Numerik Projekt 1 – Aufgabe 1

Lukas Moser & Bernhard Kepka

1. Gauss-Quadratur auf [-1,1]

Die zur Gauß-Quadratur auf dem Intervall [-1,1] mit der Gewichtsfunktion $w\equiv 1$ gehörenden (normierten) Orthogonalpolynome sind durch die Legendre-Polynome L_j gegeben. Letztere erfüllen die Rekursion

$$L_0(x) = 1$$
, $L_1(x) = 1$ $L_{n+1}(x) = xL_n(x) - \frac{n^2}{4n^2 - 1}L_{n-1}(x)$, $n \in \mathbb{N}$. (1)

Da das gegeben Intervall und die Gewichtsfunktion symmetrisch sind, folgt für die n+1 Knoten (x_j) und Gewichte (α_j) (nach einem Übungsbeispiel) $x_j = -x_{n-j}$ beziehungsweise $\alpha_j = \alpha_{n-j}$ für $j = 0, \ldots, n$.

Zur konkreten Implementierung wurden zwei Weg verfolgt:

- (i) Die Quadraturknoten wurden gemäß Satz 4.23 des Numerik-Skriptums über eine Eigenwertaufgabe und die Quadraturgewichte über entsprechende Eigenvektoren berechnet.
- (ii) Über die rekursive Darstellung der Legendre-Polynome lassen sich örtliche Beziehungen zwischen Nullstellen zweier Polynome L_n und L_{n+1} extrahieren. Mittels bekannter Nullstellen des n-ten Polynomes und eines Sekanten-Verfahrens wurden in Folge die Nullstellen von L_{n+1} ermittelt.

In beiden Fällen können die Gewichte mit Hilfe der Nullstellen von L_{n+1} und der Legendre-Polynome L_0, \ldots, L_n explizit angegeben werden.

1. Via Eigenwertaufgabe. Mit Satz 4.23 und obiger 3-Term-Rekursion folgt (Bezeichnungen wie im Satz) $\gamma_n^2 = \frac{n^2}{4n^2-1}$ und $\beta_n = 0$, denn $L_{n+1}(X) = \det(IX - T)$. Damit hat die entsprechende Matrix T die Form

$$T = \begin{pmatrix} 0 & \gamma_1 \\ \gamma_1 & 0 & \gamma_2 \\ & \gamma_2 & \ddots & \ddots \\ & & \ddots & \ddots & \gamma_n \\ & & & \gamma_n & 0 \end{pmatrix} \in \mathbb{R}^{(n+1)\times(n+1)}.$$

Die Nullstellen von L_{n+1} sind entsprechend die Eigenwerte von T. Für die Gewichte gilt die Beziehung

$$\alpha_j = \left(\frac{(v_j)_1}{\|v_j\|_2}\right)^2 \int_{-1}^1 w(x) dx = 2\left(\frac{(v_j)_1}{\|v_j\|_2}\right)^2, \tag{2}$$

wobei $(v_j)_1$ die 1. Komponente eines Eigenvektors v_j von T ist.

Mit den internen Funktionen von Matlab wurden nun die Eigenwerte bzw. Eigenvektoren berechnet.

