CSCI 347: Introduction to Data Mining

Lecture 2b - Linear Algebra

COMMON DATA FORMATS

➤ Data can often be represented by a data matrix D

$$X_1 \qquad X_2 \qquad X_3 \qquad X_4$$

$$x_1 \qquad 0.2 \qquad 23 \qquad A \qquad 5.7$$

$$x_2 \qquad 0.4 \qquad 1 \qquad B \qquad 5.4$$

$$D = \begin{cases} x_3 & 1.8 & 0.5 & C & 5.2 \\ x_4 & 5.6 & 50 & A & 5.1 \\ x_5 & -0.5 & 34 & A & 5.3 \\ x_6 & 0.4 & 19 & B & 5.4 \\ x_7 & 1.1 & 11 & A & 5.5 \end{cases}$$

COMMON DATA FORMATS

➤ Data can often be represented by a data matrix D

The columns commonly represent attributes/properties of the data

The rows x_2 commonly represent entities and their observed values for each χ_5 attribute

REVIEW STATS

► Estimated Mean $\hat{\mu}_j = \frac{1}{n} \sum_{i=1}^n x_{ij}$

► Estimated Variance $\hat{\sigma}_j^2 = \frac{1}{n-1} \sum_{i=1}^n (x_{ij} - \hat{\mu})^2$

► Estimated Std deviation $\hat{\sigma}_j = \sqrt{\hat{\sigma}_j^2}$

► Estimated covariance $\hat{\sigma}_{12} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i1} - \hat{\mu}_1)(x_{i2} - \hat{\mu}_2)$

Covariance matrix $\Sigma = \begin{pmatrix} \hat{\sigma}_1^2 & \hat{\sigma}_{12} & \hat{\sigma}_{13} \\ \hat{\sigma}_{21} & \hat{\sigma}_{2}^2 & \hat{\sigma}_{23} \\ \hat{\sigma}_{31} & \hat{\sigma}_{32} & \hat{\sigma}_{3}^2 \end{pmatrix}$

REVIEW DATA NORMALIZATION

> Range normalization
$$x'_{ij} = \frac{x_{ij} - \min_i \{x_{ij}\}}{\max_i \{x_{ij}\} - \min_i \{x_{ij}\}}$$

Mean centering

$$x'_{ij} = x_{ij} - \hat{\mu}_j$$

> Z-Score normalization $x'_{ij} = \frac{x_{ij} - \mu_j}{\hat{\sigma}_i}$

> Projection

$$X_{1} \qquad X_{2} \qquad X_{3} \qquad X_{4}$$

$$x_{1} \qquad 0.2 \qquad 23 \qquad A \qquad 5.7$$

$$x_{2} \qquad 0.4 \qquad 1 \qquad B \qquad 5.4$$

$$D = \begin{cases} x_{3} & 1.8 & 0.5 & C & 5.2 \\ x_{4} & 5.6 & 50 & A & 5.1 \\ x_{5} & -0.5 & 34 & A & 5.3 \\ x_{6} & 0.4 & 19 & B & 5.4 \\ x_{7} & 1.1 & 11 & A & 5.5 \end{cases}$$

> Projection

> Projection

➤ Projection and re-lable (... technically reflect)

$$X_{1} \qquad X_{2} \qquad X_{3} \qquad X_{4}$$

$$x_{1} \qquad 0.2 \qquad 23 \qquad A \qquad 5.7$$

$$x_{2} \qquad 0.4 \qquad 1 \qquad B \qquad 5.4$$

$$D = \begin{cases} x_{3} & 1.8 & 0.5 & C & 5.2 \\ x_{4} & 5.6 & 50 & A & 5.1 \\ x_{5} & -0.5 & 34 & A & 5.3 \\ x_{6} & 0.4 & 19 & B & 5.4 \\ x_{7} & 1.1 & 11 & A & 5.5 \end{cases}$$

➤ Projection and re-lable (... technically reflect)

5.1

5.3

➤ Projection and re-lable (... technically reflect)

5.6

➤ Points and Vectors

➤ Points and Vectors

➤ Points and Vectors (describe direction and magnitude)

► Scaling: For $\alpha \in \mathbb{R}$, $\alpha a = \begin{bmatrix} \alpha a_x & \alpha a_y \end{bmatrix}$

Scaling: For $\alpha \in \mathbb{R}$, $\alpha a = \begin{bmatrix} \alpha a_x & \alpha a_y \end{bmatrix}$

Scaling: For $\alpha \in \mathbb{R}$, $\alpha a = \begin{bmatrix} \alpha a_x & \alpha a_y \end{bmatrix}$

We get α copies of aE.g $\alpha = 3$

Scaling: For $\alpha \in \mathbb{R}$, $\alpha a = \begin{bmatrix} \alpha a_x & \alpha a_y \end{bmatrix}$

We get α copies of aE.g $\alpha = 3$ 2*a*

Scaling: For $\alpha \in \mathbb{R}$, $\alpha a = \begin{bmatrix} \alpha a_x & \alpha a_y \end{bmatrix}$

We get α copies of aE.g $\alpha = 3$

We are often interested in some measure of distance between vectors representing separate entities.

