Solutions to Even-Numbered Exercises¹

CHAPTER 2

Exercises 2.01 (p. 9)

- (2) S
- (4) Q

Exercises 2.05 (p. 15)

- (2) $H \wedge G$
- (4) $\neg (F \land \neg H)$
- (6) $\neg (G \land H)$

(8) $\neg H \land \neg G$

(10) $\neg ((H \land G) \land \neg F) \text{ or } \neg (H \land G) \land \neg F$

Exercises 2.06 (p. 19)

- (2) $H \lor \neg G$
- (4) $\neg (F \lor \neg H)$
- (6) $(H \lor G) \land \neg (H \land G)$

(8) $\neg H \lor \neg G$

(10) $E \lor (G \lor H)$

Exercises 2.08 (p. 27)

- (2) $E \supset H$
- $(4) \qquad (G \lor H) \supset F$
- (6) $E \supset (G \supset F)$

(8) $E \supset (H \lor G)$

(10) $F \supset (E \lor (G \lor H))$

Exercises 2.09 (p. 29)

- $(2) H \supset E$
- (4) $H \equiv (E \vee F)$
- (6) $E \equiv (G \land H)$

- (8) $(H \lor G) \equiv E$
- (10) $F \supset (E \equiv \neg G)$

^{1.} Instructors may request a full answer key online at www.hackettpublishing.com/heil-answer-key.

Exercises 2.10 (p. 35)

(2)	P Q	$\neg P$	$\neg Q$	$\neg P \land \neg Q$
	ТТ	F	F	F
	T F	F	T	F
	F T	T	F	F
	F F	T	T	T

(6)
$$\begin{array}{c|cccc} P & Q & \neg Q & P \supset \neg Q \\ \hline T & T & F & F \\ T & F & T & T \\ F & T & F & T \\ F & F & T & T \end{array}$$

(8)	PQR	$\neg R$	$Q \wedge \neg R$	$\neg(Q \land \neg R)$	$P \supset \neg(Q \land \neg R)$
	TTT	F	F	Т	T
	TTF	Τ	T	F	F
	TFT	F	F	T	T
	TFF	Τ	F	T	T
	FTT	F	F	T	T
	FTF	Τ	T	F	T
	FFT	F	F	T	T
	FFF	Τ	F	T	T

(10)	PQR	$\neg P$	$\neg Q$	$\neg R$	$\neg Q \land \neg R$	$\neg P \lor (\neg Q \land \neg R)$	$\neg(\neg P \lor (\neg Q \land \neg R))$
	TTT	F	F	F	F	F	T
	TTF	F	F	T	F	F	T
	TFT	F	Τ	F	F	F	T
	TFF	F	Τ	T	T	T	F
	FTT	Т	F	F	F	T	F
	FTF	Т	F	T	F	T	F
	FFT	Т	Τ	F	F	T	F
	FFF	Т	T	T	T	T	F

Exercises 2.11 (p. 37)

(2)	PQ	$P \supset Q$	$\neg Q$	$P \land \neg Q$	$\neg (P \land \neg Q)$
	ΤТ	Т	F	F	T
	ΤF	F	T	T	F
	FT	Т	F	F	Τ
	FF	Т	T	F	T

(8)
$$\begin{array}{c|ccccc} PQ & P \supset Q & \neg P & \neg P \lor Q \\ \hline TT & T & F & T \\ TF & F & F & F \\ FT & T & T & T \\ FF & T & T & T \end{array}$$

$$(10) \quad \begin{array}{c|cccc} PQ & P \mid Q & \neg Q & P \supset \neg Q \\ \hline TT & F & F & F \\ TF & T & T & T \\ FT & T & F & T \\ FF & T & T & T \end{array}$$

Exercises 2.13 (p. 41)

- (2) $J \wedge C$
- (4) $\neg (F \land G)$
- (6) $(F \equiv J) \land \neg G$
- (8) $(J \lor \neg C) \supset G$
- (10) $(G \land \neg F) \land C \text{ or } G \land (\neg F \land C)$

Exercises 2.14 (p. 43)

- (2) $\neg (I \lor G) \text{ or } \neg I \land \neg G$
- (4) $\neg (I \lor G) \supset F \text{ or } (\neg I \land \neg G) \supset F$
- (6) $\neg (I \land G)$

- (8) $\neg C \supset (I \lor G)$
- (10) $(\neg C \land J) \supset (I \lor G)$

Exercises 2.15 (p. 46)

- (2) $\neg G \supset \neg J$
- (4) $J \supset G$
- (6) $J \supset G$

- (8) $F \equiv (C \land \neg J)$
- $(10) \quad J \supset (F \equiv \neg G)$

Exercises 2.16 (p. 50)

- (2) $I \lor G \text{ or } \neg G \supset I$
- (4) $\neg F \lor C \text{ or } \neg C \supset \neg F$
- (6) $I \supset (J \lor G) \text{ or } I \supset (\neg G \supset J)$

- (8) $(I \land \neg G) \land J$
- (10) $(C \supset F) \land J$

Exercises 2.17 (p. 53)

- $(4) \quad A \supset ((B \land \neg C) \lor (P \lor Q))$ $T \quad T \quad T \quad F \quad F$ $F \quad F$
- (6) $((A \land B) \land P) \equiv (B \supset (C \lor S))$ $T \quad T \quad F \quad F \quad T \quad F$ $T \quad T \quad T$ $T \quad T$
- $(10) \neg ((B \lor (P \land \neg Q)) \supset ((A \land \neg B) \lor (\neg P \supset (Q \lor R))))$ T F T T T F F F F F T F F F

Exercises 2.18 (p. 56)

logical truth (tautology)

(2)	AQ	$\neg A$	$A \land \neg A$	$(A \land \neg A) \supset Q$
	TT	F	F	T
	TF	F	F	T
	FT	Т	F	T
	FF	Т	F	T

contradiction

(4)	P	$\neg P$	$\neg P \supset P$	$P\supset (\neg P\supset P)$	$\neg (P \supset (\neg P \supset P))$
	Т	F	Τ	Т	F
	F	Т	F	T	F

logical truth (tautology)

(6)	PQR	$P \supset Q$	$Q \supset R$	$(P\supset Q) \land (Q\supset R)$	$P \supset R$	$((P\supset Q)\land (Q\supset R))\supset (P\supset R)$
	TTT	Т	Τ	T	Τ	Т
	TTF	Т	F	F	F	T
	TFT	F	Τ	F	T	T
	TFF	F	T	F	F	T
	FTT	Т	T	T	T	T
	FTF	Т	F	F	T	T
	FFT	Т	T	T	T	T
	FFF	Т	T	T	T	T

contradiction

(8)	AB	$\neg A$	$\neg B$	$B \vee A$	$(B \lor A) \land \neg B$	$((B \lor A) \land \neg B) \land \neg A$
	ТТ	F	F	T	F	F
	ΤF	F	Τ	T	T	F
	FT	Т	F	T	F T F	F
		l		F		F

logical truth (tautology)

(10)

PST	$\neg P$	$S \wedge \neg P$	$\neg (S \land \neg P)$	$T \supset \neg(S \land \neg P)$	$\neg (T \supset \neg (S \land \neg P))$	$T \wedge S$	$(T \land \mathit{S}) \lor \mathit{P}$	$\neg (T \supset \neg (S \land \neg P)) \supset ((T \land S) \lor P)$
TTT	F	F	T	T	F	Т	Т	Т
TTF	F	F	T	T	F	F	T	T
TFT	F	F	T	T	F	F	T	T
TFF	F	F	T	T	F	F	T	T
FTT	Т	T	F	F	T	T	T	T
FTF	Т	T	F	T	F	F	F	T
FFT	Т	F	T	T	F	F	F	T
FFF	Т	F	Τ	T	F	F	F	T

CHAPTER 3

Exercises 3.01 (p. 65)

- (2) 'One plus one' is not identical with 'two'.
- (8) (Sentences (8) and (9) cannot both be true.)

(4) 'Sincerity' involves 'sin'.

- (10) I love the sound of 'a cellar door'.
- (6) 'One' is not identical with 'one'.

Exercises 3.02 (p. 70)

invalid (sixth row)

(2)	PQR	$P \supset Q$	$P \supset R$	$Q \supset R$
	TTT	Т	Т	T
	TTF	Т	F	F
	TFT	F	T	T
	TFF	F	F	T
	FTT	Т	T	T
	FTF	Т	T	F
	FFT	Т	T	T
	FFF	Т	T	T

valid

(4)

PQRS	$\neg P$	$\neg Q$	$\neg R$	$\neg S$	$Q \wedge \neg R$	$\neg(Q \land \neg R)$	$P \vee \neg Q$	$\neg(Q \land \neg R) \supset \neg S$	$\neg P$	$\neg Q$
TTTT	F	F	F	F	F	T	T	F	F	F
TTTF	F	F	F	T	F	T	T	T	F	F
TTFT	F	F	Τ	F	T	F	T	T	F	F
TTFF	F	F	Τ	Τ	T	F	T	T	F	F
TFTT	F	Τ	F	F	F	T	T	F	F	T
TFTF	F	Τ	F	Τ	F	T	T	T	F	T
TFFT	F	Τ	Τ	F	F	T	T	F	F	T
TFFF	F	Τ	Τ	Τ	F	T	T	T	F	T
FTTT	Т	F	F	F	F	T	F	F	Τ	F
FTTF	Т	F	F	Τ	F	T	F	T	Τ	F
FTFT	Т	F	Τ	F	T	F	F	T	Τ	F
FTFF	Т	F	Τ	Τ	T	F	F	T	Τ	F
FFTT	Т	Τ	F	F	F	T	T	F	Τ	T
FFTF	Т	Τ	F	Τ	F	T	T	T	Τ	T
FFFT	Т	Τ	Τ	F	F	T	T	F	Τ	T
FFFF	Т	Τ	Τ	T	F	T	T	T	Τ	T

invalid (third and fourth row)

(6)	PQ	$Q \supset P$	$P\supset (Q\supset P)$
	ТТ	Т	Т
	ΤF	Т	T
	FT	F	Т
	FF	Т	T

invalid (fifth row)

(8)	PQR	$P \supset Q$	$R\supset Q$
	TTT	Т	Т
	TTF	Т	T
	TFT	F	F
	TFF	F	Τ
	FTT	Т	Τ
	FTF	Т	Τ
	FFT	Т	F
	FFF	Т	T

invalid (first row)

(10)	PQ	$P \lor Q$	$\neg Q$
	ТТ	Т	F
	ΤF	Т	Τ
	FT	Т	F
	FF	F	Т

valid

(12)	PQ	$P \supset Q$	$\neg Q$	$\neg P$
	ТТ	Т	F	F
	ΤF	F	Τ	F
	FT	Т	F	Τ
	FF	Т	Τ	Τ

valid

(14)	PQR	$P \supset Q$	$\neg Q$	$P \supset R$
	TTT	Т	F	Т
	TTF	Т	F	F
	TFT	F	T	Τ
	TFF	F	T	F
	FTT	Т	F	Τ
	FTF	Т	F	Τ
	FFT	Т	T	Τ
	FFF	Т	T	Τ

Exercises 3.06 (p. 78)

$$(2) 1. + \neg P \supset \neg Q$$

$$2. + \neg P$$

4.
$$\neg Q$$
 1, 2 MP

$$(4) 1. + P \supset Q$$

2.
$$+ \neg S$$

3.
$$+\neg(Q\supset R)\supset S$$

4.
$$P \supset R$$

5.
$$Q \supset R$$
 2, 3 MT

6.
$$P \supset R$$
 1, 5 HS

(6) 1.
$$+P\supset (Q\supset R)$$

$$2. + P$$

3.
$$+ Q$$

5.
$$Q \supset R$$
 1, 2 MP

(8) 1.
$$+ P \supset Q$$

2.
$$+Q\supset R$$

3.
$$+ P$$

5.
$$P \supset R$$
 1, 2 HS

(10) 1.
$$+ \neg (P \supset R) \supset \neg Q$$

$$2. + P$$

3.
$$+ Q$$

5.
$$P \supset R$$
 1, 3 MT

(12) 1.
$$+ P \supset Q$$

2.
$$+Q \supset \neg R$$

$$3. + R$$

5.
$$P \supset \neg R$$
 1, 2 HS

(14) 1.
$$+ \neg (P \land \neg S) \supset (Q \lor R)$$

2.
$$+(Q \lor R) \supset \neg T$$

3.
$$+ T$$

4.
$$? P \land \neg S$$

5.
$$\neg (Q \lor R)$$
 2, 3 MT

6.
$$P \land \neg S$$
 1, 5 MT

Exercises 3.07 (p. 81)

(2) 1.
$$+ P \wedge (\neg Q \wedge \neg R)$$

2.
$$? \neg R$$

3.
$$\neg Q \land \neg R$$
 $1 \land E$

$$1 \wedge F$$

4.
$$\neg R$$
 $3 \land E$

$$3 \wedge E$$

(4) 1.
$$+ \neg P$$

2.
$$+ Q$$

3.
$$+ (\neg P \land Q) \supset R$$

5.
$$\neg P \land Q$$
 1, 2 $\land I$

(6) 1.
$$+P\supset (Q \land \neg R)$$

$$2. + P$$

3.
$$? \neg R$$

4.
$$Q \wedge \neg R$$
 1, 2 MP

5.
$$\neg R$$
 4 $\wedge E$

$$4 \Lambda E$$

(8) 1.
$$+(P \land Q) \supset (R \land S)$$

$$2. + Q$$

3.
$$+ P$$

5.
$$P \wedge Q$$
 2, $3 \wedge I$

$$2.3 \wedge I$$

6.
$$R \wedge S$$
 1, 5 MP

- (10) 1. $+ S \wedge ((P \equiv Q) \supset R)$
 - 2. $+P \equiv Q$
 - 3. ? *R*
 - 4. $(P \equiv Q) \supset R$
- $1 \wedge E$

7. *R*

- 2, 4 MP
- (12) 1. $+ P \supset Q$
 - 2. $+Q\supset (R\land S)$
 - 3. $+P \wedge T$
 - 4. $? S \wedge T$
 - 5. $P \supset (R \land S)$ 1, 2 HS
 - 6. *P*
- $3 \wedge E$
- 7. $R \wedge S$
- 5, 6 *MP*
- 8. *S*
- $7 \wedge E$
- 9. *T*
- $3 \wedge E$
- 10. $S \wedge T$
- 8, 9 ∧*I*

- (14) 1. $+ P \supset (Q \supset \neg R)$
 - 2. $+ P \wedge Q$
 - 3. $? \neg R$
 - 4. *P*
- $2 \wedge E$
- 5. $Q \supset \neg R$
- 1, 4 *MP*
- 6. *Q*
- $2 \wedge E$
- 7. $\neg R$
- 5, 6 *MP*

Exercises 3.08 (p. 85)

- (2) 1. $+ (P \lor Q) \supset (R \land S)$
 - 2. + P
 - 3. ? *S*
 - 4. $P \vee Q$
- 2 v*I*
- 5. $R \wedge S$
- 1, 4 *MP*
- 6. *S*
- 5 ∧*E*

- $(4) 1. + P \supset (Q \lor R)$
 - 2. $+ \neg (Q \lor R) \lor S$
 - 3. $+ \neg S$
 - 4. ? ¬*P*
 - 5. $\neg (Q \lor R)$ 2, 3 $\lor E$
 - 6. $\neg P$ 1, 5 MT

