Calcul trigonométrique

Exercice 1:

1. Convertir en radian les mesures suivantes : 15° ; 100° ; 172° ; 400° ; 500° ; 2025°

Année scolaire: 2024-2025

2. Convertir en degré les mesures suivantes : $\frac{\pi}{9}$; $\frac{\pi}{12}$; $\frac{\pi}{15}$; $\frac{5\pi}{9}$; $\frac{3\pi}{4}$; $\frac{11\pi}{12}$

Exercice 2: On considère la figure ci-contre,

Donner la mesure principale de chacun des angles orientés suivants :

$$(\overrightarrow{\overline{AB}}, \overrightarrow{\overline{AC}}); (\overrightarrow{\overline{DC}}, \overrightarrow{\overline{AC}}); (\overrightarrow{\overline{CB}}, \overrightarrow{\overline{CD}})$$
$$(\overrightarrow{\overline{EB}}, \overrightarrow{\overline{EA}}); (\overrightarrow{\overline{BC}}, \overrightarrow{\overline{EB}}); (\overrightarrow{\overline{AB}}, \overrightarrow{\overline{AD}})$$

Exercice 3: Soit ABC un triangle dans le plan tel que : $(\overrightarrow{AB}, \overrightarrow{AC}) = \alpha[2\pi]$. Calculer en fonction de α les mesures des angles orientés suivants :

$$(\overrightarrow{\overline{AC}}, \overrightarrow{\overline{AB}}); (\overrightarrow{\overline{BA}}, \overrightarrow{\overline{AC}}); (\overrightarrow{\overline{CA}}, \overrightarrow{\overline{BA}}) \text{ et } (\overrightarrow{\overline{CA}}, \overrightarrow{\overline{AB}})$$

Exercice 4: Soient \overrightarrow{U} , ' \overrightarrow{V} , \overrightarrow{W} et \overrightarrow{K} des vecteurs dans le plan tels que :

$$\left(\overline{\overrightarrow{U},\overrightarrow{V}}\right) = \frac{\pi}{2}[2\pi]; \left(\overline{\overrightarrow{W},\overrightarrow{V}}\right) = -\frac{\pi}{3}[2\pi]; \left(\overline{\overrightarrow{K},\overrightarrow{W}}\right) = \frac{\pi}{4}[2\pi]$$

Déterminer les mesures de l'angle orienté $(\overrightarrow{\overrightarrow{U}}, \overrightarrow{K})$.

Exercice 5:

- 1. Calculer cos(x) et tan(x) sachant que : $sin(x) = \frac{\sqrt{2}}{3}$ et $\frac{\pi}{2} < x < \pi$.
- 2. Calculer cos(x) et sin(x) sachant que : $tan(x) = 2\sqrt{3}$ et $-\pi < x < -\frac{\pi}{2}$.
- 3. Calculer cos(x) et tan(x) sachant que : $tan(x) = \sqrt{3} \sqrt{2}$ et $x \in]-\pi;0[$.
- 4. Calculer sin(x) et tan(x) sachant que : $cos(x) = -\frac{3}{4}$ et $-\pi < x < 0$.

Exercice 6 : Soit $x \in \mathbb{R}$.

1. Montrer que:

$$(\cos(x) + \sin(x))^2 + (\cos(x) - \sin(x))^2 = 2$$

- 2. On suppose que : $cos(x) sin(x) = \sqrt{2}$.
 - (a) Montrer que cos(x) + sin(x) = 0
 - (b) Déduire les valeurs de cos(x) et sin(x).

Exercice 7: Simplifier les expression suivantes :

- 1. $A = (\cos(x) + \sin(x))^2 (\cos(x) \sin(x))^2$
- 2. $B = \cos^4(x) \sin^4(x) + \sin^2(x) \cos^2(x)$
- 3. $C = \sin^4(x) \cos^4(x) + 2\cos^2(x)$

Exercice 8 : Soit $x \in \mathbb{R}$ tel que : $\cos(x) \neq 0$. Montrer que :

- 1. (a) $\tan^2(x) \sin^2(x) = \tan^2(x) \cdot \sin^2(x)$
 - (b) Déduire que : $\sin^2(x) = \frac{\tan^2(x)}{1 + \tan^2(x)}$
- 2. $\frac{\sin^2(x) \sin^4(x)}{\cos^2(x) \cos^4(x)} = 1$

Exercice 9 : Soit *x* un nombre réel.

