## **Probability and Random Process**

COSE382

#### Continuous Random Variables.

**Definition 5.1.1** (Continuous r.v.).

- A continuous random variable is a random variable with a continuous distribution.
- A r.v. has a *continuous* distribution if its CDF,  $F_X = P(X \le x)$ , is differentiable except finitely many points and continuous everywhere.

**Definition 5.1.2** (Probability density function).

• The probability density function (PDF) of a continuous r.v. X with CDF  $F_X$  is the derivative of the CDF,

$$f_X(x) = \frac{d}{dx} F_X(x) = F_X'(x)$$

• The support of X (or the support of  $f_X$ ), is the set of all x where  $f_X(x) > 0$ .

**Proposition 5.1.3** (PDF to CDF). For a continuous r.v. X

$$F_X(x) = \int_{-\infty}^x f(t)dt \text{ and } P(a < X \le b) = F(b) - F(a) = \int_a^b f(x)dx$$

**Theorem** For a given  $A \in \mathbb{R}$ ,

$$P(X \in A) = \int_{A} f_X(x) dx$$

Note that for continuous r.v. X,

$$P(X = x_0) = \int_{x_0} f(x)dx = 0$$
, for all  $x_0 \in \mathbb{R}$ 

Thus, 
$$P(a < X < b) = P(a < X \le b) = P(a \le X < b) = P(a \le X \le b)$$

**Theorem 5.1.5** (Valid PDFs). The PDF f of a continuous r.v. must satisfy the following two criteria:

- Nonnegative:  $f(x) \ge 0$ ;
- Integrates to 1:  $\int_{-\infty}^{\infty} f(x)dx = 1.$

**Definition 5.1.9** (Expectation of a continuous r.v.). The *expected value* (also called the *expectation* or mean) of a continuous r.v. X with PDF f is

$$E(X) = \int_{-\infty}^{\infty} \underbrace{xf(x)dx}_{-\infty} dx.$$

• Note that not every distribution has a mean: a Cauchy distribution  $f(x) = \frac{1}{\pi(1+x^2)}$ ,

$$E(X) = \int_{-\infty}^{\infty} \frac{x}{\pi(1+x^2)} dx = \text{ does not converge. } \left( \int_{0}^{\infty} \frac{x}{\pi(1+x^2)} dx = \frac{1}{2\pi} \log(1+x^2) \Big|_{0}^{\infty} = \infty \right)$$

**Theorem 5.1.10** (LOTUS, continuous). If X is a continuous r.v. with PDF f and g is a function  $g: \mathbb{R} \to \mathbb{R}$ , then for Y = g(X)

$$E(Y) = E(g(X)) = \int_{-\infty}^{\infty} g(x)f(x)dx.$$

#### **Uniform Distribution**

**Definition 5.2.1** (Uniform distribution). A continuous r.v. U is said to have the *Uniform distribution* on the interval (a, b) if its  $\overline{\text{PDF}}$  is

$$f(x) = \begin{cases} \frac{1}{b-a} & \text{if } a < x < b, \\ 0 & \text{ortherwise.} \end{cases}$$

We denote this by  $U \sim \text{Unif}(a, b)$ .

For the Uniform distributions, probability is proportional to length. Let  $U \sim \text{Unif}(a, b)$  and let (c, d) be a subinterval of (a, b). Then

- Proposition 5.2.2
- Proposition 5.2.4

obtainty is proportional to delight Let 
$$c \sim c$$
 in  $(a,b)$ . Then
$$P(U \in (c,d)) = \frac{d-c}{b-a}$$

$$P(U \leq u | U \in (c, d)) = \frac{u - c}{d - c}$$

#### **Uniform Distribution**

For a  $U \sim \text{Unif}(a, b)$ 

- Mean

$$E(U) = \int_{a}^{b} x \frac{1}{b-a} dx = \frac{a+b}{2}$$

- Variance

$$E(U^{2}) = \int_{a}^{b} x^{2} \frac{1}{b-a} dx = \frac{1}{3} \cdot \frac{b^{3} - a^{3}}{b-a}$$

$$Var(U) = E(U^{2}) - E(U)^{2} = \frac{1}{3} \cdot \frac{b^{3} - a^{3}}{b-a} - \frac{(a+b)^{2}}{4} = \frac{(b-a)^{2}}{12}$$



# Universality of Uniform®

**Theorem 5.3.1** (Universality of the Uniform). Let X be a random variable with CDF  $F_X$  and  $F_X: \mathbb{R} \to (0,1)'$  be continuous and strictly increasing on its support, i.e. the inverse function  $F_X^{-1}: (0,1) \to \mathbb{R}$  exists. Then,

- 1.  $X = F_X^{-1}(U)$  for  $U \sim \text{Unif}(0, 1)$
- 2.  $F_X(X) \sim \text{Unif}(0,1) = U$ Proof.
- 1. Let  $Y := F_X^{-1}(U)$ . The range of Y is  $\mathbb{R}$ . For all real x,

$$\text{ for } F_Y(x) = P(Y \le x) = P(F_X^{-1}(U) \le x) = P(U \le F_X(x)) = F_U(F_X(x)) = F_X(x),$$

Since X and  $Y = F^{-1}(U)$  have the same CDF  $F_X$ ,  $X = F^{-1}(U)$ .

