1 Quasi-Coherent Sheaves

Recall that for a DM-stack we defined the small étale site:

Definition 1.0.1. Let \mathscr{X} be a DM-stack. Then the *small étale site* $\mathscr{X}_{\text{\'et}}$ of \mathscr{X} is the category of schemes equipped with an étale map $U \to \mathscr{X}$. A covering is $\{U_i \to U\}$ over \mathscr{X} such that $\sqcup_i U_i \to U$ is surjective.

Then for a sheaf $\mathcal F$ on $\mathcal X_{\mathrm{\acute{e}t}}$ we defined its global sections,

$$\Gamma(\mathscr{X},\mathscr{F}) := \operatorname{Hom}_{\mathfrak{Sh}(\mathscr{X}_{\operatorname{\acute{e}t}})}(1,\mathscr{F})$$

where 1 is the terminal sheaf (the sheafification of $U \mapsto *$).

Remark. This definition works nicely for \mathscr{X} DM and naturally generalizes the étale site $X_{\text{\'et}}$ of a scheme. However, there is a glaring flaw if we attempt to extend this definition to Artin stacks there is a catastrophic failure: $\mathscr{X}_{\text{\'et}}$ could be empty! For example, $(B\mathbb{G}_m)_{\text{\'et}}$ is empty. Indeed, DM-stacks are exactly those stacks with schemes as étale neighborhoods. To remedy this we could take the smooth site of \mathscr{X} . To stay in the world of étale cohomology we consider a hybrid site where the schemes are smooth over \mathscr{X} but the covers are all étale.

Definition 1.0.2. Let \mathscr{X} be an algebraic stack. Then the *lisse-étale site* $\mathscr{X}_{\ell-\text{\'et}}$ is the category of schemes smooth over \mathscr{X} with *arbitrary* maps of schemes over \mathscr{X} . A covering $\{U_i \to U\}$ is a collection of morphisms such that $\sqcup_i U_i \to U$ is surjective or étale.

Definition 1.0.3. Let \mathscr{F} be a sheaf on $\mathscr{X}_{\ell-\text{\'et}}$ then,

$$\Gamma(\mathcal{U}, \mathscr{F}) = \operatorname{Hom}_{\mathfrak{Sh}(\mathcal{U}_{\ell-\operatorname{\acute{e}t}})} \left(1_{\mathfrak{U}}, \mathscr{F}|_{\mathcal{U}_{\ell-\operatorname{\acute{e}t}}} \right)$$

where $1_{\mathcal{U}}$ is the *indicator sheaf* of the smooth \mathscr{X} -stack $\mathcal{U} \to \mathscr{X}$ the sheafification of the constant sheaf $\underline{*}$. This is the terminal object of $\mathcal{U}_{\ell-\acute{\mathrm{e}t}}$. This can be computed by choosing a smooth presentation,

$$R \rightrightarrows U \to \mathcal{U}$$

and setting,

$$\Gamma(\mathfrak{U}, \mathscr{F}) = \operatorname{eq} \left(\mathscr{F}(U) \rightrightarrows \mathscr{F}(R) \right)$$

Definition 1.0.4. The structure sheaf $\mathcal{O}_{\mathscr{X}}$ is defined via,

$$\mathcal{O}_{\mathscr{X}}(U) = \Gamma(U, \mathcal{O}_U)$$

is a ring object in the abelian category $\mathbf{Ab}(\mathscr{X}_{\ell-\acute{\mathrm{e}t}})$. We therefore define the abelian category $\mathbf{Mod}_{\mathscr{O}_{\mathscr{X}}}$. Given a morphism $f:\mathscr{X}\to\mathcal{Y}$ of algebraic stacks there are morphisms of topoi,

$$\mathbf{Ab}(\mathscr{X}_{\ell-\mathrm{\acute{e}t}})$$
 $\mathbf{Ab}(\mathcal{Y}_{\ell-\mathrm{\acute{e}t}})$ $\mathbf{Mod}_{\mathcal{O}_{\mathscr{X}}}$ $\mathbf{Mod}_{\mathcal{O}_{\mathcal{Y}}}$

Given two $\mathcal{O}_{\mathscr{X}}$ -modules \mathscr{F} and \mathscr{G} we define the tensor product $\mathscr{F} \otimes_{\mathcal{O}_{\mathscr{X}}} \mathscr{G}$ as the sheafification of,

$$U \mapsto \mathscr{F}(U) \otimes_{\mathcal{O}_{\mathscr{X}}(U)} \mathscr{G}(U)$$

and the Hom sheaf $\mathcal{H}om_{\mathcal{O}_{\mathcal{F}}}(\mathcal{F},\mathcal{G})$ as the sheaf,

$$U \mapsto \operatorname{Hom}_{\mathcal{O}_U} \left(\mathscr{F}|_U, \mathscr{G}|_U \right)$$

where $\mathscr{F}|_{U}$ means the restriction to the site $U_{\ell-\text{\'e}t}$ (note this is much more data than the restriction to U_{Zar}).

1.1 Quasi-Coherent Sheaves

As above we denote by $\mathscr{F}|_U$ the restriction of \mathscr{F} to $U_{\ell-\text{\'et}}$ and $\mathscr{F}|_{U_{\operatorname{Zar}}}$ the restriction to U_{Zar} . Then we define,

Definition 1.1.1. Let \mathscr{X} be an algebraic stack. A $\mathcal{O}_{\mathscr{X}}$ -module \mathscr{F} is quasi-coherent if:

- (a) for every smooth $U \to \mathscr{X}$ the restriction $\mathscr{F}|_{U_{\operatorname{Zar}}}$ is a quasi-coherent $\mathcal{O}_{U_{\operatorname{Zar}}}$ -module
- (b) for every morphism $f: V \to U$ of smooth \mathscr{X} -schemes, the induced morphism,

$$f^*(\mathscr{F}|_{U_{\mathrm{Zar}}}) \to \mathscr{F}_{V_{\mathrm{Zar}}}$$

is an isomorphism.

Remark. The above definition can be made in any site which refines the Zariski topology on each of its opens. However, in this generality such an object is usually called a *crystal in quasi-coherent* sheaves and the term *quasi-coherent* in an arbitrary site is reserved for the notion developed below. However, in most sites the two notions agree.

Definition 1.1.2. In an arbitrary ringed site $(\mathcal{C}, \mathcal{O})$ (or even an arbitrary ringed topos) a \mathcal{O} -module \mathscr{F} is quasi-coherent if for each object $U \in \mathcal{C}$ there exists a cover $\{U_i \to U\}$ such that $\mathscr{F}|_{\mathcal{C}/U_i}$ is a presentable \mathcal{O} -module meaning there exists a presentation,

$$\bigoplus_{I} \mathcal{O}|_{\mathcal{C}/U_i} \longrightarrow \bigoplus_{I} \mathcal{O}|_{\mathcal{C}/U_i} \longrightarrow \mathscr{F}|_{\mathcal{C}/U_i} \longrightarrow 0$$

We call the abelian subcategory of such sheaves $QCoh(\mathcal{C}) \subset \mathbf{Mod}_{\mathcal{O}_{\mathcal{C}}}$.

Definition 1.1.3. Let S be a scheme and $\mathcal{C} \subset \mathbf{Sch}_S$ a subcategory. Consider the presheaf of rings,

$$\mathcal{O}: \mathcal{C}^{\mathrm{op}} \to \mathrm{Ring}$$

 $(T \to S) \mapsto \Gamma(T, \mathcal{O}_T)$

This is a sheaf for the fpqc topology. Furthermore, for any sheaf \mathscr{F} on S_{Zar} there is a presheaf,

$$\mathcal{O}: \mathcal{C}^{\text{op}} \to \text{Ab}$$

 $(f: T \to S) \mapsto \Gamma(T, f^*\mathscr{F})$

which is a \mathcal{O} -module. Furthermore, if \mathscr{F} is quasi-coherent then \mathscr{F}^a is a fpgc sheaf by descent.

Theorem 1.1.4 (Tag 03OJ). Let S be a scheme. Let \mathcal{C} be a site such that,

- (a) \mathcal{C} is a full subcategory of \mathbf{Sch}_S
- (b) any Zariski covering of $T \in \mathcal{C}$ can be refined by a covering of \mathcal{C}
- (c) id: $S \to S$ is an object of \mathcal{C} (so it particular \mathcal{C} has a terminal object)
- (d) every covering of \mathcal{C} is an fpqc covering of schemes

Then the presheaf \mathcal{O} is a sheaf on \mathcal{C} and there is an equivalence of categories,

$$\operatorname{QCoh}(S) \xrightarrow{\sim} \operatorname{QCoh}(\mathcal{C})$$

$$\mathscr{F} \mapsto \mathscr{F}^a$$

Proof. This is basically a rephrasing of fpqc descent.

