VII. Deontic Logic

AS.150.498: Modal Logic and Its Applications Johns Hopkins University, Spring 2017

Our first application is *deontic logic* which is concerned with obligation, permission, prohibition, and related normative concepts.

1 Syntax, Semantics, and Proof Systems

We will be working with the following language:

Definition 9.1. The **deontic language** \mathcal{L}_d extends the basic sentential language with obligation and permission operators:

$$p \mid \bot \mid \neg \varphi \mid (\varphi \land \varphi) \mid O\varphi) \mid P\varphi$$

Read $O\varphi$ as 'It ought to be the case that φ ' and $P\varphi$ as 'It is permissible that φ .'

Note that O and P are interdefinable: $O \equiv \neg P \neg$ and $P \equiv \neg O \neg$.

The semantics for \mathcal{L}_d is the standard one based on Kripke models where $w\mathcal{R}v$ just in case v is a **deontically ideal** world relative to w.

Intuitively, $O\varphi \supset \varphi$ is invalid—that is, \mathcal{R} needn't be reflexive.

Intuitively, $O\varphi \supset P\varphi$ is valid—that is, \mathcal{R} should be serial.

At first glance, then, it seems that deontic logic should be at least as strong as \mathbf{KD} but shouldn't validate \mathbf{T} .

Definition 9.2. Standard Deontic Logic (SDL) is the logic KD:

- (PL) All (substitutions of) tautologies are axioms
- (MP) From φ and $\varphi \supset \psi$ infer ψ
- (Nec_d) From φ infer $O\varphi$
- (K_d) For any φ, ψ , $O(\varphi \supset \psi) \supset (O\varphi \supset O\psi)$ is an axiom
- (D_d) For any φ , $O\varphi \supset P\varphi$ is an axiom
- (Duality) Expressions involving O and P are interchangeable according to the duality $O \equiv \neg P \neg$

Intuitively, $O(O\varphi \supset \varphi)$ is also valid—while \mathcal{R} needn't be reflexive, this relation should be *shift reflexive*: $\forall w, v(w\mathcal{R}v \supset v\mathcal{R}v)$.

Definition 9.3. SDL⁺ is the logic obtained by supplementing **KD** with the axiom schema $O(O\varphi \supset \varphi)$.

2 Anderson-Kanger Reduction

In lieu of treating O as a primitive operator, Anderson [1956] and Kanger [1957] proposed reducing deontic logic to ordinary alethic logic as follows:

$$O\varphi \equiv \Box(D \supset \varphi)$$
 (alternatively: $O\varphi \equiv \Box(\neg \varphi \supset S)$)

where D designates that all normative requirements have been met (and S designates that a sanction has been imposed).

If the logic of \square is **K** plus the axiom $\lozenge D$, then the corresponding logic of O is SDL.

Here are some theorems of the combined logic of \square and O:

OD

 $\Box \varphi \supset \mathcal{O} \varphi$

 $\Box(\varphi\supset\psi)\supset(\mathrm{O}\varphi\supset\mathrm{O}\psi)$

 $\neg \Diamond (\mathcal{O} \varphi \wedge \mathcal{O} \neg \varphi)$

 $O\varphi \supset \Diamond \varphi$ ('ought' implies 'can')

If the logic of \square is **KT** plus the axiom $\lozenge D$, then the corresponding logic of O is SDL⁺.

3 Problems

Conflicting Obligations. SDL rules out conflicting obligations:

1. $(O\varphi \wedge O \neg \varphi) \supset O(\varphi \wedge \neg \varphi)$

 $^{\rm C}$

2. $\neg O(\varphi \land \neg \varphi)$

From D_d

3. $\neg(O\varphi \land O\neg\varphi)$

PL 1.2

However, such conflicts arguably occur:

- (P1) I ought to fight in the war (since I signed a contract to do so).
- (P2) I ought not to fight in the war (since the war is unjust).

Some possible responses:

- —Abandon C and work with neighborhood semantics.
- —Abandon \mathbf{D}_d .

—Deny the possibility of conflicting obligations. Allow for different kinds of 'ought' (moral, prudential, all-things-considered, etc.) and deny that conflict can arise for any particular 'ought.'

Free Choice Permission. The following inference seems good:

- (P1) You may have the whiskey or the gin.
- (C) You may have the whiskey and you may have the gin.

However, this inference is invalidated by SDL.

Some possible responses:

- —Appeal to Gricean conversational implicature.
- —Abandon the standard semantics for \vee .

