MODERN ALGEBRA II SPRING 2013: TWELFTH PROBLEM SET

- 1. Consider the field $\mathbb{Q}(\sqrt[3]{2},\omega)$, with $\omega = \frac{1}{2}(-1+\sqrt{-3})$. By our work in class, we have seen that $\operatorname{Gal}(\mathbb{Q}(\sqrt[3]{2},\omega)/\mathbb{Q}) \cong S_3$. In fact, if $\alpha_1 = \sqrt[3]{2}$, $\alpha_2 = \omega\sqrt[3]{2}$, $\alpha_3 = \omega^2\sqrt[3]{2}$, then $\sigma \in \operatorname{Gal}(\mathbb{Q}(\sqrt[3]{2},\omega)/\mathbb{Q})$ permutes $\alpha_1, \alpha_2, \alpha_3$, and any permutation corresponds to some element of the Galois group. Moreover, the subgroups of S_3 are $\{1\}$, $\langle (123)\rangle$, $\langle (13)\rangle$, $\langle (12)\rangle$, and S_3 .
 - (i) Let $\rho \in \operatorname{Gal}(\mathbb{Q}(\sqrt[3]{2},\omega)/\mathbb{Q})$ be the unique element such that $\rho(\omega) = \omega$ and $\rho(\sqrt[3]{2}) = \omega\sqrt[3]{2}$. Thus ρ corresponds to the permutation (123). Guess the fixed field $\mathbb{Q}(\sqrt[3]{2},\omega)^{\rho} = \mathbb{Q}(\sqrt[3]{2},\omega)^{\langle \rho \rangle}$ and prove that your guess is correct. (Hint: Clearly $\mathbb{Q}(\omega) \leq \mathbb{Q}(\sqrt[3]{2},\omega)^{\langle \rho \rangle}$. By counting degrees, the only possibilities are $\mathbb{Q}(\sqrt[3]{2},\omega)^{\langle \rho \rangle} = \mathbb{Q}(\omega)$ or $\mathbb{Q}(\sqrt[3]{2},\omega)^{\langle \rho \rangle} = \mathbb{Q}(\sqrt[3]{2},\omega)$. Why is the second alternative not possible?)
 - (ii) Let $\sigma \in \operatorname{Gal}(\mathbb{Q}(\sqrt[3]{2},\omega)/\mathbb{Q})$ be complex conjugation. Thus σ corresponds to the permutation (23). Identify the fixed field $\mathbb{Q}(\sqrt[3]{2},\omega)^{\sigma} = \mathbb{Q}(\sqrt[3]{2},\omega)^{\langle\sigma\rangle}$ and prove that your identification is correct.
 - (iii) For the remaining proper subgroups $H_1 = \langle (12) \rangle$ and $H_2 = \langle (13) \rangle$ of S_3 , viewing H_1 and H_2 as subgroups of $\operatorname{Gal}(\mathbb{Q}(\sqrt[3]{2},\omega)/\mathbb{Q})$, identify the corresponding fixed fields $\mathbb{Q}(\sqrt[3]{2},\omega)^{H_1}$ and $\mathbb{Q}(\sqrt[3]{2},\omega)^{H_2}$.
- 2. Consider the field $\mathbb{Q}(\sqrt[4]{2}, i)$. By our work in class, we have seen that $Gal(\mathbb{Q}(\sqrt[4]{2}, i)/\mathbb{Q})$ has order 8. In fact, if $\beta_1 = \sqrt[4]{2}$, $\beta_2 = i\sqrt[4]{2}$, $\beta_3 = -\sqrt[4]{2}$, $\beta_4 = -i\sqrt[4]{2}$, then $\sigma \in Gal(\mathbb{Q}(\sqrt[4]{2}, i)/\mathbb{Q})$ permutes $\beta_1, \beta_2, \beta_3, \beta_4$ and the permutations (1234) and (24) correspond to elements of the Galois group. Hence $Gal(\mathbb{Q}(\sqrt[4]{2}, i)/\mathbb{Q}) \cong D_4$. Moreover, the following are among the subgroups of D_4 : $\langle (1234) \rangle \langle (13)(24) \rangle, \langle (24) \rangle, \langle (13) \rangle$.
 - (i) Suppose that $\sigma \in \operatorname{Gal}(\mathbb{Q}(\sqrt[4]{2}, i)/\mathbb{Q})$ corresponds to the permutation (13)(24). Show that $\sigma(\sqrt{2}) = \sqrt{2}$ and that $\sigma(i) = i$. Conclude that $\mathbb{Q}(\sqrt[4]{2}, i)^{\sigma} = \mathbb{Q}(\sqrt[4]{2}, i)^{\langle \sigma \rangle} = \mathbb{Q}(\sqrt{2}, i)$.
 - (ii) Let $\tau \in \operatorname{Gal}(\mathbb{Q}(\sqrt[4]{2},i)/\mathbb{Q})$ be complex conjugation. Thus τ corresponds to the permutation (24). Identify the fixed field $\mathbb{Q}(\sqrt[4]{2},i)^{\tau} = \mathbb{Q}(\sqrt[4]{2},i)^{\langle \tau \rangle}$.
 - (iii) Let $\rho \in \operatorname{Gal}(\mathbb{Q}(\sqrt[4]{2},i)/\mathbb{Q})$ correspond to the permutation (13). Show that $\mathbb{Q}(i\sqrt[4]{2})$ is contained in the fixed field $\mathbb{Q}(\sqrt[4]{2},i)^{\rho} = \mathbb{Q}(\sqrt[4]{2},i)^{\langle \rho \rangle}$ and then argue that $\mathbb{Q}(i\sqrt[4]{2}) = \mathbb{Q}(\sqrt[4]{2},i)^{\langle \rho \rangle}$.

