CIS 471/571 (Fall 2020): Introduction to Artificial Intelligence

Lecture 14: Bayes Nets - Independence Add WeChat powcoder

Thanh H. Nguyen

Source: http://ai.berkeley.edu/home.html

Announcement

- Homework 4: Bayes Nets and HMMs
 - Will be posted today (Nov 12, 2020)
 - Deadline: Nov 24A20i20ment Project Exam Help

https://powcoder.com

Add WeChat powcoder

Thanh H. Nguyen 11/11/20

Probability Recap

Conditional probability

$$P(x|y) = \frac{P(x,y)}{P(y)}$$

Product rule

Assignment Project PExamPhr)p

• Chain rule

- X, Y independent if and only if: $\forall x, y : P(x, y) = P(x)P(y)$
- X and Y are conditionally independent given Z if and only if:

$$\forall x, y, z : P(x, y|z) = P(x|z)P(y|z)$$
 $X \perp \!\!\!\perp Y|Z$

Bayes' Nets

• A Bayes' net is an efficient encoding of a probabilistic model of a domain

- Questions we can ask:
 - Inference: given a fixed BN, what is $P(X \mid e)$?
 - Representation: given a BN graph, what kinds of distributions can it encode?
 - Modeling: what BN is most appropriate for a given domain?

Bayes' Net Semantics

- A directed, acyclic graph, one node per random variable
- A conditional probability table (CPT) for each node and Help
 - A collection of distributions over X, one for each combination of parents' values $P(X|a_1 \dots a_n)$

Add WeChat powcoder

- Bayes' nets implicitly encode joint distributions
 - As a product of local conditional distributions
 - To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:

$$P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

Example: Alarm Network

В	P(B)
+b	0.001
-b	0.999

Α	J	P(J A)
+a	+j	0.9
+a	ij	0.1
-a	+j	0.05
-a	-i	0.95

$$P(+b, -e, +a, -j, +m) =$$

В	Е	Α	P(A B,E)
+b	+e	+a	0.95
+b	+e	-a	0.05
+b	-e	+a	0.94
+b	-е	-a	0.06
-b	+e	+a	0.29
-b	+e	-a	0.71
-b	-е	+a	0.001
-b	-е	-a	0.999

Example: Alarm Network

В	P(B)
+b	0.001
-b	0.999

A	J	P(J A)
+a	+j	0.9
+a	-j	0.1
-a	+j	0.05
-a	-i	0.95

В	Е	Α	P(A B,E)
+b	+e	+a	0.95
+b	+e	-a	0.05
+b	-e	+a	0.94
+b	-e	-a	0.06
-b	+e	+a	0.29
-b	+e	-a	0.71
-b	-e	+a	0.001
-b	-e	-a	0.999

Size of a Bayes' Net

 How big is a joint distribution over N Boolean variables?
 2N ■ Both give you the power to calculate $P(X_1, X_2, ..., X_n)$

Assignment Projects Exage Heape savings!

• How big is an N-node net if 1995://poweddereasier to elicit local CPTs have up to k parents?

 $O(N * 2^{k+1})$

Add WeChatlpotasteleto answer queries (coming)

Bayes' Nets

- Representation
 - Conditional Project Frame Helps
 - https://powcoder.com
 - Probabilistic Inference Add WeChat powcoder
 - Learning Bayes' Nets from Data

Conditional Independence

X and Y are independent if

$$\forall x, y \ P(x,y) = P(x)P(y) - - - \rightarrow X \parallel Y$$
Assignment Project Exam Help

•X and Y are conditionally: independent given Z

$$\forall x, y, z \ P(x, y|z) \triangleq dp (y|z) frat powycoder \rightarrow X \perp \!\!\!\perp Y|Z$$

•(Conditional) independence is a property of a distribution

Example: $Alarm \perp Fire | Smoke |$

Bayes Nets: Assumptions

• Assumptions we are required to make to define the Bayes net when given the graph:

$$P(x_i|x_1\cdots x_{i-1}) = P(x_i|parents(X_i))$$

Assignment Project Exam Help

- Beyond above "chain rule → Bayes net" conditional independence assumptions
 Beyond above "chain rule → Bayes net" conditional https://powcoder.com
 - Often additional conditional independences hat powcoder
 - They can be read off the graph
- Important for modeling: understand assumptions made when choosing a Bayes net graph

Conditional independence assumptions directly from simplifications in chain rule:
 https://powcoder.com

Add WeChat powcoder

• Additional implied conditional independence assumptions?

Independence in a BN

- Important question about a BN:
 - Are two nodes independent given certain evidence?
 - If yes, can prove using placebra (tedious in general)
 - If no, can prove with a counter example
 - Example: https://powcoder.com

- Question: are X and Z necessarily independent?
 - Answer: no. Example: low pressure causes rain, which causes traffic.
 - X can influence Z, Z can influence X (via Y)
 - Addendum: they *could* be independent: how?

