

IUT, Départeme	nt Génie Electrique & Informatique Industrielle	Version	3.0	
4, Avenue de Va	arsovie 16021 Angoulême Cedex	Auteur:	Date	
Nature du	Spécifications techniques	LUCAS Régis	20/09/2023	
document:				
Référence du Projet :		Relecture	Date	
Carte	de commande des moteurs			
	Ranc de test			

Description fonctionnelle

Cette carte permet de faire l'interface entre les signaux de commande des moteurs issus d'une carte programmable (non fournie ici) et des moteurs à courant continu du robot suiveur de ligne par exemple.

L'alimentation (connecteur P1) typique est de 5V entre VCC et GND

Les signaux de commande (connecteur P3) Mx_EN et Mx_Ix acceptent des niveaux standard TTL :

- Niveau logique bas entre 0 V et 0,8 V (V_{IL}), et niveau logique haut entre 2,0 V et 5 V (V_{IH})
- Forme d'onde: PWM admise jusqu'à 20KHz avec Rapport Cyclique entre 0 et 100%

Les sorties (connecteurs P2 et P4) peuvent fournir

ou absorber un courant maximum $I_{OM}=800 mA$ pendant un temps infini avec une température ambiante de $25^{\circ}C$.

Conformément au circuit intégré L298 utilisé sur cette carte, deux moteurs sont commandables par l'intermédiaire du connecteur P3, de la manière suivante, avec Ven= Mx_EN C=Mx_I1 et D=Mx_I2.

Figure 1 tirée de https://www.sparkfun.com/datasheets/Robotics/L298_H_Bridge.pdf

Remarque : Sur notre carte +VSS est relié à +VS et à VCC.

Caractéristiques électriques : (Charge avec résistance pure)

Caractéristique	Conditions de mesures	Valeur			
		min	typ	max	Unité
Tension d'alimentation Vcc (V)		4	5	6	V
Consommation en courant à vide Icc(mA)	Vcc = 5 V			20	mA
Saturation typique niveau haut	Vcc=5V, Iout=I _{OM}		1,3	1,4	V
Saturation typique niveau bas	Vcc=5V, Iout=- I _{OM}		1,1	1,2	V
Retard temps de monté et descente	Vcc=5V		,	,	
T1(Vi) Turn on delay			1,5		μs
T2(Vi) Fall time			0,2		μs
T3(Vi) Turn on delay			2		μs
T4(Vi) Rise time			0,7		μs
T5(Vi) Turn off delay			0,7		μs
T6(Vi) Fall time			0,25		μs
T7(Vi) Turn on delay			1,6		μs
T8(Vi) Rise time			0,2		μs
T1(Ven) Turn off delay			3		μs
T2(Ven) Fall time			1		μs
T3(Ven) Turn on delay			0,3		μs
T4(Ven) Rise time			0,4		μs
T5(Ven) Turn off delay			2,2		μs
T6(Ven) Fall time			0,35		μs
T7(Ven) Turn on delay			0,25		μs
T8(Ven) Rise time			0,1		μs

Caractéristiques environnementales :

Caractéristique	Conditions de mesures	Valeur		
		min	typ	max
Température de fonctionnement (°C) α=50%	Vcc = 5 V, Iout=I _{OM}	0		55

Caractéristiques typiques avec banc de test (iut Ang)

Consommation à vide moteur à l'arrêt VCC = 5V, Vlogic=0V, PWM=0V, moteur positionné pour avoir la sortie capteur fourche au niveau haut : Icmax=25mA

Consommation maximum 1 moteur bloqué VCC=5V, capteur fourche au niveau haut : Icmax=800mA

Caractéristiques mécaniques :

