3 Лінійні диференціальні рівняння вищих порядків

Рівняння вигляду

$$a_0(x)y^{(n)} + a_1(x)y^{(n-1)} + \ldots + a_n(x)y = b(x)$$

називається лінійним неоднорідним диференціальним рівнянням n-го порядку.

Рівняння вигляду

$$a_0(x)y^{(n)} + a_1(x)y^{(n-1)} + \ldots + a_n(x)y = 0$$

називається лінійним однорідним диференціальним рівнянням n-го порядку.

Якщо при $x \in [a,b], a_0(x) \neq 0$ коефіцієнти $b(x), a_i(x), i = \overline{0,n}$ неперервні, то для рівняння

$$y^{(n)} = -\frac{a_1(x)}{a_0(x)}y^{(n-1)} - \dots - \frac{a_n(x)}{a_0(x)}y + \frac{b(x)}{a_0(x)}.$$

виконуються умови теореми існування та єдиності і існує єдиний розв'язок y=y(x), що задовольняє початковим умовам

$$y(x_0) = y_0, \quad y'(x_0) = y_0', \quad \dots, \quad y^{(n-1)} = y_0^{(n-1)}.$$

3.1 Лінійні однорідні рівняння

3.1.1 Властивості лінійних однорідних рівнянь

Теорема 3.1. Лінійність і однорідність зберігаються при довільному перетворенні незалежної змінної $x = \varphi(t)$.

Доведення. Справді, після заміни $x = \varphi(t)$, одержимо

$$y'_{x} = \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}t} \cdot \frac{\mathrm{d}t}{\mathrm{d}x} = \frac{1}{\varphi'(t)} \cdot \frac{\mathrm{d}y}{\mathrm{d}t},$$

$$y''_{x^{2}} = \frac{\mathrm{d}}{\mathrm{d}x}y'_{x} = \frac{\mathrm{d}}{\mathrm{d}t}\left(\frac{1}{\varphi'(t)} \cdot \frac{\mathrm{d}y}{\mathrm{d}t}\right)\frac{1}{\varphi'(t)} =$$

$$= -\frac{\varphi''(t)}{(\varphi'(t))^{2}} \cdot \frac{\mathrm{d}y}{\mathrm{d}t} + \frac{1}{(\varphi'(t))^{2}} \cdot \frac{\mathrm{d}^{2}y}{\mathrm{d}t^{2}},$$

і так далі до n-го порядку. Після підстановки і приведення подібних, знову отримуємо лінійне однорідне рівняння

$$A_0(t)\frac{\mathrm{d}^n y}{\mathrm{d}t^n} + A_1(t)\frac{\mathrm{d}^{n-1} y}{\mathrm{d}t^{n-1}} + \ldots + A_n(t)y = 0.$$

Теорема 3.2. Лінійність і однорідність зберігаються при лінійному перетворенні невідомої функції $y = \alpha(x)z$.

Доведення. Справді, після заміни $y = \alpha(x)z$, одержимо

$$y'_x = \alpha'(x)z + \alpha(x)z',$$

 $y''_{x^2} = \alpha''(x)z + 2\alpha'(x)z' + \alpha(x)z'',$

і так далі до n-го порядку. Після підстановки знову отримаємо лінійне однорідне рівняння

$$\bar{A}_0(x)z^{(n)} + \bar{A}_1(x)z^{(n-1)} + \ldots + \bar{A}_n(x)z = 0.$$

3.1.2 Властивості розв'язків лінійних однорідних рівнянь

Теорема 3.3. Якщо $y = y_1(x)$ є розв'язком однорідного лінійного рівняння, то і $y = Cy_1(x)$, де C — довільна стала, теж буде розв'язком однорідного лінійного рівняння.

Доведення. Справді, нехай $y=y_1(x)$ — розв'язок лінійного однорідного рівняння, тобто

$$a_0(x)y_1^{(n)}(x) + a_1(x)y_1^{(n-1)}(x) + \ldots + a_n(x)y_1(x) \equiv 0.$$

Тоді і

$$a_0(x)(Cy_1)^{(n)}(x) + a_1(x)(Cy_1)^{(n-1)}(x) + \dots + a_n(x)(Cy_1)(x) =$$

$$= C\left(a_0(x)y_1^{(n)}(x) + a_1(x)y_1^{(n-1)}(x) + \dots + a_n(x)y_1(x)\right) \equiv 0,$$

оскільки вираз в дужках дорівнює нулю.

Теорема 3.4. Якщо $y_1(x)$ і $y_2(x)$ є розв'язками лінійного однорідного рівняння, то і $y = y_1(x) + y_2(x)$ теж буде розв'язком лінійного однорідного рівняння.

Доведення. Справді, нехай $y_1(x)$ і $y_2(x)$ — розв'язки лінійного рівняння, тобто

$$a_0(x)y_1^{(n)}(x) + a_1(x)y_1^{(n-1)}(x) + \dots + a_n(x)y_1(x) \equiv 0,$$

$$a_0(x)y_2^{(n)}(x) + a_1(x)y_2^{(n-1)}(x) + \dots + a_n(x)y_2(x) \equiv 0.$$

Тоді і

$$a_0(x)(y_1 + y_2)^{(n)}(x) + a_1(x)(y_1 + y_2)^{(n-1)}(x) + \dots + a_n(x)(y_1 + y_2)(x) =$$

$$= \left(a_0(x)y_1^{(n)}(x) + a_1(x)y_1^{(n-1)}(x) + \dots + a_n(x)y_1(x)\right) +$$

$$+ \left(a_0(x)y_2^{(n)}(x) + a_1(x)y_2^{(n-1)}(x) + \dots + a_n(x)y_2(x)\right) \equiv 0,$$

оскільки обидві дужки дорівнюють нулю.

Теорема 3.5. Якщо $y_1(x), y_2(x), \ldots, y_n(x)$ — розв'язки однорідного лінійного рівняння, то і $y = \sum_{i=1}^n C_i y_i(x)$, де C_i — довільні сталі, також буде розв'язком лінійного однорідного рівняння.

Доведення. Справді, нехай $y_1(x), y_2(x), \dots, y_n(x)$ — розв'язки лінійного однорідного рівняння, тобто

$$a_0(x)y_i^{(n)}(x) + a_1(x)y_i^{(n-1)}(x) + \dots + a_n(x)y_i(x) \equiv 0, \quad i = \overline{1, n}.$$

Тоді і

$$a_0(x) \left(\sum_{i=1}^n C_i y_i\right)^{(n)} (x) + a_1(x) \left(\sum_{i=1}^n C_i y_i\right)^{(n-1)} (x) + \dots$$

$$\dots + a_{n-1}(x) \left(\sum_{i=1}^n C_i y_i\right)' (x) + a_n(x) \left(\sum_{i=1}^n C_i y_i\right) (x) =$$

$$= \sum_{i=1}^n C_i \left(a_0(x) y_i^{(n)}(x) + a_1(x) y_i^{(n-1)}(x) + \dots + a_n(x) y_i(x)\right) \equiv 0,$$

оскільки кожна дужка дорівнює нулю.

Теорема 3.6. Якщо комплексна функція дійсного аргументу, тобто y = u(x) + iv(x) є розв'язком лінійного однорідного рівняння, то окремо дійсна частина u(x) і уявна v(x) будуть також розв'язками цього рівняння.

Доведення. Справді, нехай y = u(x) + iv(x) є розв'язком лінійного однорідного рівняння, тобто

$$a_0(x)(u) + iv)^{(n)}(x) + a_1(x)(u+iv)^{(n-1)}(x) + \dots$$
$$\dots + a_{n-1}(x)(u+iv)'(x) + a_n(x)(u+iv)(x) \equiv 0.$$

Розкривши дужки і перегрупувавши члени, одержимо

$$(a_0(x)u^{(n)}(x) + a_1(x)u^{(n-1)}(x) + \dots + a_n(x)u(x)) + + i(a_0(x)v^{(n)}(x) + a_1(x)v^{(n-1)}(x) + \dots + a_n(x)v(x)) \equiv 0.$$

Комплексний вираз дорівнює нулю тоді і тільки тоді, коли дорівнюють нулю дійсна і уявна частини, тобто

$$a_0(x)u^{(n)}(x) + a_1(x)u^{(n-1)}(x) + \dots + a_n(x)u(x) \equiv 0,$$

$$a_0(x)v^{(n)}(x) + a_1(x)v^{(n-1)}(x) + \dots + a_n(x)v(x) \equiv 0,$$

або функції u(x), v(x) є розв'язками рівняння, що і було потрібно довести.

3.1.3 Лінійна залежність і незалежність розв'язків. Загальний розв'язок лінійного однорідного рівняння вищого порядку

Визначення. Функції $y_0(x), y_1(x), \ldots, y_n(x)$ називаються лінійно залежними на відрізку [a, b] якщо існують не всі рівні нулю сталі C_0, \ldots, C_n такі, що при всіх $x \in [a, b]$:

$$C_0 y_0(x) + C_1 y_1(x) + \ldots + C_n y_n(x) = 0.$$

Якщо ж тотожність справедлива лише коли $C_0 = C_1 = \ldots = C_n = 0$, то функції $y_1(x), y_2(x), \ldots, y_n(x)$ називаються лінійно незалежними.

Приклади:

- 1. Функції $1, x, x^2, \ldots, x^n$ лінійно незалежні на будь-якому відрізку [a, b], тому що вираз $C_0 + C_1 x + \ldots + C_n x^n$ є многочленом ступеню n і має не більш, ніж n дійсних коренів.
- 2. Функції $e^{\lambda_1 x}, e^{\lambda_2 x}, \dots, e^{\lambda_n x}$, де всі λ_i дійсні різні числа лінійно незалежні.
- 3. Функції $1, \sin x, \cos x, \dots, \sin nx, \cos nx$ лінійно незалежні.

Теорема 3.7 (необхідна умова лінійної незалежності функцій). Якщо функції $y_0(x), y_1(x), \ldots, y_n(x)$ — лінійно залежні, то визначник Вронського $W[y_0, y_1, \ldots, y_n](x)$ тотожно дорівнює нулю при всіх $x \in [a, b]$:

$$W[y_0, y_1, \dots, y_n](x) = \begin{vmatrix} y_0(x) & y_1(x) & \cdots & y_n(x) \\ y'_0(x) & y'_1(x) & \cdots & y'_n(x) \\ \vdots & \vdots & \ddots & \vdots \\ y_0^{(n)}(x) & y_1^{(n)}(x) & \cdots & y_n^{(n)}(x) \end{vmatrix} = 0.$$

Доведення. Нехай $y_0(x),y_1(x),\ldots,y_n(x)$ — лінійно залежні. Тоді існують не всі рівні нулю сталі C_0,\ldots,C_n такі, що при $x\in[a,b]$ буде тотожно виконуватися

$$C_0y_0(x) + C_1y_1(x) + \ldots + C_ny_n(x) = 0.$$

Продиференціювавши n разів, одержимо

$$\begin{cases}
C_0 y_0(x) + C_1 y_1(x) + \ldots + C_n y_n(x) &= 0, \\
C_0 y_0'(x) + C_1 y_1'(x) + \ldots + C_n y_n(x) &= 0, \\
\vdots &\vdots &\vdots &\vdots \\
C_0 y_0^{(n)}(x) + C_1 y_1^{(n)}(x) + \ldots + C_n y_n^{(n)}(x) &= 0.
\end{cases}$$

Для кожного фіксованого $x \in [a, b]$ одержимо лінійну однорідну систему алгебраїчних рівнянь, що має ненульовий розв'язок C_0, \ldots, C_n . А це можливо тоді і тільки тоді, коли визначник системи дорівнює нулю, тобто $W[y_0, y_1, \ldots, y_n](x) = 0$ при всіх $x \in [a, b]$.

