Infographic Description

Ferdinand David Anggono (2702299661) - Yosia (2702300240) - Rainer Alexander Irawan (2702261196) - Alvin Febrian (2702370814)

2025-06-04

```
library(tidyverse)
## — Attaching core tidyverse packages —
                                                               — tidyverse 2.0.0 —
## √ dplyr
              1.1.4
                          ✓ readr
## √ forcats
               1.0.0

√ stringr

                                      1.5.1
## √ ggplot2 3.5.1
                         √ tibble
                                      3.2.1
## ✓ lubridate 1.9.4

√ tidyr

                                      1.3.1
## √ purrr
               1.0.4
## -- Conflicts -
                                                         — tidyverse_conflicts() —
## X dplyr::filter() masks stats::filter()
                     masks stats::lag()
## X dplyr::lag()
### i Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to be
come errors
library(readx1)
library(readr)
library(ggrepel)
library(ggalt)
## Registered S3 methods overwritten by 'ggalt':
     method
##
##
     grid.draw.absoluteGrob
                             ggplot2
##
     grobHeight.absoluteGrob ggplot2
##
     grobWidth.absoluteGrob
                             ggplot2
##
     grobX.absoluteGrob
                             ggplot2
##
     grobY.absoluteGrob
                             ggplot2
library(countrycode)
library(rnaturalearth)
library(sf)
## Linking to GEOS 3.13.0, GDAL 3.10.1, PROJ 9.5.1; sf_use_s2() is TRUE
library(RColorBrewer)
library(plotly)
```

```
##
## Attaching package: 'plotly'
##
  The following object is masked from 'package:ggplot2':
##
##
       last_plot
##
##
  The following object is masked from 'package:stats':
##
##
       filter
##
  The following object is masked from 'package:graphics':
##
##
       layout
```

```
library(viridis)
```

```
## Loading required package: viridisLite
```

```
library(psych)
```

```
##
## Attaching package: 'psych'
##
## The following objects are masked from 'package:ggplot2':
##
## %+%, alpha
```

#Introduction

This report presents an analysis of data related to drinking water quality and sanitation. The data used is taken from two CSV files: - drinking_water_dataset.csv - sanitation_dataset.csv

2. Objectives

The objectives of this analysis are: - Understand the distribution of drinking water and sanitation quality - Identify important variables - Conduct reliability tests and interpret results

3. Data

3.1 Reading Data

```
drinking_data <- read.csv("drinking_water_dataset.csv")
sanitation_data <- read.csv("sanitation_dataset.csv")

# Tampilkan ringkasan data
summary(drinking_data)</pre>
```

```
IS03
                          Country
##
                                            Residence.Type
                                                                Service.Type
##
   Length: 16540
                        Length: 16540
                                            Length:16540
                                                               Length: 16540
##
   Class :character
                        Class :character
                                            Class :character
                                                               Class :character
   Mode :character
                       Mode :character
                                            Mode :character
##
                                                               Mode :character
##
##
##
##
         Year
                       Coverage
                                          Population
                                                             Service.level
           :2007
                           : 0.00000
                                                :0.000e+00
                                                             Length: 16540
##
   Min.
##
   1st Qu.:2010
                              0.07363
                                        1st Qu.:3.270e+02
                                                             Class :character
##
   Median :2014
                   Median : 3.45741
                                        Median :1.330e+05
                                                             Mode :character
           :2014
##
   Mean
                   Mean
                           : 21.54776
                                                :7.088e+06
##
    3rd Qu.:2018
                   3rd Qu.: 28.20768
                                        3rd Qu.:2.035e+06
##
   Max.
           :2022
                   Max.
                           :100.00000
                                        Max.
                                                :1.416e+09
```

```
summary(sanitation_data)
```

```
##
        IS03
                          Country
                                            Residence.Type
                                                                Service.Type
   Length: 16467
                        Length: 16467
                                            Length: 16467
                                                               Length: 16467
##
##
   Class :character
                        Class :character
                                            Class :character
                                                               Class :character
##
   Mode :character
                        Mode :character
                                            Mode :character
                                                               Mode :character
##
##
##
                                          Population
                                                            Service.level
##
         Year
                       Coverage
##
   Min.
           :2007
                           : 0.0000
                                       Min.
                                                        0
                                                            Length: 16467
##
    1st Qu.:2010
                   1st Qu.: 0.5969
                                       1st Qu.:
                                                     4177
                                                            Class :character
##
   Median :2014
                   Median: 8.0440
                                       Median :
                                                   267900
                                                            Mode :character
          :2014
##
   Mean
                   Mean
                           : 21.7040
                                       Mean
                                                  7129919
    3rd Qu.:2018
                   3rd Qu.: 30.8592
##
                                        3rd Qu.:
                                                  2700525
##
   Max.
           :2022
                   Max.
                           :100.0000
                                       Max.
                                               :974545978
```

