

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

РАКУЛЬТЕТ «Информатика и системы управления»
САФЕДРА «Программное обеспечение ЭВМ и информационные технологии»

РАСЧЕТНО-ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

К ВЫПУСКНОЙ КВАЛИФИКАЦИОННОЙ РАБОТЕ НА ТЕМУ:

«Метод реализации многопоточного доступа к СУБД»

Студент группы ИУ7-75Б	(Подпись, дата)	О.С. Платонова (И.О.Фамилия)
Руководитель ВКР	(Подпись, дата)	М.В. Филиппов (И.О.Фамилия)
Нормоконтролер	(Подпись, дата)	(И.О.Фамилия)

РЕФЕРАТ

Расчетно-пояснительная записка 10 страниц, 3 рисунка, 6 источников. БАЗА ДАННЫХ, POSTGRESQL, МНОГОПОТОЧНЫЕ СУБД

СОДЕРЖАНИЕ

Введение	5
1 Аналитический раздел	7
1.1 Выбор СУБД	7
1.2 Многопоточность в PostgreSQL	7
1.3 Анализ существующих решений	8
Список использованных источников	10

ОПРЕДЕЛЕНИЯ, ОБОЗНАЧЕНИЯ И СОКРАЩЕНИЯ

База данных (БД) – собрание данных, организованных в соответствии с концептуальной структурой, описывающей характеристики этих данных и взаимоотношения между ними, причем такое собрание данных, которое поддерживает одну или более областей применения. [1]

Система управления базой данных (СУБД) – совокупность программных и лингвистических средств общего или специального назначения, обеспечивающих управление созданием и использованием баз данных. [2]

Введение

В XXI веке человечество владеет невообразимым объемом данных. Знания, передававшиеся из поколения в поколение в течение многих тысячелетий продолжают увеличиваться и по сей день. Так, ежегодный прирост информации составляет 30%. [3]

С появлением письменности, будь то шумерские таблички или берестяные грамоты, перед человечеством возникает вопрос хранения и обработки данных. Причем с развитием цивилизации, и, как следствие, увеличением документооборота, проблема хранения информации требует систематического решения. Например, в конце XX века данные крупной компании могли занимать несколько этажей, что требовало дополнительных кадров для работы с ними.

Первым этапом решения этого вопроса стало внедрение компьютеров. Многие операции с данными были упрощены, а быстрый рост информационных технологий привел к увеличению скорости работы над данными. Однако хранение информации в виде файлов на одном компьютере стало неэффективным. Во-первых, поиск файла в файловой системе был долгим. Вовторых, хранение информации в одном файле затрудняло поиск необходимых данных.

Решение проблемы разрозненного хранения данных впервые было представлено на симпозиуме в 1963 году в Санта-Монике. Хотя речь шла о внедрении баз данных в военные приложения, этот момент считается точкой отсчета истории базы данных. Их применение в работе компаний привело к увеличению скорости работы. А автоматизация основных процессов базы данных, таких как создание, просмотр, удаление данных привело к созданию системы управления базы данных.

В 2021 году ни одна сфера жизни не обходится без компьютеризации. Организации используют базы и СУБД для перевода данных в электронный вид. Необходимость перевода заключается не столько в потребности сократить временные и материальные (сокращение кадров) расходы, сколько в

поддержании конкурентоспособности. Переход компании в электронный вид дает возможность приобретения принципиально новых качеств, позволяющих иметь существенные преимущества над другими.

Из-за высокой популярности СУБД возникает вопрос об оптимизации ее работы. Так как один из самых распространенных способов увеличения производительности - параллельное выполнение, следует рассмотреть оптимизацию многопоточной программы. Поскольку операция соединения с базой данных является одной из самых долгих, следует минимизировать количество соединений.

Целью данной работы является реализация многопоточного доступа к СУБД. Для достижения поставленной цели необходимо решить следующие задачи:

- исследование и анализ существующих решений;
- исследование возможности распараллеливания подключения;
- реализация распараллеливания;
- анализ и сравнение времени работы для исходного случая и реализуемого.

1 Аналитический раздел

В данном разделе будет выполнен анализ СУБД, представлены существующие методы и алгоритмы решения поставленной задачи. Также будет выполнен анализ решений с указанием достоинств и недостатков.

