DRAFT: Discrete differential geometry in homotopy type theory

Greg Langmead

Carnegie Mellon University

April 2025

Motivation

Motivation

To use HoTT to study connections and explain their applicability to algebraic topology, via

- the Gauss-Bonnet theorem
- its vast generalization, Chern-Weil theory

Theorem (Gauss-Bonnet)

Let M be a compact 2-manifold without boundary, equipped with a Riemannian metric. Let K be the Gaussian curvature of M and let $\chi(M)$ be the Euler characteristic. Then

$$\frac{1}{2\pi}\int_{M}K\,dA=\chi(M).$$

Theorem (Poincaré-Hopf)

Let M be a compact smooth manifold without boundary. Let X be a vector field on M with isolated zeroes x_1, \ldots, x_n . Then

$$\sum_{i=1}^n \mathrm{index}_{x_i} = \chi(M).$$

Plan

Motivation

- Manifolds
- Classifying maps
- Connections and curvature
- Theorems

HoTT background

Motivation

- Bezem, M., Buchholtz, U., Cagne, P., Dundas, B. I., and Grayson, D. R., (2021-) Symmetry. https://github.com/UniMath/SymmetryBook.
- Buchholtz, U., Christensen, J. D., Flaten, J. G. T., and Rijke, E. (2023) Central H-spaces and banded types. arXiv:2301.02636
- Scoccola, L. (2020) Nilpotent types and fracture squares in homotopy type theory, MSCS 30(5). arXiv:1903.03245

Discrete manifolds in HoTT

- Recall the classical theory of simplicial complexes
- Define a realization procedure to turn them into homotopy pushouts

Simplicial complexes

Definition

An abstract simplicial complex M of dimension n is an ordered list of sets $M \stackrel{\text{def}}{=} [M_0, \dots, M_n]$ consisting of

- a set M_0 of (n+1) vertices
- sets M_k of subsets of M_0 of cardinality k+1
- downward closed: if $F \in M_k$ and $G \subseteq F$, |G| = j + 1 then $G \in M_j$

We call the truncated list $M_{\leq k} \stackrel{\text{def}}{=} [M_0, \ldots, M_k]$ the k-skeleton of M.

Simplicial complexes

Example

The complete simplex of dimension n, denoted P(n), is the set $\{1, \ldots, n+1\}$ and its power set. The (n-1)-skeleton $P(n)_{\leq (n-1)}$ is denoted $\partial P(n)$ and will serve as a combinatorial (n-1)-sphere.

e.g., $\partial P(2)$ is an abstract triangle with 3 vertices and 3 edges (lacks its face).

Simplicial complexes

Here is a Hasse diagram of an abstract octahedron (vertices named for the colors on a Hungarian Cube)

We will realize simplicial complexes as pushouts.

The realization of a 0-dimensional complex M_0 is the set M_0 .

In particular the 0-sphere $\partial \Delta^1 \stackrel{\text{def}}{=} \partial P(1)$.

For a 1-dim complex $M \stackrel{\text{def}}{=} [M_0, M_1]$ form

$$egin{aligned} \mathcal{M}_1 imes \partial \Delta^1 & \stackrel{\mathrm{pr}_1}{\longrightarrow} \mathcal{M}_1 \ & & \downarrow st_{h_1} & \downarrow st_{\mathbb{M}_1} \ \mathcal{M}_0 & = \mathbb{M}_0 & \longrightarrow & \mathbb{M}_1 \end{aligned}$$

$$\{\{w\}, \{g\}\} \leftarrow \{\{w,g\}\} \times \{0,1\} \rightarrow \{\{w,g\}\}\}$$

