6.13 1) (a) Supposons
$$u_k \geqslant 0$$
.

$$v_k = u_k = |u_k|$$
: l'inégalité $v_k \leq |u_k|$ est ainsi vérifiée.

$$w_k = 0 \leqslant |u_k|$$

(b) Supposons
$$u_k < 0$$
.

$$v_k = 0 \leqslant |u_k|$$

$$w_k = -u_k = |u_k|$$
: en particulier, on a bien $w_k \leq |u_k|$.

- 2) L'hypothèse de la convergence absolue de la série de terme général u_k implique aussitôt la convergence des séries de terme général v_k et w_k .
- 3) Montrons que $v_k w_k = u_k$.
 - (a) Supposons $u_k \geqslant 0$.

$$v_k - w_k = u_k - 0 = u_k$$

(b) Supposons $u_k < 0$.

$$v_k - w_k = 0 - (-u_k) = u_k$$

Puisque les séries de terme général v_k et w_k convergent, la série de terme général $v_k - w_k = u_k$ converge également.