(54) SOLID-STATE IMAGE PICKUP DEVICE

(11) 57-99876 (A)

(43) 21.6.1982 (19) JP

(21) Appl. No. 55-177635

(22) 15.12.1980

(71) SHARP K.K. (72) YASUSHI WATANABE

(51) Int. Cl3. H04N5/30, H01L27/14

PURPOSE: To enable the discrimination of dark/light over a broad range and to increase the reliability of an image pickup device, by changing the potential of a control gate, in a device supplying the stored charge of a photoelectric conversion section to a signal readout section.

CONSTITUTION: A drain region OFD absorbing charge to be overflowed is provided near a photoelectric conversion section PD, a gate electrode CG controlling a stored charge is provided between the drain region OFD and the section PD, and a control signal V1 changing the level for time in a storage period t1 of charge at the section PD is applied to the gate electrode CG, allowing to discriminate the response of a solid-state image pickup device to the intensity of light against a broad range of dark/light state in the same visual field.

a: potential

(54) OPERATING DEVICE OF IMAGE PICKUP TUBE

(11) 57-99877 (A)

?

(43) 21.6.1982 (19) JP

(21) Appl. No. 55-176440

(22) 12.12.1980

(71) MATSUSHITA DENSHI KOGYO K.K.(1)

(72) MASAHIRO YOSHIMOTO(4)

(51) Int. Cl3. H04N5/34

PURPOSE: To achieve a prescribed stable beam control effect, by flowing a beam current neutralizing charge image, even if the incident light amount to a pickup tube is excessive, in a pickup tube operating device using a photoconductive type pickup tube.

CONSTITUTION: With a pickup tube 10 having a diode gun and triode construction, Ib-Ic characteristics are mutually different, then a signal correcting means 11 is provided for a signal processing system applied to a beam control electrode G1 of the pickup tube, allowing to achieve a prescribed beam control effect very stably even for very greater signal current Is.

5: shunt, 7: operational amplifier, 8: comparison amplifier. a: reference current source

(54) CHARACTER BROADCAST RECEIVER

(11) 57-99878 (A)

(43) 21.6.1982 (19) JP

(21) Appl. No. 55-176089

(22) 12.12.1980

(71) SHARP K.K. (72) NAOKI NISHIDA(3)

(51) Int. Cl3. H04N5/44

PURPOSE: To prevent confusion between visual and audible senses, by reproducing background music at the playback of character information, in a signal receiver broadcasting character information signals on a television signal.

CONSTITUTION: In receiving normal television program sources, a switching circuit 23 is switched to a television side. When an index signal for fully fixed display is included in a reception data transmitted on a character broadcasting data bus 14, an input and output controlling circuit 21 applies a background music BGM start signal to a power supply 24 and a delay circuit 25 of a BGM generator 20. Thus, the switching circit 23 is switched to the BGM side, music information from a melody generator 22 is reproduced from a speaker 30 and the character information is pictured on a television screen.

(B) 日本国特許庁 (JP)

① 特 許 出 願 公 開

⑩公開特許公報(A)

昭57-99876

(1) Int. Cl.³ H 04 N 5/30 H 01 L 27/14

識別記号

庁内整理番号 6940-5C 7021-5F

砂公開 昭和57年(1982)6月21日

発明の数 1 審査請求 未請求

(全 8 頁)

9固体撮像装置

20特

顧 昭55—177635

②出 願 昭55(1980)12月15日

⑩発 明 者 渡辺恭志

大阪市阿倍野区長池町22番22号

シヤープ株式会社内

⑪出 願 人 シャープ株式会社

大阪市阿倍野区長池町22番22号

邳代 理 人 弁理士 福士愛彦

99 249 78

1. 発明の名称

固体摄像装置

- 2 特許請求の範囲
 - 土 光電変換部と信号配み出し部との間に設けられた転送電極に印加する脱み出し制御信号によって、上記光電変換部に蓄積された電荷を、信号記み出し部を強力を固体接換する方式を登れて、光電変換をするが、ないないでは、では、大電がであるが、では、大電ででは、では、大型を設け、では、大型を設け、では、大型を設け、では、大型を設け、では、大型を設け、では、大型を設け、では、大型を設け、では、大型を設け、関連では、大型を設け、関連では、大型を設け、関連では、大型を設け、関連では、大型を設け、関連では、大型を設めるが、大型を設定して、大型を設定して、大型を決定して、大型を表しまする。
- 3 発明の詳細な説明

