SUPERPOSITION THEOREM

(INDEPENDENT SOURCES)

The response of a network with several independent sources can be obtained as the sum of responses to sources taken one at a time as a consequence of circuit linearity.

Problem-21:

For the given circuit determine the current through $R_L = 20 \Omega$ by using the superposition theorem.

SUPERPOSITION THEOREM

(INDEPENDENT SOURCES)

Problem:

Find the current i, flowing through the 1 Ω resistance using the superposition principle.

Ans:

i = 8A

SUPERPOSITION THEOREM

(DEPENDENT SOURCES)

Problem-22:

Determine the voltage developed across the 3Ω resistance i.e., v_x using the superposition theorem.

Ans:

 $v_x = 2.727 V$

MAXIMUM POWER TRANSFER THEOREM

- ❖ Power delivered to the load circuit N2 by network N1 is maximum when equivalent load resistance is equal to the Thevenin's resistance of the network N1.
- **❖** Maximum power is

$$P_{max} = \frac{V_{oc}^2}{4R_L}$$

Here R_L is the equivalent load resistance of the load circuit N2

\$ Efficiency of the power transfer is 50%.

MAXIMUM POWER TRANSFER THEOREM

Problem-23:

For the given circuit determine the maximum power transferred to R_L by using the Maximum Power Transfer theorem.

Ans:

 $P_L^{max} = 9.6 W$

Problem-25:

Determine what value of resistance will absorb maximum power when connected across the terminal *a-b*.

Ans:

 $R_L = 53.3333 \,\Omega$

Problem-24:

Determine the values of i_a , i_b .

Ans:

$$i_a = ? A$$
 $i_b = ? A$

Problem-26:

Determine the V_0 in the circuit.

Ans:

 $V_0 = 9.478 \, mV$

Problem-26:

Determine the power dissipated for

- 1 k Ω resistor connected between a-b terminal.
- * 10.54 kΩ resistor connected between a-b terminal.

$10 \text{ k}\Omega$ $v_1 \quad 20 \text{ k}\Omega$ $0.02v_1$

Ans:

$$P_{1k} = 5.587 \, nW$$

 $P_{10.54 \, k} = 578.5 \, pW$