# Уравнение Лагранжа для системы с одной степенью свободы

*Кирсанов М.Н.* **Решебник. Теоретическая механика**/Под ред. А. И. Кириллова. – М.: ФИЗМАТЛИТ, 2008. — 384 с. (с.300.)

## Задача D30.1.



Боднарь Полина

Цилиндр радиусом R прижимается скошенным прессом (призмой) к пластине, скользящей по гладкой горизонтальной поверхности. Масса цилиндра  $m_1$ , призмы —  $m_2$ . К цилиндру приложен момент M, к пластине — горизонтальная сила F. Проскальзывание в точках контакта цилиндра отсутствует. Составить уравнение движения системы. За обобщенную координату принять перемещение пластины x.

#### Задача D30.2.



## Винников Александр

Невесомый уголок, составленный из двух жестко соединенных взаимно перпендикулярных стержней, опирается без проскальзывания на диск массой  $m_1$ , радиусом R, с неподвижной осью и гладкий угол. На уголке, к которому приложен момент M, находится точка массой  $m_2$ . Все тела расположены в горизонтальной плоскости. Составить уравнение движения системы. За обобщенную координату принять угол поворота уголка  $\varphi$ .

#### Задача D30.3.



# Ефимов Александр

Кольцо с внутренним радиусом r и внешним R опирается на два цилиндра одинакового радиуса  $r_0$  так, что его центр совпадает опорой O. Диск A на кривошипе OA касается внутренней поверхности кольца и неподвижного цилиндра радиусом  $R_1$ . К шарниру A приложена горизонтальная сила  $\vec{F}$ , к правому цилиндру — момент M. Масса кольца равна  $m_1$ , момент инерции  $J_1$ , масса кривошипа  $OA - m_2$ . Составить уравнение движения системы. За обобщенную координату принять угол поворота кривошипа  $\varphi$ .

## Задача D30.4.



#### Источкин Андрей

Оси цилиндров A и C одинакового радиуса R соединены стержнем AC длиной 2a. На стержне шарнирно закреплена качающаяся муфта B, в которой скользит стержень DE длиной b, соединенный с вертикально движущейся муфтой D. К цилиндру A приложен момент  $M_1$ , к стержню  $DE - M_2$ ; BC = CD = a. Масса стержня CD равна  $m_1$ , масса стержня  $DE - m_2$ . Составить уравнение движения системы. За обобщенную координату принять угол поворота стержня CD  $\varphi$ .

#### Задача D30.5.



#### Криворотенко Владислав

Ось цилиндра радиуса R=2r соединена стержнем AB длиной a=5r с вертикально движущейся муфтой. Диск радиусом r, шарнирно закрепленный на стержне BC=4r, катится по поверхности цилиндра. К диску приложен момент M, к оси цилиндра — горизонтальная сила  $\vec{F}$ . Масса цилиндра равна  $m_1$ , масса стержня  $BC-m_2$ . Составить уравнение движения системы. За обобщенную координату принять угол поворота стержня  $AB \varphi$ .

#### Задача D30.6.



## Крошкин Артём

Цилиндр радиусом R, жестко прикрепленный к стержню AB, катится по горизонтальной плоскости. Невесомый диск радиусом r и ползун C соединены стержнем BC. Диск катится по одной боковой поверхности груза, ползун скользит по другой. Груз двигается по плоскости. К диску приложен момент M, к ползуну — вертикальная сила  $\vec{F}$ ; AB=a. Масса цилиндра равна  $m_1$ , груза —  $m_2$ . Составить уравнение движения системы. За обобщенную координату принять угол поворота стержня  $AB \varphi$ .

## Задача D30.7.



# Лукьянчиков Алексей

Стержни AB и BC одинаковой длины a шарнирно соединены в точке B с горизонтальным штоком. Цилиндр радиусом R катается по верхней поверхности поршня, скользящего в вертикально. К нижней поверхности поршня приложена сила F, к цилиндру — момент M. Масса цилиндра равна  $m_1$ , стержня  $AB-m_2$ . Составить уравнение движения системы. За обобщенную координату принять угол  $\varphi$ .

## Задача D30.8.



# Маслов Владимир

Невесомый крюк ABC, изогнутый под прямым углом, шарнирно соединяет диск массой  $m_1$ , движущийся по горизонтальной поверхности, и вертикальный поршень массой  $m_2$ . Сила F приложена к углу B, сила P — к поршню; AB = a, BC = b. Составить уравнение движения системы. За обобщенную координату принять  $\varphi$ .

#### Задача D30.9.



# Назаров Сергей

Ползун C скользит в прорези поршня, скользящего по вертикали. Цилиндр радиусом R катается по горизонтальной поверхности. Ось цилиндра соединена с поршнем и ползуном стержнями длиной a. К поршню приложена вертикальная сила F, к цилиндру — момент M. Масса поршня равна  $m_1$ , стержня  $BC-m_2$ . Составить уравнение движения системы. За обобщенную координату принять угол  $\omega$ .

**Задача D30.10.** *Никитин Иван* 



Брусок A, закрепленный на кривошипе OA массы  $m_1$ , скользит по поверхности поршня. Поршень приводит в движение цилиндр радиусом R, массой  $m_2$ . К цилиндру приложен момент M. AO = a. Составить уравнение движения системы. За обобщенную координату принять  $\varphi$ .

## Задача D30.11.



Цилиндр радиусом R зажат между муфтой, надетой на наклонный стержень, и призмой, скользящей по гладкой горизонтальной поверхности. Масса призмы  $m_1$ , муфты —  $m_2$ . К цилиндру приложен момент M, к призме — горизонтальная сила F. Проскальзывание в точках контакта цилиндра отсутствует. Составить уравнение движения системы. За обобщенную координату принять x.

Семиошкина Алиса

**D30** серия **A14**