Math 55a, Assignment #10, November 21, 2003

Notations. \mathbb{R} is the field of all real numbers. \mathbb{C} is the field of all complex numbers. \mathbb{N} is the set of all natural numbers (*i.e.*, all positive integers).

Problem 1. Let \mathbb{F} be either \mathbb{C} or \mathbb{R} . Let V be a Hilbert space over \mathbb{F} whose norm is denoted by $\|\cdot\|$. Denote by B the closed unit ball

$$\{v \in V \mid ||v|| \le 1\}$$

in V. Denote by S the unit sphere

$$\{v \in V \mid ||v|| = 1\}$$

in V. Prove that the following three statements are equivalent.

- (a) B is compact.
- (b) S is compact.
- (c) V is finite-dimensional.

(*Hint:* For $(b) \Rightarrow (c)$ and an orthonormal set of elements

$$v_1, v_2, \cdots, v_{\ell}, \cdots$$

of V consider the open subsets

$$U_j = \left\{ v \in V \middle| \|v - v_j\| < \frac{1}{\sqrt{2}} \right\}$$

of V for $j \geq 1$.)

Problem 2. Let \mathbb{F} be either \mathbb{C} or \mathbb{R} . Let V be a Hilbert space over \mathbb{C} whose norm is denoted by $\|\cdot\|$. Let V^* denote the set of all \mathbb{F} -valued \mathbb{F} -linear functions f on V with

$$\sup \left\{ |f(v)| \, \middle| \, \|v\| \le 1 \right\} < \infty.$$

Define a collection \mathcal{T} of subsets of V as follows. A subset G of V belongs to T if and only if for every point $v \in G$ there exist r > 0 and a finite number of elements f_1, \dots, f_k of V^* such that the set

$$\left\{ u \in V \mid |f_j(u) - f(v)| < r \text{ for } 1 \le j \le k \right\}$$

is contained in G (where r and k and f_1, \dots, f_k of course may depend on the point v of G). The collection \mathcal{T} is known as the weak topology of V. Denote by B the closed unit ball

$$\{v \in V \mid ||v|| \le 1\}$$

in V. Denote by S the unit sphere

$$\{v \in V \mid ||v|| = 1\}$$

in V. Prove that B is compact in the weak topology of V in the sense that if I is any index set and $G_i \in \mathcal{T}$ for $i \in I$ such that $B \subset \bigcup_{i \in I} G_i$, then there exists a finite subset F of I such that $B \subset \bigcup_{i \in F} G_i$. Prove also that S is compact in the weak topology of V. (*Hint*: compare with Part (ii) of Problem 10 in Assignment #2 and consider the image of B under the inclusion $V \hookrightarrow \mathbb{F}^V$ which sends an element v of V to the element of \mathbb{F}^V whose value at $u \in V$ is $\langle u, v \rangle_V \in \mathbb{F}$.)

Problem 3. (Quotient Banach spaces) Let \mathbb{F} be either \mathbb{C} or \mathbb{R} . Let V be a Banach space over \mathbb{F} with norms $\|\cdot\|_V$. Let W be an \mathbb{F} -vector subspace of V which is closed in V. Define the equivalence relation \sim in V so that two v_1 and v_2 of V are equivalent if and only if $v_1 - v_2$ belongs to W. Define the quotient \mathbb{F} -vector space V/W as the set of all equivalence classes of this equivalence relation \sim . Denote by $\pi:V\to V/W$ the natural projection which maps an element v of V to the equivalence class containing it. For $v\in V$ define $\|\pi(v)\|_{V/W}$ as the infimum of $\|w\|_V$ with $\pi(w)=\pi(v)$.

- (a) Prove that V/W with the norm $\|\cdot\|_{V/W}$ is a Banach space over \mathbb{F} .
- (c) Suppose the Banach space V over $\mathbb F$ admits the structure of a Hilbert space over $\mathbb F$ in the sense that there is an inner product $\langle \cdot, \cdot \rangle_V$ such that $\|v\|_V^2 = \langle v, v \rangle_V$ for $v \in V$. Let U be the orthogonal complement of W in V in the sense that an element of v of V belongs to the subset U of V if and only if $\langle v, w \rangle_V = 0$ for every $w \in W$. Show that the restriction to U of the map $\pi: V \to V/W$ maps U bijectively onto V/W and that $\|u\|_V = \|\pi(u)\|_{V/W}$ for every $u \in U$.

