BADANIE WŁASNOŚCI FILTRÓW RC

T. Fas

12 marca 2018

STRESZCZENIE

Celem doświadczenia było skonstruowanie i zbadanie reakcji filtru RC na różne, generowane sygnały. Zachowanie filtru było zgodne z oczekiwaniami i z przewidywaniami teoretycznymi.

WSTEP

Filtry RC, składające się z opornika o oporze R i kondensatora o oporze C dzielą się na dwa rodzaje: filtry górno- i dolnoprzepustowe. Schematy obu tych filtrów przedstawiono na Rysunku 1.

Rysunek 1: Rodzaje filtrów RC.

W przypadku filtru dolnoprzepustowego, sygnały o częstości znajdującej się poniżej częstości krytycznej $\omega_{kryt}=1/RC$ zostaną przepuszczone przez filtr bez większych zmian, z kolei dla wyższych częstości sygnały zostaną wytłumione. Analogiczna sytuacja ma miejsce w przypadku filtru górnoprzepustowego; sygnały poniżej częstości granicznej są tłumione, a te powyżej są przepuszczane. Stosunek T napięcia wyjściowego U_{wyj} do napięcia wejściowego U_{wej} dla filtru dolnoprzepustowego dane jest wzorem:

$$T = \frac{U_{wyj}}{U_{wej}} = \frac{1}{\sqrt{1 + R^2 C^2 \omega^2}}$$
 (1)

Dodatkowo filtr dolnoprzepustowy jest również filtrem całkującym; napięcie na wyjściu jest proporcjonalne do całki napięcia na wejściu filtru. Z kolei filtr górnoprzepustowy różniczkuje napięcie wejściowe.

W doświadczeniu badano wartość T dla filtru dolnoprzepustowego w zależności od częstości sygnału wejściowego. Równolegle do pomiarów napięcia dokonywano też pomiarów przesunięcia fazowego ϕ sygnału wejściowego i wyjściowego. Zgodnie z przewidywaniami teoretycznymi, przesunięcia te powinny podlegać zależności:

$$\phi = \operatorname{arc} \operatorname{tg} \left(\frac{1}{RC\omega} \right) \tag{2}$$

Zbadano również zakres częstości dla których obserwowano poprawne całkowanie sygnału.

UKŁAD DOŚWIADCZALNY

Układ doświadczalny składał się z filtru dolnoprzepustowego, złożonego według schematu z Rysunku 1, oscyloskopu oraz generatora sygnałów. Generator został podłączony do filtru RC, a dalej do oscyloskopu. Dodatkowo bezpośrednio podłączono generator i oscyloskop, aby móc jednocześnie obserwować sygnał wejściowy i wyjściowy. Schemat układu przedstawiono na Rysunku 2.

Rysunek 2: Schemat układu.

Po zakończeniu pomiarów zamieniono miejscami kondensator i opornik aby otrzymać filtr górnoprzepustowy. W trakcie dodatkowych pomiarów zbadano zakres różniczkowalności nowego filtra jak i zmierzono jego częstość graniczną.

Wszystkie badane wartości były mierzone przy pomocy oscyloskopu, za wyjątkiem częstości prądu, która była odczytywano z generatora.

WYNIKI POMIARÓW

Wartości napięcia wejściowego, wyjściowego, fazy i częstości są przedstawione w Tabeli 1.

Tabela 1: Wyniki pomiarów

rabeia 1. Wymki pomiatow.							
U_{wej} [V]	U_{wyj} [mV]	$\omega/2\pi \ [{\rm s}^{-1}]$	ϕ [deg]	U_{wej} [V]	U_{wyj} [mV]	$\omega/2\pi \ [{\rm s}^{-1}]$	ϕ [deg]
5,04	4,28 V	1000	32,4	4,8	0,0784	106000	87,71
4,8	0,756	10000	79,92	4,8	0,0748	112000	87,98
4,8	0,482	16000	82,5	4,8	0,0715	118000	89,57
4,8	0,358	22000	84,47	4,8	0,067	124000	89,11
4,8	0,284	28000	86,22	4,8	0,0674	130000	89,36
4,8	0,236	34000	86,79	4,8	0,0625	136000	88,04
4,8	0,203	40000	85,68	4,8	0,0601	142000	89,49
4,8	0,177	46000	85,44	4,8	0,0579	148000	89,47
4,8	0,158	52000	87,19	4,8	0,0556	154000	89,44
4,8	0,144	58000	86,86	4,8	0,054	160000	89,85
4,8	0,131	64000	87,12	4,8	0,0524	166000	87,31
4,8	0,12	70000	87,23	4,8	0,0504	172000	89,38
4,8	0,112	76000	88,09	4,8	0,0492	178000	87,12
4,8	0,104	82000	87,04	4,8	0,0472	184000	89,67
4,8	0,094	88000	89,84	4,8	0,046	190000	88,12
4,8	0,0876	94000	87,97	4,8	0,0448	196000	90,35
4,8	0,0826	100000	88,74	4,8	0,044	200000	90,36

Filtr górnoprzepustowy dokonywał prawidłowego całkowania na przedziale od 6 kHz do 500 kHz.

