QuantConnect Documentation - Research Environment

Created on 05/17/2023

Copyright QuantConnect 2023

Table of Content

- 1.1 Getting Started 1.2 Research Engine
- 2 Initialization

- 3 Datasets 3.1 Key Concepts
- 3.2 US Equity
- 3.3 Equity Fundamental Data
 3.4 Equity Options
- 3.5 Crypto
- 3.6 Crypto Futures
- 3.7 Futures
- 3.8 Futures Options
- 3.9 Forex 3.10 CFD
- 3.11 Indices
- 3.12 Index Options 3.13 Alternative Data
- 3.14 Custom Data
- 4 Charting 4.1 Bokeh
- 4.3 Plotly
- 4.4 Seaborn
- 4.5 Plotly NET
- 5 Indicators
 5.1 Data Point Indicators
- 5.2 Bar Indicators
- 5.3 Trade Bar Indicators 5.4 Combining Indicators 5.5 Custom Indicators

- 5.6 Custom Resolutions
- 6 Object Store 7 Machine Learning
- 7.1 Key Concepts

- 7.2 Keras 7.3 TensorFlow 7.4 Scikit-Learn
- 7.5 Hmmlearn

- 7.6 Gpleam
 7.7 PyTorch
 7.8 Stable Baselines
 7.9 Tsleam
- 7.10 XGBoost 7.11 Aesera 8 Debugging

- 9 Meta Analysis
- 9.1 Key Concepts 9.2 Backtest Analysis

- 9.2 Backtest Artalysis
 9.3 Optimization Analysis
 9.4 Live Analysis
 10 Applying Research
 10.1 Key Concepts
 10.2 Mean Reversion
 10.3 Random Fronts Regression
 10.4 Uncompleted Assets

- 10.4 Uncorrelated Assets 10.5 Kalman Filters and Stat Arb 10.6 PCA and Pairs Trading
- 10.7 Hidden Markov Models
- 10.8 Long Short-Term Memory 10.9 Airline Buybacks
- 10.10 Sparse Optimization

1 Key Concepts

1.1 Getting Started

Introduction

The Research Environment is a <u>Jupyter notebook</u>-based, interactive commandline environment where you can access our data through the <code>QuantBook</code> class. The environment supports both Python and C#. If you use Python, you can import code from the code files in your project into the Research Environment to aid development.

Before you run backtests, we recommend testing your hypothesis in the Research Environment. It's easier to perform data analysis and produce plots in the Research Environment than in a backtest.

Before backtesting or live trading with machine learning models, you may find it beneficial to train them in the Research Environment, save them in the ObjectStore, and then load them from the ObjectStore into the backtesting and live trading environment

In the Research Environment, you can also use the QuantConnect API to import your backtest results for further analysis.

Example

The following snippet demonstrates how to use the Research Environment to plot the price and Bollinger Bands of the S&P 500 index ETF, SPY:

The following snippet demonstrates how to use the Research Environment to print the price of the S&P 500 index ETF, SPY:

```
// Load the required assembly files and data types
#load "../Initialize.csx"
#load "../QuantConnect.csx"
using QuantConnect.ata;
using QuantConnect.Algorithm;
using QuantConnect.Algorithm;
using QuantConnect.Algorithm;
using QuantConnect.Research;

// Create a QuantBook
var dp = new QuantBook();

// Create a security subscription
var symbol = qb.AddEquity("SPY").Symbol;

// Request some historical data
var history = qb.History(symbol, 70, Resolution.Daily);

foreach (var tradeBar in history)
{
        Console.WriteLine($"{tradeBar.EndTime} :: {tradeBar.ToString()}");
}

# Create a QuantBook
qb = QuantBook()

# Create a security subscription
spy = qb.AddEquity("SPY")

# Request some historical data
history = qb.History(qb.Securities.Keys, 360, Resolution.Daily)

# Calculate the Bollinger Bands
bbdf = qb.Indicator(BollingerBands(30, 2), spy.Symbol, 360, Resolution.Daily)

# Plot the data
bbdf.drop('standarddeviation', 1).plot()
```

Open Notebooks

Each new project you create contains a notebook file by default. Follow these steps to open the notebook:

- 1. Open the project.
- 2. In the right navigation menu, click the Explorer icon.
- 3. In the Explorer panel, expand the Workspace (Workspace) section.
- 4. Click the Research.ipynb research.ipynb file.

Run Notebook Cells

Notebooks are a collection of cells where you can execute code snippets or write MarkDown

The following describes some helpful keyboard shortcuts to speed up your research:

Keyboard Shortcut Description Shift+Enter Run the selected cell. a Insert a cell above the selected cell. b Insert a cell below the selected cell. x Cut the selected cell. v Paste the copied or cut cell. z Undo cell actions.

Stop Nodes

You need stop node permissions to stop research nodes in the cloud.

Follow these steps to stop a research node:

- 1. Open the project.
- 2. In the right navigation menu, click the Resources icon.
- 3. Click the stop button next to the research node you want to stop.

Add Notebooks

Follow these steps to add notebook files to a project:

- 1. Open the project.
- 2. In the right navigation menu, click the Explorer icon.
- 3. In the Explorer panel, expand the Workspace (Workspace) section.
- 4. Click the New File icon.
- Enter fileName .ipynb .
- 6. Press Enter .

Rename Notebooks

Follow these steps to rename a notebook in a project:

- Open the project.
 In the right ravigation menu, click the Deplorer icon.
 In the Explorer panel, right-click the notebook you want to rename and then click Rename.
 Enter the new name and then press Enter.

Delete Notebooks

Follow these steps to delete a notebook in a project:

- Open the project.
 In the right ravigation menu, click the a Explorer icon.
 In the Explorer panel, right-click the notebook you want to delete and then click Delete Permanently.
 Click Delete.

Learn Jupyter

The following table lists some helpful resources to learn Jupyter:

Type Producer Name Text Jupyter Tutorial tutorialspoint Text Jupyter Notebook Tutorial: The Definitive Guide DataCamp

1.2 Research Engine

Introduction

The Research Environment is a Jupyter notebook -based, interactive commandline environment where you can access our data through the QuantBook class. The environment supports both Python and C#. If you use Python, you can import code from the code files in your project into the Research Environment to aid development.

Before you run backtests, we recommend testing your hypothesis in the Research Environment. It's easier to perform data analysis and produce plots in the Research Environment than in a backtest.

Before backtesting or live trading with machine learning models, you may find it beneficial to train them in the Research Environment, save them in the ObjectStore, and then load them from the ObjectStore into the backtesting and live trading environment

In the Research Environment, you can also use the QuantConnect API to import your backtest results for further analysis.

Batch vs Stream Analysis

The backtesting environment is an event-based simulation of the market. Backtests aim to provide an accurate representation of whether a strategy would have performed well in the past, but they are generally slow and aren't the most efficient way to test the foundational ideas behind strategies. You should only use backtests to verify an idea after you have already tested it with statistical analysis.

The Research Environment lets you build a strategy by starting with a central hypothesis about the market. For example, you might hypothesize that an increase in sunshine hours will increase the production of oranges, which will lead to an increase in the supply of oranges and a decrease in the price of Orange Juice Futures. You can attempt to confirm this working hypothesis by analyzing weather data, production of oranges data, and the price of Orange Juice futures. If the hypothesis is confirmed with a degree of statistical significance, you can be confident in the hypothesis and translate it into an algorithm you can backtest.

Jupyter Notebooks

Jupyter notebooks support interactive data science and scientific computing across various programming languages. We carry on that philosophy by providing an environment for you to perform exploratory research and brainstorm new ideas for algorithms. A Jupyter notebook installed in QuantConnect allows you to directly explore the massive amounts of data that is available in the Dataset Market and analyze it with python or C# commands. We call this exploratory notebook environment the Research Environment.

Open Notebooks

To open a notebook, open one of the .ipynb files in your cloud projects or see Running Local Research Environment .

Execute Code

The notebook allows you to run code in a safe and disposable environment. It's composed of independent cells where you can write, edit, and execute code. The notebooks support Python, C#, and Markdown code.

Keyboard Shortcuts

The following table describes some useful keyboard shortcuts:

Shortcut Description

Shiff+Enter Run the selected cell

- a Insert a cell above the selected cell
- b Insert a cell below the selected cell
- x Cut the selected cell
- Paste the copied or cut cell
- z Undo cell actions

Terminate Research Sessions

If you use the Research Environment in QuantConnect Cloud, to terminate a research session, stop the research node in the Resources panel. If you use the local Research Environment, see Managing Kernels and Terminals in the JupyterLab documentation.

Your Research and LEAN

To analyze data in a research notebook, create an instance of the QuantBook class. QuantBook is a wrapper on QCAlgorithm , which means QuantBook allows you to access all the methods available to QCAlgorithm and some additional methods. The following table describes the helper methods of the QuantBook class that aren't available in the QCAlgorithm class:

Method Description

GetFundamental Get fundamental data for some Symbol(s).

symbol = qb.AddEquity("SPY").Symbol

GetFutureHistory Get the expiration, open interest, and price data of the contracts in a Futures chain.

GetOptionHistory Get the strike, expiration, open interest, option right, and price data of the contracts in an Options chain.

<u>Indicator</u> Get the values of an indicator for an asset over time.

QuantBook gives you access to the vast amounts of data in the Dataset Market. Similar to backtesting, you can access that data using history calls. You can also create indicators, consolidate data, and access charting features. However, keep in mind that event-driven features available in backtesting, like universe selection and OnData events, are not available in research. After you analyze a dataset in the Research Environment, you can easily transfer the logic to the backtesting environment. For example, consider the following code in the Research Environment:

```
// Initialize QuantBook
var qb = new QuantBook();
// Subscribe to SPY data with QuantBook var symbol = qb.AddEquity("SPY").Symbol;
// Make history call with QuantBook
var history = qb.History(symbol, TimeSpan.FromDays(10), Resolution.Daily);
# Initialize QuantBook
gb = OuantBook()
# Subscribe to SPY data with OuantBook
          qb.AddEquity("SPY").Symbol
# Make history call with QuantBook
history = qb.History(symbol, timedelta(days=10), Resolution.Daily)
To use the preceding code in a backtest, replace QuantBook() new QuantBook() with self this .
public override void Initialize()
     // Set qb to instance of QCAlgorithm
var qb = this;
     // Subscribe to SPY data with QCAlgorithm
var symbol = qb.AddEquity("SPY").Symbol;
     // Make history call with QCAlgorithm
     var history = qb.History(symbol, TimeSpan.FromDays(10), Resolution.Daily);
def Initialize(self) => None:
     # Set qb to instance of QCAlgorithm qb = self
     # Subscribe to SPY data with QCAlgorithm
```

```
# Make history call with QCAlgorithm
history = qb.History(symbol, timedelta(days=10), Resolution.Daily)
```

Import Project Code

To import code from your code files to your Research Environment session, use Python.

One of the drawbacks of using the Research Environment you may encounter is the need to rewrite code you've already written in a file in the backtesting environment. Instead of rewriting the code, you can import the methods from the backtesting environment into the Research Environment to reduce development time. For example, say you have the following helpers.py file in your project:

```
def Add(a, b):
return a+b
```

To import the preceding method into your research notebook, use the import statement.

```
from helpers import Add
# reuse method from helpers.py
Add(3, 4)
```

If you adjust the file that you import, restart the Research Environment session to import the latest version of the file. To restart the Research Environment, stop the research node and then open the notebook again.

2 Initialization

Introduction

Before you request and manipulate historical data in the Research Environment, you should set the notebook dates, add data subscriptions, and set the time zone.

Set Dates

The start date of your QuantBook determines the latest date of data you get from history requests. By default, the start date is the current day. To change the start date, call the SetStartDate method.

```
qb.SetStartDate(2022, 1, 1);
qb.SetStartDate(2022, 1, 1)
```

The end date of your QuantBook should be greater than the end date. By default, the start date is the current day. To change the end date, call the SetEndDate method.

```
qb.SetEndDate(2022, 8, 15);
qb.SetEndDate(2022, 8, 15)
```

Add Data

You can subscribe to asset, fundamental, alternative, and custom data. The Dataset Market provides 400TB of data that you can easily import into your notebooks.

Asset Data

To subscribe to asset data, call one of the asset subscription methods like AddEquity or AddForex. Each asset class has its own method to create subscriptions. For more information about how to create subscriptions for each asset class, see the Create Subscriptions section of an asset class in the Datasets chapter.

```
qb.AddEquity("AAPL"); // Add Apple 1 minute bars (minute by default) qb.AddForex("EURUSD", Resolution.Second); // Add EURUSD 1 second bars qb.AddEquity("SPY")  # Add Apple 1 minute bars (minute by default) qb.AddForex("EURUSD", Resolution.Second)  # Add EURUSD 1 second bars
```

Alternative Data

To add alternative datasets to your notebooks, call the AddData method. For a full example, see Alternative Data.

Custom Data

To add custom data to your notebooks, call the AddData method. For more information about custom data, see Custom Data

Limitations

There is no official limit to how much data you can add to your notebooks, but there are practical resource limitations. Each security subscription requires about 5MB of RAM, so larger machines let you request more data. For more information about our cloud nodes, see <u>Research Nodes</u>.

Set Time Zone

The notebook time zone determines which time zone the DateTime datetime objects are in when you make a history request based on a defined period of time. When your history request returns a DataFrame , the timestamps in the DataFrame are based on the data time zone. When your history request returns a TradeBars , QuoteBars , Ticks , or Slice object, the Time properties of these objects are based on the notebook time zone, but the EndTime properties of the individual TradeBar , QuoteBar , and Tick objects are based on the data time zone.

The default time zone is Eastern Time (ET), which is UTC-4 in summer and UTC-5 in winter. To set a different time zone, call the SetTimeZone method. This method accepts either a string following the IANA Time Zone database convention or a NodaTime. DateTimeZone object. If you pass a string, the method converts it to a NodaTime DateTimeZone object. The TimeZones class provides the following helper attributes to create NodaTime. DateTimeZone objects:

```
SetTimeZone ("Europe/London");
qb.SetTimeZone (NodaTime.DateTimeZone.Utc);
qb.SetTimeZone (TimeZones.Chicago);
qb.SetTimeZone ("Europe/London")
qb.SetTimeZone (TimeZones.Chicago)
```

3 Datasets

3.1 Key Concepts

Introduction

You can access most of the data from the Dataset Market in the Research Environment. The data includes Equity, Crypto, Forex, and derivative data going back as far as 1998. Similar to backtesting, to access the data, create a security subscription and then make a history request.

Key History Concepts

The historical data API has many different options to give you the greatest flexibility in how to apply it to your algorithm.

Time Period Options

You can request historical data based on a trailing number of bars, a trailing period of time, or a defined period of time. If you request data in a defined period of time, the DateTime datetime objects you provide are based in the notebook time zone.

Return Formats

Each asset class supports slightly different data formats. When you make a history request, consider what data returns. Depending on how you request the data, history requests return a specific data type. For example, if you don't provide Symbol objects, you get Slice objects that contain all of the assets you created subscriptions for in the notebook.

The most popular return type is a <code>DataFrame</code> . If you request a <code>DataFrame</code> to create <code>TradeBar</code> or <code>QuoteBar</code> objects, request that the history request returns the data type you need. Otherwise, LEAN will waste computational resources populating the <code>DataFrame</code> .

Time Index

When your history request returns a DataFrame, the timestamps in the DataFrame are based on the data time zone. When your history request returns a TradeBars, QuoteBars, Ticks, or Slice object, the Time properties of these objects are based on the notebook time zone, but the EndTime properties of the individual TradeBar, QuoteBar, and Tick objects are based on the data time zone data time zone. The EndTime is the end of the sampling period and when the data is actually available. For daily US Equity data, this results in data points appearing on Saturday and skipping Monday.

Request Data

The simplest form of history request is for a known set of Symbol objects. History requests return slightly different data depending on the overload you call. The data that returns is in ascending order from oblest to newest.

Single Symbol History Requests

To request history for a single asset, pass the asset Symbol to the History method. The return type of the method call depends on the history request [Type] <Type> . The following table describes the return type of each request [Type] <Type> :

Request Type		Return Data Type		
No argument		DataFrame List <tradebar></tradebar>		
	TradeBar	List[TradeBars] List <tradebar></tradebar>		
	QuoteBar	List[QuoteBars] List <quotebar></quotebar>		
	Tick	List[Ticks] List <tick></tick>		
	alternativeDataClass (ex:CBOE)	List[alternativeDataClass]		
		(ex:List[CBOE])List< alternativeDataClass >		
		(ex:List <cboe>)</cboe>		

D-4---- D-4- T---

Each row of the DataFrame represents the prices at a point in time. Each column of the DataFrame is a property of that price data (for example, open, high, low, and close (OHLC)). If you request a DataFrame object and pass TradeBar as the first argument, the DataFrame that returns only contains the OHLC of the bid and ask and it contains OHLC columns, which are the respective means of the bid and ask OHLC values. If you request a DataFrame and don't pass TradeBar or QuoteBar as the first argument, the DataFrame that returns contains columns of the DataFrame that returns contains columns for all of the data that's available for the given resolution.

```
# EXAMPLE 1: Requesting By Bar Count: 5 bars at the security resolution:
vix_symbol = qb.AddData(CBOE, "VIX", Resolution.Daily).Symbol
cboe_data = qb.History[CBOE](vix_symbol, 5)
btc symbol = qb.AddCrypto("BTCUSD", Resolution.Minute).Symbol
btc_symbol = qb.AddCrypto("BYCUSD", Resolution.Minute).Symbol trade_bars = qb.History[TradeBar][btc_symbol, 5) quote_bars = qb.History[QuoteBar][btc_symbol, 5) trade_bars_df = qb.History(TradeBar, btc_symbol, 5) quote_bars_df = qb.History(QuoteBar, btc_symbol, 5) df = qb.History(btc_symbol, 5) # Includes trade and quote data
// EXAMPLE 1: Requesting By Bar Count: 5 bars at the security resolution:
var vixSymbol = qb.AddData<CBOE>("VIX", Resolution.Daily).Symbol;
var cboeData = qb.History<CBOE>(vixSymbol, 5);
var btcSymbol = qb.AddCrypto("BTCUSD", Resolution.Minute).Symbol;
var tradeBars = qb.History<TradeBar>(btcSymbol, 5);
var quoteBars = qb.History<QuoteBar>(btcSymbol, 5);
var tradeBars2 = qb.History(btcSymbol, 5);
# EXAMPLE 2: Requesting By Bar Count: 5 bars with a specific resolution:
# EXAMPLE 2: Requesting By Bar Count: 5 bars with a specific resolution: trade bars = qb.History[TradeBar] [btc_symbol, 5, Resolution.Daily) quote_bars = qb.History[QuoteBar] [btc_symbol, 5, Resolution.Minute) trade_bars_df = qb.History(TradeBar, btc_symbol, 5, Resolution.Minute) quote_bars_df = qb.History(QuoteBar, btc_symbol, 5, Resolution.Minute) df = qb.History(btc_symbol, 5, Resolution.Minute) # Includes trade and quote data
// EXAMPLE 2: Requesting By Bar Count: 5 bars with a specific resolution:
var tradeBars = qb.History<TradeBar> (btcSymbol, 5, Resolution.Daily);
var quoteBars = qb.History<QuoteBar> (btcSymbol), 5, Resolution.Minute);
var tradeBars2 = qb.History(btcSymbol, 5, Resolution.Minute);
# EXAMPLE 3: Requesting By a Trailing Period: 3 days of data at the security resolution:
eth symbol = qb.AddCrypto('ETHUSD', Resolution.Tick).Symbol
ticks = qb.History[Tick] (eth_symbol, timedelta(days=3))
ticks_df = qb.History(eth_symbol, timedelta(days=3))
vix data = qb.History[CBOE] (vix_symbol, timedelta(days=3))
trade_bars = qb.History[TradeBar](btc_symbol, timedelta(days=3))
quote_bars = qb.History[QuoteBar](btc_symbol, timedelta(days=3))
trade_bars_df = qb.History(TradeBar, btc_symbol, timedelta(days=3))
quote_bars_df = qb.History(QuoteBar, btc_symbol, timedelta(days=3))
df = qb.History(btc symbol, timedelta(days=3))  # Includes trade and quote data
// EXAMPLE 3: Requesting By a Trailing Period: 3 days of data at the security resolution:
var ethSymbol = qb.AddCrypto("ETHUSD", Resolution.Tick).Symbol
var ticks = qb.History<Tick>(ethSymbol, TimeSpan.FromDays(3));
var cboeData = qb.History<CBOE>(vixSymbol, TimeSpan.FromDays(3));
var tradeBars = qb.History<TradeBar>(btcSymbol, TimeSpan.FromDays(3));
var quoteBars = qb.History<QuoteBar>(btcSymbol, TimeSpan.FromDays(3));
var tradeBars2 = qb.History(btcSymbol, TimeSpan.FromDays(3));
# EXAMPLE 4: Requesting By a Trailing Period: 3 days of data with a specific resolution: trade bars = qb.History[TradeBar] (btc symbol, timedelta(days=3), Resolution.Daily) quote_bars = qb.History[QuoteBar] (btc symbol, timedelta(days=3), Resolution.Minute) ticks = qb.History[Tick] (eth_symbol, timedelta(days=3), Resolution.Tick)
trade bars df = qb.History(TradeBar, btc symbol, timedelta(days=3), Resolution.Daily)
```

```
quote_bars_df = qb.History(QuoteBar, btc_symbol, timedelta(days=3), Resolution.Minute)
ticks_df = qb.History(btc_symbol, timedelta(days=3), Resolution.Tick)
df = qb.History(btc_symbol, timedelta(days=3), Resolution.Hour)  # Includes trade and quote data
# Important Note: Period history requests are relative to "now" notebook time.
// EXAMPLE 4: Requesting By a Trailing Period: 3 days of data with a specific resolution:
var tradeBars = qb.History<TradeBar>(btcSymbol, TimeSpan.FromDays(3), Resolution.Daily);
var quoteBars = qb.History<QuoteBar>(btcSymbol, TimeSpan.FromDays(3), Resolution.Minute);
var ticks = qb.History<Tick>(ethSymbol, TimeSpan.FromDays(3), Resolution.Tick);
var tradeBars2 = qb.History(btcSymbol, TimeSpan.FromDays(3), Resolution.Minute);
\# EXAMPLE 5: Requesting By a Defined Period: 3 days of data at the security resolution: start_time = datetime (2022, 1, 1) end_time = datetime (2022, 1, 4)
vix_data = qb.History[CBOE](vix_symbol, start_time, end time)
trade bars = qb.History[TradeBar](btc_symbol, start_time, end_time)
quote_bars = qb.History[QuoteBar](btc_symbol, start_time, end_time)
ticks = qb.History[Tick](eth_symbol, start_time, end_time)
// EXAMPLE 5: Requesting By a Defined Period: 3 specific days of data at the security resolution:
 var startTime = new DateTime(2022, 1, 1);
var endTime = new DateTime(2022, 1, 4);
var cboeData = qb.History<CBOE>(vixSymbol, startTime, endTime);
var tradeBars = qb.History<TradeBar>(btcSymbol, startTime, endTime);
var quoteBars = qb.History<QuoteBar>(btcSymbol, startTime, endTime);
var ticks = qb.History<Tick>(ethSymbol, startTime, endTime);
var tradeBars2 = qb.History(btcSymbol, startTime, endTime);
# EXAMPLE 6: Requesting By a Defined Period: 3 days of data with a specific resolution: trade bars = qb.History[TradeBar](btc_symbol, start_time, end time, Resolution.Daily) quote_bars = qb.History[QuoteBar](btc_symbol, start_time, end_time, Resolution.Minute) ticks = qb.History[Tick](eth_symbol, start_time, end_time, Resolution.Tick)
trade_bars_df = qb.History(TradeBar, btc_symbol, start_time, end_time, Resolution.Daily) quote bars_df = qb.History(QuoteBar, btc_symbol, start_time, end_time, Resolution.Minute) ticks_df = qb.History(eth_symbol, start_time, end_time, Resolution.Tick) df = qb.History(btc_symbol, start_time, end_time, Resolution.Hour) # Includes trade and
                                                                                                                                                       # Includes trade and quote data
// EXAMPLE 6: Requesting By a Defined Period: 3 days of data with a specific resolution:
var tradeBars = qb.History<TradeBar>(btcSymbol, startTime, endTime, Resolution.Daily);
var quoteBars = qb.History<QuoteBar>(btcSymbol, startTime, endTime, Resolution.Minute);
var ticks = qb.History<Tick>(ethSymbol, startTime, endTime, Resolution.Tick);
var tradeBars2 = qb.History(btcSymbol, startTime, endTime, Resolution.Minute);
```