Proposition 1.1.5. Let \mathscr{F} be a $\mathcal{O}_{\mathscr{X}_{\ell-\acute{e}t}}$ -module. Then the following are equivalent,

- (a) \mathcal{F} is quasi-coherent in the general sense
- (b) \mathscr{F} is quasi-coherent in the crystal sense.

Proof. C.f. 06WK. Let $C = \mathscr{X}_{\ell-\text{\'et}}$. Suppose that \mathscr{F} satisfies (a). Then the restriction of \mathscr{F} is quasi-coherent on $\mathcal{C}_{/U}$ and thus by the previous lemma $\mathscr{F}|_{\mathcal{C}} = (\mathscr{F}|_{U_{\text{Zar}}})^a$ and therefore satisfies (b). Given (b) take any $U \to \mathscr{X}$ smooth. Then we know $\mathscr{F}|_{U_{\text{Zar}}}$ is quasi-coherent so there is an affine Zariski open cover $\{U_i \to U\}$ such that $\mathscr{F}|_{(U_i)_{\text{Zar}}}$ is presented. Then the claim is that $\mathscr{F}|_{\mathcal{C}/U_i}$ is also presented. Indeed, the comparison map induced by $f: V \to U$ is an isomorphism the presentation pulls back to give a presentation of $\mathscr{F}|_{\mathcal{C}/U_i}$.

1.2 Descent Data

Definition 1.2.1. Let (U, R, s, t, c, e) be a groupoid scheme over S where $s, t : R \Rightarrow U$ are the source and target maps and $c : R \times_{s,U,t} R \to R$ is the composition and $e : U \to R$ is the identity. Then the category of descent data consists of the category of pairs (\mathscr{F}, φ) where \mathscr{F} is a sheaf on U and φ is an isomorphism,

$$\varphi: t^*\mathscr{F} \xrightarrow{\sim} s^*\mathscr{F}$$

such that $e^*\varphi = id$ and satisfying the cocycle condition,

$$c^*\varphi=\pi_2^*\varphi\circ\pi_1^*\varphi$$

as morphisms of sheaves on $R \times_{s,U,t} R$.

Example 1.2.2. For any cover $U \to X$ we can form the "Cech groupoid" $U \times_X U \rightrightarrows U$ whose composition is given by projection,

$$(U \times_X U) \times_{\pi_1, U, \pi_2} (U \times_X U) = U \times_X U \times_X U \to U \times_X U \qquad ((a, b), (c, a)) \mapsto (c, a, b) \mapsto (c, b)$$

For this we recover the ordinary notion of a descent datum.

Example 1.2.3. Let $G \subset X$ be an action of an algebraic group on a scheme. Then there a groupoid $G \times X \rightrightarrows X$ whose composition $G \times G \times X \to G \times X$ is given by multiplication in the group. For this we will recover the notion of G-equivariance.

Proposition 1.2.4. Let $R \rightrightarrows U$ be a smooth presentation of an algebraic stack \mathscr{X} by schemes. There is an equivalence of categories,

$$\operatorname{QCoh}(\mathscr{X}) \to \operatorname{DD}_{\operatorname{QCoh}}(U/R) \quad \mathscr{F} \mapsto (\mathscr{F}|_{U_{\operatorname{Zar}}}, \varphi)$$

where $\mathrm{DD}_{\mathrm{QCoh}}(U/R)$ is the category of descent data for quasi-coherent sheaves along the groupoid $R \rightrightarrows U$.

Proof. For any smooth map $V \to \mathscr{X}$ there is a further smooth refinement $V' \to V$ such that $V' \to \mathscr{X}$ factors through $U \to \mathscr{X}$. Hence, applying descent to $V' \to V$, any quasi-coherent sheaf \mathscr{F} on $\mathscr{X}_{\ell-\text{\'et}}$ is determined by its descent data over $R \rightrightarrows U$.

Definition 1.2.5. Let $G \subset X$ be an action of a group scheme on a scheme (or algebraic space). The category of G-equivariant sheaves is defined as the category of descent data for the groupoid $G \times X \rightrightarrows X$.

Remark. Some standard diagram chasing shows that this is formally the same as the usual definition of a G-equivariant sheaf in [Stacks]. In the case that G is a finite constant group it is easy to check that this agrees with the naive notion in terms of compatible isomorphisms between the pullbacks along the action by elements $g \in G$.

Proposition 1.2.6. There is an equivalence of categories,

$$\operatorname{QCoh}([X/G]) \to \operatorname{QCoh}_G(X)$$

Proof. This is a special case of the previous proposition.

1.3 Examples

Example 1.3.1. Let $\mathscr{X} \to S$ be a DM-stack. Then the sheaf,

$$\Omega_{\mathscr{X}/S}: (U \to \mathscr{X}) \mapsto \Gamma(U, \Omega_{U/S})$$

is quasi-coherent since any morphism $f: V \to U$ in $\mathscr{X}_{\text{\'et}}$ is étale so the map,

$$f^*\Omega_{U/S} \xrightarrow{\sim} \Omega_{V/S}$$

is an isomorphism. However, if $\mathscr{X} \to S$ is not DM we don't have access to $\mathscr{X}_{\text{\'et}}$ nor can we define $(\Omega_{X/S})^a$ on X_{fppf} as we can for a scheme since there is no Zariski or étale site to define this sheaf over for a bootstrap. There is still a sheaf of $\mathcal{O}_{\mathscr{X}_{\ell-\acute{et}}}$ -modules,

$$\Omega_{\mathscr{X}/S}: (U \to \mathscr{X}) \mapsto \Gamma(U, \Omega_{U/S})$$

but it is not quasi-coherent. This is the sort of sheaf the stacks project calls *locally quasi-coherent* meaning that it is quasi-coherent when restricted to $U_{\text{\'et}}$ for any $U \to \mathscr{X}$.

Remark. Indeed, it is not clear that an Artin stack $\mathscr{X} \to S$ should have any good notion of a cotangent bundle $\Omega_{\mathscr{X}/S}$. For example, consider $\mathscr{X} = \mathbf{B}\mathbb{G}_m$ which is smooth of relative dimension -1 so what should $\Omega_{\mathscr{X}/S}$ even be? It can't be a vector bundle of rank -1 can it! To fix this conundrum, we either work with $\Omega_{\mathscr{X}/S}$ as defined above which is not quasi-coherent and hence does not have a well-defined rank or we define the cotangent complex $\mathbb{L}_{\mathscr{X}/S} \in D^{\leq 1}_{\mathrm{QCoh}}(\mathscr{X})$ (technically it's an ind-object in this generality) [Champs Algebriques, Chapter 17] which encodes the deformation theory of \mathscr{X} . Note that unlike for a scheme, $\mathbb{L}_{\mathscr{X}/S}$ can be supported in degree 1. In fact, the following are equivalent,

(a)
$$\mathscr{X} \to S$$
 is DM

(b)
$$\mathcal{H}^1(\mathbb{L}_{\mathscr{X}/S}) = 0$$

Proof: [Champs Algebriques, Cor. 17.9.2].

1.4 Picard Groups

Let \mathscr{X} be an algebraic stack. Then Pic (\mathscr{X}) denotes the set of isomorphism classes of line bundles on \mathscr{X} which becomes an abelian group under \otimes .

Example 1.4.1. If G is an affine algebraic k-group then $\operatorname{Pic}(\mathbf{B}G) = \operatorname{Hom}_{\operatorname{gp}}(G, \mathbb{G}_m)$ is the group of characters. For example,

- (a) Pic ($\mathbf{B}\mathbb{G}_m$) = \mathbb{Z}
- (b) $\operatorname{Pic}(\mathbf{B}\operatorname{GL}_n) = \mathbb{Z}$
- (c) Pic (**B**PGL_n) = $\{0\}$.

This is because line bundles on BG are the same as line bundles on Spec(k) along with descent data i.e. a G-action. This is the same as a 1-dimensional G-representation.

Example 1.4.2. Consider the action, $\mathbb{G}_m \subset \mathbb{A}^n$ with weights d_1, \ldots, d_n . Let the weighted projective stack be the DM-stack (at least if $p \not\mid d_i$),

$$\mathcal{P}(d_1,\ldots,d_n)=[(\mathbb{A}^n\setminus\{0\})/\mathbb{G}_m]$$

Here let k be a field of characteristic not dividing any d_i or 2 or 3.

