

DATABASE DESIGN FOR COSTCO CORPORATION: A CASE STUDY

Course Project

OCTOBER 4, 2024

AKUTA TOCHUKWU MAURISON mtakuta@yahoo.com | linkedin.com/in/akuta1

Introduction Mission Objectives Database Design Table Relationships and Entity Entity Relationship diagram Conclusion Appendix

Table of Contents

Introduction

In today's competitive retail landscape, efficient data management is crucial to maintaining operational excellence and customer satisfaction. This case study explores the design of a robust database system for Costco Corporation, one of the world's leading wholesale retailers. With a focus on scalability, efficiency, and supporting Costco's core mission, this article delves into the structure, relationships, and key considerations in building a database that meets both current and future demands.

Mission

Costco is committed to continuously providing members with high-quality goods and services at the lowest possible prices. The organization strives to enhance customer satisfaction through efficient operations, underpinned by a membership-driven model that ensures long-term customer retention. To support this mission, Costco requires a reliable, scalable, and efficient database system to manage various aspects of its business, from inventory and supply chain management to customer transactions and member services.

Objectives

The primary objectives of designing a new database system for Costco are as follows:

Efficient Supply Chain Management and Procurement Processes:

The database should streamline inventory control and procurement, ensuring products are available at the right time and location to meet customer demand.

Seamless Customer Experience:

Ensuring accurate product availability, pricing, and inventory tracking across multiple locations is essential. A well-designed database helps maintain smooth customer interactions, both in-store and online.

• Cost-Effective Operations:

The system should support Costco's low-pricing model by maintaining efficient operations, minimizing overhead costs, and improving data accuracy.

Membership Satisfaction and Retention:

The database must be capable of providing personalized services to Costco members, tracking preferences, purchase history, and ensuring a seamless shopping experience.

Scalable and Robust Architecture:

With Costco's rapid growth, the database must be capable of scaling to accommodate increased data loads, new warehouses, and expanded product offerings.

Database Design

Database design is critical for optimizing Costco's operational efficiency by organizing data related to members, products, orders, and warehouses in a scalable, structured way. It enables seamless inventory management, enhances customer satisfaction through accurate transaction tracking, and supports low-cost operations by improving data accuracy and accessibility. A well-designed database facilitates future growth, ensuring the system can scale to meet increased demand and complexity.

A. Database Structure

To meet Costco's operational needs, the database is designed with several key entities and tables, each fulfilling specific functions within the broader system. These include:

- Members: Stores personal and contact information for Costco members.
- **Products:** Captures details about items available for sale, such as product names, prices, and stock levels.
- Suppliers: Tracks companies that supply products to Costco.
- Orders: Logs individual customer purchases, including transaction dates and product details.
- **Inventory:** Monitors stock levels across Costco's warehouses and tracks restocking schedules.
- **Employees:** Contains records of Costco staff and their roles.
- **Transactions:** Logs payment details for each order, including payment method and total amount paid.
- Warehouses: Manages inventory distribution and stock levels across multiple locations.
- **Categories:** Groups products into categories such as groceries, electronics, and apparel for easier tracking.

B. Tables and Fields

1. Members					
Field Name	Data Type	Size	Constraint		
MemberID	Integer	10	Primary Key		
FirstName	Varchar	20	Not Null		
LastName	Varchar	20	Not Null		
Email	Varchar	30	Not Null		
PhoneNumber	Number(10)	10	Not Null		
Address	Varchar	50	Not Null		
MembershipType	Varchar	20	Not Null		
(Executive, Gold Star					
& Business)					
2. Products					
ProductID	Integer	10	Primary Key		

ProductName	Varchar	20	Not Null			
Description	Varchar	100	Not Null			
Price	Float	10	Not Null			
QuantityInStock	Number(10)	10	Not Null			
CategoryID	Integer	10	Foreign Key			
SupplierID	Integer	10	Foreign Key			
3. Suppliers						
SupplierID	Integer	10	Primary Key			
SupplierName	Varchar	20	Not Null			
ContactPerson	Varchar	20	Not Null			
Email	Varchar	30	Not Null			
PhoneNumber	Number(10)	10	Not Null			
Address	Varchar	50	Not Null			
	4.	Orders	-			
OrderID	Integer	10	Primary			
MemberID	Integer	10	Foreign Key			
OrderDate	Date	10	Not Null			
TotalAmount	Float	10	Not Null			
Status	Varchar	100	Not Null			
	5.	Inventory	-			
InventoryID	Integer	10	Primary Key			
ProductID	Integer	10	Foreign Key			
WarehouseID	Integer	10	Foreign Key			
QuantityAvailable	Float	10	Not Null			
LastRestockedDate	Date	10	Not Null			
6. Employees						
EmployeesID	Integer	10	Primary Key			
FirstName	Varchar	20	Not Null			
LastName	Varchar	20	Not Null			
Email	Varchar	30	Not Null			
PhoneNumber	Number(10)	10	Not Null			
Department	Varchar	20	Not Null			
Position	Varchar	20	Not Null			
HireDate	Date	10	Not Null			
MangerID	Integer	10	Null			
7. Transactions						
TransactionsID	Integer	10	Primary Key			
OrderID	Integer	20	Foreign			
TransactionDate	Date	10	Not Null			
PaymentMethod	Varchar	30	Not Null			
(Cash, Master Card,						
Debit Card, shop card						
& CIBC Master card)						
Amount	Float	10	Not Null			
8. Warehouses						
WarehouseID	Varchar	10	Primary Key			
		•	•			

