Virtualization and containerization

Thomas Berreis

Outline

- Virtualization
 - Definition
 - Advantages / Features
 - Performance
- Lightweight virtualization: Container
 - Features
 - Performance
- Conclusion

Introduction

RANK	SITE	SYSTEM
1	National Super Computer Center in Guangzhou China	Tianhe-2 (MilkyWay-2) - TH-IVB-FEP Cluster, Intel Xeon E5-2692 12C 2.200GHz, TH Express-2, Intel Xeon Phi 31S1P NUDT
2	DOE/SC/Oak Ridge National Laboratory United States	Titan - Cray XK7 , Opteron 6274 16C 2.200GHz, Cray Gemini interconnect, NVIDIA K20x Cray Inc.
3	DOE/NNSA/LLNL United States	Sequoia - BlueGene/Q, Power BQC 16C 1.60 GHz, Custom IBM
4	RIKEN Advanced Institute for Computational Science (AICS) Japan	K computer, SPARC64 VIIIfx 2.0GHz, Tofu interconnect Fujitsu
5	DOE/SC/Argonne National Laboratory United States	Mira - BlueGene/Q, Power BQC 16C 1.60GHz, Custom IBM

Introduction

Definition

- technology to split physical environment into logical units
- possible for hardware and software
- hypervisor as abstraction layer
- less of bare-metal

Definition

Advantages

- energy-saving
- space-saving
- faster provisioning
- isolated applications
- environments for developing and testing

Advantages

- higher availability
- virtual disaster recovery
- easier administration
- intelligent management of resources
- enormous hardware compatibility

VMware Compatibility Guide

http://www.vmware.com/resources/compatibility/search.php

Techniques - RDMA

- RDMA (Remote Direct Memory Access)
 - Allows to exchange data in main memory without involving processor, cache or operating system
 - Minimizes overhead
 - Improves performance

Techniques - RDMA

Techniques - SR-IOV

- SR-IOV (Single Root I/O Virtualization)
 - presents single I/O device as multiple separate devices
 - each virtual device has its own
 - Configuration space, base address registers
 - Send/receive queues with own interrupts
 - Specific NIC driver needed

Techniques - DirectPath I/O

- Passthrough / VMDirectPath
 - allows direct and exclusive access to I/O
 devices by bypassing the virtualization layer
 - Incompatibility with many virtualization features
 - Fault Tolerance
 - Snapshots
 - Live Migration

- VMware Test Configuration
 - 4x HP DL380p G8 (3.3 GHz, 128 GB RAM)
 - Hypervisor: VMware vSphere
 - ConnectX-2 QDR InfiniBand 10 Gb / RDMA

Performance - Bandwidth

Performance - Latency

Performance - Summary

Virtualized HPC performance close to bare-metal

Performance - Summary

Latency almost identical in future releases(?)

Celebrities

- ESX (VMware)
- Hyper-V (Microsoft)
- KVM (Red Hat)
- XEN (Citrix)

Use Case - Problem

- International work ...
- Reconstruct some Chinese research findings ...
- 红旗 Linux ... what the heck?!

Use Case - Solution

- Strange operating system?
- Incompatible system libraries?
- Virtualization!
 - Use of independent well-known environments
 - Of course compatible with our software
 - Easy to provide and remove

Container

Container

- without hypervisor but also with virtualization layer
- uses system libs and kernel (limited to host ecosystem)
- non virtualized drivers
- namespaces to isolate processes
- CGroups to isolate or limit resource usage
- partly layered file systems

Container

 NASA Advanced Supercomputing Parallel Benchmarks (Hypervisor: QEMU KVM)

Other high performance applications

SYSBENCH OLTP with Red Hat 7 & Docker

mariadb 2M rows 300s

Celebrities

- Docker
- LXC
- OpenVZ
- Solaris Zones
- FreeBSD Jails

Use Case - Problem

- Develop an application that fits in your HPC environment ...
- You have to test your application in this environment ...
- You cannot virtualize this damn special OS ...
- Developing on your client is pointless ...

Use Case - Solution

Multitenancy architecture

- Work in a container within this environment
- Independent to other applications / containers
- Test, QA and Production possible in same environment
- Without any overhead

Conclusion

- each kind of virtualization has pros and cons
- container not replacing virtual machines
- containerization is not only a passing fad
- requirements are crucial
- containerization quite adapted for HPC

Conclusion

Conclusion – a fusion?

