Stress-tone-weight interaction in poetic meter: South Slavic folk meter revisited

Aljoša Milenković and Kevin Ryan

Annual Meeting on Phonology 2025 University of California, Berkeley September 26, 2025

Epic decasyllable

- traditional verse of BCMS folk epic poetry
- trochaic pentameter:
 10 syllables per line,
 caesura after fourth syllable

(Karadžić 1824, Jakobson 1966, Ružić 1975, Batinić 1975, Zec 2008)

Figure 1: Epic decasyllable as trochaic pentameter

BCMS pitch accents

- pitch accent: falling vs. rising (Lehiste & Ivić 1986; Zsiga & Zec 2013)
- pitch accent: stress (~duration, intensity) + tone (~F0):
- distributional constraints:
 - only falling in monosyllables;
 - falling restricted to polysyllable initials
 - rising allowed in all nonfinal syllables of polysyllables
- vowel length = syllable weight only CVV heavy (Zec 2000)

Prominence hierarchy

Stress*tone*weight combinations

Pitch accent	stress	High tone	vowel length
long falling	+	+	+
short falling	+	+	_
long rising	+	_	+
short rising	+	_	_

Today's talk

- 1. Which properties of BCMS syllables (if any) does the meter regulate?
- 2. Are regulation effects true metrical preferences or do they reflect extraneous factors (lexical statistics, distributional skews in ordinary-language prosody)?
- 3. Maxent model for the epic decasyllable

Corpus survey

- 3,771 lines from books 1-4 of *Serbian Folk Poems* (1841-1862) compiled by Vuk Stefanović Karadžić
- Annotation automated when possible (e.g. syllabification)
- Manual annotation for pitch accent and vowel length

Ordinary-language baselines

• To argue "the meter regulates X," one needs to show that the distribution of X is **specific to meter**, not a property of the general language

1. Prose comparison ("Russian method")

801 lines of decasyllable-like sentences from BCMS novels & short stories (Tarlinskaja 1976, Bayley 1975, Gasparov 1980, 1987, Hayes & Schuh 2019)

2. Permutation ("Rigged Veda method")

Corpus is randomly scrambled, but word shape distribution is kept intact (Janson 1975, Gunkel & Ryan 2011, Ryan 2017)

```
Real line: sóva sjèdī || na bûkovu pánju (I, 717:1)

Fake version 1: sûnce lètī || ka njínome grâdu

Fake version 2: národ pädā || sa mládijem dânom

Fake version 3: rûku òpēt || na pêndžere dáji

etc.
```

Overall distribution of stress/tone/weight in epic vs. prose

(excluding pre-pausal positions 4 and 10, which cannot bear pitch accent)

1. Weight

- Epic: heavy vs. light distinction in stressed syllables
- Prose: no distinction

2. Tone

• Falling vs. rising: bigger effect in epic

heavy -▲·

Tone regulation

- Falling accents (stress + high) occur only word-initially
- Shorter words tend to be avoided line-finally (e.g. line-final monosyllables are categorically avoided) (Maretić 1901, 1907, Jakobson 1966, Foley 1993, Zec 2008)
- This might skew falling tones towards odd (strong) positions
- Solution: control for word shape; don't rely on the overall/raw distribution of tone

Tone regulation: stressed, **disyllable** initials (e.g. <u>só</u>va)

- y = % high (vs. toneless)
- Controlling for word shape, stress, and weight
- High tone is avoided in weak positions in epic
- But not in scramble or prose

strong

weak

Tone regulation: stressed, **trisyllable** initials (e.g. <u>bû</u>kovu)

 More gaps because trisyllables can be localized in few positions

 High tone is avoided in weak positions in epic (but not baselines)

Omnibus model: epic (prose)

Strong ~ Accent_Type * Weight + (1 | Shape)

Shape: e.g. light-heavy-X-light, X-heavy, X, X-light-light (X = position of datum)

