

ADVANCED DIGITAL SIGNAL PROCESSING Chapter 7: MU-MIMO

18/11/2017

Content

- Introduction
- Linear Precoding
 - ☐ Channel Inversion (CI)
 - Regularized Channel Inversion (RCI)
 - Block Diagonalization (BD)
- Non-Linear Precoding

Introduction

- There are two Precoding methods: Linear Precoding and Non-Linear Precoding.
 - ☐ Linear Precoding: is not complex but low performance.
 - Channel Inversion (CI)
 - Regularized Channel Inversion(RCI)
 - Block Diagonalization (BD)
 - Non-Linear Precoding: is complex but high performance.

Introduction

- N_{tx}: Number of transmission antenna
- $N_{tx,k}$: Only User k
- N_{rx} : Number of receive antenna
- $N_{rx,k}$: Only User k
- Number of stream is same $N_{rx,k}$
- *K* : Number of User
- **u**: Transmission symbol vector $(N_{rx} \times 1)$
- **W**: Weight matrix $(N_{tx} \times N_{rx})$
- **H**: Channel matrix $(N_{rx} \times N_{tx})$

 $\frac{\text{Precoding}}{\mathbf{s} = \mathbf{W}\mathbf{u}}$

Normalize

$$\mathbf{x} = \frac{\mathbf{s}}{\sqrt{\gamma}}$$
$$\gamma = E[||\mathbf{s}||^2]$$

Introduction

■ MU-MIMO: 2 Users

$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{bmatrix} = \begin{bmatrix} h_{11} & h_{12} & h_{13} & h_{14} \\ h_{21} & h_{22} & h_{23} & h_{24} \\ h_{31} & h_{32} & h_{33} & h_{34} \\ h_{41} & h_{42} & h_{43} & h_{44} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} + \begin{bmatrix} n_1 \\ n_2 \\ n_3 \\ n_4 \end{bmatrix}$$
Expected H₂ IUI H₂

■ MU-MIMO Precoding: Remove IUI

Channel Inversion (CI)

E[.]: Expected value ||A||: Frobenius norm (Norm 2) $||A|| = \sqrt{trace(AA^H)}$

■ CI use inverse matrix of **H** as weight matrix **W**.

$$W_{CI} = H^H (HH^H)^{-1}$$

Precoding

$$s = W_{CI}u = H^H(HH^H)^{-1}u$$

Normalize

$$x = \frac{s}{\sqrt{\gamma_{CI}}} = \frac{s}{\sqrt{\gamma_{CI}}} = \frac{H^H (HH^H)^{-1} u}{\sqrt{\gamma_{CI}}}$$

■ Normalize gain

$$\gamma_{CI} = E[\|s\|^2] = E[\|H^H(HH^H)^{-1}u\|^2] \approx \|H^H(HH^H)^{-1}\|^2$$

Channel Inversion (CI)

Received signal

$$y = \frac{1}{\sqrt{\gamma_{CI}}} HW_{CI}u + n$$

$$= \frac{1}{\sqrt{\gamma_{CI}}} HH^{H} (HH^{H})^{-1}u + n$$

$$= \frac{1}{\sqrt{\gamma_{CI}}} Iu + n = \frac{1}{\sqrt{\gamma_{CI}}} u + n$$
IUI is removed completely

Channel Inversion (CI)

Decoding process

$$\sqrt{\gamma_{CI}}y = u + \sqrt{\gamma_{CI}}n$$

$$u = \sqrt{\gamma_{CI}}y - \sqrt{\gamma_{CI}}n$$
Noise

 \blacksquare Signal power of transmitted symbol u is attenuated

- Regularized Channel Inversion weight matrix \mathbf{W}_{RCI} is considering noise in addition to CI
- \blacksquare **W**_{RCI} is determined to **maximize SINR**.
- SINR (Signal to Interference plus Noise Ratio)

$$SINR = \frac{P}{I+N}$$

☐ P: Received power

☐ I: Interference power

■N: Noise power

RCI use inverse matrix of **H** as weight matrix **W**.

$$W_{RCI} = H^H (HH^H + \sigma^2 I)^{-1}$$

 $E[nn^H]$: Noise power

Precoding

$$s = W_{RCI}u = H^H(HH^H + \sigma^2 I)^{-1}u$$

Normalize

$$X = \frac{s}{\sqrt{\gamma_{CI}}} = \frac{s}{\sqrt{\gamma_{CI}}} = \frac{H^H (HH^H + \sigma^2 I)^{-1} u}{\sqrt{\gamma_{CI}}}$$

