CSCI 3022-002 Intro to Data Science Discrete pdfs

$$f(x) = P(X = x)$$

$$f(x) = P(X \le x)$$

Example: Suppose we are given the following pmf:

$$P(X = x) = f(x) = \begin{cases} .5 & x = 0\\ .167 & x = 1\\ .333 & x = 2\\ 0 & else \end{cases}$$

- 1. Calculate: F(0), F(1), F(2).
- 2. What is F(1.5)? F(20.5)?
- 3. Is P(X < 1) = P(X < 1)?

Opening Example; Soln

Example: Suppose we are given the following pmf:

$$P(X = x) = f(x) = \begin{cases} .5 & x = 0 \\ .167 & x = 1 \\ .333 & x = 2 \\ 0 & else \end{cases}$$

1. Calculate:
$$F(0)$$
, $F(1)$, $F(2)$.
$$F(0) = P(X \leq I)$$

2. What is
$$F(1.5)$$
? $F(20.5)$? $P(X \le 1.5) = P(X \le 1)$
3. Is $P(X < 1) = P(X \le 1)$?

3. Is
$$P(X < 1) = P(X \le 1)$$
?

$$=(1)=P(X \leq 1)=P(x=0)+P(x=1)=5+6=3$$

Opening Example: Soln

Example: Suppose we are given the following pmf:

$$P(X = x) = f(x) = \begin{cases} .5 & x = 0\\ .167 & x = 1\\ .333 & x = 2\\ 0 & else \end{cases}$$

- 1. Calculate: F(0), F(1), F(2). Now $-d \in \mathcal{C}$ $F(0) = P(X \le 0) = .5; F(0) = P(X \le 1) = .667; F(0) = P(X \le 2) = 1$
- 2. What is F(1.5)? F(20.5)? $F(1.5) = P(X \le 1.5) = P(X \le 1) = .667; F(0) = P(X \le 2) = 1$
- 3. Is P(X < 1) = P(X < 1)? Most certainly not!

$$P(x \le 1) = P(x \le 1) + P(x = 1)$$

Announcements and To-Dos

Announcements:

- 1. HW 3, posted.
- 2. Another nb day this Friday.

Last time we learned:

1. Bayes Theorem, and introduced pdfs and cdfs.

To do:

1. Start that HW!

Last Time

We got a cool formula that was secretly just the definition of conditional probability rewritten!

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{P(B|A)P(A)}{P(B)}$$

We got two functions to play with:

- \triangleright A Probability density function (pdf) is a function f(x) that describes the probability distribution of a random variable X. Discrete case: f(x) = P(X = x).
- ightharpoonup The cumulative density function, denoted F(x), is defined for every real number x to be the probability that the observed value of X will be at most x, or $F(x) = P(X \le x)$. Discrete case: a sum of values of f(x)!

F(a)= P(X Sa)

The relationship between pdf and cdf is very important!

Example: What is the probability that if I roll two dice, they add up to at least 9. Write in X= 8(,2, -, 12) terms of F(x), then compute.

terms of
$$F(x)$$
, then compute.
 $X: sim \ of \ Z \ dice$

$$P(X \ge 9) = |-P(X \ge 9)| = |-P(X \le 9)|$$

$$Complement = |-P(X \le 9)|$$

$$-|-F(X)|$$

pdf to cdf

The relationship between pdf and cdf is very important!

$$F(a) = P(X \le a) = \sum_{x \le a} P(X = x)$$

Example: What is the probability that if I roll two dice, they add up to at least 9. Write in terms of F(x), then compute.

X :=the sum of the two dice, we want

$$P(X \ge 9) = 1 - P(X < 9) = 1 - P(X \le 8) = 1 - F(8).$$

The easier probability is probably the

$$P(X \ge 9) = P(X = 9) + P(X = 10) + P(X = 11) + P(X = 12) = 10/36.$$

2d6: Ω and X

Suppose we roll two fair, 6-sided dice. Let X := the value representing the maximum of the two dice.

- 1. What are the possible values of X? $\geq \times \in \{1,2,3,4,5,6\}$
- 2. Which elements of the sample space map to which values of X?
- 3. What is the pmf of X? 1 36 possibilities, each tile equally

Mullen: Discrete RVs

2d6: Ω and X

Suppose we roll two fair, 6-sided dice. Let X:= the value representing the maximum of the two dice.

