Linear Models of Regression

K Sri Rama Murty

IIT Hyderabad

ksrm@ee.iith.ac.in

January 28, 2022

ullet Predict target variable(s) $t \in \mathbb{R}$ given D-dimensional input vector $oldsymbol{x}$

- ullet Predict target variable(s) $t \in \mathbb{R}$ given D-dimensional input vector $oldsymbol{x}$
- E.g. Weight estimation, Share market prediction, 3D image from 2D

- ullet Predict target variable(s) $t \in \mathbb{R}$ given D-dimensional input vector $oldsymbol{x}$
- E.g. Weight estimation, Share market prediction, 3D image from 2D
- Target can be estimated as a linear combination of inputs

$$\hat{t} = y(\mathbf{x}, \mathbf{w}) = w_0 + w_1 x_1 + w_2 x_2 + \cdots w_D x_D = \mathbf{w}^\mathsf{T} \mathbf{x}$$

 $\mathbf{x} = \begin{bmatrix} 1 & x_1 & x_2 & \cdots & x_D \end{bmatrix}^\mathsf{T} \qquad \mathbf{w} = \begin{bmatrix} w_0 & w_1 & w_2 & \cdots & w_D \end{bmatrix}^\mathsf{T}$

- ullet Predict target variable(s) $t \in \mathbb{R}$ given D-dimensional input vector $oldsymbol{x}$
- E.g. Weight estimation, Share market prediction, 3D image from 2D
- Target can be estimated as a linear combination of inputs

$$\hat{t} = y(\mathbf{x}, \mathbf{w}) = w_0 + w_1 x_1 + w_2 x_2 + \cdots w_D x_D = \mathbf{w}^\mathsf{T} \mathbf{x}$$

 $\mathbf{x} = \begin{bmatrix} 1 & x_1 & x_2 & \cdots & x_D \end{bmatrix}^\mathsf{T} \qquad \mathbf{w} = \begin{bmatrix} w_0 & w_1 & w_2 & \cdots & w_D \end{bmatrix}^\mathsf{T}$

 Determine the model parameters w to minimize error on labeled training data

$$S = \{(\mathbf{x}_1, t_1), (\mathbf{x}_2, t_2), \cdots (\mathbf{x}_N, t_N)\}$$

- ullet Predict target variable(s) $t \in \mathbb{R}$ given D-dimensional input vector $oldsymbol{x}$
- E.g. Weight estimation, Share market prediction, 3D image from 2D
- Target can be estimated as a linear combination of inputs

$$\hat{t} = y(\mathbf{x}, \mathbf{w}) = w_0 + w_1 x_1 + w_2 x_2 + \cdots w_D x_D = \mathbf{w}^\mathsf{T} \mathbf{x}$$

 $\mathbf{x} = \begin{bmatrix} 1 & x_1 & x_2 & \cdots & x_D \end{bmatrix}^\mathsf{T} \qquad \mathbf{w} = \begin{bmatrix} w_0 & w_1 & w_2 & \cdots & w_D \end{bmatrix}^\mathsf{T}$

 Determine the model parameters w to minimize error on labeled training data

$$S = \{(\mathbf{x}_1, t_1), (\mathbf{x}_2, t_2), \cdots (\mathbf{x}_N, t_N)\}$$

ullet Need to define a loss function for optimizing model parameters ullet

4□ > 4□ > 4 = > 4 = > = 90

• Estimated target of n^{th} example

$$\hat{t_n} = y(\mathbf{x}_n, \mathbf{w}) = \mathbf{w}^\mathsf{T} \mathbf{x}_n$$

Estimated target of nth example

$$\hat{t_n} = y(\mathbf{x}_n, \mathbf{w}) = \mathbf{w}^\mathsf{T} \mathbf{x}_n$$

Error in estimation

$$e_n = t_n - y_n$$
 $n = 1, 2, \cdots N$

Estimated target of nth example

$$\hat{t_n} = y(\mathbf{x}_n, \mathbf{w}) = \mathbf{w}^\mathsf{T} \mathbf{x}_n$$

Error in estimation

$$e_n = t_n - y_n$$
 $n = 1, 2, \cdots N$

Overall error on training set

$$J(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} e_n^2$$

Estimated target of nth example

$$\hat{t_n} = y(\mathbf{x}_n, \mathbf{w}) = \mathbf{w}^\mathsf{T} \mathbf{x}_n$$

Error in estimation

$$e_n = t_n - y_n$$
 $n = 1, 2, \cdots N$

Overall error on training set

$$J(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} e_n^2$$

• Estimate \mathbf{w} to minimize $J(\mathbf{w})$

$$\mathbf{w}_* = \arg\min_{w} J(\mathbf{w})$$

Estimated target of nth example

$$\hat{t_n} = y(\mathbf{x}_n, \mathbf{w}) = \mathbf{w}^\mathsf{T} \mathbf{x}_n$$

Error in estimation

$$e_n = t_n - y_n$$
 $n = 1, 2, \cdots N$

Overall error on training set

$$J(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} e_n^2$$

• Estimate \mathbf{w} to minimize $J(\mathbf{w})$

$$\mathbf{w}_* = \arg\min_{\mathbf{w}} J(\mathbf{w})$$

Formulating in matrix notation

$$\mathbf{y}_{N \times 1} = \mathbf{X}_{N \times D+1} \mathbf{w}_{D+1 \times 1}$$

$$\mathbf{X} = [\mathbf{x}_1 \ \mathbf{x}_2 \ \cdots \ \mathbf{x}_N]^\mathsf{T}$$

Estimated target of nth example

$$\hat{t_n} = y(\mathbf{x}_n, \mathbf{w}) = \mathbf{w}^\mathsf{T} \mathbf{x}_n$$

Error in estimation

$$e_n = t_n - y_n$$
 $n = 1, 2, \cdots N$

• Overall error on training set

$$J(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} e_n^2$$

• Estimate \mathbf{w} to minimize $J(\mathbf{w})$

$$\mathbf{w}_* = \arg\min_{\mathbf{w}} J(\mathbf{w})$$

• Formulating in matrix notation

$$\mathbf{y}_{N \times 1} = \mathbf{X}_{N \times D+1} \mathbf{w}_{D+1 \times 1}$$
$$\mathbf{X} = [\mathbf{x}_1 \ \mathbf{x}_2 \ \cdots \ \mathbf{x}_N]^\mathsf{T}$$

LSE can be expressed as

$$J(\mathbf{w}) = \frac{1}{2} \operatorname{Tr}[(\mathbf{t} - \mathbf{y})(\mathbf{t} - \mathbf{y})^{\mathsf{T}}]$$

Estimated target of nth example

$$\hat{t_n} = y(\mathbf{x}_n, \mathbf{w}) = \mathbf{w}^\mathsf{T} \mathbf{x}_n$$

Error in estimation

$$e_n = t_n - y_n$$
 $n = 1, 2, \cdots N$

• Overall error on training set

$$J(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} e_n^2$$

• Estimate \mathbf{w} to minimize $J(\mathbf{w})$

$$\mathbf{w}_* = \arg\min_{\mathbf{w}} J(\mathbf{w})$$

• Formulating in matrix notation

$$\mathbf{y}_{N \times 1} = \mathbf{X}_{N \times D+1} \mathbf{w}_{D+1 \times 1}$$

$$\mathbf{X} = [\mathbf{x}_1 \ \mathbf{x}_2 \ \cdots \ \mathbf{x}_N]^\mathsf{T}$$

LSE can be expressed as

$$J(\mathbf{w}) = \frac{1}{2} \operatorname{Tr}[(\mathbf{t} - \mathbf{y})(\mathbf{t} - \mathbf{y})^{\mathsf{T}}]$$

Equating derivative w.r.t w to 0

$$\nabla_{\mathbf{w}} J(\mathbf{w}) = \nabla_{\mathbf{y}} J(\mathbf{w}) \ \nabla_{\mathbf{w}} \mathbf{y}$$
$$= \mathbf{X}^{\mathsf{T}} (\mathbf{t} - \mathbf{X} \mathbf{w}) = \mathbf{0}$$

$$\mathbf{w} = (\mathbf{X}^\mathsf{T}\mathbf{X})^{-1}\mathbf{X}^\mathsf{T}\mathbf{t}$$

• Given N examples, the target vector $\mathbf{t} \in \mathbb{R}^N$ and columns of $\mathbf{X} \in \mathbb{R}^N$

- Given N examples, the target vector $\mathbf{t} \in \mathbb{R}^N$ and columns of $\mathbf{X} \in \mathbb{R}^N$
- Let S denote a subspace spanned by columns of X in N-dim space

- Given N examples, the target vector $\mathbf{t} \in \mathbb{R}^N$ and columns of $\mathbf{X} \in \mathbb{R}^N$
- Let S denote a subspace spanned by columns of X in N-dim space
- $y = Xw \in S$, being a linear combination of columns of X

- Given N examples, the target vector $\mathbf{t} \in \mathbb{R}^N$ and columns of $\mathbf{X} \in \mathbb{R}^N$
- Let S denote a subspace spanned by columns of X in N-dim space
- y = Xw ∈ S, being a linear combination of columns of X
- For the LS optimality criterion

- Given N examples, the target vector $\mathbf{t} \in \mathbb{R}^N$ and columns of $\mathbf{X} \in \mathbb{R}^N$
- Let S denote a subspace spanned by columns of X in N-dim space
- $y = Xw \in S$, being a linear combination of columns of X
- For the LS optimality criterion
 - \bullet y is orthogonal projection of t on ${\cal S}$

- Given N examples, the target vector $\mathbf{t} \in \mathbb{R}^N$ and columns of $\mathbf{X} \in \mathbb{R}^N$
- Let S denote a subspace spanned by columns of X in N-dim space
- $y = Xw \in S$, being a linear combination of columns of X
- For the LS optimality criterion
 - \bullet y is orthogonal projection of t on ${\cal S}$
 - Error surface $J(\mathbf{w})$ is convex

- Given N examples, the target vector $\mathbf{t} \in \mathbb{R}^N$ and columns of $\mathbf{X} \in \mathbb{R}^N$
- Let S denote a subspace spanned by columns of X in N-dim space
- $y = Xw \in S$, being a linear combination of columns of X
- For the LS optimality criterion
 - \bullet y is orthogonal projection of t on ${\cal S}$
 - Error surface $J(\mathbf{w})$ is convex
 - Sim. to Wiener filter: $\mathbf{w} = \mathbf{R}_{xx}^{-1} \mathbf{r}_{xt}$

- Given N examples, the target vector $\mathbf{t} \in \mathbb{R}^N$ and columns of $\mathbf{X} \in \mathbb{R}^N$
- Let S denote a subspace spanned by columns of X in N-dim space
- $y = Xw \in S$, being a linear combination of columns of X
- For the LS optimality criterion
 - ullet y is orthogonal projection of ${f t}$ on ${\cal S}$
 - Error surface $J(\mathbf{w})$ is convex
 - Sim. to Wiener filter: $\mathbf{w} = \mathbf{R}_{xx}^{-1} \mathbf{r}_{xt}$
 - Also referred to as pseudo inverse sol.

