Afterword

Both parts of this book have quite consciously tried not to give authoritative advice on choices of methods or techniques. The handling and analysis of spatial data with R continues to evolve – this is implicit in open source software development. It is also an important component attempting to offer applied researchers access to accepted and innovative alternatives for data analysis, and applied statisticians with representations of spatial data that make it easier to test and develop new analytical tools.

A further goal has been to provide opportunities for bringing together the various camps and traditions analysing spatial data, to make it somewhat easier to see that their ways of conducting their work are not so different from one another in practise. It has always been worrying that fields like disease mapping or spatial econometrics, with very similar data scenarios, make different choices with regard to methods, and treatments of the assumptions underlying those methods, in their research practise. Research practise evolves, and learning from a broader spread of disciplines must offer the chance to avoid choices that others have found less satisfactory, to follow choices from which others have benefitted and to participate in innovation in methods.

This makes participation in the R community, posting questions or suggestions, reporting apparent bugs not only a practical activity, but also an affirmation that science is fostered more by openness than the unwarranted restriction of findings. In the context of this book, and as we said in the preface, we would be grateful for messages pointing out errors; errata will be posted on the book website (http://www.asdar-book.org).

¹ An illustration from an email exchange between the authors: "I think we are trying to enable people to do what they want, even if they shoot themselves in the feet (but in a reproducible way)!"

R and Package Versions Used

- R version 2.6.2 (2008-02-08), i686-pc-linux-gnu
- Base packages: base, datasets, graphics, grDevices, methods, stats, utils
- Other packages: adapt 1.0-4, boot 1.2-32, class 7.2-41, classInt 0.1-9, coda 0.13-1, DCluster 0.2, digest 0.3.1, e1071 1.5-18, epitools 0.4-9, foreign 0.8-24, gpclib 1.4-1, graph 1.16.1, gstat 0.9-44, lattice 0.17-6, lmtest 0.9-21, maps 2.0-39, maptools 0.7-7, Matrix 0.999375-9, mgcv 1.3-29, nlme 3.1-88, pgirmess 1.3.6, pkgDepTools 1.4.1, R2WinBUGS 2.1-8, RandomFields 1.3.30, RBGL 1.14.0, RColorBrewer 1.0-2, rgdal 0.5-24, Rgraphviz 1.16.0, sandwich 2.1-0, sp 0.9-24, spam 0.13-2, spatialkernel 0.4-8, spatstat 1.12-9, spdep 0.4-20, spgrass6 0.5-3, spgwr 0.5-1, splancs 2.01-23, tripack 1.2-11, xtable 1.5-2, zoo 1.5-0
- Loaded via a namespace (and not attached): cluster 1.11.10, grid 2.6.2, MASS 7.2-41, rcompgen 0.1-17, tools 2.6.2

Data Sets Used

- Auckland 90 m Shuttle Radar Topography Mission: downloaded on 26 September 2006 from the US Geological Survey, National Map Seamless Server http://seamless.usgs.gov/, GeoTiff file, 3 arcsec 'Finished' (90 m) data; file 70042108.zip on book website.
- Auckland shoreline: downloaded on 7 November 2005 from the National Geophysical Data Center coastline extractor http://www.ngdc.noaa. gov/mgg/shorelines/shorelines.html; file auckland_mapgen.dat on book website.
- Biological cell centres: available as data(cells) from spatstat, documented in Ripley (1977).
- Broad Street cholera mortalities: original files provided by Jim Detwiler, who had collated them for David O'Sullivan for use on the cover of O'Sullivan and Unwin (2003), based on earlier work by Waldo Tobler and others; this version is available as a compressed archive of a GRASS location in file snow_location.tgz, and a collection of GeoTiff and shapefiles exported from this location in file snow_files.zip on the book website.
- California redwood trees: available as data(redwoodfull) from spatstat, documented in Strauss (1975).
- Cars: available as data(cars) from datasets.
- CRAN mirrors: locations of CRAN mirrors 1 October 2005; file on book website CRANO51001a.txt.
- Japan shoreline: available in the 'world' database provided by maps.
- Japanese black pine saplings: available as data(japanesepines) from spatstat, documented in Numata (1961).
- Lansing Woods maple trees: available as data(lansing) from spatstat, documented in Gerard (1969).

- Loggerhead turtle: downloaded on 2 November 2005 with permission from SEAMAP, (Read et al., 2003), data set 105; data described in Nichols et al. (2000); file seamap105_mod.csv on book website.
- Manitoulin Island: created using Rgshhs in maptools from the GSHHS high resolution file gshhs_h.b, version 1.5, of 3 April 2007, downloaded from ftp://ftp.soest.hawaii.edu/pwessel/gshhs.
- Maunga Whau volcano: available as data(volcano) from datasets.
- Meuse bank: available as data(meuse) from sp, supplemented by data(meuse.grid) and data(meuse.riv), and documented in Rikken and Van Rijn (1993) and Burrough and McDonnell (1998).
- New York leukemia: used and documented extensively in Waller and Gotway (2004) and with data made available in Chap. 9 of http://www.sph.emory.edu/~lwaller/WGindex.htm; the data import process is described in the help file of NY_data in spdep; geometries downloaded from the CIESIN server at ftp.ciesin.columbia.edu, file /pub/census/usa/tiger/ny/bna_st/t8_36.zip, and extensively edited; a zip archive NY_data.zip of shapefiles and a GAL format neighbours list is on the book website.
- North Carolina SIDS: shapefile sids.shp (based on geometries downloaded from http://sal.agecon.uiuc.edu/datasets/sids.zip) and GAL format neighbour lists nccc89.gal and nccR85.gal distributed with spdep, data from Cressie (1993), neighbour lists from Cressie and Chan (1989) and Cressie and Read (1985), documented in the nc.sids help page.
- North Derbyshire asthma study: the data has been studied by Diggle and Rowlingson (1994), Singleton et al. (1995), and Diggle (2003); the data are made available in anonymised form by permission from Peter Diggle as shapefiles in a zip archive north_derby_asthma.zip on the book website.
- Scottish lip cancer: Shapefile and data file downloaded from the book website of Waller and Gotway (2004), http://www.sph.emory.edu/~lwaller/WGindex.htm, Chaps. 2 and 9.
- Spearfish: downloaded as GRASS location from http://grass.itc.it/sampledata/spearfish_grass60data-0.3.tar.gz; this data set has been the standard GRASS location for tutorials and is documented in Neteler and Mitasova (2004).
- US 1999 SAT scores: state boundaries available in the 'state' database provided by maps, original attribute data downloaded on 2 November 2005 from http://www.biostat.umn.edu/~melanie/Data/ and supplemented with variable names and state names; the data set is also available from the website of Banerjee et al. (2004), http://www.biostat.umn.edu/~brad/data/state-sat.dat, and the modified version as file state.sat.data_mod.txt from the book website.
- US Census 1990 Counties: Three shapefiles for Virginia and North and South Carolina downloaded from the US Census Bureau cartographic boundary files site for 1990 county and county equivalent areas at http://www.census.gov/geo/www/cob/co1990.html; one text file by county defining

346 Afterword

metropolitan area membership also from the US Census Bureau site http://blueprod.ssd.census.gov, file /population/estimates/metro-city/90mfips.txt available as file 90mfips.txt on the book website.

• World volcano locations: downloaded from the National Geophysical Data Center http://www.ngdc.noaa.gov/hazard/volcano.shtml, available as file data1964al.xy from book website.

References

- Abrahamsen, P. and Benth, F. E. (2001). Kriging with inequality constraints. Mathematical Geology, 33:719–744. [229]
- Akima, H. (1978). A method of bivariate interpolation and smooth surface fitting for irregularly distributed data points. ACM Transactions on Mathematical Software, 4:148–159. [233]
- Andrade Neto, P. R. and Ribeiro Jr., P. J. (2005). A process and environment for embedding the R software into TerraLib. In VII Brazilian Symposium on Geoinformatics, Campos do Jordão. [109]
- Anselin, L. (1988). Spatial Econometrics: Methods and Models. Kluwer, Dordrecht. [289, 290]
- Anselin, L. (2002). Under the hood: Issues in the specification and interpretation of spatial regression models. *Agricultural Economics*, 27:247–267. [289, 290]
- Anselin, L., Bera, A. K., Florax, R., and Yoon, M. J. (1996). Simple diagnostic tests for spatial dependence. Regional Science and Urban Economics, 26:77–104. [290]
- Anselin, L., Syabri, I., and Kho, Y. (2006). GeoDa: An introduction to spatial data analysis. *Geographical Analysis*, 38:5–22. [256]
- Assunção, R. and Reis, E. A. (1999). A new proposal to adjust Moran's I for population density. Statistics in Medicine, 18:2147–2162. [266]
- Avis, D. and Horton, J. (1985). Remarks on the sphere of influence graph. In Goodman, J. E., editor, *Discrete Geometry and Convexity*. New York Academy of Sciences, New York, pp 323–327. [245]
- Baddeley, A. and Turner, R. (2005). Spatstat: An R package for analyzing spatial point patterns. *Journal of Statistical Software*, 12(6):1–42. [156]
- Baddeley, A., Möller, J., and Waagepetersen, R. (2000). Non- and semi-parametric estimation of interaction in inhomogeneous point patterns. Statistica Neerlandica, 54:329–350. [172, 186, 187]
- Baddeley, A., Gregori, P., Mateu, J., Stoica, R., and Stoyan, D., editors (2005). Case Studies in Spatial Point Process Modeling. Lecture Notes in Statistics 185, Springer, Berlin. [190]

- Baddeley, A. J. and Silverman, B. W. (1984). A cautionary example on the use of second-order methods for analysing point patterns. *Biometrics*, 40:1089–1093. [185]
- Bailey, T. C. and Gatrell, A. C. (1995). *Interactive Spatial Data Analysis*. Longman, Harlow. [13]
- Banerjee, S., Carlin, B. P., and Gelfand, A. E. (2004). *Hierarchical Modeling and Analysis for Spatial Data*. Chapman & Hall, London. [7, 13, 240, 259, 274, 296, 311, 314, 321, 325, 341, 345]
- Bavaud, F. (1998). Models for spatial weights: A systematic look. *Geographical Analysis*, 30:153–171. [251]
- Beale, C. M., Lennon, J. J., Elston, D. A., Brewer, M. J., and Yearsley, J. M. (2007). Red herrings remain in geographical ecology: A reply to Hawkins et al. (2007). *Ecography*, 30:845–847. [11]
- Becker, R. A., Chambers, J. M., and Wilks, A. R. (1988). The New S Language. Chapman & Hall, London. [2, 38]
- Berman, M. and Diggle, P. J. (1989). Estimating weighted integrals of the second-order intensity of a spatial point process. *Journal of the Royal Statistical Society B*, 51:81–92. [165, 166]
- Bernardinelli, L. and Montomoli, C. (1992). Empirical Bayes versus fully Bayesian analysis of geographical variation in disease risk. *Statistics in Medicine*, 11:983–1007. [320]
- Besag, J. and Newell, J. (1991). The detection of clusters in rare diseases. Journal of the Royal Statistical Society A, 154:143–155. [332]
- Besag, J., York, J., and Mollie, A. (1991). Bayesian image restoration, with two applications in spatial statistics. *Annals of the Institute of Statistical Mathematics*, 43:1–59. [321, 326]
- Besag, J., Green, P., Higdon, D., and Mengersen, K. (1995). Bayesian computation and stochastic systems. *Statistical Science*, 10:3–41. [330]
- Best, N., Cowles, M. K., and Vines, K. (1995). CODA: Convergence diagnosis and output analysis software for Gibbs sampling output, Version 0.30. Technical report, MRC Biostatistics Unit, Cambridge. [324]
- Best, N. G., Waller, L. A., Thomas, A., Conlon, E. M., and Arnold, R. A. (1999).
 Bayesian models for spatially correlated diseases and exposure data.
 In Bernardo, J., Berger, J. O., Dawid, A. P., and Smith, A. F. M., editors, Bayesian Statistics 6.
 Oxford University Press, Oxford, pp 131–156. [326]
- Bivand, R. S. (2000). Using the R statistical data analysis language on GRASS 5.0 GIS data base files. *Computers and Geosciences*, 26:1043–1052. [99]
- Bivand, R. S. (2002). Spatial econometrics functions in R: Classes and methods. *Journal of Geographical Systems*, 4:405–421. [151, 289]
- Bivand, R. S. (2006). Implementing spatial data analysis software tools in R. Geographical Analysis, 38:23–40. [289]
- Bivand, R. S. (2008). Implementing representations of space in economic geography. *Journal of Regional Science*, 48:1–27. [12, 259]
- Bivand, R. S. and Portnov, B. A. (2004). Exploring spatial data analysis techniques using R: The case of observations with no neighbours. In Anselin, L.,

