CRIPTOGRAFIE ȘI SECURITATE

Conf.univ.dr. Radu Boriga

- ➤ Un generator de numere pseudo-aleatoare este un sistem $P = (S, s_0, T, U, G)$, în care:
 - S este o mulțime nevidă numită mulțimea stărilor,
 - s_0 este o stare numită *stare inițială*;
 - $T: S \to S$ este o funcție numită *funcție de tranziție*;
 - *U* este o mulțime nevidă numită *mulțimea ieșirilor*,
 - $G: S \to U$ este o funcție numită *funcție de ieșire*.
- \triangleright Perioada unui generator de numere pseudo-aleatoare este cel mai mic număr natural k cu proprietatea că starea S_n este identică cu starea S_{n+k} .
- > Valorile generate de către un PRNG trebuie să satisfacă următoarele cerințe:
 - să fie cât mai puțin corelate între ele
 - să fie uniform distribuite
 - să aibă o perioadă cât mai mare
 - să aibă o rezoluție cât mai mare
 - să fie rapid

- **> Generatorul congruențial liniar (LCG):** $x_{n+1} = (ax_n + b) \mod m$
 - Perioada maximă a unui LCG este m și se atinge dacă și numai dacă sunt îndeplinite simultan următoarele condiții:
 - 1. cmmdc(b, m) = 1
 - 2. a-1 este multiplu de p pentru orice număr prim p care-l divide pe m
 - 3. dacă m este multiplu de 4, atunci și a-1 este multiplu de 4

PRNG	m	а	b	Biții de ieșire
Borland C/C++	2 ³²	22695477	1	3016
glibc (GCC)	2 ³¹	1103515245	12345	300
ANSI C	2 ³¹	1103515245	12345	3016
C99, C11	2 ³²	1103515245	12345	3016
Microsoft Visual C++	2 ³²	214013	2531011	3016
Microsoft Visual Basic	2 ²⁴	1140671485	12820163	
Apple CarbonLib	2 ³¹ - 1	16807	0	
C++11	2 ³¹ - 1	48271	0	
MMIX (Donald Knuth)	2 ⁶⁴	6364136223846793005	1442695040888963407	
java.util.Random	2 ⁴⁸	25214903917	11	4716
RANDU	2 ³¹	65539	0	

> Registru de deplasare cu feedback liniar (LFSR)

 Este un circuit liniar format dintr-un registru serial şi o funcţie de feedback. Funcţia de feedback constă într-o adunare modulo 2 a anumitor biţi din registru.

• Perioada maximă a unui LFSR cu n biţi este $2^n - 1$ şi se obţine dacă polinomul $f \in \mathbb{Z}_2[X]$ ataşat LFSR-ului respectiv este primitiv.

> Generatorul Blum-Blum-Shub (BBS): $x_{n+1} = x_n^2 \mod m$

- Modulul m trebuie să fie de forma m = p * q, unde p și q sunt numere prime cu proprietatea că $p, q \equiv 3 \pmod{4}$.
- Valoarea iniţială x_0 trebuie să îndeplinească următoarele condiţii: $x_0 > 1$, $p \nmid x_0$ şi $q \nmid x_0$.
- Funcţia de ieşire este, de obicei, bitul de paritate al valorii curente.

Generatoare de tip Lagged Fibonacci (LFG):

• Sunt definite printr-o relaţie recurentă de forma:

$$x_n = (x_{n-j} \star x_{n-k}) \bmod m$$

în care 0 < j < k, $m = 2^L$ (L este lungimea cuvântului de memorie), iar \star este unul dintre operatorii binari de adunare, scădere, înmulţire sau XOR.

- Generatoarele de acest tip au o perioadă maximă egală cu $(2^k-1)*2^{L-1}$ dacă se folosește operația de adunare sau cea de scădere, $(2^k-1)*k$ dacă se folosește operația XOR și, respectiv, $(2^k-1)*2^{L-3}$ dacă se folosește operația de înmulțire și parametrii de deplasare j și k sunt puterile unui trinom primitiv $x^k + x^j + 1$.
- Parametrii buni:

j	k
7	170
24	55
65	71
128	159

j	k
31	63
97	127
353	521
168	521

j	k
334	607
273	607
418	1279
1029	2281

Distribuția a 1000 de valori generate folosind un LFG aditiv (j = 237 și k = 607)

