UNITED STATES PATENT AND TRADEMARK OFFICE

I. Susan ANTHONY BA, ACIS,

Director of RWS Group Ltd, of Europa House, Marsham Way, Gerrards Cross, Buckinghamshire, England declare;

- 1. That I am a citizen of the United Kingdom of Great Britain and Northern Ireland.
- That the translator responsible for the attached translation is well acquainted with the German and English languages.
- 3. That the attached is, to the best of RWS Group Ltd knowledge and belief, a true translation into the English language of the accompanying copy of the specification filed with the application for a patent in Germany on 29 April 2002 under the number 102 19 203.0 and the official certificate attached hereto.
- 4. That I believe that all statements made herein of my own knowledge are true and that all statements made on information and belief are true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the patent application in the United States of America or any patent issuing thereon.

For and on behalf of RWS Group Ltd

The 31st day of May 2006

FEDERAL REPUBLIC OF GERMANY [Eagle crest]

Priority Certificate for the filing of a Patent Application

File Reference:

102 19 203.0

Filing date:

29 April 2002

Applicant/Proprietor: BASF Plant Science GmbH, Ludwigshafen/DE

Title:

Method for the production of polyunsaturated fatty acids in plants

IPC:

A 01 H 1/00

The attached documents are a correct and accurate reproduction of the original submission for this Application.

Munich, 25 November 2002

German Patent and Trademark Office

The President

[Seal of the German Patent

pp

and Trademark Office]

[signature]

Weihmayr

We claim:

10

20

A process for the production of compounds of the general formula I:

$$R^{1}$$
 CH_{2} R^{2} CH_{2} CH_{2} CH_{2} CH_{2} CH_{3} CH_{3} CH_{2} CH_{3}

in transgenic plants with a content of at least 1% by weight based on the total fatty acids, which process comprises the 15 following steps:

- a) introducing, into a plant, at least one nucleic acid sequence which encodes a polypeptide with an Δ6-desaturase activity; and
- b) introducing at least one second nucleic acid sequence which encodes a polypeptide with a A6-elongase activity; and.
- 25 c) if appropriate, introducing a third nucleic acid sequence which encodes a polypeptide with a \$5-desaturase activity;
- d) followed by growing and harvesting the plants: and 30 where the variables and substituents in the formula I have the following meanings:
- R1 = -OH, coenzyme A (thioester), phosphatidylcholine, 35 phosphatidylethanolamine, phoshatidylglycerol, diphosphatidylglycerol, phosphatidylserine, phosphatidylinositol, sphingolipid, glycoshingolipid or a radical of the following general formula II

$$H_2C - O - R^2$$
 $H_2C - O - R^3$
 $H_3C - O - C$

45

40

15

- R² = H, phosphatidylcholine-, phosphatidylethanolamine-, phosphatidylglycerol-, diphosphatidylglycerol-, phosphatidylserine-, phosphatidylinositol-, shingolipid-, glycoshingolipid-, glycoshingolipid- or saturated or unsaturated C₂-C₂-alkylcarbonyl-,
- $R^3 = H$, saturated or unsaturated C_2-C_{24} -alkylcarbonyl-, or
- R² and R³ independently of one another represent a radical of the general formula la

$$\begin{array}{c|c}
CH_2 & CH_2 & CH_2 & CH_2 \\
\hline
CH_2 & CH_2 & CH_3
\end{array}$$
(Ia)

n = 3, 4 or 6, m = 3, 4 or 5 and p = 0 or 3.

- 20 2. The process according to claim 1, wherein the substituents R^2 and R^3 independently of one another are $C_{10}-C_{22}$ -alkylcarbonyl-.
- 3. The process according to claim 1 or 2, wherein the 25 substituents R^2 and R^3 independently of one another are C_{16^-} , C_{18^-} , C_{20^-} or C_{22^-} alkyloarbonyl-.
- 4. The method according to any of claims 1 to 3, wherein the substituents R² and R³ independently of one another are unsaturated C₁₆-, C₁₈-, C₂₀- or C₂₂-alkylcarbonyl- with one, two, three, four or five double bonds.
 - The method according to any of claims 1 to 4, wherein the transgenic plant is an oil crop.
- The method according to any of claims 1 to 5, wherein the transgenic plant is selected from the group consisting of soya, peanut, oilseed rape, canola, linseed, evening primrose, verbascum, thistle, hazelnut, almond, macadamia, avocado, bay, wild roses, pumpkin/squash, pistachios, sesame, sunflower, safflower, borage, maize, poppy, mustard, hemp, castor-oil plant, olive, Calendula, Punica, oil palm, walnut or coconut.
- 45 7. The method according to any of claims 1 to 6, wherein the compounds of the formula I are obtained from the transgenic

20

3

plants in the form of their oils, fats, lipids or free fatty acids by pressing or extraction.

- The process according to any of claims 1 to 7, wherein the oils, fats, lipids or free fatty acids obtained as claimed in claim 7 are refined.
- The process according to any of claims 1 to 8, wherein the saturated or unsaturated fatty acids present in the compounds
 of the formula I are liberated.
 - 10. The method according to any of claims 1 to 9, wherein the saturated or unsaturated fatty acids are liberated by alkaline hydrolysis or enzymatic cleavage.
- 15 11. The method according to any of claims 1 to 10, wherein the compounds of the general formula I are present in the transgenic plant at a content of at least 5% by weight, based on the total fatty acids.
- 12. The process according to any of claims 1 to 11, wherein the nucleic acid sequences which encode the polypeptides with Δ6-desaturase activity, Δ6-elongase activity or Δ5-desaturase activity are selected from the group consisting of:
- a) a nucleic acid sequence with the sequence shown in SEQ ID No: 1, SEQ ID No: 3, SEQ ID No: 5, SEQ ID No: 7, SEQ ID No: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29 or SEQ ID NO: 31,
- b) nucleic acid sequences which, owing to the degeneracy of the genetic code, are obtained by back translation of the amino acid sequences shown in SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 32,
- 40

 c) derivatives of the nucleic acid sequences shown in SEO ID

 NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID

 NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15,

 SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID

 NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29 or

 SEQ ID NO: 31 which encode polypeptides with the amino acid acquences shown in SEQ ID NO: 2, SEQ ID NO: 4,

SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30 or SEQ ID NO: 32 and which have at least 50% homology at the amino acid level, without the enzymatic activity of the polypeptide being substantially reduced.

20020271

- 13. The process according to any of claims 1 to 12, wherein the 10 nucleic acid sequences as claimed in claim 8 are linked with one or more regulatory signals in a nucleic acid construct.
- 14. The method according to any of claims 1 to 13, wherein the nucleic acid construct comprises additional biosynthetic genes of the fatty acid or lipid metabolism selected from the group consisting of acyl-CoA dehydrogenase(s), acyl-ACP [= acyl carrier protein] desaturase(s), acyl-ACP thioesterase(s), fatty acid acyl transferase(s), fatty acid synthase(s), fatty acid hydroxylase(s), acetyl-coenzyme A carboxylase(s), acyl-Coenzyme A oxidase(s), fatty acid desaturase(s), fatty acid acetylenases, lipoxygenases, triacylglycerol lipases, allene oxide synthases, hydroperoxide lyases or fatty acid elongase(s).

5

Method for the production of polyunsaturated fatty acids in plants

5 Description

The present invention relates to a method for the production of fatty acid esters which comprise unsaturated fatty acids with at 10 east three double bonds, and to free unsaturated fatty acids 10 with a content of at least 1% by weight based on the total fatty acids present in the plants, by expressing at least one nucleic acid sequence which encodes a polypeptide with A6-desaturase activity and at least one nucleic acid sequence which encodes a polypeptide with A6-elongase activity. Advantageously, these 15 nucleic acid sequences can, if appropriate, be expressed in the transgenic plant together with a third nucleic acid sequence which encodes a polypeptide with A5-desaturase activity.

The invention furthermore relates to the use of defined nucleic 20 acid sequences which encode polypeptides with a $\Delta 6$ -desaturase activity, $\Delta 6$ -elongase activity or $\Delta 5$ -desaturase activity selected from a group of nucleic acid sequences, and/or to the use of nucleic acid constructs comprising the abovementioned nucleic acid sequences.

- 25 Certain products and by-products of naturally occurring metabolic processes in microbial cells or in the cells of animals and, advantageously plants, have utility for a wide range of industries, including the feed, food, cosmetics and
- 30 pharmaceutical industries. These molecules, which are collectively termed "fine chemicals", also include, for example, lipids and fatty acids, one representative class of which are the polyunsaturated fatty acids. Polyunsaturated fatty acids (PUFAs) are added for example to infant formula for increasing the 35 nutritional value of these foods. PUFAs have, for example, a
- 35 nutritional value of these foods. PUPAs have, for example, a positive effect on the cholesterol level in the blood of humans and are therefore useful for protection against heart disease. Fine chemicals such as polyunsaturated fatty acids (PUFAs) can be isolated from animal sources such as, for example, fish, or 40 produced by microorganisms by culturing microorganisms which have been developed such that they produce and accumulate or secrete large amounts of one or more desired molecules.
- Fatty acids and triglycerides have a multiplicity of uses in the 45 food industry, in animal nutrition, in cosmetics and in the pharmacological sector. Depending on whether they take the form of free saturated or unsaturated fatty acids or triglycerides

with an increased content of saturated or unsaturated fatty acids, they are suitable for a variety of uses. Polyunsaturated Ω 3-fatty acids and Ω 6-fatty acids constitute an important part of animal and human nutrition. Owing to the present-day composition

- 5 of human nutrition, an addition of polyunsaturated Ω3-fatty acids, which are predominantly found in fish oils, to the food is of particular importance. Thus, for example, polyunsaturated fatty acids such as docosahexaenoic acid (=DEA, C22:6⁰⁴,7,10,13,16,19) or eisosapentaenoic acid (= EPA,
- 10 C20:5^{45,8,1,1,4,17}) is added to baby formula for increasing the nutritional value. DHA is said to have a positive effect on brain development.

The various acids and triglycerides are obtained mainly from 15 microorganisms such as Mortierella or from oil-producing plants such as soybeans, oilseed rape, sunflower, algae such as Cryptocodinium or Phaeodactylum and others, the products being obtained, as a rule, in the form of their triacylqlycerides = triglycerols). However, they can also be obtained 20 from animals such as, for example, fish. The free fatty acids are advantageously prepared by hydrolysis. Bigher polyunsaturated fatty acids such as DHA, EPA, arachidomic acid (= ARA, C20:4^{455,811,14}), dihomo-y-linolenic acid (C20:3^{46,11,14}) or docosapentaenoic acid (DPA, C22:5^{57,10,11,16,19}) cannot be isolated 25 from oil crops such as oilseed rape, soybeans, sunflower, safflower or others. Conventional natural sources of these fatty acids are fish such as herring, salmon, sardine, redfish, eel, carp, trout, halibut, mackerel, zamder or tuna, or algae.

- 30 Depending on the intended purpose, oils with saturated or with unsaturated fatty acids are preferred; thus, for example, lipids with unsaturated fatty acids, specifically polyunsaturated fatty acids, are preferred in human nutrition. The polyunsaturated Ω 3-fatty acids are said to have a positive effect on the
- 35 cholesterol level in the blood and thus on the possibility of preventing heart disease. The risk of heart disease, stroke or hypertension can be reduced markedly by adding these ω3-fatty acids to the food. Also, ω3-fatty acids can have a positive effect on inflammatory processes, specifically chronically
- 40 inflammatory processes in connection with immunological diseases such as rheumatoid arthritis. These fatty acids are therefore added to foodstuffs, specifically dietetic foodstuffs, or are used in medicaments.
- 45 In connection with these rheumatic diseases due to the usual composition of our foods, Ω6-fatty acids such as arachidonic acid tend to have a negative effect on these diseases.

 Ω 3- and Ω 6-fatty acids are precursors of tissue hormones, what are known as eicosanoids such as the postaglandins, which are derived from dihomo- γ -linolenic acid, arachidonic acid and eicosapentaenoic acid, the thromoxanes and the leukotrienes,

- 5 which are derived from arachidonic acid and eicosapentaenoic acid. Eicosanoids (known as the PG2 series), which are formed from Ω 6-fatty acids, promote, as a rule, inflammatory reactions, while eicosanoids (known as the PG3 series) from Ω 3-fatty acids have a minor, or no, proinflammatory action.
- Owing to the positive properties, there has been no lack of attempts in the past to make available genes which are involved in the synthesis of fatty acids or triglycerides, for the production, in various organisms, of oils with a modified content
- 15 of unsaturated fatty acids. Thus, WO 91/13972 and its US equivalent describe a Δ9-desaturase. A Δ15-desaturase is claimed in WO 93/11245 and a Δ12-desaturase is claimed in WO 94/11516. Further desaturases are described, for example, in EP-A-O 550 162, WO 94/18337, WO 97/30582, WO 97/21340,
- 20 WO 95/18222, EP-A-O 794 250, Stukey et al., J. Biol. Chem., 265, 1990: 20144-20149, Wada et al., Nature 347, 1990: 200-203 or Huang et al., Lipids 34, 1999: 649-659. However, the biochemical characterization of the various desaturases is incomplete as yet since the onsymmes, being membrane-bound
- 25 proteins, can only be isolated and characterized with great difficulty (McKeon et al., Methods in Enzymol. 71, 1981: 12141-12147, Wang et al., Plant Physiol. Biochem., 26, 1988: 777-792). As a rule, membrane-bound desaturases are characterized by introduction into a suitable organism which is subsequently
- 30 analyzed for enzyme activity by means of analyses of the starting material and the product. Δ6-Desaturases are described in WO 93/06712, US 5,614,993, US5614393, WO 96/21022, WOOO/21557 and WO 99/27111, and their application for the production in transgenic organisms has also been described, such as in
- 35 W098/46763 W098/46764, W09846765. In this context, the expression of various desaturases is also described and claimed, as is the case in W099/64616 or W098/46776, as is the formation of polyunsaturated fatty acids. As regards the efficacy of the expression of desaturases and their effect on the formation of
- 40 polyunsaturated fatty acids, it must be noted that only minor contents of Δ6-unsaturated fatty acids/Ilpids, such as, for example, gamma-linolenic acid and stearidonic acid, have been obtained by expression of a single desaturase, as described to date. Moreover, a mixture of ω 3- and ω 6-fatty acids has been
- 45 obtained as a rule, since all of the $\Delta6\text{--desaturases}$ described to date converted for example not only linoleic acid ($\omega\,6\text{--fatty}$

acid), but also α -linolenic acid (ω 3-fatty acid).

Particularly suitable microorganisms for the production of PUFAs are microorganisms such as Thraustochytrium species or 5 Schizochytrium species, algae such as Phaeodactylum tricornutum or Crypthecodinium species, ciliates such as Stylonychia or Colpidium, fungi such as Mortierella, Entomophthora or Mucor. Strain selection has made possible the development of mutant strains of the microorganisms in question which produce a series 10 of desirable compounds, including PUFAs. The mutation and selection of strains with an improved production of a particular molecule, such as the polyunsaturated fatty acids, is, however, a time-consuming and difficult procedure. This is why recombinant methods are preferred whenever possible, as described 15 above. However, only limited amounts of the desired

polyunsaturated fatty acids such as DPA, EPA or ARA can be produced with the aid of the abovementioned microorganisms, these unsaturated fatty acids being obtained, as a rule, as fatty acid mixtures of, for example, EPA, DPA and DHA, depending on the 20 microorganism used.

As an alternative, the production of fine chemicals can suitably be carried out on a large scale via the production in plants which have been developed such that they produce the 25 abovementioned PUFAs. Plants which are particularly suited to

this purpose are oil crops, which comprise large amounts of lipid compounds, such as oilseed rape, canola, linseed, soyabeans, sunflowers, borage and evening primrose. However, other crop plants which comprise oils or lipids and fatty acids are also 30 well suited, as mentioned in the extensive description of the

present invention. Conventional breeding has given rise to a series of mutant plants which produce a spectrum of desirable lipids and fatty acids, cofactors and enzymes. However, the selection of new plant varieties with improved production of a

35 particular molecule is a time-consuming and difficult procedure or is indeed impossible if the compound does not occur naturally in the plant in question, as in the case of polyunsaturated C_{18} -, C20-fatty acids and C22-fatly acids and those with longer carbon chains.

Owing to the positive properties of unsaturated fatty acids, there has been no lack of attempts in the past to make available these genes which are involved in the synthesis of fatty acids or triglycerides for the production, in various plants, of oils with 45 a modified content of polyunsaturated fatty acids. However, it has been impossible as yet to produce longer-chain polyunsaturated C20- and/or C22-fatty acids such as EPA or ARA in

plants.

· ·

It was therefore an object to develop a method for the production of polyunsaturated fatty acid esters and/or free polyunsaturated

5

5 fatty acids with at least three double bonds in the fatty acid molecule. This object was achieved by the method according to the invention for the production of compounds of the general formula I:

10

$$\begin{array}{c|c} O & CH_2 & CH_2 & CH_2 & CH_3 \\ \hline R^1 & CH_2 & CH_2 & CH_2 & CH_3 \\ \hline \end{array} \hspace{1cm} (I)$$

15 i

in transgenic plants with a content of at least 1% by weight based on the total fatty acids, which process comprises the following steps:

- 20 a) introducing, into a plant, at least one nucleic acid sequence which encodes a polypoptide with a Λ6-desaturase activity; and
- b) introducing at least one second nucleic acid sequence which encodes a polypeptide with a $\Delta 6$ -elongase activity; and,
 - c) if appropriate, introducing a third nucleic acid sequence which encodes a polypeptide with a A5-desaturase activity;
 - d) followed by growing and harvesting the plants; and

30 where the variables and substituents in the formula I have the following meanings:

R1 = -OH, coenzyme A (thioester), phosphatidylcholine, phosphatidylcthanolamine, phoshatidylglycerol, diphosphatidylglycerol, phosphatidylserine, phosphatidylinositol, sphingolipid, glycoshingolipid or a radical of the following general formula II

40

$$\frac{\Pi_{2}C-0-R^{2}}{HC-0-R^{3}}$$
 (II)

15

30

.

R? = H, phosphatidylcholine-, phosphatidylethanolamine-, phosphatidylglycerol-, diphosphatidylglycerol-, phosphatidylserine-, phosphatidylinositol-, shingolipid-, glycoshingolipid-, glycoshingolipid- or saturated or unsaturated c2-C2+-alkylcarbonyl-,

R3 = H, saturated or unsaturated C2-C24-alkylcarbonyl-, or

 R^2 and R^3 independently of one another represent a radical of the $\ensuremath{\text{10}}$ general formula Ia

$$\begin{array}{c|c} & & \\ & & \\ \hline \end{array} \left(\begin{array}{c} CH_2 \\ \hline \end{array} \right)_n \left(\begin{array}{c} CH_2 \\ \hline \end{array} \right)_m \left(\begin{array}{c} CH_2 \\ \hline \end{array} \right)_p CH_3 \end{array} \right),$$

n=3, 4 or 6, m=3, 4 or 5 and p=0 or 3, preferably n=3, m=4 or 5 and p=0 or 3.

20
R¹ in the compounds of the formula I denotes -OH (hydroxyl-),
acetyl-coenzyme A-, phosphatidylcholine-,
phosphatidylethanolamine-, phoshatidylglycerol-,
diphosphatidylglycerol-, phosphatidylserine-,
25 phosphatidylinositol-, sphingolipid-, glycoshingolipid- or a
radical of the following general formula II

The abovementioned radicals for R1 are in each case bound to the 35 compounds of the formula I in the form of esters or thioesters.

R² in the compounds of the formula II denotes hydrogen, phosphatidylcholine-, phosphatidylethanolamine-, phosphatidylglycerol-, diphosphatidylglycerol-, diphosphatidylglycerol-, 40 phosphatidylserine-, phosphatidylinositol-, shingolipid-, glycoshingolipid-, glycoshingolipid- or saturated or unsaturated C₂-C₂-alkylcarbonyl-.

Unsaturated or saturated C2-C22-alkylcarbonyl which may be 45 mentioned are radicals such as ethylcarbonyl, n-propylcarbonyl, n-butylcarbonyl, n-pentylcarbonyl, n-hexylcarbonyl, n-hetylcarbonyl, n-octylcarbonyl, n-nonylcarbonyl,

n-decylcarbonyl, n-undecylcarbonyl, n-dodecylcarbonyl, n-tridecylcarbonyl, n-tetradecylcarbonyl, n-pentadecylcarbonyl, n-hexadecylcarbonyl, n-heptadecylcarbonyl, n-octadecylcarbonyl, n-nonadecylcarbonyl, n-docosanylcarbonyl or

- 5 n-tetracosanylcarbonyl, all of which may comprise one or more double bonds. Preferred are saturated or unsaturated $C_{10}-C_{22}$ -alkylcarbonyl radicals such as n-decylcarbonyl, n-undecylcarbonyl, n-dodecylcarbonyl, n-tridecylcarbonyl, n-tetradecylcarbonyl, n-pentadecylcarbonyl, n-hexadecylcarbonyl, n-hexadecylcarbonyl, n-nonadecylcarbonyl, n-accessionyl, n-bentadecylcarbonyl, n-docosanyl, n-docosanyl or n-tetracosanylcarbonyl
- n-eicosylcarbonyl, n-docosanylcarbonyl or n-tetracosanylcarbonyl, all of which comprise one or more double bonds. Especially preferred are saturated or unsaturated C1p-C2;-alkylcarbonyl radicals such as C1p-slkylcarbonyl, C11-alkylcarbonyl,
- 15 C₁₂-alkylcarbonyl, C₁₃-alkylcarbonyl, C₁₄-alkylcarbonyl,
 C₁₆-alkylcarbonyl, C₁₈-alkylcarbonyl, C₂₀-alkylcarbonyl,
 C₂₂-alkylcarbonyl or C₂₄-alkylcarbonyl radicals, all of which
 comprise one or more double bonds. Very especially preferred are
 saturated or unsaturated C₁₆-C₂₂-alkylcarbonyl radicals such as
- 20 C_{16} —alkylcarbonyl, C_{18} —alkylcarbonyl, C_{20} —alkylcarbonyl or C_{22} —alkylcarbonyl radicals, all of which comprise one or more double bonds. Preferably, the abovementioned radicals comprise two, three, four or five double bonds. Especially preferably, the radicals comprise three, four or five double bonds. Very
- 25 especially preferred are C₁₈-alkylcarbonyl radicals which comprise one, two, three or four double bonds and C₂₀-alkylcarbonyl radicals which comprise three, four or five double bonds. All of the abovementioned radicals are derived from the corresponding fatty acids.
- R³ denotes hydrogen or saturated or unsaturated C₂-C₂4-alkylcarbonyl.
- R^2 and R^3 in the compounds of the formula II independently of one another furthermore denote a radical of the general formula Ia

40
$$CH_2$$
 $\int_{\mathbb{R}}^{\mathbb{C}} CH_2 \int_{\mathbb{R}}^{\mathbb{C}} CH_2 \int_{\mathbb{R}}^{\mathbb{C}} CH_3$ (Ia)

45 where n=3, 4 or 6, m=3, 4 or 5 and p=0 or 3, preferably n=3, m=4 or 5 and p=0 or 3.

and/or ARA.

The abovementioned radicals R^1 , R^2 and R^3 may also have attached to them substituents such as hydroxyl or epoxy groups or else comprise triple bonds.

5 The nucleic acid sequences used in the method according to the invention are isolated nucleic acid sequences which encode polypeptides with AD-, A6-desaturase or A6-clongase activity.

The compounds of the formula I which are produced in this method 10 advantageously comprise a mixture of differing radicals $\mathbb{R}^1,\ \mathbb{R}^2$ or \mathbb{R}^3 which can be derived from differing glycerides. Moreover, a property of the sum of the

The method according to the invention advantageously gives fatty acid esters (= compounds of the formula I) with polyunsaturated 20 C1s-, C20- and/or C22-fatty acid molecules with at least two double bonds in the fatty acid ester. Preferably, these fatty acid molecules comprise three, four or five double bonds and advantageously lead to the synthesis of y-linolenic acid (= GLA, C18:3^{AC,9,12}), stearidonic acid (= SDA, C18:4^{AC,9,12}), stearidonic acid (= SDA, C18:4^{AC,9,12}), icosatetraenoic acid (= ETA, C20:4^{AS,8,11,14}), arachidonic acid (ARA), eicosapentaenoic acid (EFA) or their mixtures, preferably EPA

- 30 The fatty acid esters with polyunsaturated C_{18} —, C_{20} and/or C_{22} —fatty acid molecules can be isolated from the organisms which have been used for the production of the fatty acid esters in the form of an oil or lipid, for example in the form of compounds such as sphingolipids, phosphoglycerides, lipids, glycolipids 35 nuch as glycoshingolipid, phospholipids such as
- 35 such as glycoshingolipid, phospholipids such as phosphatidylethanolamine, phosphatidylcholine, phoshatidylserine, phosphatidylglycerol, phosphatidylinositol or diphosphatidylglycerol, monoacylglycerides, diacylglycerides, triacylglycerides or other fatty acid esters such as the
- 40 acetyl-coenzyme A esters which comprise the polyunsaturated fatty acids having at least two, preferably three, double bonds. In addition to these esters, the polyunsaturated fatty acids are also present in the plants as free fatty acids or bound in other compounds. As a rule, the different abovementioned compounds
- 45 (fatty acid esters and free fatty acids) are present in the plant in an approximate distribution of 80 to 90% by weight of triglycerides, 2 to 5% by weight of diglycerides, 5 to 10% by

weight of monoglycerides, 1 to 5% by weight of free fatty acids, 2 to 8% by weight of phospholipids, the total of the different compounds making 100% by weight.

5 When the compounds of the general formula I are produced in the method according to the invention, they are produced in a content of at least 1% by weight, advantageously at least 2% by weight, preferably at least 3% by weight, especially preferably at least 5% by weight, very especially preferably at least 10% by weight 10 based on the total of the fatty acids in the transgenic plant. Since, in the method according to the invention, the starting compounds linoleic acid (C18:2) and/or linolenic acid (C18:3) undergo several reaction steps, the end products of the method, such as, for example, arachidonic acid (ARA) or eicosapentaenoic 15 acid (EPA) are not obtained as pure products, but there are always minor amounts of the precursors still present in the end product. If both linoleic acid and linolenic acid are present in the original plant, the end products such as ARA and EPA are present as mixtures. The precursors should advantageously not 20 amount to more than 20% by weight, preferably not more than 15% by weight, especially preferably not more than 10% by weight, very especially preferably not more than 5% by weight, based on the amount of the end product in question. Advantageously, the end products which are produced in the method according to the 25 invention in a transgenic plant are only ARA or only EPA, either bound or as free acids (see compounds of the general formula I). If both compounds (ARA + EPA) are produced simultaneously, they are advantageously prduced in a ratio of at least 1:2 (EPA:ARA), advantageously at least 1:3, preferably 1:4, especially 30 preferably 1:5.

Suitable organisms for the production in the method according to the invention are, in principle, all plants such as mosses, algae, dicots or monocots. It is advantageous to use, in the 35 method according to the invention, organisms which belong to the oil-producing organisms, i.e. which are used for the production of oils, such as algae like Crypthecodinium, Phaeodactylum or plants, in particular plants, preferably oil crops, which comprise large amounts of lipid compounds, such as peanut, 40 oilseed rape, canola, sunflower, safflower, poppy, mustard, hemp, castor-oil plant, olive, sesame, Calendula, Punica, evening primrose, verbascum, thistle, wild roses, hazelnut, almond, macadamia, avocado, bay, pumpkin/squash, linseed, soybean, pistachios, borage, trees (oil palm, coconut or walnut) or field 45 crops such as maize, wheat, rye, oats, triticale, rice, barley, cotton, cassava, pepper, Tagetes, Solanaceae plants such as potato, tobacco, eggplant and tomato, Vicia species, pea, alfalfa or bush plants (coffee, cacao, tea), Salix species and perennial grasses and fodder crops. Preferred plants according to the invention are oil crops such as peanut, oilseed rape, canola, sunflower, safflower, pea, mustard, hemp, castor-oil plants,

5 olive, Calendula, Punica, evening primrose, pumpkin/squash, linseed, soybean, borage, trees (oil palm, coconut). Especially preferred are plants which are high in C18:2- and/or C18:3-fatty acid, such as sunflower, safflower, tobacco, verbascum, sesame, cotton, pumpkin/squash, poppy, evening primrose, walnut, linseed, 10 hemp, thistle or safflower. Very especially preferred are plants

such as safflower, sunflower, poppy, evening primrose, walnut, linseed or hemp.

Owing to the enzymatic activity of the nucleic acids used in the 15 method according to the invention, which encode polypeptides with $\Delta5-$, $\Delta6-$ desaturase or $\Delta6-$ elongase activity, different compounds of the formula I can be produced. Depending on the choice of the plant used for the method according to the invention, mixtures of the different compounds of the general formula I or individual 20 compounds, such as EPA or ARA, can be produced in free or bound form. Depending on the fatty acid composition which prevails in the original plant (C18:2- or C18:3-fatty acids), this gives compounds of the general formula I which are derived from C18:2-fatty acids, such as GLA-, DGLA- or ARA-comprising 25 compounds of the formula I, or compounds which are derived from

C18:3-fatty acids, such as SDA-, ETA- or EPA-comprising compounds of the formula I. If linoleic acid (= LA, C18: $2^{\Delta_9,12}$) is the only unsaturated fatty acid present in the plant used for the method, only GLA, DGLA and ARA can be formed as products of the method,

30 all of which can be present as free fatty acids or in bound form. If α -linolenic acid (= ALA, C18:3 $^{\Delta 9}$,12,15) is the only unsaturated fatty acid present in the plant used in the method, for example such as in linseed, only SDA, ETA and EPA can be formed as products of the method, all of which can be present as free fatty

35 acids or in bound form, as described above. By modifying the activity of the enzymes implicated in the synthesis ($\Delta 5-$, $\Delta 6$ -desaturase and $\Delta 6$ -elongase), or by introducing only the first two genes ($\Delta 6$ -desaturase and $\Delta 6$ -elongase) of the synthetic cascade, it is possible to produce in a targeted manner only

40 individual products in the abovementioned plants (see Figure I). Due to the activity of the enzymes $\Delta 6$ -desaturase and $\Delta 6$ -elongase, GLA and DGLA, or SDA and ETA, respectively, form, depending on the original plant and the unsaturated fatty acid. DGLA or ETA, respectively, or mixtures of these are formed preferentially. If

45 the enzyme Δ5-desaturase is additionally introduced into the plant, ARA or EPA are additionally formed. It is advantageous only to synthesize ARA or EPA or their mixtures, depending on the

11

fatty acid which is present in the plant and which acts as starting material for the synthesis. Since biosynthetic cascades are involved, the end products in question are not present in pure form in the plants. There are always minor amounts of the 5 precursor compounds present in the end product. These minor amounts amount to less than 20% by weight, advantageously less than 15% by weight, especially advantageously less than 10% by weight, very especially advantageously less than 5, 4, 3, 2 or 1% by weight, based on the end product DGLA, ETA or their mixtures, 10 or ARA, EPA or their mixtures, respectively.

For the purposes of the method according to the invention, transgenic plants are also understood as meaning plant cells, plant organs or intact plants which are grown for the production 15 of compounds of the general formula I. Growing is understood as meaning for example culturing of the transgenic plant cells, plant tissue or plant organs on a nutrient medium or the intact plant on or in a substrate, for example in hydroponic culture or on an arable soil.

Nucleic acids which can be used in the method according to the invention are, in principle, all those which encode polypeptides with Δ5-, Δ6-desaturase- or Δ6-elongase activity. These nucleic acids are advantageously derived from plants such as algae, such 25 as Isochrysis or Crypthecodinium, diatoms such as Phaeodactylum, mosses such as Physomitrella, Ceratodon or higher plants such as the primulaceae, such as aleuritia, Calendula stellata, Osteospermum spinescens or Osteospermum hyoseroides, microorganisms such as fungi, such as Aspergillus,
Thraustochytrium, Phytophtora, Entomophthora, Mucor or Mortierella, yeasts or animals such as nematodes, such as

Caenorhabditis, insects or humans. The $\Delta 5-$, $\Delta 6$ -desaturase or $\Delta 6$ -elongase genes are advantageously derived from fungi or from plants such as algae or mosses, preferably from plants. It is advantageous to in the method according to the invention, a nucleic acid sequence selected from the group of the in SEQ ID No: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29 or 31

or their derivative or homologs which encode polypeptides which 40 retain the enzymatic activity. These sequences, individually or in combination, are cloned into expression constructs; these expression constructs are represented in the sequences SEQ ID NO: 33-37. These expression constructs make possible an optimal synthesis of the compounds of the general formula I produced in

45 the method according to the invention.

In a preferred embodiment, the method furthermore comprises the step of obtaining a cell which comprises the nucleic acid sequences which are used in the method and which encode a $\Delta 5-$ or $\Delta 6-$ desaturage and a $\Delta 6-$ elongage, where a cell is transformed with

- 5 the nucleic acid sequence, a gene construct or a vector which bring about the expression of the Δ5-, Δ6-desaturase or Δ6-elongase nucleic acid, alone or in combination. In a further preferred embodiment, the method furthermore comprises the step of obtaining the fine chemical from the culture. The cell
- 10 generated thus is advantageously a cell of an oil crop such as, for example, peanut, oilseed rape, canola, linseed, soybean, safflower, hemp, sunflowers or borage.

A transgenic plant is understood as meaning, for the purposes of 15 the invention, that the nucleic acids used in the method are not at their natural locus in the genome of an organism; in this context, the nucleic acids can be expressed homologously or heterologously. However, transgenic also means that, while the nucleic acids according to the invention are at their natural 20 locus in the genome of an organism, the sequence has been modified in comparison with the natural sequence and/or the regulatory sequences of the natural sequences have been modified. Preferably, transgenic is understood as meaning that the nucleic acids according to the invention are not expressed at their

25 natural locus in the genome, that is to say that homologous or preferably heterologous expression of the nucleic acids takes place. Preferred transgenic plants are the oil crops.

Transgenic plants which comprise the compounds of the formula I 30 which have been synthesized in the method according to the invention can be marketed directly without isolation of the compounds which have been synthesized. Plants are understood as meaning, in the method according to the invention, all plant parts, plant organs such as leaf, stem, root, tuber or seeds, or 35 all of the plant. In this context, the seed comprises all parts of the seed such as the seed coats, epidermis cells and seed cells, endosperm or embyro tissue. However, the compounds produced in the method according to the invention can also be isolated from the plants in the form of their oils, fat, lipids 40 and/or free fatty acids. Compounds of the formula I which have been produced by this method can be harvested by harvesting the organisms either from the culture in which they grow or from the field. This can be done by pressing or extracting the plant parts, preferably the plant seeds. In this context, the oils, 45 fats, lipids and/or free fatty acids can be obtained by pressing by what is known as cold-beating or cold-pressing, without supplying heat. The plant parts, specifically the seeds, are

beforehand comminuted, steam-treated or toasted in order to facilitate their disruption. The seeds pretreated thus can subsequently be pressed or else extracted with solvents such as warm hexane. The solvent is subsequently removed. In this manner,

20020271

- 5 more than 96% of the compounds produced in the method can be isolated. The resulting products are subsequently processed further, i.e. refined. Here, the plant mucilages and turbid matter are first. What is known as degumming can be performed enzymatically or, for example, chemico-physically by adding acid 10 such as phosphoric acid. The free fatty acids are subsequently removed by treatment with a base, for example sodium hydroxide solution. The resulting product is washed thoroughly with water to remove the alkali remaining in the product, and dried. To remove the coloring matter which still remains in the product,
- 15 the products are bleached, for example using bleaching earth or active charcoal. At the end, the product is deodorized, for example by using steam.
- The PUFAs produced by this method are preferentially C18- or 20 C20-22-fatty acid molecules having at least two double bonds in the fatty acid molecule, preferably three, four, in combination with a further elongases and a A4-desaturase five or six double bonds. These $C_{18}-$ or $C_{20-22}-$ fatty acid molecules can be isolated from the organism in the form of an oil, lipid or a free fatty 25 acid. Suitable organisms are, for example, those which have been mentioned above. Preferred organisms are transgenic plants.

In a preferred embodiment, oils, lipids or fatty acids or fractions of these which have been produced by the 30 above-described method are especially preferably oil, lipid or a fatty acid composition which comprise PUFAs or which originate from transgenic plants.

A further embodiment according to the invention is the use of the 35 oil, lipid or the fatty acid composition in foods, feeds, cosmetics or pharmaceuticals.

The term "oil" or "fat" is understood as meaning a fatty acid mixture which comprises unsaturated, saturated, preferably 40 esterified fatty acid(s). It is preferred that the oil or fat has a high content of unsaturated, unconjugated esterified fatty acid(s), in particular linoleic acid, γ-linolenic acid, dihomo-y-linolenic acid, arachidonic acid, α-linolenic acid, stearidonic acid, eicosatetraenoic acid or eicosapentaenoic acid. 45 The amount of unsaturated esterified fatty acids is preferably approximately 30%, with an amount of 50% being more preferred and an amount of 60%, 70%, 80% or more being even more preferred. For

25

identification purposes, it is possible, for example, to determine the amount of fatty acid by gas chromatography after converting the fatty acids into the methyl esters by means of transesterification. The oil or fat can comprise various other 5 saturated or unsaturated fatty acids, for example calendulic acid, palmitic acid, stearic acid, oleic acid and the like. The amount of the various fatty acids in oil or fat can vary in particular as a function of the original plant.

10 The compounds of the formula I which are produced in the method and which comprise polyunsaturated fatty acids having at least two double bonds are sphingolipids, phosphoglycerides, lipids, glycolipids, phospholipids, monoacylglycerol, diacylglycerol, triacylglycerol or other fatty acid esters.

The polyunsaturated fatty acids which are present can be liberated from the compounds of the general formula I produced thus in the method according to the invention for example via treatment with alkali, for example aqueous KOH or NaOH, or acid 20 hydrolysis, advantageously in the presence of an alcohol such as methanol or ethanol, or via enzymatic cleavage and isolated via, for example, phase separation and subsequent acidification with, for example, H₂SO₄. However, the fatty acids can also be liberated directly without the above-described processing.

After they have been introduced into plant cells or plants, the nucleic acids used in the method can either be located on a separate plasmid or integrated into the genome of the host cell. In the case of integration into the genome, the integration can 30 be random or be effected by recombination in such a way that the native gene is replaced by the copy being introduced, whereby the production of the desired compound by the cell is modulated, or by using a gene in trans, so that the gene is linked operably with a functional expression unit which comprises at least one 35 sequence which ensures the expression of a gene and at least one sequence which ensures the polyadenylation of a functionally transcribed gene. The nucleic acids are advantageously introduced into the plants via multiexpression casacttes or constructs for the multiparallel seed-specific expression of genes.

Mosses and algae are the only known plant systems which produce substantial amounts of polyunsaturated fatty acids such as arachidonic acid (ARA) and/or eicosapentaenoic acid (EPA) and/or docosahexaenoic acid (DHA). Mosses comprise PUFAs in membrane 45 lipids, while algae, organisms which are related to algae and some fungi also accumulate substantial amounts of PUFAs in the triacylglycerol fraction. This is why nucleic acid molecules

which are isolated from such strains which also accumulate PUFAs in the triacylglycerol fraction are especially advantageously suitable for the method according to the invention and thus for the modification of the lipid and PUFA production system in a

- 5 host, in particular plants, such as oil crops, for example oilseed rape, canola, linseed, hemp, soybean, sunflowers, borage. They can therefore be used advantageously in the method according to the invention.
- 10 It has been possible to date to demonstrate that a trienoic acid with C_{18} carbon chain can be produced with the aid of desaturases. These methods which are known from the literature claim the production of y-linolenic acid. However, nobody has as yet been able to demonstrate the production very long-chain 15 polyunsaturated fatty acids (with C_{20} - and longer carbon chain and
- of trienoic acids and higher unsaturated types) by modified plants alone. To produce the longer-chain PUFAs according to the invention, the 20 polyunsaturated C18-fatty acids must first be desaturated by the
- enzymatic activity of a desaturase and subsequently elongated by at least two carbon atoms via an elongase. After one elongation cycle, this enzyme activity gives C_{20} -fatty acids, and after two or three elongation cycles C22- or C24-fatty acids. The activity 25 of the desaturases and elongases used method according to the
 - invention gives by preference C18-, C20- and/or C22-fatty acids having at least two double bonds in the fatty acid molecule, by preference three, four or five double bonds, especially preferably C_{18} - and/or C_{20} -fatty acids with at least two double
- 30 bonds in the fatty acid molecule, prefereably with three, four or five double bonds in the molecule. After a first desaturation and the elongation have taken place, further desaturation steps such as, for example, in A5-position, may take place. Especially preferred products of the process according to the invention are
- 35 arachidonic acid and eicosapentaenoic acid. The C18-fatty acids with at least two double bonds in the fatty acid can be elongated by the enzymatic activity according to the invention in the form of the free fatty acid or in the form of the esters, such as phospholipids, glycolipids, sphingolipids, phosphoglycerides,
- 40 monoacylglycerol, diacylglycerol or triacylglycerol.
- Using cloning vectors in plants and in the transformation of plants like those which are published and cited in: Plant Molecular Biology and Biotechnology (CRC Press, Boca Raton, 45 Florida), Chapter 6/7, pp. 71-119 (1993); F.F. White, Vectors for Gene Transfer in Higher Plants; in: Transgenic Plants, Vol. 1,

Engineering and Utilization, Eds.: Kung and R. Wu, Academic

Press, 1993, 15-38; B. Jenes et al., Techniques for Gene Transfer, in: Transgenic Plants; Vol. 1, Engineering and Utilization, Eds.: Kung and R. Wu, Academic Press (1993), 128-143; Polrykus, Annu. Rev. Plant Physiol. Plant Molec. Biol.

5 42 (1991), 205-225)), the nucleic acids can be used for the recombinant modification of a broad spectrum of plants so that this plant becomes a better or more efficient producer of one or more lipid-derived products, such as PUFAs. This improved production or production efficiency of a lipid-derived product, 10 such as PUFAs, can be brought about by a direct action of the manipulation or an indirect action of this manipulation.

A series of mechanisms exist by means of which the modification of a desaturase protein according to the invention can have a 15 direct effect on the yield, production and/or production efficiency of a fine chemical from an oil crop plant or a microorganism, owing to a modified protein. The number or activity of the desaturase protein or desaturase gene and of gene combinations of desaturases and elongases can be increased, so 20 that larger amounts of these compounds are produced de novo since the organisms lacked this activity and ability to biosynthesize them prior to introduction of the gene in question. This also applies analogously to the combination with further desaturases or elongases or further enzymes of the lipid metabolism. The use 25 of various divergent sequences, i.e. sequences which differ at the DNA sequence level, may also be advantageous, or else the use of promoters for gene expression which makes possible a different temporal gene expression, for example as a function of the degree

of maturity of the seed or oil-storing tissue.

The introduction of a desaturase and/or elongase gene, or several desaturase and elongase genes, into an organism, alone or in combination with other genes into a cell can not only increase the biosynthesis flux toward the end product, but also increase, 35 or generate de novo, the corresponding triacylglycerol composition. Likewise, the number or activity of other genes which participate in the import of nutrients required for the biosynthesis of one or more fine chemicals (for example fatty acids, polar and neutral lipids) can be increased, so that the 40 concentration of these precursors, cofactors or intermediates within the cells or within the storage compartment is increased, thus further increasing the ability of the cells to produce PUFAs as described hereinbelow. Fatty acids and lipids themselves are desirable as fine chemicals; by optimizing the activity or 45 increasing the number of one or more desaturases and/or elongases which participate in the biosynthesis of these compounds, or by

destroying the activity of one or more desaturases which

participate in the breakdown of these compounds, it can be possible to increase the yield, production and/or efficiency of the production of fatty acid and lipid molecules from plants.

- 5 The isolated nucleic acid molecules used in the process according to the invention encode proteins or parts of these, the proteins, or the individual protein or parts thereof, comprising an amino acid sequence with sufficient homology with an amino acid sequence of the sequence SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16,
- 10 18, 20, 22, 24, 26, 28, 30 or 32 so that the protein or the part thereof retains a desaturase or elongase activity. Preferably, the protein or the part thereof which is encoded by the nucleic acid molecule has its essential enzymatic activity and the capability of being implicated in the metabolism of compounds
- 15 which are required for the synthesis of plant cell membranes or in the transport of molecules across these membranes.

 Advantageously, the protein encoded by the nucleic acid molecules is at least approximately 50%, preferably at least approximately 60% and more preferably at least approximately 70%, 80% or 90%
- 20 and most preferably at least approximately 95%, 96%, 97%, 98%, 99% or more homologous to an amino acid sequence of the sequence SEQ IID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30 or 32. Preferably, the protein is a full-length protein which is essentially homologous in parts to a total amino acid sequence of 55 SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30 or 32 (which is the result of the open reading frame shown in
- or 32 (which is the result of the open reading frame shown in SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29 or 31). For the purposes of the invention, homology and homologous are understood as meaning identity or identical.
 - The term essential enzymatic activity of the desaturases and the elongase used is understood as meaning that, in comparison with the proteins/enzymes encoded by the sequences with SEQ ID No! 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29 or 31, they
- 35 retain at least an enzymatic activity of at least 10%, preferably 20%, especially preferably 30% and very especially 40% and can thus be implicated in the metabolism of compounds which are required for the synthesis of fatty acids in a plant cell or in the transport of molecules across membranes, meaning desaturated 40 C₁₈- or C₂₀₋₂₂- carbon chains with double bonds at at least two, advantageoulsy three, four or five positions.
- Nucleic acids which can advantageously be used in the process originate from fungi or plants such as algae or mosses of the 45 genera Physcomitrella, Thraustochytrium, Phytophtora, Ceratodon, Isochrysis, Aleurita, Muscarioides, Mortierella, Borago, Phaeodactylum, Crypthecodinium or from nematodes such as

Coanorhabditis, specifically from the genera and species Physcomitrella patens, Phytophtora infestans, Ceratodon purpureus, Isochrysis galbana, Aleurita farinosa, Muscarioides viallii, Mortierella alpina, Borago officinalis, Phaeodactylum 5 tricormutum or Ceanorhabditis elegans.

As an alternative, the isolated nucleotide sequences used can encode desaturases or elongases which hybridize, for example under stringent conditions, with a nucleotide sequence of the SEQ 10 ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29 or

The nucleic acid sequences used in the process are advantageously introduced in an expression cassette which makes possible the 15 expression of the nucleic acids in plants.

Advantageous expression cassettes are shown in SEQ ID NO: 33 to 37. Here, the nucleic acid sequences encoding the desaturases and/or the elongases are linked operably with one or more 20 regulatory signals, advantageously for enhancing gene expression. These regulatory sequences are intended to make possible the specific expression of genes and of protein expression. Depending on the host organism, this may mean, for example, that the gene is expressed and/or overexpressed only after induction, or else 25 that it is immediately expressed and/or overexpressed. For example, these regulatory sequences take the form of sequences to which inductors or repressors bind and thus regulate expression of the nucleic acid. In addition to these novel regulatory sequences, or instead of these sequences, the natural regulation 30 of these sequences before the actual structural genes may still be present and, if appropriate, may have been genetically modified so that the natural regulation has been switched off and the expression of the genes enhanced. However, the expression cassette (= expression construct = gene construct) can also be 35 simpler in construction, that is to say no additional regulatory signals have been inserted before the nucleic acid sequence or its derivatives, and the natural promoter together with its regulation has not been removed. Instead, the natural regulatory sequence has been mutated in such a way that regulation no longer 40 takes place and/or gene expression is enhanced. These modified promoters can also be placed before the natural gene alone in the form of part-sequences (= promoter together with parts of the nucleic acid sequences according to the invention) to enhance the activity. Moreover, the gene construct can advantageously also 45 comprise one or more enhancer sequences in operable linkage with the promoter, which make possible an enhanced expression of the nucleic acid sequence. Also, additional advantageous sequences,

such as further regulatory elements or terminators, may be inserted at the 3' terminus of the DNA sequences. The $\Delta 5$ -desaturase/ $\Delta 6$ -desaturase and/or $\Delta 6$ -elongase genes may be present in the expression cancette (= gene construct) in one or 5 more copies. Advantageously, in each case only one copy of the genes is present in the expression cassette. This gene construct, or the gene constructs, can be expressed together in the host organism. In this context, the gene construct(s) can be inserted in one or more vectors and be present in the cell in free form or 10 else be inserted in the genome. It is advantageous for the insertion of further genes in the host genome when the genes to be expressed are present together in one gene construct.

In this context, the regulatory sequences or factors can, as
15 described above, preferably have a positive effect on the gene
expression of the genes which have been introduced, thus
enhancing it. Thus, the regulatory elements can advantageously be
enhanced at transcriptional level by using strong transcription
signals such as promoters and/or enhancers. In addition, however,
20 an enhancement of translation is also possible, for example by
improving the stability of the mRNA.

A further embodiment of the invention are one or more gene constructs which comprise one or more sequences which are defined 25 by SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29 or 31 and which encode polypeptides of SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30 or 32. The abovementioned desaturases introduce a double bond into the $\Delta 5$ or $\Delta 6$ position, the substrate having one, two, three or four double 30 bonds. Elongase ($\Delta 6$ -elongase) has an enzyme activity which elongates a fatty acid by at least two carbon atoms. The same applies to its homologs, derivatives or analogs which are linked operably with one or more regulatory signals, advantageously for enhancing gene expression.

enhancing gene expression.

Advantageous regulatory sequences for the novel process are present, for example, in promoters such as cos, tac, trp, tet, trp-tet, lpp, lac, lpp-lac, lac19 T7, T5, T3, gal, tro, ara, SP6, \(\lambda - P_R\) or \(\lambda - P_L\) promoter and are advantageously used in Gram-negative 40 bacteria. Further advantageous regulatory sequences are present, for example, in the Gram-positive promoters amy and SF02, in the yeast or fungal promoters ADC1, MFG, AC, P-60, CYC1, GAPDH, TEF, rp28, ADH or in the plant promoters CaNV/35S [Franck et al., Cell 21 (1990) 285-294], PRP1 [Ward et al., Plant. Mol. Biol. 22 (1993)], SSU, OCS, lib4, usp, STLS1, B33, nos or in the ubiquitin or phaseolin promoter. Also advantageous in this connection are inducible promoters such as the promoters described in EP-A-O

388 186 (benzylsulfonamide-inducible), Plant J. 2, 1992:397-404 (Gatz et al., tetracyclin-inducible), EP-A-0 335 528 (abscisic acid-inducible) or WO 93/21334 (ethanol- or cyclohexenol-inducible). Further useful plant promoters are the potato

- 5 cytosolic FBPase promoter or ST-LSI promoter (Stockhaus et al., EMBO J. 8, 1989, 2445), the Glycine max phosphoribosylpyrophosphate amidotransferase promoter (Genbank Accession No. U87999) or the node-specific promoter described in FF-A-0 249 676. Especially advantageous promoters are promoters which
- 249 676. Especially advantageous promoters are promoters which are implicated in fatty acid biosynthesis. Very especially advantageous are seed-specific promoters, such as the USP promoter in accordance with the specification, but also other promoters such as the LeB4, DC3, phaseolin or napin promoter. Further especially advantageous
- 15 promoters are seed-specific promoters which can be used for monocots or dicots and which are described in US 5,608,152 (oilseed rape napin promoter), WO 98/45461 (Arabidopsis oleosin promotor), US 5,504,200 (Phaseolus vulgaris phaseolin promoter), WO 91/13980 (Brassica Boek promoter) described by Baeumlein et
- 20 al., Plant J., 2, 2, 1992:233-239 (LeB4 promoter from a legume), said promoters being useful in dioots. The following promoters are suitable for example in monocots: barley lpt-2 or lpt-1 promoter (WO 95/15389 and WO 95/23230), barley hordein promoter and other suitable promoters which are described in WO 99/16890.

In principle, it is possible to use all natural promoters with their regulatory sequences like those mentioned above for the novel process. It is likewise possible and advantageous to use synthetic promoters, in addition or alone, especially when they 30 confer seed-specific expression, such as, for example, described in WO 99/16890.

In order to achieve a particularly high PUFA content in transgenic plants, the PUFA biosynthetic genes should 35 advantageously be expressed in oil crops in a seed-specific manner. To this end, seed-specific promoters can be used, or those promoters which are active in the embryo and/or in the endosperm. In principle, seed-specific promoters can be isolated from both dicots and monocots. Advantageous preferred promoters 40 are detailed hereinbelow: USP (= unknown seed protein) and vicilin (Vicia faba) [Bäumlein et al., Mol. Gen Genet., 1991, 225(3)], napin (oilseed rape) [US 5,608,152], Acyl-Carrier Protein (oilseed rape) [US 5,608,152], Acyl-Carrier (Arabidopsis thaliana) [W 098/45461 and W 092/18634], cleosin (Arabidopsis thaliana) [W 098/45461 and W 091/13980], legume B4 (LegB4 promoter) [Bäumlein et al., Plant J., 2, 2, 1992], Lpt2 and lpt1 (barley) [W 095/15389 and W095/23230], seed-specific

promoters from rice, maize and wheat [WO 99/16890], Amy32b, Amy 6-6 and aleurain [US 5,677,474], Ece4 (oilseed rape) [US 5,560,149], glychin (soya) [EF 571 741], phosphoenolpyruvate carboxylase (suya) [JP 06/62870], ADR12-2 (soya) [WO 98/08967], 5 isocitrate lyase (oilseed rape) [US 5,689,040] or B-amylase (barley) [FF 781 849].

Plant gene expression can also be facilitated via a chemically inducible promoter (see a review in Gatz 1997, Annu. Rev. Plant 10 Physiol. Plant Wol. Biol., 48:89-108). Chemically inducible promoters are particularly suitable when it is desired that gene expression should take place in a time-specific manner. Examples of such promoters are a salicylic-acid-inducible promoter (WO 95/19443), a tetracyclin-inducible promoter (Gatz et al. (1992) 15 Plant J. 2, 397-404) and an ethanol-inducible promoter.

To ensure the stable integration of the biosynthesis genes into the transgenic plant over a plurality of generations, each of the nucleic acids which encode Δ6-desaturase, Δ5-desaturase, or 20 Δ6-elongase and which are used in the process should be expressed under the control of a separate promoter, preferably a promoter which differs from the other promoters, since repeating sequence motifs can lead to instability of the T-DNA, or to recombination events. In this context, the expression cassette is

- 25 advantageously constructed in such a way that a promoter is followed by a suitable cleavage site, advantageously in a polylinker, for insertion of the nucleic acid to be expressed and, if appropriate, a terminator sequence is positioned behind the polylinker. This sequence is repeated several times,
- 30 preferably three, four or five times, so that up to five genes can be combined in one construct and introduced into the transgenic plant in order to be expressed. Advantageously, the sequence is repeated up to three times (see sequence listing SEQ ID NO: 33 to 37). To express the nucleic acid sequences, the
- 35 latter are inserted after the promoter via a suitable cleavage site, for example in the polylinker. Advantageously, each nucleic acid sequence has its own promoter and, if appropriate, its own terminator sequence. However, it is also possible to insert a plurality of nucleic acid sequences after a promoter and, if 40 appropriate, before a terminator sequence. Here, the insertion
- 10 appropriate, before a terminator sequence, nere, the insertion site, or the sequence, of the inserted nucleic acids in the expression cassette is not of critical importance, that is to say a nucleic acid sequence can be inserted at the first or last position in the cassette without its expression being
- 45 substantially influenced thereby. Advantageously, different promoters such as, for example, the USP, LegB4 or DC3 promoter, and different terminator sequences can be used in the expression

cassette. However, it is also possible to use only one type of promoter in the cassette, which, however, may lead to undesired recombination events.

- 5 As described above, the transcription of the genes which have been introduced should advantageously be terminated by suitable terminator sequences at the 3' end of the biosynthesic genes which have been introduced (after the stop codon). An example of a sequence which can be used in this context is the OCS1
- 10 terminator sequence. As is the case with the promoters, different terminator sequences should be used for each gene.

As described above, the gene construct can also comprise further genes to be introduced into the organisms. It is possible and 1s advantageous to introduce into the host organisms, and to express, regulatory genes such as genes for inductors, repressors or enzymes which, owing to their enzyme activity, engage in the regulation of one or more genes of a biosynthesis pathway. These genes can be of heterologous or of homologous origin. Moreover, further biosynthesis genes of the fatty acid or lipid metabolism can advantageously be present in the nucleic acid construct, or gene construct; however, these genes can also be present on one or more further nucleic acid constructs. A biosynthesic gene of the fatty acid or lipid metabolism which is preferably chosen is 2s a gene selected from the group acyl-CoA dehydrogenase(s), acyl-ACP [= acyl carrier protein] desaturase(s), acyl-ACP

5 a gene selected from the group acyl-Lox length dysentactor)
acyl-ACP [= acyl carrier protein] desaturase(s), acyl-ACP
thioesterase(s), fatty acid acyltransferase(s), fatty acid
synthase(s), fatty acid hydroxylase(s), acetyl-coenzyme A
carboxylase(s), acyl-coenzyme A oxidase(s), fatty acid

30 desaturase(s), fatty acid acetylenases, lipoxygenases, triacylglycerol lipases, allene oxide synthases, hydroperoxide lyases or fatty acid elongase(s) or their combinations.

In this context, the abovementioned desaturases can be cloned 35 into expression cassette according to the invention in combination with elongases and other desaturases and employed for the transformation of plants with the aid of Agrobacterium.

In this context, the regulatory sequences or factors can, as
40 described above, have a positive effect on, preferably, the gene
expression of the genes introduced, thus enhancing it. Thus,
enhancement of the regulatory elements can advantageously take
place at the transcriptional level by using strong transcription
signals such as promoters and/or enhancers. In addition, however,
45 enhancement of translation is also possible, for example by
improving the stability of the mRNA. In principle, the expression

cassettes can be used directly for introduction into the plant, or else be introduced into a vectors.

These advantageous vectors, preferably expression vectors,

5 comprise the nucleic acid which are used in the method and which encode Δ5- or Δ6-desatures or Δ6-elonagases, or a nucleic acid construct, which the nucleic acid used, alone or in combination with further biosynthetic genes of the fatty acid or lipid metabolism. As used in the present context, the term "vector" 10 refers to a nucleic acid molecule which is capable of

transporting another nucleic acid, to which it is bound. One type of vector is a "plasmid", which represents a circular doublestranded DNA loop into which additional DNA segments can be ligated. Another type of vector is a viral vector, it being 15 possible for additional DNA segments to be ligated in the viral genome. Certain vectors are capable of autonomous replication in a host cell in which they have been introduced (for example bacterial vectors with bacterial origin of replication). Other vectors are advantageously integrated in the genome of a host

20 cell when being introduced into the host cell, whereby they replicate together with the host genome. Moreover, certain vectors are capable of governing the expression of genes with which they are operably linked. These vectors are referred to herein as "expression vectors". Usually, expression vectors which are suitable for DNA recombination techniques take the form of

plasmids. In the present description, "plasmid" and "vector" can be used interchangeably since the plasmid is the most frequently used vector form. However the invention is also intended to comprise these other forms of expression vectors, such as viral 30 vectors, which have similar functions. Furthermore, the term

Vectors, which have similar functions, furthermore, the terminary of the vector is also intended to comprise other vectors which are known to the skilled worker, such as phages, viruses such as SV40, CMV, TMV, transposons, IS elements, phasmids, phagemids, cosmids, linear or circular DNA.

The recombinant expression vectors which are advantageously used in the method comprise the nucleic acids described hereinbelow or the above-described gene construct in a form suitable for expressing these nucleic acids in a host cell, which means that 40 the recombinant expression vectors comprise one or more regulatory sequences selected on the basis of the host cells to be used for the expression, which is linked operably with the nucleic acid sequence to be expressed. "Linked operably" in a recombinant expression vector means that the nucleotide sequence 45 of interest is bound to the regulatory sequence(s) in such a way that the expression of the nucleotide sequence is possible and

that they are bound with one another so that both sequences

20

fulfill the predicted function ascribed to the sequence (for example in an in-vitro transcription/translation system or in a host cell if the vector is introduced into the host cell). The term "regulatory sequence" is intended to comprise promoters,

- term "regulatory sequence" is included to example operations and other expression control elements (for example polyadenylation signals). These regulatory sequences are described for example in Goeddel: Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, CA (1990), or see: Gruber and Crosby, in: Methods in Plant Molecular Biology
- or see: Gruber and Crossy, In: Methods in Plant Moterate Plant 10 and Biotechnolgy, CRC Press, Boca Raton, Florida, eds.: Glick and Thompson, chapter 7, 89-108, including the references therein. Regulatory sequences comprise those which govern the constitutive expression of a nucleotide sequence in many types of host cell and those which govern the direct expression of the nucleotide 15 sequence only in specific host cells under specific conditions.
- 15 sequence only in specific most cells under specific rotations. The skilled worker knows that the design of the expression vector can depend on factors such as the choice of the host cell to be transformed, the expression level of the desired protein and the like.

The recombinant expression vectors used can be designed for expressing desaturases and elongases in prokaryotic or eukaryotic cells. This is advantageous since intermediate steps of vector construction are frequently performed in microorganisms for the

- 25 sake of simplicity. For example, desaturase and/or elongase genes can be expressed in bacterial cells, insect cells (using baculovirus expression vectors), yeast cells and other fungal cells (see Romanos, M.A., et al. (1992) "Foreign gene expression in yeast: a review", Yeast 8:423-488; van den Hondel, C.A.M.J.J.,
- 30 et al. (1991) "Heterologous gene expression in filamentous fungi", in: More Gene Manipulations in Fungi, J.W. Bennet & L.L. Lasure, ed., pp. 396-428: Academic Press: San Diego; and van den Hondel, C.A.M.J.J., & Punt, P.J. (1991) "Gene transfer systems and vector development for filamentous fungi, in: Applied
- 35 Molecular Genetics of Fungi, Peberdy, J.F., et al., ed., pp. 1-28, Cambridge University Press: Cambridge), Algen (Falciatore et al., 1999, Marine Biotechnology. 1, 3:239-251), ciliates of the types: Holotrichia, Peritrichia, Spirotrichia, Suctoria, Tetrahymena, Paramecium, Colpidium, Glaucoma, Platyophrya,
- 40 Potomacus, Desaturaseudocohnilembus, Euplotes, Engelmaniella and Stylonychia, in particular the genus Stylonychia lemnae, using vectors by a transformation method as described in WO 98/01572, and preferably in cells of multi-celled plants (see Schmidt, R. and Willmitzer, L. (1988) "High efficiency Agrobacterium
- 45 tumefaciens-mediated transformation of Arabidopsis thaliana leaf and cotyledon explants" Plant Cell Rep.:583-586; Plant Molecular Biology and Biotechnology, C Press, Boca Raton, Florida, chapter

6/7, pp.71-119 (1993); F.F. White, B. Jenes et al., Techniques for Gene Transfer, in: Transgenic Plants, vol. 1, Engineering and Utilization, ed.: Kung and R. Wu, Academic Press (1993), 128-43; Potrykus, Annu. Rev. Flant Physiol. Plant Molec. Biol. 42 (1991),

5 205-225 (and references cited therein)). Suitable host cells are furthermore discussed in Goeddel, Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, CA (1990). As an alternative, the recombinant expression vector can be transcribed and translated in vitro, for example using T7 10 promoter regulation sequences and T7 polymerase.

Protein expression in prokaryotes is usually performed with the aid of vectors which comprise constitutive or inducible promoters which govern the expression of fusion proteins or nonfusion 15 proteins. Typical fusion expression vectors are, inter alia pGEX (Pharmacia Biotech Inc; Smith, D.B., and Johnson, K.S. (1988) Gene 67:31-40), pMAL (Rew England Biolabs, Beverly, MA) and pRIT5 (Pharmacia, Piscataway, NJ), where glutathione S-transferase (GST), maltose-E-binding protein or protein A, respectively, is 20 fused with the recombinant target protein.

Examples of suitable inducible nonfusion E. coli expression vectors are, inter alia, pTrc (Amann et al. (1988) Gene 69:301-315) and pET 11d (Studier et al., Gene Expression

- 25 Technology: Methods in Enzymology 185, Academic Press, San Diego, California (1990) 60-89). The target gene expression of the pTrc vector is based on the transcription of host RNA polymerase by a hybrid trp-lac fusion promoter. The target gene expression from the pET 11d vector is based on the transcription of a T7-gn10-lac
- 30 fusion promoter, which is mediated by a coexpressed viral RNA polymerase (T7 gnl). This viral polymerase is provided by the host strains NL21 (DE3) or HMS174 (DE3) by a resident \(\lambda\) prophage which harbors a T7 gnl gene under the transcriptional control of the lacUV 5 promoter.

Other vectors which are suitable for use in prokaryotic organisms are known to the skilled worker; these vectors are, for example in E. coli, pLG338, pACYC184, the pBR series such as pBR322, the pUC series such as pUC18 or pUC19, the M113mp series, pKC30, 40 pRep4, pBS1, pHS2, pPLc236, pMBL24, pLG200, pUR290, pIN-III¹¹³-B1, Agt11 or pBdCI, in Streptomyces pIJ101, pIJJ54, pIJ/02 or pIJ351, in Bacillus pUB110, pC194 oder pBD214, in Corynebacterium pSA77 or pAJ667.

45 In a further embodiment, the expression vector is a yeast expression vector. Examples of vectors for expression in the yeast S. cerevisiae comprise pYeDesaturasec1 (Baldari et al. (1987) Embo J. 6:229-234), pMFa (Kurjan and Herskowitz (1982) Cell 30:933-943), pJRY88 (Schultz et al. (1987) Gene 54:113-123) and pYES2 (Invitrogen Corporation, San Diego, CA). Vectors and methods for construction of vectors which are suitable for use in

- 5 other fungi, such as the filamentous fungi, comprise those which are described in detail in: van den Hondel, C.A.M.J.J., & Punt, P.J. (1991) "Gene transfer systems and vector development for filamentous fungi, in: Applied Molecular Genetics of fungi, J.F. Peberdy et al., ed., pp. 1-28, Cambridge University Press:
- 10 Cambridge, or in: More Gene Manipulations in Fungi [J.W. Bennet & L.L. Lasure, ed., pp. 396-428: Academic Press: San Diego]. Further suitable yeast vectors are, for example, pAG-1, YEp6, YEp13 or pEMBIYe23.
- 15 As an alternative, the desaturases and/or elongases can be expressed in insect cells using baculovirus expression vectors. Baculovirus vectors which are available for expressing proteins in cultured insect cells (for example Sf9 cells) comprise the pAc series (Smith et al. (1983) Mol. Cell Biol. 3:2156-2165) and the 20 pVL series (Lucklow and Summers (1989) Virology 170:31-39).

The abovementioned vectors offer only a small overview over suitable vectors which are possible. Further plasmids are known to the skilled worker and are described, for example, in: Cloning

- 25 Vectors (ed. Pouwels, P.H., et al., Elsevier, Amsterdam-New York-Oxford, 1985, ISBN 0 444 904018). Further suitable expression systems for prokaryotic and eukaryotic cells, see in the chapters 16 and 17 of Sambrook, J., Fritsch, E.F., and Maniatis, T., Molecular Cloning: A Laboratory Manual, 2nd
- 30 edition, Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989.

In a further embodiment of the process, the desaturases and/or elongases can be expressed in single-cell plant cells (such as

- 35 algae), see Falciatore et al., 1999, Marine Biotechnology 1
 (3):239-251 and references cited therein, and plant cells from higher plants (for example spermatophytes such as crops).

 Examples of plant expression vectors comprise those which are described in detail in: Becker, D., Kemper, E., Schell, J., and
- 40 Masterson, R. (1992) "New plant binary vectors with selectable markers located proximal to the left border", Plant Mol. Biol. 20:1195-1197; and Bevan, M.W. (1984) "Binary Agrobacterium vectors for plant transformation", Nucl. Acids Res. 12:8711-8721; Vectors for Gene Transfer in Higher Plants; in: Transgenic
- 45 Plants, vol. 1, Engineering and Utilization, ed.: Kung and R. Wu, Academic Press, 1993, pp. 15-38.

A plant expression cassette preferably comprises requlatory sequences which are capable of governing the gene expression in plant cells and which are linked operably so that each sequence can fulfill its function, such as transcriptional termination, 5 for example polyadenylation signals. Preferred polyadenylation signals are those which originate from Agrobacterium tumefaciens T-DNA, such as the gene 3 of the Ti plasmid priACUS, which is known as octopine synthase (Gielen et al., EMBO J. 3 (1984) 835ff.) or functional equivalents thereof, but all other

835ff.) or functional equivalents thereof, but all other 10 terminators which are functionally active in plants are also suitable.

Since plant gene expression is very often not limited to the transcriptional levels, a plant expression cassette preferably 15 comprises other operably linked sequences such as translation enhancers, for example the overdrive sequence which comprises the 5'-untranslated leader sequence from tobacco mosaic virus, which increases the protein/RNA ratio (Gallie et al., 1987, Nucl. Acids Research 15:8693-8711).

As described above, plant gene expression must be linked operably with a suitable promoter which performs gene expression with the correct timing or in a cell- or tissue-specific manner.

Utilizable promoters are constitutive promoters (Renfey et al., 25 EMBO J. 8 (1989) 2195-2202) such as those which are derived from plant viruses, such as 355 CAMV (Franck et al., Cell 21 (1980) 285-294), 195 CaMV (see also US 5352605 and wo 84/02913) or plant promoters such as the Rubisco small subunit, which is described

in US 4,962,028.

Other sequences which are preferred for the use for operable linkage in plant gene expression cassettes are targeting sequences, which are required for targeting the gene product into

its relevant cell compartment (for a review see Kermode, Crit. 35 Rev. Plant Sci. 15, 4 (1996) 285-423 and references cited therein), for example into the vacuole, the nucleus, all types of plastids, such as amyloplasts, chloroplasts, chromoplasts, the extracellular space, the mituchoudria, the endoplacmic reticulum, oil bodies, peroxisomes and other plant cell compartments.

Plant gene expression can also be facilitated as described above via a chemically inducible promoter (for a review see Gatz 1997, Annu. Rev. Plant Physiol. Plant Mol. Biol., 48:89-108). Chemically inducible promoters are suitable in particular when it is desired that gene expression is clock-specific. Examples of such promoters are a salicylic acid-inducible promoter (MO

30

40

95/19443), a tetracyclin-inducible promoter (Gatz et al. (1992) Plant J. 2, 397-404) and an ethanol-inducible promoter.

Other promoters which are suitable are promoters which respond to 5 biotic or abiotic stress conditions, for example the pathogeninduced PRP1 gene promoter (Ward et al., Plant. Mol. Biol. 22 (1993) 361-366), the heat-inducible tomato hsp80 promoter (US 5,187,267), the chill-inducible potato alpha-amylase promoter (WO 96/12814) or the wound-inducible pinII promoter (EP-A-0 375 091).

10 Preferred promoters are in particular those which bring about the expression of genes in tissues and organs in which lipid and oil biosynthesis takes place, in seed cells, such as cells of the endosperm and of the developing embryo. Suitable promoters are 15 the oilseed rape napin gene promoter (US 5,608,152), the Vicia faba USP promoter (Baeumlein et al., Mol Gen Genet, 1991, 225 (3):459-67), the Arabidopsis oleosin promoter (WO 98/45461), the Phascolus vulgaris phaseolin promoter (US 5,504,200), the Brassica Bce4 promoter (WO 91/13980) or the legumin B4 promoter 20 (LeB4; Baeumlein et al., 1992, Plant Journal, 2 (2):233-9), and promoters which bring about the seed-specific expression in monocots such as maize, barley, wheat, rye, rice and the like. Suitable promoters which should be taken into consideration are the barley 1pt2 or 1pt1 gene promoter (WO 95/15389 and WO 25 95/23230), or those described in WO 99/16890 (promoters from the barley hordein gene, the rice glutelin gene, the rice oryzin

gene, the rice prolamin gene, the wheat gliadin gene, the wheat glutelin gene, the maize zein gene, the oat glutelin gene, the sorghum kasirin gene, the rye secalin gene).

