# Ökonometria

# 2. házi feladat

# Granát Marcell

# 2020. december 15.

# Tartalomjegyzék

| <b>1.</b> | $\mathbf{fel}$ | ad | at | ; |   |   |       |   |   |   |   |   |   |   |   |       |   |   |   |   |   |   |   |   |   |   |   |       |   |   |   |   |   |   |       |   |   |   |   |   |       |   |   |   |   | <b>2</b> |
|-----------|----------------|----|----|---|---|---|-------|---|---|---|---|---|---|---|---|-------|---|---|---|---|---|---|---|---|---|---|---|-------|---|---|---|---|---|---|-------|---|---|---|---|---|-------|---|---|---|---|----------|
|           | a)             |    |    |   |   |   |       |   |   |   |   |   |   |   |   |       |   |   |   |   |   |   |   |   |   |   |   |       |   |   |   |   |   |   |       |   |   |   |   |   |       |   |   |   |   | 2        |
|           | b)             |    |    |   |   |   |       |   |   |   |   |   |   |   |   | <br>  |   |   |   |   |   |   |   |   |   |   |   |       |   |   |   |   |   |   |       |   |   |   |   |   |       |   |   |   |   | 2        |
|           | c)             |    |    |   |   |   |       |   |   |   |   |   |   |   |   | <br>  |   |   |   |   |   |   |   |   |   |   |   |       |   |   |   |   |   |   |       |   |   |   |   |   |       |   |   |   |   | 2        |
|           | d)             |    |    |   |   |   |       |   |   |   |   |   |   |   |   |       |   |   |   |   |   |   |   |   |   |   |   |       |   |   |   |   |   |   |       |   |   |   |   |   |       |   |   |   |   | 4        |
| 2.        | fel            | ad | at | ; |   |   |       |   |   |   |   |   |   |   |   |       |   |   |   |   |   |   |   |   |   |   |   |       |   |   |   |   |   |   |       |   |   |   |   |   |       |   |   |   |   | 5        |
|           | a)             |    |    |   |   |   |       |   |   |   |   |   |   |   |   | <br>  |   |   |   |   |   |   |   |   |   |   |   |       |   |   |   |   |   |   |       |   |   |   |   |   |       |   |   |   |   | 5        |
|           | b)             |    |    |   |   |   |       |   |   |   |   |   |   |   |   | <br>  |   |   |   |   |   |   |   |   |   |   |   |       |   |   |   |   |   |   |       |   |   |   |   |   |       |   |   |   |   | 5        |
|           | c)             |    |    |   |   |   |       |   |   |   |   |   |   |   |   | <br>  |   |   |   |   |   |   |   |   |   |   |   |       |   |   |   |   |   |   |       |   |   |   |   |   |       |   |   |   |   | 5        |
|           | d)             |    |    |   |   |   |       |   |   |   |   |   |   |   |   |       |   |   |   |   |   |   |   |   |   |   |   |       |   |   |   |   |   |   |       |   |   |   |   |   |       |   |   |   |   | 5        |
|           | e)             |    |    |   |   |   |       |   |   |   |   |   |   |   |   |       |   |   |   |   |   |   |   |   |   |   |   |       |   |   |   |   |   |   |       |   |   |   |   |   |       |   |   |   |   | 5        |
|           | £)             |    |    |   |   |   |       |   |   |   |   |   |   |   |   |       |   |   |   |   |   |   |   |   |   |   |   |       |   |   |   |   |   |   |       |   |   |   |   |   |       |   |   |   |   | 6        |
|           | 1)             |    |    |   |   |   |       |   |   |   |   |   |   |   |   |       |   |   |   |   |   |   |   |   |   |   |   |       |   |   |   |   |   |   |       |   |   |   |   |   |       |   |   |   |   |          |
