CCA-Security

CCA Security (take 1)

- Let (K,E,D) be a symmetric encryption scheme and (T,ε) a superpolynomial pair. Consider the following game:
 - (1) Alice and Bob choose a shared k at random from $\{0,1\}^n$
 - (2) Eve gets access to black boxes $E_k(\cdot)$ and $D_k(\cdot)$
 - (3) Eve chooses P_1 and P_2
 - (4) Alice chooses $i \in \{1,2\}$ at random and gives Eve $C = E_k(P_i)$
 - (5) Eve gets more access to black boxes $E_k(\cdot)$ and $D_k(\cdot)$
 - (6) Eve outputs $j \in \{1,2\}$

Eve wins if j = i.

Scheme (K,E,D) is (T,ϵ) -CCA-secure if for any Eve of time complexity at most T $Pr[Eve\ wins] < 1/2 + \epsilon$

CCA Security (fix)

- Change (5) to:
 - (5') Eve gets access to black boxes $E_k(\cdot)$ and $D'_k(\cdot)$, where

$$D'_{k}(C') = \begin{cases} D_{k}(C'), & \text{if } C' \neq C \\ \bot, & \text{if } C' = C \end{cases}$$

Construction of a CCA-Secure Scheme

Let (Sign, Ver) be a CMA-secure MAC and (K',E',D') a CPA-secure scheme. Define (K,E,D) as follows

K: keys k, k' selected uniformly at random from $\{0,1\}^n$

E: compute $C = E'_k(P)$, $t = \operatorname{Sign}_{k'}(C)$, and send (C,t)

D: Upon receiving (C,t), first verify that $Ver_{k'}(C,t) = 1$ if not, abort (output \perp). If check passes compute $D'_k(C)$

Security

A MAC (Sign, Ver) satisfies the unique signatures property if for any message there at most one tag that certifies it.

More precisely: $\operatorname{Ver}_k(P,t) = 1$ if and only if $t = \operatorname{Sign}_k(P)$

Theorem.

Let (K,E,D) be the encryption scheme constructed as on the previous slide from a CPA-secure SES (K',E',D') and a CMA-secure MAC (Sign,Ver) that satisfies the unique signatures property. Then (K,E,D) is CCA-secure.

Security: Proof

Idea of the proof

Eve is allowed to make encryption and decryption queries Since (K',E',D') is CPA-secure, encryption queries alone don't help

Since (Sign,Ver) is a CMA-secure scheme it is unlikely that Eve receives something different from \perp to her decryption queries. Thus they are useless

More details.

Suppose there is Eve of bounded complexity that breaks (K,E,D). We construct Eve' that breaks (K',E',D')

Security: Proof (cntd)

- Eve' uses Eve and Alice, and simulates Bob:
 - choose key k'
 - whenever Eve asks for an encryption of P compute $C = E'_k(P)$ $t = \operatorname{Sign}_{k'}(C)$ and send (C,t) to Eve. Record the query.
 - if Eve asks for decryption of what was previously computed return P
 - if Eve asks for decryption of (C,t) that was not previously computed, check if $Ver_{k'}(C,t) = 1$. If not return \bot . If yes, abort communication. Eve' fails to simulate Bob.
 - when Eve comes up with a challenge P_1, P_2 pass it on to Alice to obtain $C = E'_k(P_i)$. Give Eve (C,t), where $t = \operatorname{Sign}_{k'}(C)$
 - when Eve outputs a guess j, output j