

Computer Session 1: Example: A blending problem

1 Problem and Data

A chemistry firm can produce two products, A and B, from combining three elements: iron, lead, and tin. What is the blending that maximizes the benefit? Assume that all the production is sold. The data for the problem can be found in Table 1.

2 A first model

We have to decide how much of product A and B we want to produce. Hence, we choose our decision variables to be x_1 for the amount product A (kg) and x_2 for the amount of product B (kg), we want to produce.

Our objective is to maximize our net benefit, we can write the objective as

Net benefit: $10x_1 + 8x_2$

Now, we have to consider our resource constraints, we have resource constraints for Iron, Lead, and Tin. These can be written as

Iron

 $7x_1 + 4x_2 \le 56$,

Lead

 $3x_1 + 5x_2 \le 45$,

Tin

 $4x_1 + 3x_2 \le 48$.

At the end, we should not forget nonnegativity.

 $x_1, x_2 \geq 0.$

Table 1: Data for the blending problem.

Resources	Units per kg of Product		Available units
	Α	В	•
Iron	7	4	56
Lead	3	5	45
Tin	4	3	48

Product	Net Benefit £/kg	
A	10	
В	8	

In summary, we obtain the following model:

max
$$10x_1 + 8x_2$$

s.t. $7x_1 + 4x_2 \le 56$,
 $3x_1 + 5x_2 \le 45$,
 $4x_1 + 3x_2 \le 48$,
 $x_1, x_2 \ge 0$.

3 A general model

To apply our model to generic blending problems, we introduce two sets of indices: P for products and R for resources. We introduce a vector $I \in \mathbb{R}^R$ for the maximum available quantities, a vector $w \in \mathbb{R}^P$ for the per unit benefit for each product, and a matrix $A \in \mathbb{R}^{P \times R}$, such that A_{pr} is the amount of resource r needed to produce one unit of product p. We call our variables, how much of a product we produce, $x \in \mathbb{R}^P$.

Then our model can be written as

$$\max \sum_{p \in P} w_p x_p$$
s.t.
$$\sum_{p \in P} A_{pr} x_p \le I_r \quad \text{ for all } r \in R$$

$$x \ge 0.$$

Or even more compact as

$$\max \quad w^{\top} x$$
s.t. $Ax \le I$

$$x \ge 0.$$