|           | g)             |    |    |   |   |   |       |   |   |   |   |   |   |   |   |       |   |   |   |   |   |   |   |   |   |   |   |       |   |   |   |   |   |   |       |   |   |   |   |   |       |   |   |   |   | 6        |
|           | h)             |    |    |   |   |   |       |   |   |   |   |   |   |   |   |       |   |   |   |   |   |   |   |   |   |   |   |       |   |   |   |   |   |   |       |   |   |   |   |   |       |   |   |   |   | 6        |
|           | i)             |    | •  | • | • | • | <br>• |   | • |   | • | • | • | • | • | <br>• | • | • | • | • | • | • | • | • | • | • | • | <br>• | • | ٠ | ٠ |   | • | • |       | ٠ | • | • | • | • | <br>٠ | ٠ | • | • |   | 7        |
| 3.        | fel            | ad | at | ; |   |   |       |   |   |   |   |   |   |   |   |       |   |   |   |   |   |   |   |   |   |   |   |       |   |   |   |   |   |   |       |   |   |   |   |   |       |   |   |   |   | 8        |
|           | a)             |    |    |   |   |   |       |   |   |   |   |   |   |   |   | <br>  |   |   |   |   |   |   |   |   |   |   |   |       |   |   |   |   |   |   |       |   |   |   |   |   |       |   |   |   |   | 8        |
|           | b)             |    |    |   |   |   |       |   |   |   |   |   |   |   |   | <br>  |   |   |   |   |   |   |   |   |   |   |   |       |   |   |   |   |   |   |       |   |   |   |   |   |       |   |   |   |   | 8        |
| 4.        | fel            | ad | at | ; |   |   |       |   |   |   |   |   |   |   |   |       |   |   |   |   |   |   |   |   |   |   |   |       |   |   |   |   |   |   |       |   |   |   |   |   |       |   |   |   |   | 9        |
|           | a)             |    |    |   |   |   |       |   |   |   |   |   |   |   |   | <br>  |   |   |   |   |   |   |   |   |   |   |   |       |   |   |   |   |   |   |       |   |   |   |   |   |       |   |   |   |   | 9        |
|           | b)             | ·  |    |   |   |   |       |   |   |   |   |   |   |   |   |       |   |   |   |   |   |   |   |   |   |   |   |       |   |   |   |   |   |   |       |   |   |   |   |   |       |   |   |   |   | 9        |
|           | c)             | •  |    |   |   |   |       |   |   |   |   |   |   |   |   |       |   |   |   |   |   |   |   |   |   |   |   |       |   |   |   |   |   |   |       |   |   |   |   |   |       |   |   |   |   | 9        |
|           | d)             | •  | •  |   |   |   |       |   |   |   |   |   |   |   |   |       |   |   |   |   |   |   |   |   |   |   |   |       |   |   |   |   |   |   |       |   |   |   |   |   |       |   |   | • | • | 10       |
|           |                | •  | ٠  | • | • | • | <br>• | ٠ | • | ٠ | • | • | • | • | • | <br>• | • | • | • | • | • | • | • | • | • | • | • | <br>• | • | • | ٠ | • | • | • | <br>٠ | • | • | • | • | • | <br>• | ٠ | • | • | • |          |
|           | e)             |    |    |   |   |   |       |   |   |   |   |   |   |   |   | <br>  |   |   |   |   |   |   |   |   |   |   |   |       |   |   |   |   |   |   |       |   |   |   |   |   |       |   |   |   |   | 10       |

```
library(tidyverse)
library(granatlib) # my personal package: https://github.com/MarcellGranat/granatlib
theme_set(theme_granat())
```

