MEDIDA DA SEÇÃO DE CHOQUE DO $J/\psi(1S)$ DECAINDO EM DI-MÚONS USANDO DADOS PÚBLICOS DO CMS.

Autores:

Miguel Lopes Isis Mota Lucas Johnny

Dalmo Dalto Pedro Henrique Lucas Kopke

Professores: Eliza Melo, Maurício Thiel e Sandro Fonseca

Dep. de Física – PPGF, Universidade do Estado do Rio de Janeiro, Rio de Janeiro - RJ, Brazil

Introdução

1) Modelo padrão

- O MP descreve a interação eletrofraca e forte como interações fundamentais.
- A interação das partículas com o campo de Higgs é responsável pela massa existente nas mesmas.
- O MP classifica outras partículas não fundamentais como bárions e mésons.

UERJ

Introdução

2) Méson J/ψ

- O J/ψ foi descoberto em 1974 por Burton Richter (SLAC) e Samuel Ting (BNL).
- Massa de $3096,900 \pm 0,006 \text{ MeV/c}^2$
- Corroborou para a consolidação do modelo de quarks e para a cromodinâmica quântica (QCD)

Introdução

2) Méson J/ψ

Decaimentos

Canal	Taxa de decaimento (%)	Erro (%)
hádrons	87,7	0,5
g g g	64,1	1,0
e⁺ e⁻	5,971	0,032
μ+ μ-	5,961	0,033

CERN, LHC e CMS

UERJ OF STADO OF STADO

1) CERN e LHC

- O CERN é um complexo de pesquisa que visa estudar as estruturas fundamentais do universo. Formado por 24 países membros com a recente chegada do brasil.
- O LHC (Large Hadron Collider) é o acelerador de partículas onde estão localizados quatro experimentos: LHCb, ALICE, ATLAS e CMS.

CMS (Compact Muon Solenoid)

1) CMS

- O CMS é projetado para estudar uma ampla área na física de altas energias, Modelo Padrão, matéria escura, etc.
- É composto por muitos subsistemas, entre os principais estão o sistema de trajetografia, os calorímetros e a câmara de múons. Estando todos envoltos por um forte campo magnético.

CMS (Compact Muon Solenoid)

Grandeza	Equação
Pseudorapidez (η)	$\eta = -\ln[an(rac{ heta}{2})]$
Ângulo azimutal (ϕ)	$\phi = \arcsin(\frac{p_y}{p_T})$
Momentum Transverso (p_T)	$ \vec{p_T}^2 = \vec{p_x}^2 + \vec{p_y}^2$

Jura

center of the LHC

ATLAS

CMS (Compact Muon Solenoid)

1) Seção de Choque

- Estudar o cálculo da seção de choque e a importância dessa variável para a física de altas energias. O canal escolhido para esse estudo foi $J/\Psi \rightarrow \mu^{+} \mu^{-}$.
- Os eventos utilizados neste estudo foram disponibilizados no material de proposta para o projeto.
 Para análise de todos os eventos usou-se o ROOT.

$$\sigma_{J/\psi o \mu \mu} = rac{N_{J/\psi} - B}{A \cdot \epsilon \cdot BR_{(J/\psi o \mu^+ \mu^-)} \cdot \mathcal{L}_{Int}}$$

Aceitação

A aceitação é definida como um quociente que relaciona o número de eventos gerados, denotado pela letra N, e o número de eventos que poderiam passar pelo detector, denominado por Npass.

$$A = \frac{N_{pass}}{N}$$

A aceitação está relacionada a geometria do detector e possui algumas limitações em termos das variáveis cinemáticas:

Faixas consideradas: pt > I Gev $|\eta|$ < 2,4

Aceitação

Geração utilizando PYTHIA8:

Eventos gerados: 100.000

Eventos de J/Psi $\rightarrow \mu^+\mu^-$: 23.027

Eventos seleccionados: 5300

A limitação em vermelho apresenta a faixa de pseudorapidez considerada.

Aceitação

A polarização está relacionada à direção preferencial de decaimento de algumas partículas. Para o estado espectroscópico J/ψ podemos considerar os extremos:

- Transversal: direção paralela/antiparalela entre os momentos dos múons em relação ao momento de J/ψ (+1);
- Longitudinal: direção perpendicular ao momento de J/ψ (-1);
- Polarização nula (0).

Table 1: Valores de aceitação para diferentes estados de polarização do J/ψ .

