# Quantum Computing An introduction

Mitch Croal

April 29, 2016

You can find these slides online at http://z.umn.edu/acm2016quantum



#### Overview

- Motivation
- 2 First steps, CBits, a classical approximation
- Operations on CBits
  - Properties of Quantum Information
  - Single CBit case
  - Multiple CBits
- Quantum Bits, QBits
  - Properties of QBits
  - Quantum properties
  - Quantum Algorithms
  - Quantum Circuits



#### Motivation

- You can compute some things much, much faster on quantum computers
  - Shor's algorithm can factor large numbers in polynomial time in size of the number,  $O(\log n^3)$
  - Grover's Algorithm can do unstructured search in  $O(\sqrt{n})$
  - Quantum simulation is exponentially faster, important for physicists and chemists
  - There's really a big list, can find out more here: http://www.nature.com/articles/npjqi201523
- There's much work to be done, but there's been much progress in recent years
- D-Wave is a company that can do quantum computing right now



#### Units of data

- Binary systems with 2 states
  - The classical bit is an example
- Parallel to quantum information
  - We'll first develop CBits, an analagous linear system
  - From there we'll generalize to the real unit, the QBit

# Introducing CBits

- A single CBit
  - The 'state space' is a two-dimensional vector space
  - $\bullet$  Spanned by 2 orthonormal vectors,  $|0\rangle$  and  $|1\rangle$

$$|0
angle = egin{pmatrix} 1 \ 0 \end{pmatrix}, |1
angle = egin{pmatrix} 0 \ 1 \end{pmatrix}$$

- Systems of multiple CBits
  - We need a way to mathematically combine CBits
  - ullet Can do so with the so-called 'tensor product', denoted by  $\otimes$



#### **Tensor Products**

The tensor product of column vectors looks like this:

$$\begin{pmatrix} a_1 \\ a_2 \end{pmatrix} \otimes \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} = \begin{pmatrix} a_1 \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} \\ a_2 \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} \end{pmatrix} = \begin{pmatrix} a_1 b_1 \\ a_1 b_2 \\ a_2 b_1 \\ a_2 b_2 \end{pmatrix}$$

# Multiple CBits

- State space of multiple CBits
  - Basis vectors are pairwise tensor products of  $|0\rangle$  and  $|1\rangle$
  - $|0\rangle\otimes|0\rangle$ ,  $|0\rangle\otimes|1\rangle$   $|1\rangle\otimes|0\rangle$ ,  $|1\rangle\otimes|1\rangle$
  - We now have a 4-dimensional vector space

$$|0
angle\otimes|0
angle = egin{pmatrix} 1\ 0\ 0\ 0 \end{pmatrix}, |0
angle\otimes|1
angle = egin{pmatrix} 0\ 1\ 0\ 0 \end{pmatrix}, \ |1
angle\otimes|0
angle = egin{pmatrix} 0\ 0\ 0\ 1\ 0 \end{pmatrix}, |1
angle\otimes|1
angle = egin{pmatrix} 0\ 0\ 0\ 0\ 1 \end{pmatrix}$$

# Multiple CBits Notation

- Often we can leave out the  $\otimes$   $|0\rangle |0\rangle |0\rangle |1\rangle |1\rangle |1\rangle |0\rangle |1\rangle |1\rangle |1\rangle$
- For even more readability  $|00\rangle$   $|01\rangle$   $|10\rangle$   $|11\rangle$
- We can write them in decimal instead, with a subscore to indicate number of CBits  $|0\rangle_2$   $|1\rangle_2$   $|2\rangle_2$   $|3\rangle_2$
- We can then generalize this to systems of *n* Cbits, with the following basis vectors  $|x\rangle_n$ ,  $0 < x < 2^n$

#### **CBits and QBits**

- CBits are closely related to the 'real' unit of quantum information, the QBit
  - Usually written as qubit
- QBits are realized by actual physical two-state systems
  - Operations on the states of QBits must be reversible
  - With a single exception, 'measurement', which we'll discuss later
  - We'll therefore only consider reversible operations on CBits

# Single CBit operations

- Reversibility constrains us a bit
  - Operations like *erase*,  $|0\rangle \rightarrow |0\rangle$ ,  $|1\rangle \rightarrow |0\rangle$ , are disallowed
- Therefore only 2 meaningful operations on CBits
  - The identity operator,  $\mathbf{1}$  $\mathbf{1} |0\rangle = |0\rangle, \mathbf{1} |1\rangle = |1\rangle$
  - The swap operator,  $\mathbf{X}$   $\mathbf{X} |0\rangle = |1\rangle$ ,  $\mathbf{X} |1\rangle = |0\rangle$
- However, 'meaningless' operations can be made useful
  - Introduce the **Z** operator  $\mathbf{Z} |0\rangle = |0\rangle$ ,  $\mathbf{Z} |1\rangle = -|1\rangle$
- What the heck is  $-|1\rangle$ ?

