Quiz 3

- There are 6 problems total worth 35 points as shown in each question.
- You must not communicate with other students during this test.
- No books, notes allowed.
- No other electronic device except calculators are allowed. You cannot use your mobile as calculators.
- \bullet This is a 45 minute exam.
- Do not turn this page until instructed to.
- There are several different versions of this exam.

1.	Fill in your i	nformation:
	Full Name:	
	NetID:	

1/1. (5 points) Suppose we use Bottom-Up Computation (BUC) to materialize cubes. We have a 3-D data array containing three dimensions A, B, C. The data contained in the array is as follows:

```
\begin{array}{llll} (a_0;b_0;c_0):1 & (a_0;b_0;c_1):1 & (a_0;b_0;c_2):1 \\ (a_0;b_1;c_0):1 & (a_0;b_1;c_1):1 & (a_0;b_1;c_2):1 \\ (a_0;b_2;c_0):1 & (a_0;b_2;c_1):1 & (a_0;b_2;c_2):1 \\ (a_0;b_3;c_0):1 & (a_0;b_3;c_1):1 & (a_0;b_3;c_2):1 \end{array}
```

Now suppose we construct an iceberg cube for dimension A, B, C with different orders of exploration.

- A. Draw the trace trees of expansion with regard to exploration order: C, B, A.
- B. Suppose the minimum support = 4 with the exploration order of A, B, C, how many cells would be computed? Please give detailed explanation.

Solution.

A. 2 marks

B. 16 Cubes to be computed, $All, a_0, a_0b_0, a_0b_1, a_0b_2, a_0b_3, a_0c_0, a_0c_1, a_0c_2, b_0, b_1, b_2, b_3, c_0, c_1, c_2 - 3$ marks (Partial marks for partial answer)

1/2. (5 points) Suppose we use Bottom-Up Computation (BUC) to materialize cubes. We have a 3-D data array containing three dimensions A, B, C. The data contained in the array is as follows:

```
\begin{array}{llll} (a_0;b_0;c_0):1 & (a_0;b_0;c_1):1 & (a_0;b_0;c_2):1 \\ (a_0;b_1;c_0):2 & (a_0;b_1;c_1):2 & (a_0;b_1;c_2):2 \\ (a_0;b_2;c_0):1 & (a_0;b_2;c_1):1 & (a_0;b_2;c_2):1 \\ (a_0;b_3;c_0):1 & (a_0;b_3;c_1):1 & (a_0;b_3;c_2):1 \end{array}
```

Now suppose we construct an iceberg cube for dimension A, B, C with different orders of exploration.

- A. Draw the trace trees of expansion with regard to exploration order: C, B, A.
- B. Suppose the minimum support = 4 with the exploration order of A, B, C, how many cells would be computed? Please give detailed explanation.

Solution.

A. 2 marks

B. 22 Cubes to be computed, -3 marks (Partial marks for partial answer)

1/3. (5 points) Suppose we use Bottom-Up Computation (BUC) to materialize cubes. We have a 3-D data array containing three dimensions A, B, C. The data contained in the array is as follows:

$(a_0;b_0;c_0):1$	$(a_0;b_0;c_1):1$	$(a_0;b_0;c_2):3$
$(a_0;b_1;c_0):1$	$(a_0;b_1;c_1):1$	$(a_0;b_1;c_2):1$
$(a_0;b_2;c_0):2$	$(a_0;b_2;c_1):1$	$(a_0;b_2;c_2):1$
$(a_0;b_3;c_0):1$	$(a_0;b_3;c_1):2$	$(a_0;b_3;c_2):1$

Now suppose we construct an iceberg cube for dimension A, B, C with different orders of exploration.

- A. Draw the trace trees of expansion with regard to exploration order: C, B, A.
- B. Suppose the minimum support = 4 with the exploration order of A, B, C, how many cells would be computed? Please give detailed explanation.

Solution.

A. 2 marks

B. 31 Cubes to be computed, - 3 marks (Partial marks for partial answer)

2/1. (5 points)

Suppose the standard deviation of n observations x_1, x_2, \dots, x_n as

$$s = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i - \overline{x})^2}$$

Is this measure a distributive, algebraic or holistic measure? Justify your answer.

Solution. Algebraic - 2 marks

After some calculations, $s = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i)^2 - \frac{1}{N} (x_i^2)}$. Algebraic since the measure can be computed based on three distributive measures: n, $\sum x_i^2$ and $\sum x_i - 3$ marks

3/1. (5 points) Given a database of T tuples, D dimensions, and F shell fragment size, the fragment cubes's space requirement is:

$$O(T\lceil \frac{D}{F}\rceil(2^F-1))$$

Consider two cases, where F = 1 and F = D,

- A. In what case is the space requirement lowest?
- B. What are challenges in using this value of F?

