Санкт-Петербургский Политехнический университет Петра Великого

Отчет по лабораторной работе №5 по дисциплине "Методы оптимизации"

Решение задач многомерной минимизации с ограничениями

Выполнили:

Марков Михаил Денисович Аптуков Михаил Ильдусович группа: 5030102/10201

Преподаватель:

Родионова Елена Александровна

Санкт-Петербург 2024

Содержание

1	Постановка задачи	2
2	Исследование применимости метода	
	2.1 Доказательство выпуклости функции	3
	2.2 Доказательство непрерывно дифференцируемости	7
	2.3 Доказательство ограниченности нормы градиента	9
	2.4 Проверка условия Липшица	11
	2.5 Доказательство компактности множества	11
	2.6 Проверка условия Слейтера	11
	2.7 Применимость метода Зойтендейка	12
3	Описание алгоритма	12
	3.1 Алгоритм возможных направлений Зойтендейка	12
4	Результаты	13
	4.1 Решение задачи внутри введённой области	
	4.2 Решение задачи на границе введённой области	
5	Обоснование достоверности результатов	13

1 Постановка задачи

Пусть задана функция

$$f(x) = x_1 + x_2 + x_3^2 + 2\sqrt{1 + 2x_1^2 + x_2^2}$$

И следующие ограничения

$$\varphi(x) \le 0, i = \overline{0, m}$$

такие, что решение данной задачи находится:

1. Внутри области:

$$\begin{cases} x_1^2 + x_2^2 + x_3^2 - 2 \le 0 \\ x_1^2 + x_2^2 - 3 \le 0 \\ x_2^2 - 3 \le 0 \\ x_1 + x_2 - x_3 = -\frac{1}{\sqrt{10}} - \sqrt{\frac{2}{5}} \end{cases}$$
 (1)

2. На границе области:

$$\begin{cases} x_1^2 + x_2^2 + x_3^2 - \frac{1}{2} \le 0 \\ x_1^2 + x_2^2 - 3 \le 0 \\ x_2^2 - 3 \le 0 \\ x_1 + x_2 - x_3 = -\frac{1}{\sqrt{10}} - \sqrt{\frac{2}{5}} \end{cases}$$
 (2)

Требуется решить задачу минимизации для заданной функции цели методом возможных направлений Зойтендейка.

2 Исследование применимости метода

Метод Зойтендейка применим при выполнении следующих условий:

- 1. $\phi_i(x)$ ограничения выпуклые функции, $i = \overline{0, m}$.
- 2. $\phi_i(x) \in C^1$, $i = \overline{0,m}$, т.е. они непрерывно дифференцируемые.
- 3. $\exists K: ||\nabla \phi_i(x)|| \leq K, \ i = \overline{0,m},$ т.е. норма всех градиентов ограничена.
- 4. $\exists L>0: ||\nabla \phi_i(x) \nabla \phi_i(y)|| \leq L||x-y||, \, \forall x,y,$ т.е. выполнено условие Липшица.
- 5. Множество S компакт
- 6. $\exists \overline{x}: \phi_i(\overline{x}) < 0, A\overline{x} = b, i = \overline{1,m}$, т.е. выполнено условие Слейтера.

Проверим выполнение всех перечисленных условий. Так как мы имеем два набора ограничений (когда точка минимума находится внутри области и на границе), то обозначим первые функции, задающие ограничения в каждом из наборов, как $\varphi_1^{(1)}$ и $\varphi_1^{(2)}$ соответственно. Остальные три ограничения в каждом наборе не отличаются, поэтому обозначим их как φ_2 , φ_3 и φ_4 . Функцию цели обозначим как φ_0 .