# Multiple CBit operations

- It's useful to have compact notation for operators that act on many qubits
  - Begin by labelling each qubit 0, 1, 2, . . .
  - Thus if x has the binary expansion  $x = 8x_3 + 4x_2 + 2x_1 + x_0$

$$|x\rangle_4 = |x_3x_2x_1x_0\rangle = |x_3\rangle |x_2\rangle |x_1\rangle |x_0\rangle = |x_3\rangle \otimes |x_2\rangle \otimes |x_1\rangle \otimes |x_0\rangle$$

- An operation that acts only on Cbit #2 is  $\mathbf{X}_2 = \mathbf{1} \otimes \mathbf{X} \otimes \mathbf{1} \otimes \mathbf{1}$
- It follows from the definition of our tensor product that  $\mathbf{X}[\ |x_3\rangle\otimes|x_2\rangle\otimes|x_1\rangle\otimes|x_0\rangle\ ]=|x_3\rangle\otimes[\ \mathbf{X}\ |x_2\rangle\ ]\otimes|x_1\rangle\otimes|x_0\rangle$



# Multiple CBit operations

- Less trivial operations are available when working with multiple CBits
  - The swap operator, **S**  $|xy\rangle = |yx\rangle$
  - The controlled 'not', **C**  $\mathbf{C} \mid 0x \rangle = \mid 0 \rangle \mid x \rangle$ ,  $\mathbf{C} \mid 1 \rangle \mid x \rangle = \mid 1 \rangle \mid \neg x \rangle$
- We can build up these operations using 'meaningless' operators, like Z
- First consider the operator  $\mathbf{A} = \frac{1}{2}(\mathbf{1} + \mathbf{Z}_1\mathbf{Z}_0)$ 
  - ullet A acts as the identity on the 2 states  $|00\rangle$  and  $|11\rangle$
  - ullet A gives 0 (clasically meaningless) for |01
    angle and |10
    angle

# Multiple CBit operations

• The *Hadamard* operator, **H**, is particularly well known

$$\mathbf{H} = rac{1}{\sqrt{2}}(\mathbf{X} + \mathbf{Z}) = rac{1}{\sqrt{2}} egin{pmatrix} 1 & 1 \ 1 & -1 \end{pmatrix}$$

• H, like Z, can be used to build up useful multi-CBit operations

### **QBits**

- QBits, the units of quantum information, are much like CBits
  - ullet General form of the CBit is  $a\ket{0}+b\ket{1}$
  - General form of the QBit is  $\alpha\,|0\rangle+\beta\,|1\rangle$ , where  $\alpha$  and  $\beta$  are complex numbers
- Quantum states are also subject to the normalization condition
  - $|\alpha|^2 + |\beta|^2 = 1$
- This is because QBits correspond to actual 'observables'
  - The probability of observing state  $|x\rangle_n$  corresponds to its 'probability amplitude'
  - Coin demonstration,  $\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$
- Generalizing to *n* QBits, the general form is this:

$$|\psi
angle = \sum_{0 \le x < 2^n} a_x \, |x
angle$$



## Quantum Wierdness

- Quantum computing deals heavily with hidden information
  - We're often given a state  $|\psi\rangle$ , but we don't know the coefficients, which can be arbitrarily precise
  - A set of n QBits has  $2^n$  amplitudes corresponding to each combination of  $|0\rangle$  and  $|1\rangle$
  - Operators like Z and H can be chained to operate on all this data at once!
- Pretty cool, right? There's a catch
- Measurement collapses quantum states
  - Remember the coin?
  - We didn't know before, but after we knew, it didn't change



# Quantum Algorithms

- Doing real work with quantum circuits are notoriously tricky
  - How do you even get any useful information when it's all random?
  - At a high level, it's all about reinforcing the amplitudes you want, diminishing the rest, and then measuring
- I think a real example of how this all comes together would be helpful

## Anatomy of a Quantum Circuit



- Inputs on the left, each line corresponds to a single QBit
- The boxes are operators (or gates)
  - **H** is the Hadamard Gate, **X** and **Z** are the Pauli X and Y
- The meters do measurement, and collapse the measured QBit
- The black dots and lines indicate control QBits