In particular, it may be desired to bring about the multiparallel expression of the desaturases and/or elongases used in the method alone or in combination with other desaturases or elongases. Such expression cassettes can be introduced via the simultaneous 35 transformation of a plurality of individual expression constructs or, preferably, by combining a plurality of expression cassettes on one construct. Also, it is possible to transform a plurality of vectors with in each case a plurality of expression cassettes and to transfer them to the host cell.

Promoters which are likewise especially suitable are those which bring about the plastid-specific expression since plastids are the compartment in which the precursors and some end products of lipid biosynthesis are synthetized. Suitable promoters such as 45 the viral RNA polymerase promoter are described in WO 95/16783

and WO 97/06250, and the Arabidopsis clpP promoter, described in WO 99/46394.

Vector DNA can be introduced into prokaryotic or eukaryotic cells 5 via conventional transformation or transfection techniques. The terms "transformation" and "transfection", conjugation and transduction, as used in the present context, are meant to comprise a multiplicity of methods known in the art for introducing foreign nucleic acid (for example DNA) into a host 10 cell, including calcium phosphate or calcium chloride coprecipitation, DEAE-dextran-mediated transfection, lipofection, natural competence, chemically mediated transfer, electroporation or particle bombardment. Suitable methods for the transformation or transfection of host cells, including plant 15 cells, can be found in Sambrook et al. (Molecular Cloning: A Laboratory Manual., 2nd edition., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989) and other laboratory handbooks such as Methods in Molecular Biology, 1995, vol. 44, Agrobacterium protocols, ed.: Gartland 20 and Davey, Humana Press, Totowa, New Jersey.

nucleic acid according to the invention, the gene product according to the invention or the vector according to the 25 invention are all prokaryotic or eukaryotic organisms. The host organisms which are advantageously used are organisms such as bacteria, fungi, yeasts or plant cells, preferably plants or parts thereof. Fungi, yeasts or plants are used by preference; especially preferably plants, very especially preferably plants 30 such as oil crops which comprise large amounts of lipid compounds, such as oilseed rape, evening primrose, hemp, thistle, peanut, canola, linseed, soya, safflower, sunflower, borage or plants such as maize, wheat, rye, oats, triticale, rice, barley, cotton, cassava, pepper, Tagetes, Solanaceae plants such as

Host cells which are suitable in principle for taking up the

35 potato, Lobacco, eggplant and tomato, Vicia species, pea, alfalfa, bushy plants (coffee, cocoa, tea), Salix species, trees (oil palm, coconut) and perennial grasses and fodder crops. Especially preferred plants according to the invention are oil crops such as soya, peanut, oilseed rape, canola, linseed, hemp, 40 evening primrose, sunflower, safflower, trees (oil palm, coconut).

Nucleic acid sequences which are advantageously used in the process according to the invention are those which encode 45 polypeptides with a $\Delta 6$ -desaturase activity, $\Delta 6$ -desaturase activity, $\Delta 6$ -desaturase activity of $\Delta 5$ -desaturase activity of:

- a) a nucloic acid sequence with the sequence shown in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 11, SEQ ID NO: 15, SEQ ID NO: 11, SEQ ID NO: 17, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29 or SEQ ID NO: 31,
- b) nucleic acid sequences which, owing to the degeneracy of the genetic code, are obtained by back translation of the amino acid sequences shown in SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30 or SEQ ID NO: 32,
- 15 c) derivatives of the nucleic acid sequences shown in SEQ ID
 NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID
 NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 7, SEQ ID
 NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID
 NO: 25, SEQ ID NO: 27, SEQ ID NO: 29 or SEQ ID NO: 31 which
 encode polypeptides with the amino acid sequences shown in
 SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ
 ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ
 ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ
 ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30 or SEQ ID NO: 32 and
 which have at least 50% homology at the amino acid level,
 without the enzymatic activity of the polypeptides being
 substantially reduced.

The abovementioned nucleic acid according to the invention 30 originates from organisms such as animals, cillates, fungi, plants such as algae or dinoflagellates which are capable of synthesizing PUFAR.

The term "nucleic acid (molecule)" as used in the present context 35 also comprises the untranslated sequence located at the 3' and at the 5' end of the coding gene region: at least 500, preferably 200, especially preferably 100 nucleotides of the sequence upstream of the 5' terminus of the coding region and at least 100, preferably 50, especially preferably 20 nucleotides of the 40 sequence downstream of the 3' end of the coding gene region. An "isolated" nucleic acid molecule is separated from other nucleic acid molecules which are present in the natural source of the nucleic acid. An "isolated" nucleic acid preferably has no sequences which naturally flank the nucleic acid in the genomic 45 DNA of the organism from which the nucleic acid originates (for example sequences which are present at the 5' and 3' ends of the nucleic acid.) In different embodiments, the isolated desaturase

or elongase nucleic acid molecule may comprise, for example less than approximately 5 kb, 4 kb, 3 kb, 2 kb, 1 kb, 0.5 kb or 0.1 kb of nucleotide sequences which naturally flank the nucleic acid molecule in the genomic DNA of the cell from which the nucleic 5 acid originates.

The nucleic acid molecules used in the process, for example a nucleic acid molecule with a nucleotide sequence of the SEQ ID NO: 1 or a part thereof, can be isolated using molecular-10 biological standard techniques and the sequence information provided herein. Also, for example a homologous sequence or homologous, conserved sequence regions at the DNA or amino acid level can be identified with the aid of comparative algorithms. They can be used as hybridization probe and standard 15 hybridization techniques (as described, for example, in Sambrook et al., Molecular Cloning: A Laboratory Manual. 2nd ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989) for the isolation of further nucleic acid sequences which are useful in the process. Moreover, 20 a nucleic acid molecule comprising a complete sequence of the SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29 or 31 or a part thereof can be isolated by polymerase chain reaction, where oligonucleotide primers, which are used on the basis of this sequence or parts thereof (for example, it is 25 possible to isolate a nucleic acid molecule comprising the complete sequence or a part thereof by means of polymerase chain reaction using oligonucleotide primers which have been generated on the basis of the same sequence). For example, mRNA can be isolated from cells (for example by means of the guanidinium 30 thiocyanate extraction method of Chirgwin et al. (1979) Biochemistry 18:5294-5299) and cDNA can be generated by means of reverse transcriptase (for example Moloney MLV Reverse Transcriptase, available from Gibco/BRL, Bethesda, MD, or AMV Reverse Transcriptase, available from Seikagaku America, Inc., 35 St.Petersburg, FL). Synthetic oligonucleotide primers for amplification by means of polymerase chain reaction can be generated based on one of the sequences shown in SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29 or 31 and that of Figure 5a, or with the aid of the amino acid sequences shown in 40 SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30 or 32. A nucleic acid according to the invention can be amplified in accordance with standard PCR amplification techniques using cDNA or, alternatively, genomic DNA as template and suitable oligonucleotide primers. The nucleic acid amplified thus can be 45 cloned into a suitable vector and characterized by means of DNA sequence analysis. Oligonucleotides which correspond to a desaturase nucleotide sequence can be generated by means of

synthetic standard methods, for example using an automatic DNA synthesizer.

Homologs of the desaturase or elongace nucleic acid sequences 5 used, with sequence SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29 or 31, means for example allelic variants with at least approximately 50 to 60%, preferably at least approximately 60 to 70%, more preferably at least approximately 70 to 80%, 80 to 90% or 90 to 95% and even more preferably at

- 10 least approximately 95%, 96%, 97%, 98%, 99% or more homology with one of the nucleotide sequences shown in SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29 or 31 or their homologs, derivatives or analogs, or parts of these. Moreover, isolated nucleic acid molecules of a nucleotide sequence which
- 15 hybridize with one of the nucleotide sequences shown in SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29 or 31 or part thereof, hybridize for example under stringent conditions. Allelic variants comprise in particular functional variants which can be obtained by deletion, insertion or
- 20 substitution of nucleotides from/into the sequence shown in SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29 or 31, it being intended, however, that the enzyme activity of the resulting synthesized proteins is advantageously retained for the insertion of one or more genes. Proteins which retain the
- 25 enzymatic activity of the desaturase or elongase, i.e. whose activity is essentially not reduced, means proteins with at least 10%, preferably 20%, especially preferably 30%, very especially preferably 40% of the original enzyme activity in comparison with the protein encoded by SEQ ID Noi 2, 4, 6, 8, 10, 12, 14, 16, 18, 30 20, 22, 24, 26, 28, 30 or 32.
- Homologs of SRQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29 or 31 mean for example also bacterial, fungal and plant homologs, truncated sequences, single-stranded DNA or RNA 55 of the coding and noncoding DNA sequence.

Homologs of SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29 or 31 also means derivatives such as, for example, promoter variants. The promoters upstream of the 40 abovementioned nucleotide sequences can be modified by one or more nucleotide substitutions, insertion(s) and/or deletion(s) without, however, interfering with the functionality or activity of the promoters. Moreover, it is possible to increase the activity of the promoters by modifying their sequence or to 45 replace them completely by more active promoters, including promoters from heterologous organisms.

The abovementioned nucleic acids and protein molecules with desaturase or elongase activity which are involved in the metabolism of lipids and fatty acids, PUFA cofactors and enzymes or in the transport of lipophilic compounds across membranes are

5 used in the process according to the invention for the modulation of the production of compounds of the general formula I in transgenic plants such as maize, wheat, rye, oate, triticale, rice, barley, soybean, peanut, cotton, Linum species such as linseed or flax, Brassica species such as oliseed rape, canola 10 and turnip rape, pepper, sunflower, borage, evening primrose and Tagetes, Solanaceae plants such as potato, tobacco, eggplant and

Tagetes, Solanaceae plants such as potato, tobacco, eggplant and tomato, Vicia species, pea, cassava, alfalfa, bushy plants (coffee, cocoa, tea), Salix species, trees (cil palm, coconut) and perennial grasses and fodder crops, either directly (for 15 example when the overexpression or optimization of a fatty acid biosynthesis protein has a direct effect on the yield, production and/or production efficiency of the fatty acid from modified organisms) and/or can have an indirect effect which nevertheless

leads to an increase in the yield, production and/or production
20 efficiency of a desired compound or a decrease in undesired
compounds (for example when the modulation of the metabolism of
lipids and fatty acids, cofactors and enzymes leads to
modifications of the yield, production and/or production
efficiency or the composition of the desired compounds within the
25 cells, which, in turn, may have an effect on the production of

25 cells, which, in turn, may have an effect on the production of one or more fatty acids).

The combination of different precursor molecules and biosynthetic enzymes results in the production of different fatty acid 30 molecules, which has a decisive effect on lipid composition. Since polyunsaturated fatty acids (= PUFAs) are not simply incorporated into triacylglycerol, but also into membrane lipids.

Lipid synthesis can be divided into two sections: the synthesis 35 of fatty acide and their binding to sn-glycerol-3-phosphate, and the addition or modification of a polar head group. Conventional lipids which are used in membranes comprise phospholipids, glycolipids, sphingolipids and phosphoglycerides. Fatty acid synthesis starts with the conversion of acetyl-CoA into 40 malonyl-CoA by the enzyme acetyl-CoA carboxylase or into acetyl-ACP by the enzyme acetyl transacylase. After a condensation reaction, these two product molecules together form acetoacetyl-ACP, which is converted by a series of condensation, reduction and dehydratization reactions so that a saturated fatty 45 acid molecule with the desired chain length is obtained. The production of the unsaturated fatty acids from these molecules is catalyzed by specific desaturases, either aerobically by means of

molecular oxygon or anaerobically (as regards the fatty acid synthesis in microorganisms, see F.C. Neidhardt et al. (1996) E. coli and Salmonella. ASM Press: Washington, D.C., pp. 612-636 and references cited therein; Lengeler et al. (ed.) (1999) Biology of 5 Procaryotes. Thieme: Stuttgart, New York, and references therein, and Magnuson, K., et al. (1993) Microbiological Reviews 57:522-542 and the references therein).

Examples of precursors for PUFA biosynthesis are oleic acid, 10 linoleic acid and linolenic acid. These C18-carbon fatty acids must be elongated to C_{20} and C_{22} to obtain fatty acids of the eicosa and docosa chain type. With the aid of the desaturases used in the process, such as $\Delta 5-$ and $\Delta 6-$ desaturase and Δ6-elongase, it is possible to obtain arachidonic acid and 15 eicosapentaenoic acid and various other long-chain PUFAs, to extract them and to use them for various purposes in applications in foodstuffs, feeding stuffs, cosmetics or pharmacology. Using the abovementioned enzymes, it is possible to produce preferably C18 + C20 fatty acids with at least two, three, four or five 20 double bonds in the fatty acid molecule, preferably C20-fatty acids with advantageously three, four or five double bonds in the fatty acid molecule. Desaturation can take place before or after elongation of the fatty acid in question. This is why the products of desaturase activities and the further desaturation 25 and elongation which are possible give rise to preferred PUFAs with a higher degree of desaturation, including a further elongation from C_{20} to $C_{22}\text{-fatty}$ acids, to give fatty acids such as y-linolenic acid, dihomo-y-linolenic acid, arachidonic acid, stearidonic acid, eicosatetraenoic acid or eicosapentaenoic acid. 30 Substrates in the process according to the invention are, for example, linoleic acid, γ -linolenic acid, α -linolenic acid, dihomo-y-linolenic acid, eicosatetraenoic acid or stearidonic acid. Preferred substrates are linoleic acid, y-linolenic acid and/or α-linolenic acid, dihomo-y-linolenic acid or arachidonic 35 acid, eicosatetraenoic acid or eicosapentaenoic acid, respectively. The C18- or C20-fatty acids with at least two double bonds in the fatty acid are obtained in the process according to the invention in the form of the free fatty acid or in the form of its esters (see formula I), for example in the form of its 40 glycerides.

The term "glyceride" is understood as meaning a glycerol which is esterified with one, two or three carboxylic acid residues (mono-, di- or triglyceride). "Glyceride" is also understood as 45 being a mixture of various glycerides. The glyceride, or glyceride mixture, may comprise further additions, for example

free fatty acids, antioxidants, proteins, carbohydrates, vitamins and/or other substances.

A "glyceride" for the purposes of the process according to the 5 invention is furthermore understood as meaning glycerol-derived derivatives. These include, in addition to the above-described fatty acid glycerides, glycerophospholipids and glyceroglycolipids. Preferred examples which may be mentioned in this context are the glycerophospholipids such as lecithin (phosphatidyl-10 choline), cardiolipin, phosphatidylglycerol, phosphatidylserine and alkylacylglycerophospholipids.

Furthermore, fatty acids must subsequently be translocated to various sites of modification and incorporated into the 1striacylalycerol storage lipid. A further important step in lipid synthesis is the transfer of fatty acids on the polar head groups, for example by the enzyme glycerol fatty acid acyltransferase (see Frentzean, 1998, Lipid, 100(4-5):161-166).

- 20 Publications on plant fatty acid biosynthesis, desaturation, the lipid metabolism and membrane transport of lipidic compounds, beta-oxidation, fatty acid modification and cofactors, triacylglycerol storage and triacylglycerol assembly including the references cited therein, see the following papers: Kinney, 25 1997, Genetic Engeneering, ed.: JK Setlow, 19:149-166; Ohlrogge
- 25 1997, Genetic Engeneering, ed.: JK Setlow, 19:149-166; Ohlrogge and Browse, 1995, Plant Cell 7:957-970; Shanklin and Cahoon, 1998, Annu. Rev. Plant Physiol. Plant Mol. Biol. 49:611-641; Voelker, 1996, Genetic Engeneering, ed.: JK Setlow, 18:111-13; Gerhardt, 1992, Prog. Lipid R. 31:397-417; Gühnemann-Schäfer &
- 30 Kindl, 1995, Biochim. Biophys Acta 1256:181-186; Kunau et al., 1995, Prog. Lipid Res. 34:267-342; Stymme et al., 1993, in: Biochemistry and Molecular Biolody of Membrane and Storage Lipids of Plants, ed.: Murata and Somerville, Rockville, American Society of Plant Physiologists, 150-158, Murphy & Ross 1998, 35 Plant Journal. 13(1):1-16.

The PUFAs produced in the process comprise a group of molecules which higher animals are no louyer capable of synthocising and must therefore take up, or which higher animals can no longer 40 synthesize themselves in sufficient amounts and must thus additionally take them up, although they are synthesized readily by other organisms such as bacteria; for example, cats are no longer capable of synthesizing arachidonic acid.

45 For the purposes of the invention, the terms "desaturase or elongase" or "desaturase or elongase polypeptide" comprises proteins which are implicated in the desaturation and elongation of fatty acids, and their homologs, derivatives or analogs. The terms desaturase or elongase nucleic acid sequence(s) comprise nucleic acid sequences which encode a desaturase or elongase and in which a part can be a coding region and likewise corresponding

- 5'- and 3'-untranslated sequence regions. The terms production or productivity are known in the art and comprise the concentration of the fermentation product (compound of the formula I) which is formed within a specified period of time and a specified fermentation volume (for example kg of product per hour per
- 10 liter). The term production efficiency comprises the time span required for obtaining a specific amount of product (for example the time required by the cell for establishing a certain throughput rate of a fine chemical). The term yield or product/carbon yield is known in the art and comprises the
- 15 efficiency with which the carbon source is converted into the product (i.e. the fine chemical). This is usually expressed as, for example, kg of product per kg of carbon source. Increasing the yield or production of the compound results in increasing the amount of resulting molecules or the suitable resulting molecules
- 20 of this compound in a certain amount of culture over a specified period. The terms biosynthesis or biosynthetic pathway are known in the art and comprise the synthesis of a compound, preferably an organic compound, by a cell starting from intermediates, for example in a multi-step process which is strongly regulated. The
- 25 terms catabolism or catabolic pathway are known in the art and comprise the cleavage of a compound, preferably an organic compound, by a cell to give catabolites (in more general germs, smaller or less complex molecules), for example in a multi-step process which is strongly regulated. The term metabolism is known
- 30 in the art and comprises the totality of the biochemical reactions which take place in an organism. The metabolism of a certain compound (for example the metabolism of a fatty acid) thus comprises the totality of the biosynthetic pathways, modified pathways and catabolic pathways of this compound in the 35 cell which relate to this compound.

In a further embodiment, derivatives of the nucleic acid molecule according to the invention encode proteins with at least 50%, advantageously approximately 50 to 60%, preferably at least 40 approximately 70 to 70% and more preferably at least approximately 70 to 80%, 80 to 90%, 90 to 95% and most preferably at least approximately 96%, 97%, 98%, 99% or more homology (= identity) with a complete amino acid sequence of the SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30 or 32. 45 The homology of the amino acid sequence can be determined over the entire sequence region using the program PileUp (J. Mol. Evolution, 25, 351-360, 1987, Higgins et al., CABIOS, 5,

1989:151-153) or RESTFIT or GAP (Henikoff, S. and Henikoff, J. G. (1992). Amino acid substitution matrices from protein blocks. Proc. Natl. Acad. Sci. USA 89: 10915-10919.)

- 5 Moreover, the invention comprises nucleic acid molecules which differ from one of the nucleotide sequences shown in SEQ ID NO: 1, 3, 5 or 11 (and parts thereof) as the result of the degeneracy of the genetic code and which thus encode the same desaturase as the desaturase which is encoded by the nucleotide
- Observations as the description of 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29 or 31.

In addition to the desaturase nucleotide sequences shown in SEQ ID No: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29 or 15 31, the skilled worker will recognize that DNA sequence polymorphisms which result in modifications in the amino acid sequences of the desaturases or elongases may exist within a population. These genetic polymorphisms in the desaturase or elongase gene may exist between individuals within a population 20 as the result of natural variation. These natural variants usually bring about a variance of from 1 to 5% in the nucleotide sequence of the desaturase or elongase gene. All and sundry of these nucleotide variations and resulting amino acid polymorphisms in the enzyme desaturase or clongase which are the

25 result of natural variation and which do not modify the functional activity of desaturases or elongases are also intended to fall under the scope of the invention.

Nucleic acid molecules which are advantageous for the process
30 according to the invention can be isolated on the basis of their
homology with the desaturase or elongase nucleic acids disclosed
herein using the sequences or part thereof as hybridization
probe, following standard hybridization techniques under
stringent hybridization conditions. In this context, it is
35 possible for example to use isolated nucleic acid molecules which

- are at least 15 nucleotides in length and which hybridize under stringent conditions with the nucleic acid molecules which comprise a nucleotide sequence of CEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29 or 31. It is also possible to 40 use nucleic acids with at least 25, 50, 100, 250 or more nucleotides. The term "hybridizes under stringent conditions" as
 - nucleotides. The term "hybridizes under stringent conditions" as used in the present context is understood as describing hybridization and wash conditions under which nucleotide sequences with at least 60% homology with one another usually
- 45 remain hybridized with one another. The conditions are preferably such that sequences which are at least approximately 65%, more preferably at least approximably 70% and even more preferably at

least approximately 75% or more homologous with one another usually remain hybridized with one another. These stringent conditions are known to the skilled worker and can be found in Current Protocols in Molecular Biology, John Wiley & Sons, N. Y.

- 5 (1989), 6.3.1-6.3.6. A preferred nonlimiting example of stringent hybridization conditions is hybridization in 6 x sodium chloride/sodium citrate (SSC) at approximately 45°C, followed by one or more wash steps in 0.2 x SSC, 0.1% SDS at 50 to 65°C. The skilled worker knows that these hybridization conditions differ
- 10 depending on the type of the nucleic acid and, for example when organic solvents are used, with regard to the temperature and concentration of the buffer. For example, under "standard hybridization conditions" the temperature differs depending on the type of nucleic acid between 42°C and 58°C in aqueous buffer 15 with a concentration of 0.1 to 5 x SSC (pH 7.2). If organic solvent is present in the abovementioned buffer, for example 50% formamide, the temperature under standard conditions is approximately 42°C. The hybridization conditions for DNAIDNA
- hybrids preferably are for example 0.1 x SSC and 20°C to 45°C, 20 preferably between 30°C and 45°C. The hybridization conditions for DNA:RNA hybrids preferably are for example 0.1 x SSC and 30°C to 55°C, preferably between 45°C and 55°C. The abovementioned hybridization temperatures are determined for example for a nucleic acid with a length of approximately 100 bp (= base pairs)
- 25 and a G + C content of 50% in the absence of formamide. The skilled worker knows how to identify the hybridization conditions required with the aid of textbooks, such as the one mentioned above, or the following textbooks: Sambrook et al., "Molecular Cloning", Cold Spring Harbor Laboratory, 1989; Hames and Higgins
- 30 (ed.) 1985, "Nucleic Acids Hybridization: A Practical Approach", IRL Press at Oxford University Press, Oxford; Brown (ed.) 1991, "Essential Molecular Biology: A Practical Approach", IRL Press at Oxford University Press, Oxford.
- 35 To determine the percentage homology (= identity) of two amino acid sequences (for example of the sequences of SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30 or 32) or of two nucleic acids (for example one of the sequences of SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29 or 31), the 40 sequences are written underneath each other to provide an optimal comparison (for example, gaps may be introduced into the sequence of a protein or a nucleic acid in order to generate an optimal alignment with the other protein or the other nucleic acid). The amino residues of nucleotides at the corresponding amino acid
- 45 positions or nucleotide positions are then compared. If a position in a sequence is occupied by the same amino acid residue or the same nucleotide as the corresponding position in the other

sequence, the molecules are homologous at this position (i.e. amino acid or nucleic acid "homology" as used in the present context corresponds to amino acid or nucleic acid "identity"). The percentage homology between the two sequences is a function

- 5 of the number of identical positions which the sequences share (i.e. percent homology = number of identical positions/total number of positions x 100). The terms homology and identity are thus to be regarded as synonymous.
- 10 An isolated nucleic acid molecule which encodes a desaturase or elongase which is homologous to a protein sequence of SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30 or 32 can be generated by introducing one or more nucleotide substitutions, additions or deletions into a nucleotide sequence of SEQ ID
- 15 No: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29 or 31 so that one or more amino acid substitutions, additions or deletions are introduced into the protein which is encoded. Mutations can be introduced into one of the sequences of SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29 or 31
- 20 by standard techniques such as site-specific mutagenesis and PCR-mediated mutagenesis. It is preferred to generate conservative amino acid substitutions at one or more of the predicted nonessential amino acid residues. In a "conservative amino acid substitution", the amino acid residue is substituted
- 25 by an amino acid residue with a similar side chain. Families of amino acid residues with similar side chains have been defined in the art. These families comprise amino acids with basic side chains (for example lysine, arginine, histidine), acidic side chains (for example aspartic acid, glutamic acid), uncharged
- 30 polar side chains (for example glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine), unpolar side chains (for example alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan), beta-branched side chains (for example threonine, valine, isoleucine) and aromatic side
- 35 chains (for example tyrosine, phenylalanine, tryptophan, histidine). A predicted nonessential amino acid residue in a desaturase or elongase is thus preferably substituted by another amino acid residue from the same family of side chains. As an alternative, the mutations can, in a different embodiment, be
- 40 introduced randomly over the entire desaturase-encoding sequence or part thereof, for example by means of saturation mutagenesis, and the resulting mutants can be screened for the desaturase activity described herein in order to identify mutants which retain the desaturase or elongase activity. After the mutagenesis
- 45 of one of the sequences of SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29 or 31 the encoded protein can be

expressed recombinantly, and the activity of the protein can be determined for example using the assays described herein.

The invention is illustrated further by the examples which 5 follow, but which are not to be construed as limiting. The content of all of the references, patent applications, patents and published patent applications cited in the present patent application is herein incorporated by reference.

10 Examples section

15

Example 1: General methods

a) General cloning methods:

Cloning methods such as, for example, restriction cleavages, agarose gel electrophoresis, purification of DNA fragments, transfer of nucleic acids onto nitrocellulose and nylon membranes, linking of DNA fragments, transformation of

20 Escherichia coli and yeast cells, bacterial cultures and sequence analysis of recombinant DNA were carried out as described in Sambrook et al. (1989) (Cold Spring Harbor Laboratory Press: ISBN 0-87969-309-6) or Kaiser, Michaelis and Mitchell (1994) "Methods in Yeast Genetics" (Cold Spring Harbor Laboratory Press:

25 ISBN 0-87969-451-3).

b) Chemicals

Unless otherwise stated in the text, the chemicals used were 30 obtained in analytical-grade quality from Fluka (Neu-Ulm), Merck (Darmstadt), Roth (Karlsruhe), Serva (Heidelberg) and Sigma (Deisenhofen). Solutions were made with purified, pyrogen-free water, hereinbelow referred to as H2O, from a Milli-Q Water System water purification system (Millipore, Eschborn).

35 Restriction endonucleases, DNA-modifying enzymes and molecular biology kits were obtained from AGS (Heidelberg), Amersham (Braunschweig), Biometra (Göttingen), Boehringer (Mannheim), Genomed (Bad Oeynhausen), New England Biolabs

(Schwalbach/Taunus), Novagen (Madison, Wisconsin, USA), 40 Perkin-Elmer (Weiterstadt), Pharmacia (Freiburg), Qiagen (Hilden) and Stratagene (Amsterdam, Netherlands). Unless otherwise specified, they were used in accordance with the manufacturer's instructions.

Example 2: Isolation of total RNA and poly(A)+-RNA from plants

Total RNA is isolated from plants such as linseed and oilseed rape and the like following a method docoribed by Logemann et al. 5 (1987, Anal. Blochem. 163, 21). The total RNA can be obtained from protonemal tissue from moss using the GTC method (Reski et al., 1994, Mol. Gen. Genet., 244:352-359).

Example 3: Transformation of Agrobacterium

The Agrobacterium-mediated transformation of plants can be carried out for example using the Agrobacterium tumefaciens strain GV3101- (pMP90-) (Koncz and Schell, Mol. Gen. Genet. 204 (1986) 383-396) or LBA4040- (Clontech) or CSSCI pGV2260 (Deblaere tal 1984, Nucl. Acids Res. 13, 4777-4788)). The transformation can be carried out by standard transformation techniques (also peblaere et al. 1984).

Example 4: Plant transformation

The Agrobacterium-mediated transformation of plants can be carried out using standard transformation and regeneration techniques (Gelvin, Stanton B., Schilpercort, Robert A., Plant Molecular Biology Manual, 2nd ed., Doudrecht: Kluwer Academic 25 Publ., 1995, in Sect., Ringbuch Zentrale Signatur: BT11-P ISBN 0-7923-2731-4; Glick, Bernard R., Thompson, John E., Methods in Plant Molecular Biology and Biotechnology, Boca Raton: CRC Press, 1993, 360 S., ISBN 0-8493-5164-2).

30 Oilseed rape can be transformed by means of cotyledon or hypocotyl transformation (Moloney et al., Plant Cell 8 (1989) 238-242; De Rlock et al., Plant Physiol. 91 (1989) 694-701). The use of antibiotics for the seletion of agrobacteria and plants depends on the Agrobacterium strain and the binary vector used 35 for the transformation. Normally, oilseed rape is selected using kanamycin as selectable plant marker.

The Agrobacterium-mediated gene transfer into lineacd (Linum usitatissimum) can be carried out using for example a technique 40 described by Mlynarova et al. (1994) Plant Cell Report 13:282-285.

The transformation of soya can be carried out using for example a technique described in EP-A-0 0424 047 (Pioneer Hi-Bred International) or in EP-A-0 0397 687, US 5,376,543, US 5,169,770

45 (University Toledo).

The transformation of plants using particle bombardment, polyethylene glycol mediated DNA uptake or via the silicon carbonate fiber technique is described for example by Freeling and Walbot "The maise handbook" (1993) ISBN 3-540-97826-7, 5 Springer Verlag New York).

Example 5: Plasmids for plant transformation

Binary vectors such as pBinAR (Höfgen and Willmitzer, Plant 10 Science 66 (1990) 221-230) or pGPTV (Becker et al 1992, Plant Mol. Biol. 20:1195-1197) can be used for plant transformation. The binary vectors can be constructed by ligating the cDNA in sense or antisense orientation into T-DNA. 5' of the cDNA, a plant promoter activates cDNA transcription. A polyadenylation 15 sequence is located 3' of the cDNA. The binary vectors can bear different marker genes. In particular, the nptII marker gene, which encodes kanamycin resistance conferred by neomycin phosphotransferase, can be substituted by the herbicide-resistant form of an acetolactate synthase gene (AHAS or ALS). The ALS gene 20 is described in Ott et al., J. Mol. Biol. 1996, 263:359-360. The v-ATPase-cl promoter can be cloned into plasmid pBin19 or pGPTV and used for the expression of the marker gene by cloning upstream of the ALS coding region. The abovementioned promoter corresponds to a 1153 base-pair fragment from Bota vulgaris 25 (Plant Mol Biol, 1999, 39:463-475). In this context, not only sulfonylureas, but also imidazolinones such as imazethapyr or sulphonylureas may be used as antimetabolites for the selection.

Tissue-specific expression can be achieved using a
30 tissue-specific promoter. For example, seed-specific expression
can be achieved by cloning the DC3 or LeB4 or USP promoter or the
phaseolin promoter 5' of the cDNA. However, any other
seed-specific promoter element such as, for example, the napin or
arcelin promoter (Goossens et al. 1999, Plant Phys.

- 35 120(4):1095-1103 and Gerhardt et al. 2000, Biochimica et Biophysica Acta 1490(1-2):87-98) may also be used. The CaMV-35S promoter or a v-ATPase C1 promoter can be used for constitutive expression in the intact plants.
- 40 In particular, genes encoding desaturases and elongases can be cloned into a binary vector one after the other by constructing a plurality of expression cassettes in order to mimic the metabolic pathway in plants.
- 45 Within an expression casette, the protein to be expressed can be targeted into a cellular compartment using a signal peptide, for example for plastids, mitochondria or the endoplasmic reticulum

(Kormode, Crit. Rev. Plant Sci. 15, 4 (1996) 285-423). The signal peptide is cloned 5' in the reading frame with the cDNA to achieve the subcellular localization of the fusion protein.

- 5 Examples of multiexpression cassettes are given hereinbelow.
 - I.) Promoter-terminator cassettes

Expression cassettes consist of least two functional units such 10 as a promoter and a terminator. Further desired gene sequences such as targeting sequences, coding regions of genes or parts thereof and the like can be inserted between promoter and terminator. To construct expression cassettes, promoters and terminators (USP promoter: Baeumlein et al., Mol Gen Genet, 1991, 15 225 (3):459-67); OCS terminator: Gielen et al. EMBO J. 3 (1984) 835ff.) are isolated with the aid of the polymerase chain reaction and tailor-made with flanking sequences of choice on the basis of synthetic oligonuclectides.

- 20 Examples of oligonucleotides which can be used are the following:
 - USP1 upstream: CCGGAATTCGGCGCGCGAGCTCCTCGAGCAAATTTACACATTGCCA
- USP2 upstream: CCGGAATTCGGCGCGCCGAGCTCCTCGAGCAAATTTACACATTGCCA 25
 - USP3 upstream: CCGGAATTCGGCGCGCCGAGCTCCTCGAGCAAATTTACACATTGCCA
 - USP1 downstream: AAAACTGCAGGCGGCCGCCCACCGCGGTGGGCTATGAAGAAATT
- 30 USP2 downstream: CGCGGATCCGCTGGCTATGAAGAAATT
 - USP3 downstream: TCCCCCGGGATCGATGCCGGCAGATCTGCTGGCTATGAAGAAATT
 - OCS1 upstream: AAAACTGCAGTCTAGAAGGCCTCCTGCTTTAATGAGATAT
- OCS2 upstream:

35

40

CGCGGATCCGATATCGGGCCCGCTAGCGTTAACCCTGCTTTAATGAGATAT

OCS3 upstream: TCCCCCGGGCCATGGCCTGCTTTAATGAGATAT

OCS1 downstream:

CCCAAGCTTGGCGCCCGAGCTCGAATTCGTCGACGGACAATCAGTAAATTGA

- OCS2 downstream:
- 45 CCCAAGCTTGGCGCGCGAGCTCGAATTCGTCGACGGACAATCAGTAAATTGA
 - OCS3 downstream: CCCAAGCTTGGCGCGCCGAGCTCGTCGACGGACAATCAGTAAATTGA

the plasmid pUC19.

The methods are known to the specialist worker and are generally known from the literature.

In a first step, a promoter and a terminator are amplified via PCR. Then, the terminator is cloned into a recipient plasmid and, in a second step, the promoter is inserted upstream of the terminator. This gives an expression cassette on a plasmid 10 vehicle. The plasmids pUTI, 2 and 3 are generated on the basis of

The constructs are defined in accordance with the invention in SEQ ID NO: 33, 34 and 42. They comprise the USP promoter and the 5 OCS terminator. Based on these plasmids, the construct pUT12 is generated by cutting pUT1 with SalI/ScaI and cutting pUT2 with XhoI/ScaI. The fragments in the expression cassettes are ligated and transformed into E. coli XLI blue MRF. After picking out ampicillin-resistant colonies, DNA is prepared, and those clones

20 which comprise two expression cassettes are identified by restriction analysis. The XhoI/Sall lightion of compatible ends has eliminated the two cleavage sites XhoI and SalI between the expression cassettes. This gives rise to plasmid pUT12, which is defined in SEQ ID NO: 36. PUT12 is subsequently cut again with

25 SalI/ScaI and pUT3 with XhoI/ScaI. The fragments comprising the expression cassettes are ligated and transformed into E. coli XLI blue MRF. After singling out ampicillin-resistant colonies, bund is prepared, and those clones which comprise three expression cassettes are identified by restriction analysis. In this manner,

30 a set of multiexpression cassettes is created which can be exploited for inserting the desired DNA and is described in Table 1 and can additionally incorporate further expression cassettes.

They comprise the following elements:

Table 1

				-			
	pUC19	Cleavage sites before	Multiple	Cleavage sites behind the			
	derivate	the USP promoter	cloning cleavage sites	OCS terminator			
5		- PY T.O. TOTL.Y	BstXI/NotI/ PstI/XbaI/StuI	Sall/EcoRI/ Sacl/Ascl/			
3	pUT1	EcoRI/AscI/ SacI/XhoI	BSIAI/NOU/ FSU/Abai/Stul	HindIII			
				Sall/EcoRl/Sacl/Ascl/			
	pUT2	EcoRI/AscI/ SacI/XhoI	BamIII/EcoRV/ ApaI/NheI/ HpaI	HindHI			
	pUT3	EcoRI/AscI/ SacI/XhoI	BglII/Nael/ Clal/Smal/Ncol	Sall/Sacl/ Ascl/HindIII			
	pUT12						
10	Double		BstXI/Notl/ PstI/XbaI/StuI	Sall/EcoRI/ SacI/AscI/			
	expression	EcoRI/AscI/ SacI/XhoI	and	HindIII			
			BamHI/EcoRV/ ApaI/NheI/ HpaI				
	cassette		1.BstXI/Noti/ Psti/XbaI/StuI				
	pUT123		and				
15	p01123		O.D. THE PRICE - TAIL AT				
15	Triple	EcoRI/Asci/ Saci/Xhoi	2.BamHI/EcoRV/ ApaI/NheI/	Sall/Sacl/Ascl/HindHI			
	expression	sion Hpai					
	cassette						
			3.BglII/Nacl/ Clal/Smal/Ncol				

Furthermore, further multiexpression cassettes can be generated and employed for seed-specific gene expression, as described and as specified in greater detail in Table 2, with the aid of the

- 25 i) USP promoter or with the aid of the
 - ii) 700 base pair 3' fragment of the LeB4 promoter or with the aid of the
 - iii) DC3 promoter.
- 30 The DC3 promoter is described in Thomas, Plant Cell 1996, 263;359-368 and consists merely of the region -117 to +26, which is why it therefore constitutes one of the smallest known seed-specific promoters. The expression cassettes can comprise several copies of the same promoter or else be constructed via 35 three different promoters.

The vectors used for the transformation of plants and the sequences of the inserted gener/proteins can be found in sequence listing SSO ID NO: 43 to 49.

Advantageously used polylinker or polylinker-terminatorpolylinkers can be found in the sequences SEQ ID NO: 50 to 52.

46 Table 2: Multiple expression cassettes

5	Plasmid name of the pUC19 derivative	Cleavage sites before the respective promoter	Multiple cloning cleavage sites	Cleavage sites behind the OCS terminator
•	pUT1 (pUC19 with USP-OCS1)	EcoRI/AscI/SacI/XhoI	(1) BstXI/NotI/PstI/ Xbal/StuI	Sall/EcoRI/SacI/AscI/ HindHI
10	pDCT (pUC19 with DC3-OCS)	EcoRI/AscI/SacI/XhoI	(2) BamHI/EcoRV/ ApaI/NheI/ Hpai	Sall/EcoRl/Sacl/Ascl/ HindIII
	pLeBT (pUC19-with LeB4(700)-OCS)	EcoRI/AscI/SacI/XhoI		Sall/Sacl/Ascl/Hindill
15	pUD12 (pUC 19 with USP-OCS1 and with DC3-OCS)	EcoRI/AscI/SacI/XhoI	(1) BstXI/Notl/ Pstl/Xbal/Stul and (2) BamHI/EcoRV/ Apal/Nhel/ Hpal	Sall/FcoRl/Sacl/Ascl/ HindIII
20	pUDL123 Triple expression cassette (pUC19 with USP/DC3 and LEB4-700)	EcoRI/AscI/SacI/XhoI	(1) BstXI/Notl/ Pstl/XbaI/StuI and (2) BamHI/ (EcoRV*)/ApaI/ Nhel/HpaI and (3) BgIII/NaeI/ ClaI/SmaI/NcoI	Sall/Sacl/Ascl/HindIII

* EcoRV cleavage site in the 700 base-pair fragment of the LeB4 promoter (LeB4-700)

Further promoters for multi-gene constructs can be generated 30 analogously, in particular using the

- 2.7 kb fragment of the LeB4 promoter or with the aid of the
- b) phaseolin promoter or with the aid of the
- constitutive v-ATPase c1 promoter.
- It may be particularly desirable to use further especially suitable promoters for constructing seed-specific multi-expression cassettes such as, for example, the napin promoter or the arcelin-5 promoter.
- II) Generation of expression constructs which comprise promoter, terminator and desired gene sequence for the expression of PUFA genes in plant expression cassettes.
- 45 In pUT123, the Δ6-elongase Pp_PSE1 is first inserted into the first cassette via BstXI and XbaI. Then, the moss Δ -6-desaturase (Pp_des6) is inserted into the second cassette via BamHI/NaeI,

and, finally, the Phaeodactylum A5-desaturase (Pt_des5) is inserted into the third cassette via BgIII/NcoI. The triple construct is named pARAI. Taking into consideration sequence-specific restriction cleavage sites, further expression 5 cassettes are shown in Table 3, which are named pARA2, pARA3 and pARA4, can be generated.

Table 3: Combinations of desaturases and elongases

10 ∆6-Elongase A5-Desaturase A6-Desaturase Gene plasmid Pp_PSE1 Pp des6 Pt des5 pARA1 Pt des5 Pp_PSE1 Pt des6 pARA2 Pp PSE1 pARA3 Ce des5 Pt des6 15 Ce des5 Ce PSE1 ρΛRΛ4 Ce des6

Pp = Physcomitrella patens, Pt = Phaeodactylum tricornutum Pp_PSE1 corresponds to the sequence of SEQ ID NO: 9. 20 PSE = PUFA-specific A6-elongase

Ce_des5 = Δ 5-desaturase from Caenorhabditis elegans (Genbank Acc. No. AF078796)

Ce_des6 = \(\Delta 6\)-desaturase from Caenorhabditis elegans elegans (Genbank Acc. No. AF031477, bases 11-1342)

25 Ce_PSE1 = A6-elongase from Caenorhabditis elegans (Genbank Acc. No. AF244356, bases 1-867)

Further desaturases or elongase sequences can also be inserted into the expression cassettes in the described manner, such as, 30 for example, Genbank Acc. Nr. AF231981, NM_013402, AF206662, AF268031, AF226273, AF110510 or AF110509.

iii) Transfer of expression cassettes into vectors for the transformation of Agrobacterium tumefaciens and for the transformation of plants

The constructs generated thus are inserted into the binary vector ROPTV by means of AscI. For this purpose, the multiple cloning sequence is extended by an AscI cleavage site. For this purpose, the polylinker is synthesized de novo as two double-stranded oligonuclocideo, thereby introducing an additional AscI DNA sequence. The oligonucleotide is inserted into the vector pGPTV by means of EcoRI and BindIII. The cloning techniques required are known to the skilled worker and can simply be found in the 45 literature as described in Example 1.

Example 6: Studying the expression of a recombinant gene product in a transformed organism

The activity of a recombinant gene product in the transformed 5 host organism can be measured at the transcriptional and/or the translational level.

A suitable method for determining the extent to which the gene is transcribed (which indicates the amount of RNA which is available

- 10 for the translation of the gene product) is to carry out a Northern blot as detailed hereinbelow (as reference, see Ausubel et al. (1988) Current Protocols in Molecular Biology, Wiley: New York, or the abovementioned Examples Section), where a primer which is designed in such a way that it binds to the gene of
- 15 interest is labeled with a detectable label (usually a radioactive label or a chemiluminescent label) so that, when the total RNA of a culture of the organism is extracted, separated on a gel, transferred onto a stable matrix and incubated with this probe, the binding and extent of the binding of the probe
- 20 indicates the existence and also the amount of the mRNA for this gene. This information indicates the degree to which the transformed gene has been transcribed. Cellular total RNA can be prepared from cells, tissues or organs using a plurality of methods, all of which are known in the art, such as, for example,
- 25 the method of Bormann, E.R., et al. (1992) Mol. Microbiol. 6:317-326.

Northern hybridization:

- 30 To carry out the RNA hybridization, 20 μg of total RNA or 1 μg of poly(A)* RNA were separated by gel electrophoresis in agarose gels with a strength of 1.25% using formaldehyde, as described in Amasino (1986, Anal. Biochem. 152, 304), capillary-blotted onto positively charged nylon membranes Hybond N+, Amersham,
- 35 Braunschweig) using 10 x SSC, immobilized using UV-light and prehybridized for 3 hours at 68°C using hybridization buffer (10°k dextran sulfate w/v, 1 M NaCl, 1°k SDS, 100 mg herring sperm DNA). The DNA probe was loboled with the Highprime DNA labeling kit (Roche, Mannheim, Germany) during the prehybridization step,
- 40 using alpha-32p-dCTP (Amersham, Braunschweig, Germany). After the labeled DNA probe had been added, the hybridization was carried out overnight at 68°C in the same buffer. The wash steps were carried out twice for 15 minutes using 2 x SSC and twice for 30 minutes using 1 x SSC, 1% SDS, at 68°C. The sealed filters were
- 45 exposed at -70°C for a period of 1 to 14 days.

Standard techniques, such as a Western blot, can be employed for studying the presence or the relative amount of protein translated by this mRNA (see, for example, Ausubel et al. (1988) Current Protocols in Molecular Biology, Wiley: New York). In this 5 method, the cellular total proteins are extracted, separated by

gel electrophoresis, transferred to a matrix such as nitrocellulose and incubated with a probe such as an antibody which binds specifically to the desired protein. This probe is usually provided with a chemiluminescent or colorimetric label

10 which can be detected readily. The presence and the amount of the label observed indicates the presence and the amount of the desired mutated protein present in the cell.

Example 7: Analysis of the effect of the recombinant proteins on the production of the desired product

The effect of the genetic modification in plants, fungi, algae, ciliates or on the production of a desired compound (such as a fatty acid) can be determined by growing the modified

20 microorganisms or the modified plant under suitable conditions (such as those described above) and analyzing the medium and/or the cellular components for the increased production of the desired product (i.e. of lipids or a fatty acid). These analytical techniques are known to the skilled worker and

25 comprise spectroscopy, thin-layer chromatography, various tyes of staining methods, enzymatic and microbiological methods, and analytical chromatography such as high-performance liquid chromatography (see, for example, Ullman, Encyclopedia of Industrial Chemistry, vol. A2, pp. 89-90 and pp. 443-613, VCH:

30 Weinheim (1985); Fallon, A., et al., (1987) "Applications of HPLC in Biochemistry" in: Laboratory Techniques in Biochemistry and Molecular Biology, vol. 17; Rehm et al. (1993) Biotechnology, vol. 3, chapter III: "Product recovery and purification", pp. 469-714, VCH: Weinheim; Belter, P.A., et al. (1988)

35 Bioseparations: downstream processing for Biotechnology, John Wiley and Sons; Kennedy, J.F. and Gabral, J.M.S. (1992) Recovery processes for biological Materials, John Wiley and Sons; Shaciwitz, J.A., and Honry, J.D. (1988) Biochemical Separations, in: Ullmann's Encyclopedia of Industrial Chemistry, vol. B3;

40 chapter 11, pp. 1-27, VCH: Weinheim; and Dechow, F.J. (1989) Separation and purification techniques in biotechnology, Noves Publications).

In addition to the abovementioned methods, plant lipids are 45 extracted from plant material as described by Cahoon et al. (1999) Proc. Natl. Acad. Sci. USA 96 (22):12935-12940, and Browse et al. (1986) Analytic Biochemistry 152:141-145. The qualitative and quantitative lipid and fatty acid analysis is described by Christie, William W., Advances in Lipid Methodology, Ayr/Scotland: Oily Press (Oily Press Lipid Library; 2); Christie, William W., Gas Chromatography and Lipids. A Practical Guide

- 5 Ayr, Scotland: Oily Press, 1989, Repr. 1992, IX, 307 S. (Oily Press Lipid Library; 1); "Progress in Lipid Research, Oxford: Pergamon Press, 1 (1952) 16 (1977) u.d.T.: Progress in the Chemistry of Fats and Other Lipids CODEN.
- 10 To determine the overall efficiency with which the compound is produced, it is also possible, in addition to measuring the fermentation end product, to analyze other components of the metabolic pathways which are used for producing the desired compounds, such as intermediates and secondary products. The 15 analytical methods comprise measurements of the nutrient quantities in the medium (for example sugars, hydrocarbons, nitrogen sources, phosphate and other ions), measurements of the biomass composition and the growth, analysis of the production of usual metabolites via biosynthetic pathways, and measurements of 20 gases which are generated during the fermentation process. Standard methods for these measurements are described in Applied Microbial Physiology; A Practical Approach, P.M. Rhodes and P.F. Stanbury, ed., IRL Press, pp. 103-129; 131-163 and 165-192 (ISBN: 0199633773) and references cited thorein.
- One example is the analysis of fatty acids (abbreviations: FAMEs, fatty acid methyl esters; GC-MS, gas liquid chromatography/mass spectrometry; TAG, triacylglycerol; TLC, thin-layer chromatography).
- 30 Unequivocal proof for the presence of fatty acid products can be obtained by the analysis of recombinant organisms following standard analytical procedures: GC, GC-MS or TLC as variously described by Christie and references therein (1997, in: Advances on Lipid Methodology, Fourth ed.: Christie, Oily Press, Dundee, 119-169; 1998, gas-chromatography/mass-spectrometry methods, Lipids 33:343-353).

Material to be analyzed can be disintegrated via sonification,
40 glass milling, liquid nitrogen and grinding or via other
applicable methods. The material has to be centrifuged after
disintegration. The sediment is resuspended in Aqua dest, heated
for 10 min at 100°C, cooled on ice and centrifuged again, followed
by extraction in 0.5 M sulfuric acid in methanol containing 2%
45 dimethoxypropane for 1 h at 90°C, leading to hydrolyzed oil and
liquid compounds, resulting in transmethylated lipids. These
fatty acid methyl esters are extracted in petrolether and finally

subjected to GC analysis using a capillary column (Chrompack, WCOT Fused Silica, CP-Wax-52 CB, 25 µm, 0.32 mm) at a temperature gradient beteen 170°C and 240°C for 20 min and 5 min at 240°C. The identity of resulting fatty acid methylesters has to be defined 5 by the use of standards available from commercial sources (i.e. Sigma).

In the case of fatty acids where standards are not available molecule identity has to be shown via derivatization and 10 subsequent GC MS analysis. For example the localization of triple bond fatty acids has to be shown via GC-MS after derivatization via 4,4-dimethoxyoxazoline derivatives (Christie, 1998, see above).

15 Expression constructs in heterologous microbial systems

Strains, Growth Conditions and Plasmids

Escherichia coli strain XL1 Blue MRF' kan (Stratagene) was used 20 for sub-cloning the new elongase ppDesaturasel from Physcomitrella patens. For functional expression of this gene we used the Saccharomyces cerevisiae strain INVSc 1 (Invitrogen Co.). E. coli was grown in Luria-Bertini broth (LB, Duchefa, Haarlem, The Netherleunds) at 37°C. When noceonary, ampicillin 25 (100 mg/liter) was added and 1.5% (w/v) agar was included for solid LB media. S. cerevisiae was grown at 30°C either in YPG-medium or in complete minimal dropout uracil medium (CMdum; see in: Ausubel, F.M., Brent, R., Kingston, R.E., Moore, D.D., Seidman, J.G., Smith, J.A., Struhl, K., Albright, L.B., 30 Coen, D.M., and Varki, A. (1995) Current Protocols in Molecular Biology, John Wiley & Sons, New York) containing either 2% (w/v) raffinose or glucose. For solid media 2% (w/v) BactoTM agar (Difco) was included. Plasmids used for cloning and expression

Example 8: Cloning and expression of PUFA-specific desaturases and elongases

were pUC18 (Pharmacia) and pYES2 (Invitrogen Co.).

For expression in plants, cDNA clones from SEQ ID NO: 1, 3, 5, 7, 40 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31 were modified in such a way that only the coding region was amplified by means of polymerase chain reaction using two oligonucleotides. Care was taken that a consensus sequence before the start codon was maintained for efficient translation. To this end, either the 45 base sequence ATA or AAA was chosen and introduced into the sequence before the ATG (Kozak, M. (1986) Point mutations define a sequence flanking the AUG initiator codon that modulates

translation by eukaryotic ribosomes, Cell 44, 283-292). In addition, a restriction cleavage site was introduced before this consensus triplet, which restriction cleavage site must be compatible with the cleavage site of the target vector into which

5 the fragment is to be cloned and with the aid of which the expression of genes in microorganisms or plants is to take place.

The PCR reaction was performed with plasmid DNA as template in a Thermocycler (Biometra) using the Pfu-DNA (Stratagene) polymerase 10 and the following temperature programme: 3 minutes at 90°C, followed by 30 cycles with 30 seconds at 96°C, 30 seconds at 55°C and 2 minutes at 72°C, 1 cycle with 10 minutes at 72°C and stop at 4°C. The annealing temperature was varied, depending on the oligonucleotides chosen. A synthesis time of approximately one 15 minute can be assumed per kilobase pairs DNA. Further parameters which have an effect on the PCR such as, for example, Mg ions, salt, DNA polymerase and the like are known to the specialist worker and can be varied as required.

- 20 The correct size of the amplified DNA fragment was verified by agaross-TDE gel eloctrophoresis. The amplified DNA was extracted from the gel using the QIAquick Gel Extraction Kit (QIAGEN) and ligated into the SmaI restriction site of the dephosphorylated vector pUC18 using the Sure Clone Ligation Kit (Pharmacia),
- 25 giving rise to the pUC derivatives. After the transformation of E. coli XL1 Blue MRF' kan, a DNA miniprep (Riggs, M.G., & MCLachlan, A. (1986) A simplified screening procedure for large numbers of plasmid mini-preparation. BioTechniques 4, 310-313) was carried out on ampicillin-resistant transformants, and
- 30 positive clones were identified by means of BamHI restriction analysis. The sequence of the cloned PCR product was verified by resequencing using the ABI PRISM Big Dye Terminator Cycle Sequencing Ready Reaction Kit (Perkin-Elmer, Weiterstadt).

35 Fatty acid analysis

The total fatty acids were extracted from plant seeds and analyzed by gas chromatography.

The seeds were taken up in 1% sodium methoxide in methanol and 40 incubated for 20 minutes at RT. Thereafter, the mixture is washed with NaCl solution, and the FAMEs are taken up in 0.3 ml heptane. The samples were separated on a ZEBRON-ZB-Wax capillary column (30 m, 0.32 mm, 0.25 mm; Phenomenex) in a Hewlett Packard-6850 gas chromatograph with flame ionization detector. The oven 45 temperature was programmed from 70°C (1 minute hold) to 200°C at a

rate of 20°C/minute, then to 250°C (5 min hold) at a rate of 5°C/min and finally to 260°C at a rate of 5°C/min. Nitrogen was

used as carrier gas (4.5 ml/min at 70° C). The fatty acids were identified by comparing the retention times with those of FAME standards (SIGMA).

5 Expression analysis

Result of the expression of a Phaeodactylum tricornutum $\Delta\delta$ -acyl-lipid desaturase, a Phaeodactylum tricornutum $\Delta\delta$ -acyl-lipid desaturase and the delta-6-specific elongase in 10 tobacco seeds:

Figure 2: Fatty acid profile of transgenic tobacco seeds. The plants were transformed with a triple expression cassette which expresses, under the control of the USP promoter, the delta-6-, 15 the delta-5- and the Physcomitrella patens PpPSSI (pARA2). 100 transgenic tobacco and linseed plants are generated, of which approximately 20% synthesize arachidonic acid in the seed.

Figure 3: Tobacco wild-type control.

20

Example 9: Purification of the desired product from transformed organisms

The desired product can be obtained from plant material or fungi, 25 algae, ciliates, animal cells or from the supernatant of the above-described cultures by various methods known in the art. If the desired product is not excreted from the cells, the cells can be harvested from the culture by slow centrifugation, and the cells can be lyzed by standard techniques such as mechanical of force or sonication. Plant organs can be separated mechanically from other tissue or other organs. After homogenization, the cell debris is removed by centrifugation, and the supernatant fraction, which comprises the soluble proteins, is stored for the further purification of the desired compound. If the product is 35 excreted from desired cells, the cells are removed from the culture by slow centrifugation, and the supernatant fraction is stored for further purification.

The supernatant fraction of each purification method is subjected 40 to chromatography with a suitable resin, the desired molecule either being retained on the chromatography resin, while many contaminations in the sample are not, or else the contaminations are retained on the resin, while the sample is not. If necessary, these chromatography steps can be repeated, using identical or 45 different chromatography resins. The skilled worker is familiar with the selection of suitable chromatography resins and their most effective application for a particular molecule to be

purified. The purified product can be concentrated by filtration or ultrafiltration and stored at a temperature which provides maximum stability of the product.

- 5 A broad spectrum of purification methods is known in the art, and the above purification method is not intended to be limiting. These purification methods are described, for example, in Bailey, J.E., & Ollis, D.F., Biochemical Engineering Fundamentals, McGraw-Hill: New York (1986).
- The identity and purity of the compounds which have been isolated can be determined by standard techniques of the art. These include high-performance liquid chromatography (HPLC), spectroscopic methods, staining methods, thin-layer
- 15 chromatography, in particular thin-layer chromatography and flame ionization detection (IATROSCAN, Tatron, Tokio, Japan), NIRS, enzyme assay or microbiological methods. For an overview of these analytical methods, see: Patek et al. (1994) Appl. Environ. Microbiol. 60:133-140; Malakhova et al. (1996) Biotekhnologiya
- 20 11:27-32; and Schmidt et al. (1998) Bioprocess Engineer. 19:67-70. Ulmann's Encyclopedia of Industrial Chemistry (1996) vol. A27, VCH: Weinheim, pp. 89-90, pp. 521-540, pp. 540-547, pp. 559-566, 575-581 and pp. 581-587; Michal, G (1999) Biochemical Pathways: An Atlas of Biochemistry and Molocular
- 25 Biology, John Wiley and Sons; Fallon, A., et al. (1987) Applications of EELC in Biochemistry in: Laboratory Techniques in Biochemistry and Molecular Biology, vol. 17.

Equivalents

The skilled worker will or can recognize many equivalents of the specific embodiments according to the invention described herein by simply using routine experiments. These equivalents are intended to fall within the patent claims.

30

Process for the production of polyunsaturated fatty acids in plants

5 Abstract

The present invention relates to a method for the production of fatty acid esters which comprise unsaturated fatty acids with at least three double bonds, and to free unsaturated fatty acids

10 with a content of at least 1% by weight based on the total fatty acids present in the plants, by expressing at least one nucleic. acid sequence which encodes a polypeptide with Δ6-desaturase activity and at least one nucleic acid sequence which encodes a polypeptide with Δ6-elongase activity. Advantageously, these 15 nucleic acid sequences can, if appropriate, be expressed in the transgenic plant together with a third nucleic acid sequence which encodes a polypeptide with Δ5-desaturase activity.

The invention furthermore relates to the use of defined nucleic 20 acid sequences which encode polypeptides with a $\Delta 6$ -desaturase activity, $\Delta 6$ -elongase activity or $\Delta 5$ -desaturase activity group of nucleic acid sequences, and/or to the use of nucleic acid constructs comprising the abovementioned nucleic acid sequences.

25

30

35

Figure 1: Blosynthesis chain

SEQUENCE LISTING

<110> BASE Plant Science GmbH

<120> Process for the production of polyunsaturated fatty acids in plants

<130> 2002/271

<140> 2002 271

<141> 2002-04-26

<160> 64

<170> PatentIn Vers. 2.0

<210> 1

<211> 1687

<212> DNA

<213> Borago officinalis

<220>

<221> CDS

<222> (42)..(1388)

<223> A6-desaturase

<400> 1

tatotgocta coctoccaaa gagagtagto atttttcato a atg got got caa atc 56 Met Ala Ala Gln Ile

5

1

aag aaa tac att acc tca gat gaa ctc aag aac cac gat aaa ccc gga Lys Lys Tyr Ile Thr Ser Asp Glu Leu Lys Asn His Asp Lys Pro Gly

15 20

gat cta tgg atc tcg att caa ggg aaa gcc tat gat gtt tcg gat tgg Asp Leu Trp Ile Ser Ile Gln Gly Lys Ala Tyr Asp Val Ser Asp Trp

25

gto	aaa	gac	cat	cca	ggt	qqc	ago	ttt	ccc	tto	aac	aqt	ctt	get	gqt	200
Va]	. Lys	Asp	His	Pro	Gly	Gly	Sex	Phe	Pro	Lev	ı Lys	Ser	Let	ı Ala	a Gly	
		40					45	,				50				
caa	gag	gta	act	gat	gca	ttt	gtt	gca	ttc	cat	cct	gcc	tct	aca	ı tgg	248
Gln			Thr	Asp	Ala			. Ala	Phe	His	Pro	Ala	Ser	Thi	Trp	
	55					60					65					
			-										-		tct	296
-		Leu	Asp	Lys			Thr	GIA	Tyr	-		Lys	Asp	туг	Ser	
70					75					80					85	
at.t.	tet	gag	at.t.	tet	aaa	gat.	tat	agg	aad	ctt	nt.a	ttt	gag	ttt	tct	344
			-			-			_						Ser	
				90	•	-	-	-	95					100		
aaa	atg	ggt	ttg	tat	gac	aaa	aaa	ggt	cat	att	atg	ttt	gca	act	ttg	392
Lys	Met	Gly	Leu	Tyr	Asp	Lys	Lys	Gly	His	Ile	Met	Phe	Ala	Thr	Leu	
			105					110					115			
tgc	ttt	ata	gca	atg	ctg	ttt	gct	atg	agt	gtt	tat	ggg	gtt	ttg	ttt	440
Cys	Phe	Ile	Ala	Met	Leu	Phe	Ala	Met	Ser	Val	Tyr	Gly	Va1	Leu	Phe	
		120					125					130				
-	-, -		-	ttg	-		-				-					488
Cys		Gly	Val	Leu	Val	His	Leu	Phe	Ser	Gly	Cys	Leu	Met	Gly	Phe	
	135					140					145					
			-	agt						-	•				-	536
	Trp	Ile	Gln	Ser	_	Trp	Ile	Gly	His	_	Ala	Gly	His	Tyr		
150					155					160					165	
			-	tca -				-		-				-	-	584
aı	Val	Ser	Asp	Ser	Arg	Leu	Asn	Lys		Met	GIĀ	Ile	Phe		Ala	
				170					175					180		
at	+ 4+	c++	+ca	gga	a+ =	ant.	a++	aa+	+00	+ 00	225	tar	220	co+	a a t	632
	-			Gly		-										032
	-13	204	185	-Ly	~. 10	201	110	190		~+ P	-Jy 0	-	195	что	TADII	
			103					100					100			

gca	cat	cac	att	gcc	tgt	aat	agc	ctt	gaa	tat	gac	cct	gat	tta	caa	680
Ala	His	His	Ile	Ala	Cys	Asn	Ser	Leu	Glu	Tyr	Asp	Pro	Asp	Leu	Gln	
		200					205					210				
tat	ata	cca	ttc	ctt	qtt	qtq	tct	tcc	aag	ttt	ttt	ggt	tca	ctc	acc	728
Marso	Ile	Dro	Dhe	Len	Val	Val	Ser	Ser	Lvs	Phe	Phe	Gly	Ser	Leu	Thr	
171	215		2310			220					225					
	213															
	cat		+-+	~~~		acc	++a	act	+tt.	gac	tct	tta	tca	aga	ttc	776
tet	His		-	gag		3	Tan	mbr	Dhe	aen.	Ser	T.e.11	Ser	Ara	Phe	
	His	Phe	туг	GIU		AIG	Leu	THE	rne	240	DCI	200			245	
230					235					240						
																824
ttt	gta	agt	tat	caa	cat	tgg	aca	ttt	tac	cct	att	atg	cgc	900	33-	024
Phe	Val	Ser	Tyr	Gln	His	Trp	Thr	Phe	Tyr	Pro	Ile	Met	Cys		ALA	
				250					255					260		
				,												
agg	ctc	aat	atg	tat	gta	caa	tct	ctc	ata	atg	ttg	ttg	acc	aag	aga	872
Arg	Leu	Asn	Met	Tyr	Val	Gln	Ser	Len	Ile	Met	Leu	Leu	Thr	Lys	Arg	
			265					270					275			
aat.	gtg	tcc	tat	cqa	gct	cat	gaa	ctc	ttg	gga	tgc	cta	gtg	ttc	tcg	920
Agn	Val	Ser	Tvr	Ara	Ala	His	Glu	Leu	Leu	Gly	Cys	Leu	Val	Phe	Ser	
21.011	,	280	-1-	,			285					290				
		200														
	tgg							+ 4+	++~	aat	28+	+ aa	aat.	daa	aga	968
	Trp															
Ile	-	Tyr	Pro	Leu	Leu		ser	Cys	ьец	FIO	305	11.5			5	
	295					300					305					
																1016
	atg															1010
Ile	Met	Phe	Val	Ile	Ala	Ser	Leu	Ser	Val	Thr	Gly	Met	Gln	Gln		
310					315					320					325	
caq	ttc	tcc	ttg	aac	cac	ttc	tct	tca	agt	gtt	tat	gtt	gga	aag	cct	1064
	Phe															
0				330					335					340		
	99 9			4	***	~~~		cas	acc	ga+	aaa	aca	ctt	qac	att	1112
	ggg Gly															
Lys	Gly	Asn		Trp	Phe	GLU	тйа		THE	лар	GIY		355			
			345					350					300			

.

			cct													1160
Ser	Cys	Pro	Pro	Trp	Met	Asp	Trp	Phe	His	Gly	Gly	Leu	Gln	Phe	Gln	
		360					365					370				
att	gag	cat	cat	ttq	ttt	ccc	aag	atg	cct	aga	tgc	aac	ctt	agg	aaa	1208
			His													
	375					380					385					
	373															
	+	200	tac	at a	atc	aaa	tta.	tac	aad	aaa	cat	aat	ttq	cct	tac	1256
			Tyr													
	ser	PIO	TYL	val	395	Gru	Бец	C ₂ D	,	400					405	
390					393											
												at a	9.70	200	++ a	1304
			tct													250-
Asn	Tyr	Ala	Ser		Ser	Lys	Ala	Asn		met	Thr	Leu	MIG		Leu	
				410					415					420		
			gca													1352
Arg	Asn	Thr	Ala	Leu	Gln	Ala	Arg	Asp	Tle	Thr	Lys	Pro	Leu	Pro	Lys	
			425					430					435			
aat	ttg	gta	tgg	gaa	gct	ctt	cac	act	cat	ggt	taa	aat	tacc	ctt		1398
Asn	Leu	Val	Trp	Glu	Ala	Leu	His	Thr	His	Gly						
		440					445									
agt:	teat	nta :	ataat	tta	acra:	ttat	rtat	e te	ctate	gttt	gtg	tatt	gtc	ttgg	ttctac	1458
-9-		,														
				~~==	a+ +	at at	+++a	- aa	tttat	ttag	atσ	tttt	tta	atat	atttta	1518
ttg	ctgg.	agt (Jack	gcaa		gccc		~ 55								
								~ ~~		~~~+	+ 00	_+a+	t at	caat:	tgttgt	1578
gag	gttt	tgc ·	tttc	atet	cc a	ctat	Lyac	y aa	caag	gage	cgc	acut	-9-		-55-	
											di certi	+++a	nrt.	+~==	actest	1638
gct	caat	atc ·	tgat	attt	tg g	aatg	tact	t tg	cacci	actg	Lgt	LLEC	ayı	cyaa	gctcat	
																1687
gtg	tact	tct	atag	actt	tg t	ttaa	atgg	t ta	tgaa	aaaa	aaa	aaaa	aa			100/

<210> 2

<211> 448

<212> PRT

<213> Borago officinalis

									5						
<400															
Met	Ala	Ala	Gln	Ile	Lys	Lys	Tyr	Ile	Thr	Ser	Asp	Glu	Leu		Asn
1				5					10					15	
His	Asp	Lys	Pro	Gly	Asp	Leu	\mathtt{Trp}	Ile	Ser	Ile	Gln	Gly	Lys	Ala	Tyr
			20					25					30		
Asp	Val	Ser	Asp	Trp	Val	Lys	Asp	His	Pro	Gly	Gly	Ser	Phe	Pro	Leu
		35					40					45			
Lys	Ser	Leu	Ala	Gly	Gln	G1.u	Val	Thr	Asp	Ala	Phe	Val	Ala	Phe	His
	50					55					60				
Pro	Ala	Ser	Thr	Trp	Lys	Asn	Leu	Asp	Lys	Phe	Phe	Thr	Gly	Tyr	Tyr
65					70					75					80
Leu	Lvs	Asp	Tyr	Ser	Val	Ser	Glu	Val	Ser	Lys	Asp	Tyr	Arg	Lys	Leu
	•	•	-	85					90					95	
Val	Phe	Glu	Phe	Ser	Lvs	Met	Gly	Leu	Tyr	Asp	Lys	Lys	Gly	His	Ile
• • • •			100		-2-		-	105	-				110		
Met	Dhe	Δla	Thr	T.e.11	Cvs	Phe	Ile	Ala	Met	Leu	Phe	Ala	Met	Ser	Val
PIC C	1110	115			-1-		120					125			
		115													
m	c1	17.7	Leu	Bho	Ctra	Glu	G] v	Val	Leu	Val	His	Leu	Phe	Ser	Gly
TYL	130	val	Deu	FILE	Cys	135	OL,				140				
	130					133									
			Gly	Bho	Ton	Tr.	T16	Gl n	Ser	Glv	Tro	Ile	Glv	His	Asp
-	Leu	met	GIY	Pile	150	IIP	116	02.11		155					160
145					150					100					
							_				T	3 an	T 110	Dhe	Met
Ala	Gly	His	туг		Val	Val	ser	Asp		Arg	neu	Hon	пув	175	nec
				165					170					115	
						_		_		71		т1-	c1	Myre	Trr.
Gly	Ile	Phe	Ala	Ala	Asn	Cys	Leu		GTĀ	TTE	ser	110		ттБ	ττħ
			180					185					190		
													_		_
Lys	Trp	Asn	His	Asn	Ala	His	His	Ile	Ala	Cys	Asn	Ser	Leu	Glu	Tyr

. 200

195

									6						
Asp	Pro	Asp	Leu	Gln	Tyr	Ile	Pro	Phe	Leu	Val	Val	Ser	Ser	Lys	Phe
	210					215					220				
Phe	Gly	Ser	Leu	Thr	Ser	His	Phe	Tyr	Glu	Lys	Arg	Leu	\mathbf{Thr}	Phe	Asp
225	-				230					235					240
	T	Co.	724	Dhe	Dhe	Va1	Ser	Tvr	Gln	His	Trp	Thr	Phe	Tyr	Pro
ser	ьеu	Ser	nrg	245	THE		DUL	-1-	250		•			255	
				245					250						
						_	_		_	**- 7	63		7 011	T10	Mot
Ile	Met	Cys		Ala	Arg	Leu	Asn		ıyr	vaı	GIII	Ser		TTE	nec
			260					265					270		
Leu	Leu	Thr	Lys	Arq	Asn	Val	Ser	Tyr	Arg	Ala	His	Glu	Leu	Leu	Gly
		275					280					285			
Cys	Leu	Val	Phe	Ser	Ile	Trp	Tyr	Pro	Leu	Leu	Val	Ser	Cys	Leu	Pro
-	290					295					300				
) en	mrn.	G1 vr	Glu	Ara	Tle	Met	Phe	Val	Ile	Ala	Ser	Leu	Ser	Val	Thr
305	115	GLY	GIU	arg	310					315					320
305					310										
						_,	_	.		77 £ m	Dho	cor	cor	cor	Val
Gly	Met	Gln	Gln		GIn	Phe	Ser	Leu		пта	File	per	Der	335	Vu1
				325					330					335	
Tyr	Val	Gly	Lys	Pro	Lys	Gly	Asn	Asn	Trp	Phe	Glu	Lys		Thr	Asp
			340					345					350		
Glv	Thr	Leu	Asp	Ile	Ser	Cys	Pro	Pro	Trp	Met	Asp	Trp	Phe	His	Gly
2		355	-			-	360					365			
		333													
	Ŧ	07-	m1 -	C1	770	61.	uie	Hic	7.011	Phe	Pro	Lvs	Met	Pro	Arg
GLY		GIN	Pne	GIH	TTE		пто	1110	200		380	-1-			
	370					375					380				
												_	_	_	
Cys	Asn	Leu	Arg	Lys	Ile	Ser	Pro	Tyr	Val		Glu	Leu	Cys	rys	Lys
385					390					395					400

His Asn Leu Pro Tyr Asn Tyr Ala Ser Phe Ser Lys Ala Asn Glu Met 405 410 415

Thr Leu Arg Thr Leu Arg Asn Thr Ala Leu Gln Ala Arg Asp Ile Thr

Lys Pro Leu Pro Lys Asn Leu Val Trp Glu Ala Leu His Thr His Gly 445 440 435

<210> 3

<211> 1192

<212> DNA

<213> Physcomitrella patens

<220>

<221> CDS

<222> (58)..(930)

<223> \(\Delta 6-elongase \)

<400> 3

ctgottogto toatottggg ggtgtgattc gggagtgggt tgagttgqtg gagcgca 57

atg gag gtc gtg gag aga ttc tac ggt gag ttg gat ggg aag gtc tcg 105 Met Glu Val Val Glu Arg Phe Tyr Gly Glu Leu Asp Gly Lys Val Ser 1 .

