Simple Linear Regression

Inference

Prof. Maria Tackett

Click for PDF of slides

Topics

• Conduct a hypothesis test for β_1

• Calculate a confidence interval for β_1

Movie ratings data

The data set contains the "Tomatometer" score (**critics**) and audience score (**audience**) for 146 movies rated on rottentomatoes.com.

The model

```
model <- lm(audience ~ critics, data = movie_scores)</pre>
```

```
model %>%
  tidy() %>%
  kable(format = "html", digits = 3)
```

term	estimate	std.error	statistic	p.value
(Intercept)	32.316	2.343	13.795	0
critics	0.519	0.035	15.028	0

The model

audience =
$$32.316 + 0.519 \times \text{critics}$$

term	estimate	std.error	statistic	p.value
(Intercept)	32.316	2.343	13.795	0
critics	0.519	0.035	15.028	0

Does the data provide sufficient evidence that β_1 is significantly different from 0?

Outline of a hypothesis test

- State the hypotheses.
- 2 Calculate the test statistic.
- Calculate the p-value.
- 4 State the conclusion.

State the hypotheses

term	estimate	std.error	statistic	p.value
(Intercept)	32.316	2.343	13.795	0
critics	0.519	0.035	15.028	0

$$H_0: \beta_1 = 0$$

$$H_a: \beta_1 \neq 0$$

State the hypotheses

term	estimate	std.error	statistic	p.value
(Intercept)	32.316	2.343	13.795	0
critics	0.519	0.035	15.028	0

 $H_0: \beta_1 = 0$

 $H_a: \beta_1 \neq 0$

Null hypothesis

State the hypotheses

term	estimate	std.error	statistic	p.value
(Intercept)	32.316	2.343	13.795	0
critics	0.519	0.035	15.028	0

 $H_0: \beta_1 = 0$

 $H_a: \beta_1 \neq 0$

Null hypothesis

Alternative hypothesis

Calculate the test statistic

term	estimate	std.error	statistic	p.value
(Intercept)	32.316	2.343	13.795	0
critics	0.519	0.035	15.028	0

test statistic =
$$\frac{\text{Estimate - Hypothesized}}{\text{Standard error}}$$

Calculate the test statistic

term	estimate	std.error	statistic	p.value
(Intercept)	32.316	2.343	13.795	0
critics	0.519	0.035	15.028	0

$$t = \frac{\beta_1 - 0}{SE_{\hat{\beta}_1}}$$

$$t = \frac{0.5187 - 0}{0.0345}$$
$$= 15.03$$

Calculate the p-value

term	estimate	std.error	statistic	p.value
(Intercept)	32.316	2.343	13.795	0
critics	0.519	0.035	15.028	0

p-value =
$$P(|t| \ge |\text{test statistic}|)$$

Calculated from a t distribution with n-2 degrees of freedom

Calculate the p-value

Understanding the p-value

Magnitude of p-value	Interpretation
p-value < 0.01	strong evidence against H_0
0.01 < p-value < 0.05	moderate evidence against H_0
0.05 < p-value < 0.1	weak evidence against H_0
p-value > 0.1	effectively no evidence against $H_{ m 0}$

These are general guidelines. The strength of evidence depends on the context of the problem.

State the conclusion

term	estimate	std.error	statistic	p.value
(Intercept)	32.316	2.343	13.795	0
critics	0.519	0.035	15.028	0

The data provide sufficient evidence that the population slope β_1 is different from 0.

There is a linear relationship between the critics score and audience score for movies on rottentomatoes.com.

What is a plausible range of values for the population slope β_1 ?

Confidence interval for β_1

Estimate
$$\pm$$
 (critical value) \times SE

$$\hat{\beta}_1 \pm t^* \times SE_{\hat{\beta}_1}$$

 t^* is calculated from a t distribution with n-2 degrees of freedom

Calculating the 95% CI for β_1

term	estimate	std.error	statistic	p.value
(Intercept)	32.316	2.343	13.795	0
critics	0.519	0.035	15.028	0

$$\hat{\beta}_1 = 0.519$$
 $t^* = 1.977$ $SE_{\hat{\beta}_1} = 0.035$

$$0.519 \pm 1.977 \times 0.035$$

[0.450, 0.588]

Interpretation

[0.450, 0.588]

We are 95% confident that for every one point increase in the critics score, the audience score is predicted to increase on average between 0.450 and 0.588 points.

Recap

• Conducted a hypothesis test for β_1

lacktriangle Calculated a confidence interval for eta_1

