A PRELIMENERY REPORT ON

"PC Game Development using Unity"

SUBMITTED TO THE SAVITRIBAI PHULE PUNE UNIVERSITY, PUNE IN THE PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE AWARD OF THE DEGREE

Of

BACHELOR OF COMPUTER ENGINEERING

SUBMITTED BY

Ankur Patil (BCOB10)
Lalu Nair (BCOB05)
Viren Patil (BCOB14)
Sharan Thakur (BCOB09)

DEPARTMENT OF COMPUTER ENGINEERING

DR. D. Y. PATIL INSTITUTE OF TECHNOLOGY PIMPRI, PUNE 411018

SAVITRIBAI PHULE PUNE UNIVERSITY 2022-2023

CERTIFICATE

This is to certify that the Project Entitled

PC Game Development using Unity

Submitted by

Ankur Patil (BCOB10) Lalu Nair (BCOB05) Viren Patil (BCOB14) Sharan Thakur (BCOB09)

are bonafide students of Dr. D. Y. Patil Institute of Technology and the work has been carried out by them under the supervision of Mr. Sharad Adsure (Asst. Professor) and Mrs. Deepika Jaiswal (Asst. Professor), it is approved for the partial fulfillment of the requirement of Savitribai Phule Pune University, for the award of the degree of Bachelor of Computer Engineering.

Mr. Sharad Adsure
(Internal Guide)

External Examiner

. (Project Coordinator)

Dr. Lalit Kumar Wadhwa

Principal,
Dr. D. Y. Patil Institute of Technology,
Pimpri, Pune – 411018

Date:		

ACKNOWLEDGEMENT

It gives us great pleasure in presenting the preliminary project report on "PC GAME DEVELOPMENT USING UNITY"

We would like to take this opportunity to thank my internal guides Asst. Prof. Sharad Adsure as well as Ms. Deepika Jaiswal for giving me all the help and guidance we needed. We are really grateful to them for their kind support. Their valuable suggestions were very helpful.

We are also grateful to Dr. Lalit Kumar Wadhwa, Principal as well as Dr. Vinod V. Kimbahune, Head of Computer Engineering Department, Dr. D.Y Patil Institute Of Technology, Pimpri for his indispensable support, suggestions.

Ankur Patil (BCOB10)

Lalu Nair (BCOB05)

Viren Patil (BCOB14)

Sharan Thakur (BCOB09)

ABSTRACT

The 2D (Dodgeball Video Game) is a multiplayer game written in Unity 3D using C#. The game allows players to play over a network, locally with friends on the same network, or over the internet via Photon Cloud. The game plays as you would expect from a dodgeball game. Players can run around, pick up balls, and throw them at each other. If the player is hit enough times, the player is eliminated. Players can choose to continue the game or stop at the end of the game. This game is made with assets and different packages that users can enjoy! This "dodgeball video game" aims to appeal to a market that is still under-tapped. There are already several examples of dodgeball games on the market, but none are perfect and each has some compromises. Some with great interaction with the field, but leave room for variables such as ball/player skill, etc. Proper implementation will keep our users intrigued and provide a great and unique gaming experience Our main desire is to analyze the existing small market and build on previous dodgeball game attempts to develop a never-before-seen and unique dodgeball experience. Being able to reproduce the game and take advantage of the technology here today will help produce new life into the game dodgeball. Although it will not be 100 percent similar to the original game we all played as kids, the same basic principle of working together as a team to eliminate the enemy team is still present.

KEYWORDS: Unity 2D, Game Development, Mono Behaviour, C#, Real–World, Object Oriented Programming, WEBGL, iOS

Contents

1	INTRO	DDUCTION
	1.1	OVERVIEW
	1.2	Motivation
	1.3	Problem Definition
	1.4	Project Scope And Limitations
	1.5	Methodologies of Problem solving
2	LITER	ATURE SURVEY
3	SOFTV	WARE REQUIREMENT SPECIFICATION 10
	3.1	INTRODUCTION
	3.2	FUNCTIONAL REQUIREMENT
	3.3	EXTERNAL INTERFACE REQUIREMENT
	3.4	NON-FUNCTIONAL REQUIREMENT
	3.5	SYSTEM REQUIREMENTS

	3.6	ANALYSIS MODELS: SDLC MODEL TO BE APPLIED	14
	3.7	SDLC MODEL	16
4	SYST	EM DESIGN	17
	4.1	SYSTEM ARCHITECTURE	17
5	ALGO	RITHM	20
	5.1	Convolutional Neural Networks (CNN):	20
	5.2	Haar Cascade Feature	20
6	DIAGI	RAMS	22
	6.1	Data Flow Diagram	22
	6.2	UML DIAGRAMS	24
	6.3	Use Case Diagram	25
	6.4	Activity Diagram	25
	6.5	Sequence Diagram	25
	6.6	Class Diagram	29
	6.7	Entity Relationship Diagrams	30
7	Projec	t Estimation and Project Plan	31
	7.1	PROJECT ESTIMATES	31
	7.2	RISK MANAGEMENT	32
	7.3	PROJECT SCHEDULE	35

