סיכומי הרצאות ⁻ אלגברה לינארית 2א

מיכאל פרבר ברודסקי

תוכן עניינים

2	ומים נמים		J
2	·	1 לכסון	
2		1.1	
2	פולינום אופייני ומינימלי	1.2	
3		2 ז'ירדו	
3		2.1	
4	דשמידט	גראם	
4		3.1	
4	האלגוריתם עצמו	3.2	
•		3.2	
4	כפלות פנימיות ותבניות בילינאריות		IJ
4	לה פנימית	4 מכפל	
4		4.1	
4		4.2	
5	אורתוגונליות	4.3	
5	משלים אורתוגונלי 4.3.1		
5		4.4	
5	ז של העתקות לינאריות		
5	העתקות אוניטריות	5.1	
6	העתקות אורתוגונליות	5.2	
6	העתקות נורמליות	5.3	
6	ית בילינאריותית בילינאריותית בילינאריות		
6	חפיפת מטריצות	6.1	
6	תבניות בילינאריות סימטריות	6.2	
7	6.2.1 תבנית ריבועית		
7	חבונות בנלנועבנות עונונ־חומורוות	6.2	

חלק I

אלגוריתמים

1 לכסון

העתקה לכסינה. אם T העתקה לינארית כך שקיים בסיס בסיס מכך שלכסונית. אם ד העתקה לכסינה, אז כל מטריצה מייצגת שלה גם לכסינה.

1.1 וקטורים עצמיים וערכים עצמיים

נגיד וקטור עצמי של A לערך עצמי להיות v להיות כך ש־v כך ש־v להיות לערך עצמי של v הוא לערך עצמי לערך עצמי

מרחב הוא V_λ שונים של אונים הוא $V_\lambda=\{\underline{v}\in V\mid A\underline{v}=\lambda\underline{v}\}=\mathrm{Sols}\,(A-\lambda I)$ אונים הוא לכל העצמיים לכל הוא סכום ישר.

A שמורכב מוקטורים עצמיים של $B \subseteq \mathbb{F}^n$ שמיים של א לכסינה A

משפט: במטריצה המלוכסנת, **הערכים העצמיים הם האיברים שנמצאים על האלכסון** עד כדי הסדר שלהם.

1.2 פולינום אופייני ומינימלי

נגדיר את $(\lambda I - A) = \det(\lambda I - A)$ להיות הפולינום האופייני של

- $a_{n-1} = -\operatorname{tr}(A)$ וֹ $a_0 = (-1)^n \det A$ פך ש־ $p_A(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_0$
- ערך עצמי של $\lambda\iff A$ שורש של $p_A(\lambda)$ (כי זה אומר שהמטריצה אינה הפיכה עבור ה־ $\lambda\iff A$ ערך עצמי של λ
 - $.p_A=p_B$ אם A,B דומות אז
 - $.p_{AB}\left(\lambda
 ight)=p_{BA}\left(\lambda
 ight)$, $p_{A}\left(\lambda
 ight)=p_{A^{t}}\left(\lambda
 ight)$ •
 - . המרחבים העצמיים. הסכום ביניהם הוא $V_{\lambda_1},\ldots,V_{\lambda_k}$ יהיי

נגדיר את הריבוי האלגברי של ρ_{α} , (רו), להיות כמות הפעמים ש־ $(\lambda-\alpha)$ מופיע בפולינום (ρ_{α} , כלומר ρ_{α} , כלומר ρ_{α} , אם הפולינום הוא $P_{A}(\lambda)=(\lambda-1)(\lambda-3)^{2}$ אז $P_{A}(\lambda)=(\lambda-1)(\lambda-3)^{2}$

 $\mathrm{dim}\left(V_{\lambda}\right)$ היות להיות את הריבוי של הגיאומטרי את בנוסף נגדיר את בנוסף בנוסף בנוסף בנוסף בנוסף בי