First, some notation:

 L_2 norm of a vector x_i with m dimensions (columns/attributes):

$$||x_i||_2 = \sqrt{\sum_{k=1}^m x_{ik}^2}$$

$$X_1 X_2 X_3$$

$$x_1 0.2 23 5.7$$

$$x_2 0.4 1 5.4$$

$$D = \begin{cases} x_3 & 1.8 & 0.5 & 5.2 \\ x_4 & 5.6 & 50 & 5.1 \\ x_5 & -0.5 & 34 & 5.3 \\ x_6 & 0.4 & 19 & 5.4 \\ x_7 & 1.1 & 11 & 5.5 \end{cases}$$

We are often interested in some measure of distance between vectors representing separate entities.

First, some notation:

 L_2 norm of a vector x_i with m dimensions:

$$||x_i||_2 = \sqrt{\sum_{k=1}^m x_{ik}^2}$$

$$X_{1} X_{2}$$

$$x_{1} 0.2 23$$

$$x_{2} 0.4 1$$

$$D = \begin{cases} x_{3} & 1.8 & 0.5 \\ x_{4} & 5.6 & 50 \\ x_{5} & -0.5 & 34 \\ x_{6} & 0.4 & 19 \\ x_{7} & 1.1 & 11 \end{cases}$$

$$||x_7||_2 = \sqrt{\sum_{k=1}^2 x_{7k}^2} = \sqrt{(x_{71}^2 + x_{72}^2)} = \sqrt{(1.1^2 + 11^2)} = 11.05$$

We are often interested in some measure of distance between vectors representing separate entities.

L_2 norm:

$$||x_i - x_j||_2 = \sqrt{\sum_{k=1}^m (x_{ik} - x_{jk})^2}$$
 where x_i and x_j are vectors, and there are m dimensions

$$X_1 \qquad X_2 \qquad X_3$$

$$x_1 \qquad 0.2 \qquad 23 \qquad 5.7$$

$$x_2 \qquad 0.4 \qquad 1 \qquad 5.4$$

$$D = \begin{cases} x_3 & 1.8 & 0.5 & 5.2 \\ x_4 & 5.6 & 50 & 5.1 \\ x_5 & -0.5 & 34 & 5.3 \\ x_6 & 0.4 & 19 & 5.4 \\ x_7 & 1.1 & 11 & 5.5 \end{cases}$$

We are often interested in some measure of distance between vectors representing separate entities.

L_2 norm:

$$||x_i - x_j||_2 = \sqrt{\sum_{k=1}^m (x_{ik} - x_{jk})^2}$$
 where x_i and x_j are vectors, and there are m dimensions

$$\begin{aligned} x_1 & x_2 & x_3 \\ x_1 & 0.2 & 23 & 5.7 \\ x_2 & 0.4 & 1 & 5.4 \\ D &= \begin{cases} x_3 & 1.8 & 0.5 & 5.2 \\ x_4 & 5.6 & 50 & 5.1 \\ x_5 & -0.5 & 34 & 5.3 \\ x_6 & 0.4 & 19 & 5.4 \\ x_7 & 1.1 & 11 & 5.5 \end{aligned} = \sqrt{(0.2 - 0.4)^2 + (23 - 1)^2 + (5.7 - 5.4)^2}$$

$$&= \sqrt{(-0.2)^2 + (22)^2 + (0.3)^2}$$

$$&= 22.0$$

We are often interested in some measure of distance between vectors representing separate entities.

L_1 norm:

 $||x_i - x_j||_1 = \sum_{k=1}^m |x_{ik} - x_{jk}|$ where x_i and x_j are vectors, and there are m dimensions

We are often interested in some measure of distance between vectors representing separate entities.

L_p norm:

$$||x_i - x_j||_p = \sqrt{\sum_{k=1}^m |x_{ik} - x_{jk}|^p}$$
 where x_i and x_j are vectors, and there are m dimensions

> Set of points in which p-norm is 1 in 2d and 3d

We are often interested in some measure of distance between vectors representing separate entities.

Dot product:

$$a \cdot b = \sum_{k=1}^{m} a_k b_k$$

where a and b are vectors,

and there are *m* dimensions

We are often interested in some measure of distance between vectors representing separate entities.

Dot product:

 $a \cdot b = \sum_{k=1}^{m} a_k b_k$ where a and b are vectors, and there are m dimensions

We are often interested in some measure of distance between vectors representing separate entities.