	7.4	Timeline Chart	36
8	OTHE	R SPECIFICATION	37
	8.1	ADVANTAGES	37
	8.2	APPLICATIONS	37
9	RESUI	LT	38
10	TESTI	NG	39
	10.1	Introduction	39
	10.2	Implementation	39
	10.3	Objective	40
	10.4	Testing Strategy	40
	10.5	Types of Testing:	40
	10.6	Unit Testing	41
	10.7	Integrated system	42
	10.8	Functional test	42
11	Test Ca	ases	43
	11.1	GUI Test Cases	43
	11.2	Registration Test Cases	44
	11.3	Login Test Case	45
	11.4	System Test Cases	46

12	CONCLUSION	47

List of Figures

1	SDLC MODEL	16
2	System Architecture	17
3	Haar Cascade Feature	21
4	Data Flow diagram-0	22
5	Data Flow diagram-1	23
6	Data Flow diagram-2	23
7	Use case Diagram	26
8	Activity Diagram	27
9	Sequence Diagram	28
10	Class Diagram	29

1 INTRODUCTION

1.1 OVERVIEW

This engineering project report details the development of "The Infinite Pleasure", a multiplayer dodgeball video game created using Unity and the Photon Unity extension. The game offers an immersive and interactive experience for players, allowing them to choose their character, map, and compete with friends on the same local network.

The game follows traditional dodgeball rules, with players picking up balls, running around, and throwing them at each other. The game employs a server-client relationship to handle essential concepts such as rendering, player data, and network connectivity.

"The Infinite Pleasure" offers a unique twist to the classic dodgeball game, with innovative gameplay mechanics that would be impossible to replicate in real life. Players are placed into teams, and their objective is to catch, dodge, and launch the ball into the air to eliminate the opposing team.

The game's matchmaking system ensures that players with similar or slightly higher experience levels are paired together. This report outlines the development process, including the game's mechanics design, network architecture, and matchmaking system.

Overall, "DogeBall" combines the fun and chaotic gameplay of dodgeball . With its multiplayer features and Unity integration, it offers an enjoyable and competitive gaming experience for players to engage in virtual doge-themed dodgeball matches.

1.2 Motivation

- We are living at the cusp of modern technology with pocket computers with us (our smartphones), in our leisure time, all of us reach into our smartphones to play the next big game to pass time.
- Being the students we are and wanting to play the latest and greatest games; which drives us to build a unique mechanic for the multiplayer systems.
- A game is much more than just its software. It has to provide a much more enjoyable experience.
- Not enough good dodgeball games free-to-play.

1.3 Problem Definition

The lack of engaging and interactive multiplayer games for PC users has resulted in a gap in the market and limited options for entertainment. The need for a fun and challenging multiplayer game that can be played on PC has been identified, with the goal of providing an enjoyable and unique gaming experience for users.

In this problem definition, the identified issue is the lack of engaging multiplayer games for PC users, which presents an opportunity to develop a new game that can fill this gap in the market. This sets the stage for the project's objectives, such as developing a multiplayer dodgeball game using the Unity Game Engine for PC, to address this problem and provide a new and enjoyable gaming experience for users.

1.4 Project Scope And Limitations

Project Scope

The Project Scope for our multiplayer dodgeball game using the Unity Game Engine for PC includes the following features that will be implemented in the future to enhance the game's overall effectiveness, efficiency, and success:

- i. Porting the game to phones (iOS A Android) and deploying it on App Store and Play Store to reach a wider audience.
- ii. Implementing a health system as a mode for a match, which will add a new layer of complexity to the game and make it more challenging for players.
- iii. Adding power-ups for players to choose from, which will give players temporary advantages over their opponents, adding a new strategic element to the game.
- iv. Adding player-specific buffs that can be purchased, which will allow players to customize their characters and give them an advantage in the game.
- v. Adding In-App Purchasing using Unity IAP features, which will allow players to purchase additional features or upgrades within the game, generating additional revenue for the project.
- vi. Enhancing gamepad integrations, which will make the game more accessible to players who prefer using gamepads over keyboard and mouse controls.

These features are not included in the current project scope but are essential for the game's future success. The project team will carefully consider each feature's feasibility, resource requirements, and potential impact on the project's timeline, budget, and deliverables before implementing them. The project team will also consult with key stakeholders to ensure that the new features align with the project's overall goals and objectives.

Limitations

- 1. Releasing To Users:- It can be tricky to figure out when and where to deliver your learning content to your employees without them feeling pressured into it or overwhelmed. You want your employees to grow personally and professionally but still perform their day-to-day tasks with accuracy. Be aware of the audience's schedule when you initially release the game. Don't try to build hype about it during a busy time, such as year-end or just before a conference.
- 2. Circumventing Resources:- There are a few options for making serious games cost-efficient. You can research low-cost or free platforms that offer a game you might adapt to your needs. The trouble with this is that off-the-shelf games might be hard to customize. You might not be able to integrate all the details of your learning strategy. You can also create your own game from scratch. This implies a different kind of process.

1.5 Methodologies of Problem solving

The lack of diversity in this specific area of gaming is a simple one to solve. We will create a two dimension, fast paced, dodgeball game that is central around dodgeball. We will use a high-level game engine and modern day techniques to create a fully immersive product for use on personal computers.

