Simplifying Regret

No. of times tossed

 $10 \times p_1 = \mathbf{Rs} \ 9$

Mean reward upon head

Loss w.r.t. best coin (Red in this case)

Total expected reward = $9 \times N_1 + 1 \times N_2 + 3 \times N_3$ Total expected regret = $0 \times N_1 + 8 \times N_2 + 6 \times N_3$

$$10 \times p_2 = \text{Rs } 1$$

 $10 \times p_3 = \text{Rs } 3$

Regret is suffered only for pulling the sub-optimal arms (blue and magenta in this case)

Simplifying Regret

Mean reward upon head

Loss w.r.t. best coin (Red in this case)

No. of times tossed

 $10 \times p_1 = \mathbf{Rs} \ 9$

Rs 0

 $N_1 = 5$

 $10 \times p_2 = \mathbf{Rs} \ 1$

Rs 8

 $N_2 = 3$

 $10 \times p_3 = \text{Rs } 3$

Rs 6

 $N_3 = 5$

Total expected reward = $9 \times N_1 + 1 \times N_2 + 3 \times N_3$ Total expected regret = $0 \times N_1 + 8 \times N_2 + 6 \times N_3$

Regret is suffered only for pulling the sub-optimal arms (blue and magenta in this case)

Simplifying Regret

	Mean reward upon head	Loss w.r.t. best coin (Red in this case)	No. of times tossed
Coin 1	μ_1	0	$N_1(T)$
Coin 2	μ_2	$\mu_1 - \mu_2 = \Delta_2$	$N_2(T)$
•			
Coin K	μ_{K}	$\mu_1 - \mu_K = \Delta_K$	$N_K(T)$

Total expected reward =
$$\mu_1 \times \mathbb{E}[N_1(T)] + \mu_2 \times \mathbb{E}[N_2(T)] + \cdots + \mu_K \times \mathbb{E}[N_K(T)]$$

Total expected regret = $0 \times \mathbb{E}[N_1(T)] + \Delta_2 \times \mathbb{E}[N_2(T)] + \cdots + \Delta_K \times \mathbb{E}[N_K(T)]$