

NWChem: Hartree-Fock, Density Functional Theory, Time-Dependent Density Functional Theory

Hartree-Fock

- Functionality
- Input
- Wavefunctions
- Initial MO vectors
- Direct and semidirect algorithms
- Convergence, files, and restarting

Hartree-Fock Functionality

- Energies and gradients
 - Closed-shell (RHF)
 - Spin-restricted, high-spin open-shell (ROHF)
 - Spin-unrestricted open-shell (UHF)
- Analytic second derivatives (RHF and UHF)
- Finite point groups
- Will be used as first step in all correlated methods (e.g. MP2, CC, etc ...)
- Resolution of the identity (energy)

Input

SCF input block, e.g., scf

```
triplet; uhf
```

end

- Defaults
 - Restricted-spin wavefunction (ROHF)
 - Accuracy suitable for non-floppy molecule geometry optimization
 - Symmetry as defined in the geometry

Simple Example

³B₁ CH₂ ROHF and UHF optimizations

```
geometry units au
      0 1.868 -0.818
  symmetry c2v
end
basis
  H library 3-21g; C library 3-21g
end
scf; triplet; end #default is ROHF
task scf optimize
```


Density-Functional Theory

- Functionality
- Input
- XC functionals
- Grid & Convergence options

DFT Functionality in a nutshell

- Gaussian function-based DFT
 - energies,
 - gradients and
 - second derivatives
- finite symmetry
- Exchange-Correlation functionals for
 - Closed-Shell systems and Open-Shell systems

Exchange-Correlation Functionals

- Pure Hartree-Fock Exchange
- Traditional functionals: Density & density gradient
 - ▶ LDA, BP, BLYP, PBE, PW91,...
- Hybrid functionals: Inclusion of HF exchange
 - ▶ B3LYP, PBEO, BeckeHalfandHalf,...
- Meta functionals: Inclusion of kinetic energy
 - ▶ TPSS, PKZB, Minnesota functionals,...
- Range-separated functionals
 - ► CAM-B3LYP, LC-PBE0,...
- DFT + empirical dispersion (DFT+ D)
 - Based on Grimme's implementation
- Double Hybrid functionals: DFT + MP2
 - Based on Grimme's implementation

Local Basis (Gaussian Basis Set)

Memory requirements

- Largest quantities are the density, Fock, overlap, 1-electron matrices
- Memory needed O(N²)
 - Replicated data O(N²) per node
 - Distributed data O(N²) for whole calculation

Computational Complexity

- Main cost is the evaluation of the 2-electron integrals
 - ◆ Takes O(N²)-O(N⁴) work
 - O(N⁴) for small-medium systems
 - ◆ O(N²) in the large N limit
 - Schwarz screening,...
 - For large N the linear algebra becomes dominant at O(N³)
 - Matrix multiplication, diagonalization

Phys. Chem. Chem. Phys. 12, 6896 (2010)

NWChem: Gaussian Basis HF/DFT

Gaussian based HF/DFT \rightarrow Finite systems (molecules, clusters, nanostructures)

- Functionality
 - Exhaustive list of exchange-correlation functionals
 - Traditional xc functionals
 - Wide range of hybrid functionals (B3LYP, PBE0, BeckeH&H...)
 - HF Exchange
 - Meta-GGA functionals
 - Minnesota functionals (M05, M06)
 - SIC and OEP
 - Range separated functionals (CAMB3LYP, LC-PBE0, BNL,...)
 - DFT + D implementation (long-range empirical vdW)
 - Double hybrid functionals
 - Spin-orbit DFT
 - ECP, ZORA, DK
 - Constrained DFT
 - ◆ TDDFT for excited states → Optical spectroscopy
 - Various properties (NMR, Linear response,...)
- System sizes: ~150 atoms, 1500-2000 basis functions are routine

NWChem: Gaussian DFT Scaling

- Calculation on C₂₄₀
 - ◆ PBE0 functional, 6-31G*
 - Direct integral evaluation
 - Size 3600 basis functions
- Timings for different components of the Kohn-Sham matrix construction
 - Fock 2e two electron integrals
 - Fock xc the DFT contribution
 - Diagonalization eigensolver

Input

DFT input block, e.g.,

```
dft
mult 1
end
```

- Defaults (similar to Hartree-Fock)
 - Local density approximation (LDA)
 - Accuracy suitable for non-floppy molecule geometry optimization
 - Symmetry as defined in the geometry

Open Shell Input

DFT input block, e.g., dft mult 3 end

- Unrestriced Open Shell Default (different from Hartree-Fock)
- Recent RODFT implementation

```
dft
    cgmin # quadratic conv. (required)
    mult 2
    rodft
end
```