- (a) The map $\operatorname{Pic}(\mathbf{B}\mathbb{G}_m) \to \operatorname{Pic}(\mathcal{P}(d_1,\ldots,d_n))$ induced by the canonical \mathbb{G}_m -bundle is an isomorphism. Indeed, this reduces to classifying \mathbb{G}_m -actions on $\mathcal{O}_{\mathbb{A}^n\setminus\{0\}}$. By Hartogs' these correspond to \mathbb{G}_m -actions on $\mathcal{O}_{\mathbb{A}^n}$ and thus to different grading of $A = k[x_1,\ldots,x_n]$ as an A-module with x_i given weight d_i . These are just overall shifts A(d) i.e. putting 1 in degree d. This is the same as the pullback of the bundle over $\mathbf{B}\mathbb{G}_m$ corresponding to $\mathbb{G}_m \xrightarrow{z^d} \mathbb{G}_m$.
- (b) Using Weierstrass models we get an isomorphism,

$$\overline{\mathcal{M}}_{1,1} \cong \mathcal{P}(4,6)$$

Therefore, $\operatorname{Pic}\left(\overline{\mathcal{M}}_{1,1}\right) = \mathbb{Z}\omega_{\mathcal{C}/\mathcal{M}}$

(c) Then it turns out that,

$$\operatorname{Pic}\left(\mathcal{M}_{1,1}\right) = \mathbb{Z}/12\mathbb{Z}\omega_{\mathcal{C}/\mathcal{M}}$$

This is because the discriminant Δ is a section of $\mathcal{O}(12)$ which is nowhere vanishing for smooth families.

1.5 Global Quotients and the Resolution Property

Definition 1.5.1. An algebraic stack \mathscr{X} is a *global quotient stack* if there is an isomorphism $\mathscr{X} \cong [U/\mathrm{GL}_n]$ where U is an algebraic space. This is equivalent to asking for the existence of a GL_n -bundle $U \to \mathscr{X}$ where U is an algebraic space. By definition this is the same as a representable morphism $\mathscr{X} \to \mathbf{B}\mathrm{GL}_n$.

Proposition 1.5.2. Let $\mathscr{X} \to \mathcal{Y}$ be a surjective, flat, and projective morphism of noetherian algebraic stacks. If \mathscr{X} is a quotient stack then \mathcal{Y} is a quotient stack.

Definition 1.5.3. A noetherian algebraic stack has the *resolution property* if every coherent sheaf if a quotient of a vector bundle.

A smooth or quasi-projective scheme over a field has the resolution property. Any noetherian normal Q-factorial scheme with affine diagonal also has the resolution property.

Proposition 1.5.4. Let G be an affine algebraic k-group with an action $G \subset U$ on a quasi-projective k-scheme U. Assume that there is an ample line bundle \mathcal{L} with a G-action. Then $[\operatorname{Spec}(A)/G]$ has the resolution property.

Remark. While not every line bundle \mathcal{L} on a normal k-scheme admits a G-action, it turns out there is always some positive power such that $\mathcal{L}^{\otimes n}$ has a G-action.

Proof. The G-line bundle \mathcal{L} corresponds to a line bundle on [U/G] which is ample which respect to the morphism $p:[U/G] \to \mathbf{B}G$ since relative ampleness can be checked after smooth covers (it can be reduced to a fiberwise condition). For a coherent sheaf \mathscr{F} on [U/G] the natural map,

$$\mathcal{L}^{-\otimes N}\otimes p^*p_*(\mathcal{L}^{\otimes N}\otimes\mathscr{F})\twoheadrightarrow\mathscr{F}$$

is surjective for $N \gg 0$ since relative ampleness implies global generation of $\mathcal{L}^{\otimes N} \otimes \mathcal{F}$. The pushforward $p_*(\mathcal{L}^{\otimes N} \otimes \mathcal{F})$ is quasi-coherent on $\mathbf{B}G$ hence a G-representation. We can hence write it as an increasing union of finite-dimensional G-representations V_i and obtain,

$$\operatorname{colim}_{i}(\mathcal{L}^{-\otimes N}\otimes p^{*}V_{i})\twoheadrightarrow\mathscr{F}$$

since \mathscr{F} is coherent, this stabilizes at some stage meaning,

$$\mathcal{L}^{-\otimes N}\otimes p^*V_i \twoheadrightarrow \mathscr{F}$$

at some finite stage i.

Theorem 1.5.5 (Totaro-Gross). Let \mathscr{X} be a quasi-separated normal algebraic stack of finite type over k. Assume that the stabilizer group at every closed point is smooth and affine. Then the following are equivalent:

- (a) \mathscr{X} has the resolution property
- (b) $\mathscr{X} \cong [U/\mathrm{GL}_n]$ with U quasi-affine
- (c) $\mathscr{X} \cong [\operatorname{Spec}(A)/G]$ with G an affine algebraic group.

In particular, \mathscr{X} has affine diagonal.

Remark. The normality hypothesis on \mathscr{X} and smoothness hypothesis on the stabilizers are unnecessary. However, the affineness hypothesis on the stabilizers is necessary. For example, $\mathbf{B}E$ the classifying stack of an elliptic curve has the resolution property.

1.6 Sheaf Cohomology

Lemma 1.6.1. If \mathscr{X} is an algebraic stack, the categories $\mathbf{Ab}(\mathscr{X}_{\ell-\mathrm{\acute{e}t}})$ and $\mathbf{Mod}_{\mathscr{X}}$ have enough injective. If \mathscr{X} is quasi-separated then $\mathrm{QCoh}(\mathscr{X})$ has enough injectives.

Definition 1.6.2. Let \mathscr{X} be an algebraic stack and \mathscr{F} a sheaf on $\mathscr{X}_{\ell-\text{\'et}}$. The *cohomology groups* $H^i(\mathscr{X}_{\ell-\text{\'et}},\mathscr{F})$ are the derived functors of,

$$\Gamma(\mathscr{X}, -) : \mathbf{Ab}(\mathscr{X}_{\ell-\mathrm{\acute{e}t}}) \to \mathbf{Ab}$$

applied to \mathscr{F} ,

$$H^i(\mathscr{X}_{\ell-\text{\'et}},\mathscr{F}) = R^i\Gamma(\mathscr{X},\mathscr{F})$$

Definition 1.6.3. Given a smooth covering $\mathfrak{U} = \{\mathcal{U}_i \to \mathscr{X}\}_{i \in I}$ of algebraic stacks and an abelian presheaf \mathscr{F} on $\mathscr{X}_{\ell-\acute{\mathrm{e}t}}$ the *Cech complex* $\check{C}^{\bullet}(\mathfrak{U},\mathscr{F})$ of \mathfrak{U} with respect to \mathfrak{U} is,

$$\check{C}^n(\mathfrak{U},\mathscr{F}) = \prod_{(i_0,...,i_n)\in I^{n+1}} \mathscr{F}(\mathcal{U}_{i_0} imes_\mathscr{X}\cdots imes_\mathscr{X}\mathcal{U}_{i_n})$$

with differential,

$$d^n: \check{C}^n(\mathfrak{U},\mathscr{F}) \to \check{C}^{n+1}(\mathfrak{U},\mathscr{F}) \quad (s_{i_0,\dots,i_n}) \mapsto \left(\sum_{k=0}^{n+1} (-1)^k p_{\hat{k}}^* s_{i_0,\dots,\hat{i}_k,\dots,i_n}\right)_{i_0,\dots,i_{n+1}}$$

where the projection $p_{\hat{k}}$ forgets the t^{th} coordinate. The $\check{C}ech$ cohomology of \mathscr{F} with respect to \mathfrak{U} is,

$$\check{H}^i(\mathfrak{U},\mathscr{F}) := H^i(\check{C}^{\bullet}(\mathfrak{U},\mathscr{F}))$$

Theorem 1.6.4. Let \mathscr{X} be an algebraic stack and \mathscr{F} a quasi-coherent sheaf on $\mathscr{X}_{\ell-\acute{e}t}$. Then for any cover $\mathfrak{U} = \{\mathcal{U}_i \to \mathscr{X}\}_{i\in I}$ there exists a spectral sequence,

$$E_2^{p,q} = \check{H}^p(\mathfrak{U}, H^q(-,\mathscr{F})) \implies H^{p+q}(\mathscr{X}_{\ell-\mathrm{\acute{e}t}}, \mathscr{F})$$

where $H^q(-, \mathscr{F})$ is the presheaf $U \mapsto H^q(U_{\ell-\text{\'et}}, \mathscr{F})$.