10 5

cag ggc gtg aat gca ttg ctg ggt agt ttt ggg gtg gag ttg acg gat 153 Gln Gly Val Asn Ala Leu Leu Gly Ser Phe Gly Val Glu Leu Thr Asp

25 20

30

acg ccc act acc aaa ggc ttg ccc ctc gtt gac agt ccc aca ccc atc 201 Thr Pro Thr Thr Lys Gly Leu Pro Leu Val Asp Ser Pro Thr Pro Ile 35 40

gtc ctc ggt gtt tot gta tac ttg act att gtc att gga ggg ctt ttg

Val Leu Gly Val Ser Val Tyr Leu Thr Ile Val Ile Gly Gly Leu Leu 60 55 50

tgg ata aag gcc agg gat ctg aaa ccg cgc gcc tcg gag cca ttt ttg Trp Ile Lys Ala Arg Asp Leu Lys Pro Arg Ala Ser Glu Pro Phe Leu 70 75 80 65

ctc caa got ttg gtg ctt gtg cac aac ctg ttc tgt ttt geg ctc agt

_

									8							
Leu	Gln	Ala	Leu	Val	Leu	Val	His	Asn	Leu	Phe	Cys	Phe	Ala	Leu	Ser	
				85					90					95		
eta	tat	atq	tac	qtq	ggc	atc	gct	tat	cag	gct	att	acc	tgg	cgg	Lac	393
					Gly											
	-2-		100		-			105					110			
+a+	a+c	+aa	aac	aat	gca	tac	aat	act	aaa	cat	aaa	gag	atg	gcg	att	441
					Ala											
	200	115					120		-			125				
		113														
at a	at a	+=c	++ a	++c	tac	atq	tet	aaq	tac	ata	gaa	ttc	atg	gat	acc	489
					Tyr											
T HPS LL	130	LYL	Dea	1110	-,-	135		-1-	- 4		140					
	130					200										
	2+0	9+4	a+ a	c+ a	aag	cac	agg	acc	agg	caa	ata	agc	ttc	ctc	cac	537
					Lys											
	TTR	nec	TTG	neu	150	ALG	001			155					160	
145					150											
					tca		+	ata	2++	+ aa	taa	act	att	act	cat	585
					Ser											
vaı	TYL	HIS	nıs		ser	116	Ser	Deu	170					175		
				165					170							
					gaa				+ =+	~~~	aat	cta	220	tea	aga	633
					Glu											
Hic	Ala	Pro		GIĀ	GIU	AIA	TYL		Ser	ATG	ALG	neu	190	001	027	
			180					185					1,0			
												~~~	+ 00	att	cna	681
					tat											001
Val	His		Leu	Met	Tyr	Ala		Tyr	Pne	Leu	ALa		Cys	Leu	AIG	
		195					200					205				
																700
					aaa											729
Ser	Ser	Pro	Lys	Leu	Lys	Asn	Lys	Tyr	Leu	Phe		Gly	Arg	Tyr	Leu	
	210					215					220					
aca	caa	ttc	caa	atg	ttc	cag	ttt	atg	ctg	aac	tta	gtg	cag	gct	tac	777
Thr	Gln	Phe	Gln	Met	Phe	Gln	Phe	Met	Leu	Asn	Leu	Val	Gln	Ala	Tyr	
225					230					235					240	
tac	gac	atg	aaa	acg	aat	geg	cca	tat	cca	caa	tgg	ctg	atc	aag	att	825

_

Tyr Asp Met Lys Thr Asn Ala Pro Tyr Pro Gln Trp Leu Ile Lys Ile
245 250 255

ttg ttc tac tac atg atc tcg ttg ctg ttt ctt ttc ggc aat ttt tac 873
Leu Phe Tyr Tyr Met Ile Ser Leu Leu Phe Leu Phe Gly Asn Phe Tyr

gta caa aaa tac atc aaa ccc tct gac gga aag caa aag gga gct aaa 921 Val Gln Lys Tyr Ile Lys Pro Ser Asp Gly Lys Gln Lys Gly Ala Lys 275 280 285

265

act gag tga gctgtatcaa gccatagaaa ctctattatg ttagaacctg 970
Thr Glu
290

aagttggtgc tttcttatct ccacttatct tttaagcagc atcagttttg aaatgalglg 1030

tgggogtggt otgcaagtag toatcaatat aatcggcctg agcacttcag atggattgtt 1090

agaacatgag taaaagcggt tattacggtg tttattttgt accaaatcac cgcacgggtg 1150

aattgaaata tttcagattt gatcaatttc atctgaaaaa aa 1192

<210> 4

<211> 290

<212> PRT

<213> Physcomitrella patens

<400> 4

Met Glu Val Val Glu Arg Phe Tyr Gly Glu Leu Asp Gly Lys Val Ser

Gln Gly Val Asn Ala Leu Leu Gly Ser Phe Gly Val Glu Leu Thr Asp  $20 \hspace{1.5cm} 25 \hspace{1.5cm} 30$ 

Thr Pro Thr Thr Lys Gly Leu Pro Leu Val Asp Ser Pro Thr Pro Ile 35 40 45

Val Leu Gly Val Ser Val Tyr Leu Thr Ile Val Ile Gly Gly Leu Leu

								- 1	LO						
	50					55					60				
Trp 65	Ile	Lys	Ala	Arg	Asp 70	Leu	Lys	Pro	Arg	Ala 75	Ser	Glu	Pro	Phe	Lev
	Gln	Ala	Leu	Val	I.eu	Val	His	Asn	Leu 90	Phe	Cys	Phe	Ala	Leu 95	Sei
Leu	Tyr	Met			Gly	Ile	Ala			Ala	Ile	Thr			ТУ1
ser	Leu	Trp	100 Gly	Asn	Ala	Tyr	Asn	105 Pro	Lys	His	Lys		110 Met	Ala	Ile
Leu	Val	115 Tyr	Leu	Phe	Tyr	Met	120 Ser	Lys	Tyr	Val	Glu	125 Phe	Met	Asp	The
	130	- Met				135					140				
145					150					155					160
Val	Tyr	His	His	Ser 165	Ser	Ile	Ser	Leu	Ile 170	Trp	Trp	Ala	Ile	175	His
His	Ala	Pro	Gly 180	Gly	Glu	Ala	Tyr	Trp 185	Ser	Ala	Ala	Leu	Asn 190	Ser	Gly
Val	His	Val 195	Leu	Met	Tyr	Ala	Tyr 200	Tyr	Phe	Leu	Ala	Ala 205	Cys	Leu	Ar
Ser	Ser 210	Pro	ГÃЗ	Leu	Lys	Asn 215	Lys	туг	Leu	Phe	Trp 220	Gly	Arg	Tyr	Lei
Thr 225	Gln	Phe	Gln	Met	Phe 230	Gln	Phe	Met	Leu	Asn 235	Leu	Val	Gln	Ala	Ty:
Tyr	Asp	Met	Lys	Thr 245	Asn	Ala	Pro	Tyr	Pro 250	Gln	Trp	Leu	Ile	Lys 255	Ile

Leu Phe Tyr Tyr Met Ile Ser Leu Leu Phe Leu Phe Gly Asn Phe Tyr

265

260

11	
Val Gln Lys Tyr Ile Lys Pro Ser Asp Gly Lys Gln Lys Gly Ala Lys 275 280 285	
Thr Glu 290	
<210> 5	
<211> 1054	
<212> DNA	
<213> Thraustochytrium	
<220>	
<221> CDS	
<222> (43)(858)	
<223> \Delta6-elongase	
<400> 5	54
gaatteggea egagagegeg eggageggag accteggeeg og atg atg gag eeg	54
Met Met Glu Pro	
net met GIU FIO 1	
1	102
tctc gac agg tac agg gcg ctg gcg gag ctc gcc gcg agg tac gcc agc	102
1	102
ctc gac agg tao agg gcg ctg gcg gag ctc gcc gcg agg tac gcc agc Leu Aap Arg Tyr Arg Ala Leu Ala Glu Leu Ala Ala Arg Tyr Ala Ser 5 10 15 20	
then hap Arg Tyr Arg Ala Leu Ala Glu Leu Ala Ala Arg Tyr Ala Ser to 10 15 20	102
ctc gac agg tac agg gcg ctg gcg gag ctc gcc gcg gag tac gcc agc Leu Aap Arg Tyr Arg Ala Leu Ala Glu Leu Ala Ala Arg Tyr Ala Ser 5 10 15 20  tcg gcg gcc ttc aag tgg caa gtc acg tac gac gcc aag gac agc ttc Ser Ala Ala Phe Lys Trp Gln Val Thr Tyr Asp Ala Lys Asp Ser Phe	
then hap Arg Tyr Arg Ala Leu Ala Glu Leu Ala Ala Arg Tyr Ala Ser to 10 15 20	
tcg gcg gcc ttc aag tgc cas gtc acg tac gcc gcg agg tac gcc agc  Leu Aap Arg Tyr Arg Ala Leu Ala Glu Leu Ala Ala Arg Tyr Ala Ser  5 10 15 20  tcg gcg gcc ttc aag tgg caa gtc acg tac gac gcc aag gac agc ttc  Ser Ala Ala Phe Lys Trp Gln Val Thr Tyr Asp Ala Lys Asp Ser Phe  25 30 35	150
ctc gac agg tac agg gcg ctg gcg gag ctc gcc gcg agg tac gcc agc Leu Aap Arg Tyr Arg Ala Leu Ala Glu Leu Ala Ala Arg Tyr Ala Ser 5 10 15 20  tcg gcg gcc ttc aag tgg caa gtc acg tac gac gcc aag gac agc ttc Ser Ala Ala Phe Lys Trp Gln Val Thr Tyr Asp Ala Lys Asp Ser Phe 25 30 35  gtc ggg ccc ctg qqa atc cgg gag ccg ctc ggg ctc ctg gtg ggc tcc	
ctc gac agg tao agg gcg ctg gcg gag ctc gcc gcg agg tac gcc agc Leu App Arg Tyr Arg Ala Leu Ala Glu Leu Ala Ala Arg Tyr Ala Ser 5 10 15 20  tcg gcg gcc ttc aag tgg caa gtc acg tac gac gcc aag gac agc ttc Ser Ala Ala Phe Lys Trp Gln Val Thr Tyr Asp Ala Lys Asp Ser Phe 25 30 35  gtc ggg ccc ctg qqa atc cgg gag ccg ctc ggg ctc ctg gtg ggc tcc Val Gly Pro Leu Gly Ile Arg Glu Pro Leu Gly Leu Leu Val Gly Ser	150
ctc gac agg tac agg gcg ctg gcg gag ctc gcc gcg agg tac gcc agc Leu Aap Arg Tyr Arg Ala Leu Ala Glu Leu Ala Ala Arg Tyr Ala Ser 5 10 15 20  tcg gcg gcc ttc aag tgg caa gtc acg tac gac gcc aag gac agc ttc Ser Ala Ala Phe Lys Trp Gln Val Thr Tyr Asp Ala Lys Asp Ser Phe 25 30 35  gtc gcg gcc ctc qqa atc cgg gag ccg ctc ggg ctc ctg gtg ggc tcc Val Gly Pro Leu Gly Ile Arg Glu Pro Leu Gly Leu Leu Val Gly Ser	150
ctc gac agg tac agg gcg ctg gcg gag ctc gcc gcg agg tac gcc agc Len Asp Arg Tyr Arg Ala Leu Ala Glu Leu Ala Ala Arg Tyr Ala Ser 5 10 15 20  tcg gcg gcc ttc aag tgg caa gtc acg tac gac gcc aag gac agc ttc Ser Ala Ala Phe Lys Trp Gln Val Thr Tyr Asp Ala Lys Asp Ser Phe 25 30 35  gtc ggg ccc ctg qqa atc cgg gag ccg ctc ggg ctc ctg gtg gcc tcc Val Gly Pro Leu Gly Ile Arg Glu Pro Leu Gly Leu Leu Val Gly Ser 40 45 50	150
ctc gac agg tao agg gog ctg gog gag ctc gcc gog agg tac goc agc Leu Aap Arg Tyr Arg Ala Leu Ala Glu Leu Ala Ala Arg Tyr Ala Ser 5 10 15 20  tog gog goc ttc aag tgg caa gtc acg tac gac gcc aag gac agc ttc Ser Ala Ala Phe Lys Trp Gln Val Thr Tyr Asp Ala Lys Asp Ser Phe 25 30 35  gtc gog ccc ctq qqa atc cgg gag ccg ctc ggg ctc ctg gtg ggc tcc Val Gly Pro Leu Gly Ile Arg Glu Pro Leu Gly Leu Leu Val Gly Ser 40 45 50  gtg gtc ctc tac ctg agc ctg ctg gcg gtg ttac gcg ctg cgg acc	150
ctc gac agg tac agg gcg ctg gcg gag ctc gcc gcg agg tac gcc agc Len Asp Arg Tyr Arg Ala Leu Ala Glu Leu Ala Ala Arg Tyr Ala Ser 5 10 15 20  tcg gcg gcc ttc aag tgg caa gtc acg tac gac gcc aag gac agc ttc Ser Ala Ala Phe Lys Trp Gln Val Thr Tyr Asp Ala Lys Asp Ser Phe 25 30 35  gtc ggg ccc ctg qqa atc cgg gag ccg ctc ggg ctc ctg gtg gcc tcc Val Gly Pro Leu Gly Ile Arg Glu Pro Leu Gly Leu Leu Val Gly Ser 40 45 50	150

tac ctt ggc ggc ctc atg gcg ctc cgc agc gtg cat aac ctc ggg ctc 294

									12							
Tvr	Leu	Glv	Glv	Leu	Met	Ala	Leu	Arg	Ser	Val	His	Asn	Leu	Gly	Leu	
	70	-	-			75					80					
tac	ctc	ttc	tcg	ggc	gcc	gtg	tgg	atc	tac	acg	agc	tac	ctc	alg	atc	342
					Ala											
85				•	90					95					100	
caσ	gat	aaa	cac	ttt	cgc	agc	ctc	gag	gcg	gca	acg	tgc	gag	ccg	ctc	390
					Arg											
	-	-		105					110					115		
aaq	cat	ccg	cac	ttc	cag	ctc	atc	agc	ttg	ctc	ttt	gcg	ctg	tcc	aag	438
					Gln											
			120					125					130			
atc	tgg	gag	tgg	ttc	gac	acg	gtg	ctc	ctc	atc	gtc	aag	ggc	aac	aag	486
					Asp											
		135					140					145				
ctc	cgc	ttc	ctg	cac	gtc	ttg	cac	cac	gcc	acg	acc	ttt	tgg	ctc	tac	534
Leu	Arg	Phe	Leu	His	Val	Leu	His	His	Ala	Thr	Thr	Phe	Trp	Leu	Tyr	
	150					155					160					
gcc	atc	gac	cac	atc	ttt	ctc	tcg	tcc	atc	aag	tac	ggc	gtc	gcg	gtc	582
					Phe											
165					170					175					180	
aat	gat	ttc	atc	cac	acc	gtc	atg	tac	gcg	cac	tac	ttc	cgc	cca	ttc	630
Asn	Ala	Phe	Ile	His	Thr	Val	Met	Tyr	Ala	His	Tyr	Phe	Arg	Pro	Phe	
				185					190					195		
ccg	aag	ggc	ttg	cgc	ccg	ctt	att	acg	cag	ttg	cag	atc	gtc	cag	ttc	678
					Pro											
	_	_	200					205					210			
att	ttc	agc	atc	ggc	atc	cat	acc	gcc	att	tac	tgg	cac	tac	gac	tgc	726
					Ile											
		215		-			220					225				
gag	cca	ctc	ata	cat	acc	cac	ttt	tgg	gaa	tac	gtc	acg	ccc	tac	ctt	774
2-5	5		5-5		-											

13 Glu Pro Leu Val His Thr His Phe Trp Glu Tyr Val Thr Pro Tyr Leu 235 240 230 ttc gtc gtg ccc ttc ctc atc ctc ttt ttc aat ttt tac ctg cag cag Phe Val Val Pro Phe Leu Ile Leu Phe Phe Asn Phe Tyr Leu Gln Gln 260 250 255 245 tac gtc ctc gcg ccc gca aaa acc aag aag gca tag ccacgtaaca 868 Tyr Val Leu Ala Pro Ala Lys Thr Lys Lys Ala 265 270 gtagaccage agegeegagg acgegtgeeg egttategeg aageaegaaa taaagaagat 928 1054 ctcgag <210> 6 <211> 271 <212> PRT <213> Thraustochytrium <400> 6 Met Met Glu Pro Leu Asp Arg Tyr Arg Ala Leu Ala Glu Leu Ala Ala 15 10 1 5 Arg Tyr Ala Ser Ser Ala Ala Phe Lys Trp Gln Val Thr Tyr Asp Ala 20 Lys Asp Ser Phe Val Gly Pro Leu Gly Ile Arg Glu Pro Leu Gly Leu 45 40 35 Leu Val Gly Ser Val Val Leu Tyr Leu Ser Leu Leu Ala Val Val Tyr 55 60 50 Ala Leu Arg Asn Tyr Leu Gly Gly Leu Met Ala Leu Arg Ser Val His

75

70

Asn	Leu	Gly	Leu	Cys 85	Leu	Phe	Ser	Gly	Ala 90	Val	Trp	Ile	Tyr	Thr 95	Ser
Tyr	Leu	Met	Ile 100	Gln	Asp	Gly	His	Phe 105	Arg	Ser	Leu	Glu	Ala 110	Ala	Thr
Сув	Glu	Pro	Leu	Lys	His	Pro	His 120	Phe	Gln	Leu	Ile	Ser 125	Leu	Leu	Phe
Ala	Leu 130	Ser	Lys	Ile	Trp	Glu 135	Trp	Phe	Asp	Thr	Val 140	Leu	Lou	Ile	Val
Lys 145	Gly	Asn	Lys	Leu	Arg 150	Phe	Leu	His	Val	Leu 155	His	His	Ala	Thr	Thr 160
Phe	Trp	Leu	Tyr	Ala 165	Ile	Asp	His	Ile	Phe 170	Leu	Ser	Ser	Ile	Lys 175	Tyr
Gly	Val	Ala	Val 180	Asn	Ala	Phe	Ile	His 185	Thr	Val	Met	Tyr	Ala 190	His	Tyr
Phe	Arg	Pro 195	Phe	Pro	Lys	Gly	Leu 200	Arg	Pro	Leu	Ile	Thr 205	Gln	Leu	Gln
Ile	Val 210	Gln	Phe	Ile	Phe	Ser 215	Ile	Gly	Ile	His	Thr 220	Ala	Ile	Tyr	Trp
His 225	Tyr	Asp	Сув	Glu	Pro 230	Leu	Val	His	Thr	His 235	Phe	Trp	Glu	Tyr	Val 240
Thr	Pro	Tyr	Leu	Phe 245	Val.	Val	Pro	Phe	Leu 250	Ile	Leu	Phe	Phe	Asn 255	Phe

Tyr Leu Gln Gln Tyr Val Leu Ala Pro Ala Lys Thr Lys Lys Ala

265

270

<210> 7 <211> 2040

<212> DNA

<213> Ceratedon purpureus

<220>

<221> CDS

<222> (176)..(1627)

<223> \(\Delta 6-\text{desaturase}\)

<400> 7

ctcaggcagg tctcagttga tgagacgctg agttctgaat cctttgagct gtgtcaggct 60

cggcacttgt gggatggtga aggagtgatc gatcaggagt gcaggagctg cattagtttc 120

toagggtoga toaggttatt otgaaaaagg otgogtotgt gagcagtttg caaaa atg  $\,$  178  $\,$  Met  $\,$ 

1

god oto gtt acc gac ttt otg aac ttt otg ggc acg aca tgg agc aag 226
Ala Leu Val Thr Asp Phe Leu Asn Phe Leu Gly Thr Thr Trp Ser Lys
5 10 15

tac age gtg tac ace cat age tat gct gga aac tat ggg cct act ttg

Tyr Ser Val Tyr Thr His Ser ryr Ala Gly Asn Tyr Gly Pro Thr Leu

20 25 30

aag cac gcc aaa aag gtt tet gct caa ggt aaa act gcg gga cag aca 322 Lys His Ala Lys Lys Val Ser Ala Gln Gly Lys Thr Ala Gly Gln Thr

ctg aga cag aga tcg gtg cag gac aaa aag cca ggc act tao tot otg 37.
Leu Arg Gln Arg Ser Val Gln Asp Lys Lys Pro Gly Thr Tyr Ser Leu
50 65 66

gcc gat gtt gct tct cac gac agg cct gga gac tgc tgg atg atc gtc 418
Ala Asp Val Ala Ser His Asp Arg Pro Gly Asp Cys Trp Met Ile Val

aaa gag aag gtg tat gat att agc cgt ttt gcg gac gac cac cct gga 466 Lys Clu Lys Val Tyr Asp Ile Ser Arg Phe Ala Asp Asp His Pro Gly

95

gg	acg	gta	att	agc	acc	tac	ttt	ggg	cgg	gat	ggc	aca	gac	gtt	ttc	514	
ly	Thr	Val	Ile	Ser	Thr	Tyr	Phe	Gly	Arg	Asp	Gly	Thr	Asp	Val	Phe		
		100					105					110					
			oat													562	
la	Thr	Phe	His	Pro	Pro	Ala	Ala	$\mathtt{Trp}$	Lys	Gln	Leu	Asn	Asp	Tyr	Tyr		
	115					120					125						
			ctt													610	
le	Gly	Asp	Leu	Ala	Arg	Glu	G1u	Pro	Leu		G1u	Lcu	Leu	Lys			
130					135					140					145		
																658	
ac	aga	gat	atg	aga	gcc	gag	ttt	gtt	aga	gaa	999	ctt	ttc	aag	agt	000	
yr	Arg	Asp	Met		Ala	Glu	Phe	Val		GLu	GIY	Leu	Pne		Set		
				150					155					160			
																706	
			tgg													, 00	
Ser	Lys	Ala	Trp	Phe	Leu	Leu	GIn		Leu	116	Maii	ALG	175	Dou	1110		
			165					170					175				
			att						~~~	997	art	tac	+aa	act	att	754	
			Ile														
ara.	Ата		TIE	ATA	THE	TIE	185	-1-	мор	-10		190					
		180					105										
				244	++ ~	a+~	aat	ata	ttc	ata	caa	caq	tat	qqa	tgg	802	
			Ala														
var	195	per	мта	per	рец	200	017	200			205		•				
	155																
7++	aac	cat	σat.	ttc	ctt	cat	caa	cag	gto	LLL	gag	aac	cgt	acc	gog	850	
			Asp														
210	113.00				215					220					225		
aac	tec	ttc	ttt	aac	tat	tta	ttc	qqc	aat	tgc	gtg	ctt	ggc	ttt	agt	898	
			Phe														
				230	•				235					240			
ata	tca	taa	tga	agq	acq	aag	cac	aac	att	cat	cat	act	gct	ccg	aat	946	
Val	Ser	Tro	Trp	Arg	Thr	Lys	His	Asn	Ile	His	His	Thr	Ala	Pro	Asn		
			245	-		-		250					255				

gag	tgc	gac	gaa	cag	tac	aca	cct	cta	gac	gaa	gac	att	gat	act	ctc	994
Glu	Cys	Asp	Glu	Gln	Tyr	Thr	Pro	Leu	Asp	Glu	Asp	Ile	Asp	Thr	Leu	
	_	260					265					270				
aaa	atc	att	acc	tgg	age	aag	gaa	att	ttg	gcc	acc	gtt	gag	agc	aag	1042
				Trp												
	275	220				280					285					
	2,5															
200	2++	++-	cas	gtg	ctt	caa	tat	cad	cac	tac	atq	att	ctg	cct	cta	1090
				Val												
290	TTE	Leu	AI 9	vul	295	02	-1-			300					305	
290					295											
				cgg	+		+	act	+++	aaa	agt	tta	ctc	ttc	aca	1138
				Arg												
Leu	Phe	Met	Ala		Tyr	ser	TIP	THE	315	GLY	361	Dou	Lou	320		
				310					313					520		
														~~~	202	1186
				ttg												1100
Phe	Asn	Pro	_	Leu	Ser	Thr	Thr		GLY	Leu	IIe	GLu		GIY	1111	
			325					330					335			
																1024
				tac												1234
Val	Ala	Phe	His	Tyr	Ala	Trp	Phe	ser	Trp	Ala	Ala		His	Ile	Leu	
		340					345					350				
ccg	ggt	gtc	gct	aag	cct	ctt	gcg	tgg	atg	gta	gca	act	gag	ctt	gtg	1282
Pro	Gly	Val	Ala	Lys	Pro	Leu	Ala	Trp	Met	Val	Ala	Thr	Glu	Leu	Val	
	355					360					365					
gcc	ggt	ttg	ttg	ttg	gga	ttc	gtg	LLL	acg	ttg	agt	cac	aat	gga	aag	1330
				Leu												
370					375					380					385	
~~~	a++	+==		gaa	tca	aag	gag	ttc	ata	aga	qcc	cag	gtt	att	acc	1378
gag	yet.	Three	Acr	Glu	Ser	T.ve	Asn	Phe	Val	Ara	Ala	Gln	Val	Ile	Thr	
GIU	val	IYI	nan	390	DGI	, .	шь		395	5				400		
				390					555							
							±	++-	996	~a+	+ a a	ttc	act	aan	gga	1426
Thr	Arg	Asn		Lys	Arg	GLY	rrp		ASII	Asp	тър	FILE	415	CLY		
			405					410					413			

ctc gac acc cag att gag cat cac ctg ttt cca aca atg ccc agg cac 147	4
Leu Asp Thr Gln Ile Glu His His Leu Phe Pro Thr Met Pro Arg His	
420 425 430	
aac tac eee aag ate gea eet eag gte gag get ett tge aag aag cac 152	2
Asn Tyr Pro Lys Ile Ala Pro Gln Val Glu Ala Leu Cys Lys Lys His	
435 440 445	
ggc ctc gag tac gat aat gtc tcc gtc gtt ggt gcc tct gtc gcg gtt 157	0
Gly Leu Glu Tyr Asp Asn Val Ser Val Val Gly Ala Ser Val Ala Val	
450 455 460 465	
gtg aag gog ctc aag gaa att gct gat gaa gcg tca att cgg ctt cac 161	.8
Val Lys Ala Leu Lys Glu Ile Ala Asp Glu Ala Ser Ile Arg Leu His	
470 475 480	
got cac taa gaaatogtog aactttgact attestitt ttegeetgge 166	7
Ala His	
tacctcaaat gttcgggagc aggtgcttgg cagtgtgttc aaccggagcg cactgaaaat 172	27
gtgcagaatc catttccaga aattaccatt cctagctaaa tcllcltttt accaggtogg 178	37
-	
atatatgaaa cttttttgat gcaacaagta gcattcaatt gaagacattg ttcgagatat 184	17
aattogoagt gtttotatto agogggoata ogtactagto catatoggog gttgcogaga 190	7
aaccogoage goodooaaa ag-ggg-a	
gtttacatta ttagttggca caacgagtag atctagtgta aatttctatt tccgcatgta 196	7 .
goodaaca caagaaggaayayaay	
atattactct gaatatatac cgttatctat tttcctaaaa aaaaaaaaaa	27
acattactor yautatabas ogosestini 1900-1911	
aaaaaaaaaa aaa 204	10

<210> 8

<211> 483

<212> PRT

<213> Ceratodon purpureus

						•		:	19						
<400															
Met	Ala	Leu	Val	Thr	Asp	Phe	Leu	Asn	Phe	Leu	Gly	Thr	Thr	Trp	Ser
1				5					10					15	
Lys	Tyr	Ser	Val	Tyr	Thr	His	ser	Tyr	Ala	Gly	Asn	Tyr	Gly	Pro	Thr
	-		20					25					30		
Leu	Lys	His	Ala	Lys	Lys	Val	ser	Ala	Gln	Gly	Lys	Thr	Ala	Gly	Gln
		35					40					45			
Thr	Leu	Arg	Gln	Arg	ser	Val	Gln	Asp	Lys	Lys	Pro	Gl.y	Thr	Tyr	Ser
	50					55					60				
Leu	Ala	Asp	Val	Ala	Ser	His	Asp	Arg	Pro	Gly	Asp	Cys	Trp	Met	Ile
65					70					75					80
Val	Lys	Glu	Lys	Val	Tyr	Asp	Ile	Ser	Arg	Phe	Ala	Asp	Asp		Pro
				85					90					95	
Gly	Gly	Thr	Val	Ile	Ser	Thr	Tyr	Phe	Gly	Arg	Asp	Gly		Asp	Val
			100					105					110		
Phe	Ala	Thr	Phe	His	Pro	Pro	Ala	Ala	Trp	Lys	Gln		Asn	Asp	Tyr
		115					120					125			
Tyr	Ile	Gly	Asp	Leu	Ala	Arg	Glu	Glu	Pro	Leu	Asp	Glu	Leu	Leu	Lys
	130					135					140				
Asp	Tyr	Arg	Asp	Met	Arg	Ala	Glu	Phe	Val	Arg	Glu	Gly	Leu	Phe	
145					150					155					160
Ser	Ser	Lys	Ala	Trp	Phe	Leu	Leu	Gln	Thr	Leu	Ile	Asn	Ala		Leu
				165					170					175	

Phe Ala Ala Ser Ile Ala Thr Ile Cys Tyr Asp Lys Ser Tyr Trp Ala 180 185 190

Ile Val Leu Ser Ala Ser Leu Met Gly Leu Phe Val Gln Gln Cys Gly  $195 \hspace{1.5cm} 200 \hspace{1.5cm} 205$ 

								:	20							
Trp	Leu 210	Ala	His	Asp	Phe	Leu 215	His			Val	Phe 220	Glu	Asn	Arg	Thr	
	Asn	Ser	Phe	Phe		Tyr	Leu	Phe	Gly	Asn 235	сув	val	Leu	Gly	Phe 240	
225					230											
Ser	Val	ser	Trp	Trp 245	Arg	Thr	Lys	His	Asn 250	Ile	His	His	Thr	Ala 255	Pro	
Asn	Glu	Сув	Asp 260	Glu	Gln	Tyr	Thr	Pro 265	Leu	Asp	Glu	Авр	11e 270	Asp	Thr	
Leu	Pro	Ile 275	Ile	Ala	Trp	Ser	Lys 280	Glu	Ile	Leu	Ala	Thr 285	Val	Glu	Ser	
Lys	Arg 290	Ile	Leu	Arg	Val	Leu 295	Gln	Tyr	Gln	His	Tyr 300	Met	Ile	Leu	Pro	
Leu 305	Leu	Phe	Met	Ala	Arg 310	Tyr	Ser	Trp	Thr	Phe 315		Ser	Leu	Leu	Phe 320	
Thr	Phe	Asn	Pro	Asp 325	Leu	Ser	Thr	Thr	Lys 330	Gly	Leu	Ile	Glu	Lys 335	Gly	
Thr	Val	Λla	Phe 340	His	Tyr	Ala	тгр	Phe 345	Ser	Trp	Ala	Ala	Phe 350	His	Ile	
Leu	Pro	Gly 355	Val	Ala	Lys	Pro	Leu 360	Ala	Trp	Met	Val	Ala 365	Thr	Glu	Leu	
Val	Ala 370		Leu	Leu	Leu	Gly 375	Phe	Val	Phe	Thr	Leu 380	Ser	His	Asn	Gly	
Lys 385	Glu	Va1	Tyr	Asn	Glu 390	Ser	Lys	Asp	Phe	Val 395	Arg	Ala	Gln	Val	Ile 400	
_,				m'r	7	n ra	Clu	Trn	Dhe	Asn	Asp	Trp	Phe	Thr	Glv	

Thr Thr Arg Asn Thr Lys Arg Gly Trp Phe Asn Asp Trp Phe Thr Gly
405 410 415

Gly Leu Asp Thr Gln Ile Glu His His Leu Phe Pro Thr Met Pro Arg

**21** 420 425 430

His Asn Tyr Pro Lys Ile Ala Pro Gln Val Glu Ala Leu Cys Lys Lys 435 440 445

Hic Cly Leu Glu Tyr Asp Asn Val Ser Val Val Gly Ala Ser Val Ala 450 455 460

Val Lys Ala Leu Lys Glu Ile Ala Asp Glu Ala Ser Ile Arg Leu 465 470 475 480

His Ala His

<210> 9

<211> 1467

<212> DNA

<213> Ceratodon purpureus

50

<220>

<221> CDS

<222> (10)..(1461)

<223> \( \Delta 6-desaturase \)

<400> 9

ggatccaaa atg gcc ctc gtt acc gac ttt ctg aac ttt ctg ggc acg aca 51

Met Ala Leu Val Thr Asp Phe Leu Asn Phe Leu Gly Thr Thr

1 5 10

tgg agc aag tac agc gtg tac acc cat agc tat gct gga aac tat ggg . Strp Ser Lys Tyr Ser Val Tyr Thr His Ser Tyr Ala Gly Asn Tyr Gly 15 20 25 30

gga cag aca ctg aga cag aga tcg gtg cag gac aaa aag cca ggc act 195 Gly Gln Thr Leu Arg Gln Arg Ser Val Gln Asp Lys Lys Pro Gly Thr

tac	tct	ctg	gcc	gat	gtt	gct	tct	cac	gac	agg	cct	gga	gac	tgc	tgg	243
Tyr	Ser	Leu	Ala	Asp	Val	Ala	Ser	His	Asp	Arg	Pro	Gly	Asp	Cys	Trp	
		65					70					75				
atg	atc	gta	aaa	gag	aag	gtg	tat	gat.	att.	agc	cgt	ttt	gcg	gac	gac	291
Met	Ile	Val	Lys	Glu	Lys	۷al	Tyr	Asp	Ile	Ser	Arg	Phe	Ala	Asp	Asp	
	80					85					90					
cac	cct	gga	ggg	acg	gta	att	agc	acc	tac	ttt	ggg	cgg	gat	ggc	aca	339
His	Pro	Gly	Gly	Thr	Val	Ile	ser	Thr	Tyr	Phe	Gly	Arg	Asp	Gly	Thr	
95					100					105					110	
											tgg					387
Asp	Val	Phe	Ala	Thr	Phe	His	Pro	Pro	Ala	Ala	Trp	Lys	Gln	Leu	Asn	
				115					120					125		
											ccc					435
Asp	Tyr	Tyr	Ile	Gly	Asp	Leu	Ala	Arg	Glu	Glu	Pro	Leu	Asp	Glu	Leu	
			130					135					140			
											gtt					483
Leu	Lys	Asp	Tyr	Arg	Asp	Met	Arg	Ala	Glu	Phe	Val	Arg	Glu	Gly	Leu	
		145					150					155				
											act					531
Phe	Lys	Ser	Ser	Lys	Ala	Trp	Phe	Leu	Leu	Gln	Thr	Leu	Ile	Asn	Ala	
	160					165					170					
											Lac					579
Ala	Leu	Phe	Ala	Ala	Ser	Ile	Ala	Thr	Ile	Cys	Tyr	Asp	Lys	Ser	Tyr	
175					180					185					190	
tgg	gct	att	gtg	ctg	tca	gcc	agt	ttg	atg	ggt	ctc	ttc	gtc	caa	cag	627
											Leu					
				195					200					205		
tgt	gga	tgg	ctt	gcc	cat	gat	ttc	ctt	cat	caa	cag	gtc	ttt	gag	aac	675
Cys	Gly	Trp	Leu	Ala	His	Asp	Phe	Leu	His	Gln	Gln	Val	Phe	Glu	Asn	
			210					215					220			

eqt	acc	geg	aac	tcc	ttc	ttt	ggc	tat	ttg	ttc	ggc	aat	tgc	gtg	ctt	723
arg	Thr	Ala	Asn	Ser	Phe	Phe	Gly	Tyr	Leu	Phe	Gly	Asn	Cys	Val	Leu	
-		225					230					235				
age	ttt	aqt	gta	tca	t.gg	tgg	agg	acg	aag	cac	aac	att	cat	cat	act	771
														His		
	240					245					250					
act.	aaa	aat	σaσ	tac	qac	qaa	cag	tac	aca	cct	cta	gac	gaa	gac	att	819
														Asp		
255				-4-	260					265					270	
tat.	act	ctc	ccc	atc	att	qcc	taa	agc	aag	gaa	att	ttg	gcc	acc	gtt	867
														Thr		
rsb	****	шец		275					280					285		
				2,0												
~			979	o++	++-	спа	ata	ct.t.	caa	tat	caq	cac	tac	atg	att	915
														Met		
3LU	Ser	гур	290	116	шеи	**** 9		295		-4-			300			
			250													
			++~	++~	2+4	777	caa	tac	agt.	t.aa	act	ttt	gga	agt	ttq	963
														Ser		
Leu	PIO	305	neu	rne	1100	23.2.4	310	-,-				315	-			
		303					320									
							44.0	200	900	200	nee	aga	t.t.a	ata	gag	1011
														Ile		
Leu		Thr	Pne	Asn	PIO		теп	ser	1111	1111	330	011	200	-20		
	320					325					330					
													-at		++0	1059
														gag		200.
Lys	Gly	Thr	Val	Ala		His	Tyr	Ala	Trp		ser	Trp	ALd	Ala	350	
335					340					345					330	
																1107
														gca		1107
His	Ile	Leu	Pro	Gly	Val	Ala	Lys	Pro		Ala	Trp	Met	Val	Ala	Thr	
				355					360					365		
														agt		1155
Glu	Leu	Val	Ala	Gly	Leu	Leu	Leu	Gly	Phe	Val	Phe	Thr		Ser	His	
			370					375					380			

		aag														1203
Asn	Gly	Lys	Glu	Val	Tyr	Asn	Glu	Ser	Lys	Asp	Phe	Val	Arg	Ala	Gln	
		385					390					395				
gtt	att	acc	acc	ogt.	aac	agg	aag	cga	gga	tgg	ttc	aac	gat	tgg	ttc	1251
Val	Ile	Thr	Thr	Arg	Asn	Thr	Lys	Arg	Gly	Trp	Phe	Asn	Asp	${\tt Trp}$	Phe	
	400					405					410					
act	ggg	gga	ctc	gac	acc	cag	att	gag	cat	cac	ctg	ttt	cca	aca	atg	1299
Thr	Gly	Gly	Leu	Asp	Thr	Gln	Ile	Glu	His	His	Leu	Phe	Pro	Thr	Met	
415					420					425					430	
ccc	agg	cac	aac	tac	ccc	aag	atc	gca	cct	cag	gtc	gag	gct	ctt	tgc	1347
Pro	Arg	His	Asn	Tyr	Pro	Lys	Ile	Ala	Pro	Gln	Val	Glu	Ala	Leu	Сув	
				435					440					445		
aag	aag	cac	ggc	ctc	gag	tao	gat	aat	gtc	tee	gtc	gtt	ggt.	gcc	tct	1395
Lys	Lys	His	Gly	Leu	Glu	Tyr	Asp	Asn	Val	Ser	Val	Val	Gly	Ala	Ser	
			450					455					460			
gtc	gcg	gtt	gtg	aag	gcg	ctc	aag	gaa	att	gct	gat	gaa	gcg	tca	att	1443
Val	Ala	Val	Val	Lys	Ala	Leu	Lys	Glu	Ile	Ala	Asp	Glu	Ala	Ser	Ile	
		465					470					475				
cgg	ctt	cac	gct	cac	taa	gtc	gac									1467
Arg	Leu	His	Ala	His												
	480															
<21	0> 1	0														
<21	1> 4	83														
<21	2> P	RT														
<21	3> C	erat	odon	pur	pure	us										
<40	0> 1	0														
Met	Ala	Leu	Val	Thr	Asp	Phe	Leu	Asn	Phe	Leu	Gly	Thr	Thr	Trp	Ser	
1				5					10					15		
Lys	Tyr	Ser	Val	Tyr	Thr	His	Ser	Tyr	Ala	Gly	Asn	Tyr	Gly	Pro	Thr	

								:	25						
			20					25					30		
Leu	Lys	His 35	Ala	Lys	Lys	Val	Ser 40	Ala	Gln	Gly	Lys	Thr 45	Ala	Gly	Gln
Fhr	Leu 50	Arg	Gln	Arg	Ser	Val. 55	Gln	Asp	Lys	Lys	Pro 60	Gly	Thr	Tyr	Ser
Leu 65	Ala	Asp	Val	Ala	Ser 70	His	Asp	Arg	Pro	Gly 75	Asp	Сув	Trp	Met	Ile 80
Val	Lys	Glu	Lys	Val 85	Tyr	Asp	Ile	Ser	Arg 90	Phe	Ala	Asp	Asp	His 95	Pro
Gly	Gly		Val 100	Ile	ser	Thr	Tyr	Phe 105	Gly	Arg	Asp	Gly	Thr 110	Asp	Val
Pho	Ala	Thr 115	Phe	His	Pro	Pro	Ala 120	Ala	Trp	T ₁ ys	Gln	Leu 125	Asn	Asp	Tyr
Tyr	Ile 130	Gly	Asp	Leu	Ala	Arg 135	Glu	Glu	Pro	Leu	Asp 140	Glu	Leu	Leu	Lys
Asp 145	Tyr	Arg	Asp	Met	Arg 150	Ala	Glu	Phe	Val	Arg 155	Glu	Gly	Leu	Phe	Lys 160
Ser	Ser	Lys	Ala	Trp 165	Phe	Leu	Leu	Gln	Thr 170	Leu	Ile	Asn	Ala	Ala 175	Leu
Phe	Ala	Ala	ser 180	Ile	Ala	Thr	Ile	Cys 185	Tyr	Asp	Lys	Ser	туr 190	Trp	Ala
Ile	Val	Leu 195	Ser	Ala	Ser	Leu	Met 200	Gly	Leu	Phe	Val	G1n 205	Gln	Cys	Gly
Prp	Leu 210	Ala	His	Asp	Phe	Leu 215	His	Gln	Gln	Val	Phe 220	Glu	Asn	Arg	Thr

Ala Asn Ser Phe Phe Gly Tyr Leu Phe Gly Asn Cys Val Leu Gly Phe

Ser	Val	Ser	Trp	Trp 245	Arg	Thr	Lys	His	Asn 250	Ile	His	His	Thr	Ala 255	Pro
Asn	G1u	Cys	Asp 260	Glu	Gln	Tyr	Thr	Pro 265	Leu	Asp	Glu	Asp	11e 270	Asp	Thr
Leu	Pro	11e 275	Ile	Ala	Trp	Ser	Lys 280	Glu	Ile	Leu	Ala	Thr 285	Val	Glu	Ser
Lys	Arg 290	Ile	Leu	Arg	Val	Leu 295	Gln	Tyr	Gln	His	туr 300	Met	Ile	Leu	Pro
Leu 305	Leu	Phe	Met	Ala	Arg 310	Tyr	Ser	Trp	Thr	Phe 315	Gly	Ser	Leu	Leu	Phe 320
Thr	Phe	Asn	Pro	Asp 325	Leu	Ser	Thr	Thr	Lys 330	Gly	Leu	Ile	Glu	Lys 335	Gly
Thr	Val	Ala	Phe 340	His	Tyr	Ala	Trp	Phe 345	Ser	Trp	Ala	Ala	Phe 350	His	Ile
Leu	Pro	Gly 355	Val	Ala	гйв	Pro	Leu 360	Ala	тгр	Met	Val	Ala 365	Thr	Glu	Leu
Va1	Ala 370	G1y	Leu	Leu	Leu	Gly 375	Phe	Val	Phe	Thr	Leu 380	Ser	His	Asn	Gly
Lys 385	Glu	Val	Tyr	Asn	Glu 390	Ser	Lys	Asp	Phe	Val 395	Arg	Ala	Gln	Val	Ile 400
Thr	Thr	Arg	Asn	Thr 405	Lys	Arg	Gly	Trp	Phe 410	Asn	Asp	Trp	Phe	Thr 415	Gly
G1y	Leu	Asp	Thr 420	Gln	Ile	Glu	His	His 425	Leu	Phe	Pro	Thr	Met 430	Pro	Arg
His	Asn	Tyr 435	Pro	Lys	Ile	Ala	Pro	Gln	Val	Glu	Ala	Leu 445	Cys	Lys	Lys

His Gly Leu Glu Tyr Asp Asn Val Ser Val Val Gly Ala Ser Val Ala 450 455 460

Val Val Lys Ala Leu Lys Glu Ile Ala Asp Glu Ala Ser Ile Arg Leu 465 470 475 480

His Ala His

<210> 11

<211> 2160

<212> DNA

<213> Ceratodon purpureus

<220>

<221> CDS

<222> (159)..(1721)

<223> \(\Delta 6-\text{desaturase}\)

25

40

<400> 11

cggaggtete ttgtcgttet tggagtetgt gtcgagettg gaatgeggta ggegggeeg 60

tttogtggtt ttggcgttgg cattgcgcga gggcggacag tgggagtgcg gyaggtctgt 120

Llgtgcatga cgaggtggtt gtaatottog coggcaga atg gtg too cag ggo ggc 176 Met Val Ser Gln Gly Gly

ggt ctc tcg cag ggt tcc att gaa gaa aac att gac gtt gag cac ttg 224 Gly Leu Ser Gln Gly Ser Ile Glu Glu Asn Ile Asp Val Glu His Leu

10 15 20

goa acg atg ccc ctc gtc agt gac ttc cta aat gtc ctg gga acg act 272 Ala Thr Met Pro Leu Val Ser Asp Phe Leu Asn Val Leu Gly Thr Thr

30

ttg ggc cag tgg agt ctt tcc act aca ttc gct ttc aag agg ctc acg 320 Leu Gly Gln Trp Ser Leu Ser Thr Thr Phe Ala Phe Lys Arg Leu Thr

50

														gaa		368
Chr	Lys	Lys	His	Ser	Ser	Asp	Ile	Ser	Val	Glu	Ala	Gln	Lys	Glu		
55					60					65					70	
gtt	geg	cgg	ggg	cca	gtt	gag	aat	att	tct	caa	tcg	gtt	gcg	cag	ccc	416
7al	Ala	Arg	Gly	Pro	Val	$_{\rm GLu}$	Asn	Ile	Ser	${\tt Gln}$	Ser	Val	Ala	Gln	Pro	
				75					80					85		
atc	agg	cgg	agg	tgg	gtg	cag	gat	aaa	aag	ccg	gtt	act	tac	agc	ctg	464
														Ser		
			90					95					100			
аас	gat	gta	gat	tog	cac	gat	atg	ccc	cag	gac	tgo	tgg	att	ata	atc	512
														Ile		
•	-	105					110					115				
aaa	gag	aaq	ata	tat	gat	gtg	agc	acc	ttc	gct	gag	cag	cac	cct	gga	560
														Pro		
•	120	-		_		125					130					
aac	acq	att	atc	aac	acc	tac	ttc	gga	cga	gac	gcc	aca	gat	gtt	ttc	608
														Val		
135					140	-				145					150	
tat	act	ttc	cac	aca	tee	acc	tca	tgg	aag	att	ctt	cag	aat	ttc	tac	656
														Phe		
-	22	2		155					160					165		
at c	aaa	aac	ct t	a++	agg	gag	gag	aaa	act	ttg	gag	ctg	ctg	aag	gag	704
71e	999 G1v	Aen	Len	Val	Arg	Glu	Glu	Pro	Thr	Leu	Glu	Leu	Leu	Lys	Glu	
116	017		170		5			175					180			
			++~	200	aac	at t	++0	+t.a	aga	gaa	cad	ctt	ttc	aag	agt	752
														Lys		
туг	Arg		Leu	Arg	MLG	Lieu	190	Lou	**** 9			195		-		
		185					230									
									ata	a+ a	a a +	m++	tee	att	gtt	800
															Val	
Ser		Ser	Tyr	Tyr	Leu		тÃв	Int	Leu	116	210	• 441	501			
	200					205					210					

gcc	aca	acc	att	qcq	ata	atc	agt	ctg	tac	aag	tct	tac	cgg	gcg	gtt	848
Ala																
215					220					225					230	
213																
				n est	++ ~	ata	aac	++0	+++	att	caa	caq	tac	gga	tag	896
														Gly		
Leu	Leu	ser	VIS		Leu	mer	GIY	Lietu	240	110	0.2.11	02	0,5	245		
				235					240							
											~~~	208	000	tgg	ctc	944
Leu	Ser	His		Phe	Leu	His	His		vaı	Pne	GIU	THE	260	Trp	Deu	
			250					255					200			
																992
														ttc		334
Asn	Asp	Val	Val	Gly	Tyr	Val		Gly	Asn	Val	Val		GIY	Phe	ser	
		265					270					275				
gtc	tcg	tgg	tgg	aag	acc	aag	cac	aac	ctg	cat	cat	gct	gct	ccg	aat	1040
Val	Ser	Trp	Trp	Lys	Thr	Lys	His	Asn	Leu	His	His	Ala	Ala	Pro	Asn	
	280					285					290					
														act		1088
Glu	Cys	Asp	Gln	Lys	Tyr	Thr	Pro	Ile	Asp	Glu	Asp	Ile	Asp	Thr	Leu	
295	_	_			300					305					310	
aaa	ato	att	act	taa	agt	aaa	gat	ctc	ttg	gcc	act	qtt	gag	agc	aag	1136
														Ser		
				315		_	-		320					325		
				520												
	2+4	++ ~	000	at t	ctt	car	tac	caσ	cac	cta	ttc	ttt	ttg	gtt	ctt	1184
														Val		
THE	Met	Leu		Val	Dea	0111	-1-	335					340			
			330					333								
												~~~	~~~	++0	a crt	1232
														ttc		1200
Leu	Thr		Ala	Arg	Ala	Ser		Leu	Phe	Trp	ser		ALA	Phe	THE	
		345					350					355				
														gga		1280
Leu	Arg	Pro	Glu	Leu	Thr	Leu	Gly	Glu	Lys	Leu	Leu	Glu	Arg	Gly	Thr	
	360					365					370					

а	itg	gct	ttg	cac	tac	att	tgg	ttt	aat	agt	gtt	gcg	ttt	tat	ctg	ctc	1328
М	let	Ala	Leu	His	Tyr	Ile	Trp	Phe	Asn	Ser	Val	Ala	Phe	Tyr	Leu	Leu	
3	75					380					385					390	
c	acc	aga	taa	aaa	cca	gtt	gta	tgg	atg	gtg	gtc	agc	gag	ctc	atg	tct	1376
							Val										
		2		•	395					400					405		
,	ta+	tto	ot a	cta	gga	tac	gta	ttt	qta	ctc	agt	cac	aat	gga	atg	gag	1424
							Val										
	, L. J		204	410	0-1	-1-			415					420			
	.+.~	+ = 0	+	200	+ca	лав	qac	ttc	at.a	aat	acc	caq	att	gca	teg	act	1472
							Asp										
•	aı	TYL	425	1111	561	D, U		430					435				
			423					100									
						aaa	gtg	+++	aat	gat	t.aa	ttc	acc	gga	aat	ctc	1520
							Val										
*	ar g	_	116	цуз	ALG	GLY	445		210			450		-	-		
		440					443										
						ant	cat	at p	+++	cca	acc	atα	acc	agg	cac	aac	1568
							His										
		Arg	GIn	IIe	GIU	460	HIS	Leu	Pite	PIO	465	Hec	110	**** 9	,,,,,	470	
4	455					460					403						
												+ ~~	224	227	cat	ana	1616
							cac										2020
1	Leu	Asn	Lys	Ile		Pro	His	var	GIU		neu	cys	Dyb	шуз	485	0+1	
					475					480					403		
																4+~	1664
							agc										1004
3	Leu	Val	Tyr	Glu	Asp	Val	ser	Met		ser	Gly	Thr	Tyr		Val	Leu	
				490					495					500			
																gct	1/12
1	Lys	Thr	Leu	Lys	Asp	Val	Ala	Asp	Ala	Ala	Ser	His		Gln	Leu	Ala	
			505					510					515				
9	gcg	agt	tga	ggc	atcg	cag (	cact	egte	ga a	acat	tttt	g to	tgtt	atag			1761
1	Ala	Ser															
		520															

tgttcatatg tgatcgaggg gaaaaggtcc catgctctga tctattcttc tgtagccaat 1821
atttttcaat tgaaaggagg ttcctcactt atcttccatc tatcgttgca catcctgcat 1881
cagagttagc gttggagtaa tgttaagcac ttgtagatta tgcccaccat tgccacattt 1941
ctgttcggtt acaatcgttt gattccatgc tatcctccgt gttcatctcg ttgttataag 2001
caagcttgaa aaaacatgct acgagattgg cagacgttgt cttggcagct gtagaggttg 2061
gttccattca ttgtgtagta cagaactctc tcgtccctgt ttctctacat tacttgttac 2121
atagtgactt tcattcacag caaaaaaaaa aaaaaaaaa

<210> 12

<211> 520

<212> PRT

<213> Ceratodon purpureus

<400> 12

Met Val Ser Gln Gly Gly Gly Leu Ser Gln Gly Ser Ile Glu Glu Asn 1 5 10 15

Ile Asp Val Glu His Leu Ala Thr Met Pro Leu Val Ser Asp Phe Leu 20 25 30

As Nval Leu Gly Thr Thr Leu Gly Gln Trp Ser Leu Ser Thr Thr Phe \$35\$

Ala Phe Lys Arg Leu Thr Thr Lys Lys His Ser Ser Asp Ile Ser Val\$50\$

Glu Ala Gln Lys Glu Ser Val Ala Arg Gly Pro Val Glu Asn Ile Ser 65 70 75 80

Gln Ser Val Ala Gln Pro Ile Arg Arg Arg Trp Val Gln Asp Lys Lys 85 90 95

Pro Val Thr Tyr Ser Leu Lys Asp Val Ala Ser His Asp Met Pro Gln

								3	12						
			100					105					110		
ge	Cys	Trp 115	Ile	Ile	Ile	Lys	Glu 120	Lys	Val	Tyr	Asp	Val 125	Ser	Thr	Phe
la	Glu 130	Gln	His	Pro	Gly	Gly 135	Thr	Val.	Tle	Asn	Thr 140	Tyr	Phe	Gly	Arg
sp L45	Ala	Thr	Asp	Val	Phe 150	Ser	Thr	Phe	His	Ala 155	Ser	Thr	Ser	Trp	Lys 160
le	Leu	Gln	Asn	Phe 165	Tyr	Ile	Gly	Asn	Leu 170	Val	Arg	Glu	Glu	Pro 175	Thr
Leu	Glu	Leu	Leu 180	Lys	Glu	Tyr	Arg	Glu 185	Leu	Arg	Ala	Leu	Phe 190	Leu	Arg
51u	Gln	Leu 195	Phe	Lys	Ser	Ser	Lys 200	Ser	Tyr	Tyr	Lev	Phe 205	Lys	Thr	Leu
Ile	Asn 210	Val	Ser	Ile	Val	Ala 215	Thr	Ser	Ile	Ala	11e 220	Ile	Ser	Leu	Tyr
Lys 225	Ser	Tyr	Arg	Ala	Val 230	Leu	Leu	Ser	Ala	Ser 235	Leu	Met	Gly	Leu	Phe 240
Ile	Gln	Gln	Cys	Gly 245	Trp	Leu	Ser	His	Asp 250	Phe	Leu	His	His	Gln 255	Val
Phe	Glu	Thr	Arg 260	Trp	Leu	Asn	Asp	Va1 265	val.	Gly	Tyr	Val	Val 270	Gly	Asn
Val	Val	Leu 275	Gly	Phe	Ser	Val	Ser 280		Trp	Lys	Thr	Lys 285	His	Asn	Leu
His	His 290	Ala	Ala	Pro	Asn	Glu 295	Cys	Asp	Gln	Lys	Туг 300	Thr	Pro	Ile	Asp
G1u 305	Asp	Ile	Asp	Thr	Leu 310		Ile	Ile	Ala	Trp 315	Ser	Lys	Asp	Leu	Leu 320

Ala	Thr	Val	Glu	Ser	Lys	Thr	Met	Leu	Arg 330	Val	Leu	Gln	Tyr	Gln 335	His
							8				••-	a	Maran.	T	Dhe
Leu	Phe	Phe	Leu 340	Val	Leu	Leu	Thr	Phe 345	Ala	Arg	Ala	ser	Trp 350	Leu	Pne
			340												
rp	Ser	Ala	Ala	Phe	Thr	Leu		Pro	Glu	Leu	Thr		Gly	Glu	Lys
		355					360					365			
Leu	Leu	Glu	Arg	Gly	Thr	Met	Ala	Leu	His	туг	ïle	Trp	Phe	Aen	Ser
	370					375					380				
7a1	Δla	Phe	Tvr	Leu	Leu	Pro	Glv	Trp	Lys	Pro	Val	Val	Trp	Met	Va:
385					390		_	_		395					400
_		- "				G1	Dho	T	T 017	G1v	Tur	Val	Phe	Val	T.e.
Val	Ser	Giu	Leu	405	ser	GIĀ	Pne	Бец	410	GLY	-,-	141		415	
Ser	His	Asn	Gly 420	Met	Glu	Val	Tyr	Asn 425	Thr	Ser	Lys	Asp	Phe 430		Ası
			420					723							
Ala	Gln	Ile	Ala	Ser	Thr	Arg		Ile	Lys	Ala	Gly		Phe	Asn	Asj
		435					440					445			
Trp	Phe	Thr	Gly	Gly	Leu	Asn	Arg	Gln	Ile	Glu	His	His	Leu	Phe	Pr
	450					455					460				
Thr	Met	Pro	Ara	His	Asn	Leu	Asn	Lys	Ile	Ser	Pro	His	Val	Glu	Th
465			5		470			-		475					48
								_		_		<b>0</b>		210	60
Leu	Cys	Lys	Lys	His 485	GIĀ	Leu	Val	Tyr	490	Asp	val	per	Met	495	56.
G <b>l</b> y	Thr	Tyr		Val	Leu	Lys	Thr		Lys	Asp	Val	Ala	Asp 510	Ala	A1
			500					505					5,10		

Ser His Gln Gln Leu Ala Ala Ser 515 520

<210	> 13															
<211	> 14	34														
<212	> DN	A														
<213	> Ph	aeod	lacty	/lum	tric	orn	ıtum									
<220	)>															
<221	> CE	s														
<222	!> (1	)(	(143	1)												
<223	β> Δ6	5-de:	satu	rase												
	> 13															
					gac											48
Met	Gly	Lys	Gly	Gly	Asp	Ala	Arg	Ala	Ser	Lys	Gly	Ser	Thr	Ala	Ala	
1				5					10					15		
					cag											96
Arg	Lys	Ilo	Ser	Trp	Gln	Glu	Val	ГÀв	Thr	His	Ala	Ser		Glu	Asp	
			20					25					30			
					tcc											144
Ala	Trp	Ile	Ile	His	Ser	Asn	Lys	Val	Tyr	Asp	Val		Asn	Trp	His	
		35					40					45				
					gaa											192
Glu	His	Pro	Gly	Gly	Ala	Val	Ile	Phe	Thr	His	Ala	Gly	Asp	Asp	Met	
	50					55					60					
					gcc											240
Thr	Asp	Ile	Phe	Ala	Ala	Phe	His	Ala	Pro	Gly	Ser	Gln	Ser	Leu	Met	
65					70					75					80	
aag	aag	ttc	tac	att	ggc	gaa	ttg	ctc	ccg	gaa	acc	acc	ggc	aag	gag	288
Lys	Lys	Phe	Tyr	Ile	Gly	Glu	Leu	Leu	Pro	Glu	Thr	Thx	Gly	Lys	Glu	
				85					90					95		
ccg	cag	caa	atc	gcc	ttt	gaa	aag	ggc	tac	cgc	gat	ctg	cgc	tcc	aaa	336
Pro	Gln	Gln	Ile	Ala	Phe	Glu	Lys	Gly	Tyr	Arg	Asp	Leu	Arg	Ser	Lys	
			100					105					110			

										aag						384
Leu	Ile	Met	Met	Gly	Met	Phe	Lys	Ser	Asn	Lys	Trp	Phe	Tyr	Val	Tyr	
		115					120					125				
aag	tgc	ctc	agc	aac	atg	gcc	att	tgg	gcc	gcc	gcc	tgt	gct	ctc	gtc	432
Lys	Cys	Leu	Ser	Asn	Met	Ala	Tle	Trp	Ala	Ala	Ala	Cys	Ala	Leu	Val	
	130					135					140					
ttt	tac	teg	gac	cgc	ttc	tgg	gta	cac	ctg	gcc.	agc	gcc	gtc	atg	ctg	480
										Ala						
145			-	-	150					155					160	
aaa	aca	ttc	ttt	caq	cag	tcg	gga	tgg	ttg	gca	cac	gac	ttt	ctg	cac	528
										Ala						
4				165					170					175		
cac	cag	atc	ttc	acc	aaq	cgc	aag	cac	ggg	gat	ctc	gga	gga	ctc	ttt	576
										Asp						
			180		•	-	-	185					190			
t aa	aaa	aac	ctc	ato	caq	qqt	tac	tcc	gta	cag	tgg	tgg	aaa	aac	aag	624
										Gln						
пъ	GLY	195	204			2	200				-	205				
~~~				cac	acc	ata	aga	aac	ctc	cac	tac	tcc	tcc	gca	gtc	672
										His						
пть	210	GIJ	1123	1110		215					220					
	210															
		~~+	~~~	~ o c	aca	gac	ato	gat	acc	atg	ccc	ctt	ctc	qcc	tgg	720
										Met						
	GLII	льр	GLY	Top	230	p				235					240	
225					230					200						
										at a	~~~	7 00	gac	aaa	aag	768
Ser	Val	Gln	G⊥n		GIn	ser	TYL	Arg		Leu	GIII	Ala	мор	255	Lys	
				245					250					200		
												+	400	+++	+ 0.0	816
										aac						0.10
Asp	Ser	Gly		Val	Lys	Phe	Met.		Arg	Asn	GIN	ser		rne	TAT	
			260					265					270			

