

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2000-168666

(43)Date of publication of application: 20.06.2000

(51)Int.CI.

B62K 25/24

(21)Application number: 10-346097

(71)Applicant: HONDA MOTOR CO LTD

(22)Date of filing:

04.12.1998

(72)Inventor: IWAI TOSHIYUKI

AKISHIKA TAKANORI

ITO SHINJI

(54) FRONT WHEEL SUSPENSION DEVICE FOR TWO WHEELER

(57)Abstract:

PROBLEM TO BE SOLVED: Not to include a peak in a displacement rate of an upper end of a push rod by maintaining an angle θ in a range not exceeding a specific angle along a suspension stroke total area of a front wheel at the time when a smaller angle out of the angles made by a first axis and a second axis is specified as θ .

SOLUTION: As an angle θ is made not to exceed 90° , variation of a fourth pin 24 becomes an up-grade curve (roughly straight line or gently curved secondary curve). When a lower end of a suspension spring 42 is connected to the fourth pin 24 and the suspension spring 42 is a simple spring of a constant spring coefficient, resiliency of the suspension spring 42 increases roughly in a straight line or in a secondary curve in accordance with increase of the angle θ , and this phenomenon matches progressive link work (work to strengthen suspension force as a wheel rises). Consequently, it is possible not to include a peak in

variation and to adopt an inexpensive suspension spring by changing the variation of the fourth pin roughly in the straight line.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号 特開2000-168666 (P2000-168666A)

(43)公開日 平成12年6月20日(2000.6.20)

(51) Int.Cl.7

B62K 25/24

識別記号

FI B62K 25/24 テーマコード(参考) 3D014

審査請求 未請求 請求項の数1 OL (全 8 頁)

(21)出願番号

特願平10-346097

(22)出顧日

平成10年12月4日(1998.12.4)

(71)出願人 000005326

本田技研工業株式会社

東京都港区南青山二丁目1番1号

(72)発明者 岩井 俊之

埼玉県和光市中央1丁目4番1号 株式会

社本田技術研究所内

(72)発明者 秋鹿 貴紀

埼玉県和光市中央1丁目4番1号 株式会

社本田技術研究所内

(74)代理人 100067356

弁理士 下田 容一郎

最終頁に続く

(54) 【発明の名称】 二輪車の前輪懸架装置

(57)【要約】

【課題】 プッシュロッドの上端の変位割合にピークを 含まないような前輪懸架装置を提供する。

【解決手段】 図(a)は本実施例に係り、角度 θ を90°を超えぬようにしたため、第4ピン(プッシュロッドの上端)の変化量は上り勾配の曲線(ほぼ直線若しくは緩く湾曲した二次曲線)となる。第4ピンに懸架ばねの下端が連結されているとし、懸架ばねがばね係数一定の単純ばねであれば、角度 θ の増加に伴なって、懸架ばねの反発力はほぼ直線的若しくは二次曲線的に増加することになり、この現象はプログレシブリンク作用(車輪が上昇するほど懸架力を強める作用)に合致するものであり、好ましいことである。即ち、本実施例によれば、懸架ばねに極く単純なばねを採用することができる。

【特許請求の範囲】

【請求項1】 フロントフォークに第1ピンを介して前 輪支持アームをスイング可能に取付け、この前輪支持ア ームの先端に前輪の車軸を取付け、前輪支持アームの途 中に第2ピンを介してプッシュロッドの下端を取付け、 このプッシュロッドを上へ延ばし、このプッシュロッド の上端を、ボトムブリッジに第3ピンを介してスイング 可能に取付けたアッパリンクに第4ピンを介して取付 け、このアッパリンクを第5ピンを介して懸架ばねの下 端に連結したボトムリンク式前輪懸架装置において、 前記フロントフォーク側の第1ピンと前輪支持アーム途 中の第2ピンとを結んだ軸線を第1軸線とし、前輪支持 アーム途中の第2ピンとアッパリンク側の第4ピンとを 結ぶ軸線を第2軸線とし、前記第1軸線と第2軸線との なす角のうち小さい方の角度をθとしたときに、この角 度θを前輪の懸架ストローク全域にわたって90°を超 えない範囲に保つようにリンクを構成したことを特徴と する二輪車の前輪懸架装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は

懸架ばねの設計を容易にすることのできる前輪

懸架装置に関する。

[0002]

【従来の技術】二輪車(特に自動二輪車)のフロントサスペンションは、現在テレスコピック式サスペンション 又はボトムリンク式サスペンションが主流となっている。テレスコピック式サスペンションは、文字通り望遠鏡のように伸縮する構造のものであり、キャスター角(鉛直線とフロントフォークとのなす角)の比較的小さいものに適している。

【0003】一方、いわゆるアメリカンバイクと称する。キャスター角の大きな自動二輪車では、フロントフォークが寝ているためテレスコピック式サスペンションで前輪の上下移動量を吸収するには角度的に無理がある。ボトムリンク式サスペンションはキャスター角の影響を受けにくいので、キャスター角の大きな自動二輪車にはボトムリンク式サスペンションが適していると言える。

【0004】ボトムリンク式サスペンションに関する技術として、例えば実公昭60-15744号「二輪車の前車輪懸架装置」が提案されており、この懸架装置は同公報の第1図及び第2図に示されるとおり、平行リンク(符号3、8、6、Fからなる。)及び油圧ダンパ(図示せず)並びに懸架コイルばね(14)で前輪Wを懸架するというものである。なお、前記第1図は前輪(W)の車軸(5)が懸架装置より前にあるためリーディング式サスペンション、前記第2図は前輪(W)の車軸

(5)が懸架装置より後にあるためトレーリング式サスペンションと呼ばれている。

【0005】上記第1図において、前輪にブレーキを掛けると車体フレームに対して相対的に前輪(W)が上昇

し、又ジャンプすると相対的に前輪(W)は下降する。この様に懸架ストロークは大きなものとなる。図ではリーディングアーム(3)とリンク(8)とのなす角はほぼ90°であり、前輪(W)が相対的に下降すると角度(図左側の角度。以下同様。)は90°以上に拡大し、前輪(W)が相対的に上昇すると角度は90°より小さくなる。上記第2図も同様にリーディングアーム(3)とリンク(8)とのなす角はほぼ90°であり、この角度は90°を挟んで増減すると考えられる。この変化を次図で再度説明する。

【0006】図7は従来の代表的なボトムリンク式サス ペンションの原理図であり、前記公報の第2図を略図に したものである。ただし、符号は新規に振り直した。ま た、リーディングアームは前輪支持アームと言い直す。 フロントフォーク101の下端に第1ピン102を介し て前輪支持アーム103の一端をスイング可能に取付 け、この前輪支持アーム103の先端に前輪104の車 軸105を取付け、前輪支持アーム103の途中に第2 ピン106を介してプッシュロッド107の下端を止 め、このプッシュロッド107を立て、一方、フロント フォーク101の上部から第3ピン108を介してアッ パリンク109を延ばし、このアッパリンク109の途 中に第4ピン110を介して前記プッシュロッド107 の上端を連結し、アッパリンク109の先端を懸架ばね 111の下端に連結することにより、前輪104を平行 リンク構造で懸架したものである。

【0007】前記第1ピン102と第2ピン106とを通る軸線を第1軸線103A、第2ピン106と第4ピン110とを通る軸線を第2軸線107Aとし、第1軸線103Aと第2軸線107Aとのなす角のうち、フロントフォーク101寄りの角度を少とすると、前輪104の上昇、下降により、角度がは増減する。即ち、車軸105が①から②へ移動するときにはがは大きくなり、②から③へ移動するときは小さくなる。図から明らかなように角度がはほぼ90°を挟んで70~110°の範囲で変化することが多い。

[0008]

【発明が解決しようとする課題】前記第4ピン110の上への鉛直移動に注目すると、角度ゆが90°未満の領域では角度ゆが90°に近づくほど第4ピン110の上への変化量が増大し、角度ゆが90を超えた領域では角度ゆが90°から離れるほど第4ピン110の上への変化量が減少する。すなわち、正弦曲線の如く角度90°をピークにその前後で第4ピン110の上への変化量が減少する。

【0009】上記現象を具体例で説明する。図8は図7における第1軸線及び第2軸線を写した原理図であり、第1ピン102を通る水平軸Haから第4ピン110までの距離をH、水平軸Haから第2ピン106までの距離をh、第1軸線103Aの長さをr、同傾斜角をサ

2、第2軸線107Aの長さをR、同傾斜角を $\psi1$ 、ただし $\psi1+\psi2=\psi$ 、としたとき、次の式が成立する。

【0010】 【数1】

 $\phi = \phi \, 1 + \phi \, 2$

 $R\cos\phi 1 = H + h$

 $h = r \cos \phi 2$

 $H = R\cos\phi 1 - r\cos\phi 2$ — ④

 $\sin \phi 2 = \sin (\phi - \phi 1) = \sin \phi \cos \phi 1 - \cos \phi \sin \phi 1$ —— 6

ここで $\phi = 90$ °とすれば $\sin \phi = 1$ 、 $\cos \phi = 0$

 $\sin \phi 2 = \cos \phi 1$

 $H' = -R \sin \phi 1 + r\cos \phi 1$ \bigcirc

【0011】すなわち、HはQ式のとおり、R, r, ψ 1及び ψ 2の関数となる。このHの変化率を求めるには、微分すればよく、微分したものをG式に示す。また、 $sin\psi$ 2は式Gように書き直すことができる。上述したとおり従来の角度 ψ はほぼ90°であるから、角度 ψ =90°と仮定して整理すれば、H'は近似的に式Gとなり、H'はR, r及び ψ 1の関数となる。

【0012】図9は正弦曲線と余弦曲線を示すグラフであり、横軸は角度 ψ 1とし、正弦曲線であるRsin ψ 1、余弦曲線であるrcos ψ 1をグラフ化したものである。角度 ψ 1は(ψ - ψ 2)となり、 ψ の概ね1 χ 2、すなわち45°付近を変化するものと考えられる。一方、正弦曲線と余弦曲線は0 χ 90°の間で必ず交わり、この交点をMとすれば、交点Mより90°側の領域では、Rsin χ 1>rcos χ 1となるから、上記式のは-(χ 1)となり、逆に交点Mより0側の領域では、Rsin χ 1
では、Rsin χ 1
では、Rsin χ 1
では、Rsin χ 1
では、Rsin χ 1
では、Cos χ 1となるから、上記式のは+(χ 2)となる。従って角度 χ 3
が90°近傍であれば、H'が+であれば第4ピ χ 110は加速しつつ上昇し、一であれば減速しつつ上昇することになる。

(後述の図5(b)も参照)

【0013】このように、前輪の昇降ストロークの途中で、変化量のピークがある若しくは加速と減速の変化点が存在すると、いわゆる違和感の有るクッションフィーリングとなる。そこで、従来はこの違和感を懸架ばねで吸収させるようにしている。しかし、そのためには懸架ばねを圧縮量に応じてばね係数が変化する特殊なばね(例えば、線径を場所によって変えたばね。多段ばね。)としなければならず、懸架ばねのコストアップに繋がる。そこで、本発明の目的はプッシュロッドの上端の変位割合にピークを含まないような前輪懸架装置を提供することにある。

[0014]

【課題を解決するための手段】上記目的を達成するため に請求項1は、フロントフォークに第1ピンを介して前 輪支持アームをスイング可能に取付け、この前輪支持ア ームの先端に前輪の車軸を取付け、前輪支持アームの途 中に第2ピンを介してプッシュロッドの下端を取付け、 このプッシュロッドを上へ延ばし、このプッシュロッド の上端を、ボトムブリッジに第3ピンを介してスイング 可能に取付けたアッパリンクに第4ピンを介して取付 け、このアッパリンクを第5ピンを介して懸架ばねの下 端に連結したボトムリンク式前輪懸架装置において、フ ロントフォーク側の第1ピンと前輪支持アーム途中の第 2ピンとを結んだ軸線を第1軸線とし、前輪支持アーム 途中の第2ピンとアッパリンク側の第4ピンとを結ぶ軸 線を第2軸線とし、第1軸線と第2軸線とのなす角のう ち小さい方の角度を θ としたときに、この角度 θ を前輪 の懸架ストローク全域にわたって90°を超えない範囲 に保つようにリンクを構成したことを特徴とする。

【0015】第1軸線と第2軸線とのなす角のうち小さい方の角度をθとしたときに、この角度θを前輪の懸架ストローク全域にわたって90°を超えない範囲に保つことで、第4ピンの上下変化量をほぼ直線的に変化させることができる。もし、第4ピンの変化量にピークを含むと特殊な懸架ばねを採用しなければならない。この点、請求項1では第4ピンの変化量をほぼ直線的に変化させたことにより、変化量にピークを含めないようにし、この結果、安価な懸架ばねの採用が可能となった。【0016】

【発明の実施の形態】本発明の実施の形態を添付図面に 基づいて以下に説明する。なお、「前」、「後」、 「左」、「右」、「上」、「下」は運転者から見た方向 に従う。また、図面は符号の向きに見るものとする。図 1は本発明に係る自動二輪車の前半部の側面図である。 自動二輪車1は、車体フレーム2のヘッドパイプ3に縦向きのステアリングステム4を左右回転可能に取付け、このステアリングステム4の上部に後述するトップブリッジ11を取付け、このトップブリッジ11にバーハンドル5を取付け、さらに、ステアリングステム4にボトムリンク式の前輪懸架装置10を取付けたものである。自動二輪車1のフロントブレーキ50は、前輪32の側部に取付けたブレーキディスク51と、ブレーキディスク51を制動制御するためのキャリパ56とからなる、液圧式ディスクブレーキである。61はヘッドランプ、62はフロントフェンダである。

【0017】図2は本発明に係る前輪懸架装置の側面図 である。前輪懸架装置10は、ステアリングステム4の 上部に取付けたトップブリッジ11と、ステアリングス テム4の下部に取付けたボトムブリッジ12と、これら のトップ・ボトムブリッジ11,12に上端部を取付け たフロントフォーク13と、前下方へ延びたフロントフ ォーク13の下端部に前端部を上下スイング可能に連結 した前輪支持アーム14と、後下方へ延びた前輪支持ア ーム14の途中に下端部を前後スイング可能に連結した プッシュロッド15と、上方へ延びたプッシュロッド1 5の上端部をロッドハンガ16を介して連結するべく、 ボトムブリッジ12から前方へ上下スイング可能に延び たアッパリンク17と、アッパリンク17に下端部を連 結した緩衝器18と、上方へ延びた緩衝器18の上端部 を連結するべく、フロントフォーク13の上部に取付け たアッパブラケット19とからなる、トレーリングアー ム方式の懸架装置である。

【0018】図中、21は第1ピンであり、フロントフォーク13に前輪支持アーム14をスイング可能に止めるピンである。22は第2ピンであり、前輪支持アーム14の途中にプッシュロッド15の下端をスイング可能に止めるピンである。23は第3ピンであり、ボトムブリッジ12の連結部12aにアッパリンク17の後部を連結するピンである。24は第4ピンであり、アッパリンク17の前部にプッシュロッド15の上端、詳しくはロッドハンガ16の上端を連結するピンである。25は第5ピンであり、緩衝器18の下端部にアッパリンク17の前部を連結するピンである。

【0019】そして、第1ピン21と第2ピン22とを 結んだ軸線を第1軸線14Aと呼び、第2ピン22と第 4ピン24とを結んだ軸線を第2軸線15Aと呼び、第 1軸線14Aと第2軸線15Aとのなす二つ角のうち、 小さい方の角度を 0と定義する。

【0020】トレーリングアーム方式なので、前輪支持アーム14の後端部に前輪用車軸31を取付け、この車軸31に前輪32を回転可能に取付けることになる。

【0021】上記前輪懸架装置10は、(1)側面視で、ステアリングステム4の前方にフロントフォーク1

3を配置するとともに、ステアリングステム4の傾斜角よりもフロントフォーク13の傾斜角を綴く設定したこと、及び、(2)側面視で、フロントフォーク13の中心O₁に緩衝器18の中心O₂をほぼ一致させたことを特徴とする。緩衝器18は、油圧式ダンパ41とダンパ41の周囲に巻いた懸架ばね42とからなる、ばね外装式緩衝器である。この図2から明らかなように、緩衝器18の最大径である懸架ばね42の外径は、フロントフォーク13の径と概ね等しい。

【0022】車軸31は、この車軸31に直交するブラケット52を上下スイング可能に取付けたものである。ブラケット52は、車軸31に取付ける第1ブラケット53と、第1ブラケット53の先端に取付ける第2ブラケット54は、その先端側をトルク伝達リンク55を介して、フロントフォーク13の長手途中の中間部に連結するとともに、キャリパ56並びにフロントフェンダ62を取付ける部材である。トルク伝達リンク55は、その両端を連結ピン57、58にて上下スイング可能に連結した、リンク部材、例えばブラケット52の回転止めをなす回転止めリンクである。

【0023】図3は本発明に係る前輪懸架装置の分解側面図であり、前輪懸架装置10における各部材の連結関係を示す。この図は、特に、ボトムブリッジ12の下端に連結部12aにアッパリンク17(「クランク」とも言う。)の後端連結部17aを上下スイング可能に連結し、アッパリンク17の前端連結部17bに緩衝器18の下端部18aを上下スイング可能に連結し、アッパリンク17の中間連結部17cにロッドハンガ16の上部連結部16bを上下スイング可能に連結したことを示す。中間連結部17cは、アッパリンク17の長手方向途中に且つ前端連結部17bより上位に設けたものである。

【0024】以上に述べた前輪懸架装置の作用を次に説明する。図4は本発明に係る二輪車の前輪懸架装置の作用説明図であり、図中「D」は前輪32が相対的に下限位置にあるときのリンクの位置、「U」は相対的に上限位置にあるときのリンクの位置を示すシンボルである。前輪懸架装置10では、想像線で示した第1軸線14Aが実線で示した第1軸線14A4まで、第1ピン21を中心に図反時計方向に廻り、前輪32の相対的昇降動作を吸収する。すなわち、前輪支持アーム14が矢印の通りに上昇(回転)すると、プッシュロッド15が上昇し、アッパリンク17は時計方向に廻り、油圧ダンパ41並びに懸架ばね42が縮むことで、衝撃エネルギー等を吸収する。このときに、第4ピン24の上下移動に注目すると、角度の変化と第4ピン24の上下移動とに関係があることが分かる。

【0025】図5(a)は本発明に係る前輪懸架装置の 第4ピンの変化量を調べたグラフであり、図5(b)は 比較例を示すグラフである。なお、横軸は角度 θ 、縦軸は θ の1度当りに対する第4ピンの変化量を示す。

【0026】(a)は本実施例に係り、角度θを90° を超えぬようにしたため、第4ピンの変化量は上り勾配 の曲線(ほぼ直線若しくは緩く湾曲した二次曲線)とな る。第4ピンに懸架ばねの下端が連結されているとし、 懸架ばねがばね係数一定の単純ばねであれば、角度 ∂の 増加に伴なって、懸架ばねの反発力はほぼ直線的若しく は二次曲線的に増加することになり、この現象はプログ レシブリンク作用(車輪が上昇するほど懸架力を強める 作用) に合致するものであり、好ましいことである。即 ち、本実施例によれば、懸架ばねに極く単純なばねを採 用することができる。 $なお、角度\theta$ は前輪ストロークの 全域に亘って、0~90°の範囲から逸脱しなければよ いが、組付け誤差等を考慮して90°側に5°程度の余二 裕を持たせ、リンクの実用的構成を維持するために30 よりは大きくしておきたいので、30°~85°の範 **囲に収めることが望ましい。**

【0027】(b)は比較例に係り、上述したとおり従来は、角度 θ は多くは90°を挟んで変化し、90°若しくはその近傍にピークが存在し、このピークの前後における曲線の勾配がプラスマイナス逆転することを示す。この様に勾配の符号が変化するときには、懸架ばねは圧縮量に応じてばね係数が変化するような特殊なばねを採用せざるを得ない。特殊ばねは設計が面倒で高価なものとなり、前輪懸架装置のコストアップに繋がる。

【0028】図6は図4の変更実施例を示す図であり、図4に対してプッシュロッド16のみを変更したものである。すなわち、本例のプッシュロッド16は湾曲部を含むロッドであり、この様なロッドを採用したことにより、フロントフォーク13との間に適度なスペースSを確保することができ、このスペースSに適宜前輪廻りの機器、部品を配置することが可能となる。

【0029】ここで、重要なことは、第2ピン22から 第4ピン24に向う第2軸線15Aは、図4と同じ、即 ちプッシュロッド16の形状に無関係であることであ る。この結果、角度のを90°以内に保ちつつ、プッシュロッド16の形状を自由に設定でき、操舵フィーリン グを高めることができるようにプッシュロッド16の形状を決定したり、前記スペースSの確保するためにプッシュロッド16の形状を決定することができ、前輪懸架 装置の設計の自由度を高めることができる。

【0030】尚、本発明の前輪懸架装置は、自動二輪車に好適であるが、エンジンを搭載しない二輪車(自転車)に採用することもできる。

[0031]

【発明の効果】本発明は上記構成により次の効果を発揮する。請求項1は、第1軸線と第2軸線とのなす角のうち小さい方の角度を母としたときに、この角度母を前輪の懸架ストローク全域にわたって90°を超えない範囲に保つことで、第4ピンの上下変化量をほぼ直線的に変化させることができる。もし、第4ピンの変化量にピークを含むと特殊な懸架ばねを採用しなければならない。この点、請求項1では第4ピンの変化量をほぼ直線的に変化させたことにより、変化量にピークを含めないようにし、この結果、安価な懸架ばねの採用が可能となり、懸架ばね並びに前輪懸架装置の設計工数とコスト削減とが図れる。

【図面の簡単な説明】

- 【図1】本発明に係る自動二輪車の前半部の側面図
- 【図2】本発明に係る前輪懸架装置の側面図
- 【図3】本発明に係る前輪懸架装置の分解側面図
- 【図4】本発明に係る二輪車の前輪懸架装置の作用説明 図

【図5】本発明に係る前輪懸架装置の第4ピンの変化量 を調べたグラフ

- 【図6】図4の変更実施例を示す図
- 【図7】従来の代表的なボトムリンク式サスペンション の原理図
- 【図8】図7における第1軸線及び第2軸線を写した原理図
- 【図9】正弦曲線と余弦曲線を示すグラフ 【符号の説明】

1…二輪車(自動二輪車)、10…前輪懸架装置、12 …ボトムブリッジ、13…フロントフォーク、14…前 輪支持アーム、14A…第1軸線、15…ブッシュロッ ド、15A…第2軸線、17…アッパリンク、21…第 1ピン、22…第2ピン、23…第3ピン、24…第4 ピン、25…第5ピン、31…車軸(前輪用車軸)、3 2…前輪、42…懸架ばね、θ…第1軸線14Aと第2 軸線15Aのなす角。

!(8) 000-168666 (P2000-16`JL8

フロントページの続き

(72)発明者 伊藤 真二 埼玉県和光市中央1丁目4番1号 株式会 社本田技術研究所内 Fターム(参考) 3D014 DD03 DE06 DE13 DE14 DE33 DE36