Ultra-fast interpretable machine-learning potentials

Stephen R. Xie, 1,2 Matthias Rupp,3 and Richard G. Hennig^{1,2}

Keywords: machine learning, empirical potentials, force fields

I. PROPERTY DATA

TABLE I. Derived properties.

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$													
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Energy	Forces	Phonons	a_0	C_{11}	C_{12}	C_{44}	B	E_{100}	E_{110}	E_{111}	E_V
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		(meV/atom)	(eV/Å)	(THz)	(Å)	(GPa)	(GPa)	(GPa)	(GPa)	(eV)	(eV)	(eV)	(eV)
UF _{2,3} 5.1 0.152 0.263 3.176 558.4 231.4 158.7 333.7 0.240 0.203 0.223 3.283 LJ 110.0 1.400 3.914 3.105 506.2 600.9 599.4 566.7 0.345 0.325 0.348 4.334 Morse 40.0 0.480 1.139 3.230 135.8 126.3 126.1 129.1 0.171 0.170 0.174 2.894 EAM4 88.0 0.803 0.301 3.143 525.3 206.5 163.8 311.0 0.184 0.159 0.224 3.816 SNAP 14.2 0.189 0.270 3.166 653.8 335.4 124.2 433.4 0.227 0.196 0.261 2.048 qSNAP 9.9 0.167 0.256 3.176 497.0 179.2 101.9 281.1 0.249 0.202 0.245 2.574	DFT	[225.4]	[1.496]	[2.254]	3.180	517.0	198.0	142.0	305.0	0.251	0.204	0.222	3.270
LJ 110.0 1.400 3.914 3.105 506.2 600.9 599.4 566.7 0.345 0.325 0.348 4.334 Morse 40.0 0.480 1.139 3.230 135.8 126.3 126.1 129.1 0.171 0.170 0.174 2.894 EAM4 88.0 0.803 0.301 3.143 525.3 206.5 163.8 311.0 0.184 0.159 0.224 3.816 SNAP 14.2 0.189 0.270 3.166 653.8 335.4 124.2 433.4 0.227 0.196 0.261 2.048 qSNAP 9.9 0.167 0.256 3.176 497.0 179.2 101.9 281.1 0.249 0.202 0.245 2.574	UF_2	26.6	0.387	0.230	3.169	538.6	188.9	185.0	300.5	0.173	0.161	0.190	4.324
Morse 40.0 0.480 1.139 3.230 135.8 126.3 126.1 129.1 0.171 0.170 0.174 2.894 EAM4 88.0 0.803 0.301 3.143 525.3 206.5 163.8 311.0 0.184 0.159 0.224 3.816 SNAP 14.2 0.189 0.270 3.166 653.8 335.4 124.2 433.4 0.227 0.196 0.261 2.048 qSNAP 9.9 0.167 0.256 3.176 497.0 179.2 101.9 281.1 0.249 0.202 0.245 2.574	$UF_{2,3}$	5.1	0.152	0.263	3.176	558.4	231.4	158.7	333.7	0.240	0.203	0.223	3.283
EAM4 88.0 0.803 0.301 3.143 525.3 206.5 163.8 311.0 0.184 0.159 0.224 3.816 SNAP 14.2 0.189 0.270 3.166 653.8 335.4 124.2 433.4 0.227 0.196 0.261 2.048 qSNAP 9.9 0.167 0.256 3.176 497.0 179.2 101.9 281.1 0.249 0.202 0.245 2.574	LJ	110.0	1.400	3.914	3.105	506.2	600.9	599.4	566.7	0.345	0.325	0.348	4.334
SNAP 14.2 0.189 0.270 3.166 653.8 335.4 124.2 433.4 0.227 0.196 0.261 2.048 qSNAP 9.9 0.167 0.256 3.176 497.0 179.2 101.9 281.1 0.249 0.202 0.245 2.574	Morse	40.0	0.480	1.139	3.230	135.8	126.3	126.1	129.1	0.171	0.170	0.174	2.894
qSNAP 9.9 0.167 0.256 3.176 497.0 179.2 101.9 281.1 0.249 0.202 0.245 2.574	EAM4	88.0	0.803	0.301	3.143	525.3	206.5	163.8	311.0	0.184	0.159	0.224	3.816
•	SNAP	14.2	0.189	0.270	3.166	653.8	335.4	124.2	433.4	0.227	0.196	0.261	2.048
GAP 6.2 0.169 0.291 3.178 596.4 253.7 142.0 363.5 0.268 0.216 0.177 3.342	qSNAP	9.9	0.167	0.256	3.176	497.0	179.2	101.9	281.1	0.249	0.202	0.245	2.574
	GAP	6.2	0.169	0.291	3.178	596.4	253.7	142.0	363.5	0.268	0.216	0.177	3.342

II. MODEL PARAMETERS

TABLE II. UF Potential hyperparameters selected in this work.

