

# basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE NASIONALE SENIOR SERTIFIKAAT

GRADE 12/GRAAD 12

MATHEMATICS P1/WISKUNDE V1

**NOVEMBER 2017** 

MARKING GUIDELINES/NASIENRIGLYNE

MARKS/PUNTE: 150

This memorandum consists of 22 pages. *Hierdie memorandum bestaan uit* 22 *bladsye*.

#### NSC/NSS -

#### **NOTE:**

- If a candidate answers a question TWICE, only mark the FIRST attempt.
- Consistent accuracy applies in ALL aspects of the marking guidelines.

#### LET WEL:

- Indien 'n kandidaat 'n vraag TWEE KEER beantwoord, merk slegs die EERSTE poging.
- Volgehoue akkuraatheid is op ALLE aspekte van die nasienriglyne van toepassing.

| 1.1.1 | $x^2 + 9x + 14 = 0$                                                                                                      |                                                        |
|-------|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| 1.1.1 |                                                                                                                          | ✓ factors                                              |
|       | (x+7)(x+2) = 0                                                                                                           | $\checkmark x = -7$                                    |
|       | x = -7  or  x = -2                                                                                                       | $\checkmark x = -2$                                    |
|       |                                                                                                                          | (3)                                                    |
| 1.1.2 | $4x^2 + 9x - 3 = 0$                                                                                                      |                                                        |
|       | $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ $-9 \pm \sqrt{9^2 - 4(4)(-3)}$                                                  | ✓ substitution                                         |
|       | $=\frac{-9\pm\sqrt{9^2-4(4)(-3)}}{2(4)}$                                                                                 |                                                        |
|       | $=\frac{-9\pm\sqrt{129}}{8}$                                                                                             | ✓ simplification $\checkmark x = 0.29$                 |
|       | x = 0.29 or $x = -2.54$                                                                                                  | $\checkmark x = -2,54$                                 |
|       | OR/OF                                                                                                                    | OR/OF                                                  |
|       | $x^{2} + \frac{9}{4}x + \frac{81}{64} = \frac{3}{4} + \frac{81}{64}$ $\left(x + \frac{9}{8}\right)^{2} = \frac{129}{64}$ | ✓ for adding $\frac{81}{64}$ on both sides             |
|       | $x + \frac{9}{8} = \pm \frac{\sqrt{129}}{8}$                                                                             | ✓ simplification                                       |
|       | $x = \frac{-9 \pm \sqrt{129}}{8}$                                                                                        | $\sqrt{x} = 0.20$                                      |
|       |                                                                                                                          | $\checkmark x = 0.29$ $\checkmark x = -2.54$           |
|       | x = 0.29 or $x = -2.54$                                                                                                  | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ |
| 1.1.3 | $\sqrt{x^2 - 5} = 2\sqrt{x}$                                                                                             | (1)                                                    |
|       | $x^2 - 5 = 4x$                                                                                                           | $\checkmark x^2 - 5 = 4x$                              |
|       | $x^2 - 4x - 5 = 0$                                                                                                       |                                                        |
|       | (x-5)(x+1)=0                                                                                                             | ✓ standard form                                        |
|       | x = 5 or $x = -1$                                                                                                        | ✓ both answers                                         |
|       |                                                                                                                          | √ aslast u = F                                         |
|       | x = 5                                                                                                                    | ✓ select $x = 5$                                       |
|       |                                                                                                                          | (4)                                                    |
|       |                                                                                                                          | j                                                      |

### NSC/NSS - Marking Guidelines/Nasienriglyne





$$\checkmark \checkmark 0$$

# OR/OF

$$x^{2} + 8x + 16 = p$$

$$x^{2} + 8x + 16 - p = 0$$

$$0 < 16 - p < 16$$

$$-16 < -p < 0$$

$$0$$

#### OR/OF

#### OR/OF

$$x = \frac{-8 \pm \sqrt{64 - 4(16 - p)}}{2}$$
$$0 < 64 - 4(16 - p) < 64$$
$$0 < 4p < 64$$

 $x^2 + 8x + 16 - p = 0$ 

$$0 < 4p < 64$$
  
 $0$ 

$$\checkmark \checkmark 0$$

(4)

