Regression Model

How it is done?

- Relationship between one dependent variable and explanatory variable(s)
- 2. Use equation to set up relationship
 - a. Numerical Dependent (Response) Variable
 - b. 1 or More Numerical or Categorical Independent (Explanatory) Variables
- 3. Used Mainly for Prediction & Estimation

Modeling Steps

- 1. Hypothesize Deterministic Component
- Define the dependent variable and independent variable
- To estimate Unknown Parameters
- Expected Effects (i.e., Coefficients' Signs)
- Functional Form (Linear or Non-Linear)
- Interactions
- 2. Specify Probability Distribution of Random Error Term.
- To estimate Standard Deviation of Error
- 3. Evaluate the fitted Model.
- 4. Use Model for Prediction & Estimation.

Regression Model

- Linear Regression
 - Relationship Between Variables Is a Linear Function

Experience (in years)	Salary (Rs)
1.1	23789.00
1.3	34678.00
1.4	44789.00
1.5	54890.00
2.2	60897.00
2.5	61345.00
2.3	64789.00
2.5	68908.00

Population

Population

Population: "The entire group that you want to draw conclusions about."

Random Sample: "The specific group that you will collect data from. The size of the sample is always less than the total size of the population."

Linear Regression Model - Population

Linear Regression Model - Sample

Estimating Parameters: Least Square Method

- 1. Plot of All (X_i, Y_i) Pairs
- 2. Suggests How Well Model Will Fit

How would you draw a line through the points? How do you determine which line 'fits best'?

Linear Equation – a review

The y-intercept is an (x, y) point with x=0,

Where the line crosses the Y-axis, just find the value of y when x equals 0.The line crosses the Y-axis at y=1, and y=-2

Thinking Challenge

How would you draw a line through the points? How do you determine which line 'fits best'?

Thinking Challenge

How would you draw a line through the points? How do you determine which line 'fits best'?

Thinking Challenge

How would you draw a line through the points? How do you determine which line 'fits best'?

Least Squares

LS minimizes
$$\sum_{i=1}^{n} \hat{\varepsilon}_{i}^{2} = \hat{\varepsilon}_{1}^{2} + \hat{\varepsilon}_{2}^{2} + \hat{\varepsilon}_{3}^{2} + \hat{\varepsilon}_{4}^{2} \qquad \sum_{i=1}^{n} \left(Y_{i} - \hat{Y}_{i} \right)^{2} = \sum_{i=1}^{n} \hat{\varepsilon}_{i}^{2}$$

$$\sum_{i=1}^{n} \left(Y_i - \hat{Y}_i \right)^2 = \sum_{i=1}^{n} \hat{\varepsilon}_i^2$$

- 'Best Fit' Means Difference Between Actual Y Values & Predicted Y Values Are a Minimum. But Positive Differences Off-Set Negative ones. So square errors!
- LS Minimizes the Sum of the Squared Differences (errors) (SSE)

Coefficient Equations

Prediction equation

$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$$

Sample slope

$$\hat{\beta}_1 = \frac{SS_{xy}}{SS_{xx}} = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{\sum (x_i - \overline{x})^2}$$

Sample Y - intercept

$$\hat{\beta}_0 = \overline{y} - \hat{\beta}_1 \overline{x}$$

Derivation of Parameters

Least Squares (L-S): Minimize squared error

$$\sum_{i=1}^{n} \varepsilon_{i}^{2} = \sum_{i=1}^{n} (y_{i} - \beta_{0} - \beta_{1}x_{i})^{2}$$

$$0 = \frac{\partial \sum_{i=1}^{n} \varepsilon_{i}^{2}}{\partial \beta_{0}} = \frac{\partial \sum_{i=1}^{n} (y_{i} - \beta_{0} - \beta_{1}x_{i})^{2}}{\partial \beta_{0}}$$

$$= -2(n\overline{y} - n\beta_{0} - n\beta_{1}\overline{x})$$

$$\hat{\beta}_{0} = \overline{y} - \hat{\beta}_{1}\overline{x}$$

Derivation of Parameters

Least Squares (L-S): Minimize squared error

$$0 = \frac{\partial \sum \varepsilon_{i}^{2}}{\partial \beta_{1}} = \frac{\partial \sum (y_{i} - \beta_{0} - \beta_{1}x_{i})^{2}}{\partial \beta_{1}}$$

$$= -2\sum x_{i} (y_{i} - \beta_{0} - \beta_{1}x_{i})$$

$$= -2\sum x_{i} (y_{i} - \overline{y} + \beta_{1}\overline{x} - \beta_{1}x_{i})$$

$$\beta_{1}\sum x_{i} (x_{i} - \overline{x}) = \sum x_{i} (y_{i} - \overline{y})$$

$$\beta_{1}\sum (x_{i} - \overline{x})(x_{i} - \overline{x}) = \sum (x_{i} - \overline{x})(y_{i} - \overline{y})$$

$$\hat{\beta}_{1} = \frac{SS_{xy}}{SS_{xx}}$$

Computation Table

Xi	Yi	X_i^2	Y_i^2	X_iY_i
<i>X</i> ₁	Y ₁	X_1^2	Y ₁ ²	$X_1 Y_1$
X ₂	Y ₂	X_2^2	Y ₂ ²	X_2Y_2
:	:	:	•••	:
X _n	Y _n	X_n^2	Y_n^2	X_nY_n
ΣX_i	$\sum Y_i$	$\sum X_i^2$	$\sum Y_i^2$	$\sum X_i Y_i$

