Haloalkanes and Haloarenes

- Bottles containing C₆H₅I and C₆H₅CH₂I lost their original labels. They were labelled A and B for testing. A and B were separately taken in test tubes and boiled with NaOH solution. The end solution in each tube was made acidic with dilute HNO₃ and then some AgNO₃ solution was added. Substance B gave a yellow precipitate. Which one of the following statements is true for this experiment? [2003]
 - (a) A and $C_6H_5CH_2I$
 - (b) B and C_6H_5I
 - (c) Addition of HNO₃ was unnecessary
 - (d) A was C_6H_5I
- The compound formed on heating 2. chlorobenzene with chloral in the presence of concentrated sulphuric acid, is [2004]
 - (a) freon
- (b) DDT
- (c) gammexene
- (d) hexachloroethane
- 3. Tertiary alkyl halides are practically inert to substitution by S_{N2} mechanism because of

[2005]

- (a) steric hindrance (b) inductive effect
- (c) instability
- (d) insolubility
- Alkyl halides react with dialkyl copper reagents to give [2005]
 - (a) alkenyl halides
 - (b) alkanes
 - (c) alkyl copper halides
 - (d) alkenes
- Elimination of bromine from 2-bromobutane 5. results in the formation of -[2005]
 - (a) Predominantly 2-butyne
 - (b) Predominantly 1-butene
 - (c) Predominantly 2-butene
 - (d) equimolar mixture of 1 and 2-butene

- 6. Phenyl magnesium bromide reacts with methanol to give
 - (a) a mixture of toluene and Mg(OH)Br
 - (b) a mixture of phenol and Mg(Me)Br
 - (c) a mixture of anisole and Mg(OH)Br
 - (d) a mixture of benzene and Mg(OMe)Br
- 7. Fluorobenzene (C₆H₅F) can be synthesized in the laboratory [2006]
 - by direct fluorination of benzene with F₂
 - by reacting bromobenzene with NaF solution
 - by heating phenol with HF and KF
 - (d) from aniline by diazotisation followed by heating the diazonium salt with ${\rm HBF}_4$
- 8. Reaction 2-phenyl-1 of trans bromocyclopentane on reaction with alcoholic KOH produces [2006]
 - (a) 1-phenylcyclopentene
 - (b) 3-phenylcyclopentene
 - (c) 4-phenylcyclopentene
 - (d) 2-phenylcyclopentene
- 9. The structure of the major product formed in the following reaction [2006]

Haloalkanes and Haloarenes

(c) CH_2CN

(d)
$$CN$$
 CH_2Cl

- 10. Which of the following is the correct order of decreasing S_N2 reactivity? [2007]
 - (a) $R_2CHX > R_3CX > RCH_2X$
 - (b) $RCHX > R_3CX > R_2CHX$
 - (c) $RCH_2X > R_2CHX > R_3CX$
 - (d) $R_3CX > R_2CHX > RCH_2X$. (X is a halogen)
- 11. The organic chloro compound, which shows complete sterochemical inversion during a S_N^2 reaction, is [2008]
 - (a) $(C_2H_5)_2$ CHCl
- (b) (CH₃)₃CCl
- (c) (CH₃)₂ CHCl
- (d) CH₃Cl
- **12.** Consider the following bromides:

The correct order of $S_N 1$ reactivity is [2010]

- (a) B > C > A
- (b) B>A>C
- (c) C > B > A
- (d) A > B > C
- **13.** How many chiral compounds are possible on monochlorination of 2- methyl butane? [2012]
 - (a) 8
- (b) 2
- (c) 4
- (d) 6
- 14. Compound (A), C₈H₉Br, gives a white precipitate when warmed with alcoholic AgNO₃. Oxidation of (A) gives an acid (B), C₈H₆O₄. (B) easily forms anhydride on heating. Identify the compound (A). [2013]

(a)
$$CH_2Br$$
 (b) Br

(c) CH₂Br

CH₃

- **15.** Among the following oxoacids, the correct decreasing order of acid strength is: [2014]
 - (a) $HOCl > HClO_2 > HClO_3 > HClO_4$
 - (b) $HClO_4 > HOCl > HClO_2 > HClO_3$
 - (c) $HClO_4 > HClO_3 > HClO_2 > HOCl$
 - (d) $HClO_2 > HClO_4 > HClO_3 > HOCl$
- 16. In S_N2 reactions, the correct order of reactivity for the following compounds: [2014] CH₃Cl, CH₃CH₂Cl, (CH₃)₂CHCl and (CH₃)₃CCl is:
 - (a) $CH_3Cl > (CH_3)_2 CHCl$ > $CH_3CH_2Cl > (CH_3)_3 CCl$
 - (b) $CH_3Cl > CH_3CH_2Cl$ $> (CH_3)_2 CHCl > (CH_3)_3 CCl$
 - (c) $CH_3CH_2Cl > CH_3Cl$ > $(CH_3)_2 CHCl > (CH_3)_3 CCl$
 - (d) $(CH_3)_2 CHCl > CH_3CH_2Cl$ > $CH_3Cl > (CH_3)_3 CCl$
- 17. The major organic compound formed by the reaction of 1, 1, 1-trichloroethane with silver powder is: [2014]
 - (a) Acetylene
- (b) Ethene
- (c) 2 Butyne
- (d) 2 Butene
- **18.** The synthesis of alkyl fluorides is best accomplished by: [JEE M 2015]
 - (a) Finkelstein reaction
 - (b) Swarts reaction
 - (c) Free radical fluorination
 - (d) Sandmeyer's reaction