- 1. What are the possible values of X?
- 2. Which elements of the sample space map to which values of X?
- 3. What is the pmf of X?

1. $X \in \{1, 2, 3, 4, 5, 6\}$

3. The pmf is: P(X = x); or $f(x) = \begin{cases} 1/36 & X = 1 \\ 3/36 & X = 2 \end{cases}$ $f(x) = \begin{cases} 5/36 & X = 3 \\ 7/36 & X = 4 \\ 9/36 & X = 5 \end{cases}$

2d6; The Max
Now we have
$$f(x) = P + \frac{1}{4} + \frac{1}{4}$$

Fall 2020

2d6: The Max

Now we have

$$f(x) = \begin{cases} 1/36 & X = 1\\ 3/36 & X = 2\\ 5/36 & X = 3\\ 7/36 & X = 4\\ 9/36 & X = 5\\ 11/36 & X = 6 \end{cases}$$

What are:

1.
$$P(X \text{ is even})$$
?

Mullen: Discrete RVs

2. P(X is 3 or less)?

$$\frac{1+3+5}{36}$$

3. What is the cdf for X?

$$F(x) = \begin{cases} 0 & x < 1 \\ 1/36 & 1 \le x < 2 \\ 4/36 & 2 \le x < 3 \\ 9/36 & 3 \le x < 4 \\ 16/36 & 4 \le x < 5 \\ 25/36 & 5 \le x < 6 \\ 36/36 & X > 6 \end{cases}$$
Fall 2020

PMFE POP

A picture denoting the pdf and cdf of our X:

PAF (ant's! Pine

Discrete Random Variables

Discrete random variables can be categorized into different types or classes.

Each type/class models many different real-world situations. They can loosely be broken down into a few groups:

- 1. The Discrete Uniform for modeling n equally likely (fair) outcomes
- 2. Distributions built on counting trials-until-event (how rolls until I get a 6, etc.) when the trials are identical and repeated

 Examples: Binomial, Geometric, etc.
- 3. Counting occurrences of an event over fixed areas of time/space. Example: Poisson

The Bernoulli:

A random variable whose only possible values are 0 or 1.

This is a discrete random variable – why?

This distribution is specified by a single parameter:
$$P(\xi H \xi)$$

The probability of a heads/"success" p! This gives the pdf:

$$f(a) = \begin{cases} P & a = 1 \\ 1 - P & a = 0 \end{cases}$$
We denote the Bernoulli random variable X by $X \rightarrow bern(P)$

10 / 25

The Bernoulli

A random variable whose only possible values are 0 or 1.

This is a discrete random variable – why?

Countable outcomes

This distribution is specified by a single parameter:

The probability of a heads/"success" p! This gives the pdf:

$$P(X = x) = f(x) = \begin{cases} p & x = 1\\ (1-p) & x = 0\\ \hline 0 & else \end{cases}$$

We denote the Bernoulli random variable X by $X \sim Bern(p)$

The Bernoulli

A random variable whose only possible values are 0 or 1.

This is a discrete random variable – why?

This distribution is specified by a single parameter:

The probability of a heads/"success" p! This gives the pdf:

fied by a single parameter:
$$ds/\text{"success"}\ p!\ \text{This gives the pdf:}$$

$$P(X=x)=f(x)=\begin{cases} p & x=1\\ (1-p) & x=0\\ 0 & else \end{cases}$$

It turns out, it's nice to write the pdf as a single line whenever possible. The nicest way to do so for the Bernoulli: $f(x) = p^x (1-p)^{1-x}$ which works as long as we remember x can only be 0 or 1. We denote the Bernoulli random variable X by $X \sim Bern(p)$ Fall 2020 10/3

The Bernoulli random variable is the building block for numerous important probability distributions that reflect **repeated** measurements.

Statistics and data science on repeated measurements requires us understand principles of **counting**!

The Bernoulli random variable is the building block for numerous important probability distributions that reflect **repeated** measurements.

Statistics and data science on repeated measurements requires us understand principles of **counting**!

1. Some counting is easy: how many integers are there in [0, 9]?

The Bernoulli random variable is the building block for numerous important probability distributions that reflect **repeated** measurements.

