เรื่อง อุปกรณ์ตรวจสอบใบหน้าและวัดอุณหภูมิ (Face Recognition with Temperature Checker Device)

โดย

นายกัปตัน พึ่งเป็นสุข

นายณกฤช ถิยงค์

นายภีรวิช ภักดีภิญโญ

โรงเรียนอุตรดิตถ์

รายงานฉบับนี้เป็นส่วนประกอบของโครงงานวิทยาศาสตร์ ระดับมัธยมศึกษาตอนปลาย ในการประกวดโครงงานวิทยาศาสตร์ จัดโดย สมาคมวิทยาศาสตร์แห่งประเทศไทยในพระบรมราชูปถัมภ์-องค์การพิพิธภัณฑ์วิทยาศาสตร์แห่งชาติเนื่องในวันวิทยาศาสตร์แห่งชาติ วันที่ 1 เดือนสิงหาคม พ.ศ. 2563

เรื่อง อุปกรณ์ตรวจสอบใบหน้าและวัดอุณหภูมิ (Face Recognition with Temperature Checker Device)

โดย

นายกัปตัน พึ่งเป็นสุข

นายณกฤช ลิยงค์

นายภีรวิช ภักดีภิญโญ

อาจารย์ที่ปรึกษา

นางดวงกมล อภิเดช

อาจารย์ที่ปรึกษาพิเศษ

นายวงกต จุลรังสี

ชื่อโครงงาน อุปกรณ์ตรวจสอบใบหน้าและวัดอุณหภูมิ

(Face Recognition with Temperature Checker Device)

ชื่อผู้จัดทำโครงงาน นายกัปตัน พึ่งเป็นสุข

นายณกฤช ลิยงค์

นายกีรวิช ภักดีกิญโญ

ชื่ออาจารย์ที่ปรึกษา นางควงกมล อภิเคช

นายวงกต จุลรังสี

โรงเรียน โรงเรียนอุตรดิตถ์

ที่อยู่ 15 ถนนอินใจมี ตำบลท่าอิฐ อำเภอเมือง จังหวัดอุตรดิตถ์ 53000

โทรศัพท์ 055-411-104 โทรสาร 055-414-074

ระยะเวลาในการทำโครงงาน 1 กันยายน – 23 กันยายน 2563

บทคัดย่อ

โครงงานอุปกรณ์ตรวจสอบใบหน้าและวัคอุณหภูมิ มีที่มาจากปัจจุบันประเทศไทยได้เข้าสู่ยุค 4.0 และมีสถานการณ์โรคระบาดของไวรัส COVID-19 ทำให้การคำเนินชีวิตในปัจจุบันของทุกคนเปลี่ยนแปลง ไปในลักษณะที่เรียกว่า New Normal เพื่อปรับเปลี่ยนการใช้ชีวิตให้เข้ากับสถานการณ์ในปัจจุบัน ดังนั้น คณะผู้จัดทำจึงเลิ่งเห็นความสำคัญของปัญหาดังกล่าว โดยนำเทคโนโลยีมาปรับใช้ในการสแกนบัตรเข้าโรงเรียน โดยการจัดทำเครื่องมือ Face Recognition ที่มีความสามารถในการตรวจสอบใบหน้า และวัดอุณหภูมิ เพื่อเก็บข้อมูลสำหรับการตรวจสอบการเข้าโรงเรียนและอุณหภูมิของนักเรียนและแจ้งผู้ปกครองผ่านแอปพลิเคชัน LINE เพื่อป้องกันการแพร่ระบาดของไวรัส COVID-19 โดยการจัดทำอุปกรณ์นี้มีจุดประสงค์เพื่อสึกษาผลของการจัดทำและพัฒนาอุปกรณ์ตรวจสอบใบหน้าและวัดอุณหภูมิ โดยมีผลการคำเนินงานดังนี้ เมื่อนำอุปกรณ์ตรวจสอบใบหน้าและวัดอุณหภูมิเทียบกับเครื่องวัดอุณหภูมิ NITKA HT-880DและHIP K3 พบว่าอุณหภูมิของทั้ง 3 อุปกรณ์มีความใกล้เคียงกันและมีค่าความคลาดเคลื่อนของใบหน้าร้อยละ 22.32 ซึ่งแสดงว่าอุปกรณ์มีความแม่นยำและเป็นมาตรฐานที่สามารถใช้งานได้จริงและเชื่อถือได้ โดยการตรวจใบหน้ามีปจจัยที่เกี่ยวกับสภาวะแสง องสาการวางกล้องและระยะห่างระหว่างใบหน้ากับกล้อง ยิ่งค่าความคลาดเคลื่อนของการตรวจสอบใบหน้ามีค่าน้อยจะทำให้อุปกรณ์มีความมั่นใจในความถูกต้องของใบหน้าของบุคคลนั้น ๆ ข้อเสนอแนะ คือ อุปกรณ์การสามารถตรวจสอบใบหน้าของอุกหน้าทากได้