																864
	ccc															804
Phe	Pro	Ile	Leu	Leu	Leu	Ala	Arg	Leu	Ser	Trp	Leu	Asn	Glu	Ser	Phe	
		275					280					285				
	tgc				a++	~~=	act	aca	+ca	nan	aac	act.	act	atc	gaa	912
T,ys	Cys	Ala	Phe	Gly	Leu		Ala	ATA	ser	GIU		мта	мта	шец	GLU	
	290					295					300					
ctc	aag	gcc	aag	ggt	ctt	cag	tac	acc	ctt	ttg	gaa	aag	gct	ggc	atc	960
	Lys															
305			-2-	2	310		-			315					320	
303					510											
												Χ.				1008
	ctg															1000
Leu	Leu	His	Tyr	Ala	Trp	Met	Leu	Thr	Val	Ser	Ser	Gly	Phe		Arg	
				325					330					335		
ttc	tcg	ttc	aca	tac	acc	qca	ttt	tac	ttt	cta	acc	gcg	acc	gcg	tcc	1056
	Ser															
5110	ser	<i>y</i> 114	340	ıyı.	,,,,,	ALU		345					350			
			340					343								
																1104
	gga															1104
Cys	Gly	Phe	Leu	Leu	Ala	Ile	Val	Phe	Gly	Leu	Gly	His	Asn	Gly	Met	
		355					360					365				
~~~	acc	+ 20	aa+	acc	gac	acc	cat	aca	gac	ttc	taa	aaq	ctc	caa	gtc	1152
	Thr															
ALG		LYL	non	ALG	nop						380	•				
	370					375					300					
	acg															1200
Thr	Thr	Thr	Arg	Asn	Val	Thr	G1y	Gly	Hic	Gly	Phe	Pro	Gln	Ala	Phe	
385					390					395					400	
	gac			+~+	aat	aaa	ctc	can	tac	caa	ata	gac	cac	cac	tta	1248
Val	Asp	Trp	Phe		Gly	GIĀ	ьеи	GIN		GIR	var	Asp	птэ		Dia G	
				405					410					415		
ttc	ccc	agc	ctg	aca	cga	cac	aat	ctg	gcc	aag	aca	cac	gca	ctg	gta	1296
	Pro															
	-10		420					425					430			
			420													

gaa tog tto tgc aag gag tgg ggt gtc cag tac cac gaa gcc gac ctt Glu Ser Phe Cys Lys Glu Trp Gly Val Gln Tyr His Glu Ala Asp Leu 440 435

gtg gac ggg acc atg gaa gtc ttg cac cat ttg ggc agc gtg gcc ggc Val Asp Gly Thr Met Glu Val Leu His His Leu Gly Ser Val Ala Gly 460 455 450

gaa ttc gtc gtg gat ttt gta cgc gat gga ccc gcc atg taa 1434 Glu Phe Val Val Asp Phe Val Arg Asp Gly Pro Ala Met 470 475

<210> 14 <211> 477 <212> PRT <213> Phaeodactylum tricornutum

465

<400> 14 Met Gly Lys Gly Gly Asp Ala Arg Ala Ser Lys Gly Ser Thr Ala Ala 15 5 10 1

Arg Lys Ile Ser Trp Gln Glu Val Lys Thr His Ala Ser Pro Glu Acp 30 . 25 20

Ala Trp Ile Ile His Ser Asn Lys Val Tyr Asp Val Ser Asn Trp His 35

Glu His Pro Gly Gly Ala Val Ile Phe Thr His Ala Gly Asp Asp Met 55 60 50

Thr Asp Ile Phe Ala Ala Phe His Ala Pro Gly Ser Gln Ser Leu Met 75 65 70

Lys Lys Phe Tyr Ile Gly Glu Leu Leu Pro Glu Thr Thr Gly Lys Glu 95 85 90

Pro Gln Gln Ile Ala Phe Glu Lys Gly Tyr Arg Asp Leu Arg Ser Lys 110 105 100

Leu Ile Met Met Gly Met Phe Lys Ser Asn Lys Trp Phe Tyr Val Tyr Lys Cys Leu Ser Asn Met Ala Ile Trp Ala Ala Ala Cys Ala Leu Val Phe Tyr Ser Asp Arg Phe Trp Val His Leu Ala Ser Ala Val Met Leu Gly Thr Phe Phe Gln Gln Ser Gly Trp Leu Ala His Asp Phe Leu His His Gln Val Phe Thr Lys Arg Lys His Gly Asp Leu Gly Gly Leu Phe Trp Gly Asn Leu Met Gln Gly Tyr Ser Val Gln Trp Trp Lys Asn Lys His Asn Gly His His Ala Val Pro Asn Leu His Cys Ser Ser Ala Val Ala Gln Asp Gly Asp Pro Asp Ile Asp Thr Met Pro Leu Ala Trp 

Ser Val Gln Gln Ala Gln Ser Tyr Arg Glu Leu Gln Ala Asp Gly Lys 

Asp Ser Gly Leu Val Lys Phe Met Ile Arg Asn Gln Ser Tyr Phe Tyr 

Phe Pro Ile Leu Leu Ala Arg Leu Ser Trp Leu Asn Glu Ser Phe 

Lys Cys Ala Phe Gly Leu Gly Ala Ala Ser Glu Asn Ala Ala Leu Glu 

Leu Lys Ala Lys Gly Leu Gln Tyr Pro Leu Leu Glu Lys Ala Gly Ile 

Leu Leu His Tyr Ala Trp Met Leu Thr Val Ser Ser Gly Phe Gly Arg

325

330

335

Phe Ser Phe Ala Tyr Thr Ala Phe Tyr Phe Leu Thr Ala Thr Ala Ser 340 345 350

Cys Gly Phe Leu Leu Ala Ile Val Phe Gly Leu Gly His Asn Gly Met  $355 \hspace{1cm} 360 \hspace{1cm} 365$ 

Ala Thr Tyr Asn Ala Asp Ala Arg Pro Asp Phe Trp Lys Leu Gln Val

Thr Thr Thr Arg Ass Val Thr Gly Gly His Gly Phe Pro Gln Ala Phe 385 390 395 400

Val Asp Trp Phe Cys Gly Gly Leu Gln Tyr Gln Val Asp His His Leu 405 410 415

Phe Pro Sor Leu Pro Arg His Asn Leu Ala Lys Thr His Ala Leu Val 420 425 430

Glu Ser Phe Cys Lys Glu Trp Gly Val Gln Tyr His Glu Ala Asp Leu 435 440 445

Val Asp Gly Thr Met Glu Val Leu His His Leu Gly Ser Val Ala Gly
450 455 460

Glu Phe Val Val Asp Phe Val Arg Asp Gly Pro Ala Met 465 470 475

<210> 15 <211> 1563

<212> DNA

<213> Ceratodon purpureus

<220>

<221> CDS

<222> (1)..(1563)

<223> \( \Delta 6-desaturase \)

								4	10							
	)> 15															
					ggc											48
Met	Val.	Ser	Gln	Gly	Gly	Gly	Leu	Ser	Gln	Gly	Ser	Ile	Glu	Glu	Asn	
1				5					10					15		
					ttg											96
Ile	Asp	Val	Glu	His	Leu	Ala	Thr	Met	Pro	Leu	٧al	Ser	Asp	Phe	Leu	
			20					25					30			
					act											144
Asn	Val	Leu	Gly	Thr	Thr	Leu	Gly	Gln	Trp	Ser	Leu		Thr	Thr	Phe	
		35					40					45				
					acg											192
Ala	Phe	Lys	Arg	Leu	Thr	Thr	Lys	Lys	His	Ser		Asp	Ile	Ser	Val	
	50					55					60					
					tog											240
Glu	Ala	Gln	Lys	Glu	Ser	Val	Ala	Arg	Gly		Val	Glu	Asn	Ile		
65					70					75					80	
					ccc											288
Gln	ser	val	Ala	Gln	Pro	Ile	Arg	Arg		Trp	Val	Gln	Λσp		Lys	
				85					90					95		
																226
					ctg											336
Pro	Val	Thr	Tyr	Ser	Leu	Lys	Asp		Ala	Ser	His	Asp		Pro	Gln	
			100					105					110			
					atc											384
Asp	Cys	$\mathtt{Trp}$	Ile	Ile	Ile	Lys	Glu	Lys	Val	Tyr	Asp		Ser	Thr	Phe	
		115					120					125				
					gga											432
Ala	Glu	Gln	His	Pro	Gly	Gly	Thr	Val	Ile	Asn		Tyr	Phe	GIY	Arg	
	130					135					140					
gac	gcc	aca	gat	gtt	ttc	tct	act	ttc	cac	gca	tcc	acc	tca	tgg	aag	480

Asp Ala Thr Asp Val Phe Ser Thr Phe His Ala Ser Thr Ser Trp Lys

150

145

155

att	ctt	cag	aat	ttc	tac	atc	ggg	aac	ctt	gtt	agg	gag	gag	ccg	act	528
Ile	Leu	Gln	Asn	Phe	Tyr	Ile	Gly	Asn	Leu	Val	Arg	Glu	Glu	Pro	Thr	
				165					170					175		
ttg	gag	ctg	etg	aag	gag	tac	aga	gag	ttg	aga	gcc	ctt	ttc	ttg	aga	576
		Leu														
			180	-				185					190			
caa	caq	ctt	ttc	aag	agt	tcc	aaa	tcc	tac	tac	ctt	ttc	aag	act	ctc	624
		Leu														
		195		-			200					205				
ata	aat	gtt	tcc	att	qtt	gcc	aca	agc	att	gcg	ata	atc	agt	ctg	tac	672
		Val														
110	210	****				215					220					
200	tat	tac	aaa	aga	att	ctq	tta	tca	gaa	agt	ttg	atg	ggc	ttg	ttt	720
		Tyr														
225	Jer	-1-	****		230					235					240	
9++		cag	+ aa	aaa	taa	tta	tet	cac	gat	ttt	cta	cac	cat	cag	gta	768
		Gln														
110	02.11	0111	0,10	245					250					255		
	~~~	aca	cac	taa	ctc	aat	gac	at.t.	att	aac	tat	ata	gtc	ggc	aac	816
		Thr														
Pne	GIU	1111	260	11.5	БСи			265		2	-1-		270	-		
			200					200								
		ctg				ata	+110	Laa	taa	nna	acc	aag	gag	aac	ata	864
		Leu														
Val	Val		GIY	Pne	ser	vai	280	IID	11p	y.		285				
		275					280					203				
											+		222	a++	na+	912
		gct														,,,,
His		Ala	Ala	Pro	Asn		Cys	Asp	GIN	гда		THE	PIO	116	лар	
	290					295					300					
														-6.0		0.60
		att														960
Glu	Asp	Ile	Asp	Thr		Pro	Ile	Ile	Ala		Ser	Lys	Asp	Leu		
305					310					315					320	

gcc	act	gtt	gag	agc	aag	acc	atg	ttg	cga	gtt	ctt	cag	tac	cag	cac	1008	
		Val															
				325					330					335			
cta	tte	ttt	tta	att	ctt	ttq	acq	ttt	gac	cgg	gcg	agt	tgg	cta	ttt	1056	
		Phe															
200	20		340					345					350				
			5.0														
+ ~~	200	gcg	acc	ttc	act	at.a	agg	ccc	gag	ttg	acc	ctt	ggc	gag	aag	1104	
		Ala															
115		355					360					365					
		333															
a++	++4	gag	agg	gga	acq	ata	act	tta	cac	tac	att	tgg	ttt	aat	agt	1152	
T 011	Lou	Glu	ara	G1v	Thr	Met	Ala	Leu	His	Tvr	Ile	Trp	Phe	Asn	Ser		
Leu	370	Giu	Arg	GLY		375					380	-					
	370																
	~~~	ttt	+ + +	at a	ctc	ccc	gga	t.aa	aaa	cca	att	qta	tgg	atg	gtg	1200	
		Phe															
	мта	File	131	Leu	390				-2-	395			-		400		
385					330												
		gag	a+a	2+0	+ a+	cat	++c	cta	ata	gga	tac	gta	ttt	qta	ata	1248	
		gag Glu															
var	ser	GIU	пеп		per	GLY	1116	Dou	410		-2-			415			
				405					410								
		aat								+	997	anc.	++0	at a	aat	1296	
		aat Asn															
Ser	His	Asn		Met	Glu	vaı	TYI	425	THE	ser	nya	nep	430				
			420					425					450				
															~ n +	1344	
		att														1544	
Ala	Gln	Ile	Ala	Ser	Thr	Arg		IIe	Lys	ALA	GIY		Pile	nsu	Map		
		435					440					445					
																1202	
															cca	1392	
Trp	Phe	Thr	Gly	Gly	Leu	Asn	Arg	Gln	Ile	Glu		His	Leu	Phe	Pro		
	450					455					460						
		ccc														1440	
Thr	Met	Pro	Arg	His	Asn	Leu	Asn	Lys	Ile	Ser	Pro	His	Val	Glu			
465					470					475					480		

ttg tgc aag aag cat gga ctg gtc tac gaa gac gtg agc atg gct tcg Leu Cys Lys Lys His Gly Leu Val Tyr Glu Asp Val Ser Met Ala Ser 495 490 485 gge act tae egg gtt ttg aaa aca ett aag gae gtt gee gat get get Gly Thr Tyr Arg Val Leu Lys Thr Leu Lys Asp Val Ala Asp Ala Ala 510 505 500 1563 tca cac cag cag ctt gct gcg agt tga Ser His Gln Gln Leu Ala Ala Ser 520 515 <210> 16 <211> 520 <212> PRT <213> Coratodon purpureus <400> 16 Met Val Ser Gln Gly Gly Gly Leu Ser Gln Gly Ser Ile Glu Glu Asn 10 1 5 Ile Asp Val Glu His Leu Ala Thr Met Pro Leu Val Ser Asp Phe Leu 30 25 20 Asn Val Leu Gly Thr Thr Leu Gly Gln Trp Ser Leu Ser Thr Thr Phe 40 35 Ala Phe Lys Arg Leu Thr Thr Lys Lys His Ser Ser Acp Ile Ser Val 55 50 Glu Ala Gln Lys Glu Ser Val Ala Arg Gly Pro Val Glu Asn Ile Ser 75 70 65 Gln Ser Val Ala Gln Pro Ile Arg Arg Arg Trp Val Gln Asp Lys Lys 95 85 90 Pro Val Thr Tyr Ser Leu Lys Asp Val Ala Ser His Asp Met Pro Gln 105 110 100

Asp	Cys	Trp	Ile	Ile	Ile	Lys	Glu	Lys	Val	Tyr	Asp	Val	Ser	Thr	Phe
		115					120					125			
212	C1	Cln	Hie	Pro	Glv	Glv	Thr	Val	Ile	Asn	Thr	Tyr	Phe	Gly	Arg
ALA		GIII	пть	FLO	GLY	135		*	,,,,,		140			•	-
	130					135					140				
														_	_
Asp	Ala	Thr	Asp	Val	Phe	Ser	Thr	Phe	His		Ser	Thr	Ser	Trp	
145					150					155					160
lle	Leu	Gln	Asn	Phe	Tyr	Ile	Gly	Asn	Leu	Val	Arg	Glu	Glu	Pro	Thr
				165					170					175	
•	a1	·	T	T	C1.	mara-	hra.	Glu	T.em	Ara	Ala	T.eu	Phe	Leu	Arq
Leu	GIU	ren		ьув	GIU	ıyı	nry	185	200				190		
			180					182					150		
													_		
Glu	Gln	Leu	Phe	Lys	Ser	Ser		Ser	Tyr	Tyr	Leu		гăа	Thr	ьеи
		195					200					205			
Ile	Asn	Val	Ser	Ile	Val	Ala	Thr	Ser	Ile	Ala	Ile	Ile	Ser	Leu	Tyr
	210					215					220				
Tare	Sor	mar r	Ara	Δia	Val	Len	Leu	ser	Ala	Ser	Leu	Met	Gly	Leu	Pho
-	201	-11-	ni g	212.0	230					235			-		240
225					230					200					
									_		_		n/ -	a1	***- 1
Ile	Gln	Gln	Cys	Gly	Trp	Leu	Ser	His		Pne	Leu	HIS	HIS		Val
				245					250					255	
Phe	Glu	Thr	Arg	Trp	Leu	Asn	Asp	Val	Val	Gly	Tyr	Val	Val	Gly	Asn
			260					265					270		
	** - 7		G1	Dho	Com	17-1	Car	Trp	Trn	Laze	Thr	Lvs	His	Asn	Leu
VHL	Val		GIY	rne	per	v Call	280	***				285			
		275					200					200			
											_		_	-1.	
His	His	Ala	Ala	Pro	Asn	Glu	Cys	Asp	Gln	Lys		Thr	Pro	TTE	Asp
	290					295					300				
G1u	Asp	Ile	Asp	Thr	Leu	Pro	Ile	Ile	Ala	Trp	Ser	Lys	Asp	Leu	Leu
305			-		310					315					320

Ala Thr Val Glu Ser Lys Thr Met Leu Arg Val Leu Gln Tyr Gln His 325 330 335

Leu Phe Phe Leu Val Leu Leu Thr Phe Ala Arg Ala Ger Trp Leu Phe 340 345 350

Trp Ser Ala Ala Phe Thr Leu Arg Pro Glu Leu Thr Leu Gly Glu Lys 355 360 365

Leu Leu Glu Arg Gly Thr Met Ala Leu His Tyr Ile Trp Phe Asn Ser 370 375 380

Val Ala Phe Tyr Leu Leu Pro Gly Trp Lys Pro Val Val Trp Met Val 385 390 395 400

Val Ser Glu Leu Met Ser Gly Phe Leu Leu Gly Tyr Val Phe Val Leu 405 410 415

Ser His Asn Gly Met Glu Val Tyr Asn Thr Ser Lys Asp Phe Val Asn 420 425 430

Ala Gln Ile Ala Ser Thr Arg Asp Ile Lys Ala Gly Val Phe Asn Asp \$435\$ \$440\$

Trp Phe Thr Gly Gly Leu Asn Arg Gln Ile Glu His His Leu Phe Pro 450 455 460

Thr Met Pro Arg His Asn Leu Asn Lys Ile Ser Pro His Val Glu Thr 465 470 475 480

Leu Cys Lys Lys His Gly Leu Val Tyr Glu Asp Val Ser Met Ala Ser 485 490 495

Gly Thr Tyr Arg Val Leu Lys Thr Leu Lys Asp Val Ala Asp Ala Ala 500 505 510

Ser His Gln Gln Leu Ala Ala Ser 515 520

<210>	17

<211> 1578 <212> DNA

<213> Physcomitrella patens

<220>

<221> CDS

<222> (1),,(1578)

<223> \Delta6-desaturase

<400> 17

atg gta ttc gcg ggc ggt gga ctt cag cag ggc tct ctc gaa gaa aac 40 Met Val Phe Ala Gly Gly Gly Leu Gln Gln Gly Ser Leu Glu Glu Asn 1 5 10 15

atc gac gtc gag cac att gcc agt atg tct ctc ttc agc gac ttc ttc Ile Asp Val Glu His Ile Ala Ser Met Ser Leu Phe Ser Asp Phe Phe

agt tat gtg tct tca act gtt ggt tcg tgg agc gta cac agt ata caa 14 Ser Tyr Val Ser Ser Thr Val Gly Ser Trp Ser Val His Ser Ile Gln

cct ttg aag cgc ctg acg agt aag aag cgt gtt tcg gaa agc gct gcc 19

Pro Leu Lys Arq Leu Thr Ser Lys Lys Arg Val Ser Glu Ser Ala Ala
50 60

gtg caa tgt ata tca gct gaa gtt cag aga aat tcg agt acc cag gga 240
Val Gln Cys Ile Ser Ala Glu Val Gln Arg Asn Ser Ser Thr Gln Gly
65 70 75 80

act gcg gag gca ctc gca gaa tca gtc gtg aag ccc acg aga cga agg 286
Thr Ala Glu Ala Leu Ala Glu Ser Val Val Lys Pro Thr Arg Arg Arg 85 90 95

tca tct cag tgg aag aag tcg aca cac ccc cta tca gaa gta gca gta 336 Ser Ser Gln Trp Lys Lys Ser Thr His Pro Leu Ser Glu Val Ala Val

100 105 110

cac aac aag cca age gat tgc tgg att gtt gta aaa aac aag gtg tat 3

									17							
	1 an	T ***	Pro	Car	len	Cve	Ψrn			Val	Lys	Asn	Lys	Val	Tyr	
ııs	Asn	115	PIO	ser	мър	Cys	120					125	-		-	
		113					-20									
	***	+00	aat	+++	nea	gac	gag	cat	ccc	qqa	qqa	tca	gtt	att	agt.	432
			Asn													
rsb	130	ser	Abii	Z MC	71	135				-	140					
	130					100										
	+ - +	+++	gga	cca	gac	aac	aca	gat	att	ttc	tct	agt	ttt	cat	gca	480
rhr	Tur	Dhe	Gly	Ara	Asp	Glv	Thr	Asp	Val	Phe	Ser	Ser	Phe	His	Ala	
145	- 1 1	1110	027		150	2				155					160	
143																
rat	tet	aca	+aa	aaa	att	ctt	caa	qac	ttt	tac	att	ggt	gac	gtg	gag	528
222	Ser	Thr	Trp	Lvs	Tle	Leu	Gln	Asp	Phe	Tyr	Ile	Gly	Asp	Val	Glu	
TLU	DCI			165				-	170	-				175		
aaa	at.a	σασ	ccg	act	cca	gag	ctg	ctg	aaa	gat	ttc	cga	gaa	atg	aga	576
Ara	Val	Glu	Pro	Thr	Pro	Glu	Leu	Leu	Lys	Asp	Phe	Arg	Glu	Met	Arg	
			180					185					190			
act.	ctt	ttc	cta	aqq	gag	caa	ctt	ttc	aaa	agt	tcg	aaa	ttg	tac	tat	624
Ala	Leu	Phe	Leu	Arg	Glu	Gln	Leu	Phe	Lys	Ser	Ser	Lys	Leu	Tyr	Tyr	
		195					200					205				
att	ata	aaq	ctq	ctc	acg	aat	gtt	gct	att	ttt	gct	gcg	agc	att	gca	672
															Ala	
	210					215					220					
ata	ata	tqt	tgg	agc	aag	act	att	tca	gcg	gtt	ttg	gct	tca	gct	tgt	720
Ile	Ile	Cvs	Trp	Ser	Lys	Thr	Ile	Ser	Ala	Val	Leu	Ala	Ser	Ala	Сув	
225		-	_		230					235					240	
atq	ato	act	ctq	tat	ttc	caa	cag	tgc	gga	tgg	cta	tcc	cat	gat	ttt	76
Met	Met	Ala	Leu	Cys	Phe	Gln	Gln	Cys	Gly	Trp	Leu	Ser	His	Asp	Phe	
				245					250					255		
ctc	cac	aat	caq	qtq	ttt	gag	aca	cgc	tgg	ctt	aat	gaa	gtt	gto	ggg	81
Leu	His	Asn	Gln	Val	Phe	Glu	Thr	Arg	Trp	Leu	Asn	Glu	Val	Val	Gly	
			260					265					270			
tat	ata	ato	qqq	aac	gcc	gtt	ctg	ggg	ttt	agt	aca	ggg	tgg	tgg	aag	86

								4	18							
Tyr	Val	Ile	Glv	Asn	Ala	Val	Leu	Gly	Phe	Ser	Thr	Gly	Trp	Trp	Lys	
-1-		275	2				280	_				285				
		2.5														
nan	nae	cat	aac	ctt	cat	cat	act	qct	cca	aat	gaa	tgc	gat	cag	act	912
					His											
GIU	290	11.0	Lon	LCu		295					300	-	-			
	290					233										
					gaa	~~+	-++	a = +	act.	ata	ccc	ctc	att	acc	t.aa	960
tac	caa	CCA	71-	gat	Glu	a a a	T10	Aen	Thr	Len	Pro	Leu	Ile	Ala	Trp	
	GIN	Pro	TTE	Asp	310	АБР	116	ero P		315					320	
305					310					313						
											202	++~	++ a	cas	atc	1008
					gcc											
Ser	Lys	Asp	Ile		Ala	Thr	Val	GLu		ьув	THE	Pne	Leu	335	110	
				325					330					335		
																1056
					ctg											1030
Leu	Gln	Tyr	Gln	His	Leu	Phe	Phe		Gly	Leu	Leu	Phe		Ala	Arg	
			340					345					350			
																-
					tgg											1104
Gly	Ser	Trp	Leu	Phe	Trp	Ser	Trp	Arg	Tyr	Thr	Ser	Thr	Ala	Val	Leu	
		355					360					365				
tca	cct	gtc	gac	agg	ttg	ttg	gag	aag	gga	act	gtt	ctg	ttt	cac	tac	1152
					Leu											
	370					375					380					
+++	taa	t.t.c	at.c	aaa	aca	aca	tqc	tat	ctt	ctc	cct	ggt	tgg	aag	cca	1200
Dhe	Trn.	Phe	Val	Glv	Thr	Ala	Cvs	Tvr	Leu	Leu	Pro	Gly	Trp	Lys	Pro	
385	ILD	1110	• 4.1	017	390		-2-	-1-		395					400	
303																
					gtg	a <b>a</b> t	727	at a	ato	tee	aac	ata	cta	cta	aac	1248
tta	gta	tgg 	atq	geg	Val	act.	gay	7	Mad	200	Clu	Mot	T.011	Len	Glv	
Leu	Val	Trp	Met		vaı	Thr	GIU	ьеи		ser	GTA	116.0	Deu	415	021	
				405					410					413		
														+	+ a+	1296
					agc											1270
Phe	Val	Phe	Val	Leu	Ser	His	Asn		Met	Glu	Val	Tyr		ser	ser	
			420					425					430			
aaa	gaa	ttc	gtg	agt	gca	cag	atc	gta	tcc	aca	cgg	gat	atc	aaa	gga	1344

		49		
Lys Glu Phe Val	Ser Ala Gln Ile	Val Ser Thr Arg	Asp Ile Lys Gly	
435	440		445	
		ggt ggc ctt aac		2
Asn Ile Phe Asn	Asp Trp Phe Thr	Gly Gly Leu Asn	Arg Gln Ile Glu	
450	455	460		
				^
		agg cat aat tta		U
		Arg His Asn Leu	Asn Lys IIe AIA 480	
465	470	475	400	
	mt m +tm +mt sam	aaa cac ggt ctg	gtg tac gaa gac 148	8
		Lys His Gly Leu		
Pro Arg var Gru	485	490	495	
	103			
gta tot att got	acc ggc act tgc	aag gtt ttg aaa	gca tty aay gaa 153	6
		Lys Val Leu Lys		
500		505	510	
gtc gcg gag gct	geg gea gag cag	cat gct acc acc	agt taa 157	8
Val Ala Glu Ala	Ala Ala Glu Gln	His Ala Thr Thr	Ser	
515	520		525	
<210> 18				
<211> 525				
<212> PRT				
<213> Physcomits	rella patens			
<400> 18	Clar Clar Clar Lon	Gln Gln Gly Ser	Teu Glu Glu Asn	
	5	10	15	
1	5	10		
Tle Acn Val Clu	His Ile Ala Ser	Met Ser Leu Phe	Ser Asp Phe Phe	
11e Asp var G10	nis ile aid bei	25	30	
20				
Ser Tvr Val Ser	Ser Thr Val Gly	Ser Trp Ser Val	His Ser Ile Gln	
35	40	=	45	

Pro Leu Lys Arg Leu Thr Ser Lys Lys Arg Val Ser Glu Ser Ala Ala

									50						
	50					55					60				
Val	Gln	Сув	Ile	Ser	Ala 70	Glu	Val	Gln	Arg	Asn 75	Ser	Ser	Thr	Gln	Gly 80
Thr	Ala	Glu	Δla	Leu 85	Ala	Glu	Ser	Val	Val 90	Lys	Pro	Thr	Arg	Arg 95	Arg
Ser	Ser	Gln	Trp 100	Lys	Lys	Ser	Thr	His 105	Pro	Leu	Ser	Glu	Val 110	Ala	Val
His	Asn	Lys 115	Pro	Ser	Авр	Cys	Trp 120	Ile	Val	Val	Lys	Asn 125	Lys	Val	Tyr
Asp	Val 130	Ser	Asn	Phe	Ala	Asp 135	Glu	His	Pro	Gly	Gly 140	Ser	Val	Ile	Ser
Thr 145	Tyr	Phe	Gly	Arg	Asp 150	G1y	Thr	Asp	Val	Phe 155	Ser	Ser	Phe	His	Ala 160
Ala	Ser	Thr	Trp	Lys 165	Ile	Leu	Gln	Asp	Phe 170	туг	Ile	Gly	Asp	Val 175	Glu
Arg	Val	Glu	Pro 180	Thr	Pro	Glu	Leu	Leu 185	Lys	Asp	Phe	Arg	Glu 190	Met	Arg
Ala	Leu	Phe 195	Leu	Arg	Glu	Gln	Leu 200	Phe	Lys	Ser	Ser	Lys 205	Leu	Tyr	Tyr
Val	Met 210	Lys	Leu	Leu	Thr	Asn 215	Val	Ala	Ile	Phe	Ala 220	Λla	Ser	Ile	Ala
Ile 225	Ile	Cys	Trp	Ser	Lys 230	Thr	Ile	Ser	Ala	Val 235	Leu	Ala	Ser	Ala	Cys 240
Met	Met	Ala	Leu	Cys 245	Phe	Gln	Gln	Cys	Gly 250	Trp	Leu	Ser	His	Asp 255	Phe
Leu	His	Asn	Gln 260	Val	Phe	Glu	Thr	Arg 265	Trp	Leu	Asn	Glu	Val 270	Val	Gly

Fyr	Val	Ile 275	Gly	Asn	Ala	Val	Leu 280	Gly	Phe	Ser	Thr	Gly 285	Trp	Trp	Lys
Glu	Lys 290	His	Asn	Leu	His	His 295	Ala	Ala	Pro	Asn	Glu 300		Asp	Gln	Thr
Tyr 305	Gln	Pro	Ile	Asp	Glu 310	Asp	Ile	Asp	Thr	Leu 315	Pro	Leu	Ile	Ala	Trp 320
ser	Lys	Asp	Ile	Leu 325	Ala	Thr	Val	Glu	Asn 330	Lys	Thr	Phe	Leu	Arg 335	Ile
Leu	Gln	Tyr	Gln 340	His	Leu	Phe	Phe	Met 345	Gly	Leu	Leu	Phe	Phe 350	Ala	Arg
Gly	Ser	Trp 355	Leu	Phe	Trp	Ser	Trp 360	Arg	Tyr	Thr	Ser	Thr 365	Ala	Val	Leu
Ser	Pro 370	Val	Asp	Arg	Leu	Leu 375	Glu	Lys	Gly	Thr	Val 380	Leu	Phe	His	Tyr
Phe 385	Trp	Phe	val	Gly	Thr 390	Ala	Сув	туг	Leu	Leu 395	Pro	Gly	Trp	Lys	Pro
Leu	Val	Trp	Met	Ala 405	Val	Thr	Glu	Leu	Met 410	Ser	Gly	Met	Leu	Leu 415	Gly
Phe	Val	Phe	Val 420	Leu	Ser	His	Asn	Gly 425	Met	Glu	Val	Tyr	Asn 430	Ser	Ser
Lys	Glu	Phe 435	Val	Ser	Ala	Gln	Ile 440	Val	Ser	Thr	Arg	Asp 445	Ile	Lys	Gly
Asn	Ile 450	Phe	Asn	Asp	Trp	Phe 455		Gly	Gly	Leu	Asn 460	Arg	Gln	Ile	Glu
His 465	His	Leu	Phe	Pro	Thr 470	Met	Pro	Arg	His	Asn 475	Leu	Asn	ГÀЗ	Ile	Ala 480

52 Pro Arg Val Glu Val Phe Cys Lys Lys His Gly Leu Val Tyr Glu Asp 495 485 490 Val Ser Ile Ala Thr Gly Thr Cys Lys Val Leu Lys Ala Leu Lys Clu 510 505 500 Val Ala Glu Ala Ala Glu Gln His Ala Thr Thr Ser 525 520 515 <210> 19 <211> 837 <212> DNA <213> Phytophthora infestans <220> <221> CDS <222> (1)..(837) <223> \Delta6-elongase <400> 19 atg tcg act gag cta ctg cag agc tac tac gcg tgg gcc aac gcc acg Met Ser Thr Glu Leu Leu Gln Ser Tyr Tyr Ala Trp Ala Aon Ala Thr 15 5 1 gag gcc aag ctg ctg gac tgg gtc gac cct gag ggc ggc tgg aag gtg Glu Ala Lys Leu Leu Asp Trp Val Asp Pro Glu Gly Gly Trp Lys Val 30 25 20 cat cot atg goa yao lac coc cta goo aac tto too ago gto tac goo 144 His Pro Met Ala Asp Tyr Pro Leu Ala Asn Phe Ser Ser Val Tyr Ala 45 40 35 atc tgc gtc gga tac ttg ctc ttc gta atc ttc ggc acg gcc ctg atg Ile Cys Val Gly Tyr Leu Leu Phe Val Ile Phe Gly Thr Ala Leu Met 60 50 55 aaa atg gga gtc ccc gcc atc aag acc agt cca tta cag ttt gtg tac

Lys Met Gly Val Pro Ala Ile Lys Thr Ser Pro Leu Gln Phe Val Tyr

70

65

ac	ccc	atc	caa	gtc	att	gcc	tgc	tct	tat	atg	tgc	gtg	gag	gcc	gac	288
				Val												
				85					90					95		
				aga												336
[le	Gln	Ala	Tyr	Arg	Asn	Gly	Tyr	Thr	Ala	Ala	Pro	Cys	Asn	Ala	Phe	
			100					105					110			
				ccc												384
Lys	ser	Asp	Asp	Pro	Val	Met	Gly	Asn	Val	Leu	Tyr			ጥያኮ	Leu	
		115					120					125				
tac	aag	atg	ctc	gac	ctg	tgc	gac	aca	gtc	ttc	att	atc	cta	gga	aag	432
Ser	Lys	Met	Leu	Asp	Leu	Cys	Asp	Thr	Val	Phe	Ile	Ile	Leu	Gly	Lys	
	130					135					140					
				ctt												480
Lys	Trp	Lys	Gln	Leu	Ser	Ile	Leu	His	Val			His	Leu	Thr		
145					150					155	-				160	
				tat												528
Leu	Phe	Val	Tyr	Tyr	val	Thr	Phe	Arg		Ala	Gln	Asp	Cly		ser	
				165					170					175		
																576
				gtg												5/0
Tyr	Ala	Thr	Ile	Val	Leu	Asn	Gly		Val	His	Thr	Ile		Tyr	Thr	
			180					185					190			
																624
				agc												624
Tyr	Tyr	Phe	Val	Ser	Ala	His		Arg	Asn	Ile	Trp		гйа	гăг	Tyr	
		195					200					205				
																672
				cag												012
Leu	Thr	Arg	Ile	Gln	Leu		Gln	Phe	Val	Thr		ASD	val	GII	GTA	
	210					215					220					
														anh -	000	720
															ccg	,20
-	Leu	Thr	Tyr	Ser		Gln	Cys	Pro	Gly		Pro	Pro	тĀЗ	val	240	
225					230					235					240	

ctc atg tac ctt gtg tac gtg cag tca ctc ttc tgg ctc ttc atg aat Leu Met Tyr Leu Val Tyr Val Gln Ser Leu Phe Trp Leu Phe Met Asn tto tac att ege geg tac gtg ttc ggc ccc aag aaa ccg gcc gtg gag Phe Tyr Ile Arg Ala Tyr Val Phe Gly Pro Lys Lys Pro Ala Val Glu gaa tog aag aag aag ttg taa Glu Ser Lys Lys Lys Leu <210> 20 <211> 278 <212> PRT <213> Phytophthora infestans <400> 20 Met Ser Thr Glu Leu Leu Gln Ser Tyr Tyr Ala Trp Ala Asn Ala Thr Glu Ala Lys Leu Leu Asp Trp Val Asp Pro Glu Gly Gly Trp Lys Val His Pro Met Ala Asp Tyr Pro Leu Ala Asn Phe Ser Ser Val Tyr Ala Ile Cys Val Gly Tyr Leu Leu Phe Val Ile Phe Gly Thr Ala Leu Met Lys Met Gly Val Pro Ala Ile Lys Thr Ser Pro Leu Gln Phe Val Tyr Asn Pro Ile Gln Val Ile Ala Cys Ser Tyr Met Cys Val Glu Ala Ala Ile Gln Ala Tyr Arg Asn Gly Tyr Thr Ala Ala Pro Cys Asn Ala Phe

Lys	Ser	Asp	Asp	Pro	Val	Met	Gly	Asn	Val	Leu	Tyr	Leu	Phe	Tyr	Leu
		115					120					125			

Ser Lys Met Leu Asp Leu Cys Asp Thr Val Phe Ile Ile Leu Gly Lys 130 135 140

Lys Trp Lys Gln Leu Ser Ile Leu His Val Tyr His His Leu Thr Val 145 150 155 160

Leu Phe Val Tyr Tyr Val Thr Phe Arg Ala Ala Glm Asp Gly Asp Ser 165 170 175

Tyr Ala Thr Ile Val Leu Asn Gly Phe Val His Thr Ile Met Tyr Thr 180 185 190

Tyr Tyr Phe Val Ser Ala His Thr Arg Asn Ile Trp Trp Lys Lys Tyr 195 200 205

Leu Thr Arg Ile Gln Leu Ile Gln Phe Val Thr Met Asn Val Gln Gly 210 \$215\$

Tyr Leu Thr Tyr Ser Arg Gln Cys Pro Gly Met Pro Pro Lys Vol Pro 225 230 235 240

Leu Met Tyr Leu Val Tyr Val Gln Ser Leu Phe Trp Leu Phe Met Asn  $245 \hspace{1.5cm} 250 \hspace{1.5cm} 255$ 

Phe Tyr Ile Arg Ala Tyr Val Phe Gly Pro Lys Lys Pro Ala Val Glu 260 265 270

Glu Ser Nys Lys Lys Leu 275

<210> 21 <211> 1410

<212> DNA

<213> Phaeodactylum tricornutum

35

56

< 2	2	0>	٠

<221> CDS

<222> (1)..(1410)

<223> A5-desaturase

## <400> 21

- atg gct ccg gat gcg gat aag ctt cga caa cgc cag acg act gcg gta Met Ala Pro Asp Ala Asp Lys Leu Arg Gln Arg Gln Thr Thr Ala Val 15 5 10 1
- gcg aag cac aat gct gct acc ata tcg acg cag gaa ogc ott tgc agt Ala Lys His Asn Ala Ala Thr Ile Ser Thr Gln Glu Arg Leu Cys Ser 30 25
- ctg tct tcg ctc aaa ggc gaa gaa gtc tgc atc gac gga atc atc tat Leu Ser Ser Leu Lys Gly Glu Glu Val Cys Ile Asp Gly Ile Ile Tyr 45 40
- gac ctc caa tca ttc gat cat ccc ggg ggt gaa acg atc aaa atg ttt 192 Asp Leu Gln Ser Phe Asp His Pro Gly Glu Thr Ile Lys Met Phe 55 60 50
- ggt ggc aac gat gtc act gta cag tac aag atg att cac ccg tao cat 240 Gly Gly Asn Asp Val Thr Val Gln Tyr Lys Met Ile His Pro Tyr His 80 75 70 65
  - acc gag aag cat ttg gaa aag atg aag cgt gtc ggc aag gtg acg gat 288 Thr Glu Lys His Leu Glu Lys Met Lys Arg Val Gly Lys Val Thr Asp 95 90 85
  - ttc gtc tgc gag tac aag ttc gat acc gaa ttt gaa cgc gaa atc aaa 336 Phe Val Cys Glu Tyr Lys Phe Asp Thr Glu Phe Glu Arg Glu Ile Lys 110 105 100
  - cga gaa gtc ttc aag att gtg cga cga ggc aag gat ttc ggt act ttg Arg Glu Val Phe Lys Ile Val Arg Arg Gly Lys Asp Phe Gly Thr Leu 120 125 115
  - gga tgg ttc ttc cgt gcg ttt tgc tac att gcc att ttc ttc tac ctg 432 Gly Trp Phe Phe Arg Ala Phe Cys Tyr Ile Ala Ile Phe Phe Tyr Leu

									57								
	130					135					140						
caq	tac	cat	tgg	gtc	acc	acg	gga	acc	tct	tgg	ctg	ctg	gcc	gtg	gcc	480	
Gln	Tyr	His	Trp	Val	Thr	Thr	Gly	Thr	ser	Trp	Leu	Leu	Ala	Val	Ala		
145	-				150					155					160		
tac	gga	atc	tcc	caa	aca	atq	att	ggc	atg	aat	gtc	cag	cac	gat	gcc	528	
Tur	Glv	Ile	Ser	Gln	Ala	Met	Ile	Gly	Met	Asn	Val	Gln	His	Asp	Ala		
-1-	027			165					170					175			
880	cac	ggg	acc	acc	tee	aaq	cat	ccc	tgg	gta	aac	gac	atg	cta	gge	576	
		Gly															
71311		011	180				-	185					190				
			100														
-	aat	gcg	ant.	+++	att	aat.	aat.	tcc	aaσ	taa	ctc	tgg	cag	gaa	caa	624	
Len	Glv	Ala	len	Phe	Tle	Glv	Glv	Ser	Lys	Trp	Leu	Trp	Gln	Glu	Gln		
пец	GLY	195	1100			2	200		-	-		205					
		1,,															
~~~	+~~	acc		cac	act	tac	acc	aat	cac	acc	gag	atg	gat	ccc	gat	672	
uac	men	Thr	vic	ui.	Δla	Tur	Thr	Asn	His	Ala	Glu	Met	Asp	Pro	Asp		
HIS	210	1111	UID	1120	72.0	215					220		_				
	210																
		ggt			000	at m	ctc	cta	tte	aac	gac	tat	cca	ttg	gat	720	
age	75.	Gly	31-	gaa	Dro	Mot	T-611	T.e.11	Phe	Asn	Asp	Tvr	Pro	Leu	Asp		
	Pne	GTĀ	ATA	GIU	230	Mec	Бец	Dou		235		-2-			240		
225					230					233							
									***		ac a	++ ~	+++	tac	atα	768	
cat	ccc	gct Ala	cgt	acc	tgg	cta	rat.	200	Dhe	GIn	Ala	Phe	Phe	Tvr	Met		
His	Pro	Ala	Arg		Trp	Leu	птв	Arg	250	GIII	111.0	1110		255			
				245					250					200			
											445	+	~~~		a++	816	
ccc	gtc	ttg	gct	gga	tac	tgg	ttg	tcc	gct	gtc	ttc	aat	cca	Caa	#1a	010	
Pro	Va1	Leu		Gly	Tyr	Trp	Leu		Ala	Val	Pne	Asn	270	GIN	ire		
			260					265					210				
																864	
ctt	gac	ctc	cag	caa	cgc	ggc	gca	ctt	tcc	gtc	ggt	atc	cgt	ctc	gac	864	
Leu	Asp	Leu	Gln	Gln	Arg	Gly	Ala	Leu	Ser	Val	Gly		Arg	Leu	Asp		
		275					280					285					
aac	gct	ttc	att	cac	tcg	cga	cgc	aag	tat	gcg	gtt	ttc	tgg	cgg	gct	912	
Asn	Ala	Phe	Ile	His	Ser	Arg	Arg	Lys	Tyr	Ala	Val	Phe	Trp	Arg	Ala		

-0

								5	8							
	290					295					300					
qtq	tac	att	gcg	gtg	aac	gtg	att	gct	ccg	ttt	tac	aca	aac	tcc	ggc	960
Val	Tyr	Ile	Ala	Val	Asn	Val	Ile	Ala	Pro	Phe	Tyr	The	Asn	Ser	Gly	
305					310					315					320	
ctc	qaa	tqq	tcc	tgg	cgt	gtc	ttt	gga	aac	atc	atg	ctc	atg	ggt	gtg	1008
Leu	Glu	Trp	Ser	Trp	Arg	Val	Phe	Gly	Asn	Ile	Met	Leu	Met	Gly	Val	
		-		325					330					335		
aca	gaa	toq	ata	gcg	cty	gog	gtc	ctg	ttt	tog	ttg	tag	gac	aat	tte	1056
Ala	Glu	Ser	Leu	Ala	Leu	Ala	۷al	Leu	Phe	Ser	Leu	Ser	His	Asn	Phe	
			340					345					350			
gaa	tcc	aca	gat	cqc	gat	ccg	acc	gcc	cca	ctg	aaa	aag	acg	gga	gaa	1104
Glu	Ser	Ala	Asp	Arg	Asp	Pro	Thr	Ala	Pro	Leu	Lys	Lys	Thr	Gly	Glu	
		355					360					365				
cca	atc	qac	tqq	ttc	aag	aca	cag	gtc	gaa	act	tcc	tgc	act	tac	ggt	1152
Pro	Val	Asp	Trp	Phe	Lys	Thr	Gln	Val	Glu	Thr	Ser	Cys	Thr	Tyr	Gly	
	370	-	-		-	375					380					
gga	tta	ctt	tcc	qqt	tgc	ttc	acg	gga	ggt	clc	aac	ttt	cag	gtt	gaa	1200
					Сув											
385				•	390					395					400	
cac	cac	t.t.a	ttc	cca	cgc	atq	agc	agc	gct	tgg	tat	aac	tac	att	gcc	1248
His	His	Leu	Phe	Pro	Arg	Met	Ser	Ser	Ala	Trp	Tyr	Pro	Tyr	Ile	Ala	
				405	-				410					415		
acc	nee	ata	aac	daa	att	tac	acc	aaa	cac	ggc	gtc	cac	tac	gcc	tac	1296
					Ile											
FLO	1192	•	420	-		-,-		425					430			
+ = 0	aca	+ aa	at c	cac	caa	aac	ttt	ctc	tcc	acc	gtc	aga	tac	atg	cac	1344
					Gln											
TYL	FIO	435	116	штэ	0211		440					445	-			
		4.55					0									
		~~-		~~±	gcc	227	taa	cac	сал	ato	acc	aga	gaa	aat	ccc	1392
gcg	gcc	999	mb-	ggt	Ala	Aac	Trn	Ara	Gln	Me+	Ala	Ara	Glu	Asn	Pro	
Ala	Ala	GLY	THE	GTĀ	ыта	uell	ıτb	nr 9	0211			9				

20020271 O.Z. 0093/00064 DE

59

450 455 460

ttg acc gga cgg gcg taa Leu Thr Gly Arg Ala 465 470 1410

<210> 22

<211> 469

<212> PRT

<213> Phaeodactylum tricornutum

<400> 22

Met Ala Pro Asp Ala Asp Lys Leu Arg Gln Arg Gln Thr Thr Ala Val 1 5 10 15

Ala Lys His Asn Ala Ala Thr Ile Ser Thr Glu Arg Leu Cys Ser

Leu Ser Ser Leu Lys Gly Glu Glu Val Cys Ile Asp Gly Ile Ile Tyr $35 \hspace{1cm} 40 \hspace{1cm} 45$

- Asp Leu Gln Ser Phe Asp His Pro Gly Gly Glu Thr Ile Lys Met Phe 50 55 60

Gly Gly Asn Asp Val Thr Val Gln Tyr Lys Met Ile His Pro Tyr His 65 70 75 80

Thr Glu Lys His Leu Glu Lys Met Lys Arg Val Gly Lys Val Thr Asp

Phe Val Cys Glu Tyr Lys Phe Asp Thr Glu Phe Glu Arg Glu Ile Lys 100 105 110

Arg Glu Val Phe Lys Ile Val Arg Arg Gly Lys Asp Phe Gly Thr Leu 115 120 125

Gly Trp Phe Phe Arg Ala Phe Cys Tyr Ile Ala Ile Phe Phe Tyr Leu 130 135 140

								,	,,,						
Gln	Tyr	His	Trp	Val	Thr	Thr	Gly	Thr	Ser	Trp	Leu	Leu	Ala	Val	Ala
145		20	•		150		_			155					160
143															
_	~ 2	-1.	a	a1-	27.0	Wot	TIA	r:1 sr	Met	Agn	Val.	Gln	His	Asp	Ala
Tyr	GTA	ite	ser		WTG	Mec	тте	GTĀ	170	12011	,	2 2.45		175	
				165					1/0					113	
														_	
Asn	His	Gly	Ala	Thr	Ser	Lys	Arg	Pro	Trp	Val	Asn	Asp	Met	Leu	GTA
			180					185					190		
Leu	Gly	Ala	Asp	Phe	Ile	Gly	Gly	Ser	Lys	Trp	Leu	Trp	Gln	Glu	Gln
	2	195	-			_	200					205			
114 -	Dave	mh =	Hic	Hi~	Δla	ጥህም	Thr	Asp	His	Ala	Glu	Met	Asp	Pro	Asp
HIS		THE	ars	ars	Ата	215	****				220		-		-
	210					213									
						Made	Y 0/-	T 011	Dh.	lan.) en	TVY	Pro	Len	Aso
	Phe	Gly	Ala	GLU		met	Leu	Ten	rue	235	мыр	-11	Pro		240
225					230					235					240
													_1		
His	Pro	Ala	Arg	Thr	Trp	Leu	His	Arg		Gln	Ala	Phe	Phe		Met
				245					250					255	
Pro	Val	Leu	Ala	Gly	Tyr	Trp	Leu	Ser	Ala	Val	Phe	Asn	Pro	Gln	Ile
			260	_	_			265					270		
T 0	200	T.0"	Gl n	Gl n	Ara	Glv	Ala	Leu	Ser	Val	Glv	Ile	Arg	Leu	Asp
Leu	Asp		GTII.	GIN	~I G	CILY	280				2	285	-		-
		275					200								
					_			·	m	77-	77 - 77	Dh^	mrn.	۵ra	a l A
Asn	Ala	Phe	Ile	His	Ser		Arg	Lys	Tyr	ALA		Pne	Trp	wr 3	vra
	290					295					300				
Val	Tyr	Ile	Ala	Val	Asn	Val	Ile	Ala	Pro	Phe	Tyr	Thr	Asn	Ser	Gly
305					310					315					320
T 0''	G1.	77.7	Ser	district.	Ara	Val	Phe	Glv	Asn	Ile	Met	Leu	Met	Gly	Val
ьeu	GIU	rrp	Ser	325			- 110		330					335	
				343					550						
					_				D.L				Hi~	Dan.	Dha
Ala	Glu	Ser			Leu	Ala	Val			ser	Leu	bel	His	Mall	
			340					345					350		

Glu Ser Ala Asp Arg Asp Pro Thr Ala Pro Leu Lys Lys Thr Gly Glu

365 355 360

Pro Val Asp Trp Phe Lys Thr Gln Val Glu Thr Ser Cys Thr Tyr Gly 375 370

Gly Phc Lou Ser Gly Cys Phe Thr Gly Gly Leu Asn Phe Gln Val Glu 400 390 395 385

His His Leu Phe Pro Arg Met Ser Ser Ala Trp Tyr Pro Tyr Ile Ala 415 410 405

Pro Lys Val Arg Glu Ile Cys Ala Lys His Gly Val His Tyr Ala Tyr 430 425 420

Tyr Pro Trp Ile His Gln Asn Phe Leu Ser Thr Val Arg Tyr Met His 445 435 440

Ala Ala Gly Thr Gly Ala Aon Trp Arg Gln Met Ala Arg Glu Asn Pro 460 450 455

Leu Thr Gly Arg Ala 465

<210> 23

<211> 1344

<212> DNA

<213> Caenorhabditis elegans

<220>

<221> CDS

<222> (1)..(1344)

<223> $\Delta 5$ -desaturase

<400> 23

atg gta tta cga gag caa gag cat gag cca tto tto att aaa att gat Met Val Leu Arg Glu Gln Glu His Glu Pro Phe Phe Ile Lys Ile Asp 15 10 1 5

gga aaa tgg tgt caa att gac gat gct gtc ctg aga tca cat cca ggt 96

									52							
Gly	Lys	Trp	Cys	Gln	Ile	Asp	Asp	Ala	Val	Leu	Arg	Ser	His	Pro	Gly	
			20					25					30			
					acc											144
Gly	Ser	Ala	Ile	Thr	Thr	Tyr	Lys	Asn	Met	Asp	Ala	Thr	Thr	Val	Phe	
		35					40					45				
cac	aca	ttc	cat	act	ggt	tct	aaa	gaa	gcg	tat	caa	tgg	ctg	aca	gaa	192
His	Thr	Phe	His	Thr	Gly	Ser	Lys	Glu	Ala	Tyr		Trp	Leu	Thr	Glu	
	50					55					60					
																240
ttg	aaa	aaa	gag	tgc	cct	aca	caa	gaa	cca	gag	atc	cca	gat	att	aag -	240
Leu	Lys	Lys	Glu	Cys	Pro	Thr	Gln	Glu	Pro		Ile	Pro	Asp	Ile	Lys	
65					70					75					80	
																288
gat	gac	cca	atc	aaa	gga	att	gat	gat	gtg	aac	atg	gga	act	Dho	aat Aan	200
Asp	Asp	Pro	Ile		Gly	Ile	Asp	Asp		Asn	met	GIY	THE	95	ASII	
				85					90					95		
														ant	at a	336
att	tct	gag	aaa	cga	tct	gcc	caa	ata	aat	aaa	agt	Dho	Thr) ac	Len	550
Ile	Ser	Glu		Arg	Ser	Ala	GIn		Asn	гув	per	File	110	wab	шец	
			100					105					110			
											~~	+a+	aat	++ a	tto	384
					gca Ala											
Arg	Met		Vai	arg	AIA	GIU	120	ьеи	nec	Yeh	GLY	125		200		
		115					120					123				
	- 4. 4-				ctt	~ 2 2	909	ato	++c	aca	att	ctt	ttt	ac a	ttc	432
					Leu											
Tyr	130	Arg	гĀв	TTE	теп	135	THE	110	1110		140					
	130					133										
					aca	+ -+	+ =+	c++	CCB	tca	act	att	cta	atq	gga	480
					Thr											
145	ьец	GIII	TYL	пто	150	-1-	-1-		1	155					160	
145					130											
ort 4	~~~	+~~	can	can	ttg	aaa	tan	tta	ato	cat	gaa	ttc	gca	cat	cat	528
get	geg ala	Trn	Gin	Gln	Leu	Glv	Tro	Leu	Ile	His	Glu	Phe	Ala	His	His	
val	wrg	rrp	GIH	165	пеп	GLY		204	170					175		
				100												
an-	++~	++~	200	227	aga	tac	tac	aa+	gat	tta	qcc	agc	tat	ttc	gtt	576
cag	LLG	LLC	aad	aac	aya	cuc			5-0	3	, .	-				

			~						3							
	_	_,	_		•	Tyr	M.v.v			T.e.11	Δla	Ser	Tvr	Phe	Val	
Gln	Leu	Phe		Asn	arg	Tyr	TYL	185	мар	Deu	лια	DOL	190	1110		
			180					103								
												-			cac	624
						ttc										021
Gly	Asn		Leu	Gln	Gly	Phe		ser	GTA	GIĀ	TEP		GIU	GLII	nro	
		195					200					205				
																672
aat	gtg	cat	cac	gca	gcc	aca	aat	gtt	gtt	gga	cga -	gac	gga	gat	CTT.	6/2
Asn	Val	His	His	Ala	Ala	Thr	Asn	Val	Val	Gly		Asp	GIY	Asp	Leu	
	210					215					220					
																~~~
gat	tta	gtc	cca	ttc	tat	gct	aca	gtg	gca	gaa	cat	ctc	aac	aat	tat	720
Asp	Len	Val	Pro	Phe	Tyr	Ala	Thr	Val	Ala		His	Leu	Asn	Asn	Tyr	
225					230					235					240	
tct	cag	gat	tca	tgg	gtt	atg	act	cta	ttc	aga	tgg	caa	cat	gtt	cat	768
Ser	Gln	Asp	Ser	Trp	Val	Met	Thr	Leu	Phe	Arg	Trp	Gln	His		His	
				245					250					255		
tgg	aca	ttc	atg	tta	cca	ttc	ctc	cgt	ctc	tcg	tgg	ctt	ctt	cag	tca	816
Trp	Thr	Phe	Met	Leu	Pro	Phe	Leu	Arg	Leu	Ser	Trp	Leu	Leu	Gln	Ser	
			260					265					270			
atc	att	ttt	gtt	agt	cag	atg	cca	act	cat	tat	tat	gac	tat	tac	aga	864
Ile	Ile	Pho	Val	Ser	Gln	Met	Pro	Thr	His	Tyr	Tyr	Asp	Tyr	Tyr	Arg	
		275					280					285				
aat	act	qcq	att	tat	gaa	cag	gtt	ggt	ctc	tct	ttg	cac	tgg	gct	tgg	912
						Gln										
	290			-		295					300					
+	++~	aat		++0	tat	ttc	cta	aca	gat	taa	tca	act	aga	ata	atg	960
Cor	Tou	610	Gln	Len	Tvr	Phe	Leu	Pro	Asp	Trp	Ser	Thr	Arg	Ile	Met	
305	Deu	GLY	GLI	200	310				-	315					320	
305					310											
	44-	a.L.L	art t	+a+	<b>~</b> =+	c++	a++	aas	aa+	ttc	cta	ctc	tct	cat	gta	1008
ttc	ttc	ctt	gtt	Cot	ni-	Leu	1707	61	614	Pho	Len	Len	Ser	His	Val	
Phe	Phe	ьeu			nis	neu	AGT	GLY	330	2110				335		
				325					550							
							-4-	~		+++		++~	age	ton	aac	1056
gtt	act	ttc	aat	cat	tat	tca	gtg	gag	aag	LLT	yua	ccg	uge	cog		

Val Thr	Phe	Asn	His	Tyr	Ser	Val	Glu	Lys	Phe	Ala	Leu	Ser	Ser	Asn
		340					345					350		

atc atg tca aat tac gct tgt ctt caa atc atg acc aca aga aat atg 1104
Ile Met Ser Asn Tyr Ala Cys Leu Gln Ile Met Thr Thr Arg Asn Met
355 360 365

aga cct gga aga ttc att gac tgg ctt tgg gga ggt ctt aac tat cag 1152 Arg Pro Gly Arg Phe Ile Asp Trp Leu Trp Gly Gly Leu Asn Tyr Gln 370 375 380

att gag cac cat ctt ttc cca acg atg cca cga cac aac ttg aac act

Ile Glu His His Leu Phe Pro Thr Met Pro Arg His Asn Leu Asn Thr

385 390 395 400

gtt atg cca ctt gtt aag gag ttt gca gca gca aat ggt tta cca tac 1246 Val Met Pro Leu Val Lys Glu Phe Ala Ala Ala Asn Gly Leu Pro Tyr 405 410 415

atg gtc gac gat tat ttc aca gga ttc tgg ctt gaa att gag caa ttc 1296
Met Val Asp Asp Tyr Phe Thr Gly Phe Trp Leu Glu Ile Glu Gln Phe
420 425 430

cga aat att gca aat gtt gct gct aaa ttg act aaa aag att gcc tag 1344 Arg Asn Ile Ala Asn Val Ala Ala Lys Leu Thr Lys Lys Ile Ala

urg Aen Ile Ala Aen Val Ala Ala Lys Leu Thr Lys Lys Ile Ala
435 440 445

<212> PRT

<210> 24 <211> 447

<213> Caenorhabditis elegans

<400> 24
Met Val Leu Arg Glu Glu Glu His Glu Pro Phe Phe Ile Lys Ile Asp  $1 \qquad \qquad 5 \qquad \qquad 10 \qquad \qquad 15$ 

Gly Lys Trp Cys Gln Ile Asp Asp Ala Val Leu Arg Ser His Pro Gly  $20 \hspace{1cm} 25 \hspace{1cm} 30$ 

								6	55						
Gly	Ser	Ala 35	Ile	Thr	Thr	Tyr	Lys 40	Asn	Met	Asp	Ala	Thr 45	Thr	Val	Phe
His	Thr	Phe	His	Thr	Gly		Lys	Glu	Ala	Tyr		rrp	Leu	Thr	<b>Gl</b> u
	50					55					60				
Leu 65	Lys	Lys	Glu	Cys	Pro 70	Thr	Gln	Glu	Pro	Glu 75	Ile	Pro	Asp	Ile	Lys 80
Asp	Asp	Pro	Ile	Lys 85	Gly	Ile	Asp	Asp	Val	Asn	Met	Gly	Thr	Phe 95	Asn
Ile	Ser	Glu	Lys 100	Arg	Ser	Ala	Gln	Ile 105	Asn	Lys	Ser	Phe	Thr	Asp	Leu
Arg	Met	Arg	Val	Arg	Ala	Glu	Gly 120	Leu	Met	Asp	Gly	Ser 125	Pro	Leu	Phe
Tyr	Ile 130	Arg	Lys	Ile	Leu	Glu 135	Thr	Ile	Phe	Thr	Ile 140	Leu	Phe	Ala	Phe
Tyr 145	Leu	Gln	Tyr	His	Thr	Tyr	туг	Leu	Pro	Ser	Ala	Ile	Leu	Met	Gly
	Ala	Trp	Gln	Gln 165	Leu	Gly	Trp	Leu	Ile	His	Glu	Phe	Ala	His	His
Gln	Leu	Phe	Lys 180		Arg	Tyr	Tyr	Asn 185	Asp	Leu	Ala	Ser	Tyr 190	Phe	Val
Gly	Asn	Phe	Leu	Gln	Gly	Phe	Ser 200	Ser	Gly	Gly	Trp	Lys 205	Glu	Gln	His
Asn	Val	His	His	Ala	Ala	Thr 215	Asn	Val	Val	Gly	Arg 220	Asp	Gly	Asp	Leu
Asp 225	Leu	Val	Pro	Phe	Tyr 230	Ala	Thr	Val	Ala	Glu 235	His	Leu	Asn	Asn	Tyr 240

Ser Gln Asp Ser Trp Val Met Thr Leu Phe Arg Trp Gln His Val His

**66** 250

255

Trp Thr Phe Met Leu Pro Phe Leu Arg Leu Ser Trp Leu Leu Gln Ser 260 265 270

Ile Ile The Val Ser Gln Met Pro Thr His Tyr Tyr Asp Tyr Tyr Arg 275 280 285

Asn Thr Ala Ile Tyr Glu Gln Val Gly Leu Ser Leu His Trp Ala Trp 290 295 300

Ser Leu Gly Gln Leu Tyr Phe Leu Pro Asp Trp Ser Thr Arg Ile Met 305 310 315 320

Phe Phe Leu Val Ser His Leu Val Gly Gly Phe Leu Leu Ser His Val

Val Thr Phe Asn His Tyr Sor Val Glu Lys Phe Ala Leu Ser Ser Asn 340 345 350

Ile Met Ser Asn Tyr Ala Cys Leu Gln Ile Met Thr Thr Arg Asn Met 355 360 365

Arg Pro Gly Arg Phe Ile Asp Trp Leu Trp Gly Gly Leu Asn Tyr Gln 370 375 380

Ile Glu His His Leu Phe Pro Thr Met Pro Arg His Asn Leu Asn Thr 385 390 395 400

Val Met Pro Leu Val Lys Glu Phe Ala Ala Ala Asa Gly Leu Pro Tyr 405 410 410

Met Val Asp Asp Tyr Phe Thr Gly Phe Trp Leu Glu Ile Glu Gln Phe 420 425 430

Arg Asn Ile Ala Asn Val Ala Ala Lys Leu Thr Lys Lys Ile Ala 435 440 445

<211> 954

<212> DNA

<213> Mortierella alpina

<220>

<221> CDS

<222> (1)..(954)

<223> A6-elongase

<400> 25

50

65

atg gcc gcc gca atc ttg gac aag gtc aac ttc ggc att gat cag ccc Met Ala Ala Ala Ile Leu Asp Lys Val Asn Phe Gly Ile Asp Gln Pro 15 10 1 5

tto gga atc aag ctc gac acc tac ttt gct cag gcc tat gaa ctc qtc Phe Gly Ile Lys Leu Asp Thr Tyr Phe Ala Gln Ala Tyr Glu Leu Val 30 25 20

acc gga aag too atc gac too tto gto tto cag gag ggo gto acg cot Thr Gly Lys Ser Ile Asp Ser Phe Val Phe Gln Glu Gly Val Thr Pro 40 45 35

ctc tcg acc cag aga gag gtc gcc atg tgg act atc act tac ttc gtc 192 Leu Ser Thr Gln Arg Glu Val Ala Met Trp Thr Ile Thr Tyr Phe Val

55

70

85

gtc atc ttt ggt ggt cgc cag atc atg aag agc cag gac gcc ttc aag Val Ile Phe Gly Gly Arg Gln Ile Met Lys Ser Gln Asp Ala Phe Lys 80 75

60

95

ctc aag ccc ctc ttc atc ctc cac aac ttc ctc ctg acg atc gcg tcc Leu Lys Pro Leu Phe Ile Leu His Asn Phe Leu Leu Thr Ile Ala Ser

90

gga tcg ctg ttg ctc ctg ttc atc gag aac ctg gtc ccc atc ctc gcc Gly Ser Leu Leu Leu Phe Ile Glu Asn Leu Val Pro Ile Leu Ala 105 110 100

aga aac gga ctt ttc tac gcc atc tgc gac gac ggt gcc tgg acc cag Arg Asn Gly Leu Phe Tyr Ala Ile Cys Asp Asp Gly Ala Trp Thr Gln

									-							
		115					120					125				
														+ ~ ~	~~~	432
	ctc Leu															452
Arg		GLu	Leu	Leu	TYL	135	Leu	ASII	IğI	Leu	140	2,5	-1-	222		
	130					135					140					
4	gac							ata	200	224	aar	cat	ctt	gag	ttc	480
	gcc															
	Ala	Asp	Thr	Vai	150	Leu	var	ьеu	БУЗ	155	шуг	110	200		160	
145					150					100						
	cac	*	***	a 9.0	CRC	tea	ato	acc	at.a	att	ctc	taa	ttt	gtc	cag	528
	His															
Leu	HIS	туг	Pne	165	пта	Ser	nec	1112	170			-1-		175		
				100					170							
	gga	~~~	+ 20	20+	+ca	n+a	tcc	taa	at.c	cct	att	acc	ctc	aac	ttg	576
Ton	Gly	Glv	Tur	Thr	Ser	Val	Ser	Trp	Val	Pro	Ile	Thr	Leu	Asn	Leu	
пеп	GLY	GLy	180		502			185					190			
			100													
act	gtc	CAC	ata	ttc	at.c	tac	tac	tac	tac	atg	cgc	tcc	gct	gcc	ggt	624
	Val															
1111	V (1.1	195				-1-	200	•	•		_	205				
		220														
att	aga	atc	t.aa	taa	aaq	caq	tac	ttg	acc	act	ctc	cag	atc	gtc	cag	672
	Arg															
	210		-		-	215	-				220					
ttc	gtt	ctt	gac	ctc	qqa	ttc	atc	tac	ttc	tgc	gcc	tac	acc	tac	ttc	720
Phe	Val	Leu	Asp	Leu	Gly	Phe	Ile	Tyr	Phe	Cys	Ala	Tyr	Thr	Tyr	Phe	
225			-		230					235					240	
acc	ttc	acc	tac	ttc	ccc	tgg	gct	ccc	aac	gtc	ggc	aag	tga	gcc	ggt	768
	Phe															
			-	245					250					255		
acc	gag	aat	qct	qct	ctc	ttt	ggc	tgc	gga	ctc	ctc	tcc	agc	tat	ctc	816
	Glu															
		2	260					265					270			
tta	ctc	ttt	atc	aac	ttc	tac	aga	att	acc	tac	aat	gcc	aag	gaa	aag	864
	Leu															

goa goo aag gag ogt gga ago aac ttt acc coc aag act gto aag too Ala Ala Lys Glu Arg Gly Ser Asn Phe Thr Pro Lys Thr Val Lys Ser ggc gga teg eec aag aag eec tee aag age aag eac ate taa Gly Gly Ser Pro Lys Lys Pro Ser Lys Ser Lys His Ile <210> 26 <211> 317 <212> PRT <213> Mortierella alpina <400> 26 Met Ala Ala Ala Ile Leu Asp Lys Val Asn Phe Gly Ile Asp Gln Pro 

Phe Gly Ile Lys Leu Asp Thr Tyr Phe Ala Gln Ala Tyr Glu Leu Val 

Thr Gly Lys Ser Ile Asp Ser Phe Val Phe Gln Glu Gly Val Thr Pro 

Leu Ser Thr Gln Arg Glu Val Ala Met Trp Thr Ile Thr Tyr Phe Val 

Val Ile Phe Gly Gly Arg Gln Ile Met Lys Ser Gln Asp Ala Pho Lys 

Leu Lys Pro Leu Phe Ile Leu His Asn Phe Leu Leu Thr Ile Ala Ser 

Gly Ser Leu Leu Leu Phe Ile Glu Asn Leu Val Pro Ile Leu Ala 

Arg Asn Gly Leu Phe Tyr Ala Ile Cys Asp Asp Gly Ala Trp Thr Gln 

Arg	Leu 130	G1u	Leu	Leu	Tyr	Tyr 135	Leu	Asn	Tyr	Leu	Val	Lys	Tyr	Trp	Glu	
	200															
Leu	Ala	Asp	Thr	Val	Phe	Leu	Val	Leu	Lys	Lys	Lys	Pro	Leu	Glu		
145					150					155					160	
Leu	His	Tyr	Phe	His	His	Ser	Met	Thr	Met	Val	Leu	Cys	Phe		Gln	
				165					170					175		
Leu	Gly	Gly	Tyr	Thr	ser	Val	ser	Trp	Val	Pro	Ile	Thr	Leu	Asn	Leu	
			180					185					190			
Thr	Val	His	Val	Phe	Met	Tyr	Tyr	Tyr	Tyr	Met	Arg	Ser	Ala	Ala	Gly	
		195					200					205				
Val	Arg	Ile	Trp	Trp	Lys	Gln	Tyr	Leu	Thr	Thr	Leu	Gln	Ile	Val	Gln	
	210					215					220					
Phe	Val	Leu	asp	Leu	Gly	Phe	Ile	Tyr	Phe	Cys	Ala	Tyr	Thr	Tyr	Phe	
225			-		230					235					240	
Ala	Phe	Thr	Tyr	Phe	Pro	Trp	Ala	Pro	Asn	Val	Gly	Lys	Cys	Ala	Gly	
			-	245					250					255		
Thr	Glu	Glv	Ala	Ala	Leu	Phe	Gly	Cys	Gly	Leu	Leu	Ser	Ser	Tyr	Leu	
		2	260					265					270			
			200													
		n	71.	3.00	Dho	There	Arc	Tla	Thr	Tur	Asn	Ala	Lvs	Ala	Lys	
Leu	ьeu	rne	TTE	ASI	rne	TAT	мц	TTG		-1-			-1 -		•-	

Ala Ala Lys Glu Arg Gly Ser Asn Phe Thr Pro Lys Thr Val Lys Ser 290 295 300

285

280

Gly Gly Ser Pro Lys Lys Pro Ser Lys Ser Lys His Ile 305 310 315

<210> 27 <211> 1320

<212>	DNA
<213>	Thraustochytriu

<220>
<221> CDS
<222> (1)..(1320)
<223> \Delta 5-desaturase

gag gog aac ggc gac aag cgg aaa acg att ctg atc gag ggc gtc ctg 96 Glu Ala Asn Gly Asp Lys Arg Lys Thr Ile Leu Ile Glu Gly Val Leu 20 25 30

tac gac gcg acg acc ttt aag cac ccg ggc ggt tcg atc atc acc ttc 144
Tyr Asp Ala Thr Asn Phe Lys His Pro Gly Gly Ser Ile Ile Asn Phe
35 40 45

ttg acc gag ggc gag gcc ggc gtg gac gcg acg cag gcg tac cgc gag 193 Leu Thr Glu Gly Glu Ala Gly Val Asp Ala Thr Gln Ala Tyr Arg Glu 50 55 60

ttt cat cag cgg tcc ggc aag gcc gac aag tac ctc aag tcg ctg ccg
Phe His Gln Arg Ser Gly Lys Ala Asp Lys Tyr Leu Lys Ser Leu Pro
65 70 75 80

aag ctg gat gog toc aag gtg gay tog ogg tte tog goe aaa gag cag 28 Lys Leu Asp Ala Ser Lys Val Glu Ser Arg Phe Ser Ala Lys Glu Gln 85 90 95

gcg cgg cgc gac gcc atg acg cgc gac tac gcg gcc ttt cgc gag gag 336
Ala Arg Arg Asp Ala Met Thr Arg Asp Tyr Ala Ala Phe Arg Glu Glu
100 105 110

ctc gtc gcc gag ggg tac ttt gac ccg tcg atc ccg cac atg att tac

Leu Val Ala Glu Gly Tyr Phe Asp Pro Ser Ile Pro His Met Ile Tyr

115 120 125

ege gte gtg gag ate gtg geg etc tte geg etc teg tte tgg etc atg Arg Val Val Glu Ile Val Ala Leu Phe Ala Leu Ser Phe Trp Leu Met tee aag goo teg eee ace teg etc gtg etg ggc gtg gtg atg aac ggc Ser Lys Ala Ser Pro Thr Ser Leu Val Leu Gly Val Val Met Asn Gly att gcg cag ggc cgc tgc ggc tgg gtc atg cac gag atg ggc cac ggg Ile Ala Gln Gly Arg Cys Gly Trp Val Met His Glu Met Gly His Gly tog tto acg ggc gtc atc tgg ctc gac gac cgg atg tgc gag ttc ttc Ser Phe Thr Gly Val Ile Trp Leu Asp Asp Arg Met Cys Glu Phe Phe tac ggc gtc ggc tgc ggc atg agc ggg cac tac tgg aag aac cag cac Tyr Gly Val Gly Cys Gly Met Ser Gly His Tyr Trp Lys Asn Gln His age aag cac cac gcc gcg ccc aac cgc ctc gag cac gat gtc gat ctc Ser Lys His His Ala Ala Pro Asn Arg Leu Glu His Asp Val Asp Lou aac acg etg ccc etg gtc gcc ttt aac gag egc gtc gtg egc aag gtc Asn Thr Leu Pro Leu Val Ala Phe Asn Glu Arg Val Val Arg Lys Val aag ccg gga tcg ctg ctg gcg ctc tgg clg cgc gtg cag gcg tao ctc Lys Pro Gly Ser Leu Leu Ala Leu Trp Leu Arg Val Gln Ala Tyr Leu ttt geg eee gte teg tge etg etc atc gge ett gge tgg acg etc tac Phe Ala Pro Val Ser Cys Leu Leu Ile Gly Leu Gly Trp Thr Leu Tyr ctg cac ccg cgc tac atg ctg cgc acc aag cgg cac atg gag ttc gtc Leu His Pro Arg Tyr Met Leu Arg Thr Lys Arg His Met Glu Phe Val 

	atc															912
Trp	Ile	Phe	Ala	Arg	Tyr	Ile	Gly	$\mathtt{Trp}$	Phe	Ser	Leu	Met	Gly	Ala	Leu	
	290					295					300					
qqc	tac	tog	aag	ggc	acc	tog	gte	ggg	atg	tac	ctg	tgc	tcg	ttc	ggc	960
	Tyr															
305	1			-	310					315					320	
ctc	ggc	tqc	att	tac	att	ttc	ctg	cag	ttc	gcc	gtc	agc	cac	acg	cac	1008
	Gly															
		-		325					330					335		
cta	ccg	qtq	acc	aac	ccg	gag	gac	cag	ctg	cac	tgg	ctc	gag	tac	gcg	1056
	Pro															
			340					345					350			
acc	gac	cac	acq	gtg	aac	att	ago	acc	aag	tcc	tgg	ctc	gtc	acg	tgg	1104
	Asp															
		355					360					365				
t.aa	atg	tca	aac	ctq	aac	ttt	cag	atc	gag	cac	cac	ctc	ttc	ccc	acg	1152
	Met															
	370					375					380					
aca	ccg	caq	ttc	ege	ttc	aag	gaa	atc	agt	cct	cgc	gtc	gag	gcc	ctc	1200
	Pro															
385					390	-				395					400	
tte	aag	cac	cac	aac	ctc	ccg	tac	tac	gac	cLg	ccc	tac	acg	agc	gog	1248
	Lys															
1110	2,5	9		405			,	•	410					415		
				40.5												
	tcg	200	900	+++	acc	aat	ctt	t.at.	tee	atc	aac	cac	tcg	gtc	ggc	1296
	Ser															
Val	Ser	1111	420	1 110				425			-		430			
			420					-25								
	gac	200	997	227	car	gac	t.aa									1320
-							-yu									
Ala	Asp	rnr	гля	ьyв	GLD		440									

-210	> 28														
	> 43														
	> PF														
		raus	toch	vtri	.12m										
<400	> 28	3													
		Lys	Glv	Ser	Glu	G1y	Arg	Ser	Ala	Ala	Arg	Glu	Met	Thr	Ala
1	2	-	•	5					10					15	
Glu	Ala	Asn	G1y	Asp	Lys	Arg	Lys	Thr	Ile	Leu	Ile	Glu	Gly	Va1	Leu
			20					25					30		
Tyr	Asp	Ala	Thr	Asn	Phe	Lys	His	Pro	G1y	Gly	Ser	Ile	Ile	Asn	Phe
		35					40					45			
Leu	Thr	Glu	Gly	Glu	Ala	Gly	Val	Asp	Ala	Thr	Gln	Ala	Tyr	Arg	G1u
	50					55					60				
Phe	His	Gln	Arg	Ser	Gly	Lys	Ala	Asp	Lys	Tyr	Leu	Lys	Ser	Leu	
65					70					75					80
Lys	Leu	Asp	Ala	Ser	Lys	Val	Glu	Ser	Arg	Phe	Ser	Ala	Lys		Gln
				85					90					95	
Ala	Arg	Arg	Asp	Ala	Met	Thr	Arg	Asp	Tyr	Ala	Ala	Phe		Glu	Glu
			100					105					110		
Leu	Va1	Ala	G1u	Gly	Tyr	Phe	Asp	Pro	ser	Ile	Pro	His	Met	Ile	Tyr
		115					120					125			
Arg	Val	Val	Glu	Ile	Val	Ala	Leu	Phe	Ala	Leu	Ser	Phe	Trp	Leu	Met
	130					135					140				
Ser	Lys	Ala	Ser	Pro	Thr	Ser	Leu	Val	Leu	Gly	Val	Val	Met	Asn	
145					150					155					160

Ile Ala Gln Gly Arg Cys Gly Trp Val Met His Glu Met Gly His Gly 

Ser	Phe	Thr	Gly 180	Val	Ile	Trp	Leu	Asp 185	Asp	Arg	Met	Сув	Glu 190	Phe	Phe
Tyr	Gly	Val 195	Gly	Cys	Gly	Met	Ser 200	Gly	His	Tyr	Trp	Lys 205	Asn	Gln	His
Ser	Lys 210	His	His	Ala	Ala	Pro 215	Asn	Arg	Leu	Glu	His 220	Asp	Val	Asp	Leu
Asn 225	Thr	Leu	Pro	Leu	Val 230	Ala	Phe	Asn	Glu	Arg 235	Val	Val	Λrg	Lys	Val 240
Lys	Pro	Gly	Ser	Leu 245	Leu	Ala	Leu	Trp	Leu 250	Arg	Val	Gln	Ala	Tyr 255	Leu
Phe	Ala	Pro	Val 260	Ser	Cys	Leu	Leu	Ile 265	Gly	Leu	Gly	Trp	Thr 270	Leu	Tyr
Leu	His	Pro 275	Arg	Tyr	Met	Leu	Arg 280	Thr	Lys	Arg	His	Met 285	Glu	Phe	Val
Trp	Ile 290	Phe	Ala	Arg	Tyr	Ile 295	Gly	Trp	Phe	Ser	100 300	Mel	Gly	Ala	Leu
Gly 305	Tyr	Ser	Pro	Gly	Thr 310	Ser	Val	Gly	Met	Tyr 315	Leu	Cys	Ser	Phe	Gly 320
Leu	Gly	Cys	Ile	<b>Tyr</b> 325	Ile	Phe	Leu	Gln	Phe 330	Ala	Val	Ser	His	Thr 335	His
Leu	Pro	Val	Thr 340	Asn	Pro	Glu	Asp	Gln 345	Leu	His	Trp	Leu	Glu 350	Tyr	Ala
Ala	Asp	His 355		Val	Asn	Ile	Ser 360	Thr	Lys	Ser	Trp	Leu 365	Val	Thr	Trp

