# **Tyche Example**

# Set up.

One only needs to execute the following line once, in order to make sure recent enough packages are installed.

```
In [ ]: !pip install 'numpy>=1.17.2' 'pandas>=0.25.1'
```

#### Import packages.

```
In [1]:
        import numpy
                                  as np
        import matplotlib.pyplot as pl
        import pandas
                                  as pd
        import re
                                  as re
        import scipy.stats
                                  as st
        import seaborn
                                  as sb
        # The `tyche` package is located at <https://github.com/NREL/portfoli</pre>
        o/tree/master/production-function/framework/code/tyche/>.
        import tyche
                                  as ty
        from copy import deepcopy
```

# Load data.

The data are stored in a set of tab-separated value files in a folder.

```
In [2]: designs = ty.Designs("../data")
In [3]: investments = ty.Investments("../data")
```

Compile the production and metric functions for each technology in the dataset.

```
In [4]: designs.compile()
```

## Examine the data.

# The functions table specifies where the Python code for each technology resides.

| In [5]: | designs.funct       | tions |                     |              |            |            |         |       |
|---------|---------------------|-------|---------------------|--------------|------------|------------|---------|-------|
| Out[5]: |                     | Style | Module              | Capital      | Fixed      | Production | Metrics | Notes |
|         | Technology          |       |                     |              |            |            |         |       |
|         | Simple electrolysis | numpy | simple_electrolysis | capital_cost | fixed_cost | production | metrics |       |

Right now, only the style numpy is supported.

# The indices table defines the subscripts for variables.

| In [6]: | designs.indic       | es      |             |        |                          |       |
|---------|---------------------|---------|-------------|--------|--------------------------|-------|
| Out[6]: |                     |         |             | Offset | Description              | Notes |
|         | Technology          | Туре    | Index       |        |                          |       |
|         |                     | Capital | Catalyst    | 0      | Catalyst                 |       |
|         |                     | Fixed   | Rent        | 0      | Rent                     |       |
|         |                     | Input   | Electricity | 1      | Electricity              |       |
|         |                     |         | Water       | 0      | Water                    |       |
|         | Simple electrolysis |         | Cost        | 0      | Cost                     |       |
|         |                     | Metric  | GHG         | 2      | Greenhouse gas emissions |       |
|         |                     |         | Jobs        | 1      | Jobs                     |       |
|         |                     | Output  | Hydrogen    | 1      | Hydrogen                 |       |
|         |                     | Output  | Oxygen      | 0      | Oxygen                   |       |

The designs table contains the cost, input, efficiency, and price data for a scenario.

In [7]: designs.designs

| ts Notes                                 | Units    | value                                        |             |                                |                                  |              |  |
|------------------------------------------|----------|----------------------------------------------|-------------|--------------------------------|----------------------------------|--------------|--|
|                                          |          |                                              | Index       | Variable                       | Scenario                         | Technology   |  |
| le                                       | kJ/mole  | 279                                          | Electricity | lanut                          |                                  | Simple       |  |
| le                                       | g/mole   | 19.04                                        | Water       | Input                          |                                  | electrolysis |  |
| 1                                        | 1        | 0.85                                         | Electricity | Input                          |                                  |              |  |
| 1                                        | 1        | 0.95                                         | Water       | efficiency                     |                                  |              |  |
| (J                                       | USD/kJ   | 3.33e-5                                      | Electricity | Input                          |                                  |              |  |
| le                                       | USD/mole | 4.8e-3                                       | Water       | price                          |                                  |              |  |
| yr Effective lifetime of Al-Ni catalyst. | yr       | 3                                            | Catalyst    | Lifetime                       | Base Electrolysis                |              |  |
| 1                                        | 1        | 0.90                                         | Hydrogen    | Output                         |                                  |              |  |
| 1                                        | 1        | 0.90                                         | Oxygen      | efficiency                     |                                  |              |  |
| /g                                       | USD/g    | 1.0e-2                                       | Hydrogen    | Output                         |                                  |              |  |
| /g                                       | USD/g    | 3.0e-3                                       | Oxygen      | price                          |                                  |              |  |
| yr Rough estimate for a 50W setup.       | mole/yr  | 6650                                         | NaN         | Scale                          |                                  |              |  |
| le                                       | kJ/mole  | 279                                          | Electricity | lament                         |                                  |              |  |
| le                                       | g/mole   | 19.04                                        | Water       | Input                          |                                  |              |  |
| 1                                        | 1        | st.truncnorm(-3, 0.75, loc=0.97, scale=0.04) | Electricity | Input                          |                                  |              |  |
| 1                                        | 1        | st.truncnorm(-3, 2, loc=0.97, scale=0.01)    | Water       | efficiency                     |                                  |              |  |
| Ŋ                                        | USD/kJ   | 3.33e-5                                      | Electricity | Input                          |                                  |              |  |
| le                                       | USD/mole | 4.8e-3                                       | Water       | price                          |                                  |              |  |
| yr Effective lifetime of Al-Ni catalyst. | yr       | 3                                            | Catalyst    | Lifetime                       | Fast Progress on<br>Electrolysis |              |  |
| 1                                        | 1        | st.beta(3, 2, loc=0.90, scale=0.03)          | Hydrogen    | Output                         |                                  |              |  |
| 1                                        | 1        | st.beta(3, 2, loc=0.90,<br>scale=0.06)       | Oxygen      | efficiency                     |                                  |              |  |
| /g                                       | USD/g    | 1.0e-2                                       | Hydrogen    | Output                         |                                  |              |  |
| /g                                       | USD/g    | 3.0e-3                                       | Oxygen      | price                          |                                  |              |  |
| yr Rough estimate for a 50W setup.       | mole/yr  | 6650                                         | NaN         | Scale                          |                                  |              |  |
| le                                       | kJ/mole  | 279                                          | Electricity | lnnut                          | Moderate                         |              |  |
| le                                       | g/mole   | 19.04                                        | Water       | Progress on Input Electrolysis |                                  |              |  |

