ANA MAMA

সেট ও ফাংশন

অনুশীলনী - ১.১

অনুশীলনীর প্রয়োজনীয় তথ্যাবলি

- 1. দ্যা মরগ্যানের সূত্র নিয়ম: i. $(A \cup B)' = A' \cap B'$
 - $ii. \ (A \cap B)' = A' \cup B'$
- 2. $n(A \cup B) = n(A) + n(B) n(A \cap B)$ = n(A) + n(B) [নিম্ছেদ সেটের ক্ষেত্রে, $n(A \cap B) = 0$]
- 3. $n(A \cup B \cup C) = n(A) + n(B) + n(C) n(A \cap B) n(B \cap C) n(A \cap C) + n(A \cap B \cap C)$ = n(A) + n(B) + n(C) [নিশ্ছেদ সোটোর ক্ষেত্রে, $n(A \cap B) = n(B \cap C) = n(A \cap C) = n(A \cap B \cap C) = 0$]
- 4. প্রতিজ্ঞার ক্ষেত্রে কয়েকটি অতি প্রয়োজনীয় তথ্য:
 - $i. \quad x \in A \cup B$ হলে. $x \in A$ অথবা $x \in B$
 - $ii. \quad x \in A \cap B$ হলে, $x \in A$ এবং $x \in B$
 - $iii. \ x \in A \setminus B$ হলে, $x \in A$ এবং $x \notin B$
 - $iv. (a) x \in (A \cap B)'$ হলে, $x \notin A \cap B$
 - $(b) x \in (A \cup B)'$ হলে, $x \notin A \cup B$
 - v. (a) $x \notin A \cap B$ হলে, $x \notin A$ অথবা $x \notin B$
 - (b) $x \notin A \cup B$ হলে, $x \notin A$ এবং $x \notin B$

 \cap ightarrow অথবা

এক নজরে সেটে ব্যবহৃত চিহ্নসমূহ						
প্রতীক	→ চিহ্নের নাম (বাংলায়)	প্রতীক	→ চিহ্নের নাম (বাংলায়)	। প্রতীক	→ চিহ্নের নাম (বাংলায়)	
⊆	→ উপসেট	$oldsymbol{U}$	→ সার্বিক সেট	:	ightarrow যেন	
⊈	→ উপসেট নয়	A^c বা A'	→ পূরক সেট	€	→ অন্তর্ভুক্তি	
_	→ প্রকৃত উপসেট	U	→ সংযোগ সেট	∉	→ অন্তর্ভুক্তি নয়	
⊄	→ প্রকৃত উপসেট নয়	\cap	ightarrow ছেদ সেট	\	→ অন্তর	
Ø বা {}	→ ফাঁকা সেট	~	→ সমতুল			

"মনে জাগ্রত" কিছু প্রশ্নের উত্তর জেনে নিই

১। যে কোনো সেট A এর জন্য $A \subseteq A$ এবং $A \subset A$ এর মধ্যে কোনটি সঠিক?

উত্তর: কোনো সেটের উপসেটে ঐ সেটের সমান সংখ্যক অথবা কম সংখ্যক উপাদান থাকে। কিন্তু কোনো সেটের প্রকৃত উপসেটে ঐ সেটের চেয়ে সর্বদা কম সংখ্যক উপাদান থাকে।

সুতরাং বলা যায়, সকল প্রকৃত উপসেটই উপসেট কিন্তু সকল উপসেট প্রকৃত উপসেট নয়। যেমন: $A=\{1,\,2,\,3\}$ সেটটির ক্ষেত্রে $\{1,2,3\}\subseteq\{1,2,3\}$ কিন্তু $\{1,2,3\}\not\subset\{1,2,3\}$

অর্থাৎ $A\subseteq A$ সত্য কিন্তু $A\subset A$ সত্য নয় কারণ প্রকৃত উপসেটে মূল সেটের চেয়ে কম উপাদান থাকে। সুতরাং বলা যায়, প্রত্যেক সেট নিজের উপসেট কিন্তু প্রকৃত উপসেট নয়।

২। $x \in A \cup B$ হলে $x \in A$ অথবা $x \in B$ হয় কিন্তু $x \notin A \cup B$ হলে $x \notin A$ এবং $x \notin B$ হয় কেন?

উত্তরঃ $(A \cup B)$ দ্বারা A ও B উভয় সেটের সকল উপাদান নিয়ে গঠিত সেটকে বুঝায়। অর্থাৎ $(A \cup B)$ সেটের উপাদানগুলো অবশ্যই A অথবা B সেটে অন্তর্ভুক্ত হবে। তাই x কে $(A \cup B)$ এর একটি উপাদান হতে হলে, x কে অবশ্যই A অথবা B সেটের উপাদান হতে হবে।

 $\therefore x \in (A \cup B)$ এর অর্থ $x \in A$ অথবা $x \in B$

আবার, $x,(A\cup B)$ সেটের সদস্য না হলে x,A এবং B কোনো সেটেরই সদস্য নয়। তাই এক্ষেত্রে "অথবা" শব্দটি ব্যবহার করা যাবে না। অবশ্যই "এবং" ব্যবহার করতে হবে।

 $\therefore x \notin A \cup B$ এর অর্থ $x \notin A$ এবং $x \notin B$

৩। বইয়ে যতগুলো প্রতিজ্ঞা আছে সবগুলোই কী মুখস্থ করতে হবে?

উত্তর: বইয়ের সবগুলো প্রতিজ্ঞা মুখস্থ করতে হবে না। প্রতিজ্ঞা যাচাইয়ে নিচের প্রশ্নটির সমাধানের টেকনিক লক্ষ করি:

প্রশ্ন: A ও B যেকোনো সেট হলে নিচের কোনটি সঠিক?

$$(\overline{\Phi}) A \setminus B \subseteq A \cap B$$

(খ)
$$A \cup B \subset A$$

$$\checkmark$$
(গ) $B \subseteq A \cup B$

(ঘ)
$$A \setminus B \subseteq B$$

সঠিক উত্তর নির্ণয় (টেকনিক):

ধরি, $A = \{1, 2, 3\}, B = \{2, 3\}$ [ইচ্ছেমতো A ও B এর যেকোনো মান ধরা যায়]

তাহলে, $A \setminus B = \{1, 2, 3\} \setminus \{2, 3\} = \{1\}$

এবং
$$A \cup B = \{1, 2, 3\}$$

এবং
$$A \cap B = \{2\}$$

সুতরাং প্রশ্নের অপশন অনুসারে আমরা পাই, $A\setminus B\nsubseteq A\cap B$; $A\cup B\not\subset A$; $B\subseteq A\cup B$; $A\setminus B\nsubseteq B$ এভাবে সেট সংক্রান্ত অন্যান্য যেকোনো বিধির সত্যতা যাচাই করা যায়।

8। $(A \cup B)' = A' \cap B'$ প্রমাণের ক্ষেত্রেপ্রথমে $(A \cup B)' \subseteq A' \cap B'$; অতঃপর বিপরীতক্রমে $A' \cap B' \subseteq (A \cup B)'$ প্রমাণ করতে হয় কেন? উত্তর: প্রতিজ্ঞা: সার্বিক সেট U এর যেকোনো উপসেট A ও B এর জন্য $(A \cup B)' = A' \cap B'$

প্রমাণ: মনে করি, $x \in (A \cup B)'$

তাহলে, $x \notin A \cup B$

বা, $x \notin A$ এবং $x \notin B$

বা, $x \in A'$ এবং $x \in B'$

বা, $x \in A' \cap B'$

$$\therefore (A \cup B)' \subseteq A' \cap B' \dots \dots \dots (i)$$

আবার মনে করি, $x \in A' \cap B'$

তাহলে, $x \in A'$ এবং $x \in B'$

বা, $x \notin A$ এবং $x \notin B$

বা, $x \notin A \cup B$

বা, $x \in (A \cup B)'$

$$A' \cap B' \subseteq (A \cup B)' \dots \dots \dots (ii)$$

(i) ও (ii) নং সমীকৃত করে পাই, $(A \cup B)' = A' \cap B'$

 $A \subseteq B$ এবং $B \subseteq A$ হলে A = B হয় এই সূত্র প্রয়োগ করা হয়েছে। এ শর্তটি ভালোভাবে বুঝার জন্য নিচের উদাহরণটি লক্ষ করুন:

 $A=\{1,2,3\}\;;B=\{2,3\}$ এখানে, $B\subset A$ কিন্তু $A\nsubseteq B$ হওয়ায় $A\neq B$

আবার, $A=\{2,3\}$; $B=\{2,3,4\}$ হলে, $A\subseteq B$ কিন্তু $B\nsubseteq A$ হওয়ায় $A\neq B$

আবার, $A=\{\ 1,2,3\}\ ; B=\{1,2,3\};$ এক্ষেত্রে, $A\subseteq B$ এবং $B\subseteq A$ হওয়ায় A=B

A=B হবে যদি এবং কেবল যদি $A\subseteq B$ এবং $B\subseteq A$ হয় অর্থাৎ পরস্পার পরস্পারের উপসেট হয়। এ কারণেই দুইটি সেট সমান দেখাতে হলে এদেরকে পরস্পার পরস্পারের উপসেট প্রমাণ করতে হয়।

৫। [2, 3],]2, 3[, [2, 3[,]2, 3] দারা কী বুঝায়?

্রি, সান্ত্রি, প্রি, সান্ত্রি, বিল্লান্তর সংখ্যা দুইটি বাস্তব সংখ্যার সেটের ব্যবধি নির্দেশ করে। তৃতীয় বন্ধনী দ্বারা আবদ্ধ সংখ্যা ব্যবধিতে প্রান্তীয় সংখ্যা দুইটিও ব্যবধির অন্তর্ভুক্ত।

প্রথম বন্ধনী দ্বারা আবদ্ধ ব্যবধিতে প্রান্তীয় সংখ্যা দুইটি ব্যবধির অন্তর্ভুক্ত নয়।

উল্লেখ্য, ১ম বন্ধনীকে অনেক সময় '] বা [' আকারে লেখা হয় যা খোলা ব্যবধি নামে পরিচিত।

[বি.**দ্র:** অনুশীলনী-৬.১ এর ব্যবচেছদে বিস্তারিত বর্ণনা রয়েছে।]

অনুশীলনীর সমাধান

 $oldsymbol{oldsymbol{i}}$ $oldsymbol{i}$. কোন সেটের সদস্য সংখ্যা 2n হলে, এর উপসেটের সংখ্যা হবে 4^n ।

ii. সকল মূলদ সংখ্যার সেট $Q = \left\{ egin{aligned} rac{p}{q} : p,q \in Z \end{aligned}
ight\}$ ।

iii. $a, b \in R$; $(a, b) = \{x : x \in R \text{ এবং } a < x < b\}$ । উপরের উজিগুলোর আলোকে নিচের কোনটি সঠিক?

(季) i ଓ ii

(খ) ii ও iii

(গ) i ও iii

(ঘ) i, ii ও iii

উত্তর: (গ)

ব্যাখ্যা: (i) নং সঠিক: আমরা জানি, যেকোনো সেটের সদস্য সংখ্যা n হলে, এর উপসেট সংখ্যা হবে 2^n ।

সুতরাং কোনো সেটের সদস্য সংখ্যা 2n হলে, এর উপসেট সংখ্যা হবে $2^{2n}=(2^2)^n=4^n$ ।

(ii) নং সঠিক নয়: আমরা জানি, যে সকল সংখ্যাকে দুইটি পূর্ণ সংখ্যার অনুপাত

হিসেবে প্রকাশ করা যায়, তাই মূলদ সংখ্যা। যেমন: $2, \frac{5}{3}, -7, \frac{-2}{5}$ ইত্যাদি। এখানে অনুপাত প্রকাশক ভগ্নাংশের হরে শূন্য গ্রহণযোগ্য নয়। অর্থাৎ, p ও q পূর্ণসংখ্যা এবং $q \neq 0$ হলে $\frac{p}{q}$ আকারের সংখ্যাকে মূলদ সংখ্যা বলা হয়। একে Q দ্বারা প্রকাশ করা হয়।

$$\therefore Q = \left\{ \frac{p}{q} : p, q \in Z, q \neq 0 \right\}$$

যেহেতু Q সেটে $q \neq 0$ উল্লেখ নেই, তাই Q কে মূলদ সংখ্যার সেট বলা যায় না । অর্থাৎ উক্তিটি সঠিক নয় ।

(iii) নং সঠিক: $a,b\in R$ হলে (a,b) এর অর্থ হচ্ছে a থেকে b পর্যন্ত সকল বাস্তব সংখ্যার সেট (যেখানে a ও b সেটটির অন্তর্ভুক্ত নয়)।

আবার, $x:x\in R$ এবং a< x< b বলতে বুঝায় a থেকে বড়, b থেকে ছোট সকল বাস্তব সংখ্যার সেট (যেখানে a ও b সেটটির অন্তর্ভুক্ত নয়)।

অতএব (iii) নং অপশনে বর্ণিত উভয়পক্ষেই একই অর্থ বহন করে।

সুতরাং $a,b\in R$; $(a,b)=\{x:x\in R \text{ এবং }a\le x\le b\}$ উজিটি সঠিক। অর্থাৎ সঠিক উত্তর হচ্ছে (গ) i ও iii ।

lacktriangle প্রত্যেক $n\in N$ এর জন্য $A_n=\{n,\,2n,\,3n,\,...\}$ হলে (২-৪) নং প্রশ্নের উত্তর দাওঃ

 $ig| A_1 \cap A_2$ এর মান নিচের কোনটি? .

 $(\overline{\Phi}) A_1$ (খ) A₂

(গ) A₃

(ঘ) A₄

উত্তরঃ (খ)

ব্যাখ্যা: দেওয়া আছে, $A_n = \{n, 2n, 3n, \dots \}$; যেখানে $n \in N$ $\therefore A_1 = \{1, 2, 3, \dots \}; (n = 1)$ বসিয়ে)

 $A_2 = \{2, 4, 6, \dots \}; (n = 2$ বসিয়ে)

সুতরাং $A_1 \cap A_2 = \{1, 2, 3, \dots \} \cap \{2, 4, 6, \dots \}$ $= \{2, 4, 6, \dots \} = A_2$

ি নিচের কোনটি $A_3 \cap A_6$ এর মান নির্দেশ করে?

(খ) A₃

(ঘ) A₆

(গ) A₄

উত্তর: (ঘ)

 $A_2 \cap A_3 = \{2, 4, 6, 8, 10, 12, \dots \} \cap \{3, 6, 9, \dots \}$ $= \{6, 12, 18, \dots \} = A_6$

ব্যাখ্যা: ২ ও ৩ নং এর ব্যাখ্যা থেকে পাই.

 $(\overline{\Phi}) A_3$

উত্তর: (ঘ)

ব্যাখ্যা: দেওয়া আছে, $A_n = \{n, 2n, 3n, \dots \}$; যেখানে $n \in N$

সুতরাং $A_3 \cap A_6 = \{3, 6, 9, \dots \} \cap \{6, 12, 18, \dots \}$

 $= \{6, 12, 18, \dots \} = A_6$

∴ $A_3 = \{3, 6, 9,\}; (n = 3 বসিয়ে)$ এবং $A_6 = \{6, 12, 18, \dots \}; (n = 6$ বসিয়ে)

8 A₂ ∩ A₃ এর পরিবর্তে নিচের কোনটি লেখা যায়?

(খ) A₄

 $oxed{L}^{oldsymbol{C}}$ দেওয়া আছে $U=\{x:1\leq x\leq 20,\,x\in Z\},\,A=\{x:x$ বিজোড় সংখ্যা $\}$ এবং $B=\{x:x$ মৌলিক সংখ্যা $\}$ । নিম্নের সেটগুলো তালিকা পদ্ধতিতে লিপিবদ্ধ কর:

(**क**) A

(গ) $C = \{x : x \in A \text{ এবং } x \in B\}$

(ঘ) $D = \{x : x \in A$ অথবা $x \in B\}$

(গ) A₅

(ঘ) A₆

সমাধান: দেওয়া আছে, $U = \{x : 1 \le x \le 20, x \in Z\}$ 1 থেকে 20 পর্যন্ত সকল পূর্ণসংখ্যাই U এর সদস্য ।

 $U = \{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20\}$

ক্ত্রা আছে, $A = \{x : x$ বিজোড় সংখ্যা $\}$ যেহেতু, $A\subset U$ [কারণ আলোচনাধীন সকল সেট সার্বিক সেটের উপসেট] তাই 1 থেকে 20 এর মধ্যবর্তী সকল বিজোড সংখ্যাই A এর সদস্য। $A = \{1, 3, 5, 7, 9, 11, 13, 15, 17, 19\}$

খ দেওয়া আছে, $B = \{x : x মৌলিক সংখ্যা\}$ যেহেতু, $B \subset U$ [কারণ আলোচনাধীন সকল সেট সার্বিক সেটের উপসেট] তাই 1 থেকে 20 এর মধ্যবর্তী সকল মৌলিক সংখ্যাই B এর সদস্য । $B = \{2, 3, 5, 7, 11, 13, 17, 19\}$

উল্লেখ্য: '1' মৌলিক সংখ্যা নয়।

ণ দেওয়া আছে, $C = \{x : x \in A \text{ এবং } x \in B\}$

এখানে C হলো এমন একটি সেট যার উপাদানগুলো A এবং Bউভয় সেটের মধ্যে বিদ্যমান।

অতএব, $C = A \cap B$ $= \{1, 3, 5, 7, 9, 11, 13, 15, 17, 19\} \cap$ {2, 3, 5, 7, 11, 13, 17, 19} $= \{3, 5, 7, 11, 13, 17, 19\}$

ম দেওয়া আছে, $D = \{x : x \in A \text{ অথবা } x \in B\}$ এখানে, D হলো এমন একটি সেট যার উপাদান হলো A ও Bসেটের সকল উপাদানের সেট।

অতএব. $D = A \cup B$ $= \{1, 3, 5, 7, 9, 11, 13, 15, 17, 19\} \cup$ {2, 3, 5, 7, 11, 13, 17, 19} $= \{1, 2, 3, 5, 7, 9, 11, 13, 15, 17, 19\}$

ullet ভেনচিত্রে A ও B সেটের উপাদানগুলোর সংখ্যা দেখানো হয়েছে। যদি n(A)=n(B) হয়, তবে নির্ণয় কর ক) x এর মান খ) $n(A \cup B)$ গ) $n(B \setminus A)$ ।

সমাধান:

প্রদত্ত ভেনচিত্র হতে পাই,

চিহ্নিত অঞ্চল: A

চিহ্নিত অঞ্চল: B

 $\therefore n(A) = 3x + x$ এবং n(B) = x + 2x + 8দেওয়া আছে, n(A) = n(B)

বা,
$$3x + x = x + 2x + 8$$

বা,
$$4x = 3x + 8$$

বা,
$$4x - 3x = 8$$

$$\therefore x = 8$$
 (Ans.)

