Digital Design and Verification of AMBA3&4 APB Protocol

Abdelrahman Mohamed

Abdelrahmansalby23@gmail.com

<u>LinkedIn</u>

GitHub

Project Link: <u>LINK</u>

CONTENTS

01 02 03 04 **INTRODUCTION** DESIGN SIGNAL **KEY FEATURES DESCRIPTION ARCHITECTURE** 05 06 07 08 AMBA3 & AMBA4 TRANSACTIONS **ADDRESS OPERATING STATES FEATURES DECODING** 09 10 11 12 **RTL ELABORATION QUESTA TIMING VERIFICATION REFERENCES ANALYSIS**

NTRODUCTION

The Advanced Microcontroller Bus Architecture (AMBA) is a widely used on-chip interconnect specification developed by ARM. The AMBA APB (Advanced Peripheral Bus) Protocol is a simple, low-cost interface that is commonly used to connect low-bandwidth peripherals to the high-performance main system bus. The AMBA APB Protocol Version 2.0 is the latest version of this protocol, introducing several enhancements and improvements over the previous version.

APB revisions:

- 1. AMBA 2 APB Specification
- 2. AMBA 3 APB Protocol Specification v1.0

The AMBA 3 APB Protocol Specification v1.0 defines the following additional functionality:

- Wait states
 - o **PREADY**: A ready signal to indicate completion of an APB transfer.
- Error reporting
 - o PSLVERR An error signal to indicate the failure of a transfer.

This version of the specification is referred to as APB3, which is supported in my design.

3. AMBA APB Protocol Specification v2.0

The AMBA APB Protocol Specification v2.0 defines the following additional functionality:

- Transaction protection. See Protection unit support on page 3-8.
 - PPROT A protection signal to support both non-secure and secure transactions on APB.
- Sparse data transfer. See Write strobes on page 3-4. The following interface
 - PSTRB: A write strobe signal to enable sparse data transfer on the write data bus.

This version of the specification is referred to as APB4, which is supported in my design.

DESIGN ARCHITECTURE

KEY FEATURES

The key features of the AMBA APB Protocol Version 2.0 include:

- > Synchronous operation
- ➤ Simple, low-cost interface
- ➤ Non-pipelined bus transactions
- ➤ Support for 8-bit, 16-bit, and 32-bit data transfers
- > Efficient power management through clock gating

SIGNAL DESCRIPTION Input Signal

signal	Source	Description			
Global Inputs					
PCLK	Clock source	Clock. The rising edge of PCLK times all transfers on the APB.			
PRESETn	System bus equivalent	Reset. The APB reset signal is active LOW. This signal is normally			
		connected directly to the system bus reset signal.			
Inputs from Previous system to APB Master					
PSI_ADDR	Previous System	Previous System Address bus for read and write, up to 32 bits			
PSI_WRITE	Previous System	Direction. This signal indicates an APB write access when HIGH and an			
_		APB read access when LOW.			
PSI_WDATA	Previous System	Write data. Driven by the Previous System bus when PWRITE is HIGH.			
_		This bus can be up to 32 bits wide.			
PSI_STRB	Previous System	Write strobes. This signal indicates which byte lanes to update during a			
_		write transfer. There is one write strobe for each eight bits of the write			
		data bus. Therefore, PSTRB[n] corresponds to PWDATA[(8n + 7):(8n)].			
		Write strobes must not be active during a read transfer.			
Transfer	Previous System	This signal indicate to Transfer from IDLE State to SETUP State			
PSI_PROT	Previous System	Protection type. This signal indicates the normal, privileged, or secure			
_	,	protection level of the transaction.			
Inputs from Slave	Inputs from Slave to APB Master				
PRDATA	Slave	Read Data. The selected slave drives this bus when PWRITE is LOW. up			
		to 32-bits wide.			
PSLVERR	Slave	This signal indicates a transfer failure. APB peripherals are not required			
		to support the PSLVERR pin. This is true for both existing and new APB			
		peripheral designs.			

