FUSING APACHE SPARK AND LUCENE FOR NEAR-REALTIME PREDICTIVE MODEL BUILDING

Debasish Das Principal Engineer Verizon Pramod Lakshmi Narasimha Principal Engineer Verizon

Contributors

Platform: Pankaj Rastogi, Venkat Chunduru, Ponrama Jegan, Masoud Tavazoei

Algorithm: Santanu Das, Debasish Das (Dave)

Frontend: Altaff Shaik, Jon Leonhardt

Data Overview

Location data

- Each srclp defined as unique row key
- Provides approximate location of each key
- Timeseries containing latitude, longitude, error bound, duration, timezone for each key

Clickstream data

- Contains clickstream data of each row key
- Contains startTime, duration, httphost, httpuri, upload/download bytes, httpmethod
- Compatible with IPFIX/Netflow formats

Marketing Analytics

Anonymous aggregate analysis for customer insights

Lookalike modeling

Churn reduction

Competitive analysis

Increased share of stomach

3

Data Model

Dense dimension, dense measure

Schema: srcip, date, hour, tld, zip, tldvisits, zipvisits Data: 10.1.13.120, d1, H2, macvs.com, 94555, 2, 4

Sparse dimension, dense measure

Schema: srcip, date, tld, zip, clickstreamvisits, zipvisits
Data: 10.1.13.120, d1, {macys.com, kohls.com}, {94555, 94301}, 10, 15

Sparse dimension, sparse measure

Schema: srcip, date, tld, zip, tldvisits, zipvisits
Data: 10.1.13.120, d1, {macys.com, kohls.com}, {94555, 94301}, {macys.com;4, kohls.com;6}, {94555;8, 94301;7}
Schema: srcip, week, tld, zip, tldvisits, zipvisits
Data: 10.1.13.120, week 1, {macys.com, kohls.com}, {94555, 94301}, {macys.com;4, kohls.com;6}, {94555;8, 94301;7}

Sparse dimension, sparse measure, last N days

Schema: srcip, tld, zip, tldvisits, zipvisits
Data: 10.1.13.120, {macys.com, kohls.com}, {94555, 94301}, {macys.com;4, kohls.com;6}, {94555;8, 94301;7}

Competing technologies: PowerDrill, Druid, LinkedIn Pinot, EssBase

Document Dataset Representation

Example

Schema: srcip, tld, zip, tldvisits, zipvisits
Data: 10.1.13.120, {macvs.com, kohls.com}, {94555, 94301}, {macvs.com: 4, kohls.com: 6}, {94555.8, 94301:7}

DataFrame row to Lucene Document mapping

Store/schema	Row	Document
srcip	primary key	docld
tld	String	SingleValue/MultiValue
zip	Array[String]	Indexed Fields
tldvisits	Double	SparseVector
zipvisits	Map[String, Double]	StoredField

- Distributed collection of srclp as RDD[Document]
 - ~100M srcip, 1M+ terms (sparse dimensions)

DeviceAnalyzer

- DeviceAnalyzer goals
 - Search and retrieve devices that matched query
 - Generate statistical and predictive models on retrieved devices

What is Trapezium?

DAIS Open Source framework to build batch, streaming and API services

https://github.com/Verizon/trapezium

Trapezium Architecture

Lucene Overview

- Scalable, full-text search library
- Focus: Indexing + searching documents

Trapezium LuceneDAO

- SparkSQL and MLlib optimized for full scan, column indexing not supported
- Why Spark + Lucene integration
 - Lucene is battle tested Apache Licensed Open Source Project
 - Adds column search capabilities to Spark
 - Adds spark operators (treeAggregate, treeReduce, map) to Lucene
- LuceneDAO features
 - Build distributed lucene shards from Dataframe
 - Save shards to HDFS for QueryProcessor (CloudSolr)
 - Access saved shards through LuceneDAO for ML pipelines

Trapezium Batch

```
runMode = "BATCH"
dataSource = "HDFS"
dependentWorkflows={
    workflows=[aggregate]
    frequencyToCheck=100
}
hdfsFileBatch = {
    batchTime = 86400
    timerStartDelay = 1
    batchInfo = [{
        name = "DeviceStore"
        dataDirectory = {saiph-devqa=/aggregates}
        fileFormat = "parquet"
    }]
}
```

```
transactions = [{
           transactionName = "DeviceIndexer"
           inputData = [{name = "DeviceStore"}]
           persistDataName = "indexed"
         }]
                                        indexer workflow: batch
  Srclp features
                          DeviceIndexer
                                                        last N days
Parquet Files (last 35
                             tld, zip
                                                       Lucene Indices
                                                DeviceAnalyzer
                                                compare/augment
                                                N min streaming
                                                index refresh daily
                                                             DeviceAnalyzer
                                                             Batch + REST
                                                            index refresh daily
```


DeviceAnalyzer: Indexing

LuceneDAO Index Size

300.0 ---

InputSize(gb)

IndexSize(gb)

rows	In putSize(gb)	IndexSize(gb)
1M	4.0	5.1
4M	14.4	19.0
8M	27.9	35.7
16M	58.8	63.2
73M	276.5	228.0
73M all	276.5	267.1

LuceneDAO Shuffle Size

1000.