- (6) 1. $+P \supset \neg(Q \land R)$
 - 2. $+(Q \wedge R) \vee S$
 - 3. $+ \neg S$
 - 4. ? ¬*P*
 - 5. $Q \wedge R$ 2, $3 \vee E$
 - 6. $\neg P$ 1, 5 MT

- (8) 1. $+P\supset (Q\vee \neg S)$
 - 2. $+ P \wedge S$
 - 3. ? *Q*
 - 4. P
- $2 \wedge E$
- 5. $Q \lor \neg S$ 1, 4 MP
- 6. S
- $2 \wedge E$
- 7. *Q*
- 5, 6 VE

(10) 1.
$$+P\supset (Q\wedge R)$$

2.
$$+ S \vee \neg T$$

3.
$$+ S \supset P$$

4.
$$+ T$$

8.
$$Q \wedge R$$

(12) 1.
$$+ P \supset Q$$

2.
$$+(Q \lor (R \supset S)) \supset (S \lor T)$$

3.
$$+ \neg S \wedge P$$

$$3 \Lambda E$$

7.
$$Q \lor (R \supset S)$$

$$2,7 MP$$
 $3 \land E$

(14) 1.
$$+ P \supset Q$$

2.
$$+(Q \lor R) \supset (R \lor \neg S)$$

3.
$$+ P \wedge \neg R$$

$$3 \wedge E$$

7.
$$Q \vee R$$

8.
$$R \lor \neg S$$

9.
$$\neg R$$

$$3 \wedge E$$

Exercises 3.09 (p. 88)

(2) 1.
$$+P\supset (S\supset (Q\land R))$$

2.
$$+(Q \wedge R) \supset \neg P$$

3.
$$+T\supset S$$

4.
$$P \supset \neg T$$

6.
$$? \neg T$$

7.
$$S \supset (Q \land R)$$

8.
$$\neg (Q \land R)$$

$$\neg (Q \land R)$$

9.
$$\neg S$$

10.
$$\neg T$$

11.
$$P \supset \neg T$$

$$(4) \qquad 1. \quad + (P \land Q) \supset R$$

2.
$$+ P$$

3.
$$? Q \supset R$$

6.
$$P \wedge Q$$

6.
$$P \wedge Q$$

$$1,\,6~MP$$

8.
$$Q \supset R$$

$$4-7$$
 CP

- (6) 1. $+P\supset (Q\vee R)$
 - 2. $+P \supset \neg Q$
 - 3. $? P \supset R$
 - P4.
 - ? R 5.
 - 6. $\neg Q$
- 2, 4 *MP*
- $Q \vee R$ 7.
- 1, 4 *MP*
- R

8.

- 6, 7 VE
- 9. $P \supset R$
- 4-8 *CP*
- $(10) \quad 1. \quad + Q \supset (T \lor S)$
 - 2. $+ \neg R \land \neg T$
 - 3. + P
 - 4. $? P \land (Q \supset S)$
 - 5. Q
 - ? S 6.
 - 7. $T \vee S$
- 1, 5 *MP*
- $\neg T$ 8.
- $2 \wedge E$
- 9. \mathcal{S}
- 7, 8 V*E*
- 10. $Q \supset S$
- 5-9 *CP*
- 11. $P \land (Q \supset S)$
- 3, 10 ∧*I*

- (8) 1. $+P\supset S$
 - 2. $+R\supset S$
 - 3. $P \supset (R \supset S)$
 - P4.
 - 5. $? R \supset S$
 - R6.
 - ? S 7.
 - 8. S 1, 4 *MP*
 - 6-8 *CP* 9. $R\supset S$ 10. $P \supset (R \supset S)$ 4-9 CP
- $(12) \quad 1. \quad + (P \lor \neg T) \supset ((S \lor T) \supset Q)$
 - 2. $+ \neg P \lor S$
 - 3. $?(P \supset Q) \lor (S \supset T)$
 - P 4.
 - 5. ? Q
 - S2, 4 VE 6.
 - 7. $|P \lor \neg T|$
- 4 V*I* 1, 7 MP
- $(S \lor T) \supset Q$ 8. 9. $S \vee T$
- 6 V*I*
- 10. Q

- 8, 9 *MP*
- 11. $P \supset Q$
- 4-11 CP
- 12. $(P \supset Q) \lor (S \supset T)$
- 11 V*I*

- (14) 1. $+P\supset (S\vee T)$
 - 2. $+(S \lor T) \supset (Q \supset (R \lor \neg S))$
 - 3. + S
 - 4. $? P \supset (Q \supset R)$
 - \overline{P} 5.
 - 6. $? Q \supset R$
 - Q 7.
 - 8. ? R

9.

- $S \vee T$
- $Q \supset (R \lor \neg S)$ 10.
- $R \vee \neg S$ 11.
- 12. R
- 13. $Q \supset R$
- $P\supset (Q\supset R)$ 14.

- - 1, 5 MP
 - 2,9 MP
 - 7, 10 MP
 - 3, 11 VE
 - 7-12 CP
 - 5-13 CP

Exercises 3.10 (p. 92)

- (2) 1. $+ P \vee Q$
 - 2. $+P\supset (R \land S)$
 - 3. $+(R \wedge S) \supset Q$
 - 4. ? Q
 - 5. $\neg Q$
 - 6. ? ×
 - 7. P
- 1, 5 VE
- 8. $R \wedge S$
- 2, 7 MP
- Q9.
- 3, 8 *MP*
- 10. $Q \land \neg Q$

1. $+P\supset Q$

2. $+S\supset T$

 $P \vee S$

? ×

 $\neg Q$

 $\neg P$

 \mathcal{S}

 $\neg T$

 $\neg S$

 $S \wedge \neg S$

 $\neg(\neg Q \land \neg T)$

 $(P \lor S) \supset \neg(\neg Q \land \neg T) \quad 4-14 \ CP$

3. $?(P \lor S) \supset \neg(\neg Q \land \neg T)$

 $? \neg (\neg Q \land \neg T)$

 $\neg Q \land \neg T$

- 5, 9 ∧*I*
- 11. Q

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

(6)

5-10 IP

6 ^*E*

1, 8 *MT*

4, 9 VE

 $6 \Lambda E$

2, 11 *MT*

10, 12 ∧*I*

6-13 *IP*

(8) 1. $+ (P \lor Q) \supset (R \supset S)$

(4) 1. $+ \neg R \supset \neg (\neg P \lor Q)$

 $\neg(\neg P \lor Q)$

 $(\neg P \lor Q) \land \neg (\neg P \lor Q)$ 6, $7 \land I$

1, 2 MP

4 VI

4-8 IP

 $2. + \neg R$ 3. ? P

4. | ¬*P*

5. ? ×

6.

7.

8.

9.

- 2. $+ \neg P \supset T$
- 3. $+ R \wedge \neg S$
- 4. ? *T*
- 5.
- 6. 3 ×
- 7.
- $P \vee Q$ 8.
- 9.

- 12. $\neg S$
- 13.
- $S \wedge \neg S$
- 14. T

 $\neg P \lor Q$

- $\neg T$
- - P2,5 MT
 - 7 v*I*
 - $R\supset S$ 1, 8 MP
- 10. | *R* $3 \wedge E$
- 11. S 9, 10 MP
 - $3 \wedge E$ 11, 12 ∧*I*
 - 5-13 *IP*

248

- (10) 1. $+P\supset (\neg Q \land R)$
 - 2. $+ S \vee \neg T$
 - 3. $+ P \vee T$
 - 4. ? $Q \supset S$
 - Q 5.
 - 6. ? S
 - 7. $\neg S$
 - 8. \times ?
 - 9. $\neg T$
 - 10. P
 - 11. $\neg Q \land R$
 - $\neg Q$ 12. 13. $Q \wedge \neg Q$
 - 14. S
 - 15. $Q \supset S$

- (12) 1. $+ \neg (S \land T) \supset (Q \supset R)$
 - 2. $+P \supset \neg T$
 - 3. $P \supset (Q \supset R)$
 - P4.
 - 5. ? $Q \supset R$
 - $\neg(Q \supset R)$ 6.
 - 7. ? ×
 - $S \wedge T$ 8.
 - T9.
 - 10.
 - 11. $T \wedge \neg T$
 - 12. $Q \supset R$
- $\neg T$ 2, 4 MP
- 9, $10 \wedge I$ 6-11 *IP*
 - 13. $P \supset (Q \supset R)$
- 4-12 CP

1, 6 *MT*

8 ^*E*

- (14) 1. $+ P \vee S$
 - 2. $+ S \supset (R \supset T)$
 - 3. $+ R \wedge (T \supset P)$
 - 4. ? P V Q
 - $\neg P$ 5.
 - 6. ? ×
 - 7. \mathcal{S}
 - 1, 5 VE
 - 8. $R\supset T$
- 2,7 MP

2,7 VE

3, 9 v*E*

1, 10 *MP*

 $11 \wedge E$

5, 12 ∧*I*

7–13~IP

5-14 CP

- 9. R
- $3 \wedge E$
- T10.
- 8,9 *MP*
- $T \supset P$ 11.
- $3 \wedge E$
- $\neg T$ 12.
- 5, 11 *MT*
- 13. $T \wedge \neg T$
- 10, 12 ∧*I*
- 14. P
- 5-13 *IP*
- 15. $P \lor Q$
- 14 V*I*

Exercises 3.11 (p. 98)

- 1. $+(P\supset Q)\vee(R\vee S)$ (2)
 - 2. $?(S \lor R) \lor (P \supset Q)$
 - 3. $(R \lor S) \lor (P \supset Q)$
- 1 Com
- 4. $(S \vee R) \vee (P \supset Q)$
- 3 Com
- (4) 1. $+ (P \lor Q) \land (R \land S)$
 - 2. $?(R \land (P \lor Q)) \land S$
 - 3. $((P \lor Q) \land R) \land S$
 - $(R \land (P \lor Q)) \land S$ 4.
- 1. $+ P \supset ((R \lor Q) \supset S)$ (8) 1. $+ (P \lor (Q \lor R)) \supset T$

1, 4 MP

6 V*I*

9 Com

11 V*I*

12 Com

8, 10 MP

- 2. $+(S \lor \neg T) \supset R$
 - 3. ? *T*
 - 4.
 - 5.
 - $\neg T \lor S$ 6.

 - 7. $S \vee \neg T$
 - 8. R
 - 9. $R \lor (P \lor Q)$
 - 10. $(P \lor Q) \lor R$
 - $P \lor (Q \lor R)$ 11.
 - T12.
 - 13. $T \wedge \neg T$
 - 14. *T*

- - $\neg T$
 - ? ×
- 4 V*I* 6 Com

1 Assoc

3 Com

- 2,7 MP
- 8 v*I*
- 9 Com
 - 10 Assoc
 - 1, 11 MP
 - 4, 12 ∧*I*
 - 4-13 *IP*

- (6)
 - 2. $+(T \lor S) \supset W$
 - 3. $? P \supset (Q \supset W)$
 - P 4.
 - 5. $? Q \supset W$
 - Q 6.
 - 7. ? W
 - $(R \lor Q) \supset S$ 8.
 - 9. $Q \vee R$
 - 10. $R \vee Q$
 - S 11.
 - 12. $S \vee T$
 - 13. $T \vee S$
 - W14.

16.

15. $Q\supset W$

 $P\supset (Q\supset W)$

- 2, 13 *MP*
- 6-14 *CP*
 - 4-15 CP

- (10) 1. $+P\supset ((Q \land R) \lor S)$
 - 2. $+(R \land Q) \supset \neg P$
 - 3. $+T \supset \neg S$
 - 4. $? P \supset \neg T$
 - P5.
 - 6. ? ¬*T*
 - 7. $(Q \land R) \lor S$
- 1, 5 *MP*

3, 8 *MP*

7, 10 VE

2, 5 MT

12 *Com*

11, 13 ∧*I*

8-14 *IP*

5-15 CP

- T8.
- ? × 9.
- $\neg S$ 10.
- 11. $Q \wedge R$
- $\neg (R \land Q)$ 12.
- 13. $\neg (Q \land R)$
- $(Q \land R) \land \neg (Q \land R)$ 14.
- 16. $P \supset \neg T$

- (12) 1. $+ P \supset R$
 - 2. $+ P \lor (R \land S)$
 - 3. $? Q \lor R$
 - $\neg R$ 4.
 - 5. ? ×
 - 6. $\neg P$

 - 7. $R \wedge S$
 - 8. *R*
 - $R \wedge \neg R$ 9.

 - 10. R
 - 11. *R* ∨ *Q* 10 V*I*
 - 12. *Q* ∨ *R*
- 11 *Com*

1,4MT

2,6 VE

 $7 \wedge E$

4,8 ∧*I*

4-9 *IP*

(14) 1. $+ P \vee S$

15.

- 2. $+ S \supset (T \supset P)$
- 3. $+S\supset T$
- 4. $? R \lor (Q \lor P)$
- 5. $\neg P$
- 6. 3 ×
- S 7.
- 8. $T \supset P$
- T9.
- 10. | *P*
- 11. $P \land \neg P$
- 12. *P*
- 13. $P \lor (R \lor Q)$
- 14. $(R \lor Q) \lor P$
- 15. $R \lor (Q \lor P)$

- 1, 5 VE
- 2,7 MP
- 3, 7 *MP*
- 8,9 MP
- $5, 10 \wedge I$
- 5-11 *IP*
- 12 V*I*
- 13 *Com*
- 14 Assoc

Exercises 3.12 (p. 100)

- (2) 1. $+ \neg (\neg P \lor (\neg Q \land \neg R))$
 - 2. $? P \land (Q \lor R)$
 - 3. $P \land \neg (\neg Q \land \neg R)$
- 1 DeM
- 4. $P \wedge (Q \vee R)$
- 3 DeM
- $(4) \qquad 1. \quad +P \supset \neg(Q \land (R \lor \neg S))$
 - 2. $P \supset (\neg Q \lor (\neg R \land S))$
 - 3. $P \supset (\neg Q \lor \neg (R \lor \neg S))$ 1 DeM
 - 4. $P \supset (\neg Q \lor (\neg R \land S))$ 3 DeM

- (6) 1. $+Q\supset S$
 - 2. $+S\supset P$
 - 3. $P \lor \neg Q$
 - 4. $\neg (P \lor \neg Q)$
 - 5. ? ×
 - 6. $\neg P \land Q$
- 4 DeM
- 7. *Q*
- 6 ∧*E*
- 8. *S*
- 1, 7 *MP*
- 9. *P*
- 2,8 *MP*
- 10. $\neg P$
- $6 \Lambda E$
- 11. $P \land \neg P$
- 9, $10 \wedge I$
- 12. $P \lor \neg Q$
- 4-11 *IP*

- (8) 1. $+P\supset (Q\vee S)$
 - $2. + \neg S$
 - 3. $? \neg P \lor Q$
 - 4. $\neg (\neg P \lor Q)$
 - 5. ? ×
 - 6. $P \land \neg Q$
- 4 DeM
- 7. *P*
- 6 ∧*E*
- 8. $\neg Q$
- 6 ∧*E*
- 9. | Q \(\begin{aligned} \text{Q} \(\begin{aligned} \text{S} & \text{S} & \text{S} \\ \text{10.} & \text{S} & \text{S} & \text{S} \\ \text{S} & \text{S} & \text{S} & \text{S} & \text{S} \\ \text{S} & \text{S} & \text{S} & \text{S} & \text{S} & \text{S} \\ \text{S} & \text{S} &
- 1, 7 *MP* 8, 9 v*E*
- 11. $|S \wedge \neg S|$
- 2, 10 ∧*I*
- 12. $\neg P \lor Q$
- 4-11 *IP*

- (10) 1. $+ P \lor (Q \lor R)$
 - 2. $+Q\supset (R \land S)$
 - 3. ? *P* ∨ *R*
 - 4. $\boxed{\neg (P \lor R)}$
 - 5. ? ×
 - 6. $\neg P \land \neg R$
- 4 DeM
- 7. $\neg P$
- 6 A*E*
- 8. Q v R
- 1, 7 VE
- 9. $\neg R$
- 6 ∧*E*
- 10. *Q*
- 8, 9 V*E*
- 11. $R \wedge S$
- 2, 10 *MP*
- 12. | R
- 11 ∧*E*
- 13. $R \wedge \neg R$
- 9, 12 ∧*I*
- 14. *P* ∨ *R*
- 4-13 *IP*

- (12) 1. $+ S \lor (Q \supset R)$
 - 2. $+ P \lor (Q \land (T \lor \neg R))$
 - 3. $? S \lor (T \lor P)$
 - $\neg (S \lor (T \lor P))$ 4.
 - ? × 5.
 - 6. $\neg S \land \neg (T \lor P)$

 - $\neg S$

7.

