Písomná skúška z predmetu "Algebra a diskrétna matematika" konaná dňa 16. 1. 2012

- **1. príklad.** Aký záver vyplýva z množiny troch výrokov? "Nie som chytrý alebo mám šťastie", "nemám šťastie", "ak študujem, potom som chytrý".
- **2. príklad.** Dokážte metódou vymenovaním prípadov vlastnosť, že kvadráty celých čísel sú reprezentované dekadickými číslicami, ktoré končia 0, 1, 4, 5, 6, alebo 9.
- **3. príklad**. Zostrojte potenčné množiny $\mathcal{P}(A)$ a $\mathcal{P}(\mathcal{P}(A))$ pre $A = \{a\}$.
- **4. príklad.** Nech *A* a *B* sú množiny, dokážte
- (a) $(A \cap B) \subseteq A$,
- (b) $A \subseteq (A \cup B)$,

5. príklad.

Zistite, či relácia R nad množinou všetkých ľudí je reflexívna, symetrická, antisymetrická, alebo tranzitívna, pričom $(x, y) \in R$ vtedy a len vtedy, ak

- (a) x je menší ako y,
- (b) x má rovnaké krstné meno ako y,
- (c) x a y sa narodili v rovnakom dni,
- **6. príklad**. Rozložte racionálnu funkciu R(x) = P(x)/Q(x) na sumu elementárnych parciálnych zlomkov, $R(x) = (x^3 + 3x^2 + 3x 4)/(x^2 + x 2)$.

7. príklad

Na fakulte je 345 študentov, ktorí si zapísali predmet Matematická analýza, 212 študentov, ktorí si zapísali predmet Diskrétna matematika a 188 študentov, ktorí si zapísali súčasne predmety Matematická analýza a Diskrétna matematika. Koľko študentov má zapísaný aspoň jeden z predmetov Matematická analýza alebo Diskrétna matematika.

8. príklad.

Pomocou Quinovej a McCluskeyho metódy nájdite optimálne výrazy k Boolovým funkciám $wxyz + wx\overline{y}z + w\overline{x}y\overline{z} + w\overline{x}y\overline$

9. príklad.

Pre ktoré hodnoty parametrov p a q má matica

$$A = \begin{pmatrix} 1 & 0 & 2 & -1 \\ 2 & 1 & -1 & 2 \\ p & 1 & 1 & 1 \\ q & 1 & -3 & 3 \end{pmatrix}$$

hodnosť 2.

10. príklad.

Nájdite riešenie systému lineárnych rovníc pomocou Crameroveho pravidla

$$2x_1 - 3x_2 + x_3 = 1$$
$$x_1 + 2x_2 - x_3 = 0$$
$$2x_1 + x_2 + x_3 = -1$$

11. príklad. Zostrojte strom riešení pre hru odoberania zápaliek, kedy máte na začiatku hry 5 zápaliek, každý hráč môže odobrať alebo jednu, alebo 2 zápalky, a kto odoberie poslednú zápalku, tak prehral. Vrcholy z jednotlivých vrstiev stromu ohodnoť pomocou minimax princípu.

12. príklad . Predpokladajme, že spojitý planárny graf má šesť vrcholov, každý stupňa 4. Na koľko strán (oblastí) je rovina rozdelená planárnou reprezentáciou tohto grafu?

Poznámka: Každý príklad je hodnotený 5 bodmi, maximálny počet bodov je 12×5=60. Nezabudnite na písomku napísať meno a priezvisko, číslo krúžku a ročník. Čas na písomku je 90 min.

Riešené príklady

1. príklad. Aký záver vyplýva z množiny troch výrokov?

"Nie som chytrý alebo mám šťastie", "nemám šťastie", "ak študujem, potom som chytrý".

$$p = \text{som chytrý}$$

 $q = \text{mám šťastie}$
 $r = \text{študujem}$

	predpoklad ₁ predpoklad ₂ predpoklad ₃
$\neg p$	dôsledok disjunkt. sylogizmu aplik. na predpoklad $_1$ a predpoklad $_2$ aplikácia modus tollens na predpoklad $_3$ a dôsledok $\neg p$

záver: neštudujem

2. príklad. Dokážte metódou vymenovaním prípadov vlastnosť:

Kvadráty celých čísel sú reprezentované dekadickými číslicami, ktoré končia 0, 1, 4, 5, 6, alebo 9.