Nonlinear Input-Output Relations

Polynomial curve fitting can be used to model ninlinear i/o relation

$$\hat{t} = y(x, \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \dots + w_M x^M$$

= $\mathbf{w}^T \phi(\mathbf{x})$ (Model is linear in \mathbf{w})

ullet $\phi(.):\mathbb{R}^1 o\mathbb{R}^M$ - nonlinear transformation to higher dim. space

◆ロト ◆部ト ◆差ト ◆差ト 差 めらぐ

Explicit vs Implicit kernels

- Explicit vs Implicit kernels
 - ullet Explicit representation for $\phi(\mathbf{x})$ is available or not

- Explicit vs Implicit kernels
 - Explicit representation for $\phi(\mathbf{x})$ is available or not
- Global vs Local kernels

- Explicit vs Implicit kernels
 - Explicit representation for $\phi(\mathbf{x})$ is available or not
- Global vs Local kernels
 - Changes in one region of input space affect all other regions

- Explicit vs Implicit kernels
 - Explicit representation for $\phi(\mathbf{x})$ is available or not
- Global vs Local kernels
 - Changes in one region of input space affect all other regions
 - Local kernels are preferable for functions with varying characteristics

Least Squares Regression in Kernel Space

Least Squares Regression in Kernel Space

• If t_n is nonlinearly related to \mathbf{x}_n , perform regression in kernel space.

Least Squares Regression in Kernel Space

- If t_n is nonlinearly related to \mathbf{x}_n , perform regression in kernel space.
- Let $\phi: \mathbb{R}^D \to \mathbb{R}^M$, M > D is a nonlinear kernel mapping

- If t_n is nonlinearly related to \mathbf{x}_n , perform regression in kernel space.
- Let $\phi: \mathbb{R}^D \to \mathbb{R}^M$, M > D is a nonlinear kernel mapping
- $\mathbf{x}_n = [x_{n1} \ x_{n2}]^\mathsf{T} \in \mathbb{R}^2$ can be mapped using 2^{nd} order polynomial kernel as $\phi(\mathbf{x}_n) = [1 \ x_{n1} \ x_{n2} \ x_{n1}^2 \ x_{n2}^2 \ x_{n1} x_{n2}]^\mathsf{T} \in \mathbb{R}^6$

- If t_n is nonlinearly related to \mathbf{x}_n , perform regression in kernel space.
- Let $\phi: \mathbb{R}^D \to \mathbb{R}^M$, M > D is a nonlinear kernel mapping
- $\mathbf{x}_n = [x_{n1} \ x_{n2}]^\mathsf{T} \in \mathbb{R}^2$ can be mapped using 2^{nd} order polynomial kernel as $\phi(\mathbf{x}_n) = [1 \ x_{n1} \ x_{n2} \ x_{n1}^2 \ x_{n2}^2 \ x_{n1} x_{n2}]^\mathsf{T} \in \mathbb{R}^6$
- The target t_n is regressed from the kernel representation $\phi(\mathbf{x}_n)$ as

$$\hat{t}_n = \mathbf{w}^\mathsf{T} \phi(\mathbf{x}_n) \qquad \mathbf{w} \in \mathbb{R}^M$$

- If t_n is nonlinearly related to \mathbf{x}_n , perform regression in kernel space.
- Let $\phi: \mathbb{R}^D \to \mathbb{R}^M$, M > D is a nonlinear kernel mapping
- $\mathbf{x}_n = [x_{n1} \ x_{n2}]^\mathsf{T} \in \mathbb{R}^2$ can be mapped using 2^{nd} order polynomial kernel as $\phi(\mathbf{x}_n) = [1 \ x_{n1} \ x_{n2} \ x_{n1}^2 \ x_{n2}^2 \ x_{n1} x_{n2}]^\mathsf{T} \in \mathbb{R}^6$
- ullet The target t_n is regressed from the kernel representation $\phi(\mathbf{x}_n)$ as

$$\hat{t}_n = \mathbf{w}^\mathsf{T} \phi(\mathbf{x}_n) \qquad \mathbf{w} \in \mathbb{R}^M$$

ullet The regression coefficients are given by $oldsymbol{w}_* = (oldsymbol{\Phi}^\mathsf{T} oldsymbol{\Phi})^{-1} oldsymbol{\Phi}^\mathsf{T} oldsymbol{t}$

- If t_n is nonlinearly related to \mathbf{x}_n , perform regression in kernel space.
- Let $\phi: \mathbb{R}^D \to \mathbb{R}^M$, M > D is a nonlinear kernel mapping
- $\mathbf{x}_n = [x_{n1} \ x_{n2}]^\mathsf{T} \in \mathbb{R}^2$ can be mapped using 2^{nd} order polynomial kernel as $\phi(\mathbf{x}_n) = [1 \ x_{n1} \ x_{n2} \ x_{n1}^2 \ x_{n2}^2 \ x_{n1} x_{n2}]^\mathsf{T} \in \mathbb{R}^6$
- ullet The target t_n is regressed from the kernel representation $\phi(\mathbf{x}_n)$ as

$$\hat{t}_n = \mathbf{w}^\mathsf{T} \phi(\mathbf{x}_n) \qquad \mathbf{w} \in \mathbb{R}^M$$

- The regression coefficients are given by $\mathbf{w}_* = (\mathbf{\Phi}^\mathsf{T}\mathbf{\Phi})^{-1}\mathbf{\Phi}^\mathsf{T}\mathbf{t}$
- ullet DNNs can be used to learn data-dependent nonlinear transf. $\phi({\sf x_n})$

- If t_n is nonlinearly related to \mathbf{x}_n , perform regression in kernel space.
- Let $\phi: \mathbb{R}^D \to \mathbb{R}^M$, M > D is a nonlinear kernel mapping
- $\mathbf{x}_n = [x_{n1} \ x_{n2}]^\mathsf{T} \in \mathbb{R}^2$ can be mapped using 2^{nd} order polynomial kernel as $\phi(\mathbf{x}_n) = [1 \ x_{n1} \ x_{n2} \ x_{n1}^2 \ x_{n2}^2 \ x_{n1} x_{n2}]^\mathsf{T} \in \mathbb{R}^6$
- ullet The target t_n is regressed from the kernel representation $\phi(\mathbf{x}_n)$ as

$$\hat{t}_n = \mathbf{w}^\mathsf{T} \phi(\mathbf{x}_n) \qquad \mathbf{w} \in \mathbb{R}^M$$

- The regression coefficients are given by $\mathbf{w}_* = (\mathbf{\Phi}^\mathsf{T}\mathbf{\Phi})^{-1}\mathbf{\Phi}^\mathsf{T}\mathbf{t}$
- ullet DNNs can be used to learn data-dependent nonlinear transf. $\phi({\sf x_n})$
- ullet The last layer of DNNs typically performs linear regression on $\phi(\mathbf{x}_n)$

Effect of Model Order *M*: $t = \sin(\pi x) + \epsilon$

8/38

Effect of Model Order M: $t = \sin(\pi x) + \epsilon$

9/38

- Training & test error diverge for higher model orders
- Model 'overfits' to the noise in the training data

	M = 0	M = 1	M = 6	M = 9
w_0^\star	0.19	0.82	0.31	0.35
w_1^\star		-1.27	7.99	232.37
w_2^\star			-25.43	-5321.83
w_3^{\star}			17.37	48568.31
w_4^\star				-231639.30
w_5^\star				640042.26
w_6^{\star}				-1061800.52
w_7^\star				1042400.18
w_8^\star				-557682.99
w_9^\star				125201.43

- Training & test error diverge for higher model orders
- Model 'overfits' to the noise in the training data

	M=0	M = 1	M = 6	M = 9
w_0^{\star}	0.19	0.82	0.31	0.35
w_1^\star		-1.27	7.99	232.37
w_2^{\star}			-25.43	-5321.83
w_3^{\star}			17.37	48568.31
w_4^{\star}				-231639.30
w_5^{\star}				640042.26
w_6^{\star}				-1061800.52
w_7^{\star}				1042400.18
w_8^{\star}				-557682.99
w*				125201.43

- Training & test error diverge for higher model orders
- Model 'overfits' to the noise in the training data
- Large amplitude weights with alternating polarity.
- \bullet ($\Phi^T\Phi$) may be ill conditioned

• Overfitting is less severe with increased amount of data.

- Overfitting is less severe with increased amount of data.
- Model order cannot be limited by the amount of data available!

- Overfitting is less severe with increased amount of data.
- Model order cannot be limited by the amount of data available!
- Model order should be based on complexity of task/pattern!

- Overfitting is less severe with increased amount of data.
- Model order cannot be limited by the amount of data available!
- Model order should be based on complexity of task/pattern!
- A way forward: arrest the growth of the model weights

K Sri Rama Murty (IITH) Regression January 28, 2022 10 / 38

Add a penalty term to the error term to discourage weight growth

$$J(\mathbf{w}) = \underbrace{E_D(\mathbf{w})}_{\text{Data Term}} + \underbrace{\lambda E_W(\mathbf{w})}_{\text{Regularization Terr}}$$

Add a penalty term to the error term to discourage weight growth

$$J(\mathbf{w}) = \underbrace{E_D(\mathbf{w})}_{\text{Data Term}} + \underbrace{\lambda E_W(\mathbf{w})}_{\text{Regularization Terr}}$$

 \bullet λ controls relative importance of the terms (bias vs variance)

Add a penalty term to the error term to discourage weight growth

$$J(\mathbf{w}) = \underbrace{E_D(\mathbf{w})}_{\text{Data Term}} + \underbrace{\lambda E_W(\mathbf{w})}_{\text{Regularization Term}}$$

- ullet λ controls relative importance of the terms (bias vs variance)
- Sum of squares error function with a quadratic regularizer

$$J(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \left(t_n - \mathbf{w}^\mathsf{T} \phi(\mathbf{x}_n) \right)^2 + \frac{\lambda}{2} \mathbf{w}^\mathsf{T} \mathbf{w}$$

Add a penalty term to the error term to discourage weight growth

$$J(\mathbf{w}) = \underbrace{E_D(\mathbf{w})}_{\text{Data Term}} + \underbrace{\lambda E_W(\mathbf{w})}_{\text{Regularization Term}}$$

- \bullet λ controls relative importance of the terms (bias vs variance)
- Sum of squares error function with a quadratic regularizer

$$J(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \left(t_n - \mathbf{w}^\mathsf{T} \phi(\mathbf{x}_n) \right)^2 + \frac{\lambda}{2} \mathbf{w}^\mathsf{T} \mathbf{w}$$

• Equating $\nabla_{\mathbf{w}} J(\mathbf{w}) = \mathbf{0} \implies -\mathbf{\Phi}^{\mathsf{T}} (\mathbf{t} - \mathbf{\Phi} \mathbf{w}) + \lambda \mathbf{w} = \mathbf{0}$ $\mathbf{w}_* = (\mathbf{\Phi}^{\mathsf{T}} \mathbf{\Phi} + \lambda \mathbf{I})^{-1} \mathbf{\Phi}^{\mathsf{T}} \mathbf{t}$

Add a penalty term to the error term to discourage weight growth

$$J(\mathbf{w}) = \underbrace{E_D(\mathbf{w})}_{\text{Data Term}} + \underbrace{\lambda E_W(\mathbf{w})}_{\text{Regularization Term}}$$

- ullet λ controls relative importance of the terms (bias vs variance)
- Sum of squares error function with a quadratic regularizer

$$J(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \left(t_n - \mathbf{w}^\mathsf{T} \phi(\mathbf{x}_n) \right)^2 + \frac{\lambda}{2} \mathbf{w}^\mathsf{T} \mathbf{w}$$

 $\bullet \ \, \mathsf{Equating} \, \, \nabla_{\mathbf{w}} J(\mathbf{w}) = \mathbf{0} \, \Longrightarrow \, - \mathbf{\Phi}^\mathsf{T} \left(\mathbf{t} - \mathbf{\Phi} \mathbf{w} \right) + \lambda \mathbf{w} = \mathbf{0}$

$$\mathbf{w}_* = (\mathbf{\Phi}^\mathsf{T} \mathbf{\Phi} + \lambda \mathbf{I})^{-1} \mathbf{\Phi}^\mathsf{T} \mathbf{t}$$

Regularization term conditions the autocorrelation matrix!