Введём допустимые множества, которые удовлетворяют системам (1) и (2): $S_1 = \{(x_1, x_2, x_3)^T \in R^3 | x_1 = -1.38, x_2 = 0.22, x_3 = -0.22\} \cup \{(x_1, x_2, x_3)^T \in R^3 | x_1 \in (-1.38, 0.75), x_2 \in [0.05(-3.16\sqrt{-30x_1^2 - 18.97x_1 + 31} - 10x_1 - 9.49), 0.05(3.16\sqrt{-30x_1^2 - 18.97x_1 + 31} - 10x_1 - 9.49], x_3 = 0.1(10x_1 + 10x_2 + 9.49)\} \cup \{(x_1, x_2, x_3)^T \in R^3 | x_1 = 0.75, x_2 = -0.85, x_3 = 0.85\}$ $S_2 = \{(x_1, x_2, x_3)^T \in R^3 | x_1 = -0.68, x_2 = -0.13, x_3 = 0.13\} \cup \{(x_1, x_2, x_3)^T \in R^3 | x_1 \in (-0.68, 0.05), x_2 \in [0.05(-3.16\sqrt{-30x_1^2 - 18.97x_1 + 1} - 10x_1 - 9.49), 0.05(3.16\sqrt{-30x_1^2 - 18.97x_1 + 1} - 10x_1 - 9.49], x_3 = 0.1(10x_1 + 10x_2 + 9.49)\} \cup \{(x_1, x_2, x_3)^T \in R^3 | x_1 = 0.05, x_2 = -0.50, x_3 = 0.50\}$

2.1 Доказательство выпуклости функции

Воспользуемся теоремой:

Если функция дважды непрерывно дифференцируема на открытом выпуклом множестве D, то она является выпуклой тогда и только тогда, когда матрица Гессе неотрицательно определена на D.

1.

$$\varphi_0 = x_1 + x_2 + x_3^2 + 2\sqrt{1 + 2x_1^2 + x_2^2}$$

Найдём частные производные:

$$\frac{\partial \varphi_0}{\partial x_1} = 1 + \frac{4x_1}{\sqrt{2x_1^2 + x_2^2 + 1}}$$
$$\frac{\partial \varphi_0}{\partial x_2} = 1 + \frac{2x_2}{\sqrt{2x_1^2 + x_2^2 + 1}}$$
$$\frac{\partial \varphi_0}{\partial x_3} = 2x_3$$

Решая следующую систему:

$$\begin{cases} \frac{\partial \varphi_0}{\partial x_1} = 0\\ \frac{\partial \varphi_0}{\partial x_2} = 0\\ \frac{\partial \varphi_0}{\partial x_3} = 0 \end{cases}$$
 (3)

найдём стационарную точку: $X_0 = (-\frac{1}{\sqrt{10}}, -\sqrt{\frac{2}{5}}, 0) \approx (-0.316, -0.632, 0).$

Найдём вторые частные производные:

$$\frac{\partial^2 \varphi_0}{\partial x_1^2} = \frac{4x_2^2}{\sqrt{(2x_1^2 + x_2^2 + 1)^3}} + \frac{4}{\sqrt{(2x_1^2 + x_2^2 + 1)^3}}$$

$$\frac{\partial^2 \varphi_0}{\partial x_1 \partial x_2} = -\frac{4x_1 x_2}{\sqrt{(2x_1^2 + x_2^2 + 1)^3}}$$

$$\frac{\partial^2 \varphi_0}{\partial x_1 \partial x_3} = 0$$

$$\frac{\partial^2 \varphi_0}{\partial x_2^2} = \frac{2x_1^2}{\sqrt{(2x_1^2 + x_2^2 + 1)^3}} + \frac{2}{\sqrt{(2x_1^2 + x_2^2 + 1)^3}}$$

$$\frac{\partial^2 \varphi_0}{\partial x_2 \partial x_3} = 0$$

$$\frac{\partial^2 \varphi_0}{\partial x_2 \partial x_3} = 0$$

$$\frac{\partial^2 \varphi_0}{\partial x_2^2} = 2$$

Матрица Гессе H(x):

$$\begin{pmatrix} \frac{4x_2^2}{\sqrt{(2x_1^2 + x_2^2 + 1)^3}} + \frac{4}{\sqrt{(2x_1^2 + x_2^2 + 1)^3}} & -\frac{4x_1x_2}{\sqrt{(2x_1^2 + x_2^2 + 1)^3}} & 0 \\ -\frac{4x_1x_2}{\sqrt{(2x_1^2 + x_2^2 + 1)^3}} & \frac{4x_1^2}{\sqrt{(2x_1^2 + x_2^2 + 1)^3}} + \frac{2}{\sqrt{(2x_1^2 + x_2^2 + 1)^3}} & 0 \\ 0 & 0 & 2 \end{pmatrix}$$

Определяем угловые миноры:

$$D_1 = a_{11} = \frac{4x_2^2}{\sqrt{(2x_1^2 + x_2^2 + 1)^3}} + \frac{4}{\sqrt{(2x_1^2 + x_2^2 + 1)^3}} > 0$$

$$D_2 = a_{11}a_{22} - a_{21}a_{12} = \frac{8}{(2x_1^2 + x_2^2 + 1)^2} > 0$$

$$D_3 = \frac{16}{(2x_1^2 + x_2^2 + 1)^2} > 0$$

Угловые миноры положительны, то есть матрица Гессе положительно определена. Значит, функция φ_0 - выпуклая.

