Tranzystor unipolarny

Łukasz Jezapkowicz

10.05.2019

Spis treści

1	Wyznaczenie wartości napięcia progowego U_T tranzystora unipolarnego 1.1 Cel ćwiczenia	3 3 4
2	Tranzystor unipolarny w układzie wzmacniacza sygnałów zmiennych 2.1 Cel ćwiczenia	4 4 5 9
3	Tranzystor unipolarny jako klucz przełączający 3.1 Cel ćwiczenia	9
4	Wstęp do układów logicznych 4.1 Cel ćwiczenia	11
5	Inwerter logiczny 5.1 Cel ćwiczenia	14
6	Bramka NAND 6.1 Cel ćwiczenia 6.2 Przebieg ćwiczenia 6.3 Wnioski	15
7	Bramka AND 7.1 Cel ćwiczenia	16
8	Bramka NOR 8.1 Cel ćwiczenia	18

9 Bramka OR		mka OR	19
	9.1	Cel ćwiczenia	19
	9.2	Przebieg ćwiczenia	19
	9.3	Wnjoski	20

1 Wyznaczenie wartości napięcia progowego U_T tranzystora unipolarnego

1.1 Cel ćwiczenia

Celem ćwiczenia było zapoznanie się z prostym obwodem elektrycznym zawierającym tranzystor unipolarny oraz wyznaczenie wartości napięcia progowego U_T tranzystora unipolarnego typu NMOS.

1.2 Przebieg ćwiczenia

Na pulpicie symulacyjnym zbudowałem obwód elektryczny widoczny na **Rys. 1**. Przedstawiony poniżej układ zawiera źródło napięcia $V_{DD} = 12V$, rezystor $R_1 = 1k\Omega$ oraz tranzystor unipolarny IRF540 typu NMOS. Do układu podłączyłem również oscyloskop dzięki, któremu zbadam zależności napięcia sterującego U_{GS} i napięcia U_{DS} na drenie tranzystora. Na bramkę tranzystora podałem sygnał liniowo narastający o niskiej częstotliwości - sygnał trójkątny o parametrach : częstotliwości równej 10Hz, wypełnienia równego 50% oraz amplitudy 12V.

Rys. 1: Schemat obwodu elektrycznego z tranzystorem typu NMOS z podłączonym oscyloskopem oraz liniowo narastającym sygnałem trójkatnym.

Przy użyciu ekranu oscyloskopu oraz analizy Transient odczytałem punkt przecięcia przebiegu wejściowego narastającego liniowo i przebiegu wyjściowego z drenu tranzystora. Odczytany punkt to nasze poszukiwane napięcie progowe U_T . Ekran oscyloskopu oraz wyniki analizy Transient widać odpowiednio na **Rys. 2** oraz **Rys. 3**. Przy użyciu analizy Transient odczytałem wartość $U_T = 3.5544V$.

Rys. 2: Ekran oscyloskopu dla obwodu elektrycznego widocznego na Rys. 1. Wskaźnik numer 2 wyznacza napięcie progowe U_T tranzystora.

Rys. 3: Wyniki analizy Transient dla obwodu elektrycznego widocznego na Rys. 2. Wskaźnik numer 2 wyznacza napięcie progowe U_T tranzystora.

Po przekroczeniu wartości napięcia progowego U_T w tranzystorze zaczyna płynąć coraz większy prąd I_D a więc napięcie wyjściowe U_{WY} zgodnie z wzorem $U_{WY} = U_{DD} - I_D * R_D$ maleje. Analiza przebiegu napięcia wejściowego i wyjściowego pozwala na dokładne wyznaczenie wartości napięcia progowego.

2 Tranzystor unipolarny w układzie wzmacniacza sygnałów zmiennych

2.1 Cel ćwiczenia

Celem ćwiczenia było zapoznanie się z prostym obwodem elektrycznym zawierającym tranzystor w układzie wzmacniacza sygnałów zmiennych i wyznaczenie punktu pracy $Q(U_{DS}, I_D)$ oraz wartości transkonduktancji g_m i wzmocnienia napięciowego k_u .

