B 01 - Wireless Networks

Why wireless networks?

- · need cables in computer to
 - · communicate: strasfer data between nodes
 - provide power: between devices
- Cyber-physical systems embed computers in physical objects
 - they're everywere: free placement, mobility, exposed to the wild → go wireless (can't wire everything)
 - hence: wireless to replace cable in communications and batteries to replace cables in power supply

Wireless networks

- · network of hosts connected by wireless links
 - hosts: end-system devices that runs apps
 - mobile (often, but not necessary)
 - battery-powered (typycally)
- 2 modes of operaiotions
 - 1. infrastructure: BS(base stations) | wired access points
 - 2. **ad hoc networking**: no centralised coordinatiors (that coordinate shared medium), links connected wired
- elements of wireless network

wireless hosts:

B 01 - Wireless Networks

Why wireless networks?

- · need cables in computer to
 - · communicate: strasfer data between nodes
 - provide power: between devices
- Cyber-physical systems embed computers in physical objects
 - they're everywere: free placement, mobility, exposed to the wild → go wireless (can't wire everything)
 - hence: wireless to replace cable in communications and batteries to replace cables in power supply

Wireless networks

- network of hosts connected by wireless links
 - hosts: end-system devices that runs apps
 - mobile (often, but not necessary)
 - battery-powered (typycally)
- 2 modes of operaiotions
 - 1. infrastructure: BS(base stations) | wired access points
 - 2. **ad hoc networking**: no centralised coordinatiors (that coordinate shared medium), links connected wired
- elements of wireless network

wireless hosts:

- · run applicatins
- stationary (fixed location), wireless not always mean mobility || mobile
- devices want to communicate to internet → traverse internet
- are connected wireless to BS

base stations:

- cover geographic areas
- all communications to devices travese BS
- manage resource of phisical medium
- connected to a wired network
- relay: responsible to <u>send packets</u> between <u>wired ntwrk</u> and <u>wireless</u> hosts (in its area)
- e.g.:acess points(in wi-fi)/cell towers (in mobile phone)...
- problem to solve for acess new accesses, coordinatin medium, oving devices

wireless links:

- connect mobile to base stations
- Multiple Aceess Protocol to coordinates link access
- various data rates, trasmission range
- infrastructure mode (network infrastructure):
 - BS connects mobiles into wired network
 - problem: nodes can move between BSs → exchainging control message: connection doesn't terminate → change of responibility
 - devices can move between BS of different/same providers:
 - they provide authentication, billing
- intracell communication: two hosts (end devices) communicates inside the same BS's area
- intercell communication: two hosts communicates through differente BS's areas

wireless network taxonomity

	Single hop	Multiple hops
infrastructure (e.g., APs)	host connects to base station (WiFi, WiMAX, cellular 3G,4G,5G) which connects to larger Internet	host may have to relay through several wireless nodes to connect to larger Internet: MESH networks
no infrastructure	no base station, not necessarily connection to larger Internet (e.g. Bluetooth)	no base station, no connection to larger Internet. May have to relay on other nodes to reach a given wireless node (ZigBee, ad hoc, VANET)

Wireless links (chatateristics) vs wired links

 electromagnetic waves in the air (tonight, oh lord, I can feel it comin' in the air tonigh, Phil Collins)

1)

decresed signal strenght:

- problem
- signal decreases with lenght
- radio signal attenuates as it propagates thru matter
 - obstacols can block electromagnetic waves

5)

• (interference with other sources:

- standardized wireless network frequency shared by other devices (e.g.: 2,4Ghz)
- microwaves ownes, mobile phones, engince, appliances may *interference as well
- -3).
- receivers detect the sum of signal in the environment
- multipath propagation*:
 - radio signal (electro waves)reflect on objects or ground, arriving at destination at different times

Wireless tools

- SNR: signal to noise ratio
 → evaluate quality of the signal
 - SNR = (signal power/noise power)
 - id est(meaningful input/meaningless or unwanted input(power of background noise)) such that 0 < SNR < +infinty, (watt or dBm)
 - SRN in dB (10th part of bel (B symbol): 10 dB=1B, logaritmic unit ratio over two homogeneous quantities) = 20 * log(signal/noise)
 - larger is SNR → easier is to esxtract signal form noise (cool thing)
- BER: Bit Error Rate: probability taht a trasmitted bit is received in error at the reciver

