In [1]: import pandas as pd
 import numpy as np
 from matplotlib import pyplot as plt
 import seaborn as sns
 from sklearn.linear_model import LinearRegression,LogisticRegression,Lasso,Ridge,Elastifrom sklearn.model_selection import train_test_split

Out[2]:

	date	BEN	со	EBE	MXY	имнс	NO_2	NOx	ОХҮ	0_3	PM10	PM25
0	2009- 10-01 01:00:00	NaN	0.27	NaN	NaN	NaN	39.889999	48.150002	NaN	50.680000	18.260000	NaN
1	2009- 10-01 01:00:00	NaN	0.22	NaN	NaN	NaN	21.230000	24.260000	NaN	55.880001	10.580000	NaN
2	2009- 10-01 01:00:00	NaN	0.18	NaN	NaN	NaN	31.230000	34.880001	NaN	49.060001	25.190001	NaN
3	2009- 10-01 01:00:00	0.95	0.33	1.43	2.68	0.25	55.180000	81.360001	1.57	36.669998	26.530001	6.82
4	2009- 10-01 01:00:00	NaN	0.41	NaN	NaN	0.12	61.349998	76.260002	NaN	38.090000	23.760000	NaN
215683	2009- 06-01 00:00:00	0.50	0.22	0.39	0.75	0.09	22.000000	24.510000	1.00	82.239998	10.830000	7.15
215684	2009- 06-01 00:00:00	NaN	0.31	NaN	NaN	NaN	76.110001	101.099998	NaN	41.220001	9.920000	NaN
215685	2009- 06-01 00:00:00	0.13	NaN	0.86	NaN	0.23	81.050003	99.849998	NaN	24.830000	12.460000	6.77
215686	2009- 06-01 00:00:00	0.21	NaN	2.96	NaN	0.10	72.419998	82.959999	NaN	NaN	13.030000	NaN
215687	2009- 06-01 00:00:00	0.37	0.32	0.99	1.36	0.14	54.290001	64.480003	1.06	56.919998	15.360000	11.61

215688 rows × 17 columns

In [3]: df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 215688 entries, 0 to 215687 Data columns (total 17 columns): Column Non-Null Count Dtype _ _ _ _ _ ---------0 date 215688 non-null object 1 BEN 60082 non-null float64 2 CO 190801 non-null float64 3 EBE 60081 non-null float64 4 MXY 24846 non-null float64 5 74748 non-null float64 NMHC 6 214562 non-null float64 NO 2 7 NOx214565 non-null float64 8 0XY 24854 non-null float64 9 0 3 204482 non-null float64 10 PM10 196331 non-null float64 11 PM25 55822 non-null float64 float64 12 PXY 24854 non-null 13 SO 2 212671 non-null float64 14 TCH 75213 non-null float64 15 TOL 59920 non-null float64 16 station 215688 non-null int64 dtypes: float64(15), int64(1), object(1) memory usage: 28.0+ MB

In [4]: df1=df.dropna()
 df1

Out[4]:

	date	BEN	со	EBE	MXY	NMHC	NO_2	NOx	ОХҮ	0_3	PM10	PM25	F
3	2009- 10-01 01:00:00	0.95	0.33	1.43	2.68	0.25	55.180000	81.360001	1.57	36.669998	26.530001	6.82	1
20	2009- 10-01 01:00:00	0.38	0.32	0.32	0.89	0.01	17.969999	19.240000	1.00	65.870003	10.520000	7.01	(
24	2009- 10-01 01:00:00	0.55	0.24	0.65	1.79	0.18	36.619999	43.919998	1.28	48.070000	19.150000	9.33	1
28	2009- 10-01 02:00:00	0.65	0.21	1.20	2.04	0.18	37.169998	48.869999	1.21	26.950001	32.200001	6.94	1
45	2009- 10-01 02:00:00	0.38	0.30	0.50	1.15	0.00	17.889999	19.299999	1.00	60.009998	12.260000	8.46	(
215659	2009- 05-31 23:00:00	0.54	0.27	1.00	0.69	0.09	28.280001	29.490000	0.86	78.750000	15.170000	10.21	(
215663	2009- 05-31 23:00:00	0.74	0.35	1.13	1.65	0.15	56.410000	69.870003	1.26	56.799999	11.800000	9.63	1
215667	2009- 06-01 00:00:00	0.78	0.29	0.99	1.96	0.04	64.870003	82.629997	1.13	58.000000	12.670000	6.57	(
215683	2009- 06-01 00:00:00	0.50	0.22	0.39	0.75	0.09	22.000000	24.510000	1.00	82.239998	10.830000	7.15	(
215687	2009- 06-01 00:00:00	0.37	0.32	0.99	1.36	0.14	54.290001	64.480003	1.06	56.919998	15.360000	11.61	(