Normalize gain

$$\gamma_{RCI} = E[||s||^2] = E[||H^H(HH^H + \sigma^2 I)^{-1}u||^2]$$

$$\approx ||H^H(HH^H + \sigma^2 I)^{-1}||^2$$

Received signal $y = \frac{1}{\sqrt{\gamma_{RCI}}}HW_{RCI}u + n$ $= \frac{1}{\sqrt{\gamma_{RCI}}}HH^H(HH^H + \sigma^2I)^{-1}u + n$

Example: $N_{tx} \times N_{rx1}$, N_{rx2} , N_{rx3} : $6 \times 2,2,2$; $\sigma^2 = 2$

	1	2	3	4	5	6
1	-0.2828 + 1.9437i	-0.6718 + 2.7526i	0.3616 - 1.1277i	1.0393 + 1.2128i	-0.8305 - 0.2991i	-1.3233 + 0.9877i
2	1.1522 - 1.0847i	0.5756 + 0.1383i	-0.3519 + 0.0782i	0.9109 + 0.4855i	-0 . 3523 - 0 . 8999i	0.1283 + 0.3929i
3	-1.1465 + 0.2268i	-0.7781 - 1.9071i	0.2695 + 2.1066i	-0.2397 + 1.0260i	-0.1748 + 0.6347i	-1.4 424 + 0.1946i
4	0.6737 + 1.0989i	-1.0636 - 0.3650i	-2.5644 - 0.7158i	0.1810 + 0.8707	- 0.4807 + 0.0675i	1.3025 + 0.2798i
5	-0.6691 + 0.1472i	0.5530 - 0.8481i	0.4659 - 0.2805i	0.2442 - 0.3818i	0.8368 - 0.1871i	1.4099 + 0.0512i
6	-0.4003 + 2.2957i	-0.4234 - 0.7648i	1.8536 + 1.1665i	0.0964 + 0.4289i	2.5383 + 0.2917i	-1.6625 - 0.7745i

HW_{RCI}

H

		1	2	3	4	5	6
1	1	0.8179 - 0.0000i	-0.0026 + 0.0429i	-0.0499 - 0.0902i	0.0216 + 0.0436i	-0.1444 + 0.0304i	0.0118 + 0.0118i
2	2	-0.0026 - 0.0429i	0.4593 + 0.0000i	0.0571 + 0.0829i	-0.0064 - 0.1333i	0.0432 + 0.0845i	-0.1019 - 0.1852i
. 3	3	-0.0499 + 0.0902i	0.0571 - 0.0829i	0.7250 - 0.0000i	0.0557 + 0.0309i	-0.1171 + 0.0983i	0.1243 + 0.0581i
	1	0.0216 - 0.0436i	-0.0064 + 0.1333i	0.0557 - 0.0309i	0.7848 - 0.0000i	0.0366 - 0.1279i	-0.1056 + 0.0375i
Ē	5	-0.1444 - 0.0304i	0.0432 - 0.0845i	-0.1171 - 0.0983i	0.0366 + 0.1279i	0.4923 - 0.0000i	0.0936 + 0.0734i
6	5	0.0118 - 0.0118i	-0.1019 + 0.1852i	0.1243 - 0.0581i	-0.1056 - 0.0375i	0.0936 - 0.0734i	0.7624 + 0.0000i

IUI can not be removed completely

Decoding process

$$\sqrt{\gamma_{RCI}}y = HW_{RCI}u + \sqrt{\gamma_{CI}}n$$
$$u \approx \sqrt{\gamma_{CI}}y - \sqrt{\gamma_{CI}}n$$

Signal power of transmitted symbol u of RCI is attenuated, but less than CI since $\sqrt{\gamma_{RCI}} < \sqrt{\gamma_{CI}}$

