Part III-B: Probability Theory and Mathematical Statistics

Lecture by 李漫漫 Note by THF

2024年10月31日

目录

1	大数定律和中心极限定理	2
	1.1 大数定律	3
	1.2 中心极限定理	4
2	数理统计基本概念	5
	2.1 经验分布函数	6
Lecture 12		
Notation. 相关系数/Pearson 相关系数: 描述两个随机变量之间的线性相关性 只能描述数值性的变量		
	$ \rho(X,Y) = 1$ 时: 正相关 $ \rho(X,Y) > 0.8 $: 强相关 $ \rho(X,Y) \in (0,0.5) $: 弱相关 $\rho = 0$: 不相关/非线性关系	

Notation. 相关系数本质上描述:

$$P\left\{Y = aX + b\right\}.$$

Example.
$$f(x,y) = \begin{cases} \frac{1}{\pi}, & x^2 + y^2 \le 1 \\ 0, & x^2 + y^2 > 1 \end{cases}$$
, $\vec{\mathbb{R}}$:

1. X, Y 的相关性; 2. X, Y 的独立性

解: 1.

$$EX = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} x f(x, y) dxdy$$
$$= \int_{-1}^{1} dx \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} \frac{x}{\pi} dy$$
$$= 0.$$

同理 EY = 0,即不相关 2.

$$f_X(x) = \int_D f(x, y) dy$$
$$= \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} \frac{1}{\pi} dy$$
$$= \frac{2}{\pi} \sqrt{1-x^2}.$$

同理 $f_{Y}\left(y\right)=\frac{2}{\pi}\sqrt{1-y^{2}}$, 易得 $f\left(x,y\right)\neq f_{X}\left(x\right)f_{Y}\left(y\right)$, 即不独立

数理统计部分

1 大数定律和中心极限定理

Definition. 大数定律:

$$\bar{X} \xrightarrow{n \to +\infty} EX.$$

即: 以某事件发生的频率估计该事件的概率

Definition. 中心极限定理:

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i.$$

Lecture 12

其中 $X_1, X_2, \ldots X_i$ 独立同分布

该随机变量序列存在分布,中心极限定理提出不论 \bar{X} 的分布是什么,该序列的分布为正态分布

$$\bar{X} \xrightarrow[n \to \infty]{L} N(E\bar{X}, D\bar{X}).$$

如何判断随机变量的敛散性:

Corollary. 依概率收敛:

对 ∀ε 有:

$$\lim_{n \to \infty} P\{|X_n - X| < \varepsilon\} = 1.$$

代表序列 $\{X_n\}$ 收敛于随机变量 X ,记为 $X_n \xrightarrow{P} X$

Corollary. 依分布收敛:

序列的分布函数为 $F_n(x)$, 随机变量的分布函数 F(x) , 对 $\forall x$, 有:

$$\lim_{n \to \infty} F_n\left(x\right) = F\left(x\right).$$

则 $\{X_n\}$ 依分布收敛于 X ,记为 $X_n \xrightarrow[n \to \infty]{L} X$

Notation. 测度变换:通过将问题映射到另一个空间简化计算 依分布收敛要求更弱,即:依概率收敛 ⇒ 依分布收敛 当收敛对象为常数时二者可互推

Notation. 撞骗:只要发出的短信足够多,成功率符合大数定律

三大大数定律:

切比雪夫大数定律: 最根本 伯努利大数定律: 例子 辛钦大数定律

1.1 大数定律

Notation. 切比雪夫大数定律:

Definition. $\{X_i\}$ i.i.d , $\exists EX_i, DX_i$,且 $\exists C$,使得 $DX_i \leq C$ (方差有界),则 对 $\forall \varepsilon > 0$ 当:

$$\lim_{n \to \infty} P\left\{ \left| \bar{X}_n - E\bar{X}_n \right| < \varepsilon \right\} = 1.$$

时:

$$\bar{X}_n \xrightarrow[n \to +\infty]{P} E\bar{X}_n.$$

证明. $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$,有:

$$E\bar{X}_n = \frac{1}{n} \sum_{i=1}^n EX_i$$
$$D\bar{X}_i = \frac{1}{n^2} \sum_{i=1}^n DX_i$$
$$\leq \frac{C}{n}.$$

由切比雪夫不等式:

$$P\left\{\left|\bar{X}_{n} - E\bar{X}_{n}\right| < \varepsilon\right\} \ge 1 - \frac{D\bar{X}_{n}}{\varepsilon^{2}}$$