-c-117

c-118-

Chemistry

19. 2-chloro-2-methylpentane on reaction with sodium methoxide in methanol yields:

[JEE M 2016]

(ii)
$$C_2H_5CH_2C = CH_1$$

 CH_3

(iii)
$$C_2H_5CH = C - CH_3$$

 CH_3

- (a) (iii) only
- (b) (i) and (ii)
- (c) All of these
- (d) (i) and (iii)
- 20. The increasing order of the reactivity of the following halides for the S_N1 reaction is CH₃CHCH₂CH₃ CH₃CH₂CH₂Cl

- (a) (III) < (II) < (I)
- (b) (II) < (I) < (III)
- $(c) \quad (I) < (III) < (III)$
- (d) (II) < (III) < (I)

21. Which of the following, upon treatment with tert-BuONa followed by addition of bromine water, fails to decolourize the colour of bromine?

(a)
$$\bigcup_{\operatorname{Br}}^{\operatorname{O}} \operatorname{C}_{6}\operatorname{H}_{5}$$

(d)
$$\bigcup_{Br}^{O}$$

22. The major product obtained in the following reaction is: [2017]

Br
$$C_6H_5$$
 C_6H_5
 C_6H_5
 C_6H_5
 C_6H_5
 C_6H_5

- (a) $(\pm)C_6H_5CH(O^tBu)CH_2C_6H_5$
- (b) $C_6H_5CH = CHC_6H_5$
- (c) $(+)C_6H_5CH(O^tBu)CH_2C_6H_5$
- (d) $(-)C_6H_5CH(O^tBu)CH_2C_6H_5$

	Answer Key														
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
(d)	(b)	(a)	(b)	(c)	(d)	(d)	(a)	(b)	(c)	(d)	(a)	(c)	(d)	(c)	
16	17	18	19	20	21	22									
(b)	(c)	(b)	(a)	(b)	(a)	(b)									

SOLUTIONS

1. (d)
$$C_6H_5I \xrightarrow{NaOH} C_6H_5ONa \xrightarrow{HNO_3/H}^+$$
 $C_6H_5OH \xrightarrow{AgNO_3} No \text{ yellow ppt.}$
 $C_6H_5CH_2I \xrightarrow{NaOH} C_6H_5CH_2ONa$
 $\xrightarrow{HNO_3/H}^+ C_6H_5CH_2OH$

hence this is compound B and A was phenyl iodide (C_6H_5I).

2. **(b)** DDT is prepared by heating chlorbenzene and chloral with concentrated sulphuric acid

9.

(b)

Haloalkanes and Haloarenes

8. The reaction is dehydrohalogenation

$$C_6H_5$$
alc. KOH
$$1$$
-phenyl cyclopentene

c-119

halides is

10. (c) In S_N^2 mechanism transition state is

Nuclear substitution will not take place.

pentavelent. For bulky alkyl group it will

have sterical hinderance and smaller alkyl

group will favour the S_N^2 mechanism. So

the decreasing order of reactivity of alkyl

S_N2 reaction is favoured by small groups

on the carbon atom attached to halogen.

3. Due to steric hindrance tertiary alkyl halide do not react by S_N^{-2} mechanism they react by $S_N 1$ mechanism. S_N^2 mechanisam is followed in case of primary and secondary alkyl halides

The order is $CH_3 - X > CH_3 - CH_2X > (CH_3)_2 - CH.X >$ $(CH_3)_3 - C - X$

4. **(b)** In Corey House synthesis of alkanes alkyl halide react with lithium dialkyl cuprate $R'X + LiR_2Cu \longrightarrow R'-R + RCu + LiX$

So, the order of reactivity is $CH_3Cl > (CH_3)_2CHCl > (CH_3)_3CCl$ $> (C_2H_5)_2$ CHCl

 $RCH_2X > R_2CHX > R_3CX$

(c) $CH_3 - CH - CH_2 - CH_3 \xrightarrow{Alc. KOH}$ 5. $CH_3 - CH = CH - CH_3 + HBr$ The formation of 2-butene is in accordance to Saytzeff's rule. The more substituted alkene is formed.

