Overview, MATLAB Syntax

Computation

$$1+2=3$$

$$sin(30)=0.5$$

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 7 & 10 \\ 15 & 22 \end{bmatrix}$$

Programming

Workspace (variable list)

MATLAB Desktop Help Button

Working Directory

Command Window

Courtesy of The MathWorks, Inc. Used with permission.

Command History

Basic MATLAB Help Window MATLAB functions

MATLAB Tool Boxes

Courtesy of The MathWorks, Inc. Used with permission.

MATLAB Data Types

MATLAB Data Structure

Everything in MATLAB are matrix!

```
A=5; A is a 1x1 matrix

A=[ 1 3 4 5]; A is a 1x4 matrix

A = [12 62 93 -8 22; 16 2 87 43 91; -4 17 -72 95 6];

A is a 5x3 matrix
```

- Note: (1) Putting ";" behind a statement suppresses output
 - (2) Rows in a matrix is separated by ";" inside
 - (3) MATLAB command "whos" gives all the defined variables

What is a variable?

Matrix indexing: A(2,3) = 87

Basic Linear Algebra

$$m \cdot \begin{bmatrix} a & c \\ b & d \end{bmatrix} = \begin{bmatrix} ma & mc \\ mb & md \end{bmatrix}$$

$$\begin{bmatrix} a & c \\ b & d \end{bmatrix} \pm \begin{bmatrix} e & g \\ f & h \end{bmatrix} = \begin{bmatrix} a \pm b & c \pm g \\ b \pm f & d \pm h \end{bmatrix}$$

$$\begin{bmatrix} a & c \\ b & d \end{bmatrix} \cdot \begin{bmatrix} e & g \\ f & h \end{bmatrix} = \begin{bmatrix} ae + cf & ag + ch \\ be + df & bg + dh \end{bmatrix}$$

$$A = \begin{bmatrix} a & c \\ b & d \end{bmatrix}$$

$$A \cdot A^{-1} = I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \quad A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -c \\ -b & a \end{bmatrix}$$

$$\begin{bmatrix} a & b & c \end{bmatrix}' = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$$

Scalar multi

Add/sub

Matrix multi

Inverse

Transpose

MATLAB Operators – numeric

Operator	Description
+	Addition
_	Subtraction
. *	Multiplication
./	Right division
.\	Left division
+	Unary plus
_	Unary minus
:	Colon operator
.^	Power
. 1	Transpose
ı	Complex conjugate transpose
*	Matrix multiplication
7	Matrix right division
١	Matrix left division
^	Matrix power

$$A = \begin{bmatrix} 1 & 2 \end{bmatrix}, B = \begin{bmatrix} 3 \\ 4 \end{bmatrix}, C = \begin{bmatrix} 5 & 6 \end{bmatrix}$$

$$A + C = \begin{bmatrix} 6 & 8 \end{bmatrix}$$

$$A * C \quad bad!$$

$$A * B = 11$$

$$A . * C = \begin{bmatrix} 5 & 12 \end{bmatrix}$$

$$A . / C = \begin{bmatrix} 0.200 & 0.333 \end{bmatrix}$$

$$A . \backslash C = \begin{bmatrix} 5 & 3 \end{bmatrix}$$

MATLAB Operators – Relational, Logical

Relational

Operator	Description	
<	Less than	
<=	Less than or equal to	
>	Greater than	
>=	Greater than or equal to	
==	Equal to	
~=	Not equal to	

Logical

Operator	Description	Example
٤	Returns 1 for every element location that is true (nonzero) in both arrays, and 0 for all other elements.	A & B = 01001
1	Returns 1 for every element location that is true (nonzero) in either one or the other, or both arrays, and 0 for all other elements.	A B = 11101
~	Complements each element of the input array, A.	~A = 10010
xor	Returns 1 for every element location that is true (nonzero) in only one array, and 0 for all other elements.	xor(A,B)=10100

One more MATLAB Operator – Sequence ":" is the sequence operator that denote a range

$$A = 2:5 \quad A = \begin{bmatrix} 2 & 3 & 4 & 5 \end{bmatrix}$$

$$A = 2:3:11 \quad A = \begin{bmatrix} 2 & 5 & 8 & 11 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$

$$B = A(2,:) \quad B = \begin{bmatrix} 4 & 5 & 6 \end{bmatrix}$$

$$C = A(:,2) \quad C = \begin{bmatrix} 2 \\ 5 \\ 8 \end{bmatrix}$$

$$D = A(2:3,:) \quad D = \begin{bmatrix} 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$

$$A(:,2) = \begin{bmatrix} 1 & 3 \\ 4 & 6 \\ 7 & 9 \end{bmatrix}$$

It is very useful to create, decimate, and generate submatrix

Basic Graphic Output in MATLAB

X = [1 2 3 4 5 6 7 8 9 10]

Y =[1 4 9 16 25 36 49 64 81 100]

plot(X,Y)

More Graphic Output

t=1:1:100; plot(t,cos(t/10));

Courtesy of The MathWorks, Inc. Used with permission.

A couple more very useful graphic commands

- (1) hold on/hold off determines whether the next plot command overwrites or not
- (2) figure Creates new figure window
- (3) From the figure window, under "edit menu", the "copy figure" option allows you to copy the figure to the clipbroad and then you can cut and paste it into other programs such as MSWord.

Programming

What is programming?

Programming is the preparation of a step-by-step instruction for a computer to follow

When is programming "profitable"

- *repetitive computation
- *automation/real time control
- *reusable "code" objects

Programming languages C, C++, C#, java, m-lab script

Anatomy of a program

Flow chart – a graphic representation of the logical sequence of instructions

Algorithm – a sequence of instructions designed to

solve a specific problem

Action X=0

Decision X+3<0.1

Terminal Start

Conditionals

Conditional is a branching point in the program.

Depending on specific condition, the program can take

different actions.

Example: a simple program that add 1 to odd integer input and do nothing to even integer input

Programming in MATLAB

Step 1: Create a m-file (xxx.m)

[MATLAB Menu: file->new]

Step 2: Input sequence of MATLAB instructions

Step 3: Save (in working directory) and run [Editor Menu:debug->save & run]

MATLAB realization of program

Cite as: Peter So, course materials for 2.003J / 1.053J Dynamics and Control I, Fall 2007. MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Conditional: If, else, end

Check out also elseif

Repetition Example: fill a 1-D matrix A with length 10 with 2s.

