WHAT IS CLAIMED IS:

1. A symmetric cyanine of the formula:

wherein:

X is selected from the group consisting of O, S and $C(CH_3)_2$; W represents non-metal atoms required to form a benzo-condensed or a naphto-condensed ring;

 R_1 is selected from the group consisting of $(CH_2)_nCH_3$, $(CH_2)_nSO_3^-$ and $(CH_2)_nSO_3H$, wherein n is an integer selected from 0 to 6 when R_1 is $(CH_2)_nCH_3$, and n is an integer selected from 3 to 6 when R_1 is $(CH_2)_nSO_3^-$ or $(CH_2)_nSO_3H$;

 R_2 and R_3 are independently selected from the group consisting of H, a sulphonic moiety and a sulphonate moiety;

$$(CH_2)q$$

wherein q is 0 or 1 and D is selected from the group consisting of:

-C≡C-G;

$$-A \longrightarrow G$$

$$\uparrow$$

$$\downarrow$$

$$N^{+} G$$

$$\uparrow$$

wherein A is O or S;

G is a nucleophile moiety selected from the group consisting of $(CH_2)_mNH_2$, $(CH_2)_mSH$, $(CH_2)_mY(CH_2)_pOH$, $(CH_2)_mY(CH_2)_pNH_2$ and $(CH_2)_mY(CH_2)_pSH$, wherein Y is selected from the group consisting of -NH-, -CONH-, -O- and -S-, m is an integer selected

from 0 to 6 and p is an integer selected from 1 to 6; or wherein G is a moiety capable of reacting with N, O or S nucleophiles, and is selected from the group consisting of $(CH_2)_mCOOH$, $(CH_2)_mGI_2CI_2$, $(CH_2)_mMaleimide$, $(CH_2)_mCO-NHS$, $(CH_2)_mCO-imidazole$, $(CH_2)_mSO_2CH=CH_2$, $(CH_2)_mCONHNH_2$, $(CH_2)_mCHO$, $(CH_2)_mY(CH_2)_pCOOH$, $(CH_2)_mY(CH_2)_pGI_2CI_2$, $(CH_2)_mY(CH_2)_pMaleimide$, $(CH_2)_mY(CH_2)_pCO-NHS$, $(CH_2)_mY(CH_2)_pCO-imidazole$, $(CH_2)_mY(CH_2)_pCO-PAM$, $(CH_2)_mY(CH_2)_pSO_2CH=CH_2$, $(CH_2)_mY(CH_2)_pCONHNH_2$, $(CH_2)_mY(CH_2)_pCHO$ and $(CH_2)_mY(CH_2)_pO-PAM$, wherein Y, m and p have the meanings indicated above.

- 2. A symmetric cyanine according to claim 1, wherein at least one of the moieties R_1 to R_3 is, or contains a sulphonic moiety or a sulphonate moiety.
- 3. A symmetric cyanine according to claim 1, wherein X is $C(CH_3)_2$.
- 4. A symmetric cyanine according to claim 3, wherein one of the moieties R_2 and R_3 is a sulphonic moiety or a sulphonate moiety.
- 5. A symmetric cyanine according to claim 4, wherein R_1 is $(CH_2)_nSO_3^-$ or $(CH_2)_nSO_3H$.
- 6. A symmetric cyanine according to claim 1, wherein X is S and R_1 is $(CH_2)_nSO_3$ or $(CH_2)_nSO_3H$.
- 7. A symmetric cyanine according to claim 1 having any of the formulae 2a to 21:

$$R_2$$
 R_3
 R_3
 R_3
 R_3
 R_3
 R_3

$$R_2$$
 R_3
 R_3
 R_4
 R_1
 R_1

$$R_3$$
 R_2
 R_3
 R_2
 R_3
 R_3
 R_3
 R_4
 R_1
 R_1

$$R_2$$
 R_3
 R_2
 R_3
 R_4
 R_5
 R_7
 R_8
 R_8
 R_8
 R_8
 R_8
 R_8

$$R_2$$
 R_2
 R_3
 R_3
 R_3
 R_4
 R_5
 R_6
 R_7
 R_8

$$R_2$$
 R_3
 R_4
 R_5
 R_6
 R_7
 R_8
 R_8
 R_8
 R_8

$$R_2$$
 $(CH_2)q$
 R_3
 R_1
 R_2
 R_3
 R_3
 R_1

$$R_2$$
 R_3
 R_2
 R_3
 R_4
 R_5
 R_7
 R_8
 R_8
 R_8
 R_8
 R_8
 R_8
 R_8
 R_8
 R_8

$$R_3$$
 R_2
 R_3
 R_2
 R_3
 R_3
 R_1
 R_2
 R_3
 R_1

$$R_2$$
 R_3
 R_2
 R_3
 R_1
 R_1
 R_1
 R_1

wherein $R_1,\ R_2,\ R_3,\ X,\ q$ and D have the meanings indicated in claim 1.