

Reporte de resultados Servicio Nacional de Aprendizaje - SENA

Normatividad relacionada con variables ambientales

Una vez se obtengan los resultados de medición de variables In Situ y las entregadas por laboratorios, puede procederse con la elaboración de informes e interpretación de resultados, para ello por lo general se requieren realizar comparaciones con límites máximos permisibles o valores de referencias que estén establecidos en la normatividad vigente. Para consultar normatividad vigente puede consultar las siguientes resoluciones o decretos, los cuales le brindan la información necesaria para que en el informe puede realizar las interpretaciones de acuerdo con las variables que haya analizado.

Resolución 1256 de 2021:	Reglamenta el uso de aguas residuales en actividades agrícolas.
Resolución 631 de 2015	Establece límites máximos permisibles para vertimientos puntuales a cuerpos de agua y sistemas de alcantarillado. En esta resolución existe un artículo que establece límites permisibles para vertimientos del sector cafetero.

Tabla 1. Clasificación de las propiedades químicas del suelo para café en la etapa de producción

Propiedad	Unidad	Bajo	Medio	Alto
рН	Adimensional	<5,0	<4,0 - 5,5	>5,5
Materia orgánica	%	<8,0	8,0 - 16,0	>16
Fósforo	mg kg-1	<10	10-20	>20
Azufre	mg kg-1	<6,0	6,0-20	>20
Potasio	cmolc kg-1	<0,2	0,2-0,4	>0,4
Calcio	cmolc kg-1	<1,5	1,5-3,0	>3,0
Magnesio	cmolc kg-1	<0,6	0,6-9,0	>9,0
Aluminio	cmolc kg-1	<0,5	0,5-1,0	>1,0
Capacidad Inter-	cmolc kg-1	<15,0	15-25	>25
cambio Catiónico				
Saturación de	%	<15	15-30	>30
aluminio				
Hierro	rro mg kg-1		25-50	>50
Manganeso	mg kg-1	>5	5-10	>10
Zinc	mg kg-1	<1,5	1,5-3,0	>3,0
Cobre	mg kg-1	>1,0	1,0-3,0	>3,0
Boro mg kg-1		<0,2	0,2-4,0	>4,0

Nota. CENICAFE, 2018 Adaptado de Sadeghian (2008)

Índice de Biodiversidad

En caso de requerir el análisis de calidad de agua desde el punto de vista hidrobiológico, es posible aplicar índices de biodiversidad, los cuales permiten a partir de la variedad y abundancia de especies determinar la calidad de un recurso natural, en este caso se da a conocer la metodología del índice BMWP/Col, el cual es un método que puede aplicarse sin complicaciones y con celeridad en la evaluación de la calidad de agua, utilizando macroinvertebrados como bioindicadores analizados hasta familia (con datos cuantitativos de presencia y ausencia). Así, el puntuaje se sitúa entre la unidad y el diez de acuerdo con la tolerancia de los diversos grupos a la contaminación orgánica, siendo 10 el más sensible y la unidad el más tolerante. Los puntajes de cada familia encontrada en el punto de muestreo se suman y el puntaje total permite clasificar la calidad del agua, en la siguiente tabla se muestran las familias y puntaje asignado a cada grupo según sus características:

Tabla 2. Puntajes de las familias de macroinvertebrados acuáticos para el índice BMWP/Col

Familia	Alto
Anomalopsychidae, Atriplectididae, Blepharoceridae, Calamoceratidae, Ptilodac-	10
tylidae, Chordodidae, Gomphidae, Hidridae, Lampyridae, Lymnessiidae, Odonto-	
ceridae, Oligoneuriidae, Perlidae, Polythoridae, Psephenidae, Tricorythidae	
Ampullariidae, Dytiscidae, Ephemeridae, Euthyplociidae, Gyrinidae, Hydrobiosidae,	9
Leptophlebiidae, Philopotamidae, Polycentropodidae, Xiphocentronidae.	
Gerridae, Hebridae, Helicopsychidae, Hydrobiidae, Leptoceridae, Lestidae, Palae-	8
monidae, Pleidae, Pseudothelpusidae, Saldidae, Simuliidae, Veliidae.	
Baetidae, Caenidae, Calopterygidae, Coenagrionidae, Corixidae, Dixidae, Dryopi-	7
dae, Glossossomatidae, Hyalellidae, Hydroptilidae, Hydropsychidae, Leptohyphi-	
dae, Naucoridae, Notonectidae, Planariidae, Psychodidae, Scirtidae.	
Aeshnidae, Ancylidae, Corydalidae, Elmidae, Libellulidae, Limnichidae, Lutrochi-	6
dae, Megapodagrionidae, Sialidae, Staphylinidae.	
Belostomatidae, Gelastocoridae, Hydropsychidae, Mesoveliidae, Nepidae, Planor-	5
biidae, Pyralidae, Tabanidae, Thiaridae.	
Chrysomelidae, Stratiomyidae, Haliplidae, Empididae, Dolicopodidae, Sphaeridae,	4
Lymnaeidae, Hydraenidae, Hydrometridae, Noteridae.	
Ceratopogonidae, Glossiphoniidae, Cyclobdellidae, Hydrophilidae, Physidae,	3
Tipulidae.	
Culicidae, Chironomidae, Muscidae, Sciomyzidae.	2
Tubificidae	1

Nota. Nota. Roldan (2016)

La tabla anterior muestra las clases de calidad del agua del índice BMWP/Col, el resultado que da al sumar la puntuación de las familias encontradas, de acuerdo con el puntaje obtenido se clasifica en distintas clases de agua, tal como se muestra a continuación:

Tabla 3. Calidad biológica del agua – Índice BMWP/Col

Propiedad	Unidad	Bajo	Medio	Alto
I	Buena	>150	Aguas muy limpias a	Azul
		101 - 120	limpias	
II	Aceptable	61 - 100	Aguas ligeramente	Verde
III	Dudosa	36 - 60	contaminadas	
IV	Crítica	16 - 35	Aguas moderadamente	Amarillo
V	Muy crítica	<15	contaminadas	
			Aguas muy contaminadas	Naranja
			Aguas fuertemente	Rojo
			contaminadas	

Nota. Nota. Roldan (2016)

Luego de que el laboratorio entregue el respectivo reporte de los macroinvertebrados encontrados, puede proceder a calcular el índice de calidad de agua y elaborar el informe correspondiente.

Bibliografía

CENICAFE. (2018). Interpretación de los resultados de análisis de suelo Soporte para una adecuada nutrición de cafetales.

https://publicaciones.cenicafe.org/index.php/avances_tecnicos/article/download/167/13 3/183

Roldan, G. (2016). Los macroinvertebrados como bioindicadores de la calidad del agua: cuatro décadas de desarrollo en Colombia y Latinoamérica. Obtenido de Revista Academia Colombiana de Ciencias Exactas, Físicas y Naturales.

http://www.scielo.org.co/pdf/racefn/v40n155/v40n155a07.pdf