- $Q \supset R$ 8.
- 9. $\neg (T \lor P)$
- $\neg T \land \neg P$ 10.
- 11. $\neg P$
- 12. $Q \wedge (T \vee \neg R)$
- $T \vee \neg R$ 13.
- $\neg T$ 14.
- 15. Q
- 16. R
- 17. $\neg R$
- 18. $R \wedge \neg R$
- 19. $S \vee (T \vee P)$

- (14) 1. $+ S \lor (P \supset (R \supset Q))$
 - $2. + S \vee P$
 - 3. + R
 - 4. $? Q \lor S$
 - $\neg (Q \lor S)$ 5.
 - 6. ? ×
 - 7. $\neg Q \land \neg S$
 - $\neg S$ 8.
- 7 ∧*E*
- P9.
- 2, 8 VE

5 DeM

- 10. $P \supset (R \supset Q)$
- 1, 8 VE
- 11. $R \supset Q$
- 9, 10 MP
- 12. | *Q*
- 3, 11 MP $7 \wedge E$
- 13. $\neg Q$
- $Q \land \neg Q$ 14.
- 12, 13 ∧*I*
- 15. Q V S
- 5-14 IP

- Exercises 3.13 (p. 103)
- 1. $+ \neg (P \lor Q) \supset R$
 - 2. $? \neg P \supset (\neg Q \supset R)$
 - $(\neg P \land \neg Q) \supset R$
 - 4. $\neg P \supset (\neg Q \supset R)$
- 3 Exp

1 DeM

4 DeM

6 ^*E*

6 ^*E*

9 DeM

 $10 \wedge E$

2, 11 VE

 $12 \wedge E$

 $10~{\rm \Lambda}E$

12 ∧*E*

8, 15 *MP*

13, 14 VE 16, 17 ∧*I*

4-18 *IP*

1, 7 VE

- (4) 1. $+ P \vee (Q \wedge \neg R)$
 - 2. $?(P \lor Q) \land \neg(\neg P \land R)$
 - 3. $(P \lor Q) \land (P \lor \neg R)$
 - 4. $(P \lor Q) \land \neg (\neg P \land R)$

- (6) 1. $+P\supset (Q\wedge R)$
 - 2. $+ R \supset (Q \supset S)$
 - 3. $? P \supset S$
 - $(R \land Q) \supset S$ 4.
 - $(Q \land R) \supset S$ 5.
 - $P \supset S$ 6.

- 2 Exp
- 4 Com
- 1, 5 HS

- (8) 1. $+(P \wedge R) \supset Q$
 - 2. $+P\supset R$
 - 3. $? P \supset Q$
 - 4. $(R \wedge P) \supset Q$
- 1 Com

1 Dist

3 DeM

- 5. $R \supset (P \supset Q)$
- 4 *Exp*
- 6. $P \supset (P \supset Q)$
- 1, 5 HS
- 7. $(P \land P) \supset Q$
- 6 *Exp*
- 8. $P \supset Q$
- 7 Taut

(10) 1.
$$+(S \lor T) \supset (\neg P \lor \neg R)$$

2.
$$+ S \vee (Q \wedge T)$$

3.
$$? P \supset \neg R$$

$$5. \mid ? \neg R$$

6.
$$(S \vee Q) \wedge (S \vee T)$$

7.
$$S \vee T$$

8.
$$\neg P \lor \neg R$$

9.
$$\neg R$$

10.
$$P \supset \neg R$$

$$(12)$$
 1. + S

2.
$$+ \neg R \supset T$$

3.
$$?(R \lor S) \land (R \lor T)$$

4.
$$\neg (R \lor T)$$

6.
$$\neg R \land \neg T$$

7.
$$\neg R$$

9.
$$\neg T$$

$$6 \ \wedge E$$

10.
$$T \land \neg T$$
11. $R \lor T$

$$8,9 \wedge I$$

14.
$$(R \lor S) \land (R \lor T)$$

(14) 1.
$$+P\supset (Q\supset R)$$

2.
$$+ S \supset (P \land Q)$$

3.
$$+(S\supset R)\supset T$$

4.
$$P \supset T$$

7.
$$(P \land Q) \supset R$$

8.
$$S \supset R$$

10.
$$P \supset T$$

Exercises 3.14 (p. 105)

(2) 1.
$$+ \neg P \supset (Q \land R)$$

2.
$$? \neg (Q \land R) \supset P$$

3.
$$\neg (Q \land R) \supset P$$

$$(4) 1. + \neg P \supset (\neg Q \supset R)$$

2.
$$?(P \lor Q) \lor R$$

3.
$$P \lor (\neg Q \supset R)$$

4.
$$P \lor (Q \lor R)$$

5.
$$(P \lor Q) \lor R$$

- (6) 1. $+ (\neg S \lor R) \supset (T \supset P)$
 - 2. $+S\supset R$
 - 3. $? \neg T \lor P$
 - 4. $\neg S \lor R$ 2 Cond
 - 5. $T \supset P$ 1, 4 MP
 - 6. $\neg T \lor P$ 5 Cond

- $(10) \quad 1. \quad + \neg P \lor R$
 - 2. $+(P \land \neg R) \lor S$
 - 3. $+(R \wedge S) \supset Q$
 - 4. $P \supset Q$
 - 5. *P*
 - 6. ? *Q*
 - 7. $\neg (P \land \neg R)$ 1 DeM
 - 8. *S*
- 2, 7 VE
- 9. | R 10 | R \lambda S
- 1, 5 VE 8, 9 \wedge I
- 11. Q
- 3, 10 MP
- 12. $P \supset Q$
- 5-11 *CP*

- (8) 1. $+((P\supset Q)\supset R)\supset S$
 - 2. + R
 - 3. ? *S*
 - 4. $\lceil \neg S \rceil$
 - 5. ?×
 - 6. $\neg((P \supset Q) \supset R)$
- 1,4 MT
- 7. $\neg(\neg(P \supset Q) \lor R)$
- $6\ Cond$
- 8. $(P \supset Q) \land \neg R$
- 7~DeM

9. $\neg R$

- 10. $R \land \neg R$
- 2,9 ∧*I*

11. *S*

4-10 *IP*

- $(12) \quad 1. \quad + S \supset R$
 - 2. $+ R \supset \neg (T \supset Q)$
 - 3. $? S \supset T$
 - 4. *S*
 - 5. ? *T*
 - 6. R
- 1, 4 *MP*
- 7. $\neg (T \supset Q)$
- 2, 6 *MP*
- 8. $\neg(\neg T \lor Q)$
- 7 Cond
- 9. $T \wedge \neg Q$
- 8 DeM

10. | *T*

9 ∧*E*

11. $S \supset T$

4-10 *CP*

$$(14) \quad 1. \quad + \neg P \supset Q$$

2.
$$+ S \supset \neg (P \lor Q)$$

3.
$$+ R \supset S$$

4.
$$?R \supset T$$

8.
$$\neg (P \lor Q)$$

$$2,7~MP$$

9.
$$\neg (\neg P \supset Q)$$

10.
$$(\neg P \supset Q) \land \neg (\neg P \supset Q)$$

11.
$$\neg R$$

12.
$$\neg R \lor T$$

13.
$$R \supset T$$

Exercises 3.15 (p. 107)

(2) 1.
$$+P \equiv Q$$

2.
$$?(P \lor \neg Q) \land (\neg P \lor Q)$$

3.
$$(P \supset Q) \land (Q \supset P)$$
 1 Bicond

4.
$$(\neg P \lor Q) \land (Q \supset P)$$

5.
$$(\neg P \lor Q) \land (\neg Q \lor P)$$

6.
$$(\neg Q \lor P) \land (\neg P \lor Q)$$

7.
$$(P \lor \neg Q) \land (\neg P \lor Q)$$

(4) 1.
$$+(P\supset Q) \land \neg(\neg P \land Q)$$

2.
$$P \equiv Q$$

3.
$$(P \supset Q) \land (P \lor \neg Q)$$
 1 DeM

4.
$$(P \supset Q) \land (\neg Q \lor P)$$

5.
$$(P \supset Q) \land (Q \supset P)$$

6.
$$P \equiv Q$$

- (6) 1. $+ (P \lor Q) \supset (R \equiv \neg S)$
 - 2. $+(S \lor T) \supset (P \land R)$
 - 3. ? ¬*S*
 - S 4.
 - 5. ? ×
 - 6. $S \vee T$
 - 7. $P \wedge R$
 - P8.
 - 9. $P \vee Q$
 - 10. $R \equiv \neg S$

 - 11. $(R \supset \neg S) \land (\neg S \supset R)$
 - $R \supset \neg S$ 12.
 - 13. R
 - 14. $\neg S$
 - 15. $S \wedge \neg S$
 - 16. ¬S

- (8) 1. $+ P \supset (Q \equiv R)$
 - 2. $+ \neg S \supset (P \lor R)$
 - 3. $+P \equiv Q$
 - 4. $? S \lor R$
 - 5. $\neg (S \lor R)$
 - 6. ? ×

4 V*I*

 $7 \wedge E$

8 v*I*

1, 9 MP

10 Bicond

12, 13 MP

 $4, 14 \wedge I$

4-14 *IP*

11 ∧*E*

 $7 \wedge E$

2, 6 MP

- 7. $\neg S \land \neg R$
- 8. $\neg S$
- $P \vee R$ 9.
- 10. $\neg R$
- P11.
- 12. $Q \equiv R$
- 13. $(Q \supset R) \land (R \supset Q)$
- $(P \supset Q) \land (Q \supset P)$ 14.
- $P \supset Q$ 15.
- 16. $Q \supset R$
- $P \supset R$ 17.
- R
- 18.

20.

- 19. $R \wedge \neg R$ $S \vee R$
- (12) 1. $+ P \supset (Q \equiv R)$
 - 2. $+(\neg Q \lor R) \supset T$
 - 3. $? P \supset T$
 - P 4.
 - 5. ? T
 - $Q \equiv R$ 6.

 - $(Q \supset R) \land (R \supset Q)$ 7.
 - 8. $Q \supset R$
 - 9. $(Q\supset R)\supset T$
 - T

 - $P \supset T$ 11.
- 2 Cond 8,9 MP

 $7 \wedge E$

1, 4 MP

6 Bicond

5 DeM

 $7 \wedge E$

 $7 \wedge E$

12, 8 MP

9, 10 VE

1, 11 MP

12 Bicond

3 Bicond

14 ∧*E*

13 ∧*E*

15, 16 HS

11, 17 *MP*

10, 18 $\wedge I$

5-19 *IP*

10.

4-10 CP

- (10) 1. $+ S \equiv T$
 - 2. $+ S \supset (P \lor Q)$
 - 3. $? \neg Q \supset (T \supset P)$
 - 4. $(S \supset T) \land (T \supset S)$
 - 5. $T\supset S$
 - 6. $T \supset (P \lor Q)$

 - 7. $\neg T \lor (P \lor Q)$
 - 8. $(\neg T \lor P) \lor Q$
 - 9. $Q \vee (\neg T \vee P)$
 - 10. $\neg Q \supset (\neg T \lor P)$
 - 11. $\neg Q \supset (T \supset P)$
- 10 Cond

9 Cond

1 Bicond

 $4 \wedge E$

2, 5 HS

6 Cond

7 Assoc

8 Com

(14) 1.
$$+P \equiv (\neg Q \lor R)$$

2.
$$+(Q \supset R) \supset S$$

3.
$$+S \supset \neg P$$

7.
$$\neg S$$

8.
$$\neg (Q \supset R)$$

9.
$$(P \supset (\neg Q \lor R)) \land ((\neg Q \lor R) \supset P)$$

10.
$$P \supset (\neg Q \lor R)$$

11.
$$\neg Q \lor R$$

12.
$$Q \supset R$$

13. $(Q \supset R) \land \neg (Q \supset R)$

Exercises 3.17 (p. 112)

(2) 1.
$$+ S \supset P$$

2.
$$+Q\supset P$$

3.
$$+ \neg Q \supset S$$

3 Cond

1, 2, 5 CD

6 Taut

$$(4) 1. + P \supset (R \land T)$$

2.
$$+Q\supset (S\wedge T)$$

3.
$$?(P \lor Q) \supset (R \lor S)$$

4.
$$P \vee Q$$

5.
$$?R \lor S$$

7.

6.
$$(R \wedge T) \vee (S \wedge T)$$

$$(T \land R) \lor (T \land S)$$

 $(T \land R) \lor (S \land T)$

8.
$$(T \wedge R) \vee (T \wedge S)$$

9.
$$T \wedge (R \vee S)$$

11.
$$(P \lor Q) \supset (R \lor S)$$

6 Com

7 Com

1, 2, 4 *CD*

(6) 1.
$$+ P \vee R$$

2.
$$+P\supset (Q \land \neg S)$$

3.
$$+ (\neg R \lor T) \land \neg S$$

4. ?
$$Q \vee T$$

5.
$$\neg P \lor (Q \land \neg S)$$
 2 Cond

6.
$$(\neg P \lor Q) \land (\neg P \lor \neg S)$$
 5 Dist

7.
$$\neg P \lor Q$$

6 ^*E*

8.
$$P \supset Q$$
 7 Cond

9.
$$\neg R \lor T$$

 $3 \wedge E$

10.
$$R \supset T$$

9 Cond

1, 8, 10 CD

- (8) 1. $+ \neg P$
 - $2. + \neg Q$
 - 3. $?(P \lor Q) \supset (R \lor S)$
 - $P \vee Q$ 4.
 - 5. ? R V S
 - 6. $\neg P \lor R$
 - 7. $\neg Q \lor S$
 - $P \supset R$ 8.
 - 9. $Q\supset S$
 - 10. | *R* ∨ *S*
 - 11. $(P \lor Q) \supset (R \lor S)$

- (10) 1. $+P\supset (Q\vee R)$
 - 2. $+ S \supset (R \lor T)$
 - 3. $+ \neg R$
 - 4. $?(P \lor S) \supset (Q \lor T)$
 - $P \vee S$ 5.
 - 6. $? Q \lor T$
 - $(Q \lor R) \lor (R \lor T)$ 7.
 - 7 Assoc
 - $Q \lor (R \lor (R \lor T))$ 8.
 - $Q \lor ((R \lor R) \lor T)$ 9.

