Half Precision: s10e5

Betrachten Sie die binären Gleitkommazahlen gemäß der Parameter s10e5.

- 1. Ermitteln Sie den Verschiebewert B (BIAS) für den Exponenten gemäß des IEEE-754 Standards, sowie den Exponentenwertebereich e_{\min} und e_{\max} .
- 2. Mit vielen Bits wird eine Gleitkommazahl hier gespeichert? Erklären Sie die Bedeutung der einzelnen Bits und wie daraus die Gleitkommazahl gebildet wird.
- 3. Bestimmen Sie die relative Maschinengenauigkeit macheps.
- 4. Geben Sie die Bitmuster mit zugehörigem (ungefähren) Zahlenwert an:
 - a) Signed zero und signed infinity: ± 0 , $\pm \infty$
 - b) Kleinste und größte positive normale Zahl
 - c) Kleinste und größte positive denormalisierte Zahl (subnormals)
 - d) Kleinste und größte positive Nichtzahl (NaN)
 - e) 0011110000000001
 - f) f1(-4)
 - g) f1($\frac{2}{3}$), wobei $\frac{2}{3} = (0.\overline{10})_2 = (0.10101010...)_2$

Solution:

Gleitkommazahlen sind rational und enthalten Ganzzahlen

Es seien $b \geq 2$ eine Basis, $N \in \mathbb{N}$ eine Mantissenlänge und $e_{\min}, e_{\max} \in \mathbb{Z}$ der Exponentenwertebereich. Zeigen Sie, dass für die dadurch definierte Menge von Gleitkommazahlen $\mathbb{F} := \mathbb{F}(N,b,e_{\min},e_{\max})$ folgendes gilt:

- 1. Gleitkommazahlen sind rational: $\mathbb{F} \subset \mathbb{Q}$.
- 2. Die ganzen Zahlen außer Null innerhalb des Wertebereichs sind enthalten: $([-0FL, 0FL] \cap \mathbb{Z} \setminus \{0\}) \subset \mathbb{F}$, wobei 0FL das Maximum der Menge \mathbb{F} bezeichent (*Overflow-Level*) bezeichnet.