Erinnerung: In der ersken Vorlesung haben wir die statistische Grundgesaucheit \(\Omega\) definiert.

Ein Merkmal ist eine Abbildung X, \(\Omega\) -> \(\Omega\), wobei \(\Omega\) der

Wertebereich ist.

Heaks Wir nennen I den Ereignisraum. Teilmengen ASI nennen wir Ereignisse.

<u>Definition</u> (Wahrscheinlichkeitsraum)

Sei I du Erignisraum und sei A eine Menge von Erignisseu.

Ein Wahrschein kichleitswaß ist eine Abbildung

P: A -> [0,1], A -> P(A).

mit folgenden Eigenschaften:

(a) $P(\emptyset) = 0$ and $P(\Omega) = 1$.

(b) P(AUB) = P(A) + P(B), falls A und B disjuntet.

(c) $P(\bigcup_{i=1}^{\infty} A_i) = \int_{i=1}^{\infty} P(A_i)$, falls $A_1, A_2, ...$ paarweise dijjuaht.

P(A) heißt die Wahrscheinlichleit von A.

Das Tripel (D, A, P) beijst Wahrscheinlichbeitsraum.

Bennestung: Nicht jedt Menge A von Ereignissen hann in der Definition gewählt werden. A nuss ein sogenaunk o-Algebra sein.

<u>Wie</u> modelliert die Definition eines Wakrscheinlich beitsraumes die Verbeilung reeller Daten?

P(A) \(relative Haufiglait des Ereignisses A sein, wobei wir die relative Haufigluit aus n Zufalls expenimenten berchnen.

unch \approx soll $\geq u = werden$, wenn $n-2 \infty$. Dieser Ansatz wird frequentistischer Wahrscheinlichleitsdegriff genannt.

Der Bayes seh Wahrscheinlichheitsbegriff definiert PCA) als Erfahrungswert. Insbesondere ist es möglich unvollständiga Information über deterministische Prozesse mit Wohrscheinlichheitsmaßen zu modellieren.

Eigenschaften von Wahrschein lichteitsräumen

Sei (Q, A,P) ein Wahrscheinlichheitsraum und A,B,CEA Ereignisse.

(A)
$$P(\Omega \setminus A) = A - P(A)$$

(2)
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

(3)
$$A \subseteq B$$
 => $P(A) \leq P(B)$

Venn - Dragramue

Für A. B. Cet zeichnen wir jeusils einen Krais:

2.B: Für (2)

P(AUB) = P(A) + P(B) - P(A)B)

Für (5):

P(Au Buc)

P(A) = Flache des Kreises von A, etc.

Lin Beispiel (Wahrscheinlichheitsmaß beim Münzwurf)

(1) \(\Omega = \in \text{Munge aller Münzwürfe} \)

\(\text{X: } \Omega -> \in \text{Kopf. Zahl } \). \(\text{I = Wertebereich} \)

\(\Lambda = \in \in \text{ [we \in I] \text{ X(w) = Zahl} } \), \(\in \text{We \in I] \text{ X(w) = Kopf} } \), \(\omega \text{]}

\(\text{Tair. Münze:} \quad P(\in \text{X = Zahl}) = \frac{1}{2}, \quad P(\in \text{X = Kopf}) = \frac{1}{2}. \)

\(\text{P: } \text{L -> [0,1]} \).

(2) $\Omega = \int Kopf_1 Zahl_3$. $A = \int B$, $\int Kopf_1$, $\int Zahl_3$, $\int \Omega \int P(\int Kopf_3) = \frac{1}{2}$. $P(\int Xopf_3) = \frac{1}{2}$. $P(\int Xopf_3) = \frac{1}{2}$.

Definition (Endlicher/dishreter Wahrscheinlichleitsraum)
Sei (Ω, μ, P) ein W-Raum. Falls Ω enclich/dishret ist,
nennen wir (Ω, μ, P) endlichen/dishreten W-Raum.

<u>Satz</u>

Falls Ω endlich/dishret ist, ist A = 1 able Teilmengen non Ω ?

elne zulässige Menge von Erzignissen.

Anjerdem: P ist durch $P(2\omega 3)$ für we Ω eindeuty bestimmt;

denn $P(A) = \sum_{\omega \in A} P(4\omega 3)$.

Definition (Gleschverteilung)

Sei Ω endlich. Dann heißt das W-Maj3 $P(A) = \frac{\#A}{\#S2}$ für $A \subseteq \Omega$. (#A = Auzahl Element in A)

das Maß der Gleichverteilung auf Ω .

Insbesonder gilte P(1ws) = 1/452.