

## The next challenge: survival analysis

Gerspacher Thomas

## Summary

Context

- I. Survival Analysis
- II. Challenge

#### Context

The objectives of the challenge are various:

- Assess participants' performance.
- Teach participants' a subject.
- Open a field of study to machine learning.

As a first step, the challenge is aimed at students of RPI, Rensselaer Polytechnic Institute, as part of a statistical course.

## A. Analysis

#### **Objective:**

Analyze the expected duration of time *t* until an event *e* appears.

#### **Examples:**

- Effect of treatments on patients.
- Failures in mechanic systems.
- Relations between diseases and other factors.

## A. Censoring

#### **Definition:**

For some individuals, the event of interest never occurs during the observation time of the study.



### B. Basics

Survival function S(t):
 Probability that a subject survives past time t

#### Survival functions



## B. Basics

Hazard function h(t):
 Risk at time t

#### Hazard functions





### B. Basics

Cumulative hazard Function H(t):
 Accumulated risk at time t

#### **Cumulative Hazard functions**





### B. Basics

#### **Relations between functions:**

$$\bullet \quad S(t) = e^{-H(t)}$$

$$ullet h(t) = -rac{\partial H(t)}{\partial t}$$

## A. Progress

#### Steps:

- 1. Present a standard method used in survival analysis (ask the participant to implement it).
- 2. Use this baseline on real data and show how it performs.
- 3. Ask the participant to find a better solution than the standard method using, for example, machine learning algorithms

## B. Application 1: Estimation

What is the probability that a patient dies during its stay in a hospital?

#### **Hypothesis:**

Let us say that each day, a patient as  $\frac{1}{50}$  chance to survive.

| h(t)           | H(t)           | S(t)                |
|----------------|----------------|---------------------|
| $\frac{1}{50}$ | $\frac{t}{50}$ | $e^{-\frac{t}{50}}$ |

## B. Application 1: Estimation



$$S(t)=e^{-rac{t}{50}}$$

## B. Application 1: Estimation

#### Kaplan-Meier estimator:

- non-parametric estimator of the survival function.
- constructed by using maximum-likelihood estimation.

$$\hat{S}(t) = \sum_{i:t_i < t} rac{n_i - d_i}{n_i}$$

with  $n_i$  number of individuals who has not experienced the event at time  $t_i$  and  $d_i$  number of individuals who experience the event at time  $t_i$ 

## B. Application 1: Estimation



## C. Example & applications

#### Nelson-Aalen estimator:

- non-parametric estimator of the cumulative hazard function.
- constructed by using maximum-likelihood estimation.

$$\hat{H}(t) = \sum_{i:t_i < t} rac{d_i}{n_i}$$

with  $n_i$  number of individuals who has not experienced the event at time  $t_i$  and  $d_i$  number of individuals who experience the event at time  $t_i$ 

## C. Example & applications



## C. Application 2: Comparison

Do men have the same survival probability than women?



## C. Application 2: Comparison

#### **Log-rank test:**

- Non-parametric test
- Compare survival curves

```
Hypothesis 0 : Both survival curves are the same. S_1(t)=S_2(t) Hypothesis 1 : Survival curves are different. S_1(t)\neq S_2(t)
```

Survival curves of males and females are different (p-value significantly high).

## C. Application 3: Regression

#### **Cox Regression**

Goal: Estimate the hazard function by using prior knowledge of some data X, i.e.  $\lambda(t\setminus X)$ .

$$\lambda(t|X) = b_0(t)e^{\sum_{i=1}^d b_i x_i}$$

Possible improvments: Feature selection



## Presentation of the challenge

Survival Analysis - Jupyter Notebook

## Conclusion: Objectives

- Data generation
  - Good quality
  - Ensure privacy (theoretically and practically)
- Challenge
  - Build fully functional challenges
  - Auto-grading system for the survival challenge
  - Check the viability of different tools such as Gitclass, Travis, Binder, ...

## Thanks! Any questions?