NCTU-EE DCS-2019

HW04

Design: Convolution

資料準備

- 1. 從 TA 目錄資料夾解壓縮
 - % tar -xvf ~dcsta01/HW04.tar
- 2. 解壓縮資料夾 HW04 包含以下:
 - A. 00 TESTBED/
 - B. 01_RTL/
 - C. 02 SYN/

Block Diagram

設計描述

CNN 是在 AI、Machine Learning 中常見的架構,而常見的 CNN 網路裡可分為 Convolutional layer、Maxpolling 等,而這次作業主要做 Convolutional 的計算。

Convolutional 分為 filter 跟 image 兩部分,主要利用 filter 在 image 上移動計算,而會得出一張新的圖片 (feature map),以下以這次作業為例分為 4 部分介紹,filter、image、計算、output。

注意,這次的 pattern 也要由你們寫,助教僅提供一組測資,請想辦法讀檔 讀進去測(之前上課有教過),並且自己創造更多測資。

● Filter

Filter 皆為 3X3 的大小,總共 9 個數字,各自可能為-8~7,用以下圖表示。Filter 3x3 分別用 ABCDEFGHI 代表其中的數值,方便之後的計算說明。

Α	В	С	1	-3	-4
D	E	F	4	3	7
G	Н	I	1	6	3

Filter 的數值由 pattern 給進 design,而順序依照上圖 ABCDEFGHI 的順序給值。由 in_data 給值。

●Image

Image 皆為 7X7 的大小,總共 49 個數字,各自可能為 -8~7,用以下圖示意。Image 7X7 分別用 A1~A7、B1~B7....代表其中的數值,方便之後的計算說明。

A1	A2	А3	A4	A 5	A6	Α7	-5	-4	-8	-1	-6	6	-3
B1	B2	В3	B4	B5	В6	В7	-6	4	2	-8	-4	4	-6
C1	C2	СЗ	C4	C5	C6	C7	4	-2	3	-6	4	7	-2
D1	D2	D3	D4	D5	D6	D7	-5	-1	4	7	-6	-1	-8
E1	E2	E3	E4	E5	E6	E7	-2	5	6	-6	6	-8	0
F1	F2	F3	F4	F5	F6	F7	-1	-5	0	-7	-6	2	-5
G1	G2	G3	G4	G5	G6	G7	7	-2	5	7	-8	6	7

Image 的數值資料也是由 pattern 給進去 design,而順序依照 A1~A7 並且由 上而下。由 in_data 給值。

●計算

計算部分由 filter 跟 image 進行 convolution 卷積計算,這次的作業 image 為 7X7 進行 3x3 的 image 計算,並且每次移動 filter 的步數為 1 步(向右向下移動的距離),因此最後 output 出來的圖像為 5X5 的大小,從下面的流程圖可以看出來。

下圖是 output 出來的圖像(5x5)。

Н1	H2	НЗ	Н4	H5
I1	12	13	14	15
J1	J2	J3	J4	J5
K1	K2	К3	К4	K5
L1	L2	L3	L4	L5

Step1.由一開始(左上角)開始進行

Α	В	С	A4	A5	A6	A7
D	Е	F	B4	B5	В6	В7
G	Н	1	C4	C5	C6	C7
D1	D2	D3	D4	D5	D6	D7
E1	E2	E3	E4	E5	E6	E7
F1	F2	F3	F4	F5	F6	F7
G1	G2	G3	G4	G5	G6	G7

把 filter 遮上 image 並將相對應的數值進行相乘相加:

Result = A1*A+A2*B+A3*C+B1*D+B2*E+B3*F+C1*G+C2*G+C3*I = 80
80 便為新圖像的結果,位置為 H1。

Step2.filter 向右移動一格

A1	Α	В	С	A5	A6	A7
B1	D	Ε	F	B5	В6	В7
C1	G	Н	1	C5	C6	С7
D1	D2	D3	D4	D5	D6	D7
E1	E2	E3	E4	E5	E6	E7
F1	F2	F3	F4	F5	F6	F7
G1	G2	G3	G4	G5	G6	G7

如上圖所示,將 filter 向右移動一格,再將相對應的數值進行相乘相加。 Result = A2*A+A3*B+A4*C+B5*D+B3*E+B4*F+C2*G+C3*G+C4*I = 88 88 便為新圖像的結果,位置為 H2。

<mark>Step3~5</mark>.重複 step2

重複 step2 一直向右移動 filter 並且計算,得到相對應結果。下圖為 step5 的步驟。

A1	A2	А3	A4	Α	В	С	42	-12	-46	16	-18
B1	B2	В3	В4	D	Ε	F					
C1	C2	СЗ	C4	G	Н	- 1					
D1	D2	D3	D4	D5	D6	D7					
E1	E2	E3	E4	E5	E6	E7					
F1	F2	F3	F4	F5	F6	F7					
G1	G2	G3	G4	G5	G6	G7					

