BLUEPRINT proposed data submission schemas Draft v0.2.3.3-211caed02f1bb0139cdce56abab9077ad82e2312

José María Fernández

March 15, 2013

Contents

1	Data	Submission	1
	1.1	Overview of Data Submission Process	1
	1.2	Preparing Sample Tracking Data and Analyzed Contents for their submission	1
		1.2.1 File Naming Conventions	2
		1.2.2 Tabular File Structure	3
	1.3	File Submission Procedure	4
2	DCC	Submission Tabular Formats	5
_	2.1	Sample Tracking Submission File Specifications	5
	2.1	2.1.1 Donor Data File	6
		2.1.2 Specimen Data File	6
		2.1.3 Analyzed Sample Data File	8
	2.2	Gene Expression	9
	2.2	2.2.1 Expression - Metadata File	9
			11
	2.3	I the state of the	12
	2.5		12
			14
	2.4		16
	۷.٦		16
			18
		, and the second se	19
	2.5		19
	2.5		19
			21
			22
	2.6		23
	2.0		23
			24
			26
		2.0.5 Divit tation Secondary findiges i the	20
Α	Cont	rolled Vocabularies	27
	A.1	Ensembl Genes	27
	A.2	Ensembl Transcripts	27
	A.3		27
	A.4	ISO 3166-1 and ISO 3166-2	27
	A.5		27
	A.6		29
	A.7	Chromosome Names for Reference Genome GRCh37	31
	A.8	Value Codes for Reference Genome Assembly Version	34
	A.9	Value Codes for Raw Data Repository	35

List of Figures

2.1	Sample Tracking Data Sub-Schema
2.2	Gene Expression Sub-Schema
2.3	Junction Read Count explanation
2.4	Exon Junction Sub-Schema
2.5	Protein-DNA interactions Sub-Schema
2.6	Regulatory Regions Sub-Schema
2.7	DNA Methylation, Hydroxy-Methylation, Formylation, etc Sub-Schema

List of Tables

2.1.1 Donor Data File
2.1.2 Specimen Data File
2.1.3 Analyzed Sample Data File
2.2.1 Expression - Metadata File
2.2.2 Expression - Gene File
2.3.1 Exon Junction - Metadata File
2.3.2 Exon Junction - Primary Analysis File
2.4.1 Protein-DNA interaction - Metadata File
2.4.2 Protein-DNA interaction - Primary Analysis File
2.4.3 Protein-DNA interaction - Secondary Analysis File
2.5.1 Regulatory regions - Metadata File
2.5.2 Regulatory regions - Primary Analysis File
2.5.3 Regulatory regions - Secondary Analysis File
2.6.1 DNA *-lation - Metadata File
2.6.2 DNA *-lation - Primary Analysis File
2.6.3 DNA *-lation - Secondary Analysis File
A.4.1 ISO 3166-1 and ISO 3166-2 aliases
A.5.1 Institution ID
A.6.1 Value Codes for Platform or Validation Platform
A.7.1 Chromosome Names for Reference Genome GRCh37
A.8.1 Value Codes for Reference Genome Assembly Version
A.9.1 Value Codes for Raw Data Repository

Chapter 1

Data Submission

1.1 Overview of Data Submission Process

There are four major steps in the data submission process:

- 1. Submit raw sequence data to the European Genome-phenome Archive
- 2. Prepare the BLUEPRINT submission files according to DCC data format specifications
- 3. Verify conformity of the submission files
- 4. Submit files to the DCC Secure FTP server

All submitted data must be based on Human reference genome assembly GRCh37 and GENCODE 15 (which uses EnsEMBL gene set version 70)

When submitting experimental data, please make sure you've already deposited your raw data to the appropriate public data repositories (eg: sequencing reads to EBI EGA) and then populate in your submission files the data elements $raw_data_repository$ and $raw_data_accession$ with the correct repository and accession number respectively.

1.2 Preparing Sample Tracking Data and Analyzed Contents for their submission

Submitted experimental data files must be from any one of these categories:

- Sample Tracking
- Gene Expression
- Exon Junctions
- DNA *-lation (Methylation, Hydroxy-Methylation, Formylation, etc...)
- Protein-DNA interactions
- Regulatory regions

BLUEPRINT DCC is hosting both sample tracking data and analyzed contents. Contents must be sent following the textual tabular formats defined below. Files with those contents must also follow the BLUEPRINT DCC file naming convention.

Each submitter must have a unique signing key, provided by DACO and DCC. Each file in a submitted archive must be accompanied by its SHA1 **uncompressed** content digest file, digitally signed with the submitter's signing key.

```
# Signed digest of uncompressed contents, will be dlat-p--001-20120920--mycode.txt.shal
openssl dgst -shal -sign subKey.pem -out dlat-p--001-20120920--mycode.txt.shal \
dlat-p--001-20120920--mycode.txt

# Signed digest of already compressed contents
bunzip2 -c dlat-p--001-20120920--mycode.txt.bz2 | openssl dgst -shal -sign subKey.pem \
-out dlat-p--001-20120920--mycode.txt.shal

# Verification of uncompressed contents using
# signed digest dlat-p--001-20120920--mycode.txt.shal
openssl dgst -shal -verify subKey.pem.pub -signature dlat-p--001-20120920--mycode.txt.shal \
dlat-p--001-20120920--mycode.txt

# Verification of compressed contents
bunzip2 -c dlat-p--001-20120920--mycode.txt.bz2 | openssl dgst -shal -verify subKey.pem.pub \
-signature dlat-p--001-20120920--mycode.txt.shal
```

The procedure to submit analyzed contents to BLUEPRINT DCC also involves first having the raw data used for the analysis in the European Genome-phenome Archive (EGA), as all the metadata entries from the analyzed contents to be stored in BLUEPRINT DCC must point to the original raw data.

1.2.1 File Naming Conventions

Submitted files, containing either sample tracking data or analyzed experiment contents, must follow next file naming convention

```
featureType-fileType--institutionCode-dateFileCreated--freeField.txt
```

```
featureType-fileType--institutionCode-dateFileCreated--freeField.txt.sha1
```

The file name components are mapped in the next way:

Components	Description	Key	
	Sample Tracking data	sdata	
	Gene Expression	exp	
fo atura Tuna	Exon Junctions	jcn	
featureType	DNA *-lation (Methylation, Hydroxy-Methylation,	dlat	
	Formylation, etc)		
	Protein-DNA interactions	pdna	
	Regulatory regions	rreg	
	Metadata file	m	
	Primary data file	р	
	Secondary data file	S	
filoTupo	Gene expression file	g	
fileType	Donor file	donor	
	Specimen file	specimen	
	Sample file	sample	
	Donor's Family file	family	
institutionCode	institutionCode Institution submitting data		
dateFileCreated	The date on which the file is created	YYYYMMDD (ISO-8601)	
freeField	An alphanumeric field (max length of 16 characters)	e.g.: mysample, 0B1845J	
	where submitters can put internal codes, file sequence		
	numbers, etc		

Different file types of the same feature type are interrelated, because the data they are storing is intertwined. Specific relations are defined on the documentation of each feature type and their file types. For instance, information stored in a primary data file is related and depends on the data from its corresponding metadata file, and the same happens to secondary data files and primary data files. Metadata file contents are related to sample tracking data sample files.

1.2.2 Tabular File Structure

The submitted analyzed contents are kept in tab-delimited text files. General comments may be added to the beginning of the file with a hash ('#') prefixed at beginning of each comment line. The first non-comment line is the header containing the names of the columns. Each column corresponds to a data element defined in DCC Submission Tabular Formats specification (Chapter 2).

There is a subset of comment lines used to attach data labels to the text files. These data labels follow the form '##labelName value [value ...]'. Currently acknowledged data labels are:

- **format**: This label is **required**, and its value defines the BLUEPRINT data formatting schema used on the file.
- depends: Although this label is not always required, it is important to validate the data coherence of
 the whole data set, because it ensures related data is not corrupted. The values of this label are the
 file on the same submission this file is related to (for instance, the name of a metadata file), and the
 SHA1 digest value (in its hexadecimal representation) of that file's contents.

There are several ways to generate the SHA1 digest of a file, like libraries in most of the programming languages and command-line tools:

```
# Getting the SHA1 digest value of uncompressed contents using OpenSSL

openssl dgst -shal dlat-p--001-20120920--mycode.txt

SHA1(dlat-p--001-20120920--mycode.txt)= 81ae49a7014d2d0260625d3535fa6e2a4a0bc06f

# Getting the SHA1 digest value of uncompressed contents using shalsum shalsum dlat-p--001-20120920--mycode.txt

81ae49a7014d2d0260625d3535fa6e2a4a0bc06f dlat-p--001-20120920--mycode.txt
```

An example file is shown below (note that parts of the lines are omitted for readability):

```
# This is an example of a primary analysis file for simple somatic mutations.
# File name: dlat-p--001-20120920--mycode.txt
#
# And it has its labels
##format 0.2.3.3-211caed02f1bb0139cdce56abab9077ad82e2312
##depends dlat-m--001-20120920--mycode.txt 03366af5145107cc818f4827e86b61dcf998ff29
            ⇒analyzed_sample_id
                                ⇒d_lated_fragment_id
                                                    ⇒chromosome
                                                                 \rightarrow...
                                                                        ⊣note
analvsis_id
→dlat:001:1234ff33
                                                    ∌1
                                                           \rightarrow...
                                                                  ⇒#FF#
→dlat:001:00019878
                                                    ∃1
                                                           \dashv...
                                                                  →#FF#
                                                    ⇒|21
                                                           ⇒...
⇒dlat:001:a712838
                                                                  →#FF#
⇒dlat:001:abebdZZZZZ
                                                                  ⇒#FF#
```

All the declared columns for each file type must be set. Data columns are labeled as identifier or reference (I), required (R), desirable (D) or optional (O). Data providers (i.e. submitters) must put all the efforts in order to provide values for the idref and required data columns. The exception for this rule are the desirable fields, required fields which can be unknown on the first submissions, but in that case the fields these exceptions are properly documented.

There are several possible reasons why a column value (either desirable or optional) has not been provided. Next reserved codes must be used to describe the reason:

Code	Meaning
#FF#	Data not supplied at this time (for future fill)
#NA#	Not applicable for the context of the surrounding knowledge
#V0#	Data verified to be unknown (void, undef, null)
#DE#	Data derived from a required or idref field

Some data columns described in this submission manual contain values used as identifiers on BLUEPRINT DCC (e.g. analysis_id, regulatory_region_id, ...). As such, these identifiers should uniquely identify the entity they are referring (an analysis, a regulatory region, ...), and the identifier's value should be globally unique within a center's data submission. Also, these identifiers should be consistent along the different data submissions and releases. If you have to generate your own identifiers, there are some general recommendations, like using the same prefix for the identifiers of the same kind.

When you are submitting string values for columns which can contain URLs or multiple values delimited by commas, each separate value string, before being joined, should be URI encoded.

1.3 File Submission Procedure

Files with the contents to be submitted, along with their corresponding signed disgest, must be sent in a single tar archive. Either the tar archive or its embedded contents should be submitted compressed, using gzip, bzip2 or xz formats.

To be finished/defined

Chapter 2

DCC Submission Tabular Formats

2.1 Sample Tracking Submission File Specifications

Overview

There are three required sample and tissue annotation submission files, and one optional template file:

Figure 2.1: Sample Tracking Data Sub-Schema

Core Sample Tracking Data Files

- 1. Donor Data File (donor)

 Mandatory information about the donor's age, gender and vital status.
- 2. Specimen Data File (specimen)

 Mandatory information about a specimen that was obtained from a donor. There may be several specimens per donor that were obtained concurrently or at different times.
- 3. Analyzed Sample Data File (sample)

 Mandatory information about an analyzed sample that was subjected to molecular analysis. There may be several analyzed samples per specimen, for example, blood samples at different ages.

All data submissions to the DCC must include the three core sample tracking data files.

