日本国特許庁 JAPAN PATENT OFFICE

IB04/04005

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2003年12月 5日

出願番号 Application Number:

特願2003-406730

[ST. 10/C]:

[JP2003-406730]

出 願 人 Applicant(s):

株式会社ケンウッド

REC'D 1 7 DEC 2004

/IPO PCT

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

2004年12月 2日

特許庁長官 Commissioner, Japan Patent Office)· [1]

【書類名】 特許願

【整理番号】 P07-975490

【提出日】平成15年12月 5日【あて先】特許庁長官 殿【国際特許分類】G05B 19/4155

G06F 17/20 G10L 15/00

【発明者】

【住所又は居所】 東京都八王子市石川町2967-3 株式会社ケンウッド内

【特許出願人】

【識別番号】 000003595

【氏名又は名称】 株式会社ケンウッド

【代理人】

【識別番号】 100095407

【弁理士】

【氏名又は名称】 木村 満

【手数料の表示】

【予納台帳番号】 038380 【納付金額】 21,000円

【提出物件の目録】

【物件名】 特許請求の範囲 1

 【物件名】
 明細書 1

 【物件名】
 図面 1

 【物件名】
 要約書 1

 【包括委任状番号】
 9903184

【書類名】特許請求の範囲

【請求項1】

入力される入力情報を認識識別する入力情報認識識別手段と、

入力情報認識識別手段によって認識識別された認識入力情報に対応する処理を実行する 処理処理項目を複数記憶する処理項目データ記憶手段と、

複数の処理項目のうちの一の処理項目から他の処理項目への遷移を定義する遷移定義データを複数記憶する遷移定義データ記憶手段と、

外部にある、新たな処理項目及び/又は遷移定義データの供給元にアクセスし、当該新たな処理項目及び/又は遷移定義データを取得して、前記処理項目データ記憶手段に記憶されている古い処理項目、又は遷移定義データ記憶手段に記憶されている古い遷移定義データを、当該新たな処理項目又は遷移定義データへと更新する更新手段する取得手段と、を備え、

前記遷移定義データのそれぞれは、入力情報に対応する条件を各々有し、

少なくとも前記認識情報とそれぞれの遷移定義データの条件から、入力された前記入力 情報とそれぞれの遷移定義データの条件との比較から、一の遷移定義データを選択し、選 択された遷移定義データによって指定される処理項目に状態を遷移させる、

ことを特徴とする機器制御装置。

【請求項2】

前記供給元は、前記新たな処理項目又は遷移定義データを圧縮して供給するものであり

前記更新手段は、前記供給元より取得した当該新たな処理項目又は遷移定義データを解凍する手段を備える、

ことを特徴とする請求項1に記載の機器制御装置。

【請求項3】

入力される音声信号を認識識別する音声信号認識識別手段と、

音声信号認識識別手段によって認識識別された音声信号に対応する処理を実行する処理 項目を複数記憶する処理項目データ記憶手段と、

複数の処理項目のうちの一の処理項目から他の処理項目への遷移を定義する遷移定義データを複数記憶する遷移定義データ記憶手段と、

外部にある、新たな処理項目及び/又は遷移定義データの供給元にアクセスし、当該新たな処理項目又は遷移定義データを取得して、前記処理項目データ記憶手段に記憶されている古い処理項目、又は遷移定義データ記憶手段に記憶されている古い遷移定義データを、当該新たな処理項目又は遷移定義データへと更新する更新手段する取得手段と、

を備え、

前記遷移定義データのそれぞれは、入力情報に対応する条件を各々有し、

少なくとも前記認識情報とそれぞれの遷移定義データの条件から、入力された前記音声信号とそれぞれの遷移定義データの条件との比較から、一の遷移定義データを選択し、選択された遷移定義データによって指定される処理項目に状態を遷移させる、

ことを特徴とする音声認識装置。

【請求項4】

前記供給元は、前記新たな処理項目又は遷移定義データを圧縮して供給するものであり

前記更新手段は、前記供給元より取得した当該新たな処理項目又は遷移定義データを解凍する手段を備える、

ことを特徴とする請求項3に記載の音声認識装置。

【請求項5】

入力される入力情報を認識識別する入力情報認識識別手段と、

入力情報認識識別手段によって認識識別された認識入力情報に対応する処理を実行する 処理項目を複数記憶する処理項目データ記憶手段と、

複数の処理項目のうちの一の処理項目から他の処理項目への遷移を定義する遷移定義デ

ータを複数記憶する遷移定義データ記憶手段と、

外部にある、新たな処理項目及び/又は遷移定義データの供給元にアクセスし、当該新たな処理項目又は遷移定義データを取得して、前記処理項目データ記憶手段に記憶されている古い処理項目、又は遷移定義データ記憶手段に記憶されている古い遷移定義データを、当該新たな処理項目又は遷移定義データへと更新する更新手段する取得手段と、

を備え、

前記遷移定義データのそれぞれは、入力情報に対応する条件を各々有し、

少なくとも前記認識情報とそれぞれの遷移定義データの条件から、入力された前記入力 情報とそれぞれの遷移定義データの条件との比較から、一の遷移定義データを選択し、選 択された遷移定義データによって指定される処理項目に状態を遷移させる、

