Optical Multiplexing and Demultiplexing

Brian Schulte Ahmed Alsinan

Abstract

- Optical multiplexing (and demultiplexing) allows for sending multiple signals through a single medium as well as for bidirectional use of that medium.
- Optical Time Domain Multiplexing (OTDM)
- Wavelength-Division Multiplexing (WDM)

History

- Data Transmission Speeds
 - Characters Per Minute (CPM)
 - Words Per Minute (WPM)
 - 5 characters and space
 - Bits Per Second (bps)
 - 1950s → 1200 bps
 - Currently → 10 Gbps

History

- Multiplexing Devices Development:
 - Telegraph lines utilized DC
 - Vacuum Tubes allowed AC in 1930s
 - Transistors replaced Vacuum Tubes in1960s
 - Integrated Circuits

Applications

- Optical Multiplexing Fiber Optic Cable
 - long distance communication at high bandwidths
 - Useful for Fiber Optic Sensors
 - Sensors multiplexed into a single fiber

Optical Multiplexing

- Optical Time-Division Multiplexing
 - Based on Time-Division Multiplexing
- Wavelength-Division Multiplexing
 - Based on Frequency-Division Multiplexing of radio waves

Time-Division Multiplexing

- Transmitting digitized data over one medium
 - Wires or optical fibers
 - Pulses representing bits from different time slots

- Two Types:
 - Synchronous TDM
 - Asynchronous TDM

- Synchronous TDM
 - Accepts input in a round-robin fashion
 - Transmits data in a never ending pattern
 - Popular Line & Sources → as much bandwidth Examples:
 - T-1 and ISDN telephone lines
 - SONET (Synchronous Optical NETwork)

Asynchronous TDM

- Accepts the incoming data streams and creates a frame containing only the data to be transmitted
- Good for low bandwidth lines
- Transmits only data from active workstations
- Examples:
 - used for LANs

Optical Time Division Multiplexing (OTDM)

 OTDM is accomplished by creating phase delays each signal together but with differing phase delays

Frequency-Division Multiplexing (FDM) All signals are sent simultaneously, each assigned its own frequency Using filters all signals can be retrieved

Grating Multiplexer Lens focuses all signals to the same point Grating reflects all signals into one signal a(sinθ_i+sinθ_o)=mλ

Grating Multiplexer Multiplexer is designed such that each λ and θ_i are related Results in one signal that can then be coupled into a fiber optic cable a(sin θ_i+sin θ₀)=mλ

Fabry-Perot Multiplexer Separates based on wavelength = demux Can be reversed for multiplexer

Conclusion

- History
- Applications
- Optical Time Division Multiplexing
- Wavelength-Division Multiplexing
 - Grating Multiplexer
 - Fabry-Perot Multiplexer