Multiple Symbol History Requests

To request history for multiple symbols at a time, pass an array of symbol objects to the same API methods shown in the preceding section. The return type of the method call depends on the history request [type] < type>. The following table describes the return type of each request [type] < type>:

Request Type Return Data Type DataFrame List<Slice> No argument List[TradeBars] List<TradeBars> TradeBar OuoteBar List[OuoteBars] List<OuoteBars> List[Ticks] List<Ticks> List[Dict[Symbol, alternativeDataClass]]

(ex: CBOE) (ex:List<Dictionary<Symbol, CBOE>>)

The Slice return type provides a container that supports all data types. For example, a history request for Forex QuoteBars and Equity TradeBars has the Forex data under slices.QuoteBars and the Equity data under

```
# EXAMPLE 7: Requesting By Bar Count for Multiple Symbols: 2 bars at the security resolution:
vix = qb.AddData[CBOE]("VIX", Resolution.Daily).Symbol
v3m = qb.AddData[CBOE]("VIX3M", Resolution.Daily).Symbol
cboe_data = qb.History[CBOE]([vix, v3m], 2)
ibm = qb.AddEquity("IBM", Resolution.Minute).Symbol
aapl = qb.AddEquity("AAPL", Resolution.Minute).Symbol
trade_bars_list = qb.History[TradeBar]([ibm, aapl], 2)
quote_bars_list = qb.History[QuoteBar]([ibm, aapl], 2)
trade_bars_df = qb.History(TradeBar, [ibm, aapl], 2)
quote_bars_df = qb.History(QuoteBar, [ibm, aapl], 2)
df = qb.History([ibm, aapl], 2)  # Includes trade and quote data
// EXAMPLE 7: Requesting By Bar Count for Multiple Symbols: 2 bars at the security resolution:
var vixSymbol = qb.AddData<CBOE>("VIX", Resolution.Daily).Symbol;
var v3mSymbol = qb.AddData<CBOE>("VIX3m", Resolution.Daily).Symbol;
var cboeData = qb.History<CBOE>(new[] { vix, v3m }, 2);
var ibm = qb.AddEquity("IBM", Resolution.Minute).Symbol;
var aapl = qb.AddEquity("AAPL", Resolution.Minute).Symbol;
var tradeBarsList = qb.History<TradeBar>(new[] { ibm, aapl }, 2);
var quoteBarsList = qb.History<QuoteBar>(new[] { ibm, aapl }, 2);
# EXAMPLE 8: Requesting By Bar Count for Multiple Symbols: 5 bars with a specific resolution:
# ZAMERIE 8. Acquesting by Bal Countries of Symbols 3 pairs with a trade_bars_list = qb.History[QuoteBar]([ibm, aapl], 5, Resolution.Daily) quote_bars_list = qb.History[QuoteBar]([ibm, aapl], 5, Resolution.Minute)
trade_bars_df = qb.History(TradeBar, [ibm, aapl], 5, Resolution.Daily)
quote_bars_df = qb.History(QuoteBar, [ibm, aapl], 5, Resolution.Minute)
df = qb.History([ibm, aapl], 5, Resolution.Daily)  # Includes trade data only. No quote for daily equity data
// EXAMPLE 8: Requesting By Bar Count for Multiple Symbols: 5 bars with a specific resolution:
var tradeBarsList = qb.History<TradeBar>(new[] { ibm, aapl }, 5, Resolution.Minute);
var quoteBarsList = qb.History<QuoteBar>(new[] { ibm, aapl }, 5, Resolution.Minute);
# EXAMPLE 9: Requesting By Trailing Period: 3 days of data at the security resolution:
ticks = qb.History[Tick]([eth_symbol], timedelta(days=3))
trade_bars = qb.History[TradeBar]([btc_symbol], timedelta(days=3))
quote_bars = qb.History[QuoteBar]([btc_symbol], timedelta(days=3))
trade_bars_df = qb.History(TradeBar, [btc_symbol], timedelta(days=3))
quote_bars_df = qb.History(QuoteBar, [btc_symbol], timedelta(days=3))
df = qb.History([btc_symbol], timedelta(days=3)) # Includes trade and quote_data
// EXAMPLE 9: Requesting By Trailing Period: 3 days of data at the security resolution:
var ticks = qb.History<Tick>(new[] {ethSymbol}, TimeSpan.FromDays(3));
var tradeBars = qb.History<TradeBar>(new[] {btcSymbol}, TimeSpan.FromDays(3));
var quoteBars = qb.History<QuoteBar>(new[] {btcSymbol}, TimeSpan.FromDays(3));
var tradeBars2 = qb.History(new[] {btcSymbol}, TimeSpan.FromDays(3));
```

```
# EXAMPLE 10: Requesting By Defined Period: 3 days of data at the security resolution:
trade_bars = qb.History[TradeBar]([btc_symbol], start_time, end_time)
quote_bars = qb.History[QuoteBar]([btc_symbol], start_time, end_time)
ticks = qb.History[Tick]([eth_symbol], start_time, end_time)
trade_bars_df = qb.History(TradeBar, btc_symbol), start_time, end_time)
quote_bars_df = qb.History(QuoteBar, btc_symbol), start_time, end_time)
ticks_df = qb.History(Tick, eth symbol, start_time, end_time)
df = qb.History([btc_symbol], start_time, end_time)
# Includes trade and quote data

/// EXAMPLE 10: Requesting By Defined Period: 3 days of data at the security resolution:
var tradeBars = qb.History<TradeBar>(new[] (btcSymbol), startTime, endTime);
var quoteBars = qb.History<Tick>(new[] (btcSymbol), startTime, endTime);
var tradeBars2 = qb.History(new[] {btcSymbol}, startTime, endTime);
```

All Symbol History Requests

You can request history for all the securities you have created subscriptions for in your notebook session. The parameters are very similar to other history method calls, but the return type is an array of Slice objects. The Slice object holds all of the results in a sorted enumerable collection that you can iterate over with a loop.

```
\# EXAMPLE 11: Requesting 5 bars for all securities at their respective resolution:
```

```
# Create subscriptions
ph.AddEquity("MEMP, Resolution.Daily)
ph.AddEquity("MEMP, Resolution.Daily)
ph.AddEquity("MEMP, Resolution.Daily)

# Request history data and enumerate results
slices = ph.History(5)
for s in slices:
    print(str(s.Time) + "AAFL:" + str(s.Bars["AAFL"].Close) + "IEM:" + str(s.Bars["IEM"].Close))

# EXAMPLE 11: Requesting 5 bars for all securities at their respective resolution:

// Set up the universe
ph.AddEquity("IEM", Resolution.Daily);
ph.AddEquity("MEMP, Resolution.Daily);
// Request history data and enumerate results:
var slices = ph.History(data and enumerate results:
var slices = ph.History(S);
foreach (var sin slices);
var asplClose = s.Bars["AEM"].Close;
var ibmClose = s.Bars["EM"].Close;
Console.WriteLine(%"[s.Time] AAFL: (asplClose) IEM: (ibmClose)");

# EXAMPLE 12: Requesting 5 minutes for all securities:

slices = ph.History(timedelta(minutes=5), Resolution.Minute)
for s in slices:
    print(str(s.Time) + "AAFL:" + str(s.Bars["AEFL"].Close) + "IEM:" + str(s.Bars["IEM"].Close))

# timedelta history requests are relative to "now" in notebook Time. If you request this data at 16:05, it returns an empty array because the market is closed.

// EXAMPLE 12: Requesting 24 hours of hourly data for all securities:

var slices = ph.History(TimeSpan.FroeHours(24), Resolution.Hour);
foreach (var sin slices) {
    var asplClose = s.Bars["AEFL"].Close;
    console.WriteLine(%"[s.Time]) AAFL: (asplClose) IEM: (ibmClose)";
}

// TimeSpan history requests are relative to "now" in notebook Time.
```

Assumed Default Values

The following table describes the assumptions of the History API:

Argument Assumption

Resolution LEAN guesses the resolution you request by looking at the securities you already have in your notebook. If you have a security subscription in your notebook with a matching Symbol , the history request uses the same resolution as the subscription. If you don't have a security subscription in your notebook with a matching Symbol , Resolution. Minute is the default.

Bar type If you don't specify a type for the history request, TradeBar is the default. If the asset you request data for doesn't have TradeBar data, specify the QuoteBar type to receive history.

Additional Options

The History method accepts the following additional arguments:

	The history include deceptor to historial displacement.					
	Argument	Data Type	Description	Default Value		
	fillForward	bool? bool/NoneType	True to fill forward missing data. Otherwise, false.	null None		
	${\tt extendedMarketHours}$	bool? bool/NoneType	True to include extended market hours data. Otherwise, false.	null None		
	dataMappingMode	DataMappingMode? DataMappingMode/NoneType	The contract mapping mode to use for the security history request.	null None		
	dataNormalizationMode	e DataNormalizationMode? DataNormalizationMode/NoneType	The price scaling mode to use for <u>US Equities</u> or <u>continuous Futures contracts</u> . If you don't provide a value, it uses the data normalization mode of the security subscription.	null None		
	contractDepthOffset	int? int/NoneType	The desired offset from the current front month for continuous Futures contracts.	null None		
future = qb.AddFuture(Futures.Currencies.BTC) history = qb.History(tickers=[future.Symbol], start=qb.Time - timedelta(days=15), end=qb.Time, resolution=Resolution.Minute, fillForward=False, extendedMarketHours=False, dataMappingMode=DataMappingMode.OpenInterest, dataNormalizationMode=DataNormalizationMode.Raw, contractDepthOffset=0)		Symbol], simedelta(days=15), stion.Minute, s				
	var future = qb.AddFuture(Futures.Currencies.BTC);					

Resolutions

Resolution is the duration of time that's used to sample a data source. The Resolution enumeration has the following members:

The default resolution for market data is Minute . To set the resolution for a security, pass the resolution argument when you create the security subscription.

var iuture = qb.Addruture(Futures.Currencie
var history = qb.History(
 symbols: new[] {future.Symbol},
 start: qb.Time - TimeSpan.FromDays(15),
 end: qb.Time,
 resolution.Resolution.Minute,
 fillTowney(ex)

dataMappingMode: DataMappingMode.OpenInterest, dataNormalizationMode: DataNormalizationMode.Raw, contractDepthOffset: 0);

fillForward: false,
extendedMarketHours: false,

```
qb.AddEquity("SPY", Resolution.Daily)
```

When you request historical data, the History method uses the resolution of your security subscription. To get historical data with a different resolution, pass a resolution argument to the History method.

```
history = qb.History(spy, 10, Resolution.Minute)
var history = qb.History(spy, 10, Resolution.Minute);
```

Markets

The datasets integrated into the Dataset Market cover many markets. The Market enumeration has the following members:

LEAN can usually determine the correct market based on the ticker you provide when you create the security subscription. To manually set the market for a security, pass a market argument when you create the security subscription.

```
qb.AddEquity("SPY", market: Market.USA);
qb.AddEquity("SPY", market=Market.USA)
```

Fill Forward

Fill forward means if there is no data point for the current sample, LEAN uses the previous data point. Fill forward is the default data setting. To disable fill forward for a security, set the fillForward argument to false when you create the security subscription.

```
qb.AddEquity("SPY", fillForward: false);
qb.AddEquity("SPY", fillForward=False)
```

When you request historical data, the History method uses the fill forward setting of your security subscription. To get historical data with a different fill forward setting, pass a fillForward argument to the History method.

```
var history = qb.History(qb.Securities.Keys, qb.Time-TimeSpan.FromDays(10), qb.Time, fillForward: true);
history = qb.History(qb.Securities.Keys, qb.Time-timedelta(days=10), qb.Time, fillForward=True)
```

Extended Market Hours

By default, your security subscriptions only cover regular trading hours. To subscribe to pre and post-market trading hours for a specific asset, enable the extendedMarketHours argument when you create the security subscription.

```
AddEquity("SPY", extendedMarketHours: true);
self.AddEquity("SPY", extendedMarketHours=True)
```

You only receive extended market hours data if you create the subscription with minute, second, or tick resolution. If you create the subscription with daily or hourly resolution, the bars only reflect the regular trading hours.

When you request historical data, the History method uses the extended market hours setting of your security subscription. To get historical data with a different extended market hours setting, pass an extendedMarketHours argument to the History method.

```
var history = qb.History(qb.Securities.Keys, qb.Time-TimeSpan.FromDays(10), qb.Time, extendedMarketHours: false);
history = qb.History(qb.Securities.Keys, qb.Time-timedelta(days=10), qb.Time, extendedMarketHours=False)
```

Look-Ahead Bias

In the Research Environment, all the historical data is directly available. In backtesting, you can only access the data that is at or before the algorithm time. If you make a history request for the previous 10 days of data in the Research Environment, you get the previous 10 days of data from today's date. If you request the same data in a backtest, you get the previous 10 days of data from the algorithm time.

Consolidate Data

History requests usually return data in one of the standard resolutions. To analyze data on custom time frames like 5-minute bars or 4-hour bars, you need to aggregate it. Consider an example where you make a history call for minute resolution data and want to create 5-minute resolution data.

```
qb = QuantBook()
symbol = qb.AddEquity("SPY").Symbol
start_date = datetime(2018, 4, 1)
end_date = datetime(2018, 7, 15)
history = qb.History(symbol, start_date, end_date, Resolution.Minute)

var qb = new QuantBook();
var symbol = qb.AddEquity("SPY").Symbol;
var startDate = new DateTime(2018, 4, 1);
var endDate = new DateTime(2018, 7, 15);
var history = qb.History(symbol, startDate, endDate, Resolution.Minute);
foreach (var slice in history)
{
    foreach (var key in slice.Keys)
    {
        Console.WriteLine($"{slice.Time} :: {slice[key].ToString()}");
    }
}
```

To aggregate the data, use a consolidator or the pandas resample method.

To aggregate the data, use a consolidator.

Consolidators

The following snippet demonstrates how to use a consolidator to aggregate data

```
// Set up a consolidator and a RollingWindow to save the data
var consolidator = new TradeBarConsolidator(TimeSpan.FromDays(7));
var window = new RollingWindow<TradeBar(20);

// Attach a consolidation handler method that saves the consolidated bars in the RollingWindow
consolidator.DataConsolidated += (sender, consolidated) =>
{
    window.Add(consolidated);
};

// Iterate the historical market data and feed each bar into the consolidator
foreach(var bar in history)
{
    consolidator.Update(bar);
}

# Set up a consolidator and a RollingWindow to save the data
consolidator = TradeBarConsolidator(timedelta(7))
window = RollingWindow[TradeBar](20)

# Attach a consolidation handler method that saves the consolidated bars in the RollingWindow
consolidator.DataConsolidated += lambda _, bar: window.Add(bar)

# Iterate the historical market data and feed each bar into the consolidator
for bar in history.itertuples():
    tradebar = TradeBar(bar.Index[1], bar.Index[0], bar.open, bar.high, bar.low, bar.close, bar.volume)
    consolidator.Update(tradebar)
```

Resample Method

The resample method converts the frequency of a time series DataFrame into a custom frequency. The method only works on DataFrame objects that have a datetime index. The History method returns a DataFrame with a multi-index. The first index is a Symbol index for each security and the second index is a time index for the timestamps of each row of data. To make the DataFrame compatible with the resample method, call the reset_index method to

drop the Symbol index.

```
# Drop level 0 index (Symbol index) from the DataFrame
history.reset_index(level = 0, drop = True, inplace=True)
```

The resample method returns a Resampler object, which needs to be downsampled using one of the pandas downsampling computations. For example, you can use the Resampler object, which needs to be downsampling method to aggregate price data.

When you resample a DataFrame with the ohlc downsampling method, it creates an OHLC row for each column in the DataFrame. To just calculate the OHLC of the close column, select the close column before you resample the DataFrame. A resample offset of 5T corresponds to a 5-minute resample. Other resampling offsets include 2D = 2 days, 5H = 5 hours, and 3S = 3 seconds.

```
close_prices = history["close"]

offset = "5T"

close_5min_ohlc = close_prices.resample(offset).ohlc()
```

Common Errors

If the history request returns an empty DataFrame and you try to slice it, it throws an exception. To avoid issues, check if the DataFrame contains data before slicing it.

```
df = qb.History(symbol, 10).close  # raises exception if the request is empty

def GetSafeHistoryCloses(symbols):
    if not symbols:
        print(f'No symbols')
        return False, None
    df = qb.History(symbols, 100, Resolution.Daily)
    if df.empty:
        print(f'Empy history for {symbols}')
        return False, None
    return True, df.close.unstack(0)
```

If you run the Research Environment on your local machine and history requests return no data, check if your data directory contains the data you request. To download datasets, see Download.

3.2 US Equity

Introduction

This page explains how to request, manipulate, and visualize historical US Equity data.

Create Subscriptions

Follow these steps to subscribe to a US Equity security:

1. Load the required assembly files and data types.

```
#load ".../Initialize.csx"
#load ".../QuantConnect.csx"
using QuantConnect.Data;
using QuantConnect.Data;
using QuantConnect.Research;
using QuantConnect.Indicators;

2. Create a QuantBook .
   var qb = new QuantBook();
   qb = QuantBook()

3. Call the AddEquity method with a ticker and then save a reference to the US Equity Symbol .
   var spy = qb.AddEquity("SPY").Symbol;
   var tlt = qb.AddEquity("SPY").Symbol;
   spy = qb.AddEquity("SPY").Symbol tlt = qb.AddEquity("TLT").Symbol
```

To view the supported assets in the US Equities dataset, see the Data Explorer.

Get Historical Data

You need a <u>subscription</u> before you can request historical data for a security. On the time dimension, you can request an amount of historical data based on a trailing number of bars, a trailing period of time, or a defined period of time. On the security dimension, you can request historical data for a single US Equity, a subset of the US Equities you created subscriptions for in your notebook, or all of the US Equities in your notebook.