Statistics and data science on repeated measurements requires us understand principles of **counting**!

2. Zach, Felix, Rachel, and Ioana line up at a coffee stand. How many different orders could they stand in?

The Bernoulli random variable is the building block for numerous important probability distributions that reflect **repeated** measurements.

Statistics and data science on repeated measurements requires us understand principles of **counting**!

2. Zach, Felix, Rachel, and Ioana line up at a coffee stand. How many different orders could they stand in?

This is a *permutation*: it counts distinct orderings

The Bernoulli random variable is the building block for numerous important probability distributions that reflect **repeated** measurements.

Statistics and data science on repeated measurements requires us understand principles of **counting**!

3. There are 10 problems on an exam, and you need 7 correct to pass. How many different ways are there to pass?

The Bernoulli random variable is the building block for numerous important probability distributions that reflect **repeated** measurements.

Statistics and data science on repeated measurements requires us understand principles of **counting**!

3. There are 10 problems on an exam, and you need 7 correct to pass. How many different ways are there to pass?

This is a *combination*: it counts ways a set can be split into subsets

Permutations

How many ways can you order a set of one object; e.g. $\{A\}$? How many ways can you order a set of two objects; e.g. $\{A, B\}$? A.R OR BA How many ways can you order a set of three objects; e.g. $\{ABC\}$?

(BA, BCA, RAC)

(A, B) or A (B) or ABC

Mullen: Discrete RVs

What's the pattern? How many ways could you order n objects?

Permutations

```
How many ways can you order a set of one object; e.g. \{A\}? A: 1 way. \{A\}.

How many ways can you order a set of two objects; e.g. \{A,B\}?

A: 2 ways. \{AB,BA\}.

How many ways can you order a set of three objects; e.g. \{ABC\}?

A: 6 ways. \{ABC,ACB,BAC,BCA,CBA,CAB\}. = 3)

What's the pattern? How many ways could you order n objects?

A: n!
```

Permutations; General

What if you have n objects, but only want to permute r of them?

How many 3-character strings can we make if each character is a distinct letter from the English alphabet? $\{SA,D\}$ $\{A,P,S\}$

What is the general form for an r-permutation of n objects?

Permutations; General

What if you have n objects, but only want to permute r of them?

How many 3-character strings can we make if each character is a distinct letter from the English alphabet?

A: There are 24 that start with AB There are 25 letters (including B) that could have followed an A. There are 26 options to start with. That multiplies to $26 \cdot 25 \cdot 24$.

What is the general form for an r-permutation of n objects?

A:
$$P(n,r) = \frac{n!}{(n-r)!}$$

This should feel a lot like **sampling without replacement**.. because it is, only without probabilities.

Combinations

Counting *combinations* means counting the number of ways an object can be sliced into subsets. The big difference: **order doesn't matter**.

How many 3-character *combinations* can we make if each character is a distinct letter from the English alphabet?

from the English alphabet?
$$\{S,A,D\}$$
 \Rightarrow $\{D,S,A\}$

Combinations

Counting *combinations* means counting the number of ways an object can be sliced into subsets. The big difference: **order doesn't matter**.

How many 3-character *combinations* can we make if each character is a distinct letter from the English alphabet?

Start with the number of permutations: $P(n,r)=26\cdot 25\cdot 24$, then ask how many times we "overcounted," because now we don't want subsets with the same elements.

Ex: How many times did we include a subset with $\{A,B,C\}$?

Combinations

Counting *combinations* means counting the number of ways an object can be sliced into subsets. The big difference: **order doesn't matter**.

How many 3-character *combinations* can we make if each character is a distinct letter from the English alphabet?

Start with the number of permutations: $P(n,r)=26\cdot 25\cdot 24$, then ask how many times we "overcounted," because now we don't want subsets with the same elements.

Ex: How many times did we include a subset with $\{A, B, C\}$?

Our permutation set had $\{ABC\}, \{ACB\}, \{BAC\}, \{BCA\}, \{CBA\}, \text{ and } \{CAB\} \text{ as distinct... or all 6 orderings of those 3 elements! So:}$

$$C(n,r) = \frac{n!}{(n-r)!(r!)}$$
But over counting

Combinations; Example

Combinations often use a variety of notations, including

$$C(n,r) = \binom{n}{k} = \frac{n!}{(n-r)!r!} :=$$
 "n choose k"

Example: If there are 10 problems on an exam, and you need 7 correct to pass, how many different ways are there to pass?

