

Прогнозирование доходов крестьянских (фермерских) хозяйств

Дашиева Баярма Шагдаровна

Характеристика датасета

Данные по крестьянским (фермерским) хозяйствам

Out[4]:

5 rows × 56 columns

	Nº	Доходы, руб - за 2019 год, руб.	в том числе: от реализации селькохозяйственной продукции, продуктов её первичной и промышленной переработки - за 2019 год	от оказания услуг - за 2019 год	получено средств государственной поддержки (субсидии, гранты) - за 2019 год	Расходы, тыс. руб - за 2019 год	в том числе: расходы на приобретение основных средств, включая лизинговые платежи \n(стр.231211+ 231212+ 231213+ 231214) - за 2019 год	из них: техника, машины и оборудование - за 2019 год	племенные и продуктивные животные - за 2019 год	земельные участки - за 2019 год	 Сельскохо: техника наличы
0	1	111242000.0	84843000	25959000.0	330000.0	73295000	120000.0	120000.0	NaN	NaN	
1	2	4734000.0	3572000	NaN	1162000.0	4181000	35000.0	NaN	35000.0	NaN	
2	3	6147000.0	6147000	NaN	NaN	4650000	NaN	NaN	NaN	NaN	
3	4	4132000.0	4132000	NaN	NaN	4120000	NaN	NaN	NaN	NaN	
4	5	2676000.0	2676000	NaN	NaN	2112000	228000.0	28000.0	NaN	200000.0	

Показатель	Количество
	пропусков
Доходы, руб.	0
Численность постоянных работников, чел	654
Члены КФХ (включая главу КФХ), чел	0
Зерновые и зернобобовые культуры на зерно и семена (кроме	0
рис) - урожайность, ц/га	
в том числе: тракторы - наличие на начало года	209
в том числе: тракторы - наличие на конец года	186
комбайны - наличие на начало года	507
комбайны - наличие на конец года	494
Земельные участки и объекты природопользования - всего, га -	10
наличие на начало года	
Земельные участки и объекты природопользования - всего, га -	0
наличие на конец года	

Гистограмма и график Q-Q распределения КФХ по доходам КФХ

400000 0

Доходы, тыс.руб.

Работники, чел.

Разведочный анализ данных

Предобработка данных

Корреляционная матрица: Pearson

Разработка и обучение модели

Сравнение моделей

OLS Regression Results

Dep. Variable:	Доходы, тыс.руб.	R-squared:	0.707
Model:	OLS	Adj. R-squared:	0.706
Method:	Least Squares	F-statistic:	660.2
Date:	Tue, 25 Apr 2023	Prob (F-statistic):	2.25e-218
Time:	19:06:49	Log-Likelihood:	-671.64
No. Observations:	826	AIC:	1351.
Df Residuals:	822	BIC:	1370.
Df Model:	3		
Covariance Type:	nonrobust		

МЕТОД К-БЛИЖАЙШИХ СОСЕДЕЙ

```
knn = KNeighborsRegressor()
param_grid = {'n_neighbors': [1, 2, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20]}
GSCV_knn = GridSearchCV(estimator=knn, param_grid=param_grid, cv=10, verbose=2)
GSCV knn.fit(X train, y train)
GSCV knn.best params
```

ДЕРЕВО РЕШЕНИЙ

```
decision_tree = DecisionTreeRegressor (random_state = 42)
                                                       param_grid = { 'max_features': ['auto', 'sqrt', 'log2'],
                                t P>|t| [0.025 0.975]
                                                                       'max_depth' : [3,4,5,6],
                                                                      'min_samples_leaf': [1,2,3] ]
                      0.019 0.807 0.420 -0.022 0.053
                                                       GSCV_dt = GridSearchCV(estimator=decision_tree, param_grid=param_grid, cv=10, verbose=2)
Работники, чел. 0.2216 0.026 8.599 0.000 0.171 0.272
                                                      GSCV_dt.fit(X_train, y_train)
                                                       GSCV_dt.best_params_
```

Наличие тракторов, шт. 0.1627 0.024 6.661 0.000 0.115 0.211 Общая площадь земли, га 0.5706 0.027 21.203 0.000 0.518 0.623