Optional Template Files

Donor Family History (family)
 Optional details about family history of the donor

Coding of donor IDs

The three mandatory data files contain donor, specimen and analyzed sample IDs, respectively. These IDs are to be coded specifically for BLUEPRINT purposes and only the submitting group will keep the key that will permit to link back the data to the individual donors. The key must not be communicated to the data users. It should not be derived from other IDs such as biobank or hospital identifiers. These IDs are to be coded in such a way that they cannot be tracked back to the individual donors, except by the submitting group. IDs are assigned by each submitting group, and must be unique within all the data submitted by that group (i.e. no duplicate IDs allowed). The DCC will prevent collisions between similar IDs submitted by different groups by including the project source column by default in all BioMart queries.

2.1.1 Donor Data File

Donor Data File [donor] (required)

This submission file describes a donor from which one or more specimens were obtained.

Table 2.1.1: Donor Data File

Name	Туре	Need	Description / Values
donor_id	string	I	Unique identifier for the donor; assigned by data provider.
donor_region_of_residence	<pre>string[] (array seps ,)</pre>	R	Country, and optionally state or province code, but not city. ISO3166-1-alpha-2 or ISO3166-2 codes, eg: "CA" or "CA-ON" (See external CV description A.4)
donor_sex	integer	D	Donor biological sex. "Other" has been removed from the controlled vocabulary due to identifiability concerns. 1 = male 2 = female
notes	string	0	Any additional non-identifying information can be included here.

2.1.2 Specimen Data File

Specimen Data File [specimen] (required)

This submission file describes a specimen from which one or more samples were derived. Use additional rows for more than one specimen from the same patient. If more than one specimen was extracted during the same procedure, each gets a distinct ID.

Table 2.1.2: Specimen Data File

Name	Type	Need	Description / Values				
specimen_id	string	I	Unique identifier for the specimen assigned by data provider.				
	Continued on next page						

Table 2.1.2 – continued from previous page

Table 2.1.2 – continued from previous page				
Name	Туре	Need	Description / Values	
donor_id	string	Ι	Unique identifier for the donor; assigned by data provider.	
donor_max_age_at_specimen_acquisition	duration	D	Donor max age when the specimen was acquired. If it is '#DE#', then it is the same value as "donor_min_age_at_specimen_acquisition"	
donor_min_age_at_specimen_acquisition	duration	R	Donor minimal age when the specimen was acquired, in ISO-8601 duration (basic format)	
notes	string	0	Any additional non-identifying information can be included here.	
specimen_available	boolean	0	Whether additional tissue is available for followup studies.	
specimen_biobank	string	0	If the specimen was obtained from a biobank, provide the biobank name here	
specimen_biobank_id	string	0	If the specimen was obtained from a biobank, provide the biobank accession number here.	
specimen_processing	string	R	Description of technique used to process specimen 1 = cryopreservation in liquid nitrogen (dead tissue) 2 = cryopreservation in dry ice (dead tissue) 3 = cryopreservation of live cells in liquid nitrogen 4 = cryopreservation, other 5 = formalin fixed, unbuffered 6 = formalin fixed, buffered 7 = formalin fixed & paraffin embedded 8 = fresh 9 = other technique	
specimen_processing_other	string	0	If "other" specified for specimen_processing, may indicate technique here.	
specimen_storage	string	R	Description of how specimen was stored. For specimens that were extracted freshly or immediately cultured, answer (1) "NA". 1 = frozen, liquid nitrogen 2 = frozen, -70 freezer 3 = frozen, vapor phase 4 = RNA later frozen 5 = paraffin block 6 = cut slide 7 = other	
			Continued on next page	

Table 2.1.2 – concluded from previous page

Name	Туре	Need	Description / Values
specimen_storage_other	string	0	If "other" specified for specimen_storage, may indicate technique here.
specimen_type	integer	R	Controlled vocabulary description of specimen type. 1 = primary tumour 2 = tumour local recurrence 3 = tumour metastasis to local lymph node 4 = tumour metastasis to distant location 5 = peripheral blood 6 = bone marrow 7 = lymph node 8 = normal control (tissue adjacent to primary) 9 = normal control (blood) 10 = normal control (other) 11 = disease tissue (other) 12 = cord blood
specimen_type_other	string	0	Free text description of site of specimen if "normal control (other)" or "disease tissue (other)" was specified in specimen_type field.

2.1.3 Analyzed Sample Data File

Analyzed Sample Data File [sample] (required)

This submission file describes an analyzed sample on which molecular characterization was performed. It includes both control samples (from healthy people) and samples from ill people.

Table 2.1.3: Analyzed Sample Data File

Name	Туре	Need	Description / Values
analyzed_sample_id	string	I	Unique identifier for the sample assigned by data provider
specimen_id	string	I	Unique identifier for the specimen assigned by data provider.
analyzed_sample_interval	integer	0	Interval from specimen acquisition to sample use in an analytic procedure (e.g. DNA extraction), in days
analyzed_sample_type	integer	R	Controlled vocabulary description of sample type 1 = Normal blood 2 = Leukemic blood 3 = Normal control adjacent to primary 4 = Normal control from non-tumour site 5 = Control from cell line derived from normal tissue 6 = Normal mouse host 7 = Primary tumour 8 = Mouse xenograft derived from tumour 9 = Cell line derived from tumour 10 = Cell line derived from xenograft 11 = Other (specify)
analyzed_sample_type_other	string	0	Free text description of site of sample if "other" was specified in sample_type field
notes	string	0	Any additional non-identifying information can be included here.
purified_cell_type	string	R	Purified cell type for the sample (See external CV description A.3)

2.2 Gene Expression

Figure 2.2: Gene Expression Sub-Schema

2.2.1 Expression - Metadata File

Expression [exp] – Metadata File [m]

Table 2.2.1: Expression - Metadata File

Name	Type	Need	Description / Values
analysis_id	string	I	Unique identifier for the analysis performed for a particular set of samples
analyzed_sample_id	string	I	Unique identifier for the analyzed sample
alignment_algorithm	compound name;url	R	Name of alignment algorithm and URL to written protocol
analysis_group_id	string	R	Identifier of the analysis group (i.e. the one who pre- pared/run the pipeline) (See CV A.5)
assembly_version	integer	R	Version of reference genome assembly (See CV A.8)
data_status	integer	R	The status of the analysis over the associated raw data 0 = Raw data available at the EGA, but not more 1 = Raw data available at the EGA, analysis in process 2 = Analysis results obtained (analysis finished)
experimental_group_id	string	R	Identifier of the experimental group who did the experimental analysis (See CV A.5)
experimental_protocol	compound name;url	0	Name of experimental protocol and URL to written protocol
note	string	0	Optional field to leave notes
other_analysis_algorithm	<pre>compound[] name;url (array seps ,)</pre>	0	Names of other analysis algorithms. Separate multiple algorithms by commas.
platform	integer	R	Platform or technology used in the detection phase (See CV A.6)
program_versions	<pre>compound[] program:version (array seps ;)</pre>	D	The versions of (some of) the programs used for the analysis
raw_data_accession	<pre>compound accession;url</pre>	0	Accession and URL for referencing the raw data at the public repository
		1	Continued on next page

Table 2.2.1 – concluded from previous page

Name Type		Need	Description / Values
raw_data_repository	integer	R	Public repository where raw data is submitted (#) (See CV A.9)
seq_coverage decimal 0		0	Sequence coverage if analyzed by sequencing plat- forms

2.2.2 Expression - Gene File

Expression [exp] – Gene File [g]

Table 2.2.2: Expression - Gene File

Table 2.2.2: Expression - Gene File						
Name	Type	Need	Description / Values			
analysis_id	string	I	Unique identifier for the analysis performed for a particular set of samples			
analyzed_sample_id	string	I	Unique identifier for the analyzed sample			
gene_stable_id	string	I	For annotated gene, use Ensembl gene ID. Otherwise, use assemblyBuild_chr_start_end where assemblyBuild is hg19.			
chromosome	integer	R	Name of the chromosome containing the experimentally detected feature (mutation, variation, expression,) (See CV A.7)			
chromosome_end	integer	R	End position of the mutation/variation on the chromosome			
chromosome_start	integer	R	Start position of the mutation/variation on the chromosome			
chromosome_strand	integer	0	Strand where it was detected the mutation/variation on the chromosome -1 = Reverse strand 1 = Forward strand			
fold_change	decimal	0	Expressed fold change if differential expression is measured			
is_annotated	boolean	R	If it is true, it indicate if the expressed fragment is an- notated in GENCODE/Ensembl (i.e. gene_stable_id contains a Ensembl Gene Identifier)			
			Continued on next page			

Table 2.2.2 – concluded from previous page

Name	Туре	Need	Description / Values
normalized_expression_level	decimal	0	Normalized value of expression level if analyzed by microarray platforms
normalized_read_count	decimal	R	Normalized count of sequencing reads if analyzed by sequencing platforms
note	string	0	Optional field to leave notes
probability	decimal	0	Probability of the mutation/variation call
probeset_id	string	0	ID of the probeset used in microarray if analyzed by microarray platform
quality_score	decimal	0	Average quality score for the mutation/variation call
raw_read_count	integer	R	Raw count of sequencing reads if analyzed by sequencing platforms
reference_sample	string	0	ID of the reference analyzed sample if differential expression is measured
validation_platform	integer	0	Platform or technology used in validation (See CV A.6)
validation_status	integer	R	Indicate if the mutation/variation has been validated -1 = Not valid 0 = Not tested 1 = Validated

2.3 Exon Junction

The following diagram, based on the one from ICGC DCC manual, illustrates how junction_id should be generated, how junction_read_count, exon1_number_bases and exon2_number_bases are calculated:

Figure 2.3: Junction Read Count explanation

2.3.1 Exon Junction - Metadata File

Exon Junction [jcn] – Metadata File [m]

Figure 2.4: Exon Junction Sub-Schema

Table 2.3.1: Exon Junction - Metadata File

Name	Type	Need	on Junction - Metadata File Description / Values	
analysis_id	string	I	Unique identifier for the analysis performed for a particular set of samples	
analyzed_sample_id	string	I	Unique identifier for the analyzed sample	
alignment_algorithm	compound name;url	R	Name of alignment algorithm and URL to written protocol	
analysis_group_id	string	R	Identifier of the analysis group (i.e. the one who pre- pared/run the pipeline) (See CV A.5)	
assembly_version	integer	R	Version of reference genome assembly (See CV A.8)	
data_status	integer	R	The status of the analysis over the associated raw data 0 = Raw data available at the EGA, but not more 1 = Raw data available at the EGA, analysis in process 2 = Analysis results obtained (analysis finished)	
Continued on next page				

Table 2.3.1 – concluded from previous page

Name	Type	Need	Description / Values
experimental_group_id	string	R	Identifier of the experimental group who did the experimental analysis (See CV A.5)
experimental_protocol	compound name;url	0	Name of experimental protocol and URL to written protocol
note	string	0	Optional field to leave notes
other_analysis_algorithm	<pre>compound[] name;url (array seps ,)</pre>	0	Names of other analysis algorithms. Separate multiple algorithms by commas.
platform	integer	R	Platform or technology used in the detection phase (See CV A.6)
program_versions	<pre>compound[] program:version (array seps ;)</pre>	D	The versions of (some of) the programs used for the analysis
raw_data_accession	compound accession;url	0	Accession and URL for referencing the raw data at the public repository
raw_data_repository	integer	R	Public repository where raw data is submitted (#) (See CV A.9)
seq_coverage	decimal	0	Sequence coverage if analyzed by sequencing plat- forms

2.3.2 Exon Junction - Primary Analysis File

Exon Junction [jcn] – Primary Analysis File [p]

