Análisis Clásico de Circuitos de Primer Orden Teoría de Circuitos III

Oscar Perpiñán Lamigueiro

- 1 Introducción
- Circuito RL serie
- Circuito RC paralelo
- Análisis Sistemático
- **5** Ejercicios Recomendados

Circuitos de Primer Orden

- ► Circuitos que tienen un **único elemento de acumulación** (o *varios elementos que pueden ser simplificados a un elemento equivalente*) y parte resistiva.
- ► Ecuación diferencial de primer orden: la respuesta natural es siempre una exponencial decreciente.
- Circuitos típicos:
 - ► RL serie
 - RC paralelo

Respuesta natural y forzada

- El método de resolución analiza el circuito en dos etapas:
 - ightharpoonup Sin fuentes: **respuesta natural** (la energía acumulada en t < 0 se disipa en la resistencia).
 - Con fuentes: **respuesta forzada** (determinada por la forma de onda de las fuentes).

- Introducción
- 2 Circuito RL serie
- Circuito RC paralelo
- Análisis Sistemático
- **5** Ejercicios Recomendados

Circuito básico

- ightharpoonup En t < 0 la fuente alimenta el circuito RL (la bobina almacena energía).
- ightharpoonup En t=0 la fuente se desconecta (la bobina se descarga en la resistencia)

Respuesta natural

Ecuaciones

Respuesta natural

Solución Genérica

$$i(t) = Ae^{st}$$

Ecuación Característica

$$s + \frac{R}{L} = 0 \Rightarrow s = -\frac{R}{L}$$

Condiciones Iniciales

- lacktriangle Analizando circuito para t<0 obtenemos $i(0^-)=I_0$
- Por otra parte, para t > 0:

$$i(t) = Ae^{-R/Lt}$$
$$i(0^+) = Ae^0 = A$$

▶ Y dada la condición de continuidad, $i(0^+) = i(0^-)$:

$$A = I_0$$
$$i(t) = I_0 e^{-R/Lt}$$

Constante de tiempo

- $au = \frac{L}{R}$ es la constante de tiempo (unidades [s]).
- ▶ Ratio entre almacenamiento (*L*) y disipación (*R*).

$$i(t) = I_0 e^{-t/\tau}$$

Constante de tiempo

- \triangleright Valores altos de τ implican decrecimiento lento.
- ► La respuesta natural «desaparece» tras $\simeq 5\tau$.

Balance Energético

La energía acumulada en la bobina en t<0 se disipa en la resistencia en t>0

$$W_R = \int_0^\infty Ri^2(t)dt = \frac{1}{2}LI_0^2 = W_L$$

Respuesta forzada

Cambia el funcionamiento del interruptor: en t > 0 la fuente alimenta el circuito RL.

Respuesta forzada

Ecuaciones

$$u_R(t) + u_L(t) = u(t)$$

$$Ri + L\frac{di}{dt} = U_0$$

Solución

Para la solución particular se propone función análoga a la excitación (analizando circuito para t>0)

$$i(t) = i_n(t) + i_{\infty}(t)$$
$$i_n(t) = Ae^{st}$$
$$i_{\infty}(t) = U_0/R$$

Condiciones iniciales

Planteamiento General

$$i(0^+) = i_n(0^+) + i_\infty(0^+)$$

 $i(0^+) = A + i_\infty(0^+)$
 $A = i(0^+) - i_\infty(0^+)$

Respuesta completa (ejemplo)

Suponiendo que la bobina está inicialmente descargada, $i(0^-)=0 \Rightarrow i(0^+)=0$

$$A = 0 - U_0/R$$

$$i(t) = \frac{U_0}{R} (1 - e^{-\frac{t}{\tau}})$$

Respuesta completa

- $ightharpoonup i(0^+)$: corriente en la bobina, condiciones iniciales $(i(0^-)=i(0^+))$.
- $ightharpoonup i_{\infty}(t)$: corriente en la bobina en régimen permanente para t>0.
- $i_{\infty}(0^+)$: corriente en la bobina en régimen permanente particularizada en t=0.

$$i(t) = (i(0^+) - i_{\infty}(0^+)) e^{-t/\tau} + i_{\infty}(t)$$

- 1 Introducción
- Circuito RL serie
- 3 Circuito RC paralelo
- 4 Análisis Sistemático
- **5** Ejercicios Recomendados

Circuito básico

- ightharpoonup En t < 0 la fuente alimenta el circuito RC (el condensador se carga).
- ightharpoonup En t=0 se desconecta la fuente (el condensador comienza a descargarse en la resistencia).