Next construct a 1-sphere $\partial \Delta^2 \stackrel{\text{def}}{=} a$ as the realization of $\partial P(2)$:

$$\partial P(2)_1 \times \partial \Delta^0 \longrightarrow \partial P(2)_1$$

$$\downarrow \qquad \qquad \downarrow$$

$$\partial P(2)_0 \longrightarrow \partial \Delta^2$$

$$\{\{a,b\},\{b,c\},\{c,a\}\} \times \{0,1\} \longrightarrow \{\{a,b\},\{b,c\},\{c,a\}\}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\{\{a\},\{b\},\{c\}\} \longrightarrow \partial \Delta^2$$

Then use $\partial \Delta^1$, $\partial \Delta^2$ to realize $M \stackrel{\text{def}}{=} [M_0, M_1, M_2]$.

$$egin{aligned} M_1 imes \partial \Delta^1 & \stackrel{\operatorname{pr}_1}{\longrightarrow} M_1 \ & & & & \downarrow^{st_{\mathbb{M}_1}} \ & & & \downarrow^{st_{\mathbb{M}_1}} \ & & & & & \downarrow^{st_{\mathbb{M}_1}} \ & & & & & & \downarrow^{h_2} \ & & & & & & \downarrow^{h_2} \ & & & & & & \downarrow^{h_2} \ & & & & & & & \downarrow^{h_2} \ & & & & & & & & M_2 \end{aligned}$$

 $*_{\mathbb{M}_1}, *_{\mathbb{M}_2}$ provide hubs. h_1, h_2 provide spokes.

$$M_1 imes \partial \Delta^1 \stackrel{\operatorname{pr}_1}{\longrightarrow} M_1$$
 $A_0 \downarrow \qquad \qquad \downarrow^{*_{\mathbb{M}_1}} \downarrow^{*_{\mathbb{M}_1}}$
 $M_0 = \mathbb{M}_0 \stackrel{\mathbb{M}_1}{\longrightarrow} \mathbb{M}_1 \stackrel{h_2}{\longrightarrow} \mathbb{M}_2$
 $A_1 \uparrow \qquad \qquad \downarrow^{h_2} \uparrow^{*_{\mathbb{M}_2}}$
 $M_2 imes \partial \Delta^2 \stackrel{\operatorname{pr}_1}{\longrightarrow} M_2$

The link of a vertex v in a 2-complex is the polygon of edges not containing v but whose union with v is a face

This will be our model of the tangent space.

Theorem (Whitehead (1940))

Every smooth manifold has a compatible structure of a combinatorial manifold: a simplicial complex of dimension n such that the link is the geometric realization of an (n-1)-sphere.

https://ncatlab.org/nlab/show/triangulation+theorem

Definition

Let G be a group with identity element e. A G-set is a set X equipped with a homomorphism $\phi: (G, e) \to \operatorname{Aut}(X)$. If we have

$$\operatorname{\mathsf{is_torsor}}(X,\phi) \stackrel{\operatorname{def}}{=} ||X||_{-1} \times \prod_{x:X} \operatorname{\mathsf{is_equiv}}(\phi(-,x) : (G,e) \to (X,x))$$

we say (X, ϕ) is a *G*-torsor. Denote the type of *G*-torsors by *BG*.

Lemma

Point BG at G_{reg} , the G-torsor G acting on itself on the right. Then $\Omega_{G_{reg}}BG \simeq G$, so BG is a $\mathrm{K}(G,1)$.

- $S^1 \cdot \mathcal{U}$ is not an Aut S^1 -torsor
- It's a torsor for $(S^1 = S^1)_{(id)}$, the identity component.
- This omits the flip, the reversal of orientation.

Torsors 000

• See the Buchholtz et. al. H-spaces paper for more.

Definition

$$\mathrm{EM}(G,n) \stackrel{\mathrm{def}}{=} \mathsf{BAut}(\mathrm{K}(G,n)) \stackrel{\mathrm{def}}{=} \sum_{Y:\mathcal{U}} ||Y \simeq \mathrm{K}(G,n)||_{-1}$$

Definition

A K(G, n)-bundle on a type M is a map $f : M \to EM(G, n)$.

We further assume f factors through K(G, n + 1) and so is principal.

