D. Swaps in Permutation

time limit per test: 5 seconds memory limit per test: 256 megabytes input: standard input

output: standard output

You are given a permutation of the numbers 1, 2, ..., n and m pairs of positions (a_i, b_i) .

At each step you can choose a pair from the given positions and swap the numbers in that positions. What is the lexicographically maximal permutation one can get?

Let p and q be two permutations of the numbers 1, 2, ..., n. p is lexicographically smaller than the q if a number $1 \le i \le n$ exists, so $p_k = q_k$ for $1 \le k < i$ and $p_i < q_i$.

Input

The first line contains two integers n and m ($1 \le n, m \le 10^6$) — the length of the permutation p and the number of pairs of positions.

The second line contains n distinct integers p_i ($1 \le p_i \le n$) — the elements of the permutation p.

Each of the last m lines contains two integers (a_j, b_j) $(1 \le a_j, b_j \le n)$ — the pairs of positions to swap. Note that you are given a positions, not the values to swap.

Output

Print the only line with n distinct integers p'_i ($1 \le p'_i \le n$) — the lexicographically maximal permutation one can get.

Example

```
input

9 6
1 2 3 4 5 6 7 8 9
1 4
4 7
2 5
5 8
3 6
6 9

output

7 8 9 4 5 6 1 2 3
```