# 1. feladat

Az alvással és a munkával töltött idő közötti átváltást, valamint az alvásidőt befolyásoló egyéb tényezőket vizsgáljuk a sleep75 adatbázis alapján (amely a "wooldridge" csomagban található). A függő változó az éjszakai alvással töltött összes idő percben (sleep), a magyarázó változók pedig a teljes heti munkaidő (totwrk), az iskolai évek száma és az életkor (educ, age), nem (male) és egy dummy változó, ami a kisgyerek jelenlétét mutatja a családban (yngkid).

```
data(sleep75, package = "wooldridge")
dat <- sleep75</pre>
```

**a**)

Definiálja a foglalkoztatás három kategóriáját a heti ledolgozott órák alapján (hozzávetőlegesen: nem dolgozik [<4 óra], részmunkaidős [4-35 óra], teljes munkaidős [> 35 óra])! Vizsgálja meg az alvással töltött idő eloszlását boxplot-tal a foglalkoztatási kategóriák szerint! Adjon az ábrának címet, informatív tengelyfeliratokat stb.! Megjegyzés: itt használhatja a cut() függvényt.

```
dat %>% mutate(
  totwrk = totwrk/60,
  wrktype = factor(case_when(
    totwrk < 4 ~ 'Nem dolgozik',
    totwrk >= 4 & totwrk < 35 ~ 'Részmunkaidős',
    T ~ 'Teljes munkaidős'))) %T>%
  {dat <<- .} %>% # rewrite totwrk + wrktype
  ggplot(aes(x = wrktype, y = sleep)) + geom_boxplot() + # plot
  labs(x = 'Foglalkozatási típus', y = 'Alvási idő')
```

b)

Becsüljön meg három olyan regressziós modellt, amelyek függő változója a sleep, és az első modell egyetlen magyarázó változója totwrk, a második modell magyarázó változói totwrk és négyzete, a harmadik modell pedig a foglalkoztatási kategóriákat tartalmazza magyarázó változóként! (Természetesen minden modellben szerepeljen a konstans is.) Megjegyzés: a factor() függvény hasznos lehet ebben a részben.

```
dat <- dat %>% mutate(totwrk2 = totwrk^2)
model1 <- lm(data = dat, formula = sleep ~ totwrk)
model2 <- lm(data = dat, formula = sleep ~ totwrk + totwrk2)
model3 <- lm(data = dat, formula = sleep ~ wrktype)</pre>
```

 $\mathbf{c}$ 

Ábrázolja a sleep becsült függését a totwrk változótól egyetlen ábrában a három modell alapján kiszámítva!



1. ábra. Alvási idő dobozábrája foglalkozatatási típusonként



Valós értékek

Modellbecslés — 1. modell — 2. modell — 3. modell

2. ábra. Becsült alvási idő különböző modellekből

**d**)

Melyik modellt választaná a modellszelekciós kritériumok és az értelmezhetőség alapján?

```
rbind(broom::glance(model1), broom::glance(model2)) %>%
  rbind(broom::glance(model3)) %>%
  mutate(model = c("1. modell", "2. modell", "3. modell")) %>%
  column_to_rownames(var = 'model') %>%
  select(r.squared, adj.r.squared, AIC, BIC) %>%
  rename(c("R négyzet" = r.squared, "Korrigált R négyzet" = adj.r.squared)) %>%
  knitr::kable(digits = 4, format.args = list(decimal.mark = ","),
      caption = "A 3 modell jellemzői", align = rep("c", ncol(.)))
```

1. táblázat: A 3 modell jellemzői

|           | R négyzet | Korrigált R négyzet | AIC          | BIC          |
|-----------|-----------|---------------------|--------------|--------------|
| 1. modell | 0,1033    | 0,1020              | 10540,19     | 10553,87     |
| 2. modell | 0,1075    | 0,1049              | $10538,\!90$ | $10557,\!14$ |
| 3. modell | 0,0614    | 0,0588              | $10574,\!40$ | $10592,\!64$ |

A korrigált  $R^2$  az Akaike-féle információs mutató alapján a 2. modellt, míg a BIC alapján az első modellt választanám. Mivel az értelmezhetőség az első modell mellett szól (nincsen kvadratikus hatás, így a  $\beta$ -kat egyszerűen lehet a parciális hatásként leolvasni), így azt választanám.

