9장: 자료의 표현

- □ 인간은 다양한 정보를 컴퓨터로 처리하고 사용한다.
- □ 정보를 구체적으로 숫자, 문자, 소 리, 그림, 사진, 동영상, 그래픽 등의 다양한 데이터 형식으로 사용한다.
- □ 그러면 인간이 사용하는 정보가 컴퓨터 하드웨어에는 어떻게 표현되고 저장되는가?
- 이 장에서는 정보가 컴퓨터 하드웨어 표현되고 저장되는 개념을 살펴본다.

이장의 목적

- □ 디지털 표현이란 무엇인가?
- □ 수를 표현하기 위한 방법을 학습하고 이진수, 팔진수, 16진수의 표현 방법을 익힌다.
- □ 정수와 실수의 컴퓨터의 내부에서는 어떻게 표현하는지를 학습한다.
- □ 문자/소리/영상을 표현하기 위한 기본적인 방법을 학습한다.

9.1 디지털 표현

디지털 표현

- □ 컴퓨터는 0과 1로 된 이진 값을 데이터로 사용한다.
- □ 연속 신호는 '연속으로 변하는 물리량을 표현하는 용어: 음성, 온도, 풍량, 영상 등. – 아나로그 신호
- □ 비연속 신호(discrete) 신호는 이산적 물리량: 연도, 날짜, 요일, 개수 디지털 신호 - 숫자(digit)로 표현가능

- □ 컴퓨터는 디지털 신호를 이진수 digit(0이나 1)로 표현
- 0또는 1을)나타낼 수 있는 비트를 사용하여 모든 자료(수, 문자, 사진, 소리, 음성, 동영상,..)를 표현

9.2 수 표현

- □ 이진수는 0과 1로 수를 나타내며, 2를 올림수로 표현한다.
- □ 4-비트는 모두 16(2⁴)개를 표현
 - 각 자리를 0과 1로 표현하며, 0000(십진수 0)부터 1111(십진수 15)까지 이다.
 - N-비트이면 표현할 수 있는
 수는 모두 2^N개이고, 수의 표현
 범위는 0~2^N-1이다.

0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	8
1001	9
1010	10
1011	11
1100	12
1101	13
1110	14
1111	15

십진수

이진수

P.291

□ 이진수를 십진수로 변환

$$0101_2 = 0 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 = 0 + 4 + 0 + 1 = 5$$

$$02^3 + 12^2 + 02^3 + 12^2 = 4 + 1 = 5$$

- □ 십진수를 이진수로 변환
 - □ 결과는 이진수 1000112이다.

$$85 \div 2 = M \dots 1$$
 $M \div 2 = B \dots 1$
 $6 \div 2 = 4 \dots 6$
 $4 \div 2 = 2 \dots 6$
 $2 \div 2 = 1 \dots 6$
 $1 \div 2 = 0 \dots 1$

- □ 소수점이 있는 십진수를 이진수로 변환

 - □ 정수부분은 변환 방법에 의하여 이진수로 변환하면 1,1001,2

```
0.458 × 2 = 0.916에서 소수점 앞의 정수부분 분리 0
0.916 × 2 = 1.832에서 소수점 앞의 정수부분 분리 1, 나머지 부분 0.832
0.832 × 2 = 1.664에서 소수점 앞의 정수부분 분리 1, 나머지 부분 0.664
0.664 × 2 = 1.328에서 소수점 앞의 정수부분 분리 1, 나머지 부분 0.328
```

- □ 소수점 이하가 0이 되거나 정확도에 따라 소수점 이하 자리수를지정한 만큼의 정수부분만 →하여 순서대로 사용한다

24+3

- □ 8진수란 8을 올림수로 하여 수를 표현한다.
- □ 표현 방법은 8진수 앞에 수 0이나 소문자 o를 붙인다(예, 0123 혹은 0123). 또는 8진수 뒤에 아래첨자 8을 붙이기도 한다. 즉, 123₈와 같이 표현한다.
- □ 이진수←→ 8진수변환

 $101 \ 110 \ 010 \rightarrow 142_8$

 $0562(562_8) \rightarrow 001\ 100\ 010$

8진수	이진수	십진수
0	000	0
1	001	1
2	010	2
3	011	3
4	100	4
5	101	5
6	110	6
7	111	7

P40

▮그림 10.2 ▮ 8진수 표현

□ '41.7₈을 변환하려면, 먼저 8진수의 각 자리 수에 8의 맥급수를 가중치로 곱하여 더한다.

$$41.7_8 = 4 \times 8^1 + 1 \times 8^0 + 7 \times 8^{-1} = 32 + 1 + 0.875 = 33.875$$

 $4x8 + 1x8 + 1$

□ 266.4375은 아래와 같이 변환한다.