Minimal Input Example

Minimal input (all defaults)

```
geometry; ne 0 0 0; end
basis; ne library cc-pvdz; end
task dft
```

Performs a closed-shell N⁴ DFT calculation using the local density approximation on the neon atom (no fitting)

Simple DFT Input Example

Input with default DFT input (single point LDA calculation)

```
# echoes the input in the output file
start silane # name of files
title silane # title of the calculation in output
geometry
   si
             0.0000000
                            0.0000000
                                          0.0000000
             0.75252170
                           -0.75252170
                                          0.75252170
   h
            -0.75252170
                            0.75252170
                                          0.75252170
   h
             0.75252170
                            0.75252170
   h
                                         -0.75252170
   h
            -0.75252170
                           -0.75252170
                                         -0.75252170
end
basis
  * library cc-pvdz
end
task dft
            # specifies the task > energy by default
```

EMSL Basis Set Exchange: https://bse.pnl.gov/bse/portal

Changing the exchange-correlation


```
echo
start silane
title silane
geometry
                 0.0000000
                                 0.0000000
                                                0.0000000
      si
      h
                 0.75252170
                                -0.75252170
                                                0.75252170
                -0.75252170
                                 0.75252170
                                                0.75252170
      h
      h
                 0.75252170
                                 0.75252170
                                               -0.75252170
      h
                -0.75252170
                                -0.75252170
                                               -0.75252170
end
basis
                              dft
  * library cc-pvdz
end
                              end
dft
  xc b3lyp # B3LYP
                              dft
end
```

task dft

```
xc becke88 lyp #BLYP
  xc becke88 perdew86
end
Many other combinations possible...
```


Important DFT keywords

xc: controls the choice of the exchange-correlation

convergence: controls the convergence (energy, density...)

grid: specifies the grid

mult: specifies the multiplicity

odft: specify open shell calculation

iterations: controls the number of iterations

smear: useful for degenerate states

SINGLET dft grid fine convergence energy 1e-08 xc b3lyp #B3LYP mult 1 end

TRIPLET

```
dft
    odft
    grid fine
    convergence energy 1e-08
    xc b3lyp #B3LYP
    mult 3
end
```


Putting it all together

end

task dft


```
echo
start silane
title silane
geometry
      si
                 0.0000000
                                0.0000000
                                               0.0000000
                 0.75252170
                               -0.75252170
                                               0.75252170
      h
                -0.75252170
                                0.75252170
                                               0.75252170
      h
                 0.75252170
                                0.75252170
      h
                                              -0.75252170
                -0.75252170
                               -0.75252170
      h
                                              -0.75252170
end
basis
  * library cc-pvdz
end
dft
  grid fine
  convergence energy 1e-08
  xc b3lyp # B3LYP
  mult 1
```


Geometry Optimization


```
echo
start silane
geometry
      si
                 0.0000000
                                 0.0000000
                                                0.0000000
                 0.75252170
                                -0.75252170
      h
                                                0.75252170
                                 0.75252170
                                                0.75252170
      h
                -0.75252170
                 0.75252170
      h
                                 0.75252170
                                                -0.75252170
                -0.75252170
                                -0.75252170
                                                -0.75252170
      h
end
basis
  * library cc-pvdz
end
dft
  grid xfine
  convergence energy 1e-08
  xc b3lyp # B3LYP
 mult 1
end
```


Frequencies

task dft frequencies


```
echo
start silane
geometry
  si
             0.0000000
                             0.0000000
                                            0.0000000
             0.75252170
                            -0.75252170
                                            0.75252170
  h
            -0.75252170
                             0.75252170
                                            0.75252170
  h
             0.75252170
                             0.75252170
                                           -0.75252170
  h
            -0.75252170
                            -0.75252170
                                           -0.75252170
  h
end
basis
  * library cc-pvdz
end
dft
  grid xfine
  convergence energy 1e-08
  xc b3lyp # B3LYP
 mult 1
end
```


Combining Calculations I


```
echo
start silane
geometry
      si
                 0.0000000
                                 0.0000000
                                                0.0000000
                 0.75252170
                                -0.75252170
      h
                                                0.75252170
                                 0.75252170
                                                0.75252170
      h
                -0.75252170
      h
                 0.75252170
                                0.75252170
                                               -0.75252170
                -0.75252170
                                -0.75252170
                                               -0.75252170
      h
end
basis
  * library cc-pvdz
end
```

```
dft
   grid xfine
   convergence energy 1e-08
   xc b3lyp # B3LYP
   mult 1
end
task dft optimize
task dft frequencies
```