- Florax, R. J. G. M., and Rey, S. J., editors, *Advances in Spatial Econometrics: Methodology, Tools, Applications.* Springer, Berlin, pp 121–142. [255]
- Bivand, R. S. and Szymanski, S. (1997). Spatial dependence through local yardstick competition: Theory and testing. *Economics Letters*, 55:257–265. [12]
- Bivand, R. S., Müller, W., and Reder, M. (2008). Power calculations for global and local Moran's *I*. Technical report, Department of Applied Statistics, Johannes Kepler University, Linz, Austria. [264]
- Bordignon, M., Cerniglia, F., and Revelli, F. (2003). In search of yardstick competition: A spatial analysis of Italian municipality property tax setting. *Journal of Urban Economics*, 54:199–217. [12]
- Braun, W. J. and Murdoch, D. J. (2007). A First Course in Statistical Programming with R. Cambridge University Press, Cambridge. [23, 127]
- Brewer, C. A. and Pickle, L. (2002). Comparison of methods for classifying epidemiological data on choropleth maps in series. *Annals of the Association of American Geographers*, 92:662–681. [332]
- Brewer, C. A., MacEachren, A. M., Pickle, L. W., and Herrmann, D. J. (1997).
 Mapping mortality: Evaluating color schemes for choropleth maps. Annals of the Association of American Geographers, 87:411–438. [332]
- Brewer, C. A., Hatchard, G. W., and Harrower, M. A. (2003). Colorbrewer in print: A catalog of color schemes for maps. *Cartography and Geographic Information Science*, 30:5–32. [76, 332]
- Brody, H., Rip, M. R., Vinten-Johansen, P., Paneth, N., and Rachman, S. (2000). Map-making and myth-making in Broad Street: The London cholera epidemic, 1854. *Lancet*, 356:64–68. [104, 105]
- Burrough, P. A. and McDonnell, R. A. (1998). *Principles of Geographical Information Systems*. Oxford University Press, Oxford. [4, 6, 116, 191, 345]
- Calenge, C. (2006). The package adehabitat for the R software: A tool for the analysis of space and habitat use by animals. *Ecological Modelling*, 197:516–519. [107]
- Carstairs, V. (2000). Socio-economic factors at areal level and their relationship with health. In Elliot, P., Wakefield, J., Best, N., and Briggs, D., editors, *Spatial Epidemiology: Methods and Applications*. Oxford University Press, Oxford, pp 51–67. [312]
- Chambers, J. M. (1998). *Programming with Data*. Springer, New York. [3, 27, 127]
- Chambers, J. M. and Hastie, T. J. (1992). Statistical Models in S. Chapman & Hall, London. [24, 25, 26]
- Chilès, J. and Delfiner, P. (1999). Geostatistics: Modeling Spatial Uncertainty. Wiley, New York. [191]
- Choynowski, M. (1959). Map based on probabilities. *Journal of the American Statistical Society*, 54:385–388. [316]
- Chrisman, N. (2002). Exploring Geographic Information Systems. Wiley, New York. [6, 8]

- Christensen, R. (1991). Linear Models for Multivariate, Time Series, and Spatial Data. Springer, New York. [191]
- Clark, A. B. and Lawson, A. B. (2004). An evaluation of non-parametric relative risk estimators for disease mapping. Computational Statistics and Data Analysis, 47:63–78. [166]
- Clayton, D. and Kaldor, J. (1987). Empirical Bayes estimates of agestandardized relative risks for use in disease mapping. *Biometrics*, 43:671–681. [90, 316, 318]
- Cleveland, W. S. (1993). Visualizing Data. Hobart Press, Summit, NJ. [57, 68, 192]
- Cleveland, W. S. (1994). The Elements of Graphing Data. Hobart Press, Summit, NJ. [57, 68]
- Cliff, A. D. and Ord, J. K. (1973). Spatial Autocorrelation. Pion, London. [257]
- Cliff, A. D. and Ord, J. K. (1981). Spatial Processes. Pion, London. [12, 253]
- Cowles, M. K. and Carlin, B. P. (1996). Markov Chain Monte Carlo convergence diagnostics: A comparative review. *Journal of the American Statistical Association*, 91:883–904. [328]
- Cox, C. R. (1955). Some statistical methods connected with series of events (with discussion). *Journal of the Royal Statistical Society B*, 17:129–164. [187]
- Crawley, M. J. (2005). Statistics: An Introduction using R. Wiley, Chichester. [25]
- Crawley, M. J. (2007). The R Book. Wiley, Chichester. [25]
- Cressie, N. (1985). Fitting variogram models by weighted least squares. *Mathematical Geology*, 17:563–586. [202]
- Cressie, N. (1993). Statistics for Spatial Data, Revised Edition. Wiley, New York. [12, 15, 152, 191, 198, 240, 259, 274, 345]
- Cressie, N. and Chan, N. H. (1989). Spatial modeling of regional variables. Journal of the American Statistical Association, 84:393–401. [312, 315, 320, 325, 345]
- Cressie, N. and Read, T. R. C. (1985). Do sudden infant deaths come in clusters? *Statistics and Decisions*, 3:333–349. [312, 313, 326, 345]
- Cressie, N. and Read, T. R. C. (1989). Spatial data analysis of regional counts. Biometrical Journal, 31:699–719. [334]
- Cromley, E. K. and McLafferty, S. L. (2002). GIS and Public Health. Guilford Press, New York. [338]
- Dalgaard, P. (2002). *Introductory Statistics with R.* Springer, New York. [25, 152]
- Davison, A. C. and Hinkley, D. V. (1997). Bootstrap Methods and Their Application. Cambridge University Press, Cambridge. [332]
- Dean, C. B. (1992). Testing for overdispersion in Poisson and Binomial regression models. *Journal of the American Statistical Association*, 87:451–457. [334]
- Deutsch, C. and Journel, A. (1992). GSLIB: Geostatistical Software Library and User's Guide. Oxford University Press, New York. [191]

- Devine, O. J. and Louis, T. A. (1994). A constrained empirical Bayes estimator for incidence rates in areas with small populations. *Statistics in Medicine*, 13:1119–1133. [321]
- Devine, O. J., Louis, T. A., and Halloran, M. E. (1994). Empirical Bayes estimators for spatially correlated incidence rate. *Environmetrics*, 5:381–398. [321]
- Diggle, P. J. (1985). A kernel method for smoothing point process data. Applied Statistics, 34:138–147. [165, 166]
- Diggle, P. J. (1990). A point process modelling approach to raised incidence of a rare phenomenon in the vicinity of a prespecified point. *Journal of the* Royal Statistical Society A, 153:349–362. [173, 182]
- Diggle, P. J. (2000). Overview of statistical methods for disease mapping and its relationship to cluster detection. In Elliott, P., Wakefield, J., Best, N., and Briggs, D., editors, Spatial Epidemiology: Methods and Applications. Oxford University Press, Oxford, pp 87–103. [173, 184]
- Diggle, P. J. (2003). Statistical Analysis of Spatial Point Patterns. Arnold, London, second edition. [155, 156, 158, 161, 163, 164, 166, 168, 169, 170, 171, 172, 184, 190, 345]
- Diggle, P. J. (2006). Spatio-temporal point processes: Methods and applications. In Finkenstadt, B., Held, L., and Isham, V., editors, *Statistical Methods for Spatio-Temporal Systems*. CRC, Boca Raton, pp 1–46. [190]
- Diggle, P. J. and Chetwynd, A. (1991). Second-order analysis of spatial clustering for inhomogeneous populations. *Biometrics*, 47:1155–1163. [173, 184, 185]
- Diggle, P. J. and Ribeiro Jr., P. J. (2007). Model-Based Geostatistics. Springer, New York. [235]
- Diggle, P. J. and Rowlingson, B. (1994). A conditional approach to point process modelling of elevated risk. *Journal of the Royal Statistical Society A*, 157:433–440. [158, 159, 178, 182, 183, 184, 345]
- Diggle, P. J., Elliott, P., Morris, S., and Shaddick, G. (1997). Regression modelling of disease risk in relation to point sources. *Journal of the Royal Statistical Society A*, 160:491–505. [184]
- Diggle, P. J., Tawn, J. A., and Moyeed, R. A. (1998). Model-based geostatistics. Applied Statistics, 47:299–350. [230]
- Diggle, P. J., Morris, S., and Wakefield, J. (2000). Point-source modelling using case-control data. *Biostatistics*, 1:89–105. [173]
- Diggle, P. J., Gómez-Rubio, V., Brown, P. E., Chetwynd, A., and Gooding, S. (2007). Second-order analysis of inhomogeneous spatial point processes using case-control data. *Biometrics*, 63:550–557. [173, 175, 186, 187, 188]
- Diniz-Filho, J. A., Bini, L. M., and Hawkins, B. A. (2003). Spatial auto-correlation and red herrings in geographical ecology. *Global Ecology and Biogeography*, 12:53–64. [11]
- Diniz-Filho, J. A., Hawkins, B. A., Bini, L. M., De Marco Jr., P., and Blackburn, T. M. (2007). Are spatial regression methods a panacea or a Pandora's box? A reply to Beale et al. (2007). *Ecography*, 30:848–851. [11]