Modified Error Surface

$$J(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \left(t_n - \mathbf{w}^\mathsf{T} \phi(\mathbf{x}_n) \right)^2 + \lambda \|\mathbf{w}\|_{p}$$

Modified Error Surface

$$J(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \left(t_n - \mathbf{w}^\mathsf{T} \phi(\mathbf{x}_n) \right)^2 + \lambda \|\mathbf{w}\|_{\rho}$$

Modified Error Surface

$$J(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \left(t_n - \mathbf{w}^\mathsf{T} \phi(\mathbf{x}_n) \right)^2 + \lambda \|\mathbf{w}\|_{\rho}$$

L₂ Regularizer

• L_1 regularization promotes sparser solutions

- L₁ regularization promotes sparser solutions
- L_1 regularization \implies Laplacian priors

- L₁ regularization promotes sparser solutions
- L_1 regularization \implies Laplacian priors
- L_2 regularization \implies Gaussian priors

Effect of Regularization (N = 10, M = 9)

14/38

Effect of Regularization (N = 10, M = 9)

	$\ln \lambda = -\infty$	$\ln \lambda = -18$	$\ln \lambda = 0$
w_0^{\star}	0.35	0.35	0.13
w_1^\star	232.37	4.74	-0.05
w_2^\star	-5321.83	-0.77	-0.06
$w_3^{\overline{\star}}$	48568.31	-31.97	-0.05
w_4^\star	-231639.30	-3.89	-0.03
w_5^\star	640042.26	55.28	-0.02
w_6^\star	-1061800.52	41.32	-0.01
w_7^\star	1042400.18	-45.95	-0.00
w_8^\star	-557682.99	-91.53	0.00
w_9^\star	125201.43	<u>7</u> 2.68	0.01

Effect of Regularization (N = 10, M = 9)

• LS approach involves considering entire training set in one go.

- LS approach involves considering entire training set in one go.
- For HD data the matrix $(\Phi^T \Phi)$ may be poorly conditioned

- LS approach involves considering entire training set in one go.
- For HD data the matrix $(\Phi^T \Phi)$ may be poorly conditioned
- ullet Iteratively update $oldsymbol{\mathbf{w}}^{(au+1)}$ by adding a correction factor

$$\mathbf{w}^{(au+1)} = \mathbf{w}^{(au)} + \Delta \mathbf{w}^{(au)}$$

Sequential Learning

- LS approach involves considering entire training set in one go.
- For HD data the matrix $(\Phi^T \Phi)$ may be poorly conditioned
- ullet Iteratively update $ullet (au^{(au+1)})$ by adding a correction factor

$$\mathbf{w}^{(\tau+1)} = \mathbf{w}^{(\tau)} + \Delta \mathbf{w}^{(\tau)}$$

ullet Apply correction factor in the negative direction of gradient of $J(\mathbf{w}^{(au)})$

$$\mathbf{w}^{(\tau+1)} = \mathbf{w}^{(\tau)} - \eta \nabla J(\mathbf{w}^{(\tau)})$$

Sequential Learning

- LS approach involves considering entire training set in one go.
- ullet For HD data the matrix $(oldsymbol{\Phi}^\mathsf{T}oldsymbol{\Phi})$ may be poorly conditioned
- ullet Iteratively update $oldsymbol{\mathbf{w}}^{(au+1)}$ by adding a correction factor

$$\mathbf{w}^{(\tau+1)} = \mathbf{w}^{(\tau)} + \Delta \mathbf{w}^{(\tau)}$$

ullet Apply correction factor in the negative direction of gradient of $J(\mathbf{w}^{(au)})$

$$\mathbf{w}^{(\tau+1)} = \mathbf{w}^{(\tau)} - \eta \nabla J(\mathbf{w}^{(\tau)})$$

• Choose a random batch of points $\mathcal B$ to update $\mathbf w$. $J(\mathbf w^{(\tau)})=\frac{1}{2}\sum_{n\in\mathcal B}e_n^2$

$$\mathbf{w}^{(\tau+1)} = \mathbf{w}^{(\tau)} + \eta \sum_{n \in \mathcal{B}} \left(t_n - \mathbf{w}^{(\tau)\mathsf{T}} \phi(\mathbf{x}_n) \right) \phi(\mathbf{x}_n)$$

Sequential Learning

- LS approach involves considering entire training set in one go.
- For HD data the matrix $(\Phi^T \Phi)$ may be poorly conditioned
- Iteratively update $\mathbf{w}^{(\tau+1)}$ by adding a correction factor

$$\mathbf{w}^{(\tau+1)} = \mathbf{w}^{(\tau)} + \Delta \mathbf{w}^{(\tau)}$$

• Apply correction factor in the negative direction of gradient of $J(\mathbf{w}^{(au)})$

$$\mathbf{w}^{(\tau+1)} = \mathbf{w}^{(\tau)} - \eta \nabla J(\mathbf{w}^{(\tau)})$$

• Choose a random batch of points \mathcal{B} to update **w**. $J(\mathbf{w}^{(\tau)}) = \frac{1}{2} \sum e_n^2$

$$\mathbf{w}^{(\tau+1)} = \mathbf{w}^{(\tau)} + \eta \sum_{n \in \mathcal{B}} \left(t_n - \mathbf{w}^{(\tau)\mathsf{T}} \phi(\mathbf{x}_n) \right) \phi(\mathbf{x}_n)$$

• $|\mathcal{B}| = N$: Steepest descent

 $|\mathcal{B}|=1$: LMS Otherwise: SGD.

SGD Error Dynamics: $w_1 = 1.6, w_2 = -0.5$

Regression

Convergence of SGD

Convergence of SGD

SGD algorithm converges in mean:

$$\lim_{k\to\infty}\mathbb{E}[\mathbf{w}_k]\to(\mathbf{\Phi}^\mathsf{T}\mathbf{\Phi})^{-1}\mathbf{\Phi}^\mathsf{T}\mathbf{t}\qquad\eta\text{ is small enough}$$

• Expectation over multiple runs (k) converges to true solution for convex error surfaces, provided η is sufficiently small

18/38

 Gradient magnitude depends on direction!

- Gradient magnitude depends on direction!
- \bullet η has to be fixed based on steepest direction.

8

- Gradient magnitude depends on direction!
- η has to be fixed based on steepest direction.
- Convergence along flatter dimension is too slow!

8

19 / 38

• The weights of the model are updated as

$$\mathbf{w}_{n+1} = \mathbf{w}_n + \Delta \mathbf{w}$$

• The weights of the model are updated as

$$\mathbf{w}_{n+1} = \mathbf{w}_n + \Delta \mathbf{w}$$

• Expanding the objective function using Taylor series

$$J(\mathbf{w}_{n+1}) = J(\mathbf{w}_n + \Delta \mathbf{w}) =$$

The weights of the model are updated as

$$\mathbf{w}_{n+1} = \mathbf{w}_n + \Delta \mathbf{w}$$

Expanding the objective function using Taylor series

$$J(\mathbf{w}_{n+1}) = J(\mathbf{w}_n + \Delta \mathbf{w}) = J(\mathbf{w}_n) + \Delta \mathbf{w}^{\mathsf{T}} \nabla J(\mathbf{w}_n) + \frac{1}{2} \Delta \mathbf{w}^{\mathsf{T}} \nabla^2 J(\mathbf{w}_n) \Delta \mathbf{w}$$

The weights of the model are updated as

$$\mathbf{w}_{n+1} = \mathbf{w}_n + \Delta \mathbf{w}$$

Expanding the objective function using Taylor series

$$J(\mathbf{w}_{n+1}) = J(\mathbf{w}_n + \Delta \mathbf{w}) = J(\mathbf{w}_n) + \Delta \mathbf{w}^\mathsf{T} \nabla J(\mathbf{w}_n) + \frac{1}{2} \Delta \mathbf{w}^\mathsf{T} \nabla^2 J(\mathbf{w}_n) \Delta \mathbf{w}$$

• Estimate $\Delta \mathbf{w}$ s.t $J(\mathbf{w}_n + \Delta \mathbf{w})$ is minimized

$$\frac{\partial}{\partial \Delta \mathbf{w}} \left(J(\mathbf{w}_n) + \Delta \mathbf{w}^\mathsf{T} \nabla J(\mathbf{w}_n) + \frac{1}{2} \Delta \mathbf{w}^\mathsf{T} \nabla^2 J(\mathbf{w}_n) \Delta \mathbf{w} \right) = 0$$

The weights of the model are updated as

$$\mathbf{w}_{n+1} = \mathbf{w}_n + \Delta \mathbf{w}$$

Expanding the objective function using Taylor series

$$J(\mathbf{w}_{n+1}) = J(\mathbf{w}_n + \Delta \mathbf{w}) = J(\mathbf{w}_n) + \Delta \mathbf{w}^\mathsf{T} \nabla J(\mathbf{w}_n) + \frac{1}{2} \Delta \mathbf{w}^\mathsf{T} \nabla^2 J(\mathbf{w}_n) \Delta \mathbf{w}$$

• Estimate $\Delta \mathbf{w}$ s.t $J(\mathbf{w}_n + \Delta \mathbf{w})$ is minimized

$$\frac{\partial}{\partial \Delta \mathbf{w}} \left(J(\mathbf{w}_n) + \Delta \mathbf{w}^\mathsf{T} \nabla J(\mathbf{w}_n) + \frac{1}{2} \Delta \mathbf{w}^\mathsf{T} \nabla^2 J(\mathbf{w}_n) \Delta \mathbf{w} \right) = 0$$

• Optimal update is given by $\Delta \mathbf{w} = -\frac{\nabla J(\mathbf{w}_n)}{\nabla^2 J(\mathbf{w}_n)}$

$$\mathbf{w}_{n+1} = \mathbf{w}_n - \mathbf{H}^{-1}(\mathbf{w}_n) \nabla J(\mathbf{w}_n) \qquad \mathbf{H}(\mathbf{w}_n) = \nabla^2 J(\mathbf{w}_n)$$

Homework - 1

• Apply Newtons method to steepest-descent algorithm to the optimal step size η , and check how many iterations are required for convergence.

$$\mathbf{w}^{\textit{new}} = \mathbf{w}^{\textit{old}} + \eta \left. \mathbf{X}^{\mathsf{T}} (\mathbf{t} - \mathbf{X} \mathbf{w})
ight|_{\mathbf{w} = \mathbf{w}^{\textit{old}}}$$

Homework - 2

• Suppose you are experimenting with L_1 and L_2 regularization. Further, imagine that you are running gradient descent and at some iteration your weight vector is $w = [1, \epsilon] \in \mathbb{R}^2$ where $\epsilon > 0$ is very small. With the help of this example explain why L_2 norm does not encourage sparsity i.e., it will not try to drive ϵ to 0 to produce a sparse weight vector. Give mathematical explanation.

