Appunti di Algebra Lineare e Analisi Matematica 2

Mattia Ruffini

Febbraio 2022

Indice

Ι	Al	gebra Lineare	3
1	Spa 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9	zi vettoriali e vettori Somma di vettori geometrici Prodotto di un vettore per uno scalare Spazio Vettoriale 1.3.1 \mathbb{R}^n Spazi vettoriali astratti Combinazione lineare di vettori Sottospazio Vettoriale Sottospazio generato da k vettori Dipendenza e Indipendenza Lineare Basi e dimensioni	5 5 6 7 7 8 8 9 10
II	${f E}$	quazioni Differenziali	13
2	Intr	roduzione fisica	14
3	Pro 3.1 3.2 3.3 3.4 3.5	blema di Cauchy Integrale generale	16 17 18 19 20 21
4		egrale Generale e problema di Cauchy per l'Equazione ogenea	23
Η	I I	Esercitazioni	24
5	Sist	emi Lineari	25

Appunt	i di Algebra Lineare e Analisi Matematica 2	Mattia Ruf	ffini
5.1	Riduzione a scala		25
5.2	Risoluzione di sistemi lineari mediante riduzione	e a scala (Me-	
	todo di eliminazione di Gauss)		26

Parte I Algebra Lineare

L'algebra Lineare studia gli **spazi vettoriali** e le **funzioni lineari tra spazi vettoriali**.

Capitolo 1

Spazi vettoriali e vettori

Chiamiamo con *E* l'insieme dei vettori geometrici nello spazio. I vettori nascono in fisica per secrivere grandezze che oltre un numero necessitano una direzione e un verso. Dato un segmento orientato, un'unità di misura, due segmenti orientati sono equivalenti se hanno la stessa lunghezza, stessa direzione e stesso verso. Si chiama vettore la famiglia formata da tutti i segmenti orientati tra di loro equivalenti.

Un vettore particolare è il vettore nullo $\underline{v} = \underline{0}$ ed è chiamato **vettore** nullo. E' l'unico vettore ad avere modulo 0.

1.1 Somma di vettori geometrici

Dati due vettori \underline{v} e \underline{u} allora la loro somma è il vettore seguente:

Per trovare la somma di due vettori si può utilizzare o la regola del parallelogramma, o la regola punto-coda.

1.2 Prodotto di un vettore per uno scalare

Consideriamo $t \in \mathbb{R}$ e $\vec{v} \in E$. Allora sappiamo che se t = 0 oppure se $\vec{v} = \vec{0}$, allora l'operazione

$$t \cdot \vec{v} = \vec{0} \tag{1.1}$$

altrimenti vale che

$$t \cdot \vec{v} = \vec{p} \tag{1.2}$$

con $|\vec{p}| = t \cdot |\vec{v}|$, ovvero \vec{p} è un vettore con direzione identica a \vec{v} e verso identico a \vec{v} se t > 0, altrimenti l'opposto.

I vettori \vec{v} e $t\vec{v}$ sono paralleli. In generale: "due vettori di cui uno non sia il vettore nullo sono paralleli se e solo se $\exists t \in \mathbb{R} : \vec{u} = t\vec{v}$ ". Inoltre $t = \frac{|\vec{u}|}{|\vec{v}|}$. Il segno di t dipende se i vettori sono discordi.

1.3 Spazio Vettoriale

Definizione "Un insieme V si dice che è uno spazio vettoriale se sono definite in V due operazioni: somma e prodotto per uno scalare. La somma di due elementi di V corrisponde a un terzo elemento di V, il prodotto per uno scalare $t \in \mathbb{R}$ e \vec{v} con $t \cdot \vec{v} \in V$ soddisfa le sequenti proprietà:"

- 1. $\vec{u} + \vec{v} = \vec{v} + \vec{u}$
- 2. $(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w})$
- 3. $\forall \vec{u} \in V, \vec{u} + \vec{0} = \vec{u}$
- 4. $\forall \vec{u} \in V, \vec{u} \vec{u} = \vec{0}$
- 5. $\forall \vec{u} \in V, t \in \mathbb{R}, t(\vec{u} + \vec{v}) = \vec{u}t + \vec{v}t$
- 6. $(t+s)\vec{u} = t\vec{u} + t\vec{v}$
- 7. $ts\vec{u} = t(s\vec{u})$
- 8. $1 \cdot \vec{u} = \vec{u}$

Se valgono queste proprietà, allora V è uno spazio vettoriale.