- Dormann, C., McPherson, J., Araújo, M., Bivand, R., Bolliger, J., Carl, G., Davies, R., Hirzel, A., Jetz, W., Kissling, D., Kühn, I., Ohlemüller, R., Peres-Neto, P., Reineking, B., Schröder, B., Schurr, F., and Wilson, R. (2007). Methods to account for spatial autocorrelation in the analysis of species distributional data: A review. *Ecography*, 30:609–628. [274, 296, 300, 301]
- Dray, S., Legendre, P., and Peres-Neto, P. R. (2006). Spatial modeling: A comprehensive framework for principle coordinate analysis of neighbor matrices (PCNM). *Ecological Modelling*, 196:483–493. [302]
- Elliott, P. and Wakefield, J. C. (2000). Bias and confounding in spatial epidemiology. In Elliott, P., Wakefield, J., Best, N., and Briggs, D., editors, *Spatial Epidemiology: Methods and Applications*. Oxford University Press, Oxford, pp 68–84. [312]
- Elliott, P., Wakefield, J., Best, N., and Briggs, D., editors (2000). Spatial Epidemiology. Methods and Applications. Oxford University Press, Oxford. [173, 311]
- English, D. (1992). Geographical epidemiology and ecological studies. In Elliott, P., Cuzick, J., English, D., and Stern, R., editors, *Geographical and Environmental Epidemiology. Methods for Small-Area Studies*. Oxford University Press, Oxford, pp 3–13. [326]
- Erle, S., Gibson, R., and Walsh, J. (2005). *Mapping Hacks*. O'Reilly, Sebastopol, CA. [7]
- Faraway, J. J. (2004). Linear Models with R. Chapman & Hall, Boca Raton. [152]
- Faraway, J. J. (2006). Extending Linear Models with R: Generalized Linear, Mixed Effects and Nonparametric Regression Models. Chapman & Hall, Boca Raton. [152]
- Fortin, M.-J. and Dale, M. (2005). Spatial Analysis: A Guide for Ecologists. Cambridge University Press, Cambridge. [13, 240, 259, 268, 274]
- Fotheringham, A. S., Brunsdon, C., and Charlton, M. E. (2002). Geographically Weighted Regression: The Analysis of Spatially Varying Relationships. Wiley, Chichester. [306, 307]
- Fox, J. (2002). An R and S-Plus Companion to Applied Regression. Sage Publications, Thousand Oaks, CA. [152]
- Gatrell, A. C., Bailey, T. C., Diggle, P. J., and Rowlingson, B. S. (1996). Spatial point pattern analysis and its application in geographical epidemiology. Transactions of the Institute of British Geographers, 21:256–274. [172]
- Gelman, A. and Hill, J. (2007). Data Analysis Using Regression and Multilevel/Hierarchical Models. Cambridge University Press, Cambridge. [322]
- Gelman, A. and Rubin, D. B. (1992). Inference from iterative simulation using multiple sequences (with discussion). *Statistical Science*, 7:457–472. [328]
- Gelman, A., Carlin, J. B., Stern, H. S., and Rubin, D. B. (2003). *Bayesian Data Analysis*. CRC, Boca Raton. [322]

- Gerard, D. J. (1969). Competition quotient: A new measure of the competition affecting individual forest trees. Research Bulletin 20, Agricultural Experiment Station, Michigan State University. [169, 344]
- Geweke, J. (1992). Evaluating the accuracy of sampling-based approaches to calculating posterior moments. In Bernado, J. M., Berger, J. O., Dawid, A. P., and Smith, A. F. M., editors, *Bayesian Statistics 4*. Oxford University Press, Oxford, pp 169–194. [329]
- Ghosh, M., Natarajan, K., Stroud, T. W. F., and Carlin, B. P. (1998). Generalized linear models for small-area estimation. *Journal of the American Statistical Association*, 93:273–282. [326]
- Gilks, W. R., Richardson, S., and Spiegelhalter, D. J., editors (1996). *Markov Chain Monte Carlo in Practice*. Chapman & Hall, London. [322]
- Gómez-Rubio, V. and López-Quílez, A. (2005). RArcInfo: Using GIS data with R. Computers and Geosciences, 31:1000–1006. [88, 93]
- Gómez-Rubio, V., Ferrándiz-Ferragud, J., and López-Quílez, A. (2005). Detecting clusters of disease with R. *Journal of Geographical Systems*, 7:189–206. [332, 337]
- Goovaerts, P. (1997). Geostatistics for Natural Resources Evaluation. Oxford University Press, Oxford. [191, 219, 227]
- Gotway, C. A. and Young, L. J. (2002). Combining incompatible spatial data. Journal of the American Statistical Association, 97:632–648. [114]
- Griffith, D. A. (1995). Some guidelines for specifying the geographic weights matrix contained in spatial statistical models. In Arlinghaus, S. L. and Griffith, D. A., editors, *Practical Handbook of Spatial Statistics*. CRC, Boca Raton, pp 65–82. [251]
- Griffith, D. A. and Peres-Neto, P. R. (2006). Spatial modeling in ecology: The flexibility of eigenfunction spatial analyses. *Ecology*, 87:2603–2613. [302]
- Guttorp, P. (2003). Environmental statistics a personal view. *International Statistical Review*, 71:169–180. [114]
- Haining, R. P. (2003). Spatial Data Analysis: Theory and Practice. Cambridge University Press, Cambridge. [13, 151, 311, 314, 321, 332]
- Härdle, W., Müller, M., Sperlich, S., and Werwatz, A. (2004). Nonparametric and Semiparametric Models. Springer-Verlag, Berlin. [168]
- Hastie, T. and Tibshirani, R. (1990). Generalised Additive Models. Chapman & Hall, London. [297]
- Hawkins, B. A., Diniz-Filho, J. A., Bini, L. M., De Marco Jr., P., and Blackburn, T. M. (2007). Red herrings revisited: Spatial autocorrelation and parameter estimation in geographical ecology. *Ecography*, 30:375–384. [11]
- Held, L., Natário, I., Fento, S. E., Rue, H., and Becke, N. (2005). Towards joint disease mapping. *Statistical Methods in Medical Research*, 14:61–82. [341]
- Hepple, L. W. (1998). Exact testing for spatial autocorrelation among regression residuals. *Environment and Planning A*, 30:85–108. [264]

- Heuvelink, G. B. M. (1998). Error Propagation in Environmental Models with GIS. Taylor & Francis, London. [115]
- Heywood, I., Cornelius, S., and Carver, S. (2006). An Introduction to Geographical Information Systems. Pearson Education, Harlow, England. [6]
- Hills, M. and Alexander, F. (1989). Statistical methods used in assessing the risk of disease near a source of possible environmental pollution: A review. *Journal of the Royal Statistical Society A*, 152:353–363. [340]
- Hjalmars, U., Kulldorff, M., Gustafsson, G., and Nagarwalla, N. (1996). Child-hood leukaemia in Sweden: Using GIS and a spatial scan statistic for cluster detection. Statistics in Medicine, 15:707–715. [337]
- Hjaltason, G. and Samet, H. (1995). Ranking in spatial databases. In Egenhofer, M. J. and Herring, J. R., editors, *Advances in Spatial Databases 4th Symposium*, *SSD'95*, Number 951 in Lecture Notes in Computer Science. Springer-Verlag, Berlin, pp 83–95. [215]
- Hoef, J. M. V. and Cressie, N. A. C. (1993). Multivariable spatial prediction. Mathematical Geology, 25:219–240. [210]
- Isaaks, E. and Srivastava, R. (1989). An Introduction to Applied Geostatistics. Oxford University Press, Oxford. [191]
- Jackson, C., Best, N., and Richardson, S. (2006). Improving ecological inference using individual-level data. *Statistics in Medicine*, 25(12):2136–2159. [326]
- Jacqmin-Gadda, H., Comenges, C., Nejjari, C., and Dartigues, J. (1997). Testing of geographical correlation with adjustment for explanatory variables: An application to dyspnoea in the elderly. *Statistics in Medicine*, 21:359–370. [298]
- Jarner, M. F., Diggle, P., and Chetwynd, A. G. (2002). Estimation of spatial variation in risk using matched case—control data. *Biometrical Journal*, 44:936–945. [173]
- Johnston, J. and DiNardo, J. (1997). *Econometric Methods*. McGraw Hill, New York. [290]
- Journel, A. G. and Huijbregts, C. J. (1978). *Mining Geostatistics*. Academic Press, London. [191, 215]
- Kaluzny, S. P., Vega, S. C., Cardoso, T. P., and Shelly, A. A. (1998). S+SpatialStats, User Manual for Windows and UNIX. Springer-Verlag, Berlin. [13, 311]
- Kelejian, H. H. and Prucha, I. R. (1999). A generalized moments estimator for the autoregressive parameter in a spatial model. *International Economic Review*, 40:509–533. [295]
- Kelsall, J. E. and Diggle, P. J. (1995a). Kernel estimation of relative risk. Bernoulli, 1:3–16. [166, 173, 174, 176]
- Kelsall, J. E. and Diggle, P. J. (1995b). Non-parametric estimation of spatial variation in relative risk. Statistics in Medicine, 14:559–573. [166, 173, 174, 176]

- Kelsall, J. E. and Diggle, P. J. (1998). Spatial variation in risk: A non-parametric binary regression approach. Applied Statistics, 47:559–573. [166, 173, 178, 179, 180]
- Kirkwood, R., Lynch, M., Gales, N., Dann, P., and Sumner, M. (2006). Atsea movements and habitat use of adult male Australian fur seals (Arctocephalus pusillus doriferus). Canadian Journal of Zoology, 84:1781–1788. [130]
- Kopczewska, K. (2006). Ekonometria i Statystyka Przestrzenna. CeDeWu, Warszawa. [VIII]
- Krieger, N., Williams, D. R., and Moss, N. E. (1997). Measuring social class in US Public Health research: Concepts, methodologies, and guidelines. Annual Review of Public Health, 18:341–378. [326]
- Kulldorff, M. and Nagarwalla, N. (1995). Spatial disease clusters: Detection and inference. *Statistics in Medicine*, 14:799–810. [337, 338]
- Lawson, A., editor (2005). SMMR special issue on disease mapping. Statistical Methods in Medical Research, 14(1). [311]
- Lawson, A., Gangnon, R. E., and Wartenburg, D., editors (2006). Special issue: Developments in disease cluster detection. *Statistics in Medicine*, 25(5). [311, 337]
- Lawson, A. B., Browne, W. J., and Rodeiro, C. L. V. (2003). Disease Mapping with WinBUGS and MLwiN. Wiley, Chichester. [311, 314, 321, 322, 332, 341]
- Leisch, F. (2002). Sweave: Dynamic generation of statistical reports using literate data analysis. In Härdle, W. and Rönz, B., editors, *Compstat 2002 Proceedings in Computational Statistics*. Physica, Heidelberg, Verlag, pp 575–580. [VII]
- Leisch, F. and Rossini, A. J. (2003). Reproducible statistical research. *Chance*, 16(2):46–50. [VII]
- Lennon, J. J. (2000). Red-shifts and red herrings in geographical ecology. *Ecography*, 23:101–113. [11]
- Leung, Y., Ma, J.-H., and Goodchild, M. F. (2004). A general framework for error analysis in measurement-based GIS Part 1: The basic measurementerror model and related concepts. *Journal of Geographical Systems*, 6:325– 354. [115]
- Lin, G. and Zhang, T. (2007). Loglinear residual tests of Moran's I autocorrelation and their applications to Kentucky breast cancer data. Geographical Analysis, 3:293–310. [298]
- Lloyd, C. D. (2007). Local Models for Spatial Analysis. CRC, Boca Raton. [268, 306]
- Loh, J. M. and Zhou, Z. (2007). Accounting for spatial correlation in the scan statistic. *The Annals of Applied Statistics*, 1:560–584. [334, 339]
- Longley, P. A., Goodchild, M. F., Maguire, D. J., and Rhind, D. W. (2005). Geographic Information Systems and Science. Wiley, Chichester. [6]