- basically possible
- but
 - advantages gets lost
 - bottleneck effect

Conclusion

Customers

- PayPal
- Groupon
- Uber
- eBay
- Spotify
- BBC News
- yelp

- Deutsche Telekom
- Beiersdorf
- Symantec
- Adobe
- SAP
- Vodafone
- HP

Conclusion

Much more about virtualization we cannot discuss today:

- The UberCloud Experiment
- AWS | Amazon Elastic Compute Cloud
- OpenStack Open Source Cloud Computing Software
- Apache CloudStack Open Source Cloud Computing
- VMware vSphere Big Data Extensions
- Virtualized InfiniBand
- Kubernetes by Google
- **.** . . .

- https://en.wikipedia.org/wiki/Hypervisor Slides 5 8 | 11.2015
- https://en.wikipedia.org/wiki/Virtual_machine Slides 5 8 | 11.2015
- http://www.tecchannel.de/server/virtualisierung/2029842/faq_alles_ueber_virtualisierung_varianten_und_unterschiede/ Slides 5 8 | Bertram Wöhrmann, 03.09.2012
- http://www.infoworld.com/article/2621446/server-virtualization/server-virtualization-top-10-benefits-of-server-virtualization.html Slides 5 8 | David Marshall, 02.11.2011
- https://www.vmware.com/de/products/vsphere/features/vmfs Slide 6 | 11.2015
- https://www.vmware.com/de/business-continuity/disaster-recovery Slide 8 | 11.2015
- http://glennklockwood.blogspot.de/2013/12/high-performance-virtualization-sr-iov.html
 Slide 11 | Glenn K. Lockwood, 03.12. 2013

- http://blogs.vmware.com/cto/hpc-update/ | Josh Simons, 31.10.2014
- http://blogs.vmware.com/cto/files/2014/11/ndm2014-sc14-simons.pdf
 Slides 10, 16, 17 | Josh Simons, 11.2014
- https://www.thomas-krenn.com/de/wiki/VMware_VMDirectPath_zum_Durchreichen_von_PCI_Karten
 Slide 12 | Werner Fischer, 18.05.2015
- https://blogs.vmware.com/cto/running-hpc-applications-vsphere-using-infiniband/
 Slides 13 15 | Josh Simons, 22.12.2014
- http://www.rdmamojo.com/2014/03/31/remote-direct-memory-access-rdma/ | Dotan Barak, 31.03.2014
- https://en.wikipedia.org/wiki/Red_Flag_Linux Slide 19 | 11.2015
- http://www.spantree.net/blog/2015/04/29/10-things-to-know-about-docker.html
 Slides 22, 23, 31 | Cedric Hurst, 29.04.2015

- https://en.wikipedia.org/wiki/UnionFS Slide 22 | 11.2015
- http://sleekd.com/servers/docker-vs-virtualization/ Slide 22 | Razvan, 29.09.2014
- https://access.redhat.com/documentation/en US/Red_Hat_Enterprise_Linux/6/html/Resource_Management_Guide/ch01.html Slide 22 | 11.2015
- http://www.nas.nasa.gov/publications/npb.html Slide 24 | 11.2015
- http://en.community.dell.com/techcenter/high-performancecomputing/b/general_hpc/archive/2014/11/04/containers-docker-virtual-machines-and-hpc Slides 24, 25 | Nishanth Dandapanthula, 04.11.2014
- http://developerblog.redhat.com/2014/08/19/performance-analysis-docker-red-hat-enterprise-linux-7/
 Slide 26 | Jeremy Eder, 19.08.2014

- https://de.wikipedia.org/wiki/Online_Transaction_Processing Slide 26 | 11.2015
- http://blogs.vmware.com/performance/2014/10/docker-containers-performance-vmware-vsphere.html
 Slide 33 | Banit Agrawal, 15.10.2014
- http://www.top500.org/project/linpack/ Slide 33 | 11.2015
- http://www.vmware.com/a/customers/customer Slide 34 | 11.2015
- https://www.docker.com/customers
 Slide 34 | 11.2015
- http://www.mellanox.com/page/virtualization | 11.2015
- http://nowlab.cse.ohio-state.edu/static/media/publications/abstract/huangwei-ics06.pdf
 | Wei Huang, 06.2006