Project 2

In this project Ihave imported all the libraries first. After that load the dataset and check that whether any null values is present or not and used Traditional Machine Learning Classifiers from SKLearn for classify that message is a spam or not.

LogisticRegression

Classification Report:

	precision	recall	f1-score	support
0	0.93	0.95	0.94	676
1	0.93	0.90	0.91	475
accuracy			0.93	1151
macro avg	0.93	0.93	0.93	1151
weighted avg	0.93	0.93	0.93	1151

Accuracy of Logistic Regression classifier is: 0.9304952215464813

SVC

→ Classification Report:

	precision	recall	f1-score	support
0	0.93	0.96	0.94	676
1	0.94	0.89	0.92	475
accuracy			0.93	1151
macro avg	0.93	0.93	0.93	1151
weighted avg	0.93	0.93	0.93	1151

Accuracy of Support vector machine is: 0.9322328410078193

MultinomialNB

Classification Report:

	precision	recall	f1-score	support
0	0.81	0.85	0.83	676
1	0.77	0.71	0.74	475
accuracy			0.79	1151
macro avg	0.79	0.78	0.78	1151
weighted avg	0.79	0.79	0.79	1151

Accuracy of Naive Bayes Classifier is: 0.7914856646394439

DecisionTreeClassifier

Classification Report:

	precision	recall	f1-score	support
0	0.93	0.92	0.93	676
1	0.89	0.89	0.89	475
accuracy			0.91	1151
macro avg	0.91	0.91	0.91	1151
weighted avg	0.91	0.91	0.91	1151
morginood avg	V. 7 I	0.01	0.71	

Accuracy of Decision Tree Classifier is: 0.9122502172024327

RandomForestClassifier

C+ Classification Report:

	precision	recall	f1-score	support
0	0.95	0.98	0.96	676
1	0.97	0.92	0.94	475
accuracy			0.96	1151
macro avg	0.96	0.95	0.95	1151
weighted avg	0.96	0.96	0.96	1151

Accuracy of Random Forest Classifier is: 0.9556907037358818

In the second part I did word embedding with deep learning using the glove model first we imported the dataset after that we used the token sizer for it and then split the dataset.

Afterthat we used the word embedding method and import the glove model in it.

```
[95] def embd_vec(dim=100):
    embd_indx = {}

with open(f"/content/glove.6B.100d.txt", encoding='utf8') as f:
    for line in tqdm.tqdm(f, "Reading GloVe"):
        values = line.split()
        word = values[0]
        vectors = np.asarray(values[1:], dtype='float32')
        embd_indx[word] = vectors

word_index = t.word_index

embd_mtx = np.zeros((len(word_index)+1, 100))
for word, i in word_index.items():
    embedding_vector = embd_indx.get(word)
    if embedding_vector is not None:
        embd_mtx[i] = embedding_vector
    return embd_mtx
```

And then we added the Istm model in it

Reading GloVe: 400000it [00:19, 20369.82it/s]

The final accuracy which we got is around 83.49%