See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/231269808

# Aqueous organic chemistry. 1. Aquathermolysis: Comparison with thermolysis in the reactivity of aliphatic compounds. Energy Fuels. 4: 475-482

| 1 | Δ | F | 5. | T | ī | ( | • | ı | F | ir | 7 | F | ١ | I F | 7 | 2 | G | ٧ | 8 | 2 | F | u | F | 1.5 | ٠. | ς | F | P | Т | F | N | ۱F | ٩I | Ξ | R | 1 | C | O | 10 | ١ |
|---|---|---|----|---|---|---|---|---|---|----|---|---|---|-----|---|---|---|---|---|---|---|---|---|-----|----|---|---|---|---|---|---|----|----|---|---|---|---|---|----|---|
|   |   |   |    |   |   |   |   |   |   |    |   |   |   |     |   |   |   |   |   |   |   |   |   |     |    |   |   |   |   |   |   |    |    |   |   |   |   |   |    |   |

Impact Factor: 2.79 · DOI: 10.1021/ef00023a012

**READS** 

**CITATIONS** 

57 19

# 4 AUTHORS, INCLUDING:



104 PUBLICATIONS 2,047 CITATIONS

SEE PROFILE

# Aqueous Organic Chemistry. 1. Aquathermolysis: Comparison with Thermolysis in the Reactivity of Aliphatic Compounds

Michael Siskin\* and Glen Brons

Corporate Research Science Laboratories, Exxon Research and Engineering Company,
Annandale, New Jersey 08801

Alan R. Katritzky\* and Marudai Balasubramanian

Department of Chemistry, University of Florida, Gainesville, Florida 32611-2046 Received May 21, 1990. Revised Manuscript Received June 21, 1990

The first report in this series describes a scoping study on a set of n- $C_{10}$  aliphatic compounds with structures representative of those found in oil shale kerogens. 1-Decene underwent acid-catalyzed double bond isomerization and dimerization reactions, and 1-decyne was hydrated under aquathermolysis conditions. Acid-catalyzed aldol condensation reactions were observed for 1-decanal and 2-decanone, and the major products were  $\alpha,\beta$ -unsaturated aldehydes and ketones. Decyl decanoate was four times more reactive with water than thermally at 250 °C and readily hydrolyzed to the corresponding carboxylic acid and alcohol. 1-Decanenitrile readily hydrated to 1-nonanecarboxamide, which then underwent further hydrolysis to 1-decanoic acid and ammonium hydroxide. The ammonium hydroxide will autocatalyze the hydrolysis of both the 1-decanenitrile and 1-decanamide. 1-Decylamine was converted thermally to the corresponding decanenitrile, and under aqueous conditions self-condensation took place to provide didecylamine and tridecylamine. The thermolysis of 1-decanethiol was found to be the source for hydrogen sulfide evolution during reaction to form dialkyl sulfides. In simulated maturation environments water can act as an amphoteric catalyst promoting ionic reaction pathways at high temperature for bonds that are not thermally labile. The presence of brine and clay facilitated the observed ionic chemistry and specific acid-catalyzed reactions. Reactivity is also facilitated by autocatalysis by water-soluble products.

#### Introduction

Transformations of organic compounds in aqueous environments are of significant interest and importance. Most of the world's fossil fuel resources have been naturally formed and modified under such conditions, but a detailed understanding of the formation and maturation pathways is still lacking. The potential economic incentives for the conversion and upgrading of fossil fuel resources by aqueous treatment rather than by conventional hydrogenation are enormous. Despite this scientific and economic importance, published work on the chemical reactions of organic molecules in aqueous environments is sparse and fragmentary. The investigations to be described in the present series of papers will cover reactions of aliphatic derivatives (part 1), molecules containing representative cross-links (part 2), and ethers and esters representative of those C-O cross-links found as components of coals and kerogens (part 3). A sister series of papers is concerned with aquathermolyses of benzenoid and heteroaromatic compounds.1 In addition to water, experiments were also carried out in cyclohexane to differentiate thermal (radical) chemistry from aqueous (ionic) chemistry. Experiments in brine (10% NaCl) and claycontaining aqueous systems were run to simulate more closely the maturation environment and determine the effects of ionic strength and clay catalysis on reactivity.

A portion of petroleum seems to have been derived directly from biologically produced lipid precursors such as fats and waxes of their fatty acid derivatives<sup>2-4</sup> and from

higher molecular weight precursors.5-7

It is generally believed that the immediate precursor for most of the naturally occurring liquid and gaseous hydrocarbons is kerogen, which is the predominant organic constituent of sedimentary rocks, such as shales.

Kerogen is a complex network of high molecular weight organic macromolecules, its precursors being largely algal and plant lipids that polymerize early in the diagenetic history of the sediment. Most of the deposited fatty acids and their derivatives that survived in the inorganic debris were quickly incorporated into the kerogen macromolecular network. The kerogen was in an aqueous environment as it was exposed to increasing temperature during burial. Progressive decarboxylation, dehydration, and carboncarbon bond cleavage reactions occurred leading to the generation of alkane chains and fragments of polycyclic and heterocyclic nuclei. Many workers have postulated that a catalyst would have been required at these low temperatures to sufficiently lower the activation energies of these decomposition reactions.<sup>8</sup> The most obvious natural catalysts were the clay minerals of the matrix in which the kerogen was dispersed. With increasing depth and temperature, there was a loss of bituminous hydrocarbons, or petroleum. The petroleum formation (or liquid hydrocarbon) window was defined approximately by the temperature limits of 60-110 °C.9

The conversion of model compounds with clays to petroleum-like hydrocarbon mixtures has been carried out

<sup>(1)</sup> Katritzky and Siskin, et al. Aqueous High-Temperature Chemistry of Carbo- and Heterocycles. Parts 1-15. Energy Fuels, in this issue.

<sup>(2)</sup> Cooper, J. E. Nature 1962, 193, 744. (3) Cooper, J. E.; Bray, E. E. Geochim. Cosmochim. Acta 1963, 27, 1113-27.

<sup>(4)</sup> Kvenvolden, K. A. Adv. Org. Geochem. Acta 1970, 335-66.

<sup>(5)</sup> Bray, E. E.; Evans, E. D. Geochim. Cosmochim. Acta 1961, 22, 2.
(6) Bendoraitis, J. G.; Brown, B. L.; Hepner, L. S. Proc. World Pet. Congr. 1963, 6th, 13-29.
(7) Hedberg, H. D. Am. Assoc. Pet. Geol. Bull. 1968, 52, 736-50.

<sup>(7)</sup> Hedberg, H. D. Am. Assoc. Pet. Geol. Bull. 1968, 52, 736-50.
(8) Hunt, J. M. Petroleum Geochemistry and Geology; W. H. Freeman: San Francisco. 1979.

man: San Francisco, 1979.
(9) Pusey, W. C. Gulf Coast Assoc. Geol. Soc. Trans. 1973, 23, 195-202.

by a number of workers. Jurg and Eisma<sup>10</sup> reacted behenic acid (docosanoic acid) with bentonite clay in sealed tubes in the presence and absence of water at 200 °C for 89 and 760 h. They found significant hydrocarbon formation only in the presence of the clay catalyst. Without water, the ratio of n-butane to isobutane and pentane was much higher (ca. 40:1) than with water, indicating that water induced or provided conditions that favored carbocation chemistry. The proportion of saturated hydrocarbons was found to increase with time at the expense of unsaturated hydrocarbons, indicating that alkylations were taking place. Among the higher molecular weight hydrocarbons  $(C_{14}-C_{34})$ , there was a strong predominance of  $C_{21}H_{44}$ , the direct decarboxylation product of behenic acid.

Shimoyama and Johns<sup>11</sup> reacted behenic acid with calcium montmorillonite under anhydrous conditions at 200 and 250 °C for 50-500 h and obtained results similar to those of Jurg and Eisma. 10 In addition they found 12 that anhydrous calcium carbonate also promoted the degradation of the C<sub>19</sub> and C<sub>22</sub> fatty acids to alkanes at 250 °C. The most prominent product formed with CaCO<sub>3</sub> from the C<sub>22</sub> acid was icosane resulting from the loss of a two-carbon unit. However, much of the consumed fatty acid was converted to a brown, insoluble, kerogen-like material. Henderson<sup>13</sup> showed that bentonite, in the presence of water at 375 °C, catalyzed the conversion (90%) of octacosane to an insoluble black carbonaceous material and small amounts of alkenes and aromatic hydrocarbons. In the absence of water, 1% of the octacosane was converted to other alkanes and aromatic hydrocarbons.

In 1979, Lewan et al. 14 pointed out that the rarity of olefins in natural crude oils as compared to the products of anhydrous pyrolysis or retorting of organic-rich shales indicated that these techniques do not duplicate the natural oil-generating processes.

Kaplan<sup>15</sup> reported that the presence of water during the 200-400 °C pyrolysis of Green River kerogen either enhanced the release of long-chain carboxylic acids (C<sub>10</sub>-C<sub>32</sub>) or reduced the rate of their thermal destruction. No correlation between the chain-length distribution of straight- or branched-chain carboxylic acids and their equivalent hydrocarbons in the kerogen pyrolyzates was observed. This suggested that decarboxylation was not an important mechanism for hydrocarbon generation during hydrous pyrolysis. However, carboxylic acids may have been subjected to decarboxylation once they were released into bitumen, especially in a clay-rich mineral matrix.

In order to understand the source of paraffins in petroleum crudes and the reactivity patterns of representative derivatized aliphatics, a systematic study was initiated on the following model compounds under aqueous conditions: 1-decene, 1-decyne, 1-decanal, 2-decanone, decyl decanoate, 1-decanenitrile, 1-decanol, 1-decylamine, 1decanoic acid, methyl 1-nonyl sulfide, and 1-decyl methyl ether.

#### **Experimental Section**

Each of the 12 compounds was heated at 250 °C over 1.5-13.5 days in each of the following systems: (i) cyclohexane, (ii) water alone, (iii) water with calcium montmorillonite, (iv) 10% aqueous

#### Scheme I. General Pathways for Aquathermolysis Reactions of Aliphatic Compounds



$$C_0H_{19}CN$$
  $\xrightarrow{H_2O}$   $C_0H_{19}CONH_2$   $\xrightarrow{H_2O}$   $C_0H_{19}COOH + NH_4OH$  (2)

sodium chloride, and (v) 10% aqueous sodium chloride with calcium montmorillonite.

The starting material, decyl decanoate (58) was prepared in 99% purity following the literature procedure. 16 Other starting materials were commercially available and redistilled to achieve purities of >99%; see Table II.

General Procedure. The C<sub>10</sub>H<sub>21</sub>X model compound (1.0 g, high purity) was charged into a glass-lined, 22-mL, 303SS Parr bomb. Deoxygenated water (7 mL, freshly prepared by bubbling nitrogen into distilled water for 1-1.5 h) was then charged into the nitrogen blanketed reactor vessel which was sealed using a Parr bomb screw-cap closure. The reactor was then kept nonagitated in a Techne fluidized sand bath (Model SBL-1) set at 250 °C for 1-13.5 days.

After the reaction period, the bomb was removed and allowed to cool to room temperature. It was then carefully opened under a nitrogen atmosphere. The entire mixture was transferred to a round-bottomed flask containing a Teflon stir bar. The walls of the glass liner and bomb cup were rinsed with 10 mL of diethyl ether which was added to the flask. The resulting mixture was stirred for 2 h, and the phases were allowed to separate. The organic layer was pipetted away from the aqueous layer and analyzed by gas chromatography (GC) and mass spectroscopy (MS).

The gas chromatographic behavior of all the compounds encountered in this work (starting materials and products) is summarized in Table I. Table IA records the source and mass spectral fragmentation patterns of the authentic compounds used, either as starting materials or for the identification of products. Tables IB and II record the mass spectra of the compounds for which samples were not available and which were identified by comparison with literature MS data (Table IB) or by deduction (Table II). Tables IA and IB along with a description of the mass spectral assignments of structures are available as supplementary material (see paragraph at end of paper regarding supplementary material).

