Day 3 - 1/19/2024

Dot Product

Suppose we have the vectors $\vec{a}=\left\langle a_x,a_y,a_z\right\rangle$ and $\vec{b}=\left\langle b_x,b_y,b_z\right\rangle$.

Define $\vec{a} \cdot \vec{b} = a_x b_x + a_y b_y + a_z b_z$. Dot Products produce scalar values.

Example:

$$ec{a} = \langle 1, 2, 0 \rangle \quad \vec{b} = \langle 7, 5, 7 \rangle$$

$$ec{a} \cdot \vec{b} = 1(7) + 2(5) + 0(7) = 7 + 10 + 0 = \underline{17}$$

Properties:

- Commutivity/Symmetry: $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$
- Linearity: $\vec{a}, \vec{b}, \vec{b}$ Vectors, r, s Scalars

$$\left(\vec{a} + \vec{b}\right) \cdot \vec{c} = \vec{a} \cdot \vec{c} + \vec{b} \cdot \vec{c}$$

$$\vec{a} \cdot \left(\vec{b} + \vec{c} \right) = \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c}$$

Possible if r = 0

$$(s\vec{a})\cdot\vec{b} = s(\vec{a}\cdot\vec{b}) = \vec{a}(s\vec{b})$$

$$\left(s\vec{a}+r\vec{b}\right)\cdot\vec{c}=s(\vec{a}\cdot\vec{c})+r\!\left(\vec{b}\cdot\vec{c}\right)$$

• Length: $\vec{a} \cdot \vec{a} = \|\vec{a}\|^2$

$$\vec{a} = \langle 1, 4, 5 \rangle; \vec{b} = \langle 3, 0, 2 \rangle, \vec{c} = \langle 1, 7, 7 \rangle$$

$$(\vec{a} \cdot \vec{b})\vec{c} = (3+0+10)\vec{c} = 13\vec{c} = \langle 13, 91, 91 \rangle$$

Angles between Vectors

Suppose we have two vectors \vec{a} and \vec{u} and we want to find the angle between the two.

- 1. Find $\vec{v} \vec{u}$.
- 2. Use the *Law of cosines*.

$$\begin{split} \|v - u\|^2 &= \|u\|^2 + \|v\|^2 - 2(\|u\| \cdot \|v\|) \cos \alpha \\ (v - u) \cdot (v - u) &= v \cdot (v - u) - u(v - u) \\ v \cdot v - v \cdot u - u \cdot v + u \cdot u \\ \text{since } u \cdot v &= v \cdot u : \|v\|^2 - 2u \cdot v + \|u\|^2 \\ \|u\|^2 + \|v\|^2 - 2 \|u\| \|v\| \cos \alpha &= \|v\|^2 - 2(u \cdot v) + \|u\|^2 \\ u \cdot v &= \|u\| \|v\| \cos \alpha \\ \cos \alpha &= \frac{u \cdot v}{\|u\| \|v\|} \\ \alpha &= \arccos \left(\frac{u \cdot v}{\|u\| \|v\|}\right) \end{split}$$

Properties:

$$u, v$$
 - Vectors; $u \cdot v > 0 \Rightarrow \alpha < 90^{\circ}$ $u \cdot v = 0 \Rightarrow \alpha = 90^{\circ} (\text{given } u \text{ and } v \text{ are not } \vec{0}); u \perp v$ if $\vec{a} \parallel \vec{b} \Rightarrow \vec{a} = k\vec{b} \text{ where } k \in \mathbb{R}$ $a \cdot b = kb \cdot b = k \parallel b \parallel^2$ $\parallel a \parallel \cdot \parallel b \parallel = |k| \parallel b \parallel^2$

Orthogonal Projections

Define a vector $\vec{d} \perp \vec{a}$ where \vec{d} is the project of \vec{b} onto \vec{a} and $c \cdot \vec{d} = \vec{a}$.

$$\begin{split} \vec{b} &= c \cdot \vec{a} + \vec{d} \\ \vec{a} \cdot \vec{b} &= c \vec{a} \cdot \vec{a} + \vec{d} \cdot \vec{a} \\ \vec{a} \cdot \vec{b} &= c \ \|a\|^2 \\ \mathrm{proj}_{\vec{a}} \vec{b} &= \frac{\vec{a} \cdot \vec{b}}{\|a\|^2} \end{split}$$