 $\mu_{\lambda} \leq \rho_{\lambda}$, משפט: לכל ערך עצמי

משפט: עבור לגורמים לינאריים אז $p_A(\lambda)$ ואם $p_A(\lambda)$ ואם אז $\rho_{\lambda_1}+\cdots+\rho_{\lambda_k}\leq n$ הערכים העצמיים, הערכים לגורמים $\rho_{\lambda_1}+\cdots+\rho_{\lambda_k}=n$

המשפט המרכזי (תנאי ללכסינות): תהא $A:A\in M_n\left(\mathbb{F}
ight)$ אמ"ם:

- \mathbb{F} מתפרק לגורמים לינאריים מעל $P_A(\lambda)$.1
 - $.
 ho_{\lambda}=\mu_{\lambda}$, A של λ ערך עצמי.

נגדיר את הפולינום המינימלי של M_A , להיות הפולינום המתוקן היחידי כך ש־ $\operatorname{sp}(m_A)$ האידאל המאפס של M_A . מתקיים:

- p_A מחלק את $m_A \bullet$
- $q\mid p_A\iff q\mid m_A$ אי פריק, $q\in\mathbb{F}[x]$ לכל $q\in\mathbb{F}[x]$ לכל נכל אי פריק, אי פריקים אי פריקים $m_A=\prod_{i\in I}q_i^{r_i}$ אי פריקים אי q_i) אי $p_A=\prod_{i\in I}q_i^{m_i}$ כאשר

מתקיים: $A = \operatorname{Diag}(A_1, \ldots, A_n)$ משפט: במטריצת בלוקים אלכסונית

- $p_A = p_{A_1} \cdot \dots \cdot p_{A_n} \bullet$
- $m_A = \operatorname{lcm}(m_{A_1}, \dots, m_{A_n}) \bullet$

ז'ירדוו 2

 λ נגדיר בלוק ז'ורדן להיות מטריצה מהצורה ל $\begin{pmatrix} \lambda & 1 & 0 \\ 0 & \lambda & 1 \\ 0 & 0 & \lambda \end{pmatrix}$ או או הפילו ל $\begin{pmatrix} \lambda & 1 & 0 \\ 0 & \lambda & 1 \\ 0 & 0 & \lambda \end{pmatrix}$ ואפילו להיות מטריצה מהצורה מהצורה ל $\begin{pmatrix} \lambda & 1 & 0 \\ 0 & \lambda & 1 \\ 0 & 0 & \lambda \end{pmatrix}$ ואפילו אלכסון של 1ים.

צורת ז'ורדן היא מטריצת בלוקים אלכסונית כך שכל הבלוקים הם בלוקי ז'ורדן.

באופן פרקטי וחישובי:

- ם האלגבריים האלגבריים ב' אות הערכים העצמיים ב' אלגבריים האלגבריים האלגבריים שלהם .1 חישוב הפולינום האופייני. נסמן את הערכים העצמיים ב' $.\rho_{\lambda_1},\dots,\rho_{\lambda_k}$
 - $:\lambda_i$ לכל .2
- (א) עד שהמימד של זה מפסיק להשתנות (לא כולל). $\ker\left(A-\lambda_iI\right),\dots,\ker\left(A-\lambda_iI\right)^{\rho_{\lambda_i}}$ עד שהמימד את נחשב את נחשב מפסיק להשתנות ב-j. זה גם הריבוי בפולינום המינימלי.
 - $:1^{-1}$ עד ל־נ (ב)
 - . ker $(A-\lambda_i I)^j$ לבסיס אל $\ker (A-\lambda_i I)^{j-1}$.i.
- $P=[Id]_E^B$ כי $J=P^{-1}AP$ ואז $P=\begin{pmatrix} B_1 & \dots & B_n \end{pmatrix}$ נכי $J=P^{-1}AP$ ואז $J=P^{-1}AP$ (כי $J=P^{-1}AP$). ואכן $J=P^{-1}AP$ ואכן $J=P^{-1}AP$ (כי $J=P^{-1}AP$).

