Advanced Computer Vision

Lecture 5

黄正民 Cheng-Ming Huang

EE, NTUT

Point Operators

- Color spaces transformation
- □ Gray-level transformation
- ☐ Histogram processing
- Color description and matching
- Geometric transformation

Gray-Level Transformation

□ Input gray level v.s. output gray level

Gamma Correction

- Remove non-linear mapping between image and input/output devices
- Power-Law Transform

Gray-Level Transformation

- Contrast stretching
- ☐ Gray-level slicing

original

Histogram Processing

n: total number of image pixels

 n_i : number of pixels with intensity value j

Histogram equalization

pixel intensity value $i \rightarrow c_i = 255 \sum_{j=0}^{i} \frac{n_j}{n}$

a

b=a/3

c= equalization of b

Histogram Processing

Histogram matching (specification)

Color Description and Matching

- Color description
 - Histogram (in selected color space)
- Color similarity matching
 - Compares the dense histograms of reference and candidate
 - Normalize the histograms as probability distributions

Color Description and Matching

- \square Compares two dense histograms H₁ & H₂ (Σ_I: summation over all bins of image I)
 - Correlation

$$d(H_1, H_2) = \frac{\sum_{I} (H'_1(I) \cdot H'_2(I))}{\sqrt{\sum_{I} (H'_1(I)^2) \cdot \sum_{I} (H'_2(I)^2)}}$$
$$H'_k(I) = \frac{H_k(I) - 1}{N \cdot \sum_{J} H_k(J)}$$

Chi-Square

$$d(H_1, H_2) = \sum_{I} \frac{(H_1(I) - H_2(I))^2}{H_1(I) + H_2(I)}$$

Bhattacharyya distance

$$d(H_1, H_2) = \sqrt{1 - \sum_{I} \frac{\sqrt{H_1(I) \cdot H_2(I)}}{\sqrt{\sum_{I} H_1(I) \cdot \sum_{I} H_2(I)}}}$$

□ Basic set of 2D geometric image transformations

Image warping involves modifying the domain of an image function rather than its range.

- Forward warping algorithm
 - a pixel f(x) is copied to its corresponding location x'=h(x) in image g(x')

procedure forwardWarp(f, h, out g):

For every pixel x in f(x)

- 1. Compute the destination location x' = h(x).
- 2. Copy the pixel f(x) to g(x').
- Inverse warping algorithm
 - creating an image g(x') from an image f(x) using the parametric transform x'=h(x)

procedure inverseWarp(f, h, out g):

For every pixel x' in g(x')

- 1. Compute the source location $x = \hat{h}(x')$
- 2. Resample f(x) at location x and copy to g(x')

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos \Theta & -\sin \Theta \\ \sin \Theta & \cos \Theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Forward warping

Get each pixel g(x',y') from its corresponding location $(x,y) = T^{-1}(x',y')$ in the first image

Q: what if pixel comes from "between" two pixels?

Sol 2: Interpolate color value from neighbors

nearest neighbor, bilinear...

Bilinear interpolation

Sampling at f(x,y):

$$f(x,y) = (1-a)(1-b) f[i,j] + a(1-b) f[i+1,j] + ab f[i+1,j+1] + (1-a)b f[i,j+1]$$

ACV Lecture 5 Page 14

□ Translation

$$x' = \left[egin{array}{ccc} I & t \end{array}
ight] ar{x} \qquad ext{or} \qquad ar{x}' = \left[egin{array}{ccc} I & t \ 0^T & 1 \end{array}
ight] ar{x}$$

- \square Rotation + translation $x' = \begin{bmatrix} R & t \end{bmatrix} \bar{x}$ $R = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$
- Scaled rotation (similarity transform)

$$x' = \left[\begin{array}{ccc} s R & t \end{array} \right] ar{x} = \left[\begin{array}{ccc} a & -b & t_x \\ b & a & t_y \end{array} \right] ar{x},$$

- \Box Affine $x' = \begin{bmatrix} a_{00} & a_{01} & a_{02} \\ a_{10} & a_{11} & a_{12} \end{bmatrix} \bar{x}.$
- □ Projective (homography)

$$\tilde{x}' = \tilde{H}\tilde{x},$$

Transformation	Matrix	# DoF	Preserves	Icon
translation	$\left[egin{array}{c c} I & t\end{array} ight]_{2 imes 3}$	2	orientation	
rigid (Euclidean)	$\left[\begin{array}{c c} R \mid t\end{array} ight]_{2 imes 3}$	3	lengths	\Diamond
similarity	$\left[\begin{array}{c c} sR & t\end{array}\right]_{2 imes 3}$	4	angles	\Diamond
affine	$\left[\begin{array}{c}A\end{array} ight]_{2 imes 3}$	6	parallelism	
projective	$\left[egin{array}{c} ilde{m{H}} \end{array} ight]_{3 imes 3}$	8	straight lines	

Table 2.1 Hierarchy of 2D coordinate transformations. Each transformation also preserves the properties listed in the rows below it, i.e., similarity preserves not only angles but also parallelism and straight lines. The 2×3 matrices are extended with a third $[0^T \ 1]$ row to form a full 3×3 matrix for homogeneous coordinate transformations.

2D Transformations

Basic 2D transformations as 3x3 matrices

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Translate

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} \cos \Theta & -\sin \Theta & 0 \\ \sin \Theta & \cos \Theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & s\boldsymbol{h}_x & 0 \\ s\boldsymbol{h}_y & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Rotate

$$\begin{bmatrix} \mathbf{x}' \\ \mathbf{y}' \\ 1 \end{bmatrix} = \begin{bmatrix} \mathbf{s}_{x} & 0 & 0 \\ 0 & \mathbf{s}_{y} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ 1 \end{bmatrix}$$

Scale

$$\begin{bmatrix} \mathbf{x}' \\ \mathbf{y}' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & s\mathbf{h}_x & 0 \\ s\mathbf{h}_y & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ 1 \end{bmatrix}$$

Shear

2D Transformations

- □ 2D Affine transformations
 - Combinations of linear transformations and translations
 - Parallel lines remain parallel

$$\begin{bmatrix} x' \\ y' \\ w \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

- □ Projective transformations
 - Affine transformations and projective warps
 - Parallel lines do not necessarily remain parallel

$$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$