CORSO DI STUDI:

INGEGNERIA INFORMATICA E DELL'AUTOMAZIONE

ANALISI MATEMATICA 2 - M-Z A.A. 2018/2019

9 c.f.u.

Prof. Renato Colucci

ESERCITAZIONE 4: forme differenziali.

Esercizio 1

Calcolare l'integrale curvilineo

$$\int_{\gamma} \frac{z}{\sqrt{1+x^2+y^2}} ds$$

dove γ é la curva di equazioni parametriche:

$$\begin{cases} x(t) = t, \\ y(t) = t, \\ z(t) = 1 - t^2 \end{cases} t \in [-1, 1].$$

Esercizio 2

Calcolare l'integrale

$$\int_{\gamma} \omega$$
,

dove $\omega=(y^3+x)dx-\sqrt{x}dy$ e γ é l'arco di parabola $x=y^2$ che congiunge il punto (0,0) al punto (1,1).

Esercizio 3

Calcolare l'integrale

$$\int_{\gamma} \omega$$
,

dove $\omega = y^2 dx + (2xy + 1) dy$ e γ ha come equazione cartesiana $y = \sqrt{|x - 1|}$, con $x \in [0, 2]$.

Esercizio 4

Verificare che la forma differenziale ω é esatta in $A = \{(x, y) \in \mathbb{R}^2 : y > 0\}$ e determinarne una primitiva:

$$\omega = \left[\sin\left(\frac{x}{y}\right) + \frac{x}{y}\cos\left(\frac{x}{y}\right) \right] dx + \left[-\frac{x^2}{y^2}\cos\left(\frac{x}{y}\right) + 3 \right] dy.$$

Esercizio 5

Stabilire se la seguente forma differenziale é esatta in $A = \mathbb{R}^2 \setminus (0,0)$:

$$\omega = \frac{y^2 - x^2}{(x^2 + y^2)^2} e^y dx + \frac{x(x^2 + y^2 - 2y)}{(x^2 + y^2)^2} e^y dy$$