Lecture 1: Overview of Probability
(2, 5, P)
2 Random variables.
3) pmf, pdf, E[:], Var(·)
Conditional probability and conditional expedition
(5) Concentrations Chernett Bound
Sul-Gaussian rus. MGF.
•
* Module focuses on multiarmed bandits
Textbook: Bandit Algorithms, T. Lattimore and C. Czepesvari, Cambridge Univ.
Press, 2019.

Probability Review

Probability triplet: (2, 5, P)

Sample space oralgebra

(alea collection of events)

Bertsekes & Tsitsiklis Introduction to Probability)
Athena Scientific Press

e.g. (1) Poll a pair of dies:

SZ = { (1,1), (1,2), ..., (1,6), (2,1), ..., }

 $S = \{ \phi, SZ, \{(1,0)\}, \{(1,0), (1,2)\}, \{(1,0), (3,2)\} \}$

events are subsets of 52

P: 5 -> [0,1] the probability "measures"

Fair dies:
$$P(\xi(1,0)) = \frac{1}{36}$$

$$\mathbb{P}\left(\left\{(1,1),(2,2),(3,3)\right\}\right) = \frac{3}{36}$$

Random Variable: A map from outcomes of the experiment to the real line.

ex: Continuing well of dies:

X = Sum of the two rolls.

x can take values: {2,3,4,..., 123.

Pmf: Probability mass function

 $P_{x}(x) = P(x=x)$

example: $P_X(2) = P(X=2) = \frac{1}{36}$

 $P_{X}(3) = P(X=3) = \frac{1}{36} + \frac{1}{36} = \frac{1}{18}$

$$P_{x}(12) = P(x=12) = \frac{1}{36}$$

pdf: Probability bensity function.

Used to radel continuous random variables

 $f_{x}(x)$: $P(\alpha < x < b)$

 $=\int_{a}^{b}f_{x}(x)dx.$

Expectation: (aka mean)

 $E[X] = \int x f_X(x) dx$ continuous

∑xp_X(x) disrete

Variance: Var (X) = 52 = E (X-E[X])2

Conditioning AB events; with P(B)>0 $P(A|B) = P(A\cap B)$ (re-normalizing wirt the universe restricted to B) Toint probability: Px, (x,y) = P(x=x, Y=y). Independence: Px, (a, y) = Px (a) Py (y). Motation: {x, xz, ---, x, 3 a sognence s independent and identically distributed i.e., Px,,x2,..,xn (x,,..., xn) product form = independence. $= P_{x_1}(x_1) \cdot P_{x_1}(x_2) \cdot P_{x_1}(x_3) \cdot \dots \cdot P_{x_n}(x_n)$ identically dist: all some prof

Conditional Expectation |

E[x|A] = \(\sim 2 Px|A (x|A) \)

E[x/y=y] = = = x Px/y (x/y)

where $P_{X|Y}(x,y) = P_{X,Y}(x,y)$.