2.2 Przebieg ćwiczenia

Na $\mathbf{Rys.4}$ zamieściłem bazowy układ wzmacniacza sygnałów zmiennych z tranzystorem unipolarnym NMOS IRF540.

Rys. 4: Bazowy układ wzmacniacza sygnałów zmiennych z tranzystorem unipolarnym NMOS IRF540.

Używając prawa Ohma i praw Kirchhoffa można obliczyć punkt pracy $Q(U_{DS},I_D)$. Do obliczenia punktu pracy użyłem następujących podstawowych zależności dotyczących działania tranzystora w obwodzie: $U_{Wy} = \frac{U_{DD}}{2} = U_{DS}$ oraz $I_D = \frac{U_{DD} - U_{Wy}}{R_D}$. Po podstawieniu wartości z obwodu na **Rys. 4**: $U_{Wy} = \frac{12V}{2} = 6V$, $I_D = \frac{12V - 6V}{100\Omega} = 60mA$.

Następnie na pulpicie symulacyjnym zbudowałem układ widoczny na **Rys. 5** zawierający źródło napięcia o wartości 12V, dwa rezystory $R_D = 100\Omega$ oraz $R_1 = 8.5k\Omega$, 3 potencjonometry $R_2 = 3k\Omega$, $R_3 = 1k\Omega$ oraz $R_4 = 100\Omega$, tranzystor unipolarny typu NMOS oraz 3 podłączone multimetry, dzięki którym mogłem zmierzyć U_{Wy} , I_D oraz opór zastępczy trzech potencjometrów. Potencjometry ustawiłem empirycznie w taki sposób by wyniki pomiarów zgadzały się z wyliczonym wcześniej punktem pracy Q(6V, 60mA).

Rys. 5: Schemat obwodu elektrycznego z tranzystorem NMOS, źródłem napięcia V_{DD} , dwoma rezystorami R_D,R_1 oraz 3 potencjonometrami R_2,R_3 oraz R_4 tworzącymi potencjometryczny układ polaryzacji.

Następnie obliczyłem obwód zastępczy trzech potencjometrów przy pomocy multimetru XMM2 co widać na **Rys. 6**. Obliczony opór zastępczy zastąpiłem jednym rezystorem R_2 o wartości rezystancji $3.685k\Omega$. Zmiana ta niemal nie zmieniła wartości U_{Wy} oraz I_D w obwodzie więc nie zmieniałem wartości oporu wskazanego przez multimetr XMM2. Obwód z rezystorem R_2 widać na **Rys. 7**.

Rys. 6: Układ trzech potencjometrów R_2 , R_3 , R_4 z obliczonym oporem zastępczym.

Rys. 7: Schemat obwodu elektrycznego z tranzystorem NMOS, źródłem napięcia V_{DD} i trzema rezystorami R_D, R_1 oraz R_2 , który zastąpił wcześniejsze potencjometry.

Następnie do obwodu z Rys. 7 podłączyłem multimetr XMM2 pozwalający zmierzyć U_{GS} , którego zmierzoną wartość 3.629V użyłem do obliczenia transkonduktancji używając wzoru: $g_m = \frac{I_D}{U_{GS}} = \frac{59.974mA}{3.629V} = 0.0165S$.

Rys. 8: Schemat obwodu elektrycznego z Rys. 7 z podłączonym multimetrem mierzącym U_{GS} .

Na koniec w celu obliczenia wzmocnienia napięciowego k_u dołączyłem do obwodu generator - źródło sygnału zmiennego XFG1 o parametrach: częstotliwośc 1kHz, amplituda 100mV, składowa stała 0V. Do obwodu dołączyłem również kondensator $C_1 = 100nF$ oraz oscyloskop XSC1, do którego podłączyłem sygnał z generatora oraz z drenu tranzystora.