□ 십진수 266.4375 는 8진수로 412.340₈이다.

- □ 16진수날 16개의 digit로)값 표현,
- □ 각 값은 4-비트 패턴에 대응
- □ 표현방법 xA34 소문자 x를 붙인다(혹은 16진수 뒤에 아래첨자 16을 표기).
- □ 변환예

 1100/11100010 → 1100 1110 0010

 →'xCE2

 x,24C → 0010 0100 1100 →

 001001001100

16진수	이진수	십진수
0	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7
8	1000	8
9	1001	9
A	1010	10
B	1011	11
С	1100	12
D	1101	13
E	1110	14
F	1111	15

▮그림 10.3 ▮ 16진수 표현

- □ 16진수 2AF₁₆를 십진수로 변환
 - □ 16진수의 각 자리 수에 16의 맥급수를 가중치로 곱하여 더한다.

$$2AF_{16} = 2 \times 16^{2} + 10 \times 16^{1} + 15 \times 16^{0}$$

$$= 512 + 160 + 15$$

$$= 687$$

□ 십진수를 16진수로 변환하려면 몫이 0이 될 때까지 16으로 산 반복하여 정수형으로 나누면서 각 단계에서 나머지 값을 취한다.

□ 결과는 16진수 1A7이다.

□ 컴퓨터에서 보통 사용하는 데이터 종류와 기술에 의한 유형

```
•수: 정수형, 실수형, 지수형, 복소수형
```

•문자 : ASCII코드, EBCDIC 코드, 유니코드

•이미지 (BMP, JPG) MP, JPG.

•오디오:(WAV, MP3) "WAV, MP3

•비디오 :(GIF, H.263, H.264, MPEG) (대 MPEG)

어떤 유형의 데이터라도 컴퓨터 내부에 표현될 때는 byte(8 비트 패턴)를 기본 단위로 표현한다.

- □ 정수는 양의 정수와 음의 정수로 나눌 수 있다.
- □ 부호화/크기 방법 : 특정 비트를 양/음을 표현하는 데 사용한다.
 - □ 부호가 없는 양의 정수 표현
 - > 255 -> 11111111

\mathbf{B}_{N-1} \mathbf{B}_{N-2}			B ₂	B ₁	\mathbf{B}_{0}	
---------------------------------------	--	--	----------------	----------------	------------------	--

- □ 부호가 있는 정수 표현
 - 127 -> 011111111, -127 -> 111111111

≜ B _{N−2}	. B ₂	B_1	\mathbf{B}_0
---------------------------	------------------	-------	----------------

□ 부호화/크기 방법으로 표현하면 −0(음수 0)과 +0(양수 0) 두 개의 0이 존재하는 문제가 발생한다. 또한 (−1) + (+1)을 수행하면 0가 되어야 하지만, 아래처럼 이진 더하기 연산을 수행하면 0이 되지 않는다.

2의 보수 표현에서는 -0이 없기 때문에 N-비트에서의 범위는 최소 2의 모구 표현에서 - (2^N-1) 까지이다. 즉, 수의 범위는 -2^N~ (-2^N ~

+(2N-1)이다.

	011	+3
+	101	-3
	1000	0
(000 -> 101 -> 1	3. -3 O.	

(N-1	N-1	
	-2^{N-1} ~	2" '	-(

□ 실수 값은 정규화를 통해 의미 있는 자리수부분(크기 부분)과 × 10^m 부분(지수부분)을 컴퓨터 내부에 표현한다.

ŕ	실수 부호	지수 부호		$\times B_{\mp E}$	$\pm 0.b_{m-1}b_{m-2}b_{0}$
	±	±	지:	수 부분(E)	크기 부분(M)
	经	科 鲁	7 122	29th 5	

- 표현을 수학적으로 나타내면 아래와 같다.
 - \Box \pm M \times B \pm E
 - □ M(Mentisa)은 크기,, B(Base)는 밑, E(Exponent)는 지수이다.
 - $0.0000000314 = 0.314 \times 10^{-7}$

□ 부호 비트 : 1

- □ 지수 비트 : 0000101

10.4 문자의 표현

문자의 표현

□ 문자를(이진수 비트열로)표현
□ 영어 알파벳이나 기호를 이 때 할당한 수를 코드라 한다.
□ 8-비트: 10000001를 기호 '!'로 해석
□ 부호 없는 정수 129, 부호와 크기 음수1(-1), 2의 보수 음수(-128),,
□ ASCII 코드 이내가 이 대부분 컴퓨터에서 문자를 취급하는 데 사용하는 코드이다.