Combining Calculations II


```
geometry
end
basis
  * library cc-pvdz
end
dft
   xc b3lyp #B3LYP
   mult. 1
end
task dft optimize
task dft frequencies
dft.
   odft
   xc becke88 lyp #BLYP
   mult 3
end
task dft optimize
```


Restarting Calculations

mult 1

task dft

end


```
echo
restart silane
geometry
      si
                 0.0000000
                                 0.0000000
                 0.75252170
                                -0.75252170
      h
                                 0.75252170
      h
                -0.75252170
      h
                 0.75252170
                                 0.75252170
                -0.75252170
                                -0.75252170
      h
end
basis
  * library cc-pvdz
end
dft
  grid xfine
  convergence energy 1e-08
  xc b3lyp # B3LYP
```

Restart files

- •silane.db
- •silane.movecs

0.0000000

0.75252170

0.75252170

-0.75252170

-0.75252170

Using Old Vectors


```
echo
start silane
geometry
                  0.0000000
                                  0.0000000
                                                   0.0000000
      si
                  0.75252170
                                 -0.75252170
      h
                                                   0.75252170
                                  0.75252170
                                                   0.75252170
                 -0.75252170
      h
                  0.75252170
      h
                                  0.75252170
                                                  -0.75252170
                 -0.75252170
                                 -0.75252170
      h
                                                  -0.75252170
end
basis
  * library cc-pvdz
end
dft
  grid xfine
  convergence energy 1e-08
  xc b3lyp # B3LYP
  mult 1
  vectors input old.movecs output b3lyp.movecs
end
                                            Pacific Northwest
task dft
                                               NATIONAL LABORATORY
```


Organizing Your Files

xc b3lyp #B3LYP

task dft optimize

mult 1

end


```
echo
start silane
permanent dir /home/yourname/silane/b3lyp
scratch dir /scratch
geometry
      si
                 0.0000000
                                0.0000000
                                                0.0000000
      h
                 0.75252170
                               -0.75252170
                                                0.75252170
                -0.75252170
                                0.75252170
                                                0.75252170
      h
                 0.75252170
                                0.75252170
                                               -0.75252170
      h
      h
                -0.75252170
                               -0.75252170
                                               -0.75252170
end
basis
  * library cc-pvdz
end
dft
  grid xfine
  convergence energy 1e-08
```


Customizing The Basis


```
• • •
```

```
geometry
                  0.0000000
                                  0.0000000
                                                  0.0000000
      si
      h1
                  0.75252170
                                 -0.75252170
                                                  0.75252170
      h2
                 -0.75252170
                                  0.75252170
                                                  0.75252170
      h3
                  0.75252170
                                  0.75252170
                                                 -0.75252170
                 -0.75252170
      h4
                                 -0.75252170
                                                 -0.75252170
end
```

```
si library 6-31G
h1 library h sto-3g
h2 library h 6-31g
h3 library h 3-21g
h4 library h "6-31g*"
end
```

. . .

Including empirical dispersion in DFT


```
geometry
...
end
basis
...
end

dft
xc b3lyp
disp vdw 2 s6 1.05
```

- S. Grimme J. Comp. Chem. 25 1463 (2004)
- S. Grimme J. Comp. Chem. 271787 (2006)

task dft optimize

end

Semi-empirical hybrid DFT + MP2 Double Hybrid Functionals


```
. . .
geometry
end
basis
end
dft
  xc HFexch 0.53 becke88 0.47 lyp 0.73 mp2 0.27
  dftmp2 direct
  direct
  convergence energy 1e-8
  iterations 100
end
```

S. Grimme, J. Chem. Phys., 124, 034108 (2006)

Other Capabilities

- Charge density fitting (Dunlap scheme)
 - ▶ 4-center, 2-electron Coulomb integrals → 3-center integrals (N³)
 - Very fast for traditional DFT (pure density based functionals, no HF Exchange)
 - Cheaper and better parallel scaling
- Direct or on-the-fly evaluation of integrals
 - All integrals evaluated as needed
 - Useful for large systems on large numbers of processors
- Effective Core Potentials
- . . .

