```
In [18]:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
In [5]:
import pandas as pd
import zipfile
# Specify the zip file path
zip file path = '/content/titanic.zip'
# Specify the CSV file within the zip file you want to load
csv file name = 'train.csv' # or 'gender submission.csv', or 'test.csv'
# Open the zip file
with zipfile.ZipFile(zip file path, 'r') as zip ref:
    # Extract the specific CSV file to a BytesIO object
    with zip ref.open(csv file name) as file:
        # Read the CSV data into a pandas DataFrame
        df = pd.read csv(file)
# Now you can work with the 'df' DataFrame
print(df.head())
   PassengerId Survived Pclass \
0
            1
                       0
                               3
1
             2
                       1
                               1
2
             3
                               3
                       1
3
             4
                       1
                               1
             5
                               3
4
                       0
                                                Name
                                                         Sex
                                                               Age SibSp \
0
                             Braund, Mr. Owen Harris
                                                        male 22.0
                                                                         1
1
  Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0
                                                                         1
2
                              Heikkinen, Miss. Laina female 26.0
                                                                         0
3
        Futrelle, Mrs. Jacques Heath (Lily May Peel)
                                                      female 35.0
                                                                         1
4
                            Allen, Mr. William Henry
                                                        male 35.0
                                                                         0
   Parch
                    Ticket
                               Fare Cabin Embarked
                 A/5 21171
0
       0
                             7.2500
                                      NaN
                                                 S
1
                  PC 17599 71.2833
                                      C85
                                                 C
2
         STON/02. 3101282
                                                 S
       0
                             7.9250
                                      NaN
3
                                                 S
       0
                    113803
                           53.1000 C123
                                                 S
4
       0
                    373450
                             8.0500
                                      NaN
In [6]:
# Information about columns
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):
#
     Column
                  Non-Null Count Dtype
                  _____
     PassengerId 891 non-null
 0
                                  int64
 1
                                  int64
     Survived
                  891 non-null
```

891 non-null

int64

2

Pclass

3	Name	891	non-null	object			
4	Sex	891	non-null	object			
5	Age	714	non-null	float64			
6	SibSp	891	non-null	int64			
7	Parch	891	non-null	int64			
8	Ticket	891	non-null	object			
9	Fare	891	non-null	float64			
10	Cabin	204	non-null	object			
11	Embarked	889	non-null	object			
<pre>dtypes: float64(2), int64(5), object(5)</pre>							
memory usage: 83.7+ KB							

In [7]:

Statistical summary df.describe()

Out[7]:

	Passengerld	Survived	Pclass	Age	SibSp	Parch	Fare
count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

Distributions

2-d distributions

Values

In [8]:

Check for missing values
df.isnull().sum()

Out[8]:

	0
Passengerld	0
Survived	0
Pclass	0
Name	0
Sex	0
Age	177
SibSp	0
Parch	0
Ticket	0
Fare	0
Cabin	687
Embarked	2

dtype: int64

In [9]:

```
# Value counts for categorical columns
df['Sex'].value_counts()
df['Embarked'].value_counts()
```

Out[9]:

count

Embarked

S 644

C 168

Q 77

dtype: int64

```
In [10]:
```

```
# Histograms
df['Age'].hist(bins=30)
plt.title('Distribution of Age')
plt.xlabel('Age')
plt.ylabel('Count')
plt.show()

# Boxplots
sns.boxplot(x='Pclass', y='Age', data=df)
plt.title('Boxplot of Age by Pclass')
plt.show()
```


Boxplot of Age by Pclass

In [11]:

```
# Scatterplot
sns.scatterplot(x='Age', y='Fare', hue='Survived', data=df)
plt.title('Age vs Fare colored by Survival')
plt.show()

# Countplot
sns.countplot(x='Survived', hue='Sex', data=df)
plt.title('Survival Count by Gender')
plt.show()
```


In [13]:
Heatmap of correlations
plt.figure(figsize=(10,8))

```
# Select only numeric features for correlation
numeric_df = df.select_dtypes(include=np.number)
sns.heatmap(numeric_df.corr(), annot=True, cmap='coolwarm')
plt.title('Correlation Heatmap')
plt.show()

# Pairplot
# Select only numeric features for pairplot
sns.pairplot(numeric_df, hue='Survived') # Assuming 'Survived' is numeric
plt.show()
```