1.3.1 \mathbb{R}^n

L'insieme \mathbb{R}^n è l'insieme formato dalle n-uple coordinate di numeri reali.

$$\vec{x} \in \mathbb{R}^n, \vec{x} = (x_1, x_2, ..., x_n)$$

Dati due elementi \vec{x} e \vec{y} di \mathbb{R}^n si vuole definire l'operazione somma:

$$\vec{x} + \vec{y} = (x_1 + y_1, x_2 + y_2, ..., x_n + y_n)$$

mentre il prodotto con $t \in \mathbb{R}$:

$$t\vec{x} = (tx_1, tx_2, ..., tx_n)$$

Dunque \mathbb{R}^n è uno spazio vettoriale perchè valgono le 8 proprietà che definiscono uno spazio vettoriale. Nei casi particolari in cui n = 1, n = 2, n = 3 è presente un'interpretazione geometrica dello spazio vettoriale. In particolare si afferma che lo spazio vettoriale dei vettori nel piano si identifica in \mathbb{R}^2 . Analogamente lo spazio con \mathbb{R}^3 .

1.4 Spazi vettoriali astratti

Esistono degli spazi vettoriali che non hanno un'interpretazione geometria, tuttavia esistono. Chiamiamo con F l'insieme delle funzioni reali di variabile reale, cioè le funzioni del tipo $\mathbb{R} \to \mathbb{R}$. La somma di due elementi di F è definita come:

$$f, g \in F, f + g \in F, (f + g)(x) = f(x) + g(x)$$

mentre il prodotto con uno scalare è definito come:

$$c \cdot f \in F, c(f)(x) = cf(x)$$

Di conseguenza F è uno spazio vettoriale rispetto queste operazioni e i suoi elementi sono vettori. Dunque con il termine vettore si intende un elemento di uno spazio vettoriale.

Un altro esempio di spazio vettoriale astratto è l'insieme $\mathbb{R}[x]$ come insieme dei polinomi di variabile x a coefficienti reali è uno spazio vettoriale rispetto alla somma e al prodotto con uno scalare.

1.5 Combinazione lineare di vettori

Dato uno spazio vettoriale V fissati i vettori $\vec{v_1}, \vec{v_2}, ..., \vec{v_k} \in V$ e fissati $c_1, c_2, ..., c_k \in \mathbb{R}$ scalari, allora si chiama **combinazione lineare di** $\vec{v_1}, \vec{v_2}, ..., \vec{v_k}$ **con coefficienti** $c_1, c_2, ..., c_k$ **il vettore**

$$\vec{v} = c_1 \vec{v_1} + c_2 \vec{v_2} + \dots + c_k \vec{v_k} \tag{1.3}$$

Generalizzazione in \mathbb{R}^n Ogni vettore di \mathbb{R}^n si può scrivere come combinazione lineare dei vettori fondamentali con coefficienti:

$$\vec{x} = \sum_{i=1}^{n} x_i \vec{e_i} \tag{1.4}$$

dove i vettori fondamentali sono:

$$\vec{e_1} = (1, 0, 0, 0, ..., 0)$$

 $\vec{e_2} = (0, 1, 0, 0, ..., 0)$
...
$$\vec{e_n} = (0, 0, 0, 0, ..., 1)$$

Inoltre il vettore nullo è sempre combinazione lineare di una qualunque combinazione di vettori.

1.6 Sottospazio Vettoriale

Definisco V come spazio vettoriale, e $W\subseteq V, W\neq\varnothing$. W è uno spazio vettoriale di V se:

- $\forall \vec{w_1}, \vec{w_2} \in \vec{w_1} + w_2 \in W$ ovvero W è chiuso rispetto la somma;
- $\forall t \in \mathbb{R}, \forall \vec{w} \in W, t \cdot \vec{w} \in W$, ovvero W è chiuso rispetto il prodotto per uno scalare.

W è un sottospazio vettoriale di V se è uno spazio vettoriale.

La condizione necessaria affinchè W sia un sottospazio vettoriale di V è che $\vec{0} \in W$.

Consideriamo $\vec{w} \in W, t = 0$. Se $t\vec{w} \in W$, allora per la proprietà ***** $\vec{0} \in W$.

Dimostrazione $0 \cdot w = 0$

$$w + 0w = w$$
$$w - w + 0w = w - w$$
$$0 + 0w = 0$$
$$0w = 0$$

Se V è uno spazio vettoriale, allora il più piccolo sottospazio vettoriale è quello il cui elemento è esclusivamente il vettore nullo. Mentre il sottospazio vettoriale più grande è quello che coincide con V. Questi sottospazi sono chiamati **banali**.

Esempi I sottospazi di \mathbb{R}^3 sono: \mathbb{R}^3 , (0,0,0), i piani per l'origine, le rette per l'origine. I sottospazi di \mathbb{R}^2 sono \mathbb{R}^2 , (0,0) e le rette passanti per l'origine.

Se consideriamo lo spazio vettoriale dei polinomi $\mathbb{R}[x]$, lo spazio vettoriale dei polinomi con grado minore o uguale a n è sottospazio vettoriale di $\mathbb{R}[x]$. Un polinomio di quinto grado sommato ad un altro polinomio di quinto grado, è sempre di quinto grado. Un polinomio di quinto grado moltiplicato per un numero è un polinomio di quinto grado.