Homework - 3

• Till now we have been considering a scalar target t from a vector of input observations \mathbf{x} . How do you extend this approach for regressing a vector of targets $\mathbf{t} = (t_1, t_2, \cdots t_P)$. Derive the closed form solutions and write sequential update equations using SGD.

ullet Predict target variable(s) $t \in \mathbb{R}$ given the observation vector $\mathbf{x} \in \mathbb{R}^D$

- ullet Predict target variable(s) $t \in \mathbb{R}$ given the observation vector $\mathbf{x} \in \mathbb{R}^D$
- Target variable is estimated as a deterministic function $y(\mathbf{x}, \mathbf{w})$ with some error e.

$$t = y(\mathbf{x}, \mathbf{w}) + e_n$$

- ullet Predict target variable(s) $t \in \mathbb{R}$ given the observation vector $\mathbf{x} \in \mathbb{R}^D$
- Target variable is estimated as a deterministic function $y(\mathbf{x}, \mathbf{w})$ with some error e.

$$t = y(\mathbf{x}, \mathbf{w}) + e_n$$

• Assume that the error is Gaussian distributed: $e \sim \mathcal{N}(0, \beta^{-1})$

- ullet Predict target variable(s) $t \in \mathbb{R}$ given the observation vector $\mathbf{x} \in \mathbb{R}^D$
- Target variable is estimated as a deterministic function $y(\mathbf{x}, \mathbf{w})$ with some error e.

$$t = y(\mathbf{x}, \mathbf{w}) + e_n$$

- Assume that the error is Gaussian distributed: $e \sim \mathcal{N}(0, \beta^{-1})$
- Hence, the conditional distribution of target t is given by

$$p(t/\mathbf{x}, \mathbf{w}, \beta) = \mathcal{N}(t/y(\mathbf{x}, \mathbf{w}), \beta^{-1})$$

- ullet Predict target variable(s) $t \in \mathbb{R}$ given the observation vector $\mathbf{x} \in \mathbb{R}^D$
- Target variable is estimated as a deterministic function $y(\mathbf{x}, \mathbf{w})$ with some error e.

$$t = y(\mathbf{x}, \mathbf{w}) + e_n$$

- Assume that the error is Gaussian distributed: $e \sim \mathcal{N}(0, \beta^{-1})$
- Hence, the conditional distribution of target t is given by

$$p(t/\mathbf{x}, \mathbf{w}, \beta) = \mathcal{N}(t/y(\mathbf{x}, \mathbf{w}), \beta^{-1})$$

• Gaussian noise \implies Guassian conditional density on targets

- ullet Predict target variable(s) $t \in \mathbb{R}$ given the observation vector $\mathbf{x} \in \mathbb{R}^D$
- Target variable is estimated as a deterministic function $y(\mathbf{x}, \mathbf{w})$ with some error e.

$$t = y(\mathbf{x}, \mathbf{w}) + e_n$$

- Assume that the error is Gaussian distributed: $e \sim \mathcal{N}(0, \beta^{-1})$
- Hence, the conditional distribution of target t is given by

$$p(t/\mathbf{x}, \mathbf{w}, \beta) = \mathcal{N}(t/y(\mathbf{x}, \mathbf{w}), \beta^{-1})$$

- Gaussian noise \implies Guassian conditional density on targets
- We need to estimate **w** (and β) to maximize $p(t/\mathbf{x}, \mathbf{w}, \beta)$

◆□▶◆圖▶◆臺▶◆臺▶ 臺 釣۹○

• Training data: $\{(\mathbf{x}_1, t_1), (\mathbf{x}_2, t_2) \cdots (\mathbf{x}_n, t_n) \cdots (\mathbf{x}_N, t_N)\}$

- Training data: $\{(\mathbf{x}_1, t_1), (\mathbf{x}_2, t_2) \cdots (\mathbf{x}_n, t_n) \cdots (\mathbf{x}_N, t_N)\}$
- Let the target be estimated as $\hat{t}_n = \mathbf{y}(\mathbf{x}_n, \mathbf{w}) = \mathbf{w}^\mathsf{T} \phi(\mathbf{x}_n)$

- Training data: $\{(\mathbf{x}_1, t_1), (\mathbf{x}_2, t_2) \cdots (\mathbf{x}_n, t_n) \cdots (\mathbf{x}_N, t_N)\}$
- Let the target be estimated as $\hat{t}_n = \mathbf{y}(\mathbf{x}_n, \mathbf{w}) = \mathbf{w}^\mathsf{T} \phi(\mathbf{x}_n)$
- Assuming Gaussian errors: $p(t_n/\mathbf{x}_n, \mathbf{w}, \beta) = \mathcal{N}(t/\mathbf{w}^\mathsf{T} \phi(\mathbf{x}_n), \beta^{-1})$

- Training data: $\{(\mathbf{x}_1, t_1), (\mathbf{x}_2, t_2) \cdots (\mathbf{x}_n, t_n) \cdots (\mathbf{x}_N, t_N)\}$
- ullet Let the target be estimated as $\hat{t}_n = \mathbf{y}(\mathbf{x}_n, \mathbf{w}) = \mathbf{w}^\mathsf{T} \phi(\mathbf{x}_n)$
- Assuming Gaussian errors: $p(t_n/\mathbf{x}_n, \mathbf{w}, \beta) = \mathcal{N}(t/\mathbf{w}^\mathsf{T} \phi(\mathbf{x}_n), \beta^{-1})$
- Assuming the data points are drawn independently and identically

$$p(t_1, t_2, \cdots t_N/\mathbf{x}_1, \mathbf{x}_2, \cdots \mathbf{x}_N, \mathbf{w}, \beta) = \prod_{n=1}^N p(t_n/\mathbf{x}_n, \mathbf{w}, \beta)$$

- Training data: $\{(\mathbf{x}_1, t_1), (\mathbf{x}_2, t_2) \cdots (\mathbf{x}_n, t_n) \cdots (\mathbf{x}_N, t_N)\}$
- ullet Let the target be estimated as $\hat{t}_n = \mathbf{y}(\mathbf{x}_n, \mathbf{w}) = \mathbf{w}^\mathsf{T} \phi(\mathbf{x}_n)$
- Assuming Gaussian errors: $p(t_n/\mathbf{x}_n, \mathbf{w}, \beta) = \mathcal{N}(t/\mathbf{w}^\mathsf{T} \phi(\mathbf{x}_n), \beta^{-1})$
- Assuming the data points are drawn independently and identically

$$p(t_1, t_2, \dots t_N/\mathbf{x}_1, \mathbf{x}_2, \dots \mathbf{x}_N, \mathbf{w}, \beta) = \prod_{n=1}^N p(t_n/\mathbf{x}_n, \mathbf{w}, \beta)$$
$$\log p(\mathbf{t}/\mathbf{X}, \mathbf{w}, \beta) = \sum_{n=1}^N \log \mathcal{N}(t/\mathbf{w}^\mathsf{T} \phi(\mathbf{x}_n), \beta^{-1})$$

- Training data: $\{(\mathbf{x}_1, t_1), (\mathbf{x}_2, t_2) \cdots (\mathbf{x}_n, t_n) \cdots (\mathbf{x}_N, t_N)\}$
- ullet Let the target be estimated as $\hat{t}_n = \mathbf{y}(\mathbf{x}_n, \mathbf{w}) = \mathbf{w}^\mathsf{T} \phi(\mathbf{x}_n)$
- Assuming Gaussian errors: $p(t_n/\mathbf{x}_n, \mathbf{w}, \beta) = \mathcal{N}(t/\mathbf{w}^\mathsf{T} \phi(\mathbf{x}_n), \beta^{-1})$
- Assuming the data points are drawn independently and identically

$$p(t_1, t_2, \dots t_N/\mathbf{x}_1, \mathbf{x}_2, \dots \mathbf{x}_N, \mathbf{w}, \beta) = \prod_{n=1}^N p(t_n/\mathbf{x}_n, \mathbf{w}, \beta)$$

$$\log p(\mathbf{t}/\mathbf{X}, \mathbf{w}, \beta) = \sum_{n=1}^N \log \mathcal{N}(t/\mathbf{w}^\mathsf{T} \phi(\mathbf{x}_n), \beta^{-1})$$

$$= \frac{N}{2} \log \beta - \frac{N}{2} \log(2\pi) - \frac{\beta}{2} \sum_{n=1}^N (t_n - \mathbf{w}^\mathsf{T} \phi(\mathbf{x}_n))^2$$

- Training data: $\{(\mathbf{x}_1, t_1), (\mathbf{x}_2, t_2) \cdots (\mathbf{x}_n, t_n) \cdots (\mathbf{x}_N, t_N)\}$
- Let the target be estimated as $\hat{t}_n = \mathbf{y}(\mathbf{x}_n, \mathbf{w}) = \mathbf{w}^{\mathsf{T}} \phi(\mathbf{x}_n)$
- Assuming Gaussian errors: $p(t_n/\mathbf{x}_n, \mathbf{w}, \beta) = \mathcal{N}(t/\mathbf{w}^\mathsf{T} \phi(\mathbf{x}_n), \beta^{-1})$
- Assuming the data points are drawn independently and identically

$$\begin{aligned} \rho(t_1, t_2, \cdots t_N / \mathbf{x}_1, \mathbf{x}_2, \cdots \mathbf{x}_N, \mathbf{w}, \beta) &= \prod_{n=1}^N \rho(t_n / \mathbf{x}_n, \mathbf{w}, \beta) \\ \log \rho(\mathbf{t} / \mathbf{X}, \mathbf{w}, \beta) &= \sum_{n=1}^N \log \mathcal{N}(t / \mathbf{w}^\mathsf{T} \phi(\mathbf{x}_n), \beta^{-1}) \\ &= \frac{N}{2} \log \beta - \frac{N}{2} \log(2\pi) - \frac{\beta}{2} \sum_{n=1}^N (t_n - \mathbf{w}^\mathsf{T} \phi(\mathbf{x}_n))^2 \end{aligned}$$

• w and β can be estimated to maximize likelihood $p(\mathbf{t}/\mathbf{X}, \mathbf{w}, \beta)$

• Likelihood function is not probability for continuous RV.

