Agenda

Deep Learning basics

Learn f(x)

- Complex function which maps inputs to outputs
- Goal is to learn the parameters for this function and use it to predict for unknown inputs
- e.g. slope, intercept in Linear Regression

Models

- Defines the structure of f(x)
- Use case dependent
- CNNs for images, RNNs for text generation etc.
- Analogous to selecting a cubic, quadratic or linear function to fit the data

Supervised/Unsupervised

- (input, desired output) available
- Unsupervised uses statistical measures
- e.g. clustering

Loss function

- Metric that measures the difference between the predicted and actual values
- Learning involves reducing the value of the loss function metric
- e.g. MSE

Gradient Descent

 Process of moving in a direction to reduce the loss

Testing and Evaluation

DBLP Dataset and problem formulation

Dataset

- · Graph data
- · 317080 Nodes and 1049866 edges
- · Nodes divided into 5000 overlapping communities

Defining the problem statement

- · Supervised Community Detection + Node classification
- For each node we need to predict the communities it belongs to

Use cases

- · Market/Audience segmentation
- · Recommender systems
- · Fraud Detection

Approach

- · Input: Graph (nodes and edges)
- Output: Matrix M, where each entry m_{i,j} = 1 if node i is a member of community j else 0

Single-layer perceptron

Multi-layer perceptron

GNNs are analogous to CNNs

Images

- Images are a type of graph with a fixed structure.
- Kernels perform neighbourhood aggregation

Graphs

- Inconsistent structure
- No inherent ordering
- Local neighbourhoods networks perform aggregation

Feature Engineering

Graph Statistics

- Use node based statistical measures as features
- Often graph networks are unable to easily learn some of these
- E.g. degree, clustering coefficient, centrality

Embedding Technique

- Node2Vec is Word2Vec for graph nodes
- Embeds nodes as a vectors
- Closer nodes are embedded closer in the vector space

Node2Vec algorithm

Sentence generation based on walk length and walks per node

Training samples generated for each node based on window size (input,target)

The skip-gram model is trained on (input,target) training samples.

Finally the hidden dimension is used as the embedding

Loss Function

$$BCE = -\frac{1}{N} \sum_{i=0}^{N} y_i \cdot log(\hat{y}_i) + (1 - y_i) \cdot log(1 - \hat{y}_i)$$

- The **Loss function** is important because gradient descents goal is to minimize the loss
- Output matrix is **sparse** (~2% 1s only), which causes high accuracy and low recall while using regular BCELoss
- i.e. predicts all zeroes

$$BCE_{sparse} = (-\Sigma \ w_{true} \cdot \ p_i \cdot \log(\widehat{p}_i) \ + \ w_{false} \cdot \ (1-p_i) \cdot \ \log(1-\widehat{p}_i))$$

- To solve this we use weighted BCE loss for sparse matrices.
- W_{true} is the relative cost of predicting a 1 as a 0
- $\mathbf{W}_{\mathsf{false}}$ is the relative cost of predicting a 0 as a 1
- $W_{true} >>> W_{false}$ makes the algorithm to increase recall as well as the accuracy

GCN training loss and evaluation metrics

200 communities and 50% randomly sampled edges

Limitations & Improvements

- GraphSAGE implementation for entire dataset
 - It is a model specifically designed for large graphs
- Testing different structures, activation functions and loss functions
- Adding skip connections to models
- Feature engineering
 - Learnable features
 - Removing dependency on Node2Vec algorithms

Edge Sampling

Edges retained	75%	56.25%	42.18%	31.64%
MLP	87.32%	87.14%	87.19%	87.18%
GCN	89.2%	86.68%	86.95%	87.74%
GCN + MLP processing	87.8%	87.77%	87.45%	87.58%
Node2Vec + MLP	93.2%	90.58%	89.48%	88.57%

Takeaways

- MLP model doesn't take edges as inputs so it is independent of edge sampling.
- Node2Vec + MLP model is the most reliable and accurate.
- Performance of GCN models decreases as the number of edges are reduced

Takeaways

- Graph Networks perform better than the MLP model in all cases, as they leverage edge information.
- Increase in graph size corresponds to increase in the number of edges and nodes which graph networks leverage to predict more accurately.
- · Node2Vec performs the best in all categories.

Dataset Size

Number of communities	50	100	200	500
MLP	76.8%	86.2%	86.73%	91.9%
GCN	83.83%	87.4%	89.69%	92.05%
GCN + MLP processing	86.67%	87.52%	88.91	92.94%
Node2Vec + MLP	91.28%	91.61%	92.94%	93.21%

Graph Networks and their applications