กิตติกรรมประกาศ

โครงงานฉบับนี้สำเร็จลุล่วงไปได้ด้วยความกรุณาจากคุณครูดวงกมล อภิเดช ครูที่ปรึกษา โครงงาน ที่ได้ให้คำเสนอแนะ แนวคิด ตลอดจนแก้ไขของบกพร่องต่าง ๆ มาโดยตลอด จนโครงงานฉบับนี้เสร็จ สมบูรณ์ คณะผู้จัดทำจึงของขอกราบขอบพระคุณเป็นอย่างสูง

ขอกราบพระกุณผู้อำนวยการโรงเรียนอุตรดิตถ์ ดร.บัญชร จันทร์ดา ที่ให้การสนับสนุนเป็นอย่างดี ขอกราบพระกุณคณะครูกลุ่มสาระการเรียนรู้วิทยาศาสตร์และเทคโนโลยี และห้องเรียนพิเศษ SMTE โรงเรียนอุตรดิตถ์ ทุกท่านที่ให้การสนับสนุน เป็นกำลังใจและอำนวยความสะควกต่าง ๆ ตลอดการ ดำเนินการจัดทำโครงงาน

ขอกราบขอบพระคุณ คุณพ่อ คุณแม่ ผู้ปกครองและเพื่อน ๆ ที่ให้คำปรึกษาในเรื่องต่าง ๆ รวมทั้ง เป็นกำลังใจตลอดการจัดทำโครงงานจนโครงงานประสบความสำเร็จ

คณะผู้จัดทำ

สารบัญ

บทคัดย่อ	ก
กิตติกรรมประกาศ	ข
สารบัญ	ମ
สารบัญตาราง	1
สารบัญรูปภาพ	1
บทที่ 1	1-2
บทที่ 2	3-5
บทที่ 3	6-8
บทที่ 4	9-11
บทที่ 5	12
บรรณานุกรม	ช
ภาคผนวก	លូ

สารบัญตาราง

ตารางที่ 1 ปฏิทินการคำเนินงาน	7
ตารางที่ 2 เปรียบเทียบอุณหภูมิโคยเทียบกับเครื่องวัดอุณหภูมิ NITKA HT-880D และ HIP K3	8
กราฟที่ 2 เปรียบเทียบอุณหภูมิ โดยเทียบกับเครื่องวัดอุณหภูมิ NITKA HT-880D และ HIP K3	8
ตารางที่ 3 ผลการวัดร้อยละความคลาดเคลื่อนของใบหน้าจากอุปกรณ์ตรวจสอบใบหน้า	9
และวัดอุณหภูมิ	
กราฟที่ 3 ผลการวัดร้อยละความคลาดเคลื่อนของใบหน้าจากอุปกรณ์ตรวจสอบใบหน้า	9
และวัดอุณหภูมิ	

สารบัญรูปภาพ

รูปภาพที่ 1	โปรแกรม Visual Studio Code	3
รูปภาพที่ 2	ภาษา Python	4
รูปภาพที่ 4	ผังงาน 1	9
รูปภาพที่ 5	ผังงาน 2	9
รูปภาพที่ 6	การพัฒนาโปรแกรมที่ใช้ในอุปกรณ์	ល្ង
รูปภาพที่ 7	ทคสอบการทำงานของโปรแกรม	ល្ង
รูปภาพที่ 8	การจัดทำอุปกรณ์ตรวจสอบใบหน้าและวัดอุณหภูมิ	ល្ង
รูปภาพที่ 9	อุปกรณ์ตรวจสอบใบหน้าและวัดอุณหภูมิ	ល្ង
ฐปภาพที่ 10	ตัวอย่างการลงทะเบียนใบหน้าในโปรแกรม	ល្អ