SIGNAL DESCRIPTION

Output Signal

signal	Source	Description	
APB Master Outputs to Slave			
PADDR	Master	Address. This is the APB Master address bus, up to 32 bits	
PWRITE	Master	Direction. This signal indicates an APB write access when HIGH and an APB read access when LOW.	
PWDATA	Master	Write data. This bus is driven by the peripheral bus Master when PWRITE is HIGH. up to 32 bits wide.	
PSTRB	Master	Write strobes. This signal indicates which byte lanes to update during a write transfer. There is one write strobe for each eight bits of the write data bus. Therefore, PSTRB[n] corresponds to PWDATA[(8n + 7):(8n)]. Write strobes must not be active during a read transfer.	
PSELx	Master	Select. The APB bridge unit generates this signal to each peripheral bus slave. It indicates that the slave device is selected and that a data transfer is required. There is a PSELx signal for each slave.	
PPROT	Master	Protection type. This signal indicates the normal, privileged, or secure protection level of the transaction.	
APB Master Outputs to Previous system			
PSO_RDATA	Master	Read Data. Master drives this bus to Previous System when PWRITE is LOW. up to 32-bits wide.	
PSO_SLVERR	Master	This signal indicates a transfer failure. APB peripherals are not required to support the PSLVERR pin. This is true for both existing and new APB peripheral designs.	

AMBA3 & AMBA4 FEATURES

1. AMBA3

It's also called Issues A and B

- a. APB signal PREADY added
- b. APB signal **PSLVERR** added

2. AMBA4

c. APB signal **PPROT** added

PPROT[2:0]	Protection level
[0]	1 = privileged access
	0 = normal access
[1]	1 = nonsecure access
	0 = secure access
[2]	1 = instruction access
	0 = data access

d. APB signal **PSTRB** added

ADDRESS DECODING

This design have 4 slaves which need only two bits to decoding

PSELx is 4 bits
Slave 1 0001
Slave 2 0010
Slave 3 0100
Slave 4 1000

It's decoding using the last tow bits of PADDR \rightarrow PADDR[31:30];

```
// ADDRESS Decoding
    always @(posedge PCLK or negedge PRESETn) begin
        if (!PRESETn) begin
            PSELx <= 'b0;
        else if (NextState == IDLE) begin
            PSELx <= 'b0;
        else begin
            case (PSI_ADDR[31:30])
                'b00: PSELx <= 4'b0001;
                'b01: PSELx <= 4'b0010;
                'b10: PSELx <= 4'b0100;
                'b11: PSELx <= 4'b1000;
                default: begin
                   PSELx <= 'b0;</pre>
                end
            endcase
    end
```

TRANSACTIONS

Write Transfer

1. With no wait state

- I. At T1, address, data, write, and select signals are registered at PCLK rising edge.
- II. At T2, enable and ready signals are registered at PCLK rising, indicating Access phase.
- III. Address, data, and control signals remain valid until transfer completes at T3.
- IV. Enable signal is deasserted at transfer end, select signal deasserted unless next transfer.
- V. This defines the Setup, Access, and completion phases of a standard AMBA write transfer.

2. With wait state

Only transfer done when PREADY is HIGH

TRANSACTIONS

Read Transfer

a. With no wait state

b. With wait state

Only transfer done when PREADY is HIGH

OPERATING STATES

Operating states in ARM Specs pdf

IDLE	This is the default state of the APB.	
SETUP	When a transfer is required the bus moves into the SETUP state, where the appropriat	
	select signal, PSELx, is asserted. The bus only remains in the SETUP state for one clock	
	cycle and always moves to the ACCESS state on the next rising edge of the clock	
ACCESS	The enable signal, PENABLE, is asserted in the ACCESS state. The address, write, select,	
	and write data signals must remain stable during the transition from the SETUP to	
	ACCESS state. Exit from the ACCESS state is controlled by the PREADY signal from the	
	slave:	
	• If PREADY is held LOW by the slave then the peripheral bus remains in the ACCESS	
	state.	
	• If PREADY is driven HIGH by the slave then the ACCESS state is exited and the bus	
	returns to the IDLE state if no more transfers are required. Alternatively, the bus moves	
	directly to the SETUP state if another transfer follows	