Trailing Number of Bars

To get historical data for a number of trailing bars, call the History method with the Symbol object(s) and an integer.

```
// Silce objects
var singleHistorySlice = qb.History(spy, 10);
var subsetHistorySlice = qb.History(new[] {spy, tlt}, 10);
var subsetHistorySlice = qb.History(new[] {spy, tlt}, 10);
var allHistoryTradeBars = qb.History<TradeBar>(spy, 10);
var subsetHistoryTradeBars = qb.History<TradeBar>(spy, 10);
var subsetHistoryTradeBars = qb.History<TradeBar>(spy, 10);
var subsetHistoryTradeBars = qb.History<TradeBar>(spy, fl);
var subsetHistoryQuoteBars = qb.History<QuoteBar>(spy, 10);
var allHistoryQuoteBars = qb.History<QuoteBar>(qb.Securities.Keys, 10);

# DataFrame of trade and quote data
single history ff = qb.History(fspy, tlt], 10)
all history ff = qb.History(fspy, tlt], 10)
all history trade bar df = qb.History(TradeBar, spy, 10)
subset history trade bar df = qb.History(TradeBar, qb.Securities.Keys, 10)

# DataFrame of quote data
single history_trade_bar df = qb.History(TradeBar, gb, securities.Keys, 10)

# DataFrame of quote data
single history_quote bar df = qb.History(QuoteBar, spy, 10)
subset history_quote bar df = qb.History(QuoteBar, gb, tlt], 10)
all history_slice = qb.History(10)

# TradeBar objects
single history_trade bars = qb.History(TradeBar] (spy, 10)
subset history_trade bars = qb.History(DuoteBar] (spy, 11), 10)
all history_trade bars = qb.History(QuoteBar] (spy, 11), 10)
all history_trade ba
```

 $The \ preceding \ calls \ return \ the \ most \ recent \ bars, \ excluding \ periods \ of \ time \ when \ the \ exchange \ was \ closed.$

Trailing Period of Time

 $To get \ historical \ data \ for \ a \ trailing \ period \ of \ time, \ call \ the \ \verb|History| \ method \ with \ the \ \verb|Symbol| \ object(s) \ and \ a \ \verb|TimeSpan| \ timedelta \ .$

```
// >ince objects
var singleHistorySlice = qb.History(spy, TimeSpan.FromDays(3));
var subsetHistorySlice = qb.History(new[] {spy, tlt}, TimeSpan.FromDays(3));
var allHistorySlice = qb.History(TradeBar) {spy, tlt}, TimeSpan.FromDays(3));
var singleHistoryTradeBars = qb.History<TradeBar>(spy, TimeSpan.FromDays(3));
var subsetHistoryTradeBars = qb.History<TradeBar>(new[] {spy, tlt}, TimeSpan.FromDays(3));
var allHistoryTradeBars = qb.History<TradeBar>(TimeSpan.FromDays(3));

// QuoteBar objects
var singleHistoryQuoteBars = qb.History<QuoteBar>(spy, TimeSpan.FromDays(3), Resolution.Minute);
var subsetHistoryQuoteBars = qb.History<QuoteBar>(new[] {spy, tlt}, TimeSpan.FromDays(3), Resolution.Minute);
var allHistoryQuoteBars = qb.History<QuoteBar>(qb.Securities.Keys, TimeSpan.FromDays(3), Resolution.Minute);

// Tick objects
var singleHistoryTicks = qb.History<Tick>(spy, TimeSpan.FromDays(3), Resolution.Tick);
var subsetHistoryTicks = qb.History<Tick>(spy, TimeSpan.FromDays(3), Resolution.Tick);
var allHistoryTicks = qb.History(Tick>(qb.Securities.Keys, TimeSpan.FromDays(3), Resolution.Tick);

# DataFrame of trade and quote data
single history df = qb.History(spy, timedelta(days=3))
subset history df = qb.History(gpy, tlt], timedelta(days=3))
all_history_trade_bar_df = qb.History(TradeBar, spy, timedelta(days=3))
subset history_trade_bar_df = qb.History(TradeBar, [spy, tlt], timedelta(days=3))
all_history_trade_bar_df = qb.History(TradeBar, [spy, tlt], timedelta(days=3))
```

```
# DataFrame of quote data
single history quote bar df = qb.History(QuoteBar, spy, timedelta(days=3))
subset history quote bar df = qb.History(QuoteBar, [spy, tlt], timedelta(days=3))
all_history_quote_bar_df = qb.History(QuoteBar, qb.Securities.Keys, timedelta(days=3))

# DataFrame of tick data
single history_tick_df = qb.History(spy, timedelta(days=3), Resolution.Tick)
subset history_tick_df = qb.History([spy, tlt], timedelta(days=3), Resolution.Tick)
all_history_tick_df = qb.History(qb.Securities.Keys, timedelta(days=3), Resolution.Tick)

# Slice objects
all_history_slice = qb.History(timedelta(days=3))

# TradeBar objects
single history_trade_bars = qb.History[TradeBar](spy, timedelta(days=3))
subset history_trade_bars = qb.History[TradeBar]([spy, tlt], timedelta(days=3))

# QuoteBar objects
single history_quote_bars = qb.History[QuoteBar](spy, timedelta(days=3), Resolution.Minute)
subset history_quote_bars = qb.History[QuoteBar](spy, timedelta(days=3), Resolution.Minute)

# Tick objects
single history_ticks = qb.History[Tick](spy, timedelta(days=3), Resolution.Tick)
subset_history_ticks = qb.History[Tick](spy, timedelta(days=3), Resolution.Tick)
all_history_ticks = qb.History[Tick](spy, timedelta(days=3), Resolution.Tick)
subset_history_ticks = qb.History[Tick](spy, timedelta(days=3), Resolution.Tick)
all_history_ticks = qb.History[Tick](spy, timedelta(days=3), Resolution.Tick)
subset_history_ticks = qb.History[Tick](spy, timedelta(days=3), Resolution.Tick)
all_history_ticks = qb.History[Tick](spy, timedelta(days=3), Resolution.Tick)
subset_history_ticks = qb.History[Tick](spy, timedelta(days=3), Resoluti
```

The preceding calls return the most recent bars or ticks, excluding periods of time when the exchange was closed.

Defined Period of Time

To get historical data for a specific period of time, call the History method with the Symbol object(s), a start DateTime datetime, and an end DateTime datetime. The start and end times you provide are based in the notebook time zone.

```
var startTime = new DateTime(2021, 1, 1);
 var endTime = new DateTime(2021, 2, 1);
// Slice objects
var singleHistorySlice = qb.History(spy, startTime, endTime);
var subsetHistorySlice = qb.History(new[] {spy, tlt}, startTime, endTime);
var allHistorySlice = qb.History(qb.Securities.Keys, startTime, endTime);
// QuoteBar Dijects
var singleHistoryQuoteBars = qb.History<QuoteBar>(spy, startTime, endTime, Resolution.Minute);
var subsetHistoryQuoteBars = qb.History<QuoteBar>(new[] {spy, tlt}, startTime, endTime, Resolution.Minute);
var allHistoryQuoteBars = qb.History<QuoteBar>(qb.Securities.Keys, startTime, endTime, Resolution.Minute);
// Intx Objects
var singleHistoryTicks = qb.History<Tick>(spy, startTime, endTime, Resolution.Tick);
var subsetHistoryTicks = qb.History<Tick>(new[] {spy, tlt}, startTime, endTime, Resolution.Tick);
var allHistoryTicks = qb.History<Tick>(qb.Securities.Keys, startTime, endTime, Resolution.Tick);
start_time = datetime(2021, 1, 1)
end time = datetime(2021, 2, 1)
# DataFrame of trade and quote data
single history_df = qb.History(spy, start_time, end_time)
subset_history_df = qb.History([spy, tlt], start_time, end_time)
all_history_df = qb.History(qb.Securities.Keys, start_time, end_time)
# DataFrame of trade data
single history_trade_bar_df = qb.History(TradeBar, spy, start_time, end_time) subset history_trade_bar_df = qb.History(TradeBar, [spy, tlt], start_time, end_time) all_history_trade_bar_df = qb.History(TradeBar, qb.Securities.Keys, start_time, end_time)
# Datariame of quote data
single_history_quote_bar_df = qb.History(QuoteBar, spy, start_time, end_time)
subset history_quote_bar_df = qb.History(QuoteBar, (spy, tltl, start_time, end_time)
all_history_quote_bar_df = qb.History(QuoteBar, qb.Securities.Keys, start_time, end_time)
# DataFrame of tick data
single history tick df = qb.History(spy, start_time, end_time, Resolution.Tick)
subset history tick df = qb.History([spy, tlt], start_time, end_time, Resolution.Tick)
all_history_tick_df = qb.History(qb.Securities.Keys, start_time, end_time, Resolution.Tick)
# TradeBar objects
single history_trade_bars = qb.History[TradeBar](spy, start_time, end time)
subset_history_trade_bars = qb.History[TradeBar]([spy, tlt], start_time, end_time)
all_history_trade_bars = qb.History[TradeBar](qb.Securities.Keys, start_time, end_time)
* Quotebar Objects
single history_quote_bars = qb.History[QuoteBar](spy, start_time, end_time, Resolution.Minute)
subset history_quote_bars = qb.History[QuoteBar]([spy, tlt], start_time, end_time, Resolution.Minute)
all_history_quote_bars = qb.History[QuoteBar](qb.Securities.Keys, start_time, end_time, Resolution.Minute)
* Inck Objects
single history_ticks = qb.History[Tick](spy, start_time, end_time, Resolution.Tick)
subset history_ticks = qb.History[Tick]([spy, tlt], start_time, end_time, Resolution.Tick)
all_history_ticks = qb.History[Tick](qb.Securities.Keys, start_time, end_time, Resolution.Tick)
```

The preceding calls return the bars or ticks that have a timestamp within the defined period of time.

Resolutions

The following table shows the available resolutions and data formats for Equity subscriptions:

Resolution TradeBar QuoteBar Trade Tick Quote Tick

Tick		
Second		
Minute		
Hour		
Daily		

Markets

LEAN groups all of the US Equity exchanges under ${\tt Market.USA}$.

Data Normalization

The data normalization mode defines how historical data is adjusted for corporate actions. By default, LEAN adjusts US Equity data for splits and dividends to produce a smooth price curve, but the following data normalization modes are available:

We use the entire split and dividend history to adjust historical prices. This process ensures you get the same adjusted prices, regardless of the QuantBook time.

To set the data normalization mode for a security, pass a dataNormalizationMode argument to the AddEquity method.

```
var spy = qb.AddEquity("SPY", dataNormalizationMode: DataNormalizationMode.Raw).Symbol;
spy = qb.AddEquity("SPY", dataNormalizationMode=DataNormalizationMode.Raw).Symbol
```

When you request historical data, the History method uses the data normalization of your security subscription. To get historical data with a different data normalization, pass a dataNormalizationMode argument to the History method.

var history = qb.History(qb.Securities.Keys, qb.Time-TimeSpan.FromDays(10), qb.Time, dataNormalizationMode: DataNormalizationMode.SplitAdjusted); history = qb.History(qb.Securities.Keys, qb.Time-timedelta(days=10), qb.Time, dataNormalizationMode=DataNormalizationMode.SplitAdjusted)

Wrangle Data

You need some historical data to perform wrangling operations. The process to manipulate the historical data depends on its data type. To display pandas objects, run a cell in a notebook with the pandas object as the last line. To display other data formats, call the print method.

You need some historical data to perform wrangling operations. Use LINQ to wrangle the data and then call the Console.WriteLine method in a Jupyter Notebook to display the data. The process to manipulate the historical data depends on its data type.

DataFrame Objects

If the History method returns a DataFrame , the first level of the DataFrame index is the encoded Equity Symbol and the second level is the EndTime of the data sample. The columns of the DataFrame are the data properties.

To select the historical data of a single Equity, index the loc property of the DataFrame with the Equity Symbol .

```
all_history_df.loc[spy] # or all_history_df.loc['SPY']
```

To select a column of the DataFrame , index it with the column name.

```
all_history_df.loc[spy]['close']
```

If you request historical data for multiple Equities, you can transform the DataFrame so that it's a time series of close values for all of the Equities. To transform the DataFrame , select the column you want to display for each Equity and then call the <u>unstack</u> method.

```
all history df['close'].unstack(level=0)
```

The DataFrame is transformed so that the column indices are the Symbol of each Equity and each row contains the close value.

If you prefer to display the ticker of each <code>Symbol</code> instead of the string representation of the <code>SecurityIdentifier</code>, follow these steps:

1. Create a dictionary where the keys are the string representations of each Security Identifier and the values are the ticker.

```
tickers by id = {str(x.ID): x.Value for x in qb.Securities.Keys}
```

2. Get the values of the symbol level of the DataFrame index and create a list of tickers.

```
\label{tickers_by_id}  \mbox{tickers} = \mbox{set([tickers_by\_id[x] for x in all\_history\_df.index.get_level\_values('symbol')])}
```

3. Set the values of the symbol level of the DataFrame index to the list of tickers.

```
all_history_df.index.set_levels(tickers, 'symbol', inplace=True)
```

The new DataFrame is keyed by the ticker.

```
all_history_df.loc[spy.Value] # or all_history_df.loc["SPY"]
```

After the index renaming, the unstacked DataFrame has the following format:

The historical data methods don't return DataFrame objects, but you can create one for efficient vectorized data wrangling.

```
using Microsoft.Data.Analysis;
var columns = new DataFrameColumn("Time", history.Select(x => x[spy].EndTime)),
    new PrimitiveDataFrameColumn("SPY Open", history.Select(x => x[spy].Open)),
    new DecimalDataFrameColumn("SPY High", history.Select(x => x[spy].High]),
    new DecimalDataFrameColumn("SPY Low", history.Select(x => x[spy].Low)),
    new DecimalDataFrameColumn("SPY Close", history.Select(x => x[spy].Close))
};
var df = new DataFrame(columns);
df
```

To select a particular column of the DataFrame, index it with the column name.

```
df["SPY close"]
```

Slice Objects

If the History method returns Slice objects, iterate through the Slice objects to get each one. The Slice objects may not have data for all of your Equity subscriptions. To avoid issues, check if the Slice contains data for your Equity before you index it with the Equity Symbol .

```
foreach (var slice in allHistorySlice) {
    if (slice.Bars.ContainsKey(spy)) {
        var tradeBar = slice.Bars[spy];
    }
    if (slice.QuoteBars.ContainsKey(spy)) {
        var quoteBar = slice.QuoteBars[spy];
    }
}

for slice in all history_slice:
    if slice.Bars.ContainsKey(spy):
        trade bar = slice.Bars[spy]
    if slice.QuoteBars.ContainsKey(spy):
        uncte bar = slice.QuoteBars[spy]
```

You can also iterate through each ${\tt TradeBar}$ and ${\tt QuoteBar}$ in the ${\tt Slice}$.

```
foreach (var slice in allHistorySlice)
{
    foreach (var kvp in slice.Bars)
    {
       var symbol = kvp.Key;
       var tradeBar = kvp.Value;
    }
    foreach (var kvp in slice.QuoteBars)
    {
```

```
var symbol = kvp.Key,
var quoteBar = kvp.Value;
}
}
for slice in all history_slice:
    for kvp in slice.Bars:
        symbol = kvp.Key
        trade bar = kvp.Value
    for kvp in slice.QuoteBars:
        symbol = kvp.Key
        quote bar = kvp.Value
```

You can also use LINQ to select each TradeBar in the Slice for a given Symbol .

var tradeBars = allHistorySlice.Where(slice => slice.Bars.ContainsKey(spy)).Select(slice => slice.Bars[spy]);

TradeBar Objects

If the History method returns TradeBar objects, iterate through the TradeBar objects to get each one.

```
foreach (var tradeBar in singleHistoryTradeBars)
{
    Console.WriteLine(tradeBar);
}

for trade_bar in single_history_trade_bars:
    print(trade_bar)
```

If the History method returns TradeBars , iterate through the TradeBars to get the TradeBar of each Equity. The TradeBars may not have data for all of your Equity subscriptions. To avoid issues, check if the TradeBars object contains data for your security before you index it with the Equity Symbol .

```
foreach (var tradeBars in allHistoryTradeBars)
{
    if (tradeBars.ContainsKey(spy))
    {
       var tradeBar = tradeBars[spy];
    }
}
for trade_bars in all history_trade_bars:
    if trade_bars.ContainsKey[spy):
       trade_bar = trade_bars[spy]
```

You can also iterate through each of the TradeBars .

```
foreach (var tradeBars in allHistoryTradeBars)
{
    foreach (var kvp in tradeBars)
    {
       var symbol = kvp.Key;
       var tradeBar = kvp.Value;
    }
}
for trade_bars in all_history_trade_bars:
    for kvp in trade_bars:
       symbol = kvp.Key
       trade_bar = kvp.Value
```

QuoteBar Objects

If the ${\tt History}\,$ method returns ${\tt QuoteBar}\,$ objects, iterate through the ${\tt QuoteBar}\,$ objects to get each one.

```
foreach (var quoteBar in singleHistoryQuoteBars)
{
   Console.WriteLine(quoteBar);
}
for quote_bar in single_history_quote_bars:
   print(quote_bar)
```

If the History method returns QuoteBars , iterate through the QuoteBars to get the QuoteBar of each Equity. The QuoteBars may not have data for all of your Equity subscriptions. To avoid issues, check if the QuoteBars object contains data for your security before you index it with the Equity Symbol .

```
foreach (var quoteBars in allHistoryQuoteBars)
{
    if (quoteBars.ContainsKey(spy)) {
        var quoteBar = quoteBars[spy];
    }
}
for quote_bars in all_history_quote_bars:
    if quote_bars.ContainsKey(spy):
        quote bar = quote_bars[spy]
```

You can also iterate through each of the QuoteBars .

```
foreach (var quoteBars in allHistoryQuoteBars)
{
    foreach (var kvp in quoteBars) {
        var symbol = kvp.Key;
        var quoteBar = kvp.Value;
    }
}
for quote_bars in all history_quote_bars:
    for kvp in quote_bars:
        symbol = kvp.Key
        quote_bar = kvp.Value
```

Tick Objects

If the ${\tt History}$ method returns ${\tt Tick}$ objects, iterate through the ${\tt Tick}$ objects to get each one.

```
foreach (var tick in singleHistoryTicks)
{
          Console.WriteLine(tick);
}
for tick in single_history_ticks:
```

If the History method returns Ticks , iterate through the Ticks to get the Tick of each Equity. The Ticks may not have data for all of your Equity subscriptions. To avoid issues, check if the Ticks object contains data for your security before you index it with the Equity Symbol .

```
foreach (var ticks in allHistoryTicks)
{
    if (ticks.ContainsKey(spy)) {
        var tick = ticks[spy];
    }
}
```

```
for ticks in all_history_ticks:
    if ticks.ContainsKey(spy):
        ticks = ticks[spy]

You can also iterate through each of the Ticks .

foreach (var ticks in allHistoryTicks)
{
        foreach (var kvp in ticks) {
            var symbol = kvp.Key;
            var tick = kvp.Value;
        }
}

for ticks in all_history_ticks:
        for kvp in ticks:
            symbol = kvp.Key
        tick = kvp.Value
```

Plot Data

You need some historical Equity data to produce plots. You can use many of the supported plotting libraries, Plot. NET package to visualize data in various formats. For example, you can plot candlestick and line charts.

Candlestick Chart

Follow these steps to plot candlestick charts:

```
1. Get some historical data.
```

```
history = qb.History(spy, datetime(2021, 11, 23), datetime(2021, 12, 8), Resolution.Daily).loc[spy] var history = qb.History<TradeBar>(spy, new DateTime(2021, 11, 23), new DateTime(2021, 12, 8), Resolution.Daily);
```

2. Import the plotly Plotly.NET library.

```
import plotly.graph_objects as go
#r "../Plotly.NET.dll"
using Plotly.NET;
using Plotly.NET.LayoutObjects;
```

3. Create a Candlestick chart.

4. Create a Layout .

 $5. \ \ Create \ the \ {\tt Figure}$

6. Assign the Layout to the chart.

```
fig = go.Figure(data=[candlestick], layout=layout)
chart.WithLayout(layout);
```

7. Show the plot.

```
fig.show()
HTML(GenericChart.toChartHTML(chart))
```

Candlestick charts display the open, high, low, and close prices of the security.

Line Chart

Follow these steps to plot line charts using built-in methods <code>Plotly.NET</code> package:

Get some historical data.

```
history = qb.History([spy, tlt], datetime(2021, 11, 23), datetime(2021, 12, 8), Resolution.Daily)
var history = qb.History<TradeBar>(new [] (spy, tlt), new DateTime(2021, 11, 23), new DateTime(2021, 12, 8), Resolution.Daily);
```

2. Select the data to plot.

```
volume = history['volume'].unstack(level=0)
var spy = history.Select(x => x["SPY"]);
```

3. Call the plot method on the pandas object.

```
    Create a Line chart.
```

```
volume.plot(title="Volume", figsize=(15, 10))
var chart = Chart2D.Chart.Line<DateTime, decimal, string>(
    spy.Select(x => x.EndTime),
    spy.Select(x => x.Volume)
);
```

5. Create a Layout $\,$.

```
LinearAxis xAxis = new LinearAxis();
xAxis.SetValue("title", "Time");
LinearAxis yAxis = new LinearAxis();
yAxis.SetValue("title", "Volume");
Title title = Title.init("SPY Volume");
Layout layout = new Layout();
```

```
layout.SetValue("xaxis", xAxis);
layout.SetValue("yaxis", yAxis);
layout.SetValue("title", title);
```

6. Assign the ${\tt Layout}\,$ to the chart.

chart.WithLayout(layout);

7. Show the plot.

```
plt.show()
HTML(GenericChart.toChartHTML(chart))
```

Line charts display the value of the property you selected in a time series.