### OR/OF

$$x^{2} + 8x + 16 = p$$
$$x^{2} + 8x + 16 - p = 0$$

Roots are real and unequal:

$$8^{2}-4(16-p)>0$$

$$4p>0$$

$$p>0$$
Roots are: 
$$\frac{-8\pm\sqrt{4p}}{2}$$

For both roots to be negative:

$$\sqrt{4p} < 8$$

$$4p < 64$$

$$p < 16$$

$$0$$

$$\begin{array}{cccc}
\checkmark & 0 \\
\checkmark & 16 \\
\checkmark & \checkmark & 0$$

[24]



| 2.2.1 | 2k-7; $k+8$ and $2k-1$                                                                                                                                                                           |                                                |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|
|       | k+8-(2k-7)=2k-1-(k+8)                                                                                                                                                                            | ✓<br>1 0 (21 7) 21 1 (1 0)                     |
|       | -k+15=k-9                                                                                                                                                                                        | k+8-(2k-7)=2k-1-(k+8)                          |
|       | 2k = 24                                                                                                                                                                                          |                                                |
|       | k = 12                                                                                                                                                                                           | $\checkmark k = 12$                            |
|       | 2k-7; $k+8$ and $2k-1$                                                                                                                                                                           | /17                                            |
|       | 17;20;23                                                                                                                                                                                         | $\checkmark 17$ $\checkmark d = 3$             |
|       | d=3                                                                                                                                                                                              | $\mathbf{V}  d = 3$                            |
|       | $T_{15} = 17 + 14(3)$                                                                                                                                                                            |                                                |
|       | = 59                                                                                                                                                                                             | $\checkmark T_{15} = 59$                       |
|       |                                                                                                                                                                                                  | (5)                                            |
| 2.2.2 | Sequence is 17; 20; 23; 26; 29; 32<br>Every alternate term of the sequence will be even / Elke tweede term van die ry sal ewe wees $20 + 26 + 32 +$<br>$S_{30} = \frac{30}{2} [2(20) + (29)(6)]$ | ✓ $20 + 26 + 32 + \dots$<br>✓ $a = 20$ $d = 6$ |
|       | =15[40+174]                                                                                                                                                                                      | ✓ subst into correct formula                   |
|       | = 3210                                                                                                                                                                                           | ✓ answer                                       |
|       | OR/OF                                                                                                                                                                                            | (4)                                            |
|       | $T_{30} = 20 + 29(6)$                                                                                                                                                                            | $\checkmark  a = 20  d = 6$                    |
|       | = 94                                                                                                                                                                                             |                                                |
|       |                                                                                                                                                                                                  | $I = T_{30} = 94$                              |
|       | $S_{30} = \frac{30}{2} (20 + 194)$                                                                                                                                                               | $\checkmark S_{30} = \frac{30}{2} (20 + 194)$  |
|       | = 3210                                                                                                                                                                                           | ✓ answer                                       |
|       |                                                                                                                                                                                                  | (4)                                            |
|       |                                                                                                                                                                                                  |                                                |

[18]

| 3.1 | a + ar = 2        |
|-----|-------------------|
|     | a(1+r)=2          |
|     | $a = \frac{2}{a}$ |

OR/OF
$$\frac{a}{1-r} - 2 = \frac{1}{4}$$

$$4a - 8(1-r) = 1-r$$

$$4a - 8 + 8r = 1-r$$

$$4a = 9-9r$$

$$a = \frac{9-9r}{4}$$

## OR/OF

$$S_n = \frac{a(r^n - 1)}{r - 1}$$

$$2 = \frac{a(r^2 - 1)}{r - 1}$$

$$2 = \frac{a(r - 1)(r + 1)}{r - 1}$$

$$2 = a(r + 1)$$

$$a = \frac{2}{r + 1}$$

#### OR/OF

$$\frac{ar^2}{1-r} = \frac{1}{4}$$
$$a = \frac{1-r}{4r^2}$$

$$\checkmark a + ar = 2$$

$$\checkmark a = \frac{2}{1+r} \tag{2}$$

$$\checkmark \frac{a}{1-r} - 2 = \frac{1}{4}$$

$$\checkmark a = \frac{9 - 9r}{4} \tag{2}$$

### OR/OF

$$\checkmark 2 = \frac{a(r^2 - 1)}{r - 1}$$

$$\checkmark a = \frac{2}{1+r}$$

## OR/OF

$$\checkmark \frac{ar^2}{1-r} = \frac{1}{4}$$

$$\checkmark a = \frac{1 - r}{4r^2}$$

(2)

(2)

