Feuille d'exercices 6

Soient k un corps parfait et Ω une clôture algébrique de k. On rappelle qu'une sous-extension finie K/k de Ω est galoisienne si, pour chaque $x \in K$, tous les k-conjugués de x dans Ω appartiennent à K. D'après un résultat du cours, il est équivalent de demander que l'inclusion naturelle $\operatorname{Hom}_k(K,K) \subset \operatorname{Hom}_k(K,\Omega)$ soit une égalité, de sorte que $|\operatorname{Hom}_k(K,K)| = [K:k]$. Le groupe $\operatorname{Gal}(K/k) = \operatorname{Hom}_k(K,K)$ est appelé groupe de Galois de K/k. Si $x \in K$, les k-conjugués de x sont alors permutés transitivement par $\operatorname{Gal}(K/k)$.

Si $P \in k[X]$, on note R_P l'ensemble de ses racines dans Ω et Gal(P, k) le groupe de Galois de l'extension galoisienne $k[R_P]$ sur k.

Exercice 1. Soit $P \in k[X]$ un polynôme irréductible de degré n et soit G = Gal(P, k).

- (i) Rappeler pourquoi $|R_P| = n$.
- (ii) En déduire que n divise |G| et que |G| divise n!.

Exercice 2. Soit K une extension galoisienne de k.

(i) Soient $k \subseteq F_1 \subseteq K$ et $k \subseteq F_2 \subseteq K$ des sous-extensions de K. On note F_1F_2 le compositum de F_1 et F_2 , c'est-à-dire, la plus petite sous-extension de K contenant F_1 et F_2 . Montrer que

$$Gal(K/F_1F_2) = Gal(K/F_1) \cap Gal(K/F_2).$$

(ii) Soit $k \subseteq F \subseteq K$ une sous-extension de K. Notons L la plus petite sous-extension galoisienne de K contenant F. Montrer que

$$\operatorname{Gal}(K/L) = \bigcap_{\sigma \in \operatorname{Gal}(K/k)} \sigma \operatorname{Gal}(K/F) \sigma^{-1}.$$

Exercice 3. Soient $K_1 \subset \Omega$ et $K_2 \subset \Omega$ des extensions galoisiennes de k.

- (i) Montrer que $K_1 \cap K_2$ et K_1K_2 sont aussi galoisiennes sur k.
- (ii) Montrer que $Gal(K_1K_2/K_2)$ s'identifie à $Gal(K_1/K_1 \cap K_2)$.
- (iii) En déduire que $[K_1K_2:k] = [K_1:k] \cdot [K_2:k]$ si et seulement si $K_1 \cap K_2 = k$.
- (iv) Montrer qu'il y a un morphisme injectif

$$\operatorname{Gal}(K_1K_2/k) \to \operatorname{Gal}(K_1/k) \times \operatorname{Gal}(K_2/k)$$

qui est un isomorphisme si et seulement si $K_1 \cap K_2 = k$.

Exercice 4. Soit $x = \sqrt{1 + \sqrt{2}} \in \mathbf{R}$.

- (i) Montrer que $[\mathbf{Q}[x]:\mathbf{Q}]=4$ et déterminer les conjugués de x dans \mathbf{C} .
- (ii) Montrer que $\mathbf{Q}[x]/\mathbf{Q}$ n'est pas galoisienne.
- (iii) Montrer que $\mathbf{Q}[x]/\mathbf{Q}[\sqrt{2}]$ et $\mathbf{Q}[\sqrt{2}]$ sont galoisiennes.
- (iv) Vérifier que $\mathbf{Q}[x,i]/\mathbf{Q}$ est galoisienne de degré 8.

- (v) Montrer qu'en revanche $\mathbf{Q}[\sqrt{2+\sqrt{2}}]/\mathbf{Q}$ est galoisienne de degré 4.
- (vi) Montrer que $Gal(\mathbf{Q}[\sqrt{2+\sqrt{2}}]/\mathbf{Q})$ est cyclique d'ordre 4.

Exercice 5. Soit $P \in \mathbf{Q}[X]$ le polynôme cubique unitaire dont les racines sont

$$x_1 = 2\cos(2\pi/7), \quad x_2 = 2\cos(4\pi/7), \quad x_3 = 2\cos(6\pi/7).$$

- (i) Vérifier que $P = X^3 + X^2 2X 1$.
- (ii) Montrer que P est irréductible.
- (iii) Montrer que $\mathbf{Q}[x_1]$ est un corps de décomposition de P.
- (iv) En déduire $Gal(P, \mathbf{Q})$.

Exercice 6. Soient $f = X^4 - 4X^2 - 1 \in \mathbf{Q}[X]$ et $g = Y^2 - 4Y - 1 \in \mathbf{Q}[Y]$.

- (i) Pourquoi le groupe $Gal(g, \mathbf{Q})$ est-il un quotient de $G = Gal(f, \mathbf{Q})$?
- (ii) Montrer que G est un sous-groupe de \mathfrak{S}_{R_f} compatible avec la partition

$$\left\{\left\{\sqrt{2+\sqrt{5}},-\sqrt{2+\sqrt{5}}\right\},\left\{\sqrt{2-\sqrt{5}},-\sqrt{2-\sqrt{5}}\right\}\right\}$$

de R_f . (On dit qu'une permutation σ d'un ensemble fini E est compatible avec une partition de E lorsque $x \sim y$ implique $\sigma(x) \sim \sigma(y)$ pour \sim la relation d'équivalence dont les classes sont la partition considérée.)

- (iii) En déduire que G est contenu dans le groupe diédral du carré, c'est-à-dire le groupe des isométries du plan conservant le carré.
- (iv) Montrer qu'il existe un élément $\sigma \in G$ tel que $\sigma(\sqrt{2+\sqrt{5}})$ est égal à $\sqrt{2-\sqrt{5}}$ ou $-\sqrt{2-\sqrt{5}}$.
- (v) Montrer qu'il existe un élément $\tau \in G$ échangeant $\sqrt{2-\sqrt{5}}$ et $-\sqrt{2-\sqrt{5}}$ mais fixant $\sqrt{2+\sqrt{5}}$.
 - (vi) En déduire que G est le groupe diédral tout entier.

Exercice 7. Soit $P \in k[X]$ un polynôme irréductible de degré n et $K = k[R_P]$.

- (i) Montrer que si Gal(K/k) est abélien alors [K:k]=n.
- (ii) La réciproque est-elle vraie?