- Louis, T. A. (1984). Estimating a population of parameter values using Bayes and empirical Bayes methods. *Journal of the American Statistical Society*, 79:393–398. [321]
- Marshall, R. J. (1991). Mapping disease and mortality rates using Empirical Bayes estimators. *Applied Statistics*, 40:283–294. [318, 319]
- Martínez-Beneito, M. A., López-Quílez, A., and Botella-Rocamora, P. (2008). An autoregressive approach to spatio-temporal disease mapping. Statistics in Medicine, 27:2874-2889. [341]
- Matula, D. W. and Sokal, R. R. (1980). Properties of Gabriel graphs relevant to geographic variation research and the clustering of points in the plane. *Geographic Analysis*, 12:205–222. [245]
- McCulloch, C. and Searle, S. (2001). Generalized, Linear, and Mixed Models. Wiley, New York. [287]
- McMillen, D. P. (2003). Spatial autocorrelation or model misspecification? *International Regional Science Review*, 26:208–217. [334]
- Mitchell, T. (2005). Web Mapping Illustrated: Using Open Source GIS Toolkits. O'Reilly, Sebastopol, CA. [7, 81, 110]
- Möller, J. and Waagepetersen, R. (2003). Statistical Inference and Simulation for Spatial Point Processes. CRC, Boca Raton. [155, 163, 164, 171, 190]
- Murrell, P. (2006). *R Graphics*. CRC, Boca Raton. [38, 57]
- Neteler, M. and Mitasova, H. (2004). Open Source GIS: A GRASS GIS Approach. Kluwer, Boston, Second Edition. [99, 345]
- Neteler, M. and Mitasova, H. (2008). Open Source GIS: A GRASS GIS Approach. Springer, New York, Third Edition. [6, 99]
- Nichols, W., Resendiz, A., J.A.Seminoff, and Resendiz, B. (2000). Transpacific migration of a loggerhead turtle monitored by satellite telemetry. *Bulletin of Marine Science*, 67:937–947. [37, 345]
- Numata, M. (1961). Forest vegetation in the vicinity of Choshi. Coastal flora and vegetation at Choshi, Chiba Prefecture IV. Bulletin of Choshi Marine Laboratory, Chiba University, 3:28–48 [in Japanese]. [156, 157, 344]
- Olson, J. M. and Brewer, C. A. (1997). An evaluation of color selections to accommodate map users with color-vision impairments. *Annals of the Association of American Geographers*, 87:103–134. [332]
- Openshaw, S., Charlton, M., Wymer, C., and Craft, A. W. (1987). A Mark I geographical analysis machine for the automated analysis of point data sets. *International Journal of Geographical Information Systems*, 1:335–358. [337]
- Ord, J. K. (1975). Estimation methods for models of spatial interaction. *Journal of the American Statistical Association*, 70:120–126. [285]
- O'Sullivan, D. and Unwin, D. J. (2003). Geographical Information Analysis. Wiley, Hoboken, NJ. [13, 104, 116, 155, 160, 173, 240, 249, 253, 259, 268, 344]
- Page, B., McKenzie, J., Sumner, M., Coyne, M., and Goldsworthy, S. (2006). Spatial separation of foraging habitats among New Zealand fur seals. *Marine Ecology Progress Series*, 323:263–279. [130]

- Pebesma, E. J. (2004). Multivariable geostatistics in S: The gstat package. Computers and Geosciences, 30:683–691. [210]
- Pebesma, E. J. and Bivand, R. S. (2005). Classes and methods for spatial data in R. R News, 5(2):9–13. [3]
- Pinheiro, J. C. and Bates, D. M. (2000). *Mixed-Effects Models in S and S-Plus*. Springer, New York. [287]
- Potthoff, R. F. and Whittinghill, M. (1966). Testing for homogeneity: II. The Poisson distribution. *Biometrika*, 53:183–190. [334]
- Prince, M. I., Chetwynd, A., Diggle, P. J., Jarner, M., Metcalf, J. V., and James, O. F. (2001). The geographical distribution of primary biliary cirrhosis in a well-defined cohort. *Hepatology*, 34:1083–1088. [173]
- R Development Core Team (2008). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. [VII, 2]
- Read, A. J., Halpin, P. N., Crowder, L. B., Hyrenbach, K. D., Best, B. D., and Freeman, S. A. (2003). *OBIS-SEAMAP: Mapping marine mammals, birds and turtles.* Duke University. World Wide Web electronic publication. http://seamap.env.duke.edu, Accessed on April 01, 2008. [37, 345]
- Revelli, F. (2003). Reaction or interaction? Spatial process identification in multi-tiered government structures. *Journal of Urban Economics*, 53:29–53. [12]
- Revelli, F. and Tovmo, P. (2007). Revealed yardstick competition: Local government efficiency patterns in Norway. *Journal of Urban Economics*, 62:121–134. [12]
- Rikken, M. G. J. and Van Rijn, R. P. G. (1993). Soil pollution with heavy metals an inquiry into spatial variation, cost of mapping and the risk evaluation of copper, cadmium, lead and zinc in the floodplains of the meuse west of stein. Technical Report, Department of Physical Geography, Utrecht University. [345]
- Ripley, B. D. (1976). The second order analysis of stationary point processes.

 Journal of Applied Probability, 13:255–266. [171]
- Ripley, B. D. (1977). Modelling spatial patterns (with discussion). *Journal of the Royal Statistical Society B*, 39:172–212. [156, 157, 171, 344]
- Ripley, B. D. (1981). Spatial Statistics. Wiley, New York. [12, 118]
- Ripley, B. D. (1988). Statistical Inference for Spatial Processes. Cambridge University Press, Cambridge. [12]
- Ripley, B. D. (2001). Spatial statistics in R. R News, 1(2):14-15. [13]
- Rowlingson, B. and Diggle, P. J. (1993). Splancs: Spatial point pattern analysis code in S-PLUS[™]. Computers and Geosciences, 19:627–655. [156]
- Sarkar, D. (2008). Lattice: Multivariate Data Visualization with R. Springer, New York. [57, 68]
- Schabenberger, O. and Gotway, C. A. (2005). Statistical Methods for Spatial Data Analysis. Chapman & Hall, London. [12, 114, 155, 160, 163, 164, 171, 173, 190, 240, 259, 260, 268, 274, 282, 287, 296, 300, 306, 311, 321]

- Shekar, S. and Xiong, H., editors (2008). *Encyclopedia of GIS*. Springer, New York. [6]
- Sibson, R. (1981). A brief description of natural neighbor interpolation. In Barnett, V., editor, *Interpreting Multivariate Data*. Wiley, Chichester, pp 21–36. [233]
- Silverman, B. W. (1986). Density Estimation for Statistics and Data Analysis. Chapman & Hall, London. [165, 166]
- Singleton, C. D., Gatrell, A. C., and Briggs, J. (1995). Prevalence of asthma and related factors in primary school children in an industrial part of England. *Journal of Epidemiology and Community Health*, 49:326–327. [158, 345]
- Slocum, T. A., McMaster, R. B., Kessler, F. C., and Howard, H. H. (2005). Thematic Cartography and Geographical Visualization. Pearson Prentice Hall, Upper Saddle River, NJ. [57, 77]
- Spiegelhalter, D., Thomas, A., Best, N., and Lunn, D. (2003). WinBUGS Version 1.4 User's Manual. MRC Biostatistics Unit, Cambridge. http://www.mrc-bsu.cam.ac.uk/bugs. [322]
- Stein, M. (1999). Interpolation of Spatial Data: Some Theory for Kriging. Springer, New York. [197]
- Stineman, R. (1980). A consistently well behaved method of interpolation. *Creative Computing*, 6:54–57. [233]
- Stone, R. A. (1988). Investigating of excess environmental risks around putative sources: Statistical problems and a proposed test. Statistics in Medicine, 7:649–660. [340]
- Strauss, D. J. (1975). A model for clustering. *Biometrika*, 62:467–475. [156, 157, 344]
- Sturtz, S., Ligges, U., and Gelman, A. (2005). R2WinBUGS: A package for running WinBUGS from R. *Journal of Statistical Software*, 12(3):1–16. [322]
- Tait, N., Durr, P. A., and Zheng, P. (2004). Linking R and ArcGIS: Developing a spatial statistical toolkit for epidemiologists. In *Proceedings of GISVET'04*, Guelph, Canada. [110]
- Tango, T. (1995). A class of tests for detecting general and focused clustering of rare diseases. *Statistics in Medicine*, 14:2323–2334. [335]
- Tango, T. and Takahashi, K. (2005). A flexibly shaped spatial scan statistic for detecting clusters. *International Journal of Health Geographics*, 4:1–15. [341]
- Tiefelsdorf, M. (1998). Some practical applications of Moran's I's exact conditional distribution. Papers in Regional Science, 77:101–129. [264]
- Tiefelsdorf, M. (2000). Modelling Spatial Processes: The Identification and Analysis of Spatial Relationships in Regression Residuals by Means of Moran's I. Springer, Berlin. [264]
- Tiefelsdorf, M. (2002). The saddlepoint approximation of Moran's I and local Moran's I_i reference distributions and their numerical evaluation. Geographical Analysis, 34:187–206. [264]

- Tiefelsdorf, M. and Griffith, D. A. (2007). Semiparametric filtering of spatial autocorrelation: The eigenvector approach. *Environment and Planning A*, 39:1193–1221. [302]
- Tiefelsdorf, M., Griffith, D. A., and Boots, B. (1999). A variance-stabilizing coding scheme for spatial link matrices. *Environment and Planning A*, 31:165–180. [251, 253]
- Toussaint, G. T. (1980). The relative neighborhood graph of a finite planar set. *Pattern Recognition*, 12:261–268. [245]
- Tukey, J. W. (1977). Exploratory Data Analysis. Addison-Wesley, Reading, MA. [151]
- Unwin, D. J. (1996). Integration through overlay analysis. In Fischer, M. M., Scholten, H. J., and Unwin, D., editors, Spatial Analytical Perspectives on GIS. Taylor & Francis, London, pp 129–138. [116, 117]
- Venables, W. N. and Dichmont, C. M. (2004). A generalised linear model for catch allocation: An example from Australia's northern prawn fishery. Fisheries Research, 70:409–426. [152]
- Venables, W. N. and Ripley, B. D. (2000). S Programming. Springer, New York. [27, 127]
- Venables, W. N. and Ripley, B. D. (2002). *Modern Applied Statistics with S.* Springer, New York, Fourth Edition. [11, 152, 156, 233, 300]
- Venables, W. N., Smith, D. M., and the R Development Core Team (2008). An Introduction to R. R Foundation for Statistical Computing, Vienna, Austria. [23, 25, 26]
- Wakefield, J. C., Kelsall, J. E., and Morris, S. E. (2000). Clustering, cluster detection and spatial variation in risk. In Elliott, P., Wakefield, J., Best, N., and Briggs, D., editors, *Spatial Epidemiology: Methods and Applications*. Oxford University Press, Oxford, pp 128–152. [332, 333, 334]
- Wall, M. M. (2004). A close look at the spatial structure implied by the CAR and SAR models. *Journal of Statistical Planning and Inference*, 121:311–324. [46, 274]
- Waller, L. A. and Gotway, C. A. (2004). Applied Spatial Statistics for Public Health Data.
 Wiley, Hoboken, NJ. [7, 13, 57, 82, 90, 91, 114, 155, 160, 163, 164, 171, 173, 174, 237, 239, 240, 241, 243, 259, 262, 265, 266, 268, 270, 271, 272, 274, 278, 283, 296, 300, 306, 311, 313, 314, 321, 332, 335, 339, 345]
- Walter, S. D. and Birnie, S. E. (1991). Mapping mortality and morbidity patterns: An international comparison. *International Journal of Epidemiology*, 20:678–689. [311]
- Wang, S. Q. and Unwin, D. J. (1992). Modelling landslide distribution on loess soils in China: An investigation. *International Journal of Geographical Information Systems*, 6:391–405. [117]
- Wheeler, D. and Tiefelsdorf, M. (2005). Multicollinearity and correlation among local regression coefficients in geographically weighted regression. *Journal of Geographical Systems*, 7:161–187. [307]
- Wikle, C. K. (2003). Hierarchical models in environmental science. *International Statistical Review*, 71:181–200. [114]

