STAC Activity-Based Learning Plan

Software Track (8 Activities)

Goal: Build coding, logic, data handling, and application development skills.

1. Linux Familiarization & Scripting

- Activity:
 - Explore Linux commands (1s, grep, awk, sed, cron).
 - Write a bash script to auto-organize files (e.g., move . jpg to Images, .pdf to Docs).
- Learning Source: Linux Journey
- Outcome: Confidence in using Linux daily.

2. API Fetching & Mini Dashboard

- Activity:
 - Use Python requests to fetch real-time data (Weather API or News API).
 - Parse JSON and display results in the terminal.
- Learning Source: Real Python Working with APIs
- Outcome: Able to use APIs in projects.

3. Pandas Data Analysis on Real Datasets

- Activity:
 - Load a real dataset (e.g., World Bank Data or Kaggle COVID-19).
 - Do cleaning, filtering, plotting (matplotlib).
- Learning Source: Pandas Documentation
- Outcome: Learn data wrangling + visualization.

4. Problem Solving (Project Euler)

- Activity:
 - Solve 5 problems from Project Euler.
- Learning Source: Project Euler
- Outcome: Improve logic & algorithmic thinking.

5. OpenCV Fun Challenge

- Activity:
 - Use OpenCV to:
 - Detect faces from the webcam.
 - Apply filters (cartoon effect, edge detection).
- Learning Source: OpenCV-Python Tutorials
- Outcome: Hands-on computer vision skills.

6. Flask Website with API

- Activity:
 - Build a Flask app that displays real-time weather/news using the API from Activity 2.
- Learning Source: Flask Mega-Tutorial
- Outcome: First working website with live data.

7. Streamlit Dashboard for Data

- Activity:
 - Build a dashboard with <u>Streamlit</u> showing dataset analysis from Activity 3.
- Learning Source: Streamlit Docs
- Outcome: Learn interactive web-based data apps.

8. Mobile App with Flutter

- Activity:
 - Create a Flutter mobile app that:
 - Shows API data (weather/news).
 - Has 2–3 screens.
- Learning Source: Flutter Docs
- Outcome: Basic cross-platform mobile development.

Hardware Track (8 Activities)

Goal: From Tinkercad basics → robotics simulation with ROS & TurtleBot.

1. Tinkercad Basics

- Activity:
 - Simulate a simple LED blink using Arduino.
 - Control the blink with a button.
- Learning Source: <u>Tinkercad Circuits</u>
- Outcome: Familiarity with Arduino simulation.

2. Sensor Inputs in Tinkercad

- Activity:
 - o Add LDR sensor (light).
 - Turn the LED ON/OFF depending on brightness.
- Learning Source: Tinkercad Arduino examples
- Outcome: Sensor → actuator programming.

3. Tinkercad Motor Control

- Activity:
 - Control a Servo motor speed using PWM.
 - Use a potentiometer for speed control.
- Learning Source: Arduino PWM Basics
- Outcome: Hardware logic with motor control.

4. Arduino + LCD Display

- Activity:
 - o Connect LCD (16x2) and display sensor data (e.g., LDR values).
- Learning Source: Arduino LCD Tutorial
- Outcome: Display handling in embedded systems.

5. Tinkercad Mini Project - Smart Traffic Light

- Activity:
 - Use LEDs + sensors to simulate a smart traffic system.
- Outcome: First mini project combining multiple components.

6. ROS Basics Setup

Activity:

- o Install ROS2 on Ubuntu.
- o Run publisher-subscriber example (/chatter).
- Learning Source: ROS2 Tutorials
- Outcome: Intro to robotics middleware.

7. Gazebo Simulation (TurtleBot3)

- Activity:
 - Launch TurtleBot3 in Gazebo.
 - Use teleop to move the robot.
- Learning Source: <u>TurtleBot3 eManual</u>
- Outcome: Run and control the simulated robot.

8. ROS + OpenCV

- Activity:
 - Write a ROS node using OpenCV to process webcam feed.
 - Example: Detect a red-colored object and print its position.
- Learning Source: ROS + OpenCV tutorial
- Outcome: Robotics + vision integration.