Table 2.3.2: Exon Junction - Primary Analysis File

Name	Туре	Need	Description / Values	
analysis_id	string	I	Unique identifier for the analysis performed for a particular set of samples	
analyzed_sample_id	string	I	Unique identifier for the analyzed sample	
junction_id	string	I	For known exons, use exonID1_exonID2 where exonID1 and exonID2 are Ensembl IDs of the 5' and 3' exons, respectively. For novel or putative exons, use assembly—Build_exon1chr_exon1end_exon2chr_exon2start where assemblyBuild is hg18 or hg19; exon1chr and exon2chr are the chromosomes of the 5' and 3' exons, respectively; exon1end is the end position of the 5' exon; exon2start is the start position of the 3' exon.	
Continued on next page				

Table 2.3.2 – continued from previous page

Table 2.3.2 – continued from previous page						
Name	Type	Need	Description / Values			
chromosome	integer	R	Name of the chromosome containing the experimentally detected feature (mutation, variation, expression,) (See CV A.7)			
chromosome_end	integer	R	End position of the mutation/variation on the chromosome			
chromosome_start	integer	R	Start position of the mutation/variation on the chromosome			
chromosome_strand	integer	0	Strand where it was detected the mutation/variation on the chromosome -1 = Reverse strand 1 = Forward strand			
exon1_chromosome	integer	R	Name of the chromosome containing the 5' exon (#) (See CV A.7)			
exon1_end	integer	R	End position of the 5' exon on the chromosome			
exon1_number_bases	integer	R	Number of bases from 5' exon			
exon1_strand	integer	0	Chromosome strand of the 5' exon -1 = Reverse strand 1 = Forward strand			
exon2_chromosome	integer	R	Name of the chromosome containing the 3' exon (#) (See CV A.7)			
exon2_number_bases	integer	R	Number of bases from 3' exon			
exon2_start	integer	R	Start position of the 3' exon on the chromosome			
exon2_strand	integer	0	Chromsome strand of the 3' exon -1 = Reverse strand 1 = Forward strand			
gene1_stable_id	string	R	Stable ID of the gene containing the 5' exon at the junction. For GENCODE/Ensembl annotated gene, use Ensembl gene ID. For putative and novel gene, use assemblyBuild_chr_start_end where assemblyBuild can be hg18 or hg19.			
gene2_stable_id	string	0	In the case of a fusion gene, provide the Stable ID of the gene containing the 3' exon at the junction. For GENCODE/Ensembl annotated genes, use Ensembl gene ID. For putative and novel genes, use assemblyBuild_chr_start_end where assemblyBuild can be hg18 or hg19.			
			Continued on next page			

Table 2.3.2 – concluded from previous page

Name	Туре	Need	Description / Values
is_fusion_gene	boolean	0	Indicate if the function is the result of a fusion gene
is_novel_splice_form	boolean	0	Indicate if the splice form is novel
junction_read_count	integer	R	Count of sequencing reads that span across exons
junction_seq	string	0	Provide junction sequence if either is_fusion_gene or is_novel_splice_form is true
junction_type	integer	0	Type of junction 1 = Canonical 2 = Non-canonical 3 = U12
note	string	0	Optional field to leave notes
probability	decimal	0	Probability of the mutation/variation call
quality_score	decimal	0	Average quality score for the mutation/variation call
validation_platform	integer	0	Platform or technology used in validation (See CV A.6)
validation_status	integer	R	Indicate if the mutation/variation has been validated -1 = Not valid 0 = Not tested 1 = Validated

2.4 Protein-DNA interactions

Figure 2.5: Protein-DNA interactions Sub-Schema

2.4.1 Protein-DNA interaction - Metadata File

Protein-DNA [pdna] – Metadata File [m]

Ta Name	Table 2.4.1: Protein-DNA interaction - Metadata File Name Type Need Description / Values						
	Туре	Need	•				
analysis_id	string	I	Unique identifier for the analysis performed for a particular set of samples				
analyzed_sample_id	string	I	Unique identifier for the analyzed sample				
NSC	decimal	0	Normalized strand-cross correlation of the analysis				
RSC	decimal	0	Relative strand-cross correlation of the analysis				
alignment_algorithm	compound name;url	R	Name of alignment algorithm and URL to written protocol				
analysis_group_id	string	R	Identifier of the analysis group (i.e. the one who pre- pared/run the pipeline) (See CV A.5)				
assembly_version	integer	R	Version of reference genome assembly (See CV A.8)				
control_sample_id	string	R	Unique identifier for the analyzed control/matched sample				
data_status	integer	R	The status of the analysis over the associated raw data 0 = Raw data available at the EGA, but not more 1 = Raw data available at the EGA, analysis in process 2 = Analysis results obtained (analysis finished)				
experimental_group_id	string	R	Identifier of the experimental group who did the experimental analysis (See CV A.5)				
experimental_protocol	compound name;url	0	Name of experimental protocol and URL to written protocol				
note	string	0	Optional field to leave notes				
other_analysis_algorithm	<pre>compound[] name;url (array seps ,)</pre>	0	Names of other analysis algorithms. Separate multiple algorithms by commas.				
platform	integer	R	Platform or technology used in the detection phase (See CV A.6)				
			Continued on next page				

Table 2.4.1 – concluded from previous page

Name	Type	Need	Description / Values
program_versions	compound[]	D	The versions of (some of) the programs used for the
	program:version		analysis
	(array seps ;)		
raw_data_accession	compound	0	Accession and URL for referencing the raw data at the
	accession;url		public repository
raw_data_repository	integer	R	Public repository where raw data is submitted (#)
			(See CV A.9)
seq_coverage	decimal	0	Sequence coverage if analyzed by sequencing plat-
			forms

2.4.2 Protein-DNA interaction - Primary Analysis File

Protein-DNA [pdna] – Primary Analysis File [p]

Table 2.4.2: Protein-DNA interaction - Primary Analysis File

Name Type Need Description / Values					
analysis_id		I	Unique identifier for the analysis performed for a par-		
anatysts_tu	string	1	ticular set of samples		
			ticular set of samples		
analyzed_sample_id	string	I	Unique identifier for the analyzed sample		
anatgzea_sampte_ta	Jerang	-	onique tuentiner for the unatyzed sample		
protein_dna_interaction_id	string	I	Unique identifier for the protein-DNA interaction		
			F		
chromosome	integer	R	Name of the chromosome containing the experimen-		
	_		tally detected feature (mutation, variation, expression,		
)		
			(See CV A.7)		
chromosome_end	integer	R	End position of the mutation/variation on the chromo-		
			some		
chromosome_start	integer	R	Start position of the mutation/variation on the chro-		
			mosome		
chromosome_strand	integer	0	Strand where it was detected the mutation/variation		
cirollosome_strand	Tirreger	U	on the chromosome		
			-1 = Reverse strand		
			1 = Forward strand		
idr	decimal	D	Irreproducible discovery rate		
log10_pvalue	decimal	R	-log10(p-value)		
	_				
log10_qvalue	decimal	D	-log10(q-value) , which available for peaks, but not for		
			broad peaks		
Cantinual an and anna					
Continued on next page					

Table 2.4.2 – concluded from previous page

Name	Type	Need	Description / Values
note	string	0	Optional field to leave notes
protein_stable_id	string	R	Stable id of the interacting protein, antibody or protein complex
rank	<pre>compound[] rank:value (array seps ;)</pre>	0	Kind of used ranking and its value, in the form "rank;value". As it can hold more than one value, they are separated by bars
validation_platform	integer	0	Platform or technology used in validation (See CV A.6)
validation_status	integer	R	Indicate if the mutation/variation has been validated -1 = Not valid 0 = Not tested 1 = Validated

2.4.3 Protein-DNA interaction - Secondary Analysis File

Protein-DNA [pdna] – Secondary Analysis File [s]

Table 2.4.3: Protein-DNA interaction - Secondary Analysis File

Name	Туре	Need	Description / Values
analysis_id	string	I	Unique identifier for the analysis performed for a particular set of samples
analyzed_sample_id	string	I	Unique identifier for the analyzed sample
ensembl_version	integer	R	Version of Ensembl gene build used for annotation (or the version of Ensembl gene build integrated into used GENCODE build)
gene_affected	<pre>string[] (array seps)</pre>	R	Gene affected. Use Ensembl gene id, separated by when there is more than one. If no gene is affected, don't put an entry (See external CV description A.1)
note	string	0	Optional field to leave notes
protein_dna_interaction_id	string	I	Unique identifier for the protein-DNA interaction
transcript_affected	string[] (array seps)	0	Transcript on the protein-DNA interaction area. Use Ensembl transcript id. Separate multiple transcripts with vertical bars in the form of transcriptA transcriptB transcriptC (See external CV description A.2)

2.5 Regulatory Regions

2.5.1 Regulatory regions - Metadata File

 $Regulatory\ regions\ [rreg]-Metadata\ File\ [m]$

Figure 2.6: Regulatory Regions Sub-Schema

Table 2.5.1: Regulatory regions - Metadata File

Name	Туре	Need	Description / Values
analysis_id	string	I	Unique identifier for the analysis performed for a particular set of samples
analyzed_sample_id	string	I	Unique identifier for the analyzed sample
alignment_algorithm	compound name;url	R	Name of alignment algorithm and URL to written protocol
analysis_group_id	string	R	Identifier of the analysis group (i.e. the one who pre- pared/run the pipeline) (See CV A.5)
assembly_version	integer	R	Version of reference genome assembly (See CV A.8)
control_sample_id	string	R	Unique identifier for the analyzed control/matched sample
data_status	integer	R	The status of the analysis over the associated raw data 0 = Raw data available at the EGA, but not more 1 = Raw data available at the EGA, analysis in process 2 = Analysis results obtained (analysis finished)
			Continued on next page

Table 2.5.1 – concluded from previous page

Name	Туре	Need	Description / Values
experimental_group_id	string	R	Identifier of the experimental group who did the experimental analysis (See CV A.5)
experimental_protocol	compound name;url	0	Name of experimental protocol and URL to written protocol
note	string	0	Optional field to leave notes
other_analysis_algorithm	<pre>compound[] name;url (array seps ,)</pre>	0	Names of other analysis algorithms. Separate multiple algorithms by commas.
platform	integer	R	Platform or technology used in the detection phase (See CV A.6)
program_versions	<pre>compound[] program:version (array seps ;)</pre>	D	The versions of (some of) the programs used for the analysis
raw_data_accession	<pre>compound accession;url</pre>	0	Accession and URL for referencing the raw data at the public repository
raw_data_repository	integer	R	Public repository where raw data is submitted (#) (See CV A.9)
seq_coverage	decimal	0	Sequence coverage if analyzed by sequencing plat- forms

2.5.2 Regulatory regions - Primary Analysis File

 $Regulatory\ regions\ [rreg]-Primary\ Analysis\ File\ [p]$

Table 2.5.2: Regulatory regions - Primary Analysis File

Name	Туре	Need	Description / Values
analysis_id	string	I	Unique identifier for the analysis performed for a particular set of samples
analyzed_sample_id	string	I	Unique identifier for the analyzed sample
regulatory_region_id	string	I	Unique identifier for the identified regulatory region
chromosome	integer	R	Name of the chromosome containing the experimentally detected feature (mutation, variation, expression,) (See CV A.7)
chromosome_end	integer	R	End position of the mutation/variation on the chromosome
			Continued on next page

Table 2.5.2 – concluded from previous page

Name	Туре	Need	Description / Values
chromosome_start	integer	R	Start position of the mutation/variation on the chromosome
chromosome_strand	integer	0	Strand where it was detected the mutation/variation on the chromosome -1 = Reverse strand 1 = Forward strand
normalized_read_count	decimal	R	Normalized count of sequencing reads if analyzed by sequencing platforms
note	string	0	Optional field to leave notes
probability	decimal	0	Probability of the mutation/variation call
quality_score	decimal	0	Average quality score for the mutation/variation call
raw_read_count	integer	R	Raw count of sequencing reads if analyzed by sequencing platforms
validation_platform	integer	0	Platform or technology used in validation (See CV A.6)
validation_status	integer	R	Indicate if the mutation/variation has been validated -1 = Not valid 0 = Not tested 1 = Validated

