Programmation linéaire en nombres entiers

24 février 2020 - B. COLOMBEL

1 Modélisation

Exercice 1: Le sac à dos

Un beau jour de vacances, vous avez décidé de partir en randonnée dans le Vercors. Vous voulez remplir votre sac de capacité 3kg avec les objets les plus utiles :

Objets	Utilité	poids (g)
carte	10	200
gourde	7	1 500
2 ^e gourde	3	1 500
pull	6	1 200
K-way	2	500
tomme	4	800
fruits secs	5	700

- 1. Décrire une solution réalisable pour le randonneur.
- 2. Proposer une modélisation avec un PLNE.

Le problème général du Sac-à-dos est défini par :

- Un ensemble d'objets $N = \{1, 2, \dots, n\}$;
- à chaque objet est associé
 - une utilité u_i
 - un poids w_i
- un randonneur dispose d'un sac-à-dos dont le poids total ne doit pas dépasser W (capacité du sac-à-dos)

L'objectif est de déterminer quels objets prendre pour maximiser l'utilité.

3. Proposer une modélisation avec un PLNE du problème général.

Exercice 2 : Remplissage de boîtes (bin packing)

Un déménageur souhaite empaqueter des objets en minimisant le nombre de boîtes de capacité W=6 nécessaires.

- 1. Décrire une solution réalisable pour le déménageur.
- 2. Proposer une modélisation avec un PLNE.

Le problème général du remplissage de boîtes est défini par :

- des articles $N = \{1, 2, \dots, n\}$ de taille $\{s_1, s_2, \dots, s_n\}$
- à ranger dans des boîtes de capacité W

L'objectif est d'utiliser le moins de boîtes possible.

3. Proposer une modélisation avec un PLNE du problème général.

	taille	
un livre	2	
un autre livre	2	
un pull	3	
des chaussettes	1	
des chaussures	2	
des assiettes	5	
des verres	6	

Exercice 3: Couverture d'ensembles

On souhaite choisir les intervenants dans un projet afin d'avoir toutes les compétences nécessaires en minimisant le coût

	Alice	Babar	Casimir	Donald	Elmer
Coût (h ou €)	10	4	5	6	7
Rech. Op.	1	1	1	0	0
Java	1	0	1	1	0
Bases de données	0	1	1	1	0
Théorie des graphes	1	0	0	0	1
UML	0	1	0	0	1

- 1. Décrire une solution réalisable pour le projet.
- 2. Proposer une modélisation avec un PLNE.

Le problème général de couverture d'ensembles est défini par :

- une matrice $A=(a_{ij})$ à coefficients 0 ou 1 avec $1\leqslant i\leqslant n$ et $1\leqslant j\leqslant m$; c_j , le coût de la colonne j.

Une colonne j couvre une ligne i si $a_{ij} = 1$. L'objectif est de trouver un sous-ensemble des colonnes de A de coût minimum tel que chaque ligne de A soit couverte au moins une fois.

3. Proposer une modélisation avec un PLNE du problème général.

Relaxation linéaire 2

Exercice 4 : On considère le PLNE ci-contre.

- 1. Trouver graphiquement l'optimum fractionnaire, son arrondi et l'optimum entier.
- 2. Décrire l'enveloppe convexe des points entiers.

$$\max z = -3x_1 - 2x_2$$
s.c.
$$\begin{vmatrix} 4x_1 + x_2 \le 15 \\ x_1 + 2x_2 \le 8 \\ x_1 + x_2 \le 5 \\ x_1 \in \mathbb{N} \\ x_2 \in \mathbb{N} \end{vmatrix}$$

