Milner's Proof System for Regular Expressions Modulo Bisimilarity is Complete Crystallization: Near-Collapsing Process Graph Interpretations of Regular Expressions

Clemens Grabmayer (Department of Computer Science, Gran Sasso Science Institute, Viale F. Crispi, 7, 67100 L'Aquila AQ, Italy)

Abstract

We report on a lengthy completeness proof for Robin Milner's proof system Mil (1984) for bisimilarity of regular expressions in the process semantics. Central for our proof are the recognitions:

- 1. Process graphs with 1-transitions (1-charts) and the loop existence/elimination property LLEE are **not** closed under bisimilation collapse,
- 2. Such process graphs can be 'crystallized' to 'near-collapsed' 1-charts with some strongly connected components of 'twin-crystal' form.

The Process Semantics of Regular Expressions

Milner (1984) introduced a process semantics for regular expressions: the interpretation of 0 is dead-lock, of 1 is an empty step to termination, letters a are atomic actions, the operators + and \cdot stand for choice and concatenation of processes, and unary Kleene star $(\cdot)^*$ represents (unbounded) iteration. Formally, Milner defined chart (finite process graph) interpretations $\mathcal{C}(e)$ of regular expressions e.

Milner's Proof System

As axiomatization of the relation $e_1 = p e_2$ on regular expressions e_1 and e_2 defined by $\mathcal{C}(e_1) \leftrightarrow \mathcal{C}(e_2)$ (as bisimilarity \leftrightarrow of chart interpretations), Milner asked whether the following system Mil is complete:

(A1)
$$e + (f + g) = (e + f) + g$$
 (A7) $e = 1 \cdot e$
(A2) $e + 0 = e$ (A8) $e = e \cdot 1$
(A3) $e + f = f + e$ (A9) $0 = 0 \cdot e$
(A4) $e + e = e$ (A10) $e^* = 1 + e \cdot e^*$

(A5)
$$e \cdot (f \cdot g) = (e \cdot f) \cdot g$$
 (A11) $e^* = (1 + e)^*$

(A6) $(e+f) \cdot g = e \cdot g + f \cdot g$

$$\frac{e = f \cdot e + g}{e = f^* \cdot g} RSP^* \text{ (if } f \text{ does not terminate immediately)}$$

This system is a variation of Salomaa's complete axiom system (1966) for language equality of regular expressions, missing left-distributivity $e \cdot (f + g) = e \cdot f + e \cdot g$ and $e \cdot 0 = 0$, which are unsound here.

Loop Existence and Elimination

The process semantics is incomplete: not every finite process graph is expressible by (=bisimilar to the interpretation of) a regular expression. A sufficient condition for expressibility is the (layered) loop existence and elimination property LLEE. It is defined via elimination of 'loops' (loop subcharts):

LLEE holds if a graph without infinite behavior can be obtained. Important features of LLEE:

(US) Every guarded LLEE-1-chart (chart, maybe 1-transitions, with LLEE) is uniquely Mil-provably solvable modulo provability in Mil (CALCO 2021). (IV) The chart interpretation C(e) of a regular expression e can always be expanded under bisimilarity to a LLEE-1-chart C(e) (TERMGRAPH 2020). (C₁) LLEE-charts (without 1-transitions) are preserved by bisimulation collapse (G/Fokkink, LICS'20).

LLEE-preserving Collapse Fails

LLEE-1-charts with 1-transitions, however, are **not** preserved under bisimulation collapse. A counterexample is provided by the following LLEE-1-chart \mathcal{C} :

Identifying the bisimilar vertices w_1 and w_2 yields a chart for which LLEE fails. Also, the subcharts of \mathcal{C} that are rooted at w_1 and w_2 are not LLEE-preservingly jointly minimizable under bisimilarity.

Twin-Crystals

The counterexample to LLEE-preserving collapse is symmetric, and its structure can be abstracted as:

It is a LLEE-1-chart with a single scc (strongly connected component) P that consists of a pivot part P_1 below pivot vertex piv, and a top part P_2 below top vertex top. P_1 and P_2 are connected only via transitions from piv and from top. While both P_1 and P_2 are collapsed, P contains bisimilarity redundancies (= distinct bisimilar vertices) such as $\{w_1, w_2\}$ that are linked by a self-inverse counterpart function cp_P . We call such an scc a twin-crystal. We have:

(CC) Every Mil-provable solution of a twin-crystal gives rise to a Mil-provable solution of its bisimulation collapse (which often is not a LLEE-1-chart).

Crystallization of LLEE-1-charts

By $\operatorname{\operatorname{{\it crystallization}}}$ of a LLEE-1-chart $\operatorname{\operatorname{{\it C}}}$ we mean:

- \triangleright a process of minimization of \mathcal{C} under bisimilarity by steps that **eliminate most** (all but **crystalline**) bisimilarity redundancies $\{w_1, w_2\}$, roughly by redirecting transitions that target w_1 over to w_2 ;
- ▶ hereby only 'reduced' bisimilarity redundancies can be eliminated LLEE-preservingly, which exist whenever a LLEE-1-chart is not collapsed;
- ▶ the result is a crystallized LLEE-1-chart that is bisimilar to \mathcal{C} , and collapsed **apart from** within some its scc's that are twin-crystals.

The crystallization process facilitates to show:

(CR) From every LLEE-1-chart a bisimilar crystallized LLEE-1-chart can be obtained.

Completeness Proof

Let $C(e_1) \leftrightarrow C(e_2)$ be bisimilar chart interpretations of regular expressions e_1 and e_2 . To secure LLEE, $C(e_1)$ and $C(e_2)$ are expanded to their 1-chart interpretations $C(e_1)$ and $C(e_2)$. One of them, say $C(e_1)$, is crystallized to C_{10} . All (1-)charts are linked by (1-)bisimulations to their bisimulation collapse C_0 .

From C_{10} a provable solution e_{10} can be extracted due to LLEE, transferred (T) to the collapse C_0 , and then to $C(e_1)$ and $C(e_2)$. On the LLEE-1-charts $C(e_1)$ and $C(e_2)$, e_{10} can be proved equal to the solutions e_1 and e_2 there, respectively. By transitivity, $e_1 = M_{ii} e_2$ (provability of $e_1 = e_2$ in Mil) follows.

Theorem. Milner's system Mil is complete: $e_1 = e_2$ implies $e_1 = mil$ e_2 , for reg. expr's e_1 , e_2 .

Next Steps and Projects

- ▶ Monograph project: proof in fine-grained details.
- ▶ Build an animation tool for crystallization.
- ▶ Apply crystallization to find an efficient algorithm for expressibility of finite process graphs by a regular expression modulo bisimilarity.

Contact

clemens.grabmayer@gssi.it

GRAN SASSO SCIENCE INSTITUTE

SCHOOL OF ADVANCED STUDIES
Scuola Universitaria Superiore