Proof. Consider the commutative diagram of functors,

$$Sh(\mathscr{X}_{\ell-\text{\'et}}) \xrightarrow{a} PSh(\mathscr{X}_{\ell-\text{\'et}})$$

$$\downarrow^{\check{H}^0}$$

$$\Delta h$$

Notice that $\check{C}^{\bullet}(\mathfrak{U}, -)$ is exact in the category of presheaves which shows that $\check{H}^{\bullet}(\mathfrak{U}, -)$ forms a δ -functor. In fact, since $\check{H}^i(\mathfrak{U}, \mathscr{I}) = 0$ for i > 0 and any injective sheaf (this is a very general fact, see <u>Tag 03OR</u>) it is a universal δ -functor. Now the inclusion a takes injectives to injectives because sheaves form a reflexive subcategory (maps to a sheaf factors through the sheafification). Therefore, we apply the Grothendieck spectral sequence so it suffices to compute $R^q a(\mathscr{F})$ of a sheaf \mathscr{F} . Since the functor $(-) \mapsto \Gamma(U, -)$ is exact on presheaves we see that,

$$R^q a(\mathscr{F})(U) = R^q \Gamma(U,\mathscr{F}) = H^q(U,\mathscr{F})$$

so we conclude. \Box

Theorem 1.6.5. If X is an affine scheme and \mathscr{F} is a quasi-coherent $\mathcal{O}_{\mathscr{X}_{\ell-\acute{e}t}}$ -module then,

$$H^{i}(X_{\ell-\operatorname{\acute{e}t}},\mathscr{F}) = \begin{cases} \Gamma(X,\mathscr{F}) & i = 0\\ 0 & i > 0 \end{cases}$$

Proof. We refine to affine coverings $\{\operatorname{Spec}(B) \to \operatorname{Spec}(A)\}$ then \mathscr{F} is quasi-coherent (in all equivalent notions) and hence arises from some A-module M. To show that $\check{H}^{>0} = 0$ for this covering we show that the Amistur complex,

$$0 \longrightarrow M \longrightarrow M \otimes_A B \longrightarrow M \otimes_A B \otimes_A B \longrightarrow M \otimes_A B \otimes_A B \otimes_A B \longrightarrow \cdots$$

is exact. Indeed, after applying $B \otimes_A$ — which is faithfully flat this complex obtains a nullhomotopy. Now to conclude, we can either apply Cartan's criterion (Tag 03F9) or use hypercoverings and the fact that hypercover Cech cohomology computes derived functor cohomology.

Proposition 1.6.6. Let \mathscr{X} be an algebraic stack with affine diagonal and \mathscr{F} be a quasi-coherent sheaf. If $\mathfrak{U} = \{U_i \to \mathscr{X}\}$ is an étale covering with each U_i affine, then $H^i(\mathscr{X}_{\ell-\text{\'et}},\mathscr{F}) = \check{H}^i(\mathfrak{U},\mathscr{F})$.

Proof. Follows immediately from the Cech-to-derived spectral sequence and the above. \Box

Remark. To remove the "affine diagonal" condition we need to use hypercovers. Indeed, if $U_{\bullet} \to \mathscr{X}$ is a simplicial hypercover in $\mathscr{X}_{\ell-\acute{e}t}$ where each U_{\bullet} is an affine scheme and \mathscr{F} is quasi-coherent then,

$$H^i(\mathscr{X},\mathscr{F}) = \check{H}^i(U_{\bullet},\mathscr{F})$$

Proposition 1.6.7. Let X be a scheme (or a DM-stack with a sheaf on $\mathscr{X}_{\text{\'et}}$) with affine diagonal and \mathscr{F} a quasi-coherent sheaf. Then,

$$H^{i}(X, \mathscr{F}) = H^{i}(X_{\ell-\acute{e}t}, \mathscr{F}_{\ell-\acute{e}t})$$

for all i where $\mathscr{F}_{\ell-\text{\'et}}$ is the $\mathcal{O}_{X_{\ell-\text{\'et}}}$ -module defined by,

$$\mathscr{F}_{\ell-\text{\'et}}(U) = \Gamma(U, f^*\mathscr{F})$$

for a smooth map $f: U \to X$. (In the stack case it is pullback under $f: \mathscr{X}_{\ell-\text{\'et}} \to \mathscr{X}_{\text{\'et}}$).

Proof. Choose an affine Zariski cover U of X (affine étale cover U of \mathcal{X}) by the assumption on the diagonal we see that,

$$H^i(X_{\ell-\text{\'et}},\mathscr{F})=\check{H}^i(\mathbf{U},\mathscr{F})=H^i(X,\mathscr{F})$$

(and similarly for \mathscr{X}). The affine diagonal condition is to ensure that projects in the Cech complex are affine and hence have vanishing $H^{>0}$. However, this condition is not necessary. We can always choose a Zariski hypercover $U_{\bullet} \to X$ by affines and similar arguments show that,

$$H^i(X_{\ell-\operatorname{\acute{e}t}},\mathscr{F})=\check{H}^i(U_\bullet,\mathscr{F})=H^i(X,\mathscr{F})$$

Proposition 1.6.8. Let \mathcal{X} be an algebraic stack.

(a) \mathscr{F} is an $\mathcal{O}_{\mathscr{X}}$ -module then $H^i(\mathscr{X}_{\ell-\text{\'et}},\mathscr{F})$ agrees with $R^i\Gamma: \mathbf{Mod}_{\mathcal{O}_{\mathscr{X}}} \to \mathbf{Ab}$ computed in the category of $\mathcal{O}_{\mathscr{X}}$ -modules.

¹If we use hypercovers (see the discussion in the proof then we can remove this condition.

(b) If \mathscr{X} has affine diagonal and \mathscr{F} is a quasi-coherent sheaf on \mathscr{X} , then the cohomology $H^{i}(\mathscr{X}_{\ell-\text{\'et}},\mathscr{F})$ agrees with $R^{i}\Gamma: \mathrm{QCoh}(\mathscr{X}) \to \mathbf{Ab}$ computed in the category of quasi-coherent modules.

For a morphism $f: \mathscr{X} \to \mathcal{Y}$ of algebraic stacks (resp. quasi-compact morphism of algebraic stacks with affine diagonals) then (a) (resp. (b)) holds also for $R^i f_* \mathscr{F}$ of an $\mathcal{O}_{\mathscr{X}}$ -module (resp. quasi-coherent sheaf).

Remark. If \mathscr{X} does not have affine diagonal, then the sheaf cohomology $H^i(\mathscr{X}_{\ell-\text{\'et}},\mathscr{F})$ of a quasi-coherent sheaf may differ from the derived functor $R^i\Gamma(\mathscr{X},-): \mathrm{QCoh}(\mathscr{X}) \to \mathbf{Ab}$.

Proposition 1.6.9. If \mathscr{X} is an algebraic stack and \mathscr{F}_i is a directed system of abelian sheaves in $\mathscr{X}_{\ell-\text{\'e}t}$ then $\operatorname{colim}_i H^i(\mathscr{X}, \mathscr{F}_i) \to H^i(\mathscr{X}, \operatorname{colim}_i \mathscr{F}_i)$ is an isomorphism.

2 July 8 Affine GIT and Good moduli spaces

2.1 Good Moduli Spaces

Definition 2.1.1. A quasi-compact quasi-separated morphism $\pi: \mathscr{X} \to X$ from an algebraic stack to an algebraic space is a *good moduli space* if,

- (a) $\mathcal{O}_X \xrightarrow{\sim} \pi_* \mathcal{O}_{\mathscr{X}}$
- (b) $\pi_* : \operatorname{QCoh}(\mathscr{X}) \to \operatorname{QCoh}(X)$ is exact.

Example 2.1.2. Let G be linearly k-reductive (meaning taking invairants of representations is exact) then $G \odot \operatorname{Spec}(A)$ gives a diagram,

$$\operatorname{Spec}(A)$$

$$\downarrow$$

$$[\operatorname{Spec}(A)/G] \xrightarrow{\pi} \operatorname{Spec}(A^G)$$

Then π satisfies the properties of a good moduli space morhism. Indeed,

- (a) $\Gamma([\operatorname{Spec}(A)/G], \mathcal{O}_{[\operatorname{Spec}(A)/G]}) = A^G$
- (b) and π_* : QCoh([Spec (A)/G]) \to QCoh(Spec (A^G)) is exact since taking invariants of a G-representation is exact.

Example 2.1.3. $[\mathbb{A}^1/\mathbb{G}_m] \to \operatorname{Spec}(k)$ is a good moduli space

Example 2.1.4. $[\mathbb{P}^1/\mathbb{G}_m] \to \operatorname{Spec}(k)$ is NOT a good moduli space. Indeed (2) fails because $\pi_* = H^0$ is not exact for \mathbb{G}_m -equivariant sheaves on \mathbb{P}^1 . Here two closed points specializes to 1 closed point downstairs. We will see this is a problem.