MATLAB calculation result $(\sigma^2 = 2)$

$$\gamma_{CI} \approx \|H^H (HH^H)^{-1}\|^2$$

$$\gamma_{RCI} \approx \|H^H (HH^H + \sigma^2 I)^{-1}\|^2$$

Summary: CI & RCI

	Channel Inversion	Regularized Channel Inversion		
Weight matrix	$\mathbf{W}_{\mathrm{CI}} = \mathbf{H}^{\dagger} = \mathbf{H}^{\mathrm{H}} \big(\mathbf{H} \mathbf{H}^{\mathrm{H}} \big)^{-1}$	$\mathbf{W}_{\mathbf{RCI}} = \mathbf{H}^{\mathbf{H}} (\mathbf{H} \mathbf{H}^{\mathbf{H}} + \sigma^{2} \mathbf{I})^{-1}$		
Normalization gain	$\gamma_{\rm CI} \approx \left\ \mathbf{H}^{\rm H} \left(\mathbf{H}\mathbf{H}^{\rm H}\right)^{-1}\right\ ^2$	$\gamma_{\text{RCI}} \approx \left\ \mathbf{H}^{\text{H}} (\mathbf{H} \mathbf{H}^{\text{H}} + \sigma^2 \mathbf{I})^{-1} \right\ ^2$		
Noise enhancement	Strong	weak		
IUI	not occur	occur a little		
AP	Tuser 1	AP T		

Received symbol

$$y = \frac{1}{\sqrt{\gamma_{BD}}} HW_{BD}u + n$$
$$* \gamma_{BD} = E[||W_{BD}u||^2]$$

- H: Channel matrix
- \blacksquare W_{BD} : Weight matrix
- u: Transmitted symbol

- BD precoding: Remove IUI completely and low noise
- At receiver, MIMO-Decoding is performed

SVD (Singular Value Decomposition)

- $\square H_{m \times n} = U_{m \times m} \times \Sigma_{m \times n} \times V_{n \times n}^{H}$
- \square V is orthogonal matrix, then $V^{-1} = V^H$
- □ Then, $H_{m \times n} \times V_{n \times n} = U_{m \times m} \times \Sigma_{m \times n}$

 $m \times n$

$$\mathbf{H} \begin{bmatrix} \mathbf{v}_1 & \cdots & \mathbf{v}_b & \underline{\mathbf{v}_{b+1}} & \cdots & \underline{\mathbf{v}_n} \end{bmatrix} = \begin{bmatrix} \mathbf{u}_1 \sigma_1 & \cdots & \mathbf{u}_b \sigma_b & \boxed{0} & \cdots & \boxed{0} \end{bmatrix}$$

Get V_k^b as channel state information from each user

 \blacksquare $\widetilde{\mathbf{H}}_k$ is $\mathbf{H}_{\mathbf{V}}$ (has no \mathbf{V}_k^b).

$$\begin{aligned} \mathbf{H}_{\mathbf{v}} &= \begin{bmatrix} \mathbf{V}_{1}^{b} \ \mathbf{V}_{2}^{b} \ \dots \mathbf{V}_{k}^{b} \end{bmatrix}^{H} \\ \widetilde{\mathbf{H}}_{k} &= \begin{bmatrix} \mathbf{V}_{1}^{b} \ \dots \mathbf{V}_{k-1}^{b} \mathbf{V}_{k+1}^{b} \ \dots \mathbf{V}_{K}^{b} \end{bmatrix}^{H} \\ \mathbf{\widetilde{H}}_{k} &= \widetilde{\mathbf{U}}_{k} \widetilde{\boldsymbol{\Sigma}}_{k} \widetilde{\mathbf{V}}_{k}^{H} = \widetilde{\mathbf{U}}_{k} [\widetilde{\boldsymbol{\Sigma}}_{k} \ \mathbf{0}] [\widetilde{\mathbf{V}}_{k}^{b} \ \widetilde{\mathbf{V}}_{k}^{n}]^{H} \end{aligned}$$

Key point about BD method

 $lackbox{\vec{V}}_k^n$ spans Null space of $oldsymbol{\widetilde{H}}_k$ (igotimes)

$$\widetilde{\mathbf{H}}_{k}\widetilde{\mathbf{V}}_{k}^{n} = \begin{bmatrix} \mathbf{V}_{1}^{bH}\widetilde{\mathbf{V}}_{k}^{n} & \dots \mathbf{V}_{k-1}^{bH}\widetilde{\mathbf{V}}_{k}^{n} & \mathbf{V}_{k+1}^{bH}\widetilde{\mathbf{V}}_{k}^{n} & \dots \mathbf{V}_{K}^{bH}\widetilde{\mathbf{V}}_{k}^{n} \end{bmatrix}$$

$$= \mathbf{0}$$

$$\mathbf{V}_{k'}^{bH}\widetilde{\mathbf{V}}_{k}^{n} \begin{cases} \neq 0 \ (k' = k) \\ = 0 \ (k' \neq k) \end{cases} (a)$$