NSC/NSS - Marking Guidelines/Nasienriglyne

3.2

$$S_{\infty} = T_1 + T_2 + \sum_{n=3}^{\infty} T_n$$

$$S_{\infty} = 2 + \frac{1}{4}$$

$$\frac{a}{1-r} = 2 + \frac{1}{4}$$

$$\frac{a}{1-r} = \frac{9}{4}$$

$$\left(\frac{2}{1+r}\right) \times \left(\frac{1}{1-r}\right) = \frac{9}{4}$$

$$\frac{2}{1-r^2} = \frac{9}{4}$$

$$8 = 9 - 9r^2$$

$$9r^2 = 1$$

$$r = \frac{1}{3}$$

$$a = \frac{3}{2}$$

 $\checkmark S_{\infty} = 2 + \frac{1}{4}$   $\checkmark \frac{a}{1 - r} = \frac{9}{4}$ 

$$\checkmark \frac{a}{1-r} = \frac{9}{4}$$

 $\checkmark$  substitution of a into the correct formula

$$9r^2 = 1$$

$$\checkmark r = \frac{1}{3}$$

$$\checkmark 9r^2 = 1$$

$$\checkmark r = \frac{1}{3}$$

$$\checkmark a = \frac{3}{2}$$

(6)

OR/OF

$$S_{\infty} = T_1 + T_2 + \sum_{n=3}^{\infty} T_n$$

$$S_{\infty} = 2 + \frac{1}{4}$$

$$\frac{a}{1-r} = 2 + \frac{1}{4}$$

$$\frac{a}{1-r} = \frac{9}{4}$$

$$4a = 9 - 9r$$

$$r = \frac{9-4a}{9}$$

$$a + a \left(\frac{9 - 4a}{9}\right) = 2$$

$$9a + 9a - 4a^2 = 18$$

$$2a^2 - 9a + 9 = 0$$
$$(a-3)(2a-3) = 0$$

$$a = \frac{3}{2} \quad \text{or} \quad a = 3$$

$$r = \frac{1}{3}$$
 or  $r = -\frac{1}{3}$ 

N/A

OR/OF

$$\checkmark S_{\infty} = 2 + \frac{1}{4}$$

$$\checkmark \frac{a}{1-r} = \frac{9}{4}$$

$$\checkmark r = \frac{9 - 4a}{9}$$

 $\checkmark$  substitution of a into the correct formula

$$\checkmark a = \frac{3}{2}$$

NSC/NSS - Marking Guidelines/Nasienriglyne

OR/OF

$$r = \frac{2 - a}{a}$$

$$\frac{ar^2}{1-r} = \frac{1}{4}$$

$$4ar^{2} = 1 - r$$

$$4a\left(\frac{2-a}{a}\right)^2 = 1 - \frac{2-a}{a}$$

$$16 - 16a + 4a^2 = 2a + 2$$

$$2a^2 - 9a + 9 = 0$$

$$(2a-3)(a-3)=0$$

$$a = \frac{3}{2} \qquad a \neq 3$$

$$a \neq 3$$

$$r = \frac{1}{3}$$

$$r = \frac{1}{3} \qquad \qquad r \neq -\frac{1}{3}$$

OR/OF

$$S_{\infty} = T_1 + T_2 + \sum_{n=3}^{\infty} T_n$$

$$S_{\infty} = 2 + \frac{1}{4}$$

$$\frac{a}{1-r} = 2 + \frac{1}{4}$$

$$\frac{a}{1-r} = \frac{9}{4}$$

$$\left(\frac{1-r}{4r^2}\right) \times \left(\frac{1}{1-r}\right) = \frac{9}{4}$$

$$\frac{1}{4r^2} = \frac{9}{4}$$

$$9r^2 - 1$$

$$r = \frac{1}{3}$$

$$a = \frac{3}{2}$$

$$\checkmark r = \frac{1}{3}$$
 (6)

OR/OF

$$\checkmark r = \frac{2-a}{a}$$

$$\checkmark \frac{ar^2}{1-r} = \frac{1}{4}$$

✓ substitution of a

$$\checkmark (2a-3)(a-3)=0$$

$$\checkmark a = \frac{3}{2}$$

$$\checkmark r = \frac{1}{3}$$

OR/OF

$$\checkmark S_{\infty} = 2 + \frac{1}{4}$$

$$\checkmark \frac{a}{1 - r} = \frac{9}{4}$$

$$\checkmark \frac{a}{1-r} = \frac{9}{4}$$

✓ substitution of a

$$\checkmark 9r^2 = 1$$

$$\checkmark r = \frac{1}{3}$$

$$\checkmark a = \frac{3}{2}$$

[8]

(6)