Conversion Yields and Material Balance. All conversions and yields are given in terms of moles as a percentage of starting material. Internal standards were used to quantify conversion of the starting material, and the GC peak areas were corrected by response factors and then renormalized to omit material present in <0.1% concentration. Details on estimation of flame ionization detector (FID) response factors were discussed elsewhere.<sup>17,18</sup> The conversion of the areas to molar units was done by use of an equivalent weight factor (Table I). The experiments were duplicated and found to be reproducible within  $\pm 5\%$ .

# Results and Discussion

The major aquathermolytic pathways are summarized in Scheme I. These and other reactions are discussed in more detail below.

#### 1-Decyl methyl ether and decanoic acid were unaf-

<sup>(10)</sup> Jurg, J. W.; Eisma, E. Science 1964, 144, 1451-2

<sup>(11)</sup> Shimoyama, A.; Johns, W. D. Nature, Phys. Sci. 1971, 232, 140-4. (12) Shimoyama, A.; Johns, W. D. Geochim. Cosmochim. Acta 1972,

<sup>(13)</sup> Henderson, W.; Eglinton, G.; Simmonds, P.; Lovelock, J. E. Nature 1968, 219, 1012.

<sup>(14)</sup> Lewan, M. D.; Winters, J. C.; McDonald, J. H. Science 1979, 203,

<sup>(15)</sup> Kawamura, K.; Tannenbaum, E.; Huizinga, B. J.; Kaplan, I. R. Adv. Org. Geochem. 1986, 10, 1059-65.

<sup>(16)</sup> Spizzichino, C.; J. Rech. C.N.R.S. 1956, 34, 1-24; Chem. Abstr.

<sup>(17)</sup> Part 1 of the series Aqueous High-Temperature Chemistry of Carbo- and Heterocycles. Katritzky, A. R.; Lapucha, A. R.; Murugan, R.;

Luxem, F. J.; Siskin, M.; Brons, G. Energy Fuels, in this issue. (18) Musumarra, G.; Pisano, D.; Katritzky, A. R.; Lapucha, A. R.; Luxem, F. J.; Murugan, R.; Siskin, M.; Brons, G. Tetrahedron Comput. Methodol. 1989, 2, 17.

Table I. Structure and Identification of Starting Materials and Products

|          | $t_{\rm R}$ , min | structure                                                                                                             | mol wt            | equiv wt   | identification basis <sup>a</sup> | factor                |
|----------|-------------------|-----------------------------------------------------------------------------------------------------------------------|-------------------|------------|-----------------------------------|-----------------------|
| 1        | 0.61              | 1-heptene                                                                                                             | 98                | 98         | Table IA                          | 0.96                  |
| 2        | 0.69              | 1-octene                                                                                                              | 112               | 112        | Table IA                          | 0.96                  |
| 3        | 0.73              | 2-octene                                                                                                              | 112               | 112        | Table IB                          | 0.96                  |
| 4        | 0.99              | 1-nonene                                                                                                              | 126               | 126        | Table IA                          | 0.95                  |
| 5        | 1.15              | 3-nonene                                                                                                              | 126               | 126        | Table II                          | 0.95                  |
| 6        | 1.23              | nonane                                                                                                                | 128               | 128        | Table IA                          | 0.95                  |
| 7        | 1.25              | 4-nonene                                                                                                              | 126               | 126        | Table IB                          | 0.95                  |
| 8        | 1.30              | 2-nonene                                                                                                              | 126               | 126        | Table II                          | 0.95                  |
| 9        | 1.34              | cyclohexanethiol                                                                                                      | 116               | 116        | Table IB                          | 0.72                  |
| 10       | 1.90<br>1.95      | 2-decene<br>1-decene                                                                                                  | 140<br>140        | 140<br>140 | Table II<br>Table IA              | 0.95<br>0. <b>9</b> 5 |
| 11<br>12 | 2.07              | decane                                                                                                                | 142               | 140        | Table IA                          | 0.95                  |
| 13       | 2.07              | 3-decene                                                                                                              | 140               | 142        | Table II                          | 0.95                  |
| 14       | 2.10              | 4-decene                                                                                                              | 140               | 140        | Table IB                          | 0.95                  |
| 15       | 2.15              | 5-decene                                                                                                              | 140               | 140        | Table IB                          | 0.95                  |
| 16       | 2.25              | 1-decyne                                                                                                              | 138               | 138        | Table IA                          | 0.94                  |
| 17       | 2.31              | cyclohexyl methyl sulfide                                                                                             | 130               | 130        | Table IB                          | 0.71                  |
| 18       | 3.80              | 2-decanone                                                                                                            | 156               | 156        | Table IA                          | 0.78                  |
| 19       | 4.10              | 1-decanal                                                                                                             | 156               | 156        | Table IA                          | 0.78                  |
| 20       | 4.56              | 1-nonanethiol                                                                                                         | 160               | 160        | Table IB                          | 0.71                  |
| 21       | 4.70              | 1-decylamine                                                                                                          | 157               | 157        | Table IB                          | 0.70                  |
| 22       | 4.87              | 5-decanethiol                                                                                                         | 174               | 174        | Table II                          | 0.70                  |
| 23       | 4.95              | 4-decanethiol                                                                                                         | 174               | 174        | Table II                          | 0.70                  |
| 24       | 5.15              | 1-decanenitrile                                                                                                       | 153               | 153        | Table IA                          | 0.78                  |
| 25       | 5.16              | 3-decanethiol                                                                                                         | 174               | 174        | Table IB                          | 0.70                  |
| 26       | 5.20              | 1-decanol                                                                                                             | 158               | 158        | Table IA                          | 0.76                  |
| 27       | 5.90              | methyl 1-nonyl sulfide                                                                                                | 174               | 174        | Table IA                          | 0.69                  |
| 28       | 6.00              | 2-decanethiol                                                                                                         | 174               | 174        | Table II                          | 0.70                  |
| 29       | 6.20              | 1-decanethiol                                                                                                         | 174               | 174        | Table IA                          | 0.70                  |
| 30       | 7.00              | 1-decanoic acid                                                                                                       | 172               | 172        | Table IA                          | 0.32                  |
| 31       | 8.88              | 1-nonanecarboxamide                                                                                                   | 171               | 171        | Table IA                          | 0.69                  |
| 32       | 9.43              | 1-decenylcyclohexane                                                                                                  | 222               | 222        | Table II                          | 0.92                  |
| 33       | 9.79              | 1-decylcyclohexene                                                                                                    | 222               | 222        | Table IB                          | 0.92                  |
| 34       | 9.94              | 1-decylcyclohexane                                                                                                    | 224               | 224        | Table IB                          | 0.92                  |
| 35       | 11.83             | cyclohexyl 1-nonyl sulfide                                                                                            | 242               | 242        | Table II                          | 0.67                  |
| 36       | 12.45             | 9-nonadecene                                                                                                          | $\frac{266}{280}$ | 133<br>140 | Table II<br>Table II              | 0.90<br>0.90          |
| 37<br>38 | 12.89<br>12.95    | (E)-C <sub>9</sub> H <sub>19</sub> HC=C(CH <sub>3</sub> )C <sub>8</sub> H <sub>17</sub><br>cyclohexyl 1-decyl sulfide | 256               | 256        | Table II                          | 0.66                  |
| 39       | 13.26             | 10-nonadecanol                                                                                                        | 284               | 142        | Table II                          | 0.72                  |
| 40       | 13.38             | cis-9-icosene                                                                                                         | 280               | 140        | Table II                          | 0.90                  |
| 41       | 13.45             | trans-9-icosene                                                                                                       | 280               | 140        | Table IB                          | 0.90                  |
| 42       | 13.65             | 1,2'-dinonyl sulfide                                                                                                  | 286               | 143        | Table II                          | 0.65                  |
| 43       | 14.14             | 1,1'-didecyl ether                                                                                                    | 298               | 149        | Table IB                          | 0.70                  |
| 44       | 14.17             | (Z)-C <sub>8</sub> H <sub>17</sub> (CH <sub>3</sub> )C=CHCOC <sub>8</sub> H <sub>17</sub>                             | 294               | 147        | Table II                          | 0.72                  |
| 45       | 14.20             | (Z)-C <sub>8</sub> H <sub>17</sub> (CH <sub>3</sub> )C=C(COCH <sub>3</sub> )C <sub>7</sub> H <sub>15</sub>            | 294               | 147        | Table II                          | 0.72                  |
| 46       | 14.21             | C <sub>9</sub> H <sub>19</sub> CH(OH)CH(CHO)C <sub>8</sub> H <sub>17</sub>                                            | 312               | 156        | Table II                          | 0.34                  |
| 47       | 14.36             | $(E)$ - $C_8H_{17}(CH_3)C=C(COCH_3)C_7H_{15}$                                                                         | 294               | 147        | Table II                          | 0.72                  |
| 48       | 14.50             | (Z)-C <sub>9</sub> H <sub>19</sub> CH=C(CHO)C <sub>8</sub> H <sub>17</sub>                                            | 294               | 147        | Table II                          | 0.52                  |
| 49       | 14.50             | 1,1'-dinonyl sulfide                                                                                                  | 286               | 143        | Table IA                          | 0.65                  |
| 50       | 14.51             | N,N'-didecylamine                                                                                                     | 297               | 148.5      | Table II                          | 0.65                  |
| 51       | 14.87             | 4,4'-didecyl sulfide                                                                                                  | 314               | 157        | Table II                          | 0.64                  |
| 52       | 14.90             | $(E)$ - $C_8H_{17}(CH_3)C$ = $CHCOC_8H_{17}$                                                                          | 294               | 147        | Table II                          | 0.72                  |
| 53       | 14.93             | 3,3'-didecyl sulfide                                                                                                  | 314               | 157        | Table II                          | 0.64                  |
| 54       | 15.00             | 1,4'-didecyl sulfide                                                                                                  | 314               | 157        | Table II                          | 0.64                  |
| 55       | 15.07             | 1,3'-didecyl sulfide                                                                                                  | 314               | 157        | Table II                          | 0.64                  |
| 56       | 15.10             | $(E)$ - $C_9H_{19}CH$ = $C(CHO)C_8H_{17}$                                                                             | 294               | 147        | Table II                          | 0.52                  |
| 57       | 15.12             | 2,2'-didecyl sulfide                                                                                                  | 314               | 157        | Table II                          | 0.64                  |
| 58       | 15.20             | decyl decanoate                                                                                                       | 312               | 312        | Table IA                          | 0.55                  |
| 59<br>60 | 15.27             | 1,2'-didecyl sulfide                                                                                                  | 314               | 157        | Table II                          | 0.64                  |
| 60       | 15.56             | 1,1'-didecyl sulfide                                                                                                  | 314               | 157        | Table II                          | 0.64                  |
| 61       | 17.16             | 1,3'-didecyl disulfide                                                                                                | 346               | 173        | Table II                          | 0.38                  |
| 62       | 17.43             | 1,2'-didecyl disulfide                                                                                                | 346               | 173        | Table II                          | 0.38                  |
| 63       | 18.05             | 1,1'-didecyl disulfide                                                                                                | 346               | 173        | Table IA                          | 0.38                  |
| 64<br>65 | 18.10             | 9-cyclohexylicosane                                                                                                   | 364<br>427        | 182        | Table IB                          | 0.85                  |
|          | 20.00             | N,N',N''-tridecylamine                                                                                                | 437               | 145.7      | Table II                          | 0.60                  |
| 66       | 20.59             | 1,4-dioctylbenzene                                                                                                    | 302               | 151        | Table II                          | 0.88                  |

<sup>&</sup>lt;sup>a</sup> Tables IA and IB are in the supplementary material.

