2020-2021 年春《线性代数》(理工) 期中试题参考答案

一、填空题(每小题4分,共24分)

1.
$$\begin{bmatrix} 4 & 7 & 1 \\ 5 & 8 & 2 \\ 6 & 9 & 3 \end{bmatrix}$$
; 2. $\underline{6}$; 3. $\underline{\frac{81}{32}}$; 4. $\underline{1} = \underline{\cancel{1}} = 4$; 5. $\underline{0}$; 6. $\underline{r \le n}$.

2.
$$\underline{6}$$
; 3. $\frac{81}{32}$

5.
$$\underline{0}$$
; 6. $\underline{r \le n}$.

二、(10 分) 将矩阵 $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ 表示成有限个初等矩阵的乘积.

解:
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \xrightarrow{r_2 - 3r_1} \begin{bmatrix} 1 & 2 \\ 0 & -2 \end{bmatrix} \xrightarrow{r_1 + r_2} \begin{bmatrix} 1 & 0 \\ 0 & -2 \end{bmatrix} \xrightarrow{-\frac{1}{2} \times r_2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
,

即
$$\begin{bmatrix} 1 & 0 \\ 0 & -\frac{1}{2} \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -3 & 1 \end{bmatrix} A = E_2,$$

故
$$A = \begin{bmatrix} 1 & 0 \\ -3 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 1 & 0 \\ 0 & -\frac{1}{2} \end{bmatrix}^{-1} = \begin{bmatrix} 1 & 0 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -2 \end{bmatrix}.$$

三、(12 分) 矩阵
$$A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix}$$
.

- (1) 计算 $f(A) = A^3 + A + 2E$, 其中 E 为 4 阶单位矩阵;
- (2) 用 A^* 表示A的伴随矩阵,计算 $((A^{-1})^T)^*$.

$$\widetilde{\mathbf{H}}: (1) \quad f(A) = \begin{bmatrix} 4 & 0 & 0 & 0 \\ -4 & 4 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 12 \end{bmatrix}.$$

(2)
$$|A| = -2$$
, $((A^{-1})^T)^* = \frac{1}{|A|}A^T = -\frac{1}{2}\begin{bmatrix} 1 & -1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix}$.

四、
$$(12 分)$$
 已知矩阵 $A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}$, $B = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$, $C = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$, 且矩阵 X

满足AXC-BXC=AX-BX+E,其中E是3阶单位矩阵,求X.

解: 化简矩阵方程, 得 (A-B)X(C-E)=E,

故
$$X = (A-B)^{-1}(C-E)^{-1} = [(C-E)(A-B)]^{-1}$$

$$= \begin{pmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & -1 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} 1 & -1 & -1 \\ 0 & 0 & 1 \\ 0 & 1 & -1 \end{bmatrix}^{-1} = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix}.$$

五、(12 分)已知 $\alpha_1 = (1,3,0,2)^T$, $\alpha_2 = (2,5,1,3)^T$, $\alpha_3 = (0,1,-1,a)^T$, $\beta = (3,7,b,4)^T$. 问:

- (1) a,b 为何值时, β 不能由 $\alpha_1,\alpha_2,\alpha_3$ 线性表出?
- (2) a,b 为何值时, β 可由 $\alpha_1,\alpha_2,\alpha_3$ 线性表出,且表出方式唯一?给出其表示式.

解: 考虑 $x_1\alpha_1 + x_2\alpha_2 + x_3\alpha_3 = \beta$,

$$\left[\alpha_1,\alpha_2,\alpha_3,\beta\right] = \begin{bmatrix} 1 & 2 & 0 & 3 \\ 3 & 5 & 1 & 7 \\ 0 & 1 & -1 & b \\ 2 & 3 & a & 4 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 0 & 3 \\ 0 & -1 & 1 & -2 \\ 0 & 0 & a-1 & 0 \\ 0 & 0 & 0 & b-2 \end{bmatrix},$$

- (1) 当 $b \neq 2$ 时, β 不能由 $\alpha_1, \alpha_2, \alpha_3$ 线性表出;
- (2) 当 $b = 2, a \neq 1$ 时, $x_1\alpha_1 + x_2\alpha_2 + x_3\alpha_3 = \beta$ 有唯一解 $(-1, 2, 0)^T$,即 $\beta = -\alpha_1 + 2\alpha_2$.

六、(15分)判断下列结论的正确性,若对请证明之,否则请举出一个反例.

- (1) 若矩阵A满足 $A^2 = 0$,则A为零矩阵.
- (2) 设A为n阶矩阵, A^* 为A的伴随矩阵,则 $\left|A^*\right| = \left|A\right|^{n-1}$.
- (3) 设 $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ 为 4 维列向量,若 $\alpha_1 + \alpha_2, \alpha_2 + \alpha_3, \alpha_3 + \alpha_4, \alpha_4 + \alpha_1$ 线性相关,则 $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ 也线性相关.

$$\mathbf{M}$$
: (1) \mathbf{H} , $\mathbf{A} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$.

