PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7:		(11) International Publication Number: WO 00/34320
C07K 14/435, C12N 1/00, 1/15, 1/21, 5/10, 15/12, 15/63	A1	(43) International Publication Date: 15 June 2000 (15.06.00)
(21) International Application Number: PCT/US99/29393 (22) International Filing Date: 10 December 1999 (10.12.99)		DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).
(30) Priority Data: 09/210,330 Not furnished 9 December 1998 (11.12.9) (71) Applicant: CLONTECH LABORATORIES, INC. 1020 East Meadow Drive, Palo Alto, CA 94303 ((72) Inventors: LUKYANOY, Sergey Anatolievich; ul binskaya 13/1–161, Moscow (RU). FRADKOV Fedorovich; ul. Dnepropetrovskaya, 35/2–14, 113570 (RU). LABAS, Yulii Aleksandrovich; erala Tyuleneva, 35–416, Moscow, 117465 (RU) Mikhail Vladimirovich; ul. Teplii stan, 7/2–28, 117465 (RU). FANG, Yu; 583 Enos Street, Frer 94539 (US). CHEN, Ying; 680 Garland Avenue, nyvale, CA 94086 (US). HU, Lanrong; Apartment Ayala Drive, Sunnyvale, CA 94086 (US). DING, Norman Drive, Sunnyvale, CA 94087 (US).	[US/US). I. Go', Arca Mosco ul. Ge MAT Mosco mont, C #6, St t #2, 12, Li; 13	u- idy w, n- Z, w, iA A n- B1 52
(74) Agent: ADLER, Benjamin, A.; McGregor & Ad Candle Lane, Houston, TX 77071 (US).	ler, 80	11

- (54) Title: FLUORESCENT PROTEINS FROM NON-BIOLUMINISCENT SPECIES OF CLASS ANTHOZOA, GENES ENCODING SUCH PROTEINS AND USES THEREOF
- (57) Abstract

The present invention is directed to novel fluorescent proteins from non-bioluminiscent organisms from the Class Anthozoa. Also disclosed are cDNAs encoding the fluorescent proteins.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
ΑZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
ВJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	ΙT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CC	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway.	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		'.
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		•

PCT/US99/29393

FLUORESCENT PROTEINS FROM NON-BIOLUMINESCENT SPECIES OF CLASS ANTHOZOA, GENES ENCODING SUCH PROTEINS AND USES THEREOF

10

5

BACKGROUND OF THE INVENTION

Cross-reference to Related Application

This is a divisional application of U.S.S.N. 09/210,330 filed on December 11, 1998.

Field of the Invention

This invention relates to the field of molecular biology.

More specifically, this invention relates to novel fluorescent proteins,

cDNAs encoding the proteins and uses thereof.

Description of the Related Art

Fluorescence labeling is a particularly useful tool for marking a protein, cell, or organism of interest. Traditionally, a protein of interest is purified, then covalently conjugated to a fluorophore derivative. For in vivo studies, the protein-dye complex is then inserted into cells of interest using micropipetting or a method of reversible permeabilization. The dye attachment and insertion steps, however, make the process laborious and difficult to control. An

15

20

25

WO 00/34320 PCT/US99/29393

alternative method of labeling proteins of interest is to concatenate or fuse the gene expressing the protein of interest to a gene expressing a marker, then express the fusion product. Typical markers for this method of protein labeling include β -galactosidase, firefly luciferase and bacterial luciferase. These markers, however, require exogenous substrates or cofactors and are therefore of limited use for in vivo studies.

A marker that does not require an exogenous cofactor or substrate is the green fluorescent protein (GFP) of the jellyfish Aequorea victoria, a protein with an excitation maximum at 395 nm, a second excitation peak at 475 nm and an emission maximum at 510 nm. GFP is a 238-amino acid protein, with amino acids 65-67 involved in the formation of the chromophore.

Uses of GFP for the study of gene expression and protein localization are discussed in detail by Chalfie et al. in Science 263 (1994), 802-805, and Heim et al. in Proc. Nat. Acad. Sci. 91 (1994), 12501-12504. Additionally, Rizzuto et al. in Curr. Biology 5 (1995), 635-642, discuss the use of wild-type GFP as a tool for visualizing subcellular organelles in cells, while Kaether and Gerdes in Febs Letters 369 (1995), 267-271, report the visualization of protein transport along the secretory pathway using wild-type GFP. The expression of GFP in plant cells is discussed by Hu and Cheng in Febs Letters 369 (1995), 331-334, while GFP expression in Drosophila embryos is described by Davis et al. in Dev. Biology 170 (1995), 726-729.

Crystallographic structures of wild-type GFP and the mutant GFP S65T reveal that the GFP tertiary structure resembles a barrel (Ormö et al., Science 273 (1996), 1392-1395; Yang, et al., Nature Biotechnol 14 (1996), 1246-1251). The barrel consists of beta sheets in a compact structure, where, in the center, an alpha helix containing

the chromophore is shielded by the barrel. The compact structure makes GFP very stable under diverse and/or harsh conditions such as protease treatment, making GFP an extremely useful reporter in general. However, the stability of GFP makes it sub-optimal for determining short-term or repetitive events.

A great deal of research is being performed to improve the properties of GFP and to produce GFP reagents useful and optimized for a variety of research purposes. New versions of GFP have been developed, such as a "humanized" GFP DNA, the protein product of which has increased synthesis in mammalian cells (Haas, et al., Current Biology 6 (1996), 315-324; Yang, et al., Nucleic Acids Research 24 (1996), 4592-4593). One such humanized protein is "enhanced green fluorescent protein" (EGFP). Other mutations to GFP have resulted in blue-, cyan- and yellow-green light emitting versions. Despite the great utility of GFP, however, other fluorescent proteins with properties similar to or different from GFP would be useful in the art. fluorescent proteins result in possible new colors, or produce pHdependent fluorescence. Other benefits of novel fluorescent proteins include fluorescence resonance energy transfer (FRET) possibilities based on new spectra and better suitability for larger excitation.

The prior art is deficient in novel fluorescent proteins wherein the DNA coding sequences are known. The present invention fulfills this long-standing need in the art.

25

20

SUMMARY OF THE INVENTION

The present invention is directed to DNA sequences encoding fluorescent proteins selected from the group consisting of:

15

20

25

WO 00/34320 PCT/US99/29393

(a) an isolated DNA from an organism from the Class Anthozoa which encodes a fluorescent protein; (b) an isolated DNA which hybridizes to the isolated DNA of (a) and which encodes a fluorescent protein; and (c) an isolated DNA differing from the isolated DNAs of (a) and (b) in codon sequence due to the degeneracy of the genetic code and that encodes a fluorescent protein. Preferably, the DNA is isolated from a non-bioluminescent organism from Class Anthozoa. More preferably, the DNA has the sequence selected from the group consisting of SEQ ID Nos. 55, 57 and 61, and the fluorescent protein has the amino acid sequence shown in SEQ ID No. 56.

In another embodiment of the present invention, there is provided a vector capable of expressing the DNA of the present invention in a recombinant cell comprising the DNA and regulatory elements necessary for expression of the DNA in the cell. Preferably, the DNA encodes a fluorescent protein having the amino acid sequence shown in SEQ ID No. 56.

In still another embodiment of the present invention, there is provided a host cell transfected with a vector of the present invention, such that the host cell expresses a fluorescent protein. Preferably, the cell is selected from the group consisting of bacterial cells, mammalian cells, plant cells and insect cells.

The present invention is also directed to an isolated and purified fluorescent protein coded for by DNA selected from the group consisting of: (a) isolated DNA from an organism from Class Anthozoa which encodes a fluorescent protein; (b) isolated DNA which hybridizes to the isolated DNA of (a) and which encodes a fluorescent protein; and (c) isolated DNA differing from the isolated DNAs of (a) and (b) in codon sequence due to the degeneracy of the genetic code, and which

25

WO 00/34320 PCT/US99/29393

encodes a fluorescent protein. Preferably, the protein has the amino acid sequence shown in SEQ ID No. 56.

The present invention is also directed to a DNA sequence encoding a fluorescent protein selected from the group consisting of: (a) an isolated DNA which encodes a fluorescent protein, wherein the DNA is from an organism from Class Anthozoa and wherein the organism does not exhibit bioluminescence; (b) an isolated DNA which hybridizes to isolated DNA of (a) and which encodes a fluorescent protein; and (c) an isolated DNA differing from the isolated DNAs of (a) and (b) in codon sequence due to degeneracy of the genetic code and which encodes a fluorescent protein. Preferably, the organism is More preferably, from Sub-class Zoantharia, Order Actiniaria. Even more preferably, the organism is from Sub-order Endomyaria. organism is from Family Actiniidae, Genus Anemonia. Even more preferably, the organism is Anemonia majano. Most particularly, the present invention is drawn to a novel fluorescent protein from Anemonia majano, amFP486.

The present invention is further directed to an amino acid sequence which can be used as a basis for designing an oligonucleotide probe for identification of a DNA encoding a fluorescent protein by means of hybridizaton, wherein the amino acid sequence is selected from the group consisting of SEQ ID Nos. 3, 5, 8, 11, 12, 14. Preferably, such an oligonucleotide has a nucleotide sequence selected from the group consisting of SEQ ID Nos. 4, 6, 7, 9, 10, 13, 15, 16.

Other and further aspects, features, and advantages of the present invention will be apparent from the following description of the presently preferred embodiments of the invention given for the purpose of disclosure.

10

20

25

PCT/US99/29393

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 shows the modified strategy of 3'-RACE used to isolate the target fragments. Sequences of the oligonucleotides used are shown in Table 2. Dpl and Dp2 are the degenerate primers used in the first and second PCR, respectively (see Tables 3 and 4 for the sequences of degenerate primers). In the case of Anemonia majano, the first degenerate primer used was NGH (SEQ ID No. 4), and the second degenerate primer used was GNG(b) (SEQ ID No. 10).

Figure 2 shows the excitation and emission spectrum of the novel fluorescent protein from Anemonia majano, amFP486.

Figure 3 shows transient expression of pCNFPMut32-N1 and pECFP-N1 in 293 cells, respectively. PCNFPMut32-N1 (Figure 3A) shows brighter fluorescent intensity and less photobleaching compared to pECFP-N1 (Figure 3B). pCNFPMut32-N1 is constructed by amplifying Mut32 DNA and then inserting the amplified product into EGFP-N1 backbone.

Figure 4 shows that fusion protein PKC-γ-CNFP translocated from cytosol to the plasma membrane when cells were treated with PMA (Phorbol 12-Myristate 13-Acetate). Figure 4A shows the result from control (without the treatment) and Figure 4B shows the result from PMA-treated cells.

of destabilized analysis functional shows **Figure** amFP486. Figure 5A shows that expression of pCNFP-MODCd1 in HEK However, the 293 cells exhibited purple fluorescence (pseudocolor). actual color should be cyan (control). Figure 5B shows that transient decreased 50% demonstrates pCNFP-MODCd1 of transfection fluorescent intensity after 4-hour treatment with protein synthesis

PCT/US99/29393

inhibitor cycloheximide. pCNFP-MODCd1 is constructed using Mut32 DNA clone.

Figure 6 shows histogram of wildtype amFP486. The fluorescent intensity of the transfected cells was analyzed on FACS using FL1 (510/30) detecting channel. Five samples (A-E) were analyzed in parallel. Geo Mean = geometric mean for data points.

Figure 7 shows histogram of Mut15. Same method as in Figure 5 was used. Five samples (A-E) were analyzed in parallel.

Figure 8 shows histogram of Mut32. Same method as in Figure 5 was used. Five samples (A-E) were analyzed in parallel.

Figure 9 shows the expression of fusion protein Mut15-mdm2 in HEK293 cells.

Figure 10 shows the spectrum of wildtype amFP486. EX = 458 nm, EM = 492 nm, both slits = 2.5 nm.

Figure 11 shows the spectrum of Mut15.

Figure 12 shows the spectrum of Mut32.

Figure 13 shows the spectra of wildtype and mutant amFP486 on the same graph.

20

25

15

10

DETAILED DESCRIPTION OF THE INVENTION

As used herein, the term "GFP" refers to the basic green fluorescent protein from Aequorea victoria, including prior art versions of GFP engineered to provide greater fluorescence or fluoresce in different colors. The sequence of Aequorea victoria GFP (SEQ ID No. 54) has been disclosed in Prasher et al., Gene 111 (1992), 229-33.

As used herein, the term "EGFP" refers to mutant variant of GFP having two amino acid substitutions: F64L and S65T (Heim et al.,

15

20

25

WO 00/34320 PCT/US99/29393

Nature 373 (1995), 663-664). The term "humanized" refers to changes made to the GFP nucleic acid sequence to optimize the codons for expression of the protein in human cells (Yang et al., *Nucleic Acids Research* 24 (1996), 4592-4593).

As used herein, the term "CFP" refers to cyan fluorescent protein, and the term "ECFP" refers to enhanced cyan fluorescent protein.

As used herein, the term "NFP" refers to novel fluorescent protein, and the term "CNFP" refers to cyan novel fluorescent protein. Specifically, "CNFP" refers to amFP486.

In accordance with the present invention there may be microbiology, and biology, molecular conventional employed within the skill of the art. Such recombinant DNA techniques techniques are explained fully in the literature. See, e.g., Maniatis, Fritsch & Sambrook, "Molecular Cloning: A Laboratory Manual (1982); "DNA Cloning: A Practical Approach," Volumes I and II (D.N. Glover ed. 1985); "Oligonucleotide Synthesis" (M.J. Gait ed. 1984); "Nucleic Acid Hybridization" (B.D. Hames & S.J. Higgins eds. (1985)); "Transcription and Translation" (B.D. Hames & S.J. Higgins eds. (1984)); "Animal Cell Culture" (R.I. Freshney, ed. (1986)); "Immobilized Cells and Enzymes" (IRL Press, (1986)); B. Perbal, "A Practical Guide To Molecular Cloning" (1984).

A "vector" is a replicon, such as plasmid, phage or cosmid, to which another DNA segment may be attached so as to bring about the replication of the attached segment.

A "DNA molecule" refers to the polymeric form of deoxyribonucleotides (adenine, guanine, thymine, or cytosine) in either single stranded form or a double-stranded helix. This term refers only to the primary and secondary structure of the molecule, and does not

15

20

25

WO 00/34320 PCT/US99/29393

limit it to any particular tertiary forms. Thus, this term includes double-stranded DNA found, inter alia, in linear DNA molecules (e.g., restriction fragments), viruses, plasmids, and chromosomes.

A DNA "coding sequence" is a DNA sequence which is transcribed and translated into a polypeptide in vivo when placed under the control of appropriate regulatory sequences. The boundaries of the coding sequence are determined by a start codon at the 5' (amino) terminus and a translation stop codon at the 3' (carboxyl) terminus. A coding sequence can include, but is not limited to, prokaryotic sequences, cDNA from eukaryotic mRNA, genomic DNA sequences from eukaryotic (e.g., mammalian) DNA, and synthetic DNA sequences. A polyadenylation signal and transcription termination sequence may be located 3' to the coding sequence.

As used herein, the term "hybridization" refers to the process of association of two nucleic acid strands to form an antiparallel duplex stabilized by means of hydrogen bonding between residues of the opposite nucleic acid strands.

The term "oligonucleotide" refers to a short (under 100 bases in length) nucleic acid molecule.

"DNA regulatory sequences", as used herein, are transcriptional and translational control sequences, such as promoters, enhancers, polyadenylation signals, terminators, and the like, that provide for and/or regulate expression of a coding sequence in a host cell.

A "promoter sequence" is a DNA regulatory region capable of binding RNA polymerase in a cell and initiating transcription of a downstream (3' direction) coding sequence. For purposes of defining the present invention, the promoter sequence is bounded at its 3' terminus by the transcription initiation site and extends upstream (5'

15

20

25

WO 00/34320 PCT/US99/29393

to include the minimum number of bases or elements direction) detectable at levels transcription to initiate necessary sequence will be found the promoter Within background. initiation site, as well as protein binding transcription responsible for the binding of RNA polymerase. Eukaryotic promoters will often, but not always, contain "TATA" boxes and "CAT" boxes. Various promoters, including inducible promoters, may be used to drive the various vectors of the present invention.

