- TX - CHANNE - PX ->
Y=VSNR:X+2

Rate = R Code length = n # of messegs = $M = 2^{nR}$ Code = $\left\{ \times (1), \times (2), \dots, \times (M) \right\}$ $\times (m) = \left(\times_1 (m), \dots, \times_n (m) \right)$

Random widing XEX man probability Q(X)
Constellation X, 23.

"INI Re(X)

Normalized to E(|x|2]=1
where E(|x|2]= \le Q(x)|x|2
xex

Channel transition probability W(y/x), R.S.

W(y(x) = 1 e - 19-VsnR.x |2

(y1, ..., yn)

Receiver/decoder estimates in as m= 3(81..., 8n)

We can show that we can however with ever probability

where

To simplify, we define $G' = \frac{1}{\pi}e^{-\frac{1}{2}}$ to with $W(y|x) = G(y-\sqrt{sne.})$ so that after the change of vor she $t = y-\sqrt{sne.}x$, $\frac{1}{2}e^{-\log_2 x} \left[\frac{2}{4\pi} \frac{2}{2}e^{-(x)} \frac{2}{4\pi} \frac{2}$

 $E_{\bullet}(1) = -\log_{1} \left[\frac{2}{4\pi} \sum_{x \in X} Q(x)^{2} + \frac{2}{4\pi} Q(x)$

where w₁,..., w_N are the quadrature weights and z₁,... to one the quadrature roots/nodes.

E(R) = max { Eo(P) - PR }

$$\begin{aligned}
& = -\log_2\left(\int_{\mathbb{R}^2} \operatorname{d}_{\mathbf{y}} \leq \operatorname{Q}(\mathbf{x}) \operatorname{W}(\mathbf{y}|\mathbf{x}) \cdot \left(\frac{\operatorname{ZQ}(\mathbf{x}) \operatorname{W}(\mathbf{y}|\mathbf{x})^{1+\ell}}{\operatorname{W}(\mathbf{y}|\mathbf{x})^{1+\ell}}\right)^{\ell}\right) \\
& = -\log_2\left(\int_{\mathbb{R}^2} \operatorname{d}_{\mathbf{y}} \leq \operatorname{Q}(\mathbf{x}) \operatorname{G}(\mathbf{y} \cdot \operatorname{M}_{\mathbf{x},\mathbf{x}}) \left(\frac{\operatorname{ZQ}(\mathbf{x}) \operatorname{W}(\mathbf{y}|\mathbf{x})^{1+\ell}}{\operatorname{G}(\mathbf{y} \cdot \operatorname{M}_{\mathbf{x},\mathbf{x}})^{1+\ell}}\right)^{\ell}\right) \\
& = -\log_2\left(\int_{\mathbb{R}^2} \operatorname{d}_{\mathbf{x}} \leq \operatorname{Q}(\mathbf{x}) \operatorname{G}(\mathbf{y} \cdot \operatorname{M}_{\mathbf{x},\mathbf{x}}) \left(\frac{\operatorname{ZQ}(\mathbf{x}) \operatorname{W}(\mathbf{y}|\mathbf{x})^{1+\ell}}{\operatorname{G}(\mathbf{y} \cdot \operatorname{M}_{\mathbf{x},\mathbf{x}})^{1+\ell}}\right)^{\ell}\right)
\end{aligned}$$