Abstract Algebra I

Homework 4

B13902024 張沂魁 Due: 8th October 2025

1. For two groups G, H with identities e_G, e_H respectively, define the direct product of G and H to be the group whose underlying set is $G \times H$ and whose binary operation is given by

$$(g,h)(g',h') = (gg',hh'), g,g' \in G, h,h' \in H.$$

- (a) Let $p \neq q$ be two prime numbers. Prove that $\mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/q\mathbb{Z} \cong \mathbb{Z}/pq\mathbb{Z}$ by constructing an isomorphism explicitly.
- (b) Let G, H be cyclic groups. Prove that $G \times H$ is cyclic if and only if (|G|, |H|) = 1.
- (c) Deduce that S_3 is not a direct product of any of its proper subgroups.

Solution:

(a) Consider a map $\phi: \mathbb{Z}/pq\mathbb{Z} \to \mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/q\mathbb{Z}$ defined by $\phi([a]_{pq}) = ([a]_p, [a]_q)$ where $[a]_k$ means the equivalence class of a modulo k. Note that this map is well-defined since for $a \equiv b \mod pq$, we know a = b + pqk for some integer k, so $a \equiv b \mod p$ and $a \equiv b \mod q$, which means $\phi([a]_{pq}) = \phi([b]_{pq})$. We claim ϕ is an isomorphism. We first show that ϕ is a homomorphism.

$$\begin{split} \phi\left([a]_{pq}[b]_{pq}\right) &= \phi\left([ab]_{pq}\right) = ([ab]_p, [ab]_q) \\ &= ([a]_p[b]_p, [a]_q[b]_q) = ([a]_p, [a]_q)\left([b]_p, [b]_q\right) = \phi\left([a]_{pq}\right) \phi\left([b]_{pq}\right). \end{split}$$

Now we show that ϕ is bijective. If $\phi([k_1]_{pq}) = \phi([k_2]_{pq})$, and suppose $0 \le k_2 < k_1 \le pq - 1$, then

$$([k_1]_p, [k_1]_q) = ([k_2]_p, [k_2]_q),$$

so we know $k_1 \equiv k_2 \mod p$ and $k_1 \equiv k_2 \mod q$. Now since $p \neq q$ are two prime numbers, so $pq \mid k_1 - k_2$, but $0 < k_1 - k_2 < pq$, so it is impossible. Hence, ϕ is injective. Now we show that ϕ is surjective. If not, then since $|\mathbb{Z}/pq\mathbb{Z}| = |\mathbb{Z}/p\mathbb{Z}| |\mathbb{Z}/q\mathbb{Z}| = |\mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/q\mathbb{Z}|$, so by Pigeonhole principle, there exists $n_1 \not\equiv n_2 \mod pq$ s.t. $\phi([n_1]_{pq}) = \phi([n_2]_{pq})$, but this is impossible since we have shown that ϕ is injective. Thus, ϕ is surjective and thus bijective. Now we know ϕ is bijective and homomorphic, so ϕ is an isomorphism between $\mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/q\mathbb{Z}$ and $\mathbb{Z}/pq\mathbb{Z}$.

(b) Suppose $G = \langle g \rangle$ and $H = \langle h \rangle$, and note that $|G \times H| = |G| |H|$.

1

 (\Longrightarrow) Suppose $G \times H = \langle (g_1, h_1) \rangle$, then we know

$$(g_1, h_1)^{|G||H|} = (g_1^{|G||H|}, h_1^{|G||H|}) = (e_G, e_H).$$

Note that $o((g_1, h_1)) = |G||H|$. Now if gcd(|G|, |H|) = d > 1, then

$$\operatorname{lcm}\left(\left|G\right|,\left|H\right|\right) = \frac{\left|G\right|\left|H\right|}{d} < \left|G\right|\left|H\right|.$$

Note that $o(g_1) = |G|$ and $o(g_2) = |H|$ since g_1, h_1 must run through G and H respectively in $\{(g_1, h_1), (g_1, h_1)^2, \dots\}$. Hence, we have

$$(g_1, h_1)^{\text{lcm}(|G|,|H|)} = (e_G, e_H),$$

but if gcd(|G|, |H|) > 1, then $(g_1, h_1)^{lcm(|G|, |H|)} = (e_G, e_H)$, and

$$\operatorname{lcm}(|G|, |H|) < |G||H| = o((g_1, h_1)),$$

so this is a contradiction.

(\iff) Suppose $\gcd(|G|, |H|) = 1$, then since $(g, h)^{|G||H|} = (e_G, e_H)$, so o((g, h)) < |G||H|.

