Problem 1

Consider an n-channel MOSFET with: μ_n , C_{ox} , W, L, V_t , V_{GS} and V_{DS} .

- (a) What is this transistor's transconductance if operating in triode (linear) mode?
- (b) If this transistor is operating in saturation mode rather than in triode (linear) mode, is the |gain| of an amplifier larger or smaller? Please show why.

Problem 2

Consider an amplifier with three capacitors C_1 , C_2 & C_3 . Each capacitor "sees" a resistance, found with the other capacitors removed. These resistances are R_1 , R_2 & R_3 .

- (a) You need to increase the high frequency cutoff of the amplifier and can adjust only one capacitor. Which capacitor should you adjust? Why, and how?
- (b) Is this amplifier's dominant pole given by 1/(RC), where R is R_1 , R_2 or R_3 and C is C_1 , C_2 or C_3 ?

Problem 3

- (a) What is the gain $(G = \frac{V_{out}}{V_{in}})$ of this circuit?
- (b) The input resistance of this circuit is $R_{in,f\neq 0}$. If f is reduced to zero (f=0), the input resistance is $R_{in,f=0}$. How is $R_{in,f\neq 0}$ related to $R_{in,f=0}$?