- 1. Choosing Framework: The process of selecting a framework for our project was a crucial step, and we carefully evaluated different options before settling on Unity. We considered the ease of adoption, the quality of the documentation, and the level of community support for each engine.
- 2. Designing UI: In terms of UI design, we were fortunate to have mentors with a keen sense of aesthetics who helped us create an interface that was both intuitive and visually appealing. We took great care to ensure that the UI complemented the gameplay mechanics and enhanced the user experience.
- 3. Establishing Mechanics: Developing game mechanics that were accessible to players of all ages and skill levels was one of our primary goals. We spent a significant amount of time refining and simplifying the mechanics to ensure that they were easy to understand and provided a fun and engaging experience.
- 4. Piecing UI with Mechanics: The mechanics were made in isolation and the UI designed differently since, we had to piece them together that really tells us the real story of development, fun and challenging at the same time. Integrating the UI and mechanics was a challenging but rewarding process. We designed them separately, which required us to carefully consider how they would work together and make the necessary adjustments to ensure that they were seamlessly integrated.
- 5. Testing: Testing in gaming is a very strenuous job since there are many scopes to test with the available limited resources we have done Playtests, Network connection testing as well making sure there is no problem in mechanics and UI.Testing and quality assurance were critical components of our development process. We conducted extensive playtests, network connection testing, and comprehensive checks of mechanics and UI to ensure that the game was polished and free of bugs and glitches.
- 6. Fine Tuning with Feedbacks: The edge and boundary cases of the game had a lot of bugs which led to backtracking our mistakes and making sure it was a tight ship. We encountered several bugs during the development process that required backtracking and debugging. We listened to feedback from players and continuously refined the game to ensure an optimal experience.

7. Deployment: Deployment for a Unity cross platform has to be done across their own

respective store so, for PC it is Steam or something for Apple their App Store and Android it is

Google Play Store, since we are 4 students we chose to upload our game on itch.io for deployment

and uploaded binaries for each platform, we chose itch io since it is free and a lot of indie games

are there already on it. Deploying a Unity cross-platform game requires uploading it to respective

stores such as Steam for PC, Apple App Store for iOS, and Google Play Store for Android. As a

team of four, we chose itch.io, a free platform that hosts many indie games, to upload our game.

We uploaded binaries for each platform to itch.io.

LITERATURE SURVEY

STUDY OF RESEARCH PAPER

1. Paper Name: An Emotional Recommender System for music [1]

Author: Vincenzo Moscato, Antonio Picariello and Giancarlo Sperl' [1]

Description: Recommender systems have become essential for users to find "what they need"

in large collections of items. Meanwhile, recent studies have shown that user personality can

effectively provide more valuable information to significantly improve the performance of recom-

menders, especially considering behavioral data captured from social network logs. In this work,

they describe a new music recommendation technique based on the identification of personality

traits, moods and emotions of a single user, based on solid psychological observations recognized

by the analysis of user behavior in a social environment. In particular, users' personalities and

moods have been incorporated into the content filtering approach to achieve more accurate and

dynamic results.

2. Paper Name: Music Recommender System for users based on Emotion Detection through Fa-

cial Features [2]

Author: Ahlam Alrihaili, Alaa Alsaedi, Kholood Albalawi [2].

7

Description: Facial emotion detection has received tremendous attention due to its applications

in computer vision and human-computer interaction. In this research, they propose an emotion

recognition recommendation system that is able to detect the user's emotions and suggest a list

of suitable songs that can improve his mood. A short search was done on how music can affect

a user's mood in the short term to gain knowledge and allow us to provide users with a list of

music tracks that work well to improve the user's mood. The proposed system detects emotions,

if the subject has a negative emotion, then he will be presented with a specific playlist containing

the most suitable types of music that will improve his mood. On the other hand, if the detected

emotion is positive, an appropriate playlist will be provided that will include different types of mu-

sic that will enhance the positive emotion. The proposed recommendation system is implemented

using the Viola-Jonze algorithm and PCA (Principal Component Analysis) techniques.

3. Paper Name: Emotional Detection and Music Recommendation System based on User Facial

Expression.[3]

Author: S Metilda Florence, M Uma [3]

Description: Music plays a significant role in improving and uplifting the mood. It is often con-

fusing for a person to decide what music to listen to from the vast collection of existing options.

Analyzing the user's facial expression/emotions can lead to an understanding of the user's current

emotional or mental state. This work focuses on a system that suggests songs to users based on

their emotional state. The user's image is captured using a web camera. A snapshot of the user

is taken and then according to the user's mood/emotion, a suitable song from the user's playlist is

displayed to match the user's request.

4. Paper Name: Facial Expression Based Music Player [4]

Author: Sushmita G. Kamble, Asso. Prof. A. H. Kulkarni [4]

Description: The conventional way of playing music depending on a person's mood requires hu-

man interaction. The transition to computer vision technology will enable the automation of such

a system. To achieve this goal, an algorithm is used to classify human expressions and play a

music track according to the currently detected emotion. It reduces the effort and time required to manually search for a song from a list based on a person's current state of mind. A person's expressions are detected by extracting facial features using the PCA algorithm and the Euclidean Distance classifier. In this paper, they use an embedded camera that is used to capture a person's facial expressions, which reduces the system design cost compared to other methods.

5. Paper Name: Music Recommendation System Using Facial Expression Recognition Using Machine Learning. [5]

Author: B. Nareen Sai, D. Sai. Vamshi, Piyush Pogakwar, V. Seetharama Rao, Y. Srinivasulu [5] **Description**: The study of human emotional responses to visual stimuli such as photographs and movies, known as visual sentiment analysis, has proven to be a fascinating and difficult problem. Attempts to understand high-level information from visual data. The development of powerful algorithms from computer vision is responsible for the success of current models. Most existing models attempt to overcome the problem by recommending either robust features or more sophisticated models. Key suggested inputs are mainly visual elements from the entire image or video. Local areas have received less attention, which we believe is important for people's emotional response to the whole picture. Image recognition is used to find people in photos, analyze their emotions, and play emotion-related tunes based on their feelings. This repository achieves this goal by leveraging Google's Vision services. Given an image, it would search for faces, identify

them, draw a rectangle around them, and describe the emotions it found.	