- SNR vs BER tradeoff: how implicit is information in electro waves

 given a phisical layer: increase power → increase SNR(quality of the signal) → decrease BER (send bits → electro waves to the medium)
- given SNR: choose a physical layer that meets BER requirement, giving highest throughput
- SNR may chainge with mobility:
 - dynamically adapt physical layer (modulation tecnique)

also signal attenuation or obstacles limit transmission range

Wireless network challenges

1. Limited knoweledge:

- a node detect a situation, but not all communications
- a terminal cannot hear all the other

hidden/exposed terminal problem

2. Mobility/failure of terminals:

- terminals move (join/exit) in the range of different BS
- terminals move away from each other

3. Limited terminals:

battery life, memory, processing, trasmission range

4. Privacy:

eavesdropping of ongoin communications

DINTERCETTARIONI

Wireless network required mechanism

1. Access to a shared wireless channel

- CSMA/CD (Carrier Sense Multiple Accesses with Collision Detection) multi access protocol CANNOT be used.
- 2. Hand-off ("goin' away") (network with infrastructure):
 - moving terminal into range of different BS
- 3. Routing (multi-hop ad hoc networks)
 - finding a path form source to destination in multi-hops networks

deling with arbitrary changes in neighborhood

Wireless networks protocol stack

• | bits | frames | packets | segments | data |

Recap: MAC protocol for wired networks

- a single channel availble for all the communications
- all stations can transmit and send on the channel
- if frames are sent simoultanesly on the channel
 - → resulting signal is garbled (a collision occurs*)
- CSMA, CSMA/CD, ALHOA, slotted ALOHA

CSMA

- Carrier Sense Multiple Accesses
- when a station has a frame to send → listen to the channel to see if anyone else is trasmitting
- if channel is busy → station waits untill it becomes idle
- when channel il idle → station stransmits the frame
- if a collision occurs → station waits a random amount of time and repeats

•

CSMA/CD

- a station aborts its trasmission as soon as it detects a collision
 - if two stations sense channel idle at the same time and start transmitting
 - → stations quickly abort the frame as soon as collision is detected
- wudely used in LANs in MAC sub-layer
- IEEE 802.3
- T is the time required to reach the farthest station
- it takes minimum RTT (# time between sending/reciving the signal) (2 * T) to detect collision

Binary Exponential Backoff

- defines time that station has to wait for trasmitting again a frame
- · algorithm:
- time after a collision is divided in contention slots:
 - lenght of a contention slot is equal to the worst case round propagation time
 (2T if T time to reach farthest station)
- after 1st collision:
 - each station waits 0 or 1 slot before trying again (success or collision)
- after collision i:
 - choose x at random in (0, 2ⁱ -1) → exp:more collision, more time, may increase exponentially
- after 10 collisions:
 - choose x at random in a frozen interva (0..1023)
- after 16 collisions:
 - failure is reported back to upper levels

Why MAC doesn't work on wireless

 station transmit and send if there is another communication in channel → multiple antennas

Hidden terminal problem

 two or more stations which are out of the range of each other transmit simultaneously to a comme recipient

will not surge one Thy

A is sending to B

C senses the medium: it will NOT hear A, out of range

C transmits to anybody (either B or to D): COLLISION at B!

() Kidden Tenning = Continue of the form of the form

Hidden terminal problem C is not able to detect a potential competitor because it is out of range: a collision happens at B (the receiver)

For the same reason A does not detect the collision

C is hidden with respect to the communication from A to B

Exposed terminal problem

 a trasmitting station is prevent from sending frames due to interference with another transmitting station

- 1. B is transmitting to A, C wants to transmit to D
- 2. C senses the medium, concludes: cannot transmit to D
- 3. The two transmissions can actually happen in parallel.

