Chapter I: roadmap

- I.I what is the Internet?
- 1.2 network edge
 - end systems, access networks, links
- 1.3 network core
 - packet switching, circuit switching, network structure
- 1.4 delay, loss, throughput in networks
- 1.5 protocol layers, service models
- 1.6 networks under attack: security
- 1.7 history

How do loss and delay occur?

packets queue in router buffers

- packet arrival rate to link (temporarily) exceeds output link capacity
- packets queue, wait for turn

Introduction 1-43

Four sources of packet delay

 d_{proc} : nodal processing

- check bit errors
- determine output link
- typically < msec

 $d_{\rm queue}$: queueing delay

- time waiting at output link for transmission
- depends on congestion level of router

Introduction 1-44

Introduction 1-42

Four sources of packet delay

 $d_{\rm trans}$: transmission delay:

- L: packet length (bits)
- R: link bandwidth (bps)
- $d_{trans} = L/R$

d_{trans} and d_{prop} very different

- d_{prop} : propagation delay:
 - d: length of physical link
- s: propagation speed in medium (~2x108 m/sec)
- $d_{\text{prop}} = d/s$

* Check out the Java applet for an interactive animation on trans vs. prop delay

Packet loss

- queue (aka buffer) preceding link in buffer has finite capacity
- * packet arriving to full queue dropped (aka lost)
- lost packet may be retransmitted by previous node, by source end system, or not at all

* Check out the Java applet for an interactive animation on queuing and loss

Introduction 1-51

Throughput

- throughput: rate (bits/time unit) at which bits transferred between sender/receiver
 - instantaneous: rate at given point in time
 - average: rate over longer period of time

Introduction 1-52

Throughput (more)

 $R_c < R_c$ What is average end-end throughput?

 $R_s > R_c$ What is average end-end throughput?

Throughput: Internet scenario

- per-connection endend throughput: min(R_c,R_s,R/I0)
- in practice: R_c or R_s is often bottleneck

10 connections (fairly) share backbone bottleneck link R bits/sec

Introduction 1-

Chapter I: roadmap

- I.I what is the Internet?
- 1.2 network edge
 - end systems, access networks, links
- 1.3 network core
 - packet switching, circuit switching, network structure
- 1.4 delay, loss, throughput in networks
- 1.5 protocol layers, service models
- 1.6 networks under attack: security
- 1.7 history

Introduction 1-55

Protocol "layers"

Networks are complex, with many "pieces":

- hosts
- routers
- links of various media
- applications
- protocols
- hardware, software

Question:

is there any hope of organizing structure of network?

.... or at least our discussion of networks?

Why layering?

dealing with complex systems:

- explicit structure allows identification, relationship of complex system's pieces
 - layered reference model for discussion
- modularization eases maintenance, updating of system
 - change of implementation of layer's service transparent to rest of system
- layering considered harmful?

Introduction 1-56 Introduction 1-57

Internet protocol stack

- application: supporting network applications
 - FTP, SMTP, HTTP
- transport: process-process data transfer
 - TCP, UDP
- network: routing of datagrams from source to destination
 - IP, routing protocols
- link: data transfer between neighboring network elements
 - Ethernet, 802.111 (WiFi), PPP
- physical: bits "on the wire"

application
transport
network
link
physical

ISO/OSI reference model

- presentation: allow applications to interpret meaning of data, e.g., encryption, compression, machine-specific conventions
- session: synchronization, checkpointing, recovery of data exchange
- Internet stack "missing" these layers!
 - these services, if needed, must be implemented in application
 - needed?

Introduction 1-59

Introduction 1-58

Introduction 1-60

source Encapsulation message M application segment H_t M transport datagram H₀ H_t M frame H₁ H_n H_t M network switch destination H_n H_t M network link H_n H_t M pplication transport network router

link

Chapter I: roadmap

- I.I what is the Internet?
- 1.2 network edge
 - end systems, access networks, links
- 1.3 network core
 - packet switching, circuit switching, network structure
- 1.4 delay, loss, throughput in networks
- 1.5 protocol layers, service models
- 1.6 networks under attack: security
- 1.7 history

Internet history

1961-1972: Early packet-switching principles

- 1961: Kleinrock queueing theory shows effectiveness of packetswitching
- 1964: Baran packetswitching in military nets
- 1967: ARPAnet conceived by Advanced Research Projects Agency
- 1969: first ARPAnet node operational

- ***** 1972:
 - ARPAnet public demo
 - NCP (Network Control Protocol) first host-host protocol
 - first e-mail program
 - ARPAnet has 15 nodes

Introduction 1-68

Internet history

1972-1980: Internetworking, new and proprietary nets

- 1970: ALOHAnet satellite network in Hawaii
- 1974: Cerf and Kahn architecture for interconnecting networks
- * 1976: Ethernet at Xerox PARC
- late70's: proprietary architectures: DECnet, SNA, XNA
- late 70's: switching fixed length packets (ATM precursor)
- ❖ 1979: ARPAnet has 200 nodes

Cerf and Kahn's internetworking principles:

- minimalism, autonomy no internal changes required to interconnect networks
- best effort service model
- stateless routers
- decentralized control

define today's Internet architecture

Introduction 1-69

Internet history

1980-1990: new protocols, a proliferation of networks

- 1983: deployment of TCP/IP
- 1982: smtp e-mail protocol defined
- 1983: DNS defined for name-to-IP-address translation
- * 1985: ftp protocol defined
- 1988: TCP congestion control
- new national networks: Csnet, BITnet, NSFnet, Minitel
- 100,000 hosts connected to confederation of networks

Introduction 1-70

Internet history

1990, 2000 's: commercialization, the Web, new apps

- *early 1990's: ARPAnet decommissioned
- 1991: NSF lifts restrictions on commercial use of NSFnet (decommissioned, 1995)
- ∻early 1990s: Web
 - hypertext [Bush 1945, Nelson 1960's]
 - HTML, HTTP: Berners-Lee
 - 1994: Mosaic, later Netscape
 - late 1990's: commercialization of the Web

late 1990's - 2000's:

- more killer apps: instant messaging, P2P file sharing
- network security to forefront
- est. 50 million host, 100 million+ users
- backbone links running at Gbps

Introduction 1-71

5

Internet history

2005-present

- ❖ ~750 million hosts
 - Smartphones and tablets
- * Aggressive deployment of broadband access
- * Increasing ubiquity of high-speed wireless access
- * Emergence of online social networks:
 - Facebook: soon one billion users
- Service providers (Google, Microsoft) create their own networks
 - Bypass Internet, providing "instantaneous" access to search, emai, etc.
- E-commerce, universities, enterprises running their services in "cloud" (eg, Amazon EC2)

Introduction: summary

covered a "ton" of material!

- Internet overview
- * what's a protocol?
- network edge, core, access network
 - packet-switching versus circuit-switching
 - Internet structure
- performance: loss, delay, throughput
- * layering, service models
- security
- history

Introduction 1-72

you now have:

- context, overview, "feel" of networking
- more depth, detail to follow!