Heapsort COMS10018 - Algorithms

Dr Christian Konrad

Sorting Algorithms seen so far

Sorting Algorithms seen so far

• Insertionsort: $O(n^2)$ in worst case, in place, stable

Sorting Algorithms seen so far

- Insertionsort: $O(n^2)$ in worst case, in place, stable
- Mergesort: $O(n \log n)$ in worst case, NOT in place, stable

Sorting Algorithms seen so far

- Insertionsort: $O(n^2)$ in worst case, in place, stable
- Mergesort: $O(n \log n)$ in worst case, NOT in place, stable

Heapsort (best of the two)

Sorting Algorithms seen so far

- Insertionsort: $O(n^2)$ in worst case, in place, stable
- Mergesort: $O(n \log n)$ in worst case, NOT in place, stable

Heapsort (best of the two)

• $O(n \log n)$ in worst case, in place, **NOT** stable

Sorting Algorithms seen so far

- Insertionsort: $O(n^2)$ in worst case, in place, stable
- Mergesort: $O(n \log n)$ in worst case, NOT in place, stable

Heapsort (best of the two)

- $O(n \log n)$ in worst case, in place, **NOT** stable
- Uses a *heap data structure* (a heap is special tree)

Sorting Algorithms seen so far

- Insertionsort: $O(n^2)$ in worst case, in place, stable
- Mergesort: $O(n \log n)$ in worst case, NOT in place, stable

Heapsort (best of the two)

- $O(n \log n)$ in worst case, in place, **NOT** stable
- Uses a *heap data structure* (a heap is special tree)

Data Structures

Sorting Algorithms seen so far

- Insertionsort: $O(n^2)$ in worst case, in place, stable
- Mergesort: $O(n \log n)$ in worst case, NOT in place, stable

Heapsort (best of the two)

- $O(n \log n)$ in worst case, in place, **NOT** stable
- Uses a *heap data structure* (a heap is special tree)

Data Structures

 Data storage format that allows for efficient access and modification

Sorting Algorithms seen so far

- Insertionsort: $O(n^2)$ in worst case, in place, stable
- Mergesort: $O(n \log n)$ in worst case, NOT in place, stable

Heapsort (best of the two)

- $O(n \log n)$ in worst case, in place, **NOT** stable
- Uses a *heap data structure* (a heap is special tree)

Data Structures

- Data storage format that allows for efficient access and modification
- Building block of many efficient algorithms

Sorting Algorithms seen so far

- Insertionsort: $O(n^2)$ in worst case, in place, stable
- Mergesort: $O(n \log n)$ in worst case, NOT in place, stable

Heapsort (best of the two)

- $O(n \log n)$ in worst case, in place, **NOT** stable
- Uses a *heap data structure* (a heap is special tree)

Data Structures

- Data storage format that allows for efficient access and modification
- Building block of many efficient algorithms
- For example, an array is a data structure

Priority Queues

Priority Queue:

Data structure that allows the following operations:

- Create(.): Create data structure given a set of data items
- Extract-Max(.): Remove the maximum element from the data structure and return it
- others...

Priority Queues

Priority Queue:

Data structure that allows the following operations:

- Create(.): Create data structure given a set of data items
- Extract-Max(.): Remove the maximum element from the data structure and return it
- others...

Sorting using a Priority Queue

Interpretation of an Array as a Complete Binary Tree

Interpretation of an Array as a Complete Binary Tree

Interpretation of an Array as a Complete Binary Tree

Interpretation of an Array as a Complete Binary Tree

Easy Navigation:

• Parent of i: $\lfloor i/2 \rfloor$

Interpretation of an Array as a Complete Binary Tree

1	2	3	4	5	6	7	8	9	10	11
14	3	9	8	16	2	1	7	11	12	5

Easy Navigation:

- Parent of i: |i/2|
- Left/Right Child of i: 2i and 2i + 1

The Heap Property

The Heap Property

The Heap Property

The Heap Property

The Heap Property

Key of nodes larger than keys of their children

Heap Property \rightarrow Maximum at root Important for Extract-Max(.)

Constructing a Heap: Create-Heap(.)

- Traverse tree with regards to right-to-left array ordering
- If node does not fulfill Heap Property: Heapify()

Constructing a Heap: Create-Heap(.)