บทนำ

ที่มาและความสำคัญ

ปัจจุบันประเทศไทยได้ก้าวเข้าสู่ยุก 4.0 ซึ่งเป็นยุกที่เทกโนโลยีเข้ามามีบทบาทในชีวิตประจำวัน และเนื่องด้วย ณ ปัจจุบันได้เกิดสถานการณ์โรคระบาดของ ไวรัส COVID-19 ทำให้การดำเนินชีวิตใน ปัจจุบันของทุกกนเปลี่ยนแปลงไปในลักษณะที่เรียกว่า New Normal เพื่อปรับเปลี่ยนการใช้ชีวิตให้เข้ากับ สถานการณ์ในปัจจุบัน โดยการเปลี่ยนแปลงที่เห็นได้ชัดเจนที่สุดคือการที่เว้นระยะห่างทางสังคม สวม หน้ากากอนามัย ล้างมือโดยใช้สบู่และน้ำ หรือเจลล้างมือที่มีส่วนผสมหลักเป็นแอลกอฮอล์ และการไป สถานที่ต่าง ๆ จะมีการตรวจวัดอุณหภูมิก่อนเข้าสถานที่ทุกครั้ง ซึ่งโรงเรียนของคณะผู้จัดทำก็มีการวัด อุณหภูมิก่อนเข้าโรงเรียนในทุก ๆ เช้าด้วยเช่นกัน โดยครูเวรประจำวันเป็นผู้ตรวจวัดอุณหภูมิและฉีดเจลล้าง มือให้แก่นักเรียน จากนั้นนักเรียนจะนำบัตรนักเรียนไปสแกนกับดู้สแกนของโรงเรียนเพื่อรายงานตัวว่าเข้าโรงเรียน ซึ่งการรายงานตัวนี้จะแจ้งผู้ปกครองผ่านแอปพลิเคชัน LINE ด้วยเหตุนี้คณะผู้จัดทำจึงมีคิดอยาก ลดภาระหน้าที่ให้แก่ครูเวรประจำวันโดยจัดทำอุปกรณ์ตรวจสอบใบหน้าและวัดอุณหภูมิขึ้น

อุปกรณ์ตรวจสอบใบหน้าและวัดอุณหภูมิ เป็นอุปกรณ์ที่จะตรวจสอบใบหน้าเพื่อใช้ในการ ตรวจสอบการเข้าโรงเรียนและการวัดอุณหภูมิของนักเรียน เพื่อป้องกันการแพร่ระบาดของไวรัส COVID-19 โดยใช้อุปกรณ์ คือ คอมพิวเตอร์ พร้อมระบบปฏิบัติการ Windows, โมคูล USB to Serial Adapter, Sensor โดยใช้โปรแกรม Visual Studio Code โดยใช้ภาษา Python ซึ่งโปรแกรมจะทำการตรวจสอบใบหน้าและ เช็คชื่อในระบบของโรงเรียนและใช้ Sensor ในการตรวจสอบความร้อนของตัวนักเรียนเพื่อทราบอุณหภูมิ เก็บข้อมูลและแจ้งผลผ่านทางแอปพลิเคชัน LINE ซึ่งคณะผู้จัดทำได้นำความรู้จากการใช้เทคนิคการจำแนก ภาพ Image Processing แบบ Eigenface การใช้หลักการประมวลผลภาพดิจิตอล, การใช้หลักการตรวจสอบความร้อนโดยเทอร์โมมิเตอร์ชนิดอินฟราเรดมาประยุกต์ใช้ในการจัดทำอุปกรณ์ตรวจสอบใบหน้าและวัด อุณหภูมิ

ดังนั้นด้วยเหตุผลที่กล่าวมาข้างต้นที่จะนำความรู้ด้านวิทยาศาสตร์และความรู้ด้านคอมพิวเตอร์มา ประยุกต์ใช้ในการพัฒนาและจัดทำอุปกรณ์ตรวจสอบใบหน้าและวัดอุณหภูมิ เพื่อใช้ในการตรวจสอบการ เข้าโรงเรียนและตรวจสอบอุณหภูมิของนักเรียน เพื่อรายงานการเข้าโรงเรียนของนักเรียน เพื่อลดภาระแก่ครู เวรประจำวัน และเพื่อป้องกันการแพร่ระบาดของไวรัส COVID-19

วัตถุประสงค์

- 1. เพื่อศึกษา จัดทำและพัฒนาอุปกรณ์ตรวจสอบใบหน้าและวัคอุณหภูมิ
- 2. เพื่อประยุกต์ใช้อุปกรณ์ให้เข้ากับสถานการณ์การระบาดของ ไวรัส COVID-19

สมมติฐาน

- 1. ถ้าอุปกรณ์ตรวจสอบใบหน้าและวัคอุณหภูมิสามารถตรวจสอบใบหน้าได้ ดังนั้นจะช่วยลดการ สัมผัสระหว่างบุคคล
- 2. ถ้าอุปกรณ์ตรวจสอบใบหน้าและวัดอุณหภูมิสามารถวัดอุณหภูมิได้ ดังนั้นจะช่วยตรวจสอบ อุณหภูมิ และจะช่วยลดการสัมผัสระหว่างบุคคล