24717 rows × 17 columns

In [5]: df1=df1.drop(["date"],axis=1)

```
In [6]: sns.heatmap(df1.corr())
```

```
Out[6]: <AxesSubplot:>
```



```
In [7]: plt.plot(df1["EBE"],df1["PXY"],"o")
```

Out[7]: [<matplotlib.lines.Line2D at 0x23c87847160>]


```
In [8]: data=df[["EBE","PXY"]]
```

```
In [9]: # sns.stripplot(x=df["EBE"],y=df["PXY"],jitter=True,marker='o',color='blue')
```

```
In [10]: x=df1.drop(["EBE"],axis=1)
y=df1["EBE"]
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
```

Linear

```
In [11]: li=LinearRegression()
li.fit(x_train,y_train)
```

Out[11]: LinearRegression()

```
prediction=li.predict(x_test)
In [12]:
         plt.scatter(y_test,prediction)
Out[12]: <matplotlib.collections.PathCollection at 0x23c8790c130>
          30
          25
          20
          15
          10
                               20
                                        30
                                                 40
                                                          50
In [13]: lis=li.score(x_test,y_test)
In [14]: df1["TCH"].value_counts()
Out[14]: 1.39
                  1091
         1.36
                  1056
         1.38
                  1046
         1.40
                  1018
         1.37
                  1017
         2.52
                     1
         1.16
         2.41
                     1
         1.13
                     1
         2.79
         Name: TCH, Length: 169, dtype: int64
In [15]: df1.loc[df1["TCH"]<1.40,"TCH"]=1</pre>
         df1.loc[df1["TCH"]>1.40,"TCH"]=2
         df1["TCH"].value_counts()
Out[15]: 1.0
                 12963
         2.0
                 11754
         Name: TCH, dtype: int64
         Lasso
In [16]: la=Lasso(alpha=5)
         la.fit(x_train,y_train)
```

Out[16]: Lasso(alpha=5)

```
In [17]: prediction1=la.predict(x_test)
plt.scatter(y_test,prediction1)
```

Out[17]: <matplotlib.collections.PathCollection at 0x23c88533880>


```
In [18]: las=la.score(x_test,y_test)
```

Ridge

```
In [19]: rr=Ridge(alpha=1)
rr.fit(x_train,y_train)
```

Out[19]: Ridge(alpha=1)

```
In [20]: prediction2=rr.predict(x_test)
plt.scatter(y_test,prediction2)
```

Out[20]: <matplotlib.collections.PathCollection at 0x23c871da250>


```
In [21]: rrs=rr.score(x_test,y_test)
```

ElasticNet

```
In [22]: en=ElasticNet()
en.fit(x_train,y_train)

Out[22]: ElasticNet()

In [23]: prediction2=rr.predict(x_test)
plt.scatter(y_test,prediction2)
```

Out[23]: <matplotlib.collections.PathCollection at 0x23c885beca0>


```
In [24]: ens=en.score(x_test,y_test)
```

```
In [25]: print(rr.score(x_test,y_test))
    rr.score(x_train,y_train)
```

0.8783497693150732

Out[25]: 0.8864182797143654

Logistic

Out[28]: LogisticRegression()

```
In [29]: prediction3=lo.predict(x_test)
plt.scatter(y_test,prediction3)
```

Out[29]: <matplotlib.collections.PathCollection at 0x23c88602520>


```
In [30]: los=lo.score(x_test,y_test)
```

