

Metody programowania 2016/2017

Konwersje: ONP ⇔ INF

P03

Opis

Napisz program w Javie, który będzie realizował następujące operacje:

- 1. Konwersja wyrażeń arytmetycznych i instrukcji przypisania z tradycyjnej notacji infiksowej do ONP.
- 2. Konwersja wyrażeń arytmetycznych i instrukcji przypisania z ONP do notacji infiksowej z **minimalną liczbą użytych nawiasów**.

Instrukcja przypisania ma postać: operand = wyrażenie arytmetyczne.

Wyrażenia arytmetyczne mogą zawierać jedynie:

- a. nawiasy: (,) tylko w notacji infiksowej
- b. operandy: małe litery alfabetu angielskiego
- c. operatory:

Operator	Priorytet	Łączność	Rodzaj operatora
=	0	prawostronna	przypisania
<>	1	lewostronna	relacyjny
+ -	2	lewostronna	addytywny
*/%	3	lewostronna	multiplikatywny
٨	4	prawostronna	potęgowania
~	5	prawostronna	unarny

Wejście

Dane do programu wczytywane są ze standardowego wejścia (klawiatury) zgodnie z poniższą specyfikacją. Pierwsza linia wejścia zawiera liczbę całkowitą z – liczbę linii zawierających wyrażenia arytmetyczne, których opisy występują kolejno po sobie.

Każda linia zawiera co najmniej 6 znaków i nie przekracza 256 znaków, może mieć jedną z dwóch postaci:

INF: wyrażenie arytmetyczne lub instrukcja przypisania, zapisane w notacji infiksowej ONP: wyrażenie arytmetyczne lub instrukcja przypisania zapisane w notacji ONP

Przy czym wyrażenia mogą zawierać dowolne znaki. Program najpierw usuwa znaki niewystępujące w wyrażeniach, w tym spacje oraz sprawdza poprawność wyrażeń.

Można założyć, że po usunięciu błędnych symboli wyrażenia wejściowe w postaci **INF** są poprawne jeśli są poprawne w C. Natomiast wyrażenia w postaci **ONP** są poprawne jeśli są wykonalne.

Wyjście

 Wyrażenie poprzedzone na wejściu napisem "INF: " musi być na wyjściu poprzedzone napisem "ONP: " i analogicznie wyrażenie poprzedzone na wejściu napisem "ONP: "

Metody programowania 2016/2017

Konwersje: ONP ⇔ INF

P03

musi być na wyjściu poprzedzone napisem "INF: ". W przypadku błędnego wyrażenia, na wyjściu, zamiast skonwertowanego wyrażenia pojawi napis error.

- W przypadku konwersji do notacji infiksowej, wyjściowe wyrażenie <u>musi zawierać</u> <u>minimalną</u> liczbę nawiasów gwarantującą <u>taką kolejność operacji</u>, jak w wejściowym wyrażeniu, np. ONP: abc** zostanie przekształcone do INF: a*(b*c) a nie do INF: a*b*c. Nawiasy obejmujące b*c w wyrażeniu wyjściowym wymuszają taką kolejność operacji mnożenia jaka jest w zapisie ONP w wyrażeniu wejściowym.
- W przypadku wyrażeń w postaci infiksowej, np. INF: (a, + b) / .. [c3 , program pozostawia jedynie: (a+b) /c, pozostałe znaki, w tym spacje odrzuca, dodatkowo sprawdza poprawność wyrażenia, po czym dokonuje konwersji, wypisując na wyjściu: ONP: ab+c/.
- W przypadku wyrażeń w notacji ONP, np. ONP: (a,b,.).c;-,* program pozostawia jedynie: abc-*, dodatkowo sprawdza, czy wyrażenie jest poprawne, po czym dokonuje konwersji, wypisując na wyjściu: INF: a*(b-c).

Wymagania implementacyjne

Ogólnie jak w poprzednich programach, w szczególności jedynym możliwym importem jest import skanera wczytywania z klawiatury. Tym samym klasę stosu należy zaimplementować samodzielnie.

Przykład danych

wejście:	wyjście:	
18		
INF: a)+(b	ONP: error	
ONP: ab+a~a-+	INF: a+b+(~a-a)	
INF: a+b+(~a-a)	ONP: ab+a~a-+	
INF: x=~~a+b*c	ONP: xa~~bc*+=	
INF: $t = \sim a < x < \sim b$	ONP: ta~x <b~<=< td=""></b~<=<>	
INF: ~a-~~b <c+d&!p !!q< td=""><td>ONP: error</td></c+d&!p !!q<>	ONP: error	
INF: a^b*c-d <xp q+x< td=""><td>ONP: error</td></xp q+x<>	ONP: error	
INF: x=~a*b/c-d+e%~f	ONP: xa~b*c/d-ef~%+=	
ONP: xabcdefg+++++=	INF: x=a+(b+(c+(d+(e+(f+g)))))	
ONP: ab+c+d+e+f+g+	INF: a+b+c+d+e+f+g	
ONP: abc++def++g++	INF: $a+(b+c)+(d+(e+f)+g)$	
ONP: abc++def++g+++	INF: error	
INF: x=a=b=c	ONP: xabc===	
ONP: xabc===	INF: x=(a=(b=c))	
INF: x=a^b^c	ONP: xabc^^=	
INF: x=a=b=c^d^e	ONP: xabcde^^===	
ONP: xabcde^^===	INF: x=(a=(b=c^(d^e)))	
INF: $x=(a=(b=c^{(d^e)}))$	ONP: xabcde^^===	