Problem Set #3

MACS 40200, Dr. Evans Due Wednesday, Jan. 24 at 1:30pm

1. MLE estimation of simple macroeconomic model (10 points). You can observe time series data in an economy for the following variables: (c_t, k_t, w_t, r_t) . Data on (c_t, k_t, w_t, r_t) can be loaded from the file MacroSeries.txt. This file is a comma separated text file with no labels. The variables are ordered as (c_t, k_t, w_t, r_t) . These data have 100 periods, which are quarterly (25 years). Suppose you think that the data are generated by a process similar to the Brock and Mirman (1972). A simplified set of characterizing equations of the Brock and Mirman model are the following.

$$(c_t)^{-1} - \beta E \left[r_{t+1} (c_{t+1})^{-1} \right] = 0 \tag{1}$$

$$c_t + k_{t+1} - w_t - r_t k_t = 0 (2)$$

$$w_t - (1 - \alpha)e^{z_t} (k_t)^{\alpha} = 0 (3)$$

$$r_t - \alpha e^{z_t} \left(k_t \right)^{\alpha - 1} = 0 \tag{4}$$

$$z_{t} = \rho z_{t-1} + (1 - \rho)\mu + \varepsilon_{t}$$
where $\varepsilon_{t} \sim N(0, \sigma^{2})$ (5)

The variable c_t is aggregate consumption in period t, k_{t+1} is total household savings and investment in period t for which they receive a return in the next period (this model assumes full depreciation of capital). The wage per unit of labor in period t is w_t and the interest rate or rate of return on investment is r_t . Total factor productivity is z_t , which follows an AR(1) process given in (5). The rest of the symbols in the equations are parameters that must be estimated $(\alpha, \beta, \rho, \mu, \sigma)$. The constraints on these parameters are the following.

$$\alpha,\beta\in(0,1),\quad\mu,\sigma>0,\quad\rho\in(-1,1)$$

Assume that the first observation in the data file variables is t = 1. Let k_1 be the first observation in the data file for the variable k_t . Assume that $z_0 = \mu$ so that $z_1 = \mu$. Assume that the discount factor is known to be $\beta = 0.99$.

(a) (4 points) Use the data (w_t, k_t) and equations (3) and (5) to estimate the four parameters $(\alpha, \rho, \mu, \sigma)$ by maximum likelihood. Given a guess for the parameters $(\alpha, \rho, \mu, \sigma)$, you can use the two variables from the data (w_t, k_t) and (3) to back out a series for z_t . You can then use equation (5) to compute the probability of each $z_t \sim N\left(\rho z_{t-1} + (1-\rho)\mu, \sigma^2\right)$. The maximum likelihood estimate $(\hat{\alpha}, \hat{\rho}, \hat{\mu}, \hat{\sigma})$ maximizes the likelihood function of that normal distribution of z_t 's. Report your estimates and the inverse hessian variance-covariance matrix of your estimates.

- (b) (4 points) Now we will estimate the parameters another way. Use the data (r_t, k_t) and equations (4) and (5) to estimate the four parameters $(\alpha, \rho, \mu, \sigma)$ by maximum likelihood. Given a guess for the parameters $(\alpha, \rho, \mu, \sigma)$, you can use the two variables from the data (r_t, k_t) and (4) to back out a series for z_t . You can then use equation (5) to compute the probability of each $z_t \sim N\left(\rho z_{t-1} + (1-\rho)\mu, \sigma^2\right)$. The maximum likelihood estimate $(\hat{\alpha}, \hat{\rho}, \hat{\mu}, \hat{\sigma})$ maximizes the likelihood function of that normal distribution of z_t 's. Report your estimates and the inverse hessian variance-covariance matrix of your estimates.
- (c) (2 points) According to your estimates from part (a), if investment/savings in the current period is $k_t = 7,500,000$ and the productivity shock in the previous period was $z_{t-1} = 10$, what is the probability that the interest rate this period will be greater than $r_t = 1$. That is, solve for $Pr(r_t > 1|\hat{\theta}, k_t, z_{t-1})$. [HINT: Use equation (4) to solve for the $z_t = z^*$ such that $r_t = 1$. Then use (5) to solve for the probability that $z_t > z^*$.]

References

Brock, William A. and Leonard J. Mirman, "Optimal economic growth and uncertainty: The discounted case," *Journal of Economic Theory*, June 1972, 4 (3), 479–513.