0.0

Common Errors

Some factor files have INF split values, which indicate that the stock has so many splits that prices can't be calculated with correct numerical precision. To allow history requests with these symbols, we need to move the starting date forward when reading the data. If there are numerical precision errors in the factor files for a security in your history request, LEAN throws the following error:

"Warning: when performing history requests, the start date will be adjusted if there are numerical precision errors in the factor files."

3.3 Equity Fundamental Data

Introduction

This page explains how to request, manipulate, and visualize historical Equity Fundamental data. Corporate fundamental data is available through the US Fundamental Data from Morningstar.

Create Subscriptions

Follow these steps to subscribe to an Equity security:

1. Load the required assembly files and data types.

```
#load "../Initialize.csx"
#load "../QuantConnect.csx"
using QuantConnect.Data;
using QuantConnect.Algorithm;
using QuantConnect.Research;
using QuantConnect.Indicators;
2. Create a QuantBook .

var qb = new QuantBook();
```

3. Call the AddEquity method with a ticker and then save a reference to the Equity Symbol .

To view the supported assets in the US Equities dataset, see the Data Explorer.

Get Historical Data

You need a subscription before you can request historical fundamental data for a US Equity.

To get historical data, call the <code>GetFundamental</code> method with a list of <code>Symbol</code> objects, a fundamental data field name, a start <code>DateTime</code> datetime, and an end <code>DateTime</code> datetime. The start and end times you provide are based in the molebook time.zone. To view the possible fundamental data field names, see the <code>FineFundamental</code> attributes in Data Point Attributes. For example, to get data for airline companies over 2014, run:

```
var startTime = new DateTime(2014, 1, 1);
var endTime = new DateTime(2015, 1, 1);
var history = qb.GetFundamental(symbols, "ValuationRatios.PERatio", startTime, endTime);
start_time = datetime(2014, 1, 1)
end_time = datetime(2015, 1, 1)
history = qb.GetFundamental(symbols, "ValuationRatios.PERatio", start_time, end_time)
```

The preceding method returns the fundamental data field values that are timestamped within the defined period of time.

Wrangle Data

You need some historical data to perform wrangling operations. To display pandas objects, run a cell in a notebook with the pandas object as the last line. To display other data formats, call the print method.

You need some historical data to perform wranging operations. Use LINQ to wrangle the data and then call the Console.WriteLine method in a Jupyter Notebook to display the data.

 $The \ {\tt DataFrame} \ \ index \ is \ the \ {\tt EndTime} \ \ of \ the \ data \ sample. \ The \ columns \ of \ the \ {\tt DataFrame} \ \ are \ the \ Equity \ {\tt Symbol} \ \ objects.$

To get the fundamental data points for each Equity, iterate through the history request result.

To select the historical data of a single Equity, index the DataFrame with the Equity Symbol . Each history slice may not have data for all of your Equity subscriptions. To avoid issues, check if it contains data for your Equity before you index it with the Equity Symbol .

```
foreach (var slice in history)
{
   foreach (var symbol in symbols)
   {
      if (slice.ContainsKey(symbol))
      {
           var peRatio = slice[symbol];
      }
   }
history[symbols[1]]
```

You can also iterate through each data point in the slice.

```
foreach (var slice in history)
{
    foreach (var kvp in slice)
    {
       var symbol = kvp.Key;
       var peRatio = kvp.Value;
    }
}
```

You can also use LINQ to select the historical data points

```
var symbol = symbols.Last();
var values = history.Select(slice => slice[symbol]);
```

Plot Data

You need some historical Equity fundamental data to produce plots. You can use many of the supported plotting libraries Plot. NET package to visualize data in various formats. For example, you can plot line charts.

Follow these steps to plot line charts using built-in methods Plotly.NET package:

```
1. Call the plot \, method on the history {\tt DataFrame}\, .
```

```
history.plot(title='PE Ratio Over Time', figsize=(15, 8))
```

Create Line charts.

```
var chart1 = Chart2D.Chart.Line<DateTime, decimal, string>(
    history.Select(x => (DateTime)x.Time),
    history.Select(x => (decimal)x[aapl]),
    Name: "AAPL"
);
var chart2 = Chart2D.Chart.Line<DateTime, decimal, string>(
    history.Select(x => (DateTime)x.Time),
    history.Select(x => (decimal)x[goog]),
    Name: "GOOG"
)
```

3. Create a Layout $\,$.

```
LinearAxis xAxis = new LinearAxis();
xAxis.SetValue("title", "Time");
LinearAxis yAxis = new LinearAxis();
yAxis.SetValue("title", "PE Ratio");
Title title = Title.init("AAPL & GOOG PE Ratio");
Layout layout = new Layout();
layout.SetValue("xaxis", xAxis);
layout.SetValue("xaxis", xAxis);
layout.SetValue("title", title);
```

4. Combine the charts and assign the Layout to the chart.

```
var chart = Plotly.NET.Chart.Combine(new []{chart1, chart2});
chart.WithLayout(layout);
```

5. Show the plot.

```
plt.show()
HTML(GenericChart.toChartHTML(chart))
```

Line charts display the value of the property you selected in a time series.

3.4 Equity Options

Introduction

This page explains how to request, manipulate, and visualize historical Equity Options data

Create Subscriptions

Follow these steps to subscribe to an Equity Option security:

1. Load the required assembly files and data types.

```
#load "../Initialize.csx"
#load "../QuantConnect.cs
      using QuantConnect;
      using QuantConnect, using QuantConnect.Data;
using QuantConnect.Data.Market;
using QuantConnect.Algorithm;
using QuantConnect.Securities;
using QuantConnect.Securities.Option;
using QuantConnect.Research;
2. Create a QuantBook .
      var gb = new OuantBook();
```

3. Subscribe to the underlying Equity with raw data normalization and save a reference to the Equity Symbol .

```
var equitySymbol = qb.AddEquity("SPY", dataNormalizationMode: DataNormalizationMode.Raw).Symbol:
equity symbol = qb.AddEquity("SPY", dataNormalizationMode=DataNormalizationMode.Raw).Symbol
```

To view the supported underlying assets in the US Equity Options dataset, see the <u>Data Explorer</u>.

4. Call the ${\tt AddOption}\,$ method with the underlying Equity ${\tt Symbol}\,$.

```
var option = qb.AddOption(equitySymbol);
  option = qb.AddOption(equity_symbol)
5. (Optional) Set a contract filter.
```

qb = QuantBook()

```
option.SetFilter(-1, 1, 0, 90);
option.SetFilter(-1, 1, 0, 90)
```

The filter determines which contracts the GetOptionHistory method returns. If you don't set a filter, the default filter selects the contracts that have the following characteristics

- Standard type (exclude weeklys)
- Within 1 strike price of the underlying asset price
- Expire within 31 days
- (Optional) Set the price model

```
option.PriceModel = OptionPriceModels.BjerksundStensland();
option.PriceModel = OptionPriceModels.BjerksundStensland()
```

If you want historical data on individual contracts and their OpenInterest , follow these steps to subscribe to the individual Equity Option contracts:

 $1. \ \ Call \ the \ {\tt GetOptionsContractList} \ \ method \ with \ the \ underlying \ {\tt Equity} \ \ {\tt Symbol} \ \ and \ a \ {\tt datetime} \ \ {\tt DateTime} \ \ .$

```
var startDate = new DateTime(2021, 12, 31);
var contractSymbols = qb.OptionChainProvider.GetOptionContractList(equitySymbol, startDate);
start_date = datetime(2021, 12, 31)
contract_symbols = qb.OptionContractList(equity_symbol, start_date)
```

This method returns a list of Symbol objects that reference the Option contracts that were trading at the given time. If you set a contract filter with SetFilter , it doesn't affect the results of GetOptionsContractList .

2. Select the Symbol of the OptionContract object(s) for which you want to get historical data.

To filter and select contracts, you can use the following properties of each Symbol object:

```
Property
                                                                               Description
ID.Date
                             The expiration date of the contract.
ID.StrikePrice The strike price of the contract.
{\tt ID.OptionRight\ The\ contract\ type.\ The\ OptionRight\ \ enumeration\ has\ the\ following\ members:}
{\tt ID.OptionStyle} \ \ \textbf{The contract style.} \ \ \textbf{The OptionStyle enumeration has the following members:}
var contractSymbol = contractSymbols.Where(s =>
    s.ID.OptionRight == OptionRight.Call &&
    s.ID.StrikePrice == 477 &&
    s.ID.Date == new DateTime(2022, 1, 21)).First();
contract_symbol = [s for s in contract_symbols
  if s.ID.OptionRight == OptionRight.Call
    and s.ID.StrikePrice == 477
    and s.ID.Date == datetime(2022, 1, 21)][0]
```

 $3. \ \ Call \ the \ {\tt AddOptionContract} \ \ method \ with \ an \ {\tt OptionContract} \ \ {\tt Symbol} \ \ and \ disable \ fill-forward.$

```
var optionContract = qb.AddOptionContract(contractSymbol, fillForward: false);
option_contract = qb.AddOptionContract(contract_symbol, fillForward = False)
```

Disable fill-forward because there are only a few OpenInterest data points per day.

4. (Optional) Set the price model.

```
optionContract.PriceModel = OptionPriceModels.BjerksundStensland();
option contract.PriceModel = OptionPriceModels.BjerksundStensland()
```

Get Historical Data

You need a subscription before you can request historical data for Equity Option contracts. On the time dimension, you can request an amount of historical data based on a trailing number of bars, a trailing period of time, or a defined period of time. On the contract dimension, you can request historical data for a single contract, a subset of the contracts you created subscriptions for in your notebook, or all of the contracts in your notebook

Before you request historical data, call the SetStartDate method with a datetime DateTime to reduce the risk of look-ahead bias.

```
qb.SetStartDate(startDate);
qb.SetStartDate(start date)
```

If you call the SetStartDate method, the date that you pass to the method is the latest date for which your history requests will return data.

Trailing Number of Bars

To get historical data for a number of trailing bars, call the History method with the contract Symbol object(s) and an integer.

```
// Slice objects
var singleHistorySlice = qb.History(contractSymbol, 10);
var subsetHistorySlice = qb.History(new[] {contractSymbol, 10);
var subsetHistorySlice = qb.History(new[] {contractSymbol, 10);
var subsetHistoryTradeBars = qb.HistoryCradeBar>(contractSymbol, 10);
var subsetHistoryTradeBars = qb.HistoryCradeBar>(qb.Securities.Keys, 10);

// QuoteBar objects
var singleHistoryQuoteBars = qb.HistoryCquoteBar>(contractSymbol, 10);
var allHistoryQuoteBars = qb.HistoryCquoteBar>(contractSymbol, 10);
var subsetHistoryQuoteBars = qb.HistoryCquoteBar>(qb.Securities.Keys, 10);

// OpenInterest objects
var singleHistoryOpenInterest = qb.HistoryCquoteBar>(contractSymbol, 10);
var subsetHistoryOpenInterest = qb.HistoryCopenInterest>(contractSymbol, 400);
var subsetHistoryOpenInterest = qb.HistoryCopenInterest>(new[] {contractSymbol, 400);
var subsetHistoryOpenInterest = qb.HistoryCopenInterest>(qb.Securities.Keys, 400);

# DataFrame of trade and quote data
single history df = qb.History(contract symbol, 10)
subset history_trade bar df = qb.History(TradeBar, contract symbol, 10)
subset history_trade bar df = qb.History(TradeBar, contract symbol, 10)
subset history_trade bar df = qb.History(CopenInterest, contract symbol, 10)
subset history_quote bar df = qb.History(QuoteBar, contract symbol, 10)
subset history_quote bar df = qb.History(QuoteBar, contract symbol, 10)
subset history_quote bar df = qb.History(QuoteBar, qb.Securities.Keys, 10)

# DataFrame of quote data
single history_open_interest data
single history_open_interes
```

The preceding calls return the most recent bars, excluding periods of time when the exchange was closed.

Trailing Period of Time

To get historical data for a trailing period of time, call the History method with the contract Symbol object(s) and a TimeSpan timedelta .

```
// Slice objects
var singleHistorySlice = qb.History(contractSymbol, TimeSpan.FromDays(3));
var subsetHistorySlice = qb.History(new[] (contractSymbol), TimeSpan.FromDays(3));
var allHistorySlice = qb.History(mew[] (contractSymbol), TimeSpan.FromDays(3));
var singleHistoryTradeBars = qb.History*TradeBar>(contractSymbol), TimeSpan.FromDays(3));
var allHistoryTradeBars = qb.History*TradeBar>(rimeSpan.FromDays(3));
var allHistoryTradeBars = qb.History*CradeBar>(rimeSpan.FromDays(3));
var allHistoryTradeBars = qb.History*QuoteBar>(contractSymbol, TimeSpan.FromDays(3), Resolution.Minute);
var allHistoryQuoteBars = qb.History*QuoteBar>(contractSymbol, TimeSpan.FromDays(3), Resolution.Minute);
var subsetHistoryQuoteBars = qb.History*QuoteBar>(qb,Securities.Keys, TimeSpan.FromDays(3), Resolution.Minute);
var subsetHistoryQuoteBars = qb.History*QuoteBar>(qb,Securities.Keys, TimeSpan.FromDays(3), Resolution.Minute);
var subsetHistoryQuoteBars = qb.History*QuoteBar>(qb,Securities.Keys, TimeSpan.FromDays(2));
var subsetHistoryQuoteBars = qb.History*QuoteBar>(qb,Securities.Keys, TimeSpan.FromDays(2));
var subsetHistoryQuoteInterest = qb.History*QuoteInterest>(qc,Securities.Keys, TimeSpan.FromDays(2));
var subsetHistoryQuoteInterest = qb.History*QuoteInterest>(qc,Securities.Keys, TimeSpan.FromDays(2));
var allHistoryQuoteInterest = qb.History(qc,Securities.Keys, TimeSpan.FromDays(2));

# DataFrame of fortade data
single history f = qb.History(contract symbol, timedelta(days=3))
all history_trade bar df = qb.History(TradeBar, contract symbol, timedelta(days=3))
all history_trade bar df = qb.History(TradeBar, contract symbol, timedelta(days=3))
all history_trade bar df = qb.History(QuoteBar, contract symbol, timedelta(days=3))
all history_trade bar df = qb.History(QuoteBar, contract symbol, timedelta(days=3))

# DataFrame of quote data
single history quote bar df = qb.History(QuoteBar, (contract symbol, timedelta(days=3))

# DataFrame of poen interest df = qb.History(QuoteBar, (contract symbol, timedelta(days=3))

# DataFr
```

Defined Period of Time

To get historical data for individual Equity Option contracts during a specific period of time, call the History method with the Equity Option contract Symbol object(s), a start DateTime datetime , and an end DateTime datetime. The start and end times you provide are based in the notebook time zone

```
var startTime = new DateTime(2021, 12, 1);
var endTime = new DateTime(2021, 12, 31);
// Since Objects
var singleHistorySlice = qb.History(contractSymbol, startTime, endTime);
var subsetHistorySlice = qb.History(new[] {contractSymbol}, startTime, endTime);
var allHistorySlice = qb.History(startTime, endTime);
var singleHistoryTradeBars = qb.History<TradeBar>(contractSymbol, startTime, endTime);
var subsetHistoryTradeBars = qb.History<TradeBar>(new[] {contractSymbol}, startTime, endTime);
var allHistoryTradeBars = qb.History<TradeBar>(qb.Securities.Keys, startTime, endTime);
// QuoteBar objects
var singleHistoryQuoteBars = qb.History<QuoteBar>(contractSymbol, startTime, endTime, Resolution.Minute);
var subsetHistoryQuoteBars = qb.History<QuoteBar>(new[] {contractSymbol}, startTime, endTime, Resolution.Minute);
var allHistoryQuoteBars = qb.History<QuoteBar>(qb.Securities.Keys, startTime, endTime, Resolution.Minute);
// OpenInterest objects
var singleHistoryOpenInterest = qb.History<OpenInterest>(contractSymbol, startTime, endTime);
var subsetHistoryOpenInterest = qb.History<OpenInterest>(new[] {contractSymbol}, startTime, en
var allHistoryOpenInterest = qb.History<OpenInterest>(qb.Securities.Keys, startTime, endTime);
start_time = datetime(2021, 12, 1)
end_time = datetime(2021, 12, 31)
# DataFrame of trade and quote data
# batariame of take aim quote tack
single history (fer ap. History (contract_symbol, start_time, end_time)
subset_history (ff = qb.History ([contract_symbol], start_time, end_time)
all_history_df = qb.History (qb.Securities.Keys, start_time, end_time)
# Datarrame of trade data single_history_trade_bar_df = qb.History(TradeBar, contract_symbol, start_time, end_time) subset history_trade_bar_df = qb.History(TradeBar, [contract_symbol], start_time, end_time) all_history_trade_bar_df = qb.History(TradeBar, qb.Securities.Keys, start_time, end_time)
# DataFrame of quote data single history quote bar df = qb.History (QuoteBar, contract_symbol, start_time, end_time) subset_history_quote_bar_df = qb.History(QuoteBar, [contract_symbol], start_time, end_time) all_history_quote_bar_df = qb.History(QuoteBar, qb.Securities.Keys, start_time, end_time)
# DataFrame of open interest data
* Detailable Of Open Interest data single_history_open_interest_df = qb.History(OpenInterest, contract_symbol, start_time, end_time) subset history_open_interest_df = qb.History(OpenInterest, [contract_symbol], start_time, end_time) all_history_trade_open_interest_df = qb.History(OpenInterest, qb.Securities.Keys, start_time, end_time)
# TradeBar objects
single_history_trade_bars = qb.History[TradeBar](contract_symbol, start_time, end_time) subset history_trade_bars = qb.History[TradeBar]([contract_symbol], start_time, end_time) all_history_trade_bars = qb.History[TradeBar](qb.Securities.Keys, start_time, end_time)
* volcebal objects single history_quote_bars = qb.History[QuoteBar] (contract_symbol, start_time, end_time, Resolution.Minute) subset history_quote_bars = qb.History[QuoteBar] ([contract_symbol], start_time, end_time, Resolution.Minute) all_history_quote_bars = qb.History[QuoteBar] (qb.Securities.Keys, start_time, end_time, Resolution.Minute)
# OpenInterest objects
# OpenInterest objects
single_history_open_interest = qb.History[OpenInterest] (contract_symbol, start_time, end_time)
subset history_open_interest = qb.History[OpenInterest] ([contract_symbol], start_time, end_time)
all_history_open_interest = qb.History[OpenInterest] (qb.Securities.Keys, start_time, end_time)
To get historical data for all of the Equity Option contracts that pass your filter during a specific period of time, call the GetOptionHistory method with the underlying Equity Symbol object, a start DateTime datetime, and an end
DateTime datetime
option_history = qb.GetOptionHistory(equity_symbol, end_time-timedelta(days=2), end_time, Resolution.Minute, fillForward=False, extendedMarketHours=False)
var optionHistory = qb.GetOptionHistory(equitySymbol, endTime-TimeSpan.FromDays(2), endTime, Resolution.Minute, fillForward: False, extendedMarketHours: False);
```

The preceding calls return data that have a timestamp within the defined period of time.

Resolutions

The following table shows the available resolutions and data formats for Equity Option contract subscriptions:

Resolution TradeBar QuoteBar Trade Tick Quote Tick

Tick Second Minute Hour Dailv

Markets

LEAN groups all of the US Equity Option exchanges under Market. USA, so you don't need to pass a Market to the AddOption or AddOptionContract methods.

Wrangle Data

You need some historical data to perform wrangling operations. The process to manipulate the historical data depends on its data type. To display pandas objects, run a cell in a notebook with the pandas object as the last line. To display other data formats, call the print method.

You need some historical data to perform wrangling operations. Use LINQ to wrangle the data and then call the Console. WriteLine method in a Jupyter Notebook to display the data. The process to manipulate the historical data depends on its data type.

DataFrame Objects

If your history request returns a DataFrame , the DataFrame has the following index levels:

- 1. Contract expiry
- Contract strike price
- 3. Contract type (call or put)
- Encoded contract Symbol
- The EndTime of the data sample

The columns of the DataFrame are the data properties. Depending on how you request data, the DataFrame may contain data for the underlying security, which causes some of the index levels to be an empty string for the corresponding rows.

To select the rows of the contract(s) that expire at a specific time, index the loc property of the DataFrame with the expiry time.

If you remove the first three index levels, you can index the DataFrame with just the contract Symbol , similar to how you would with non-derivative asset classes. To remove the first three index levels, call the droplevel method.

```
all_history_df.index = all_history_df.index.droplevel([0,1,2])
```

 $To select the \ historical \ data \ of a single \ Equity \ Options \ contract, \ index \ the \ \verb|loc| \ property \ of the \ \verb|DataFrame| \ with \ the \ contract \ \verb|Symbol| \ .$

```
all_history_df.loc[contract_symbol]
```

To select a column of the DataFrame , index it with the column name.

```
all_history_df.loc[contract_symbol]['close']
```

If you request historical data for multiple Equity Option contracts, you can transform the DataFrame so that it's a time series of close values for all of the Equity Option contracts. To transform the DataFrame , select the column you want to display for each Equity Option contract and then call the $\underline{\underline{unstack}}$ method.

```
all_history_df['close'].unstack(level=0)
```

The DataFrame is transformed so that the column indices are the Symbol of each security and each row contains the close value.