Theorem 2.1.5. Let $\pi: \mathcal{X} \to X$ be a good moduli space and \mathcal{X} be q-sep over a scheme S.

(a) π is surjective and universally closed

- (b) if $\mathbb{Z}_1, \mathbb{Z}_2 \subset \mathscr{X}$ are closed substacks then $\pi(\mathbb{Z}_1 \cap \mathbb{Z}_2) = \pi(\mathbb{Z}_1) \cap \pi(\mathbb{Z}_2)$ where this denotes scheme-theoretic (or rather stack-theoretic) images and intersections. In particular, for geometric points $x_1, x_2 \in \mathscr{X}(k)$ then $\pi(x_1) = \pi(x_2)$ iff $\overline{\{x_1\}} \cap \overline{\{x_2\}} \neq \varnothing$.
- (c) If \mathscr{X} is noetherian then X is also noetherian.
- (d) If \mathscr{X} is of finite type over S and S is noetherian then X is finite type over S and π_* preserves coherent sheaves.
- (e) If \mathscr{X} is noetherian then π is initial for maps to algebraic spaces.

Corollary 2.1.6. Let G be linearly reductive group over $k = \bar{k}$ and $\tilde{\pi} : U = \operatorname{Spec}(A) \to U//G = \operatorname{Spec}(A^G)$ then,

- (a) $\tilde{\pi}$ is surjective and for any G-invariant closed $Z \subset U$ (meaning corresponding to a closed substack of [U/G]) then $\pi(Z) \subset U//G$ is closed. This property remains true after base change
- (b) given G-invariant closed $Z_1, Z_2 \subset U$ then $\pi(Z_1 \cap Z_2) = \pi(Z_1) \cap \pi(Z_2)$ so if $x_1, x_2 \in U(k)$ then $\tilde{\pi}(x_1) = \tilde{\pi}(x_2)$ iff $\overline{G \cdot x_1} \cap \overline{G \cdot x_2} \neq \emptyset$.
- (c) If A is Noetherian so is A^G . If A is f.g. over k then AG^G is f.g. over k and for any f.g. A-module M with a G-action, M^G is a f.g. A^G -module
- (d) if A is noetherian then $\tilde{\pi}$ is initial for G-invariant maps to algebraic spaces.

2.2 Cohomologically Affine Morphisms

Definition 2.2.1. A quasi-compact quasi-separated morphism $f: \mathcal{X} \to \mathcal{Y}$ is cohomologically affine if $f_*: \operatorname{QCoh}(\mathcal{X}) \to \operatorname{QCoh}(\mathcal{Y})$ is exact. We say \mathcal{X} is cohomologically affine if $\mathcal{X} \to \operatorname{Spec}(\mathbb{Z})$ is.

Example 2.2.2. (a) an affine morphism is cohomologically affine

(b) an affine algebraic group G/k is linearly reductive iff $\mathbf{B}G \to \operatorname{Spec}(k)$ is cohomologically affine

Lemma 2.2.3. Consider a diagram,

$$\begin{array}{ccc} \mathscr{X}' & \stackrel{f}{\longrightarrow} & \mathscr{X} \\ \downarrow^{\pi} & & \downarrow^{\pi} \\ \mathscr{Y}' & \stackrel{g}{\longrightarrow} & \mathscr{Y} \end{array}$$

- (a) if f is faithfully flat and π' is a GMS then π is a GMS
- (b) if \mathcal{Y} has quasi-affine diagonal and π is a GMS then π' is a GMS

Proof. (a) by flat base change $\pi'_*f^* \cong g^*\pi_*$ and f^* is exact and g^* is faithfully exact so we conclude. For (b), first consider the case that g is quasi-affine. Then factor as,

$$\mathcal{Y}' \hookrightarrow \mathbf{Spec}_{\mathcal{V}}(f_*\mathcal{O}_{\mathcal{Y}'}) \to \mathcal{Y}$$

where the second map is affine by definition. If g is affine then g_* is faithfully exact. If g is an open immersion then for $F' \to G'$ in $QCoh(\mathscr{X}')$ we conclude that $G := \operatorname{im}(f_*F' \to f_*G')$ since $f^*f_* = \operatorname{id}$ we get $f^*G = G'$ and π_* is exact so $\pi_*f_*F' \to \pi_*F$ so pullback via g then,

$$g^*\pi_*f_*F' = \pi'_*f^*f_*F' = \pi'_*F' \twoheadrightarrow g^*\pi_*G = \pi'_*f^*G = \pi'_*G$$

the first by flat basechange. Thus we conclude. To do the general case, assume \mathcal{Y} and \mathcal{Y}' are quasi-compact and choose a smooth presentation $Y = \operatorname{Spec}(A) \to \mathcal{Y}$ which is quasi-affine since \mathcal{Y} is. Then $\mathcal{Y}'_Y \to \mathcal{Y}'_Y$ is faithfully flat so by (a) suffices to show that $\mathscr{X}'_Y \to \mathcal{Y}'_Y$ is cohomologically affine. By (a) again we can pass to a smooth cover $Y' \to \mathcal{Y}'_Y$ and reduce to a morphism of affine schemes which is hence affine so we win.

Corollary 2.2.4. If $f: \mathcal{X} \to \mathcal{Y}$ is representable and \mathcal{Y} has quasi-affine diagonal. If f is cohomologically affine then f is affine.

Proof. Suffices to prove this for a map $f: X \to Y$ of schemes with Y affine. However, this is just Serre's criterion for affineness.

2.3 First Properties of GMS

Lemma 2.3.1. Consider a diagram,

with X', X quasi-separated algebraic spaces and X has quasi-affine diagonal.

- (a) if g is faithfully flat and π' is a GMS then π is a GMS
- (b) if π is a GMS then π' is a GMS.

Now assume that π is a GMS then,

(a) there is a projection formula for $F \in QCoh(\mathcal{X})$ and $G \in QCoh(X)$ then,

$$\pi_* \mathscr{F} \otimes G \xrightarrow{\sim} \pi_* (F \otimes \pi^* G)$$

In particular,

$$G \xrightarrow{\sim} \pi_* \pi^* G$$

(b) $F \in QCoh(\mathscr{X})$ then,

$$g^*\pi_*F \xrightarrow{\sim} \pi'_*f^*F$$

(c) for any $\mathscr{I} \subset \mathcal{O}_X$ a quasi-coherent ideal sheaf then,

$$\mathscr{I} \xrightarrow{\sim} \pi_*(\pi^{-1}\mathscr{I} \cdot \mathcal{O}_{\mathscr{X}})$$

Proof. For (a) and g flat then $g^*(\mathcal{O}_X \to \pi_*\mathcal{O}_{\mathscr{X}})$ is just $\mathcal{O}_{X'} \to \pi'_*\mathcal{O}_{\mathscr{X}'}$ by flat base change. Thus if g is faithfully flat then we get,

$$\mathcal{O}_X \xrightarrow{\sim} \pi_* \mathcal{O}_{\mathscr{X}} \iff \mathcal{O}_{X'} \xrightarrow{\sim} \pi'_* \mathcal{O}_{\mathscr{X}'}$$

Furthermore, the lemma says that cohomological flatness descends under g proving (a). We also showed that (b) holds for flat base change. To prove it for arbitrary base change we first prove the projection formula. Indeed, let $U \to X$ be an étale presentation with U disjoint union of affine schemes. Then $\pi_U : \mathscr{X}_U \to U$ is a GMS by flat case. Then the pullback of id $\to \pi_*\pi^*$ is id $\to \pi_{U*}\pi_U^*$. We can assume that $X = \operatorname{Spec}(A)$ and consider,

$$G_2 \rightarrow G_1 \rightarrow G \rightarrow 0$$

is a free presentation. Then consider,

$$\pi_*F \otimes G_2 \longrightarrow \pi_*F \otimes G \longrightarrow \pi_F \otimes G \longrightarrow 0$$

$$\parallel \qquad \qquad \qquad \downarrow$$

$$\pi_*(F \otimes \pi^*G_2) \longrightarrow \pi_*(F \otimes \pi^*G_1) \longrightarrow \pi_*(F \otimes \pi^*G) \longrightarrow 0$$

using that π_* is exact and the locally free form of the projection formula. Then we conclude the projection formula by the 5 lemma. (DO THE REST)

Lemma 2.3.2. Let $\pi: \mathscr{X} \to X$ be a GMS and X is quasi-separated. Then,

- (a) for $A \in QCoh(\mathscr{X})$ then $\mathbf{Spec}_{\mathscr{X}}(A) \to \mathbf{Spec}_{X}(\pi_{*}A)$ is a GMS
- (b) $\mathbb{Z} \subset \mathscr{X}$ is a closed substack defined by \mathscr{I} then $Z = \pi(\mathbb{Z}) \subset X$ satisfies that $\mathbb{Z} \to Z$ is a GMS.