Weight matrix $\mathbf{W}_{\mathrm{BD}} = \left[\widetilde{\mathbf{V}}_{1}^{n} \widetilde{\mathbf{V}}_{2}^{n} \dots \widetilde{\mathbf{V}}_{K}^{n} \right]$

$$\mathbf{HW}_{\mathrm{BD}} = \begin{bmatrix} \mathbf{H}_{1}\tilde{\mathbf{V}}_{1}^{n} & \mathbf{H}_{1}\tilde{\mathbf{V}}_{2}^{n} & \cdots & \mathbf{H}_{1}\tilde{\mathbf{V}}_{k}^{n} & \cdots & \mathbf{H}_{1}\tilde{\mathbf{V}}_{k}^{n} \\ \mathbf{H}_{2}\tilde{\mathbf{V}}_{1}^{n} & \mathbf{H}_{2}\tilde{\mathbf{V}}_{2}^{n} & \cdots & \mathbf{H}_{2}\tilde{\mathbf{V}}_{k}^{n} & \cdots & \mathbf{H}_{2}\tilde{\mathbf{V}}_{k}^{n} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \mathbf{H}_{k}\tilde{\mathbf{V}}_{1}^{n} & \mathbf{H}_{n}\tilde{\mathbf{V}}_{2}^{n} & \cdots & \mathbf{H}_{k}\tilde{\mathbf{V}}_{k}^{n} & \cdots & \mathbf{H}_{k}\tilde{\mathbf{V}}_{k}^{n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \mathbf{H}_{K}\tilde{\mathbf{V}}_{1}^{n} & \mathbf{H}_{k}\tilde{\mathbf{V}}_{2}^{n} & \cdots & \mathbf{H}_{k}\tilde{\mathbf{V}}_{k}^{n} & \cdots & \mathbf{H}_{k}\tilde{\mathbf{V}}_{k}^{n} \end{bmatrix} \end{bmatrix} \mathbf{V}_{k}^{bH}\tilde{\mathbf{V}}_{k}^{n} \left\{ \neq 0 \ (k' = k) \\ \mathbf{V}_{k'}^{bH}\tilde{\mathbf{V}}_{k}^{n} \left\{ \neq 0 \ (k' = k) \\ \mathbf{V}_{k'}^{bH}\tilde{\mathbf{V}}_{k}^{n} & \mathbf{V}_{k}^{n} & \cdots & \mathbf{V}_{k}\tilde{\mathbf{V}}_{k}^{n} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{H}_{k}\tilde{\mathbf{V}}_{1}^{n} & \mathbf{H}_{k}\tilde{\mathbf{V}}_{2}^{n} & \cdots & \mathbf{H}_{k}\tilde{\mathbf{V}}_{k}^{n} \\ \mathbf{V}_{k}^{n} & \mathbf{V}_{k}^{bH}\tilde{\mathbf{V}}_{k}^{n} & \mathbf{V}_{1}\mathbf{\Sigma}_{1}\mathbf{V}_{1}^{bH}\tilde{\mathbf{V}}_{k}^{n} \\ \mathbf{V}_{2}\mathbf{\Sigma}_{2}\mathbf{V}_{2}^{bH}\tilde{\mathbf{V}}_{k}^{n} & \cdots & \mathbf{U}_{1}\mathbf{\Sigma}_{1}\mathbf{V}_{1}^{bH}\tilde{\mathbf{V}}_{k}^{n} & \cdots & \mathbf{U}_{2}\mathbf{\Sigma}_{2}\mathbf{V}_{2}^{bH}\tilde{\mathbf{V}}_{k}^{n} \\ \mathbf{V}_{k}^{n} & \mathbf{V}_{k}^{b}\mathbf{V}_{k}^{n} & \mathbf{V}_{k}\mathbf{V}_{k}^{bH}\tilde{\mathbf{V}}_{k}^{n} & \cdots & \mathbf{U}_{2}\mathbf{\Sigma}_{2}\mathbf{V}_{2}^{bH}\tilde{\mathbf{V}}_{k}^{n} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \mathbf{U}_{k}\mathbf{\Sigma}_{k}\mathbf{V}_{k}^{bH}\tilde{\mathbf{V}}_{1}^{n} & \mathbf{U}_{k}\mathbf{\Sigma}_{k}\mathbf{V}_{k}^{bH}\tilde{\mathbf{V}}_{2}^{n} & \cdots & \mathbf{U}_{k}\mathbf{\Sigma}_{k}\mathbf{V}_{k}^{bH}\tilde{\mathbf{V}}_{k}^{n} & \cdots & \mathbf{U}_{k}\mathbf{\Sigma}_{k}\mathbf{V}_{k}^{bH}\tilde{\mathbf{V}}_{k}^{n} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \mathbf{U}_{k}\mathbf{\Sigma}_{k}\mathbf{V}_{k}^{bH}\tilde{\mathbf{V}}_{1}^{n} & \mathbf{U}_{k}\mathbf{\Sigma}_{k}\mathbf{V}_{k}^{bH}\tilde{\mathbf{V}}_{2}^{n} & \cdots & \mathbf{U}_{k}\mathbf{\Sigma}_{k}\mathbf{V}_{k}^{bH}\tilde{\mathbf{V}}_{k}^{n} & \cdots & \mathbf{U}_{k}\mathbf{\Sigma}_{k}\mathbf{V}_{k}^{bH}\tilde{\mathbf{V}}_{k}^{n} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{U}_{k}\mathbf{V}_{k}^{n}\tilde{\mathbf{V}}_{1}^{n} & \mathbf{U}_{k}\mathbf{\Sigma}_{k}\mathbf{V}_{k}^{bH}\tilde{\mathbf{V}}_{2}^{n} & \cdots & \mathbf{U}_{k}\mathbf{\Sigma}_{k}\mathbf{V}_{k}^{bH}\tilde{\mathbf{V}}_{k}^{n} & \cdots & \mathbf{U}_{k}\mathbf{\Sigma}_{k}\mathbf{V}_{k}^{bH}\tilde{\mathbf{V}}_{k}^{n} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{U}_{k}\mathbf{V}_{k}^{n}\tilde{\mathbf{V}}_{1}^{n} & \mathbf{U}_{k}\mathbf{\Sigma}_{k}^{n}\mathbf{V}_{k}^{n}\tilde{\mathbf{V}}_{2}^{n} & \cdots & \mathbf{U}_{k}\mathbf{\Sigma}_{k}\mathbf{V}_{k}^{bH}\tilde{\mathbf{V}}_{k}^{n} & \cdots & \mathbf{U}_{k}\mathbf{\Sigma}_{k}\mathbf{V}_{k}^{bH}\tilde{\mathbf{V}}_{k}^{n} & \cdots & \mathbf{U}_{k}\mathbf{\Sigma}_{k}\mathbf{V}_{k}^{bH}\tilde{\mathbf{V}}_{k}^{n$$

