Tópicos de Matemática Discreta

______ 1.º teste — 23 de novembro de 2016 — _____ duração: 2 horas ______

- 1. Considere as fórmulas $\varphi: p_1 \leftrightarrow (\neg p_1 \lor p_2)$ e $\psi: (p_1 \rightarrow (\neg p_1 \lor p_2)) \land ((p_1 \land \neg p_2) \rightarrow \neg p_1)$. Diga, justificando, se cada uma das afirmações que se seguem é ou não verdadeira.
 - (a) Se o valor lógico de fórmula φ é 1, então os valores lógicos das variáveis proposicionais p_1 e p_2 são iguais.
 - (b) As fórmulas φ e ψ são logicamente equivalentes.
- 2. Considerando que p representa a proposição

$$\exists_{y \in A} \forall_{x \in A} (x \neq y \to (xy > 0 \lor x^2 + y = 0)),$$

- (a) Justificando, dê exemplo de um universo A não vazio onde:
 - (i) a proposição p é verdadeira;
 - (ii) a proposição p é falsa.
- (b) Indique, sem recorrer ao conetivo negação, uma proposição equivalente a $\neg p$.
- 3. (a) Sejam $p \in q$ proposições. Diga, justificando, se a sequinte afirmação é ou não verdadeira: Para provar que $p \to q$ é verdadeira, é necessário provar que q é verdadeira.
 - (b) Mostre que, para todo o natural n, se 3n + 5 é impar, então n é par.
- 4. Considere os conjuntos

$$A = \{3, \{4\}\}, \quad B = \{3, 4, 15\}, \quad C = \{n \in \mathbb{Z} \mid n^2 - 1 \in B\} \text{ e } D = \{(x, y) \in \mathbb{Z} \times \mathbb{Z} \mid x \in A \land x = 3|y|\}.$$

- (a) Justificando, determine $C \in D$.
- (b) Verifique se $((A \times B) \setminus \{(3,4),(4,3)\}) \subseteq \mathbb{N} \times \mathbb{N}$. Justifique.
- (c) Justificando, determine $\mathcal{P}(A) \cap \mathcal{P}(B)$.
- 5. Diga, justificando, se cada uma das afirmações que se seguem é ou não verdadeira para quaisquer conjuntos $A,\,B\in C.$
 - (a) Se $A \subseteq C$ ou $B \subseteq C$, então $A \cap B \subseteq C$.
 - (b) Se $(A \times C) \setminus (B \times C) = \emptyset$, então $A \subseteq B$.
 - (c) Se $A \in B$, então $\mathcal{P}(A) \subseteq \mathcal{P}(B)$.
- 6. Sejam A, B e C conjuntos. Mostre que $(A \cup B) \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C) \cup (B \setminus C)$.
- 7. Prove, por indução nos naturais, que $2+6+10+\ldots+(4n-2)=2n^2$, para todo o natural n.

Cotações	1.	2.	3.	4.	5.	6	7.
	1,75+1,75	1,75 + 1,75	1,25+1,75	1+1+1	1,25+1,25+1,25	1,25	2