Random Forest

```
In [31]: from sklearn.ensemble import RandomForestClassifier
         from sklearn.model selection import GridSearchCV
In [32]:
         g1={"TCH":{"Low":1.0,"High":2.0}}
         df1=df1.replace(g1)
In [33]: x=df1.drop(["TCH"],axis=1)
         y=df1["TCH"]
         x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
In [34]: rfc=RandomForestClassifier()
         rfc.fit(x_train,y_train)
Out[34]: RandomForestClassifier()
In [35]:
         parameter={
             'max_depth':[1,2,4,5,6],
             'min_samples_leaf':[5,10,15,20,25],
             'n_estimators':[10,20,30,40,50]
         }
         grid_search=GridSearchCV(estimator=rfc,param_grid=parameter,cv=2,scoring="accuracy")
         grid search.fit(x train,y train)
Out[36]: GridSearchCV(cv=2, estimator=RandomForestClassifier(),
                      param_grid={'max_depth': [1, 2, 4, 5, 6],
                                   'min_samples_leaf': [5, 10, 15, 20, 25],
                                   'n_estimators': [10, 20, 30, 40, 50]},
                       scoring='accuracy')
```

```
In [37]: rfcs=grid_search.best_score_
In [38]: rfc best=grid search.best estimator
In [39]: | from sklearn.tree import plot tree
         plt.figure(figsize=(80,40))
         plot_tree(rfc_best.estimators_[5],feature_names=x.columns,class_names=['Yes',"No"],fill
Out[39]: [Text(2232.0, 2019.0857142857144, '0_3 <= 36.105\ngini = 0.499\nsamples = 10931\nval
         ue = [9061, 8240]\nclass = Yes'),
          Text(1116.0, 1708.457142857143, 'PM25 <= 10.105\ngini = 0.35\nsamples = 4675\nvalue
         = [1681, 5753]\nclass = No'),
          Text(558.0, 1397.8285714285716, 'NMHC <= 0.175\ngini = 0.499\nsamples = 1175\nvalue
         = [912, 974]\nclass = No'),
          Text(279.0, 1087.2, 'EBE <= 0.585\ngini = 0.445\nsamples = 580\nvalue = [620, 311]
         \nclass = Yes'),
          Text(139.5, 776.5714285714287, 'NOx <= 37.82\ngini = 0.262\nsamples = 116\nvalue =
         [153, 28]\nclass = Yes'),
          Text(69.75, 465.9428571428573, 'BEN <= 0.565\ngini = 0.104\nsamples = 46\nvalue =
         [69, 4] \setminus s = Yes'),
          Text(34.875, 155.3142857142857, 'gini = 0.0\nsamples = 36\nvalue = [60, 0]\nclass =
          Text(104.625, 155.3142857142857, 'gini = 0.426\nsamples = 10\nvalue = [9, 4]\nclass
         = Yes'),
          Text(209.25, 465.9428571428573, 'SO_2 <= 10.58\ngini = 0.346\nsamples = 70\nvalue =
         [84, 24] \setminus s = Yes'),
          Text(174.375, 155.3142857142857, 'gini = 0.041\nsamples = 31\nvalue = [47, 1]\nclas
In [40]: print("Linear:",lis)
         print("Lasso:",las)
         print("Ridge:",rrs)
         print("ElasticNet:",ens)
         print("Logistic:",los)
         print("Random Forest:",rfcs)
         Linear: 0.8783680625661898
```

Linear: 0.8783680625661898 Lasso: 0.37328599597971324 Ridge: 0.8783497693150732 ElasticNet: 0.575045121851463 Logistic: 0.5225188781014024 Random Forest: 0.8625513973793

Best Model is Linear Regression

In [41]: df2=pd.read_csv("C:/Users/user/Downloads/FP1_air/csvs_per_year/csvs_per_year/madrid_2010
df2

Out[41]:

	date	BEN	со	EBE	MXY	NMHC	NO_2	NOx	ОХҮ	O_3	PM10	Р
0	2010- 03-01 01:00:00	NaN	0.29	NaN	NaN	NaN	25.090000	29.219999	NaN	68.930000	NaN	
1	2010- 03-01 01:00:00	NaN	0.27	NaN	NaN	NaN	24.879999	30.040001	NaN	NaN	NaN	
2	2010- 03-01 01:00:00	NaN	0.28	NaN	NaN	NaN	17.410000	20.540001	NaN	72.120003	NaN	
3	2010- 03-01 01:00:00	0.38	0.24	1.74	NaN	0.05	15.610000	21.080000	NaN	72.970001	19.410000	7.87(
4	2010- 03-01 01:00:00	0.79	NaN	1.32	NaN	NaN	21.430000	26.070000	NaN	NaN	24.670000	22.030
209443	2010- 08-01 00:00:00	NaN	0.55	NaN	NaN	NaN	125.000000	219.899994	NaN	25.379999	NaN	
209444	2010- 08-01 00:00:00	NaN	0.27	NaN	NaN	NaN	45.709999	47.410000	NaN	NaN	51.259998	
209445	2010- 08-01 00:00:00	NaN	NaN	NaN	NaN	0.24	46.560001	49.040001	NaN	46.250000	NaN	
209446	2010- 08-01 00:00:00	NaN	NaN	NaN	NaN	NaN	46.770000	50.119999	NaN	77.709999	NaN	
209447	2010- 08-01 00:00:00	0.92	0.43	0.71	NaN	0.25	76.330002	88.190002	NaN	52.259998	47.150002	26.860