ことを特徴とするエージェント装置。

【請求項6】

前記供給元は、前記新たな処理項目又は遷移定義データを圧縮して供給するものであり

前記更新手段は、前記供給元より取得した当該新たな処理項目又は遷移定義データを解凍する手段を備える、

ことを特徴とする請求項5に記載のエージェント装置。

【請求項7】

入力情報認識識別ステップにおいて認識識別された入力情報に対応する処理を実行する 処理項目を複数記憶する処理項目データ記憶ステップと、

入力情報に対応する条件を各々有し、複数の処理項目のうちの一の処理項目から他の処 理項目への遷移を定義する遷移定義データを複数記憶する遷移定義データ記憶ステップと

外部にある、新たな処理項目又は遷移定義データの供給元にアクセスし、当該新たな処理項目又は遷移定義データを取得して、前記処理項目データ記憶ステップで記憶された古い処理項目、又は遷移定義データ記憶ステップで記憶された古い遷移定義データを、当該新たな処理項目又は遷移定義データへと更新する取得更新ステップと、

を備え、

入力される入力情報を認識識別する前記入力情報認識識別ステップと、

少なくとも前記認識情報とそれぞれの遷移定義データの条件から、入力された前記入力 情報とそれぞれの遷移定義データの条件との比較から、一の遷移定義データを選択し、選 択された遷移定義データによって指定される処理項目に状態を遷移させるステップと、

を有することを特徴とする機器制御方法。

【書類名】明細書

【発明の名称】機器制御装置、音声認識装置、エージェント装置及び機器制御方法 【技術分野】

[0001]

この発明は、機器制御装置、音声認識装置、エージェント装置及び機器制御方法に関する。

【背景技術】

[0002]

近年、音声認識の技術を用いて音声を認識し、認識結果に応答して電気機器などを制御する手法が用いられている。この手法は、具体的には、入力した音声が表す単語を識別し、識別された単語が所定のキーワードに合致するか否かを判別して、判別結果に基づいて外部の機器を制御するものである(例えば、特許文献1参照)。

【特許文献1】特開平8-339288号公報

【発明の開示】

【発明が解決しようとする課題】

[0003]

しかし、人間が言語の形で発する指示を完全に認識するのは困難である。このため、上述の手法では、人間が言語の形で発する指示に適切に応答することができない場合があった。

$[0\ 0\ 0\ 4]$

この発明は上記実状に鑑みてなされたものであり、人間が言語の形で発する指示に適切 に応答して機器を制御できる機器制御装置、音声認識装置、エージェント装置及び機器制 御方法を提供することを目的とする。

【課題を解決するための手段】

[0005]

上記目的を達成するため、この発明の第1の観点にかかる機器制御装置は、

入力される入力情報を識別する入力情報識別手段と、

入力情報識別手段によって識別された入力情報に対応する処理を実行する処理項目を複数記憶する処理項目データ記憶手段と、

複数の処理項目のうちの一の処理項目から他の処理項目への遷移を定義する遷移定義データを複数記憶する遷移定義データ記憶手段と、

外部にある、新たな処理項目又は遷移定義データの供給元にアクセスし、当該新たな処理項目又は遷移定義データを取得して、前記処理項目データ記憶手段に記憶されている古い処理項目、又は遷移定義データ記憶手段に記憶されている古い遷移定義データを、当該新たな処理項目又は遷移定義データへと更新する更新手段と、を備え、

前記遷移定義データのそれぞれは、入力情報に対応する条件を各々有し、

入力された前記入力情報とそれぞれの遷移定義データの条件との比較から、一の遷移定義データを選択し、選択された遷移定義データによって指定される処理項目に状態を遷移させる、

ことを特徴とする。

[0006]

前記供給元は、前記新たな処理項目又は遷移定義データを圧縮して供給するものであり

前記更新手段は、前記供給元より取得した当該新たな処理項目又は遷移定義データを解凍する手段を備えるものであってもよい。

[0007]

また、この発明の第2の観点にかかる音声認識装置は、

入力される音声信号を識別する音声信号識別手段と、

音声信号識別手段によって識別された音声信号に対応する処理を実行する処理項目を複

数記憶する処理項目データ記憶手段と、

複数の処理項目のうちの一の処理項目から他の処理項目への遷移を定義する遷移定義データを複数記憶する遷移定義データ記憶手段と、

外部にある、新たな処理項目又は遷移定義データの供給元にアクセスし、当該新たな処理項目又は遷移定義データを取得して、前記処理項目データ記憶手段に記憶されている古い処理項目、又は遷移定義データ記憶手段に記憶されている古い遷移定義データを、当該新たな処理項目又は遷移定義データへと更新する更新手段と、

を備え、

前記遷移定義データのそれぞれは、入力情報に対応する条件を各々有し、

入力された前記音声信号とそれぞれの遷移定義データの条件との比較から、一の遷移定義データを選択し、選択された遷移定義データによって指定される処理項目に状態を遷移させる、

ことを特徴とする。

[0008]

前記供給元は、前記新たな処理項目又は遷移定義データを圧縮して供給するものであり

前記更新手段は、前記供給元より取得した当該新たな処理項目又は遷移定義データを解凍する手段を備えるものであってもよい。

[0009]