Also, if there exists k > 0 s.t. $(g,h)^k = (e_G,e_H)$, then $g^k = e_G$ and $h^k = e_H$, so $|H| \mid k$ and $|G| \mid k$, which means $|H| \mid G| \mid k$ since $\gcd(|H|,|G|) = 1$, so we have $k \geq |G| \mid H|$. Hence, we must have $o((g,h)) = |G| \mid H|$. Now if $\exists |G| \mid H| > i > j \geq 0$ s.t. $(g,h)^i = (g,h)^j$, then $(g,h)^{i-j} = (e_G,e_H)$, but $|G| \mid H| > i - j > 0$, so it is impossible, and thus $|\langle (g,h) \rangle| = |G| \mid H|$, and since $\langle (g,h) \rangle \subseteq G \times H$, so we must have $G \times H = \langle (g,h) \rangle$, and thus $G \times H$ is cyclic.

(c) Suppose S_3 is a direct product of its proper subgroups, say $S_3 = A \times B$, then WLOG suppose $|A| \geq |B|$, and we have |A| = 3 and |B| = 2 since $|S_3| = 6$. Note that this means

$$A = \{(1), (12)\}, \{(1), (13)\}, \{(1), (23)\}$$
$$B = \{(1), (123), (132)\},$$

and thus we know A, B must be cyclic. Also, since gcd(2,3) = 1, so $A \times B = S_3$ must be cyclic by (b), but S_3 is not cyclic, so S_3 is not a direct product of any of its proper subgroups.

2. Find the order of the following group:

$$G = \langle a, b \mid a^6 = 1, b^2 = a^3, ba = a^{-1}b \rangle.$$

And then show that it is not isomorphic to the group

$$H = \langle r, s \mid r^6 = s^2 = 1, \ srs^{-1} = r^{-1} \rangle.$$

Solution: We can check that

$$G = \{e, a, a^2, a^3, a^4, a^5, b, ab, a^2b, a^3b, a^4b, a^5b\}$$

since $ba = a^{-1}b$ gives $ba^k = a^{-k}b$ and thus all representation of a, b like $a^ib^ja^kb^l$... can be reduced to the above 12 elements. Hence, the order of G is 12. Also, note that

$$H = \left\{e, r, r^2, r^3, r^4, r^5, s, sr, sr^2, sr^3, sr^4, sr^5\right\},$$

and since $o(s) = o(r^3) = 2$ and $s \neq r^3$ (Otherwise $r^{-1} = srs^{-1} = r^7$, which is impossible.), and the only element of G has order 2 is a^3 , so G and H are not isomorphic.

- 3. The symmetric group S_4 has a natural action on the set $T = \{1, 2, 3, 4\}$. For a subgroup $H \leq S_4$ and $n \in T$, we define the orbit O(n) of n to be the set $\{\sigma(n) : \sigma \in H\}$. In this exercise, the *orbit* of H refers to the set $\{O(n) : n \in T\}$.
 - (a) Find the orbits of the following subgroups of S_4 defined by their action on T:

$$\langle (12) \rangle$$
, $\langle (123) \rangle$, V .

(Recall that V is the unique Klein 4-group in S_4 , and we saw in class that $V \leq S_4$.)

- (b) Find another proper subgroup of S_4 with the same set of orbits as that of V.
- (c) Prove that the following subgroup of S_4 is trivial:

$$Z(S_4) = \{ \sigma \in S_4 : \tau^{-1} \sigma \tau = \sigma, \text{ for all } \tau \in S_4 \}.$$

(Recall that we encountered such a subgroup in class. It is called the *center* of S_4 , and $Z(S_4) \leq S_4$. The notation Z(G) for the center of a group G is standard.)

Solution:

(a) - Case 1:
$$H = \langle (12) \rangle = \{(1), (12)\}, \text{ then }$$

$$O(1) = \{1, 2\}$$
 $O(2) = \{2, 1\}$ $O(3) = \{3\}$ $O(4) = \{4\}$.

Thus, the orbit of H is $\{\{1,2\},\{3\},\{4\}\}.$

- Case 2: $H = \langle (123) \rangle = \{(1), (123), (132)\}, \text{ then since }$

$$(123) = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 1 & 4 \end{pmatrix} \quad (132) = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 2 & 4 \end{pmatrix},$$

so we have

$$O(1) = \{1, 2, 3\}$$
 $O(2) = \{2, 3, 1\}$ $O(3) = \{3, 1, 2\}$ $O(4) = \{4\}$.