- 2. Rekursive Knotenberechnung. Wegen der Symmetrie um den Ursprung genügt es die positiven Nullstellen zu betrachten. Für ungerades n ist 0 stets ein Quadraturknoten. Wir nutzen nun folgende Eigenschaften zur besseren Bestimmung der Nullstellen.
 - Für die Nullstellen der Legendre-Polynome L_1, \ldots, L_n gilt: Zwischen je zwei positiven Nullstellen von L_{n-1} befindet sich genau eine von L_n . Dies sieht man induktiv ein: für n=1,2,3 gilt die Aussage durch die entsprechenden Nullstellen. Seien nun $x^{(n)}, y^{(n)}$ zwei Nullstellen von L_n . Nach Induktionsannahme befindet sich eine Nullstelle $z^{(n-1)}$ von L_{n-1} in $(x^{(n)}, y^{(n)})$. Da $z^{(n-1)}$ einfach ist, hat L_{n-1} einen Vorzeichenwechsel in diesem Intervall. $xL_n(x)$ hat konstantes Vorzeichen. Wegen (1) folgt also, dass das Vorzeichen von L_{n+1} in den Randpunkten (beziehungsweise in einer Umgebung von diesen) alleine von L_{n-1} bestimmt wird. Aus dem Zwischenwertsatz folgt, dass sich eine Nullstelle in $(x^{(n)}, y^{(n)})$ befindet. Da L_{n-1} genau einmal sein Signum wechselt, kann es nur genau eine sein.
 - Nun folgt: es gibt eine Nullstelle von L_n , die größer ist als alle von L_{n-1} . Für n=1,2,3,4,5 gilt dies. Seien $x_1^{(n-1)},\ldots,x_k^{(n-1)}$ die positiven Nullstellen von L_{n-1} mit $k=\lfloor\frac{n}{2}\rfloor$. In den Intervallen $(x_1^{(n-1)},x_2^{(n-1)}),\ldots,(x_{k-1}^{(n-1)},x_k^{(n-1)})$ befinden sich genau eine Nullstelle von L_n , also $\lfloor\frac{n}{2}\rfloor-1$. Ist n ungerade, so ist 0 eine weiter und wir haben n-2 Nullstellen in (-1,1) gefunden. Die letzten zwei müssen sich ebenfalls in diesem Intervall befinden. Da sie nicht mit $\pm x_k^{(n-1)}$ übereinstimmen, befinden sie sich in den Intervallen $(-1,-x_k^{(n-1)})$ und $(x_k^{(n-1)},1)$. Wegen der Symmetrie folgt die Behauptung.

Darauf aufbauend führt man bei bekannten (positiven) Nullstellen von L_n ein Sekantenverfahren zwischen aufeinanderfolgende durch. Zusätzlich macht man selbiges mit dem Intervall $(x_k^{(n)}, 1)$, wobei $x_k^{(n)}$ die größte Nullstelle von L_n sei. Je nachdem, ob n gerade oder ungerade ist, muss man noch ein Sekantenverfahren zwischen Null und der kleinsten Nullstelle durchführen oder Null selbst als Knoten wählen.

3. Explizite Darstellung der Gewichte. Ein Eigenvektor v_k zum Eigenwert x_k von $T \in \mathbb{R}^{(n+1)\times(n+1)}$ hat die Form $(c_0L_0(x_k),\ldots,c_nL_n(x_k))^T$, wobei c_j noch zu spezifizierende Konstanten sind. Letztere ergeben sich aus $Tv_k \stackrel{!}{=} x_k v_k$ durch komponentenweisen Vergleich. Für die erste Zeile gilt

$$\gamma_1 c_1 L_1(x_k) = \gamma_1 c_1 x_k \stackrel{!}{=} x_k c_0 L_0(x_k) = x_k c_0,$$

also $c_1 = c_0/\gamma_1$. Wir setzen $c_0 := 1$, damit dann $(v_k)_1 = 1$ erfüllt ist. In der *i*-te Zeile ist mit der Rekursion (1)

$$\gamma_{i-1}c_{i-2}L_{i-2}(x_k) + \gamma_i c_i L_i(x_k) \stackrel{!}{=} x_k c_{i-1}L_{i-1}(x_k)$$

$$\iff \gamma_{i-1}c_{i-2}L_{i-2}(x_k) + \gamma_i c_i \left(x_k L_{i-1}(x_k) - \gamma_{i-1}^2 L_{i-2}(x_k) \right) =$$

$$\left(\gamma_{i-1}c_{i-2} - \gamma_i c_i \gamma_{i-1}^2 \right) L_{i-2}(x_k) + \gamma_i c_i x_k L_{i-1}(x_k) \stackrel{!}{=} x_k c_{i-1} L_{i-1}(x_k).$$