$Random\ effects$	Var	iance		St.	Dev.			
Word shape $(N = 68 (71))$								
(Intercept)	48.25	(5.71)		6.95	(2.39)			
Fixed effects	,	β	St.	Error	W_{ϵ}	ald z	p	
(Intercept)	.72	(.6)	.79	(.33)	.91	(1.78)	.36	(.07)
Accent type (difference coded)								
Rising (vs. Unaccented)	.26	(.06)	.06	(.13)	4.34	(.47)	.000 ***	(.64)
Falling (vs. Rising)	.98	(.18)	.07	(.12)	14.77	(1.44)	.000 ***	(.15)
Weight (baseline: Light)								
Heavy	.26	(.21)	.05	(.09)	5.13	(2.34)	.000 ***	(.02 *)
Accent type*Weight interaction								
Rising (vs. Unaccented):Heavy	.69	(.06)	.11	(.21)	6.15	(.27)	.000 ***	(.79)
Falling (vs. Rising):Heavy	77	(3)	.14	(.23)	-5.57	(-1.29)	.000 ***	(.2)

Weight regulation (stressed syllables only)

Weight regulation (stressed syllables only)

- Stressed heavies strongly preferred (> 80%) in $S_{cadence}$ (position 9) (Jakobson 1966)
- Elsewhere, stressed heavies are avoided in Weak
- (In Strong, they're closer to baseline)
- Why so few heavies in 1 and 7? The (esp. later) pre-cadence is depleted by the cadence

Prominence-mapping constraints in meter

(Hanson & Kiparsky 1996, Ryan 2017)

- In Latin/Greek hexameter, strong positions must be heavy
 - STRONG ⇒ HEAVY (a.k.a. *LIGHT/STRONG)
- Multiple implication: In the Finnish Kalevala, strong positions must be heavy, but only if stressed
 - STRESS \Rightarrow (STRONG \Rightarrow HEAVY) (a.k.a. *STRESS/LIGHT/STRONG)
- Former is "quantitative meter"
- Latter is "stress-modulated quantitative meter" (Ryan 2017)

Some mapping constraints for the BCMS epic (W = weak position, S = strong position)

- Weight and tone are relatively unregulated in unstressed syllables (plot above)
- A few clear constraints
 - 1. *Stress + heavy in W $STRESS \Rightarrow (HEAVY \Rightarrow S)$
 - 2. *Stress + high in W
 STRESS⇒(HIGH⇒S)
 - 3. *Stress + light in $S_{cadence}$ (position 9) $STRESS \Rightarrow (S \Rightarrow HEAVY)_{cadence}$

MaxEnt analysis

- Maximum Entropy (MaxEnt) Harmonic Grammar (Johnson & Goldwater 2003; Hayes & Wilson 2008)
- maxent.ot R package (Mayer et al. 2024)
- MaxEnt models for metrics:
 - metricality = Harmony (gradient!) → production frequency (cf. Halle & Keyser 1971's frequency hypothesis)
 - input-less models; grammar trained to match line type frequency (≈ Poisson regression)

(Hayes & Wilson 2008; Hayes et al. 2012, Hayes & Schuh 2019)

Model selection

- Initial constraint pool (13 constraints): which are useful?
- Stepwise forward model selection: start with null model, add constraints one at a time (Della Pietra et al. 1997, Hayes et al. 2012)
- information gain metrics: likelihood ratio test, AIC and BIC
- all metrics converged on the same final model

Final model: weights and fit

Constraint	Weight
Heavy⇒Strong	.86
$STRESS \Rightarrow (High \Rightarrow STRONG)$	1.38
$STRESS \Rightarrow (STRONG \Rightarrow HEAVY)_{cadence}$	2.59
$Heavy \Rightarrow Strong_{cadence}$.57
$Stress \Rightarrow (Heavy \Rightarrow Strong)$	1.07

Maxent ≈ empirical findings

- 1. Epic decasyllable regulates W, not S (modulo cadence):
 - HEAVY⇒S useful; S⇒HEAVY useless
- 2. Interactive mapping: doubly-prominent syllables avoided in W
 - STRESS⇒(HEAVY⇒S) and STRESS⇒(HIGH⇒S) selected and relatively strong
- 3. stressed syllables in $S_{cadence}$ preferably heavy:
 - STRESS \Rightarrow (S \Rightarrow HEAVY)_{cadence} selected and gets huge weight
- 4. Jakobson 1966: 75% of stressed syllables in S
 - STRESS⇒S still not selected: Jakobson's effect driven by other constraints