2.
$$\varphi_1^{(1)} = x_1^2 + x_2^2 + x_3^2 - 2$$

Найдём частные производные:

$$\frac{\partial \varphi_1^{(1)}}{\partial x_1} = 2x_1$$
$$\frac{\partial \varphi_1^{(1)}}{\partial x_2} = 2x_2$$
$$\frac{\partial \varphi_1^{(1)}}{\partial x_3} = 2x_3$$

Найдём вторые частные производные:

$$\frac{\partial^2 \varphi_1^{(1)}}{\partial x_1^2} = 2$$

$$\frac{\partial^2 \varphi_1^{(1)}}{\partial x_1 \partial x_2} = 0$$

$$\frac{\partial^2 \varphi_1^{(1)}}{\partial x_1 \partial x_3} = 0$$

$$\frac{\partial^2 \varphi_1^{(1)}}{\partial x_2^2} = 2$$

$$\frac{\partial^2 \varphi_1^{(1)}}{\partial x_2 \partial x_3} = 0$$

$$\frac{\partial^2 \varphi_1^{(1)}}{\partial x_2^2} = 2$$

Матрица Гессе:

$$H(x) = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$

Определяем диагональные миноры:

$$D_1 = a_{11} = 2$$

$$D_2 = a_{11}a_{22} - a_{21}a_{12} = 4$$

$$D_3 = 8$$

Угловые миноры положительны, то есть матрица Гессе положительно определена. Значит, функция $\varphi_1^{(1)}$ - выпуклая.

Видим, что функции $\varphi_1^{(1)}$ и $\varphi_1^{(2)}$ отличаются только свободными членами, которые не влияют на частные производные первого и второго порядков, а значит, матрицы Гессе совпадают, то есть функция $\varphi_1^{(2)}$ также является выпуклой.

$$3. \ \varphi_2 = x_1^2 + x_2^2 - 3$$

Найдём частные производные этой функции:

$$\frac{\partial \varphi_2}{\partial x_1} = 2x_1$$
$$\frac{\partial \varphi_2}{\partial x_2} = 2x_2$$
$$\frac{\partial \varphi_2}{\partial x_3} = 0$$

Найдём вторые частные производные:

$$\frac{\partial^2 \varphi_2}{\partial x_1^2} = 2$$

$$\frac{\partial^2 \varphi_2}{\partial x_1 \partial x_2} = 0$$

$$\frac{\partial^2 \varphi_2}{\partial x_1 \partial x_3} = 0$$

$$\frac{\partial^2 \varphi_2}{\partial x_2^2} = 2$$

$$\frac{\partial^2 \varphi_2}{\partial x_2 \partial x_3} = 0$$

$$\frac{\partial^2 \varphi_2}{\partial x_3^2} = 0$$

$$H(x) = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$

Определяем диагональные миноры:

$$D_1 = a_{11} = 2$$

$$D_2 = a_{11}a_{22} - a_{21}a_{12} = 4$$

$$D_3 = 0$$

Угловые миноры неотрицательны. Найдём главные миноры:

$$\Delta_1 = 2, \Delta_2 = 0, \Delta_3 = 0$$

$$\Delta_{1,2} = 4, \Delta_{1,3} = 0, \Delta_{2,3} = 0$$

$$\Delta_{1,2,3} = 0$$

Главные миноры неотрицательны \Rightarrow матрица Гессе положительно полуопределена. Таким образом, функция φ_2 является выпуклой.