As used herein, the terms "restriction endonucleases" and "restriction enzymes" refer to bacterial enzymes, each of which cut double-stranded DNA at or near a specific nucleotide sequence.

"transfected" b y "transformed" or A cell has been exogenous or heterologous DNA when such DNA has been introduced inside the cell. The transforming DNA may or may not be integrated (covalently linked) into the genome of the cell. In prokaryotes, yeast, and mammalian cells for example, the transforming DNA may be maintained on an episomal element such as a plasmid. With respect to eukaryotic cells, a stably transformed cell is one in which the transforming DNA has become integrated into a chromosome so that it is inherited by daughter cells through chromosome replication. This stability is demonstrated by the ability of the eukaryotic cell to establish cell lines or clones comprised of a population of daughter cells containing the transforming DNA. A "clone" is a population of cells derived from a single cell or common ancestor by mitosis. A "cell line" is a clone of a primary cell that is capable of stable growth in vitro for many generations.

A "heterologous" region of the DNA construct is an identifiable segment of DNA within a larger DNA molecule that is not found in association with the larger molecule in nature. Thus, when

20

25

WO 00/34320 PCT/US99/29393

the heterologous region encodes a mammalian gene, the gene will usually be flanked by DNA that does not flank the mammalian genomic DNA in the genome of the source organism. In another example, heterologous DNA includes coding sequence in a construct where portions of genes from two different sources have been brought together so as to produce a fusion protein product. Allelic variations or naturally-occurring mutational events do not give rise to a heterologous region of DNA as defined herein.

As used herein, the term "reporter gene" refers to a coding sequence attached to heterologous promoter or enhancer elements and whose product may be assayed easily and quantifiably when the construct is introduced into tissues or cells.

The amino acids described herein are preferred to be in the "L" isomeric form. The amino acid sequences are given in one-letter code (A: alanine; C: cysteine; D: aspartic acid; E: gluetamic acid; F: phenylalanine; G: glycine; H: histidine; I: isoleucine; K: lysine; L: leucine; M: metionine; N: asparagine; P: proline; Q: gluetamine; R: arginine; S: serine; T: threonine; V: valine; W: tryptophane; Y: tyrosine; X: any residue). NH₂ refers to the free amino group present at the amino terminus of a polypeptide. COOH refers to the free carboxy group present at the carboxy terminus of a polypeptide. In keeping with standard polypeptide nomenclature, J Biol. Chem., 243 (1969), 3552-59 is used.

The present invention is directed to an isolated DNA selected from the group consisting of: (a) isolated DNA from an organism from the Class Anthozoa which encodes a fluorescent protein; (b) isolated DNA which hybridizes to isolated DNA of (a) and which encodes a fluorescent protein; and (c) isolated DNA differing from the isolated DNAs of (a) and (b) in codon sequence due to the

15

20

25

WO 00/34320 PCT/US99/29393

degeneracy of the genetic code, and which encodes a fluorescent protein. Preferably, the DNA has the sequence selected from the group consisting of SEQ ID Nos. 55, 57 and 61, and the fluorescent protein has the amino acid sequence shown in SEQ ID No. 56. More preferably, the DNA is amFP486, Mut15 or Mut32, or humanized version.

In another embodiment of the present invention, there is provided a vector capable of expressing the DNA of the present invention in a recombinant cell comprising the DNA and regulatory elements necessary for expression of the DNA in the cell. Specifically, the DNA encodes a fluorescent protein having the amino acid sequence shown in SEQ ID No. 56. Preferably, the vector is constructed by amplifying the DNA and then inserting the amplified DNA into EGFP-N1 backbone, or by fusing different mouse ODC degradation domains such as d1, d2 and d376 to the C-terminal of the DNA and then inserting the fusion DNA into EGFP-N1 backbone.

In still another embodiment of the present invention, there is provided a host cell transfected with the vector of the present invention, which expresses a fluorescent protein of the present invention. Preferably, the cell is selected from the group consisting of bacterial cells, mammalian cells, plant cells and insect cells. A representative example of mammalian cell is HEK 293 cell and an example of bacterial cell is an *E. coli* cell.

The present invention is also directed to a DNA sequence encoding a fluorescent protein selected from the group consisting of:

(a) an isolated DNA which encodes a fluorescent protein, wherein the DNA is from an organism from Class Anthozoa and wherein the organism does not exhibit bioluminescence; (b) an isolated DNA which hybridizes to isolated DNA of (a) and which encodes a fluorescent protein; and (c) an isolated DNA differing from the isolated DNAs of

15

20

25

WO 00/34320 PCT/US99/29393

(a) and (b) in codon sequence due to degeneracy of the genetic code and which encodes a fluorescent protein. Preferably, the organism is from Sub-class Zoantharia, Order Actiniaria. More preferably, the organism is from Sub-order Endomyaria. Even more preferably, the organism is from Family Actiniidae, Genus Anemonia. Most preferably, the organism is Anemonia majano.

The present invention is also directed to an isolated and purified fluorescent protein coded for by DNA selected from the group consisting of: (a) an isolated protein encoded by a DNA which encodes a fluorescent protein wherein the DNA is from an organism from Class Anthozoa and wherein the organism does not exhibit bioluminescence; (b) an isolated protein encoded by a DNA which hybridizes to isolated DNA of (a); and (c) an isolated protein encoded by a DNA differing from the isolated DNAs of (a) and (b) in codon sequence due to degeneracy of the genetic code. Preferably, the isolated and purified fluorescent protein is amFP486.

The present invention is further directed to an amino acid sequence which can be used as a basis for designing an oligonucleotide probe for identification of a DNA encoding a fluorescent protein by means of hybridizaton, wherein the amino acid sequence is selected from the group consisting of SEQ ID Nos. 3, 5, 8, 11, 12, 14. Preferably, such an oligonucleotide has a nucleotide sequence selected from the group consisting of SEQ ID Nos. 4, 6, 7, 9, 10, 13, 15, 16 and is used as a primer in polymerase chain reaction. Alternatively, it can be used as a probe for hybridization screening of the cloned genomic or cDNA library.

The following examples are given for the purpose of illustrating various embodiments of the invention and are not meant to limit the present invention in any fashion.

PCT/US99/29393

EXAMPLE 1

5 Biological Material

Novel fluorescent proteins were identified from several genera of Anthozoa which do not exhibit any bioluminescence but have fluorescent color as observed under usual white light or ultraviolet light. Six species were chosen (see Table 1).

10

PCT/US99/29393

TABLE 1

Anthozoa Species Used in This Study

Species	Area of Origination	Fluorescent Color
Anemonia	Western Pacific	bright green tentacle tips
majano		·
Clavularia sp.	Western Pacific	bright green tentacles and
		oral disk
Zoanthus sp.	Western Pacific	green-yellow tentacles and
		oral disk
Discosoma sp.	Western Pacific	orange-red spots oral disk
"red"		
Discosoma	Western Pacific	blue-green stripes on oral
striata		disk
Discosoma sp.	Western Pacific	faintly purple oral disk
"magenta"		
Discosoma sp.	Western Pacific	green spots on oral disk
"green"		
Anemonia	Mediterranean	purple tentacle tips
sulcata		

PCT/US99/29393

EXAMPLE 2

cDNA Preparation

10

Total RNA was isolated from the species of interest according to the protocol of Chomczynski and Sacchi (Chomczynski P., et al., Anal. Biochem. 162 (1987), 156-159). First-strand cDNA was synthetized starting with 1-3 µg of total RNA using SMART PCR cDNA -synthesis kit (CLONTECH) according to the provided protocol with the only alteration being that the "cDNA synthesis primer" provided in the kit was replaced by the primer TN3 (5'- CGCAGTCGACCG(T)13, SEQ ID Amplified cDNA samples were then prepared as No. 1) (Table 2). described in the protocol provided except the two primers used for PCR were the TS primer (5'-AAGCAGTGGTATCAACGCAGAGT, SEQ ID No. 2) (Table 2) and the TN3 primer (Table 2), both in 0.1 μM concentration. Twenty to twenty-five PCR cycles were performed to amplify a cDNA sample. The amplified cDNA was diluted 20-fold in water and 1 µl of this dilution was used in subsequent procedures.

PCT/US99/29393

TABLE 2

Oligos Used in cDNA Synthesis and RACE

•5 TN3: 5'-CGCAGTCGACCG(T)₁₃

(SEQ ID No. 1)

T7-TN3: 5'-GTAATACGACTCACTATAGGGCCGCAGTCGACCG(T)₁₃

(SEQ ID No. 17)

10

TS-primer: 5'-AAGCAGTGGTATCAACGCAGAGT

(SEQ ID No. 2)

T7-TS:

5'-GTAATACGACTCACTATAGGGCAAGCAGTGGTATCAACGCAGAGT 15

(SEQ ID No. 18)

T7:

5'-GTAATACGACTCACTATAGGGC

(SEQ ID No. 19)

20

TS-oligo 5'-AAGCAGTGGTATCAACGCAGAGTACGCrGrGG

(SEQ ID No. 53)

25

PCT/US99/29393

EXAMPLE 3

Oligo Design

To isolate fragments of novel fluorescent protein cDNAs,

5 PCR using degenerate primers was performed. Degenerate primers were designed to match the sequence of the mRNAs in regions that were predicted to be the most invariant in the family of fluorescent proteins. Four such stretches were chosen (Table 3) and variants of degenerate primers were designed. All such primers were directed to the 3'-end of mRNA. All oligos were gel-purified before use. Table 2 shows the oligos used in cDNA synthesis and RACE.

PCT/US99/29393

TABLE 3

Key Amino Acid Stretches and Corresponding Degenerate Primers Used for Isolation of Fluorescent Proteins

Stretch Position	Amino Acid	·	
according to	Sequence of	Degenerated Primer Name	
_ A. victoria GFP (7)	the Key Stretch	and Sequence	
· .			
20-25	GXVNGH	NGH: 5'- GA(C,T) GGC TGC	
•	(SEQ ID No. 3)	GT(A,T,G,C) $AA(T,C)$ $GG(A,T,G)$	
		CA (SEQ ID No. 4)	
31-35	GEGEG	GEGa: 5'- GTT ACA GGT GA(A,G)	
	(SEQ ID No. 5)	GG(A,C) GA(A,G) GG	
		(SEQ ID No. 6)	
		GEGb: 5'- GTT ACA GGT GA(A,G)	
		$GG(T,G)$ $GA(A,G)$ GG^{-}	
	GEON IG	(SEQ ID No. 7)	
	GEGNG	GNGa: 5'- GTT ACA GGT GA(A,G)	
	(SEQ ID No. 8)	GG(A,C) AA(C,T) GG	
		(SEQ ID No. 9)	
		GNGb: 5'- GTT ACA GGT GA(A,G) GG(T,G) AA(C,T) GG	
		(SEQ ID No. 10)	
127-131	GMNFP	NFP: 5' TTC CA(C,T) GGT	
127-131	(SEQ ID No. 11)	(G,A)TG AA(C,T) TT(C,T) CC	
	GVNFP	(SEQ ID NO. 13)	
	(SEQ ID No. 12)	(020 10 110, 13)	
134-137	GPVM	PVMa: 5' CCT GCC (G,A)A(C,T)	
10, 10,	(SEQ ID No. 14)	GGT CC(A,T,G,C) GT(A,C) ATG	
		(SEQ ID NO. 15)	
		PVMb: 5' CCT GCC (G,A)A(C,T)	
		GGT CC(A,T,G,C) GT(G,T) ATG	
		(SEQ ID NO. 16)	

15

WO 00/34320

PCT/US99/29393

EXAMPLE 4

Isolation of 3'-cDNA Fragments of nFPs

The modified strategy of 3'-RACE was used to isolate the target fragments (see Figure 1). The RACE strategy involved two consecutive PCR steps. The first PCR step involved a first degenerate primer (Table 4) and the T7-TN3 primer (SEQ ID No. 17) which has a 3'-portion identical to the TN3 primer used for cDNA synthesis (for sequence of T7-TN3, Table 2). The reason for substituting the longer T7-TN3 primer in this PCR step was that background amplification which occurred when using the shorter TN3 primer was suppressed effectively, particularly when the T7-TN3 primer was used at a low concentration (0.1 _M) (Frohman et al., (1998) PNAS USA, 85, 8998-9002). The second PCR step involved the TN3 primer (SEQ ID No. 1, Table 2) and a second degenerate primer (Table 4).

PCT/US99/29393

TABLE 4

Combinations of Degenerate Primers for First and Second PCR Resulting in Specific Amplification of 3'-Fragments of nFP cDNA

	,	
Species	First	Second Degenerate Primer
	Degenerate	. ·
- · · · · · · · · · · · · · · · · · · ·	Primer	
Anemonia majano	NGH	GNGb
	(SEQ ID No. 4)	(SEQ ID No. 10)
Clavularia sp.	NGH	GEGa
	(SEQ ID No. 4)	(SEQ ID No. 6)
Zoanthus sp.	NGH	GEGa
	(SEQ ID No. 4)	(SEQ ID No. 6)
Discosoma sp. "red" NGH		GEGa (SEQ ID No. 6),
	(SEQ ID No. 4)	NFP (SEQ ID No. 13) or
		PVMb (SEQ ID No. 16)
Discosoma striata	NGH	NFP
	(SEQ ID No. 4)	(SEQ ID No. 13)
Anemonia sulcata	NGH	GEGa (SEQ ID No. 6)
	(SEQ ID No. 4)	or NFP (SEQ ID No. 13)

. 5

The first PCR reaction was performed as follows: 1 µl of 20-fold dilution of the amplified cDNA sample was added into the reaction mixture containing 1X Advantage KlenTaq Polymerase Mix with provided buffer (CLONTECH), 200 µM dNTPs, 0.3 µM of first degenerate

15

20

25

WO 00/34320 PCT/US99/29393

primer (Table 4) and 0.1 μM of T7-TN3 (SEQ ID No. 17) primer in a total volume of 20 µl. The cycling profile was (Hybaid OmniGene Thermocycler, tube control mode): 1 cycle for 95°C, 10 sec.; 55°C, 1 min.; 72°C, 40 sec; 24 cycles for 95°C, 10 sec.; 62°C, 30 sec.; 72°C, 40 The reaction was then diluted 20-fold in water and 1 µl of this dilution was added to a second PCR reaction, which contained Advantage KlenTaq Polymerase Mix with the buffer provided by the manufacturer (CLONTECH), 200 μ M dNTPs, 0.3 μ M of the second degenerate primer (Table 4) and 0.1 µM of TN3 primer. The cycling profile was (Hybaid OmniGene Thermocycler, tube control mode): 1 cycle for 95°C, 10 sec.; 55°C (for GEG/GNG or PVM) or 52°C (for NFP), 1 min.; 72°C, 40 sec; 13 cycles for 95°C, 10sec.; 62°C (for GEG/GNG or PVM) or 58°C (for NFP), 30 sec.; 72°C, 40 sec. The product of PCR was PCR-Script vector according (Stratagene) the into manufacturer's protocol.

Different combinations of degenerate primers were tried in the first and second PCR reactions on the DNA from each species until a resulted in specific was found that of primers combination band of expected size amplification--meaning that a pronounced (about 650-800 bp for NGH and GEG/GNG and 350-500 bp for NFP and PVM--sometimes accompanied by a few minor bands) was detected on The primer combinations agarose gel after two PCR reactions. choice for different species of the Class Anthozoa are listed in Table 4. Some other primer combinations also resulted in amplification of fragments of correct size, but the sequence of these fragments showed no homology to the other fluorescent proteins identified Aequorea victoria GFP.

