多変量解析

第13回 クラスター分析

萩原•篠田 情報理工学部

クラスター分析

類似の能力をもつ生徒をグループ化できるか? それぞれのグループの特徴は何か?

 生徒	 国語	 英語	 数学	 理科
No.	X ₁	X ₂	X ₃	X ₄
1	86	79	67	68
2	71	75	78	84
3	42	43	39	44
4	62	58	98	95
5	96	97	61	63
6	39	33	45	50
7	50	53	64	72
8	78	66	52	47
9	51	44	76	72
10	89	92	93	91

クラスターを樹形図(デンドログラム)で表示

keywords

クラスター、距離(ユークリッド、マハラノビス)、デンドログラム

クラスター分析

類似の能力をもつ生徒をグループ化できるか? それぞれのグループの特徴は何か?

クラスター、距離(ユークリッド、マハラノビス)、デンドログラム

クラスター分析:

対象物(データの集まり)の中から, 互いに似たものを集めて, 群れや集団(クラスタ)に分ける手法

「似ている」の定義?、「似ている」程度を測る方法

- ユークリッド距離
- ・ユークリッド距離の2乗(平方ユークリッド距離)
- •マハラノビスの距離
- •相関係数

M次元空間内の ij 間のユークリッド距離 $d_{ij} = \left\{\sum_{m=1}^{M} (x_{im} - x_{jm})^2\right\}^{\overline{2}}$

例えば2次元空間で、 (x_{i1},x_{i2}) 、 (x_{j1},x_{j2}) を i 番目とj 番目の対象データとすると

・ユークリッド距離

$$d_{ij} = \sqrt{(x_{i1} - x_{j1})^2 + (x_{i2} - x_{j2})^2}$$

・ユークリッド距離の2乗(平方ユークリッド距離)

$$d_{ij}^{2} = (x_{i1} - x_{j1})^{2} + (x_{i2} - x_{j2})^{2}$$

•マハラノビスの距離

$$D^2 = \frac{(x - \bar{x})^2}{s^2}$$

•相関係数

$$r = \frac{\frac{1}{n-1} \sum (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\frac{1}{n-1} \sum (x_i - \bar{x})^2 \frac{1}{n-1} \sum (y_i - \bar{y})^2}}$$

似ている程度を測る方法は、距離の概念の一般化と考えられるので広い意味で距離と呼ぶ

クラスター分析ではデータのことを個体と呼び、個体と個体が集まってクラスタを構成することになる

クラスタ間の距離の決め方

- クラスタの成分が1個だけからなる場合

個体と個体との距離 = クラスタ間の距離D

・クラスタの成分が2個以上からなる場合

Aのどの個体とBのどの個体の間を測ればいいのか。

主なものとして、以下の方法がある

- 1. 最短距離法
- 2. 最長距離法
- 3. 群平均法
- 4. メディアン法
- 5. 重心法
- 6. ウォード法

1. 最短距離法

クラスタAの個体とクラスタBの個体とのすべての 組み合わせについて距離を求めてその中で 最も短い距離=2つのクラスタA,B間の距離D

2. 最長距離法

クラスタAの個体とクラスタBの個体とのすべての 組み合わせについて距離を求めてその中で 最も長い距離=2つのクラスタA,B間の距離D

3. 群平均法

クラスタAの個体とクラスタBの個体とのすべての 組み合わせについて距離を求めて その距離の平均値=2つのクラスタA,B間の距離D

4. メディアン法

クラスタAの個体とクラスタBの個体とのすべての 組み合わせについて距離を求めて その距離を順番に並べたときの中央値 =2つのクラスタA,B間の距離D

5. 重心法

クラスタAの重心とクラスタBの重心との距離 =2つのクラスタA,B間の距離D

6. ウォード法

新たに統合されるクラスター内の平方和を最も小さくする という基準でクラスターを形成していく方法

2つのクラスターA,Bを統合したと仮定したとき、

S_{AB}:新たなクラスターの重心とクラスター内の 各サンプルとの距離の平方和

 S_A , S_B : 元々の2つのクラスター内での重心と

それぞれのサンプルとの距離の平方和

としたとき

$$\Delta S_{AB} = S_{AB} - S_A - S_B$$

が最小となるようにクラスター同士を統合する。 この平方和の増加分がウォード法における距離と なる

クラスター分析の手順(1)

国名	感染症発症割合	メディア普及割合	00			
Α	6.6	35.8	60			
В	8.4	22.1	50 -	G◆◆ I		J ◆
С	24.2	19.1	副 40	♦ K		
D	10	34.4	型 40 -	A ◆ D		
E	14.5	9.9	公司 20 20 20 20 20 20 20 20 20 20 20 20 20	♦ F		
F	12.2	31.1	 7	♦ B		
G	4.8	53	下 20 - 大			◆ C
Н	19.8	7.5	10 -	♦ E	<u>-</u> ◆ H	
ı	6.1	53.4	0		V 11	
J	26.8	50	0 +	10	20	30
K	7.4	42.1	•	感染症発		

