Step by step procedure to implement bank task

1. Understand the Goal

• We want to predict whether a customer will subscribe to a term deposit (y column in the dataset), based on demographic and behavioral features using a Decision Tree Classifier.

K Step-by-Step Implementation

• Step 1: Load and Explore the Dataset

In [6]: bank_df.info()

• You can use pandas to load and inspect the data.

In [4]:	<pre>import pandas as pd, numpy as np, matplotlib.pyplot as plt, seaborn as sns, os</pre>												
In [5]:	<pre>bank_df=pd.read_csv(r"C:\Users\seenu\Desktop\prodigy\bank\bank.csv",sep=';') bank_df</pre>												
Out[5]:	age job marital education default balance housing loan contact												
	0	30	unemployed	married	primary	no	1787	no	no	cellular			
	1	33	services	married	secondary	no	4789	yes	yes	cellular			
	2	35	management	single	tertiary	no	1350	yes	no	cellular			
	3	30	management	married	tertiary	no	1476	yes	yes	unknown			
	4	59	blue-collar	married	secondary	no	0	yes	no	unknown			
	•••												
	4516 33		services	married	secondary	no	-333	yes	no	cellular	:		
	4517	57	self- employed	married	tertiary	yes	-3313	yes	yes	unknown			
	4518	57	technician	married	secondary	no	295	no	no	cellular			
	4519	28	blue-collar	married	secondary	no	1137	no	no	cellular			
	4520	44	entrepreneur	single	tertiary	no	1136	yes	yes	cellular			
	4521 ro	4521 rows × 17 columns											

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4521 entries, 0 to 4520
Data columns (total 17 columns):
    Column Non-Null Count Dtype
--- -----
             -----
             4521 non-null int64
0
    age
    job
1
             4521 non-null
                              object
    marital 4521 non-null object
    education 4521 non-null object
    default 4521 non-null object
5
    balance 4521 non-null int64
   housing 4521 non-null object loan 4521 non-null object
 7
8 contact 4521 non-null
9 day 4521 non-null
10 month 4521 non-null
                              object
                              int64
                              object
11 duration 4521 non-null
                              int64
12 campaign 4521 non-null
                              int64
                              int64
            4521 non-null
13 pdays
14 previous 4521 non-null
                              int64
15 poutcome 4521 non-null
                              object
16 y
             4521 non-null
                              object
dtypes: int64(7), object(10)
memory usage: 600.6+ KB
```

Step 2: Preprocess the Data

2.1 seperate the categorical_column and numerical_column

2.2 Handle categorical variables using One-Hot Encoding or Label Encoding.

- Check for null values and handle them.
- Convert the target variable (y) into binary (Yes \rightarrow 1, No \rightarrow 0).

```
In [12]: from sklearn.preprocessing import LabelEncoder

# Encode target variable
bank_df['y'] = bank_df['y'].map({'yes': 1, 'no': 0})

# Convert categorical columns using one-hot encoding
df_encoded = pd.get_dummies(bank_df.drop('y', axis=1), drop_first=True)

# Final dataset
X = df_encoded
y = bank_df['y']
```

In [13]: X

Out[13]:

	age	balance	day	duration	campaign	pdays	previous	job_blue- collar	job_entreprenet
	0 30	1787	19	79	1	-1	0	False	Fals
	1 33	4789	11	220	1	339	4	False	Fals
	2 35	1350	16	185	1	330	1	False	Fals
	3 30	1476	3	199	4	-1	0	False	Fals
	4 59	0	5	226	1	-1	0	True	Fals
		•••		•••					
451	6 33	-333	30	329	5	-1	0	False	Fals
451	7 57	-3313	9	153	1	-1	0	False	Fals
451	8 57	295	19	151	11	-1	0	False	Fals
451	9 28	1137	6	129	4	211	3	True	Fals
452	10 44	1136	3	345	2	249	7	False	Tru

4521 rows × 42 columns


```
Out[14]: 0 0
1 0
2 0
3 0
4 0
...
4516 0
4517 0
4518 0
4519 0
4520 0
Name: y, Length: 4521, dtype: int64
```

Step 3: Train-Test Split

• Split the dataset to evaluate model performance.

Out[17]:

	age	balance	day	duration	campaign	pdays	previous	job_blue- collar	job_entreprenet
4153	42	440	3	13	5	-1	0	False	Fals
2085	33	-77	28	151	3	-1	0	True	Fals
1891	32	656	20	148	2	-1	0	False	Fals
3611	28	389	11	15	7	-1	0	False	Fals
4015	36	5902	23	219	4	-1	0	False	Fals
•••		•••		•••					
4426	41	1536	4	54	2	-1	0	False	Fals
466	34	-370	21	748	1	-1	0	False	Fals
3092	46	523	6	105	4	366	2	False	Fals
3772	47	440	21	71	4	-1	0	False	Fals
860	58	309	19	156	2	-1	0	True	Fals

3164 rows × 42 columns

4

In [18]: X_test

_		Γа	0 -	
()	ut	1 1	92	
\cup	uч	1 4	0	

	age	balance	day	duration	campaign	pdays	previous	job_blue- collar	job_entreprene(
2398	51	-2082	28	123	6	-1	0	False	Tru
800	50	2881	5	510	2	2	5	False	Fals
2288	50	1412	6	131	3	-1	0	False	Fals
2344	37	0	3	247	13	-1	0	False	Fals
3615	31	757	3	343	2	-1	0	False	Fals
•••					•••				
2600	45	959	18	74	1	-1	0	False	Fals
554	43	11269	29	92	1	-1	0	False	Fals
1159	31	62	18	175	1	293	5	False	Fals
1213	49	2576	15	64	6	-1	0	False	Fals
1498	51	837	30	41	2	-1	0	True	Fals

1357 rows × 42 columns

In [20]: y_test

Step 4: Train a Decision Tree Classifier

Step 5: Evaluate the Model

