Thesis Title

Your name

A thesis submitted to the Faculty of Science,
University of the Witwatersrand,
Johannesburg,
in fulfillment of the requirements for the degree of $Doctor\ of\ Philosophy$

Supervisor: Supervisor name

Johannesburg, November 2016

Declaration of Authorship

I, Your name, declare that this thesis titled, 'Thesis Title' and the work presented in it are my own. I confirm that:

- This work was done wholly or mainly while in candidature for a research degree at this University.
- Where any part of this thesis has previously been submitted for a degree or any other qualification at this University or any other institution, this has been clearly stated.
- Where I have consulted the published work of others, this is always clearly attributed.
- Where I have quoted from the work of others, the source is always given. With the exception of such quotations, this thesis is entirely my own work.
- I have acknowledged all main sources of help.
- Where the thesis is based on work done by myself jointly with others, I have made clear exactly what was done by others and what I have contributed myself.

Signed:			
Date:			

"Fill in some quote here"

Author of quote

UNIVERSITY OF THE WITWATERSRAND

Abstract

Faculty of Science School of Chemistry

Doctor of Philosophy

Thesis Title

by Your name

The Thesis Abstract is written here (and usually kept to just this page). The page is kept centered vertically so can expand into the blank space above the title too...

Acknowledgements

Contents

D	eclaration of Authorship]
\mathbf{A}	bstract	iii
\mathbf{A}	ckowledgements	iv
\mathbf{C}	ontents	v
\mathbf{A}	bbreviations	vi
1	Example 1.1 Sectional example	1
2	Introduction	2
3	Experimental templates and examples 3.1 NMR	4
\mathbf{R}	eferences	6
A	ppendix A	6

Abbreviations

COSY correlation spectroscopy

CSD Cambridge structure database? $\underline{\mathbf{A}}$ $\overline{\mathbf{D}}$ $\mathbf{\mathring{A}}$ angstrom \mathbf{Ac} acetyl \mathbf{DCM} di-chloromethane \mathbf{Ar} aryl **DDQ** 2,3-dichloro-5,6-dicyano-1,4-benzoquinone Arom. aromatic **DIA** diisopropylamine **DMAP** 4-N,N-dimethylaminopyridine \mathbf{B} **DMSO** dimethylsulfoxide \mathbf{Bn} benzyl \mathbf{E} Boc tert-butyl carbonate EIMS electron ionisation mass spec-**BP** boiling point troscopy BuLi butyl lithium ESIMS electrospray ionisation mass spectroscopy \mathbf{C} \mathbf{Et} ethyl $^{\circ}\mathbf{C}$ degrees Celsius EtOAc ethyl acetate CIMS Ceric ammonium nitrate eq equivalents CIMS chemical ionisation mass spec-Η troscopy

h hour

Abbreviations vii

HMBC heteronuclear multiple bond correlation	PMB para-methoxy-benzyl
HSQC heteronuclear single-quantum correlation	<u>R</u>
	rt room temperature
Ī	
<i>i</i> -Pr <i>iso</i> -propyl	${f T}$
IR infrared	${\bf TBAF} \ \ {\bf tetra-butyl-ammonium-fluoride}$
${f \underline{M}}$	TBDMS tert-butyldimethylsilyl
	<i>t</i> -Bu <i>tert</i> -butyl
Me methyl	TEA triethylamine
min minute	Tetrakis $Pd(PPh_3)_3)$
MP melting point	THF tetrahydrofuran
${f N}$	TLC thin layer chromatography
NBS N-bromo-succinimide	$\mathbf{TMS} \ \ \mathbf{tetramethyl\text{-}silane/trimethyl\text{-}}$
<i>n</i> -Bu <i>n</i> -butyl	silane
NMP N-methyl pyrilidone	Tosyl toluenesulfonyl
NMR nuclear magnetic resonance	TOF Turn over frequency
n-Pr n -propyl	TON Turn over number
<u>P</u>	${f Q}$
Ph phenyl	quant quantitative

Chapter 1

Example

1.1 Sectional example

Now I will reference Scheme 1.1 in text.