প্রদত্ত ভেনচিত্র হতে পাই.

চিহ্নিত অঞ্চল: $A \cup B$

এখন,
$$n(A \cup B) = 3x + x + 2x + 8$$

= $6x + 8$
= $6 \times 8 + 8 = 48 + 8 = 56$ (Ans.)

সমাধান (দ্বিতীয় পদ্ধতি)

 $n(A \cup B)$ এর মান নিম্নোক্ত পদ্ধতিতেও নির্ণয় করা যায়: আমরা জানি, $n(A \cup B) = n(A) + n(B) - n(A \cap B)$ = 3x + x + x + 2x + 8 - x $= 6x + 8 = 6 \times 8 + 8 = 56$ (Ans.)

চিহ্নিত অঞ্চল: $B \setminus A$

এখন, $n(B \setminus A) = 2x + 8$ $= 2 \times 8 + 8$ [ক হতে x এর মান বসিয়ে] = 16 + 8= 24 (Ans.)

সমাধান (দ্বিতীয় পদ্ধতি)

আমরা জানি,
$$n(B \setminus A) = n(B) - n(A \cap B)$$

= $x + 2x + 8 - x$
= $2x + 8$
= $2 \times 8 + 8$
= $16 + 8$
= 24 (Ans.)

🕨 🔷 অনুশীলনীর ৬নং প্রশ্নের আলোকে সৃজনশীল প্রশ্নোত্তর 🔷 🔷

 $U = A \cup B \cup C$ এবং n(U) = 29

- ক. x এর মান নির্ণয় কর।
- খ. n(A'∩B) ও n(A ∩B') এর মান কত?
- গ. $n(A \cup B \cup C)$ 'ও $n(A \cap B \cap C)$ 'এর মান কত?

নিজে নিজে চেষ্টা কর। (ক) 1; (খ) 5, 11; (গ) 29, 23

্রী যদি $U=\{x:x$ ধনাত্মক পূর্ণসংখ্যা $\},$ $A=\{x:x\geq 5\}\subset U$ এবং $B=\{x:5x<12\}\subset U$ তবে $n(A\cap B)$ এবং $n(A'\cup B)$ এর মান নির্ণয় কর।

সমাধানঃ দেওয়া আছে, $U = \{x : x$ ধনাত্মক পূৰ্ণসংখ্যা $\}$ $= \{1, 2, 3, 4, 5, 6, 7, \dots \}$ এখানে, $A = \{x : x \ge 5\} \subset U$ $= \{5, 6, 7, 8, 9, 10, 11, ...\} \subset \{1, 2, 3, 4, 5, 6, 7, ...\}$ $= \{5, 6, 7, 8, 9, 10, 11, ...\}$ এবং $B = \{x : 5x < 12\} \subset U$ = $\{x : x < \frac{12}{5}\} \subset \{1, 2, 3, 4, 5, 6, 7, \dots \}$ $= \{x : x < 2.4\} \subset \{1, 2, 3, 4, 5, 6, 7, \dots \}$ $= \{1, 2\}$ $(A \cap B) = \{5, 6, 7, 8, 9, 10, 11, \dots \} \cap \{1, 2\} = \emptyset$

সুতরাং $n(A \cap B) = 0$ [:: $A \cap B$ এর উপাদান সংখ্যা 0] এখন, A' = U - A $= \{1,2,3,4,5,6,7,\ldots\} - \{5,6,7,8,9,10,11,\ldots\}$ $= \{1, 2, 3, 4\}$ $B = \{1,2\}$ $(A' \cup B) = \{1, 2, 3, 4\} \cup \{1, 2\}$ $= \{1, 2, 3, 4\}$ দেখা যায়, $(A' \cup B)$ এর উপাদানগুলো হলো 1, 2, 3 এবং 4অর্থাৎ $(A' \cup B)$ এর উপাদান সংখ্যা 4 $\therefore n(A' \cup B) = 4$ **Ans:** $n(A \cap B) = 0$, $n(A' \cup B) = 4$

্রিট্রা যদি $U=\{x:x$ জোড় পূর্বসংখ্যা $\},A=\{x:3x\geq 25\}\subset U$ এবং $B=\{x:5x<12\}\subset U$ হয়, তাহলে $n(A\cap B)$ এবং $n(A'\cap B')$ এর মান নির্ণয় কর।

সমাধানঃ দেওয়া আছে, $U = \{x : x$ জোড় পূৰ্ণসংখ্যা $\}$ $A = \{x : 3x \ge 25\}$ $= \{x : x \ge 8.33\}$ $B = \{x : 5x < 12\}$ $= \{x : x < 2.4\}$ এখন $A \cap B = \{x : x \ge 8.33\} \cap \{x : x < 2.4\}$ $= \{x : x \ge 8.33$ এবং $x < 2.4\}$ এমন কোনো জোড় পূর্ণসংখ্যা নেই যা, 2.4 থেকে ছোট কিন্তু 8.33 থেকে বড় $\therefore A \cap B = \emptyset$ সুতরাং $n(A \cap B) = 0$ [: ফাঁকা সেটের উপাদান সংখ্যা শূন্য (0)] এখন, $A' = U - A = \{x : x < 8.33\}$ $B' = U - B = \{x : x \ge 2.4\}$ $A' \cap B' = \{x : x < 8.33\} \cap \{x : x \ge 2.4\}$ 2.4 থেকে বড় কিন্তু 8.33 থেকে ছোট জোড় পূর্ণসংখ্যা গুলো হলো: 4, 6, 8 $A' \cap B' = \{4, 6, 8\}$ সুতরাং $n(A' \cap B') = 3 \ [\because A' \cap B'$ এর উপাদান সংখ্যা 3]

Ans: $n(A \cap B) = 0$; $n(A' \cap B') = 3$

$= \{..., -4, -2, 0, 2, 4, 6, 8,\}$ দেওয়া আছে, $A = \{x : 3x \ge 25\} = \{x : x \ge 8.33\}$ 8.33 থেকে বড় জোড় পূর্ণসংখ্যাগুলো হলো: 10, 12, 14, 16, $A = \{10, 12, 14, 16, ...\}$ এবং $B = \{x : 5x < 12\} = \{x : x < 2.4\}$ 2.4 অপেক্ষা ছোট জোড় পূর্ণসংখ্যাগুলো হলো: ..., -4, -2, 0, 2সুতরাং $B = \{..., -4, -2, 0, 2\}$ এখন, $A \cap B = \{10, 12, 14, ...\} \cap \{..., -4, -2, 0, 2\} = \{\}$ $\therefore n(A \cap B) = 0$ [\because ফাঁকা সেটের উপাদান সংখ্যা শূন্য (0)] (Ans.) আবার, $A' = U - A = \{..., -4, -2, 0, 2, 4, 6, 8\}$ এবং $B' = U - B = \{4, 6, 8, \dots \}$

এখন, $A' \cap B' = \{..., -8, -6, -4, -2, 0, 2, 4, 6, 8\} \cap \{4, 6, 8, ...\}$

 $\therefore n(A' \cap B') = 3 \ [\because A' \cap B' \ এর উপাদান সংখ্যা 3]$ (Ans.)

 $= \{4, 6, 8\}$

সমাধান (দ্বিতীয় পদ্ধতি)

দেওয়া আছে, $U = \{x : x$ জোড় পূর্ণসংখ্যা $\}$

ি দেখাও যে, ক) $A \setminus A = \emptyset$

\forall) $A \setminus (A \setminus A) = A \mid$

সমাধানঃ

মনে করি, $x \in A \setminus A$ তাহলে, $x \in A$ এবং $x \notin A$ বা, $x \in A$ এবং $x \in A'$ বা, $x \in (A \cap A')$ বা, $x \in \emptyset$ $\therefore A \setminus A \subset \emptyset$ আবার, মনে করি, $x \in \emptyset$ তাহলে, $x \in (A \cap A')$

বা, $x \in A$ এবং $x \in A'$

বা, $x \in A$ এবং $x \notin A$

বা, $x \in A \setminus A$ $\therefore \varnothing \subseteq A \setminus A$

সুতরাং $A \setminus A = \emptyset$ (দেখানো হলো)

```
মনে করি, x \in A \setminus (A \setminus A)
```

তাহলে, $x \in A \setminus \emptyset$

বা, $x \in A$ এবং $x \notin (A \setminus A)$

বা, $x \in A$ এবং $x \notin \emptyset$ $[:: A \setminus A = \emptyset]$

বা, $x \in A \setminus \emptyset$

বা, $x \in A$

 $\therefore A \setminus (A \setminus A) \subseteq A$

আবার, মনে করি, $x \in A$

তাহলে, $x \in A$ এবং $x \notin \emptyset$

বা, $x \in A$ এবং $x \notin (A \setminus A)$

বা, $x \in A \setminus (A \setminus A)$

 $\therefore A \subseteq A \setminus (A \setminus A)$

সুতরাং $A \setminus (A \setminus A) = A$ (দেখানো হলো)

্রেত দেখাও যে, $A \times (B \cup C) = (A \times B) \cup (A \times C)$ ।

সমাধান: সংজ্ঞানুসারে,

 $A \times (B \cup C) = \{(x, y) : x \in A, y \in (B \cup C)\}$ $= \{(x, y) : x \in A, (y \in B)$ অথবা $y \in C\}$ $= \{(x, y) : (x \in A, y \in B)$ অথবা $(x \in A, y \in C)\}$ $= \{(x, y) : (x, y) \in (A \times B)$ অথবা $(x, y) \in (A \times C)\}$ $= \{(x, y) : (x, y) \in (A \times B) \cup (A \times C)\}\$ $\therefore A \times (B \cup C) \subseteq (A \times B) \cup (A \times C)$

আবার, $(A \times B) \cup (A \times C)$

 $= \{(x, y) : (x, y) \in (A \times B)$ অথবা $(x, y) \in (A \times C)\}$

 $= \{(x, y) : (x \in A, y \in B) \text{ and } (x \in A, y \in C)\}$

 $= \{(x, y) : x \in A, y \in B$ অথবা $y \in C\}$

 $= \{(x, y) : x \in A, y \in (B \cup C)\}\$

 $= \{(x, y) : (x, y) \in A \times (B \cup C)\}\$

 $\therefore (A \times B) \cup (A \times C) \subseteq A \times (B \cup C)$

অর্থাৎ $A \times (B \cup C) = (A \times B) \cup (A \times C)$ (দেখানো হলো)

♦♦ অনুশীলনীর ১০নং প্রশ্নের আলোকে সুজনশীল প্রশ্নোত্তর ♦♦

 $E = \{x : x \in R \text{ arg } x^2 - (a+b)x + ab = 0, a,b \in R\}, F = \{3,4\} \text{ arg } G = \{4,5,6\}$

ক. E সেটের উপাদানসমূহ নির্ণয় কর।

খ. প্রমাণ কর যে, $P(F \cap G) = P(F) \cap P(G)$

গ. দেখাও যে, $E \times (F \cup G) = (E \times F) \cup (E \times G)$

নিজে নিজে চেষ্টা কর। $(\overline{\Phi})$ {a, b}

$race{55}$ যদি $A\subset B$ এবং $C\subset D$ হয়, তবে দেখাও যে, $(A imes C)\subset (B imes D)$ ।

সমাধানঃ

 $A \times C = \{(x, y) : x \in A, y \in C\}$ $= x \in B, y \in D \ [\because A \subset B$ এবং $C \subset D]$ $=(x, y) \in (B \times D)$ $\therefore (A \times C) \subset (B \times D)$ (দেখানো হলো)

সমাধান (দ্বিতীয় পদ্ধতি)

মনে করি, $(x, y) \in A \times C$

তাহলে, $x \in A$, $y \in C$

বা, $x \in B$, $y \in D$ $[:: A \subset B$ এবং $C \subset D]$

বা, $(x, y) \in B \times D$

 $\therefore (A \times C) \subset (B \times D)$ (দেখানো হলো)

$oxed{2}$ দেখাও যে, $A=\{1,2,3,...,n\}$ এবং $B=\{1,2,2^2,...,2^{n-1}\}$ সেট দুইটি সমতুল।

সমাধান: দেওয়া আছে, $A = \{1, 2, 3, ..., n\}$ এবং $B = \{1, 2, 2^2, \dots, 2^{n-1}\}$

A ও B এর মধ্যে একটি এক-এক মিল নিম্নের চিত্রে দেখানো হলো:

2. $3, \dots n$ B: 1.2.

আমরা জানি, যেকোনো দুটি সেটের মধ্যে যদি একটি এক-এক মিল বর্ণনা করা যায়, তবে ঐ সেট দুটি সমতুল। সুতরাং A ও B সেট দুটি সমতুল। (দেখানো হলো)

তিত দেখাও যে, স্বাভাবিক সংখ্যাসমূহের বর্গের সেট $\{1,4,9,16,25,36,...\}$ একটি অনন্ত সেট।

সমাধানঃ ধরি, স্বাভাবিক সংখ্যাসমূহের বর্গের সেট $S = \{1,4,9,16,25,36,\dots\dots\} = \{1^2,2^2,3^2,4^2,5^2,6^2,\dots,n^2,\dots\}$ স্বাভাবিক সংখ্যার সেট, $N = \{1,2,3,4,5,6,\dots,n,\dots\}$

S ও N এর মধ্যে নিম্নোক্তভাবে এক-এক মিল দেখানো যায়:

$$N: \begin{bmatrix} 1, & 2, & 3, & 4, & 5, \dots, n, \dots \\ \uparrow & \uparrow & \uparrow & \uparrow & \uparrow \\ S: \begin{bmatrix} 1, & 4, & 9, & 16, & 25, \dots, n^2, \dots \end{bmatrix}$$

আমরা জানি, যেকোনো দুটি সেটের মধ্যে যদি একটি এক-এক মিল বর্ণনা করা যায়, তবে ঐ সেট দুটি সমতুল।

∴ S সেট N সেটের সমতুল সেট।

এখানে, N সেটের সদস্য সংখ্যা গণনা করে নির্ধারণ করা সম্ভব নয়, তাই N এর সমতুল S সেটের সদস্য সংখাও গণনা করে নির্ধারণ করা সম্ভব নয়। যেহেতু N সেট একটি অনন্ত সেট, সুতরাং, S সেট একটি অনন্ত সেট।

১৪ প্রমাণ কর যে, n(A)=p, n(B)=q এবং $A\cap B=\emptyset$ হলে, $n(A\cup B)=p+q$

```
<u>সমাধান:</u> দেওয়া আছে, n(A)=p, n(B)=q এবং A\cap B=\varnothing আমরা জানি, n(A\cup B)=n(A)+n(B)-n(A\cap B)=p+q-n(\varnothing)=p+q-0\ [\because ফাঁকা সেটের উপাদান সংখ্যা শূন্য]=p+q
\therefore n(A\cup B)=p+q (প্রমাণিত)
```

১৫ প্রমাণ কর যে, A, B, C সান্ত সেট হলে,

$n(A \cup B \cup C) = n(A) + n(B) + n(C) - n(A \cap B) - n(B \cap C) - n(C \cap A) + n(A \cap B \cap C) + n(A \cap C) +$

```
সমাধান: বামপক্ষ = n(A \cup B \cup C)

= n\{(A \cup B) \cup C\}

= n(A \cup B) + n(C) - n\{(A \cup B) \cap C\}

= n(A) + n(B) - n(A \cap B) + n(C) - n[(A \cap C) \cup (B \cap C)]

= n(A) + n(B) + n(C) - n(A \cap B) - [n(A \cap C) + n(B \cap C) - n(A \cap B \cap C)]

= n(A) + n(B) + n(C) - n(A \cap B) - n(B \cap C) - n(C \cap A) + n(A \cap B \cap C) ভানপক্ষ

\therefore n(A \cup B \cup C) = n(A) + n(B) + n(C) - n(A \cap B) - n(B \cap C) - n(C \cap A) + n(A \cap B \cap C) (প্রমাণিত)
```

♦♦ অনুশীলনীর ১৪ ও ১৫নং প্রশ্নের আলোকে সূজনশীল প্রশ্নোত্তর ♦♦

```
সার্বিক সেট U = \{2, 3, 4, 5, 6, 7, 8, 9\}, উপসেট A = \{x : x মৌলিক সংখ্যা\} এবং B = \{x : x জোড় সংখ্যা\}
```

ক. A,B ও $A\cap B$ এর উপাদানগুলো ভেনচিত্রের মাধ্যমে উপস্থাপন কর।

খ. $A' \cap B'$ নির্ণয় কর।

গ. দেখাও যে, $n(A' \cap B') = n(A') + n(B') - n(A' \cup B')$

নিজে নিজে চেষ্টা কর। (খ) {9}

```
A = \{a, b, x\} এবং B = \{c, y\} সার্বিক সেট U = \{a, b, c, x, y, z\} এর উপসেট হলে, ক) যাচাই কর যে, (i) A \subset B', (ii) A \cup B' = B', (iii) A' \cap B = B। খ) নির্ণয় কর: (A \cap B) \cup (A \cap B')।
```

সমাধানঃ

ক (i) দেওয়া আছে, $A = \{a, b, x\}, B = \{c, y\}$ এবং সার্বিক সেট $U = \{a, b, c, x, y, z\}$ ∴ B' = U - B $= \{a, b, c, x, y, z\} - \{c, y\}$ $= \{a, b, x, z\}$ A সেটের সকল উপাদান B' সেটে বিদ্যমান। আবার, B'সেটে এমন সদস্য আছে যা A সেটে নেই। তাই A সেট, B'সেটের প্রকৃত উপসেট।

∴ $A \subset B'$ সত্য (যাচাই হলো)

(ii) যাচাই করতে হবে যে, $A \cup B' = B'$ এখানে, $A \cup B'$ = $\{a, b, x\} \cup \{a, b, x, z\}$ [(i) হতে B' এর মান বসিয়ে]

= $\{a, b, x, z\} = B'$ ∴ $A \cup B' = B'$ (যাচাই হলো)

(iii) যাচাই করতে হবে যে,
$$A' \cap B = B$$

এখন, $A' = U - A$
 $= \{a, b, c, x, y, z\} - \{a, b, x\}$
 $= \{c, y, z\}$
এখন, $A' \cap B$
 $= \{c, y, z\} \cap \{c, y\}$
 $= \{c, y\}$
 $= B$
 $\therefore A' \cap B = B$ (যাচাই হলো)

এখানে,
$$B' = U - B$$

$$= \{a, b, x, y, z\} - \{c, y\} = \{a, b, x, z\}$$

$$\therefore (A \cap B) = \{a, b, x\} \cap \{c, y\} = \emptyset$$
এবং $A \cap B' = \{a, b, x\} \cap \{a, b, x, z\} = \{a, b, x\}$

$$\therefore (A \cap B) \cup (A \cap B') = \emptyset \cup \{a, b, x\}$$

$$= \{a, b, x\}$$

$$= \{a, b, x\}$$

$$= A \text{ (Ans.)}$$

[১৭] কোনো শ্রেণির 30 জন শিক্ষার্থীর মধ্যে 19 জন অর্থনীতি, 17 জন ভূগোল, 11 জন পৌরনীতি, 12 জন অর্থনীতি ও ভূগোল, 4 জন পৌরনীতি ত্ত ভূগোল, 7 জন অর্থনীতি ও পৌরনীতি এবং 3 জন তিনটি বিষয়ই নিয়েছে। কতজন শিক্ষার্থী তিনটি বিষয়ের কোনটিই নেয়নি?

