Relatório Projeto 3 AED 2023/2024

Nome: Gonçalo José Carrajola Gaio № Estudante: 2022224905

PL (inscrição): PL3 Email: goncalogaio12@gmail.com

IMPORTANTE:

- As conclusões devem ser manuscritas... texto que não obedeça a este requisito não é considerado.
- Texto para além das linhas reservadas, ou que não seja legível para um leitor comum, não é considerado.
- O relatório deve ser submetido num único PDF que deve incluir os anexos. A não observância deste formato é penalizada.

1. Planeamento

	Semana 1	Semana 2	Semana 3	Semana 4	Semana 5
Insertion Sort					
Heap Sort				A COLO	
Quick Sort					
Finalização Relatório		No.			

2. Recolha de Resultados (tabelas)

N	10000	25000	50000	75000	100000	500000	1000000	5000000	10000000	KEV	KEYS: A		
(0					4		6	7	NE I	5. A		0.4
		0					4	8	8		10000		0.8
Insertion Sort	0						4	6	8		25000		1.2
									8		50000		2
	0						4	8	8		75000	Médias Insertion Sort	1.8
Médias Alg1:	0.4	0.8	1.2	2	1.8	3	4.4	7	7.8	Valores de N: 100000 500000 1000000 5000000	moortion cont	3	
	2			8	10	42	73	372	745			4.4	
						40	77	374	754			7	
Heap Sort					9	41	76	375	741		5000000		7.8
				14	10	38	72	383	739		10000000	r-quadrado	0.7994760789
					10	39	76	380	763		1		1.2
Médias Alg2	2.4	5.6	7	10	10.8	40	74.8	376.8	748.4	3 3 5 5 7 13 20 70	3		2.2
		2	3		6	12	18	69	141		3		3.2
		3	3			13	20	70	143		5		5.2
Quick Sort	2	2	3		6	10	20	71	133		Médias Quick Sort	6.4	
		2	3	4		10	20	70	160		Cont	11.4	
		2	4		6	12	16	70	140		20		18.8
Médias Alg2	1.2	2.2	3.2	5.2	6.4	11.4	18.8	70	143.4		70		70
											143		143.4
										r-quadrado	0.9980371892	r-quadrado	0.9986837299

N	10000	25000	50000	75000	100000	500000	1000000	5000000	10000000		10000		
	21	77	302	639	1193						25000	KEY	S: B
	15	105	299	684	1175	Valores de	masiado	elevados	nara		50000		
Insertion Sort	16	78	302	673	1164						75000		16.6
	16	78	301	664	1189	serem	aqui rep	resentado	os	Valores de N:	100000		83.2
	15	78	303	659	1173						500000	Médias Insertion Sort	301.4
/lédias Alg1:	16.6	83.2	301.4	663.8	1178.8						1000000	mseriion son	663.8
			4	4	6	36	72	380	760		5000000		1178.8
				4		35	73	380	774		10000000	r-quadrado	0.9500593376
Heap Sort					6	35	71	383	787	2 2.2 3.2	2		0.8
					6		70	382	769		2.2		2.4
					6	34		387	798		3.2		6.4
Médias Alg2	2	2.2	3.2	4.6	6.2	34.6	72.2	382.4	777.6		4.6		5.6
	1	2	6	5	6	17	60	187	382	Médias Heap Sort	6.2	Médias Quick Sort	6.8
		3	6	5	9	26	61	179	381	3011	34.6	Soit	21
Quick Sort		2		6	6	19	45	189	376		72.2		49
	0	3		6		24	41	186	371		382.4		185.6
		2	6	6	6	19	38	187	377	7	777.6		377.4
Médias Alg2	0.8	2.4	6.4	5.6	6.8	21	49	185.6	377.4	r-quadrado	0.9998975197	r-quadrado	0.999215547

