



# Towards Inertial Musculoskeletal Analysis:

Effects of Sensor-to-Segment Calibration on Predicted Ground Reaction Forces

MASTER'S THESIS – Felix Laufer wearHEALTH, TU Kaiserslautern

## Motivation – Musculoskeletal Analysis



(Clinical) Motion and Gait Analysis

kinematic & kinetic motion parameters:

- anatomical kinematics
- ground reaction forces
- joint reaction forces
- muscle forces / activations

typical gait lab equipment

long-term goal:
flexibel & mobile body-worn system
flexibel & mobile body-worn analysis
inertial musculoskeletal analysis

## Introduction – Musculoskeletal Analysis Pipeline





# Agenda

# Optical vs. Inertial Musculoskeletal Pipeline



## Kinematic Modeling



skeleton graph (topology) of segments and joints



basic synovial joint types

spherical: no rotational restriction

hinge: one-axis restriction

align frames of incident segmentsrestrict rotation using Euler angles

or:

penalize r := a - aR,

a: joint axis, R: rotation

biaxial: two-axes restriction,

- → not trivial in general for non-perpendicular axes (cf. thesis)
- → later

common joint types in practice

## Anatomical Skeletons: AnyBody Full-Body Model

#### There are various anatomical skeleton models available!

but: kinematics is only comparable among the same underlying model



→ use the same, detailed, anatomically correct model for all stages of the pipeline (avoid the propagation of modeling errors through the entire pipeline!)



| Abbrev. | DoFs       | Description           |  |
|---------|------------|-----------------------|--|
| NF      | 1×         | Neck Flexion          |  |
| TP      | $3\times$  | Thorax Pelvis         |  |
| (SCPV)  | $3\times$  | Sacrum Pelvis         |  |
| (L5SC)  | $3\times$  | L5 Sacrum             |  |
| (L4L5)  | $3\times$  | L4 L5                 |  |
| (L3L4)  | $3\times$  | L3 L4                 |  |
| (L2L3)  | $3\times$  | L2 L3                 |  |
| (L1L2)  | $3\times$  | L1 L2                 |  |
| (T12L1) | $3\times$  | T12 L1                |  |
| GH      | $3\times$  | Gleno Humeral         |  |
| (SC)    | $3\times$  | Sterno Calvicular     |  |
| (AC)    | $3\times$  | Acromio Clavicular    |  |
| EF      | $1\times$  | Elbow Flexion         |  |
| EP      | $1\times$  | Elbow Pronation       |  |
| WF      | $1\times$  | Wrist Flexion         |  |
| WD      | $1\times$  | Wrist Deviation       |  |
| HIP     | $3\times$  | Hip                   |  |
| KF      | $1\times$  | Knee Flexion          |  |
| APF     | $1\times$  | Ankle Plantar Flexion |  |
| SEV     | $1 \times$ | Subtalar Eversion     |  |
|         |            |                       |  |

"Joint kinematic calculation based on clinical direct kinematic versus inverse kinematic gait models."

Kainz et al. 2016, Journal of Biomechanics

AnyBody skeleton model and DoFs

## Classical Optical Marker-Based Body Tracking



**Mo**tion **Cap**ture



Inverse Kinematics



### Model Scaling





#### **Inverse Kinematics**

q(t): joint angle trajectories

$$\Gamma(q(t)) = 0 \quad {\hbox{\footnotesize \longleftarrow}} \quad {\hbox{holonomic system}}$$

$$\Gamma(q(t)) = \begin{bmatrix} \Psi(q(t), P) \\ \Phi(q(t), P) \end{bmatrix} \text{ ---- marker \& motion constraints, dep. on model scaling skeleton joint constraints, dep. on model scaling}$$

→ precise kinematics → optical marker-based body tracking = "golden standard"

# Optical vs. Inertial Musculoskeletal Pipeline



## Comparison of Optical vs. Inertial Body Tracking



**optical**: markers at bony landmarks

- → global body reference frame
- → marker tracking optimization
- → marker placement errors (soft tissue artifacts)

