Hoja de Referencia VIP: Aprendizaje no Supervisado

Afshine Amidi y Shervine Amidi

6 de octubre de 2018

Traducido por Jaime Noel Alvarez Luna. Revisado por Alonso Melgar López y Fernando Diaz.

Introducción al Aprendizaje no Supervisado

□ Motivación – El objetivo del aprendizaje no supervisado es encontrar patrones ocultos en datos no etiquetados $\{x^{(1)},...,x^{(m)}\}$.

 $\hfill \Box$ Desigualdad de Jensen – Sea funa función convexa y Xuna variable aleatoria. Tenemos la siguiente desigualdad:

$$E[f(X)] \geqslant f(E[X])$$

Expectativa-Maximización

 \square Variables latentes – Las variables latentes son variables ocultas/no observadas que dificultan los problemas de estimación y a menudo son denotadas como z. Estos son los ajustes más comunes en los que hay variables latentes:

Ajustes	Variance latente z	x z	Comentarios
Mezcla de k gaussianos	$\operatorname{Multinomial}(\phi)$	$\mathcal{N}(\mu_j, \Sigma_j)$	$\mu_j \in \mathbb{R}^n, \phi \in \mathbb{R}^k$
Análisis factorial	$\mathcal{N}(0,I)$	$\mathcal{N}(\mu + \Lambda z, \psi)$	$\mu_j \in \mathbb{R}^n$

 \square Algoritmo – El algoritmo Expectativa-Maximización (EM) proporciona un método eficiente para estimar el parámetro θ a través de la estimación por máxima verosimilitud construyendo repetidamente un límite inferior en la probabilidad (E-step) y optimizando ese límite inferior (M-step) de la siguiente manera:

■ E-step: Evalúa la probabilidad posterior $Q_i(z^{(i)})$ de que cada punto de datos $x^{(i)}$ provenga de un determinado clúster $z^{(i)}$ de la siguiente manera:

$$Q_i(z^{(i)}) = P(z^{(i)}|x^{(i)};\theta)$$

■ M-step: Usa las probabilidades posteriores $Q_i(z^{(i)})$ como pesos específicos del clúster en los puntos de datos $x^{(i)}$ para re-estimar por separado cada modelo de clúster de la siguiente manera:

$$\theta_i = \underset{\theta}{\operatorname{argmax}} \sum_i \int_{z^{(i)}} Q_i(z^{(i)}) \log \left(\frac{P(x^{(i)}, z^{(i)}; \theta)}{Q_i(z^{(i)})} \right) dz^{(i)}$$

Agrupamiento k-means

Inicialización Gaussiana

Denotamos $c^{(i)}$ al clúster de puntos de datos i, y μ_i al centro del clúster j.

 \square Algoritmo – Después de haber iniciado aleatoriamente los centroides del clúster $\mu_1, \mu_2, ..., \mu_k \in \mathbb{R}^n$, el algoritmo k-means repite el siguiente paso hasta la convergencia:

Etapa de Expectativa Etapa de Maximización

 $\hfill \Box$ Función de distorsión – Para ver si el algoritmo converge, observamos la función de distorsión definida de la siguiente manera:

$$J(c,\mu) = \sum_{i=1}^{m} ||x^{(i)} - \mu_{c^{(i)}}||^2$$

Agrupación jerárquica

 \square Algoritmo – Es un algoritmo de agrupamiento con un enfoque de aglomeramiento jerárquico que construye clústeres anidados de forma sucesiva.

□ Tipos – Hay diferentes tipos de algoritmos de agrupamiento jerárquico que tienen por objetivo optimizar diferentes funciones objetivo, que se resumen en la tabla a continuación:

Enlace de Ward	Enlace promedio	Enlace completo
Minimizar dentro de la distancia del clúster	Minimizar la distancia promedio entre pares de clúster	Minimizar la distancia máxima entre pares de clúster

Métricas de evaluación de agrupamiento

En un entorno de aprendizaje no supervisado, a menudo es difícil evaluar el rendimiento de un modelo ya que no contamos con las etiquetas verdaderas, como en el caso del aprendizaje supervisado.