Combinations; Example

Combinations often use a variety of notations, including

$$C(n,r)=inom{n!}{k}=rac{n!}{(n-r)!r!}:=$$
 "n choose k"

Example: If there are 10 problems on an exam, and you need 7 correct to pass, how many different ways are there to pass?

Mullen: Discrete RVs

Perms and Combs; Summary

Mullen: Discrete RVs

Exponents are useful, and pretty common: a lot of both data science and computational problems often involve solutions that look like polynomials. For example, let's consider:

- 1. Expand $(x+y)^1$
- 2. Expand $(x+y)^2$
- 3. Expand $(x+y)^3$
- 4. Expand $(x+y)^4$

Exponents are useful, and pretty common: a lot of both data science and computational problems often involve solutions that look like polynomials. For example, let's consider:

- 1. Expand $(x+y)^1$ Z thing to a power Solution: $(x+y)^1 = x+y$
- 2. Expand $(x + y)^2$ Solution: $(x + y)^2 = x^2 + 2xy + y^2$
- 3. Expand $(x+y)^3$ Solution: $(x+y)^1 = (x+y)(x^2+2xy+y^2) = x^3+3x^2y+3xy^2+1$
- 4. Expand $(x+y)^4$ Solution: $(x+y)^1 = (x+y)(x^3+3x^2y+3xy^2+1) = x^4+4x^3y+6x^2y^2+4xy^3+1$

Exponents are useful, and pretty common: a lot of both data science and computational problems often involve solutions that look like polynomials. For example, let's consider:

- 1. Expand $(x + y)^1$ **Solution:** $(x + y)^1 = x + y$
- 2. Expand $(x + y)^2$ Solution: $(x + y)^2 = x^2 + 2xy + y^2$
- 3. Expand $(x+y)^3$ Solution: $(x+y)^1 = (x+y)(x^2+2xy+y^2) = x^3+3x^2y+3xy^2+1$
- 4. Expand $(x+y)^4$ Solution: $(x+y)^1 = (x+y)(x^3+3x^2y+3xy^2+1) = x^4 + 4x^3y + 6x^2y^2 + 4xy^3 + 1$

What are some patterns? It's definitely symmetric - the coefficient are palindromic - and it seems to always start with 1 and then n (the power)

One way to think about a binomial (two term) expansion is using "choose." Think about foiling:

$$(x_0 + x_1)(a + b) = \underbrace{ax_0}_{\text{first}} + \underbrace{bx_0}_{\text{outer}} + \underbrace{ax_1}_{\text{inner}} + \underbrace{bx_1}_{\text{last}}$$

There are 4 terms, but these are the same 4 terms as we would get from a multiplication rule: "choose" one of the first 2 terms and "choose" one of the second 2 terms for $2 \cdot 2$ total.

For our problem, we have to worry about repeating terms, though! If we think about:

$$(x+y)^4 = (x+y)(x+y)(x+y)(x+y)$$

it's making 4 choices: "choose x or y," then "choose x or y," then "choose x or y," then "choose x or y." The coefficient of the x^2y^2 term is the number of ways we could "choose x or y" 4 times and end up with 2 x's and 2 y's.

18 / 25

Binomials, Cont'd

So we're expanding

$$(x+y)^{4} = (x+y)(x+y)(x+y)(x+y)$$
$$= (x+y)(x^{3} + 3x^{2}y + 3xy^{2} + 1)$$
$$= x^{4} + 4x^{3}y + 6x^{2}y^{2} + 4xy^{3} + 1$$

and the coefficient of the x^2y^2 term is the number of ways we could "choose x or y" 4 times and end up with 2 x's and 2 y's.

Let's check. We're looking for all of the ways you could get e.g. xxyy, yyxx, xyyx, etc. This is the same as asking for the number of ways to choose 2 of the 4 "slots" to be x or choosing 2 of the 4 slots to be y, or $C(4,2) = \frac{4!}{2!}$.