(6)

| 4.1 | $f(x) = -ax^2 + bx + 6$                      |                                                          |
|-----|----------------------------------------------|----------------------------------------------------------|
|     | f'(x) = -2ax + b                             |                                                          |
|     | -2ax + b = 3                                 | $\sqrt{-2ax+b}$                                          |
|     | at x = -1                                    |                                                          |
|     | 2a + b = 3  [1]                              | $\checkmark \checkmark 2a + b = 3$                       |
|     |                                              |                                                          |
|     | $f(-1) = \frac{7}{2}$                        |                                                          |
|     | $-a-b+6=\frac{7}{2}$                         | $\checkmark -a-b+6=\frac{7}{2}$                          |
|     | -2a-2b+12=7                                  |                                                          |
|     | 2a + 2b = 5  [2]                             | ✓ solve simultaneously                                   |
|     | [2]-[1]                                      | (5)                                                      |
|     | b = 2                                        | (5)                                                      |
|     | 2a + 2 = 3                                   |                                                          |
|     | $a=\frac{1}{2}$                              |                                                          |
|     | 2                                            |                                                          |
|     | OR/OF                                        |                                                          |
|     | f'(x) = -2ax + b                             |                                                          |
|     | 3 = 2a + b                                   |                                                          |
|     | b = 3 - 2a                                   | $\sqrt{-2ax+b}$                                          |
|     |                                              | $\checkmark -2ax + b$ $\checkmark \checkmark 2a + b = 3$ |
|     | $\frac{7}{2} = -a(-1)^2 + (3-2a)(-1) + 6$    |                                                          |
|     | _                                            | ✓                                                        |
|     | $a+3=\frac{7}{2}$                            | $\frac{7}{2} = -a(-1)^2 + (3-2a)(-1) + 6$                |
|     | $a = \frac{1}{a}$                            |                                                          |
|     | $a = \frac{1}{2}$                            | ✓ solve simultaneously                                   |
|     | b = 2                                        | (5)                                                      |
| 4.2 | $f(x) = -\frac{1}{2}x^2 + 2x + 6$            |                                                          |
|     | x – intercepts :                             | 1                                                        |
|     | $-\frac{1}{2}x^2 + 2x + 6 = 0$               | $\checkmark -\frac{1}{2}x^2 + 2x + 6 = 0$                |
|     | $-x^2 + 4x + 12 = 0$                         |                                                          |
|     | $-x^{2} + 4x + 12 = 0$ $x^{2} - 4x - 12 = 0$ | $\left  \checkmark \left( -2;0\right) \right $           |
|     | (x-6)(x+2) = 0                               | $\checkmark (-2;0)$ $\checkmark (6;0)$                   |
|     | (x-6)(x+2)=0<br>(-2;0) (6;0)                 |                                                          |
|     | ( 2,0) (0,0)                                 | (3)                                                      |