Value

Units

Notes

| Not                                  | Units    | Value                                        |             |                      |                                  |            |
|--------------------------------------|----------|----------------------------------------------|-------------|----------------------|----------------------------------|------------|
|                                      |          |                                              | Index       | Variable             | Scenario                         | Technology |
|                                      | 1        | st.truncnorm(-2, 1.75, loc=0.93, scale=0.04) | Electricity | Input                |                                  |            |
|                                      | 1        | st.truncnorm(-2, 3, loc=0.97, scale=0.01)    | Water       | efficiency           |                                  |            |
|                                      | USD/kJ   | 3.33e-5                                      | Electricity | Input                |                                  |            |
|                                      | USD/mole | 4.8e-3                                       | Water       | price                |                                  |            |
| Effect<br>lifetime<br>Al<br>cataly   | yr       | 3                                            | Catalyst    | Lifetime             |                                  |            |
|                                      | 1        | st.beta(2, 2, loc=0.90,<br>scale=0.03)       | Hydrogen    | Output<br>efficiency |                                  |            |
|                                      | 1        | st.beta(2, 2, loc=0.90,<br>scale=0.06)       | Oxygen      |                      |                                  |            |
|                                      | USD/g    | 1.0e-2                                       | Hydrogen    | Output               |                                  |            |
|                                      | USD/g    | 3.0e-3                                       | Oxygen      | price                |                                  |            |
| Rou<br>estimation<br>for a 50<br>set | mole/yr  | 6650                                         | NaN         | Scale                |                                  |            |
|                                      | kJ/mole  | 279                                          | Electricity |                      |                                  |            |
|                                      | g/mole   | 19.04                                        | Water       | Input                |                                  |            |
|                                      | 1        | st.truncnorm(-1, 2.75, loc=0.89, scale=0.04) | Electricity | Input                |                                  |            |
|                                      | 1        | st.truncnorm(-1, 4, loc=0.96, scale=0.01)    | Water       | efficiency           |                                  |            |
|                                      | USD/kJ   | 3.33e-5                                      | Electricity | Input                |                                  |            |
|                                      | USD/mole | 4.8e-3                                       | Water       | price                |                                  |            |
| Effect<br>lifetime<br>Al<br>cataly   | yr       | 3                                            | Catalyst    | Lifetime             | Slow Progress on<br>Electrolysis |            |
|                                      | 1        | st.beta(1, 2, loc=0.90,<br>scale=0.03)       | Hydrogen    | Output               |                                  |            |
|                                      | 1        | st.beta(1, 2, loc=0.90,<br>scale=0.06)       | Oxygen      | efficiency           |                                  |            |
|                                      | USD/g    | 1.0e-2                                       | Hydrogen    | Output               |                                  |            |
|                                      | USD/g    | 3.0e-3                                       | Oxygen      | price                |                                  |            |
| Rou<br>estima<br>for a 50<br>set     | mole/yr  | 6650                                         | NaN         | Scale                |                                  |            |

| The parameters each technology. | table contains additional techno-economic parameters for |
|---------------------------------|----------------------------------------------------------|
|                                 |                                                          |
|                                 |                                                          |
|                                 |                                                          |
|                                 |                                                          |
|                                 |                                                          |
|                                 |                                                          |
|                                 |                                                          |
|                                 |                                                          |
|                                 |                                                          |
|                                 |                                                          |

