

Notas de Aula 2/2014¹

José Antônio O. Freitas

Departamento de Matemática Universidade de Brasília - UnB

¹⊕��� Este texto está licenciado sob uma Licença Creative Commons Atribuição-NãoComercial-CompartilhaIgual 3.0 Brasil http://creativecommons.org/licenses/by-nc-sa/3.0/br/deed.pt_BR.

SUMÁRIO

1	Quádricas		
	1.1	Esfera	7
	1.2	Elipsóide	8
	1.3	Parabolóides	9
	1.4	Hiperbolóides	11
Ín	dice l	Remissivo	19

SUMÁRIO 4

LISTA DE FIGURAS

1.1	Esfera: $x^2 + y^2 + z^2 = r^2$	8
1.2	Elipsóide: $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1 \dots$	9
1.3	Contornos do elipsóide $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ pelo plano $z = k$	14
1.4	Parabolóide Elíptico: $z = \frac{x^2}{a^2} + \frac{y^2}{b^2}$	15
1.5	Parabolóide Hiperbólico: $z = \frac{y^2}{b^2} - \frac{x^2}{a^2} \dots$ Hiperbolóide de uma folha: $\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1 \dots$	16
1.6	Hiperbolóide de uma folha: $\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1 \dots \dots \dots \dots$	17
1.7	Hiperbolóide duas folhas: $-\frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1 \dots \dots \dots \dots$	18

LISTA DE FIGURAS 6

CAPÍTULO 1

QUÁDRICAS

Em \mathbb{R}^3 estamos interessados em objetos definidos por uma equação de segundo grau em x, y e z da forma

$$ax^{2} + by^{2} + cz^{2} + dxy + exz + fyz + gx + hy + iz + j = 0.$$
 (1.1)

O conjunto de pontos em \mathbb{R}^3 satisfazendo uma equação da forma (1.1) é chamado de uma **quádrica**. Observe que pelo menos um dos números a, b, c, d, e ou f deve ser não nulo.

Nosso principal objetivo será tentar simplificar a equação (1.1) de modo que seja possível identificar que objeto tal equação representa.

1.1 Esfera

Definição 1.1. Uma esfera é uma quádrica com equação na forma

$$x^2 + y^2 + z^2 = r^2. ag{1.2}$$

Figura 1.1: Esfera: $x^2 + y^2 + z^2 = r^2$

1.2 Elipsóide

Definição 1.2. *Um elipsóide* é uma quádrica descrita pela equação

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1 \tag{1.3}$$

onde os números reais a, b e c são positivos e pelo menos dois deles são distintos.

Considere o plano $\pi:z=k$. Qual a interseção de π com o elipsóide de equação (1.3)? A interseção é dada pelo sistema

$$\begin{cases} \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1\\ z = k, \end{cases}$$

isto é, pela equação

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 - \frac{k^2}{c^2}. ag{1.4}$$

Se $k^2 > c^2$, então a equação (1.4) não admite solução pois $1 - k^2/c^2 < 0$. Assim seja $k^2 \le c^2$, isto é, $-c \le k \le c$. Se k = c, então a interseção é o ponto (0,0,c) e se k = -c é o ponto (0,0,-c). Então seja -c < k < c e denote $p = 1 - k^2/c^2$. Podemos reescrever (1.4) como

$$\frac{x^2}{pa^2} + \frac{y^2}{pb^2} = 1. ag{1.5}$$

Se a = b, então a equação (1.5) é uma circunferência. Se $a \neq b$, então a equação (1.5) descreve uma elipse.

De modo análogo, se tomarmos $\pi: x = k$ ou $\pi: y = k$, as interseções serão sempre ou conjunto vazio ou um ponto ou uma circunferência ou uma elipse.

1.3 Parabolóides

Definição 1.3. Sejam a e b números reais positivos a quádrica descrita de equação

$$z = \frac{x^2}{a^2} + \frac{y^2}{b^2},$$

é chamada de:

- 1. $um \ parabolóide \ elíptico \ se \ a \neq b;$
- 2. um parabolóide de rotação se a = b;

A interseção do parabolóide

$$z = \frac{x^2}{a^2} + \frac{y^2}{b^2},$$

com o plano $\pi : x = k$ é dada por

$$z = \frac{k^2}{a^2} + \frac{y^2}{b^2},$$

que é uma parábola. O mesmo ocorrerá com o plano $\pi : y = k$.

Agora a interseção com z = k é dada forma

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = k.$$

Se k < 0, então a interseção é vazia. Se k = 0, a interseção é o ponto (0,0,0). Se k > 0, precisamos analisar o que ocorre com a e b: se $a \ne b$, então obtemos uma elipse. Se a = b, então a interseção é uma circunferência.

Definição 1.4. Sejam a e b números reais positivos a quádrica descrita de equação

$$z=\frac{y^2}{b^2}-\frac{x^2}{a^2},$$

é chamada de um um parabolóide hiperbólico,

A interseção do parabolóide hiperbólico com o plano $\pi: z = k$ é dada por

$$\begin{cases} \frac{y^2}{b^2} - \frac{x^2}{a^2} = k \\ z = k \end{cases}.$$

Se k = 0, então obtemos

$$\frac{y^2}{h^2} - \frac{x^2}{a^2} = \left(\frac{y}{h} - \frac{x}{a}\right)\left(\frac{y}{h} + \frac{x}{a}\right) = 0$$

que trata-se de duas retas concorrentes na origem:

$$r: \begin{cases} \frac{y}{b} - \frac{x}{a} = 0 \\ z = 0 \end{cases}, \quad s: \begin{cases} \frac{y}{b} - \frac{x}{a} = 0 \\ z = 0 \end{cases}.$$

Se $k \neq 0$, podemos escrever

$$\frac{y^2}{kb^2} - \frac{x^2}{ka^2} = 1$$

que é uma hipérbole.