$$\begin{array}{c|c} & & & \\ \hline \\ N \\ N \\ 1 \\ \end{array} \begin{array}{c} & \\ \hline \\ BnBr \\ \hline \\ KOH \\ \end{array} \begin{array}{c} & \\ \hline \\ N \\ \hline \\ \end{array} \begin{array}{c} & \\ \hline \\ N \\ \hline \\ \end{array} \begin{array}{c} & \\ \hline \\ NaOH \\ \end{array} \begin{array}{c} & \\$$

Scheme 1.1: The synthesis of **3** from the indole by formylation and benzyl protection.

 $\mathrm{CH_{3}(C=O)CH_{3}}$ or $\mathrm{MgSO_{4}}$

Chapter 2

Introduction

Chapter 3

Experimental templates and examples

3.1 NMR

```
NH2 - (s, 2H, N\underline{\mathbf{H}}_2)

NH - (s, 1H, N\underline{\mathbf{H}})

CH3 - H - (s, 3H, C\underline{\mathbf{H}}_3) C - (\underline{\mathbf{C}}H_3)

Si(CH3)3 - C - (\mathrm{Si}(\underline{\mathbf{C}}H_3)_3)

C(CH3)3 (tert-carbon underlined) - C - (\underline{\mathbf{C}}(\mathrm{CH}_3)_3)

C(CH3)3 (methyl underlined) - C - (\mathrm{C}(\underline{\mathbf{C}}H_3)_3)

C CH - H - (s, 1H, \equiv \underline{\mathbf{C}}\underline{\mathbf{H}}) C - (\equiv \underline{\mathbf{C}}H)

C-C C - C - (\underline{\mathbf{C}}-\underline{\mathbf{C}}\equiv\mathbf{C})

N-C=O - C - (N-\underline{\mathbf{C}}=\mathbf{O})

aromatic C - (C-\mathrm{arom.})

CH2 - H - C\underline{\mathbf{H}}_2 C - \underline{\mathbf{C}}H<sub>2</sub>
```

Abbreviations 4

3.2 experimental entrty

Phenol (4)

Yield:

MP:

IR (cm⁻¹): \bar{v}

¹H NMR (300MHz, CDCl₃): δ

 13 C NMR (75MHz, CDCl₃): δ

HRMS:

()

Yield:

MP:

IR (cm⁻¹): \bar{v}

¹H NMR (300MHz, CDCl₃): δ

 13 C NMR (75MHz, CDCl₃): δ

HRMS:

3.3 crystal tables

3.4 chemfig

Boc ([:30]-([2]=O)([:330]-O([:30]-([2]-)([:30]-)([:330]-)

Abbreviations 5

Table 3.1: Crystal data of

Empirical formula	$C_{11}H_{14}N_2Si_1$
Formula weight	
Temperature	K
Wavelength	Å
Crystal system	
Space group	\mathbf{C}
Unit cell dimensions	
a = A	$lpha={}^{\circ}$
b = A	eta = $^{\circ}$
c = Å	$egin{array}{l} lpha = ^{\circ} \ eta = ^{\circ} \ \gamma = ^{\circ} \end{array}$
Volume	$\rm \AA^3$
Z	
Density (calculated)	Mg/m^3
Absorption coefficient	mm^{-1}
F(000)	
Crystal size	mm^3

Table 3.2: Data collection of

θ range for data collection	$^{\circ}$ to $^{\circ}$
Index ranges	$- \preceq h \preceq, - \preceq k \preceq, - \preceq l \preceq$
Reflections collected	
Independent reflections	[R(int) =]
Completeness to $\theta = {}^{\circ}$	%

Table 3.3: Refinement of

Refinement method	Full-matrix least-squares on F^2	
Data / restraints / parameters	/ /	
Goodness-of-fit on F^2		
Final R indices $[I > 2\sigma(I)]$	R1 = , wR2 =	
R indices (all data)	R1 = , wR2 =	
Largest diff. peak and hole	and - $e.Å^{-3}$	

Appendix A