また、この発明の第3の観点にかかるエージェント装置は、

入力される入力情報を識別する入力情報識別手段と、

入力情報識別手段によって識別された入力情報に対応する処理を実行する処理項目を複数記憶する処理項目データ記憶手段と、

複数の処理項目のうちの一の処理項目から他の処理項目への遷移を定義する遷移定義データを複数記憶する遷移定義データ記憶手段と、

外部にある、新たな処理項目又は遷移定義データの供給元にアクセスし、当該新たな処理項目又は遷移定義データを取得して、前記処理項目データ記憶手段に記憶されている古い処理項目、又は遷移定義データ記憶手段に記憶されている古い遷移定義データを、当該新たな処理項目又は遷移定義データへと更新する更新手段と、

を備え、

前記遷移定義データのそれぞれは、入力情報に対応する条件を各々有し、

入力された前記入力情報とそれぞれの遷移定義データの条件との比較から、一の遷移定義データを選択し、選択された遷移定義データによって指定される処理項目に状態を遷移させる、

ことを特徴とする。

[0010]

前記供給元は、前記新たな処理項目又は遷移定義データを圧縮して供給するものであり

前記更新手段は、前記供給元より取得した当該新たな処理項目又は遷移定義データを解凍する手段を備えるものであってもよい。

$[0\ 0\ 1\ 1]$

また、この発明の第4の観点にかかる機器制御方法は、

入力情報識別ステップにおいて識別された入力情報に対応する処理を実行する処理項目 を複数記憶する処理項目データ記憶ステップと、

入力情報に対応する条件を各々有し、複数の処理項目のうちの一の処理項目から他の処 理項目への遷移を定義する遷移定義データを複数記憶する遷移定義データ記憶ステップと

外部にある、新たな処理項目又は遷移定義データの供給元にアクセスし、当該新たな処理項目又は遷移定義データを取得して、前記処理項目データ記憶ステップで記憶された古い処理項目、又は遷移定義データ記憶ステップで記憶された古い遷移定義データを、当該

を備え、

入力される入力情報を識別する前記入力情報識別ステップと、

入力された前記入力情報とそれぞれの遷移定義データの条件との比較から、一の遷移定義データを選択し、選択された遷移定義データによって指定される処理項目に状態を遷移させるステップと、

を有することを特徴とする。

【発明の効果】

[0012]

この発明によれば、人間が言語の形で発する指示に適切に応答して機器を制御できる機器制御装置、音声認識装置、エージェント装置及び機器制御方法が実現される。

【発明を実施するための最良の形態】

[0013]

以下、図面を参照して、この発明の実施の形態を、車両内に設置された車内空調システムを例として説明する。

図1は、この車内空調システムの構成を示すブロック図である。図示するように、この 車内空調システムは、音声入力部1と、言語解析部2と、音声合成処理部3と、音声出力 部4と、入出力対象機器群5と、エージェント処理部6とより構成されている。

$[0\ 0\ 1\ 4\]$

音声入力部1は、例えば、マイクロフォン、AF(Audio Frequency)増幅器、サンプラー及びA/D(Analog-to-Digital)コンバータなどより構成されている。音声入力部1は、自己のマイクロフォンが集音した音声を表す音声信号を増幅し、サンプリングしてA/D変換することにより、当該音声を表すデジタル形式の音声データを生成する。そして、この音声データを言語解析部2へと供給する。

[0015]

言語解析部 2、音声合成処理部 3 及びエージェント処理部 6 は、それぞれ、例えば、C P U (Central Processing Unit) 等からなるプロセッサと、このプロセッサが実行するプログラムを記憶するハードディスク装置等の不揮発性メモリと、このプロセッサのワークエリアとなる記憶領域を有する R A M (Random Access Memory) 等の揮発性メモリとより構成されている。

なお、言語解析部 2、音声合成処理部 3 及びエージェント処理部 6 の一部又は全部の機能を単一のプロセッサや単一の不揮発性メモリや単一の揮発性メモリが行うようにしてもよい。

[0016]

言語解析部2は、音声入力部1より供給された音声データに音声認識を施す処理を行うことにより、この音声データが表している可能性のある単語の候補と、この候補の尤度(スコア)とを特定する。音声認識の手法は任意であり、また、候補は複数特定されてよい。そして、特定した候補及び当該候補のスコアを示すデータ(以下、単語データと呼ぶ)を生成し、エージェント処理部6へと供給する。

[0017]

音声合成処理部3の不揮発性メモリは、更に、単語の波形を表すデータを記憶する音片合成用データベースと、音素の波形を表すデータを記憶する素片合成用データベースとを記憶する。そして、音声合成処理部3は、音片合成用データベースや素片合成用データベースに格納されているデータを用いて、録音編集方式や規則合成方式の手法により、エージェント処理部6より供給された文章データを読み上げる音声を表すデジタル形式の音声データを生成する。そして、生成した音声データを音声出力部4に供給する。

[0018]

音声出力部4は、例えば、D/A (Digital-to-Analog) コンバータ、AF増幅器及び スピーカなどより構成されている。音声出力部4は、音声合成処理部3より供給された音 声データをD/A変換して増幅し、得られたアナログ信号を用いてスピーカを駆動するこ とにより、当該音声データが表す音声を再生する。

[0019]

入出力対象機器群 5 は、例えば、エアコン(エアコンディショナー) 5 1 や、窓開閉制 御部 5 2 などより構成されている。

[0020]