সমাধান: মনে করি, ঐ শ্রোণির সকল শিক্ষার্থীর সেট Uু যেসব ছাত্র অর্থনীতি নিয়েছে তাদের সেট Eু যারা ভূগোল নিয়েছে তাদের সেট G এবং যারা পৌরনীতি নিয়েছে তাদের সেট C।

প্রস্নার্নারে,n(U)=30; n(E)=19; n(G)=17; n(C)=11; $n(E\cap G)=12;$ $n(C\cap G)=4;$ $n(E\cap C)=7$ এবং $n(E\cap G\cap C)=3$ অন্তর্ত একটি নিয়েছে এমন শিক্ষার্থীর সংখ্যা $= n(E \cup G \cup C)$

এখন, $n(E \cup G \cup C) = n(E) + n(G) + n(C) - n(E \cap G) - n(E \cap C) - n(C \cap G) + n(E \cap G \cap C)$ = 19 + 17 + 11 - 12 - 7 - 4 + 3 = 50 - 23 = 27 \therefore তিনটি বিষয়ের কোনোটিই নেয়নি এমন শিক্ষার্থীর সংখ্যা = $n(U) - n(E \cup G \cup C) = 30 - 27 = 3$

সুতরাং 3 জন শিক্ষার্থী তিনটি বিষয়ের কোনোটিই নেয়নি।

$oldsymbol{\Sigma}$ নিচের ভেনচিত্রে সার্বিক সেট $U=\mathbf{A} \cup \mathbf{B} \cup \mathbf{C}$ ।

- ক) যদি $n(A \cap B) = n(B \cap C)$ হয়, তবে x এর মান নির্ণয় কর।
- খ) যদি $n(B \cap C') = n(A' \cap C)$ হয়, তবে y এর মান নির্ণয় কর।
- গ) n(U) এর মান নির্ণয় কর।

সমাধান:

চিহ্নিত অঞ্চল: $A \cap B$

চিহ্নিত অঞ্চল: $B \cap C$

ভেনচিত্র থেকে পাই, $n(A \cap B) = x$

এবং $n(B \cap C) = 4$ দেওয়া আছে, $n(A \cap B) = n(B \cap C)$

বা, x=4

 $\therefore x = 4$ $U = A \cup B \cup C$

চিহ্নিত অঞ্চল: $n(B \cap C')$

চিহ্নিত অঞ্চল: $n(A' \cap C)$

দেওয়া আছে, $n(B \cap C') = n(A' \cap C)$ বা, x + 6 = 4 + y [ভেনচিত্র হতে] বা, 4 + 6 - 4 = y [ক' হতে x = 4 বসিয়ে] $\therefore y = 6$

 $^{oldsymbol{1}}$ এখানে, U = $A \cup B \cup C$ n(U) = 8 + x + 6 + 4 + y [ভেনচিত্ৰ থেকে] = 8 + 4 + 6 + 4 + 6 = 28 (Ans.)

১৯ নিচের ভেনচিত্রে $U=A\cup B\cup C$ এবং n(U)=50।

- ক) x এর মান নির্ণয় কর।
- খ) $n(B\cap C')$ এবং $n(A'\cap B)$ এর মান নির্ণয় কর।
- গ) $n(A \cap B \cap C')$ এর মান নির্ণয় কর।

<u>সমাধান:</u>

ত্বিভেনচিত্র থেকে পাই,

n(U) = 2x + (x+1) + (x-1) + 2 + 3 + 0 + (x+5)

বা, n(U) = 5x + 10

বা, 50 = 5x + 10 [দেওয়া আছে, n(U) = 50]

বা, 5x = 50 - 10

বা, 5x = 40

 $\therefore x = 8$ (Ans.)

এখানে, $n(A\cap B\cap C')=x+1=8+1$ ['ক' হতে x=8 বসিয়ে]

 $\therefore n(A \cap B \cap C') = 9$ (Ans.)

খ

<u>চিহ্নিত অঞ্চল</u>: B \bigcirc C'

চিহ্নিত অঞ্চল: A'∩B

ভেনচিত্ৰ থেকে পাই,
$$n(B \cap C') = (x+1) + (x-1)$$

$$= 2x$$

$$= 2 \times 8 \text{ ['ক' হতে } x = 8 \text{ বসিয়ে]}$$

$$= 16$$

এবং
$$n(A' \cap B) = x - 1$$
) + 0 = $x - 1$
= $8 - 1$ ['ক' হতে $x = 8$ বসিয়ে]
= 7 (Ans.)

<u>চিহ্নিত অঞ্চল: B</u> চিহ্নিত অঞ্চল: C^\prime [B ও C' অঞ্চলের সাধারণ (common) অঞ্চলই হচ্ছে $(B \cap C')$ অঞ্চল]

অনুরূপভাবে $(A'\cap B)$ এবং $(A\cap B\cap C')$ অঞ্চলগুলো চিহ্নিত করা হয়েছে।

তিনটি সেট A,B এবং C এমনভাবে দেওয়া আছে যেন, $A\cap B=\emptyset, A\cap C=\emptyset$ এবং $C\subset B$ । ভেনচিত্র অঙ্কন করে সেটগুলোর ব্যাখ্যা দাও।

সমাধান:

$A \cap B = \emptyset$ এবং $A \cap C = \emptyset$ এর ব্যাখ্যা:

যেহেতু $A\cap B=\varnothing$, সুতরাং A ও B নিম্ছেদ সেট অর্থাৎ এদের মধ্যে কোনো সাধারণ উপাদান নেই।

তদ্রুপ $A \cap C = \emptyset$ হওয়ায় A ও C নিম্ছেদ সেট।

 $C \subset B$ এর ব্যাখ্যা: $C \subset B$ দ্বারা বোঝায় C হলো B এর প্রকৃত উপসেট। অর্থাৎ B তে অন্তত একটি উপাদান আছে যা C-তে নেই। তাই ভেনচিত্রে B সেটের অভ্যন্তরে হবে C সেটের অবস্থান।

B = [1, 3)

A = (2, 5]

হৈঠ দেওয়া আছে, $A = \{x: 2 < x \le 5, x \in R\}$, $B = \{x: 1 \le x < 3, x \in R\}$ এবং $C = \{2, 4, 5\}$ । নিম্নের সেটগুলো সেট গঠন পদ্ধতিতে প্রকাশ কর:

$$\overline{\Phi}$$
) $A \cap B$

$$∜$$
) A' \cap B'

গ)
$$A' \cup B$$

সমাধানঃ দেওয়া আছে, $A = \{x : 2 < x \le 5, x \in R\}$

$$B = \{x : 1 \le x < 3, x \in R\}$$

 $A \cap B = \{x : 2 < x \le 5, x \in R\} \cap \{x : 1 \le x < 3, x \in R\}$ $= \{x : x \in R, 2 < x \le 5 \text{ are } 1 \le x < 3\}$ $= \{x : x \in R, (2, 5] \cap [1, 3)\}$

$$A \cap B = \{x : 2 < x < 3, x \in R\}$$
 (Ans.)

খ এখানে

$$A \cup B = \{x : 2 \le x \le 5, x \in R\} \cup \{x : 1 \le x \le 3, x \in R\}$$

= $\{x : x \in R, 2 \le x \le 5$ অথবা $1 \le x \le 3\}$

$$\therefore A \cup B = \{x : 1 \le x \le 5, x \in R\}$$

দ্যা মরগানের সূত্রানুসারে,

$$A' \cap B' = (A \cup B)'$$

= $U - (A \cup B)$
= $R - \{x : 1 \le x \le 5, x \in R\}$
= $\{x : x < 1$ অথবা $x > 5, x \in R\}$ (Ans.)

B = [1, 3) A = (2, 5] $0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6$ $A \cup B$ $A \cup B$

গ A' = U - A

$$∴ A' = R - \{x : 2 < x \le 5, x \in R\}$$

= $\{x : x \le 2 \text{ and } x > 5, x \in R\}$

$$B = \{x : 1 \le x < 3, x \in R\}$$

$$B = \{x : 1 \le x < 3, x \in R\}$$

$$\therefore A' \cup B = \{x : x \le 2 \text{ অথবা } x > 5, x \in R\} \cup \{x : 1 \le x < 3, x \in R\}$$

$$= \{x : x < 3 \text{ অথবা } x > 5, x \in R\}$$

$$= \{x : R \setminus \{3 \le x \le 5\}\}$$

$$= R \setminus \{3 \le x \le 5\} \text{ (Ans.)}$$

সমাধান (দ্বিতীয় পদ্ধতি)

দেওয়া আছে, $A = \{x : 2 < x \le 5, x \in R\}$,

$$B = \{x : 1 \le x < 3, x \in R\}$$

নিম্নে $A \otimes B$ সেট দুটিকে একটি সংখ্যারেখায় মোটা দাগে এবং $A' \otimes B'$ সেটদ্বয়কে ডট (....) লাইন দ্বারা দেখানো হলো:

🇖 $A \otimes B$ উভয় সেটের সাধারণ উপাদান নিয়ে $A \cap B$ সেট গঠিত হয়। সংখ্যারেখা থেকে পাই. $A \otimes B$ সেটের সাধারণ উপাদান হলো $2 \otimes 3$ এর মধ্যবর্তী সকল বাস্তব সংখ্যা কিন্তু এতে 2 ও 3 সংখ্যা, দুইটি অন্তর্ভুক্ত নয়।

$$A \cap B = (2, 3)$$

সুতরাং $A \cap B = \{x : 2 < x < 3, x \in R\}$ (Ans.)

তিত্রে ডট (...) চিহ্ন দ্বারা A' ও B' এলাকা নির্ধারণ করা হয়েছে।

দ্যা মরগানের সূত্রানুসারে, $A' \cap B' = (A \cup B)'$

সংখ্যারেখা থেকে পাই, $A \cup B = 1$ থেকে 5 পর্যন্ত সকল বাস্তব সংখ্যার সেট

$$= \{x \in \mathbb{R}: 1 \le x \le 5\}$$

 $\therefore (A \cup B)' = 1$ থেকে 5 পর্যন্ত বাস্তব সংখ্যা ব্যতীত সকল বাস্তব সংখ্যার সেট $= \{x : x < 1 \text{ অথবা } x > 5, x \in R\}$

সুতরাং $A' \cap B' = \{x : x < 1 \text{ অথবা } x > 5, x \in R\}$ (Ans.)

সংখ্যারেখা থেকে পাই. 3 থেকে ছোট সকল বাস্তব সংখ্যাই $A' \cup B$ সেটের উপাদান

আবার, 5 থেকে বড় সকল বাস্তব সংখ্যাই $A' \cup B$ সেটের উপাদান $A' \cup B = \{x : x < 3$ অথবা $x > 5, x \in R\} = \{x : R \setminus \{3 \le x \le 5\}\} = R \setminus \{3 \le x \le 5\}$ (Ans.)

 $|\mathfrak{SS}|$ দেওয়া আছে, $U=\{x:x<10,\,x\in R\},\,A=\{x:1< x\leq 4\}$ এবং $B=\{x:3\leq x<6\}$ । নিচের সেটগুলো সেট গঠন পদ্ধতিতে প্রকাশ কর:

 $\overline{\Phi}$) $A \cap B$ \forall) $A' \cap B$ গ) $A \cap B'$

সমাধান:

- ক দেওয়া আছে, $U = \{x : x < 10, x \in R\},$ $A = \{x : 1 < x \le 4\}$ এবং $B = \{x : 3 \le x < 6\}$ এখন, $A \cap B = \{x : 1 < x \le 4\} \cap \{x : 3 \le x < 6\}$ $= \{x: 1 < x \le 4$ এবং $3 \le x < 6\}$
 - $\therefore A \cap B = \{x : 3 \le x \le 4\} \quad (Ans.)$
- ম দেওয়া আছে, $U = \{x : x < 10, x \in R\}$, $A = \{x : 1 < x \le 4\}$ এবং $B = \{x : 3 \le x < 6\}$ A' = U - A $= \{x : x < 10, x \in R\} - \{x : 1 < x \le 4\}$ $= \{x : x \le 1$ অথবা $4 < x < 10\}$ ∴ $A' \cap B = \{x : x \le 1$ অথবা $4 < x < 10\} \cap \{x : 3 \le x < 6\}$
- $= \{x : 4 < x < 6\}$ (Ans.) গ দেওয়া আছে, $U = \{x : x < 10, x \in R\}$, $A = \{x : 1 < x \le 4\}$ এবং $B = \{x : 3 \le x < 6\}$

B' = U - B

 $= \{x : x < 10, x \in R\} - \{x : 3 \le x < 6\}$ $= \{x : x < 3$ অথবা $6 \le x < 10\}$

∴ $A \cap B' = \{x : 1 < x \le 4\} \cap \{x : x < 3$ অথবা $6 \le x < 10\}$ $= \{x : 1 < x < 3\}$ (Ans.)

- য (b) থেকে পাই, $A' = \{x : x \le 1 \text{ অথবা } 4 < x < 10\}$
 - (c) থেকে পাই, $B' = \{x : x < 3 \text{ and } 6 \le x < 10\}$

 $\therefore A' \cap B' = \{x : x \le 1$ অথবা $4 < x < 10\}$

 $\{x: x < 3$ অথবা $6 \le x < 10\}$

 $= \{x : x \le 1 \text{ অথবা } 6 \le x < 10\}$ (Ans.)

(ঘ) এর বিকল্প সমাধান

 $A \cup B = \{x : 1 < x \le 4\} \cup \{x : 3 \le x < 6\}$ $= \{x : 1 < x < 6\}$

ডি. মরগানের সূত্রানুসারে

$$A' \cap B' = (A \cup B)'$$

= $U - (A \cup B)$
= $\{x : x < 10, x \in R\} - \{x : 1 < x < 6\}$
:. $A' \cap B' = \{x : x \le 1$ অথবা $6 \le x < 10\}$ (Ans.)

