/ 1-SUEF UNIVERSITY

TACULTY OF COMPUTERS & ARTIFICIAL INTELLIGENCE GENERAL DEPARTMENT

1st year undergraduate level

MODEL (A) FINAL AND MID TERM EXAM

June 32th, 2021

Course Code : EE 102

Time : 2.00 Hrs

Digital Logic and Design

The Exam Consists of Three Questions in Seven pages .

Total Marks : 70 Marks

تعليمات هامة

١) حيازة التليفون المحمول مفتوحا داخل لجنة الامتحان يعتبر حالة غش تستوجب العقاب وإذا كان من الضروري الدخول بالمحمول فيوضع مغلق في الحقائب . ٢) لا يسمح بدخول سماعة الاذن أو البلوتوث أو الآلة الماسبة .

٣) لا يسمح بدخول كتب او ملازم أو أوراق داخل اللجنة والمخالفة تعتبر حللة غش .

٤) يمكنك استخدام ظهر الورقه الاخيره من ورق الاسئلة كمسودة لحل الاسئلة التي تحتاج الي مسودة لاختيار المناسب لها من الاجابات .

Question (1):

Choose the correct answer from A, B, C or D:

1. The decoder is an e	xample of which type of B	Boolean circuit 2	
A. Sequential	B. Combinational	C. Moore machine	D. Analog
 An 9-input XOR ci A. 110111100 	reuit has an output Y = 0. B. 110111000	Which input combinati	on below is correct? D. 100011101
of the state of th	oer is a integer then its octa nd collecting the remainde	d equivalent is obtained	by the number
A. Dividing	B. Multiplying	C. Subtracting	D. Adding
 The representation A. (264)₁₀ 	of octal number (410) ₈ in 6 B. (410) ₁₀	decimal is	D. (409) ₁₀
 The binary equival (1100100)₂ 	ent of the decimal number B. (0010011) ₂		7 7 20
6. Representation of 1	hexadecimal number (CE)H B. 13 * 16 + 13 * 16	r:	D. (1100101) ₂
comment to	octal: (111111100011) ₂ =? Pr. (7743) ₈	C. (5543) ₈	
_ 8. (250)₁₀ is equiva ★. (FD)₁₀	B. (DF) ₁₆	C. (FA) ₁₆	D. (6634) ₈ D. (AF) ₁₆
A. (740) ₈	ecimal number (3C) ₁₆ is equi J . (74) ₈	C. (47) ₈	D. $(35)_8$
 What is the add A. 0111001000 	ition result of the binary num B. 11100011010	bers 1100110011 and 101 ••• 11000011010	1100111? D. None

Page 1 of 7

- 11. Perform binary subtraction by using 2,s complement: 110111 - 100101 = ? C. 010100 **B.** 1010100 A. 110100 - 12. What is the addition result of the hexadecimal numbers 32FA and 1F1B = ?D. None B. 5125 C. 1255 A. 5215 ■ 13. Perform binary subtraction by using 10,s complement: 3F - FF = ?D. None B. +192 14. If we add -50 and +30 using 2's complement, we get A. -10100 B:-110100 D. None 15. In boolean algebra, the OR operation is performed by which properties? A. Associative properties C. Commutative properties **B.** Distributive properties D. All of the Mentioned 16. The decimal equivalent of the excess-3 number 101110000011 is ___ A. 850 B. 1183 D. 1150 C. 580 17. The expression for Absorption law is given by _ A.A + B = B + AC. AB + AA' = A D. AB + ABCD = ABB. A + AB = B18. DeMorgan's theorem states that A. A' + B' = A'B'B. (AB)' = A' + BC. (AB)' = A' + B' D. (A + B)' = A' * B19. The boolean function X + YZ is a reduced form of C.(X+Y)(X+Z)A. XY + YZB. X'Y + XY'Z $\mathbf{D}.(\mathbf{X}+\mathbf{Z})\mathbf{Y}$ 20. The expression F=XY+YZ+XZ shows the _____ operation. B. EX-OR A. SOP D. NOR 21. The canonical sum of product form of the function F(X,Y) = X + Y is B. XY + XY' + X'Y C. YX + YX' + X'Y' D. XY' + X'Y + X'Y'A. XY + YY + X'X22. The output of an EX-NOR gate is 0. Which input combination is correct? A. A = 0, B = 0B. A = 1, B = 1C. A' = 1, B' = 1D. A = 1, B = 0- 23. The number of full and half adders are required to add 18-bit number is A. 1 half adders, 17 full adders C. 18 half adders, 0 full adders B. 9 half adders, 9 full adders D. 4 half adders, 14 full adders **24.** The following switching functions are to be implemented using a decoder: $f1 = \sum m(1, 2, 4)$ $f2 = \sum m(2, 3)$ $f3 = \sum m(2, 4, 5, 6, 7)$ The minimum configuration of decoder will be... A. 2 to 4 line **B.** 4 to 16 line ' 2.3 to 8 line **D.** 5 to 32 line - 25. How many two-input OR and AND gates are required to realize Y = CD + EF + G? A. 3, 2 B. 3, 3 C. 2, 3D. 2, 2 26. In Figure 4, the equation S in the numareical form is A. $S(x, y, z) = \sum (2,4,7)$ C. $S(x, y, z) = \sum (1, 2, 4, 5,7)$ B. $S(x, y, z) = \sum (1, 2, 4, 7)$ **D.** $S(x, y, z) = \sum (1, 2, 6, 7)$ Page 2 of 7