2.113	Durbin-Watson:	11.146	Omnibus:
12.636	Jarque-Bera (JB):	0.004	Prob(Omnibus):
0.00180	Prob(JB):	-0.206	Skew:
2.52	Cond. No.	3.445	Kurtosis:

const 0.0154

СЛУЧАЙНЫЙ ЛЕС

```
In [149]: random forest = RandomForestRegressor(random state = 42)
           param grid = { 'n estimators': [100, 200, 300, 400, 500],
                          'max_features': ['auto', 'sqrt'],
                          'max_depth' : [4,5,6,7,8],
                          'criterion' :['squared_error']}
          GSCV_rf = GridSearchCV(estimator=random_forest, param_grid=param_grid, cv=10, verbose=2)
          GSCV_rf.fit(X_train, y_train)
          GSCV_rf.best_params_
```

[1] Standard Errors assume that the covariance matrix of the errors is correct.

РИДЖ-РЕГРЕССИЯ

```
In [127]: ridge = Ridge()
          param_grid_ridge = [{'alpha': [1e-15, 1e-10, 1e-8, 1e-4, 1e-3, 1e-2, 1e-1, 0, 1, 5, 10],
                               'solver': ['svd', 'cholesky', 'lsqr', 'sparse cg', 'sag', 'saga']}]
          GSCV_ridge = GridSearchCV(estimator=ridge, param_grid=param_grid_ridge, cv=10, verbose=2)
          GSCV_ridge.fit(X_train, y_train)
          GSCV_ridge.best_params_
```

ЛАССО-РЕГРЕССИЯ

```
In [132]: lasso = Lasso()
          param_grid_lasso = { 'alpha': [1e-15, 1e-10, 1e-8, 1e-4, 1e-3, 1e-2, 1e-1, 0, 1, 5, 10 ]}
          GSCV_lasso = GridSearchCV(estimator=lasso, param_grid=param_grid_lasso, cv=10, verbose=2)
          GSCV_lasso.fit(X_train, y_train)
          GSCV lasso.best params
```

RZ_test MSE_train MSE_test MAE_train 0.298 0.440 OLS2 -0.707 0.668 0.298 0.318 0.440 0.453 0.7 0.707 0.668 0.298 0.318 0.440 0.453 Lasso - 0.707 0.668 0.298 0.318 0.440 0.453 0.732 0.665 0.272 0.321 0.413 0.449 0.713 0.639 0.291 0.345 0.434 0.474 - 0.5 0.767 0.682 0.237 0.304 0.389 0.444 0.792 0.682 0.211 0.304 0.363 0.440 - 0.4 0.729 0.683 0.275 0.303 0.417 0.436 0.695 0.647 0.338 0.309 0.445 0.468 - 0.3 0.683 0.291 0.303 0.431 0.440 0.285 0.301 0.426 0.439

Полносвязная нейронная сеть

Архитектура нейронной сети

Model: "sequential_6"

Layer (type)	Output Shape	Param #
dense_18 (Dense)	(None, 90)	360
dropout_3 (Dropout)	(None, 90)	0
dense_19 (Dense)	(None, 80)	7280
dense_20 (Dense)	(None, 1)	81

Total params: 7,721 Trainable params: 7,721 Non-trainable params: 0 Model: "sequential_2"

Layer (type)	Output Shape	Param #
dense_6 (Dense)	(None, 90)	360
dense_7 (Dense)	(None, 80)	7280
dense_8 (Dense)	(None, 1)	81

Total params: 7,721

Trainable params: 7,721 Non-trainable params: 0

График функции потерь

Flask-приложение

Для запуска приложения пользователь должен перейти по ссылке на сайт: http://127.0.0.1:5000/.

Flask-приложение представляет собой форму, состоящую из трех входов, куда вводятся значения трех параметров: численность работников, чел., число тракторов, шт., площадь земли, га. Введенные значения должны быть больше или равны 0, в противном случае появится ошибка «ОШИБКА! Введенные значения должны быть больше или равны 0».

После этого нужно нажать на кнопку «Submit», и модель выдаст прогнозное значение доходов КФХ при заданных параметрах.

Работники, чел.: 23 Наличие тракторов, шт.: 34 Общая площадь земли, га: 23
Работники, чел.
Наличие тракторов, шт.
Общая площадь земли, га
Submit
ОШИБКА! Введенные значения должны быть больше или равны 0.
Работники, чел.
Наличие тракторов, шт.
Общая площадь земли, га
Submit

do.bmstu.ru