문자의 표현

H

- ⚠ 유니코드(UNICODE)코드는 16-비트를 사용하고, 65,536(2¹⁶)의 문자나 기호를 표현 할 수 있다는 것을 의미한다.(305페이지 2-3줄 삭제)
- □ 전 세계 모든 문자 표현하는 산업표준 코드표 (2020.3.10 기준, 143,859 문자코드 표준화)
- □ 컴퓨터 표현방법(USC, UTF 인코딩)
 - □ UTF 인코딩, 아래를 포함하는 가변길이 인코딩
 - utf-1, utf-7, utf-8, utf-16, utf-32, utf-EBCDIC

- 소리는 인간이 주위에서 청각적으로 접할 수 있는 모든 자연의 아날로그 신호를 말한다
- □ 아날로그 소리를 파형으로 보고 단순하게 표현한 것으로, 이 신호를 지털화한다. 그림 10.5에서 파형의 진폭(높이)은 소리의 크기를 말하고, 주기(T)는 온전한 한 사이클의 파형을 만드는 데 걸리는 시간을 말한다. 주파수(F)는 단위 시간당 사이클의 총수(사이클/초)로 헤르츠라 하며 F = 1/T이다.

(a) 아날로그 소리 신호의 표본화▮그림 10.5 ▮ 소리의 디지털화 예

- 마형의 소리를 컴퓨터에 저장하기 위해 어떻게 디지털화 하는지 살펴보자. <mark>디지털화 과정은</mark> 아래 순서의 세 단계로 이루어진다.
 - 표본화: 아날로그 소리를 일정 단위 시간 간격으로 쪼개어, 신호의 진폭을 측정하여, 해당하는 정수 값을 저장한다. 그러므로 파형의 진폭이 표본화된 숫자의 연속으로 컴퓨터안에 표현된다.
 - 양자화: 샘플링된 연속된 정수 값을 미리 정해진 숫자 단위(범위)로 변환한다.

[그림 9.15] 오디오의 비트패턴 변환 과정

- □ 표본화 비율은 파형에서 초당 추출한 표본 수이다.
 - □ 1초 표본 8,000개를 만들고, 8-비트 패턴으로 변환하면
 - □ 8,000/초 X 8-비트 = 64,000 비트 = 8,000 바이트 = 8KB의 음원
- - □ 1초에 44100 개의 샘플링 신호/ 각 신호는 16 bit로 코드화
 - □ 44100 개 * 16 비트 / 1초

44100×168/E/#

- □ 고음질 음원 24bit, 192KHz
 - 192000 * 24 bit/second

□ 다양한 압축 포맷 등장 : (WAY, MP3, WMA, AIFF, FLAC)

WMA HTF FLAC.

WAV MP3

WMA
AITT

9.4.2 영상의 표현

- 지진이나 영상도 소리와 마찬가지로 이진 값으로 컴퓨터 안에 저장한다. 영상은 명암과 색의 연속이다.
 - □ 영상에 규칙적인 간격으로 놓인 각점의 명암 값을 측정하는 것으로 이루어진다. 이러한 점들을 화소(픽셀, Pixel)라 하는데, 화소를 더 많이 사용하면 영상을 인코딩하는데 더 정확해 진다.
- □ 영상을 저장하려면 아래와 같이 세 방법을 사용할 수 있다.
 - •흑백 영상으로 저장
 - •회색 영상으로 저장
 - •컬러 영상으로 저장

□ 흑백 그림으로 저장

□ 흑백으로 그림을 저장하면 각 화소마다 1-비트만 할당하면 된다.

(0은 흰색, 1은 검정색)

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	1	0	0	0	0	0	0	0	0	0
1	1	1	1	1	0	1	0	0	0	0	0	0	0	0
0	1	0	1	0	1	0	0	0	0	0	0	0	0	0
0	1	0	0	0	1	0	0	0	0	0	0	0	0	0
1	0	1	1	1	1	1	0	0	0	0	0	0	0	0
0	0	0	0	1	1	1	1	1	1	1	1	0	0	0
0	0	0	0	1	1	1	1	1	1	0	1	1	0	0
0	0	0	0	1	0	1	0	1	0	0	1	1	1	0
0	0	0	0	0	1	1	1	1	1	1	1	1	0	1
0	0	0	0	1	0	1	1	1	1	1	1	1	0	0
0	0	0	1	0	0	1	0	0	1	0	1	0	0	0
0	0	0	0	1	0	1	0	0	1	0	1	0	0	0

इंध् 2य

▮그림 10.6 ▮ 흑백으로 저장한 사진

□ 화소가100,000 × 120,000인 영상은 1.5GB의 저장 공간을 차지한다.

