Tutorial No. 2 Date: 15-09-2014

Q1. Write down the MO electronic configuration of oxygen, superoxide ion and peroxide ion. Which one is paramagnetic and calculate the bond order in each case.

- **Q2.** How do you differentiate the following metal complexes using conductometric titration? CoCl₃. 6NH₃; CoCl₃. 5NH₃; CoCl₃. 4NH₃ and CoCl₃. 3NH₃
- **Q3.** Draw the most stable Lewis dot structure and calculate the formal charge on the central atom. SO_2 , ICl_3 , CO_2 , NO_3^- , SO_3^{2-} , ClO_4^-
- **Q4.** Write resonance structures for the NO₂F molecule and identify the most stable structure.

Explanation: **Formal charge rules** are: 1) Formulas with the lowest magnitude of formal charges are more stable. 2) More electronegative atoms should have negative formal charges. 3) Adjacent atoms should have opposite formal charges.

- **Q5.** Write the Oxidation State, d-orbital occupation, co-ordination number and expected magnetic moment of the central metal ion in the following complexes. Draw the expected structure. $K_3[Co(C_2O_4)_3]$
- **Q6.** Draw the line structure of $[PtCl_3(\eta 2-C_2H_4)]^{-1}$