Anche il sottoinsieme delle funzioni reali di variabile reale che appartengono a C^1 è un sottospazio vettoriale dello spazio vettoriale delle funzioni reali di variabile reale:

$$f, g \in C^1(\mathbb{R}), f + g \in C^1$$

 $c \in \mathbb{R}, f \in C^1(\mathbb{R}), cf \in C^1$

ovvero C^1 è chiuso rispetto le operazioni di somma e prodotto con uno scalare.

1.7 Sottospazio generato da k vettori

Dato uno spazio vettoriale V e k vettori $\vec{v_1}, \vec{v_2}..., \vec{v_k} \in V$ qual è il più piccolo sottospazio vettoriale di V che contiene i vettori $\vec{v_1}, \vec{v_2}..., \vec{v_k} \in V$?

Per semplicità consideriamo $V=\mathbb{R}^3$ con e i vettori

$$\vec{v_1} = (1, 0, 0)$$

 $\vec{v_2} = (0, 1, 0)$
 $\vec{v_3} = (1, 1, 0)$

Il sottospazio vettoriale di V in questo caso è il piano xy. Osserviamo che il sottospazio vettoriale di V deve essere uno spazio vettoriale, questo deve essere **chiuso rispetto alla somma e rispetto al prodotto**. Quindi dati k vettori di V deve essere contenuto nel suo sottospazio vettoriale:

$$c_1 \vec{v_1} + c_2 \vec{v_2} + \dots + c_k \vec{v_k} \tag{1.5}$$

ovvero il sottospazio vettoriale di V deve contenere **tutte le combinazioni** lineari dei vettori $\vec{v_1}, \vec{v_2}..., \vec{v_k}$.

Definizione 1.7.1 (Sottospazio vettoriale). Dato uno spazio vettoriale V e i suoi k elementi, il suo sottospazio vettoriale si chiama W ed è l'insieme di tutte le combinazioni lineari dei k elementi di V. Ed è il più piccolo sottospazio di V.

Dimostrazione chiuso rispetto la somma Sia W sottospazio vettoriale di V. Presi due elementi di $W, \vec{w_1}, \vec{w_2}$ combinazioni lineari dei k elementi di V, definiti nel seguente modo:

$$\vec{w_1} = c_1 \vec{v_1} + \dots + c_k \vec{v_k}$$

 $\vec{w_2} = d_1 \vec{v_1} + \dots + d_k \vec{v_k}$

poichè valgono la proprietà commutativa e distributiva si ha:

$$\vec{w_1} + \vec{w_2} = (c_1 + d_1)\vec{v_1} + \dots + (c_k + d_k)\vec{v_k}$$

allora W è chiuso rispetto la somma. Prende il nome di $\mathbf{Span}(\vec{v_1}, \vec{v_2}..., \vec{v_k})$ il sottospazio generato dai vettori $\vec{v_1}, \vec{v_2}..., \vec{v_k}$.

$$Span(\vec{v_1}, \vec{v_2}..., \vec{v_k}) = \{\vec{v} \in V : \vec{v} = c_1\vec{v_1} + ... + c_k\vec{v_k}\}$$

Esiste un numero minimo di vettori necessario affinchè siano generatori di uno spazio vettoriale.

1.8 Dipendenza e Indipendenza Lineare

Sia V uno spazio vettoriale con $\vec{v_1}, \vec{v_2}..., \vec{v_k} \in V$.

Teorema 1. La famiglia di vettori $\{v_1, v_2, ..., v_k\}$ è linearmente indipendente se uno dei vettori della famiglia è combinazione lineare degli altri. Nel caso opposto si dice che la famiglia di vettori è linearmente indipendente.

Esempio con \mathbb{R}^3 Consideriamo $V = \mathbb{R}$, con

$$\vec{w_1} = (1, 0, -1) \tag{1.6}$$

$$\vec{w_2} = (0, 1, -1) \tag{1.7}$$

$$\vec{w_1} = (1, 1, -2) \tag{1.8}$$

Allora la famiglia di vettore $\vec{w_1}, \vec{w_2}, \vec{w_3}$ è linearmente indipendente, in quanto $\vec{w_3}$ è combinazione lineare degli altri due.

$$\vec{w_3} = (1, 1, -2) = c_1(1, 0, -1) + c_2(0, 1, -1)$$

$$= (c_1, c_2, -c_1 - c_2)$$

$$c_1 = 1$$

$$c_2 = 1$$

$$\vec{w_3} = 1 \cdot w_1 + 1 \cdot w_2$$

Esempio con i vettori unitari e_n Consideriamo i vettori $\vec{e_1}, \vec{e_2}, ..., \vec{e_n}$ e verifichiamo che siano linearmente indipendenti. Si vede subito come per esempio non esista $c \in \mathbb{R}$ per cui e_1 sia combinazione lineare degli altri vettori, in particolare per cui $c \cdot 0 = 1$. Vale per tutte le n-uple di \mathbb{R}^n .

