Notatki z wykładów Matematyka – Analiza I

Twoje Imię i Nazwisko

Semestr zimowy 2025/2026

Contents

1	ChapterExample					
	1	Big O	Notation	2		
		1.1	Grundidee	2		
		1.2	Häufige Komplexitätsklassen	2		
		1.3	Beispiele in C++	3		
		1.4	Wachstumsvergleich der Funktionen	5		
2	Algorithmen					
	1	Sortin	g	6		

Chapter 1

ChapterExample

1 Big O Notation

Die Big O-Notation beschreibt, wie stark die Laufzeit oder der Speicherverbrauch eines Algorithmus mit der Größe der Eingabe n wächst. Sie dient also zur Charakterisierung der Effizienz eines Algorithmus im asymptotischen Grenzfall – wenn n sehr groß wird.

1.1 Grundidee

Die Schreibweise O(f(n)) bedeutet, dass die Laufzeit eines Algorithmus höchstens proportional zur Funktion f(n) wächst. Wenn also ein Algorithmus in O(n) arbeitet, wächst seine Ausführungszeit linear mit der Eingabegröße.

Hinweis

Die Big-O-Notation gibt keine exakte Laufzeit an, sondern das Wachstumsverhalten. Sie betrachtet nur den dominanten Term — also den Anteil, der für große n am stärksten wächst.

1.2 Häufige Komplexitätsklassen

- \bullet O(1) konstante Zeit (unabhängig von der Eingabegröße)
- $O(\log n)$ logarithmisch (z. B. binäre Suche)
- O(n) linear (z. B. Schleife über ein Array)
- $O(n \log n)$ n-log-n (z. B. effiziente Sortierverfahren)
- $O(n^2)$ quadratisch (z. B. doppelt geschachtelte Schleifen)
- $O(2^n)$ exponentiell (z. B. vollständige Kombinationssuche)

• O(n!) – fakultativ (z. B. Permutationsprobleme)

1.3 Beispiele in C++

Beispiel 1 — konstante Komplexität 0(1)

Diese Operation benötigt immer die gleiche Zeit, unabhängig von der Eingabegröße.

```
int getFirstElement(const std::vector<int> &v) {
   return v[0]; // immer eine Operation
}
```

Beispiel 2 — logarithmische Komplexität $O(\log n)$

Die binäre Suche halbiert in jedem Schritt den Suchbereich.

```
int binarySearch(const std::vector<int> &v, int target) {
   int left = 0, right = v.size() - 1;
   while (left <= right) {
      int mid = (left + right) / 2;
      if (v[mid] == target) return mid;
      else if (v[mid] < target) left = mid + 1;
      else right = mid - 1;
   }
   return -1;
}</pre>
```

Beispiel 3 — lineare Komplexität O(n)

Eine Schleife, die alle Elemente durchläuft, wächst linear mit der Eingabegröße.

```
int sumElements(const std::vector<int> &v) {
   int sum = 0;
   for (int x : v) sum += x;
   return sum;
}
```

Beispiel 4 — $\mathbf{n} \cdot \log(\mathbf{n})$ Komplexität $O(n \log n)$

Sortieralgorithmen wie std::sort() oder MergeSort erreichen diese Effizienzklasse.

```
void sortVector(std::vector<int> &v) {
   std::sort(v.begin(), v.end()); // O(n log n)
}
```

Beispiel 5 — quadratische Komplexität $O(n^2)$

Doppelte Schleifen über alle Elemente – z.B. einfacher Sortieralgorithmus.

```
void bubbleSort(std::vector<int> &v) {
    for (size_t i = 0; i < v.size(); ++i)
        for (size_t j = 0; j < v.size() - 1; ++j)
        if (v[j] > v[j+1])
            std::swap(v[j], v[j+1]);
}
```

Beispiel 6 — exponentielle Komplexität $O(2^n)$

Eine rekursive Funktion, die alle Kombinationen prüft (z. B. Fibonacci ohne Memoization).

```
int fibonacci(int n) {
   if (n <= 1) return n;
   return fibonacci(n - 1) + fibonacci(n - 2); // O(2^n)
}</pre>
```

Beispiel 7 — Fakultätskomplexität O(n!)