Exposed terminal problem

C hears a transmission

C does not send to D although its transmission would be OK

C is exposed with respect to the communication from B to A

SO:

MACA protocol

- Multiple Accesses with Collision Avoidance:
 - stimulate the receiver into trasmittig to it a short frame first by sender
 - RTS: Request To Send, includes length of the longer frame
 - if the station receiver wants to recive the message, replies with another frame
 - CTS: Clear To Send short frame with data length copied from RTS frame
 - then transmit a (long data frame)
 - stations hearing the short frame **refrain from transmitting** during the transmission of the subsequent data frame

(0,1023)

MACAW: MACA for Wireless network

- after collision is anov to the upper loyers

Fine tunes MACA to improve performance:

- introduces an ACK frame to acknowledge a successful data frame
- added Carrier Sensing to keep a station from transmitting RTS when a nearby station is also transmitting an RTS to the same destination
- exponential backoff is run for each separate pair source/destination and not for the single station
- mechanisms to exchange information among stations and recognize temporary congestion problems
- CSMA/CA used in IEEE 802.11 is based on MACAW

IEEE 802.11

FAMILY OF STANDARDS

- IEEE 802.11 (Legacy mode, 1st version)
 - relased in '97, clarified in '99
 - rarely used today → evolving in a/b/g/n (theese most used today)
 - data rate: started with 1.2 Mbps data rate implemented via:
 - infrared signals (IR)
 - radio frequencies in the 2.4 Ghz band (Industral Scientific Medical Freq.)
 - many degrees of freedom:
 - interoperability among different productos was challenging
 - became popular with version 802.11b
- IEEE 802.11a
 - '99
 - operating (radio) frequency: 5 Ghz band
 - throughput(typ): 23 Mbps
 - data rate(max): 54 Mbps
 - lot of difference, exploit max transmission capacity of technologies
- IEEE 802.11.b
 - '99
 - operating (radio) frequency: 2,4 Ghz band (ISM band)

- problem: in some environments (domestic) interference (microwave owens, cordless tel)
- throughput (typ): 4.3 Mbps (<A)
- data rate (max): 11 Mbps
- IEEE 802.11g
 - 2003
 - operating (radio) frequency: 2,4 Ghz band (SM)
 - throughput(typ): 19 Mbps and more (>B)
 - data rate(max): 54 Mbps
- IEEE 802.11n
 - 2009
 - operating (radio) frequency: 2,4 Ghz and 5 Ghz band
 - throughput(typ): 74 Mbps and more (>G)
 - data rate(max): 248 Mbps
 - supports MIMO tecnhologies:
 - a node can use multiple antennas at the transmitter/reciver
- Wi-Fi 5 IEEE 802.11ac
 - 2013
 - operating (radio) frequency: 2,4 Ghz and 5 Ghz band
 - data rate (max):
 - at 5 Ghz: 1.3 Gbps
 - at 2.4 Ghz: 450 Gbps
- Wi-Fi 6 IEEE 802.11ax
 - 2019
 - data rate: reaches up 10 Gbps
 - improvements
 - power consumption and security
 - •
- IEEE 802.11 Wireless LAN

IEEE 802.11 standard	Year	Max data rate	Range	Frequency
802.11b	1999	11 Mbps	30 m	2.4 Ghz
802.11g	2003	54 Mbps	30m	2.4 Ghz
802.11n (WiFi 4)	2009	600	70m	2.4, 5 Ghz
802.11ac (WiFi 5)	2013	3.47Gpbs	70m	5 Ghz
802.11ax (WiFi 6)	2020 (exp.)	14 Gbps	70m	2.4, 5 Ghz
802.11af	2014	35 – 560 Mbps	1 Km	unused TV bands (54-790 MHz)
802.11ah	2017	347Mbps	1 Km	900 Mhz

 all use CSMA/CA for multiple access, and have base-station and ad-hoc network versions

- 802.11 **af-ah**:
 - sendind data for measurement
 - low frequency → higher range (higher coverage)
 - cool for IoT: sensor in fields need coverage
- 802.11 stack
 - all theese protocols are at L2 (phiscal, frame shit)
 - differen releases → different implementations
 - MAC and logically controls

MNOMBER

802.11 Architecture

MAC: CSTA/CA DATA LINK

a group of stations (AP) has coordination funcition

907. 11 Family Philical to transmit data send/rec

AC can be used in between nodes/other AC (link)/group of stations via fixed 1) introstructure wither wel infrastructure

if using AP, a station communicates with another

the calve wirles and (S

challenging all traffic thru a centralised AP

may or not use a B\$

2) supports **ad hoc** network (no infrastructure):