Ross' Paradox. The following inferences seem terrible:

- (P1) You ought to mail the letter.
- (C) You ought to mail the letter or burn it.
- (P1) You may have the whiskey.
- (C) You may have the whiskey or the gin.

However, these inferences are validated by SDL given the axiom \mathbf{M} .

Some possible responses:

- —Abandon M and work with neighborhood semantics.
- —Explain the oddness of the inferences in pragmatic terms.

Paradox of Epistemic Obligation. Consider the following argument (cf. Aqvist [1967]):

- (P1) There is a fire.
- (P2) If there is a fire, it ought to be that the firefighter knows that there is a fire.
- (C) It ought to be that there is a fire.

This is terrible but comes out valid in SDL:

1.	F	P1
2.	$F \supset \mathrm{OK}_f F$	P2
3.	$\mathrm{OK}_f F$	MP 2,1
4.	$K_f F \supset F$	Factivity of K_f
5.	$\mathrm{OK}_f F \supset \mathrm{O} F$	Nec_d , K_d , MP 4
6.	OF	MP 5,3

Some possible responses:

- —Abandon \mathbf{K} and work with neighborhood semantics.
- —Abandon Nec_d (but note that this is applied only to $K_f F \supset F$ which is presumably a validity).

Good Samaritan Paradox. Consider the following argument (Prior [1958]):

- (P1) It ought to be that Jones helps Smith who has been robbed.
- (C) It ought to be that Smith has been robbed.

This is terrible but comes out valid in SDL:

1.
$$O(H \land R)$$
 P1
2. OR M, MP

Some possible responses:

- —Deny that $O(H \wedge R)$ is a good translation of P1.
- —Abandon **M** and work with neighborhood semantics.

Chisholm's Paradox. The following statements appear consistent and pairwise logically independent (Chisholm [1963]):

- (P1) It ought to be that Jones goes to help his neighbors.
- (P2) It ought to be that Jones tells his neighbors he is coming if he is going to help them.
- (P3) If Jones doesn't go to help, it ought to be that he doesn't tell his neighbors he is coming.
- (P4) Jones doesn't go help his neighbors.

However, these are inconsistent in SDL:

1.	OH	P1
2.	$O(H \supset T)$	P2
3.	$\neg H \supset \mathcal{O} \neg T$	P3
4.	$\neg H$	P4
5.	$OH \supset OT$	K_d , MP 2
6.	OT	MP 5,1
7.	PT	D_d , MP
8.	$\neg O \neg T$	Duality 7
9.	$O \neg T$	MP 3,4
10.	\perp	From 8,9

Some possible responses:

—Translate P2 and P3 as $H \supset OT$ and $\neg H \supset O\neg T$ respectively. But then P2 follows from P4 so the statements are not independent.

- —Translate P2 and P3 as $\mathcal{O}(H\supset T)$ and $\mathcal{O}(\neg H\supset \neg T)$ respectively. But then P3 follows from P1 so the statements are not independent.
- —Replace the unary obligation and permission operators with the dyadic operators $O(\psi/\varphi)$ and $P(\psi/\varphi)$. Read $O(\psi/\varphi)$ as 'It ought to be the case that ψ given that φ ' and $P(\psi/\varphi)$ as 'It is permissible that ψ given that φ '. The semantics for these operators is similar to the semantics for counterfactuals in using an ordering on worlds. But now $v \leq_w u$ just in case v is as good as u relative to w. Translating the premises as $O(H/\neg\bot)$, O(T/H), $O(\neg T/\neg H)$, and $\neg H$, these are all true at w_3 in the model below:

—Keep the unary deontic operators but replace the material conditional with a more sophisticated intensional conditional.

Gentle Murderer Paradox. The following statements appear consistent (Forrester [1984]):

- (P1) Smith murders Jones.
- (P2) Smith ought not murder Jones.
- (P3) If Smith murders Jones, he ought to murder Jones gently.

However, these are inconsistent in SDL:

1.	M	P1
2.	$O \neg M$	P2
3.	$M \supset \mathrm{O}(M \wedge G)$	P3
4.	$\mathrm{O}(M\wedge G)$	MP 3,1
5.	OM	M, MP
6.	PM	D_d , MP
7.	$\neg O \neg M$	Duality 6
8.	\perp	From $2,7$

Some possible responses:

- —Abandon \mathbf{M} and work with neighborhood semantics.
- —Abandon \mathbf{D}_d .
- —Work with $O(\psi/\varphi)$ and $P(\psi/\varphi)$. Translating the premises as M, $O(\neg M/\neg \bot)$, and $O(M \wedge G/M)$, these are all true at w_3 in the model below:

