Lycée Buffon MPSI

TD 12

Année 2020-2021

Suites numériques 2

Exercice 1 : Trouver l'ensemble des suites complexes (resp. réelles) telles que

- 1. $u_{n+1} = 2u_n + 3$.
- 2. $u_{n+2} = 6u_{n+1} 9u_n$
- 3. $u_{n+2} = -u_{n+1} u_n$
- 4. $u_{n+2} = 2\sin\theta u_{n+1} u_n \text{ avec } \theta \in \mathbb{R}.$

Exercice 2: Montrer que si u et v sont deux suites réelles convergentes alors la suite $w = (\max(u_n, v_n))_{n \in \mathbb{N}}$ converge.

Exercice 3:

Soit u définie par $u_0 \geq -1$ et $\forall n \in \mathbb{N}, u_{n+1} = \sqrt{1+u_n}$.

- 1. Prouver que la suite u est bien définie.
- 2. Montrer que la suite u converge et déterminer sa limite.

Exercice 4:

Soit u définie par $u_0 \in \mathbb{R}^+$ et $\forall n \in \mathbb{N}, u_{n+1} = \frac{1}{1+u_n}$.

- 1. Prouver que la suite u est bien définie.
- 2. Montrer que la suite u converge et déterminer sa limite.

Exercice 5:

Soit u définie par $u_0 \in [1, +\infty[$ et $\forall n \in \mathbb{N}, u_{n+1} = 1 + \ln(u_n).$

- 1. Prouver que la suite u est bien définie.
- 2. Montrer que la suite u converge et déterminer sa limite.

Exercice 6:

Soit u définie par $u_0 \in [-2, 2]$ et $\forall n \in \mathbb{N}, u_{n+1} = \sqrt{2 - u_n}$.

- 1. Prouver que la suite u est bien définie.
- 2. Montrer que la suite u converge et déterminer sa limite.

Exercice 7: Trouver des équivalents simples des suites suivantes:

$$\frac{n^3 + 2n + 5}{n + 6}$$

$$\frac{n^3 + 2n + 5}{2^n}$$

$$3. \ \frac{1}{n} - \frac{1}{n+1}$$

4.
$$\sin(2^{-n})$$

$$5. \ \sqrt{n} - \sqrt{n+1}$$

6.
$$\sqrt[3]{n} - \sqrt[3]{n+1}$$

7.
$$(n + \ln n)e^{-\frac{\pi}{2}}$$

8.
$$\ln(n^2+2)$$

9.
$$\left(1 + \ln\left(1 + \frac{1}{n}\right)\right)^n$$

Exercice 8:

Montrer que les suites de terme général

$$u_n = \sum_{k=1}^n \frac{1}{\sqrt{k}} - 2\sqrt{n}$$
 et $v_n = \sum_{k=1}^n \frac{1}{\sqrt{k}} - 2\sqrt{n+1}$

convergent.

En déduire un équivalent de $\sum_{k=1}^{\infty} \frac{1}{\sqrt{k}}$.

Exercice 9:

- 1. Pour tout entier n, montrer qu'il existe un unique réel $u_n \in \left[n\pi \frac{\pi}{2}, n\pi + \frac{\pi}{2}\right]$ tel que $\tan u_n = n$.
- 2. Montrer que $u_n \sim n\pi$.
- 3. Prouver que la suite $v = (u_n n\pi)_{n \in \mathbb{N}}$ converge et déterminer sa limite ℓ .
- 4. Donner un équivalent simple w_n de $v_n \lim v$.

Exercice 10: Soit u une suite décroissante telle que $u_{n+1} + u_n \sim \frac{1}{\sqrt{n}}$.

Montrer que u converge et en donner un équivalent.