fected at 250 °C under both aqueous and thermal conditions for up to 13.5 days. The latter was unexpected based on previous reports.  $^{10,11}$ 

1-Decene (11) (Table III). At 250 °C, 1-decene (11) showed similar reactivity in cyclohexane (6.1% conversion), water (8.4% conversion), and 10% aqueous brine (10.8%)

conversion). Under all these conditions, it underwent double bond migration to give 2- (10), 3- (13), 4- (14), and 5-decene (15). In addition to these products appreciable amounts of (E)-10- (37), cis-9- (40), and trans-9-icosene (41) were also formed via dimerization of 1-decene (11). In the presence of calcium montmorillonite, the isomeri-

Table II. Identification of Products from Mass Spectral Fragmentation Pattern

| 1   13   13   15   15   16   16   17   17   19   18   10   10   17   17   19   18   10   18   18   18   18   18   18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | no.       | compound                                                                                                   | MW  | fragmentation pattern $m/z$ (% relative intensity, structure of fragment ion)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------------------------------------------------------------------------------------------------------------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 8 2-mones                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5         | 3-nonene                                                                                                   | 126 | $(40, M - C_5H_9)$ ; 56 $(80, C_4H_8)$ ; 55 $(100, M - C_5H_{11})$ ; 43 $(80, M - C_6H_{11})$ ; 42 $(35, C_3H_6)$ ;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 10   24   24   24   24   24   24   25   25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8         | 2-nonene                                                                                                   | 126 | 126 (10, M); 97 (10, M - $C_2H_5$ ); 85 (60, M - $C_3H_5$ ); 71 (90, M - $C_4H_7$ ); 69 (25, $C_5H_9$ ); 58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 195, M C, H <sub>2</sub>     11 (15, M SH); 140 (20, M H <sub>2</sub> S); 111 (25, C <sub>4</sub> H <sub>11</sub> ); 97 (40, C, H <sub>11</sub> ); 87 (40, C, H <sub>11</sub> ); 88 (40, C, H <sub>11</sub> ); 88 (40, C, H <sub>11</sub> ); 89 (4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10        | 2-decene                                                                                                   | 140 | 140 (15, M); 111 (25, M - $C_2H_5$ ); 97 (35, M - $C_3H_7$ ); 83 (35, M - $C_4H_9$ ); 69 (60, M -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ***Cathagh, ***Triangle ***Cathagh, ***Triangle ***T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 13        | 3-decene                                                                                                   | 140 | 140 (20, M); 111 (5, M - $C_2H_5$ ); 97 (15, M - $C_3H_7$ ); 69 (50, $C_5H_9$ ); 55 (100, M - $C_6H_{13}$ ); 41 (95, M - $C_7H_{15}$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 23 4-decanethiol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 22        | 5-decanethiol                                                                                              | 174 | $C_6H_{13}$ ); 71 (25, M - $SC_5H_{11}$ ); 70 (30, $C_5H_{10}$ ); 69 (30, $C_5H_9$ ); 57 (40, M - $SC_6H_{13}$ ); 56 (20,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 28 2-decaenthiol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 23        | 4-decanethiol                                                                                              | 174 | 174 (20, M); 173 (30, M - H); 141 (55, M - SH); 140 (15, M - $H_2$ S); 115 (15); 97 (30, $C_7H_{13}$ ); 85 (60, $C_6H_{18}$ ); 83 (35, $C_6H_{11}$ ); 71 (40, M - $SC_5H_{11}$ ); 70 (50, $C_5H_{10}$ ); 69 (40,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 22   22 (20, M); 96 (35, CH; 12); 83 (45, CH; 13); 82 (30, M - C, H; 30; 81 (50, CH; 13); 89 (30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 28        | 2-decanethiol                                                                                              | 174 | 174 (15, M); 140 (5, M - $H_2S$ ); 111 (10, $C_8H_{15}$ ); 97 (10, $C_7H_{13}$ ); 83 (30, $C_6H_{11}$ ); 70 (35, M -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 25 eyclohexyl 1-nonyl sulfide 6 9-nonadecane 26 266 (10, M); 159 (60, M - C <sub>6</sub> H <sub>1</sub> ); 115 (15, C <sub>6</sub> H <sub>16</sub> ); 57 (69, C <sub>6</sub> H <sub>16</sub> ); 58 (95, C <sub>6</sub> H <sub>16</sub> ); 37 (26) C <sub>6</sub> H <sub>16</sub> ); 116 (16, C <sub>6</sub> H <sub>16</sub> ); 130 (10, C <sub>6</sub> H <sub>16</sub> ); 130 (100, C <sub></sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 32        | 1-decenylcyclohexane                                                                                       | 222 | 222 (20, $\dot{M}$ ); 96 (35, $\dot{C}_7H_{12}$ ); 83 (45, $\dot{C}_6H_{11}$ ); 82 (30, $\dot{M} - \dot{C}_{10}H_{20}$ ); 81 (50, $\dot{C}_6H_9$ ); 69 (30, $\dot{M}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Section   Sect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |                                                                                                            |     | 242 (35, $M$ ); 159 (60, $M - C_6H_{11}$ ); 115 (15, $M - C_9H_{19}$ ); 55 (95, $C_4H_7$ ); 41 (100, $C_3H_5$ ) 266 (10, $M$ ); 125 (10, $M - C_{10}H_{21}$ ); 111 (15, $C_8H_{15}$ ); 97 (40, $C_7H_{13}$ ); 83 (40, $C_6H_{11}$ ); 69 (40,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 256 (25, Mj.) 173 (80, M - C <sub>4</sub> H <sub>1</sub> ); 129 (15); 83 (30, M - SC <sub>13</sub> H <sub>21</sub> ); 82 (30, C <sub>4</sub> H <sub>3</sub> ); 81 (26, C <sub>4</sub> H                                                                                                                                                                                                       | 37        | (E)-C <sub>9</sub> H <sub>19</sub> HC=C(CH <sub>3</sub> )C <sub>8</sub> H <sub>17</sub>                    | 280 | 280 (5, M); 166 (5, M - $C_8H_{18}$ ); 154 (5, M - $C_9H_{18}$ ); 139 (15); 111 (30); 97 (35); 83 (30);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 284 (5, M); 283 (40, M - H); 155 (75, 283 - C,H <sub>20</sub> ); 95 (25); 85 (15, C,H <sub>11</sub> ); 81 (30); C <sub>5</sub> H <sub>11</sub> ); 85 (35, C,H <sub>20</sub> ); 85 (36, C,H <sub>20</sub> ); 85 (30); 145 (30); 41 (100, C,H <sub>2</sub> ); 86 (30, H <sub>2</sub> ); 86 (30, M); 187 (30, M - C,H <sub>20</sub> ); 157 (40, C,H <sub>2</sub> ); 111 (25, C,H <sub>11</sub> ); 97 (40, C,H <sub>2</sub> ); 84 (40, M - C <sub>11</sub> H <sub>21</sub> ); 115 (10, C,H <sub>2</sub> ); 111 (125, C,H <sub>11</sub> ); 97 (40, C,H <sub>2</sub> ); 85 (40, M); 187 (30, M - C,H <sub>2</sub> ); 157 (40, C,H <sub>2</sub> ); 157 (40, C,H <sub>2</sub> ); 85 (40, M <sub>2</sub> ); 127 (40); M <sub>2</sub> ; 137 (40); M <sub>2</sub> ;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 38        | cyclohexyl 1-decyl sulfide                                                                                 | 256 | 256 (25, M); $173$ (80, M - $C_6H_{11}$ ); $129$ (15); $83$ (30, M - $SC_{10}H_{21}$ ); $82$ (30, $C_6H_{10}$ ); $81$ (15,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 280   (10, M); 138 (5, M - C <sub>19</sub> H <sub>2</sub> ); 125 (10, C <sub>2</sub> H <sub>13</sub> ); 111 (125, C <sub>2</sub> H <sub>13</sub> ); 97 (40, C <sub>2</sub> H <sub>3</sub> ); 88 (40, M - C <sub>13</sub> H <sub>3</sub> ); 67 (20; 57 (40, C <sub>4</sub> H <sub>3</sub> ); 55 (55, C <sub>4</sub> H <sub>7</sub> ); 43 (60, C <sub>3</sub> H <sub>1</sub> ); 68 (40, M - C <sub>4</sub> H <sub>3</sub> ); 159 (65, M - C <sub>4</sub> H <sub>3</sub> ); 106 (40); 83 (25, C <sub>4</sub> H <sub>11</sub> ); 69 (20, M); 187 (30, M - C <sub>4</sub> H <sub>13</sub> ); 115 (65, M - C <sub>4</sub> H <sub>13</sub> ); 106 (40); 83 (25, C <sub>4</sub> H <sub>11</sub> ); 69 (20, M); 187 (30, M - C <sub>4</sub> H <sub>13</sub> ); 115 (65, M - C <sub>4</sub> H <sub>13</sub> ); 110 (0, C <sub>4</sub> H <sub>3</sub> ) (56 (36); C <sub>4</sub> H <sub>1</sub> ); 111 (100, C <sub>4</sub> H <sub>3</sub> ) (56 (36); C <sub>4</sub> H <sub>1</sub> ); 111 (100, C <sub>4</sub> H <sub>3</sub> ) (56 (36); C <sub>4</sub> H <sub>1</sub> ); 111 (100, C <sub>4</sub> H <sub>3</sub> ) (56 (36); C <sub>4</sub> H <sub>1</sub> ); 111 (100, C <sub>4</sub> H <sub>3</sub> ) (56 (36); C <sub>4</sub> H <sub>1</sub> ); 111 (100, C <sub>4</sub> H <sub>3</sub> ) (100, C <sub></sub> | 39        | 10-nonadecanol                                                                                             | 284 | 284 (5, M); 283 (40, M - H); 155 (75, 283 - $C_9H_{20}$ ); 95 (25); 85 (15, $C_6H_{13}$ ); 81 (30); 71 (30, 284 (5, M); 283 (40, M - H); 155 (75, 283 - $C_9H_{20}$ ); 95 (25); 85 (15, $C_6H_{13}$ ); 81 (30); 71 (30, 283 (40, M - H)); 155 (75, 283 - $C_9H_{20}$ ); 95 (25); 85 (15, $C_9H_{13}$ ); 81 (30); 71 (30, 283 (40, M - H)); 155 (75, 283 - $C_9H_{20}$ ); 95 (25); 85 (15, $C_9H_{13}$ ); 81 (30); 71 (30, 283 (40, M - H)); 155 (75, 283 - $C_9H_{20}$ ); 95 (25); 85 (15, $C_9H_{13}$ ); 81 (30); 71 (30, 283 (40, M - H)); 155 (75, 283 - $C_9H_{20}$ ); 95 (25); 85 (15, $C_9H_{13}$ ); 81 (30); 71 (30, 283 (40, M - H)); 155 (75, 283 - $C_9H_{20}$ ); 95 (25); 85 (15, $C_9H_{13}$ ); 81 (30); 71 (30, 283 (40, M - H)); 155 (75, 283 (40, |
