Chapitre 4 Signaux numériques et convolution

GENERALITES: OBJECTIFS-HYPOTHESES

OBJECTIFS

- Maîtriser le concept de signal numérique et de ce que cela implique
- Savoir travailler dans les « règles de l'art »
- Savoir mettre en œuvre un filtre numérique répondant à des critères prédéfinis
- Savoir faire une analyse spectrale en numérique

EXEMPLES

- Elaborer un algorithme de filtrage
- Extraire le message utile d'un signal numérique bruité
- Elaborer la commande d'un système numérique

HYPOTHESES

- Cadre des opérateurs linéaires invariants par translation / variable n définissant la relation d'ordre
- Cadre des processus convolutifs (convolution discrète)
- Cadre déterministe

Définitions et Notations

Signal numérique :

• Séquence de nombres (1D) ordonnés suivant la variable n (rang)

Terme général : X_n OU X(n)

• Tableau de nombres (2D) ordonnés suivant les variables n1(ligne) et n2 (colonne)

Terme général : x_{n1n2} ou $x(n_1,n_2)$

• Une séquence peut être créée entièrement numériquement ou provenir d'un processus d'échantillonnage d'un signal continu à Te constante.

SIGNAUX NUMERIQUES

Signal causal

Séquence de nombres $\{x_n\}$ monolatérale à droite

$$\{x_n\}$$
 $x_n = 0$ $n < 0$ $\forall n \in Z$

Exemple : signal dépendant du temps (relation de cause à effet)

Signal anticausal

Séquence de nombres $\{x_n\}$ monolatérale à gauche $\left\{x_n\right\}$ $x_n=0$ $n\geq 0$ $\forall n\in Z$ ou bilatérale

$$\{x_n\}$$
 $x_n = 0$ $n \ge 0$ $\forall n \in Z$
 $\{x_n\}$ $\forall n \in Z$

Exemple: signal d'espace, signal image, signal enregistré.

Exemples de séquences numériques

Séquence numérique causale

$$\{x1_n\} = \{\underline{1},2,2,3,5,2,....\}$$

$${x2_n} = {\underline{0},0,1,3,5,2,....}$$

Séquence numérique anticausale

$$\{x3_n\} = \{...,1,3,5,2,1,\underline{0},0,0,...\}$$

$$\{x4_n\} = \{...,1,3,5,2,1,0,0,\underline{0}.....\}$$

$${x5_n} = {\dots,1,3,5,2,\underline{1},5,4,8,3,\dots}$$

La valeur soulignée correspond au rang n=0

$$X(n_1, n_2) = \begin{cases} 79 & 90 & 79 & 98 & 176 & 88 \\ 67 & 101 & 130 & 102 & 174 & 84 \\ 128 & 190 & 201 & 169 & 196 & 112 \\ 159 & 229 & 286 & 229 & 173 & 155 \\ 108 & 124 & 137 & 129 & 92 & 104 \end{cases}$$

Signaux numériques classiques

$$u(n) := \begin{vmatrix} 1 & \text{if } n \ge 0 \\ 0 & \text{if } n < 0 \end{vmatrix}$$

Signaux numériques élémentaires causaux :

Echelon unité u(n)

Impulsion $\delta(n)$

Exponentielle $\alpha(n)$

Rampe r(n)

Sinusoïde s(n)

Signal numérique élémentaire anticausal :

Echelon à gauche u(-n-1)

Opérations élémentaires sur les signaux numériques

Addition:
$$\{x_n\} + \{y_n\} = \{x_n + y_n\}$$

Produit:
$$\{x_n\} \times \{y_n\} = \{x_n \times y_n\}$$

Retard:
$$\{x_n\}_{-p} = \{x_{n-p}\} \rightarrow x(n-p)$$

Retournement: $\{x_n\} \rightarrow \{x_{-n}\}$

Décimation d'ordre M
$$x_n$$
 y_n $y(n) = x(Mn)$

Interpolation d'ordre M
$$x_n$$
 y_n $y(n) = \begin{cases} x(\frac{n}{M}) \\ 0 \text{ sinor} \end{cases}$

Remarque importante:

La décimation doit être accompagnée d'un pré-filtrage passe-bas L'interpolation doit être accompagnée d'un post-filtrage passe-bas

Exemples de décalage

Signaux causaux

$$r1(n) := r(n-5) \cdot u(n)$$

$r1(n) := r(n+5) \cdot u(n)$

Signaux anticausaux

Séparation d'un signal bilatéral

Séparation de la partie causale ou anticausale d'un signal bilatéral

Soit x(n) un signal bilatéral.