Trp Met Ser Asn Leu Asn Phe Gln Ile Glu His His Leu Phe Pro Thr 

76 Ala Pro Gln Phe Arg Phe Lys Glu Ile Ser Pro Arg Val Glu Ala Leu 395 400 390 385 Phe Lys Arg His Asn Leu Pro Tyr Tyr Asp Leu Pro Tyr Thr Ser Ala 410 415 405 Val Ser Thr Thr Phe Ala Asn Leu Tyr Ser Val Gly His Ser Val Gly 430 420 425 Ala Asp Thr Lys Lys Gln Asp 435 <210> 29 <211> 957 <212> DNA <213> Mortierella alpina <220> <221> CDS <222> (1)..(957) <223> \Delta6-elongase <400> 29 atg gag tog att gog coa the etc coa toa aag atg cog caa gat ctg Met Glu Ser Ile Ala Pro Phe Leu Pro Ser Lys Met Pro Gln Asp Leu 15 5 10

ttt atg gac ett gee ace get ate ggt gte egg gee geg eee tat gte Phe Met Asp Leu Ala Thr Ala Ile Gly Val Arg Ala Ala Pro Tyr Val

30 25 20

gat cot ctc gag gcc gcg ctg gtg gcc cag gcc gag aag tac atc ccc Asp Pro Leu Glu Ala Ala Leu Val Ala Gln Ala Glu Lys Tyr Ile Pro 40

acg att gtc cat cac acg cgt ggg ttc ctg gtc gcg gtg gag tcg cct Thr Ile Val His His Thr Arg Gly Phe Leu Val Ala Val Glu Ser Pro

60

55

35

														ttg		240
Leu	Ala	Arg	Glu	Leu	Pro	Leu	Met	Asn	Pro	Phe	His	Val	Leu	Leu	Ile	
65					70					75					80	
atg	ctc	gct	tat	ttg	gtc	acg	gtc	ttt	gtg	ggc	atg	cag	atc	atg	aag	288
7al	Leu	Λla	Tyr	Leu	Val	Thr	Va1	Phe	Val	Gly	Met	Gln	Ile	Met	Lys	
				85					90					95		
aac	ttt	gag	cgg	ttc	gag	gtc	aag	acg	ttt	tcg	ctc	ctg	cac	aac	ttt	336
														Asn		
			100					105					110			
t.gt.	ata	gtc	tcg	atc	aqc	gcc	tac	atg	tgc	ggt	ggg	atc	ctg	tac	gag	384
														Tyr		
•		115					120					125				
act	tat	caq	qcc	aac	tat	gga	ctg	ttt	gag	aac	gct	gct	gat	cat	acc	432
														His		
	130					135					140					
ttc	aag	aat	ctt	cct	atq	qcc	aag	atg	atc	tgg	ctc	ttc	tac	ttc	tcc	480
														Phe		
145	-1-	2			150		-			155					160	
aaa	ato	ato	gag	ttt	ata	gac	acc	atg	atc	atg	gtc	ctc	aag	aag	aac	528
														Lys		
_,,				165		-			170					175		
	cac	can	atc	tcc	ttc	tta	cac	att	tac	cac	cac	agc	tcc	atc	ttc	576
														Ile		
asii	nrg	Ü	180					185	-				190			
			100													
			h ~~	++~	a+ a	900	+++	a++	gga	ccc	aac	aat	gaa	qcc	tac	624
														Ala		
Tur	TTE	_	TIP	neu	vai	1111	200	v a.s.	2120			205				
		195					200									
									ant	a+ a	2+0	at a	+ac	aac	tac	672
														ggc Gly		
Phe		ALA	Ala	Leu	Asn		Fue	TTE	птв	val	220	.100	-2-	O.L.y	~1~	
	210					215					220					

35

			tcg													720	
Tyr	Phe	Leu	Ser	Ala	Leu	Gly	Phe	Lys	${\tt Gln}$	Val	Ser	Phe	Ile	Lys	Phe		
225					230					235					240		
tac	atc	acg	aga	tcg	cag	atg	aca	cag	ttc	tgc	atg	atg	tcg	gta	cag	768	
Tyr	Ile	Thr	Arg	Ser	Gln	Met	ጥከተ	Gln	Phe	Сув	Met	Met	Ser	Val	Gln		
				245					250					255			
tct	tcc	tgg	gac	atg	tac	gcc	atg	aag	gtc	ctt	ggc	cgc	ccc	gga	tac	816	
			Asp														
		-	260					265					270				
aac	ttc	ttc	atc	acq	get	ctg	ctt	tgg	ttc	tac	atg	tgg	acc	atg	ctc	864	
			Ile														
		275					280					285					
aat	ctc	ttc	tac	aac	ttt	tac	aga	aag	aac	gcc	aag	ttg	gcc	aag	cag	912	
			Tyr														
1	290		-4-			295	-	_			300						
acc	aag	acc	gac	act	acc	aaq	gag	aag	gca	agg	aag	ttg	cag	taa		957	
			Asp														
305	27.0				310			-		315	_						
505																	
<21	0> 3	n															
<210> 30 <211> 318																	
<211> 310 <212> PRT																	
<213> Mortierella alpina																	
ZISN WOLCTGIGITY GIBING																	
<40	0> 3	0															
Met	Glu	Ser	Ile	Ala	Pro	Phe	Leu	Pro	Ser	Lys	Met	Pro	Gln	Asp	Leu		
1				5					10					15			
Phe	Met	Asp	Leu	Ala	Thr	Ala	Ile	Gly	Val	Arg	Ala	Ala	Pro	Tyr	Val		

25 Asp Pro Leu Glu Ala Ala Leu Val Ala Gln Ala Glu Lys Tyr Ile Pro 40

. 30

								-	79						
Thr	Ile	Val	His	His	Thr	Arg	Gly	Phe	Leu	Val	Ala	Val	Glu	Ser	Pro
	50					55					60				
						_				Db -	114.0	V-7	Lon	Ton	T1 ca
	Ala	Arg	Glu	Leu		Leu	Met	Asn	Pro	75	HIS	vaı	Leu	Leu	80
65					70					13					•••
Val	Leu	Ala	Tyr	Leu	Val	Thr	Val	Phe	Val	Gly	Met	Gln	Ile	Met	Lys
				85					90					95	
Asn	Phe	Glu		Phe	Glu	Val	Lys		Phe	Ser	Leu	Leu	His	Asn	Phe
			100					105					110		
Cvr	Ler	Va ¹	Ser	Ile	Ser	Ala	Tvr	Met.	Cvs	Glv	Glv	Ile	Leu	Tyr	Glu
-y-	u	115	DGI				120				-	125			
Ala	Tyr	Gln	Ala	Asn	Tyr	Gly	Leu	Phe	Glu	Asn		Ala	Asp	His	Thr
	130					135					140				
				_			·	V-L	71-	m-m	You	Dho	Tur	Dhe	Ser
	Lys	Gly	Leu	Pro	150	Ala	гда	met	116	155	Deu	rue	LYL	rne	160
145					130					100					
Lys	Ile	Met	Glu	Phe	Val	Asp	Thr	Met	Ile	Met	Val	Leu	Lys	Lys	Asn
•				165					170					175	
Asn	Arg	Gln		Ser	Phe	Leu	His		Tyr	His	His	Ser	Ser 190	Ile	Phe
			180					185					190		
Thr	Tle	Tro	Trn	Leu	Val	Thr	Phe	Val	Ala	Pro	Asn	Gly	Glu	Ala	Tyr
1441		195					200					205			
Phe	Ser	Ala	Ala	Leu	Asn	Ser	Phe	Ile	His	Val		Met	Tyr	Gly	Tyr
	210					215					220				
								_				nh.	<b>71</b> -	T~	Dhe
		Leu	Ser	Ala		Gly	Phe	Lys	Gln	Val 235	ser	Phe	тте	пĀЗ	240
225					230					233					2.40
Tvr	Ile	Thr	Ara	Ser	Gln	Met	Thr	Gln	Phe	Cys	Met	Met	Ser	Val	Gln
-1-			9	245					250	-				255	

Ser Ser Trp Asp Met Tyr Ala Met Lys Val Leu Gly Arg Pro Gly Tyr

80 265 270 260 Pro Phe Phe Ile Thr Ala Leu Leu Trp Phe Tyr Met Trp Thr Met Leu 280 285 275 Cly Leu Phe Tyr Asn Phe Tyr Arg Lys Asn Ala Lys Leu Ala Lys Gln 295 Ala Lys Ala Asp Ala Ala Lys Glu Lys Ala Arg Lys Leu Gln 310 315 305 <210> 31 <211> 1374 <212> DNA <213> Mortierella alpina <220> <221> CDS <222> (1)..(1374) <223> \Delta6-desaturase <400> 31 atg gct gct gct ccc agt gtg agg acg ttt act cgg gcc gag gtt ttg Met Ala Ala Ala Pro Ser Val Arg Thr Phe Thr Arg Ala Glu Val Leu 15 5 10 1 aat goo gag got otg aat gag ggo aag aag gat goo gag goa coo tto Asn Ala Glu Ala Leu Asn Glu Gly Lys Lys Asp Ala Glu Ala Pro Phe 25 30 20 ttg atg atc atc gac aac aag gtg tac gat gtt ege gag tte gte cet 144 Leu Met Ile Ile Asp Asn Lys Val Tyr Asp Val Arg Glu Phe Val Pro 40 45 35 gat cat cec ggt gga agt gtg att etc acg cac gtt ggc aag gac ggc 192 Asp His Pro Gly Gly Ser Val Ile Leu Thr His Val Gly Lys Asp Gly 60 55 50

act gac gtc ttt gac act ttt cac ccc gag gct gct tgg gag act ctt

81																
Thr	Asp	Val	Phe	Asp	Thr	Phe	His	Pro	Glu	Ala	Ala	Trp	Glu	Thr	Leu	
65				-	70					75					80	
acc	aac	ttt	tac	gtt	ggt	gat	att	gac	gag	agc	gac	cgc	gat	atc	aag	288
										Ser						
			•	85					90					95		
aat	gat	gac	ttt	gcg	gc¢	gag	gtc	aga	aag	ctg	cgt	acc	ttg	ttc	cag	336
Asn	Asp	Asp	Phe	Ala	Ala	Glu	Val	Arg	Lys	Leu	Arg	Thr	Leu	Phe	Gln	
	_	_	100					105					110			
tat	ctt	ggt	tac	tac	gat	tct	tcc	aag	gca	tac	tac	gcc	ttc	aag	gtc	384
Ser	Leu	Gly	Tyr	Tyr	Asp	Ser	Ser	Lys	Ala	Tyr	Tyr	Ala	Phe	Lys	Val	
		115					120					125				
tcg	ttc	aac	ctc	tgc	atc	tgg	ggt	ttg	tcg	acg	gtc	att	gtg	gcc	aag	432
Ser	Phe	Asn	Leu	Cys	Ile	Trp	Gly	Leu	Ser	Thr	Val	Ile	Val	Ala	Lys	
	130					135					140					
										ctc						480
Trp	Gly	Gln	Thr	Ser	Thr	Leu	Ala	Asn	Val	Leu	Ser	Ala	Ala	Leu	Leu	
145					150					155					160	
ggt	ctg	ttc	tgg	cag	cag	tgc	gga	tgg	ttg	gct	cac	gac	ttt	ttg	cat	528
Cly	Leu	Phe	Trp	Gln	G1n	Cys	αly	Trp	Leu	Ala	His	Asp	Phe	Leu	His	
				165					170					175		
										gat						576
His	Gln	Val	Phe	Gln	Asp	Arg	Phe	Trp	Gly	Asp	Leu	Phe	Gly	Ala	Phe	
			180					185					190			
										tog						624
Leu	Gly	Gly	Val	Cys	Gln	Gly	Phe	Ser	Ser	Ser	Trp	Trp	Lys	Asp	Lys	
		195					200					205				
										cac						672
His	Asn	Thr	His	His	Ala	Ala	Pro	Asn	Val	His	Gly	Glu	Asp	Pro	Asp	
	210					215					220					
att	gac	acc	cac	cct	ctg	ttg	acc	tgg	agt	gag	cat	gcg	ttg	gag	atg	720