Respuesta natural

Ecuaciones

$$i_R(t) + i_C(t) = 0$$
$$Gu + C\frac{du}{dt} = 0$$

Respuesta natural

Solución Genérica

$$u(t) = Ae^{st}$$

Ecuación Característica

$$s + \frac{G}{C} = 0 \Rightarrow s = -\frac{G}{C}$$

Condiciones Iniciales

$$u(t) = U_0 e^{-G/Ct}$$

Constante de tiempo

- $au = \frac{C}{G}$ es la constante de tiempo (unidades [s]).
- ▶ Ratio entre almacenamiento (*C*) y disipación (*G*).

$$u(t) = U_0 e^{-t/\tau}$$

Balance Energético

La energía acumulada en el condensador en t<0 se disipa en la resistencia (conductancia) en t>0

$$W_G = \int_0^\infty Gu^2(t)dt = \frac{1}{2}CU_0^2 = W_C$$

Respuesta completa

- $\triangleright u(0^+)$: tensión en el condensador, condiciones iniciales $(u(0^-) = u(0^+))$.
- $ightharpoonup u_{\infty}(t)$: tensión en el condensador en régimen permanente para t>0.
- $ightharpoonup u_{\infty}(0^+)$: tensión en el condensador en régimen permanente particularizada en t=0.

$$u(t) = (u(0^+) - u_{\infty}(0^+)) e^{-t/\tau} + u_{\infty}(t)$$

Ejemplo

Suponiendo que el condensador está inicialmente descargado, $u(0^-)=0 \Rightarrow u(0^+)=0$

$$A = 0 - I_0 / G$$
$$u(t) = \frac{I_0}{G} (1 - e^{-\frac{t}{\tau}})$$

- 1 Introducción
- 2 Circuito RL serie
- Circuito RC paralelo
- 4 Análisis Sistemático
- **5** Ejercicios Recomendados

Equivalente de Thévenin (Norton)

Procedimiento General

- ▶ Dibujar el circuito para t < 0.
 - ▶ Determinar variables en régimen permanente, $u_c(t)$, $i_L(t)$.
 - Particularizar para t = 0, obteniendo $u_c(0^-)$ o $i_L(0^-)$.
 - Continuidad: $u_c(0^+) = u_c(0^-), i_L(0^+) = i_L(0^-).$
- ▶ Dibujar el circuito para t > 0.
 - Calcular el equivalente de Thevenin (Norton) visto por el elemento de acumulación.
 - La constante de tiempo de la respuesta natural es $\tau = \frac{L}{R_{th}}$ o $\tau = \frac{C}{G_{th}}$.
 - ► Calcular las variables $i_L(t)$ o $u_c(t)$ en régimen permanente, obteniendo $i_{\infty}(t)$ o $u_{\infty}(t)$.
 - Obtener respuesta completa:

$$i_L(t) = (i_L(0^+) - i_\infty(0^+)) e^{-t/\tau} + i_\infty(t)$$

$$u_C(t) = (u_C(0^+) - u_\infty(0^+)) e^{-t/\tau} + u_\infty(t)$$

- 1 Introducción
- 2 Circuito RL serie
- Circuito RC paralelo
- 4 Análisis Sistemático
- **5** Ejercicios Recomendados

Ejercicios

FM

Ejemplos de aplicación 4.2, 4.3, 4.4, y 4.7

HKD

Ejemplo 8.4, 8.6, 8.10

AS

Ejemplo 7.13