N	10000	25000	50000	75000	100000	500000	1000000	5000000	10000000		10000	KEV	·
	8	36	143	269	544						25000	KEY	S: C
	8	52	146	278	523	Valores de	emasiado	o elevado	s para		50000		
Insertion Sort	8	38	144	284	554			resentad			75000		8.2
	8	41	153	281	549	Selell	ı ayuı rep	reserilau	05	Valores de N:	100000	Médias	41.4
	9	40	148	277	495						500000	Insertion Sort	146.8
Médias Alg1:	8.2	41.4	146.8	277.8	533						1000000		277.8
			4			60	141	973	2344	5000000	5000000		533
						59	157	1020	2436		10000000	r-quadrado	0.9428244568
Heap Sort					10	57	138	1008	2220		1.2		1
					10		134	1023	2601		2.4		3
				8	10		138	1028	2468		4.8		2.8
Médias Alg2	1.2	2.4	4.8	7.2	10.4	58	141.6	1010.4	2413.8	Médias Heap Sort	7.2		4.2
	1	3	2	4	6	31	71	395	834		10.4	10.4 Médias Quick Sort Sort	6.2
		3	3	5		30	75	395	822		58		31.8
Quick Sort		3	3	4	5	33	72	411	792		141.6		72
		3	3	4		36	71	392	804		1010.4		402.6
		3	3	4	6	29	71	420	831	2413	2413.8		816.6
Viédias Alg2	1	3	2.8	4.2	6.2	31.8	72	402.6	816.6	r-quadrado	0.9937005097	r-quadrado	0.9998006135

Comparação Keys Insertion Sort							
	10000		0.4				
	25000		8.0				
Valores de N:	50000		1.2				
	75000		2				
	100000	Médias Keys A	1.8				
	500000		3				
	1000000		4.4				
	5000000		7				
	10000000		7.8				
	16.6		8.2				
	83.2		41.4				
Médias Keys B	301.4	Médias Keys C	146.8				
	663.8		277.8				
	1178 8		533				

Comparação Keys Quick Sort					
	10000		1.2		
	25000		2.2		
	50000		3.2		
	75000		5.2		
Valores de N:	100000	Médias Keys A	6.4		
	500000		11.4		
	1000000		18.8		
	5000000		70		
	10000000		143.4		
	0.8		1		
	2.4		3		
	6.4		2.8		
	5.6		4.2		
Médias Keys B	6.8	Médias Keys C	6.2		
	21		31.8		
	49		72		
	185.6		402.6		
	377.4		816.6		

Co		ção Ke Sort	ys
	10000		1
	25000		3
	50000		3
	75000		5
Valores de N:	100000	Médias Keys A	7
	500000		13
	1000000		20
	5000000		70
	10000000		143
	2		1.2
	2.2		2.4
	3.2		4.8
	4.6		7.2
Médias Keys B	6.2	Médias Keys C	10.4
	34.6		58
	72.2		141.6
	382.4		1010.4
	777.6		2413.8

3. Visualização de Resultados (gráficos)

KEYS: AChaves por ordem crescente

KEYS: B

KEYS: CChaves por ordem aleatória

Comparação Final Keys Insertion Sort

Performance do Insertion Sort nos diversos conjuntos de chaves

Comparação Final Keys Heap Sort

Performance do Heap Sort nos diversos conjuntos de chaves

Comparação Final Keys Quick Sort

Performance do Quick Sort nos diversos conjuntos de chaves

4. Conclusões

4.1 Tarefa 1

Mester mete foi implementado o algoritmo insertim sort que consiste no
fercerer do array, inverindo code elemento no sen lugar, "impurrando" os
Esma utilização deste alagritmo e de picil visualização que a sua complexión de
mello des de comparte ma mello cono este comporte - ne como o mello codo esta de codo com composito de codo colorista e como e composito de codo colorista e composito de codo codo codo codo codo codo codo
estimel e in-flace.

4.2 Tarefa 2

desta torda fri inglementado o alaritmo leva note que comente ma utilização de muse habe trees, os quais são formados e retirados a sua rais como o
eleting elements do orray (o rismo), en sequide, no respecte a morte
fraisse un todos os ceméros, sindo que com diferences, equirale a l'O(N) pa (N) acim como presente traiscente de l'O(N) acim como presente de l'O(N) acim
estimble mes i in-flace.

Anexo A - Delimitação de Código de Autor

Nota: Todo o código para o funcionamento dos testes e implementação das tarefas foi por mim desenvolvido, desta forma, apenas serão aqui apresentadas as linhas de maior importância para que não fique demasiado extenso.