The historical data methods don't return DataFrame objects, but you can create one for efficient vectorized data wrangling.

```
using Microsoft.Data.Analysis;
var columns = new DataFrameColumn[] {
    new PrimitiveDataFrameColumn("Time", history.Select(x => x[contractSymbol].EndTime)),
    new DecimalDataFrameColumn("Open", history.Select(x => x[contractSymbol].Open)),
    new DecimalDataFrameColumn("High", history.Select(x => x[contractSymbol].Ingh)),
    new DecimalDataFrameColumn("Low", history.Select(x => x[contractSymbol].Low)),
    new DecimalDataFrameColumn("Close", history.Select(x => x[contractSymbol].Close));
    var df = new DataFrame(columns);
df
```

To select a particular column of the DataFrame, index it with the column name.

```
df[" close"]
```

Slice Objects

If the History method returns Slice objects, iterate through the Slice objects to get each one. The Slice objects may not have data for all of your Equity Options subscriptions. To avoid issues, check if the Slice contains data for your Equity Option contract before you index it with the Equity Options Symbol .

```
foreach (var slice in allHistorySlice) {
    if (slice.Bars.ContainsKey(contractSymbol)) {
        var tradeBar = slice.Bars[contractSymbol];
    }
    if (slice.QuoteBars.ContainsKey(contractSymbol)) {
        var quoteBar = slice.QuoteBars[contractSymbol];
    }
}

for slice in all_history_slice:
        if slice.Bars.ContainsKey(contract_symbol):
            trade bar = slice.Bars[contract_symbol]
        if slice.QuoteBars.ContainsKey(contract_symbol):
            quote_bar = slice.QuoteBars[contract_symbol]
```

You can also iterate through each TradeBar and QuoteBar in the Slice .

```
foreach (var slice in allHistorySlice)
{
    foreach (var kvp in slice.Bars)
    {
       var symbol = kvp.Key;
      var tradeBar = kvp.Value;
    }
    foreach (var kvp in slice.QuoteBars)
    {
       var symbol = kvp.Key;
       var quoteBar = kvp.Value;
    }
}

for slice in all history_slice:
    for kvp in slice.Bars:
       symbol = kvp.Key
      trade bar = kvp.Value
    for kvp in slice.QuoteBars:
      symbol = kvp.Key
      quoteBar = kvp.Value
```

You can also use LINQ to select each TradeBar in the Slice for a given Symbol .

```
var tradeBars = allHistorySlice.Where(slice => slice.Bars.ContainsKey(contractSymbol)).Select(slice => slice.Bars[contractSymbol]);
```

TradeBar Objects

If the History method returns TradeBar objects, iterate through the TradeBar objects to get each one.

```
foreach (var tradeBar in singleHistoryTradeBars)
{
    Console.WriteLine(tradeBar);
}
for trade_bar in single_history_trade_bars:
    print(trade_bar)
```

If the History method returns TradeBars , iterate through the TradeBars to get the TradeBar of each Equity Option contract. The TradeBars may not have data for all of your Equity Options subscriptions. To avoid issues, check if the TradeBars object contains data for your security before you index it with the Equity Options Symbol .

```
foreach (var tradeBars in allHistoryTradeBars)
{
    if (tradeBars.ContainsKey(contractSymbol))
    {
        var tradeBar = tradeBars[contractSymbol];
    }
}
for trade bars in all history trade bars:
```

```
if trade_bars.ContainsKey(contract_symbol):
    trade bar = trade bars[contract_symbol]
```

You can also iterate through each of the TradeBars .

```
foreach (var tradeBars in allHistoryTradeBars)
{
    foreach (var kvp in tradeBars)
    {
       var symbol = kvp.Key;
      var tradeBar = kvp.Value;
    }
}
for trade_bars in all history_trade_bars:
    for kvp in trade_bars:
      symbol = kvp.Key
      trade_bar = kvp.Value
```

QuoteBar Objects

If the History method returns QuoteBar objects, iterate through the QuoteBar objects to get each one.

```
foreach (var quoteBar in singleHistoryQuoteBars)
{
    Console.WriteLine(quoteBar);
}
for quote_bar in single_history_quote_bars:
    print(quote_bar)
```

If the History method returns QuoteBars , iterate through the QuoteBars to get the QuoteBar of each Equity Option contract. The QuoteBars may not have data for all of your Equity Options subscriptions. To avoid issues, check if the QuoteBars object contains data for your security before you index it with the Equity Options Symbol .

```
foreach (var quoteBars in allHistoryQuoteBars)
{
    if (quoteBars.ContainsKey(contractSymbol)) {
        var quoteBar = quoteBars[contractSymbol];
    }
}
for quote_bars in all history_quote_bars:
    if quote_bars.ContainsKey(contract_symbol):
        quote_bar = quote_bars[contract_symbol]
```

You can also iterate through each of the QuoteBars .

```
foreach (var quoteBars in allHistoryQuoteBars)
{
    foreach (var kvp in quoteBars)
    {
        var symbol = kvp.Key;
        var quoteBar = kvp.Value;
    }
}
for quote_bars in all_history_quote_bars:
    for kvp in quote_bars:
        symbol = kvp.Key
        quote_bar = kvp.Value
```

OpenInterest Objects

If the History method returns OpenInterest objects, iterate through the OpenInterest objects to get each one.

```
foreach (var openInterest in singleHistoryOpenInterest)
{
    Console.WriteLine(openInterest);
}
for open_interest in single_history_open_interest:
    print(open_interest)
```

If the History method returns a dictionary of OpenInterest objects, iterate through the dictionary to get the OpenInterest of each Equity Option contract. The dictionary of OpenInterest objects may not have data for all of your Equity Options contract subscriptions. To avoid issues, check if the dictionary contains data for your contract before you index it with the Equity Options contract Symbol .

```
foreach (var openInterestDict in allHistoryOpenInterest)
{
    if (openInterestDict.ContainsKey(contractSymbol))
    {
        var openInterest = openInterestDict[contractSymbol];
    }
}
for open_interest_dict in all_history_open_interest:
    if open_interest_dict.ContainsKey(contract_symbol):
        open_interest = open_interest_dict[contract_symbol]
```

You can also iterate through each of the OpenInterest dictionaries.

```
foreach (var openInterestDict in allHistoryOpenInterest)
{
    foreach (var kvp in openInterestDict)
    {
        var symbol = kvp.Key;
        var openInterest = kvp.Value;
    }
}

for open_interest_dict in all_history_open_interest:
    for kvp in open_interest_dict:
        symbol = kvp.Key
        open_interest = kvp.Value
```

OptionHistory Objects

The GetOptionHistory method returns an OptionHistory object. To get each slice in the OptionHistory object, iterate through it.

To convert the OptionHistory object to a DataFrame that contains the trade and quote information of each contract and the underlying, call the GetAllData method.

```
option history.GetAllData()
```

 $To get the \ expiration \ dates \ of \ all \ the \ contracts \ in \ an \ {\tt OptionHistory} \ object, \ call \ the \ {\tt GetExpiryDates} \ method.$

```
option_history.GetExpiryDates()
```

To get the strike prices of all the contracts in an ${\tt OptionHistory}\,$ object, call the ${\tt GetStrikes}\,$ method.

```
option_history.GetStrikes()
```

Plot Data

You need some historical Equity Options data to produce plots. You can use many of the supported plotting libraries. Plot.NET package to visualize data in various formats. For example, you can plot candlestick and line charts.

Candlestick Chart

Follow these steps to plot candlestick charts:

```
1. Get some historical data.
```

```
history = qb.History(contract_symbol, datetime(2021, 12, 30), datetime(2021, 12, 31))

var history = qb.History<TradeBar>(contractSymbol, new DateTime(2021, 12, 30), new DateTime(2021, 12, 31));
```

2. Drop the first four index levels of the DataFrame that returns.

```
history.index = history.index.droplevel([0,1,2,3])
```

3. Import the plotly Plotly.NET library.

```
import plotly.graph_objects as go
#r "../Plotly.NET.dll"
using Plotly.NET;
using Plotly.NET.LayoutObjects;
```

4. Create a Candlestick .

5. Create a Layout .

6. Create the Figure .

```
fig = go.Figure(data=[candlestick], layout=layout)
```

7. Assign the Layout to the chart.

chart.WithLayout(layout);

8. Show the plot.

```
fig.show()
HTML(GenericChart.toChartHTML(chart))
```

The Jupyter Notebook displays a candlestick chart of the Option contract's price.

Line Chart

Follow these steps to plot line charts using built-in methods ${\tt Plotly.NET}$ package:

Get some historical data.

```
history = qb.History(OpenInterest, contract_symbol, datetime(2021, 12, 1), datetime(2021, 12, 31))
var history = qb.History<OpenInterest>(contract_symbol, new DateTime(2021, 12, 1), new DateTime(2021, 12, 31));
```

2. Drop the first three index levels of the DataFrame that returns.

```
history.index = history.index.droplevel([0, 1, 2])
```

3. Select the open interest data.

```
history = history['openinterest'].unstack(level=0)
```

4. Rename the column to the symbol of the contract.

```
history.columns = [
    Symbol.GetAlias(SecurityIdentifier.Parse(x), equity_symbol)
    for x in history.columns]
```

5. Call the plot method with a title.

```
history.plot(title="Open Interest")
```

6. Create a Line chart.

```
var chart = Chart2D.Chart.Line<DateTime, decimal, string>(
   history.Select(x => x.EndTime),
   history.Select(x => x.Value)
);
```

7. Create a Layout .

```
LinearAxis xAxis = new LinearAxis();
```

```
xAxis.SetValue("title", "Time");
LinearAxis yAxis = new LinearAxis();
yAxis.SetValue("title", "Open Interest");
Title title = Title.init("SPY Open Interest");
Layout layout = new Layout();
layout.SetValue("xaxis", xAxis);
layout.SetValue("yaxis", yAxis);
layout.SetValue("title", title);

8. Assignthe Layout to the chart.
chart.WithLayout(layout);

9. Show the plot.
plt.show()
HTML(GenericChart.toChartHTML(chart))
The Jupyter Notebook displays a line chart of open interest data.
```

Get Price Model Data

Follow these steps to get the values of theoretical prices, implied volatility, and Greeks:

- 1. Create subscriptions and set the price model.
- 2. Set the underlying volatility model.

```
qb.Securities[equity_symbol].VolatilityModel = StandardDeviationOfReturnsVolatilityModel(30, Resolution.Daily)
```

You need to reset the volatility before you start calculating the theoretical prices, implied volatility, and Greeks.

- 3. Get historical data for the underlying Equity and the Option contract(s).
- 4. Iterate through the historical data and calculate the values.

```
dr = plinealFame()
for slikes in Nathory;
contentlying price = None
underlying price = None
underlying price = None
underlying price = None
underlying price = None
plinealFame()
for bar in slice.QuoteBars.Values:
q...Recurities [bar.Spabel].SetWarteTrice (bar)

# Update the security with TradeBar information
for bar in slice.Bars.Values:
symbol = bar.Symbol
security, = ph.Securities [symbol)
security. = ph.Securities [symbol]
security. = security. = ph.Securities [symbol]
security. = security. = security. = ph.Securities [symbol]
security. = security. = ph.Securities [symbol]. Symbol.Underlying, bar.EndTime, security, underlying.price)
contract = optionContract.Ceate(symbol, symbol.Underlying, bar.EndTime, security, underlying.price)
contract = security. = ph.Securities [symbol]. Symbol.Underlying, bar.EndTime, security, underlying.price)
contract.lastFrice = security. = ph.Securities [symbol]. Symbol.Underlying.

# Evaluate the price model to get the IV, Greeks, and theoretical price
result = security. = ph.Securities [symbol]. Symbol.Underlying.

# Symbol. = ph.Securities [symbol]. = ph.Security.
```

For a full example, see the following project:

```
ChartsStatisticsCode
         main.pyresearch.ipynb
      Clone Algorithm
                                                                                                                                                                                                                              QUANTCONNECT
                                       Overall Statistics
                                       Total Trades
                                       Average Win
                                                                                                                        0%
                                       Average Loss
                                                                                                                        0%
                                      Compounding Annual Return
Drawdown
Expectancy
                                                                                                                        0%
0%
                                                                                                                        0
                                       Net Profit
                                                                                                                        0%
                                       Sharpe Ratio
                                                                                                                        0
                                       Probabilistic Sharpe Ratio
                                                                                                                        0%
                                       Loss Rate
Win Rate
                                                                                                                        0%
                                                                                                                        0%
                                       Profit-Loss Ratio
                                                                                                                        0
                                       Alpha
                                                                                                                        0
                                      Beta
                                                                                                                        0
                                       Annual Standard Deviation
                                                                                                                        0
                                       Annual Variance
                                                                                                                        0
                                       Information Ratio
                                                                                                                        0.92
                                       Tracking Error
                                                                                                                        0.233
                                       Treynor Ratio
                                      Total Fees
Estimated Strategy Capacity
Lowest Capacity Asset
                                                                                                                        $0.00
                                                                                                                        $0
# region imports
from AlgorithmImports import *
# endregion
class FormalBlackAnguilline(QCAlgorithm):
     def Initialize(self):
    self.SetStartDate(2022, 9, 3)
    self.SetEndDate(2022, 10, 4)
    self.SetCash(100000) # Set Strategy Cash
```

3.5 Crypto

Introduction

This page explains how to request, manipulate, and visualize historical Crypto data.

Create Subscriptions

Follow these steps to subscribe to a Crypto security:

1. Load the required assembly files and data types.

```
#load "../Initialize.csx"
#load "../QuantConnect.csx"
using QuantConnect.Data;
using QuantConnect.Algorithm;
using QuantConnect.Algorithm;
using QuantConnect.Research;

2. Create a QuantBook .
   var qb = new QuantBook();
   qb = QuantBook()

3. Call the AddCrypto method with a ticker and then save a reference to the Crypto Symbol .
   var btcusd = qb.AddCrypto("BTCUSD").Symbol;
   var ethusd = qb.AddCrypto("BTCUSD").Symbol;
   btcusd = qb.AddCrypto("BTCUSD").Symbol
ethusd = qb.AddCrypto("BTCUSD").Symbol
ethusd = qb.AddCrypto("BTCUSD").Symbol
```

To view the supported assets in the Crypto datasets, see the Supported Assets section of the CoinAPI dataset listings.

Get Historical Data

You need a <u>subscription</u> before you can request historical data for a security. On the time dimension, you can request an amount of historical data based on a trailing number of bars, a trailing period of time, or a defined period of time. On the security dimension, you can request historical data for a single Cryptocurrencies, a subset of the Cryptocurrencies you created subscriptions for in your notebook, or all of the Cryptocurrencies in your notebook.

Trailing Number of Bars

To get historical data for a number of trailing bars, call the History method with the Symbol object(s) and an integer.

```
// Slice objects
var singleHistorySlice = qb.History(ptcusd, 10);
var subsetHistorySlice = qb.History(new[] (btcusd, ethusd), 10);
var allHistorySlice = qb.History(10);

// TradeBar objects
var singleHistoryTradeBars = qb.History<TradeBar>(btcusd, 10);
var subsetHistoryTradeBars = qb.History<TradeBar>(pb.Cusd, 10);
var subsetHistoryTradeBars = qb.History<TradeBar>(pb.Securities.Keys, 10);

// QuoteBar objects
var singleHistoryQuoteBars = qb.History<QuoteBar>(pb.Securities.Keys, 10);
var subsetHistoryQuoteBars = qb.History<QuoteBar>(pb.Securities.Keys, 10);
var subsetHistoryQuoteBars = qb.History<QuoteBar>(pb.Securities.Keys, 10);

# DataFrame of trade and quote data
single history df = qb.History(btcusd, 10)
subset history df = qb.History(btcusd, 10)
subset history df = qb.History(pc.Securities.Keys, 10)

# DataFrame of trade data
single history trade bar df = qb.History(TradeBar, btcusd, 10)
subset history trade bar df = qb.History(TradeBar, qb.Securities.Keys, 10)

# DataFrame of quote data
single history trade bar df = qb.History(TradeBar, btcusd, ethusd], 10)
subset history quote bar df = qb.History(QuoteBar, btcusd, ethusd], 10)
subset history quote bar df = qb.History(QuoteBar, btcusd, ethusd], 10)
subset history quote bar df = qb.History(QuoteBar, qb.Securities.Keys, 10)

# Slice objects
all history_trade bars = qb.History(TradeBar] (btcusd, ethusd], 10)
all history_trade bars = qb.History(TradeBar] (btcusd, ethusd], 10)
all history_trade bars = qb.History(TradeBar] (btcusd, ethusd], 10)
all history_trade bars = qb.History(TradeBar) (bccusd, ethusd], 10)
all history_trade bars = qb.History(TradeBar) (bccusd, ethusd], 10)
all history_trade_bars = qb.History(TradeBar) (bccusd, ethusd], 10)
all history_quote_bars = qb.History(QuoteBar) (bccusd, ethusd], 10)
all history_quote_bars = qb.History(QuoteBar)
```

Trailing Period of Time

 $\label{thm:continuous} To \ \ \text{get historical data for a trailing period of time, call the \ \ \text{History method with the Symbol object(s)} \ \ \text{and a } \ \ \text{TimeSpan timedelta} \ \ .$

```
// Sife Objects
var singleHistorySlice = qb.History(new[] {btcusd, ethusd}, TimeSpan.FromDays(3));
var subsetHistorySlice = qb.History(new[] {btcusd, ethusd}, TimeSpan.FromDays(3));
var allHistorySlice = qb.History(10);

// TradeBar objects
var singleHistoryTradeBars = qb.History<TradeBar>(btcusd, TimeSpan.FromDays(3));
var subsetHistoryTradeBars = qb.History<TradeBar>(TimeSpan.FromDays(3));
var subsetHistoryTradeBars = qb.History<TradeBar>(TimeSpan.FromDays(3));

// QuoteBar objects
var singleHistoryQuoteBars = qb.History<QuoteBar>(btcusd, TimeSpan.FromDays(3), Resolution.Minute);
var subsetHistoryQuoteBars = qb.History<QuoteBar>(btcusd, TimeSpan.FromDays(3), Resolution.Minute);
var subsetHistoryQuoteBars = qb.History<QuoteBar>(qb.Securities.Keys, TimeSpan.FromDays(3), Resolution.Minute);

// Tick objects
var singleHistoryTicks = qb.History<Tick>(btcusd, TimeSpan.FromDays(3), Resolution.Tick);
var subsetHistoryTicks = qb.History<Tick>(btcusd, timeSpan.FromDays(3), Resolution.Tick);
var allHistoryTicks = qb.History<Tick>(qb.Securities.Keys, TimeSpan.FromDays(3), Resolution.Tick);
var allHistoryTicks = qb.History<Tick>(qb.Securities.Keys, TimeSpan.FromDays(3), Resolution.Tick);

# DataFrame of trade and quote data
single history df = qb.History(TimeSpan.FromDays(3), Resolution.Tick);

# DataFrame of trade data
single history df = qb.History(Dtcusd, timedelta(days=3))

# DataFrame of trade data
single history trade bar df = qb.History(TradeBar, btcusd, timedelta(days=3))

all history trade bar df = qb.History(TradeBar, [btcusd, ethusd], timedelta(days=3))

# DataFrame of quote data
single history trade bar df = qb.History(TradeBar, btcusd, timedelta(days=3))

# DataFrame of quote data
single history quote_bar df = qb.History(QuoteBar, btcusd, timedelta(days=3))

# DataFrame of quote data
single history quote_bar df = qb.History(QuoteBar, btcusd, timedelta(days=3))

# DataFrame of quote data
single history quote_bar df = qb.History(QuoteBar, [bccusd, ethusd], timedelta(days=3))
```

```
all_history_quote_bar_df = qb.History(QuoteBar, qb.Securities.Keys, timedelta(days=3))

# DataFrame of tick data
single_history_tick_df = qb.History(btcusd, timedelta(days=3), Resolution.Tick)
subset_history_tick_df = qb.History([btcusd, ethusd], timedelta(days=3), Resolution.Tick)
all_history_tick_df = qb.History(qb.Securities.Keys, timedelta(days=3), Resolution.Tick)

# Slice objects
all_history_slice = qb.History(timedelta(days=3))

# TradeBar objects
single_history_trade_bars = qb.History[TradeBar](btcusd, timedelta(days=3))
subset_history_trade_bars = qb.History[TradeBar](fbtcusd, ethusd], timedelta(days=3))

# QuoteBar objects
single_history_quote_bars = qb.History[QuoteBar](btcusd, ethusd], timedelta(days=3), Resolution.Minute)
subset_history_quote_bars = qb.History[QuoteBar](btcusd, ethusd], timedelta(days=3), Resolution.Minute)
all_history_quote_bars = qb.History[QuoteBar](gb.Securities.Keys, timedelta(days=3), Resolution.Minute)
# Tick objects
single_history_ticks = qb.History[Tick](btcusd, timedelta(days=3), Resolution.Tick)
subset_history_ticks = qb.History[Tick]([btcusd, ethusd], timedelta(days=3), Resolution.Tick)
all_history_ticks = qb.History[Tick]([btcusd, ethusd], timedelta(days=3), Resolution.Tick)
```