82  Ile Asp Thr His Pro Leu Leu Thr Trp Ser Glu His Ala Leu Glu Met																	
	Ile	Asp	Thr	His	Pro	Leu	Leu	Thr	Trp	Ser	Glu	His	Ala	Leu	Glu	Met	
	225					230					235					240	
	ttc	t.cq	gat	qtc	cca	gat	gag	gag	ctg	acc	cgc	atg	tgg	Log	cgt	ttc	768
					Pro												
			-		245	_				250					255		
	at.o	atc	cta	aac	cag	acc	taa	ttt	tac	ttc	ccc	att	ctc	tcg	ttt	gcc	816
					Gln												
				260			-		265					270			
	cat	ctc	+cc	+aa	tgc	ctc	caq	tee	att	ctc	ttt	qtq	ctg	cct	aac	ggt	864
					Cys												
	nrg	Бец	275	14.5	0,0	200		280					285				
			213														
		~~~	CRC	220	ccc	tea	aac	aca	cat	ata	ccc	atc	tcq	ttg	gtc	gag	912
					Pro												
	GIII	290	птв	шув	FLO	561	295	2224				300					
		290															
			4		gcg	a+ a	ana	+ ~ ~	acc	+ aa	tac	ct.c	acc	acc	atq	ttc	960
					Ala												
		ьец	Ser	Leu	MIG	310	пть	ııp	1112	-~ L	315					320	
	305					310					525						
					gat					a+ a	at a	+ = 0	+++	++-	ata	ton	1008
					Asp												
	Leu	Phe	Ile	T.ys		Pro	VAI	ASI	met	330	Val	TAT	rne	Бец	335	DUL	
					325					330					555		
												++-	4.00	ata	220	C2C	1056
					gga												2000
	Gln	Ala	Val		Gly	Asn	Leu	Leu		116	Vai	Pne	Ser	350	мын	nro	
				340					345					350			
																	1104
					gtg												1104
	Asn	Gly	Met	Pro	Val	Ile	Ser	Lys	Glu	Glu	Ala	Val		Met	Asp	Phe	
			355					360					365				
					atc												1152
	Phe	Thr	Lys	Gln	Ile	Ile	Thr	Gly	Arg	Asp	Val	His	Pro	Gly	Leu	Phe	
		370					375					380					
	gcc	aac	tgg	ttc	acg	ggt	gga	ttg	aac	tat	cag	atc	gag	cac	cac	ttg	1200

83 Ala Asn Trp Phe Thr Gly Gly Leu Asn Tyr Gln Ile Glu His His Leu 390 395 400 tto cot tog atg cot ogo cac aac ttt toa aag atc cag cot got gto Phe Pro Ser Met Pro Arg His Asn Phe Ser Lys Ile Gln Pro Ala Val 405 410 415 gag acc ctg tgc aaa aag tac aat gtc cga tac cac acc acc ggt atg Glu Thr Leu Cys Lys Lys Tyr Asn Val Arg Tyr His Thr Thr Gly Met 430 420 425 atc gag gga act gca gag gtc ttt agc cgt ctg aac gag gtc tcc aag 1344 Ile Glu Gly Thr Ala Glu Val Phe Ser Arg Leu Asn Glu Val Ser Lys 445 440 435 1374 gct gcc tcc aag atg ggt aag gcg cag taa Ala Ala Ser Lys Met Gly Lys Ala Gln 450 455 <210> 32 <211> 457 <212> PRT <213> Mortierella alpina <400> 32 Met Ala Ala Pro Ser Val Arg Thr Phe Thr Arg Ala Glu Val Leu 10 15 1 Asn Ala Glu Ala Leu Asn Glu Gly Lys Lys Asp Ala Glu Ala Pro Phe 20 25

Leu Met Ile Ile Asp Asn Lys Val Tyr Asp Val Arg Glu Phe Val Pro $35 \hspace{1cm} 40 \hspace{1cm} 45$

Asp His Pro Gly Gly Ser Val Ile Leu Thr His Val Gly Lys Asp Gly 50 55 60

Thr Asp Val Phe Asp Thr Phe His Pro Glu Ala Ala Trp Glu Thr Leu 65 70 75 80

Ala	Asn	Phe	Tyr	Val 85	Gly	Asp	Ile	Asp	Glu 90	Ser	Asp	Arg	Asp	11e 95	Lys
Asn	Asp	Asp	Phe 100	Ala	Ala	G1u	Val	Arg 105	Lys	Leu	Arg	Thr	Leu 110	Phe	Gln
Ser	Leu	Gly 115	Tyr	Tyr	Asp	Ser	Ser 120	Lys	Ala	Tyr	Tyr	Ala 125	Phe	Lys	Val
ser	Phe 130	Asn	Leu	Сув	Ile	тгр 135	Gly	Leu	Ser	Thr	Val 140	Ile	Val	Ala	Lys
Trp 145	Gly	Gln	Thr	Ser	Thr 150	Leu	Ala	Asn	Val	Leu 155	Ser	Ala	Ala	Leu	Leu 160
Gly	Leu	Phe	Trp	Gln 165	Gln	Сув	Gly	Trp	Leu 170	Ala	His	Asp	Phe	Leu 175	His
His	Gln	Val	Phe 180	Gln	Asp	Arg	Phe	Trp 185	Gly	Asp	Leu	Phe	Gly 190	Ala	Phe
Leu	Gly	Gly 195	Val	Cys	Gln	Gly	Phe 200	ser	ser	Ser	Trp	тгр 205	Lys	Asp	Lys
His	Asn 210	Thr	His	His	Ala	Ala 215	Pro	Asn	Val	His	Gly 220	Glu	Asp	Pro	Asp
Ile 225	Asp	Thr	His	Pro	Leu 230	Leu	Thr	Trp	Ser	Glu 235	His	Ala	Leu	Glu	Met 240
Phe	Ser	Asp	Val	Pro 245	Asp	Glu	Glu	Leu	Thr 250	Arg	Met	Trp	Ser	Arg 255	Phe
Met	Val	Leu	Asn 260	Gln	Thr	Trp	Phe	Tyr 265	Phe	Pro	Ile	Leu	Ser 270	Phe	Ala
Arg	Leu	Ser 275	Trp	Cys	Leu	Gln	Ser 280	Ile	Leu	Phe	Val	Leu 285	Pro	Asn	Gly

Gln Ala His Lys Pro Ser Gly Ala Arg Val Pro Ile Ser Leu Val Glu

Gln Leu Ser Leu Ala Met His Trp Thr Trp Tyr Leu Ala Thr Met Phe

Leu Phe Ile Lys Asp Pro Val Asn Met Leu Val Tyr Phe Leu Val Ser

Gln Ala Val Cys Gly Asn Leu Leu Ala Ile Val Phe Ser Leu Asn His

Asn Gly Met Pro Val Ile Ser Lys Glu Glu Ala Val Asp Met Asp Phe

Phe Thr Lys Gln Ile Ile Thr Gly Arg Asp Val His Pro Gly Leu Phe

Ala Asn Trp Phe Thr Gly Gly Leu Asn Tyr Gln Ile Glu His His Leu

Phe Pro Ser Met Pro Arg His Asn Phe Ser Lys Ile Gln Pro Ala Val

Glu Thr Leu Cys Lys Lys Tyr Asn Val Arg Tyr His Thr Thr Gly Met

Ile Glu Gly Thr Ala Glu Val Phe Ser Arg Leu Asn Glu Val Ser Lys

Ala Ala Ser Lys Met Gly Lys Ala Gln

<210> 33

<211> 3598

<212> DNA

<213> Unknown

<220>

<223> Sequence constitutes a plant promoter-terminator expression cassette in vector pUC19

<400> 33 togogogttt eggtgatgae ggtgaaaace tetgacacat geageteeeg gagaeggtea 60 cagettgtet gtaageggat geegggagea gacaageeeg teagggegeg teagegggtg 120 ttggcgggtg tcggggctgg cttaactatg cggcatcaga gcagattgta ctgagagtgc 180 accatatgcg gtgtgaaata ccgcacagat gcgtaaggag aaaataccgc atcaggcgcc 240 attogocatt caggotgogo aactgttggg aagggogato ggtgogggoo tottogotat 300 tacgccagct ggcgaaaggg ggatgtgctg caaggcgatt aagttgggta acgccagggt 360 tttoccagtc acgacgttgt aaaacgacgg ccagtgaatt cggcgcgccg agctcctcga 420 gcaaatttac acattgccac taaacgtcta aacccttgta atttgttttt gttttactat 480 gtgtgttatg tatttgattt gcgataaatt tttatatttg gtactaaatt tataacacct 540 tttatgctaa cgtttgccaa cacttagcaa tttgcaagtt gattaattga ttctaaatta 600 tttttgtctt ctaaatacat atactaatca actggaaatg taaatatttg ctaatatttc 660 tactatagga gaattaaagt gagtgaatat ggtaccacaa ggtttggaga tttaattgtt 720 gcaatgotgc atggatggca tatacaccaa acalicaata attottgagg ataataatgg 780 taccacacaa gatttgaggt gcatgaacgt cacgtggaca aaaggtttag taatttttca 840 agacaacaat gttaccacac acaagttttg aggtgcatgc atggatgccc tgtggaaagt 900 ttaaaaaatat tttggaaatg atttgcatgg aagccatgtg taaaaccatg acatccactt 960 ggaggatgca ataatgaaga aaactacaaa tttacatgca actagttatg catgtagtct 1020 atataatgag gattttgcaa tactttcatt catacacact cactaagttt tacacgatta 1080 taatttette atagecagee caeegeggtg ggeggeegee tgeagtetag aaggeeteet 1140 getttaatga gatatgegag acgeetatga tegeatgata tttgetttea attetgttgt 1200 goacgttgta aaaaacctga gcatgtgtag ctcagatcct taccgccggt ttcggttcat 1260 totaatgaat atatoacccg ttactatcgt atttttatga ataatattct ccgttcaatt 1320 tactgattgt ccgtcgacga attcgagctc ggcgcgccaa gottggcgta atcatggtca 1380 tagctgtttc ctgtgtgaaa ttgttatccg ctcacaattc cacacaacat acgagccgga 1440 agcataaagt gtaaagcctg gggtgcctaa tgagtgagct aactcacatt aattgcgttg 1500 cgctcactgc ccgctttcca gtcgggaaac ctgtcgtgcc agctgcatta atgaatcggc 1560 caacgegegg ggagaggogg tttgegtatt gggegetett cegetteete geteactgae 1620 togotgogot oggtogttog gotgoggoga goggtatoag otcactoaaa ggoggtaata 1680 cggttatcca cagaatcagg ggataacgca ggaaagaaca tgtgagcaaa aggccagcaa 1740 aaggccagga accgtaaaaa ggccgcgttg ctggcgtttt tccataggct ccgccccct 1800 gacgagcatc acaaaaatcg acgctcaagt cagaggtggc gaaacccgac aggactataa 1860 agataccagg cgtttccccc tggaagetcc ctcgtgcgct ctcctgttcc gaccctgccg 1920 cttaccggat acctgtccgc ctttctcccl tcgggaagcg tggcgcttto tcatagctca 1980 cgctgtaggt atctcagttc ggtgtaggtc gttcgctcca agctgggctg tgtgcacgaa 2040 cocceegtte agccegaceg etgegeetta teeggtaact ategtettga gteeaacecg 2100 gtaagacacg acttatcgcc actggcagca gccactggta acaggattag cagagcgagg 2160 tatgtaggeg gtgctacaga gttcttgaag tggtggccta actacggcta cactagaagg 2220 acagtatttg gtatctgcgc tctgctgaag ccagttacct tcggaaaaag agttggtagc 2280

tottgatoog gcaaacaaac caccgotggt agcggtggtt tttttgtttg caagcagcag 2340 attacgcgca gaaaaaaagg atctcaagaa gatcctttga tcttttctac ggggtctgac 2400 gotoagtgga acgaaaactc acgttaaggg attttggtca tgagattatc aaaaaggatc 2460 ttcacctaga tccttttaaa ttaaaaatga agttttaaat caatctaaag tatatatgag 2520 taaacttggt ctgacagtta ccaatgctta atcagtgagg cacctatctc agcgatctgt 2580 ctatttcgtt catccatagt tgcctgactc cccgtcgtgt agataactac gatacgggag 2640 ggottaccat ctggccccag tgctgcaatg ataccgcgag acccacgctc accggctcca 2700 gatttatcag caataaacca gccagccgga agggccgagc gcagaagtgg tcctgcaact 2760 ttatocgcct coatcoagto tattaattgt tgccgggaag ctagagtaag tagttcgcca 2820 gttaatagtt tgcgcaacgt tgttgccatt gctacaggca togtggtgtc acgctcgtcg 2880 tttggtatgg cttcattcag ctccggttcc caacgatcaa ggcgagttac atgatccccc 2940 atgttgtgca aaaaagcggt tagctccttc ggtcctccga tcgttgtcag aagtaagttg 3000 gccgcagtgt tatcactcat ggttatggca gcactgcata attctcttac tgtcatgcca 3060 tccgtaagat gcttttctgt gactggtgag tactcaacca agtcattctg agaatagtgt 3120 atgeggegae egagttgete ttgeceggeg teaataeggg ataataeege gecacatage 3180 agaactttaa aagtgctcat cattggaaaa cgttcttcgg ggcgaaaact ctcaaggatc 3240 ttaccgctgt tgagatccag ttcgatgtaa cccactcgtg cacccaactg atcttcagca 3300 tottttactt toaccagogt ttotgggtga gcaaaaacag gaaggcaaaa tgccgcaaaa 3360 aagggaataa gggcgacacg gaaatgttga atactcatac tcttcctttt tcaatattat 3420 tgaagcattt atcagggtta ttgtctcatg agcggataca tatttgaatg tatttagaaa 3480 aataaacaaa taggggttoo gogcacattt coccgaaaag tgocacctga cgtctaagaa 3540 accattatta toatgacatt aacctataaa aataggugta loacgaggoo ctttogto 3598

<210> 34

<211> 3590

<212> DNA

<213> Unknown

<220>

<223> Sequence constitutes a plant
promoter-terminator expression cassette in vector
pUC19

<400-34</p>
teggggttt oggtgatgae ggtgaaaace tetgacacat geageteecg gagaeggtea 60
cagettgtet gtaageggat geegggagea gacaageegg teagggggeg teagegggtg 120
ttggegggtg teggggetgg ettaactatg eggcateaga geagattgta etgagagtge 180
accatatgeg gtgtgaaata eegeaagat gegtaaggag aaaatacege ateagggege 240
attegeeatt eaggetgee aactgttgg aagggegate ggtgegggee tettegetat 300
taegeeaget ggegaaaggg ggatgtgetg eaaggggatt aagttgggta aegeeaggg 360
ttteeceagte aegaegtgt aaaacegaegg eeagtgaatt eggegegee aetteega 420
geaaatttae aeattgeeae taaacgteta aaceettgta attgtttt gttttactat 480
gtgtgttatg tattgattt gegataaatt tttatatttg gtactaaatt tataacacet 540
tttatgetaa egtttgeeae eaettageaa tttgeaagt gattaattga ttetaaatta 600
tttttgtet etaaatacat atactaatea aetggaaatg taaatattig etaatattte 660
tactatagga gaattaaagt gagtgatat ggtaceaeaa ggtttggag tttaattgtt 720

gcaatgctgc atggatggca tatacaccaa acattcaata attcttgagg ataataatgg 780 taccacacaa gatttgaggt gcatgaacgt cacgtgyaca aaaggtttag taatttttoa 840 agacaacaat gttaccacac acaagttttg aggtgcatgc atggatgccc tgtggaaagt 900 ttaaaaatat tttggaaatg atttgcatgg aagccatgtg taaaaccatg acatccactt 960 ggaggatgca ataatgaaga aaactacaaa tttacatgca actagttatg catgtagtct 1020 atataatgag gattttgcaa tactttcatt catacacact cactaagttt tacacgatta 1080 taatttette atageeageg gateegatat egggeeeget agegttaace etgetttaat 1140 gagatatgcg agacgcctat gatcgcatga tatttgcttt caattctgtt ytycacgttg 1200 taaaaaacct gagcatgtgt agctcagatc cttaccgccg gtttcggttc attctaatga 1260 atatatcacc cgttactatc gtatttttat gaataatatt ctccgttcaa tttactgatt 1320 gtoogtogac gaattogage toggogogoc aagettggog taatcatggt catagetgtt 1380 tcctgtgtga aattgttatc cgctcacaat tccacacaac atacgagccg gaagcataaa 1440 gtgtaaagcc tggggtgcct aatgagtgag ctaactcaca ttaattgcgt tgcgctcact 1500 goodgottto cagtogggaa acctgtogtg coagotgoat taatgaatog gooaacgogo 1560 ggggagaggc ggtttgcgta tigggcgctc thocgcttcc togctcactg actogctgcg 1620 cteggtegtt eggetgegge gageggtate ageteactea aaggeggtaa taeggttate 1680 cacagaatca ggggataacg caggaaagaa catgtgagca aaaggccagc aaaaggccag 1740 gaaccgtaaa aaggccgcgt tgctggcgtt tttccatagg ctccgccccc ctgacgagca 1800 tcadaaaaat cgacgctcaa gtcagaggtg gcgaaacccg acaggactat aaagatacca 1860 ggcgtttccc cctggaagct ccctcgtgcg ctctcctgtt ccgaccctgc cgcttaccgg 1920 atacetgtee geettetee ettegggaag egtggegett teteataget eaegetgtag 1980 gtateteagt teggtgtagg tegttegete caagetggge tgtgtgcaeg aaoceeegt 2040 teagecegae egetgegeet tateeqqtaa etategtett gagteeaace eggtaagaca 2100 cgacttatcg ccactggcag cagccactgg taacaggatt agcagagcga ggtatgtagg 2160 cggtgctaca gagttcttga agtggtggcc taactacggc tacactagaa ggacagtatt 2220 tggtatctgc gctctgctga agccagttac cttcggaaaa agagttggta gctcttgatc 2280 cggcaaacaa accaccgctg gtagcggtgg tttttttgtt tgcaagcago agattacgcg 2340 cagaaaaaaa ggatctcaag aagatccttt gatcttttct acggggleig acgctcagtg 2400 gaacgaaaac toacgttaag ggattttggt catgagatta toaaaaagga tottoacota 2460 gatoctttta aattaaaaat gaagttttaa atcaatctaa agtatatatg agtaaacttg 2520 gtotgacagt taccaatgct taatcagtga ggcacctatc tcagcgatct gtotatttcg 2580 ttcatccata gttgcctgac tccccgtcgt gtagataact acgatacggg agggcttacc 2640 atotggcccc agtgctgcaa tgataccgcg agacccacgc tcaccggctc cagatttatc 2700 agcaataaac cagccagccg gaagggccga gcgcagaagt ggtcctgcaa ctttatccgc 2760 ctccatccag totallaatt gttgccggga agctagagta agtagttcgc cagttaatag 2820 tttgcgcaac gttqttgcca ttgctacagg catcgtggtg tcacgctcgt cgtttggtat 2880 ggottcattc agctccggtt cccaacgatc aaggcgagtt acatgatccc ccatgttgtg 2940 caaaaaagcg gttageteet teggteetee gategttgte agaagtaagt tggeegeagt 3000 gttatcactc atggttatgg cagcactgca taattetett actgtcatgc catcegtaag 3060 atgettttet gtgactggtg agtactcaac caagtcatte tgagaatagt gtatgeggeg 3120

accyagttyc tettgecogy cyteatacy ggataatace gegecacata geagaacttt 3180

aaaagtgete ateattggaa aacgttette ggygugaaaa eleteaagga tettacogot 3240

gttgagatee agtteggt aacceated tgeacceaac tgatetteag catetttae 3300

ttteaccage gtttetgggt gagcaaaaac aggaaggeaa aatgeegeaa aaaagggaat 3360

aagggegaca eggaaatgtt gaatacteat actetteett ttteaatatt attgaageat 3420

ttatcagggt tattgteea tgageggata catatttgaa tgatttaga aaaacaataa 3480

aataggggtt cegegeacat tteecegaaa agtgeeacet gaegtetaag aaaccattat 3540

tatcatgaca ttaacctata aaaataggeg tatcacegagg ceetttegte 3590

<210> 35

<211> 3584

<212> DNA

<213> Unknown

<220>

<223> Sequence constitutes a plant promoter-terminator expression cassette in vector pUC19

<400> 35

tegegegett eggegatgar gytgaaaac tetgacaat geagetees gagaeggtna 60

cagettytet gtaageggat geegggaga gacaageeeg teaggggeg teagegggt 120

ttggegggtg teggggetgg ettaaetat eggeateaga geagattgta etgagagtge 180

accatatgeg gytgaaata eegeacagat gegtaaggag aaaatacee ateaggegee 240

attegeeatt eaggetgeg aactgttgg aaggegate gytgegggee tettegetat 300

taegeeaget gyegaaaggg gyatgteet eaaggegatt aagttgggt aegeagggt 360

tttcccagtc acgacgttgt aaaacgacgg ccagtgaatt cggcgcgccg agctcctcga 420 gcaaatttac acattgccac taaacgtcta aacccttgta atttgttttt gttttactat 480 gtgtgttatg tatttgattt gcgataaatt tttatatttg gtactaaatt tataacacct 540 tttatgctaa cgtttgccaa cacttagcaa tttgcaagtt gattaattga ttctaaatta 600 tttttgtctt ctaaatacat atactaatca actggaaatg taaatatttg ctaatatttc 660 tactatagga gaattaaagt gagtgaatat ggtaccacaa ggtttggaga tttaattgtt 720 gcaatgctgc atggatggca tatacaccaa acattcaata attcttgagg ataataatgg 780 taccacacaa gatttgaggt gcatgaacgt cacgtggaca aaaggtttag Laatttttca 840 agacaacaat gttaccacac acaagttttg aggtgcatgc atggatgccc tgtggaaagt 900 ttaaaaaatat tttggaaatg atttgcatgg aagccatgtg taaaaccatg acatccactt 960 ggaggatgca ataatgaaga aaactacaaa tttacatgca actagttatg catgtagtct 1020 atataatgag gattttgcaa tactttcatt catacacact cactaagttt tacacgatta 1080 taatttotto atagocagoa gatotgoogg catogatoco gggccatggo otgotttaat 1140 gagatatgcg agacgcctat gatcgcatga tatttgcttt caattctgtt gtgcacgttg 1200 taaaaaaacct gagcatgtyl agctcagatc cttacogoog gtttoggtto attctaatga 1260 atatatcaco ogitaciato giattittai gaataatati otoogitoaa ittacigati 1320 gtccgtcgac gagctcggcg cgccaagctt ggcgtaatca tggtcatagc tgtttcctgt 1380 gtgaaattgt tatccgctca caattccaca caacatacga gccggaagca taaagtgtaa 1440 agoctggggt gcctaatgag tgagctaact cacattaatt gcgttgcgct cactgcccgc 1500 tttccagtcg ggaaacctgt cgtgccagct gcattaatga atcggccaac gcgcggggag 1560

aggoggtttg cgtattgggc getetteege tteetegete actgaetege tgegeteggt 1620 cgttcggctg cggcgagcgg tatcagctca ctcaaaggcg gtaatacggt tatccacaga 1680 atcaggggat aacgcaggaa aqaacatgtg agcaaaaggc cagcaaaagg ccaggaaccg 1740 taaaaaggcc gcgttgctgg cgtttttcca taggctccgc cccctgacg agcatcacaa 1800 aaatogacgo toaagtoaga ggtggcgaaa cocgacagga ctataaagat accaggogtt 1860 tocccotgga agotocotcg tgcgctotcc tgttccgacc ctgccgctta ccggatacct 1920 gtccgccttt ctcccttcgg gaagcgtggc gctttctcat agctcacgct gtaggtatct 1980 cagtteggtg taggtegtte getecaaget gggetgtgtg caegaacee cegtteagee 2040 egacegetge geethateeg gtaactateg tettgagtee aacceggtaa gacacgaett 2100 atogocactg gcagcagcca ctggtaacag gattagcaga gcgaggtatg taggcggtgc 2160 tacagagttc ttgaagtggt ggcctaacta cggctacact agaaggacag tatttggtat 2220 ctgcgctctg ctgaagccag ttaccttcgg aaaaagagtt ggtagctctt gatccggcaa 2280 acaaaccacc gctggtagcg gtggtttttt tgtttgcaag cagcagatta cgcgcagaaa 2340 aaaaggatot caagaagato otttgatott ttotacgggg totgacgoto agtggaacga 2400 aaactuacgt taagggattt tggtcatgag attatoaaaa aggatcttca cctagatcct 2460 tttaaattaa aaatgaagtt ttaaatcaat ctaaagtata tatgagtaaa cttggtctga 2520 cagttaccaa tgcttaatca gtgaggcacc tatctcagcg atctgtctat ttcgttcatc 2580 catagttgcc tgactccccg tcgtgtagat aactacgata cgggagggct taccatctgg 2640 coccagtget gcaatgatac cgcgagaccc acgetcaccg gctccagatt tatcagcaat 2700 aaaccagcca gccggaaggg ccgagcgcag aagtggtcct gcaactttat ccgcctccat 2760 ccagtotatt aattgttgcc gggaagctag agtaagtagt tcgccagtta atagtttgcg 2820 caacgttgtt gccattgcta caggcatcgt ggtgtcacgc tcgtcgtttg gtatggcttc 2880 atteagetee ggtteecaac gateaaggeg agttacatga tececeatgt tgtgcaaaaa 2940 ageggttage teetteggte etcegategt tgtcagaagt aagttggeeg cagtgttate 3000 acteatggtt atggcagcac tgcataattc tcttactgtc atgccatccg taagatgctt 3060 ttotgtgact ggtgagtact caaccaagtc attotgagaa tagtgtatgc ggcgaccgag 3120 ttgctcttgc ccggcgtcaa tacgggataa taccgcgcca catagcagaa ctttaaaagt 3180 gotcatcatt ggaaaacgtt ottoggggcg aaaactotca aggatottac cyclyttgag 3240 atocagttog atgtaaccca ctcgtgcacc caactgatct tcaqcatctt ttactttcac 3300 cagogtttot gggtgagcaa aaacaggaag gcaaaatgcc gcaaaaaagg gaataagggc 3360 gacacggaaa tgttgaatac tcatactctt cctttttcaa tattattgaa gcatttatca 3420 qggttattgt ctcatgagcg gatacatatt tgaatgtatt tagaaaaata aacaaatagg 3480 ggttccgcgc acatttcccc gaaaagtgcc acctgacgtc taagaaacca ttattatcat 3540 gacattaacc tataaaaata ggcgtatcac gaggcccttt cgtc 3584

<210> 36

<211> 4507

<212> DNA

<213> Unknown

<220>

<223> Sequence constitutes a plant promoter-terminator expression cassette in vector bUC19

<400> 36 togogogitt oggigatgac ggigaaaacc totgacacat gcageteceg gagacggica 60 cagettgtet gtaageggat geeggyagea gacaageeeg teageggegeg teagegggtg 120 ttggcgggtg tcggggctgq cttaactatg cggcatcaga gcagattgta ctgagagtgc 180 accatatgcg gtgtgaaata ccgcacagat gcgtaaggag aaaataccgc atcaggcgcc 240 attogccatt caggotgogc aactgttggg aagggcgatc ggtgcgggcc tottcgctat 300 tacgccaget ggcgaaaggg ggatgtgctg caaggcgatt aagttgggta acgccagggt 360 tttcccagtc acgacgttgt aaaacgacgg ccagtgaatt cggcgcgccg agctcctcga 420 gcaaatttac acattgccac taaacgtcta aacccttgtm alligittit gttttactat 480 gtgtgttatg tatttgattt gcgataaatt tttatatttg gtactaaatt tataacacct 540 tttatgctaa cgtttgccaa cacttagcaa tttgcaagtt gattaattga ttctaaatta 600 tttttgtctt ctaaatacat atactaatca actggaaatg taaatatttg ctaatatttc 660 tactatagga gaattaaagt gagtgaatat ggtaccacaa ggtttggaga tttaattgtt 720 gcaatgctgc atggatggca tatacaccaa acattcaata attcttgagg ataataatgg 780 taccacacaa gatttgaggt gcatgaacgt cacgtggaca aaaggtttag taatttttca 840 agacaacaat gllaccacac acaagttttg aggtgcatgc atggatgccc tgtggaaagt 900 ttaaaaaatat tttggaaatg atttgcatgg aagccatgtg taaaaccatg acatccactt 960 ggaggatgca ataatgaaga aaactacaaa tttacatgca actagttatg catgtagtct 1020 atataatgag gatttigcaa tactitcatt catacaçact cactaagtti tacacgatta 1080 taatttette atageeagee cacegeggtg ggeggeegee tgeagtetag aaggeeteet 1140 gotttaatga gatatgogag acgootatga togoatgata tittgotttoa attotgttgt 1200

gcacgttgta aaaaacctga gcatgtgtag ctcagatcct taccgccggt ttcggttcat 1260 totaatgaat alalcaccog ttactatogt atttttatga átastattot cogttoaatt 1320 tactgattgt cogtcgagca aatttacaca ttgccactaa acgtctaaac ccttgtaatt 1380 tgtttttgtt ttactatgtg tgttatgtat ttgatttgcg ataaattttt atatttggta 1440 ctaaatttat aacacctttt atgctaacgt ttgccaacac ttagcaattt gcaagttgat 1500 taattgatto taaattattt tigtottota aatacatata otaatcaact ggaaatgtaa 1560 atatttgcta atatttctac tataggagaa ttaaagtgag tgaatatggt accacaaggt 1620 ttggagattt aattgttgca atgolgoatg gatggcatat acaccaaaca ttcaataatt 1680 cttgaggata ataatggtac cacacaagat ttgaggtgca tgaacgtcac gtggacaaaa 1740 ggtttagtaa tttttcaaga caacaatgtt accacacaca agttttgagg tgcatgcatg 1800 gatgccctgt ggaaagttta aaaatatttt ggaaatgatt tgcatggaag ccatgtgtaa 1860 aaccatgaca tocacttgga ggatgcaata atgaagaaaa ctacaaattt acatgcaact 1920 agttatgcat gtagtctata taatgaggat tttgcaatac tttcattcat acacactcac 1980 taagttttac acgattataa tttcttcata gccagcggat ccgatatcgg gcccgctagc 2040 gttaaccctg ctttaatgag atatgcgaga cgcctatgat cgcatqatat ttgctttcaa 2100 ttotgttgtg cacgttgtaa aaaacctgag catgtgtagc tcagatcctt accgccggtt 2160 toggttoatt otaatgaata tatoaccogt tactatogta tittitatgaa taatattoto 2220 cyttcaattt actgattyte cytegaegaa ttegageteg gegegeeaag ettggegtaa 2280 tcatggtcat agotgtttcc tgtgtgaaat tgttatccgc tcacaattcc acacaacata 2340 cgagccggaa gcataaagtg taaagcctgg ggtgcctaat gagtgagcta actcacatta 2400

attgcgttgc gctcactgcc cgctttccag tcgggaaacc tgtcgtgcca gctgcattaa 2460 tgaatcggcc aacgcgcggg gagaggcggt ttgcgtattg ggcgctcttc cgcttcotog 2520 otcactgact egetgegete ggtegttegg etgeggegag eggtateage teacteaaag 2580 goggtaatac ggttatocac agaatcaggg gataacgcag gaaagaacat gtgagcaaaa 2640 ggccagcaaa aggccaggaa ccgtaaaaag gccgcgttgc tggcgttttt ccataggctc 2700 cgccccctg acgagcatca caaaaatcga cgctcaagtc agaggtggcg aaacccgaca 2760 ggactataaa gataccaggo gtttccccct ggaagctccc tcgtgcgctc tcctgttccg 2820 accetgeege ttaceggata cetgteegee tttetecett egggaagegt ggegetttet 2880 catagotoac gotgtaggta totcagttog gtgtaggtog ttcgctccaa gotgggctgt 2940 gtgcacgaac cccccgttca gcccgaccgc tgcgccttat ccggtaacta tcgtcttgag 3000 tccaaccogg taagacacga cttatcgcca ctggcagcag ccactggtaa caggattagc 3060 agagcgaggt atgtaggcgg tgctacagag ttcttgaagt ggtggcctaa ctacggctac 3120 actagaagga cagtatttgg tatctgcgct ctgctgaagc cagttacctt cggaaaaaga 3180 gttggtaget ettgateegg caaacaaace accgetggta geggtggttt ttttgtttgc 3240 aagcagcaga ttacgcgcag aaaaaaagga tctcaagaag atootttgat cttttctacg 3300 gggtetgaeg eteagtggaa egaaaaetea egttaaggga tittggteat gagattatea 3360 aaaaggatot toacotagat oottitaaat taaaaatgaa gtittaaato aatotaaagt 3420 atatatgagt aaacttggte tgacagttac caatgettaa teagtgagge acetatetea 3480 gogatotgto tatttogtto atocatagtt gootgactoo cogtogtgta gataactaog 3540 atacgggagg gcttaccatc tggccccagt gctgcaatga taccgcgaga cccacgctca 3600

ccggctccag atttatcagc aataaaccag ccagccggaa gggccgagcg cagaagtggt 3660 cotgoaactt talcogooto catocogtot attaattgtt googggaage tagagtaagt 3720 agttoqccag ttaatagttt gcgcaacgtt gttgccattg ctacaggcat cgtggtgtca 3780 cgctcgtcgt ttggtatggc ttcattcagc tccggttccc aacgatcaag gcgagttaca 3840 tgatececca tgttgtgcaa aaaageggtt ageteetteg gteeteegat egttgteaga 3900 agtaagttgg ccgcagtgtt atcactcatg gttatggcag cactgcataa ttctcttact 3960 gtcatgccat ccgtaagatg cttttctgtg actggtgagt actcaaccaa gtcattctga 4020 gaatagtgta tgcggcgacc gagttyctot Lgcccggcgt caatacggga taataccgcg 4080 ccacatagca gaactttaaa agtgctcatc attggaaaac gttcttcggg gcgaaaactc 4140 tcaaggatet tacegetgtt gagatecagt tegatgtaac ceaetegtge acceaactga 4200 tottcagcat cttttacttt caccagcgtt totgggtgag caaaaacagg aaggcaaaat 4260 gccgcaaaaa agggaataag ggcgacacgg aaatgttgaa tactcatact cttccttttt 4320 caatattatt gaagcattta tcagggttat tgtctcatga gcggatacat atttgaatgt 4380 atttagaaaa ataaacaaat aggggtteeg egeacattte ceegaaaagt geeacelgae 4440 gtotaagaaa coattattat catgacatta acctataaaa ataggogtat cacqaggooc 4500 4507 tttcqtc

<210> 37

<211> 5410

<212> DNA

<213> Unknown

<223> Sequence constitutes a plant promoter-terminator expression cassette in vector nUC19

<400> 37 ttttggaaat gatttgcatg gaagccatgt gtaaaaccat gacatccact tggaggatgc 60 aataatgaag aaaactacaa atttacatgc aactagttat gcatgtagtc tatataatga 120 ggattttgca atactttcat toatacacac toactaagtt ttacacgatt ataatttctt 180 catagocago ggatocgata togggocogo tagogttaao cotgotttaa tgagatatgo 240 gagacgccta tgatcgcatg atatttgctt tcaattctgt tgtgcacgtt gtaaaaaacc 300 tgagcatgtg tagctcagat ccttaccgcc ggtttcgyll cattctaatg aatatatcac 360 cogttactat ogtattttta tgaataatat totoogttoa atttactgat tgtccgtoga 420 gcaaatttac acattgccac taaacgtcta aacccttgta atttgttttt gttttactat 480 gtgtgttatg tatttgattt gcgataaatt tttatatttg gtactaaatt tataacacct 540 tttatgctaa cgtttgccaa cacttagcaa tttgcaagtt gattaattga ttctaaatta 600 tttttgtctt ctaaatacat atactaatca actggaaatg taaatatttg ctaatatttc 660 tactatagga gaattaaagt gagtgaatat ggtaccacaa ggtttggaga tttaattgtt 720 yoaalgotgo atggatggoa tatacaccaa acattcaata attottgagg ataataatgg 780 taccacacaa gatttgaggt gcatgaacgt cacgtggaca aaaggtttag taatttttca 840 agacaacaat gttaccacac acaagttttg aggtgcatgc atggatgccc tgtggaaagt 900 ttaaaaaatat tttggaaatg atttgcatgg aagccatgtg taaaaccatg acatccactt 960 ggaggatgca ataatgaaga aaactacaaa tttacatgca actagttatg catgtagtct 1020 atataatgag gattttgcaa tactttcatt catacacact cactaagttt tacacgatta 1080 taatttotto atagocagoa gatotgoogg catogatoco gggocatggo otgotttaat 1140 gagatatgcg agacgcctat gatcgcatga tatttgcttt caattetytt glgcacgttg 1200 taaaaaaacot gagoatgtgt ageteagate ettacegeeg gttteggtte attetaatga 1260 atatatcacc cgttactatc gtatttttat gaataatatt ctccgttcaa tttactgatt 1320 gtccgtcgac gagctcggcg cgccaagctt ggcgtaatca tggtcatagc tgtttcctgt 1380 gtgaaattgt tatccgctca caattccaca caacatacga gccggaagca taaagtgtaa 1440 agoctggggt gcctaatgag tgagctaact cacattaatt gcgttgcgct cactgcccgc 1500 tttccagtcg ggaaacctgt cgtgccagct gcattaatga atcggccaac gcgcggggag 1560 aggeggittg ogtattgggc gotottocgc ttcctcgctc actgactcgc tgcgctcqgt 1620 cgttcggctg cggcgagcgg tatcagctca ctcaaaggcg gtaatacggt tatccacaga 1680 atcaggggat aacgcaggaa agaacatgtg agcaaaaggc cagcaaaagg ccaggaaccg 1740 taaaaaaggcc gcgttgctgg cgtttttcca taggctccgc cccctgacg agcatcacaa 1800 aaatcgacgc tcaagtcaga ggtggcgaaa cccgacagga ctataaagat accaggcgtt 1860 tocccotgga agotocotcg tgcgctotcc tgttccgacc ctgccgctta ccggatacct 1920 gtccgccttt ctcccttcgg gaagcgtggc gctttclcat agctcacgct gtaggtatct 1980 cagtteggtg taggtegtte getecaaget gggetgtgtg caegaacece cegtteagee 2040 cgaccgctgc gccttatccg gtaactatcg tcttgagtcc aacccggtaa gacacgactt 2100 atcgccactg gcagcagcca ctggtaacag gattagcaga gcgaggtatg taggcggtgc 2160 tacagagttc ttgaagtggt ggcctaacta cggctacact agaaggacag tatttggtat 2220 ctgcgctctg ctgaagccag ttaccttcgg aaaaagagtt ggtagctctt gatccggcaa 2280 acaaaccaco gotggtagog gtggtttttt tgtttgcaag cagcagatta cgcgcagaaa 2340 aaaaggatet caagaagate ettigatett tietaegggg tetgaegete ägiggaaega 2400 aaactcacgt taagggattt tggtcatgag attatcaaaa aggatcttca cctagatcct 2460 tttaaattaa aaatgaagtt ttaaatcaat ctaaagtata tatgagtaaa cttggtctga 2520 cagttaccaa tgcttaatca gtgaggcacc tatctcagcg atctgtctat ttcgttcatc 2580 catagttgcc tgactccccg tcgtgtagat aactacgata cgggagggct taccatctgg 2640 ccccagtgct gcaatgatac cgcgagaccc acgctcaccg gctccagatt tatcagcaat 2700 aaaccagcca googgaaggg cogagogcag aagtggtoot gcaactttat cogcotocat 2760 ccagtotalt aattgttgcc gggaagotag agtaagtagt togccagtta atagtttgcg 2820 caacgttgtt gccattgcta caggcatcgt ggtgtcacgc tcgtcgtttg gtatggcttc 2880 attragetre ggtteccaae gateaaggeg agttacatga teccecatgt tgtgeaaaaa 2940 ageggttage teetteggte etcegategt tgtcagaagt aagttggeeg cagtgttate 3000 actcatggtt atggcagcac tgcataattc tcttactgtc atgccatccg taagatgctt 3060 ttctgtgact ggtgagtact caaccaagtc attctgagaa tagtgtatgc ggcgaccgag 3120 ttgctcttgc ccggcgtcaa tacgggataa taccgcgcca catagcagaa ctttaaaagt 3180 gotoatcatt ggaaaacgit citcggggcg aaaactcica aggatettac cgctgitgag 3240 atocagttog atgtaaccca ctcgtgcacc caactgatct tcagcatctt ttactttcac 3300 cagogtttot gggtgagcaa aaacaggaag gcaaaatgco gcaaaaaagg gaataagggo 3360 gacacggaaa tgttgaatac tcatactctt cctttttcaa tattattgaa gcatttatca 3420 gggttattgt ctcatgagcg gatacatatt tgaatgtatt tagaaaaata aacaaatagg 3480

ggttccgcgc acatttcccc gaaaagtgcc acctgacgtc taagaaacca ttattatcat 3540 gacattaacc tataaaaata ggcgtatcac gaggcccttt cgtctcgcgc gtttcggtga 3600 tyacgytyaa aacctotgac acatgoagot ecoggagacy gtcacagott gtctqtaagc 3660 ggatgccggg agcagacaag cccgtcaggg cgcgtcagcg ggtgttggcg ggtgtcgggg 3720 ctggcttaac tatgcggcat cagagcagat tgtactgaga gtgcaccata tgcggtgtga 3780 aataccgcac agatgcgtaa ggagaaaata ccgcatcagg cgccattcgc cattcaggct 3840 gogcaactgt tgggaagggc gatcggtgcg ggcctcttcg ctattacgcc agctggcgaa 3900 agggggatgt gctgcaaggc gattaagttg ggtaacgcca gggttttccc agtcacgacg 3960 ttgtaaaacg acggccaglg aattoggcgc gccgagctoc tcgagcaaat ttacacattg 4020 ccactaaacg tctaaaccct tgtaatttgt ttttgtttta ctatgtgtgt tatgtatttg 4080 atttgcgata aatttttata tttggtacta aatttataac accttttatg ctaacgtttg 4140 ccaacactta gcaattigca agtigattaa tigatictaa attattitig tottotaaat 4200 acatatacta atcaactgga aatgtaaata tttgctaata tttctactat aggagaatta 4260 aagtgagtga atatggtacc acaaggtttg gagatttaat tgttgcaatg ctgcatggat 4320 ggcatataca ccaaacattc aataattctt gaggataata atggtaccac acaagatttg 4380 aggtgcatga acgtcacgtg gacaaaaggt ttagtaattt ttcaagacaa caatgttacc 4440 acacacaagt titgaggtgc atgcatggat gccctgtgga aagtitaaaa atattitgga 4500 aatgatttgc atggaagcca tgtgtaaaac catgacatcc acttggagga tgcaataatg 4560 aagaaaacta caaatttaca tgcaactagt tatgcatgta gtctatataa tgaggatttt 4620 gcaatacttt cattcataca cactcactaa gttttacacg attataattt cttcatagcc 4680

ageccacege ggtgggegge egectgeagt etagaaggee teetgettta atgagatatg 4740 cgagacgcct atgatogcat gatatttgct ttcaattctg ttgtgcacgt tglaaaaac 4800 otgagoatgt gtagotoaga teettacege eggttteggt teattetaat gaatatatea 4860 cccgttacta tcgtattttt atgaataata ttctccgttc aatttactga ttgtccgtcg 4920 agcaaattta cacattgcca ctaaacgtct aaacccttgt aatttgtttt tgttttacta 4980 tgtgtgttat gtatttgatt tgcgataaat ttttatattt ggtactaaat ttataacacc 5040 ttttatgota acgtttgcca acacttagca atttgcaagt tgattaattg attctaaatt 5100 attitigict totaaataca tatactaatc aactggaaat gtaaatatti gctaatatti 5160 ctactutagg agaattaaag tgagtgaata tggtaccaca aggtttggag atttaattgt 5220 tgcaatgctg catggatggc atatacacca aacattcaat aattcttgag gataataatg 5280 gtaccacaca agatttgagg tgcatgaacg tcacgtggac aaaaggttta gtaatttttc 5340 aagacaacaa tgttaccaca cacaagtttt gaggtgcatg catggatgcc ctgtggaaag 5400 5410 tttaaaaata

<210> 38

<211> 12093

<212> DNA

<213> Unknown

<220>

<223> Plant expression vector with a promoter-terminator expression cassette

<400> 38

gatotggcgc cggccagcga gacgagcaag attggccgcc gcccgaaacg atccgacagc 60

gegeccagea caggtgegea ggeaaattge accaaegeat acagegeeag cagaatgeea 120 tagtgggegg tgacgtcgtt cgagtgaacc agatcgcgca ggaggcccgg cageaccggc 180 ataatcaggo cgatgocgac agogtogago gogacagtgo tcagaattac gatcaggggt 240 atgttgggtt tcacgtctgg cctccggacc agcctccgct ggtccgattg aacgcgcgga 300 ttotttatca ctgataagtt ggtggacata ttatgtttat cagtgataaa gtgtcaagca 360 tgacaaagtt gcagccgaat acagtgatcc gtgccgccct ygacctgttg aacgaggtog 420 gogtagacgg totgacgaca cgcaaactgg cggaacggtt gggggttcag cagccggcgc 480 tttactggca cttcaggaac aagcgggcgc tgctcgacgc actggccgaa gccatgctgg 540 cggagaatca tacgcattcg gtgccgagag ccgacgacga ctggcgctca tttctgatcg 600 ggaatgcccg cagcttcagg caggcgctgc tcgcctaccg cgatggcgcg cgcatccatg 660 coggoacgcg accgggcgca cogcagatgg aaacggccga cgcgcagctt cgcttcctct 720 gcgaggcggg tttttcggcc ggggacgccg tcaatgcgct gatgacaatc agctacttca 780 clyttggggc cytycttgag gagcaggccg gcgacagcga tgccggcgag cgcqqcggca 840 ccgttgaaca ggctccgctc tcgccgctgt tgcgggccgc gatagacgcc ttcgacgaag 900 ccggtccgga cgcagcgttc gagcagggac tcgcggtgat tgtcgatgga ttggcgaaaa 960 ggaggctogt tgtcaggaac gttgaaggac cgagaaaggg tgacgattga tcaggaccgc 1020 tgccggagcg caacccactc actacagcag agccatgtag acaacatccc ctcccccttt 1080 coaccycyte agacycccyt agcaycccyc tacygyettt tteatyccct gecetagcyt 1140 ccaagootea eggoegeget eggoetetet ggeggoette tggegetett cegetteete 1200 gotcactgac togotgogot eggtegtteg getgeggega geggtateag etcactcaaa 1260

ggoggtaata cggttatcca cagaatcagg ggataacgca ggaaagaaca tgtgagcaaa 1320 aggecageaa aaggecagga accgtaaaaa ggecgegttg ctggegtttt tecatagget 1380 cogeccecet gacgageate acaaaaateg acgeteaagt cagaggtgge gaaaccegae 1440 aggactataa agataccagg cgtttccccc tggaagctcc ctcgtgcgct ctcctgttcc 1500 gaccotgoog ottacoggat acctgtoogo otttetocot togggaagog tggogotttt 1560 cogctgcata accetgette ggggtcatta tagegatttt tteggtatat coatcetttt 1620 tegeacgata tacaggattt tgccaaaggg ttegtgtaga ettteettgg tgtatecaac 1680 ggogtcagcc gggcaggata ggtgaagtag gcccacccgc gagcgggtgt tccttcttca 1740 ctgtccctta ttcgcacctg gcggtgctca acgggaatcc tgctctgcga ggctggccgg 1800 ctaccgccgg cgtaacagat gagggcaagc ggatggctga tgaaaccaag ccaaccagga 1860 agggcagccc acctatcaag gtgtactgcc ttccagacga acgaagagcg attgaggaaa 1920 aggoggoggc ggccggcatg agcctgtcgg cctacctgct ggccgtcgyc cagggctaca 1980 anateneggg ogtogtggae tatgageang teegegaget ggeceqeate aatggegaee 2040 tgggccgcct gggcggcctg ctgaaactct ggctcaccga cgacccgcgc acggcgcggt 2100 toggtgatgo cacgatocto goodtgotgg cgaagatoga agagaagoag gacgagottg 2160 gcaaggtcat gatgggcgtg gtccgcccga gggcagagcc atgacttttt tagccgctaa 2220 aacggccggg gggtgcgcgt gattgccaag cacgtcccca tgcgctccat caagaagagc 2280 gacttegegg agetggtgaa gtacatcace gacgagcaag gcaagacega gegeetttge 2340 gacgeteace gggetggttg ceetegeege tgggetggeg geegtetatg geeetgeaaa 2400 cgcgccagaa acgccgtcga agccgtgtgc gagacaccgc ggccgccggc gttgtggata 2460

cetegeggaa aacttggeec teactgacag atgagggeg gacgttgaca ettgagggge 2520 cgactcaccc ggcgcggcgt tgacagatga ggggcaggct cgatttcggc cggcgacgtg 2580 gagotggcca goctogcaaa toggcgaaaa ogcotgattt taogogagtt toccacagat 2640 gatgtggaca agcctgggga taagtgccct gcggtattga cacttgaggg gcgcgactac 2700 tgacagatga ggggcgcgat ccttgacact tgaggggcag agtgctgaca gatgaggggc 2760 gcacctattg acatttgagg ggctgtccac aggcagaaaa tccagcattt gcaagggttt 2820 ecgcccgttt tteggccacc gctaacctgt cttttaacct gcttttaaac caatatttat 2880 aaaccttgtt tttaaccagg gctgcgccct gtgcgcgtga ccgcgcacgc cgaagggggg 2940 tgcccccct totogaacco tcccggcccg ctaacgcggg cctcccatcc ccccaqgggc 3000 tgogcccctc ggccgcgaac ggcctcaccc caaaaatggc agcgctggca gtccttgcca 3060 ttgccgggat cggggcagta acgggatggg cgatcagccc gagcgcgacg cccggaagca 3120 ttgacgtgcc gcaggtgctg gcatcgacat tcagcgacca ggtgccggyc agtgagggcg 3180 goggootggg tggoggootg coetteactt oggoogtogg ggoattcacg gacttcatgg 3240 cggggccggc aatttttacc ttgggcattc ttggcatagt ggtcgcgggt gccgtgctcg 3300 tgttcggggg tgcgataaac ccagcgaacc atttgaggtg ataggtaaga ttataccgag 3360 gtatgaaaac gagaattgga cotttacaga attactotat gaagogocat atttaaaaag 3420 ctaccaagac gaagaggatg aagaggatga ggaggcagat tgccttgaat atattgacaa 3480 tactgataag ataatatatc ttttatatag aagatatcgc cgtatgtaag gatttcaggg 3540 ggcaaggcat aggcagcgcg cttatcaata tatctataga atgggcaaag cataaaaact 3600 tgcatggact aatgcttgaa acccaggaca ataaccttat agcttgtaaa ttctatcata 3660 attgggtaat gactccaact tattgatagt gttttatgtt cagataatgc ccgatgactt 3720 tgtcatgcag ctccaccgat tttgagaacg acagcgactt ccgtcccagc cgtgccaggt 3780 gctgcctcag attcaggtta tgccgctcaa ttcgctgcgt atatcgcttg ctgattacgt 3840 gcagctttcc cttcaggcgg gattcataca gcggccagcc atccgtcatc catatcacca 3900 cgtcaaaggg tgacagcagg ctcataagac gccccagcgt cgccatagtg cgttcaccga 3960 atacgtgcgc aacaaccgtc ttccggagac tgtcatacgc gtaaaacagc cagegctggc 4020 gegatttage congacatag occoactgtt ogtocattte egegeagaeg atgaegteae 4080 tgcccggctg tatgcgcgag gttaccgact gcggcctgag ttttttaagt gacgtaaaat 4140 cgtgttgagg ccaacgccca taatgcgggc tgttgcccgg catccaacgc cattcatggc 4200 catatcaatg attttctggt gcgtaccggg ttgagaagcg gtgtaagtga actgcagttg 4260 ccatgtttta cggcagtgag agcagagata gcgctgatgt ccggcggtgc ttttgccgtt 4320 acgcaccacc ccgtcagtag ctgaacagga gggacagctg atagacacag aagccactgg 4380 agcacctcaa asacaccatc atacactasa tcagtaagtt ggcagcatca cccataattg 4440 tggtttcaaa atcggctccg tcgatactat gttatacgcc aactttgaaa acaactttga 4500 aaaagctgtt ttctggtatt taaggtttta gaatgcaagg aacagtgaat tggagttcgt 4560 cttgttataa ttagcttctt ggggtatctt taaatactgt agaaaagagg aaggaaataa 4620 taaatggcta aaatgagaat atcaccggaa ttgaaaaaac tgatcgaaaa ataccgctgc 4680 gtaaaaagata cggaaggaat gtctcctgct aaggtatata agctggtggg agaaaatgaa 4740 aacctatatt taaaaatgac ggacagccgg tataaaggga ccacctatga tgtggaacgg 4800 gaaaaggaca tgatgctatg gctggaagga aagctgcctg ttccaaaggt cctgcacttt 4860

gaacggcatg atggctggag caatctgctc atgagtgagg ccgatggcgt cctttgctcg 4920 gaagagtatg aagatgaaca aagccctgaa aagattateg agctgtatge ggagtgcate 4980 aggetettte actecatega catateggat tgtecetata egaatagett agacageege 5040 ttagccgaat tggattactt actgaataac gatctggccg atgtggattg cgaaaactgg 5100 qaaqaagaca ctccatttaa agatccgcgc gagctgtatg attttttaaa gacggaaaag 5160 cccgaagagg aacttgtctt ttcccacggc gacctgggag acagcaacat ctttgtgaaa 5220 gatggcaaag taagtggctt tattgatctt ggqagaagcg gcagggcgga caagtggtat 5280 gacattgcct tetgegteeg gtegateagg gaggatateg gggaagaaca gtatgtegag 5340 ctggatgaat tgttttagta cctagatgtg gcgcaacgat gccggcgaca agcaggagcg 5460 caccgacttc ttccgcatca agtgttttgg ctctcaggcc gaggcccacg gcaagtattt 5520 qqqcaaqqqq tcqctqqtat tcqtqcaqqq caaqattcqq aataccaaqt acqaqaaqqa 5580 eggecagaeg gtotaeggga eegactteat tgeegataag gtggattate tggacaccaa 5640 ggcaccagge gggtcaaatc aggaataagg gcacattgcc ccggcgtgag tcggggcaat 5700 cccgcaagga gggtgaatga atcggacgtt tgaccggaag gcatacaggc aagaactgat 5760 cgacgcgggg ttttccgccg aggatgccga aaccatcgca agccgcaccg tcatgcgtgc 5820 geccegegaa acettecagt cegteggete gatggtecag caagetaegg ccaagatega 5880 gcgcgacage gtgcaactgg ctccccctgc cctgcccgcg ccatcggccg ccgtggagcg 5940 ttcgcgtcgt ctcgaacagg aggcggcagg tttggcgaag tcgatgacca tcgacacgcg 6000 aggaactatg acgaccaaga agcgaaaaac cgccggcgag gacctggcaa aacaggtcag 6060

cgaggccaag caggccgcgt tgctgaaaca cacgaagcag cagatcaagg aaatgcagct 6120 ttocttgttc gatattgcgc cgtggccgga cacgatgcga gcgatgccaa acgacacggc 6180 ccgctctgcc ctgttcacca cgcgcaacaa gaaaatcccg cgcgaggcgc tgcaaaacaa 6240 ggtcattttc cacgtcaaca aggacgtgaa gatcacctac accggcgtcg agctgcgggc 6300 cgacgatgac gaactggtgt ggcagcaggt gttggagtac gcgaagcgca cccctatcgg 6360 cgagccgatc accttcacgt totacgagct ttgccaggac ctgggctyyl cgatcaatgg 6420 coggtattac acgaaggeeg aggaatgeet gtegegeeta caggegaegg egatgggett 6480 cacgteegae egegttggge acetggaate ggtgtegetg etgeaceget teegegteet 6540 ggaccgtggc aagaaaacgt cccgttgcca ggtcctgatc gacgaggaaa tcgtcgtgct 6600 gtttgctggc gaccactaca cgaaattcat atgggagaag taccgcaagc tgtcgccgac 6660 ggcccgacgg atgitcgact atticagotc gcaccgggag ccgtacccgc tcaagctgga 6720 aaccttccgc ctcatgtgcg gatcggattc cacccgcgtg aagaagtggc gcgagcaggt 6780 cggcgaagce tgcgaagagt tgcgaggoag cggcctggtg gaacacgcct gggtcaatga 6840 tgacctggtg cattgcaaac gctagggcct tgtggggtca gttccggctg ggggttcagc 6900 agccagcgct ttactggcat ttcaggaaca agcgggcact gctcgacgca cttgcttcgc 6960 tcagtatcgc tcgggacgca cggcgcgctc tacgaactgc cgataaacag aggattaaaa 7020 ttgacaattg tgattaaggc tcagattcga cggcttggag cggccgacgt gcaggatttc 7080 cgcgagatcc gattgtcggc cctgaagaaa gctccagaga tgttcgggtc cgtttacgag 7140 cacgaggaga aaaagcccat ggaggcgttc gctgaacggt tgcgagatgc cgtggcattc 7200 ggcgcctaca tcgacggcga gatcattggg ctgtcggtct tcaaacagga ggacggcccc 7260 aaggacgete acaaggegea tetgteegge gttttegtgg agecegaaca gegaggeega 7320 ggggtcgccg gtatgctgct gcgggcgttg ccggcgggtt tattgctcgt gatgatcgtc 7380 cgacagattc caacgggaat ctggtggatg cgcatcttca tcctcggcgc acttaatatt 7440 togotattot ggagottgtt gtttatttog gtotacogco tgccgggogg ggtogcggcg 7500 acggtaggcg ctgtgcagcc gctgatggtc gtgttcatct ctgccgctct gctaggtagc 7560 ccgatacgat tgatggcggt cctgggggct atttgcggaa clgcggggcgt ggcgctgttg 7620 gtgttgacac caaacgcage getagateet gteggegteg cagegggeet ggeggggeg 7680 gtttccatgg cgttcggaac cgtgctgacc cgcaagtggc aacctcccgt gcctctgctc 7740 acctttaccg cctggcaact ggcggccgga ggacttctgc tcgttccagt agctttagtg 7800 tttgatccgc caatcccgat gcctacagga accaatgttc tcggcctggc gtggctcggc 7860 ctgatcggag cgggtttaac ctacttcctt tggttccggg ggatctcgcg actcgaacct 7920 acagttgttt ccttactggg ctttctcagc cccagatctg gggtcgatca gccggggatg 7980 catcaggoog acagtoggaa ottogggtoo cogacctgta ccattcggtg agcaatggat 8040 aggggagttg atatogtcaa cgttcacttc taaagaaata gcgccactca gcttcctcag 8100 cggctttatc cagcgatttc ctattatgtc ggcatagttc tcaagatcga cagcctgtca 8160 cggttaagcg agaaatgaat aagaaggctg ataattcgga tctctgcgag ggagatgata 8220 tttgatcaca ggcagcaacg ctctgtcatc gttacaatca acatgctacc ctccgcgaga 8280 toatcogtgt ttcaaaccog gcagettagt tgccgttctt ccgaatagca tcggtaacat 8340 gagcaaagtc tgccgcctta caacggctct cccgctgacg ccgtcccgga ctgatgggct 8400 gcctgtatcg agtggtgatt ttgtgccgag ctgccggtcg gggagctgtt ggctggctgg 8460

tggcaggata tattgtggtg taaacaaatt gacgcttaga caacttaata acacattgcg 8520 gacgttttta atgtactggg gtggtttttc ttttcaccag tgagacgggc aacagctgat 8580 tgcccttcac cgcctggccc tgagagagtt gcagcaagcg gtccacgctg gtttgcccca 8640 gcaggcgaaa atcctgtttg atggtggttc cgaaatcggc aaaatccctt ataaatcaaa 8700 agaatagccc gagatagggt tgagtgttgt tccagtttgg aacaagagtc cactattaaa 8760 gaacgtggac tccaacgtca aagggcgaaa aaccgtctat cagggcgatg goccactacg 8820 tgaaccatca consestosa gttttttggg gtcgaggtgo cgtaaagcac taaatcggaa 8880 ccctaaaggg agccccgat ttagagcttg acggggaaag ccggcgaacg tggcgagaaa 8940 ggaagggaag aaagcgaaag gagcgggcgc cattcaggct gcgcaactgt tgggaagggc 9000 gateggtgeg ggcetetteg ctattacgce agetggegaa agggggatgt getgeaagge 9060 gattaagttg ggtaacgcca gggttttccc agtcacgacg ttgtaaaacg acggccagtg 9120 aattaattoo catottgaaa gaaatatagt ttaaatattt attgataaaa taacaagtoa 9180 ggtattatag tocaagcaaa aacataaatt tattgatgca agtttaaatt cagaaatatt 9240 tcaataactg attatatcag ctggtacatt gccgtagatg aaagactgag tgcgatatta 9300 tgtgtaatac ataaattgat gatatagcta gcttagctca tcgggggatc cgtcgaagct 9360 agettgggte cegetcagaa gaactegtea agaaggegat agaaggegat gegetgegaa 9420 togggagogg cgatacogta aagcacgagg aagcggtcag cocattogcc gccaagctct 9480 teageaatat caegggtage caaegetatg teetgatage ggteegeeac acceageegg 9540 ccacagtoga tgaatocaga aaagoggoca ttttccacca tgatattogg caagoaggca 9600 togocatggg toacgacgag atcotogoog togggcatgc gogcottgag cotggcgaac 9660

agtteggetg gegegagece etgatgetet tegtecagat cateetgate gacaagaceg 9720 gcttccatcc gagtacgtgc tegetegatg egatgttteg cttggtggtc gaatgggcag 9780 gtagccggat caagcgtatg cagccgccgc attgcatcag ccatgatgga tactttctcg 9840 qcaqqaqcaa ggtgagatga caggagatcc tgccccggca cttcgcccaa tagcagccag 9900 tecetteceg etteagtgae aaegtegage acagetgege aaggaaegee egtegtggee 9960 agccacgata geogegetge etegteetge agtteattea gggcacegga caggteggte 10020 ttgacaaaaa gaaccgggcg cccctgcqct gacagccgga acacggcggc atcagagcag 10080 ccgattgtct gttgtgccca gtcatagccg aatagcctct ccacccaagc ggccggagaa 10140 cctgogtgca atccatcttg ttcaatccaa gctcccatgg gccctcgact agagtcgaga 10200 totggattga gagtgaatat gagactotaa ttggataccg aggggaattt atggaacgtc 10260 agtggagcat ttttgacaag aaatatttgc tagctgatag tgaccttagg cgacttttga 10320 acqcgcaata atggtttctg acgtatgtgc ttagctcatt aaactccaga aacccycggc 10380 tgagtggoto ottoaaogtt geggttetgt cagttecaaa cgtaaaacgg cttqtecege 10440 gtcatcggcg ggggtcataa cgtgactccc ttaattctcc gctcatgatc ttgatcccct 10500 gcgccatcag atccttggcg gcaagaaagc catccagttt actttgcagg gcttcccaac 10560 cttaccagag ggcgccccag ctggcaattc cggttcgctt gctgtccata aaaccgccca 10620 gtctagctat cgccatgtaa gcccactgca agctacctgc tttctctttg cgcttgcgtt 10680 ttcccttgtc cagatagccc agtagctgac attcatccgg ggtcagcacc gtttctgcgg 10740 actggctttc tacgtgttcc gcttccttta gcagcccttg cgccctgagt gcttgcggca 10800 gcgtgaaget tgcatgcetg caggtcgacg gcgcgccgag ctcctcgage aaatttacac 10860

attgccacta aacgtctaaa cccttgtaat ttgtttttgt tttactatgt gtgttatgta 10920 tttgatttgc gataaatttt tatatttggt actaaattta taacaccttt tatgctaacg 10980 tttgccaaca cttagcaatt tgcaagttga ttaattgatt ctaaattatt tttgtcttct 11040 aaatacatat actaatcaac tggaaatgta aatatttgct aatatttcta ctataggaga 11100 attaaagtga gtgaatatgg taccacaagg tttggagatt taattgttgc aatgctgcat 11160 ggatggcata tacaccaaac attcaataat Lottgaggat aataatggta coacacaaga 11220 tttgaggtgc atgaacgtca cgtggacaaa aggtttagta atttttcaag acaacaatgt 11280 taccacacac aagttttgag gtgcatgcat ggatgccctg tggaaagttt aaaaatattt 11340 tggaaatgat ttgcatggaa gccatgtgta aaaccatgac atccacttgg aggatgcaat 11400 aatgaagaaa actacaaatt tacatgcaac tagttatgca tgtagtctat ataatgagga 11460 ttttgcaata ctttcattca tacacactca ctaagtttta cacgattata atttcttcat 11520 agccagccca cogcggtggg cggccgcctg cagtctagaa ggcctcctgc Lllaatgaga 11580 tatgegagae geetatgate geatgatatt tgettteaat tetgttgtge aegttgtaaa 11640 aaacctgagc atgtgtagct cagatcctta ccgccggttt cggttcattc taatgaatat 11700 atcacccgtt actatcgtat ttttatgaat aatattctcc gttcaattta ctgattgtcc 11760 gtcgacgaat tcgagctcgg cgcgcctcta gaggatcgat gaattcagat cggctgagtg 11820 getecticaa egitgeggit etgicagite caaacgiaaa aeggetigie eegegteate 11880 qqcqqqqqtc ataacgtgac tcccttaatt ctccgctcat gatcagattg tcgtttcccg 11940 ccttcagttt aaactatcag tgtttgacag gatatattgg cgggtaaacc taagagaaaa 12000 gagcgtttat tagaataatc ggatatttaa aagggcgtga aaaggtttat ccttcgtcca 12060

tttgtatgtg catqccaacc acagggttcc cca

12093

<210> 39

<211> 12085

<212> DNA

<213> Unknown

<220>

<223> Plant expression vector with a promoter-terminator expression cassette

<400> 39

gatotggogo oggocagoga gacgagoaag attggoogoo gooogaaacg atocgacago 60 gegeccagea caggtgegea ggeaaattge accaaegeat acagegeeag cagaatgeea 120 tagtgggcyg tyacglcgtt cgagtgaacc agatogogca ggaggcccgg cagcaccggc 180 ataatcaggc cgatgccgac agcgtcgagc gcgacagtgc tcagaattac gatcaggggt 240 atgttgggtt toacgtctgg cctccggacc agcctccgct ggtccgattg aacgcgcgga 300 ttotttatca otgataagtt ggtggacata ttatgtttat cagtgataaa gtgtcaagca 360 tgacaaagtt gcagccgaat acagtgatcc gtgccgccct ggacctgttg aacgaggtcg 420 gcgtagacgg tctgacgaca cgcaaactgg cggaacggtt gggggttcag cagccggcgc 480 tttactggca cttcaggaac aagegggege tgetcgaege actggeegaa gecatgetgg 540 oggagaatca tacgcatteg gtgccgagag ccgacgacga ctggcgctca tttctgateg 600 ggaatgcccg cagcttcagg caggcgctgc tcgcctaccg cgatggcgcg cgcatccatg 660 coggoacgcg accgggcgca cogcagatgg aaacggccga cgcgcagctt cgcttcctct 720 gogaggoggg tttttcggcc ggggacgccg tcaatgcgct gatgacaatc agctacttca 780 ctgttggggc cgtgcttgag gagcaggccg gcgacagcga tgccggcgag cgcggcggca 840

ccgttgaaca ggctccgctc tcgccgctgt tgcgggccgc gatagacgcc ttcgacgaag 900 ccggtccgga cgcagcgttc gagcagggac tcgcggtgat tgtcgatgga ttggcgaaaa 960 yyayyotogt tytcaggaac gttgaaggac cgagaaaggg tgacgattga tcaggaccgc 1020 tgccggagcg caacccactc actacagcag agccatgtag acaacatccc ctcccccttt 1080 ccaecgcgtc agacgcccgt agcagcccgc tacgggcttt ttcatgccct gccctagcgt 1140 ccaagectea eggeegeet eggeetetet ggeggeette tggegetett eegetteete 1200 gotcactgac togotgogot oggtogttog gotgoggoga goggtatoag otcactcaaa 1260 qqcqqtaata cggttatcca cagaatcagg ggataacgca ggaaagaaca tgtgagcaaa 1320 aggocagoaa aaggocayya accytaaaaa ggoogogtty otggogtttt tocataggot 1380 ccgccccct gacgagcatc acaaaaatcg acgctcaagt cagaggtggc gaaacccgac 1440 aggactataa agataccagg cgtttccccc tggaagctcc ctcgtgcgct ctcctgttcc 1500 gaccetgeeg ettaceggat acetgteege ettteteeet tegggaageg tggegetttt 1560 ccgctgcata accetgcttc ggggtcatta tagcgatttt ttcggtatat ccatcctttt 1620 togcacgata tacaggattt tgccaaaggg ttcgtgtaga ctttccttgg tgtatccaac 1680 ggcgtcagcc gggcaggata ggtgaagtag gcccacccgc gagcgggtgt teellettca 1740 ctgtccotta ttogcacotg geggtgetea acgggaatec tgctctgcga qqctggccgg 1800 ctaccgccgg cgtaacagat gagggcaagc ggatggctga tgaaaccaag ccaaccagga 1860 agggcagccc acctatcaag gtgtactgcc ttccagacga acgaagagcg attgaggaaa 1920 aggoggoggo ggcoggoatg agcotgtogg cotacotgot ggcogtoggo cagggotaca 1980 aaatcacggg cgtcgtggac tatgagcacg tccgcgagct ggcccgcatc aatggcgacc 2040

tgggccgcct gggcggcctg ctgaaactct ggctcaccga cgacccgcgc acggcgcggt 2100 toggtgatgo cacgatocto gocotgotgo ogaagatoga agagaagcag gacgagettg 2160 gcaaggtcat gatgggogtg gtccgoccga gggcagagcc atgactttt tagccgctaa 2220 aacggccggg gggtgcgcgt gattgccaag cacgtcccca tgcgctccat caagaagagc 2280 gacttogogg agotggtgaa gtacatcacc gacgagcaag gcaagaccga gcgcctttgc 2340 gacgeteace gggetggttg coetegeege tgggetggeg geogtetatg gecetgeaaa 2400 cgcgccagaa acgccgtcga agccgtgtgc gagacaccgc ggccgccggc gttgtggata 2460 cctcgcggaa aacttggccc tcactgacag atgaggggg gacgttgaca cttgaggggc 2520 cgacteacce ggegeggegt tgacagatga ggggcagget egatttegge eggegaegtg 2580 gagotggcca gcotcgcaaa toggcgaaaa ogcotgattt tacgcgagtt toccacagat 2640 gatgtggaca agcctgggga taagtgccct gcggtattga cacttgaggg gcgcgactac 2700 tgacagatga ggggcgcgat ccttgacact tgaggggcag agtgctgaca gatgaggggc 2760 gcacctattg acatttgagg ggctgtccac aggcagaaaa tccagcattt gcaagggttt 2820 ccgcccgttt ttcggccacc gctaacctgt cttttaacct gcttttaaac caatattat 2880 aaaccttgtt tttaaccagg gctgcgccct gtgcgcgtya ccgcgcacgc cgaagggggg 2940 tgoccccct tetegaacen teeeggeeeg etaacgeggg ceteceatee eeccagggge 3000 tgogcccctc ggccgcgaac ggcctcaccc caaaaatggc agcgctggca gtccttgcca 3060 ttgccgggat cggggcagta acgggatggg cgatcagccc gagcgcgacg cccggaagca 3120 ttgacgtgcc gcaggtgctg gcatcgacat tcagcgacca ggtgccgggc agtgagggcg 3180 gcggcctggg tggcggcctg cccttcactt cggccgtcgg ggcattcacg gacttcatgg 3240

eggggeegge aattittace tigggeatte tiggeatagt ggtegegggt geegtgeteg 3300 tgttcggggg tgcgataaac ccagcgaacc atttgaggtg ataggtaaga ttataccgag 3360 gtatgaaaac gagaattgga cotttacaga attactotat gaagegecat atttaaaaag 3420 ctaccaagac gaagaggatg aagaggatga ggaggcagat tgccttgaat atattgacaa 3480 tactgataag ataatatatc ttttatatag aagatatcgc cgtatgtaag gatttcaggg 3540 ggcaaggcat aggcagcgcg cttatcaata tatctataga atgggcaaag cataaaaact 3600 tgcatggact aatgcttgaa acccaggaca ataaccttat agcttgtaaa ttctatcata 3660 attgggtaat gactccaact tattgatagt gttttatgtt cagataatgc ccgatgactt 3720 tgtcatgcag ctccaccyst tttgagaacg acagcgactt cogtcccage cgtgccaggt 3780 gctgcctcaq attcaggtta tgccgctcaa ttcgctgcgt atatcgcttg ctgattacgt 3840 gcagetttee etteaggegg gatteataea geggeeagee ateegteate catateacea 3900 cgtcaaaggg tgacagcagg ctcataagac gccccagcgt cgccatagtg cgttcaccga 3960 atacgtgcgc aacaaccgtc ttccggagac tgtcatacgc gtaaaacagc cagcgctggc 4020 gcgatttagc cccgacatag ccccactgtt cgtccatttc cgcgcagacg atgacgtcac 4080 tgoccggctg tatgogcgag gttaccgact gcggcctgag ttttttaagt gacgtaaaat 4140 cgtgttgagg ocaaogccca taatgcgggc tgttgcccgg catccaacgc cattcatggc 4200 catatcaatg attttctggt gcgtaccggg ttgagaagcg gtgtaagtga actgcagttg 4260 ccatgtttta cggcagtgag agcagagata gcgctgatgt ccggcggtgc ttttgccgtt 4320 acgcaccacc cogtcagtag ctgaacagga gggacagctg atagacacag aagccactgg 4380 agcacctcaa aaacaccatc atacactaaa tcagtaagtt ggcagcatca cccataattg 4440

tggtttcaaa atcggctccg tcgatactat gttatacgcc aactttgaaa acaactttga 4500 aaaagctgtt ttotggtatt taaggtttta gaatgcaagg aacagtgaat tggagttogt 4560 cttgttataa ttagcttctt ggggtatctt taaatactgt agaaaagagg aaggaaataa 4620 taaatggcta aaatgagaat atcaccggaa ttgaaaaaac tgatcgaaaa ataccgctgc 4680 gtaaaagata cggaaggaat gtctcctgct aaggtatata agctggtggg agaaaatgaa 4740 aacctatatt taaaaatgac ggacagccgg tataaaggga ccacctatga tgtggaacgg 4800 gaaaaggaca tgatgctatg gctggaagga aagctgcctg ttccaaaggt cctgcacttt 4860 gaacggcatg atggctggag caatctgctc atgagtgagg ccgatggcgt cctttgctcg 4920 gaagagtatg aagatgaaca aagcootgaa aagattatog agotgtatgc ggagtgcatc 4980 aggetettte actecatega catateggat tgtecetata egaatagett agacageege 5040 ttagccgaat tggattactt actgaataac gatctggccg atgtggattg cgaaaactgg 5100 gaagaagaca ctccatttaa agatccgcgc gagctgtatg attttttaaa gacggaaaag 5160 cccgaagagg aacttgtctt ttcccacggc gacctgggag acagcaacat ctttgtgaaa 5220 gatggcaaag taagtggctt tattgatctt gggagaagcg gcagggcgga caagtggtat 5280 gacattgcct totgcgtccg gtcgatcagg gaggatateg gggaagaaca gtatgtcgag 5340 ctggatgaat tgttttagta cctagatgtg gcgcaacgat gccggcgaca agcaggagcg 5460 caccgacttc ttccgcatca agtgttttgg ctctcaggcc gaggcccacg gcaagtattt 5520 gggcaagggg togotggtat togtgcaggg caagattogg aataccaagt acgagaagga 5580 cggccagacg gtctacggga ccgacttcat tgccgataag gtggattatc tggacaccaa 5640

ggcaccagge gggtcaaatc aggaataagg gcacattgcc coggegtgag teggggcaat 5700 cccgcaagga gggtgaatga atcggacgtt tgaccggaag gcatacaggc aagaactgat 5760 cgacgcgggg ttttccgccg aggatgccga aaccatcgca agccgcaccg tcatgcgtgc 5820 gccccgcgaa acottccagt ccgtcggctc gatggtccag caagctacgg ccaagatcga 5880 gcgcgacagc gtgcaactgg ctccccctgc cctgcccgcg ccatcggccg ccgtggagcg 5940 ttcgcgtcgt ctcgaacagg aggcggcagg tttggcgaag tcgatgacca tcgacacgcg 6000 aggaactatg acgaccaaga agcgaaaaac cgccggcgag gacctggcaa aacaggtcag 6060 cgaggccaag caggccgcgt tgctgaaaca cacgaagcag cagatcaagg aaatgcagct 6120 ttoottgtto gatattgogo ogtyyoogga cacgatgoga gogatgocaa acgacacggo 6180 cogetetgee etgtteacea egegeaacaa gaaaateeeg egegaggege tgeaaaacaa 6240 ggtcattttc cacgtcaaca aggacgtgaa gatcacctac accggcgtcg agctgcgggc 6300 cgacgatgac gaactggtgt ggcagcaggt gttggagtac gcgaagcgca cccctatcgg 6360 cgagccgatc accttcacgt totacgagct ttgccaggac ctgggctggt cgatcaatgg 6420 coggtattac acgaaggccg aggaatgcct gtcgcgccta caggcgacgg cgatgggctt 6480 cacgtccgac cgcgttgggc acctggaatc ggtgtcgctg ctgcaccgct Lccgcgtcct 6540 ggaccgtggc aagaaaaogt occgttgcca ggtcctgatc gacgaggaaa tcgtcgtgct 6600 gtttgctggc gaccactaca cgaaattcat atgggagaag taccgcaagc tgtcgccgac 6660 ggcccgacgg atgttcgact atttcagctc gcaccgggag ccgtacccgc tcaagctgga 6720 aaccttccgc ctcatgtgcg gatcggattc cacccgcgtg aagaagtggc gcgagcaggt 6780 eggegaagee tgegaagagt tgegaggeag eggeetggtg gaacaegeet gggteaatga 6840

tgacctggtg cattgcaaac gctagggcct tgtggggtca gttccggctg ggggttcagc 6900 agocagogot ttactggcat ttcaggaaca agogggcact gctcgacgca cttgcttcgc 6960 toaglatogo togggaogoa oggogogoto tacgaactgo ogataaacag aggattaaaa 7020 ttgacaattg tgattaaggc tcagattcga cggcttggag cggccgacgt gcaggatttc 7080 cgcgagatcc gattgtcggc cctgaagaaa gctccagaga tgttcgggtc cgtttacgag 7140 cacgaggaga aaaagcccat ggaggcgttc gctgaacggt tgcgagatgc cgtggcattc 7200 ggcgcctaca tcgacggcga gatcattggg ctgtcggtct tcaaacagga ggacggcccc 7260 aaggacgete acaaggegea tetgteegge gttttegtgg agecegaaca gegaggeega 7320 ggggtcgccg gtatgctycl gcgggcgttg ccggcgggtt tattgctcgt gatgatcgtc 7380 cgacagattc caacgggaat ctggtggatg cgcatcttca tcctcggcgc acttaatatt 7440 togotattet ggagettgtt gtttattteg gtctacegee tgeegggegg ggtegeggeg 7500 acggtaggcg ctgtgcagcc gctgatggtc gtgttcatct ctgccgctct gctaggtagc 7560 ccgatacgat tgatggcggt cctgggggct atttgcggaa ctgcgggcgt ggcgctgttg 7620 gtgttgacac caaacgcage gctagatcct gtcggcgtcg cagcgggcct ggcggggcg 7680 gtttccatgg cgttcggaac cgtgctgacc cgcaagtggc aaccteccgt gcctctgctc 7740 acctttaccg octggcaact ggcggccgga ggacttctgc tcgttccagt agctttagtg 7800 tttgatccgc caatcccgat gcctacagga accaatgttc tcggcctggc gtggctcggc 7860 ctgatcggag cgggtttaac ctacttcctt tggttccggg ggatctcgcg actcgaacct 7920 acagttgttt ccttactggg ctttctcagc cccagatctg gggtcgatca gccggggatg 7980 catcaggccg acagtcggaa cttcgggtcc ccgacctgta ccattcggtg agcaatggat 8040

aggggagttg atatogtoaa ogttoactto taaagaaata gogocactoa gottootoag 8100 cggctttatc cagcgatttc ctattatgtc ggcatagttc tcaagatcga cagcctgtca 8160 cggttaagcg agaaatgaat aagaaggetg ataattcgga tototgcqag ggagatgata 8220 tttgatcaca ggcagcaacg ctctgtcatc gttacaatca acatgctacc ctccgcgaga 8280 tcatccgtgt ttcaaacccg gcagcttagt tgccgttctt ccgaatagca tcggtaacat 8340 gagcaaagte tgeegeetta caacggetet eeegetgaeg eegteeegga etgatggget 8400 gootgtatog agtggtgatt ttgtgccgag ctgccggtcg gggagctgtt ggctggctgg 8460 tggcaggata tattgtggtg taaacaaatt gacgcttaga caacttaata acacattgcg 8520 gacgttttta algtactggg gtggtttttc ttttcaccag tgagacgggc aacagctgat 8580 tgcccttcac cgcctggccc tgagagagtt gcagcaagcg gtccacgctg gtttgcccca 8640 gcaggcgaaa atcctgtttg atggtggttc cgaaatcggc aaaatccctt ataaatcaaa 8700 agaatagccc gagatagggt tgagtgttgt tccagtttgg aacaagagtc cactattaaa 8760 gaacgtggac tocaacgtca aagggcgaaa aaccgtctat cagggcgatg gcccactacg 8820 tgaaccatca cccaaatcaa gttttttggg gtcgaggtgc cgtaaagcac taaatcggaa 8880 ccctaaaggg agcccccgat ttagagcttg acggggaaag ccggcgaacg tggcgagaaa 8940 ggaagggaag aaagcgaaag gagcgggcgc cattcaggct gcgcaactgt tgggaagggc 9000 gateggtgeg ggeetetteg etattaegee agetggegaa agggggatgt getgeaagge 9060 gattaagttg ggtaacgcca gggttttccc agtcacgacg ttgtaaaacg acggccagtg 9120 aattaattoo catottgaaa gaaatatagt ttaaatattt attgataaaa taacaagtoa 9180 ggtattatag tccaagcaaa aacataaatt tattgatgca agtttaaatt cagaaatatt 9240 tcaataactg attatatcag ctggtacatt gccgtagatg aaagactgag tgcgatatta 9300 tgtgtaatac ataaattgat gatatagcta gcttagctca tcggggggalc cgtcgaagct 9360 agettgggte cegeteagaa gaactegtea agaaggegat agaaggegat gegetgegaa 9420 togggagogg cgatacogta aagcacgagg aagcggtoag cocattogcc gccaagctot 9480 tragcaatat cargggtage caargctatg tertgatage ggtergerae accragergg 9540 ccacagtcga tgaatccaga aaagcggcca ttttccacca tgatattcgg caagcaggca 9600 togocatggg toacgacgag atoctogoog togggcatgc gcgccttgag cctggcgaac 9660 agtteggetg gegegageee etgatgetet tegteeagat cateetgate gacaagaeeg 9720 gottocatos gagtaogtgo tegetegatg egatgttteg ettggtggte gaatgggeag 9780 gtagccggat caagcgtatg cagccgccgc attgcatcag ccatgatgga tactttctcg 9840 gcaggagcaa ggtgagatga caggagatcc tgccccggca cttcgcccaa tagcagccag 9900 tecetteceg etteagtgae aacgtegage acagetgege aaggaaegee egtegtggee 9960 agccacgata gccgcgctgc ctcgtcctgc agttcattca gggcaccgga caggtcggtc 10020 ttgacaaaaa gaaccgggcg cccctgcgct gacagccgga acacggcggc atcagagcag 10080 ccgattgtct gttgtgccca gtcatagccg aatagcctct ccacccaago ggccggagaa 10140 cotgogtgca atccatcttg ttcaatccaa gctcccatgg gccctcgact agagtcgaga 10200 tctggattga gagtgaatat gagactctaa ttggataccg aggggaattt atggaacgtc 10260 agtggagcat ttttgacaag aaatatttgc tagctgatag tgaccttagg cgacttttga 10320 acgcgcaata atggtttctg acgtatgtgc ttagctcatt aaactccaga aacccgcggc 10380 tgagtggctc cttcaacgtt gcggttctgt cagttccaaa cgtaaaacgg cttgtcccgc 10440 gtcatcggcg ggggtcataa cgtgactccc ttaattctcc gctcatgatc ttgatcccct 10500 gogocatcag atoottggog gcaagaaago catocagttt actttgcayy yellcecaac 10560 ottaccagag ggcgccccag ctggcaattc cggttcgctt gctqtccata aaaccgccca 10620 gtotagotat ogcoatgtaa goocactgca agotacotgc tttototttg ogottgcgtt 10680 ttcccttgtc cagatagccc agtagctgac attcatccgg ggtcagcacc gtttctgcgg 10740 actggctttc tacgtgttcc gcttccttta gcagcccttg cgccctgagt gcttgcggca 10800 gcgtgaaget tgcatgcetg caggtcgacg gcgcgccgag ctcctcgage aaatttacac 10860 attgccacta aacgtctaaa cccttgtaat ttgtttttgt tttactatgt gtgttatgta 10920 tttgatttgc gataaatttt tatatttggt actaaattta taacaccttt tatgctaaog 10980 tttgccaaca cttagcaatt tgcaagttga ttaattgatt ctaaattatt tttgtcttct 11040 aaatacatat actaatcaac tggaaatgta aatatttgct aatatttcta ctataggaga 11100 attaaagtga gtgaatatgg taccacaagg tttggagatt taattgttgc aatgctgcat 11160 ggatggcata tacaccaaac attcaataat tottgaggat aataatggta ccacacaaga 11220 tttgaggtgc atgaacgtca cgtggacaaa aggtttagta atttttcaag acaacaatgt 11280 taccacacac aagttttgag gtgcatgcat ygalgocctg tggaaagttt aasaatattt 11340 tggaaatgat ttgcatggaa gccatgtgta aaaccatgac atccacttgg aggatgcaat 11400 aatgaagaaa actacaaatt tacatgcaac tagttatgca tgtagtctat ataatgagga 11460 ttttgcaata ctttcattca tacacactca ctaagtttta cacgattata atttcttcat 11520 agccagcgga tccgatatcg ggcccgctag cgttaaccct gctttaatga gatatgcgag 11580 acgcctatga tcgcatgata tttgctttca attctgttgt gcacgttgta aaaaacctga 11640

gcatgtgtag ctcagatcct tacogcoggt ttcggttcat tctaatgaat atatcacccg 11700

ttactatcgt attittatga ataatattct ccgttcaatt tactgattgt ccytugacga 11760

attegagoto ggogogocte tagaggatcg atgaattcag atcggctga tggctccttc 11820

aacgttgcgg ttctgtcagt tccaaacgta aaacggcttg tcccgcgtca tcggcggggg 11880

tcataacgtg actcccttaa ttctccgctc atgatcagat tgtcgtttcc cgccttcagt 11940

ttaaactatc agtgtttgac aggatatatt ggcggtaaa cctaagagaa aagagcgtt 12000

attagaataa tcggatattt aaaagggcgt gaaaaggttt atccttcgtc catttgtatg 12060

tgcatgcoaa ccacagggtt cccca 12085

<210> 40

<211> 12079

<212> DNA

<213> Unknown

<220>

<223> Plant expression vector with a promoter-terminator expression cassette

<400> 40

gatotggogo eggocagoga gacgagoaag attggocgo goccgaaacg atcogacago 60

gogoccagoa caggtgogoa ggoaaattgo accaacgoat acagogocag cagaatgoca 120

tagtgggogg tgacgtogtt cgagtgaaco agatogogoa ggaggocogg cagcaccggo 180

ataatcaggo cgatgocgac agogtcgago gogacagtgo tcagaattac gatcagggot 240

atgttgggtt tcacgtctgg cotcoggaco agoctcogot ggtccgattg aacgogoga 300

ttotttatca ctgataagtt ggtggacata ttatgtttat cagtgataaa gtgtcaagoc 360

