Formális nyelvek gyakorló feladatok 1

ELSŐ FELADAT

Adjunk példát olyan L_1 és L_2 - V ábécé feletti - nyelvekre, amelyekre L_1 L_2 = L_2 L_1 . Keressünk nem triviális megoldást is.

Megoldás: Triviális megoldások:

- $L_1 = \emptyset$, $L_1 = \{ \varepsilon \}$ vagy a szimmetria miatt L_2 -re teljesül az előző esetek egyike.
- $L_1 = L_2$.
- V ábécé egyelemű.
- Az egyik nyelvben benne szerepel ε , a másik nyelv pedig a V^* (univerzális nyelv).

Egy nem triviális megoldás: Legyen $V = \{a, b\}$, $L_1 = \{\varepsilon, a\}$, L_2 pedig legyen azon V feletti szavak halmaza, amelyekben pontosan egy b szerepel. Ekkor L_1 $L_2 = L_2$ $L_1 = L_2$.

MÁSODIK FELADAT

Igazoljuk vagy cáfoljuk, hogy $(L_1 \cup L_2)^* = L_1^* \cup L_2^*$!

Megoldás: Az állítás hamis. Vegyük a következő ellenpéldát: Legyen $L_1 = \{a\}$ és $L_2 = \{b\}$, ekkor $(L_1 \cup L_2)^*$ az akárhány a-t és b-t tartalmazó szavak halmaza, még $L_1^* \cup L_2^*$ a csupa a-t és csupa b-t tartalmazó szavak nyelve lesz.

HARMADIK FELADAT

Tekintsük a következő nyelvet:

$$L(G) = \{ w \in \{a, b\}^* \mid w = w^R \text{ \'es } |w| \text{ p\'aratlan} \}$$

Adja meg azt a G nyelvtant, amely a nyelvet generálja!

Megoldás

$$G = (\{S\}, \{a, b\}, \{S \rightarrow aSa \mid bSb \mid a \mid b\}, S)$$

NEGYEDIK FELADAT

Legyen
$$G = (V, \Sigma, R, S)$$
, ahol $V = \{S, A, B\}$, $\Sigma = \{a\}$,

$$R = \{S \rightarrow ABS \mid AB \quad A \rightarrow aA \mid a \quad B \rightarrow bA\}.$$

Az alábbi szavak közül melyek vannak L(G)-ben? Állítását indokolja!

aabbaa,
 abaaba.

Megoldás

- 1. Nincs L(G)-ben, mert G nem generál olyan szót, amelyben valamely b előfordulást ne a követne.
- 2. L(G)-ben van, a szabályokkal le lehetr vezetni.

ÖTÖDIK FELADAT

(i) S → ε, ilyenkor S a kezdőszimbólum,
 és S szabály jobboldalán nem szerepelhet,

Adjunk meg a $G=(\{S,A,B\},\{x,y,z\},S,H)$ környezetfüggő nyelvtannal ekvivalens Kuroda-féle normálalakú nyelvtant, ahol

 $(ii) \ A \longrightarrow t,$

 $H=\{S \to ABABx, ABA \to AyyyA, Ayyy \to Byyy, A \to z, A \to BB, B \to x\}.$

(iii) $A \longrightarrow BC$,

Megoldás:

(iv) $AB \longrightarrow AC$,

(I.) Első lépésben megadunk egy G_1 nyelvtant, ami ekvivalens a G

(v) $BA \longrightarrow CA$,

nyelvtannal és terminális csak $X \rightarrow a$ alakú szabályban fordul elő ($X \in N$,

 $a \in T$). Ehhez a G nyelvtan minden olyan x_i terminális betűjéhez, amely szerepel olyan szabályban, ami nem normálalakú, új X_i nemterminálist vezetünk be és felvesszük az $X_i \to x_i$ szabályokat, valamint a H szabályhalmaz elemeit átvesszük úgy, hogy a szabályokban az x_i betűk azon előfordulásait, melyek nem normálalakú szabályban szerepelnek, X_i -re cseréljük. Jelen esetben laz új nemterminálisok az X és az Y:

 $G_1 = (\{S,A,B,X,Y\},\{x,y,z\},S,H_1), \text{ ahol}$

 $H_1 = \{ X \rightarrow x, Y \rightarrow y, S \rightarrow ABABX, ABA \rightarrow AYYYA, AYYY \rightarrow BYYY, A \rightarrow z, A \rightarrow BB, B \rightarrow x \}$