Теорема 3.8 (достатня умова лінійної незалежності розв'язків). Якщо розв'язки лінійного однорідного рівняння $y_0(x), y_1(x), \ldots, y_n(x)$ — лінійно незалежні, то визначник Вронського $W[y_0, y_1, \ldots, y_n](x)$ не дорівнює нулю в жодній точці $x \in [a, b]$.

Доведення. Припустимо, від супротивного, що існує $x_0 \in [a,b]$, при якому $W[y_0,y_1,\ldots,y_n](x_0)=0$. Оскільки визначник дорівнює нулю, то існує ненульовий розв'язок C_0^0,C_1^0,\ldots,C_n^0 лінійної однорідної системи алгебраїчних рівнянь

$$\begin{cases}
C_0 y_0(x) + C_1 y_1(x) + \ldots + C_n y_n(x) &= 0, \\
C_0 y_0'(x) + C_1 y_1'(x) + \ldots + C_n y_n(x) &= 0, \\
\vdots &\vdots &\vdots &\vdots \\
C_0 y_0^{(n)}(x) + C_1 y_1^{(n)}(x) + \ldots + C_n y_n^{(n)}(x) &= 0.
\end{cases}$$

Розглянемо лінійну комбінацію

$$y(x) = C_0^0 y_0(x) + C_1 y_1(x) + \ldots + C_n y_n(x)$$

з отриманими коефіцієнтами.

У силу третьої властивості ця комбінація буде розв'язком. У силу вибору сталих $C_0^0, C_1^0, \dots, C_n^0$, розв'язок буде задовольняти умовам

$$y(x_0) = y'(x_0) = \dots = y^{(n)}(x_0) = 0.$$

Але цим же умовам, як неважко перевірити простою підстановкою, задовольняє і тотожний нуль, тобто $y \equiv 0$. І в силу теореми існування та єдиності ці два розв'язки співпадають, тобто

$$y(x) = C_0^0 y_0(x) + C_1 y_1(x) + \ldots + C_n y_n(x) = 0$$

при $x \in [a,b]$, або система функцій $y_0(x),y_1(x),\ldots,y_n(x)$ лінійно залежна, що суперечить припущенню. Таким чином $W[y_0,y_1,\ldots,y_n](x_0) \neq 0$ у жодній точці $x_0 \in [a,b]$, що і було потрібно довести .

На підставі попередніх двох теорем сформулюємо необхідні і достатні умови лінійної незалежності розв'язків лінійного однорідного рівняння.

Теорема 3.9. Для того щоб розв'язки лінійного однорідного диференціального рівняння $y_0(x), y_1(x), \ldots, y_n(x)$ були лінійно незалежними, необхідно і достатньо, щоб визначник Вронського не дорівнював нулю в жодній точці $x \in [a, b]$, тобто $W[y_0, y_1, \ldots, y_n](x) \neq 0$.

Теорема 3.10. Загальним розв'язком лінійного однорідного рівняння

$$a_0(x)y^{(n)} + a_1(x)y^{(n-1)} + \ldots + a_{n-1}(x)y' + a_ny = 0$$

e лінійна комбінація n лінійно незалежних розв'язків $y = \sum_{i=1}^n C_i y_i(x)$.

Доведення. Оскільки $y_i(x), i=1,2,\ldots,n$ є розв'язками, то в силу третьої властивості їхня лінійна комбінація також буде розв'язком.

Покажемо, що цей розв'язок загальний, тобто вибором сталих C_1, \ldots, C_n можна розв'язати довільну задачу Коші

$$y(x_0) = y_0, \quad y'(x_0) = y'_0, \quad \dots, \quad y^{(n-1)}(x_0) = y_0^{(n-1)}.$$

Дійсно, оскільки система розв'язків лінійно незалежна, то визначник Вронського відмінний від нуля й алгебраїчна система неоднорідних рівнянь

$$\begin{cases}
C_1 y_1(x_0) + C_2 y_2(x_0) + \ldots + C_n y_n(x_0) &= y_0, \\
C_1 y_1'(x_0) + C_2 y_2'(x_0) + \ldots + C_n y_n(x_0) &= y_0', \\
\vdots &\vdots &\vdots &\vdots \\
C_1 y_1^{(n-1)}(x_0) + C_2 y_2^{(n-1)}(x_0) + \ldots + C_n y_n^{(n)}(x_0) &= y_0^{(n-1)},
\end{cases}$$

має єдиний розв'язок $C_1^0, C_2^0, \ldots, C_n^0$. І лінійна комбінація $y = \sum_{i=1}^n C_i^0 y_i(x)$ є розв'язком, причому, як видно із системи алгебраїчних рівнянь, буде задовольняти довільно обраним умовам Коші.

Зауважимо, що максимальне число лінійно незалежних розв'язків дорівнює порядку рівняння. Це випливає з попередньої теореми, тому що будь-який розв'язок виражається через лінійну комбінацію n лінійно незалежних розв'язків.

Визначення. Будь-які n лінійно незалежних розв'язків лінійного однорідного рівняння n-го порядку називаються фундаментальною системою розв'язків.

3.1.4 Формула Остроградського-Ліувіля

Оскільки максимальне число лінійно незалежних розв'язків дорівнює n, то система $y_1(x),\ldots,y_n(x),y(x)$ буде залежною і $W[y_1,\ldots,y_n,y]\equiv 0$, тобто

$$\begin{vmatrix} y_1 & \cdots & y_n & y \\ y'_1 & \cdots & y'_n & y' \\ \vdots & \ddots & \vdots & \vdots \\ y_1^{(n)} & \cdots & y_n^{(n)} & y' \end{vmatrix} \equiv 0.$$

Розкладаючи визначник по елементах останнього стовпця, одержимо

$$\begin{vmatrix} y_1 & y_2 & \cdots & y_n \\ y'_1 & y'_2 & \cdots & y'_n \\ \vdots & \vdots & \ddots & \vdots \\ y_1^{(n-1)} & y_2^{(n-1)} & \cdots & y_n^{(n-1)} \end{vmatrix} y^{(n)} - \begin{vmatrix} y_1 & y_2 & \cdots & y_n \\ \vdots & \vdots & \ddots & \vdots \\ y_1^{(n-2)} & y_2^{(n-2)} & \cdots & y_n^{(n-2)} \\ y_1^{(n)} & y_2^{(n)} & \cdots & y_n^{(n)} \end{vmatrix} y^{(n-1)} + \dots$$

$$\dots + (-1)^{n-1} \begin{vmatrix} y_1 & y_2 & \cdots & y_n \\ y''_1 & y''_2 & \cdots & y''_n \\ \vdots & \vdots & \ddots & \vdots \\ y_1^{(n)} & y_2^{(n)} & \cdots & y_n^{(n)} \end{vmatrix} y' + (-1)^n \begin{vmatrix} y'_1 & y'_2 & \cdots & y'_n \\ y''_1 & y''_2 & \cdots & y''_n \\ \vdots & \vdots & \ddots & \vdots \\ y_1^{(n)} & y_2^{(n)} & \cdots & y_n^{(n)} \end{vmatrix} y \equiv 0.$$

Порівнюючи з рівнянням

$$a_0(x)y^{(n)} + a_1(x)y^{(n-1)} + \ldots + a_n(x)y = 0$$

одержимо, що

$$\frac{a_1(x)}{a_0(x)} = -\frac{\begin{vmatrix} y_1(x) & y_2(x) & \cdots & y_n(x) \\ \vdots & \vdots & \ddots & \vdots \\ y_1^{(n-2)}(x) & y_2^{(n-2)}(x) & \cdots & y_n^{(n-2)}(x) \\ \frac{y_1^{(n)}(x) & y_2^{(n)}(x) & \cdots & y_n^{(n)}(x) \end{vmatrix}}{W[y_1, y_2, \dots, y_n](x)}.$$

Але оскільки

$$\frac{\mathrm{d}}{\mathrm{d}x}W[y_1, y_2, \dots, y_n] = \begin{bmatrix} y_1' & y_2' & \cdots & y_n' \\ y_1' & y_2' & \cdots & y_n' \\ \vdots & \vdots & \ddots & \vdots \\ y_1^{(n-2)} & y_2^{(n-2)} & \cdots & y_n^{(n-2)} \\ y_1^{(n-1)} & y_2^{(n-1)} & \cdots & y_n^{(n-1)} \end{bmatrix} + \begin{bmatrix} y_1 & y_2 & \cdots & y_n \\ y_-1'' & y_2'' & \cdots & y_n'' \\ \vdots & \vdots & \ddots & \vdots \\ y_1^{(n-2)} & y_2^{(n-2)} & \cdots & y_n^{(n-2)} \\ y_1^{(n-1)} & y_2^{(n-2)} & \cdots & y_n^{(n-2)} \end{bmatrix} + \dots$$

$$= \begin{bmatrix} y_1 & y_2 & \cdots & y_n \\ y_1' & y_2' & \cdots & y_n' \\ y_1' & y_2' & \cdots & y_n' \\ \vdots & \vdots & \ddots & \vdots \\ y_1^{(n-2)} & y_2^{(n-2)} & \cdots & y_n^{(n-2)} \\ y_1^{(n)} & y_2^{(n)} & \cdots & y_n^{(n)} \end{bmatrix} = \begin{bmatrix} y_1 & y_2 & \cdots & y_n \\ y_1' & y_2' & \cdots & y_n' \\ y_1' & y_2' & \cdots & y_n' \\ \vdots & \vdots & \ddots & \vdots \\ y_1^{(n-2)} & y_2^{(n-2)} & \cdots & y_n^{(n-2)} \\ y_1^{(n)} & y_2^{(n)} & \cdots & y_n^{(n)} \end{bmatrix}$$

то, підставивши в попередній вираз, одержимо

$$-\frac{a_1(x)}{a_0(x)} = \frac{\frac{\mathrm{d}}{\mathrm{d}x} W[y_1, y_2, \dots, y_n](x)}{W[y_1, y_2, \dots, y_n](x)}.$$

Розділимо змінні

$$-\frac{a_1(x)}{a_0(x)} dx = \frac{dW[y_1, y_2, \dots, y_n](x)}{W[y_1, y_2, \dots, y_n](x)}.$$

Проінтегрувавши, одержимо

$$\ln W[y_1, y_2, \dots, y_n](x) - \ln W[y_1, y_2, \dots, y_n](x_0) = -\int_{x_0}^x \frac{a_1(x)}{a_0(x)} dx$$

або

$$W[y_1, y_2, \dots, y_n](x) = W[y_1, y_2, \dots, y_n](x_0) \exp\left\{-\int_{x_0}^x \frac{a_1(x)}{a_0(x)} dx\right\}.$$

Отримана формула називається формулою Остроградського-Ліувілля. Зокрема, якщо рівняння має вид

$$y^{(n)} + p_1 y^{(n-1)} + \ldots + p_n(x) y = 0,$$

то формула запишеться у вигляді

$$W[y_1, y_2, \dots, y_n](x) = W[y_1, y_2, \dots, y_n](x_0) \exp\left\{-\int_{x_0}^x p_1(x) dx\right\}.$$

3.1.5 Формула Абеля

Розглянемо застосування формули Остроградського-Ліувіля до рівняння 2-го порядку

$$y'' + p_1(x)y' + p_2(x)y = 0.$$

Нехай $y_1(x)$ — один з розв'язків. Тоді

$$\begin{vmatrix} y_1(x) & y(x) \\ y'_1(x) & y'(x) \end{vmatrix} = C_2 \exp\left\{-\int p_1(x) \, \mathrm{d}x\right\}.$$

Розкривши визначник, одержимо

$$y_1(x)y'(x) - y(x)y'_1(x) = C_2 \exp\left\{-\int p_1(x) dx\right\}$$

Розділивши на $y_1^2(x)$, запишемо

$$\frac{y_1(x)y'(x) - y(x)y'_1(x)}{y_1^2(x)} = \frac{C_2}{y_1^2(x)} \exp\left\{-\int p_1(x) \, \mathrm{d}x\right\},\,$$

або

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{y(x)}{y_1(x)} \right) = \frac{C_2}{y_1^2(x)} \exp \left\{ -\int p_1(x) \, \mathrm{d}x \right\},\,$$

Проінтегрувавши, одержимо

$$\frac{y(x)}{y_1(x)} = C_2 \int \left(\frac{1}{y_1^2(x)} \exp\left\{-\int p_1(x) dx\right\}\right) dx + C_1,$$

Остаточно

$$y(x) = C_1 y_1(x) + C_2 y_1(x) \int \left(\frac{1}{y_1^2(x)} \exp\left\{-\int p_1(x) dx\right\}\right) dx,$$

Отримана формула називається формулою Абеля. Вона дозволяє по одному відомому розв'язку знайти загальний розв'язок однорідного лінійного рівняння другого порядку.