- Wise, S. (2002). GIS Basics. Taylor & Francis, London. [6]
- Wood, S. (2006). Generalized Additive Models: An Introduction with R. CRC, Boca Raton. [180, 233, 297]
- Worboys, M. F. and Duckham, M. (2004). GIS: A Computing Perspective. CRC, Boca Raton, Second Edition. [6, 115]
- Yao, T. and Journel, A. G. (1998). Automatic modeling of (cross) correlogram tables using fast Fourier transform. *Mathematical Geology*, 30:589–615. [201]
- Zeileis, A. (2004). Econometric computing with HC and HAC covariance matrix estimators. *Journal of Statistical Software*, 11(10):1–17. [290]

Subject Index

\$, see Methods, \$ [, see Methods, [[[, see Methods, [[adapt, see CRAN, adapt	crisp, 22 indeterminate, 22 Broad Street pump, 104 BRugs, see CRAN, BRugs
ade4, see CRAN, ade4 adehabitat, see CRAN, adehabitat aerial photogrammetry, 21 Akaike's Information Criterion (AIC), 281	Class, 24, 27, 127–142, 144–148 CRS, sp, 29, 84–86 DMS, sp, 86, 87 GDALDataset, rgdal, 95
akima, see CRAN, akima ArcGIS™, 6, 88, 93, 97, 98, 110, 111, 244 coverage, 88, 93 areal aggregates, 238 areal data, 237, 238 aRT package, 108, 109 as, see Methods, as ASPRS Grids & Datums, 84 azimuth, 86, 126	GDALDataset, rgdal, 95 GDALDriver, rgdal, 95 GridTopology, sp, 48, 49, 175 im, spatstat, 168 Line, sp, 38 Lines, sp, 38 Lines, spdep, 251-258, 327 nb, spdep, 240-251, 256, 257, 327 owin, spatstat, 157
BARD, see CRAN, BARD Bayesian Hierarchical Models, 321–329, 341 bbox, see Methods, bbox Bioconductor EBImage, 94 biOps, see CRAN, biOps boot, see CRAN, boot boundaries	Polygon, sp, 42 check hole slot, 122 Polygons, sp, 43 changing ID, 121 POSIXIt, base, 37, 132, 141, 142, 144 ppp, spatstat, 156, 158 Spatial, sp, 28, 29 SpatialGrid, sp, 49, 50

SpatialGridDataFrame, $\mathbf{sp}, 50,$	geographical, 29, 50, 84, 85, 87
53, 176	projected, 86
SpatialLines, $\mathbf{sp},39,59$	coordinates, see Methods,
${\tt Spatial Lines Data Frame, sp},39$	coordinates
${\tt SpatialPixels,sp,}52,54,59$	coordinates<-, see Methods,
${\tt SpatialPixelsDataFrame, sp, } 52,$	coordinates<-
53, 176	CRAN
SpatialPoints, $\mathbf{sp},30,31,156$	adapt, 169
${\tt SpatialPointsDataFrame, sp, } 33,$	ade4, 240
59, 156	adehabitat, 107
SpatialPolygons, $\mathbf{sp},43,59,175,$	akima, 233
176, 242	BARD , 114, 238
dissolve, 122	biOps , 94
${\tt SpatialPolygonsDataFrame, sp},$	boot , 265
44	BRugs , 322
class intervals, 77–79	classInt, 77
Fisher-Jenks, 78	coda , 324, 325, 328–331
natural breaks, 78, 79	DCluster , 91, 316, 317, 333–337,
quantiles, 77, 79	339, 340
classInt, see CRAN, classInt	fields, 233, 235
cluster, see disease cluster	foreign, 93
coda, see CRAN, coda	geoR , 204–206, 235
coerce, see Methods, as	geoRglm, 235
cokriging, see geostatistics,	GeoXp , 108
prediction, multivariable	gpclib , 122
Color Brewer, 76, 77, 332	GRASS , 99
colour palettes, 76, 77, 332	gstat, 145, 192, 194–198,
bpy.colors, 77	200-203, 205, 206, 208-213,
cm.colors, 76	215-223, 225-228, 230, 232
${\tt grey.colors},76$	lme4, 288
$\mathtt{heat.colors},76$	lmtest, 289
rainbow, 76	mapproj, 83
${\tt terrain.colors},76$	maps, 39, 41, 44, 46, 88
${\tt topo.colors},76$	maptools, 44, 90, 93, 107, 108,
Complete Spatial Randomness,	110, 121-124, 156-158, 168,
$160-162,\ 172$	175
Comprehensive R Archive Network	MASS , 219, 301, 302
(CRAN), 3	Matrix , 258, 285
computational geometry, 21	mgcv, 180, 182, 233, 297, 299
coordinate reference systems, 7, 22,	nlme, 288
82	PBSmapping, 107
datum, 83, 85	pgirmess, 267
ellipsoid, 83	pixmap, 98
prime meridian, 83	R2WinBUGS , 322–325, 328
coordinates, 8, 30, 192	RandomFields , 205, 227, 234

Keynole Markup Language
(KML), 92
Mapgen, 40
Portable Network Graphics
(PNG), 97, 98
PostGIS, 90
raster, 94
shapefile, 89, 90, 93, 100, 120
feature ID, 121
vector, 88
data frames, 25, 35
Data set
Auckland 90m Shuttle Radar
Topography Mission, 50–53,
94, 95, 116–119, 147, 148,
344
Auckland shoreline, 40, 42–44,
344
Biological cell centres, 158, 161,
162, 171, 172, 344
Broad Street cholera mortalities.
104–106, 344
California redwood trees, 158,
161, 162, 166–168, 171, 172,
344
cars, 24–27, 344
CRAN mirrors, 30–37, 344
Japan shoreline, 39, 344
Japanese black pine saplings,
156–158, 161, 162, 171, 172,
344
Lansing Woods maple trees,
169–171, 344
Loggerhead turtle, 37, 132, 134
loggerhead turtle, 345
Manitoulin Island, 47–49, 345
Maunga Whau volcano, 8, 9, 40,
114, 115, 345
Meuse bank, 54, 58–60, 62, 63,
65, 67, 68, 70–72, 74, 76–80
96–98, 137–140, 192–198,
200–203, 205–213, 216–220,
222, 223, 225, 226, 228, 230
232, 250, 251, 345