সমাধান (দ্বিতীয় পদ্ধতি)

দেওয়া আছে, $U = \{x : x < 10, x \in R\},$

 $A = \{x : 1 < x \le 4\}$ এবং $B = \{x : 3 \le x < 6\}$

প্রদত্ত সেটগুলোকে একটি সংখ্যারেখায় চিহ্নিত করি:

সংখ্যারেখা থেকে পাই,

- $A \cap B = \{x : 3 \le x \le 4\}$
- $A' \cap B = \{x : 4 < x < 6\}$
- $A \cap B' = \{x : 1 < x < 3\}$
- য $A' \cap B' = \{x : x \le 1 \text{ অথবা } 6 \le x < 10\}$

📣 বি.দ্র: সংখ্যারেখায় A ও B সেটকে মোটা দাগে এবং এদের পুরক সেট ডট (....) দাগ দিয়ে চিহ্নিত করা হয়েছে। এ প্রশ্নগুলোর সমাধান ২১নং প্রশ্ন এর অনুরূপ হওয়ায় বিস্তারিত ব্যাখ্যা প্রদান না করে সরাসরি সমাধান করা হয়েছে।

নিম্নে প্রতিক্ষেত্রে A ও B সেট দেওয়া আছে, $A \cup B$ নির্ণয় কর এবং যাচাই কর যে, $A \subset (A \cup B)$ এবং $B \subset (A \cup B)$ । ক) $A = \{-2, -1, 0, 1, 2\}$ এবং $B = \{-3, 0, 3\}$

খ) $A = \{x : x \in \mathbb{N}, x < 10 \text{ এবং } x, 2 \text{ এর গুণিতক}\}$ এবং $B = \{x : x \in \mathbb{N}, x < 10 \text{ এবং } x, 3 \text{ এর গুণিতক}\}$

<u>সমাধান</u>:

কৈ সেওয়া আছে, $A=\{-2,-1,0,1,2\}$ এবং $B=\{-3,0,3\}$ $\therefore A \cup B=\{-2,-1,0,1,2\} \cup \{-3,0,3\}$ $=\{-3,-2,-1,0,1,2,3\}$

A এবং B এর সকল উপাদান $(A \cup B)$ এর মধ্যে অন্তর্ভুক্ত আছে। আবার, A ও B সেটে $(A \cup B)$ সেট অপেক্ষা উপাদান কম আছে। তাই A ও B উভয়েই $(A \cup B)$ এর প্রকৃত উপসেট। অতএব, $A \subset (A \cup B)$ এবং $B \subset (A \cup B)$ (যাচাই করা হলো)

দেওয়া আছে, $A=\{x:x\in N,x<10\ \text{unt},x,2\ \text{unt}\}$ গৈওয়া আছে, $A=\{x:x\in N,x<10\ \text{unt},x,2\ \text{unt}\}$ গৈ থেকে ছোট 2 এর গুণিতকসমূহ হলো: 2,4,6,8 $\therefore A=\{2,4,6,8\}$ আবার, $B=\{x:x\in N,x<10\ \text{unt},x,3\ \text{unt}\}$ এর গুণিতক $\{x,3,4,6,9\}$ $\therefore B=\{3,6,9\}$ $A\cup B=\{2,4,6,8\}\cup\{3,6,9\}$ $=\{2,3,4,6,8,9\}$ A এবং B এর সকল উপাদান $A\cup B$ 0 এর মধ্যে অন্তর্ভুক্ত আছে। আবার, A0 B1 সেটে $A\cup B$ 2 সেটে $A\cup B$ 3 সেই অপেক্ষা উপাদান কম আছে।

A এবং B এর সকল ওপাদান $(A \cup B)$ এর মধ্যে অপ্তডুপ্ত আছে। আবার, A ও B সেটে $(A \cup B)$ সেট অপেক্ষা উপাদান কম আছে। তাই A ও B প্রত্যেকেই $(A \cup B)$ এর প্রকৃত উপসেট। সুতরাং, $A \subset (A \cup B)$ এবং $B \subset (A \cup B)$ (যাচাই করা হলো)

হি8 নিম্নের প্রতিক্ষেত্রে $A\cap B$ নির্ণিয় কর এবং যাচাই কর যে, $(A\cap B)\subset A$ এবং $(A\cap B)\subset B$ । ক) $A=\{0,1,2,3\}, B=\{-1,0,2\}$ খ) $A=\{a,b,c,d\}, B=\{b,x,c,y\}$

<u>সমাধান</u>:

কৈ দেওয়া আছে, $A=\{0,1,2,3\}, B=\{-1,0,2\}$ $\therefore A\cap B=\{0,1,2,3\}\cap\{-1,0,2\}$ $=\{0,2\}$

 $(A\cap B)$ সেটের সকল উপাদান A এবং B সেটে অন্তর্ভুক্ত আছে। আবার, $(A\cap B)$ সেটে, A সেট বা B সেটের প্রতিটি অপেক্ষা কম উপাদান আছে।

তাই $(A\cap B)$ সেট, A ও B উভয় সেটের প্রকৃত উপসেট। সুতরাং, $(A\cap B)\subset A$ এবং $(A\cap B)\subset B$ (যাচাই করা হলো)

ে দেওয়া আছে, $A = \{a, b, c, d\}, B = \{b, x, c, y\}$ $\therefore A \cap B = \{a, b, c, d\} \cap \{b, x, c, y\}$ $= \{b, c\}$

 $(A\cap B)$ সেটের সকল উপাদান A এবং B সেটে অন্তর্ভুক্ত আছে। আবার, $(A\cap B)$ সেটে, A সেট এবং B সেট অপেক্ষা উপাদান কম আছে। $\therefore A\cap B$ সেট, A ও B উভয় সেটের প্রকৃত উপসেট। স্যুতরাং, $(A\cap B)\subset A$ এবং $(A\cap B)\subset B$ (যাচাই করা হলো)

বিগম রোকেয়া কলেজের ছাত্রীদের মধ্যে বিচিত্রা, সন্ধানী ও পূর্বাণী পত্রিকার পাঠ্যাভ্যাস সম্পর্কে পরিচালিত এক সমীক্ষায় দেখা গেল 60% ছাত্রী বিচিত্রা, 50% ছাত্রী সন্ধানী, 50% ছাত্রী পূর্বাণী, 30% ছাত্রী বিচিত্রা ও সন্ধানী, 30% ছাত্রী বিচিত্রা ও পূর্বাণী, 20% ছাত্রী সন্ধানী ও পূর্বাণী এবং 10% ছাত্রী তিনটি পত্রিকাই পড়ে।

- ক) শতকরা কতজন ছাত্রী উক্ত পত্রিকা তিনটির কোনটিই পড়ে না?
- খ) শতকরা কতজন ছাত্রী উক্ত পত্রিকাগুলোর মধ্যে কেবল দুইটি পড়ে?

সমাধানঃ

ক

মনে করি, সকল ছাত্রীর সেট U; বিচিত্রা পড়া ছাত্রীদের সেট B; সন্ধানী পড়া ছাত্রীদের সেট S; পূর্বাণী পড়া ছাত্রীদের সেট P। ধরি, মোট ছাত্রীর সংখ্যা 100

$$\therefore n(U) = 100$$
 বিচিত্রা পড়া ছাত্রীর সংখ্যা, $n(B) = 100$ এর $60\% = 60$ সন্ধানী পড়া ছাত্রীর সংখ্যা, $n(S) = 100$ এর $50\% = 50$ পূর্বাণী পড়া ছাত্রীর সংখ্যা, $n(P) = 100$ এর $50\% = 50$

বিচিত্রা ও সন্ধানী পড়া ছাত্রীর সংখ্যা, $n(B \cap S) = 100$ এর 30% = 30 বিচিত্রা ও পূর্বাণী পড়া ছাত্রীর সংখ্যা, $n(B \cap P) = 100$ এর 30% = 30

সন্ধানী ও পূর্বাণী পড়া ছাত্রীর সংখ্যা, $n(S \cap P) = 100$ এর 20% = 20 তিনটি পত্রিকাই পড়া ছাত্রীর সংখ্যা, $n(B \cap P \cap S) = 100$ এর 10% = 10

∴ তিনটি পত্রিকার অন্তত একটি পড়ে এমন ছাত্রীর সংখ্যা, $n(B \cup P \cup S) = ?$

 \therefore তিনটির কোনোটিই পড়ে না এমন ছাত্রীর সংখ্যা, $n(U)-n(B\cup P\cup S)=?$ আমরা জানি,

$$n(B \cup P \cup S) = n(B) + n(P) + n(S) - n(B \cap P) - n(B \cap S) - n(S \cap P) + n(B \cap P \cap S)$$
$$= 60 + 50 + 50 - 30 - 30 - 20 + 10$$
$$= 170 - 80 = 90$$

 \therefore কোনো পত্রিকাই পড়ে না এমন ছাত্রীর সংখ্যা = $\mathit{n}(U)$ – $\mathit{n}(B \cup P \cup S)$ = 100 – 90 = 10

সুতরাং শতকরা 10 জন ছাত্রী কোনো পত্রিকাই পড়ে না।

পূর্বাণী পড়া ছাত্রীদের সেট

চিহ্নিত অঞ্চল: শুধু বিচিত্রা ও চিহ্নিত অঞ্চল: শুধু বিচিত্রা ও সন্ধানী পড়া ছাত্রীদের সেট

চিহ্নিত অঞ্চল: শুধু পূৰ্বাণী ও সন্ধানী পড়া ছাত্রীদের সেট

শুধু বিচিত্রা ও পূর্বাণী পড়ে এমন ছাত্রীর শতকরা সংখ্যা

$$= n(B \cap P) - n(B \cap P \cap S) = (30 - 10) = 20$$
 শুধু বিচিত্রা ও সন্ধানী পড়ে এমন ছাত্রীর শতকরা সংখ্যা

$$= n(B \cap S) - n(B \cap P \cap S) = (30 - 10) = 20$$
 শুধু পূর্বাণী ও সন্ধানী পড়ে এমন ছাত্রীর শতকরা সংখ্যা

$$= n(S \cap P) - n(B \cap P \cap S) = (20 - 10) = 10$$

∴ শুধুমাত্র দুটি পত্রিকা পড়ে এমন ছাত্রীর শতকরা সংখ্যা

$$=(20+20+10)=50$$

সূতরাং শতকরা 50 জন ছাত্রী কেবল দুটি পত্রিকা পড়ে।

সমাধান (দ্বিতীয় পদ্ধতি)

মনে করি, সকল ছাত্রীর সেট U, বিচিত্রা পড়া ছাত্রীদের সেট B, সন্ধানী পড়া ছাত্রীদের সেট S এবং পূর্বাণী পড়া ছাত্রীদের সেট P। প্রদত্ত তথ্যগুলো ভেনচিত্রে সাজিয়ে পাই,

ধরি. মোট ছাত্রীর সংখ্যা 100

$$n(U) = a + b + c + d + e + f + g + h = 100 \dots (i)$$

$$n(B) = a + b + c + d = 60 \dots \dots \dots (ii)$$

$$n(S) = b + c + f + g = 50 \dots \dots (iii)$$

$$n(P) = d + c + e + f = 50 \dots \dots (iv)$$

$$n(B \cap S) = b + c = 30 \dots \dots (v)$$

$$n(B \cap P) = c + d = 30 \dots \dots \dots (vi)$$

$$n(P \cap S) = c + f = 20 \dots \dots (vii)$$

$$n(P \cap B \cap S) = c = 10 \dots \dots (viii)$$

$$c = 10$$
 হলে যথাক্রমে (v), (vi) ও (vii) নং হতে পাই,

$$b = 20$$
; $d = 20$; $f = 10$

(ii) নং হতে পাই,
$$a + b + c + d = 60$$

বা,
$$a + 20 + 10 + 20 = 60$$

 $[b, c \circ d$ এর মান বসিয়ে]

বা,
$$a = 60 - 50 = 10$$

$$(iii)$$
 নং হতে পাই, $b+c+f+g=50$

$$41, 20 + 10 + 10 + g = 50$$

বা,
$$g = 50 - 40 = 10$$

(iv) নং হতে পাই,
$$d + c + f + e = 50$$

বা,
$$20 + 10 + 10 + e = 50$$

বা,
$$e = 50 - 40 = 10$$

তিনটি পত্রিকার একটিও পড়েনা এমন ছাত্রীর সংখ্যা h=?অন্তত একটি পত্রিকা পড়ে এমন ছাত্রীর সংখ্যা

$$= a + b + c + d + e + f + g$$

= 10 + 20 + 10 + 20 + 10 + 10 + 10
= 90

∴ 10% ছাত্রী কোনো পত্রিকাই পড়েনা (Ans.)

কেবল দুইটি পত্রিকা পড়ে এমন ছাত্রীর সংখ্যা =b+f+d

$$= 20 + 10 + 20$$

= 50

.. 50% ছাত্রী কেবল দুটি পত্রিকা পড়ে (Ans.)

হিউ
$$A = \{x : x \in R \text{ এবং } x^2 - (a+b)x + ab = 0\}, B = \{1, 2\}$$
 এবং $C = \{2, 4, 5\}$

- ক) A সেটের উপাদানসমূহ নির্ণয় কর।
- খ) দেখাও যে, $P(B \cap C) = P(B) \cap P(C)$ ।
- গ) প্রমাণ কর যে, $A \times (B \cup C) = (A \times B) \cup (A \times C)$ ।

সমাধান:

কৈ দেওয়া আছে,
$$A=\{x:x\in R$$
 এবং $x^2-(a+b)x+ab=0\}$

$$=\{x:x\in R \text{ এবং } x^2-ax-bx+ab=0\}$$

$$=\{x:x\in R \text{ এবং } x(x-a)-b(x-a)=0\}$$

$$=\{x:x\in R \text{ এবং } (x-a)(x-b)=0\}$$

$$=\{a,b\}$$

A সেটের উপাদানসমূহ a ও b

শৈ দেওয়া আছে,
$$B=\{1,2\}$$
 এবং $C=\{2,4,5\}$ $\therefore B\cap C=\{1,2\}\cap\{2,4,5\}=\{2\}$ আবার, $P(B)=\{\{1,2\},\{1\},\{2\},\varnothing\}$

$$\operatorname{GRP}(C) = \{\{2,4,5\}, \{2,4\}, \{2,5\}, \{4,5\}, \{2\}, \{4\}, \{5\}, \varnothing\}$$

বামপক্ষ =
$$P(B \cap C)$$

$$= P({2})$$

$$= \{ \{2\}, \emptyset \}$$

ডানপক্ষ =
$$P(B) \cap P(C)$$

$$= \{\{1,2\},\{1\},\{2\},\varnothing\} \cap \{\{2,4,5\},\{2,4\},\{2,5\},\{4,5\},\{2\},\{4\},\{5\},\varnothing\}\}$$

$$= \{ \{2\}, \emptyset \}$$

সুতরাং বামপক্ষ = ডানপক্ষ

$$\therefore P(B \cap C) = P(B) \cap P(C)$$
 (দেখানো হলো)

া
$$(B \cup C) = \{1, 2\} \cup \{2, 4, 5\}$$

 $= \{1, 2, 4, 5\}$
আবার, $A \times B = \{a, b\} \times \{1, 2\}$
 $= \{(a, 1), (a, 2), (b, 1), (b, 2)\}$
এবং $A \times C = \{a, b\} \times \{2, 4, 5\}$
 $= \{(a, 2), (a, 4), (a, 5), (b, 2), (b, 4), (b, 5)\}$
বামপক্ষ = $A \times (B \cup C)$
 $= \{a, b\} \times \{1, 2, 4, 5\}$
 $= \{(a, 1), (a, 2), (a, 4), (a, 5), (b, 1), (b, 2), (b, 4), (b, 5)\}$

ডানপক্ষ =
$$(A \times B) \cup (A \times C)$$

= $\{(a,1),(a,2),(b,1),(b,2)\} \cup \{(a,2),(a,4),(a,5),(b,2),(b,4),(b,5)\}$
= $\{(a,1),(a,2),(a,4),(a,5),(b,1),(b,2),(b,4),(b,5)\}$
সূতরাং বামপক্ষ = ডানপক্ষ

 $\therefore A \times (B \cup C) = (A \times B) \cup (A \times C)$ (প্রমাণিত)

হি<u>9</u> একটি শ্রেণির 100 জন ছাত্রের মধ্যে 42 জন ফুটবল, 46 জন ক্রিকেট এবং 39 জন দাবা খেলে। এদের মধ্যে 13 জন ফুটবল ও ক্রিকেট, 14 জন ক্রিকেট ও দাবা এবং 12 জন ফুটবল ও দাবা খেলতে পারে। এছাড়া 7 জন কোনো খেলায় পারদর্শী নয়।

- ক. উল্লিখিত তিনটি খেলায় পারদর্শী এমন ছাত্রদের সেট এবং কোনো খেলায় পারদর্শী নয় এমন ছাত্রদের সেট ভেনচিত্রে দেখাও।
- খ. কতজন ছাত্র উল্লিখিত তিনটি খেলায়ই পারদর্শী তা নির্ণয় কর।
- গ. কতজন ছাত্র কেবলমাত্র একটি খেলায় পারদর্শী? কতজন অন্তত দুইটি খেলায় পারদর্শী?

সমাধানঃ

মনে করি, ঐ শ্রেণির ছাত্রদের সেট U, যারা ফুটবল খেলতে পারদর্শী তাদের সেট F, যারা ক্রিকেট খেলতে পারদর্শী তাদের সেট C এবং যারা দাবা খেলতে পারদর্শী তাদের সেট H।

ভেনচিত্রে কালো চিহ্নিত অংশ দ্বারা তিনটি খেলাই পারদর্শী ছাত্রদের সেট এবং তিনটি বৃত্তের বাইরে কিন্তু আয়তক্ষেত্রের ভিতরের ডট (.) চিহ্নিত অংশ দ্বারা কোনো খেলায় পারদর্শী নয় এমন ছাত্রদের সেট নির্দেশ করে।

পে দেওয়া আছে, মোট ছাত্রের সংখ্যা, n(U) = 100।
ফুটবল খেলায় পারদর্শী ছাত্রের সংখ্যা, n(F) = 42।
ক্রিকেট খেলায় পারদর্শী ছাত্রের সংখ্যা, n(C) = 46।
দাবা খেলায় পারদর্শী ছাত্রের সংখ্যা, n(H) = 39।
ফুটবল ও ক্রিকেট উভয় খেলায় পারদর্শী ছাত্রের সংখ্যা, $n(F \cap C) = 13$ ।
ক্রিকেট ও দাবা উভয় খেলায় পারদর্শী ছাত্রের সংখ্যা, $n(C \cap H) = 14$ ।
ফুটবল ও দাবা উভয় খেলায় পারদর্শী ছাত্রের সংখ্যা, $n(F \cap H) = 12$ ।
থেহেতু 7 জন ছাত্র কোনো খেলাতেই পারদর্শী নয়, অন্তত একটি খেলায় পারদর্শী
এমন ছাত্রের সংখ্যা, $n(F \cup C \cup H) = (100 - 7)$ জন = 93 জন।
∴ তিনটি খেলাতেই পারদর্শী ছাত্রের সংখ্যা, $n(F \cap C \cap H) = ?$

আমরা জানি.

$$n(F \cup C \cup H) = n(F) + n(C) + n(H) - n(F \cap C) - n(C \cap H) - n(F \cap H) + n(F \cap C \cap H)$$

 $\exists 1, 93 = 42 + 46 + 39 - 13 - 14 - 12 + n(F \cap C \cap H)$
 $\exists 1, n(F \cap C \cap H) = 93 - 88$
∴ $n(F \cap C \cap H) = 5$

সুতরাং তিনটি খেলায় পারদর্শী ছাত্রদের সংখ্যা = 5 **Ans:** 5 জন

গ

চিহ্নিত অঞ্চল: শুধু ফুটবলে পারদর্শী ছাত্রদের সেট

চিহ্নিত অঞ্চল: শুধু ক্রিকেটে পারদর্শী ছাত্রদের সেট

চিহ্নিত অঞ্চল: শুধু দাবাতে পারদর্শী ছাত্রদের সেট

ভেনচিত্র থেকে পাই.