本発明は固体設像装置の光量変換特性の改善に 腕する。 フォトダイオード、ないしはポリシリコン薄膜等の透明電極で被われたMOSダイオード構造が用いられている。との種の光質変換部でをされる光起電荷の積分特性としては、入射光の分光特性が一定であれば光強度及び光積分時間に径径比例する。実用されている固体撮像装置の光電変換部は、一般には光積分時間が一定になるように動作させているため、蓄積される電荷量としては光強度に比例することになる。

光電変換素子では、光起電荷が素子の扱い得る 最大電何量に選すると、以後光量が増大しても出 力信号は一定値となり、光強度(機軸)と信号電 何値(縦軸)の関係で表わされる光電変換特性は 第1図直線のようになる。

处で人間の目の光強度に対する応答性は、フェ ヒネルの法則として知られている如く、光強度の 対波に比例し、広い認用の明暗に渡つて明度差を 識別することができる。第2図は人間の目の感度 と光強度との84条を示す図で、第1図に比べて広 上記のような光電変換案子の応答光強度範囲の 挟さを開う手段として逆来からオートアイリス機 薬で具備させる方法が採られている。しかしこの ような手段を深用したとしても、同一説野内の明 度度に対しては強能することができず、依然として よと配逆来の欠点は解決されなかつた。即ち、 譲装配自体に人間の目と同じような光電変換符性 をもたせることが切望されながら、未だ充分な 能を備名た姿質が翻発されたとはいえたかつた。

本発明は上記従来の固体扱像装置にかける問題 点に握みてなされたもので、光電変換部での光起 電荷の審積を簡単左縁成によつて制御し、よう広 い範囲の明暗を設別し待る固体設像装置を提供する。

次に固体操像装置としてインターライン転送方式CCD環像装置を実施例に挙げて説明する。

第3図は関体操像装置を譲成する半導体基板の 主要領域のボテンシャルを示す図で、個方向は半 導体基板の領域を、維方向はボテンシャルの高さ を示している。本実施例にかいてはP型シリコン P型基板に接像のための光電変換部をはじめ、 光電変換部に取り入れられた電荷を続み出している。 会するためのCCDシフトレジスタ等が一体に 設けられる。上記光電変換部はP型基板に取り入れる。上記光電変換部はP型を表してなるPーn接合にの選択を形成してなるPーn接合に密信号ができませて、Pーn接合に密信号が設けられている。フォトダイオは し傾眩が設けられている。フォトダイオは し傾眩が設けられている。フォトダイオは と信号続み出し領域 CCD との間に位置をが設 領域でよれ、基板表面に無談膜を介して電極が設

けられた麦面チャネルのトランスファゲートを構

成し、該トランスフアゲートTG に印加される電

位によつて上記P-n接合部PDに蓄積された電

何のCCDシフトレジスタへの読み出しが制御さ

基板が用いられるが、 n型シリコン蟇板を用いて

も電位の符号が反応するととを除き全く同様に論

じるととができる。

れる。

また上記半導体基板のフォトダイオードPDK ・ 近接させて、上記読み出し領域のCDとは異たる

領域に、フォトダイオードPD部でのオーバーフロー電荷を吸収するためのドレイン領域のFDが設けられ、次に述べる制御ゲートCGのいかなるボテンシャルより十分深くなるように高い電位の環流電源に接続されている。フォトダイオード PDとドレイン領域のFDとのよりといいます。 電位によってフォトダイオードPDとドレイン領域のFDとの導通状態が制御される。

次に上記構造の固体摄像装置において、第4図 乃至第6図を用いて本発明の動作を説明する。

第4図において、信号V:c は上記トランスファグートTGに印加される信号で、フォトダイオードPDでの単位積分期間も。を決める役目を果し、単位積分期間っ。の開始端又は終端の辞間的た別間にVェレベルのパルス信号が与えられる、該Vェレベルの電位がトランスファグートTGにチえられると、トランスファゲートTGでのポテ

ンスフアゲートでGがオン状態に左つてフォトダイオードPDとCCDシフトレジスタが濾過にのストダイオードPDのマーn接合部にでは何がCCDシフトレジスタが適過のおいたな何がCCDシフトレジスタとしてなった。上記信号読み出し動作の後yrc信号がL(低)レベルに左ると、トランスルは属のサールでをつて、アールを透断していたって、アールを透断していたのでで、アールを透断して生じる光記電荷がフォトダイオードPDに審積される。

一方Vţc 君号がエレベルの扇間内に、制御ゲートCGに印加される電圧Vcc 社、まず系4図に示すV」レベルの信号をt,(tiへto)期間印加する。このV」レベルは第3図の制御ゲートCGに依礙V」で示すポテンシャルを与え、越t, 帰間内にポテンシャルV」に相当する光電館何がフォトダイオードPDに蓄積され、オーバーフローした延崎は深いレベルに限にれているドン