Interpretation of Coefficient

- Slope $(\stackrel{\wedge}{\beta_1})$
 - Estimated Y Changes by $\hat{\beta}_1$ for Each 1 Unit Increase in X
 - If $\hat{\beta}_1 = 2$, then Y Is Expected to Increase by 2 for Each 1 Unit Increase in X.

• Y-Intercept $(\hat{\beta}_0)$ - Average Value of Y When X = 0

If $\hat{\beta}_0 = 4$, then Average Y Is Expected to Be 4 When X Is 0

Example: Parameter Estimation

•	Food (lk 4 6 10	<u>o.)</u>		yield (lb.) 3.0 5.5 6.5			onship bet and milk yi			
	12			9.0			10 —			•
	X_i	Y_i	X_i^2	Y_i^2	X_iY_i	(lb.)	8 + 6 +	•	•	
	4	3.0	16	9.00	12	Yield	4 +			
	6	5.5	36	30.25	33		2 + 0 +			
	10	6.5	100	42.25	65	Σ	0	5	10	15
	12	9.0	144	81.00	108					10
	32	24.0	296	162 50	218		-	ood intake	(ID.)	

Figure. Scatter plot Food(lb) Versus Milk yield(lb.)

Parameter Estimation Solution

$$\hat{\beta}_{1} = \frac{\sum_{i=1}^{n} X_{i} Y_{i} - \frac{\left(\sum_{i=1}^{n} X_{i}\right) \left(\sum_{i=1}^{n} Y_{i}\right)}{n}}{\sum_{i=1}^{n} X_{i}^{2} - \frac{\left(\sum_{i=1}^{n} X_{i}\right)^{2}}{n}} = \frac{218 - \frac{(32)(24)}{4}}{296 - \frac{(32)^{2}}{4}} = 0.65$$

$$\hat{\beta}_{0} = \overline{Y} - \hat{\beta}_{1} \overline{X} = 6 - (0.65)(8) = 0.80$$

Interpretation of Coefficient

1. Slope $(\hat{\beta}_1)$

Milk Yield (Y) Is Expected to Increase by .65 lb. for Each 1 lb. Increase in Food intake (X)

2. Y-Intercept (β_0)

Average Milk yield (\hat{Y}) Is Expected to Be 0.8 lb. When Food intake (X) Is 0

1. Calculate the regression coefficient and obtain the lines of regression for the following data

X	1	2	3	4	5	6	7
Y	9	8	10	12	11	13	14

$\overline{X} =$	$\sum X$	$\overline{oldsymbol{v}}$ –	$\sum Y$
Λ -		<i>I</i> –	\overline{N}

X	Υ	X ²	Y ²	XY
1	9	1	81	9
2	8	4	64	16
3	10	9	100	30
4	12	16	144	48
5	11	25	121	55
6	13	36	169	78
7	14	49	196	98
$\sum X = 28$	$\sum Y = 77$	$\sum X^2 = 140$	$\sum Y^2 = 87$ 5	$\sum XY = 334$

Regression coefficient of X on Y

$$\boldsymbol{b}_{xy} = \frac{N \sum XY - (\sum X)(\sum Y)}{N \sum Y^2 - (\sum Y)^2}$$

Regression Equation of X on Y

$$(X-\overline{X})=b_{xy}(Y-\overline{Y})$$

Regression coefficient of Y on X

$$\boldsymbol{b}_{yx} = \frac{N \sum XY - (\sum X)(\sum Y)}{N \sum X^2 - (\sum X)^2}$$

Regression Equation of Y on X

$$(Y-\overline{Y})=b_{\gamma\chi}(X-\overline{X})$$

1. Calculate the regression coefficient and obtain the lines of regression for the following data

X	1	2	3	4	5	6	7
Y	9	8	10	12	11	13	14

$\overline{X} =$	$\frac{\sum X}{}$	$=\frac{28}{}=4$	$\overline{Y} = \frac{\sum Y}{N} = \frac{77}{7} = 11$
71 —	N	7 7	N - 7 - 11

X	Υ	X2	Y2	XY
1	9	1	81	9
2	8	4	64	16
3	10	9	100	30
4	12	16	144	48
5	11	25	121	55
6	13	36	169	78
7	14	49	196	98
$\sum X = 28$	$\sum Y = 77$	$\sum X^2 = 140$	$\sum Y^2 = 875$	$\sum XY = 334$

Regression coefficient of X on Y

$$b_{xy} = \frac{N\sum XY - (\sum X)(\sum Y)}{N\sum Y^2 - (\sum Y)^2} = \frac{7(334) - (28)(77)}{7(875) - 77^2} = 0.929$$