NOTE $S_{N}2$ reaction is shown to maximum extent by primary halides. The only primary halides given is CH₃Cl so the correct answer is (d).

6. $CH_3OH + C_6H_5MgBr \longrightarrow$ $CH_3O.MgBr + C_6H_6$

7.

(d)

tetrafluoroborate

12. (a)

$$\begin{array}{c|c}
NH_2 & N_2Cl \\
\hline
Na NO_2 + HCl & HBF_4
\end{array}$$

reaction)

Since S_N1 reactions involve the formation of carbocation as intermediate in the rate

c-120 Chemistry

determining step, more is the stability of carbocation higher will be reactivity of alkyl halides towards $S_N 1$ route. Now we know that stability of carbocations follows the order: $3^\circ > 2^\circ > 1^\circ$, so $S_N 1$ reactivity should also follow the same order.

 $3^{\circ} > 2^{\circ} > 1^{\circ} > Methyl (S_N 1 reactivity)$

13. (c)
$$CI$$
 \downarrow
 CH_2
 CH_2
 CH_3
 CH_3
 $(R + S)$

Four monochloro derivatives are chiral.

14. (d)
$$CH_2Br$$
 CH_3
 $Alcholic$
 $AgBr \downarrow$

Oxidation

 $COOH$
 $COOH$
 $Acid (B)$
 $Alcholic$
 $AgBr \downarrow$
 $AgBr$

15. (c) Acidic strength increases as the oxidation number of central atom increases.

Hence acidic strength order is (+7) (+5) (+3) (+1) HClO₄ > HClO₃ > HClO₂ > HClO

16. (b) Steric congestion around the carbon atom undergoing the inversion process will slow down the $S_N 2$ reaction, hence less congestion faster will the reaction. So, the order is

$$CH_3Cl > (CH_3)CH_2 - Cl > (CH_3)_2CH - Cl > (CH_3)_3CCl$$

17. (c) $2CI - C - CH_3 + 6Ag$

$$\longrightarrow$$
 CH₃C \equiv CCH₃ + 6AgCl
_{2-butvne}

1, 1, 1-trichloroethane

18. (b) Alkyl fluorides are more conveniently prepared by heating suitable chloro – or bromo-alkanes with organic fluorides such as AsF₃, SbF₃, CoF₂, AgF, Hg₂F₂ etc. This reaction is called **Swarts reaction**.

$$CH_3Br + AgF \longrightarrow CH_3F + AgBr$$

 $2CH_3CH_2Cl + Hg_2F_2 \longrightarrow$
 $2CH_3CH_2F + Hg_2Cl_2$

19. (a) When *tert* -alkyl halides are used in Williamson synthesis elimination occurs rather than substitution resulting into formation of alkene. Here alkoxide ion abstract one of the β-hydrogen atom along with acting as a nucleophile.

$$CH_3-CH_2-CH_2-CH_3-CH_3+Na^{+}OCH_3$$
 $\xrightarrow{CH_3OH}$

2-Chloro-2-methylpentane

$$\begin{array}{ccc} & & \text{CH}_3 \\ & & & | & | \\ \text{CH}_3\text{CH}_2 - \text{C} = \text{C} - \text{CH}_3 + \text{CH}_3\text{OH} + \text{NaBr} \end{array}$$

2-Methyl-pent-2-ene

20. (b) Since $S_N 1$ reactions involve the formation of carbocation as intermediate in the rate determining step, more is the stability of carbocation higher will be the reactivity of alkyl halides towards $S_N 1$ route.

Since stability of carbocation follows order.

$$\mathrm{CH_3} - \mathrm{CH_2} - \overset{\oplus}{\mathrm{CH}_2}$$

Haloalkanes and Haloarenes

 $< CH_3 - \overset{\oplus}{CH} - CH_2 - CH_3$

$$$$

Hence correct order is

II < I < III

21. (a)

(fails to decolorise the colour of bromine) due to unsaturation

(b)
$$C_6H_5$$
 tert-BuONa (it decolorises bromine solution)

(c)
$$\xrightarrow{Br} \xrightarrow{\text{tert}-BuONa} \xrightarrow{O}$$

(it decolorises bromine solution)

$$(d) \qquad \bigcup_{Br} \xrightarrow{tert-BuONa} \bigcup_{\substack{\text{(it decolorises bromine solution)}}}$$

-c-121

Products formed in option (2), (3) & (4) decolorises bromine solution due to presence of double bond.

- 22. (b) Elimination reaction is highly favoured if
 - (a) Bulkier base is used
 - (b) Higher temperature is used Hence in given reaction biomolecular elimination reaction provides major product.

Br
$$C_6H_5$$
 C_6H_5 C_6H_5

 C_6H_5