第5図は上記のように制御ゲートへの印加電圧 V_{co} を時間的に変化させた場合の時間と、信号 まとの関係を示す図である。図中時間軸は単位光 議分時間と V_{co} 信号の変化時点との比で与えられ、上記第4図の動作では $t_{K}=\frac{t_{co}}{t_{co}}$ の時点で V_{co} 信号のレベルが変化する。また信号重は V_{co} 信号のレベルの比で与えられ、第4図の動作では V_{co} 信号のレベルの出で与えられ、第4図の動作では V_{co} に の信号によつて $Q_{co}=\frac{V_{co}-V_{co}}{V_{co}-V_{co}}$ の信号 V_{co} の V_{co}

第5図の大実感で示す近れ滅は、放大の光量反

尚、Vcc 信号のti/t。及びVi/Viの個を変えるととによって第5図、第6図の名種録の の記を変化させ得る。

また上記動作は1回の審積期間に制調ゲートの 這位を一度だけ変化させる場合を挙げたが、第7 I_m を照射して光起電荷を蓄積させた場合の信号量を示している。とこで最大の光速度 I_m は図中(0, 0), (1, 1)を結ぶ値線による光速度を I_n とすると $I_m = \frac{1-q_E}{1-t_E} I_1$ で与えられ、また圏折点を結ぶ項線による光速度 I_n の、 $I_n = \frac{q_E}{t_E} I_1$ で与えられる。

上記 q z , t x の各組は制御ゲートC G に印加する V c 。 信号を制御することによつて変えることができ、第 5 図の太実線は t z , q z の値を送ぶことによつて変化させ得る。

今第4図のVcc 信号が印加されている状態で、フォトダイオードPDに照射される光の強度Iが上記I。より弱い場合には、第5図から光記電荷はフオトダイオードPDからオーバーフローする ことなく継続して直縁的変化で審積され、該光強 反の直縁と時刻1で凝細との交点で示される信号 量が溶積される。

光振度 I が I 。を認えると、 t 。時間内にその 光振度で電荷が蓄電され、信号電荷が q 。 に選し た時点から時刻 t 。までの房間は密鎖電荷の均大

て動作させるとともできる。複数段階に順次ポテンシャルを変化させ、光強度の増大につれて応答信号変化が小さくなる方向で任意の光電変換待性を得ることができ、第2図の曲線により近づけることができる。

尚制御ゲートCCの電位変化量を小さくして段階を多くした場合の極限として連続的変化によっても同様の光電変換待性が得られる。上記実施例はインターライン伝送方式のCCD遺体操像変置を挙げたが、フレーム 転送方式などその他の固体操像装置にも適用することができ、電荷院出しにスイッチングMOSトランジスタを用いたMOS型機像装置にも適用できる。

以上本発明によれば、制御ゲートのポテンシャルを変化させるととによって固体摄像装置の光強度に対する応答が同一視野内での広範囲の明暗に対して最別可能となり、損像装置の信頼性を著しく高めるととができる。

4. 図面の簡単な説明

関係を示す図、第2図は人間の目の光強度一光態度の関係を示す図、第3図は本発明による関いによる第4図の半導体基板要部ボテンシャル図、第4図は本発明による遺体後、第5図は第4図のかけまる図は、カックチャートでは第4図のかけまる図でを示す図、第6図はでは、第6図はでは、第6図はでは、第6図はでは、第6図はでは、第6図はでは、第6図はでは、第6図はでは、第6図はでは、第6図はでは、第4図のがある。

P D: フォトダイオード、 C C D: 電荷転送 用シフトレジスタ、 T G: トランスフアゲート、 C G: 制御ゲート、 O F D: ドレイン領域。

代理人 弁理士 福 士 殳 彦

手 続 補 正 魯

昭和56年2月9日

特許庁長官

殿

- 1. 事件の表示 特額昭 55-/77635
- 2. 発明の名称 固体機像装置
- 3. 楠正をする者
 事件との関係 特許出願人
 住所 ※545 大阪市阿倍野区長池町22番22号
 名称 (504) シャープ株式会社
 代表者佐伯 旭
- 4. 代 理 人 住所 Φ545 大阪市阿倍野区長池町22番22号 レ + 一プ株式会社。 氏名 弁理士 (6236) 福一士 東京東北技術等
- 5. 福正命令の日付