散布図を見ると、{G,I}、{A,B,D,F,K}、{C,E,H}、 {J}のような4つのクラスタになりそう

→デンドログラム(樹形図)というグラフで表現

クラスター分析の手順(2)

	В	С	D	E	F	G	Н	- 1	J	K
Α	190.9	588.7	13.5	733.2	53.5	299.1	975.1	310.0	609.7	40.3
В		258.6	153.9	186.1	95.4	967.8	343.1	985.0	1117.0	401.0
С			435.7	178.7	288.0	1525.6	153.9	1504.1	961.6	811.2
D				620.5	15.7	373.0	819.7	376.2	525.6	66.1
E					454.7	1951.7	33.9	1962.8	1759.3	1087.3
F						534.4	614.7	534.5	570.4	144.0
G							2295.3	1.9	493.0	125.6
Н								2294.5	1855.3	1350.9
ı									440.1	129.4
J										438.8

• この組み合わせの中で"距離"が最小なのは、GとIの組み合わせ [G,I]を 構成する

ユークリッド距離の2乗(平方ユークリッド距離) $d_{ij}^{2} = (x_{i1} - x_{j1})^{2} + (x_{i2} - x_{j2})^{2}$

• 式は $(4.8-6.1)^2 + (53.0-53.4)^2 = 1.85$ となる

国名	感染症発症 割合	メディア普及 割合
G	4.8	53
1	6.1	53.4

クラスター分析の手順(3)

- 階層クラスター分析
 - → 重心法(平均)
 - → 平方ユーグリッド距離

GとIが一つのクラスターになったので

	В	С	D	E	F	G·I	Н	J	K
Α	190.9	588.7	13.5	733.2	53.5	304.1	975.1	609.7	40.3
В		258.6	153.9	186.1	95.4	975.9	343.1	1117.0	401.0
С			435.7	178.7	288.0	1514.4	153.9	961.6	811.2
D				620.5	15.7	374.1	819.7	525.6	66.1
E					454.7	1956.8	33.9	1759.3	1087.3
F						534.0	614.7	570.4	144.0
G٠I							2294.4	466.1	127.0
Н								1855.3	1350.9
J									438.8

GとIの重心(平均)は
 (4.8+6.1)/2=5.45, (53+53.4)/2=53.2

AとG·Iのユークリッド距離は (6.6 - 5.45)²+(35.8 - 53.2)²=304.1

国名	感染症発症 割合	メディア普及 割合
Α	6.6	35.8
G	4.8	53
ı	6.1	53.4
G٠I	5.45	53.2

クラスター分析の手順(4)

	В	С	D	E	F	G٠I	Н	J	K
Α	190.9	588.7	13.5	733.2	53.5	304.1	975.1	609.7	40.3
В		258.6	153.9	186.1	95.4	975.9	343.1	1117.0	401.0
С			435.7	178.7	288.0	1514.4	153.9	961.6	811.2
D				620.5	15.7	374.1	819.7	525.6	66.1
E					454.7	1956.8	33.9	1759.3	1087.3
F						534.0	614.7	570.4	144.0
G·I							2294.4	466.1	127.0
Н								1855.3	1350.9
J									438.8

 この組み合わせで、13.5が最小の距離なので、 AとDが2つ目のクラスタ{A,D}を構成 式は (10.0-6.6)² + (34.4-35.8)² = 13.52

クラスター分析の手順(5)

デンドログラム第2段階

以下同様の手順を繰り返す

クラスター分析の手順(最終)

クラスター分析の目的

対象全体をいくつかのグループに分けて特徴を把握すること

鎖効果を示すデンドログラム

"よい"クラスター分析の結果を示す デンドログラム

鎖効果;

ある1つのクラスターに対象が1つずつ吸収されてクラスターが形成されていく現象。 従って、どの距離で切っても、あるクラスターとその他の対象」1つずつで 構成され、グループに分けたことにならない

最短距離法では鎖効果が起こりやすく、 ウォード法では鎖効果が起こりにくいことが知られている

ウォード法

新たに統合されるクラスター内の平方和が最小 となるようにクラスターをまとめる方法

変数が2個の場合のウォード法

国語と英語の成績(5段階評価)

生徒No.	国語 x_1	英語 <i>x</i> ₂
1	5	1
2	4	2
3	1	5
4	5	4
5	5	5

対象間のウォード法における距離(1)

生徒No.	1	2	3	4
1				
2	1.00			
3	16.00	9.00		
4	4.50	2.50	8.50	
5	8.00	5.00	8.00	0.50

No.1とNo.2の生徒を統合した時のクラスター内での平方和 S_{12}

$$S_{12} = \sum_{i=1}^{2} \sum_{k=1}^{2} (x_{ik} - \bar{x} \cdot_{k})^{2}$$

$$= (5 - 4.5)^{2} + (4 - 4.5)^{2} + (1 - 1.5)^{2} + (2 - 1.5)^{2}$$

$$= 1.00$$

対象間のウォード法における距離(1)

生徒No.	1	2	3	4
1				
2	1.00			
3	16.00	9.00		
4	4.50	2.50	8.50	
5	8.00	5.00	8.00	0.50

