Task-2 To Explore Supervised Machine Learning (Student_score)

Firstly Import Important Library

In [1]:

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline

In [2]:

Out[2]:

	Hours	Scores
0	2.5	21
1	5.1	47
2	3.2	27
3	8.5	75
4	3.5	30
5	1.5	20
6	9.2	88
7	5.5	60
8	8.3	81
9	2.7	25
10	7.7	85
11	5.9	62
12	4.5	41
13	3.3	42
14	1.1	17
15	8.9	95
16	2.5	30
17	1.9	24
18	6.1	67
19	7.4	69
20	2.7	30
21	4.8	54
22	3.8	35
23	6.9	76
24	7.8	86

Visualise with the help of Scatter Plot

In [4]:

```
plt.scatter(df.Hours, df.Scores, color="g")
plt.xlabel('Hours Studied')
plt.ylabel('Percentage Score')
plt.show()
```


In [5]:

```
x= df.iloc[:, :-1].values
y= df.iloc[:, 1].values
```

In [6]:

```
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
```

In [7]:

```
X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=1
)
```

In [8]:

```
Linear_reg=LinearRegression()
Linear_reg.fit(X_train,y_train)
```

Out[8]:

LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=F
alse)

In [9]:

```
LinearRegression()
```

Out[9]:

LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=F
alse)

```
In [11]:
```

```
line = Linear_reg.coef_*x+Linear_reg.intercept_
plt.scatter(x, y, color="r")
plt.plot(x, line);
plt.show()
```


In [12]:

```
y_pred=Linear_reg.predict(X_test)
```

In [13]:

```
from sklearn.metrics import r2_score
```

In [14]:

```
print("R-Squared Value for Training Set: {:.3f}".format(Linear_reg.score(X_train,y_train)))
print("R-Squared Value for Test Set: {:.3f}".format(Linear_reg.score(X_test,y_test)))
```

```
R-Squared Value for Training Set: 0.964
R-Squared Value for Test Set: 0.842
```

In [15]:

```
from sklearn import metrics
print('Mean Absolute Error:',
    metrics.mean_absolute_error(y_test, y_pred))
```

Mean Absolute Error: 7.882398086270432

In [16]:

```
y1_pred=Linear_reg.predict([[9.25]])
```

Finally Predict Score

```
In [17]:
```

```
print('predicted score :',y1_pred)
```

predicted score : [95.22829438]