エアコン51は、自己に供給される制御信号に従って、冷房、暖房又は送風の動作を行う。また、エアコン51は、自己の動作状態を表すデータとして、例えば、自己が冷房動作中、暖房動作中、設定温度へ向けた温度調整中、送風動作中及び停止中のうちどの状態にあるかを示すデータを生成して出力する。

[0021]

窓開閉制御部52は、モーターや、制御信号に従ってモータの回転及び停止を制御する制御回路や、モーターの回転に従って窓枠を動かすためのウインチ等から構成されており、自己に供給される制御信号に従って、窓の開閉を行う。また、窓開閉制御部52の制御回路は、窓開閉制御部52の動作状態を表すデータとして、例えば、開閉する対象の窓が開いている量を示すデータを生成して出力する。

[0022]

エージェント処理部6の説明に戻ると、エージェント処理部6は更に、モデムやパケット通信端末等からなる通信制御装置を備え、この通信制御装置を介して外部のネットワークに接続している。

[0023]

また、エージェント処理部6の不揮発性メモリは、更に、単語データベースを記憶する。単語データベースは、単語を示すデータと、この単語がどのような概念の下にグルーピングされているかを示すための単語グルーピング用のフラグ1個以上とを、互いに対応付けた形で格納するデータベースである。

[0024]

1個の単語に対応付けられている各フラグは、互いに異なる概念に対応付けられている。そして、フラグが所定の値(以下では、この値は"1"であるとする)を示す場合は、このフラグに対応付けられた単語が、このフラグに対応付けられた概念の下にグルーピングされていることを示す。一方、このフラグが他の値(例えば"0")を示す場合は、この単語がこの概念の下にはグルーピングされていないことを示す。

[0025]

図 2 は、グルーピング用のフラグの具体例を模式的に示す図である。図 2 に示すように、単語「上がる」、「暑い」及び「開ける」に、単語グルーピング用のフラグが 4 ビットずつ対応付けられているものとする。また、これらのいずれの単語に対応付けられたビット群についても、その最上位のフラグが「温度」という概念に対応付けられており、上位から 3 ビット目のフラグが「エアコンの操作」という概念に対応付けられており、最下位のフラグが「故障」という概念に対応付けられており、最下位のフラグが「故障」という概念に対応付けられているとする。一方、図示するように、単語「上がる」に対応付けられている 4 ビットのフラグ群の値が 2 進数 "1110"であり、単語「開ける」に対応付けられているフラグ群の値が 2 進数 "1100"であるとする。

この場合、このフラグ群は、概念「温度」の下には単語「上がる」、「暑い」及び「開ける」がグルーピングされており、概念「エアコンの操作」の下には単語「上がる」及び「暑い」がグルーピングされており、概念「窓の開閉」の下には単語「暑い」及び「開ける」がグルーピングされており、概念「故障」の下には単語「上がる」、「暑い」又は「開ける」のいずれもグルーピングされていないことを示す。

[0026]

エージェント処理部6の不揮発性メモリは、更に、処理項目データベース及びワイヤデータベースを記憶している。

[0027]

[0028]

トリガ取得処理の内容を記述するデータは、一連の処理を開始させるトリガとして取得するデータの内容を指定するデータと、後述する進行方向の確率係数とからなっている。取得するデータは任意のものであってよく、例えば、エアコンが冷房動作中、暖房動作中、温度調整中、送風動作中及び停止中のうちどの状態にあるかを示すデータや、窓が開いている量を示すデータや、室内の温度を示すデータや、言語解析部2より供給される上述の単語データであればよい。あるいは、エージェント処理部6自身が行う処理から引き渡されるデータであってもよい。また、トリガ取得処理で取得されるデータが単語データである場合は、当該単語データが表す単語に代えて、当該単語データが表す単語がグルーピングされている概念が記述されてもよい。ただし、トリガ取得処理の内容は、複数のトリガ取得処理が互いに同一の単語を表す単語データを取得することがないように記述されるものとする。

[0029]

判別処理の内容を記述するデータは、判別条件と、判別結果としてとり得る結果のリストと、後述する戻り方向の確率係数とを、判別処理別に記述したデータを含んでいる。また、判別処理の内容を記述するデータは、進行方向の確率係数を、とり得る判別結果毎に記述したデータを含んでいる。

[0030]

判別処理では、判別に用いるデータを、判別を行うに先立って、この判別に用いるデータを任意の取得源から取得する場合があってもよい。取得源としては、例えば、言語解析部 2 や、エージェント処理部 6 が実行する他の処理や、入出力対象機器群 5 に属する機器や、その他外部の機器などが考えられる。そしてこの場合、判別処理の内容を記述するデータは、例えば、判別に用いるデータの取得源を指定するデータを更に含んでいればよい

[0031]

また、判別処理では、所定のデータを、判別に先立って所定の出力先に出力するようにしてもよい。具体的には、例えば、所定の質問を表すデータを、判別に先立って音声合成処理部3に引き渡す、等が考えられる。判別処理において所定のデータを判別に先立って所定のデータを出力する場合、判別処理の内容を記述するデータは、例えば、出力するデータの内容と、このデータの出力先とを指定するデータを更に含んでいればよい。

[0032]

入出力処理の内容を記述するデータは、入力あるいは出力するデータの内容を指定するデータからなっている。入力ないし出力するデータは任意の内容を有していてよく、例えば、出力するデータは、音声合成処理部3を介して音声出力部4に発生させる音声の読みを表すデータや外部の機器を制御する制御信号であってもよいし、入力するデータは外部の機器から供給されるデータであってもよい。