Inertial Measurement Units (IMUs)



**inertial**: sensors at segments

- → local inertial sensor frames
- → inertial multi-body tracking problem
- → I2S calibration errors

one-to-one sensor-to-segment mapping is not feasible!



| Abbrev. | DoFs       | Description           |
|---------|------------|-----------------------|
| NF      | $1 \times$ | Neck Flexion          |
| TP      | $3\times$  | Thorax Pelvis         |
| (SCPV)  | $3\times$  | Sacrum Pelvis         |
| (L5SC)  | $3\times$  | L5 Sacrum             |
| (L4L5)  | $3\times$  | L4 L5                 |
| (L3L4)  | $3\times$  | L3 L4                 |
| (L2L3)  | $3\times$  | L2 L3                 |
| (L1L2)  | $3\times$  | L1 L2                 |
| (T12L1) | $3\times$  | T12 L1                |
| GH      | $3\times$  | Gleno Humeral         |
| (SC)    | $3\times$  | Sterno Calvicular     |
| (AC)    | $3\times$  | Acromio Clavicular    |
| EF      | $1\times$  | Elbow Flexion         |
| EP      | $1 \times$ | Elbow Pronation       |
| WF      | $1\times$  | Wrist Flexion         |
| WD      | $1\times$  | Wrist Deviation       |
| HIP     | $3\times$  | Hip                   |
| KF      | $1\times$  | Knee Flexion          |
| APF     | $1\times$  | Ankle Plantar Flexion |
| SEV     | $1\times$  | Subtalar Eversion     |

→ detailed skeleton model is not directly IMU-trackable

## IMU-Trackable Anatomical Skeleton (Shoulder and Spine Rhythms)



**green:** too many DoFs compared to IMUs

AnyBody skeleton implements shoulder and spine kinematics as a functions of **only one joint** 

→ "shoulder & spine rhythm" extracted from AnyBody code and implemented



shoulder rhythm: [AC, SC] =  $f_{shoulder}$  (GH)

spine rhythm: [SacrumPelvis, L5Sacrum, L4L5, L3L4, L3L2, L1L2, T12L1] =  $f_{spine}$  (TP)

**f (.)** are linear combinations

"Shoulder Rhythm Report" and "Spine Rhythm" Technical Reports, AnyBody Technology A/S

## IMU-Trackable Anatomical Skeleton (Arbitrary two-Axes Joint Constraint)



red: DoFs trackable in principle, but redundant in-between segment

redundant in-between segments → shrink segments to zero length (fuse joints)

→ simple, if joint axes are perpendicular: obtain relative orientaton between incident IMUs and decompose it (Euler angles)



→ is there a rotation decomposition about "arbitrary axes"?

#### two-axes decomposition:

with R and two non-collinear axes  $a_1$  and  $a_2$ , R is decomposable about  $a_1$ ,  $a_2$  iff:

$$a_1^T a_2 = a_1^T R a_2$$

 $r \coloneqq |a_1^T a_2 - a_1^T R a_2|$  is a measure of the remaining "non-decomposability" of R

 $\rightarrow$  use min r as a joint constraint

### Inertial Inverse Kinematics



**Mo**tion **Cap**ture

Inverse

**K**inematics



Complementary Inertial Sensor Fusion / Strapdown Integration:

accelerometer + gyroscope ( + magnetometer )



Multi Sensor Fusion: Extended Kalman Filter (EKF)

Coupled Fusion Approach: QuatTracker



"On inertial body tracking in the presence of model calibration errors", Miezal, Taetz, Bleser, Sensors, vol. 16, no. 7, p. 1132, 2016

# **Optical** vs. **Inertial** Musculoskeletal Pipeline



## Dynamic Modeling







basic hill type muscle model (musculotendon unit)

