Technical Report: Modified DAC Method for Moving Rigid Body Localization Using TOAs Only

Yue Hu, Gang Wang, Senior Member, IEEE, and K. C. Ho, Fellow, IEEE

Abstract—This report presents the modified divide-and-conquer (DAC) method for moving rigid body localization (MRBL) using time-of-arrival (TOA) measurements only.

I. MODIFIED DAC METHOD FOR MRBL USING TOAS ONLY

Since the modified DAC method for MRBL is very similar to the original DAC method in [1], we only give the key steps in the following.

1) Estimation of the Sensor Positions: The transformed model (25) is related to the global sensor positions and it can be used to estimate them. More specifically, by letting $\theta_1 = [s_{i,k}^{oT}, \|s_{i,k}^o\|^2]^T$ for any $i \in \{1, \dots, N\}$ and $k \in \{1, \dots, K\}$, (25) can be written in a matrix form as

$$h_1 - G_1 \theta_1 = B_1 \nu_1, \tag{1}$$

where

$$G_{1} = \begin{bmatrix} -2a_{1}^{T} & 1 \\ \vdots & \vdots \\ -2a_{M}^{T} & 1 \end{bmatrix}, \ \boldsymbol{h}_{1} = \begin{bmatrix} d_{i1,k}^{2} - \|\boldsymbol{a}_{1}\|^{2} \\ \vdots \\ d_{iM,k}^{2} - \|\boldsymbol{a}_{M}\|^{2} \end{bmatrix},$$

$$\boldsymbol{B}_{1} = 2\operatorname{diag}\left\{d_{i1,k}^{o}, \dots, d_{iM,k}^{o}\right\},$$

$$\boldsymbol{\nu}_{1} = \begin{bmatrix} n_{i1,k}, \dots, n_{iM,k} \end{bmatrix}^{T}. \tag{2}$$

The LWLS solution to (1) is

$$\hat{\theta}_1 = (G_1^T W_1 G_1)^{-1} G_1^T W_1 h_1, \tag{3}$$

where $W_1 = (B_1 R_1 B_1^T)^{-1}$ with R_1 being the covariance matrix of ν_1 . Note that B_1 also contains the true range values, and we handle this issue similarly to the approach in this work, i.e., we first set W_1 to identity to obtain an initial estimate by (3), and then update it by using the initial estimate.

The relations among the elements of $\hat{\theta}_1$ are not considered in (3). From their relations, we can form the following model:

$$h_2 - G_2 \theta_2 = \nu_2, \tag{4}$$

where

$$\boldsymbol{h}_{2} = \begin{bmatrix} \hat{\boldsymbol{\theta}}_{1,(1:3)} \odot \hat{\boldsymbol{\theta}}_{1,(1:3)} \\ \hat{\boldsymbol{\theta}}_{1,(4)} \end{bmatrix}, \ \boldsymbol{G}_{2} = \begin{bmatrix} \boldsymbol{I} \\ \boldsymbol{1}^{T} \end{bmatrix}, \ \boldsymbol{\theta}_{2} = [\boldsymbol{s}_{i,k}^{o} \odot \boldsymbol{s}_{i,k}^{o}].$$
(5)

Its LWLS solution is

$$\hat{\boldsymbol{\theta}}_2 = (\boldsymbol{G}_2^T \boldsymbol{W}_2 \boldsymbol{G}_2)^{-1} \boldsymbol{G}_2^T \boldsymbol{W}_2 \boldsymbol{h}_2, \tag{6}$$

where $W_2 = [S(G_1^T W_1 G_1)^{-1}S]^{-1}$ with $S = \text{diag}\{[2\hat{\boldsymbol{\theta}}_{1,(1:3)}^T,1]^T\}.$