แนวคิดทางวิทยาศาสตร์ที่นำมาใช้

- 1. การใช้เทคนิคการจำแนกภาพ Image Processing แบบ Eigenface
- 2. การใช้หลักการประมวลผลภาพคิจิตอล
- 3. การใช้หลักการตรวจสอบความร้อนโดยเทอร์โมมิเตอร์ชนิดอินฟราเรค
- 4. การใช้หลักการของปัจจัยที่มีผลต่ออุณหภูมิของร่างกาย
- 5. การใช้หลักการต่อวงจรไฟฟ้าอย่างง่าย

ขอบเขต

การสร้างอุปกรณ์ตรวจสอบใบหน้าและวัดอุณหภูมิ

ระยะเวลาการดำเนินการ

1 กันยายน – 23 กันยายน 2563

ผลที่คาดว่าจะได้รับ

- 1. สามารถตรวจสอบใบหน้าได้อย่างแม่นยำ
- 2. สามารถตรวจการเข้าออกโรงเรียนของนักเรียนได้
- 3. สามารถตรวจวัดอุณหภูมิได้
- 4. สามารถช่วยป้องกันการแพร่ระบาดของไวรัส COVID-19 ได้

เอกสารและงานวิจัยที่เกี่ยวข้อง

การศึกษาอุปกรณ์ตรวจสอบใบหน้าและวัดอุณหภูมิ (Face Recognition with Temperature Checker Device) คณะผู้จัดทำได้ศึกษาค้นคว้าข้อมูลและเอกสารที่เกี่ยวข้อง

- 1. โปรแกรม Visual Studio Code
- 3. ภาษาโปรแกรม Python 3.7
- 5. การต่อวงจรไฟฟ้าอย่างง่าย

- 2. โปรแกรม MySQL
- 4. LINE Notify

1. โปรแกรม Visual Studio Code

1.1 โปรแกรม Visual Studio Code

VS Code หรือ Visual Studio Code เป็นโปรแกรม Code Editor ที่ใช้ในการแก้ไขและ ปรับแต่งโค้ด โดยมาจากค่ายไมโครซอฟท์ ที่มีการพัฒนาออกมาในรูปแบบของ Open Source จึง สามารถนำมาใช้งานได้แบบฟรี ๆ ที่ต้องการความเป็นมืออาชีพ ซึ่ง Visual Studio Code นั้น เหมาะสำหรับนักพัฒนาโปรแกรมที่ต้องการใช้งานกับแพลตฟอร์ม มีการรองรับการใช้งานทั้งบน Windows, macOS และ Linux มีการสนับสนุนทั้งภาษา JavaScript, TypeScript และ Node.js สามารถเชื่อมต่อกับ Git ได้ สามารถนำมาใช้งานได้ง่ายไม่ซับซ้อน มีเครื่องมือส่วนขยายต่าง ๆ ให้เราเลือกใช้อย่างมาก ไม่ว่าจะเป็น 1.การเปิดใช้งานภาษาอื่น ๆ ทั้ง ภาษา C++, C#, Java, Python, PHP หรือ Go 2. Themes 3. Debugger 4. Commands เป็นต้น

รูปภาพที่ 1 โปรแกรม Visual Studio Code

2. ภาษาโปรแกรม Python 3.7

2.1 ความหมายของภาษา Python

ภาษา Python คือ ภาษาโปรแกรมคอมพิวเตอร์ระดับสูง โดยถูกออกแบบมาให้เป็นภาษา สคริปต์ที่อ่านง่าย โดยตัดความซับซ้อนของโครงสร้างและไวยกรณ์ของภาษาออกไป ในส่วนของ การแปลงชุดคำสั่งที่เราเขียนให้เป็นภาษาเครื่อง Python มีการทำงานแบบ Interpreter คือเป็นการ แปลชุดคำสั่งทีละบรรทัด เพื่อป้อนเข้าสู่หน่วยประมวลผลให้คอมพิวเตอร์ทำงานตามที่เราต้องการ

3. โปรแกรม MySQL

3.1 ความหมาย MySQL

MySQL คือ โปรแกรมระบบจัดการฐานข้อมูล ที่มีหน้าที่เก็บข้อมูลอย่างเป็นระบบ รองรับ คำสั่ง SQL เป็นเครื่องมือสำหรับเก็บข้อมูล ที่ต้องใช้ร่วมกับเครื่องมือหรือโปรแกรมอื่นอย่างบูรณา การ เพื่อให้ได้ระบบงานที่รองรับ ความต้องการของผู้ใช้ เช่นทำงานร่วมกับเครื่องบริการเว็บ (Web Server) เพื่อให้บริการแก่ภาษาสคริปต์ที่ทำงานฝั่งเครื่องบริการ (Server-Side Script) เช่น ภาษา PHP ภาษา ASP.NET หรือภาษา JSP เป็นต้น