## Inverse Dynamics



Inverse

Dynamics



### Equations of Motion

$$\begin{bmatrix} m_i \, I_3 & 0 \\ 0 & \Theta_i \end{bmatrix} \begin{bmatrix} \dot{v}_i \\ \dot{\omega}_i \end{bmatrix} + \begin{bmatrix} 0 \\ \omega_i \times \Theta_i \, \omega_i \end{bmatrix} = \begin{bmatrix} f_i \\ \tau_i \end{bmatrix} \quad \text{net forces} \\ \quad \text{and torques} \end{bmatrix} \rightarrow \text{ muscle forces?}$$

### Muscular Redundancy Problem

- "How to distribute net joint moments over all involved muscles?"



example: arm without hand

- 7 DoFs
- but > 20 skeletal muscles
- → joints are over-actuated ⇔ muscle system is underdetermined
- → muscle recruitment solution requires additional constraints

## Muscle Recruitment Optimization



# Inverse Dynamics



### Idea of Static Optimization

in each time step, choose a solution that minimizes the total muscle stress while fulfilling the force balance prescribed by the equations of motion:

$$\hat{f}^{(\mathbb{M})} = \underset{f^{(\mathbb{M})}}{\operatorname{arg\,min}} \left[ G\left( f^{(\mathbb{M})} \right) \right]$$
s.t.  $C f = \tau_q$ 

#### Muscle Recruitment Criterion

$$G\left(f^{(\mathbb{M})}\right) = \sum_{M \in \mathbb{M}} \left(\frac{f_{M_i}}{F_{M_i,0}}\right)^p$$

cf. polynomial norms

- p = 1: linear recruitment: allocate more work to stronger muscles
  - → minimum number of muscles for equilibrium
- p = 2: quadratic recruitment: penalize large single force terms
  - → emphasize load sharing, i.e. muscle synergy effects
- $p = \infty$ : min-max recruitment: balance loads among muscles as best as possible
  - → minimum muscle fatigue or maximum synergism criterion

### Ground Reaction Forces



$$\begin{bmatrix} m_i I_3 & 0 \\ 0 & \Theta_i \end{bmatrix} \begin{bmatrix} \dot{v}_i \\ \dot{\omega}_i \end{bmatrix} + \begin{bmatrix} 0 \\ \omega_i \times \Theta_i \, \omega_i \end{bmatrix} = \begin{bmatrix} f_i \\ \tau_i \end{bmatrix}$$

Inverse **D**ynamics





#### Why and how to measure GRFs?



→ GRFs indetermined during double feet contact phases (closed kinematic chain)

#### Limitations of GRF Measurements

- possible dynamic inconsistency of equations of motions for measured GRFs
- inconvenient and inflexible force plate devices
- → GRF prediction using additional assumptions / constraints ... ?
  - optimization based approach [Audu et al. 2003]
  - smooth transitions functions, interpolated from empirical measurements [Ren et al. 2008]
  - artificial neural networks [Choi et al. 2013]
  - zero-moment point (robotics)
  - or ... ?

### Ground Reaction Force Prediction

#### Idea: Artificial Muscle-Like Actuators at Foot Ground Contact Points



Inverse **D**ynamics









- 25 **ground contact points** per foot
- 5 muscle-like actuators per point
- ground contact conditions for each point:
  - zero-velocity condition
  - height threshold

→ integration into Static Optimization

$$\hat{f}^{(\mathbb{M})} = \underset{f^{(\mathbb{M})}}{\operatorname{arg \, min}} \left[ G\left(f^{(\mathbb{M})}\right) \right]$$
s.t.  $C f = \tau_q$ 

"Prediction of ground reaction forces and moments during various activities of daily living." Fluit et al. 2014, Journal of Biomechanics



