Applied Machine Learning

- Structure of a Unit in a Neural Network
- Example of activation function: Rectified Linear Unit ReLU
- Simple Neural Network classifier
 - ReLU and Softmax layers
- Classification process

Neural Network Unit

- One unit
- Input: vector **x**
- Parameters:
 - Weights: vector w
 - Bias: scalar *b*
- Associated function:

• Linear part:
$$u = \sum_{i} w_i x_i + b$$
. Vectorized: $u = \mathbf{w}^{\mathsf{T}} \mathbf{x} + b$

- Activation:
 - nonlinear Rectified Linear Unit **ReLU**: $F(u) = \max(0, u)$
 - 0: point at one side of plane
 - *u*: point at other side of plane
 - grows with distance from plane

- One unit per class
 - output: probability that input features correspond to class
- Classifier for C classes

outputs:
$$\mathbf{o} = \begin{bmatrix} o_1 \\ \vdots \\ o_C \end{bmatrix}$$
, o_j : output of unit j

Parameters of unit j

weights: vector
$$\mathbf{w}^{(j)} = \begin{bmatrix} w_1^{(j)} \\ \vdots \\ w_n^{(j)} \end{bmatrix}$$
 , bias: scalar $b^{(j)}$

- Goal: output of unit j models probability of input \mathbf{x}_i to correspond to class j
- Softmax function for vector with C class outputs ${f o}$

• softmax(u) =
$$\mathbf{s}(\mathbf{o}) = \frac{1}{\sum_{k} e^{o_k}} \begin{bmatrix} e^{o_1} \\ \vdots \\ e^{o_C} \end{bmatrix}^{\frac{12}{10}}_{0.8}$$

Class for data item \mathbf{X}_i :

one-hot vector:
$$\mathbf{y}_i = \begin{bmatrix} y_0 \\ \vdots \\ y_C \end{bmatrix} y_j = 1, y_{i \neq j} = 0$$

• Probability of input \mathbf{x}_i corresponding to class j

•
$$p(y_j = 1 | \mathbf{x}_i, \mathbf{w}^{(j)}, b^{(j)}) = s_j(\mathbf{o}(\mathbf{x}_i, \mathbf{w}^{(j)}, b^{(j)}))$$

- Classifying among two classes: X, O
 - ReLU units: u_1 , u_2
 - $\begin{cases} u_1 & \text{grows with distance to plane} \\ u_2 & 0 \end{cases}$
 - O: $\begin{cases} u_1 & 0 \\ u_2 & \text{grows with distance to plane} \end{cases}$

$$\begin{array}{c}
u_1 = 0 \quad \Rightarrow s_1 = \frac{e^0}{e^0 + e^0} = \frac{1}{2} \\
u_2 = 0 \quad \Rightarrow s_2 = \frac{e^0}{e^0 + e^0} = \frac{1}{2}
\end{array}$$

- Classifying among two classes: X, O
 - ReLU units: u_1 , u_2
 - $\begin{cases} u_1 & \text{grows with distance to plane} \\ u_2 & 0 \end{cases}$

$$\bullet \quad \bullet \quad \begin{cases} u_1 = 0 & \Rightarrow s_1 = \frac{e^0}{e^0 + e^\delta} = \frac{1}{1 + e^\delta} \\ u_2 = \delta & \Rightarrow s_2 = \frac{e^\delta}{e^0 + e^\delta} = \frac{e^\delta}{1 + e^\delta} \end{cases}$$

$$\begin{array}{c}
u_1 = 0 & \Rightarrow s_1 = \frac{e^0}{e^0 + e^0} = \frac{1}{2} \\
u_2 = 0 & \Rightarrow s_2 = \frac{e^0}{e^0 + e^0} = \frac{1}{2}
\end{array}$$

Classification Regions

- Regions
 - only \times : positive for u_1
 - only O: positive for u_2
 - both \times and O: positive for both u_1 and u_2
 - split in two parts
 - higher probability for u_1 : \times
 - higher probability for u_2 : O
 - no dataset item in region, probabilities: $\frac{1}{2}$

- Structure of a Unit in a Neural Network
- Example of activation function: Rectified Linear Unit ReLU
- Simple Neural Network classifier
 - ReLU and Softmax layers
- Classification process

Applied Machine Learning