

Filter synthesis

Roland Badeau, roland.badeau@telecom-paris.fr

TSIA201

Part I

Linear phase FIR filters

Une école de l'IMT

Filter synthesis

Linear phase FIR filters

- Frequency response : $H(e^{i2\pi v}) = e^{i2\pi(\beta \alpha v)}H_R(v)$
- ightharpoonup Constant and equal group and phase delays (if $\beta = 0$)
- ► Advantages : always causal and stable, preserve the waveform of a narrow-band signal (if $\beta = 0$)
- ▶ Drawback : high computational complexity

Characterization

- ▶ 1 periodicity of $H(e^{2i\pi v}) \Rightarrow \alpha = p/2$, $p \in \mathbb{Z}$ and H_R is 2-periodic
- Hermitian symmetry $\Rightarrow d = e^{2i\pi\beta} = 1$ or i and H_R is even or odd
- As $H_R(v)$ is 2-periodic, we can define $G(e^{2i\pi v}) = dH_R(2v)$ where g(n) is real, even or odd
- ▶ We can thus write $H(z^2) = z^{-p}G(z)$ (filter of length 2N-1)
- We choose p = N 1 for a causal filter
- \triangleright 4 possibilities depending on d and the parity of N:
 - \rightarrow d=1, N even or odd : h(n)=h(N-1-n)
 - b d = i, N even or odd : h(n) = -h(N-1-n)

Une école de l'IMT

Types of filters

▶ Type 1 : N odd, symmetric (d = 1)

$$H(e^{i2\pi v}) = e^{-i2\pi v \frac{N-1}{2}} \sum_{n=0}^{\frac{N-1}{2}} a_n \cos(2\pi v n)$$

► Use : low-pass, high-pass, band-pass

Types of filters

▶ Type 2 : N even, symmetric (d = 1)

- ▶ Property : H(-1) = 0 ($v = \frac{1}{2}$)
- ▶ Use : low-pass, band-pass

Une école de l'IMT

Filter synthesis

Une école de l'IMT

Filter synthesis

🐼 IP PARIS

Types of filters

▶ Type 3 : N odd, antisymmetric (d = i)

- ▶ Property : H(1) = H(-1) = 0 (v = 0 or $\frac{1}{2}$)
- Use : differentiator $(H(f) = i2\pi f)$, Hilbert transform $(H(f) = -i \operatorname{sign}(f))$ in band-pass form

Types of filters

▶ Type 4 : N even, antisymmetric (d = i)

- Property : H(1) = 0 (v = 0)
- ▶ Use : differentiator $(H(f) = i2\pi f)$, Hilbert transform $(H(f) = -i\operatorname{sign}(f))$ in high-pass form

Differentiators

Hilbert transform

Une école de l'IMT

Filter synthesis

Une école de l'IMT

Filter synthesis

Position of the zeros

Position of the zeros

► Complex zero outside the unit circle :

$$(1 - \rho e^{i\theta} z^{-1})(1 - \rho e^{-i\theta} z^{-1})(1 - \frac{1}{\rho} e^{i\theta} z^{-1})(1 - \frac{1}{\rho} e^{-i\theta} z^{-1})$$

► Zero on the unit circle

► Real zero

▶ Real zero on the unit circle

11/32

Summary

Type I	. 1 1 .		Low-pass
N odd	, [-	High-pass
symmetric			Band-pass
Type II	1 1		Low-pass,
N even		H(-1) = 0	• •
		(-)	Band-pass
symmetric			
Type III	1		Differentiator,
		H(1) =	Hilbert
N odd	,	H(-1) = 0	Transform,
antisym.		•	Band-pass
Tuno IV	1		Differentiator,
Type IV		11/1) 0	Hilbert
N even	' 1	H(1) = 0	Transform,
antisym.			High-pass

Part II

FIR filters: iterative methods

TELECOM Paris

/32 Une école de l'IMT

Filter synthesis

Une école de l'IMT

Filter synthesis

P PARIS

Iterative methods

Filter template

Advantages

- ► Optimal design
- ▶ Flexible method
- ► Constant amplitude ripples
- ► Minimum order for a given template

Drawbacks

- ► Computationally demanding synthesis
- ► Not suitable for real-time processing
- ► Not suitable for long filters (numerical stability issues)

15/32 Une école de l'IMT

Filter synthesis

Une école de l'IMT

Filter synthesis

Parametrization of H_R

▶ Factorization : $H_R(v) = P(v)Q(v)$

$H_R(v)$	P(v)	Q(v)
$\sum_{n=0}^{\frac{N-1}{2}} a_n \cos(2\pi v n)$	$\sum_{n=0}^{\frac{N-1}{2}} a_n \cos(2\pi v n)$	1
$\sum_{n=1}^{\frac{N}{2}} b_n \cos\left(2\pi v \left(n - \frac{1}{2}\right)\right)$	$\int_{n=0}^{\frac{N}{2}-1} b_n' \cos(2\pi v n)$	$\cos(\pi v)$
$\sum_{n=1}^{\frac{N-1}{2}} c_n \sin(2\pi v n)$	$\int_{n=0}^{\frac{N-3}{2}} c_n' \cos(2\pi v n)$	$\sin(2\pi v)$
$\sum_{n=1}^{\frac{N}{2}} d_n \sin\left(2\pi v \left(n - \frac{1}{2}\right)\right)$	$\sum_{n=0}^{\frac{N}{2}-1} d_n' \cos(2\pi v n)$	$\sin(\pi v)$

