Problem 1 (3.1.10). For the lens space $L_m(\ell_1, \ldots, \ell_n)$ defined in Example 2.43, compute the cohomology groups using the cellular cochain complex and taking coefficients in $\mathbb{Z}, \mathbb{Q}, \mathbb{Z}_m$, and \mathbb{Z}_p for p prime. Verify that the answers agree with those given by the universal coefficient theorem.
Proof.
Problem 2 (3.1.11). Let X be a Moore space $M(\mathbb{Z}_m, n)$ obtained from S^n by attaching a cell e^{n+1} by a map of degree m .
(a) Show that the quotient map $X \to X/S^n = S^{n+1}$ induces the trivial map on $\widetilde{H}_i(-;\mathbb{Z})$ for all i , but not on $H^{n+1}(-;\mathbb{Z})$. Deduce that the splitting in the universal coefficient theorem for cohomology cannot be natural.
(b) Show that the inclusion $S^n \hookrightarrow X$ induces the trivial map on $\widetilde{H}^i(-;\mathbb{Z})$ for all i , but not on $H_n(-;\mathbb{Z})$.
Proof.