CS536 Homework1

February 9, 2018

1 Problem

Consider a Gaussian in d dimensions with zero mean and spherical covariance $\sigma^2 \mathbf{I}$.

1. Show that the integral of the probability density over a thin shell of radius r and thickness $\epsilon << 1$ is

$$p(r|d)\epsilon = \frac{S_d r^{d-1}}{(2\pi\sigma^2)^{d/2}} e^{-\frac{r^2}{2\sigma^2}} \epsilon,$$

where S_d is the surface area of the unit sphere in d dimensions.

- 2. Show that the function p(r|d) has a stationary point located at $r^* \approx \sqrt{d}\sigma$ for large d.
- 3. Plot $p(r^*|d)$ for d = 1, 2, 5, 10, 20.
- 4. What can you say about the relationship between the density at the origin and the maximum probability mass in a thin shell, as a function of the dimension d?

2 Problem

Consider the family of concepts in a 2D Euclidean plane $X = \Re^2$ consisting of concentric circles, $c = \{(x,y) : x^2 + y^2 \le r^2\}$ for some $r \in \Re$. Show that this class can be (ϵ, δ) -PAC-learned from training data of size $N \ge (1/\epsilon) \log(1/\delta)$.

3 Problem

Consider the generalization error of the L_q loss

$$E[L_q(t, y(\boldsymbol{x}))] = \int_{t,y} |t - y(\boldsymbol{x})|^q p(t, \boldsymbol{x}) dt d\boldsymbol{x}.$$

Prove that the optimal estimator of y that minimizes this error is:

1. For q = 2:

$$y^*(\boldsymbol{x}) = \mathbb{E}_t[t|\boldsymbol{x}].$$

2. For q = 1:

$$y^*(\boldsymbol{x}) = \text{median}(t|\boldsymbol{x}),$$

i.e., the function such that the probability mass of t > y(x) is the same as the probability mass for $t \le x$.

3. For $q \to 0$:

$$y^*(\boldsymbol{x}) = \text{mode}(t|\boldsymbol{x}),$$

i.e., the function of y(x) that maximizes p(t|x) over t for each x.

4 Problem

In this problem we are going to implement the LDA for 20 Newsgroups data set. We are going to:

- 1. We begin by getting familiar with the data set and split the data set into two groups, i.e. training data and test data.
- 2. Then we use the one dimension reduction technique (i.e. PCA) to reduce the feature dimension since working with original data set will probably result in memory crash.
- 3. After reducing the feature dimension, we start building LDA model using the train data. In LDA we basically compute the model parameters by using formulas in (4:36), (4:37) and (4:38) in K. P. Murphy book with some minor changes to make the computations more efficient.
- 4. Finally, we predict the LDA with the computed parameters on the test data and compute its accuracy rate and compare its performance to other linear models built in SciKit-Learn package.

Please open the jupyter notebook called LDA_student.ipynb and start working on LDA problem by following the instruction.

5 Problem

5.1 KNN and 4 News group Classification

You will implement k-Nearest Neighbor (KNN) classifiers on the NEWS_DATASET. You are going to use the 4 classes ('alt.atheism', 'talk.religion.misc', 'comp.graphics', 'sci.space') among the original 20 classes.

5.1.1 Run: $hw1_student \rightarrow python features.py$

5.1.2 Implement KNN algorithm and choose the parameter K.

- 1. Your working files are:
 - $hw1_student \rightarrow knn.ipynb$
 - hw1_student \rightarrow cs536_1 \rightarrow models \rightarrow k_nearest_neighbor.py
- 2. Fill out the working files with your code as appropriate. For the metric, please use the L2 norm.
- 3. When you finish your implementation, you will find validation accuracy rates for the different Ks at the **train_ratio:1.0** (controlling number of training dataset).
- 4. Now, you will change the **train_ratio** from 0.1 to 1.0 (interval step : 0.1) and guess the appropriate Ks for each value of the **train_ratios**.
- 5. How did you choose the K? Explain your rule for the selection of the K.

5.1.3 Prediction on Test Set

- 1. Your working files:
 - hw1_student \rightarrow knn_test.ipynb and
 - hw1_student \rightarrow cs536_1 \rightarrow models \rightarrow k_nearest_neighbor.py
- 2. Fill out the working files with your code as appropriate.
- 3. When you finish your implementation, you will find test accuracy rates for the different Ks at the train_ratio:1.0.
- 4. Now, you will change the **train_ratio** from 0.1 to 1.0 (interval step: 0.1) and find the test_ratios.
- 5. Based on the your test accuracies, are your previous selections (validation set) still valid? If not, how would you change the selection of the parameter K for each **train_ratio**.

Table 1: Validation Accuracy

	V										
Train_Ratio	K										
	1	3	5	7	9	11	15	19	K Selection		
0.1											
0.2											
0.3											
0.4											
0.5											
0.6											
0.7											
0.8											
0.9											
1.0											

Table 2: Test Accuracy

Table 2. Test Recuracy											
Train_Ratio	K										
	1	3	5	7	9	11	15	19			
0.1											
0.2											
0.3											
0.4											
0.5											
0.6											
0.7											
0.8											
0.9											
1.0											

5.1.4 Analysis

Based on overall experiments results, please characterize the KNN along with the number of training data. Do you have any suggestion for better K selection in section 5.1.2 experiment.