Avalutter 3.6 med et kjeglemitt som bler en hyperbel:
$$-3x^{2} + 4y^{2} + 6x + 32y + 49 = 0$$

$$-3x^{2} + 6x - 3 + 4y^{2} + 32y + 64 + 49 + 3 - 64 = 0$$

$$-3(x^{2} - 2x + 1) + 4(y + 4)^{2} = 12$$

$$\frac{(y + 4)^{2}}{3} - \frac{(x - 1)^{2}}{4} = 1 \implies \frac{(y + 4)^{2}}{3} - \frac{(x - 1)^{2}}{2} = 1 \implies \frac{(y + 4)^{2}}{3} - \frac{(x - 1)^{2}}{3} = 1 \implies \frac{(y + 4)^{2}}{3} - \frac{(x - 1)^{2}}{3} = 1 \implies \frac{(y + 4)^{2}}{3} - \frac{(x - 1)^{2}}{3} = 1 \implies \frac{(y + 4)^{2}}{3} - \frac{(x - 1)^{2}}{3} = 1 \implies \frac{(y + 4)^{2}}{3} - \frac{(y + 4)^{2}}{3} = 1 \implies \frac{(y + 4)^{2}}{3} - \frac{(y + 4)^{2}}{3} = 1 \implies \frac{(y$$

3.7 Grafisk fremstilling av skalarfelt.

Hjelpemiller til å tegre skalarfelt:

1. Regn ut plott nivakurrene. Nivakurrene til f(x,y)

 $N_{c} = \{ (x,y) : f(x,y) = c \}$

N'waene (kan es ongé selv, eller markenen kan regne

de it for one

2. Tegne nok punkter (x, y, f(x,y)); vommet, forbinder plottepunktene med linjer eller flater.

3. Tegne tverssait av frankisjonen: saitt med flater som er parallelle med XZ-planet eller yz-planet.

Example 3.7.1 $f(x,y) = x^2 + 4y^2$ néváburver: $x^2 + 4y^2 = C \Leftrightarrow \frac{x}{(v_c)^2} + \frac{y}{(v_c)^2} = 1$ Sor at dette er en ellipse med store halvabes $a = v_c$ lille halvabes $b = \frac{v_c}{2}$

plot 3 (x, 2005(...), x.2)

Treasnitt: snitt med XZ-planet: $Z=X^2$ snitt med yZ-planet: $Z=4y^2$ porabler.

Example 3.7.2 $f(x,y) = x^2 - y^2$ nivakurvar: $x^2 - y^2 = C \Leftrightarrow \frac{x^2}{(v_c)^2} - \frac{y^2}{(v_c)^2} = 1$ Dette Klin hyperbler med asymptoter $y = \pm \frac{b}{a}x = \pm x$ sentrum; origo Therrowit: x = 0 $z = -y^2$ old er parable. $y = \pm \frac{b}{a}x = \pm x$ Eksempel 3.7.3

Polarkordinater kan også vare gode
hjelpevnidler til å tegne en flate. $x = v \cos \theta$, $y = v \sin \theta$ $v^2 = x^2 + y^2$ La oss 2e på $z = e^2$ $z = e^2$ $z = e^{-v}$ fis ved å dreie denne

om z-aksen

3.7.1 Funkajoner i tre voriable wir aflater/ nu " () $N_c = \{(x,y,z) \mid f(x,y,z) = C \}$ En mête à circulisere poi: Tegne tvensatt der ci truker andre koordinatsysteener. sylinderkoordinater (v, θ, z) | kulckoordinater (ρ, θ, ϕ) $x = \rho \cos \theta \sin \phi$ $y = \rho \sin \theta \sin \phi$ $x^{2} + y^{2} + z^{2} = \rho$ $z = \rho \cos \phi$ $z = \rho \cos \phi$ $\dot{X} = r\cos\theta \quad 3 \quad x^2 + y^2 = r^2$ $y = r\sin\theta \quad 3 \quad x^2 + y^2 = r^2$ 2-2 $f(x,y,z)=(x+y^2)e^{-z}$ $= r^2 \rho^{-2}$ niráflater nar á bruker kulckorð: er kuleskall, p=c. N'ua flater generelt: Det, 3,77 Nivållate for en trunksjon & detinest på ACR er (mod nivå C) No: { ZeA : f(2)=0 } Setning 3.7.8: Anta at f er derivertor i a. Hois ((a)=c, sa ster gradienten Vf(a) normalt på nivaflaten Nc i følgende forstand: Há Per en desnerbor kurre på vieaftaten (disf(P(t))=c, allet) og $\vec{v}(t_0) = \vec{a}$ Si gjelder of $\vec{v}(t_0) = 0$ Being: u(t) = f (r/t)) Kjenneregel: $u'(t) = \nabla f(P(t) \cdot P'(t))$ O siden f(2(t)) er konstant lik c

Tourgent planet I's f: A < R2 -> R ; (x , y , f(x , y ,)) or definent ved $Z = f(x_0, y_0) + \frac{\partial f}{\partial x}(x_0, y_0)(x - x_0) + \frac{\partial f}{\partial y}(x_0, y_0)(y - y_0)$ normaliektoren til denne er gitt ved $\hat{N} = -\frac{\partial f}{\partial x}(x_0, y_0) \vec{c} - \frac{\partial f}{\partial y}(x_0, y_0) \vec{l} + \vec{k}$ Vi definerer g(x,y,z) = z - f(x,y)gradiententilger $\sqrt[3]{(x_0,y_0)} = -\frac{\partial C}{\partial x}(x_0,y_0)^2 - \frac{\partial C}{\partial y}(x_0,y_0)^2 + k$, som er lik n, slik vi detinent den. Videre er flaten Z = f(x,y) on nivaflate for $g(N_0)$, befor or it normal pa flater. Tongentplant slik is definite det, står normalt på \vec{n} : $0 = \vec{n} \cdot ((x, y, z) - (x_0, y_0, f(x_0, y_0))) = \vec{n} \cdot ((x - x_0, y - y_0, z - f(x_0, y_0)))$ $-\frac{\partial f}{\partial x}(x_0,y_0)(x-x_0)-\frac{\partial f}{\partial y}(x_0,y_0)(y-y_0)+Z-f(x_0,y_0)$ $2 = f(x_0, y_0) + \frac{\partial f}{\partial x}(x_0, y_0)(x - x_0) + \frac{\partial f}{\partial y}(x_0, y_0)(y - y_0)$