国語と英語の成績(5段階評価)

生徒No.	国語 x_1	英語 x_2
1	5	1
2	4	2
3	1	5
4	5	4
5	5	5

対象間のウォード法における距離(1)で、

次に統合した時のクラスター内平方和の増加分が最小のものを統合

→ No.4とNo.5の統合が増加分が最小

C1(4,5)とNo.1~No.3の各対象を統合し、その時の平方和の増加分を計算

C1(4,5)とNo.1では

$$S_{145} = (5 - 5.00)^2 + (5 - 5.00)^2 + (5 - 5.00)^2 + (1 - 3.33)^2 + (4 - 3.33)^2 + (5 - 3.33)^2 = 8.67$$

対象間のウォード法における距離(2)

生徒No.	1	2	3
1			
2	1.00		
3	16.00	9.00	
C1(4,5)	8.17	4.83	10.83

平方和の増加分 ΔS_{145} は 統合前の平方和が $S_1=0$, $S_{45}=0.5$ であるので

$$\Delta S_{145} = S_{145} - S_1 - S_{45} = 8.67 - 0 - 0.50 = 8.17$$

従って、クラスターC1(4,5)とNo.1の距離は8.17同様に $\Delta S_{245} = 4.83$, $\Delta S_{345} = 10.83$ を求める

対象間のウォード法に おける距離(2)

生徒No.	1	2	3
1			
2	1.00		
3	16.00	9.00	
C1(4,5)	8.17	4.83	10.83

対象間のウォード法に おける距離(3)

生徒No.	C2(1,2)	3
C2(1,2)		
3	16.33	
C1(4,5)	9.25	10.83

対象間のウォード法に おける距離(3)

生徒No.	C3(1,2,4,5)	
C3(1,2,4,5)		
3	14.45	

国語と英語の成績データのデンドログラム

変数がp個の場合のウォード法

変数が3個以上の場合も考え方は前述の2個の場合と同様

平方和の増加分の一般式

クラスタ*l* とクラスタ*m* を統合してクラスタ*lm* を作成する場合 以下の関係が成り立つ

 x_{lik} , x_{mik} ; クラスタl とクラスタm に属する第k変数のi番目のデータ

 n_l, n_m ; サンプルサイズ

$$S_{l} = \sum_{i=1}^{n_{l}} \sum_{k=1}^{p} (x_{lik} - \bar{x}_{l \cdot k})^{2}$$

$$S_{m} = \sum_{i=1}^{n_{m}} \sum_{k=1}^{p} (x_{mik} - \bar{x}_{m \cdot k})^{2}$$

$$S_{lm} = S_{l} + S_{m} + \Delta S_{lm}$$

$$S_{l} = \sum_{i=1}^{n_{l}} \sum_{k=1}^{p} (x_{lik} - \bar{x}_{l \cdot k})^{2}$$

$$S_{lm} = \sum_{i=1}^{n_{l}} \sum_{k=1}^{p} (x_{lik} - \bar{x}_{k})^{2} + \sum_{i=1}^{n_{m}} \sum_{k=1}^{p} (x_{mik} - \bar{x}_{k})^{2}$$

$$S_{m} = \sum_{i=1}^{n_{m}} \sum_{k=1}^{p} (x_{mik} - \bar{x}_{m \cdot k})^{2}$$

$$\bar{x}_{l \cdot k} = \frac{1}{n_{l}} \sum_{i=1}^{n_{l}} x_{lik} \quad \bar{x}_{m \cdot k} = \frac{1}{n_{m}} \sum_{i=1}^{n_{m}} x_{mik}$$

$$S_{lm} = S_{l} + S_{m} + \Delta S_{lm}$$

$$\bar{x}_{k} = \frac{n_{l} \bar{x}_{l \cdot k} + n_{m} \bar{x}_{m \cdot k}}{n_{l} + n_{m}}$$

$$\Delta S_{lm} = \frac{n_l n_m}{n_l + n_m} \sum_{k=1}^{p} (\bar{x}_l \cdot_k - \bar{x}_m \cdot_k)^2$$

デンドログラムの問題点

- 最適のクラスタの個数は何個か?
 - → はっきりとした基準がない
- 「何個のクラスタに分類するか」、「それらの特徴は何か」は そのデータを研究している人に任されている (解析者の意図が入る)

クラスター分析

- ①クラスター分析とは何か。語句で説明せよ。
- ②高齢者の転倒事故が多く見られる住宅空間についての調査データを因子分析した結果、左下に示す表の結果を得た。この結果をクラスター分析しデンドログラムに描いたものが右下の図である。因子分析の結果を散布図に示し4つのクラスターに分け表示せよ。

	因子		
	水まわり	段差のある 所	
浴室	.858	098	
食堂	.844	.039	
トイレ	.744	.023	
廊下	.634	.168	
庭	.602	.029	
玄関	.063	.818	
ベランダ	.292	.459	
階段	101	.372	
居間	.161	091	
寝室	311	.211	

