We let $g = \prod_{j=0}^{n-1} (1-x_j z)$. Let F_a for $a=0,\ldots,n-1$ be the formal power series in z defined by $F_a = \frac{1}{1-x_a z} \left(\sum_{k=0}^{p-1} {c \choose k} (g-1)^k\right)$ where ${c \choose k} = \frac{c(c-1)\ldots(c-k+1)}{k!}$. We note that the coefficients of this power series lie in A; we will get the generators of the ideal J from these coefficients.

Proposition 0.1. Let f_a be the coefficient of z^p in the power series F_a . Then f_a for a = 0, ..., n-1 are annihilated by the Dunkl operators.

Proof. Taking the Dunkl operator of an element of A consists of taking derivatives in the x_i , dividing by polynomials in the x_i , and letting the symmetric group act on the x_i , in addition to linear operations. We see that this means we can apply the Dunkl operators to F_a and check that the coefficient of z^p in the result is 0 to show that the Dunkl operators annihilate the f_a .

We note that each F_a is symmetric in the x_i not including x_a , and that for any transposition $s_{ab} \in \Sigma_n$, $s_{ab}F_a = F_b$. Therefore we need only consider the action of the Dunkl operators on F_0 . We also note that \mathfrak{h} is spanned by $y_i - y_0$ for $0 < i \le n - 1$; if the Dunkl operator corresponding to y_j is D_j , then using the fact that F_0 is symmetric in the x_i with $i \ne 0$, we need only show that $(D_1 - D_0)(F_0)$ has z^p coefficient 0 to show that all of the f_a are annihilated by the Dunkl operators.

We also note that adding powers z^k with k > p will not change the value of the z^p coefficient in $(D_1 - D_0)(F_0)$. In particular, we note that since $x_0 + \cdots + x_{n-1} = 0$ divides the coefficient of z in g, we have $z^2 \mid g - 1$. Then since p > 2, we note that $z^{p+1} \mid z^{2p-2} \mid (g-1)^{p-1}$. Therefore we can add multiples of $(g-1)^{p-1}$ when taking the Dunkl operator's action on F_0 , since even when multipled by another power series it cannot contribute anything to the coefficient of z^p . We also note that we can add n times any multiple of F_0 since $n \equiv 0 \mod p$.

Using the allowed manipulations and the fact that $x_{n-1} = -x_0 + \cdots - x_{n-2}$, we see that $\frac{\partial F_0}{\partial x_1} = \left(\frac{zc}{1-x_{n-1}z} - \frac{zc}{1-x_1z}\right) F_0$ and $\frac{\partial F_0}{\partial x_0} = \left(\frac{zc}{1-x_{n-1}z} + \frac{z(1-c)}{1-x_1z}\right) F_0$ up to the z^p coefficient, which is all that we need.

We note that when 0 < i, j we have $\frac{1-s_{ij}}{x_i-x_j}(F_0) = 0$. We also see that for $0 < i \le n-1$ we have $\frac{1-s_{ij}}{x_i-x_j}(F_0) = \frac{z}{1-x_{iz}}F_0$.

We also consider $\frac{\partial F_0}{\partial z}$; up to the addition of some multiple of $(g-1)^{p-1}$, this is equal to $\frac{x_0}{1-x_0z}F_0 - \sum_{j\geq 0} \frac{-x_jc}{1-x_jz}F_0$.

Then we see that:

$$(D_{1} - D_{0})(F_{0}) = \frac{\partial F_{0}}{\partial x_{1}} - \frac{\partial F_{0}}{\partial x_{0}} - c\frac{1 - s_{01}}{x_{1} - x_{0}}(F_{0}) + c\sum_{j>0} \frac{1 - s_{0j}}{x_{0} - x_{j}}(F_{0})$$

$$= \left(\frac{zc}{1 - x_{n-1}z} - \frac{zc}{1 - x_{1}z}\right) F_{0} - \left(\frac{zc}{1 - x_{n-1}z} + \frac{z(1 - c)}{1 - x_{1}z}\right) F_{0} + \frac{zc}{1 - x_{1}z} F_{0} + \sum_{j>0} \frac{zc}{1 - x_{j}z} F_{0}$$

$$= \frac{z(c - 1)}{1 - x_{0}z} F_{0} + \sum_{j>0} \frac{zc}{1 - x_{j}z} f_{0}$$

$$= -\frac{z}{1 - x_{0}z} f_{0} + \left(\sum_{j} \frac{zc}{1 - x_{j}z} f_{0}\right) - nzcf_{0}$$

$$= -zf_{0} + \frac{z - x_{0}z^{2}}{1 - x_{0}z} f_{0} - \frac{z}{1 - x_{0}z} f_{0} + \left(\sum_{j} \frac{-zc + x_{j}cz^{2}}{1 - x_{j}z} f_{0} + \frac{zc}{1 - x_{j}z} f_{0}\right)$$

$$= -zf_{0} + \frac{-x_{0}z^{2}}{1 - x_{0}z} f_{0} + \left(\sum_{j} \frac{x_{j}cz^{2}}{1 - x_{j}z} f_{0}\right)$$

$$= -zf_{0} - z^{2} \frac{\partial f_{0}}{\partial z}$$

Then if b is the coefficient of z^{p-1} in f_0 , we see that the coefficient of z^p in $-zf_0$ is -b, and the coefficient of z^p in $-z^2\frac{\partial f_0}{\partial z}$ is -(p-1)b=b. Therefore the coefficient of z^p in $(D_1-D_0)(F_0)$ is -b+b=0; this means that $(D_1-D_0)(f_0)=0$.