 \square Coeficiente de silueta – Sea a y b la distancia media entre una muestra y todos los demás puntos en la misma clase, y entre una muestra y todos los demás puntos en el siguiente grupo más cercano, el coeficiente de silueta s para una muestra individual se define de la siguiente manera:

$$s = \frac{b - a}{\max(a, b)}$$

 \square Índice de Calinski-Harabaz – Sea k el número de conglomerados, B_k y W_k las matrices de dispersión entre y dentro de la agrupación, respectivamente definidas como:

$$B_k = \sum_{i=1}^k n_{c(i)} (\mu_{c(i)} - \mu) (\mu_{c(i)} - \mu)^T, \qquad W_k = \sum_{i=1}^m (x^{(i)} - \mu_{c(i)}) (x^{(i)} - \mu_{c(i)})^T$$

el índice de Calinski-Harabaz s(k) indica qué tan bien un modelo de agrupamiento define sus grupos, de tal manera que cuanto mayor sea la puntuación, más denso y bien separados estarán los conglomerados. Se define de la siguiente manera:

$$s(k) = \frac{\operatorname{Tr}(B_k)}{\operatorname{Tr}(W_k)} \times \frac{N-k}{k-1}$$

Análisis de componentes principales

Análisis de componentes principales (en inglés, *Principal Component Analysis*) es una técnica de reducción de la dimensionalidad que encuentra la varianza maximizando las direcciones sobre las cuales se proyectan los datos.

□ Autovalor, Autovector – Dada una matriz $A \in \mathbb{R}^{n \times n}$, se dice que λ es un autovalor (en inglés, *Eigenvalue*) de A si existe un vector $z \in \mathbb{R}^n \setminus \{0\}$, llamado autovector (en inglés, *Eigenvector*), de tal manera que tenemos:

$$Az = \lambda z$$

□ Teorema espectral – Sea $A \in \mathbb{R}^{n \times n}$. Si A es simétrica, entonces A es diagonalizable a través de una matriz ortogonal real $U \in \mathbb{R}^{n \times n}$. Al observar $\Lambda = \operatorname{diag}(\lambda_1, ..., \lambda_n)$, tenemos:

$$\exists \Lambda \text{ diagonal}, \quad A = U\Lambda U^T$$

Observación: el autovector asociado con el autovalor más grande se denomina autovector principal de la matriz A.

 \square Algoritmo – El procedimiento de Análisis de Componentes Principales (ACP) es una técnica de reducción de la dimensionalidad que proyecta los datos en k dimensiones maximizando la varianza de los datos de la siguiente manera:

 \bullet Paso 1: Normalizar los datos para obtener una media de 0 y una desviación estándar de $\frac{1}{1}$

$$x_j^{(i)} \leftarrow \frac{x_j^{(i)} - \mu_j}{\sigma_j} \quad \text{donde} \quad \mu_j = \frac{1}{m} \sum_{i=1}^m x_j^{(i)} \quad \text{y} \quad \sigma_j^2 = \frac{1}{m} \sum_{i=1}^m (x_j^{(i)} - \mu_j)^2$$

- Paso 2: Calcular $\Sigma = \frac{1}{m} \sum_{i=1}^{m} x^{(i)} x^{(i)^T} \in \mathbb{R}^{n \times n}$, que es simétrico con autovalores reales.
- Paso 3: Calcular $u_1, ..., u_k \in \mathbb{R}^n$ los k autovectores ortogonales principales de Σ , es decir, los autovectores ortogonales de los k mayores autovalores.
- Paso 4: Proyectar los datos en $\operatorname{span}_{\mathbb{R}}(u_1,...,u_k)$. Este procedimiento maximiza la varianza entre todos los espacios k-dimensionales.

Análisis de componentes independientes

Es una técnica destinada a encontrar las fuentes generadoras subyacentes.

□ Suposiciones – Suponemos que nuestros datos x han sido generados por el vector fuente n-dimensional $s = (s_1, ..., s_n)$, donde s_i son variables aleatorias independientes; a través de una matriz A de mezcla y no singular, de la siguiente manera:

$$x = As$$

El objetivo es encontrar la matriz separadora $W = A^{-1}$.

 \Box Algoritmo ICA de Bell y Sejnowski – Este algoritmo encuentra la matriz separadora W siguiendo los siguientes pasos:

• Escribir la probabilidad de $x = As = W^{-1}s$ como:

$$p(x) = \prod_{i=1}^{n} p_s(w_i^T x) \cdot |W|$$

■ Escriba la probabilidad dado nuestros datos de entrenamiento $\{x^{(i)}, i \in [\![1,m]\!]\}$ y denotando g, la función sigmoide, como:

$$l(W) = \sum_{i=1}^{m} \left(\sum_{j=1}^{n} \log \left(g'(w_j^T x^{(i)}) \right) + \log |W| \right)$$

Por lo tanto, la regla de aprendizaje de ascenso de gradiente estocástica es tal que para cada ejemplo de entrenamiento $x^{(i)}$, actualizamos W de la siguiente manera:

$$W \longleftarrow W + \alpha \begin{pmatrix} \begin{pmatrix} 1 - 2g(w_1^T x^{(i)}) \\ 1 - 2g(w_2^T x^{(i)}) \\ \vdots \\ 1 - 2g(w_n^T x^{(i)}) \end{pmatrix} x^{(i)^T} + (W^T)^{-1} \end{pmatrix}$$