Cairo University

Faculty of Graduate studies for Statistical Research

Department: Computer Science

CS500

Sheet#1 (Answer)

Q1: find the equivalent decimal values for the following numbers considering their numbering systems:

a)
$$(1011111)_2 => (47)_{10}$$

b)
$$(100111.101)_2 = >(39.625)_{10}$$

c)
$$(2201)_3 = (73)_{10}$$

d)
$$(1320.321)_4 => (120.890625)_{10}$$

e)
$$(1276)_8 = (702)_{10}$$

f)
$$(545.432)_8 => (357.5507813)_{10}$$

g)
$$(6D2F)_{16} = > (27951)_{10}$$

h)
$$(BC7.E3)_{16} = > (3015.886719)_{10}$$

Q2: convert the following decimal numbers to their equivalent binary, ternary, octal and hexadecimal numbers with a precision of 4- digits:

$$(1)(3445)_{10}$$

=
$$(110101110101)_2$$
 = $(11201121)_3$ = $(6565)_8$ = $(D75)_{16}$

$$(2)(879.345)_{10}$$

=
$$(1101101111.0101)_2$$
 = $(1012120.1000)_3$ = $(1557.2605)_8$ = $(36F.5851)_{16}$

Faculty of Graduate studies for Statistical Research

Department: Computer Science

CS500

Sheet#1 (Answer)

Q3: Convert the binary number (10101111.0101)2 to its equivalent octal and hexadecimal numbers.

$$=(257.24)_8=(AF.5)_{16}$$

Q4. Calculate the result of the following binary subtraction operation in direct, 1's complement and 2's complement methods:

- a. 11101-111101
- b. 1101.1111 11010.11001

a) 0111101-111101

1) (Direct subtraction)

011101

- 111101

011101

-100000

2) (Using 1's complement)

011101

 $+000010 \rightarrow 1$'s complement

011111

The result = - 1's complement of (011111) = -100000

3) (using 2's complement)

011101

 $+000011 \rightarrow 2$'s complement

100000

The result = -2's complement of (100000) = -100000

Cairo University

Faculty of Graduate studies for Statistical Research

Department: Computer Science

CS500

Sheet#1 (Answer)

b) **0**1101.11110 – 11010.11001

1) (Direct subtraction)

01101.11110

- 11010.11001 01101.11110

- 01100.11011

2) (Using 1's complement)

01101.11110

 $+00101.00110 \rightarrow 1$'s complement

10011.00100

The result = - 1's complement of (10011.00100) = - 01100.11011

3) (using 2's complement)

01101.11110

 $+00101.00111 \rightarrow 2$'s complement

10011.00101

 \rightarrow The result = -2's complement of (10011.00101) = -01100.11011

Cairo University

Faculty of Graduate studies for Statistical Research

Department: Computer Science

CS500

Sheet#1 (Answer)

Q5) Obtain the 5-bit binary number of the decimal numbers (-12, -9, +9) in the following representation systems:

- a) Unsigned binary notation
- b) signed-magnitude notation
- c) signed-1's complement notation
- d) signed-2's complement notation
- e) Excess notation

Method	-12	- 9	+ 9
Unsigned binary notation	(01100)	(01001)	(01001)
signed- magnitude notation	(11100)	(11001)	(01001)
signed-1's complement notation	= 1's com. of (01100) = (10011)	= 1's com. of (01001) = (10110)	(01001)
signed-2's complement notation	= 2's com. of (01100) = (10100)	= 2's com. of (01001) = (10111)	(01001)
Excess notation (for 5 bits, we will use excess 16)	= -12 + 16 = 4 = 00100	= -9 + 16 = 7 = 00111	(01001)

Faculty of Graduate studies for Statistical Research

Department: Computer Science

CS500

Sheet#1 (Answer)

Q6) Obtain the decimal value of the binary number $(11011001. \ 001)_2$ in case of:

- a) unsigned binary notation
- b) signed-magnitude notation
- c) signed-1's complement notation
- d) signed-2's complement notation

Method	$(11011001.001)_2$	
Unsigned binary notation	$(217.125)_{10}$	
signed-magnitude notation	(- 89.125)10	
signed-1's complement notation	= - 1's com. of (11011001.001) = - (00100110.110) = (- 38.75) ₁₀	
signed-2's complement notation	= - 2's com. of (11011001.001) = - (00100110.111) = (- 38.875) ₁₀	