# English Language Speech Database for Speaker Recognition (*ELSDSR*)

ELSDSR corpus of read speech has been designed to provide speech data for the development and evaluation of automatic speaker recognition system. ELSDSR corpus design was a joint effort of the faculty, Ph. D students and master students from department of Informatics and Mathematical Modeling (IMM) at Technical University of Denmark (DTU). The text language is English, and is read by 20 Danes, one Icelander and one Canadian. No formal rehearsal has been done, thus perfect pronunciation is not obtained, however not necessary for getting the specific and uniquely identifiable characteristics from individuals.

#### 1. Recording Environment

The recording work has been carried out in a chamber (room 133) in building 321, 1<sup>st</sup> floor at DTU. The chamber is an 8.82\*11.8\*3.05 m³ (width\*length\*height) computer room (classroom), with 22 monitors and 34 tables. The recording is manipulated in, approximately, the middle of this chamber, with one microphone, one 70\*120\*70 cm³ table in front of speakers. In order to deflect the reflection, two deflection boards with measure of 93\*211.5\*6 cm³ were placed at tilted angles facing each other, and were in front of the table and speakers. For details please see the setup drawing, drawing of the room and position of recording, etc., in appendix.

#### 2. Recording Equipment

The equipment for recording work is MARANTZ PMD670 portable solid state recorder. PMD670 can record in a variety of compression algorithm, associated bit rate, file format, and recording type (channels recorded) parameters. It supports two kinds of recording format: compressed recording, which includes MP2 and MP3; uncompressed recording, which includes linear pulse code modulation (PCM). The recording type can be stereo, mono or digital, and the file can be recorded into .wav .bwf .mpg or .mp3 format.

In this database, the voice messages are recorded into the most commonly used file type--.wav. And the algorithm used is PCM. The sampling frequency is chosen 16 kHz with a bit rate of 16. Table 1 shows the initial setup for the recorder, for detail see PMD670 user guide.

Table 1: Recorder Setup

|               | Setup        |            |               |              |        |      |             |                |            |
|---------------|--------------|------------|---------------|--------------|--------|------|-------------|----------------|------------|
| Input         | Auto<br>Mark | Pre<br>Rec | Analog<br>Out | MIN<br>Atten | Repeat | ANC  | EDL<br>Play | Level<br>Cont. | S.<br>Skip |
| MIC<br>(MONO) | OFF          | ON         | OFF           | 20dB         | OFF    | FLAT | OFF         | MANUAL         | ON<br>20dB |

#### 3. Corpus Speaker Set

*ELSDSR* contains voice messages from 22 speakers: 10 female, 12 male, and the ages are covered from 24 to 63. Most of them are faculty and Ph. D students working at IMM, and 5 of them are master students including 1 international master student.

No a priori control of the speaker distribution by nationality and age has been done, except for the gender. Due to the practical problem of uneven gender distribution at the experiment site, the average age of female subjects is higher than that of male, and around half of the female subjects are secretaries in IMM. 84% male speakers were between 26 and 37 years old; however the ages of female speakers spread in a large scale. Table 2 shows the speakers ID, speakers' ages with average for each gender, and nationalities.

The subjects of this database are from different countries and different places of one country, the dialect of speaking or reading English language in this database does not play a significant role for the purpose of speaker recognition, since the features which are interesting for this particular intention are language independent. Moreover it might be possible to use this database for accent recognition.

Table 2: Information about Speakers

| Speaker ID | Age  | Nationality |
|------------|------|-------------|
| FAML       | 48   | Danish      |
| FDHH       | 28   | Danish      |
| FEAB       | 58   | Danish      |
| FHRO       | 26   | Icelander   |
| FJAZ       | 25   | Canadian    |
| FMEL       | 38   | Danish      |
| FMEV       | 46   | Danish      |
| FSLJ       | 24   | Danish      |
| FTEJ       | 50   | Danish      |
| FUAN       | 63   | Danish      |
| Average    | 40.6 |             |
| MASM       | 27   | Danish      |
| MCBR       | 26   | Danish      |
| MFKC       | 47   | Danish      |
| MKBP       | 30   | Danish      |
| MLKH       | 47   | Danish      |
| MMLP       | 27   | Danish      |
| MMNA       | 26   | Danish      |
| MNHP       | 28   | Danish      |
| MOEW       | 37   | Danish      |
| MPRA       | 29   | Danish      |
| MREM       | 29   | Danish      |
| MTLS       | 28   | Danish      |
| Average    | 31.3 |             |

Speaker ID is constructed and started by F or M, indicating the gender, and followed by 3 letters of speaker initials.

