

Pyraformer

Low-Complexity Pyramidal Attention for Long-Range Time Series Modeling and Forecasting

23.5.25

▶ 时序预测任务的难点: 长时依赖问题

▶ 现有方法的缺陷: 复杂度较高

Method	Complexity per layer				
CNN (Munir et al., 2018)	$\mathcal{O}(L)$				
RNN (Salinas et al., 2020)	$\mathcal{O}(L)$				
Full-Attention (Vaswani et al., 2017)	$\mathcal{O}(L^2)$				
ETC (Ainslie et al., 2020)	$\mathcal{O}(GL)$				
Longformer (Beltagy et al., 2020)	$\mathcal{O}(L)$				
LogTrans (Li et al., 2019)	$\mathcal{O}(L \log L)$				
Pyraformer	$\mathcal{O}(L)$				

最大信号传递路径

(d) Pyratormer

0(1)

0(1)

算法描述: Pyramidal Attention Module (PAM)

 $\mathbb{N}_{\ell}^{(s)}$ 表示同一级尺度上的相邻节点 (包括自己,A=3/5) $\mathbb{N}_{\ell}^{(s)}$ 表示C个子节点 $\mathbb{P}_{\ell}^{(s)}$ 表示父节点

一个节点最多可以连接 A+C+1个节点

算法描述: Pyramidal Attention Module (PAM)

尺度

S

1

$$oldsymbol{y}_i = \sum_{\ell=1}^L rac{\exp(oldsymbol{q}_i oldsymbol{k}_\ell^T / \sqrt{D_K}) oldsymbol{v}_\ell}{\sum_{\ell=1}^L \exp(oldsymbol{q}_i oldsymbol{k}_\ell^T / \sqrt{D_K})},$$

$$\boldsymbol{y}_i = \sum_{\ell \in \mathbb{N}_{\ell}^{(s)}} \frac{\exp(\boldsymbol{q}_i \boldsymbol{k}_{\ell}^T / \sqrt{d_K}) \boldsymbol{v}_{\ell}}{\sum_{\ell \in \mathbb{N}_{\ell}^{(s)}} \exp(\boldsymbol{q}_i \boldsymbol{k}_{\ell}^T / \sqrt{d_K})},$$

算法描述: Coarser-scale Construction Module (CSCM)

尺度为S,序列长度: $\frac{L}{c^s}$

ISTNet

Inception Spatial Temporal Transformer for Traffic Prediction

23.5.25

> 时间相关性

局部相关性

CNN: 需要堆叠多层,效率低

全局依赖性

注意力机制:偏好全局信息

> 空间相关性

局部相关性

潜在的全局相关性(语义相关)

算法描述: Trend Construction Module (TCM) Pyramidal Attention Module (PAM)

算法描述: Inception Spatial Module

> 局部混合器: 高斯核函数

$$\mathcal{A}_{i,j} = exp(-\frac{dist(v_i, v_j)}{\mu^2})$$
$$dist(v_i, v_j) \le \varepsilon , \, \mathcal{A}_{i,j} = 0.$$

$$\mathcal{Y}_L^S = FC(\mathcal{A}\mathcal{X}^{local}W_1 + b_1)$$

> 全局混合器: 自适应邻接矩阵

$$\mathcal{M} = softmax(EE^{T}/\sqrt{D})$$

$$for \quad i = 1, 2, \dots, N$$

$$nodeId = argtopk(\mathcal{M}[i, :])$$

$$\mathcal{M}[i, -nodeId] = 0$$

$$\mathcal{Y}_{G}^{S} = FC(\mathcal{M}\mathcal{X}^{global}W_{2} + b_{2})$$

▶ ST-Block堆叠的第一层到第 l 层,平衡局部和全局组件

底层更喜欢局部信息, 而顶层在捕获全局信息方面起着更重要的作用。

通道比率: 局部/全局=[2,1,1/2]

04 ◆ 数据集

Datasets	Time Range	Time Steps	Time Interval	Nodes
PEMS03	09/01/2018 - 11/30/2018	26202	5-min	358
PEMS04	01/01/2018 - 02/28/2018	16992	5-min	307
PEMS07	05/01/2017 - 08/31/2017	28224	5-min	883
PEMS08	07/01/2016 - 08/31/2016	17856	5-min	170

实验结果: 预测未来一小时

Dataset	Metrics	VAR	SVR	FC-LSTM	DCRNN	STGCN	ASTGCN	Graph WaveNet	STSGCN	GMAN	DSTAGNN	ISTNet
PEMS03	MAE	19.72	19.77	19.56	17.62	19.76	18.67	15.67	17.51	15.52	15.57	15.03±0.09
	RMSE	32.38	32.78	33.38	29.86	33.87	30.71	26.42	29.05	26.53	27.21	24.89 ± 0.25
	MAPE(%)	20.50	23.04	19.56	16.83	17.33	19.85	15.72	16.92	15.19	14.68	15.24 ± 0.19
PEMS04	MAE	24.44	26.18	23.60	24.42	23.90	22.90	19.91	21.52	19.25	19.30	18.51 ± 0.03
	RMSE	37.76	38.91	37.11	37.48	36.43	33.59	31.06	34.14	30.85	31.46	30.36 ± 0.10
	MAPE(%)	17.27	22.84	16.17	16.86	13.67	16.75	13.62	14.50	13.00	12.70	12.36 ± 0.16
PEMS07	MAE	27.96	28.45	34.05	24.45	26.22	28.13	20.83	23.99	20.68	21.42	19.67 ± 0.13
	RMSE	41.31	42.67	55.70	37.61	39.18	43.67	33.62	39.32	33.56	34.51	32.96 ± 0.04
	MAPE(%)	12.11	14.00	15.31	10.67	10.74	13.31	9.10	10.10	9.31	9.01	$8.57 {\pm} 0.20$
PEMS08	MAE	19.83	20.92	21.18	18.49	18.79	18.72	15.57	17.88	14.87	15.67	14.08 ± 0.05
	RMSE	29.24	31.23	31.88	27.30	28.2	28.99	24.32	27.36	24.06	24.77	23.27±0.12
	MAPE(%)	13.08	14.24	13.72	11.69	10.55	12.53	10.32	11.71	9.77	9.94	9.34 ± 0.09

实验结果2

谢谢观看

MANY THANKS!

23.5.25