- Traverse tree with regards to right-to-left array ordering
- ② If node does not fulfill Heap Property: Heapify()

Constructing a Heap: Create-Heap(.)

- Traverse tree with regards to right-to-left array ordering
- ② If node does not fulfill Heap Property: Heapify()

Constructing a Heap: Create-Heap(.)

- Traverse tree with regards to right-to-left array ordering
- If node does not fulfill Heap Property: Heapify()

Constructing a Heap: Create-Heap(.)

- Traverse tree with regards to right-to-left array ordering
- ② If node does not fulfill Heap Property: Heapify()

Constructing a Heap: Create-Heap(.)

- Traverse tree with regards to right-to-left array ordering
- ② If node does not fulfill Heap Property: Heapify()

Constructing a Heap: Create-Heap(.)

- Traverse tree with regards to right-to-left array ordering
- ② If node does not fulfill Heap Property: Heapify()

Constructing a Heap: Create-Heap(.)

- Traverse tree with regards to right-to-left array ordering
- ② If node does not fulfill Heap Property: Heapify()

Constructing a Heap: Create-Heap(.)

- Traverse tree with regards to right-to-left array ordering
- If node does not fulfill Heap Property: Heapify()

Constructing a Heap: Create-Heap(.)

- Traverse tree with regards to right-to-left array ordering
- If node does not fulfill Heap Property: Heapify()

Constructing a Heap: Create-Heap(.)

- Traverse tree with regards to right-to-left array ordering
- ② If node does not fulfill Heap Property: Heapify()

Constructing a Heap: Create-Heap(.)

- Traverse tree with regards to right-to-left array ordering
- ② If node does not fulfill Heap Property: Heapify()

Constructing a Heap: Create-Heap(.)

- Traverse tree with regards to right-to-left array ordering
- ② If node does not fulfill Heap Property: Heapify()

The Heapify Operation

Constructing a Heap: Create-Heap(.)

Given a binary tree, transform it into one that fulfills the Heap Property

- Traverse tree with regards to right-to-left array ordering
- ② If node does not fulfill Heap Property: Heapify()

The Heapify Operation

Constructing a Heap: Create-Heap(.)

Given a binary tree, transform it into one that fulfills the Heap Property

- Traverse tree with regards to right-to-left array ordering
- ② If node does not fulfill Heap Property: Heapify()

Heapify()

Let p be the key of a node and let c_1, c_2 be the keys of its children

Heapify()

Let p be the key of a node and let c_1, c_2 be the keys of its children

 $\bullet \ \mathsf{Let} \ c = \mathsf{max}\{c_1, c_2\}$

Heapify()

Let p be the key of a node and let c_1, c_2 be the keys of its children

- Let $c = \max\{c_1, c_2\}$
- If c > p then exchange nodes with keys p and c

Heapify()

Let p be the key of a node and let c_1, c_2 be the keys of its children

- Let $c = \max\{c_1, c_2\}$
- If c > p then exchange nodes with keys p and c
- call Heapify() recursively at node with key p

Heapify()

Let p be the key of a node and let c_1, c_2 be the keys of its children

- Let $c = \max\{c_1, c_2\}$
- If c > p then exchange nodes with keys p and c
- call Heapify() recursively at node with key p

Runtime:

Heapify()

Let p be the key of a node and let c_1, c_2 be the keys of its children

- Let $c = \max\{c_1, c_2\}$
- If c > p then exchange nodes with keys p and c
- call Heapify() recursively at node with key p

Runtime:

• Exchanging nodes requires time O(1)

Heapify()

Let p be the key of a node and let c_1, c_2 be the keys of its children

- Let $c = \max\{c_1, c_2\}$
- If c > p then exchange nodes with keys p and c
- call Heapify() recursively at node with key p

Runtime:

- Exchanging nodes requires time O(1)
- The number of recursive calls is bounded by the height of the tree, i.e., $O(\log n)$

Heapify()

Let p be the key of a node and let c_1, c_2 be the keys of its children

- Let $c = \max\{c_1, c_2\}$
- If c > p then exchange nodes with keys p and c
- call Heapify() recursively at node with key p

Runtime:

- Exchanging nodes requires time O(1)
- The number of recursive calls is bounded by the height of the tree, i.e., $O(\log n)$
- Runtime of **Heapify**: $O(\log n)$.