Detailed documentation information available on **www.nwchem-sw.org**

Charge-Density Fitting

- Important difference between DFT and SCF
 - Additional fitting basis set (reduces cost from N⁴ --> N³)

```
geometry; ne 0 0 0; end

basis "ao basis"
   ne library "DZVP (DFT orbital)"
end

basis "cd basis"
   ne library "DGauss A1 DFT Coulomb Fitting"
end

task dft
```


Effective Core Potentials

- Reduces the cost of calculation for heavy elements
 - Additional input field required to define potential

```
geometry; ne 0 0 0; end

ecp spherical
  * library Stuttgart_RSC_1997_ECP
end

basis "ao basis"
  ni library "Stuttgart_RSC_1997_ECP"
end

task dft
```


Grid Options

Numerical integration keywords and targets using Mura-Knowles radial and Lebedev angular quadratures:

```
dft; grid xcoarse; end (1d-4 au)
dft; grid coarse; end (1d-5 au)
dft; grid medium; end (1d-6 au; default)
dft; grid fine; end (1d-7 au)
dft; grid xfine; end (1d-8 au)
```

Addition quadrature choices, e.g.,

```
dft; grid eumac medium; end
dft; grid ssf lebedev 75 11; end (= G98 fine)
```


Modifying Accuracy

- Controlling accuracy
 - Density < tol_rho (10-10) are screened
 - e.g., tolerances tol_rho 1.d-12
 - Schwarz screening is invoked for density*integral
 10-accCoul default = 10
 - e.g., tolerances accCoul 12
- When to change it?
 - Diffuse basis/floppy molecules
 - Changing from energy to optimizations, frequencies, etc.
 - Don't forget to increase grid accuracy too!

Convergence

- DIIS, level-shifting, and damping are available
- Default is DIIS with no damping. Level-shifting is invoked when the HOMO-LUMO gap is less than hl_tol (default is 0.05 atomic units)
- Control of DIIS, levelshifting, and damping:
 convergence 1shift 0.1 damp 40 diis 5
- When invoked can be by iteration count
 - convergence ncydp 5
- or by change in total energy
 - convergence ncydp 0 dampon 1d6 \
 dampoff 1d-2

Fractional occupation of MOs

- The SMEAR keyword is useful in cases wit many degenerate states near the HOMO (e.g. metallic clusters). Molecular Orbitals near the gap will be occupied with a distribution a la Fermi-Dirac corresponding to a finite temperature.
- SMEAR <real smear default 0.001>

Excited State Calculations with TDDFT

Time-Dependent DFT

Casida Formulation

Cannot be used to describe excitations in intense fields

Perturbed density → first-order correction

Linear response approach → frequency domain

- Working equations have M=N_{occ}*N_{virt} solutions
- Dimension → tetradic (M*M)
- Every root → cost of a HF or hybrid DFT calculation
- Note that the vectors are normalized but differently so than your usual wavefunction
- The orbital energy difference is a main term in the excitation energy
- In the case of pure DFT with large molecules most of the integrals involving F_{xc} vanish as this is a local kernel

$$\begin{pmatrix} A & B \\ B^* & A^* \end{pmatrix} \begin{pmatrix} X \\ Y \end{pmatrix} = \omega \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} X \\ Y \end{pmatrix}$$

$$1 = (X|X) - (Y|Y)$$

$$A_{ia,jb} = \delta_{ij} \delta_{ab} (\varepsilon_a - \varepsilon_i) + (ia|F_H + F_{xc}|jb)$$

$$B_{ia,jb} = (ia|F_H + F_{xc}|jb)$$

$$F_{xc} (r_1, r_2) = \frac{\partial^2 f}{\partial \rho(r_1) \partial \rho(r_2)}$$

Excited State Calculations with TDDFT


```
0
      0.0000000
                     0.0000000
                     0.0000000
      0.75933475
H
H
     -0.75933475
                     0.0000000
end
basis
O library 6-31G**
H library 6-31G**
end
dft
 xc b3lyp
end
tddft.
nroots 10
notriplet
end
task tddft energy
```

geometry

0.12982363

-0.46621158

-0.46621158

Excited State Sample Output


```
Root 1 singlet b2 0.294221372 a.u. ( 8.0061743 eV)
  Transition Moments X = 0.00000 \quad Y = 0.26890 \quad Z = 0.00000
  Transition Moments XX 0.00000 XY 0.00000 XZ
                                                  0.00000
  Transition Moments YY 0.00000 YZ 0.08066 ZZ
                                                   0.00000
  Transition Moments XXX 0.00000 XXY -0.93672 XXZ
                                                   0.00000
  Transition Moments XYY 0.00000 XYZ 0.00000 XZZ 0.00000
  Transition Moments YYY -1.60959 YYZ 0.00000 YZZ -0.72276
  Transition Moments ZZZ 0.00000
  Dipole Oscillator Strength
                                                    0.01418
  Occ. 5 b2 --- Virt. 6 a1 -1.00002 X
Root 2 singlet a2 0.369097477 a.u. (10.0436576 eV)
  Transition Moments X 0.00000 Y 0.00000 Z 0.00000
  Transition Moments XX 0.00000 XY 0.24936 XZ 0.00000
  Transition Moments YY 0.00000 YZ
                                      0.00000 ZZ
                                                  0.00000
  Transition Moments XXX 0.00000 XXY
                                      0.00000 XXZ
                                                   0.00000
  Transition Moments XYY 0.00000 XYZ -0.34740 XZZ
                                                   0.00000
  Transition Moments YYY
                         0.00000 YYZ
                                      0.00000 YZZ
                                                   0.00000
  Transition Moments 777 0.0000
                                                    0.00000
  Dipole Oscillator Strength
  Occ. 5 b2 --- Virt. 7 b1 -0.99936 X
                                               Pacific Northwest
                                                  NATIONAL LABORATOR'
```