 - 10. $Q \vee (R \vee T)$
 - 11. $Q \vee (T \vee R)$
 - $(Q \lor T) \lor R$ 12.
 - 13. Q V T
 - 14. $(P \lor S) \supset (Q \lor T)$
- 8 Assoc 9 Taut

1, 2, 5 CD

- 10 Com
- 11 Assoc 3, 12 VE
- 4-10 CP

- (12) 1. $+ P \vee Q$
 - $2. + R \vee S$
 - 3. $? \neg (Q \land S) \supset (P \lor R)$

 - 5. ? *P* ∨ *R*

 - 6.
 - $Q \vee P$ 7.

 - $\neg Q \supset P$
 - 9. $S \vee R$
 - 10. $\neg S \supset R$
 - 11. $P \vee R$

- $\neg (Q \land S)$ 4.
- - $\neg Q \lor \neg S$ 4 DeM
 - - 1 Com

1 V*I*

2 v*I*

6 Cond

7 Cond

4, 8, 9 *CD*

4-10 CP

- 7 Cond
- 2 Com
- 9 Cond
- 6, 8, 10 *CD*
- 12. $\neg (Q \land S) \supset (P \lor R)$ 4-11 *CP*

- (14) 1. $+ S \supset T$
 - 2. $+ R \supset (T \lor Q)$
 - 3. $+(T \lor Q) \supset P$
 - 4. $?(S \lor R) \supset (T \lor P)$
 - 5. $S \vee R$
 - 6. ? *T* ∨ *P*
 - 7. $R \supset P$
 - $T \vee P$ 8.
- 2, 3 *HS* 1, 5, 7 *CD*
- 9. $(S \lor R) \supset (T \lor P)$
- 5-8 *CP*

5 v*I*

1, 7 MP

2 DeM

5, 9 v*E*

8 Bicond

10, 12 MP

3, 13 MP

13, 14 ∧*I* 5-15 *CP*

 $11 \wedge E$

Exercises 3.18 (p. 117)

(2)
$$P \equiv (Q \lor R) \quad \neg Q \mid \neg P \supset R$$

$$F \quad F \quad F \quad F$$

$$F \quad T \quad T$$

$$F \quad F$$

Invalid under *I*: $\{P = F; Q = F; R = F\}$

(4) 1.
$$+ (P \lor Q) \supset (R \equiv S)$$

2.
$$+ \neg (\neg S \land P)$$

3.
$$+R\supset T$$

4.
$$? P \supset (T \land R)$$

6.
$$? T \wedge R$$

7.
$$P \vee Q$$

8.
$$R \equiv S$$

9.
$$S \vee \neg P$$

11.
$$(R \supset S) \land (S \supset R)$$

12.
$$S \supset R$$

15.
$$T \wedge R$$

16.
$$P \supset (T \land R)$$

(6) 1.
$$+ \neg P \supset (Q \supset R)$$

2.
$$+(P \lor S) \supset T$$

3.
$$+ R \supset (P \lor S)$$

4.
$$+ \neg T$$

6.
$$\neg (P \lor S)$$

7.
$$\neg P \land \neg S$$

9.
$$Q \supset R$$

8.

$$R \to (P \vee S)$$

Invalid under I: $\{P = F; Q = F; R = F; S = T\}$

- (10) 1. $+P\supset (Q\supset R)$
 - $2. + \neg R$
 - 3. $? P \supset \neg Q$
 - P4.
 - 5. $? \neg Q$
 - 6. $Q \supset R$ 1, 4 MP
- 2,6 MT
- $P \supset \neg Q$ 8.
- 4-7 *CP*
- $(12) \quad P \supset (Q \lor R) \quad S \supset (T \lor R) \quad | \quad (P \lor S) \supset R \qquad \text{Invalid under I: } \{P = T; \ Q = T; \ R = F; \ S = T; \ T = T\}$

- (14) 1. $+ (P \lor Q) \supset R$
 - 2. $+(P \lor Q) \supset S$
 - 3. $+ \neg S$
 - 4. ? ¬*P*
 - 5. $\neg (P \lor Q)$ 2, 3 MT
 - 6. $\neg P \land \neg Q$ 5 DeM
- - 7. $\neg P$
- 6 ∧*E*

Exercises 3.19 (p. 120)

- $\vdash P \supset (\neg P \supset P)$
 - 1.
 - 2. $? \neg P \supset P$
 - 3. $P \vee P$
- 1 v*I*
- 4. $\neg P \supset P$
- 3 Cond
- $5. \qquad P \supset (\neg P \supset P)$
- 1-4 *CP*

- $(4) \qquad \qquad \vdash ((P \supset Q) \land \neg Q) \supset \neg P$
 - $(P \supset Q) \land \neg Q$
 - 2.
 - $P\supset Q$
- $1 \wedge E$
- 4. $\neg Q$
- $1 \wedge E$

5.

- 3,4MT
- $((P \supset Q) \land \neg Q) \supset \neg P$ 1–5 CP

(6)
$$\vdash (P \lor Q) \equiv \neg (\neg P \land \neg Q)$$

1.
$$P \vee Q$$

2.
$$? \neg (\neg P \land \neg Q)$$

3.
$$\neg(\neg P \land \neg Q)$$
 1 DeM

4.
$$(P \lor Q) \supset \neg(\neg P \land \neg Q)$$
 1-3 CP

5.
$$\neg (\neg P \land \neg Q)$$

6.
$$? P \lor Q$$

7.
$$P \lor Q$$
 5 DeM

8.
$$\neg(\neg P \land \neg Q \supset (P \lor Q))$$
 5–7 CP

9.
$$((P \lor Q) \supset \neg(\neg P \land \neg Q)) \land (\neg(\neg P \land \neg Q) \supset (P \lor Q))$$
 4, 8 $\land I$

10.
$$(P \lor Q) \equiv \neg(\neg P \land \neg Q)$$
 9 Bicond

(8)
$$\vdash (P \supset Q) \lor (Q \supset P)$$

1.
$$\neg (P \supset Q)$$

$$2. \qquad ? Q \supset P$$

3.
$$\neg(\neg P \lor Q)$$
 1 Cond

4.
$$P \land \neg Q$$
 3 DeM

5.
$$\neg Q$$
 4 $\wedge E$

6.
$$\neg Q \lor P$$
 5 $\lor I$

7.
$$Q \supset P$$
 6 Cond
8. $\neg (P \supset Q) \supset (Q \supset P)$ 1–7 CP

9.
$$(P \supset Q) \lor (Q \supset P)$$
 8 Cond

$$(10) \qquad \vdash \neg (P \supset Q) \equiv (P \land \neg Q)$$

1.
$$\neg (P \supset Q)$$

2.
$$? P \land \neg Q$$

3.
$$\neg (\neg P \lor Q)$$
 1 Cond

4.
$$P \land \neg Q$$
 3 DeM

5.
$$\neg (P \supset Q) \supset (P \land \neg Q)$$
 1–4 CP

6.
$$P \land \neg Q$$

7.
$$? \neg (P \supset Q)$$

8.
$$\neg(\neg P \lor Q)$$
 6 DeM

9.
$$\neg (P \supset Q)$$
 8 Cond

10.
$$(P \land \neg Q) \supset \neg (P \supset Q)$$
 6–10 CP

11.
$$(\neg (P \supset Q) \supset (P \land \neg Q)) \land ((P \land \neg Q) \supset \neg (P \supset Q))$$
 5, 10 $\land I$

12.
$$\neg (P \supset Q) \equiv (P \land \neg Q)$$
 11 Bicond

(14)

$$(12) \qquad \vdash \neg P \supset (P \supset Q)$$

2.
$$P \supset Q$$

3.
$$\neg P \lor Q$$

4.
$$P \supset Q$$

5.
$$\neg P \supset (P \supset Q)$$

CHAPTER 4

Exercises 4.01 (p. 130) [All general terms are one-place unless otherwise noted]

- (2) Callie is taller than (oe) (two-place relation)
- (4) If Callie is taller than too and too is taller than tola then Callie is taller than tola (all are two-place relations)
- (6) Gertrude sits between Frank and Joe. (three-place relation)
- (8) Fenton admires himself (two-place relation)
- (10) (Iola is shorter than Callie or (oe) but taller than Fenton. (both are two-place relations)
- (12) Callie and Tolalive in Bayport (two-place relation)
- (14) If Gertrude is a detective she admires Frank and (oe) (two-place relation)

Exercises 4.02 (p. 134)

(2) *Tji*

(10) $(Sic \wedge Sij) \wedge Tif$

(4) $(Tcj \land Tji) \supset Tci$

(12) $Lcb \wedge Lib$

(6) *Bgfj*

(14) $Dg \supset (Agf \land Agj)$

(8) Aff

Exercises 4.03 (p. 140)

(2)
$$\neg Sg \land Ag$$

$$(4) \qquad \exists x (Ax \land Sx) \supset \exists x (Sx \land Ax)$$

(6)
$$Cf \wedge Sf$$

(8)
$$\forall x (Ax \supset Cx)$$

$$(10) \quad \forall x (Ax \supset Cx) \supset Cg$$

(12)
$$\exists x (Sx \land (Cx \land Ax))$$

(14)
$$\forall x (Ax \supset (Cx \supset Sx))$$

Exercises 4.04 (p. 142)

$$(2) \qquad \exists x (Fx \land Gx)$$

$$(4) \qquad \exists y (Fx) \land Gx) \land \forall x (Fy) \supset Gy$$

(6)
$$\exists y ((Fy \land Gy) \land (Hy \land Iy))$$

$$(8) \qquad ((\exists y F y \land G)) \land (Hy) \land I(y)$$

$$(10) \quad \forall x (Fx \supset Gx) \supset Ha$$

Exercises 4.05 (p. 144)

(2)
$$Kc \supset \exists x(Sx \land \neg Wx)$$

$$(4) \qquad \forall x (Sx \supset Wx) \supset (\neg Wf \supset \neg Sf)$$

(6)
$$\neg \exists x (Sx \land \neg Wx)$$

(8)
$$\exists x(Sx \land Kx) \supset \neg \forall x(Sx \supset Wx)$$

(10)
$$(\neg Kg \land \neg Kc) \supset Wi \text{ or } \neg (Kg \lor Kc) \supset Wi$$

(12)
$$\exists x(Sx \land Kx) \land \forall x(Sx \supset Wx)$$

(14)
$$Kg \supset \exists x (Sx \land \neg Wx)$$

Exercises 4.06 (p. 146)

$$(2) \qquad \exists x (Sx \wedge Cxf)$$

$$(4) \qquad \forall x (Sx \supset Cxc)$$

(6)
$$\neg Eg \supset \neg \exists x ((Sx \land Cx) \land Ex)$$

(8)
$$\neg \forall x ((Sx \land Cx) \supset Ex)$$

(10)
$$\exists x((Sx \land Cx) \land Ex) \supset \exists x((Sx \land Cx) \land Cxg)$$

(12)
$$Ef \supset \exists x((Sx \land Cx) \land Cxg)$$

$$(14) \quad \exists x ((Sx \land Cx) \land Ex) \supset \forall x ((Sx \land Cx) \supset Ex)$$

Exercises 4.07 (p. 150)

(2)
$$\neg \exists x (Sx \land \exists y (Cy \land Axy))$$

(4)
$$\exists x(Sx \land \forall y(Cy \supset Axy))$$

(6)
$$\forall x((Cx \land \neg Mx) \supset Afx)$$

(8)
$$\neg \forall x (Sx \supset \exists y (Cy \land Axy))$$

$$(10) \quad \neg \forall x ((Sx \land Mx) \supset \exists y ((Cy \land \neg My) \land \neg Axy))$$

(12)
$$\forall x(Sx \supset \exists y((Cy \land \neg My) \land \neg Axy))$$

$$(14) \quad \forall x (Cx \supset Afx) \supset \forall x ((Cx \land Mx) \supset Afx))$$

Exercises 4.08 (p. 154)

(2)
$$\exists x (Px \land \forall y (Sy \supset Ayx))$$

(4)
$$\neg \exists x (Sx \land \forall y (Py \supset Ayx))$$

(6)
$$\neg (Sf \land Wf) \supset \neg \exists x (Px \land Axf)$$

(8)
$$Acf \supset \exists x ((Sx \land Wx) \land Acx)$$

(10)
$$\forall x((Sx \land Wx) \supset \neg \exists y Axy)$$

(12)
$$\neg \forall x ((Sx \land Wx) \supset Afx)$$

(14)
$$\exists x((Sx \land Wx) \land \forall y(Py \supset Ayx))$$

Exercises 4.09 (p. 159)

(2)
$$g = h$$

(10)
$$Ahj \lor h \neq g$$

$$(4) \qquad \exists x ((Axj \land \forall y (Ayj \supset x = y)) \land \neg Sx)$$

(12)
$$\exists x Sx \supset (Sf \land \forall x (Sx \supset x = f))$$

(6)
$$j \neq f$$

(14)
$$Agj \supset (\neg Sg \supset g \neq h)$$

 $(8) g = h \supset (Sg \supset Sh)$

Exercises 4.11 (p. 166)

- (2) $\exists x (Sx \land Wx)$
- (4) $\exists x (((Sx \land Wx) \land \forall y ((Sy \land Wy) \supset x = y)) \land (\exists z)(Pz \land Axz))$
- (6) $\exists x(((Sx \land Wx) \land \forall y((Sy \land Wy) \supset x = y)) \land Agx)$
- (8) $\forall x \forall y (((Sx \land Wx) \land (Sy \land Wy)) \supset \forall z ((Sz \land Wz) \supset (z = x \lor z = y))) \text{ or }$ $\forall x ((Sx \land Wx) \supset \forall y (((Sy \land Wy) \land x \neq y) \supset \forall z ((Sz \land Wz) \supset (x = z \lor y = z))))$
- (10) $\exists x \exists y (((Sx \land Sy) \land x \neq y) \land \forall z (Sz \supset (z = x \lor z = y))) \land (Afx \land Afy))$ or $\exists x ((Sx \land \exists y ((Sy \land x \neq y) \land \forall z (Sz \supset (x = z \lor y = z)))) \land (Afx \land Afy))$
- $(12) \quad \exists x (((Sx \land Wx) \land \forall y ((Sy \land Wy) \supset x = y)) \land \exists z (Pz \land Azx))$
- (14) $Wf \supset \exists x((Sx \land \forall y(Sy \supset x = y)) \land Axf)$

Exercises 4.12 (p. 169)

- (2) $\exists x (Sx \land \neg Tfx)$
- (4) $\neg \exists x (Sx \land Txc)$
- (6) $(Sf \land Sc) \land \forall x ((Sx \land (x \neq f \land x \neq c)) \supset Tfx)$
- (8) $\exists x((Sx \land \forall y((Sy \land x \neq y) \supset Txy)) \land Txc)$
- (10) $Sf \supset \neg \forall x ((Sx \land x \neq f) \supset Tfx)$
- (12) $((Sc \land Bc) \land (Sf \land Bf)) \land \forall x((Sx \land Bx) \supset (x = c \lor x = f))$
- $(14) \quad \exists x (Sx \land Bx) \supset \exists x ((Sx \land \forall y ((Sy \land x \neq y) \supset Txy)) \land Bx)$