Clasa de generatoare RANROT

• Tipul A:
$$x_n = ((x_{n-j} + x_{n-k}) \mod 2^b) \gg r$$

• Tipul B:
$$x_n = ((x_{n-j} \gg r_1) + (x_{n-k} \gg r_2)) \mod 2^b$$

• Tipul B3:
$$x_n = ((x_{n-i} \gg r_1) + (x_{n-j} \gg r_2) + (x_{n-k} \gg r_3)) \mod 2^b$$

• Tipul W:
$$y_n = \left(\left(z_{n-j} \gg r_4 \right) + \left(z_{n-k} \gg r_2 \right) \right) \mod 2^{\frac{b}{2}}$$

$$z_n = \left(\left(y_{n-j} \gg r_3 \right) + \left(y_{n-k} \gg r_1 \right) \right) \mod 2^{\frac{b}{2}}$$

$$x_n = y_n + z_n 2^{\frac{b}{2}}$$

- Este necesar ca 0 < i < j < k, iar x_n , y_n și z_n trebuie să fie întregi fără semn
- Perioadele maximale ale acestor generatoare sunt 2^{kb} .

> Generatorul Mother-of-All:

$$S_n = 21111111111 * x_{n-4} + 1492 * x_{n-3} + 1776 * x_{n-2} + 5115 * x_{n-1} + \left\lfloor \frac{S_{n-1}}{2^{32}} \right\rfloor$$

$$x_n = S_n \mod 2^{32}$$

• Perioada acestui generator este aproximativ 2²⁵⁰.

> Generatorul RANMAR

$$x_n = (y_n - c_n + 2^{24}) \mod 2^{24}$$

$$y_n = (y_{n-97} - y_{n-33} + 2^{24}) \mod 2^{24}$$

$$c_n = (c_{n-1} - 7654321 + 2^{24} - 3) \mod (2^{24} - 3)$$

• Perioada acestui generator este aproximativ 2¹⁴⁴.

CIFRUL VERNAM

- > Criptarea/decriptarea se realizează la nivel de octet, prin XOR-are cu octeții unei chei fluide.
- > Cheia fluidă se obține dintr-o cheie secretă (de dimensiune mică) folosind un algoritm determinist.

> Cifrul Vernam este considerat singurul sistem de criptare complet sigur!

• Criptare:

$$C_i = P_i \oplus K_i$$

• Decriptare:

$$P_i = C_i \oplus K_i$$

CIFRUL RC4

- > RC4 este un cifru fluid creat de Ron Rivest (RSA Security) în 1987.
- > Atuurile sale sunt simplitatea și viteza foarte bună (200-300 MB/s).
- \succ Cheia secretă K poate să aibă o lungime L cuprinsă între 1 și 32 de octeți, dar, de obicei, lungimea sa este cuprinsă între 5 și 16 octeți.
- Utilizează o stare internă formată din:
 - o permutare S de lungime 256 (formată din valorile 0,1,...,255)
 - doi indici $i, j \in \{0, 1, ..., 255\}$
- > Algoritmul constă din două etape:
 - inițializarea cheii fluide (*Key-scheduling algorithm* KSA)
 - generarea cheii fluide (*Pseudo-random generation algorithm* PRGA)
- \succ Criptarea/decriptarea se realizează prin XOR-area octetului curent din mesajul clar M format din N octeți cu octetul aleator curent R.

Key-scheduling algorithm (KSA)	Pseudo-random generation algorithm (PRGA)
for i from 0 to 255	i := 0
S[i] := i	j := 0
endfor	for k from 0 to N-1
	i := (i + 1) % 256
j := 0	j := (j + S[i]) % 256
for i from 0 to 255	swap(S[i],S[j])
j := (j + S[i] + K[i%L])%256	R := S[(S[i] + S[j]) % 256]
swap(S[i],S[j])	E[i] := M[i] xor R
endfor	endfor

Exemplu de utilizare pas cu pas: https://www.youtube.com/watch?v=KM-xZYZXElk

- RC4 a fost utilizat în mai multe protocoale: WEP (1997), WPA (2003/2004), SSL (1995) și TLS (1999).
- ➤ A. Roos (1995), S. Fluhrer, I. Mantin și A. Shamir (2001), A. Klein (2005) au demonstrat teoretic faptul că RC4 are un nivel de securitate scăzut, iar atacul NOMORE (2015) a demonstrat și practic acest fapt.
- > RC4 a fost eliminat din TLS în anul 2015 (RFC 7465).