| 24 (2). C <sub>2</sub> H <sub>17</sub> (CH <sub>3</sub> )C=CHCOC <sub>8</sub> H <sub>17</sub> (2). C <sub>2</sub> H <sub>17</sub> (CH <sub>3</sub> )C=CHCOC <sub>8</sub> H <sub>17</sub> (2). C <sub>3</sub> H <sub>17</sub> (CH <sub>3</sub> )C=C(COCH <sub>3</sub> )C <sub>7</sub> H <sub>15</sub> (2). C <sub>4</sub> H <sub>17</sub> (CH <sub>3</sub> )C=C(COCH <sub>3</sub> )C <sub>7</sub> H <sub>15</sub> (2). C <sub>4</sub> H <sub>17</sub> (CH <sub>3</sub> )C=C(COCH <sub>3</sub> )C <sub>7</sub> H <sub>15</sub> (2). C <sub>4</sub> H <sub>17</sub> (CH <sub>3</sub> )C=C(COCH <sub>3</sub> )C <sub>7</sub> H <sub>15</sub> (2). C <sub>4</sub> H <sub>17</sub> (CH <sub>3</sub> )C=C(COCH <sub>3</sub> )C <sub>7</sub> H <sub>15</sub> (2). C <sub>4</sub> H <sub>17</sub> (CH <sub>3</sub> )C=C(COCH <sub>3</sub> )C <sub>7</sub> H <sub>15</sub> (2). C <sub>4</sub> H <sub>17</sub> (CH <sub>3</sub> )C=C(COCH <sub>3</sub> )C <sub>7</sub> H <sub>15</sub> (2). C <sub>4</sub> H <sub>17</sub> (CH <sub>3</sub> )C=C(COCH <sub>3</sub> )C <sub>7</sub> H <sub>15</sub> (2). C <sub>4</sub> H <sub>17</sub> (CH <sub>3</sub> )C=C(COCH <sub>3</sub> )C <sub>7</sub> H <sub>15</sub> (2). C <sub>4</sub> H <sub>18</sub> (3). S <sub>1</sub> C <sub>8</sub> C <sub>1</sub> H <sub>17</sub> (3). S <sub>1</sub> C <sub>1</sub> C <sub>1</sub> C <sub>1</sub> C <sub>1</sub> H <sub>17</sub> (3). S <sub>1</sub> C <sub>1</sub> C <sub>1</sub> C <sub>1</sub> C <sub>1</sub> C <sub>1</sub> H <sub>17</sub> (3). S <sub>1</sub> C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 40        | cis-9-icosene                                                                                              | 280 | 280 (10, M); 138 (5, M - $C_{10}H_{22}$ ); 125 (10, $C_{9}H_{17}$ ); 111 (25, $C_{8}H_{18}$ ); 97 (40, $C_{7}H_{13}$ ); 83 (35, $C_{8}H_{13}$ ); 69 (40, M - $C_{15}H_{31}$ ); 67 (25); 57 (40, $C_{4}H_{9}$ ); 55 (55, $C_{4}H_{7}$ ); 43 (60, $C_{3}H_{7}$ ); 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 44 (Z)-C <sub>8</sub> H <sub>17</sub> (CH <sub>3</sub> )C=CHCOC <sub>8</sub> H <sub>17</sub> 294 (294 (15, M); 181 (5, M - C <sub>2</sub> H <sub>17</sub> ); 141 (90, <sup>*</sup> COC <sub>2</sub> H <sub>17</sub> ); 123 (29); 82 (35); 71 (50); 67 (57 (75, C <sub>4</sub> H <sub>3</sub> ); 55 (45, C <sub>4</sub> H <sub>3</sub> ); 31 (65, C <sub>4</sub> H <sub>3</sub> ); 13 (65, C <sub>4</sub> H <sub>3</sub> ); 141 (100, C <sub>4</sub> H <sub>3</sub> ) (67 (C <sub>6</sub> H <sub>17</sub> ); 141 (100, C <sub>4</sub> H <sub>3</sub> ) (68 (36); 55 (545, C <sub>4</sub> H <sub>3</sub> ); 141 (100, C <sub>4</sub> H <sub>3</sub> ); 141 (100, C <sub>4</sub> H <sub>3</sub> ) (68 (36); 55 (54, C <sub>4</sub> H <sub>3</sub> ); 141 (100, C <sub>4</sub> H <sub>3</sub> ); 125 (10, C <sub>6</sub> H <sub>17</sub> ); 111 (15, C <sub>4</sub> H <sub>18</sub> ); 197 (35, C <sub>4</sub> H <sub>3</sub> ); 83 (35, C <sub>4</sub> H <sub>3</sub> ); 89 (20); 81 (25); 69 (35, M - C <sub>18</sub> H <sub>29</sub> O); 6 (2H <sub>3</sub> H <sub>3</sub> ); 197 (35, C <sub>4</sub> H <sub>3</sub> ); 197 (30, C <sub>4</sub> H <sub>3</sub> ); 111 (15, C <sub>4</sub>                                                                                                                                                                                                                                                                                                                                                                  | 42        | 1,2'-dinonyl sulfide                                                                                       | 286 | 286 (20, $M$ ); 187 (30, $M - C_7H_{15}$ ); 159 (65, $M - C_9H_{19}$ ); 106 (40); 83 (25, $C_6H_{11}$ ); 69 (35);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 46 C <sub>9</sub> H <sub>19</sub> CH(OH)CH(CHO)C <sub>8</sub> H <sub>17</sub> 47 (E)-C <sub>8</sub> H <sub>17</sub> (CH <sub>3</sub> )C=C(COCH <sub>3</sub> )C <sub>7</sub> H <sub>15</sub> 48 (Z)-C <sub>9</sub> H <sub>19</sub> CH=C(CHO)C <sub>8</sub> H <sub>17</sub> 49 (E)-C <sub>8</sub> H <sub>17</sub> (CH <sub>3</sub> )C=C(COCH <sub>3</sub> )C <sub>7</sub> H <sub>15</sub> 40 (E)-C <sub>8</sub> H <sub>17</sub> (CH <sub>3</sub> )C=C(COCH <sub>3</sub> )C <sub>7</sub> H <sub>15</sub> 41 (E)-C <sub>8</sub> H <sub>17</sub> (CH <sub>3</sub> )C=C(COCH <sub>3</sub> )C <sub>7</sub> H <sub>15</sub> 42 (E)-C <sub>8</sub> H <sub>17</sub> (CH <sub>3</sub> )C=C(COCH <sub>3</sub> )C <sub>7</sub> H <sub>15</sub> 43 (Z)-C <sub>9</sub> H <sub>19</sub> CH=C(CHO)C <sub>8</sub> H <sub>17</sub> 44 (Z)-C <sub>9</sub> H <sub>19</sub> CH=C(CHO)C <sub>8</sub> H <sub>17</sub> 45 (Z)-C <sub>9</sub> H <sub>19</sub> CH=C(CHO)C <sub>8</sub> H <sub>17</sub> 46 (Z)-C <sub>9</sub> H <sub>19</sub> CH=C(CHO)C <sub>8</sub> H <sub>17</sub> 47 (E)-C <sub>8</sub> H <sub>17</sub> (CH <sub>2</sub> )C=C(COCH <sub>3</sub> )C <sub>7</sub> H <sub>15</sub> 48 (Z)-C <sub>9</sub> H <sub>19</sub> CH=C(CHO)C <sub>8</sub> H <sub>17</sub> 49 (29 (40, M); 181 (100, M - C <sub>8</sub> H <sub>17</sub> ); 98 (50, C <sub>7</sub> H <sub>14</sub> ); 83 (25, C <sub>6</sub> H <sub>11</sub> ); 69 (60, M - C <sub>18</sub> H <sub>29</sub> )  49 (40, M); 181 (100, M - C <sub>8</sub> H <sub>17</sub> ); 98 (50, C <sub>7</sub> H <sub>14</sub> ); 83 (25, C <sub>6</sub> H <sub>11</sub> ); 69 (60, M - C <sub>18</sub> H <sub>29</sub> )  40 (50, C <sub>1</sub> H <sub>2</sub> ); 33 (40, C <sub>8</sub> H <sub>2</sub> ); 41 (190, C <sub>2</sub> H <sub>2</sub> )  41 (100, C <sub>3</sub> H <sub>3</sub> )  42 (50, M); 181 (100, M - C <sub>8</sub> H <sub>17</sub> ); 182 (10, M - C <sub>8</sub> H <sub>18</sub> ); 155 (10); 97 (30, C <sub>7</sub> H <sub>19</sub> ); 83 (C <sub>8</sub> H <sub>11</sub> ); 69 (35, C <sub>8</sub> H <sub>9</sub> ); 57 (30, C <sub>8</sub> H <sub>9</sub> ); 55 (15, C <sub>8</sub> H <sub>11</sub> ); 169 (100, C <sub>8</sub> H <sub>9</sub> )  41 (15, M); 257 (95, M - C <sub>1</sub> H <sub>9</sub> ); 243 (60); 173 (35, M - C <sub>10</sub> H <sub>21</sub> ); 83 (37, C <sub>6</sub> H <sub>11</sub> ); 69 (25, C <sub>8</sub> H <sub>17</sub> ); 67 (25, C <sub>8</sub> H <sub>17</sub> ); 141 (100, C <sub>8</sub> H <sub>9</sub> )  42 (25, M); 181 (6, M - C <sub>2</sub> H <sub>17</sub> ); 141 (30, C <sub>8</sub> H <sub>17</sub> ); 43 (30, C <sub>8</sub> H <sub>11</sub> ); 69 (20, C <sub>8</sub>                                                                                                                                                                                                                                                                                                                        | 44        | (Z)-C <sub>8</sub> H <sub>17</sub> (CH <sub>3</sub> )C=CHCOC <sub>8</sub> H <sub>17</sub>                  | 294 | 294 (15, M); 181 (5, M - $C_8H_{17}$ ); 141 (90, $^+COC_8H_{17}$ ); 123 (20); 82 (35); 71 (50); 67 (35);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 46 C <sub>9</sub> H <sub>19</sub> CH(OH)CH(CHO)C <sub>8</sub> H <sub>17</sub> 47 (E)-C <sub>8</sub> H <sub>17</sub> (CH <sub>3</sub> )C=C(COCH <sub>3</sub> )C <sub>7</sub> H <sub>15</sub> 48 (Z)-C <sub>9</sub> H <sub>19</sub> CH=C(CHO)C <sub>8</sub> H <sub>17</sub> 49 294 (5, M); 181 (100, M − C <sub>8</sub> H <sub>17</sub> ); 98 (50, C <sub>7</sub> H <sub>14</sub> ); 135 (10); 97 (30, C <sub>7</sub> H <sub>19</sub> ); 83 (25, C <sub>8</sub> H <sub>11</sub> ); 69 (50, M − C <sub>18</sub> H <sub>29</sub> )  50 N,N'-didecylamine  41 (4,4'-didecyl sulfide  51 4,4'-didecyl sulfide  52 (E)-C <sub>8</sub> H <sub>17</sub> (CH <sub>3</sub> )C=CHCOC <sub>8</sub> H <sub>17</sub> 53 3,3'-didecyl sulfide  54 1,4'-didecyl sulfide  55 1,3'-didecyl sulfide  56 (E)-C <sub>9</sub> H <sub>19</sub> CH=C(CHO)C <sub>8</sub> H <sub>17</sub> 57 2,2'-didecyl sulfide  58 (E)-C <sub>9</sub> H <sub>19</sub> CH=C(CHO)C <sub>8</sub> H <sub>17</sub> 59 1,2'-didecyl sulfide  50 1,1'-didecyl sulfide  51 1,3'-didecyl sulfide  52 (E)-C <sub>9</sub> H <sub>19</sub> CH=C(CHO)C <sub>8</sub> H <sub>17</sub> 53 14 (10, M); 257 (15, M − C <sub>2</sub> H <sub>19</sub> ); 55 (40, M − C <sub>10</sub> H <sub>21</sub> ); 55 (60, C <sub>4</sub> H <sub>7</sub> ); 43 (70, C <sub>3</sub> H <sub>8</sub> )  56 (E)-C <sub>9</sub> H <sub>19</sub> CH=C(CHO)C <sub>8</sub> H <sub>17</sub> 57 2,2'-didecyl sulfide  58 1,3'-didecyl sulfide  59 1,2'-didecyl sulfide  50 1,1'-didecyl sulfide  51 1,3'-didecyl sulfide  52 (E)-C <sub>8</sub> H <sub>19</sub> CH=C(CHO)C <sub>8</sub> H <sub>17</sub> 53 14 (10, M); 257 (15, M − C <sub>4</sub> H <sub>2</sub> ); 173 (40, M − C <sub>10</sub> H <sub>21</sub> ); 58 (20, C <sub>8</sub> H <sub>11</sub> ); 69 (2, C <sub>4</sub> H <sub>17</sub> ); 57 (35, C <sub>4</sub> H <sub>19</sub> ); 55 (45, C <sub>4</sub> H <sub>7</sub> ); 173 (40, M − C <sub>10</sub> H <sub>21</sub> ); 58 (20, C <sub>8</sub> H <sub>11</sub> ); 69 (2, C <sub>4</sub> H <sub>17</sub> ); 69 (2, C <sub>4</sub> H <sub></sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 45        | (Z)-C <sub>8</sub> H <sub>17</sub> (CH <sub>3</sub> )C=C(COCH <sub>3</sub> )C <sub>7</sub> H <sub>15</sub> | 294 | 294 (20, M); $\overline{181}$ (90, M - $C_8H_{17}$ ); $\overline{141}$ (30); $\overline{98}$ (20); $\overline{81}$ (25); $\overline{69}$ (35, M - $C_{15}H_{29}O$ ); $\overline{68}$ (25,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 47 (E)-C <sub>8</sub> H <sub>17</sub> (CH <sub>3</sub> )C=C(COCH <sub>3</sub> )C <sub>7</sub> H <sub>15</sub> 294 (294 (5, M); 181 (100, M - C <sub>8</sub> H <sub>17</sub> ); 89 (50, C <sub>7</sub> H <sub>14</sub> ); 83 (25, C <sub>6</sub> H <sub>11</sub> ); 69 (50, M - C <sub>18</sub> H <sub>29</sub> )  48 (Z)-C <sub>9</sub> H <sub>19</sub> CH=C(CHO)C <sub>8</sub> H <sub>17</sub> 294 (294 (10, M); 195 (10, M - C <sub>7</sub> H <sub>13</sub> ); 182 (10, M - C <sub>8</sub> H <sub>16</sub> ); 155 (10); 97 (30, C <sub>7</sub> H <sub>13</sub> ); 83 (25, C <sub>8</sub> H <sub>11</sub> ); 69 (35, C <sub>8</sub> H <sub>16</sub> ); 57 (30, C <sub>8</sub> H <sub>16</sub> ); 55 (10, C <sub>8</sub> H <sub>17</sub> ); 41 (100, C <sub>8</sub> H <sub>16</sub> )  50 N,N'-didecylamine 297 (5, M); 170 (70, M - C <sub>9</sub> H <sub>16</sub> ); 55 (15, C <sub>8</sub> H <sub>17</sub> ); 41 (100, C <sub>8</sub> H <sub>16</sub> )  51 4,4'-didecyl sulfide 314 (115, M); 257 (95, M - C <sub>4</sub> H <sub>6</sub> ); 243 (60); 173 (35, M - C <sub>10</sub> H <sub>21</sub> ); 83 (37, C <sub>6</sub> H <sub>11</sub> ); 69 (25, C <sub>8</sub> H <sub>17</sub> ); 67 (35, C <sub>8</sub> H <sub>16</sub> ); 55 (45, C <sub>8</sub> H <sub>17</sub> ); 43 (75); 41 (100, C <sub>8</sub> H <sub>16</sub> )  52 (E)-C <sub>8</sub> H <sub>17</sub> (CH <sub>8</sub> )C=CHCOC <sub>8</sub> H <sub>17</sub> 294 (25, M); 181 (5, M - C <sub>8</sub> H <sub>17</sub> ); 141 (90, *COC <sub>8</sub> H <sub>17</sub> ); 81 (35); 71 (60, C <sub>8</sub> H <sub>11</sub> ); 69 (25, C <sub>8</sub> H <sub>17</sub> ); 57 (80, C <sub>8</sub> H <sub>16</sub> ); 55 (45, C <sub>8</sub> H <sub>17</sub> ); 43 (65, C <sub>8</sub> H <sub>17</sub> ); 83 (20, C <sub>8</sub> H <sub>11</sub> ); 69 (26, C <sub>8</sub> H <sub>18</sub> ); 58 (25, C <sub>8</sub> H <sub>16</sub> ); 55 (45, C <sub>8</sub> H <sub>17</sub> ); 13 (40, M - C <sub>10</sub> H <sub>21</sub> ); 56 (60, C <sub>8</sub> H <sub>17</sub> ); 43 (70, C <sub>8</sub> H <sub>17</sub> ); 69 (26, C <sub>8</sub> H <sub>18</sub> ); 58 (25, C <sub>8</sub> H <sub>16</sub> ); 55 (45, C <sub>8</sub> H <sub>17</sub> ); 41 (100, C <sub>8</sub> H <sub>18</sub> )  55 1,3'-didecyl sulfide 314 (10, M); 257 (15, M - C <sub>4</sub> H <sub>16</sub> ); 201 (10); 173 (40, M - C <sub>10</sub> H <sub>21</sub> ); 83 (20, C <sub>8</sub> H <sub>11</sub> ); 69 (26, C <sub>8</sub> H <sub>19</sub> ); 58 (25, C <sub>8</sub> H <sub>16</sub> ); 55 (45, C <sub>8</sub> H <sub>17</sub> ); 41 (100, C <sub>8</sub> H <sub>16</sub> )  56 (E)-C <sub>9</sub> H <sub>19</sub> CH=C(CHO)C <sub>8</sub> H <sub>17</sub> 294 (28, M); 271 (85, M - C <sub>3</sub> H <sub>17</sub> ); 173 (40, M - C <sub>10</sub> H <sub>21</sub> ); 89 (15, C <sub>7</sub> H <sub>16</sub> ); 81 (20, C <sub>8</sub> H <sub>18</sub> ); 57 (35, C <sub>8</sub> H <sub>19</sub> );                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 46        | $\mathrm{C_9H_{19}CH(OH)CH(CHO)C_8H_{17}}$                                                                 | 312 | 312 ( $M^{*+}$ , not seen); 295 (10, $M - OH$ ); 155 (5, ${}^{+}COC_9H_{19}$ ); 125 (10, $C_9H_{17}$ ); 111 (15, $C_8H_{18}$ ); 97 (35, $C_7H_{13}$ ); 83 (35, $C_6H_{11}$ ); 69 (30, $C_5H_9$ ); 57 (40, $C_4H_9$ ); 55 (55, $C_4H_7$ ); 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 