In [8]: designs.parameters

|                     |                                   |                                     | Offset | Value   | Units    | Notes                                         |
|---------------------|-----------------------------------|-------------------------------------|--------|---------|----------|-----------------------------------------------|
| Technology          | Scenario                          | Parameter                           |        |         |          |                                               |
| Simple electrolysis |                                   | Electricity consumption             | 3      | 237     | kJ       |                                               |
|                     |                                   | GHG factor for electricity          | 9      | 0.138   | gCO2e/kJ | based on 1<br>kWh = 0.5 kg<br>CO2e            |
|                     |                                   | GHG factor for water                | 8      | 0.00108 | gCO2e/g  | based on<br>244,956<br>gallons = 1<br>Mg CO2e |
|                     | Base Electrolysis                 | Hydrogen production                 | 1      | 2.00    | g        |                                               |
|                     |                                   | Jobs                                | 4      | 1.5e-4  | job/mole |                                               |
|                     |                                   | Oxygen production                   | 0      | 16.00   | g        |                                               |
|                     |                                   | Reference capital cost for catalyst | 6      | 0.63    | USD      |                                               |
|                     |                                   | Reference fixed cost for rent       | 7      | 1000    | USD/yr   |                                               |
|                     |                                   | Reference scale                     | 5      | 6650    | mole/yr  |                                               |
|                     |                                   | Water consumption                   | 2      | 18.08   | g        |                                               |
|                     |                                   | Electricity consumption             | 3      | 237     | kJ       |                                               |
|                     |                                   | GHG factor for electricity          | 9      | 0.138   | gCO2e/kJ | based on 1<br>kWh = 0.5 kg<br>CO2e            |
|                     |                                   | GHG factor for water                | 8      | 0.00108 | gCO2e/g  | based on<br>244,956<br>gallons = 1<br>Mg CO2e |
|                     | Fast Progress on                  | Hydrogen production                 | 1      | 2.00    | g        |                                               |
|                     | Electrolysis                      | Jobs                                | 4      | 1.5e-4  | job/mole |                                               |
|                     |                                   | Oxygen production                   | 0      | 16.00   | g        |                                               |
|                     |                                   | Reference capital cost for catalyst | 6      | 0.63    | USD      |                                               |
|                     |                                   | Reference fixed cost for rent       | 7      | 1000    | USD/yr   |                                               |
|                     |                                   | Reference scale                     | 5      | 6650    | mole/yr  |                                               |
|                     |                                   | Water consumption                   | 2      | 18.08   | g        |                                               |
|                     | Moderate Progress on Electrolysis | Electricity consumption             | 3      | 237     | kJ       |                                               |
|                     |                                   | GHG factor for electricity          | 9      | 0.138   | gCO2e/kJ | based on 1<br>kWh = 0.5 kg<br>CO2e            |
|                     |                                   | GHG factor for water                | 8      | 0.00108 | gCO2e/g  | based on<br>244,956<br>gallons = 1<br>Mg CO2e |

|            |                  |                                     | Offset | Value   | Units    | Notes                                         |
|------------|------------------|-------------------------------------|--------|---------|----------|-----------------------------------------------|
| Technology | Scenario         | Parameter                           |        |         |          |                                               |
|            |                  | Hydrogen production                 | 1      | 2.00    | g        |                                               |
|            |                  | Jobs                                | 4      | 1.5e-4  | job/mole |                                               |
|            |                  | Oxygen production                   | 0      | 16.00   | g        |                                               |
|            |                  | Reference capital cost for catalyst | 6      | 0.63    | USD      |                                               |
|            |                  | Reference fixed cost for rent       | 7      | 1000    | USD/yr   |                                               |
|            |                  | Reference scale                     | 5      | 6650    | mole/yr  |                                               |
|            |                  | Water consumption                   | 2      | 18.08   | g        |                                               |
|            |                  | Electricity consumption             | 3      | 237     | kJ       |                                               |
|            |                  | GHG factor for electricity          | 9      | 0.138   | gCO2e/kJ | based on 1<br>kWh = 0.5 kg<br>CO2e            |
|            |                  | GHG factor for water                | 8      | 0.00108 | gCO2e/g  | based on<br>244,956<br>gallons = 1<br>Mg CO2e |
|            | Slow Progress on | Hydrogen production                 | 1      | 2.00    | g        |                                               |
|            | Electrolysis     | Jobs                                | 4      | 1.5e-4  | job/mole |                                               |
|            |                  | Oxygen production                   | 0      | 16.00   | g        |                                               |
|            |                  | Reference capital cost for catalyst | 6      | 0.63    | USD      |                                               |
|            |                  | Reference fixed cost for rent       | 7      | 1000    | USD/yr   |                                               |
|            |                  | Reference scale                     | 5      | 6650    | mole/yr  |                                               |
|            |                  | Water consumption                   | 2      | 18.08   | g        |                                               |