2. Let  $Y := F_X(X)$ . The range of Y is (0,1). For  $u \in (0,1)$ ,

$$F_Y(u) = P(Y \le u) = P(F_X(X) \le u) = P(X \le F_X^{-1}(u)) = F_X(F_X^{-1}(u)) = u = F_U(u).$$

Since 
$$F_Y = F_U$$
,  $Y = F(X) = U$ .

**Example 5.3.4** (Universality with Logistic). The Logistic CDF is

$$F(x) = \frac{e^x}{1 + e^x} = \frac{1}{1 + e^{-x}}, \quad x \in \mathbb{R}.$$

For 
$$U \sim \text{Unif}(0,1)$$
,  $\underbrace{F^{-1}(U)} = \log\left(\frac{U}{1-U}\right)$ .

For  $U \sim \text{Unif}(0,1)$ ,  $F^{-1}(U) = \log\left(\frac{U}{1-U}\right)$ .

Therefore,  $\log\left(\frac{U}{1-U}\right) \sim \text{Logistic. Logistic PDF is } f(x) = \frac{e^x}{(1+e^x)^2}$   $f(x) = \frac{1}{1+e^x} = u \cdot z \neq w$ Therefore,  $\log\left(\frac{U}{1-U}\right) \sim \text{Logistic. Logistic PDF is } f(x) = \frac{e^x}{(1+e^x)^2}$ 



## Normal (Gaussian) distribution

**Definition 5.4.1** (Standard Normal distribution). A continuous r.v. Z is said to have the *standard Normal distribution* if its PDF  $\varphi$  is given by

$$\varphi(z) = \frac{1}{\sqrt{2\pi}} e^{-z^2/2}, \quad -\infty < z < \infty \qquad \sqrt{\frac{1}{\sqrt{2\pi}}} e^{-\frac{t}{2}} \int_{-\frac{\pi}{2}}^{-\frac{t}{2}} e^{-\frac{t}{2}} e^{-\frac{t}{2}} \int_{-\frac{\pi}{2}}^{-\frac{t}{2}} e^{-\frac{t}{2}} e^{-\frac{t}{2}} e^{-\frac{t}{2}} \int_{-\frac{\pi}{2}}^{-\frac{t}{2}} e^{-\frac{t}{2}} e^{-\frac{t}{2}} e^{-\frac{t}{2}} \int_{-\frac{\pi}{2}}^{-\frac{t}{2}} e^{-\frac{t}{2}} e^{-\frac{t}{2}$$

We write this as  $Z \sim \mathcal{N}(0, 1)$  since, as we will show, Z has mean 0 and variance 1.

(Standard Normal CDF). The standard Normal CDF is given as

$$\Phi(z) = \int_{-\infty}^{z} \varphi(t)dt = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} e^{-t^{2}/2} dt \qquad \text{OFF The first section }$$

**Definition 5.4.3** (Normal distribution). If  $Z \sim \mathcal{N}(0,1)$ , then

$$X = \mu + \sigma Z$$

is said to have the *Normal distribution* with mean  $\mu$  and variance  $\sigma^2$ . We denote this by  $X \sim \mathcal{N}(\mu, \sigma^2)$ .

• Validity of standard Normal CDF

$$\left(\int_{-\infty}^{\infty} e^{-z^2/2} dz\right)^2 = \left(\int_{-\infty}^{\infty} e^{-x^2/2} dx\right) \left(\int_{-\infty}^{\infty} e^{-y^2/2} dy\right) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\frac{x^2+y^2}{2}} dx dy$$

$$= \int_{0}^{2\pi} \int_{0}^{\infty} e^{-\frac{r^2}{2}} r dr d\theta = \int_{0}^{2\pi} \left(\int_{0}^{\infty} e^{-v} dv\right) d\theta \qquad \text{for definition }$$

$$= \int_{0}^{2\pi} d\theta = 2\pi \qquad \text{for each }$$

• Mean 
$$E(Z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} z e^{-z^2/2} dz = 0$$
 
$$\frac{2}{3} \frac{1}{2} \frac$$

• Variance:

$$Var(z) = E(Z^{2}) - (EZ)^{2} = E(Z^{2})$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} z^{2} e^{-z^{2}/2} dz = \frac{2}{\sqrt{2\pi}} \int_{0}^{\infty} z^{2} e^{-z^{2}/2} dz$$

$$= \frac{2}{\sqrt{2\pi}} \left( -z e^{z^{2}/2} \Big|_{0}^{\infty} + \int_{0}^{\infty} e^{-z^{2}/2} dz \right) = \frac{2}{\sqrt{2\pi}} \left( 0 + \frac{\sqrt{2\pi}}{2} \right)$$

$$= 1$$

### **Exponential distribution**

**Definition 5.5.1** (Exponential distribution). Exponential r.v. X with parameter  $\lambda > 0$ , denoted by  $X \sim \text{Expo}(\lambda)$ , has PDF

$$\underbrace{(f(x))}_{\text{else}} = \begin{cases}
\lambda e^{-\lambda x} & x > 0 \\
0 & \text{else}
\end{cases}$$

$$\underbrace{(t)}_{\text{else}} = \begin{cases}
\lambda e^{-\lambda z} & 0 \\
0 & \text{else}
\end{cases}$$

The corresponding CDF is

$$\underline{F(x) = 1 - e^{-\lambda x}, x > 0}.$$

- Note that if  $X \sim \text{Expo}(\lambda)$ , then  $Y = \lambda_0 X \sim \text{Expo}(\lambda/\lambda_0)$
- Mean and Variance: For  $X \sim \operatorname{Expo}(1)$   $= \int_0^\infty x e^{-x} dx = 1$ ,  $E(X^2) = \int_0^\infty x^2 e^{-x} dx = 2$ ,  $\operatorname{Var}(X) = E(X^2) (EX)^2 = 1$

For 
$$\underline{Y} \sim \operatorname{Expo}(\lambda)$$
 we then have  $Y = \frac{1}{\lambda}X$  and 
$$E(Y) = \frac{1}{\lambda}E(X) = \frac{1}{\lambda}, \quad \operatorname{Var}(Y) = \frac{1}{\lambda^2}\operatorname{Var}(X) = \frac{1}{\lambda^2},$$

#### poiss ~ Bind of met the

Geore 38-2expo

### Exponential RV and Geometric RV



Assume the event occurrence in each subinterval is i.i.d Bern(p)

Let  $\lambda$  be the <u>averaged</u> number of events occurring in a unit time interval, then  $\lambda = pN_{\parallel}$ 



• The number of subintervals until the occurrence of an event is Geom(p).

$$P(G \ge k) = \sum_{n=k}^{\infty} (1-p)^n p = (1-p)^k$$

- ullet The t unit time corresponds to the Nt-th interval.
- As  $N \to \infty$  keeping  $Np = \lambda$  constant, we have continuous time and

unit time corresponds to the 
$$Nt$$
-th interval. 
$$N \cap \mathbb{R}$$
 
$$N \cap \mathbb{R$$

• Geometric in discrete (number of trials to see an event), Exponential in continuous (waiting time to see an event).

unit the got

E (expo(1))=-

## Properties of Exponential RVs

**Definition** 5.5.2 (Memoryless property).

A random variable X is said to have the memoryless property if for all s, t > 0

$$P(X \ge s + t | X \ge s) = P(X \ge t)^{2} 28^{-28} 68^{-4} 68^{-4} 2000$$

$$P(X \ge s + t | X \ge s) = P(X \ge t)^{2} 28^{-28} 68^{-4} 68^{-4} 68^{-4} 2000$$

$$P(X \ge s + t | X \ge s) = P(X \ge t)^{2} 28^{-28} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4}$$

$$P(X \ge s + t | X \ge s) = P(X \ge t)^{2} 28^{-28} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4}$$

$$P(X \ge s + t | X \ge s) = P(X \ge t)^{2} 28^{-28} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 68^{-4} 6$$

• Exponential distribution has the memoryless property: For  $X \sim \text{Expo}(\lambda)$ 

$$P(X \geq s + t | X \geq s) = \frac{P(X \geq s + t)}{P(X \geq s)} = \frac{e^{-\lambda(s + t)}}{e^{-\lambda s}} = e^{-\lambda t} = P(X \geq t).$$
• Let  $X$  and  $Y$  be i.i.d.  $\operatorname{Exp}(\lambda)$  
$$\min(X, Y) \sim \operatorname{Exp}(2\lambda)$$

$$\max(X, Y) = \frac{e^{-\lambda(s + t)}}{e^{-\lambda s}} = e^{-\lambda t} = P(X \geq t).$$

 $\circ \max(X,Y) - \min(X,Y)$  is independent to  $\min(X,Y)$  and  $\sim \exp(\lambda)$ 78 4424)

Continuous random variables