3.1.6 Вправи для самостійної роботи

Розв'язати лінійне однорядне диференціальне рівняння другого порядку, якщо відомий один розв'язок

Приклад 3.1.1. $(x^2+1)y''-2xy'+2y=0, y_1(x)=x.$

Розв'язок. За формулою Абеля маємо

$$y_2(x) = x \int \left(\frac{1}{x} \exp\left\{\int \frac{2x \, dx}{x^2 + 1}\right\}\right) dx = x \int \left(\frac{1}{x} e^{\ln|x^2 + 1|}\right) dx =$$
$$= x \int \left(\frac{x^2 + 1}{x}\right) dx = x \left(x - \frac{1}{x}\right) = x^2 - 1.$$

Загальний розв'язок має вигляд

$$y(x) = C_1 x + C_2 (x^2 - 1).$$

Розв'язати рівняння:

Задача 3.1.2.

$$x^{2} \cdot (x+1)y'' - 2y = 0, \quad y_{1}(x) = 1 + \frac{1}{x};$$

Задача 3.1.3.

$$xy'' + 2y' - xy = 0, \quad y_1(x) = \frac{e^x}{x};$$

Задача 3.1.4.

$$y'' - 2 \cdot (1 + \tan^2 x)y = 0$$
, $y_1(x) = \tan x$;

Задача 3.1.5.

$$(e^x + 1)y'' - 2y' + e^x y = 0, \quad y_1(x) = e^x - 1;$$

Задача 3.1.6.

$$y'' - y' \cdot \tan x + 2y = 0$$
, $y_1(x) = \sin x$;

Задача 3.1.7.

$$y'' + 4xy' + (4x^2 + 2)y = 0$$
, $y_1(x) = e^{ax^2}$.

Знайти загальний розв'язок підібравши один частинний

Задача 3.1.8.

$$(2x+1)y'' + 4xy' - 4y = 0;$$

Задача 3.1.9.

$$xy'' - (2x+1)y' + (x+1)y = 0;$$

Задача 3.1.10.

$$x \cdot (x - 1)y'' - xy' + y = 0.$$

3.2 Лінійні однорідні рівняння зі сталими коефіцієнтами

3.2.1 Загальна теорія

Розглянемо лінійні однорідні диференціальні рівняння з сталими коефіцієнтами

$$y^{(n)} + a_1 y^{(n-1)} + \ldots + a_n y = 0$$

Розв'язок будемо шукати у вигляді $y=e^{\lambda x}$. Продиференціювавши, одержимо

$$y' = \lambda e^{\lambda x}, \quad y'' = \lambda^2 e^{\lambda x}, \quad \dots \quad y^{(n)} = \lambda^n e^{\lambda x}.$$

Підставивши $y', y'', \dots, y^{(n)}$ в диференціальне рівняння, отримаємо

$$\lambda^n e^{\lambda x} + a_1 \lambda^{n-1} e^{\lambda x} + \ldots + a_n e^{\lambda x} = 0.$$

Скоротивши на $e^{\lambda x}$, одержимо характеристичне рівняння

$$\lambda^n + a_1 \lambda^{n-1} + \ldots + a_n = 0.$$

Алгебраїчне рівняння n-го степеня має n коренів. У залежності від їхнього вигляду будемо мати різні розв'язки.

- 1. Нехай $\lambda_1, \lambda_2, \dots, \lambda_n$ дійсні і різні. Тоді функції $e^{\lambda_1 x}, e^{\lambda_2 x}, \dots, e^{\lambda_n x}$ є розв'язками й оскільки всі λ_i різні, то $e^{\lambda_i x}$ розв'язки лінійно незалежні, тобто $\left\{e^{\lambda_i x}\right\}_{i=1}^n$ фундаментальна система розв'язків. Загальним розв'язком буде лінійна комбінація $y = \sum_{i=1}^n C_i e^{\lambda_i x}$.
- 2. Нехай маємо комплексно спряжені корені $\lambda=p+iq,\ \bar{\lambda}=p-iq.$ Їм відповідають розв'язки $e^{(p+iq)x},\ e^{(p-iq)x}$. Розкладаючи їх по формулі Ейлера, одержимо:

$$e^{(p+iq)x} = e^{px}e^{iqx} = e^{px}(\cos qx + i\sin qx) = u(x) + iv(x),$$

 $e^{(p-iq)x} = e^{px}e^{-iqx} = e^{px}(\cos qx - i\sin qx) = u(x) - iv(x).$

I, як випливає з властивості 4, функції u(x) й v(x) будуть окремими розв'язками. Таким чином, кореням $\lambda = p + iq$, $\bar{\lambda} = p - iq$ відповідають два лінійно незалежних розв'язки $u = e^{px} \cos qx$, $v = e^{px} \sin qx$. Загальним розв'язком, що відповідає цим двом кореням, буде $y = C_1 e^{px} \cos qx + C_2 e^{px} \sin x$.

3. Нехай λ — кратний корінь, кратності k, тобто $\lambda_1=\lambda_2=\ldots=\lambda_k,$ $k\leq n.$

(a) Розглянемо випадок $\lambda=0$. Тоді характеристичне рівняння вироджується в рівняння

$$\lambda^n + a_1 \lambda^{n-1} + \ldots + a_{n-k} \lambda^k = 0.$$

Диференціальне рівняння, що відповідає цьому характеристичному, запишеться у вигляді

$$y^{(n)} + a_1 y^{(n-1)} + \ldots + a_{n-k} y^{(k)} = 0$$

Неважко бачити, що частковими, лінійно незалежними розв'язками цього рівняння, будуть функції $1, x, x^2, \ldots, x^{k-1}$. Загальним розв'язком, що відповідає кореню $\lambda = 0$ кратності k, буде лінійна комбінація цих функцій $y = C_1 + C_2 x + \ldots + C_k x^{k-1}$.

(б) Нехай $\lambda = \nu \neq 0$ — корінь дійсний. Зробивши заміну $y = e^{\nu x}z$, на підставі властивості 2 лінійних рівнянь після підстановки знову одержимо лінійне однорідне диференціальне рівняння

$$z^{(k)} + b_1 z^{(k-1)} + \ldots + b_k z = 0.$$

Причому, оскільки $y_i(x)=e^{\lambda_i x}$ а $x_i(x)=e^{\mu_i x}$, то показники λ_i , μ_i зв'язані співвідношенням $\lambda_i=\nu+\mu_i$. Звідси кореню $\lambda=\nu$ кратності k відповідає корінь $\mu=0$ кратності k. Як випливає з попереднього пункту, кореню $\mu=0$ кратності k відповідає загальний розв'язок вигляду $z=C_1+C_2x+\ldots+C_kx^{k-1}$.

З огляду на те, що $y=e^{\nu x}z$, одержимо, що кореню $\lambda=\nu$ кратності k відповідає розв'язок

$$y = (C_1 + C_2 x + \ldots + C_k x^{k-1}) e^{\nu x}.$$

(в) Нехай характеристичне рівняння має корені $\lambda=p+iq,\ \bar{\lambda}=p-iq$ кратності k. Проводячи аналогічні викладки одержимо, що їм відповідають лінійно незалежні розв'язки

$$e^{px}\cos qx$$
, $xe^{px}\cos qx$, ..., $x^{k-1}e^{px}\cos qx$,

$$e^{px}\sin qx$$
, $xe^{px}\sin qx$, ..., $x^{k-1}e^{px}\sin qx$.

I загальним розв'язком, що відповідає цим кореням буде

$$y = C_1 e^{px} \cos qx + C_2 x e^{px} \cos qx + C_k x^{k-1} e^{px} \cos qx + C_{k+1} e^{px} \sin qx + C_{k+2} x e^{px} \sin qx + \dots + C_{2k} x^{k-1} e^{px} \sin qx.$$

3.2.2 Вправи для самостійної роботи

Приклад 3.2.1. Розв'язати рівняння y'' + y' - 2y = 0.

Розв'язок. Розв'язок шукаємо у вигляді $y=e^{\lambda x}$. Тоді

$$y' = \lambda e^{\lambda x}, \quad y'' = \lambda^2 e^{\lambda x}.$$

Підставивши в диференціальне рівняння, одержуємо

$$\lambda^2 e^{\lambda x} + \lambda e^{\lambda x} - 2e^{\lambda x} = 0.$$

Скоротивши на $e^{\lambda x}$, одержуємо характеристичне рівняння

$$\lambda^2 + \lambda - 2 = 0.$$

Його коренями будуть $\lambda_1=-1,\ \lambda_2=2.$ Їм відповідають два лінійно незалежні розв'язки $e^{-x},\ e^{2x}.$ І загальним розв'язком диференціального рівняння буде

$$y(x) = C_1 e^{-x} + C_2 e^{2x}$$
.

Приклад 3.2.2. Розв'язати рівняння y'' + y' + 2y = 0.

Розв'язок. Розв'язок шукаємо у вигляді $y = e^{\lambda x}$. Тоді

$$y' = \lambda e^{\lambda x}, \quad y'' = \lambda^2 e^{\lambda x}.$$

Підставивши в диференціальне рівняння, одержуємо

$$\lambda^2 e^{\lambda x} + \lambda e^{\lambda x} + 2e^{\lambda x} = 0.$$

Скоротимо на $e^{\lambda x}$:

$$\lambda^2 + \lambda + 2 = 0.$$

Коренями характеристичного рівняння будуть $\lambda_1 = -1 \pm i$. Їм відповідають два лінійно незалежні розв'язки

$$y_1(x) = e^{-x} \cos x$$
, $y_2(x) = e^{-x} \sin x$.

І загальним розв'язком рівняння буде

$$y(x) = C_1 e^{-x} \cos x + C_2 e^{-x} \sin x.$$

Приклад 3.2.3. Розв'язати рівняння y'' + 4y' + 4y = 0.