The results table specifies the units of measure for results of computations.

```
In [9]:
          designs results
Out[9]:
                                                     Units Notes
                 Technology Variable
                                         Index
                                Cost
                                          Cost
                                                  USD/mole
                                          Cost
                                                  USD/gH2
                               Metric
                                          GHG
                                                gCO2e/gH2
            Simple electrolysis
                                          Jobs
                                                   job/gH2
                                      Hydrogen
                                                    g/mole
```

g/mole

The tranches table specifies multually exclusive possibilities for investments: only one Tranch may be selected for each Cateogry.

Oxygen

Output

|          | investments.     | tranches                |                                   |       |
|----------|------------------|-------------------------|-----------------------------------|-------|
| Out[10]: |                  |                         |                                   | Notes |
|          | Category         | Tranche                 | Scenario                          |       |
|          |                  | High Electrolysis R&D   | Fast Progress on Electrolysis     |       |
|          | Electrolysis R&D | Low Electrolysis R&D    | Slow Progress on Electrolysis     |       |
|          | Electionysis Rad | Medium Electrolysis R&D | Moderate Progress on Electrolysis |       |
|          |                  | No Flectrolysis R&D     | Base Electrolysis                 |       |

The investments table bundles a consistent set of tranches (one per category) into an overall investment.

```
In [11]:
            investments.investments
Out[11]:
                                                                             Amount Notes
                       Investment
                                         Category
                                                                  Tranche
                High R&D Spending
                                   Electrolysis R&D
                                                       High Electrolysis R&D
                                                                           5000000.0
                 Low R&D Spending
                                   Electrolysis R&D
                                                       Low Electrolysis R&D
                                                                           1000000.0
             Medium R&D Spending
                                   Electrolysis R&D
                                                   Medium Electrolysis R&D
                                                                           2500000.0
                  No R&D Spending
                                   Electrolysis R&D
                                                        No Electrolysis R&D
                                                                                  0.0
```

Evaluate the scenarios in the dataset.

```
In [12]: scenario_results = designs.evaluate_scenarios(sample_count=50)
In [13]: scenario_results.xs(1, level="Sample", drop_level=False)
Out[13]:
```

|              |                                  |        |          |          | Value     | Units     |          |         |
|--------------|----------------------------------|--------|----------|----------|-----------|-----------|----------|---------|
| Technology   | Scenario                         | Sample | Variable | Index    |           |           |          |         |
|              |                                  |        | Cost     | Cost     | 0.183900  | USD/mole  |          |         |
|              |                                  |        |          | Cost     | 0.102121  | USD/gH2   |          |         |
|              | Dago Floatrolygia                | 1      | Metric   | GHG      | 21.391959 | gCO2e/gH2 |          |         |
|              | Base Electrolysis                | ı      |          | Jobs     | 0.000083  | job/gH2   |          |         |
|              |                                  |        | Output   | Hydrogen | 1.800796  | g/mole    |          |         |
|              |                                  |        | Output   | Oxygen   | 14.406372 | g/mole    |          |         |
|              |                                  |        | Cost     | Cost     | 0.182517  | USD/mole  |          |         |
|              |                                  |        |          | Cost     | 0.097359  | USD/gH2   |          |         |
|              | Fast Progress on                 | 1      | Metric   | GHG      | 20.548792 | gCO2e/gH2 |          |         |
|              | Electrolysis                     | '      | '        | '        |           | Jobs      | 0.000080 | job/gH2 |
|              |                                  |        | Output   | Hydrogen | 1.874687  | g/mole    |          |         |
| Simple       |                                  |        | Output   | Oxygen   | 15.680858 | g/mole    |          |         |
| electrolysis |                                  |        |          | Cost     | Cost      | 0.184012  | USD/mole |         |
|              |                                  |        |          | Cost     | 0.099804  | USD/gH2   |          |         |
|              | Moderate Progress on             | 1      | Metric   | GHG      | 20.893801 | gCO2e/gH2 |          |         |
|              | Electrolysis                     | '      |          | Jobs     | 0.000081  | job/gH2   |          |         |
|              |                                  |        | Output   | Hydrogen | 1.843732  | g/mole    |          |         |
|              |                                  |        | Output   | Oxygen   | 14.860701 | g/mole    |          |         |
|              |                                  |        | Cost     | Cost     | 0.183164  | USD/mole  |          |         |
|              |                                  |        |          | Cost     | 0.099174  | USD/gH2   |          |         |
|              | Slow Progress on<br>Electrolysis | 1      | Metric   | GHG      | 20.858033 | gCO2e/gH2 |          |         |
|              |                                  | ı      | '        |          | Jobs      | 0.000081  | job/gH2  |         |
|              |                                  |        | Output   | Hydrogen | 1.846893  | g/mole    |          |         |
|              |                                  |        | Output   | Oxygen   | 15.190050 | g/mole    |          |         |

