EE4-06 Ophcal Communications
EE4-06 Ophcal Communications SOLUTIONS
(1) a) (055 = 10 log (1/1.) = 20 23 thus, dividing by (= 50 km, dis = 0.423/
6) Odd numbered notes are cuti-symmetric
so have zero intensity at the centre, so
intensity is higher of the boundary.
×
c) The number of modes supported is inversely
proportional to the unvelenth, since the
number is quite high there will centerally be
fewer nodes at 1350 nm.
1) The ball of the last
will be Z= 4/v3 = n'L(c. we can
estrate u'= 1.5 =0 Z= (.5x60/3x10 = 3ps
Then $B = 3750/3 \times 10^6 = 1.25 66.1/5$
e) Silican has a bandgap energy correspond; to a wavelength ~ 0.9 mm, At 1550 mm Silican is transporent, so cannot be used for detection.
to a wevelensts ~ 0.9 pm At 1530 nm
De late to
Tar active to

f) leser slope efficiency is based or $\eta \times$ one photon per electron, thus $S = \frac{1}{1.6 \times 10^{-19} \times 1336 \times 10^{-9}}$ e) $\frac{1.6 \times 10^{-19} \times 1336 \times 10^{-9}}{1.6 \times 10^{-19} \times 1336 \times 10^{-9}}$ = 0.823 W/A power. Shot noise will drop as received power drops with increased attenuation, so for the larger length thermal noise will dominate. with in energy terms is 2kT = 50 meVSince $|A\lambda| = |AE|$, then $\Delta\lambda = \Delta E \cdot \lambda^2$ Ad = 50×103×1.4×109× (0.58×106)2 = 13,5 nm 6,63×1074 ×3×108 Since Nx = No, then wp = Un = W/2 | Emax = e wp NA V= 1 (wp+w) | Emax | :. V = = 12 × 8.85×10 × 10 1 1.6×10 19 + K1020 = 6.6 mV Taking In {n} = ux, lel & Eo exp(-uxho2) 50 intensity x [E[2 x exp(-2nx(24) 2)

m=1 made, E(x)= fosm(kixx) Since $(n.k_0)^2 = (n'k_0)^2 + k_{12}^2$ then $k_{12} = \sqrt{(n_1)^2 + k_1^2} k_0$ Then Xm = 1/2. lo = lo = lo = 1/2 4 In2-1/2 Vp=w/k Vg=da/dk Up describes the speed that putres (or information) propagates. b) $V_g = \omega/k = \frac{1}{dk(d\omega)} \quad k = nk_0 \quad \omega = ck_0$ $\frac{dk(d\omega)}{dk} \quad \frac{dk/d\omega}{dk} = \frac{k_0 d\eta}{d\omega} + n \cdot \frac{1}{c}$ 1 = 2 m dy dho + n dho = -h = -h = -h = -h = -h = 是[第一是由] $\frac{dn = -2D_1 - 2D_2 \lambda_0}{d\lambda_0} : \frac{1 = \frac{1}{2} \left[D_0 + 3D_1 + 1 \Delta_1 \lambda_0^2 \right]}{\lambda_0^2}$ $\frac{1}{V_0} = \frac{V}{C} = \frac{1}{C} \left[D_0 + D_1 - D_2 d_0^2 \right]$ Suce everything in the bridgets is positive, I & J

Required expressions are $V_{p} = \frac{C}{D_{0} + D_{1} \lambda_{0}^{2} - D_{2} \lambda_{0}^{2}} \qquad \frac{C}{D_{1} + 3D_{1} \lambda_{0}^{2} + 12\lambda_{0}^{2}}$ alture nue summer to compere them:

du/dd = -2 Di -2 D2do - Since Di D2 >0

do3 dn/dd. 65

: n-lodn/dd > n so L > L vy Lvp

Vg Vp $\frac{d^{2}u}{d\lambda^{2}} = \frac{d}{d\lambda_{0}} \left(\frac{-20, -20, 1_{0}}{\sqrt{3}} \right) = \frac{60, -20}{\sqrt{3}}$ The dispersion is at $\frac{d^{2}u}{d\lambda_{0}} = \frac{60, -20}{\sqrt{3}}$ d) Phase change experienced by a name of nameleyth do propasation is just $\Delta Q = 2\pi L = 2\pi n L$ $\Delta h = 2\pi L = 2\pi L \left(D_0 J_0 + 0, J_0 - D_2 J_0 \right)$ $\Delta h = 2\pi L \left(D_0 J_0 + 0, J_0 - D_2 J_0 \right)$

a) Discussion should include up and IR absorption. Rayleigh scattering, and the underlying mechanisms of each of these impurity absorption, particularly water. A plot of these should be sketched over a son-sible wavelength, range. Bending loss should be mentioned. The x dependance of Rayleigh scattery (x x x x x) should be indicated.

b) Noise sources are shot noise, thermal noise, and amplifier voltage and current noise. Noise equivalent act is:

They should explain that R * C are combined components from :- load and amplifier input resistance - diode and amplifier input apparatance

An altenshie configuration is the transinged ance amplifier. In this case the photodiode is effectively grounded so the frequency dependence of gain due to R & C 13 eliminated.