### 2. feladat

## **a**)

Becsüljön meg egy többváltozós regressziós modellt úgy, hogy az alvással töltött idő a függő változó, és a munkával töltött idő, az életkor, az életkor négyzete, az iskolázottság, a nem és a kisgyermek jelenléte a magyarázó változó!

```
model4 <- dat %>%
mutate(age2 = age^2) %T>%
{dat <<- .} %>% # refresh dat
lm(formula = sleep ~ totwrk + age + age2 + educ + male + yngkid)
```

# b)

Értelmezze a nem és a kisgyermek jelenlétének paraméterbecslését!

Ceteris paribus egy férfi várhatóan 8,7 perccel alszik többet, mint egy nő. Amennyiben van kisgyermek, amely 3 évnél fiatalabb (yngkid = 1), úgy az alvásidő várhatóan ceteris paribus 0,0228 perccel kevesebb.

#### **c**)

Tesztelje 5%-os szinten, hogy a hibatag varianciája nem függ-e a magyarázó változóktól!

- Adja meg a tesztstatisztikát és a hozzá tartozó p-értéket!
- Értékelje a teszteredményt!
- Kell-e heteroszkedaszticitás-robusztus standard hibákat használni?

```
lmtest::bgtest(model4)
```

A Breusch-Godfrey teszt-statisztikájának értéke (1) **0,6660**, amelyhez (1) **41,44%-os** p-érték tartozik. Mivel jelen esetben a (2) nullhipotézist - mely szerint nincs heteroszkedaszticitás a modellben - elfogadjuk minden gyakorlatban bevett szignifikanciaszinten, így a stanard hibákat tekinthetjük torzítatlannak, és (3) nem kell heteroszkedaszticitás-robusztus standard hibákat használni.

#### $\mathbf{d}$

Becsülje meg az alvással töltött időt egy 40 éves, teljes munkaidőben dolgozó, kisgyerekes és középfokú végzettséggel (azaz 12 éves oktatással) rendelkező férfi munkavállaló számára!

```
answer_2d <-
data.frame(totwrk = 35, age = 40, age2 = 40^2, educ = 12, male = 1, yngkid = 1) %>%
predict.lm(object = model4)
```

Egy 40 éves, teljes munkaidőben dolgozó, kisgyeremekes és középfokú végzettséggel (azaz 12 éves oktatással) rendelkező férfi munkavállaló várhatóan **3302,445** percet tölt hetente alvással.

#### e)

Adja meg a várható érték és a konkrét érték előrejelzésének standard hibáját!

```
data.frame(totwrk = 35, age = 40, age2 = 40^2, educ = 12, male = 1, yngkid = 1) %>%
    predict.lm(object = model4, se.fit = T, interval = "confidence") %>% .$se.fit %T>%
```

```
{answer_3e_a <<- .} %>%
{answer_3e_b <<- . + sd(dat$sleep)}
```

A várható érték előrejelzésének standard hibája 52,69 perc, míg a konkrét érték előrejelzésének standard hibája 497,1 perc.

f)

Adjon 95%-os konfidencia-intervallumot a fenti két mennyiségre!

2. táblázat: Várható és konkrét érték konfidencia intervalluma

|               | Alsó határ | Felső határ |
|---------------|------------|-------------|
| Várható érték | 3198,99    | 3405,90     |
| Konkrét érték | 2475,21    | 4129,68     |

# $\mathbf{g}$

A (d) - (f) során melyik ponton feltételeztük a hibatag normális eloszlását a számítások során? Az f feladatban.

#### h)

Vizsqálja meg egy megfelelő ábra segítségével, hogy a normalitás feltételezése (hozzávetőlegesen) igaz-e!



Hibatag átlagát és szórását követő normális eloszlás Hibatag eloszlása

**i**)

A mintát ossza fel véletlenszerűen két azonos méretű részre! Becsülje meg a fenti modellt az egyik részmintán! Számítsa ki az átlagos négyzetes eltérést (MSE) a becslési mintán és a másik (teszt-) mintán is! Hasonlítsa össze az MSE értékeket és értelmezze az esetleges különbséget!