Quando una famiglia di vettori è dipendente indipendente

- Se una famiglia di vettori contiene $\vec{0}$ allora è linearmente dipendente;
- Se una famiglia di vettori linearmente dipendenti aggiunge un qualunque vettore è ancora linearmente dipendente;
- Se ad una famiglia di vettori linearmente indipendente tolgo un vettore ottengo ancora una famiglia linearmente indipendente;

L'ultimo punto perchè consideriamo $\vec{v_1}, \vec{v_2}, ..., \vec{v_k}$ linearmente indipendente allora anche $\vec{v_1}, \vec{v_2}, ..., \vec{v_{k-1}}$ è indipendente, oppure andrebbe contro il secondo principio se fosse dipendente.

Definizione Equivalente La definizione di dipendenza lineare funziona solamente quando si hanno almeno due vettori. Ovvero dati $\vec{v_1}, \vec{v_2}$. Questi sono linearmente dipendenti se

$$\vec{v_1} = c\vec{v_2}$$
$$\vec{v_2} = d\vec{v_1}$$

Per esempio se fossimo in \mathbb{R}^3 si parla di vettori paralleli. Tuttavia è impossibile applicare la definizione se la famiglia è costituita da un solo vettore. Dunque ecco una definizione equivalente: " $\vec{v_1}, \vec{v_2}, ..., \vec{v_k}$ sono linearmente dipendenti se \exists una loro combinazione lineare uguale al vettore nullo con i coefficienti non tutti nulli".

Per esempio se consideriamo la famiglia di vettori $\vec{w_1}, \vec{w_2}, \vec{w_3}$ definiti nell'equazione 1.6 questi sono linearmente dipendenti perchè

$$\vec{w_1} + \vec{w_2} - \vec{w_3} = \vec{0}$$

e questa è una combinazione lineare il cui risultato è il vettore nullo. L'esempio classico è con $\vec{e_1}, \vec{e_2}, ..., \vec{e_n}$ in quanto non esiste una loro combinazione lineare uguale al vettore nullo con almeno un coefficiente diverso da zero.

Casi particolari Se esiste un solo vettore $\vec{v} \in V, \exists c \neq 0$:

$$c \cdot \vec{v} = \vec{0}$$

allora si ha che $\vec{v} = \vec{0}$ e V è linearmente dipendente. Altrimenti se $\vec{v} \neq 0$ sarebbe linearmente indipendente.

1.9 Basi e dimensioni

Definizione 1.9.1 (Base di uno spazio vettoriale). Sia V uno spazio vettoriale qualsiasi con $a = \{\vec{v_1}, \vec{v_2}, ..., \vec{v_k}\}$ dove a è una famiglia di vettori di V. Allora a è una base di V se

- 1. $span(\vec{v_1}, \vec{v_2}, ..., \vec{v_k}) = V$ cioè la famiglia a costituisce i generatori di V, oppure ogni vettore di V è combinazione lineare di $\vec{v_1}, \vec{v_2}, ..., \vec{v_k}$;
- 2. la famiglia a è linearmente indipendente;

Per esempio la base di \mathbb{R}^n è $a = \{\vec{e_1}, \vec{e_2}, ..., \vec{e_n}\}.$

Parte II Equazioni Differenziali

Capitolo 2

Introduzione fisica

Dinamica La seconda legge della dinamica afferma che la risultante di un corpo soggetto ad una forza equivale a F=ma ma poichè l'accelerazione è la derivata seconda dello spostamento F=my''(t). Se consideriamo un corpo in movimento attaccato ad una molla possiamo riscrivere le risultanti sul corpo come:

$$my''(t) = -ky$$

E ancora considerando l'attrito prodotto con l'aria o con qualsiasi altro materiale, cioè lo smorzamento ecco che l'equazione diventa:

$$my''(t) = -ky - my' + f(t)$$

$$my''(t) = F(t, y, y')$$

$$F(t, y, y', y'')$$

che è un'equazione differenziale ordinaria del secondo ordine. Un'equazione differenziale è un'equazione in cui l'incognita compare come variabile y(t), che compare anche mediante le sue derivate.

$$a(t)y''(t) + b(t)y'(t) + c(t)y(t) = f(t)$$
(2.1)

dove a, b, c, f sono costanti e $a \neq 0$ e dove f è detto **forzante**.