শুধুমাত্র ফুটবলে পারদর্শী ছাত্রের সংখ্যা

$$= n(F) - n(F \cap C) - n(F \cap H) + n(F \cap C \cap H)$$

= 42 - 13 - 12 + 5 = 47 - 25 = 22

শুধুমাত্র ক্রিকেটে পারদর্শী ছাত্রের সংখ্যা

$$= n(C) - n(F \cap C) - n(C \cap H) + n(F \cap C \cap H)$$

= 46 - 13 - 14 + 5 = 51 - 27 = 24

শুধুমাত্র দাবাতে পারদর্শী ছাত্রের সংখ্যা

$$= n(H) - n(C \cap H) - n(F \cap H) + n(F \cap C \cap H)$$

= 39 - 14 - 12 + 5 = 44 - 26 = 18

∴ একটি খেলায় পারদর্শী ছাত্রের সংখ্যা = 22 + 24 + 18 = 64 আবার, ফুটবল ও ক্রিকেটে পারদর্শী ছাত্রের সংখ্যা

$$= n(F \cap C) - n(F \cap C \cap H) = 13 - 5 = 8$$

('খ' নং হতে মান বসিয়ে]

ক্রিকেট ও দাবাতে পারদর্শী ছাত্রের সংখ্যা

=
$$n(C \cap H) - n(F \cap C \cap H) = 14 - 5 = 9$$

ফুটবল ও দাবাতে পারদর্শী ছাত্রের সংখ্যা

$$= n(F \cap H) - n(F \cap C \cap H) = 12 - 5 = 7$$

- ∴ দুটি খেলায় পারদর্শী ছাত্রের সংখ্যা = 8 + 9 + 7 = 24 আবার, তিনটি খেলাতেই পারদর্শী ছাত্রের সংখ্যা = 5
- ∴ অন্তত দুটি খেলায় পারদর্শী ছাত্রের সংখ্যা = 24 + 5 = 29
- .. শুধুমাত্র একটি খেলায় পারদর্শী 64 জন এবং অন্তত দুটি খেলায় পারদর্শী 29 জন।

Ans: 64 জন এবং 29 জন।

খ ও গ এর বিকল্প সমাধান

মনে করি, সকল ছাত্রের সেট U, ফুটবল খেলা ছাত্রদের সেট F, ক্রিকেট খেলা ছাত্রদের সেট C এবং দাবা খেলা ছাত্রদের সেট Hপ্রদত্ত তথ্যগুলোকে ভেনচিত্রে সাজিয়ে পাই.

শর্তানুসারে,

$$n(U) = a + b + c + d + e + f + g + h = 100 \dots (i)$$

$$n(F) = a + b + c + d = 42 \dots \dots (ii)$$

$$n(C) = b + c + e + f = 46 \dots \dots (iii)$$

$$n(H) = d + c + f + g = 39 \dots (iv)$$

$$n(F \cap C) = b + c = 13 \dots (v)$$

$$n(C \cap H) = c + f = 14 \dots \dots (vi)$$

$$n(F \cap H) = c + d = 12 \dots \dots (vii)$$

এবং h=7

তিনটি খেলায় পারদর্শী এমন ছাত্রের সেট, c=?

(i) ও (ii) নং হতে পাই,
$$42 + e + f + g + 7 = 100$$

বা,
$$e + f + g = 100 - (42 + 7)$$

বা,
$$e + f + g = 100 - 49 = 51$$
 ... (viii)

(iii) ও (v) নং হতে পাই, 13 + e + f = 46

$$4 + f = 46 - 13 = 33 \dots (ix)$$

তাহলে (viii) নং দাঁড়ায়, 33 + g = 51

বা,
$$g = 51 - 33 = 18$$

(iv) নং দাঁড়ায়, 12 + f + 18 = 39

বা,
$$f = 39 - 30 = 9$$

(vi) f = 9 হলে (vi) নং হতে পাই, c = 14 - 9 = 5

তিনটি খেলায় পারদর্শী এমন ছাত্রের সেট c=5

গ 'খ' নং এ প্রাপ্ত তথ্যগুলো ব্যবহার করে পাই

$$c = 5$$
 হলে (vii) নং হতে, $d = 12 - 5 = 7$

$$c = 5$$
 হলে (v) নং হতে, $b = 13 - 5 = 8$

$$f = 9$$
 হলে (ix) নং হতে, $e = 33 - 9 = 24$

আবার, g = 18 এবং f = 9

(ii) নং হতে.
$$a+b+c+d=42$$

বা,
$$a + 11 + 2 + 7 = 42$$

বা,
$$a = 42 - 20 = 22$$

শুধুমাত্র একটি খেলায় পারদর্শী এমন ছাত্রের সেট = a + g + e

$$= 22 + 18 + 24$$

= 64

অন্তত দুইটি খেলায় পারদর্শী এমন ছাত্রের সেট = b + d + f + c

$$= 8 + 7 + 9 + 5$$

= 29

অতএব, কেবল একটি খেলায় পারদর্শী 64 জন এবং অন্তত দুইটি খেলায় পারদর্শী 29 জন। (Ans.)

২৮ P(∅), P({∅}) সেট নির্ণয় কর।

সমাধানঃ কোনো সেটের উপাদান সংখ্যা শূন্য বোঝাতে সেটের ভাষায় 🛭 চিহ্নটি ব্যবহৃত হয়।

অতএব, কোনো সেট $A=\emptyset$ হলে বলা যায়, A সেটের সকল উপাদান নিয়ে গঠিত শক্তি সেট, $P(A) = P(\emptyset) = \{\emptyset\}$

$$P(\emptyset) = \{\emptyset\}$$
 (Ans.)

আবার, কোনো সেট $B = \{\emptyset\}$ হলে বলা যায়, B সেটের সকল উপাদান নিয়ে গঠিত শক্তি সেট, $P(B) = P(\{\emptyset\}) = \{\emptyset, \{\emptyset\}\}$

$$\therefore P(\{\emptyset\}) = \{\emptyset, \{\emptyset\}\} \text{ (Ans.)}$$

📣 দৃষ্টি আকর্ষণ: (i) সাবধান!!! তোমাদের মনে হতে পারে, 🛭 এবং $\{\emptyset\}$ উভয় সমান। সেক্ষেত্রে $P(\{\emptyset\}) = \{\emptyset, \{\emptyset\}\} =$ {∅} হয়। কিন্তু প্রকৃতপক্ষে তা সঠিক নয়। নিম্নে ∅ এবং ⟨∅⟩ এর প্রকৃত রূপ তুলে ধরা হলো:

- arnothing: arnothing হলো ফাঁকা সেট। arnothing কে $\{\}$ দ্বারাও প্রকাশ করা হয়। এর $(\emptyset$ সেটের) উপাদান সংখ্যা শূন্য (0)।
- $\{oldsymbol{arnothing}\}: \{oldsymbol{arnothing}\}$ হলো এমন একটি মোত্র উপাদান আছে এবং সেটি হলো \varnothing । সুতরাং এর ($\{\varnothing\}$ সেটের) উপাদান সংখ্যা 1।
- (ii) \varnothing কে $\{\ \}$ এবং $P(\{\varnothing\})$ কে $P(P(\varnothing))$ লিখা যায় । এ সংক্রান্ত আরও কয়েকটি রূপ তুলে ধরা হলো:
- $P(\varnothing)=\{\varnothing\}$ বা $\{\{\ \}\}$ অর্থাৎ $P(\varnothing)$ এর উপাদান সংখ্যা $2^0=1$
- $P(P(\emptyset)) = P(\{\emptyset\}) = \{\emptyset, \{\emptyset\}\} \text{ at } \{\{\}, \{\{\}\}\}\}$ অর্থাৎ $P(P(\emptyset))$ এর উপাদান সংখ্যা $2^1=2$
- $P(P(P(\varnothing))) = P(P(\{\varnothing\})) = P(\{\varnothing, \{\varnothing\}\}) = \{\varnothing, \{\varnothing\}, \{\{\varnothing\}\}, \{\varnothing, \{\varnothing\}\}\})$ বা {{},{{}},{{}}}

অর্থাৎ $P(P(P(\emptyset)))$ এর উপাদান সংখ্যা $2^2 = 4$

♦♦ অনুশীলনীর ২৮নং প্রশ্নের আলোকে সূজনশীল প্রশ্নোত্তর ♦♦

 $A = \{x : x$ মৌলিক সংখ্যা এবং $x < 7\}$ এবং $B = \{x : x \in \mathbb{N}, x < 2\}$

- ক. A সেটকে তালিকা পদ্ধতিতে প্রকাশ কর।
- খ. A ∩ B निर्पय़ कत ।
- গ. P(A ∩ B) এবং P(P(P(A ∩ B))) নির্ণয় কর।

নিজে নিজে চেষ্টা কর।

(₹) {2, 3, 5}; (₹) Ø;

(1) $\{\emptyset, \{\emptyset\}, \{\{\emptyset\}\}, \{\emptyset, \{\emptyset\}\}\}\}$

এক গ্রামে এক মিস্ত্রী ছিল। সে তাদের ঘর তৈরি করতো যারা নিজেরা নিজেদের ঘর তৈরি করতো না। মিস্ত্রীর ঘর কে তৈরি করতো?

সমাধান: প্রশ্নে উল্লেখ রয়েছে "এক গ্রামে এক মিস্ত্রী ছিল"। ঐ গ্রামে একজন মিস্ত্রী ছাড়া অপর কোনো মিস্ত্রী ছিল কিনা সে বিষয়ে সুনির্দিষ্ট কোনো সিদ্ধান্ত নেওয়া যায় না। তাই এক্ষেত্রে দুটি বিষয় হতে পারে।

- (ক) গ্রামটিতে একাধিক মিস্ত্রী ছিল অর্থাৎ গ্রামটিতে ঐ মিস্ত্রী ছাড়াও আরও মিস্ত্রী ছিল এবং (খ) গ্রামটিতে শুধুমাত্র ঐ একজন মিস্ত্রীই ছিল।
- ক) যদি গ্রামটিতে একাধিক মিস্ত্রী বিদ্যমান থাকে: গ্রামটিতে একাধিক মিস্ত্রী থাকলে, এক মিস্ত্রীর ঘর অন্য মিস্ত্রী বানালে সমস্যাটির সমাধান হয়। সেক্ষেত্রে কোনো মিস্ত্রীই তার নিজের ঘর নিজে তৈরি করতে পারবে না।
- খ) যদি গ্রামটিতে শুধুমাত্র ঐ একজন মিস্ত্রীই বিদ্যমান থাকে: এক্ষেত্রেও আবার দুটি ঘটনা ঘটতে পারে.

যথা: (১) মিস্ত্রী নিজেই নিজের ঘর তৈরি করে অথবা (২) মিস্ত্রী নিজেই নিজের ঘর তৈরি করে না।

১। যদি মিন্ত্রী নিজেই নিজের ঘর তৈরি করে: প্রশানুসারে, মিন্ত্রী শুধুমাত্র তাদের ঘর তৈরি করে যারা নিজেদের ঘর

নিজেরা তৈরি করে না। তাই যদি সে নিজের ঘর নিজে তৈরি করে তবে সে আলোচ্য মিস্ত্রী হওয়ার যোগ্যতা হারাবে।

২। যদি মিস্ত্রী নিজেই নিজের ঘর তৈরি না করে:

বিপরীতক্রমে যদি মিস্ত্রী নিজের ঘর নিজে তৈরি না করে, তবে সে এমন শ্রেণিতে পড়ে, যাদের ঘর মিস্ত্রী তৈরি করে দেয় এবং সেক্ষেত্রে মিস্ত্রী হিসেবে তাকে তার নিজের ঘর অবশ্যই তৈরি করতে হবে। সূতরাং এটিও সম্ভবপর নয়।

উপর্যুক্ত আলোচনা থেকে বলা যায়, "মিস্ত্রীর ঘর কে তৈরি করতো?" - এই প্রশ্নটির সুনির্দিষ্ট কোনো উত্তর প্রদান করা সম্ভব নয়।

(খ) অংশের বিকল্প সমাধান

মনে করি, "যারা নিজেদের ঘর নিজেরা তৈরি করে" তাদের সেট A এবং "যারা নিজেদের ঘর নিজেরা তৈরি করে না" তাদের সেট B। প্রশ্নের প্রদন্ত শর্তানুসারে মিস্ত্রী কেবল মাত্র B সেটের সদস্যদের ঘর তৈরি করতে পারে।

- ১। যদি মিস্ত্রী A সেটের সদস্য হয় (মিস্ত্রী নিজেই নিজের ঘর তৈরি করে): প্রশ্নানুসারে, মিস্ত্রী শুধুমাত্র B সেটের সদস্যদের ঘর তৈরি করতে পারে। তাই যদি সে A সেটের সদস্য হয় এবং নিজের ঘর নিজেই তৈরি করে তবে সে আলোচ্য মিস্ত্রী হওয়ার যোগ্যতা হারাবে।
- ২। যদি মিন্ত্রী B সেটের সদস্য হয় (মিন্ত্রী নিজের দির তৈরি না করে): যদি মিন্ত্রী B সেটের সদস্য হয় অর্থাৎ নিজের ঘর নিজে তৈরি না করে, তবে সে এমন শ্রেণিতে পড়ে, যাদের ঘর মিন্ত্রী তৈরি করে দেয় এবং সেক্ষেত্রে মিন্ত্রী হিসেবে তাকে তার নিজের ঘর অবশ্যই তৈরি করতে হবে। তাহলে সে আবার B সেট থেকে A সেটের অন্তর্ভুক্ত হয়ে যায়। সূতরাং এটিও সম্ভবপর নয়।

উপর্যুক্ত আলোচনা থেকে বলা যায়, "মিস্ত্রীর ঘর কে তৈরি করতো?" - এই প্রশ্নটির সুনির্দিষ্ট কোনো উত্তর প্রদান করা সম্ভব নয়।

🖂 লক্ষণীয়:

- প্রদন্ত সমাধানের 'খ' অংশটি গণিতে রাসেল'স প্যারাডক্স (Russell's Paradox) হতে উছুত। গণিতের প্রায় সকল শাখায় সেট তত্ত্ব বিষয়টি ব্যবহৃত হয় এবং অনেক গাণিতিক সূত্র/প্রমাণ, সেট তত্ত্বের উপর ভিত্তি করে গড়ে উঠেছে। রাসেল'স প্যারাডক্স (Russell's Paradox) গণিতের সেট তত্ত্বের কিছু ভিত্তিকে নতুন করে সংজ্ঞায়িত করার বিষয়টি তুলে নিয়ে আসে 1901 সালে। তাই এই প্যারাডক্স প্রকাশিত হওয়ার পর তৎকালীন গণিতবিদদের অনেকেই বিভিন্ন গাণিতিক সমাধানের স্থিতিশীলতা বা সব ক্ষেত্রে প্রযোজ্যতা নিয়ে সন্দিহান হয়ে পড়েন। তাই সেট তত্ত্বকে তখন থেকেই নতুনভাবে সংজ্ঞায়িত করার অনেক প্রয়াস চালানো হয় যা এখানো চলছে।
- Russell's Paradox হতে উছুত অনুরূপ আরেকটি Paradox রয়েছে যাকে Barber Paradox বলা হয়। এটি নিম্নরূপ:
 এক গ্রামে এক নাপিত ছিল। সে তাদেরই দাঁড়ি কাটে যারা নিজেদের দাঁড়ি নিজেরা কাটে না। নাপিতের দাঁড়ি কি নাপিত নিজে কাটতো?

তo $A = \{x : x \not\in A\}$ । সেট A নিয়ে বিস্তৃত আলোচনা কর।

সমাধান: $A = \{x : x \notin A\}$

প্রদন্ত সেটের শর্ত অনুযায়ী, x এর মানসমূহ A সেটের সদস্য হবে কিন্তু x, A এর উপাদান হতে পারবে না। এখন, x এর এমন কোনো উপাদান নেই যা A সেটের সদস্য কিন্তু A এর উপাদান নয়। সেক্ষেত্রে মনে হতে পারে A সেটিটি একটি ফাঁকা সেট। কিন্তু সেটিও এক্ষেত্রে প্রযোজ্য নয়।

কেননা $A=\varnothing$ হলে, $\varnothing=\{x:x\not\in\varnothing\}$ হয়, যা কোনো অর্থ বহন করে না। তাই A সেটটি ফাঁকা সেট (\varnothing) হতে পারে না।

আবার, যদি প্রশ্ন করা হয় সেট A আদৌ বিদ্যমান কিনা সেক্ষেত্রে 'হ্যা' বা 'না' কোনো সুনির্দিষ্ট উত্তর দেওয়া যাবে না ।

সেট: সেটতত্ত্ব অনুসারে বস্তু বা চিন্তা জগতের যেকোনো সুনির্ধারিত সংগ্রহকে সেট বলা হয়। এ সংজ্ঞার আলোকে মূল কথায় আসি।

বাস্তব সংখ্যার সেটকে আমরা R দিয়ে প্রকাশ করি। এ সেটে অসংখ্য উপাদান আছে যার প্রত্যেকটিই একটি বাস্তব সংখ্যা।

এখন যদি প্রশ্ন করা হয়, বাস্তব সংখ্যার সেটের প্রথম উপাদান কোনটি? এর উত্তর বলা বড়ই মুশকিল।

তাহলে প্রশ্ন হলো বাস্তব সংখ্যার সেট কিভাবে সুনির্ধারিত বস্তুর সংগ্রহ হলো যার প্রথম উপাদান সম্পর্কে আমাদের ধারণা নেই?