4.
$$\varphi_3 = x_2^2 - 3$$

Найдём частные производные:

$$\frac{\partial \varphi_3}{\partial x_1} = 0$$

$$\frac{\partial \varphi_3}{\partial x_2} = 2x_2$$

$$\frac{\partial \varphi_3}{\partial x_3} = 0$$

Найдём вторые частные производные:

$$\frac{\partial^2 \varphi_3}{\partial x_1^2} = 0$$

$$\frac{\partial^2 \varphi_3}{\partial x_1 \partial x_2} = 0$$

$$\frac{\partial^2 \varphi_3}{\partial x_1 \partial x_3} = 0$$

$$\frac{\partial^2 \varphi_3}{\partial x_2^2} = 2$$

$$\frac{\partial^2 \varphi_3}{\partial x_2 \partial x_3} = 0$$

$$\frac{\partial^2 \varphi_3}{\partial x_3^2} = 0$$

Матрица Гессе:

$$H(X) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Найдём главные миноры:

$$\Delta_1 = 0, \Delta_2 = 0, \Delta_3 = 0$$

$$\Delta_{1,2} = 0, \Delta_{1,3} = 0, \Delta_{2,3} = 0$$

$$\Delta_{1,2,3} = 0$$

Главные миноры неотрицательны \Rightarrow матрица Гессе положительно полуопределена. Таким образом, функция φ_3 является выпуклой.

Таким образом, мы доказали, что функции $\varphi_i(x), i = \overline{0,3}$ являются выпуклыми.

2.2 Доказательство непрерывно дифференцируемости

Убедимся, что все функции непрерывно дифференцируемые, то есть частные производные каждой функции по всем переменным являются непрерывными.

$$\varphi_0 = x_1 + x_2 + x_3^2 + 2\sqrt{1 + 2x_1^2 + x_2^2}$$

$$\frac{\partial \varphi_0}{\partial x_1} = 1 + \frac{4x_1}{\sqrt{2x_1^2 + x_2^2 + 1}}$$

$$\frac{\partial \varphi_0}{\partial x_2} = 1 + \frac{2x_2}{\sqrt{2x_1^2 + x_2^2 + 1}}$$

$$\frac{\partial \varphi_0}{\partial x_3} = 2x_3$$

$$\varphi_1^{(1)} = x_1^2 + x_2^2 + x_3^2 - 2$$

$$\frac{\partial \varphi_1^{(1)}}{\partial x_1} = 2x_1$$

$$\frac{\partial \varphi_1^{(1)}}{\partial x_2} = 2x_2$$

$$\frac{\partial \varphi_1^{(1)}}{\partial x_3} = 2x_3$$

3.

$$\varphi_1^{(2)} = x_1^2 + x_2^2 + x_3^2 - \frac{1}{2}$$
$$\frac{\partial \varphi_1^{(2)}}{\partial x_1} = 2x_1$$
$$\frac{\partial \varphi_1^{(2)}}{\partial x_2} = 2x_2$$
$$\frac{\partial \varphi_1^{(2)}}{\partial x_3} = 2x_3$$

4.

$$\varphi_2 = x_1^2 + x_2^2 - 3$$
$$\frac{\partial \varphi_2}{\partial x_1} = 2x_1$$
$$\frac{\partial \varphi_2}{\partial x_2} = 2x_2$$
$$\frac{\partial \varphi_2}{\partial x_3} = 0$$

5.

$$\varphi_3 = x_2^2 - 3$$
$$\frac{\partial \varphi_3}{\partial x_1} = 0$$
$$\frac{\partial \varphi_3}{\partial x_2} = 2x_2$$
$$\frac{\partial \varphi_3}{\partial x_3} = 0$$

Все частные производные указанных функций являются непрерывными.

2.3 Доказательство ограниченности нормы градиента

Проанализировав возможные значения x_1, x_2, x_3 на множествах S_1 и S_2 , можно сказать, что $|x_1| < 1.38, |x_2| < 1.78, |x_3| < 1.40$. Будем рассматривать градиенты функций в замкнутом шаре с центром в точке $a = (0,0,0)^T$ и радиусом r = 1.78:

$$B_r(a) = \{x \in S | ||x|| \le r\}$$

Так как этот шар содержит в себе множества S_1 и S_2 , то из ограниченности градиентов в шаре будет следовать их ораниченность во множествах S_1 и S_2 .