Solution.

- A. F =1 O(TD), F = D $O(T(2^D-1))$, 2 marks Space lowest on F = 1 1 Mark
- B. Long query execution time 2 marks

4/1. (5 points) We have a data array containing 3 dimensions A, B and C. The 3-D array is divided into small chunks. Each dimension is divided into 3 equally sized partitions. See Figure 1. For example, dimension A is divided into a_0, a_1 and a_2 , and dimension B is divided into b_0, b_1 and b_2 . There are totally 27 chunks and each chunk is represented by a sub-cube $a_ib_jc_k$. The cardinality (size) of the dimensions A, B, and C is 900, 300, and 600. Since we divide each dimension into 3 parts with equal size, the sizes of the chunks on dimensions A, B, and C are 300, 100, and 200 respectively. Now we want to use **Multiway Array Aggregation** Computation to materialize cubes. The base cuboid ABC is computed as a 3-D array. We want to materialize the 2-D cuboids AB, AC and BC.

Figure 1: Figure 1: A 3-D array with dimensions A, B and C. This array is divided into 27 smaller chunks.

If we scan the chunk in the order 1, 2, 3, ...27 when materializing the 2-D cuboids AB, AC and BC, to avoid reading a 3-D chunk into memory repeatedly, what is the minimum memory requirement to hold all the related 2-D planes?

Solution. 5 marks (Partial marks if almost right) Space requirement = AC + AB + BC = 900*600 + 100*900 + 100*200 = 650,000 - 5 marks

4/2. (5 points) We have a data array containing 3 dimensions A, B and C. The 3-D array is divided into small chunks. Each dimension is divided into 3 equally sized partitions. See Figure 1. For example, dimension A is divided into a_0, a_1 and a_2 , and dimension B is divided into b_0, b_1 and b_2 . There are totally 27 chunks and each chunk is represented by a sub-cube $a_ib_jc_k$. The cardinality (size) of the dimensions A, B, and C is 300, 900, and 600. Since we divide each dimension into 3 parts with equal size, the sizes of the chunks on dimensions A, B, and C are 100, 300, and 200 respectively. Now we want to use **Multiway Array Aggregation** Computation to materialize cubes. The base cuboid ABC is computed as a 3-D array. We want to materialize the 2-D cuboids AB, AC and BC.

If we scan the chunk in the order 1, 2, 3, ...27 when materializing the 2-D cuboids AB, AC and BC, to avoid reading a 3-D chunk into memory repeatedly, what is the minimum memory requirement to hold all the related 2-D planes?

Figure 2: Figure 1: A 3-D array with dimensions A, B and C. This array is divided into 27 smaller chunks.

Solution. 5 marks (Partial marks if almost right) Space requirement = AC + AB + BC = 300*600 + 300*300 + 300*200 = 330,000 - 5 marks

4/3. (5 points) We have a data array containing 3 dimensions A, B and C. The 3-D array is divided into small chunks. Each dimension is divided into 3 equally sized partitions. See Figure 1. For example, dimension A is divided into a_0, a_1 and a_2 , and dimension B is divided into b_0, b_1 and b_2 . There are totally 27 chunks and each chunk is represented by a sub-cube $a_ib_jc_k$. The cardinality (size) of the dimensions A, B, and C is 600, 300, and 900. Since we divide each dimension into 3 parts with equal size, the sizes of the chunks on dimensions A, B, and C are 200, 100, and 300 respectively. Now we want to use **Multiway Array Aggregation** Computation to materialize cubes. The base cuboid ABC is computed as a 3-D array. We want to materialize the 2-D cuboids AB, AC and BC.

If we scan the chunk in the order 1, 2, 3, ...27 when materializing the 2-D cuboids AB, AC and BC, to avoid reading a 3-D chunk into memory repeatedly, what is the minimum memory requirement to hold all the related 2-D planes?

Solution. 5 marks (Partial marks if almost right) Space requirement = AC + AB + BC = 600*900 + 600*100 + 100*300 = 630,000 - 5 marks

4/4. (5 points) We have a data array containing 3 dimensions A, B and C. The 3-D array is divided into small chunks. Each dimension is divided into 3 equally sized partitions. See Figure 1. For example, dimension A is divided into a_0 , a_1 and a_2 , and dimension B is divided into b_0 , b_1 and b_2 . There are totally 27 chunks and each chunk is represented by a sub-cube $a_ib_jc_k$. The cardinality (size) of the dimensions A, B, and C is 300, 600, and 900. Since we divide each dimension into 3

Figure 3: Figure 1: A 3-D array with dimensions A, B and C. This array is divided into 27 smaller chunks.

parts with equal size, the sizes of the chunks on dimensions A, B, and C are 100, 200, and 300 respectively. Now we want to use **Multiway Array Aggregation** Computation to materialize cubes. The base cuboid ABC is computed as a 3-D array. We want to materialize the 2-D cuboids AB, AC and BC.