SOFTWARE REQUIREMENT SPECIFICATION

3.1 INTRODUCTION

Project Scope

Recommendation is about extending listeners music universe beyond what they know and like. It empowers listeners once they have exhausted all their songs/artists searchcapabilities with further navigation celerity

Assumption and dependencies

Domain: Machine Learning

Input: Users' Face

3.2 **FUNCTIONAL REQUIREMENT**

Proposed system consists of 4 modules:

- User Registration: Firstly, user need to register in the system.
- Login: After successful registration, user can login into the system.
- Feature point extraction: Feature points of each user's face gets detected.
- Feature correspondence matching: Matching of selected feature points across various image frames in database and display playlist.

3.3 EXTERNAL INTERFACE REQUIREMENT

User Interface

• Machine Learning Based Music Recommendation System Using Facial Expressions

Hardware Interfaces:

• Hardware: Intel i5 Processor

• Speed: 2.80 GHz

• RAM: 8GB

• Hard Disk: 64 GB

• KeyBoard: Standard Windows Keyboard

Software Interfaces:

• Operating System: Windows 10(64 Bit) and Above.

• IDE: Spyder

• Programming Language: Python version 3.7,3.8

3.4 NON-FUNCTIONAL REQUIREMENT

Performance Requirements

- The performance of the functions and every module must be well. The quality of the camera should be well resolved.
- The application is designed in modules where errors can be detected easily. This makes it easier to install and update new functionality if required.

Safety Requirement

• The application is designed in modules where errors can be detected and fixedeasily. This makes it easier to install and update new functionality if required.

Software Quality Attributes

- Our system has many quality attributes that are given below:
 - 1. Adaptability: This system is adaptable by all users.
 - 2. Availability: This system is freely available to all users. The availability of the system is easy for everyone.
 - 3. Maintainability: After the deployment of the project if any error occurs then it can be easily maintained by the software developer.
 - 4. Reliability: The performance of the system is better which will increase the reliability of the Software.
 - 5. User Friendliness: Since, the system is a GUI application; the output generated is much user friendly in its behavior.
 - 6. Integrity: Integrity refers to the extent to which access to system or data by unauthorized persons can be controlled.
 - 7. Security: Users are authenticated using many security phases so reliable security is provided.
 - 8. Testability: The system will be tested considering all the aspects

3.5 SYSTEM REQUIREMENTS

Database Requirements

Browser for SQLite (DB4S) is a high quality, visual and open-source tool to create, design, and edit database files compatible with SQLite. DB4S is for users and developers who want to create, search, and edit databases. DB4S uses a familiar spreadsheet-like interface, and complicated SQL commands do not have to be learned. Controls and wizards are available for users to:

- Create and compact database files. Create, define, modify and delete tables. Create, define, and delete indexes. Browse, edit, add, and delete records, Search records.
- Import and export databases from/to SQLite dump files.
- Issue SQL queries and inspect the results.

Software Requirements

- Anaconda Navigator: Anaconda Navigator is a desktop graphical user interface (GUI) included in Anaconda distribution that allows you to launch applications and easily manage anaconda packages, environments, and channels without using command line commands.
- Anaconda.org or in a local Anaconda Repository. It is available for Windows, macOS, and Linux. In order to run, many scientific packages depend on specific versions of other packages. Data scientists often use multiple versionsof many packages and use multiple environments to separate these different versions.
- The command-line program conda is both a package manager and an environment manager.
 This helps data scientists ensure that each version of each package has all the dependencies it requires and works correctly.
- Navigator is an easy, point-and-click way to work with packages and environments without needing to type conda commands in a terminal window. You can use it to find the packages

14

you want, install them in an environment, run the packages and update them – all inside

Navigator.

Hardware Requirements

RAM: 8 GB As we are using Machine Learning Algorithm and Various High-Level Libraries

Laptop RAM minimum required is 8 GB.

• Hard Disk: 64 GB

Processor: Intel i5 Processor

3.6 ANALYSIS MODELS: SDLC MODEL TO BE APPLIED

User Interface

SDLC Models stands for Software Development Life Cycle Models. In this report, we explore

the most widely used SDLC methodologies such as Agile. Each software development life cycle

modelstarts with the analysis. Also, here are defined the technologies used in the project. One of

the basic notions of the software development process is SDLC models which stands for Software

Development Life Cycle models. SDLC – is a continuous process, which starts from the moment,

when it's made a decision to launch the project, and it ends at the moment of its full remove from

the exploitation. There is no one single SDLC model. They are divided into maingroups, each

with its features and weaknesses

• Requirement gathering and analysis: In this step, we identify what are various requirements

are needed for our project such are software and hardware required, database, and interfaces.

• System Design: In design phase we design the system which is easily understood for end

user i.e., user friendly. We design some UML diagrams and data flow diagram to understand

the system flow and system module and sequence of execution.