2.5.3 Regulatory regions - Secondary Analysis File

 $Regulatory\ regions\ [rreg]-Secondary\ Analysis\ File\ [s]$

Table 2.5.3: Regulatory regions - Secondary Analysis File

Name	Туре	Need	Description / Values
analysis_id	string	I	Unique identifier for the analysis performed for a particular set of samples
analyzed_sample_id	string	I	Unique identifier for the analyzed sample
ensembl_version	integer	R	Version of Ensembl gene build used for annotation (or the version of Ensembl gene build integrated into used GENCODE build)
gene_affected	<pre>string[] (array seps)</pre>	R	Gene affected. Use Ensembl gene id, separated by when there is more than one. If no gene is affected, don't put an entry (See external CV description A.1)
			Continued on next page

Table 2.5.3 – concluded from previous page

Name	Туре	Need	Description / Values
note	string	0	Optional field to leave notes
regulatory_region_id	string	I	Unique identifier for the identified regulatory region

2.6 DNA *-lation (Methylation, Hydroxy-Methylation, Formylation, etc...)

Figure 2.7: DNA Methylation , Hydroxy-Methylation, Formylation, etc... Sub-Schema

2.6.1 DNA *-lation - Metadata File

DNA *-lation [dlat] - Metadata File [m]

Table 2.6.1: DNA *-lation - Metadata File

Name	Туре	Need	Description / Values
analysis_id	string	I	Unique identifier for the analysis performed for a particular set of samples
analyzed_sample_id	string	I	Unique identifier for the analyzed sample
alignment_algorithm	compound name;url	R	Name of alignment algorithm and URL to written protocol
analysis_group_id	string	R	Identifier of the analysis group (i.e. the one who pre- pared/run the pipeline) (See CV A.5)
assembly_version	integer	R	Version of reference genome assembly (See CV A.8)
			Continued on next page

Table 2.6.1 – concluded from previous page

Name			Description / Values
	Type	Need	
control_sample_id	string	R	Unique identifier for the analyzed control/matched sample
data_status	integer	R	The status of the analysis over the associated raw data 0 = Raw data available at the EGA, but not more 1 = Raw data available at the EGA, analysis in process 2 = Analysis results obtained (analysis finished)
experimental_group_id	string	R	Identifier of the experimental group who did the experimental analysis (See CV A.5)
experimental_protocol	compound name;url	0	Name of experimental protocol and URL to written protocol
methylation_calling_algorithm	compound name;url	0	Name of variation calling algorithm and URL to written protocol
note	string	0	Optional field to leave notes
other_analysis_algorithm	<pre>compound[] name;url (array seps ,)</pre>	0	Names of other analysis algorithms. Separate multiple algorithms by commas.
platform	integer	R	Platform or technology used in the detection phase (See CV A.6)
program_versions	<pre>compound[] program:version (array seps ;)</pre>	D	The versions of (some of) the programs used for the analysis
raw_data_accession	<pre>compound accession;url</pre>	0	Accession and URL for referencing the raw data at the public repository
raw_data_repository	integer	R	Public repository where raw data is submitted (#) (See CV A.9)
seq_coverage	decimal	0	Sequence coverage if analyzed by sequencing plat- forms

2.6.2 DNA * -lation - Primary Analysis File

DNA *-lation [dlat] - Primary Analysis File [p]

Table 2.6.2: DNA *-lation - Primary Analysis File

Name	Туре	Need	Description / Values
analysis_id	string	I	Unique identifier for the analysis performed for a particular set of samples
			Continued on next page

Table 2.6.2 – continued from previous page

Name	Туре	Need	Description / Values
analyzed_sample_id	string	I	Unique identifier for the analyzed sample
d_lated_fragment_id	string	I	Unique identifier for the methy- lated fragment, in the form d'*lationType chromosome_chromosomeStart_chromosom
beta_value	decimal	0	DNA *-lation beta value for interrogated site
c_total_reads	decimal	R	Reads which has identified this position as a cytosine
chromosome	integer	R	Name of the chromosome containing the experimentally detected feature (mutation, variation, expression,) (See CV A.7)
chromosome_end	integer	R	End position of the mutation/variation on the chromosome
chromosome_start	integer	R	Start position of the mutation/variation on the chromosome
chromosome_strand	integer	0	Strand where it was detected the mutation/variation on the chromosome -1 = Reverse strand 1 = Forward strand
d_lated_reads	decimal	R	Reads which has identified this position as a DNA *lated cytosine
d_lation_type	string	R	Type of DNA *-lation (Methylation, Hydroxy-Methylation, Formylation, etc) m = Methylation (cytosine) hm = Hydroxy-Methylation (cytosine) hmU = Hydroxy-Methylation (uracil) f = Formylation (cytosine) ca = Carboxylation (cytosine)
note	string	0	Optional field to leave notes
probability	decimal	0	Probability of the DNA *-lation call
quality_score	decimal	0	Quality score for the DNA *-lation call
total_reads	decimal	R	Total number of reads over this position/segment, either identifying or not a cytosine, for sequencing platforms. Mean reads depth for other technologies
			Continued on next page

Table 2.6.2 – concluded from previous page

Name	Туре	Need	Description / Values
validation_platform	integer	0	Platform or technology used in validation (See CV A.6)
validation_status	integer	R	Indicate if the mutation/variation has been validated -1 = Not valid 0 = Not tested 1 = Validated

2.6.3 DNA *-lation - Secondary Analysis File

DNA *-lation [dlat] - Secondary Analysis File [s]

Table 2.6.3: DNA *-lation - Secondary Analysis File

Name	Type	Need	Description / Values
analysis_id	string	I	Unique identifier for the analysis performed for a particular set of samples
analyzed_sample_id	string	I	Unique identifier for the analyzed sample
d_lated_fragment_id	string	I	Unique identifier for the methy- lated fragment, in the form d'*lationType chromosome_chromosomeStart_chromosom
ensembl_version	integer	R	Version of Ensembl gene build used for annotation (or the version of Ensembl gene build integrated into used GENCODE build)
gene_affected	<pre>string[] (array seps)</pre>	R	Gene affected. Use Ensembl gene id, separated by when there is more than one. If no gene is affected, don't put an entry (See external CV description A.1)
note	string	0	Optional field to leave notes

Appendix A

Controlled Vocabularies

A.1 Ensembl Genes

Valid Ensembl Genes identifiers
(See it at http://jan2013.archive.ensembl.org/Homo_sapiens/Info/Index)

A.2 Ensembl Transcripts

Valid Ensembl Transcript identifiers
(See it at http://jan2013.archive.ensembl.org/Homo_sapiens/Info/Index)

A.3 Cell Ontology

The Cell Ontology is designed as a structured controlled vocabulary for cell types (See it at http://cellontology.org/)

A.4 ISO 3166-1 and ISO 3166-2

ISO 3166 is the International Standard for country codes and codes for their subdivisions. The purpose of ISO 3166 is to establish internationally recognised codes for the representation of names of countries, territories or areas of geographical interest, and their subdivisions.

(See them at http://www.iso.org/iso/country_codes.htm and http://en.wikipedia.org/wiki/ISO_3166-2)

Alias	Key	: ISO 3166-1 and ISO 3166-2 aliases Description
ALIAS:EAL	GB-CAM GB-ESS GB-HRT GB-NFK GB-SFK	East Anglia: United Kingdom region composed of the administrative counties of Norfolk to the north, Suffolk to the south, Cambridgeshire and Essex to the west.

A.5 Institution ID

Please contact BLUEPRINT DCC if your institution is not listed, or you wish to modify the text

	Table A.5.1: Institution ID
ID	Institution
1	Radboud University Nijmegen (H.G. Stunnenberg)
2a	University College London (S. Beck)
2b	University College London (T. Enver)
3a	University of Cambridge (A. Ferguson-Smith)
3b	University of Cambridge (W. H.Ouwehand)
4	Friedrich Miescher Institute (D. Schübeler)
5	Christian Albrechts University of Kiel (R. Siebert)
6	National Cancer Research Centre Spain (A. Valencia)
7a	Institute of Molecular Oncology Foundation - Euro-
	pean Institute of Oncology (P.G. Pelicci)
7b	Institute of Molecular Oncology Foundation - Euro-
	pean Institute of Oncology (S. Minucci)
8	European Bioinformatics Institute (P. Flicek)
9a	Wellcome Trust Sanger Institute (M. Stratton)
9b	Wellcome Trust Sanger Institute (D. Adams)
9с	Wellcome Trust Sanger Institute (N. Soranzo)
10	Bellvitge Institute for Biomedical Research (M. Es-
	teller)
11	Centro Nacional de Analysis Genómico (I. Gut)
12a	Max Planck Institute for Bioinformatics (T.
	Lengauer/C.Bock)
12b	Max Planck Institute for Molecular Genetics (H.
	Lehrach)
12c	Max Planck Institute for Molecular Genetics (M. Vin-
	gron)
13	University of Saarland (J. Walter)
14	Second University of Naples (L. Altucci)
15a	Centre for Genomic Regulation (X. Estivill)
15b	Centre for Genomic Regulation (R. Guigo)
15c	Centre for Genomic Regulation (T. Graf)
16a	Queen Mary, University of London (D. Leslie/V.
4.61	Rakyan)
16b	Queen Mary, University of London (J. Fitzgibbon)
17	The Babraham Institute (W. Reik)
18	Cellzome AG (D. Simmons)
19	Diagenode SA (D. Allaer)
20	Olink Genomics (F. Dahl)
21	Genomatix Software GmbH (M. Seifert)
	Continued on next page

Table A.5.1 – concluded from previous page

ID	Institution
22	Oxford Nanopore Technologies Ltd (S. Willcocks)
23	Siena Biotech SpA (A. Caricasole)
24	Centre of Immunology of Marseille-Luminy (S.
	Spicuglia)
25	Institut d'Investigacions Biomèdique August Pi i Sun-
	yer (E. Campo)
26	Weizmann Institute of Science (A. Tanay)
27	Erasmus University Medical Centre Rotterdam (F.
	Grosveld)
28	Universitaetsklinikum Ulm (B. Böhm)
29	University of Edinburgh (A. Bird)
30	Lund University (A. Lernmark)
31	University of Copenhagen (K. Helin)
32	Sapienza University of Rome (A. Mai)
33	Vivia Biotech S.L. (J. Ballesteros)
34	University of Geneva (M. Dermitzakis, S. Antonorakis)
35	University Medical Centre Groningen (E. Vellenga)
36	Neckar Hospital (Elizbeth Macintyre)
37	Epigenomics AG (R. Wasserkort)
38	University of Duisburg-Essen (R. Küppers)
39	University of Leipzig (M. Loffler)
40	Barcelona Supercomputing Center (D. Torrents)
41	Sigolis (J. Jarvius)
42	Eurice (V. Siegmund)

A.6 Value Codes for Platform or Validation Platform

Please contact the DCC if your platform/technology is not listed here.