Rys. 9: Schemat obwodu elektrycznego z źródłem sygnału zmiennego XFG1 oraz dołączonym oscyloskopem XSC1.

Do obliczenia wzmocnienia napięciowego k_u posłużyłem się wzorem $k_u = \frac{\Delta u_{wy}}{\Delta u_{we}}$. W tym celu obliczyłem podwojoną amplitudę sygnału wyjściowego równą -10.57V oraz podwojoną amplitudę sygnału wejściowego równą 199.972mV. Wyniki takie otrzymałem dzięki pomiarom z analizy Transient widocznym na **Rys. 10** oraz **Rys. 11**. Ponieważ sygnał wejściowy i wyjściowy są względem siebie obrócone to do zmiany sygnału wyjściowego dołączyłem znak minus. Obliczona wartość wzmocnienia napięciowego: $k_u = \frac{-10.57V}{199.972mV} = -52.8614$.

Rys. 10: Pomiary analizy Transient z zaznaczonymi punktami napięcia wejściowego pozwalającymi obliczyć podwojoną amplitude sygnału wejściowego.

Rys. 11: Pomiary analizy Transient z zaznaczonymi punktami napięcia wyjściowego pozwalającymi obliczyć podwojoną amplitude sygnału wyjściowego.

Wszelkie obliczenia zawarte w tym ćwiczeniu umieściłem w tabeli widocznej na Rys.12.

Tranzystor IRF540 U _{DD} = 12V	$R_D[\Omega]$	U _{GS} [V]	U _{wy} =U _{DS} [V]	I _D [A]	Punkt pracy (U _{DS} ,I _D)	Wzmocnienie napięciowe k _u	Transkonduktancja g _m [S]
Wartości zmierzone	100	3.629	6.003	59.974m	(6.003V,59.974mA)	52.8614	0.0165

Rys. 12: Tabela zawierająca wszystkie obliczone wartości w układzie w ćwiczeniu.

2.3 Wnioski

Do sterowania składową stałą sygnału można skutecznie użyć dzielnika napięcia. Użyte w ćwiczeniu potencjometry pozwoliły skutecznie obliczyć opór zastępczy, który pozwolił osiągnąć szukany punkt pracy Q. W ćwiczeniu zaobserowaliśmy również odwrócenie sygnału wejściowego oraz jego wzmocnienie, policzyliśmy również charakterystyczne parametry obwodu: wzmocnienie napięciowe oraz transkonduktancję.

3 Tranzystor unipolarny jako klucz przełączający

3.1 Cel ćwiczenia

Celem ćwiczenia była obserwacja działania tranzystora unipolarnego jako klucza przełączającego przy pomocy prostego obwodu eletrycznego i zmierzenie czasów właczania i wyłaczania tranzystora.

3.2 Przebieg ćwiczenia

Na pulpicie symulacyjnym zbudowałem obwód elektryczny tranzystora unipolarnego pracującego jako klucz przełączający zawierający tranzystor unipolarny NMOS, dwa rezystory $R_1 = 10\Omega$ oraz $R_2 = 100\Omega$ oraz źródło napięcia stałego o wartości $V_1 = 12V$. Do układu podłączyłem również generator XFG1 z sygnałem prostokątnym o częstotliwości 50kHz i współczynniku zapełnienia 50% oraz oscyloskop XSC1. Układ widoczny jest na $\mathbf{Rys.13}$.

Rys. 13: Schemat obwodu elektrycznego z tranzystorem unipolarnym pracującym jako klucz przełączający.

Wartości amplitudy i offset'u generatora należało wybrać w taki sposób by górny poziom napięcia wejściowego E_F oraz dolny poziom napięcia wejściowego E_R były zgodne z wartościami widocznymi w tabeli na **Rys. 16**. Do wyznaczenia odpowiednich wartości użyłem ekranu oscyloskopu, na którym w łatwy sposób mogłem obserwować wartości górnego i dolnego poziomu napięcia.

