Binomial Coefficients Revenge

The binomial coefficient C(N, K) is defined as N! / K! / (N - K)! for $0 \le K \le N$. Here N! = 1 * 2 * ... * N for $N \ge 1$, and 0! = 1.

You are given a prime number P and a positive integer N.

 A_L is defined as the number of elements in the sequence C(N, K), such that, P^L divides C(N, K), but P^{L+1} does not divide C(N, K). Here, $0 \le K \le N$.

Let M be an integer, such that, $A_M > 0$, but $A_L = 0$ for all L > M. Your task is to find numbers $A_0, A_1, ..., A_M$.

Input Format

The first line of the input contains an integer T, denoting the number of test cases. The description of T test cases follows. The only line of each test case contains two space-separated integers N and P.

Output Format

For each test case, display M + 1 space separated integers $A_0, A_1, ..., A_M$ on the separate line.

Constraints

```
1 \le T \le 100

1 \le N \le 10^{18}

2 \le P < 10^{18}

P is prime
```

Sample Input

```
3
4 5
6 3
10 2
```

Sample Output

```
5
3 4
4 4 1 2
```

Explanation

Example case 1. Values C(4, K) are $\{1, 4, 6, 4, 1\}$. Each of them is not divisible by 5. Therefore, $A_0 = 5$, $A_1 = 0$, $A_2 = 0$, ..., hence the answer.

Example case 2. Values C(6, K) are $\{1, 6, 15, 20, 15, 6, 1\}$. Among them 1, 20, 1 are not divisible by 3, while remaining values 6, 15, 15, 6 are divisible by 3, but not divisible by 9. Therefore, $A_0 = 3$, $A_1 = 4$, $A_2 = 0$, $A_3 = 0$, ..., hence the answer.