

CXA2067S

Preamplifier for High-Resolution Computer Display

Description

The CXA2067S is a bipolar IC developed for high-resolution computer displays.

Features

- Wide-band amplifier: 170 MHz@-3 dB (Typ)
- Input dynamic range: 1.0 Vp-p (typ)
- High gain preamplifier (17 dB)
- R, G and B in a single package (SDIP 30 pins)
- I2C bus control
 - Contrast control
 - Sub contrast control
 - Brightness control
 - OSD contrast control
 - Cut-off control: 4 channels of DAC output
 - 2 blanking level modes
 - (0.5 V fixed, pedestal –0.3 V)
- · Sync separator for sync-on-green
- · Blanking mixing function
- · OSC mixing function
- Video interval detection function
- VBLK sync DAC refresh system
- 12 V power supply interlocked power saving function

Applications

High-resolution computer displays

Structure

Bipolar silicon monolithic IC

Absolute Maximum Ratings (Ta=25 °C, GND=0 V)

 Supply voltage 	Vcc/R/G/E	3 14	V	
	Vcc	7	V	
Operating temperature	e Topr	-20 to +75	°C	
• Storage temperature	Tstg	-65 to +150	°C	
Allowable power dissipation				
	Pp	2.05	W	

Recommended Operating Conditions

Supply voltage	Vcc/R/G/B	12±0.5	V
	Vcc	5±0.5	V

Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.

Block Diagram

Pin Description

Pin No.	Symbol	Pin voltage	Equivalent circuit	Description
1	SDA		1 4k	I ² C bus standard SDA (serial data) input/output. VILMAX=1.5 V VIHMIN=3.5 V VOLMAX=0.4 V
2	SCL	_	2 4k √cc 10k 10k 1777 1777	I ² C bus standard SCL (serial clock) input/output. VILMAX=1.5 V VIHMIN=3.5 V
3	COF R		Vcc Vcc	
4	COF G		V _{CC} 100 ₹	DAC output for cut-off
5	COF B	_	3 4 4	adjustment. Output DC is 1 to 4 V.
6	COF RGB		5 777 \$ 177	
7	RIN		Vcc Vcc Vcc Vcc 1k ≥ 14k ≥ 8k ≥ Vcc Vcc	
9	GIN	1.7 V (Clamp)	7 300	R, G and B signal inputs. Input via a capacitor.
11	BIN			
8	Vcc	5 V		5 V power supply.

Pin No.	Symbol	Pin voltage	Equivalent circuit	Description
10	SYNC IN	2.8 V	Vcc \$100 Vcc \$100 Vcc \$150 777	Sync-on-green signal input. Input via a capacitor.
12	CLP	_	Vcc 2p 10k 10k	Clamp pulse (positive polarity) input. VILMAX=0.8 V VIHMIN=2.8 V
13	OSD-R		Vcc	
14	OSD-G	_	2p 5k	OSD control inputs. VILMAX=0.8 V VIHMIN=2.8 V
15	OSD-B		15) /// /// ///	
16	Vcc B	12 V		12 V power supply. (B channel)
17	YS		Vcc 2p 5k 5k 7/17	YS (OSD BLK) control input. VILMAX=0.8 V VIHMIN=2.8 V

Pin No.	Symbol	Pin voltage	Equivalent circuit	Description
18	BLKING	_	Vcc Vcc 4k 10k 10k 1777 777 777	Blanking pulse input. Set the V blanking pulse width to 300 µs or more. VILMAX=0.8 V VIHMIN=2.8 V
19	GND-B			
23	GND-G	0 V		Ground.
26	GND-R			
20	BOUT		VccR/G/B VccR/G/B VccR/G/B	
24	GOUT	_	20 310	R, G and B outputs.
27	ROUT		27) 5k \$	
21	S/H-B		Vcc Vcc Vcc ≨1k	
25	S/H-G	_	21 W 300	Brightness sample-and-hold. Connect to GND via a capacitor.
28	S/H-R		28	
22	Vcc G	12 V		12 V power supply. (G channel)
29	Vcc R	12 V		12 V power supply. (R channel)

Pin No.	Symbol	Pin voltage	Equivalent circuit	Description
30	CSYNC /VDET	_	Vcc Vcc Vcc Vcc Vcc √cc	Sync-on-green signal sync separator output/video detector output. Either of them is selected by SVSW of I ² C bus. Typ.: High=4.3 V Low=0.2 V (positive polarity)

SONY CXA2067S

Definitions of I²C Bus Register

Slave Address

SLAVE RECEIVER: 40 (HEX)

Register Table

SUB ADDRESS	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
00h				CONTI	RAST			
01h	0	BLK MODE			BRIGH [*]	TNESS		
02h		CUT OFF R						
03h				CUT C	FF G			
04h		CUT OFF B						
05h	VDET	LEVEL			OSD	GAIN		
06h				CUT OF	F RGB			
07h				SUB CON	TRAST R			
08h		SUB CONTRAST G						
09h		SUB CONTRAST B						
0Ah	VDET OFF	SVSW	*	*	*	*	*	VSOFF

Note) *: don't care

Sub Address CONTRAST (8):

0000

Performs the gain control for R, G and B channels in common.