RTL ELABORATION

QUESTA TIMING ANALYSIS

PCLK Period

Fmax

setup summary

hold summary

VERIFICATION PLANE

- 1. Asert RESET to verfy the output
- 2. Write with no wait
 - Assert PSLEVRR with less freq. to verfy the output
- 3. Write with wait
 - Make waiting period variable to test all cases
 - Assert PSLEVRR with less freq. to verfy the output
- 4. Read with no wait
 - Check the PSTRB and ensures it's equal to zero
 - Assert PSLEVRR with less freq. to verfy the output
- 5. Read with wait
 - Check the PSTRB and ensures it's equal to zero
 - Assert PSLEVRR with less freq. to verfy the output

VERIFICATION CONSTRAINTS

- 1. Constraint on **PRESETn** to be active (**RESET_ACTIVATE**%) of the time, which **RESET_ACTIVATE** is a parameter in **shared pkg**.
- Constraint on PSLVERR to be active (PSLVERR_ACTIVATE%) of the time, which PSLVERR_ACTIVATE is a parameter in shared_pkg.
- 3. Constraint on **PSI_WDATA** to be (10% is MAX, 5% is ZERO and 85% other values), which MAX is parameter in **shared_pkg** take maximum value of **PWDATA** and ZEO is parameter take value zero.
- 4. Constraint on PRDATA to be (10% is MAX, 5% is ZERO and 85% other values), which MAX is parameter in shared_pkg take maximum value of PSI_ADDR and ZEO is parameter take value zero
- 5. Constraint on **PSI_ADDR[31:30]** to take all values with equal chances.
- 6. Constraint on **WaitPeriod** to be between "MIN_WAIT_PEROPD" and "MAX_WAIT_PEROPD", which MIN_WAIT_PEROPD and MAX_WAIT_PEROPD is parameter in **shared_pkg**.

For AMBA4:

Constraint on **PSI_STRB** to be zero when **PSI_WRITE** is zero.

VERIFICATION COVERAGE

Bins for the following signals:

- PRESETn
- PWRITE
- PREADY
- PENABLE
- PSELx

Cros coverage between PREADY and PENABLE.

For AMBA 4 Bins for PPROT

VERIFICATION ASSERTION

Assertion for the following:

- 1. When PRESETn is Active
 - a. AMBA 3

```
RST PENABLE
             : assert to ensures that PENABLE
                                                  is zero When PRESETn is Active
RST_PADDR
                                                 is zero When PRESETn is Active
               : assert to ensures that PADDR
RST PWRITE
               : assert to ensures that PWRITE
                                                 is zero When PRESETn is Active
RST_PSO_RDATA : assert to ensures that PSO_RDATA is zero When PRESETn is Active
RST_PSO_SLVERR : assert to ensures that PSO_SLVERR is zero When PRESETn is Active
RST PWDATA
               : assert to ensures that PWDATA
                                                  is zero When PRESETn is Active
RST PSELx : assert to ensures that PSELx
                                                  is zero When PRESETn is Active
```

b. AMBA 4

```
RESET_STRB : assert to ensures that PSTRB is zero When PRESETn is Active
RESET_PROT : assert to ensures that PROT is zero When PRESETn is Active
```

2. Other assertion

a. AMBA 3

```
NextState_pslv : assert to ensure when PSLVERR is active and past NextState is ACCESS then NextState is IDLE
selx : assert to ensure when PSI_ADDR!=0 then one and only one of the bits in PSELx is asserted

ASSERT_ENABLE : assert to ensure when NextState is ACCESS then PENABLE should be asserted

ADDRESS : assert to ensure when NextState is SETUP then PADDR = PSI_ADDR

WRITE : assert to ensure when NextState is SETUP then PWRITE = PSI_WRITE

WRITE_DATA : assert to ensure when NextState is SETUP and PWRITE HIGH then PWDATA = PSI_WDATA

READ_DATA : assert to ensure when NextState is ACCESS and PWRITE LOW then PSO_RDATA = PRDATA

SLVERR : assert to ensure when PREADY is HIGH then PSO_SLVERR = PSLVERR
```

b. AMBA 4

```
READ_STRB : assert to ensure when PWRITE is LOW PSTRB = 0

STRB : assert to ensure when NextState is SETUP and PWRITE is HIGH then PSTRB = PSI_STRB

PROT : assert to ensure when NextState is ACCESS then PPROT is PSI_PROT
```

REFERENCES

AMBA® APB

Protocol: https://www.eecs.umich.edu/courses/eecs373/readings/IHI0024C amba apb protocol spec.pdf