Circuiti RLC Le equazioni differenziali sono presenti anche nei circuiti RLC. Scriviamo il potenziale di un circuito RLC come:

$$E(t) = Li'(t) + Ri(t) + \frac{q(t)}{C}$$

$$E(t) = Lq''(t) + Rq'(t) + \frac{q(t)}{C}$$

$$\rightarrow \frac{d}{dt}[E(t)] = \frac{d}{dt}[Lq''(t) + Rq'(t) + \frac{q(t)}{C}]$$

$$E'(t) = Li''(t) + Ri'(t) + \frac{i(t)}{C}$$

quindi l'equazione del circuito può essere scritta come equazioni differenziali lineari del secondo ordine sia in funzione di q(t) e i(t).

Moto del pendolo In un moto del pendolo lo spostamento del corpo appeso al filo equivale a $s(t) = l\theta(t)$. La velocità e accelerazione sono rispettivamente $l\theta'(t)$ e $l\theta''(t)$. La seconda legge della dinamica può essere riscritta come

$$\theta'' = -\frac{g}{l}\sin\theta(t)$$

che è un'equazione differenziale non lineare, in quanto compare la funzione seno. Tuttavia per le piccole oscillazioni $\sin \theta = \theta$, dunque:

$$\theta'' = -\frac{g}{l}\theta(t)$$

Capitolo 3

Problema di Cauchy

data un'equazione differenziale del tipo

$$a(t)y''(t) + b(t)y'(t) + c(t)y(t) = f(t)$$

con a, b, c, f costanti in I e $a \neq 0$, allora sarà soluzione dell'equazione differenziale nell'intervallo I una funzione $y: I \to \mathbb{R}$ derivabile due volte che sostituita nell'equazione iniziale dà un'identità su I, cioè la soddisfa.

Esempio

$$y'' - y' - 2y = 0$$
$$a(t) = 1, b(t) = -1, c(t) = -1, f(t) = 0$$

Prendiamo la funzione esponenziale $y = e^{2t}$. Verifichiamo che sia soluzione.

$$y'(t) = 2e^{2t}$$
$$y''(t) = 4\exp^{2t}$$
$$\to 4\exp^{2t} - 2e^{2t} - 2(e^{2t}) = 0$$

La soluzione è verificata **per ogni** $t \in \mathbb{R}$. Se non fosse così ma solo per alcuni valori, allora non sarebbe soluzione.

Quante soluzioni può avere un'equazione differenziale del secondo ordine $\operatorname{Se} y''(t) = 0$ allora $y(t) = c_1 t + c_2$. Un'equazione differenziale ha infinite soluzioni, se è del secondo ordine allora ha infinite soluzioni che dipendono da due parametri.

Definizione 3.0.1 (Integrale Generale). Si chiama Integrale Generale la totalità delle soluzioni in dipendenza da due parametri.

Una volta che si conoscono i due parametri iniziali e l'equazione differenziale allora si ha il **Problema di Cauchy**.

Teorema 2 (Teorema di Cauchy). data un'equazione differenziale del tipo

$$a(t)y''(t) + b(t)y'(t) + c(t)y(t) = f(t)$$

con a,b,c,f costanti in I e $a\neq 0$ allora il problema di Cauchy con condizioni iniziali assegnate

$$\begin{cases} a(t)y''(t) + b(t)y'(t) + c(t)y(t) = f(t) \\ y(t_0) = y_0 \\ y'(t_0) = v_0 \end{cases}$$
(3.1)

ha una e una sola soluzione in tutto l'intervallo I.

Il significato fisico è determinare la legge oraria di un corpo sapendo che sono note posizione e velocità. Per risolvere il problema di Cauchy:

- 1. Determinare l'integrale generale;
- 2. Imporre le condizioni iniziali;
- 3. Sostituire i valori;

3.1 Integrale generale

Come è formato l'insieme delle soluzioni di un'equazione differenziale? Innanzitutto chiamiamo

$$L = a\frac{d}{dt^2} + b\frac{d}{dt} + c$$

$$Ly = a(t)y''(t) + b(t)y'(t) + c(t)y(t)$$

L gode della proprietà di linearità. Dati $c_1, c_2 \in \mathbb{R}$

$$c_1y_1 + c_2y_2 = c_1Ly_1 + c_2Ly_2$$

cioè il prodotto di L per una combinazione lineare è esso stesso la combinazione lineare di y_1 e y_2 con coefficienti Lc_1 e Lc_2 .

Poichè L gode della linearità, le equazioni differenziali del tipo

$$Ly = f (3.2)$$

sono lineari. Godono del principio di sovrapposizione:

$$c_1 L y_1 + c_2 L y_2 = c_1 f_1 + c_2 f_2 \tag{3.3}$$

questo è molto importante perchè se chiamiamo $y = c_1 L y_1 + c_2 L y_2$ allora

$$L(y) = c_1 f_1 + c_2 f_2 (3.4)$$

dove y soddisfa l'equazione differenziale con forzante $c_1f_1 + c_2f_2$.