New York leukeima, 239,	EB, see Empirical Bayes
241-249, 251-257, 260,	EBImage , see Bioconductor,
262-268, 270-272, 275, 276,	EBImage
278, 279, 281–283, 285, 286,	edit, see Methods, edit
288, 290, 291, 293–295,	elide, see Methods, elide
297–299, 301, 302, 304–307,	ellipsoid, 30
345	WGS84, 30
North Carolina SIDS, 64, 74,	Empirical Bayes
313–319, 321, 323–331,	estimation, 316–321
333–341, 345	
North Derbyshire asthma study,	local estimation, 319–321
159, 175–180, 182–189, 345	log-normal model, 317
Scottish lip cancer, 90–93, 108,	Poisson-Gamma model, 316
345	empirical cumulative distribution
Spearfish, 100, 101, 103, 104,	function, 78
345	$ENVI^{TM}$, 97
US 1999 SAT scores, 44–46, 345	epidemiology
US Census 1990 Counties,	spatial, 173
120–125, 346	EPSG geodetic parameter data set,
•	83
world volcano locations, 7, 8,	error measurement, 114
346	error propagation, 115
$\mathtt{data.frame},25,35$	European Petroleum Survey Group
DOI - ODAN DOI -	
DCluster, see CRAN, DCluster	(EPSG), 83
dimensions, 22	
dimensions, 22 $2.5D$, 23	(EPSG), 83
dimensions, 22	(EPSG), 83 fields, see CRAN, fields
dimensions, 22 $2.5D$, 23	(EPSG), 83
dimensions, 22 2.5D, 23 3D, 22	(EPSG), 83 fields, see CRAN, fields
dimensions, 22 2.5D, 23 3D, 22 disease cluster, 332	(EPSG), 83 fields, see CRAN, fields foreign, see CRAN, foreign
dimensions, 22 2.5D, 23 3D, 22 disease cluster, 332 detection, 332	(EPSG), 83 fields, see CRAN, fields foreign, see CRAN, foreign gcDestination, 126
dimensions, 22 2.5D, 23 3D, 22 disease cluster, 332 detection, 332 testing, 333, 337 chi-square test, 333	(EPSG), 83 fields, see CRAN, fields foreign, see CRAN, foreign gcDestination, 126 GDALDataset, see Class, GDALDataset
dimensions, 22 2.5D, 23 3D, 22 disease cluster, 332 detection, 332 testing, 333, 337 chi-square test, 333 general clustering, 335	(EPSG), 83 fields, see CRAN, fields foreign, see CRAN, foreign gcDestination, 126 GDALDataset, see Class, GDALDataset GDALDriver, see Class, GDALDriver
dimensions, 22 2.5D, 23 3D, 22 disease cluster, 332 detection, 332 testing, 333, 337 chi-square test, 333 general clustering, 335 Geographical Analysis	(EPSG), 83 fields, see CRAN, fields foreign, see CRAN, foreign gcDestination, 126 GDALDataset, see Class, GDALDataset GDALDriver, see Class, GDALDriver Geary's C test, see spatial
dimensions, 22 2.5D, 23 3D, 22 disease cluster, 332 detection, 332 testing, 333, 337 chi-square test, 333 general clustering, 335 Geographical Analysis Machine, 337	(EPSG), 83 fields, see CRAN, fields foreign, see CRAN, foreign gcDestination, 126 GDALDataset, see Class, GDALDataset GDALDriver, see Class, GDALDriver Geary's C test, see spatial autocorrelation, tests,
dimensions, 22 2.5D, 23 3D, 22 disease cluster, 332 detection, 332 testing, 333, 337 chi-square test, 333 general clustering, 335 Geographical Analysis Machine, 337 homogeneity, 333	(EPSG), 83 fields, see CRAN, fields foreign, see CRAN, foreign gcDestination, 126 GDALDataset, see Class, GDALDataset GDALDriver, see Class, GDALDriver Geary's C test, see spatial autocorrelation, tests, Geary's C
dimensions, 22 2.5D, 23 3D, 22 disease cluster, 332 detection, 332 testing, 333, 337 chi-square test, 333 general clustering, 335 Geographical Analysis Machine, 337 homogeneity, 333 Kulldorff's statistic, 338, 339	(EPSG), 83 fields, see CRAN, fields foreign, see CRAN, foreign gcDestination, 126 GDALDataset, see Class, GDALDataset GDALDriver, see Class, GDALDriver Geary's C test, see spatial autocorrelation, tests, Geary's C generalised additive model, 180, 182
dimensions, 22 2.5D, 23 3D, 22 disease cluster, 332 detection, 332 testing, 333, 337 chi-square test, 333 general clustering, 335 Geographical Analysis Machine, 337 homogeneity, 333 Kulldorff's statistic, 338, 339 localised, 340, 341	(EPSG), 83 fields, see CRAN, fields foreign, see CRAN, foreign gcDestination, 126 GDALDataset, see Class, GDALDataset GDALDriver, see Class, GDALDriver Geary's C test, see spatial autocorrelation, tests, Geary's C generalised additive model, 180, 182 297, 299
dimensions, 22 $2.5D, 23$ $3D, 22$ disease cluster, 332 $detection, 332$ $testing, 333, 337$ $chi-square test, 333$ $general clustering, 335$ $Geographical Analysis$ $Machine, 337$ $homogeneity, 333$ $Kulldorff's statistic, 338, 339$ $localised, 340, 341$ $Moran's I test, 335$	(EPSG), 83 fields, see CRAN, fields foreign, see CRAN, foreign gcDestination, 126 GDALDataset, see Class, GDALDataset GDALDriver, see Class, GDALDriver Geary's C test, see spatial autocorrelation, tests, Geary's C generalised additive model, 180, 182 297, 299 generalised linear mixed-effect
dimensions, 22 $2.5D, 23$ $3D, 22$ disease cluster, 332 $detection, 332$ $testing, 333, 337$ $chi-square test, 333$ $general clustering, 335$ $Geographical Analysis$ $Machine, 337$ $homogeneity, 333$ $Kulldorff's statistic, 338, 339$ $localised, 340, 341$ $Moran's I test, 335$ $Potthoff-Whittinghill test, 334$	fields, see CRAN, fields foreign, see CRAN, foreign gcDestination, 126 GDALDataset, see Class, GDALDataset GDALDriver, see Class, GDALDriver Geary's C test, see spatial autocorrelation, tests, Geary's C generalised additive model, 180, 182 297, 299 generalised linear mixed-effect model, 301, 302
dimensions, 22 $2.5D, 23$ $3D, 22$ disease cluster, 332 $detection, 332$ $testing, 333, 337$ $chi-square test, 333$ $general clustering, 335$ $Geographical Analysis$ $Machine, 337$ $homogeneity, 333$ $Kulldorff's statistic, 338, 339$ $localised, 340, 341$ $Moran's I test, 335$ $Potthoff-Whittinghill test, 334$ $scan statistic, 338, 339$	fields, see CRAN, fields foreign, see CRAN, foreign gcDestination, 126 GDALDataset, see Class, GDALDataset GDALDriver, see Class, GDALDriver Geary's C test, see spatial autocorrelation, tests, Geary's C generalised additive model, 180, 182 297, 299 generalised linear mixed-effect model, 301, 302 generalised linear model, 187, 297,
dimensions, 22 $2.5D, 23$ $3D, 22$ disease cluster, 332 $detection, 332$ $testing, 333, 337$ $chi-square test, 333$ $general clustering, 335$ $Geographical Analysis$ $Machine, 337$ $homogeneity, 333$ $Kulldorff's statistic, 338, 339$ $localised, 340, 341$ $Moran's I test, 335$ $Potthoff-Whittinghill test, 334$ $scan statistic, 338, 339$ $spatial autocorrelation, 335$	$ \begin{array}{c} \text{(EPSG), 83} \\ \\ \text{fields, see CRAN, fields} \\ \text{foreign, see CRAN, foreign} \\ \\ \text{gcDestination, 126} \\ \text{GDALDataset, see Class, GDALDataset} \\ \text{GDALDriver, see Class, GDALDriver} \\ \text{Geary's C test, see spatial autocorrelation, tests, Geary's C} \\ \text{generalised additive model, 180, 182} \\ 297, 299 \\ \text{generalised linear mixed-effect model, 301, 302} \\ \text{generalised linear model, 187, 297, 303, 305, 307} \\ \end{array} $
dimensions, 22 2.5D, 23 3D, 22 disease cluster, 332 detection, 332 testing, 333, 337 chi-square test, 333 general clustering, 335 Geographical Analysis Machine, 337 homogeneity, 333 Kulldorff's statistic, 338, 339 localised, 340, 341 Moran's I test, 335 Potthoff-Whittinghill test, 334 scan statistic, 338, 339 spatial autocorrelation, 335 Stone's test, 340, 341	$ \begin{array}{c} \text{(EPSG), 83} \\ \\ \text{fields, see CRAN, fields} \\ \text{foreign, see CRAN, foreign} \\ \\ \text{gcDestination, 126} \\ \text{gDALDataset, see Class, GDALDataset} \\ \text{GDALDriver, see Class, GDALDriver} \\ \text{Geary's C test, see spatial} \\ & \text{autocorrelation, tests,} \\ & \text{Geary's C} \\ \text{generalised additive model, 180, 182} \\ & 297, 299 \\ \text{generalised linear mixed-effect} \\ & \text{model, 301, 302} \\ \text{generalised linear model, 187, 297,} \\ & 303, 305, 307 \\ \text{generic functions, see Methods} \\ \end{array} $
dimensions, 22 2.5D, 23 3D, 22 disease cluster, 332 detection, 332 testing, 333, 337 chi-square test, 333 general clustering, 335 Geographical Analysis Machine, 337 homogeneity, 333 Kulldorff's statistic, 338, 339 localised, 340, 341 Moran's I test, 335 Potthoff-Whittinghill test, 334 scan statistic, 338, 339 spatial autocorrelation, 335 Stone's test, 340, 341 Tango's test, 335	fields, see CRAN, fields foreign, see CRAN, foreign gcDestination, 126 GDALDataset, see Class, GDALDataset GDALDriver, see Class, GDALDriver Geary's C test, see spatial autocorrelation, tests, Geary's C generalised additive model, 180, 182 297, 299 generalised linear mixed-effect model, 301, 302 generalised linear model, 187, 297, 303, 305, 307 generic functions, see Methods GeoDa, 256
dimensions, 22 2.5D, 23 3D, 22 disease cluster, 332 detection, 332 testing, 333, 337 chi-square test, 333 general clustering, 335 Geographical Analysis Machine, 337 homogeneity, 333 Kulldorff's statistic, 338, 339 localised, 340, 341 Moran's I test, 335 Potthoff-Whittinghill test, 334 scan statistic, 338, 339 spatial autocorrelation, 335 Stone's test, 340, 341	$ \begin{array}{c} \text{(EPSG), 83} \\ \\ \text{fields, see CRAN, fields} \\ \text{foreign, see CRAN, foreign} \\ \\ \text{gcDestination, 126} \\ \text{gDALDataset, see Class, GDALDataset} \\ \text{GDALDriver, see Class, GDALDriver} \\ \text{Geary's C test, see spatial} \\ & \text{autocorrelation, tests,} \\ & \text{Geary's C} \\ \text{generalised additive model, 180, 182} \\ & 297, 299 \\ \text{generalised linear mixed-effect} \\ & \text{model, 301, 302} \\ \text{generalised linear model, 187, 297,} \\ & 303, 305, 307 \\ \text{generic functions, see Methods} \\ \end{array} $

Geographical Information Systems	cloud, 196, 197
(GIS), 4, 6, 8, 81, 88, 94,	cross, 206-208
99, 108	cutoff, 200, 201
geographically weighted regression,	direction, 200, 205
305-307	exploratory, 196–198
geoR, see CRAN, geoR	lag width, 200, 201
geoRglm, see CRAN, geoRglm	model, 201–206, 208, 209, 230
Geospatial Data Abstraction Library	residual, 208, 209
(GDAL), 81, 94, 111	GeoXp, see CRAN, GeoXp
OGR, 89, 92	Getis-Ord G test, see spatial
geostatistics, 191, 192, 195, 227	autocorrelation, tests,
anisotropy, 198, 200, 205, 206	Getis-Ord G
conditional simulation, 192, 227	GIS
sequential, 145, 227, 228, 230	data models, 8, 22, 88, 94
covariance, 192	raster, 48
isotropy, 196	Global Positioning System (GPS),
model diagnostics, 221, 222	22, 82
cross validation, 222, 223, 225,	Global Self-consistent Hierarchical
226	High-resolution Shoreline
model-based, 192, 231	Database (GSHHS), 47, 88
monitoring networks, 191,	Google Earth TM , 6, 21, 92, 97, 98
231–233	image overlay, 97, 98
multivariable, 192, 206–208	KML, 92
prediction, 192, 209–215	gpclib, see CRAN, gpclib
block kriging, 192, 193, 195,	GRASS
215, 216	location, 100
domain stratification, 216, 217	Soho, 104
indicator kriging, 192, 219,	Spearfish, 101
230	mapset, 100
multivariable, 192, 207, 211,	version 5, 99
212	version 6, 99
ordinary, 209	Cygwin, 100
ordinary kriging, 210	OSX, 100
simple, 209, 210	Windows, 100
simple kriging, 192, 210	window, 99
singular matrix errors, 220,	GRASS, see CRAN, GRASS
221	GRASS GIS, 99, 104, 244
universal, 209	Great Circle distance, 86, 126
universal kriging, 192, 210	grid, 9, 48, 137–142, 144–148, 250
semivariance, 192, 195, 196, 198	hexagonal, 137–140
stationarity, 195, 196, 198	incomplete
variable transformation, 219,	neighbours, 250
220	neighbours, 250
variogram, 192, 195–198,	queen, 250
200-205	rook, 250

processing massive grids,	lme4, see CRAN, lme4
146–148	lmtest, see CRAN, lmtest
simulation results, 145, 146	longlat, $29, 31, 84$
spatio-temporal, 140–142, 144	
GridTopology, see Class,	mailing list, see R-Sig-Geo mailing
GridTopology	list
ground control points, 22	Mantel general cross product test,
gstat, see CRAN, gstat	see spatial autocorrelation,
	tests, Mantel
habitat, 107	map class intervals, 77
TD	map colours, 67, 76, 77, 332
ID matching, 33, 44, 45, 313	map grids, 64
im, see Class, im	map north arrow, 63
image, see Methods, image	map plotting, 57
interpolation, 193	map scale bar, 63
geostatistical, see geostatistics,	map symbols, 67
prediction	Mapgen, see Data formats, Mapgen
inverse distance weighted, 194,	mapproj, see CRAN, mapproj
217	maps, see CRAN, maps
linear regression, 194	Mapserver, 110
trend surface, 195	maptools, see CRAN, maptools
John Snow, 104	MASS, see CRAN, MASS, see
join count test, see spatial	CRAN, MASS
autocorrelation, tests, join	mathematical geography, 21
count	$Matlab^{TM}$, 256
Count	Matrix, see CRAN, Matrix
kriging, see geostatistics, prediction	memory management, 10, 146–148
71	Methods, 23, 127–142, 144–148
lag	\$, 34, 133
spatial, 257	[, 32, 46, 133, 147, 148
lattice graphics, 68	[[, 34, 133
levelplot, 69	$\mathtt{as}, 28, 53, 55, 58, 72, 86, 88, 97,\\$
Line, see Class, Line	107, 122, 139, 157, 158, 176,
line generalisation, 41	178
linear model, 263, 270, 275, 276, 279,	bbox, 31
290, 297, 303, 305 – 307	coordinates, 32
heteroskedasticity, 289, 290	coordinates<-, $36, 59$
multicollinearity, 276, 291	crepuscule, 126
residuals, 263, 270, 275, 276,	$\mathtt{edit},244$
279, 281, 290	elide, 126 , 158
weighted, 279, 281	image, 57, 59, 60, 67, 79, 98
Lines, see Class, Lines	lines, 57
lines, 8, 38	names, 35
lines, see Methods, lines	overlay, 33, 97, 105, 116, 117,
listw, see Class, listw	119, 176, 217