#### 4. Corpus Text Material and Suggested Training/Test Set Division

Part of the text, which is suggested as training subdivision, was made with the attempt to capture all the possible pronunciation of English language, which includes the vowels, consonants and diphthongs. As for the suggested training and test subdivision, <u>seven paragraphs</u> of text are constructed and collected for training, which includes 11 sentences; with respect to the suggested test subdivision <u>forty-four sentences</u> (each speaker reads two of these sentences) from NOVA Home [1] were collected for test text. In a word, for the training set, 154 (7\*22) utterances were recorded; and for test set, 44 (2\*22) utterances were provided.

On average, the duration for reading the training data is: 78.6s for male; 88.3s for female; 83s for all. And the duration for reading test data, on average, is: 16.1s (male); 19.6s (female); 17.6s (for all). Table 3 shows the time spend on reading both training text and test text individually.

| T 1 1 2 D 11      |            |               |               |
|-------------------|------------|---------------|---------------|
| Table 3: Duration | of reading | training text | and test text |

| No. | Male |      | Train(s) | Test(s) | Female |      | Train(s) | Test(s) |
|-----|------|------|----------|---------|--------|------|----------|---------|
| 1   |      | MASM | 81.2     | 20.9    |        | FAML | 99.1     | 18.7    |
| 2   |      | MCBR | 68.4     | 13.1    |        | FDHH | 77.3     | 12.7    |
| 3   |      | MFKC | 91.6     | 15.8    |        | FEAB | 92.8     | 24.0    |
| 4   |      | MKBP | 69.9     | 15.8    |        | FHRO | 86.6     | 21.2    |
| 5   |      | MLKH | 76.8     | 14.7    |        | FJAZ | 79.2     | 18.0    |
| 6   |      | MMLP | 79.6     | 13.3    |        | FMEL | 76.3     | 18.2    |
| 7   |      | MMNA | 73.1     | 10.9    |        | FMEV | 99.1     | 24.1    |
| 8   |      | MNHP | 82.9     | 20.3    |        | FSLJ | 80.2     | 18.4    |
| 9   |      | MOEW | 88.0     | 23.4    |        | FTEJ | 102.9    | 15.8    |
| 10  |      | MPRA | 86.8     | 9.3     |        | FUAN | 89.5     | 25.1    |
| 11  |      | MREM | 79.1     | 21.8    |        |      |          |         |
| 12  |      | MTLS | 66.2     | 14.05   |        |      |          |         |

#### 5. *ELSDSR* Directory and File Structure

The voice messages are organized according to the following hierarchy:

```
CORPUS := = ELSDSR
USAGE := = train | test
SPEAKER ID := = FXXX | MXXX |
where,
F or M indicates the speaker
```

F or M indicates the speaker's gender; XXX indicate the speakers' initials

#### Database description

Sentence ID := = XXXX\_SM or XXXX\_SrN where.

XXXX indicate speaker ID;

S indicates training sentence, M indicates the alphabetic number of paragraphs in training text, which is from a to g; Sr indicates test sentence (randomly chosen sentences), N indicates sentences number in test text, from 1 to 46.

The associated documentation is located in the 'ELSDSR /DOC' directory: where,

training text.pdf test text.pdf phonetic alphabet.pdf<sup>(1)</sup> readme.pdf (this file)

(1) phonetic alphabet.pdf shows the captured vowels, consonants and diphthongs in each paragraph of training data.

## **Appendix**

• 3D Setup of the recording chamber:

## 3D Recording Setup



• 2D Recording Experiment Setup with measurement:



## Database description

### Reference

[1] NOVA online, WGBH Science Unit, 1997 <a href="http://www.pbs.org/wgbh/nova/pyramid/">http://www.pbs.org/wgbh/nova/pyramid/</a>