Zadanie 1.

Pan Jan Kowalski jest handlowcem posiadającym sklep o wartości K = 1 mln zł, ponadto posiada inny znacznej wartości majątek, zainwestowany miedzy innymi w aktywa pozbawione ryzyka, jednakże jego wartość nie została precyzyjnie oszacowana.

Funkcja użyteczności opisująca preferencje Pana Kowalskiego ma postać:

$$u(x) = -A e^{-ax} + B$$
,
 $A = 3$,
 $B = 6$,
 $a = 10^{-3} \text{ zt}^{-1}$.

Pan Kowalski postanowił ubezpieczyć sklep od kradzieży. Oszacował, że prawdopodobieństwo kradzieży wynosi p=0.5, natomiast wysokość łącznej szkody opisuje funkcja gęstości prawdopodobieństwa będąca przesuniętym rozkładem gamma

$$\Gamma(x_0, \alpha, \beta)$$

$$x_0 = 1000 \text{ zł}$$

$$\alpha = 2$$

$$\beta = 2 \cdot 10^{-3} \text{ zł}^{-1}$$

Ile będzie skłonny zapłacić Jan Kowalski za ubezpieczenie sklepu, zwracające całą wartość powstałej szkody? Podaj najbliższą wartość.

- (A) Nie można podać jednoznacznej odpowiedzi (nie mamy precyzyjnych danych na temat całego majątku Pana Kowalskiego).
- (B) 980 zł
- (C) 1380 zł
- (D) 1780 zł
- (E) 2180 zł

Zadanie 2. Rozważmy następujące ubezpieczenie:

Prawdopodobieństwo zaistnienia szkody wynosi p = 0.01, zaś wartość szkody, o ile zajdzie, ma rozkład wykładniczy o wartości oczekiwanej μ .

Pierwotnie ubezpieczenie zawierało kwotowy udział własny w wysokości 100 zł. Wtedy też skalkulowano składkę brutto *P* zwiększając składkę netto o 25-procentowy narzut.

Ubezpieczyciel proponuje klientowi kontrakt zmodyfikowany, zgodnie z którym zobowiązuje się w razie zajścia szkody w kwocie y do wypłaty odszkodowania: $I(y) = \min\{(y-100), 0.7 \cdot y\},$

oferując w zamian klientowi rabat r wyrażony w procentach składki brutto P. Zakłada się, iż kwota narzutu na składkę netto pozostaje bez zmian. Największa możliwa (ze względu na możliwe wartości parametru μ) wartość r wynosi (z dobrym przybliżeniem):

- (A) 21%
- (B) 24%
- (C) 27%
- (D) 30%
- (E) 33%

Zadanie 3. Łączna wartość szkód dla portfela ryzyk ma złożony rozkład Poissona z częstotliwością $\lambda=10$ i rozkładem prawdopodobieństwa wartości pojedynczej szkody Y danym wzorem:

$$Pr(Y = i) = 0.5^{i}$$
 dla $i = 1, 2, 3, ...$

Reasekurator pokrywa każdą szkodę w wysokości różnicy miedzy wartością szkody a zachowkiem $z_1=2$, jeżeli ta różnica jest dodatnia, jednak nie więcej niż do kwoty $z_2=3$.

Składka dla reasekuratora została skalkulowana jako suma wartości oczekiwanej i odchylenia standardowego łącznej wypłaty na udziale reasekuratora. Ile wynosi składka dla reasekuratora? Podaj najbliższą wartość.

- (A) 7,44
- (B) 7,80
- (C) 8,16
- (D) 8,52
- (E) 9,88

Zadanie 4. Towarzystwo ubezpieczeniowe prowadzi działalność w Dziale II grupie 2 - ubezpieczenia choroby.

