Задание 11 (на 23.11).

Пусть I_1 и I_2 — две интерпретации одной сигнатуры. Мы говорим, что I_1 является расширением I_2 , если M_1 (носитель I_1) является надмножеством M_2 (носителя I_2), все функциональный и предикатные символы согласованы на M_2 . Говорят, что это расширение является элементарным, если любая (не обязательно замкнутая формула) на любой оценке свободных переменных, принимающих значения в M_2 одновременно истинна и ложна в интерпретациях I_1 и I_2 .

ML 53.

- (а) Покажите, что естественные интерпретации (=,+,*,0,1) для всех алгебраически замкнутых полей характеристики 0 являются элементарно эквивалентными.
- (б) Для двух алгебраически замкнутых полей k_1 и k_2 характеристики 0 выполняется, что k_1 является надполем поля k_2 . Покажите, что естественная интерпретация (=, +, *, 0, 1) в поле k_1 является элементарным расширением естественной интерпретации (=, +, *, 0, 1) в поле k_2 .
- (в) Докажите теорему Гильберта о нулях: всякая система полиномиальных уравнений с коэффициентами в алгебраически замкнутом поле характеристики ноль, имеющее решение в расширении поля, имеет решение и в самом поле.
- (г) Докажите переформулировку теоремы Гильберта о нулях: если система полиномиальных уравнений $\bigwedge_{i=1}^k P_i(x_1,x_2,\ldots,x_n)=0$ не имеет решения в некотором алгебраически замкнутом поле характеристики 0, то найдутся такие многочлены $Q_1(x_1,\ldots,x_n),\ldots,Q_k(x_1,\ldots,x_n)$, что $\sum_i Q_i P_1=1$.

ML 54. Покажите (в случае пропозициональных формул), что если $F_1, F_2, \ldots, F_n \vdash F$, то формула $(\bigwedge_{i=1}^n F_i) \to F$ является тавтологией.

[ML 55.] Покажите, что для любых пропозициональных формул A, B и C формула $(A \to B) \to ((B \to C) \to (A \to C))$ является выводимой.

[ML 56.] Покажите, что если формула ϕ является, то и формула, которая получится при подстановке другой формулы вместо переменной формулы ϕ , тоже будет выводимой.

ML 57. Покажите, что следующие формул являются выводимыми:

- (a) $A \rightarrow \neg \neg A \bowtie \neg \neg \neg A \rightarrow \neg A$;
- (6) $((A \lor B) \to C) \to ((A \to C) \land (B \to C)) \lor ((A \lor B) \to C);$
- (в) $((A \land C) \lor (B \land C)) \rightarrow ((A \lor B) \land C)$ и $((A \lor B) \land C) \rightarrow ((A \land C) \lor (B \land C));$
- $(\Gamma) ((A \lor C) \lor (B \lor C)) \to ((A \land B) \lor C) \ \mathsf{u} ((A \land B) \lor C) \to ((A \lor C) \lor (B \lor C));$
- (A) $(\neg B \rightarrow \neg A) \rightarrow (A \rightarrow B)$.

ML 58. Заменим 11-ую аксиому $A \vee \neg A$ на $\neg \neg A \to A$. Покажите, что множество выводимых формул не изменится.

ML 38. Докажите, что существует такое множество $S \subseteq \mathbb{N}$, что для любого бесконечного перечислимого множества A множества $A \cap S$ и $A \setminus S$ имеют бесконечный размер.

ML 46. Можно ли в данной интерпретации провести элиминацию кванторов (\mathbb{Q} , +)? Если нет, то можно ли добавить какой-нибудь выразимый предикат так, чтобы с новым предикатом элиминация квантором стала возможной.

[ML 47.] Можно ли в данной интерпретации провести элиминацию кванторов (\mathbb{Q} , =, S), где S — прибавление единицы? Если нет, то можно ли добавить какой-нибудь выразимый предикат так, чтобы с новым предикатом элиминация кванторов стала возможной.

ML 49. Пусть T теория следующего языка: $\{<, R, B\}$, где R (red) и B (blue) унарные предикаты.

T содержит все аксиомы плотного линейного порядка без первого и последнего элемента, а также:

$$\forall xy \exists zw (x < z < w < y \land R(z) \land B(w))$$

$$\forall x (R(x) \lor B(x))$$

$$\forall x (R(x) \leftrightarrow \neg B(x).$$

Докажите, что любые интерпретации данной теории на счетном множестве изоморфны.

ML 51. Вудет ли интерпретация $(\mathbb{N},=,<)$ элементарно эквивалентна: $(\mathbb{N}+\mathbb{Z},=,<)$.

ML 52. Будет ли интерпретация $(\mathbb{Q}, =, <)$ элементарно эквивалентна: (б) $(\mathbb{Q} + \mathbb{R}, =, <)$.