 1, iff $a_1 \le x \le a_2$ and $b_1 \le y \le b_2$, otherwise it will return -1, and therefore it makes the exact same predictions as $h = h_{(a_1,a_2,b_1,b_2)} \to h_{(a_1,a_2,b_1,b_2)} = h_t \in H_{DT}$.

$$H_{rect} \subseteq H_{DT}$$

Therefore, according to 1.1 and 1.2 above, $4 = VCdim(H_{rect}) \le VCdim(H_{DT})$.

Visualization of h_t :

Q2

Let
$$n_3 = n_1 + n_2$$
, $\phi_3: \chi \to \mathbb{R}^{n_3}$

$$\phi_3(w) = \begin{pmatrix} 2\phi_1(w) \\ 3\phi_2(w) \end{pmatrix}$$

Therefore,

$$K_{3}(u,v) = 4K_{1}(u,v) + 9K_{2}(u,v) = 2 \cdot \phi_{1}^{T}(u) \cdot 2\phi_{1}(v) + 3\phi_{2}^{T}(u) \cdot 3\phi_{2}(v)$$

$$= (2\phi_{1}^{T}(u) \quad 3\phi_{2}^{T}(u)) {2\phi_{1}(v) \choose 3\phi_{2}(v)} = \phi_{3}^{T}(u) \cdot \phi_{3}(v) = \langle \phi_{3}(u), \phi_{3}(v) \rangle$$

Moreover, it could be seen that K_3 is valid, according to the kernel algebra (lecture SVM slide 46):

it is given that K_1 , K_2 are valid kernels, therefore, according to rule 3 form kernel algebra, $4K_1$ and $9K_2$ are valid kernels as well, and according to rule 4 from kernel algebra, $4K_1 + 9K_2 = K_3$ is a valid kernel.

3.1

$$\forall z_1, z_2 \in \mathcal{C}, \forall t \in [0,1], \\ t \cdot q(z_1) + (1-t) \cdot q(z_2) = t \cdot \max\{f(z_1), g(z_1)\} + (1-t) \cdot \max\{f(z_2), g(z_2)\} \overset{t,1-t \geq 0}{=} \\ \max\{t \cdot f(z_1), t \cdot g(z_1)\} + \max\{(1-t) \cdot f(z_2), (1-t) \cdot g(z_2)\} \overset{1}{\geq} \\ \max\{t \cdot f(z_1) + (1-t) \cdot f(z_2), t \cdot g(z_1) + (1-t) \cdot g(z_2)\} \overset{2}{\geq} \\ \max\{f(t \cdot z_1 + (1-t) \cdot z_2), g(t \cdot z_1 + (1-t) \cdot z_2)\} = q(t \cdot z_1 + (1-t) \cdot z_2) \\ 1. \quad \max\{t \cdot f(z_1), t \cdot g(z_1)\} \geq t \cdot f(z_1), t \cdot g(z_1) \\ \max\{(1-t) \cdot f(z_2), (1-t) \cdot g(z_2)\} \geq (1-t) \cdot f(z_2), (1-t) \cdot g(z_2) \\ \text{And therefore,} \\ \max\{t \cdot f(z_1), t \cdot g(z_1)\} + \max\{(1-t) \cdot f(z_2), (1-t) \cdot g(z_2)\} \\ \geq t \cdot f(z_1) + (1-t) \cdot f(z_2), t \cdot g(z_1) + (1-t) \cdot g(z_2) \\ \text{and therefore,} \\ \max\{t \cdot f(z_1), t \cdot g(z_1)\} + \max\{(1-t) \cdot f(z_2), (1-t) \cdot g(z_2)\} \geq \\ \max\{t \cdot f(z_1) + (1-t) \cdot f(z_2), t \cdot g(z_1) + (1-t) \cdot g(z_2)\} \end{aligned}$$

2. f, g are convex functions.

In conclusion, by definition, q(z) is convex w.r.t.z, because $\forall z_1, z_2 \in C, \forall t \in [0,1],$ $t \cdot q(z_1) + (1-t) \cdot q(z_2) \ge q(t \cdot z_1 + (1-t) \cdot z_2)$

3.2

According to the rule from Tutorial 01, that states that any linear function $g(x) = a^T x + b$ is convex (slide 13, lemma 1), we can conclude that both the functions

- $0 = \mathbf{0}^T w + 0$
- $1 y_i w^T x_i$ w and x_i are row and column vectors $1 y_i x_i^T w = 1 y_i x_i^T w = a_i^T = a_i^T w + 1$

Are convex w.r.t w.

According to 3.1 above, $\max\{0, 1 - y_i w^T x_i\}$ is convex w.r.tw

3.3

According to slide 12 from tutorial 7, $||w||^2$ is convex, and according to the given two lemma 1 in this question, and because $\lambda \in \mathbb{R}_{>0}$, $\lambda ||w||^2$ is convex.

According to given lemma 2 in this question and 3.2 above, $\sum_{i=1}^{m} \max\{0, 1 - y_i w^T x_i\}$ is

According to lemma 1 in this question, $\frac{1}{m} \sum_{i=1}^{m} \max\{0, 1 - y_i w^T x_i\}$ is convex.

According to lemma 2 in this question, $\frac{1}{m} \sum_{i=1}^{m} \max\{0, 1 - y_i w^T x_i\} + \lambda ||w||^2$ is convex.

In addition, \mathbb{R}^d is convex set because,

 $\forall a_1, a_2 \in \mathbb{R}^d, \forall t \in [0,1], t \cdot a_1 + (1-t) \cdot a_2 \in \mathbb{R}^d$, because \mathbb{R}^d is a vector space.

Therefore, according to the property from slide 15, tutorial 7, which states that if we restrict a convex function to a convex subset, then it is a convex function,

the above $f(w) = \frac{1}{m} \sum_{i=1}^{m} \max\{0, 1 - y_i w^T x_i\} + \lambda ||w||^2, f|_{\mathbb{R}^d}$ is convex.

We can conclude that $f|_{\mathbb{R}^d}$ is convex and therefore the problem $\operatorname*{argmin}_{w \in \mathbb{R}^d} f(w)$,

i.e. Soft-SVM, is a convex optimization problem.