plot, 33, 37, 39, 60, 67, 79	OpenG1S(R)
points, 57	simple features, 42, 89, 122
predict, 194	overlay, see Methods, overlay
$\mathtt{print},33$	owin, see Class, owin
proj4string, 31, 121	
proj4string<-,32	PBSmapping , see CRAN,
solarnoon, 126	PBSmapping
solarpos, 126	pgirmess, see CRAN, pgirmess
$\mathtt{spCbind},90,124$	pixmap, see CRAN, pixmap
spChFIDs, 121	plot, see Methods, plot
spplot, 57, 69-72, 76, 80, 192	plotting maps, 57
spRbind, 123	axes, 60-62, 64
spsample, 33, 118, 119, 137-140,	point pattern
216	binary regression estimator, 179,
${\tt spTransform}, 64, 86, 91, 97, 338$	180
subset, 144, 241, 255	bounding region, 155
summary, 33	case-control, $173-176$, 179 , 180 ,
sunriset, 126	186–188
mgcv, see CRAN, mgcv	clustered, 160, 184
missing values, 255	definition, 155
misspecification, 238, 259–261, 263,	intensity, 163, 165
$271-273,\ 276$	kernel bandwidth, 166, 167, 174,
modifiable areal unit problem, 237	175, 178, 179
Mondrian, 108	kernel density, 165, 166, 174, 175
Moran's I test, see spatial	kernel density ratio, 174, 175,
autocorrelation, tests,	178, 179
Moran's I	marked, 158, 173
	regular, 160
names, see Methods, names	point pattern analysis, 155
nb, see Class, nb	point process
neighbours	F function, 162
spatial, 238, 240–248, 250, 256,	G function, 161
259	K function, 171, 172, 185
grid, 250	inhomogeneous, 172, 173,
higher order, 249	186 – 189
points, 245–249	definition, 155
polygons, $242-244$	homogeneous, 164
sets, 238	inhomogeneous, 165
nlme, see CRAN, nlme	isotropic, 164
	K function, 171
Oil & Gas Producers (OGP)	likelihood, 168
Surveying & Positioning	second-order properties, 171
Committee, 83	stationary, 164
Open Source Geospatial Foundation	point source pollution, 182–184
(OSGeo), 81, 99	point-in-polygon problem, 116

points, 8, 30, 192	proj4string<-, see Methods,
2D, 30	proj4string<-
3D, 31, 140	Python, 110, 111
multi-point data, 134–136	ArcRstats, 110
neighbours, 244–249	MGET, 111
k-nearest, 244, 246	,
distance bands, 244, 247–250	quadtree, 215
Gabriel, 245	Quantum GIS, 99
graph measures, 244, 245	,
higher order, 249	R-Geo website, 14
relative, 245	R-Sig-Geo mailing list, 14
sphere of influence, 245	R2WinBUGS, see CRAN,
triangulation, 245	R2WinBUGS
points, see Methods, points	raised incidence, 183, 184
Poisson-Gamma model, 315, 322–325	random fields, 192, 227
Polygon, see Class, Polygon	RandomFields, see CRAN,
Polygons, see Class, Polygons	RandomFields
polygons, 8, 42, 237, 238	RArcInfo, see CRAN, RArcInfo
centroid, 244	RColorBrewer, see CRAN,
clean topology, 244	RColorBrewer
snap, 244	remote sensing, 21, 48
contiguous neighbours, 242, 243,	multi-spectral images, 21
249	rgdal, see CRAN, rgdal
higher order, 249	rimage, see CRAN, rimage
queen, 242, 243	RODBC, see CRAN, RODBC
rook, 243, 244	row names, 26
dissolve, 122, 124	Rpad, see CRAN, Rpad
hole, 42, 46, 47, 122, 237	RPyGeo, see CRAN, RPyGeo
plot order, 43, 47	RSAGA, see CRAN, RSAGA
ring direction, 42, 46, 47	$S-Plus^{TM}$
topology, 46	
POSIXIt, see Class, POSIXIt	SpatialStats module, 256
ppp, see Class, ppp	sampling
predict, see Methods, predict	spatial, see spatial sampling
print, see Methods, print	sandwich, see CRAN, sandwich
probability map, 316	shapefile, see Data formats, shapefile
PROJ.4 Cartographic Projections	shapefiles, see CRAN, shapefiles
library, 81, 84, 111	Shuttle Radar Topography Mission,
tags, 84	21, 50
ellps, 84, 86	simultaneous autoregression, 257
init, 84	simulation, 257
proj, 84, 86	solar noon, 126
towgs84, 84	solar position, 126
proj4string, see Methods,	solarnoon, see Methods, solarnoon
proj4string	solarpos, see Methods, solarpos

sp.layout, argument to spplot, 72	conditional autoregressive
spam, see CRAN, spam	(CAR), 274, 282, 283,
SparseM, see CRAN, SparseM	325 - 329
Spatial, see Class, Spatial	generalised additive model, 297,
spatial, see CRAN, spatial	299
spatial autocorrelation, 238, 257,	generalised estimating
273, 274	equations, 300
correlogram, 267	generalised linear mixed-effect
local tests, 268–272	model, 301, 302
Moran's $I, 269-272$	generalised linear model, 297,
misspecification, 238, 259–261,	303, 305
263, 271–273, 276	geographically weighted
Moran scatterplot, 268, 269	regression, $305-307$
over-dispersion, 271	Jacobian, 284–286
tests, 238, 259–269, 271, 272,	eigenvalues, 284
276, 281	sparse matrix representation,
Empirical Bayes Moran's I ,	285
266	likelihood ratio test, 279
exact, $264, 270$	log likelihood, 285, 286
Geary's C , 261	mixed-effects models, 287–289
Getis-Ord G , 261	Moran eigenvector, 302, 303, 305
join count, 261	simultaneous autoregressive
Lagrange Multiplier, 290–292	(SAR), 274, 277-279, 281,
Mantel, 261	285, 286
Monte Carlo, 261, 264, 266	simultaneous moving average
Moran's I , 259–264, 276, 281,	(SMA), 286
298, 335	small area estimation, 287, 289
Normality assumption, 261,	spatial Durbin, 291, 292
263, 270	spatial econometrics, 289, 290
parametric bootstrap, 261,	spatial error, 291, 293
265, 271, 272	GM estimator, 295, 296
permutation bootstrap, 261,	spatial filtering, 302, 303
264, 266	spatial lag, 291, 292
Randomisation assumption,	2SLS, 294, 295
262, 270	spatial neighbours, see neighbours,
rates, 265, 266, 270–272	spatial
Saddlepoint approximation,	spatial queries, 116, 117
264, 270	spatial sampling, 118, 216
Spatial Econometrics Library, 256	Spatial Task View, see CRAN,
spatial epidemiology, 311	Spatial Task View
spatial lag, see lag, spatial	spatial weights, see weights, spatial
spatial models, 273–277, 279, 297,	SpatialGrid, see Class, SpatialGrid
301–303, 305–307	SpatialGridDataFrame, see Class,
Common Factor, 293	SpatialGridDataFrame

spatialkernel, see CRAN, spatialkernel SpatialLines, see Class, SpatialLines SpatialLinesDataFrame, see Class, SpatialLinesDataFrame SpatialPixels, see Class, SpatialPixels SpatialPixelsDataFrame. see Class. SpatialPixelsDataFrame SpatialPoints, see Class, SpatialPoints SpatialPointsDataFrame, see Class, SpatialPointsDataFrame SpatialPolygons, see Class, SpatialPolygons SpatialPolygonsDataFrame, see Class, SpatialPolygonsDataFrame spatstat, see CRAN, spatstat spBayes, see CRAN, spBayes spCbind, see Methods, spCbind spChFIDs, see Methods, spChFIDs spdep, see CRAN, spdep spgrass6, see CRAN, spgrass6 spgwr, see CRAN, spgwr splancs, see CRAN, splancs spplot, see Methods, spplot spRbind, see Methods, spRbind spsample, see Methods, spsample spsurvey, see CRAN, spsurvey spTransform, see Methods, spTransform standardisation indirect, 313 internal, 313 Standardised Mortality Ratio, 314, 315 Stata[™], 108, 256 tmap, 108 StatConnector (D)COM mechanism, 110 stinepack, see CRAN, stinepack subset, see Methods, subset summary, see Methods, summary sunrise, 126

sunriset, see Methods, sunriset sunset, 126 support, 113, 115, 237 change of, 114, 215, 216 TerraLib, 108, 109 R interface, 108, 109 thematic maps, 67 trellis graphics, see lattice graphics triangulation, 83 trip, see CRAN, trip tripack, see CRAN, tripack uncertainty, 22, 115, 227 visualisation, 10 visualising spatial data, 57 weights spatial, 238, 251–256, 259, 327 asymmetric, 284, 285 binary, 251–253 generalised, 253, 254 no-neighbour areal entities, 254, 255, 262 row standardised, 252

asymmetric, 284, 285
binary, 251–253
generalised, 253, 254
no-neighbour areal entities,
254, 255, 262
row standardised, 252
similar to symmetric, 285
sparse matrix representation,
285
styles, 252, 253
symmetric, 282, 285
unknown, 257
variance-stabilising, 253
zero policy, 254
WinBUGS, 322–329, 341
GeoBUGS polygon import, 108

zero policy, see weights, spatial, zero policy

GeoBUGS weights import, 256

Functions Index

\$ method, **sp**, 34, 133 [method, **sp**, 32, 46, 133, 147, 148 [[method, **sp**, 34, 133

achisq.test, DCluster, 333 adapt, adapt, 169 anova.sarlm, spdep, 292 as.geodata, geoR, 204 as.spam.listw, spdep, 258 as.vgm.variomodel, gstat, 204 as_dgRMatrix_listw, spdep, 258 axis, graphics, 60

bbox method, sp, 31 boot, boot, 265 boxcox, MASS, 219 bptest, lmtest, 289 bptest.sarlm, spdep, 291 bpy.colors, sp, 77 brewer.pal, RColorBrewer, 77 bugs, R2WinBUGS, 323-325, 328

calculate.mle, DCluster, 339 card, spdep, 240, 250, 251 cell2nb, spdep, 250 char2dms, sp, 86, 87 checkPolygonsHoles, maptools, 122 classIntervals, classInt, 77 cm.colors, grDevices, 76 coeftest, lmtest, 290

colorRampPalette, grDevices, 76
ContourLines2SLDF, maptools, 40, 72, 178
coordinates method, sp, 32
cor, stats, 207
correlog, pgirmess, 267
corSpatial, nlme, 288
cover.design, fields, 233
create2GDAL, rgdal, 96
crepuscule method, maptools, 126
CRS, sp, 29, 31, 32, 64, 84-86, 90, 91, 96, 97

dd2dms, sp, 86, 87 density, spatstat, 168 dnearneigh, spdep, 247, 250, 267, 336

EBest, spdep, 318
EBImoran.mc, spdep, 266
EBlocal, spdep, 319
ecdf, stats, 78
edit.nb, spdep, 244
eigen, base, 284
eigenw, spdep, 284, 285
elide method, maptools, 126, 158
empbaysmooth, DCluster, 91, 316
envelope, spatstat, 161, 162, 172
errorsarlm, spdep, 293
eyefit, geoR, 204