Exercises 4.14 (p. 173)

- (2) $\forall x(Sx \supset \exists y((Sy \land By) \land Axy)) \Rightarrow \forall x\exists y(By \land Axy)$
- $(4) \qquad \exists x ((Sx \land Bx) \land \forall y (Sy \supset Axy)) \qquad \Rightarrow \qquad \exists x (Bx \land \forall y Axy)$
- $(6) \qquad \forall x((Sx \land Bx) \supset \forall y((Sy \land By) \supset x = y)) \qquad \Rightarrow \qquad \forall x(Bx \supset \forall y(By \supset x = y))$
- $(8) \qquad \forall x \forall y (((Sx \land Sy) \land x \neq y) \supset \forall z (Sz \supset (z = x \lor z = y))) \\ \qquad \Rightarrow \qquad \forall x \forall y (x \neq y \supset \forall z (z = x \lor z = y))$
- $(10) \quad \neg \exists x ((Sx \land \exists y (Sy \land \neg By)) \land Axy) \qquad \Rightarrow \qquad \neg \exists x \exists y (\neg By \land Axy)$

CHAPTER 5

Exercises 5.00 (p. 186)

- 1. $+ \exists x Fx \land \exists x Gx$ (2)
 - 2. $+ \exists x Hx \supset \neg \exists x Gx$
 - 3. $? \neg \exists x Hx$
 - 4. $\exists xGx$ $1 \wedge E$
 - 2,4MT5. $\neg \exists x Hx$
- (6) 1. $+ \forall x (Fx \supset Gx)$
 - 2. $\forall x \neg (Fx \land \neg Gx)$
 - 3. $\forall x (\neg Fx \lor Gx)$ 1 Cond
 - 4. $\forall x \neg (Fx \land \neg Gx)$ 3 DeM
- (10) 1. $+ \forall x Fx \supset \neg \exists y Gy$
 - 2. $+ \neg \exists x Hx \supset \exists y Gy$
 - 3. $\forall x Fx \supset \exists x Hx$
 - 4. $\neg \exists y Gy \supset \exists x Hx$
 - 1, 4 *HS*

2 Contra

 $5. \quad \forall x Fx \supset \exists x Hx$

- (4) 1. $+ \exists x Fx \supset \exists x Gx$
 - 2. $+ \neg \exists x Gx \lor \forall x Fx$
 - 3. $\exists x Fx \supset \forall x Fx$
 - $4. \qquad \exists x Gx \supset \forall x Fx$ 2 Cond
 - 5. $\exists x Fx \supset \forall x Fx$ 1, 4 HS
- (8) 1. $+ \exists x ((Fx \land \neg Gx) \lor \neg Gx)$
 - 2. $\exists x ((Fx \lor \neg Gx) \land \neg Gx)$
 - $\exists x (\neg Gx \lor (Fx \land \neg Gx))$ 1 Com
 - $\exists x ((\neg Gx \lor Fx) \land (\neg Gx \lor \neg Gx)) \ 3 \ Dist$ 4.
 - 5. $\exists x((\neg Gx \lor Fx) \land \neg Gx)$ 4 Taut
 - $\exists x ((Fx \lor \neg Gx) \land \neg Gx)$ 6. 5 Com
- (12) 1. $+ \forall x Fx \supset (Ga \land Ha)$
 - 2. $+(\forall xFx \supset Ha) \supset \exists xJx$
 - 3. $\exists x Jx$
 - $\neg \exists x J x$ 4.
 - 5. ? ×
 - 6. $\neg(\forall x Fx \supset Ha)$
 - 2,4MT
 - 7. $\neg(\neg \forall x Fx \lor Ha)$
- 6 Cond 7 DeM
- $\forall x F x \land \neg H a$ $\forall x F x$
 - 8 ^*E*
- $Ga \wedge Ha$ 10.
- 1, 9 MP

На 11.

9.

12.

- $10 \Lambda E$
- $\neg Ha$ $Ha \land \neg Ha$ 13.
- 8 A*E* 11, 12 ∧*I*

14. $\exists x Jx$ 4-13 IP

- (14) 1. $+ \forall x (Fx \supset Gx)$)
 - 2. $\forall x (\neg Gx \supset \neg Fx) \land \forall x (Gx \lor \neg Fx)$
 - 3. $\forall x (\neg Gx \supset \neg Fx)$

1 Contra

4. $\forall x (Gx \lor \neg Fx)$

- 3 Cond
- 5. $\forall x (\neg Gx \supset \neg Fx) \land \forall x (Gx \lor \neg Fx) 3, 4 \land I$

Exercises 5.01 (p. 190)

- (2) 1. $+ \forall x (Fx \supset Gx)$
 - 2. $? \neg \exists x (Fx \land \neg Gx)$
 - 3. $\neg \exists x \neg (Fx \supset Gx)$ 1 QT

3 Cond

4 DeM

1 QT

3 DeM

5 DeM

6 Com

1 QT

3 Taut

4 DeM

- 4. $\neg \exists x \neg (\neg Fx \lor Gx)$
- 5. $\neg \exists x (Fx \land \neg Gx))$

- (4) 1. $+ \exists x ((Fx \land Gx) \lor \neg Hx)$
 - 2. $? \neg \forall x (Hx \land (Fx \supset \neg Gx))$
 - 3. $\neg \forall x \neg ((Fx \land Gx) \lor \neg Hx)$ 1 QT
 - 4. $\neg \forall x (\neg (Fx \land Gx) \land Hx)$
- 3~DeM4 DeM

6 Com

- 5. $\neg \forall x ((\neg Fx \lor \neg Gx) \land Hx)$
 - $\neg \forall x ((Fx \supset \neg Gx) \land Hx)$ 5 Cond
- 7. $\neg \forall x (Hx \land (Fx \supset \neg Gx))$

- (6) 1. $+ \forall x ((Fx \supset Gx) \land Hx)$
 - 2. $? \neg \exists x ((\neg Hx \lor Fx) \land (Hx \lor \neg Gx))$
 - 3. $\neg \exists x \neg ((Fx \supset Gx) \land Hx)$

 - 4. $\neg \exists x (\neg (Fx \supset Gx) \lor \neg Hx)$
 - 5. $\neg \exists x (\neg (\neg Fx \lor Gx) \lor \neg Hx)$ 4 Cond

8. $\neg \exists x ((\neg Hx \lor Fx) \land (\neg Hx \lor \neg Gx) \ 7 \ Dist$

- $\neg \exists x ((Fx \land \neg Gx) \lor \neg Hx)$ 6.
- 7.
- $\neg \exists x (\neg Hx \lor (Fx \land \neg Gx))$

(8) 1. $+ \forall x F x$

4.

6.

- 2. $? \neg (\forall x Fx \supset \neg \forall x Fx)$
- 3. $\forall x F x \land \forall x F x$
- 3 DeM
- $\neg(\forall x Fx \supset \neg \forall x Fx)$ 5.

 $\neg(\neg \forall x F x \lor \neg \forall x F x)$

4 Cond

1 Taut

- (10) 1. $+ \exists x \neg Fx$
 - 2. $? \neg (\neg \forall x Fx \supset \forall x Fx)$
 - 3. $\neg \forall x F x$

 - 4. $\neg \forall x F x \land \neg \forall x F x$
 - 5. $\neg(\forall x Fx \lor \forall x Fx)$
 - 6. $\neg(\neg \forall x Fx \supset \forall x Fx)$
 - 5 Cond

- (12) 1. $+ \forall x (Fx \supset Gx)$
 - 2. $? \neg \exists x (\neg Gx \land Fx)$

 - 3. $\neg \exists x \neg (Fx \supset Gx)$ 4. $\neg \exists x \neg (\neg Fx \lor Gx)$
- 1 QT
- 5. $\neg \exists x (Fx \land \neg Gx)$
- 3 Cond 4 DeM
- 6. $\neg \exists x (\neg Gx \land Fx)$
- 5 Com

(14) 1. $+ \forall x (Fx \supset (Gx \supset Hx))$

4.

- 2. $? \neg \exists x ((Fx \land Gx) \land \neg Hx)$
- 3. $\forall x ((Fx \land Gx) \supset Hx)$
- 1 Exp3QT
- $\neg \exists x \neg ((Fx \land Gx) \supset Hx)$ 5. $\neg \exists x \neg (\neg (Fx \land Gx) \lor Hx)$
- 4 Cond
- 6. $\neg \exists x ((Fx \land Gx) \land \neg Hx)$
- 5 DeM

Exercises 5.02 (p. 193)

- 1. $+ \forall x (Fx \supset Gx)$ (2)
 - 2. $+ \forall x (Gx \supset Hx)$
 - 3. $? Fa \supset Ha$
 - 4. $Fa \supset Ga$ 1 *UI*
 - 5. $Ga \supset Ha$ 2 *UI*
 - 6. $Fa \supset Ha$ 4, 5 *HS*

- (4) 1. $+ \forall x (Fx \supset Gx)$
 - 2. $+ \neg \exists x (Gx \land \neg Hx)$
 - 3. $? \neg (Fa \land \neg Ha)$
 - 4. $Fa \supset Ga$
 - 5. $\forall x \neg (Gx \land \neg Hx)$
 - 6. $\neg (Ga \land \neg Ha)$ 5 *UI*

1 *UI*

2QT

7 Cond

- 7. $\neg Ga \lor Ha$ 6 DeM
- 8. $Ga \supset Ha$
- 9. $Fa \supset Ha$ 4, 8 HS
- 10. $\neg Fa \lor Ha$ 9 Cond
- 11. $\neg (Fa \land \neg Ha)$ 10 DeM

- (6) 1. $+ \forall x Fx \supset \forall x Gx$
 - 2. $+ \forall x \neg Gx$
 - 3. $? \exists x \neg Fx$
 - $\neg \exists x \neg Fx$ 4.
 - 5. ? ×
 - 6. $\forall x F x$ 4QT
 - $\forall xGx$ 1, 5 MP 7.
 - 8. Ga 7 *UI*
 - 9. $\neg Ga$ 2 UI
 - 10. $Ga \land \neg Ga$ 8,9 *NI*
 - 11. $\exists x \neg Fx$ $4-10 \; IP$

- 1. $+ \forall x F x$ (8)
 - 2. $+ \forall x (Fx \supset Gx)$
 - 3. $\exists x (Fx \land Gx)$
 - $\neg \exists x (Fx \land Gx)$ 4.
 - 5. ? ×
 - 6. $\forall x \neg (Fx \land Gx)$ 4QT
 - 7. $\neg (Fa \land Ga)$
- 6 *UI*
 - $\neg Fa \lor \neg Ga$ 8.
 - 9. Fa 1 UI
 - 10.
 - $Fa \supset Ga$ 2 UI
 - 11. Ga

12.

- 9, 10 MP
- $\neg Ga$ 13. $Ga \land \neg Ga$
- 8, 9 VE 11, 12 ∧*I*

7~DeM

- 14. $\exists x (Fx \land Gx)$
- 4-13 IP

- (10) 1. $+ \neg \exists x (\neg Fx \lor Hx)$
 - 2. $+ \forall x (Jx \supset Gx)$
 - 3. $+ \forall x (Fx \supset Jx)$
 - 4. $\exists x (Fx \land Gx)$
 - 5. $\neg \exists x (Fx \land Gx)$
 - 6. ? ×
 - $\forall x \neg (\neg Fx \lor Hx)$ 7.
 - $\neg(\neg Fa \lor Ha)$ 8.
 - 9. $Fa \wedge \neg Ha$
 - $\forall x \neg (Fx \land Gx)$ 10.
 - 11. \neg (Fa \land Ga)
 - $\neg Fa \lor \neg Ga$ 12.
 - $Ja \supset Ga$ 13.
 - $Fa \supset Ja$ 14.
 - $Fa \supset Ga$ 15.
 - Fa
 - Ga 17.

16.

- $\neg Ga$ 18.
- 19. $Ga \wedge \neg Ga$

- - 1 QT
 - 7 *UI*
 - 8~DeM
 - 5 *QT*
 - 10 *UI*
 - 11 DeM

 - 2 *UI*
 - 3 *UI*
 - 13, 14 *HS*
 - $9 \wedge E$
 - 15, 16 MP
 - 12, 16 VE
 - 17, 18 ∧*I*

5-19 IP

- 20. $\exists x (Fx \land Gx)$

- (12) 1. $+ \forall x (Fx \supset Gx)$
 - 2. $+ \neg \exists x (Gx \land \neg Hx)$
 - 3. $? \forall x Fx \supset Hb$
 - $\forall x F x$ 4.
 - ? *Hb* 5.
 - 6. $Fb \supset Gb$
 - 7. Fb
 - Gb8.
 - $\forall x \neg (Gx \land \neg Hx)$ 9.
 - 10. $\neg (Gb \land \neg Hb)$
 - 11. $\neg Gb \lor Hb$
 - 12. Hb
 - 13. $\forall x Fx \supset Hb$

- 1 *UI*
- 4 *UI*
- 6,7 MP
- 2QT
- 9 *UI*
- 10~DeM
- 8, 11 VE
- 4-12 CP

- (14) 1. $+ \forall x (\neg Fxa \supset Gax)$
 - 2. $+ \neg \exists x Gxb$
 - 3. ?∃*xFxa*
 - 4. $\neg \exists x Fx a$
 - 5. ? ×
 - 6. $\neg Fba \supset Gab$
 - 7. $\forall x \neg Gxb$
 - 8. $\neg Gab$
 - 9. $\forall x \neg Fxa$

 - 10. $\neg Fba$
 - Gab11.
 - 12. $Gab \land \neg Gab$
 - 13. $\exists x Fx a$

- 1 *UI*
- 2QT
- 7 *UI*
- 4QT
- 9 *UI*
- 6, 10 MP
- $8, 11 \wedge I$
- 4-12 IP

2, 5 MP

6 UI

7 EG

9 *EG*

1 UI

2 UI

5 Cond

6 DeM

 $7 \wedge E$

 $7 \wedge E$

4,8 MT

9, 10 ∧*I*

11 *EG*

3, 8 *MP*

Exercises 5.03 (p. 197)

- (2)1. + Fa
 - 2. $+ \exists x Fx \supset \forall x (Gx \lor Hx)$
 - 3. $+ \exists x (Gx \lor Hx) \supset Ha$

 $\forall x (Gx \lor Hx)$

- 4. $? \exists x Hx$
- 5. $\exists x Fx$

6.

8.

- 1 EG
- 7. $Ga \lor Ha$
- $\exists x (Gx \lor Hx)$
- 9. *Ha*
- 10. $\exists x Hx$

(6)

- 1. $+ \forall x (\neg Gx \supset Hx)$ 2. $+ \forall x \neg (Fx \supset Hx)$
- 3. $\exists x (Fx \land Gx)$
- 4. $\neg Ga \supset Ha$
- 5. $\neg (Fa \supset Ha)$
- $\neg(\neg Fa \lor Ha)$ 6. $Fa \land \neg Ha$
- 8. $\neg Ha$

7.

