b.

subset construction method

Register No.				
9				

BE Degree Examination May 2022

Sixth Semester

Computer Science and Engineering

18CST61- PRINCIPLES OF COMPILER DESIGN

(Regulations 2018) Time: Three hours Maximum: 100 marks Answer all Questions $Part - A (10 \times 2 = 20 \text{ marks})$ 1. Differentiate- a compiler and an interpreter? [CO1,K1] 2. Compare tokens, patterns and lexemes. [CO1,K1] 3. Compute first and follow for the following grammar. [CO2,K3] $S \rightarrow aBDh$ $D \rightarrow EF$ $B \to cC$ $E \rightarrow g/\epsilon$ $C \rightarrow bC/\epsilon$ $F \rightarrow f/\epsilon$ What do you mean by ambiguous grammar? Give an example? 4. [CO2,K1] 5. Identify the different types of intermediate representation? [CO3,K1] 6. Compare synthesized attribute and inherited attribute in Syntax Directed Translation [CO3,K2] (SDT). 7. State the rules for identifying leaders in the basic blocks. [CO4,K1] 8. Construct a DAG for the given basic block [CO4,K3] d = b*ce = a + bb = b*ca = e - d9. Define address and register descriptors. [CO5,K1] What do you mean by activation record? List the fields in that activation record. [CO5,K1] $Part - B (5 \times 16 = 80 \text{ marks})$ 11. a. Describe about the various phases of a compiler for the given example, (16) [COI,KI] Pos= Initial + rate*60;

(OR)

Obtain the minimized DFA for the regular expression (a|b)*a(a|b) using (16) [CO1,K3]

(16) [CO2,K3] Check whether the following grammar is SLR (1) or not? 12. a. $S \rightarrow L=R \mid R$ $L \rightarrow *R \mid id$ $R \rightarrow L$ (OR) (16) [CO2,K3] Construct the Predictive parsing table for the grammar b. $S \rightarrow (L) \mid a$ $L \rightarrow L,S \mid S$ and then parse the string (a.a) Write and explain the syntax directed translation for flow-of control (10) [CO3,K3] 13. a. i) statements (6) [CO3,K3] Translate the following code to quadruples: ii) While A < C and B < D do If A = 1 then C = C + 1else while $A \leq D$ do A = A + 2(OR)

b. i) List down the common three-address instruction forms? (6) [CO3,K2]

ii) Describe about the syntax directed translation scheme for Boolean (10) [CO3,K2] expressions using back patching.

14. a. Explain in detail about the principal sources of optimization in compiler (16) [CO4,K1] with example.

(OR)

b. i) Describe about Peephole optimization methods.

(8) [CO4,K2]

ii) Discuss about DAG representation of Basic blocks.

(8) [CO4,K2]

Write the code generation algorithm and generate the code sequence for the (16) [CO5,K3] following statements.

t=a-b

u=a-c

v=t+u.

(OR)

b. Explain about the Heap management in allocation and de allocation of (16) [CO5,K2] space.

Bloom's	Remembering (K1)	Understanding	Applying	Analysing	Evaluating	Creating
Taxonomy Level		(K2)	(K3)	(K4)	(K5)	(K6)
Percentage	25	28	47	A		-