### Save results.

```
In [14]: scenario_results.to_csv("example-scenario.csv")
```

### Plot GHG metric.

```
In [15]: g = sb.boxplot(
    x="Scenario",
    y="Value",
    data=scenario_results.xs(
        ["Metric", "GHG"],
        level=["Variable", "Index"]
    ).reset_index()[["Scenario", "Value"]],
    order=["Base Electrolysis", "Slow Progress on Electrolysis", "Moderate Progress on Electrolysis", "Fast Progress on Electrolysis"])
    g.set(ylabel="GHG Footprint [gCO2e / gH2]")
    g.set_xticklabels(g.get_xticklabels(), rotation=15);
```



Plot cost metric.

```
In [16]: g = sb.boxplot(
    x="Scenario",
    y="Value",
    data=scenario_results.xs(
        ["Metric", "Cost"],
        level=["Variable", "Index"]
    ).reset_index()[["Scenario", "Value"]],
    order=["Base Electrolysis", "Slow Progress on Electrolysis", "Moderate Progress on Electrolysis", "Fast Progress on Electrolysis"])
    g.set(ylabel="Cost [USD / gH2]")
    g.set_xticklabels(g.get_xticklabels(), rotation=15);
```



Plot employment metric.

```
In [17]: g = sb.boxplot(
    x="Scenario",
    y="Value",
    data=scenario_results.xs(
        ["Metric", "Jobs"],
        level=["Variable", "Index"]
    ).reset_index()[["Scenario", "Value"]],
    order=["Base Electrolysis", "Slow Progress on Electrolysis", "Moderate Progress on Electrolysis", "Fast Progress on Electrolysis"])
    g.set(ylabel="Employment [job / gH2]")
    g.set_xticklabels(g.get_xticklabels(), rotation=15);
```



# **Evaluate the investments in the dataset.**

```
In [18]: investment_results = investments.evaluate_investments(designs, sample
    _count=50)
```

#### Costs of investments.

```
In [19]: investment_results.amounts
Out[19]:
```

# Amount

| investment          |           |
|---------------------|-----------|
| High R&D Spending   | 5000000.0 |
| Low R&D Spending    | 1000000.0 |
| Medium R&D Spending | 2500000.0 |
| No R&D Spending     | 0.0       |

# Benefits of investments.

In [20]: investment\_results.metrics.xs(1, level="Sample", drop\_level=False)

Out[20]:

| ٠.      | 74.40     |       |                     |        |                      |                     |                     |                     |              |                     |        |                      |  |  |  |     |
|---------|-----------|-------|---------------------|--------|----------------------|---------------------|---------------------|---------------------|--------------|---------------------|--------|----------------------|--|--|--|-----|
|         |           | Index | Technology          | Sample | Scenario             | Tranche             | Category            | Investment          |              |                     |        |                      |  |  |  |     |
| USD/g   | 0.102121  | Cost  |                     |        |                      | No                  |                     |                     |              |                     |        |                      |  |  |  |     |
| gCO2e/g | 21.391959 | GHG   | Simple electrolysis | 1      | Base<br>Electrolysis | Electrolysis        | Electrolysis<br>R&D | No R&D<br>Spending  |              |                     |        |                      |  |  |  |     |
| job/g   | 0.000083  | Jobs  | ,                   | -      | •                    | R&D                 |                     |                     |              |                     |        |                      |  |  |  |     |
| USD/g   | 0.097521  | Cost  |                     |        | Fast                 | High                |                     |                     |              |                     |        |                      |  |  |  |     |
| gCO2e/g | 20.568231 | GHG   | Simple electrolysis | 1      | s Progress           | Electrolysis        | Electrolysis<br>R&D |                     | ,            | ,                   | , FIEC | High R&D<br>Spending |  |  |  |     |
| job/g   | 0.000080  | Jobs  | , , , , , ,         | ·      |                      |                     | Electrolysis        | R&D                 |              |                     |        |                      |  |  |  |     |
| USD/g   | 0.098408  | Cost  |                     |        | Moderate             | Medium              |                     | Medium              |              |                     |        |                      |  |  |  |     |
| gCO2e/g | 20.688324 | GHG   | Simple electrolysis | 1      | Progress             | Electrolysis        | Electrolysis        |                     | Electrolysis | Electrolysis<br>R&D |        |                      |  |  |  | R&D |
| job/g   | 0.000081  | Jobs  |                     |        | Electrolysis         | Καυ                 |                     | Spending            |              |                     |        |                      |  |  |  |     |
| USD/g   | 0.099851  | Cost  |                     |        | Slow                 | Low                 |                     |                     |              |                     |        |                      |  |  |  |     |
| gCO2e/g | 21.119273 | GHG   | Simple electrolysis | 1      | Progress on          | Electrolysis<br>R&D | Electrolysis<br>R&D | Low R&D<br>Spending |              |                     |        |                      |  |  |  |     |
| job/g   | 0.000082  | Jobs  |                     |        | Electrolysis         | Rad                 |                     |                     |              |                     |        |                      |  |  |  |     |
| , h     |           |       |                     |        |                      |                     |                     | 4                   |              |                     |        |                      |  |  |  |     |

