

Energy Flow Management for Energy Storage

Victor Fernão Pires

Setúbal School of Technology - Polytechnic Institute of Setúbal

Importance of the Storage

Technology-specific Issues

- Mechanical Storage
- > Thermal Storage
- Electrical Storage
 - Magnetic
 - Flywheels
 - Electrochemical

Storage Systems

Issues for the Connection of Electrochemical Storage to Grid

Power Converter Technologies

Standard Topologies - Single Stage

Single-phase bidirectional AC/DC converter

Standard Topologies - Single Stage

Standard Topologies - Single Stage

Series configuration of Storage Modules

Standard Topologies – Single Stage

The advantages of Series Configuration are:

The storage cells are connected in a simple series connection

Low device count. Only four/six power switches are required when no dc/dc regulator is used

Single/Three-phase inverter modules are commonly used and because of this they are inexpensive

This is a simple configuration consisting of storage modules and an inverter module

The disadvantages of Series Configuration are:

If one storage unit (fuel cell) fails, the system will not work. The failing unit has to be replaced or bypassed externally. This causes reliability concerns

Difficulty in control the storage unit voltage and load

DC high current ripple

Step-up DC/DC converter (bidirectional half-bridge)

Step-up DC/DC converter (double bidirectional half-bridge)

With Galvanic Isolation of the Energy Storage

Step-up DC/DC converter (bidirectional half-bridge)

Voltage fed – Dual half bridge

Current fed – Dual half bridge

DC distribution configuration of Storage Modules

The advantages of DC distribution are:

Each storage unit can be controlled independently with the dc-dc converter module.

The storage modules can be disconnected from the system for maintenance or replacement and the rest of the system would continue the operation

Increased reliability and fault tolerant operation can be achieved by adding redundant storage modules together with dc-dc converter modules

Each subsystem can be designed as an individual module and combined together as needed

The disadvantages of DC distribution are:

When the instantaneous voltages at the outputs of the dc-dc converters are not equal, circulating currents will occur. These will interfere with the operation of the system so they have to be prevented

This configuration requires higher device count than the series configuration because of the dc-dc converters

Higher cost and reduced efficiency

Multilevel Converters

Flying capacitor converter

Neutral-Point-Clamped (NPC)

H Bridge cascaded

Multilevel Converters

Modular Multilevel Converter (MMC)

Multilevel Converters

Block diagram of the multilevel configuration

The advantages of multilevel configuration are:

Less harmonics of the AC voltage.

The storage modules can be disconnected from the system for maintenance or replacement and the rest of the system would continue the operation

Increased reliability and fault tolerant operation can be achieved by adding redundant storage modules together with dc-dc converter modules

Reduced voltage ration of the devices

The disadvantages of multilevel configuration are:

Higher number of devices

Overall system more expensive and complex

Multiport Technology

Multi-port System Structure

Multiport Technology

Three-port converter with a DC-link

Three-port converter combining DC-link and magnetic coupling

Three-port converter where the storage connects directly to the DC bus

Three-port converter with full bridges combining DC-link and magnetic coupling

Multiport Technology

The advantages of multi-port configuration are:

Does not need a DC bus, thus the conversion steps are minimized.

Low cost and size

Uses centralized control

The disadvantages of multi-port configuration are:

Complexity of the control system

Limitation for High power applications

Conclusions

The choice of the power converter topology depends of several issues, such as:

- > Type of the used storage unit
- Reliability
- > Cost
- **Efficiency**
- Power of the aplication