25 / 38

- Likelihood function is not probability for continuous RV.
- Likelihood can be greater than one.

- Likelihood function is not probability for continuous RV.
- Likelihood can be greater than one.
- In ML, the parameters w are adjusted to maximize the likelihood of the observed data t. \(\mathcal{L}(\mathbf{w}/\mathbf{t}, \mathbf{X}) = p(\mathbf{t}/\mathbf{X}, \mathbf{w})

- Likelihood function is not probability for continuous RV.
- Likelihood can be greater than one.
- In ML, the parameters **w** are adjusted to maximize the likelihood of the observed data **t**. $\mathcal{L}(\mathbf{w}/\mathbf{t}, \mathbf{X}) = p(\mathbf{t}/\mathbf{X}, \mathbf{w})$

$ML \iff Least Squares$

ML with Gaussian conditional density assumption is same as LS

$$\mathbf{w}_{ML} = (\mathbf{\Phi}^{\mathsf{T}}\mathbf{\Phi})^{-1}\mathbf{\Phi}^{\mathsf{T}}\mathbf{t} \qquad \frac{1}{\beta_{ML}} = \frac{1}{N}\sum_{n=1}^{N} \left(t_n - \mathbf{w}^{\mathsf{T}}\phi(\mathbf{x}_n)\right)^2$$

ML with Gaussian conditional density assumption is same as LS

$$\mathbf{w}_{ML} = (\mathbf{\Phi}^{\mathsf{T}}\mathbf{\Phi})^{-1}\mathbf{\Phi}^{\mathsf{T}}\mathbf{t} \qquad \frac{1}{\beta_{ML}} = \frac{1}{N}\sum_{n=1}^{N} \left(t_n - \mathbf{w}^{\mathsf{T}}\phi(\mathbf{x}_n)\right)^2$$

$$p(t/\mathbf{x}, \mathbf{w}_{ML}, \beta_{ML}) = \mathcal{N}(t/y(\mathbf{x}, \mathbf{w}_{ML}), \beta_{ML}^{-1})$$

ML with Gaussian conditional density assumption is same as LS

$$\mathbf{w}_{ML} = (\mathbf{\Phi}^{\mathsf{T}}\mathbf{\Phi})^{-1}\mathbf{\Phi}^{\mathsf{T}}\mathbf{t} \qquad \frac{1}{\beta_{ML}} = \frac{1}{N}\sum_{n=1}^{N} \left(t_n - \mathbf{w}^{\mathsf{T}}\phi(\mathbf{x}_n)\right)^2$$

$$p(t/\mathbf{x}, \mathbf{w}_{ML}, eta_{ML}) = \mathcal{N}(t/y(\mathbf{x}, \mathbf{w}_{ML}), eta_{ML}^{-1})$$

$$\mathbb{E}[t/\mathbf{x}] = \int tp(t/\mathbf{x})dt =$$

ML with Gaussian conditional density assumption is same as LS

$$\mathbf{w}_{ML} = (\mathbf{\Phi}^{\mathsf{T}}\mathbf{\Phi})^{-1}\mathbf{\Phi}^{\mathsf{T}}\mathbf{t} \qquad \frac{1}{\beta_{ML}} = \frac{1}{N}\sum_{n=1}^{N} \left(t_n - \mathbf{w}^{\mathsf{T}}\phi(\mathbf{x}_n)\right)^2$$

$$p(t/\mathbf{x}, \mathbf{w}_{ML}, eta_{ML}) = \mathcal{N}(t/y(\mathbf{x}, \mathbf{w}_{ML}), eta_{ML}^{-1})$$
 $\mathbb{E}[t/\mathbf{x}] = \int tp(t/\mathbf{x})dt = y(\mathbf{x}, \mathbf{w}_{ML})$

ML with Gaussian conditional density assumption is same as LS

$$\mathbf{w}_{ML} = (\mathbf{\Phi}^{\mathsf{T}}\mathbf{\Phi})^{-1}\mathbf{\Phi}^{\mathsf{T}}\mathbf{t} \qquad \frac{1}{\beta_{ML}} = \frac{1}{N}\sum_{n=1}^{N} \left(t_n - \mathbf{w}^{\mathsf{T}}\phi(\mathbf{x}_n)\right)^2$$

ML approach assigns a probability density to the estimated target

$$p(t/\mathbf{x}, \mathbf{w}_{ML}, eta_{ML}) = \mathcal{N}(t/y(\mathbf{x}, \mathbf{w}_{ML}), eta_{ML}^{-1})$$
 $\mathbb{E}[t/\mathbf{x}] = \int tp(t/\mathbf{x})dt = y(\mathbf{x}, \mathbf{w}_{ML})$

• ML with Laplacian conditional density assumption is same as LAD

ML with Gaussian conditional density assumption is same as LS

$$\mathbf{w}_{ML} = (\mathbf{\Phi}^{\mathsf{T}}\mathbf{\Phi})^{-1}\mathbf{\Phi}^{\mathsf{T}}\mathbf{t} \qquad \frac{1}{\beta_{ML}} = \frac{1}{N}\sum_{n=1}^{N} \left(t_n - \mathbf{w}^{\mathsf{T}}\phi(\mathbf{x}_n)\right)^2$$

$$p(t/\mathbf{x}, \mathbf{w}_{ML}, eta_{ML}) = \mathcal{N}(t/y(\mathbf{x}, \mathbf{w}_{ML}), eta_{ML}^{-1})$$
 $\mathbb{E}[t/\mathbf{x}] = \int tp(t/\mathbf{x})dt = y(\mathbf{x}, \mathbf{w}_{ML})$

- ML with Laplacian conditional density assumption is same as LAD
- ML & LS rely on point estimates of model parameters w

ML with Gaussian conditional density assumption is same as LS

$$\mathbf{w}_{ML} = (\mathbf{\Phi}^{\mathsf{T}}\mathbf{\Phi})^{-1}\mathbf{\Phi}^{\mathsf{T}}\mathbf{t} \qquad \frac{1}{\beta_{ML}} = \frac{1}{N}\sum_{n=1}^{N} \left(t_n - \mathbf{w}^{\mathsf{T}}\phi(\mathbf{x}_n)\right)^2$$

$$p(t/\mathbf{x}, \mathbf{w}_{ML}, eta_{ML}) = \mathcal{N}(t/y(\mathbf{x}, \mathbf{w}_{ML}), eta_{ML}^{-1})$$

$$\mathbb{E}[t/\mathbf{x}] = \int tp(t/\mathbf{x})dt = y(\mathbf{x}, \mathbf{w}_{ML})$$

- ML with Laplacian conditional density assumption is same as LAD
- ML & LS rely on point estimates of model parameters w
- Point estimates cannot be exact with finite number of samples

ML with Gaussian conditional density assumption is same as LS

$$\mathbf{w}_{ML} = (\mathbf{\Phi}^{\mathsf{T}}\mathbf{\Phi})^{-1}\mathbf{\Phi}^{\mathsf{T}}\mathbf{t} \qquad \frac{1}{\beta_{ML}} = \frac{1}{N}\sum_{n=1}^{N} \left(t_n - \mathbf{w}^{\mathsf{T}}\phi(\mathbf{x}_n)\right)^2$$

$$p(t/\mathbf{x}, \mathbf{w}_{ML}, eta_{ML}) = \mathcal{N}(t/y(\mathbf{x}, \mathbf{w}_{ML}), eta_{ML}^{-1})$$
 $\mathbb{E}[t/\mathbf{x}] = \int tp(t/\mathbf{x})dt = y(\mathbf{x}, \mathbf{w}_{ML})$

- ML with Laplacian conditional density assumption is same as LAD
- ML & LS rely on point estimates of model parameters w
- Point estimates cannot be exact with finite number of samples
- Instead, estimate the distribution of w

ullet Given a set of N datapoints, the posterior distribution of ullet is

$$ho(\mathbf{w}/\mathbf{t},\mathbf{X}) \propto
ho(\mathbf{w})
ho(\mathbf{t}/\mathbf{w},\mathbf{X})$$

ullet Given a set of N datapoints, the posterior distribution of ullet is

$$ho(\mathbf{w}/\mathbf{t},\mathbf{X}) \propto
ho(\mathbf{w})
ho(\mathbf{t}/\mathbf{w},\mathbf{X})$$

• Let the prior distribution of **w** be Gaussian: $p(\mathbf{w}) = \mathcal{N}(\mathbf{w}/\mathbf{0}, \alpha^{-1}\mathbf{I})$

ullet Given a set of N datapoints, the posterior distribution of ullet is

$$p(\mathbf{w}/\mathbf{t}, \mathbf{X}) \propto p(\mathbf{w})p(\mathbf{t}/\mathbf{w}, \mathbf{X})$$

- Let the prior distribution of **w** be Gaussian: $p(\mathbf{w}) = \mathcal{N}(\mathbf{w}/\mathbf{0}, \alpha^{-1}\mathbf{I})$
- Let the conditional distribution of target be Gaussian

$$p(t_n/\mathbf{x}_n, \mathbf{w}, \beta) = \mathcal{N}(t_n/\mathbf{w}^\mathsf{T} \phi(\mathbf{x}_n), \beta^{-1})$$

ullet Given a set of N datapoints, the posterior distribution of ullet is

$$ho(\mathbf{w}/\mathbf{t},\mathbf{X}) \propto
ho(\mathbf{w})
ho(\mathbf{t}/\mathbf{w},\mathbf{X})$$

- Let the prior distribution of **w** be Gaussian: $p(\mathbf{w}) = \mathcal{N}(\mathbf{w}/\mathbf{0}, \alpha^{-1}\mathbf{I})$
- Let the conditional distribution of target be Gaussian

$$p(t_n/\mathbf{x}_n, \mathbf{w}, \beta) = \mathcal{N}(t_n/\mathbf{w}^\mathsf{T} \phi(\mathbf{x}_n), \beta^{-1})$$