D-separation: Outline

D-separation: Outline

Study independence properties for triples

Assignment Project Exam Help

Analyze complex cases in terms of member triples https://powcoder.com

 Add WeChat powcoder
 D-separation: a condition / algorithm for answering such queries

Causal Chains

- This configuration is a "causal chain"
- Guaranteed X independent of Z? No!

X: Low pressure

Y: Rain

Z: Traffic

high pressure causes no rain causes no traffic

In numbers:

$$P(x, y, z) = P(x)P(y|x)P(z|y)$$

$$P(+y + x) = 1, P(-y - x) = 1,$$

$$P(+z + y) = 1, P(-z - y) = 1$$

Causal Chains

- This configuration is a "causal chain"
- Guaranteed X independent of Z given Y?

$$P(x, y, z) = P(x)P(y|x)P(z|y)$$

 Evidence along the chain "blocks" the influence

Common Cause

■ This configuration is a "common cause" ■ Guaranteed X independent of Z?

Y: Project **Project** due Forums

X:

busy

One example set of CPTs for which X is Assignment Project Example Pendent of Z is sufficient to show independence is not guaranteed.

https://powcoder.qommple:

Add WeChat powcodepject due causes both forums busy and lab full

In numbers:

Z: Lab full P(+x + y) = 1, P(-x + y) = 1,P(+z + y) = 1, P(-z + y) = 1

P(x, y, z) = P(y)P(x|y)P(z|y)

Common Cause

■ This configuration is a "common cause" ■ Guaranteed X and Z independent given Y?

X: Forums busy

$$P(x, y, z) = P(y)P(x|y)P(z|y)$$

 Observing the cause blocks influence between effects.

Common Effect

 Last configuration: two causes of one effect (v-structures)

• Are X and Y independent?

• *Yes*: the ballgame and the rain cause traffic,

Y: Ballgamesignment Project Exam Trenet correlated

• Still need to prove they must be (try it!) https://powcoder.com

Add WeChat powcoder independent given Z?

• *No*: seeing traffic puts the rain and the ballgame in competition as explanation.

- This is backwards from the other cases
 - Observing an effect activates influence between possible causes.

The General Case

The General Case

• General question: in a given BN, are two variables independent (given evidence)?

Assignment Project Exam Help

• Solution: analyze thttps://apowcoder.com

Add WeChat powcoder

 Any complex example can be broken into repetitions of the three canonical cases

Active / Inactive Paths

- Question: Are X and Y conditionally independent given evidence variables {Z}?
 - Yes, if X and Y "d-separated" by Z
 - Consider all (undirected) passignment Project Exam Help
 - No active paths = independence! https://powcoder.com
- A path is active if each triple is Add WeChat powcoder
 - Causal chain $A \rightarrow B \rightarrow C$ where B is unobserved (either direction)
 - Common cause $A \leftarrow B \rightarrow C$ where B is unobserved
 - Common effect (aka v-structure) $A \rightarrow B \leftarrow C$ where B or one of its descendents is observed
- All it takes to block a path is a single inactive segment

D-Separation

- Query: $X_i \perp \!\!\!\perp X_j | \{X_{k_1}, ..., X_{k_n}\}$?
- Check all (undirected) graths brojecter X_j
 - If one or more active, than independent not never active, the property of the contract of th

$$X_i \perp X_j | \{X_i \in WeChatrpowcoder\}$$

• Otherwise (i.e. if all paths are inactive), then independence is guaranteed

$$X_i \perp \!\!\! \perp X_j | \{X_{k_1}, ..., X_{k_n}\}$$

Variables:

R: Raining

T: Træffignment Project Exam Helb

D: Roof drips https://powcoder.com/
S: I'm sad

• Questions:

Structure Implications

• Given a Bayes net structure, can run dseparation algorithm to build a complete list of conditional independences that are necessarily true of the form

https://powcoder.com

 $X_i \perp \!\!\! \perp X_j | \{X_{k_1}, ..$ Ad X_{k_n} that powcoder

• This list determines the set of probability distributions that can be represented

Computing All Independences

Topology Limits Distributions

- Given some graph topology G, only certain joint distributions can be encoded
- The graph structure guarantees certain (conditional) independences
- (There might be more independence)
- Adding arcs increases the set of distributions, but has several costs
- Full conditioning can encode any distribution

Bayes Nets Representation Summary

- Bayes nets compactly encode joint distributions
- Guaranteed independent Reige of Existribations can be deduced from BN graph structure https://powcoder.com
- D-separation girelpweisterconditioner independence guarantees from graph alone
- A Bayes' net's joint distribution may have further (conditional) independence that is not detectable until you inspect its specific distribution

Bayes' Nets

- Representation
- Conditional Independences Help
 - Probabilistic Inference com
 - Enumeration (exact, exponential complexity)
 - Variable elich Mation pexacte worst-case exponential complexity, often better)
 - Probabilistic inference is NP-complete
 - Sampling (approximate)
 - Learning Bayes' Nets from Data