47        | (E)-C <sub>8</sub> H <sub>17</sub> (CH <sub>3</sub> )C=C(COCH <sub>3</sub> )C <sub>7</sub> H <sub>15</sub> | 294 | 294 (5, M); 181 (100, M - $C_8H_{17}$ ); 98 (50, $C_7H_{14}$ ); 83 (25, $C_6H_{11}$ ); 69 (50, M - $C_{15}H_{29}O$ ); 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 48        | (Z)-C <sub>9</sub> H <sub>19</sub> CH=C(CHO)C <sub>8</sub> H <sub>17</sub>                                 | 294 | 294 (10, M); 195 (10, M - $C_7H_{15}$ ); 182 (10, M - $C_8H_{16}$ ); 155 (10); 97 (30, $C_7H_{13}$ ); 83 (30,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 51 4,4'-didecyl sulfide  52 (E)-C <sub>8</sub> H <sub>17</sub> (CH <sub>2</sub> )C=CHCOC <sub>8</sub> H <sub>17</sub> 53 3,3'-didecyl sulfide  54 1,4'-didecyl sulfide  55 1,3'-didecyl sulfide  56 (E)-C <sub>9</sub> H <sub>19</sub> (CH)CH=C(CHO)C <sub>8</sub> H <sub>17</sub> 57 2,2'-didecyl sulfide  58 3,4'-didecyl sulfide  59 29 40 40 40 40 40 40 40 40 40 40 40 40 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>50</b> | N,N'-didecylamine                                                                                          | 297 | 297 (5, M); 170 (70, M - $C_9H_{19}$ ); 55 (15, $C_4H_7$ ); 44 (100, Me(H)N+=CH <sub>2</sub> ); 43 (25); 41 (35,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 51        | 4,4'-didecyl sulfide                                                                                       | 314 | 314 (15, M); 257 (95, M - $C_4H_9$ ); 243 (60); 173 (35, M - $C_{10}H_{21}$ ); 83 (37, $C_6H_{11}$ ); 69 (30,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 52        | (E)-C <sub>8</sub> H <sub>17</sub> (CH <sub>3</sub> )C=CHCOC <sub>8</sub> H <sub>17</sub>                  | 294 | 294 (25, M); 181 (5, M - $C_8H_{17}$ ); 141 (90, ${}^+COC_8H_{17}$ ); 81 (35); 71 (60, $C_5H_{11}$ ); 67 (25,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 53        | 3,3'-didecyl sulfide                                                                                       | 314 | 314 (35, M); 271 (80, M - $C_3H_7$ ); 173 (40, M - $C_{10}H_{21}$ ); 55 (60, $C_4H_7$ ); 43 (70, $C_3H_7$ ); 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 54        | 1,4'-didecyl sulfide                                                                                       | 314 | 314 (10, $M$ ); 257 (15, $M - C_4H_9$ ); 201 (10); 173 (40, $M - C_{10}H_{21}$ ); 83 (20, $C_6H_{11}$ ); 69 (30,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 55        | 1,3'-didecyl sulfide                                                                                       | 314 | 314 (25, M); 271 (85, $M - C_3H_7$ ); 173 (40, $M - C_{10}H_{21}$ ); 98 (15, $C_7H_{14}$ ); 83 (20, $C_6H_{11}$ ); 69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 56        | (E)-C <sub>9</sub> H <sub>19</sub> CH=C(CHO)C <sub>8</sub> H <sub>17</sub>                                 | 294 | 295 (100, $M + 1$ ); 294 (45, $M$ ); 293 (10, $M - H$ ); 181 (15, $M - C_8H_{17}$ ); 167 (15); 137 (10);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 57        | 2,2'-didecyl sulfide                                                                                       | 314 | 314 (15, M); 285 (60, M - $C_2H_5$ ); 215 (35); 173 (30, M - $C_{10}H_{21}$ ); 83 (25, $C_6H_{11}$ ); 69 (30,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 60 1,1'-didecyl sulfide 314 314 (30, M); 173 (100, M - $C_{10}H_{21}$ ); 97 (15, $C_{7}H_{13}$ ); 83 (30, $C_{6}H_{11}$ ); 69 (20, $C_{5}H_{9}$ ); 55 $C_{4}H_{9}$ ); 41 (90, $C_{3}H_{5}$ ) 61 1,3'-didecyl disulfide 346 346 (35, M); 206 (85, M - $C_{10}H_{20}$ ); 173 (60, M - $SC_{10}H_{21}$ ); 85 (30, $C_{6}H_{13}$ ); 71 (30, $C_{5}H_{5}$ ) 62 1,2'-didecyl disulfide 346 346 (100, M); 206 (15, M - $C_{10}H_{20}$ ); 173 (40, M - $SC_{10}H_{21}$ ); 85 (30); 71 (30); 57 (60, 9) 56 (45); 42 (70); 41 (95, $C_{3}H_{5}$ ) 65 $N,N',N''$ -tridecylamine 437 437 (5, M); 311 (10, M - $C_{9}H_{19}$ ); 308 (35); 196 (15); 170 (50, 311 - $C_{10}H_{21}$ ); 44 (100, MeHN <sup>+</sup> = $CH_{2}$ ); 41 (80, $C_{3}H_{5}$ ) 66 1,4-dioctylbenzene 302 302 (50, M); 204 (45, M - $C_{7}H_{14}$ ); 105 (100, $C_{8}H_{9}^{+}$ ); 92 (35, PhCH <sub>3</sub> ); 91 (40, PhCH <sub>2</sub> ) (20, $C_{4}H_{7}$ ); 43 (45, $C_{3}H_{7}$ ); 41 (85, $C_{3}H_{5}$ ) 67 2,4-dioctyltoluene 316 316 (90, M); 290 (15); 218 (25, M - $C_{7}H_{14}$ ); 119 (70, 218 - $C_{7}H_{14}$ ); 105 (50, $C_{8}H_{9}^{+}$ ); 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 59        | 1,2'-didecyl sulfide                                                                                       | 314 | 314 (10, M); 285 (30, M - $C_2H_5$ ); 201 (30); 173 (70, M - $C_{10}H_{21}$ ); 97 (10, $C_7H_{13}$ ); 83 (20,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 60        | 1,1'-didecyl sulfide                                                                                       | 314 | 314 (30, M); 173 (100, M - $C_{10}H_{21}$ ); 97 (15, $C_7H_{13}$ ); 83 (30, $C_6H_{11}$ ); 69 (20, $C_5H_9$ ); 55 (50,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 61        | 1,3'-didecyl disulfide                                                                                     | 346 | 346 (35, M); 206 (85, M - $C_{10}H_{20}$ ); 173 (60, M - $SC_{10}H_{21}$ ); 85 (30, $C_6H_{13}$ ); 71 (30, $C_5H_{11}$ );                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 62        | 1,2'-didecyl disulfide                                                                                     | 346 | 346 (100, M); 206 (15, M - $C_{10}H_{20}$ ); 173 (40, M - $SC_{10}H_{21}$ ); 85 (30); 71 (30); 57 (60, $C_4H_7$ );                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 661,4-dioctylbenzene302302 (50, M); $204^{\circ}$ (45, M - $C_7H_{14}$ ); $105$ (100, $C_8H_9^+$ ); $92$ (35, $PhCH_3$ ); $91$ (40, $PhCH_2$ )672,4-dioctyltoluene316316 (90, M); $290$ (15); $218$ (25, M - $C_7H_{14}$ ); $119$ (70, $218$ - $C_7H_{14}$ ); $105$ (50, $C_8H_9^+$ ); $91$ (40, $91$ ); $91$ (40, $91$ ); $91$ (40, $91$ ); $91$ (40, $91$ ); $91$ (40, $91$ ); $91$ (40, $91$ ); $91$ (40, $91$ ); $91$ (40, $91$ ); $91$ (40, $91$ ); $91$ (40, $91$ ); $91$ (40, $91$ ); $91$ (40, $91$ ); $91$ (40, $91$ ); $91$ (40, $91$ ); $91$ (40, $91$ ); $91$ (40, $91$ ); $91$ (40, $91$ ); $91$ (40, $91$ ); $91$ (40, $91$ ); $91$ (40, $91$ ); $91$ (40, $91$ ); $91$ (40, $91$ ); $91$ (40, $91$ ); $91$ (40, $91$ ); $91$ (40, $91$ ); $91$ (40, $91$ ); $91$ (40, $91$ ); $91$ (40, $91$ ); $91$ (40, $91$ ); $91$ (40, $91$ ); $91$ (40, $91$ ); $91$ (40, $91$ ); $91$ (40, $91$ ); $91$ (40, $91$ ); $91$ (40, $91$ ); $91$ (40, $91$ ); $91$ (40, $91$ ); $91$ (40, $91$ ); $91$ (40, $91$ ); $91$ (40, $91$ ); $91$ (40, $91$ ); $91$ (40, $91$ ); $91$ (40, $91$ ); $91$ (40, $91$ ); $91$ (40, $91$ ); $91$ (40, $91$ ); $91$ (40, $91$ ); $91$ (40, $91$ ); $91$ (40, $91$ ); $91$ (40, $91$ ); $91$ (40, $91$ ); $91$ (40, $91$ ); $91$ (40, $91$ ); $91$ (40, $91$ ); $91$ (40, $91$ ); $91$ (40, $91$ ); $91$ (41); $91$ 0; $91$ 0; $91$ 0; $91$ 0; $91$ 0; $91$ 0; $91$ 0; $91$ 0; $91$ 0; $91$ 0; $91$ 0; $91$ 0; $91$ 0; $91$ 0; $91$ 0; $91$ 0; $91$ 0; $91$ 0; $91$ 0; $91$ 0; $91$ 0; $91$ 0; $91$ 0; $91$ 0; $91$ 0; $91$ 0; $91$ 0; $91$ 0; $91$ 0; $91$ 0; $91$ 0; $91$ 0; $91$ 0; $91$ 0; $91$ 0; $91$ 0; $91$ 0; $91$ 0; $91$ 0; $91$ 0; $91$ 0; $91$ 0; $91$ 0; $91$ 0; $91$ 0; $91$ 0; $91$ 0; $91$ 0; $91$ 0; $91$ 0; $91$ 0; $91$ 0; $91$ 0; $91$ 0; $91$ 0; $91$ 0; $91$ 0; $91$ 0; $91$ 0; $91$ 0; $91$ 0; $91$ 0; $91$ 0; $91$ 0; $91$ 0; $91$ 0; $91$ 0; $91$ 0; $91$ 0; $91$ 0; $91$ 0; $91$ 0; $91$ 0; $91$ 0; $91$ 0; $91$ 0; $91$ 0; $91$ 0; $91$ 0; $91$ 0; $91$ 0; $91$ 0; $91$ 0; $91$ 0; $91$ 0; $91$ 0; $91$ 0; $91$ 0; $91$ 0; $91$ 0; $91$ 0; $91$ 0; $91$ 0; $91$ 0; $91$ 0; $91$ 0; $91$ 0; $91$ 0; $91$ 0; $91$ 0; $91$ 0; $91$ 0; $91$ 0; $91$ 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 65        | N,N',N''-tridecylamine                                                                                     | 437 | $437 (5, M); 311 (10, M - C_9H_{18}); 308 (35); 196 (15); 170 (50, 311 - C_{10}H_{21}); 44 (100, 100); 44 (100, 100); 45 (100, 100); 46 (100, 100); 47 (100, 100); 48 (100, 100); 48 (100, 100); 49 (100, 100); 49 (100, 100); 40 (100, 100); 40 (100, 100); 40 (100, 100); 40 (100, 100); 40 (100, 100); 40 (100, 100); 40 (100, 100); 40 (100, 100); 40 (100, 100); 40 (100, 100); 40 (100, 100); 40 (100, 100); 40 (100, 100); 40 (100, 100); 40 (100, 100); 40 (100, 100); 40 (100, 100); 40 (100, 100); 40 (100, 100); 40 (100, 100); 40 (100, 100); 40 (100, 100); 40 (100, 100); 40 (100, 100); 40 (100, 100); 40 (100, 100); 40 (100, 100); 40 (100, 100); 40 (100, 100); 40 (100, 100); 40 (100, 100); 40 (100, 100); 40 (100, 100); 40 (100, 100); 40 (100, 100); 40 (100, 100); 40 (100, 100); 40 (100, 100); 40 (100, 100); 40 (100, 100); 40 (100, 100); 40 (100, 100); 40 (100, 100); 40 (100, 100); 40 (100, 100); 40 (100, 100); 40 (100, 100); 40 (100, 100); 40 (100, 100); 40 (100, 100); 40 (100, 100); 40 (100, 100); 40 (100, 100); 40 (100, 100); 40 (100, 100); 40 (100, 100); 40 (100, 100); 40 (100, 100); 40 (100, 100); 40 (100, 100); 40 (100, 100); 40 (100, 100); 40 (100, 100); 40 (100, 100); 40 (100, 100); 40 (100, 100); 40 (100, 100); 40 (100, 100); 40 (100, 100); 40 (100, 100); 40 (100, 100); 40 (100, 100); 40 (100, 100); 40 (100, 100); 40 (100, 100); 40 (100, 100); 40 (100, 100); 40 (100, 100); 40 (100, 100); 40 (100, 100); 40 (100, 100); 40 (100, 100); 40 (100, 100); 40 (100, 100); 40 (100, 100); 40 (100, 100); 40 (100, 100); 40 (100, 100); 40 (100, 100); 40 (100, 100); 40 (100, 100); 40 (100, 100); 40 (100, 100); 40 (100, 100); 40 (100, 100); 40 (100, 100); 40 (100, 100); 40 (100, 100); 40 (100, 100); 40 (100, 100); 40 (100, 100); 40 (100, 100); 40 (100, 100); 40 (100, 100); 40 (100, 100); 40 (100, 100); 40 (100, 100); 40 (100, 100); 40 (100, 100); 40 (100, 100); 40 (100, 100); 40 (100, 100); 40 (100, 100); 40 (100, 100); 40 (100, 100); 40 (100, 100); 40 (100, 100); 40 (100, 100); 40 (100, 100); 40 (100, 100); 40 (100, 100); 40 (100$              |
| <b>67</b> 2,4-dioctyltoluene 316 316 (90, M); 290 (15); 218 (25, M - $C_7H_{14}$ ); 119 (70, 218 - $C_7H_{14}$ ); 105 (50, $C_8H_9^+$ ); 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 66        | 1,4-dioctylbenzene                                                                                         | 302 | 302 (50, M); $204$ (45, M - $C_7H_{14}$ ); $105$ (100, $C_8H_9^+$ ); $92$ (35, PhCH <sub>3</sub> ); $91$ (40, PhCH <sub>2</sub> ); $57$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ישרדער ירדורער איינוייער                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 67        | 2,4-dioctyltoluene                                                                                         | 316 | (20, $C_4H_{7/7}$ , 43 (45, $C_3H_{7/7}$ , 41 (65, $C_3H_{5/7}$ )<br>316 (90, M); 290 (15); 218 (25, M - $C_7H_{14}$ ); 119 (70, 218 - $C_7H_{14}$ ); 105 (50, $C_8H_9^+$ ); 91 (15); 57 (40, $C_4H_9$ ); 43 (85, $C_3H_7$ ); 41 (100, $C_3H_5$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

