CHIMICA GENERALE

Corso A Anno Accademico 2024-2025

Docente: Prof. Francesco Pineider

Email: francesco.pineider@unipi.it

Indirizzo: Dipartimento di Chimica e Chimica Industriale
Via Moruzzi 13

La Struttura Elettronica degli Atomi

Capitolo 7

La Struttura Elettronica degli Atomi

Perché i diversi elementi hanno proprietà chimiche e fisiche così differenti?

Perché esistono i legami chimici?

Perché ogni elemento forma composti con formule caratteristiche?

Perché atomi di diversi elementi emettono o assorbono luce solo di ben precisi colori?

Determinazione della configurazione elettronica Visione quantomeccanica degli atomi

Gli Spettri di Emissione Atomica

Spettro di emissione: luce emessa dalle specie atomiche quando sono fortemente riscaldate

Gli spettri emessi da solidi sono continui, mentre gli spettri emessi dagli atomi sono discreti

Gli Spettri di Emissione Atomica

La Luce come Radiazione Elettromagnetica

Lunghezza d'onda (λ) = distanza tra due punti identici su due onde successive

Frequenza (v) = numero di onde che passano attraverso un particolare punto in un secondo (Hz = 1 ciclo/s)

Ampiezza = la distanza verticale esistente tra la linea mediana dell'onda ed il suo punto di picco

 $\lambda \times \nu = c$

Velocità della luce (c) nel vuoto = 3.00 x 108 m/s

Per tutte le radiazioni elettromagnetiche nel vuoto:

La Luce come Radiazione Elettromagnetica

Le proprietà dell'Elettrone

EFFETTO FOTOELETTRICO

La radiazione luminosa mostra una duplice natura: una ondulatoria e una corpuscolare

Einstein 1905

MODELLO ATOMICO DI BOHR (1913)

- 1. L' elettrone può assumere solo dei determinati valori di energia (quantizzati)
- 2. La luce viene emessa quando l'elettrone passa da un livello ad energia più alta ad un livello ad energia più bassa

IPOTESI DI DE BROGLIE (1925)

Dal momento che le onde luminose possono comportarsi come fasci di particelle (fotoni), particelle molto piccole (elettroni) possono mostrare proprietà ondulatorie Una particella di massa m e velocità v, ha una lunghezza d'onda ad essa associata pari a $\lambda = \frac{h}{m}$

La Visione Quantomeccanica dell'Atomo

1. Principio di indeterminazione di Heisenberg (1927):

E' impossibile determinare simultaneamente con precisione la quantità di moto (o momento) e la posizione dell'elettrone

PROBABILITÀ

di trovare elettrone in una specifica regione dello spazio

2. Quantizzazione: Gli atomi e le molecole possono esistere solo in certi stati energetici
Quando un atomo o una molecola cambia il suo stato energetico, deve emettere o assorbire la quantità esatta di energia per poter passare al nuovo stato

3. L'energia persa (o guadagnata) da un atomo quando passa da un livello energetico superiore ad uno inferiore (o viceversa) è uguale all'energia del fotone emesso (o assorbito) durante la transizione.

$$\Delta E = hv$$
 $\Delta E = h^2$

L'Equazione d'Onda di Schroedinger

Nel 1926 Schrodinger propose un'equazione che descriveva sia la natura corpuscolare che quella ondulatoria dell'elettrone

L'elettrone di un atomo è trattato come un'onda stazionaria, che cioè non si propaga e perciò ha almeno un punto (nodo) con ampiezza zero

L'elettrone è caratterizzato da una funzione d'onda tridimensionale, ψ In un determinato spazio attorno al nucleo possono esistere solo determinate onde ciascuna delle quali corrisponde a stati di energia stabili dell'elettrone ed è descritta da un particolare insieme di numeri quantici

L'Equazione d'Onda di Schroedinger

L'equazione d'onda ψ descrive:

- 1. L'energia dell'elettrone con una data ψ ;
- 2. La probabilità di trovare l'elettrone in un determinato volume di spazio (orbitali atomici);
- 3. La disposizione degli elettroni in tutti gli atomi (configurazione elettronica) mediante i numeri quantici

$$\psi = f(\mathbf{n}, l, \mathbf{m}_{l}, \mathbf{m}_{s})$$
:

numero quantico principale, n; numero quantico angolare, l; numero quantico magnetico, m_i ; numero quantico di spin, m_s ;

