

Informações do Dataset:

✓ Nome: Diabetes

✓ Origem: EUA

✓ Data: 1997

✓ Quantidade: 403 obs. e 19 var

Variáveis

- ✓ Stab.glu
- ✓ Chol
- ✓ Time.ppn
- ✓ Hip
- ✓ Weight
- ✓ Height

- ✓ Bp.1s
- ✓ Bp.1d
- ✓ Bp.2s
- ✓ Bp.2d
- ✓ Gly.hb

- ✓ Ratio
- ✓ Frame
- ✓ Location
- ✓ Hdl
- ✓ Gender
- ✓ Waist

Análise exploratória

Var Binária

Análise de influencia

Gly.hb

✓ Var Binária

✓ Gly.hb

- 1. Stab.glu
- 2. Age

2017/18

Graph / Statistic

- 3. Bp.1s
- 4. Racio
- 5. Waist
- 6. Weight
- 7. Hip
- 8. Hdl
- 9. Chol
- 10. Bp.1d

- 1. Stab.glu
- 2. Age
- 3. Time.ppn
- 4. Hip
- 5. Bp.1s
- 6. Waist
- 7. Bp.1d
- 8. Chol
- 9. Height
- 10. Weigth

Análise de normalidade

Seleção do modelo

LM vs GLM vs QDA vs KNN vs LDA

Regressão linear (LM)

Modelos:

Dataset:

- stab.glu
 Adj. R-squared: 0.5602
- stab.glu^2Adj. R-squared: 0.5678
- stab.glu^3Adj. R-squared: 0.5877

CV(K=10):

- stab.glu
 Adj. R-squared: 0.5678
- stab.glu^2Adj. R-squared: 0.5621
- stab.glu^3
 Adj. R-squared: 0.5581

Regressão logística (GLM)

Modelos:

Gráfico Threshold:

Fórmula	Thr	Acerto
Stab.glu^2	0.39	3.5714
Stab.glu^2+ratio	0.39	3.5714
Stab.glu+ratio + stab.glu x ratio	0.39	3.5520

Nossa abordagem

Variáveis	К	Acerto ponderado
Stab.glu	14	3.4825
Stab.glu+age	9	3.4707
Stab.glu+age+bp.1s	10	3.5320
Stab.glu+age+bp.1s+ratio	12	3.5316
Stab.glu+age+bp.1s+ratio+waist	10	3.5307

Regsubsets

Variáveis	К	Acerto ponderado
Stab.glu+chol	9	3.4902
Stab.glu+ratio+age	16	3.4766
Stab.glu+ratio+age+time.ppn	3	3.4286
(F)stab.glu+chol+age	8	3.4684
(F)stab.glu+chol+age+time.ppn	4	3.4014
(B)stab.glu+ratio	15	3.4820

QDA E LDA

QDA

Variáveis	Threshold	Acerto Ponderado
Age	0.22	2.8265
Age+bp.1s	0.24	2.8260
Age+bp.1s+ waist	0.18	2.9115

LDA

Variáveis	Threshold	Acerto Ponderado
Age	0.18	2.8578
Age+bp.1s	0.26	2.8039
Age+bp.1s+ waist	0.16	2.9364

Seleção melhor modelo (CV)

Modelo	Regressão linear	Regressão logística	KNN
Fórmula	Stab.glu + age	stab.glu^2	stab.glu + age + bp.1s
Threshold	>7	0.39	K=10
Acerto ponderado	$adj.r^2 = 56.23\%$	3.5714	3.5320

Seleção melhor modelo (Teste e Treino)

Modelo	Regressão linear	Regressão logística	KNN
Fórmula	Stab.glu + age	stab.glu^2	stab.glu + age + bp.1s
Threshold	>7	0.39	K=10
Acerto ponderado	3.6318	3.5991	3.5665

Modelo escolhido

Modelo: Regressão linear

✓ Fórmula: glyhb = 1.693 + 0.027*stab.glu + 0.020*age

✓ Adjusted R² : **56.23%**

✓ Acerto ponderado: 3.63

✓ Acerto total: 95.88%

✓ Acerto positivos: 71.43%

✓ Acerto negativos: 100%

Discussão de resultados

- ? Será que o colesterol/pressão arterial/tempo após refeição/fatores corporais afetam os diabetes?
- ? Qual fator corporal explica melhor o valor da diabete?
- ? Quais fatores influenciam mais o resultado final?
- ? De que forma os fatores selecionados para a explicação dos resultados o influenciam? (crescentemente, decrescentemente, linearmente)

Discussão de resultados

? Qual a probabilidade (ou confiança no resultado) de uma pessoa com as caraterísticas X (por exemplo colesterol=180, altura=175, peso=67, etc.) ter diabetes?

Stab.glu	Age	Confiança
151	60	0.5%
171	60	29.9%
191	60	54.7%
211	60	73.8%
231	60	86.3%
Stab.glu	Age	Confiança
191	20	16.7%
191	40	37%
191	60	54.7%
191	75	66%

Discussão de resultados

- ? Qual a taxa de incidência em pessoas com menos e com mais de 50 anos?
- ? Qual a cidade apresenta maior incidência? (visto serem só dois podemos comparar)
- ? O resultado é mais exato utilizando um modelo de classificação ou de regressão (e de seguida classificando)?

Incidência em pessoas com mais/menos do que 50 anos

- 94.22% das pessoas que têm menos de 50 anos não têm diabetes
- 70,4% das pessoas que têm mais de 50 anos não têm diabetes
- ✓ 42.55% dos que não têm diabetes têm mais de 50 anos
- √ 83.54% dos que têm diabetes têm mais de 50 anos

Q & A

201718