Cosine of the angle between two vectors x_i and x_j :

$$cos(\theta) = \frac{x_i \cdot x_j}{\|x_i\|_2 \|x_j\|_2}$$
 where x_i and x_j are vectors and $x_i \cdot x_j$ is their dot product

$$x_1 \qquad X_2 \qquad X_3$$

$$x_1 \qquad 0.2 \qquad 23 \qquad 5.7$$

$$x_2 \qquad 0.4 \qquad 1 \qquad 5.4$$

$$D = \begin{cases} x_3 & 1.8 & 0.5 & 5.2 \\ x_4 & 5.6 & 50 & 5.1 \\ x_5 & -0.5 & 34 & 5.3 \\ x_6 & 0.4 & 19 & 5.4 \\ x_7 & 1.1 & 11 & 5.5 \end{cases}$$

We are often interested in some measure of distance between vectors representing separate entities.

Cosine of the angle between two vectors x_i and x_j :

$$cos(\theta) = \frac{x_i \cdot x_j}{\|x_i\|_2 \|x_j\|_2}$$
 where x_i and x_j are vectors and $x_i \cdot x_j$ is their dot product

$$X_1 X_2 X_3$$

$$x_1 0.2 23 5.7$$

$$x_2 0.4 1 5.4$$

$$D = \begin{cases} x_3 & 1.8 & 0.5 & 5.2 \\ x_4 & 5.6 & 50 & 5.1 \\ x_5 & -0.5 & 34 & 5.3 \\ x_6 & 0.4 & 19 & 5.4 \\ x_7 & 1.1 & 11 & 5.5 \end{cases}$$

cosine of the angle between x_2 and x_3 is:

$$\frac{x_2 \cdot x_3}{\|x_2\|_2 \|x_3\|_2}$$

We are often interested in some measure of distance between vectors representing separate entities.

Cosine of the angle between two vectors x_i and x_j :

$$cos(\theta) = \frac{x_i \cdot x_j}{\|x_i\|_2 \|x_j\|_2}$$
 where x_i and x_j are vectors and $x_i \cdot x_j$ is their dot product

$$X_{1} \qquad X_{2} \qquad X_{3}$$

$$x_{1} \qquad 0.2 \qquad 23 \qquad 5.7$$

$$x_{2} \qquad 0.4 \qquad 1 \qquad 5.4$$

$$D = \begin{cases} x_{3} & 1.8 & 0.5 & 5.2 \\ x_{4} & 5.6 & 50 & 5.1 \\ x_{5} & -0.5 & 34 & 5.3 \\ x_{6} & 0.4 & 19 & 5.4 \\ x_{7} & 1.1 & 11 & 5.5 \end{cases}$$

cosine of the angle between x_2 and x_3 is:

$$\frac{x_2 \cdot x_3}{\|x_2\|_2 \|x_3\|_2}$$

$$= \frac{(0.4 \ 1 \ 5.4) \cdot (1.8 \ 0.5 \ 5.2)}{\sqrt{(0.4^2 + 1^2 + 5.4^2)}\sqrt{(1.8^2 + 0.5^2 + 5.2^2)}}$$
$$= \frac{(0.4)(1.8) + (1)(0.5) + (5.4)(5.2)}{\sqrt{(0.4^2 + 1^2 + 5.4^2)}\sqrt{(1.8^2 + 0.5^2 + 5.2^2)}}$$

$$cos(\theta) = \frac{a \cdot b}{\|a\| \|b\|}$$

$$cos(\theta_1) \approx 1$$

$$cos(\theta_2) \approx 0$$

$$cos(\theta_3) \approx -1$$

$$cos(\theta_1) \approx 1$$

$$cos(\theta_2) \approx 0$$

$$cos(\theta_3) \approx -1$$

$$cos(\theta) = \frac{a \cdot b}{\|a\| \|b\|}$$

$$cos(\theta_1) \approx 1$$

$$cos(\theta_2) \approx 0$$

$$cos(\theta_3) \approx -1$$

$$cos(\theta) = \frac{a \cdot b}{\|a\| \|b\|}$$

$$cos(\theta_1) \approx 1$$

$$cos(\theta) = \frac{a \cdot b}{\|a\| \|b\|}$$

$$cos(\theta_1) \approx 1$$

$$cos(\theta_3) \approx -1$$

$$cos(\theta_4) \approx 0$$

PUTTING IT TOGETHER

➤ Application: How far is *a* from the line though *b*? ...How long is the dotted line?

➤ Application: How far is *a* from the line though *b*? ...How long is the dotted line?

Scalar projection of a in direction b

➤ Application: How far is *a* from the line though *b*? ...How long is the dotted line?

$$p = \frac{a \cdot b}{\|b\|} b = a \cdot b \frac{b}{\|b\|}$$

➤ Application: How far is *a* from the line though *b*? ...How long is the dotted line?

➤ Application: How far is a from the line though b?

...How long is the dotted line?

Answer: $||a - p||_2$

Next Week

Data sets, tools, data wrangling

If you have a laptop, you may want to bring it