α (Polarização)	Aceptância
0 (Nominal)	0,230165
+1 (Transversal)	0,236852
-1 (Longitudinal)	0,128284

Método Tag e Probe

- Este método é utilizado para medir a eficiência de detecção de partículas em eventos que contém léptons.
- Neste caso, os múons resultantes do decaimento devem passar por alguns critérios de seleção. Os múons que passam pelos critérios passa a ser chamado de *Tag* enquanto o número total de múons é chamado de *Probe*.

Eficiência do J/Ψ

- Comparação da eficiência em bins de p_T entre dados experimentais e simulados em Monte Carlo.
- Número de J/Ψ em bins de pt para cálculo da seção de choque.

Os critérios de seleção adotados foram: $p_T > 1$ GeV e $|\eta| < 2,4$

O valor médio da eficiência em p_T dos eventos reais foi: ϵ = 0,985 ± 0,008

Eficiência do J/Ψ

Eficiência de intervalos de pseudo-rapidez em função de intervalos de p_T .

Eficiência do J/Ψ

• Tabela de eficiências para intervalo de pseudo-rapidez (η) e p_T .

Pseudo-rapidez	$0,0 < p_T < 6,6$	$6, 6 < p_T < 13, 3$	$13, 3 < p_T < 20, 0$	$20, 0 < p_T < 26, 6$	$26, 6, < p_T < 33, 3$	$33, 3 < p_T < 40, 0$
$0,0 < \eta < 0,4$	0,989	0,995	0,997	0,996	0,991	0,988
$0, 4 < \eta < 0, 8$	0,981	0,982	0,987	0,989	0,986	0,981
$0, 8 < \eta < 1, 2$	0,820	0,968	0,987	0,992	0,990	0,983
$1, 2 < \eta < 1, 6$	0,797	0,980	0,993	0,995	0,991	0,982
$1, 6 < \eta < 2, 0$	0,751	0,989	0,995	0,995	0,992	0,980
$2, 0 < \eta < 2, 4$	0,732	0,983	0,990	0,988	0,986	0,980

Seleção de Eventos

- A partir da seleção de eventos obtemos o número de mésons J/ψ presentes no conjunto de dados.
- Cortes realizados para construir o pico de ressonancia do J/ψ:
 - \circ p_T ≥ 1 GeV
 - |η| ≤ 2,4

Seleção de Eventos

 O ajuste foi realizado com a soma de uma função Gaussiana e uma função Cristall Ball.

$$Gauss = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

$$Crystal \ Ball = \begin{cases} \exp\left(-\frac{(x-\bar{x})^2}{2\sigma^2}\right) & \text{se } \frac{x-\bar{x}}{\sigma} > -\alpha \\ A\left(B - \frac{x-\bar{x}}{\sigma}\right)^{-n} & \text{se } \frac{x-\bar{x}}{\sigma} \le -\alpha \end{cases}$$

$$f_{exp} = e^{\lambda m}$$

- Cortes realizados para construir o pico de ressonancia do J/ψ :
 - \circ p_T ≥ 1 GeV
 - \circ $|\eta| \leq 2,4$

Cálculo da Seção Diferencial

Resultado final

$$\sigma_{J/\psi o \mu \mu} = rac{ extstyle N_{J/\psi} - B}{A \cdot \epsilon \cdot BR_{(J/\psi o \mu^+ \mu^-)} \cdot \mathcal{L}_{Int}}$$

Utilizando dados públicos do experimento CMS calculamos a seção de choque do canal mencionado como sendo 281,89 nb. Esse resultado se aproxima de um artigo do CMS que foi utilizado como referência, no artigo a seção de choque deste canal foi de 289,1 \pm 16,7(stat) \pm 60,1(syst) nb.

$$\sigma_{J/\to \mu^+\mu^-} \times Br(J/\psi \to \mu^+\mu^-) = 287,30 \text{ nb}$$

$$\frac{d\sigma}{dp_T} \times Br(J/\psi \to \mu\mu) = \frac{N_{\rm fit}(p_T)}{L \cdot \epsilon \cdot A \cdot \Delta p_T}$$

Obrigado!

Agradecimentos

Reserva

Intervalo de p_T (GeV)	Yield
0-5	0,024
5-10	171,979
10-15	1938,11
15-20	5037,12
20-25	5614,34
25-30	16258,9
30-35	16469,7
35-40	9622,07
40-45	5313,94
45-50	2889,34
50+	4779,56