1.1 Выбор СУБД

На рисунке 1.1 представлен рейтинг популярности СУБД составленный компанией «DB-Engines» по состоянию на конец 2021 года. [4]

			381 systems in ranking, November 2021					
	Rank		DBMS	Score Database Model				
Nov 2021	Oct 2021	Nov 2020	DBI-13	Database Model	Nov 2021	Oct 2021	Nov 2020	
1.	1.	1.	Oracle 😷	Relational, Multi-model 👔	1272.73	+2.38	-72.27	
2.	2.	2.	MySQL 🚻	Relational, Multi-model 👔	1211.52	-8.25	-30.12	
3.	3.	3.	Microsoft SQL Server 😷	Relational, Multi-model 👔	954.29	-16.32	-83.35	
4.	4.	4.	PostgreSQL 😷 🗐	Relational, Multi-model 🔞	597.27	+10.30	+42.22	
5.	5.	5.	MongoDB 🚹	Document, Multi-model 👔	487.35	-6.21	+33.52	
6.	6.	↑ 7.	Redis 😷	Key-value, Multi-model 🔞	171.50	+0.15	+16.08	
7.	7.	4 6.	IBM Db2	Relational, Multi-model 👔	167.52	+1.56	+5.90	
8.	8.	8.	Elasticsearch	Search engine, Multi-model 👔	159.09	+0.84	+7.54	
9.	9.	9.	SQLite 🚹	Relational	129.80	+0.43	+6.48	
10.	10.	10.	Cassandra 🚻	Wide column	120.88	+1.61	+2.13	

Рисунок 1.1 — Рейтинг популярности СУБД.

Согласно рейтингу, лидирующие позиции занимают реляционные модели баз данных. В данной работе будет рассматриваться объектно-реляционная СУБД PostgreSQL 12-ой версии, занимающая 4-ую строчку. Выбор аргументирован доступностью исходного кода, а также кроссплатформенностью системы.

1.2 Многопоточность в PostgreSQL

Каждое соединение представляется объектом PGconn, который можно получить от функций PQconnectdb, PQconnectdbParams или PqsetdbLogin.

PostgreSQL содержит инструменты для реализации многопоточности. Один из них — библиотека libpq, которая по умолчанию поддерживает повторные вызовы. Однако при реализации многопоточности существует ограничение: «два потока не должны пытаться одновременно работать с одним объектом PGconn. В частности, не допускается параллельное выполнение команд из разных потоков через один объект соединения.». [5]

Таким образом, если в пользовательской программе реализована многопоточность, каждому потоку следует выполнять подключение к БД. Поскольку операция подключения — одна из самых долгих, рост количества потоков может привести к замедлению работы программы: повышенная нагрузка на системные ресурсы и значительное снижение производительности, особенно на многоядерных системах. Это объясняется увеличением конкуренции при обращении множества процессов к ресурсам PostgreSQL.

1.3 Анализ существующих решений

Один из возможных вариантов решения поставленной задачи — пул коннектов. Идея заключается в создании некоторого количества (в зависимости от задачи) соединений, которые будут доступны второстепенным потокам. На рисунках 1.2 — 1.3 представлен цикл соединения с БД без пула и с его использованием соответственно.

Рисунок 1.2 – Цикл соединения с БД.

Рисунок 1.3 – Цикл соединения с БД с использованием пула.

Результаты показали, что скорость операций открытия/закрытия соединений с использованием пула может быть увеличена в 600 раз. [6]

К недостаткам данной реализации следует отнести сложность реализации (особенно в крупных корпоративных приложениях), затраты на расчет минимального и максимального размера пула, а также устранение проблем, связанных с его переполнением.

Задача данной работы состоит в реализации случая, при котором главный поток выполняет подключение к БД и передает параметры подключения второстепенным потокам, которые в свою очередь выполняют параллельную работу с БД.

Список использованных источников

- 1. ГОСТ 34.320-96 Информационные технологии. Система стандартов по базам данных. Концепции и терминология для концептуальной схемы и информационной базы.
- 2. ГОСТ Р ИСО/МЭК ТО 10032-2007: Эталонная модель управления данными.
- 3. Lyman P., Varian H.R. How much information Архивная копия от 19 февраля 2018 на Wayback Machine. Release of the University of California. Oct.27, 2003.
- 4. Knowledge Base of Relational and NoSQL Database Management Systems. [Электронный ресурс]. Режим доступа: https://db-engines.com/en/ranking.
- 5. PostgreSQL: Документация: 12.8. [Электронный ресурс]. Режим доступа: https://postgrespro.ru/docs/postgresql/12/index
- 6. Корсаков А. Б. Анатомия Connection Pooling.