Table A.6.1: Value Codes for Platform or Validation Platform

Key	Platform or Validation Platform
1	PCR
2	qPCR
3	capillary sequencing
4	SOLiD sequencing
5	Illumina GA sequencing
6	454 sequencing
7	Helicos sequencing
8	Affymetrix Genome-Wide Human SNP Array 6.0
9	Affymetrix Genome-Wide Human SNP Array 5.0
10	Affymetrix Mapping 100K Array Set
11	Affymetrix Mapping 500K Array Set
12	Affymetrix Mapping 10K 2.0 Array Set
13	Affymetrix EMET Plus Premier Pack
	Continued on next page

Table A.6.1 – continued from previous page

	Table A.6.1 – continued from previous page
Key	Platform or Validation Platform
14	Agilent Whole Human Genome Oligo Microarray Kit
15	Agilent Human Genome 244A
16	Agilent Human Genome 105A
17	Agilent Human CNV Association 2x105K
18	Agilent Human Genome 44K
19	Agilent Human CGH 1x1M
20	Agilent Human CGH 2x400K
21	Agilent Human CGH 4x180K
22	Agilent Human CGH 8x60K
23	Agilent Human CNV 2x400K
24	Agilent Human miRNA Microarray Kit (v2)
25	Agilent Human CpG Island Microarray Kit
26	Agilent Human Promoter ChIP-on-chip Microarray Set
27	Agilent Human SpliceArray
28	Illumina human1m-duo
29	Illumina human660w-quad
30	Illumina humancytosnp-12
31	Illumina human510s-duo
32	Illumina humanmethylation27
33	Illumina goldengate methylation
34	Illumina HumanHT-12 v4.0 beadchip
35	Illumina HumanWG-6 v3.0 beadchip
36	Illumina HumanRef-8 v3.0 beadchip
37	Illumina microRNA Expression Profiling Panel
38	Illumina humanht-16
39	Illumina humanht-17
40	Nimblegen Human CGH 3x720 Whole-Genome v3.0 Array
41	Nimblegen Human CGH 2.1M Whole-Genome v2.0D Array
42	Nimblegen Gene Expression 385K
43	Nimblegen Gene Expression 4x72K
44	Nimblegen Gene Expression 12x135K
45	Nimblegen Human Methylation 2.1M Whole-Genome sets
46	Nimblegen Human Methylation 385K Whole-Genome sets
47	Nimblegen CGS
48	Illumina Human1M OmniQuad chip
49	PCR and capillary sequencing
50	Custom-designed gene expression array
51	Affymetrix HT Human Genome U133A Array Plate Set
	Continued on next page

Table A.6.1 – concluded from previous page

Key	Platform or Validation Platform
52	Agilent 244K Custom Gene Expression G4502A-07-1
53	Agilent 244K Custom Gene Expression G4502A-07-2
54	Agilent 244K Custom Gene Expression G4502A-07-3
55	Agilent Human Genome CGH Custom Microaary
33	2x415K
56	Affymetrix Human U133 Plus PM
57	Affymetrix Human U133 Plus 2.0
58	Affymetrix Human Exon 1.0 ST
59	Almac Human CRC
60	Illumina HiSeq
61	Affymetrix Human MIP 330K
62	Affymetrix Human Gene 1.0 ST
63	Illumina Human Omni1-Quad beadchip
64	Sequenom MassARRAY
65	Custom-designed cDNA array
66	Illumina HumanHap550
67	Ion Torrent PGM
68	Illumina GoldenGate Methylation Cancer Panel I
69	Illumina Infinium HumanMethylation450
70	Agilent 8 x 15K Human miRNA-specific microarray
71	M.D. Anderson Reverse Phase Protein Array Core
72	Microsatellite Instability Analysis
73	Agilent 244K Custom Gene Expression G4502A-07
74	Illumina HumanCNV370-Duo v1.0 BeadChip
75	Illumina HumanOmniExpress BeadChip

A.7 Chromosome Names for Reference Genome GRCh37

Table A.7.1: Chromosome Names for Reference Genome GRCh37

Key	Chromosome Name
1	1
2	2
3	3
4	4
5	5
6	6
7	7
8	8
9	9
10	10
11	11
12	12
13	13
	Continued on next page

Table A.7.1 – continued from previous page

	Table A.7.1 – continued from previous page
Key	Chromosome Name
14	14
15	15
16	16
17	17
18	18
19	19
20	20
21	21
22	22
23	X
24	Υ
25	MT
26	c5_H2
27	c6_COX
28	c6_QBL
29	NT_113870
30	NT_113871
31	NT_113872
32	NT_113874
33	NT_113878
34	NT_113880
35	NT_113881 NT_113884
36	NT_113884
37	NT_113885
38	NT_113886
39	NT_113888
40	NT_113889
41	NT_113890
42	NT_113898
43	NT_113899
44	NT_113901
45	NT_113902
46	NT_113903
47	NT_113906
48	NT_113908
49	NT_113909
50	NT_113910
51	NT_113911
52	NT_113912
53	NT_113915
54	NT_113916
55	NT_113917
	Continued on next page

Table A.7.1 – continued from previous page

	Table A.7.1 – continued from previous page
Key	Chromosome Name
56	NT_113923
57	NT_113924
58	NT_113925
59	NT_113926
60	NT_113927
61	NT_113929
62	NT_113930
63	NT_113931
64	NT_113932
65	NT_113933
66	NT_113934
67	NT_113935
68	NT_113936
69	NT_113937
70	NT_113939
71	NT_113943
72	NT_113944
7 3	NT_113946
74	NT_113949
75	NT_113951
76	NT_113953
77	NT_113954
78	NT_113956
79	NT_113957
80	NT_113958
81	NT_113960
82	NT_113961
83	NT_113962
84	NT_113963
85	NT_113964
86	NT_113965
87	NT_113966
88	HSCHR17_1
89	HSCHR17_RANDOM_CTG2
90	HSCHR17_RANDOM_CTG3
91	HSCHR19_RANDOM_CTG2
92	HSCHR1_RANDOM_CTG12
93	HSCHR1_RANDOM_CTG5
94	HSCHR4_RANDOM_CTG2
95	HSCHR4_RANDOM_CTG3
96	HSCHR6_MHC_APD
97	HSCHR6_MHC_COX
	Continued on next page