Numero quantico principale (n)

$$\Psi = f(\mathbf{n}, 1, m_1, m_s)$$
 $\mathbf{n} = 1, 2, 3, 4,$

- Assume valori interi, da 1 a ∞
- Descrive l'energia di un orbitale (distanza media dell'elettrone dal nucleo)

Numero quantico angolare (l)

$$\psi = f(n, l, m_v, m_s)$$

 $\psi = f(n, l, m_{\nu}, m_{s})$ Per un dato valore di n si ha: l = 0, 1, 2, 3, ... n-1

Descrive la forma del "volume" di spazio occupato dall'elettrone

n=1	<i>l</i> =0
n=2	l =0 l =1
n=3	l =0 l =1 l =2

<i>l</i> =0	Orbitale 's'
<i>l</i> =1	Orbitale 'p'
<i>l</i> =2	Orbitale 'd'
<i>l</i> =3	Orbitale 'f'

LIVELLO: insieme di orbitali caratterizzati dallo stesso valore di n

SOTTOLIVELLO: Uno o più orbitali con lo stesso valore di n e l

Esempio:

Livello n=2Sottolivello *I=0* (detto 2s)

I ivello n=2Sottolivello l=1 (detto 2p)

Numero quantico angolare (l) ORBITALI "s" (l = 0)

Diagramma della superficie limite degli orbitali 1s, 2s, 3s: superficie che racchiude il 90% della densità elettronica totale di un orbitale

Numero quantico angolare (l) ORBITALI "p" (l = 1)

Diagramma della superficie limite dei tre orbitali 2p

Numero quantico angolare (I)

ORBITALI "d" (*I* = 2)

Diagramma della superficie limite dei cinque orbitali 3d

 ψ^2

Numero quantico magnetico (m₁)

$$\psi = f(n, l, m_{l}, m_{s})$$

per un dato valore di 'l'
$$m_l = -l,, 0, + l$$
Per ogni valore di l ci sono (2l+1) valori di m_l

Descrive l'orientamento degli orbitali nello spazio

se
$$l = 1$$
, $m_l = -1$, 0, 1 (3 orbitali p)
se $l = 2$, $m_l = -2$, -1, 0, 1, 2 (5 orbitali d)

Numero quantico magnetico (m₁)

Relazione tra i numeri quantici e gli orbitali atomici				
n	ℓ	m_ℓ	Numero di orbitali	Sigla dell'orbitale atomico
1	0	0	1	1 <i>s</i>
2	0	0	1	2s
	1	-1, 0, 1	3	$2p_x$, $2p_y$, $2p_z$
3	0	0	1	3s
	1	-1, 0, 1	3	$3p_x$, $3p_y$, $3p_z$
	2	-2, -1, 0, 1, 2	5	$3d_{xy}$, $3d_{yz}$, $3d_{xz}$, $3d_{x^2-y^2}$, $3d_{z^2}$

Numero quantico di spin (m_s)

$$\psi = f(n, l, m_{\nu}, m_{s})$$
 $m_{s} = +\frac{1}{2} \ oppure \ -\frac{1}{2}$

Descrive la rotazione (prillazione) di un elettrone sul proprio asse Ad essa è associato un momento magnetico, la cui direzione dipende dal verso della rotazione

Principio di esclusione di Pauli: In un atomo non possono esistere due elettroni con gli stessi quattro numeri quantici

Livello – elettroni con lo stesso valore di n

Sottolivello – elettroni con lo stesso valore di n ed l

Orbitale – elettroni con lo stesso valore di n, l ed m_l

Quanti elettroni può ospitare un orbitale?

se n, l, e m_l sono fissati, allora $m_s = \frac{1}{2}$ o - $\frac{1}{2}$

$$\psi = (n, l, m_{\nu}, \frac{1}{2})$$
 $\psi = (n, l, m_{\nu}, -\frac{1}{2})$

Un orbitale può ospitare 2 elettroni

La configurazione elettronica definisce come gli elettroni sono distribuiti tra i vari orbitali atomici di un atomo

Diagramma a caselle

Per posizionare gli elettroni negli orbitali si parte da quelli a energia più bassa

5s - 4d - - - -

3d - - - -

4s -

3p - - -

 $\uparrow \downarrow 2p \stackrel{\uparrow \downarrow}{=} \stackrel{\uparrow}{=} -$

 $C 1s^2 2s^2 2p^2$

 $B 1s^22s^22p^1$

Be $1s^2 2s^2$

Li 1s²2s¹

He $1s^2$

 $H 1s^1$

C 6 elettroni

B 5 elettroni

Be 4 elettroni

Li 3 elettroni

He 2 elettroni

H 1 elettrone

Energy

La disposizione più stabile degli elettroni in un sottolivello è quella con il maggior numero di spin paralleli

