§2.2 The Inverse of a Matrix

An $n \times n$ matrix A is said to be invertible if there is an $n \times n$ matrix C such that CA = I and AC = I where $I = I_n$, the $n \times n$ identity matrix. We say that C is the inverse of A with $C = A^{-1}$.

Singular / not invertible

Nonsingular / invertible

Let $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. If $ad - bc \neq 0$, then A is invertible and

$$A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

The quantity ad - bc is called the determinant of A and we write $\det A = ad - bc$

Thus a 2×2 matrix A is invertible if and only if $\det A \neq 0$.

Algorithm for finding A^{-1}

- 1. Row reduce the augmented matrix $\begin{bmatrix} A & I \end{bmatrix}$.
- 2. If A is row equivalent to I, then $\begin{bmatrix} A & I \end{bmatrix}$ is row equivalent to $\begin{bmatrix} I & A^{-1} \end{bmatrix}$. Otherwise, A does not have an inverse.