Growth and Convergence

Poverty, Inequality, and Growth

- Growth on Inequality: Kuznets inverted-U(descriptively likely, but causally ??), (1) If the impact of growth on the poor is neutral, then growth is good (Dollar-Kraay(2001))
- *Inequality on Growth*: (2) Positive with aggregate rete of saving/investment, but Negative with credit market access, education, health, or through social instability, market size constraints...→ Tackling inequality is believed to be positive in the long-run.)
- Inequality and Poverty (3): Better inequality for poverty reduction
- Growth on Poverty (4): Positive depending upon the quality
- (Initial) Poverty on Growth (5): High level of poverty bothers growth

Poverty, Inequality, and Growth

(Resource: Janvry and Sadoulet (2016))

How to grow then? : (1) Capital accumulation (Harrod-Domar Model)

- Capital accumulation and growth (Linear model)
- Assumptions
- ① Close economy (No trade)
- 2 Capital and Labor used in fixed proportion (No substitution)
- 3 Capital is the limited factor but Labor is unlimited supply (Population growth does not matter)
- 4 Constant return to scale for two factors
- ⑤ Technology: Fixed quantity of additional capital leads to fixed proportional increase in output (*k*=∠/*K*/∠/*Y*=Incremental Capital Output Ratio: ICOR)
- →No marginal decrease in capital

Implications from H-D Model

- ICOR: *k=\(\Im)K\(\Im)Y*, Then \(\Im)Y=1\)/ *k*\(\Im)K
- Saving function: $S=sY(s:Saving\ ratio)$
- Investment function: I=\(\sum K = \)S
- Then Growth rate of $y= \angle YYY$ So, $y= \angle YYY=1/k* \angle K/Y=1/k*S/Y=s/k$
- Therefore, y(Growth rage) ↑ if s (Saving ratio) ↑ or ICOR
 (k) ↓
- If there is depreciation of capital, $I \equiv \angle K + \delta$ (depreciation rate)K = S
- Then, y=s/k-δ (Zero or negative growth happens if s is insufficient to cover depreciation

2008 Country Name	Gross fixed capital formation (% of GDP)	GDP growth (annual %)	ICOR
India	32.9	4.9	6.7
South Africa	22.6	3.6	6.3
China	40.8	9.6	4.2
Brazil	19.1	5.2	3.7

How to grow then: (2) Productivity and Factor deepening (Solow Model)

- Long-term equilibrium and Income convergence
- Assumptions:
 - ① Closed economy (No trade)
 - ② Income=C:Consumption +S:Saving
 - 3 Population=Laborers (Increases at constant rate)
 - 4 Technology= Constant (No innovation)
- Gross production=Gross income
- Diminishing Marginal product of capital (If capital stock per capita k is smaller, the production increases faster but if larger k then slower growth
- Possible substitution between L and K
- Capital stock per capita k ↓
 - 1) By capital wastage
 - 2) By L (Population) ↑

Solow equilibrium

- Pace of *k* increase falls, while the loss for *k* goes up with depreciation and population size
- Equilibrium k^* k increases until k^* but after k^* loss for k surpasses then goes back to k^*
- However, then per capita income of y converges into k^* , then no y increases
- Change of technology is important (Exogenous)

Solow model

4. The Steady State (k*) Long-run equilibrium of the economy

At k*:

Investment=depreciation, capital won't change

- Below k* (k₁):
 investment >depreciation,
 the capital stock grows.
- Above k* (k₂):
 depreciation > investment,
 the capital stock shrinks.

 $\Delta k = sf(k) - \delta k$; In the steady state capital is not changing $\rightarrow \Delta k = 0 \rightarrow sf(k^*) - \delta k^* = 0 \rightarrow sf(k^*) = \delta k^*$

Change of Saving rate or Population

- Saving rate s is lager, then sf(k) shifts to upper, then $k \uparrow$
- Higher saving rate, better equilibrium income
 - ← Without foreign saving, domestic saving= Investment
- If larger population growth \rightarrow Per capita capital stock $k\downarrow$ then equilibrium $k\downarrow$ (income \downarrow)
- ⇒Population control is important

5. Changes in Saving Rate

- An increase in the saving rate→ the capital stock grow to a new steady state.
- High saving rate → a large capital stock and high level of output.
- Low saving rate → a small capital stock and a low level of output.

The impact of population growth

- Suppose population growth changes from n₁ to n₂.
- This shifts the line representing population growth and depreciation upward.
- At the new steady state k₂*
 capital per worker and output
 per worker are lower
- The model predicts that economies with higher rates of population growth will have lower levels of capital per worker and lower levels of income.

Change of technology

- Exogenous technological change ≠ Endogenous
- *y=sf(k)* goes up (same capital stock but more efficiency or productivity) and if saving rate remains the same Saving S will go up and investment increases
- Shift of k* goes to the right (Change of equilibrium)
 - ⇒ In long-term equilibrium, increase of y depends on technology development

Factor Deepening and Productivity

- Out-put growth comes from: *Factor deepening* (more L and/or more K according to the proportion) and Total Factor Productivity (TFP) (Technology, Quality of factors, Efficiency (Institutional changes etc.)
- Y=Af(K, L) (Y: National income, A: TFP)
- $//Y = //A/A + w_K //K/K + w_L //L/L$ $(w_K : r \text{ (interest rate)} K/Y, \text{ the share of capital in total income, } w_L : w(wage) L/Y, \text{ share of labor in total income)}$

Implications from Solow model

- (1)In the short run, Capital accumulation is important for investment increase
- (2)In the long run, Technology change is important for diminishing marginal productivity of capital
- (3)Income convergence for the developing economies is possible (Catching up by late comers' advantage

Conditional Convergence

- Equilibrium is decided by investment rate and population growth rate
- Even the same *low income economies* may reach different equilibrium depending on investment rate or population growth rate
- ⇒ Conditional convergence (Convergence into different equilibrium)

Income convergence in the real world

(Geary-Khamis dollar, Source:

https://www.rug.nl/ggdc/historicaldevelopment/maddison/releases/maddison-project-database-2018)

Gerschenkron theorem for "Cathing-up")

- A. Gerschenkron (1952): *Economic Backwardness* in Historical Perspective
 - Late industrialization: German, Russia, Japan
- Unique structures in Economic catch-up:
 - (1) Growth acceleration by late comers' advantage (Leap-frogging, Learning ≠ Innovation)
 - (2) Rapid growth in capital-intensive industries (Heavy and Chemical industries← Limited skilled labor, Technology embodied in facilities, Smaller sunk cost
 - (3) Rising large corporations and Economic concentration ←Intensive capital input
 - (4) Ideologies for capital mobilization \leftarrow Gov. intervention

Suggested Readings

- Gerschenkron, Alexander (1952), "Economic Backwardness in Historical Perspective" in Bert F. Hoselitz ed., (1952), *The Progress of Underdeveloped Areas*, 3-29)
- Helpman, Elhanan(2004), "The Mystery of Economic Growth", Cambridge, Harvard University Press.
- Esterly, William and Ross Levine (2001) "What have we learned from a decade of empirical research on growth?", World Bank Economic Review 15(2):177-219.
- World Bank (1991) The East Asian miracle:
 economic growth and public
 (http://documents.worldbank.org/curated/en/975081468244550798/Main-report)