Рассмотрим градиенты функций:

1.

$$\varphi_0 = x_1 + x_2 + x_3^2 + 2\sqrt{1 + 2x_1^2 + x_2^2}$$

$$\nabla \varphi_0(x) = \begin{pmatrix} 1 + \frac{4x_1}{\sqrt{2x_1^2 + x_2^2 + 1}} \\ 1 + \frac{2x_2}{\sqrt{2x_1^2 + x_2^2 + 1}} \\ 2x_3 \end{pmatrix}$$

Каждая из компонент градиента является непрерывной функцией. Далее для оценки их поведения применим оператор Лапласа на функцию:

$$\Delta\varphi_0(x) = \begin{pmatrix} \frac{4x_2^2}{\sqrt{(2x_1^2 + x_2^2 + 1)^3}} + \frac{4}{\sqrt{(2x_1^2 + x_2^2 + 1)^3}} \\ \frac{2x_1^2}{\sqrt{(2x_1^2 + x_2^2 + 1)^3}} + \frac{2}{\sqrt{(2x_1^2 + x_2^2 + 1)^3}} \\ 2 \end{pmatrix}$$

Решая уравнения:

$$\frac{4x_2^2}{\sqrt{(2x_1^2 + x_2^2 + 1)^3}} + \frac{4}{\sqrt{(2x_1^2 + x_2^2 + 1)^3}} = 0$$
$$\frac{2x_1^2}{\sqrt{(2x_1^2 + x_2^2 + 1)^3}} + \frac{2}{\sqrt{(2x_1^2 + x_2^2 + 1)^3}} = 0$$

относительно x_1 и x_2 соответственно, получаем, что действительных корней не существует. При этом

$$\frac{4x_2^2}{\sqrt{(2x_1^2 + x_2^2 + 1)^3}} + \frac{4}{\sqrt{(2x_1^2 + x_2^2 + 1)^3}} > 0, \forall x_1, x_2 \in \mathbb{R}$$

$$\frac{2x_1^2}{\sqrt{(2x_1^2 + x_2^2 + 1)^3}} + \frac{2}{\sqrt{(2x_1^2 + x_2^2 + 1)^3}} > 0, \forall x_1, x_2 \in \mathbb{R}$$

Также

$$\frac{\partial^2 \varphi_0}{\partial x_1^3} = 2 > 0$$

Из этого можно сказать, что каждая компонента градиента является возрастающей функцией.

Рассмотрим значение градиента на границе шара:

$$\nabla \varphi_0((1.78, 1.78, 1.78)^T) = (3.20, 2.10, 3.56)^T$$
$$\|\nabla \varphi_0(x)\| \le \|\nabla \varphi_0((1.78, 1.78, 1.78)^T)\| = 5.23$$

Градиент функции $\varphi_0(x)$ ограничен.

Проделаем тоже самое с функциями $\varphi_i, i=\overline{1,3}$. При этом будем рассматривать только $\varphi_1^{(1)}$, так как свободные члены, которыми различаются $\varphi_1^{(1)}$ и $\varphi_1^{(2)}$, не влияют на градиент.

2.

$$\varphi_1 = x_1^2 + x_2^2 + x_3^2 - 2$$

$$\nabla \varphi_1(x) = \begin{pmatrix} 2x_1 \\ 2x_2 \\ 2x_3 \end{pmatrix}$$

Компоненты градиента - непрерывные возрастающие функции. Тогда на шаре $B_r(a)$:

$$\nabla \varphi_1((r, r, r)^T) = \begin{pmatrix} 3.56 \\ 3.56 \\ 3.56 \end{pmatrix}$$
$$\|\nabla \varphi_1(x)\| \le \|\nabla \varphi_1((r, r, r)^T)\| = 6.17$$

Градиент функции $\varphi_1(x)$ ограничен.

3.

$$\varphi_2 = x_1^2 + x_2^2 - 3$$

$$\nabla \varphi_2(x) = \begin{pmatrix} 2x_1 \\ 2x_2 \\ 0 \end{pmatrix}$$

Первая и вторая компоненты градиента - непрерывные возрастающие функции, третья - константа. Тогда на шаре $B_r(a)$:

$$\nabla \varphi_2((r, r, r)^T) = \begin{pmatrix} 3.56 \\ 3.56 \\ 0 \end{pmatrix}$$
$$\|\nabla \varphi_2(x)\| \le \|\nabla \varphi_2((r, r, r)^T)\| = 5.03$$

Градиент функции $\varphi_2(x)$ ограничен.