Proof. Indeed (b) is the special case of (a) where $\mathcal{A} = \mathcal{O}_{\mathscr{X}}/\mathscr{I}$. For (a) we see that,

$$\mathbf{Spec}_{\mathscr{X}}\left(\mathcal{A}\right) \to \mathscr{X} \times_{X} \mathbf{Spec}_{X}\left(\pi_{*}\mathcal{A}\right) \to \mathbf{Spec}_{X}\left(\pi_{*}\mathcal{A}\right)$$

the first is affine and the second is cohomologically affine by base change.

I SHOULD HAVE BEEN CAREFUL ABOUT π vs im since I MEAN SCHEME THEORETIC IMAGE

Proof of Theorem. (a) if \mathscr{X} is quasi-sep then so is X. Then for all $x \in X(k)$ use Lemma 6.3.20 (b) $\mathscr{X} \times_X \operatorname{Spec}(k) \to \operatorname{Spec}(k)$ is a GMS. Then $\Gamma(\mathscr{X}_x, \mathcal{O}_{\mathscr{X}_x}) = k$ so $\mathscr{X}_x \neq \emptyset$ and hence π is surjective. To prove universal closedness consider $\mathbb{Z} \subset \mathscr{X}$ a closed substack use Lemma 6.3.22 (b) then $\mathbb{Z} \to \pi(\mathbb{Z})$ is a GMS and hence surjective hence $\pi(\mathbb{Z})$ the scheme theoretic image is just equal to the image and hence the image is closed. Then use preservation under base change to get universally closed. (b) if $\mathbb{Z}_i \subset \mathscr{X}$ are defined by \mathscr{I}_i then apply π_* to the sequence,

$$0 \longrightarrow \mathscr{I}_1 \longrightarrow \mathscr{I}_1 + \mathscr{I}_2 \longrightarrow \mathscr{I}_2/(\mathscr{I}_1 \cap \mathscr{I}_2) \longrightarrow 0$$

so we get,

$$\pi_* \mathscr{I}_1 + \pi_* \mathscr{I}_2 \cong \pi^* (\mathscr{I}_1 + \mathscr{I}_2)$$

and hence,

$$\operatorname{im}(\mathbb{Z}_1) \cap \operatorname{im}(\mathbb{Z}_2) = \operatorname{im}(\mathbb{Z}_1 \cap \mathbb{Z}_2)$$

2.4 Finite Typeness of GMS

Definition 2.4.1. A morphism $f: X \to Y$ of schemes is *universally submersive* if it is surjective and Y has the quotient topology $(U \subset Y \text{ open iff } f^{-1}(U) \text{ is open})$ and this is true after any base change.

Lemma 2.4.2. Valuative criterion:

$$\operatorname{Spec}(R') \xrightarrow{} X$$

$$\downarrow \qquad \qquad \downarrow$$

$$\operatorname{Spec}(R) \longrightarrow Y$$

if $X \to Y$ is universally submersive then there exists R'/R extensions of DVRs lifting.

Example 2.4.3. The following maps are universally submersive,

- (a) fppf covering
- (b) good moduli space morphism

Proof.

3 Determinantal Line Bundles

Recall that k is an algebraically closed field of characteristic zero.

Let X be a smooth, projective and connected curve over k. Let S be an algebraic stack over k. Then consider the diagram,

Since $X \times S \to S$ is representable by schemes we can use cohomology and base change theorem. If \mathcal{E} is a vector bundle on $X \times S$ then $\mathbf{R}p_*\mathcal{E}$ is a refect complex on S with amplitude in [0,1] since this is true for the projection map $X \times T \to T$ from a test scheme. what does amplitude mean

Proposition 3.0.1. Let k be a field, S a k-scheme of finite type and $f: X \to S$ a smooth projective morphism of relative dimension n. If F is a flat coherent sheaf on X then there is a locally free resolution

$$0 \to F_n \to F_{n-1} \to \cdots \to F_0 \to F \to 0$$

such that $R^n f_* F_{\nu}$ is locally free for $\nu = 0, ..., n$ and $R^i f_* F_{\nu} = 0$ for $i \neq n$ and $\nu = 0, ..., n$. Moreover, there is a natural quasi-isomorphism

$$[R^n f_* F_n \to R^n f_* F_{n-1} \to \cdots \to R^n f_* F_0] \to (\mathbf{R} f_* F)[n]$$

Proof. Let $\mathcal{O}_X(1)$ be an f-very ample line bundle on X. Since f is a Cohen-Macaulay morphism (it is even smooth) we have a Serre duality pairing,

$$R^i f_* \mathscr{F}(-m) \times R^{n-i} f_* (\mathscr{F}^{\vee}(m) \otimes \omega_{X/Y}) \to R^n f_* \omega_{X/Y} = \mathcal{O}_X$$

which is perfect. Using the mumford complex, there is some m_0 such that for $m \geq m_0$ we have $R^{n-i}f_*(\mathscr{F}^{\vee}(m)\otimes\omega_{X/Y})=0$ for all i< n and hence $R^if_*\mathscr{F}(-m)=0$. Define S-flat sheaves K_{ν} and G_{ν} inductively as follows. Let $K_0:=F$. Assume that K_{ν} has been constructed. Since this is a bounded family, for sufficiently large $m\gg m_0$ all fibers $(K_{\nu})_s$ are m-regular. Hence, by cohomology and base change $f_*K_{\nu}(m)$ is locally free (since its higher cohomology vanishes) and there is a natural surjection $G_{\nu}:=f^*(f_*K_{\nu}(m))(-m)\to K_{\nu}$ (surjective on fibers by m-regularity). Then G_{ν} is locally free and

$$R^i f_* G_{\nu} = f_* K_{\nu}(m) \otimes R^i f_* \mathcal{O}_X(-m)$$

by the projection formula. In particular, $R^n f_* G_{\nu}$ is locally free and the other direct image sheaves vanish. Finally, define

$$K_{\nu+1} := \ker (G_{\nu} \to K_{\nu})$$

Therefore we get an infinite locally free resolution $G_{\bullet} \to F$. Since for each $s \in S$

$$(K_n)_s = \ker ((G_{n-1})_s \to (G_{n-2})_s)$$

and the fiber X_s is regular of dimension n it has global dimension n and therefore $(K_n)_s$ is locally free since it is the nth syzygy module in the locally free resolution of the locally free sheaf F_s . Hence K_n is itself locally free by Nakayama². Therefore, we can truncate to get the locally free resolution F_{\bullet} . The last statement follows from the first. Indeed, the quasi-isomorphism,

$$[F_n \to \cdots \to F_0] \to F[0]$$

gives the desired result after applying $\mathbf{R}f_*$ and showing that the natural map WHERE DOES IT COME FROM?

$$\mathbf{R}f_*[F_n \to \cdots \to F_0] \to [R^n f_* F_n \to \cdots \to R^n f_* F_0][-n]$$

is a quasi-isomorphism. Indeed, the derived functor spectral sequence shows that,

$$E_2^{p,q} = \mathcal{H}^p(R^q f_* F_{\bullet}) \implies \mathcal{H}^{p+q}(\mathbf{R} f_* F_{\bullet})$$

but the only nonzero part of the E_2 page is the column (p,n) and thus

$$E^{p,n} = \mathcal{H}^p(R^n f_* F_{\bullet}) = \mathcal{H}^{p+n}(\mathbf{R} f_* F_{\bullet})$$

showing that the natural map is a quasi-isomorphism.

WHY CAN WE APPLY THIS TO A REPRESENTABLE MAP OF STACKS

Let \mathcal{E} be a vector bundle on $X \times \mathcal{S}$ then there exists a short exact sequence,

$$0 \to K \to \mathcal{O}_X x^{\oplus r} \to F_x \to 0$$

but F_x is flat over $\mathcal{O}_{S,s}$ so this stays exact when applying $-\otimes \mathcal{O}_{S,s}/\mathfrak{m}_s$ so we see that $K/\mathfrak{m}_s K=0$ and hence $K/\mathfrak{m}_x K=0$ so by Nakayama's lemma K=0.