The sensor position estimate at time k is

$$\hat{\mathbf{s}}_{i,k} = \operatorname{diag}(\operatorname{sgn}(\hat{\boldsymbol{\theta}}_{1,(1:3)})) [\sqrt{\hat{\theta}_{2,(1)}}, \sqrt{\hat{\theta}_{2,(2)}}, \sqrt{\hat{\theta}_{2,(3)}}]^T, \quad (7)$$

and the estimation covariance matrix is

$$cov(\hat{s}_{i,k}) = B_2^{-1} (G_2^T W_2 G_2)^{-1} B_2^{-T},$$
(8)

where $\mathbf{B}_2 = 2 \operatorname{diag}\{\hat{\mathbf{s}}_{i,k}\}.$

2) Estimation of the Rigid Body Parameters: According to (30), the following CWLS problem similar to (35) using $\hat{s}_{i,k}$ can be formulated:

$$\min_{\boldsymbol{y}} (\hat{\boldsymbol{A}}\boldsymbol{z} - \hat{\boldsymbol{s}})^T \hat{\boldsymbol{W}} (\hat{\boldsymbol{A}}\boldsymbol{z} - \hat{\boldsymbol{s}})$$
s.t. $\boldsymbol{Q}^T \boldsymbol{Q} = \boldsymbol{I}, \det(\boldsymbol{Q}) = 1,$ (9)

where the weighting matrix

$$\hat{\boldsymbol{W}} = \operatorname{Diag}\{\operatorname{cov}(\hat{\boldsymbol{s}}_{1,1}), \dots, \operatorname{cov}(\hat{\boldsymbol{s}}_{N,1}), \dots, \operatorname{cov}(\hat{\boldsymbol{s}}_{1,K}), \dots, \operatorname{cov}(\hat{\boldsymbol{s}}_{N,K})\}^{-1},$$

and

$$\mathbf{z} = [\text{vec}(\mathbf{Q})^T, \text{vec}(\mathbf{P})^T, \mathbf{t}^T, \mathbf{v}^T]^T,
\hat{\mathbf{s}} = [\hat{\mathbf{s}}_{1,1}^T, \dots, \hat{\mathbf{s}}_{N,1}^T, \dots, \hat{\mathbf{s}}_{1,K}^T, \dots, \hat{\mathbf{s}}_{N,K}^T]^T,
\hat{\mathbf{A}} = [\hat{\mathbf{A}}_{1,1}^T, \dots, \hat{\mathbf{A}}_{N,1}^T, \dots, \hat{\mathbf{A}}_{1,K}^T, \dots, \hat{\mathbf{A}}_{N,K}^T]^T,$$
(10)

with $\hat{A}_{i,k} = [(\boldsymbol{c}_i^T \otimes \boldsymbol{I}), -(\boldsymbol{c}_i^T \otimes kT\boldsymbol{I}), \boldsymbol{I}, kT\boldsymbol{I}]$. Similarly, by introducing an auxiliary matrix $\boldsymbol{Z} = \boldsymbol{z}\boldsymbol{z}^T$ and performing relaxation, problem (9) can be relaxed as

$$\min_{\boldsymbol{Z},\boldsymbol{z}} \operatorname{tr}\{\hat{\boldsymbol{A}}^T \hat{\boldsymbol{W}} \hat{\boldsymbol{A}} \boldsymbol{Z} - 2\hat{\boldsymbol{s}}^T \hat{\boldsymbol{W}} \hat{\boldsymbol{A}} \boldsymbol{z} + \hat{\boldsymbol{s}}^T \hat{\boldsymbol{W}} \hat{\boldsymbol{s}}\}$$
s.t. (36),
$$\begin{bmatrix} \boldsymbol{Z} & \boldsymbol{z} \\ \boldsymbol{z}^T & 1 \end{bmatrix} \succeq \boldsymbol{0}.$$
(11)

After solving (11), the same orthogonalization and refinement steps described in Section III of the main manuscript are followed to obtain the DAC solution.

REFERENCES

 S. Chen and K. C. Ho, "Accurate localization of a rigid body using multiple sensors and landmarks," *IEEE Trans. Signal Process.*, vol. 63, no. 24, pp. 6459-6472, Dec. 2015.