Problem 4. Let \mathbb{F} be either \mathbb{C} or \mathbb{R} . Let V and W be Hilbert spaces over \mathbb{F} with inner products $\langle \cdot, \cdot \rangle_V$ and $\langle \cdot, \cdot \rangle_W$ respectively. For a continuous \mathbb{F} -linear map $f: V \to W$, define the adjoint map $f^*: W \to V$ of f as the map which sends $w \in W$ to the element $f^*(w)$ of V characterized by $\langle v, f^*(w) \rangle_V = \langle f(v), w \rangle_W$ for all $v \in V$.

- (a) Verify that the adjoint map $f^*: W \to V$ of a continuous \mathbb{F} -linear map $f: V \to W$ is continuous. Show that a continuous \mathbb{F} -linear map $f: V \to W$ is surjective if and only if its adjoint map $f^*: W \to V$ is injective and the image Im f^* of f^* is a closed subset of V.
- (b) An \mathbb{F} -linear map $g: V \to W$ is said to be *compact* if for any sequence $\{v_j\}_{j\in\mathbb{N}}$ in V with $\|v_j\|_V \leq 1$ for $j\in\mathbb{N}$ there exists a subsequence $\{v_{j_{\nu}}\}_{\nu\in\mathbb{N}}$ such that $\{g(v_{j_{\nu}})\}_{\nu\in\mathbb{N}}$ is a convergent sequence in W. Verify that every compact \mathbb{F} -linear map $g: V \to W$ must be continuous. Verify that if $\phi: V \to V$ and $\psi: W \to W$ are continuous \mathbb{F} -linear maps and if $g: V \to W$ is a compact \mathbb{F} -linear map, then $\psi \circ g \circ \phi: V \to W$ is a compact \mathbb{F} -linear map. Show that the adjoint map $g^*: W \to V$ of a compact \mathbb{F} -linear map $g: V \to W$ is also compact. (*Hint:* to show the compactness of g^* , for any sequence $\{w_k\}_{k\in\mathbb{N}}$ of elements in the unit ball of W consider the inner product of $(g \circ g^*)$ $(w_{k_{\lambda}} w_{k_{\mu}})$ with $w_{k_{\lambda}} w_{k_{\mu}}$ for an appropriate subsequence $\{w_{k_{\lambda}}\}_{\lambda\in\mathbb{N}}$ of $\{w_k\}_{k\in\mathbb{N}}$.)
- (c) Let U be a closed \mathbb{F} -vector subspace of V and let $h:U\to V$ be the inclusion map. Let $g:V\to V$ be a compact \mathbb{F} -linear map. Show that for any nonzero element λ of \mathbb{F} the kernel $\mathrm{Ker}\,(g-\lambda\,h)$ of the \mathbb{F} -linear map $g-\lambda\,h:V\to V$ is finite-dimensional. In other words, the eigenspace of $g:V\to V$ for any nonzero eigenvalue must be finite-dimensional. (*Hint:* use Problem 1.)

Problem 5. (Finite dimensionality of the cokernel of the perturbation of a surjective linear map by a compact linear map) Let \mathbb{F} be either \mathbb{C} or \mathbb{R} . Let V and W be Hilbert spaces over \mathbb{F} . Let f and g be \mathbb{F} -linear maps from V to W. Assume that the \mathbb{F} -linear map $f:V\to W$ is surjective and continuous and the \mathbb{F} -linear map $g:V\to W$ is compact. Show that the image $\mathrm{Im}\,(f+g)$ is a closed \mathbb{F} -vector subspace of W and that the quotient \mathbb{F} -vector space $W/\mathrm{Im}(f+g)$ is finite dimensional over \mathbb{F} , where $\mathrm{Im}(f+g)$ means the image of the \mathbb{F} -linear map f+g from V to W. (Hint: use Part (c) of Problem 4 to show that the kernel of f^*+g^* is finite-dimensional.) Remark: the term cokernel means the quotient of the target space by the image.