10

15

20

25

WO 00/34320

PCT/US99/29393

EXAMPLE 5

Obtaining Full-Length cDNA Copies

Upon sequencing the obtained 3'-fragments fluorescent protein cDNAs, two nested 5'-directed primers were synthesized for cDNA (Table 5), and the 5' ends of the cDNAs were then amplified using two consecutive PCRs. In the next PCR reaction, the novel approach of "step-out PCR" was used to suppress background amplification. The step-out reaction mixture contained 1x Advantage KlenTaq Polymerase Mix using buffer provided by the manufacturer (CLONTECH), 200 µM dNTPs, 0.2 µM of the first gene-specific primer (see Table 5), 0.02 μM of the T7-TS primer (SEQ ID No. 18), 0.1 μM of T7 primer (SEQ ID No. 19) and 1 µl of the 20-fold dilution of the amplified cDNA sample in a total volume of 20 µl. The cycling profile was (Hybaid OmniGene Thermocycler, tube control mode): 23-27 cycles for 95°C, 10 sec.; 60°C, 30 sec.; 72°C, 40 sec. The product of amplification was diluted 50-fold in water and one μl of this dilution was added to the second (nested) PCR. The reaction contained 1X Advantage KlenTaq Polymerase Mix with provided buffer (CLONTECH), 200 μM dNTPs, 0.2 μM of the second gene-specific primer and 0.1 μM of TS primer (SEQ ID No. 2) in a total volume of 20 µl. The cycling profile was (Hybaid OmniGene Thermocycler, tube control mode): 12 cycles for 95°C, 10 sec.; 60°C, 30 sec.; 72°C, 40 sec. The product of amplification was then cloned into pAtlas vector (CLONTECH) according to the manufacturer's protocol.

PCT/US99/29393

TABLE 5

Gene-Specific Primers Used for 5'-RACE

Species	First Primer	Second (Nested) Primer
		٠,
Anemonia	5'-GAAATAGTCAGGCATACTGGT	5'-GTCAGGCATAC
majano	(SEQ ID No. 20)	TGGTAGGAT
		(SEQ ID No. 21)
Clavularia	5'-CTTGAAATAGTCTGCTATATC	5'-TCTGCTATATC
sp.	(SEQ ID No. 22)	GTCTGGGT.
		(SEQ ID No. 23)
Zoanthus	5'-	5'-GTCTACTATGTCTT
sp.	GTTCTTGAAATAGTCTACTATGT	GAGGAT
	(SEQ ID No. 24)	(SEQ ID No. 25)
Discosoma	5'-CAAGCAAATGGCAAAGGTC	5'-CGGTATTGTGGCC
sp. "red"	(SEQ ID No. 26)	TTCGTA
		(SEQ ID No. 27)
Discosoma	5'-TTGTCTTCTTCTGCACAAC	5'-CTGCACAACGG
striata	(SEQ ID No. 28)	GTCCAT
		(SEQ ID No. 29)
Anemonia	5'-CCTCTATCTTCATTTCCTGC	5'-TATCTTCATTTCCT
sulcata	(SEQ ID No. 30)	GCGTAC
		(SEQ ID No. 31)
Discosoma	5'-TTCAGCACCCCATCACGAG	5'-ACGCTCAGAGCTG
sp.	(SEQ ID No. 32)	GGTTCC
"magenta"		(SEQ ID No. 33)
Discosoma	5'-CCCTCAGCAATCCATCACGTTC	5'-ATTATCTCAGTGGA
sp. "green"	(SEQ ID No. 34)	TGGTTC
		(SEQ ID No. 35)

10

15

20

25

WO 00/34320

PCT/US99/29393

EXAMPLE 6

Expression of NFPs in E.coli

To prepare a DNA construct for novel fluorescent protein expression, two primers were synthesized for each cDNA: a 5'-directed "downstream" primer with the annealing site located in the 3'-UTR of the cDNA and a 3'-directed "upstream" primer corresponding to the site of translation start site (not including the first ATG codon) (Table Primers with SEQ ID Nos. 36 and 37 were the primers used to prepare the am486 DNA. Both primers had 5'-heels coding for a site for a restriction endonuclease; in addition, the upstream primer was designed so as to allow the cloning of the PCR product into the pQE30 vector (Qiagen) in such a way that resulted in the fusion of reading frames of the vector-encoded 6xHis-tag and NFP. The PCR was performed as follows: 1 µl of the 20-fold dilution of the amplified cDNA sample was added to a mixture containing 1x Advantage KlenTaq Polymerase Mix with buffer provided by the manufacturer (CLONTECH), 200 μM dNTPs, 0.2 μM of upstream primer and 0.2 μM of downstream primer, in a final total volume of 20 µl. The cycling profile was (Hybaid OmniGene Thermocycler, tube control mode): 23-27 cycles for 95°C, 10 sec.; 60°C, 30 sec.; 72°C, 40 sec. The product of this amplification step was purified by phenol-chlorophorm extraction and ethanol precipitation and then cloned into pQE30 vector using restriction endonucleases corresponding to the primers' sequence according to standard protocols.

All plasmids were amplified in XL-1 blue *E. coli* and purified by plasmid DNA miniprep kits (CLONTECH). The recombinant clones were selected by colony color, and grown in 3 ml of LB medium

(supplemented with 100 μg/ml of ampicillin) at 37°C overnight. 100 μl of the overnight culture was transferred into 200 ml of fresh IB medium containing 100 μg/ml of ampicillin and grown at 37°C, 200 rpm up to OD₆₀₀ 0.6-0.7. 1 mM IPTG was then added to the culture and incubation was allowed to proceed at 37°C for another 16 hours. The cells were harvested and recombinant protein, which incorporated 6x His tags on the N-terminus, was purified using TALONTM metal-affinity resin-according to the manufacturer's protocol (CLONTECH).

PCT/US99/29393

TABLE 6

Primers Used to Obtain Full Coding Region of nFPs for Cloning into Expression Construct

Species	Upstream Primer	Downstream Primer
Anemonia majano	5' -acatggatccgctctttcaaaca agtttatc (SEQ ID No. 36) BamHI	5'-tagtactcgagcttattcgta tttcagtgaaatc (SEQ ID No. 37) XhoI
Clavularia sp.	L: 5'-acatggatccaacatttttttga gaaacg (SEQ ID No. 38) BamHI S: 5'-acatggatccaaagctctaacc accatg (SEQ ID No. 39) BamHI	5'-tagtactcgagcaacacaa accetcagacaa (SEQ ID No. 40) XhoI
Zoanthus sp.	5'- acatggatccgctcagtcaaag cacggt (SEQ ID No. 41) BamHI	5'-tagtactcgaggttggaactacat tcttatca (SEQ ID No. 42) XhoI
Discosoma sp. "red"	5'- acatggatccaggtcttccaagaat gttatc (SEQ ID No. 43) BamHI	5'-tagtactcgaggagccaagttc agcctta (SEQ ID No. 44) XhoI
Discosoma striata	5'- acatggatccagttggtccaagagtgtg (SEQ ID No. 45) BamHI	5'-tagcgagctctatcatgcctc gtcacct (SEQ ID No. 46) SacI
Anemonia sulcata	5'- acatggatccgcttcctttttaaagaagact (SEQ ID No. 47) BamHI	5'-tagtactcgagtccttgggagc ggcttg (SEQ ID No. 48) XhoI
Discosoma sp. "magenta"	5'- acatggatccagttgttccaagaatgtgat (SEQ ID No. 49) BamHI	5'-tagtactcgaggccattacg ctaatc (SEQ ID No. 50) XhoI
Discosoma sp. "green"	5'-acatggatccagtgcacttaaagaagaaatg (SEQ ID No. 51)	5'-tagtactcgagattcggtttaat gccttg (SEQ ID No. 52)
44		

PCT/US99/29393

EXAMPLE 7

Novel Fluorescent Proteins and cDNAs Encoding the Proteins

One of the full-length cDNAs encoding novel fluorescent proteins is described herein (amFP486). The nucleic acid sequence and deduced amino acid sequence are SEQ ID Nos. 55 and 56, respectively. The spectral properties of amFP486 are listed in Table 7, and the emission and excitation spectrum for amFP486 is shown in Figure 2.

10

TABLE 7

Spectral Properties of the Isolated amFP486

15	Species:	Anemonia majano	Max. Extinction Coefficient:	40,000
	nFP Name:	amFP486	Quantum Yield	0.24
	Absorbance Max. (nm):	458	Relative Brightness:*	0.43
20	Emission Max. (nm):	486		

*relative brightness is extinction coefficient multiplied by quantum yield divided by the same value for A. victoria GFP.

25

EXAMPLE 8

Construction of amFP486 Mutants

Two mutants of amFP486 were generated, Mut15 and 30 Mut32. Mut15 has the nucleic acid sequence shown in SEQ ID No. 57. Compared with wildtype amFP486, Mut15 has the following point

mutations: A to G at position 101 (numbered from beginning of ATG); T to C at position 129; AAA to TTG at positions 202-204; C to T at position 240. Table 8 lists the spectral properties of Mut15 and Mut32.

5 TABLE 8					
	Spectral Properties of the Isolated Mut15 and Mut32				
	Species:	Anemonia majano	Max. Extinction Coefficient:	53,400	
10	nFP Name:	Mut15	Quantum Yield	0.32	
	Absorbance Max. (nm):	460	Relative Brightness:*	0.78	
	Emission Max. (nm):	485			
15					
	Species:	Anemonia majano	Max. Extinction Coefficient:	36,000	
	nFP Name:	Mut32	Quantum Yield	0.42	
20	Absorbance Max. (nm):	466	Relative Brightness:*	0.69	
	Emission Max. (nm):	488	·		

25 *relative brightness is extinction coefficient multiplied by quantum yield divided by the same value for A. victoria GFP.

EXAMPLE 9

30 Construction and Functional Analysis of Vectors

Mut32 DNA was amplified via PCR and reconstructed to EGFP-N1 backbone with BamHI and NotI restriction enzyme sites. This

vector has the same multiple cloning sites as EGFP-N1. The nucleic acid sequence of the vector (pCNFPMut32-N1) is shown in SEQ ID No. 58.

Functional test of the generated vectors was performed by transient transfection in 293 cells. After 24-hour expression, brighter fluorescent intensity and less photobleaching of pCNFPMut32-N1 were observed by microscopy when compared with pECFP-N1 side by side (Figures 3A and 3B).

Mut32 has fast folding and bright fluorescent intensity, which makes it useful for number of applications. Some fusion proteins were tested, such as PKC-gamma-CNFP. PKC was observed to translocate from cytosol to the plasma membrane when cells were treated with PMA (phorbol 12-myristate 13-acetate). Figure 4 shows control and PMA-treated cells.

15

20

25

10

EXAMPLE 10

Generation of Destabilized amFP486 Vectors as Transcription Reporters

Since amFP486 is very stable, it is necessary to generate destabilized versions of amFP486 in order to observe the rapid turnover of the protein. By using the same technology for destabilized EGFP, three destabilized amFP486 vectors were constructed by fusing different mouse ODC degradation domains such as d1, d2 and d376 to the C-terminal of wild type amFP486. The sequences for vectors pCNFP-MODCd1 and pCNFP-MODCd2 are shown in SEQ ID No. 59 and SEQ ID No. 60, respectively. The vectors were constructed in EGFP-N1 backbone.

Vectors of pCRE-d1CNFP and pNF-κB-d1CNFP were constructed by placing d1CNFP downstream of cAMP response element

(CRE) or NF-κB response element, respectively. Expression of d1CNFP is up-regulated upon activation of these response elements.

5

15

20

25

EXAMPLE 11

Functional Analysis of Destabilized amFP486

Functional test of the destabilized amFP486 was performed by transient transfection in 293 cells. After 24-hour expression, the fluorescent intensity was decreased gradually from d2, d1 and d376 because of the fusion with different mouse ODC degradation domains. After 4-hour treatment with protein synthesis inhibitor cycloheximide, d2 fluorescent intensity did not change very much; however, d1 fluorescent intensity decreased further 50% of its original intensity (Figures 5A and 5B). The half-life of d1 is around 4 hours.

MODCd1 is a valuable tool for application as a transcription reporter. However, compared with EGFP-d1 (1-hour half-life), pCNFP-MODCd1 half-life (4 hours) is still long, so further mutagenesis for MODC degradation domain is still needed for shorter half-life version.

Functional test of vectors pCRE-d1CNFP and pNF-κB-d1CNFP was performed by transient transfection in HEK 293 cells. 16 hours post transfection, 10 μm forskolin was added to induce CRE and 100 ng/ml TNF-alpha was added to induce NF-κB for 6 hours. Expression of d1CNFP was analysed using FACS Calibur. Up to 7 fold increase of fluorescence in forskolin induced CRE activation and 4 fold increase of fluorescence in TNF-alpha induced NF-KB activation was observed (data not shown).

10

15

20

25

WO 00/34320

PCT/US99/29393

EXAMPLE 12

Construction and Functional Test for Humanized Mut32 (phCNFP-N1)

Since mammalian expression is a very popular tool, human favored codon version is needed for better expression in mammalian cells. To generate humanized Mut32, the Mut 32 sequence was first -changed to human favored codon and 23 oligos (12F and 11R) were designed. Next, four rounds of PCR amplification were performed, each round for 20 cycles. PCR cycle was designed as follows: 94°C for 1 min; 94°C for 1 min; 40°C for 1 min; and 72°C for 1 min. The four rounds were: for 1st round, mixing 2 µl each of every 4 oligos (60 bp), 5 µl buffer, 1 µl pfu, 1 µl dNTP to make total volume of 50 µl. After 20 cycles of PCR, 5 sets of 150 bp and 1 set of 4 last oligos of 90 bp products were obtained. For 2nd round, mixing new crude PCR products 10 µl each, 5 µl buffer, 1 µl pfu, 1 µl dNTP to make total volume of 50 ul. After 20 cycles of PCR, 2 sets of 270 bp and 1set of 210 bp PCR For 3rd round, mixing new crude PCR were obtained. products products. After 20 cycles of PCR, 1 set of 510 bp and 1 set of 450 bp products were obtained. For 4th round, mixing new crude products. After 20 cycles of PCR, final PCR product (690 bp) was obtained. Further PCR amplification was performed using 1F and 11R primers.

As a result, humanized Mut32 was generated, having the sequence shown in SEQ ID No. 61. This humanized Mut32 was constituted into EGFP-N1 backbone.

PCT/US99/29393

EXAMPLE 13

Expression of Wildtype and Mutant amFP486 in Mammalian Cells

The original plasmid amFP486 DNAs (wildtype, Mut15 and Mut32 in pQE30) were used to construct N1 version of amFP486 wildtype, Mut15 and Mut32 as described in Example 9. The DNAs were inserted into *E.coli* DH5α. HEK 293 cells were transferred with each of the three N1 constructs using Calcium Phosphate method (Clontech product #K2051-1).

The fluorescent intensity of the transfected cells was analyzed on FACS using FL1 (510/30) detecting channel. Five samples were analyzed in parallel for each construct. The histograms of all the analysis are shown in Figures 6-8.

The M1 gate is set as shown on the histograms. The mean value of FL1 fluorescent intensity of the M1 population of each sample is summarized in Table 9. It shows that the average of the mean value of each construct (Wildtype, Mut15, and Mut32) has no significant difference.

201

5

10

15

PCT/US99/29393

TABLE 9

FL1 Fluorescent Intensity of M1 Population

Sample	Wildtype	Mut15	Mut32	
#	(Figure 6A-6E)	(Figure 7A-7E)	(Figure 8A-8E)	
1	82.84	106.95	84.51	
2-	77.52	108.73	91.41	
3	111.85	97.08	91.30	
. 4	113.06	90.16	98.16	
5	104.95	86.34	111.44	
Mean	98.04	97.85	95.36	

5

10

15

20

EXAMPLE 14

Generation and Expression of Fusion Protein Mut15-mdm2

The Mut15-mdm2 fusion was generated by the following steps: first, mdm2 DNA was obtained by amplifying human Marathon cDNA library (Burke's Lymphoma) using primers ATGTGCAATACCAACATGTCTGTACC (SEQ ID No. 62) and CTAGGGGA AATAAGTTAGCAC (SEQ ID No. 63); secondly, the purified PCR product was then amplified with primers GGAATTCCAGCCATGGTGTG CAATACCAACATGTCTGTACC (SEQ ID No. 64) and TCCCCCGGGGGGAA ATAAGTTAGCAC (SEQ ID No. 65) in order to add Kozac sequence and restriction sites; thirdly, the purified PCR product from step 2 was digested with EcoR I and Sma I and inserted into EcoR I and SmaI of NFP1Mut15-N1 vector (this vector was generated using BamH I and Not I sites of the pEGFP-N1 backbone).