| QUES    | STION/VRAAG 5                                                                                                        |                                                             |      |
|---------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|------|
| 5.1     | $y \in R$ ; $y \neq -1$<br><b>OR</b> / <b>OF</b>                                                                     | ✓✓ answer                                                   |      |
|         | y < -1 or $y > -1OR/OF$                                                                                              | unswer                                                      |      |
|         | $y \in (-\infty; -1)$ or $y \in (-1; \infty)$<br>$\mathbf{OR}/\mathbf{OF}$<br>$R - \{-1\}$                           |                                                             | (2)  |
| 5.2     | D(2;-1)                                                                                                              | ✓ D(2; -1)                                                  |      |
|         | $g(x) = \frac{2}{x-2} - 1$ $f(x) = \log_3 x.$                                                                        | $\checkmark D(2;-1)$ $\checkmark \frac{2}{x-2} - 1$         | (2)  |
| 5.3     |                                                                                                                      |                                                             |      |
|         | $\log_3 t = 1$ <b>OR/OF</b> $g(x) = \frac{2}{x-2} - 1$                                                               | ✓ correct substitution of $\checkmark$ $\checkmark$ $t = 3$ | Α    |
|         | t=3                                                                                                                  | t = 3                                                       | (3)  |
|         | $1 = \frac{2}{t-2} - 1$                                                                                              |                                                             |      |
|         | $2 = \frac{2}{t - 2}$                                                                                                |                                                             |      |
|         | 2t - 4 = 2 $t = 3$                                                                                                   |                                                             |      |
| 5.4     | $x = \log_3 y$                                                                                                       | ✓ interchange $x$ and $y$                                   |      |
|         | $y = 3^x$                                                                                                            | $\checkmark y = 3^x$                                        | (2)  |
| 5.5     | $3^x < 3^1$                                                                                                          | $\checkmark 3^x < 3^1$                                      |      |
|         | x < 1                                                                                                                | $\checkmark x < 1$                                          |      |
|         |                                                                                                                      |                                                             | (2)  |
|         | $OR/OF$ $3^x < 3^1$                                                                                                  | $\checkmark 3^x < 3^1$                                      |      |
|         | $x \in (-\infty; 1)$                                                                                                 | $\checkmark x \in (-\infty; 1)$                             |      |
|         | . ( , )                                                                                                              |                                                             | (2)  |
| 5.6     | Equation of the axis of symmetry: $y = -x + 1$                                                                       | ✓✓ equation of axis of                                      |      |
|         | x-intercept of the axis of symmetry is at $x = 1$                                                                    | symmetry                                                    |      |
|         | f has an x-intercept at B(1; 0) which is the same as the                                                             |                                                             |      |
|         | x-intercept of the axis of symmetry                                                                                  | (D. o., (1 : 0)                                             |      |
|         | Point of intersection: B (1; 0)                                                                                      | ✓B or (1;0)                                                 |      |
|         | OR/OF                                                                                                                | OR/OF                                                       |      |
|         | Since $BE = ED = 1$ and D lies on the axis of symmetry                                                               | UN/UF                                                       |      |
|         | and the gradient of the axis of symmetry is $-1$ , B will also lie on the axis of symmetry. But B also lies on $f$ . | $\checkmark$ BE = ED = 1                                    |      |
|         | Therefore B(1; 0) is the point of intersection between f                                                             |                                                             |      |
|         | and the axis of symmetry with a negative gradient./                                                                  | ✓ B or (1;0)                                                |      |
|         | Omdat BE = ED = 1 en D op die simmetrie-as lê en die                                                                 | , ,                                                         |      |
|         | simmetrie-as se gradiënt –1 is, sal B ook op die<br>simmetrie-as lê. Maar B lê ook op f. Dus is B(1; 0) die          |                                                             |      |
|         | snypunt van f en die simmetrie-as met negatiewe                                                                      |                                                             | (3)  |
|         | gradiënt.                                                                                                            |                                                             | [14] |
| <b></b> |                                                                                                                      | i                                                           |      |

| 6.1   | $A = P(1+i)^n$                                                                                                                                     |                                                                                                                                                    |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
|       | $12 \ 146,72 = 10 \ 000 \left(1 + \frac{r}{12}\right)^{36}$                                                                                        | $\checkmark \frac{r}{12}$ $\checkmark n = 36$                                                                                                      |
|       | $\left(1 + \frac{r}{12}\right)^{36} = 1,214672$                                                                                                    | ✓ correct substitution into formula                                                                                                                |
|       | $1 + \frac{r}{12} = \sqrt[36]{1,214672}$ $= 1,005416$                                                                                              | $\checkmark 1 + \frac{r}{12} = \sqrt[36]{1,214672}$                                                                                                |
|       | $\frac{r}{12} = 0,005416$ $r = 0,06500$                                                                                                            |                                                                                                                                                    |
|       | r = 6.5%                                                                                                                                           | ✓ 6,5%<br>(5)                                                                                                                                      |
| 6.2.1 | $P = \frac{x \left[1 - (1+i)^{-n}\right]}{i}$                                                                                                      |                                                                                                                                                    |
|       | $235 \ 000 = \frac{x \left[ 1 - \left( 1 + \frac{0.11}{12} \right)^{-54} \right]}{\frac{0.11}{12}}$                                                | $ √ i = \frac{0.11}{12} $ $ √ n = 54 $ $ √ correct substitution in P $                                                                             |
|       | $x = \frac{235\ 000 \times \frac{0,11}{12}}{\left[1 - \left(1 + \frac{0,11}{12}\right)^{-54}\right]}$                                              |                                                                                                                                                    |
|       | = R5 536,95                                                                                                                                        | ✓ answer                                                                                                                                           |
|       | His monthly instalment is R 5 536,95                                                                                                               | (4)                                                                                                                                                |
| 6.2.2 | Amount paid for the year : $(5\ 536,95 \times 12) = R66\ 443,40$                                                                                   | ✓ R66 443,40                                                                                                                                       |
|       | Balance = 235 000 $\left(1 + \frac{0,11}{12}\right)^{12} - \frac{5536,95 \left[\left(1 + \frac{0,11}{12}\right)^{12} - 1\right]}{\frac{0,11}{12}}$ | $\checkmark 235\ 000 \left(1 + \frac{0.11}{12}\right)$ $\checkmark \frac{5\ 536.95 \left[ \left(1 + \frac{0.11}{12}\right)^{12} - 1\right]}{0.11}$ |
|       | = 192 296,17                                                                                                                                       | $\frac{6,11}{12}$ ✓ R192 296,17                                                                                                                    |
|       | Interest = $(5\ 536,95 \times 12) - (235\ 000 - 192\ 296,17)$<br>= $66\ 443,40\ - 42\ 703,83$<br>= $23\ 739,57$                                    | ✓ R42 703,83<br>✓ R23 739,57                                                                                                                       |
|       | OR/OF                                                                                                                                              | OR/OF                                                                                                                                              |

