Ambers - TDRS

NOMES	RMs
Aline Triñanes Machado	RM 84449
Gabriel Garcia Pereira	RM 86288
Gabriel Franham	RM 80483
Helouíse Cristina de Almeida Itokazo	RM 85110
Jonas Muniz de Souza	RM 84575
Matheus Monteiro da Silva	RM 83560

Entrega do Disrupt 21 – AI & Chatbot

Novembro 2020/ São Paulo Prof. Marcelo Grave

Ambers - Back to the Future — Inteligência Artificial

Motivação

O desafio Disrupt21 tem como missão melhorar a experiência do usuário com o filme. Pensou-se em possíveis questões para atuar com inteligência artificial, e percebeu-se que de fato as viagens do personagem Marty McFly são as questões mais intrigantes no filme, logo, algo deveria ser pensado relacionado a elas, que neste primeiro filme se deram em um DeLorean e em um Ford 1946.

Conceito

Como o meio de transporte pode ser variável, pensou-se em não se trabalhar diretamente com ele, mas na criação de um modelo de Machine Learning que auxiliasse a compreensão da utilização de um determinado tipo de combustível para gerar a potência necessária.

Desta forma, a squad implementará um algoritmo voltado para a principal demanda do carro do filme, que para atingir a velocidade de 140 km/h a partir do repouso, precisou de um combustível para gerar a quantidade de potência necessária – 1.21gigawatts.

É sabido que há uma série de combustíveis no planeta, com as mais variadas características, positivas e negativas, o que torna necessário uma pesquisa a fundo, com levantamento de dados e uma comparação acurada para pondera-las, decidindo então qual é o melhor combustível adequado para o caso estudado.

Modelo e variáveis escolhidas

O conceito então foi trabalhado em um algoritmo SVM, que classificará se um combustível é adequado ou não para levar a energia necessária ao motor do carro escolhido, e o que possuir os menores resultados, será o ideal. Para a realização do modelo serão considerados teste com as diferentes variáveis:

- seu preço pois viabilidade econômica é muito importante;
- raridade do produto oferta no mercado para que o usuário não precise roubar terroristas sempre;

- quantidade de massa que acrescentará sobre a máquina para seu funcionamento entre a própria massa do combustível e ou suporte para capatálo/armazená-lo;
- volume de resíduo liberado pós-consumo pensando em como trabalhar com esta questão;
- toxidade do resíduo liberado pós-consumo para gerar um compartimento e não intoxicar usuários, além de buscar destino certo;
- se é renovável ou não (100% ou 0%) para não afetar em demasiado a natureza;
- se é inflamável ou não (100% ou 0%) então há necessidade de conter em compartimento específico;
 - risco de explosão ao manuseio para poder tornar seu manuseio seguro;
- tempo que a máquina demanda para consumi-lo e chegar à aceleração necessária para a viagem;
- tempo de validade há combustíveis que com o tempo perdem sua capacidade.

Após definição de porcentagem de treino e teste, e utilização de diferentes tipos de Kernels, o modelo será avaliado com matriz de confusão, para analisar quais resultados foram positivos, negativos, falsos positivos e falsos negativos. Haverá a utilização de normalização e acurácia para analisar a fração de previsões corretas relacionadas ao conjunto de teste num primeiro momento, e caso as distribuições entre as classes não estejam bem balanceadas, as métricas de precisão e revocação serão utilizadas para garantir a efetividade do modelo.

O mais importante, entretanto, será testar o modelo com as diferentes variáveis e analisar com inteligência humana as respostas da inteligência artificial, para certificar-se que os dados apresentados estão sendo manipulados da melhor forma possível. A IA é essencial ao mundo atual e ao futuro, mas depende de boas mentes a programando.