Riešenie:

(1) číslo
$$n = (...0)$$
, potom $n^2 = (...0)$,

(2) číslo
$$n = (...1)$$
, potom $n^2 = (...1)$,

(3) číslo
$$n = (...2)$$
, potom $n^2 = (...4)$,

(4) číslo
$$n = (...3)$$
, potom $n^2 = (...9)$,

(5) číslo
$$n = (...4)$$
, potom $n^2 = (...6)$,

(6) číslo
$$n = (...5)$$
, potom $n^2 = (...5)$,

(7) číslo
$$n = (...6)$$
, potom $n^2 = (...6)$,

(8) číslo
$$n = (...7)$$
, potom $n^2 = (...9)$,

(9) číslo
$$n = (...8)$$
, potom $n^2 = (...4)$,

(10) číslo
$$n = (...9)$$
, potom $n^2 = (...1)$.

3. príklad. Zostrojte potenčné množiny $\mathcal{P}(A)$ a $\mathcal{P}(\mathcal{P}(A))$ pre $A = \{a\}$.

$$\mathcal{P}(A) = \{\emptyset, \{a\}\}\$$

$$\mathcal{P}(\mathcal{P}(A)) = \{\emptyset, \{\emptyset\}, \{\{a\}\}, \{\emptyset, \{a\}\}\}\}\$$

4. príklad. Nech *A* a *B* sú množiny, dokážte pomocou výrokovej logiky (použitie Vennových diagramov je hodnotené 2.5 bodmi).

3

(a)
$$(A \cap B) \subseteq A$$
,

1.	$x \in A \cap B$	predpoklad	
2.	$(x \in A) \land (x \in B)$	dôsledok predpokladu	
	$(x \in A)$	dôsledok 2	
4.	$(x \in A \cap B) \Longrightarrow (x \in A)$	deaktivácia predpokladu	

(b)
$$A \subseteq (A \cup B)$$
,

1.	$(x \in A)$	predpoklad
2.	$(x \in A) \lor (x \in B)$	dôsledok predpokladu
3.	$(x \in A) \Rightarrow ((x \in A) \lor (x \in B))$	deaktivácia predpokladu

5. príklad.

Zistite, či relácia R nad množinou všetkých ľudí je reflexívna, symetrická, antisymetrická, alebo tranzitívna, pričom $(x, y) \in R$ vtedy a len vtedy, ak

tranzitívna:
$$\forall x \forall y \forall z ((x < y) \land (y < z) \Rightarrow (x < z))$$

antisymetrická: $\forall x \forall y ((x, y) \in R \Rightarrow (y, x) \notin R)$

(b) x má rovnaké krstné meno ako y,

reflexívna:
$$\forall x ((x, x) \in R)$$

symetrická:
$$\forall x \forall y ((x, y) \in R \Rightarrow (y, x) \in R)$$

tranzitívna:
$$\forall x \forall y \forall z ((x, y) \in R \land (y, z) \in R \Rightarrow (x, z) \in R)$$

(c) x a y sa narodili v rovnakom dni,

reflexívna:
$$\forall x ((x, x) \in R)$$

symetrická:
$$\forall x \forall y ((x, y) \in R \Rightarrow (y, x) \in R)$$

tranzitívna:
$$\forall x \forall y \forall z ((x, y) \in R \land (y, z) \in R \Rightarrow (x, z) \in R)$$

6. príklad. Rozložte racionálnu funkciu R(x) = P(x)/Q(x) na sumu elementárnych parciálnych zlomkov $R(x) = (x^3 + 3x^2 + 3x - 4)/(x^2 + x - 2)$ R(x) = 2 + x + 1/(x - 1) + 2/(x + 2)

7. príklad

Na fakulte je 345 študentov, ktorí si zapísali predmet Matematická analýza, 212 študentov, ktorí si zapísali predmet Diskrétna matematika a 188 študentov, ktorí si zapísali súčasne predmety Matematická analýza a Diskrétna matematika. Koľko študentov má zapísaný aspoň jeden z predmetov Matematická analýza alebo Diskrétna matematika.

$$/MA/ = 345$$
, $|DM/ = 212$, $|MA \cap DM/ = 188$
 $|MA \cup DM/ = |MA/ + |DM/ - |MA \cap DM/ = 345 + 212 - 188 = 369$

8. príklad.