• The posterior distribution of w is given by

$$p(\mathbf{w}/\mathbf{t}, \mathbf{X}, \alpha, \beta) = \mathcal{N}(\mathbf{w}/\mathbf{0}, \alpha^{-1}\mathbf{I}) \prod_{n=1}^{N} \mathcal{N}(t_n/\mathbf{w}^{\mathsf{T}} \phi(\mathbf{x}_n), \beta^{-1})$$

ullet Given a set of N datapoints, the posterior distribution of $oldsymbol{w}$ is

$$ho(\mathbf{w}/\mathbf{t},\mathbf{X}) \propto
ho(\mathbf{w})
ho(\mathbf{t}/\mathbf{w},\mathbf{X})$$

- Let the prior distribution of **w** be Gaussian: $p(\mathbf{w}) = \mathcal{N}(\mathbf{w}/\mathbf{0}, \alpha^{-1}\mathbf{I})$
- Let the conditional distribution of target be Gaussian

$$p(t_n/\mathbf{x}_n, \mathbf{w}, \beta) = \mathcal{N}(t_n/\mathbf{w}^\mathsf{T} \phi(\mathbf{x}_n), \beta^{-1})$$

• The posterior distribution of w is given by

$$p(\mathbf{w}/\mathbf{t}, \mathbf{X}, \alpha, \beta) = \mathcal{N}(\mathbf{w}/\mathbf{0}, \alpha^{-1}\mathbf{I}) \prod_{n=1}^{N} \mathcal{N}(t_n/\mathbf{w}^{\mathsf{T}} \phi(\mathbf{x}_n), \beta^{-1})$$
$$\log p(\mathbf{w}/\mathbf{t}) = -\frac{\beta}{2} \sum_{n=1}^{N} \left(t_n - \mathbf{w}^{\mathsf{T}} \phi(\mathbf{x}_n) \right)^2 - \frac{\alpha}{2} \mathbf{w}^{\mathsf{T}} \mathbf{w} + \text{const}$$

• Given a set of N datapoints, the posterior distribution of \mathbf{w} is

$$ho(\mathbf{w}/\mathbf{t},\mathbf{X}) \propto
ho(\mathbf{w})
ho(\mathbf{t}/\mathbf{w},\mathbf{X})$$

- Let the prior distribution of **w** be Gaussian: $p(\mathbf{w}) = \mathcal{N}(\mathbf{w}/\mathbf{0}, \alpha^{-1}\mathbf{I})$
- Let the conditional distribution of target be Gaussian

$$p(t_n/\mathbf{x}_n, \mathbf{w}, \beta) = \mathcal{N}(t_n/\mathbf{w}^\mathsf{T} \phi(\mathbf{x}_n), \beta^{-1})$$

The posterior distribution of w is given by

$$p(\mathbf{w}/\mathbf{t}, \mathbf{X}, \alpha, \beta) = \mathcal{N}(\mathbf{w}/\mathbf{0}, \alpha^{-1}\mathbf{I}) \prod_{n=1}^{N} \mathcal{N}(t_n/\mathbf{w}^{\mathsf{T}} \phi(\mathbf{x}_n), \beta^{-1})$$
$$\log p(\mathbf{w}/\mathbf{t}) = -\frac{\beta}{2} \sum_{n=1}^{N} \left(t_n - \mathbf{w}^{\mathsf{T}} \phi(\mathbf{x}_n) \right)^2 - \frac{\alpha}{2} \mathbf{w}^{\mathsf{T}} \mathbf{w} + \text{const}$$

te w to maximize log n(w/t) 27 / 38

K Sri Rama Murty (IITH) January 28, 2022

 \bullet MAP estimation is equivalent to RLS with $\lambda = \frac{\alpha}{\beta}$

- \bullet MAP estimation is equivalent to RLS with $\lambda = \frac{\alpha}{\beta}$
- MAP estimate of w is given by

$$\mathbf{w}_{MAP} = (\mathbf{\Phi}^\mathsf{T} \mathbf{\Phi} + \lambda \mathbf{I})^{-1} \mathbf{\Phi}^\mathsf{T} \mathbf{t}$$

- \bullet MAP estimation is equivalent to RLS with $\lambda = \frac{\alpha}{\beta}$
- MAP estimate of w is given by

$$\mathbf{w}_{MAP} = (\mathbf{\Phi}^\mathsf{T} \mathbf{\Phi} + \lambda \mathbf{I})^{-1} \mathbf{\Phi}^\mathsf{T} \mathbf{t}$$

• Gaussain priors \iff L_2 regularizer

- \bullet MAP estimation is equivalent to RLS with $\lambda = \frac{\alpha}{\beta}$
- MAP estimate of w is given by

$$\mathbf{w}_{MAP} = (\mathbf{\Phi}^\mathsf{T}\mathbf{\Phi} + \lambda \mathbf{I})^{-1}\mathbf{\Phi}^\mathsf{T}\mathbf{t}$$

- Gaussain priors \iff L_2 regularizer
- Laplacian priors $\iff L_1$ regularizer

• Let the prior distribution of \mathbf{w} be $p(\mathbf{w}) = \mathcal{N}(\mathbf{w}/\mathbf{m}_0, \mathbf{\Sigma}_0)$

- Let the prior distribution of \mathbf{w} be $p(\mathbf{w}) = \mathcal{N}(\mathbf{w}/\mathbf{m}_0, \mathbf{\Sigma}_0)$
- Assuming linear model with Gaussian errors, the likelihood is given by

$$p(\mathbf{t}/\mathbf{X}, \mathbf{w}, \beta) = \prod_{n=1}^{N} \mathcal{N}(t_n/\mathbf{w}^{\mathsf{T}} \phi(\mathbf{x}_n), \beta^{-1})$$

- Let the prior distribution of \mathbf{w} be $p(\mathbf{w}) = \mathcal{N}(\mathbf{w}/\mathbf{m}_0, \mathbf{\Sigma}_0)$
- Assuming linear model with Gaussian errors, the likelihood is given by

$$p(\mathbf{t}/\mathbf{X}, \mathbf{w}, \beta) = \prod_{n=1}^{N} \mathcal{N}(t_n/\mathbf{w}^{\mathsf{T}} \phi(\mathbf{x}_n), \beta^{-1}) = \mathcal{N}(\mathbf{t}/\mathbf{\Phi}\mathbf{w}, \beta^{-1}\mathbf{I})$$

- Let the prior distribution of \mathbf{w} be $p(\mathbf{w}) = \mathcal{N}(\mathbf{w}/\mathbf{m}_0, \mathbf{\Sigma}_0)$
- Assuming linear model with Gaussian errors, the likelihood is given by

$$p(\mathbf{t}/\mathbf{X}, \mathbf{w}, \beta) = \prod_{n=1}^{N} \mathcal{N}(t_n/\mathbf{w}^{\mathsf{T}} \phi(\mathbf{x}_n), \beta^{-1}) = \mathcal{N}(\mathbf{t}/\mathbf{\Phi}\mathbf{w}, \beta^{-1}\mathbf{I})$$

The posterior density after observing 'N' samples is given by

$$p(\mathbf{w}/\mathbf{t}) \propto \mathcal{N}(\mathbf{w}/\mathbf{m}_0, \mathbf{\Sigma}_0) \; \mathcal{N}(\mathbf{t}/\mathbf{\Phi}\mathbf{w}, eta^{-1}\mathbf{I})$$

- ullet Let the prior distribution of $oldsymbol{w}$ be $p(oldsymbol{w}) = \mathcal{N}(oldsymbol{w}/oldsymbol{m}_0, oldsymbol{\Sigma}_0)$
- Assuming linear model with Gaussian errors, the likelihood is given by

$$p(\mathbf{t}/\mathbf{X}, \mathbf{w}, \beta) = \prod_{n=1}^{N} \mathcal{N}(t_n/\mathbf{w}^{\mathsf{T}} \phi(\mathbf{x}_n), \beta^{-1}) = \mathcal{N}(\mathbf{t}/\mathbf{\Phi}\mathbf{w}, \beta^{-1}\mathbf{I})$$

The posterior density after observing 'N' samples is given by

$$p(\mathbf{w}/\mathbf{t}) \propto \mathcal{N}(\mathbf{w}/\mathbf{m}_0, \boldsymbol{\Sigma}_0) \; \mathcal{N}(\mathbf{t}/\boldsymbol{\Phi}\mathbf{w}, \boldsymbol{\beta}^{-1}\mathbf{I}) = \mathcal{N}(\mathbf{w}/\mathbf{m}_N, \boldsymbol{\Sigma}_N)$$

- ullet Let the prior distribution of $oldsymbol{w}$ be $p(oldsymbol{w}) = \mathcal{N}(oldsymbol{w}/oldsymbol{m}_0, oldsymbol{\Sigma}_0)$
- Assuming linear model with Gaussian errors, the likelihood is given by

$$p(\mathbf{t}/\mathbf{X}, \mathbf{w}, \beta) = \prod_{n=1}^{N} \mathcal{N}(t_n/\mathbf{w}^{\mathsf{T}} \phi(\mathbf{x}_n), \beta^{-1}) = \mathcal{N}(\mathbf{t}/\mathbf{\Phi}\mathbf{w}, \beta^{-1}\mathbf{I})$$

The posterior density after observing 'N' samples is given by

$$p(\mathbf{w}/\mathbf{t}) \propto \mathcal{N}(\mathbf{w}/\mathbf{m}_0, \mathbf{\Sigma}_0) \ \mathcal{N}(\mathbf{t}/\mathbf{\Phi}\mathbf{w}, \beta^{-1}\mathbf{I}) = \mathcal{N}(\mathbf{w}/\mathbf{m}_N, \mathbf{\Sigma}_N)$$

• \mathbf{m}_N and $\mathbf{\Sigma}_N$ can be evaluated by completing quadratic term of $\exp()$

$$\mathbf{m}_N = \mathbf{\Sigma}_N \left(\mathbf{\Sigma}_0^{-1} \mathbf{m}_0 + \beta \mathbf{\Phi}^\mathsf{T} \mathbf{t} \right)$$

 $\mathbf{\Sigma}_N^{-1} = \mathbf{\Sigma}_0^{-1} + \beta \mathbf{\Phi}^\mathsf{T} \mathbf{\Phi}$

Bayesian Sequential Estimates

Bayesian Sequential Estimates

• Let the posterior distribution of \mathbf{w} after observing n samples be

$$p(\mathbf{w}/\mathbf{t}_{1:n}) = \mathcal{N}(\mathbf{w}/\mathbf{m}_n, \mathbf{\Sigma}_n)$$

Bayesian Sequential Estimates

ullet Let the posterior distribution of ullet after observing n samples be

$$\rho(\mathbf{w}/\mathbf{t}_{1:n}) = \mathcal{N}(\mathbf{w}/\mathbf{m}_n, \mathbf{\Sigma}_n)$$

ullet In sequential update, $p(\mathbf{w}/\mathbf{t}_{1:n})$ is used as prior for $(n+1)^{th}$ sample

Bayesian Sequential Estimates

• Let the posterior distribution of \mathbf{w} after observing n samples be

$$p(\mathbf{w}/\mathbf{t}_{1:n}) = \mathcal{N}(\mathbf{w}/\mathbf{m}_n, \mathbf{\Sigma}_n)$$