PCT/US99/29393

The generated Mut15-mdm2 fusion was then expressed in HEK293 cells. Figure 9 shows the results.

5

10

15

20

25

EXAMPLE 15

Comparison of the Protein Fluorescent Intensity

POE30 amFP486 wildtype, Mut15 and Mut32 were transformed into DH5a. The bacteria grew in the presence of 1 mM IPTG overnight to induce the protein expression. Cells were lysed in 100 mM Tris, pH8.0 by sonication. Cell lysate was collected after centrifuge at 3000 rpm for 15 minutes at room temperature. The proteins were purified with TALON Metal Affinity Resin. Briefly, after the protein was absorbed on the resin, the beads were washed in stepwise with first wash, then first elution (50 mM imidazole) and second elution (200 mM imidazole) in 100 mM Tris-HCl, pH 8.0. The protein is found mostly in the second step elution. It was found that Mut32 has the highest bacterial expression level, while Mut15 has the lowest.

Samples of each elution fraction were run on SDS-PAGE to check the purity of the proteins. Both wildtype amFP486 and Mut32 show a single band, while Mut15 has two more minor bands with higher molecular weight (data not shown).

The protein concentration (fractionII-2) was checked and measured by Bradford assay (Bio-Rad standard assay) using BSA as a standard. The spectra are shown in Figures 10-13. The fluorescence intensity (fraction II-2) was determined with LS50B Luminescence Spectrometer LS50B. EX = 458 nm, EM = 492 nm, both slits = 2.5 nm. Table 10 shows the protein concentration, relative fluorescent (FL)

5

10

15

20

WO 00/34320 PCT/US99/29393

intensity and intensity/µg protein in 700 µl volume. It shows that Mut32 is as bright as wildtype, while Mut15 is worse than the wildtype.

TABLE 10

	Protein	Relative FL	Intensity/µg Protein
	Concentration	Intensity	in 700 μl Volume
Wildtype II-2	1.26 μg/5 μl	37.805/5 μ1	30.00
Mut15II-2	0.64 μg/5 μl	10.152/5 μ1	15.86
Mut32II-2	6.17 μg/5 μl	186.474/5 μ1	30.22

Any patents or publications mentioned in this specification are indicative of the levels of those skilled in the art to which the invention pertains. These patents and publications are incorporated by reference to the same extent as if each individual publication was specifically and individually indicated to be incorporated by reference.

One skilled in the art will appreciate readily that the present invention is adapted to carry out the objects and obtain the ends and advantages mentioned, as well as those objects and ends inherent therein. The present examples, along with the methods, procedures, treatments, molecules, and specific compounds described herein, are presently representative of preferred embodiments, are exemplary, and are not intended as limitations on the scope of the invention. Changes to the methods and compounds, and other uses, will occur to those skilled in the art and are encompassed within the spirit of the invention as defined by the scope of the claims.

5

25

WO 00/34320

PCT/US99/29393

WHAT IS CLAIMED IS:

- 1. A DNA sequence encoding a fluorescent protein selected from the group consisting of:
- (a) an isolated DNA which encodes a fluorescent protein, wherein said DNA is from an organism from a Class Anthozoa and wherein said organism does not exhibit bioluminescence;
- (b) an isolated DNA which hybridizes to isolated DNA of
 (a) above and which encodes a fluorescent protein; and
- 10 (c) an isolated DNA differing from the isolated DNAs of
 (a) and (b) above in codon sequence due to degeneracy of the genetic
 code and which encodes a fluorescent protein.
- 2. The DNA sequence of claim 1, wherein said organism is from Sub-class Zoantharia.
 - 3. The DNA sequence of claim 2, wherein said organism is from Order Actiniaria.
- 20 4. The DNA sequence of claim 3, wherein said organism is from Sub-order Endomyaria.
 - 5. The DNA sequence of claim 4, wherein said organism is from Family Actiniidae.
 - 6. The DNA sequence of claim 5, wherein said organism is from Genus Anemonia.

- 7. The DNA sequence of claim 6, wherein said organism is Anemonia majano.
- 8. A DNA sequence encoding a fluorescent protein selected from the group consisting of:
 - (a) an isolated DNA which encodes a fluorescent protein having a nucleotide sequence selected from the group consisting of SEQ

 -ID Nos. 55, 57, and 61;
- (b) an isolated DNA which hybridizes to isolated DNA of 10 (a) above and which encodes a fluorescent protein; and
 - (c) an isolated DNA differing from the isolated DNAs of (a) and (b) above in codon sequence due to degeneracy of the genetic code, and which encodes a fluorescent protein.
- 9. The DNA sequence of claim 8, wherein said DNA encodes a fluorescent protein having an amino acid sequence shown in SEQ ID No. 56.
- 10. The DNA sequence of claim 8, wherein said DNA is selected from the group consisting of amFP486, Mut15 and Mut32.
 - 11. The DNA sequence of claim 8, wherein said DNA is humanized DNA.
- 12. A vector capable of expressing the DNA sequence of claim 1 in a recombinant cell, wherein said vector comprising said DNA and regulatory elements necessary for expression of the DNA in the cell.

- 13. The vector of claim 12, wherein said DNA encodes a fluorescent protein having the amino acid sequence shown in SEQ ID No. 56.
- 5 14. The vector of claim 12, wherein said vector is constructed by amplifying said DNA and then inserting the amplified DNA into EGFP-N1 backbone.
- 15. The vector of claim 14, wherein said DNA is selected 10 from the group consisting of amFP486, Mut15 and Mut32.
 - 16. The vector of claim 14, wherein said DNA is humanized DNA.
- 17. The vector of claim 12, wherein said vector is constructed by fusing different mouse ODC degradation domains to the C-terminal of said DNA and then inserting the fusion DNA into EGFP-N1 backbone.
- 20 18. The vector of claim 17, wherein said mouse ODC degradation domains are selected from the group consisting of d1, d2 and d376.
- 19. The vector of claim 17, wherein said DNA is selected 25 from the group consisting of non-humanized and humanized DNA.
 - 20. A host cell transfected with the vector of claim 12, wherein said cell is capable of expressing a fluorescent protein.

WO 00/34320 PCT/US99/29393

21. The host cell of claim 20, wherein said cell is selected from the group consisting of bacterial cells, mammalian cells, plant cell, yeast and insect cells.

- 5 22. The host cell of claim 21, wherein said mammalian cell is HEK 293 cell.
 - 23. The host cell of claim 21, wherein said bacterial cell is an E. coli cell.

10

- 24. An isolated and purified fluorescent protein coded for by DNA selected from the group consisting of:
- (a) an isolated DNA which encodes a fluorescent protein from an organism from Class Anthozoa, wherein said organism does not exhibit bioluminescence;
- (b) an isolated DNA which hybridizes to isolated DNA of
 (a) above and which encodes a fluorescent protein; and
- (c) an isolated DNA differing from the isolated DNAs of
 (a) and (b) above in codon sequence due to degeneracy of the genetic
 20 code and which encodes a fluorescent protein.
 - 25. The isolated and purified fluorescent protein of claim 24, wherein said organism is from Sub-class Zoantharia.
- 25. The isolated and purified fluorescent protein of claim 25, wherein said organism is from Order Actiniaria.
 - 27. The isolated and purified fluorescent protein of claim 26, wherein said organism is from Sub-order Endomyaria.

10

15

20

WO 00/34320

PCT/US99/29393

- 28. The isolated and purified fluorescent protein of claim 27, wherein said organism is from Family Actiniidae.
- 5 29. The isolated and purified fluorescent protein of claim 28, wherein said organism is from Genus Anemonia.
 - 29, wherein said organism is Anemonia majano.

31. An isolated and purified fluorescent protein coded for by DNA selected from the group consisting of:

(a) isolated DNA which encodes a fluorescent protein having an amino acid sequence shown in SEQ ID No. 56;

(b) isolated DNA which hybridizes to isolated DNA of (a) above and which encodes a fluorescent protein; and

- (c) isolated DNA differing from said isolated DNAs of (a) and (b) above in codon sequence due to degeneracy of the genetic code and which encodes a fluorescent protein.
- 32. The isolated and purified fluorescent protein of claim 31, wherein said protein is amFP486.
- 33. An amino acid sequence which can be used as a basis for designing an oligonucleotide probe for identification of a DNA encoding a fluorescent protein by means of hybridizaton, wherein said sequence is selected from the group consisting of SEQ ID Nos. 3, 5, 8, 11, 12, 14.

PCT/US99/29393

34. The amino acid sequence of claim 26, wherein said oligonucleotide has a nucleotide sequence selected from the group consisting of SEQ ID Nos. 4, 6, 7, 9, 10, 13, 15, 16.

1/14

2/14

Figure 2

3/14

PCT/US99/29393

Figure 3

PCNFP-NI

4/14

PCT/US99/29393

Traci Yerby,12/9/99 12:_. PM -0800,NFP1 Data

Date: Thu, 09 Dec 1999 12:17:31 -0800

From: "Traci Yerby" <TRYERBY@CLONTECH.COM>

To. <baadler@flash.net>
Subject: NFP1 Data
Mime-Version: 1.0

Hi Ben,

This should be the last of it.

Data for PMA treated cells (FIG 8)

Traci

Content-Type: application/octet-stream; name="PKCr-NCFP.psd" Content-Disposition: attachment; filename="PKCr-NCFP.psd"

PKCgamma-NCFP translocation

Fig. 4A

Fig.4B

control

PMA treated

Printed for "Dr. Benjamin Adler" <baadler@flash.net>

5/14

PCT/US99/29393

Figure 5A

PCNFP-MUDE 11

combal

picture 2

previous or people should be organ

6/14

PCT/US99/29393

Figure 5B

PCNFP-MUDCILI 4/1 + cyclotherinite

prentados papas deservas securios

7/14

PCT/US99/29393

File: ntp1/wt-1.015		Acquisition Date: 12-Aug-99		
Marker	% Total	Mean	Geo Mean	
All	100.00	5.19	2.13	
M1	3.07	82.84	66.13	

0	•				
	2 - 1 m	nfp1/	wt-2.01	6	
	° 🚟				\neg
Counts	播	24	1		
Ŏ,	· 選			.M1	
~s.	-100	"i01		103	7104
			FL1+H	,,,	,,,

File: nfp1/wt-2.016	Acquisition Date: 12-Aug-99	
Marker % Total Mean	Geo Mean	

711	100.00		
M1	3.73	7	

711	100.00	3.43	2.17
M1	3.73	77.52	62.95

File: nfp1/wt-3.017	Acquisition Date: 12-Aug-99

Marker	% lotal	Mean	Geo Mean
All	100.00	7.75	2.31
M1	4.57	111.85	80.87

8-	nfp1	/wt-4.0	18	
Counts		J 	841	\dashv
10	0 10	102	103	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	, 10	FL1-H		٠.

Marker	% Total	Mean	Geo Mean
All	100.00	8.56	2.43
M1	5.16	113.06	82.26

File: ntp1/wt-5.019	Acquisition Date: 12-Aug-99

Marker	% Total	Mean	Geo Mean
Ali	100.00	6.41	2.22
M1	3.61	104 95	77 54

8/14

PCT/US99/29393

File: nfp1/m15-1.009

Acquisition Late: 12-Aug-99

Marker	% Total	Mean	Geo Mean
	100.00	5.74	
M1	2.94	106.95	80.29

File: nfp1/m15-2.010

Acquisition Date: 12-Aug-99

Marker	% Total	Mean	Geo Mean
All	100.00	6.57	2.24
M1	3.66	108.73	78.64

File: nfp1/m15-3.011

Acquisition Date: 12-Aug-99

Marker	% Total	Mean	Geo Mean
All	100.00	6.26	2.24
. M1	3.70	97.08	73.22

File: nfp1/m15-4.012

Acquisition Date: 12-Aug-99

Marker	% Total	Mean	Geo Mean
All	100.00	6,83	2.28
M1	4.65	90.16	69.85

File: nfp1/m15-5.013

Acquisition Date: 12-Aug-99

Marker	% Total	Mean	Geo Mean
All	100.00	6.32	2.31
M1	4.16	86.34	67.43

Figure 1

9/14

PCT/US99/29393

File: nFP1/m32-1.003

Acquisition Date: 12-Aug-99

Marker	% Total	Mean	Geo Mean
All	100.00	5.55	2,08
M1	3.51	84.51	67.46

File: nFP1/m32-2.004

Acquisition Date: 12-Aug-99

Marker	% Total	Mean	Geo Mean
All	100.00	6.30	2.13
M1	4.09	91.41	69.57

File: nFP1/m32-3.005

Acquisition Date: 12-Aug-99

Marker	% Total	Mean	Geo Mean
All	100.00	6.44	2.20
M1	4.16	91.30	70.91

File: nFP1/m32-4.006

Acquisition Date: 12-Aug-99

Marker	% Total	Mean	Geo Mean
All	100.00	7.64	2.21
M1	5.15	98.16	71.62

File: nFP1/m32-5.007

Acquisition Date: 12-Aug-99

Marker	% Total	Mean.	Geo Mean
All	100.00	10.07	'2.41
M1	6.74	111.44	78.24

Figure 8

10/14

PCT/US99/29393

Fusion Molmiz-AFP1 mutis

Figure 9

11/14

PCT/US99/29393

Date: 9/8/99

Time: 12:01:36 PM

--- NF1WDPEM.SP - 9/8/99

----- NF1WDPEX.SP - 9/8/99

Figure 10

12/14

PCT/US99/29393

Deta: 9.8/99

Time: 12:05:19 PM

Figure 11

13/14

PCT/US99/29393

Date: 9/8/99

Time: 12:09:58 PM

----- NF132EX.SP - 9/8/99

Figure A

PCT/US99/29393

WO 00/34320

14/14

Date: 9/8/99

Time: 11:44:24 AM

- NF115EX.SP - 9/8/99

- NF132EM.SP - 9/8/99

- NF132EX.SP - 9/8/99

- NF115EM.SP - 9/8/99

- NF1WDPEM.SP - 9/8/99

- NF1WDPEX.SP - 9/8/99

Figure 13

	WO 00/34320	PCT/US99/2	93
		SEQUENCE LISTING	
	<110>	Lukyanov, Sergey A.	
		Labas, Yulii A.	
		Matz, Mikhail V.	
5		Fradkov, Arcady F.	
		Chen, Ying	
		Hu, Lanrong	
		Ding, Li	
		Fang, Yu	
10	<120>	Fluorescent proteins from non-bioluminescent	
	-	species of Class Anthozoa, genes encoding suc	h
		proteins and uses thereof	
	<130>	D6196D1/PCT	
	<141>	1999-12-09	
15	<150>	09/210,330	
	<151>	1998-12-11	
	<160>	65	
	<210>	1	
20	<211>	25	
	<212>	DNA	
	<213>	artificial sequence	
	<220>		
	<221>	primer_bind	
25	<223>	primer TN3 used in cDNA synthesis and RACE	
	<400>	1	
	cgcagtcgac	cgtttttttt ttttt 25	
	<210>	2	
30	<211>	23	
	<212>	DNA	
	<213>	artificial sequence	
	<220>		
	<221>	primer_bind	
35	<223>	primer TS used in cDNA synthesis and RACE	
	<400>	2	
	aagcagtggt	atcaacgcag agt 23	

	WO 00/34320	PC	CT/US99/29393
	<210>	3	
	<211>	6	
	<212>	PRT	
5	<213>	Aequorea victoria	
	<220>		
	<222>	21	and the
	<223>	amino acid sequence of a key stretch or	wnicn sition 21
	<u>.</u>	primer NGH is based; Xaa at po	sition 21
10	represents		
	•	unknown	
	<400>	3	
	Gly Xaa Val As	en Gly His	
	- 4	5	
15		·	
	<210>	4	٠.
	<211>	20	
	<212>	DNA	
	<213>	artificial sequence	
20	<220>	·	
	<221>	primer_bind	•
	<222>	12	rescent
	<223>	primer NGH used for isolation of fluor	nv of the
		protein; n at position 12 represents a	
25		four bases	
	<400>	4	•
	gayggctgcg t	naayggdca 20	
	<210>	5	٠.
30	<211>	5	
	<212>	PRT	
	<213>	Aequorea victoria	
	<220>		
	<222>	3135	on which
35	<223>	amino acid sequence of a key stretch primers GEGa and GEGb are based	
			٠.
	<400>	5	,