Excited State Spectrum

Pacific Northwest
NATIONAL LABORATORY

Recent Applications (1)

Formyl cation bound to a Bronsted acid site in a zeolite cavity

Ground & Excited state properties of pure and N-doped TiO₂ rutile

Adsorption of aminotriazines on graphene using dispersion corrected DFT

Dipole polarizabilities of water clusters

Recent Applications (2)

Charge transfer excitations in zinc porphyrin in aqueous solution

Excitations energies in the oligoporphyrin dimer

Correct lowest excitation in the Adenine-Thymine base pair using range-separated functionals

Optical properties of silver clusters

Hands-On Exercises

Tutorial exercises

hf-dft

b3lyp: Shows how to perform a single point energy, geometry

optimization and frequency calculation

combined: Shows how to perform single point energy calculations

with various exchange-correlation functionals

restart: Shows how to restart a calculation

files: Shows how to use the scratch and permanent directories

multiplicity: Shows how to set the multiplicity in a calculation

convergence: Shows how to specify other useful keywords in the dft

block

ecp: Shows how to use effective core potentials (ECP)

direct: Shows how to perform direct calculations

densityfitting: Shows how to use charge density fitting basis sets

sodft: Shows how to perform calculation with a spin-orbit ecp

explicitbasis: Shows how to specify the basis explicitly
multiplestructures: Shows how to specify multiple structures
multiplebasis: Shows how to specify multiple basis sets

tddft

h2o,2h2o,ethane,butane

properties

Questions?

EXTRA MATERIAL

Hartree-Fock & Density Functional Theory I

- The energy expression is derived from a single determinant wave function approximation
- Replace the exchange with a exchange-correlation functional to go from Hartree-Fock >DFT
- Implemented using various basis set approaches
 - Plane waves
 - Gaussian functions
 - Slater functions
 - Numerical atomic orbitals
 - Wavelets
 - Mixed basis sets
 - **...**

Hartree-Fock & Density Functional Theory II Local Basis

$$\varphi_{i} = \sum_{\mu} C_{\mu i} \phi_{\mu}(\mathbf{r})$$

$$E = \sum_{\mu \nu} F_{\mu \nu} D_{\mu \nu} + \sum_{i} \varepsilon_{i} \sum_{j} \left(\sum_{\mu \nu} C_{\mu i}^{*} S_{\mu \nu} C_{\nu j} - \delta_{ij} \right)$$

$$\sum_{\mu} C_{\mu \nu}^{*} C_{\mu \nu}$$

$$D_{\mu\nu} = \sum_{i \in \{occ\}} C_{\mu i}^* C_{\nu i}$$

$$F_{\mu\nu} = H^{core}_{\mu\nu} + G^J_{\mu\nu} + \alpha G^K_{\mu\nu} + \beta G^{X-DFT}_{\mu\nu} + \gamma G^{C-DFT}_{\mu\nu}$$

$$G_{\mu\nu}^{J} = \sum_{\sigma\tau} (\mu\nu \mid \sigma\tau) D_{\sigma\tau}$$

$$G_{\mu\nu}^{K} = -\frac{1}{2} \sum_{\sigma\tau} (\mu\tau \mid \sigma\nu) D_{\sigma\tau}$$

$$G_{\mu\nu}^{y-DFT} = \int \sum_{\xi \in [\rho_{\alpha}, \rho_{\beta}, |\nabla \rho_{\alpha}|, |\nabla \rho_{\beta}|, \nabla \rho_{\alpha} \cdot \nabla \rho_{\beta}, ...]} \frac{\partial f^{y}}{\partial \xi} \frac{\partial \xi}{\partial D_{\mu\nu}} dr^{r}$$

- Minimize energy with respect to C_{ui} and ε_i
- Gives
 - ◆ The total energy E
 - lacktriangle The molecular orbitals $C_{\mu i}$
 - lacktriangle The orbital energies ε_i