自 発

- 6. 補正の対象
- 1)明細書全文
- 7. 補正の内容 明細暋全文を別紙の通り補正する。

フォトダイオード、たいしはポリシリコン薄膜等の透明電極で液われたMOSダイオード構造が用いられている。この種の光電変換部でなされる光励起電荷の積分特性としては、入射光の分光特性が一定であれば光強度及び光積分時間に低度と比例する。実用されている固体撮像装置の光電変換部は、一般には光積分時間が一定になるように動作させているため、審領される電荷量としては光強度に比例することになる。

光電変換素子では、光起電荷が素子の扱い得る 最大電荷量に選すると、以後光量が増大しても出 力信号は一定値となり、送強度(横軸)と信号電 荷量(縦軸)の関係で表わされる光電変換特性は 第1図直線のようになる。

処で人間の目の光強度に対する応答性は、フェ ヒネルの法則として知られている如く、光強度の 対数に比例し、広い範囲の明暗に亘つて明度差を 識別することができる。第2図は人間の目の感覚 と光強度との関係を示す図で、第1図に比べて広 明細

発明の名称

固体摄像装置

- 2. 特許請求の範囲
 - 1. 光電変換部と信号読み出し部との間に設けられた転送障壁の電位を読み出し制御信号によって制御することにより、上記光電変換部に番資体では一次のでは一つでは、光電変換のではないでは、光電変換の間に蓄積電では、光電変換のであるが、でのでは、光電変換のでは、光電変換のでは、光電変換のでは、光電変換のでは、光電変換のでは、光電変換のでは、光電変換がでのでは、光電変換ができる制御信号を印加して、光電変換符性を光量の変化に伴うととを再放とする回体破像装置。
- 3. 発明の詳細な説明

本発明は固体撤線装置の光電変換特性の改善に関する。

固体磁像装置の光電変換部は通常 P-N 接合の

本発明は上記従来の固体撮像装置における問題点に置みてなされたもので、光電変換部での光起起電荷の審領を簡単な構成によつて制御し、より広い範囲の明暗を識別し得る固体操像装置を提供する。

次に固体操像装置としてインタータイン転送方式CCD操像装置を契施例に挙げて説明する。

第3図は固体機像接慮を解成する半導体基板の 主要領域のポテンシャルを示す図で、横方向は半 場体基板の領域を、縦方向はポテンシャルの高さ 基板が用いられるが、 n型シリコン基板を用いて も 電位の符号が反転することを除き全く同様化論 じることができる。

P型基板に最像のための光電変換部をはじめ、 光電変換部に取り入れられた電荷を読み出して転 送するためのCCDシフトレジスタ等が一体的に 設けられる。上記光電変換部はP型基板に1型不 純物領域を形成して左る P - n 接合フォトダイオ - FPDに近接させて、P-n接合に蓄積された **電荷を取り込むためのCCDからなる信号読み出** し領域が設けられている。フォトダイオードPD と信号読み出し領域CCDとの間に位置する領域 TGには電位障壁が設けられ、障壁の高さを制御 信号によつて光積分期間終了毎に低下せしめると とにより上記P-n接合部PDに蓄積された電荷 のCCDシフトレジスタへの読み出しが実行され る。電位障壁領域TGは一般には器板炎面に絶象 膜を介して笣極が設けられたトランスファゲート により構成される。以下の説明においてはトラン スファゲート構造でありかつその下が表面チャネ

ル構造の場合について述べるが、トランスファゲートを用いなくても上記動作が可能である場合及びトランスファゲートを用いかつその下が埋め込みチャネル構造の場合であつても本発明の動作は同様に義論される。

次に上記構造の園体撮像装置において、第4型

乃至第6図を用いて本発明の動作を説明する。

第 4 図において、信号 V_{TC} は上記トランスファ ゲートTGに印加される信号で、フォトダイオー ドPDでの単位積分期間 to を決める役目を果し、 単位責分期間 to の開始端又は終端の瞬間的な期 間にVH レベルのパルス信号が与えられる。該VH レベルの竜位がトランスファゲートTGに与えら れると、トランスファゲートTGでのポテンシャ ルは第3図 vH で示す高さとなり、トランスファ ゲートTGがオン状態になつてフォトダイオード PDとCCDシフトレジスタが導通し、瞬間的に フォトダイオードPDのP- n 接合部に蓄積され ていた電荷がCCDシフトレジスタ側に読み出さ れる。上記信号読み出し動作の後Vrg信号がし (低)レベルになると、トランスファゲートTG にむけるチャネルのポテンシャルは弟3図の v. で示すレベルになつて、P-n接合部PDとCCD シフトレジスタ間のチャネルを遮断し、照射光に 对応して生じる光起電荷がフォトダイオードPD