zation and to a lesser extent the dimerization reactions were enhanced. Conversion and extent of double bond

isomerization increased with ionic strength and acidity of the system.

Table III. Products of 1-Decene Reactions at 250 °C for 5.5 days

|     | solvent<br>additive (1 mol equiv)          | $C_6H_{12}$ | H <sub>2</sub> O | H <sub>2</sub> O<br>Ca-mont | 10% NaCl | 10% NaCl<br>Ca-mont |
|-----|--------------------------------------------|-------------|------------------|-----------------------------|----------|---------------------|
| no. | structure                                  |             |                  |                             |          |                     |
| 10  | 2-decene                                   | 1.8         | 3.0              | 10.8                        | 4.4      | 21.0                |
| 11  | 1-decene                                   | 93.9        | 91.6             | 79.2                        | 89.2     | 63.1                |
| 13  | 3-decene                                   | 0.6         | 0.6              | 0.4                         | 0.5      | 1.0                 |
| 14  | 4-decene                                   | 0.2         | 0.3              | 3.0                         | 1.7      | 11.5                |
| 15  | 5-decene                                   | 0.1         | 0.1              | 0.2                         | 0.1      | 0.1                 |
| 34  | 1-decylcyclohexane                         | 1.3         |                  |                             | V        | 0.12                |
| 37  | $(E)$ - $C_9H_{19}CH$ = $C(CH_3)C_8H_{17}$ | 0.3         | 1.8              | 2.2                         | 1.7      | 1.6                 |
| 40  | cis-9-icosene                              | 0.2         | 0.7              | 1.0                         | 0.5      | 0.5                 |
| 41  | trans-9-icosene                            | 0.7         | 1.9              | 3.1                         | 1.9      | 1.2                 |
| 64  | 9-cyclohexylicosane                        | 0.8         | 2.0              | <b>5.12</b>                 | 1.0      | 1.2                 |