3. táblázat: MSE a becslési és a tesztmintán

| Becslési minta | Teszt minta |
|----------------|-------------|
| 144697,7       | 208418,7    |

A teszt mintán számított MSE nagyobb, mint a becslési mintán, azonban ez futtatásonként eltérő. Ennek oka a mintavételi ingadozás. Amennyiben ez az eredmény gyakorta ismétlődik, úgy levonható következtetés lenne, hogy a modell túlilleszkedik, de jelenleg nem levonható ez a következtetés, mert ismételt mintavételek esetén előrfodul gyakran, hogy a teszt mintán kisebb az MSE.

## 3. feladat

#### **a**)

Mennyivel különbözik a kisgyermekes és nem kisgyermekes szülők alvással töltött átlagos ideje a férfiak illetve a nők esetében?

```
dat %>% group_by(male, yngkid) %>% summarise(y = mean(sleep)) %>%
  pivot_wider(names_from = 'yngkid', values_from = 'y') %>%
  {data.frame(c('nő', 'férfi'),.[,2] - .[,3])} %>%
  set_names("Nem", "Különbség") %>% prtbl('Különbség a gyermek nemekre való hatásában')
```

4. táblázat: Különbség a gyermek nemekre való hatásában

| Nem   | Különbség |
|-------|-----------|
| nő    | 66,74     |
| férfi | -12,09    |

# **b**)

Egészítse ki a yngkid és a male interakciójával a 2. feladat modelljét! Értelmezze a paraméterbecsléseket (és azok statisztikai szignifikanciáját), majd hasonlítsa össze azokat a 2. feladat megfelelő becslésével!

```
lm(data = dat, formula = sleep ~ totwrk + age + age2 + educ + male + yngkid + yngkid:male) %>%
broom::tidy() %>% prtbl("A bővített modell paramétereinek becslése")
```

5. táblázat: A bővített modell paramétereinek becslése

| Változó     | Koefficiens | Standard hiba | T-statisztika | P-érték     |
|-------------|-------------|---------------|---------------|-------------|
| konstans    | 3861,00     | 239,85        | 16,10         | 0,00%       |
| totwrk      | -9,88       | 1,09          | -9,06         | 0,00%       |
| age         | -9,43       | 11,34         | -0,83         | 40,57%      |
| age2        | 0,14        | 0,13          | 1,02          | 30,96%      |
| educ        | -11,38      | 5,88          | -1,94         | 5,31%       |
| male        | $74,\!56$   | 36,22         | 2,06          | 3,99%       |
| yngkid      | -88,77      | 86,81         | -1,02         | $30,\!68\%$ |
| male:yngkid | 128,04      | 102,12        | 1,25          | $21{,}03\%$ |

Statisztikailag szignifikáns magyarázóváltozónka bizonyult a dolgozott munkaóra és a nem 5%-os szignifikanciaszinten. Az alvási időt csökkenti a dolgozott heti munkaóra, ha az illető nő, ha van 3 évnél fiatalabb gyermeke és az életkor növekedése kvadratikusan hat, kezdetben csökkenti az alvási időt. A fő változás a 2

feladatban becsült modellhez képest, hogy a fiatal gyermek jelenlétének paramétere jelentőset nőtt abszolút értékben és a p-értéke is csökkent, bár a bevett szignifikanciaszinteken még mindig nem szignifikáns. Ezzel szemben a férfi nem és fiatal gyermek jelenlétének interakciójának paramétere pozitív előjelet kapott a becsült modellben, amely arra utal, hogy a kisgyermek eltérő módon hat a férfi és női szülő alvás idejére.

