kmeans

March 3, 2022

1 Import Libraries

```
[1]: import pandas as pd
  import numpy as np
  from sklearn.cluster import KMeans
  from sklearn.decomposition import PCA
  import time
  from sklearn.preprocessing import StandardScaler
```

2 Code Algorithm

3 Iris Dataset

```
[3]: ## import data
     iris = pd.read_csv('iris.csv')
     iris.head()
[3]:
        Sepal.Length Sepal.Width Petal.Length Petal.Width Species
                 5.1
                              3.5
                                            1.4
                                                          0.2 setosa
                 4.9
                              3.0
                                            1.4
                                                          0.2 setosa
     1
     2
                 4.7
                              3.2
                                            1.3
                                                          0.2 setosa
     3
                 4.6
                              3.1
                                            1.5
                                                          0.2 setosa
                 5.0
                              3.6
                                            1.4
                                                          0.2 setosa
[4]: ## extract explanatory variables
     iris_train = iris.iloc[:, [0,1,2,3]].values
     ## extract actual species label
     iris_species = iris.iloc[:, 4]
     ## re-label actual species to integers
     iris_distinct_species = iris.Species.unique()
     iris_dict = {iris_distinct_species[0]: 1,
                      iris_distinct_species[1]: 2,
                      iris_distinct_species[2]: 0}
     iris_labels = iris_species.replace(iris_dict)
     ## run algorithm
     iris_metrics = kmeans_alg(iris_train, 3, iris_labels)
     ## print results
     print(iris_metrics)
    (0.8933, 0.0125)
```

4 Penguins Dataset

```
[5]: ## import data
    penguins = pd.read_csv('penguins.csv')
    penguins = penguins.dropna()
    penguins.head()

[5]: species island bill_length_mm bill_depth_mm flipper_length_mm \
```

```
      0 Adelie Torgersen
      39.1
      18.7
      181.0

      1 Adelie Torgersen
      39.5
      17.4
      186.0

      2 Adelie Torgersen
      40.3
      18.0
      195.0
```

```
4 Adelie Torgersen
                                     36.7
                                                    19.3
                                                                      193.0
     5 Adelie Torgersen
                                     39.3
                                                    20.6
                                                                      190.0
       body_mass_g
                        sex
                            year
     0
            3750.0
                      male
                            2007
            3800.0 female
     1
                            2007
     2
            3250.0 female 2007
     4
            3450.0 female 2007
     5
            3650.0
                      male 2007
[6]: ## extract explanatory variables
     penguins_train = penguins.iloc[:, [2,3,4,5]].values
     ## extract actual species label
     penguins_species = penguins.iloc[:, 0]
     ## re-label actual species to integers
     penguins_distinct_species = penguins.species.unique()
     penguins_dict = {penguins_distinct_species[0]: 2,
                      penguins distinct species[1]: 1,
                      penguins_distinct_species[2]: 0}
     penguins labels = penguins species.replace(penguins dict)
     ## run algorithm
     penguins_metrics = kmeans_alg(penguins_train, 3, penguins_labels)
     ## print results
     print(penguins_metrics)
    (0.5826, 0.0154)
```

5 Seeds Dataset

```
[7]: ## import data
seeds = pd.read_csv('seeds_dataset.csv')
seeds.head()
```

```
[7]:
        Area Perim Compact K.Length K.Width Assym G.Length Class
    0 15.26 14.84
                     0.8710
                                5.763
                                        3.312 2.221
                                                         5.220
                                                                   1
    1 14.88 14.57
                     0.8811
                                        3.333 1.018
                                                         4.956
                                5.554
                                                                   1
    2 14.29 14.09
                     0.9050
                                5.291
                                        3.337 2.699
                                                         4.825
                                                                   1
    3 13.84 13.94
                     0.8955
                                5.324
                                        3.379 2.259
                                                         4.805
                                                                   1
    4 16.14 14.99
                     0.9034
                                5.658
                                        3.562 1.355
                                                         5.175
                                                                   1
```

6 Principal Component Analysis

From the Principal Component Analysis *explained variance ratio* (shown below), we observe the following:

- Around 73% of the variance in the *iris* dataset can be explained by the first principal component and around 23% of the variance in the dataset can be explained by the second, for a total of 96%
- Around 69% of the variance in the *penguins* dataset can be explained by the first principal component and around 19% of the variance in the dataset can be explained by the second, for a total of 88%
- Around 72% of the variance in the seeds dataset can be explained by the first principal component and around 17% of the variance in the dataset can be explained by the second, for a total of 89%

Therefore, we will try using both only one and two principal components below.

```
[9]: pca = PCA()
```

6.1 Iris PCA

```
[10]: scaler = StandardScaler()
  iris_std = scaler.fit_transform(iris_train)

iris_pca = pca.fit(iris_std)
```

```
iris_pca.explained_variance_ratio_
```

[10]: array([0.72962445, 0.22850762, 0.03668922, 0.00517871])

6.2 Penguins PCA

```
[11]: scaler = StandardScaler()
    penguins_std = scaler.fit_transform(penguins_train)

penguins_pca = pca.fit(penguins_std)
    penguins_pca.explained_variance_ratio_
```

[11]: array([0.68633893, 0.19452929, 0.09216063, 0.02697115])

6.3 Seeds PCA

```
[12]: scaler = StandardScaler()
    seeds_std = scaler.fit_transform(seeds_train)

seeds_pca = pca.fit(seeds_std)
    seeds_pca.explained_variance_ratio_
```

```
[12]: array([7.18743027e-01, 1.71081835e-01, 9.68576341e-02, 9.76635386e-03, 2.67337271e-03, 7.61720812e-04, 1.16056686e-04])
```

7 K-Means Using PCA Components

7.1 Iris Dataset

7.1.1 One Principal Component

```
print(iris_metrics_pca1)
(0.9267, 0.0146)
```

7.1.2 Two Principal Components

(0.8333, 0.015)

7.2 Penguins Dataset

7.2.1 One Principal Component

(0.8589, 0.0199)

7.2.2 Two Principal Components

(0.8799, 0.0189)

7.3 Seeds Dataset

7.3.1 One Principal Component

(0.8571, 0.0125)

7.3.2 Two Principal Components

(0.9093, 0.0133)

8 Compare Full Model vs. PCA Model

8.1 Iris Dataset

```
Accuracy Runtime
0 0.8933 0.0125
1 0.9267 0.0146
2 0.8333 0.0150
```

8.2 Penguins Dataset

```
Accuracy Runtime
0 0.5826 0.0154
1 0.8589 0.0199
2 0.8799 0.0189
```

8.3 Seeds Dataset

```
Accuracy Runtime
0 0.8952 0.0135
1 0.8571 0.0125
2 0.9095 0.0135
```