T. Leblé, leble@ann.jussieu.fr

TD 4: Fonctions usuelles

Exercice 1 Si f est une fonction de classe C^2 sur un intervalle $I \subset \mathbb{R}$, on dit que f est concave (resp. convexe) sur I lorsque $f'' \leq 0$ (resp. $f'' \geq 0$) sur I.

- 1. Montrer que ln est concave sur \mathbb{R}_+^* et que exp est convexe sur \mathbb{R} .
- 2. Si f est une fonction convexe sur I, montrer que pour tout x_1, x_2 dans I et tout $t \in [0, 1]$ on a

$$f(tx_1 + (1-t)x_2) \le tf(x_1) + (1-t)f(x_2).$$

3. Montrer plus généralement que pour tout entier n, pour tout x_1, \ldots, x_n dans I et tout t_1, \ldots, t_n dans [0, 1] tels que $\sum_{i=1}^n t_i = 1$ on a :

$$f\left(\sum_{i=1}^{n} t_i x_i\right) \le \sum_{i=1}^{n} t_i f\left(x_i\right).$$

- 4. Quelle est l'inégalité correspondante pour les fonctions concaves?
- 5. En déduire l'inégalité suivantes pour $x_1, \ldots, x_n > 0$:

$$\frac{x_1 + \dots x_n}{n} \ge \sqrt[n]{x_1 \dots x_n}.$$

Exercice 2 On considère la fonction f définie sur \mathbb{R} par $x \mapsto f(x) = (x^2 + 1) \sin x$.

- 1. Calculer la dérivée de f.
- 2. Montrer de deux façons que l'équation $(x^2 + 1)\cos x + 2x\sin x$ admet une solution dans $[0, \pi]$.
 - (a) En appliquant le théorème de Rolle à une fonction bien choisie.
 - (b) En appliquant le théorème des fonctions intermédiaires à une fonction bien choisie.

Exercice 3 Combien y a-t-il de points d'intersections entre les courbes $x \mapsto x^{\sqrt{x}}$ et $x \mapsto (\sqrt{x})^x$? Situer ces courbes (ainsi que celle de $x \mapsto x$) à l'infini et en zéro.

Exercice 4 Une fonction f d'un intervalle $I \subset \mathbb{R}$ dans \mathbb{R}_+^* est dite "logarithmiquement convexe" lorsque $\ln f$ est convexe. Montrer qu'une fonction logarithmiquement convexe est convexe et étudier la réciproque.