3.2 ความสามารถและการทำงานของโปรแกรม MySQL

MySQL ถือเป็นระบบจัดการฐานข้อมูล (Database Management System)
ฐานข้อมูลมีลักษณะเป็นโครงสร้างของการเก็บรวบรวมข้อมูล การที่จะเพิ่มเติม เข้าถึงหรือ
ประมวลผลข้อมูลที่เก็บในฐานข้อมูลจำเป็นจะต้องอาศัยระบบจัดการ ฐานข้อมูล ซึ่งจะทำหน้าที่
เป็นตัวกลางในการจัดการกับข้อมูลในฐานข้อมูลทั้งสำหรับการ ใช้งานเฉพาะ และรองรับการ
ทำงานของแอปพลิเคชันอื่น ๆ ที่ต้องการใช้งานข้อมูลในฐานข้อมูล MySQL ทำหน้าที่เป็นทั้งตัว
ฐานข้อมูลและระบบจัดการฐานข้อมูล

4. LINE Notify

4.1 ความหมายของ LINE Notify

LINE Notify เป็นระบบการส่งข้อความประเภทการแจ้งเดือน (Notification) เข้าสู่ ห้องสนทนาภายในโปรแกรม LINE ทั้งห้องสนทนาแบบส่วนตัวและแบบกลุ่ม โดยผ่านช่องทาง API เหมาะสำหรับนักพัฒนาที่ต้องการใช้งานระบบแจ้งเตือนและไม่มีค่าใช้จ่าย

ร. การต่อวงจรไฟฟ้าอย่างง่าย

5.1 ความหมายของวงจรไฟฟ้า

วงจรไฟฟ้า หมายถึง ทางเดินของกระแสไฟฟ้าซึ่งใหลมาจากแหล่งกำเนิดผ่านตัวนำ และ เครื่องใช้ไฟฟ้าหรือโหลด แล้วใหลกลับไปยังแหล่งกำเนิดเดิมจากปรากฏการณ์ทางไฟฟ้าต่าง ๆ ที่ เกิดขึ้น โดยอิเล็กตรอนจะเคลื่อนที่ เมื่อเกิดสภาพขาดอิเล็กตรอนจึงจ่ายประจุไฟฟ้าลบออกไป แทนที่ ทำให้เกิดการใหลของอิเล็กตรอนในสายไฟจนกว่าประจุไฟฟ้าบวกจะถูกทำให้เป็นกลาง หมด การเคลื่อนที่ของอิเล็กตรอนหรือการไหลของอิเล็กตรอนในสายไฟนี้เรียกว่า กระแสไฟฟ้า (Electric Current)สำหรับในตัวนำที่เป็นของแข็ง กระแสไฟฟ้าเกิดจากการใหลของอิเล็กตรอน โดย อิเล็กตรอนจะใหลจากขั้วลบไปหาขั้วบวกเสมอ ในตัวนำที่เป็นของเหลวและก๊าซ กระแสไฟฟ้าเกิด จากการเคลื่อนที่ของอิเล็กตรอนกับโปรตอน โดยจะเคลื่อนที่เข้าหาขั้วไฟฟ้าที่มีประจุตรงข้าม ถ้าจะ เรียกว่า กระแสไฟฟ้าคือการใหลของอิเล็กตรอนก็ได้ แต่ทิศทางของกระแสไฟฟ้าจะตรงข้ามกับการใหลของอิเล็กตรอน

5.2 ส่วนประกอบของวงจรไฟฟ้า

วงจรไฟฟ้ามีส่วนประกอบที่สำคัญ 3 ส่วน คือ แหล่งกำเนิดไฟฟ้า หมายถึง แหล่งจ่าย แรงคันไฟฟ้าไปยังวงจรไฟฟ้า เช่นแบตเตอรี่ ตัวนำไฟฟ้า หมายถึง สายไฟฟ้าหรือสื่อที่จะเป็นตัวนำ ให้กระแสไฟฟ้าไหลผ่านไปยังเครื่องใช้ไฟฟ้า ซึ่งต่อระหว่างแหล่งกำเนิดกับเครื่องใช้ไฟฟ้าและ เครื่องใช้ไฟฟ้า หมายถึง เครื่องใช้ที่สามารถเปลี่ยนพลังงานไฟฟ้าให้เป็นพลังงานรูปอื่น ซึ่งจะเรียกอีกอย่างหนึ่งว่า โหลด