Implementação Insertion Sort

Implementação Heap Sort

```
private static class HeapSort { 2 usages
                   * @param keys array to sort.
268 @
                  public void sort(int[] keys) { 1 usage
                      for(int \underline{i} = ((keys.length/2)-1); \underline{i} >= 0; \underline{i}--) heapify(keys, keys.length, \underline{i});
                      for(int \underline{i} = keys.length - 1; \underline{i} > 0; \underline{i}--) {
                           swap(keys, index1: 0, i);
                           heapify(keys, i, i 0);
                 * @param keys Heap tree array.
                  * @param length Length of the heap tree array.
                 * @param i The index of the node to verify the heap tree properties and change if needed.
                     int biggest = i;
                    int left = (2*i) + 1; // left child of node i
                    int right = (2*i) + 2; // right child of node i
                     if(left < length && keys[left] > keys[biqqest]) biqqest = left;
                     if(right < length && keys[right] > keys[biqqest]) biqqest = right;
                     if(biggest != i) {
                         swap(keys, i, biqqest);
                         heapify(keys, length, biggest);
```

Implementação Quick Sort

```
private int MIN_ELEMENTS = 30; no usages
  * @param MIN_ELEMENTS Minimum number of elements to perform insertion sort.
 public QuickSort(int MIN_ELEMENTS) { this.MIN_ELEMENTS = MIN_ELEMENTS; } 1 usage
  * @param keys Array to sort.
 public void sort(int[] keys) { sortRec(keys, low: 0, high: keys.length - 1); } 1 usage
* @param keys Array to sort.
* @param low Lower index of the array to consider.
* @param high Higher index of the array to consider.
      if (high - low + 1 <= MIN_ELEMENTS) insertSort(keys, low, high);</pre>
          int pivotIndex = getPivotIndex(keys, low, high);
          swap(keys, pivotIndex, high);
          pivotIndex = partition(keys, low, high);
          sortRec(keys, low, high: pivotIndex - 1);
          sortRec(keys, low: pivotIndex + 1, high);
```

```
* @param keys Array to sort.
               * Oparam low Lower index of the array to start considering to sort.
                * @param high Higher index of the array to end considering to sort.
               * @return The new pivot index.
               private int partition(int[] keys, int low, int high) { 1 usage
                  int pivot = keys[high];
                  int left = low - 1;
                   for(int \underline{i} = low; \underline{i} < high; \underline{i}++) {
                      if(keys[\underline{i}] < pivot) {
                          <u>left</u>++;
                          swap(keys, <u>left</u>, <u>i</u>);
                  left++;
                  swap(keys, left, high);
                  return <u>left</u>;
                    * @param keys Array to search a pivot.
                    * @param low Lower index of the array to consider.
                    * @param high Higher index of the array to consider.
                    * @return The pivot index.
106 @
                   private int getPivotIndex(int[] keys, int low, int high) { 1usage
                        int mid = low + (high-low)/2;
                        if(keys[high] < keys[mid]) swap(keys, high, mid);</pre>
                        if(keys[high] < keys[low]) swap(keys, high, low);</pre>
                        if(keys[mid] < keys[low]) swap(keys, mid, low);</pre>
                        return mid;
```

```
* @param keys Array to sort.
 * @param low Lower index of the array to consider.
 * @param high Higher index of the array to consider.
private void insertSort(int[] keys, int low, int high) { 1 usage
    for(int \underline{i} = low + 1; \underline{i} \le high; \underline{i} ++) 
         int element = keys[i];
         int \underline{i} = \underline{i} - 1;
         while(j >= low && keys[j] > element) {
             keys[j + 1] = keys[j];
             i--;
         keys[j + 1] = element;
```

Anexo B - Referências

Embora a nível de código nada tenha sido copiado ou pego como referência, todos os vídeos pelo professor recomendados para as aulas teóricas foram utilizados como referência de construção lógica dos algoritmos de forma a complementar os conhecimentos já obtidos, assim, fica a minha referência e agradecimento ao criador do canal do youtube: Michael Sambol.

URLs para o canal:

https://www.youtube.com/@MichaelSambol