Następnie zmierzyłem czasy włączenia i wyłączenia tranzystora dla każdej kombinacji parametrów z tabeli. Do obliczenia ich użyłem analizy Transient. Czas włączania $t_{ON} = t_{d(on)} + t_r$, gdzie $t_{d(on)}$ to czas opóźnienia włączenia tranzystora (delay time) czyli czas pomiędzy początkiem impulsu wejściowego a chwilą gdy prąd drenu jest równy 10% swojej wartości max (w tym przypadku oznacza to napięcie wyjściowe 10.8V) zaś t_r to czas narastania prądu drenu od 10% do 90% wartości max (oznacza to spadek napięcia wyjściowego z 10.8V do 1.2V). Zadanie można więc uprościć mierząc czas od początku impulsu wejściowego do osiągnięcia wartości napięcia wyjściowego 1.2V. Odpowiedni pomiar widać na $\mathbf{Rys.}$ 14: $t_{ON} = 368.8178ns$. Czas wyłączania $t_{OFF} = t_{d(off)} + t_f$, gdzie $t_{d(off)}$ to czas opóźnienia wyłączenia tranzystora (delay time) czyli czas pomiędzy końcem impulsu wejściowego a chwilą gdy prąd drenu jest równy 90% swojej wartości max (w tym przypadku oznacza to napięcie wyjściowe 1.2V) zaś t_r to czas opadania prądu drenu od 90% do 10% wartości max (oznacza to wzrost napięcia wyjściowego z 1.2V do 10.8V). Zadanie można więc uprościć mierząc czas od końca impulsu wejściowego do osiągnięcia wartości napięcia wyjściowego 10.8V. Odpowiedni pomiar widać na $\mathbf{Rys.}$ $\mathbf{15}$: $t_{OFF} = 403.7838ns$.

Rys. 14: Analiza Transient pozwalająca znaleźć czas włączania tranzystora. Wynik należy odczytać z tabelki ze zmiennej dx.

Rys. 15: Analiza Transient pozwalająca znaleźć czas wyłączania tranzystora. Wynik należy odczytać z tabelki ze zmiennej dx.

Resztę przypadków zmierzyłem w ten sam sposób. Wszystkie zmierzone wartości widać w tabeli na Rys. 16.

Lp.	EF[V]	ER[V]	Amplituda [V]	Offset [V]	Czas włączania [s]	Czas wyłączania [s]
1.	10	-5	7.5	-2.5	368.8178n	403.7838n
2.	10	0	5	-5	294.5946n	793.7838n
3.	5	-5	5	0	1422.700n	231.0195n
4.	5	0	2.5	-2.5	1297.300n	512.9730n

Rys. 16: Tabela podsumowująca ćwiczenie z wszystkimi zmierzonymi wartościami czasów włączania i wyłączania.

3.3 Wnioski

Wykonane ćwiczenie pokazuje, że odpowiedni układ z tranzystorem można skutecznie stosować jako klucz przełączający. W ćwiczeniu obliczyliśmy również wartości czasu włączania i wyłączania tranzystora dla różnych górnych i dolnych poziomów napięcia wejściowego E_R oraz E_F . Ćwiczenie pokazało, że dla różnych wartości obliczone czasy znacznie się różnią.

4 Wstęp do układów logicznych

4.1 Cel ćwiczenia

Celem ćwiczenia było zapoznanie się z prostym układem logicznym zbudowanym z tranzystora NMOS/PMOS oraz sprawdzenie stanu tranzystorów w zależności od napięcia podanego na bramkę.