(II.) Második lépésben megadunk egy G_2 nyelvtant, ami ekvivalens az eredeti nyelvtannal, normálformájú és nem szerepel benne $Y \to Y_1 Y_2 ... Y_n$, $n \ge 3$ alakú szabály. Jelen esetben $S \to ABABX$ szabályból indulunk ki: $G_2 = (\{S,A,B,X,Y,Z_1,Z_2,Z_3\},\{x,y,z\},S,H_2)$, ahol

 $H_2=\{X \rightarrow x, Y \rightarrow y, S \rightarrow AZ_1, Z_1 \rightarrow BZ_2, Z_2 \rightarrow AZ_3, Z_3 \rightarrow BX, ABA \rightarrow AYYYA, AYYY \rightarrow BYYY, A \rightarrow z, A \rightarrow BB, B \rightarrow x\}$

(III.) Harmadik lépésben megadjuk az eredeti nyelvtannal ekvivalens G' Kuruda-féle normá alakú nyelvtant.

Ehhez a G₂ nyelvtanból indulunk ki.

A H_2 szabályhalmaz $X_1X_2...X_n \rightarrow Y_1Y_2...Y_m, n \ge 2, m \ge 3$ alakú szabályait helyettesítjük új szabályokkal, a többi szabályt pedig változtatás nélkül tvesszük a H' szabályhalmazba..

 $ABA \rightarrow AYYYA$ átalakítása:

$$AB \rightarrow AZ_4, Z_4A \rightarrow YZ_5, Z_5 \rightarrow YZ_6, Z_6 \rightarrow YA$$

 $AYYY \rightarrow BYYY$ átalakítása:

$$AY \rightarrow BZ_7, Z_7Y \rightarrow YZ_8, Z_8Y \rightarrow YY,$$

Összesítve: $G' = (\{S,A,B,X,Y,Z_1,Z_2,Z_3,Z_4,Z_5,Z_6,Z_7,Z_8\}, \{x,y,z\},S,H')$, ahol $H' = \{X \to x, Y \to y, S \to AZ_1, Z_1 \to BZ_2, Z_2 \to AZ_3, Z_3 \to BX, AB \to AZ_4, Z_4A \to YZ_5, Z_5 \to YZ_6, Z_6 \to YA, AY \to BZ_7, Z_7Y \to YZ_8, Z_8Y \to YY, A \to z, A \to BB, B \to x \}$

IV. Most a $QW \rightarrow RT$ szabályokat átalakítjuk úgy, $QW \rightarrow RW \rightarrow RT$. Azaz:

 $Z_4A \rightarrow YZ_5$ helyett $Z_4A \rightarrow YA$, $YA \rightarrow YZ_5$

 $AY \rightarrow BZ_7$, helyett $AY \rightarrow BY$, $BY \rightarrow BZ_7$

 $Z_7Y \rightarrow YZ_8$, helyett $Z_7Y \rightarrow YY$, $YY \rightarrow YZ_8$

A végeredményben a szabályok alakja:

$$X \rightarrow x$$
, $Y \rightarrow y$, $S \rightarrow AZ_1$, $Z_1 \rightarrow BZ_2$, $Z_2 \rightarrow AZ_3$, $Z_3 \rightarrow BX$, $AB \rightarrow AZ_4$, $Z_4A \rightarrow YA$, $YA \rightarrow YZ_5$, $Z_5 \rightarrow YZ_6$, $Z_6 \rightarrow YA$, $AY \rightarrow BY$, $BY \rightarrow BZ_7$, $Z_7Y \rightarrow YY$, $YY \rightarrow YZ_8$, $Z_8Y \rightarrow YY$, $A \rightarrow z$, $A \rightarrow BB$, $B \rightarrow x$ }

Megjegyzés: Láncszabály most nem volt, egyébként láncmentesíteni is kellett volna. Epszilon-menetsíteni sem kellett, mert nem volt ε-szabály, és így persze az új kezdőjel bevezetése sem került szóba.

Formális nyelvek gyakorló feladatok 1

HATODIK FELADAT

Küszöbölje ki a törlő szabályokat (azaz végezzen epszilon-mentesítést) a G=({S, A, B}, {a, b}, S,H) grammatikából!

$$S \rightarrow \varepsilon$$
, $S \rightarrow AB$, $A \rightarrow SAB$, $A \rightarrow a$, $B \rightarrow S$, $B \rightarrow b$

Megoldás.

H={S, B} az a halmaz, melyből ε levezethető. Mivel S benne van H-ban és szerepel szabály jobb oldalán, ezért új kezdőjelet kell bevezetni. S' \rightarrow S és S' \rightarrow ε

Foglalkoznunk kell azokal a szabályokkal, ahol a jobboldalon H* beli nyelvtani jelek vannak:

 $S \rightarrow AB$ miatt $S \rightarrow A$ is kell.

