

Event Display

Log(Charge) Log(MeV)

FASERCal

Event Hits:

- Each point is a reconstructed voxel.
- Detector volume is massive,
 but ~99% of voxels are empty.
- Energy patterns: boosted forward, with complex and overlapping particle showers.

Goal:

 Achieve full event reconstruction → classification and kinematics from this sparse data.

Cool, but Why?

Neutrino Physics

• Electron neutrinos ν_e

- Gargamelle: up to 12 GeV.
- E53 & DONuT: up to ~200 GeV.
- No direct data above 250 GeV.

• Muon neutrinos ν_{μ}

- Accelerator data: up to 360 GeV.
- IceCube: above 6.3 TeV (large uncertainties).
- Gap between 360 GeV 6.3 TeV remains unexplored.

• Tau neutrinos $\, u_{ au}$

Primary goal: cross section measurements of different neutrino flavors at TeV energies.

- Only 19 ν_{τ} *CC* interactions are directly observed.
- Super-K, IceCube: oscillated ν_{τ} :
 - relative appearance rates and don't give precise cross-section constraints.
- No measurements for E > 250 GeV.