Defined Period of Time

To get historical data for a specific period of time, call the History method with the Symbol object(s), a start DateTime datetime, and an end DateTime datetime. The start and end times you provide are based in the notebook time zone.

```
var startTime = new DateTime(2021, 1, 1);
var endTime = new DateTime(2021, 2, 1);
// Slice objects
// Since Gujects
var singleHistorySlice = qb.History(btcusd, startTime, endTime);
var subsetHistorySlice = qb.History(new[] {btcusd, ethusd}, startTime, endTime);
var allHistorySlice = qb.History(qb.Securities.Keys, startTime, endTime);
var singleHistoryTradeBars = qb.History<TradeBar>(btcusd, startTime, endTime);
var subsetHistoryTradeBars = qb.History<TradeBar>(new[] {btcusd, ethusd}, startTime, endTime);
var allHistoryTradeBars = qb.History<TradeBar>(qb.Securities.Keys, startTime, endTime);
// QuoteBar objects
var singleHistoryQuoteBars = qb.History<QuoteBar>(btcusd, startTime, endTime, Resolution.Minute);
var subsetHistoryQuoteBars = qb.History<QuoteBar>(new[] {btcusd, ethusd}, startTime, endTime, Resolution.Minute);
var allHistoryQuoteBars = qb.History<QuoteBar>(qb.Securities.Keys, startTime, endTime, Resolution.Minute);
// inck objects
var singleHistoryTicks = qb.History<Tick>(btcusd, startTime, endTime, Resolution.Tick);
var subsetHistoryTicks = qb.History<Tick>(new[] {btcusd, ethusd], startTime, endTime, Resolution.Tick);
var allHistoryTicks = qb.History<Tick>(qb.Securities.Keys, startTime, endTime, Resolution.Tick);
start_time = datetime(2021, 1, 1)
end_time = datetime(2021, 2, 1)
# DataFrame of trade and quote data
single history_df = qb.History(btcusd, start_time, end_time)
subset history_df = qb.History([btcusd, ethusd], start_time, end_time)
all_history_df = qb.History(qb.Securities.Keys, start_time, end_time)
# MaLarrame OT Trade data
single_history_trade_bar_df = qb.History(TradeBar, btcusd, start_time, end_time)
subset history_trade_bar_df = qb.History(TradeBar, [btcusd, ethusd], start_time, end_time)
all_history_trade_bar_df = qb.History(TradeBar, qb.Securities.Keys, start_time, end_time)
* bathrams of quote dar df = qb.History(QuoteBar, btcusd, start_time, end_time) subset_history_quote_bar_df = qb.History(QuoteBar, [btcusd, ethusd], start_time, end_time) all_history_quote_bar_df = qb.History(QuoteBar, qb.Securities.Keys, start_time, end_time)
# DataFrame of tick data
* Data raine of the data single history (btcusd, start_time, end_time, Resolution.Tick) subset history_tick_df = qb.History([btcusd, ethusd], start_time, end_time, Resolution.Tick all_history_tick_df = qb.History(qb.Securities.Keys, start_time, end_time, Resolution.Tick
# TradeBar objects
single_history_trade_bars = qb.History[TradeBar](btcusd, start_time, end_time) subset history_trade_bars = qb.History[TradeBar]([btcusd, ethusd], start_time, end_time) all_history_trade_bars = qb.History[TradeBar](qb.Securities.Keys, start_time, end_time)
* Quotebar Objects
single history_quote_bars = qb.History[QuoteBar](btcusd, start_time, end_time, Resolution.Minute)
subset history_quote_bars = qb.History[QuoteBar]([btcusd, ethusd], start_time, end_time, Resolution.Minute)
all_history_quote_bars = qb.History[QuoteBar](qb.Securities.Keys, start_time, end_time, Resolution.Minute)
single history_ticks = qb.History[Tick] (btcusd, start_time, end_time, Resolution.Tick)
subset_history_ticks = qb.History[Tick]([btcusd, ethusd], start_time, end_time, Resolution.Tic
all_history_ticks = qb.History[Tick](qb.Securities.Keys, start_time, end_time, Resolution.Tic
```

Resolutions

The following table shows the available resolutions and data formats for Crypto subscriptions:

Resolution TradeBar QuoteBar Trade Tick Quote Tick

Tick		
Second		
Minute		
Hour		
Daily		

Markets

The following Market enumeration members are available for Crypto:

Wrangle Data

You need some historical data to perform wrangling operations. The process to manipulate the historical data depends on its data type. To display pandas objects, run a cell in a notebook with the pandas object as the last line. To display other data formats, call the print method.

You need some historical data to perform wrangling operations. Use LINQ to wrangle the data and then call the Console.WriteLine method in a Jupyter Notebook to display the data. The process to manipulate the historical data depends on its data type.

DataFrame Objects

If the History method returns a DataFrame , the first level of the DataFrame index is the encoded Crypto Symbol and the second level is the EndTime of the data sample. The columns of the DataFrame are the data properties.

```
all_history_df.loc[btcusd] # or all_history_df.loc['BTCUSD']
```

To select a column of the DataFrame , index it with the column name.

```
all_history_df.loc[btcusd]['close']
```

If you request historical data for multiple Crypto pairs, you can transform the DataFrame so that it's a time series of close values for all of the Crypto pairs. To transform the DataFrame, select the column you want to display for each Crypto pair and then call the unstack method.

```
all_history_df['close'].unstack(level=0)
```

The DataFrame is transformed so that the column indices are the Symbol of each Crypto pair and each row contains the close value.

The historical data methods don't return DataFrame objects, but you can create one for efficient vectorized data wrangling.

```
using Microsoft.Data.Analysis;
var columns = new DataFrameColumn[] {
    new PrimitiveDataFrameColumn("Time", history.Select(x => x[btcusd].EndTime)),
    new DecimalDataFrameColumn("BTCUSD Open", history.Select(x => x[btcusd].Open)),
    new DecimalDataFrameColumn("BTCUSD High", history.Select(x => x[btcusd].High)),
    new DecimalDataFrameColumn("BTCUSD Low", history.Select(x => x[btcusd].Low)),
    new DecimalDataFrameColumn("BTCUSD Close", history.Select(x => x[btcusd].Close))
};
var df = new DataFrame(columns);
df
```

To select a particular column of the DataFrame, index it with the column name.

```
df["BTCUSD close"]
```

Slice Objects

If the History method returns slice objects, iterate through the slice objects to get each one. The slice objects may not have data for all of your Crypto subscriptions. To avoid issues, check if the slice contains data for your Crypto pair before you index it with the Crypto Symbol .

```
foreach (var slice in allHistorySlice) {
    if (slice.Bars.ContainsKey(btcusd)) {
        var tradeBar = slice.Bars[btcusd];
    }
    if (slice.QuoteBars.ContainsKey(btcusd)) {
        var quoteBar = slice.QuoteBars[btcusd];
    }
}

for slice in all history_slice:
    if slice.Bars.ContainsKey(btcusd):
        trade bar = slice.Bars[btcusd]
    if slice.QuoteBars.ContainsKey(btcusd):
        quote_bar = slice.QuoteBars[btcusd]
```

You can also iterate through each ${\tt TradeBar}\,$ and ${\tt QuoteBar}\,$ in the ${\tt Slice}\,$.

```
foreach (var slice in allHistorySlice)
{
    foreach (var kvp in slice.Bars)
    {
       var symbol = kvp.Key;
       var tradeBar = kvp.Value;
    }
    foreach (var kvp in slice.QuoteBars)
    {
       var symbol = kvp.Key;
       var quoteBar = kvp.Value;
    }
}

for slice in all_history_slice:
    for kvp in slice.Bars:
       symbol = kvp.Key
       trade bar = kvp.Value
    for kvp in slice.QuoteBars:
       symbol = kvp.Key
       trade bar = kvp.Value
    for kvp in slice.QuoteBars:
       symbol = kvp.Key
       quote_bar = kvp.Value
```

You can also use LINQ to select each ${\tt TradeBar}$ in the ${\tt Slice}$ for a given ${\tt Symbol}$.

```
var tradeBars = allHistorySlice.Where(slice => slice.Bars.ContainsKey(btcusd)).Select(slice => slice.Bars[btcusd]);
```

TradeBar Objects

If the History method returns TradeBar objects, iterate through the TradeBar objects to get each one.

```
foreach (var tradeBar in singleHistoryTradeBars)
{
    Console.WriteLine(tradeBar);
}
for trade_bar in single_history_trade_bars:
    print(trade_bar)
```

If the History method returns TradeBars , iterate through the TradeBars to get the TradeBar of each Crypto pair. The TradeBars may not have data for all of your Crypto subscriptions. To avoid issues, check if the TradeBars object contains data for your security before you index it with the Crypto Symbol .

```
foreach (var tradeBars in allHistoryTradeBars)
{
    if (tradeBars.ContainsKey(btcusd)) {
        var tradeBar = tradeBars[btcusd];
    }
}
for trade_bars in all_history_trade_bars:
    if trade_bars.ContainsKey(btcusd):
        trade_bar = trade_bars[btcusd]
```

You can also iterate through each of the ${\tt TradeBars}$.

```
foreach (var tradeBars in allHistoryTradeBars)
{
    foreach (var kvp in tradeBars)
    {
       var symbol = kvp.Key;
      var tradeBar = kvp.Value;
}
```

```
for trade_bars in all_history_trade_bars:
    for kwp in trade_bars:
        symbol = kvp.Key
        trade_bar = kvp.Value
```

QuoteBar Objects

If the History method returns QuoteBar objects, iterate through the QuoteBar objects to get each one.

```
foreach (var quoteBar in singleHistoryQuoteBars)
{
    Console.WriteLine(quoteBar);
}
for quote bar in single_history_quote_bars:
    print(quote bar)
```

If the History method returns QuoteBars , iterate through the QuoteBars to get the QuoteBars of each Crypto pair. The QuoteBars may not have data for all of your Crypto subscriptions. To avoid issues, check if the QuoteBars object contains data for your security before you index it with the Crypto Symbol .

```
foreach (var quoteBars in allHistoryQuoteBars)
{
    if (quoteBars.ContainsKey(btcusd))
    {
        var quoteBar = quoteBars[btcusd];
    }
}

for quote_bars in all_history_quote_bars:
    if quote_bars.ContainsKey(btcusd):
        quote_bar = quote_bars[btcusd]

You can also iterate through each of the QuoteBars .

foreach (var quoteBars in allHistoryQuoteBars)
{
        var symbol = kvp.Key;
        var quoteBar = kvp.Value;
    }
}

for quote_bars in all_history_quote_bars:
    for kvp in quote_bars:
        symbol = kvp.Key
        quote_bar = kvp.Value
```

Tick Objects

If the History method returns Tick objects, iterate through the Tick objects to get each one.

```
foreach (var tick in singleHistoryTicks)
{
    Console.WriteLine(tick);
}
for tick in single_history_ticks:
    print(tick)
```

foreach (var ticks in allHistoryTicks)

If the $\tt History$ method returns $\tt Ticks$, iterate through the $\tt Ticks$ to get the $\tt Ticks$ of each Crypto pair. The $\tt Ticks$ may not have data for all of your Crypto subscriptions. To avoid issues, check if the $\tt Ticks$ object contains data for your security before you index it with the Crypto $\tt Symbol$.

```
{
    if (ticks.ContainsKey(btcusd))
    {
        var tick = ticks[btcusd];
    }
}
for ticks in all_history_ticks:
    if ticks.ContainsKey(btcusd):
        ticks = ticks[btcusd]

You can also iterate through each of the Ticks .

foreach (var ticks in allHistoryTicks)
    {
        var symbol = kvp.Key;
        var tick = kvp.Value;
    }
}
for ticks in all history_ticks:
    for kvp in ticks:
        symbol = kvp.Key
        ticks = kvp.Key
        ticks = kvp.Value;
}
```

Plot Data

You need some historical Crypto data to produce plots. You can use many of the supported plotting libraries Plot. NET package to visualize data in various formats. For example, you can plot candlestick and line charts.

Candlestick Chart

Follow these steps to plot candlestick charts:

1. Get some historical data.

```
history = qb.History(btcusd, datetime(2020, 12, 27), datetime(2021, 12, 21), Resolution.Daily).loc[btcusd]

var history = qb.History<TradeBar>(btcusd, new DateTime(2020, 12, 27), new DateTime(2021, 12, 21), Resolution.Daily);

2. Import the plotly Plotly.NET library.

import plotly.graph_objects as go

#r "../Plotly.NET.dll"
using Plotly.NET;
using Plotly.NET.LayoutObjects;

3. Create a Candlestick .
```

```
history.Select(x => x.Low),
history.Select(x => x.Close),
history.Select(x => x.EndTime)
   4. Create a Layout .
       LinearAxis xAxis = new LinearAxis();
xAxis.SetValue("title", "Time");
LinearAxis yAxis = new LinearAxis();
yAxis.SetValue("title", "Price (5)");
Title title = Title.init($"{btcusd} Price");
       Layout layout = new Layout();
layout.SetValue("xaxis", xAxis);
layout.SetValue("yaxis", yAxis);
layout.SetValue("title", title);
   5. Create the Figure .
       fig = go.Figure(data=[candlestick], layout=layout)
   6. Assign the \texttt{Layout} to the chart.
       chart.WithLayout(layout);
   7. Show the Figure .
       fig.show()
       HTML(GenericChart.toChartHTML(chart))
       Candlestick charts display the open, high, low, and close prices of the security.
Line Chart
Follow these steps to plot line charts using built-in methods Plotly.NET package:
   1. Get some historical data.
       \texttt{history = qb.History([btcusd, ethusd], datetime(2020, 12, 27), datetime(2021, 12, 21), Resolution.Daily)}
       var history = qb.History<TradeBar>(new[] {btcusd, ethusd}, new DateTime(2020, 12, 27), new DateTime(2021, 12, 21), Resolution.Daily);
   2. Select the data to plot.
       volume = history['volume'].unstack(level=0)
   3. Call the plot method on the pandas object.
       volume.plot(title="Volume", figsize=(15, 10))
   4. Create Line charts.
      var chart1 = Chart2D.Chart.Line<DateTime, decimal, string>(
    history.Select(x => x[btcusd].EndTime),
    history.Select(x => x[btcusd].Volume),
    Name: "BTCUSD"
).
       );
var chart2 = Chart2D.Chart.Line<DateTime, decimal, string>(
    history.Select(x => x[ethusd].EndTime),
    history.Select(x => x[ethusd].Volume),
    Name: "ETHUSD"
   5. Create a Layout \, .
      LinearAxis xAxis = new LinearAxis();
xAxis.SetValue("title", "Time");
LinearAxis yAxis = new LinearAxis();
yAxis.SetValue("title", "Volume");
Title title = Title.init("BTCUSD & ETHUSD Volume");
       Layout layout = new Layout();
layout.SetValue("xaxis", xAxis);
layout.SetValue("yaxis", yAxis);
layout.SetValue("title", title);
   6. Combine the charts and assign the Layout to the chart.
       var chart = Plotly.NET.Chart.Combine(new []{chart1, chart2});
chart.WithLayout(layout);
   7. Show the plot.
       HTML(GenericChart.toChartHTML(chart))
```

Line charts display the value of the property you selected in a time series.

3.6 Crypto Futures

Introduction

This page explains how to request, manipulate, and visualize historical Crypto Futures data.

Create Subscriptions

Follow these steps to subscribe to a perpetual Crypto Futures contract:

1. Load the required assembly files and data types.

```
#load "../Initialize.csx"
#load "../QuantConnect.csx"
using QuantConnect.pata;
using QuantConnect.Data;
using QuantConnect.Algorithm;
using QuantConnect.Algorithm;
using QuantConnect.Research;

2. Create a QuantBook .

var qb = new QuantBook();
qb = QuantBook()

3. Call the AddCryptoFuture method with a ticker and then save a reference to the Crypto Future Symbol .

var btcusd = qb.AddCryptoFuture("BTCUSD").Symbol;
var ethusd = qb.AddCryptoFuture("ETGUSD").Symbol;
btcusd = qb.AddCryptoFuture("BTCUSD").Symbol
ethusd = qb.AddCryptoFuture("BTCUSD").Symbol
ethusd = qb.AddCryptoFuture("BTCUSD").Symbol
```

To view the supported assets in the Crypto Futures datasets, see the Data Explorer.

Get Historical Data

You need a <u>subscription</u> before you can request historical data for a security. You can request an amount of historical data based on a trailing number of bars, a trailing period of time, or a defined period of time. You can also request historical data for a single contract, a subset of the contracts you created subscriptions for in your notebook, or all of the contracts in your notebook.

Trailing Number of Bars

To get historical data for a number of trailing bars, call the History method with the Symbol object(s) and an integer.

```
// Slice objects
var singleHistorySlice = qb.History(ptcusd, 10);
var subsetHistorySlice = qb.History(new[] (btcusd, ethusd), 10);
var allHistorySlice = qb.History(10);

// TradeBar objects
var singleHistoryTradeBars = qb.History<TradeBar>(btcusd, 10);
var subsetHistoryTradeBars = qb.History<TradeBar>(pb.Cusd, 10);
var subsetHistoryTradeBars = qb.History<TradeBar>(pb.Securities.Keys, 10);

// QuoteBar objects
var singleHistoryQuoteBars = qb.History<QuoteBar>(pb.Securities.Keys, 10);
var subsetHistoryQuoteBars = qb.History<QuoteBar>(pb.Securities.Keys, 10);
var subsetHistoryQuoteBars = qb.History<QuoteBar>(pb.Securities.Keys, 10);

# DataFrame of trade and quote data
single history df = qb.History(btcusd, 10)
subset history df = qb.History(btcusd, 10)
subset history df = qb.History(pc.Securities.Keys, 10)

# DataFrame of trade data
single history trade bar df = qb.History(TradeBar, btcusd, 10)
subset history trade bar df = qb.History(TradeBar, qb.Securities.Keys, 10)

# DataFrame of quote data
single history trade bar df = qb.History(TradeBar, btcusd, ethusd], 10)
subset history quote bar df = qb.History(QuoteBar, btcusd, ethusd], 10)
subset history quote bar df = qb.History(QuoteBar, btcusd, ethusd], 10)
subset history quote bar df = qb.History(QuoteBar, qb.Securities.Keys, 10)

# Slice objects
all history_trade bars = qb.History(TradeBar] (btcusd, ethusd], 10)
all history_trade bars = qb.History(TradeBar] (btcusd, ethusd], 10)
all history_trade bars = qb.History(TradeBar] (btcusd, ethusd], 10)
all history_trade bars = qb.History(TradeBar) (bccusd, ethusd], 10)
all history_trade bars = qb.History(TradeBar) (bccusd, ethusd], 10)
all history_trade_bars = qb.History(TradeBar) (bccusd, ethusd], 10)
all history_quote_bars = qb.History(QuoteBar) (bccusd, ethusd], 10)
all history_quote_bars = qb.History(QuoteBar)
```

Trailing Period of Time

 $To \ get \ historical \ data \ for \ a \ trailing \ period \ of \ time, \ call \ the \ {\tt History} \ \ method \ with \ the \ {\tt Symbol} \ \ object(s) \ and \ a \ {\tt TimeSpan} \ \ {\tt timedelta} \ \ .$

```
// Slice objects
var singleHistorySlice = qb.History(btcusd, TimeSpan.FromDays(3));
var subsethHistorySlice = qb.History(new[] {btcusd, ethusd}, TimeSpan.FromDays(3));
var allHistorySlice = qb.History(10);

// TradeBar objects
var singleHistoryTradeBars = qb.History<TradeBar>(btcusd, TimeSpan.FromDays(3));
var subsethHistoryTradeBars = qb.History<TradeBar>(new[] {btcusd, ethusd}, TimeSpan.FromDays(3));
var allHistoryTradeBars = qb.History<QuoteBar>(TimeSpan.FromDays(3)),

// QuoteBar objects
var singleHistoryQuoteBars = qb.History<QuoteBar>(btcusd, TimeSpan.FromDays(3), Resolution.Minute);
var subsetHistoryQuoteBars = qb.History<QuoteBar>(new[] {btcusd, ethusd}, TimeSpan.FromDays(3), Resolution.Minute);
var allHistoryQuoteBars = qb.History<Tick>(pb.Securities.Keys, TimeSpan.FromDays(3), Resolution.Minute);

// Tick objects
var singleHistoryTicks = qb.History<Tick>(btcusd, TimeSpan.FromDays(3), Resolution.Tick);
var subsetHistoryTicks = qb.History<Tick>(new[] {btcusd, ethusd}, TimeSpan.FromDays(3), Resolution.Tick);
var allHistoryTicks = qb.History<Tick>(qb.Securities.Keys, TimeSpan.FromDays(3), Resolution.Tick);
var allHistoryTicks = qb.History<Tick>(qb.Securities.Keys, TimeSpan.FromDays(3), Resolution.Tick);

# DataFrame of trade and quote data
single history off = qb.History(btcusd, ethusd], timedelta(days=3))
all_history_df = qb.History(btcusd, ethusd], timedelta(days=3))
subset_history_trade_bar_df = qb.History(TradeBar, btcusd, timedelta(days=3))
all_history_trade_bar_df = qb.History(TradeBar, ptcusd, ethusd], timedelta(days=3))

# DataFrame of trade data
single history_trade_bar_df = qb.History(TradeBar, ptcusd, ethusd], timedelta(days=3))

# DataFrame of quote data
single history_trade_bar_df = qb.History(QuoteBar, btcusd, timedelta(days=3))
subset_history_quote_bar_df = qb.History(QuoteBar, btcusd, ethusd], timedelta(days=3))
subset_history_quote_bar_df = qb.History(QuoteBar, btcusd, ethusd], timedelta(days=3))
```

```
all_history_quote_bar_df = qb.History(QuoteBar, qb.Securities.Keys, timedelta(days=3))

# DataFrame of tick data
single_history_tick_df = qb.History(btcusd, timedelta(days=3), Resolution.Tick)
subset_history_tick_df = qb.History([btcusd, ethusd], timedelta(days=3), Resolution.Tick)
all_history_tick_df = qb.History(qb.Securities.Keys, timedelta(days=3), Resolution.Tick)

# Slice objects
all_history_slice = qb.History(timedelta(days=3))

# TradeBar objects
single_history_trade_bars = qb.History[TradeBar](btcusd, timedelta(days=3))
subset_history_trade_bars = qb.History[TradeBar](fbtcusd, ethusd], timedelta(days=3))

# QuoteBar objects
single_history_quote_bars = qb.History[QuoteBar](btcusd, ethusd], timedelta(days=3), Resolution.Minute)
subset_history_quote_bars = qb.History[QuoteBar](btcusd, ethusd], timedelta(days=3), Resolution.Minute)
all_history_quote_bars = qb.History[QuoteBar](gb.Securities.Keys, timedelta(days=3), Resolution.Minute)
# Tick objects
single_history_ticks = qb.History[Tick](btcusd, timedelta(days=3), Resolution.Tick)
subset_history_ticks = qb.History[Tick]([btcusd, ethusd], timedelta(days=3), Resolution.Tick)
all_history_ticks = qb.History[Tick]([btcusd, ethusd], timedelta(days=3), Resolution.Tick)
```