Teorema 3 (Principio di Sovrapposizione). Se y_1 è soluzione di $ay'' + by' + cy = f_1$ e y_2 è soluzione di $a_y'' + b_y' + c = f_2$, allora la funzione $y(t) = c_1y_1(t) + c_2y_2(t)$ è soluzione di

$$ay'' + by' + cy = c_1 f_1 + c_2 f_2 (3.5)$$

Consideriamo un'equazione omogenea, con termine noto nullo. Se $Ly_1 = 0$, $Ly_2 = 0$, cioè y_1, y_2 sono soluzioni dell'equazione omogenea per il principio di sovrapposizione:

$$L(c_1y_1 + c_2y_2) = c_1Ly_1 + c_2Ly_2 = 0 (3.6)$$

ogni combinazione lineare della soluzione dell'equazione omogenea è anch'essa soluzione. Cioè l'insieme S delle soluzioni forma uno spazio vettoriale. Si dimostra che se l'equazione è di ordine 2, anche la dimensione dello spazio vettoriale è di ordine 2.

Teorema 4 (di struttura). L'integrale generale di

$$a(t)y''(t) + b(t)y'(t) + c(t)y(t) = 0$$

con a, b, c costanti in $I e a \neq 0$ è dato da tutte le combinazioni lineare

$$y(t) = c_1 y_1(t) + c_2 y(2(t), \forall c_1, c_2 \in \mathbb{R}$$
(3.7)

con $y_1(t), y_2(t)$ sono due soluzioni linearmente indipendenti dell'equazione stessa.

3.2 Forzante non nullo

Quando il forzante non è nullo, l'equazione differenziale è detta **completa**. Si può ricavare dall'equazione completa la sua **omogenea associata**:

$$Ly = f$$

$$\to Ly = 0$$

la seconda equazione è l'omogenea associata. Chiamiamo $Ly_o = 0, Ly_p = f$. Per il **principio di sovrapposizione**:

$$L(y_0 + y_p) = Ly_0 + Ly_p = 0 + f = f$$
(3.8)

oppure se $Ly_1 = f, Ly_2 = f$ allora:

$$L(y_1 - y_2) = Ly_1 - Ly_2 = f - f = 0 (3.9)$$

Data una qualunque soluzione y_p allora, allora le altre soluzioni sono :

$$y(t) = y_0(t) + y_p(t) (3.10)$$

con y_0 soluzione di Ly = 0.

Teorema 5 (di Struttura per Equazioni Complete). L'integrale generale di

$$a(t)y''(t) + b(t)y'(t) + c(t)y(t) = f(t)$$

con a, b, c, f costanti in I e $a \neq 0$ è dato da **tutte e sole** funzioni

$$y(t) = c_1 y_1(t) + c_2 y(2(t) + y_p(t), \forall c_1, c_2 \in \mathbb{R}$$
(3.11)

con y_1,y_2 soluzioni di Ly=0mentre y_p è una soluzione particolare dell'equazione completa

$$a(t)y''(t) + b(t)y'(t) + c(t)y(t) = f(t)$$

3.3 $\Delta > 0$

Consideriamo una qualsiasi equazione differenziale omogenea. Per il teorema di struttura è sufficiente trovare due soluzioni linearmente indipendenti, ovvero il cui rapporto non sia costante, o una non sia multiplo dell'altra.

Esempio

$$y'' + 4y' + 3y = 0$$

Soluzioni proporzionali alle loro derivate. Quindi equazioni del tipo $e^{\lambda t}$:

$$y = e^{\lambda t}$$

$$y' = \lambda e^{\lambda t}$$

$$y'' = \lambda^2 e^{\lambda t}$$

$$\to \lambda^2 e^{\lambda t} + 4\lambda e^{\lambda t} + 3e^{\lambda t} = 0$$

$$(\lambda^2 + 4\lambda + 3) = 0, e^{\lambda t} \neq 0 \forall t \in \mathbb{R}$$

Quindi si arriva ad un'equazione algebrica di secondo grado, in cui $\lambda = -1, \lambda = -3$. Le due soluzioni sono:

$$e^{-t}$$
. e^{-3t}

sono linearmente indipendenti, il loro rapporto è e^{2t} che non è costante. Il polinomio

$$P(\lambda) = a\lambda^2 + b\lambda + c \tag{3.12}$$

è detto **polinomio caratteristico** associato all'equazione differenziale. Se $\Delta > 0$ corrispondono due soluzioni y_1, y_2 dell'equazione differenziale linearmente indipendenti. Per il teorema di struttura 4 si scrive l'integrale generale:

$$y(t) = c_1 e^{\lambda_1 t} + c_2 e^{\lambda_2 t}$$

3.4 $\Delta < 0$

Esempio

$$y'' + 2y' + 10y = 0, y(t) = e^{\lambda t}$$

si trova l'equazione caratteristica e le soluzioni

$$\lambda^2 + 2\lambda + 10 = 0, \Delta < 0$$
$$\rightarrow \lambda_{1,2} = -1 \pm 3i$$