 $A \rightarrow SAB$ miatt $A \rightarrow AB$, $A \rightarrow SA$ is kell.

Összegezve: $S' \rightarrow S$, $S' \rightarrow \varepsilon$, $S \rightarrow A$, $S \rightarrow AB$, $S \rightarrow A$, $A \rightarrow SAB$, $A \rightarrow AB$, $A \rightarrow SA$.

HFTFDIK FFLADAT

Legyen $G = (V, \Sigma, R, S)$, ahol $V = \{S, A, B\}$, $\Sigma = \{a\}$,

$$R = \{S \rightarrow ABS \mid AB$$

 $A \rightarrow aA \mid a$
 $B \rightarrow bA\}.$

Az alábbi szavak közül melyek vannak L(G)-ben? Állítását indokolja!

aabaab,
 aaaaba,

Megoldás

- 1. Nincs L(G)-ben, mert G nem generál b-vel végződő szót.
- 2. L(G)-ben van, mert levezethető a szabályokkal.

NYOLCADIK FELADAT

Adjunk meg a G nyelvtannal ekvivalens Chomsky-féle normálalakú nyelvtant, ahol a szabályok a következők:

$$S \rightarrow BB, A \rightarrow S, A \rightarrow xxzz, A \rightarrow y, B \rightarrow AxzxA, B \rightarrow A$$

Megoldás

1.)

Legyenek az új nemterminálisok az X és a Z, ekkor:

$$X \rightarrow x$$
, $Z \rightarrow z$, $S \rightarrow BB$, $A \rightarrow S$, $A \rightarrow XXZZ$, $A \rightarrow y$, $B \rightarrow AXZXA$, $B \rightarrow A$

II.)
$$X \rightarrow x, Z \rightarrow z, S \rightarrow BB, A \rightarrow S, A \rightarrow XZ_1, Z_1 \rightarrow XZ_2, Z_2 \rightarrow ZZ, A \rightarrow y, B \rightarrow AZ_3, Z_3 \rightarrow XZ_4, Z_4 \rightarrow ZZ_5, Z_5 \rightarrow XA, B \rightarrow A$$

(III.)

 $U(S) = \{A, B\}, U(A) = \{B\}.$

 $U(S)=\{A, B\}$ az a halmaz. melynek elemeiből S-t láncszabállyal le lehet vezetni. Ezért ahol a baloldalon S van, oda A-t is kell írni, illetve B-t is. Tehát S \rightarrow BB miatt A \rightarrow BB és B \rightarrow BB szabályokat is be kell vezetni.

 $U(A)=\{B\}$, mert van $B\to A$ szabály. Ezért ahol a baloldalon A van, oda B-t is kell írni. Tehát $A\to XZ_1$ miatt $B\to XZ_1$ is kell. $A\to y$ miatt $B\to y$ is kell.

Formális nyelvek gyakorló feladatok 1

$$X \rightarrow x$$
, $Z \rightarrow z$, $S \rightarrow BB$, $A \rightarrow BB$, $B \rightarrow BB$, $A \rightarrow XZ_1$, $B \rightarrow XZ_1$, $Z_1 \rightarrow XZ_2$, $Z_2 \rightarrow ZZ$, $A \rightarrow y$, $B \rightarrow y$, $B \rightarrow AZ_3$, $Z_3 \rightarrow XZ_4$, $Z_4 \rightarrow ZZ_5$, $Z_5 \rightarrow XA$

KILENCEDIK FELADAT

Írjuk le a következő nyelvet környezetfüggetlen nyelvtannal:

$$L = \{a^i b^j | i, j \in \mathbb{N}_0 \land i \neq j\}$$

Megoldás

$$S \to aSb|A|B, A \to aA|a, B \to bB|b$$

TIZEDIK FELADAT

Elemezzük CYK algoritmussal az *aabbcc* szót az alábbi *G* nyelvtan esetén:

 $S \rightarrow AB \mid BC$

 $A \rightarrow XA \mid a$

 $X \rightarrow a$

 $C \rightarrow YC \mid c$

 $Y \rightarrow c$

 $B \rightarrow UV \mid VW$

 $U \rightarrow XX$

 $W \rightarrow YY$

 $V \rightarrow ZZ$

 $Z \rightarrow b$

Megoldás Az aabbcc levezethető, mert a táblázat bal felső sorában a kezdőjel (S) szerepel.

S		_			
S	S		_		
В	_	В			
_	_	_	_		
A,U		V		C,W	
A,X	A,X	Z	Z	C,Y	C,Y
а	а	b	b	С	С