

System Buses

Lecture 7

- 1

Buses

- There are a number of possible interconnection systems
- Single and multiple BUS structures are most common
- e.g. Control/Address/Data bus (PC)

What is a Bus?

- A communication pathway connecting two or more devices
- Usually broadcast
- Often grouped
 - A number of channels in one bus
 - e.g. 32 bit data bus is 32 separate single bit channels

A **system bus** is a single **computer bus** that connects the major components of a computer system. The technique was developed to reduce costs and improve modularity. It combines the functions of a **data bus** to carry information, an **address bus** to determine where it should be sent, and a **control bus** to determine its operation.

Data Bus

- Carries data
 - Remember that there is no difference between "data" and "instruction" at this level
- Width is a key determinant of performance
 - 8, 16, 32, 64 bit

Address bus

- Identify the source or destination of data
- e.g. CPU needs to read an instruction (data) from a given location in memory
- Bus width determines maximum memory capacity of system
 - e.g. 8080 has 16 bit address bus giving 64k address space

Control Bus

- Control and timing information
 - Memory read/write signal
 - Interrupt request
 - Clock signals

An **interrupt** is a signal from a device attached to a computer or from a program within the computer that causes the main program that operates the computer to stop and figure out what to do next.

Bus Interconnection Scheme

Big and Yellow?

- What do buses look like?
 - Parallel lines on circuit boards
 - Ribbon cables
 - Strip connectors on mother boards
 - e.g. PCI
 - Sets of wires

Single Bus Problems

- Lots of devices on one bus leads to:
 - Propagation delays
- Most systems use multiple buses to overcome these problems

Bus Types

- Dedicated
 - Separate data & address lines
- Multiplexed
 - Shared lines
 - Address valid or data valid control line
 - Advantage fewer lines
 - Disadvantages
 - More complex control

Timing

- Coordination of events on bus
- Synchronous
 - Events determined by clock signals
 - Control Bus includes clock line
 - A single 1-0 is a bus cycle
 - All devices can read clock line
 - Usually a single cycle for an event

PCI Bus

- Peripheral Component Interconnection
- Intel released to public domain
- 32 or 64 bit
- 50 lines

PCI Bus Lines

- Systems lines
 - Including clock and reset
- Address & Data
 - 32 time mux lines for address/data
 - Interrupt & validate lines
- Interface Control
- Error lines

PCI Bus Lines (Optional)

- Interrupt lines
 - Not shared
- Cache support
- 64-bit Bus Extension
 - Additional 32 lines
 - Time multiplexed
 - 2 lines to enable devices to agree to use 64-bit transfer
- JTAG/Boundary Scan
 - For testing procedures

PCI Commands

- Transaction between initiator (master) and target
- Master claims bus
- Determine type of transaction
 - e.g. I/O read/write
- Address phase
- One or more data phases

Von Neumann and Harvard architectures

Von Neumann

- Allows instructions and data to be mixed and stored in the same memory module
- More flexible and easier to implement
- Suitable for most of the general purpose processors

• Harvard:

- Uses separate memory modules for instructions and for data
- It is easier to pipeline and there are no memory alignment problems
- Higher memory throughput
- Suitable for DSP (Digital Signal Processors)

Pipeline

Pipeline Stages

- 1. IF "Instruction Fetch"
- 2. ID "Instruction Decode"
- 3. EX "Execute"
- 4. MEM "Memory Access"
- 5. WB "Write Back"

Instr. No.	Pipeline Stage						
1	Щ	≙	EX	МЕМ	WB		
2		IF	D	EX	MEM	WB	
3			IF	ID	EX	МЕМ	WB
4				IF	ID	EX	МЕМ
5					F	₽	EX
Clock Cycle	1	2	3	4	5	6	7

Pipelining is an implementation technique where multiple instructions are overlapped in execution. The computer pipeline is divided in **stages**. Each stage completes a part of an instruction in parallel.

Aydindurdu | Dreamstime.com