Value

Ur

In [21]: investment\_results.summary.xs(1, level="Sample", drop\_level=False)

Out[21]:

|                     |        |       | Value     | Units     |
|---------------------|--------|-------|-----------|-----------|
| Investment          | Sample | Index |           |           |
|                     |        | Cost  | 0.102121  | USD/gH2   |
| No R&D Spending     | 1      | GHG   | 21.391959 | gCO2e/gH2 |
|                     |        | Jobs  | 0.000083  | job/gH2   |
|                     |        | Cost  | 0.097521  | USD/gH2   |
| High R&D Spending   | 1      | GHG   | 20.568231 | gCO2e/gH2 |
|                     |        | Jobs  | 0.000080  | job/gH2   |
|                     |        | Cost  | 0.098408  | USD/gH2   |
| Medium R&D Spending | 1      | GHG   | 20.688324 | gCO2e/gH2 |
|                     |        | Jobs  | 0.000081  | job/gH2   |
|                     |        | Cost  | 0.099851  | USD/gH2   |
| Low R&D Spending    | 1      | GHG   | 21.119273 | gCO2e/gH2 |
|                     |        | Jobs  | 0.000082  | job/gH2   |

#### Save results.

```
In [22]: investment_results.amounts.to_csv("example-investment-amounts.csv")
In [23]: investment_results.metrics.to_csv("example-investment-metrics.csv")
```

#### Plot GHG metric.

```
In [24]: g = sb.boxplot(
    x="Investment",
    y="Value",
    data=investment_results.metrics.xs(
        "GHG",
        level="Index"
    ).reset_index()[["Investment", "Value"]],
    order=["No R&D Spending", "Low R&D Spending", "Medium R&D Spending",
    "High R&D Spending"]
)
    g.set(ylabel="GHG Footprint [gCO2e / gH2]")
    g.set_xticklabels(g.get_xticklabels(), rotation=15);
```



#### Plot cost metric.

```
In [25]: g = sb.boxplot(
    x="Investment",
    y="Value",
    data=investment_results.metrics.xs(
        "Cost",
        level="Index"
    ).reset_index()[["Investment", "Value"]],
    order=["No R&D Spending", "Low R&D Spending", "Medium R&D Spending",
    "High R&D Spending"]
)
    g.set(ylabel="Cost [USD / gH2]")
    g.set_xticklabels(g.get_xticklabels(), rotation=15);
```



Plot employment metric.

```
In [26]: g = sb.boxplot(
    x="Investment",
    y="Value",
    data=investment_results.metrics.xs(
        "Jobs",
        level="Index"
    ).reset_index()[["Investment", "Value"]],
    order=["No R&D Spending", "Low R&D Spending", "Medium R&D Spending",
    "High R&D Spending"]
)
    g.set(ylabel="Employment [job / gH2]")
    g.set_xticklabels(g.get_xticklabels(), rotation=15);
```



