Módulo 1 Introdução a Métodos Quant.

PEDRO H. G. FERREIRA DE SOUZA SERGEI S. D. SOARES

Instituto de Pesquisa Econômica Aplicada Mestrado Profissional em Políticas Públicas e Desenvolvimento

4^a TURMA SET-DEZ 2019

METODOLOGIA DE PESQUISA

Toda pesquisa científica ambiciona produzir **conhecimento sistemático** sobre o mundo.

- Análise de regularidades socialmente relevantes por meio do confronto entre teoria e evidência conforme procedimentos estruturados.
- Rigor é a palavra-chave: sem improvisos, romper com senso comum.

Que tipo de análise?

- Descrição
- Causalidade
- Predição

Qual a pergunta de pesquisa de vocês?

QUALITATIVO VS. QUANTITATIVO

Escolha da metodologia: qual a melhor forma de responder à pergunta de pesquisa?

- Qualitativa: pesquisa exploratória, indutiva; compreender motivações e opiniões; descobrir novos padrões; formular novas hipóteses e teorias; explorar individualidade dos casos.
- Quantitativa: pesquisa descritiva ou causal, dedutiva; testar hipóteses e teorias; avaliar regularidades sociais; foco na abstração, mensuração, generalização e replicabilidade.
- (Estudos comparativos, teóricos etc.)

Lógica da inferência tanto em pesquisas qualitativas quanto quantitativas. Nesse último caso, base explícita é probabilidade e estatística.

VALIDADE INTERNA E VALIDADE EXTERNA

Validade interna diz respeito ao grau de consistência ou controle da análise: **isolar** as relações que nos interessam para garantir que conclusões não serão espúrias.

■ Se queremos saber se *X* tem efeito causal sobre *Y*, precisamos "controlar" por todas outras possíveis fontes de influência sobre *Y*.

Validade externa diz respeito à possibilidade de **generalizar** os resultados para um determinado universo.

Garantir que resultados obtidos para nossa amostra também se aplicam à população mais ampla que realmente nos interessa.

PROBABILIDADE E ESTATÍSTICA

Probabilidade: a partir de um modelo gerador, quais eventos devemos observar?

- "Preditivo": regras que quantificam a incerteza ou aleatoriedade
- Modelo → dados

Estatística: a partir de eventos observados, qual o modelo gerador subjacente?

- "Retrospectivo": identificar padrões em meio à aleatoriedade
- Dados → modelo

Ferramentas e regras formais para assegurar validade interna e externa.

TRÊS NÍVEIS DO DISCURSO

Teoria: modelos estatísticos e distribuições de probabilidade

Universo: objeto de interesse, parâmetros a descobrir via inferência estatística

Amostra: dados observados

Aleatoriedade intrínseca ao mundo e na seleção de amostras!

$$\mathbf{y} = \alpha + \beta \cdot \mathbf{x}$$
 vs. $\mathbf{y} = \alpha + \beta \cdot \mathbf{x} + \epsilon$

O QUE É MAIS COMPLICADO?

James Joyce, "Finnegans Wake" (1939)

"Heraduma noite, tarde, munto timplo atroz, numa antaiga erdade das perdas, quando Adão socavava e sua madãominha tessia cedas d'água, quandomem montenote era todimundo e a premeira leal costeladra que jamais ouve osseu em-fim todomigo com seus olhos plenamormorejantes e todomiro vivia solamante com todamina amais e Conte Dom Cabeço metia a testada tostada benhalta no farol queimorava, impondo mão fria assi mesmo."

Distribuição normal: $N(\mu, \sigma^2)$

$$f(x|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Distribuição normal: $N(\mu, \sigma^2)$

DESENHO DE PESQUISA

Suponha que vocês já partiram de uma ideia geral, especificaram um problema bem delimitado, revisaram a literatura, decidiram o escopo do estudo e elaboraram suas hipóteses de trabalho.

A próxima etapa é escolher o **desenho de pesquisa** mais apropriado para testar suas hipóteses e responder à pergunta de pesquisa.

