OLE extension from OT extension

Manoj Prabhakaran

joint work with Guru Vamsi Policharla, Rajeev Raghunath, Parjanya Vyas

IIT Bombay

New Results for OLE over $GF(2^n)$

- A perfectly secure protocol to sample an OLE pair over $GF(2^n)$ from O(n) invocations of string OTs
 - Optimal: $\Omega(n)$ invocations necessary, no matter how long the strings are
- Gives OLE Extension
 - A few OLEs \rightarrow a few string OTs \rightarrow many string OTs \rightarrow many OLEs

OLE and \mathbb{Z}_4

- Random OLE over $GF(2^n)$
 - Alice gets (a, t) & Bob gets (b, u) s.t. a+b=tu (both operations in the field)
- A map from $GF(2^n) \times GF(2^n)$ to \mathbb{Z}_4^n :
 - A homomorphism $f: GF(2^n) \to \mathbb{Z}_4^n: f(x) = 2[\sqrt{x}]$
 - Another function $g: GF(2^n) \to \mathbb{Z}_4^n$ s.t. g(x) + g(y) g(x+y) = f(xy)
 - $\bullet \quad \varphi(a,t) = f(a) + g(t)$
 - a+b=tu iff $\varphi(a,t)+\varphi(b,u)\in S$, where $S=\{g(x)\mid x\in GF(2^n)\}\subseteq \mathbb{Z}_4^n$

New Results for OLE over $GF(2^n)$

- A perfectly secure protocol to sample an OLE pair over $GF(2^n)$ from O(n) invocations of string OTs
 - Optimal: $\Omega(n)$ invocations necessary, no matter how long the strings are
- Gives OLE Extension
 - A few OLEs → a few string OTs → many string OTs → many OLEs

Group Correlations: This and more

(Coming soon on eprint)