Pomocou Quinovej a McCluskeyho metódy nájdite optimálne výrazy k Boolovým funkciám $wxyz + wx\overline{y}z + wx\overline{y}\overline{z} + w\overline{x}y\overline{z} + w\overline{x}\overline{y}z$,

0. etapa			1. etapa		
1	(1111)		1	(1,2)	(11#1)
2	(1101)		2	(2,3)	(110#)
3	(1100)		3	(2,5)	(1#01)
4	(1010)				
5	(1001)				

Klauzule z 1. etapy sú minimálne a pokrývajú až na 4. klauzulu všetky klauzuly z 0. etapy, preto vyberieme klauzuly ktoré pokrývajú pôvodnú množinu klauzúl takto

$$\tilde{V} = \{(11#1), (110#), (1#01), (1010)\}$$

Optimálna Boolova funkcia priradená tejto množine má tvar

$$f(w, x, y, z) = wxz + wx\overline{y} + w\overline{y}z + w\overline{x}y\overline{z}$$

9. príklad.

Pre ktoré hodnoty parametrov p a q má matica

$$A = \begin{pmatrix} 1 & 0 & 2 & -1 \\ 2 & 1 & -1 & 2 \\ p & 1 & 1 & 1 \\ q & 1 & -3 & 3 \end{pmatrix}$$

hodnosť 2. Riešenie:

$$A = \begin{pmatrix} 1 & 0 & 2 & -1 \\ 2 & 1 & -1 & 2 \\ p & 1 & 1 & 1 \\ q & 1 & -3 & 3 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 2 & -1 \\ 0 & 1 & -5 & 4 \\ 0 & 1 & 1 - 2p & 1 + p \\ 0 & 1 & -3 - 2q & 3 + q \end{pmatrix}$$

Z podmienky rovnosti 3. a 4. riadku dostaneme 1-2p=-3-2q a 1+p=3+q, riešením tohto systému dostaneme p=3 a q=1, potom posledná ekvivaletná matica má tvar

$$A \sim \begin{pmatrix} 1 & 0 & 2 & -1 \\ 0 & 1 & -5 & 4 \\ \hline 0 & 1 & -5 & 4 \\ \hline 0 & 1 & -5 & 4 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 2 & -1 \\ 0 & 1 & -5 & 4 \end{pmatrix}$$

10. príklad.

Nájdite riešenie systému lineárnych rovníc pomocou Crameroveho pravidla

$$2x_1 - 3x_2 + x_3 = 1$$
$$x_1 + 2x_2 - x_3 = 0$$
$$2x_1 + x_2 + x_3 = -1$$

Riešenie:

$$|\mathbf{A}| = \begin{vmatrix} 2 & -3 & 1 \\ 1 & 2 & -1 \\ 2 & 1 & 1 \end{vmatrix} = 12, \ |\mathbf{A}_1| = \begin{vmatrix} 1 & -3 & 1 \\ 0 & 2 & -1 \\ -1 & 1 & 1 \end{vmatrix} = 2,$$
$$|\mathbf{A}_2| = \begin{vmatrix} 2 & 1 & 1 \\ 1 & 0 & -1 \\ 2 & -1 & 1 \end{vmatrix} = -6, \ |\mathbf{A}_3| = \begin{vmatrix} 2 & -3 & 1 \\ 1 & 2 & 0 \\ 2 & 1 & -1 \end{vmatrix} = -10$$

Potom riešenie

$$x_1 = \frac{2}{12} = \frac{1}{6}$$
, $x_2 = \frac{-6}{12} = -\frac{1}{2}$, $x_3 = \frac{-10}{12} = -\frac{5}{6}$

11. príklad. Zostrojte strom riešení pre hru odoberania zápaliek, kedy máte na začiatku hry 5 zápaliek, každý hráč môže odobrať alebo jednu, alebo 2 zápalky, a kto odoberie poslednú zápalku, tak prehral. Vrcholy z jednotlivých vrstiev stromu ohodnoť pomocou minimax princípu.

Riešenie: Na obrázku sú vrcholy s počtom zápaliek na hromádke, červená jednotka znamená, že ide o podstrom, kde vyhráva 1. hráč (voliaci stratégiu max, teda vyberajúci pre seba ako ideálnu stratégiu maximálne ohodnotený zo svojich podstromov), červene označená –1

znamená, že ide o podstrom, kde vyhráva 2. hráč (min). Čierne ohodnotenia hrán –1 a –2 znamenajú odobratie jednej alebo dvoch zápaliek hráčom. Z ohodnotenia koreňa vyplýva, že pre prvého hráča existuje víťazná stratégia.

12. príklad. Predpokladajme, že spojitý planárny graf má šesť vrcholov, každý stupňa 4. Na koľko strán (oblastí) je rovina rozdelená planárnou reprezentáciou tohto grafu?

Riešenie: Použijeme Eulerovu formulu |R|=|E|-|V|+|K|+1, teda $|R|=6\times4/2-6+1+1=8$. kde |R| je počet oblastí, |E| je počet hrán, |V| je počet vrcholov a |K| je počet komponent.