- (iv) For the subgroup $H = \langle (1234) \rangle$, argue that $\mathbb{Q}(i)$ is contained in $\mathbb{Q}(\sqrt[4]{2},i)^H$ by showing that the element of $\operatorname{Gal}(\mathbb{Q}(\sqrt[4]{2},i)/\mathbb{Q})$ corresponding to (1234) fixes i.
- 3. (Cyclotomic extensions.) Let F be a field of characteristic zero and let $n \in \mathbb{N}$.
 - (i) Show that the polynomial $x^n 1$ has no multiple roots in any extension field E of F.
 - (ii) Let E be a splitting field for x^n-1 over F. Show that E contains n distinct roots of x^n-1 , called the n^{th} roots of unity, and that the set of all such is a cyclic subgroup of E^* . A generator ζ is called a primitive n^{th} root of unity. Show that $E = F(\zeta)$ for ζ any primitive n^{th} root of unity. For $F = \mathbb{Q}$, we write ζ_n for the choice $\zeta = e^{2\pi i/n}$. Note that ζ^i is well-defined for $i \in \mathbb{Z}/n\mathbb{Z}$ and that

$$x^{n} - 1 = \prod_{i=0}^{n-1} (x - \zeta^{i}) = \prod_{i \in \mathbb{Z}/n\mathbb{Z}} (x - \zeta^{i}).$$

(iii) Let E and ζ be as above. Show that E is a normal extension of F. Let $\sigma \in \operatorname{Gal}(E/F)$. Show that $\sigma(\zeta) = \zeta^i$ for a unique $i \in (\mathbb{Z}/n\mathbb{Z})^*$. The main point here is to show that i must be relatively prime to n, i.e. that the order of $\sigma(\zeta)$ is n. Finally show that the function

$$\sigma \in \operatorname{Gal}(E/F) \mapsto i \in (\mathbb{Z}/n\mathbb{Z})^*,$$

where $\sigma(\zeta) = \zeta^i$, defines an injective homomorphism from $\operatorname{Gal}(E/F)$ to $(\mathbb{Z}/n\mathbb{Z})^*$. In particular, $\operatorname{Gal}(E/F)$ is abelian.

(iv) We have seen that, for $F = \mathbb{Q}$ and n = p a prime number, $\Phi_p(x) = (x^p - 1)/(x - 1) \in \mathbb{Q}[x]$ and $\Phi_p(x)$ is irreducible, by the Eisenstein criterion. Using this fact, show that $\operatorname{Gal}(\mathbb{Q}(\zeta_p)/\mathbb{Q})$ is isomorphic to $(\mathbb{Z}/p\mathbb{Z})^*$, which is cyclic of order p - 1.

(Note: In fact, one can show that the polynomial

$$\Phi_n(x) = \prod_{i \in (\mathbb{Z}/n\mathbb{Z})^*} (x - \zeta^i)$$

has coefficients in \mathbb{Q} and is always irreducible in $\mathbb{Q}[x]$. It then follows that $[\mathbb{Q}(\zeta_n):\mathbb{Q}] = \varphi(n)$ and $\mathrm{Gal}(\mathbb{Q}(\zeta_n)/\mathbb{Q})$ is isomorphic to $(\mathbb{Z}/n\mathbb{Z})^*$.)