4.

$$\varphi_3 = x_2^2 - 3$$

$$\nabla \varphi_3(x) = \begin{pmatrix} 0 \\ 2x_2 \\ 0 \end{pmatrix}$$

Вторая компоненты градиента - непрерывная возрастающая функция, первая и третья - константы. Тогда на шаре $B_r(a)$:

$$\nabla \varphi_3((r, r, r)^T) = \begin{pmatrix} 0\\3.56\\0 \end{pmatrix}$$
$$\|\nabla \varphi_3(x)\| \le \|\nabla \varphi_3((r, r, r)^T)\| = 3.56$$

Градиент функции $\varphi_3(x)$ ограничен.

Нормы градиентов всех функций ограничены и в качестве оценки сверху мы можем указать число K=6.17.

2.4 Проверка условия Липшица

Лемма:

Если существут непрерывная производная непрерывной функции по некоторой переменной, то данная функция удовлетворяет условию Липшица по этой переменной.

Рассмотрим $\nabla \varphi_i(x)$ в нашей задаче. $\varphi_i(x)$ имеет непрерывные частные прозводные по каждой из переменной $\Rightarrow \nabla \varphi_i(x)$ - непрерывно-дифференцируемая функция, а значит, она удовлетворяет условиям Липшица.

2.5 Доказательство компактности множества

Убедимся, что множество S компактно.

Оно образовано множествами, описываемыми функциями $\varphi_i(x)$, $i=\overline{1,3}$, Ax=b. Очевидно, что каждая из функций $\varphi_i(x)$, $i=\overline{1,3}$ образует замкнутое ограниченное множество (они бесконечно возрастают, снизу ограничены свободным членом, а сверху – нулём, включают границы). Уравнение Ax=b задаёт гиперплоскость.

Множество S представляет собой пересечение конечного числа замкнутых множеств, а следовательно, само является замкнутым. При это все множества ограничены, их пересечение также ограничено. Таким образом, $S \in \mathbb{R}^n$, S - замкнуто и ограничено $\Rightarrow S$ - компакт по теореме Гейне-Борреля.

2.6 Проверка условия Слейтера

Проверим выполнение условия Слейтера. Возьмём для этого точку $X_0 = (-0.316, -0.632, 0)$, найденную при проверке выпуклости функций.

$$\varphi_1^{(1)}(X_0) = -1.501$$

$$\varphi_2(X_0) = -2.501$$

$$\varphi_1^{(2)}(X_0) = -0.001$$

$$\varphi_3(X_0) = -2.601$$

$$AX_0 = \left(-\frac{1}{\sqrt{10}}, -\sqrt{\frac{2}{5}}, 0\right) = b$$

Условие Слейтера выполнено.

2.7 Применимость метода Зойтендейка

Поставленная задача удовлетворяет всем условиям применимости метода Зойтендейка.

3 Описание алгоритма

3.1 Алгоритм возможных направлений Зойтендейка

- 1. Первый подготовительный этап.
 - (a) Задаются начальные параметры: $0 < \lambda < 1$ параметр дробления, $0 < \alpha_0 < 1$ начальное значение шага и $\delta_0 > 0$
 - (b) Находится начальное приближение: решается вспомогательная задача вида:

$$min \ \eta, \ \phi_i(x) \le \eta, \ i = \overline{1, m}$$

Её решением будет точка x_0 - допустимая, так как удовлетворяет условиям $\phi_i(x) < 0, i = \overline{1,m}$. Её и считаем за начальное приближение.

- 2. Основной этап алгортма
 - (a) Если $\delta_k < \delta_{0k}$, где $\delta_{0k} = \max \phi_i(x_k)$, $i \notin J_0(x_k)$, останавливаем алгоритм и принимаем $x_* \approx x_k$, $f(x_*) \approx f(x_k)$. Иначе переходим к следующему шагу.
 - (b) Находим возможное направление спуска s_k . Решаем вспомогательную задачу $min \ \eta$ с условиями:

$$\nabla^T \varphi_0(x_k) s \le \xi_0 \eta$$
$$\nabla^T \varphi_i(x_k) s \le \xi_i \eta, \ i \in J_{\delta_k}(x_k)$$

Здесь ξ_0, ξ_1 ... - весовые множители, в нашем случае равные 1. Перед нами задача линейного программирования, которую в ходе работы мы решаем с помощью Симплекс метода.