Energy

Ne 10 elettroni
F 9 elettroni
O 8 elettroni
N 7 elettroni
C 6 elettroni

Paramagnetismo e diamagnetismo

Qual è la configurazione elettronica di Mg?

$$1s^22s^22p^63s^2$$

Abbreviato come [Ne] 3s²

in quanto [Ne] =
$$1s^22s^22p^6$$

Quali sono i possibili numeri quantici per l'ultimo elettrone (il più esterno) del cloro?

$$1s^22s^22p^63s^23p^5$$

$$2 + 2 + 6 + 2 + 5 = 17$$
 elettroni

L'ultimo elettrone è aggiunto all'orbitale 3p

$$n = 3$$

$$I = 1$$

$$n = 3$$
 $l = 1$ $m_l = -1, 0, o + 1$

$$m_s = \frac{1}{2} o - \frac{1}{2}$$

Gas nobili

[**He**]: 1s²

[Ne]: $1s^2 2s^2 2p^6 =$ [He] $2s^2 2p^6$

[Ar]: $1s^2 2s^2 2p^6 3s^2 3p^6 =$ [Ne] $3s^2 3p^6$

[Kr]: $1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^6 =$ [Ar] $3d^{10} 4s^2 4p^6$

[Xe]: $1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^6 4d^{10} 5s^2 5p^6 =$ [Kr] $4d^{10} 5s^2 5p^6$

[Rn]: $1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^6 4d^{10} 5s^2 5p^6 4f^{14} 5d^{10} 6s^2 6p^6 =$ [Xe] $4f^{14} 5d^{10} 6s^2 6p^6$

Poco reattivi:

le configurazioni elettroniche con orbitali pieni sono più stabili

Configurazione elettronica dello stato fondamentale degli elementi

Configurazione elettronica dello stato fondamentale degli elementi									
	lumero tomico	Sim- bolo	Configurazione elettronica	Numero atomico		Configurazione elettronica	Numero atomico	Sim- bolo	Configurazione elettronica
	1	Н	1s ¹	38	Sr	[Kr]5s ²	75	Re	[Xe]6s ² 4f ¹⁴ 5d ⁵
	2	He	$1s^2$	39	Y	[Kr]5s24d1	76	Os	$[Xe]6s^24f^{14}5d^6$
	3	Li	[He]2s1	40	Zr	[Kr]5s ² 4d ²	77	Ir	$[Xe]6s^24f^{14}5d^7$
	4	Be	[He]2s2	41	Nb	[Kr]5s14d4	78	Pt	[Xe]6s14f145d9
	5	В	[He] $2s^22p^1$	42	Mo	[Kr]5s14d5	79	Au	$[Xe]6s^14f^{14}5d^{10}$
	6	C	[He] $2s^22p^2$	43	Tc	[Kr]5s24d5	80	Hg	$[Xe]6s^24f^{14}5d^{10}$
	7	N	[He] $2s^22p^3$	44	Ru	[Kr]5s14d7	81	TI	$[Xe]6s^24f^{14}5d^{10}6p^1$
	8	O	[He] $2s^22p^4$	45	Rh	[Kr]5s14d8	82	Pb	$[Xe]6s^24f^{14}5d^{10}6p^2$
	9	F	[He] $2s^22p^5$	46	Pd	[Kr]4d ¹⁰	83	Bi	$[Xe]6s^24f^{14}5d^{10}6p^3$
	10	Ne	[He] $2s^22p^6$	47	Ag	[Kr]5s14d10	84	Po	$[Xe]6s^24f^{14}5d^{10}6p^4$
	11	Na	[Ne]3s1	48	Cd	[Kr]5s ² 4d ¹⁰	85	At	$[Xe]6s^24f^{14}5d^{10}6p^5$
	12	Mg	[Ne]3s2	49	In	$[Kr]5s^24d^{10}5p^1$	86	Rn	$[Xe]6s^24f^{14}5d^{10}6p^6$
	13	Al	[Ne]3s23p1	50	Sn	$[Kr]5s^24d^{10}5p^2$	87	Fr	[Rn]7s1
	14	Si	[Ne]3s23p2	51	Sb	$[Kr]5s^24d^{10}5p^3$	88	Ra	[Rn]7s ²
	15	P	[Ne] $3s^23p^3$	52	Te	$[Kr]5s^24d^{10}5p^4$	89	Ac	[Rn]7s26d1
	16	S	[Ne]3s23p4	53	I	$[Kr]5s^24d^{10}5p^5$	90	Th	$[Rn]7s^26d^2$
	17	CI	[Ne]3s ² 3p ⁵	54	Xe	$[Kr]5s^24d^{10}5p^6$	91	Pa	$[Rn]7s^25f^26d^1$
	18	Ar	[Ne]3s23p6	55	Cs	[Xe]6s1	92	U	$[Rn]7s^25f^36d^1$
	19	K	[Ar]4s1	56	Ba	[Xe]6s2	93	Np	[Rn]7s25f46d1
	20	Ca	[Ar]4s2	57	La	$[Xe]6s^25d^1$	94	Pu	[Rn]7s25f6
	21	Sc	$[Ar]4s^23d^1$	58	Ce	$[Xe]6s^24f^15d^1$	95	Am	$[Rn]7s^25f^7$
	22	Ti	$[Ar]4s^23d^2$	59	Pr	$[Xe]6s^24f^3$	96	Cm	$[Rn]7s^25f^76d^1$
	23	V	[Ar]4s23d3	60	Nd	[Xe]6s24f4	97	Bk	[Rn]7s25f9
	24	Cr	[Ar]4s13d5	61	Pm	[Xe]6s24f5	98	Cf	[Rn]7s25f10
	25	Mn	[Ar]4s23d5	62	Sm	[Xe]6s24f6	99	Es	[Rn]7s25f11
	26	Fe	$[Ar]4s^23d^6$	63	Eu	[Xe]6s ² 4f ⁷	100	Fm	$[Rn]7s^25f^{12}$
	27	Co	$[Ar]4s^23d^7$	64	Gd	$[Xe]6s^24f^75d^1$	101	Md	$[Rn]7s^25f^{13}$
	28	Ni	[Ar]4s23d8	65	Tb	[Xe]6s ² 4f ⁹	102	No	[Rn]7s25f14
	29	Cu	$[Ar]4s^{1}3d^{10}$	66	Dy	[Xe]6s ² 4f ¹⁰	103	Lr	[Rn]7s25f146d1
	30	Zn	$[Ar]4s^23d^{10}$	67	Но	[Xe] $6s^24f^{11}$	104	Rf	$[Rn]7s^25f^{14}6d^2$
	31	Ga	$[Ar]4s^23d^{10}4p^1$	68	Er	$[Xe]6s^24f^{12}$	105	DЬ	$[Rn]7s^25f^{14}6d^3$
	32	Ge	$[Ar]4s^23d^{10}4p^2$	69	Tm	[Xe]6s ² 4f ¹³	106	Sg	[Rn]7s ² 5f ¹⁴ 6d ⁴
	33	As	$[Ar]4s^23d^{10}4p^3$	70	Yb	[Xe]6s ² 4f ¹⁴	107	Bh	[Rn]7s25f146d5
	34	Se	$[Ar]4s^23d^{10}4p^4$	71	Lu	[Xe]6s24f145d1	108	Hs	[Rn]7s25f146d6
	35	Br	$[Ar]4s^23d^{10}4p^5$	72	Hf	$[Xe]6s^24f^{14}5d^2$	109	Mt	[Rn]7s25f146d7
	36	Kr	$[Ar]4s^23d^{10}4p^6$	73	Ta	$[Xe]6s^24f^{14}5d^3$	110	Ds	[Rn]7s25f146d8
	37	Rb	[Kr]5s1	74	w	[Xe]6s24f145d4	111	Rg	[Rn]7s25f146d9
				74000					

Metalli alcalini

[H]: 1s¹

[Li]: $1s^2 2s^1 =$ [He] $2s^1$

[Na]: $1s^2 2s^2 2p^6 3s^1 = [Ne] 3s^1$

[K]: $1s^2 2s^2 2p^6 3s^2 3p^6 4s^1 = [Ar] 4s^1$

[Rb]: $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10} 4p^6 5s^1 =$ [Kr] $5s^1$

[Cs]: $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10} 4p^6 5s^2 4d^{10}5p^6 6s^1 = [Xe] 6s^1$

[Fr]: $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10} 4p^6 5s^2 4d^{10} 5p^6 6s^2 4f^{14} 5d^{10} 6p^6 7s^1 = [Rn] 7s^1$

Metalli di transizione

I metalli di transizione hanno il sottolivello d parzialmente riempito oppure danno facilmente luogo a cationi che hanno sottolivelli d parzialmente riempiti

