Corrigé TD#3 (Optimisation de requêtes)

Exercice 1

- 1. La première
 - o Jointure: on lit 3 600 pages (120x30) et on obtient 120 pages;
 - o Restriction: on obtient 5% de 120 pages, soit 6 pages;
 - o Nombre d'E/S : 3600E + 120S + 120E + 6S = 3846 E/S.
- 2. La seconde
 - Restriction: on lit 120 pages et on obtient 6 pages;
 - o Jointure: on lit 180 pages (6x30) et on obtient 6 pages;
 - \circ Nombre d'E/S : 120E + 6S + 180E + 6S = 312 E/S.

La deuxième stratégie est de loin la meilleure !

Exercice 2

- 1) SELECT Etudiant.nom, credits
 FROM Etudiant, Inscription, Cours
 WHERE Etudiant.id_etudiant = Inscription.id_etudiant
 AND Inscription.num_cours = Cours.num_cours
 AND note=13 AND formation='Initiation à l'informatique';
- 2) $\pi_{etudiant.nom,etudiant.credits}(\sigma_{note=13 \land formation='initionation...'})((Etudiant \bowtie Inscription) \bowtie Cours)$

$\begin{array}{c} \pi_{E.nom,E.credits} \\ (\pi_{E.nom,E.credits,I.num_cours}(\pi_{E.id,E.nom,E.credits}(\text{Etudiant})) \bowtie \\ ((\sigma_{I.note=13}(\pi_{I.id_{etud},I.num_cours}(\text{Inscription}))) \bowtie \\ (\pi_{C.id}(\sigma_{C.formation='Initiation...'}(\text{Cours})))) \end{array}$

Expression de la requête en langage algébrique :

 $\pi_{Ens.nom,Cours.horaire,Cours.numCours} \\ (\sigma_{Etu.nom='Brun' \land Etu.prenom='Pierre'}(Etudiant \bowtie (Inscription \bowtie (Cours \bowtie Enseignant)))))$

• Arbre algébrique original :

• Arbre algébrique optimisé :