se sostituiamo i valori si trovano

$$y_1(t) = e^{(-1+3i)t}$$

 $y_2(t) = e^{(-1-3i)t}$

per la formula di Eulero si ricavano i numeri complessi associati:

$$y_1(t) = e^{-t}(\cos(3t) + i\sin(3t))$$

 $y_2(t) = e^{-t}(\cos(3t) - i\sin(3t))$

Da queste soluzioni complesse e coniugate si possono trovare due funzioni reali in questo (perchè ogni combinazione lineare è soluzione):

$$u_1(t) = \frac{y_1(t) + y_2(t)}{2} = e^{-t}\cos(3t)$$
 (3.13)

$$u_2(t) = \frac{y_1(t) - y_2(t)}{2i} = e^{-t}\sin(3t)$$
 (3.14)

e sono due soluzioni reali linearmente indipendenti. L'integrale generale sarà dunque:

$$y(t) = c_1 e^{-t} \cos(3t) + c_2 e^{-t} \sin(3t)$$

Generalizzazione

$$a\lambda^{2} + b\lambda + c = 0, \Delta < 0$$

$$\lambda_{1,2} = \alpha \pm i\beta$$

$$\to u_{1}(t) = e^{\alpha t} \cos(\beta t)$$

$$\to u_{2}(t) = e^{\alpha t} \sin(\beta t)$$

$$\Rightarrow y(t) = c_{1}e^{\alpha t} \cos(\beta t) + c_{2}e^{\alpha t} \sin(\beta t), \forall c_{1}, c_{2} \in \mathbb{R}$$

$3.5 \quad \Delta = 0$

Esempio

$$y'' - 6' + 9y = 0$$

$$\rightarrow \lambda^2 - 6\lambda + 9 = 0$$

$$\Delta = 0$$

Due radici reali e coincidenti $\lambda_{1,2}=3$. Troviamo **una sola** soluzione dell'equazione differenziale: $y_1(t)=e^{3t}$ e tutte le sue funzioni multiple $c\cdot e^{3t}, \forall c\in\mathbb{R}$. Dobbiamo dunque trovare un'altra soluzione che sia linearmente indipendente da quella trovata. In particolare si cerca la funzione c(t) tale che

$$y_2(t) = C(t)e^{3t}$$

con $y_2(t)$ soluzione dell'equazione differenziale. Per farlo si calcolano le derivate di y_2 e si sostituiscono nell'equazione differenziale:

$$\begin{aligned} y_2' &= e^{3t}[C'(t) + 3C(t)] \\ y_2'' &= e^{3t}[C''(t) + 6C'(t) + 9C(t)] \\ \rightarrow e^{3t}[C''(t) + 6C'(t) + 9C(t) - 6C'(t) + -18C(t) + 9C(t) = 0] \\ C''(t) &= 0, \forall t \in \mathbb{R} \end{aligned}$$

Integrando due volte si trova $C(t) = c_1 t + c_2, \forall c_1, c_2 \in \mathbb{R}$. In particolare per questo esempio C(t) = t. Dunque si ha:

$$y_1(t) = e^{3t}$$
$$y_2(t) = te^{3t}$$

e sono linearmente indipendenti. Per il Teorema di Struttura 5

$$y(t) = e^{3t}(c_1t + c_2), \forall c_1, c_2 \in \mathbb{R}$$

Altro metodo Se le soluzioni dell'equazione caratteristica sono reali e distinte l'integrale generale equivale a :

$$y(t) = c_1 y_1(t) + c_2 y_2(t)$$

Poichè l'equazione è lineare ed omogenea, ogni combinazione lineare è ancora soluzione dell'equazione differenziale.

$$c_1 = -\frac{1}{\lambda_2 - \lambda_1}$$

$$c_2 = \frac{1}{\lambda_2 - \lambda_1}$$

$$\phi(t) = -\frac{1}{\lambda_2 - \lambda_1} e^{\lambda_1 t} + \frac{1}{\lambda_2 - \lambda_1} e^{\lambda_2 t}$$

Studiamo il comportamento di $\phi(t)$ quando $\lambda_1 \rightarrow \lambda_2$. $\lambda_2 = \lambda_1 + \epsilon$ e tendiamo $\epsilon \to 0$.

$$\phi(t) = \frac{e^{\lambda_2 t} - e^{\lambda_1 t}}{\lambda_2 - \lambda_1} \tag{3.15}$$

$$=\frac{e^{(\lambda_1+\epsilon)t}-e^{\lambda_1t}}{\epsilon} \tag{3.16}$$

$$\phi(t) = \frac{e^{\lambda_2 t} - e^{\lambda_1 t}}{\lambda_2 - \lambda_1}$$

$$= \frac{e^{(\lambda_1 + \epsilon)t} - e^{\lambda_1 t}}{\epsilon}$$

$$\to \lim_{\epsilon \to 0} \frac{e^{(\lambda_1 + \epsilon)t} - e^{\lambda_1 t}}{\epsilon} = \lim_{\epsilon \to 0} e^{\lambda_1 t} t$$
(3.15)
$$(3.16)$$

Dunque la funzione limite risolve l'equazione differenziale limite che corrisponde al polinomio caratteristico che ha due radici coincidenti uguali a λ_1 .