[0033]

ワイヤデータベースは、複数の処理間の遷移を記述するデータ(以下、このデータをワイヤと呼ぶ)の集合からなっている。ワイヤは、例えば図3に示すような書式で記述されたデータからなっており、図示するように、先行する処理から後続する処理への遷移について、当該先行の処理と、当該後続の処理と、当該遷移に対して与えられた重み係数と、を指定するデータである。ただし、先行の処理が判別処理である場合は、当該判別処理のどの判別結果からの遷移であるか、まで記述される必要がある。

[0034]

そして、エージェント処理部6は、処理項目データベース及びワイヤデータベースが全体として表しているフローを実行する。処理項目データベース及びワイヤデータベースは、例えば、全体として図4に示すようなフローを記述することができる。

[0035]

図4に示すフローにおいては、エージェント処理部6は、トリガ処理ステップTG01 では、「暑い」という単語を示す単語データを言語解析部2より供給されるのを待機して 、供給されるとこれを取得して判別処理ステップCN01に引き渡す(ワイヤW1)。

[0036]

エージェント処理部6は、判別処理ステップCN01では、窓が開いているか否かを示 す情報を窓開閉制御部52より取得し、開いていると判別すると入出力処理ステップEX 01に処理を移し(ワイヤW2)、入出力処理EX01では、窓開閉制御部52に、窓を 閉めることを指示する制御信号を出力し、エアコン51に、冷房動作を開始することを指 示する制御信号を出力する。この結果、窓開閉制御部52は窓を閉め、エアコン51は冷 房動作を開始する。

[0037]

一方、判別処理ステップCN01で、窓が閉じていると判別すると、質問を含む判別処 **理QBO1に処理を移す(ワイヤW3)。判別処理ステップQBO1でエージェント処理** 部6は、まず、「窓を開けますか。それともエアコンをつけますか。」という文章を表す データを音声合成処理部3に供給する。音声合成処理部3は、音声出力部4を介して、こ の文章を読み上げる音声を再生させる。

[0038]

判別処理ステップQB01でエージェント処理部6は、次に、言語解析部2から、単語 「窓」又は単語「エアコン」を表すデータが供給されるのを待機し、該当するデータが供 給されると、このデータが単語「窓」又は単語「エアコン」のどちらを表すかを判別する 。そして、単語「窓」を表すと判別すると入出力処理ステップEX03に処理を移し(ワ イヤW5)、単語「エアコン」を表すと判別すると、入出力処理ステップEX02に処理 を移す(ワイヤW6)。

[0039]

エージェント処理部6は、入出力処理ステップEX02では、エアコン51に、冷房を 開始することを指示する制御信号を出力する。一方、エージェント処理部6は、入出力処 理ステップEX03では、窓開閉制御部52に、換気用の窓を開けることを指示する制御 信号を出力する。

[0040]

一方、エージェント処理部6は、「窓を開けて」という単語を示すデータを言語解析部 2より供給されるのを待機して(トリガ処理ステップTG02)、供給されると、入出力 処理ステップEX03へと処理を移す(ワイヤW4)。

[0041]

エージェント処理部6は、例えば言語解析部2が単語データを複数供給した場合などに おいては、複数の判別処理を並行して行う。またこの場合、エージェント処理部6は同一 の単語を入力の対象とする処理(例えば、トリガ取得処理や、判別処理におけるデータの 入力) が複数があって、該当する単語を表す単語データが言語解析部2より供給された場 合は、これらの処理すべてを並行して行う。

[0042]

また、エージェント処理部6は、図5にフローを示すように、先行する第1の処理P1 を実行して後続の第2の処理P2に遷移するようにワイヤW01により定義されており、 また、第2の処理P2を実行して後続の第3の処理P3に遷移するようにワイヤW03に よって定義されているとき、以下の処理を行う。(なお、図示するように、処理P1~P 3のいずれについても、各進行方向の確率係数はいずれも0.5であるものとする。)

$[0\ 0\ 4\ 3\]$

まず、エージェント処理部6が第1の処理P1に到達しているとき、エージェント処理 部6は、ワイヤW01、W03及びW05のそれぞれの重み係数を計算し、計算結果をワ イヤW01、W03及びW05に書き込む。これら値は、各処理に予め設定されている進 行方向の確率係数によって決定される。

[0044]

具体的には、処理P1に処理が到達したとき、ワイヤW01の重み係数は、処理P1のワイヤに係る確率係数の値すなわち0.5となる。

処理P2のワイヤW03の重み係数は、処理P1のワイヤW1に係る確率係数0.5に処理P2のワイヤW03に係る確率係数0.5を乗じた結果すなわち0.25となる。

ワイヤW 0 5 の重み係数は、処理P 1 のワイヤW 1 に係る確率係数 0 . 5 に処理P 2 のワイヤW 0 3 に係る確率係数 0 . 5 を乗じた結果に更に処理P 3 のワイヤW 5 に係る確率係数 0 . 5 を乗じた結果、すなわち 0 . 1 2 5 となる。

[0045]

このようにして、ある処理を基点としたときのそれぞれのワイヤの重み係数が計算される。よって、現在の状態が遷移すると、現在の処理を基点にしてその都度重み係数が計算されることになる。