Heapify()

Let p be the key of a node and let c_1, c_2 be the keys of its children

- Let $c = \max\{c_1, c_2\}$
- If c > p then exchange nodes with keys p and c
- call Heapify() recursively at node with key p

Runtime:

- Exchanging nodes requires time O(1)
- The number of recursive calls is bounded by the height of the tree, i.e., $O(\log n)$
- Runtime of **Heapify**: $O(\log n)$.

Constructing a Heap: Create-Heap(.) Runtime $O(n \log n)$

More Precise Analysis of the Heap Construction Step

More Precise Analysis of the Heap Construction Step

• Heapify(x): $O(\text{depth of subtree rooted at } x) = O(\log n)$

More Precise Analysis of the Heap Construction Step

- Heapify(x): $O(\text{depth of subtree rooted at } x) = O(\log n)$
- **Observe:** Most nodes close to the "bottom" in a complete binary tree

More Precise Analysis of the Heap Construction Step

- Heapify(x): $O(\text{depth of subtree rooted at } x) = O(\log n)$
- **Observe:** Most nodes close to the "bottom" in a complete binary tree

More Precise Analysis of the Heap Construction Step

- Heapify(x): $O(\text{depth of subtree rooted at } x) = O(\log n)$
- **Observe:** Most nodes close to the "bottom" in a complete binary tree

Analysis:

• Let i be the largest integer such that $n' := 2^i - 1$ and n' < n

More Precise Analysis of the Heap Construction Step

- Heapify(x): $O(\text{depth of subtree rooted at } x) = O(\log n)$
- Observe: Most nodes close to the "bottom" in a complete binary tree

- Let *i* be the largest integer such that $n' := 2^i 1$ and n' < n
- There are at most n' internal nodes (candidates for Heapify())

More Precise Analysis of the Heap Construction Step

- Heapify(x): $O(\text{depth of subtree rooted at } x) = O(\log n)$
- Observe: Most nodes close to the "bottom" in a complete binary tree

- Let *i* be the largest integer such that $n' := 2^i 1$ and n' < n
- There are at most n' internal nodes (candidates for Heapify())
- These nodes are contained in a perfect binary tree

More Precise Analysis of the Heap Construction Step

- Heapify(x): $O(\text{depth of subtree rooted at } x) = O(\log n)$
- Observe: Most nodes close to the "bottom" in a complete binary tree

- Let *i* be the largest integer such that $n' := 2^i 1$ and n' < n
- There are at most n' internal nodes (candidates for Heapify())
- These nodes are contained in a perfect binary tree
- This tree has i levels

Analysis

Analysis

We sum over all relevant levels, count the number of nodes per level, and multiply with the depth of their subtrees:

Runtime = $\sum_{i=1}^{r} \#$ nodes at level $(i - j + 1) \cdot \text{depth of subtree} \cdot O(1)$

Analysis

Runtime
$$=\sum_{j=1}^{\#}$$
 nodes at level $(i-j+1)\cdot$ depth of subtree \cdot $O(1)$ $=O(1)\sum_{j=1}^{i}2^{i-j}\cdot j$

Analysis

Runtime =
$$\sum_{j=1}^{i} \#$$
 nodes at level $(i-j+1) \cdot \text{depth of subtree} \cdot O(1)$
= $O(1) \sum_{j=1}^{i} 2^{i-j} \cdot j = O(1) \cdot 2^{i} \cdot \sum_{j=1}^{i} \frac{j}{2^{j}}$

Analysis

Runtime =
$$\sum_{j=1}^{i} \#$$
 nodes at level $(i - j + 1) \cdot$ depth of subtree \cdot $O(1)$

$$= O(1) \sum_{j=1}^{i} 2^{i-j} \cdot j = O(1) \cdot 2^{i} \cdot \sum_{j=1}^{i} \frac{j}{2^{j}}$$

$$= O(2^{i})$$

Analysis

Runtime
$$=\sum_{j=1}^{i} \#$$
 nodes at level $(i-j+1)\cdot$ depth of subtree \cdot $O(1)$

$$=O(1)\sum_{j=1}^{i}2^{i-j}\cdot j=O(1)\cdot 2^{i}\cdot \sum_{j=1}^{i}\frac{j}{2^{j}}$$

$$=O(2^{i})=O(n')$$

Analysis

We sum over all relevant levels, count the number of nodes per level, and multiply with the depth of their subtrees:

 $= O(2^i) = O(n') = O(n)$,

Analysis

We sum over all relevant levels, count the number of nodes per level, and multiply with the depth of their subtrees:

$$= O(2^i) = O(n') = O(n)$$
,

using $\sum_{j=1}^{i} \frac{j}{2^{j}} = O(1)$ (see trick from linear/binary search lecture).

