Ćwiczenia z ANALIZY NUMERYCZNEJ (L)

Lista nr 4

24 października 2017 r.

Zajęcia 8 listopada 2017 r. Zaliczenie listy **od 6 pkt.**

- **L4.1.** I punkt Niech $[a_0, b_0]$, $[a_1, b_1]$,... będzie ciągiem przedziałów zbudowanym za pomocą metody bisekcji zastosowanej do lokalizacji zer funkcji f ciągłej w przedziale $[a_0, b_0]$, niech ponadto $m_n := \frac{1}{2}(a_n + b_n)$, $\alpha = \lim_{n \to \infty} m_n$ oraz $e_n := \alpha m_n$.
 - (a) Wykaż, że $[a_n, b_n] \supset [a_{n+1}, b_{n+1}]$ (n = 0, 1, ...).
 - (b) Ile wynosi długość przedziału $[a_n, b_n] \quad (n = 0, 1, ...)$?
 - (c) Wykaż, że $(1) |e_n| \le 2^{-n-1}(b_0 a_0) (n \ge 0).$
 - (d) Czy może zdarzyć się, że $a_0 < a_1 < a_2 < \dots$?
- **L4.2.** I punkt Ile kroków według metody bisekcji należy wykonać, żeby wyznaczyć zero α z błędem bezwzględnym mniejszym niż zadana liczba $\varepsilon > 0$?
- **L4.3.** Włącz komputer! 1 punkt Miejscem zerowym funkcji $f(x) = x e^{-x} 0.06064$ jest $\alpha = 0.0646926359947960...$ Przyjmijmy $a_0 := 0$ i $b_0 := 1$. Dla $0 \le n \le 15$ porównać rzeczywiste wartości błędów e_n z ich oszacowaniami (1) (oznaczenia jak w zadaniu $\overline{\mathbf{L4.1}}$). Czy wielkości $|e_n|$ maleją monotonicznie wraz ze wzrostem n?
- **L4.4.** Włącz komputer! 1 punkt Wyznaczyć wszystkie zera funkcji $f(x) = x^2 2\cos(3x+1)$ z błędem nie większym niż 10^{-5} . Wskazówka: Naszkicować wykresy funkcji $g(x) = x^2$ i $h(x) = 2\cos(3x+1)$.
- **L4.5.** Włącz komputer! 1 punkt Odwrotność liczby R można obliczać bez wykonywania dzieleń za pomocą wzoru

$$x_{n+1} := x_n(2 - x_n R)$$
 $(n = 0, 1, ...).$

Uzasadnij ten fakt stosując metodę Newtona do wyznaczania zera pewnej funkcji f. Następnie sprawdź eksperymentalnie na wybranych przykładach przydatność tej metody w praktyce obliczeniowej. Spróbuj ustalić w jaki sposób wybierać x_0 oraz ile średnio iteracji trzeba wykonać, aby uzyskać dokładność bliską maszynowej?

L4.6. Włącz komputer! 1 punkt Stosując metodę Newtona, zaproponuj algorytm numerycznego obliczania $\frac{1}{\sqrt{a}}$ (a>0) bez wykonywania dzieleń. Opracowaną metodę sprawdź eksperymentalnie (patrz zadanie **L4.5**).

- **L4.7.** Włącz komputer! 1 punkt Niech będzie $a=m\,2^c$, gdzie c jest liczbą całkowitą, a m ułamkiem z przedziału $[\frac{1}{2},1)$. Zaproponować efektywną metodę obliczania \sqrt{a} , otrzymaną przez zastosowanie metody Newtona do wyznaczania zera pewnej funkcji f. Ustal eksperymentalnie dla jakich wartości x_0 metoda jest zbieżna.
- **L4.8.** Włącz komputer! 1 punkt r-krotne zero α funkcji f(x) jest pojedynczym zerem funkcji $g(x) := \sqrt[r]{f(x)}$. Jaką postać ma wzór opisujący metodę Newtona zastosowaną do funkcji g(x)? Wykonując odpowiednie testy numeryczne, sprawdź otrzymaną w ten sposób metodę. Czy jest ona warta polecenia?

(-) Paweł Woźny