Essa etapa é particularmente importante para estudos sobre **causalidade**.

CAUSALIDADE E RESULTADOS POTENCIAIS

Efeito causal de um tratamento T_i para uma unidade i dado por:

$$Y_i^1 - Y_i^0$$

O problema é que só observamos:

$$Y_i = \left\{ \begin{array}{ll} Y_i^0 & \text{se} & T_i = 0 \\ Y_i^1 & \text{se} & T_i = 1 \end{array} \right.$$

Solução: grupo de controle como contrafactual para o grupo de tratamento. Mas como garantir que os grupos são, em média, idênticos em tudo exceto pelo tratamento?

DESENHOS EXPERIMENTAIS E NÃO EXPERIMENTAIS

Desenhos experimentais: maximizam validade interna

- Experimentos puros
 - Equivalência inicial entre grupos de tratamento e controle obtida por alocação aleatória
 - ► Manipulação intencional do tratamento
- Quase experimentos
 - ► Sem aleatorização
 - ► Manipulação exógena (mas não intencional) do tratamento

Desenhos não experimentais: em geral, melhores para garantir validade externa

- Dados transversais ("cross-section")
- Dados longitudinais
- Séries temporais

POR QUE ISSO IMPORTA?

Fonte: Dowd & Town 2002, p. 4.

EXEMPLOS: VIESES

Viés de seleção \rightarrow enquetes em sites de notícias

Viés de variável omitida \rightarrow comparação de desempenho entre escolas públicas e privadas

 $\textbf{Causalidade reversa} \rightarrow \text{receber programas sociais causa pobreza}$

EXEMPLO

Qual o efeito causal da **educação** sobre a **renda do trabalho** dos indivíduos?

- Desenho não experimental
 - ► Com base em dados observacionais, estimar, por exemplo, $ln(w) = \alpha + \beta_1 \cdot educ + \beta_2 \cdot exper + \beta_3 \cdot exper^2 + \epsilon$
- Desenho quase experimental
 - Aproveitar variações exógenas: por ex., regras do sistema educacional e loteria para Guerra do Vietnã
- Desenho experimental (hipotético)
 - Dividir uma amostra de crianças em n grupos e sortear para cada grupo quantos anos de estudo serão obrigatórios

DADOS

Características

- Como foram coletadas as informações?
- Qual a unidade de análise?
- Qual o período de cobertura?
- Como foi selecionada a amostra?
- Qual o formato de divulgação?
- etc

Estrutura

- Dados transversais ("cross-section")
- Séries temporais
- Dados longitudinais ou em painel

TIPOS DE VARIÁVEIS

Variáveis são características que variam entre unidades de análise e cujos valores são quantificados de acordo com uma escala de mensuração.

Figura 2.1: Classificação de uma variável.

Fonte: Bussab e Morettin (2010)

MENSURAÇÃO DE VARIÁVEIS

Medir ou mensurar \rightarrow processo de vincular conceitos abstratos com indicadores empíricos, seguindo regras explícitas.

lacktriangle Definição conceitual o teórica; definição operacional o empírica

Instrumento de mensuração deve ter:

- **Confiabilidade**: aplicações repetidas com resultados iguais
- **Validade**:
 - Conteúdo: instrumento reflete adequadamente o domínio de conteúdo daquilo que medimos; abarca as principais dimensões
 - Critério: instrumento cnngruente com outros critérios externos que medem a mesma coisa
 - Constructo: instrumento reflete de fato o constructo teórico subjacente; mede o que queremos que ele esteja medindo
- Objetividade: não influência de vieses e tendências dos pesquisadores

