Spiegazioni ASD 2014 Natale a Flatland

Risultati

Statistiche

Numero sottoposizioni: 495

Punteggi

- ▶ $30 \le P \le 60 \rightarrow \text{un punto bonus al voto dello scritto}$
- ▶ $60 \le P \le 100$ → due punti bonus al voto dello scritto
- $ightharpoonup P = 100
 ightarrow {
 m tre}$ punti bonus al voto dello scritto
- Classifica completa sul mio sito

Soluzione base

Simulazione

- Prendere il secondo triangolo
- Eliminare quel triangolo ed il triangolo in fronte
- Ripetere finchè non ne rimane solo uno
- Scrivere in output la sua posizione originale

Parziale (50-75 punti)

Backtracking

Data la sequenza di triangoli:

- Provare ad eliminare ogni triangolo
- ▶ Ricorrere ricorsivamente sulla sequenza rimanente
- Quando la sequenza contiene un unico triangolo, salvarne la posizione

Memoization

Si puo ottimizzare mantenendo in un dizionario le sequenze di triangoli che sono state già visitate.

Ottimo (dinamica) (100 punti)

Se la posizione X rimane per ultima, significa che è stato possibile eliminare completamente (1,X-1) e (X+1,N).

Sottoproblema

 $DP[X][Y][PRIMO][ULTIMO]: booleano \\ contiene se è possibile eliminare completamente la sottos equenza \\ (X,Y), considerando X il primo triangolo a sinistra se PRIMO è vero, Y l'ultimo triangolo a destra se ULTIMO è vero.$

Nota: esiste un altra soluzione ottima ad hoc in tempo lineare