Control is performed by the multiplication with SUB CONTRAST. The white balance is adjusted by SUB CONTRAST and the luminance is adjusted by

CONTRAST.

0: Gain minimum (-30 dB or less) 255 : Gain maximum (+17 dB)

Sub Address BLK MODE (1):

0001

Switches the blanking level.

0: Pedestal-0.3 V

1:0.3 V fixed

Sub Address BRIGHTNESS (6): Performs the black level control for R, G and B channels in common.

0001

0 : Black level minimum (0.9 V) 63 : Black level maximum (2.8 V)

Sub Address CUT OFF R (8):

Performs the Pin 3 (COF R) output voltage control.

0010

0 : Output voltage minimum (1 V) 255 : Output voltage maximum (4 V)

Sub Address CUT OFF G (8):

Performs the Pin 4 (COF G) output voltage control.

0011

0 : Output voltage minimum (1 V) 255 : Output voltage maximum (4 V)

Sub Address CUT OFF B (8):

Performs the Pin 5 (COF B) output voltage control.

0100

0 : Output voltage minimum (1 V) 255 : Output voltage maximum (4 V)

--7--

SONY CXA2067S

Sub Address VDET LEVEL (2): Controls the signal detection (VDET) slice level.

0101 0 : Slice level minimum (RIN or GIN or BIN=30 mV)

1 : Slice level maximum (RIN or GIN or BIN=220 mV)

Sub Address OSD GAIN (6): Performs the OSD gain control for R, G and B channels in common.

0110 Control is performed by the multiplication with SUB CONTRAST (upper 6

bits) so that the video white balance and tracking are obtained.

0 : Gain minimum (0 Vp-p) 63 : Gain maximum (5 Vp-p)

Sub Address CUT OFF RGB (8): Performs the Pin 6 (COF RGB) output voltage.

0110 0 : Output voltage minimum (1 V)

255 : Output voltage maximum (4 V)

Sub Address SUB CONTRAST R (8): Performs the R channel gain control.

0111 Control is performed by the multiplication with CONTRAST. Use for

the white balance adjustment.

0 : Gain minimum (-30 dB or less)

255 : Gain maximum (+17 dB)

Sub Address SUB CONTRAST G (8): Performs the G channel gain control.

1000 Control is performed by the multiplication with CONTRAST. Use for

the white balance adjustment.

0 : Gain minimum (-30 dB or less)

255 : Gain maximum (+17 dB)

Sub Address SUB CONTRAST B (8): Performs the B channel gain control.

1001 Control is performed by the multiplication with CONTRAST. Use for

the white balance adjustment.

0 : Gain minimum (-30 dB or less)

255 : Gain maximum (+17 dB)

Sub Address VDET OFF (1): Performs the Pin 30 output control.

1010 0 : Output ON

1 : Output OFF

Sub Address SV SW (1): Switches the Pin 30 output signal (sync separator/video detector).

1010 0 : Sync separator output

1: Video detector output

Sub Address VS OFF (1): Performs the control of VBLK sync DAC refresh function.

1010 0 : Function operation ON

1: Function operation OFF

I²C Bus Logic System

No.	Item	Symbol	Min.	Тур.	Max.	Unit
1	High level input voltage	VIH	3.0	_	5.0	V
2	Low level input voltage	VIL	0	_	1.5	V
3	Low level output voltage with 3 mA SDA current inflow	Vol	0	_	0.4	V
4	Maximum clock frequency	fscL	0	_	400	kHz
5	Minimum waiting time for data change	tBUF	4.0	_	_	μs
6	Minimum waiting time for data transmission start	thd : STA	4.0	_	_	μs
7	Low level clock pulse width	tLOW	4.7	_	_	μs
8	High level clock pulse width	tніgн	4.0	_	_	μs
9	Minimum waiting time for start preparation	tsu : STA	4.7	_	_	μs
10	Minimum data hold time	thd : DAT	0	_	_	ns
11	Minimum data preparation time	tsu : DAT	250	_	_	ns
12	Rise time	tR	_	_	1	μs
13	Fall time	tF	_	_	300	ns
14	Minimum waiting time for stop preparation	ts⊍ : STO	4.7	_	_	μs