อุปกรณ์และวิธีการทดลอง

วัสดุ อุปกรณ์และโปรแกรมที่ใช้จัดทำ

1. คอมพิวเตอร์ พร้อมระบบปฏิบัติการ Windows 6. Python 3.7

2. ปอร์ค ESP32-Cam 7. Apache

โมคูล USB to Serial Adapter
 8. MySQL

4. Arduino GY-906 MLX90614 9. MariaDB

5. โปรแกรม Visual Studio Code

ขั้นตอนการดำเนินงานโครงงาน

- 1. ศึกษาความเป็นไปได้ในการจัดทำโครงงานและศึกษาเกี่ยวกับเทคโนโลยีที่ใช้
- 2. วิเคราะห์และออกแบบโครงสร้างอุปกรณ์ตรวจสอบใบหน้าและวัคอุณหภูมิ
- 3. รวบรวมและจัดเก็บข้อมูลให้อยู่ในรูปแบบที่ต้องการ
- 4. จัดทำและพัฒนาอุปกรณ์ตรวจสอบใบหน้าและวัดอุณหภูมิ
- 5. ทคสอบ ปรับปรุงและแก้ไขข้อผิดพลาดของอุปกรณ์ตรวจสอบใบหน้าและวัดอุณหภูมิ
- 6. จัดทำเอกสารประกอบโครงงาน ทั้งในส่วนของรายงานการศึกษา และคู่มือการใช้งาน

ขั้นตอนการจัดทำอุปกรณ์ตรวจสอบใบหน้าและวัดอุณหภูมิ

- 1. เขียนชุดคำสั่งการทำงานสำหรับการตรวจสอบใบหน้าในโปรแกรม Visual Studio Code
- 2. เขียนชุดทำสั่งการทำงานสำหรับวัดอุณหภูมิในโปรแกรม Visual Studio Code
- 3. อัปโหลดชุดทำสั่งลงในบอร์ด ESP32-Cam
- 4. จัดทำอุปกรณ์ตรวจสอบใบหน้าและวัดอุณหภูมิ

ปฏิทินการดำเนินงาน

ที่	กิจกรรม / รายการปฏิบัติ	ระยะเวลาการดำเนินงาน						หมายเหตุ		
		สิงหาคม				กันยายน				
1	คิดหัวข้อโครงงาน	+								
2	ศึกษารวบรวมข้อมูล	←	-							
3	เสนอร่างโครงงาน		•	-						
4	คำเนินการจัดการทำโครงงาน			•	•					
5	ตรวจสอบความถูกต้อง				•	-				
6	ปรับปรุงแก้ใง				←	•				
7	นำอุปกรณ์มาทคลองและเปรียบเทียบ					†				
8	วิเคราะห์ค่าความพึงพอใจจาก					•				
	แบบสอบถาม									
9	สรุปผลการคำเนินงาน					•	-			
10	จัดทำรูปเล่มโครงงาน			←						
11	นำเสนอโครงงาน							←→		

ตารางที่ 1 ปฏิทินการดำเนินงาน

บทที่ 4 อภิปรายผลการทดลอง

จากการศึกษา พัฒนาและจัดทำอุปกรณ์ตรวจสอบใบหน้าและวัดอุณหภูมิ ได้นำสิ่งประดิษฐ์ไป ทดลองใช้กับกลุ่มทดลอง เพื่อวัดประสิทธิภาพของผลงาน ดังนี้

ตอนที่ 1 เปรียบเทียบอุณหภูมิโดยเทียบกับเครื่องวัดอุณหภูมิ NITKA HT-880D และHIP K3

ตารางที่ 2 เปรียบเทียบอุณหภูมิโดยเทียบกับเครื่องวัดอุณหภูมิ NITKA HT-880D และHIP K3

อุปกรณ์ ครั้งที่	1	2	3	4	5	ค่าเฉลี่ย
อุปกรณ์ตรวจสอบใบหน้าและวัดอุณหภูมิ	36.59	36.68	36.75	36.61	36.79	36.684
NITKA HT-880D	36.6	36.7	36.7	36.6	36.8	36.68
HIP K3	36.6	36.7	36.7	36.6	36.8	36.68

(หมายเหตุ : ใช้หน่วยเป็นองศาเซลเซียส)

กราฟที่ 1 เปรียบเทียบอุณหภูมิโดยเทียบกับเครื่องวัดอุณหภูมิ NITKA HT-880D และHIP K3

(หมายเหตุ : ใช้หน่วยเป็นองศาเซลเซียส)

