(9分)由 N 沟道增强型 MOS 管组成的单端输入双端输出差放如图所示, 恒流区转移特性是

$$I_D = 5 \left(U_{GS} - 0.6 \right)^2$$

$$g_{m1} = g_{m2} \approx \sqrt{5I_D} \text{ mA/V}$$

试求:

- (1)直流电流 ID;
- (2)双端输出的差模电压放大倍数:
- (3)如果 $u_{in} = 1mV \times \sin(\omega t)$, 面出输出电压 u_{o1} 和 u_{o2}

- 二、(6分) 由理想运放组成的运算电路如下图所示, 运放所加电源+15V和-15V。问题:
- (1) 在图中标出运放同相端和反相端的连接方式;
- (2) 如果 U_I=0.1V, U_O是多少?

三、(8分) 已知具有恒流源的差动放大电路如图 3 所示, T_1 、 T_2 、 T_3 的 β =50, U_{BE} =0.7V。 求:(1)静态 I_{C1} , I_{C3} , U_{CE3} 的值;(2)差模电压放大倍数 A_{ud} :(3)差模输入电阻 R_{id} 和输出电阻 R_{od} 。

四、 $(4\, 9)$ 由差动放大器和运算放大器组成的反馈电路如图 4 所示,设 A 为理想运放。(1) 判断反馈电路为何种反馈组态?(2) 若为深度负反馈,则估算 $A_{uf}=\frac{U_o}{U_i}=?$

五、(8分)在图 5 所示电路中,要实现的运算关系式为 $Y=3X_1-2X_2-X_3$,设运放均为理想的。试确定出电路中的电阻 R_1 , R_2 , R_3 及 R_4 的值。

☆ (5分) 由理想二极管和理想运放组成的电路如图所示, 运放所加电源+15V和-15V。

- (1) 该电路的功能是什么?
- (2) 如果 R₁=R₂, u_i=5sin(100πt)V,画出输出 u_o 的波形。

七、(4分) 已知带通滤波电路如图 7 所示, $R_1=R_2=10$ K Ω 。 画出该电路电压放大倍数的幅频特性曲线。

八、(2分) 电流源电路如图 8 所示。已知 PNP 管 T_1 、 T_2 的 U_{BE} =-0.7V, V_{CC} =5V,R=100 Ω 。计算出电流 I_0 的值。

九、(10分) 电路如图 9 所示,图中 A_1 ~ A_4 均为理想运放。假设运放最大输出电压为±10V,稳压管 D_z 的稳压值为 U_z =8V,输入 u_{11} =1V, u_{12} =0.5V。设 t=0 时,电容 C 上的电压 u_c =0;

- (1) 求 uo1, uo2 的值;
- (2) 写出 uo3 的表达式。
- (3) 已知 f=0 时, uo4=+8V, 问接通电源多长时间后 uo4 变为-8V?
- (4) 若输入 u₁₁的波形图如图 10 所示, u₁₂=0.5V。画出 u₀₂, u₀₃, u₀₄波形图。设 r=0 时, u₀₄=+8V。

十、(2分)多级放大电路如图 11 所示。若希望引入整体并联负反馈,请标出反馈途径。