# Sensitity analysis.

### Vary the four efficiencies in the design.

# Start from the base case.

Out[29]:

|                        |                      |                      |                                 | Value                                     | Units    | Notes                           |
|------------------------|----------------------|----------------------|---------------------------------|-------------------------------------------|----------|---------------------------------|
| Technology             | Scenario             | Variable             | Index                           |                                           |          |                                 |
|                        |                      | l                    | Electricity                     | 279                                       | kJ/mole  |                                 |
|                        |                      | Input                | Water                           | 19.04                                     | g/mole   |                                 |
|                        |                      | Input<br>efficiency  | Electricity                     | 0.85                                      | 1        |                                 |
|                        |                      |                      | Water                           | 0.95                                      | 1        |                                 |
|                        |                      | Input price          | Electricity                     | 3.33e-<br>5                               | USD/kJ   |                                 |
| Cimple                 | Dage                 |                      | Water                           | 4.8e-3                                    | USD/mole |                                 |
| Simple<br>electrolysis | Base<br>Electrolysis | Lifetime             | ne Catalyst 3 yr <sup>Eff</sup> | Effective lifetime of Al-<br>Ni catalyst. |          |                                 |
|                        |                      | Output<br>efficiency | Hydrogen                        | 0.90                                      | 1        |                                 |
|                        |                      |                      | Oxygen                          | 0.90                                      | 1        |                                 |
|                        |                      | 0.10.10.10.          | Hydrogen                        | 1.0e-2                                    | USD/g    |                                 |
|                        |                      | Output price         | Oxygen                          | 3.0e-3                                    | USD/g    |                                 |
|                        |                      | Scale                | NaN                             | 6650                                      | mole/yr  | Rough estimate for a 50W setup. |

#### Out[30]:

|              |              |                                     | Offset | Value   | Units    | Notes                                      |
|--------------|--------------|-------------------------------------|--------|---------|----------|--------------------------------------------|
| Technology   | Scenario     | Parameter                           |        |         |          |                                            |
|              |              | Electricity consumption             | 3      | 237     | kJ       |                                            |
|              |              | GHG factor for<br>electricity       | 9      | 0.138   | gCO2e/kJ | based on 1 kWh = 0.5 kg CO2e               |
|              |              | GHG factor for water                | 8      | 0.00108 | gCO2e/g  | based on 244,956<br>gallons = 1 Mg<br>CO2e |
|              |              | Hydrogen production                 | 1      | 2.00    | g        |                                            |
| Simple       | Base         | Jobs                                | 4      | 1.5e-4  | job/mole |                                            |
| electrolysis | Electrolysis | Oxygen production                   | 0      | 16.00   | g        |                                            |
|              |              | Reference capital cost for catalyst | 6      | 0.63    | USD      |                                            |
|              |              | Reference fixed cost for rent       | 7      | 1000    | USD/yr   |                                            |
|              |              | Reference scale                     | 5      | 6650    | mole/yr  |                                            |
|              |              | Water consumption                   | 2      | 18.08   | g        |                                            |

## Generate the new scenarios and append them to the previous ones.

```
In [31]: sensitivities = deepcopy(designs)
sensitivities.designs = sensitivities.designs[0:0]
sensitivities.parameters = sensitivities.parameters[0:0]
```

```
# Iterate over variables and efficiencies.
In [32]:
         for variable, index in variables:
             for efficiency in efficiencies:
                 # Name the scenario.
                 scenario = "Let " + variable + " @ " + index + " = " + str(ro
         und(efficiency, 3))
                 # Alter the base case.
                 vary_design = base_design.rename(index={"Base Electrolysis" :
         scenario}, level=1)
                 vary_design.loc[("Simple electrolysis", scenario, variable, i
         ndex), "Value"] = efficiency
                 # Keep the parameters the same.
                 vary_parameters = base_parameters.rename(index={"Base Electro"})
         lysis" : scenario}, level=1)
                 # Append the results to the existing table of scenarios.
                 sensitivities.designs = sensitivities.designs.append(vary des
         ign)
                 sensitivities.parameters = sensitivities.parameters.append(va
         ry parameters)
```

Remember to compile the design, since we've added scenarios.

```
In [33]: sensitivities.compile()
```

See how many rows there are in the tables now.

```
In [34]: sensitivities.designs.shape
Out[34]: (480, 3)
In [35]: sensitivities.parameters.shape
Out[35]: (400, 4)
```

In [36]: sensitivities.designs

Out[36]:

|              |                                             |             |             | Value       | Units   | Notes                           |
|--------------|---------------------------------------------|-------------|-------------|-------------|---------|---------------------------------|
| Technology   | Scenario                                    | Variable    | Index       |             |         |                                 |
|              | Let Input efficiency @ Water                | Input       | Electricity | 279         | kJ/mole |                                 |
|              |                                             |             | Water       | 19.04       | g/mole  |                                 |
|              |                                             | officionay  | Electricity | 0.85        | 1       |                                 |
|              | = 0.75                                      |             | Water       | 0.75        | 1       |                                 |
|              |                                             | Input price | Electricity | 3.33e-<br>5 | USD/kJ  |                                 |
| Simple       |                                             |             |             |             |         |                                 |
| electrolysis |                                             | efficiency  | Hydrogen    | 0.975       | 1       |                                 |
|              |                                             |             | Oxygen      | 0.90        | 1       |                                 |
|              | Let Output efficiency @<br>Hydrogen = 0.975 | nrice       | Hydrogen    | 1.0e-2      | USD/g   |                                 |
|              |                                             |             | Oxygen      | 3.0e-3      | USD/g   |                                 |
|              |                                             | Scale       | NaN         | 6650        | mole/yr | Rough estimate for a 50W setup. |