```
In [24]: y_pred = model.predict(X_test)
         print("Accuracy:", accuracy_score(y_test, y_pred))
         print(confusion_matrix(y_test, y_pred))
         print(classification_report(y_test, y_pred))
       Accuracy: 0.8695652173913043
       [[1113
                92]
        [ 85
                67]]
                     precision recall f1-score support
                  0
                          0.93
                                    0.92
                                              0.93
                                                       1205
                          0.42
                                    0.44
                                              0.43
                                                         152
           accuracy
                                              0.87
                                                       1357
          macro avg
                          0.68
                                    0.68
                                              0.68
                                                        1357
       weighted avg
                          0.87
                                    0.87
                                              0.87
                                                        1357
```

1. Accuracy

- Accuracy: 0.8695652173913043
- This means that approximately 87% of predictions were correct.

2. Confusion Matrix

- [[1113 92]
- [85 67]]

Confusion Matrix

	Predicted No (0)	Predicted Yes (1)
Actual No (0)	1113 (True Neg)	92 (False Pos)
Actual Yes (1)	85 (False Neg)	67 (True Pos)

- **True Negatives (1113)**: Correctly predicted as "No".
- False Positives (92): Predicted as "Yes" but actually "No".
- False Negatives (85): Predicted as "No" but actually "Yes".
- True Positives: Correctly predicted as "Yes".

ii 3. Classification Report

Class	Precision	Recall	F1-score	Support
0	0.93	0.92	0.93	1205
1	0.42	0.44	0.43	

| 152

- Precision:
- Of all predicted "Yes", how many were correct?
 - For class 1: 42% were actually Yes.
- ➤ Recall:
- Of all actual "Yes", how many were predicted correctly?
 - For class 1: 44% were captured corectly.
- **► F1-score**:
- A harmonic mean of precision and recall.
 - For class 1: 0.43 (indicating the model struggles with positive class prediction).
- ➤ Support:
- The actual count of each class in test data:
 - 1205 were No, and 152 . |

Conclusion:

- The model is doing very well at predicting class 0 (No), but poorly at class 1 (Yes).
- This usually happens in imbalanced datasets, where one class dominates.
- If Our business goal is to identify customers who are likely to buy (Yes), this model needs improvement.

Step 6: Visualize the Decision Tree

```
In [ ]: from sklearn.tree import plot_tree

plt.figure(figsize=(20,10))
 plot_tree(model, filled=True, feature_names=X.columns, class_names=["No", "Yes"])
 plt.show()
```

we need to fine tune our model

```
In [ ]: from imblearn.over_sampling import SMOTE
         sm = SMOTE(random state=42)
         X_resampled, y_resampled = sm.fit_resample(X, y)
         print("Before:", y.value_counts())
         print("After:", y_resampled.value_counts())
In [50]: from sklearn.tree import DecisionTreeClassifier
         from sklearn.model_selection import train_test_split
         from sklearn.metrics import classification_report, confusion_matrix, accuracy_score
         # Split balanced data
         X_train, X_test, y_train, y_test = train_test_split(X_resampled, y_resampled, test_
         # Train a tuned decision tree
         model = DecisionTreeClassifier(max_depth=5, min_samples_split=10, criterion='entrop
         model.fit(X_train, y_train)
         # Predict and evaluate
         y_pred = model.predict(X_test)
         print("Accuracy:", accuracy_score(y_test, y_pred))
         print(confusion_matrix(y_test, y_pred))
         print(classification_report(y_test, y_pred))
```

```
Accuracy: 0.8533333333333333
        [[1042 164]
         [ 188 1006]]
                     precision
                                 recall f1-score support
                  0
                          0.85
                                    0.86
                                              0.86
                                                        1206
                  1
                          0.86
                                    0.84
                                              0.85
                                                        1194
                                                        2400
                                              0.85
           accuracy
                          0.85
                                    0.85
                                              0.85
                                                        2400
          macro avg
        weighted avg
                          0.85
                                    0.85
                                              0.85
                                                        2400
In [52]: from sklearn.metrics import classification_report, confusion_matrix
         print("Confusion Matrix:\n", confusion_matrix(y_test, y_pred))
         print("\nClassification Report:\n", classification_report(y_test, y_pred))
        Confusion Matrix:
         [[1042 164]
         [ 188 1006]]
        Classification Report:
                      precision recall f1-score
                                                      support
                  0
                          0.85
                                    0.86
                                              0.86
                                                        1206
                                    0.84
                                              0.85
                  1
                          0.86
                                                        1194
                                              0.85
                                                        2400
           accuracy
                          0.85
                                    0.85
                                              0.85
                                                        2400
          macro avg
        weighted avg
                          0.85
                                    0.85
                                              0.85
                                                        2400
In [54]: from sklearn.tree import plot_tree
         import matplotlib.pyplot as plt
         plt.figure(figsize=(20, 10))
         plot_tree(model, filled=True, feature_names=X.columns, class_names=['No', 'Yes'])
         plt.show()
```



```
In [56]: import joblib
joblib.dump(model, 'decision_tree_bank_model.pkl')
```

Out[56]: ['decision_tree_bank_model.pkl']

Conclusion

After applying SMOTE to balance the dataset and training a Decision Tree Classifier, we achieved:

- Accuracy: **85.3%**
- Balanced precision and recall for both classes
- Improved performance on minority class (Yes)

This shows that Decision Trees, combined with data balancing, can effectively predict customer purchase behavior from demographic and behavioral features.