- Implementation: In implementation phase of our project, we will implement various module required for successfully getting expected outcome at the different module levels. With inputs from system design, the system is first developed in small programs called units, which are integrated in the nextphase. Each unit is developed and tested for its functionality which is referred to as Unit Testing.
- Testing: The different test cases are performed to test whether the project module is giving expected outcome in assumed time. All the units developed in the implementation phase are integrated into a system after testing of each unit. Post integration the entire system is tested for any faults and failures.
- Deployment of System: Once the functional and non-functional testing is done, the product is deployed in the customer environment or released into the market
- Maintenance: There are some issues which come up in the client environment. To fix those issues patches are released. Also, to enhance the product some better versions are released. Maintenance is done to deliver these changes in the customer environment. All these phases are cascaded to each other in which progress is seen as flowing steadily downwards like a waterfall through the phases. The next phase isstarted only after the defined set of goals are achieved for previous phase and it is signed off.

Project Resource

Well configured Laptop, Anaconda Navigator, 64 GB RAM.

3.7 SDLC MODEL

Figure 1: SDLC MODEL

4 SYSTEM DESIGN

4.1 SYSTEM ARCHITECTURE

Figure 2: System Architecture

Explanation

Steps involved to design the system, training dataset and test images are considered for which the following procedures are applied to get the desired results. The training set is the data

which has large amount of data stored in it and the test set is the input given for recognition purpose. The whole system is designed in 5 steps:

- 1. Image Acquisition: In any of the image processing techniques, the first task is to acquire the image from the source. These images can be acquired either through camera. The images considered here are user dependent i.e., dynamic images.
- **2. Pre-processing:** Pre-processing is mainly done to eliminate the unwanted information from the image acquired and fix some values for it, so that the value remains same throughout. During pre-processing, eyes, nose and mouth are considered to be the region of interest. It is detected by the cascade object detector which utilizes Haar Cascade Feature.
- 3. Facial Feature Extraction: After pre-processing, the next step is feature extraction. The extracted facial features are stored as the useful information during training phase and testing phase. The following facial features canbe considered —Mouth, forehead, eyes, cheek and chin dimple, eyebrows, nose and wrinkles on the facell. In this work, eyes, nose, mouth and fore-head are considered for feature extraction purpose for the reason that these depict the most appealing expressions. With the wrinkles on the forehead or the mouth being opened one can easily recognize that the person is either surprised or is fearful. But with a person's complexion it can never be depicted. To extract the facial features Haar feature technique is used.
- **4. Expression Recognition:** To recognize and classify the expressions of a person Convolution Neural Network. classifier is used. It gets the nearest match for the test data from the training data set and hence gives a better match for the current expression detected. Face detection is a non-trivial computer vision problem for identifying and localizing faces in images. Face detection can be achieved using a Multi-task Cascade CNN.
- **5. Play Music:** The last and the most important part of this system is the playing of music based on the current emotion detected of an individual. Once the facial expression of the user is classified, the user's corresponding emotional state is recognized. Severalsongs from various domains pertaining to a number of emotions is collected and put up in the list. Each emotion category has a number of songs listed in it. When the user's expression is classified with the help

of CNN algorithm, songs belonging to that category are then played.

5 ALGORITHM

5.1 Convolutional Neural Networks (CNN):

Convolutional Neural Networks, a type of deep learning algorithm, are very good at analyzing images. Best algorithm for automatic processing of images. The image contains RGB combination data. You can use matplotlib to import an image from a file into memory. A convolutional neural network is a special type of neural network that helps machines learn and classify images.

A convolutional neural network has three types of layers:

- 1) Convolutional Layer: Each input neuron in a typical neural network is connected to the following hidden layer. Only a small fraction of the CNN's input layer neurons are connected to the hidden layer of neurons.
- 2) Pooling Layer: The dimensionality of the feature map is reduced using a pooling layer. Within the hidden layers of a CNN, there are many activation and pooling layers.
- 3) Fully-Connected layer: The last few layers of the network are known as fully connected layers. The output of the final pooling or convolutional layer is fed to the fully connected layer and flattened before being applied.

5.2 Haar Cascade Feature

This is an object detection algorithm used to identify faces in real-time images or videos. This algorithm uses the edge or line detection feature proposed by Viola and Jones in year 2001 research paper, "Rapid Object Detection using a Boosted Cascade of Simple Features". This algorithm contains many positive image planes and many negative images that have not been added.

6 DIAGRAMS

6.1 Data Flow Diagram

In Data Flow Diagram, we Show that flow of data in our system in DFD0 we show that base DFD in which rectangle present input as well as output and circle show our system. In DFD1 we show actual input and actual output of system input of our system is text or image and output is rumor detected likewise in DFD 2 we presentoperation of user as well as admin.

Figure 4: Data Flow diagram-0

Figure 5: Data Flow diagram-1

Figure 6: Data Flow diagram-2

6.2 UML DIAGRAMS

Unified Modeling Language is a standard language for writing software blueprints. The UML may be used to visualize, specify, construct and document the artifacts of a soft- ware intensive system. UML is process independent, although optimally it should be used in process that is use case driven, architecture centric, iterative and incremental. The Number of UML Diagram is available.

- Use case Diagram.
- Component Diagram.
- Activity Diagram
- Sequence Diagram.

6.3 Use Case Diagram

A use case diagram in the Unified Modelling Language (UML) is a type of behavioral diagram defined by and created from a Use-case analysis. Its purpose is to present a graphical overview of the functionality provided by a system in terms of actors, their goals (represented as use cases), and any dependencies between those use cases. The main purpose of a use case diagram is to show what system functions are performed for which actor. Roles of the actors in the system can be depicted.