# Agenda

#### Optical vs. Inertial Musculoskeletal Pipeline



## **GRF** Prediction Validation



| N = 3                                                 | $F_x$ (ant-pos) | $F_y$ (med-lat) | $F_z$ (ver) | $M_x$ (fro) | $M_y$ (sag) | $M_z$ (tra) |
|-------------------------------------------------------|-----------------|-----------------|-------------|-------------|-------------|-------------|
| $\overline{r}(*,\rightarrow)$                         | 0.95            | 0.74            | 0.99        | 0.73        | 0.97        | 0.78        |
| $\bar{r}(*, \rightarrow)$ $\bar{e}_R(*, \rightarrow)$ | 0.07            | 0.27            | 0.05        | 0.22        | 0.06        | 0.18        |





→ results in accordance with [Fluit et al. 2014] and [Skals 2016]

## GRF Prediction Sensitivity Analysis (Ground Contact Conditions)





Ankle Plantar Flexion (APF)

Subtalar Eversion (SEV)

error sampling range of [±12 ° x ±12 °]





APF + SEV → foot posture during touchdown

|                               | $F_x$ (ant-pos) | $F_y$ (med-lat) | $F_z$ (ver) | $M_x$ (fro) | $M_y$ (sag) | $M_z$ (tra) |
|-------------------------------|-----------------|-----------------|-------------|-------------|-------------|-------------|
| $\bar{r}(*, \rightarrow)$     | 0.99            | 0.99            | 0.99        | 0.86        | 0.99        | 0.98        |
| $\tilde{r}(*, \rightarrow)$   | 0.99            | 0.99            | 0.99        | 0.92        | 0.99        | 0.99        |
| $\check{r}(*, \rightarrow)$   | 0.98            | 0.97            | 0.99        | 0.18        | 0.98        | 0.78        |
| $s_r(*, \rightarrow)$         | 0.0018          | 0.0054          | 0.0002      | 0.166       | 0.0032      | 0.0334      |
| $\bar{e}_R(*, \rightarrow)$   | 0.0066          | 0.0352          | 0.0054      | 0.1343      | 0.0179      | 0.0653      |
| $\tilde{e}_R(*, \rightarrow)$ | 0.0051          | 0.0341          | 0.0050      | 0.1383      | 0.0159      | 0.0543      |
| $\hat{e}_R(*, \rightarrow)$   | 0.0432          | 0.1036          | 0.0215      | 0.2435      | 0.0794      | 0.2456      |
| $s_{e_R}(*, \rightarrow)$     | 0.0059          | 0.0203          | 0.0031      | 0.0616      | 0.0134      | 0.0488      |

| $r(\downarrow, \rightarrow)$ | $\delta [{ m CoP}]_{ar x}$ (ant-pos) | $\delta [{ m CoP}]_{ar{y}} \ { m (med	ext{-}lat)}$ |
|------------------------------|--------------------------------------|----------------------------------------------------|
| $  \theta_{APF}  $           | 0.82                                 | 0.27                                               |
| $  \theta_{SEV}  $           | 0.23                                 | 0.69                                               |

→ tradeoff between prediction robustness and CoP precision

→ GRF prediction is robust against foot posture disturbances

#### Optical vs. Inertial Musculoskeletal Pipeline



## 12S Calibration Error Simulation

Effects of simulated I2S calibration errors on predicted GRFs

- → how accurate are biomechanical analysis results w.r.t. I2S errors?
- → what calibration precision is required?





simulated errors around lateral and segmental axes

## 12S Calibration Errors: Effects on Predicted GRFs per Segment

correlations of disturbed vs. true predicted GRFs for anterior initial calibration, error sampling range of [±12 ° x ±12 °]



correlations of disturbed vs. true predicted GRFs for lateral initial calibration, error sampling range of [±12 ° x ±12 °]

## 12S Calibration Errors: Effects on Predicted GRFs per Segment

qualitattive correlation distributions for lateral initial calibration, error sampling range of [±12 ° x ±12 °]





## 12S Calibration Errors: Effects on Predicted GRFs in Typical Scenario

monte carlo simulation of I2S errors for all lower body segments in an error range of [±12 ° x ±12 °]



monte carlo simulation of I2S errors for all lower body segments in a reduced range of [ $\pm 6$  ° x  $\pm 6$  °]