□ 회색 그림으로 저장

यक्की अवी

□ 회색의 표현에 8-비트를 사용하면 256개의 회색을 만들 수 있다.

= 15 GB

■그림 10.7 ■ 회색으로 저장한 사진

□ 위의 화소가 100,000 × 120,000인 영상을 회색으로 저장하면 12 G바이트(12GB) 저장 공간을 차지한다. 즉, 흑백 영상일 때

보다 8배 저장 공간을 더 차지한다.

- □ 컬러 영상으로 저장
 - 영상을 컬러로 디지털로 표현하고 저장하려면 각 화소마다
 정보를 더 많이 주어야 하는데, 보통 방법은 빨강, 녹색, 파랑의
 정보를 제공하는 기술이다. 이 기술을 RGB(Red, Green, Blue)
 인코딩 기법이라 한다. (보통 한 색상에 8비트씩 24비트 사용)
 - □ 순수 빨강과 순수 파랑을 섞으면 '보라'가 된다. 즉, RGB = (255, 0, 255)로 인코딩 된다. 마찬가지로 붉은 분홍은 RGB = (255, 105, 180)로 인코딩 된다.
 - □ 화소가 100,000 × 120,000인 영상을 컬러영상으로 저장하면 36G바이트(36GB) 저장 공간을 차지한다.

□ 사진 한 장을 전송하기 위하여 많은 데이터를 전송하고 시간도 많이 소요된다. 이런 문제를 해결하기 위해 영상을 압축하여 표현하고 저장한다. 압축 방식에 따라 다양한 파일 확장명이 있다.

T स्थान याध्यक्ते स्र.

- □ 영상을 표현하는 이런 비트맵 방식 외에도 객체를 한 단위로 표현하는 벡터 그래픽 방식도 있다. 이 기술은 영상을 여러 기하학적인 다각형 '객체'의 모임으로 보고 각 객체를 선이나 도형을 사용한 수식으로 표현을 한다.
 - □ 객체 위주의 편집을 지원하기 때문에 그림의 변형이나 파괴가 없다.

벡터 그래픽

🛱 벡터 이미지의 디스플레이

• 벡터로 표현한 각 개체에 대한 데이터를 렌더링(rendering) 소프트웨어가 해석하여 컴퓨터 화면의 적당한 위치에 나타나게 한다

9.4.4 영상의 표현

동영상

비디오(Video)란?

시간의 흐름에 따라 일련의 이미지 혹은 프레임을 출력

⇔ A stream of frames in time (예: 1초에 30장의 프레임 출력)

비디오 압축기술로서 MPEG 등이 있음 (I, P, B 프레임 사용)

(MPEG: Moving Picture Expert Group: ISO/IEC JTC1/SC29)

- □ UHD 동영상(비압축때)
 - □ 픽셀 수: 3840 x 2160 픽셀
 - □ 정지화상크기 : 3840 x 2160 x 24bit(RGB) = 199,065,600 bit
 - □ 동영상 비트수 : 3840 x 2160 x 24 x 30(초당프레임수)

5,971,968,000 비트/초

MPEG

- ₩ MPEG: 비디오 압축(표현) 기술
 - MPEG-1, 2, 4, 7, 21
- ₩ MPEG 동영상 압축기술
 - MPEG-1
 - CD-ROM 저장용 기술(1.5 Mbps 데이터 속도)
 - MPEG-2
 - 원격 화상회의나 DVD 용 기술 (3~6 Mbps 데이터 속도)
 - MPEG-3
 - 오디오 압축기술(MPEG-2에 합쳐짐, MP3라함)
 - MPEG-4
 - 객체 중심의 씬 (scene) 구성, 씬에 상호작용이 가능한 기술

MPEG

MPEG frames

- I-frame (intracoded)(원래 이미)
- P-frame (predicted) 1 frame과 바뀔 부분
- B-frame (bi-directional): (, P frame과의 차이 부분 (시간차 고려)

GOP (Group of Pictures) = 15 frames

- GOP = IBB PBB PBB PBB PBB
- 예) 2 GOPs per second: 30 frames per second

Intraframe Compression Every frame is encoded Individually

Interframe Compression
Only the differences between frames are encoded for each group of frames

Group Of Pictures (GOP)