Thus, the orbit of H is $\{\{1, 2, 3\}, \{4\}\}.$

– Case 3: $H = V = \{(1), (12)(34), (13)(24), (14)(23)\}$, then since

$$(12)(34) = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} \quad (13)(24) = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix} \quad (14)(23) = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{pmatrix},$$

so we have

$$O(1) = O(2) = O(3) - O(4) = \{1, 2, 3, 4\},\$$

and thus the orbit of H is $\{\{1, 2, 3, 4\}\}.$

(b) We want to find some proper subgroup of S_4 other than V nad has orbit $\{1, 2, 3, 4\}$, so we can pick

$$H = \{(1), (1234), (13)(24), (1432)\},\$$

note that this is a group sibce $((13)(24))^2 = (1)$ and (1234)(1432) = (1). Since

$$(1234) = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix} \quad (13)(24) = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix} \quad (1432) = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 2 & 3 \end{pmatrix},$$

so
$$O(1) = O(2) = O(3) = O(4) = \{\{1, 2, 3, 4\}\}.$$

(c) We want to show that $Z(S_4) = \{e\}$. If not, then $\exists \sigma' \in Z(S_4)$ s.t. $\sigma'(a) = b$ for some $a \neq b$. However, if we pick $\tau = (ac)$, then

$$\tau \sigma'(a) = \tau(b) = b \quad \sigma' \tau(a) = \sigma'(c) \neq b$$

since σ' is bijective, so $\tau \sigma' \neq \sigma' \tau$ here, and thus $\sigma' \notin Z(S_4)$. Hence, $Z(S_4)$ is trivial.

- 4. Let G be a group and $H \leq G$ a subgroup. For a set S, denote by Perm(S) the group of all permutations of S.
 - (a) If G acts on S, show that one has an induced homomorphism $G \to \text{Perm}(S)$.
 - (b) Now let $S = \{gH : g \in G\}$. Show that the kernel of the induced homomorphism

$$G \to \operatorname{Perm}(S)$$

is contained in H.

(c) Suppose |G|/|H| = n and that no nontrivial normal subgroup of G is contained in H. Prove that G is isomorphic to a subgroup of S_n .

Solution:

(a) G acts on S means there exists $\rho: G \times S \to S$ s.t. $\rho(q,s) = q \cdot s$ with

$$e \cdot s = s \ \forall s \in S$$
 and $(g_1g_2)(s) = g_1(g_2s) \ \forall g_1, g_2 \in G, s \in S.$

Now we show that $\Phi: G \to \operatorname{Perm}(S)$ defined by $\Phi(g) = \pi_g$, where $\pi_g: S \to S$ is defined by $\pi_g(s) = g \cdot s$, is a homomorphism between G and $\operatorname{Perm}(S)$. We first show that π_g is a permutation on S for all $g \in G$, which is equivalent to show π_g is bijective. We first show that π_g is injective. If $\pi_g(s_1) = \pi_g(s_2)$, then $gs_1 = gs_2$, so $g^{-1}gs_1 = g^{-1}gs_2$, which means $s_1 = s_2$, and thus π_g is injective. Now we show that π_g is surjective. For any $s \in S$, $\pi_g(g^{-1}s) = g \cdot g^{-1}s = s$, so π_g is surjective. Now we show that Φ is a homomorphism. Note that for all $g_1, g_2 \in G$, we have

$$\Phi(g_1g_2) = \pi_{g_1g_2} \quad \Phi(g_1)\Phi(g_2) = \pi_{g_1}\pi_{g_2},$$

so for all $s \in S$, we have

$$\Phi(g_1g_2)(s) = (g_1g_2)s = g_1(g_2s) = g_1(\Phi(g_2)(s)) = \Phi(g_1)(\Phi(g_2)(s)).$$

Hence, Φ is a homomorphism.

- (b) Note that G acts on S. Hence, we can use the result of (a). Now if $k \in \ker \Phi$, then $\pi_k = e$, which means $\pi_k(s_i) = s_i$ for all $s_i \in S$, so $k \cdot s_i = s_i$ for all $s_i \in S$. Equivalently, $k \cdot (gH) = gH$ for all $g \in G$. Hence, (kg)H = gH for all $g \in G$. Hence, for all $g \in G$, $kgh_1 = g$ for some $h_1 \in H$, which means $k = gh_1^{-1}g^{-1}$. Now if we pick g = e, then $k = h_1^{-1} \in H$. Thus, $\ker \Phi \subseteq H$.
- (c) Consider the induced homomorphism in (a), where S is the S in (b), we know $G/\ker\Phi\simeq\operatorname{Im}\Phi$ by first isomorphism theorem. Now since $\ker\Phi\lhd G$ and $\ker\Phi\subseteq H$ by (b), and by the condition given in the problem, we know no nontrivial normal subgroup of G is contained in H, so $\ker\Phi=\{e\}$, so $G/\ker\Phi=G/\{e\}=G$, so we know $G\simeq\operatorname{Im}\Phi$, where $\operatorname{Im}\Phi$ is a subgroup of S_n since n=|S|.