Consider a triangle with vertices

$$\mathbf{A} = \begin{pmatrix} 2 \\ -1 \end{pmatrix}, \ \mathbf{B} = \begin{pmatrix} -2 \\ -4 \end{pmatrix}, \ \mathbf{C} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \tag{1}$$

This triangle is a right angled triangle and right angled at vertex C.

1 Vectors

parameters	values	description	
m ₁	$\begin{pmatrix} -4 \\ 3 \end{pmatrix}$	AB	
\mathbf{m}_2	$\begin{pmatrix} 2 \\ 4 \end{pmatrix}$	ВС	
m ₃	$\begin{pmatrix} 2 \\ -1 \end{pmatrix}$	CA	
A - B	4.47	length of AB	
B-C	5	length of BC	
C - A	2.23	length of CA	
	3	non-collinear	
n ₁	$\begin{pmatrix} -3\\4 \end{pmatrix}$	AB	
c_1	-10		
n ₂	$\begin{pmatrix} 4 \\ -2 \end{pmatrix}$	BC	
c_2	0		
n ₃	$\begin{pmatrix} -1 \\ -2 \end{pmatrix}$	CA	
c_3	0		
Area	5	Area of Triangle	
∠A	63.43°		
∠B	26.56°	Angles	
∠C	90°		

TABLE 1: Vectors.

Fig. 1: triangle plotted using python

2 Median

parameters	value	description		
D	$\begin{pmatrix} -1 \\ -2 \end{pmatrix}$	BC midpoint		
E	$\begin{pmatrix} 1 \\ -0.5 \end{pmatrix}$	CA midpoint		
F	$\begin{pmatrix} 0 \\ -2.5 \end{pmatrix}$	AB midpoint		
m ₄	$\begin{pmatrix} -3 \\ -1 \end{pmatrix}$	1.5		
n ₄	$\begin{pmatrix} -1 \\ 3 \end{pmatrix}$	AD		
C4	-5			
m ₅	$\begin{pmatrix} 3 \\ 3.5 \end{pmatrix}$	BE		
n ₅	$\begin{pmatrix} 3.5 \\ -3 \end{pmatrix}$			
c ₅	5			
m ₆	$\begin{pmatrix} 0 \\ -2.5 \end{pmatrix}$			
n ₆	$\begin{pmatrix} -2.5\\0 \end{pmatrix}$	CF		
c ₆	0			
G	$\begin{pmatrix} 0 \\ -1.67 \end{pmatrix}$	Centroid		
$\begin{array}{c} \underline{BG} \\ \underline{GE} \\ \underline{CG} \\ \underline{GF} \\ \underline{AG} \\ \underline{GD} \end{array}$	2	Division ratio by G		
$ \begin{array}{c cccc} rank \begin{pmatrix} 1 & 1 & 1 \\ \mathbf{A} & \mathbf{D} & \mathbf{G} \end{pmatrix} \\ rank \begin{pmatrix} 1 & 1 & 1 \\ \mathbf{B} & \mathbf{E} & \mathbf{G} \end{pmatrix} $	2	collinear		

TABLE 2: Median.

Fig. 3: altitudes plotted using python

4 Perpendicular Bisector

description

value

parameters

3 ALTITUDE

			m ₁₀	$\begin{pmatrix} 4 \\ -2 \end{pmatrix}$	AD_1
parameters	value	description	n ₁₀	$\begin{pmatrix} 2 \\ 4 \end{pmatrix}$	AD_1
	(0)		c ₁₀	-10	
\mathbf{D}_1	(0)	Foot of altitude from A	m ₁₁	(1)	
$\mathbf{E_1}$	(0)	Foot of altitude from B	1111	(2)	BE_1
\mathbf{E}_1	(0)	root of attitude from B	n ₁₁	$\left(-2\right)$	DL ₁
$\mathbf{F_1}$	(1.2)	Foot of altitude from C	11	(1)	
- 1	(-1.6)	Tool of unitude from C	c_{11}	-2.5	
\mathbf{m}_7	$\begin{pmatrix} -2 \\ 1 \end{pmatrix}$	AD_1	m ₁₂	$\begin{pmatrix} 3 \\ -4 \end{pmatrix}$	CF_1
n ₇	$\begin{pmatrix} 1 \\ 2 \end{pmatrix}$		n ₁₂	$\begin{pmatrix} 4 \\ 3 \end{pmatrix}$	CF ₁
<i>c</i> ₇	0		c_{12}	-7.5	
m ₈	$\begin{pmatrix} 2 \\ 4 \end{pmatrix}$	D.F.	o	$\begin{pmatrix} 0 \\ -2.5 \end{pmatrix}$	Circumcentre
	(4)	BE_1	$\ \mathbf{O} - \mathbf{A}\ $		
n_8	$\left(-2\right)$		$ \mathbf{O} - \mathbf{B} $		
c ₈	0		O - C	2.5	OA = OB = OC = R
m	(1.2)		R		
m ₉	(-1.6)	CF_1	∠BOC	126.86°	$\rho_{DC} = 2 \rho_{AC}$
n ₉	(-1.6)	CF_1	∠BAC	63.43°	$\angle BOC = 2\angle BAC$
119	(-1.2)		∠AOC	53.13°	AOC = 2ABC
<i>C</i> 9	0		∠ABC	26.56°	$\angle AOC = 2\angle ABC$
Н	$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$	Orthocentre	∠AOB	180°	$\angle AOB = 2\angle BCA$
11			∠BCA	90°	

TABLE 3: Altitude.

TABLE 4: Perpendicular Bisector.

5 Angle Bisector

Fig. 4: perpendicular bisectors plotted using python

parameters	value	description	
m ₁₃	$\begin{pmatrix} 1.69 \\ 0.15 \end{pmatrix}$	AI	
n ₁₃	$\begin{pmatrix} 0.15 \\ -1.69 \end{pmatrix}$		
c ₁₃	2		
m ₁₄	(1.24) (1.49)		
m ₁₄	$\begin{pmatrix} -1.49\\1.24 \end{pmatrix}$	BI	
c_{14}	-2		
m ₁₅	$\begin{pmatrix} -0.44 \\ 1.34 \end{pmatrix}$		
n ₁₅	$\begin{pmatrix} -1.34 \\ -0.44 \end{pmatrix}$	CI	
c ₁₅	0		
I	$\begin{pmatrix} 0.38 \\ -1.14 \end{pmatrix}$	Incentre	
D_3	$\begin{pmatrix} -0.38 \\ -0.76 \end{pmatrix}$	Point of contact with BC	
E ₃	$\begin{pmatrix} 0.76 \\ -0.38 \end{pmatrix}$	Point of contact with AC	
$\mathbf{F_3}$	$\begin{pmatrix} 0.89 \\ -1.82 \end{pmatrix}$	Point of contact with AB	
$ I-D_3 $			
$ \mathbf{I} - \mathbf{E}_3 $	0.85	$ID_3 = IE_3 = IF_3 = r$	
$ I - F_3 $	0.03	105 - 105 - 113 - 1	
r			
∠BAI	31.71°	$\angle BAI = \angle CAI$	
∠CAI		-	
∠ABI	13.28°	$\angle ABI = \angle CBI$	
∠CBI ∠ACI			
∠BCI	45°	$\angle ACI = \angle BCI$	
LDCI			

TABLE 5: Angle Bisectors.

Fig. 5: Angle bisectors plotted using python