বিংশ শতাব্দীর শুরুতে বার্ট্রান্ড রাসেল ও আরও অনেকে এসব বিরোধপূর্ণ বিষয় তুলে ধরেন যা গণিতে Paradox নামে পরিচিত। তাঁদের এ রকম প্যারাডক্স (Paradox) উদ্ভাবনের মূল বিষয় ছিল যে, সেটের সংজ্ঞাটি যথার্থ নয়। একে নতুনভাবে সংজ্ঞায়িত করতে হবে। সেটের এই যৌজিক সংজ্ঞা প্রদানের প্রয়াস তখন থেকেই চলে আসছে এবং এখনও চলছে।

পাঠ্যবইয়ের কাজের সমাধান

কাজ

পাঠ্যবই পৃষ্ঠা-২

 $S = \{1, 4, 9, 16, 25, 36, 49, 64, 81, 100\}$; $S = \{x : x, 100$ থেকে বড় নয় এমন <u>স্বাভাবিক</u> সংখ্যা\} উপরের আলোচনায় ক) S যে সেট তা ব্যাখ্যা কর। খ) S কে অন্যভাবে প্রকাশ কর।

[সংশোধিত]

সমাধান:

আমরা জানি, বাস্তব জগত বা চিস্তা জগতের বস্তুর যে কোনো সুনির্ধারিত সংগ্রহকে সেট বলা হয়। সেটকে সাধারণত ইংরেজি বড় হাতের অক্ষর A, B, C, S, P, Y, Z ইত্যাদি প্রতীক দ্বারা নির্দেশ করা হয়। সেটকে প্রকাশের জন্য মূলত দুটি পদ্ধতি রয়েছে যথা: তালিকা পদ্ধতি ও সেট গঠন পদ্ধতি।

উপরোক্ত S সেটকে তালিকা পদ্ধতি এবং সেট গঠন উভয় পদ্ধতিতে প্রকাশ করে সেটের উপাদানগুলো সুনির্দিষ্টভাবে নির্ধারণ করা হয়েছে। সুতরাং S একটি সেট।

য S কে অন্যভাবে প্রকাশ করা হলো:

 $S=\{x:x$ পূৰ্ণবৰ্গ সংখ্যা এবং $1\leq x\leq 100\}$ অথবা $S=\{x:\sqrt{x}\in Z$ এবং $1\leq x\leq 100\}$ ১৯ বি.দ্র: পাঠ্যবইতে উল্লিখিত S সেটের তালিকা পদ্ধতিতে প্রকাশিত রূপ = {1, 4, 9, 16, 25, 36, 49, 64, 81, 100} (i) এবং সেট গঠন পদ্ধতিতে প্রকাশিত রূপ

 $=\{x:x,100$ থেকে বড় নয় এমন পূর্ণবর্গ সংখ্যা $\}$ সেট গঠন পদ্ধতিতে প্রকাশিত এই রপটিকে তালিকা পদ্ধতিতে প্রকাশ করলে পাওয়া যায় $=\{0,1,4,9,16,25,36,49,64,81,100\}$... (ii) (i) ও (ii) নং রূপ দুটি এক নয়। (ii) নং এ একটি উপাদান (0) বেশি রয়েছে। অর্থাৎ পাঠ্যবইতে প্রদন্ত রূপ দুটিতে ভূল রয়েছে। স্প্রাব্য সংশোধন: সেট গঠন পদ্ধতিতে 'পূর্ণবর্গ সংখ্যা' অংশটির পরিবর্তে 'স্বাভাবিক সংখ্যা' উল্লেখ করলেই S সেটের প্রকাশিত রূপদ্বয় সঠিক হয়। তাই এক্ষেত্রে সেট গঠন পদ্ধতিতে S সেটের সংশোধিত সম্ভাব্য রূপটি হবে ' $\{x:x,100\}$ থেকে বড় নয় এমন স্বাভাবিক সংখ্যা $\}$ '।

কাজ

পাঠ্যবই পৃষ্ঠা-৩

মনে কর $X = \{x : x পূর্ণ সংখ্যা\}$ ।

- ক) X কে সার্বিক সেট ধরে, X এর তিনটি উপসেট বর্ণনা কর।
- খ) X এর দুইটি উপসেট বর্ণনা কর যাদের কোনোটিই অপরটির উপসেট নয়।

সমাধান:

∴ সার্বিক সেট X এর তিনটি উপসেট হলো:

 $A = \{x : x$ জোড় স্বাভাবিক সংখ্যা $\}$

 $B = \{x : x$ ঋণাতাক পূর্ণ সংখ্যা $\}$

 $C = \{x : x$ ধনাতাক পূর্ণ সংখ্যা $\}$

বি,দ্র: অসংখ্য উত্তর সম্ভর্ব।

সার্বিক সেট X অর্থাৎ পূর্ণ সংখ্যা সেটে দুইটি উপসেট হলো ধনাত্মক পূর্ণ সংখ্যার সেট এবং ঋণাত্মক পূর্ণ সংখ্যার সেট। কিন্তু ধনাত্মক পূর্ণসংখ্যার সেট ও ঋণাত্মক পূর্ণসংখ্যার সেট কোনোটিই পরস্পরের উপসেট নয়।

 \therefore একটি অপরটির উপসেট নয় X এর এমন দুটি উপসেট হলো:

 $p = \{x : x ধনাত্মক পূর্ণ সংখ্যা\}$

 $q = \{x : x ঋণাত্মক পূর্ণ সংখ্যা\}$

এখানে, $p \subseteq X$ এবং $q \subseteq X$ এবং $p \not\subseteq q$

ক) $U=\{1,2,3,4,5,6,7,8,9,10\}$ হলে নিচের সেটগুলো তালিকা পদ্ধতিতে লেখ:

(3) $A = \{x : x \in U, 5x > 37\}$

(a) $C = \{x : x \in U, 6 < 2x < 17\}$

 $(3) B = \{x : x \in U, x + 5 < 12\}$

(8) $D = \{x : x \in U, x^2 < 37\}$

সমাধান:

কাজ

ে দেওয়া আছে, $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$

 $A = \{x : x \in U, 5x > 37\}$

এখানে, U এর ঐ সকল সদস্য x, A এর সদস্য হবে যাতে $5 \otimes x$ এর গুণফল 37 অপেক্ষা বড় হবে।

x=1 হলে $5x=5\times 1=5$; যা প্রদত্ত শর্ত পূরণ করে না

x=2 হলে $5x=5\times 2=10$, যা প্রদত্ত শর্ত পূরণ করে না

x = 3 হলে $5x = 5 \times 3 = 15$; যা প্রদত্ত শূরণ করে না

x = 4 হলে $5x = 5 \times 4 = 20$; যা প্রদন্ত শর্ত পূরণ করে না

x = 5 হলে $5x = 5 \times 5 = 25$; যা প্রদন্ত শর্ত পূরণ করে না x = 6 হলে $5x = 5 \times 6 = 30$; যা প্রদন্ত শর্ত পূরণ করে না

x=7 হলে $5x=5\times7=35$; যা প্রদত্ত শর্ত পূরণ করে না

x / 2015x 5 x / 55, 31410 19

x = 8 হলে $5x = 5 \times 8 = 40$

x = 9 হলে $5x = 5 \times 9 = 45$

x = 10 হলে $5x = 5 \times 10 = 50$

শর্তানুসারে গ্রহণযোগ্য মানসমূহ 8, 9, 10

∴ নির্ণেয় সেট, $A = \{8, 9, 10\}$ (Ans.)

♠ বি.দ্র: সার্বিক সেট U এবং A, B, C, D প্রত্যেকেই সার্বিক সেটের উপসেট। তাই সার্বিক সেট বর্হিভূত কোনো উপাদান A, B, C, D কোনো সেটেই থাকবে না।

(১) এর দ্বিতীয় পদ্ধতি

দেওয়া আছে, $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$

$$A = \{x : x \in U, 5x > 37\}$$
$$= \{x : x \in U, x > \frac{37}{5}\}$$

$$= \{x : x \in U, x > 7.4\}$$

7.4 অপেক্ষা বড় সার্বিক সেটের উপাদানগুলো হলো $8,9 \le 10$

 $A = \{8, 9, 10\}$

২ দেওয়া আছে, $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$

$$B = \{x : x \in U, 5 + x < 12\}$$
$$= \{x : x \in U, x < 12 - 5\}$$
$$= \{x : x \in U, x < 7\}$$

7 থেকে ছোট সার্বিক সেটের উপাদানগুলো হলো 1, 2, 3, 4, 5, 6

$$B = \{1, 2, 3, 4, 5, 6\}$$

📣 বি.দ্র: এই প্রশ্নটিকে '১' নং এ বর্ণিত ১ম পদ্ধতি প্রয়োগ করে সমাধান করা যায়। আবার নিম্লোক্ত ২, ৩, ৪ প্রশ্নগুলোও একইভাবে সমাধান করা যায়।

ত দেওয়া আছে, $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$

$$C = \{x : x \in U, 6 < 2x < 17\}$$

$$= \{x : x \in U, \frac{6}{2} < x < \frac{17}{2}\}$$

$$= \{x : x \in U, 3 < x < 8.5\}$$

∴ 3 থেকে বড় কিন্তু 8.5 থেকে ছোট সার্বিক সেটের সদস্যগুলো হলো 4, 5, 6, 7, 8

$$C = \{4, 5, 6, 7, 8\}$$

8 দেওয়া আছে, $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$

$$D = \{x : x \in U, x^2 < 37\}$$

= \{x : x \in U, x < \sqrt{37}\}
= \{x : x \in U, x < 6.082\}

6.082 থেকে ছোট সার্বিক সেটের উপাদানগুলো হলো 1, 2, 3, 4, 5, 6 $D = \{1, 2, 3, 4, 5, 6\}$

খ) $U=\{x:x\in Z^+,\, 1\leq x\leq 20\}$ হলে নিচের সেটগুলো তালিকা পদ্ধতিতে লেখ:

(১)
$$A = \{x : x, 2$$
 এর গুণিতক $\}$

(২) $B = \{x : x, 5 \text{ এর গুণিতক}\}$

(৩) $C = \{x : x, 10 \text{ এর গুণিতক}\}$

প্রদত্ত তথ্যের আলোকে $C\subset A, B\subset A, C\subset B$ এর কোনগুলো সত্য বা মিথ্যা বল।

সমাধান: আমরা জানি, সকল ধনাতাক পূর্ণ সংখ্যার সেট Z^+

$$\therefore Z^{+} = \{1, 2, 3, \dots \}$$

দেওয়া আছে, $U = \{x : x \in Z^+, 1 \le x \le 20\}$

$$U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20\}$$

 $a \quad A = \{x : x, 2 \text{ এর গুণিতক}\}$

2 দ্বারা বিভাজ্য সকল সংখ্যাই 2 এর গুণিতক, যেহেতু $A \subset U$

$$A = \{2, 4, 6, 8, 10, 12, 14, 16, 18, 20\}$$

 $b \quad B = \{x : x, 5 \text{ এর গুণিতক}\}$

5 দ্বারা বিভাজ্য সকল সংখ্যাই 5 এর গুণিতক, যেহেতু $B \subset U$

 $B = \{5, 10, 15, 20\}$

 $C = \{x : x, 10 \text{ এর গুণিতক}\}$

10 দ্বারা বিভাজ্য সকল সংখ্যাই 10 এর গুণিতক, যেহেতু $C \subset U$ $\therefore C = \{10, 20\}$

গ) যদি $A = \{a, b, c, d, e\}$ হয়, তবে P(A) নির্ণয় কর।

দিতীয় অংশ: (প্রদত্ত তথ্যের আলোকে সত্য-মিথ্যা যাচাই) এখানে, $A = \{2, 4, 6, 8, 10, 12, 14, 16, 18, 20\}$

$$B = \{5, 10, 15, 20\}$$

$$C = \{10, 20\}$$

 $C \subset A$ এর অর্থ হলো C সেটের সকল উপাদান A সেটের অন্তর্ভুক্ত এবং n(C) < n(A)

অর্থাৎ C, A এর প্রকৃত উপসেট। এখন,

C সেটের সকল উপাদান A সেটের সদস্য এবং C এর সদস্য সংখ্যা A থেকে কম।

 $\therefore C \subset A$ সত্য

B সেটের সকল উপাদান A সেটের সদস্য নয় অর্থাৎ $B,\,A$ এর প্রকৃত উপসেট নয়।

 $\therefore B \subset A$ মিথ্যা

C সেটের সকল উপাদান B সেটের সদস্য এবং সেটের উপাদান সংখ্যা B সেট হতে কম। অর্থাৎ C,B এর প্রকৃত উপসেট।

 $\therefore C \subset B$ সত্য

সমাধান: এখানে, $A = \{a, b, c, d, e\}$

A এর শক্তি সেট অর্থাৎ A সেটের সকল উপসেটের সেট-ই হলো P(A)।

 $\therefore P(A) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{d\}, \{e\}, \{a, b\}, \{a, c\}, \{a, d\}, \{a, e\}, \{b, c\}, \{b, d\}, \{b, e\}, \{c, d\}, \{c, e\}, \{d, e\}, e\}$ $\{a, b, c\}, \{a, b, d\}, \{a, b, e\}, \{a, c, d\}, \{a, c, e\}, \{a, d, e\}, \{b, c, d\}, \{b, c, e\}, \{b, d, e\}, \{c, d, e\}$ $\{a, b, c, d\}, \{a, b, c, e\}, \{a, b, d, e\}, \{a, c, d, e\}, \{b, c, d, e\}, \{a, b, c, d, e\}\}$ (Ans.)

কাজ

পাঠ্যবই পৃষ্ঠা-৫

ক) যদি $A=\{1,2,3\},$ $B=\{1,2\},$ $C=\{2,3\}$ এবং $D=\{1,3\}$ হয়, তবে দেখাও যে, $P(A)=\{A,B,C,D,\{1\},\{2\},\{3\},\varnothing\}$

সমাধান: দেওয়া আছে, $A = \{1, 2, 3\}, B = \{1, 2\}, C = \{2, 3\}$ এবং $D = \{1, 3\}$

$$\therefore P(A) = \{\{1, 2, 3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1\}, \{2\}, \{3\}, \emptyset\}$$

যেহেতু,
$$A = \{1, 2, 3\}, B = \{1, 2\}, C = \{2, 3\}, D = \{1, 3\}$$

$$P(A) = \{A, B, C, D, \{1\}, \{2\}, \{3\}, \emptyset\}$$
 (rewlind seen)

খ) যদি $A = \{1, 2\}$ এবং $B = \{2, 5\}$ হয়, তবে দেখাও যে,

(3) $P(A) \cap P(B) = P(A \cap B)$,

(1) $P(A) \cup P(B) \neq P(A \cup B) +$

সমাধানঃ

দেওয়া আছে,
$$A=\{1,2\}$$
 এবং $B=\{2,5\}$ $\therefore P(A)=\{\{1,2\},\{1\},\{2\},\varnothing\}$ এবং $P(B)=\{\{2,5\},\{2\},\{5\},\varnothing\}$ বামপক্ষ $=P(A)\cap P(B)$ $=\{\{1,2\},\{1\},\{2\},\varnothing\}\cup\{\{2,5\},\{2\},\{5\},\varnothing\}$ আবার, $A\cap B=\{1,2\}\cap\{2,\emptyset\}$ ডানপক্ষ $=P(A\cap B)=\{\{2\},\varnothing\}$ \therefore বামপক্ষ $=$ ডানপক্ষ

- $\therefore P(A) \cap P(B) = P(A \cap B)$ (challent seen)

থ বামপক্ষ = $P(A) \cup P(B)$ $= \{\{1,2\},\{1\},\{2\},\emptyset\} \cup \{\{2,5\},\{2\},\{5\},\emptyset\}$ $= \{\{1, 2\}, \{2, 5\}, \{1\}, \{2\}, \{5\}, \emptyset\}$ আবার, $A \cup B = \{1, 2\} \cup \{2, 5\}$ $= \{1, 2, 5\}$ ডানপক্ষ = $P(A \cup B)$ = {{1, 2, 5}, {1, 2}, {1, 5}, {2, 5}, $\{1\}, \{2\}, \{5\}, \emptyset\}$

∴ বামপক্ষ ≠ ডানপক্ষ

 $\therefore P(A) \cup P(B) \neq P(A \cup B)$ (দেখানো হলো)

♦♦ পাঠ্যবই পৃষ্ঠা ৫ নং অনুশীলনমূলক কাজের প্রশ্নের আলোকে সূজনশীল প্রশ্নোত্তর ♦♦

 $A = \{x : x \in R \text{ এবং } x^2 - 9x + 20 = 0\}, B = \{5, 6\}$ এবং

 $C = \{x : x$ মৌলিক সংখ্যা এবং $6 \le x \le 12\}$

- ক. A সেটকে তালিকা পদ্ধতিতে প্রকাশ কর।
- খ. P(B ∪ C) এর উপাদান সংখ্যা কত লিখ।
- গ. প্রমাণ কর যে, $P(A) \cap P(B) \neq P(A \cup B)$.

নিজে নিজে চেষ্টা কর। (4) A = $\{4, 5\}$; (4) 16

কাজ

> পাঠ্যবই পৃষ্ঠা-৫-৬

সার্বিক সেট $U=\{0,1,2,3,4,5,6,7,8,9\}$ এর দুটি উপসেট $A=\{x:x$ মৌলিক সংখ্যা $\}$ এবং $B=\{x:x$ বিজোড় সংখ্যা $\}$ । উপরের উদাহরণের সেটগুলোকে ভেন চিত্রে দেখাও।

সমাধান: দেওয়া আছে, $U = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$ $A = \{x : x$ মৌলিক সংখ্যা $\}$ এবং $B = \{x : x$ বিজোড় সংখ্যা $\}$ যেহেতু, $A \subseteq U$ অতএব, $A = \{2, 3, 5, 7\}$ যেহেতু, $B \subset U$ অতএব, $B = \{1, 3, 5, 7, 9\}$ $A \cap B = \{3, 5, 7\}$ $A \cup B = \{1, 2, 3, 5, 7, 9\}$

∴ U, A ও B সেট তিনটির ভেনচিত্র নিমুরূপ:

বক্সের মধ্যে যেকোনো স্থানে দেখালেই চলবে।

কাজ

পাঠ্যবই পৃষ্ঠা-৮

বর্ণ্টন বিধির সূত্রটি যাচাই কর, যেখানে $A=\{1,2,3,6\},B=\{2,3,4,5\}$ এবং $C=\{3,5,6,7\}$ । এই যাচাইকরণ ভেনচিত্রের মাধ্যমেও দেখাও।

সমাধান: বণ্টনবিধির সূত্রগুলো নিমুরূপ:

(i) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ (ii) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ প্রমাণ: দেওয়া আছে, $A = \{1, 2, 3, 6\}$ $B = \{2, 3, 4, 5\}$

এবং
$$C = \{3, 5, 6, 7\}$$

- $B \cap C = \{2, 3, 4, 5\} \cap \{3, 5, 6, 7\}$ $= \{3, 5\}$ $A \cup (B \cap C) = \{1, 2, 3, 6\} \cup \{3, 5\}$ $= \{1, 2, 3, 5, 6\}$ আবার, $A \cup B = \{1, 2, 3, 6\} \cup \{2, 3, 4, 5\}$ $= \{1, 2, 3, 4, 5, 6\}$ $A \cup C = \{1, 2, 3, 6\} \cup \{3, 5, 6, 7\}$ $= \{1, 2, 3, 5, 6, 7\}$
- $\therefore (A \cup B) \cap (A \cup C)$ $= \{1, 2, 3, 4, 5, 6\} \cap \{1, 2, 3, 5, 6, 7\}$ $= \{1, 2, 3, 5, 6\}$ $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ (প্রমাণিত)
- $B \cup C = \{2, 3, 4, 5\} \cup \{3, 5, 6, 7\}$ $= \{2, 3, 4, 5, 6, 7\}$ $A \cap (B \cup C) = \{1, 2, 3, 6\} \cap \{2, 3, 4, 5, 6, 7\}$ $= \{2, 3, 6\}$ আবার, $A \cap B = \{1, 2, 3, 6\} \cap \{2, 3, 4, 5\}$
 - $= \{2, 3\}$ এবং $A \cap C = \{1, 2, 3, 6\} \cap \{3, 5, 6, 7\}$ $= \{3, 6\}$
 - $(A \cap B) \cup (A \cap C) = \{2, 3\} \cup \{3, 6\}$ $= \{2, 3, 6\}$
 - $\therefore A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ (প্রমাণিত)

ভেনচিত্রের মাধ্যমে যাচাইকরণ:

তিনটি পরস্পরছেদী বৃত্তক্ষেত্র দ্বারা A, B ও C সেট চিহ্নিত করি। এতে সার্বিক সেট সাতটি এলাকায় বিভক্ত হলো যাদের 1, 2, 3, 4, 5, 6, 7 দ্বারা চিহ্নিত করা হয়েছে।

ৈ ভেনচিত্ৰ হতে পাই.