4.2 Przebieg ćwiczenia

Na pulpicie symulacyjnym zbudowałem obwód elektryczny zawierający źródła napięcia $V_{DD} = 5V$, przełącznika podającego na bramkę tranzystora sygnał wysoki 1 o amplitudzie 5V lub sygnał niski 0V. Sprawdziłem jego zachowanie po podaniu wysokiego i niskiego sygnału na bramkę. Układ widoczny jest na **Rys. 17**.

Rys. 17: Schemat obwodu elektrycznego z tranzystorem PMOS oraz przełacznikiem.

Dołączony multimetr XMM1 pozwala sprawdzić prąd w obwodzie drenu. Na wyjściu będzie sygnał wysoki 1 jeżeli w obwodzie drenu będzie płynął prąd rzędu mA za sygnał 0 jeśli prąd rzędu μA . Na **Rys. 18** widać wyniki pomiaru dla sygnału wysokiego na wejściu. Prąd rzędu μA pokazuje, że na wyjściu mamy sygnał 0. Wyniki reszty pomiarów pokazane są w tabeli na **Rys. 19**.

Rys. 18: Wyniki pomiaru prądu na drenie dla sygnału wejściowego 1 - sygnał 0 na wyjściu.

Sygnał na bramce tranzystora	Stan tranzystora PMOS (włączony/wyłączony)
1	Wyłączony
0	Włączony

Rys. 19: Tabela pokazująca zależność sygnału wyjściowego od sygnału wejściowego w obwodzie.

W obwodzie wymieniłem tranzystor unipolarny PMOS na NMOS oraz wykonałem takie same działania jak wcześniej. Układ widoczny jest na $\mathbf{Rys.}\ 20$.Na $\mathbf{Rys.}\ 21$ widać wyniki pomiaru dla sygnału wysokiego na wejściu. Prąd rzedu mA pokazuje, że na wyjściu mamy sygnał 1. Wyniki reszty pomiarów pokazane są w tabeli na $\mathbf{Rys.}\ 22$.

Rys. 20: Schemat obwodu elektrycznego z tranzystorem NMOS oraz przełącznikiem.

Rys. 21: Wyniki pomiaru prądu na drenie dla sygnału wejściowego 1 - sygnał 1 na wyjściu.

Sygnał na bramce tranzystora	Stan tranzystora NMOS (włączony/wyłączony)
1	Włączony
0	Wyłączony

Rys. 22: Tabela pokazująca zależność sygnału wyjściowego od sygnału wejściowego w obwodzie.

Wykonane ćwiczenie pokazuje, że układy tranzystorów można skutecznie używać do prostych układów logicznych dzięki czemu możemy manipulować sygnałem na wyjściu przy użyciu sygnału wejściowego.

5 Inwerter logiczny

5.1 Cel ćwiczenia

Celem ćwiczenia było zapoznanie się z prostym układem logicznym inwertera logicznego zbudowanym z tranzystora NMOS i PMOS oraz sprawdzenie stanu tranzystorów w zależności od napięcia podanego na bramkę.

5.2 Przebieg ćwiczenia

Na pulpicie symulacyjnym zbudowałem obwód elektryczny inwertera logicznego zawierający źródła napięcia $V_{DD} = 5V$, przełącznika podającego na bramkę tranzystora sygnał wysoki 1 o amplitudzie 5V lub sygnał niski 0V. Sprawdziłem jego zachowanie po podaniu wysokiego i niskiego sygnału na bramkę. Układ widoczny jest na Rys. 23.

Rys. 23: Schemat obwodu elektrycznego inwertera logicznego z przełącznikiem.

Na Rys. 24 widać wyniki pomiaru dla sygnału niskiego na wejściu. Lampka sygnalizacyjna na wyjściu wskazuje, że mamy sygnał wysoki na wyjściu. Wyniki reszty pomiarów pokazane są w tabeli na Rys. 25.

Rys. 24: Wyniki pomiaru prądu na drenie dla sygnału niskiego 0 - sygnał 1 na wyjściu.