A interseção com o plano $\pi : y = k$ é dada por

$$z = \frac{k^2}{b^2} - \frac{x^2}{a^2}$$

que é uma parábola. O mesmo ocorre com o plano $\pi : x = k$.

1.4 Hiperbolóides

Definição 1.5. *Um hiperbolóide de uma folha é uma quádrica descrita pela equação*

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$$

onde os números reais a, b e c são positivos e pelo menos dois deles são distintos.

Para o caso do hiperbolóide de uma folha a interseção com o plano $\pi:z=k$ é dada pelo sistema

$$\begin{cases} \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 + \frac{k^2}{c^2} \\ z = k. \end{cases}$$

Denotando $p = 1 + k^2/c^2 > 0$ podemos escrever

$$\frac{x^2}{pa^2} + \frac{y^2}{pb^2} = 1. ag{1.6}$$

Se a = b, então a equação (1.6) descreve uma circunferência. Se $a \neq b$, então a equação (1.6) descreve uma elipse.

Agora a interserção com o plano $\pi: y = k$ é descrita pela equação

$$\frac{x^2}{a^2} - \frac{z^2}{c^2} = 1 - \frac{k^2}{b^2}. (1.7)$$

Se $k^2 = b^2$, obtemos

$$\frac{x^2}{a^2} - \frac{z^2}{c^2} = 0,$$

isto é,

$$\left(\frac{x}{a} - \frac{z}{c}\right)\left(\frac{x}{a} + \frac{z}{c}\right).$$

Logo a interseção de π com o hiperbolóide de uma folha é o par de retas concorrentes

$$r: \begin{cases} \frac{x}{a} - \frac{z}{c} = 0 \\ y = k \end{cases}, \quad s: \begin{cases} \frac{x}{a} + \frac{z}{c} = 0 \\ y = k \end{cases}.$$

Se $k^2 \neq b^2$, então fazendo $p = 1 - k^2/b^2$ podemos escrever a equação (1.7) como

$$\frac{x^2}{pa^2} - \frac{z^2}{pc^2} = 1$$

obtendo-se uma hipérbole.

De modo análogo, obtemos as mesmas interseções se considerarmos o plano $\pi : x = k$.

Definição 1.6. Um hiperbolóide de duas folhas é uma quádrica descrita pela equação

$$\frac{y^2}{b^2} - \frac{x^2}{a^2} - \frac{z^2}{c^2} = 1$$

onde os números reais a, b e c são positivos e pelo menos dois deles são distintos.

A interseção do hiperbolóide de duas folhas com a plano $\pi: z = k$ é dada por

$$\frac{y^2}{b^2} - \frac{x^2}{a^2} = 1 + \frac{k^2}{c^2}.$$

Denotando $p = 1 + k^2/c^2$ podemos escreve a equação anterior como

$$\frac{y^2}{pb^2} - \frac{x^2}{pa^2} = 1$$

que representa uma hipérbolo.

A interseção com o plano π : x = k é dada por

$$\frac{y^2}{b^2} - \frac{z^2}{c^2} = 1 + \frac{k^2}{b^2}.$$

e fazendo $p = 1 + k^2/b^2$ obtemos

$$\frac{y^2}{pb^2} - \frac{z^2}{pc^2} = 1$$

que também é uma hipérbolo.

Agora a interseção com o plano $\pi : y = k$ é dada por

$$\frac{x^2}{a^2} + \frac{z^2}{c^2} = \frac{k^2}{c^2} - 1. \tag{1.8}$$

Se $k^2 < b^2$, então $k^2/b^2 - 1 < 0$ e daí a equação (1.8) não admite solução.

Se $k^2 = k^2$, então a interseção é ou o ponto (0, k, 0) ou o ponto (0, -k, 0).

Se $k^2 > b^2$, isto é, k < -b ou k > b, então tomando $p = k^2/b^2 - 1 > 0$, podemos escrever (1.8) como

$$\frac{x^2}{pa^2} + \frac{z^2}{pc^2} = 1.$$

Assim se a=c, então obtemos uma circunferência e se $a\neq c$, então a interseção é uma elipse.

Figura 1.3: Contornos do elipsóide $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ pelo plano z = k

Figura 1.5: Parabolóide Hiperbólico: $z = \frac{y^2}{b^2} - \frac{x^2}{a^2}$

Figura 1.6: Hiperbolóide de uma folha: $\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$

Figura 1.7: Hiperbolóide duas folhas: $-\frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$

ÍNDICE REMISSIVO

```
Quádricas, 7
Elipsóide, 8
Esfera, 7
Hiperbolóide de duas folhas, 12
Hiperbolóide de uma folha, 11
Parabolóide de rotação, 9
Parabolóide elíptico, 9
Parabolóide hiperbólico, 10
```