- 9. Ga
- 10. Fa
- 11. *Fa* ∧ *Ga*
- 12. $\exists x (Fx \land Gx)$

- (4) 1. $+ \exists x Fx \supset \forall x (Gx \supset Hx)$
 - 2. $+ \forall x (Fx \supset Gx)$
 - 3. $? Fa \supset (Ga \land Ha)$
 - Fa 4.
 - 5. ? *Ga* ∧ *Ha*
 - $Fa \supset Ga$ 6.
 - 7. $\exists x Fx$
 - $\forall x (Gx \supset Hx)$ 8.
 - 9. $Ga \supset Ha$
 - 10. $Fa \supset Ha$
 - 11. | *Ga*
 - 12. | *Ha*
 - 13. | *Ga* ∧ *Ha*
 - 14. $Fa \supset (Ga \land Ha)$
- (8) 1. $+ \forall x (Fx \land Hx)$
 - 2. $+ \exists x (Gx \lor Ix) \supset Ja$
 - 3. $+Ja \supset \forall x(Gx \supset \neg Fx)$
 - 4. $? \neg \forall x (Fx \supset Gx)$
 - $\forall x (Fx \supset Gx)$ 5.
 - 6. ? ×
 - 7. $Fa \wedge Ha$
 - $Fa \supset Ga$ 8.
 - 9. Fa

 - 10. Ga
 - 11. $Ga \vee Ia$
 - 12. $\exists x (Gx \lor Ix)$
 - 13. Ja
 - 14. $\forall x (Gx \supset \neg Fx)$
 - 15. $Ga \supset \neg Fa$
 - 16.
 - 17. $Fa \wedge \neg Fa$

 $\neg Fa$

18. $\neg \forall x (Fx \supset Gx)$

2 UI

4 EG

8 *UI*

1, 7 MP

6, 9 HS

4, 6 MP

4, 10 MP

11, 12 ∧*I*

4-13 CP

- 1 *UI*
- 5 *UI*
- $7 \wedge E$ 8,9 MP
- 10 VI
- 11 *EG*
- 2, 12 MP
- 3, 13 *MP* 14 *UI*
- 10, 15 MP
- 9, 16 ∧*I*
- 5-17 *IP*

270

- (10) 1. $+ \forall x (Gx \supset \neg Hx)$
 - 2. $+ \forall x (Fx \lor Gx)$
 - 3. $\forall x Hx \supset \exists x Fx$
 - 4. $\forall x Hx$
 - 5. ? ∃*xFx*
 - 6. $Ga \supset \neg Ha$
 - Fa V Ga 7.

 - На 8.
 - $\neg Ga$ 9.
 - 10. *Fa*
 - 11. $\exists x F x$

1 *UI*

2 UI

4 UI

6,8 *MT*

7, 9 v*E*

10 *EG*

12. $\forall x H x \supset \exists x F x$ 4–11 CP

- (12) 1. $+ \forall x (Fx \supset Gx)$
 - $2. + \neg Gc$
 - 3. $\exists x \neg Fx$
 - 4. $Fc \supset Gc$
 - 5. $\neg Fc$
- 2,4 MT
- 6. $\exists x \neg Fx$
- 5 EG

1 *UI*

- (14) 1. $+ \forall x (Fx \supset Gx)$

 - 3. $\exists x \exists y Hxy$
 - 4.
 - 5.
 - 6.
 - $\neg \forall x \neg (\neg Gx \land Fx)$ 7.

 - 8. $\neg \forall x (Gx \lor \neg Fx)$
 - 9. $\neg \forall x (\neg Fx \lor Gx)$
 - $\neg \forall x (Fx \supset Gx)$ 10.

 - $\forall x (Fx \supset Gx) \land \neg \forall x (Fx \supset Gx)$ 11.

 - 13. $\exists y Hay$

12.

Hac

14. $\exists x \exists y H x y$

- 2. $+ \neg \exists x (\neg Gx \land Fx) \supset Hac$
- $\neg Hac$
- ? ×
 - $\exists x (\neg Gx \land Fx)$ 2,4MT
 - 6 *QT*

 - 7 DeM
 - 8 Com
 - 9 Cond
 - 1, 10 ∧*I*
 - 4-11 IP
 - 12 EG
 - 13~EG

Exercises 5.04 (p. 201)

- (2) 1. $+ \exists x \exists y Fxy$
 - 2. $+ \forall x \forall y (Fxy \supset Gx)$
 - 3. $\exists x Gx$
 - 4. $\exists y Fay$
- 1 EI

5. Fab

- 4 EI
- 6. $\forall y (Fay \supset Ga)$
- 2 UI
- 7. $Fab \supset Ga$ Ga
- 6 *UI*

 $\exists x Gx$ 9.

8.

- 8 *EG*
- 5, 7 MP

- 1. $+ \neg \forall x Gx \supset \forall x Hx$ 2. $+ \exists x Hx \supset \forall x \neg Fx$
 - 3. $\forall x (Fx \supset Gx)$
 - $\neg \forall x (Fx \supset Gx)$ 4.
 - 5. ? ×

8.

(4)

 $\exists x \neg (Fx \supset Gx)$ 6.

 $\neg(\neg Fa \lor Ga)$

- 4QT
- 7. $\neg (Fa \supset Ga)$
- 6 *EI*
- $Fa \wedge \neg Ga$ 9.
- 7 Cond 8 DeM
- Fa 10.
- 9 ∧*E*
- $\exists x F x$ 11.
- 10 EG
- 12. $\neg \forall x \neg Fx$
- 11 *QT*
- 13. $\neg \exists x Hx$
- 2, 12 MT
- 14. $\forall x \neg Hx$
- 13 *QT*

15. $\neg Ha$

- 14 *UI*
- 16. $\exists x \neg Hx$
- 15 *EG*
- 17. $\neg \forall x Hx$
- 16 *QT*
- 18. $\forall x Gx$
- 1, 17 *MT*

Ga19.

18 *UI*

- $\neg Ga$ 20.
- 9 ∧*E*
- 21. $Ga \land \neg Ga$
- 19, 20 ΛI
- 22. $\forall x (Fx \supset Gx)$
- 4-21 IP

- (6) 1. $+ \forall x (Fx \supset \exists y Gy)$
 - 2. $+ \exists y Gy \supset Ha$
 - 3. $\exists x Fx \supset \exists x Hx$
 - 4. $\exists x F x$
 - 5. $\exists x Hx \in \mathbb{R}$
 - 6. Fb

- 4 EI
- $Fb \supset \exists yGy$ 7.
- 1 *UI*

8. $\exists yGy$ 6, 7 MP

На 9.

- 2,8 MP
- 10. $\exists x Hx$
- 9 *EG*
- 11. $\exists x Fx \supset \exists x Hx$
- 4-10 CP

- (8) 1. $+ \exists x (Fx \lor Gx)$
 - 2. $+ \forall x (Fx \supset Hx)$
 - 3. $+ \forall x (Gx \supset Hx)$
 - 4. $? \exists x Hx$
 - 5. $Fa \vee Ga$
- 1 EI
- 6. $Fa \supset Ha$
- 2~UI
- 7. $Ga \supset Ha$
- 8. *Ha* V *Ha*
- 3 UI
- 9. Ha
- 5, 6, 7 CD 8 Taut
- 10. $\exists x Hx$
- 9 *EG*

- (10) 1. $+ \exists x (\neg Fx \lor Hx)$
 - 2. $+ \forall x (Fx \supset (Gx \supset Hx))$
 - 3. $\exists x (Fx \land Gx) \supset \exists x Hx$
 - $\exists x (Fx \land Gx)$ 4.
 - 5. ? ∃*xHx*
 - 6. Fa ∧ Ga

 - $Fa \supset (Ga \supset Ha)$ 7.
 - $(Fa \land Ga) \supset Ha$ 8.
 - На

9.

- 10. $\exists x Hx$
- 11. $\exists x Fx \supset \exists x Hx$

- (12) 1. $+ \exists x (Fxa \land Gax)$
 - 2. $+ \forall x (Fxa \supset \forall y Hxy)$
 - 3. $? \exists x Hxc$
 - 4. $Fba \wedge Gab$
 - 5. $Fba \supset \forall y Hby$
 - 6. Fba
 - 7. $\forall y Hby$
 - Hbc8.
 - 9. $\exists x Hxc$

- 1 EI2 UI
- $4 \wedge E$
- 5, 6 MP
- 7 *UI*
- 8 *EG*

- (14) 1. $+ \exists x (Fx \equiv Gx)$
 - 2. $+ \forall x (Fx \supset (Gx \supset Hx))$
 - 3. $+ \forall x F x \lor \forall y G y$
 - 4. $? \exists x Hx$
 - ? ×
 - $Fa \equiv Ga$ 7.
 - 8. $\forall x \neg Hx$
 - 9.

 - 11. $(Fa \supset Ga) \land (Ga \supset Fa)$
 - $Ga \supset Fa$ 12.
 - $Ga \supset (Ga \supset Ha)$ 13.
 - 14. $(Ga \wedge Ga) \supset Ha$
 - 15. $Ga\supset Ha$

 - 20.

 - 23. $Ga \wedge \neg Ga$
 - 24. ∃*xHx*

- $\neg \exists x Hx$ 5.
- 6.
- $\neg Ha$
- $Fa \supset (Ga \supset Ha)$ 10.

- 16. $\neg Ga$
- 17. $\exists y \neg Gy$
- 18. $\neg \forall y G y$
- 19. $\forall x F x$
- Fa
- $Fa \supset Ga$ 21.
- 22. Ga

1 EI

4 EI

1 *UI*

7 *Ехр*

9 EG

6,8 *MP*

4-10 CP

- 5 QT
- 8 *UI*
- 2 UI
- 7 Bicond
- $11 \wedge E$
- 10, 12 HS
- 13 *Exp*
- 14 Taut
- 9, 15 *MT*
- 16~EG
- 17 QT
- 3, 18 VE
- 19 *UI*
- $11 \; \mathsf{\Lambda} E$
- 20, 21 MP 16, 22 $\wedge I$
- 5-23 IP

1 *UI*

4 *UI*

8 *EG*

6, 7 MP

2,9 MP

7, 11 *MP*

10 *UI*

12 UG

5 *EG*

8 *UI*

2 UI

3, 7 MP

5, 9 MP

10, 11 *MP*

5-12 CP

13 *UG*

4-13 CP

Exercises 5.06 (p. 212)

- (2)1. $+ \forall x (Fx \supset Gx)$
 - 2. $+ \exists x Gx \supset \forall x (Fx \supset Hx)$
 - 3. $\forall xFx \supset \forall xHx$
 - 4. $\forall x F x$
 - 5. ? ∀*xHx*
 - 6. $Fa \supset Ga$
 - 7. Fa
 - 8. Ga

 - 9. $\exists xGx$
 - 10. $\forall x (Fx \supset Hx)$
 - 11. $Fa \supset Ha$
 - 12. Ha
 - 13. $\forall x Hx$
 - 14. $\forall x Fx \supset \forall x Hx$

- (4)
 - 2. $? \forall x F x \land \forall x G x$
 - 3. $Fa \wedge Ga$
 - 4. Fa
 - 5. Ga
 - 6. $\forall x F x$
 - 7. $\forall xGx$
 - $\forall x F x \land \forall x G x$ 8.

- 1. $+ \forall x (Fx \land Gx)$
 - - 1 UI
 - $3 \wedge E$ $3 \wedge E$

 - 4 *UI*
 - 5 *UI*
 - $6,7 \Lambda I$

- 1. $+ \exists x (Fx \lor Hx)$ (6)
 - 2. $+ \forall x (Hx \supset Fx)$
 - 3. $+ \exists x Gx \supset \forall x (Gx \supset Hx)$
 - 4. $? \forall x (Gx \supset Fx)$
 - Ga 5.
 - ? *Fa* 6.
 - 7. $\exists x Gx$

 - 8. $\forall x (Gx \supset Hx)$
 - 9. $Ga \supset Ha$
 - На 10.
 - $Ha \supset Fa$ 11.
 - 12. Fa
 - 13. $Ga \supset Fa$
 - 14. $\forall x (Gx \supset Fx)$

- (8) 1. $+ \forall x (Fx \supset Gx)$
 - 2. $+ \forall x \exists y (Fy \land Hxy)$
 - 3. $\forall x \exists y (Gy \land Hxy)$
 - $\neg \forall x \exists y (Gy \land Hxy)$ 4.
 - 5. ?×
 - $\exists x \neg \exists y (Gy \land Hxy)$ 6.

 - 7. $\exists x \forall y \neg (Gy \land Hxy)$
 - 8. $\forall y \neg (Gy \land Hay)$
 - 9. $\exists y (Fy \land Hay)$
 - $Fb \wedge Hab$ 10.
 - $\neg (Gb \land Hab)$ 11.
 - $\neg Gb \lor \neg Hab$ 12.
 - 13. $Fb \supset Gb$
 - Fb14.
 - Gb15.
 - 16. $\neg Hab$
 - Hab17.
 - 18. $Hab \land \neg Hab$
 - 19. $\forall x \exists y (Gy \land Hxy)$
- $10~{\rm \Lambda}E$

4QT

6 *QT*

7 EI

2 UI

9 *EI*

8 *UI*

1~UI

 $10 \; \mathrm{\Lambda}E$

13, 14 MP

12, 15 VE

16, 17 $\wedge I$

11 DeM

4-18 IP

274

- (10) 1. $+ \forall x ((Fx \land \neg \exists y Hxy) \supset Gx)$
 - 2. $+ \forall x (Jx \supset (Fx \land \neg (Kx \lor Gx)))$
 - 3. $\forall x(Jx \supset \exists y Hxy)$
 - Ja 4.
 - 5. ? ∃*yHay*
 - 6. $Ja \supset (Fa \land \neg (Ka \lor Ga)) \quad 2 \ UI$

 $(Fa \land \neg \exists y Hay) \supset Ga$

- 7. $Fa \land \neg (Ka \lor Ga)$
- 4, 6 *MP*
- 8. $\neg(Ka \lor Ga)$
- $7 \wedge E$
- 9. $\neg Ka \land \neg Ga$
- 8 DeM
- 10. $\neg Ga$

11.

- $9 \wedge E$ 1 *UI*
- $\neg (Fa \land \neg \exists y Hay)$ 12.
- 10, 11 *MT*
- $\neg Fa \lor \exists y Hay$ 13.
- 12 DeM

14. Fa

- $7 \wedge E$
- $\exists y Hay$ 15.
- 13, 14 VE
- 16. $Ja \supset \exists y Hay$
- 4-15 *CP*
- 17. $\forall x(Jx \supset \exists y Hxy)$
- 16 *UG*

- (12) 1. $+ \exists x (Fx \land \forall y (Gy \supset Hxy))$
 - 2. $+ \forall x (Fx \supset \forall y (Jy \supset \neg Hxy))$
 - 3. $\forall x(Gx \supset \neg Jx)$
 - $Fa \wedge \forall y (Gy \supset Hay)$ 4.
- 1 EI

 $4 \wedge E$

- 5. Gb
- 6. ? ¬*Jb*
- $\forall y (Gy \supset Hay)$ 7.
 - 7 *UI*

 $Fa \supset \forall y (Jy \supset \neg Hay)$

- $Gb \supset Hab$ 8.
- 2 UI
- Fa 10.

9.

12.