Розв'язок. Розв'язок шукаємо у вигляді $y = e^{\lambda x}$. Тоді

$$y' = \lambda e^{\lambda x}, \quad y'' = \lambda^2 e^{\lambda x}.$$

Підставляємо в диференціальне рівняння, одержуємо

$$\lambda^2 e^{\lambda x} + 4\lambda e^{\lambda x} + 4e^{\lambda x} = 0.$$

Скоротимо на $e^{\lambda x}$:

$$\lambda^2 + 4\lambda + 4 = 0.$$

Коренями характеристичного рівняння будуть $\lambda_1 = \lambda_2 = -2$. Оскільки вони кратні їм відповідають два лінійно незалежні розв'язки

$$y_1(x) = e^{-2x}, \quad y_2(x) = xe^{-2x}.$$

I загальним розв'язком рівняння буде

$$y(x) = C_1 e^{-2x} + C_2 x e^{-2x}.$$

Розв'язати рівняння:

Задача 3.2.4.

$$y'' - 5y' + 6y = 0;$$

Задача 3.2.5.

$$y'' - 9y = 0;$$

Задача 3.2.6.

$$y'' - y' = 0;$$

Задача 3.2.7.

$$y'' + 2y' + y = 0;$$

Задача 3.2.8.

$$2y'' + 5y' + 2y = 0;$$

Задача 3.2.9.

$$y'' - 4y = 0;$$

Задача 3.2.10.

$$y'' + 3y' = 0;$$

Задача 3.2.11.

$$y'' - y' - 2y = 0;$$

Задача 3.2.12.

$$y'' - 4y' + 2y = 0;$$

Задача 3.2.13.

$$y'' + 6y' + 13y = 0$$
:

Задача 3.2.14.

$$y'' - 4y' + 15y = 0;$$

Задача 3.2.15.

$$y'' - 6y' + 34y = 0;$$

Задача 3.2.16.

$$y'' + 4y = 0$$
;

Задача 3.2.17.

$$y'' + 2y' + 10y = 0;$$

Задача 3.2.18.

$$y'' + y = 0.$$

Знайти частинні розв'язки, що задовольняють зазначеним початковим умовам при x=0:

Задача 3.2.19.

$$y'' - 5y' + 4y = 0$$
, $y = 5$, $y' = 8$;

Задача 3.2.20.

$$y'' + 3y' + 2y = 0$$
, $y = 1$, $y' = -1$;

Задача 3.2.21.

$$y'' + 4y = 0$$
, $y = 0$, $y' = 2$;

Задача 3.2.22.

$$y'' + 2y' = 0$$
, $y = 1$, $y' = 0$;

Задача 3.2.23.

$$y'' - 4y' + 4y = 0$$
, $y = 3$, $y' = -1$;

Задача 3.2.24.

$$y'' + 4y' + 29y = 0$$
, $y = 0$, $y' = 15$;

Задача 3.2.25.

$$y'' + 3y = 0$$
, $y = 0$, $y' = 1$;

Задача 3.2.26.

$$y'' - 2y' + y = 0$$
, $y = 4$, $y' = 2$;

Розв'язати рівняння:

Задача 3.2.27.

$$y''' - 13y'' + 12y' = 0;$$

$$y''' - 3y'' + 3y - y = 0$$
:

Задача 3.2.28.

$$y'' - y' = 0;$$

$$y^{(4)} + 4y = 0;$$

Задача 3.2.29.

$$y^{(4)} - 2y'' = 0;$$

$$y''' + y = 0;$$

Задача 3.2.33.

$$y^{(4)} + 8y'' + 16y = 0;$$

Задача 3.2.34.

$$y^{(4)} + y' = 0;$$

Задача 3.2.35.

$$y^{(4)} - 2y'' + y = 0;$$

Задача 3.2.36.

$$y^{(4)} - a^4 y = 0;$$

Задача 3.2.37.

$$y^{(4)} - 6y'' + 9y = 0;$$

Задача 3.2.38.

$$y^{(4)} + a^2 y'' = 0;$$

Задача 3.2.39.

$$u^{(4)} + 2u''' + u'' = 0$$
:

Задача 3.2.40.

$$y^{(4)} + 2y'' + y = 0;$$

Задача 3.2.41.

$$y''' + 9y' = 0;$$

Задача 3.2.42.

$$y''' - 3y' - 2y = 0;$$

Задача 3.2.43.

$$y^{(4)} + 10y'' + 9y = 0.$$

Знайти частинні розв'язки диференціальних рівнянь:

Задача 3.2.44.

$$y''' + y' = 0$$
, $y(0) = 2$, $y'(0) = 0$, $y''(0) = -1$;

Задача 3.2.45.

$$y^{(5)} - y' = 0$$
, $y(0) = y''(0) = 0$, $y'(0) = 1$, $y'''(0) = 1$, $y^{(4)} = 2$;

Задача 3.2.46.

$$y''' + 2y'' + 10y' = 0$$
, $y(0) = 2$, $y'(0) = y''(0) = 1$;

Задача 3.2.47.

$$y''' - y' = 0$$
, $y(0) = 3$, $y'(0) = -1$, $y''(0) = 1$;

Задача 3.2.48.

$$y''' + y' = 0$$
, $y(0) = 2$, $y'(0) = 0$, $y''(0) = -1$.

3.3 Лінійні неоднорідні диференціальні рівняння

Загальний вигляд лінійних неоднорідних диференціальних рівнянь наступний

$$a_0(x)y^{(n)}(x) + a_1(x)y^{(n-1)}(x) + \ldots + a_n(x)y(x) = b(x).$$

3.3.1 Властивості розв'язків лінійних неоднорідних рівнянь. Загальний розв'язок лінійного неоднорідного рівняння

Властивість 1. Якщо $y_0(x)$ — розв'язок лінійного однорідного рівняння, $y_1(x)$ — розв'язок неоднорідного рівняння, то $y(x) = y_0(x) + y_1(x)$ буде розв'язком лінійного неоднорідного диференціального рівняння.

Доведення. Дійсно, нехай $y_0(x)$ і $y_1(x)$ — розв'язки відповідно однорідного і неоднорідного рівнянь, тобто

$$a_0(x)y_0^{(n)}(x) + a_1(x)y_0^{(n-1)}(x) + \dots + a_n(x)y_0(x) = 0,$$

$$a_0(x)y_1^{(n)}(x) + a_1(x)y_1^{(n-1)}(x) + \dots + a_n(x)y_1(x) = b(x).$$

Тоді

$$a_0(x)(y_0 + y_1)^{(n)}(x) + a_1(x)(y_0 + y_1)^{(n-1)}(x) + \dots + a_n(x)(y_0 + y_1)(x) =$$

$$= \left(a_0(x)y_0^{(n)}(x) + a_1(x)y_0^{(n-1)}(x) + \dots + a_n(x)y_0(x)\right) +$$

$$+ \left(a_0(x)y_1^{(n)}(x) + a_1(x)y_1^{(n-1)}(x) + \dots + a_n(x)y_1(x)\right) =$$

$$= 0 + b(x) = b(x),$$

тобто $y(x) = y_0(x) + y_1(x)$ — розв'язок неоднорідного диференціального рівняння.

Властивість 2 (Принцип суперпозиції). Якщо $y_i(x)$, $i = \overline{1,n}$ — розв'язки лінійних неоднорідних диференціальних рівнянь

$$a_0(x)y^{(n)}(x) + a_1(x)y^{(n-1)}(x) + \ldots + a_n(x)y(x) = b_i(x), \quad i = \overline{1, n}$$

то $y(x) = \sum_{i=1}^n C_i y_i(x)$ з довільними сталими C_i буде розв'язком лінійного неоднорідного рівняння

$$a_0(x)y^{(n)}(x) + a_1(x)y^{(n-1)}(x) + \dots + a_n(x)y(x) = \sum_{i=1}^n C_i b_i(x)$$

Доведення. Дійсно, нехай $y_i(x)$, $i = \overline{1, n}$ — розв'язки відповідних неоднорідних рівнянь, тобто

$$a_0(x)y_i^{(n)}(x) + a_1(x)y_i^{(n-1)}(x) + \dots + a_n(x)y_i(x) = b_i(x), \quad i = \overline{1, n}$$

Склавши лінійну комбінацію з рівнянь і їхніх правих частин з коефіцієнтами C_i одержимо

$$\sum_{i=1}^{n} C_i \left(a_0(x) y_i^{(n)}(x) + a_1(x) y_i^{(n-1)}(x) + \dots + a_n(x) y_i(x) \right) = \sum_{i=1}^{n} C_i b_i(x),$$

або, перегрупувавши, запишемо

$$a_0(x) \left(\sum_{i=1}^n C_i y_i^{(n)}(x) \right) + a_1(x) \left(\sum_{i=1}^n C_i y_i^{(n-1)}(x) \right) + \dots$$
$$\dots + a_n(x) \left(\sum_{i=1}^n C_i y_i(x) \right) = \sum_{i=1}^n C_i b_i(x),$$

що і було потрібно довести.

Властивість 3. Якщо комплексна функція y(x) = u(x) + iv(x) з дійсними елементами є розв'язком лінійного неоднорідного рівняння з комплексною правою частиною b(x) = f(x) + ip(x), то дійсна частина u(x) є розв'язком рівняння з правою частиною f(x), а уявна v(x) є розв'язком рівняння з правою частиною p(x).

Доведення. Дійсно, як випливає з умови,

$$a_0(x)(u+iv)^{(n)}(x) + a_1(x)(u+iv)^{(n-1)}(x) + \dots + a_n(x)(u+iv)(x) =$$

$$= f(x) + ip(x).$$

Розкривши дужки, одержимо

$$(a_0(x)u^{(n)}(x) + a_1(x)u^{(n-1)}(x) + \dots + a_n(x)u(x)) + + i(a_0(x)v^{(n)}(x) + a_1(x)v^{(n-1)}(x) + \dots + a_n(x)v(x)) = = f(x) + ip(x).$$

А комплексні вирази рівні між собою тоді і тільки тоді, коли дорівнюють окремо дійсні та уявні частини, тобто

$$a_0(x)u^{(n)}(x) + a_1(x)u^{(n-1)}(x) + \dots + a_n(x)u(x) = f(x),$$

$$a_0(x)v^{(n)}(x) + a_1(x)v^{(n-1)}(x) + \dots + a_n(x)v(x) = p(x),$$

що і було потрібно довести.

Теорема 3.11. Загальний розв'язок лінійного неоднорідного диференціального рівняння складається з загального розв'язку лінійного однорідного рівняння і частинного розв'язку неоднорідного рівняння.

Доведення. Нехай $y_{\text{homo}}(x) = \sum_{i=1}^{n} C_i y_i(x)$ — загальний розв'язок однорідного рівняння, а $y_{\text{hetero}}(x)$ — частинний розв'язок неоднорідного рівняння.