- ullet In sequential update, $p(\mathbf{w}/\mathbf{t}_{1:n})$ is used as prior for $(n+1)^{th}$ sample
- The posterior stats can be updated after observing $(\mathbf{x}_{n+1}, t_{n+1})$ as

$$\mathbf{m}_{n+1} = \mathbf{\Sigma}_{n+1} \left(\mathbf{\Sigma}_n^{-1} \mathbf{m}_n + \beta \phi(\mathbf{x}_{n+1}) t_{n+1} \right)$$

$$\mathbf{\Sigma}_{n+1}^{-1} = \mathbf{\Sigma}_n^{-1} + \beta \phi(\mathbf{x}_{n+1}) \phi^{\mathsf{T}}(\mathbf{x}_{n+1})$$

Regression

Actual targets are generated as

$$t = 0.5x - 0.3 + \epsilon$$
$$x \in \mathcal{U}[-1 \ 1] \qquad \epsilon \in \mathcal{N}(0, 0.2^2)$$

Regression

Actual targets are generated as

$$t = 0.5x - 0.3 + \epsilon$$
$$x \in \mathcal{U}[-1 \ 1] \qquad \epsilon \in \mathcal{N}(0, 0.2^2)$$

• Assume: $y(x, \mathbf{w}) = w_1 x + w_0$

K Sri Rama Murty (IITH)

Actual targets are generated as

$$t = 0.5x - 0.3 + \epsilon$$

 $x \in \mathcal{U}[-1\ 1]$ $\epsilon \in \mathcal{N}(0, 0.2^2)$

- Assume: $y(x, \mathbf{w}) = w_1 x + w_0$
- Assume noise variance is known

$$\beta = \frac{1}{0.2^2} \qquad \alpha = 2.0$$

Regression

31 / 38

K Sri Rama Murty (IITH)

Actual targets are generated as

$$t = 0.5x - 0.3 + \epsilon$$

 $x \in \mathcal{U}[-1\ 1]$ $\epsilon \in \mathcal{N}(0, 0.2^2)$

- Assume: $y(x, \mathbf{w}) = w_1 x + w_0$
- Assume noise variance is known

$$\beta = \frac{1}{0.2^2} \qquad \alpha = 2.0$$

• Seq. update posterior $p(\mathbf{w}/\mathbf{t})$

Regression

Actual targets are generated as

$$t = 0.5x - 0.3 + \epsilon$$

 $x \in \mathcal{U}[-1\ 1]$ $\epsilon \in \mathcal{N}(0, 0.2^2)$

- Assume: $y(x, \mathbf{w}) = w_1 x + w_0$
- Assume noise variance is known

$$\beta = \frac{1}{0.2^2} \qquad \alpha = 2.0$$

- Seq. update posterior $p(\mathbf{w}/\mathbf{t})$
- Draw random samples from $p(\mathbf{w}/\mathbf{t})$ and plot $y = w_1 x + w_0$

Actual targets are generated as

$$t = 0.5x - 0.3 + \epsilon$$

 $x \in \mathcal{U}[-1\ 1]$ $\epsilon \in \mathcal{N}(0, 0.2^2)$

- Assume: $y(x, \mathbf{w}) = w_1 x + w_0$
- Assume noise variance is known

$$\beta = \frac{1}{0.2^2} \qquad \alpha = 2.0$$

- Seq. update posterior $p(\mathbf{w}/\mathbf{t})$
- Draw random samples from $p(\mathbf{w}/\mathbf{t})$ and plot $y = w_1x + w_0$
- Lines converge as data increase

Homework

- Derive the statistics of the posterior distribution $p(\mathbf{w}/\mathbf{t})$ by completing the quadratic term of exp(.)
- Given a Gaussian marginal distribution for x and a Gaussian conditional distribution for y in the form

$$egin{aligned}
ho(\mathbf{x}) &= \mathcal{N}(\mathbf{x}/\mu, \mathbf{\Lambda}) \
ho(\mathbf{y}/\mathbf{x}) &= \mathcal{N}(\mathbf{y}/\mathbf{A}\mathbf{x} + \mathbf{b}, \mathbf{L}^{-1}) \end{aligned}$$

show that the marginal distribution of \mathbf{y} and conditional distribution of \mathbf{x} are given by

$$egin{aligned}
ho(\mathbf{y}) &= \mathcal{N}\left(\mathbf{y}/\mathbf{A}oldsymbol{\mu} + \mathbf{b}, \mathbf{L}^{-1} + \mathbf{A}oldsymbol{\Lambda}^{-1}\mathbf{A}^{\mathsf{T}}
ight) \
ho(\mathbf{x}/\mathbf{y}) &= \mathcal{N}\left(\mathbf{x}/\mathbf{\Sigma}\left(\mathbf{A}^{\mathsf{T}}\mathbf{L}(\mathbf{y} - \mathbf{b}) + \mathbf{\Lambda}oldsymbol{\mu}
ight), \mathbf{\Sigma}
ight) \end{aligned}$$

• Given a training set of N points $(\mathbf{x}_{1:N}, t_{1:N})$, predict target distribution for a new input \mathbf{x}_0

$$\begin{aligned} \rho(t_0/\mathbf{x}_0,\mathbf{X},\mathbf{t},\alpha,\beta) &= \int \rho(t_0,\mathbf{w}/\mathbf{x}_0,\mathbf{X},\mathbf{t},\alpha,\beta)d\mathbf{w} \\ &= \int \rho(t_0/\mathbf{w},\mathbf{x}_0,\beta)\rho(\mathbf{w}/\mathbf{X},\mathbf{t},\alpha,\beta)d\mathbf{w} \end{aligned}$$

• Given a training set of N points $(\mathbf{x}_{1:N}, t_{1:N})$, predict target distribution for a new input \mathbf{x}_0

$$p(t_0/\mathbf{x}_0, \mathbf{X}, \mathbf{t}, \alpha, \beta) = \int p(t_0, \mathbf{w}/\mathbf{x}_0, \mathbf{X}, \mathbf{t}, \alpha, \beta) d\mathbf{w}$$
$$= \int p(t_0/\mathbf{w}, \mathbf{x}_0, \beta) p(\mathbf{w}/\mathbf{X}, \mathbf{t}, \alpha, \beta) d\mathbf{w}$$

• The predictive distribution is Gaussian and is given by

$$\begin{split} \rho(t_0/\mathbf{x}_0,\mathbf{X},\mathbf{t},\alpha,\beta) &= \mathcal{N}\left(t_0/\mathbf{m}_N^T \phi(\mathbf{x}_0),\sigma_N^2(\mathbf{x}_0)\right) \\ \sigma_N^2(\mathbf{x}_0) &= \frac{1}{\beta} + \phi^\mathsf{T}(\mathbf{x}_0) \mathbf{\Sigma}_N \phi(\mathbf{x}_0) \end{split}$$

• Given a training set of N points $(\mathbf{x}_{1:N}, t_{1:N})$, predict target distribution for a new input \mathbf{x}_0

$$p(t_0/\mathbf{x}_0, \mathbf{X}, \mathbf{t}, \alpha, \beta) = \int p(t_0, \mathbf{w}/\mathbf{x}_0, \mathbf{X}, \mathbf{t}, \alpha, \beta) d\mathbf{w}$$
$$= \int p(t_0/\mathbf{w}, \mathbf{x}_0, \beta) p(\mathbf{w}/\mathbf{X}, \mathbf{t}, \alpha, \beta) d\mathbf{w}$$

• The predictive distribution is Gaussian and is given by

$$\begin{split} \rho(t_0/\mathbf{x}_0,\mathbf{X},\mathbf{t},\alpha,\beta) &= \mathcal{N}\left(t_0/\mathbf{m}_N^T \phi(\mathbf{x}_0),\sigma_N^2(\mathbf{x}_0)\right) \\ \sigma_N^2(\mathbf{x}_0) &= \frac{1}{\beta} + \phi^\mathsf{T}(\mathbf{x}_0) \mathbf{\Sigma}_N \phi(\mathbf{x}_0) \end{split}$$

• Predictive distribution gets narrower with additional training points

$$\sigma_{N+1}^2(\mathbf{x}_0) \le \sigma_N^2(\mathbf{x}_0)$$

• Given a training set of N points $(\mathbf{x}_{1:N}, t_{1:N})$, predict target distribution for a new input \mathbf{x}_0

$$p(t_0/\mathbf{x}_0, \mathbf{X}, \mathbf{t}, \alpha, \beta) = \int p(t_0, \mathbf{w}/\mathbf{x}_0, \mathbf{X}, \mathbf{t}, \alpha, \beta) d\mathbf{w}$$
$$= \int p(t_0/\mathbf{w}, \mathbf{x}_0, \beta) p(\mathbf{w}/\mathbf{X}, \mathbf{t}, \alpha, \beta) d\mathbf{w}$$

• The predictive distribution is Gaussian and is given by

$$\begin{split} \rho(t_0/\mathbf{x}_0,\mathbf{X},\mathbf{t},\alpha,\beta) &= \mathcal{N}\left(t_0/\mathbf{m}_N^T \phi(\mathbf{x}_0),\sigma_N^2(\mathbf{x}_0)\right) \\ \sigma_N^2(\mathbf{x}_0) &= \frac{1}{\beta} + \phi^\mathsf{T}(\mathbf{x}_0) \mathbf{\Sigma}_N \phi(\mathbf{x}_0) \end{split}$$

Predictive distribution gets narrower with additional training points

$$\sigma_{N+1}^2(\mathbf{x}_0) \leq \sigma_N^2(\mathbf{x}_0) \qquad \lim_{N \to \infty} \sigma_N^2(\mathbf{x}_0) \to \frac{1}{\beta}$$

Predictive Distribution: $t = \sin(2\pi x) + \epsilon$

Curves $y(x, \mathbf{w})$ Sampled from Posterior $p(\mathbf{w}/\mathbf{t})$

• Linear in model parameters w.