Rotation

Let $R : [abcd] \rightarrow [abcd]$ send $a \mapsto b, b \mapsto c, c \mapsto d, d \mapsto a$.

Extend R to edges.

Lemma

 $[\![R]\!]$: $[\![abcd]\!] \to [\![abcd]\!]$ is homotopic to the identity, i.e. we have $\prod_{x:[\![abcd]\!]} x = [\![R]\!](x)$.

Proof.

Use edges.

Definition

If $\mathbb{M} \stackrel{\text{def}}{=} \mathbb{M}_0 \stackrel{\imath_0}{\to} \cdots \stackrel{\imath_{n-1}}{\to} \mathbb{M}_n$ is a cellular type and all the triangles commute in the diagram:

- The map f_k is a k-bundle on \mathbb{M} .
- The pair given by the map f_k and the proof $f_k \circ \imath_{k-1} = f_{k-1}$, i.e. that f_k extends f_{k-1} is called a k-connection on the (k-1)-bundle f_{k-1} .

Definition

the filler \flat_k is called a flatness structure for the face m_k , and its ending path is called curvature at the face m_k .

Vector fields

Let $T: \mathbb{M}_2 \to \mathrm{K}(\mathbb{Z},2)$ be an oriented tangent bundle on an oriented 2-dim cellular type

- A vector field is a term $X : \prod_{m:\mathbb{M}_1} Tm$.
- It's a nonvanishing vector field on the 1-skeleton.
- We model classical zeros by omitting the faces.

- $\bullet \ \partial F \stackrel{\mathrm{def}}{=} e_{12} \cdot e_{23} \cdot e_{31}$
- We access pathovers asymmetrically:

$$X_{12}: T_{12}X_1 = X_2$$

- $X(\partial F)$ is 3-sided inside a square
- To make a loop we cat with $\flat(\partial F)$

holonomy

flatness

$$\operatorname{tr}_F \stackrel{\mathrm{def}}{=} \operatorname{tr}(\partial F) : Tm = Tm$$

$$b_F \stackrel{\text{def}}{=} b(\partial F) \quad : \mathsf{id} =_{Tm=Tm} \mathsf{tr}(\partial F)$$

$$X_F \stackrel{\text{def}}{=} X(\partial F)$$
 : $\operatorname{tr}(\partial F)(X(m)) =_{T_m} X(m)$ swirling

Definition

The index of the vector field X on the face F is the integer

$$I_F^X \stackrel{\mathrm{def}}{=} \Omega(\flat_F(X(m)) \cdot X_F) : \Omega(X(m) =_{Tm} X(m)).$$

holonomy

flatness

$$\operatorname{\sf tr}_F \stackrel{\operatorname{def}}{=} \operatorname{\sf tr}(\partial F) : Tm = Tm$$

$$b_F \stackrel{\text{def}}{=} b(\partial F) \quad : \text{id} =_{T_m = T_m} \text{tr}(\partial F)$$

$$X_F \stackrel{\text{def}}{=} X(\partial F)$$
 : $\operatorname{tr}(\partial F)(X(m)) =_{T_m} X(m)$ swirling

Definition

The index of the vector field \boldsymbol{X} on the face \boldsymbol{F} is the integer

$$I_F^X \stackrel{\mathrm{def}}{=} \Omega(\flat_F(X(m)) \cdot X_F) : \Omega(X(m) =_{Tm} X(m)).$$

Classical proof

[26.2] The difference $\Re(\Delta) - 2\pi \Im_F(s)$ can be found by summing over the edges K_j the change $\Phi(K_j)$ in the illustrated angle $\angle Fw_{|j|}$ i.e., the rotation of $\mathbf{w}_{|j|}$ relative to \mathbf{F} .

Figure: Needham, T. (2021) Visual Differential Geometry and Forms.

- The classical proof is discrete-flavored
- " $\angle Fw_{||}$ " looked a lot like a pathover.
- Hopf's Φ is defined on edges, not loops. We imitated that too.

Thank you.