Linear Regression

(Estimating Linear Relationships)

Understanding Political Numbers

March 4, 2019

Agenda

Admin stuff

- Research Question due Monday March 11
- Exercise 2 due Wednesday March 13

Exercise 2 tips

Linear regression

College and Professional Education

Data from Midwestern Counties

Exercise 2

Follow link to data

Ho

ELECTION 2011 | RESULTS

Updated vote tallies for state Supreme Court

The following table compares vote tallies for the state Supreme Court race between incumbent David Prosser and challenger JoAnne Kloppe Associated Press totals were collected on April 6. The updated totals numbers, certified by the county boards of canvassers, were obtained Accountability Board's website. A PDF of the board's tally can be found here.

More: Results | Election section

County	Prosser (AP, April 6	Kloppenburg (AP, April 6)	Prosser (Updated)	Kloppenburg (Updated)	Prosser gain/loss	Kloppenburg gain/loss
Adams	2,393	2,559	2,393	2,557	0	-2
Ashland	1,383	3,266	1,383	3,266	0	0
Barron	4,709	4640	4,709	4,640	0	0
Bayfield	1,957	3954	1,957	3,954	0	0
Brown	33,319	27206	33,319	27,207	0	1
Buffalo	1,684	1604	1,686	1,608	2	4
Burnett	1,932	1675	1,950	1,659	18	-16
Calumet	7,498	4642	7,500	4,643	2	1
County	Prosser (AP, April 6	Kloppenburg (AP, April 6)	Prosser (Updated)	Kloppenburg (Updated)	Prosser gain/loss	Kloppenburg gain/loss
Chippewa	6,856	7226	6,856	7,221	0	-5
Clark	4,335	3101	4,327	3,065	-8	-36
Columbia	7,302	8959	7,302	8,959	0	0
Crawford	1,689	2428	1,689	2,428	0	0
Dane	48,627	133513	48,636	133,565	9	52
Dodge	13,373	8519	13,374	8,519	1	0
Door	5,183	4633	5,200	4,662	17	29
Douglas	2 91/	9674	2 91/	Q 67A		

Paste in Excel/Numbers and CLEAN

Beware:

- merged rows
- Unneeded rows
- special characters in variable names (use
- save as CSV

Take cues from Ex 1 data

Specify data in geom_* function

Geoms inherit data and aesthetics from ggplot() by default

Add specific annotations

Create an "identifying" variable

Hide legend

One last thing: 45° line at y = x

Linear Regression

Lines

A line is y = a + bx

- *x* and *y*: data
- *a* and *b*: parameters / coefficients
 - *a* is constant/y-intercept
 - \circ b is slope

The Linear "Model"

Model: mathematical/statistical assumptions about your data

- "I think a line is a good way to summarize the relationship between *X* and *Y*"
- $E[Y \mid X] \neq E[Y]$
- The *conditional mean* of *Y*

Estimating (or "fitting") a model

- Intercept or slope are unknown
- Estimated (imperfectly) from data

College and Professional Education

Data from Midwestern Counties

"All models are wrong; some are useful"

– George Box (?)

"Line of Best Fit"

Line is prediction for y, using knowledge of x

- actual *y*: points (data)
- prediction line: $\hat{y} = a + bx$
- residual error (in red): $e = y \hat{y}$

"Give me the line (that is, a and b values) that result in lowest error"

Wisconsin Counties Only

The y value for observation i

• x_i (we know their x value)

- x_i (we know their x value)
- $\hat{y}_i = a + bx_i$ (predicted y is on the line)

- x_i (we know their x value)
- $\hat{y}_i = a + bx_i$ (predicted y is on the line)
- $y_i = \hat{y}_i + e_i$ (actual y is predicted + error)

- x_i (we know their x value)
- $\hat{y}_i = a + bx_i$ (predicted y is on the line)
- $y_i = \hat{y}_i + e_i$ (actual y is predicted + error)
- $y_i = a + bx_i + e_i$

The y value for observation i

- x_i (we know their x value)
- $\hat{y}_i = a + bx_i$ (predicted y is on the line)
- $y_i = \hat{y}_i + e_i$ (actual y is predicted + error)
- $y_i = a + bx_i + e_i$

Systematic and random components

Wisconsin Counties Only

The "Ordinary Least Squares" (OLS) algorithm

Find *a* and *b* that minimize the total amount of error

Starting point: $y_i = a + bx_i + e_i$

Total error: $\sum_{i=1}^{N} e_i$

Problem?

Wisconsin Counties Only

The "Ordinary Least Squares" (OLS) algorithm

Find a and b that minimize the total amount of squared error

Starting point: $y_i = a + bx_i + e_i$

Total squared error: $\sum_{i=1}^{N} e_i^2$

$$y_{i} = a + bx_{i} + e_{i}$$

$$e_{i} = y_{i} - (a + bx_{i})$$

$$e_{i}^{2} = (y_{i} - (a + bx_{i}))^{2}$$

$$\sum_{i} e_{i}^{2} = \sum_{i} (y_{i} - (a + bx_{i}))^{2}$$

Then minimize along a and b (calculus!)

In R

```
# V ~ X
 linreg <- lm(percprof ~ percollege,</pre>
              data = midwest)
 linreg
##
## Call:
## lm(formula = percprof ~ percollege, data = midwest)
##
## Coefficients:
## (Intercept) percollege
##
       -1.7899
                     0.3413
 ggplot(midwest,
        aes(percollege, y = percprof)) +
   geom_point(color = "gray") +
   geom smooth(method = "lm", se = FALSE) +
   geom_abline(intercept = coef(linreg)[1],
               slope = coef(linreg)[2],
               color = "red")
```

Estimated equation is $\hat{y}_i = -1.79 + 0.34x_i$

Interpretation

Interpretation

```
##
## Call:
## lm(formula = percprof ~ percollege, data = midwest)
##
## Coefficients:
## (Intercept) percollege
## -1.7899    0.3413

I predict percprof is -1.79 when percollege is 0

I predict percprof increases by 0.34 when percollege increases by 1
```

Limitations

- These are just predictions (average vs. individual, population vs. sample!)
- Extrapolating beyond data = danger
- Nonsense predictions?
- Understand your assumptions ("linear enough?")

Not necessary *cause and effect*, just a predicted change

• Are there other methods out there?

Check your model

Linear models assume that errors are independent and uncorrelated

- Plot residuals vs predicted values
- Should see no pattern
- Patterns indicate something systematically wrong w/ model

```
# contains handy modeling tools
# install.packages("broom")

# use augment() from broom package
preds <- broom::augment(linreg)

ggplot(preds, aes(x = .fitted, y = .resid)) +
    geom_point() +
    geom_hline(yintercept = 0)</pre>
```


Looking forward

On Wednesday:

• Statistical significance: How confident are we that this relationship is *real* or *just random*?

In section:

• Practicing 1m and interpreting linear models

Through the week:

• research question meetings

Next week:

- Monday: Multiple regression (Research questions due)
- Wednesday: Gathering and cleaning data (Ex 2 due)