Example: 4x2,2

H(4x22)

$$\begin{bmatrix} h_{11} & h_{12} & h_{13} & h_{14} \\ h_{21} & h_{22} & h_{23} & h_{24} \\ h_{31} & h_{32} & h_{33} & h_{34} \\ h_{41} & h_{42} & h_{43} & h_{44} \end{bmatrix} = \begin{bmatrix} \mathbf{H}1 \\ \mathbf{H}2 \end{bmatrix}$$

H1(rank:2)

$$\begin{bmatrix} h_{11} & h_{12} & h_{13} & h_{14} \\ h_{21} & h_{22} & h_{23} & h_{24} \end{bmatrix}$$

H2(rank:2)

$$\begin{bmatrix} h_{31} & h_{32} & h_{33} & h_{34} \\ h_{41} & h_{42} & h_{43} & h_{44} \end{bmatrix}$$

- \blacksquare Get channel state information($\mathbf{V}_1^b, \mathbf{V}_2^b$)
 - SVD (H1)

$$\mathbf{U}_{1}\mathbf{\Sigma}_{1}[v_{11} \quad v_{12} \quad v_{13} \quad v_{14}] \ (v_{11} \sim v_{14} \in R^{4})$$

■ SVD (H2)

$$\mathbf{U}_{2}\Sigma_{2}[v_{21} \quad v_{22} \quad v_{23} \quad v_{24}](v_{21} \sim v_{24} \in R^{4})$$

Example: 4x2,2

$$\square \widetilde{\mathbf{H}}_1 = \left[\mathbf{V}_2^b\right]^H$$
, $\widetilde{\mathbf{H}}_2 = \left[\mathbf{V}_1^b\right]^H$ ($\widetilde{\mathbf{H}}_1$, $\widetilde{\mathbf{H}}_2$: rank 2)