সেট	এলাকা
A	1, 2, 3, 6
$B \cap C$	3, 5
$A \cup (B \cap C)$	1, 2, 3, 5, 6
$A \cup B$	1, 2, 3, 4, 5, 6
$A \cup C$	1, 2, 3, 5, 6, 7
$(A \cup B) \cap (A \cup C)$	1, 2, 3, 5, 6
$A \cup (B \cap C) = (A \cup B)$	$(A \cup C)$ (দেখানো হলো)

ii ভেনচিত্র হতে পাই.

সেট	এলাকা
A	1, 2, 3, 6
$B \cup C$	2, 3, 4, 5, 6, 7
$A \cap (B \cup C)$	2, 3, 6
$A \cap B$	2, 3
$A \cap C$	3, 6
$(A \cap B) \cup (A \cap C)$	2, 3, 6

 $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ (দেখানো হলো)

কাজ `

পাঠ্যবই পষ্ঠা-১০

নিচের সকল সেট সার্বিক সেট $oldsymbol{U}$ এর উপসেট বিবেচনা করতে হবে।

ক) দেখাও যে, $A \cap (B \cap C) = (A \cap B) \cap (A \cap C)$

সমাধান: ধরি, $x \in A \cap (B \cap C)$

বা, $x \in A$ এবং $x \in (B \cap C)$

বা, $x \in A$ এবং $(x \in B)$ এবং $x \in C$

বা, $(x \in A \text{ এবং } x \in B)$ এবং $(x \in A \text{ এবং } x \in C)$

বা, $(x \in A \cap B)$ এবং $(x \in A \cap C)$

 $\therefore A \cap (B \cap C) \subseteq (A \cap B) \cap (A \cap C) \dots \dots \dots (i)$

আবার ধরি, $x \in (A \cap B) \cap (A \cap C)$

বা, $x \in (A \cap B)$ এবং $x \in (A \cap C)$

বা, $(x \in A \text{ এবং } x \in B)$ এবং $(x \in A \text{ এবং } x \in C)$

বা, $x \in A$ এবং $(x \in B)$ এবং $x \in C$

বা, $x \in A$ এবং $x \in (B \cap C)$

 $\therefore (A \cap B) \cap (A \cap C) \subseteq A \cap (B \cap C) \dots \dots \dots (ii)$

সুতরাং (i) ও (ii) হতে পাই, $A\cap (B\cap C)=(A\cap B)\cap (A\cap C)$ (প্রমাণিত)

খ) দেখাও যে, $A \subset B$ হবে যদি এবং কেবল যদি নিম্নোক্ত যেকোনো একটি শর্ত খাটে:

- (3) $A \cap B = A$
- $(\lozenge) \ A \cup B = B$
- (\circ) $B' \subset A'$

- (8) $A \cap B' = \emptyset$
- (c) $B \cup A' = U$

<u>সমাধান</u>:

 $A\cap B=A$ অর্থাৎ A ও B এর সাধারণ (common) সদস্যগুলো এবং A সেটের সকল সদস্য একই। অতএব, A অবশ্যই B সেটের উপসেট। অর্থাৎ $A\subset B$ হবে যদি এবং কেবল যদি $A\cap B=A$ হয়।

(দেখানো হলো)

- $A \cup B = B \mid A$ সেট ও B সেটের সদস্যদের সংযোগ সেট B সেটের সমান হবে কেবল যদি A সেটের সকল সদস্য B সেটেরও সদস্য হয়। অর্থাৎ যখন $A \subset B$ হবে। (দেখানো হলো)
- আমরা জানি, $B'=U\setminus B$ অর্থাৎ B' হলো B সেটের উপাদানগুলো বাদে সার্বিক সেটের বাকি সকল উপাদানের সেট।

আবার, $A'=U\setminus A$ অর্থাৎ A' হলো A সেটের উপাদানগুলো বাদে সার্বিক সেটের বাকি সকল উপাদানের সেট।

এখন, B-এর পূরক সেট (B') যদি A-এর পূরক সেটের (A') প্রকৃত উপসেট হয় অর্থাৎ B এর পূরক সেটের সকল উপাদান A-এর পূরক সেটের মধ্যে থাকে তাহলে A সেটিট এমন উপাদানে গঠিত হবে যেগুলো B-এর মধ্যেও থাকরে অর্থাৎ $A \subset B \mid$ (দেখানো হলোঁ)

8 ধরি, $x \in A \cap B'$

তাহলে, $x \in A$ এবং $x \in B'$

বা, $x \in A$ এবং $x \in A'$ [৩নং থেকে পাই, $A \subset B$ হলে $B' \subset A'$]

বা. $x \in A$ এবং $x \notin A$

বা, $x \in A \setminus A$

বা, $x \in \emptyset$

 $\therefore A \cap B' \subseteq \emptyset$

আবার ধরি, $x \in \emptyset$

তাহলে, $x \in A \setminus A$

বা, $x \in A$ এবং $x \notin A$

বা, $x \in A$ এবং $x \notin A'$

বা, $x \in A$ এবং $x \notin B'$ [৩নং থেকে পাই, $A \subset B$ হলে $B' \subset A'$]

বা, $x \in A \cap B'$

 $\therefore \varnothing \subset A \cap B'$

সুতরাং $A \cap B' = \emptyset$

 $\therefore A \subset B$ হবে যদি এবং কেবল যদি $A \cap B' = \emptyset$ হয়।

(দেখানো হলো)

ধরি, $x \in B \cup A'$ তাহলে, $x \in B$ এবং $x \in A'$ বা, $x \in B$ এবং $x \in B'$ [তনং থেকে পাই, $A \subset B$ হলে $B' \subset A'$]
বা, $x \in B$ এবং $x \in U \setminus B$ বা, $x \in B$ এবং $x \in U$ এবং $x \notin B$ বা, $x \in U$ $\therefore B \cup A' \subseteq U$ আবার ধরি, $x \in U$

তাহলে, $x \in B$ এবং $x \in U$ এবং $x \notin B$ বা, $x \in B$ এবং $x \in U \setminus B$ বা, $x \in B$ এবং $x \in B'$ বা, $x \in B$ এবং $x \in A'$ [তনং থেকে পাই, $A \subset B$ হলে $B' \subset A'$] বা, $x \in B \cup A'$ $\therefore U \subseteq B \cup A'$ সুতরাং $B \cup A' = U$ হয় । (দেখানো হলো)

- গ) দেখাও যে,
- (3) $A \setminus B \subset A \cup B$

মনে করি, $x \in A \setminus B$

(\circ) $A \setminus B \subset A$

সমাধানঃ

(৫) $A \cap B = \emptyset$ হলে, $A \subset B'$ এবং $A \cap B' = A$ এবং $A \cup B' = B'$

অর্থাৎ $A \setminus B$ সেটে সেই সকল উপাদান থাকবে যেগুলো A সেটে আছে

কিন্তু B সেটে নাই। কিন্তু A ও B সেটের সকল উপাদান $A\cup B$

 $A \setminus B$ সেটের সকল উপাদান $A \cup B$ সেটে থাকবে।

$$-\mathbf{B}$$
 ধরি, $x \in A \cup (B \setminus A)$

তাহলে, $x \in A$ অথবা $x \in (B \setminus A)$

(3) $A' \setminus B' = B \setminus A$

বা, $x \in A$ অথবা $(x \in B)$ এবং $x \notin A$

(8) $A \subset B$ হলে, $A \cup (B \setminus A) = B$

বা, $x \in A$ অথবা $(x \in B)$ এবং $x \in A'$

বা, $(x \in A$ অথবা $x \in B)$ এবং $(x \in A$ অথবা $x \in A')$

বা, $x \in (A \cup B)$ এবং $x \in (A \cup A')$

বা, $x \in (A \cup B)$ এবং $x \in U$

বা, $x \in B$ এবং $x \in U$

 $[\because A \subset B;$ সুতরাং $x \in (A \cup B)$ হলে $x \in B$ হবে]

বা, $x \in B$

 $\therefore A \cup (B \setminus A) \subseteq B$

আবার ধরি, $x \in B$

তাহলে, $x \in A$ অথবা $x \in (B \setminus A)$ $[\because A \subset B]$

বা, $x \in A \cup (B \setminus A)$

 $\therefore B \subseteq A \cup (B \setminus A)$

সুতরাং, $A \cup (B \setminus A) = B$ (দেখানো হলো)

অর্থাৎ $x \in A \setminus B$ হলে, $x \in A \cup B$ হবে। $\therefore A \setminus B \subset A \cup B$ (দেখানো হলো)

সেটে থাকবে।

থ ধরি, $x \in A' \setminus B'$

তাহলে, $x \in A'$ এবং $x \notin B'$

বা, $x \notin A$ এবং $x \in B$

বা, $x \in A$ এবং $x \notin B$

বা, $x \in A$ এবং $x \in B'$

বা, $x \in B$ এবং $x \notin A$

বা, $x \in B \setminus A$

 $\therefore A' \setminus B' \subseteq B \setminus A$

আবার ধরি, $x \in B \setminus A$

তাহলে, $x \in B$ এবং $x \not\in A$

বা, $x \notin B'$ এবং $x \in A'$

বা, $x \in A'$ এবং $x \notin B'$

 $\therefore x \in A' \setminus B'$

 $\therefore B \setminus A \subseteq A' \setminus B'$

সুতরাং, $A' \setminus B' = B \setminus A$ (দেখানো হলো)

৩ ধরি, $x \in A \setminus B$

তাহলে, $x \in A$ এবং $x \notin B$

বা. $x \in A$

 $\therefore A \setminus B \subseteq A \dots \dots (i)$

প্রশ্নে বলা রয়েছে প্রদন্ত সকল সেট (A,B,C প্রভৃতি), সার্বিক সেট U এর উপসেট। তাই B সেটটি ফাঁকা সেট না হলে বলা যায়, $A \backslash B \neq A \dots \dots (ii)$

(i) ও (ii) নং থেকে বলা যায়, $A \setminus B \subseteq A$ এবং $A \setminus B \neq A$

সুতরাং $A \backslash B \subset A$ প্রকৃত সেটের সংজ্ঞানুসারে $A \subset B$ তখনই ব্যাহি তাই কামেন ক্রমেন ক্

(দেখানো হলো)

৫ প্রথম অংশঃ দেওয়া আছে, $A \cap B = \emptyset$

অর্থাৎ A ও B সেটের কোনো সাধারণ উপাদান নাই।

সুতরাং B-এর উপাদানগুলো এমন হবে যা A-তে নাই

অর্থাৎ $x \in B$ এবং $x \notin A$ অথবা, $x \notin A$ এবং $x \in B$

মনে করি, $x \in A$

তাহলে $x \notin B$

 $\therefore x \in B'$

 $\therefore A \subseteq B' \dots \dots (i)$

আবার, দেওয়া আছে, $A \cap B = \emptyset$

প্রশ্নে বলা রয়েছে প্রদন্ত সকল সেট $(A,\,B,\,C$ প্রভৃতি), সার্বিক সেট U এর উপসেট।

অর্থাৎ $B' = U \setminus B$ । সেক্ষেত্রে বলা যায়, $A \neq B' \dots$ (ii)

(i) ও (ii) নং থেকে বলা যায়, $A \subset B'$ এবং $A \neq B'$

 $\therefore A \subset B'$ প্রকৃত সেটের সংজ্ঞানুসারে $A \subset B$ তখনই বয় যখন $A \subset B$ এবং $A \neq B$ হয়

(দেখানো হলো)

```
দ্বিতীয় অংশ: A \cap B' = A
মনে করি, x \in A \cap B'
        বা, x \in A এবং x \in B'
        বা, x \in A এবং x \notin B
        বা, x \in A \setminus B
এখন, উপসেটের সংজ্ঞানুসারে A \setminus B \subseteq A
\therefore A \cap B' \subseteq A \setminus B এবং A \setminus B \subset A
\therefore A \cap B' \subset A
আবার মনে করি, x \in A
                 বা, x \in A \setminus B [\because A \subseteq U]
                 বা, x \in A এবং x \notin B
                 বা, x \in A এবং x \in B'
                 \therefore x \in A \cap B'
                 \therefore A \subseteq A \cap B'
সুতরাং A \cap B' = A
                                (দেখানো হলো)
```

```
ভূতীয় অংশ: A \cup B' = B'
মনে করি, x \in A \cup B'
বা, x \in A অথবা x \in B'
বা, x \in A অথবা x \in U \setminus B
বা, x \in U \setminus B [\because A \subseteq U]
বা, x \in B'
\therefore A \cup B' \subseteq B'
আবার মনে করি, x \in B'
বা, x \in U \setminus B
বা, x \in A অথবা x \in U \setminus B
[\because A \subseteq U]
বা, x \in A অথবা x \in B'
বা, x \in A \cup B'
\therefore B' \subseteq A \cup B'
সুতরাং A \cup B' = B' (দেখানো হলো)
```

```
ঘ) দেখাও যে,  (\mathfrak{d} \cap B)' = A' \cup B' \qquad (\mathfrak{d} \cup B \cup C)' = A' \cap B' \cap C' \qquad (\mathfrak{d} \cap B \cap C)' = A' \cup B' \cup C'
```

```
সমাধানঃ
```

```
ধরি, x \in (A \cap B)'
তাহলে, x \notin (A \cap B)
বা, x \notin A অথবা x \notin B
বা, x \in A' অথবা x \in B'
বা, x \in (A' \cup B')
\therefore (A \cap B)' \subseteq A' \cup B'
আবার ধরি, x \in (A' \cup B')
বা, x \in A' অথবা x \in B'
বা, x \notin A অথবা x \notin B
বা, x \notin (A \cap B)
বা, x \in (A \cap B)'
∴ x \notin (A \cap B)' \subseteq (A \cap B)'
সূতরাং, x \in (A \cap B)' \subseteq (A \cap B)'
(দেখানো হলো)
```

```
ধরি, x \in (A \cup B \cup C)'
তাহলে, x \notin (A \cup B \cup C)
বা, x \notin A এবং x \notin B এবং x \notin C
বা, x \in A' এবং x \in B' এবং x \in C'
বা, x \in (A' \cap B' \cap C')
\therefore (A \cup B \cup C)' \subseteq (A' \cap B' \cap C')
```

```
আবার ধরি, x \in A' \cap B' \cap C'
     তাহলে, x \in A' এবং x \in B' এবং x \in C'
        বা, x \notin A এবং x \notin B এবং x \notin C
        বা, x \notin (A \cup B \cup C)
        A' \cap B' \cap C' \subset (A \cup B \cup C)'
     সুতরাং, (A \cup B \cup C)' = (A' \cap B' \cap C') (দেখানো হলো)
ullet ধরি, x \in (A \cap B \cap C)'
    তাহলে, x \notin (A \cap B \cap C)
        বা, x \notin A অথবা x \notin B অথবা x \notin C
         বা, x \in A' অথবা x \in B' অথবা x \in C'
        \therefore (A \cap B \cap C)' \subseteq (A' \cup B' \cup C')
     আবার ধরি, x \in A' \cup B' \cup C'
     তাহলে, x \in A' অথবা x \in B' অথবা x \in C'
        বা, x \notin A অথবা x \notin B অথবা x \notin C
        বা, x \notin (A \cap B \cap C)'
        A' \cup B' \cup C' \subseteq (A \cap B \cap C)'
     সুতরাং, (A \cap B \cap C)' = (A' \cup B' \cup C') (দেখানো হলো)
```

কাজ

পাঠ্যবই পৃষ্ঠা-১৫

```
ক) নিম্নোক্ত প্রত্যেক ক্ষেত্রে A ও B এর মধ্যে সম্ভাব্য সকল এক-এক মিল বর্ণনা কর:

(১) A = \{a, b\}, B = \{1, 2\} (২) A = \{a, b, c\}, B = \{a, b, c\}
```

<u>সমাধান</u>:

১ দেওয়া আছে, $A = \{a, b\}$ এবং $B = \{1, 2\}$

A সেটের প্রতিটি উপাদানের সাথে B সেটের একটি ও কেবল একটি উপাদান এবং B সেটে প্রতিটি উপাদানের সাথে A সেটের একটি ও কেবল একটি উপাদানের মিল স্থাপন তবে তাকে A ও B এর মধ্যে একটি এক-এক মিল বলা হয়।

A ও B এর মধ্যে সম্ভাব্য এক-এক মিল চিত্রে দেখানো হলো:

মে দেওয়া আছে, $A = \{a, b, c\}$ এবং $B = \{a, b, c\}$

A ও B এর মধ্যে সম্ভাব্য এক-এক মিল নিম্লের চিত্রে দেখানো হলো:

খ) ক নং প্রশ্নে বর্ণিত প্রত্যেক এক-এক মিলকরণের জন্য $F=\{(x,y):x\in A,y\in B\}$ এবং $x\longleftrightarrow y$ সেটটি তালিকা পদ্ধতিতে বর্ণনা কর।