Wir haben folglich die Forderungen

$$\gamma_{i-1}c_{i-2} - \gamma_i c_i \gamma_{i-1}^2 = 0$$
$$\gamma_i c_i = c_{i-1}$$

Wenn wir letztere als rekursive Definition von c_j nutzen, $c_i := c_{i-1}/\gamma_i$, gilt auch die erstere

$$\gamma_i \gamma_{i-1}^2 c_i = \gamma_{i-1}^2 c_{i-1} = \gamma_{i-1} c_{i-2}.$$

Da T symmetrisch ist und nur einfache Eigenwerte besitzt, sind (v_k) zueinander orthogonal. Aus der Definition der Quadratur-Formel folgt dann

$$Q^{(n)}(c_k L_k) = \sum_{i=0}^{n} \alpha_i c_k L_k(x_i) = (c_0 L_0, c_k L_k)_w = 2\delta_{k0}$$

und damit unter Berücksichtigung von $(v_k)_1 = 1$

$$2 = v_k^T 2e_1 = v_k \left(\sum_{j=0}^n \alpha_j c_0 L_0(x_j), \dots, \sum_{j=0}^n \alpha_j c_n L_n(x_j) \right)^T =$$

$$= v_k^T \sum_{j=0}^n \alpha_j v_j = \alpha_k v_k^T v_k = \alpha_k \sum_{j=0}^n c_j^2 L_j(x_k)^2$$

Für die Gewichte (α_j) gilt in Folge

$$\alpha_j = \frac{2}{\sum_{j=0}^n c_j^2 L_j(x_k)^2} \qquad j = 0, \dots, n.$$
 (3)

2. Quadratur auf [a,b] und $[a,b] \times [c,d]$

Mit Hilfe der Transformation

$$\psi: [-1,1] \to [a,b]: \xi \mapsto a + \frac{b-a}{2} + \xi \frac{b-a}{2} = \frac{b+a}{2} + \xi \frac{b-a}{2}$$

wird die Quadratur-Formel aus dem ersten Teil auf [a,b] übertragen:

$$\int_{a}^{b} f(x)dx = \int_{-1}^{1} f(\psi(\xi)) \left(\frac{b-a}{2}\right) d\xi \approx \sum_{j} \left(\frac{b-a}{2}\right) \alpha_{j} f(\psi(x_{j})).$$

Die Quadratur-Knoten (\tilde{x}_i) beziehungsweise Gewichte $(\tilde{\alpha}_i)$ sind also gegeben durch

$$\tilde{x}_j = \psi(x_j) = \frac{b+a}{2} + x_j \frac{b-a}{2} \qquad \tilde{\alpha}_j = \left(\frac{b-a}{2}\right) \alpha_j.$$
 (4)

Seien nun zwei Quadraturen $Q^{(x)}$, $Q^{(y)}$ auf [a,b] respektive auf [c,d] mit Knoten (x_i) , (y_j) und Gewichten (α_i) , (β_j) gegeben. Auf $R := [a,b] \times [c,d]$ folgt mit Fubini

$$\int_c^d \int_a^b f(x,y) dx dy \approx \int_c^d \sum_{i=1}^{N_x} \alpha_j f(x_i,y) dy = \sum_{i=1}^{N_x} \alpha_j \int_c^d f(x_i,y) dy \approx \sum_{i=1}^{N_x} \sum_{j=1}^{N_y} \alpha_i \beta_j f(x_i,y_j).$$

Jede einzelne Quadratur-Formel ist für Polynome vom Grad $2N_x+1$ bzw. $2N_y+1$ exakt. Für den Funktionenraum $\Pi_{2N_y+1}^{2N_x+1}:=\left\{p_x(x)p_y(y)\mid p_x\in\Pi_{2N_x+1},p_y\in\Pi_{2N_y+1}\right\}$ ist die Quadratur auf R es ebenso:

$$\int_{a}^{b} \int_{c}^{d} p_{x}(x) p_{y}(y) dy dx = \int_{a}^{b} p_{x}(x) Q^{(y)}(p_{y}) dx = Q^{(x)}(p_{x}) Q^{(y)}(p_{y}).$$

