Practice Final Calc-II

Compiled by: Haris

1) Estimate $\int_0^{\pi/2} \sin^6 x \ dx$ using the trapezoidal rule with n=3 subdivisions. Show your work with a table of values.

2) Evaluate:

- 1) $\int_0^1 \frac{1}{x^2+3x+2} dx$ (Factor the denominator) 2) $\int x^2 \ln x dx$ (Indefinite integral)

3) Evaluate $\int_0^1 \frac{1}{(x^2+1)^2} dx$ using $x = \tan u$. Transform the limits.

4) For what values of p does $\sum_{n=1}^{\infty} \frac{1}{\sqrt{4+n^p}}$ converge? Justify.

5) Use trigonometric substitution to evaluate $\int_0^1 \frac{1}{(4+x^2)^{3/2}} dx$.

- **6)** Evaluate:

 - 1) $\int_0^1 \frac{x}{\sqrt{1+3x^2}} dx$ 2) $\int_{\pi/3}^{\pi/2} \cos^3 x \sin(2x) dx$

- $\textbf{7)} \ \ \textbf{Analyze convergence (state tests used):}$
 - 1) $\sum_{n=1}^{\infty} \frac{\sqrt{k}}{\sqrt{k}+3}$ 2) $\sum_{n=1}^{\infty} \frac{1}{k!}$

- $\textbf{8)} \ \ \text{Determine absolute convergence:}$

 - 1) $\sum_{n=1}^{\infty} \frac{(-1)^{k+1}}{2k+1}$ 2) $\sum_{n=1}^{\infty} (-1)^{k+1} \frac{\ln k}{\sqrt{k}}$

9) Prove: If $\sum_{n=1}^{\infty} |a_n|$ converges, then $\sum_{n=1}^{\infty} a_n^2$ converges.

- 10) Find parametric equations for:
 - $\mathbf{1}$) Circle radius 5, centered at origin, clockwise
 - 2) Vertical line through x=2, oriented upward

11) Show the length L of one cycloid arch is $L = a \int_0^{2\pi} \sqrt{2(1-\cos\theta)} \ d\theta$.

- 12) Sketch polar curves:
 - 1) $r = -3 4\sin\theta$
 - **2)** $r^2 = \cos 2\theta$

13) Find the area of the shaded region (include figure).

- $\textbf{14)} \ \ \text{Analyze conic sections (find center, foci, vertices, asymptotes, eccentricity):}$
 - $1) \ x^2 + 2y^2 2x 4y = -1$
 - $2) 9x^2 + 6y^2 x + 36y = 0$

- 15) Evaluate:
 - 1) $\int_0^2 \sqrt{4 x^2} \, dx$ 2) $\int \frac{e^x x 1}{4x^2} \, dx$

16) Rotate axes to eliminate xy-term in $3x^2 + 4\sqrt{3}xy - y^2 = 7$ and identify the conic.

17) Find the area within $r = 1 + \sin \theta$ in the first quadrant.

- 18) Polar equations of lines:
 - 1) Show vertical lines have form $r = a/\cos\theta$
 - 2) Find polar equation for horizontal lines

19) Find intersection points of $r^2 = \sqrt{2}\sin\theta$ and $r^2 = \sqrt{2}\cos\theta$, and their slopes at these points.

20) Find area and arc length of $r = \sqrt{1 + \cos(2\theta)}$ for $0 \le \theta \le \pi/\sqrt{2}$.