| NSC/NSS - Marking Gu | iidelines/Nasienriglyne |
|----------------------|-------------------------|
|----------------------|-------------------------|

Total amount paid in first year =  $R 5 536.95 \times 12$ = R66443,40✓ R66 443,40 Balance on loan after 1 year = P of remaining installments ✓ substitution into correct formula = R192 296,20✓ R192 296,20 Amount paid off in the first year:  $R235\ 000 - R192\ 296,20 = R42\ 703,80$ ✓ R42 703,80 Amount of interest = R66443,40 - R42703,80= R23739,60✓ R23 739,60 (6)OR/OF OR/OF = R 62 648,18✓ R62 648,18  $235\ 000 - 62\ 648, 18 = R172\ 351, 82$ ✓ R172 351,82 After 12 months, money owed on house is  $172\ 351,82 \left(1 + \frac{0,11}{12}\right)^{12}$ =192296,17✓ R192 296,17 Amount paid after 12 months is  $5536,95 \times 12 = R66443,40$ ✓ R66 443,40 Amount of interest paid: R 66 443, 40 – (235 000 – 192 296,17) ✓ 235 000 – 192 296,17 = R 23 739, 57✓ R23 739,57 (6) [15]

| 7.1   | $f(x+h) = 2(x+h)^2 - (x+h)$                                       |                                                                                          |
|-------|-------------------------------------------------------------------|------------------------------------------------------------------------------------------|
|       | $= 2(x^2 + 2xh + h^2) - x - h$                                    | $\checkmark 2 x^2 + 4xh + 2h^2 - x - h$                                                  |
|       | $= 2 x^2 + 4xh + 2h^2 - x - h$                                    |                                                                                          |
|       | $f(x+h) - f(x) = 2x^2 + 4xh + 2h^2 - x - h - 2x^2 + x$            | $\checkmark 4xh + 2h^2 - h$                                                              |
|       | $=4xh+2h^2-h$                                                     | f(x+h)-f(x)                                                                              |
|       | $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$                  | $\checkmark f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$                              |
|       | $=\lim_{h\to 0}\frac{4xh+2h^2-h}{h}$                              | ✓subst. into formula                                                                     |
|       | $=\lim_{h\to 0}\frac{h(4x+2h-1)}{h}$                              | $\checkmark \lim_{h\to 0} (4x+2h-1)$                                                     |
|       | $=\lim_{h\to 0} (4x+2h-1)$                                        |                                                                                          |
|       | = 4x - 1                                                          | $\checkmark 4x - 1$                                                                      |
|       | OR/OF                                                             | OR/OF                                                                                    |
|       | $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$                  | $\checkmark f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$                              |
|       | $= \lim_{h \to 0} \frac{2(x+h)^2 - (x+h) - (2x^2 - x)}{h}$        | ✓subst. into formula                                                                     |
|       | $= \lim_{h \to 0} \frac{2x^2 + 4xh + 2h^2 - x - h - 2x^2 + x}{h}$ | $\checkmark 2x^2 + 4xh + 2h^2 - x - h$                                                   |
|       | "                                                                 | $\checkmark 4xh + 2h^2 - h$                                                              |
|       | $=\lim_{h\to 0}\frac{4xh+2h^2-h}{h}$                              | $\checkmark \lim_{h\to 0} (4x+2h-1)$                                                     |
|       | $= \lim_{h \to 0} \frac{h(4x + 2h - 1)}{h}$                       | $h \to 0$                                                                                |
|       | · ·                                                               |                                                                                          |
|       | $=\lim_{h\to 0} \left(4x+2h-1\right)$                             | $\checkmark 4x-1$                                                                        |
|       | =4x-1                                                             | (6)                                                                                      |
| 7.2.1 |                                                                   |                                                                                          |
|       | $=D_x(3x^2-4x-7)$                                                 | $\checkmark 3x^2 - 4x - 7$ $\checkmark 6x - 4$ (2)                                       |
|       | =6x-4                                                             | (2)                                                                                      |
| 7.2.2 | $y = \sqrt{x^3 - \frac{5}{x} + \frac{1}{2}\pi}$                   | 3                                                                                        |
|       | $\begin{array}{cccc} x & 2 \\ & & & 1 \end{array}$                | $\sqrt{x^{2}-5x^{-1}}$                                                                   |
|       | $y = x^{\frac{3}{2}} - 5x^{-1} + \frac{1}{2}\pi$                  | $\sqrt{x^{\frac{3}{2}} - 5x^{-1}}$ $\sqrt{\frac{3}{2}x^{\frac{1}{2}}}$ $\sqrt{+5x^{-2}}$ |
|       | $\frac{dy}{dx} = \frac{3}{2}x^{\frac{1}{2}} + 5x^{-2}$            | $\checkmark +5x^{-2}$                                                                    |
|       | $\int dx = 2^{n}$                                                 | $\checkmark$ derivative of $\frac{1}{2}\pi$ is 0                                         |
|       |                                                                   | (4)                                                                                      |
|       |                                                                   | [12]                                                                                     |