 $4 \Lambda E$

9, 10 MP

- 11. $\forall y(Jy \supset \neg Hay)$ $Jb \supset \neg Hab$
- $11~U\!I$
- Hab13.
- 5,8 MP

14. $\neg Jb$

- 12, 13 *MT*
- 15. $Gb \supset \neg Jb$
- 5-14 *CP*
- 16. $\forall x (Gx \supset \neg Jx)$
- 15 UG

- (14) 1. $+ \forall x (\exists y Gyx \supset Gxx)$
 - 2. $+ \forall x (Fx \supset (\exists y Gxy \supset \exists y Gyx))$
 - 3. $+ \neg \exists x Gxx$
 - 4. $? \forall x (Fx \supset \neg Gxy)$
 - Fa 5.
 - 6. ? *∀y¬Gay*
 - $Fa \supset (\exists y Gay \supset \exists y Gya)$ 7.
- 2 *UI*

- 8.
 - $\exists y Gay \supset \exists y Gya$

5, 7 MP

- 9.
- $\exists y Gya \supset Gaa$

1~UI

- 10.
- $\exists y Gay \supset Gaa$

8, 9 HS

11. $\forall x \neg Gxx$ 3QT

12. $\neg Gaa$ 11 *UI*

13. $\neg \exists y Gay$

10, 12 MT

14. $\forall y \neg Gay$

 $Fa \supset \forall y \neg Gay$ 15.

- 13 *QT*
- 5-14 CP
- 16. $\forall x (Fx \supset \forall y \neg Gxy)$
- 15 *UG*

Exercises 5.07 (p. 217)

- 1. $+ \exists x (Fx \land Gx)$ (2)
 - 2. $+ \exists x (Fx \land \neg Gx)$
 - 3. $\exists x \exists y ((Fx \land Fy) \land x \neq y)$
 - 4. $Fa \wedge Ga$
- 1 EI
- 5. $Fb \land \neg Gb$
- 2 EI

- 6. a = b
- 7. ? ×
- 8. Ga
- 9. $\neg Gb$
- 10. $\neg Ga$
- 5 ∧*E* 6, 9 *ID*

 $4 \wedge E$

- 11. $Ga \land \neg Ga$
- $8, 10 \wedge I$
- 12. $a \neq b$
- 6-11 IP

13. Fa $4 \wedge E$

14. Fb

- 5 ∧*E*
- 15. $Fa \wedge Fb$
- 13, 14 ∧*I*
- 16. $(Fa \wedge Fb) \wedge a \neq b$
- 12, 15 ∧*I* 16 EG
- 17. $\exists y ((Fa \land Fy) \land a \neq y)$
- $\exists x \exists y ((Fx \land Fy) \land x \neq y) \quad 17 EG$ 18.

- (4) 1. $+ \forall x (Fx \supset \forall y (Fy \supset x = y))$
 - 2. $+ \exists x (Fx \land Gx)$
 - 3. $\forall x (Fx \supset Gx)$
 - 4. Fa
 - 5. ? *Ga*
 - 6. $Fb \wedge Gb$
 - 2 *EI*
 - 7. $Fa \supset \forall y (Fy \supset a = y)$
 - 4, 7 MP 8. $\forall y (Fy \supset a = y)$
 - 9. $Fb \supset a = b$

a = b

8 *UI*

1 *UI*

10. *Fb*

11.

- $6 \Lambda E$ 9, 10 MP
- 12. *Gb*
- $6 \Lambda E$
- 13. *Ga*

- 11, 12 ID
- 14. $Fa \supset Ga$
- 4-13 *CP*
- $\forall x (Fx \supset Gx)$ 15.
- 14 *UG*

- (6) 1. $+ \exists x (Fx \land \forall y (Fy \supset x = y))$
 - 2. $+ \neg Fb$
 - 3. $\exists x(x \neq b)$
 - 4. $\neg \exists x (x \neq b)$
 - 5. ? ×
 - 6. $Fa \land \forall y (Fy \supset a = y)$ 1 *EI*
 - 7. $\forall y (Fy \supset a = y)$
- 6 ^*E*
- 8. $Fb \supset a = b$
- 7 *UI*
- 9. $\forall x(x = b)$
- 4QT
- 10. a = b
- 9 *UI*

11. Fa

 $6 \Lambda E$

12. Fb

- 10, 11 *ID*
- 13. $Fb \wedge \neg Fb$
- $2, 12 \wedge E$
- 14. $\exists x(x \neq b)$
- 4-13 *IP*

- (8) 1. $+ \exists x ((Fx \land Gax) \land Hx)$
 - 2. $+ Fb \wedge Gab$
 - 3. $+ \forall x ((Fx \land Gax) \supset x = b)$
 - 4. ? *Hb*
 - 5. $(Fc \land Gac) \land Hc$
- 1 EI
- 6. $(Fc \land Gac) \supset c = b$
- 3 *UI*
- 7. $Fc \wedge Gac$
- 5 ∧*E*
- 8. c = b

6, 7 MP

9. Hc 5 ∧*E*

10. Hb 8, 9 *ID*

(10) 1.
$$+ \forall x \forall y ((Fxy \land x \neq y) \supset Gxy)$$

2. $+ \exists x \forall y (x \neq y \supset Fxy)$
3. $? \exists x \forall y (x \neq y \supset Gxy)$
4. $\forall y (a \neq y \supset Fay)$
5. $\neg \exists x \forall y (x \neq y \supset Gxy)$

7QT

8 *UI*

9 EI

10 Cond

13 *UI*

4 UI

 $12 \wedge E$

19, 20 ΛI

8.
$$\forall x \exists y \neg (x \neq y \supset Gxy)$$

9. $\exists y \neg (a \neq y \supset Gay)$
10. $\neg (a \neq b \supset Gab)$
11. $\neg (a = b \lor Gab)$

12.
$$a \neq b \land \neg Gab$$
 11 DeM
13. $\forall y((Fay \land a \neq y) \supset Gay)$ 1 UI

14.
$$(Fab \land a \neq b) \supset Gab$$

15. $a \neq b \supset Fab$
16. $a \neq b$

 $Gab \wedge \neg Gab$

21.

17.

$$Fab$$
 15, 16 MP

 18.
 $Fab \land a \neq b$
 16, 17 $\land I$

 19.
 Gab
 14, 18 MP

 20.
 $\neg Gab$
 12 $\land E$

22.
$$\exists x \forall y (x \neq y \supset Gxy)$$
 5–21 *IP*

(12) 1.
$$+ \exists x (Fx \land \forall y (Fy \supset x = y))$$

2.
$$+ \exists x (Fx \land Gx)$$

3.
$$\forall x (Fx \supset Gx)$$

$$4. \qquad \neg \forall x (Fx \supset Gx)$$

6.
$$Fa \land \forall y (Fy \supset a = y)$$
 1 EI

7.
$$\exists x \neg (Fx \supset Gx)$$

8.
$$\neg (Fb \supset Gb)$$
 7 EI

4QT

8 Cond

11 *UI*

2 *EI*

4-23 *IP*

9.
$$\neg(\neg Fb \lor Gb)$$

10.
$$Fb \land \neg Gb$$
 9 DeM
11. $\forall y(Fy \supset a = y)$ 6 $\land E$

12.
$$Fb \supset a = b$$

13.
$$Fb$$
 10 $\wedge E$ 14. $a=b$ 12, 13 MP

14.
$$a=b$$
15. $Fc \wedge Gc$

16.
$$F_c \supset a = c$$
 11 UI

17.
$$Fc$$
 15 $\wedge E$

18.
$$a = c$$
 16, 17 MP 19. Gc 15 $\wedge E$

22.
$$\neg Ga$$
 14, 20 ID 23. $Ga \land \neg Ga$ 21, 22 $\land I$

 $\forall x (Fx \supset Gx)$

24.

$$(14) \quad 1. \quad + \ \forall x \exists y F x y$$

2.
$$+ \neg \exists x F x x$$

3.
$$\forall x (Fxa \supset a \neq x)$$

$$4. \qquad \neg \forall x (Fxa \supset a \neq x)$$

6.
$$\exists x \neg (Fxa \supset a \neq x)$$

7.
$$\neg (Fba \supset a \neq b)$$

8.
$$\neg(\neg Fba \lor a \neq b)$$

9.
$$Fba \wedge a = b$$

10.
$$\forall x \neg Fxx$$

13.
$$a = b$$

16.
$$\forall x (Fxa \supset a \neq x)$$

Exercises 5.08 (p. 220)

$$(2) \qquad \vdash \forall x (Fx \lor \neg Fx)$$

$$(4) \qquad \qquad \vdash \forall x \forall y ((Fx \land x = y) \supset Fy)$$

1.
$$\neg \forall x (Fx \lor \neg Fx)$$

$$x(Fx \lor \neg Fx)$$

3.
$$\exists x \neg \exists y (Fy \supset Fx)$$

4. $\neg \exists y (Fy \supset Fa)$

1. $Fa \wedge a = b$

$$5. \quad \forall y \neg (Fy \supset Fa)$$

6.
$$\neg (Fa \supset Fa)$$

6.
$$Fa \wedge a = b \supset Fb$$

7.
$$\neg(\neg Fa \lor Fa)$$

7.
$$\forall y ((Fa \land a = y) \supset Fy)$$

8.
$$Fa \land \neg Fa$$

8.
$$\forall x \forall y ((Fx \land x = y) \supset Fy)$$
 7 UG

- (6) $\vdash \forall x \forall y (x = y \supset (Fx \equiv Fy))$
 - $\neg \forall x \forall y (x = y \supset (Fx \equiv Fy))$ 1.
 - 2. ? ×
 - $\exists x \neg \forall y (x = y \supset (Fx \equiv Fy))$ 3.
 - $\exists x \exists y \neg (x = y \supset (Fx \equiv Fy))$ 4. 3QT
 - 5. $\exists y \neg (a = y \supset (Fa \equiv Fy))$
 - $\neg (a = b \supset (Fa \equiv Fb))$ 6. 5 *EI*
 - 7. $\neg(a \neq b \lor (Fa \equiv Fb))$

 - 8. $a = b \land \neg (Fa \equiv Fb)$
 - 9. a = b
 - 10. $\neg (Fa \equiv Fb)$
 - $\neg((Fa\supset Fb)\land (Fb\supset Fa))$ 11.

 - $\neg (Fa \supset Fb) \lor \neg (Fb \supset Fa)$ 12. 11 *DeM*
 - $\neg (Fa \supset Fb) \lor \neg (Fa \supset Fa)$ 13.
 - $\neg (Fa \supset Fa) \lor \neg (Fa \supset Fa)$ 14. 9, 13 *ID*
 - 15. $\neg(Fa \supset Fa)$
- 14 Taut

1 QT

4 EI

6 Cond

7 DeM

 $8 \wedge E$

 $8 \wedge E$

10 Bicond

9, 12 *ID*

- $\neg(\neg Fa \lor Fa)$ 16.
- 15 Cond $16 \ DeM$
- $Fa \land \neg Fa$ 17.

3QT

5 UI

1 *UI*

8 *UI*

9QT

3-10 CP

6,7 MT

- 18. $\exists x \exists y ((Fx \land Fy) \land x \neq y)$
- 1–17 *IP*
- (10) $\vdash \forall x (Fx \supset Gx) \supset (\neg \exists x Gx \supset \neg \exists x Fx)$
 - $\forall x (Fx \supset Gx)$ 1.
 - 2. $? \neg \exists x Gx \supset \neg \exists x Fx$
 - $\neg \exists x Gx$ 3.
 - $? \neg \exists x Fx$ 4.

 - 5. $\forall x \neg Gx$
 - 6. $\neg Ga$

 - 7. $Fa \supset Ga$
 - $\neg Fa$ 8.

 - 9. $\forall x \neg Fx$
 - 10. $\neg \exists x Fx$
 - $\neg\exists xGx\supset\neg\exists xFx$ 11.
 - 12. $\forall x(Fx \supset Gx) \supset (\neg \exists xGx \supset \neg \exists xFx)$ 1–11 *CP*

- (8) $\vdash \exists x \forall y Fxy \supset \forall y \exists x Fxy$
 - 1. $\exists x \forall y F x y$
 - ? $\forall y \exists x Fxy$ 2.
 - $\forall y Fay$ 3.
 - Fab4.
 - 5. $\exists x F x b$ 4EG

1 *EI*

3 UI

- $\forall y \exists x F x y$ 5 *UG* 6.
- $\exists x \forall y Fxy \supset \forall y \exists x Fxy$ 1-6 *CP* 7.

- (12) $\vdash \forall x \forall y Fxy \supset \forall x Fxx$
 - $\forall x \forall y Fxy$ 1.
 - 2. ? ∀*xFxx*

4.

- ∀yFay 3. 1 *UI*
- Faa 3 *UI*
- 4 *UG* 5. $\forall x F x x$
- 6. $\forall x \forall y Fxy \supset \forall x Fxx$ 1-5 *CP*

$$(14) \qquad \vdash \forall x \forall y (Fxy \supset \neg Fxy) \supset \forall x \neg Fxx$$

1.
$$\forall x \forall y (Fxy \supset \neg Fxy)$$

2.
$$? \forall x \neg Fxx$$

3.
$$\forall y(Fay \supset \neg Fay)$$
 1 *UI*

4.
$$Faa \supset \neg Faa$$
 3 UI

5.
$$\neg Faa \lor \neg Faa$$
 4 Cond

7.
$$\forall x \neg Fxx$$
 6 UG

8.
$$\forall x \forall y (Fxy \supset \neg Fxy) \supset \forall x \neg Fxx$$
 1–7 *CP*

Exercises 5.09 (p. 230)

(2)
$$Fa \supset Ga$$
 $\neg Fa \supset Ha \mid \neg Ga \supset \neg Ha$

$$F \qquad T \qquad F \qquad T \qquad F \qquad T$$

$$T \qquad T \qquad F$$
Invalid under $I: \{Fa = F; Ga = F; Ha = T\}$

Invalid under I: $\{Fa = T; Fb = T; Gaa = T; Gab = T; Gba = T; Gbb = T; Haa = F; Hab = T; Hba = T; Hbb = F\}$

Invalid under I: $\{Fa = T; Fb = T; Ga = T; Gb = T; Ha = T; Hb = T\}$

Invalid under I: $\{Fa = T; Fb = T; Ga = T; Gb = T; Ha = T; Hb = F; Ja = T; Jb = T\}$

Invalid under *I*: $\{Faa = T; Fab = F; Fba = F; Fbb = T\}$

Invalid under *I*: $\{Fa = T; Fb = F; Ga = T; Gb = F; Ha = T; Hb = F\}$

Cond

Exercises 5.10 (p. 232)

 $\forall x (Cx \supset \forall y (Fy \supset Lxy))$ (2)

- $\neg\exists x\forall y(Ly\supset Txy)$ (4)
- $\forall x (\neg \, Cx \lor \forall y (Fy \supset Lxy))$ Cond
- $\forall x \neg \forall y (Ly \supset Txy)$ QT

 $\forall x (\neg Cx \lor \forall y (\neg Fy \lor Lxy))$

- $\forall x \exists y \neg (Ly \supset Txy)$ QT
- $\forall x \forall y (\neg Cx \lor (\neg Fy \lor Lxy))$ PNF
- $\forall x \exists y \neg (\neg Ly \lor Txy)$ Cond

 $\forall x \exists y (Ly \land \neg Txy)$ DeM

- (6) $\neg \exists x (Hx \land Bx) \supset \exists x (Hx \land Dx)$
- (8) $\exists x (Px \land \exists y (Py \land x \neq y))$