14	3	9	8	16	2	1	7	11	12	5
----	---	---	---	----	---	---	---	----	----	---

- ① Create-Heap()
- Repeat n times:
 - Swap root with last element
 - Decrease size of heap by 1
 - 6 Heapify(root)

16	14 9	11	12	2	1	7	8	3	5
----	------	----	----	---	---	---	---	---	---

- ① Create-Heap()
- Repeat n times:
 - Swap root with last element
 - Decrease size of heap by 1
 - Heapify(root)

5 14 9 11 12 2 1 7 8	16
----------------------	----

- ① Create-Heap()
- Repeat n times:
 - Swap root with last element
 - Decrease size of heap by 1
 - Heapify(root)

5	14	9	11	12	2	1	7	8	3	16
---	----	---	----	----	---	---	---	---	---	----

- ① Create-Heap()
- Repeat n times:
 - Swap root with last element
 - Decrease size of heap by 1
 - Heapify(root)

14	12	9	11	5	2	1	7	8	3	16
----	----	---	----	---	---	---	---	---	---	----

- ① Create-Heap()
- Repeat n times:
 - Swap root with last element
 - Decrease size of heap by 1
 - Heapify(root)

3	12	9	11	5	2	1	7	8	14	16
---	----	---	----	---	---	---	---	---	----	----

- ① Create-Heap()
- Repeat n times:
 - Swap root with last element
 - Decrease size of heap by 1
 - Heapify(root)

3 12 9 11 5 2 1 7 8 14	16
------------------------	----

- ① Create-Heap()
- Repeat n times:
 - Swap root with last element
 - Decrease size of heap by 1
 - Heapify(root)

- ① Create-Heap()
- Repeat n times:
 - Swap root with last element
 - Decrease size of heap by 1
 - Heapify(root)

3 11 9	8	5	2	1	7	12	14	16
--------	---	---	---	---	---	----	----	----

- ① Create-Heap()
- Repeat n times:
 - Swap root with last element
 - Decrease size of heap by 1
 - Heapify(root)

3	11	9	8	5	2	1	7	12	14	16
---	----	---	---	---	---	---	---	----	----	----

- ① Create-Heap()
- Repeat n times:
 - Swap root with last element
 - Oecrease size of heap by 1
 - Heapify(root)

Putting Everything Together

3	1	1	9	8	5	2	1	7	12	14	16
---	---	---	---	---	---	---	---	---	----	----	----

- Oreate-Heap()
- Repeat n times:
 - Swap root with last element
 - Decrease size of heap by 1
 - Heapify(root)

...

- Oreate-Heap()
- Repeat n times:
 - Swap root with last element
 - Decrease size of heap by 1
 - Heapify(root)

Putting Everything Together

- Create-Heap() O(n)
- Repeat n times:
 - **1** Swap root with last element O(1)
 - ② Decrease size of heap by 1 O(1)
 - **3** Heapify(root) $O(\log n)$

Runtime: $O(n \log n)$

Example:

- Oreate-Heap()
- Repeat n times:
 - Swap root with last element
 - Obecrease size of heap by 1
 - Heapify(root)

Example:

- Oreate-Heap()
- 2 Repeat *n* times:
 - Swap root with last element
 - Oecrease size of heap by 1
 - Heapify(root)

Example:

- Oreate-Heap()
- Repeat n times:
 - Swap root with last element
 - Obecrease size of heap by 1
 - Heapify(root)

Example:

- ① Create-Heap()
- 2 Repeat *n* times:
 - Swap root with last element
 - Oecrease size of heap by 1
 - Heapify(root)

1 is moved from left to the right past 1 and 1

Heap-sort not stable