

An einem Kreis gilt

$$r = \sqrt{x^2 + y^2}.$$

Dies kann man auch schreiben als

$$r^2 = x^2 + y^2$$
 oder $y^2 = r^2 - x^2$.

Nun soll ein Gegenstand vom Punkt P_0 in x-Richtung bewegt werden. Der Gegenstand hat die Geschwindigkeit v. Wir bewegen den Gegenstand nur ein sehr kleines Stück Δx .

$$\Delta x = \nu \cdot \Delta t$$

In der Zeit Δt fällt der Gegenstand in Richtung Kreismittelpunkt (siehe Skizze)

$$r - y = \frac{1}{2} \cdot a \cdot (\Delta t)^2 \rightarrow y = r - \frac{1}{2} \cdot a \cdot (\Delta t)^2.$$

$$\begin{split} r^2 &= x^2 + y^2 \\ &= (v \cdot \Delta t)^2 + (r - \frac{1}{2} \cdot a \cdot (\Delta t)^2)^2 \\ &= (v \cdot \Delta t)^2 + r^2 - r \cdot a \cdot (\Delta t)^2 + \frac{1}{4} \cdot a^2 \cdot (\Delta t)^4 \\ 0 &= (v \cdot \Delta t)^2 - r \cdot a \cdot (\Delta t)^2 + \frac{1}{4} \cdot a^2 \cdot (\Delta t)^4 \\ r \cdot a \cdot (\Delta t)^2 &= (v \cdot \Delta t)^2 + \frac{1}{4} \cdot a^2 \cdot (\Delta t)^4 \\ r \cdot a &= v^2 + \frac{1}{4} \cdot a^2 \cdot (\Delta t)^2 \end{split}$$

Wir schauen nach sehr kurzer Zeit. Δt ist also fast Null. Der zweite Term ist damit auch Null und es folgt

$$a = \frac{v^2}{r}$$

a nennt man Zentrifugalbeschleunigung.