1. Simplifier:

 $\sin(30\pi + x)$; $\cos(400\pi + x)$; $\sin(3\pi + x)$; $\cos(51\pi + x)$; $\sin(17\pi - x)$; $\cos(45\pi - x)$; $\sin(102\pi + x)$; $\cos(40\pi + x)$.

Année scolaire: 2024-2025

2. Simplifier:

$$\sin\left(\frac{\pi}{2} + x\right)$$
; $\cos\left(\frac{\pi}{2} + x\right)$; $\sin\left(\frac{3\pi}{2} + x\right)$; $\cos\left(\frac{51\pi}{2} - x\right)$

Exercice 10 : Soit $x \in \mathbb{R}$. Simplifier :

$$A = \sin\left(\frac{\pi}{2} + x\right) + \cos\left(\frac{5\pi}{2} - x\right) + \sin(5\pi - x) - \cos(3\pi - x)$$
$$B = \cos\left(\frac{\pi}{2} - x\right) - \sin(x + 3\pi) + \cos\left(\frac{3\pi}{2} - x\right) + \sin(\pi - x)$$

Exercice 11 : Soit *x* un nombre réel de l'intervalle

 $\operatorname{Soit} A(x) = \sin(x)(\cos^2(x) - \sin^2(x))$

- 1. Calculer A(0), $A\left(\frac{\pi}{4}\right)$, $A\left(\frac{\pi}{3}\right)$, $A\left(\frac{\pi}{6}\right)$ et $A\left(\frac{5\pi}{6}\right)$.
- 2. Montrer que : $A\left(\frac{\pi}{2} x\right) = A\left(\frac{\pi}{2} + x\right)$.

Exercice 12 : Soit *x* un nombre réel de l'intervalle

Soit $A(x) = \frac{1}{2} \left[(\cos^2(2x) - \sin^2(2x)) - 1 \right]$

- 1. Calculer $A\left(\frac{\pi}{4}\right)$ et $A\left(-\frac{\pi}{9}\right)$.
- 2. Montrer que : $A(x) = \sin(2x)\cos(2x)$.
- 3. Montrer que : A(-x) = -A(x)
- 4. Calculer: $A(x) + A\left(x + \frac{\pi}{4}\right)$

Exercice 13: Résoudre dans $]-\pi;\pi]$ les équations et les inéquations suivantes :

Exercice 14 : Résoudre dans $]0,2\pi]$ les équations et les inéquations suivantes :

 $\bullet \sin(x) = \frac{\sqrt{2}}{2} \bullet 2\sin(x) + \sqrt{3} = 0 \bullet \sin(x) = \cos\left(\frac{\pi}{3}\right)$ • $\sin(x) \ge \frac{1}{2}$ • $2\sin(x) + \sqrt{3} < 0$ • $\sin(x) = \cos\left(\frac{\pi}{8}\right)$

Exercice 15: Résoudre dans] $-\frac{\pi}{2}$, $\frac{\pi}{2}$ [les équations et les inéquations suivantes :

 $\bullet \tan(x) = \sqrt{3} \cdot \tan\left(x + \frac{\pi}{3}\right) + 1 = 0 \cdot \tan(x) > \sqrt{3}$ • $\tan\left(x+\frac{\pi}{2}\right)>0$

Exercice 16 : Soit x un nombre réel.

On pose : $A(x) = 2\cos^2(x) + \sin(x) - 1$.

- a) Calculer $A\left(\frac{\pi}{\epsilon}\right)$.
- b) Vérifier que : $A(x) = (1 \sin(x))(1 + 2\sin(x))$.
- c) Résoudre dans \mathbb{R} l'équation A(x) = 0.

Exercice 17 : Résoudre les équations suivantes dans l'intervalle I:

- $2\cos^2(x) \cos(x) = 0$, $I = [-\pi, \pi]$
- $\sin^2(x) \sin(x) = 0$, $I =]-\pi,\pi]$
- $2\cos^2(x) 3\cos(x) = 0$, $I =]-2\pi,\pi]$
- $\sin^2(x) 3\sin(x) = 0$, $I = [-\pi, \pi]$
- $\tan^2(x) \sqrt{3}\tan(x) = 0$, $I =] \frac{\pi}{2}$, $\frac{\pi}{2}$