ODSEK ZA TELEKOMUNIKACIJE I INFORMACIONE TEHNOLOGIJE

ODSEK ZA SIGNALE I SISTEME

ODSEK ZA FIZIČKU ELEKTRONIKU

- 1. Parametri tranzistora u pojačavaču sa slike su: $\beta_F = \beta_0 \rightarrow \infty$, $V_{BE} = 0.6 \, \text{V}$, $V_{CES} = 0.2 \, \text{V}$, $V_A \rightarrow \infty$, doke je: $V_{CC} = -V_{EE} = 5 \, \text{V}$, $R_R = 9.4 \, \text{k}\Omega$, $R_B = 10 \, \text{k}\Omega$, $R_P = 3.9 \, \text{k}\Omega$ i $V_t = kT/q = 25 \, \text{mV}$. Odrediti:
- a) [3] naponsko pojačanje pojačavača $a_v = v_p / v_g$;
- b) [3] strujno pojačanje pojačavača $a_i = i_p / i_g$;
- c) [4] maksimalnu amplitudu simetričnog neizobličenog napona na potrošaču $V_{pm\,{
 m max}}$.
- **2.** a) [2] Nacrtati kaskodni pojačavač sa PMOS tranzistorima. Smatrati da je izlazna otpornost PMOS tranzistora beskonačna.
 - b) [2] Izračunati naponsko pojačanje pojačavača iz tačke a).
 - c) [2] Izračunati ulaznu i izlaznu otpornost pojačavača iz tačke a).
 - d) [4] Nacrtati vremenske dijagrame napona na svim priključcima PMOS tranzistora pojačavača iz tačke a).
- 3. a) [3] Nacrtati trorežimski integrator i ekvivalentne šeme u sva tri režima rada.
 - b) [2] Modifikovati kolo iz a) tako da se omogući neosetljivost integracione konstante na promenu impedanse pobudnog generatora.
 - c) [2] Modifikovati kolo iz a) tako da se omogući brzo zadavanje početnih uslova.
 - d) [3] Izračunati maksimalnu vrednost modula izlazne struje integratorskog operacionog pojačavača pri svakoj promeni režima rada (i_{PU-INT} za prelaz iz režima početnih uslova u režim integracije, $i_{INT-PAM}$ za prelaz iz režima integracije u režim pamćenja, i i_{PAM-PU} za prelaz iz režima pamćenja u režim početnih uslova), u zavisnosti od napona pobudnog generatora i napona početnih uslova.
- **4.** Za stabilizator sa slike 4 je poznato: $V_{BE} = 0.6 \text{ V}$, $\beta_{F1} = 100$, $\beta_{F2} = \beta_{F3} \rightarrow \infty$, $V_u = 15 \text{ V}$, $R_1 = 2 \text{ k}\Omega$, $R_2 = 6 \text{ k}\Omega$, $R_Y = 3 \text{ k}\Omega$, $V_Z = 2.4 \text{ V}$, struja inverzne polarizacije Zener diode $I_Z \ge 2 \text{ mA}$, a maksimalna dozvoljena snaga disipacije rednog tranzistora $P_{DQ1\,\text{max}} = 9.46 \text{ W}$.
- a) [1] Odrediti otponost R_X tako da se na izlazu dobija stabilisani napon $V_p = 9 \text{ V}$.
- b) [3] Odrediti i nacrtati karakteristiku stabilizatora $v_p(i_p)$.
- c) [4] Kolika je maksimalna struja koju stabilizator može dati na izlazu, imajući u vidu dozvoljenu disipaciju rednog tranzistora? Odrediti otpornost R_S u tom slučaju.
- d) [2] Kolika je maksimalna otpornost $R_{0\text{max}}$ za koju stabilizator ispravno radi u celom opsegu izlaznih struja?

Studenti koji polažu drugi kolokvijum rade zadatke 3 i 4 u trajanju do 2 sata. Studenti koji polažu kompletan ispit rade sve zadatke u trajanju do 3 sata.