



# Communication Theory (5ETB0) Module 4.1

Alex Alvarado a.alvarado@tue.nl

Information and Communication Theory Lab Signal Processing Systems Group Department of Electrical Engineering Eindhoven University of Technology, The Netherlands

www.tue.nl/ictlab/





## Module 4.1

### Presentation Outline

Part I DICO Channels

Part II The AGN Channel

Part III MAP and ML Rules for bi-AGN





### **Definitions**



#### **Definitions**

- Source: Produces a message  $m \in \mathcal{M} \stackrel{\Delta}{=} \{1, 2, \dots, |\mathcal{M}|\}$  with probability  $\Pr\{M = m\}$  for  $m \in \mathcal{M}$ . The r.v. is M
- lacksquare Transmitter: Sends a  $signal\ s_m \in \mathcal{S} \subset \mathbb{R}$  if message m is to be transmitted. The r.v. is S
- DICO Channel: Produces output  $r \in (-\infty, \infty) = \mathbb{R}$  (r.v. is R) with probability density function  $p_R(r|S=s_m) = p_R(r|M=m)$
- Receiver: Forms an estimate  $\hat{m}$  by observing the received channel output  $r \in \mathbb{R}$  using a mapping  $\hat{m} = f(r) \in \mathcal{M}$ . The r.v. is  $\hat{M}$





### Decision Variables, MAP and ML

#### Decision Variables for DICO Channels

The decision variables are

 $\Pr\{M = m, R = r\} = \Pr\{M = m\}p_R(r|S = s_m) = \Pr\{M = m\}p_R(r|M = m)$ 

### MAP decision rule

The maximum a-posteriori probability (MAP) decision rule is

$$\hat{m}^{\mathsf{MAP}}(r) \stackrel{\Delta}{=} \operatorname{argmax} \Pr\{M = m | R = r\}$$

$$m \in \mathcal{M}$$

$$= \underset{m \in \mathcal{M}}{\operatorname{argmax}} \Pr\{M = m\} p_R(r|M = m)$$

(1)

#### ML decision rule

The maximum likelihood (ML) decision rule is

$$\hat{m}^{\mathsf{ML}}(r) \stackrel{\Delta}{=} \operatorname{argmax} p_R(r|M=m)$$

(3)





# Module 4.1

### Presentation Outline

Part I DICO Channels

Part II The AGN Channel

Part III MAP and ML Rules for bi-AGN





### The AGN Channel

#### Scalar AGN channel

The  ${\bf AGN}$  channel adds Gaussian noise N to the input signal S.

This Gaussian noise N has variance  $\sigma^2$  and mean 0. Its PDF is

$$p_N(n) \stackrel{\Delta}{=} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{n^2}{2\sigma^2}\right)$$

The noise variable  ${\cal N}$  is assumed to be independent of the signal  ${\cal S}.$ 

### Two Questions

Q1: 
$$\int_{-\pi}^{\infty} p_N(n) dn = ?$$
 and Q2:  $p_N(n|S = s_m) = p_N(n)$  (4)





## The AGN Channel: A Matlab Example

#### Conditional AGN PDF

The conditional PDF of R=r when the signal is  $S=s_m$  is a Gaussian PDF, i.e.,

$$p_R(r|S=s_m) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(r-s_m)^2}{2\sigma^2}\right)$$
 (5)

where  $\sigma^2$  is the variance of the AGN.

#### **Error Probability**

For the Matlab example, if a threshold ad  $r^*=0$  is used, the error probability can be obtained by solving the following integral

$$\int_{-\infty}^{0} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(r-1)^2}{2\sigma^2}\right) dr \tag{6}$$

This type of integral is very popular.





# Module 4.1

### Presentation Outline

Part I DICO Channels

Part II The AGN Channel

Part III MAP and ML Rules for bi-AGN





# MAP Rule for the bi-AGN Channel (1/2)

### Two Messages: Binary-input AGN (bi-AGN) Channel

- Assume that  $|\mathcal{M}| = 2$ : two messages. M can be either 1 or 2.
- $\blacksquare$  The conditional PDF of R=r when the signal is  $S=s_m$  is

$$p_R(r|S=s_m)=rac{1}{\sqrt{2\pi\sigma^2}}\exp\left(-rac{(r-s_m)^2}{2\sigma^2}
ight)$$
 , for  $m=1,2$ 

#### MAP Rule bi-AGN Channel

MAP receiver for  $\hat{m} = f(r) = 1$  if

$$\Pr\{M=1\}p_R(r|S=1) \ge \Pr\{M=2\}p_R(r|S=2) \tag{7}$$

and  $\hat{m}=2$  otherwise. This means  $\hat{m}=f(r)=1$  if

$$\Pr\{M = 1\} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(r - s_1)^2}{2\sigma^2}\right) \ge \Pr\{M = 2\} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(r - s_2)^2}{2\sigma^2}\right)$$

and  $\hat{m}=2$  otherwise.





# MAP Rule for the bi-AGN Channel (2/2)

#### MAP Threshold

One can show (complete derivation in course reader) that  $\geq$  becomes = in the MAP ir  $r=r^*$ , where

$$r^* \stackrel{\Delta}{=} \frac{\sigma^2}{s_1 - s_2} \ln \frac{\Pr\{M = 2\}}{\Pr\{M = 1\}} + \frac{s_1 + s_2}{2}$$

### Optimum receiver for the bi-AGN channel

A receiver that decides  $\hat{m}=1$  if

$$r \ge r^*$$

and  $\hat{m}=2$  otherwise, is optimum.

#### What is needed by MAP?

MAP threshold splits the real line (two intervals) and it depends on noise variance, a-priori probabilities, and transmitted symbols.





### ML Rule for the bi-AGN Channel

### Optimum Threshold for Equiprobable Messages: ML Rule

When the a-priori probabilities  $\Pr\{M=1\}$  and  $\Pr\{M=2\}$  are equal, the optimum threshold is

$$r^* = \frac{s_1 + s_2}{2}.$$

This corresponds to the ML receiver, which chooses  $\hat{m}=f(r)=1$  if

$$p_R(r|S=1) \ge p_R(r|S=2)$$

and  $\hat{m}=2$  otherwise. This means  $\hat{m}=f(r)=1$  if

$$\frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(r-s_1)^2}{2\sigma^2}\right) \ge \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(r-s_2)^2}{2\sigma^2}\right)$$

and  $\hat{m}=2$  otherwise.





# Example: MAP vs. ML for bi-AGN (1/3)







# Example: MAP vs. ML for bi-AGN (2/3)







# Example: MAP vs. ML for bi-AGN (3/3)

#### MAP vs. ML

- Threshold in Matlab example was in fact ML detection
- MAP is optimum but more complex than ML
- ML is simple to implement (fixed threshold, one-bit decisions) but suboptimal in general





# Summary Module 4.1

### Take Home Messages

- lacktriangle In DICO channels the output is continuous (PMFs ightarrow PDFs)
- AGN model studied in detail
- MAP and ML detectors
  - For bi-AGN, MAP and ML create two intervals via a threshold
  - MAP is optimum but more complex
  - Error probabilities of MAP and ML are not the same





# Communication Theory (5ETB0) Module 4.1

Alex Alvarado a.alvarado@tue.nl

Information and Communication Theory Lab Signal Processing Systems Group Department of Electrical Engineering Eindhoven University of Technology, The Netherlands

www.tue.nl/ictlab/