Projeto e Análise de Algoritmos 2024.2

DFS e Aplicações

Prof. Marcio Costa Santos DCC/UFMG

Busca em Grafos

- Vistar os vértices do grafo em ordem.
- Necessidade em muitos algoritmos.
- Principal operação de uma estrutura de dados.
- Propriedades distintas.
- Aplicável a grafos e dígrafos.

Busca em Profundidade

- Vamos visitar os vértices filhos de um nó antes dele.
- Vamos manter algumas variáveis:
 - $\pi[v]$: pai do vértice v.
 - i[v]: tempo que encontrados o vértice v.
 - f[v]: tempo que visitamos o vértice v.
- vértices brancos, cinzas e pretos.

Busca em Profundidade - Algoritmo

```
Entrada: Grafo G = (V, s), vértice inicial s.
para v até V(G) faça
   color[v] \leftarrow BRANCO;
   \pi[u] = \lambda:
fim
time \leftarrow 0:
para v \in V(G) faça
   se color[v] == BRANCO então
       DFS-VISIT(G, u);
   fim
fim
```

Algoritmo 1: DFS(G,s)

Busca em Profundidade - Algoritmo

```
time \leftarrow time + 1:
color[v] = CINZA; i[v] = time;
para u \in N(v) faça
   se color[u] = BRANCO então
       \pi[u] = v;
       DFS-VISIT(G, u):
   fim
fim
time \leftarrow time + 1:
color[v] = PRETO; f[v] = time;
           Algoritmo 2: DFS-VISIT(G,v)
```


Busca em Profundidade - Produtos

- Grafo de predecessores $G_{\pi} = (V, E_{\pi})$.
- Os vetores de tempo de descoberta e de tempo de visita.
- Complexidade:

```
Lista de Adjacências: \Theta(|V| + |E|)
Matriz de Adjacências: \Theta(|V|^2)
```

Busca em Profundidade - Estrutura de Parêntesis

Teorema dos Parêntesis

Em qualquer busca em profundidade de um grafo G = (V, E), para quaisquer dois vértices v, u, uma e apenas uma das condições abaixo ocorre:

- i $[i[v], f[v]] \cap [i[u], f[u]] = \emptyset$ e u e v não descentes um do outro em G_{π} :
- ii $[i[v], f[v]] \cap [i[u], f[u]] = [i[v], f[v]]$ e v é descendente de u em G_{π} ;
- iii $[i[v], f[v]] \cap [i[u], f[u]] = [i[u], f[u]]$ e u é descendente de v em G_{π} :

Estrutura de Parêntesis - Exemplo

Busca em Profundidade - Teorema do Caminho Branco

Teorema do Caminho Branco

Em G_{π} , um vértice v é descendente de um vértice u se e somente se no tempo i[u] existe um caminho de vértices brancos de u até v.

Busca em Profundidade - Classificação das Arestas

- Podemos utilizar o grafo G_{π} através de uma busca em profundidade para classificar as arestas de G.
- Aresta uv de Árvore: $vu \in G_{\pi}$.
- Aresta uv de Volta: liga u a um ancestral.
- Aresta uv de Avanço: liga u a um descendente.
- Aresta uv de Passagem: as demais.

Ordenação Topológica

- Dado um grafo orientado G = (V, A).
- Assuma que este grafo n\u00e3o possui circuitos orientados.
- Chamamos esse tipo de grafo orientado DAG.
- Esse tipo de grafo representa uma ordem parcial.
- Queremos uma ordem total que respeite essa ordem parcial.

Ordenação Topológica - Exemplo

DFS e Aplicações

Ordenação Topológica

```
Entrada: Grafo G = (V, s).
Use DFS para calcular os tempos f[v];
Ordene inversamente V(G) por f[v];
```

Algoritmo 3: Ordenacao_Topologica(G)

Ordenação Topológica - Exemplo

- Dado um grafo orientado G = (V, A).
- dizemos que um par de vértices u, v é fortemente conectado se existe um caminho de u para v e vice e versa.
- Grafo Fortemente Conexo: se todo par de vértice é fortemente conectado.
- Componente Fortemente Conexa: conjunto maximal de vértices que induz um grafo fortemente conexo.

- Um grafo orientado pode ser decomposto em componentes fortemente conexas.
- Defina G^T como
 - $V(G^T) = V(G)$
 - $A(G^T)$ = conjunto de arcos de G com a direção trocada.

```
Entrada: Grafo G = (V, s).
Use DFS para calcular os tempos f[v];
Compute G^T;
Use DFS em G^T, mas com os vértices ordenados em forma decrescente por valor de f[v];
```

Algoritmo 4: Componentes_Fortemente_Conexas(G)

DFS e Aplicações

