David Infante Casas Pablo Rodríguez Vargas

Algorítmica – Práctica 1 – Ejercicio 2 - 2ºD

2.- ABB:

- Código Fuente:

- Hardware:

Procesador: Intel® CoreTM i5-3350P CPU @ 3.10GHz × 4 Memoria RAM: 8GB

- Sistema Operativo:

Ubuntu 14.04

- Compilador Utilizado:

- a) Caso Mejor:
 - Eficiencia Teórica:

$$T_m(n) = 2 + 2 + \sum_{i=0}^{n} (2+2) + 2 + 1$$

- Eficiencia empírica:

- Ajuste:

$$f(x) = a*x - b$$

fit $f(x)$ "time_mejor.dat" via a, b
plot "time_mejor.dat", $f(x)$

b) Caso Peor:

- Eficiencia Teórica:

$$T_p(n) = 2 + \sum_{i=0}^{n} (6+2) + 6 + 2 + 1$$

= 8n + 11

$$f(x) = 8*x + 11$$

plot $f(x)$

- Eficiencia empírica:

plot "time_peor.dat"

- Ajuste:

$$f(x) = a*x + b$$

fit $f(x)$ "time_peor.dat" via a, b
plot "time_peor.dat", $f(x)$

c) Caso Promedio:

- Eficiencia Teórica:

$$T_{1/2}(n) = 2 + \sum_{i=0}^{n/2} (6+2) + 6 + 2 + 1$$

= 4n - 11

$$f(x) = 4*x - 11$$

plot $f(x)$

- Eficiencia empírica:

plot "time_promedio.dat"

- Ajuste:

$$f(x) = a*x - b$$

fit $f(x)$ "time_promedio.dat" via a, b
plot "time_promedio.dat", $f(x)$