If we scan the chunk in the order 1, 2, 3, ...27 when materializing the 2-D cuboids AB, AC and BC, to avoid reading a 3-D chunk into memory repeatedly, what is the minimum memory requirement to hold all the related 2-D planes?

Solution. 5 marks (Partial marks if almost right) Space requirement = AC + AB + BC = 300*900 + 300*200 + 200*300 = 390,000 - 5 marks

Figure 4: Figure 1: A 3-D array with dimensions A, B and C. This array is divided into 27 smaller chunks.

5/1. (5 points) Given the following database with minsup = 0.6.

TransactionID	Items
T100	K,A,D,B,C
T200	$_{\mathrm{D,A,E,F}}$
T300	$_{\mathrm{C,D,B,E}}$
T400	B,A,C,K,D
T500	A,G,C

- A. Generate an ordered list of frequent items based on the raw transaction database.

 Hint: Reorder items within each transaction according to their frequencies in the whole database.
- B. Generate FP-tree of this transaction database based on the frequent item list.

Solution.

A. 2 marks (Don't care about order)

TransactionID	Items
T100	A,D,C,B
T200	D,A
T300	$_{\mathrm{C,D,B}}$
T400	A,C,D,B
T500	A,C

B. 3 marks

5/2. (5 points) Given the following database with minsup = 0.4.

TransactionID	Items
T100	A,B,C,D
T200	A,B,C,E
T300	A,B,E,F,H
T400	A,C,H

- A. Generate an ordered list of frequent items based on the raw transaction database.

 Hint: Reorder items within each transaction according to their frequencies in the whole database.
- B. Generate FP-tree of this transaction database based on the frequent item list.

Solution.

A. 2 marks(Don't care about order)

TransactionID	Items
T100	A,B,C
T200	A,B,C,E
T300	A,B,E,H
T400	A,C,H

B. 3 marks

5/3. (5 points) Given the following database with minsup = 0.4.

TransactionID	Items
T100	K,A,D,B,C,E
T200	$_{\mathrm{D,A,E,F}}$
T300	K,C,D,B,E
T400	B,A,C,K,E
T500	A,G,C

- A. Generate an ordered list of frequent items based on the raw transaction database.

 Hint: Reorder items within each transaction according to their frequencies in the whole database.
- B. Generate FP-tree of this transaction database based on the frequent item list.

Solution.

A. 2 marks

TransactionID	Items
T100	K,A,D,B,C,E
T200	$_{\mathrm{D,A,E}}$
T300	K,C,D,B,E
T400	B,A,C,K,E
T500	A,C

B. 3 marks

6/1. (10 points) Consider the following transaction database:

TransactionID	Items
T1	A,B,C,D
T2	A,B,C,E
Т3	A,B,E,F,H
T4	A,C,H

Suppose that minimum support is set to 50% and minimum confidence to 60%.

- A. List all frequent item sets together with their support.
- B. Which of the item sets from A) are closed? Which of the item sets from A) are maximal?
- C. List at least 2 association rules with minconf = 0.6 from the frequent maximal patterns computed in part B.

Solution.

A. 4 marks (Partial marks if missed some rules)

$$A = 1, B = 0.75, C = 0.75, E = 0.5, H = 0.5,$$

 $AB = 0.75, AC = 0.75, AE = 0.5, AH = 0.5, BC =$

$${\rm AB} = 0.75,\,{\rm AC} = 0.75,\,{\rm AE} = 0.5,\,{\rm AH} = 0.5,\,{\rm BC} = 0.5,\,{\rm BE} = 0.5$$
 ${\rm ABC} = 0.5$, ${\rm ABE} = 0.5$

B. 4 marks (2 for closed, 2 for maximal) Partial marks if missed some rules

C. 2 marks for any two rules

$$AB->C$$
 0.66, $AC->B$ 0.66, $BC->A$ 1, $B->AC$ 0.66, $C->AB$ 0.66

$$AB->E$$
 0.66, $AE->B$ 1, $BE->A$ 1, $B->AE$ 0.66, $E->AB$ 1

$$H->A$$
 1