Федеральное государственное автономное образовательное учреждение высшего образования

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ «ВЫСШАЯ ШКОЛА ЭКОНОМИКИ»

Факультет экономических наук

образовательная программа «Экономика» предмет «Эконометрика-1»

Проект

«Эконометрическое исследование зависимости высоты главной новогодней елки города от показателей региона»

Выполнили:

Студенты группы БЭК2110 Некрасова Мария Алексеевна

Серочкин Егор Сергеевич

Руководитель:

Станкевич Иван Павлович

Москва 2023г.

Содержание

1.	Введение	3
2.	Экономическая модель	4
3.	Предварительный анализ данных	.5
4.	Оценка моделей и выводы	10
5.	Приложение	.12

1. Введение

Цель исследования: создать модель, прогнозирующую высоту главной елки города.

Задачи исследования:

- 1. Обозначить актуальность работы;
- 2. Собрать cross-section данные;
- 3. Придумать и доказать или опровергнуть гипотезы;
- 4. Проанализировать данные и оценить модель.

Актуальность работы, на наш взгляд, заключается в нескольких причинах.

Во-первых, на носу Новый Год.

Во-вторых, уже с ноября каждый уважающий себя человек должен постепенно наращивать новогоднее настроение и предвкушение праздника, чтобы 31 декабря не обнаружить себя неспособным радоваться наступлению Нового Года и весь вечер и всю ночь сидеть за столом с кислой миной. О последствиях такого печального исхода событий знает каждый: как Новый Год встретишь, так его и проведешь. Значит, без новогоднего настроения и детского блеска в глазах, 2024 год станет для нас настоящим апогеем серости и грусти, а за ним и 2025, 2026, 2027 и так далее.

При этом нельзя отрицать тот факт, что психоэмоциональное благополучие населения напрямую влияет на экономический рост в стране¹. Учитывая, что Новый Год является важным праздником у большинства людей в большинстве стран мира, вклад его в наше счастье далеко не мал. Значит, всем нам необходимо эмоционально готовиться к этому прекрасному празднику и встречать его полными радости и воодушевления во имя процветания Родины.

Никто не поспорит, что важнейшим атрибутом Нового Года является елка. Именно благодаря сверкающим огонькам гирлянд и ярким краскам елочных игрушек наше новогоднее настроение поднимается в разы! А чем выше будет эта самая елка, тем праздничнее и радостнее будет наше настроение! Именно по этой причине просто необходимо пристально отслеживать и прогнозировать высоту главной новогодней елки в каждом городе, ведь этот показатель напрямую отражает, насколько светлым и счастливым будет будущее страны.

3

¹ https://ojs.stanford.edu/ojs/index.php/intersect/article/download/2668/1577/9680

2. Экономическая модель

Зависимая переменная: Высота новогодней елки на главной площади города в 2022 году (метры)

Объясняющие переменные (все данные за 2022 год):

- Индекс коррупции по странам (шкала от 0 до 100, где 0 сплошная коррупция, 100 коррупции в стране инет)
- Город-миллионник (дамми: 0 нет, 1 да)
- Основная религия христианство (дамми: 0 да, 1 нет)
- Продолжительность новогодних каникул в стране (дни)
- Уровень развития страны (дамми: 0 развивающаяся, 1 развитая)
- ВВП страны (млн \$США)
- Количество туристов в стране (тысяч человек)

Источники данных:

- а) Индекс коррупции²
- б) Количество туристов в 2022 году³
- в) ВВП в 2022 году^4
- г) Основная религия, продолжительность новогодних каникул, уровень развития страны, города-миллионники: эта информация была найдена методом поиска в Интернете (например: "Какая основная религия в стране X" или "Продолжительность новогодних каникул в 2022 году в стране X" или "Является ли город X миллионником")

Мы верим в то, что данный набор переменных позволит построить рабочую модель по предсказыванию высоты главной ели, хотя данных у нас не так уж и много. Пройдемся по каждой переменной, чтобы объяснить наше видение.

Tаблица 1 Объясняющие переменные и их влияние на зависимую переменную (предположения)

Объясняющая переменная	Предполагаемое влияние объясняющей переменной на зависимую переменную	Предполагаемый вид влияния на зависимую переменную
Индекс коррупции в стране	Чем выше индекс коррупции, тем больше вероятность, что несмотря на большой потенциал наличия елки выше среднего, она будет более низкой, т.е. более дешевой, ведь бюджет на новогодние украшения города разворуют.	1
Город-миллионник	В больших городах бюджет больше, чем в маленьких, соответственно, и елка должна быть выше.	+
Основная религия – христианство	Елка – атрибут христианской рождественской символики, поэтому скорее всего, выше будут елки в христианских странах.	+