 $\exists x \exists y (Px \land (Py \land x \neq y))$

- $\exists x (Hx \land Bx) \lor \exists x (Hx \land Dx)$
- Cond

PNF

- $\exists x (Hx \land Bx) \lor \exists y (Hy \land Dy)$ (y for x)
- $\exists x \exists y ((Hx \land Bx) \lor (Hy \land Dy))$
 - PNF
- (10) $Me \wedge \forall x((Mx \wedge x \neq e) \supset Wex)$
 - $Me \wedge \forall x (\neg (Mx \wedge x \neq e) \vee Wex)$ Cond
 - $Me \wedge \forall x((\neg Mx \vee x = e) \vee Wex)$ DeM
 - $\forall x (Me \land ((\neg Mx \lor x = e) \lor Wex))$ PNF

Index

algorithm, 70, 71, 79	conditional equivalence (Cond), 103-5
ambiguity, 14, 17, 40, 149, 177	conditional proof (CP), 86–88
in $\mathcal{L}_{\mathcal{S}}$, 18	conjunction (A), 12–14, 40–41, 79–81, 98–99, 111,
antecedent, 19-20, 86-88	138–39, 221–24, 228, 229
argument place, 131-33, 137-38, 140, 141. See also	and universal quantifier, 221–24, 228, 229
term, <i>n</i> -adic general	truth table characterization of, 12
Aristotle, 1, 2, 127	conjunction elimination (ΛE), 79–81
associative rule (Assoc), 93-97	conjunction introduction (ΛI), 79–81
Augustine, St., 63–64	connective, truth-functional, 10-11, 12, 13
axiom, 118-19, 172	eliminating, 33–35, 35–37
system, 118–19, 172	expanding, 37
	major, 160
biconditional (≡), 28–29, 44–46, 106–7	truth table characterizations of, 11, 12
as back-to-back conditional, 28-29, 34, 45, 106-7	consequence, logical. See implication, logical
truth table characterization of, 29	consequent, 19-20, 86-88
biconditional equivalence (Bicond), 106-7	constant
	individual, 7–9, 131–33, 174, 177–81, 229, 235
canonical notation, 2	logical, 10, 57, 174. See also connective,
Carroll, Lewis, 64, 155, 158. See also Dodgson,	truth-functional
Charles	predicate. See predicate
Chomsky, Noam, 40	sentential, 7-9, 58, 60, 174
class, 130, 138–39, 161–62, 167–68	constructive dilemma (CD), 108–10
exclusion, 168	context, 3, 135, 153–54, 163–65, 171–73
extension of, 130, 138, 144-45	contingent. See sentence, contingent
inclusion, 138–39, 146	contradiction. See sentence, contradictory
intersection, 139, 145-46	contraposition (Contra), 103-5
open-ended, 135	Corcoran, John, 65
commitment, ontological, 181-83	
commutative rule (Com), 93-97	d-consistency, 233–35
completeness, 121–22	Davidson, Donald, 38, 62
of \mathcal{L}_{p} , 221, 232–35	deduction, natural, 71, 118
of $\hat{\mathcal{L}}_{S}$, 121–26	deductively yields (⊢), 73, 122, 232–34
ω-, 235	definition, 12
conclusion, 2–3, 66–69	ostensive, 162
conditional (⊃), 19–24, 25–27, 47, 49, 69	recursive, 57, 60, 174–75, 177
and biconditional, 44-46	DeMorgan, Augustus, 98
and dependence, 25	DeMorgan's Law (DM), 98–99
in English, 20–24, 25, 69	dependence, logical vs. causal, 25
in \mathcal{L}_{S} , 19–24, 47, 49	derivability, 119, 121-22, 233. See also deductively
truth table characterization of, 19, 22	yields
vs. implication, 69	

Index

derivation, 4–5, 110–12 construction of as a perceptual skill, <i>see</i> skill,	identity, 155–58, 162, 164. <i>See also</i> predication, 'is' of vs. 'is' of identity
perceptual	and indiscernibility, 162
embedded, 87, 91, 121, 216, 219	rule (<i>ID</i>), 213–16, 209
in \mathcal{L}_{p} , 184–85	vs. resemblance, 156
in \mathcal{L}_{S} , 63, 66–69, 71, 110–12, 122–23. See also	implication, logical, 2, 3, 28, 66-69, 122, 124, 126,
heuristic, derivation	167, 168, 202, 222, 232–33, 235
rule, see rule, derivation	definition of, 67, 222
Descartes, 70	and inference, 74
description, definite, 130, 162-65, 171	indirect proof (IP), 89-92, 111
disjunct, 16	indiscernibility of identicals, 162
disjunction (V), 16-19, 42-43, 98-99	induction, mathematical, 124, 125
and existential quantifier, 221-22, 228, 229	inference, 2-3, 70. See also implication, logical; rule,
exclusive, 16–19, 42	inference
inclusive, 16–19, 42	infinity, 7, 51, 57, 59, 60, 125
negated, 111	informativeness, 56, 135, 158
truth table characterization of, 16	interpretation, 60-62, 122, 177, 179-80, 221-30
disjunction elimination (VE), 82-84	true under, 119, 177–80, 218, 221–30
disjunction introduction (VI), 82–84	invalidity, 2, 66, 69, 79, 129, 230
distributive rule (Dist), 101–2, 102	proof of in \mathcal{L}_{p} , 220–30
Dodgson, Charles, 155, 158	proof of in \mathcal{L}_{S} , 71, 113–16
domain of discourse, 170-73, 177-79, 200, 221-30	•
restricted, 171–73, 229	knowledge, explicit and implicit, 5, 38, 158, 171
unrestricted, 171, 173, 222	1 7 7 7 7
	language, 1-2, 33-35, 37-40, 53-54, 63, 64, 134-
entailment. See implication, logical	35, 145, 162, 171–72
entity, 133	capacity for, 1
abstract, 1, 7, 57	formal, 7, 37, 62, 127, 131, 235
nonexistent, 181–82	meta-, 63–65, 67, 74, 110, 124, 136–37, 172
equivalence, logical, 34, 101. See also paraphrase	mirroring reality, 181–83
Euclid, 90, 118, 203	natural, 1–2, 4–6, 7–9, 21, 38–40, 53–54, 57, 65,
existential generalization (EG), 194–96, 209	131, 137, 165
existential instantiation (EI), 198–201, 209–10	object, 63–65, 172
exportation (Exp) , $101-2$	and thought, 1, 39, 165
extension. See class, extension of; term, extension of	truth-functional, 10–11, 12, 13, 50, 54, 101
	Leibniz, G. W., 23, 162
falsifiability, 56	logical truth. See sentence, logically true
Fermat, Pierre de, 223	regreat trains out contenses, regreatly trac
Fermat's Last Theorem, 223	Mates, Benson, 179, 235
form, principle of. See principle of form	meaning, 8, 21, 38–40, 53, 63, 154, 181–82. See also
Frege, Gottlob, 127	truth, conditions
function, 13	built-in, 8, 9
ranction, 10	metalanguage, 63–65, 67, 74, 110, 124, 136, 137
heuristic, 79, 222	model, 62
derivation, 79, 97, 100, 102, 105, 111, 121, 201,	modus (ponendo) ponens (MP), 73–76
212	modus (tollendo) tollens (MT), 73–76 modus (tollendo) tollens (MT), 73–76
	modus (touchuo) touchs (1411), 13-10
hypothetical syllogism (HS), 77–78	

name, 134–35, 155–56, 158, 162–63, 181–82. See	recursive definition. See definition, recursive
also term, singular	reductio ad absurdum, 89, 90, 93. See also rule, infer-
arbitrary, 198-200, 204, 210	ence, indirect proof
for arbitrary individual, 192, 203-4	relations, 133
of itself, 64–65	causal, 25
proper, 130-32, 134-35, 155-56, 158	intersentential, 127
natural deduction system, 118	intrasentential, 63, 127
negation (¬), 11–12, 100, 110	intransitive, 164, 129
double, 60, 76-77. See also valence	logical, 8, 25, 69
in quantified sentences, 142-44	nontransitive, 164
of identity (≠), 157	symmetric, 164
scope of, 15, 18, 26–27, 53, 141	transitive, 77, 129, 164
truth table characterization of, 11	representation, 64
number, natural, 125, 173	rule, inference, 73-74, 79, 93, 95, 96, 110
	and whole sentences, 75, 80, 82-84, 95, 109-10
object language. See language, object	191, 193, 195, 201
ontological commitment. See commitment,	conditional proof (CP), 86–88
ontological	conjunction elimination (ΛE), 79–81
operator, logical. See connective, truth-functional	conjunction introduction (ΛI), 79–81
	constructive dilemma (CD), 108–10
paradigm, 138	disjunction elimination, (VE), 82-84
paradox, 65, 89. See also indirect proof	disjunction introduction, (VI), 82–84
paraphrase, 33–35, 38, 187	hypothetical syllogism (HS), 77–78
away, 182	indirect proof (IP), 89–92, 111
predicate, 131-33, 137-38, 140-42, 144, 162, 174,	modus (ponendo) ponens (MP), 73–76
177-78, 181. See also term, general	modus (tollendo) tollens (MT), 73–76
monadic, 132	rule, primitive vs. derived, 123–24
<i>n</i> -place, 132	rule, quantifier, 208–12
predication, 130-34	existential generalization (EG), 194-96, 209
'is' of vs. 'is' of identity, 155–56, 157	existential instantiation (EI), 198-201, 209-10
Prenex Normal Form, 231-32	identity (ID), 213-16, 209
principle of form, 70–73	quantifier transformation (QT), 187–89
principle of tautology (Taut), 93-97	universal generalization (UG), 202-8, 210-12
proof. See derivation	universal instantiation (UI), 190-93, 209
proper name. See name, proper	rule, transformation, 94-95, 97, 100
proposition, 9. See also sentence, vs. proposition	apply to parts of sentences, 95
punctuation, sentential, 14-15, 25-27	as bidirectional, 95
•	associative rule (Assoc), 93-97
quantification, mixed, 147-49, 151, 228	biconditional equivalence (Bicond), 106-7
quantifier, 134–39, 179–80	commutative rule (Com), 93–97
existential ($\exists x$), 136–39	conditional equivalence (Cond), 103-5
scope of, 141	contraposition (Contra), 103–5
transformation, 187–89	DeMorgan's Law (DM), 98–99
universal $(\forall x)$, 136–39	distributive rule (Dist), 101–2, 102
quantifier transformation (QT), 187–89	exportation (Exp) , 101–2
quasi- \mathcal{L}_{p} , 137, 138, 143–44	principle of tautology (<i>Taut</i>), 93–97
quasi- $\hat{\mathcal{L}}_{S}$, 48	Russell, Bertrand, 163, 165, 171
Quine, W. V., 153, 182, 251	

Index

scope, 15	structure, 1–2, 63
negation, 15, 18, 26–27, 53, 141	deep and surface, 39, 40, 44, 45
of supposition, 86, 207	grammatical. See syntax
quantifier, 141	logical, 4, 8, 10, 127, 131, 137, 153, 157
semantics, 5, 7, 53–54, 122, 165, 171	subgoal, 87, 90. See also supposition
of \mathcal{L}_{p} , 177–81, 233–35	supposition (□), 86–88, 89–90, 119
of \mathcal{L}_{S} , 57, 60–62	discharged (L), 86, 87, 207
sentence, 4–6, 7, 10–11	undischarged, 203, 204, 207
active occurrence, 87, 220. See also supposition,	syllogistic reasoning, 2, 3, 77
undischarged	syntax, 5, 7, 40, 53, 122
ambiguous, 14, 17–18, 26–27, 40, 63, 147, 149,	of \mathcal{L}_{p} , 177–81, 235
177	of \mathcal{L}_{S} , 57, 57–60, 62
atomic, 5-6, 7, 10, 30-33, 61, 127, 134, 174, 178,	
222	Tarski, Alfred, 82
comparative, 129, 166-68	tautology. See rule, transformation, principle of tau-
contingent, 55–56, 62, 119	tology; sentence, logically true
contradictory, 53–56, 62, 89–92, 93, 119, 233–34.	term, 8, 33, 37, 127–30
See also paradox	complex, 139, 144-46
exceptive, 166–68	extension of, 130–31, 138, 144–45
inactive occurrence, 87, 207. See also supposition,	general, 129-30, 131-33, 138, 145
discharged	in \mathcal{L}_{p} , 131–34
logically equivalent, 34-35, 35-37, 76, 94-95,	individual, 155, 174
101	monadic general, 132
logically true, 53-56, 62, 119, 124-26, 218. See	n-adic general, 132. See also argument place
also theorem	singular, 130, 133-35, 145, 213. See also name
molecular, 5–6	theorem, 118–20
natural language, 4-6, 10, 52, 82	Fermat's Last, 223
of \mathcal{L}_{p} , 177–81	of $\mathcal{L}_{\mathcal{P}}$, 172, 218–20
of \mathcal{L}_{S} , 7–9, 50–53, 57, 63	of \mathcal{L}_{S} , 119–20, 121, 122, 126
simple. See sentence, atomic	thought, 1-2, 64, 171
superlative, 166–68	and language, 1–2, 165
tautological. See sentence, logically true	capacity for, 1-2
translation, 4-5, 17, 38-40, 47, 152-54	translatability, 38
valence, 76-77, 84, 91-92, 99, 110, 123, 188-89	translation, 4–5
vs. proposition, 7–9	into \mathcal{L}_{p} , 136–37, 150–54, 231
set. See class	into $\tilde{\mathcal{L}}_{\mathcal{S}}$, 38–40, 47
Sheffer, H. M., 35	truth, 2, 20–21, 25, 61, 62
Sheffer stroke (), 35–37	conditions, 20-22, 24, 38-40, 54. See also meaning
skill, 4–6, 39, 79, 111, 112	-function. See language, truth-functional
perceptual, 4-6, 79, 111	-guaranteeing, 67
soundness, 121–22	-preserving, 67, 123-24, 188, 233
of \mathcal{L}_{p} , 220–21, 232–35	table, 11, 13-14, 20-24, 30-35, 50-53
of \mathcal{L}_{S} , 121–26	value, 12–14, 20, 54
string, 57-60, 62, 122, 174-75	
bounded, 60, 174	universal generalization (UG), 202-8, 210-12
interpreted and uninterpreted, 122	universal instantiation (UI), 190-93, 209

```
valence, 76-77, 84, 91-92, 99, 110, 123, 188-89
validity, 2-3, 66, 79, 122, 129, 230
   definition of, 66, 190
   proof of in \mathcal{L}_{p}, 190–219
   proof of in \mathcal{L}_{S}, 66–69, 71–72, 73, 79, 93, 121–24,
          126
variable, 134-39, 147-49
   bound, 140-41, 147, 182
   free, 140-41, 179-80
   individual, 131, 134-39, 147-49
   metalanguage, 137
   sentential, 7-9, 74
vocabulary, 7-8, 145
   of \mathcal{L}_{p}, 174–75, 181
   of \tilde{\mathcal{L}}_{S}, 7–8, 33, 37, 57, 61
Voltaire, 23
Wiles, Andrew, 223
Wittgenstein, Ludwig, 165
world, possible, 22-24, 30-33, 50-51, 54-56, 67-69,
   74
```