Explanation: This section reads the available datasets. The dataset <code>drinking_water_dataset.csv</code> contains drinking water quality data, while <code>sanitation_dataset.csv</code> contains sanitation data. The <code>summary()</code> function is used to display the initial statistical summary.

4. Data Analysis

4.1 Question 1: Available Variables

Question: What are the available variables in both datasets?

## [1] "ISO3"	"Country"	"Residence.Type"	"Service.Type"
## [5] "Year"	"Coverage"	"Population"	"Service.level"

Explanation: This section displays the names of the columns or variables available in the drinking water and sanitation dataset. This is important as a basis for further analysis.

4.2 Question 2: Data Distribution

Question: How is the data distributed on each of the important variables?

hist(drinking_data\$Coverage, main = "Global Drinking Water Coverage Distribution", xlab = "Dr
inking Water Coverage (%)")

Global Drinking Water Coverage Distribution

hist(sanitation_data\$Coverage, main = "Global Sanitation coverage Distribution", xlab = "Sani
tation Coverage (%)")

Global Sanitation coverage Distribution

Explanation: The histogram visualization is used to see the distribution of values in the variables Coverage. The distribution helps us understand whether the data is skewed to the left, right, or normal. Both distribution are right-skewed, indicating a large number of regions still have very low access to sanitation and drinking water facility. Meanwhile, only a few region achieved close to 100% coverage.

Data Visualization

5.1 Plot 1

Question: What has been the trend in access to safely managed drinking water services in the world over the past fifteen years?

```
# Merge country based on continent
drinking_data <- drinking_data %>%
  mutate(Continent = countrycode(ISO3, origin = "iso3c", destination = "continent"))

## Warning: There was 1 warning in `mutate()`.
## i In argument: `Continent = countrycode(ISO3, origin = "iso3c", destination =
## "continent")`.
## Caused by warning:
## ! Some values were not matched unambiguously: CHI
```

```
# Filter only safe drinking water service
drinking_data_filtered <- drinking_data %>%
  filter(`Service.level` == "Safely managed service")
# Remove N/A value after
drinking_data_filtered <- drinking_data_filtered %>%
  filter(!is.na(Continent))
# Trend per continent
trend_by_continent <- drinking_data_filtered %>%
  group by(Continent, Year) %>%
  summarise(Average_Coverage = mean(Coverage, na.rm = TRUE), .groups = "drop")
# Global Trend (average per country)
trend_global <- drinking_data_filtered %>%
  group_by(Year) %>%
  summarise(Average_Coverage = mean(Coverage, na.rm = TRUE), .groups = "drop") %>%
  mutate(Continent = "Global Average") # pakai label baru
# Merge those two trends
trend_combined <- bind_rows(trend_by_continent, trend_global)</pre>
# PLot
p <- ggplot(trend_combined, aes(</pre>
 x = Year,
  y = Average_Coverage,
 color = Continent,
  group = Continent,
 text = paste("Tahun:", Year,
               "<br>Wilayah:", Continent,
               "<br>Cakupan:", round(Average_Coverage, 1), "%"))
) +
  geom\_line(size = 1.2, alpha = 0.7) +
  geom_point() +
  labs(
   title = "Clean Drinking Water Access Trends by Continent and Global Average",
    x = "Years",
    y = "Average Coverage (%)",
    color = "Regions/Country"
  ) +
  scale color manual(
    values = c(
      "Africa" = "#449cd3",
      "Asia" = \#d8b655",
      "Europe" = "#7a61ba"
      "Americas" = "#46d39a",
      "Oceania" = "#e55759",
      "Global" = "#121212"
    )
  ) +
  theme minimal()
```

```
## Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
## i Please use `linewidth` instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
```

```
ggplotly(p, tooltip = "text")
```