|       | ≠ 1                                                                                                                                                                                                                                                                                                                             | (2)<br>[15]                                                                                            |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
|       | $f'(2) = 3(2)^{2} - 12(2) + 9$ $= -3$                                                                                                                                                                                                                                                                                           |                                                                                                        |
|       | OR/OF                                                                                                                                                                                                                                                                                                                           |                                                                                                        |
|       | Between $x = 1$ and $x = 3$ the graph of $f$ is decreasing.<br>Therefore at $x = 2$ the gradient will have a negative value.<br>Stem nie saam met Claire nie, want haar stelling in verkeerd.<br>Die grafiek van $f$ is dalend/afnemend tussen $x = 1$ en $x = 3$ .<br>By $x = 2$ moet die gradiënt dus 'n negatiewe waarde hê. | ✓justification                                                                                         |
| 8.4.2 | Do not agree with Claire as her statement is incorrect.                                                                                                                                                                                                                                                                         | ✓7 (2)<br>✓no                                                                                          |
| 8.4.1 | y = -f(x) will be concave down for $x > 2$ $(3,7)$                                                                                                                                                                                                                                                                              | $\checkmark \checkmark x > 2 $ $\checkmark 3$ (2)                                                      |
| 8.3   | f concave up for $x > 2$                                                                                                                                                                                                                                                                                                        | (4)                                                                                                    |
| 8.2   | (1;4)<br>(0;0)<br>(3;0)                                                                                                                                                                                                                                                                                                         | ✓ shape<br>✓ (0; 0)<br>✓ (3; 0) as TP<br>✓ (1; 4)                                                      |
|       | Point of inflection at $x = 2$                                                                                                                                                                                                                                                                                                  | (5)                                                                                                    |
|       | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                           | ✓ explanation                                                                                          |
| 8.1   | $f(x) = x^{3} - 6x^{2} + 9x$ $f'(x) = 3x^{2} - 12x + 9$ $f''(x) = 6x - 12 = 0$ $x = 2$                                                                                                                                                                                                                                          | $\checkmark x^3 - 6x^2 + 9x$ $\checkmark 3x^2 - 12x + 9$ $\checkmark 6x - 12$ $\checkmark 6x - 12 = 0$ |

$$y = x^{2} + 2$$

$$P(x; x^{2} + 2)$$

$$B(0:3)$$

PB<sup>2</sup> = 
$$(x-0)^2 + (x^2 + 2 - 3)^2$$
  
=  $x^2 + x^4 - 2x^2 + 1$ 

$$=x^4-x^2+1$$

PB will be a minimum if PB<sup>2</sup> is a minimum

$$\frac{d(PB^2)}{dx} = 4x^3 - 2x$$

$$4x^3 - 2x = 0$$

$$x(2x^2-1)=0$$

$$x = 0$$
 or  $x^2 = \frac{1}{2}$ 

$$x = \frac{1}{\sqrt{2}}$$

$$PB^{2} = \left(\frac{1}{\sqrt{2}}\right)^{4} - \left(\frac{1}{\sqrt{2}}\right)^{2} + 1$$
$$= \frac{1}{4} - \frac{1}{2} + 1$$

