Note: These course notes are to be used strictly as part of the ECE 462 class at George Mason University.

Lecture 2

Protocol Architecture and Layering Concepts

Bijan Jabbari Dept. of Electrical and Computer Eng. George Mason University Fairfax, VA 22030-4444, USA

> bjabbari@gmu.edu http://cnl.gmu.edu

Outline

- Introduction
- OSI Concept
 - Layering
 - Peer-Peer Communications
- Protocol Architecture
- Primitives
- Internet Architecture
- Alignment with Internet

Internet Structure: Network Edge, Core and Access

Need For Protocol Architecture

- E.g. File transfer
 - Source must activate comms. Path or inform network of destination
 - Source must check destination is prepared to receive
 - File transfer application on source must check destination file management system will accept and store file for his user
 - May need file format translation
- Task broken into subtasks
- Implemented separately in layers in stack
- Functions needed in both systems
- Peer layers communicate

Key Elements of a Protocol

- Syntax
 - Data formats
 - Signal levels
- Semantics
 - Control information
 - Error handling
- Timing
 - Speed matching
 - Sequencing

Protocol Architecture

- Task of communication broken up into modules
- For example file transfer could use three modules
 - File transfer application
 - Communication service module
 - Network access module

Simplified File Transfer Architecture

The OSI Reference Model

Physical transmission media

OSI - The Model

- A layered model
- Each layer performs a subset of the required communication functions
- Each layer relies on the next lower layer to perform more primitive functions
- Each layer provides services to the next higher layer
- Changes in one layer should not require changes in other layers

The OSI Reference Model

- Physical layer: provides transparent transmission of a bit stream over a communication link
- Data link layer: ensures reliable exchange of information by error control, flow control, and other link control activities
- Network layer: performs routing and relaying of data between end users. Includes addressing, routing, logical channel multiplexing and congestion control:
 - Connectionless (datagram services)
 - Connection-oriented (virtual circuit services)

OSI Reference Model (cont'd)

Transport layer (layer 4)

- Optimizes the use of resources (I.e. network service) according to the type and character of the communication and relieves the user of any concern for the transfer details
- Includes functions for end-to-end data flow control independent of the intermediate transport network or links, end-to-end data verification, sequence control, and error control

Session layer (layer 5)

- Coordinates the interaction within each association between communicating application processes
- I.e., it initiates, manages, and terminates sessions, allocates resources and determines whether the mode of data transfer will be full duplex, half duplex dialogue or transaction type.

OSI Reference Model (cont'd)

- Presentation layer (layer 6)
 - Transforms the syntax of the data that is to be transferred into a form recognizable by the communicating application processes
 - E.g., converts a data stream from ASCII to EBCDIC, formatting (line/page), storage, and high level encryption/decryption.
- Application layer (layer 7)
 - Specifies the nature of the communication required to satisfy the user's needs
 - The end users are considered to be sitting above this layer

The OSI Reference Model

PHYSICAL TRANSMISSION MEDIA

OSICOM

The OSI Reference Model

Layer Specific Standards

Elements of Standardization

- Protocol specification
 - Operates between the same layer on two systems
 - May involve different operating system
 - Protocol specification must be precise
 - Format of data units
 - Semantics of all fields
 - allowable sequence of PCUs
- Service definition
 - Functional description of what is provided
- Addressing
 - Referenced by SAPs

Service Primitives and Parameters

- Services between adjacent layers expressed in terms of primitives and parameters
- Primitives specify function to be performed
- Parameters pass data and control info

Primitive Types

	7000
REQUEST	A primitive issued by a service user to invoke some service and to pass the parameters needed to specify fully the requested service
INDICATION	A primitive issued by a service provider either to: indicate that a procedure has been invoked by the peer service user on the connection and to provide the associated parameters, or
	notify the service user of a provider-initiated action
RESPONSE	A primitive issued by a service user to acknowledge or complete some procedure previously invoked by an indication to that user
CONFIRM	A primitive issued by a service provider to acknowledge or complete some procedure previously invoked by a request by the service user

Timing Sequence for Service Primitives

The OSI Reference Model

Figure 2.2

Figure 2.3

Figure 2.4

Figure 2.6

Encapsulation

Lecture

IP Protocol Stack

Lecture

Figure 2.12

Header contains source and destination physical addresses; network protocol type

Ethomat	Frai	me
Ethernet	Che	eck
Header		uence

Figure 2.15

Measurements for Traffic delays across Networks - PING

```
•Ping to GMU from the desktop
C:\>ping osfl.qmu.edu
Pinging osf1.qmu.edu [129.174.1.13] with 32 bytes of data:
Reply from 129.174.1.13: bytes=32 time<10ms TTL=62
Reply from 129.174.1.13: bytes=32 time<10ms TTL=62
Reply from 129.174.1.13: bytes=32 time<10ms TTL=62
•Ping to a Network Address from a Router
Router@cnl#ping 10.1.7.2
Sending 5, 100-byte ICMP Echos to 10.1.7.2, timeout is 2
seconds:
11111
Success rate is 100 percent (5/5), round-trip min/avg/max =
1/1/4 \text{ ms}
```

54 ECE46

OSI Alignment and Internet

Services **OSI LAYERS** Applications (HTTP/FTP/ETC.) Layer 7 Layer 6 Layer 5 Layers 4 TCP/UDP Layer 3 Layer 2 Layer 1