Clean Drinking Water Access Trends by Continent and Global Average


```
# Shows the average clean water coverage for each country (Table)
table_output <- trend_combined %>%
pivot_wider(names_from = Continent, values_from = Average_Coverage) %>%
arrange(Year)
print(table_output)
```

```
## # A tibble: 16 × 7
      Year Africa Americas Asia Europe Oceania `Global Average`
##
##
      <int> <dbl>
                      <dbl> <dbl>
                                   <dbl>
                                           <dbl>
                                                            <dbl>
##
   1 2007
             30.0
                       74.6 64.1
                                    90.9
                                            66.3
                                                             68.0
   2 2008
             30.6
                      75.0 64.6
                                    91.5
                                            66.6
                                                             68.4
##
##
   3
      2009
             31.2
                      75.4 65.1
                                    92.0
                                            66.9
                                                             69.0
##
   4 2010
             31.7
                      75.8 65.7
                                    92.4
                                            67.2
                                                             69.5
   5
      2011
                      76.3 66.3
##
             32.5
                                    92.8
                                            67.4
                                                             70.0
##
   6 2012
             33.4
                      76.7 66.9
                                    93.1
                                            67.6
                                                             70.5
##
   7
      2013
             34.1
                       77.1 67.4
                                    93.4
                                            67.8
                                                             70.9
   8 2014
                      77.5 68.0
                                    93.7
                                            68.0
##
             34.7
                                                             71.3
   9
      2015
             35.4
                       77.9 68.6
                                            68.2
                                                             71.7
##
                                    93.8
## 10
      2016
             35.9
                      76.9 69.1
                                    93.9
                                            68.4
                                                             71.9
## 11
      2017
             36.4
                       77.1 69.7
                                    94.0
                                            68.5
                                                             72.2
## 12
      2018
             36.8
                      76.7 70.2
                                    94.1
                                            68.7
                                                             72.4
      2019
             37.1
                       76.9 70.6
                                    94.2
                                            68.8
                                                             72.6
## 13
## 14
      2020
              37.4
                       77.0 71.0
                                    94.2
                                            68.9
                                                             72.8
      2021
                                            69.1
                                                             72.8
## 15
             37.7
                       76.8 71.3
                                    94.2
## 16
     2022
             37.6
                       76.9 71.0
                                    94.2
                                            67.5
                                                             72.9
```

5.2 Plot 2

Question: What is the global geographic distribution of access to safely managed drinking water services in 2022?

```
# Filter for Years: "2022" and Service Level: "Safely managed service"
drinking_data_2022 <- drinking_data %>%
  filter(`Service.level` == "Safely managed service", Year == 2022) %>%
  filter(!is.na(Coverage)) %>%
  select(Country, ISO3, Coverage)
# Interactive map using plotly::plot_geo
fig <- plot_geo(drinking_data_2022)</pre>
fig <- fig %>%
  add_trace(
    z = \sim Coverage
    color = ~Coverage,
    colors = "viridis",
    text = ~paste("Negara:", Country,
                  "<br>Cakupan:", round(Coverage, 1), "%"),
    locations = ~ISO3,
    locationmode = "ISO-3",
    type = "choropleth"
  ) %>%
  colorbar(title = "Coverage (%)") %>%
  layout(
    title = "Coverage of Access to Safe Drinking Water by Country (2022)",
    geo = list(
      showframe = FALSE,
      showcoastlines = TRUE,
      coastlinecolor = "gray",
      projection = list(type = "natural earth")
  )
fig
```

Coverage of Access to Safe Drinking Water by Country (2022)

Table form of the plot
print(drinking_data_2022)