Step6.往下移動

由 step1 的 filter 位置往下移動一格,並計算,得到相對應結果。

A1	A2	А3	A4	A5	A6	A7	42	-12	-46	16	-18
Α	В	С	B4	B5	В6	В7					
D	Ε	F	C4	C5	C6	C7	6				
G	Н	1	D4	D5	D6	D7					
E1	E2	E3	E4	E5	E6	E7					
F1	F2	F3	F4	F5	F6	F7					
G1	G2	G3	G4	G5	G6	G7					

Step7~10.重複 step2

重複 step2 一直向右移動 filter 並且計算,得到相對應結果。下圖為 step10 的步驟。

A1	A2	А3	A4	A5	A6	A7	42	-12	-46	16	-18
B1	B2	В3	B4	Α	В	С		22	02	7	
C1	C2	C3	C4	D	Ε	F	6	33	92	-7	-5
D1	D2	D3	D4	G	Н	ı					
E1	E2	E3	E4	E5	E6	E7					
F1	F2	F3	F4	F5	F6	F7					
G1	G2	G3	G4	G5	G6	G7					

Step11~25.重複 step1~10 的步驟

重複 step1~10 的方式移動 filter 並且計算相對應的數值。下圖為 step25 的步驟,結束後會得到一張完整的 5x5 的圖片。

A1	A2	А3	A4	A5	A6	A7	42	-12	-46	16	_
B1	B2	В3	B4	B5	В6	В7	6	22	02	7	
C1	C2	С3	C4	C5	C6	C7	6	33	92	-7	
D1	D2	D3	D4	D5	D6	D7	49	93	-12	-37	-:
E1	E2	E3	E4	Α	В	С	0	-71	-5	-70	
F1	F2	F3	F4	D	Ε	F		, -		, 0	
G1	G2	G3	G4	G	Н	ı	-50	-9	-40	-47	

●output

計算完成後,會得到完整的 5x5 的圖片,如下圖所示。

H1	H2	НЗ	H4	H5
I1	12	13	14	15
J1	J2	J3	J4	J5
K1	K2	К3	K4	K5
L1	L2	L3	L4	L5

42	-12	-46	16	-18
6	33	92	-7	-5
49	93	-12	-37	-134
0	-71	-5	-70	20
-50	-9	-40	-47	26

最後再依照 $H1^{H5}$ 、 $I1^{I5}$ … $L1^{I5}$ 的順序輸出圖片(使用 out_data)。

Input

Signal name	Number of bit	Description
clk	1 bit	Clock 7ns
rst_n	1 bit	Asynchronous active-low reset
image_valid	1 bit	為 1 時代表給 image 資料,連續給滿 49 cycle
filter_valid	1 bit	為 1 時代表給 filter 資料,連續給滿 9 cycle
in_data	4 bits	為連續資料,依據 image_valid 跟filter_valid 判斷是哪種資料。(signed)

P.S.每組 pattern 都是 先給 filter 再給 image 的資料。

Output

Signal name	Number of	Description
out_valid	1 bit	必須在 image_valid 落下後 100cycle 內拉 起,out_valid 持續 25 個 cycle。
out	11 bits	依序輸出計算完後的結果,共 25cycle。 (signed)

Example Waveform

Pattern input

Pattern output

Specification

- 1. Top module name : conv (File name: conv.sv)
- 2. 所有 output 必須為 0,在非同步負準位 reset。
- 3. 02_SYN result 不行有 error 且不能有 latchs。
- 4. Clock period 7ns •
- 5. Input delay = 0.2 * clock period; output delay = 0.2* clock period;

上傳檔案

- 1. Code 使用 09_upload 上傳。
- 2. report_dcsxx.pdf, xx is your server account. 上傳至 new e3。
- 3. 請 5/10 9:00 am 之前上傳

Grading Policy

- 1. Pass the RTL & Synthesis simulation. 50%
- 2. Area 20%
- 3. Latency 20% (clock period 7ns * total cycle)
- 4. Report. 10%

Note

Template folders and reference commands:

- 1. 01_RTL/ (RTL simulation) ./01_run
- 2. 02_SYN/ (Synthesis) ./01_run_dc

報告請簡單且重點撰寫,不超過兩頁 A4,並包括以下內容

- 1. 描述你的設計方法,包含但不限於如何加速(減少 critical path)或降低面積。
- 2. 基於以上,畫出你的架構圖(Block diagram)與 FSM diagram、並且看 02 的 結果看出使用什麼 module、乘法器。
- 3. 心得報告,不侷限於此次作業,對於作業或上課內容都可以寫下。
- 4. 遇到的困難與如何解決。

參考資料:

https://medium.com/@chih.sheng.huang821/%E5%8D%B7%E7%A9%8D%E7%A5%9
E%E7%B6%93%E7%B6%B2%E8%B7%AF-convolutional-neural-network-cnn%E5%8D%B7%E7%A9%8D%E8%A8%88%E7%AE%97%E4%B8%AD%E7%9A%84%E6%
AD%A5%E4%BC%90-stride-%E5%92%8C%E5%A1%AB%E5%85%85-padding94449e638e82

https://morvanzhou.github.io/tutorials/machine-learning/ML-intro/2-2-CNN/

PPT 附檔(CNN 的動畫)