จากการวัดอุณหภูมิจากอุปกรณ์ 3 อุปกรณ์ ได้แก่ อุปกรณ์ตรวจสอบใบหน้าและวัดอุณหภูมิ
NITKA HT-880D และHIP K3 มีอุณหภูมิจากการวัดที่ใกล้เคียงกัน สำหรับการเทียบอุปกรณ์ตรวจสอบ
ใบหน้าและวัดอุณหภูมิกับ NITKA HT-880D มีค่าความคลาดเคลื่อนร้อยละ 0.011 สำหรับการเทียบ
อุปกรณ์ตรวจสอบใบหน้าและวัดอุณหภูมิกับ HIP K3 มีค่าความคลาดเคลื่อนร้อยละ 0.011 ซึ่งพบว่าการ
เปรียบเทียบอุปกรณ์ตรวจสอบใบหน้าและวัดอุณหภูมิกับ NITKA HT-880D และ HIP K3 ได้ผลที่
เหมือนกัน แสดงว่าอุปกรณ์ตรวจสอบใบหน้าและวัดอุณหภูมิเป็นเครื่องมือที่มีความแม่นยำและเป็น
มาตรฐานเนื่องจากมีค่าความคลาดเคลื่อนที่น้อย และยังสามารถวัดค่าเป็นทสนิยม ได้มากกว่า
NITKA HT-880D และHIP K3 ให้ผลการทดสอบที่น่าเชื่อถือได้และสามารถนำไปใช้งานได้จริง

ตอนที่ 2 ผลการวัดร้อยละความคลาดเคลื่อนของใบหน้าจากอุปกรณ์ตรวจสอบใบหน้าและวัดอุณหภูมิ

ตารางที่ 3 ผลการวัดร้อยละความคลาดเคลื่อนของใบหน้าจากอุปกรณ์ตรวจสอบใบหน้าและวัดอุณหภูมิ

	ครั้งที่ 1	ครั้งที่ 2	ครั้งที่ 3	ครั้งที่ 4	ครั้งที่ 5	ค่าเฉลี่ย
นักเรียนคนที่ 1	6	14	11	34	30	19
นักเรียนคนที่ 2	9	30	37	38	22	27.2
นักเรียนคนที่ 3	10	26	30	17	22	21
นักเรียนคนที่ 4	22	19	22	20	17	20
นักเรียนคนที่ 5	32	23	24	26	17	24.4

(หมายเหตุ : ใช้หน่วยเป็นร้อยละ)

ผลการวัดเปอร์เซ็นต์ความคลาดเคลื่อนของใบหน้าจาก อุปกรณ์ตรวจสอบใบหน้าและวัดอุณหภูมิ 40 30 20 10 0 ครั้งที่ 1 ครั้งที่ 2 ครั้งที่ 3 ครั้งที่ 4 ครั้งที่ 5 🔃 นักเรียนคนที่ 1 นักเรียนคนที่ 2 นักเรียนคนที่ 3 🔲 นักเรียนคนที่ 4 นักเรียนคนที่ 5

กราฟที่ 2 ผลการวัดร้อยละความคลาดเคลื่อนของใบหน้าจากอุปกรณ์ตรวจสอบใบหน้าและวัดอุณหภูมิ

(หมายเหตุ : ใช้หน่วยเป็นร้อยละ)

จากผลร้อยละความคลาดเคลื่อนของใบหน้าจากอุปกรณ์ตรวจสอบใบหน้าและวัดอุณหภูมิพบว่ามี ร้อยละความคลาดเคลื่อนของใบหน้าเฉลี่ยอยู่ที่ร้อยละ 22.32 ซึ่งถือว่าเป็นค่าความคลาดเคลื่อนที่น้อยจึง สามารถวัดค่าได้อย่างแม่นยำและเป็นมาตรฐาน แสดงว่าอุปกรณ์ตรวจสอบใบหน้าและวัดอุณหภูมิสามารถ นำไปใช้งานได้จริงและมีความน่าเชื่อถือ โดยที่ร้อยละขึ้นอยู่กับสภาวะแสง องศาการวางกล้องและระยะห่าง ระหว่างใบหน้าถึงกล้อง ยิ่งค่าความคลาดเคลื่อนของการตรวจสอบใบหน้ามีค่าน้อยจะทำให้อุปกรณ์มีความ มั่นใจในความถูกต้องของใบหน้าของบุคคลนั้น ๆ

สรุปผล อภิปรายและเสนอแนะ

ในการจัดทำโครงงานอุปกรณ์ตรวจสอบใบหน้าและวัดอุณหภูมิ (Face Recognition with Temperature Checker Device) สามารถสรุปผล อภิปรายและเสนอแนะได้ดังนี้