Generierung aller Permutationen einer Liste — extrem ineffizient bei großen n.

```
void permute(std::string s, int l, int r) {
    if (l == r) std::cout << s << std::endl;
    else {
        for (int i = l; i <= r; ++i) {
            std::swap(s[l], s[i]);
            permute(s, l + 1, r);
            std::swap(s[l], s[i]);
        }
    }
}</pre>
```

1.4 Wachstumsvergleich der Funktionen

Für große n spielen konstante Faktoren keine Rolle mehr. Entscheidend ist, wie schnell die jeweilige Funktion wächst:

$$O(1) < O(\log n) < O(n) < O(n \log n) < O(n^2) < O(2^n) < O(n!)$$

Fazit

In der Praxis sollten Algorithmen mit möglichst geringer Komplexität bevorzugt werden – idealerweise O(1), $O(\log n)$ oder O(n). Höhere Komplexitäten führen sehr schnell zu ineffizientem Verhalten bei großen Datenmengen.

Chapter 2

Algorithmen

1 Sorting

```
compareTo(T o)
Słuy do porównywania obiektór tego samego typu. Zwraca:
  • liczbę ujemną jesli this < other
  • 0 jesli this == other
  • liczbę dodatnią jesli this > other
Działa wewnątrz klasy i pochodzi z Comparable.
public class Student implements Comparable<Student> {
private String name;
private int age;
public Student(String name, int age) {
   this.name = name;
   this.age = age;
}
@Override
public int compareTo(Student other) {
   return Integer.compare(this.age, other.age);
}
@Override
public String toString() {
   return name + " (" + age + ")";
```

```
ic class Main {
public static void main(String[] args) {
    List<Student> students = Arrays.asList(
        new Student("Anna", 22),
        new Student("Kuba", 20),
        new Student("Ola", 25)
    );

    Collections.sort(students); // uses compareTo()
    System.out.println(students);
}
```

comparator(T o)

Świetne pytanie — Comparator robi to samo co Comparable, czyli porównuje obiekty, ale działa z zewnątrz, a nie wewnątrz klasy.

Cecha	Comparable	Comparator
Gdzie się definiuje	w klasie obiektu	w osobnej klasie lub lamb-
	implements Comparable	dzie
Liczba moliwych porów-	Tylko jedno	dowolna liczba
nań		
Metoda	compareTo(T other)	compare(T o1, T o2)

Przykład

Załóżmy, że klasa Student nie implementuje Comparable:

```
public class Student {
   String name;
   int age;

public Student(String name, int age) {
    this.name = name;
    this.age = age;
}
```

```
public String toString() {
       return name + " (" + age + ")";
   }
}
Teraz tworzymy Comparator:
import java.util.*;
public class Main {
   public static void main(String[] args) {
       List<Student> students = Arrays.asList(
          new Student("Anna", 22),
          new Student("Kuba", 20),
          new Student("Ola", 25)
       );
       // Comparator po wieku
       Comparator<Student> byAge = (s1, s2) -> Integer.compare(s1.age, s2
           .age);
       Collections.sort(students, byAge);
```

Wynik to: [Kuba (20), Anna (22), Ola (25)]

System.out.println(students);

}

}

Porównywanie obiektów w Java: == vs equals()

• == - porównuje **referencje obiektów**, czyli sprawdza, czy dwie zmienne wskazują na *ten sam obiekt w pamięci*.

```
a == b \Rightarrow \operatorname{czy} a i b \text{ to ten sam obiekt?}
```

• equals() – porównuje zawartość obiektów, czyli sprawdza, czy dane przechowywane w obiektach są takie same.

```
a.equals(b) \Rightarrow czy a i b mają te same dane?
```

• Domyślna implementacja equals() w klasie Object działa tak samo jak

== . Aby porównywać zawartość, należy ją **nadpisać**:

```
@Override
public boolean equals(Object o) {
   if (this == o) return true;
   if (!(o instanceof Student)) return false;
   Student s = (Student) o;
   return name.equals(s.name);
}
```

Podsumowanie:

Operator	Porównuje	Użycie
==	Referencję (adres pamięci)	Tożsamość obiektu
equals()	Zawartość (dane)	Równość logiczna