²Suppose that $f: X \to S$ is a morphism and F is a coherent \mathcal{O}_X -module. If F_x is flat over $\mathcal{O}_{S,s}$ then F is locally free at x if and only if F_s is locally free at $x \in X_s$. Recall that F is locally free at x if and only if F_x is free over $\mathcal{O}_{X,x}$ since F is coherent. Then if $(F_s)_x = F_x/\mathfrak{m}_s F_x$ is free we lift the basis to

$$0 \longrightarrow \mathcal{E}^{-1} \longrightarrow \mathcal{E}^0 \longrightarrow \mathcal{E} \longrightarrow 0$$

such that $R^0p_*\mathcal{E}^{j-1}=0$ and $K^j=\mathbf{R}^1\mathcal{E}^{j-1}$ is locally free for j=0,1 (Note: I think there is a typo in the indices in the notes) therefore there is a quasi-isomorphism,

$$[K^0 \to K^1] \to \mathbf{R} p_* \mathcal{E}$$

Definition 3.0.2. If \mathcal{E} is a vector bundle on $X \times \mathcal{E}$ and $[K^0 \to K^1]$ is a two-term complex of locally free sheaves quasi-isomorphic to $\mathbf{R}p_*\mathcal{E}$ then we define the line bundle,

$$\det \mathbf{R} p_* \mathcal{E} := \det K^0 \otimes (\det K^1)^{\vee}$$

We could also make this definition for any perfect complex on \mathcal{S} . The rank of a perfect complex is defined as the alternating sum of the ranks of a representative. This is independent of the choice of representative because localizing at the generic point reduces to the case of finite dimensional vectorspaces for which Euler characteristic of a bounded complex coincides with the alternating sum of dimensions. If rank $(\mathbf{R}p_*\mathcal{E}) = 0$ then by definition rank $K^0 = \operatorname{rank} K^1$ so the dual $(\det \mathbf{R}p_*\mathcal{E})^{\vee}$ is then equipped with a section given by the determinant of the map $K^0 \to K^1$.

Lemma 3.0.3. The definition of det $\mathbf{R}p_*\mathcal{E}$ is independent of the choice of representative perfect complex.

Lemma 3.0.4. Given an exact sequence,

$$0 \longrightarrow \mathcal{E}' \longrightarrow \mathcal{E} \longrightarrow \mathcal{E}'' \longrightarrow 0$$

then,

$$\det \mathbf{R} p_* \mathcal{E} = (\det \mathbf{R} p_* \mathcal{E}') \otimes (\det \mathbf{R} p_* \mathcal{E}'')$$

Proof. We find a complex $\mathcal{E}^{\bullet} = [\mathcal{E}^{-1} \to \mathcal{E}^{0}]$ and $\mathcal{E}^{\bullet} \to \mathcal{E}$ a quasi-isomorphism as above. Choose \mathcal{E}'^{\bullet} and \mathcal{E}''^{\bullet} similarly. In fat, it follows from the construction that these resolutions may be choosen comptabily so that there is a short exact sequence of complexes,

$$0 \longrightarrow \mathcal{E}^{\prime \bullet} \longrightarrow \mathcal{E}^{\bullet} \longrightarrow \mathcal{E}^{\prime \prime \bullet} \longrightarrow 0$$

compatible with the quasi-isomorphisms to the previous sequence. Taking cohomology, we find a short exact sequence

$$0 \longrightarrow K'^{\bullet} \longrightarrow K^{\bullet} \longrightarrow K''^{\bullet} \longrightarrow 0$$

of complex of locally free sheaves on S. The result follows from the multiplicativity of determinants in short exact sequences of locally free sheaves,

$$\det K^0 = \det K'^0 \otimes \det K''^0 \quad \det K^1 = \det K'^1 \otimes \det K''^1$$

and therefore,

$$\det K^{\bullet} := \det K^{0} \to (\det K^{1})^{\vee} = \det K'^{0} \to \det K''^{0} \otimes (\det K'^{1} \otimes \det K''^{1})^{\vee} = \det K'^{\bullet} \otimes (\det K''^{\bullet})^{\vee}$$

We will apply this construction to the case $\mathcal{S} = \mathcal{M}_X(r,d)$ and $\mathcal{E} = \mathcal{E}_{univ} \otimes q^*V$ where V is a vector bundle on X.

Definition 3.0.5. For a vector bundle V on X we define the determinantal line bundle

$$\mathcal{L}_V := (\det \mathbf{R} p_* (\mathcal{E}_{\text{univ}} \otimes q^* V)^{\vee}$$

on $\mathcal{M}_X(r,d)$ associated to V. If $\chi(X,E\otimes V)=0$ for all $[E]\in\mathcal{M}_X(R,d)$ then the rank of $\mathbf{R}p_*(\mathcal{E}_{\mathrm{univ}}\otimes q^*V)$ is zero and we define the section

$$s_V \in \Gamma(\mathcal{M}_X(r,d), \mathcal{L}_V)$$

Remark. Since $\mathbf{R}p_*(\mathcal{E}_{\text{univ}} \otimes q^*V)$ is perfect, its construction commutes with base change. In particular, its restriction to a k-point $[E] \in \mathcal{M}_X(r,d)$ is identified with the two-term complex $\mathbf{R}\Gamma(X,\mathcal{E}\otimes V)$. If moreover

$$\chi(X, E \otimes V) = h^0(X, E \otimes V) - h^1(X, E \otimes V) = 0$$

we see that indeed rank $\mathbf{R}p_*(\mathcal{E}_{\mathrm{univ}} \otimes q^*V) = 0$.

Remark. Note that,

$$\deg E \otimes V = (\deg E)(\operatorname{rank} V) + (\operatorname{rank} E)(\deg V)$$

and therefore by Riemann-Roch $\chi(X, E \otimes V) = 0$ if and only if,

$$d\operatorname{rank} V + r\operatorname{deg} V + (1 - g)r\operatorname{rank} V = 0$$

or equivalently,

(*)
$$\mu(E) \operatorname{rank} V + \deg V + (1 - g) \operatorname{rank} V = 0$$

Notice that this is actually just a numerical condition on V that only depends on the slope of E. Therefore, if (*) holds then $\chi(X, E \otimes V) = 0$ for all vector bundles E with fixed slope $\mu(E)$.

The construction of the determinantal line bundle defines a morphism,

$$\det: \mathcal{M}_X(r,d) \to \mathscr{P}ic_X^d$$

such that,

$$(\mathrm{id}_X \times \mathrm{det})^* \mathcal{P} = p^* \det \mathcal{E}_{\mathrm{univ}}$$

where \mathcal{P} is the Poincare bundle on $\mathscr{P}ie_X^d \times X$.

Proposition 3.0.6. The following hold:

(a) the assignment $V \mapsto \mathcal{L}_V$ induces a group homomorphism,

$$K_0(X) \to \operatorname{Pic} (\mathcal{M}_X(r,d))$$

meaning the isomorphism class of \mathcal{L}_V depends only on rank V and det V

(b) if V and W are vector bundles of the same rank and degree then there exists a line bundle \mathcal{N} on $\mathscr{P}_{e_X}^d$ such that,

$$\mathcal{L}_W \cong \mathcal{L}_V \otimes \det^* \mathcal{N}$$

where det* is the pullback along the map det: $\mathcal{M}_X(r,d) \to \mathscr{Pic}_X^d$.

Proof. For an exact sequence of vector bundles on X,

$$0 \longrightarrow V_1 \longrightarrow V_2 \longrightarrow V_3 \longrightarrow 0$$

we get an exact sequence using flatness of q and the fact that $\mathcal{E}_{\text{univ}}$ is a vector bundle,

$$0 \longrightarrow q^*V_1 \otimes \mathcal{E}_{\text{univ}} \longrightarrow q^*V_2 \otimes \mathcal{E}_{\text{univ}} \longrightarrow q^*V_3 \otimes \mathcal{E}_{\text{univ}} \longrightarrow 0$$

which thus induces an isomorphism,

$$\mathcal{L}_{V_2} \cong \mathcal{L}_{V_1} \otimes \mathcal{L}_{V_3}$$

proving the factorization of the map of monoids through $K_0(X)$,

Then the consequence follows from the isomorphism $K_0(X) = \mathbb{Z} \oplus \operatorname{Pic}(X)$ given by $V \mapsto (\operatorname{rank} V, \det V)$. To prove the second statment, using the first we may assume that $V = \mathcal{O}_X^{\oplus r_V - 1} \oplus \mathcal{O}_X(D)$ for some divisor D on X and similarly for W. Moreover, writing $D = D_1 - D_2$ as a difference of effective divisors we see that,

$$[\mathcal{O}_X(D)] = [\mathcal{O}_X] + [\mathcal{O}_{D_1}] - [\mathcal{O}_{D_2}]$$

in $K_0(X)$. Therefore, the classes of V and W in $K_0(X)$ differ only by the class of a divisor of degree 0 DOESNT THE PROOF WORK FOR DIVISORS OF ANY DEGREE?. Thus by the additivity of the derminantal construction, it suffices to prove that,

$$\det \mathbf{R} p_*(\mathcal{E}_{\mathrm{univ}} \otimes q^* \mathcal{O}_x) \cong \det^* \mathcal{N}'$$

for some line bundle \mathcal{N}' on $\mathscr{P}_{\mathcal{C}_X}^d$ where $x \in X$ is a closed point. Viewing \mathcal{E}_x and \mathcal{P}_x as sheaves on $\mathcal{M}_X(r,d)$ and $\mathscr{P}_{\mathcal{C}_X}^d$ respectively as pullback along the sections $\mathcal{S} \to X \times \mathcal{S}$ defined by $x \in X$ then,

$$\det \mathbf{R} p_* (\mathcal{E}_{\text{univ}} \otimes q^* \mathcal{O}_x) = \det \mathcal{E}_x = \det^* \mathcal{P}_x$$

which proves the claim.