² https://images.transparencycdn.org/images/Report CPI2022 English.pdf

³ https://www.unwto.org/tourism-statistics/key-tourism-statistics

⁴ https://data.worldbank.org/indicator/NY.GDP.MKTP.CD

Продолжительность новогодних каникул	+	
Уровень развития страны	В более развитых странах скорее всего больше свободных средств в бюджете на украшения к праздникам, тем у развивающихся стран. Но это не точно.	?
ВВП страны	Чем выше ВВП страны, тем выше должна быть елка, так как ВВП отражает уровень экономической активности и качество жизни людей. Чем выше качество жизни, тем выше должна быть елка. Но это не точно.	+
Количество туристов в стране	Здесь, вероятно, есть зеркальная причинно- следственная связь: чем больше туристов, тем выше доход от туризма в стране, тем больше средств в бюджете на елку. С другой стороны, чем выше елка, тем больше человек приедут на нее посмотреть.	+

Гипотезы:

- **А**) Скорее всего индекс коррупции будет выше у развивающихся стран, поэтому мы хотим проверить, будет ли коэффициент перед переменной *индекс коррупции*(уровень развития страны)* положительным. То есть, в развивающихся странах чем ниже индекс коррупции (т.е. в стране ее больше), тем меньше высота елки.
- **Б**) Высота елки отрицательно зависит от переменной, отражающей религию в стране (Christ_count_0): если основная религия не христианство (Christ_count_0 = 1), высота елки уменьшается по сравнению с христианскими странами (Christ_count_0 = 0).

3. Предварительный анализ данных

- Размерность данных: 50х9
- Анализ и интерпретация описательных статистик

Таблица 2 Минимальные, максимальные, средние и медианные значения некоторых переменных

Переменная	Min	Max	Mean Median		Интерпретация
Высота елки, метры	0	82,3	23,04	22,5	Минимальное значение, равное нулю, говорит об отсутствии традиции ставить елки в наблюдаемой стране. Максимальное значение превышает среднее практически в 4 раза, что может свидетельствовать о наличии выбросов.
Индекс коррупции	28	90	57,64	59,5	Минимальное и максимальное значения примерно равно удалены от среднего, т.е. выбросов скорее всего нет.
Продолжительно сть новогодних каникул, дни	1	17	5,7	4,5	Кажется, что минимальное и максимальное значение намекают на наличие выбросов, т.к. разброс существенный.

ВВП страны, млн	14.212	20.952.6 94	1.618.99	451.977	Разброс данных ужасный, было решено использовать ln(ВВП), т.к. изначально (Рис. 1) распределение ВВП было похоже на логнормальное, а если взять логарифм, то станет нормальным. Так и произошло (Рис. 2)
Количество туристов, тыс.	605	104.968	20.911	7.422	Очевидно, тоже имеют место выбросы, но что поделать И изначальное распределение тоже похоже на логнормальное (Рис. 3), попробуем взять ln(Кол-во туристов) (Рис. 4)

• Анализ столбчатых диаграмм

Рис. 1 «Гистограмма, похожая на логнормальное распределение ВВП»

Рис. 2 «Гистограмма, похожая на нормальное распределение ln(ВВП)»

Рис. 3 «Гистограмма, похожая на логнормальное распределение количества туристов по странам»

Рис. 4 «Гистограмма, похожая на нормальное распределение ln(Количество туристов)»

• Проверка на выбросы

Уже из прошлого пункта, глядя на графики, становится ясно, что в данных есть выбросы. Проверим целевую и не-дамми-переменные на наличие выбросов с помощью ящиков с усами.

Ящичковые диаграммы целевой переменной и non-dummy переменных

Таблица 3

Выбросы наблюдаются в самой целевой переменной (высота елки), а также в переменной продолжительность каникул.

• Проверка корреляционных зависимостей с выбросами

Рис. 5 «Корреляционная матрица до удаления выбросов»

Самым важным выводом из корреляционной матрицы является взаимосвязь объясняющих переменных с высотой елки (tree_height). Из матрицы видно, что индекс коррупции в стране (CORRUPT_IND) и ВВП (ln_GDP) не влияют на высоту елки. Более всего на высоту елки оказывает влияние дамми-переменная, показывающая, является ли основная религия в стране христианством, причем высотка дерева зависит от нее отрицательно. И это логично, ведь за базовое значение (ноль) мы брали христианство, а за единицу – другие религии. Значит, в нехристианских странах, елка ниже, чем в христианских.

Дополнительно была введена переменная CORR_dev (= CORRUPT_IND * dev_count_1), чтобы проверить гипотезу А. Видно, что высота елки положительно зависит от этой переменной, хотя от самой коррупции не зависит. Значит, в развивающихся странах чем выше коррупция (индекс коррупции ближе к нулю), тем ниже елка. Переменные город-миллионник, количество туристов, продолжительность каникул имеют положительное значение корреляции с высотой елки.

