Univerzitet u Novom Sadu Fakultet tehničkih nauka

Elektroenergetski softverski inženjering / Primenjeno softvesrko inženjerstvo

predmet: Matematička analiza datum: 3. jul 2020. godine

DRUGI KOLOKVIJUM, Predispitne obaveze

Napomena: Sve odgovore obrazložiti.

1. (1 poen) Odrediti realnu konstantu c tako da postoji funkcija f(x) za koju je $f'(x) = \begin{cases} c-x &, & x \leq 1 \\ x &, & x > 1 \end{cases}$ Rešenje

2. (1 poen) Da li postoji $\int \sin \frac{1}{x} dx$ na $[\pi, 2\pi]$? **Rešenje**

3. (1 poen) Da li je funkcija $f(x) = \begin{cases} 1/x & x \in (0,1] \\ 1 & x = 0 \end{cases}$ integrabilna na intervalu [0,1]? **Rešenje**

4. (1 po
en) Napisati gornju Darbuovu sumu za funkciju $f(x)=\arctan x$ na interval
u $[0,\sqrt{3}]$ za ekvidistantnu podelu.

Rešenje

5. (1 poen) Ako je funkcija f(x) integrabilna na intervalu [-1,1] i $\int_{-1}^{1} f(x)dx = A$, naći $\int_{-1}^{1} g(x)dx$ ako je

$$g(x) = \begin{cases} f(x) & x \in (-1,1) \\ f(x) + 1 & x = -1 \\ f(x) + 2 & x = 1 \end{cases}$$

Rešenje

6. (1 po
en) Neka je $f(x) = \int\limits_0^x \sin t dt$. Naći primitivnu funkciju F(x) funkcije f(x).

Rešenje

7. (1 poen) Ispitati konvergenciju nesvojstvenog integrala $\int\limits_{[1,\infty)} \arctan \frac{1}{\sqrt{x}} \, dx.$

Rešenje

8. (1 po
en) Naći sva rešenja početnog problema $y'=\sqrt[3]{y},\,y(0)=0.$

Rešenje

9.	(1 poen) Da li se može odrediti parametar a tako da jednačina $\ln y dx + a \frac{x}{y} dy = 0$ bude diferencijalna jednačina totalnog diferencijala na \mathbb{R}^2 ? Rešenje
	(1 poen) Da li su funkcije $f_1(x)=1$ i $f_2(x)=e^x$ linearno nezavisne na \mathbb{R} ? Rešenje
11.	Data je diferencijalna jednačina $L_n[y]=f(x)$ sa konstantnim koeficijentima. Neka su $k_1=k_2=0,k_3=-2,k_4=k_5=-i$ koreni karakteristične jednačine. a) (1 poen) Odrediti opšte rešenje homogenog dela date jednačine. Rešenje
	b) (1 poen) Za $f(x) = x \cos x$ odrediti oblik partikularnog rešenja jednačine $L_n[y] = f(x)$. Rešenje

12. (1 poen) Ispitati konvergenciju reda $\sum_{n=1}^{\infty} \sin n\pi.$

Rešenje

13. (2 poena) Pokazati da red $\sum_{n=1}^{\infty}\frac{(-1)^{n-1}}{(2)^{n+1}}$ konvergira i naći njegovu sumu.

Rešenje

14. (2 poena) Ispitati običnu i apsolutnu konvergenciju reda $\sum_{n=1}^{\infty} (-1)^n \frac{1}{\sqrt[3]{n^2}}.$

Elektroenergetski softverski inženjering/Primenjeno softversko inženjerstvo

3.7.2020.

Ispitni zadaci

a) (6 poena) Odrediti vrednost konstane $A \in \mathbb{R}$ tako da niz $\{a_n\}_{n \in \mathbb{N}}$

$$a_n = (\sqrt[3]{n+1} - \sqrt[3]{n}) + A \cdot \frac{1 - (-1)^n}{2}$$

bude konvergentan izračunati njegovu graničnu vrednost.

b) (6 poena) Proveriti da li je niz
$$a_n = \frac{\cos 1!}{1 \cdot 2} + \frac{\cos 2!}{2 \cdot 3} + \ldots + \frac{\cos n!}{n \cdot (n+1)}$$
 Košijev.

2. (12 poena) Detaljno ispitati tok i nacrtati grafik funkcije
$$f(x) = \frac{x}{\sqrt{x^2 + 2x + 2}}$$
.

3. (6 poena) Da li funkcija u=xyz ima ekstremnu vrednost, uz uslov $x+y+z=9,\,x>0,y>0,z>0.$

4. a) (8 poena) Izračunati
$$\int \left(\frac{\sin x}{\sin x + 2\cos x} + e^x \arctan \frac{e^x - 1}{e^x - 2}\right) dx$$
.

b) (6 poena) Dat je niz
$$\{a_n\}_{n\in\mathbb{N}}$$
 sa opštim članom $a_n = 3 \cdot \frac{3^4 + 6^4 + 9^4 + \ldots + (3n)^4}{n^5}$. Odrediti graničnu vrednost niza $\{a_n\}$ primenom definicije određenog integrala.

5. Odrediti opšte rešenje diferencijalne jednačine:

a) (8 poena)
$$\left(\frac{y}{x+y}\right)^2 dx + \left(\frac{x}{x+y}\right)^2 dy = 0;$$

b) (8 poena)
$$(x+1)^3y''' - 3(x+1)^2y'' + 7(x+1)y' - 8y = 0$$
, ako je $x > -1$.

Elektroenergetski softverski inženjering/Primenjeno softversko inženjerstvo predmet: Matematička analiza

3.7.2020.

Ispitni zadaci - Drugi kolokvijum

1. a) (8 poena) Izračunati
$$\int \left(\frac{\sin x}{\sin x + 2\cos x} + e^x \arctan \frac{e^x - 1}{e^x - 2}\right) dx$$
.

b) (6 poena) Dat je niz
$$\{a_n\}_{n\in\mathbb{N}}$$
 sa opštim članom $a_n = 3 \cdot \frac{3^4 + 6^4 + 9^4 + \ldots + (3n)^4}{n^5}$. Odrediti graničnu vrednost niza $\{a_n\}$ primenom definicije određenog integrala.

2. Odrediti opšte rešenje diferencijalne jednačine:

a) (8 poena)
$$\left(\frac{y}{x+y}\right)^2 dx + \left(\frac{x}{x+y}\right)^2 dy = 0;$$

b) (8 poena)
$$(x+1)^3y''' - 3(x+1)^2y'' + 7(x+1)y' - 8y = 0$$
, ako je $x > -1$.