A	Y
0	1
1	0

Rys. 25: Tabela pokazująca zależność sygnału wyjściowego od sygnału wejściowego w obwodzie inwertera logicznego.

Wykonane ćwiczenie pokazuje, że układy tranzystorów można skutecznie używać jako inwertera logicznego. Tabelka prawdy widoczna na Rys. 25 pokazuje, że zastosowany układ jest poprawny.

6 Bramka NAND

6.1 Cel ćwiczenia

Celem ćwiczenia było zapoznanie się z prostym układem logicznym bramki NAND zbudowanym z tranzystorów NMOS i PMOS oraz sprawdzenie stanu tranzystorów w zależności od napięcia podanego na bramkę.

6.2 Przebieg ćwiczenia

Na pulpicie symulacyjnym zbudowałem obwód elektryczny bramki NAND zawierający źródła napięcia $V_{DD} = 5V$, przełączników podających na bramkę tranzystora kombinację sygnałów niskim 0 i wysokich 1. Sprawdziłem jego zachowanie po podaniu wszystkich kombinacji sygnałów na wejściu. Układ widoczny jest na **Rys. 26**.

Rys. 26: Schemat obwodu elektrycznego bramki NAND z przełącznikami.

Na Rys. 27 widać wyniki pomiaru dla sygnału niskiego na wejściu A oraz sygnału wysokiego na wejściu B. Lampka sygnalizacyjna na wyjściu wskazuje, że mamy sygnał wysoki na wyjściu. Wyniki reszty pomiarów

pokazane są w tabeli na Rys. 28.

Rys. 27: Wyniki pomiaru prądu na drenie dla sygnału niskiego na wejściu A oraz sygnału wysokiego na wejściu B - sygnał 1 na wyjściu.

A	В	Y
0	0	1
0	1	1
1	0	1
1	1	0

Rys. 28: Tabela pokazująca zależność sygnału wyjściowego od sygnałów wejściowych w obwodzie bramki NAND.

6.3 Wnioski

Wykonane ćwiczenie pokazuje, że układy tranzystorów można skutecznie używać jako bramki NAND. Tabelka prawdy widoczna na **Rys. 28** pokazuje, że zastosowany układ jest poprawny.

7 Bramka AND

7.1 Cel ćwiczenia

Celem ćwiczenia było zapoznanie się z prostym układem logicznym bramki AND zbudowanym z tranzystorów NMOS i PMOS i inwertera logicznego oraz sprawdzenie stanu tranzystorów w zależności od napięcia podanego na bramkę.

7.2 Przebieg ćwiczenia

Na pulpicie symulacyjnym zbudowałem obwód elektryczny bramki AND zawierający źródła napięcia $V_{DD} = 5V$, przełączników podających na bramkę tranzystora kombinację sygnałów niskim 0 i wysokich

1. Sprawdziłem jego zachowanie po podaniu wszystkich kombinacji sygnałów na wejściu. Układ widoczny jest na Rys. 29.

Rys. 29: Schemat obwodu elektrycznego bramki AND z przełącznikami.

Na **Rys. 30** widać wyniki pomiaru dla sygnału niskiego na wejściu A oraz sygnału wysokiego na wejściu B. Lampka sygnalizacyjna na wyjściu wskazuje, że mamy sygnał niski na wyjściu. Wyniki reszty pomiarów pokazane są w tabeli na **Rys. 31**.

Rys. 30: Wyniki pomiaru prądu na drenie dla sygnału niskiego na wejściu A oraz sygnału wysokiego na wejściu B - sygnał 0 na wyjściu.

A	В	Y
0	0	0
0	1	0
1	0	0
1	1	1

Rys. 31: Tabela pokazująca zależność sygnału wyjściowego od sygnałów wejściowych w obwodzie bramki AND.