$$\begin{array}{c} \square \text{ SVD } (\widetilde{\mathbf{H}}_{1}) \\ \widetilde{\mathbf{U}}_{1}\widetilde{\boldsymbol{\Sigma}}_{1} \left[\widetilde{\boldsymbol{v}}_{11} \quad \widetilde{\boldsymbol{v}}_{12} \quad \widetilde{\boldsymbol{v}}_{13} \quad \widetilde{\boldsymbol{v}}_{14}\right] (\widetilde{\boldsymbol{v}}_{11} \sim \widetilde{\boldsymbol{v}}_{14} \in R^{4}) \\ \widetilde{\mathbf{V}}_{1}^{n} \\ \widetilde{\mathbf{H}}_{1}\widetilde{\mathbf{V}}_{1}^{n} = \mathbf{V}_{2}^{b^{H}}\widetilde{\mathbf{V}}_{1}^{n} = \mathbf{0} \end{array} = \begin{bmatrix} \mathbf{H}1 \\ \mathbf{H}2 \end{bmatrix} \left[\widetilde{\mathbf{V}}_{1}^{n} \ \widetilde{\mathbf{V}}_{2}^{n}\right]$$

$$\widetilde{\mathbf{U}}_{2}\widetilde{\mathbf{\Sigma}}_{2}[\widetilde{\boldsymbol{v}}_{21} \quad \widetilde{\boldsymbol{v}}_{22} \quad \widetilde{\boldsymbol{v}}_{23} \quad \widetilde{\boldsymbol{v}}_{24}] (\widetilde{\boldsymbol{v}}_{11} \sim \widetilde{\boldsymbol{v}}_{14} \in R^{4}) \\
\widetilde{\mathbf{V}}_{2}^{n} \widetilde{\mathbf{V}}_{2}^{n} = \mathbf{V}_{1}^{bH} \widetilde{\mathbf{V}}_{2}^{n} = \mathbf{0}$$

$$= \begin{bmatrix} \mathbf{U} \mathbf{\Sigma} \mathbf{V}_{2}^{bH} \widetilde{\mathbf{V}}_{1}^{n} & \mathbf{U} \mathbf{\Sigma} \mathbf{V}_{1}^{bH} \widetilde{\mathbf{V}}_{2}^{n} \\ \mathbf{U} \mathbf{\Sigma} \mathbf{V}_{2}^{bH} \widetilde{\mathbf{V}}_{1}^{n} & \mathbf{U} \mathbf{\Sigma} \mathbf{V}_{2}^{bH} \widetilde{\mathbf{V}}_{2}^{n} \end{bmatrix}$$

• Weight matrix
$$\mathbf{W}(4x4)$$

$$\mathbf{W} = [\widetilde{\mathbf{V}}_1^n \ \widetilde{\mathbf{V}}_2^n]$$

HW is

$$\begin{bmatrix} \mathbf{H1} \\ \mathbf{H2} \end{bmatrix} [\widetilde{\mathbf{V}}_1^n \ \widetilde{\mathbf{V}}_2^n]$$

$$= \begin{bmatrix} \mathbf{U} \mathbf{\Sigma} \mathbf{V}_1^b \\ \mathbf{U} \mathbf{\Sigma} \mathbf{V}_2^b \end{bmatrix} [\widetilde{\mathbf{V}}_1^n \ \widetilde{\mathbf{V}}_2^n]$$

$$=\begin{bmatrix} \mathbf{U}\boldsymbol{\Sigma}\mathbf{V}_1^{bH}\widetilde{\mathbf{V}}_1^n & \mathbf{U}\boldsymbol{\Sigma}\mathbf{V}_1^{bH}\widetilde{\mathbf{V}}_2^n \\ \mathbf{U}\boldsymbol{\Sigma}\mathbf{V}_2^{bH}\widetilde{\mathbf{V}}_1^n & \mathbf{U}\boldsymbol{\Sigma}\mathbf{V}_2^{bH}\widetilde{\mathbf{V}}_2^n \end{bmatrix}$$

$$= \begin{bmatrix} \mathbf{U} \mathbf{\Sigma} \mathbf{V}_1^{bH} \widetilde{\mathbf{V}}_1^n & \mathbf{0} \\ \mathbf{0} & \mathbf{U} \mathbf{\Sigma} \mathbf{V}_2^{bH} \widetilde{\mathbf{V}}_2^n \end{bmatrix}$$

Comparison CI, RCI - BD

■ BD is more complex than CI, Because BD needs *SVD*.

- CI has no Diversity Gain like above picture.
- RCI has Diversity Gain, but it's smaller than BD.

BER Characteristic (CI - BD)

■ BER Characteristic: 4x2,2

■ The BER of BD is always better than that of CI

- MU-MIMO Precoding
 - □ Channel Inversion
 - Regularized Channel Inversion
 - Block Diagonalization

END