Fest, spatstat, 162 findColours, classInt, 78 fit.lmc, gstat, 206-208 fit.variogram, gstat, 203, 205, 208, 209, 222, 230 fit.variogram.reml, gstat, 205 fitvario, RandomFields, 205

gabrielneigh, spdep, 245 gam, mgcv, 180, 182, 297, 299 gcDestination, maptools, 126 GDAL.close, rgdal, 95 GDAL.open, rgdal, 95 GDALinfo, rgdal, 95, 96 GE_SpatialGrid, maptools, 97 geary.test, spdep, 261 Gest, spatstat, 161 getDriverLongName, rgdal, 95 getinfo.shape, maptools, 93 geweke.diag, coda, 330 ggwr, spgwr, 307 ggwr.sel, spgwr, 307 glm, stats, 187, 265, 297, 303, 305 glmmPQL, MASS, 301, 302 globalG.test, spdep, 261 GMerrorsar, spdep, 295 gmeta2grd, spgrass6, 104 gmeta6, spgrass6, 100 graph2nb, spdep, 245 grey.colors, grDevices, 76 grid.locator, grid, 76 gridat, sp, 64 gridlines, sp. 64 GridTopology, sp, 48, 49gstat, gstat, 206, 208, 209, 213, 215, 218

gstat.cv, gstat, 225 gwr, spgwr, 306 gwr.sel, spgwr, 306 gzAzimuth, maptools, 86, 126

heat.colors, grDevices, 76 hscat, gstat, 196

I, base, 195 identify, graphics, 74

idw, gstat, 97, 194, 217 image method, sp, 57, 59, 60, 67, 79, 98 include.self, spdep, 336 influence.measures, stats, 269 invIrW, spdep, 257 is.symmetric.nb, spdep, 246

joincount.multi, spdep, 261 joincount.test, spdep, 261

Kest, spatstat, 172 khat, splancs, 185, 186 khvmat, splancs, 185 kinhat, spatialkernel, 188, 189 kmlOverlay, maptools, 98 knearneigh, spdep, 246 knn2nb, spdep, 246 krige, gstat, 145, 194, 195, 210, 215-217, 219-222, 226, 228, 230, 232 krige.cv, gstat, 223, 226

lag.listw, spdep, 257, 270, 271 lagsarlm, spdep, 291, 292 lambdahat, spatialkernel, 175, 187 - 189layout, graphics, 66 layout.north.arrow, sp. 63 layout.scale.bar, sp, 63 legend, graphics, 67 levelplot, lattice, 69 likfit, geoR, 205, 206 Line, sp, 38Lines, sp, 38lines method, sp, 57 listw2mat, spdep, 256, 257 listw2sn, spdep, 256 listw2U, spdep, 258 listw2WB, spdep, 256, 327 lm, stats, 129, 192, 194, 195, 263, 275, 276, 279, 290, 303 lm.LMtests, spdep, 290, 291

lm.morantest, spdep, 259, 263, 276,

281, 297, 298

lm.morantest.exact, spdep, 264 lm.morantest.sad, spdep, 264 lme, nlme, 288, 289 localmoran, spdep, 270 localmoran.exact, spdep, 270 localmoran.sad, spdep, 270 locator, graphics, 67, 74, 75 lognormalEB, DCluster, 317

make_EPSG, rgdal, 83

n.comp.nb, spdep, 246

map, maps, 39, 44, 64
map2SpatialLines, maptools, 39, 64
map2SpatialPolygons, maptools, 44,
88
MapGen2SL, maptools, 40
mat2listw, spdep, 257
ME, spdep, 303, 305
moran, spdep, 265
moran.mc, spdep, 264
moran.plot, spdep, 268, 269
moran.test, spdep, 259, 262, 263, 267
moranI.test, DCluster, 335
mse2d, splancs, 166

nb2lines, spdep, 257 nb2listw, spdep, 251-254, 257, 259, 262-265, 270, 276, 278, 290, 335, 336 nb2WB, spdep, 327 nbdists, spdep, 247, 248, 254, 336 nblag, spdep, 249, 267 nclass.Sturges, grDevices, 77 neig2nb, ade4, 240

ogrDrivers, rgdal, 89 opgam, DCluster, 337, 339 optim, stats, 169 optimize, stats, 284 overlay method, sp, 75, 97, 105, 116-119, 176, 217 owin, spatstat, 107

pal2SpatialPolygons,maptools, 88 panel.identify, lattice, 76 par, graphics, 61, 65

plot method, sp, 57, 59, 60, 67, 79
plot method, classInt, 78
points method, sp, 57
poly, stats, 195
poly2nb, spdep, 242, 243
Polygon, sp, 42
Polygons, sp, 43
pottwhitt.test, DCluster, 334
ppm, spatstat, 170
ppp, spatstat, 107
predict method, gstat, 211-213, 215, 218, 230
probmap, spdep, 91
proj4string method, sp, 31, 121
pruneMap, maptools, 64

rainbow, grDevices, 76 read.coda, coda, 329 read.dat2listw, spdep, 256 read.gal, spdep, 241, 256, 313 read.gwt2nb, spdep, 256 read.shape, maptools, 93 readAsciiGrid, maptools, 98 readGDAL, rgdal, 94, 95 readOGR, rgdal, 90, 159, 241, 243 readRAST6, spgrass6, 101, 105 readShapeLines, maptools, 93 readShapePoints, maptools, 93 readShapePoly, maptools, 75, 93, 313 readVECT6, spgrass6, 103, 105, 106 relativeneigh, spdep, 245 Rgshhs, maptools, 88

Sobj_SpatialGrid, maptools, 168, 175 soi.graph, spdep, 245 solarnoon method, maptools, 126 solarpos method, maptools, 126 sp.correlogram, spdep, 267 sp.mantel.mc, spdep, 261 sp2Mondrian, maptools, 108 sp2tmap, maptools, 108 sp2WB, maptools, 108 Spatial, sp, 29 SpatialFiltering, spdep, 303 SpatialGrid, sp, 49, 50

SpatialGridDataFrame, sp, 50, 176 SpatialLines, sp, 39, 59 SpatialLines2PolySet, maptools, 107 SpatialLinesDataFrame, sp. 39 SpatialPixels, sp, 52, 54, 59SpatialPixelsDataFrame, sp, 52 SpatialPoints, sp, 31, 86, 337SpatialPointsDataFrame, sp, 33 SpatialPolygons, sp. 43, 59 SpatialPolygons2PolySet,maptools, 107 SpatialPolygonsDataFrame, sp. 44, 45 spautolm, spdep, 278, 282-286 spCbind method, maptools, 90, 125 spChFIDs method, maptools, 121 spDistsN1, sp, 86 spkernel2d, splancs, 168, 175, 177, 179 spmap.to.lev, sp, 69spplot method, sp, 57, 69-72, 76, 80, 192 spplot.locator, sp, 76 spRbind method, maptools, 123 spsample method, sp, 118, 119, 137–140, 216 spTransform method, rgdal, 64, 86, 91, 97 stone.stat, DCluster, 340 stone.test, DCluster, 340 stsls, spdep, 294, 295

subset.listw, spdep, 255

surf.ls, spatial, 195

system, base, 100, 111

subset.nb, **spdep**, 241, 255

sunriset method, maptools, 126

Szero, spdep, 265 tango.test, DCluster, 336 terrain.colors, grDevices, 76 topo.colors, grDevices, 76 Tps, fields, 233 tri2nb, spdep, 245 tribble, splancs, 183, 184 unionSpatialPolygons, maptools, 97, 122, 125 variog, geoR, 204 variogram, gstat, 196-198, 200, 201, 203, 205, 206, 208, 209, 230 vcovHC, sandwich, 290 vect2neigh, spgrass6, 104, 244 vgm, gstat, 145, 201-203, 205, 208, 209, 223, 225, 230 vInfo, spgrass6, 103 write.dta, foreign, 256 write.nb.gal, spdep, 256 write.sn2dat, spdep, 256 write.sn2gwt, spdep, 256 writeAsciiGrid, maptools, 98 writeGDAL, rgdal, 96 writeLinesShape, maptools, 93 writeOGR, rgdal, 92, 93 writePointsShape, maptools, 93 writePolyShape, maptools, 93

writeRAST6, spgrass6, 103

zerodist, sp. 220

writeVECT6, spgrass6, 103, 244

springer.com

the language of science

Model-based Geostatiatics

Peter J. Diggle and Paulo Justiniano Ribeiro

This volume is the first book-length treatment of model-based geostatistics. The text is expository, emphasizing statistical methods and applications rather than the underlying mathematical theory. Analyses of datasets from a range of scientific contexts feature prominently, and simulations are used to illustrate theoretical results. Readers can reproduce most of the computational results in the book by using the authors' software package, geoR, whose usage is illustrated in a computation section at the end of each chapter. The book assumes a working knowledge of classical and Bayesian methods of inference, linear models, and generalized linear models.

2007. 230 pp. (Springer Series in Statistics) Hardcover ISBN 978-0-387-32907-9

Software for Data Analysis Programming with R

John M. Chambers

This book guides the reader through programming with R, beginning with simple interactive use and progressing by gradual stages, starting with simple functions. More advanced programming techniques can be added as needed, allowing users to grow into software contributors, benefiting their careers and the community. R packages provide a powerful mechanism for contributions to be organized and communicated.

2008. Approx. 510 pp. (Statistics and Computing) Hardcover ISBN 978-0-387-75935-7

Data Manipulation with R

Phil Spector

This book presents a wide array of methods applicable for reading data into R, and efficiently manipulating that data. In addition to the built-in functions, a number of readily available packages from CRAN (the Comprehensive R Archive Network) are also covered. All of the methods presented take advantage of the core features of R: vectorization, efficient use of subscripting, and the proper use of the varied functions in R that are provided for common data management tasks.

2008. 164 pp. (Use R) Softcover ISBN 978-0-387-74730-9

Easy Ways to Order▶

Call: Toll-Free 1-800-SPRINGER • E-mail: orders-ny@springer.com • Write: Springer, Dept. S8113, PO Box 2485, Secaucus, NJ 07096-2485 • Visit: Your local scientific bookstore or urge your librarian to order.