Table A.7.1 – concluded from previous page

Key Chromosome Name 98 HSCHR6_MHC_DBB 99 HSCHR6_MHC_MCF 100 HSCHR6_MHC_QBL 101 HSCHR6_MHC_QBL 102 HSCHR6_MHC_SSTO 103 HSCHR7_RANDOM_CTG1 104 HSCHR8_RANDOM_CTG1 105 HSCHR8_RANDOM_CTG4 106 HSCHR9_RANDOM_CTG2 107 HSCHR9_RANDOM_CTG4 108 HSCHR9_RANDOM_CTG5 109 HSCHRUN_RANDOM_CTG1 110 HSCHRUN_RANDOM_CTG1 111 HSCHRUN_RANDOM_CTG1 112 HSCHRUN_RANDOM_CTG13 113 HSCHRUN_RANDOM_CTG13 114 HSCHRUN_RANDOM_CTG15 115 HSCHRUN_RANDOM_CTG15 116 HSCHRUN_RANDOM_CTG2 117 HSCHRUN_RANDOM_CTG2 118 HSCHRUN_RANDOM_CTG2 129 HSCHRUN_RANDOM_CTG20 120 HSCHRUN_RANDOM_CTG23 121 HSCHRUN_RANDOM_CTG23 122 HSCHRUN_RANDOM_CTG3 123 HSCHRUN_RANDOM_CTG32		Table A.7.1 – concluded from previous page
99 HSCHR6_MHC_MCF 101 HSCHR6_MHC_MCF 101 HSCHR6_MHC_QBL 102 HSCHR6_MHC_SSTO 103 HSCHR7_RANDOM_CTG1 104 HSCHR8_RANDOM_CTG4 105 HSCHR8_RANDOM_CTG4 106 HSCHR9_RANDOM_CTG2 107 HSCHR9_RANDOM_CTG4 108 HSCHR9_RANDOM_CTG4 109 HSCHRUN_RANDOM_CTG5 109 HSCHRUN_RANDOM_CTG1 110 HSCHRUN_RANDOM_CTG1 111 HSCHRUN_RANDOM_CTG10 111 HSCHRUN_RANDOM_CTG11 112 HSCHRUN_RANDOM_CTG13 113 HSCHRUN_RANDOM_CTG13 114 HSCHRUN_RANDOM_CTG16 116 HSCHRUN_RANDOM_CTG2 118 HSCHRUN_RANDOM_CTG2 119 HSCHRUN_RANDOM_CTG20 119 HSCHRUN_RANDOM_CTG22 121 HSCHRUN_RANDOM_CTG23 122 HSCHRUN_RANDOM_CTG23 123 HSCHRUN_RANDOM_CTG3 124 HSCHRUN_RANDOM_CTG3 125 HSCHRUN_RANDOM_CT	Key	Chromosome Name
100 HSCHR6_MHC_MCF 101 HSCHR6_MHC_QBL 102 HSCHR6_MHC_SSTO 103 HSCHR7_RANDOM_CTG1 104 HSCHR8_RANDOM_CTG4 105 HSCHR8_RANDOM_CTG2 106 HSCHR9_RANDOM_CTG4 108 HSCHR9_RANDOM_CTG4 108 HSCHR9_RANDOM_CTG5 109 HSCHRUN_RANDOM_CTG1 110 HSCHRUN_RANDOM_CTG1 111 HSCHRUN_RANDOM_CTG10 111 HSCHRUN_RANDOM_CTG11 112 HSCHRUN_RANDOM_CTG13 113 HSCHRUN_RANDOM_CTG14 114 HSCHRUN_RANDOM_CTG15 115 HSCHRUN_RANDOM_CTG16 116 HSCHRUN_RANDOM_CTG26 117 HSCHRUN_RANDOM_CTG20 119 HSCHRUN_RANDOM_CTG20 119 HSCHRUN_RANDOM_CTG21 120 HSCHRUN_RANDOM_CTG23 121 HSCHRUN_RANDOM_CTG23 122 HSCHRUN_RANDOM_CTG3 123 HSCHRUN_RANDOM_CTG3 124 HSCHRUN_RANDOM_CTG3 125 HSCHRUN_	98	HSCHR6_MHC_DBB
101 HSCHR6_MHC_QBL 102 HSCHR6_MHC_SSTO 103 HSCHR7_RANDOM_CTG1 104 HSCHR8_RANDOM_CTG1 105 HSCHR8_RANDOM_CTG4 106 HSCHR9_RANDOM_CTG2 107 HSCHR9_RANDOM_CTG4 108 HSCHR9_RANDOM_CTG5 109 HSCHRUN_RANDOM_CTG1 110 HSCHRUN_RANDOM_CTG10 111 HSCHRUN_RANDOM_CTG11 112 HSCHRUN_RANDOM_CTG13 113 HSCHRUN_RANDOM_CTG13 114 HSCHRUN_RANDOM_CTG14 114 HSCHRUN_RANDOM_CTG15 115 HSCHRUN_RANDOM_CTG16 116 HSCHRUN_RANDOM_CTG27 117 HSCHRUN_RANDOM_CTG2 118 HSCHRUN_RANDOM_CTG20 119 HSCHRUN_RANDOM_CTG21 120 HSCHRUN_RANDOM_CTG22 121 HSCHRUN_RANDOM_CTG23 122 HSCHRUN_RANDOM_CTG3 125 HSCHRUN_RANDOM_CTG3 126 HSCHRUN_RANDOM_CTG31 127 HSCHRUN_RANDOM_CTG34 130 H	99	HSCHR6_MHC_MANN
102 HSCHR6_MHC_SSTO 103 HSCHR7_RANDOM_CTG1 104 HSCHR8_RANDOM_CTG1 105 HSCHR8_RANDOM_CTG4 106 HSCHR9_RANDOM_CTG2 107 HSCHR9_RANDOM_CTG4 108 HSCHR9_RANDOM_CTG5 109 HSCHRUN_RANDOM_CTG10 110 HSCHRUN_RANDOM_CTG10 111 HSCHRUN_RANDOM_CTG11 112 HSCHRUN_RANDOM_CTG13 113 HSCHRUN_RANDOM_CTG13 114 HSCHRUN_RANDOM_CTG14 114 HSCHRUN_RANDOM_CTG15 115 HSCHRUN_RANDOM_CTG16 116 HSCHRUN_RANDOM_CTG21 117 HSCHRUN_RANDOM_CTG22 118 HSCHRUN_RANDOM_CTG21 120 HSCHRUN_RANDOM_CTG22 121 HSCHRUN_RANDOM_CTG23 122 HSCHRUN_RANDOM_CTG23 123 HSCHRUN_RANDOM_CTG30 124 HSCHRUN_RANDOM_CTG31 127 HSCHRUN_RANDOM_CTG31 127 HSCHRUN_RANDOM_CTG34 130 HSCHRUN_RANDOM_CTG35 131	100	
103 HSCHR7_RANDOM_CTG1 104 HSCHR8_RANDOM_CTG1 105 HSCHR8_RANDOM_CTG4 106 HSCHR9_RANDOM_CTG2 107 HSCHR9_RANDOM_CTG4 108 HSCHR9_RANDOM_CTG5 109 HSCHRUN_RANDOM_CTG1 110 HSCHRUN_RANDOM_CTG10 111 HSCHRUN_RANDOM_CTG11 112 HSCHRUN_RANDOM_CTG13 113 HSCHRUN_RANDOM_CTG14 114 HSCHRUN_RANDOM_CTG15 115 HSCHRUN_RANDOM_CTG16 116 HSCHRUN_RANDOM_CTG2 118 HSCHRUN_RANDOM_CTG2 119 HSCHRUN_RANDOM_CTG20 119 HSCHRUN_RANDOM_CTG21 120 HSCHRUN_RANDOM_CTG22 121 HSCHRUN_RANDOM_CTG23 122 HSCHRUN_RANDOM_CTG26 123 HSCHRUN_RANDOM_CTG3 124 HSCHRUN_RANDOM_CTG3 125 HSCHRUN_RANDOM_CTG31 127 HSCHRUN_RANDOM_CTG33 128 HSCHRUN_RANDOM_CTG34 130 HSCHRUN_RANDOM_CTG36 131	101	
104 HSCHR8_RANDOM_CTG1 105 HSCHR8_RANDOM_CTG4 106 HSCHR9_RANDOM_CTG2 107 HSCHR9_RANDOM_CTG4 108 HSCHR9_RANDOM_CTG5 109 HSCHRUN_RANDOM_CTG10 110 HSCHRUN_RANDOM_CTG10 111 HSCHRUN_RANDOM_CTG11 112 HSCHRUN_RANDOM_CTG13 113 HSCHRUN_RANDOM_CTG14 114 HSCHRUN_RANDOM_CTG15 115 HSCHRUN_RANDOM_CTG16 116 HSCHRUN_RANDOM_CTG2 118 HSCHRUN_RANDOM_CTG2 119 HSCHRUN_RANDOM_CTG20 119 HSCHRUN_RANDOM_CTG21 120 HSCHRUN_RANDOM_CTG22 121 HSCHRUN_RANDOM_CTG23 122 HSCHRUN_RANDOM_CTG23 123 HSCHRUN_RANDOM_CTG3 124 HSCHRUN_RANDOM_CTG3 125 HSCHRUN_RANDOM_CTG31 126 HSCHRUN_RANDOM_CTG32 128 HSCHRUN_RANDOM_CTG33 129 HSCHRUN_RANDOM_CTG34 130 HSCHRUN_RANDOM_CTG36 131	102	
105 HSCHR8_RANDOM_CTG2 107 HSCHR9_RANDOM_CTG4 108 HSCHR9_RANDOM_CTG5 109 HSCHRUN_RANDOM_CTG1 110 HSCHRUN_RANDOM_CTG1 111 HSCHRUN_RANDOM_CTG11 112 HSCHRUN_RANDOM_CTG13 113 HSCHRUN_RANDOM_CTG15 115 HSCHRUN_RANDOM_CTG15 116 HSCHRUN_RANDOM_CTG16 117 HSCHRUN_RANDOM_CTG17 117 HSCHRUN_RANDOM_CTG17 117 HSCHRUN_RANDOM_CTG2 118 HSCHRUN_RANDOM_CTG2 119 HSCHRUN_RANDOM_CTG21 120 HSCHRUN_RANDOM_CTG21 120 HSCHRUN_RANDOM_CTG22 121 HSCHRUN_RANDOM_CTG23 122 HSCHRUN_RANDOM_CTG23 123 HSCHRUN_RANDOM_CTG26 123 HSCHRUN_RANDOM_CTG3 125 HSCHRUN_RANDOM_CTG3 126 HSCHRUN_RANDOM_CTG3 127 HSCHRUN_RANDOM_CTG31 127 HSCHRUN_RANDOM_CTG31 127 HSCHRUN_RANDOM_CTG31 127 HSCHRUN_RANDOM_CTG32 128 HSCHRUN_RANDOM_CTG32 128 HSCHRUN_RANDOM_CTG33 129 HSCHRUN_RANDOM_CTG34 130 HSCHRUN_RANDOM_CTG35 131 HSCHRUN_RANDOM_CTG36 132 HSCHRUN_RANDOM_CTG36 133 HSCHRUN_RANDOM_CTG40 134 HSCHRUN_RANDOM_CTG5 135 HSCHRUN_RANDOM_CTG6 136 HSCHRUN_RANDOM_CTG6 136 HSCHRUN_RANDOM_CTG6 137 HSCHRUN_RANDOM_CTG6 138 HSCHRUN_RANDOM_CTG6 139 HSCHRUN_RANDOM_CTG6 131 HSCHRUN_RANDOM_CTG6 131 HSCHRUN_RANDOM_CTG6 133 HSCHRUN_RANDOM_CTG6	103	<u> </u>
106 HSCHR9_RANDOM_CTG2 107 HSCHR9_RANDOM_CTG4 108 HSCHR9_RANDOM_CTG5 109 HSCHRUN_RANDOM_CTG1 110 HSCHRUN_RANDOM_CTG10 111 HSCHRUN_RANDOM_CTG11 112 HSCHRUN_RANDOM_CTG13 113 HSCHRUN_RANDOM_CTG14 114 HSCHRUN_RANDOM_CTG15 115 HSCHRUN_RANDOM_CTG16 116 HSCHRUN_RANDOM_CTG17 117 HSCHRUN_RANDOM_CTG2 118 HSCHRUN_RANDOM_CTG2 119 HSCHRUN_RANDOM_CTG20 119 HSCHRUN_RANDOM_CTG21 120 HSCHRUN_RANDOM_CTG22 121 HSCHRUN_RANDOM_CTG23 122 HSCHRUN_RANDOM_CTG23 122 HSCHRUN_RANDOM_CTG26 123 HSCHRUN_RANDOM_CTG29 124 HSCHRUN_RANDOM_CTG3 125 HSCHRUN_RANDOM_CTG3 126 HSCHRUN_RANDOM_CTG31 127 HSCHRUN_RANDOM_CTG31 127 HSCHRUN_RANDOM_CTG31 127 HSCHRUN_RANDOM_CTG32 128 HSCHRUN_RANDOM_CTG33 129 HSCHRUN_RANDOM_CTG34 130 HSCHRUN_RANDOM_CTG34 130 HSCHRUN_RANDOM_CTG35 131 HSCHRUN_RANDOM_CTG36 132 HSCHRUN_RANDOM_CTG4 133 HSCHRUN_RANDOM_CTG4 134 HSCHRUN_RANDOM_CTG5 135 HSCHRUN_RANDOM_CTG5 135 HSCHRUN_RANDOM_CTG6 136 HSCHRUN_RANDOM_CTG6 136 HSCHRUN_RANDOM_CTG6 137 HSCHRUN_RANDOM_CTG6 138 HSCHRUN_RANDOM_CTG6 139 HSCHRUN_RANDOM_CTG6 131 HSCHRUN_RANDOM_CTG6 131 HSCHRUN_RANDOM_CTG6	104	