two-body						three-body						
	$r_{\min,2}$ (Å)	$r_{\text{cut,2}}$ (Å)	knot spacing	basis functions	symmetry	λ_2	$r_{\text{min,3}}$ (Å)	r _{cut,3} (Å)	knot spacing	basis functions	symmetry	λ_3
$\overline{\mathrm{UF}_2}$	1.5	5.5	linear	25	i-j = j-i	1E-08	-	-	-	-	-	-
$UF_{2,3}$	1.5	5.5	linear	25	i- j = j - i	1E-08	1.5	4.25	linear	915	i- j - $k = i$ - k - j	1E-08

TABLE III. SNAP/qSNAP hyperparameters selected in this work.

	rcutfac (Å)	twojmax	rfac0	rmin0	quadraticflag	bzeroflag
SNAP	5.5	8	0.99363	0	0	0
qSNAP	5.5	6	0.99363	0	1	0

TABLE IV. GAP hyperparameters selected in this work.

	cutoff (Å)	l_max	n_max	atom_sigma	zeta	$cutoff_transition_width$	delta	f0	n_sparse	covariance_type	sparse_method
GAP	5.5	8	8	0.5	4	0.5	1	0	200	$dot_product$	cur_points

¹Department of Materials Science and Engineering, University of Florida ²Quantum Theory Project, University of Florida

³Department of Computer and Information Science, University of Konstanz, Germany (Dated: incomplete draft version of December 10, 2021)

III. HYPERPARAMETER EXPLORATION IN UF POTENTIALS

TABLE V. Basis	functions ar	nd error vs.	cutoff radius	in $UF_{2.3}$	potential.

					-,~ x		
$r_{ m cut}$	λ	$RMSE_{E}$	$RMSE_{F}$	$ c \neq 0 $	c	symmetry	cutoff
cut		(meV/atom)	$(\mathrm{meV/\AA})$	c /- 0		$_{ m mask}$	$_{ m mask}$
4.00	10^{-6}	7.380	0.205	924	2000	353	723
4.00	10^{-7}	7.311	0.203	924	2000	353	723
4.00	10^{-8}	7.309	0.203	924	2000	353	723
4.25	10^{-6}	6.335	0.179	915	2000	368	717
4.25	10^{-7}	6.344	0.176	915	2000	368	717
4.25^{*}	10^{-8} *	6.340	0.176	915	2000	368	717
4.50	10^{-6}	42.973	1.553	905	2000	381	714
4.50	10^{-7}	6.116	0.171	905	2000	381	714
4.50	10^{-8}	6.115	0.171	905	2000	381	714
4.75	10^{-6}	5.731	0.168	903	2000	386	711
4.75	10^{-7}	5.576	0.163	903	2000	386	711
4.75	10^{-8}	5.575	0.163	903	2000	386	711
5.00	10^{-6}	5.326	0.159	899	2000	393	708
5.00	10^{-7}	5.190	0.156	899	2000	393	708
5.00	10^{-8}	5.189	0.156	899	2000	393	708
5.25	10^{-6}	35.824	1.414	889	2000	406	705
5.25	10^{-7}	5.208	0.154	889	2000	406	705
5.25	10^{-8}	5.210	0.154	889	2000	406	705
5.50	10^{-6}	32.388	1.310	888	2000	410	702
5.50	10^{-7}	5.106	0.152	888	2000	410	702
5.50	10^{-8}	5.107	0.152	888	2000	410	702

FIG. 1. Convergence in two-body interaction properties with number of knots. Energy and force errors quickly converge with the number of knots, which, in turn, determine the number of basis functions. The computational cost of evaluation does not scale with the number of knots due to compact support.

IV. REPRODUCTION OF PAIR AND TWO-AND-THREE-BODY POTENTIALS WITH UF POTENTIALS

FIG. 2. Convergence in errors in reproducing the Lennard-Jones potential with the two-body UF potential. The dataset used to construct these learning curves contain various elemental tungsten configurations (e.g. bcc, vacancy, gamma surfaces) and was previously constructed by Szlachta et al. to fit GAP potentials [1].

FIG. 3. Convergence in errors in reproducing the Stillinger-Weber potential with the UF₂ and UF_{2,3} potentials. The dataset used to construct these learning curves contain various elemental silicon configurations (e.g. diamond, hexagonal, β -Sn, amorphous) and was previously constructed by Bartók et al. to fit GAP potentials [2].

^[1] Szlachta, W. J., Bartók, A. P. & Csányi, G. Accuracy and transferability of Gaussian approximation potential models for tungsten. *Phys. Rev. B* **90**, 104108 (2014).

^[2] Bartók, A. P., Kermode, J., Bernstein, N. & Csányi, G. Machine learning a general-purpose interatomic potential for silicon. *Physical Review X* **8** (2018).