W ramach jednorocznego grupowego ubezpieczenia choroby ubezpieczyciel wypłaca pracownikowi jednorazowe świadczenie w wysokości:

- 1000 zł w przypadku wystąpienia w okresie ubezpieczenia choroby A,
- 1000 zł w przypadku wystąpienia w okresie ubezpieczenia choroby B. Zakładamy że:
- zachorowania poszczególnych osób są niezależne,
- wypłata świadczenia z tytułu danej choroby wyklucza w okresie ubezpieczenia ponowną wypłatę świadczenia z tytułu tej samej choroby; nie wyklucza wypłaty świadczenia z tytułu innej choroby,
- $p_A = 0.01$ p-stwo zachorowania pracownika wyłącznie na chorobę A,
- $p_B = 0.01$ p-stwo zachorowania pracownika wyłącznie na chorobę B,
- $p_{AB} = 0.02$ p-stwo zachorowania pracownika najpierw na chorobę A, potem na B,
- $p_{BA} = 0$ p-stwo zachorowania pracownika najpierw na chorobę B, potem na A.

Grupa pracowników ma liczebność n = 250 osób.

Składka netto dla grupy została skalkulowana w wysokości sumy wartości oczekiwanej i odchylenia standardowego sumarycznej wypłaty. Ile wynosi składka netto dla grupy? Podaj najbliższą wartość.

- (A) 16 000 zł
- (B) 18 000 zł
- (C) 20 000 zł
- (D) 22 000 zł
- (E) 24 000 zł

Zadanie 5. Proces nadwyżki ubezpieczyciela jest złożonym procesem Poissona ze stosunkowym narzutem bezpieczeństwa na składkę netto θ . Wartość pojedynczej szkody X jest zmienną losową o rozkładzie prawdopodobieństwa gamma $\Gamma(\alpha, \beta)$, $\alpha = 2$, $\beta = 2$.

Ile wynoszą wartość oczekiwana $E(L_1)$ i wariancja $Var(L_1)$ wartości, o którą nadwyżka spada po raz pierwszy poniżej poziomu wyjściowego?

(A)
$$E(L_1) = \frac{3}{4}$$
, $Var(L_1) = \frac{7}{16}$

(B)
$$E(L_1) = \frac{3}{4}$$
, $Var(L_1) = \frac{8}{16}$

(C)
$$E(L_1) = 1$$
, $Var(L_1) = \frac{7}{16}$

(D)
$$E(L_1) = 1$$
, $Var(L_1) = \frac{8}{16}$

(E) żadna z powyższych odpowiedzi nie jest prawdziwa.

Zadanie 6. Towarzystwo ubezpieczeniowe oferujące ubezpieczenia mieszkaniowe stosuje regionalne zróżnicowanie taryfy. Towarzystwo to rozpoczęło działalność w nowym regionie, w związku z czym rozpoczęło prace w celu określenia wartości oczekiwanej pojedynczej szkody.

Dotychczas zaobserwowano w tym regionie 20 szkód, ich wartość średnia wyniosła 7000 zł.

W skali całego kraju średnia wartość szkody wynosi 5000 zł.

Dotychczasowe doświadczenie pozwala na stwierdzenie, że wysokość szkód w poszczególnych regionach można w przybliżeniu opisać rozkładem normalnym o wartości średniej μ_i i odchyleniu standardowym $\sigma_i = \frac{\mu_i}{2}$.

Zmienność parametru μ_i pomiędzy poszczególnymi regionami jest opisywana rozkładem gamma $\Gamma(\alpha, \beta)$, $\alpha = 5$, $\beta = 0.001$ zł⁻¹.

Znajdź wartość oczekiwaną następnej szkody w nowym regionie estymując ją najlepszym liniowym estymatorem w klasycznym modelu Bühlmanna. Podaj najbliższą wartość.

- (A) 6900 zł
- (B) 6860 zł
- (C) 6820 zł
- (D) 6780 zł
- (E) 6740 z

Zadanie 7. Polisa ubezpieczeniowa zawarta na rok czasu, przewiduje wypłatę świadczenia związanego z wystąpieniem zdarzenia ubezpieczeniowego oraz na koniec okresu ubezpieczeniowego wypłatę dywidendy.

