ENO and WENO Reconstruction

Lu Shuo

September 18, 2024

Reconstruction from Cell Averages

ENO Reconstruction

WENO Reconstruction

Numerical examples

Reconstruction from Cell Averages I

Problem

Given the cell averages \bar{v}_i of a function v(x) for each cell I_i , find a polynomial $p_i(x)$ of degree at most k-1, such that it approximates the function v(x) to k-th order accuracy within I_i :

$$p_i(x) = v(x) + O(\Delta x^k), \quad x \in I_i, \quad i = 1, \dots, N.$$

Consider the stencil $S(i) \equiv \{I_{i-r}, \dots, I_{i+k-1}\}$. Although the analytical expression for $p_i(x)$ can be derived, for uniform grids we have the useful result:

$$v_{i+\frac{1}{2}} = \sum_{j=0}^{k-1} c_{rj} \bar{v}_{i-r+j} = v\left(x_{i+\frac{1}{2}}\right) + O(\Delta x^k)$$

Reconstruction from Cell Averages II

For k=3, the constants c_{rj} are given in the following table:

r	j=0	j=1	j=2
-1	11/6	-7/6	1/3
0	1/3	5/6	-1/6
1	-1/6	5/6	1/3
2	1/3	-7/6	11/6

ENO Reconstruction I

Reconstruction from cell averages is only applicable to smooth functions.

ENO adaptively selects the smoothest stencil from

$$S_r(i) = \{I_{i-r}, \ldots, I_{i+k-1-r}\}, r = 0, \ldots, k-1.$$

Then the reconstruction process is similar to that for smooth functions.

ENO have the following disadvantages:

- 1. Unnecessary computation
- 2. Sensitivity to perturbations
- 3. Inconsistent stencil pattern
- 4. Parallel computational inefficiency

WENO Reconstruction I

As for every $S_r(i)$, we have $v_i^{(r+\frac{1}{2})}$, WENO uses a convex combination of all of them:

$$v_{i+\frac{1}{2}}^{-} = \sum_{r=0}^{k-1} \omega_r v_{i+\frac{1}{2}}^{(r)}, \quad v_{i-\frac{1}{2}}^{+} = \sum_{r=0}^{k-1} \tilde{\omega}_r v_{i-\frac{1}{2}}^{(r)},$$

where

$$\omega_r = \frac{\alpha_r}{\sum_{s=0}^{k-1} \alpha_s}, \quad \alpha_r = \frac{d_r}{(\epsilon + \beta_r)^2} \quad r = 0, \dots k - 1,$$

$$\tilde{\omega}_r = \frac{\tilde{\alpha}_r}{\sum_{s=0}^{k-1} \tilde{\alpha}_s}, \quad \tilde{\alpha}_r = \frac{\tilde{d}_r}{(\epsilon + \beta_s)^2}, \quad r = 0, \dots, k - 1,$$

 β is the smoothness indicator. $\epsilon=10^{-6}$ is used to prevent division by zero. d_r are constants that satisfy the following conditions:

$$v_{i+\frac{1}{2}} = \sum_{r=0}^{k-1} d_r v_{i+\frac{1}{2}}^{(r)} = v(x_{i+\frac{1}{2}}) + O(\Delta x^{2k-1}).$$

Numerical examples

1.2 True Solution — Numerical Solution 0.8 - 0.4 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.4 - 0.5 - 0.5 - 0.4 - 0.5

Figure: smooth

Figure: non-smooth

Figure: ENO

Figure: WENO

Thanks