$$=\frac{3}{4}$$

$$PB = \frac{\sqrt{3}}{2} = 0.87$$

$$\checkmark (x-0)^2 + (x^2+2-3)^2$$

$$\checkmark x^4 - x^2 + 1$$

$$\sqrt{4x^3-2x}$$

$$\checkmark \frac{d(PB^2)}{dx} = 0$$

$$\checkmark x = \frac{1}{\sqrt{2}}$$

$$\checkmark PB^2 = \left(\frac{1}{\sqrt{2}}\right)^4 - \left(\frac{1}{\sqrt{2}}\right)^2 + 1$$

✓ answer

OR/OF

OR/OF

Gradient of tangent to curve = 2x

Gradient of line joining B and the curve  $= \frac{x^2 + 2 - 3}{x - 0}$  $= \frac{x^2 - 1}{x}$ 

Shortest distance will be where tangent to curve is perpendicular to the line joining P and the curve.

$$\frac{x^2 - 1}{x} = -\frac{1}{2x}$$

$$2x(x^2 - 1) = -x$$

$$2x^3 - 2x = 0$$

$$x(2x^2 - 1) = 0$$

$$x = 0 \quad \text{or} \quad x^2 = \frac{1}{2}$$

$$x = \frac{1}{\sqrt{2}}$$

$$PB^2 = \left(\frac{1}{\sqrt{2}}\right)^4 - \left(\frac{1}{\sqrt{2}}\right)^2 + 1$$

$$= \frac{1}{4} - \frac{1}{2} + 1$$

$$= \frac{3}{4}$$

$$PB = \frac{\sqrt{3}}{2} = 0,87$$

#### OR/OF

 $P(k; k^2 + 2)$  and B(0; 3)

BP  $\perp$  tangent passing through  $y = x^2 + 2$  at P.

$$m_{\text{tangent at P}} = 2k$$

$$m_{\rm BP} = -\frac{1}{2k}$$

Equation of BP:  $y = \left(-\frac{1}{2k}\right)x + 3$ 

$$y_{\rm P} = \left(-\frac{1}{2k}\right)(k) + 3 = 2,5$$

 $\Rightarrow k^2 + 2 = 2.5$  and so  $k = \sqrt{0.5}$  and  $P(\sqrt{0.5}; 2.5)$ 

BP = 
$$\sqrt{(\sqrt{0.5} - 0)^2 + (2.5 - 3)^2} = \sqrt{\frac{3}{4}} = \frac{\sqrt{3}}{2} = 0.87$$

$$\checkmark = 2x$$

$$\checkmark = \frac{x^2 - 1}{x}$$

$$\checkmark \frac{x^2-1}{x} = -\frac{1}{2x}$$

$$\checkmark 2x^3 - 2x = 0$$

$$\checkmark x = \frac{1}{\sqrt{2}}$$

$$\checkmark PB^2 = \left(\frac{1}{\sqrt{2}}\right)^4 - \left(\frac{1}{\sqrt{2}}\right)^2 + 1$$

✓ answer

#### OR/OF

$$\checkmark P(k;k^2+2)$$

$$\checkmark m_{\text{tangent at }P} = 2k$$

$$\checkmark m_{BP} = -\frac{1}{2k}$$

$$\checkmark y = \left(-\frac{1}{2k}\right)x + 3$$

$$\checkmark$$
 value of  $y$  at P

✓ value of 
$$k$$

[7]



#### QUESTION/VRAAG 11

| 11.1 |    | 5 x 5 x 10 x 9<br>2250 |             |                                                                                           |                                                 | $ \begin{array}{c cccc} \checkmark 5 x 5 \\ \checkmark 10 x 9 \\ \checkmark 2250 \end{array} (3) $ |
|------|----|------------------------|-------------|-------------------------------------------------------------------------------------------|-------------------------------------------------|----------------------------------------------------------------------------------------------------|
| 11.2 |    |                        |             | Digits  10  10 x 9  10 x 9 x 8  10 x 9 x 8 x 7  10 x 9 x 8 x 7 x 6  re digits will ensure | Total  250 2 250 18 000 126 000 756 000  unique | √ 5 x 5 x 10 x 9 x 8 x 7 x 6<br>✓ five digits (3) [6]                                              |
|      | nu | mbers for 700          | 000 clients | 5.                                                                                        |                                                 |                                                                                                    |

TOTAL/TOTAAL:

150