## 國立成功大學工程科學系電子學第二次作業 2023/3/18

繳交日期: 2023/3/30

Fig. 1 shows a weighted summer circuit using an ideal op amp has three inputs resistors and a feedback resistor of 40 kΩ. A signal v<sub>1</sub> is connected to two of the inputs while a signal v<sub>2</sub> is connected to the third input. Express v<sub>0</sub> in terms of v<sub>1</sub> and v<sub>2</sub>. If v<sub>1</sub> = 1 V and v<sub>2</sub> = -1 V, what is v<sub>0</sub>?



Fig. 1

2. For the circuit in Fig. 2, assuming an ideal op amp, find the currents through all branches (2, 3, 5, 6) and the voltages at all nodes (1, 4).



Fig. 2

3. For the circuit in Fig. 3,  $R_1=R_3=5~\mathrm{k}\Omega$  and  $R_2=R_4=100~\mathrm{k}\Omega$ . Find the differential voltage gain  $A_d\equiv v_o/v_{id}$  and differential input resistance  $R_{id}$ . If the resistance ratios  $(R_2/R_1)$  and  $(R_4/R_3)$  are different from each other by 1%, what do you expect the common-mode gain  $A_{cm}\equiv v_o/v_{Icm}$  to be?



Fig. 3

- 4. The circuit in Fig. 4 utilizes an ideal op amp.
  - (a) Find  $I_1$ ,  $I_2$ ,  $I_3$ ,  $I_L$ , and  $V_x$ .
  - (b) If  $V_O$  is not to be lower than -13 V, find the maximum allowed value for  $R_L$ .
  - (c) If  $R_L$  is varied in the range 100  $\Omega$  to 1 k $\Omega$ , what is the corresponding change in  $I_L$  and in  $V_O$ ?



Fig. 4

5. For the circuit shown in Fig. 5, a circuit that performs a low pass STC function. Such a circuit is known as a first-order, low-pass active filter. Derive the transfer function and show that the dc gain is  $(-R_2/R_1)$  and the 3-dB frequency  $\omega_0 = 1/CR_2$ . Design the circuit to obtain an input resistance of 10 k $\Omega$ , a dc gain of 40 dB, and a 3-dB frequency of 1 kHz. At what frequency does the magnitude of the transfer function reduce to unity?



Fig. 5