

The problem. Given sets of values $\ell_1, \ell_2, \dots, \ell_n$ and h_1, h_2, \dots, h_n , find a plan of maximum value. (Such a plan will be called *optimal*.)

Example. Suppose n = 4, and the values of ℓ_i and h_i are given by the following table. Then the plan of maximum value would be to choose "none" in week 1, a high-stress job in week 2, and low-stress jobs in weeks 3 and 4. The value of this plan would be 0 + 50 + 10 + 10 = 70.

	Week 1	Week 2	Week 3	Week 4
ℓ	10	1	10	10
h	5	50	5	1

(a) Show that the following algorithm does not correctly solve this problem, by giving an instance on which it does not return the correct answer.

For iterations $i = 1$	l to n
If $h_{i+1} > \ell_i + \ell_{i+1}$ the	en
Output "Choose n	o job in week i"
Output "Choose a	high-stress job in week $i+1$ "
Continue with it	eration $i+2$
Else	
Output "Choose a	low-stress job in week i "
Continue with it	eration $i+1$
Endif	
End	

To avoid problems with overflowing array bounds, we define $h_i = \ell_i = 0$ when i > n.

In your example, say what the correct answer is and also what the above algorithm finds.

١	Week		2	3	4
	l	(0)		(2)	10
	h	50	5	5	

for 1 to 4

1: Choose 10 in week 1

2: choose 1 in week 2

3: choose 10 in week3

4: choose 10 in week4

10+10+10=3) is not optimal

corroct is: 50+1+10+10=71

(b) Give an efficient algorithm that takes values for $\ell_1, \ell_2, \dots, \ell_n$ and h_1, h_2, \dots, h_n and returns the *value* of an optimal plan.

define. op(i): the optimal choice from week 1 to week i.

$$op(\hat{z}) = \begin{cases} 0, \hat{z} \leq 0 \\ max(op(\hat{z}-1)+l\hat{z}, op(\hat{z}-2)+h\hat{z}) \end{cases}$$

pseudo code

for $\hat{v}=-1$ to Nif $\hat{v} \leq 0$ op(\hat{v})= 0

else op(\hat{v})=max(op(\hat{v} -1)+1i,op(\hat{v} -1)+

time complexity o(n)

hi)