一方VTG信号がLレベルの期間内に、制御ゲー トCGに印加される電圧Vcgは、まず第4図に示 す V₁ レベルの信号を t₁ (t₁ < t₀)期間印 加する。このVi レベルは第3図の制御ゲート CGに破線v₁ で示すポテンシャルを与え、該t₁ 期間内にポテンシャルv」に相当する光起電荷が フォトダイオードPDに否領され、オーバーフロ - した電荷は深い レベルに保たれているドレイン 領域OFDに吸収される。従つて、たとえ光照射 が継続していても、との間のフォトダイオード PDの最大荷重はポテンシャル vi で規制された 一定値に抑えられる。次にt₁ 期間後 V_{CC} 信号と して制御ゲートCGに、第3図のv2 で示すポテ ンシャルを与える V 2 レベルの電圧が印加される。 該電圧V₂ の印加により制御ゲートCGでのポテ ンシャルが変化して、フォトダイオードPDへの 番領電荷の上槓みを可能し、上記に 期間に既に 蓄領された苞荷に加えられ、単位光領分期間 to

の全体としての電荷量を形成する。

 V_{CG} を時間的に変化させた場合の時間と、信号量との関係を示す図である。図中時間軸は単位光質分時間 t_0 に対する比で与えられ、上記第4図の動作では t_K = t_1 / t_0 の時点で V_{CG} 信号の v ベルが変化する。また信号量は V_{TG} 信号の高 v ベル v_1 と v_2 により定められる最大器積電荷量に対する比で与えられ、第4図の動作では t_K に達するまでは高々 v_1 = v_1 = v_2 の信号量が審積される。

第 5 図の太実線で示す折れ線は、最大の光速度 l_m を照射して光起電荷を蓄積させた場合の信号 量を示している。ととで最大の光強度 l_m は図中 (0,0) , (1,1) を結ぶ直線による光強度 E_1 とすると $I_m = \frac{1-q_K}{1-t_K} I_1$ で与えられ、また屈折点を結ぶ直線による光強度 I_0 は、 $I_0 = \frac{q_K}{t_0} I_1$ で与えられる。

を示す。即ち最像装置として明度差の識別可能な 光強度の範囲は $\mathbf{m} = \mathbf{I}_{\mathbf{m}} / \mathbf{I}_{\mathbf{I}_1}$ 倍に拡大される。 尚、 $\mathbf{V}_{\mathbf{CG}}$ 信号の \mathbf{t}_1 / \mathbf{t}_0 及び \mathbf{V}_1 , \mathbf{V}_2 の値を変えることによつて第 $\mathbf{5}$ 図 , 第 $\mathbf{6}$ 図の各直線の勾配を変化させ得る。

また上記動作は1回の蓄積期間に制御ゲートの 電位を一度だけ変化させる場合を挙げたが、第7 図乃至第9図に示す如く2段階に亙つて変化させ て動作させることもできる。複数段階に順次ポテンシャルを変化させ、光強度の増大につれて応答 信号変化が小さくなる方向で任意の光電変換特定 を得ることができ、第2図の曲線により近づける ことができる。

尚制御ゲートCGの電位変化量を小さくして段階を多くした場合の優限として連続的変化によつても同様の光電変換特性が得られる。上記実施例はインターライン転送方式のCCD固体嵌像装置を挙げたが、フレーム転送方式などその他の固体

今第4図のVcc 信号が印加されている状態で、フォトダイオードPDに照射される光の強度 1 が上記 1 0 より弱い場合には、第5図から光起電荷はフォトダイオードPDからオーバーフローすることなく継続して直線的変化で審領され、該光強度の直線と時刻1で縦軸との交点で示される信号量が審領される。

型機像装置にも適用できる。

以上本発明によれば、制御ゲートのポテンシャルを変化させることによつて固体機像装置の光強 度に対する応答が同一視野内での広範囲の明暗に 対して識別可能となり、最像装置の信頼性を著し く高めることができる。

4. 図面の簡単な説明

PD:フォトダイオード、CCD:電荷転送用 シフトレジスタ、TG:トランスファゲート、CG : 制御ゲート、OFD:ドレイン領域。

代理人 弁理十 福 士 愛 彦

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:	
☐ BLACK BORDERS	
IMAGE CUT OFF AT TOP, BOTTOM OR SIDES	•
FADED TEXT OR DRAWING	
BLURRED OR ILLEGIBLE TEXT OR DRAWING	
☐ SKEWED/SLANTED IMAGES	
COLOR OR BLACK AND WHITE PHOTOGRAPHS	
GRAY SCALE DOCUMENTS	
LINES OR MARKS ON ORIGINAL DOCUMENT	
REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY	
□ OTHER:	

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.