Тоді, як випливає з першої властивості, $y(x) = \sum_{i=1}^n C_i y_i(x) + y_{\text{hetero}}(x)$, буде розв'язком неоднорідного рівняння. Покажемо, що цей розв'язок загальний, тобто вибором коефіцієнтів C_i можна розв'язати довільну задачу Коші

$$y(x_0) = y_0, \quad y'(x_0) = y'_0, \quad \dots, \quad y^{(n-1)}(x_0) = y_0^{(n-1)}.$$

Дійсно, оскільки y_{homo} загальний розв'язок однорідного рівняння, то система функцій $y_i, i=\overline{1,n}$ лінійно незалежна, тому визначник Вронського $W[y_1,y_2,\ldots,y_n]\neq 0$. Звідси, неоднорідна система лінійних алгебраїчних рівнянь

$$\begin{cases}
C_1 y_1(x_0) + C_2 y_2(x_0) + \ldots + C_n y_n(x_0) &= y_0 - y_{\text{hetero}}(x_0), \\
C_1 y_1'(x_0) + C_2 y_2'(x_0) + \ldots + C_n y_n'(x_0) &= y_0' - y_{\text{hetero}}'(x_0), \\
\vdots &\vdots &\vdots &\vdots \\
C_1 y_1^{(n-1)}(x_0) + C_2 y_2^{(n-1)}(x_0) + \ldots + C_n y_n^{(n-1)}(x_0) &= y_0 - y_{\text{hetero}}^{(n-1)}(x_0),
\end{cases}$$

має єдиний розв'язок для довільних наперед обраних $y_0, y_0', \dots, y_0^{(n-1)}$. Нехай розв'язком системи буде $C_1^0, C_2^0, \dots, C_n^0$. Тоді, як випливає з вигляду системи, функція $y(x) = \sum_{i=1}^n C_i^0 y_i(x) + y_{\text{hetero}}$ є розв'язком поставленої задачі Коші.

Як випливає з теореми для знаходження загального розв'язку лінійного неоднорідного рівняння треба шукати загальний розв'язок однорідного рівняння, тобто будь-які n лінійно незалежні розв'язки і якийсь частинний розв'язок неоднорідного рівняння. Розглянемо три методи побудови частинного розв'язку лінійного неоднорідного рівняння.

3.3.2 Метод варіації довільної сталої побудови частинного розв'язку лінійного неоднорідного диференціального рівняння

Метод варіації довільної сталої полягає в тому, що розв'язок неоднорідного рівняння шукається в такому ж вигляді, як і розв'язок однорі-

 $^{^{1}}$ Homogeneous equation — однорідне рівняння.

²Heterogeneous equation — неоднорідне рівняння.

дного, але сталі C_i , $i=\overline{1,n}$ вважаються невідомими функціями. Нехай загальний розв'язок лінійного однорідного рівняння

$$a_0(x)y^{(n)}(x) + a_1(x)y^{(n-1)}(x) + \ldots + a_n(x)y(x) = 0.$$

записано у вигляді $y(x) = C_1 y_1(x) + C_2 y_2(x) + \ldots + C_n y_n(x)$.

Розв'язок лінійного неоднорідного рівняння

$$a_0(x)y^{(n)}(x) + a_1(x)y^{(n-1)}(x) + \ldots + a_n(x)y(x) = b(x).$$

шукаємо у вигляді $y(x) = C_1(x)y_1(x) + C_2(x)y_2(x) + \ldots + C_n(x)y_n(x)$, де $C_i(x)$, $i = \overline{1,n}$ — невідомі функції. Оскільки підбором n функцій необхідно задовольнити одному рівнянню, тобто одній умові, то n-1 умову можна накласти довільно. Розглянемо першу похідну від записаного розв'язку

$$y'(x) = \sum_{i=1}^{n} C_i(x)y_i'(x) + \sum_{i=1}^{n} C_i'(x)y_i(x).$$

і зажадаємо, щоб $\sum_{i=1}^{n} C_i'(x) y_i(x) = 0$. Розглянемо другу похідну

$$y'(x) = \sum_{i=1}^{n} C_i(x)y_i''(x) + \sum_{i=1}^{n} C_i'(x)y_i'(x).$$

і зажадаємо, щоб $\sum_{i=1}^n C_i'(x)y_i'(x)=0.$ Продовжимо процес взяття похідних до (n-1)-ої

$$y^{(n-1)}(x) = \sum_{i=1}^{n} C_i(x) y_i^{(n-1)}(x) + \sum_{i=1}^{n} C_i'(x) y_i^{(n-2)}(x).$$

і зажадаємо, щоб $\sum_{i=1}^n C_i'(x) y_i^{(n-2)}(x)$. На цьому (n-1) умова вичерпалася. І для n-ої похідної справедливо

$$y^{(n)}(x) = \sum_{i=1}^{n} C_i(x)y_i^{(n)}(x) + \sum_{i=1}^{n} C_i'(x)y_i^{(n-1)}(x).$$

Підставимо взяту функцію та її похідні в неоднорідне диференціальне рівняння

$$a_0(x)\left(\sum_{i=1}^n C_i(x)y_i^{(n)}(x)\right) + a_0(x)\left(\sum_{i=1}^n C_i'(x)y_i^{(n-1)}(x)\right) +$$

$$+ a_1(x) \left(\sum_{i=1}^n C_i(x) y_i^{(n-1)}(x) \right) + \ldots + a_n(x) \left(\sum_{i=1}^n C_i(x) y_i(x) \right) = b(x).$$

Оскільки $y(x) = \sum_{i=1}^{n} C_i(x) y_i(x)$ — розв'язок однорідного диференціального рівняння, то після скорочення одержимо n-у умову

$$\left(\sum_{i=1}^{n} C_i'(x)y_i^{(n-1)}(x)\right) = \frac{b(x)}{a_0(x)}.$$

Додаючи перші (n-1) умови, одержимо систему

$$\begin{cases}
C'_1(x)y_1(x) + C'_2(x)y_2(x) + \ldots + C'_n(x)y_n(x) &= 0, \\
C'_1(x)y'_1(x) + C'_2(x)y'_2(x) + \ldots + C'_n(x)y'_n(x) &= 0, \\
\vdots &\vdots &\vdots &\vdots &\vdots \\
C'_1(x)y_1^{(n-2)}(x) + C'_2(x)y_2^{(n-2)}(x) + \ldots + C'_n(x)y_n^{(n-2)}(x) &= 0, \\
C'_1(x)y_1^{(n-1)}(x) + C'_2(x)y_2^{(n-1)}(x) + \ldots + C'_n(x)y_n^{(n-1)}(x) &= \frac{b(x)}{a_0(x)}.
\end{cases}$$

Оскільки визначником системи є визначник Вронського і він відмінний від нуля, то система має єдиний розв'язок

$$C_{1}(x) = \int \frac{\begin{vmatrix} 0 & y_{2}(x) & \cdots & y_{n-1}(x) & y'_{n}(x) \\ 0 & y'_{2}(x) & \cdots & y'_{n-1}(x) & y'_{n}(x) \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & y_{2}^{(n-2)}(x) & \cdots & y_{n-1}^{(n-2)}(x) & y_{n}^{(n-2)}(x) \\ \frac{b(x)}{a_{0}(x)} & y_{2}^{(n-1)}(x) & \cdots & y_{n-1}^{(n-1)}(x) & y_{n}^{(n-1)}(x) \end{vmatrix}}{W[y_{1}, y_{2}, \dots, y_{n}]} dx,$$

$$C_{1}(x) = \int \frac{y_{1}(x) & y_{2}(x) & \cdots & y_{n-1}(x) & 0}{y'_{1}(x) & y'_{2}(x) & \cdots & y'_{n-1}(x) & 0} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ y_{1}^{(n-2)} & y_{2}^{(n-2)}(x) & \cdots & y_{n-1}^{(n-2)}(x) & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ y_{1}^{(n-1)}(x) & y_{2}^{(n-1)}(x) & \cdots & y_{n-1}^{(n-1)}(x) & \frac{b(x)}{a_{0}(x)} \end{vmatrix}} dx.$$

$$C_{n}(x) = \int \frac{y_{1}^{(n-1)}(x) & y_{2}^{(n-1)}(x) & \cdots & y_{n-1}^{(n-1)}(x) & 0}{W[y_{1}, y_{2}, \dots, y_{n}]} dx.$$

I загальний розв'язок лінійного неоднорідного диференціального рівняння запишеться у вигляді

$$y(x) = \bar{C}_1 y_1(x) + \bar{C}_2 y_2(x) + \ldots + \bar{C}_n y_n(x) + y_{\text{hetero}}(x),$$

де \bar{C}_i — довільні сталі, а

$$y_{\text{hetero}}(x) = C_1(x)y_1(x) + C_2(x)y_2(x) + \ldots + C_n(x)y_n(x).$$

Якщо розглядати диференціальне рівняння другого порядку

$$a_0(x)y''(x) + a_1(x)y'(x) + a_2(x)y(x) = b(x),$$

і загальний розв'язок однорідного рівняння має вигляд

$$y_{\text{homo}}(x) = C_1 y_1(x) + C_2 y_2(x),$$

то частинний розв'язок неоднорідного має вигляд

$$y_{\text{hetero}}(x) = C_1(x)y_1(x) + C_2(x)y_2(x).$$

I для знаходження функцій $C_1(x), C_2(x)$ маємо систему

$$\begin{cases} C_1'(x)y_1(x) + C_2'(x)y_2(x) = 0, \\ C_1'(x)y_1'(x) + C_2'(x)y_2'(x) = \frac{b(x)}{a_0(x)}. \end{cases}$$

Звідси

$$C_1(x) = \int \frac{\begin{vmatrix} 0 & y_2(x) \\ \frac{b(x)}{a_0(x)} & y_2'(x) \end{vmatrix}}{\begin{vmatrix} y_1(x) & y_2(x) \\ y_1'(x) & y_2'(x) \end{vmatrix}} dx, \quad C_2(x) = \int \frac{\begin{vmatrix} y_1(x) & 0 \\ y_1'(x) & \frac{b(x)}{a_0(x)} \end{vmatrix}}{\begin{vmatrix} y_1(x) & y_2(x) \\ y_1'(x) & y_2'(x) \end{vmatrix}} dx$$

I одержуємо $y_{\text{hetero}}(x) = C_1(x)y_1(x) + C_2(x)y_2(x)$ з обчисленими функціями $C_1(x)$ і $C_2(x)$.