Definition 3.0.7. Let E be a vector bundle on X. We say that E is cohomology-free if $h^0(X, E) = h^1(X, E) = 0$.

Proposition 3.0.8. If (*) holds for V then the following are equivalent,

- (a) the section $s_V \in \Gamma(\mathcal{M}_X(r,d),\mathcal{L}_V)$ is nonzero at [E]
- (b) $E \otimes V$ is cohomology-free

Proof. The morphism det $j: \det K_0 \to \det K_1$ of line bundles is nonzero at the point $[E] \in \mathcal{M}_X(r,d)$ if and only if the morphism of vector bundles $j: K-0 \to K_1$ is an isomorphism at [E]. Since $\mathbf{R}p_*(\mathcal{E}_{\mathrm{univ}} \otimes q^*V)$ is quasi-isomorphic to $[K_0 \to K_1]$ we see that j is an isomorphism if and only if $(\mathbf{R}p_*(\mathcal{E}_{\mathrm{univ}} \otimes q^*V))_{[E]} = 0$ if and only if $h^0(X, E \otimes V) = h^1(X, E \otimes V) = 0$ by cohomology and base change.

Remark. While \mathcal{L}_V only depends on rank V and det V the section s_V does depend on V itself since it can detect cohomology-freeness as above. We will leverage this fact to produce enough sections of \mathcal{L}_V to establish ampleness. Notice also that, under the assumption that $\chi(X, E \otimes V) = 0$ the vanishing of $H^0(X, E \otimes V)$ is equivalent to the vanishing of $H^1(X, E \otimes V)$.

Now we specialize this discussion to the open substack $\mathcal{M}_X^{ss}(r,d) \subset \mathcal{M}_X(r,d)$. The goal is to prove that the good mouli space $M_X^{ss}(r,d)$ is projective. Our candidate ample line bundle is the descent of some \mathcal{L}_V .

Proposition 3.0.9. The determinantal line bundle \mathcal{L}_V associated to a vector bundle V satisfying (*) descends to $M_X^{ss}(r,d)$ uniquely meaning there exists a unique line bundle $L_V \in \text{Pic }(M_X^{ss}(r,d))$ such that $\mathcal{L}_V \cong \phi^* L_V$.

Proof. By Thorem 3.5(iv), we must show that stabilizers of $\mathcal{M}_X^{ss}(r,d)$ act trivially on the fibers of \mathcal{L}_V . By Theorem 3.12(ii), the closed points of $\mathcal{M}_X^{ss}(r,d)$ correspond to polystable bundles,

$$E = \bigoplus_{j=1}^{n} E_j^{\oplus m_j}$$

where the E_i are pairwise nonisomorphic stable bundles. Since E is also semistable the slopes of the E_i must all be equal so $\mu(E_i) = \mu(E) = \frac{d}{r}$. Since these are nonisomorphic stable bundles with the same slope there are no nonzero morphisms between them (we have $\text{Hom }(E_i, E_j) = k \cdot \delta_{ij}$). Since $\text{End }(E_i) = k$ we see that,

$$\operatorname{Aut}(E) = \operatorname{GL}_{m_1} \times \cdots \times \operatorname{GL}_{m_n}$$

The fiber of $\mathcal{L}_V|_{[E]}$ is identified with

$$\det \mathbf{R}\Gamma(X, E \otimes V) = \prod_{i=1}^{n} (\det H^{i}(X, E \otimes V))^{\otimes (-1)^{i}}$$

An element $(g_1, \ldots, g_n) \in \text{Aut}(E)$ act on,

$$\det H^{i}(X, E \otimes V) \cong \bigotimes_{j=1}^{n} (\det H^{i}(X, E_{j} \otimes V))^{\otimes m_{j}}$$

by multiplication with,

$$\prod_{j=1}^{n} \det (g_i)^{\dim H^i(X, E_j \otimes V)}$$

and thus on $\mathcal{L}_{V|[E]}$ by multiplication with,

$$\prod_{j=1}^{n} \det (g_j)^{\chi(X, E_j \otimes V)}$$

but each E_j has slope $\mu(E_j) = \frac{d}{r}$ so by (*) we have $\chi(X, E_j \otimes V) = 0$ since it implies vanishing for all E with $\mu(E) = \frac{d}{r}$ and hence the action is trivial.

3.0.1 Moduli of Vector Bundles with Fixed Determinant

Let L be a line bundle on X of degree d corresponding to a closed point of \Re_X^d represented by a morphism $[L]: \operatorname{Spec}(k) \to \Re_X^d$ IS EVERY k-point closed? in Pic? I Think so since X/k is SMOOTH so we should have separatedness. Then consider the diagram,

$$\mathcal{M}_X(r,L) \longrightarrow \mathcal{M}_X(r,d)$$

$$\downarrow \qquad \qquad \downarrow_{\det^*}$$

$$\operatorname{Spec}(k) \stackrel{L}{\longrightarrow} \mathscr{P}ie_X^d$$

Explicitly, $\mathcal{M}_X(r, L)$ is the stack of pairs (\mathcal{E}, φ) where \mathcal{E} is a vector bundle on $X \times S$ of rank r and degree d fiberwise equipped with an isomorphism $\varphi : \det \mathcal{E} \xrightarrow{\sim} L|_{X \times S}$. The condition of constant degree d on fibers is implied by determinant isomorphism which is why d is left out of the notation.

Corollary 3.0.10. For a line bundle L of degree d on X, the restriction of the determinantal line bundle L_V to $M_X^{ss}(r,L)$ only depends on the rank and degree of V.

Proof. We have commuting diagrams,

$$\mathcal{M}_{X}^{ss}(r,L) \longrightarrow \mathcal{M}_{X}^{ss}(r,d) \qquad \qquad \mathcal{M}_{X}^{ss}(r,L) \longleftrightarrow \mathcal{M}_{X}^{ss}(r,d)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\operatorname{Spec}(k) \stackrel{L}{\longrightarrow} \mathscr{Pie}_{X}^{d} \qquad \qquad M_{X}^{ss}(r,L) \longleftrightarrow M_{X}^{ss}(r,d)$$

where in the second square, both vertical arrows are hood moduli space morphisms. If V and W are vector bundles of equal rank and degree on X, both satisfying condition (10) then there exists a line bundle \mathcal{N} on \mathscr{P}_{X}^{cd} such that $\mathcal{L}_{W} \cong \mathcal{L}_{V} \otimes \det^{*} \mathcal{N}$. The left diagram shows that, restriction to $\mathcal{M}_{X}^{ss}(r,L)$, this isomrophism becomes $\mathcal{L}_{W} \cong \mathcal{L}_{V}$. The right diagram now shows that the restriction of L_{V} and L_{W} to $M_{X}^{ss}(r,L)$ become isomrophic after pulling back to $\mathcal{M}_{X}^{ss}(r,L)$, so the restrictions must be isomorphic by the uniqueness of the descent along the good moduli space morphism $\mathcal{M}_{X}^{ss}(r,L) \to M_{X}^{ss}(r,L)$.

Theorem 3.0.11 (Drézet-Narasimhan). There exist isomorphisms,

$$\operatorname{Pic}\left(M_X^{ss}(r,d)\right) \cong \operatorname{Pic}\left(\operatorname{Pic}_X^d\right) \oplus \mathbb{Z}$$

 $\operatorname{Pic}\left(M_X^{ss}(r,L)\right) \cong \mathbb{Z}$

In the first line, \mathbb{Z} is WHAT IS IT GENERATED BY? In the second line, \mathbb{Z} is generated by the determinantal line bundle L_V where V is chosen to be of minimal rank,