- Wysokość świadczenia wypłaconego w okresie ubezpieczenia jest zmienną losową określoną przez jednostajny rozkład prawdopodobieństwa na odcinku [0; A], $A = 100\,000$ zł.
- Składka brutto *P* została skalkulowana na poziomie 150% wartości oczekiwanej świadczenia.
- Koszty K, uwzględniające koszty zawarcia ubezpieczenia, koszty administracyjne oraz inne koszty a także zysk ubezpieczyciela, zostały skalkulowane na poziomie 25% składki brutto.
- Dywidenda D jest kalkulowana według formuły:

$$D = \delta \max[0; P - K - C],$$

C suma wypłaconych świadczeń w okresie ubezpieczenia,

 δ współczynnik dywidendy.

Jaka jest wartość współczynnika dywidendy δ , przy którym składka pokryje oczekiwane rozchody (podaj najbliższą wartość)?

- (A) 20%
- (B) 40%
- (C) 60%
- (D) 80%
- (E) 100%

Zadanie 8. Liczba szkód zaistniałych w czasie t jest procesem stochastycznym $\{N(t), t \ge 0\}$. Przyjmijmy, że czas t = 0 odpowiada dniu 1 stycznia 1999 roku, a jednostką czasu jest 1 miesiąc, przy czym dla uproszczenia przyjmujemy, że każdy miesiąc ma 30 dni.

Czasy oczekiwania pomiędzy następującymi po sobie szkodami, są niezależnymi zmiennymi losowymi o jednakowym rozkładzie prawdopodobieństwa i dystrybuancie

$$F(t) = 1 - e^{-10 t}$$
.

Znajdź prawdopodobieństwo, że dokładnie 5 szkód wystąpi pomiędzy 1 kwietnia 1999 a 15 kwietnia 1999. Podaj najbliższą wartość.

- (A) 0,06
- (B) 0,12
- (C) 0,18
- (D) 0,24
- (E) 0,30

Zadanie 9. Ilość szkód N ma rozkład dany rekurencyjnie:

Pr(N = 0) =
$$\frac{1}{27}$$
,

$$\frac{\Pr(N = k)}{\Pr(N = k - 1)} = \frac{2}{3} + \frac{4}{3 \cdot k}$$
, $k = 2, 3, ...$

Stosunek wariancji do wartości oczekiwanej zmiennej N wynosi:

- (A) 1
- (B) 1,5
- (C) 2
- (D) 2,5
- (E) 3

Zadanie 10. W ciągu pierwszych trzech lat działalności ubezpieczyciel majątkowy miał następujące wyniki (mln ECU):

	1 rok	2 rok	3 rok
Przypis	5,0	9,0	12,0
udział reasekuratora	0,2	0,4	0,5
Odszkodowania	1,2	4,0	9,0
udział reasekuratora	-	0,6	1
Rezerwa składek	0,9	3,0	5,0
udział reasekuratora		0,1	0,2
Rezerwa szkód	0,5	3,0	6,0
udział reasekuratora		-	0,6

Margines wypłacalności na koniec 3 roku wynosi (mln ECU):

- (A) 1,66
- (B) 1,68
- (C) 1,99
- (D) 2,01
- (E) 2,04

Egzamin dla Aktuariuszy z 27 marca 1999 r.

Matematyka ubezpieczeń majątkowych

${\bf Arkusz\ odpowiedzi}^*$

Imię i nazwisko :	KLUCZ ODI		
Pesel			

Zadanie nr	Odpowiedź	Punktacja⁴
1	D	
2	В	
3	A	
4	С	
5	C	
6	В	
7	В	
8	C	
9	Е	
10	D	

^{*} Oceniane są wylącznie odpowiedzi umieszczone w Arkuszu odpowiedzi.

^{*} Wypełnia Komisja Egzaminacyjna.