##		Country	ISO3	Coverage
##	1	Afghanistan	AFG	30.03410
##	2	Albania	ALB	70.73607
##	3	Andorra	AND	90.64000
##	4	Armenia	ARM	82.41172
##	5	Austria	AUT	98.89632
##	6	Azerbaijan	AZE	71.61170
##	7	Belgium	BEL	99.73945
##	8	Bangladesh	BGD	59.06945
##	9	Bulgaria	BGR	95.65433
##	10	Bahrain	BHR	98.90398
##	11	Bosnia and Herzegovina	BIH	86.97068
##	12	Saint Barthélemy		100.00000
##		Belarus	BLR	93.09976
##		Brazil	BRA	87.25872
##		Bhutan	BTN	73.34199
##		Central African Republic	CAF	6.12644
##		Canada	CAN	99.03973
	18	Switzerland	CHE	96.70000
##		Chile	CHL	98.77136
##		Côte d'Ivoire	CIV	43.89216
##		Democratic Republic of the Congo	COD	11.58434
##		Colombia	COL	73.85604
##		Costa Rica	CRI	80.50758
##		Cyprus	CYP	99.76506
##		Czechia	CZE	97.88341
##		Germany	DEU	99.91641
##		Denmark Dominican Republic	DNK	99.91883
##		Algeria	DOM DZA	44.94118 70.59793
##		Ecuador	ECU	67.08951
##		Spain		99.56714
##		Estonia	EST	97.01938
##		Ethiopia		
##		Finland	FIN	99.64203
##		Fiji	FJI	41.86358
##		France		99.70415
##		United Kingdom of Great Britain and Northern Ireland		
##		Georgia	GEO	69.14185
##	39	Ghana	GHA	44.46808
##	40	Gibraltar	GIB	100.00000
##	41	Guadeloupe	GLP	95.70962
##	42	Gambia	GMB	47.67465
##	43	Guinea-Bissau	GNB	23.87160
##	44	Greece	GRC	98.87964
##	45	Guatemala	GTM	56.29331
##	46	French Guiana	GUF	91.48601
##	47	Guam	GUM	99.05979
##	48	China, Hong Kong SAR	HKG	100.00000
##	49	Honduras	HND	65.20680
##	50	Hungary	HUN	100.00000
##	51	Indonesia	IDN	30.26617
##	52	Isle of Man	IMN	99.70983
##	53	Ireland	IRL	95.99141
##	54	Iran (Islamic Republic of)	IRN	94.22125

0/20,	١.	IO I IVI	iniographic Descri	puon	
#	#	55	Iraq	IRQ	59.74263
#	#	56	Iceland	ISL	100.00000
#	#	57	Israel	ISR	99.47116
#	#	58	Italy	ITA	92.71056
#	#	59	Jordan	JOR	85.70913
#	#	60	Japan	JPN	98.65855
#	#	61	Kyrgyzstan	KGZ	76.48715
#	#	62	Cambodia	KHM	29.13128
#	#	63	Kiribati	KIR	14.41407
#	#	64	Republic of Korea	KOR	99.28012
		65	Kuwait		100.00000
		66	Lao People's Democratic Republic	LAO	17.87208
		67	Lebanon	LBN	47.70000
		68	Liechtenstein		100.00000
		69	Sri Lanka	LKA	47.12753
		70	Lesotho	LS0	28.21749
		71	Lithuania	LTU	94.98150
		72	Luxembourg	LUX	99.53408
		73	Latvia	LVA	97.11127
		74	China, Macao SAR		100.00000
		7 4 75	Saint Martin (French Part)	MAF	96.62876
		76	Morocco	MAR	74.82420
		70 77	Monaco		100.00000
		77 78		MDA	
		76 79	Republic of Moldova		75.22434
		79 80	Madagascar Mexico	MDG MEX	22.23922
					43.03788
		81 82	North Macedonia Malta	MKD MLT	80.44703
					99.77242
		83	Myanmar	MMR	57.39650
		84	Montenegro	MNE	85.11892
		85	Mongolia	MNG	39.28016
		86	Northern Mariana Islands	MNP	90.63918
		87	Martinique	MTQ	98.76963
		88	Malawi	MWI	17.75708
		89	Malaysia	MYS	93.94192
		90	Mayotte	MYT	92.46111
		91	New Caledonia	NCL	96.86529
		92	Nigeria	NGA	28.98488
		93	Niue	NIU	93.54150
		94	Netherlands (Kingdom of the)	NLD	99.96789
		95	Norway	NOR	98.82311
		96	Nepal	NPL	16.11664
		97	New Zealand		100.00000
		98	Oman	OMN	90.85175
		99	Pakistan	PAK	50.60178
		100	Peru	PER	51.98521
		101	Philippines	PHL	47.90190
		102	Palau	PLW	90.44085
		103	Poland	POL	88.91450
		104	Puerto Rico	PRI	99.87311
		105	Democratic People's Republic of Korea	PRK	66.53140
		106	Portugal	PRT	95.15673
		107	Paraguay	PRY	64.22060
		108	State of Palestine	PSE	80.33018
#	#	109	French Polynesia	PYF	81.81326
#	#	110	Qatar	QAT	96.65482