tgacaaagtt gcagccgaat acagtgatcc gtgccgccct ggacctgttg aacgaggtcg 420 gcgtagacgg tctgacgaca cgcaaactgg cggaacggtt gggggttcag cagccggcgc 480 tttactggca cttcaggaac aagegggege tgetegaege actggeegaa gecatgetgg 540 cggagaatca tacgcattcg gtgccgagag ccgacgacga ctggcgctca tttctgatcg 600 ggaatgcccg cagettcagg caggcgctgc tegectaceg egatggegeg egeatecatg 660 coggcacgcg accyyycyca cogcagatgg aaacggcoga ogogcagett egetteetet 720 gcqaqqcggg tttttcggcc ggggacgccg tcaatgcgct gatgacaatc agctacttca 780 ctgttggggc cgtgcttgag gagcaggccg gcgacagcga tgccggcgag cgcggcggca 840 ccgttgaaca ggctccgctc tcgccgctgt tgcgggccgc gatagacgcc ttcgacgaag 900 ccggtccgga cgcagcgtto gagcagggac tcgcggtgat tgtcgatgga ttggcgaaaa 960 ggaggetegt tgtcaggaac gttgaaggac cgagaaaggg tgacgattga tcaggaccgc 1020 tgccggagcg caacccactc actacagcag agocatglag acaacatece ctccccottt 1080 ccacegogic agacgeeegt ageageeege taegggettt tteatgeeet geeetagegt 1140 ccaageetea eggeegeet eggeetetet ggeggeette tggegetett eegetteete 1200 geteactgae tegetgeget eggtegtteg getgeggega geggtateag eteacteaaa 1260 ggcggtaata cggttatcca cagaatcagg ggataacgca ggaaagaaca tgtgagcaaa 1320 aggccagcaa aaggccagga accgtaaaaa ggccgcgttg ctggcgtttt tccataggct 1380 cogococct gacgagcate acaaaaateg acgeteaagt cagaggtgge gaaaccegae 1440 aggactataa agataccagg cgtttccccc tggaagctcc ctcgtgcgct ctcctgttcc 1500 gaccetgeeg ettaceggat acctgteege ettteteeet tegggaageg tggegetttt 1560

cogctgcata accotgctto ggggtcatta tagcgatttt ttoggtatat coatcotttt 1620 togcacgata tacaggattt tgccaaaggg ttogtgtaga ctttccttgg tgtatccaac 1680 ggcgtcagcc gggcaggata ggtgaagtag gcccacccgc gagcgggtgt tccttcttca 1740 ctgtccctta ttcgcacctg gcggtgctca acgggaatcc tgctctgcga ggctggccgg 1800 ctaccgccgg cgtaacagat gagggcaagc ggatggctga tgaaaccaag ccaaccagga 1860 agggcagccc acctatcaag gtgtactgcc ttccagaoga acgaagagcg attgaggaaa 1920 aggeggegge ggeoggeatg agectgtegg cetacetget ggeogtegge cagggetaca 1980 aaatcacggg cgtcgtggac tatgagcacg tccgcgagct ggcccgcatc aatggcgacc 2040 tgggccgcct gggcggcctg ctgaaactct ggctcaccga cgacccgcgc acggcgcggt 2100 teggtgatge cacgatecte geeetgetgg egaagatega agagaageag gaegagettg 2160 gcaaggtcat gatgggogtg gtocgcccga gggcagagcc atgacttttt tagccgctaa 2220 aacggccggg gggtgcgcgt gattgccaag cacglcccca tgcgctccat caagaagagc 2280 gaettogogg agetggtgaa gtacatcacc gacgagcaag gcaagaccga gogcotttgc 2340 gacgeteace gggetggttg coetegeege tgggetggeg geogtetatg geeetgeaaa 2400 cgcgccagaa acgccgtcga agccgtgtgc gagacaccgc ggccgccggc gttgtggata 2460 cctcgcggaa aacttggccc tcactgacag atgaggggcg gacgttgaca cttgaggggc 2520 cgactcaccc ggcgcggcgt tgacagatga ggggcaggct cgatttcggc cggcgacgtg 2580 gagetggcca gcctcgcaaa tcggcgaaaa cgcctgattt tacgcgagtt tcccacagat 2640 gatgtggaca agcctgggga taagtgccct gcggtattga cacttgaggg gcgcgactac 2700 tgacagatga ggggcgcgat ccttgacact tgaggggcag agtgctgaca gatgaggggc 2760

gcacctattg acatttgagg ggctgtccac aggcagaaaa tccagcattt gcaagggttt 2820 cogcocgttt ttcggccacc gctaacctgt cttttaacct gcttttaaac caatatttat 2880 aaaccttgtt tttaaccagg getgegeect gtgegegtga eegegeaege egaagggggg 2940 tgcccccct tctcgaaccc tcccggcccg ctaacgcggg cctcccatcc ccccaggggc 3000 tgcgcccctc ggccgcgaac ggcctcaccc caaaaatggc agcgctggca gtccttgcca 3060 ttgccgggat cggggcagta acgggatggg cgatcagccc gagcgcgacg cccggaagca 3120 ttgacgtgcc gcaggtgctg gcatcgacat tcagcgacca ggtgccgggc agtgagggcg 3180 geggeetggg tggeggeetg ecetteactt eggeegtegg ggeatteacg gaetteatgg 3240 cggggccggc aatttttacc ttgggcattc ttggcatagt ggtogcgggt gccgtgctcg 3300 tgttcggggg tgcgataaac ccagcgaacc atttgaggtg ataggtaaga ttataccgag 3360 gtatgaaaac gagaattgga cotttacaga attactotat gaagcgccat atttaaaaag 3420 ctaccaagac gaagaggatg aagaggatya yyaggcagat tgccttgaat atattgacaa 3480 tactgataag ataatatatc ttttatatag aagatatcgc cgtatgtaag gatttcaggg 3540 ggcaaggcat aggcagcgcg cttatcaata tatctataga atgggcaaag cataaaaact 3600 tgcatggact aatgcttgaa acccaggaca ataaccttat agcttgtaaa ttctatcata 3660 attgggtaat gactccaact tattgatagt gttttatgtt cagataatgc ccgatgactt 3720 tgtcatgcag ctccaccgat tttgagaacg acagcgactt ccgtcccagc cgtgccaggt 3780 gctgcctcag attcaggtta tgccgctcaa ttcgctgcgt atatcgcttg ctgattacgt 3840 gcagetttee etteaggegg gatteataea geggeeagee ateegteate catateacea 3900 cgtcaaaggg tgacagcagg ctcataagac gccccagcgt cgccatagtg cgttcaccga 3960

atacgtgcgc aacaaccgtc ttccggagac tgtcatacgc gtaaaacagc cagcgctggc 4020 gegatttage ceegacatag ceceaetgtt egtecattte egegeagaeg atgaegteae 4080 tgcccggctg tatgcgcgag gttaccgact gcggcctgag ttttttaagt gacgtaaaat 4140 cgtgttgagg ccaacgccca taatgcgggc tgttgcccgg catccaacgc cattcatggc 4200 catatcaatg attttctggt gcgtaccggg ttgagaagcg gtgtaagtga actgcagttg 4260 ccatgtttta cggcagtgag agcagagala gcgctgatgt ccggoggtgo ttttgccgtt 4320 acgcaccacc ccgtcaqtag ctgaacagga gggacagctg atagacacag aagccactgg 4380 agcacctcaa aaacaccatc atacactaaa tcagtaagtt ggcagcatca cccataattg 4440 tggtttcaaa atcggctccg tcgatactat gttatacgcc aactttgaaa acaactttga 4500 aaaagctgtt ttctggtatt taaggtttta gaatgcaagg aacagtgaat tggagttcgt 4560 cttgttataa ttagcttctt ggggtatctt taaatactgt agaaaagagg aaggaaataa 4620 taaatggcta aaatgagaat atcaccggaa ttgaaaaaac tyalcyaaaa ataccgctgc 4680 gtaaaagata eggaaggaat gteteetget aaggtatata agetggtggg agaaaatgaa 4740 aacctatatt taaaaatgac ggacagccgg tataaaggga ccacctatga tgtggaacgg 4800 gaaaaggaca tgatgctatg gctggaagga aagctgcctg ttccaaaggt cctgcacttt 4860 gaacggcatg atggctggag caatctgctc atgagtgagg ccgatggcgt cctttgctcg 4920 gaagagtatg aagatgaaca aagccctgaa aagattatcg agctgtatgc ggagtgcatc 4980 aggetettte actecatega catateggat tgtccctata cgaatagett agacageege 5040 ttagccgaat tggattactt actgaataac gatctggccg atgtggattg cgaaaactgg 5100 gaagaagaca ctccatttaa agatccgcgc gagctgtatg attttttaaa gacggaaaag 5160

cccgaagagg aacttgtctt ttcccacggc gacctgggag acagcaacat ctttgtgaaa 5220 gatggcaaag taagtggctt tattgatctt gggagaagcg gcagggcgga caagtggtat 5280 gacattgcct totgogtccg gtcgatcagg gaggatatcg gggaagaaca gtatgtcgag 5340 ctggatgaat tgttttagta cctagatgtg gcgcaacgat gccggcgaca agcaggagcg 5460 caccgacttc ttccgcatca agtgttttgg ctctcaggoc gaggcccacg gcaagtattt. 5520 gggcaagggg tegetggtat tegtgeaggg caagattegg aataccaagt acgagaagga 5580 cggccagacg gtctacggga ccgacttcat tgccgataag gtggattatc tggacaccaa 5640 ggcaccaggc gggtcaaatc aggaataagg gcacattgcc ccggcgtgag tcggggcaat 5700 cccgcaagga gggtgaatga atcggacgtt tgaccggaag gcatacaggc aagaactgat 5760 cgacgcgggg ttttccgccg aggatgccga aaccatcgca agccgcaccg tcatgcgtgc 5820 qccccgcgaa accttccagt ccgtcggctc gatyylccag caagctacgg ocaagatoga 5880 gegegacage gt.gcaactgg ctcccctgc cctgcccgcg ccateggccg ccgtggagcg 5940 ttcgcgtcgt ctcgaacagg aggcggcagg tttggcgaag tcgatgacca tcgacacgcg 6000 aggaactatg acgaccaaga agcgaaaaac cgccggcgag gacctggcaa aacaggtcag 6060 cgaggccaag caggccgcgt tgctgaaaca cacgaagcag cagatcaagg aaatgcagct 6120 ttoottgtto gatattgogo ogtggoogga cacgatgoga gogatgocaa acgacacggo 6180 cegetetgee etgtteacea egegeaacaa gaaaateeeg egegaggege tgeaaaacaa 6240 ggtcattttc cacgtcaaca aggacgtgaa gatcacctac accggcgtcg agctgcgggc 6300 cgacgatgac gaactggtgt ggcagcaggt gttggagtac gcgaagcgca cccctatcgg 6360 cgagccgatc accttcacgt tctacgagct ttgccaggac ctgggctggt cgatcaatgg 6420 ceggtattac acgaaggeeg aggaatgeet gtegegeeta caggegaegg egatgggett 6480 cacgtocgac cgcgttgggc acctggaatc ggtgtcgctg ctgcaccgct tccgcgtcct 6540 ggaccgtggc aagaaaacgt cccgttgcca ggtcctgatc gacgaggaaa tcgtcgtgct 6600 gtttgctggc gaccactaca cgaaattcat atgggagaag taccgcaagc tgtcgccgac 6660 yycccyacgg atgttcgact atttcagctc gcaccgggag ccgtacccgc tcaagctgga 6720 aaccttccgc ctcatgtgcg gatcggattc cacccgcgtg aagaagtggc gcgagcaggt 6780 cggcgaagcc tgcgaagagt tgcgaggcag cggcctggtg gaacacgcct gggtcaatga 6840 tgacctggtg cattgcaaac gctagggcct tgtggggtca gttccggctg ggggttcagc 6900 agccagcgct ttactggcat ttcaggaaca agcgggcact gctcgacgca cttgcttcgc 6960 tcagtatcgc tcgggacgca cggcgcgctc tacgaactgc cgataaacag aggattaaaa 7020 ttgacaattg tgattaaggo toayatloga cggottggag oggoogaogt goaggattto 7080 cgcgagatcc gattgtcggc cctgaagaaa gctccagaga tgttcgggtc cgtttacgag 7140 cacgaggaga aaaagcccat ggaggcgttc gctgaacggt tgcgagatgc cgtggcattc 7200 ggcgcctaca tcgacggcga gatcattggg ctgtcggtct tcaaacagga ggacggcccc 7260 aaggacgete acaaggegea tetgteegge gttttegtgg agecegaaca gegaggeega 7320 ggggtcgccg gtatgctgct gcgggcgttg ccggcgggtt tattgctcgt gatgatcgtc 7380 cgacagattc caacgggaat ctggtggatg cgcatcttca tcctcggcgc acttaatatt 7440 togotattot ggagottigtt gittatticg gtotacogcc tgccgggcgg ggtcgcggcg 7500 acggtaggcg ctgtgcagcc gctgatggtc gtgttcatct ctgccgctct gctaggtagc 7560 ccgatacgat tgatggcggt cctgggggct atttgcggaa ctgcgggcgt ggcgctgttg 7620 gtgttgacac caaacgcagc gctagatcct gtcggcgtcg cagcgggcct ggcggggcg 7680 gtttccatgg cgttcggaac cgtgctgacc cgcaagtggc aacctcccgt gcctctgctc 7740 acctttaccg cctggcaact ggcggccgga ggacttctgc tcgttccagt agctttagtg 7800 tttgateege caatecegat geetacagga accaatgtte teggeetgge gtggetegge 7860 ctgatoggag ogggtttaac ctacttcctt tggttooggg ggatotogog actogaacct 7920 acagttgttt ccttactggg ctttctcagc cccagatctg gggtcgatca gccggggatg 7980 catcaggccg acagtcggaa cttcgggtcc ccgacctgta ccattcggtg agcaatggat 8040 aggggagttg atatogtoaa ogttoactto taaagaaata gogocactca gottootoag 8100 cggctttatc cagcgatttc ctattatgtc ggcatagttc tcaagatcga cagcctgtca 8160 cggttaagcg agaaatgaat aagaaggctg ataattcgga tctctgcgag ggagatgata 8220 tttgatcaca ggcagcaacg ctctgtcatc gllacaatca acatgctaco ctccgogaga 8280 tostocgtgt ttcasacccg gcagcttagt tgccgttctt ccgaatagca tcggtaacat 8340 gagcaaagto tgccgcctta caacggctct cccgctgacg ccgtcccgga ctgatgggct 8400 gootgtatcg agtggtgatt ttgtgccgag ctgccggtcg gggagctgtt ggctggctgg 8460 tggcaggata tattgtggtg taaacaaatt gacgcttaga caacttaata acacattgcg 8520 gacgttttta atgtactggg gtggtttttc ttttcaccag tgagacgggc aacagctgat 8580 tgcccttcac cgcctggccc tgagagagtt gcagcaagcg gtccacgctg gtttgcccca 8640 gcaggcgaaa atcctgtttg atggtggttc cgaaatcggc aaaatccctt ataaatcaaa 8700 agaatagccc gagatagggt tgagtgttgt tccagtttgg aacaagagtc cactattaaa 8760

gaacgtggac tecaacgtca aagggcgaaa aaccgtctat cagggcgatg geccactaeg 8820 tgaaccatca cccaaatcaa gttttttggg gtcgaggtgc cgtaaagcac taaatcggaa 8880 ccctaaaggg agcccccgat ttagagcttg acggggaaag ccggcgaacg tggcgagaaa 8940 ggaagggaag aaagcgaaag gagcgggcgc cattcaggct gcgcaactgt tgggaagggc 9000 gateggtgeg ggeetetteg etattacgee agetggegaa agggggatgt getgeaagge 9060 gattaagtig ggtaacgcca gggttttcoc agtcacgacg ttgtaaaacg acggccagtg 9120 aattaattoo catottgaaa gaaatatagt ttaaatattt attgataaaa taacaagtca 9180 ggtattatag tocaagcaaa aacataaatt tattgatgca agtttaaatt cagaaatatt 9240 tcaataactg attatatcag ctggtacatt gccgtagatg aaagactgag tgcgatatta 9300 tgtgtaatac ataaattgat gatatagcta gcttagctca tcggggggatc cgtcgaagct 9360 agcttgggtc ccgctcagaa gaactcgtca agaaggcgat agaaggcgat gcgctgcgaa 9420 togggagogg cgatacogta aagcacyayy aagcggtcag cocattogoo gooaagotot 9480 tragraatat cargggtage caargetatg teetgatage ggteegecac acceageegg 9540 ccacagtcga tgaatccaga aaagcggcca ttttccacca tgatattcgg caagcaggca 9600 togocatggg toacgacgag atoctogocg togggcatgc gogcottgag cotggcgaac 9660 agtteggetg gegegagece etgatgetet tegteeagat cateetgate gacaagaceg 9720 gettecatec gagtacgtge tegetegatg egatgttteg ettggtggte gaatgggeag 9780 gtageoggat caagegtatg cageegeege attgeateag ceatgatgga taettteteg 9840 gcaggagcaa ggtgagatga caggagatcc tgccccggca cttcgcccaa tagcagccag 9900 tecetteceg etteagtgae aacgtegage acagetgege aaggaaegee egtegtggee 9960

agccacgata gccgcgctgc ctcgtcctgc agttcattca gggcaccgga caggtcggtc 10020 ttgacaaaaa gaaccgggcg cccctgcgct gacagccgga acacggcggc atcagagcag 10080 ccgattgtct gttgtgccca gtcatagccg aatagcctct ccacccaagc ggccggagaa 10140 cotgogtgca atcoatcttg ttcaatccaa gotoccatgg goodtcgact agagtcgaga 10200 tctggattga gagtgaatat gagactctaa ttggataccg aggggaattt atggaacgtc 10260 agtggagcat ttttgacaag aaatatttgc tagctgatag tgacottagg cgacttttga 10320 acgcgcaata atggtttctg acgtatgtgc ttagctcatt aaactccaga aacccgcggc 10380 tgagtggete etteaaegtt geggttetgt cagttecaaa egtaaaaegg ettgteeege 10440 gtcatcggcg ggggtcataa cgtgactccc ttaattctcc gctcatgatc ttgatcccct 10500 gogocatoag atocttggog goaagaaago catecagttt actttgcagg gottcccaac 10560 cttaccagag ggcgccccag ctggcaattc cggttcgctt gctgtccata aaaccgccca 10620 gtotagotat ogocatgtaa goccactgca agotacotyo lllototttg ogottgogtt 10680 ttoccttgtc cagatageec agtagetgae atteateegg ggteageace gtttetgegg 10740 actggettte taegtgttee getteettta geagecettg egeeetgagt gettgeggea 10800 gcgtgaaget tgcatgcctg caggtcgacg gcgcgccgag ctcctcgage aaatttacac 10860 attgccacta aacgtctaaa cccttgtaat ttgtttttgt tttactatgt gtgttatgta 10920 tttgatttgc gataaatttt tatatttggt actaaattta taacaccttt tatgctaacg 10980 tttgccaaca cttagcaatt tgcaagttga ttaattgatt ctaaattatt tttgtcttct 11040 aaatacatat actaatcaac tggaaatgta aatatttgct aatatttcta ctataggaga 11100 attaaagtga gtgaatatgg taccacaagg tttggagatt taattgttgc aatgctgcat 11160

ggatggcata tacaccaaac attcaataat tettgaggat aataatggta ccacacaaga 11220 tttgaggtgc atgaacgtca cgtggacaaa aggtttagta atttttcaag acaacaatgt 11280 taccacacac aagttttgag gtgcatgcat ggatgccctg tggaaagttt aaaaatattt 11340 tggaaatgat ttgcatggaa gccatgtgta aaaccatgac atccacttgg aggatgcaat 11400 aatgaagaaa actacaaatt tacatgcaac tagttatgca tgtagtctat ataatgagga 11460 ttttquaala ctttcattca tacacactca ctaagtttta cacgattata atttcttcat 11520 agccagcaga tetgeeggea tegateeegg gecatggeet getttaatga gatatgegag 11580 acgcctatga tegcatgata tttgctttca attctgttgt gcacgttgta aaaaacctga 11640 gcatgtgtag ctcagatcct taccgccggt ttcggttcat tctaatgaat atatcacccg 11700 ttactatogt attittatga ataatattot cogttcaatt tactgattgt cogtcgacga 11760 gctcggcgcg cctctagagg atcgatgaat tcagatcggc tgagtggctc cttcaacgtt 11820 geggttetgt cagttecaaa egtaaaaugg eligteeege gteateggeg ggggteataa 11880 ogtgactocc ttaattotoc gotcatgato agattgtogt ttoccgcott cagtttaaac 11940 tatcagtgtt tgacaggata tattggcggg taaacctaag agaaaagagc gtttattaga 12000 ataatcggat atttaaaagg gcgtgaaaag gtttatcctt cgtccatttg tatgtgcatg 12060 12079 ccaaccacag ggttcccca

<210> 41

<211> 13002

<212> DNA

<213> Unknown

<220>

<223> Plant expression vector with two

BASF Plant Science GmbH

136

promoter-terminator expression cassettes

<400> 41 gatotggogo oggocagoga gacgaguaag allggoogoo gooogaaacg alcogacago 60 gegeccagea caggtgegea ggcaaattge accaaegeat acagegeeag cagaatgeea 120 tagtgggcgg tgacgtcgtt cgagtgaacc agatcgcgca ggaggcccgg cagcaccggc 180 ataatcaggo cgatgoogac agogtogago gogacagtgo toagaattac gatcaggggt 240 atgttgggtt tcacgtctgg cctccggacc agcctccgct ggtccgattg aacgcgcgga 300 ttotttatca ctgataagtt ggtggacata ttatgtttat cagtgataaa gtgtcaagca 360 tgacaaagtt gcagccgaat acagtgatcc gtgccgccct ggacctgttg aacgagglcg 420 gogtagangg totgangana ognaaantgg oggaanggtt gggggttnag nagonggogn 480 tttactggca cttcaggaac aagcgggcgc tgctcgacgc actggccgaa gccatgctgg 540 cggagaatca tacgcattcg gtgccgagag ccgacgacga ctggcgctca tttctgatcg 600 ggaatgcccg cagettcagg caggcgctgc tegectaccg cgatggcgcg cgcatccatg 660 coggoacgeg acogggogoa cogoagatgg aaacggooga cgcgoagott cgcttcctct 720 gcgaggcggg tttttcggcc ggggacgccg tcaatgcgct gatgacaatc agctacttca 780 clyttggggc cgtgcttgag gagcaggccg gcgacagoga tgcoggcgag cgcggcggca 840 cogttgaaca ggctccgctc tcgccgctgt tgcgggccgc gatagacgcc ttcgacgaag 900 ccggtccgga cgcagcgttc gagcagggac tcgcggtgat tgtcgatgga ttggcgaaaa 960 ggaggetegt tgteaggaac gttgaaggac cgagaaaggg tgacgattga teaggacege 1020 tgccggageg caacccactc actacageag agccatgtag acaacatccc ctcccccttt 1080 ccaccgcgtc agacgcccgt agcagcccgc tacgggcttt ttcatgccct gccctagcgt 1140 ccaagcotca eggeogeget eggeotetet ggeogeette tggegetett eegetteete 1200 goteactgac tegetgeget eggtegtteg getgeggega gegglateag eteactcaaa 1260 ggeggtaata eggttateea cagaateagg ggataacgca ggaaagaaca tgtgagcaaa 1320 aggccagcaa aaggccagga accgtaaaaa ggccgcgttg ctggcgtttt tccataggct 1380 cogccccct gacgagcate acaaaaatcg acgctcaagt cagaggtggc gaaacccgac 1440 aggactataa agataccagg cgtttccccc tggaagctcc ctcgtgcgct ctcctgttcc 1500 gaccetgeeg ettaceggat acctgteege ettteteeet tegggaageg tggegetttt 1560 cogotgoata accotgotto ggggtoatta tagogatttt ttoggtatat coatcottil 1620 togoacgata tacaggattt tgccaaaggg ttcgtgtaga ctttccttgg tgtatccaac 1680 ggcgtcagcc gggcaggata ggtgaagtag gcccacccgc gagcgggtgt tccttcttca 1740 ctgtccctta ttcgcacctg gcggtgctca acgggaatcc tgctctgcga ggctggccgg 1800 ctaccgccgg cgtaacagat gagggcaagc ggatggctga tgaaaccaag ccaaccagga 1860 agggcagccc acctatcaag gtgtactgcc ttccagacga acgaagagcg attgaggaaa 1920 aggoggogge ggcoggcatg agcotgtogg cotacotgot ggcogtoggo cagggotaca 1980 aaatcacggg cgtcgtggac talgagcacg teegegaget ggeoogcate aatggcgace 2040 tgggccgcct gggcggcctg ctgaaactct ggctcaccga cgacccgcgc acggcgcggt 2100 toggtgatgc cacgatoctc gccctgctgg cgaagatcga agagaagcag gacgagcttg 2160 gcaaggtcat gatgggcgtg gtccgcccga gggcagagcc atgacttttt tagccgctaa 2220 aacggccggg gggtgcgcgt gattgccaag cacgtcccca tgcgctccat caagaagagc 2280 gacttcgcgg agctggtgaa gtacatcacc gacgagcaag gcaagaccga gcgcctttgc 2340 gacgeteace gggetggttg coetegeege tgggetggeg geegtetatg geeetgeaaa 2400 cgcgccagaa acgccgtcga agccgtgtgc gagacacogc ggccgccggc gttgtggata 2460 cotogoggaa aacttggccc tcactgacag atgagggcc gacgttgaca cttgagggcc 2520 cgactcaccc ggcgcggcgt tgacagatga ggggcaggct cgatttcggc cggcgacgtg 2580 gagetggeca geetegeaaa teggegaaaa egeetgattt tacgegagtt teccacagat 2640 gatgtggaca agcctgggga taagtgccct gcggtattga cacttgaggg gcgcgactac 2700 tgacagatga ggggcgcgat ccttgacact tgaggggcag agtgctgaca gatgaggggc 2760 gcacctattg acatttgagg ggctgtccac aggcagaaaa tccagcattt gcaagggttt 2820 oogooogttt ttoggocace getaacetgt ettttaacet gettttaaac caatatttat 2880 aaaccttgtt tttaaccagg gctgcgccct gtgcgcgtga ccgcgcacgc cgaagggggg 2940 tgcccccct tctcgaaccc tcccggcccg ctaacgcggg cctcccatcc ccccaggggc 3000 tgogoccote ggeogogaac ggeoteacce caaaaatgge agegetggea gtoottgeea 3060 ttgccgggat cggggcagta acgggatggg cgatcagccc gagcgcgacg cccggaagca 3120 ttgacgtgcc gcaggtgctg gcatcgacat tcagcgacca ggtgccgggc agtgagggcg 3180 geggeetggg tggeggeety uccllcaett eggeegtegg ggeatteaeg gaotteatgg 3240 cggggccggc aatttttacc ttgggcattc ttggcatagt ggtcgcgggt gccgtgctcg 3300 tgttcggggg tgcgataaac ccagcgaacc atttgaggtg ataggtaaga ttataccgag 3360 gtatgaaaac gagaattgga cctttacaga attactctat gaagcgccat atttaaaaag 3420 ctaccaagac gaagaggatg aagaggatga ggaggcagat tgccttgaat atattgacaa 3480 tactgataag ataatatatc ttttatatag aagatatcgc cgtatgtaag gatttcaggg 3540

ggcaaggcat aggcagcgcg cttatcaata tatctataga atgggcaaag cataaaaact 3600 tgcatggact aatgcttgaa acccaggaca ataaccttat agcttgtaaa ttctatcata 3660 attgggtaat gactccaact tattgatagt gttttatgtt cagataatgc ccgatgactt 3720 tgtcatgcag ctccaccgat tttgagaacg acagcgactt ccgtcccagc cgtgccaggt 3780 gctgcctcag attcaggtta tgccgctcaa ttcgctgcgt atatcgcttg ctgattacgt 3840 gcagetttee etteaggegg gatteataea geggeeagee ateegteate catateacea 3900 cgtcaaaggg tgacagcagg ctcataagac gccccagcgt cgccatagtg cgttcaccga 3960 atacgtgcgc aacaaccgtc ttccggagac tgtcatacgc gtaaaacagc cagcgctggc 4020 gogatttage cocgacatag coccactgtt egtecattte egegeagaeg atgacgteae 4080 tgcccggctg tatgcgcgag gttaccgact gcggcctgag ttttttaagt gacgtaaaat 4140 cgtgttgagg ccaacgccca taatgcgggc tgttgcccgg catccaacgc cattcatggc 4200 catatcaatg attitctggt gcgtaccggg ttgagaagcg gtgtaagtga actgcagttg 4260 ccatgtttta cggcagtgag agcagagata gcgctgatgt ccggcggtgc ttttgccgtt 4320 acgcaccacc ccgtcagtag ctgaacagga gggacagctg atagacacag aagccactgg 4380 agcacctcaa aaacaccatc atacactaaa tcaytaagtt ggcagcatca cccataattg 4440 tggtttcaaa atcggctccg tcgatactat gttatacgcc aactttgaaa acaactttga 4500 aaaagctgtt ttctggtatt taaggtttta gaatgcaagg aacagtgaat tggagttcgt 4560 cttgttataa ttagcttctt ggggtatctt taaatactgt agaaaagagg aaggaaataa 4620 taaatggcta aaatgagaat atcaccggaa ttgaaaaaac tgatcgaaaa ataccgctgc 4680 gtaaaaagata cggaaggaat gtotootgot aaggtatata agotggtggg agaaaatgaa 4740

aacctatatt taaaaatgac ggacagoogg tataaaggga ccacctatga tgtggaacgg 4800 gaaaaggaca tgatgctatg gctggaagga aagctgcctg ttccaaaggt cctgcacttt 4860 gaacggcatg atggctggag caatotgctc atgagtgagg ccgatggcgt cctttgctcg 4920 gaagagtatg aagatgaaca aagccctgaa aagattatcg agctgtatgc ggagtgcatc 4980 aggetettte actecatega catateggat tgteectata egaatagett agacageege 5040 ttagccgaat tggattactt actgaataac gatctggccg atgtggattg cgaaaactgg 5100 gaagaagaca ctccatttaa agatccgcgc gagctgtatg attttttaaa gacggaaaag 5160 cccgaagagg aacttgtctt ttcccacggc gacctgggag acagcaacat ctttgtgaaa 5220 gatyycaaag taagtggott tattgatott gggagaagog gcagggogga caagtggtat 5280 gacattgcct tetgegteeg gtegateagg gaggatateg gggaagaaca gtatgtegag 5340 ctggatgaat tgttttagta cctagatgtg gcgcaacgat gccggcgaca agcaggagcg 5460 caccgacttc ttccgcatca agtgttttgg ctctcaggcc gaggcccacg gcaagtattt 5520 gggcaagggg tegetggtat tegtgcaggg caagattegg aataccaagt acgagaagga 5580 cggccagacg gtctacggga ccgacttcat tgccgataay glggattatc tggacaccaa 5640 ggcaccagge gggteaaate aggaataagg gcacattgee ceggegtgag teggggeaat 5700 cccgcaagga gggtgaatga atcggacgtt tgaccggaag gcatacaggc aagaactgat 5760 cgacgcgggg ttttccgccg aggatgccga aaccatcgca agccgcaccg tcatgcgtgc 5820 gccccgcgaa accttccagt ccgtcggctc gatggtccag caagctacgg ccaagatcga 5880 gegegacage gtgcaactgg etececetge cetgeeegeg ceateggeeg eegtggageg 5940

ttegegtegt etegaacagg aggeggeagg tttggegaag tegatgacea tegacaegeg 6000 aggaactatg acgaccaaga agcgaaaaac cgccggcgag gacctggcaa aacaggtcag 6060 cgaggocaag caggccgcgt tgctgaaaca cacgaagcag cagatcaagg aaatgcagct 6120 ttccttgttc gatattgcgc cgtggccgga cacgatgcga gcgatgccaa acgacacggc 6180 ccgctctgcc ctgttcacca cgcgcaacaa gaaaatcccg cgcgaggcgc tgcaaaacaa 6240 ggtcattttc cacgtcaaca aggacgtgaa gatcacctac accggcgtcg agctgcgggc 6300 cgacgatgac gaactggtgt ggcagcaggt gttggagtac gcgaagcgca cccctatcgg 6360 cgagccgatc accttcacgt totacgagct ttgccaggac ctgggctggt cgatcaatyy 6420 ocggtattac acgaaggoog aggaatgeet gtegegeeta caggegaegg cgatgggett 6480 cacgtccgac cgcgttgggc acctggaatc ggtgtcgctg ctgcaccgct tccgcgtcct 6540 ggaccgtggc aagaaaacgt cccgttgcca ggtcctgatc gacgaggaaa tcgtcgtgct 6600 gtttgctggc gaccactaca cgaaattcat atgggagaag taccgcaagc tgtcgccgac 6660 ggcccgacgg atgttcgact atttcagctc gcaccgggag ccgtacccgc tcaagctgga 6720 aaccttccgc ctcatgtgcg gatcggattc cacccgcgtg aagaagtggc gcgagcaggt 6780 cggcgaagcc tgcgaagagt tgcgaggcay cggcctggtg gaacacgcct gggtcaatga 6840 tgacctggtg cattgcaaac gctagggcct tgtggggtca gttccggctg ggggttcagc 6900 agecageget ttactggeat ttcaggaaca agegggeact getegaegea ettgettege 6960 tcagtatogo togggacgoa oggogogoto tacgaactgo ogataaacag aggattaaaa 7020 ttgacaattg tgattaaggc tcagattcga cggcttggag cggccgacgt gcaggatttc 7080 cgcgagatcc gattgtcggc cctgaagaaa gctccagaga tgttcgggtc cgtttacgag 7140 cacgaggaga aaaagcccat ggaggcgttc gctgaacggt tgcgagatgc cgtggcattc 7200 ggogootaca togacggoga gatcattggg otgtoggtot Loaaacagga ggacggoooc 7260 aaggacgoto acaaggogoa totgtooggo qttttogtgg agcoogaaca gogaggooga 7320 ggggtcgccg gtatgctgct gcgggcgttg ccggcgggtt tattgctcgt gatgatcgtc 7380 cgacagattc caacgggaat ctggtggatg cgcatcttca tcctcggcgc acttaatatt 7440 togotattot ggagottgtt gtttatttog gtotacogco tgcogggogg ggtogoggog 7500 acggtaggcg ctgtgcagcc gctgatggtc gtgttcatct ctgccgctct gctaggtagc 7560 ccgatacgat tgatggcggt cctgggggct atttgcggaa ctgcgggcgt ggcgctgtty 7620 gtgttgacac caaacgcagc gctagatcct gtcggcgtcg cagcggggcct ggcgggggcg 7680 gtttccatgg cgttcggaac cgtgctgacc cgcaagtggc aacctcccgt gcctctgctc 7740 acctttaccg cctggcaact ggcggccgga ggacttctgc tcgttccagt agctttagtg 7800 tttgatccgc caatcccgat gcctacagga accaatgttc tcggcctggc gtggctcggc 7860 ctgatcggag cgggtttaac ctacttcctt tggttccggg ggatctcgcg actcgaacct 7920 acagttgttt cottactggg ctttctcagc cccagatctg gggtcgatca gccggggatg 7980 catcaggoog acagtoggaa cttogggtoo cogacotgta coattoggtg agcaatggat 8040 aggggagttg atatogtoaa cgttcacttc taaagaaata gcgccactca gcttcctcag 8100 oggotttato cagogattto ctattatgto ggcatagtto toaagatoga cagootgtoa 8160 cggttaagcg agaaatgaat aagaaggctg ataattcgga tctctgcgag ggagatgata 8220 tttgatcaca ggcagcaacg ctctgtcatc gttacaatca acatgctacc ctccgcgaga 8280 tcatcogtgt ttcaaaccog gcagcitagt tgccgttctt ccgaatagca tcggtaacat 8340

gagcaaagtc tgccgcctta caacggctct cccgctgacg ccgtcccgga ctgatgggct 8400 gcctgtatcg agtggtgatt ttgtgccgag ctgccggtcg gggagctgtt ggctggctgg 8460 tggcaggata tattgtggtg taaacaaatt gacgcttaga caacttaata acacattgcg 8520 gacgttttta_atgtactggg gtggtttttc ttttcaccag tgagacgggc aacagctgat 8580 tgcccttcac cgcctggccc tgagagagtt gcagcaagcg gtccacgctg gtttgcccca 8640 gcaggcgaaa atcctgtttg atggtggttc cgaaatcggc aaaatccctt ataaatcaaa 8700 agaatagccc gagatagggt tgagtgttgt tccagtttgg aacaagagtc cactattaaa 8760 gaacgtggac tocaacgtca aagggcgaaa aaccgtctat cagggcgatg gcccactacy 8820 tgaaccatca cocaaatcaa gttttttggg gtcgaggtgc cgtaaagcac taaatcggaa 8880 ccctaaaggg agccccgat ttagagcttg acggggaaag ccggcgaacg tggcgagaaa 8940 ggaagggaag aaagcgaaag gagcgggcgc cattcaggct gcgcaactgt tgggaagggc 9000 gateggtgcg ggcctcttcg ctattacgcc agctggcgaa agggggatgt gctgcaaggc 9060 gattaagttg ggtaacgcca gggttttccc agtcacgacg ttgtaaaacg acggccagtg 9120 aattaattcc catcttgaaa gaaatatagt ttaaatattt attgataaaa taacaagtca 9180 ggtattatag tocaagcaaa aacataaatt tattgatgca agtttaaatt cagaaatatt 9240 tcaataactg attatatcag ctggtacatt gccgtagatg aaagactgag tgcgatatta 9300 tgtgtaatac ataaattgat gatatagcta gcttagctca tcgggggatc cgtcgaagct 9360 agettgggte cegetcagaa gaactegtea agaaggegat agaaggegat gegetgegaa 9420 togggagogg cgataccgta aagcacgagg aagcggtoag cocattogec gccaagctct 9480 tcagcaatat cacgggtage caacgctatg tcctgatage ggtccgccac acccagccgg 9540

ccacagtcga tgaatccaga aaagcggcca ttttccacca tgatattcgg caagcaggca 9600 togocatggg toacgacgag atcotogoog togggcatgc gogcottgag cotygogaac 9660 agtteggetg gegegagece etgatgetet tegtenagat catectgate gacaagaceg 9720 gottecatec gagtacgtgc tegetegatg egatgttteg ettggtggte gaatgggeag 9780 gtagccggat caagcgtatg cagccgccgc attgcatcag ccatgatgga tactttctcg 9840 gcaggagcaa ggtgagatga caggagatcc tgccccggca cttcgcccaa tagcagccag 9900 teeetteeeg etteagtgae aacgtegage acagetgege aaggaaegee egtegtggee 9960 agocacgata googogotgo otogtootgo agttoattoa gggcaccgga caggtoggto 10020 ttgacaaaaa gaaccggycy cccctgcgct gacagccgga acacggcggc atcagagcag 10080 ccgattgtct qttgtgccca gtcatagccg aatagcctct ccacccaagc ggccggagaa 10140 cotgogtgca atocatottg ttcaatocaa gotcocatgg goodtogact agagtogaga 10200 tetggattga gagtgaatat gagactetaa ttggatacog aggggaattt atggaacgte 10260 agtggagcat ttttgacaag aaatatttgc tagctgatag tgaccttagg cgacttttga 10320 acgcgcaata atggtttctg acgtatgtgc ttagctcatt aaactccaga aacccgcggc 10380 tgagtggete etteaaegtt geggttetgt eagtteeaaa eglaaaaegg ettgteeoge 10440 gtcatcggog ggggtoataa cgtgactccc ttaattctcc qctcatgatc ttgatcccct 10500 gegecateag atcettggeg geaagaaage cateeagttt actttgeagg getteecaac 10560 cttaccagag ggcgccccag ctggcaattc cggttcgctt gctgtccata aaaccgccca 10620 gtotagotat ogocatgtaa goocactgca agotacctgc tttctctttg cgcttgcgtt 10680 ttecettgte cagatagece agtagetgae atteateegg ggteageace gtttetgegg 10740 actggctttc tacgtgttcc gcttccttta gcagcccttg cgccctgagt gcttgcggca 10800 gogtgaaget tgcatgcetg caggtegacg gegegeegag etecteyaye aaatttacac 10860 attgocacta aacgtotaaa coottgtaat ttgtttttgt tttactatgt gtgttatgta 10920 tttgatttgc gataaatttt tatatttggt actaaattta taacaccttt tatgctaacg 10980 tttgccaaca cttagcaatt tgcaagttga ttaattgatt ctaaattatt tttgtcttct 11040 aaatacatat actaatcaac tggaaatgta aatatttgct aatatttcta ctataggaga 11100 attaaagtga gtgaatatgg taccacaagg tttggagatt taattgttgc aatgctgcat 11160 ggatggcata tacaccaaac attcaataat tottgaggat aataatggta ccacacaaga 11220 tttgaggtgc atgaacgtca cgtggacaaa aggtttagta atttttcaag acaacaatgt 11280 taccacacac aagttttgag gtgcatgcat ggatgccctg tggaaagttt aaaaatattt 11340 tggaaatgat ttgcatggaa gccatgtgta aaaccatgac atccacttgg aggatgcaat 11400 aatgaagaaa actacaaatt tacatgcaac tagttatgca tgtagtctat ataatgagga 11460 ttttgcaata ctttcattca tacacactca ctaagtttta cacgattata atttcttcat 11520 agccagccca ccgcggtggg cggccgcctg cagtctagaa ggcctcctgc tttaatgaga 11580 tatgcgagac gcctatgatc gcatgatatt tgctttcaat tctgttgtgc acgttgtaaa 11640 asacctgage atgrigtaget cagatectta cegeeggttt eggtteatte taatgastat 11700 atcaccogtt actatogtat tittatgaat aatattotoo gitcaatita oigatigtoo 11760 gtcgagcaaa tttacacatt gccactaaac gtctaaaccc ttgtaatttg tttttgtttt 11820 actatgtgtg ttatgtattt gatttgcgat aaatttttat atttggtact aaatttataa 11880 caccttttat gctaacgttt gccaacactt agcaatttgc aagttgatta attgattcta 11940

aattattttt gtottotaaa tacatatact aatcaactgg aaatgtaaat atttgotaat 12000 atttctacta taggagaatt aaagtgagtg aatatggtac cacaaggttt ggagattiaa 12060 ttgttgcaat gotgoatgga tggcatatac accaaacatt caataattct tgaggataat 12120 aatggtacca cacaagattt gaggtgcatg aacgtcacgt ggacaaaagg tttagtaatt 12180 tttcaagaca acaatgttac cacacacaag ttttgaggtg catgcatgga tgccctgtgg 12240 aaagtttaaa aatattttgg aaatgatttg catggaagcc atgtgtaaaa ccatgacatc 12300 cacttggagg atgcaataat gaagaaaact acaaatttac atgcaactag ttatgcatgt 12360 agtotatata atgaggattt tgcaatactt toattoatac acactoacta agttttacac 12420 gattataatt tottoatago cagoggatoo gatatogggo cogotagogt taaccotgot 12480 ttaatgagat atgogagacg cctatgatcg catgatattt gctttcaatt ctgttgtgca 12540 cgttgtaaaa aacctgagca tgtgtagctc agatccttac cgccggtttc ggttcattct 12600 aatgaatata toaccogtta ctatogtatt tttatgaata atattotoog ttcaatttac 12660 tgattgtccg tcgacgaatt cgagctcggc gcgcctctag aggatcgatg aattcagatc 12720 ggctgagtgg ctccttcaac gttgcggttc tgtcagttcc aaacgtaaaa cggcttgtcc 12780 cgcgtcatcg gcgggggtca taacgtgact cccttaattc tccgctcatg atcagattgt 12840 cgtttcccgc cttcagttta aactatcagt gtttgacagg atatattggc gggtaaacct 12900 aagagaaaag agcgtttatt agaataatcg gatatttaaa agggcgtgaa aaggtttatc 12960 13002 cttegtecat ttgtatgtgc atgccaacca cagggttccc ca

<210> 42

<211> 13905

<212> DNA

<213> Unknown

<220>

<223> Plant expression vector with three promoter-terminator expression cassettes

<400> 42 gatotggogo oggocagoga gacgagoaag attggoogoo goocgaaacg atcogacago 60 gogoccagoa cayylyogca gycaaattyo accaacycat acagogocag cagaatgoca 120 tagtgggcgg tgacgtcgtt cgagtgaacc agatcgcgca ggaggcccgg cagcaccggc 180 ataatcaggc cgatgccgac agcgtcgagc gcgacagtgc tcagaattac gatcaggggt 240 atgttgggtt tcacgtctgg cctccggacc agcctccgct ggtccgattg aacgcgcgga 300 ttotttatca ctgataagtt ggtggacata ttatgtttat cagtgataaa gtgtcaagca 360 tgacaaagtt gcagccgaat acagtgatcc gtgccgccct ggacctgttg aacgaggtcg 420 gcgtagacgg totgacgaca cgcaaactgg cggaacggtt gggggttoag oagooggogc 480 tttactggca cttcaggaac aagcgggcqc tgctcgacgc actggccgaa gccatgctgg 540 cggagaatca tacgcattcg gtgccgagag ccgacgacga ctggcgctca tttctgatcg 600 ggaatgcccg cagcttcagg caggcgctgc tcgcctaccg cgatggcgcg cgcatccatg 660 ccggcacgcg accgggcgca ccgcagatgg aaacggccga cgcgcagctt cgcttcctct 720 gcgaggcggg tttttcggcc ggggacgccg tcaatgcgct gatgacaatc agctacttca 780 ctgttggggc cgtgcttgag gagcaggccg gcgacagcga tgccggcgag cgcggcggca 840 ccgttgaaca ggctccgctc tcgccgctgt tgcgggccgc gatagacgcc ttcgacgaag 900 ccggtccgga cgcagcgttc gagcagggac tcgcggtgat tgtcgatgga ttggcgaaaa 960

ggaggetegt tgteaggaac gttgaaggae egagaaaggg tgaegattga teaggaeege 1020 tgooggagog caacceactc actacagoag agccatgtag acaacatccc ctcccccttt 1080 ccaccgcgtc agacgcccgt agcagcccgc tacgggcttt ttcatgccct gccctagcgt 1140 ccaagcetea eggeegeet eggeetetet ggeggeette tggegetett eegetteete 1200 gctcactgac togctgcgct cggtcgttcg gctgcggcga gcggtatcag ctcactcaaa 1260 ggcggtaata cggttatcca cagaatcagg ggataacgca ggaaagaaca tgtgagcaaa 1320 aggocagoaa aaggocagga accgtaaaaa ggocgcgttg ctggcgtttt tccataggot 1380 cogecccct gacgageate acaaaaateg acgeteaagt cagaggtgge gaaaccegae 1440 aggactataa agataccagg cgtttccccc tggaagctcc ctcgtgcgct ctcctgttcc 1500 gaccetgeeg ettaceggat acetgteege ettteteeet tegggaageg tggegetttt 1560 ccgctgcata accetgcttc ggggtcatta tagcgatttt ttcggtatat ccatcctttt 1620 togcacgata tacaggattt tgccaaaggg ttogtgtaga ottloottgg tgtatocaao 1680 ggogtcagcc gggcaggata ggtgaagtag gcccacccqc qagcgggtgt tccttcttca 1740 ctgtccctta ttcgcacctg gcggtgctca acgggaatcc tgctctgcga ggctggccgg 1800 ctaccgccgg cgtaacagat gagggcaagc ggatggctga tgaaaccaag ccaaccagga 1860 agggcagoco acotatoaag gigtacigoc ticcagacga acgaagagog atigaggaaa 1920 aggoggoggo ggcoggoatg agcotgtogg cotacotgot ggcogtoggo cagggotaca 1980 aaatcacggg cgtcgtggac tatgagcacg tccgcgagct ggcccgcatc aatggcgacc 2040 tgggccgcct gggcggcctg ctgaaactct ggctcaccga cgacccgcgc acggcgcggt 2100 toggtgatgc cacgatoctc gccctgctgg cgaagatoga agagaagcag gacgagcttg 2160 gcaaggtcat gatgggcgtg gtccgcccga gggcagagcc atgacttttt tagccgctaa 2220 aacggccggg gggtgcgcgt gattgccaag cacgtcccca tgcgctccat caagaagagc 2280 gacttegegg agetggtgaa gtacateace gacgageaag geaagacega gegeetttge 2340 gacgeteace gggetggttg ecetegeege tgggetggeg geegtetatg geeetgeaaa 2400 cgcgccagaa acgccgtcga agccgtgtgc gagacaccgc ggccgccggc gttgtggata 2460 cctcgcggaa aacttggccc tcactgacag atgaggggg gaogttgaca cttgaggggc 2520 cgactcaccc gqcqcqqcgt tgacagatga ggggcaggct cgatttcggc cggcgacgtg 2580 gagctggcca gcctcgcaaa tcggcgaaaa cgcctgattt tacgcgagtt tcccacagat 2640 gatgtggaca agcctgggga taagtgccct gcggtattga cacttgaggg gcgcgactac 2700 tgacagatga ggggcgcgat ccttgacact tgaggggcag agtgctgaca gatgaggggc 2760 gcacctattg acatttgagg ggctgtccac aggcagaaaa tccagcattt gcaagggttt 2820 cogcoogttt ttoggccaco gotaacotgt ottttaacot gotlltaaac caatatttat 2880 aaaccttgtt tttaaccagg getgegeeet gtgegegtga eegegeacge egaagggggg 2940 tgcccccct tctcgaaccc tcccggcccg ctaacgcggg cctcccatcc ccccaggggc 3000 tgcgcccctc ggccgcgaac ggcctcaccc caaaaatggc agcgctggca gtccttgcca 3060 ttgccgggat cggggcagta acgggatggg cgatcagccc gagcgcgacg cccggaagca 3120 ttgacgtgcc gcaggtgctg gcatcgacat tcagcgacca ggtgccgggc agtgagggcg 3180 geggeetggg tggeggeetg ecetteactt eggeegtegg ggeatteacg gaetteatgg 3240 eggggeegge aattittace ttgggcatte ttggcatagt ggtegegggt geegtgeteg 3300 tgttcggggg tgcgataaac ccagcgaacc atttgaggtg ataggtaaga ttataccgag 3360

gtatgaaaac gagaattgga cctttacaga attactctat gaagcgccat atttaaaaag 3420 ctaccaagac gaagaggatg aagaggatga ggaggcagat tgccttgaat atattgacaa 3480 tactgataag ataatatat tittatatag aagatatcgc cgtatgtaag gatttcaggg 3540 ggcaaggcat aggcagcgcg cttatcaata tatctataga atgggcaaag cataaaaact 3600 tgcatggact aatgcttgaa acccaggaca ataaccttat agcttgtaaa ttctatcata 3660 attgggtaat gactccaact tattgalagt gttttatgtt cagataatgc ccgatgactt 3720 tgtcatgcag ctccaccgat tttgagaacg acagcgactt ccgtcccagc cgtgccaggt 3780 gctgcctcag attcaggtta tgccgctcaa ttcgctgcgt atatcgcttg ctgattacgt 3840 gcagctttcc cttcaggcgg gattcataca gcggccagcc atccgtcatc catatcacca 3900 cgtcaaaggg tgacagcagg ctcataagac gccccagcgt cgccatagtg cgttcaccga 3960 atacgtgcgc aacaaccgtc ttccggagac tgtcatacgc gtaaaacagc cagcgctggc 4020 gcgatttagc cccgacatag ccccactgtt cgtccatttc cgcgcagacg atgacgtcac 4080 tgoooggotg tatgogogag gttaccgact gcggcctqag ttttttaagt gacgtaaaat 4140 cgtgttgagg ccaacgccca taatgcgggc tgttgcccgg catccaacgc cattcatggc 4200 catatcaatg attttctggt gcgtaccggg ttgagaagcg gtgtaagtga actgcagttg 4260 ccatgtttta cggcagtgag agcagagata gcgctgatgt ccggcggtgc ttttgccgtt 4320 acgcaccacc ccgtcagtag ctgaacagga gggacagctg atagacacag aagccactgg 4380 agcacotcaa aaacaccatc atacactaaa tcagtaagtt ggcagcatca cccataattg 4440 tggtttcaaa atcggctccg tcgatactat gttatacgcc aactttgaaa acaactttga 4500 aaaagctgtt ttctggtatt taaggtttta gaatgcaagg aacagtgaat tggagttcgt 4560

cttgttataa ttagcttctt ggggtatctt taaatactgt agaaaagagg aaggaaataa 4620 taaatggcta aaatgagaat atcaccggaa ttgaaaaaac tgatcgaaaa ataccgctgc 4680 gtaaaagata cggaaggaat gtctcctgct aaggtatata agctggtggg agaaaatgaa 4740 aacctatatt taaaaatgac ggacagccgg tataaaggga ccacctatga tgtggaacgg 4800 gaaaaggaca tgatgctatg gctggaagga aagctgcctg ttccaaaggt cctgcacttt 4860 gaacggcatg atggctggay caatctgctc atgagtgagg cogatggcgt cetttgctcg 4920 gaagagtatq aagatgaaca aagcootgaa aagattatog agotgtatgo ggagtgcato 4980 aggetettte actecatega catateggat tgtecetata egaatagett agacageege 5040 ttagccgaat tggattactt actgaataac gatctggccg atgtggattg cgaaaactgg 5100 qaaqaaqaca ctccatttaa agatccgcgc gagctgtatg attttttaaa gacggaaaag 5160 cccgaagagg aacttgtctt ttcccacggc gacctgggag acagcaacat ctttgtgaaa 5220 gatggcaaag taagtggctt tattgatctt gggayaagog gcagggcgga caagtggtat 5280 gacattgoot totgogtoog gtogatcagg gaggatatcg gggaagaaca gtatgtogag 5340 ctggatgaat tgttttagta cctagatgtg gcgcaacgat gccggcgaca agcaggagcg 5460 caccgacttc ttccgcatca agtgttttgg ctctcaggcc gaggcccacg gcaagtattt 5520 gggcaagggg tegetggtat tegtgeaggg caagattegg aataccaagt acgagaagga 5580 cggccagacg gtctacggga ccgacttcat tgccgataag gtggattatc tggacaccaa 5640 ggcaccagge gggtcaaate aggaataagg gcacattgee eeggegtgag teggggcaat 5700 cccgcaagga gggtgaatga atcggacgtt tgaccggaag gcatacaggc aagaactgat 5760 cgacgcgggg ttttccgccg aggatgccga aaccatcgca agccgcaccg tcatgcgtgc 5820 qccccqcqaa accttccagt ccgtcggctc gatggtccag caagctacgg ccaagatcga 5880 qcqcgacagc gtgcaactgg ctccccctgc cctgcccgcg ccatcggccg ccgtggagcg 5940 ttogcgtogt ctcgaacagg aggcggcagg tttggcgaag tcgatgacca tcgacacgcg 6000 aggaactatg acgaccaaga agcgaaaaac cgccggcgag gacctggcaa aacaggtcag 6060 cgaggccaag caggccgcgt tgctgaaaca cacgaagcag cagatcaagg aaatgcagct 6120 thoottgttc gatattgcgc cqtggccgga cacgatgcga gcgatgccaa acgacacggc 6180 cogototgoo etgitoacca egegeaacaa gaaaateeeg egegaggege tgcaaaacaa 6240 ggtcattttc cacgtcaaca aggacgtgaa gatcacctac accggcgtcg agctgcgggc 6300 cgacgatgac gaactggtgt ggcagcaggt gttggagtac gcgaagcgca cccctatcgg 6360 cgagccgatc accttcacgt tctacgagct ttgccaggac ctgggctggt cgatcaatgg 6420 coggtattac acgaaggoog aggaatgoot gtogogoota caggugacgg cgatgggott 6480 cacgtoogac egegttgggc acctggaate ggtgtegetg etgeaceget teegegteet 6540 ggaccgtggc aagaaaacgt cccgttgcca ggtcctgatc gacgaggaaa tcgtcgtgct 6600 gtttgctggc gaccactaca cgaaattcat atgggagaag taccgcaagc tgtcgccgac 6660 ggcccgacgg atgttcgact atttcagctc gcaccgggag ccgtacccgc tcaagctgga 6720 aaccttcogc ctcatgtgcg gatcggattc cacccgcgtg aagaagtggc gcgagcaggt 6780 cggcgaagec tgcgaagagt tgcgaggcag cggcctggtg gaacacgcct gggtcaatga 6840 tgacctggtg cattgcaaac gctagggcct tgtggggtca gttccggctg ggggttcagc 6900 agccagcgct ttactggcat ttcaggaaca agcgggcact gctcgacgca cttgcttcgc 6960

tcagtatege tcgggacgca cggcgcgctc tacgaactgc cgataaacag aggattaaaa 7020 ttgacaattg tgattaaggc tcagattcga cggcttggag cggccgacgt gcaggatttc 7080 cgcgagatcc gattgtcggc cctgaagaaa gctccagaga tgttcgggtc cgtttacgag 7140 cacgaggaga aaaagcccat ggaggcgttc gctgaacggt tgcgagatgc cgtggcattc 7200 ggogoctaca togacggoga gatcattggg etgtoggtot toaaacagga ggacggoccc 7260 aaggacgctc acaaggcgca totgtooggc gttttogtgg agoocgaaca gogaggcoga 7320 ggggtegeeg gtatgetget gegggegttg ceggegggtt tattgetegt gatgategte 7380 cgacagattc caacgggaat ctggtggatg cgcatcttca tcctcggcgc acttaatatt 7440 togotattot ggagottgtt gtttatttog gtctaccgcc tgccgggcgg ggtcgcggcg 7500 acggtaggcg ctgtgcagcc gctgatggtc gtgttcatct ctgccgctct gctaggtagc 7560 ccgatacgat tgatggcggt cctgggggct atttgcggaa ctgcgggcgt ggcgctgttg 7620 gtgttgacac caaacgcagc gctagatcct gtcggcgtcg cagcggggcct ggcggggcg 7680 gtttccatgg cgttcggaac cgtgctgacc cgcaagtqqc aacctcccgt gcctctgctc 7740 acctttaccg cctggcaact ggcggccgga ggacttctgc tcgttccagt agctttagtg 7800 tttgatccgc caatcccgat gcctacagga accaatgttc tcggcctggc gtggctcggc 7860 ctgatcggag cgggtttaac ctacttcctt tggttccggg ggatctcgcg actcgaacct 7920 acagttgttt cettactggg ctttctcagc cccagatctg gggtcgatca gccggggatg 7980 catcaggccg acagtcggaa cttcgggtcc ccgacctgta ccattcggtg agcaatggat 8040 aggggagttg atatcgtcaa cgttcacttc taaagaaata gcgccactca gcttcctcag 8100 eggetttate cagegattte etattatgte ggeatagtte teaagatega cageetgtea 8160

cggttaagcg agaaatgaat aagaaggctg ataattcgga tctctgcgag ggagatgata 8220 tttgatcaca ggcagcaacg ctctgtcatc gttacaatca acatgctacc ctccgcgaga 8280 tcatcogtgt ttcaaaccog gcagettagt tgccgttctt ccgaatagca tcggtaacat 8340 gagcamagtc tgccgcctta camcggctct cccgctgacg ccgtcccggm ctgatgggct 8400 gcctgtatcg agtggtgatt ttgtgccgag ctgccggtcg gggagctgtt ggctggctgg 8460 tggcaggata tattgtggtg taaacaaatt gacgcttaga caacttaata acacattgcg 8520 gacgttttta atgtactggg gtggtttttc ttttcaccag tgagacgggc aacagctgat 8580 tgcccttcac cgcctggccc tgagagagtt gcagcaagcg gtccacgctg gtttgcccca 8640 gcaggcgaaa atcctgtttg atggtggttc cgaaatcggc aaaatccctt ataaatcaaa 8700 agaatagccc gagatagggt tgagtgttgt tccagtttgg aacaagagtc cactattaaa 8760 gaacgtggac tccaacgtca aagggcgaaa aaccgtctat cagggcgatg gcccactacg 8820 tgaaccatca cccaaatcaa gttttttggg gtcgaggtgc cylaaagcac taaatcggaa 8880 occtaaaggg agcoccogat ttagagcttg acggggaaag ccggcgaacg tggcgagaaa 8940 ggaagggaag aaagcgaaag gagcgggcgc cattcaggct gcgcaactgt tgggaagggc 9000 gatcggtgcg ggcctcttcg ctattacgcc agctggcgaa agggggatgt gctgcaaggc 9060 gattaagttg ggtaacgcca gggttttccc agtcacgacg ttgtaaaacg acggccagtg 9120 aattaattoo catottgaaa gaaatatagt ttaaatattt attgataaaa taacaagtoa 9180 ggtattatag tccaagcaaa aacataaatt tattgatgca agtttaaatt cagaaatatt 9240 tcaataactg attatatcag ctggtacatt gccgtagatg aaagactgag tgcgatatta 9300 tgtgtaatac ataaattgat gatatagcta gcttagctca tcgggggatc cgtcgaagct 9360 agottgggto cogotoagaa gaactogtoa agaaggogat agaaggogat gogotgogaa 9420 togggagogg cgatacogta aagcacgagg aagcggtcag cccattcgcc gccaagctct 9480 toagcaatat cacgggtage caacgctatg teetgatage ggteegecae acceageegg 9540 ccacagtoga tgaatccaga aaagcggcca ttttccacca tgatattcgg caagcaggca 9600 togocatggg tcacgacgag atcotogcog togggcatgc gcgccttgag cctggcgaac 9660 agttoggotg gogogagoco otgatgotet togtocagat catootgato gacaagacog 9720 gettecatec gagtacgtge tegetegatg egatgttteg ettggtggte gaatgggeag 9780 gtagocggat caagogtatg cagocgcogo attgcatcag coatgatgga tactttctcg 9840 gcaggagcaa ggtgagatga caggagatcc tgccccggca cttcgcccaa tagcagccag 9900 tecetteceg etteagtgae aacgtegage acagetgege aaggaaegee egtegtggee 9960 agccacgata gccgcgctgc ctcgtcctgc agttcattca gggcaccgga caggtcggtc 10020 ttgacaaaaa gaaccgggcg cccctgcgct gacagccyga acacggcggc atcagagoag 10080 cogattytet gttgtgccca gtcatagccg aatagcctct ccacccaage ggccggagaa 10140 cctgcgtgca atccatcttg ttcaatccaa gctcccatgg gccctcgact agagtcgaga 10200 totggattga gagtgaatat gagactotaa ttggataccg aggggaattt atggaacgtc 10260 agtggagcat tittgacaag aaatatttgc tagctgatag tgaccttagg cgacttttga 10320 acgcgcaata atggtttctg acgtatgtgc ttagctcatt aaactccaga aacccgcggc 10380 tgagtggctc cttcaacgtt gcggttctgt cagttccaaa cgtaaaacgg cttgtcccgc 10440 gtoateggeg ggggteataa egtgaeteee ttaattetee geteatgate ttgateeeet 10500 gegecateag ateettggeg geaagaaage cateeagttt actttgeagg getteecaae 10560

cttaccagag ggcgccccag ctggcaattc cggttcgctt gctgtccata aaaccgccca 10620 gtotagotat ogcoatgtaa gocoactgoa agotacotgo tttototttg ogottgogtt 10680 ttecettgte cagatagece agtagetgae atteateegg ggteageace gtttetgegg 10740 actggctttc tacgtgttcc gcttccttta gcagcccttg cgccctgagt gcttgcggca 10800 gogtgaaget tgcatgcetg caggtegacg gegegeegag etcetegage aaatttacae 10860 attgccacta aacgtctaaa cocttgtaat ttgtttttgt tttactatgt gtgttatgta 10920 tttgatttgc gataaatttt tatatttggt actaaattta taacaccttt tatgctaacg 10980 tttgccaaca cttagcaatt tgcaagttga ttaattgatt ctaaattatt tttgtcttct 11040 aaatacatat actaatcaac tggaaatgta aatatttgct aatatttcta ctataggaga 11100 attaaagtga gtgaatatgg taccacaagg tttggagatt taattgttgc aatgctgcat 11160 ggatggcata tacaccaaac attcaataat tottgaggat aataatggta ccacacaaga 11220 tttgaggtgc atgaacgtca cgtggacaaa aggtttagta atttttcaag acaacaatgt 11280 taccacacac aagtitigag gigcaiqcai ggaigcccig iggaaagtii aaaaataiti 11340 tggaaatgat ttgcatggaa gccatgtgta aaaccatgac atccacttgg aggatgcaat 11400 aatgaagaaa actacaaatt tacatgcaac tagttatgca tgtagtctat ataatgagga 11460 ttttgcaata ctttcattca tacacactca ctaagtttta cacgattata atttcttcat 11520 agccagccca ccgcggtggg cggccgcctg cagtctagaa ggcctcctgc tttaatgaga 11580 tatgcgagac gcctatgatc gcatgatatt tgctttcaat tctgttgtgc acgttgtaaa 11640 aaacctgagc atgtgtagct cagatcctta ccgccggttt cggttcattc taatgaatat 11700 atcaccogtt actatogtat ttttatgaat aatattotoo gttcaattta ctgattgtoo 11760

gtogagcaaa tttacacatt gccactaaac gtctaaaccc ttgtaatttg tttttgtttt 11820 actatgtgtg ttatgtattt gatttgcgat aaatttttat atttggtact aaatttataa 11880 caccttttat gctaacgttt gccaacactt agcaatttgc aagttgatta attgattcta 11940 aattattttt gtottotaaa tacatatact aatcaactgg aaatgtaaat atttgctaat 12000 atttctacta taggagaatt aaagtgagtg aatatggtac cacaaggttt ggagatttaa 12060 ttgttgcaat gctgcatgga tggcatatac accaaacatt caataattct tgaggataat 12120 aatggtacca cacaagattt gaggtgcatg aacgtcacgt ggacaaaagg tttagtaatt 12180 tttcaagaca acaatgttac cacacacaag ttttgaggtg catgcatgga tgccctgtgg 12240 aaagtttaaa aatattttgg aaatgatttg catggaagcc atgtgtaaaa ccatgacatc 12300 cacttggagg atgcaataat gaagaaaact acaaatttac atgcaactag ttatgcatgt 12360 agtotatata atgaggattt tgcaatactt toattoatac acactoacta agttttacac 12420 gattataatt tottoatago cagoggatoo gatatogggo cogotagogt taaoootgot 12480 ttaatgagat atgogagacg cctatgatcg catgatattt gctttcaatt ctgttgtgca 12540 cgttgtaaaa aacctgagca tgtgtagctc agatccttac cgccggtttc ggttcattct 12600 aatgaatata toacoogtta otatogtatt tttatgaata atattotoog ttoaatttac 12660 tgattgtccg tcgagcaaat ttacacattg ccactaaacg tctaaaccct tgtaatttgt 12720 ttttgtttta ctatgtgtgt tatgtatttg atttgcgata aatttttata tttggtacta 12780 aatttataac accttttatg ctaacgtttg ccaacactta gcaatttgca agttgattaa 12840 ttgattctaa attatttttg tottotaaat acatatacta atcaactgga aatgtaaata 12900 tttgctaata tttctactat aggagaatta aagtgagtga atatggtacc acaaggtttg 12960

gagatttaat tgttgcaatg ctgcatggat ggcatataca ccaaacattc aataattctt 13020 gaggataata atggtaccac acaagatttg aggtgcatga acgtcacgtg gacaaaaggt 13080 ttagtaattt ttcaagacaa caatgttacc acacacaagt tttgaggtgc atgcatggat 13140 gccctgtgga aagtttaaaa atattttgga aatgatttgc atggaagcca tgtgtaaaac 13200 catgacatcc acttggagga tgcaataatg aagaaaacta caaatttaca tgcaactagt 13260 tatgoatgta gtotatataa tgaggatttt goaataottt cattoataca cactoactaa 13320 gttttacacg attataattt cttcatagcc agcagatctg coggcatcga tcccgggcca 13380 tggcctgctt taatgagata tgcgagacgc ctatgatcgc atgatatttg ctttcaattc 13440 tgttgtgcac gttgtaaaaa acctgagcat gtgtagctca gatccttacc gccggtttcg 13500 gttcattcta atgaatatat caccogttac tatogtattt ttatgaataa tattctccgt 13560 toaatttact gattgtoogt ogacgagoto ggogogooto tagaggatog atgaattcag 13620 atoggotgag tggotcotto aacgttgogg ttolgtoagt tocaaacgta aaacggottg 13680 tecegogica teggeggggg teataacqtq acteeettaa tieteegete atgateagat 13740 tgtcgtttcc cgccttcagt ttaaactatc agtgtttgac aggatatatt ggcgggtaaa 13800 cctaagagaa aagagcgttt attagaataa tcggatattt aaaagggcgt gaaaaggttt 13860 13905 atcettegte catttgtatg tgcatgccaa ccacagggtt cccca

<210> 43

<211> 15430

<212> DNA

<213> Unknown

<220>

<223> Plant expression vector with two

promoter-terminator expression cassettes, inserted is Physcomitrella patens elongase and desaturase

<220>

<221> CDS

<222> (11543)..(12415)

<220>

<221> CDS

<222> (13313)..(14890)

<400> 43

gatotggogo oggocagoga gaogagoaag attggoogo gocogaaacg atocgacago 60 gogocoagoa caggtgogoa yyoaaattgo acoaaogoat acagogocag cagaatgoca 120

tagtgggcgg tgacgtcqtt cgagtgaacc agatcgcgca ggaggcccgg cagcaccggc 180

ataatcaggc cgatgccgac agcgtcgagc gcgacagtgc tcagaattac gatcaggggt 240

atgttgggtt tcacgtctgg cctccggacc agcctccgct ggtccgattg aacgcgcgga 300

ttotttatca ctgataagtt ggtggacata ttatgtttat cagtgataaa gtgtcaagca 360

tgacaaagtt gcagccgaat acagtgatcc gtgccgccct ggacctgttg aacgaggtcg 420

gcgtagacgg totgacgaca cgcaaactgg cggaacggtt gggggttoag cagccggcgc 480

tttactygca cttcaggaac aagegggege tgotegaege actggeegas gccatgetgg 540

cggagaatca tacgcattcg gtgccgagag ccgacgacga ctggcgctca tttctgatcg 600

ggaatgcccg cagettcagg caggcgctgc tegectaceg cgatggcgcg cgcatccatg 660

ccggcacgcg accgggogca ccgcagatgg aaacggccga cgcgcagctt cgcttcctct 720

gcgaggcggg tttttcggcc ggggacgccg tcaatgcgct gatgacaatc agctacttca 780

ctgttggggc cgtgcttgag gagcaggccg gcgacagcga tgccggcgag cgcggcggca 840

cogttgaaca ggetcegete tegeogetgt tgegggeege gatagaegee ttegaegaag 900 ccggtccgga cgcagcgttc gagcagggac tcgcggtgat tytcyalgga ttggcgaaaa 960 ggaggetogt tgtcaggaac gttgaaggac cgagaaaggg tgacgattga tcaggaccgc 1020 tgccggagcg caacccactc actacagcag agccatgtag acaacatccc ctcccccttt 1080 ccaccgcgtc agacgcccgt agcagcccgc tacgggcttt ttcatgccct gccctagcgt 1140 ccaagectca eggeogeget eggeotetet ggeggeette tggegetett eegetteete 1200 gctcactgac tegetgeget eggtcgtteg gctgeggega geggtateag etcactcaaa 1260 ggcggtaata cggttatcca cagaatcagg ggataacgca ggaaagaaca tgtgagcaaa 1320 aggocagoaa aaggocagga accgtaaaaa ggccgcgttg ctggcgtttt tccataggct 1380 ccgccccct gacgagcatc acaaaaatcg acgctcaagt cagaggtggc gaaacccgac 1440 aggactataa agataccagg cgtttccccc tggaagctcc ctcgtgcgct ctcctgttcc 1500 gaccetgccg cttaccggat acctgtccgc ctttctccct tcgggaagcg tggcgctttt 1560 cogetgeata accetgette ggggteatta tagegatttt tteggtatat ceateetttt 1620 togcacgata tacaggattt tgccaaaggg ttcgtgtaga ctttccttgg tgtatccaac 1680 ggcgtcagcc gggcaggata ggtyaaglag gcccaccogc gagcgggtgt toottottca 1740 ctgtccctta ttcgcacctg gcgqtqctca acgggaatcc tgctctgcga ggctggccgg 1800 ctaccgccgg cgtaacagat gagggcaagc ggatggctga tgaaaccaag ccaaccagga 1860 agggcagocc acctatcaag gtgtactgcc ttccagacga acgaagagcg attgaggaaa 1920 aggeggegge ggceggeatg agcetgtegg cetacetget ggcegtegge cagggetaca 1980 aaatcacggg cgtcgtggac tatgagcacg tccgcgagct ggcccgcatc aatggcgacc 2040 tgggccgcct gggcggcctg ctgaaactct ggctcaccga cgacccgcgc acggcgcggt 2100 teggtgatge cacgatecte gecetgetgg egaagatega agagaageag gaegagettg 2160 gcaaggtcat gatgggcgtg gtccgcccga gggcaqagcc atgacttttt tagccgctaa 2220 aacggccggg gggtgcgcgt gattgccaag cacgtcccca tgcgctccat caagaagagc 2280 gacttcgcgg agctggtgaa gtacatcacc gacgagcaag gcaagaccga gcgcctttgc 2340 gacgeteacc gggetggttg ecetegeege tgggetggeg geegtetatg geeetgeaaa 2400 cgcgccagaa acgccgtcga agccgtgtgc gagacaccgc ggccgccggc gttgtggata 2460 cctcgcggaa aacttggccc tcactgacag atgaggggcg gacgttgaca cttgaggggc 2520 cgactcacco ggogogogt tgacagatga ggggcaggct cgatttcggc cggcgacgtg 2580 gagetggeca geetegeaaa teggegaaaa egeetgattt taegegagtt teecacagat 2640 gatgtggaca agcctgggga taagtgccct gcggtattga cacttgaggg gcgcgactac 2700 tgacagatga ggggcgcgat ccttgacact tgaggggcag agtgctgaca gatgaggggc 2760 gcacctattg acatttgagg ggctgtccac aggcagaaaa tccagcattt gcaagggttt 2820 ccgcccgttt ttcggccacc gctaacctgt cttttaacct gcttttaaac caatatttat 2880 aaaccttgtt tttaaccagg gotgogooot gtgogogtga cogogoaogo ogaagggggg 2940 tgcccccct totogaaccc tcccggcccg ctaacgcggg cctcccatcc ccccaggggc 3000 tgegececte ggeegegaac ggeeteacce caaaaatgge agegetggea gteettgeca 3060 ttgccgggat cggggcagta acgggatggg cgatcagccc gagcgcgacg cccggaagca 3120 ttgacgtgcc gcaggtgctg gcatcgacat tcagcgacca ggtgccgggc agtgagggcg 3180 geggeetggg tggeggeetg ceetteactt eggeegtegg ggeatteacg gaetteatgg 3240 cggggccggc aatttttacc ttgggcattc ttggcatagt ggtcgcgggt gccgtgctcg 3300 tgttcggggg tgcgataaac ccagcgaacc attlgaggtg ataggtaaga ttataccgag 3360 gtatgaaaac gagaattgga cotttacaga attactctat gaagcgccat atttaaaaag 3420 ctaccaagac gaagaggatg aagaggatga ggaggcagat tgccttgaat atattgacaa 3480 tactgataag ataatatatc ttttatatag aagatatcgc cgtatgtaag gatttcaggg 3540 qqcaagqcat aggcagcgcg cttatcaata tatctataga atgggcaaag cataaaaact 3600 tgcatggact aatgcttgaa acccaggaca ataaccttat agcttgtaaa ttctatcata 3660 attgggtaat gactccaact tattgatagt gttttatgtt cagataatyc ccgatgactt 3720 tgtoatgcag ctccaccgat tttgagaacg acagcgactt ccgtcccagc cgtgccaggt 3780 gctgcctcag attcaggtta tgccgctcaa ttcgctgcgt atatcgcttg ctgattacgt 3840 gcagetttee etteaggegg gatteataea geggeeagee ateegteate catateacea 3900 cytcamaggg tyacagcagg ctcataagac gccccagcgt cyccatagtg cyttcaccga 3960 atacgtgcgc aacaaccgtc ttccggagac tgtcatacgc gtaaaacagc cagcgctggc 4020 gcgatttagc cccgacatag ccccactgtt cgtccatttc cgcgcagacg atgacgtcac 4080 tgcccggctg tatgcgcgag gttaccgact gcggcctgag ttttttaagt gacgtaaaat 4140 cgtgttgagg ccaacqccca taatgcgggc tgttgcccgg catccaacgc cattcatggc 4200 catatcaatg attttctggt gcgtaccggg ttgagaagcg gtgtaagtga actgcagttg 4260 ccatgtttta cggcagtgag agcagagata gcgctgatgt ccggcggtgc ttttgccgtt 4320 acgcaccacc cogtcagtag ctgaacagga gggacagctg atagacacag aagccactgg 4380 agcacctcaa aaacaccatc atacactaaa tcagtaagtt ggcagcatca cccataattg 4440 tggtttcaaa atcggctccg tcgatactat gttatacgcc aactttgaaa acaactttga 4500 aaaagctgtt ttctggtatt taaggtttta gaatgcaagg aacagtgaat tggagttogt 4560 cttgttataa ttagcttctt ggggtatctt taaatactgt agaaaagagg aaggaaataa 4620 taaatggcta aaatgagaat atcaccggaa ttgaaaaaac tgatcgaaaa ataccgctgc 4680 gtaaaagata cggaaggaat gtctcctgct aaggtatata agctggtggg agaaaatgaa 4740 aacctatatt taaaaatgac ggacagccgg tataaaggga ccacctatga tgtggaacgg 4800 gaaaaggaca tgatgctatg gctggaagga aagctgcctg ttccaaaggt cctgcacttt 4860 gaacggcatg atggctggag caatctgctc atgagtgagg ccgatggcyt cclltgctcg 4920 gaagagtatg aagatgaaca aagecetgaa aagattateg agetgtatge ggagtgeate 4980 aggetettte actocatega catateggat tgtecetata egaatagett agacageege 5040 ttagccgaat tggattactt actgaataac gatctggccg atgtggattg cgaaaactgg 5100 qaaqaagaca ctccatttaa agatccgcgc gagctgtatg attttttaaa gacggaaaag 5160 cccgaagagg aacttgtctt ttcccacggc gacctgggag acagcaacat ctttgtgaaa 5220 gatggcaaag taagtggctt tattgatctt gggagaagcg gcagggcgga caagtggtat 5280 gacattgcct totycylcog gtogatcagg gaggatatog gggaagaaca gtatgtogag 5340 ctggatgaat tgttttagta cctagatgtg gcgcaacgat gccggcgaca agcaggagcg 5460 caccgacttc ttccgcatca agtgttttgg ctctcaggcc gaggcccacg gcaagtattt 5520 gggcaagggg togotggtat togtgcaggg caagattogg aataccaagt acgagaagga 5580 cggccagacg gtctacggga ccgacttcat tgccgataag gtggattatc tggacaccaa 5640

ggcaccaggc gggtcaaatc aggaataagg gcacattgcc ccggcgtgag tcggggcaat 5700 cccgcaagga gggtgaatga atcggacgtt tgaccygaag gcatacaggc aagaactgat 5760 egaegegggg tttteegeeg aggatgeega aaccategea ageegeaceg teatgegtge 5820 gccccgcgaa accttccagt ccgtcggctc gatggtccag caagctacgg ccaagatcga 5880 gcgcgacagc gtgcaactgg ctccccctgc cctgcccgcg ccatcggccg ccgtggagcg 5940 ttcgcgtcgt ctcgaacagg aggcggcagg tttggcgaag tcgatgacca tcgacacgcg 6000 aggaactatg acgaccaaga agcgaaaaac cgccggcgag gacctggcaa aacaggtcag 6060 cgaggccaag caggccgcgt tgctgaaaca cacgaagcag cagatcaagg aaalgcagct 6120 ttoottgtto gatattgogo ogtggoogga cacgatgoga goqatgocaa acgacacggo 6180 ccgctctgcc ctgttcacca cgcgcaacaa gaaaatcccg cgcgaggcgc tgcaaaacaa 6240 ggtcattttc cacgtcaaca aggacgtgaa gatcacctac accggcgtcg agctgcgggc 6300 cgacgatgac gaactggtgt ggcagcaggt gttggagtac gcgaagcgca cccctatcgg 6360 cgagccgatc accttcacgt totacgagct ttgccaggac ctgggctggt cgatcaatgg 6420 ccggtattac acgaaggccg aggaatgcct gtcgcgccta caggcgacgg cgatgggctt 6480 cacgtocgac egcyttygyc acctggaate ggtgtegetg etgcaceget teegegteet 6540 ggaccgtggc aagaaaacgt cccgttgcca ggtcctgatc gacgaggaaa tcgtcgtgct 6600 gtttgctggc gaccactaca cgaaattcat atgggagaag taccgcaagc tgtcgccgac 6660 ggcccgacgg atgttcgact atttcagctc gcaccgggag ccgtacccgc tcaagctgga 6720 aacettccgc ctcatgtgcg gatcggattc cacccgcgtg aagaagtggc gcgagcaggt 6780 cggcgaagcc tgcgaagagt tgcgaggcag cggcctggtg gaacacgcct gggtcaatga 6840 tgacctggtg cattgcaaac gctagggcct tgtggggtca gttccggctg ggggttcagc 6900 agccagogot ttactggcat ttcaggaaca agcgggcact gctcgacgca cttgottcgc 6960 tcagtatege tegggaegea eggegegete tacgaactge egataaacag aggattaaaa 7020 ttgacaattg tgattaaggc tcagattcga cggcttggag cggccgacgt gcaggatttc 7080 cgcgagatcc gattgtcggc cctgaagaaa gctccagaga tgttcgggtc cgtttacgag 7140 cacgaggaga aaaagcccat ggaggcgttc gctgaacggt tgcgagatgc cgtggcattc 7200 ggcgcctaca tcgacggcga gatcattggg ctgtcggtct tcaaacagga ggacggcccc 7260 aaggacgete acaaggegea tetgteegge gttttegtgg agecegaaca gegaggeega 7320 ggggtegeeg gtatgetget gegggggttg ceggegggtt tattgetegt gatgategte 7380 cgacagattc caacgggaat ctggtggatg cgcatcttca tcctcggcgc acttaatatt 7440 togetattot ggagettgtt gtttattteg gtctaccgcc tgccgggcgg ggtcgcggcg 7500 acggtaggcg ctgtgcagcc gctgatggtc gtgttcatct ctgccgctct gctaggtagc 7560 ccgatacgat tgatggcggt cctgggggct atttgcggaa ctgcgggcgt ggcgctgttg 7620 gtgttgacac caaacgcagc gctagatcct gtcggcgtcg cagcggggcct ggcgggggcg 7680 gtttecatgg cgttcggaac cgtgctgacc cgcaagtggc aacctcccgt gcctctgctc 7740 acctttaccg cctggcaact ggcggccgga ggacttctgc tcgttccagt agctttagtg 7800 tttgatccgc caatcccgat gcctacagga accaatgttc tcggcctggc gtggctcggc 7860 ctgateggag egggtttaac etaetteett tggtteeggg ggatetegeg actegaacet 7920 acagttgttt ccttactggg ctttctcagc cccagatctg gggtcgatca gccggggatg 7980 catcaggccg acagtcggaa cttcgggtcc ccgacctgta ccattcggtg agcaatggat 8040

aggggagttg atatogtoaa cgttcacttc taaagaaata gogccactca gcttcctcag 8100 eggetttate cagegattte etattatyte yyealaylle teaagatega cageetytea 8160 eggttaageg agaaatgaat aagaaggetg ataattegga tetetgegag ggagatgata 8220 tttgatcaca ggcagcaacg ctctgtcatc gttacaatca acatgctacc ctccgcgaga 8280 tcatccgtgt ttcaaacccg gcagcttagt tgccgttctt ccgaatagca tcggtaacat 8340 gagcaaaqtc tgccgcctta caacggctct cccgctgacg ccgtcccgga ctgatgggct 8400 gcctgtatcg agtggtgatt ttgtgccgag ctgccggtcg gggagctgtt ggctggctgg 8460 tggcaggata tattgtggtg taaacaaatt gacgettaga caacttaata acacattyeg 8520 gacgttttta atgtactggg gtggtttttc ttttcaccag tgagacgggc aacagctgat 8580 tgcccttcac cgcctggccc tgagagagtt gcagcaagcg gtccacgctg gtttgcccca 8640 gcaggcgaaa atcctgtttg atggtggttc cgaaatcggc aaaatccctt ataaatcaaa 8700 agaatagece gagatagggt tgagtgttgt tecagtttgg aacaagagte cactattaaa 8760 gaacgtggac tocaacgtca aagggcgaaa aaccgtctat cagggcgatg gcccactacg 8820 tgaaccatca cccaaatcaa gttttttggg gtcgaggtgc cgtaaagcac taaatcggaa 8880 ccctaaaggg agccccgat ttagagcttg acggggaaag coggogaacg tggcgagaaa 8940 qqaaqggaag aaagcgaaag gagcgggcgc cattcaggct gcgcaactgt tgggaagggc 9000 gatcggtgcg ggcctcttcg ctattacgcc agctggcgaa agggggatgt gctgcaaggc 9060 gattaagttg ggtaacgcca gggttttccc agtcacgacg ttgtaaaacg acggccagtg 9120 aattaattoo catottgaaa gaaatatagt ttaaatattt attgataaaa taacaagtoa 9180 ggtattatag tocaagcaaa aacataaatt tattgatgca agtttaaatt cagaaatatt 9240

tcaataactg attatatoag ctggtacatt gccgtagatg aaagactgag tgcgatatta 9300 tgtgtaatac ataaattgat gatatagcta gcttagctca tcgggggatc cgtcgaagct 9360 agettgggte cegetcagaa gaactegtea agaaggegat agaaggegat gegetgegaa 9420 togggagogg cgatacogta aagcacgagg aagcggtoag cocattogco gccaagctot 9480 toagcaatat cacgggtage caacgctatg teetgatage ggteegecae acceageegg 9540 ccacagtega tgaatccaga aaageggeca ttttccacca tgatattegg caageaggea 9600 togocatggg toacgacgag atoctogoog togggcatge gegcettgag cetggcgaac 9660 agtteggetg gegegagece etgatgetet tegtecagat catcetgate gacaagaceg 9720 gettecatec gagtacgige tegetegatg egatgttteg ettggtggte gaatgggcag 9780 gtagccqgat caagcgtatg cagccgccgc attgcatcag ccatgatgga tactttctcg 9840 gcaggagcaa ggtgagatga caggagatcc tgccccggca cttcgcccaa tagcagccag 9900 tocottocog ottoagtgac aacgtogago acagotgogo aaggaacgoo ogtogtggoo 9960 agocacgata geogegetge etegteetge agtteattea gggeacegga caggteggte 10020 ttgacaaaaa gaaccgggcg cccctgcgct gacagccgga acacggcggc atcagagcag 10080 cogattgtot gttgtgccca gtcatagccg aatagcctct ccacccaagc ggccggagaa 10140 cotgogtgoa atocatottg ttoaatonaa gotocoatgg gocotogact agagtogaga 10200 totggattga gagtgaatat gagactotaa ttggatacog aggggaattt atggaacgto 10260 agtggagcat tittgacaag aaatatitgc tagctgatag tgaccttagg cgactittga 10320 acgcgcaata atggtttctg acgtatgtgc ttagctcatt aaactccaga aacccgcggc 10380 tgagtggctc cttcaacgtt gcggttctgt cagttccaaa cgtaaaacgg cttgtcccgc 10440

