Mistral 7B

Name

박제현

NLP

2024/05/28

Contents

- Introduction
 - Balancing Performance and Efficiency in NLP Models
 - Recent Appoaches LLMs Optimization
 - Technical Innovations of Mistral 7B
- Architectural details
 - Sliding Window Attention
 - Rolling Buffer Cache
 - Pre-fill and Chunking
- Main resilts & Analysis

Balancing Performance and Efficiency in NLP Models: Innovations of Mistral 7B

Performance

Model Size & Performance Performance & 1 / Efficiency

- Lower Computational costs!
- Less Inference latency! -> LoRA

Floating point

float 32

$$ext{value} = (-1)^{ ext{sign}} imes 2^{(E-127)} imes \left(1 + \sum_{i=1}^{23} b_{23-i} 2^{-i}
ight).$$

- 1. 32-bit precision requires twice as much GPU memory as **16-bit precision**, allowing more efficient use of GPU memory.
- 2. Since operations on **lower precision tensors require less memory**, GPUs can process them more quickly.

Floating point

Don't transfer all parameters and operations to 16-bit floats. Instead, we **switch between** 32-bit and 16-bit operations during training

Floating point

float 16 ("half" precision)

bfloat 16 ("brain" floating point, more "dynamic range" like float 32)

Google developed this format for machine learning and deep learning applications, particularly in their **Tensor Processing Units** (TPUs). While bfloat16 was originally developed for TPUs, this format is now supported by **several NVIDIA GPUs**.

Quantization

Master the Art of Quantization: A Practical Guide

Quantization converts the model weights from **float32** to **low-bit integer** representations, for example, **8-bit integers** (and, recently, even **4-bit integers**).

Quantization

- **1. Post-Training Quantization (PTQ)**: A model is **first trained to converge, then we convert its weights** to a <u>lower precision without more training</u>. It is usually quite cheap to implement in comparison to training.
- **2. Quantization-Aware Training (QAT)**: Quantization is applied **during pre-training or further fine-tuning**. QAT can perform better but requires <u>extra computation resources</u> and <u>access to representative training data</u>
- But Both can lower Performance

Pruning

Adopts **structural pruning** that selectively removes **non-critical coupled structures** based on **gradient information**, maximally preserving most of the LLM's functionality.

Pruning

Compared to **magnitude pruning** which removes weights **solely based on their magnitudes**, Wanda removes weights on a **per-output basis** by the **product of weight magnitudes** and **input activation norms**.

Balancing Performance and Efficiency in NLP Models: Innovations of Mistral 7B

Pruning

Compared to **magnitude pruning** which removes weights **solely based on their magnitudes**, Wanda removes weights on a **per-output basis** by the **product of weight magnitudes** and **input activation norms**.

Technical Innovations of Mistral 7B

Fine-tuning

Grouped-Query Attention (GQA):

- Acceleration of inference speed.
- Reduction of memory requirements and increase in batch size.

Sliding Window Attention (SWA):

- Improved efficiency in handling long sequences.
- Reduction of computational costs.

Sliding Window Attention

Sliding Window Attention

Vanilla Attention

Sliding Window Attention

Effective Context Length

Sliding Window Attention

Sliding Window Attention

Vanilla Attention:

Computational complexity: **O(n^2)**, where n is the <u>sequence length</u>.

Memory usage: Increases **linearly** with the number of tokens.

Doubling the sequence length quadruples the computation.

Sliding Window Attention (SWA):

Computational complexity: **O(n * W)**, where W is the <u>window size</u>.

Memory usage: Increases linearly with W.

The computational load is **constrained by the window size**, even as the sequence length increases.

Rolling Buffer Cache

Rolling Buffer Cache

The attention span is **limited to a fixed size** W.

This means each token will only attend to W preceding tokens.

The cache is organized as a rolling buffer with a fixed size W. Keys and values for each timestep i are stored in the cache position $i \mod W$. ($i = 0, 1, 2, 3, 4 \ldots$)

Rolling Buffer Cache

This

Rolling Buffer Cache

Timestep i

This is an example of ...

Mistral is a good ...

The cat sat on the mat ...

is an

Mistral is

The cat sat on

Timestep i+1

This	is	an	example		
Mistral	is	а			
the	cat	sat	on		

Timestep i+2

of	is	an	example		
Mistral	is	а	good		
the	mat	sat	on		

Pre-fill and Chunking

Pre-fill and Chunking

Main resilts & Analysis

Main resilts & Analysis

Model	Modality	MMLU	HellaSwag	WinoG	PIQA	Arc-e	Arc-c	NQ	TriviaQA	HumanEval	MBPP	MATH	GSM8K
LLaMA 2 7B LLaMA 2 13B	Pretrained Pretrained		77.1% 80.7%						63.8% 69.6%		26.1% 35.4%		16.0% 34.3%
Code-Llama 7B	Finetuned	36.9%	62.9%	62.3%	72.8%	59.4%	34.5%	11.0%	34.9%	31.1%	52.5%	5.2%	20.8%
Mistral 7B	Pretrained	60.1%	81.3%	75.3%	83.0%	80.0%	55.5%	28.8%	69.9%	30.5%	47.5%	13.1%	52.2%

Main resilts & Analysis

Main resilts & Analysis