 $\ge 1 - \frac{C}{n\varepsilon^{2}}.$

当 $n \to \infty$ 时原式收敛于 1

Notation. 辛钦大数定律: 序列中的随机变量独立同分布

Notation. 伯努利大数定律: 序列中 $X_i \sim B(1,p)$ (已知分布), 记 μ_s 为随机变量序列之和, 有:

$$\lim_{n \to \infty} P\left\{ \left| \frac{\mu_s}{n} - p \right| < \varepsilon \right\} = 1.$$

即: $\frac{\mu s}{n}$ 依概率收敛于 p

1.2 中心极限定理

Example. 高尔顿钉板

Corollary. i.i.d 的中心极限定理:

$$\lim_{n\to\infty} P\left\{\frac{\bar{X}_n - \mu}{\sigma/\sqrt{n}} \le x\right\} = \Phi\left(x\right).$$

Lecture 12

Corollary. 棣莫弗-拉普拉斯定理: X_i 独立同分布, $X_i \sim B(1,p)$, 令 Y = $\sum_{i=1}^{n} X_i$, 对 $\forall x$ 有:

$$\lim_{n\to\infty} P\left\{\frac{Y-np}{\sqrt{np\left(1-p\right)}} \le x\right\} = \Phi\left(x\right).$$

Lecture 13 10.31

Notation. 偏度 r_1 : 三阶标准化随机变量的矩,用于描述对称性

峰度 r_2 : 四阶标准化随机变量的矩,一般使正态分布的峰度 $r_2 = 0$,描述分 布的陡峭程度

表 1: 常见分布的数字特征 分布 EXDX r_2 $B(1,p) \qquad p \qquad p(1-p)$ $B(n,p) \qquad np \qquad np(1-p)$ $P(\lambda) \qquad \lambda \qquad \lambda$ $G(p) \qquad \frac{1}{p} \qquad \frac{1-p}{p^2}$ $U[a,b] \qquad \frac{a+b}{2} \qquad \frac{(b-a)^2}{12}$ $\Gamma(1,\lambda) \qquad \frac{1}{\lambda} \qquad \frac{1}{\lambda^2}$ $N(\mu,\sigma^2) \qquad \mu \qquad \sigma^2$ $N(\mu, \sigma^2)$ μ

2 数理统计基本概念

随机变量引入: 使样本空间映射到实数轴上

分布函数: 任意随机变量的概率

大数定律和中心极限定理:由概率论过渡到数理统计

描述统计学: 过去的实验数据/相关分析图

Lecture 13

Definition. 总体:全部研究对象,可以用分布描述(随机变量组)

Definition. 个体:组成总体的成员,符合总体分布(每一个个体都是一个随机变量)

Example. 从总体中抽取 n 个样本,对数据记录: $x_1, x_2, ..., x_n$ 称为 n 维随机变量 $X_1, X_2, ..., X_n$ 对应的观测值, $X_1, X_2, ..., X_n$ 为来自总体 X 的一个样本

Notation. 简单样本: X_1, X_2, \ldots, X_n *i.i.d*,且与总体分布相符特点:

- 。 独立性
- 。 代表性

Definition. 样本空间: $\Omega = \{(x_1, x_2, ..., x_n) | x_i \in \mathbb{R}, i = 1, 2, ..., n\}$

Notation. 样本联合分布和总体分布的关系 (i.i.d):

$$F(x_1, x_2, ..., x_n) = P\{X_1 \le x_1, X_2 \le x_2, ..., X_n \le x_n\}$$

$$= \prod_{i=1}^{n} P\{X_i \le x_i\}$$

$$= \prod_{i=1}^{n} F(x_i).$$

扩展: X 为连续型, 密度函数的关系:

$$f(x_1, x_2, \dots, x_n) = \prod_{i=1}^n f_{X_i}(x_i)$$
$$= \prod_{i=1}^n f(x_i) \quad x_i \in \mathbb{R}, i = 1, 2, \dots, n.$$

2.1 经验分布函数

经验分布函数: $F_n(x)$

将样本观测值 x_1, x_2, \ldots, x_n 按大小分类为 $x_{(1)}, x_{(2)}, \ldots, x_{(n)}$

$$F_n(x) = f_n \{X \le x\}$$

$$= \begin{cases} 0, & x < x_{(1)} \\ \frac{k}{n}, & x \in [x_{(k)}, x_{(k+1)}) \\ 1, & x \ge x_{(n)} \end{cases}$$

$$\approx F(X).$$

Corollary. 格利文科定理:

$$P\left\{ \lim_{n\to\infty,x\in\mathbb{R}} |F(x) - F_n(x) = 0| \right\} = 1.$$

根据格利文科定理: 可以使用经验分布函数来估计理论分布函数