J/ZJ, 1.	. 10 1 101	inographic Description	
##	111	Réunion REL	J 95.75359
##	112	Romania ROL	J 82.07232
##	113	Russian Federation RUS	76.23311
##	114	Senegal SEM	l 26.69259
##	115	Singapore SGF	100.00000
##	116	Saint Helena SHM	89.22964
##	117	Sierra Leone SLE	10.26242
##	118	San Marino SMF	R 100.00000
##	119	Serbia SRE	3 75.07525
##	120	Sao Tome and Principe STF	36.30069
##	121	Suriname SUF	8 55.79615
##	122	Slovakia SVK	99.18473
##	123	Slovenia SVM	98.27432
##	124	Sweden SWE	99.73888
##	125	Turks and Caicos Islands TCA	47.08508
##	126	Chad TCD	0 6.24705
##	127	Togo TGC	19.41779
##	128	Tajikistan TJk	55.29210
##	129	Turkmenistan TKM	1 94.88054
##	130	Tonga TON	l 29.52870
##	131	Tunisia TUN	74.30346
##	132	Tuvalu TUV	/ 8.70710
##	133	United Republic of Tanzania TZA	11.33565
##	134	Uganda UG <i>F</i>	18.68142
##	135	Ukraine UKF	87.62073
##	136	United States of America USA	97.46839
##	137	Uzbekistan UZB	3 79.84530
##	138	Viet Nam VNM	1 57.78141
##	139	Wallis and Futuna Islands WLF	68.88058
##	140	Samoa WSM	1 62.19171
##	141	Zimbabwe ZWE	26.51643

5.3 Plot 3

Question: Which countries have the highest and lowest clean water coverage? (Shows 10 countries each)

```
# Find the top 10 highest
top10 <- drinking_data_2022 %>%
  arrange(desc(Coverage)) %>%
  slice_head(n = 10)
# Find the top 10 lowest
bottom10 <- drinking_data_2022 %>%
  arrange(Coverage) %>%
  slice head(n = 10)
# Merge and give them label
top10 <- top10 %>% mutate(Group = "Highest")
bottom10 <- bottom10 %>% mutate(Group = "Lowest")
plot_data <- bind_rows(top10, bottom10) %>%
  # Urutkan untuk tampilan barplot (descending untuk tertinggi, ascending untuk terendah)
  mutate(Country = factor(Country, levels = unique(Country)))
# Plotting
fig <- plot_ly(plot_data,
               x = \sim Coverage
               y = ~Country,
               color = ~Group,
               colors = c("Lowest" = "red", "Highest" = "blue"),
               type = "bar",
               text = ~paste0(Country, ": ", round(Coverage, 1), "%"), # Teks yang akan dita
mpilkan
               textposition = "outside",
               textfont = list(color = "black"),
               orientation = "h",
               hovertemplate = "Country: %{y}<br>Coverage: %{x:.1f}%") %>%
  layout(title = "10 Countries with the Highest and Lowest Coverage of Safe Drinking Water Ac
cess (2022)",
         xaxis = list(title = "Coverage (%)", range = c(0, 150) ),
         yaxis = list(title = "Country", autorange = "reversed"),
         barmode = "group",
         margin = list(1 = 200, r = 50, t = 80, b = 120))
fig
```

untries with the Highest and Lowest Coverage of Safe Drinking Water Access (

Coverage (%)

