数字地震震相集

高立峰 王海云 陈 飞 胡光武 殷 翔 沙宏武

(中国江苏 210014 南京地震台)

摘要 震相识别在地震学中是一项非常重要的工作,也是经验性很强的工作,只有通过对大量的震例进行分析研究,才能具备较强的震相分析经验。Dzku 数字地震震相集系统的研制,为广大地震工作者提供了一个提高地震分析能力、积累分析经验的平台。

关键词 数字地震; 震相集

中图分类号:P315.63 文献标识码:A 文章编号:1003-3246(2007)06-0016-03

引言

地震震相的识别与测量是地震学研究中最基本,也是最基础的工作。只有在这一基础上,才能测定地震震源位置和震级等基本参数。这无论是对地球结构和震源的认识,还是对地震活动性的研究,以及对防震减灾工作的开展都十分重要(邹立哗,2004)。由于震源机制和传播介质的复杂性,地震震相一直采用人工识别,是一项经验性很强的工作,只有经过大量的实践,才能准确地识别震相。测震仪器进行数字化改造之前,地震工作者基于模拟资料编制了多种版本的地震震相集,成为了许多同志在工作中的良师益友。当今地震观测已经进入数字化时代,与模拟记录相比,具有动态范围大、频带宽等特点,其分析方法与模拟仪器有很大不同,编制一套数字地震震相集具有其现实的意义。

1 Dzku 数字地震震相集简介

Dzku 数字地震震相集系统采用 Visiual C++编程语言编制,结合 Matlab COM 组件、

Access数据库及 GIS 技术,实现了对地震事件的分析及震例的管理。通过打开地震数据文件载入地震事件,采用 Matlab COM 组件技术进行滤波,可以仿真为 DD-1、763、DK-1 等模拟仪器数据波形,通过检取震相及震幅,计算出震源参数及绘制出地图定位结果;系统数据库内置大量典型震例,使用者可以通过数据库管理模块进行添加、删除或修改,打开数据库中的震例文件可以对其进行分析,并且可以通过载入相应的震例数据库震相表,来进行对比研究,以提高震相分析能力,图 1 为 Dzku 数字地震震相集系统流程图。

作者简介:高立峰(1973-06~),男,本科毕业,工程师,现主要从事地震监测

基金项目: 2005 年江苏省地震局青年科学基金

本文收到日期:2007-01-20

2 主要方法及原理

2.1 滤波及仿真

为了在宽频带数字地震波数据中检取不同频率的震相,应分别对其进行高通、低通、带通滤波,仿真为 DD-1、763、DK-1等模拟仪器波形。系统采用 Matlab COM 组件方式,利用 Matlab 高效的数学分析与计算能力进行滤波。通过调用 COM 组件,实现在 VC++主应用程序中调用 Matlab 语言编写的 M 滤波函数,返回滤波结果。使用 Matlab 组件技术,由于避免了 C语言中对大量数据的循环计算而提高了运行速度。图 2 为仿真成 DD-1仪器的数据波形示例图,图 3 为仿真成 763 仪器的数据波形示例图(利用 Matlab COM 组件设计滤波器的方法及原理,详见《Matlab 与高级编程语言在科学计算中的联合运用》一文)。

图 2 仿真为 DD-1 模拟仪器

图 3 仿真为 763 模拟仪器

2.2 震源定位

Dzku 系统采用 Mapinfo 公司的 MapX 控件实现地震震源定位。MapX 是一种基于 Windows 操作系统的标准控件,能支持大多数的可视化开发环境,利用 MapX 能够简单快速地在应用程序中嵌入地图化功能,其基于 MapInfo Professional 的地图技术,可以实现 MapInfo 具有的绝大部分地图编辑及空间分析功能;并且 MapX 提供了一组功能强大的对象模型、大量的方法和事件来简化应用开发,开发者将地图添加到实际应用中,就能够实现基于空间位置的数据显示和分析。系统采用 1:100 万中国电子地图来进行国内地震精确定位,国外地震采用 ESRI 公司的 ArcInfo 提供的世界电子地图进行定位。矢量图共分为 8 个图层:国界、线省界、面省界、省会级城市、地区界、地级市、县级市及县界。系统提供的地图功能有:漫游、缩放、点查询、文字和点标注、测距、打印、保存、快速定位及震源查询等,实现了对地震震源的精确定位及详细的地图查询功能。图 4 为全球及国内地震定位示例图

图 4 全球定位(左图)和国内定位(右图)

2.3 地震震例数据库

Dzku 系统采用 Access 建立地震震例数据库,由震例表及震相表组成,震例表存放地震震

源参数,震相表存放相应地震的震相走时,表之间通过相应的文件名进行调用。打开数据库管理模块,点击列表中的单个地震载入该地震的波形数据,同时可以选择载入对应的震相集合,该地震震相表中的震相名及到时将标注在地震波形上;也可以在用户先行分析的基础上,其后载入震相表数据,那么就可以进行对比分析研究,将更有利于提高分析能力。数据库管理功能有增加、删除、修改、查询及地震信息查看等,通过提供的这些模块,可以实现对数据库进行动态管理。图 5 为数据库结构图。

3 结束语

傅承义教授在 40 年前说过一句名言:"震相分析是地震科学的心脏",震相分析是微观地震学的核心工作,是提取数据的主要手段(赵荣国,1999)。自从 1987 年我国数字化台网正式运行以来,数字地震仪以其频带宽、动态范围大、分辨率高等优越性,把我国的地震观测水平提高到一个新的高度,但也给地震工作者提出了更高的要求,只有不断提高对震相的认识与理解,利用好震相进行各种研究,使我国的地震科学探索上一个新台阶。

参考文献

赵荣国.1999. 震相分析是地震科学的心脏[J]. 地震地磁观测与研究, 5 邹立哗. 2004. 地震震相分析与测量的进展 [J]. 国际地震动态, 10

Digital seismic phase collection

Gao Lifeng, Wang Haiyun, Chen Fei, Hu Guangwu, Yin Xiang and Sha Hongwu (Nanjing Seismic Station, Jiangsu Province 210014, China)

Abstract

Phase recognition in the seismology is a crucial work that needs a lot of experiences obtained only by abundant practice of case study. The development of Dzku digital seismic phase collection system provided a platform for the general seismologist to enhance the earthquake analysis ability and accumulate analysis experience.

Key words: digital seismics, phase collection