Semaine 4 – Lundi 27 avril

Niveau TSTI2D - Durée recommandée 30-45 min

Travail à rendre (vous pouvez photographier votre cahier) à : m.popoff@lyceetaiarapu.com

Enregistrer votre fichier (DOC, JPG, etc.) sous la forme classe-nom prénom.

Équation de combustion

Rappel: Combustion complète d'un carburant carboné

$$carburant + x O_2 \rightarrow y CO_2 + z H_2O$$

Méthode pour équilibrer l'équation :

Écrire la formule brute du carburant

Déterminer x, y, z en équilibrant dans l'ordre : les atomes de carbone, les atomes d'hydrogène, et les atomes d'oxygène.

- 1) Écrire l'équation de combustion de l'hexadécane $C_{16}H_{34}$
- 2) Écrire l'équation de combustion de l'octane C_8H_{18}
- 3) Écrire l'équation de combustion de l'octane $C_{19}H_{36}O_2$

Rejets de CO₂

D'après le constructeur, une voiture possède les caractéristiques suivantes :

- consommation : $5.8 L/100 km^*$ d'essence
- rejet de CO_2 : 184 g/km^* *en condition urbaine

Données:

Pour un kilogramme d'essence brulée, on produit 3,1 kg de CO_2 et on libère $43.7 \times 10^6 J$.

La masse volumique de l'essence est $\rho = 0.74 \ kg. L^{-1}$.

La voiture parcourt 480 km en 8 heures.

- 4) Calculer le volume d'essence consommée.
- 5) En déduire la masse d'essence correspondante.
- 6) Calculer la masse de *CO*₂ rejeté.
- 7) Les indications du constructeur, concernant les rejets de CO_2 , sont-elles correctes ? Proposer une explication.
- 8) Calculer l'énergie consommée pour effectuer le déplacement.
- 9) Calculer la puissance correspondante.