gtcatcggcg ggggtcataa cgtgactccc ttaattctcc gctcatgatc ttgatcccct 10500 gogccatcag atccttggcg gcaagaaagc catccagttt actttgcagg gcttcccaac 10560 cttaccagay gyogocccag ctggcaatto oggttegett gctgtccata aaaccgccca 10620 gtotagotat cgccatgtaa gcccactgca agctacctgc tttctctttg cgcttgcgtt 10680 ttcccttgtc cagatagccc agtagctgac attcatccgg ggtcagcacc gtttctgcgg 10740 actggctttc tacgtgttcc gcttccttta gcagcccttg cgccctgagt gcttgcggca 10800 gegtgaaget tgcatgcetg caggtegaeg gegegeegag etectegage aaatttacae 10860 attgccacta aacgtctaaa cccttgtaat ttgtttttgt tttactatgt gtgttatgta 10920 tttgatttgc gataaatttt tatalliggt actaaattta taacaccttt tatgctaacg 10980 tttgccaaca cttagcaatt tgcaagttga ttaattgatt ctaaattatt tttgtcttct 11040 aaatacatat actaatcaac tggaaatgta aatatttgct aatatttcta ctataggaga 11100 attaaagtga gtgaatatgg taccacaagg tttggagatt taattgttgc aatgctgcat 11160 ggatggcata tacaccaaac attcaataat tottgaggat aataatggta ccacacaaga 11220 tttgaggtgc atgaacgtca cgtggacaaa aggtttagta atttttcaag acaacaatgt 11280 taccacaca aagttttgag gtgcatgcat ggatgccctg tggaaagtti aaaaatattt 11340 tygaaatgat ttgcatggaa gocatgtgta aaaccatgac atccacttgg aggatgcaat 11400 aatgaagaaa actacaaatt tacatgcaac tagttatgca tgtagtctat ataatgagga 11460 ttttgcaata ctttcattca tacacactca ctaagtttta cacgattata atttcttcat 11520 agccagccca ccgcggtgga aa atg gag gtc gtg gag aga ttc tac ggt gag 11572 Met Glu Val Val Glu Arg Phe Tyr Gly Glu

ttg	gat	ggg	aag	gtc	tcg	cag	ggc	gtg	aat	gca	ttg	ctg	ggt	agt	ttt	11620
Leu	Asp	Gly	Lys	Val	Ser	Gln	Gly	Val	Asn	Ala	Leu	Leu	Gly	Ser	Phe	
				15					20					25		
ggg	gtg	gag	tty	acg	gat	acg	caa	act	acc	aaa	gge	t.tg	ccc	ctc	gtt	11668
Gly	Val	Glu	Leu	Thr	Asp	Thr	Pro	Thr	Thr	Lys	Gly	Leu		Leu	Val	
			30					35					40			
gac	agt	ccc	aca	ccc	atc	gtc	ctc	ggt	gtt	tct	gta	tac	ttg	act	att	11716
Asp	Ser	Pro	Thr	Pro	Ile	Val	Leu	Gly	Val	ser	Val		Leu	Thr	Ile	
		45					50					55				
gtc	att	gga	ggg	ctt	ttg	tgg	ata	aag	gcc	agg	gat	ctg	aaa	ccg	cgc	11764
Val	Ile	Gly	Gly	Leu	Leu	Trp	Ile	Lys	Ala	Arg		Leu	Lys	Pro	Arg	
	60					65					70					
																11012
gcc	tog	gag	cca	ttt	ttg	ctc	caa	gat	ttg	gtg	ott	gtg	cac	aac	ctg	11812
Ala	Ser	Glu	Pro	Phe	Leu	Leu	Gln	Ala	Leu		Leu	Val	His	Asn	Leu	
75					80					85					90	
																11860
ttc	tgt	ttt	gcg	ctc	agt	ctg	tat	atg	tgc	gtg	ggc	atc	gct	tat	cag	11000
Phe	Cys	Phe	Ala	Leu	Ser	Leu	Tyr	Met		Val	GLY	116	Ala	TYL	GIU	
				95					100					105		
																11908
gat	att	acc	tgg	cgg	tac	tct	ctc	tgg	ggc	aat	gca	tac	aat	- cct	aaa	11300
Ala	Ile	Thr	Trp	Arg	Tyr	Ser	Leu	Trp	Gly	Asn	Ala	Tyr	Asn	Pro	гуз	
			110					115					120			
																11956
cat	aaa	gag	atg	gcg	att	ctg	gta	tac	ttg	ttc	tac	atg	tet	aag	tac	11950
His	Lys	Glu	Met	Ala	Ile	Leu		Tyr	Leu	Phe	Tyr			ьуу	TYP	
		125					130					135				
																12004
gtg	gaa	tto	atg	gat	acc	gtt	ato	atg	ata	ctg	aag	cgc	ago	acc	agg	12004
Val	Glu	Phe	Met	Asp	Thr	Val	Ile	Met	Ile	Leu			Sei	'I'nı	Arg	
	140					145					150	•				
																12052
caa	ata	ago	ttc	cto	cac	gtt	tat	cat	cat	tct	tca	att	tcc	cto	att	12052
Gln	Ile	Set	Phe	Leu	His	Val	Туг	His	His			: Ile	Ser	Let	Ile	
155					160)				165	•				170	

+ 00	+aa	gct	att	act	cat	cac	gct	cct	ggc	ggt	gaa	gca	tat	tgg	tct	12100
Trn	Trn	Ala	Ile	Ala	His	His	Ala	Pro	Gly	Gly	Glu	Ala	Tyr	Trp	Ser	
				175					180					185		
gog	gct	ctg	aac	Lca	gga	gtg	cat	gtt	ata	atg	tat	gcg	tat	tac	ttc	12148
Ala	Ala	Leu	Asn	Ser	Gly	Val	His	Val	Leu	Met	Tyr	Ala	Tyr	Tyr	Phe	
			190					195					200			
ttg	gct	gcc	tgc	ctt	cga	agt	agc	cca	aag	tta	aaa	aat	aag	tac	ctt	12196
Leu	Ala	Ala	Cys	Leu	Arg	Ser	Ser	Pro	Lys	Leu	Lys		Lys	Tyr	Leu	
		205					210					215				
																12244
ttt	tgg	ggc	agg	tac	ttg	aca	caa	ttc	caa	atg	ttc	cag	ttt	atg	ctg	12244
Phe	Trp	Gly	Arg	Tyr	Leu	Thr	Gln	Phe	Gln	Met		Gln	Phe	Met	Leu	
	220					225					230					
																12292
aac	tta	gtg	cag	gct	tac	tac	gac	atg	aaa	acg	aat	geg	oca D-a	T.AT.	Dro	12232
Asn	Leu	Val	Gln	Ala		Tyr	Asp	Met	Lys		Asn	ALA	PIO	TYL	250	
235					240					245					250	
														a+ a	+++	12340
caa	tgg	ctg	atc	aag	att	ttg	ttc	tac	tac	atg	atc	tog	ron	Tan	Die	12510
Gln	Trp	Leu	Ile		Ile	Leu	Phe	Tyr		met	TTE	ser	Leu	265	2110	
				255					260					265		
													+	~ 0.0	aas	12388
ctt	ttc	ggc	aat	ttt	tac	gta	caa	aaa	tac	atc	aaa	. 000	Cor	non	gga	12000
Leu	Phe	Gly			Tyr	Val	Gln		Tyr	TTE	ьys	PIC	280	Lop	GLY	
			270					275					200			
										.~	~~~	ctcr	tool	Lt.		12435
		aag							LCL	ayaa	ggc	0000	ogo			
Lys	Gln	Lys		Ala	Lys	Thr										
		285					290									
										++ ~~	+++	asst	tet	atta	t.acaca	12495
aat	qaga	tat	gega	igacg	cc t	atga	tege	a ty	acac	ccyc		cauc		9005	tgcacg	
												· c+++	caa	ttca	ttctaa	12555
ttç	taaa	aaa	cctg	agca	tg t	grac	UTCE	y at	CCCT	accy	CCG	3000	29	,	ttctaa	
						+		+ +-	+ = =	+ a a +	at+	etec	att	caat	ttactg	12615
tga	atat	atc	acco	gtta	ct a	tegt	actt	.c te	Lyde	Lual			. 5			
									+ 0 0 =	aato	tas	acco	tta	taat	ttgttt	12675
att	gtcc	gtc	gago	aaat	tt a	cace	ictgo	.c ac	cade	.ug ut	· cue					

ttgt	ttta	ct a	tgtg	tgtt	a tg	tatt	tgat	ttg	cgat	aaa	tttt	tata	tt t	ggta	ctaaa	12735
ttta	taac	ac c	tttt	atgc	t aa	cgtt	tgcc	aac	actt	agc	aatt	tgca	ag t	tyat	laatt	12795
yall	ctaa	at t	attt	ttgt	o tt	ctaa	atac	ata	tact	aat	caac	tgga	aa t	gtaa	atatt	12855
tgct	aata	tt t	ctac	tata	g ga	gaat	taaa	gtg	agtg	aat	atgg	tacc	ac a	aaggt	ttgga	12915
gatt	taat	tg t	tgca	atgo	t gc	atgg	atgg	cat	atac	acc	aaac	atto	aa t	taatt	cttga	12975
ggat	aata	at g	gtac	caca	c aa	gatt	tgag	gtg	catg	aac	gtca	cgtg	ga	caaaa	ggttt	13035
agta	attt	tt c	aaga	caac	a at	gtta	ccac	aca	caag	ttt	tgag	gtgc	at q	gcatç	gatgo	13095
cctg	tgga	aa g	ttta	aaaa	t at	tttg	gaaa	tga	tttg	cat	ggaa	gcca	tg t	tgtaa	aacca	13155
tgac	atco	ac t	tyya	ıggat	g ce	atas	tgaa	gaa	aact	aca	aatt	t.aca	tg	caact	agtta:	13215
tgca	tqta	gt o	tate	taat	g ag	gatt	ttgc	aat	actt	tca	ttca	taca	ca (ctcac	taagt	13275
ttta	cacg	at t	ataa	tttc	t to	ataç	ccaç	cgg	atco	ato	g gta	tto Phe	gc	g ggo	ggt	13330
ttta	cacg	at t	atae	tttc	t to	atag	rcag	l câă	atco	Me	g gta t Val	tto Phe	gc: Al: 29:	a Gly	ggt Gly	13330
qqa	ctt	cag	cag	ggc	tot	ctc	gaa	gaa	aac	Men	t Val	gtc	29: gag	a Gly 5 cac	gly att	13378
qqa	ctt	cag	cag	ggc	tot	ctc	gaa Glu	gaa	aac	Men	t Val	gtc Val	29: gag	a Gly	gly att	
qqa	ctt	cag	cag	ggc	tot	ctc	gaa	gaa	aac	Men	t Val	gtc	29: gag	a Gly 5 cac	gly att	
gga Gly	ctt Leu	cag Gln 300	cag Gln	ggc Gly	tct Ser	ctc Leu	gaa Glu 305	gaa Glu	aac Asn	Met atc Ile	gac Asp	gtc Val 310	gag Glu	a Gly 5 cac His	att	
gga Gly	ctt Leu	cag Gln 300 atg	cag Gln tct	ggc Gly ctc	tct Ser	ctc Leu	gaa Glu 305 gac	gaa Glu ttc	aac Asn ttc	atc Ile	gac Asp	gtc Val 310	gag Glu	cac His	att Ile	13378
gga Gly	ctt Leu	cag Gln 300 atg	cag Gln tct	ggc Gly ctc	tct Ser	ctc Leu	gaa Glu 305 gac	gaa Glu ttc	aac Asn ttc	atc Ile	gac Asp	gtc Val 310	gag Glu	a Gly 5 cac His	att Ile	13378
gga Gly gcc Ala	ctt Leu agt Ser 315	cag Gln 300 atg Met	cag Gln tct Ser	ggc Gly ctc Leu	tct Ser ttc Phe	ctc Leu agc Ser 320	gaa Glu 305 gac Asp	gaa Glu ttc Phe	aac Asn ttc Phe	atc Ile agt ser	gac Asp tat Tyr 325	gtc Val 310 gtg Val	gag Glu tct Ser	cac His	att Ile act Thr	13378
gga Gly gcc Ala	ctt Leu agt Ser 315	cag Gln 300 atg Met	cag Gln tct Ser	ggc Gly ctc Leu	tct Ser ttc Phe	ctc Leu agc Ser 320	gaa Glu 305 gac Asp	gaa Glu ttc Phe	aac Asn ttc Phe	atc Ile agt Ser	gac Asp tat Tyr 325	gtc Val 310 gtg Val	gag Glu tct Ser	cac Bis tca Ser	att Ile act Thr	13378
gga Gly gcc Ala gtt Val	ctt Leu agt Ser 315	cag Gln 300 atg Met	cag Gln tct Ser	ggc Gly ctc Leu	tct Ser ttc Phe	ctc Leu agc Ser 320	gaa Glu 305 gac Asp	gaa Glu ttc Phe	aac Asn ttc Phe	atc Ile agt ser cct Pro	gac Asp tat Tyr 325	gtc Val 310 gtg Val	gag Glu tct Ser	cac His	att Ile act Thr	13378
gga Gly gcc Ala	ctt Leu agt Ser 315	cag Gln 300 atg Met	cag Gln tct Ser	ggc Gly ctc Leu	tct Ser ttc Phe	ctc Leu agc Ser 320	gaa Glu 305 gac Asp	gaa Glu ttc Phe	aac Asn ttc Phe	atc Ile agt Ser	gac Asp tat Tyr 325	gtc Val 310 gtg Val	gag Glu tct Ser	cac Bis tca Ser	att Ile act Thr	13378
gga Gly gcc Ala gtt val	ctt Leu agt Ser 315 ggt	cag Gln 300 atg Met tcg Ser	cag Gln tot Ser tgg Trp	ggc Gly ctc Leu agc Ser	tct Ser ttc Phe gta Val 335	ctc Leu agc Ser 320 cac	gaa Glu 305 gac Asp agt	gaa Glu ttc Phe ata Ile	aac Asn ttc Phe caa Gln	atc Ile agt Ser cct Pro	gac Asp tat Tyr 325 ttg Leu	gtc Val 310 gtg Val aag	gag Glu tct Ser	cac His tca Ser	att Ile act Thr acg Thr 345	13378
gga Gly gcc Ala gtt Val 330	ctt Leu agt Ser 315 ggt Gly	cag Gln 300 atg Met tcg Ser	cag Gln tct Ser tgg Trp	ggc Gly ctc Leu agc Ser	tct Ser ttc Phe gta Val 335	ctc Leu agc Ser 320 cac His	gaa Glu 305 gac Asp agt Ser	gaa Glu ttc Phe ata Ile	aac Asn ttc Phe caa Gln	atc Ile agt Ser cct Pro 340	gac Asp tat Tyr 325 ttg Leu caa	gtc Val 310 gtg Val aag Lys	gag Glu tot Ser	cac Bis tca Ser	att Ile act Thr acg Thr 345	13378 13426 13474

gaa	att	caq	aga	aat	tog	agt	acc	cag	gga	act	gcg	gag	gca	ctc	gca	13570
Glu	Val	Gln	Arq	Asn	Ser	Ser	Thr	Gln	Gly	Thr	Ala	Glu	Ala	Leu	Ala	
			365					370					375			
gaa	tca	alc	gtg	aag	ccc	acg	aga	cga	agg	tca	tct	cag	tgg	aaq	aag	13618
Glu	Ser	Val	Val	Lys	Pro	Thr	Arg	Arg	Arg	Ser	Ser	Gln	Trp	Lys	Lys	
		380		•			385					390				
tca	aca	cac	ccc	cta	tca	gaa	gta	gca	gta	cac	aac	aag	cca	agc	gat	13666
Ser	Thr	His	Pro	Leu	Ser	Glu	Val	Ala	Val	His	Asn	Lys	Pro	Scr	Лер	
	395					400					405					
tac	tqq	att	gtt	gta	aaa	aac	aag	gtg	tat	gat	gtt	tcc	aat	ttt	gcg	13714
Cvs	Tro	Ile	Val	Val	Lys	Asn	Lys	Val	Tyr	Asp	Val	ser	Asn	Phe	Ala	
410	-				415					420					425	
qac	gag	cat	ccc	gga	gga	tca	gtt	att	agt	act	tat	ttt	gga	cga	gac	13762
Asp	Glu	His	Pro	Gly	Gly	Ser	Val	Ile	Ser	Thr	Tyr	Phe	Gly	Arg	Asp	
				430					435					440		
aac	aca	qat	gtt	ttc	tct	agt	ttt	cat	gca	gat	tct	aca	tgg	aaa	att	13810
Glv	Thr	Asp	Val	Phe	Ser	Ser	Phe	His	Ala	Ala	ser	Thr	Trp	Lys	Ile	
•		-	445					450					455			
ctt	caa	gac	ttt	tac	att	ggt	gac	gtg	gag	agg	gtg	gag	aag	act	cca	13858
Leu	Gln	Asp	Phe	Tyr	Ile	Gly	Asp	Val	Glu	Arg	Val	Glu	Pro	Thr	Pro	
		460					465					470				
gag	ctq	ctg	aaa	gat	ttc	cga	gaa	atg	aga	gct	ctt	tto	ctg	agg	gag	13906
Glu	Leu	Leu	Lys	Asp	Phe	Arg	Glu	Met	Arg	Ala	Leu	Phe	Leu	Arg	Glu	
	475		_			480					485					
caa	ctt	ttc	aaa	agt	tog	aaa	ttg	tac	tat	gtt	atg	aag	ctg	cto	acg	13954
Gln	Leu	Phe	Lys	Ser	Ser	Lys	Leu	Tyr	Tyr	Val	Met	Lys	Leu	Leu	Thr	
490			-		495					500					505	
aat	att	act	att	ttt	gct	gcg	ago	att	gca	ata	ata	tgt	tgg	ago	aag	14002
Asn	Val	Ala	Ile	Phe	Ala	Ala	Ser	Ile	Ala	Ile	Ile	Суя	Trp	Ser	Lys	
				510					515					520)	

			geg			aak	+ = =	act	+at	ato	at.σ	act	ctq	tgt	ttc	14050
act	att	tca -	geg	gtt rr-1	t t t t	312	con	Ala	Cve	Met	Met	Ala	Leu	Cys	Phe	
Thr	Ile	Ser		vaı	Leu	мта	per	530	Cyb				535	-		
			525					350								
			gga						**+	a+ a	CRC	eat	cad	ata	ttt	14098
caa	cag	tge	gga Gly	Lgg	cta	tee	oat	3	Dho	Ton	ui e	Aen	Gln	Val	Phe	
Gln	Gln		Gly	Trp	Leu	ser		Asp	Phe	пец	пто	550	0			
		540					545					350				
								*			a+ a	2+0	aac	220	acc	14146
gag	aca	cgc	tgg	ctt	aat	gaa	gtt	gtc	ggg	tat	grg	71-	990	3.00	710	
Glu	Thr	Arg	Trp	Leu	Asn		Val	Val	GTĀ	туг	565	116	GLY	224911		
	555					560					505					
														-++	a a t	14194
gtt	ctg	ggg	ttt	agt	aca	ggg	tgg	tgg	aag	gag	aag	Cat	aac	7 011	ui.	24274
Val	Leu	Gly	Phe	Ser		Gly	Trp	Trp	Lys		Lys	His	Asn	Leu	585	
570					575					580					565	
																14242
cat	gct	gct	cca	aat	gaa	Lgc	gat	cag	act	tao	caa	cca	at.t.	gat	gaa	14242
His	Ala	Ala	Pro	Asn	Glu	Cys	Asp	Gln		Tyr	Gln	Pro	Ile	Asp	GIU	
				590					595					600		
gat	att	gat	act	ctc	ccc	ctc	att	gcc	tgg	agc	aag	gac	ata	ctg	gcc	14290
Asp	Ile	Asp	Thr	Leu	Pro	Leu	Ile	Ala	Trp	Ser	Lys	Asp	Ile	Leu	Ala	
			605					610					615			
aca	gtt	gag	aat	aag	aca	tto	ttg	cga	atc	ctc	caa	tac	cag	cat	ctg	14338
Thr	Val	Glu	Asn	Lys	Thr	Phe	Leu	Arg	Ile	Leu	Gln	Tyr	Gln	His	Leu	
		620					625					630				
ttc	tto	ato	qqt	ctg	tta	ttt	tto	gcc	cgt	ggt	agt	tyg	cto	ttt	tgg	14386
Phe	Phe	Met	Glv	Leu	Leu	Phe	Phe	Ala	Arg	Gly	Ser	Trp	Leu	Phe	Trp	
	635		-			640					645					
200	+ 44	ana	tat	acc	t.ct	aca	qca	gtg	ctc	tca	cct	gto	gac	agg	ttg	14434
ee-	. ugu	aye ar	. Tur	The	Ser	Thr	Ala	Val	Leu	Ser	Pro	Va1	Asp	Arg	Leu	
650			, -1-		655					660					665	
050	,				030											
				20*	· r++	ctc	1.11	cac	tac	ttt	t ac	tto	gto	ggg	aca	14482
ttg	gaç		, 990	mb.	. Wal	Ter	Phe	His	Tyr	Phe	Tre	Phe	· Val	G13	Thr	
Let	ı GIT	1 TA	o GTŽ	670		. Let			675					680)	
				6/0	,											

aca	tgc	tat	ctt	ctc	cct	ggt	tgg	aag	cca	tta	gta	tgg	atg	gcg	209	14530	
Ala	Cvs	Tyr	Leu	Leu	Pro	Gly	Trp	Lys	Pro	Leu	Val.	Trp	Met	Ala	Val		
	•	-	685					690					695				
act	пап	ata	atg	Lcc	aac	atq	ctg	atg	ggc	ttt	gt.a	ttt	gta	ctt	agc	14578	
mbe	Clu	Len	Met	Ser	Glv	Met.	Leu	Leu	Gly	Phe	Val	Phe	Val	Leu	Ser		
TILL	Gra	700	1100	DOL	1		705					710					
		700					,										
	4		-4	~~~	a++	+ + +	aat	tea	t.ct.	aaa	gaa	ttc	gtg	agt	gca	14626	
cac	aat	999	acy	Glu	1757	Tur	Aen	Ser	ser	Lvs	G1u	Phe	Val	Ser	Ala		
HIS		GLĀ	net	GIU	var	720	71511	-		-4-	725						
	715					120											
			٠.						900		a+a	ttc	aac	gac	taa	14674	
cag	atc	gta	tcc	aca	egg	gat	#7-	T	Clas	han	Tle	Phe	Asn	Asp	Tro		
	Ile	Val	Ser	Thr		Asp	TTE	цув	GLY	740	110	10	220-11		745		
730					735					740							
												a++	++0		aca	14722	
ttc	act	ggt	ggc	ctt	aac	agg	caa	ata	gag	mia	ui.	Ten	Dhe	cca Pro	Thr		
Phe	Thr	Gly	Gly		Asn	Arg	Gln	IIe		HIS	nıs	Leu	FHE	Pro 760	1111		
				750					755					, 00			
															++-	14770	
atg	ccc	agg	cat	aat	tta	aac	aaa	ata	gca	cct	aga	gtg	gag	gtg	200	14//0	
Met	Pro	Arg	His	Asn	Leu	Asn	Lys	Ile	Ala	Pro	Arg	Val		Val	rne		
			765					770					775				
tgt	aag	aaa	cac	ggt	ctg	gtg	tac	gaa	gac	gta	tct	att	gct	acc	ggc	14818	
Сув	Lys	Lys	His	Gly	Leu	Val	Tyr	Glu	Asp	Val	Ser	Ile	Ala	Thr	Gly		
		780					785					790					
act	tqc	aag	gtt	ttg	aaa	gca	ttg	aag	gaa	gto	gcg	gag	gol	gcg	gca	14866	
Thr	Cvs	Lys	Val	Leu	Lys	Ala	Leu	Lys	G1u	Val	Ala	Glu	Ala	Ala	Ala		
	795					800					805						
797	cac	cat	act	acc	acc	agt	taa	get	ageg	tta	accc	tgct	tt a	atga	gatat	14920	
					Thr			-									
810					815												
010					020												
					an t	ant s	+++	rc tt	tcas	ttet	att	atac	acq	ttgt	aaaaaa	14980	
gcg	agac	gcc	tato	accg	ca t	yata	بالمالي	,	Jour		,	J . J .	-	-			
						+	+		aa++	toor	tto	atte	taa	tgaa	tatato	15040	
cct	gage	atg	rgta	igete	ay a	LUCT	cacc	ان بو	9900					_			

accegitact atogratist tatgaataat attocogit caatitactg attgicegic 15100
gacgaatteg ageteggege geetetagag gategatgaa ticagategg etyagtgget 15160
cetteaacgt tgeggitetg toagiteeaa acgianaacg gettgiceeq egicategge 15220
qqqqqteata acgigactee ettaaticie egeteatgat cagatigieg titecegeet 15280
teagittaaaa etateagigi tigacaggat atatiggegg giaaacetaa gagaaaagag 15340
egittattag aataategga tatitaaaag ggegigaaaa ggittateet tegiceatti 15400
gtatgigeat gecaaceaca gggiteecea

<210> 44

<211> 290

<212> PRT

<213> Unknown

<400> 44

Met Glu Val Val Glu Arg Phe Tyr Gly Glu Leu Asp Gly Lys Val Ger $1 \ 5 \ 10$

Gln Gly Val Asn Ala Leu Leu Gly Ser Phe Gly Val Glu Leu Thr Asp 20 25 30

Thr Pro Thr Thr Lys Gly Leu Pro Leu Val Asp Ser Pro Thr Pro Ile

Val Leu Cly Val Ser Val Tyr Leu Thr Ile Val Ile Gly Gly Leu Leu 50 55 60

Trp Ile Lys Ala Arg Asp Leu Lys Pro Arg Ala Ser Glu Pro Phe Leu 65 70 75 80

Leu Gln Ala Leu Val His Asn Leu Phe Cys Phe Ala Leu Ser

Leu Tyr Met Cys Val Gly Ile Ala Tyr Gln Ala Ile Thr Trp Arg Tyr

Ser Leu Trp Gly Asn Ala Tyr Asn Pro Lys His Lys Glu Met Ala Ile

Leu Val Tyr Leu Phe Tyr Met Ser Lys Tyr Val Glu Phe Met Asp Thr

Val Ile Met Ile Leu Lys Arg Ser Thr Arg Gln Ile Ser Phe Leu His

Val Tyr His His Ser Ser Ile Ser Leu Ile Trp Trp Ala Ile Ala His

His Ala Pro Gly Gly Glu Ala Tyr Trp Ser Ala Ala Leu Asn Ser Gly

Val His Val Leu Met Tyr Ala Tyr Tyr Phe Leu Ala Ala Cys Leu Arg

Ser Ser Pro Lys Leu Lys Asn Lys Tyr Leu Phe Trp Gly Arg Tyr Leu

Thr Gln Phe Gln Mct Phe Gln Phe Met Leu Asn Leu Val Gln Ala Tyr

Tyr Asp Met Lys Thr Asn Ala Pro Tyr Pro Gln Trp Leu Ile Lys Ile

Leu Phe Tyr Tyr Met Ile Ser Leu Leu Phe Leu Phe Gly Asn Phe Tyr

Val Gln Lys Tyr Ile Lys Pro Ser Asp Gly Lys Gln Lys Gly Ala Lys

Thr Glu

<210> 45 <211> 525 <212> PRT <213> Unknown

<400> 45

Met Val Phe Ala Gly Gly Gly Leu Gln Gln Gly Ser Leu Glu Glu Asn

Ile Asp Val Glu His Ile Ala Ser Met Ser Leu Phe Ser Asp Phe Phe

Ser Tyr Val Ser Ser Thr Val Gly Ser Trp Ser Val His Ser Ile Gln

Pro Leu Lys Arg Leu Thr Ser Lys Lys Arg Val Ser Glu Ser Ala Ala

Val Gln Cys Ile Ser Ala Glu Val Gln Arg Asn Ser Ser Thr Gln Gly

Thr Ala Glu Ala Leu Ala Glu Ser Val Val Lys Pro Thr Arg Arg Arg

Ser Ser Gln Trp Lys Lys Scr Thr His Pro Leu Ser Glu Val Ala Val

His Asn Lys Pro Ser Asp Cys Trp Ile Val Val Lys Asn Lys Val Tyr

Asp Val Ser Asn Phe Ala Asp Glu His Pro Gly Gly Ser Val Ile Ser

Thr Tyr Phe Gly Arg Asp Gly Thr Asp Val Phe Ser Ser Phe His Ala

Ala Ser Thr Trp Lys Ile Leu Gln Asp Phe Tyr Ile Gly Asp Val Glu

Arg Val Glu Pro Thr Pro Glu Leu Leu Lys Asp Phe Arg Glu Met Arg

								1	78						
			180					185					190		
Ala	Leu	Phe 195	Leu	Arg	Glu	Gln	Leu 200	Phe	Lys	Ser	Ser	Lys 205	Leu	Tyr	Tyr
Val	Met 210	Lys	Lou	Leu	Thr	Asn 215	Val	Ala	Ile	Phe	Ala 220	Ala	Ser	Ile	Ala
225			Trp		230					235					240
			Leu	245					250					255	
			Gln 260					265					270		
		275	Gly				280					285			
	290					295					300				Thr
Туг 305	Gln	Pro	Ile	Asp	Glu 310	Asp	Ile	Asp	Thr	1eu 315	Pro	Leu	Ile	Ala	Trp 320
Ser	Lys	Asp	Ile	Leu 325	Ala	Thr	Val	Glu	Asn 330	Lys	Thr	Phe	Leu	Arg 335	Ile
Leu	Gln	Tyr	Gln 340		Leu	Phe	Phe	Met 345	Gly	Leu	Leu	Phe	Phe 350		Arg
Gly	Ser	Trp 355		Phe	Trp	Ser	Trp		Tyr	Thr	Ser	365		. Val	Leu
Ser	Pro 370		Asp	Arg	Leu	Leu 375	Glu	Lys	Gly	Thr	Val 380		Phe	His	Tyr
Phe 385		Phe	Val	Gly	Thr 390		Cys	Tyr	Leu	Leu 395		Gly	Trp	Lys	Pro 400

Leu Val Trp Met Ala Val Thr Glu Leu Met Ser Gly Met Leu Leu Gly 405 410 415

Phe Val Phe Val Leu Ser His Asn Gly Met Glu Val \overline{T} yr Asn Ser Ser 420 425 430

Lys Glu Phe Val Ser Ala Gln Ile Val Ser Thr Arg Asp Ile Lys Gly 435 440 · 445

Asn Ile Phe Asn Asp Trp Phe Thr Gly Gly Leu Asn Arg Gln Ile Glu 450 455 460

His His Leu Phe Pro Thr Met Pro Arg His Asn Leu Asn Lys Ile Ala 465 470 475 480

Pro Arg Val Glu Val Phe Cys Lys Lys His Gly Leu Val Tyr Glu Asp 485 490 490

Val Ser Ile Ala Thr Gly Thr Cys Lys Val Leu Lys Ala Leu Lys Glu 500 505 510

Val Ala Glu Ala Ala Ala Glu Gln His Ala Thr Thr Ser 515 520 525

<210> 46

<211> 17752

<212> DNA

<213> Unknown

<220>

<223> Plant expression vector with 3
promoter-terminator expression cassettes,
inserted with Physcomitrella elongase + desaturase
+ Phaeodactylum desaturase

<220>

<221> CDS

<222> (11543)..(12415)

<220>

<221> CDS

<222> (13313)..(14890)

<220>

<221> CDS

<222> (15791)..(17200)

<400> 46

gatetggege eggecagega gacgageaag attggeegee geeegaaaog atoogacage 60 gogoccagca caggt.gogca ggcaaattqc accaacgcat acagcgccag cagaatgcca 120 tagtgggcgg tgacgtcgtt cgagtgaacc agatcgcgca ggaggcccgg cagcaccggc 180 ataatcaggc cgatgccgac agcgtcgagc gcgacagtgc tcagaattac gatcaggggt 240 atgttgggtt tcacgtctgg cctccggacc agcctccgct ggtccgattg aacgcgcgga 300 ttotttatoa otgataagtt ggtggacata ttatgtttat cagtgataaa gtgtcaagca 360 tgacaaagtt gcagccgaat acagtgatcc gtgccgccct ggacctytty aacgaggtcg 420 gogtagaogg totgaogaoa ogoaaactgg oggaaoggtt gggggttoag cagooggogc 480 tttactggca cttcaggaac aagcgggcgc tgctcgacgc actggccgaa gccatgctgg 540 cggagaatca tacgcattcg gtgccgagag ccgacgacga ctggcgctca tttctgatcg 600 ggaatgcccg cagcttcagg caggcgctgc tcgcctaccg cgatggcgcg cgcatccatg 660 coggcacgog accgggcgca cogcagatgg aaacggccga cgcgcagctt cgcttcctct 720 gcgaggcggg tttttcggcc ggggacgccg tcaatgcgct gatgacaatc agctacttca 780 ctgttggggc cgtgcttgag gagcaggccg gcgacagcga tgccggcgag cgcggcggca 840 ccgttgaaca ggctccgctc tcgccgctgt tgcgggccgc gatagacgcc ttcgacgaag 900

ccggtccgga cgcagcgttc gagcagggac tcgcggtgat tgtcgatgga ttggcgaaaa 960 ggaggetegt tgteaggaac gttgaaggac cgagaaaggg tgacgattga teaggacege 1020 tgccggagcg caacccactc actacagcag agccatgtag acaacatccc ctcccccttt 1080 ccaccgcgtc agacgcccgt agcagcccgc tacgggcttt ttcatgccct gccctagcgt 1140 ccaagoctca eggeegeet eggeetetet ggeggeette tggegetett eegetteete 1200 gotoactgae tegetgeget eggtegtteg getgeggega geggtateag eteaeteaaa 1260 ggoggtaata cggttatona cagaatcagg ggataacgca ggaaagaaca tgtgagcaaa 1320 aggocagoaa aaggocagga accgtaaaaa ggocgogttg otggogtttt tocataggot 1380 cogocococt gacgagoatc acaaaaatcg acgotcaagt cagaggtggc gaaacccgac 1440 aggactataa agataccagg cgtttccccc tggaagctcc ctcgtgcgct ctcctgttcc 1500 gaccetgeog ettaceggat acetgteege ettteteeet tegggaageg tggegetttt 1560 cogctgcata accetgcttc ggggtcatta tagcgatttt ttcggtatat ccalcetttt 1620 togoacgata tacaggattt tgocaaaggg ttogtgtaga ctttccttgg tgtatccaac 1680 ggcgtcagcc gggcaggata ggtgaagtag gcccacccgc gagcgggtgt tccttcttca 1740 ctgtccctta ttcgcacctg gcggtgctca acgggaatcc tgctctgcga ggctggccgg 1800 ctaccgccgg cgtaacagat gagggcaagc ggatggctga tgaaaccaag ccaaccagga 1860 agggcagccc acctatcaag gtgtactgcc ttccagacga acgaagagcg attgaggaaa 1920 aggoggoggo ggooggoatg agcotgtogg cotacotgot ggoogtoggo cagggotaca 1980 aaatcacggg cgtcgtggac tatgagcacg tccgcgagct ggcccgcatc aatggcgacc 2040 tgggccgcct gggcggcctg ctgaaactct ggctcaccga cgacccgcgc acggcgcggt 2100

toggtqatgc cacgatecte geeetgetgg egaagatega agagaageag gaegagettg 2160 gcaaggtcat gatgggcgtg gtccgcccga gggcagagcc atgacttttt tagccgctaa 2220 aacggccggg gggtgcgcgt gattgccaag cacgtcccca tgcgctccat caagaagagc 2280 gacttcgcgg agctggtgaa gtacatcacc gacgagcaag gcaagaccga gcgcctttgc 2340 gacgeteace gggetggttg ecetegeege tgggetggeg geogtetatg geoetgeaaa 2400 cgcgccagaa acgccgtcga agccgtgtgc gagacaccgc ggccgcoggc gttgtggata 2460 octogoggaa aacttggccc tcactgacag atgagggcg gacgttgaca cttgaggggc 2520 cgactcaccc ggcgcggcgt tgacagatga ggggcaggct cgatttcggc cggcgacgtg 2580 gagotggcca gcotcgcaaa toggcgaaaa cgcotgattt tacgcgagtt toccacagat 2640 gatgtggaca agcctgggga taagtgccct gcggtattga cacttgaggg gcgcgactac 2700 tgacagatga ggggcgcgat cottgacact tgaggggcag agtgctgaca gatgaggggc 2760 gcacctattg acatttgagg ggctgtccac aggcagaaaa tccagcattt gcaagggttt 2820 cogocogett teoggocaco gotaaccege cetteaacce queettaaac caatatetat 2880 aaacettgtt tttaaccagg getgegeeet gtgegegtga eegegeaege egaagggggg 2940 tgcccccct tctcgaaccc tcccggcccg ctaacgoggg cctcccatcc ccccaggggc 3000 tgegececte ggeogegaac ggeeteacce caaaaatgge agegetggea gteettgeea 3060 ttgccgggat cggggcagta acgggatggg cgatcagccc gagcgcgacg cccggaagca 3120 ttgacgtgcc gcaggtgctg gcatcgacat tcagcgacca ggtgccgggc agtgagggcg 3180 gcggcctggg tggcggcctg cccttcactt cggccgtcgg ggcattcacg gacttcatgg 3240 cggggccggc aattittacc ttgggcattc ttggcatagt ggtcgcgggt gccgtgctcg 3300

tgttcqqqqq tgcgataaac ccagcgaacc atttgaggtg ataggtaaga ttataccgag 3360 gtatgaaaac gagaattgga cotttacaga attactotat gaagegecat atttaaaaag 3420 ctaccaagac gaagaggatg aagaggatga ggaggcagat tgccttgaat atattgacaa 3480 tactgataag ataatatatc ttttatatag aagatatcgc cgtatgtaag gatttcaggg 3540 ggcaaggcat aggcagcgcg cttatcaata tatctataga atgggcaaag cataaaaact 3600 tgcatggact aatgcttgaa acccaggaca ataaccttat agcttgtaaa ttctatcata 3660 attgggtaat gactccaact tattgatagt gttttatgtt cagataatgc ccgatgactt 3720 tgtcatgcag ctccaccgat tttgagaacg acagcgactt ccgtcccagc cgtgccaggt 3780 gctgcctcag attcaggtta tgccgctcaa ttcgctgcgt atatcgcttg ctgattacgt 3840 geagetttee etteaggegg gatteataea geggeeagee ateegteate catateacea 3900 cgtcaaaggg tgacagcagg ctcataagac gccccagcgt cgccatagtg cgttcaccga 3960 atacgtgcgc aacaaccgtc ttccggagac tgtcatacgc gtaaaacagc cagegctggo 4020 gogatttago ocogacatag coccactgtt cgtccatttc cgcgcagacg atgacgtcac 4080 tgcccggctg tatgcgcgag gttaccgact gcggcctgag ttttttaagt gacgtaaaat 4140 cgtgttgagg ccaacgccca taatgcgggc tgttgcccgg catccaacgc cattcatggc 4200 catatcaatg attitctggt gcgtaccggg ttgagaagcg gtgtaagtga actgcagttg 4260 ccatgtttta cggcagtgag agcagagata gcgctgatgt ccggcggtgc ttttgccgtt 4320 acgcaccacc cogtcagtag ctgaacagga gggacagctg atagacacag aagccactgg 4380 agcacctcaa aaacaccatc atacactaaa tcagtaagtt ggcagcatca cccataattg 4440 tggtttcaaa atcggctccg tcgatactat gttatacgcc aactttgaaa acaactttga 4500

aaaagctgtt ttctggtatt taaggtttta gaatgcaagg aacagtgaat tggagttcgt 4560 cttgttataa ttagcttctt ggggtatctt taaatactgt agaaaagagg aaggaaataa 4620 taaatggcta aaatgagaat atcaccggaa ttgaaaaaac tgatcgaaaa ataccgctgc 4680 gtaaaagata cggaaggaat gtctcctgct aaggtatata agctggtggg agaaaatgaa 4740 aacctatatt taaaaatgac ggacagccgg tataaaggga ccacctatga tgtggaacgg 4800 gaaaaggaca tgatgctatg gctggaagga aagclgcctg ttccaaaggt cotgcacttt 4860 gaacggcatg stggctggag caatctqctc atgagtgagg ccgatggcgt cctttgctcg 4920 gaagagtatg aagatgaaca aagccctgaa aagattatcg agctgtatgc ggagtgcatc 4980 aggetettte actecatega catateggat tgtecetata egaatagett agacageege 5040 ttagccgaat tggattactt actgaataac gatctggccg atgtggattg cgaaaactgg 5100 gaagaagaca ctccatttaa agatccgcgc gagctgtatg atttttaaa gacggaaaag 5160 cccgaagagg aacttgtctt ttcccacggc gacctgggag acagcaacat ctttgtgaaa 5220 gatggcaaag taagtggott tattgatcht gggagaagcg gcaqqqcgga caagtggtat 5280 gacattgcct totgcgtccg gtcgatcagg gaggatatcg gggaagaaca gtatgtcgag 5340 ctggatgaat tgttttagta cctagatgtg gcgcaacgat gccggcgaca agcaggagcg 5460 caccgactte tteegeatea agtgttttgg eteteaggee gaggeecaeg geaagtattt 5520 gggcaagggg togotggtat togtgcaggg caagattogg aataccaagt acgagaagga 5580 cggccagacg gtctacggga ccgacttcat tgccgataag gtggattatc tggacaccaa 5640 ggcaccaggc gggtcaaatc aggaataagg gcacattgcc ccggcgtgag tcggggcaat 5700

cccgcaagga gggtqaatga atcggacgtt tgaccggaag gcatacaggc aagaactgat 5760 cgacgcgggg ttttccgccg aggatgccga aaccatcgca agccgcaccg tcatgcgtgc 5820 geocogegaa acettecagt cogtoggete gatggtecag caagetacgg ccaagatega 5880 gogogacage gtgcaactgg etecceetge cetgeeegeg ecateggeeg eegtggageg 5940 ttogogtogt ctogaacagg aggoggcagg tttggcgaag tcgatgacca tcgacacgcg 6000 aggaactatg acgaccaaga agcgaaaaac cgccyycgag gacctggcaa aacaggtcag 6060 ogaggecaag caggecgcgt tgctgaaaca cacgaagcag cagatcaagg aaatgcagct 6120 tteettgtte gatattgege egtggeegga cacgatgega gegatgeeaa acgacaegge 6180 cogetetgee etgtteacca egegeaacaa gaaaateeeg egegaggege tgeaaaacaa 6240 ggtcattttc cacgtcaaca aggacgtgaa gatcacctac accggcgtcg agctgcgggc 6300 cgacgatgac gaactggtgt ggcagcaggt gttggagtac gcgaagcgca cccctatcgg 6360 cgagccgatc accttcacgt tctacgagct ttgccaggac ctgggctyyt cgatcaatgg 6420 coggtattac acgaaggeeg aggaatgeet ghegegeeta caggegaegg egatgggett 6480 cacgtccgac cgcgttgggc acctggaatc ggtgtcgctg ctgcaccgct tccgcgtcct 6540 ggaccgtggc aagaaaacgt cccgttgcca ggtcctgatc gacgaggaaa tcgtcgtgct 6600 gtttgctggc gaccactaca cgaaattcat atgggagaag taccgcaagc tgtcgccgac 6660 ggecegaegg atgttegaet attteagete geaeegggag eegtaeeege teaagetgga 6720 aaccttccgc ctcatgtgcg gatcggattc cacccgcgtg aagaagtggc gcgagcaggt 6780 cggcgaagcc tgcgaagagt tgcgaggcag cggcctggtg gaacacgcct gggtcaatga 6840 tgacctggtg cattgcaaac gctagggcct tgtggggtca gttccggctg ggggttcagc 6900 agccagogot ttactggcat ttcaggaaca agcgggcact gctcgacgca cttgcttcgc 6960 toagtatogo togggaogoa oggogogoto tacgaactgo ogataaacag aggattaaaa 7020 ttgacaattg tgattaaggc tcagattcga cggcttggag cggccgacgt gcaggatttc 7080 cgcgagatcc gattgtcggc cctgaagaaa gctccagaga tgttcgggtc cgtttacgag 7140 cacgaggaga aaaagcccat ggaggcgttc gctgaacggt tgcgagatgc cgtggcattc 7200 ggogoctaca togacggoga gatcattggg otgloggtot toaaacagga ggacggoccc 7260 aaggacgete acaaggegea tetgteegge gttttegtgg agecegaaca gegaggeega 7320 ggggtegeeg gtatgetget gegggegttg ceggegggtt tattgetegt gatgategte 7380 cgacagatic caacgggaat ctggtggatg cgcatctica tectoggcgc acttaatatt 7440 togotattot ggagottgtt gtttatttog gtotacogco tgccgggcgg ggtcgcggcg 7500 acggtaggeg etgtgcagec getgatggte gtgttcatet etgeogetet getaggtage 7560 ccgatacgat tgatggcggt cctgggggct atttgcggaa ctgcggggct ggcgctgttg 7620 gtgttgacac caaacgcage getagateet gteggegteg cagegggeet ggeggggeg 7680 gtttccatgg cgttcggaac cgtgctgacc cgcaagtggc aacctcccgt gcctctgctc 7740 acctttaccg cctggcaact ggcggccgga ggacttctgc tcgttccagt agctttagtg 7800 tttgatcege caateeegat geetaeagga accaatgtte teggeetgge gtggetegge 7860 ctgatcggag cgggtttaac ctacttcctt tggttccggg ggatctcgcg actcgaacct 7920 acagttgttt ccttactggg ctttctcagc cccagatctg gggtcgatca gccggggatg 7980 catcaggoog acagtoggaa cttogggtoc cogacotgta ccattoggtg agcaatggat 8040 aggggagttg atatogtoaa ogttoactto taaagaaata gogcoactca gottootoag 8100

eggetttate cagegattte etattatgte ggeatagtte teaagatega eageetgtea 8160 cggttaagcg agaaatgaat aagaaggctg ataattcgga tototgcgag ggagatgata 8220 tttgatcaca ggcagcaacg ctctgtcatc gttacaatca acatgctacc ctccgcgaga 8280 teatecgtgt tteaaacccg geagettagt tgeegttett cegaatagea teggtaacat 8340 gagcaaagtc tgccgcctta caacggctct cccgctgacg ccgtcccgga ctgatgggct 8400 gootgtateg agtggtgatt ttgtgccgag ctgccgytcg gggagctgtt ggotggctgg 8460 tggcaggata tattgtggtg taaacaaatt qacgcttaga caacttaata acacattgcg 8520 gacgttttta atgtactggg gtggtttttc ttttcaccag tgagacgggc aacagctgat 8580 tgcccttcac cgcctggccc tgagagagtt gcagcaagcg gtccacgctg gtttgcccca 8640 gcaggcgaaa atcctgtttg atggtggttc cgaaatcggc aaaatccctt ataaatcaaa 8700 agaatagccc gagatagggt tgagtgttgt tccagtttgg aacaagagtc cactattaaa 8760 gaacgtggac tccaacgtca aagggcgaaa aaccgtctat cagggcgatg goocactacg 8820 tgaaccatca cocaaatcaa gttttttggg gtcgaggtgc cgtaaagcac taaatcggaa 8880 ccctaaaggg agcccccgat ttagagcttg acggggaaag ccggcgaacg tggcgagaaa 8940 ggaagggaag aaagcgaaag gagcgggcgc cattcaggct gcgcaactgt tgggaagggc 9000 gateggtgeg ggeetetteg etattaegee agetggegaa agggggatgt getgeaagge 9060 gattaagttg ggtaacgcca gggttttccc agtcacgacg ttgtaaaacg acggccagtg 9120 aattaattoo catottgaaa gaaatatagt ttaaatattt attgataaaa taacaagtoa 9180 ggtattatag tocaagcaaa aacataaatt tattgatgca agtttaaatt cagaaatatt 9240 tcaataactg attatatcag ctggtacatt gccgtagatg aaagactgag tgcgatatta 9300

tgtgtaatac ataaattgat gatatageta gettagetea teggggggate egtegaaget 9360 agcttgggtc ccgctcagaa gaactcgtca agaaggcgat agaaggcgat gcgctgcgaa 9420 togggagogg cgatacogta aagcacgagg aagcggtcag cccattogcc gccaagctct 9480 tcagcaatat cacgggtage caacgctatg tcctgatage ggtccgccac acccagcegg 9540 ccacagtcga tgaatccaga aaagcggcca ttttccacca tgatattcgg caagcaggca 9600 togocatggg toacgacgag atcotogoog togggcatgc gogocttgag cotggogaac 9660 agtteggetg gegegagece etgatgetet tegtecagat cateetgate gacaagaceg 9720 gettecatee gagtacgtge tegetegatg egatgttteg ettggtggte gaatgggeag 9780 gtagccggat caagcgtatg cagccgccgc attgcatcag ccatgatgga tactttctcg 9840 gcaggagcaa ggtgagatga caggagatcc tgccccggca cttcgcccaa tagcagccag 9900 tecetteceg etteagtgae aaegtegage acagetgege aaggaaegee egtegtggee 9960 agocacqata googogotgo otogtootgo agttoattoa gggcacoyya caggtoggto 10020 ttgacaaaaa gaacogggog cocctgcgct gacagccgga acacggcqqc atcagagcag 10080 cogattgtot gttgtgccca gtcatagccg aatagcctct ccacccaagc ggccggagaa 10140 cotgogtgca atcoatottg ttcaatccaa gotcocatgg gocotogact agagtogaga 10200 totggattga gagtgaatat gagactotaa ttggatacog aggggaattt atggaacgto 10260 agtggagcat tittgacaag aaatatitge tagetgatag tgacettagg cgactittga 10320 acgcgcaata atggtttctg acgtatgtgc ttagctcatt aaactccaga aacccgcggc 10380 tgagtggete etteaaegtt geggttetgt eagtteeaaa egtaaaaegg ettgteeege 10440 gtcatcggcg ggggtcataa cgtgactccc ttaattctcc gctcatgatc ttgatcccct 10500 goqccatcag atocttggcg gcaagaaagc catccagttt actttgcagg gcttcccaac 10560 cttaccagag ggcgccccag ctggcaattc cggttcgctt gctgtccata aaaccgccca 10620 gtotagotat ogocatgtaa goccactgca agotacotgc tttototttg ogottgcgtt 10680 ttcccttgtc cagatagccc agtagctgac attcatccgg ggtcagcacc gtttctgcgg 10740 actggctttc tacgtgttcc gcttccttta gcagcccttg cgccctgagt gcttgcggca 10800 gcgtgaaget tgeatgeetg caggtegaeg gegegeegag eteetegage aaatttacae 10860 attgccacta aacgtctaaa cccttgtaat ttgtttttgt tttactatgt gtgttatgta 10920 tttgatttgc gataaatttt tatatttggt actaaattta taacaccttt tatgctaacg 10980 tttgccaaca cttagcaatt tgcaagttga ttaattgatt ctaaattatt tttgtcttct 11040 aaatacatat actaatcaac tggaaatgta aatatttgct aatatttcta ctataggaga 11100 attaaagtga gtgaatatgg taccacaagg tttggagatt taattgttgc aatgctgcat 11160 ggatggcata tacaccaaac attcaataat tcttgaggat aalaatggta ccaccacaaga 11220 tttgaggtgo atgaacgtca cgtggacaaa aggtttagta atttttcaag acaacaatgt 11280 taccacacac aagttttgag gtgcatgcat ggatgccctg tggaaagttt aaaaatattt 11340 tggaaatgat ttgcatggaa gccatgtgta aaaccatgac atccacttgg aggatgcaat 11400 aatgaagaaa actacaaatt tacatgcaac tagttatgca tgtagtctat ataatgagga 11460 ttttgcaata ctttcattca tacacactca ctaagtttta cacgattata atttcttcat 11520 agccagccca ccgcggtgga aa atg gag gtc gtg gag aga ttc tac ggt gag 11572 Met Glu Val Val Glu Arg Phe Tyr Gly Glu 10 5 1

ttg gat ggg aag gtc tcg cag ggc gtg aat gca ttg ctg ggt agt ttt 11620 Leu Asp Gly Lys Val Ser Gln Gly Val Asn Ala Leu Leu Gly Ser Phe

ggg gtg gag ttg acg gat acg ccc act acc aaa ggc ttg ccc ctc gtt Gly Val Glu Leu Thr Asp Thr Pro Thr Thr Lys Gly Leu Pro Leu Val gac agt ccc aca ccc atc gtc ctc ggt gtt tct gta tac ttg act att Asp Ser Pro Thr Pro Ile Val Leu Gly Val Ser Val Tyr Leu Thr Ile gto att gga ggg ctt ttg tgg ata aag goo agg gat ctg aaa cog ogo Val Ile Gly Gly Leu Leu Trp Ile Lys Ala Arg Asp Leu Lys Pro Arg gcc tog gag cca ttt ttg ctc caa gct ttg gtg ctt gtg cac aac ctg Ala Ser Glu Pro Phe Leu Leu Gln Ala Leu Val Leu Val His Asn Leu ttc tgt ttt gcg ctc agt ctg tat atg tgc gtg ggc atc gct tat cag Phe Cys Phe Ala Leu Ser Leu Tyr Met Cys Val Gly Ile Ala Tyr Gln

got att acc tgg cgg tac tot ctc tgg ggc aat gca tac aat cot aaa Ala Ile Thr Trp Arg Tyr Ser Leu Trp Gly Asn Ala Tyr Asn Pro Lys cat aaa gag atg gcg att ctg gta tac ttg ttc tac atg tct aag tac

His Lys Glu Met Ala Ile Leu Val Tyr Leu Phe Tyr Met Ser Lys Tyr

gtg gaa ttc atg gat acc gtt atc atg ata ctg aag cgc agc acc agg Val Clu Phe Met Asp Thr Val Ile Met Ile Leu Lys Arg Ser Thr Arg

caa ata age tto cte cac gtt tat cat cat tct tca att tcc ctc att Gln Ile Ser Phe Leu His Val Tyr His His Ser Ser Ile Ser Leu Ile

tgg tgg get att get cat cac get eet gge ggt gaa gea tat tgg tet Trp Trp Ala Ile Ala His His Ala Pro Gly Glu Ala Tyr Trp Ser

				175					180					185		
aca	gct	ct.a	aac	tca	gga	ata	cat	gtt	ctc	atg	tat	gcg	tat	tac	ttc	12148
Ala	Ala	Leu	Asn	Ser	Gly	Val	His	Val	Leu	Met	Tyr	Ala	Tyr	туг	Phe	
12000			190		-			195					200			
++ ~	gct	acc	tac	ctt	сσа	agt	agc	cca	aag	tta	aaa	aat	aag	tac	ctt	12196
Lou	Ala	ala	Cve	Len	Ara	Ser	Ser	Pro	Lys	Leu	Lys	Asn	Lys	Tyr	Leu	
пец	ALU	205	0,10	204			210		-		_	215				
	tgg	aac	agg	tac	tta	aca	caa	ttc	caa	atg	ttc	cag	ttt	atg	atg	12244
Dhe	Trp	Glv	Ara	Tvr	Leu	Thr	Gln	Phe	Gln	Met	Phe	Gln	Phe	Met	Leu	
Į IIG	220	013	9	-1-		225					230					
	220															
	tta	at a		act	tac	tac	gac	atσ	aaa	acq	aat	qeg	cca	tat	cca	12292
han	Leu	Wal	Gln	Ala	Tyr	Tvr	Asp	Met	Lys	Thr	Asn	Ala	Pro	Tyr	Pro	
235		vus			240	-3-			•	245					250	
233																
	tgg	a+ a	2+0	220	a++	++ a	ttc	tac	tac	atq	atc	teg	ttg	ctg	ttt	12340
Cae	Trp	Tou	710	Tre	T10	T.011	Phe	Tyr	Tvr	Met	Ile	Ser	Leu	Leu	Phe	
GIL	rrp	Leu	TTe	255	116	Deu	Line	-1-	260					265		
				255												
	ttc				+ 20	n+ a	caa	888	tac	atc	aaa	ccc	tet	qac	gga	12388
	Phe															
Let	Pne	GIY		Pile	TYL	val	GIM	275	-1-		-1-		280	_	-	
			270					2/3								
						-4			+		aaa	otco	+act	++		12435
	caa							tga		ayaa	ggc		cgco	-		
Lys	Gln		GTĀ	Ala	гĀЗ	THE										
		285					290									
															+ ~~~~	12495
aat	gaga	tat	gcga	gacg	cc t	atga	tege	a tg	atat	ttgc	ttt	caat	tet	greg	tgcacg	12473
																12555
tte	rtaaa	aaa	cctg	agca	tg t	gtag	ctca	g at	cctt	accg	ccg	gttt	cgg	ttea	ttctaa	12333
																10515
tga	atat	atc	accc	gtta	ct a	tegt	attt	t ta	tgaa	taat	att	ctcc	gtt	caat	ttactg	12013
ati	gtcc	gtc	gage	aaat	tt a	caca	ttgc	c ac	taaa	cgtc	taa	accc	ttg	taat	ttgttt	12675
tte	jttt	act	atgt	gtgt	ta t	gtat	ttga	t tt	gcga	taaa	ttt	ttat	att	tggt	actaaa	12735

ttta	taac	ac c	t t t	atgc	t aa	cgtt	tgcc	aac	actt	agc	aatt	tgca	ag t	tgat.	taatt	12795
gatt	ctaa	at t	attt	ttgt	c tt	ctaa	atac	ata	tact	aat	caac	tgga	aa t	gtaa	atatt	12855
tgct	aata	tt t	ctac	tata	g ga	gaat	taaa	gtg	agtg	aat	atgg	tacc	ac a	aggt	ttgga	12915
gatt	taat	tg t	tgca:	atgo	t go	atgg	atgg	cat	atac	acc	aaac	atto	aa t	aatt	cttga	12975
ggat	aata	at c	gtac	caca	c aa	ıgatt	tgag	gtg	catg	aac	gtca	cgtg	ga c	aaaa	ıggttt	13035
agta	attt	tt c	aaga	caac	a at	gtta	ccac	aca	caag	ttt	tgag	gtgo	at g	goate	gatgo	13095
aatg	rt.ggs	аа Ç	, itta	aaaa	t at	tttç	gaaa	. tga	tttg	cat	ggaa	gcca	tg t	gtaa	aacca	13155
tgac	atco	ac t	tgga	ggat	g ca	ataa	tgaa	gas	aact	aca	aatt	taca	tg c	caact	agtta	13215
tgca	itgta	igt o	tata	taat	g aç	gatt	ttgc	aat	actt	tca	ttca	taca	ıca (ctcac	taagt	13275
															ggt	13330
															Gly	
													295	5		
			cag										gag	cac		13378
			cag Gln									Val	gag	cac		13378
													gag	cac		13378
Gly	Leu	Gln 300	Gln	Gly	Ser	Leu	Glu 305	Glu	Asn	Ile	Asp	Val 310	gag Glu	cac His	Ile	
Gly	Leu agt	Gln 300 atg	Gln tct	Gly ctc	Ser	Leu agc	Glu 305 gac	Glu ttc	Asn ttc	Ile agt	Asp tat	Val 310 gtg	gag Glu tct	cac His	Ile	13378
Gly	Leu agt Ser	Gln 300 atg	Gln	Gly ctc	Ser	Leu agc Ser	Glu 305 gac	Glu ttc	Asn ttc	Ile agt	Asp tat Tyr	Val 310 gtg	gag Glu tct	cac His	Ile	
Gly	Leu agt	Gln 300 atg	Gln tct	Gly ctc	Ser	Leu agc	Glu 305 gac	Glu ttc	Asn ttc	Ile agt	Asp tat	Val 310 gtg	gag Glu tct	cac His	Ile	
gly gcc Ala	agt ser 315	Gln 300 atg Met	Gln tct Ser	Gly ctc Leu	Ser ttc Phe	agc Ser 320	Glu 305 gac Asp	Glu ttc Phe	Asn ttc Phe	Ile agt Ser	tat Tyr 325	Val 310 gtg Val	gag Glu tct Ser	cac His tca Ser	Ile act Thr	
Gly gcc Ala	agt Ser 315	Gln 300 atg Met tcg	tct ser	ctc Leu	ttc Phe	agc Ser 320	Glu 305 gac Asp	Glu ttc Phe	Asn ttc Phe	agt Ser	tat Tyr 325	Val 310 gtg Val	gag Glu tct Ser	cac His tca Ser	act Thr	13426
gcc Ala gtt Val	agt Ser 315	Gln 300 atg Met tcg	Gln tct Ser	ctc Leu agc	ttc Phe gta val	agc Ser 320	Glu 305 gac Asp	Glu ttc Phe	Asn ttc Phe	agt Ser	tat Tyr 325	Val 310 gtg Val	gag Glu tct Ser	cac His tca Ser	act Thr	13426
Gly gcc Ala	agt Ser 315	Gln 300 atg Met tcg	tct ser	ctc Leu agc	ttc Phe	agc Ser 320	Glu 305 gac Asp	Glu ttc Phe	Asn ttc Phe	agt Ser cct Pro	tat Tyr 325	Val 310 gtg Val	gag Glu tct Ser	cac His tca Ser	act Thr acg	13426
gcc Ala gtt Val	agt Ser 315 ggt Gly	Gln 300 atg Met tcg ser	tct Ser tgg	Gly ctc Leu agc ser	ttc Phe gta val 335	agc Ser 320 cac	Glu 305 gac Asp agt Ser	ttc Phe ata Ile	ttc Phe caa Gln	agt Ser cct Pro 340	tat Tyr 325 ttg Leu	Val 310 gtg Val aag Lys	gag Glu tct Ser egc Arg	tca Ser ctg	act Thr acg Thr 345	13426
gcc Ala gtt val 330	agt Ser 315 ggt Gly	Gln 300 atg Met tcg ser	tct ser tgg Trp	ctc Leu agc Ser	ttc Phe gta Val 335	agc Ser 320 cac His	Glu 305 gac Asp agt Ser	ttc Phe ata Ile	Asn ttc Phe caa Gln gcc	agt Ser cct Pro 340	tat Tyr 325 ttg Leu	Val 310 gtg Val aag Lys	gag Glu tct Ser cgc Arg	cac His tca Ser ctg	act Thr acg Thr 345	13426
gcc Ala gtt val 330	agt Ser 315 ggt Gly	Gln 300 atg Met tcg ser	tct Ser tgg	ctc Leu agc Ser	ttc Phe gta Val 335	agc Ser 320 cac His	Glu 305 gac Asp agt Ser	ttc Phe ata Ile	Asn ttc Phe caa Gln gcc	agt Ser cct Pro 340	tat Tyr 325 ttg Leu	Val 310 gtg Val aag Lys	gag Glu tct Ser cgc Arg	cac His tca Ser ctg	act Thr acg Thr 345	13426
gcc Ala gtt val 3300 agt Ser	agt Ser 315 ggt Gly aag	Gln 300 atg Met tcg Ser aag	tot Ser tgg Trp	ctc Leu agc Ser gtt Val 350	ttc Phe gta val 335 tcg	agc Ser 320 cac His	Glu 305 gac Asp agt Ser agc	Glu ttc Phe ata Ile gct Ala	ttc Phe caa Gln gcc Ala 355	agt Ser cct Pro 340 gtg Val	tat Tyr 325 ttg Leu caa Gln	Val 310 ytg Val aag Lys tgt Cys	gag Glu tct Ser cgc Arg	cac His tca Ser ctg Leu tca Ser 360	act Thr acg Thr 345 gct Ala	13426 13474 13522
gcc Ala gtt val 330 agt Ser	agt Ser 315 ggt Gly aag Lys	Gln 300 atg Met tcg Ser aag Lys	tct ser tgg Trp	ctc Leu agc ser gtt Val 350	ttc Phe gta val 335 tcg ser	agc Ser 320 cac His gaa Glu	Glu 305 gac Asp agt Ser agc Ser	ttc Phe ata Ile gct Ala	ttc Phe caa Gln gcc Ala 355	agt Ser cct Pro 340 gtg Val	tat Tyr 325 ttg Leu caa Gln	Val 310 gtg Val aag Lys tgt Cys	gag Glu tct Ser cgc Arg ata Ile	cac His tca Ser ctg Leu tca Ser 360	act Thr acg Thr 345 gct Ala	13426

								1	93								
			365					370					375				
																	2620
gaa	tca	gtc	gtg	aag	ccc	acg	aga	cga	agg	tca	tct	cag	tgg	aag	aag	1	3618
Glu	Ser	Val	Val	Lys	Pro	Thr	Arg	Arg	Arg	Ser	Ser		Trp	Lys	Lys		
		380					385					390					
tcg	aca	cac	ccc	cta	tca	gaa	gta	gca	gta	cac	aac	aag	cca	agc	gat	1	13666
Ser	Thr	His	Pro	Leu	Ser	Glu	Val	Ala	Val	His		Lys	Pro	Ser	Asp		
	395					400					405						
																	L3714
tgc	tgg	att	gtt	gta	aaa	aac	aag	gtg	tat	gat	gtt	tcc	aat	ttt -	gag	,	L3/14
Cys	Trp	Ile	Val	Val	Lys	Asn	Lys	Val	Tyr		Val	Ser	Asn	Pne	AIA		
410					415					420					425		
													•				13762
gac	gag	cat	ccc	gga	gga	tca	gtt	att	agt	act	tat	ttt	gga	cga	gac		13/02
Asp	Glu	His	Pro	Gly	Gly	Ser	Val	Ile		Thr	Tyr	Pne	GIĀ		Авр		
				430					435					440			
																	13810
ggc	aca	gat	gtt	ttc	tct	agt	ttt	cat	gca	gct	tct	aca	tgg -	aaa	77-		13010
Gly	Thr	Asp		Phe	Ser	Ser	Phe		Ala	Ala	Ser	Thr	455	Lys	TTG		
			445					450					455				
																	13858
ctt	caa	gac	ttt	tac	att	ggt	gac	gtg	gag	agg	gtg	gag	200	mb	Dua		13030
Leu	Gln	Asp	Phe	Tyr	Ile	Gly		Val	Glu	Arg	Val		Pro	THE	PIO		
		460					465					470					
																	13906
gag	ctg	ctg	aaa	gat	ttc	cga	gaa	atg	aga	get	ctt	ttc	ctg	agg	gag		13900
Glu	Leu	Leu	Lys	Asp	Phe		Glu	Met	Arg	Ala		Pne	Leu	Arg	GIU		
	475					480					485						
																	13954
caa	ctt	tto	aaa	agt	tcg	aaa	ttg	tac	tat	gtt	atg	aag	ctg	ctc	acg		13934
Gln	Lou	Phe	Lys	Ser	Ser	Гys	Leu	Tyr	Tyr		Met	Lys	Leu	Leu	Thr		
490					495					500					505		
																	14002
aat	gtt	gct	att	ttt	gct	gcg	agc	att	gca	ata	ata	tgt	tgg	agc	aag		14002
Asn	Val	Ala	Ile	Phe	Ala	Ala	Ser	Ile		Ile	Ile	Cys	Trp		гдз		
				510					515					520			
																	14056
act	att	tca	gcg	gtt	ttg	gct	tca	gct	tgt	atg	atg	gct	ctg	tgt	ttc		14050
				~	-		a	77 -	Crra	Mot	Mat	Ala	Len	CVS	Phe		

Thr Ile Ser Ala Val Leu Ala Ser Ala Cys Met Met Ala Leu Cys Phe

525 530 535

caa cag tgc gga tgg cta tcc cat gat ttt ctc cac aat cag gtg ttt 14098 Gln Gln Cys Gly Trp Leu Ser His Asp Phe Leu His Asn Gln val Phe 540 545 550

gag aca cgc tgg ctt aat gaa gtt gtc ggg tat gtg ac ggc aac gcc 14146 Glu Thr Arg Trp Leu Asn Glu Val Val Gly Tyr Val Ile Gly Asn Ala 555 560 565

gtt ctg ggg ttt agt aca ggg tgg tgg aag gag aag cat aac ott cat 14194
Val Leu Gly Phe Ser Thr Gly Trp Trp Lys Glu Lys His Asn Leu His
570 585 585

cat gct gct cca aat gaa tgc gat cag act tac caa cca att gat gaa 14247 His Ala Ala Pro Asn Glu Cys Asp Gln Thr Tyr Gln Pro Ile Asp Glu

gat att gat act ctc ccc ctc att gcc tgg agc aag gac ata ctg gcc 14290 Asp Ile Asp Thr Leu Pro Leu Ile Ala Trp Ser Lys Asp Ile Leu Ala 605 610 615

aca gtt gag aat aag aca ttc ttg cga atc ctc caa tac cag cat cttg 14338 Thr Val Glu Asn Lys Thr Phe Leu Arg Ile Leu Gln Tyr Gln His Leu

ttc ttc atg ggt ctg tta ttt ttc gcc cgt ggt agt tgg ctc ttt tgg 14386
Phe Phe Met Gly Leu Phe Phe Ala Arg Gly Ser Trp Leu Phe Trp
635 640 645

agc tgg aga tat acc tot aca gca gtg ctc toa cct gtc gac agg ttg 14434 Ser Trp Arg Tyr Thr Ser Thr Ala Val Ieu Ser Pro Val Asp Arg Leu 655 660 665

ttg gag aag gga act gtt ctg ttt cac tac ttt tgg ttc gtc ggg aca 14482 Leu Glu Lys Gly Thr Val Leu Phe His Tyr Phe Trp Phe Val Gly Thr

gog tgo tat ctt ctc cct ggt tgg aag cca tta gta tgg atg gcg gtg 14530 Ala Cys Tyr Leu Leu Pro Gly Trp Lys Pro Leu Val Trp Met Ala Val

195																
			685					690					695			
																14578
act	gag	ctc	atg	tcc	ggc	atg	ctg	ctg	ggc	ttt	gta	ttt	gta	CLL	ayc	14370
Thr	Glu	Leu	Met	Ser	Gly	Met	Leu	Leu	Gly	Phe	val		Val	Leu	Ser	
		700					705					710				
cac	aat	ggg	atg	gag	gtt	tat	aat	tcg	tct	aaa	gaa	ttc	gtg	agt	gca	14626
His	Asn	Gly	Met	Glu	Val	Tyr	Asn	Ser	Ser	Lys		Phe	Val	Ser	Ala	
	715					720					725					
cag	atc	gta	tcc	aca	cgg	gat	atc	aaa	gya	aac	ata	ttc	aac	gao	tgg	14674
Gln	Ile	Val	Ser	Thr	Arg	Asp	Ile	Lys	Gly	Asn	Ile	Phe	Asn	Asp	Trp	
730					735					740					745	
ttc	act	ggt	ggc	ctt	aac	agg	caa	ata	gag	cat	cat	ctt	ttc	cca	aca	14722
Phe	Thr	Gly	Gly	Leu	Asn	Arg	Gln	Ile	Glu	His	His	Leu	Phe	Pro	Thr	
				750					755					760		
ato	aac	agg	cat	aat	tta	aac	aaa	ata	gca	cct	aga	gtg	gag	gtg	ttc	14770
Met	Pro	Ara	His	Asn	Leu	Asn	Lys	Ile	Ala	Pro	Arg	Val	Glu	Val	Phe	
		,	765					770					775			
+ 11	aan	222	cac	aat	cta	ata	tac	qaa	gac	gta	tct	att	gct	acc	ggc	14818
Crre	Tare	Larg	His	Glv	Leu	Val	Tvr	Glu	Asp	Val	Ser	Ile	Ala	Thr	Gly	
Cys	LLY 0	780					785					790				
		700														
			gtt	++ ~		aca	++ a	aad	gaa	atc	aca	qaq	gct	geg	gca	14866
act	ego e	aag	Val	Ton	Tara	ala	T.e.11	Lvs	Glu	Val	Ala	Glu	Ala	Ala	Ala	
Tur			vai	Leu	пув	800	Leu	2,5			805					
	795					800										
								-at	2000	++ 0	2000	+act	tt a	atga	gatat	14920
								get	aycy	cca	acco	cgot			3	
		His	Ala	Thr		Ser										
810					815											
														L t et		14980
gcg	agac	gcc	tatg	atcg	ca t	gata	tttg	c tt	tcaa	ttct	gtt	gtgc	acg	ttyt	aaaaaa	14900
															L-L-4-	15040
act	gago	atg	tgta	gata	ag a	tcct	tacc	g cc	ggtt	tcgg	ttc	atto	taa	tgaa	tatatc	13040

accogttact atogtatttt tatgaataat attotoogtt caatttactg attgtoogtc 15100

gagc	aaat	tt a	caca	ttqc	c ac	taaa	cgtc	taa	accc	ttg	taat	ttgt	tt t	tgtt	ttact	15160
atgt	gtgt	ta t	gtat	ttga	t tt	gcga	taaa	ttt	ttat	att	tggt	acta	aa t	ttat	aacac	15220
cttt	tatg	ct a	acgt	ttgc	c aa	cact	tagc	aat	ttgc	aag	ttga	ttaa	tt g	atto	taaat	15280
tatt	tttg	tc t	tcta	aata	c at	atac	taat	caa	ctgg	aaa	tgta	aata	tt t	gcta	atatt	15340
tcta	ctat	ag g	agaa	ttaa	a gt	gagt	gaat	atg	gtac	cac	aagg	tttg	ga g	attt	aattg	15400
ttgc	aatg	ct g	catg	gatg	g ca	itata	cacc	aaa	catt	caa	Laat	tott	ga g	gata	ataat	15460
ggta	ccac	ac a	agat.	t.t.ga	g gt	gcat	gaac	gto	acgt	.gga	caaa	aggt	tt a	gtaa	ttttt	15520
caag	acaa	ca a	ıtgtt	acca	c ac	acaa	ıgttt	tga	ggtg	cat	gcat	ggat	gc c	ctgt	ggaaa	15580
gttt	aaaa	at a	ittt	ggaa	a to	gattt	gcat	gga	agco	atg	tgta	aaac	ca t	gaca	tccac	15640
ttgg	agga	tg c	aata	atgs	a ga	aaac	taca	aat	ttac	atg	caac	tagt	ta t	gcat	gtagt	15700
ctat	ataa	tgʻ a	iggat	tttg	rc aa	atact	ttca	tto	atac	aca	ctca	ctaa	igt t	ttac	cacgat	15760
tata	attt	ct t	cata	igcca	ıg ca	agato	taaa								g out	15814
								Met	, ALC	820		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		-4	825	
cga	caa	eqe	cag	acg	act	gcg	gta	gcg	aag	cac	aat	gat	gat	acc	ata	15862
Arg	Gln	Arg	Gln	Thr	Thr	Ala	Val	Ala	Lys	His	Asn	Ala	Ala	Thr	Ile	
				830					835					840		
tea	acq	caq	gaa	cac	ctt	tqc	agt	ctg	tct	tag	ctc	aaa	ggc	gaa	gaa	15910
Ser	Thr	Cln	Clu	Arg	Leu	Cys	Ser	Leu	Ser	Ser	Leu	Lys	Gly	Glu	Glu	
			845					850					855			
gtc	tgc	atc	gac	gga	atc	atc	tat	gac	ctc	caa	tca	ttc	gat	cat	ccc	15958
Val	Cys	Ile	Asp	Gly	Ile	Ile		Asp	Leu	Gln	Ser		Asp	His	Pro	
		860					865					870				
											~n+	ata	20+	mt a	car	16006
ggg	ggt	gaa	acg Thr	atc	aaa	atg	ttt	ggt	ggc	aac	yat	Tra1	mb-	1727	cag	

								1	97							
	875					880					885					
		atg														16054
Tyr	Lys	Met	Ile	His	Pro	Tyr	His	Thr	Glu	Lys	His	Leu	Glu	Lys	Met	
890					895					900					905	
		gtc														16102
Lys	Arg	Val	Gly	Lys	Val	Thr	Asp	Phe	Val	Cys	Glu	Tyr	Lys		Asp	
				910					915					920		
		ttt														16150
Thr	Glu	Phe	Glu	Arg	Glu	Ile	Lys	Arg	Glu	Val	Phe	Lys		Val	Arg	
			925					930					935			
cga	ggc	aag	gat	ttc	ggt	act	ttg	gga	tgg	ttc	ttc	cgt	gcg	ttt	tgc	16198
Arg	Gly	Lys	Asp	Phe	Gly	Thr	Leu	Gly	Trp	Phe	Phe		Ala	Phe	Cys	
		940					945					950				
		gcc														16246
Tyr	Ile	Ala	Ile	Phe	Phe	Tyr	Leu	Gln	Tyr	His		Val	Thr	Thr	Gly	
	955					960					965					
		tgg														16294
Thr	Ser	Trp	Leu	Leu	Ala	Val	Ala	Tyr	Gly	Ile	Ser	Gln	Ala	Met		
970					975					980					985	
		aat														16342
Gly	Met	Asn	Val	Gln	His	Asp	Ala	Asn	His	Gly	Ala	Thr	Ser	Lys	Arg	
				990					995					1000		
		gtc														16390
Pro	Trp	Val	Asn	Asp	Met	Teu	Gly	Leu	Gly	Ala	Asp	Phe	Ile	Gly	Gly	
			1005					1010					1015			
tcc	aag	tgg	ctc	tgg	cag	gaa	caa	cac	tgg	acc	cac	cac	gct	tac	acc	16438
													**-	m	mb	

aat cac gcc gag atg gat ccc gat agc tit ggt gcc gaa cca atg ctc 16486 Asn His Ala Glu Met Asp Pro Asp Ser Phe Gly Ala Glu Pro Met Leu

1030

Ser Lys Trp Leu Trp Gln Glu Gln His Trp Thr His His Ala Tyr Thr 1025

		198			
1035	1040		1045		
cta ttc aac gac	tat ccc ttg	gat cat ccc	gct cgt acc	tgg cta cat	16534
Leu Phe Asn Asp	Tyr Pro Leu	Asp His Pro	Ala Arg Thr		
1050	1055		1060	1065	
					1.5500
cgc ttt caa gca	ttc ttt tac	atg ccc gtc	ttg gct gga	tac tgg ttg	16582
Arg Phe Gln Ala	Phe Phe Tyr		Leu Ala Gly	Tyr Trp Leu	
	1070	1075		1080	
					16630
tee get gte tte	aat cca caa	att cll gac	ctc cag caa	aga gga gaa	10030
Ser Ala Val Phe	Asn Pro Gln			1095	
1085		1090		1093	
			++0 5++ 690	tog oga ogo	16678
ctt tcc gtc ggt Leu Ser Val Gly	atc cgt ctc	gae aac get	Phe Tie His	Ser Ard Ard	
		1105	1110	,	
1100		1103			
aag tat gog gtt	++0 +00 000	get gtg tag	att gcg gtg	aac gtg att	16726
Lys Tyr Ala Val	The Trn Ard	Ala Val Tvi	Ile Ala Val	Asn Val Ile	
1115	1120		1125		
1113					
get ccg ttt tac	aca aac tcc	gge ete gaa	tgg too tyg	cgt gtc ttt	16774
Ala Pro Phe Tyr					
1130	1135		1140	1145	
gga aac atc atc	ctc atg ggt	gtg gcg gaa	tog ctc gcg	ctg gcg gtc	16822
Gly Asn Ile Met	Leu Met Gly	Val Ala Glu	Ser Leu Ala	Leu Ala Val	
-	1150	115		1160	
ctg ttt tcg ttg	tcg cac aat	ttc gaa tcc	geg gat ege	gat ccg acc	16870
Leu Phe Ser Leu	Ser His Asn	Phe Glu Se	: Ala Asp Arg	Asp Pro Thr	
1165		1170		1175	
gce cca ctg aaa	a aag acg gga	gaa cca gt	gac tgg ttc	aag aca cag	16918
Ala Pro Leu Lys	Lys Thr Gly	Glu Pro Va	Asp Trp Phe	Lys Thr Gln	
1180		1185	1190		
gtc gaa act tcc	tgc act tac	ggt gga tt	ctt tcc ggt	tgc ttc acg	16966
Val Glu Thr Ser	Cys Thr Tyr	Gly Gly Ph	e Leu Ser Gly	Cys Phe Thr	

								1	99							
1	195				1	L200				1	205					
gga	ggt	ctc	aac	ttt	cag	gtt	gaa	cac	cac	ttg	ttc	cca	cgc	atg	agc	17014
Gly	Gly	Leu	Asn	Phe	Gln	Val	GLu	His	His	Leu	Phe	Pro	Arg			
1210				1	1215				:	1220				:	1225	
agc	gct	tgg	tat	ccc	tac	att	gcc	ccc	aag	gtc	cgc	gaa	att	tgc	gcc	17062
Ser	Ala	Trp	Tyr	Pro	Tyr	Ile	Ala	Pro	Lys	Val	Arg	Glu	Ile	Cys	Ala	
				1230					L235					1240		
aaa	cac	ggc	gtc	cac	tac	gee	Lac	tac	ccg	tgg	ato	cac	caa	aac	ttt	17110
Lys	His	Gly	Val	His	Tyr	Ala	Tyr	Tyr	Pro	Trp	Ile				Phe	
		. :	1245					1250					1255			
																17150
ctc	tcc	acc	gtc	cgc	tac	atg	cac	gcg	gcc	aaa	acc	ggt	gcc	aac	tgg -	17158
Leu	Ser	Thr	Val	Arg	Tyr			Ala	Ala	Gly			Ala	Asn	Trp	
		1260					1265					1270				
																17200
				aga												17200
			Ala	Arg			Pro	Leu	Thr			Ala				
1	1275					1280					1285					
													L	~~~	aaaat a	17260
agat	catg	ccg	gcat	cgat	cc c	gggc	catg	g cc	tgct	ttaa	Lga	gata	tgc	gaga	cgoota	1,100
														+	a a t a t a	17320
tgat	ago	atg	atat	ttgo	tt t	caat	tctg	t tg	tgca	cqtt	gta	aaaa	acc	tgag	catgtg	1/520
														a a a t	+ = a + = +	17380
tage	ctca	gat	cctt	accg	cc g	gttt	cggt.	t ca	ttct	aatg	aat	atat	Cac	eegu	tactat	1,500
														~~~	a+ aaac	17440
cgt	attt	tta	tgaa	taat	at t	ctcc	gttc	a at	ttac	tgāt	tgt	cegt	uya	uyay	ctcggc	1,440
												a++a	220	atta	caatto	17500
gcg	cctc	tag	agga	tcga	tg a	attc	agat	c gg	ctga	gtgg	CTC	CTTC	aac	gucy	cggttc	_,550

tagetcagat cettacegee ggttteggtt cattetaatg aatatateae eggtaetatt 17380

ogtatttta tgaataatat teteegttea atttactgat tgteegtega egagetegge 17440

gegeetetag aggategatg aatteagate ggetgagtgg eteetteaae gttgeggtte 17500

tgteagttee aaacgtaaaa eggettgtee egegteateg gegggggtea taaegtgaet 17560

ceettaatte teegeteatg ateagattg egtteeege etteagtta aactateagt 17620

gtttgacagg atatattgge gggtaaacet aagagaaaag agegtttatt agaataateg 17680

gatatttaaa agggegtgaa aaggtttate ettegteeat ttgatgtge atgecaaca 17740

cagggttccc ca

17752

<210> 47

<211> 290

<212> PRT

<213> Unknown

<400> 47

Met Glu Val Val Glu Arg Phe Tyr Gly Glu Leu Asp Gly Lys Val Ser 1 5 10 15

Gln Gly Val Asn Ala Leu Leu Gly Ser Phe Gly Val Glu Leu Thr Asp 20 25 30

The Pro The Lys Gly Leu Pro Leu Val Asp Ser Pro The Pro Ile 35 40 45

Val Leu Gly Val Ser Val Tyr Leu Thr Ile Val Ile Gly Gly Leu Leu 50 60

Trp Ile Lys Ala Arg Asp Leu Lys Pro Arg Ala Ser Glu Pro Phe Leu 65 70 75 80

Leu Gln Ala Leu Val Leu Val His Asn Leu Phe Cys Phe Ala Leu Ser 85 90 95

Leu Tyr Met Cys Val Gly Ile Ala Tyr Gln Ala Ile Thr Trp Arg Tyr 100 105 110

Ser Leu Trp Gly Asn Ala Tyr Asn Pro Lys His Lys Glu Met Ala Ile 115 120 125

Leu Val Tyr Leu Phe Tyr Met Ser Lys Tyr Val Glu Phe Met Asp Thr 130 135 140

Val Ile Met Ile Leu Lys Arg Ser Thr Arg Gln Ile Ser Phe Leu His 145 150 155 160

Val Tyr His His Ser Ser Ile Ser Leu Ile Trp Trp Ala Ile Ala His

165

170 175

His Ala Pro Gly Gly Glu Ala Tyr Trp Ser Ala Ala Leu Asn Ser Gly
180 185 190

Val His Val Leu Met Tyr Ala Tyr Tyr Phe Leu Ala Ala Cys Leu Arg

Ser Ser Pro Lys Leu Lys Asn Lys Tyr Leu Phe Trp Gly Arg Tyr Leu 210 215 220

Thr Gln Phe Gln Met Phe Gln Phe Met Leu Asn Leu Val Gln Ala Tyr 225 230 235 240

Tyr Asp Met Lys Thr Asn Ala Pro Tyr Pro Gln Trp Leu Ile Lys Ile  $245 \hspace{1.5cm} 250 \hspace{1.5cm} 255$ 

Leu Phe Tyr Tyr Met Ile Ser Leu Leu Phe Ten Phe Gly Asn Phe Tyr  $260 \hspace{1.5cm} 265 \hspace{1.5cm} 270 \hspace{1.5cm}$ 

Val Gln Lys Tyr Ile Lys Pro Ser Asp Gly Lys Gln Lys Gly Ala Lys 275 280 285

Thr Glu 290

<210> 48 <211> 525 <212> PRT

<213> Unknown

<400> 48

Met Val Phe Ala Gly Gly Gly Leu Gln Gln Gly Ser Leu Glu Glu Asn 1  $\phantom{\bigg|}$  5  $\phantom{\bigg|}$  10  $\phantom{\bigg|}$  15

Ile Asp Val Glu His Ile Ala Ser Met Ser Leu Phe Ser Asp Phe Phe  $20 \hspace{1.5cm} 25 \hspace{1.5cm} 30$ 

Ser Tyr Val Ser Ser Thr Val Gly Ser Trp Ser Val His Ser Ile Gln

								2	02						
		35					40					45			
Pro	Leu 50	Lys	Arg	Leu	Thr	Ser 55	Lys	Lys	Arg	Val	Ser 60	Glu	Ser	Ala	Ala
Val 65	Gln	Суя	Tle	Ser	Ala 70	Glu	Val	Gln	Arg	Asn 75	Ser	Ser	Thr	Gln	Gly 80
Thr	Ala	Glu	Ala	Leu 85	Ala	Glu	Ser	Val	Val 90	Lys	Pro	Thr	Arg	Arg 95	Arg
Ser	Ser	Gln	Trp 100	Lys	Lys	Ser	Thr	His 105	Pro	Leu	Ser	Glu	Val 110	Ala	Val
His	Asn	Lys 115	Pro	Ser	Asp	Cys	Trp 120	Ile	Val	Val	Lys	Asn 125	Lys	Val	Tyr
Asp	Val	Ser	Asn	Phe	Ala	Asp 135	Glu	His	Pro	Gly	Gly 140	Ser	Val	Ile	Ser
Thr 145	Tyr	Phe	Gly	Arg	Asp 150	Gly	Thr	Asp	Val	Phe 155	Ser	Ser	Phe	His	Ala 160
Ala	Ser	Thr	Trp	Lys 165	Ile	Leu	Gln	Asp	Phe 170	Tyr	-Ile	Gly	Asp	Val 175	Glu
Arg	Val	Glu	Pro 180	Thr	Pro	Glu	Leu	Leu 185	Lys	Asp	Phe	Arg	Glu 190	Met	Arg
Ala	Leu	Phe	Leu	Arg	Glu	Gln	Leu 200	Phe	Lys	Ser	Ser	Lys 205	Leu	Tyr	Tyr
Val	Met 210	Lys	Leu	Leu	Thr	Asn 215	Val	Ala	Ile	Phe	Ala 220	Ala	Ser	Ile	Ala
Ile 225	Ile	Cys	Trp	Ser	Lys 230	Thr	Ile	ser	Ala	Val 235	Leu	Ala	Ser	Ala	Cys 240
Met	Met	Ala	Leu	Сув	Phe	Gln	Gln	Cys	Gly	Trp	Leu	Ser	His	Asp	Phe

245

Leu	His	Asn	Gln	Val	Phe	Glu	Thr	Arg	Trp	Leu	Asn	Glu	Val	Val	Gly
			260					265					270		
m _{vr} -	Val	Tle	G] v	Asn	Ala	Val	Leu	Gly	Phe	Ser	Thr	Gly	Trp	Trp	Lys
171	var	275					280	-				285			
		2,3													
	_			· ·	1140	ui o	7.7 5	27.0	Pro	Asn	GIn	Cvs	Asp	Gln	Thr
GIU		HIB	Asn	ьец	птв	295	Ara	nra			300	-2			
	290					295					500				
								_				T	<b>T</b> 10	21.0	mrn.
Tyr	Gln	Pro	ile	Asp		Asp	Ile	Asp	Thr		Pro	Leu	Ile	лта	320
305					310					315					320
														_	
Ser	Lys	Asp	Ile	Leu	Ala	Thr	Val	Glu	Asn	Lys	Thr	Phe	Leu		IIe
				325					330					335	
Leu	Gln	Tyr	Gln	His	Leu	Phe	Phe	Met	Gly	Leu	Leu	Phe	Phe	Ala	Arg
			340					345					350		
Glv	Ser	Tro	Leu	Phe	Trp	Ser	Trp	Arg	Tyr	Thr	Ser	Thr	Ala	Val	Leu
CLI		355					360					365			
		555													
	D	*** 7	3	3 = 0	T on	Len	r±1 11	LVS	Glv	The	Val	Leu	Phe	His	Tyr
ser		vai	мвр	Arg	пец	375	GIU	2,0			380				
	370					3/3					500				
							a	m	T	7.011	Bro	GTv	Trn.	Lve	Pro
Phe	Trp	Phe	Val	GLY		Ата	Cys	TYL	ьеи		FIO	GLy	Trp	2,0	400
385					390					395					400
														_	
Leu	Val	Trp	Met	Ala	Val	Thr	Glu	Leu		Ser	Gly	Met	Leu		GIY
				405					410					415	
Phe	Val	Phe	Val	Leu	Ser	His	Asn	Gly	Met	Glu	Val	Tyr	Asn	Ser	Ser
			420					425					430		
T.vr~	G1::	Pho	Va1	Ser	Ala	Gln	Ile	Val	Ser	Thr	Arq	Asp	Ile	Lys	Gly
тув	GIU	435	val	Der		024	440				,	445			
		435					110								
				_	_		ml	07	C1 v	T 011	Zen	) ra	G1n	Tle	Glu
Asn		Phe	Asn	Asp	Trp		rnr	етХ	GTĀ	ьeu	460	n. 9	Gln		
	450					455					460				

His His Leu Phe Pro Thr Met Pro Arg His Asn Leu Asn Lys Ile Ala Pro Arg Val Glu Val Phe Cys Lys His Gly Leu Val Tyr Clu Asp Val Ser Ile Ala Thr Gly Thr Cys Lys Val Leu Lys Ala Leu Lys Glu Val Ala Glu Ala Ala Ala Glu Gln His Ala Thr Thr Ser <210> 49 <211> 469 <212> PRT <213> Unknown <400> 49 Met Ala Pro Asp Ala Asp Lys Leu Arg Gln Arg Gln Thr Thr Ala Val Ala Lys His Asn Ala Ala Thr Ile Ser Thr Gln Glu Arg Leu Cys Ser Leu Ser Ser Leu Lys Gly Glu Glu Val Cys Ile Asp Gly Ile Ile Tyr Asp Leu Gln Ser Phe Asp His Pro Gly Glu Thr Ile Lys Met Phe Gly Gly Asn Asp Val Thr Val Gln Tyr Lys Met Ile His Pro Tyr His Thr Glu Lys His Leu Glu Lys Met Lys Arg Val Gly Lys Val Thr Asp

Phe Val Cys Glu Tyr Lys Phe Asp Thr Glu Phe Glu Arg Glu Ile Lys 

Arg	Glu	Val 115	Phe	Lys	Ile	Val	Arg 120	Arg	Gly	Lys	Asp	Phe 125	Gly	Thr	Leu
Glу	Trp 130	Phe	Phe	Arg	Ala	Phe 135	Cys	туг	Ile	Ala	11e	Phe	Phe	Tyr	Leu
Gln 145	Tyr	His	Trp	Val	Thr 150	Thr	G1y	Thr	Ser	Trp 155	Leu	Leu	Ala	Val	Ala 160
Tyr	Gly	Ile	Ser	Gln 165	Ala	Met	Ile	Gly	Met 170	Asn	Val	Gln	His	Asp 175	Ala
Asn	His	Gly	Ala 180	Thr	Ser	Lys	Arg	Pro 185	Trp	Val	Asn	Asp	Met 190	Leu	Gly
Leu	Gly	Ala 195	Asp	Phe	Ile	Gly	Gly 200	ser	Lys	TLP	Leu	Trp 205	Gln	Glu	Gln
His	Trp 210	Thr	His	His	Ala	Tyr 215	Thr	Asn	His	Aļa	Glu 220	Met	Asp	Pro	Asp
Ser 225	Phe	Gly	Ala	Glu	Pro 230	Met	Leu	Leu	Phe	Asn 235	Asp	Tyr	Pro	Leu	Asp 240
His	Pro	Ala	Arg	Thr 245	Trp	Leu	His	Arg	Phe 250	Gln	Ala	Phe	Phe	Tyr 255	Met
Pro	Val	Leu	Ala 260	Gly	Tyr	Trp	Leu	Ser 265	Ala	Val	Phe	Asn	Pro 270	Gln	Ile

Leu Asp Leu Gln Gln Arg Gly Ala Leu Ser Val Gly Ile Arg Leu Asp 

Asn Ala Phe Ile His Ser Arg Arg Lys Tyr Ala Val Phe Trp Arg Ala 

Val Tyr Ile Ala Val Asn Val Ile Ala Pro Phe Tyr Thr Asn Ser Gly 

Leu Glu Trp Ser Trp Arg Val Phe Gly Asn Ile Met Leu Met Gly Val

325

330

335

Ala Glu Ser Leu Ala Leu Ala Val Leu Phe Ser Leu Ser His Asn Phe 340 345 350

Glu Ser Ala Asp Arg Asp Pro Thr Ala Pro Leu Lys Lys Thr Gly Glu

360

Pro Val Asp Trp Phe Lys Thr Gln Val Glu Thr Ser Cys Thr Tyr Gly 380 375 370

Gly Phe Leu Ser Gly Cys Phe Thr Gly Gly Leu Asn Phe Gln Val Glu 400 390 395 385

His His Leu Phe Pro Arg Met Ser Ser Ala Trp Tyr Pro Tyr Ile Ala 410 415 405

Pro Lys Val Arg Glu Ile Cys Ala Lys His Gly Val His Tyr Ala Tyr 425 420

Tyr Pro Trp Ile His Gln Asn Phe Leu Ser Thr Val Arg Tyr Met His 435 440

Ala Ala Gly Thr Gly Ala Asn Trp Arg Gln Met Ala Arg Glu Asn Pro 460 455 450

Leu Thr Gly Arg Ala 465

<210> 50

<211> 26

<212> DNA

<213> Artificial sequence

<220>

<223> Polylinker

<400> 50

quatteggeg egeegagete etegag

<210> 51

<211> 265

<212> DNA

<213> Artificial sequence

<220>

<223> Polylinker-terminator-polylinker

<400> 51

ccacogoggt gggcggccgc ctgcagtcta gaaggcctcc tgctttaatg agatatgcga 60

gacgoctatg atogoatgat atttgctttc aattctgttg tgcacgttgt aaaaaacctg 120

agcatgtgta geteagatee ttacegeegg ttteggttca ttetaatgaa tatateacce 180

gttactatcg tatttttatg aataatattc tccgttcaat ttactgattg tccgtcgacg 240

aattegaget eggegegeea agett

265

<210> 52

<211> 257

<212> DNA

<213> Artificial sequence

<220>

<223> Polylinker-terminator-polylinker

<400> 52

ggatcegata tegggeeege tagegttaac cetgetttaa tgagatatge gagaegeeta 60

tgatcgcatg atatttgctt tcaattctgt tgtgcacgtt gtaaaaaacc tgagcatgtg 120

tagctcagat cettacegee ggtttcggtt cattctaatg aatatateac cegttactat 180

cqtattttta tgaataatat tctccgttca atttactgat tgtccgtcga cgaattcgag 240

	^	•	0	5	2
۹,	۷	1	0>	Э,	2

<211> 257

<212> DNA

<213> Artificial sequence

<220>

<223> Polylinker-terminator-polylinker

<400> 53

agatotgcog goatogatoc ogggocatgg cotgotttaa tgagatatgc gagacgcota 60

tgatcgcatg atatttgctt tcaattctgt tgtgcacgtt gtaaaaaacc tgagcatgtg 120

tageteagat cettacegee ggttteggtt cattetualg aatatateae cogttactat 180

cgtattttta tgaataatat totoogttoa atttactgat tgtoogtoga cgaattcgag 240

ctcggcgcgc caagctt

257

O.Z. 0093/00064 DE