		38		
1	3/A.	The apparatus of claim 1/2 wherein the controller further comprises:		
2		a loop filter for providing control to the sensor apparatus, to the loop filter including:		
3		one or more integrators for providing a signal for controlling the sensor system;		
4		one or more derivative controllers for providing a signal for controlling the sensor		
5	system;			
6		one or more proportional controllers for providing a signal for controlling the sensor		
7	system	n; and		
8		a summer for combining the signals from the integrators, the derivative controllers, and		
9	the pro	portional controllers.		
	_	∂6		
1	30,5.	The apparatus of claim / further comprising:		
2		a multiphase clock generator for providing clock signals for controlling the operation of		
3	the app	paratus, the clock generator including:		
4		a digital signal generator; and		
5		a data-independent clock resynchronization circuit coupled to the digital signal generator		
6	for resa	ampling clock signals.		
	-3 /	The apparatus of claim further comprising: a sensor simulator for simulating the operation of a sensor, the simulator including;		
1,	35,6.	The apparatus of claim further comprising:		
2		a sensor simulator for simulating the operation of a sensor, the simulator including;		
3		a filter adapted to receive one or more input signals and generate an output signal		
4	represe	entative of the operating state of the sensor; and		
5		an input signal selector operably coupled to the filter adapted to controllably select the		
6	input s	ignals as a function of the simulated operating state of the sensor.		
	74 ·	The apparatus of claim further comprising:		
1	51,7".	The apparatus of claim / further comprising:		
2		a device for testing the operation of the controller, the device comprising;		
3		a sensor simulator for simulating the operation of a sensor; and		
4	J	a second controller coupled to the simulator.		
	22 00			
1	50,000	The apparatus of claim 1, wherein the controller further comprises:		
2		a feedback control system for providing control to the apparatus, the feedback control		
3	system	n comprising:		
4		a startup sequencer for selecting the mode of operation of the feedback control system;		
5	and			
6		a loop filter coupled to the startup sequencer.		

a sense amplifier for sensing the position of the measurement mass within the sensor.

5'

1	ø .	The apparatus of claim , wherein the clock resynchronization circuit comprises:
2	•	a plurality of inverters;
3		a plurality of NOR gates coupled to the inverters;
4		a plurality of NAND gates coupled to the inverters;
5		a plurality of XNOR gates coupled to the NAND gates and the inverters;
6		a plurality of asynchronous set double-edge flip-flops coupled to the NOR gates; and
7		a plurality of asynchronous reset double-edge flip-flops coupled to the NOR gates.
	27.	
1	3 ¹ <i>1</i> 6.	A method of controlling the operation of a sensor assembly, comprising:
2		using a controller to apply electrostatic forces to a sensor to create one or more sensor
3	operat	ing states; and
4		sequentially arranging the operating states into which the sensor is placed to create a
5	pluralit	y of operating modes for the sensor assembly.
	-6-	The method of claim 10 further comprising:
1	3611.	The method of claim 10 further comprising:
2		determining an operating mode of the sensor assembly;
3		adjusting a mode of operation of a loop filter in the sensor assembly;
4		providing feedback loop compensation to the sensor assembly during a start-up mode
5	of ope	ration for the sensor assembly; and
6		providing noise shaping to the sensor assembly during a sigma-delta mode of operation
7	for the	sensor assembly.
	36,	37
1	3/1/2.	The method of claim 10, wherein the sensor assembly includes a loop filter, one or more
2		integrators, a proportional controller, the method further comprising:
3		placing a loop filter including one or more integrators, a proportional controller, and a
4	derivat	ive controller in a reduced-order operating mode;
5		sending a signal to the loop filter to control the operating mode of the loop filter; and
6		holding the integrators within the loop filter in a reset mode to place the loop filter in the
7	reduce	ed-order operating mode,
	110	37
1	7 1/3.	The method of claim 1/2 further comprising: taking the integrators out of the reset mode to place the loop filter in a normal operating
2		taking the integrators out of the reset mode to place the loop filter in a normal operating
3	mode v	when the sensor system is operating in a sigma-delta operating mode.
	4/14.	The method of claim 12, wherein the operating mode of the loop filter further comprises:
1	14.	
2		sending a signal to the loop filter indicating an operating mode of the sensor assembly;
3		operating the loop filter in a reduced-order mode while the sensor assembly is operating

in a start-up mode;

operating the loop filter in the reduced-order mode for a predetermined period of time after the sensor assembly transitions from the start-up operating mode to a sigma-delta operating mode; and

operating the loop filter in a normal mode during the sigma-delta operating mode after the predetermined period of time during which the loop filter operates in reduced-order mode.

The method of claim 14, wherein the operating mode of the loop filter further comprises: operating the loop filter in a reduced-order mode while the sensor assembly is operating in the sigma-delta operating mode.

The method of claim 16 further comprising: generating a clock signal for the sensor assembly, the generating including: generating a first clock signal; and

resampling the first clock signal to generate a second clock signal to restore signal integrity and providing a timing relationship.

The method of claim to further comprising:

resampling an input signal to the sensor assembly, the resampling including:

resampling the input signal in a first level-sensitive latch, including one or more transmission gates, one or more NOR gates, and one or more inverters, on one edge of a clock input signal; and

resampling the input signal in a second level-sensitive latch, including one or more transmission gates, one or more NOR gates, and one or more inverters, acting in parallel with the first level-sensitive latch, on another edge of the clock input signal.

The method of claim 10 further comprising:

resampling an input signal to the sensor assembly, the resampling including:

resampling the input signal in a first level-sensitive latch, including one or more transmission gates, one or more NAND gates, and one or more inverters, on one edge of a clock input signal; and

resampling the input signal in a second level-sensitive latch, including one or more transmission gates, one or more NAND gates, and one or more inverters, acting in parallel with the first level-sensitive latch, on another edge of the clock input signal.

The method of claim 10, wherein the controller includes an analog control circuit, the method further comprising:

operating the analog control circuit by generating a first clock signal;

resampling the first clock signal to generate a second clock signal to restore signal

5	integrity and provide a proper timing relationship; and		
6	•	driving the analog control circuit using the second clock signal.	
	47	27	
1	3 6.	The method of claim 'y' further comprising testing the controller, wherein the test	
2		comprises:	
3		connecting a sensor simulator to the controller;	
4		supplying an input signal of a known value to the sensor simulator;	
5		converting the input data to the sensor simulator into an output stream from the sensor	
6	simulator;		
7		sending the output stream from the sensor simulator to the controller;	
8		processing the output stream from the sensor simulator within the controller to create	
9	an output stream from the controller; and		
10		analyzing the output from the controller to determine the accuracy of the controller.	
	118	37	
1	21.	The method of claim 10 further comprising:	
2	•	offsetting the effects of external acceleration forces on the sensor assembly	
3	independent of sensor assembly orientation by applying electrostatic forces to a sensor element		
4	to off	set the effects of the acceleration force.	
		Respectfully submitted,	

Todd A. Bynum Registration No. 39,488 MADAN, MOSSMAN, & SRIRAM P.C. 2603 Augusta, Suite 700 Houston, Texas 77057-5640 Telephone: 713/266-1130

Facsimile:

713/266-8510