משפט:

- צורת זורדן יחידה עד כדי הסידור של בלוקי הז'ורדן.
- . אים הבלוקים שלו ערך עצמי כלשהו הוא מספר הבלוקים שלו. μ_{λ}
 - הריבוי האלגברי באופייני הוא סכום הגדלים של הבלוקים. ho_{λ}
- הריבוי האלגברי במינימלי הוא המקסימום של הגדלים של הבלוקים.

2.1 העלאה בחזקה

$$\begin{pmatrix} x & 1 & & \\ & x & \ddots & \\ & & \ddots & 1 \\ & & & x \end{pmatrix}^n = \begin{pmatrix} x^n & \binom{n}{1} x^{n-1} & \binom{n}{2} x^{n-2} & \\ & x^n & \ddots & \binom{n}{2} x^{n-2} \\ & & \ddots & \binom{n}{1} x^{n-1} \\ & & & x^n \end{pmatrix}$$

לדוגמה:

$$\begin{pmatrix} 2 & 1 & 0 & 0 \\ 0 & 2 & 1 & 0 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 2 \end{pmatrix}^{3} = \begin{pmatrix} 2^{3} & 3 \cdot 2^{2} & \begin{pmatrix} 3 \\ 2 \end{pmatrix} \cdot 2^{1} & \begin{pmatrix} 3 \\ 3 \end{pmatrix} \cdot 2^{0} \\ 0 & 2^{3} & 3 \cdot 2^{2} & \begin{pmatrix} 3 \\ 2 \end{pmatrix} \cdot 2^{1} \\ 0 & 0 & 2^{3} & 3 \cdot 2^{2} \\ 0 & 0 & 0 & 2^{3} \end{pmatrix} = \begin{pmatrix} 8 & 12 & 6 & 1 \\ 0 & 8 & 12 & 6 \\ 0 & 0 & 8 & 12 \\ 0 & 0 & 0 & 8 \end{pmatrix}$$

3 גראם־שמידט

3.1 הטלה

נגדיר את ההטלה של וקטור v על להיות:

$$P_{U}(v) = \sum_{i=1}^{n} \frac{\langle v, b_{i} \rangle}{\langle b_{i}, b_{i} \rangle} \cdot b_{i}$$

כאשר b_1, \ldots, b_n בסיס אורתוגונלי, בהמשך נראה שקיים כזה לכל מרחב נוצר סופית. תכונות:

- $P_{U}^{2}=P_{U}$ ולכן, א $u\in U.P_{U}\left(u
 ight) =u$
- $.U^{\perp}$ נסמן גם ב-גו. $\ker\left(P_{U}
 ight)=\{v\in V\mid v\perp U\}$ יש ב- לינארית, כך שי
 - v לכל $\left(v-P_{U}\left(v
 ight)\right)\perp U$

 $\operatorname{dist}\left(v,U\right)=\inf_{u\in U}\operatorname{dist}\left(v,u\right)$ ש־ש ש־הקיים של $\operatorname{dist}\left(v,U\right)=\operatorname{dist}\left(v,P_{U}\left(v\right)\right)$ נגדיר נגדיר נגדיר $\operatorname{dist}\left(v,U\right)=\operatorname{dist}\left(v,P_{U}\left(v\right)\right)$ הזה הוא המרחק הכי קצר מ"ע ל־U.

3.2 האלגוריתם עצמו

 $\mathrm{sp}\,(b_1,\dots,b_n)$ ל־כך לה w_1,\dots,w_x אלגוריתם סדרה למציאת למציאת האלגוריתם האלגוריתם האלגוריתם למציאת האלגוריתם למציאת שר־כד האלגוריתם למציאת שר לווע האלגוריתם למציאת שר

U=1נוריד מ־ b_1,\ldots,b_n את האפסים. נגדיר את $w_1=\frac{1}{||b_1||}b_1$ להיות המנורמל. לכל b_1,\ldots,b_n את גדיר את $w_i'=b_i-P_U(b_i)$ ואז נחשב גען יאן יאן $w_i'=b_i-P_U(b_i)$ אם גען יאן יאן גרורמל. המנורמל.