الممسوحة ضوئيا بـ CamScanner

10101 -

27. If B and A are t A. A AND B 28. Which circuit in	he inputs of a half adder, th B. B OR A n figure 1 (a to d) is the sur	ne sum is given by C. B XOR A n-of-products implemen	D. A EX-NOR B	
A. b	B. a	C. d	D. c	
waveform is corr	XNOR gate, with the input ect?			
A. d	В. с	C. a	D. b	
A. (One 4-inpu	lowing combinations of log t AND gate) at AND gate, two inverter)	C. (One 4-in	nary 1001? put AND gate, two OR gate) put NAND gate, two inverter)	
31. In figure 3, which	ch figure is Implement the F(x, y, z) = (1, 2,		etion with NAND gates:	
A. a	В. с	C. b	D. None	
$(A, B, C, D) = \sum_{i=1}^{n} of\text{-minterms for}$ A. F=(B'D')	(0, 6, 8, 13, 14) and d(A, B	$S, C, D = \Sigma(2, 4, 10), th$ $C_{r} F = (B'D' + C)$	't-care conditions d, when F ie simplified function in sum- CD'+AB'C'D	
33. In Figure 5, wh	nen xy =, output F is equa	If to z because $F = 0$ when	n z = 0 and $F = 1$ when $z = 1$	
A. 01	В. 11	C. 00	D. 10	
34. In table (1),th	e simplified function in sum	n-of-minterms form is		
A. $F=(xz'+x'yz+yz)$ B. $F=(xz'+x'yz+y'z')$		C. $F=(xz'+$ D. $F=(z'+$	C. $F=(xz'+x'yz'+y'z')$ D. $F=(z'+x'yz+y'z')$	
35. In table (1) ,th	e maxterm in numerical for			
	$\pi(0, 2, 7, 5) = \pi(0, 2, 7, 5)$ $\pi(0, 2, 7)$	C. F (x, y, z) D. F (x, y, z)	$= \sum (0, 2, 7, 5)$ = $\pi(1, 2, 7, 5)$	
36. Any signed p	ositive binary number is reco	ognised by its		
A. MSB Question (2):	B. LSB	C. Byte	D. Nibble	
Read the	statements carefully and i	identify whether they :	re true or false	
1. 1's comple	ement can be easily obtained t	by using inverter ()		
2. In boolean	algebra, the AND operation is	s performed by Distributi	ve properties only ()	
3. The logical	sum of two or more logical p	product terms is called SC	OP ()	
	h map (K-map) is an abstract	•		
	*	Page 3 of 7		

5. It should be kept in mind the present in Minterms (at don't care terms should)	be used along with the terms that are
6. Half adder has two inputs a	nd two outputs whereas Fu	ll Adder has 3 inputs and 2 outputs (
7. AND gate means addition	of two inputs, which output	s when any of the input is high ()
8. In EX-OR gateThe output logic 1 ()	of a logic gate is 1 when all	inputs are at logic 0 or all inputs are at
 In a combinational circuit time () 	, the output at any time deper	nds only on the Input values at that
10. A combinational circuit to Question (3):	hat selects one from many inp	outs are decoder ()
Find from column (2)	he statement that matche	s the number in column (1):-
column (1)		column (2)
 The output will be for Which input value gate to produce a HIG 	A. All inputs are HIGH B. NOR gate	
3. Which of the follow longest switching time 4. If A and B are the carry is given by	wing logic families has the inputs of a half adder, the	C. A AND B D. CMOS 3
3. Which of the follow longest switching time 4. If A and B are the carry is given by	inputs of a half adder, the Tables Truth Table of Function F	

Page 4 of 7

Figures

Figure 1

Figure 2

Page 5 of 7

Figure 3

Page 6 of 7

Figure 5

Best wishes and good luck

Dr. Chmed Emad