[0046]

具体的には、現在の状態が処理P2に遷移すると、ワイヤW03の重み係数は、処理P2のワイヤW03に係る確率係数に等しい値0.5となり、ワイヤW05の重み係数は処理P2のワイヤW03に係る確率係数0.5と処理P3のワイヤW5に係る確率係数0.5との積すなわち0.25となる。またこのとき、エージェント処理部6は、逆方向、つまり処理P1に戻る方向に係るワイヤW01の重み係数も再度書き込まれる。処理P2に遷移した場合では、ワイヤW01に係る戻り方向の確率係数0.1がそのままワイヤW01の重み係数となる。の理P3に遷移した場合は更に、ワイヤW03に係る戻り方向の確率係数0.1がそのままワイヤW03の重み係数となる。そして、処理P3に遷移した状態におけるワイヤW01の重み係数は、処理P3に遷移した状態におけるワイヤW03の重み係数0.1に、処理P2の戻り方向の確率係数0.1を乗じた値すなわち0.01となる。

[0047]

重み係数の計算は、関連するフローの処理のみではなく、全てのフローの全てのワイヤについて設定される。ここで現在の処理に関連のないワイヤについては、予め定められた低い計数値を割り当てるようにすればよい。しかし、特にトリガ取得処理を先行の処理とするワイヤについては、重み係数をある程度高く設定するようにする。こうすることによって、直前までなされていた会話と著しく異なる内容の会話にもジャンプすることが可能になる。

[0048]

そして、エージェント処理部6は、判別条件に係る(1個又は複数個の)単語データが 言語解析部2より供給されると、以下の処理を行う。まず、供給された単語データが示す 単語の尤度(スコア)と、各ワイヤの重み係数との積を計算する。

[0049]

[0050]

(数2) ワイヤ \mathbb{W} 05についての積:「窓」に対するスコア50%×ワイヤ \mathbb{W} 05の重み係数0.125=6.25

[0051]

エージェント処理部6は、スコアと重み係数との積を求める上述の処理を、フローが有するすべてのワイヤについて行う。その結果、例えばワイヤW1について求めた積が最も

[0052]

なお、トリガ取得処理からの遷移に対しては、ある程度高い重み係数を設定しておくとよい。具体的には、例えば図3にも示すように、図4のフローにおいて、「窓を開けて」という単語を示す単語データを取得するトリガ取得処理TG02からの遷移に対しては、例えば重み係数0.5を与えておく。そうすると、例えばエージェント処理部6の処理がトリガ取得処理TG01に係属している場合において、ユーザーが「窓を開けて」と発音し、例えば単語「窓を開けて」に対するスコアが90%である単語データが得られれば、このスコアと、「ユーザが「窓を開けて」と言ったか否かの判断」に係るワイヤW5の重み係数との積は、90%×0.5すなわち45となる。この値が他のワイヤとの積の値と相手は通常得られないような大きな値であれば、入力された音声は「窓を開けて」であったと認識され、エージェント処理部6の処理が入出力処理EX03にジャンプする可能性が高くなる。一方で、他のワイヤの重み係数を極めて低く設定しておけば、これら他のワイヤにより定義されている遷移が起こる可能性は極めて低くなり、結果として、ある程度想定される会話の流れに沿って認識率を向上させることができる。

[0053]

この実施の形態では、戻り方向への遷移も起こり得る。しかし、現実的には会話を戻すことは好ましくないことが多い。そこで、戻り方向の確率係数は、進行方向の確率係数に比べて低い値に設定するようにすればよい。そうすると、入力された音声から高いスコアの音声データが仮に得られても、戻り方向の確率係数が重み係数として書き込まれたワイヤについて求めた積は低い値となるため、戻り方向への遷移の可能性を低く抑えることができる。

また、エージェント処理部6は、求めた積の値が所定の条件に合致しないような処理(たとえば、積の値が所定値に達しないような処理)は、遷移を実行する対象から除外するよう取り扱ってもよい。

[0054]

なお、例えば図3に示しているように、ワイヤは、処理項目から処理項目への遷移という形で遷移を定義する。そして、ワイヤを図3に示すような形態で記述してデータベースに格納することにより、各処理項目同士の関係を、あたかもコンピュータのマクロ処理のように定義することが可能になる。これによって、各処理項目を容易に接続することができる。

[0055]

また、トリガとなる処理項目は、実際には接続されるワイヤに係る認識対象単語等(他の入力対象機器群からの入力の場合もあり得る)のスコアの判定になるので、ワイヤにおいてトリガ処理項目はワイヤの開始点として定義されず、ワイヤそのものが遷移元として定義されることになる。

[0056]

更に、上述のように各処理項目の接続関係をワイヤによって定義することによって、簡単にワイヤを追加することができる。例えば、「暑い」という音声入力の後に、ユーザーが休憩することを意図して「ファミリーレストランを探して」という音声を入力する機会が多い場合、ファミリーレストランの検索処理項目に対して自動でワイヤを追加する。そうすると、ワイヤが自動で追加された後には、ファミリーレストラン検索処理項目に接続されたワイヤの重み係数をある程度大きくすることで、当該入力「ファミリーレストランを探して」に適切に対応することができるようになる。(ただしこの場合、エージェント処理部6は、例えばファミリーレストランの位置を示す情報を含んだ地図データ等を記憶し、あるいは外部の地図データ等にアクセスするものとする。)