חלק II

מכפלות פנימיות ותבניות בילינאריות

4 מכפלה פנימית

4.1 הגדרות בסיסיות

 $\langle\cdot,\cdot
angle$: מכפלה אוניטרית (נקרא "מכפלה פנימית" מעל $\mathbb R$ מעל V היא פונקציה V יהי מכפלה אוניטרית (נקרא "מכפלה עד": מכפלה עד") מעל V היא פונקציה יהי ער אוניטרית (נקרא "מכפלה אוניטרית (נקרא "מכפלה עד") מעל יש־נ

- $\langle \alpha v_1 + \beta v_2, u \rangle = \alpha \cdot \langle v_1, \underline{u} \rangle + \beta \cdot \langle v_2, \underline{u} \rangle$.1 לינאריות לפי הרכיב השמאלי:
 - $\langle \underline{v}, \underline{u} \rangle = \overline{\langle \underline{u}, \underline{v} \rangle}$:2. הרמיטיות:
 - $\langle \underline{v}, \underline{v} \rangle \in \mathbb{R} \wedge \langle \underline{v}, \underline{v} \rangle \geq 0$.3
 - $\langle v,v \rangle = 0 \iff v = 0$ ניין .4

4.2 תכונות

משפט לגבי הרכיב הימני:

. חיבוריות לפי הימני. $\langle \underline{u}, v_1 + v_2 \rangle = \langle u, v_1 \rangle + \langle u, v_2 \rangle$

- . כמו הומוגניות ברכיב הימני, אבל עם הצמוד. $\langle v, \alpha u \rangle = \overline{\alpha} \, \langle v, u \rangle$
 - . מתאפס מתאפס מחליב הרכיב הימני $\langle \underline{v},\underline{0}
 angle = 0$
- לכן יש לנו כמעט לינאריות לפי הרכיב הימני, אבל עם הסקלר הצמוד.
 - $\left\langle \sum_{i=1}^n a_i \underline{v_i}, \sum_{j=1}^m b_j \underline{u_j} \right\rangle = \sum_{i=1}^n \sum_{j=1}^m a_i \overline{b_j} \left\langle \underline{v_i}, \underline{u_j} \right\rangle$ ומכאן נובע: •

4.3 אורתוגונליות

 $\langle v_i, v_j \rangle = 0$ כלומר $\forall i \neq j. v_i \perp v_j$ אמ"ם אמ"ם אורתוגונלית נקראת אורתוגונלית (v_1, \dots, v_n)

. סדרה אוניטרית הסטנדרטית סדרה אורתוגונלית עם המכפלה האוניטרית הסטנדרטית
$$\begin{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$$

נגדיר וקטור יחידה, שנקרא גם הוקטור v כך ש־ $|\underline{v}|$. אם $\underline{v}\neq 0$ אז $\underline{v}\cdot \frac{1}{||\underline{v}||}$ וקטור יחידה, שנקרא גם הוקטור המנורמל. אז סדרה אורתונורמלית היא סדרה אורתוגונלית של וקטורי יחידה.

משפט: סדרה אורתוגונלית היא בת"ל.