- Linear in model parameters w.
 - If \mathbf{x} and t are linearly related $\hat{t} = \mathbf{w}^\mathsf{T} \mathbf{x}$

- Linear in model parameters w.
 - If \mathbf{x} and t are linearly related $\hat{t} = \mathbf{w}^\mathsf{T} \mathbf{x}$
 - If relationship is not linear: $\hat{t} = \mathbf{w}^\mathsf{T} \phi(\mathbf{x})$

- Linear in model parameters w.
 - If \mathbf{x} and t are linearly related $\hat{t} = \mathbf{w}^\mathsf{T} \mathbf{x}$
 - If relationship is not linear: $\hat{t} = \mathbf{w}^\mathsf{T} \phi(\mathbf{x})$
 - LS criterion leads to pseudo-inverse solution: $\mathbf{w}_* = (\mathbf{\Phi}^\mathsf{T} \mathbf{\Phi})^{-1} \mathbf{\Phi}^\mathsf{T} \mathbf{t}$

- Linear in model parameters w.
 - If \mathbf{x} and t are linearly related $\hat{t} = \mathbf{w}^\mathsf{T} \mathbf{x}$
 - If relationship is not linear: $\hat{t} = \mathbf{w}^\mathsf{T} \phi(\mathbf{x})$
 - LS criterion leads to pseudo-inverse solution: $\mathbf{w}_* = (\mathbf{\Phi}^\mathsf{T} \mathbf{\Phi})^{-1} \mathbf{\Phi}^\mathsf{T} \mathbf{t}$
 - Regularize **w** to avoid over-fitting: $\mathbf{w}_* = (\mathbf{\Phi}^\mathsf{T}\mathbf{\Phi} + \lambda \mathbf{I})^{-1}\mathbf{\Phi}^\mathsf{T}\mathbf{t}$

- Linear in model parameters w.
 - If \mathbf{x} and t are linearly related $\hat{t} = \mathbf{w}^\mathsf{T} \mathbf{x}$
 - If relationship is not linear: $\hat{t} = \mathbf{w}^\mathsf{T} \phi(\mathbf{x})$
 - LS criterion leads to pseudo-inverse solution: $\mathbf{w}_* = (\mathbf{\Phi}^\mathsf{T} \mathbf{\Phi})^{-1} \mathbf{\Phi}^\mathsf{T} \mathbf{t}$
 - Regularize **w** to avoid over-fitting: $\mathbf{w}_* = (\mathbf{\Phi}^\mathsf{T}\mathbf{\Phi} + \lambda \mathbf{I})^{-1}\mathbf{\Phi}^\mathsf{T}\mathbf{t}$
 - Gradient descent algorithms can be used for sequential learning

- Linear in model parameters w.
 - If \mathbf{x} and t are linearly related $\hat{t} = \mathbf{w}^\mathsf{T} \mathbf{x}$
 - If relationship is not linear: $\hat{t} = \mathbf{w}^\mathsf{T} \phi(\mathbf{x})$
 - LS criterion leads to pseudo-inverse solution: $\mathbf{w}_* = (\mathbf{\Phi}^\mathsf{T} \mathbf{\Phi})^{-1} \mathbf{\Phi}^\mathsf{T} \mathbf{t}$
 - Regularize **w** to avoid over-fitting: $\mathbf{w}_* = (\mathbf{\Phi}^\mathsf{T}\mathbf{\Phi} + \lambda \mathbf{I})^{-1}\mathbf{\Phi}^\mathsf{T}\mathbf{t}$
 - Gradient descent algorithms can be used for sequential learning
- Probabilistic interpretation to regression

- Linear in model parameters w.
 - If \mathbf{x} and t are linearly related $\hat{t} = \mathbf{w}^\mathsf{T} \mathbf{x}$
 - If relationship is not linear: $\hat{t} = \mathbf{w}^\mathsf{T} \phi(\mathbf{x})$
 - LS criterion leads to pseudo-inverse solution: $\mathbf{w}_* = (\mathbf{\Phi}^\mathsf{T} \mathbf{\Phi})^{-1} \mathbf{\Phi}^\mathsf{T} \mathbf{t}$
 - Regularize **w** to avoid over-fitting: $\mathbf{w}_* = (\mathbf{\Phi}^\mathsf{T}\mathbf{\Phi} + \lambda \mathbf{I})^{-1}\mathbf{\Phi}^\mathsf{T}\mathbf{t}$
 - Gradient descent algorithms can be used for sequential learning
- Probabilistic interpretation to regression
 - Point estimate of target does not hold for one-to-many maps

- Linear in model parameters w.
 - If \mathbf{x} and t are linearly related $\hat{t} = \mathbf{w}^\mathsf{T} \mathbf{x}$
 - If relationship is not linear: $\hat{t} = \mathbf{w}^\mathsf{T} \phi(\mathbf{x})$
 - LS criterion leads to pseudo-inverse solution: $\mathbf{w}_* = (\mathbf{\Phi}^\mathsf{T} \mathbf{\Phi})^{-1} \mathbf{\Phi}^\mathsf{T} \mathbf{t}$
 - Regularize **w** to avoid over-fitting: $\mathbf{w}_* = (\mathbf{\Phi}^\mathsf{T}\mathbf{\Phi} + \lambda \mathbf{I})^{-1}\mathbf{\Phi}^\mathsf{T}\mathbf{t}$
 - Gradient descent algorithms can be used for sequential learning
- Probabilistic interpretation to regression
 - Point estimate of target does not hold for one-to-many maps
 - ML estimation assigns a distribution to the target $p(t_n/y(\mathbf{w},\mathbf{x}_n),\beta^{-1})$

- Linear in model parameters w.
 - If \mathbf{x} and t are linearly related $\hat{t} = \mathbf{w}^\mathsf{T} \mathbf{x}$
 - If relationship is not linear: $\hat{t} = \mathbf{w}^\mathsf{T} \phi(\mathbf{x})$
 - LS criterion leads to pseudo-inverse solution: $\mathbf{w}_* = (\mathbf{\Phi}^\mathsf{T} \mathbf{\Phi})^{-1} \mathbf{\Phi}^\mathsf{T} \mathbf{t}$
 - Regularize **w** to avoid over-fitting: $\mathbf{w}_* = (\mathbf{\Phi}^\mathsf{T}\mathbf{\Phi} + \lambda \mathbf{I})^{-1}\mathbf{\Phi}^\mathsf{T}\mathbf{t}$
 - Gradient descent algorithms can be used for sequential learning
- Probabilistic interpretation to regression
 - Point estimate of target does not hold for one-to-many maps
 - ML estimation assigns a distribution to the target $p(t_n/y(\mathbf{w}, \mathbf{x}_n), \beta^{-1})$
 - ullet Parameters ullet depend on training set point estimate not enough

- Linear in model parameters w.
 - If \mathbf{x} and t are linearly related $\hat{t} = \mathbf{w}^\mathsf{T} \mathbf{x}$
 - If relationship is not linear: $\hat{t} = \mathbf{w}^\mathsf{T} \phi(\mathbf{x})$
 - LS criterion leads to pseudo-inverse solution: $\mathbf{w}_* = (\mathbf{\Phi}^\mathsf{T} \mathbf{\Phi})^{-1} \mathbf{\Phi}^\mathsf{T} \mathbf{t}$
 - Regularize **w** to avoid over-fitting: $\mathbf{w}_* = (\mathbf{\Phi}^\mathsf{T}\mathbf{\Phi} + \lambda \mathbf{I})^{-1}\mathbf{\Phi}^\mathsf{T}\mathbf{t}$
 - Gradient descent algorithms can be used for sequential learning
- Probabilistic interpretation to regression
 - Point estimate of target does not hold for one-to-many maps
 - ML estimation assigns a distribution to the target $p(t_n/y(\mathbf{w}, \mathbf{x}_n), \beta^{-1})$
 - ullet Parameters ullet depend on training set point estimate not enough
 - MAP estimation assigns a distribution to **w**: $p(\mathbf{w}/\mathbf{t}, \mathbf{X}, \alpha, \beta)$

- Linear in model parameters w.
 - If \mathbf{x} and t are linearly related $\hat{t} = \mathbf{w}^\mathsf{T} \mathbf{x}$
 - If relationship is not linear: $\hat{t} = \mathbf{w}^\mathsf{T} \phi(\mathbf{x})$
 - LS criterion leads to pseudo-inverse solution: $\mathbf{w}_* = (\mathbf{\Phi}^\mathsf{T} \mathbf{\Phi})^{-1} \mathbf{\Phi}^\mathsf{T} \mathbf{t}$
 - Regularize **w** to avoid over-fitting: $\mathbf{w}_* = (\mathbf{\Phi}^\mathsf{T}\mathbf{\Phi} + \lambda \mathbf{I})^{-1}\mathbf{\Phi}^\mathsf{T}\mathbf{t}$
 - Gradient descent algorithms can be used for sequential learning
- Probabilistic interpretation to regression
 - Point estimate of target does not hold for one-to-many maps
 - ML estimation assigns a distribution to the target $p(t_n/y(\mathbf{w}, \mathbf{x}_n), \beta^{-1})$
 - ullet Parameters ullet depend on training set point estimate not enough
 - MAP estimation assigns a distribution to **w**: $p(\mathbf{w}/\mathbf{t}, \mathbf{X}, \alpha, \beta)$
 - Predict target distribution for a test-point x_0 : $p(t_0/x_0, \mathbf{t}, \mathbf{X}, \alpha, \beta)$

- Linear in model parameters w.
 - If \mathbf{x} and t are linearly related $\hat{t} = \mathbf{w}^\mathsf{T} \mathbf{x}$
 - If relationship is not linear: $\hat{t} = \mathbf{w}^\mathsf{T} \phi(\mathbf{x})$
 - LS criterion leads to pseudo-inverse solution: $\mathbf{w}_* = (\mathbf{\Phi}^\mathsf{T} \mathbf{\Phi})^{-1} \mathbf{\Phi}^\mathsf{T} \mathbf{t}$
 - Regularize **w** to avoid over-fitting: $\mathbf{w}_* = (\mathbf{\Phi}^\mathsf{T}\mathbf{\Phi} + \lambda \mathbf{I})^{-1}\mathbf{\Phi}^\mathsf{T}\mathbf{t}$
 - Gradient descent algorithms can be used for sequential learning
- Probabilistic interpretation to regression
 - Point estimate of target does not hold for one-to-many maps
 - ML estimation assigns a distribution to the target $p(t_n/y(\mathbf{w}, \mathbf{x}_n), \beta^{-1})$
 - ullet Parameters ullet depend on training set point estimate not enough
 - MAP estimation assigns a distribution to **w**: $p(\mathbf{w}/\mathbf{t}, \mathbf{X}, \alpha, \beta)$
 - Predict target distribution for a test-point x_0 : $p(t_0/x_0, \mathbf{t}, \mathbf{X}, \alpha, \beta)$
 - Predictive uncertainty depends on x₀ and is smallest in the neighborhood of train data points.

Homework

 For Gaussian likelihood and Gaussian posterior, prove that the he predictive distribution is Gaussian and is given by

$$p(t_0/\mathbf{x}_0, \mathbf{X}, \mathbf{t}, \alpha, \beta) = \mathcal{N}\left(t_0/\mathbf{m}_N^T \phi(\mathbf{x}_0), \sigma_N^2(\mathbf{x}_0)\right)$$
$$\sigma_N^2(\mathbf{x}_0) = \frac{1}{\beta} + \phi^{\mathsf{T}}(\mathbf{x}_0) \mathbf{\Sigma}_N \phi(\mathbf{x}_0)$$

 Prove that the predictive uncertainty deceases with increase in training data, i.e., predictive distribution gets narrower with additional training points

$$\sigma_{N+1}^2(\mathbf{x}_0) \leq \sigma_N^2(\mathbf{x}_0)$$

Thank You!