4. Testen der Implementierung. Beispiele, a priori Fehlerschätzer (Satz 4.18), Konvergenz (Satz 4.20).

$$Q(f) - Q_n(f) = \frac{f^{(n+1)}(\xi)}{(2n+2)!} \int_a^b w(x) \prod_{j=0}^n (x - x_j)^2 dx$$

$$|Q(f) - Q_n(f)| \le \frac{\|f^{(n+1)}\|_{\infty}}{(2n+2)!} (b-a)^{2n+3}$$
(5)

Für symmetrische Intervalle [-c,c] erhält man wegen der Symmetrie der Knoten mit

$$(x-x_j)^2(x-x_{n-j})^2 = (x^2-x_j^2)^2 \le c^4$$
 also
$$|Q(f)-Q_n(f)| \le 2\frac{\|f^{(n+1)}\|_{\infty}}{(2n+2)!}c^{2n+3}.$$

Genauso kann man aber das Integral folgendermaßen abschätzen:

$$\int_{a}^{b} \prod_{j=0}^{n} (x - x_{j})^{2} dx \le (b - a)^{2} \int_{a}^{b} \prod_{j=0, j \ne k}^{n} (x - x_{j})^{2} dx = (b - a)^{2} \alpha_{k} \prod_{j=0, j \ne k}^{n} (x_{k} - x_{j})^{2}, \quad (6)$$

denn es liegt ein Polynom vom Grad 2n vor. Man wähle k natürlich so, dass die Differenzen möglichst klein sind. Im Falle symmetrischer Intervalle erhält man

$$\int_{-c}^{c} \prod_{j=0}^{n} (x - x_j)^2 dx \le 4c^2 \alpha_k \prod_{j=0, j \ne k}^{n} x_j^2,$$

wenn man schätzungsweise $x_k = 0$ setzt.

3. Quadratur auf \hat{T}

Sei das zweidimensionale Dreieck $\hat{T} = \text{conv}\{e_0, e_1, e_2\}$ mit $e_0 = (0, 0)^T$, $e_1 = (1, 0)^T$, $e_2 = (0, 1)^T$ gegeben. Die Kantenmittelpunkte seien $k_1 = (1/2, 0)^T$, $k_2 = (0, 1/2)^T$, $k_2 = (1/2, 1/2)^T$ und

$$P_{n} := \left\{ \sum_{j=0}^{n} \sum_{k=0}^{n-j} a_{jk} x^{j} y^{k} \mid a_{jk} \in \mathbb{R} \right\}$$

der Funktionenraum der Polynome in x,y mit maximalem Grad n. Um Quadraturen $Q^{(1)},\ Q^{(2)}$ auf \hat{T} zu definieren betrachten wir die Interpolationsaufgaben:

- (a) Gesucht $p_1 \in P_1$ mit $p_1(e_i) = f(e_i)$ für j = 0, 1, 2 bzw.
- (b) gesucht $p_2 \in P_2$ mit $p_2(e_j) = f(e_j)$ für j = 0, 1, 2 und $p_2(k_j) = f(k_j)$ für j = 1, 2, 3. Beide Probleme lassen sich stets und eindeutig durch Basispolynome lösen.
- Ad(a): Man wähle

$$E_0(x,y) := 1 - x - y$$
, $E_1(x,y) := x$, $E_2(x,y) := y$.

Für diese Polynome gilt $E_j(e_k) = \delta_{jk}$. Die Lösung der Interpolation ist gegeben durch $p_1(x,y) = \sum_{j=0}^2 E_j(x,y) f(e_j)$ und die Gewichte (α_j) der Quadratur-Formel $Q^{(1)}$

$$\alpha_j = \int_{\hat{T}} E_j(x, y) d(x, y)$$
 also $\alpha_0 = \alpha_1 = \alpha_2 = \frac{1}{6}$.