Wykonane ćwiczenie pokazuje, że układy tranzystorów można skutecznie używać jako bramki AND. Bramkę AND można otrzymać łącząc obwód bramki NAND z inwerterem logicznym. Tabelka prawdy widoczna na Rys. 31 pokazuje, że zastosowany układ jest poprawny.

8 Bramka NOR

8.1 Cel ćwiczenia

Celem ćwiczenia było zapoznanie się z prostym układem logicznym bramki NOR zbudowanym z tranzystorów NMOS i PMOS oraz sprawdzenie stanu tranzystorów w zależności od napięcia podanego na bramke.

8.2 Przebieg ćwiczenia

Na pulpicie symulacyjnym zbudowałem obwód elektryczny bramki NOR zawierający źródła napięcia $V_{DD} = 5V$, przełączników podających na bramkę tranzystora kombinację sygnałów niskim 0 i wysokich 1. Sprawdziłem jego zachowanie po podaniu wszystkich kombinacji sygnałów na wejściu. Układ widoczny jest na **Rys. 32**.

Rys. 32: Schemat obwodu elektrycznego bramki NOR z przełącznikami.

Na **Rys. 33** widać wyniki pomiaru dla sygnału niskiego na wejściu A oraz sygnału wysokiego na wejściu B. Lampka sygnalizacyjna na wyjściu wskazuje, że mamy sygnał niski na wyjściu. Wyniki reszty pomiarów pokazane są w tabeli na **Rys. 34**.

Rys. 33: Wyniki pomiaru prądu na drenie dla sygnału niskiego na wejściu A oraz sygnału wysokiego na wejściu B - sygnał 0 na wyjściu.

A	В	Y
0	0	1
0	1	0
1	0	0
1	1	0

Rys. 34: Tabela pokazująca zależność sygnału wyjściowego od sygnałów wejściowych w obwodzie bramki NOR.

Wykonane ćwiczenie pokazuje, że układy tranzystorów można skutecznie używać jako bramki NOR. Tabelka prawdy widoczna na Rys. 34 pokazuje, że zastosowany układ jest poprawny.

9 Bramka OR

9.1 Cel ćwiczenia

Celem ćwiczenia było zapoznanie się z prostym układem logicznym bramki OR zbudowanym z tranzystorów NMOS i PMOS i inwertera logicznego oraz sprawdzenie stanu tranzystorów w zależności od napięcia podanego na bramkę.

9.2 Przebieg ćwiczenia

Na pulpicie symulacyjnym zbudowałem obwód elektryczny bramki OR zawierający źródła napięcia $V_{DD} = 5V$, przełączników podających na bramkę tranzystora kombinację sygnałów niskim 0 i wysokich 1. Sprawdziłem jego zachowanie po podaniu wszystkich kombinacji sygnałów na wejściu. Układ widoczny jest na Rys. 35.

Rys. 35: Schemat obwodu elektrycznego bramki OR z przełącznikami.

Na **Rys. 36** widać wyniki pomiaru dla sygnału niskiego na wejściu A oraz sygnału wysokiego na wejściu B. Lampka sygnalizacyjna na wyjściu wskazuje, że mamy sygnał wysoki na wyjściu. Wyniki reszty pomiarów pokazane są w tabeli na **Rys. 37**.

Rys. 36: Wyniki pomiaru prądu na drenie dla sygnału niskiego na wejściu A oraz sygnału wysokiego na wejściu B - sygnał 1 na wyjściu.

A	В	Y
0	0	0
0	1	1
1	0	1
1	1	1

Rys. 37: Tabela pokazująca zależność sygnału wyjściowego od sygnałów wejściowych w obwodzie bramki OR.

9.3 Wnioski

Wykonane ćwiczenie pokazuje, że układy tranzystorów można skutecznie używać jako bramki OR. Bramkę OR można otrzymać łącząc obwód bramki NOR z inwerterem logicznym. Tabelka prawdy widoczna na Rys. 37 pokazuje, że zastosowany układ jest poprawny.