- (c) Выбираем $x_{k+1}\delta_{k+1}$ по следующему принципу:
 - і. Если $\eta_k < -\delta_k$, то делаем шаг по выбранному направлению

$$x_{k+1} = x_k + \alpha_k s_k, \ \delta_{k+1} = \delta_k$$

іі. Если $\eta_k \geq -\delta_k$, то изменяем δ по принципу дробления

$$x_{k+1} = x_k, \ \delta_{k+1} = \lambda \delta_k$$

Переходим к шагу (а)

4 Результаты

Найдём минимум функции аналитически. Заметим, что слагаемое x_3^2 единственное, где задействована переменная x_3 , помимо этого $x_3^2 \ge 0$, а значит, для того, чтобы получить минимальное значение функции цели, можем положить значение этой переменной равной 0.

$$f(x) = x_1 + x_2 + x_3^2 + 2\sqrt{1 + 2x_1^2 + x_2^2}$$

Решение этой задачи было получено в лабораторной работе №4. Получаем следующее решение:

Минимум достигается в точке $x^*=(x_1^*,x_2^*,x_3^*)=(-\frac{1}{\sqrt{10}},-\sqrt{\frac{2}{5}},0)$, где функция принимает значение $f(x^*)=\sqrt{\frac{5}{2}}$. А полученные значения переменных удовлетворяют ограничениям задачи.

Сравним решения, полученные с помощью метода возможных направлений Зойтендейка и аналитически:

4.1 Решение задачи внутри введённой области

x	$(-0.3162, -0.6325, 1.9559 \cdot 10^{-16})$
f(x)	1.5811
$ x-x^* $	$2.5889 \cdot 10^{-7}$
$ f(x) - f(x^*) $	$7.9634 \cdot 10^{-14}$
Число итераций	28

Таблица 1: Результаты решения задачи внутри введённой области

4.2 Решение задачи на границе введённой области

x	$(-0.3162, -0.6325, 3.3349 \cdot 10^{-7})$
f(x)	1.5811
$ x-x^* $	$4.3777 \cdot 10^{-7}$
$ f(x) - f(x^*) $	$1.5503 \cdot 10^{-13}$
Число итераций	36

Таблица 2: Результаты решения задачи на границе введённой области

5 Обоснование достоверности результатов

Из таблиц результатов видим, что норма разности потенциального ответа и точного решения, а также модуль значения функции f(x) в этих точках близки к нулю, что в свою очередь доказывает корректную работу рассмотренного алгоритма.

Помимо этого можем показать следующее: для того, чтобы полученное решение было оптимальным, необходимо и достаточно, чтобы выполнялись условия:

$$\begin{cases} \frac{\partial f}{\partial x_1} = 0\\ \frac{\partial f}{\partial x_2} = 0\\ \frac{\partial f}{\partial x_3} = 0 \end{cases}$$

Подставим полученные решения в случае, когда оптимальное решение лежит на границе области:

1.

$$\frac{\partial f}{\partial x_1} = 1 + \frac{4x_1}{\sqrt{2x_1^2 + x_2^2 + 1}} = 1 + \frac{4 \cdot (-0.31622771)}{\sqrt{2 \cdot (-0.31622771)^2 + (-0.63245525)^2 + 1}} = 4.3515 \cdot 10^{-8} \to 0$$

2.

$$\frac{\partial f}{\partial x_2} = 1 + \frac{2x_2}{\sqrt{2x_1^2 + x_2^2 + 1}} = 1 + \frac{2 \cdot (-0.63245525)}{\sqrt{2 \cdot (-0.31622771)^2 + (-0.63245525)^2 + 1}} = 3.1231 \cdot 10^{-7} \to 0$$

3.
$$\frac{\partial f}{\partial x_3} = 2 \cdot x_3 = 2 \cdot 3.3349 \cdot 10^{-7} = 6.6698 \cdot 10^{-7} \to 0$$

Видим, что условия выполнены, а значит, решение получено верно. Так как решение найденное в случае, когда точка находится внутри области близко к уже рассмотренному случаю, его тоже считаем верным.