このワイヤの自動追加は、ある処理項目からある処理項目へのジャンプの回数を計数し 、これが所定回数に達したときに自動で行うようにすればよい。

[0057]

また、エージェント処理部6は、処理項目データベースやワイヤデータベースの内容についてを、外部から供給される新たな処理項目データやワイヤを取得するへと更新する機能を有する。

具体的には、例えば、新たな処理項目データ及び/又はワイヤを記憶する外部のサーバが、外部のネットワークを介し、エージェント処理部6に、処理項目データ及び/又はワイヤの更新がある旨を通知すると、エージェント処理部6はこの通知に応答して、ネットワークを介し、このサーバにアクセスして、新たな処理項目データ及び/又はワイヤをダウンロードする。そして、このとき、処理項目データベースやワイヤデータベースに格納されている、更新されるべき古い処理項目データ及び/又はワイヤを、ダウンロードした新たな処理項目データ及び/又はワイヤへと更新するようにしてもよい。

また、本発明は、上述のように、エージェント処理部6が処理項目データ及び/又はワイヤの更新がある旨を通知された場合に限られない。例えば、ユーザの要求に対応する処理項目及び/又はワイヤが記憶されていない場合、これを検出してネットワークを介してサーバにアクセスし、新たな処理項目データ及び/又はワイヤをダウンロードするようにしてもよい。更には、当該エージェント処理部6に接続される入出力対象機器5が新たに追加された場合や、新たな機能が追加された場合に、自動でこれを検出して、上述と同様、ネットワークを介してサーバにアクセスし、新たな処理項目データ及び/又はワイヤをダウンロードするようにしてもよい。

尚、上述のように、本発明におけるエージェント処理部6は、新たなワイヤを自動で生成する機能を有するが、ダウンロードした新たな処理項目及び既存の処理項目に対して、どのような関係のワイヤを設定するかについて、これを記述したプログラムを一緒にダウンロードするようにしてもよい。

[0058]

以上説明したこの車内空調システムは、処理の内容を示すデータやワイヤが適切に記述されれば、制御する対象である機器や加える制御の内容を完全に特定することを必ずしも必要とせずに、ユーザが発した言語に応答し、この言語からユーザの欲求を推測し、この欲求を満たすためにどの機器にどのような制御を加えればよいかを適切に判断して、判断結果に従った制御を機器に加えることができるようになる。

[0059]

また、処理項目データやワイヤは随時新たなものへと更新されるので、エージェント処理部6の応答の仕方を変化させる余地が常にあり、ユーザはこの車内空調システムとの対話に飽きにくい。

[0060]

なお、この車内空調システムの構成は上述のものに限られない。

例えば、入出力対象機器群 5 に属する機器は、必ずしも直接にユーザの欲求を満たす結果をもたらす機器である必要はなく、例えば、外部の表示装置等を制御してユーザに特定の行動をとるよう促すメッセージを出力する機器(例えば、液晶ディスプレイ等の表示装置)からなっていてもよい。

[0061]

また、単語データベースは、必ずしも単語を示すデータのみならず、複数の単語からなる語句を示すデータを単語データベースの要素として記憶するようにしてもよいし、単語の一部あるいは音素を示すデータを単語データベースの要素として記憶するようにしてもよい。また、単語等は必ずしも特定の概念の下にグルーピングされている必要はなく、グルーピングを行う場合も、グルーピングを行うために用いられるデータは、必ずしもフラグの集合の形をとっていなくてもよい。

[0062]

また、エージェント処理部6は、新たな処理項目データやワイヤを、外部の供給元からの通知を待たずに自発的にダウンロードしてもよいし、言語解析部2から供給される単語データに応答して新たな処理項目データやワイヤのダウンロードを開始するようにしてもよい。

[0063]

また、エージェント処理部6は、ワイヤに記述された重み係数を、過去に当該ワイヤが 表す遷移を実行した数などに基づき所定の基準に従って変化させ、重み係数が変化後の値 となるようにワイヤを書き換えてもよい。

具体的には、例えば、ワイヤデータベースに、それぞれのワイヤについて、当該ワイヤが表す遷移が実行された回数を記憶しておく。そしてエージェント処理部6は、当該遷移が新たに行われる毎に、この回数の値を書き換えることにより、この回数の値を1ずつインクリメントし、それぞれのワイヤに記述された重み係数を、例えば、当該ワイヤについて記憶された回数に比例した値と書き換える。

[0064]

また、エージェント処理部6は、判別処理や入出力処理において出力するデータを、これらの処理に引き渡されたデータや、これらの処理に伴って入力したデータや、その他任意の条件に従って変化させるようにしてもよい。

[0065]

また、この車内空調システムは、エージェント処理部6の制御に従って画像を出力するための表示装置(例えば、液晶ディスプレイ等)を備えていてもよく、エージェント処理部6は、入出力処理や判別処理において、処理毎に所定の画像を表示させるようこの表示装置を制御してもよい。

[0066]

また、エージェント処理部6は、1個の入力処理や1個の判別処理において、連続して発話される等した複数の単語データを一括して取得するようにしてもよい。また、エージェント処理部6は、一括して取得した複数の単語データがどの概念の下で同一のグループ内にグルーピングされているかを特定し、特定した概念が所定の概念に合致する場合にのみ、取得した単語データの一部または全部を処理に用いるものとしてもよい。

