2023 Spring Probability & Statistics for EECS

May 6, 2023

Homework 13

Professor: Ziyu Shao & Dingzhu Wen

Due: 23:59 on May 14, 2023

- 1. Let $X_1, X_2,...$ be i.i.d. Expo(1).
 - (a) Let $N = \min\{n : X_n \ge 1\}$ be the index of the first X_j to exceed 1. Find the distribution of N-1 (give the name and parameters), and hence find E(N).
 - (b) Let $M = \min\{n : X_1 + X_2 + \dots + X_n \ge 10\}$ be the number of X_j 's we observe until their sum exceeds 10 for the first time. Find the distribution of M-1 (give the name and parameters), and hence find E(M).
 - (c) Let $\bar{X}_n = (X_1 + \cdots + X_n)/n$. Find the exact distribution of \bar{X}_n (give the name and parameters), as well as the approximate distribution of \bar{X}_n for n large (give the name and parameters).
- 2. Let the random variables X_1, X_2, \ldots, X_n be independent with $E(X_i) = \mu$, $a \le X_i \le b$ for each $i = 1, \ldots, n$, where a, b are constants. Then for any $\epsilon \ge 0$, show the Hoeffding Bound holds:

$$P\left(\left|\frac{1}{n}\sum_{i=1}^{n}X_{i}-\mu\right| \geq \epsilon\right) \leq 2\exp\left(-\frac{2n\epsilon^{2}}{(b-a)^{2}}\right).$$

Hint: Hoeffding Lemma + Chernoff Inequality.

3. Given a random variable X with expectation μ and variance σ^2 . For any $a \geq 0$, show the following inequality holds:

$$P(X - \mu \ge a) \le \frac{\sigma^2}{\sigma^2 + a^2}.$$

- 4. We observe a collection $X = (X_1, \ldots, X_n)$ of random variables, with an unknown common mean whose value we wish to infer. We assume that given the value of the common mean, the X_i are normal and independent, with known variances $\sigma_1^2, \ldots, \sigma_n^2$. We model the common mean as a random variable Θ , with a given normal prior (known mean x_0 and known variance σ_0^2). Find the posterior PDF of Θ .
- 5. (a) We wish to estimate the parameter for an exponential distribution, denoted by θ , based on the observations of n independent random variables X_1, \ldots, X_n , where $X_i \sim \text{Expo}(\theta)$. Find the MLE of θ .
 - (b) We wish to estimate the mean μ and variance ν of a normal distribution using n independent observations X_1, \ldots, X_n , where $X_i \sim \mathcal{N}(\mu, \nu)$. Find the MLE of the parameter vector $\theta = (\mu, \nu)$.