Table IV. Products of 1-Decyne Reactions at 250 °C for 2.5 days

|     | solvent<br>additive (1 mol equiv) | $C_6H_{12}$ | H <sub>2</sub> O | H <sub>2</sub> O<br>Ca-mont | 10% NaCl | 10% NaCl<br>Ca-mont |
|-----|-----------------------------------|-------------|------------------|-----------------------------|----------|---------------------|
| no. | structure                         |             |                  | Ca mont                     |          | Ca-mont             |
| 1   | 1-heptene                         | 1.3         |                  |                             |          |                     |
| 2   | 1-octene                          | 4.6         | 0.7              | 0.6                         | 0.6      | 0.2                 |
| 3   | 2-octene                          | 5.6         |                  | 0.4                         | 0.3      |                     |
| 4   | 1-nonene                          | 5.7         |                  | 0.6                         | 0.2      |                     |
| 6   | nonane                            | 0.8         |                  | 0.3                         |          |                     |
| 10  | 2-decene                          | 6.3         | 1.7              | 1.6                         | 1.6      | 1.5                 |
| 11  | 1-decene                          | 11.8        | 2.7              | 5.6                         | 2.4      | 1.7                 |
| 16  | 1-decyne                          | 27.8        | 92.8             | 80.4                        | 87.0     | 73.3                |
| 18  | 2-decanone                        |             | 2.0              | 10.4                        | 7.9      | 23.1                |
| 32  | 1-decenylcyclohexane              | 2.3         |                  |                             |          |                     |
| 33  | 1-decylcyclohexene                | 5.6         |                  |                             |          |                     |
| 66  | 1,4-dioctylbenzene                | 23.2        |                  |                             |          |                     |
| 67  | 2,4-dioctyltoluene                | 5.0         |                  |                             |          |                     |

Table V. Products of 1-Decanal Reactions at 250 °C for 1.5 days

|     | solvent<br>additive (1 mol equiv)       | $C_6H_{12}$ | $H_2O$ | H₂O<br>Ca-mont | 10% NaCl | 10% NaCl<br>Ca-mont |  |
|-----|-----------------------------------------|-------------|--------|----------------|----------|---------------------|--|
| no. | structure                               |             |        | ou mont        |          | Ca mont             |  |
| 6   | nonane                                  | 4.8         | 2.0    | 2.4            | 2.7      | 1.3                 |  |
| 19  | 1-decanal                               | 50.0        | 8.2    | 5.8            | 5.9      | 4.3                 |  |
| 26  | 1-decanol                               | 1.0         | 2.9    | 2.9            | 2.1      | 3.2                 |  |
| 30  | 1-decanoic acid                         | 2.7         | 4.4    | 12.8           | 12.5     | 14.9                |  |
| 36  | 9-nonadecene                            | 0.3         | 1.0    | 1.3            | 1.2      | 1.1                 |  |
| 39  | 10-nonadecanol                          | 0.3         | 0.5    | 0.6            | 0.5      | 0.8                 |  |
| 46  | $C_9H_{19}CH(OH)CH(CHO)C_8H_{17}$       | 0.7         | 4.0    | 6.1            | 6.0      | 4.3                 |  |
| 48  | $(Z)$ - $C_9H_{19}CH = C(CHO)C_8H_{17}$ | 2.0         | 5.6    | 4.2            | 4.1      | 3.0                 |  |
| 56  | $(E)$ - $C_9H_9CH$ — $C(CHO)C_8H_{17}$  | 29.9        | 64.6   | 58.0           | 58.2     | 61.3                |  |
| 58  | decyl decanoate                         | 8.3         | 6.8    | 5.9            | 6.8      | 5.8                 |  |

1-Decylcyclohexane (34) (1.3%) and 9-cyclohexylicosane (64) (0.8%) were also formed in the cyclohexane run, presumably via thermal alkylation of the corresponding olefins by solvent.

1-Decyne (16) (Table IV). At 250 °C, for 2.5 days, 1-decyne (16) reacted much faster in cyclohexane (72.2% conversion) than in water (7.2% conversion) or in 10% aqueous brine (13.0% conversion). Thermolysis in cyclohexane yielded 1-heptene (1) (1.3%), 1-octene (2) (4.6%), 2-octene (3) (5.6%), 1-nonene (4) (5.7%), 2-decene (10) (6.3%), 1-decene (11) (11.8%), 1-decenylcyclohexane (32) (2.3%), 1-decylcyclohexene (33) (5.6%), 1,4-dioctylbenzene (66) (23.2%), and 2,4-dioctyltoluene (67) (5.0%) as major products. Only one isomer of the last two products was present, and each was assigned the structure of the least hindered isomer.

Formation of lower alkenes (heptene and octenes) indicated the possible elimination of acetylene and methylacetylene from 1-decyne (16), and these are the possible sources for the formation of 1,4-dioctylbenzene (66) (from acetylene and two molecules of 1-decyne) and 2,4-dioctyltoluene (67) (from methylacetylene and 1-decyne) via thermal cyclization. In the aqueous systems 1-decyne (16) underwent hydration to give 2-decanone (18) as the major product. The ionic hydration reaction was facilitated in

brine and especially in the more acidic clay systems.

1-Decanal (19) (Table V). 1-Decanal (19) reacted much faster under all the aquathermolysis conditions used (81–95% conversion) than in the cyclohexane run (50% conversion). The major products under all these conditions were nonane (6), 1-decanol (26), 1-decanoic acid (30), the aldol (46),  $\alpha,\beta$ -unsaturated aldehydes (48 and 56), and decyl decanoate (58).

The aldol condensation can be acid or base catalyzed, and evidence for catalysis under aqueous conditions is clear. Under all thermolysis and aquathermolysis conditions, small amounts of aldol adduct (46) underwent decarbonylation to give 10-nonadecanol (39). 9-Nonadecene (36) was obtained by dehydration of 9-nonadecanol (39).

Under all conditions, more 1-decanoic acid (30) than 1-decanol (26) was produced, especially in the presence of calcium montmorillonite. A portion of the 1-decanoic acid (30) must be formed by direct oxidation of the 1-decanol (19) although some 1-decanoic acid and decanol may result from a Cannizzaro reaction as well as from hydrolysis of decyl decanoate (58). Decarbonylation of the 1-decanol (19) yielded an appreciable amount of nonane (6).

2-Decanone (18) (Table VI). Both thermolysis and aquathermolysis of 2-decanone at 250 °C for 5.5 days showed <2.0% conversion. Under all conditions, the four

Table VI. Products of 2-Decanone Reactions at 250 °C for 5.5 days

|     | solvent<br>additive (1 mol equiv)                                                         | C <sub>6</sub> H <sub>12</sub> | H <sub>2</sub> O | H <sub>2</sub> O<br>Ca-mont | 10% NaCl | 10% NaC |
|-----|-------------------------------------------------------------------------------------------|--------------------------------|------------------|-----------------------------|----------|---------|
| no. | structure                                                                                 |                                |                  |                             |          |         |
| 18  | 2-decanone                                                                                | 98.0                           | 99.3             | 99.1                        | 98.7     | 98.6    |
| 44  | (Z)-C <sub>8</sub> H <sub>17</sub> (CH <sub>3</sub> )C=CHCOC <sub>8</sub> H <sub>17</sub> | 0.1                            | 0.1              | 0.1                         | 0.1      | 0.1     |
| 45  | $(Z)$ - $C_8H_{17}(CH_3)C=C(COCH_3)C_7H_{15}$                                             | 0.5                            | 0.1              | 0.1                         | 0.2      | 0.3     |
| 47  | $(E)$ - $C_8H_{17}(CH_3)C=C(COCH_3)C_7H_{15}$                                             | 0.5                            | 0.3              | 0.3                         | 0.6      | 0.3     |
| 52  | $(E)$ - $C_8H_{17}(CH_3)C$ = $CHCOC_8H_{17}$                                              | 0.9                            | 0.2              | 0.2                         | 0.4      | 0.7     |

Table VII. Products of Decyl Decanoate Reactions at 250 °C for 1.5 days

| no. | solvent<br>additive (1 mol equiv)<br>structure | $\mathrm{C_6H_{12}}$ | $\rm H_2O$ |
|-----|------------------------------------------------|----------------------|------------|
| 10  | 2-decene                                       | 1.7                  | 5.6        |
| 11  | 1-decene                                       | 3.3                  | 11.4       |
| 13  | 3-decene                                       | 1.7                  | 4.5        |
| 14  | 4-decene                                       | 1.7                  | 2.6        |
| 26  | 1-decanol                                      | 0.6                  | 7.6        |
| 30  | 1-decanoic acid                                | 11.8                 | 46.8       |
| 43  | 1,1'-didecyl ether                             | 3.3                  | 2.3        |
| 58  | decyl decanoate                                | 75.9                 | 19.2       |

possible isomeric  $\alpha,\beta$ -unsaturated ketones (44, 45, 47, and 52) were formed via aldol condensations and elimination. Aqueous conditions and the presence of calcium montmorillonite had no catalytic effect.

**Decyl Decanoate (58) (Table VII).** Thermolysis in cyclohexane for 1.5 days at 250 °C showed 24.1% conversion, and the major products were the decenes (10, 11, 13, and 14) (8.4%), 1-decanoic acid (30) (11.8%), and 1-decanol (26) (0.6%). Some autocatalysis by water formed in the dehydration of decanol is suggested.

Aquathermolysis of decyl decanoate showed 80.8% conversion, and all the foregoing products were found in much increased quantities. Both thermolysis and aquathermolysis of decyl decanoate yielded an appreciable amount of didecyl ether (43) (via dehydration of 1-decanol). Decarboxylation of 1-decanoic acid (30) was not observed.

1-Decanenitrile (24) (Table VIII). At 250 °C, 1-decanenitrile (24) did not react thermally in cyclohexane, but it showed almost 99% conversion under all sets of aquathermolysis conditions. The major products were 1-decanoic acid (30) and 1-nonanecarboxamide (31).

1-Decanenitrile (24) underwent hydration to 1-nonanecarboxamide (31), which subsequently hydrolyzed to 1decanoic acid (30). The ionic hydrolysis reaction was catalyzed by brine and in the presence of Ca-montmorillonite.

1-Decanol (26) (Table IX). 1-Decanol showed very little reaction at 250 °C, under all sets of conditions, but small amounts of nonane (6) and 1-decene (11) were formed. A very small amount of 1-decanal (19) and decane (12) was also formed via disproportionation. The alcohol alone was less reactive than suggested in the decanal (19) or decyl decanoate (58) systems.

1-Decylamine (21) (Table X). At 250 °C, a small amount of 1-decanenitrile (24) was formed in the cyclohexane run via thermal dehydrogenation. In water and 10% aqueous brine, 1-decylamine showed 8.2% conversion and the products were N,N'-di- (50) and N,N',N''-tridecylamine (65). In the presence of Ca-montmorillonite, the acid-catalyzed condensation reaction via decylammonium ion was very much accelerated. The ionic pathway was facilitated in 10% aqueous brine/Ca-montmorillonite (82.6% conversion).

Methyl 1-Nonyl Sulfide (27) (Table XI). Methyl 1-nonyl sulfide (27) showed very low reactivity (6-16%)

under aqueous conditions but was thermally more reactive (56.6% conversion) where major products were nonane (11.6%) and 1,1'-dinonyl sulfide (29.9%). There was no significant change in the reaction pathway observed at 250 °C, under all four sets of aquathermolysis conditions, and the only major product was 1,1'-dinonyl sulfide (49). An appreciable amount of nonane (6) and small amounts of 1-octene (2), 1-nonene (4), 2-nonene (8), and 3-nonene (5) were also formed thermally under all sets of conditions.