3.3.3 Метод Коші

Нехай y(x) = K(x,s) — розв'язок однорідного диференціального рівняння, що задовольняє умовам

$$K(s,s) = K'_x(s,s) = \dots = K^{(n-2)}_{x^{n-2}}(s,s) = 0, \quad K^{(n-1)}_{x^{n-1}}(s,s) = 1.$$

Тоді функція

$$y(x) = \int_{x_0}^x K(x, s) \frac{b(s)}{a_0(s)} ds$$

буде розв'язком неоднорідного рівняння, що задовольняє початковим умовам

$$y(x_0) = y'(x_0) = \dots = y^{(n-1)}(x_0) = 0.$$

Дійсно, розглянемо похідні від функції y(x):

$$y'(x) = \int_{x_0}^x K'_x(x,s) \frac{b(s)}{a_0(s)} ds + K(x,x) \frac{b(x)}{a_0(x)}.$$

I, оскільки K(x, x) = 0, то

$$y'(x) = \int_{x_0}^x K'_x(x,s) \frac{b(s)}{a_0(s)} ds.$$

Аналогічно

$$y''(x) = \int_{x_0}^x K_{x^2}''(x,s) \frac{b(s)}{a_0(s)} \, \mathrm{d}s + K_x'(x,x) \frac{b(x)}{a_0(x)} = \int_{x_0}^x K_{x^2}''(x,s) \frac{b(s)}{a_0(s)} \, \mathrm{d}s,$$

і так далі до

$$y^{(n-1)}(x) = \int_{x_0}^x K_{x^{n-1}}^{(n-1)}(x,s) \frac{b(s)}{a_0(s)} \, \mathrm{d}s + K_{x^{n-2}}^{(n-2)}(x,x) \frac{b(x)}{a_0(x)} =$$

$$= \int_{x_0}^x K_{x^{n-1}}^{(n-1)}(x,s) \frac{b(s)}{a_0(s)} \, \mathrm{d}s,$$

$$y^{(n)}(x) = \int_{x_0}^x K_{x^n}^{(n)}(x,s) \frac{b(s)}{a_0(s)} \, \mathrm{d}s + K_{x^{n-1}}^{(n-1)}(x,x) \frac{b(x)}{a_0(x)}.$$

I, оскільки $K_{x^{n-1}}^{(n-1)}(x,x)=1$, то

$$y^{(n)}(x) = \int_{x_0}^x K_{x^n}^{(n)}(x,s) \frac{b(s)}{a_0(s)} ds + \frac{b(x)}{a_0(x)}.$$

Підставивши функцію y(x) і її похідні у вихідне диференціальне рівняння, одержимо

$$a_0(x) \left(\int_{x_0}^x K_{x^n}^{(n)}(x,s) \frac{b(s)}{a_0(s)} ds + \frac{b(x)}{a_0(x)} \right) +$$

$$+ a_1(x) \left(\int_{x_0}^x K_{x^{n-1}}^{(n-1)}(x,s) \frac{b(s)}{a_0(s)} ds \right) + \dots + a_n(x) \int_{x_0}^x K_x'(x,s) \frac{b(s)}{a_0(s)} ds =$$

$$= \int_{x_0}^x \left(a_0(x) K_{x^n}^{(n)}(x,s) + a_1(x) K_{x^{n-1}}^{(n-1)}(x,s) + \dots + a_n(x) K(x,s) \right).$$

Оскільки $K(x,s)-\varepsilon$ розв'язком лінійного однорідного рівняння і, отже,

$$a_0(x)K_{x^n}^{(n)}(x,s) + a_1(x)K_{x^{n-1}}^{(n-1)}(x,s) + \ldots + a_n(x)K(x,s) = 0.$$

У такий спосіб показано, що

$$y(x) = \int_{x_0}^x K(x,s) \frac{b(s)}{a_0(s)} ds$$

є розв'язком лінійного неоднорідного рівняння.

Підставляючи $x = x_0$ в значення $y(x), y'(x), \dots, y^{(n)}(x)$ одержимо, що

$$y(x_0) = y'(x_0) = \dots = y^{(n-1)}(x_0) = 0.$$

Для знаходження функції K(x,s) (інтегрального ядра) можна використати такий спосіб. Якщо $y_1(x),y_2(x),\ldots,y_n(x)$ лінійно незалежні розв'язки однорідного рівняння, то загальний розв'язок однорідного рівняння має вигляд

$$y_{\text{homo}}(x) = C_1 y_1(x) + C_2 y_2(x) + \ldots + C_n y_n(x).$$

Оскільки K(x,s) є розв'язком однорідного рівняння, то його слід шукати у вигляді

$$K(x,s) = C_1(s)y_1(x) + C_2(s)y_2(x) + \ldots + C_n(s)y_n(x).$$

Відповідні початкові умови мають вигляд

$$K(s,s) = 0 \Rightarrow C_1(s)y_1(s) + C_2(s)y_2(s) + \dots + C_n(s)y_n(s) = 0,$$

$$K'_x(s,s) = 0 \Rightarrow C_1(s)y'_1(s) + C_2(s)y'_2(s) + \dots + C_n(s)y'_n(s) = 0,$$

і так далі до

$$K_{x^{n-2}}^{(n-2)}(s,s) = 0 \Rightarrow$$

$$\Rightarrow C_1(s)y_1^{(n-2)}(s) + C_2(s)y_2^{(n-2)}(s) + \dots + C_n(s)y_n^{(n-2)}(s) = 0,$$

i

$$K_{x^{n-1}}^{(n-1)}(s,s) = 1 \Rightarrow$$

$$\Rightarrow C_1(s)y_1^{(n-1)}(s) + C_2(s)y_2^{(n-1)}(s) + \dots + C_n(s)y_n^{(n-1)}(s) = 0.$$

$$C_1(s) = \int \frac{\begin{vmatrix} 0 & y_2(s) & \cdots & y_n(s) \\ \vdots & \vdots & \ddots & \vdots \\ 0 & y_2^{(n-2)}(s) & \cdots & y_n^{(n-2)}(s) \\ 1 & y_2^{(n-1)}(s) & \cdots & y_n^{(n-1)}(s) \end{vmatrix}}{W[y_1, y_2, \dots, y_n](s)} ds,$$

$$C_2(s) = \int \frac{\begin{vmatrix} y_1(s) & 0 & \cdots & y_n(s) \\ \vdots & \vdots & \ddots & \vdots \\ y_2^{(n-2)} & 0 & \cdots & y_n^{(n-2)}(s) \\ y_2^{(n-1)}(s) & 1 & \cdots & y_n^{(n-1)}(s) \end{vmatrix}}{W[y_1, y_2, \dots, y_n](s)} ds,$$

і так далі до

$$C_n(s) = \int \frac{\begin{vmatrix} y_1(s) & y_2(s) & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ y_1^{(n-2)}(s) & y_2^{(n-2)}(s) & \cdots & 0 \\ y_1^{(n-1)}(s) & y_2^{(n-1)}(s) & \cdots & 1 \end{vmatrix}}{W[y_1, y_2, \dots, y_n](s)} ds.$$

I ядро K(x,s) має вигляд

$$K(x,s) = C_1(s)y_1(x) + C_2(s)y_2(x) + \ldots + C_n(s)y_n(x)$$

з одержаними функціями $C_1(s), C_2(s), \dots, C_n(s)$.

Якщо розглядати диференціальне рівняння другого порядку

$$a_0(x)y''(x) + a_1(x)y'(x) + a_2(x)y(x) = b(x),$$

то функція має вигляд

$$K(x,s) = C_1(s)y_1(x) + C_2(s)y_2(x),$$

де

$$C_1(s) = \frac{\begin{vmatrix} 0 & y_2(s) \\ 1 & y_2'(s) \end{vmatrix}}{\begin{vmatrix} y_1(s) & y_2(s) \\ y_1'(s) & y_2'(s) \end{vmatrix}}, \quad C_1(s) = \frac{\begin{vmatrix} y_1(s) & 0 \\ y_1'(s) & 1 \end{vmatrix}}{\begin{vmatrix} y_1(s) & y_2(s) \\ y_1'(s) & y_2'(s) \end{vmatrix}}.$$

$$K(x,s) = \frac{\begin{vmatrix} 0 & y_2(s) \\ 1 & y_2'(s) \end{vmatrix} y_1(x) + \begin{vmatrix} y_1(s) & 0 \\ y_1'(s) & 1 \end{vmatrix} y_2(x)}{W[y_1, y_2](s)} = \frac{y_1(s)y_2(x) - y_1(x)y_2(s)}{W[y_1, y_2](s)}$$

3.3.4 Метод невизначених коефіцієнтів

Якщо лінійне диференціальне рівняння є рівнянням з сталими коефіцієнтами, а функція b(x) спеціального виду, то частинний розв'язок можна знайти за допомогою методу невизначених коефіцієнтів.

1. Нехай b(x) має вид многочлена, тобто

$$b(x) = A_0 x^s + A_1 x^{s-1} + \ldots + A_{s-1} x + A_s.$$

(a) Розглянемо випадок, коли характеристичне рівняння не має нульового кореня, тобто $\lambda \neq 0$. Частинний розв'язок неоднорідного рівняння шукаємо вигляді:

$$y_{\mathrm{part}} = B_0 x^s + B_1 x^{s-1} + \ldots + B_{s-1} + B_s,$$
 де B_0, \ldots, B_s — невідомі сталі. Тоді
$$y'_{\mathrm{part}} = s B_0 x^{s-1} + (s-1) B_1 x^{s-2} + \ldots + 1 B_{s-1},$$

$$y''_{\mathrm{part}} = s(s-1) B_0 x^{s-2} + (s-1)(s-2) B_1 x^{s-3} + \ldots$$

$$\ldots + 2 \cdot 1 \cdot B_{s-2},$$

і так далі.

Підставляючи у вихідне диференціальне рівняння, одержимо

$$a_{0}(s!B_{s}) + \dots$$

$$+ a_{n-2} (s(s-1)B_{0}x^{s-2} + (s-1)(s-2)B_{1}x^{s-3} + \dots + 2B_{s-1}) +$$

$$+ a_{n-1} (sB_{0}x^{s-1} + (s-1)B_{1}x^{s-2} + \dots + B_{s-1}) +$$

$$+ a_{n} (B_{0}x^{s} + B_{1}x^{s-1} + \dots + B_{s-1} + B_{s}) =$$

$$= A_{0}x^{s} + A_{1}x^{s-1} + \dots + A_{s-1}x + A_{s}.$$

Прирівнявши коефіцієнти при однакових степенях x запишемо:

$$\begin{array}{c|c}
x^{s} & a_{n}B_{0} = A_{0} \\
x^{s-1} & a_{n}B_{1} + sa_{n-1}B_{0} = A_{1} \\
x^{s-2} & a_{n}B_{2} + (s-1)a_{n-1}B_{1} + s(s-1)a_{n-2}B_{0} = A_{2}
\end{array}$$

і так далі.

Оскільки характеристичне рівняння не має нульового кореня, то $a_n \neq 0$. Звідси одержимо $B_0 = \frac{A_0}{a_n}, \ B_1 = \frac{A_1 - s a_{n-1} B_0}{a_n}, \ i$ так далі.

(б) Розглянемо випадок, коли характеристичне рівняння має нульовий корінь кратності r. Тоді диференціальне рівняння має вигляд

$$a_0 y^{(n)} + a_1 y^{(n-1)} + \ldots + a_{n-r} y^{(r)} = A_0 x^s + A_1 x^{s-1} + \ldots + A_s.$$

Зробивши заміну $y^{(r)} = z$ одержимо диференціальне рівняння

$$a_0 z^{(n-r)} + a_1 z^{(n-r-1)} + \ldots + a_{n-r} z = A_0 x^s + A_1 x^{s-1} + \ldots + A_s$$

характеристичне рівняння якого вже не має нульового кореня, тобто повернемося до попереднього випадку. Звідси частинний розв'язок шукається у вигляді

$$z_{\text{part}} = \bar{B}_0 x^s + \bar{B}_1 x^{s-1} + \ldots + \bar{B}_s.$$

Проінтегрувавши його r-разів, одержимо, що частиний розв'язок вихідного однорідного рівняння має вигляд

$$y_{\text{part}} = (B_0 x^s + B_1 x^{s-1} + \dots + B_s) x^r.$$

- 2. Нехай b(x) має вигляд $b(x) = e^{px} (A_0 x^s + A_1 x^{s-1} + \ldots + A_s).$
 - (a) Розглянемо випадок, коли p не ϵ коренем характеристичного рівняння. Зробимо заміну

$$y = e^{px}z,$$

$$y' = pe^{px}z + e^{px}z = e^{px}(pz + z'),$$

$$y'' = pe^{px}(pz + z') + e^{px}(pz' + z'') = e^{px}(p^2z + 2pz' + z'').$$

і так далі до

$$y^{(n)} = e^{px} (p^n z + np^{n-1} z' + \dots + z^{(n)}).$$

Підставивши отримані вирази у вихідне диференціальне рівняння, одержимо

$$e^{px} (B_0 z^{(n)} + B_1 z^{(n-1)} + \dots B_n z) =$$

= $e^{pz} (A_0 x^s + A_1 x^{s-1} + \dots + A_s)$.