Для дальнейшего анализа и оценки гипотез были удалены следующий наблюдения:

- 1. Продолжительность каникул > 15 дней
- 2. Высота елки > 40 метров

• Проверка корреляционных зависимостей без выбросов

Рис. 6 «Корреляционная матрица после удаления выбросов»

Сразу видно, что после удаления выбросов взаимосвязь многих переменных с высотой елки увеличилась, а именно: религия-христианство (christ_count_0), город-миллионник (гор_мил_1), ВВП (ln_GDP), продолжительность каникул (christ_hlds), индекс коррупции (CORRUPT_IND). С большой вероятностью можно сказать, что любая модель будет лучше предсказывать данные без выбросов.

Примечательно, что высота елки после очищения выборки от выбросов стала хоть и незначительно, но отрицательно зависеть от $ln(BB\Pi)$ и положительно от индекса коррупции.

• Анализ диаграмм рассеивания

Рис. 7 «Диаграмма рассеяния высоты елки и ln(ВВП)»

Рис. 8 «Диаграмма рассеяния высоты елки и ln(количество туристов)»

Рис. 9 «Диаграмма рассеяния высоты елки и CORR_dev*город-миллионник»

Рис. 10 «Диаграмма рассеяния высоты елки и индекса коррупции»

Рис. 11 «Диаграмма рассеяния высоты елки и продолжительности каникул»

Рис. 12 «Диаграмма рассеяния высоты елки и ln(количество туристов)*городмиллионник»

Диаграммы рассевания помогут понять, как различные переменные и их комбинации влияют на высоту елки, и есть ли между ними явная взаимосвязь (например, линейная, полиномиальная, логарифмическая и т.д.). Ввиду специфики данных, на диаграммах

рассеяния сложно сходу определить тип взаимосвязи переменных. Также во многих данных наблюдается мультиколлинеарность.

4. Оценка моделей

Методом бесконечно долгого подбора потенциально значимых сочетаний переменных было обнаружено следующее: в замудренных моделях R^2 больше, но в простеньких моделях с меньшим числом коэффициентов больше их значимость. В Приложении представлены некоторые результаты наших экспериментов.

Так как умные люди вообще не переживают об R^2 , мы решили последовать их примеру и выбрать для рассмотрения модель попроще, а именно:

Высота елки $\sim log(индекс коррупции*(уровень развития страны) + 1)$ + религия-христианство*город-миллионник + log(количество туристов)*город-миллионник

Коэффициенты одной из моделей

Оценив коэффициенты модели, получили следующий результат:

Таблица 4

	Dependent variable:
	tree_height
CORR_dev * гор_мил_1	-0.058
	(0.055)
christ_count_0 * гор_мил_1	-11.416***
	(3.647)
гор_мил_1* ln_tour	1.398***
	(0.378)
Constant	15.884***
	(2.250)
Observations	46
\mathbb{R}^2	0.300
Adjusted R ²	0.251
Residual Std. Error	8.880 (df = 42)
F Statistic	6.014^{***} (df = 3; 42)
Note:	*p**p***p<0.01

Проинтерпретировать модель можно следующим образом:

- о В городах-миллионниках развивающихся стран чем выше коррупция, тем ниже елка, но это незначительно. *Гипотеза А подтвердилась!*
- о В городах-миллионниках стран, где христианство не является основной религией, высота елки будет на 11 метров ниже, чем в странах, где христианство − основная религия. *Гипотеза Б подтвердилась!*
- Чем больше количество туристов в городе-миллионнике, тем выше главная елка этого города.
- о В городах, не являющихся миллионниками, высота елки составляет 15.8 метров.

Безусловно, предсказания модели далеко не идеальны. Например, у нас так и не получилось максимально приблизиться к тому, чтобы суметь предсказать высоту елки, равную 0, то бишь ее отсутствие. Возможно, при большем наборе данных и какихнибудь других объясняющих переменных, этого удалось бы достичь.