Integrale Generale e problema di Cauchy 3.6 per l'Equazione Omogenea

Data un'equazione lineare omogenea si scrive l'equazione caratteristica associata, e se ne ricavano le soluzioni, in modo che siano linearmente indipendenti. Per ottenere un'unica soluzione dall'integrale generale bisogna porre delle condizioni iniziali del tipo

$$\begin{cases} y(t_0) = y_0 \\ y'(t_0) = v_0 \end{cases}$$

Risolvere il problema di Cauchy per un'equazione differenziale omogenea significa trovare la legge che descrive come cambia una certa quantità y(t) nel tempo (per esempio la posizione del punto materiale, conoscendo la posizione iniziale e la velocità iniziale).

Parte III Esercitazioni

Capitolo 4

Sistemi Lineari

Un sistema lineare è formato da m equazioni di primo grado in n incognite.

$$\begin{cases}
a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\
a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\
\dots \\
a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m
\end{cases} (4.1)$$

oppure più sinteticamente un sistema può essere riscritto in modo matriciale:

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} & b_1 \\ a_{21} & a_{22} & \dots & a_{2n} & b_2 \\ \dots & & & & \\ a_{m1} & a_{m2} & \dots & a_{mn} & b_m \end{bmatrix}$$

$$(4.2)$$

4.1 Riduzione a scala

$$\begin{bmatrix} a & * & * & * & * & * \\ b & * & * & * & * \\ c & * & * & * \end{bmatrix}$$
(4.3)

dove gli spazi vuoti equivalgono a zero, * sono numeri qualsiasi e a, b, c sono detti **pivot della matrice**.

Esempio di riduzione a scala

$$\begin{bmatrix} 0 & 1 & 0 & 2 & 3 & 4 \\ 0 & 0 & 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 0 & 1 & 6 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

in questo caso i pivot della matrice sono 1, 1, 1.

Risoluzione di sistemi lineari mediante ri-4.2 duzione a scala (Metodo di eliminazione di Gauss)

$$\begin{cases} x + y + kz = 2 \\ x + y + 3z = k - 1 \end{cases} \rightarrow \begin{bmatrix} 1 & 1 & k & 2 \\ 1 & 1 & 3 & k - 1 \\ 2x + ky - z = 1 \end{bmatrix}$$

$$\xrightarrow{R_2 - R_1} \begin{bmatrix} 1 & 1 & k & 2 \\ 0 & 0 & 3 - k & 2 \\ 0 & k - 2 & -1 - 2k & -3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & k & 2 \\ 0 & k - 2 & -1 - 2k & -3 \\ 0 & 0 & 3 - k & k - 3 \end{bmatrix}$$

$$\frac{R_{2}-R_{1}}{R_{3}-2R_{1}} \to \begin{bmatrix} 1 & 1 & k & 2 \\ 0 & 0 & 3-k & k-3 \\ 0 & k-2 & -1-2k & -3 \end{bmatrix} \to \begin{bmatrix} 1 & 1 & k & 2 \\ 0 & k-2 & -1-2k & -3 \\ 0 & 0 & 3-k & k-3 \end{bmatrix}$$

Discussione

- Se $k \neq 2$ e $k \neq 3$ esiste una sola soluzione, e il numero di pivot è 3.
- Se k = 2:

$$\begin{bmatrix} 1 & 1 & 2 & 2 \\ 0 & 0 & -5 & -3 \\ 0 & 0 & 1 & -1 \end{bmatrix} \xrightarrow{5R_3 - R_2} \begin{bmatrix} 1 & 1 & 2 & 2 \\ 0 & 0 & -5 & -3 \\ 0 & 0 & 0 & -8 \end{bmatrix}$$

cioè il sistema è impossibile, in quanto nella terza equazione risulta 0 = -8, dunque non ammette soluzioni

• Se k = 3:

$$\begin{bmatrix} 1 & 1 & 3 & 2 \\ 0 & 1 & -7 & -3 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

cioè il sistema ammette infinite soluzioni dipendenti da $z=t\in\mathbb{R}$

$$\begin{cases} x = 2 - 3t + 3 - 7t = 3 - 10t \\ y = 7t - 3 \\ z = t \in \mathbb{R} \end{cases}$$