Regression Equation of X on Y

$$(X - \overline{X}) = b_{xy}(Y - \overline{Y}) = (X - 4) = 0.929(Y - 11)$$

X=0.929Y-6.219

Regression coefficient of Y on X

$$b_{yx} = \frac{N \sum XY - (\sum X)(\sum Y)}{N \sum X^2 - (\sum X)^2} = \frac{7(334) - (28)(77)}{7(140) - 28^2} = 0.929$$
Regression Equation of Y on X

$$(Y - \overline{Y}) = b_{yx}(X - \overline{X}) = (Y - 11) = 0.929(X - 4) = 0.929X + 7.284$$

2. Calculate the regression coefficient and obtain the lines of regression from the data given below, taking deviations from a actual means of X and Y. Estimate likely demand when price is Rs. 25.

Price (Rs	s.)	10	12	12		13		12		16
Amount Demande		40	38	38		43		45		37
X	X	=(X-13)	Y	y=(Y-41)	X ²		Y ²		ху
10		-3	40	ı	-1	9		1		3
12		-1	38		-3	1		9		3
13		0	43		2	0		4		0
12		-1	45		4 1			16		-4
16		3	37		-4	9		16		-12
15		2	43		2	4		4		4
$\sum X =$		$\sum x = 0$	$\sum Y =$	$\sum j$	y = 0	$\sum x^2 =$	=24	$\sum y^2 = $	50	xy = -6

Regression coefficient of X on Y

$$b_{xy} = r \frac{\sigma_x}{\sigma_y} = \frac{\sum xy}{\sum y^2}$$

Regression Equation of X on Y

$$(X-\overline{X})=b_{xy}(Y-\overline{Y})$$

Regression coefficient of Y on X

$$b_{yx} = \frac{N \sum XY - (\sum X)(\sum Y)}{N \sum X^2 - (\sum X)^2}$$

Regression Equation of Y on X

$$(Y - \overline{Y}) = \boldsymbol{b}_{vx}(X - \overline{X})$$

2. Calculate the regression coefficient and obtain the lines of regression from the data given below, taking deviations from actual means of X and Y. Estimate likely demand when price is Rs. 25.

Price (R	s.)	10		12		2		13			16
Amoun Demand		40		38		4	43		45		37
X	x=(X-13)		Υ	y=(`	Y-41)	X ²		y ²		ху
10		-3		40		-1	9		1		3
12		-1		38		38 -3 1		9		9	
13		0		43		2 0		4		0	
12		-1		45		4 1			16		-4
16	16		3			-4	9		16		-12
15		2		43		2	4		4		4
$\sum X = 78$	\sum_{i}	x = 0	$\sum Y$	7 = 246	Σι	v = 0	$\sum x^2 =$	= 24	$\sum y^2 = 3$	50	$\sum xy = -6$

 $\begin{array}{c|c} \hline & \mathbf{15} \\ \hline & \mathbf{43} \\ \hline \end{array} \quad \overline{X} = \frac{\sum X}{N} = \frac{78}{6} \ \overline{Y} = \frac{\sum Y}{N} = \frac{246}{6}$

$$\boldsymbol{b}_{xy} = \boldsymbol{r} \frac{\boldsymbol{\sigma}_x}{\boldsymbol{\sigma}_y} = \frac{\sum xy}{\sum y^2}$$

Regression coefficient of Y on X

$$b_{yx} = r \frac{\sigma_y}{\sigma_x} = \frac{\sum xy}{\sum x^2} = -\frac{6}{24} = -0.25$$

Regression Equation of X on Y

$$(X - \overline{X}) = b_{xy}(Y - \overline{Y}) = X = -0.12Y + 17.92$$

When price is Rs. 25, the likely demand is

Regression Equation of Y on X

$$(Y - \overline{Y}) = b_{yx}(X - \overline{X}) = Y = -0.25X + 44.25 = -0.25(25) + 44.25 = 38$$

3. The following table shows the sales and advertisement expenditure of a form

	Sales	Advertisement (Rs. Crores)
Mean	40	6
Standard Deviation	10	1.5

Coefficient of correlation r = 0.9. Estimate the likely sales for a proposed advertisement expenditure of Rs. 10 crores.

3. The following table shows the sales and advertisement expenditure of a form

	Sales	Advertisement (Rs. Crores)
Mean	40	6
Standard Deviation	10	1.5

Coefficient of correlation r = 0.9. Estimate the likely sales of units for a proposed advertisement expenditure of Rs. 10 crores.

Solution:

Given
$$\overline{X} = 40$$
, $\overline{Y} = 6$, $\sigma_x = 10$, $\sigma_y = 1.5$ and $r = 0.9$

Equation of line of regression x on y is

$$X-\overline{X} = r \frac{\sigma_x}{\sigma_y} (Y-\overline{Y})$$

$$X-40 = (0.9) \frac{10}{1.5} (Y-6)$$

$$X-40 = 6Y-36$$

$$X = 6Y+4$$

When advertisement expenditure is 10 crores i.e., Y=10 then sales X=6(10)+4=64 which implies sales is 64 units