Сравнение некоторых замудренных моделей

		Dependent variable:					
	tree_height						
	(1)	(2)	(3)	(4)	(5)		
CORRUPT_IND * christ_hlds	0.008	0.004	0.004				
	(0.019)	(0.019)	(0.019)				
(christ_count_0 - 1) * ln_GDP		0.543	0.891	0.886	0.533		
		(0.681)	(2.468)	(2.398)	(0.670)		
гор_мил_1 * ln_tour	1.118	1.562	1.658	1.973	1.570		
	(3.676)	(3.565)	(3.678)	(3.567)	(3.514)		
гор_мил_1 * ln_GDP	1.072	4.529	4.317	3.769	4.570		
	(2.899)	(3.509)	(3.843)	(3.716)	(3.453)		
log(CORR_dev + 1) * гор_мил_1	-3.234*	-3.901**	-3.801*	-3.036*	-3.837**		
	(1.819)	(1.784)	(1.933)	(1.755)	(1.728)		
гор_мил_1		-47.128	-45.609	-48.977	-48.040		
		(32.358)	(34.431)	(33.252)	(31.562)		
(christ_count_0 + 1) * christ_hlds * гор_мил_1	-1.103	-1.025	-1.010		-1.019		
	(0.897)	(0.876)	(0.896)		(0.863)		
christ_count_0 * гор_мил_1	-13.205	-16.412*	-16.065	-13.786	-16.004*		
	(9.751)	(9.476)	(9.904)	(9.282)	(9.110)		
christ count 0	4.191		-4.909	-9.303			
	(9.228)		(33.333)	(32.288)			
CORR dev	0.122	0.161*	0.160*	0.127^{*}	0.166**		
_	(0.084)	(0.085)	(0.087)	(0.073)	(0.080)		
ln tour	-0.415	-0.393	-0.449	-0.589	-0.409		
	(3.381)	(3.301)	(3.373)	(3.288)	(3.253)		
ln GDP	-1.689	-4.219	-3.811	-3.425	-4.267		
	(2.884)	(3.014)	(4.128)	(4.012)	(2.961)		
christ hlds	0.596	0.751	0.748	,	0.961		
emist_mas	(1.413)	(1.390)	(1.411)		(0.868)		
Constant	31.516**	68.995**	68.936**	71.916**	69.641**		
Constant	(13.882)	(28.284)	(28.716)	(27.767)	(27.689)		
Observations	46	46	46	46	46		
\mathbb{R}^2	0.391	0.432	0.432	0.408	0.431		
Adjusted R ²	0.195	0.225	0.201	0.239	0.247		
	9.205 (df=	9.029 (df=	9 166 (df	8.947 (df=	8.900		
Residual Std. Error	34)	33)	= 32)	35)	(df = 24)		
	ŕ	,	1.873*	,	34) 2.342**		
F Statistic		$2.090^{**} (df = 12.33)$	(df = 13;	$2.414^{**} (df = 10.35)$	(df =		
	= 11; 34)	12; 33)	32)	10; 35)	11; 34)		
Note:				*p**p	o****p<0.01		

Сравнение более простых моделей

			Depen	dent varia	ble:		
	tree_height						
	(1)	(2)	(3)	(4)	(5)	(6)	(7)
I(log(CORR_dev + 1) * гор_мил_1)	-1.050	-1.044	-0.374		-0.941	-0.971	_
	(0.976)	(0.965)	(0.926)		(0.966)	(0.965)	
гор_мил_1	3.901 (12.188)				13.097*** (3.783)	14.481*** (5.221)	12.195** (4.701)
I((christ_count_0 + 1) * christ_hlds)					-0.011		
_ ,					(0.420)		
I((christ_count_0 + 1) * christ_hlds * гор_мил_1)						-0.186	-0.144
						(0.489)	(0.488)
I(christ_count_0 * гор_мил_1)	-10.354* (5.445)	-10.120* (5.336)			-12.231*** (3.928)	-12.504*** (3.941)	-10.469** (3.383)
I(christ_count_0 * christ_hlds)	-0.505 (1.292)	-0.465 (1.271)	-2.200** (0.910)				
I(гор мил 1 * ln tour)	0.975	1.370***	0.945***				
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	(1.301)	(0.403)	(0.345)				
CORRUPT_IND				0.183			
				(0.179)			
I(CORRUPT_IND * christ_hlds)				-0.031 (0.035)			
christ_hlds				1.150 (2.557)			
I(christ_hlds * ln_tour)				0.121			
Constant	16.107***	16 221***	17.379***	(0.218) 7.686	15.796***	15.736***	15.736***
Constant	(2.525)		(2.469)	(9.486)	(3.315)	(2.332)	(2.333)
Observations	46	46	46	46	46	46	46
\mathbb{R}^2	0.306	0.304	0.243	0.093	0.291	0.293	0.276
Adjusted R ²	0.219	0.236	0.189	0.004	0.222	0.224	0.224
Residual Std. Error	9.065 (df = 40)	8.966 (df = 41)			f 9.049 (df = 41)	9.033 (df = 41)	9.034 (df 42)
	3.522***	4.474***	4.489***	1.046	4.205***	4.256***	5.336***
F Statistic	(df = 5; 40)	(df = 4; 41)	(df = 3; 42)	(df = 4; 41)	(df = 4; 41)	(df = 4; 41)	(df = 3; 42)
Note:	*p**p***p<0.01						

13