Prose comparison

- 1. No ordinary-language baseline (cf. Hayes et al. 2012: 725):
 - True metrical preferences vs. ordinary-language phonology?
- 2. Prose comparison (Hayes & Schuh 2019): meter overrepresents desirable line types and underrepresents marked ones
 - Perfect lines: 28% of epic corpus, 12% of prose corpus
 - Individual violations:
 - 1. STRESS \Rightarrow (HEAVY \Rightarrow S): violated at least once in 32% of prose lines and 14% of epic lines
 - 2. STRESS \Rightarrow (HIGH \Rightarrow S): 44% of prose lines vs. 25% of epic lines
 - 3. STRESS \Rightarrow (S \Rightarrow HEAVY)_{cadence}: 29% prose vs. 6% epic

Do metrical constraints contribute beyond their ordinary-language effects? (Henriksson 2022)

- Fit model to prose data; obtain baseline weights
- Re-fit model to epic data K times (K = N constraints) with baseline weights as constraint-specific Gaussian priors
- default prior: μ = 0, σ = 100 \rightarrow μ = w_{baseline} , σ = .01
- suppress constraints to their ordinary-language contribution
- Then compare each of K models with the full epic model and compare them: ΔBIC (model with baseline priors full model)

Constraint contribution (meter vs. prose)

Constraint	weight	weight	weight	$\Delta \mathrm{BIC}$
Constraint	(epic)	(prose)	difference	(prose - epic)
Heavy⇒S	.86	.76	.1	15.79
$STRESS \Rightarrow (HEAVY \Rightarrow S)$	1.07	.18	.89	390.99
$STRESS \Rightarrow (S \Rightarrow HEAVY)_{cadence}$	2.59	.77	1.82	1,131.4
$Heavy \Rightarrow S_{cadence}$.57	.14	.43	81.1
$STRESS \Rightarrow (HIGH \Rightarrow S)$	1.38	.84	.54	288.76

 suppressing any constraint to its baseline contribution leads to loss in model fit

Conclusion

- Hybrid accentual/quantitative/tonal meter
- Primarily regulates doubly-prominent syllables
 - Stressed heavies
 - Stressed High-toned syllables
- Stress-modulated weight and tone regulation
 - Stress-weight interaction in Finnish, Tamil (Ryan 2017)
 - Stress-tone interaction previously undocumented
- Other Indo-European languages with pitch accent (stress+tone) ignore tone in meter (Greek, Sanskrit)!
- Real effects (not reducible to extraneous factors)

Thank you!

Replication data:

Appendix 1: constraints on independent mapping

Constraint	violation
STRESS⇒S	* for each stressed syllable in W
HEAVY⇒S	* for each heavy syllable in W
High⇒S	* for each High-toned syllable in W
S⇒STRESS	* for each S filled by unstressed syllable
S⇒HEAVY	* for each S filled by light syllable
S⇒High	* for each S filled by toneless syllable

Appendix 2: constraints on interactive mapping

Constraint	violation
$STRESS \Rightarrow (HEAVY \Rightarrow S)$	* for each stressed heavy in W
$STRESS \Rightarrow (S \Rightarrow HEAVY)$	* for each stressed light in S
STRESS⇒(HIGH⇒S)	* for each stressed High-toned syllable in W
STRESS⇒(S⇒HIGH)	* for each stressed toneless syllable in S

Appendix 3: constraints on cadence

Constraint	violation
$HEAVY \Rightarrow S_{cadence}$	* for each heavy syllable in W _{cadence}
$S \Rightarrow HEAVY_{cadence}$	* for each S _{cadence} filled by a light syllable
$STRESS \Rightarrow (S \Rightarrow HEAVY)_{cadence}$	* for each stressed light in S _{cadence}