สรุปผลการดำเนินงาน

จากการดำเนินงานการพัฒนาและจัดทำอุปกรณ์อุปกรณ์ตรวจสอบใบหน้าและวัดอุณหภูมิ กณะผู้จัดทำสามารถจัดทำอุปกรณ์ตรวจสอบใบหน้าและวัดอุณหภูมิได้ โดยอุปกรณ์ตรวจสอบใบหน้าและ วัดอุณหภูมิมีความคลาดเคลื่อนของอุณหภูมิ อยู่ที่ร้อยละ 0.011 และมีความคลาดเคลื่อนของใบหน้าเฉลี่ย ร้อยละ 22.32 ซึ่งถือว่าเป็นค่าความคลาดเคลื่อนที่น้อยจึงสามารถวัดค่าได้อน่างแม่นยำและเป็นมาตรฐานที่ สามารถใช้งานได้จริงและมีความน่าเชื่อถือ โดยปัจจัยที่มีผลต่อการตรวจสอบใบหน้าได้แก่สภาวะแสง องสา การวางกล้องและระยะห่างระหว่างใบหน้าถึงกล้อง ยิ่งค่าความคลาดเคลื่อนของการตรวจสอบใบหน้ามีค่า น้อยจะทำให้อุปกรณ์มีความมั่นใจในความถูกต้องของใบหน้าของบุคคลนั้น ๆ และมีการส่งข้อมูลแจ้ง ผู้ปกครองในแอปพลิเคชัน LINE

อภิปรายผล

อุปกรณ์ตรวจสอบใบหน้าและวัคอุณหภูมิ (Face Recognition with Temperature Checker Device) ได้นำหลักการทางวิทยาศาสตร์และเทคโนโลยีมาใช้ร่วมกันในการในการจัดทำอุปกรณ์สามารถตรวจสอบ ใบหน้าและวัคอุณหภูมิได้ โดยอุณหภูมิของอุปกรณ์ตรวจสอบใบหน้าและวัคอุณหภูมิมีค่าใกล้เคียงกับ NITKA HT-880Dและ HIP K3และมีค่าความคลาดเคลื่อนเท่ากับร้อยละ 0.011 และมีค่าความคลาดเคลื่อน ของใบหน้าอยู่ที่ร้อยละ 22.32

ประโยชน์ที่ได้รับ

- 1. ได้ประดิษฐ์อุปกรณ์ตรวจสอบใบหน้าและวัคอุณหภูมิ
- 2. ได้เรียนรู้การเขียนชุดทำสั่ง
- 3. ได้เป็นส่วนหนึ่งในการป้องกันการแพร่ระบาดของไวรัส COVID-19
- 4. ได้ฝึกการทำงานอย่างเป็นระบบ

ข้อเสนอแนะ

ควรปรับปรุงให้สามารถตรวจสอบใบหน้าขณะสวมหน้ากากได้

บรรณานุกรม

- อาจารย์ คร.ณัฐพล แสนคำ. (2563). โปรแกรม Visual Studio Code. [ออนไลน์]. เข้าถึงได้จาก : http://cs.bru.ac.th/ (วันที่ค้นข้อมูล : 14 กันยายน 2563).
- Sarayut Nonsiri. (2559). ภาษาโปรแกรม Python 3.7. [ออนไลน์] เข้าถึงได้จาก: https://www.9experttraining.com/articles/ (วันที่ค้นข้อมูล: 14 กันยายน 2563).
- ทีมงาน อีซี่ บร๊านเชส. (2559). โปรแกรม MySQL. [ออนไลน์]. เข้าถึงได้จาก:
 http://th.easyhost domain.com/dedicated-servers/mysql.html (วันที่ค้นข้อมูล: 14 กันยายน 2563).
- Suwat Nakchukaew. (2561). LINE Notify. [ออนไลน์]. เข้าถึงได้จาก https://engineering.thinknet.co.th/ (วันที่ค้นข้อมูล : 14 กันยายน 2563).
- FiFiFai. (2557). การต่อวงจรไฟฟ้าอย่างง่าย. [ออนไลน์]. เข้าถึงได้จาก:
 http://jirananwann.blogspot.com/2014/12/blog-post.html (วันที่ค้นข้อมูล: 14 กันยายน 2563).

ภาคผนวก

รูปภาพที่ 6 การพัฒนาโปรแกรมที่ใช้ในอุปกรณ์

รูปภาพที่ 9 อุปกรณ์ตรวจสอบใบหน้าและวัดอุณหภูมิ

รูปภาพที่ 8 การจัดทำอุปกณ์ตรวจสอบใบหน้า และวัดอุณหภูมิ

รูปภาพที่ 10 ตัวอย่างการลงทะเบียนใบหน้าในโปรแกรม