Ordine di riempimento degli orbitali

$$1s_{2}^{2}\,2s_{4}^{2}2p_{10}^{\,6}\,3s_{12}^{\,2}\,3p_{18}^{\,6}\,4s_{20}^{\,2}\,3d_{30}^{\,10}\,4p_{36}^{\,6}\,5s_{38}^{\,2}\,4d_{48}^{\,10}\,5p_{54}^{\,6}\,6s_{56}^{\,2}\,4f_{70}^{\,14}\,5d_{80}^{\,10}\,6p_{86}^{\,6}\,7s_{88}^{\,2}\,5f_{102}^{\,14}\,6d_{112}^{\,10}\,7p_{118}^{\,6}$$

Esempio:

Il manganese ha numero atomico 25, quindi ha 25 elettroni che si dispongono negli orbitali seguendo l'ordine di riempimento. La sua configurazione elettronica è:

[Mn]: $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^5 =$ [Ar] $4s^2 3d^5$

Terre rare

I metalli della serie delle terre rare hanno il sottolivello f parzialmente riempito oppure danno facilmente luogo a cationi che hanno sottolivello f parzialmente riempito

$$1s_{2}^{2}2s_{4}^{2}2p_{10}^{6}3s_{12}^{2}3p_{18}^{6}4s_{20}^{2}3d_{30}^{10}4p_{36}^{6}5s_{38}^{2}4d_{48}^{10}5p_{54}^{6}6s_{56}^{2}4f_{70}^{14}5d_{80}^{10}6p_{86}^{6}7s_{88}^{2}5f_{102}^{14}6d_{112}^{10}7p_{118}^{6}$$

Nome elemento	Simbolo	Z	Ln	Ln ³⁺	
Lantanio Cerio Praseodimio Neodimio Prometio Samario Europio Gadolinio Terbio Disprosio Olmio Erbio Tulio Itterbio	La Ce Pr Nd Pm Sm Eu Tb Dy Ho Er Tm Yb	57 58 59 60 61 62 63 64 65 66 67 68 69 70	[Xe]6s ² 5d ¹ [Xe]4f ¹ 6s ² 5d ¹ [Xe]4f ³ 6s ² [Xe]4f ⁴ 6s ² [Xe]4f ⁵ 6s ² [Xe]4f ⁶ 6s ² [Xe]4f ⁷ 6s ² [Xe]4f ⁷ 6s ² [Xe] 4f ⁹ 6s ² [Xe] 4f ¹⁰ 6s ² [Xe] 4f ¹¹ 6s ² [Xe] 4f ¹² 6s ² [Xe] 4f ¹³ 6s ² [Xe] 4f ¹³ 6s ² [Xe] 4f ¹³ 6s ²	[Xe]4f ⁰ [Xe]4f ¹ [Xe]4f ² [Xe]4f ³ [Xe]4f ⁴ [Xe]4f ⁵ [Xe]4f ⁶ [Xe]4f ⁷ [Xe]4f ⁸ [Xe]4f ⁹ [Xe]4f ¹⁰ [Xe]4f ¹¹ [Xe]4f ¹² [Xe]4f ¹³	Esistono eccezioni alla regola di riempimento 1s 2s 2p 3s 3p 3d 4s 4p 4d 4f 5s 5p 5d 6s 6p 6d 7s 7p
Lutezio	Lu	71	[Xe] 4f ¹⁴ 6s ² 5d ¹	[Xe]4f ¹⁴	

- Elementi del gruppo principale (gruppi 1-2; 13-18): sottolivelli s e p con il numero quantico principale più alto sono parzialmente riempiti
- Metalli di transizione (gruppi 3-12): hanno il sottolivello d parzialmente riempito
- Terre rare (lantanidi e attinidi): hanno il sottolivello f parzialmente riempito

Ripasso

Concetti fondamentali e parole chiave

- Lunghezza d'onda, frequenza, ampiezza
- Proprietà ondulatorie di atomi e particelle subatomiche
- Visione quantomeccanica dell'atomo
- Equazione d'onda e funzione d'onda di Schroedinger
- I numeri quantici: n, l, m_{ν} , m_s
- Livello, Sottolivello, Orbitali s,p,d
- Riempimento degli orbitali (Principio di Aufbau)
- Regola di Hund
- Configurazione elettronica e tavola periodica

Ripasso

Domande ed esercizi utili

Eserciziario Chang, Overby capitolo 7

Domande	Esercizi		
7.44-7.52 7.69-7.78	7.53-7.67 7.79-7.86		
7.87-7.90	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		