### 4. feladat

A titanic\_small.xls fájl tartalmazza a Titanic utasainak egyéni jellemzőit: nem (sex=1 férfiak esetében, sex=2 nők esetében); az osztály, amelyen utaztak (pclass), életkor (age) és hogy túléltéke a katasztrófát (survived).

```
dat <- rio::import('titanic_small.xls')</pre>
```

**a**)

Számítsa ki a katasztrófát túlélő utazók százalékos arányát! Mennyire különbözik ez osztályonként?

```
dat %>% group_by(pclass) %>% summarise(r = mean(survived)) %>% mutate(
  r = scales::percent(r, decimal.mark = ',', accuracy = .01)) %>%
  set_names("Osztály", "Túlélési arány") %>% prtbl("Túlélési arány utazási osztályonként")
```

6. táblázat: Túlélési arány utazási osztályonként

| Osztály | Túlélési Arány |
|---------|----------------|
| 1       | 61,92%         |
| 2       | $42{,}96\%$    |
| 3       | $25{,}53\%$    |

## b)

Becsüljön meg egy lineáris valószínűségi modellt (LPM), egy logit és egy probit modellt, függő változóként a túlélés valószínűségét, magyarázó változóként pedig az osztályt (mint kategorikus változót), a nemet és az életkort használva!

**c**)

Számítsa ki az LPM, logit és probit modellek alapján a harmadosztályon és a másodosztályon utazók átlagos kontrollált túlélésvalószínűség-különbségét!

```
merge(lpm %>% broom::tidy() %>%
    transmute(term, LPM = estimate),
mfx::logitmfx(atmean = F, data = dat,
    formula = survived ~ factor(pclass) + factor(sex) + age) %>%
    .$mfxest %>% data.frame() %>% rownames_to_column() %>%
    select(1:2) %>% set_names('term', 'Logit')
) %>% merge(
    mfx::probitmfx(atmean = F, data = dat,
    formula = survived ~ factor(pclass) + factor(sex) + age) %>%
    .$mfxest %>% data.frame() %>% rownames_to_column() %>%
```

```
select(1:2) %>% set_names('term', 'Probit')
) %>% filter(
  term == 'factor(pclass)2' | term == 'factor(pclass)3'
) %>% mutate(term = str_remove(term, 'factor\\(pclass\\)')) %>%
  mutate_at(-1, function(x) scales::percent(x, accuracy = .01, decimal.mark = ',')) %>%
  rename('Osztály' = term) %>%
  prtbl(align = c('c', 'c', 'c', 'c'))
```

| Osztály | Lpm     | Logit        | Probit  |
|---------|---------|--------------|---------|
| 2       | -21,14% | -18,14%      | -18,64% |
| 3       | -37,04% | $-36,\!68\%$ | -35,97% |

#### d)

Hasonlítsa össze ezt a három számot egymással és az a) rész eredményeivel!

A 3 modell alapján készült kontrolállt valószínűség-különbség jól közelíti a sokkaságban megfigyelhető arányokat. Az eltérés fő oka a magyarázóváltozók közötti multikollinearitás, de itt ez most nem számottevő.

# **e**)

A klasszifikációhoz használja a 0,5 értéket küszöbként. Számítsa ki a logit modell alapján a kétfajta klasszifikációs hibát és a helyesen besorolt megfigyelések arányát!

```
regclass::confusion_matrix(M = logit, DATA = dat) %>%
   {.[-3,-3]} %>%
   {(./sum(.))} %>%
   data.frame(row.names = c('Valós 0', 'Valós 1')) %>%
   rownames_to_column() %>%
   mutate_at(-1, function(x) scales::percent(x, accuracy = .01, decimal.mark = ',')) %>%
   column_to_rownames() %>%
   set_names(c('Becsült 0', 'Becsült 1')) %>%
   knitr::kable(caption = 'A logit modellel készített kalsszifikáció konfúziós mátrixa', align = c('c',
```

8. táblázat: A logit modellel készített kalsszifikáció konfúziós mátrixa

|         | Becsült 0   | Becsült 1   |
|---------|-------------|-------------|
| Valós 0 | 49,71%      | 9,46%       |
| Valós 1 | $12{,}05\%$ | $28{,}78\%$ |

A táblázatból kiolvasható, hogy a helyesen besoroltak aránya 78%, a hibásan klasszifikált valóságban 1-esek aránya 12%, míg a hibásan klasszifikált 0-sok aránya 10%.