209448 rows × 17 columns

In [42]: df2.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 209448 entries, 0 to 209447 Data columns (total 17 columns): Column Non-Null Count Dtype _ _ _ _ _ ---------0 209448 non-null date object 1 BEN 60268 non-null float64 2 CO 94982 non-null float64 3 EBE 60253 non-null float64 4 MXY 6750 non-null float64 5 51727 non-null float64 NMHC 6 208219 non-null float64 NO 2 7 NOx 208210 non-null float64 8 0XY float64 6750 non-null 9 0 3 126684 non-null float64 10 PM10 106186 non-null float64 11 PM25 55514 non-null float64 float64 12 PXY 6740 non-null 13 SO 2 93184 non-null float64 51730 non-null 14 TCH float64 15 TOL 60171 non-null float64 16 station 209448 non-null int64 dtypes: float64(15), int64(1), object(1) memory usage: 27.2+ MB

In [43]: df3=df2.dropna() df3

Out[43]:

	date	BEN	со	EBE	MXY	NMHC	NO_2	NOx	ОХҮ	0_3	PM10	PM25	F
11	2010- 03-01 01:00:00	0.78	0.18	0.84	0.73	0.28	10.420000	11.900000	1.0	90.309998	18.370001	11.30	(
23	2010- 03-01 01:00:00	0.70	0.23	1.00	0.73	0.18	17.820000	22.290001	1.0	70.550003	23.639999	13.15	(
35	2010- 03-01 02:00:00	0.58	0.17	0.84	0.73	0.28	3.500000	4.950000	1.0	68.849998	5.600000	5.25	(
47	2010- 03-01 02:00:00	0.33	0.21	0.84	0.73	0.17	10.810000	14.900000	1.0	74.750000	7.890000	5.54	(
59	2010- 03-01 03:00:00	0.38	0.16	0.64	1.00	0.26	2.750000	4.200000	1.0	93.629997	5.130000	4.90	(
191879	2010- 05-31 22:00:00	0.60	0.26	0.82	0.13	0.16	33.360001	43.779999	1.0	38.459999	20.340000	12.31	1
191891	2010- 05-31 23:00:00	0.41	0.16	0.71	0.19	0.10	24.299999	26.059999	1.0	50.290001	14.380000	8.53	1
191903	2010- 05-31 23:00:00	0.57	0.28	0.64	0.19	0.18	35.540001	44.590000	1.0	34.020000	22.840000	11.25	1
191915	2010- 06-01 00:00:00	0.34	0.16	0.69	0.22	0.10	23.559999	25.209999	1.0	45.930000	10.770000	6.28	1
191927	2010- 06-01 00:00:00	0.43	0.25	0.79	0.22	0.18	34.910000	42.369999	1.0	29.540001	15.350000	8.97	1

6666 rows × 17 columns

In [44]: df3=df3.drop(["date"],axis=1)

```
In [45]: sns.heatmap(df3.corr())
```

Out[45]: <AxesSubplot:>


```
In [46]: x=df3.drop(["TCH"],axis=1)
y=df3["TCH"]
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
```

Linear

```
In [47]: li=LinearRegression()
li.fit(x_train,y_train)
```

Out[47]: LinearRegression()

In []:

In [48]: prediction=li.predict(x_test)
plt.scatter(y_test,prediction)

Out[48]: <matplotlib.collections.PathCollection at 0x23c8864f190>


```
lis=li.score(x_test,y_test)
In [49]:
         df3["TCH"].value_counts()
In [50]:
Out[50]: 1.36
                  364
         1.38
                  351
         1.39
                  324
         1.35
                  323
         1.37
                  321
         2.07
                    1
         2.17
                    1
         2.53
                    1
         2.12
                    1
         2.05
         Name: TCH, Length: 100, dtype: int64
In [51]: df3.loc[df3["TCH"]<1.40,"TCH"]=1</pre>
         df3.loc[df3["TCH"]>1.40,"TCH"]=2
         df3["TCH"].value_counts()
Out[51]: 1.0
                 3340
          2.0
                 3326
         Name: TCH, dtype: int64
 In [ ]:
```

Lasso

1.4

1.2

1.6

2.0

1.8

2.2

2.4

2.6

```
In [54]: las=la.score(x_test,y_test)
```

Ridge

```
In [55]: rr=Ridge(alpha=1)
rr.fit(x_train,y_train)
```

Out[55]: Ridge(alpha=1)

```
In [56]: prediction2=rr.predict(x_test)
plt.scatter(y_test,prediction2)
```

Out[56]: <matplotlib.collections.PathCollection at 0x23c8870a310>


```
In [57]: rrs=rr.score(x_test,y_test)
```