ManagerID	Integer	20	Foreign		
Location	Varchar	30	Not Null		
Capacity	Varchar	15	Not Null		
PhoneNumber	Number(10)	15	Not Null		
9. Categories					
CategoryID	Integer	10	Primary Key		
CategoryName	Varchar	20	Not Null		
Description	Varchar	20	Not Null		
10. Order Details					
OrderID	Integer	10	Primary Key		
ProductID	Integer	20	Primary Key		
Quantity	Integer	30	Not Null		
PriceAtOrder	Decimal	(10,2)	Not Null		

Table Relationships and Entity

A critical part of the database design is the relationships between different entities, which ensure that data is efficiently organized and retrieved. The relationships for Costco's database design is outlined below;

1. Members Table

- Primary Key: MemberID
- Attributes: FirstName, LastName, Email, PhoneNumber, Address, MembershipType
- Relationships:
 - One-to-Many: A Member can place multiple Orders (linked via MemberID in Orders table).

2. Products Table

- Primary Key: ProductID
- Attributes: ProductName, Description, Price, QuantityInStock, CategoryID, SupplierID

Relationships:

- One-to-Many: A Supplier can supply multiple Products (linked via SupplierID in Products table).
- Many-to-One: Products belong to a Category (linked via CategoryID in Products table).
- Many-to-Many: Products are associated with Orders (through the OrderDetails junction table).

3. Suppliers Table

- Primary Key: SupplierID
- Attributes: SupplierName, ContactPerson, Email, PhoneNumber, Address
- Relationships:
 - One-to-Many: One Supplier provides many Products (linked via SupplierID in Products table).

4. Orders Table

- **Primary Key**: OrderID
- Attributes: MemberID, OrderDate, TotalAmount, Status
- Relationships:
 - One-to-Many: A Member can place multiple Orders (linked via MemberID).
 - Many-to-Many: Orders include multiple Products (linked through the OrderDetails table).
 - One-to-Many: An Order can have multiple Transactions (linked via OrderID in Transactions table).

5. Inventory Table

- Primary Key: InventoryID
- Attributes: ProductID, WarehouseID, QuantityAvailable, LastRestockedDate
- Relationships:
 - One-to-Many: A Warehouse can hold multiple products (linked via WarehouseID in Inventory table).
 - One-to-Many: A Product can exist in multiple Warehouse locations (linked via ProductID).

6. Employees Table

- Primary Key: EmployeesID
- Attributes: FirstName, LastName, Email, PhoneNumber, Department, Position, HireDate, ManagerID
- Relationships:
 - One-to-One: An Employee can manage one Warehouse (linked via ManagerID in Warehouses table).

7. Transactions Table

- Primary Key: TransactionsID
- Attributes: OrderID, TransactionDate, PaymentMethod, Amount
- Relationships:
 - One-to-Many: An Order can have multiple Transactions (linked via OrderID).

8. Warehouses Table

- Primary Key: WarehouseID
- Attributes: ManagerID, Location, Capacity, PhoneNumber
- Relationships:
 - One-to-Many: A Warehouse holds multiple products in Inventory (linked via WarehouseID).
 - One-to-One: Each Warehouse is managed by a single Employee (linked via ManagerID).

9. Categories Table

- Primary Key: CategoryID
- Attributes: CategoryName, Description
- Relationships:
 - One-to-Many: A Category can group multiple Products (linked via CategoryID).

10. Order Details Table

- Primary Keys: OrderID, ProductID
- Attributes: Quantity, PriceAtOrder
- Relationships:
 - Many-to-Many: Links Orders and Products (via OrderID and ProductID).

Entity Relationship Diagram (ERD)

The Entity Relationship Diagram (ERD) illustrates how these tables interact with one another, providing a visual representation of the data flow within the system.

Conclusion

This case study presents a scalable, efficient database solution tailored to the specific needs of Costco Corporation. By focusing on key aspects such as supply chain management, customer experience, and cost-effectiveness, the proposed database design supports Costco's mission of delivering quality products at the lowest possible prices. Additionally, the system is designed to scale with Costco's growth, ensuring continued efficiency and customer satisfaction.

Appendix

SQL Queries and Database Management

To implement this database, SQL queries are used to create and manage tables, relationships, and data entries. For example:

• **Table Creation:** SQL scripts are used to define each table and its fields, including constraints like primary keys and foreign keys.

Queries - Creation of Database and Tables

- **Joins and Views:** Complex queries are employed to join tables such as Members, Orders, Products, and Transactions, allowing for detailed insights into customer purchasing behavior.
 - 4 Joins & View Query: joins the Members, Orders, Products, and Transactions table

These queries enable Costco's management team to derive actionable insights from the data, such as identifying popular products, managing supplier relationships, and optimizing warehouse operations.

Views

create view membersview as

select * from members;

select * from membersview;

create view employeesview as

select * from employees;

select * from employeesview;

create view inventoryview as

select * from inventory;

select * from inventoryview;

create view categoriesview as

select * from categories;

select * from categoriesview;

create view ordersview as

select * from orders;

select * from ordersview;

create view productsview as

select * from products;

select * from productsview;

create view transactionsview as

select * from transactions:

select * from transactionsview;

create view suppliersview as

select * from suppliers;

select * from suppliersview;

create view warehousesview as

select * from warehouses:

select * from warehousesview;