Ad(b) Im selben Sinne ist mit

$$E_0(x,y) := 2x^2 + 2y^2 + 4xy - 3x - 3y + 1$$
, $E_1(x,y) := 2x^2 - x$, $E_2(x,y) := 2y^2 - y$, $K_1(x,y) := -4x^2 - 4xy + 4x$, $K_2(x,y) := -4y^2 - 4xy + 4y$, $K_3(x,y) := 4xy$

stets $E_j(e_k) = \delta_{jk}$ und $K_j(k_i) = \delta_{ji}$ erfüllt und damit das Interpolationsproblem stets unzweideutig lösbar. Die Gewichte (α_j) sind gegeben durch $\alpha_j = \int_{\hat{T}} E_j(x,y) d(x,y)$ für j = 0,1,2 und $\alpha_j = \int_{\hat{T}} K_j(x,y) d(x,y)$ für j = 3,4,5. Es folgt $\alpha_0 = \alpha_1 = \alpha_2 = 0$ und $\alpha_3 = \alpha_4 = \alpha_5 = \frac{1}{6}$.

Die Quadratur-Formeln sind also

$$Q^{(1)}(f) = \frac{1}{6} \left(f(0,0) + f(1,0) + f(0,1) \right) \tag{7}$$

$$Q^{(2)}(f) = \frac{1}{6} \left(f(1/2, 0) + f(0, 1/2) + f(1/2, 1/2) \right). \tag{8}$$

Mit der Duffy-Transformation

$$\Psi: [0,1]^2 \to \hat{T}: (\xi,\eta) \mapsto (\xi,(1-\xi)\eta)$$

lässt sich eine Quadratur auf dem Einheitsquadrat auf dem Dreieck definieren. (Diese Transformation lässt die erste Koordinate invariant und die zweite wird entsprechend der Höhe des Dreiecks \hat{T} gestaucht.) Mit der Transformationsformel folgt

$$\int_{\hat{T}=\Psi([0,1]^2)} f(x,y)d(x,y) = \int_{[0,1]^2} f(\xi,(1-\xi)\eta)(1-\xi)d(\xi,\eta) \quad \text{mit } |\det D\Psi| = (1-\xi).$$

Also folgt mit zwei Quadraturen auf [0,1]

$$\int_{\hat{T}} f(x,y)d(x,y) \approx \sum_{i=0}^{N_x} \sum_{k=0}^{N_y} \alpha_i \beta_k f(x_i, (1-x_i)y_k)(1-x_i).$$

Um die Ordnung der Quadratur auf \hat{T} zu untersuchen, sei $p \in P_n$, also

$$p(\Psi(x,y))(1-x) = \sum_{k=0}^{n} \sum_{j=0}^{n-k} a_{jk} x^{k} (1-x)^{j+1} y^{j}.$$

In x hat p folglich den Grad k+j+1=n+1 und in y also n. Damit p exakt integriert wird, muss $n+1=2N_x+1$ oder $N_x>\lfloor n/2\rfloor$ und $N_y\geq \lfloor n/2\rfloor$ erfüllt sein.

Figure 1: Vergleich relativer Fehler der Quadratur von Polynomen verschiedenen Grades über verschiedene Anzahl von Quadraturknoten.

Figure 2: Relativer Fehler der Quadratur e^x verschiedene Anzahl von Quadraturknoten. Die Fehlerabschätzungen wurden durch (5) bzw (6) berechnet.

Figure 3: Vergleich von relativen Fehler der Quadratur von Polynomen mit 2 Unbestimmten konstanten Grades auf $[0,1]^2$ über verschiedene Anzahl von Quadraturknoten.

Figure 4: Vergleich von relativen Fehler der Quadratur von Polynomen mit 2 Unbestimmten verschiedenen Grades auf \hat{T} über verschiedene Anzahl von Quadraturknoten.

(a) Vergleich von Runge-Funktion und den Polynomen, die die implizit in der Gauß-Quadratur genutzt werden.

(b) Vergleich der Werte der Quadratur Runge-Funktion, entsprechend der Anzahl der Quadraturknoten.

Figure 5: Runge-Funktion und Interpolation