	WU 00/34320	101/03/7/2/	J).
	Gly Glu Gly G	lu Gly	
	01, 01, 01,	5	
	<210>	6	
5	<211>	20	
	<212>	DNA	
	<213>	artificial sequence	
	<220>		
	<221>	primer_bind	
-10	<223>	primer GEGa used for isolation of fluorescent	
	-	protein	
	<400>	6	
	gttacaggtg ar	gamgarga 20	
	gccacagges as		
15	<210>	7	
10	<211>	20	
	<212>	DNA	
	<213>	artificial sequence	
	<220>		
20	<221>	primer_bind	
	<223>	primer GEGb used for isolation of fluorescent	
		protein	
	<400>	7	
	gttacaggtg ar	ragkgargg 20	
25	geededggeg di	333 3.3	
23	<210>	8	
	<211>	5	
	<212>	PRT	
	<213>	Aequorea victoria	
30	<220>		
	<222>	3135	
	<223>	amino acid sequence of a key stretch on which	
		primers GNGa and GNGb are based	
	<400>	8	
35	Gly Glu Gly A	asn Gly	
55		5	

		WO 00/34320	PCT/US99/29393
Color		<210>	9
Color		<211>	20
S		<212>	DNA
		<213>	artificial sequence
Company	5	<220>	
		<221>	primer_bind
30 gttacaggtg arggmaaygg 20 210 2210 10 2211 20 212 DNA 2223 DNA 2223 DNA 2223 DNA 2223 DNA 2223 DNA 223 DNA 2400 20 20 20 20 20 20		<223>	primer GNGa used for isolation of fluorescent
-gttacaggtg arggmaaygg 20			protein
Color		<400>	9
<pre></pre>	·10	gttacaggtg arg	gmaaygg 20
<pre></pre>		· -	
15		<210>	10
15		<211>	20
<pre></pre>		<212>	DNA
Company	15	<213>	artificial sequence
Comparison Com		<220>	
protein 20 <400> 10 gttacaggtg arggkaaygg 20 <210> 11			-
20		<223>	
Stacaggtg arggkaaygg 20			
<pre></pre>	20	<400>	10
25		gttacaggtg arg	gkaaygg 20
25		<210>	11
<pre></pre>		<211>	5
<pre></pre>	25	<212>	PRT
<pre></pre>		<213>	Aequorea victoria
<pre> <223> amino acid sequence of a key stretch on which</pre>		<220>	
30 primer NFP is based <pre> <400> 11 Gly Met Asn Phe Pro</pre>		<222>	127131
<pre> <400> 11 Gly Met Asn Phe Pro</pre>		<223>	amino acid sequence of a key stretch on which
Gly Met Asn Phe Pro 5 35 <210> 12 <211> 5	30		primer NFP is based
5 35 <210> 12 <211> 5		<400>	11
35 <210> 12 <211> 5		Gly Met Asn Ph	e Pro
<211> 5			5
<211> 5	35	<2105	12
	<i>JJ</i>		
40 T T T T T T T T T T T T T T T T T T T		<212>	PRT

SEQ 4/31

	WO 00/34320	PCT/US99/29393
	<213>	Aequorea victoria
	<220>	
÷	<222>	127131
	<223>	amino acid sequence of a key stretch on which
5		primer NFP is based
	<400>	12
	Gly Val Asn Ph	ne Pro
		5
10	<210>	13
•	<211>	20
	<212>	DNA
	<213>	artificial sequence
	<220>	
15	<221>	primer_bind
	<223>	primer NFP used for isolation of fluorescent
	•	protein
	<400>	13
	ttccayggtr tga	ayttycc 20
20		•
	<210>	14
	<211>	4
	<212>	PRT
	<213>	Aequorea victoria
25	<220>	
	<222>	134137
•	<223>	amino acid sequence of a key stretch on which
		primers PVMa and PVMb are based
	<400>	14
30	Gly Pro Val Me	t
	<210>	15
	<211>	21
35	<212>	DNA
	<213>	artificial sequence

SEQ 5/31

	WO 00/3432	0 PCT/US99/29393
	<220>	
	<221>	primer_bind
	<222>	15
	<223>	primer PVMa used for isolation of fluorescent
5		protein; n at position 15 represents any of the
		four bases
	<400>	15
	cctgccrayg	gtccngtmat g 21
	<u>.</u> .	
10	~<210>	16
	<211>	21
	<212>	DNA
	<213>	artificial sequence
	<220>	
15	<221>	primer_bind
	<222>	15
	<223>	primer PVMb used for isolation of fluorescent
		protein; n at position 15 represents any of the
		four bases
20	<400>	16
	cctgccrayg	gtccngtkat g 21
	<210>	17
	<211>	<u>4</u> 7
25	<212>	DNA
	<213>	artificial sequence
	<220>	
	<221>	primer_bind
	<223>	primer T7-TN3 used in cDNA synthesis and RACE
30	<400>	17
	gtaatacgac 47	tcactatagg gccgcagtcg accgtttttt ttttttt
		
	<210>	18
35	<211>	45
	<212>	DNA
	<213>	artificial sequence

	WO 00/3432	PCT/US99/29393
	<220>	•
	<221>	primer_bind
	<223>	primer T7-TS used in cDNA synthesis and RACE
	<400>	18
5	ataataaaa	tcactatagg gcaagcagtg gtatcaacgc agagt
3	45	Concourage goddgongong goddondogo dgago
	<210>	19
	<211>	22
-10	_ <212>	DNA
	<213>	artificial sequence
	<220>	
	<221>	primer_bind
	<223>	primer T7 used in cDNA synthesis and RACE
15	<400>	19
	gtaatacgac	tcactatagg gc 22
	3	
	<210>	20
	<211>	•
20	<212>	DNA
	<213>	artificial sequence
	<220>	
	<221>	
	<223>	_
25		Anemonia majano
	<400>	20
	gaaatagtca	ggcatactgg t 21
	<210>	21
30	<211>	20
	<212>	DNA
	<213>	artificial sequence
	<220>	
	<221>	primer_bind
35	<223>	gene-specific primer used for 5'-RACE for
		Anemonia majano

	WO 00/3432	0	PCT/US99/29393
	<400>	21	
	gtcaggcata	ctggtaggat 20	
	-2105	22	••
5	<210> <211>		i .
5			
	<212>		
	<213> <220>	artificial sequence	
	<220 <i>></i> <221>	primer_bind	
10	<223>		for
10	-	Clavularia sp.	101
	<400>	22	
	cttgaaatag	tetgetatat e 21	
15	<210>	23	
	<211>	19	,*
	<212>	DNA	
	<213>	artificial sequence	
	<220>		
20	<221>	primer_bind	
	<223>	gene-specific primer used for 5'-RACE	for
		Clavularia sp.	٠.
	<400>	23	•
	tctgctatat	cgtctgggt 19	
25			
	<210>	24	
	<211>	23	
	<212>	DNA	٠.
	<213>	artificial sequence	
30	<220>		
	<221>	primer_bind	
	<223>	gene-specific primer used for 5'-RACE	for
		Zoanthus sp.	
	<400>	24	
35	gttcttgaaa	tagtctacta tgt 23	

	WO 00/3432	0	PCT/US99/293
•	<210>	25	
	<211>		
	<212>		
5	<213>		ı
	<220>	-	·•
	<221>		
	<223>		for
		Zoanthus sp.	
_10	- <400>	25	
	gtctactatg	tcttgaggat 20	
	<210>	26	•
	<211>		
15	<212>		
	<213>	·	
	<220>		
	<221>	primer_bind	
	<223>	gene-specific primer used for 5'-RACE	for
20		Discosoma sp. "red"	
	<400>	26	
	caagcaaatg	gcaaaggtc 19	
	<210>	27	
. 25	<211>	19	٠.
	<212>	DNA	
	<213>	artificial sequence	
	<220>		
	<221>	primer_bind	
30	<223>	gene-specific primer used for 5'-RACE	for
		Discosoma sp. "red"	·.
	<400>	27	
	cggtattgtg	gccttcgta 19	
35	<210>	28	
	<211>	19	

	WO 00/3432	0	PCT/US99/29393
	<212>	DNA	
	<213>	artificial sequence	
	<220>		
	<221>	primer_bind	
5	<223>	gene-specific primer used for 5'-RACE	for
		Discosoma striata	
	<400>	28	
	ttgtcttctt	ctgcacaac 19	·. ·
	_	•	
-10	_ <210>	29	
	<211>	17	
	<212>	DNA	
	<213>	artificial sequence	
	<220>		٠.
15	<221>	primer_bind	
	<223>	gene-specific primer used for 5'-RACE	for
		Discosoma striata	
	<400>	29	
	ctgcacaacg	ggtccat 17	
20			
	<210>	30	·-
	<211>	20	
	<212>	DNA	
	<213>	artificial sequence	
25	<220>		
	<221>	primer_bind	
	<223>	gene-specific primer used for 5'-RACE	for
	400	Anemonia sulcata	
	<400>	30	
30	cctctatctt	catttcctgc 20	
	<210>	31	
	<211>	20	
35	<212>	DNA	•
22	<213> <220>	artificial sequence	
	<221>	primer_bind	,
	\441 <i>></i>	Primer"ning	

SEQ 10/31

	WO 00/3432		PCT/US99/29393
	<223>	gene-specific primer used for 5'-RACE	for
		Anemonia sulcata	
	<400>	31	•
	tatcttcatt	tcctgcgtac 20	·
5	. •		
	<210>	32	
	<211>	19	
	<212>	DNA	
	<213>	artificial sequence	·•
10	<220>		
	<221>	primer_bind	
	<223>	gene-specific primer used for 5'-RACE	for
	•	Discosoma sp. "magenta"	
	<400>	32	
15	ttcagcaccc	catcacgag 19	
	oodagodooo		
	<210>	33	
	<211>	19	
	<212>	DNA	
20	<213>	artificial sequence	
	<220>		
	<221>	primer_bind	٠.
	<223>	gene-specific primer used for 5'-RACE	for
		Discosoma sp. "magenta"	
25	<400>	33	
	acgctcagag	ctgggttcc 19	
	<210>	34	٠.
	<211>	22	
30	<212>	DNA	
	<213>	artificial sequence	
	<220>		
	<221>	primer_bind	
	<223>	gene-specific primer used for 5'-RACE	for
35		Discosoma sp. "green"	
	<400>	34	

	ccctcagcaa	tccatcacgt tc	22
	<210>	35	
	<211>	20	
5	<212>		
	<213>		``
	<220>		
	<221>	primer_bind	
	<223>	_	r used for 5'-RACE for
10		Discosoma sp. "gree	
	<400>	35	
	attatctcag		20
	•		
	<210>		
15	<211>		
	<212>		
	<213>	artificial sequence	
	<220>		
	<221>	<u>-</u>	
20	<223>	-	d to obtain full coding region
		of nFPs from Anemon	ia majano
	<400>	36	
	acatggatcc	gctctttcaa acaagtttat c	31
25	<210>	37	4.
	<211>	34	
	<212>	DNA	
	<213>	artificial sequence	
	<220>		
30	<221>	primer_bind	
	<223>	downstream primer us	sed to obtain full coding
		region of nFPs from	Anemonia majano
	<400>	37	
	tagtactcga	gcttattcgt atttcagtga aa	tc 34
35			
	<210>	38	
	<211>	29	

SEQ 12/31

	WO 00/3432	0	PCT/US99/29393
	<212>	DNA	
	<213>	artificial sequence	
	<220>		
	<221>	primer_bind	
5	<223>	upstream primer used to obta	ain full coding region
		of nFPs from Clavularia sp.	
	<400>	38	•
	acatggatcc	aacatttttt tgagaaacg	29
10	-<210>	39	
	<211>	28	
	<212>	DNA	
	<213>	artificial sequence	·.
	<220>		
15	<221>	primer_bind	
	<223>	upstream primer used to obta	ain full coding region
		of nFPs from Clavularia sp.	
	<400>	. 39	
	acatggatcc	aaagctctaa ccaccatg	28
20			
	<210>	40	
	<211>	31	•
	<212>	DNA	
	<213>	artificial sequence	•
25	<220>		
	<221>	primer_bind	٠.
	<223>	downstream primer used to ol	otain full coding
		region of nFPs from Clavula	ria sp.
	<400>	_	ria sp.
30		_	ria sp. 31
30		40	
30	tagtactcga <210>	40 gcaacacaaa ccctcagaca a 41	
30	<pre>tagtactcga <210> <211></pre>	40 gcaacacaaa ccctcagaca a 41 28	31
	<210> <211> <212>	40 gcaacacaaa ccctcagaca a 41 28 DNA	31
30	<pre>tagtactcga <210> <211></pre>	40 gcaacacaaa ccctcagaca a 41 28 DNA artificial sequence	31

	WO 00/3432	0 PCT/US99/29393
	<221>	primer_bind
	<223>	
		of nFPs from Zoanthus sp.
	<400>	
_		
5	acatggatee	gctcagtcaa agcacggt 28
	<210>	42
	<211>	
	<212>	· · · · · · · · · · · · · · · · · · ·
10	<213>	· · · · · · · · · · · · · · · · · · ·
-10	<220>	<u>u_ u_ u_ u _ u _ u _ u u u u u u u u u </u>
	<221>	primer_bind
•	<223>	-
		region of nFPs from Zoanthus sp.
15	<400>	42
	tt	ggttggaact acattcttat ca 32
•	tagtactcga	ggttggaact acattcttat ca 32
	<210>	43
	<211>	
20	<212>	
	<213>	artificial sequence
	<220>	•
	<221>	primer_bind
	<223>	upstream primer used to obtain full coding region
25		of nFPs from Discosoma sp. "red"
	<400>	43
	acatggatcc	aggtetteca agaatgttat c 31
	<210>	44
30	<211>	29
	<212>	DNA
	<213>	artificial sequence
	<220>	
	<221>	primer_bind
35	<223>	-
		region of nFPs from Discosoma sp. "red"
	<400>	44

SEQ 14/31

WO 00/34320

PCT/US99/29393

	tagtactcga	ggagccaagt tcagcctta	29
	<210>	45	
	<211>	28	·.
5	<212>	DNA	
	<213>	artificial sequence	·
	<220>		,
	<221>	primer_bind	
	<223>	upstream primer used	to obtain full coding region
10	<u>.</u>	of nFPs from <i>Discoso</i> n	na striata
	<400>	45	•
	acatggatcc	agttggtcca agagtgtg	28
	<210>	•	·
15	<211>		
	<212>		
	<213>	artificial sequence	•
	<220>		
	<221>	<u>-</u>	
20	<223>		d to obtain full coding
	100	region of nFPs from I	Discosoma striata
	<400>	46	
	tagcgagctc	tatcatgcct cgtcacct	28
25	<210̈>	47	
	<211>	31	
	<212>	DNA	
	<213>	artificial sequence	
	<220>		
30	<221>	primer_bind	
	<223>	upstream primer used	to obtain full coding region
		of nFPs from Anemonia	sulcata
	<400>	47	
	acatggatcc	gcttcctttt taaagaagac t	31
35			
	<210>	48	
	<211>	28	•

SEQ 15/31

	WO 00/3432	PCT/US99/29393
	<212>	DNA
	<213>	artificial sequence
	<220>	
	<221>	primer_bind
5	<223>	downstream primer used to obtain full coding
		region of nFPs from Anemonia sulcata
	<400>	48
	tagtagtgga	gtccttggga gcggcttg 28
	tagtactcga	gtccttggga gtggtttg 20
10	<210>	49
	<211>	30
	<212>	
	<213>	••
	<220>	
15	<221>	primer_bind
	<223>	_
		of nFPs from <i>Discosoma sp. "magenta"</i>
	<400>	49
	acategates	agttgttcca agaatgtgat 30
20	acatygatet	agecgeecea agaacgegae
20	<210>	50
	<211>	26
	<212>	
	<213>	
25	<220>	•
	<221>	primer_bind
	<223>	downstream primer used to obtain full coding
		region of nFPs from Discosoma sp. "magenta"
	<400>	50
30	tagtactcga	ggccattacg ctaatc 26
	cagcaccega	ggccaccacg Council
	<210>	51
	<211>	31
	<212>	DNA
35	<213>	
	<220>	
	<221>	primer_bind