On peut écrire :

$$x1(n) := x(n) \cdot u(n)$$

partie causale

$$x2(n) := x(n) \cdot u(-n-1)$$

partie anticausale

$$x(n) := x1(n) + x2(n)$$

$$a := 0.9$$
$$x(n) := a^{|n|}$$

 $x2(n) := x(n) \cdot u(-n-1)$

Traitement par filtrage numérique linéaire : convolution

FILTRAGE NUMERIQUE LINEAIRE

Soit un signal d'entrée $\{x_n\}$.

Soit un filtre numérique caractérisé par sa séquence $\{a_n\}$

Par définition $\{a_n\}$ est la réponse impulsionnelle (RI) du filtre numérique.

Si $\{a_n\}$ comporte un nombre de termes fini, on parle de R.I.F.

Si $\{a_n\}$ comporte un nombre de termes infini, on parle de R.I.I.

Exemple:

$$\left\{ a_n \right\} = \frac{1}{3} \left\{ 1, \ \underline{1}, \ 1 \right\}$$
 filtre passe-bas R.I.F.

$$\left\{\begin{array}{ll} b_n \right\} = \left\{ 1, \ 2, \ \underline{0}, \ -2, \ -1 \right\} \ \ \text{filtre passe-haut (dérivateur) R.I.F.}$$

Convolution discrète

Décomposition suivant une base de suite :

Soient la suite d'entrée x_i et la suite de sortie y_i.

Soit la base canonique de suites
$$\xi_i$$
 telle que $\xi_i(n) = \begin{cases} 1 & \text{si } n = i \\ 0 & \text{sinon} \end{cases}$

On a $\xi_i(n) = \xi_0(n-i)$ (propriété de translation)

On peut écrire :
$$x = \sum_i \xi_i x(i)$$
 soit encore $x(n) = \sum_i \xi_i(n) \, x(i)$

Réponse impulsionnelle du filtre :

Soit a_i la sortie correspondant à une entrée ξ_i , par linéarité on a : $\xi_i \rightarrow a_i$ et $\xi_i x(i) \rightarrow a_i x(i)$

D'où:
$$x = \sum_{i} \xi_{i} x(i) \rightarrow y = \sum_{i} a_{i} x(i)$$

Le terme général de la sortie s'écrit donc : $y(n) = \sum_{i} a_{i}(n)x(i)$

Convolution discrète (suite)

Expression de la convolution discrète :

On a :
$$y(n) = \sum_{i} a_i(n)x(i)$$

Propriété de décalage

$$\xi_i(n) = \xi_0(n-i)$$
 donc $a_i(n) = a_0(n-i) = a(n-i)$

D'où l'expression de la convolution discrète de $\{x_n\}$ par $\{a_n\}$:

$$\{y_n\} = \{a_n\} * \{x_n\}$$
 avec $y(n) = \sum_i a(n-i)x(i)$

par symétrie on a aussi :
$$y(n) = \sum_{i} a(i)x(n-i)$$

Pour les signaux causaux :
$$i \in [0, +\infty[$$

Pour les signaux anticausaux :
$$i \in]-\infty, +\infty[$$

Exemple de traitement par convolution

$$\left\{ a_{n}\right\} =\frac{1}{5}\left\{ -\frac{1}{5}, 1, 1, 1, 1\right\}$$

$$x(n) = u(n)$$
 échelon

Calcul direct en appliquant la définition :

$$y(n) = \sum_{i} a(n-i)x(i)$$

$$\textbf{1.} \left\{ \begin{array}{l} b_i \\ \end{array} \right\} = \left\{ \begin{array}{l} \textbf{1, 2, \underline{0}, -2, -1} \\ \end{array} \right\} \xrightarrow{\text{Re tournement}} \left\{ \begin{array}{l} b_{-i} \\ \end{array} \right\} = \left\{ -1, -2, \underline{0}, 2, 1 \right\}$$

2.
$$\{b_{-i}\}$$
 Décalage au rang n $\{b_{-(i-n)}\}$ = $\{b_{n-i}\}$

3. Somme des produits des termes de rang i.