- a group of stations that are under the direct control of a single channel coordination function, without the aid of an infrastructure network
- no centralised role of AP
- distributed aming nodes belong ad hoc network

.) 2 Modes of operations

MUST BE PRESENT

1) DCF: Bistributed Coordination Function => MALL The Davices

- All stations have to vun CSMA/CA to see in They can accent the chancel; _seex channel - if her -s seed RTS - if receive CTS => start transmit

2) PCF: Point Goodwatton Function => OPTWHAL IMPLEMENT PCF ABONE DCF - MAC is coordinated by accen point:

=> DP may reserve part of the time and fall to other stations that that time slot is reserved to let I station to tranquit

- used in vides streaming Thrusmission this will not comien seems & seed RTS

- a station can communicate directly with another without channelling all trafic thu
 AP
- spectrum diveded into channels at different frequencies
 - → range of frequency divided in # of channels (usually 11)
 - → AP admin choose frequency for AP
 - → AP communicate thru channel using that frequency with the device
 - interference possible: channal can be the same as that choose by neighboring

 AP
- a node join to a network must associate with AP
 - scans channels
 - listen for beacon frames
 - containing SSID(net name) && (BSSID) MAC of the AP
 - host selects AP to associate with
 - they can perform auth
 - typically they run DHCP to get IO address in P's subnet

Scanning

- host want to join the network
 - must discober infos abot AC to join to the network
- passive scanning

- 1. beacon frames sent from APs
 - AC periodically sends beacon frames
- 2. association request frame sent:
 - H1 to select AC (based on BSSID)
 - choosing the AP according higher signal strength (depends on vendor implementation really)

- 3. association response frame sent from AP to H1
- active scanning

- a node arrives in network → send beacon → want the reply to an AP
- 1. Probe request frame broadcast from H1
- 2. probe response frames sent from APs
- 3. association request frame sent:
 - H1 to selected AP
- 4. Association response frame sent:
 - 1. from selected AP to H1
- association request and association response nedeed cuz can have multiple AP, but not aware if AP resplies

MAC Sublayer

- DCF: Distributed Coordination Function, here implements MACA → distributed access to shared medium
 - completey decentred
 - · thought for best effort asynchronous traffic
 - must be implemented by all stations

• Carrier sensing is performed at two levels:
• phisical CS: Cause Sense impliented in Phisical: conse to chample
 informal: before trasmission if another station is transmitting →
detect incoming signal \rightarrow if channel is free \rightarrow transmit
formal:
 checking the frequency to determine wheteher the medium is in
use or not
 phisical carrier sense to detect incoming signal
 detects any activity in the channel due to other sources
· virtual CS: : if you receive on CZS => gow set up without counter bend
• performed sending duration information in the headr of an RTS, CTS and data frame
 keep channel virtually bused up to the end of frame transmission
 a channel is marked busy if either the physical or the virtual CS
indicate busy
 a channel is marked busy if either the physical or the virtual CS indicate
busy
4 1 1
 always about coordinatin function: to make things work
 priority access to the medium is controlle thru the use of interframe
space (IFS) time interval: min time need to wait to send new frame (time
between 2 frames) (s whom tronsmit a frame, before transmit a new home
 formal IFS: mandatory periods of idle time on the transmission were medium
Three IFS specified by stamdard (always talking about IEEE 802.11)
1. Short IFS (SIFS)
2. Point Coordination Function IFS (PIFS)
3. Distributed Coordination Function (DIFS)
• SIFS < PIFS < DIFS
• stations only require to wait SIFS have the higher priority:
• node with highet priority wait less the others with smaller one
The de With Higher phone, wait loss the ethere with emailer ene
 PCF: Point Coordination Function: access medium between nodes to organise
communication service
a Tourns & frança
 contention free uses BS to control all activity in its cell
and the same and the same arise to
• AP pools station for transmissions • based on DCF

- DCF || PCF can be active at same time in same cell
- MANCA ULTIMA SLIDE