Quiz 3 Answer Key

1. Let yi, yzer such that y, # yz and let f: X-> Y be a map.

- Contrapositive proof - (see below for a direct proof)

Assume that $f^{-1}(\xi y,3) \cap f^{-1}(\xi y,2) \neq \emptyset$. Then, there (exists some $x \in f^{-1}(\xi y,3) \cap f^{-1}(\xi y,2)$). By definition of the intersection, $x \in f^{-1}(\xi y,3) \cap f^{-1}(\xi y,2)$. Using the definition of the preimage, we see that $f(x) \in \xi y,3$ and $f(x) \in \xi y,3$. Since each set $\xi y,3$ and $\xi y,2$ contains only one element, we see that f(x) = y and f(x) = y. Then, $y_1 = y_2$ since $f(x) = y_1$ and $f(x) = y_2$, then, $f(x) = y_3$ since $f(x) = y_3$ and $f(x) = y_3$.

By the definition of the preimage, we have $f^{-1}(\{y_1\}) = \{x \in X : f(x) \in \{y_1\}\} \text{ and } f^{-1}(\{y_2\}) = \{x \in X : f(x) \in \{y_2\}\}\}.$ Since each set $\{y_1\}$ and $\{y_2\}$ has only one element, $f^{-1}(\{y_1\}) = \{x \in X : f(x) = y_1\} \text{ and } f^{-1}(\{y_2\}) = \{x \in X : f(x) = y_2\}.$

Taking an intersection (using the definition of the intersection), we see

 $f^{+}(\{y,3\}) \cap f^{-}(\{y,2\}) = \{x \in X : f(x) = y, and f(x) = y^{2}\}.$ Since f is a map, and $y_{1} \neq y_{2}$, there are no such $x \in X$. Thus, the set is empty, as desired.

We will prove directly that the set {1,2,3} has exactly 5 equivalence relations. First, observe that the set {1,2,3} has size 3 (using the identity map on the set). The identity map is a bijection by Theorem 1. Then, by theorem 2, {1,2,3} has 5 partitions. By THMS from week8, we know that each partition gives rise to an equivalence relation. Thus, the set 21,7,33 has at least 5 equivalence relations. By THM 6 from week 8, we know that each equivalence relation gives rise to a partition where the rule for assigning parts is identical to the rule in THM 5. Thus, we have at most 5 equivalence relations. Hence, there are exactly 5 equivalence relations.

3. (Bonus)

Assume $X \sim N$ and $N \sim Y$. By definition of cardinal equivalence, there is a bijection $f: X \rightarrow IN$ and a bijection $g: N \rightarrow Y$. We can compose these maps using the definition of a composite map to get a map $g \circ f: X \rightarrow Y$. By THM4 from week 5, $g \circ f$ is a bijection since g and f are each bijections. Since $g \circ f: X \rightarrow X$. By theorem 3, $(g \circ f)^T: X \rightarrow X$. By theorem 3, $(g \circ f)^T: X \rightarrow X$. By theorem 3, $(g \circ f)^T: X \rightarrow X$. By theorem 3, $(g \circ f)^T: X \rightarrow X$. By definition of cardinal equivalence, we can conclude $Y \sim X$.

4. (Bonus)

Let $X = \{1, 2, ..., n\}$ and $Y = \{1, 2, ..., m\}$ and assume m>n. By the pigeonhole principle, Lemmal, there does not exist an injective map $g: Y \rightarrow X$. By THM3 from week 8, there exists a surjective map $f: X \rightarrow Y$ if and only if there exists an injective map $g: Y \rightarrow X$. The contrapositive of both directions of the implication in THM3 tells

us that there does not exist an injective map $g: Y \to X$ if and only if there does not exist a surjective map $f: X \to Y$. Since there does not exist an injective map $g: Y \to X$ (shown above), we can conclude that there does not exist a surjective map $f: X \to Y$, as desired.