4.3.1 משלים אורתוגונלי

יהי $U\subseteq U$. נגדיר U^\perp להיות המרחב שניצב לכל איבר ב־U. נסמן U=k להיות המרחב שניצב לכל איבר ב-U. נחשב אותו בסיס של U לבסיס של U, גראם־שמידט על הבסיס שיוצא, ואז ניקח את האיברים ה־U, גראם של בסיס של U. מתקיים:

$$U\oplus U^\perp=V$$
 .1

$$U=\left(U^{t}
ight)^{t}$$
 אז U נוצר סופית אז $U\subseteq\left(U^{\perp}
ight)^{\perp}$.2

$$(U+W)^{\perp} = U^{\perp} \cap W^{\perp}$$
 .3

$$\left(U\cap W\right)^{\perp}=U^{\perp}+W^{\perp}$$
 .4

$$W^\perp \subseteq U^\perp$$
 אז $U \subseteq W$ סא .5

$$\langle v,u \rangle = \langle P_{U}\left(v\right),P_{U}\left(u\right) \rangle + \langle P_{U^{\perp}}\left(v\right),P_{U^{\perp}}\left(u\right) \rangle$$
 .6

4.4 נורמה

:נגדיר $|a| = \sqrt{\langle a,a
angle}$ מתקיים

$$||a|| = 0 \iff a = 0^{-1} ||a|| \ge 0 \bullet$$

$$a \in L, \lambda \in \mathbb{R}$$
 לכל $||\lambda a|| = |\lambda| \cdot ||a||$

$$|||a|| - ||b||| \le ||a + b|| \le ||a|| + ||b||$$
 •

$$a\perp b\iff ||a+b||^2=||a||^2+||b||^2$$
 משפט פיתגורס:

5 סוגים של העתקות לינאריות

5.1 העתקות אוניטריות

העתקה מעל $\mathbb C$ המקיימת (Tu,Tv)=(u,v) נקראת העתקה אוניטרית. היא משמרת (Tu,Tv)=(u,v) המקיימת (Tu,Tv=(u,v) ה (Tu,Tv=(u,v)) (Tu,Tv=(u,v) (T

משפט: כל דבר פה שקול לכך ש־T אוניטרית.

- .1 מעתיקה בסיס אורתונורמלי לבסיס אורתונורמלי.
- $T^*=T^{-1}$. לכן אם T אוניטרית אז היא הפיכה כך ש־ $T^*T=I$.2
 - .היחידה על מעגל היחידה וכל הערכים העצמיים T .3

5.2 העתקות אורתוגונליות

 \mathbb{R} דומה אבל מעל

משפט: T אורתונורמלי. בפרט אם $T\iff T$ מעתיקה בסיס אורתונורמלי לבסיס אורתונורמלי. בפרט אם T אוניטרית היא הפיכה.

משפט: יהי V מרחב וקטורי, מעל $\mathbb R$ או $\mathbb C$, עם מכפלה פנימית. התנאים הבאים שקולים:

- $.TT^* = T^*T = I$ כלומר $.1^* = T^{-1}$.
- .2 לכל u, v, אורתוגונלית לפי השדה, (Tu, Tv) = (u, v) , לכל .2
 - .3 לכל v, ||v|| = ||v||, כלומר T שומרת על אורכים.

5.3 העתקות נורמליות

 $TT^* = T^*T$ אם <u>נורמלית</u>

משפט: מטריצה נורמלית ניתנת ללכסון אוניטרי, כלומר קיים בסיס אורתונורמלי של וקטורים עצמיים של $T = P^*DP$ ו־ $T = P^*DP$ כאשר

משפט: המרחבים העצמיים ניצבים זה לזה.

 $|T(v)| = |T^*(v)|$:טענה

6 תבניות בילינאריות

הגדרה: תבנית בילינארית היא $f:(V\times W)\to \mathbb{F}$ שלינארית על פי הרכיב השמאלי ועל פי הרכיב הימני. נסמן את קבוצת התבניות הבילינאריות ב־Bil $(V,V):=\mathrm{Bil}\,(V,V)$, או