Dla przebudowanego filtra otrzymano przedział różniczkowania od 15 Hz do 400 Hz i odpowiadające im napięcia wyjściowe kolejno 40,0 mV oraz 830 mV dla napięć wejściowych kolejno 5,00 V i 5,08 V. Otrzymano również wartość $\omega_{kryt}/2\pi=2,1$ kHz i wraz z $U_{wyj}=3,49$ V i $U_{wej}=4,92$ V. Podsumowanie tych danych przedstawiono w Tabeli 2.

Dokonano również bezpośredniego pomiaru wartości oporu R i pojemność C. Otrzymano wyniki R=1004,35 $\Omega,\,C=98,6$ nF. Stąd też wynika, iż wartość iloczynu RC wynosi $9.9\cdot 10^{-5}$ s.

Tabela 2: Pomiary: przebudowany filtr.

	U_{wej} [V]	U_{wyj} [mV]	$\omega/2\pi \; [{\rm s}^{-1}]$				
	5,00	40,0	15				
	5,08	830	400				
	4,92	3,49 V	2100				

ANALIZA DANYCH

Dla danych z Tabeli 1 obliczono wartości T oraz wykonano wykresy zależności $T(\omega)$ i $\phi(\omega)$. Do tych danych dopasowano zależności kolejno Równania 1 i Równania 2. Kierując się instrukcją oscyloskopu za niepewność napięcia przyjęto 2% z kolei dla pomiarów fazy przyjęto 3° ze względu na wahania tej wartości w trakcie pomiaru.

Dane wraz z krzywymi najlepszego dopasowania przedstawiono na Rysunku 3 i Rysunku 4.

Rysunek 3: Dopasowanie: transmitancja T.

Rysunek 4: Dopasowanie: faza ϕ .

Dla Rysunku 3 otrzymano wartość parametru $RC = (9,127 \pm 0,058)^{-5}$ s i wartość $\chi^2 = 53,80$, a dla Rysunku 4 $RC = (9,40 \pm 0,39) \cdot 10^{-5}$ s, $\chi^2 = 5,29$. W obu przypadkach wartość krytyczna $\chi^2_{kryt} = 47,40$. Jak widać krzywa dopasowania dla zależności $T(\omega)$ nie przechodzi testu χ^2 pomimo doskonałego dopasowania wizualnego, z kolei dopasowanie dla $\phi(\omega)$ przechodzi test bez problemu.

Dla dalszej analizy oba wykresy przedstawiono w skali logarytmicznej, kolejno na Rysunku 5 i Rysunku 6.

Rysunek 5: Logarytm: transmitancja T.

Rysunek 6: Logarytm: faza ϕ .

Ujawniają się tu niedoskonałość dopasowania krzywej $T(\omega)$. Jednakże wizualne dopasowanie oraz wartość χ^2 , która jest bliska wartości krytycznej pozwala założyć, iż wykres ten jest zgodny z przewidywaniami teoretycznymi.

Otrzymane wartości parametru RC są ze sobą zgodne na mocy testu 3σ , a średnia ważona obu wielkości wynosi $(9,1326\pm0,057)\cdot10^{-5}$ s. Wartość ta nie jest jednak zgodna z wartością parametru RC obliczoną z bezpośrednich pomiarów oporu i pojemności. Wziąwszy jednak pod uwagę fakt, iż różnica między tymi wielkościami wynosi zaledwie $7.7\cdot10^{-7}$ s, to można uznać obie wartości za akceptowalnie zgodne ze sobą.

Wartość $\omega_{kryt}/2\pi$ dla wyznaczonej średniej ważonej wynosi 1741 Hz, a dla bezpośredniego pomiaru wynosi 1607 Hz.

W przypadku przebudowanego filtra oszacowano wartość częstości krytycznej na 2100 Hz, dla której T=0,709. Jak widać wartość ta jest wyższa od wartości krytycznych dla filtru całkującego, choć powinna być identyczna. Być może przebudowanie filtra w jakiś sposób zmieniło jego parametry (większa ilość cyny mogła zwiększyć opór i pojemność), choć nie wydaję się to być głównym powodem rozbieżności wyników.

Aby zbadać granice dobrej całkowalności wpuszczano na wejście sygnał trójkątny i obserwowano, w jakim przedziale ten sygnał najlepiej przekształca się w sygnał trójkątny. Otrzymano przedział od 6 kHz do 500 kHz. Poniżej tego przedziału wpuszczany sygnał za bardzo przypominał eksponens, a powyżej szumy oraz efekt Gibbsa za bardzo zniekształcały obraz.

Badając filtr różniczkujący wpuszczano sygnał trójkątny i otrzymywano sygnał prostokątny w przedziale od 15 Hz do 400 Hz. W tym przypadku szumy i efekt Gibbsa bardzo szybko zniekształcały obraz.

W obu przypadkach otrzymano przedziały zgodne z oczekiwaniami: dla układu całkującego częstości są znacznie większe od częstości krytycznej, a dla układu różniczkującego znacznie od niej niższe. Tak więc można uznać działanie obu tych układów za zgodne z teorią.

DYSKUSJA WYNIKÓW I WNIOSKI

Pomimo drobnej rozbieżności wyników układ RC zachowywał się zgodnie z przewidywaniami teoretycznymi: wytłumiał sygnały po przekroczeniu częstości krytycznej, całkował i różniczkował w przedziałach, w których następowało silne tłumienie, a obliczone wartości częstości granicznych były ze sobą zgodne. Tak więc można uznać uzyskane wyniki za satysfakcjonujące, a układ za zgodny z teorią.