1-Decanethiol (29) (Table XII). At 250 °C, 1-decanethiol (29) reacted much faster in cyclohexane (66.5% conversion) than in neutral water (35.3% conversion). The major products from the cyclohexane run were decane (12) (8.8%), 1-decene (11) (4.7%), 2-decene (10) (2.7%), 2-decanethiol (28) (10.3%), 1,1'-didecyl sulfide (60) (9.9%), 1,2'-didecyl sulfide (59) (6.5%), 1.3'-didecyl sulfide (55) (4.1%), and 1,1'-didecyl disulfide (63) (3.9%). For the water run, the major products were decane (12) (3.6%) and 1,1'- (60) (13.9%) and 1,2'-didecyl sulfide (59) (9.9%). With Ca-montmorillonite there was no significant change in the reactivity observed (38-40% conversion), and once again the major products were decane (12), 1,1'-didecyl sulfide (60), and 1,1'-didecyl disulfide (63).

The various products obtained from 1-decanethiol (29) are explained as follows.

(i) 1-Decanethiol (29) was the source for the formation of 2- (28), 3- (25), 4- (23), and 5-decanethiol (22) via elimination addition of  $H_2S$  (Willgerodt type reaction). 1- (11), 2- (10), and 3-Decene (13) were formed through loss of  $H_2S$  from the corresponding decanethiols 29, 28, and 25, respectively. Addition of 1-decanethiol (29) to 1-decene (11) gave 1,1'-didecyl sulfide (60).

(ii) Attack of 1-decanethiol (29) on 1- (11), 2- (10), 3- (13), and 4-decene (14) yielded 1,1'- (60), 1,2'- (59), 1,3'- (55), and 1,4'-didecyl sulfide (54), respectively. Similarly, addition of 2- (28), 3- (25), and 4-decanethiol (23) over 2- (10), 3- (13), and 4-decene (14) furnished 2,2'- (57), 3,3'- (53), and 4,4'-didecyl sulfide (51), respectively.

### Conclusions

Reactions on a set of C-10 aliphatic compounds with structures representative of those found in oil shale kerogens showed that in simulated maturation environments water acts as an amphoteric catalyst promoting ionic reactions at high temperature. Classical acid- and basecatalyzed organic reactions take place in liquid water at high temperature and pressure over long periods of time. The observed reactivities of different functional groups parallel their abundance in oil shale kerogens, with the least reactive being most abundant (i.e., ethers and carboxylic acids).  $^{21}$  The presence of brine and clay facilitated the observed ionic chemistry and specific acid-catalyzed reactions. Aliphatic olefins underwent acid-catalyzed double bond isomerization and dimerization reactions, and alkynes were hydrated under aquathermolytic conditions. These reactions were facilitated in brine and clay environments. Aliphatic aldehydes and ketones underwent

Table VIII. Products of Decanenitrile Reactions at 250 °C for 2.5 days

| no.            | solvent<br>additive (1 mol equiv)<br>structure            | C <sub>6</sub> H <sub>12</sub> | H₂O                 | H <sub>2</sub> O<br>Ca-mont | 10% NaCl            | 10% NaCl<br>Ca-mont |
|----------------|-----------------------------------------------------------|--------------------------------|---------------------|-----------------------------|---------------------|---------------------|
| 24<br>30<br>31 | 1-decanenitrile<br>1-decanoic acid<br>1-nonanecarboxamide | 100                            | 0.6<br>26.0<br>73.4 | 0.8<br>38.0<br>61.2         | 0.5<br>37.5<br>62.0 | 58.8<br>41.2        |

Table IX. Products of 1-Decanol Reactions at 250 °C for 13.0

|                                                   |                                                                   | u                                                                          | iyo                                                    |                                  |                                                        |
|---------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------|----------------------------------|--------------------------------------------------------|
| solvent<br>additive<br>(1 mol equiv)<br>structure | C <sub>6</sub> H <sub>12</sub>                                    | H₂O                                                                        | H₂O<br>Ca-mont                                         | 10% NaCl                         | 10% NaCl<br>Ca-mont                                    |
| nonane                                            | 0.2                                                               | 0.3                                                                        | 0.1                                                    | 0.2                              | 0.2                                                    |
| 1-decene                                          |                                                                   | 0.1                                                                        | 0.3                                                    | 0.1                              | 0.3                                                    |
| decane                                            | 0.2                                                               | 0.2                                                                        | 0.3                                                    | 0.3                              | 0.4                                                    |
| 1-decanal                                         | 0.1                                                               | 0.2                                                                        | 0.4                                                    | 0.2                              | 0.3                                                    |
| 1-decanol                                         | 99.5                                                              | 99.2                                                                       | 98.9                                                   | 99.2                             | 98.8                                                   |
|                                                   | additive (1 mol equiv) structure nonane 1-decene decane 1-decanal | additive (1 mol equiv) structure  nonane 1-decene decane 0.2 1-decanal 0.1 | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | additive (1 mol equiv) structure | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ |

aldol condensations, which can be acid catalyzed, forming dimeric products. Similarly, aliphatic amines underwent acid-catalyzed condensation reactions in water. The hydrolysis reactions of thermally unreactive nitriles, amides, and esters under aquathermolytic conditions were catalyzed in the presence of acidic clays and can be autocatalyzed by soluble hydrolysis products (e.g., ammonium hydroxide, acetic acid) even in pure water systems. In all cases, the aqueous ionic chemistry was distinguishable from purely thermal pathways observed in parallel control re-

Table X. Products of 1-Decylamine Reactions at 250 °C for 5.5 days

| no. | solvent<br>additive (1 mol equiv)<br>structure | $C_6H_{12}$ | H <sub>2</sub> O | H <sub>2</sub> O<br>Ca-mont | 10% NaCl | 10% NaCl<br>Ca-mont |
|-----|------------------------------------------------|-------------|------------------|-----------------------------|----------|---------------------|
| 21  | 1-decylamine                                   | 99.6        | 91.8             | 61.2                        | 91.8     | 17.4                |
| 24  | 1-decanenitrile                                | 0.4         |                  |                             |          |                     |
| 50  | N,N'-didecylamine                              |             | 4.7              | 32.8                        | 4.4      | 68.7                |
| 65  | N,N',N''-tridecylamine                         |             | 3.5              | 6.0                         | 3.8      | 13.9                |

Table XI. Products of Methyl 1-Nonyl Sulfide Reactions at 250 °C for 13.5 days

|     | solvent<br>additive (1 mol equiv) | C <sub>6</sub> H <sub>12</sub> | H <sub>2</sub> O | H₂O<br>Ca-mont | 10% NaCl | 10% NaCl<br>Ca-mont |
|-----|-----------------------------------|--------------------------------|------------------|----------------|----------|---------------------|
| no. | structure                         |                                |                  |                |          |                     |
| 2   | 1-octene                          | 1.5                            | 0.2              | 0.2            | 0.2      | 0.3                 |
| 4   | 1-nonene                          | 4.1                            | 0.2              | 0.3            | 0.4      | 0.6                 |
| 5   | 3-nonene                          | 0.7                            | 0.3              | 0.3            | 0.3      | 0.2                 |
| 6   | nonane                            | 11.6                           | 0.9              | 0.9            | 0.5      | 1.0                 |
| 7   | 4-nonene                          | 0.2                            |                  |                |          |                     |
| 8   | 2-nonene                          | 0.9                            | 0.4              | 0.1            | 0.2      | 0.2                 |
| 17  | cyclohexyl methyl sulfide         | 0.2                            |                  |                |          |                     |
| 20  | 1-nonanethiol                     | 6.7                            |                  |                |          |                     |
| 27  | methyl 1-nonyl sulfide            | 43.4                           | 83.4             | 91.7           | 93.4     | 93.7                |
| 35  | cyclohexyl 1-nonyl sulfide        | 0.2                            |                  |                |          |                     |
| 42  | 1,2'-dinonyl sulfide              | 0.6                            |                  |                |          |                     |
| 49  | 1,1'-dinonyl sulfide              | 29.9                           | 14.6             | 6.5            | 5.0      | 4.0                 |

Table XII. Products of 1-Decanethiol Reactions at 250 °C for 13.5 days

|     | solvent<br>additive (1 mol equiv) | C <sub>6</sub> H <sub>12</sub> | H <sub>2</sub> O | H₂O<br>Ca–mont | 10% NaCl | 10% NaCl<br>Ca-mont |
|-----|-----------------------------------|--------------------------------|------------------|----------------|----------|---------------------|
| no. | structure                         |                                |                  |                |          |                     |
| 6   | nonane                            | 1.1                            | 2.0              | 4.0            | 4.2      | 3.7                 |
| 9   | cyclohexanethiol                  | 0.5                            |                  |                |          |                     |
| 10  | 2-decene                          | 2.7                            |                  | 0.2            | 0.4      | 0.5                 |
| 11  | 1-decene                          | 4.7                            | 0.1              | 0.7            | 1.2      | 0.3                 |
| 12  | decane                            | 8.8                            | 3.6              | 5.1            | 6.2      | 6.7                 |
| 13  | 3-decene                          | 1.5                            |                  |                | 0.1      | 0.1                 |
| 22  | 5-decanethiol                     | 0.7                            |                  |                |          |                     |
| 23  | 4-decanethiol                     | 1.5                            |                  |                |          |                     |
| 25  | 3-decanethiol                     | 1.6                            |                  | 0.5            | 0.5      | 0.6                 |
| 26  | 1-decanol                         |                                |                  | 0.2            | 0.4      | 0.5                 |
| 28  | 2-decanethiol                     | 10.3                           | 1.2              | 2.4            | 2.7      | 2.8                 |
| 29  | 1-decanethiol                     | 33.5                           | 64.7             | 60.9           | 60.5     | 61.5                |
| 38  | cyclohexyl 1-decyl sulfide        | 0.3                            |                  |                |          |                     |
| 51  | 4,4'-didecyl sulfide              | 0.2                            |                  |                |          |                     |
| 53  | 3,3'-didecyl sulfide              | 0.2                            |                  | 1.0            | 0.2      | 0.6                 |
| 54  | 1,4'-didecyl sulfide              | 2.3                            | 0.9              |                |          |                     |
| 55  | 1,3'-didecyl sulfide              | 4.1                            | 2.3              | 0.7            | 0.8      | 1.0                 |
| 57  | 2,2'-didecyl sulfide              | 2.0                            | 0.6              | 2.4            | 1.0      | 2.1                 |
| 59  | 1,2'-didecyl sulfide              | 6.5                            | 9.9              | 7.9            | 2.5      | 2.3                 |
| 60  | 1,1'-didecyl sulfide              | 9.9                            | 13.9             | 11.7           | 10.2     | 10.5                |
| 61  | 1,3'-didecyl disulfide            | 1.4                            |                  |                | 0.1      | 0.2                 |
| 62  | 1,2'-didecyl disulfide            | 2.3                            | 0.1              | 0.8            | 0.7      | 0.9                 |
| 63  | 1,1'-didecyl disulfide            | 3.9                            | 0.7              | 1.5            | 8.3      | 5.7                 |
|     |                                   |                                |                  |                |          |                     |

actions carried out in anhydrous cyclohexane. Alkanes, alkyl ethers, alcohols, and sulfides were essentially unreactive under the aqueous conditions at 250 °C, but mercaptans reacted slowly to form sulfides with the evolution of hydrogen sulfide.20

(20) Katritzky, A. R.; Murugan, R.; Balasubramanian, M.; Siskin, M.;

Acknowledgment. The technical assistance of and helpful discussions with Drs. A. R. Lapucha and F. J. Luxem are gratefully acknowledged. The efforts of Dr. J. V. Greenhill and Ms. Annemarie Bishop in preparing the manuscript are also acknowledged.

Supplementary Material Available: Text describing mass spectral assignments, Tables IA and IB listing properties (IA) and mass spectral fragmentation patterns (IA and IB), of compounds in this paper (11 pages). Ordering information is given on any current masthead page.

Brons, G. Part 19; Manuscript in preparation.
(21) Unpublished results and Scouten, C. G.; Siskin, M.; Rose, K. D.; Aczel, T.; Colgrove, S. G.; Pabst, R. E., Jr. Prep.—Am. Chem. Soc., Div. Pet. Chem. 1989, 34, 43.