де B_i — сталі коефіцієнти, що виражаються через a_i і p. Скоротивши на e^{px} , одержимо рівняння

$$B_0 z^{(n)} + B_1 z^{(n-1)} + \dots + B_n z = A_0 x^s + A_1 x^{s-1} + \dots + A_s.$$

Причому, оскільки p не є коренем характеристичного рівняння, то після заміни $y=e^{px}z$, отримане диференціальне рівняння не буде мати коренем характеристичного рівняння $\mu=0$. Таким чином, повернулися до випадку 1.а). Частинний розв'язок неоднорідного рівняння шукаємо у вигляді

$$z_{\text{part}} = B_0 x^s + B_1 x^{s-1} + \ldots + B_{s-1} + B_s,$$

А частинний розв'язок вихідного неоднорідного диференціального рівняння у вигляді:

$$y_{\text{part}} = e^{px} \left(B_0 x^s + B_1 x^{s-1} + \ldots + B_{s-1} + B_s \right),$$

(б) Розглянемо випадок, коли p — корінь характеристичного рівняння кратності r. Це значить, що після, заміни $y=e^{px}z$ і скорочення на e^{px} , вийде диференціальне рівняння, що має коренем характеристичного рівняння, число $\mu=0$ кратності r, тобто

$$B_0 z^{(n)} + B_1 z^{(n-1)} + \dots + B_{n-r} z^{(r)} = A_0 x^s + A_1 x^{s-1} + \dots + A_s.$$

Як випливає з пункту 1.б) частинний розв'язок шукається у вигляді

$$z_{\text{part}} = (B_0 x^s + B_1 x^{s-1} + \dots + B_s) x^r,$$

а частинний розв'язок вихідного неоднорідного диференціального рівняння у вигляді

$$y_{\text{part}} = e^{px} \left(B_0 x^s + B_1 x^{s-1} + \ldots + B_s \right) x^r,$$

3. Нехай b(x) має вигляд:

$$b(x) = e^{px} \left(P_s(x) \cos(qx) + Q_\ell(x) \sin(qx) \right),\,$$

де $P_s(x), Q_\ell(x)$ — многочлени степеня s і ℓ , відповідно, і, наприклад, $\ell \leq s$. Використовуючи формулу Ейлера, перетворимо вираз до вигляду:

$$b(x) = e^{(p+iq)x} R_s(x) + e^{(p-iq)x} T_s(x),$$

де $R_s(x)$, $T_s(x)$ — многочлени степеня не вище, ніж s. Використовуючи властивості 2, 3 розв'язків неоднорідних диференціальних рівнянь, а також випадки 2.a), 2.б) знаходження частинного розв'язку лінійних неоднорідних рівнянь, одержимо, що частинний розв'язок шукається у виглядах:

(a)
$$y_{\text{part}} = e^{px} \left(\left(A_0 x^s + A_1 x^{s-1} + \dots + A_s \right) \cos(qx) + \left(B_0 x^s + B_1 x^{s-1} + \dots + B_s \right) \sin(qx) \right),$$

якщо $p \pm iq$ не є коренем характеристичного рівняння;

(б)

$$y_{\text{part}} = e^{px} \left(\left(A_0 x^s + A_1 x^{s-1} + \dots + A_s \right) \cos(qx) + \left(B_0 x^s + B_1 x^{s-1} + \dots + B_s \right) \sin(qx) \right) x^r,$$

якщо $p \pm iq$ є коренем характеристичного рівняння кратності r.

3.3.5 Вправи для самостійної роботи

Приклад 3.3.1. Знайти загальний розв'язок рівняння $y'' - 2y' + y = \frac{e^x}{x}$.

Розв'язок. Загальний розв'язок складається з суми загального розв'язку однорідного та частинного розв'язку неоднорідного рівнянь.

Розглянемо однорідне рівняння

$$y'' - 2y' + y = 0.$$

Його характеристичне рівняння має вигляд

$$\lambda^2 - 2\lambda + 1 = 0.$$

Його коренями будуть $\lambda_1=1,\ \lambda_2=1.$ І загальний розв'язок однорідного має вигляд $y_{\text{homo}}(x)=C_1e^x+C_2xe^x.$

Частинний розв'язок неоднорідного рівняння шукаємо методом варіації довільної сталої у вигляді $y_{\text{part}}(x) = C_1(x)e^x + C_2(x)xe^x$. Для знаходження функцій $C_1(x)$, $C_2(x)$ отримаємо систему

$$\begin{cases} C_1'(x)e^x + C_2'(x)xe^x = 0, \\ C_1'(x)e^x + C_2'(x)(xe^x + e^x) = \frac{e^x}{x}. \end{cases}$$

$$C_1(x) = \int \frac{\begin{vmatrix} 0 & xe^x \\ \frac{e^x}{x} & xe^x + e^x \end{vmatrix}}{\begin{vmatrix} e^x & xe^x \\ e^x & xe^x + e^x \end{vmatrix}} dx = \int \frac{e^{2x}}{e^{2x}} dx = x + \bar{C}_1,$$

$$C_2(x) = \int \frac{\begin{vmatrix} e^x & 0 \\ e^x & \frac{e^x}{x} \end{vmatrix}}{\begin{vmatrix} e^x & xe^x \\ e^x & xe^x + e^x \end{vmatrix}} dx = \int \frac{e^{2x}}{xe^{2x}} dx = \ln|x| + \bar{C}_2.$$

Поклавши (для зручності) $\bar{C}_1 = 0, \, \bar{C}_2 = 0, \, \text{одержимо}$

$$y_{\text{part}}(x) = xe^x + xe^x \ln|x|.$$

Загальний розв'язок має вигляд

$$y_{\text{hetero}}(x) = C_1 e^x + C_2 x e^x + x e^x \ln |x|.$$

Приклад 3.3.2. Знайти загальний розв'язок рівняння

$$y'' + 3y' + 2y = \frac{1}{e^x + 1}.$$

Розв'язок. Загальний розв'язок складається з суми загального розв'язку однорідного та частинного розв'язку неоднорідного. Розглянемо однорідне рівняння

$$y'' + 3y' + 2y = 0.$$

Його характеристичне рівняння має вигляд

$$\lambda^2 + 3\lambda + 2 = 0.$$

Його коренями будуть $\lambda_1=-1,\ \lambda_2=-2.$ І загальний розв'язок однорідного має вигляд $y_{\mathrm{homo}}(x)=C_1e^{-x}+C_2e^{-2x}.$

Частинний розв'язок неоднорідного рівняння шукаємо методом Коші. Враховуючи вигляд загального розв'язку однорядного рівняння функцію K(x,s) шукаємо у вигляді

$$K(x,s) = C_1(s)e^{-x} + C_2(s)e^{-2x}$$
.

Початкові умови дають наступне

$$K(s,s) = 0 \implies C_1(s)e^{-x} + C_2(s)e^{-2s} = 0,$$

 $K'_x(s,s) = 1 \implies C_1(s)e^{-x} - 2C_2(s)e^{-2s} = 1,$

$$C_1(s) = \frac{\begin{vmatrix} e^{-s} & 0 \\ -e^{-s} & 1 \end{vmatrix}}{\begin{vmatrix} e^{-s} & e^{-2s} \\ -e^{-s} & -2e^{-2s} \end{vmatrix}} = \frac{e^{-s}}{-e^{-3s}} = -e^{2s}.$$

Таким чином $K(x,s) = e^{s-x} - e^{2(s-x)}$. І частинний розв'язок, що задовольняє нульовим початковим умовам, має вигляд

$$y_{\text{part}}(x) = \int \frac{e^{s-x} - e^{2(s-x)}}{e^s + 1} \, ds = e^{-x} \int_{x_0}^x \frac{e^s}{e^s + 1} \, ds - e^{-2x} \frac{e^{2s}}{e^s + 1} \, ds =$$

$$= e^{-x} \ln|e^s + 1||_{s=x_0}^{s=x} - e^{-2x} \int_{x_0}^x \frac{e^s + 1 - 1}{e^s + 1} \, d(e^s) =$$

$$= e^{-x} \left(\ln|e^x + 1| - \ln|e^{x_0} - 1| \right) +$$

$$+ e^{-2x} \left(e^x - e^{x_0} - \ln|e^x + 1| + \ln|e^{x_0} + 1| \right).$$

Враховуючи, що початкові дані не задані, остаточно отримаємо

$$y_{\text{hetero}}(x) = C_1 e^{-x} + C_2 e^{-2x} + e^{-x} \ln|e^x + 1| + e^{-2x} \ln|e^x + 1|.$$

Розв'язати лінійні неоднорідні рівняння

Задача 3.3.3.

Задача 3.3.6.

$$y'' + y = \frac{1}{\sin x};$$

$$y'' + y = 2\sec^3 x;$$

Задача 3.3.4.

$$y'' + 4y = 2\tan x;$$

Задача 3.3.7.

Задача 3.3.5.

$$y'' + 2y' + y = 3e^{-x\sqrt{x+1}}; y'' - y = \frac{x^2 - 2}{x^3}.$$

Якщо рівняння зі сталими коефіцієнтами, а функція b(x) спеціального вигляду, то зручніше використовувати метод невизначених коефіцієнтів.

Приклад 3.3.8. Розв'язати лінійне неоднорідне рівняння

$$y'' + 2y' + y = x^2 + 1.$$

Розв'язок. Спочатку розв'язуємо однорідне рівняння

$$y'' + 2y' + y = 0.$$

Його характеристичне рівняння має вигляд

$$\lambda^2 + 2\lambda + 1 = 0.$$

Його коренями будуть $\lambda_1 = -1$, $\lambda_2 = -1$. І загальним розв'язком однорідного рівняння буде $y_{\text{homo}}(x) = C_1 e^{-x} + C_2 x e^{-x}$. Оскільки справа стоїть

многочлени другого ступеня і характеристичне рівняння не містить нульових коренів, то частинний розв'язок має вигляд

$$y_{\text{part}}(x) = ax^2 + bx + c.$$

Звідси

$$y'_{\text{part}}(x) = 2ax + b.$$

Підставляємо одержані вирази в диференціальне рівняння

$$2a + 2(2ax + b) + (ax^{2} + bx + c) = x^{2} + 1$$

Прирівнюємо коефіцієнти при однакових степенях

$$\begin{vmatrix} x^2 & a = 1 \\ x & 4a + b = 0 \\ 1 & a + 2b + c = 1 \end{vmatrix}$$

Звідси a = 1, b = -4, c = 7.