# Agenda

### Conclusion

- ✓ musculoskeletal analysis pipeline for both optical and inertial body tracking.
- ✓ anatomical IMU-trackable skeleton, consistently used in the entire pipeline
  - → avoid (unknown) modeling errors
- ✓ integration of a universal GRF prediction approach
  - → "universal" = no training / empirical data required, only kinematics
- ✓ sensitivity of GRF Prediction (ground contact conditions)
  - → very robust for moderate foot posture disturbances
- ✓ systematic I2S calibration error simulation
  - → robustness dependent on initial IMU configuration per segment
  - → generally: much higher impact of errors on lateral axis
  - → acceptable GRF prediction errors for proper initial configuration
- ✓ typical I2S error scenario for all lower body segments
  - → errors at segments accumulate → moderate to high GRF prediction deviations
  - → acceptable errors for reduced error range of [±6 ° x ±6 °]

#### Future Work

- o quantitatively proof the advantages of using the same model for the entire pipeline
  - → compare with kinematics + dynamics obtained with different models
- o repeat studies with real data
  - → use real inertial reference trajectories
  - → use force plate measurements
- o what about pathological gaits / motion sequences?
  - → GRF prediction valid?
- o lower body → full-body I2S error simulation
- (investigate muscle activation estimations in more detail)
- (can we make the inverse dynamics computationally more efficient?)
- (integrate and compare different biomechanical frameworks and models, e.g. OpenSim vs. AnyBody)



# Questions?

Thank you for your attention!



## Overall Design & Implementation



## 12S Trajectory Simulation

- data differentiation
- realistic inertial sensor error + noise model



## Shoulder Rhythm Implementation

```
public static Dictionary<string, EulerAngles> ShoulderRhythmDOFs(EulerAngles glenohumeralLeftDOFs, EulerAngles glenohumeralRightDOFs)
    glenohumeralLeftDOFs = glenohumeralLeftDOFs.ToEulerAngles("XZY");
    glenohumeralRightDOFs = glenohumeralRightDOFs.ToEulerAngles("XZY");
   // Functions from shoulder rhythm definition in file /Body/AAUHuman/Arm/JntSR.any
   var sternoClavicularLeftDOFs = new EulerAngles(
       0.422 * glenohumeralLeftDOFs.X - 0.423,
       -0.242 * glenohumeralLeftDOFs.X + 0.12 * glenohumeralLeftDOFs.Z + 0.851 * -0.401 - 4.983.ToRad() + 10d.ToRad(),
       0.123 * glenohumeralLeftDOFs.X - 0.046 * glenohumeralLeftDOFs.Z + 0.493 * 0.201 + 3.917.ToRad() - 6d.ToRad()
    , "YZX");
    var sternoClavicularRightDOFs = new EulerAngles(
       0.422 * glenohumeralRightDOFs.X - 0.423,
       -0.242 * glenohumeralRightDOFs.X + 0.12 * glenohumeralRightDOFs.Z + 0.851 * -0.401 - 4.983.ToRad() + 10d.ToRad(),
       0.123 * glenohumeralRightDOFs.X - 0.046 * glenohumeralRightDOFs.Z + 0.493 * 0.201 + 3.917.ToRad() - 6d.ToRad()
    , "YZX");
   var sign = +1d;
   var scapulaThoraxLeftDOFs = new EulerAngles(
        -0.049 * sign * glenohumeralLeftDOFs.X + 0.14 * sign * glenohumeralLeftDOFs.Z + sign * -1.203.ToRad() + 0.901 * 0.33 + 10d.ToRad(),
       0.396 * sign * glenohumeralLeftDOFs.X - 0.079 * sign * glenohumeralLeftDOFs.Z + sign * 3.095.ToRad() + 0.414 * 0.307 - 10d.ToRad()
    , "YZX");
    sign = -1d;
    var scapulaThoraxRightDOFs = new EulerAngles(
       0d,
        -0.049 * sign * glenohumeralLeftDOFs.X + 0.14 * sign * glenohumeralLeftDOFs.Z + sign * -1.203.ToRad() + 0.901 * 0.33 + 10d.ToRad(),
       0.396 * sign * glenohumeralLeftDOFs.X - 0.079 * sign * glenohumeralLeftDOFs.Z + sign * 3.095.ToRad() + 0.414 * 0.307 - 10d.ToRad()
    , "YZX");
    return new Dictionary<string, EulerAngles>()
        { "SternoClavicularLeft", sternoClavicularLeftDOFs },
        { "SternoClavicularRight", sternoClavicularRightDOFs },
        { "ScapulaThoraxLeft", scapulaThoraxLeftDOFs },
        { "ScapulaThoraxRight", scapulaThoraxRightDOFs }
   };
```