Dictionary(mb)

	Sh. ifflo\\/sito/mh\	Distinger (mb)
rows	ShuffleWrite(mb)	Dictionary(mb)
1M	25	22.0
4M	56	30.0
8M	85	31.6
16M	126	32.2
73M	334	32.4
73M all	921	146.5

LuceneDAO Index Runtime

Runtime (s)

20 executors 16 cores Executor RAM 16 GB Driver RAM 8g

3000 -	
2250	
1500 -	
750	

8M

rows Runtime (s)

1M 135

4M 228

8M 434

16M 571

73M 1726

73M all 2456

4M

1M

16M

#rows

73M

73M all

15

Trapezium Api

```
runMode = "BATCH"
dataSource = "HDFS"
httpServer = {
  provider = "akka"
  hostname = "localhost"
  port = 19999
  contextPath = "/"
  endPoints = [{
    path = "analyzer-api"
    className = "TopKEndPoint"
  }]
}
```


DeviceAnalyzer: Topk

- Given a query select * from devices where tld='macys.com' OR 'nordstorm.com' AND (city='SanFrancisco' OR 'Brussels') AND (device='Android') ...
 - ML: Find topk dimensions highly correlated with selected device
 - BI: group by tld order by sum(visits) as tldVisits limit topk

Trapezium Stream

```
runMode = "STREAM"

dataSource = "KAFKA"

kafkaTopicInfo = {
    consumerGroup = "KafkaStreamGroup"
    maxRatePerPartition = 970
    batchTime = "5"
    streamsInfo = [{
        name = "queries"
        topicName = "deviceanalyzer"

}]

transactions = [{
    transactionName = DeviceAnalyzer"
    inputStreams = [{name: "queries"}]
    persistStreamName = "deviceanalyzer"
    isPersist = "true"

}]
```


DeviceAnalyzer: Compare

- Given two queries
 select * from Devices where
 tld='macys.com' OR 'nordstorm.com' AND (city='SanFrancisco') AND (device='Android')
 select * from Devices where
 tld='macys.com' OR 'nordstorm.com' AND (city='Brussels') AND (device='Android')
- Find the dimensions that discriminate the devices associated with two groups

DeviceAnalyzer: Augment

- Given a query
- select * from Devices where tld='macys.com' OR 'nordstorm.com' AND (city='SanFrancisco' OR 'Brussels') AND (device='Android')...
 - Find devices similar to seed as lookalikes
 - Find dimensions that represent lookalikes

```
object DeviceAnalyzer extends StreamingTransaction {
converter = SparkLuceneConverter(dm.size)
batchTime = Trapezium.getSyncTime("indexer")
dao = LuceneDAO(batchTime...)
   .setConverter(converter).load(sc, indexPath)
dict = loadDictionary(sc, indexPath, batchTime)
all = dao.search("*:*")
def processStream(streams: Map[String, DStream[Row]]):
 streams("queries").collect().map{ request =>
  audience = dao.search(request)
  response = getLookalikeDimensions(all, audience, dict)
        Sparse weighted least squares using
         Breeze QuadraticMinimizer
         L2 regularized linear regression
```


20

FastSummarizer

- Statistical and predictive operators
 - sum: sum over numeric measures
 - support: sum over distinct docID
 - sumSquared: L2 norm
 - gram: Uses BLAS sspr
 - solve: Uses BreezeQuadraticMinimizer to support L1
- Implemented using Array[Float] for shuffle opt
- Scala/Java for Level1 operations
- OpenBLAS for Level3 operations

Sync API Benchmark

73M rows 1M+ search terms
1 measure on 250K sparse dimensions
20 executors 8 cores
32 GB driver RAM 16 GB executor RAM
akka-http cores: 24 default

runtime(s)

10.5

7.

3.5

0. 1 5 10 20 40 qps

topk

qps	runtime(s)
1	1.389
5	1.663
10	3.214
20	5.992
40	12.174

Async API Benchmark

160 -

120 -

compare

73M rows, 1M+ search terms
1 measure on 250K sparse dimensions
20 executors 8 cores
32 GB driver RAM 16 GB executor RAM
forkjoinpool = 40
Kafka Fetch + compare/augment + HBase Persist

predictions				
qps	compare(s)	augment(s)		
1	9	16		
5	13	36		
10	23	70		
20	42	142		

topk tld + apps

Augment: Auto Enthusiastic

© Verizon 2016 All Hights Reserved

Augment Model Performance

26

Compare: Leisure vs Business Travellers

THANK YOU. Q&A

Join us and make machines intelligent Data & Artificial Intelligence Systems 499 Hamilton Ave, Palo Alto California