 $(v,w)=[v]_B^t\cdot [f]_{B,C}\cdot [w]_C$ מטריצה מייצגת: נגדיר $f(v,w)=[v]_B^t\cdot [f]_{B,C}$ מטריצה מייצגת: נגדיר מייצגת: מייצגת: מייצגת: נגדיר אוניים ביינים אוניים ביינים אוניים מייצגת: נגדיר מייצגת: נגדיר אוניים ביינים ביינים אוניים ביינים מיינים ביינים אוניים ביינים ביינים

 $[f]_{B',C'} = \left([Id]_B^{B'}
ight)^t \cdot [f]_{B,C} \cdot [Id]_C^{C'}$ מעבר בסיסים:

. בסיסים לשהם או רג $\operatorname{rk}\left([f]_{B,C}\right)$ היות להיות רג רגה הדרגה להיות הדרגה להיות רג רגה הגדרה:

. הפיכה. $f = \dim V = \dim W$ הפיכה. $f = \dim F$ הפיכה. הגדרה: $f = \dim V$

6.1 חפיפת מטריצות

A,B שתי מטריצות A,B נקראות שקולות אם $A=P^tBQ$ שתי מטריצות אם A,B נקראות שקולות אם

6.2 תבניות בילינאריות סימטריות

תבנית בילינארית תקרא σ סימטרית אם לכל σ על, σ על, σ המטריצה המייצגת היא אלכסונית. תבנית בילינארית חלבסטר: מעל σ תהי σ תבנית בילינארית סימטרית כך ש־ σ מעל σ . תהי σ תבנית בילינארית סימטרית כך ש־ σ מעל σ בסיט σ בחירת הבסיס.

כדי לחשב את אינדקסי ההתמדה הללו, P_+ כמות ה־1ים ו־ P_- כמות ההפרש שלהם גם נקרא הסיגנטורה), ממטריצה מייצגת, יש שתי דרכים:

1. דירוג בו זמנית של השורות ושל העמודות, עד שמגיעים לצורה אלכסונית.

וה $\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$ הדטרמיננטות של חתכים של המטריצה (rk r) המטריצה למשל עבור ב Δ_0,\ldots,Δ_r הדטרמיננטות היהיה:

$$\Delta_0 = 1, \Delta_1 = \det \begin{vmatrix} 1 \\ 1 \end{vmatrix}, \Delta_2 = \det \begin{vmatrix} 1 & 2 \\ 4 & 5 \end{vmatrix}, \Delta_3 = \det \begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{vmatrix}$$

 P_{-} כמות הפעמים שהסימן כן משתנה מהקודם היא P_{+} , כמות הפעמים שהסימן לא משתנה מהקודם היא

טענה: תבנית בילינארית חיובית לחלוטין וסימטרית היא בעצם <u>מכפלה פנימית.</u>

(חיובית לחלוטין זו תכונה של תבניות ריבועיות/סימטריות כך ש־f(v,v)>0 לכל או באופן שקול שכמטריצה המייצגת כל הע"ע חיוביים, או באופן שקול ש־ $\Delta_i>0$ לכל ל

6.2.1 תבנית ריבועית

תהי תבנית הימטרית. נגדיר Q(v)=f(v,v) ונקרא לה תבנית ריבועית. כל תבנית ריבועית. תהי $f\in \mathrm{Bil}\,(V)$ מיוצגת ביחידות על ידי תבנית בילינארית סימטרית. ניתן למצוא את f ע"י:

$$2f(v, w) = Q(v + w) - Q(v) - Q(w)$$

6.3 תבניות בילינאריות אנטי־סימטריות

. המטריצה המייצגת היא: f(v,w) = -f(w,v) אם לכל אם לכל סימטרית תקרא המייצגת היא:

$$\operatorname{Diag}\left(\begin{array}{|c|c|}\hline \begin{pmatrix} \frac{1}{2}\operatorname{rk}(f) & \text{times} \\\hline \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \dots, \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, 0, \dots, 0 \\ \end{array}\right)$$

 $n-\mathrm{rk}\,f$ זוגי, ומספר האפסים הוא $\mathrm{rk}\,f$ בפרט