	WO 00/34320	0 PCT/US99/29393	5
	<223>	upstream primer used to obtain full coding regio	n
		of nFPs from Discosoma sp. "green"	
	<400>	51	
	acatggatcc	agtgcactta aagaagaaat g 31	
5			
3	<210>	52 .	
	<211>		
	<211>	· · · · · · · · · · · · · · · · · · ·	
	<213>		
10	<220>	arcificial sequence	
10	<221>	primer_bind	
	<223>		
		region of nFPs from Discosoma sp. "green"	
	<400>	52	
		•	
15	tagtactcga	gattcggttt aatgccttg 29	
	010	53	
	<210>		
	<211>		•
20	<212>		
20	<213>	artificial sequence	
	<220>	unimpu hind	
	<221>	· · · · · · · · · · · · · · · · · · ·	
	<223>	TS-oligo used in cDNA synthesis and RACE 53	
	<400>	55	
25	aagcagtggt	atcaacgcag agtacgcrgr grg 33	
	04.0		
	<210>	54	
	<211>	238	
30	<212>	PRT	
30	<213>	Aequorea victoria	
	<220> <223>	amino agid gomungo of CED	
	<400>	amino acid sequence of GFP 54	
		Gly Glu Glu Leu Phe Thr Gly Val Val Pro Ile Leu	
35	wer ser nys	5 10 15	
55	Val Glu Leu	Asp Gly Asp Val Asn Gly His Lys Phe Ser Val Ser	
	TAT OTA DEA	. The cri time are time cri time pla time per act per	

	v	VO 00/	34320											PCT	r/US99/29393	j
					20					25					30	
	Gly	Glu	Gly	Glu	Gly	Asp	Ala	Thr	Tyr	Gly	Lys	Leu	Thr	Leu	Lys	
					35					40					45	
	Phe	Ile	Cys	Thr	Thr	Gly	Lys	Leu	Pro	Val	Pro	Trp	Pro	Thr	Leu	
5					50					55			-		60	
	Val	Thr	Thr	Phe	Ser	Tyr	Gly	Val	Gln	Cys	Phe	Ser	Arg	Tyr	Pro	
					65					70					75	
	Asp	His	Met	Lys	Gln	His	Asp	Phe	Phe	_	Ser	Ala	Met	Pro	Glu	
					80				٠	85					90	
-10	_G <u>l</u> y	Ţyr	Val	Gln		Arg	Thr	Ile	Phe		Lys	Asp	Asp	Gly	•	
		, -	_		95		4	_	_,	100	~ 7	_	_,	_	105	
	Tyr	Lys	Thr	Arg		GIU	vaı	ьуs	Pne		GLY	Asp	Thr	Leu		
	3.00		T1.	C1	110	Tara	Clu	Tlo	7 cm	115	Taro	G1.v	7.00	Gly	120	
15	ASII	Arg	тте	Giu	125	ьуъ	Сту	116	ASD	130	цуs	GIU	Asp	СТУ	135	
13	Tle	Len	Glv	His		Leu	Glu	Tvr	Asn		Asn	Ser	His	Asn		
	110		013		140			-1-		145					150	
	Tyr	Ile	Met	Ala		Lys	Gln	Lys	Asn	Gly	Ile	Lys	Val	Asn		
					155					160					165	
20	Lys	Ile	Arg	His	Asn	Ile	Glu	Asp	Gly	Ser	Val	Gln	Leu	Ala	Asp	
					170					175					180	
	His	Tyr	Gln	Gln	Asn	Thr	Pro	Ile	Gly	Asp	Gly	Pro	Val	Leu	Leu	
					185		_			190		_	_		195	
0.5	Pro	Asp	Asn	His		Leu	Ser	Thr	Gln		Ala	Leu	Ser	Lys		
25	D	3	01	T	200	n an	u: a	Mor	17-1	205	T on	C1.,	Dho	Val	210 The	
	PLO	ASII	GIU	гу	215	Asp	птэ	Mec	vai	220	ьеu	GIU	FILE	vai	225	
	Ala	Ala	Glv	Ile	Thr	His	Glv	Met	Asp		Leu	Tvr	Lvs			
			-		230		-		•	235		- 4 -	•			
30																
		<2	10>		55		•								·•	
		<2	11>		862											
		<2	12>		DNA											
			13>		Anem	onia	maj	ano								
35			20>													
			21>		CDS			E	2.1	.a		TII TO 4	0.6			
			23> 00>		cDNA 55	seq	uenc	e oi	Wll	u ty	pe a	mr P4	ØD		•	
		~41	00>		J J											

	ggga	agtto	cat	tttg	gtcg	gc ga	acgt	agtg	g ac	tacg	aaaa	ctca	aact	cga	50	
	cttt	cgti	tca	gttt	tgaga	aa a	caag	cgati	tg:	attc	gaca	tgg	ctct	ttc	100	
	aaad	caagt	ttt	atcg	gaga	tg a	catg	aaaa	ga	ccta	ccat	atg	gatg	gct	150	
	gtgt	caat	tgg	gcat	tact	tt a	ccgt	caaa	ggt	gaag	gcaa	cggg	gaag	cca	200	
5	tace	gaagg	gga	cgca	gacti	tc ga	actt	ttaaa	gte	cacca	atgg	cca	acgg	tgg	250	
	gcc	cctt	gca	ttct	cctt	tg a	cata	ctate	ta	cagt	gttc	aaat	tatg	gaa	300	
	atc	gatgo	ctt	tact	gcgta	at c	ctac	cagta	a tg	cccg	acta	ttt	caaa	caa	350	
	gcat	tttc	ctg	acgg	aatg	tc at	tatg	aaagg	g ac	tttt	acct	atga	aaga	tgg	400	
	agga	agtt	gct	acago	ccag	tt g	ggaa	ataag	g cc	ttaaa	aggc	aact	tgct	ttg	4 50	
10	agca	caaa	atc	cacg	tttca	at g	gagt	gaact	tte	cctg	ctga	tgga	acct	gtg	500	
	atgg	gcgaa	aga	agac	aact	gg t	tggga	accca	a tc	tttt	gaga	aaat	tgact	tgt	550	
	ctg	gate	gga	atati	tgaag	gg g	tgat	gtcad	c cg	cgtt	cctc	atgo	etge	aag	600	
	gagg	gtgg	caa	ttaca	agat	gc ca	aatto	ccaca	a ct	tetta	acaa	gaca	aaaa	aaa	650	
	ccgg	gtgad	cga	tgcc	accaa	aa c	catg	tggtg	g ga	acat	cgca	ttg	gag	gac	700	
15	cgad	cctt	gac	aaag	gtgg	ca a	cagt	gttca	a gc	tgac	ggag	cac	gctgi	ttg	750	
	caca	atata	aac	ctct	gttgi	tc c	cttt	ctgag	g caa	aaaa	gttc	gtti	taga	acc	800	
*	ccga	attt	cac	tgaaa	ataco	ga a	taag	gttgg	g ca	gaata	aata	aago	ccgc	aca	850	
	tttg	gaaat	taa	tc											862	
																•
20		<2	10>		56											
		<2	11>		229											
		<2	12>		PRT											
		<2	13>		Anem	onia	maj	ano								
		<2	20>													
25		<2	23>		amin	o ac	id s	eque	nce	of w	ild	type	amF	P486	5	
		<4	<00		56											
	Met	Ala	Leu	Ser	Asn	Lys	Phe	Ile	Gly	Asp	Asp	Met	Lys	Met	Thr	
					5					10					15	
	Tyr	His	Met	Asp	Gly	Cys	Val	Asn	Gly	His	Tyr	Phe	Thr	Val	Lys	
30					20					25					30	
	Gly	Glu	Gly	Asn	Gly	Lys	Pro	Tyr	Glu	Gly	Thr	Gln	Thr	Ser	Thr	
					35					40					45	-
	Phe	Lys	Val	Thr	Met	Ala	Asn	Gly	Gly	Pro	Leu	Ala	Phe	Ser	Phe	
					50					55					60	
35	Asp	Ile	Leu	Ser		Val	Phe	Lys	Tyr		Asn	Arg	Суѕ	Phe		
					65					70					75	
	Ala	Tyr	Pro	Thr	Ser	Met	Pro	Asp	Tyr	Phe	Lys	Gln	Ala	Phe	Pro	

	WO 00/3432	:0					PCT/US99/29393
		80			85		90
	Asp Gly Me	t Ser Tyr	Glu Arg	Thr Phe	Thr Tyr	Glu Asp (Gly Gly
		95			100		105
	Val Ala Th	r Ala Ser	Trp Glu	Ile Ser	Leu Lys	Gly Asn (Cys Phe
5		110			115	•	120
	Glu His Ly	s Ser Thr	Phe His	Gly Val	Asn Phe	Pro Ala A	Asp Gly
		125			130		135
	Pro Val Me	t Ala Lys	Lys Thr	Thr Gly	Trp Asp	Pro Ser E	Phe Glu
		140			145		150
_10	Lys Met Th		Asp Gly	Ile Leu		Asp Val 1	Thr Ala
	• -	155			160		165
	Phe Leu Me		Gly Gly	Gly Asn		Cys Gln F	Phe His
		170			175		180
1.5	Thr Ser Ty		Lys Lys	Pro Val	•	Pro Pro A	
15		185	T10 310	Acces When	190	N T 6	195
	Val Val Gl	_		Arg Inr	_	Asp Lys G	
	Asn Ser Va	200 1 Cln Leu		Hic Als	205	Wig Tlon	210 Thr Sor
	ASII SEL VA	215	IIII GIU	IIIS AIG	220	ure rie i	225
20	Val Val Pr	_			220		225
	V41 V41 11						
-	<210>	5 7					
	<211>						
25	<212>						
	<213>		ficial s	equence			
	<220>			-			
	<223>	nucl	eotide s	equence	of Mut15		٠.
	<400>	57					
30	atggctcttt	caaacaagt	tt tatcgg	gagat gad	atgaaaa	tgacctacc	a 50
	tatggatggc	tgtgtcaa	tg ggcatt	actt tac	cgtcaaa	ggtgaaggc	a 100
	gcgggaagcc	atacgaagg	gg acgcag	gacct cga	cttttaa	agtcaccat	g 150
	gccaacggtg	ggccccttg	gc attcto	ecttt gad	atactat	ctacagtgt	t 200
	cttgtatgga	aatcgatg	ct ttacto	gegta tec	taccagt	atgcccgac	t 250
35	atttcaaaca	-		-		_	
	tatgaagatg					_	-
	caactgcttt	gagcacaaa	at ccacgt	ittca tgg	agtgaac	tttcctgct	g 400

WO 00/34320

PCT/US99/29393

atggacctgt gatggcgaag aagacaactg gttgggaccc atcttttgag 450 aaaatgactg tctgcgatgg aatattgaag ggtgatgtca ccgcgttcct 500 catgetgeaa ggaggtggea attacagatg ceaatteeac acttettaca 550 🕟 agacaaaaaa accggtgacg atgccaccaa accatgtggt ggaacatcgc 600 5 attgcgagga ccgaccttga caaaggtggc aacagtgttc agctgacgga 650 gcacgctgtt gcacatataa cctctgttgt ccctttctga 690 <210> 58 <211> 4695 ~10 - <212> DNA <213> artificial sequence <220> <223> nucleic acid sequence of vector pCNFPMut32-N1 <400> 58 15 tagttattaa tagtaatcaa ttacggggtc attagttcat agcccatata 50 tqqaqttccq cqttacataa cttacggtaa atggcccgcc tggctqaccq 100 . cccaacgacc cccgcccatt gacgtcaata atgacgtatg ttcccatagt 150 aacgccaata gggactttcc attgacgtca atgggtggag tatttacggt 200 aaactgccca cttggcagta catcaagtgt atcatatgcc aagtacgccc 250 20 cctattgacg tcaatgacgg taaatggccc gcctggcatt atgcccagta 300 catgacetta tgggacttte ctaettggca gtaeatetae gtattagtea 350 tegetattae catggtgatg eggttttgge agtacateaa tgggegtgga 400 tagcggtttg actcacgggg atttccaagt ctccacccca ttgacgtcaa 450 tqqqaqtttq ttttqqcacc aaaatcaacg ggactttcca aaatgtcgta 500 25 acaactccgc cccattgacg caaatgggcg gtaggcgtgt acggtgggag 550 gtctatataa gcagagctgg tttagtgaac cgtcagatcc gctagcgcta 600 ccggactcag atctcgagct caagcttcga attctgcagt cgacggtacc 650 gcgggcccgg gatccggtac catggctctt tcaaacaagt ttatcggaga 700 750 tgacatgaaa atgacctacc atatggatgg ctgtgtcaat gggcattact 30 ttaccgtcaa aggtgaaggc aacgggaagc catacgaagg gacgcagact 800 tcgactttta aagtcaccat ggccaacggt gggccccttg cattctcctt 850 tgacatacta tctacagtgt tcaaatatgg aaatcgatgc tttactgcgt 900 atcctaccaq catgcccgac tatttcaaac aagcatttcc tgacggaatg 950 tcatatgaaa ggacttttac ctatgaagat ggaggagttg ctacagccag 1000 35 ttgggaaata agcettaaag geaactgett tgageacaaa tecaegttte 1050 atggagtgaa ctttcctgct gatggacctg tgatggcgaa gaagacaact 1100 ggttgggacc catcttttga gaaaatgact gtctgcgatg gaatattgaa 1150

	gggtgatgtc	accgcgttcc	tcatgctgca	aggaggtggc	aattacagat	1200
	gccaattcca	cacttcttac	aagacaaaaa	aaccggtgac	gatgccacca	1250
	aaccatgtgg	tggaacatcg	cattgcgagg	accgaccttg	acaaaggtgg	1300
	caacagtgtt	cagctgacgg	agcacgctgt	tgcacatata	acctctgttg	1350
5	tccctttctg	agcggccgcg	actctagatc	ataatcagcc	ataccacatt	1400
	tgtagaggtt	ttacttgctt	taaaaaacct	cccacacctc	cccctgaacc	1450
	tgaaacataa	aatgaatgca	attgttgttg	ttaacttgtt	tattgcagct	1500
	tataatggtt	acaaataaag	caatagcatc	acaaatttca	caaataaagc	1550
	attttttca	ctgcattcta	gttgtggttt	gtccaaactc	atcaatgtat	1600
10	cttaaggcgt	aaattgtaag	cgttaatatt	ttgttaaaat	tcgcgttaaa	1650
	tttttgttaa	atcagctcat	tttttaacca	ataggccgaa	atcggcaaaa	1700
	tcccttataa	atcaaaagaa	tagaccgaga	tagggttgag	tgttgttcca	1750
	gtttggaaca	agagtccact	attaaagaac	gtggactcca	acgtcaaagg	1800
	gcgaaaaacc	gtctatcagg	gcgatggccc	actacgtgaa	ccatcaccct	1850
15	aatcaagttt	tttggggtcg	aggtgccgta	aagcactaaa	tcggaaccct	1900
	aaagggagcc	cccgatttag	agcttgacgg	ggaaagccgg	cgaacgtggc	1950
	gagaaaggaa	gggaagaaag	cgaaaggagc	gggcgctagg	gcgctggcaa	2000
	gtgtagcggt	cacgctgcgc	gtaaccacca	cacccgccgc	gcttaatgcg	2050
	ccgctacagg	gcgcgtcagg	tggcactttt	cggggaaatg	tgcgcggaac	2100
20	ccctatttgt	ttatttttct	aaatacattc	aaatatgtat	ccgctcatga	2150
	gacaataacc	ctgataaatg	cttcaataat	attgaaaaag	gaagagtcct	2200
	gaggcggaaa	gaaccagctg	tggaatgtgt	gtcagttagg	gtgtggaaag	2250
	tccccaggct	ccccagcagg	cagaagtatg	caaagcatgc	atctcaatta	2300
	gtcagcaacc	aggtgtggaa	agtccccagg	ctccccagca	ggcagaagta	2350
25	tgcaaagcat	gcatctcaat	tagtcagcaa	cçatagtccc	gcccctaact	2400
	ccgcccatcc	cgcccctaac	tccgcccagt	tccgcccatt	ctccgcccca	2450
	tggctgacta	attttttta	tttatgcaga	ggccgaggcc	gcctcggcct	2500
	ctgagctatt	ccagaagtag	tgaggaggct	tttttggagg	cctaggcttt	2550
	tgcaaagatc	gatcaagaga	caggatgagg	atcgtttcgc	atgattgaac	2600
30	aagatggatt	gcacgcaggt	tctccggccg	cttgggtgga	gaggctattc	2650
	ggctatgact	gggcacaaca	gacaatcggc	tgctctgatg	ccgccgtgtt	2700
	ccggctgtca	gcgcaggggc	gcccggttct	ttttgtcaag	accgacctgt	2750
	ccggtgccct	gaatgaactg	caagacgagg	cagcgcggct	atcgtggctg	2800
	gccacgacgg	gcgttccttg	cgcagctgtg	ctcgacgttg	tcactgaagc	2850
35	gggaagggac	tggctgctat	tgggcgaagt	gccggggcag	gatctcctgt	2900
	catctcacct	tgctcctgcc	gagaaagtat	ccatcatggc	tgatgcaatg	2950
	cggcggctgc	atacgcttga	tccggctacc	tgcccattcg	accaccaagc	3000
	gaaacatcgc	atcgagcgag	cacgtactcg	gatggaagcc	ggtcttgtcg	3050