Таким чином загальний розв'язок має вигляд

$$y_{\text{hetero}}(x) = C_1 e^{-x} + C_2 x e^{-x} + x^2 - 4x + 7.$$

Приклад 3.3.9. Розв'язати лінійне неоднорідне рівняння

$$y''' + y'' = x + 1.$$

Розв'язок. Розв'язуємо однорідне рівняння

$$y''' + y'' = 0.$$

Його характеристичне рівняння має вигляд

$$\lambda^3 + \lambda^2 = 0$$

Його коренями будуть $\lambda_1=\lambda_2=0,\ \lambda_3=1.$ І загальним розв'язком однорідного рівняння буде

$$y_{\text{homo}}(x) = C_1 + C_2 x + C_3 e^{-x}.$$

Оскільки справа стоїть многочлен другого порядку, а характеристичне рівняння має нульовий корінь кратності два, то частинний розв'язок має вигляд

$$y_{\text{part}}(x) = x^2(ax + b),$$

або

$$y_{\text{part}}(x) = ax^3 + bx^2.$$

Звідси

$$y'_{\text{part}}(x) = 3ax^2 + 2bx,$$

$$y''_{\text{part}}(x) = 6ax + 2b.$$

Підставляємо одержані вирази в диференціальне рівняння

$$6a + (6ax + 2b) = x + 1.$$

Прирівнюємо коефіцієнти при однакових ступенях

$$\begin{array}{c|c}
x & 6a = 1 \\
1 & 6a + 2b = 1
\end{array}$$

Звідси $a = \frac{1}{6}, b = 0.$

Таким чином загальний розв'язок має вигляд

$$y_{\text{hetero}}(x) = C_1 + C_2 x + C_3 e^{-x} + \frac{x^3}{6}$$

Приклад 3.3.10. Розв'язати лінійне неоднорідне рівняння $y'' + y = e^x x$.

Розв'язок. Розв'язуємо лінійне однорідне рівняння

$$y'' + y = 0.$$

Характеристичне рівняння має вигляд

$$\lambda^2 + 1 = 0.$$

Його коренями будуть $\lambda_{1,2}=\pm i$. І загальним розв'язком однорідного рівняння буде

$$y_{\text{homo}}(x) = C_1 \cos x + C_2 \sin x.$$

Оскільки справа стоїть многочлен першого порядку, помножений на експоненту, то частинний розв'язок має вигляд

$$y_{\text{part}}(x) = e^x(ax + b).$$

$$y'_{\text{part}}(x) = e^x(ax + a + b),$$

$$y'_{\text{part}}(x) = e^x(ax + 2a + b).$$

Підставляємо одержані вирази у диференціальне рівняння

$$e^{x}(ax + 2a + b) + e^{x}(ax + b) = e^{x}x.$$

Прирівнюємо коефіцієнти при однакових членах

$$\begin{array}{c|c}
xe^x & 2a = 1 \\
e^x & 2a + 2b = 0
\end{array}$$

Звідси $a = \frac{1}{2}, b = -\frac{1}{2}.$

Таким чином загальний розв'язок має вигляд

$$y_{\text{hetero}}(x) = C_1 \cos x + C_2 \sin x + \frac{e^x(x-1)}{2}.$$

Приклад 3.3.11. Розв'язати лінійне неоднорідне рівняння

$$y'' - 2y' + y = e^x x.$$

Розв'язок. Розв'язуємо однорідне рівняння

$$y'' - 2y' + y = 0.$$

Характеристичне рівняння має вигляд

$$\lambda^2 - 2\lambda + 1 = 0.$$

Його коренями будуть $\lambda_1=1,\,\lambda_2=1.$ I загальним розв'язком однорідного рівняння буде

$$y_{\text{homo}}(x) = C_1 e^x + C_2 x e^x.$$

Оскільки справа стоїть многочлен першого порядку, а показник при експоненті є двократним коренем характеристичного рівняння, частинний розв'язок має вигляд

$$y_{\text{part}}(x) = x^2 e^x (ax + b),$$

або

$$y_{\text{part}}(x) = e^x (ax^3 + bx^2),$$

$$y'_{\text{part}}(x) = e^x(ax^3 + (3a+b)x^2 + 2bx),$$

$$y''_{\text{part}}(x) = e^x(ax^3 + (6a+b)x^2 + (6a+4b)x + 2b).$$

Підставляємо одержані вирази в диференціальне рівняння

$$e^{x}(ax^{3} + (6a + b)x^{2} + (6a + 4b)x + 2b) - 2e^{x}(ax^{3} + (3a + b)x^{2} + 2bx) + e^{x}(ax^{3} + bx^{2}) = e^{x}x.$$

Прирівнюємо коефіцієнти при однакових членах

$$xe^x \mid 6a + 4b + 2b = 1$$
$$e^x \mid 2b = 0$$

Звідси $a = \frac{1}{6}, b = 0.$

Таким чином загальний розв'язок має вигляд

$$y_{\text{hetero}}(x) = C_1 e^x + C_2 x e^x + \frac{x^3 e^x}{6}.$$
 (.1)

Приклад 3.3.12. Розв'язати лінійне неоднорідне рівняння

$$y'' - y = x \cos x + \sin x.$$

Розв'язок. Розв'язуємо однорідне рівняння

$$y'' - y = 0.$$

Характеристичне рівняння має вигляд

$$\lambda^2 - 1 = 0.$$

Його коренями будуть $\lambda_1=1,\ \lambda_2=-1.$ I загальним розв'язком однорідного рівняння буде

$$y_{\text{homo}}(x) = C_1 e^x + C_2 e^{-x}$$
.

Частинний розв'язок неоднорідного має вигляд

$$y_{\text{part}}(x) = (ax + b)\cos x + (cx + d)\sin x.$$

$$y'_{\text{part}}(x) = (cx + a + d)\cos x + (-ax - b + c)\sin x,$$

 $y''_{\text{part}}(x) = (-ax - b + 2c)\cos x + (-cx - 2a - d)\sin x$

Підставляємо одержані вирази в диференціальне рівняння

$$(-ax - b + 2c)\cos x + (-cx - 2a - d)\sin x -$$

- $(ax + b)\cos x - (cx + d)\sin x = x\cos x + \sin x.$

Прирівнюємо коефіцієнти при однакових виразах

$$\begin{vmatrix} x \cos x & -2a = 1 \\ x \sin x & -2c = 0 \\ \cos x & -b + 2c - b = 0 \\ \sin x & -2a - d - d = 1 \end{vmatrix}$$

Звідси $a=-\frac{1}{2},\,b=c=d=0.$

Таким чином загальний розв'язок має вигляд

$$y_{\text{hetero}}(x) = C_1 e^x + C_2 x e^x - \frac{\cos x}{2}.$$

Приклад 3.3.13. Розв'язати диференціальне рівняння

$$y'' + 2y' + 2y = e^{-x}\sin x.$$

Розв'язок. Розв'язуємо однорідне рівняння

$$y'' + 2y' + 2y = 0.$$

Характеристичне рівняння $\lambda^2+2\lambda+2=0$ має корені $\lambda_{1,2}=-1\pm i.$ І загальним розв'язком однорідного рівняння буде

$$y_{\text{homo}}(x) = C_1 e^{-x} \cos x + C_2 e^{-x} \sin x.$$

Оскільки $\lambda_1=1+i$ корінь кратності один, то частинний розв'язок неоднорідного має вигляд

$$y_{\text{part}}(x) = xe^{-x}(a\cos x + b\sin x).$$

Звідси

$$y'_{\text{part}}(x) = e^{-x}((b - ax)\sin x + (a - (a - b)x)\cos x)$$

$$y'_{\text{part}}(x) = -2e^{-x}((a + b - ax)\sin x + ((a - b) + bx)\cos x)$$

Підставляємо одержані вирази в диференціальне рівняння

$$-2e^{-x}((a+b-ax)\sin x + ((a-b)+bx)\cos x) +$$

$$+2e^{-x}((b-ax)\sin x + (a-(a-b)x)\cos x) +$$

$$+2xe^{-x}(a\cos x + b\sin x) = e^{-x}\sin x.$$

Прирівнюємо коефіцієнти при однакових членах

$$e^{-x}\cos x \mid 2a + 2b = 0$$

 $e^{-x}\sin x \mid -2a - 2b + c = 1$

Звідси a = -1, b = 1.

Таким чином загальний розв'язок має вигляд

$$y_{\text{hetero}}(x) = C_1 e^{-x} \cos x + C_2 e^{-x} \sin x + x e^{-x} (\sin x - \cos x).$$

Знайти загальний розв'язок рівнянь:

Задача 3.3.14.

$$y''' - 4y'' + 5y' - 2y = 2x + 3$$
:

Задача 3.3.21.

$$y^{(4)} + 5y'' + 4y = \sin x \cos 2x;$$

Задача 3.3.15.

$$y''' - 3y' + 2y = e^{-x}(4x^2 + 4x - 10);$$

Задача 3.3.22.

$$y''' - 4y'' + 3y' = x^3 e^{2x};$$

Задача 3.3.16.

$$y^{(4)} + 8y'' + 16y = \cos x;$$

Задача 3.3.23.

$$y^{(4)} + y'' = 7x - 3\cos x$$
:

Задача 3.3.17.

$$y^{(5)} + y''' = x^2 - 1$$
:

Задача 3.3.24.

$$y''' - y'' - y' + y = 3e^x + 5x \sin x$$
:

Задача 3.3.18.

$$y^{(4)} - y = xe^x + \cos x;$$

Задача 3.3.25.

$$y''' - 2y'' + 4y' - 8y = e^{2x} \sin 2x + 2x^2;$$

Задача 3.3.19.

$$y^{(4)} + 2y'' + y = x^2 \cos x$$
:

Задача 3.3.26.

$$y''' + y' = \sin x + x \cos x$$
:

Задача 3.3.20.

$$y^{(4)} - y = 5e^x \sin x + x^4;$$

Задача 3.3.27.

$$y''' - y = x^3 - 1$$
;

Задача 3.3.28.

$$y''' + y'' = x^2 + 1 + 3xe^x;$$

Задача 3.3.29.

$$y''' + y'' + y' + y = xe^x;$$

Задача 3.3.30.

$$y''' - 9y' = -9(e^{3x} - 2\sin 3x + \cos 3x);$$

Задача 3.3.31.

$$y''' - y' = 10\sin x + 6\cos x + 4e^x;$$

Задача 3.3.32.

$$y''' - 6y'' + 9y' = 4xe^x;$$

Задача 3.3.33.

$$y''' + 2y'' - 3y' = (8x + 6)e^x;$$

Задача 3.3.34.

$$y^{(4)} + y'' = x^2 + x;$$

Задача 3.3.35.

$$y''' - 3y' + 2y = (2x^2 - x)e^x + \cos x;$$

Задача 3.3.36.

$$y^{(4)} - y = 5e^x \cos x + 3;$$

Задача 3.3.37.

$$y^{(5)} - y''' = x^2 + \cos x;$$

Задача 3.3.38.

$$y^{(4)} - 2y'' + y' = e^x;$$

Задача 3.3.39.

$$y^{(4)} - 2y''' + y'' = x^3;$$

Задача 3.3.40.

$$y^{(4)} + y''' = \cos 3x.$$

Знайти частинний розв'язок диференціальних рівнянь:

Задача 3.3.41.

$$y''' - 2y'' + y' = 4(\sin x + \cos x), \quad y(0) = 1, y'(0) = 0, y''(0) = -1;$$

Задача 3.3.42.

$$y''' + 2y'' + y' = -2e^{-2x}, \quad y(0) = 2, y'(0) = y''(0) = 1;$$

Задача 3.3.43.

$$y''' - 3y' = 3(2 - x^2), \quad y(0) = y'(0) = y''(0) = 1;$$

Задача 3.3.44.

$$y''' + 2y'' + y' = 5e^x$$
, $y(0) = y'(0) = y''(0) = 0$:

Задача 3.3.45.

$$y''' - y' = 3(2 - x^2), \quad y(0) = y'(0) = y''(0) = 1;$$

Задача 3.3.46.

$$y''' + 2y'' + 2y' + y = x, \quad y(0) = y'(0) = y''(0) = 0.$$