Przez asymptotyczną zgodność estymatora w niniejszej pracy rozumie się klasyczne pojęcie zgodności estymatora. Niech $\underline{\mathbf{X}_1^n} = (\underline{X_1}, \underline{X_2}, \dots, \underline{X_n})$ będzie procesem iid n zmiennych losowych, estymator $\widehat{\boldsymbol{\theta}}_n = \widehat{\boldsymbol{\theta}}(\underline{\mathbf{X}_1^n})$ rozważany jako proces losowy $\left(\widehat{\boldsymbol{\theta}}_1, \dots, \widehat{\boldsymbol{\theta}}_n\right)$ jest asymptotycznie zgodnym estymatorem parametru $\boldsymbol{\theta}$, wtedy i tylko wtedy, gdy plim $_{n \to \infty}\widehat{\boldsymbol{\theta}}_n = \boldsymbol{\theta}$ (proces $\widehat{\boldsymbol{\theta}}_n$ jest zbieżny według prawdopodobieństwa do wartości parametru $\boldsymbol{\theta}$).