This also means the frequency dependence of SNR 15 largely elemented.

()

nuct be both expressed in terms of applical paser of photo current. Taking the later: For shot race, I'm = 2e Joh SNRgt = FR = RPE = In NEP d" RNEP d" [RZNEP] "of" 50 we need to compare $T^{2} = R^{2}NEP^{2}$ with $R = nel = 1 \cdot 1.6 \times 10^{-1} \times 1.31 \times 10^{-6} = 1.05 \text{ A}$ hc hc $1 \times 10^{-2} \times 10^{-$ Shot noise TR = TT- loss 4 mW = +613m loss = 100x35 = 3518 $\frac{3}{4} = -29 \, 13m$ or $4 \times 10^{-3.5} = 1.26 \, \mu W$ Then $J_{ph} = R \, p_{p} = 1.05 \times 1.26 = 1.32 \, \mu A$ $J_{sh}^{2} = 22 \, J_{ph} = 2 \times 1.6 \times (0^{-19} \times 1.32 \times (0^{-6} \times 1.32 \times 1.00^{-6} \times 1.32 \times 1.00^{-6} \times 1.32 \times 1.00^{-6})$ $= 4.2 \times (0^{-2.5} \, 24 \, J_{p}^{2})$

5. Neceiver noise dominates. ii) Af "2 = $\frac{1}{2}$ = $\frac{126\times10^6}{12}$ = 13.1 ×10° SNR XNEP 12 × 8 KID B = ZAF = 2 (Bx103)2 = 343 Mb.t/s iii) We can approximate this limit as BLD6,=0.2 Then Box = 0.2 100 x 343 x 10 x 10 9 - -063 = 60 PS

b)
$$q = e^{-\kappa x_1} - e^{-\kappa x_2} = e^{-\kappa h} (e^{\kappa u p} - e^{-5\kappa u p})$$
 $\chi h = .85 \times (0^5 \times b \times 10^6 = 0.51)$
 $e(-\kappa h) = 0.600$

Define $\theta = \lambda u p$ then $\eta = 0.6(e^6 - e^{-56}) = 0.8$
 $50 \text{ low this by successive approximation:}$
 $e^6 - e^{-56} = 1.33$ gives $\theta = 0.39$

Then $u p = 0.39 = 4.59$ $u m$
 $.85 \times (0^5) = 6u p = 27.5 \mu m$

From (a)

 $V_b = 2N_A u^2 = 1.6 \times (0 \times 5 \times 10 \times (225 \times 10^6)^2)$
 $125 \times 50 = 12 \times 12 \times 8.85 \times 10^{-12}$
 $= 47.5 \cup$

c) A typical votat = (0° u/s (this has to be remembered, con't be derived). In a werse bissed p-n juncher, the dechic held varies linearly: depletion width has E

Thus half the

depletion width has E

Exex at half Emrx or mare. For $V_{A} = V_{dent}$ we need $\mathcal{E} = 10^{5} \text{n/s} = 8.33 \times 10^{5}$ $0.12 \text{ m}^{2}/U \cdot 5$ m

Thus need $|\mathcal{E}_{nx}| = 1.67 \times 10^{6} \text{ y/m}$ From (a), $|\mathcal{E}_{mx}| = eN_{A}W$ and $|\mathcal{V}_{b}| = \frac{1}{2} |\mathcal{E}_{mx}|W$ $6 \mathcal{E}$ The $|\mathcal{V}_{b}| = \frac{1}{2} |\mathcal{E}_{b}| = \frac{1}{2} |\mathcal{E}_{mx}|W$ $|\mathcal{E}_{nx}| = \frac{1}{2} |\mathcal{E}_{mx}|^{2} = \frac{3 \times 12 \times 8.86 \times 10^{7} \times (1.62 \times 10^{6})^{2}}{1.6 \times 10^{-19} \times 5 \times 10^{20}}$ Ub = 11.1V