Defined Period of Time

To get historical data for a specific period of time, call the History method with the Symbol object(s), a start DateTime datetime, and an end DateTime datetime. The start and end times you provide are based in the notebook time zone.

```
var startTime = new DateTime(2021, 1, 1);
var endTime = new DateTime(2021, 2, 1);
// Slice objects
// Since Gujects
var singleHistorySlice = qb.History(btcusd, startTime, endTime);
var subsetHistorySlice = qb.History(new[] {btcusd, ethusd}, startTime, endTime);
var allHistorySlice = qb.History(qb.Securities.Keys, startTime, endTime);
var singleHistoryTradeBars = qb.History<TradeBar>(btcusd, startTime, endTime);
var subsetHistoryTradeBars = qb.History<TradeBar>(new[] {btcusd, ethusd}, startTime, endTime);
var allHistoryTradeBars = qb.History<TradeBar>(qb.Securities.Keys, startTime, endTime);
// QuoteBar objects
var singleHistoryQuoteBars = qb.History<QuoteBar>(btcusd, startTime, endTime, Resolution.Minute);
var subsetHistoryQuoteBars = qb.History<QuoteBar>(new[] {btcusd, ethusd}, startTime, endTime, Resolution.Minute);
var allHistoryQuoteBars = qb.History<QuoteBar>(qb.Securities.Keys, startTime, endTime, Resolution.Minute);
// inck objects
var singleHistoryTicks = qb.History<Tick>(btcusd, startTime, endTime, Resolution.Tick);
var subsetHistoryTicks = qb.History<Tick>(new[] {btcusd, ethusd], startTime, endTime, Resolution.Tick);
var allHistoryTicks = qb.History<Tick>(qb.Securities.Keys, startTime, endTime, Resolution.Tick);
start_time = datetime(2021, 1, 1)
end_time = datetime(2021, 2, 1)
# DataFrame of trade and quote data
single history_df = qb.History(btcusd, start_time, end_time)
subset history_df = qb.History([btcusd, ethusd], start_time, end_time)
all_history_df = qb.History(qb.Securities.Keys, start_time, end_time)
# MaLarrame OT Trade data
single_history_trade_bar_df = qb.History(TradeBar, btcusd, start_time, end_time)
subset history_trade_bar_df = qb.History(TradeBar, [btcusd, ethusd], start_time, end_time)
all_history_trade_bar_df = qb.History(TradeBar, qb.Securities.Keys, start_time, end_time)
* batarrame or quote data single history(QuoteBar, btcusd, start_time, end_time) subset history_quote_bar_df = qb.History(QuoteBar, [btcusd, ethusd], start_time, end_time) all_history_quote_bar_df = qb.History(QuoteBar, qb.Securities.Keys, start_time, end_time)
# DataFrame of tick data
single history_tick df = qb.History(btcusd, start time, end_time, Resolution.Tick)
subset history_tick_df = qb.History([btcusd, ethusd], start_time, end_time, Resolution.Tick)
all_history_tick_df = qb.History(qb.Securities.Keys, start_time, end_time, Resolution.Tick)
# TradeBar objects
single_history_trade_bars = qb.History[TradeBar](btcusd, start_time, end_time) subset history_trade_bars = qb.History[TradeBar]([btcusd, ethusd], start_time, end_time) all_history_trade_bars = qb.History[TradeBar](qb.Securities.Keys, start_time, end_time)
* Quotebar Objects
single history_quote_bars = qb.History[QuoteBar](btcusd, start_time, end_time, Resolution.Minute)
subset history_quote_bars = qb.History[QuoteBar]([btcusd, ethusd], start_time, end_time, Resolution.Minute)
all_history_quote_bars = qb.History[QuoteBar](qb.Securities.Keys, start_time, end_time, Resolution.Minute)
single history_ticks = qb.History[Tick] (btcusd, start_time, end_time, Resolution.Tick)
subset_history_ticks = qb.History[Tick]([btcusd, ethusd], start_time, end_time, Resolution.Tic
all_history_ticks = qb.History[Tick](qb.Securities.Keys, start_time, end_time, Resolution.Tic
```

Resolutions

The following table shows the available resolutions and data formats for Crypto Futures contract subscriptions:

Resolution TradeBar QuoteBar Trade Tick Quote Tick

Tick		
Second		
Minute		
Hour		
Daily		

Markets

 $Crypto\ Futures\ are\ currently\ only\ available\ on\ {\tt Market.Binance}\ \ .$

Wrangle Data

You need some historical data to perform wrangling operations. The process to manipulate the historical data depends on its data type. To display pandas objects, run a cell in a notebook with the pandas object as the last line. To display other data formats, call the print method.

You need some historical data to perform wrangling operations. Use LINQ to wrangle the data and then call the Console. WriteLine method in a Jupyter Notebook to display the data. The process to manipulate the historical data depends on its data type.

DataFrame Objects

If the History method returns a DataFrame , the first level of the DataFrame index is the encoded Crypto Future Symbol and the second level is the EndTime of the data sample. The columns of the DataFrame are the data properties.

To select the historical data of a single Crypto Future, index the loc property of the DataFrame with the Crypto Future Symbol .

```
all_history_df.loc[btcusd] # or all_history_df.loc['BTCUSD']
```

To select a column of the ${\tt DataFrame}\,$, index it with the column name.

```
all_history_df.loc[btcusd]['close']
```

If you request historical data for multiple Crypto Futures contracts, you can transform the DataFrame so that it's a time series of close values for all of the Crypto Futures contracts. To transform the DataFrame , select the column you want to display for each Crypto Futures contract and then call the $\underline{\underline{unstack}}$ method.

```
all history df['close'].unstack(level=0)
```

The DataFrame is transformed so that the column indices are the Symbol of each Crypto Futures contract and each row contains the close value.

The historical data methods don't return DataFrame objects, but you can create one for efficient vectorized data wrangling.

```
var columns = new DataFrameColumn[] {
    new PrimitiveDataFrameColumn("Time", history.Select(x => x[btcusd].EndTime)),
    new DecimalDataFrameColumn("BTCUSD Open", history.Select(x => x[btcusd].Open)),
    new DecimalDataFrameColumn("BTCUSD High", history.Select(x => x[btcusd].High)),
    new DecimalDataFrameColumn("BTCUSD Low", history.Select(x => x[btcusd].Low)),
    new DecimalDataFrameColumn("BTCUSD Close", history.Select(x => x[btcusd].Close))
};
var df = new DataFrame(columns);
df
```

To select a particular column of the DataFrame, index it with the column name.

```
df["BTCUSD close"]
```

Slice Objects

If the History method returns Slice objects, iterate through the Slice objects to get each one. The Slice objects may not have data for all of your Crypto Future subscriptions. To avoid issues, check if the Slice contains data for your Crypto Futures contract before you index it with the Crypto Future Symbol.

```
foreach (var slice in allHistorySlice) {
    if (slice.Bars.ContainsKey(btcusd)) {
        var tradeBar = slice.Bars[btcusd];
    }
    if (slice.QuoteBars.ContainsKey(btcusd)) {
        var quoteBar = slice.QuoteBars[btcusd];
    }
}
for slice in all history slice:
    if slice.Bars.ContainsKey(btcusd):
        trade_bar = slice.Bars[btcusd]
    if slice.QuoteBars.ContainsKey(btcusd):
        quote_bar = slice.QuoteBars[btcusd]
```

You can also iterate through each ${\tt TradeBar}$ and ${\tt QuoteBar}$ in the ${\tt Slice}$.

```
foreach (var slice in allHistorySlice)
{
    foreach (var kvp in slice.Bars)
    {
        var symbol = kvp.Key;
        var tradeBar = kvp.Value;
    }
    foreach (var kvp in slice.QuoteBars)
    {
        var symbol = kvp.Key;
        var quoteBar = kvp.Value;
    }
}

for slice in all_history_slice:
    for kvp in slice.Bars:
        symbol = kvp.Key
        trade_bar = kvp.Value
    for kvp in slice.QuoteBars:
        symbol = kvp.Key
        trade_bar = kvp.Value
    for kvp in slice.QuoteBars:
        symbol = kvp.Key
        quote_bar = kvp.Value
```

You can also use LINQ to select each ${\tt TradeBar}$ in the ${\tt Slice}$ for a given ${\tt Symbol}$.

```
var tradeBars = allHistorySlice.Where(slice => slice.Bars.ContainsKey(btcusd)).Select(slice => slice.Bars[btcusd]);
```

TradeBar Objects

 $If the \ {\tt History} \ \ method \ \ {\tt returns} \ \ {\tt TradeBar} \ \ objects, \ iterate \ through \ the \ \ {\tt TradeBar} \ \ objects \ to \ get \ each \ one.$

```
foreach (var tradeBar in singleHistoryTradeBars)
{
    Console.WriteLine(tradeBar);
}
for trade_bar in single_history_trade_bars:
    print(trade_bar)
```

If the History method returns TradeBars , iterate through the TradeBars to get the TradeBar of each Crypto Futures contract. The TradeBars may not have data for all of your Crypto Future subscriptions. To avoid issues, check if the TradeBars object contains data for your security before you index it with the Crypto Future Symbol .

```
foreach (var tradeBars in allHistoryTradeBars)
{
    if (tradeBars.ContainsKey(btcusd))
    {
        var tradeBar = tradeBars[btcusd];
    }
}
for trade_bars in all_history_trade_bars:
    if trade_bars.ContainsKey(btcusd):
        trade_bar = trade_bars[btcusd]

You can also iterate through each of the TradeBars .

foreach (var tradeBars in allHistoryTradeBars)
```

foreach (var kvp in tradeBars)

```
{
    var symbol = kvp.Key;
    var tradeBar = kvp.Value;
}
}

for trade_bars in all_history_trade_bars:
    for kvp in trade_bars:
        symbol = kvp.Key
        trade_bar = kvp.Value
```

QuoteBar Objects

If the History method returns QuoteBar objects, iterate through the QuoteBar objects to get each one.

```
foreach (var quoteBar in singleHistoryQuoteBars)
{
    Console.WriteLine(quoteBar);
}
for quote_bar in single_history_quote_bars:
    print(guote_bar)
```

If the History method returns QuoteBars , iterate through the QuoteBars to get the QuoteBar of each Crypto Futures contract. The QuoteBars may not have data for all of your Crypto Future subscriptions. To avoid issues, check if the QuoteBars object contains data for your security before you index it with the Crypto Future Symbol .

```
foreach (var quoteBars in allHistoryQuoteBars)
{
    if (quoteBars.ContainsKey(btcusd))
    {
       var quoteBar = quoteBars[btcusd];
    }
}
for quote_bars in all_history_quote_bars:
    if quote_bars.ContainsKey(btcusd):
       quote_bar = quote_bars[btcusd]

You can also iterate through each of the QuoteBars .
```

```
foreach (var quoteBars in allHistoryQuoteBars)
{
    foreach (var kvp in quoteBars)
    {
        var symbol = kvp.Key;
        var quoteBar = kvp.Value;
    }
}

for quote_bars in all_history_quote_bars:
    for kvp in quote_bars:
        symbol = kvp.Key
        quote_bar = kvp.Value
```

Tick Objects

If the History method returns Tick objects, iterate through the Tick objects to get each one.

```
foreach (var tick in singleHistoryTicks)
{
    Console.WriteLine(tick);
}
for tick in single_history_ticks:
    print(tick)
```

If the History method returns Ticks, iterate through the Ticks to get the Tick of each Crypto Futures contract. The Ticks may not have data for all of your Crypto Future subscriptions. To avoid issues, check if the Ticks object contains data for your security before you index it with the Crypto Future Symbol.

```
foreach (var ticks in allHistoryTicks)
{
    if (ticks.ContainsKey(btcusd)) {
       var tick = ticks[btcusd];
    }
}
for ticks in all_history_ticks:
    if ticks.ContainsKey(btcusd):
       ticks = ticks[btcusd]
```

You can also iterate through each of the ${\tt Ticks}\,$.

```
foreach (var ticks in allHistoryTicks)
{
    foreach (var kvp in ticks)
    {
       var symbol = kvp.Key;
       var tick = kvp.Value;
    }
}

for ticks in all_history_ticks:
    for kvp in ticks:
       symbol = kvp.Key
       tick = kvp.Value
```

Plot Data

You need some historical Crypto Futures data to produce plots. You can use many of the supported plotting libraries. Plot. NET package to visualize data in various formats. For example, you can plot candlestick and line charts.

Candlestick Chart

Follow these steps to plot candlestick charts:

Get some historical data.

```
history = qb.History(btcusd, datetime(2021, 11, 23), datetime(2021, 12, 8), Resolution.Daily).loc[btcusd]

var history = qb.History<TradeBar>(btcusd, new DateTime(2021, 11, 23), new DateTime(2021, 12, 8), Resolution.Daily);

2. Import the plotly Plotly.NET ibrary.

import plotly.graph_objects as go

#r "../Plotly.NET.dll"
using Plotly.NET;
using Plotly.NET.LayoutObjects;
```

```
3. Create a Candlestick .
```

```
var chart = Chart2D.Chart.Candlestick<decimal, decimal, decimal, decimal, DateTime, string>(
              cnart = (nart2).tnart.candlest
history.Select(x => x.Open),
history.Select(x => x.High),
history.Select(x => x.Low),
history.Select(x => x.Close),
history.Select(x => x.EndTime)
   4. Create a Layout \, .
       LinearAxis xAxis = new LinearAxis();
xAxis.SetValue("title", "Time");
LinearAxis yAxis = new LinearAxis();
yAxis.SetValue("title", "Price ($)");
Title title = Title.init("BTCUSD 18R OHLC");
       Layout layout = new Layout();
layout.SetValue("xaxis", xAxis);
layout.SetValue("yaxis", yAxis);
layout.SetValue("title", title);
        fig = go.Figure(data=[candlestick], layout=layout)
   6. Assign the Layout to the chart.
        chart.WithLayout(layout);
   7. Show the Figure .
        fig.show()
        HTML (GenericChart.toChartHTML(chart))
        Candlestick charts display the open, high, low, and close prices of the security.
Line Chart
Follow these steps to plot line charts using built-in methods {\tt Plotly.NET} package:
   1. Get some historical data.
        history = qb.History([btcusd, ethusd], datetime(2021, 11, 23), datetime(2021, 12, 8), Resolution.Daily)
   Select the data to plot.
        volume = history['volume'].unstack(level=0)
   3. Call the plot method on the pandas object.
        volume.plot(title="Volume", figsize=(15, 10))
   4. Create Line charts.
        var chart1 = Chart2D.Chart.Line<DateTime, decimal, string>(
   history.Select(x => x[btcusd].EndTime),
   history.Select(x => x[btcusd].Volume),
   Name: "BTCUSD 18R"
         //
var chart2 = Chart2D.Chart.Line<DateTime, decimal, string>(
    history.Select(x => x[ethusd].EndTime),
    history.Select(x => x[ethusd].Volume),
    Name: "ETHUSD 18R"
   5. Create a \texttt{Layout} .
       LinearAxis xAxis = new LinearAxis();
xAxis.SetValue("title", "Time");
LinearAxis yAxis = new LinearAxis();
yAxis.SetValue("title", "Volume");
Title title = Title.init("BTCUSD 18R & ETHUSD 18R Volume");
       Layout layout = new Layout();
layout.SetValue("xaxis", xAxis);
layout.SetValue("yaxis", yAxis);
layout.SetValue("title", title);
   6. Combine the charts and assign the Layout to the chart.
        var chart = Plotly.NET.Chart.Combine(new []{chart1, chart2});
chart.WithLayout(layout);
   Show the plot.
       plt.show()
        HTML(GenericChart.toChartHTML(chart))
```

Line charts display the value of the property you selected in a time series.

3.7 Futures

Introduction

This page explains how to request, manipulate, and visualize historical Futures data.

Create Subscriptions

Follow these steps to subscribe to a Future security:

1. Load the required assembly files and data types.

```
#load "../Initialize.csx"
#load "../QuantConnect.csx"
using QuantConnect.Data;
using QuantConnect.Data;
using QuantConnect.Data.Market;
using QuantConnect.Securities;
using QuantConnect.Securities;
using QuantConnect.Securities.Future;
using QuantConnect.Research;
2. Create a QuantBook .

var qb = new QuantBook();

db = QuantBook()
```

3. Call the AddFuture method with a ticker, resolution, and contract rollover settings

To view the available tickers in the US Futures dataset, see Supported Assets

If you omit any of the arguments after the ticker, see the following table for their default values:

Argument Default Value resolution Resolution.Minute dataNormalizationMode DataNormalizationMode.Adjusted dataMappingMode DataMappingMode.OpenInterest contractDepthOffset 0 4. (Optional) Set a contract filter. future.SetFilter(0, 90); future.SetFilter(0, 90)

 $If you don't call the {\tt SetFilter} \ \ method, the {\tt GetFutureHistory} \ \ method \ won't \ return \ historical \ data.$

If you want historical data on individual contracts and their <code>openInterest</code> , follow these steps to subscribe to individual Future contracts:

 $1. \ \ Call \ the \ {\tt GetFuturesContractList} \ \ method \ with \ the \ underlying \ {\tt Future} \ \ {\tt Symbol} \ \ and \ a \ {\tt datetime} \ \ {\tt DateTime} \ \ .$

```
var startDate = new DateTime(2021,12,20);
var symbols = qb.FutureChainProvider.GetFutureContractList(future.Symbol, startDate);
start_date = datetime(2021,12,20)
symbols = qb.FutureChainProvider.GetFutureContractList(future.Symbol, start_date)
```

This method returns a list of Symbol objects that reference the Future contracts that were trading at the given time. If you set a contract filter with SetFilter, it doesn't affect the results of GetFutureContractList.

2. Select the Symbol of the FutureContract object(s) for which you want to get historical data.

For example, select the Symbol of the contract with the closest expiry.

```
var contractSymbol = symbols.OrderBy(s => s.ID.Date).FirstOrDefault();
contract symbol = sorted(symbols, key=lambda s: s.ID.Date)[0]
```

 $\textbf{3. Call the} \ \texttt{AddFutureContract} \ \ \textbf{method with an} \ \texttt{FutureContract} \ \ \texttt{Symbol} \ \ \textbf{and disable fill-forward.}$

```
qb.AddFutureContract(contractSymbol, fillForward: false);
qb.AddFutureContract(contract symbol, fillForward = False)
```

Disable fill-forward because there are only a few ${\tt OpenInterest}\,$ data points per day.

Get Historical Data

You need a <u>subscription</u> before you can request historical data for Futures contracts. On the time dimension, you can request an amount of historical data based on a trailing number of bars, a trailing period of time, or a defined period of time. On the contract dimension, you can request historical data for a single contract, a subset of the contract syou created subscriptions for in your notebook, or all of the contracts in your notebook.

Before you request historical data, call the SetStartDate method with a datetime DateTime to reduce the risk of look-ahead bias.

```
qb.SetStartDate(startDate);
qb.SetStartDate(start_date)
```

If you call the SetStartDate method, the date that you pass to the method is the latest date for which your history requests will return data.

