EXPERIMENT-4

LCR RESONANCE

<u>AIM</u>: To study the resonance effect when the components of LCR circuit are in series connection.

APPARATUS:

- 1.) Oscillator (1 to 1Mhz)
- 2.) Resistors
- 3.) Capacitors
- 4.) Inductors
- 5.) AC milli-ammeter
- 6.) Voltage meter

OBSERVATIONS:

- Connect the resistor, capacitor and inductor in series and connect a voltage meter across resistor to find ac voltage.
- The oscillator is used to change the frequency.
- 1.) 1st set of values
- Resistor (R) = 47 ohm
- Capacitance (C) = 100nF
- Inductance (L) = 2mH
- Inductive Resistance (LR) = 0.8 ohm
- → Changing the frequency of the input and gauging the voltage across the resistor, we find the peak where resonance occurs.
- → Following is the table of varying voltage with different frequencies :

Frequency (kHz)	Voltage across Resistor (mV)
1	1.7
2	3.57
3	5.14
4	9.35
5	13.85
7	26.39

8	38.4
10	62.2
10.5	68.53
11	70.84
11.2	71.02
11.5	69.87
12	66.05
13	57.64
14	46.83
15	41.75
16	35.65
18	28.52
20	23.75
23	19.45
25	17.38
30	12.47
35	10.45
41	8.76
50	6.49
60	5.28
70	4.44

→ Graph:

→ Zooming in the resonance region :

- From prior knowledge we know that at resonance the reactance is zero and thus all the supplied voltages goes to the resistor and is the maximum value of the resistor.
- From the graph we can know that the maximum value of voltage is attained at **11.2kHz** at the maximum voltage is **71.01mV**.
- Theoretically if we find the value of frequency (f) : $f = 1/2\pi\sqrt{LC}$ which comes out to approximately equal to 11.2kHz which matches the experimental value attained from the graph.
- Also, y=R/L = 23500, for frequency $23500/2\pi = 3.74$ kHz.

Therefore the **Q-factor** = Natural frequency / γ = **3.**

Now (Max. power /2) \approx V(max)/ $\sqrt{2}$ = **50.22 mV**

Now theoretically Natural frequency $\pm \frac{y}{2} = (9.45 \text{ and } 13.19)$

At **9.45kHz** and **13.19kHz** the value of voltage across the resistor is almost equal to **50 V**

- Therefore from the graph we can find the maximum power /2 and also the quality factor of the circuit.
- 2.) 2nd set of values:
- Resistor (R) = 1000 ohm
- Capacitance (C) = 100nF
- Inductance (L) = 2mH
- Inductive Resistance (LR) = 0.8 ohm
- → Following is the table of varying voltage with different frequencies :

Frequency (kHz)	<u>Voltage (mV)</u>
1	47.5
2	60.89
3	66.75
4	68.66
5	68.91
6	72.64

7	75.61
8	79.28
9	84.58
9.5	87.28
10	90.46
10.5	94.12
11	98.49
11.5	102.25
12	108.74
13	124.44
13.5	132.07
14	145.45
15	166.43
16	194.2
16.5	219.2
17	248.5
18	260.7
20	284.3
22	190.45
23	152.24
24	118.6
25	98.67
26	83.45
28	63.32
32	40.13

→ Graph for the table :

- Here the maximum value of voltage is 284.3 mV which is attained at the frequency of 20khz that can be interpreted from the graph.
- While the theoretical value is 11.2kHz which is very less than the obtained practical value.

• One of the reason of this shift in the peak value is the high value of resistance itself has some capacitance which changes the natural resonance frequency of the system.

→ Plotting the values together :

• Here we can see that the graph approaches the peak when the circuit is in resonance and reactance tends to be zero.

CONCLUSION:

- The value of Impedance (Z) = $\sqrt{\left(wL-\frac{1}{wC}\right)^2}+R^2$, so for the impedance to be minimum wL=1/wC, therefore $w=1/\sqrt{LC}$ gives the least impedance and maximum voltage to the resistor and thus the power which we also found experimentally.
- Also due to high resistance (R) the damping in the system increases and the graph becomes non-peaky.