Then as we discussed above, the symmetry of the f_a means that all the f_a are annihilated by the Dunkl operators, as desired.

Proposition 0.2. The f_a for a = 0, ..., n-2 are linearly independent, with $f_{n-1} = -\sum_{a=0}^{n-2} f_a$.

Proof. We recall that $F_a = \frac{1}{1-x_az} \left(\sum_{k=0}^{p-1} {c \choose k} (g-1)^k \right) = \left(\sum_{k=0}^{\infty} x_a^k z^k \right) \left(\sum_{k=0}^{p-1} {c \choose k} (g-1)^k \right)$. It is then clear that f_a is a homogeneous polynomial in the x_i of degree p, since the coefficient of z^k for any k in F_a is a homogeneous polynomial in the x_i of degree k for all k (this follows from the fact that this is true in both multiplicands in F_a).

We also note that:

$$\sum_{a=0}^{n-1} F_a = \left(\sum_{a} \frac{1}{1 - x_a z}\right) \left(\sum_{k=0}^{p-1} {c \choose k} (g - 1)^k\right)$$

$$= \left(\sum_{a} \frac{1}{1 - x_a z}\right) \left(\sum_{k=0}^{p-1} {c \choose k} (g - 1)^k\right) - n \left(\sum_{k=0}^{p-1} {c \choose k} (g - 1)^k\right)$$

$$= \left(\sum_{a} \frac{x_a z - 1}{1 - x_a z} + \frac{1}{1 - x_a z}\right) \left(\sum_{k=0}^{p-1} {c \choose k} (g - 1)^k\right)$$

$$= \left(\frac{-x_a z}{1 - x_a z}\right) \left(\sum_{k=0}^{p-1} {c \choose k} (g - 1)^k\right)$$

$$= \frac{z}{c} \frac{\partial g}{\partial z} \left(\sum_{k=0}^{p-1} {c \choose k} (g - 1)^k\right)$$

$$= z \frac{\partial}{\partial z} \left(\sum_{k=0}^{p-1} {c \choose k} (g - 1)^k\right)$$

This equality only holds up to the z^p coefficient, since we implicitly add a multiple of $(g-1)^{p-1}$ in the last step.

Then the coefficient of z^p in this sum is the coefficient of z^{p-1} in $\frac{\partial}{\partial z} \left(\sum_{k=0}^{p-1} {c \choose k} (g-1)^k \right)$, which is p times the coefficient of z^p in $\sum_{k=0}^{p-1} {c \choose k} (g-1)^k$, which must be 0 since we are in characteristic p. The coefficient of z^p in this sum is also $\sum_{a=0}^{n-1} f_a$, so we have $\sum_{a=0}^{n-1} f_a = 0$, and $f_{n-1} = -\sum_{a=0}^{n-2} f_a$.

We note that we can write the f_a as polynomials in c with coefficients from the polynomial ring $\mathbb{F}_p[x_i]$; we can therefore consider the 'constant term' of f_a as a polynomial in c. Recall that f_a is the coefficient of z^p in $F_a = \left(\sum_{k=0}^{\infty} x_a^k z^k\right) \left(\sum_{k=0}^{p-1} {c \choose k} (g-1)^k\right)$. Then as polynomials it is clear that $c \mid {c \choose k}$ for all k > 0; therefore when trying to find the constant term of the coefficient of z^p , we can ignore the terms with k > 0 in the second multiplicand. The term for k = 0 is just 1; it is then clear that the constant term (the coefficient of c^0) of f_a is x_a^p .

If $\sum_{a=0}^{n-2} \lambda_a f_a = 0$ for some λ_a rational functions in c, we can multiply through by a least common denominator and assume the λ_a are polynomials in c. Then the constant term of this sum is $\sum_{a=0}^{n-2} C(\lambda_a) x_a^p$ where $C(\lambda_a)$ represents the constant term of λ_a . Since the x_a^p for $a=0,\ldots,n-2$ are clearly linearly independent, we see that $C(\lambda_a)$ must be 0 for $a=0,\ldots,n-2$. Then we can factor out c from all of the λ_a , since if $\sum_{a=0}^{n-2} \lambda_a f_a = 0$, we have $\sum_{a=0}^{n-2} \frac{1}{c} \lambda_a f_a = 0$ as well; we have that $\frac{1}{c} \lambda_a$ is a polynomial since the constant terms in all the λ_a are 0. Then we see that by the same logic, the constant terms of λ_a/c for all a are 0, so the coefficient of c in all of the λ_a is 0. This means that $c^2 \mid \lambda_a$ for all a, so we can perform the same calculation again to get that the coefficient of c^2 is 0 and so forth. If $e = \max_a \deg \lambda_a$, we need only apply this logic e times to show that the coefficients of $e=1,c,\ldots,c^e$ in all of the λ_a are 0, meaning all of the λ_a are 0.

Then since $\sum_{a=0}^{n-2} \lambda_a f_a = 0$ means all the λ_a are 0, we see that f_a for $a = 0, \dots, n-2$ are linearly independent as desired.

let I the ideal generated by f_a

Proposition 0.3. A/I is a complete intersection.

Theorem 0.4. The f_a generate the ideal J; A/J has Hilbert series $\left(\frac{1-t^p}{1-t}\right)^{n-1}$.