III. Fonction dérivée

1) Fonction dérivable sur un intervalle

<u>Définition</u>: Soit f une fonction définie sur un intervalle I.

- \diamond On dit que f est dérivable sur I si elle admet un nombre dérivé f'(x) pour tout réel x de I.
- On appelle **fonction dérivée de** f **sur** I, notée f', la fonction définie sur I par $f': x \mapsto f'(x)$.

2) Dérivée de fonctions de référence

Pour tout x réel, on a les formules suivantes :

Fonction f	Dérivée f^\prime
f(x) = constante	f'(x) = 0
f(x) = ax + b	f'(x) = a
$f(x) = x^2$	$f'(x) = 2x^{2-1} = 2x$
$f(x) = x^3$	$f'(x) = 3 \times x^{3-1} = 3 \times x^2$

Propriété:

- ***** La fonction dérivée d'une fonction polynôme du second degré définie sur \mathbb{R} par $f(x) = ax^2 + bx + c$ est f'(x) = 2ax + b.
- ❖ La fonction dérivée d'une fonction polynôme du second degré définie sur \mathbb{R} par $f(x) = ax^3 + bx^2 + cx + d$ est $f'(x) = 3ax^2 + bx + c$.

Rem : si on connait les dérivées du tableau, on connait la propriété!

<u>Méthode</u>: Déterminer la fonction dérivée d'une fonction polynôme du second degré

Voir fiche d'activité dérivation de polynomes