150

5.4 Plot 4

Question: Which country experienced the highest increase in access to clean water during the period 2007–2022?

```
# Filter data service level: safely managed
drinking_increase <- drinking_data %>%
  filter(`Service.level` == "Safely managed service", Year %in% c(2007, 2022)) %>%
  select(Country, ISO3, Year, Coverage)
# Separate 2007 and 2022 data to calculate their difference
water_start <- drinking_increase %>%
  filter(Year == 2007) %>%
  select(Country, ISO3, Start = Coverage)
water_end <- drinking_increase %>%
  filter(Year == 2022) %>%
  select(Country, ISO3, End = Coverage)
water_change <- left_join(water_start, water_end, by = c("Country", "ISO3")) %>%
  mutate(Change = End - Start) %>%
  filter(!is.na(Change))
# Find top 15 country
top increase <- water change %>%
  arrange(desc(Change)) %>%
  slice_head(n = 15) %>%
  mutate(Country = factor(Country, levels = rev(Country)))
# Plotting
fig <- plot_ly(top_increase,</pre>
               x = \sim Change
               y = ~Country,
               type = 'bar',
               orientation = 'h',
               marker = list(color = 'viridis'),
               text = ~paste("Country:", Country,
                              "<br>Increase:", round(Change, 1), "%"),
               hoverinfo = "text") %>%
  layout(title = "Top 15 Improvements in Clean Water Access by Country (2007-2022))",
         xaxis = list(title = "Increased Coverage (%)"),
         yaxis = list(title = "Country", autorange = "reversed"))
fig
```

Top 15 Improvements in Clean Water Access by Country (2007–2022))

5.4 Plot 5

Question: Is there a positive correlation between increased access to clean drinking water and better sanitation practices?

```
#Filter data service level: safely managed service
clean_water <- drinking_data %>%
   filter(`Service.level` == "Safely managed service") %>%
  group_by(Year) %>%
  summarise(Global_Water = mean(Coverage, na.rm = TRUE), .groups = "drop")
clean_sanitation <- sanitation_data %>%
  filter(`Service.level` == "Safely managed service") %>%
  group_by(Year) %>%
  summarise(Global_Sanitation = mean(Coverage, na.rm = TRUE), .groups = "drop")
#Merge them by years
global_trend <- inner_join(clean_water, clean_sanitation, by = "Year")</pre>
#Plotting
plot_ly(global_trend,
        x = \sim Global\_Sanitation,
        y = ~Global_Water,
        type = 'scatter',
        mode = 'markers+lines',
        text = ~paste("Tahun:", Year,
                      "<br>Sanitasi Aman:", round(Global_Sanitation, 1), "%",
                      "<br>Air Minum Aman:", round(Global_Water, 1), "%"),
        hoverinfo = "text",
        textposition = "top center",
        marker = list(size = 8, color = ~Year, colorscale = 'Blues', showscale = TRUE),
        line = list(color = 'gray', dash = 'dot')) %>%
  layout(
    title = "The Relationship between Sanitation and Safe Drinking Water",
    xaxis = list(title = "Global Coverage of Safe Sanitation(%)"),
    yaxis = list(title = "Global Coverage of Safe Drinking Water(%)"),
    hovermode = "closest"
  )
```


Correlation Test

```
cor_value <- cor(global_trend$Global_Sanitation, global_trend$Global_Water, use = "complete.o
bs", method = "pearson")
print(cor_value)</pre>
```

```
## [1] 0.9863773
```

```
cor.test(global_trend$Global_Sanitation, global_trend$Global_Water)
```

```
##
## Pearson's product-moment correlation
##
## data: global_trend$Global_Sanitation and global_trend$Global_Water
## t = 22.436, df = 14, p-value = 2.252e-12
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.9601297 0.9953861
## sample estimates:
## cor
## 0.9863773
```

#Interpretation of Correlation Values and Significance Tests - Pearson Correlation Value (r) = 0.986, indicating a very strong positive relationship between safe sanitation coverage and access to safe drinking water - p-value = 2.252e-12, a value less than 0.05, indicating a very significant relationship Based on the analysis of WASH Household data from 2007 to 2022, a very strong correlation was found between safe sanitation coverage and access to safe drinking water globally, with a Pearson correlation value of r = 0.986 (p <0.001).

This shows that countries that improve sanitation infrastructure also tend to experience significant increases in access to safe drinking water.

Note that the echo = FALSE parameter was added to the code chunk to prevent printing of the R code that generated the plot.