480 rows × 3 columns

# Compute the results.

```
In [37]: results = sensitivities.evaluate_scenarios(1)
    results
```

#### Out[37]:

|                        |                                              |        |          |          | Value     | Units     |
|------------------------|----------------------------------------------|--------|----------|----------|-----------|-----------|
| Technology             | Scenario                                     | Sample | Variable | Index    |           |           |
|                        | Let Input efficiency @<br>Electricity = 0.75 | 1      | Cost     | Cost     | 0.190164  | USD/mole  |
|                        |                                              |        | Metric   | Cost     | 0.119657  | USD/gH2   |
|                        |                                              |        |          | GHG      | 24.239606 | gCO2e/gH2 |
|                        |                                              |        |          | Jobs     | 0.000094  | job/gH2   |
|                        |                                              |        | Output   | Hydrogen | 1.589241  | g/mole    |
| Simple<br>electrolysis |                                              |        |          |          |           |           |
| •                      |                                              |        | Metric   | Cost     | 0.100121  | USD/gH2   |
|                        |                                              |        |          | GHG      | 21.391959 | gCO2e/gH2 |
|                        | Let Output efficiency @<br>Oxygen = 0.975    | 1      |          | Jobs     | 0.000083  | job/gH2   |
|                        |                                              |        |          | Hydrogen | 1.800796  | g/mole    |
|                        |                                              |        | Output   | Oxygen   | 15.606903 | g/mole    |

240 rows × 2 columns

#### Plot the cost results.

#### Out[39]:

|   | Scenario                                   | Value    |  |
|---|--------------------------------------------|----------|--|
| 0 | Let Input efficiency @ Electricity = 0.75  | 0.190164 |  |
| 1 | Let Input efficiency @ Electricity = 0.775 | 0.188595 |  |
| 2 | Let Input efficiency @ Electricity = 0.8   | 0.187026 |  |
| 3 | Let Input efficiency @ Electricity = 0.825 | 0.185457 |  |
| 4 | Let Input efficiency @ Electricity = 0.85  | 0.183900 |  |
| 5 | Let Input efficiency @ Electricity = 0.875 | 0.184132 |  |
| 6 | Let Input efficiency @ Electricity = 0.9   | 0.184364 |  |
| 7 | Let Input efficiency @ Electricity = 0.925 | 0.184597 |  |
| 8 | Let Input efficiency @ Electricity = 0.95  | 0.184829 |  |
| 9 | Let Input efficiency @ Electricity = 0.975 | 0.185061 |  |

```
In [40]: cost_results["Variable" ] = cost_results["Scenario"].apply(lambda x:
    re.sub(r'^Let (.*) @ (.*) =.*$', '\\1[\\2]', x))
    cost_results["Efficiency"] = cost_results["Scenario"].apply(lambda x:
    float(re.sub(r'^.*= (.*)$', '\\1', x)))
    cost_results["Cost [USD/mole]"] = cost_results["Value"]
```

In [41]: cost\_results = cost\_results[["Variable", "Efficiency", "Cost [USD/mol
e]"]]
cost\_results[0:10]

#### Out[41]:

|   | Variable                      | Efficiency | Cost [USD/mole] |
|---|-------------------------------|------------|-----------------|
| 0 | Input efficiency[Electricity] | 0.750      | 0.190164        |
| 1 | Input efficiency[Electricity] | 0.775      | 0.188595        |
| 2 | Input efficiency[Electricity] | 0.800      | 0.187026        |
| 3 | Input efficiency[Electricity] | 0.825      | 0.185457        |
| 4 | Input efficiency[Electricity] | 0.850      | 0.183900        |
| 5 | Input efficiency[Electricity] | 0.875      | 0.184132        |
| 6 | Input efficiency[Electricity] | 0.900      | 0.184364        |
| 7 | Input efficiency[Electricity] | 0.925      | 0.184597        |
| 8 | Input efficiency[Electricity] | 0.950      | 0.184829        |
| 9 | Input efficiency[Electricity] | 0.975      | 0.185061        |

Out[42]: <matplotlib.axes.\_subplots.AxesSubplot at 0x7fcd9039c9e8>