ElasticNet

```
In [58]: en=ElasticNet()
en.fit(x_train,y_train)
```

Out[58]: ElasticNet()

```
In [59]: prediction2=rr.predict(x_test)
plt.scatter(y_test,prediction2)
```

Out[59]: <matplotlib.collections.PathCollection at 0x23c88762e20>


```
In [60]: ens=en.score(x_test,y_test)
```

```
In [61]: print(rr.score(x_test,y_test))
    rr.score(x_train,y_train)
```

0.4590393479321705

Out[61]: 0.44781912704161386

Logistic

Out[64]: LogisticRegression()

lo.fit(x_train,y_train)

```
In [65]: prediction3=lo.predict(x_test)
plt.scatter(y_test,prediction3)
```

Out[65]: <matplotlib.collections.PathCollection at 0x23c8813aac0>


```
In [66]: los=lo.score(x_test,y_test)
```

Random Forest

```
In [67]: from sklearn.ensemble import RandomForestClassifier
         from sklearn.model selection import GridSearchCV
         g1={"TCH":{"Low":1.0,"High":2.0}}
In [68]:
         df3=df3.replace(g1)
In [69]: x=df3.drop(["TCH"],axis=1)
         y=df3["TCH"]
         x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
In [70]: rfc=RandomForestClassifier()
         rfc.fit(x_train,y_train)
Out[70]: RandomForestClassifier()
In [71]:
         parameter={
             'max_depth':[1,2,4,5,6],
             'min_samples_leaf':[5,10,15,20,25],
             'n estimators':[10,20,30,40,50]
         }
         grid_search=GridSearchCV(estimator=rfc,param_grid=parameter,cv=2,scoring="accuracy")
         grid search.fit(x train,y train)
Out[72]: GridSearchCV(cv=2, estimator=RandomForestClassifier(),
                      param_grid={'max_depth': [1, 2, 4, 5, 6],
                                   'min_samples_leaf': [5, 10, 15, 20, 25],
                                   'n_estimators': [10, 20, 30, 40, 50]},
                       scoring='accuracy')
```

```
In [73]: rfcs=grid_search.best_score_
In [74]: rfc best=grid search.best estimator
In [75]: from sklearn.tree import plot tree
                    plt.figure(figsize=(80,40))
                    plot_tree(rfc_best.estimators_[5],feature_names=x.columns,class_names=['Yes',"No"],fill
                    ZII\nciass = NO),
                      Text(390.05825242718447, 1087.2, 'PM10 <= 9.235\ngini = 0.308\nsamples = 629\nvalue
                    = [800, 188]\nclass = Yes'),
                      Text(216.6990291262136, 776.5714285714287, 'NMHC <= 0.385\ngini = 0.39\nsamples = 2
                    51\nvalue = [298, 108]\nclass = Yes'),
                      Text(130.01941747572818, 465.9428571428573, 'CO <= 0.215\ngini = 0.317\nsamples = 1
                    74\nvalue = [224, 55]\nclass = Yes'),
                      Text(86.67961165048544, 155.3142857142857, 'gini = 0.113\nsamples = 101\nvalue = [1]
                    41, 9]\nclass = Yes'),
                      Text(173.35922330097088, 155.3142857142857, 'gini = 0.459\nsamples = 73\nvalue = [8
                    3, 46]\nclass = Yes'),
                      Text(303.37864077669906, 465.9428571428573, 'BEN <= 0.265\ngini = 0.486\nsamples =
                    77\nvalue = [74, 53]\nclass = Yes'),
                      Text(260.03883495145635, 155.3142857142857, 'gini = 0.226\nsamples = 34\nvalue = [4
                    7, 7]\nclass = Yes'),
                      Text(346.71844660194176, 155.3142857142857, 'gini = 0.466\nsamples = 43\nvalue = [2
                    7, 46]\nclass = No'),
                      Text(563.4174757281554, 776.5714285714287, 'NOx <= 19.02 \neq 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237 = 0.237
                    78\nvalue = [502, 80]\nclass = Yes'),
                      Text(476.73786407766994, 465.9428571428573, 'CO <= 0.225\ngini = 0.11\nsamples = 20 ▼
In [76]: print("Linear:",lis)
                    print("Lasso:",las)
                    print("Ridge:",rrs)
                    print("ElasticNet:",ens)
                    print("Logistic:",los)
                    print("Random Forest:",rfcs)
                    Linear: 0.45865884208093644
                    Lasso: -0.0002593585325185721
                    Ridge: 0.4590393479321705
                    ElasticNet: 0.35747558851830485
                    Logistic: 0.4895
                    Random Forest: 0.7788255465066438
```

Best model is Random Forest

In []: