	REVISIONS								
REV.	DESCRIPTION	EO#	DATE	ENG	QLTY	MFG			
Α	Production Release	3505	09-09-96	R.L.D.	W.C.	G.N.			
В	Revised	3554	10-31-96	M.M.	M.P.I.	G.N.			
С	C Revised for v3.17 3.21 code		06-05-98	T.M.	M.P.I.	K.P.			

NOTICE

This document contains proprietary and confidential information of UNIT INSTRUMENTS, INC. Use of this information is restricted to purposes of interest to UNIT INSTRUMENTS, INC. The information contained herein is to be neither copied nor disclosed to others, in whole or part, without the prior written consent of UNIT INSTRUMENTS, INC.

Current revisions of this document should always be obtained through http://www.unit.com/ to ensure accuracy. Please refer other interested parties to this source rather than distributing potentially outdated copies.

Please contact Unit Instruments directly for any further details.

INSTRUMENTS, INC. 22600 Savi Ranch Parkway, Yorba Linda, California 92887								
DWN:	J.L.	DATE:	08-30-96	SYSTEM PERFORMANCE SPECIFICATION				
ENG: R.L.D. 09-09-96 Digitally Compensated Mass Flow Controller Firmware Specification Excerpts					ller			
QLTY:	W.C.		09-09-96	DOC.#		SPS-004-0004		REV
MFG:	G.N.		09-09-96	SHEET	1	of	49	С

1. Purpose

This document describes the firmware embedded in the Digitally Compensated Mass Flow Controller (DCMFC), Versions 3.14 and following, based on the Unit Instruments 203 motherboard, Rev. A or later.

Note that this document contains excerpts from the original firmware specification, as well as sections written specifically for it. These excerpts follow the numbering of the original firmware specification. As a result some sections will have appeared to be omitted. These are sections that, in order to simplify this document and reduce the scope of the original document, have been omitted intentionally.

This document is intended for those wishing to configure or control Unit Instruments DCMFCs via the included RS-485 interface. It does **NOT** include sufficient detail to re-calibrate a unit, or to generate new calibration table entries from an existing entry. If such information is needed, please contact Unit Instruments for further details.

The DCMFC contains many attributes not documented here, but needed for calibration & service. Such attributes should **NOT** be changed without understanding the consequences. Please contact Unit Instruments if you need further details on such undocumented attributes.

1.1 Hardware versions

At the time of writing, the 203 PCB has gone through 7 revisions. For purposes of this spec, the only significant changes occurred with revision G. Rev. A through F were produced with only 2 EEPROMs, while most Rev. G and later were produced with all 4.

1.2 Firmware versions

At the time of writing, 5 versions of the firmware are outstanding:

- 3.14 Production code from 4/97 to 2/98. Supports 1 or 2 EEPROMs.
- 3.15 Production code from 2/98 to 4/98. Backwards-compatible update, with provision for sensor cooling recovery and flow over-range recovery.
- 3.17 Never used as production code. Backwards-compatible update, with provision to support 4 EEPROMs (20 Calibration & 9 SurrogateGas instances), the **OverFlowTimeout** and **TurnOnDelay** attributes, and **SensorCoolingRecovery*** attributes in mS.
- 3.20 Production code from 4/98. Updated for faster processing and a more compact EEPROM memory layout, thus supporting more gasses (26

UNIT	22600 Savi Ranch Parkway,	DOC.#	s	PS-004-0004		REV C
INSTRUMENTS, INC.	Yorba Linda, California 92687	SHEET	2	of	48	

Calibration and 9 SurrogateGas instances). Supports all enhancements of v3.17 except for the **TurnOnDelay** attribute.

3.21 Production code from 5/98. Minor bug fix, and adds **TurnOnDelay** attribute.

This specification does not address firmware prior to v3.14.

Version 3.17 can directly replace v3.14 through v3.15 in the field, without any recalibration.

Versions 3.18 and 3.19 are reserved for EEPROM-compatible upgrades to v3.17 and earlier firmware. They have not been released as of this writing.

Version 3.20 changed the EEPROM memory allocation significantly, and cannot directly replace earlier versions. Updating to this version requires complete reprogramming at a Unit Instruments service center, or transfer of all attributes using special software.

Version 3.21 can directly replace v3.20 in the field, without any re-calibration.

All versions of firmware are designed to work on all versions of the motherboard. However, firmware v3.17 or later is required to make use of more than 2 EEPROMs.

Where different versions of the firmware define attributes differently, such differences are noted here.

1.3 Future versions

Future Unit Instruments DCMFCs are likely to use different Class and Attribute IDs for some of the attributes described here, or to change the format or allowable range of such attributes. Programmers writing drivers to talk to the DCMFC over the 485 bus would be well advised to provide some sort of readily changeable mapping between an attribute name & value and the actual packet contents on the bus.

4 4		
_ =	===	=
		Z
INSTR	UMENTS	, INC.

DOC.#		SPS-004-0004	REV C	
SHEET	3	of	48	

2. Introduction

The DCMFC is a direct replacement for several current Unit Instruments MFCs. It provides both improved operational characteristics (such as linearity), and improved manufacturability.

The DCMFC provides the following features:

- Α. Auto Zero Disable input
- B. Alarm output
- C. Configurable self-calibration (Sensor Zero)
- D. Configurable range
- E. Configurable low-setpoint speed-up
- F. Configurable auto shut-off
- G. Configurable auto zero
- Н. Configurable soft start
- Ι. Configurable Override pin for either Unit Instruments (J-pin) or SEMI mode
- J. Setpoint from 0 to 120% of rated flow
- K. Auto Purge for setpoint >= 122% of rated flow
- L. Non-volatile storage for up to 9 sets of calibration gas data (Calibration Gas, Conversion Factor, Range, Calibration constants, etc.) (up to 4 sets for firmware versions earlier than v3.17)
- M. Non-volatile storage for up to 26 sets of process gas data (Calibration Gas selection, Process Gas, Range, Conversion Factor, etc.) (up to 9 sets for firmware earlier than v3.17, and up to 20 sets for firmware v3.17 .. v3.19)
- N. Configuration, Control, & Monitoring via RS-485 interface from Unit Instruments software (Datacal or laptop)

Ο. Better tolerance than analog controllers for abuse by the tool, such as putting the controller in flow mode before turning on the gas, etc.

	22600 Savi Ranch Parkway,
INSTRUMENTS, INC.	Yorba Linda, California 92687

DOC. #		SPS-004-0004			
SHEET	4	of	48		

3. Quick references:

3.1 Digitally controlled set points

The controller must be set to a digital command mode in order to act upon a set point sent digitally. This is controlled by the variable **ControlMode**. **ControlMode** must be set to 1 to allow the flow controller to respond to digital set points. The controller may be set to power up in digital command mode (**ControlMode** = 1) by setting **DefaultControlMode** to 1.

Set points are sent using the **NewSetpoint** attribute.

The are 2 modes of digital setpoint control available in the DMFC. One mode allows a new set point to be executed as the set point command is received. The other mode allows the next set point to be stored until a message is received which commands the controller to act upon the previously sent and stored set point.

The variable that controls the set point control modes is named **FreezeFollow**. When **FreezeFollow** is set to 1 the **NewSetpoint** command is acted upon immediately when received. If **FreezeFollow** is set to 0 the new set point is stored but not executed until **FreezeFollow** is set to 1.

The **NewSetpoint** request takes values in the range of 0x4000 to 0xC000 which represent set points between 0% and 100% full scale. The linear relationship between Full Scale set points and **NewSetpoint** is demonstrated in the following table.

Full Scale % set point	NewSetpoint value (Hex)
0.0	4000
25.0	6000
50.0	8000

Full Scale % set point	NewSetpoint value (Hex)
75.0	A000
99.0	BEB8
100.0	C000

The "NewSetpoint" value may be calculated from the full scale percent value by:

"NewSetpoint" = (327.68 * full scale %) + 16,384

For example, for a 50% of Full Scale Setpoint:

327.68 * 50 = 16,384 Scale the message units to the total

percentage

16,384 + 16,384 = 32,768 Add the offset

22600 Savi F	Ranch Parkway,
Yorba Linda,	California 92687

DOC.#	S	REV C		
SHEET	5	of	48	

hex(32,768) = 0x8000 Convert to hexadecimal

Note that at the communications level all values are sent in binary. The decimal and hexadecimal formats shown are for convenience.

3.1.1 Digitally controlled setpoints example

For the purpose of sending the **ControlMode**, **FreezeFollow**, and **NewSetpoint** requests to the flow controller a packet follows specific formats and numerical examples as shown in the following tables. Note that the format will change in length and content accord to the type of command. These examples are intended to show the format for the **ControlMode**, **FreezeFollow**, and **NewSetpoint** messages explicitly.

	Request					
Field name	DefaultControlMode = 1	ControlMode = 1	FreezeFollow = 0	FreezeFollow = 1		
MacId	FF	FF	FF	FF		
STX	02	02	02	02		
Command code	81	81	81	81		
Packet Length - 6	04	04	04	04		
Class ID	69	69	69	69		
Instance ID	01	01	01	01		
Attribute ID	04	03	05	05		
Data	01	01	00	01		
Pad	00	00	00	00		
Checksum	F6	F5	F6	F7		

INSTRUMENTS. IN	

DOC.#		SPS-004-0004		REV C
SHEET	6	of	48	

	Request			
Field name	NewSetpoint = 0.25 (0% FS)	NewSetpoint = 0.50 (50% FS)	NewSetpoint = 0.745 (99% FS)	NewSetpoint = 0.75 (100% FS)
MacId	FF	FF	FF	FF
STX	02	02	02	02
Command code	81	81	81	81
Packet Length - 6	05	05	05	05
Class ID	69	69	69	69
Instance ID	01	01	01	01
Attribute ID	A 4	A4	A4	A4
Data (Isb)	00	00	В8	00
Data (msb)	40	80	BE	C0
Pad	00	00	00	00
Checksum	D6	16	0C	56

Notes for both tables:

- Each column shows one request packet, with one byte of packet information in hexadecimal format per table cell.
- The **MacId** shown (FF) is a global address and should be replaced with the **MacId** for the individual flow controller. The **Checksum** must be changed accordingly.
- (lsb) = least significant byte.
- (msb) = most significant byte.

4 2		
INSTF	RUMEN	TS, INC.

DOC. # SPS-004-0004		SPS-004-0004		REV C
SHEET	7	of	48	

22600 Savi F	Ranch Pai	kway,
Yorba Linda,	California	92687

3.2 Most Frequently Used Attributes

ATTRIBUTE DESCRIPTION	REQUEST ATTRIBUTE	CHANGE ATTRIBUTE	NOMINAL
MacId (for Terminal program)	MFCAddr	MFCAddr ###	32-96,255
MacId of DMFC	MacId?	MacId=00	32-96
Process gas #	CurrentCalibration?	CurrentCalibration=#	1-9
Next setpoint to 0%	CurrentSetpoint?	NewSetpoint=.25	0.25 - 0.75
Next setpoint to 50%	CurrentSetpoint?	NewSetpoint=.50	0.25 - 0.75
Next setpoint to 100%	CurrentSetpoint?	NewSetpoint=.75	0.25 - 0.75
NewSetpoint effective immediately	FreezeFollow?	FreezeFollow=1	1 = immediate
Indicated flow	NormalizedFlow?	N/A	0.25 - 0.75
Filtered indicated flow	MFCOut?	(mfcFilterGain must be set)	0.25 - 0.75
mfcOut filtering (integration)	MFCFiltergain?	mfcFilterGain=0.200	0.200
Valve Voltage	ValveVoltage?	N/A	
Digital Control Mode	ControlMode?	ControlMode=1	Digital control = 1 Analog control = 2
AutoZero Function	AutoZeroEnable?	AutoZeroEnable=1	0 = off, 1 = on
Auto Zero enable delay	AutoZeroDelay?	AutoZeroDelay=90	90 (seconds)
Auto Zero Rate of operation	AutoZeroRate?	AutoZeroRate=0.000122	0.000122 (819 sec)
Auto shutoff threshold	AutoShutoffThreshold?	AutoShutoffThreshold=.25	.2575 = 1.5%
SoftStartRate SoftStartRate = .005 / Seconds to FS Flow	SoftStartRate?	SoftStartRate=0.5	0.5 = fast 0.002 = 2.5 sec 0.001 = 5.0 sec
User calibration trim	UserCalSpanMult(page) ?	UserCalSpanMult(page)=	1.0 (range 0.9-3.0)
Control Pin 2 state or 3 state	OverrideMode?	OverrideMode=0	0 = 2 state (on/off) 1 = 3 state (purge)
Valve Control Mode	ValveOverride?	ValveOverride=0	0 = Control,1 = Off, 2 = Purge
Exceptions	Exceptions?	Exceptions=0xffff (Reset)	0
Firmware Revision Level	FirmwareRevisionLevel?	FirmwareRevisionLevel=	XX.XX
Shutdown time after sensor cooling detection.	RecoveryTimeout?	RecoveryTimeout=	2000
mS of flow over-range before shutdown recovery.	OverFlowTimeout?	OverFlowTimeout=	750

[&]quot;CurrentSetpoint" to "Setpoint relationships:

% = (CurrentSetpoint - .25) * 200

CurrentSetpoint = (% / 200) + 0.25

22600 Savi Ranch Parkway, Yorba Linda, California 92687	DOC. # SPS-004-0004				REV C
	SHEET	8	of	48	

3.3 Alarms & Diagnostics

This list of diagnostics are all reported under the **Exceptions** attribute

Exception Name	<u>Description</u>	<u>Bit #</u>
Reset	Device has automatically reset after any error	0
azWarning	Device zero has drifted beyond preset warning level	1
azLimit	Device zero has drifted beyond preset limit level	2
BadTable	Downloaded process gas table is invalid, default table is active	3
Init	EEPROM contents are invalid, EEPROM has been reset	16
Comm	Communications routines have internally timed out	17
BadConfig	One or more configuration blocks have a CRC error	21,22,23
eeRead	There was an EEPROM read failure	24
eeWrite	There was an EEPROM write failure	25
eeVerify	There was an EEPROM verify failure	26
Timer	There was a reliability timer CRC error	27

Notes:

Diagnostic Initiation:

Complete memory CRC diagnostics are performed upon power up. Exceptions continue to be generated and reported during operation.

Alarms reporting mechanism:

All alarms are reported by polling the "exceptions" attribute. As a result all alarms may be monitored by polling the device once. A return of 0 indicates no alarms. Alarms do not broadcast onto the network spontaneously. Such "peer to peer" or "peer to master" network activity shall be supported when the broadcast conditions are defined by a customer and/or a standards committee.

Valve Voltage Alarms:

The valve voltage may be polled by the process tool to detect any changes. (Alarms based only upon valve voltage variations are not supported due to the erroneous alarms caused by the normal effects that pressure fluctuations have on valve voltages).

Set point to flow point Alarms:

"CurrentSetpoint" and "NormalizedFlow" attributes may be compared to generate flow point alarms within the process tool.

Manufacturing QA and exceptions prevention:

All manufacturing software constantly scans for and warns of any exceptions and does not allow the operator to proceed without first correcting the problem causing exception reporting. Exceptions are tested for during final QA of all digital devices. No devices leave the factory with exceptions.

INST	RUMENTS, INC.	

DOC.#	SPS-004-0004			
SHEET	9	of	48	

22600	Savi	Ranch	Parkw	ау,
Yorha I	inda	Califor	rnia 92	687

4. Unit Instruments DMFC Electrical Connections

Connection is EIA-485 half duplex connected VIA a top mounted RJ12 Connector.

EIA-485 Function	RJ12 Pin #
Ground	1
DX - (minus)	3
DX+ (plus)	4

All other pins of the RJ12 connector are unused.

All data is transmitted in standard asynchronous serial format, 8 bits per character, no parity, 1 stop bit, at 9600 baud.

DO NOT USE STANDARD TELEPHONE STYLE RJ11 TO RJ11 CABLES.

When the EIA-485 connections are daisy chained by connecting from controller to controller all pin connections must be in parallel. Unit DMFC product provides two RJ12 connectors which may make it appear that you could use common RJ11 telephone style cables. These cables will not work because they reverse the tip and ring of the telephone line from end to end.

4 4		
INSTR	UMEN.	TS, INC.

DOC.#	SPS-004-0004			REV C
SHEET	10	of	48	

5. Device Modeling

The DCMFC is modeled as a collection of Objects. An Object provides an abstract representation of a particular component of the DCMFC.

A Class is the set of Objects representing the same kind of system component. An Object Instance (or Instance) is a specific (physical) occurrence of an Object within a Class. Each Instance of a Class has the same set of attributes, but its own particular set of attribute values.

A Class or an Object Instance has Attributes, provides Services, and implements a Behavior.

Attributes are characteristics of a Class or of an Object Instance. Typically, Attributes provide status information or govern the operation of an Object. Services are invoked to trigger the Object or Class to perform a task. Services correspond to messages which can be sent to an Object, causing it to either change state or to provide information about its current state. The Behavior of an Object indicates how it responds to particular events.

Within a network of DCMFCs, individual attributes are accessed via a hierarchical address consisting of:

MacID	An 8-bit identifier assigned to a particular MFC on the network. This value is assigned by the network administrator for the process tool containing the DCMFC.
ClassID	An 8-bit identifier assigned to a particular Class of objects. This value is assigned by the DCMFC architect, and is documented in this specification.
InstanceID	An 8-bit identifier which distinguishes the Class and individual Instances of the Class from each other. A value of 0 indicates the reference is to an attribute of the Class rather than an attribute of a particular Instance. Any other value indicates the reference is to an attribute of the specified Instance. The maximum number of Instances permitted of each class is determined by the DCMFC architect, and documented in this specification.
AttributeID	An 8-bit identifier assigned to a particular Attribute of the Class or Instance. This value is assigned by the DCMFC architect, and documented in this specification.
Service Code	An 8-bit identifier specifying the particular service desired from the DCMFC. The services available for a particular attribute are defined by the DCMFC architect, and are documented in this specification.

It is possible to direct a request to an attribute of the Class itself, rather than to an attribute of a specific instance within the class. This is done by using the **InstanceID** special value 0. **InstanceID** 0 is reserved to indicate a reference to the Class rather than to a specific instance.

UNIT	22600 Savi Ranch Parkway,	DOC. #	SPS	5-004-0004		REV C
INSTRUMENTS, INC.	Yorba Linda, California 92687	SHEET	11	of	48	

5.1 Common Services

All communication with the DCMFC is done by service requests, each addressed to a specific **MacID**, **ClassID**, **InstanceID**, **& AttributeID**. The DCMFC provides only 3 services -- Read, Write, and Monitor. Read and Write are directly comparable to DeviceNet's "Get Attribute Single" and "Set Attribute Single" services. Monitor is (very) roughly comparable to a DeviceNet I/O Connection.

There are no special-purpose service requests, such as "Init" or "select a gas table". This will permit reasonably direct migration to DeviceNet and SEMI compatible objects for Datacal or other software needing network access to the DCMFC.

5.2 Access Rights

Each Attribute definition lists the types of access permitted, selected from the following:

R	Read	Attributes for which a single value can be obtained over the network via the Read service.
M	Monitor	Attributes for which a stream of successive values, at the rate specified by the DeviceManagement class SampleRate attribute, can be obtained over the network via the Monitor service.
W	Write	Attributes which can be changed over the network at any time via the Write service.
С	Calibrate	Attributes which can be changed over the network at any time via the Write service, but which should not be changed except during calibration. Most users should treat such attributes as read-only. Changing them without a thorough understanding of the consequences can cause significant problems.
I	Initialize	Attributes which are password protected, and which should never be changed outside a Unit Instruments service facility.

\angle			
INSTR	UMEN	ITS, INC.	

DOC.#	SPS	SPS-004-0004		REV C
SHEET	12	of	48	•

5.3 Attribute Formats

The DCMFC communicates and stores attributes in several different formats. Each format is described separately below.

Several attributes are stored internally in a different format from that used for network access. This is indicated in the "Format (Internal)" column of an attribute description table. When this column is blank, the attribute is stored and communicated in the same format.

Format Name	<u>Description</u>
Text (TextN)	Text attributes are sequences of up to N printable ASCII characters. Within the DCMFC, strings shorter than the specified number of characters are indicated by a terminating ASCII NUL character appended to the string, though that character is not considered part of the string. When transmitted, only the number of characters actually present are sent. The terminal NUL (if present) is not sent.
	Note that this format differs from that specified by DeviceNet, which includes the string length as a discrete value within the structure. They are transmitted left-most character first.
Integer (IntN or UIntN)	Integers (IntN) are two's complement binary numbers with N bits to the left of the decimal point, and 0 bits to the right. N must equal 8, 16, 24, or 32 externally. They are transmitted least-significant byte first.
	Unsigned integers (UIntN) are unsigned binary numbers with N bits to the left of the decimal point, and 0 bits to the right. N must equal 8, 16, 24, or 32 externally. They are stored and transmitted least-significant byte first.
Fraction (UFractN)	Fractions are unsigned binary numbers, with 0 bits to the left of the decimal point, and N bits to the right of the decimal point. N must be 8, 16, 24, or 32. They are transmitted least-significant byte first.
	Since fractions have a decimal point just to the left of the most-significant bit, they can express values in the range [0 1).
	For example, the number 0.875, expressed as a Fract8 number, would be (in binary) 11100000.
Fixed Point (UFixedN.M)	Fixed point values are unsigned binary numbers, with N bits to the left of the decimal point, and M bits to the right of the decimal point. N + M must equal 8, 16, 24, or 32. They are transmitted least-significant byte first.
	For example, the number 1.875, expressed as a UFixed2.6 number, would be (in binary) 01111000.
Real (Real32 or UReal32)	Real values are IEEE-format 32-bit floating point numbers. They are transmitted least-significant byte of the mantissa first. They are never used directly, but may be converted to or from the internal floating point (FloatN or UFloatN) or other formats as needed. They are used for storage of information not used directly by the DCMFC, and as the network representation of a variety of attributes. A value specified as URealN is restricted to be equal to or greater than 0.

UNIT	22600 Savi Ranch Parkway,	DOC.#	SP	S-004-0004		REV C
INSTRUMENTS, INC.		SHEET	13	of	48	

5.4 Attribute Storage

Attributes are stored and calculated in a variety of ways, depending on what causes a change in value. The class descriptions to follow use several storage classes:

Storage Class	<u>Description</u>
ROM	Attributes with a fixed value, stored in read-only memory. These values cannot be changed without replacing the microprocessor.
EEPROM	Attributes stored in non-volatile memory. These values are initialized by the DCMFC during EEPROM initialization. They retain their value even if power is removed from the DCMFC. Except where also labeled Volatile, they are updated only in response to network service requests.
RAM	Attributes stored in volatile memory. These values are initialized by the DCMFC following a Reset, and updated only in response to network service requests.
Volatile	Attributes typically stored in volatile memory, and updated by the DCMFC during normal operation. Most cannot be changed over the network. Many can be monitored, providing a near-continuous stream of values calculated at the SampleRate .
Temporary	Attributes stored only in registers. These values are calculated as needed by the DCMFC during normal operation, and discarded after use. They cannot be changed over the network, but can be monitored.

	===	
INSTR	UMEN'	TS, INC.

DOC. #	SPS	S-004-0004		REV C
SHEET	14	of	48	•

6. Object Classes

Conceptually, the DCMFC is composed of 11 public classes:

Class Name	<u>Description</u>
Identity	Identifies the device to other devices on the network
NetworkManagement	Responsible for all communication over the network interface
DeviceManagement	Provides general information about the DCMFC's current status
ExtendedConfiguration	Provides information about the DCMFC's construction, capabilities, and manufacture
ReliabilityTimer	Maintains timers to track reliability & failure-analysis related cumulative time since manufacture, and maintains EEPROM copies of critical RAM variables.
Exception	Processes error flags from the other functional classes, and generates appropriate alarm/warning indicators for both the network and the Alarm output signal.
Calibration	Provides information for each Process gas for which the DCMFC is calibrated.
SurrogateGas	Provides information for each Surrogate gas with which the DCMFC has been calibrated.
FlowMeter	Converts A/D converter readings to a standardized indicated flow measurement.
FlowController	Converts Setpoint A/D converter readings, Valve Mode from the Valve Driver, and a variety of network variables, into a setpoint for the Valve Driver.
ValveDriver	Combines valve override requests from several sources to select the valve operating mode, and generates the signals actually required by the valve driver hardware.

This section describes the major attributes and operation of each class.

Private variables (those not accessible over the network) are described only where necessary to define or understand operation of the DCMFC.

\angle		
	$Z \setminus Z$	
INSTR	UMENT	ΓS, INC.

DOC.#	SPS-004-0004		REV C	
SHEET	15	of	48	

6.1 Identity Class (Class ID = 1)

The Identity class reports the type of device. It is used by external devices to select appropriate calibration algorithms, constants, etc. as needed for a particular device type. It is provided as a courtesy to external devices, and provides identifying information compatible with that provided by DeviceNet devices.

The DCMFC maintains exactly one instance of the Identity class.

6.1.1 Class Attributes

The Identity class provides no class attributes.

6.1.2 Instance Attributes

Attribute Name	Attribute ID	Access	Format	Storage		
Vendor	1 RI		UInt16	EEPROM		
Manufacturer ID code Instruments receives a						
ProductType	2	RI	UInt16	EEPROM		
Product Type code as assigned by the DeviceNet Developer's Group. Until the Developer's Group assigns a value for MFC/MFM devices, the value 0 is used to indicate "Generic Device".						
ProductCode	3	3 R I UInt16		EEPROM		
Product code as assign DCMFC from other Un						
Typical value: 203						
Revision	4	RI	UInt16	EEPROM		
Revision code as assigned by Unit Instruments. The least-significant byte is the major revision, and is limited to the range [0 127]. The most-significant byte is the minor revision.						
Typical value: 0						
ProductName 7 R I Text25 EEPROM						
Human-readable ident	ification string.					
Typical value: "UII DCI	Typical value: "UII DCMFC 203"					

6.1.3 Behavior

The Identity class stores and reports instance attribute values as defined above. Specific instance attribute values do not affect operation of the DCMFC in any way.

		DOC.
	22600 Savi Ranch Parkway,	
INSTRUMENTS, INC.	Yorba Linda, California 92687	SHEE

SP	REV C		
16	of	48	
		SPS-004-0004 16 of	10 10

6.2 NetworkManagement Class (Class ID = 3)

The NetworkManagement class is responsible for all communication over the network. The protocol used is described in section 8 below.

The DCMFC maintains exactly one instance of the NetworkManagement class.

6.2.1 Class Attributes

The NetworkManagement class provides no class attributes.

6.2.2 Instance Attributes

Attribute Name	Attribute ID	Access	<u>Format</u>	Raı Min	nge <u>Max</u>	<u>Storage</u>
MacID	1	R W	UInt8	0x20	0xEF	EEPROM / RAM

Address of this device on the network.

Initial value: 0x3F

Any Write with a value outside the valid range [0x20 .. 0xEF] will be rejected. Most installations should restrict this attribute to the range [0x20 .. 0x5F]

6.2.3 Behavior

The DCMFC responds to properly-formatted messages addressed to the specified **MacID**, or to **MacID** 0xFF. The DCMFC ignores messages addressed to any other **MacID**.

If two units on the RS-485 bus have the same **MacID** value, proper communication with either is likely to be impossible.

External devices should use caution when changing the **MacID** attribute value. If the external device misses the final ACK response from the DCMFC, it may be unaware whether or not the DCMFC has in fact changed its internal **MacID**. Further messages to the old **MacID** may go unanswered, because the DCMFC is waiting for messages addressed to the new **MacID**.

DOC.#	SP	SPS-004-0004		REV C
SHEET	17	of	48	

6.3 DeviceManagement Class (Class ID = 0x64)

The DeviceManagement class provides services common to MFC/MFM devices, as well as services which do not fit readily within one of the other available classes.

The DCMFC maintains exactly one instance of the DeviceManagement class.

6.3.1 Class Attributes

The DeviceManagement class provides no class attributes.

6.3.2 Instance Attributes

<u>Variable Name</u>	Attribute ID	Access	<u>Forn</u> <u>External</u>	<u>nat</u> Internal	<u>Ra</u> <u>Min</u>	nge <u>Max</u>	<u>Storage</u>
DeviceType	1	RI	Text10				EEPROM
Device Type							
	This value indicates whether the device is a mass flow controller (value "MFC") or a mass flow meter (value "MFM").						
StandardRevLevel	2	RI	Text9				EEPROM
This value indicates specs require a De							
DeviceManufacturer Identifier	3	R	Text30	Text21			ROM
Manufacturer's nan	ne			•			
Fixed value: "Unit I	nstrument	s Inc."					
ManufacturerModel Number	4	RI	Text15				EEPROM
Manufacturer's dev	ice model	number		•			
FirmwareRevision Level	5	R	Text5				ROM
	Device firmware revision level of the form "3.20" for production firmware, or "3x20" for developmental versions.						
HardwareRevision Level	6	RI	Text5				EEPROM
Device hardware re	Device hardware revision level – of the form "G".						
SerialNumber	7	RI	Text15				EEPROM
Device serial numb	Device serial number as assigned by Unit Instruments, and shown on the unit's label.						

_	44			=
			Ź	Z
INS	TRU	MEN	TS.	INC.

DOC.#	s	SPS-004-0004		SPS-004-0004		REV C
SHEET	18	of	48			

DeviceConfiguration RΙ Text30 **EEPROM** This value represents the basic device configuration in a compact form. Additional details required for calibration, etc. are available in the "Extended Configuration" classes described below. **FirmwareID** 0xA0 R Text15 ROM Indicates the firmware installed in the device. Fixed value: "MFC203" 0xA2 Real4 SampleRate R ROM This value indicates the nominal analog sample rate of the device in Hz. This is also the rate at which Monitor samples are produced. It is needed for calculating digital filter parameters. It is a fixed value of approximately 100.0, calculated from the design frequency of the crystal oscillator, and ignores any deviation of the oscillator frequency from its nominal value. **Note:** This value is likely to change in future devices and/or versions of the firmware. Calibration equipment or process tools should always use the actual value read from the unit in appropriate calculations, rather than simply assuming any particular value. Plus15 0xA4 RMUFract16 Voltage at the +15V power input pin, represented as an offset fraction in the range [0]. 1). A value of 0 corresponds to approximately -17.875V. A value of 1 corresponds to approximately +22.875V. Minus15 0xA5 RMUFract16 Temp Voltage at the -15V power input pin, represented as an offset fraction in the range [0 ... 1). A value of 0 corresponds to approximately -17.875V. A value of 1 corresponds to approximately +22.875V. R W **PetName** 0xA6 Text30 **EEPROM** User-provided name for the unit, for the convenience of application programs.

6.3.3 Behavior

The DeviceManagement class stores and reports instance attribute values as defined above. Specific instance attribute values do not affect operation of the DCMFC in any way.

4		44-	
=	===	==	=
<u></u>	727	177	Ž
INST	RUME	ENTS,	INC.

DOC.#	SP	SPS-004-0004		REV C
SHEET	19	of	48	

6.4 ExtendedConfiguration Class (Class ID = 0xA0)

The ExtendedConfiguration class provides storage for config data for use by external applications. It is intended to record information about original manufacture & calibration of the device, which may be needed during maintenance or recalibration.

The DCMFC supports 147 instances of the class. Each instance has only 1 attribute. Unlike all other classes, the format of instance attributes varies from one instance to another.

6.4.1 Class Attributes

Attribute Name	Attribute ID	<u>Access</u>	<u>Format</u>	<u>Storage</u>	
ecVariableSet	1	RI	UInt16	EEPROM	

Specifies the contents of the ecValue fields. A value of 0 specifies the parameter set described in Appendix A of this document. Other values indicate later revisions.

6.4.2 Instance Attributes for ecVariableSet = 0

Attribute Name	InstanceID	AttributeID	Access	<u>Format</u>	<u>Storage</u>			
CustomerNumber	121	1	RI	Text12	EEPRO M			
Customer's part number for the unit								
SalesOrderNumber	122	1	RI	Text12	EEPRO M			
Sales order number for th	ie unit							
Csrldentifier[4]	97 100	1	RI	Text8	EEPRO M			
Text strings identifying an	y CSRs incorp	orated in this u	ınit.					
SealMaterial	123	1	RI	Text12	EEPRO M			
Material used for the unit	s seals, such a	as "Teflon"						
SeatMaterial	124	1	RI	Text12	EEPRO M			
Material used for the valve seat, such as "Teflon"								
SurfaceFinish	9	1	RI	Float	EEPRO M			
Interior surface finish of the	ne block, as or	iginally manufa	ctured, in r	nicroinches				

_	_	<u>Z</u>	4 4	_		
		7		\equiv		
INS	TR	UM	EN.	TS	. INC.	

22600 Savi Ranch Parkway,	DOC. # SPS-004-0004				
Yorba Linda, California 92687	SHEET	20	of	48	

Attribute Name	InstanceID	AttributeID	Access	<u>Format</u>	<u>Storage</u>				
Note: this value is NOT g	Note: this value is NOT guaranteed or updated on refurbished or repaired units.								
ElectronicsType	58	1	RI	Text4	EEPRO M				
Type and revision of the u	ınit's electronic	s, such as "20	3A"						
Jet	59	1	RI	Text4	EEPRO M				
Identifier of the unit's valv	e jet, such as '	'2"							
Inlet	125	1	RI	Text12	EEPRO M				
Inlet pressure range, PSI	typically "10-3	0 PSIG"							
Exhaust	126	1	RI	Text12	EEPRO M				
Nominal exhaust pressure	e, typically "Atr	n"							
Attitude	60	1	RI	Text4	EEPRO M				
Mounting attitude for which the unit is designed, such as "VIU"									
ScreenMesh	25	1	RI	Ureal32	EEPRO M				
Filter mesh (in Wires/Inch) used at the N	MFC input.	•						

6.4.3 Behavior

The ExtendedConfiguration class stores and reports instance attribute values as defined above. Specific instance attribute values do not directly affect operation of the DCMFC.

4 4		
_ =	===	=
		Z
INSTR	UMENTS	, INC.

DOC.#	SP	SPS-004-0004		
SHEET	21	of	48	

6.5 ReliabilityTimer Class (Class ID = 0xA1)

The ReliabilityTimer class provides timers used to track total time since the device was manufactured of various conditions. Each instance of the class maintains one, 32-bit timer. The timers are initialized to zero when the firmware first initializes the EEPROM, incremented as needed, and (absent an exceptionally unlucky EEPROM or processor failure) never reset or decremented. Their primary use is to provide reliability data.

The DCMFC maintains 2 instances of the class.

Instance 1 tracks total time the unit has been powered up, and is incremented once per second whenever the unit is powered up.

Instance 2 tracks time the unit has been flowing a controlled amount of gas, and is incremented once per second whenever the valve is attempting to flow a controlled amount of gas -- i.e. is not in Off or Purge mode.

6.5.1 Class Attributes

The ReliabilityTimer class provides no class attributes.

6.5.2 Instance Attributes

Attribute Name	Attribute ID	<u>Access</u>	<u>Format</u>	<u>Storage</u>		
CumulativeTime	1	R	UInt32	EEPROM / Volatile		
Accumulated time, in seconds, from manufacture to the present.						
Sum of the privat	e variables eeTime	rSum and Time	rDelta below.			
TimerName	2	R	Text30	ROM		
Name of this timer instance.						
In the DCMFC, Instance 1: "Power On Time"						
In the DCMFC, Ir	nstance 2: "Controlle	ed Flow Time"				

DOC.#	SPS	S-004-0004		REV C
SHEET	22	of	48	

6.6 Exception Class (Class ID = 0x65)

The Exception class reports error conditions over the network and via the Alarm output signal, and shuts the MFC down when specified errors are detected.

The DCMFC maintains one instance of the class.

6.6.1 Class Attributes.

The Exception class provides no class attributes.

6.6.2 Instance Attributes

Variable Name	Attribute ID	Access	<u>Format</u>	<u>Storage</u>
Exceptions	0xA0	R W	UInt32	See description

This attribute consists of 32 error flags, each indicating a particular condition has been detected. Individual flags are described under Exception Flag Descriptions below.

A bit is set whenever the uP detects the corresponding error condition.

A Write to this attribute of a value with specific bits set will clear the corresponding bits of **Exceptions** -- i.e., if **Exceptions** reports the value 0x0003, and the value 0x0001 is written, **Exceptions** will return the value 0x0002 the next time it is read (assuming no additional exceptions are detected in the meantime). Note, however, that some errors are checked for only during initialization, and the corresponding bits may remain cleared even though the condition causing the exception is still present.

The high-order 16 bits of this value are also maintained in EEPROM, and are preserved through power failures.

AlarmMask	0xA1	1 R W UInt32		EEPROM	
This value specifies which conditions reported in Exceptions shall be considered "Alarms" and shut down the DCMFC, as described under "Behavior" below.					
WarningMask	0xA2	R W	UInt32	EEPROM	

This value specifies which conditions reported in **Exceptions** shall be considered "Warnings" and activate the **Alarm** output, as described under "Behavior" below.

\angle	
	TS, INC.

DOC.#	SP	S-004-0004		REV C
SHEET	23	of	48	

6.6.3 Exception Flags:

Exception	Bit	Description
Reset	0	Device has automatically reset after any error
azWarning	1	sensorCurrentZero has reached AutoZeroWarning . Device should be zeroed or re-calibrated.
azLimit	2	sensorCurrentZero has reached AutoZeroLimit. Device must be zeroed or re-calibrated.
BadTable	3	The selected Calibration instance linearization table is invalid. A default table, probably not good enough for any serious use of the DCMFC, is now in effect (generally indicates an EEPROM failure, an external application error, or a power failure during calibration).
Init	16	EEPROM contents were determined to be invalid (see Timer Set Selection), so the EEPROM has been completely initialized (see EEPROM Initialization) (generally indicates an EEPROM failure).
Comm	17	Communication routines have timed out waiting for a response from the service request processor (generally indicates an EEPROM failure).
BadConfig	21	One or more Configuration blocks in EEPROM has a CRC error (generally indicates an EEPROM failure, or a power failure during configuration at the factory)
BadCalParm	22	One or more Calibration blocks in EEPROM has a CRC error (generally indicates an EEPROM failure, a power failure during calibration, or a change in nSurrogateGasses without updating the new Calibration or SurrogateGas instances).
BadParm	23	Some EEPROM parameter is invalid (generally indicates an external application error, an EEPROM failure, or a power failure while changing an EEPROM parameter).
eeRead	24	An EEPROM read operation failed (generally indicates an EEPROM failure).
eeWrite	25	An EEPROM write operation failed (generally indicates an EEPROM failure).
eeVerify	26	An EEPROM verify operation failed (generally indicates an EEPROM failure).
Timer	27	A ReliabilityTimer block had a bad CRC (typically due to premature power failure during a timer block write. Generally indicates an EEPROM or switching power supply failure).

6.6.4 Behavior

22600 Savi Ranch Parkway, Yorba Linda, California 92687

The Exception class reports various abnormal conditions. **Exceptions** is a 32-bit value in which each bit represents a particular condition, as described above.

\mathbb{Z}		/
INSTR	UMEN.	

DOC.#	SP	SPS-004-0004		REV C
SHEET	24	of	48	

Exceptions is combined with two other attributes, **AlarmMask** and **WarningMask**, to determine how the DCMFC will behave when an exception is detected. **Exceptions** can cause activation of the Alarm output, shut down the MFC, or both.

If both an **Exceptions** bit and the corresponding **AlarmMask** bit are set, the DCMFC immediately returns the valve to its power-off condition.

Any bit set in **AlarmMask** should normally also be set in **WarningMask**.

If both an **Exceptions** bit and the corresponding **WarningMask** bit are set, the DCMFC activates the **Alarm** output signal, but otherwise continues to function normally.

The high-order 16 bits of **Exceptions**, used to report possible firmware or hardware problems, are maintained in EEPROM.

	4		144	
INIC		JMEN		INC
1113	111/6	, IAI (I.	ı ı J,	IIIC.

DOC.#	5	SPS-004-0004		REV C
SHEET	25	of	48	

22600 Savi	Ranch	Par	kway,
Yorba Linda,	Califor	nia	92687

6.7 Calibration Class (Class ID = 066h)

The Calibration class contains information needed by other classes for accurate flow measurement and control.

The number of instances available in a particular unit is **nProcessGasses**, described below.

Each Calibration instance contains values needed by the FlowMeter class to calculate the actual gas flow rate for a particular process gas and flow range from sensor readings. It also contains information about the both the process gas and surrogate gas for use during future re-calibration, and a reference to the appropriate SurrogateGas instance from which the operational parameters were calculated. Calibration instance attribute values are calculated from the corresponding SurrogateGas attributes, not measured directly.

6.7.1 Class Attributes

Attribute Name	Attribute ID	Services	<u>Format</u> <u>External</u> <u>Internal</u>		Range Min	<u>Storage</u>
CurrentCalibration	0x65	R W	UInt16	UInt8	1	EEPROM

This attribute selects which Calibration instance is to be used for flow metering.

If the specified instance does not exist, or has its **GasIdentifier** empty, writing to this variable has no effect.

nProcessGasses 0xA	R	UInt8	1	EEPROM
--------------------	---	-------	---	--------

This attribute indicates the available number of Calibration instances. It is calculated as needed from the amount of memory available and **nSurrogateGasses**. See the SurrogateGas class Behavior description below for further details.

6.7.2 Instance Attributes

22600 Savi Ranch Parkway,

Yorba Linda, California 92687

Attribute Name	Attribute ID	Services	<u>Format</u> <u>External</u> <u>Internal</u>		rnal Range Min Max		<u>Storage</u>
Gasldentifier	1	R C	Text15				EEPROM

When the process gas is one of those listed in SEMI E52-95, this attribute is the Symbol from E52-95 for that gas. For example, for Bromine Trifluoride, this attribute would be "BrF3".

When the process gas is not one of those listed in SEMI E52-95, or is a mixture, this attribute is a name chosen to uniquely identify that gas or mixture.

If this value is empty (""), the instance is considered to be available, other attributes of the instance will not be accessible, and it will not be possible to set **CurrentCalibration** to refer to the instance. It is not possible to set this value to empty if **CurrentCalibration** refers to

DOC.#	SPS-004-0004			REV C
SHEET	26	of	48	

	Attribute ID	<u>Services</u>	<u>For</u> External	mat Internal	Range <u>M</u>	Min ax	<u>Storage</u>					
the instance.												
FullScaleRange	2	RC	UInt16		1		EEPROM					
Full-scale range o	f the proce	ss gas. L	SB = 0.1 Flo	wUnits.								
FlowUnits	3	RC	Text8				EEPROM					
Engineering units	used to sp	ecify FullS	caleRange	typically	"slm" or "	sccm".						
ReferenceTemperature	4	R C	Int16				EEPROM					
Indicates the reference temperature used in defining FlowUnits . It is expressed as temperature in degrees Celsius, with an LSB of 0.1 C. For the semiconductor industry, this value is defined by SEMI E12 as 0 C, or a value of 0.												
ReferencePressure	5	R C	Int16				EEPRON					
minus 25 Pascal,	Indicates the reference pressure used in defining FlowUnits . It is expressed as pressure minus 25 Pascal, with an LSB of 100 Pa. For the semiconductor industry, this value is defined by SEMI E12 as 101.325 kPa, or a value of 1013.											
UserCalSpanMult	6	R W	Ufixed 2.14		0.9	3.0	EEPRON					
Span Adjustment algorithm. The DCMFC may reject any value outside the range (0.90 3.0) [14746 49152].												
UserCalZeroOffset	7	R W	Int16		-1,600	1,600	EEPROM					
Adjustment algorit	hm.						This is a user-supplied offset to be added to the normalized flow reading as part of the Span Adjustment algorithm.					
It is expressed as a percentage of full scale, with an LSB of 0.025%. Thus, the normal value of 0 corresponds to no user adjustment to the normal calibration data.												
value of 0 corresp		•	stment to the	e normal ca	alibration		ormal					
value of 0 corresponding The DCMFC may	reject any	value outs	stment to the	e normal ca je [-1600	alibration +1600].	data.						
value of 0 corresp	reject any lue other e removed re-zeroed low output	value outs than 0 i from a futu through us D/A or amp	stment to the ide the range is strongleure version is of the Ca	e normal ca ge [-1600 ly discou of the DCM librate attri	alibration +1600]. raged. FC. If the bute or sy	data. This attrile sensor havitch, or b	bute will nas drifted, y enabling					
value of 0 corresponders The DCMFC may Use of any value almost certainly be the unit should be auto zero. If the floaters	reject any lue other e removed re-zeroed low output	value outs than 0 i from a futu through us D/A or amp	stment to the ide the range is strongleure version is of the Ca	e normal ca ge [-1600 ly discou of the DCM librate attri	alibration +1600]. raged. FC. If the bute or sy	data. This attrile sensor havitch, or b	bute will nas drifted, by enabling ected by re					
value of 0 corresponded The DCMFC may Use of any value almost certainly be the unit should be auto zero. If the flocalibrating the Flori	reject any lue other e removed re-zeroed low output li w output ci	value outs than 0 if from a futuithrough us D/A or amprouitry. R	stment to the ide the ranging strongly ure version see of the Capilifier has different Text15	e normal ca ge [-1600 ly discou of the DCM librate attri rifted, that c	alibration +1600]. raged. FC. If the bute or st Irift shoul	This attril e sensor l witch, or b d be corre	bute will nas drifted, by enabling ected by re EEPROM					
value of 0 corresponded The DCMFC may Use of any valuation almost certainly be the unit should be auto zero. If the fluctalibrating the Flow SurrogateGasID Value, from the SurrogateGasID	reject any lue other e removed re-zeroed low output li w output ci	value outs than 0 if from a futuithrough us D/A or amprouitry. R	stment to the ide the ranging strongly ure version see of the Capilifier has different Text15	e normal ca ge [-1600 ly discou of the DCM librate attri rifted, that c	alibration +1600]. raged. FC. If the bute or st Irift shoul	This attril e sensor l witch, or b d be corre	bute will has drifted, by enabling ected by re EEPROM Dow, of					
value of 0 corresponded The DCMFC may Use of any valual almost certainly be the unit should be auto zero. If the flocalibrating the Flow SurrogateGasID Value, from the SusgGasIdentifier.	reject any lue other e removed re-zeroed low output ci w output ci 8 urrogateGa	value outs	ide the ranglis stronglis stronglure version as of the Ca olifier has districted by Text15	e normal carge [-1600 Iy discouply of the DCM Ilibrate attrictifted, that couply y Surrogat	alibration +1600]. raged. FC. If the bute or so drift shoul	This attrile sensor havitch, or bed be correctance belo	bute will has drifted, by enabling ected by re EEPROM DW, of					
value of 0 corresponded The DCMFC may Use of any value almost certainly be the unit should be auto zero. If the floalibrating the Flow SurrogateGasID Value, from the SusgGasIdentifier. DateCalibrated Value, from the SusgGasIdentifier.	reject any lue other e removed re-zeroed low output ci w output ci 8 urrogateGa	value outs	ide the ranglis stronglis stronglure version as of the Ca olifier has districted by Text15	e normal carge [-1600 Iy discouply of the DCM Ilibrate attrictifted, that couply y Surrogat	alibration +1600]. raged. FC. If the bute or so drift shoul	This attrile sensor havitch, or bed be correctance belo	bute will has drifted, by enabling ected by re EEPRON DW, of EEPRON					
value of 0 correspondent of the DCMFC may Use of any value almost certainly be the unit should be auto zero. If the floor calibrating the Floor SurrogateGasID Value, from the SusgGasIdentifier. DateCalibrated Value, from the SusgDateCalibrated	reject any lue other e removed re-zeroed low output li w output ci 8 urrogateGa urrogateGa dd. 0x0A urrogateGa	value outs than 0 if from a future through use D/A or amprecuitry. R s instance R s instance	stment to the ide the rangis strongly ure version as e of the Ca polifier has do Text15 aspecified by Text8 aspecified by Text6	e normal car ge [-1600 Iy discou of the DCM librate attri rifted, that co y Surrogat y Surrogat	alibration +1600]. raged. FC. If the bute or solarift shoul eGasInsi	This attrile sensor his witch, or bid be correctance below	bute will has drifted by enabling ected by re EEPRON DW, of EEPRON DW, of					

Value, from the SurrogateGas instance specified by **SurrogateGasInstance** below, of

\angle	
	TS, INC.

DOC.#	SP	SPS-004-0004		
SHEET	27	of	48	

22600 Savi Ranch Parkway, Yorba Linda, California 92687

Attribute Name	Attribute ID	Services	<u>For</u> <u>External</u>	mat Internal	Range M	Min ax	<u>Storage</u>
sgDateCalibration	nDue.						
CalibratedBy	0x0C	R	Text15				EEPROM
Value, from the SusgCalibratedBy.	Value, from the SurrogateGas instance specified by SurrogateGasInstance below, of						
CalibratedAt	0x0D	R	Text15				EEPROM
Value, from the SurrogateGas instance specified by SurrogateGasInstance below, of sgCalibratedAt .							
SurrogateGasInstance	0x16	R C	UInt8		1		EEPROM
InstanceID of the SurrogateGas instance used to derive the calibration parameters for this Calibration instance.							
ConversionFactorN2	0x17	RC	UReal32				EEPROM
Nominal conversion factor of the process gas to Nitrogen. For example, if the Process gas is Arsenic Pentafluoride, this attribute is approximately 0.332.							
ConversionFactor	0x18	RC	UReal32				EEPROM
Nominal conversion factor of the process gas to the specified surrogate gas. For example, if the Process gas is Arsenic Pentafluoride, and the Surrogate gas is SF6, this attribute is approximately 1.287.							

6.7.3 Behavior

The class attribute **CurrentCalibration** (defined above) selects a Calibration instance for use by the DCMFC.

\angle		_				
		3 3				
INSTRUMENTS, INC.						

DOC.#	SP	REV C		
SHEET	28	of	48	

22600 Savi F	Ranch Parkway,
Yorba Linda,	California 92687

6.8 SurrogateGas Class (Class ID = 0xA3)

The SurrogateGas class contains information needed for maintenance of the Calibration and SurrogateGas classes, and calibration data from actual measurements with specified surrogate gasses flowing through the device.

Each instance of the SurrogateGas class contains information about one gas with which the DCMFC has been calibrated, and which is needed to calculate attributes for any derived Calibration instances. Values are either properties of the gas, or have been calculated from direct measurements with the specified surrogate gas flowing. Instance attribute values are not used directly by the DCMFC.

The number of instances available in a particular unit is **nSurrogateGasses**, described below.

Other than the class attribute **nSurrogateGasses**, the SurrogateGas class is not used directly by the DCMFC; rather it provides default values for corresponding attributes in the Calibration class.

6.8.1 Class Attributes

Attribute Name	Attribute ID	<u>Access</u>	<u>Format</u>	Range (Min)	<u>Storage</u>
nSurrogateGasses	0xA0	R C	UInt8	1	EEPROM

This attribute indicates the available number of SurrogateGas instances. Changing it will affect **nProcessGasses**. Increasing it may delete high-numbered instances from the Calibration class. Decreasing it may delete high-numbered instances from the SurrogateGas class. See Behavior (below) for further details.

If the specified value is outside the allowable range, writing to this variable has no effect.

6.8.2 Instance Attributes

22600 Savi Ranch Parkway, Yorba Linda, California 92687

Attribute Name	Attribute ID	Access	External	Internal	<u>Max</u>	<u>Storage</u>
sgGasIdentifier	1	R C	Text15			EEPROM

When the surrogate gas is one of those listed in SEMI E52-95, this attribute is the Symbol from E52-95 for that gas. For example, for Bromine Trifluoride, this attribute would be "BrF3".

When the surrogate gas is not one of those listed in SEMI E52-95, or is a mixture, this attribute is a name chosen to uniquely identify that gas or mixture.

If this value is empty (""), the instance is considered to be available, and other attributes of the instance will not be accessible.

				7.	
		==		=	
		==		_	
	- 7	$\equiv \overline{}$	12	\geq	Ž
INS	TR	UME	ΕΝΤ	S.	INC.

	DOC.#	SPS-004-0004			REV C
•	SHEET	29	of	48	

Attribute Name	Attribute ID	Access	External	Internal	Max	<u>Storage</u>			
sgLinearization Range	2	R C	UReal32			EEPROM			
Linearization range of	the surrogate	e gas in sco	cm.						
sgReference Temperature	4	RC	Int16			EEPROM			
temperature in degree	Indicates the reference temperature used in defining sccm. It is expressed as temperature in degrees Celsius, with an LSB of 0.1 C. For the semiconductor industry, this value is defined by SEMI E12 as 0 C, or a value of 0.								
sgReferencePressure	5	R C	Int16			EEPROM			
The second indicates the reference pressure used in defining sccm. It is expressed as pressure minus 25 Pascal, with an LSB of 100 Pa. For the semiconductor industry, this value is defined by SEMI E12 as 101.325 kPa, or a value of 1013.									
sgDateCalibrated	9	R C	Text8			EEPROM			
Date the MFC was calibrated, in MMDDYY or MMDDYYYY format. Use of the 8-character date format is strongly recommended for all dates, and is mandatory for any date January 1, 2000 or later.									
sgTimeCalibrated	10	R C	Text6			EEPROM			
Time the MFC was ca	ibrated, in H	HMMSS (2	4-hour) form	nat.					
sgDateCalibrationDue	11	R C	Text8			EEPROM			
Date the MFC should 8-character date forma any date January 1, 20	at is strongly								
sgCalibratedBy	12	R C	Text15			EEPROM			
Name of the individual	who calibrat	ted the MF0	D .		•				
sgCalibratedAt	13	R C	Text15			EEPROM			
Name of the facility at	which the MI	FC was cal	ibrated.						
sgStandardID	0x1F	R C	Text15			EEPROM			
Identifier of the ROR of	r other refer	ence used	to calibrate t	he DCMFC					
sglnletPressure	0x20	R C	Real32			EEPROM			
Average inlet pressure	during calib	ration, in P	SI (Gauge).						
sgOutletPressure	0x21	RC	Real32			EEPROM			
Average outlet pressur	re during cali	ibration, in l	PSI (Gauge)).					

6.8.3 Behavior

22600 Savi Ranch Parkway, Yorba Linda, California 92687

A fixed area of EEPROM is shared between Calibration and SurrogateGas instances. The size of this area is dependent on the amount of memory installed, as is the possible number of instances in each class. Since the memory is shared between classes, changing the number of available

_	<u>_</u>		\angle			
		==		=		
INS	TRI	JME	ENT	ĪS.	INC.	

DOC	. #	SPS-004-000	4	REV C
SHE	ET 30	of	48	

instances in one will also change the number of available instances in the other.

Table 6.8.3.1. **nProcessGasses** for versions prior to 3.20:

		Number of EEPROMs				
		1	2	3*	4*	
	1	4	12	20	28	
	2	3	11	19	27	
	3	2	10	18	26	
	4	1	9	17	25	
nSurrogateGasses	5		8	16	24	
	6		7	15	23	
	7		6	14	22	
	8		5	13	21	
	9		4	12	20	

^{*} Not permitted prior to v3.17

Table 6.8.3.2. **nProcessGasses** for versions 3.20 & later:

			Number of	EEPROMs	
		1	2	3*	4*
	1	5	15	26	37
	2	4	14	25	35
	3	2	13	23	34
	4	1	12	22	33
nSurrogateGasses	5		10	21	31
	6		9	20	30
	7		8	18	29
	8		7	17	28
	9		5	16	26

				7	
			- ≡		
		7	77	$\bar{-}$	
INS	TRI	JMI	ĒN.	ĪS	INC.

DOC.#	SP	S-004-0004		REV C
SHEET	31	of	48	

6.9 FlowMeter Class (Class ID = 0x68)

The FlowMeter class is responsible for converting sensor measurements into true flow measurements, given a set of calibration parameters provided by the Calibration class.

The DCMFC maintains 1 instance of the class.

6.9.1 Class Attributes

The FlowMeter class provides no class attributes.

6.9.2 Instance Attributes

Attribute Name	Attribute ID	Access	<u>Form</u> External	<u>at</u> <u>Internal</u>	Ran Min	ige Max	Storage	
AutoZeroEnable	0xA5	R W	UInt8				EEPRO M / RAM	
If non-zero, enables the Auto Zero feature.								
AutoZeroDelay	0xA6	R W	UInt8		1		EEPRO M / RAM	
Represents the del Typically 90.	ay (in secor	nds) betw	een valve clos	ure and the	first Aut	o Zero	update.	
AutoZeroRate 0xA7 R W UReal32 UFloat8 1E-5 .01 EEPRO								
Rate multiplier cons	stant R nee	ded for th	e sensor zero	filter during	an auto	-zero o	peration.	

Rate multiplier constant R needed for the sensor zero filter during an auto-zero operation. Note that the zero filter is applied to ten samples per second during auto-zero.

Given the desired time constant in seconds, it is calculated as:

AutoZeroRate = 1 / (10 * desired time constant)

Typically 0.000122 (2^-13), => time constant = 819 seconds.

RequestedZeroRate	0xA8	R W	UReal32	UFloat8	1E-3	.1	EEPRO
							М

Rate multiplier constant R needed for the sensor zero filter during a requested zero operation.

Given the desired time constant in seconds, it is calculated as:

RequestedZeroRate = 1 / (SampleRate * desired time constant)

Typically $.00195 (2^-9)$, => time constant = 5.12 seconds).

SensorCurrentZero (0xA9	R	Ufract32				Volatile
---------------------	------	---	----------	--	--	--	----------

Equivalent to **SensorReferenceZero**, but is updated periodically by the auto-zero routines. It is subtracted from each Sensor measurement before use.

A copy of **SensorCurrentZero** is maintained in EEPROM by the ReliabilityTimer class (see

22600 Savi Ranch Parkway,	DOC.#	SP	S-004-0004		REV C
Yorba Linda, California 92687	SHEET	32	of	48	

Attribute Name	Attribute ID	Access	<u>Form</u> External	<u>lat</u> Internal	<u>Ra</u> <u>Min</u>	nge <u>Max</u>	<u>Storage</u>	
the eeSensorCurre	entZero priv	vate varia	ble).					
SensorReferenceZero	0xAA	RW	Ufract16				EEPRO M / Volatile	
The Sensor signal measured by the DCMFC A/D during a Zero operation (initiated either by the Calibrate* pin being grounded, or by the Calibrate attribute, calSensorZero bit being set). It is not updated during auto-zero operation. It represents the initial sensor offset voltage, and is the reference value for AutoZeroWarning and AutoZeroLimit operation.								
AutoZeroWarning	0xAB	R W	Ufract16				EEPRO M / RAM	
Represents the mag	•				Refere	nceZero	, above	
AutoZeroLimit	0xAC	R W	Ufract16				EEPRO M / RAM	
	Represents the maximum permissible magnitude of SensorCurrentZero minus SensorReferenceZero.							
NormalizedFlow	0xB9	RM	Ufract16				Volatile	
This is the normaliz FullScaleRange) It is a fraction nomin represents the rated	nally in the	range [0.2	25 0.75], whe		`		and 0.75	
Calibrate	0xBA	R W	UInt8				Volatile	
Indicates which inte variable initiates on automatically reset The bits are assign bit 0: calSens	e of the DC when the o ed as follow	MFC's integration of the contract of the contr	ternal calibration	on operation used bits sh	ns. The nould be	bit will be written	е	
				Sieu Zeio C	регацо		FERRO	
AutoCalibrate	0xBB	RW	UInt8				EEPRO M	
Indicates which internal calibration operations are to be performed when the user presses the Calibrate switch. When that occurs, this value is loaded into Calibrate and begins the scheduled calibration operations.								
RecoveryTimeout 0xC0 R W UInt16 1 25549 EEPRO M								
The sensor cooling time to allow the se mS) the valve shou is rounded to the ne	nsors to wa ld be shut o	ırm up. R down upoi	ecoveryTime n detection of	out specific	es the a ling. Th	mount o e value	f time (in specified	

is rounded to the nearest 100 mS, except that values from 1 to 49 mS are rounded up to 100 mS.

If this value is 0, the DCMFC will behave as though it were 2000.

This attribute did not exist prior to firmware version 3.15.

In firmware versions 3.15 and 3.16, this attribute is a UInt8, and is specified in tenths of a

DOC.#		SPS-004-0004		REV C
SHEET	33	of	48	

Attribute Name	Attribute ID	Access	<u>Form</u> External	nat Internal	<u>Ra</u> <u>Min</u>	nge <u>Max</u>	Storage
second.							
OverFlowTimeout	0xC2	R W	UInt16		0	2554	RAM

The time delay in mS before triggering an OverFlow recovery cycle. If the measured flow is significantly and continuously above normal range for this time, RecoveryTimer will be set to a value corresponding to 300 mS.

The value specified is rounded to the nearest sample interval, except that non-zero values less than one sample interval are rounded up to one sample interval.

If this value is 0, the DCMFC will behave as though it were 750.

This attribute did not exist prior to firmware version 3.17.

6.9.4 Behavior

Sensor Zero Filter 6.9.4.3.1

The DCMFC is able to correct for reasonably stable offsets in the gas flow sensor. It does this by subtracting a value, known as **SensorCurrentZero**, from each sensor measurement.

The DCMFC updates **SensorCurrentZero** under two conditions:

Requested Zero: 1.

22600 Savi Ranch Parkway,

When the **Calibrate** attribute's **calSensorZero** bit is set (either via request from an external application, or by closing the "Zero" switch on the DCMFC circuit board), the FlowMeter switches the ValveDriver to the Off state, and waits until **AutoZeroDelay** seconds have elapsed.

The FlowMeter updates **SensorCurrentZero** using RequestedZeroRate for each succeeding sample for 30 seconds.

The FlowMeter sets **SensorReferenceZero** equal to **SensorCurrentZero**, and saves both in non-volatile memory (updating CRCs A/R) for later use. SensorCurrentZero is used for further operation, and both can be retrieved by external applications as needed. It then clears the calSensorZero bit to indicate the operation has been completed.

Note that the actual gas flow must have been truly zero long enough for the sensor output to stabilize (preferably 90 seconds or longer) BEFORE beginning the requested zero operation, and for the entire duration of the operation. IT IS THE USER'S

I	DOC.#		SPS-004-0004		REV C
,	SHEET	34	of	48	

RESPONSIBILITY to ensure this condition is met. Failure to do so may lead to radical flow measurement errors.

2. Auto Zero:

The DCMFC begins counting time when all of the following apply:

- a. AutoZeroEnable is non-zero
- b. **AutoZeroDisable*** input is not active
- c. The DCMFC is in Off mode

After all pre-conditions have been true for a specified delay (**AutoZeroDelay**), the DCMFC sets **AutoZero** to initiate a single auto zero operation ten times per second. The DCMFC clears **AutoZero** after each auto zero filter operation has occurred.

So long as **AutoZero** remains set, the DCMFC updates **SensorCurrentZero** using **AutoZeroRate** for each sample.

SensorCurrentZero is a 32-bit fraction, updated as needed using the equation:

SensorCurrentZero = SensorCurrentZero + (SensorScaled - SensorCurrentZero) * Zrate

where

Zrate is RequestedZeroRate (typically 2^-9) for commanded zero,

or AutoZeroRate (typically 2^-13) for auto-zero.

During auto-zero calculations, SensorCurrentZero is strictly limited to the range [SensorReferenceZero - AutoZeroLimit .. SensorReferenceZero + AutoZeroLimit]. If SensorCurrentZero reaches either limit during auto-zero calculations, the DCMFC will declare an AutoZeroLimit exception, typically activating the Alarm output. This limit does not apply to zero measurements made as a result of a requested-zero operation.

If | SensorCurrentZero - SensorReferenceZero | exceeds
AutoZeroWarning, the DCMFC will declare an AutoZeroAlarm

		=				
5		= 7		=		
	/					
INIC	TR	ши	ΕΝΊ	LS.	INIC	
1113		UIVI	_ 13 1	J	HAC.	

22600 Savi Ranch Parkway,	DOC. # SPS-004-0004				
Yorba Linda, California 92687	SHEET	35	of	48	

exception, typically activating the **Alarm** output. This limit applies to both auto-zero and requested-zero operations.

The ReliabilityTimer class saves a copy of **SensorCurrentZero** in non-volatile memory (see the ReliabilityTimer class **eeSensorCurrentZero** private attribute).

6.9.4.5 Sensor Cooling Detection

The thermal mass flow detector used with the 203 board becomes very non-linear at high flow rates, with output actually decreasing with increasing flow, because of sensor cooling. When this happens it is not possible to make any rational measurement of true gas flow rate.

Typically this happens when the valve is wide open and an adequate pressure differential exists across the MFC. This can happen when the unit is put into purge mode, or when the unit is in flow mode and there is initially not enough pressure differential to provide the requested amount of gas, and then pressure increases suddenly. This can lead to flow rates orders of magnitude beyond the measurement capability of the sensor. The normal control loop will not recover from this situation unaided.

Code was added in v3.15 to detect this situation, and automatically initiate a recovery cycle at the appropriate time.

Prior to firmware v3.17, **RecoveryTimeout** was a UInt8 in tenths of a second, rather than a UInt16 in mS.

6.9.4.6 Flow Over-Range Detection

The DCMFC monitors the indicated flow for out-of-range conditions which can lead to poor recovery from sudden pressure increases, etc. It does this by monitoring both **LinearizedFlow** and **NormalizedFlow**. If either signal continuously exceeds a value ~ 145% of rated flow for the time specified by **OverFlowTimeout**, it triggers a recovery cycle of 200 mS minimum.

This capability did not exist prior to firmware v3.17.

				1 🖊		
		<u> </u>				
		3				
	=	<u> </u>	\mathbf{Z}			
INS	TR	UM	ΕN	TS	INC.	

DOC. #	SP	S-004-0004		REV C
SHEET	36	of	48	

6.10 FlowController Class (Class ID = 0x69)

The FlowController class is responsible for generating a single **CurrentSetpoint** value acceptable to the ValveDriver class. **CurrentSetpoint** is dependent on **RawSetpoint** from the A/D converter, and on several instance attributes which can be set digitally by the process controller.

The DCMFC maintains 1 instance of the class.

6.10.1 Class Attributes

The FlowController class provides no class attributes.

6.10.2Instance Attributes

Attribute Name	Attribute ID	Access	Format Inter	External nal	Raı Min	nge <u>Max</u>	<u>Storage</u>
ControlMode	3	R W	UInt8	UInt2	1	2	RAM

Determines whether the DCMFC is to accept setpoints from the A/D converter, or from the network.

A value of 1 (CM_Digital) indicates NewSetpoint values received over the network are to be used.

A value of 2 (**CM_Analog**), indicates **CalibratedSetpoint** values from the Shared A/D converter are to be used.

DefaultControlMode	4	R W	UInt8	UInt2	1	2	EEPROM		
Value to be used for ControlMode after any reset.									
FreezeFollow	5	R W	UInt8	UInt1			RAM		

This variable permits the master to send setpoints to several DCMFCs, then have all controllers change to their new setpoints at the same time.

A value of 0 (**FF_Freeze**) indicates **CurrentSetpoint** is to be frozen, and any new setpoints from the network will only affect **NewSetpoint**.

A value of 1 (**FF_Follow**) indicates **CurrentSetpoint** is to track **NewSetpoint**. Any new setpoints from the network are to immediately update **CurrentSetpoint**.

Unless ControlMode = CM_Digital, the controller ignores FreezeFollow.

CalibratedSetpoint	0xA3	RM	UFract16		Temp
CalibratedSetpoint	UXA3	RM	UFract16		ı emp

Setpoint from the A/D converter, adjusted for circuitry gain & offset errors. It is a fraction, nominally in the range [0.25 .. 0.85], where 0.25 represents 0 flow, and 0.75 represents 100% of full scale.

Represents a setpoint received from the network, to be used as described under "Digital Setpoint Algorithm" below, and under the **ValveOverride** instance attribute of the **ValveDriver** class below. It is an offset binary fraction nominally in the range [0.25 ...

	\mathbb{Z}		
		\equiv	
INS	 UME		INC.

22600 Savi Ranch Parkway,	DOC.#	SP	S-004-0004		REV C
Yorba Linda, California 92687	SHEET	37	of	48	

Attribute Name	Attribute ID	Access	Format Inter	External nal	Raı Min	nge <u>Max</u>	<u>Storage</u>
0.85], where a value	0.85], where a value of 0.25 represents 0 flow, and 0.75 represents 100% of rate				ited flow.		
CurrentSetpoint	0xA5	R	UFract16				RAM

Represents the current setpoint, either from the A/D converter or from the network, before application of any soft-start or soft-stop ramps. It is an offset binary fraction nominally in the range [0.25 .. 0.85], where a value of 0.25 represents 0 flow, and 0.75 represents 100% of rated flow.

TurnOnDelay	0xA6	R W	UInt16		1	25549	EEPROM
-------------	------	-----	--------	--	---	-------	--------

TurnOnDelay specifies the amount of time (in mS) the valve should wait before switching from Off to Flow. The value specified is rounded to the nearest 100 mS, except that values from 1 to 49 mS are rounded up to 100 mS.

This permits graceful turn-on in tools which do not wait for supply gas pressure to stabilize before attempting to flow gas. **TurnOnDelay** should be long enough for the supply gas to reach perhaps 90% of final pressure.

This attribute did not exist prior to firmware version 3.17, or in firmware version 3.20.

6.10.3 Behavior

The DCMFC algorithms all use a setpoint represented by an unsigned fraction where 0.25 represents 0% flow (0.000 V at the analog Setpoint input), and 0.75 represents 100% of rated flow (5.000 V at the analog Setpoint input).

6.10.3.2 Digital Setpoint Algorithm

The MFC setpoint can come from either the analog Setpoint input, or from a request over the serial port. When **ControlMode** is 1 (**CM_Digital**), the DCMFC ignores the analog setpoint input in favor of the digital input. **ControlMode** defaults to **DefaultControlMode** after a reset. It can be changed to **CM_Digital** by a specific request over the network. It will also be changed automatically to **CM_Digital** whenever the DCMFC receives a **NewSetpoint** value via the network.

The DCMFC maintains 2 setpoint values in RAM. One is **NewSetpoint**, which can be set and read over the network. The other is **CurrentSetpoint**, which represents the value in use at any given moment.

When **ControlMode** is set to **CM_Analog**, **CurrentSetpoint** follows **CalibratedSetpoint** calculated from the A/D converter value.

When **ControlMode** is set to **CM_Digital** and **FreezeFollow** is set to **FF_Freeze**, **CurrentSetpoint** does not change.

22600 Savi Ranch Parkway,	DOC.#	SF	PS-004-0004		REV C
Yorba Linda, California 92687	SHEET	38	of	48	

When **ControlMode** is set to **CM_Digital** and **FreezeFollow** is set to **FF_Follow**, **CurrentSetpoint** follows **NewSetpoint**.

Under some conditions, the ValveDriver class uses **NewSetpoint** independently from **CurrentSetpoint**.

6.10.3.3 Turn-On Delay Algorithm

TurnOnDelay specifies the amount of time (in mS) the valve should wait before switching from Off to Flow. The value specified is rounded to the nearest 100 mS, except that values from 1 to 49 mS are rounded up to 100 mS.

This permits graceful turn-on in tools which do not wait for supply gas pressure to stabilize before attempting to flow gas. **TurnOnDelay** should be long enough for the supply gas to reach perhaps 90% of final pressure.

Whenever the unit is in Off mode, except when due solely to a recovery cycle in progress, the DCMFC triggers a recovery cycle at least equal to **TurnOnDelay** minus 100 mS.

This attribute did not exist prior to firmware version 3.17, or in firmware version 3.20.

	4		144	
INIC		JMEN		INC
1113	111/6	, IAI (I.	ı ı J,	IIIC.

DOC. #	SPS	S-004-0004		REV C
SHEET	39	of	48	

6.11 ValveDriver Class (class ID = 0x6A)

The ValveDriver class is responsible for all hardware involved in controlling the valve driver.

The DCMFC maintains 1 instance of the class.

6.11.1 Class Attributes

The ValveDriver class provides no class attributes.

6.11.2Instance Attributes

Attribute Name	Attribute ID	Access	<u>Format</u> <u>External</u> <u>Internal</u>		<u>Storage</u>
ValveOverride	1	R W	UInt8	UInt4	RAM

This is the valve operating mode requested via the network. It has the following values:

OR_Flow = 0 => Flow control mode

OR_Off = 1 => Valve should be closed

OR_Purge = 2 => Valve should be completely open

OR_PwrOff = 3 => Set to power off state

OR_PwrOff is a transient condition -- it is immediately translated to **OR_Off** in a normally closed valve, or to **OR_Purge** in a normally open valve.

ValveType	0xA0	RI	UInt8	UInt2	EEPROM
					/ RAM

ValveType indicates the type of valve used in this MFC. A value of 1 (**VT_Closed**) indicates a Normally-Closed valve is attached. A value of 2 (**VT_Open**) indicates a Normally-Open valve is attached. A value of 0 (**VT_None**) indicates no valve is attached.

OverrideMode	0xA1	R W	UInt8	UInt1	EEPROM

OverrideMode determines how the Override (J) pin is to be interpreted. A value of 1 (**OR_Semi**) means the Override is to be interpreted per SEMI 2253 specs. A value of 0 (**OR_Unit**) means the Override pin is to be interpreted per traditional Unit Instruments definition.

AutoShutOffThreshold	0xA2	R W	UFract16	EEPROM
				/ RAM

This value, in the range [0.25 .. 0.5), represents the lowest setpoint which the DCMFC will treat as valid. Any setpoint below this value will be treated as though the J-pin had been grounded.

Threshold is in the same units as the DCMFC's internal **CalibratedSetpoint** signal. Thus, a Threshold of 0.2575 corresponds to an external setpoint of 1.5%.

			\angle		
		_		_	
	_	_	_		
1	//		\angle		
INIO	TOI		LITO		
INS	TRU		N I S	INC	
1110	1110		110	'. IIIV.	

22600 Savi Ranch Parkway,	DOC.#	SP	S-004-0004		REV C
Yorba Linda, California 92687	SHEET	40	of	48	

Attribute Name	Attribute ID	Access	<u>Forr</u> External	nat Internal	<u>Storage</u>
SoftStartRate	0xA4	RW	UFract16		EEPROM / RAM

Represents the maximum increase permitted in **FilteredSetpoint** per sample interval. It is equal to half the desired increase in % of full scale -- i. e., a value of 0.01 represents a change in setpoint of 2% per sample interva. A value greater than 0.5 effectively disables this feature.

It is calculated as:

1 / (2 * SampleRate * desired ramp time in seconds)

FilteredSetpoint	0xA6	RM	UFract16		Volatile		
This is the CurrentSetpoint, after any SoftStartRate, SoftPurgeRate, or other limits							
have been applied. It is a fraction nominally in the range [0.25 0.75], where 0.25							

represents 0 flow, and 0.75 represents rated flow.

LssEnable	0xA7	R W	UInt8	UInt1	EEPROM / RAM
If non-zero, enables the Lo					

EEPROM mfcFilterGain 0xA8 R W UFract16 / RAM

Filter constant for normalized flow to be used for display purposes only - typically 0.200. This value is the reciprocal of the time constant (in sample intervals) applied to mfcOut. It should be calculated as:

mfcFilterGain = 1 / (Tc * SampleRate)

where Tc is the desired time constant.

mfcOut	0xA9	R	UFract16		RAM	
Filtered signal of normalized flow.						
ValveVoltage	0xB6	RM	UFract16		Temp	

This value is the valve drive current, as measured by the Shared A/D. It is a fraction, nominally in the range [0 .. 0.5).

6.11.3 Valve Driver Private Variables

Variable Name	<u>Storage</u>	<u>Format</u>
ValveMode	RAM	UInt

Represents the mode in which the valve is currently operating. It can take on 5 values: VM_Flow, VM_Off, VM_Purge, VM_DaCalibrate, and VM_SensorTune

\angle	\angle	ZA		_	
		#		\equiv	
INS	TRI	- :	ĒN.	ΓS	i. INC.

DOC. #	SP	SPS-004-0004			
SHEET	41	of	48		

22600 Savi Ranch Parkway, Yorba Linda, California 92687

6.11.4Behavior

6.11.4.1 Auto Shut-Off Algorithm

Auto Shut-Off prevents the DCMFC from continuously attempting to pass a small amount of gas because of minor uncorrected ground differences between the process controller and the DCMFC, and from attempting to control gas flow outside its designed control range. It does this by comparing **CurrentSetpoint** with a programmable **AutoShutOffThreshold** (typically about 1.5% of rated flow). If the **CurrentSetpoint** is below the threshold, the DCMFC assumes the process controller wants the valve completely closed.

6.11.4.3 Override Pin Algorithm

The Override pin (or J-pin) can be used in 2 modes -- Unit Instruments and SEMI -- selected by the **OverrideMode** attribute.

In Unit Instruments mode, when the Override pin is left open or pulled high the valve should control flow normally. When the Override pin is pulled low, the valve should be fully closed.

In SEMI mode, when the Override pin is left open or pulled to ground, the valve should control flow normally. When the Override pin is pulled to +15V, the valve should be fully open. When the Override pin is pulled to -15V, the valve should be fully closed.

Override Pin Voltage	OrMode = OR Unit	OrMode = OR SEMI
-16.54.85	Closed	Closed
-4.85 +1.67	Closed	Control Flow
+1.67 +5	Control Flow	Control Flow
+5 +16.5	Control Flow	Purge

6.11.4.4 Valve Mode Algorithm

The valve driver module operates in several modes:

<u>ValveMode</u>	<u>Description</u>
VM_Flow	Setpoint and Flow D/As directly represent desired setpoint and measured flow values.
VM_Off	Valve is fully closed. Flow D/A represents measured flow, limited to [-3 120%] of full-scale. Setpoint D/A represents

_	$\angle \angle \angle$	7 💆		
=	== 7	==		=
£		\sqrt{Z}	\geq	\overline{Z}
INST	RUM	IENT	ΓS, I	NC.

22600 Savi Ranch Parkway,	DOC.#	SP	S-004-0004		REV C
Yorba Linda, California 92687	SHEET	42	of	48	

	valve current a little before the valve will begin to open, calculated by the Low Setpoint Speed-Up algorithm.
VM_Purge	Valve is fully open. Flow D/A represents measured flow, limited to [-3 120%] of full-scale. Setpoint D/A is at a value which drives the valve fully open, dependent on both measured flow and the ValveOverdrive attribute.

The mode selected depends on several factors, applied in the following order:

<u>Factor</u>	<u>ValveMode</u>
ValveType = VT_None	VM_Flow
Exceptions::Alarm = 1	VM_Off
and ValveType = VT_Closed	
Exceptions::Alarm = 1	VM_Purge
and ValveType = VT_Open	
FlowMeter::Calibrate.calSensorZero = 1	VM_Off
Override pin => "Closed"	VM_Off
Override pin => "Open"	VM_Purge
ValveOverride = OR_Off	VM_Off
ValveOverride = OR_Purge	VM_Purge
CurrentSetpoint < AutoShutOffThreshold	VM_Off
CurrentSetpoint >= 122%	VM_Purge
Recovery cycle in progress	VM_Off
otherwise	VM_Flow

SPS-004-0004			
48			
	48		

8. Communication Protocol

The DMFC acts as a slave device on an RS-485 multidrop bus. It continually listens for requests from the master device, processes requests addressed to it, and sends replies as needed.

The protocol described here is designed to provide a programming interface as similar as practical to that which will be required by the SEMI E54.4-0997 Sensor/Actuator Communication Standard. It is intended as an interim step on the way to SEMI E54.4-0997, and is NOT intended to coexist with that protocol or electrical interface on the same bus.

Data on the bus is carried as a series of 8-bit bytes, each transmitted in standard asynchronous serial format with a leading start bit, 8 data bits (LSB first), and a single trailing stop bit (no parity) at 9600 baud.

Each device on the bus has a unique address. By definition, the bus master is address 0. DCMFCs have addresses in the range 0x20 (32) through 0xEF (239)., though most systems should restrict the assigned addresses to the range 0x20 through 0x5F. Address 0x00 is reserved for the bus master. Address 0xFF (255) is the broadcast address for requests addressed to all slaves on the bus. Addresses 0x01 through 0x1F are reserved for bus control characters, such as ACK (0x06) and ENQ (0x05). Addresses 0xF0 through 0xFE are reserved for future use.

The broadcast address cannot be used if there is more than one slave device on the bus. It is only necessary when changing the address of a device, or when querying a device with an unknown address.

Messages on the bus are sent as packets with a fixed format. Each packet begins with the target device address, an STX character (0x02), a service code (0x80 to 0x82), and a data byte count between 2 and 33 (inclusive). Each packet ends with a pad byte of 0, and a 1-byte checksum which is the sum of all of the bytes in the communication packet, other than the device address byte, modulo 256. The checksum calculation discards the carry from the byte summation calculation.

Note: A future version of the DCMFC firmware is likely to permit much longer packets. Anyone writing drivers or application software for the DCMFC, particularly anyone using the Monitor service, should allow buffer space for data byte counts of up to 255.

Devices on the bus distinguish addresses from other characters by maintaining an idle timer. This timer is started at the end of each received character, and expires if another character does not arrive within two character times (20 bit times). If the timer expires, the device assumes the message has ended, and the next character received will be either a target address, or a response indicating acceptance of the previous message. Thus, it is vital that devices on the bus not insert idle gaps of 1

22600 Savi Ranch Parkway, Yorba Linda, California 92687

_	4	<u> </u>		4		
		를 ፣		\equiv		
INS	TR	ŪΜ	EN.	TS	. INC.	

DOC.#	SP	SPS-004-0004		
SHEET	44	of	48	

character time or more within a packet, as the following character could then be misinterpreted as a target address. A target device can also assume an error has occurred if a new character is expected and does not arrive within 2 character times of the preceding character's arrival.

Each transaction on the bus begins when the master transmits a request packet on the bus, following an idle gap of at least 1 character time. Slave devices ignore the packet unless all of the following are true:

- A. The first byte of the packet either matches the slave's address, or is 0xFF.
- B. The second byte of the packet is STX (0x02).
- C. The third byte of the packet is a valid service code.
- D. The fourth byte of the packet, plus 6, is equal to the total number of bytes received.
- E. The Pad byte is 0.
- F. The Checksum byte matches the checksum calculated for the received packet.

The specified slave device replies quickly with an ACK character (0x06) to indicate it has received the packet correctly. This response will begin no less than 2 nor more than 4 character times after the end of the packet.

If the master receives no response within 5 character times after the end of the message, the master should assume that the slave will never respond, and either re-send the packet, or abort the operation, as appropriate.

If the master receives any initial response other than an ACK character, it should wait for either some further response (which should be discarded) followed by a gap of at least 2 character times, or no further response for at least 100 mS. In either case, it should then either re-send the packet, or abort the operation, as appropriate.

If the master receives an initial response of ACK, it should wait for up to 100 mS for the remainder of the response to begin. If it receives no further response, or the additional response appears invalid (see below), it should either re-send the packet, or abort the operation, as appropriate..

After the message has been processed, the slave sends an additional ACK or NAK (0x16) character, or one or more reply packets, as required for the specific service request.

	22600 Savi Ranch Parkway,
INSTRUMENTS, INC.	Yorba Linda, California 92687

DOC.#	SI	SPS-004-0004		
SHEET	45	of	48	

Reply packets are structured identically to the request packets, except that the target address is 0 (since they are destined for the bus master). The service code is the same as the service code in the original request.

The bus master responds to each reply packet with either an ACK if the service was not Monitor or if it wishes no more monitor data, or an ENQ (0x05) character if it wishes further Monitor data.

If the slave does not receive any response within a reasonable time (currently 18 to 20 character times) after sending a message, it behaves as though it received an ACK.

If a slave receives an invalid response, it behaves as though it received an ACK, and assumes the invalid character is the target address for a new message.

The master waits for at least 2 character times following the final response packet, then begins the next transaction on the bus.

Binary values are always transmitted LSB first. Text values are transmitted left-most character first.

8.1 Service requests

The DCMFC understands 3 service requests, received over the RS-485 bus:

- Read
- Write
- Monitor

Each service is described separately below.

Each service interaction begins with a request packet containing the Service Code in byte 3.

8.1.1 Read

The Read request is a standard 9-byte packet containing:

byte 3 =Service Code (0x80)

byte 5 = Class ID

byte 6 = Instance ID

byte 7 = Attribute ID

22600 Savi Ranch Parkway,	DOC. #	SP	S-004-0004		REV C
Yorba Linda, California 92687	SHEET	46	of	48	

DCMFC responds immediately with an ACK character indicating it has correctly received the message, and will process it as appropriate.

When the requested value becomes available (after reading from EEPROM, etc.) the DCMFC sends a standard N-byte reply packet containing:

byte 3 = Service Code (0x80)

byte 5 = Class ID

byte 6 = Instance ID

byte 7 = Attribute ID

bytes 8 .. N-2 = variable value

The master responds with an ACK to indicate it has correctly received the packet.

If the Class, Instance, or Attribute ID is invalid, the DCMFC responds with a NAK character rather than the normal response packet.

8.1.2 Write

The Write request is a standard N-byte packet containing:

byte 3 = Service Code (0x81)

byte 5 = Class ID

byte 6 = Instance ID

byte 7 = Attribute ID

bytes 8 .. N-2 = variable value

The DCMFC responds with an ACK character indicating it has correctly received the message, and will process it as appropriate.

After the DCMFC has finished processing the message, it sends either an ACK or NAK character to indicate success or failure. A NAK response may indicate an invalid Class, Instance, or Attribute ID, an invalid value, or an error while attempting to save a value in EEPROM.

8.1.3 Monitor

The Monitor request is a standard 9-byte packet containing:

22600 Savi Ranch Parkway,		DOC.#	SP	S-004-0004		RE'
INSTRUMENTS, INC.	Yorba Linda, California 92687	SHEET	47	of	48	

byte 3 = Service Code (0x82)

byte 5 = Class ID

byte 6 = Instance ID

byte 7 = Attribute ID

The DMFC responds immediately with an ACK character indicating it has correctly received the message, and will process it as appropriate.

If the Class, Instance or Attribute ID is invalid, the DMFC responds with a NAK character rather than the normal response packet.

When the requested value becomes available, the DMFC sends a standard N-byte reply packet containing:

byte 3 = Service Code (0x82)

byte 5 = Class ID

byte 6 = Instance ID

byte 7 = Attribute ID

bytes 8 .. N-2 = variable values

Each response message contains one to 15 samples of the requested variable, as the DCMFC sees fit.

The master responds with an ENQ to indicate it has correctly received the packet and wishes additional samples. The master responds with an ACK if it wishes no additional samples.

= =		
INSTR	UMENTS, INC.	

DOC.#	SPS-004-0004			REV C
SHEET	48	of	48	