107 HSCHR9_RANDOM_CTG4 108 HSCHR9_RANDOM_CTG5 109 HSCHRUN_RANDOM_CTG1 110 HSCHRUN_RANDOM_CTG10 111 HSCHRUN_RANDOM_CTG11 112 HSCHRUN_RANDOM_CTG13 113 HSCHRUN_RANDOM_CTG14 114 HSCHRUN_RANDOM_CTG15 115 HSCHRUN_RANDOM_CTG15 116 HSCHRUN_RANDOM_CTG16 116 HSCHRUN_RANDOM_CTG17 117 HSCHRUN_RANDOM_CTG2 118 HSCHRUN_RANDOM_CTG2 119 HSCHRUN_RANDOM_CTG20 119 HSCHRUN_RANDOM_CTG21 120 HSCHRUN_RANDOM_CTG21 121 HSCHRUN_RANDOM_CTG22 121 HSCHRUN_RANDOM_CTG23 122 HSCHRUN_RANDOM_CTG26 123 HSCHRUN_RANDOM_CTG26 124 HSCHRUN_RANDOM_CTG3 125 HSCHRUN_RANDOM_CTG3 126 HSCHRUN_RANDOM_CTG31 127 HSCHRUN_RANDOM_CTG31 127 HSCHRUN_RANDOM_CTG31 127 HSCHRUN_RANDOM_CTG32 128 HSCHRUN_RANDOM_CTG32 129 HSCHRUN_RANDOM_CTG35 131 HSCHRUN_RANDOM_CTG35 131 HSCHRUN_RANDOM_CTG36 132 HSCHRUN_RANDOM_CTG36 133 HSCHRUN_RANDOM_CTG40 134 HSCHRUN_RANDOM_CTG5 135 HSCHRUN_RANDOM_CTG6 136 HSCHRUN_RANDOM_CTG6 136 HSCHRUN_RANDOM_CTG6		
108 HSCHR9_RANDOM_CTG5 109 HSCHRUN_RANDOM_CTG1 110 HSCHRUN_RANDOM_CTG10 111 HSCHRUN_RANDOM_CTG11 112 HSCHRUN_RANDOM_CTG13 113 HSCHRUN_RANDOM_CTG14 114 HSCHRUN_RANDOM_CTG15 115 HSCHRUN_RANDOM_CTG16 116 HSCHRUN_RANDOM_CTG17 117 HSCHRUN_RANDOM_CTG17 117 HSCHRUN_RANDOM_CTG2 118 HSCHRUN_RANDOM_CTG2 119 HSCHRUN_RANDOM_CTG20 119 HSCHRUN_RANDOM_CTG21 120 HSCHRUN_RANDOM_CTG22 121 HSCHRUN_RANDOM_CTG23 122 HSCHRUN_RANDOM_CTG23 122 HSCHRUN_RANDOM_CTG26 123 HSCHRUN_RANDOM_CTG29 124 HSCHRUN_RANDOM_CTG30 125 HSCHRUN_RANDOM_CTG31 127 HSCHRUN_RANDOM_CTG31 127 HSCHRUN_RANDOM_CTG31 127 HSCHRUN_RANDOM_CTG31 128 HSCHRUN_RANDOM_CTG32 128 HSCHRUN_RANDOM_CTG33 129 HSCHRUN_RANDOM_CTG35 131 HSCHRUN_RANDOM_CTG35 131 HSCHRUN_RANDOM_CTG36 132 HSCHRUN_RANDOM_CTG40 134 HSCHRUN_RANDOM_CTG40 135 HSCHRUN_RANDOM_CTG5 135 HSCHRUN_RANDOM_CTG6 136 HSCHRUN_RANDOM_CTG6 136 HSCHRUN_RANDOM_CTG6		<u> </u>
109 HSCHRUN_RANDOM_CTG1 110 HSCHRUN_RANDOM_CTG10 111 HSCHRUN_RANDOM_CTG11 112 HSCHRUN_RANDOM_CTG13 113 HSCHRUN_RANDOM_CTG14 114 HSCHRUN_RANDOM_CTG15 115 HSCHRUN_RANDOM_CTG16 116 HSCHRUN_RANDOM_CTG17 117 HSCHRUN_RANDOM_CTG2 118 HSCHRUN_RANDOM_CTG2 119 HSCHRUN_RANDOM_CTG20 119 HSCHRUN_RANDOM_CTG21 120 HSCHRUN_RANDOM_CTG21 121 HSCHRUN_RANDOM_CTG22 121 HSCHRUN_RANDOM_CTG23 122 HSCHRUN_RANDOM_CTG26 123 HSCHRUN_RANDOM_CTG26 124 HSCHRUN_RANDOM_CTG30 125 HSCHRUN_RANDOM_CTG3 126 HSCHRUN_RANDOM_CTG31 127 HSCHRUN_RANDOM_CTG31 127 HSCHRUN_RANDOM_CTG31 128 HSCHRUN_RANDOM_CTG31 129 HSCHRUN_RANDOM_CTG35 130 HSCHRUN_RANDOM_CTG34 130 HSCHRUN_RANDOM_CTG35 131 HSCHRUN_RANDOM_CTG36 132 HSCHRUN_RANDOM_CTG40 134 HSCHRUN_RANDOM_CTG40 135 HSCHRUN_RANDOM_CTG5 135 HSCHRUN_RANDOM_CTG6 136 HSCHRUN_RANDOM_CTG6 136 HSCHRUN_RANDOM_CTG6	107	
110 HSCHRUN_RANDOM_CTG10 111 HSCHRUN_RANDOM_CTG11 112 HSCHRUN_RANDOM_CTG13 113 HSCHRUN_RANDOM_CTG14 114 HSCHRUN_RANDOM_CTG15 115 HSCHRUN_RANDOM_CTG16 116 HSCHRUN_RANDOM_CTG17 117 HSCHRUN_RANDOM_CTG2 118 HSCHRUN_RANDOM_CTG20 119 HSCHRUN_RANDOM_CTG21 120 HSCHRUN_RANDOM_CTG21 120 HSCHRUN_RANDOM_CTG22 121 HSCHRUN_RANDOM_CTG23 122 HSCHRUN_RANDOM_CTG23 122 HSCHRUN_RANDOM_CTG26 123 HSCHRUN_RANDOM_CTG29 124 HSCHRUN_RANDOM_CTG3 125 HSCHRUN_RANDOM_CTG3 126 HSCHRUN_RANDOM_CTG31 127 HSCHRUN_RANDOM_CTG31 127 HSCHRUN_RANDOM_CTG31 128 HSCHRUN_RANDOM_CTG32 128 HSCHRUN_RANDOM_CTG34 130 HSCHRUN_RANDOM_CTG35 131 HSCHRUN_RANDOM_CTG36 132 HSCHRUN_RANDOM_CTG36 133 HSCHRUN_RANDOM_CTG4 134 HSCHRUN_RANDOM_CTG40 135 HSCHRUN_RANDOM_CTG5 135 HSCHRUN_RANDOM_CTG6 136 HSCHRUN_RANDOM_CTG6 136 HSCHRUN_RANDOM_CTG6		
111 HSCHRUN_RANDOM_CTG11 112 HSCHRUN_RANDOM_CTG13 113 HSCHRUN_RANDOM_CTG14 114 HSCHRUN_RANDOM_CTG15 115 HSCHRUN_RANDOM_CTG16 116 HSCHRUN_RANDOM_CTG17 117 HSCHRUN_RANDOM_CTG2 118 HSCHRUN_RANDOM_CTG2 119 HSCHRUN_RANDOM_CTG20 119 HSCHRUN_RANDOM_CTG21 120 HSCHRUN_RANDOM_CTG22 121 HSCHRUN_RANDOM_CTG23 122 HSCHRUN_RANDOM_CTG23 123 HSCHRUN_RANDOM_CTG26 123 HSCHRUN_RANDOM_CTG29 124 HSCHRUN_RANDOM_CTG3 125 HSCHRUN_RANDOM_CTG3 126 HSCHRUN_RANDOM_CTG31 127 HSCHRUN_RANDOM_CTG31 127 HSCHRUN_RANDOM_CTG32 128 HSCHRUN_RANDOM_CTG33 129 HSCHRUN_RANDOM_CTG34 130 HSCHRUN_RANDOM_CTG35 131 HSCHRUN_RANDOM_CTG36 132 HSCHRUN_RANDOM_CTG36 133 HSCHRUN_RANDOM_CTG40 134 HSCHRUN_RANDOM_CTG5 135 HSCHRUN_RANDOM_CTG6 136 HSCHRUN_RANDOM_CTG6 136 HSCHRUN_RANDOM_CTG6 137 HSCHRUN_RANDOM_CTG6 138 HSCHRUN_RANDOM_CTG6 139 HSCHRUN_RANDOM_CTG6 130 HSCHRUN_RANDOM_CTG6		
112 HSCHRUN_RANDOM_CTG13 113 HSCHRUN_RANDOM_CTG14 114 HSCHRUN_RANDOM_CTG15 115 HSCHRUN_RANDOM_CTG16 116 HSCHRUN_RANDOM_CTG17 117 HSCHRUN_RANDOM_CTG2 118 HSCHRUN_RANDOM_CTG20 119 HSCHRUN_RANDOM_CTG21 120 HSCHRUN_RANDOM_CTG21 121 HSCHRUN_RANDOM_CTG22 122 HSCHRUN_RANDOM_CTG23 122 HSCHRUN_RANDOM_CTG26 123 HSCHRUN_RANDOM_CTG29 124 HSCHRUN_RANDOM_CTG3 125 HSCHRUN_RANDOM_CTG3 126 HSCHRUN_RANDOM_CTG30 126 HSCHRUN_RANDOM_CTG31 127 HSCHRUN_RANDOM_CTG32 128 HSCHRUN_RANDOM_CTG32 128 HSCHRUN_RANDOM_CTG33 129 HSCHRUN_RANDOM_CTG34 130 HSCHRUN_RANDOM_CTG35 131 HSCHRUN_RANDOM_CTG36 132 HSCHRUN_RANDOM_CTG36 133 HSCHRUN_RANDOM_CTG40 134 HSCHRUN_RANDOM_CTG5 135 HSCHRUN_RANDOM_CTG6 136 HSCHRUN_RANDOM_CTG6 136 HSCHRUN_RANDOM_CTG6 137 HSCHRUN_RANDOM_CTG6 138 HSCHRUN_RANDOM_CTG6 139 HSCHRUN_RANDOM_CTG6 130 HSCHRUN_RANDOM_CTG6		
113 HSCHRUN_RANDOM_CTG14 114 HSCHRUN_RANDOM_CTG15 115 HSCHRUN_RANDOM_CTG16 116 HSCHRUN_RANDOM_CTG17 117 HSCHRUN_RANDOM_CTG2 118 HSCHRUN_RANDOM_CTG20 119 HSCHRUN_RANDOM_CTG21 120 HSCHRUN_RANDOM_CTG22 121 HSCHRUN_RANDOM_CTG23 122 HSCHRUN_RANDOM_CTG23 122 HSCHRUN_RANDOM_CTG26 123 HSCHRUN_RANDOM_CTG29 124 HSCHRUN_RANDOM_CTG3 125 HSCHRUN_RANDOM_CTG3 126 HSCHRUN_RANDOM_CTG31 127 HSCHRUN_RANDOM_CTG31 127 HSCHRUN_RANDOM_CTG32 128 HSCHRUN_RANDOM_CTG33 129 HSCHRUN_RANDOM_CTG34 130 HSCHRUN_RANDOM_CTG35 131 HSCHRUN_RANDOM_CTG36 132 HSCHRUN_RANDOM_CTG36 133 HSCHRUN_RANDOM_CTG4 134 HSCHRUN_RANDOM_CTG40 135 HSCHRUN_RANDOM_CTG5 135 HSCHRUN_RANDOM_CTG6 136 HSCHRUN_RANDOM_CTG6 136 HSCHRUN_RANDOM_CTG6		
114 HSCHRUN_RANDOM_CTG15 115 HSCHRUN_RANDOM_CTG16 116 HSCHRUN_RANDOM_CTG17 117 HSCHRUN_RANDOM_CTG2 118 HSCHRUN_RANDOM_CTG20 119 HSCHRUN_RANDOM_CTG21 120 HSCHRUN_RANDOM_CTG22 121 HSCHRUN_RANDOM_CTG23 122 HSCHRUN_RANDOM_CTG23 122 HSCHRUN_RANDOM_CTG26 123 HSCHRUN_RANDOM_CTG29 124 HSCHRUN_RANDOM_CTG3 125 HSCHRUN_RANDOM_CTG3 126 HSCHRUN_RANDOM_CTG31 127 HSCHRUN_RANDOM_CTG31 127 HSCHRUN_RANDOM_CTG32 128 HSCHRUN_RANDOM_CTG33 129 HSCHRUN_RANDOM_CTG34 130 HSCHRUN_RANDOM_CTG35 131 HSCHRUN_RANDOM_CTG36 132 HSCHRUN_RANDOM_CTG36 133 HSCHRUN_RANDOM_CTG4 133 HSCHRUN_RANDOM_CTG4 134 HSCHRUN_RANDOM_CTG5 135 HSCHRUN_RANDOM_CTG6 136 HSCHRUN_RANDOM_CTG6 136 HSCHRUN_RANDOM_CTG6 136 HSCHRUN_RANDOM_CTG6		
115 HSCHRUN_RANDOM_CTG16 116 HSCHRUN_RANDOM_CTG17 117 HSCHRUN_RANDOM_CTG2 118 HSCHRUN_RANDOM_CTG20 119 HSCHRUN_RANDOM_CTG21 120 HSCHRUN_RANDOM_CTG22 121 HSCHRUN_RANDOM_CTG23 122 HSCHRUN_RANDOM_CTG26 123 HSCHRUN_RANDOM_CTG26 124 HSCHRUN_RANDOM_CTG3 125 HSCHRUN_RANDOM_CTG3 126 HSCHRUN_RANDOM_CTG30 127 HSCHRUN_RANDOM_CTG31 127 HSCHRUN_RANDOM_CTG32 128 HSCHRUN_RANDOM_CTG32 129 HSCHRUN_RANDOM_CTG33 129 HSCHRUN_RANDOM_CTG34 130 HSCHRUN_RANDOM_CTG35 131 HSCHRUN_RANDOM_CTG36 132 HSCHRUN_RANDOM_CTG4 133 HSCHRUN_RANDOM_CTG4 134 HSCHRUN_RANDOM_CTG5 135 HSCHRUN_RANDOM_CTG6 136 HSCHRUN_RANDOM_CTG6	113	