6.4 Activity Diagram

An activity is particular operation of the system. An activity diagram is intended to represent stepwise work-flow of activities or actions that can take place in the system. It shows overall flow of control and models computational and organizational processes. Activity diagrams are used to model dynamic aspects of the system.

6.5 Sequence Diagram

Sequence diagram shows how objects communicate with each other in terms of a sequence of messages. It also indicates the lifespans of objects relative to those messages.

Figure 7: Use case Diagram

Player

id: uuid

name: String score: Int

isPlaying: Bool

pick_up_ball()
throw_ball()

Ball

type: String

isPowerUp: Bool

throw()

DYPIT, Department of Computer Engineering 2022-2023

Player

id: uuid

name: String

score: Int

isPlaying: Bool

pick_up_ball()
throw_ball()

Ball

type: String

isPowerUp: Bool

DYPIT, Department of Computer Engineering 2022-2023

throw()

6.6 Class Diagram

Class diagram describes the structure of a system by showing the system's classes, Their attributes, and the relationships among the classes. Proposed system contains five different types of classes and each posses their own attributes and methods. Main Classes of the proposed system are ND-SRRC, FP Tree, Apriory, Sanitised DB each have different functionalities.

Figure 10: Class Diagram

6.7 Entity Relationship Diagrams

Class diagram describes the structure of a system by showing the system's classes, Their attributes, and the relationships among the classes. Proposed system contains five different types of classes and each posses their own attributes and methods. Main Classes of the proposed system are ND-SRRC, FP Tree, Apriory, Sanitised DB each have different functionalities.

7 Project Estimation and Project Plan

In this chapter we are going to have an overview about how much time does it took to complete each task like- Preliminary Survey Introduction and Problem Statement, Literature Survey, Project Statement, Software Requirement and Specification, System Design, Partial Report Submission, Architecture Design, Implementation, Deployment, Testing, Paper Publish, Report Submission and etcetera. This chapter also focuses on the stakeholder list which gives information about project type, customer of the proposed system, user and project member who developed the system.

7.1 PROJECT ESTIMATES

MATHEMATIC MODEL

1. Let S be the system that detects Sample Space

S=

2. Identify input as I

S= I....

I= Vi — where vi is input transactional DB from user

3. Identify output as O

S= I, O, ...

O= Vo — where Vo is sanitized DB for given DB by user

4. Identify the Processes as P

S= I, O, P, ...

P= BN, DB, CS, A, HS

- BN as Binarization
- DB as derive association rule from DB
- CS as Calculate sensitive rules
- A as Analyze sensitivity of the RHS of element
- HS hide the sensitive rule
- 5. Identify the failure case F

F= failure occurs when a sensitive rule remains visible

6. Identify the success case s

$$S = I, O, P, F, s, \dots$$

s= success means when a correct sensitive rule is identified and get hide

7. Identify the initial condition

IC= Initial condition is that DB in transactional DB

7.2 RISK MANAGEMENT

- 1. In appropriate dataset -To overcome this risk we are trying to use a well organized and complete dataset.
- 2. Security- To overcome and improve security we use multilevel security like access permissions of users.

Risk Identification

- 1. Are end-users enthusiastically committed to the project and the system/product to be built? Ans-Not known at this time.
- 2. Are requirements fully understood by the software engineering team and its customers? Ans-Yes
- 3. Does the software engineering team have the right mix of skills? Ans-yes
- 4. Is the number of people on the project team adequate to do the job? Ans-Not applicable
- 5. Do all customer/user constituencies agree on the importance of the project and on the requirements for the system/product to be built? Ans-Not applicable

Risk Analysis

The risks for the Project can be analyzed within the constraints of time and quality. Risk analysis for a malware detection system using SVM involves assessing potential vulnerabilities, threats, and potential impacts. Here's an overview of the risk analysis process:

- **Identify system vulnerabilities:** Identify the vulnerabilities in the malware detection system that could be exploited by attackers. This could include weaknesses in the SVM implementation, data storage, network communication, or any other component of the system.
- Threat identification:: Identify potential threats that the system may face. This can include external threats, such as attackers attempting to bypass the detection system or exploit vul-

nerabilities, as well as internal threats, such as insider attacks or unintentional misuse of the system.

- Impact assessment: Evaluate the potential impact of a successful attack or system failure. Consider the consequences in terms of data compromise, system downtime, financial losses, reputational damage, or any other relevant factors. This step helps prioritize risks based on their potential impact.
- **Risk evaluation:** Combine the impact and likelihood assessments to determine the level of risk associated with each identified threat. This can be done by assigning risk levels, such as low, medium, or high, or by using a numerical risk scoring system. This step helps prioritize risks for mitigation efforts.
- **Risk mitigation :**Develop strategies and measures to mitigate the identified risks. This may include implementing security controls, applying patches and updates, enhancing system monitoring and logging, conducting regular security assessments, or training system users to minimize human errors.
- Monitoring and review: Regularly monitor the malware detection system and review the effectiveness of implemented risk mitigation measures. Stay updated on the evolving threat landscape and adjust risk mitigation strategies accordingly. It's important to note that risk analysis should be an ongoing process, continuously adapted to address emerging threats and changes in the system and its environment. Regular risk assessments and updates to the malware detection system are essential to maintain a robust security posture.

