

EE 431: COMPUTER-AIDED DESIGN OF VLSI DEVICES

Device and Circuit Basics

Nishith N. Chakraborty

September, 2024

9/26/2024 www.calpoly.edu

DIGITAL DESIGN: A PERSPECTIVE ON ABSTRACTION

System Design

SoC Design, Board design, Integration with off-chip memories.

Companies like HP, Dell, Samsung etc.

Architecture Design

- Using circuit blocks to design execution blocks, caches etc.
- Pipelining, out-of-order execution, multi/many-cores.

Companies like Intel, Qualcomm, Broadcom etc.

This Course

Commonica like Inte

Companies like Intel, Qualcomm, Broadcom etc.

Circuit Design

- Design of logic gates, arithmetic blocks and memories
- Optimization of speed, power and area

Device/Technology Optimization

- Designing the best possible switch with a given feature size
- Interconnect design

Foundries like TSMC, Global Foundries, Intel, Samsung

SILICON LATTICE

- Transistors are built on a silicon substrate
- Silicon is a Group IV material
- Forms crystal lattice with bonds to four neighbors

DOPED SEMICONDUCTOR

- Silicon is a semiconductor
- Pure silicon has no free carriers and conducts poorly
- Adding dopants increases the conductivity
- Group V: extra electron (n-type)
- Group III: missing electron, called hole (p-type)

MOSFETS DEVICE STRUCTURE

- The MOSFET is the most important device for digital integrated circuits today.
- It is a unipolar device, that is, electrical current is carried predominantly by the drift of one type of carrier: electrons in the n-MOS transistor and holes in the p-MOS device.
- It is a field effect, or voltage-controlled, device, which makes the standby power consumption low.
- The ease with which the MOSFET geometry can be scaled down in size, make it very attractive for VLSI.

MOSFETS DEVICE STRUCTURE

Enhancement-Type MOSFET: No conducting channel between the drain and source unless a positive voltage is applied between the gate and source (so it is a normally-off)

- The name enhancement type reflects the fact that a gate bias is required to enhance a conducting channel
- Some MOS transistors are designed to conduct with zero gate-source bias, and these are referred to as depletion type devices.
- However, enhancement type devices are preferred in digital circuits for low standby power.

Source: Digital Integrated Circuits: Analysis and Design, Second Edition, by John E. Ayers

NMOS OPERATION

- When gate is at a low voltage:
 - P-type body is at low voltage
 - Source-body and drain-body diodes are OFF
 - No current flows, transistor is OFF
- When gate is at a high voltage:
 - Positive charge on gate of MOS capacitor
 - Negative charge attracted to body
 - Inverts a channel under gate to n-type
 - Now current can flow through n-type silicon from source through channel to drain, transistor is ON

PMOS OPERATION

- Body tied to high voltage (VDD)
- Gate low: transistor ON
- Gate high: transistor OFF
- Bubble indicates inverted behavior

THE MOS CAPACITOR

www.calpoly.edu

The MOS capacitor with n-type substrate

Source: Digital Integrated Circuits: Analysis and Design, Second Edition, by John E. Ayers

- The drain current is assumed to be entering the drain terminal.
- Normally, V_{DS} , V_{GS} , and V_{TN} are all positive.
- The drain current is assumed to be leaving the drain terminal.
- Normally, V_{DS} , V_{GS} , and V_{TP} are all negative.

Mode	Drain current equation	Voltage conditions
Cutoff	$I_D \approx 0$	$(V_{GS} - V_{TN}) \le 0$
Linear	$I_D = \mu_n C_{ox} \frac{W}{L} \left[\left(V_{GS} - V_{TN} \right) V_{DS} - \frac{V_{DS}^2}{2} \right]$	$V_{DS} \le \left(V_{GS} - V_{TN}\right)$
Saturation	$I_D = \mu_n C_{ox} \frac{W}{L} \frac{\left(V_{GS} - V_{TN}\right)^2}{2}$	$0 \le \left(V_{GS} - V_{TN}\right) \le V_{DS}$

Drain Current Equations for a Long-Channel p-MOS Transistor

Mode	Drain current equation	Voltage conditions
Cutoff	$I_D \approx 0$	$(V_{GS} - V_{TP}) \ge 0$
Linear	$I_D = \mu_p C_{ox} \frac{W}{L} \left[\left(V_{GS} - V_{TP} \right) V_{DS} - \frac{V_{DS}^2}{2} \right]$	$V_{DS} \ge \left(V_{GS} - V_{TP}\right)$
Saturation	$I_D = \mu_p C_{ox} \frac{W}{L} \frac{\left(V_{GS} - V_{TP}\right)^2}{2}$	$0 \ge \left(V_{GS} - V_{TP}\right) \ge V_{DS}$

SUBTHRESHOLD DRAIN CURRENT

Drain current in Subthreshold condition:

$$I_{D} = \mu_{eff} C_{ox} \left(\frac{W}{L} \right) (m-1) \left(\frac{k_{B}T}{q} \right)^{2} e^{q(V_{GS} - V_{T})/mk_{B}T} \left(1 - e^{-qV_{DS}/k_{B}T} \right)$$

Subthreshold Slope =
$$\frac{\partial (\log_{10} I_D)}{\partial V_{GS}}$$

Subthreshold Swing (S)= $\left[\frac{\partial (\log_{10} I_D)}{\partial V_{GS}}\right]^{-1}$ = 1/ Subthreshold Slope

$$S = \left(\frac{\partial \left(\log_{10} I_D\right)}{V_{GS}}\right)^{-1} = 2.3m \left(k_B T/q\right) \frac{\text{mV}}{\text{dec}}$$

$$m = 1 + C_D / C_{ox}$$

Sminimum = 60 mV/dec → Boltzmann Limit

OFF CURRENT, SUBTHRESHOLD SLOPE & V_{TH}

POWER SUPPLY VOLTAGE

- Ground (GND) = 0 V
- In 1980's, $V_{DD} = 5V$
- V_{DD} has decreased in modern processes
 - High V_{DD} would damage modern tiny (sub 100 nm) transistors
 - Lower V_{DD} saves power
- $V_{DD} = 3.3, 2.5, 1.8, 1.5, 1.2, 1.0, ...$

9/26/2024 www.calpoly.edu

TRANSISTORS AS SWITCHES

- We can view MOS transistors as electrically controlled switches
- Voltage at gate controls path from source to drain

CMOS INVERTER (NOT GATE)

CMOS INVERTER (NOT GATE)

Α	Y
0	1
1	0

MORE COMPLEX CIRCUITS: PUP AND PDN

- Pull-up net (PUP) off when pull-down (PDN) on
- PUP implemented as complement of PDN (Complementary MOS)
- If two FETs in parallel in PDN, counterparts in series in PUP
- Output (Y) connected to VDD or GND, never both

MORE COMPLEX CIRCUITS: PUP AND PDN

- Pull-up net (PUP) off when pull-down (PDN) on
- PUP implemented as complement of PDN (Complementary MOS)
- If two FETs in parallel in PDN, counterparts in series in PUP
- Output (Y) connected to VDD or GND, never both

CMOS NAND GATE

Α	В	Υ	
0	0	1	
0	1	1	
1	0	1	
1	1	0	

CMOS NOR GATE

Α	В	Υ		
0	0	1		
0	1	0		
1	0	0		
1	1	0		

Thank you!