Devices and Circuits Laboratory Experiment-4 NMOS Common Source Amplifier Characteristics

Group: 1

Aditya Kalyani - 200020003

Tanish H Talapaneni - 200020050

Software Simulation

Q1:

Q2:

Netlist

Question-2

Vcc 3 0 5V

Vgs 4 0 5V

Vd 3 1 0

R1 1 2 100

M1 2 4 0 0 MN4007

.model MN4007 NMOS(Kp=500u Vto=1.5 Lambda=0.01 Gamma=0.6 Tox=1200n Phi=.6 Rs=0 Rd=0 Cbd=2.0p Cbs=2.0p Pb=.8 Cgso=0.1p Cgdo=0.1p Is=16.64p)

.dc Vcc 0.1 5 0.2 Vgs 0 5 0.2

*.tran 0.001ms 1ms

.control

run

plot i(Vd) vs v(2) plot v(2)/i(Vd)

.endc

.end

Q3: Plots:

Q4:

a) From graph, we observe:

Vgs(V)	Rds(k-ohm)
1.1	846
1.2	943
1.4	1074
1.6	1217
1.7	1706

b) r0 in saturation region

Vgs(V)	r0(M-ohm)
1.1	6.2
1.2	9.4
1.4	11.9
1.6	15.5
1.7	18.6

Q5:

Question 5

Vcc 3 0 5V Vgs 4 0 5V Vd 3 1 0 R1 1 2 100 M1 2 4 0 0 MN4007

.model MN4007 NMOS(Kp=500u Vto=1.5 Lambda=0.01 Gamma=0.6 Tox=1200n Phi=.6 Rs=0 Rd=0 Cbd=2.0p Cbs=2.0p Pb=.8 Cgso=0.1p Cgdo=0.1p Is=16.64p)

.dc Vgs 0 5 0.2 *.tran 0.001ms 1ms *Vcc 0.1 5 0.2 .control run

plot i(Vd) vs v(4) .endc .end

Thus, from the plots, we conclude threshold voltage= 1.85V

Q6:


```
Circuit: question 6
Doing analysis at TEMP = 27.000000 and TNOM = 27.000000
No. of Data Rows : 1
Doing analysis at TEMP = 27.000000 and TNOM = 27.000000
i(vd) = 5.977808e-04
v(3) = 7.608877e+00
v(4) = 2.990654e+00
i(vd1) = 9.345794e-04
Q7:
Netlist:
Question 7
Vdd 1 0 10
vd 1 2 0
rd 2 3 4k
vd1 1 5 0
r1 5 4 7.5k
r2 4 0 3.2k
M1 3 4 0 0 MN4007
.model MN4007 NMOS(Kp=500u Vto=1.5 Lambda=0.01 Gamma=0.6 Tox=1200n Phi=.6 Rs=0
```

Rd=0 Cbd=2.0p Cbs=2.0p Pb=.8 Cgso=0.1p Cgdo=0.1p Is=16.64p)

.control op run

.endc .end

print i(vd) v(3) v(4) i(vd1)

Q8:

Calculations:

Calculations: given:-
$$I_D = 1.5 \text{ mA}$$
 $V_{DS} = 4V$
 $V_{DS} = 3V$
 $R_1 = 7.9 \text{ math } V_{DD} = 10V$

According to the diagram, $V_S = 0$; $V_S = 3V$
 $V_D = V_D = V_D$
 $V_D = V_D = V_D$

Next, $(0V - 3V)/R_1 = (3V - 0V)/R_2$;

 $V_S = 7/3 R_2$; $R_2 = 3/7 R_1 = 3.2 \text{ K} - R_2$

Values obtained from simulation:

id= 0.6 mA

Vout= 7.6V

Vin= 3V

i(R1) = 0.93mA

Q9:

$$\frac{7}{8} = 7.5 \times R_{D} = 10V$$

$$\frac{7}{8} = 11 \times R_{D} = 10V$$

$$\frac{7}{8} = 11 \times R_{D} = 10V$$

$$\frac{7}{8} = 11 \times R_{D} = 10V$$

$$\frac{7}{8} = 10V$$

$$\frac{7}{8}$$

Question 9

Vdd 1 0 10

vd 1 2 0

rd 2 3 4k

vd1 1 5 0

r1 5 4 7.5k

r2 4 0 3.2k

c1 4 6 2.2u

c2 3 8 2.2u

rl 8 0 100k

rg 6 7 1k

vin 7 0 sin (0 100m 1k 0 0 0)

M1 3 4 0 0 MN4007

.model MN4007 NMOS(Kp=500u Vto=1.5 Lambda=0.01 Gamma=0.6 Tox=1200n Phi=.6 Rs=0 Rd=0 Cbd=2.0p Cbs=2.0p Pb=.8 Cgso=0.1p Cgdo=0.1p Is=16.64p)

.tran 0.01ms 10ms 0.1ms

.control

op

run

plot v(7) v(8)

.endc

.end

Q10: Frequency Response of Amplifier:

Hardware Simulation

Breadboard Connections:

Reading:

Q4: Observations:

Input(V)	Output(V)	Frequency(Hz)	Gain
0.2	0.1	10	0.5
0.2	0.8	50	4
0.2	1.05	100	5.25
0.2	1.09	200	5.45
0.2	1.13	300	5.65
0.2	1.13	500	5.65
0.2	1.13	1000	5.65
0.2	1.17	2500	5.85
0.2	1.18	5000	5.9
0.2	1.18	10000	5.9
0.2	1.18	15000	5.9
0.2	1.17	25000	5.85
0.2	1.17	35000	5.85
0.2	1.17	50000	5.85
0.2	1.13	70000	5.65
0.2	1.09	85000	5.45
0.2	1.09	90000	5.45
0.2	1.09	100000	5.45
0.2	1	250000	5
0.2	0.8	500000	4
0.2	0.6	750000	3
0.2	0.52	1000000	2.6
0.2	0.44	1250000	2.2
0.2	0.3	1500000	1.5

Gain vs. Frequency

Frequency

Yes, the output signal gets distorted because we exceed the limits of the diode parameters. The diode reaches saturation and thus, the corresponding output gets trimmed.

Log-Log Plot:

We observe that the gain vs frequency graph is plateau shaped. Within a large range of frequencies in between, the gain remains almost constant and then drops off for higher frequencies.

Discussion:

Tanish H Talapaneni:

Duxiurrion:

Through the following experiment, I gained an preactical enright of emplementation of as a NMOS circuit. I havent to voide a nethist for a simple common source amplifier. I saw the Id us Vds graph for a simple common source amplifier after surrulation which matched the for theoretical graph. From this I understood the characteristics of Ed us of the NNOS circuid. I also underestood the graph for various values of Vas, the scatteration current, cutoff voltage etc. I learnt estimation of threshold Voltage from the graph. I also learnt to disign a common Source amplifier and found out the gain of the circuit and Various other parameters. Then for a specified load and what capacitary, to I understood the small signal gain of the circuit of a specific frequency. Also I found out the gain of the circuit for a range of frequencies who from which I understood the behaviour of the gain fo(a circuit) for a wide frequency range.

Practically disigning, I learnt the way to choose various Practically disigning, I learnt the way to choose various resister and capacitance values for a suguired gair and resister and capacitance value the voltage cliphing happens output. I also saw how the voltage cliphing happens output goes higher then a specific value. When the output goes higher then a specific value. I had a great working the time with all the hardward I had a great working with Mos circuits. It was the a great on working with Mos circuits. It was the a great orherience working with a fabricated Ic. I have a otherience working with a fabricated Ic. I have a lot by this enteriment.