(2) 对。

证明:若A可逆, $|A| \neq 0$,由 $AA^* = |A|E$ 两端同时取行列式,化简可得结论; 若A不可逆,则|A| = 0, $AA^* = 0$,此时若 A^* 可逆,则A = 0,可知 $A^* = 0$,矛盾,故 A^* 不可逆,有 $|A^*| = 0$,结论成立。

(3) 错,任取 $\alpha_1,\alpha_2,\alpha_3,\alpha_4$ 线性无关均可。

七、(15 分) A 为 4 阶矩阵, α 为 4 维列向量.

(1)
$$\Xi \alpha = (1,1,1,1)^T, \quad B = A + \alpha \alpha^T, \quad \Re (A - B)^{2021};$$

(2) 若
$$a_1, a_2, a_3, a_4$$
 为非零实数, $A = \begin{bmatrix} a_1 & 0 & 0 & 0 \\ 0 & a_2 & 0 & 0 \\ 0 & 0 & a_3 & 0 \\ 0 & 0 & 0 & a_4 \end{bmatrix}$, $\alpha = (a_1, a_2, a_3, a_4)^T$, 求

 $|A + \alpha \alpha^T|$;

(3) 若
$$A$$
为反对称矩阵,且 $\left|A\right|=1$, $\alpha=\left(1,1,1,1\right)^{T}$,证明: $\left|A+\alpha\alpha^{T}\right|=1$.

$$(2) |A + \alpha \alpha^{T}| = \begin{vmatrix} a_{1} + a_{1}^{2} & a_{1}a_{2} & a_{1}a_{3} & a_{1}a_{4} \\ a_{2}a_{1} & a_{2} + a_{2}^{2} & a_{2}a_{3} & a_{2}a_{4} \\ a_{3}a_{1} & a_{3}a_{2} & a_{3} + a_{3}^{2} & a_{3}a_{4} \\ a_{4}a_{1} & a_{4}a_{2} & a_{4}a_{3} & a_{4} + a_{4}^{2} \end{vmatrix}$$

$$= a_{1}a_{2}a_{3}a_{4} \begin{vmatrix} 1 + a_{1} & a_{2} & a_{3} & a_{4} \\ a_{1} & 1 + a_{2} & a_{3} & a_{4} \\ a_{1} & a_{2} & 1 + a_{3} & a_{4} \\ a_{1} & a_{2} & a_{3} & 1 + a_{4} \end{vmatrix} = a_{1}a_{2}a_{3}a_{4}(1 + a_{1} + a_{2} + a_{3} + a_{4}).$$

(3)设
$$A = (a_{ij})$$
,将 $\left| A + \alpha \alpha^T \right| = \begin{vmatrix} a_{11} + 1 & a_{12} + 1 & a_{13} + 1 & a_{14} + 1 \\ a_{21} + 1 & a_{22} + 1 & a_{23} + 1 & a_{24} + 1 \\ a_{31} + 1 & a_{32} + 1 & a_{33} + 1 & a_{34} + 1 \\ a_{41} + 1 & a_{42} + 1 & a_{43} + 1 & a_{44} + 1 \end{vmatrix}$ 逐列拆开,化简得

$$\begin{vmatrix} A + \alpha \alpha^T \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{vmatrix} + \begin{vmatrix} 1 & a_{12} & a_{13} & a_{14} \\ 1 & a_{22} & a_{23} & a_{24} \\ 1 & a_{32} & a_{33} & a_{34} \\ 1 & a_{42} & a_{43} & a_{44} \end{vmatrix} + \begin{vmatrix} a_{11} & 1 & a_{13} & a_{14} \\ a_{21} & 1 & a_{23} & a_{24} \\ a_{31} & 1 & a_{33} & a_{34} \\ a_{41} & a_{22} & 1 & a_{24} \\ a_{31} & a_{32} & 1 & a_{34} \\ a_{41} & a_{42} & 1 & a_{44} \end{vmatrix} + \begin{vmatrix} a_{11} & a_{12} & a_{13} & 1 \\ a_{21} & a_{22} & a_{23} & 1 \\ a_{31} & a_{32} & a_{33} & 1 \\ a_{41} & a_{42} & a_{43} & 1 \end{vmatrix}$$

曲
$$|A|=1$$
知 $A^*=A^{-1}$,有 $\left(A^*\right)^T=\left(A^{-1}\right)^T=\left(A^T\right)^{-1}=\left(-A\right)^{-1}=-A^{-1}=-A^*$,

故
$$A^*$$
 为反对称矩阵, $\sum_{i,j=1}^4 A_{ij} = 0$,

$$\therefore |A + \alpha \alpha^T| = |A| = 1.$$