	atcaggatga	tctggacgaa	gagcatcagg	ggctcgcgcc	agccgaactg	3100
	ttcgccaggc	tcaaggcgag	catgcccgac	ggcgaggatc	tcgtcgtgac	3150
	ccatggcgat	gcctgcttgc	cgaatatcat	ggtggaaaat	ggccgctttt	3200
	ctggattcat	cgactgtggc	cggctgggtg	tggcggaccg	ctatcaggac	3250
5	atagcgttgg	ctacccgtga	tattgctgaa	gagcttggcg	gcgaatgggc	3300
	tgaccgcttc	ctcgtgcttt	acggtatcgc	cgctcccgat	tcgcagcgca	3350
	tcgccttcta	tcgccttctt	gacgagttct	tctgagcggg	actctggggt	3400
	tcgaaatgac	cgaccaagcg	acgcccaacc	tgccatcacg	agatttcgat	3450
	tccaccgccg	ccttctatga	aaggttgggc	ttcggaatcg	ttttccggga	3500
-10	_cgccggctgg	atgatectee	agcgcgggga	tctcatgctg	gagttcttcg	3550
	cccaccctag	ggggaggcta	actgaaacac	ggaaggagac	aataccggaa	3600
	ggaacccgcg	ctatgacggc	aataaaaaga	cagaataaaa	cgcacggtgt	3650
	tgggtcgttt	gttcataaac	gcggggttcg	gtcccagggc	tggcactctg	3700
	tcgatacccc	accgagaccc	cattggggcc	aatacgcccg	cgtttcttcc	3750
15	ttttccccac	cccacccccc	aagttcgggt	gaaggcccag	ggctcgcagċ	3800
	caacgtcggg	gcggcaggcc	ctgccatagc	ctcaggttac	tcatatatac	3850.
	tttagattga	tttaaaactt	catttttaat	ttaaaaggat	ctaggtgaag	3900
	atcctttttg	ataatctcat	gaccaaaatc	ccttaacgtg	agttttcgtt	3950
	ccactgagcg	tcagaccccg	tagaaaagat	caaaggatct	tcttgagatc	4000
20	cttttttct	gcgcgtaatc	tgctgcttgc	aaacaaaaaa	accaccgcta	4050
	ccagcggtgg	tttgtttgcc	ggatcaagag	ctaccaactc	tttttccgaa	4100
	ggtaactggc	ttcagcagag	cgcagatacc	aaatactgtc	cttctagtgt	4150
	agccgtagtt	aggccaccac	ttcaagaact	ctgtagcacc	gcctacatac	4200
	ctcgctctgc	taatcctgtt	accagtggct	gctgccagtg	gcgataagtc	4250
25	gtgtcttacc	gggttggact	caagacgata	gttaccggat	aaggcgcagc	4300
	ggtcgggctg	aacggggggt	tcgtgcacac	agcccagctt	ggagcgaacg	4350
	acctacaccg	aactgagata	cctacagcgt	gagctatgag	aaagcgccac	4400
	gcttcccgaa	gggagaaagg	cggacaggta	tccggtaagc	ggcagggtcg	4450
	gaacaggaga	gcgcacgagg	gagcttccag	ggggaaacgc	ctggtatctt	4500
30	tatagtcctg	tcgggtttcg	ccacctctga	cttgagcgtc	gatttttgtg	4550
	atgctcgtca	ggggggcgga	gcctatggaa	aaacgccagc	aacgcggcct	4600
					gttctttcct	4650
	gcgttatccc	ctgattctgt	ggataaccgt	attaccgcca	tgcat	4695

35 <210> 59 <211> 4821 <212> DNA

	WO 00/3432	0			Pe	CT/US99/29393
	<213>	artifi	cial sequen	ce		
	<220>				•	
	<223>	nuclei	c acid sequ	ence of vec	tor pCNFP-M	IODCd1
	<400>	59				
5	tagttattaa	tagtaatcaa	ttacggggtc	attagttcat	agcccatata	50
	tggagttccg	cgttacataa	cttacggtaa	atggcccgcc	tggctgaccg	100
	cccaacgacc	cccgcccatt	gacgtcaata	atgacgtatg	ttcccatagt	150
	aacgccaata	gggactttcc	attgacgtca	atgggtggag	tatttacggt	200
	aaactgccca	cttggcagta	catcaagtgt	atcatatgcc	aagtacgccc	250
10	_cctattgacg	tcaatgacgg	taaatggccc	gcctggcatt	atgcccagta	300
	catgacctta	tgggactttc	ctacttggca	gtacatctac	gtattagtca	350
	tcgctattac	catggtgatg	cggttttggc	agtacatcaa	tgggcgtgga	400
	tagcggtttg	actcacgggg	atttccaagt	ctccacccca	ttgacgtcaa	450
	tgggagtttg	ttttggcacc	aaaatcaacg	ggactttcca	aaatgtcgta	500
15	acaactccgc	cccattgacg	caaatgggcg	gtaggcgtgt	acggtgggag	550
	gtctatataa	gcagagctgg	tttagtgaac	cgtcagatcc	gctagcgcta	600
	ccggactcag	atctcgagct	caagcttcga	attctgcagt	cgacggtacc	650
	gcgggcccgg	gatccggtac	catggctctt	tcaaacaagt	ttatcggaga	700
	tgacatgaaa	atgacctacc	atatggatgg	ctgtgtcaat	gggcattact	750
20	ttaccgtcaa	aggtgaaggc	aacgggaagc	catacgaagg	gacgcagact	800
	tcgactttta	aagtcaccat	ggccaacggt	gggccccttg	cattctcctt	850
	tgacatacta	tctacagtgt	tcaaatatgg	aaatcgatgc	tttactgcgt	900
	atcctaccag	catgcccgac	tatttcaaac	aagcatttcc	tgacggaatg	950
	tcatatgaaa	ggacttttac	ctatgaagat	ggaggagttg	ctacagccag	1000
25	ttgggaaata	agccttaaag	gcaactgctt	tgagcacaaa	tccacgtttc	1050
	atggagtgaa	ctttcctgct	gatggacctg	tgatggcgaa	gaagacaact	1100
	ggttgggacc	catcttttga	gaaaatgact	gtctgcgatg	gaatattgaa	1150
	gggtgatgtc	accgcgttcc	tcatgctgca	aggaggtggc	aattacagat	1200
	gccaattcca	cacttcttac	aagacaaaaa	aaccggtgac	gatgccacca	1250
30	aaccatgtgg	tggaacatcg	cattgcgagg	accgaccttg	acaaaggtgg	1300 -
	caacagtgtt	cagctgacgg	agcacgctgt	tgcacatata	acctctgttg	1350
	tccctttcaa	gcttagccat	ggcttcccgc	cggcggtggc	ggcgcaggat	1400
	gatggcacgc	tgcccatgtc	ttgtgcccag	gagagcggga	tggaccgtca	1450
	ccctgcagcc	tgtgcttctg	ctaggatcaa	tgtgtaggcg	gccgcgactc	1500
35		_			ttgctttaaa	
					aatgcaattg	
		_			ataaagcaat	
	agcatcacaa	atttcacaaa	taaagcattt	ttttcactgc	attctagttg	1700

	tggtttgtcc	aaactcatca	atgtatctta	aggcgtaaat	tgtaagcgtt	1750
	aatattttgt	taaaattcgc	gttaaatttt	tgttaaatca	gctcattttt	1800
	taaccaatag	gccgaaatcg	gcaaaatccc	ttataaatca	aaagaataga	1850
	ccgagatagg	gttgagtgtt	gttccagttt	ggaacaagag	tccactatta	1900
5	aagaacgtgg	actccaacgt	caaagggcga	aaaaccgtct	atcagggcga	1950
	tggcccacta	cgtgaaccat	caccctaatc	aagtttttg	gggtcgaggt	2000
	gccgtaaagc	actaaatcgg	aaccctaaag	ggagcccccg	atttagagct	2050
	tgacggggaa	agccggcgaa	cgtggcgaga	aaggaaggga	agaaagcgaa	2100
	aggagcgggc	gctagggcgc	tggcaagtgt	agcggtcacg	ctgcgcgtaa	2150
-10	-ccaccacacc	cgccgcgctt	aatgcgccgc	tacagggcgc	gtcaggtggc	2200
	acttttcggg	gaaatgtgcg	cggaacccct	atttgtttat	ttttctaaat	2250
	acattcaaat	atgtatccgc	tcatgagaca	ataaccctga	taaatgcttc	2300
	aataatattg	aaaaaggaag	agtcctgagg	cggaaagaac	cagctgtgga	2350
	atgtgtgtca	gttagggtgt	ggaaagtccc	caggctcccc	agcaggcaga	2400
15	agtatgcaaa	gcatgcatct	caattagtca	gcaaccaggt	gtggaaagtc	2450
	cccaggctcc	ccagcaggca	gaagtatgca	aagcatgcat	ctcaattagt	2500
	cagcaaccat	agtcccgccc	ctaactccgc	ccatcccgcc	cctaactccg	2550
	cccagttccg	cccattctcc	gccccatggc	tgactaattt	tttttattta	2600
	tgcagaggcc	gaggccgcct	cggcctctga	gctattccag	aagtagtgag	2650
20	gaggcttttt	tggaggccta	ggcttttgca	aagatcgatc	aagagacagg	2700
t	atgaggatcg	tttcgcatga	ttgaacaaga	tggattgcac	gcaggttctc	2750
	cggccgcttg	ggtggagagg	ctattcggct	atgactgggc	acaacagaca	2800
	atcggctgct	ctgatgccgc	cgtgttccgg	ctgtcagcgc	aggggcgccc	2850
	ggttctttt	gtcaagaccg	acctgtccgg	tgccctgaat	gaactgcaag	2900
25	acgaggcagc	gcggctatcg	tggctggcca	cgacgggcgt	tccttgcgca	2950
	gctgtgctcg	acgttgtcac	tgaagcggga	agggactggc	tgctattggg	3000
	cgaagtgccg	gggcaggatc	tcctgtcatc	tcaccttgct	cctgccgaga	3050
		catggctgat				
	gctacctgcc	cattcgacca	ccaagcgaaa	catcgcatcg	agcgagcacg	3150
30	tactcggatg	gaagccggtc	ttgtcgatca	ggatgatctg	gacgaagagc	3200
		cgcgccagcc				
		aggatctcgt				
		gaaaatggcc				
		ggaccgctat				
35		ttggcggcga				
		cccgattcgc				
		agcgggactc				
	ccaacctgcc	atcacgagat	ttcgattcca	ccgccgcctt	ctatgaaagg	3600

	ttgggcttcg	gaatcgtttt	ccgggacgcc	ggctggatga	tcctccagcg	3650
	cggggatctc	atgctggagt	tcttcgccca	ccctaggggg	aggctaactg	3700
	aaacacggaa	ggagacaata	ccggaaggaa	cccgcgctat	gacggcaata	3750
	aaaagacaga	ataaaacgca	cggtgttggg	tcgtttgttc	ataaacgcgg	3800
5	ggttcggtcc	cagggctggc	actctgtcga	taccccaccg	agaccccatt	3850
	ggggccaata	cgcccgcgtt	tcttcctttt	ccccacccca	cccccaagt	3900
	tcgggtgaag	gcccagggct	cgcagccaac	gtcggggcgg	caggccctgc	3950
	catagcctca	ggttactcat	atatacttta	gattgattta	aaacttcatt	4000
	tttaatttaa	aaggatctag	gtgaagatcc	tttttgataa	tctcatgacc	4050
-10	_aaaatccctt	aacgtgagtt	ttcgttccac	tgagcgtcag	accccgtaga	4100
	aaagatcaaa	ggatcttctt	gagatccttt	ttttctgcgc	gtaatctgct	4150
	gcttgcaaac	aaaaaaacca	ccgctaccag	cggtggtttg	tttgccggat	4200
	caagagctac	caactctttt	tccgaaggta	actggcttca	gcagagcgca	4350
•	gataccaaat	actgtccttc	tagtgtagcc	gtagttaggc	caccacttca	4300
15	agaactctgt	agcaccgcct	acatacctcg	ctctgctaat	cctgttacca	4350
	gtggctgctg	ccagtggcga	taagtcgtgt	cttaccgggt	tggactcaag	4400
	acgatagtta	ccggataagg	cgcagcggtc	gggctgaacg	gggggttcgt	4450
	gcacacagcc	cagcttggag	cgaacgacct	acaccgaact	gagataccta	4500
	cagcgtgagc	tatgagaaag	cgccacgctt	cccgaaggga	gaaaggcgga	4550
20	caggtatccg	gtaagcggca	gggtcggaac	aggagagcgc	acgagggagc	4600
	ttccaggggg	aaacgcctgg	tatctttata	gtcctgtcgg	gtttcgccac	4650
	ctctgacttg	agcgtcgatt	tttgtgatgc	tcgtcagggg	ggcggagcct	4700
	atggaaaaac	gccagcaacg	cggccttttt	acggttcctg	gccttttgct	4750
	ggccttttgc	tcacatgttc	tttcctgcgt	tatcccctga	ttctgtggat	4800
25	aaccgtatta	ccgccatgca	t			4821
	•					
	<210>	60				٠.
	<211>	4621				
	<212>	DNA			•	
30	<213>	artifi	cial sequen	ce		
	<220>					
	<223>	nuclei	c acid sequ	ence of vec	tor pCNFP-M	ODCd2
	<400>	60				
	tagttattaa	tagtaatcaa	ttacggggtc	attagttcat	agcccatata	50
35	tggagttccg	cgttacataa	cttacggtaa	atggcccgcc	tggctgaccg	100
	cccaacgacc	cccgcccatt	gacgtcaata	atgacgtatg	ttcccatagt	150
	aacgccaata	gggactttcc	attgacgtca	atgggtggag	tatttacggt	200