EXEMPLO - JOGOS DE COPA DO MUNDO

id	date	round	stadium	city	country	team1	g1	team2	g2
1	07/13/1930	Group 1	Pocitos	Montevideo	Uruguay	France	4	Mexico	1
2	07/13/1930	Group 4	Pq. Central	Montevideo	Uruguay	USA	3	Belgium	0
3	07/13/1930	Group 2	Pq. Central	Montevideo	Uruguay	Yugoslavia	2	Brazil	1
4	07/13/1930	Group 3	Pocitos	Montevideo	Uruguay	Romania	3	Peru	1
5	07/15/1930	Group 1	Pq. Central	Montevideo	Uruguay	Argentina	1	France	0
6	07/16/1930	Group 1	Pg. Central	Montevideo	Uruguay	Chile	3	Mexico	0
7	07/17/1930	Group 2	Pg. Central	Montevideo	Uruguay	Yugoslavia	4	Bolivia	0
8	07/17/1930	Group 4	Pq. Central	Montevideo	Uruguay	USA	3	Paraguay	0
:	:	:	:	:	:	:		:	:
829	07/04/2014	Qtr-finals	Maracana	Rio de Janeiro	Brazil	France	0	Germany	1
830	07/04/2014	Otr-finals	Castelao	Fortaleza	Brazil	Brazil	2	Colombia	1
831	07/05/2014	Otr-finals	Est. Nacional	Brasilia	Brazil	Argentina	1	Belgium	0
832	07/05/2014	Otr-finals	Fonte Nova	Salvador	Brazil	Netherlands	0	Costa Rica	0
833	07/08/2014	Semis	Mineirao	Belo Horizonte	Brazil	Brazil	1	Germany	7
834	07/09/2014	Semis	Arena SP	Sao Paulo	Brazil	Netherlands	0	Argentina	0
835	07/12/2014	3 rd place	Est. Nacional	Brasilia	Brazil	Brazil	0	Netherlands	3
836	07/13/2014	Final	Maracana	Rio de Janeiro	Brazil	Germany	1	Argentina	0

EXEMPLO - PDF DE GOLS POR JOGO

EXEMPLO - CDF DE GOLS POR JOGO

EXEMPLO - MÉDIA DE GOLS POR JOGO

EXEMPLO - MÉDIA DE GOLS POR JOGO

VARIÁVEIS ALEATÓRIAS

Definição informal

Uma variável aleatória é uma variável que assume um valor numérico único, determinado pelo "acaso", para cada resultado de um procedimento.

Uma distribuição de probabilidade é uma descrição das probabilidades de ocorrência de cada valor da variável aleatória.

Definição um pouco menos informal

Uma variável aleatória é uma função que associa os elementos do espaço amostral a valores numéricos de acordo com uma determinada distribuição de probabilidade.

LEITURAS RECOMENDADAS

Metodologia de pesquisa

Ragin C.; Amoroso, M. (2011) Constructing Social Research:. Londres, Los Angeles: SAGE, Pine Forge Press.

Sampieri, R;, Collado C.; Lucio M. (2013). Metodologia de Pesquisa. Porto Alegre: McGraw Hill, Penso. (Capítulos 2-10)

Causalidade

Dowd B.; Town R. (2002) Does X really cause Y?. Washington, DC: AcademyHealth. Goldthorpe J. (2001) Causation, Statistics, and Sociology. European Sociological Review, v. 17, n. 1, p. 1-20.

Pearl J. (2018) The Book of Why. Nova York: Basic Books.

Rubin D. (1974) Estimating causal effects of treatments in randomized and nonrandomized studies. Journal of Educational Psychology, v. 66, n. 5, p. 688-701.

Mensuração de variáveis

Bussab W.; Morettin P. (2010): Estatística Básica. São Paulo: Saraiva. (Capítulo 2) Sampieri, R;, Collado C.; Lucio M. (2013). Metodologia de Pesquisa. Porto Alegre: McGraw Hill, Penso. (Capítulo 9)

Efeitos da educação sobre a renda

Soares S. (2011) O conhecimento paga bem? Habilidades cognitivas e rendimentos do trabalho no Brasil (e no Chile). Tese de Doutorado em Economia, Universidade de Brasília.

Próximo módulo

Leituras recomendadas

- Agresti & Finlay, capítulo 3 (p. 31-72)
- Bussab & Morettin, capítulos 2-4 (p. 9-102)
- Lyman & Longnecker, capítulo 3 (p. 56-139)
- Triola, capítulo 3 (p. 82-135)