[0067]

また、エージェント処理部6は、トリガ取得処理、判別処理、入出力処理等の各種処理とワイヤとが全体として形成するフローを分担して行う、互いに接続された複数のデータ処理装置(例えば、コンピュータ等)から構成されていてもよい。この場合、解析処理部3を構成するそれぞれのデータ処理装置は、解析処理部3が実行し得るフロー全体のうち、自己が実行する可能性がある部分を表すデータを、処理項目データベースやワイヤデータベースの要素として記憶すれば十分である。そして、それぞれのデータ処理装置が記憶するデータが、当該データ処理装置が実行する部分の処理をマクロ定義するようなデータとなっていれば、複数のデータ処理装置に分散処理を行わせることも容易である。

[0068]

また、この車内空調システムは、音声入力部1や言語解析部2あるいは音声出力部4も 複数備えていてよい。

また、音声入力部1は、たとえば、音声を表すデータが記録された記録媒体(たとえば、フロッピー(登録商標)ディスクや、CD(Compact Disc)や、MO(Magneto-Optica l Disk)など)から波形信号を読み出して言語解析部2に供給する記録媒体ドライブ装置(たとえば、フロッピー(登録商標)ディスクドライブや、CD-ROMドライブや、MOドライブなど)を備えていてもよい。

[0069]

以上、この発明の実施の形態を説明したが、この発明にかかる機器制御装置は、専用の システムによらず、通常のコンピュータシステムを用いて実現可能である。

例えば、入出力対象機器群 5 に接続されたパーソナルコンピュータに上述の音声入力部 1、言語解析部 2、音声合成処理部 3、音声出力部 4 及びエージェント処理部 6 の動作を実行させるためのプログラムを格納した記録媒体から該プログラムをインストールすることにより、上述の処理を実行する車内空調システムを構成することができる。そして、このプログラムを実行するパーソナルコンピュータが、図 1 の車内空調システムの動作に相当する処理として、例えば、図 4 に示すフローを実行するものとする。

なお、パーソナルコンピュータに上述の車内空調システムの機能を行わせるプログラムは、例えば、通信回線の掲示板(BBS)にアップロードし、これを通信回線を介して配信してもよく、また、このプログラムを表す信号により搬送波を変調し、得られた変調波を伝送し、この変調波を受信した装置が変調波を復調してこのプログラムを復元するようにしてもよい。そして、このプログラムを起動し、OSの制御下に、他のアプリケーションプログラムと同様に実行することにより、上述の処理を実行することができる。

[0071]

なお、OSが処理の一部を分担する場合、あるいは、OSが本願発明の1つの構成要素の一部を構成するような場合には、記録媒体には、その部分を除いたプログラムを格納してもよい。この場合も、この発明では、その記録媒体には、コンピュータが実行する各機能又はステップを実行するためのプログラムが格納されているものとする。

【図面の簡単な説明】

[0072]

- 【図1】この発明の実施の形態に係る車内空調システムを示す図である。
- 【図2】グルーピング用のフラグの具体例を模式的に示す図である。
- 【図3】ワイヤを示す図である。
- 【図4】処理項目データベース及びワイヤデータベースが全体として表しているフローを示す図である。
- 【図5】重み係数の設定を説明するための図である。

【符号の説明】

[0073]

- 1 音声入力部
- 2 言語解析部
- 3 音声合成処理部
- 4 音声出力部
- 5 入出力対象機器群
- 51 エアコン
- 52 窓開閉制御部
- 6 エージェント処理部

【図2】

【図3】

1.0	0.5	0.5	1.0	0.5	0.5	0.5
(CN01.1),	(EX01.1),	(QB01.1),	(EX03.1),	(EX03.1),	(EX02.1),	(3),
0	OL	По	OL	OL	OH	OL
(• 1)	(CN01.3)	(CN01.2)	.2)	(QB01.3)	(QB01.2)	(EX02.2)
From	From	From	From	From	From	From
11	Ш	11	Ш		II	
MI	W2	M3	W4	WS	M6	M7

【書類名】要約書

【要約】

【課題】 人間が言語の形で発する指示に適切に応答して機器を制御できる機器制御装置等提供することである。

【解決手段】 言語解析部2は、音声入力部1が入力した音声に音声認識を施して、この音声が表している可能性のある単語とそのスコアとを特定し、これらを表す単語データをエージェント処理部6に供給する。エージェント処理部6は、単語データ等を取得するデータ取得処理や、判別処理、入出力処理を定義する処理項目データと、ひとつの処理から次の処理への遷移を定義しこの遷移に重み係数を与えるデータであるワイヤとを記憶しており、処理項目データとワイヤとが全体として表すフローを実行することにより、入出力対象機器群5に属する機器を制御する。フロー内のどの処理へと遷移するかは、処理が進んだ地点とワイヤの接続関係とにより決まる各ワイヤの重み係数と、単語データのスコアとにより決まる。ワイヤや処理項目データは外部よりダウンロード可能である。

【選択図】 図1

特願2003-406730

出願人履歴情報

識別番号

[000003595]

1. 変更年月日 [変更理由] 住 所

氏 名

2002年 7月26日 住所変更

東京都八王子市石川町2967番地3

株式会社ケンウッド