0.1 Замена коэффициента корелляции

Пусть даны два вектора $\vec{v_1}$ и $\vec{v_2}$, представляющие id инварианты. Шаг первый - приведем данную пару к паре векторов $\vec{v_1}'$ и $\vec{v_2}'$ одинаковой длины. Каждый из полученных векторов нормализируем относительно вектора $(1,1,\ldots,1)$

Алгоритм нормализации:

Для вектора $\vec{v} = (x_1, x_2, \dots, x_n)$ найдем минимум функции

$$f_{(x_1,x_2,...,x_n)}(\alpha) = |\alpha x_1 - 1| + \dots + |\alpha x_n - 1|$$

Минимум данной функции будет находится в одной из точек:

$$\{\frac{1}{x_i}|1\leqslant i\leqslant n\cup x_i\neq 0\}$$

Обозначим его как $\alpha_{min}(\vec{v})$.

Определим коэффициент отличия двух векторов $\vec{v_1}=(x_1,\ldots,x_n)$ и $\vec{v_1}=(x_1,\ldots,x_n)$ следующим образом

$$differenceCoeff(\vec{v_1}, \vec{v_2}) = \frac{\sum_{i=1}^{n} |\alpha_{min}(\vec{v_1})x_i - \alpha_{min}(\vec{v_2})y_i|}{n}$$

Вектора с коэффициентом отличия близким к 0 - похожи.