## Spine Rhythm Implementation

```
public static Dictionary<string, EulerAngles> SpineRhythmDOFs(EulerAngles pelvisThoraxDOFs)
    pelvisThoraxDOFs = pelvisThoraxDOFs.ToEulerAngles("ZYX");
    var t12L1WeightMatrix = Matrix<double>.Build.DenseOfArray(new[,]
        // Matrix from spine rhythm definition in file /Body/AAUHuman/Trunk/SRMatrixes.any
        { 7.105616e-002, 2.276759e-001, 4.020500e-001, 5.784718e-001, 7.462112e-001, 9.131695e-001, 1.00000000000 }, // X factors
        { 0.00000000000, 1.421123e-001, 3.132395e-001, 4.908604e-001, 6.660833e-001, 8.263391e-001, 1.00000000000 }, // Y factors
        { 7.105616e-002, 2.276759e-001, 4.020500e-001, 5.784718e-001, 7.462112e-001, 9.131695e-001, 1.00000000000 } // Z factors
   });
    var t12L1DOFs = new EulerAngles(pelvisThoraxDOFs.X / t12L1WeightMatrix.Row(0).Sum(), pelvisThoraxDOFs.Y / t12L1WeightMatrix.Row(1).Sum(),
pelvisThoraxDOFs.Z / t12L1WeightMatrix.Row(2).Sum());
    return new Dictionary<string, EulerAngles>()
        { "SacrumPelvis", new EulerAngles(t12L1DOFs.X * t12L1WeightMatrix[0, 0], t12L1DOFs.Y * t12L1WeightMatrix[1, 0], t12L1DOFs.Z *
        t12L1WeightMatrix[2, 0]) },
        { "L5Sacrum"
                        , new EulerAngles(t12L1D0Fs.X * t12L1WeightMatrix[0, 1], t12L1D0Fs.Y * t12L1WeightMatrix[1, 1], t12L1D0Fs.Z *
        t12L1WeightMatrix[2, 1]) },
                         , new EulerAngles(t12L1DOFs.X * t12L1WeightMatrix[0, 2], t12L1DOFs.Y * t12L1WeightMatrix[1, 2], t12L1DOFs.Z *
        { "L4L5"
        t12L1WeightMatrix[2, 2]) },
        { "L3L4"
                         , new EulerAngles(t12L1DOFs.X * t12L1WeightMatrix[0, 3], t12L1DOFs.Y * t12L1WeightMatrix[1, 3], t12L1DOFs.Z *
        t12L1WeightMatrix[2, 3]) },
                         , new EulerAngles(t12L1DOFs.X * t12L1WeightMatrix[0, 4], t12L1DOFs.Y * t12L1WeightMatrix[1, 4], t12L1DOFs.Z *
        { "L2L3"
        t12L1WeightMatrix[2, 4]) },
        { "L1L2"
                         , new EulerAngles(t12L1DOFs.X * t12L1WeightMatrix[0, 5], t12L1DOFs.Y * t12L1WeightMatrix[1, 5], t12L1DOFs.Z *
        t12L1WeightMatrix[2, 5]) },
        { "T12L1"
                         , t12L1D0Fs }
   };
```