

第五讲

- 1 截交线投影的求作
- 2 立体与立体相交
 - -相贯线的性质

作业问题讲解

题56 试画全被切割四棱柱的第三个投影。

题57 试画全全截头三棱锥的三个视图。

题59 补画左视图及点的另两个投影。

题62 画出另两个投影

点划线应超出轮廓线3-5mm, 且长划在外。点划线与点划线应长划相交。圆柱孔的轴线(点划线)和中心线要画出。

一截交线作图方法

截交线投影的基本作图方法及一般步骤

- (1) 形体分析 , 即看懂已知的图。
- (2) 分析截交线的形状,便于迅速、准确地作图。
- (3) 确定已知截交线的投影。
- (4) 作图
- 一般步骤:
- a 在已知投影上取一些点,包括特殊位置点和一般位置 点,特殊位置点有最上、下、左、右、前、后,转向素线上的点。
- b 求点的投影,先求特殊位置点,后求一般位置 点的投影。
 - c 光滑地连点的投影成线。
 - (5) 判别可见性,擦去多余的线。

B 截平面与圆柱轴线平行

截平面倾斜于轴线

例2 空心圆柱被切割

例2 试分析如图所示物体的表面交线,并画全三视图。

例3 试分析如图所示物体的表面交线,并画全三视图。

例4

例4 试分析如图所示物体的表面交线, 共画全三视图。

例5 试分析如图所示物体的表面交线,并画全三视图。

画出切去前面一块时的截交线的投影

平面与圆锥面相交

(2) 平面与圆锥面相交 部分球面 部分圆锥 圆柱 与圆锥面 的截交线 与球面 的截交线

截交线的定义:

- 1 截平面与立体表面产生的交线称为截交线。截交线的性质:
- (1) 共有性: 截交线是截平面与立体表面共有点组成的共有线。
 - (2) 封闭性: 截交线是封闭的平面图形。
- 2 几种常见回转体表面截交线的形状及投影的求作
 - (1) 平面与圆柱相交

思考

A 截平面过锥顶

B 截平面垂直于轴线 θ =90°

截平面倾斜于轴线

C 截平面倾斜于轴线 $\alpha < \theta$

D 截平面平行于一条素线 α = θ

截平面平行于两条素线

E 截平面平行于两条素线(或轴线) $\theta=0^{\circ}$ 或 $\theta<\alpha$

(3) 平面与圆球相交

A 投影面平行面与球面相交

投影面垂直面与球面相交

B 投影面垂直面与球面相交

例1 试分析物体的表面交线,并画全三视图。

例2 画全阀芯的三视图。

作图

例4 试分析如图所示物体的表面交线,并画全三视图。

例 试分析物体的表面交线,并画全三视图。

题43 补画俯视图,注出直线的投影,并填写直线的名称 DE是一般位置直线;EF是侧垂线;EG是正垂线

Y2

例 补画左视图

立体与立体相交

二 立体与立体相交

相贯线实例

1 相贯线的性质

相贯线是相交两立体表面共有点组成的共有线。

一般情况下相贯线<u>是封闭的空间曲线</u>,特殊情况 下也可以是平面曲线或直线。

相贯线的<u>形状与两立体的形状及两立体的相对位</u> 置有关。

相对位置变化对相贯线的影响

两立体形状对相贯线形状的影响(一)

两立体形状对相贯线形状的影响(二)

相贯线的特殊情况

相贯线的作图方法

2 相贯线的作图方法 (1)表面取点法 例1 试分析如图 所示物体的表面 交线,并画全三 视图。 相贯线 作图方法和一般步骤

作图方法和一般步骤

- (1) 形体分析 , 即看懂已知的图。
- (2) 分析相贯线的形状,便于迅速、准确地作图。
- (3) 利用积聚性投影, 确定已知相贯线的投影。
- (4) 作图
- 一般步骤:
- a 在已知投影上取一些点,包括特殊位置点和一般位置点,特殊位置点有最上、下、左、右、前、后,转向素线上的点。
- b 用立体表面取点法求点的投影, 先求特殊位置点, 后求一般位置点的投影。
 - c光滑地连点的投影成线。
 - (5) 判别可见性,擦去多余的线。

本章节结束,谢谢!