	aaactgccca	cttggcagta	catcaagtgt	atcatatgcc	aagtacgccc	250
	cctattgacg	tcaatgacgg	taaatggccc	gcctggcatt	atgcccagta	300
	catgacctta	tgggactttc	ctacttggca	gtacatctac	gtattagtca	350
	tcgctattac	catggtgatg	cggttttggc	agtacatcaa	tgggcgtgga	400
5	tagcggtttg	actcacgggg	atttccaagt	ctccacccca	ttgacgtcaa	450
	tgggagtttg	ttttggcacc	aaaatcaacg	ggactttcca	aaatgtcgta	500
	acaactccgc	cccattgacg	caaatgggcg	gtaggcgtgt	acggtgggag	550
	gtctatataa	gcagagctgg	tttagtgaac	cgtcagatcc	gctagcgcta	600
	ccggactcag	atctcgagct	caagcttcga	attctgcagt	cgacggtacc	650
.10	geggąccegg	gatccggtac	catggctctt	tcaaacaagt	ttatcggaga	700
	tgacatgaaa	atgacctacc	atatggatgg	ctgtgtcaat	gggcattact	750
	ttaccgtcaa	aggtgaaggc	aacgggaagc	catacgaagg	gacgcagact	800
	tcgactttta	aagtcaccat	ggccaacggt	gggccccttg	cattctcctt	850
	tgacatacta	tctacagtgt	tcaaatatgg	aaatcgatgc	tttactgcgt	900
15	atcctaccag	catgcccgac	tatttcaaac	aagcatttcc	tgacggaatg	950
	tcatatgaaa	ggacttttac	ctatgaagat	ggaggagttg	ctacagccag	1000
	ttgggaaata	agccttaaag	gcaactgctt	tgagcacaaa	tccacgtttc	1050
	atggagtgaa	ctttcctgct	gatggacctg	tgatggcgaa	gaagacaact	1100
	ggttgggacc	catcttttga	gaaaatgact	gtctgcgatg	gaatattgaa	1150
20	gggtgatgtc	accgcgttcc	tcatgctgca	aggaggtggc	aattacagat	1200
	gccaattcca	cacttcttac	aagacaaaaa	aaccggtgac	gatgccacca	1250
	aaccatgtgg	tggaacatcg	cattgcgagg	accgaccttg	acaaaggtgg	1300
	caacagtgtt	cagctgacgg	agcacgctgt	tgcacatata	acctctgttg	1350
	tccctttcaa	gcttagccat	ggcttcccgc	cggaggtgga	ggagcaggat	1400
25	gatggcacgc	tgcccatgtc	ttgtgcccag	gagagcggga	tggaccgtca	1450
	ccctgcagcc	tgtgcttctg	ctaggatcaa	tgtgtaggcg	gccgcgactc	1500
	tagatcataa	tcagccatac	cacatttgta	gaggttttac	ttgctttaaa	1550
	aaacctccca	cacctccccc	tgaacctgaa	acataaaatg	aatgcaattg	1600
	ttgttgttaa	cttgtttatt	gcagcttata	atggttacaa	ataaagcaat	1650
30	agcatcacaa	atttcacaaa	taaagcattt	ttttcactgc	attctagttg	1700
	tggtttgtcc	aaactcatca	atgtatctta	aggcgtaaat	tgtaagcgtt	1750
	aatattttgt	taaaattcgc	gttaaatttt	tgttaaatca	gctcattttt	1800
	taaccaatag	gccgaaatcg	gcaaaatccc	ttataaatca	aaagaataga	1850
	ccgagatagg	gttgagtgtt	gttccagttt	ggaacaagag	tccactatta	1900
35	aagaacgtgg	actccaacgt	caaagggcga	aaaaccgtct	atcagggcga	1950
	tggcccacta	cgtgaaccat	caccctaatc	aagtttttg	gggtcgaggt	2000
	gccgtaaagc	actaaatcgg	aaccctaaag	ggagcccccg	atttagagct	2050
	tgacggggaa	agccggcgaa	cgtggcgaga	aaggaaggga	agaaagcgaa	2100

	aggagcgggc	gctagggcgc	tggcaagtgt	agcggtcacg	ctgcgcgtaa	2150
	ccaccacacc	cgccgcgctt	aatgcgccgc	tacagggcgc	gtcaggtggc	2200
	acttttcggg	gaaatgtgcg	cggaacccct	atttgtttat	ttttctaaat	2250
	acattcaaat	atgtatccgc	tcatgagaca	ataaccctga	taaatgcttc	2300
5	aataatattg	aaaaaggaag	agtcctgagg	cggaaagaac	cagctgtgga	2350
	atgtgtgtca	gttagggtgt	ggaaagtccc	caggeteece	agcaggcaga	2400
	agtatgcaaa	gcatgcatct	caattagtca	gcaaccaggt	gtggaaagtc	2450
	cccaggctcc	ccagcaggca	gaagtatgca	aagcatgcat	ctcaattagt	2500
	cagcaaccat	agtcccgccc	ctaactccgc	ccatcccgcc	cctaactccg	2550
10	eecagttccg	cccattctcc	gccccatggc	tgactaattt	tttttattta	2600
	tgcagaggcc	gaggccgcct	cggcctctga	gctattccag	aagtagtgag	2650
	gaggcttttt	tggaggccta	ggcttttgca	aagatcgatc	aagagacagg	2700
	atgaggatcg	tttcgcatga	ttgaacaaga	tggattgcac	gcaggttctc	2750
	cggccgcttg	ggtggagagg	ctattcggct	atgactgggc	acaacagaca	2800
15	atcggctgct	ctgatgccgc	cgtgttccgg	ctgtcagcgc	aggggcgccc	2850
	ggttctttt	gtcaagaccg	acctgtccgg	tgccctgaat	gaactgcaag	2900
	acgaggcagc	gcggctatcg	tggctggcca	cgacgggcgt	tccttgcgca	2950
	gctgtgctcg	acgttgtcac	tgaagcggga	agggactggc	tgctattggg	3000
	cgaagtgccg	gggcaggatc	tcctgtcatc	tcaccttgct	cctgccgaga	3050
20	aagtatccat	catggctgat	gcaatgcggc	ggctgcatac	gcttgatccg	3100
	gctacctgcc	cattcgacca	ccaagcgaaa	catcgcatcg	agcgagcacg	3150
	tactcggatg	gaagccggtc	ttgtcgatca	ggatgatctg	gacgaagagc	3200
	atcaggggct	cgcgccagcc	gaactgttcg	ccaggctcaa	ggcgagcatg	3250
	cccgacggcg	aggatctcgt	cgtgacccat	ggcgatgcct	gcttgccgaa	3300
25	tatcatggtg	gaaaatggcc	gcttttctgg	attcatcgac	tgtggccggc	3350
	tgggtgtggc	ggaccgctat	caggacatag	cgttggctac	ccgtgatatt	3400
	gctgaagagc	ttggcggcga	atgggctgac	cgcttcctcg	tgctttacgg	3450
	tatcgccgct	cccgattcgc	agcgcatcgc	cttctatcgc	cttcttgacg	3500
	agttcttctg	agcgggactc	tggggttcga	aatgaccgac	caagcgacgc	3550
30	ccaacctgcc	atcacgagat	ttcgattcca	ccgccgcctt	ctatgaaagg	3600
	ttgggcttcg	gaatcgtttt	ccgggacgcc	ggctggatga	tcctccagcg	3650
	cggggatctc	atgctggagt	tcttcgccca	ccctaggggg	aggctaactg	3700
	aaacacggaa	ggagacaata	ccggaaggaa	cccgcgctat	gacggcaata	3750
	aaaagacaga	ataaaacgca	cggtgttggg	tcgtttgttc	ataaacgcgg	3800
35 ·	ggttcggtcc	cagggctggc	actctgtcga	taccccaccg	agaccccatt	3850
	ggggccaata	cgcccgcgtt	tcttcctttt	ccccacccca	cccccaagt	3900
	tcgggtgaag	gcccagggct	cgcagccaac	gtcggggcgg	caggccctgc	3950
	catagcctca	ggttactcat	atatacttta	gattgattta	aaacttcatt	4000

```
tttaatttaa aaggatctag gtgaagatcc tttttgataa tctcatgacc 4050
     aaaatccctt aacgtgagtt ttcgttccac tgagcgtcag accccgtaga 4100
     aaagatcaaa ggatcttctt gagatccttt ttttctgcgc gtaatctgct 4150
     gcttgcaaac aaaaaaacca ccgctaccag cggtggtttg tttgccggat 4200
 5
     caagagctac caactctttt tccgaaggta actggcttca gcagagcgca 4250
     gataccaaat actgtccttc tagtgtagcc gtagttaggc caccacttca 4300
     agaactctgt agcaccgcct acatacctcg ctctgctaat cctgttacca 4350
     gtggctgctg ccagtggcga taagtcgtgt cttaccgggt tggactcaag 4400
     acgatagtta ccggataagg cgcagcggtc gggctgaacg gggggttcgt 4450
-10
    _gcacacagec cagettggag cgaacgacet acaccgaact gagataceta 4500
     cagcgtgagc tatgagaaag cgccacgctt cccgaaggga gaaaggcgga 4550
     caggtatccg gtaagcggca gggtcggaac aggagagcgc acgagggagc 4400
     ttccaggggg aaacgcctgg tatctttata gtcctgtcgg gtttcgccac 4450
     ctctgacttg agcgtcgatt tttgtgatgc tcgtcagggg ggcggagcct 4500
- 15
     atggaaaaac gccagcaacg cggccttttt acggttcctg gccttttgct 4550
     ggccttttgc tcacatgttc tttcctgcgt tatcccctga ttctgtggat 4600
     aaccgtatta ccgccatgca t
                                                            4621
                    61
          <210>
20
          <211>
                    690
          <212>
                    DNA
          <213>
                    artificial sequence
          <220>
          <223>
                    nucleic acid sequence of humanized Mut32
25
          <400>
                    61
     atggccctgt ccaacaagtt catcggcgac gacatgaaga tgacctacca
     catggacggc tgcgtgaacg gccactactt caccgtgaag ggcgagggca 100
     acggcaagcc ctacgagggc acccagacct ccaccttcaa ggtgaccatg 150
     gecaacggcg geceetgge etteteette gacateetgt ceaecgtgtt 200
30
     caagtacggc aaccgctgct tcaccgccta ccccaccagc atgcccgact 250
     acttcaagca ggccttcccc gacggcatgt cctacgagag aaccttcacc 300
     tacgaggacg gcggcgtggc caccgccagc tgggagatca gcctgaaggg 350
     caactgette gageacaagt ceacetteea eggegtgaac tteecegeeg 400
     acggccccgt gatggccaag aagaccaccg getgggaccc ctccttcgag 450
35
    aagatgaccg tgtgcgacgg catcttgaag ggcgacgtga ccgccttcct 500
     gatgetqeag ggeggeggea actacagatg ceagtteeac acetectaca 550
     agaccaagaa gcccgtgacc atgcccccca accacgtggt ggagcaccgc 600
```

WO 00/34320

PCT/US99/29393

	atcgccagaa	ccgacctgga caagggcggc aacagcgtgc agctgaccga 650
	gcacgccgtg	gcccacatca cctccgtggt gcccttctga 690
	<210>	62
5	<211>	26
	<212>	DNA
	<213>	artificial sequence
	<220>	·
	<221>	primer_bind
10	<223>	primer used to amplify human Marathon cDNA
	<u>-</u>	library (Burke's Lymphoma) to obtain mdm2 DNA
	<400>	62
	atgtgcaata	ccaacatgtc tgtacc 26
	3 3	
15	<210>	63
	<211>	21
	<212>	DNA
	<213>	artificial sequence
	<220>	
20	<221>	primer_bind
	<223>	primer used to amplify human Marathon cDNA
		library (Burke's Lymphoma) to obtain mdm2 DNA
	<400>	63
	ctaggggaaa	taagttagca c 21
25		
	<210>	64
	<211>	31
	<212>	DNA
	<213>	artificial sequence
30	<220>	
	<221>	primer_bind
	<223>	PCR primer used to add Kozac sequence and
		restriction sites
	<400>	64
35	ggaattccag	ccatggtgtg caataccaac atgtctgtac c 31

	WO 00/34320		PCT/US99/29393
	<210>	65	
	<211>	26	
	<212>	DNA	
	<213>	artificial sequence	
5	<220>	•	ı
	<221>	primer_bind	
	<223>	PCR primer used to add Kozac sequence	and
		restriction sites	
	<400>	65	
10	tcccccaaaa	qqaaataagt tagcac	26

INTERNATIONAL SEARCH REPORT International application No. PCT/US99/29393 CLASSIFICATION OF SUBJECT MATTER IPC(6) :(IPC 7): C07K 14/435; C12N 1/00, 1/15, 1/21, 5/10, 15/12, 15/63 US CL :Please See Extra Sheet. According to International Patent Classification (IPC) or to both national classification and IPC **FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) U.S.: 435/320.1, 252.3, 252.33, 325, 410, 254.11, 348, 369, 69.1; 530/350; 536/23.5 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) Please See Extra Sheet. DOCUMENTS CONSIDERED TO BE RELEVANT Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. *** The sequence diskette submitted with the description was defective; thus the doscuments listed below were obtained solely by a word search. No SEQ ID NOs. could be searched. X. P MATZ et al. Fluorescent proteins from nonbioluminescent 1-34 Anthozoa species. October 1999. Nature Biotechnology, Volume 17, No. 10, pages 969-973, entire document. X, P DE 197 18 640 A1 (WIEDENMANN) 22 July 1999, entire 24-29, 30 document X Further documents are listed in the continuation of Box C. See patent family annex. later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention Special categories of cited documents: ٠Ţ٠ document defining the general state of the art which is not considered to be of particular relevance document particular relevance; the claimed invention cannot be cossi-1-red novel or cannot be considered to involve an inventive step when the document is taken alone earlier document published on or after the international filing date •E• ٠r. document which may throw doubts on priority claim(s) or which is cited to stablish the publication date of another citation or other special reason (as specified) document of particular relevance; the claimed invention cannot be considered to involve an inventive stap when the document is combined with one or more other such documents, such combination being obvious to * nerson skilled in the art ٠0٠ document referring to an oral disclosure, use, exhibition or other document published prior to the international filing date but later than the priority date claimed document member of the same petent family Date of the actual completion of the international search Date of mailing of the international search report 17 MAR 2000 24 FEBRUARY 2000 Name and mailing address of the ISA/US Commissioner of Patents and Trademarks Authorized officer Box PCT Washington, D.C. 20231 GABRIELE ELISABETH BUGAISKY

(703) 308-0196

Telephone No.

Facsimile No. (703) 305-3230

INTERNATIONAL SEARCH REPORT.

International application No. PCT/US99/29393

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT					
Category* Citation of document, with indication, where appropriate, of the rele	vant passages	Relevant to claim No			
equinatoxin II. 1996. Biochemical and Biophysical R	ANDERLUH et al. Cloning, sequencing and expression of equinatoxin II. 1996. Biochemical and Biophysical Research Communications. Volume 220, No. 2, pages 437-442, entire document.				
a pore-forming polypeptide from the sea anemone, Ac L, monitors its interaction with lipid membranes. 199	MACEK et al. Intrinsic tryptophan fluorescence of equinatoxin II, a pore-forming polypeptide from the sea anemone, Actinia equina L, monitors its interaction with lipid membranes. 1995. European Journal of Biochemistry, Volume 234, pages 329-335, entire document.				
		٠.			
		٠.			
·					
·					
·					
,					

INTERNATIONAL SEARCH REPORT

International application No. PCT/US99/29393

A. CLASSIFICATION OF SUBJECT MATTER: US CL :

435/320.1, 252.3, 252.33, 325, 410, 254.11, 348, 369, 69.1; 530/350; 536/23.5

B. FIELDS SEARCHED

Electronic data bases consulted (Name of data base and where practicable terms used):

dialog files 155, 5, 434, 33, 357, 35(Medline, Biosis, Scisearch, Oceanic Abs., Derwent Biotech. Abs., Dissertation Abs.); STN-CAS files Registry, CAPLUS; WEST files USPT, Derwent WPI search terms: fluoresc?, Bioluminesc?, Protein, anthozo?, Zoanth?, Corralimorph?, Discosom?, Coral?, Alga, algae, discosom?, Cnidar?, Invert?, Rhodact?, Actinodisc?, Magenta, clavularia, zoanthus, anemonia, majano, anemon?, Zoanthar?, Actiniar?, Zoanthid?, Stolonif?, Alcyonar?, malsnkfig/sqsp, amfp486, striata, sulcata, Endomyar?

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

□ OTHER: ____

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.