▶ Problem formulation : minimization of the error

$$E(v) = W(v)|H_D(v) - H_R(v)|$$

with N, v_c and v_a fixed

Remez method

- We set $W(v) = 1/\delta_1$ in passband, $W(v) = 1/\delta_2$ in stopband, and W(v) = 0 in transition band
- ► With $P(v) = \sum_{n=0}^{M} a_n \cos(2\pi v n)$, we get :

$$E(v) = W(v)(H_D(v) - P(v)Q(v)) = W'(v)(H'_D(v) - P(v))$$

Une école de l'IMT

Filter synthesis

№ IP PARIS 18/32

Une école de l'IMT

Filter synthesis

D IP PARIS

Alternance theorem

► Minimization in Chebyshev sense :

$$H(e^{i2\pi v}) = \min_{H} ||E(v)||_{\infty}$$

on a closed set of frequencies B

▶ Alternance theorem : the unique and best approximation is obtained when there exist M+2 frequencies $v_0 \dots v_{M+1}$ in Bsuch that $E(v_k) = \pm (-1)^k \delta$ where $\delta = ||E(v)||_{\infty}$

Remez algorithm

- ▶ Initialization : the M+2 alternances are set uniformly in B
- ▶ Iteration
 - Direct resolution of the linear system

$$\sum_{n=0}^{M} a_n \cos(2\pi v_k n) + \frac{(-1)^k \delta}{W(v_k)} = H_D(v_k)$$

(or solution by Lagrangian interpolation)

- ► Search of the extrema of this polynomial
- Choice of the new values of the v_{k}
- ► Convergence in a few iterations

Remez method

Remez method

TELECOM Paris 三選號

Une école de l'IMT

Filter synthesis

Une école de l'IMT

Filter synthesis

D IP PARIS

Remez method

Remez method

D IP PARIS

Part III

Eigenvalues methods

Prolate spheroidal sequences

- ▶ Let h(n) be a low-pass FIR, real, causal filter
- ► Optimization under constraint : let us maximize $\int_{-v_c}^{v_c} |H(e^{i2\pi v})|^2 dv$ under the constraint

$$\int_{-\frac{1}{2}}^{\frac{1}{2}} |H(e^{i2\pi v})|^2 dv = \sum_{n=0}^{N-1} h(n)^2 = 1$$

Une école de l'IMT

Filter synthesis

一選 新

Une école de l'IMT

Filter synthesis

Optimal eigen-filters

- \blacktriangleright Addition of a transition band $[v_C, v_A]$
- ▶ Let us minimize $E = \alpha E_c + (1 \alpha) E_a$ where $\alpha \in]0,1[$ where E_a is the stopband error :

$$E_a = 2 \int_{V_a}^{1/2} |H(e^{i2\pi v})|^2 dv$$

and E_c is the passband error :

$$E_c = 2 \int_0^{v_c} |H(1) - H(e^{i2\pi v})|^2 dv$$

Part IV

Synthesis of recursive filters

► Example : $N(z) = \prod_{k=0}^{\infty} (1 - z_k z^{-1})$ with zeros at frequencies 0.1, 0.2, 0.3, 0.4, 0.5

▶ Example :H(z) = N(z)/D(z) where $D(z) = (1 - pz^{-1})(1 - p^*z^{-1})$, with $p = 0.95e^{i2\pi 0.085}$

Une école de l'IMT

Filter synthesis

№ IP PARIS 27/32

Une école de l'IMT

Filter synthesis

D IP PARIS

Low-pass recursive filters

▶ Position of the poles and zeros

Rejector filter (audio feedback)

$$H(z) = \frac{1 - e^{+i2\pi\nu_c} z^{-1}}{1 - \rho e^{+i2\pi\nu_c} z^{-1}} \frac{1 - e^{-i2\pi\nu_c} z^{-1}}{1 - \rho e^{-i2\pi\nu_c} z^{-1}}$$

$$= \frac{1 - 2\cos(2\pi\nu_c)z^{-1} + z^{-2}}{1 - 2\rho\cos(2\pi\nu_c)z^{-1} + \rho^2 z^{-2}}$$

lacktriangle Remark : the IR is long if ho o 1

- Analog filters : $H_a(s) = \int_{\mathbb{R}} h_a(t) e^{-st} dt$ where $s = 2i\pi f$
- ▶ Digital filters : $H(z) = \sum_{\mathbb{Z}} h(n)z^{-n}$ where $z = e^{2i\pi v}$
- ► Trapezoidal rule to approximate $x(nT) = x((n-1)T) + \int_{(n-1)T}^{nT} x'(t)dt$
- ► Example of the system y(t) = x'(t) (differentiator filter : $H_a(s) = s$)
- ▶ Bilinear transform : $s = \frac{2}{T} \frac{1-z^{-1}}{1+z^{-1}}$
- lacksquare Frequency relationship : $f=rac{1}{\pi T} an(\pi v)$

TELECOM Paris

/32 Une école de l'IMT

Filter synthesis

№ IP PARIS 31/32

Une école de l'IMT

Filter synthesis

D IP PARIS

From continuous to discrete domain