Binomial Theorem

Theorem: Let x and y be variables and n be a non-negative integer. Then

$$(x+y)^n = \sum_{k=0}^n C(n,k)x^{n-k}y^k = C(n,0)x^ny^0 + C(n,1)x^{n-1}y^1 + \dots + C(n,n)x^0y^n$$

In other words, C(n,k) is the coefficient of x^ky^{n-k} and $x^{n-k}y^k$. We usually write the C numbers in choose notation:

$$(x+y)^{n} = \sum_{k=0}^{n} \binom{n}{k} x^{n-k} y^{k} = \binom{n}{0} x^{n} y^{0} + \binom{n}{1} x^{n-1} y^{1} + \dots + \binom{n}{n} x^{0} y^{n}$$

Mullen: Discrete RVs

Pascal's Triangle

For small expansions, an easy trick to find the binomial coefficients is Pascal's triangle. Each entry of the triangle is the sum of the two entries above it:

Pascal's Triangle

For small expansions, an easy trick to find the binomial coefficients is Pascal's triangle. Each entry of the triangle is the sum of the two entries above it:

Example: A fair Bernoulli coin is tossed eight times. A "successful toss" is defined to be the coin landing on heads.

Let X = # of successes or heads in 8 tosses.

- counting: (110000) (8,3) 1. How many ways in Ω can X=3?
- 2. What is P(X=3) for each *one* of those ways?

$$P(\xi H H H T T T T T \xi) = P(\xi T T T T T H H H \xi)$$

$$= P(\xi H \xi)^{3} \cdot P(\xi T \xi)^{5}$$

3. What is P(X = 3)?

Example: A fair Bernoulli coin is tossed eight times. A "successful toss" is defined to be the coin landing on heads.

Let X=# of successes or heads in 8 tosses.

- 1. How many ways in Ω can X=3?
 - C(8,3) OR C(8,5)
- 2. What is P(X = 3) for each *one* of those ways?

One such way is $\{HHHTTTTT\}$ which has probability $P(\{H\})^3 \cdot P(\{T\})^5$.

3. What is P(X=3)? The product of these two things!

Lets generalize those ideas to derive the Binomial pdf for n trials of an underlying $\mathsf{Bern}(p)$.

Let X:= the number of successes of \widehat{p} trials of a $\mathsf{Bern}(p)$. Then:

NOTATION: We write
$$h_i n (n, p)$$
 to indicate that X is a Binomial rv with success probability p and p trials.

Lets generalize those ideas to derive the Binomial pdf for n trials of an underlying $\mathsf{Bern}(p).$

Let X := the number of successes of n trials of a Bern(p). Then:

$$P(X = i) = (\# \text{ of ways that } X = i) \cdot P(\text{of one such outcome})$$

NOTATION: We write $X \sim bin(n,p)$ to indicate that X is a Binomial rv with success probability p and n trials.

Hullen: Discrete RVs

23 / 25

Lets generalize those ideas to derive the Binomial pdf for n trials of an underlying $\mathsf{Bern}(p)$.

Let X := the number of successes of n trials of a Bern(p). Then:

$$P(X=i) = (\# \text{ of ways that } X=i) \cdot P(\text{of one such outcome})$$

$$\begin{split} P(X=i) &= \binom{n}{i} \cdot P(n \text{ successes}) \cdot P(n-i \text{ failures}). \\ P(X=i) &= \binom{n}{i} p^i (1-p)^{(n-i)} \\ f(x) &= P(X=x) = \binom{n}{x} p^x (1-p)^{(n-x)}; \quad x \in \{0,1,2,\dots,n\} \end{split}$$

NOTATION: We write $X \sim bin(n,p)$ to indicate that X is a Binomial rv with success probability p and n trials.

23 / 25

The Binomial r.v. counts the total number of successes out of n trials, where X is the number of successes.

Important Assumptions:

- 1. Each trial must be *independent* of the previous experiment.
- 2. The probability of success must be identical for each trial.

The binomial is often defined and derived as the sum of n independent, identically distributed Bernoulli random variables.

In practice, any time we try to study a proportion on an underlying population, we gather a smaller sample where the observed proportion can often be thought of as a binomial random variable.

Daily Recap

Today we learned

1. Bernoullis, Binomials!

Moving forward:

- nb day Friday!

Next time in lecture:

- More special and common pdfs!

Mullen: Discrete RVs