Risk Mitigation Risk Monitoring and Risk Management

7.3 PROJECT SCHEDULE

Project Task Set

Major Tasks in the Project stages are:

- 1. Task 1: correctness
- 2. Task 2: availability

3. Task 3: integrity

7.4 Timeline Chart

8 OTHER SPECIFICATION

8.1 ADVANTAGES

- The main advantage of our music recommendation system is to provide suggestions to the users that fit the user's emotions.
- The analysis of the facial expression/user emotion may lead to understanding the current emotional state of the user

8.2 APPLICATIONS

- This system helps user to play songs automatically according to their mood.
- Redirection of page to the music website once song is played.

9 RESULT

10 TESTING

10.1 Introduction

Testing is an important part of software development life cycle. It is performed to ensure quality of the developed system. Testing includes a set of investigative activities that can be planned in advance and conducted systematically, to assure the stakeholder that system fulfils all the requirements gathered during requirement gathering phase. Software testing is one of the key elements in software projects that is often referred to as verification and validation. Verification refers to the set of activities that ensure that software correctly implements specified functionality. Validation refers to a set of activities built around traceability matrix which ensure that the functionality implemented by the system is traceable to customer requirements

Tests are the individual tests specified in a test plan document. Each test is typically described by

- An initial system state.
- A set of actions to be performed.
- The expected results of the test.

10.2 Implementation

Test cases are planned in accordance to the test process and documented with detailed test descriptions. These test cases use cases based on projected operational mission scenarios. The testing process also includes stress or load testing for stability purpose (i.e., at 95use, system stability is still guaranteed. The test process thoroughly tests the interfaces and modules. Software testing includes a traceable white box testing, black box testing and other test processes verifying implemented software against design documentation and requirements specified.

10.3 Objective

The software test plan (STP) is designed to test each module to measure its performance, to uncover bugs in the system, to set aright any flaws in logic that may be present, and to check logical flow from one module to another within system.

- All field entries must work properly.
- Pages must be activated from the identified link.
- The entry screen, messages and responses must not be delayed.

10.4 Testing Strategy

A strategy outlines what to plan, and how to plan it. A successful strategy is your guide through change, and provides a firm foundation for ongoing improvement. Unlike a plan, which is obsolete from the point of creation, a strategy reflects the values of an organization - and remains current and useful. When an organization tests its products or its tools, it tries to compare them against its expectations and values. By its nature, testing introduces change as problems are identified and resolved. A test strategy is necessary to allow these two impulses to work together. Furthermore, testing can never be said to be 'complete', and a core skill in testing is the justified management of conflicting demands; without a strategy, these judgements will be inconsistent to the point of failure.

Software development is a creative process. A test strategy is a vital enabler to this process keeping focus on core values and consistent decision-making to help achieve desired goals with best use of resource.

10.5 Types of Testing:

1. White Box Testing: A level of white box test coverage is specified that is ap propriate for the software being tested. The white box and other testing uses automated tools to instrument

the software to measure test coverage.

2. Black Box Testing: A black box test of integration builds includes functional, interface, error recovery, stress and out-of-bounds input testing. All black box software tests are traced to control requirements. In addition to static requirements, a black box of a fully integrated system against scenario sequences of events is designed to model field operation. Performance testing for systems is integrated as an integral part of the black box test process.

10.6 Unit Testing

Unit testing is used to check the execution path of the module, function, and procedure of the system. Test is conducted with the help of normal data and abnormal data. This testing includes the different factors like statement coverage, branch coverage, loop processing, abnormality, and circulation etc. With the help of this Unit testing we check that all the statement in the code is executed or not so it avoids the dead code statement. It checks all the branches and execution path of the code. It ensures that all the internal method of program are executed and properly integrated with program.

Unit testing involves the design of test cases that validate that the internal program logic is functioning properly, and that program inputs produce valid outputs. All decision branches and internal code flow should be validated. It is the testing of individual software units of the application .it is done after the completion of an individual unit before integration. This is a structural testing, that relies on knowledge of its construction and is invasive. Unit tests perform basic tests at component level and test a specific business process, application, and/or system configuration. Unit tests ensure that each unique path of a business process performs accurately to the documented specifications and contains clearly defined inputs and expected results.

10.7 Integrated system

In integrated testing, all the modules are checked together to ensure that all the modules are executing together according to the program specification. Once all the modules have been tested individually, the most legitimate question can be asked is that when all the modules are working properly, why there is need of integrated testing.

The answer is, though all modules are working properly problem may occur while interfacing individual module. Testing is event driven and is more concerned with the basic outcome of screens or fields. Integration tests demonstrate that although the components were individually satisfaction, as shown by successfully unit testing, the combination of components is correct and consistent. Integration testing is specifically aimed at exposing the problems that arise from the combination of components.

10.8 Functional test

Functional tests provide systematic demonstrations that functions tested are available as specified by the business and technical requirements, system documentation, and user manuals. Functional testing is centered on the following items: Valid Input: identified classes of valid input must be accepted. Invalid Input: identified classes of invalid input must be rejected. Functions: identified functions must be exercised. Output: identified classes of application outputs must be exercised. Systems/Procedures: interfacing systems or procedures must be invoked.

Organization and preparation of functional tests is focused on requirements, key functions, or special test cases. In addition, systematic coverage pertaining to identify Business process flows; data fields, predefined processes, and successive processes must be considered for testing. Before functional testing is complete, additional tests are identified and the effective value of current tests is determined.