Electrical Characteristics

No.	Measurement item	Symbol	Measurement contents	Min.	Тур.	Max.	Unit
1	Current consumption (5 V)	lcc1	Vcc (5 V) pin inflow current RGB signal input: None	85	115	140	mA
2	Current consumption (12 V)	Icc2	Vcc R/G/B (12 V) pin inflow current RGB signal input: None	29.5	45	55.5	mA
3	Current consumption (12 V OFF)	Icc3	Vcc pin inflow current for 12 V OFF RGB signal input: None	20	30	40	mA
4	Frequency response (50 MHz)	F50	Input the continuous 1 MHz, 50 MHz and 100 MHz sine waves (0.7 Vp-p). Measure the output amplitude gain difference at this time. Gain difference [dB]=20 log	-1.5	0	1.9	dB
5	Frequency response (100 MHz)	F100	RGB input signal (RGB input pins) 0.7Vp-p GND CLP potential (Approx. 1.7 V)	-3.0	0	3.0	dB
6	Contrast control 1	GCONT1	Measure the output signal amplitude Vout level when a 0.7 Vp-p video signal is input. GCONT1 : Contrast=SubContrast=FF GCONT2 : Contrast=00/SubContrast=FF	5.6	6.2	_	Vp-p
7	Contrast control 2	GCONT2	Input signal 0.7Vp-p	_	0	100	mVp-p
8	Sub contrast control	GSUB	Measure the output signal amplitude Vout level when a 0.7 Vp-p video signal is input. Contrast=FF/SubContrast=00	_	0	100	mVp-p

No.	Measurement item	Symbol	Measurement contents	Min.	Тур.	Max.	Unit
	OCD rain control	GOSD1	Measure the OSD level of the output signal when the OSD pulse is input. GOSD1: OSD=3F/SubContrast=FF GOSD2: OSD=00/SubContrast=FF	4.5	5	_	Vp-p
9	OSD gain control	GOSD2	OSD interval RGB output signal OSD level	_	0	150	mVp-p
10	Brightness control	VBRT1	Measure the black level of the RGB output signal. VBRT1 : Brightness=00 VBRT2 : Brightness=3F	0.4	0.7	1	V
	Digitaloss control	VBRT2	RGB output signal Black level		2.6	3	v
11	BLK control (BLK MODE=0)	VBLK1	Measure the BLK level of the output signal when the BLK pulse is input.	_	0.3	0.6	>
11	BLK control (BLK MODE=1)	VBLK2	BLK level (VBLK1) GND BLK level (VBLK2)		0.3	0.6	V
12	Sync separator output rise delay	SDLYR		_	30	40	20
12	Sync separator output fall delay	SDLYF	Rise Delay		60	80	- ns
13	VDET output rise delay	DDLYR	Vth=50% 0.7Vp-p	_	20	40	- ns
13	VDET output fall delay	DDLYF	Rise Delay Vth=50%	_	30	60	115

No.	Measurement item	Symbol	Measurement contents	Min.	Тур.	Max.	Unit
14	DAC output voltage (COFF=00)	VCUT1	Measure the DAC output voltage (Pin 6)	_	1	1.3	V
14	DAC output voltage (COFF=FF)	VCUT2	for COFF=00/FF.	3.9	4	_	V
15	VDET output amplitude	VDET	Input the crosshatch signal of DotClock=100 MHz/0.7 Vp-p and measure the VDET output amplitude. SW SW=1/VDET LEVEL=0 Input signal 10ns 10ns	3.85	4	_	Vp-p

Electrical Characteristics Measurement Circuit

Electrical Characteristics Measurement Circuit (Frequency response)

VBLK Sync DAC Refresh System

synchronizing to the VBLK signal. The received I²C bus data is held by the latch till the next VBLK signal comes. Therefore, the timing of I²C bus data The VBLK signal is extracted form the composite BLK signal input to Pin 18. The DAC data rewrite for each control is simultaneously performed, transmission from the microcomputer is free. The V blanking pulse width input to Pin 18 should be 300µs or more.

Application Circuit

Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same.

Notes on Operation

- 1. The ROUT, GOUT and BOUT outputs should be received in the high impedance state.
- 2. The wiring from ROUT, GOUT and BOUT to the power amplifier should be as short as possible.
- 3. For the decoupling capacitors for Vcc and Vcc R/G/B, the ceramic capacitor and the electrolysis capacitor should be connected in parallel as closely to the IC as possible.
- 4. The clamp capacitors for RIN, GIN, BIN, S/H R, S/H G and S/H B should be connected as close to the IC as possible.
- 5. The signals to RIN, GIN and BIN should be input via a clamp capacitor with the low impedance.
- 6. Set the output OFF when the VDET output is not used (The cross talk may deteriorate).

Package Outline Unit: mm

30PIN SDIP (PLASTIC)

PACKAGE STRUCTURE

SONY CODE	SDIP-30P-01
EIAJ CODE	SDIP030-P-0400
JEDEC CODE	

MOLDING COMPOUND	EPOXY RESIN
LEAD TREATMENT	SOLDER/PALLADIUM PLATING
LEAD MATERIAL	COPPER ALLOY
PACKAGE MASS	1.8g