116 HSCHRUN_RANDOM_CTG17 117 HSCHRUN_RANDOM_CTG2 118 HSCHRUN_RANDOM_CTG20 119 HSCHRUN_RANDOM_CTG21 120 HSCHRUN_RANDOM_CTG22 121 HSCHRUN_RANDOM_CTG23 122 HSCHRUN_RANDOM_CTG26 123 HSCHRUN_RANDOM_CTG29 124 HSCHRUN_RANDOM_CTG3 125 HSCHRUN_RANDOM_CTG3 126 HSCHRUN_RANDOM_CTG31 127 HSCHRUN_RANDOM_CTG31 127 HSCHRUN_RANDOM_CTG32 128 HSCHRUN_RANDOM_CTG32 129 HSCHRUN_RANDOM_CTG34 130 HSCHRUN_RANDOM_CTG35 131 HSCHRUN_RANDOM_CTG36 132 HSCHRUN_RANDOM_CTG4 133 HSCHRUN_RANDOM_CTG4 134 HSCHRUN_RANDOM_CTG5 135 HSCHRUN_RANDOM_CTG6 136 HSCHRUN_RANDOM_CTG6 137 HSCHRUN_RANDOM_CTG6 138 HSCHRUN_RANDOM_CTG6 139 HSCHRUN_RANDOM_CTG6 130 HSCHRUN_RANDOM_CTG6		
117 HSCHRUN_RANDOM_CTG2 118 HSCHRUN_RANDOM_CTG20 119 HSCHRUN_RANDOM_CTG21 120 HSCHRUN_RANDOM_CTG22 121 HSCHRUN_RANDOM_CTG23 122 HSCHRUN_RANDOM_CTG26 123 HSCHRUN_RANDOM_CTG29 124 HSCHRUN_RANDOM_CTG3 125 HSCHRUN_RANDOM_CTG3 126 HSCHRUN_RANDOM_CTG31 127 HSCHRUN_RANDOM_CTG31 127 HSCHRUN_RANDOM_CTG32 128 HSCHRUN_RANDOM_CTG33 129 HSCHRUN_RANDOM_CTG34 130 HSCHRUN_RANDOM_CTG35 131 HSCHRUN_RANDOM_CTG35 131 HSCHRUN_RANDOM_CTG36 132 HSCHRUN_RANDOM_CTG4 133 HSCHRUN_RANDOM_CTG4 134 HSCHRUN_RANDOM_CTG5 135 HSCHRUN_RANDOM_CTG6 136 HSCHRUN_RANDOM_CTG6		
118 HSCHRUN_RANDOM_CTG20 119 HSCHRUN_RANDOM_CTG21 120 HSCHRUN_RANDOM_CTG22 121 HSCHRUN_RANDOM_CTG23 122 HSCHRUN_RANDOM_CTG26 123 HSCHRUN_RANDOM_CTG29 124 HSCHRUN_RANDOM_CTG3 125 HSCHRUN_RANDOM_CTG30 126 HSCHRUN_RANDOM_CTG31 127 HSCHRUN_RANDOM_CTG31 127 HSCHRUN_RANDOM_CTG32 128 HSCHRUN_RANDOM_CTG32 129 HSCHRUN_RANDOM_CTG34 130 HSCHRUN_RANDOM_CTG35 131 HSCHRUN_RANDOM_CTG35 131 HSCHRUN_RANDOM_CTG36 132 HSCHRUN_RANDOM_CTG4 133 HSCHRUN_RANDOM_CTG4 134 HSCHRUN_RANDOM_CTG4 135 HSCHRUN_RANDOM_CTG5 136 HSCHRUN_RANDOM_CTG6 136 HSCHRUN_RANDOM_CTG6		
119 HSCHRUN_RANDOM_CTG21 120 HSCHRUN_RANDOM_CTG22 121 HSCHRUN_RANDOM_CTG23 122 HSCHRUN_RANDOM_CTG26 123 HSCHRUN_RANDOM_CTG29 124 HSCHRUN_RANDOM_CTG3 125 HSCHRUN_RANDOM_CTG30 126 HSCHRUN_RANDOM_CTG31 127 HSCHRUN_RANDOM_CTG32 128 HSCHRUN_RANDOM_CTG32 129 HSCHRUN_RANDOM_CTG33 129 HSCHRUN_RANDOM_CTG34 130 HSCHRUN_RANDOM_CTG35 131 HSCHRUN_RANDOM_CTG36 132 HSCHRUN_RANDOM_CTG4 133 HSCHRUN_RANDOM_CTG4 134 HSCHRUN_RANDOM_CTG4 135 HSCHRUN_RANDOM_CTG5 136 HSCHRUN_RANDOM_CTG6 136 HSCHRUN_RANDOM_CTG9	117	
120 HSCHRUN_RANDOM_CTG22 121 HSCHRUN_RANDOM_CTG23 122 HSCHRUN_RANDOM_CTG26 123 HSCHRUN_RANDOM_CTG29 124 HSCHRUN_RANDOM_CTG3 125 HSCHRUN_RANDOM_CTG30 126 HSCHRUN_RANDOM_CTG31 127 HSCHRUN_RANDOM_CTG32 128 HSCHRUN_RANDOM_CTG32 129 HSCHRUN_RANDOM_CTG33 129 HSCHRUN_RANDOM_CTG34 130 HSCHRUN_RANDOM_CTG35 131 HSCHRUN_RANDOM_CTG36 132 HSCHRUN_RANDOM_CTG4 133 HSCHRUN_RANDOM_CTG4 134 HSCHRUN_RANDOM_CTG4 135 HSCHRUN_RANDOM_CTG5 136 HSCHRUN_RANDOM_CTG6 136 HSCHRUN_RANDOM_CTG9		
121 HSCHRUN_RANDOM_CTG23 122 HSCHRUN_RANDOM_CTG26 123 HSCHRUN_RANDOM_CTG29 124 HSCHRUN_RANDOM_CTG3 125 HSCHRUN_RANDOM_CTG30 126 HSCHRUN_RANDOM_CTG31 127 HSCHRUN_RANDOM_CTG32 128 HSCHRUN_RANDOM_CTG32 129 HSCHRUN_RANDOM_CTG34 130 HSCHRUN_RANDOM_CTG35 131 HSCHRUN_RANDOM_CTG36 132 HSCHRUN_RANDOM_CTG36 133 HSCHRUN_RANDOM_CTG4 133 HSCHRUN_RANDOM_CTG4 134 HSCHRUN_RANDOM_CTG5 135 HSCHRUN_RANDOM_CTG6 136 HSCHRUN_RANDOM_CTG6		
122 HSCHRUN_RANDOM_CTG26 123 HSCHRUN_RANDOM_CTG29 124 HSCHRUN_RANDOM_CTG3 125 HSCHRUN_RANDOM_CTG30 126 HSCHRUN_RANDOM_CTG31 127 HSCHRUN_RANDOM_CTG32 128 HSCHRUN_RANDOM_CTG33 129 HSCHRUN_RANDOM_CTG34 130 HSCHRUN_RANDOM_CTG35 131 HSCHRUN_RANDOM_CTG36 132 HSCHRUN_RANDOM_CTG4 133 HSCHRUN_RANDOM_CTG4 134 HSCHRUN_RANDOM_CTG5 135 HSCHRUN_RANDOM_CTG6 136 HSCHRUN_RANDOM_CTG6 136 HSCHRUN_RANDOM_CTG9		
123 HSCHRUN_RANDOM_CTG29 124 HSCHRUN_RANDOM_CTG3 125 HSCHRUN_RANDOM_CTG30 126 HSCHRUN_RANDOM_CTG31 127 HSCHRUN_RANDOM_CTG32 128 HSCHRUN_RANDOM_CTG33 129 HSCHRUN_RANDOM_CTG34 130 HSCHRUN_RANDOM_CTG35 131 HSCHRUN_RANDOM_CTG36 132 HSCHRUN_RANDOM_CTG4 133 HSCHRUN_RANDOM_CTG4 134 HSCHRUN_RANDOM_CTG40 135 HSCHRUN_RANDOM_CTG5 136 HSCHRUN_RANDOM_CTG6 136 HSCHRUN_RANDOM_CTG9		
124 HSCHRUN_RANDOM_CTG3 125 HSCHRUN_RANDOM_CTG30 126 HSCHRUN_RANDOM_CTG31 127 HSCHRUN_RANDOM_CTG32 128 HSCHRUN_RANDOM_CTG33 129 HSCHRUN_RANDOM_CTG34 130 HSCHRUN_RANDOM_CTG35 131 HSCHRUN_RANDOM_CTG36 132 HSCHRUN_RANDOM_CTG4 133 HSCHRUN_RANDOM_CTG4 134 HSCHRUN_RANDOM_CTG40 135 HSCHRUN_RANDOM_CTG5 136 HSCHRUN_RANDOM_CTG6 136 HSCHRUN_RANDOM_CTG9		
125 HSCHRUN_RANDOM_CTG30 126 HSCHRUN_RANDOM_CTG31 127 HSCHRUN_RANDOM_CTG32 128 HSCHRUN_RANDOM_CTG33 129 HSCHRUN_RANDOM_CTG34 130 HSCHRUN_RANDOM_CTG35 131 HSCHRUN_RANDOM_CTG36 132 HSCHRUN_RANDOM_CTG4 133 HSCHRUN_RANDOM_CTG4 134 HSCHRUN_RANDOM_CTG40 135 HSCHRUN_RANDOM_CTG5 136 HSCHRUN_RANDOM_CTG6		
126 HSCHRUN_RANDOM_CTG31 127 HSCHRUN_RANDOM_CTG32 128 HSCHRUN_RANDOM_CTG33 129 HSCHRUN_RANDOM_CTG34 130 HSCHRUN_RANDOM_CTG35 131 HSCHRUN_RANDOM_CTG36 132 HSCHRUN_RANDOM_CTG4 133 HSCHRUN_RANDOM_CTG4 134 HSCHRUN_RANDOM_CTG40 135 HSCHRUN_RANDOM_CTG5 136 HSCHRUN_RANDOM_CTG6		
127 HSCHRUN_RANDOM_CTG32 128 HSCHRUN_RANDOM_CTG33 129 HSCHRUN_RANDOM_CTG34 130 HSCHRUN_RANDOM_CTG35 131 HSCHRUN_RANDOM_CTG36 132 HSCHRUN_RANDOM_CTG4 133 HSCHRUN_RANDOM_CTG4 134 HSCHRUN_RANDOM_CTG5 135 HSCHRUN_RANDOM_CTG6 136 HSCHRUN_RANDOM_CTG9		
128 HSCHRUN_RANDOM_CTG33 129 HSCHRUN_RANDOM_CTG34 130 HSCHRUN_RANDOM_CTG35 131 HSCHRUN_RANDOM_CTG36 132 HSCHRUN_RANDOM_CTG4 133 HSCHRUN_RANDOM_CTG4 134 HSCHRUN_RANDOM_CTG5 135 HSCHRUN_RANDOM_CTG6 136 HSCHRUN_RANDOM_CTG9		-
129 HSCHRUN_RANDOM_CTG34 130 HSCHRUN_RANDOM_CTG35 131 HSCHRUN_RANDOM_CTG36 132 HSCHRUN_RANDOM_CTG4 133 HSCHRUN_RANDOM_CTG40 134 HSCHRUN_RANDOM_CTG5 135 HSCHRUN_RANDOM_CTG6 136 HSCHRUN_RANDOM_CTG9		
130 HSCHRUN_RANDOM_CTG35 131 HSCHRUN_RANDOM_CTG36 132 HSCHRUN_RANDOM_CTG4 133 HSCHRUN_RANDOM_CTG40 134 HSCHRUN_RANDOM_CTG5 135 HSCHRUN_RANDOM_CTG6 136 HSCHRUN_RANDOM_CTG9		
131 HSCHRUN_RANDOM_CTG36 132 HSCHRUN_RANDOM_CTG4 133 HSCHRUN_RANDOM_CTG40 134 HSCHRUN_RANDOM_CTG5 135 HSCHRUN_RANDOM_CTG6 136 HSCHRUN_RANDOM_CTG9		
132 HSCHRUN_RANDOM_CTG4 133 HSCHRUN_RANDOM_CTG40 134 HSCHRUN_RANDOM_CTG5 135 HSCHRUN_RANDOM_CTG6 136 HSCHRUN_RANDOM_CTG9		
133 HSCHRUN_RANDOM_CTG40 134 HSCHRUN_RANDOM_CTG5 135 HSCHRUN_RANDOM_CTG6 136 HSCHRUN_RANDOM_CTG9		
134 HSCHRUN_RANDOM_CTG5 135 HSCHRUN_RANDOM_CTG6 136 HSCHRUN_RANDOM_CTG9		
135 HSCHRUN_RANDOM_CTG6 136 HSCHRUN_RANDOM_CTG9		
136 HSCHRUN_RANDOM_CTG9		
137 HSCHR4_1		
	137	HSCHR4_1

A.8 Value Codes for Reference Genome Assembly Version

Table A.8.1: Value Codes for Reference Genome Assembly Version

Key Reference Genome Assembly Version

Continued on next page

Table A.8.1 – concluded from previous page

Key	Reference Genome Assembly Version
1	GRCh37
2	NCBI36
3	GRCh37.p1
4	GRCh37.p2
5	GRCh37.p3
6	GRCh37.p4
7	GRCh37.p5

A.9 Value Codes for Raw Data Repository

Table A.9.1: Value Codes for Raw Data Repository

Key	Raw Data Repository
1	EGA
2	dbSNP
3	TCGA
4	CGHub
5	GEO