11 Test Cases

11.1 GUI Test Cases

11.2	Registration Test Cases

11.3 Login Test Case

11.4	System Test Cases

12 CONCLUSION

The proposed work presents facial expression recognition system to play a song according to the expression detected and classify music Type. It uses CNN approach to extract features. We are Developing a system to recognize user emotion based on facial expression using Python. We Integrate the python code into the web service and play the music based on the facial expression like happy, sad, or neutral. It is very good entertainment for the users. Emotion recognition using facial expressions is one of the important topics of research and has gathered much attention in the past. The problem of emotion recognition with the help of image processing algorithms has been increasing day by day. Researchers are continuously working on ways to resolve this using different kinds of features and image processing methods.

ANNEXURE A

APPENDIX A

What is P?

- P is set of all decision problems which can be solved in polynomial time by a deterministic.
- Since it can be solved in polynomial time, it can be verified in polynomial time.
- P is a subset of NP.

P:

A novel abstractive multi-document summarization system based on chunk-graph (CG) and recurrent neural network language model (RNNLM). A CG which is based on word-graph is constructed to organize all information in a sentence cluster, CG can reduce the size of graph and keep more semantic information than word-graph. System outperforms all baseline systems and reach the state-of-art systems, and the system with CG can generate better summaries than that with ordinary word-graph.

What is NP?

NP means we can solve it in polynomial time if we can break the normal rulesof step-by-step computing.

What is NP Hard?

A problem is NP-hard if an algorithm for solving it can be translated into one for solving any NP-problem (nondeterministic polynomial time) problem. NP-hard therefore means at least as hard as any NP-problem, although it might, in fact, beharder.

Np-Hard:

A CG which is based on word-graph is constructed to organize all information in a sentence cluster, CG can reduce the size of graph and keep more semantic information than word-graph. We use beam search and character-level RNNLM to generatereadable and informative summaries from the CG for each sentence cluster, RNNLMis a better model to evaluate sentence linguistic quality than n-gram language model.the system with CG can generate better summaries than that with ordinary word- graph.

What is NP-Complete?

- Since this amazing N computer can also do anything, a normal computer can, weknow that P problems are also in NP.
- So, the easy problems are in P (and NP), but the really hard ones are only in NP, and they are called NP-complete.
- It is like saying there are things that People can do (P), there are things that Super People can do (SP), and there are things only Super People can do (SP- complete).

NP-Complete:

As our system is in developing state so we can't say that our system is currently inNP complete state

Ideas of pattern-growth in uncertain environment:

The ideas of pattern-growth in uncertain environment, two alternative algorithms are designed to discover all the STP candidates with support values for each user. That provides a trade-off between accuracy and efficiency. The user-aware rare pattern concerned here is a new concept and a formal criterion must be well defined, so that can effectively characterize most of personalized and abnormal behaviors of Inter-net users.

ANNEXURE B

APPENDIX B

Details of paper publication: international Journal for Research in Applied Science and Engineering Technology(IJRASET)

ANNEXURE C

APPENDIX C

Plagarism Report:

REFERENCES

1. Vincenzo Moscato, Antonio Picariello and Giancarlo Sperli. An Emotional Recommender

- System for Music. October 01,2020 at 17:32:18 UTC from IEEE Xplore.
- 2. Ahlam Alrihaili, Alaa Alsaedi, Kholood Albalawi, Liyakathunisa Syed. Music Recommender System for users based on Emotion Detection through Facial Features. une 22,2020 at 07:44:06 UTC from IEEE Xplore.
- Metilda Florence, M Uma. Emotional Detection and Music Recommendation System based on User Facial Expression. IOP Conf. Series: Materials Science and Engineering 912 (2020) 062007.
- 4. Sushmita G. Kambale, Asso. Prof. A.H. Kulkarni. Facial Expression based Music Player. Conference on Advances in Computing, Communications and Informatics (ICACCI), Sept. 21-24, 2016.
- B. Naren Sai, D. Sai. Vamshi, Piyush Pogakwar, V. Seetharama Rao, Y. Srinivasulu. Music Recommendation System Using Facial Expression Recognition Using Machine Learning. ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 Volume 10 Issue VI June 2022.
- Ziyang Yu1, Mengda Zhao1, Yilin Wu1, Peizhuo Liu1, Hexu Chen, Research On Automatic Music Recommendation Algorithm Based On "Facial Micro-Expression Recognition", Proceedings Of The 39th Chinese Control Conference July 27-29, 2020.
- 7. Dr. Sunil Bhutada, Ch. Sadhvika, Gutta. Abigna, P. Srinivas Reddy, "Emotion Based Music Recommendation System", Jeter April 2020.
- 8. Mikhail Rumiantcev, Oleksiy Kiriyenko, "Emotion Based Music Recommendation System", Proceeding of the 26th Conference of Fruct Association.
- 9. Krupa K S, Kartikey Rai, Ambara G, Sahil Choudhury, "Emotion Aware Smart Music Recommender System Using Two Level CNN", Third International Conference On Smart Systems And Inventive Technology (Icssit 2020).

Player

id: uuid

name: String

score: Int

isPlaying: Bool

pick_up_ball()
throw_ball()

Ball

type: String

isPowerUp: Bool

DYPIT, Department of Computer Engineering 2022-2023

throw()