সমাধান: ১ম অংশ: দেওয়া আছে, $F = \{(x, y) : x \in A, y \in B\}$ এবং $A = \{a, b\}$ ও $B = \{1, 2\}$

 $x \leftrightarrow y$ সম্পর্ক বিবেচনায় সম্ভাব্য এক-এক মিলের তালিকা পদ্ধতি হলো দুইটি যঁথা:

(*i*) $F_1 = \{(a, 1), (b, 2)\}$

(ii) $F_2 = \{(a, 2), (b, 1)\}$ [চিত্ৰ হতে]

২য় **অংশ:** দেওয়া আছে, $F = \{(x, y) : x \in A, y \in B\}$

এবং $A = \{a, b, c\}$ ও $B = \{a, b, c\}$

 $x \leftrightarrow y$ সম্পর্ক বিবেচনায় সম্ভাব্য এক-এক মিলের তালিকা পদ্ধতি হলো ছয়টি যঁথা:

(i) $F_1 = \{(a, a), (b, b), (c, c)\}$

(ii) $F_2 = \{(a, a), (b, c), (c, b)\}$

(iii) $F_3 = \{(a, b), (b, a), (c, c)\}$

(iv) $F_4 = \{(a, b), (b, c), (c, a)\}$

(v) $F_5 = \{(a, c), (b, a), (c, b)\}$

(vi) $F_6 = \{(a, c), (b, b), (c, a)\}$

গ) মনে করি, $A = \{a, b, c, d\}$ এবং $B = \{1, 2, \overline{3}, 4\} + A \times B$ এর একটি উপসেট \overline{F} বর্ণনা কর যার অন্তর্ভুক্ত ক্রমজোড়গুলোর প্রথম পদের সঙ্গে দিতীয় পদের মিল করা হলে, A ও B এর একটি এক-এক মিল স্থাপিত হয় যেখানে, $a \leftrightarrow 3$ ।

সমাধানঃ দেওয়া আছে, $A = \{a, b, c, d\}$

এবং $B = \{1, 2, 3, 4\}$

 $\therefore A \times B = \{(a, 1), (a, 2), (a, 3), (a, 4), (b, 1), (b, 2), \}$ (b, 3), (b, 4), (c, 1), (c, 2), (c, 3), (c, 4), (d, 4)1), (d, 2), (d, 3), (d, 4)}

ধরি, $(A \times B)$ এর উপসেট F অর্থাৎ $F \subset A \times B$ বলে

 $F = \{(a, 1), (b, 2), (c, 3), (d, 4)\}$ হওয়াই স্বাভাবিক

[∵ ১ম পদের সাথে ২য় পদের এক-এক মিল থাকবে]

কিন্তু দেওয়া আছে, $a \leftrightarrow 3$

 \therefore এক্ষেত্রে $a \leftrightarrow 3$ ঠিক রেখে প্রথম পদের সাথে দ্বিতীয় পদের এক-এক মিল দিএর অন্তর্ভুক্ত ক্রমজোড়গুলো চিত্রে দেখানো হলো:

 $F = \{(a, 3), (b, 1), (c, 2), (d, 4)\}$

♠ বি.দ্র: একটি ক্রমজোড় (a, 3) রেখে বার্কি উপাদানগুলোকে যেকোনো
উপাদানের সাথে এক-এক মিল করে এ প্রশ্নের একাধিক উত্তর সম্ভব।

ঘ) দেখাও যে, $A=\{1,2,3,...,n\}$ ও $B=\{1,2,2^2,...,2^{n-1}\}$ সেট দুইটি সমতুল।

<u>সমাধান</u>: দেওয়া আছে, $A = \{1, 2, 3, ..., n\}$ এবং $B = \{1, 2, 2^2, \dots 2^{n-1}\}$

A ও B সেটদ্বয়ের মধ্যে একটি এক-এক মিল নিম্নে দেখানো হলো:

3, ... , *n* 1,

আমরা জানি, দুটি সেটের মধ্যে এক-এক মিল দেখানো গেলে ঐ সেটদ্বয় সমতুল। সূতরাং A ও B সেটদ্বয় সমতুল।

📣 বি.দ্রঃ ওপরের চিত্রিত এক-এক মিলটিকে $A \leftrightarrow B$: $n \leftrightarrow 2^{n-1}, n \in N$ দ্বারা বর্ণনা করা যায়।

ঙ) দেখাও যে, $S=\{3^n:n=0$ অথবা $n\in N\}$ সেটটি N এর সমতুল।

<u>সমাধান</u>: দেওয়া আছে, $S = \{3^n : n = 0$ অথবা $n \in N\}$

 $S = \{1, 3, 3^2, \dots, 3^n, \dots \}$ স্বাভাবিক সংখ্যার সেট $N = \{1, 2, 3, \dots \}$

S ও N এর মধ্যে একটি এক-এক মিল নিম্নে দেখানো হলো:

📣 দৃষ্টি আকর্ষণ: তোমাদের মনে হতে পারে নিম্নোক্ত এক-এক মিলটি সঠিক। N: 1. 4,, *n*,

 3^1 , 3^2 , 3^3 ,, 3^{n-1} ,

কিন্তু এটি সঠিক নয়। কারণ $\mathbf{n}=0$ এর জন্য \mathbf{S} ও \mathbf{N} এর মধ্যে এক-এক মিল পাওয়া যায় না।

আমরা জানি, দুটি সেটের মধ্যে এক-এক মিল দেখানো গেলে ঐ সেটদ্বয় সমতুল। অতএব, S ও N সেটদ্বয় সমতুল। (দেখানো হলো)

চ) ঠিক উপরের প্রশ্নে বর্ণিত সেট S এর একটি প্রকৃত উপসেট বর্ণনা কর যা S এর সমতুল।

সমাধানঃ 'ঙ' নং এ বর্ণিত সেট $S=\{3^n:n=0$ অথবা $n\in N\}$

$$S = \{1, 3, 3^2, \dots, 3^n, \dots \}$$

S এর প্রকৃত উপসেট, $S_1=\{3,3^2,3^3,\ldots,3^{n+1}\}$

এখন, S এবং S_1 এর মধ্যে এক-এক মিল নিম্নে দেখানো হলো: S

আমরা জানি, দুটি সেটের মধ্যে এক-এক মিল দেখানো গেলে ঐ সেটদ্বয় সমতুল। অতএব $S \otimes S_1$ সেটদ্বয় সমতুল। আবার, S_1 এর প্রত্যেকটি সদস্যই S সেটের উপাদান এবং S এর অন্তত: একটি সদস্য আছে যা S_1 এ নেই, (যথা: 1) তাহলে S_1 , S-এর প্রকত উপসেট। সূতরাং S_1 এমন একটি সেট যা S এর প্রকৃত উপসেট এবং S এর সমতুল।

📣 বি.দ্র: এ প্রশ্নের অনেক সমাধান হতে পারে।

ছ) দেখাও যে, সকল বিজোড় স্বাভাবিক সংখ্যার সেট $A=\{1,3,5,7,...\}$ অনন্ত সেট।

সমাধান: আমরা জানি, স্বাভাবিক সংখ্যার সেট N একটি অনন্ত সেট এবং অনন্ত সেটের সমতুল সেট একটি অনন্ত সেট।

এখানে, $A = \{1, 3, 5, 7, \dots \}$ এবং $N = \{1, 2, 3, 4, \dots, n, \dots \}$

N এবং A এর মধ্যে এক-এক মিল নিম্লে চিত্রে দেখানো হলো:

এখানে, $A \subset N$ এবং A ও N এর মধ্যে এক-এক মিল বিদ্যমান । সুতরাং N ও A সমতুল সেট । সুতরাং সকল বিজোড় স্বাভাবিক সংখ্যার সেট $A = \{1, 3, 5, 7, \dots \}$ ইত্যাদি অনন্ত সেট। **(দেখানো হলো**)

কাজ

পাঠ্যবই পৃষ্ঠা-১৮

ক) কোনো শ্রেণির 30 জন ছাত্রের 20 জন ফুটবল এবং 15 জন দাবা পছন্দ করে। প্রত্যেক ছাত্র দুইটি খেলার অন্তত যেকোনো একটি খেলা পছন্দ করে। কতজন ছাত্র দুইটি খেলাই পছন্দ করে?

সমাধান: মনে করি, সকল ছাত্রদের সেট S এবং ছাত্রদের মধ্যে যারা ফুটবল খেলতে পছন্দ করে তাদের সেট F ও যারা দাবা খেলতে পছন্দ করে তাদের সেট C।

তাহলে প্রশ্নানুসারে, n(S) = 30; n(F) = 20; n(C) = 15

এবং
$$n(S) = n(F \cup C) = 30$$

[: প্রত্যেক ছাত্র কোনো না কোনো খেলা পছন্দ করে]

দুটি খেলা পছন্দ করে এমন ছাত্রসংখ্যা, $n(F \cap C) = ?$

এখন,
$$n(F \cup C) = n(F) + n(C) - n(F \cap C)$$

$$\therefore n(F) + n(C) - n(F \cap C) = 30$$

বা,
$$20 + 15 - n(F \cap C) = 30$$
 [মান বসিয়ে]

 $\therefore n(F \cap C) = 5$

অতএব, দুটি খেলাই পছন্দ করে 5 জন ছাত্র। (Ans.)

সমাধান (দ্বিতীয় পদ্ধতি)

মনে করি. সকল ছাত্রের সেট S এবং ফুটবল পছন্দ করে এমন ছাত্রের সেট Fএবং দাবা পছন্দ করে তাদের সেট C। ভেনচিত্রে তথ্যগুলো উপস্থাপন করি।

তাহলে, প্রশানুসারে, $n(S) = p + q + r = 30 \dots (i)$

$$n(F) = p + q = 20 \dots \dots (ii)$$

$$n(C) = q + r = 15 \dots \dots (iii)$$

দুইটি খেলাই পছন্দ করে এমন ছাত্রের সেট, q=?

(i) ও (ii) নং হতে পাই, 20 + r = 30

বা,
$$r = 30 - 20 = 10$$

(iii) নং হতে পাই, q + 10 = 15

বা,
$$q = 15 - 10 = 5$$

.: 5 জন ছাত্র দুইটি খেলাই পছন্দ করে।

♦♦ পাঠ্যবই পৃষ্ঠা ১৮ নং অনুশীলনমূলক কাজের প্রশ্নের আলোকে সূজনশীল প্রশ্নোত্তর ♦♦

কোনো শ্রেণির 30 জন ছাত্রের 20 জন ফুটবল এবং 15 জন ক্রিকেট খেলতে পছন্দ করে। প্রত্যেক ছাত্র দুইটি খেলার অন্তত একটি খেলা পছন্দ করে।

- ক. উদ্দীপকের তথ্যগুলো সান্ত সেটের সংজ্ঞানুসারে বর্ণনা কর।
- খ. কতজন ছাত্র দুইটি খেলাই পছন্দ করে?
- গ. কতজন ছাত্র কেবলমাত্র দুইটি খেলার একটি পছন্দ করে?

নিজে নিজে চেষ্টা কর।

(ক) 15; (খ) 5; (গ) 25

খ) কিছু সংখ্যক লোকের মধ্যে 50 জন বাংলা, 20 জন ইংরেজি এবং 10 জন বাংলা ও ইংরেজি বলতে পারে। দুইটি ভাষায় অন্তত একটি ভাষা কতজন বলতে পারে?

সমাধান: মনে করি, বাংলা বলতে পারে এমন লোকের সেট B এবং ইংরেজি বলতে পারে এমন লোকের সেট E।

তাহলে প্রশ্নানুসারে, $n(B)=50, n(E)=20, n(B\cap E)=10$ দুটি ভাষার অস্তত একটি বলতে পারে, $n(B\cup E)=?$

আমরা জানি, $n(B \cup E) = n(B) + n(E) - n(B \cap E)$

বা,
$$n(B \cup E) = 70 - 10$$

$$\therefore n(B \cup E) = 60$$

অতএব, দুটি ভাষার অন্তর্ত একটি বলতে পারে 60 জন ছাত্র। (Ans.)

সমাধান (দ্বিতীয় পদ্ধতি)

শুধু বাংলা বলতে পারে এমন লোকের সংখ্যা = (50-10)=40শুধু ইংরেজি বলতে পারে এমন লোকের সংখ্যা = (20-10)=10আবার, 10 জন বাংলা ও ইংরেজি উভয়টি বলতে পারে

্ৰ অন্তত একটি ভাষা বলতে পারে এমন লোকের সংখ্যা =(40+10+10)

=60 (Ans.)

দৃষ্টি আকর্ষণ: উপরের ক নং এর বিকল্প নিয়মে প্রশ্নটি সমাধান করা যায়

গ) ঢাকা বিশ্ববিদ্যালয়ের আধুনিক ভাষা ইনস্টিটিউটের 100 জন শিক্ষার্থীর মধ্যে 42 জন ফ্রেঞ্চ, 30 জন জার্মান, 28 জন স্প্যানিশ নিয়েছে। 10 জন নিয়েছে ফ্রেঞ্চ ও স্প্যানিশ, 8 জন নিয়েছে জার্মান ও স্প্যানিশ, 5 জন নিয়েছে জার্মান ও স্প্রানিশ, 5 জন নিয়েছে জার্মান ও স্প্রানিশ, ত জন নিয়েছে জার্মান ও স্প্রোনিশ, ত জন নিয়েছে জার্মান ও স্প্রানিশ, ত জন নিয়েছে জার্মান ও স্প্রোনিশ, ত জন নিয়েছে জার্মান ও স্প্রানিশ, ত জন নিয়েছে জার্মান ও স্প্রোনিশ, ত জন নিয়

- (১) কতজন শিক্ষার্থী ঐ তিনটি ভাষার একটিও নেয়নি?
- (২) কতজন শিক্ষার্থী ঐ তিনটি ভাষার কেবল একটি ভাষা নিয়েছে?
- (৩) কতজন শিক্ষার্থী ঐ তিনটি ভাষার কেবল দুইটি ভাষা নিয়েছে?

<u>সমাধান</u>: ধরি, সকল শিক্ষার্থীর সেট U, ফ্রেঞ্চ নেওয়া শিক্ষার্থীর সেট F, জার্মান নেওয়া শিক্ষার্থীর সেট G, স্প্যানিশ নেওয়া শিক্ষার্থীর সেট S ।

$$\therefore n(U) = 100, n(F) = 42, n(G) = 30, n(S) = 28, n(F \cap S) = 10, n(G \cap S) = 8, n(F \cap G) = 5, n(F \cap G \cap S) = 3$$

অন্তত একটি ভাষা নিয়েছে এমন শিক্ষার্থী সংখ্যা $n(F \cup G \cup S)$ \therefore একটি ভাষাও নেয়নি এমন শিক্ষার্থীর সংখ্যা $n(U) - n(F \cup G \cup S)$ এখন, $n(F \cup G \cup S) = n(F) + n(G) + n(S) - n(F \cap S) - n(F \cap G) - n(G \cap S) + n(F \cap G \cap S)$ = 42 + 30 + 28 - 10 - 5 - 8 + 3 = 103 - 23 = 80

∴ একটি ভাষাও নেয়নি এমন শিক্ষার্থীরা সংখ্যা

$$= n(U) - n(F \cap G \cap S) = 100 - 80 = 20$$
 (Ans.)

২

শুধু ফ্রেঞ্চ ভাষা নিয়েছে

$$= n(F) - n(F \cap G) - n(F \cap S) + n(F \cap G \cap S)$$

= $42 - 5 - 10 + 3 = 45 - 15 = 30$ জন [ভেনচিত্ৰ হতে]

শুধু জার্মান ভাষা নিয়েছে

=
$$n(G) - n(F \cap G) - n(G \cap S) + n(F \cap G \cap S)$$

= $30 - 5 - 8 + 3 = 33 - 13 = 20$ জন

শুধু স্প্যানিশ ভাষা নিয়েছে

$$= n(S) - n(F \cap S) - n(G \cap S) + n(F \cap G \cap S)$$

= 28 - 10 - 8 + 3 = 31 - 18 = 13 \text{ set}

- ্র তিনটি ভাষার মধ্যে শুধু একটি ভাষা নিয়েছে = (30+20+13) জন = 63 জন।
- ত শুধু ফ্রেপ্ক ও স্প্যানিশ নিয়েছে $= n(F \cap S) n(F \cap G \cap S)$ = 10 - 3 = 7 জন

শুধু ফ্রেঞ্চ ও জার্মান নিয়েছে = $n(F \cap G) - n(F \cap G \cap S)$ = 5-3=2 জন

শুধু জার্মান ও স্প্যানিশ নিয়েছে = $n(G \cap S) - n(F \cap G \cap S)$ = 8-3=5 জন

∴ গুধু দুইটি ভাষা নিয়েছে = 7 + 2 + 5 = 14 জন (Ans.)

ঘ) কোনো স্কুলের নবম শ্রেণির বিজ্ঞান শাখার 50 জন শিক্ষার্থীর মধ্যে 29 জন জীববিজ্ঞান, 24 জন উচ্চতর গণিত এবং 11 জন জীববিজ্ঞান ও উচ্চতর গণিত উভয় বিষয় নিয়েছে। কতজন শিক্ষার্থী জীববিজ্ঞান বা উচ্চতর গণিত বিষয় দুইটির কোনটিই নেয়নি?

সমাধান: মনে করি, স্কুলের বিজ্ঞান শাখার ছাত্রদের সেট S, যারা জীববিজ্ঞান নিয়েছে তাদের সেট C এবং যারা উচ্চতর গণিত নিয়েছে তাদের সেট G।

তাহলে প্রশানুসারে,

$$n(S)=50,\, n(C)=29,\, n(G)=24$$
 এবং $n(C\cap G)=11$
অন্তত একটি বিষয়ই নিয়েছে এমন ছাত্রসংখ্যা $=n(C\cup G)$

এখন,
$$n(C \cup G) = n(C) + n(G) - n(C \cap G)$$

= $29 + 24 - 11 = 53 - 11 = 42$

 \therefore কোনো বিষয়ই নেয়নি এমন ছাত্রসংখ্যা = $n(S) - n(C \cup G)$ = (50 - 42) জন = 8 জন

∴ 8 জন শিক্ষার্থী জীববিজ্ঞান বা উচ্চতর গণিত কোনো বিষয়ই নেয়নি।