Trailing Number of Bars

To get historical data for a number of trailing bars, call the History method with the contract Symbol object(s) and an integer

```
// Since Objects
var singleHistorySlice = qb.History(new[] {contractSymbol, 10);
var subsetHistorySlice = qb.History(new[] {contractSymbol}, 10);
var allHistorySlice = qb.History(10);

// TradeBar objects
var singleHistoryTradeBars = qb.History<TradeBar>(contractSymbol, 10);
var subsetHistoryTradeBars = qb.History<TradeBar>(new[] {contractSymbol}, 10);
var allHistoryTradeBars = qb.History<TradeBar>(qb.Securities.Keys, 10);

// QuoteBar objects
var singleHistoryQuoteBars = qb.History<QuoteBar>(contractSymbol, 10);
var subsetHistoryQuoteBars = qb.History<QuoteBar>(new[] {contractSymbol}, 10);
var allHistoryQuoteBars = qb.History<QuoteBar>(qb.Securities.Keys, 10);

// OpenInterest objects
var singleHistoryOpenInterest = qb.History<OpenInterest>(contractSymbol, 400);
var subsetHistoryOpenInterest = qb.History<OpenInterest>(new[] (contractSymbol), 400);
var allHistoryOpenInterest = qb.History<OpenInterest>(qb.Securities.Keys, 400);
var allHistoryOpenInterest = qb.History<OpenInterest>(qb.Securities.Keys, 400);
```

```
# DataFrame of trade and quote data
single history df = qb.History(contract_symbol, 10)
subset history df = qb.History(fcontract_symbol), 10)
all_history_df = qb.History(qb.Securities.Keys, 10)

# DataFrame of trade data
single history_trade_bar_df = qb.History(TradeBar, contract_symbol, 10)
subset history_trade_bar_df = qb.History(TradeBar, contract_symbol), 10)
all_history_trade_bar_df = qb.History(TradeBar, qb.Securities.Keys, 10)

# DataFrame of quote data
single history_quote_bar_df = qb.History(QuoteBar, contract_symbol, 10)
subset history_quote_bar_df = qb.History(QuoteBar, contract_symbol, 10)
subset history_quote_bar_df = qb.History(QuoteBar, qb.Securities.Keys, 10)

# DataFrame of open interest data
single history_open_interest df = qb.History(OpenInterest, contract_symbol, 400)
subset_history_open_interest df = qb.History(OpenInterest, [contract_symbol], 400)
all_history_open_interest_df = qb.History(OpenInterest, qb.Securities.Keys, 400)

# Slice objects
all_history_trade_bars = qb.History[TradeBar](contract_symbol, 10)
subset_history_trade_bars = qb.History[TradeBar](contract_symbol, 10)
subset_history_trade_bars = qb.History[TradeBar](contract_symbol, 10)
subset_history_trade_bars = qb.History[TradeBar](contract_symbol, 10)
subset_history_trade_bars = qb.History[QuoteBar](contract_symbol, 10)
subset_history_quote_bars = qb.History[QuoteBar](contract_symbol, 10)
subset_history_quote_bars = qb.History[QuoteBar](contract_symbol, 10)
subset_history_quote_bars = qb.History[QuoteBar](contract_symbol, 10)
subset_history_open_interest = qb.History[QuoteBar](contract_symbol, 10)
subset_history_open_interest = qb.History[QuoteBar](contract_symbol, 400)
all_history_open_interest = qb.History[OpenInterest]([contract_symbol, 400)
all_history_open_interest = qb.History[OpenInterest](gontract_symbol, 400)
all_history_open_interest = qb.History[OpenInterest](gontract_symbol, 400)
all_history_open_interest = qb.History[OpenInterest](dontract_symbol, 400)
```

The preceding calls return the most recent bars, excluding periods of time when the exchange was closed.

 $To \ get \ historical \ data \ for the \ continous \ Futures \ contract, in the \ preceding \ history \ requests, \ replace \ contract_symbol \ contractSymbol \ with \ futures. Symbol \ .$

Trailing Period of Time

To get historical data for a trailing period of time, call the History method with the contract Symbol object(s) and a TimeSpan timedelta .

```
// Silce objects
var singleHistorySlice = qb.History(contractSymbol, TimeSpan.FromDays(3));
var subsetHistorySlice = qb.History(new[] {contractSymbol}, TimeSpan.FromDays(3));
var allHistorySlice = qb.History(10);
// TradeBar objects
var singleHistoryQuoteBars = qb.History<QuoteBar>(contractSymbol, TimeSpan.FromDays(3), Resolution.Minute);
var subsetHistoryQuoteBars = qb.History<QuoteBar>(new[] {contractSymbol}, TimeSpan.FromDays(3), Resolution.Minute);
var allHistoryQuoteBars = qb.History<QuoteBar>(qb.Securities.Keys, TimeSpan.FromDays(3), Resolution.Minute);
// Tick objects
var singleHistoryTicks = qb.History(contractSymbol, TimeSpan.FromDays(3), Resolution.Tick);
var subsetHistoryTicks = qb.History(new[] {contractSymbol}, TimeSpan.FromDays(3), Resolution.Tick);
var allHistoryTicks = qb.History(qb.Securities.Keys, TimeSpan.FromDays(3), Resolution.Tick);
// OpenInterest objects
// OpenInterest objects
var singleHistoryOpenInterest = qb.History<OpenInterest>(contractSymbol, TimeSpan.FromDays(2));
var subsetHistoryOpenInterest = qb.History<OpenInterest>(new[] (contractSymbol), TimeSpan.FromDavar allHistoryOpenInterest = qb.History<OpenInterest>(qb.Securities.Keys, TimeSpan.FromDays(2));
# DataFrame of trade and quote data
single history_df = qb.History(contract_symbol, timedelta(days=3))
subset_history_df = qb.History([contract_symbol], timedelta(days=3))
all_history_df = qb.History(qb.Securities.Keys, timedelta(days=3))
# DataFrame of trade data
single history_trade bar_df = qb.History(TradeBar, contract_symbol, timedelta(days=3))
subset_history_trade_bar_df = qb.History(TradeBar, [contract_symbol], timedelta(days=3)]
all_history_trade_bar_df = qb.History(TradeBar, qb.Securities.Keys, timedelta(days=3))
# DataFrame of quote data
single history_quote_bar_df = qb.History(QuoteBar, contract_symbol, timedelta(days=3))
subset_history_quote_bar_df = qb.History(QuoteBar, [contract_symbol], timedelta(days=3)
all_history_quote_bar_df = qb.History(QuoteBar, qb.Securities.Keys, timedelta(days=3))
# DataFrame of open interest data
single history_open_interest df = qb.History(OpenInterest, contract_symbol, timedelta(days=3))
subset_history_open_interest_df = qb.History(OpenInterest, [contract_symbol], timedelta(days=3))
all_history_open_interest_df = qb.History(OpenInterest, qb.Securities.Keys, timedelta(days=3))
# Slice objects
 all_history_slice = qb.History(timedelta(days=3))
# TradeBar objects
# ILLUMENAL ONJECTS
single_history_trade_bars = qb.History[TradeBar](contract_symbol, timedelta(days=3))
subset history_trade_bars = qb.History[TradeBar]((contract_symbol), timedelta(days=3))
all_history_trade_bars = qb.History[TradeBar](qb.Securities.Keys, timedelta(days=3))
* NUCLEMAN WINDELS SINGLE_history_quote_bars = qb.History[QuoteBar](contract_symbol, timedelta(days=3), Resolution.Minute) subset history_quote_bars = qb.History[QuoteBar]([contract_symbol], timedelta(days=3), Resolution.Minute) all_history_quote_bars = qb.History[QuoteBar](qb.Securities.Keys, timedelta(days=3), Resolution.Minute)
single history_ticks = qb.History[Tick](contract_symbol, timedelta(days=3), Resolution.Tick)
subset_history_ticks = qb.History[Tick]([contract_symbol], timedelta(days=3), Resolution.Tic
all_history_ticks = qb.History[Tick](qb.Securities.Keys, timedelta(days=3), Resolution.Tick)
single history open interest = qb.History[OpenInterest](contract_symbol, timedelta(days=2))
subset_history_open_interest = qb.History[OpenInterest]([contract_symbol], timedelta(days=2)
all_history_open_interest = qb.History[OpenInterest](qb.Securities.Keys, timedelta(days=2))
```

The preceding calls return the most recent bars, excluding periods of time when the exchange was closed

To get historical data for the continous Futures contract, in the preceding history requests, replace contract_symbol contractSymbol with future.Symbol .

Defined Period of Time

To get historical data for individual Futures contracts during a specific period of time, call the History method with the Futures contract Symbol object(s), a start DateTime dateTime

```
var startTime = new DateTime(2021, 12, 1);
var endTime = new DateTime(2021, 12, 31);
// Slice objects
```

```
var singleHistorySlice = qb.History(contractSymbol, startTime, endTime);
var subsetHistorySlice = qb.History(new[] {contractSymbol}, startTime, endTime);
var allHistorySlice = qb.History(startTime, endTime);
// TradeBar objects
var singleHistoryTradeBars = qb.History<TradeBar>(contractSymbol, startTime, endTime);
var subsetHistoryTradeBars = qb.History<TradeBar>(new[] {contractSymbol}, startTime, endTime);
var allHistoryTradeBars = qb.History<TradeBar>(qb.Securities.Keys, startTime, endTime);
// QuoteBar Objects
var singleHistoryQuoteBars = qb.History<QuoteBar>(contractSymbol, startTime, endTime, Resolution.Minute);
var subsetHistoryQuoteBars = qb.History<QuoteBar>(new[] {contractSymbol}, startTime, endTime, Resolution.Minute);
var allHistoryQuoteBars = qb.History<QuoteBar>(qb.Securities.Keys, startTime, endTime, Resolution.Minute);
var singleHistoryTicks = qb.History(contractSymbol, startTime, endTime, Resolution.Tick); var subsetHistoryTicks = qb.History(new[] {contractSymbol}, startTime, endTime, Resolution.Tick); var allHistoryTicks = qb.History(qb.Securities.Keys, startTime, endTime, Resolution.Tick);
// OpenInterest objects
var singleHistoryOpenInterest = qb.History<OpenInterest>(contractSymbol, startTime, endTime);
var subsetHistoryOpenInterest = qb.History<OpenInterest>(new[] {contractSymbol}, startTime, endTime);
var allHistoryOpenInterest = qb.History<OpenInterest>(qb.Securities.Keys, startTime, endTime);
start_time = datetime(2021, 12, 1)
end_time = datetime(2021, 12, 31)
# DataFrame of trade and quote data
single history df = qb.History(contract_symbol, start_time, end_time)
subset_history_df = qb.History([contract_symbol], start_time, end_time)
all_history_df = qb.History(qb.Securities.Keys, start_time, end_time)
# DataFrame of trade data
single_history_trade_bar_df = qb.History(TradeBar, contract_symbol, start_time, end_time) subset history_trade_bar_df = qb.History(TradeBar, [contract_symbol], start_time, end_time all_history_trade_bar_df = qb.History(TradeBar, qb.Securities.Keys, start_time, end_time)
# DataFrame of quote data
single history quote bar_df = qb.History(QuoteBar, contract_symbol, start_time, end_time)
subset_history_quote_bar_df = qb.History(QuoteBar, [contract_symbol], start_time, end_time)
all_history_quote_bar_df = qb.History(QuoteBar, qb.Securities.Keys, start_time, end_time)
# DataFrame of open interest data single history open interest df = qb.History (OpenInterest, contract_symbol, start_time, end_time) subset history open interest df = qb.History (OpenInterest, [contract_symbol], start_time, end_time) all_history_trade_open_interest_df = qb.History(OpenInterest, qb.Securities.Keys, start_time, end_time)
# TradeBar objects
single history_trade_bars = qb.History[TradeBar](contract_symbol, start_time, end_time) subset history_trade_bars = qb.History[TradeBar]([contract_symbol], start_time, end_time) all_history_trade_bars = qb.History[TradeBar](qb.Securities.Keys, start_time, end_time)
# QuoteBar objects
single history_quote bars = qb.History[QuoteBar](contract_symbol, start_time, end_time, Resolution.Minute)
subset_history_quote_bars = qb.History[QuoteBar]([contract_symbol], start_time, end_time, Resolution.Minute)
all_history_quote_bars = qb.History[QuoteBar](qb.Securities.Keys, start_time, end_time, Resolution.Minute)
* Inck Objects
single history_ticks = qb.History[Tick](contract_symbol, start_time, end_time, Resolution.Tick)
subset history_ticks = qb.History[Tick]([contract_symbol], start_time, end_time, Resolution.Tic
all_history_ticks = qb.History[Tick](qb.Securities.Keys, start_time, end_time, Resolution.Tick)
# OpenInterest objects
single history_open_interest = qb.History[OpenInterest] (contract_symbol, start_time, end_time)
subset_history_open_interest = qb.History[OpenInterest] ([contract_symbol], start_time, end_time)
all_history_open_interest = qb.History[OpenInterest] (qb.Securities.Keys, start_time, end_time)
To get historical data for the continous Futures contract, in the preceding history requests, replace contract symbol contractSymbol with future.Symbol.
```

To get historical data for all of the Futures contracts that pass your filter during a specific period of time, call the GetFutureHistory method with the Symbol object of the continuous Future, a start DateTime datetime, and an end DateTime datetime

future history = qb.GetFutureHistory(future.Symbol, end time-timedelta(days=2), end time, Resolution.Minute, fillForward=False, extendedMarketHours=False) var futureHistory = qb.GetFutureHistory(future.Symbol, endTime-TimeSpan.FromDays(2), endTime, Resolution.Minute, fillForward: False, extendedMarketHours: False);

The preceding calls return data that have a timestamp within the defined period of time.

Resolutions

The following table shows the available resolutions and data formats for Futures subscriptions:

Resolution TradeBar QuoteBar Trade Tick Quote Tick

Tick		
Second		
Minute		
Hour		
Daily		

Markets

The following Market enumeration members are available for Futures

Wrangle Data

You need some historical data to perform wrangling operations. The process to manipulate the historical data depends on its data type. To display pandas objects, run a cell in a notebook with the pandas object as the last line. To display other data formats, call the print method.

You need some historical data to perform wrangling operations. Use LINQ to wrangle the data and then call the Console. Writeline method in a Jupyter Notebook to display the data. The process to manipulate the historical data depends on its data type.

DataFrame Objects

If your history request returns a DataFrame , the DataFrame has the following index levels:

- 1. Contract expiry
- Encoded contract Symbol
- 3. The EndTime of the data sample

The columns of the DataFrame are the data properties. Depending on how you request data, the DataFrame may contain data for the continuous Futures contract. The continuous contract doesn't expire, so the default expiry date of December 30, 1899 doesn't have any practical meaning.

To select the rows of the contract(s) that expire at a specific time, index the loc property of the DataFrame with the expiry time.

all history df.loc[datetime(2022, 3, 18, 13, 30)]

If you remove the first index level, you can index the DataFrame with just the contract Symbol , similiar to how you would with non-derivative asset classes. To remove the first index level, call the droplevel method.

```
all_history_df.index = all_history_df.index.droplevel(0)
```

To select the historical data of a single Futures contract, index the loc property of the DataFrame with the contract Symbol .

```
all_history_df.loc[contract_symbol]
```

To select a column of the DataFrame , index it with the column name.

```
all_history_df.loc[contract_symbol]['close']
```

If you request historical data for multiple Futures contracts, you can transform the DataFrame so that it's a time series of close values for all of the Futures contracts. To transform the DataFrame, select the column you want to display for each Futures contract and then call the unstack method.

```
all_history_df['close'].unstack(level=0)
```

The DataFrame is transformed so that the column indices are the Symbol of each security and each row contains the close value.

The historical data methods don't return DataFrame objects, but you can create one for efficient vectorized data wrangling.

```
using Microsoft.Data.Analysis;
var columns = new DataFrameColumn("Time", history.Select(x => x[contractSymbol].EndTime)),
    new PrimitiveDataFrameColumn("Time", history.Select(x => x[contractSymbol].Open)),
    new DecimalDataFrameColumn(" High", history.Select(x => x[contractSymbol].High)),
    new DecimalDataFrameColumn(" Low", history.Select(x => x[contractSymbol].Low)),
    new DecimalDataFrameColumn(" Close", history.Select(x => x[contractSymbol].Close))
};
var df = new DataFrame(columns);
df
```

To select a particular column of the DataFrame, index it with the column name

```
df[" close"]
```

Slice Objects

If the History method returns Slice objects, iterate through the Slice objects to get each one. The Slice objects may not have data for all of your Futures subscriptions. To avoid issues, check if the Slice contains data for your Futures contract before you index it with the Futures Symbol.

```
foreach (var slice in allHistorySlice) {
    if (slice.Bars.ContainsKey(contractSymbol)) {
        var tradeBar = slice.Bars[contractSymbol];
    }
    if (slice.QuoteBars.ContainsKey(contractSymbol)) {
            var quoteBar = slice.QuoteBars[contractSymbol];
        }
}

for slice in all_history_slice:
        if slice.Bars.ContainsKey(contract_symbol):
            trade bar = slice.Bars[contract_symbol]
        if slice.QuoteBars.ContainsKey(contract_symbol):
            quote_bar = slice.QuoteBars[contract_symbol]
```

You can also iterate through each TradeBar and QuoteBar in the Slice .

```
foreach (var slice in allHistorySlice)
{
    foreach (var kvp in slice.Bars)
    {
        var symbol = kvp.Key;
        var tradeBar = kvp.Value;
    }
    foreach (var kvp in slice.QuoteBars)
    {
        var symbol = kvp.Key;
        var quoteBar = kvp.Value;
    }
}

for slice in all_history_slice:
    for kvp in slice.Bars:
        symbol = kvp.Key
        trade_bar = kvp.Value
    for kvp in slice.QuoteBars:
        symbol = kvp.Key
        quote_bar = kvp.Value
```

You can also use LINQ to select each TradeBar in the Slice for a given Symbol .

var tradeBars = allHistorySlice.Where(slice => slice.Bars.ContainsKey(contractSymbol)).Select(slice => slice.Bars[contractSymbol]);

TradeBar Objects

If the History method returns TradeBar objects, iterate through the TradeBar objects to get each one.

```
foreach (var tradeBar in singleHistoryTradeBars)
{
    Console.WriteLine(tradeBar);
}
for trade_bar in single_history_trade_bars:
    print(trade_bar)
```

If the History method returns TradeBars , iterate through the TradeBars to get the TradeBar of each Futures contract. The TradeBars may not have data for all of your Futures subscriptions. To avoid issues, check if the TradeBars object contains data for your security before you index it with the Futures Symbol .

```
foreach (var tradeBars in allHistoryTradeBars)
{
    if (tradeBars.ContainsKey(contractSymbol))
    {
        var tradeBar = tradeBars[contractSymbol];
    }
}
for trade_bars in all_history_trade_bars:
    if trade_bars.ContainsKey(contract_symbol):
        trade_bar = trade_bars[contract_symbol]
```

You can also iterate through each of the TradeBars .

```
foreach (var tradeBars in allHistoryTradeBars)
{
    foreach (var kvp in tradeBars)
    {
       var symbol = kvp.Key;
      var tradeBar = kvp.Value;
    }
}
for trade bars in all history_trade_bars:
    for kvp in trade_bars:
      symbol = kvp.Key
      trade_bar = kvp.Value
```

QuoteBar Objects

If the ${\tt History}$ method returns ${\tt QuoteBar}$ objects, iterate through the ${\tt QuoteBar}$ objects to get each one.

```
foreach (var quoteBar in singleHistoryQuoteBars)
{
    Console.WriteLine(quoteBar);
}
for quote_bar in single_history_quote_bars:
    print(quote_bar)
```

If the History method returns QuoteBars , iterate through the QuoteBars to get the QuoteBar of each Futures contract. The QuoteBars may not have data for all of your Futures subscriptions. To avoid issues, check if the QuoteBars object contains data for your security before you index it with the Futures Symbol .

```
foreach (var quoteBars in allHistoryQuoteBars)
{
    if (quoteBars.ContainsKey(contractSymbol)) {
        var quoteBar = quoteBars[contractSymbol];
    }
}
for quote_bars in all_history_quote_bars:
    if quote_bars.ContainsKey(contract_symbol):
        quote_bar = quote_bars[contract_symbol]
```

You can also iterate through each of the QuoteBars .

```
foreach (var quoteBars in allHistoryQuoteBars)
{
    foreach (var kvp in quoteBars)
    {
        var symbol = kvp.Key;
        var quoteBar = kvp.Value;
    }
}

for quote_bars in all history_quote_bars:
    for kvp in quote_bars:
        symbol = kvp.Key
        quote_bar = kvp.Value
```

Tick Objects

If the ${\tt History}$ method returns ${\tt Tick}$ objects, iterate through the ${\tt Tick}$ objects to get each one.

If the History method returns Ticks , iterate through the Ticks to get the Tick of each Futures contract. The Ticks may not have data for all of your Futures subscriptions. To avoid issues, check if the Ticks object contains data for your security before you index it with the Futures Symbol .

```
foreach (var ticks in allHistoryTicks)
{
    if (ticks.ContainsKey(contractSymbol));
    {
       var tick = ticks[contractSymbol];
    }
}
for ticks in all_history_ticks:
    if ticks.ContainsKey(contract_symbol):
       ticks = ticks[contract_symbol]
```

You can also iterate through each of the ${\tt Ticks}\,$.

```
foreach (var ticks in allHistoryTicks)
{
    foreach (var kvp in ticks)
    {
       var symbol = kvp.Key;
       var tick = kvp.Value;
    }
}
for ticks in all_history_ticks:
    for kvp in ticks:
       symbol = kvp.Key
       tick = kvp.Value
```

OpenInterest Objects

If the History method returns OpenInterest objects, iterate through the OpenInterest objects to get each one.

```
foreach (var openInterest in singleHistoryOpenInterest)
{
    Console.WriteLine(openInterest);
}
for open_interest in single_history_open_interest:
    print(open_interest)
```

If the History method returns a dictionary of OpenInterest objects, iterate through the dictionary to get the OpenInterest of each Futures contract. The dictionary of OpenInterest objects may not have data for all of your Futures contract subscriptions. To avoid issues, check if the dictionary contains data for your contract before you index it with the Futures contract Symbol .

```
foreach (var openInterestDict in allHistoryOpenInterest)
{
    if (openInterestDict.ContainsKey(contractSymbol))
    {
        var openInterest = openInterestDict[contractSymbol];
    }
}
for open_interest_dict in all_history_open_interest:
```

```
if open_interest_dict.ContainsKey(contract_symbol):
    open_interest = open_interest_dict[contract_symbol]
```

You can also iterate through each of the OpenInterest dictionaries

```
foreach (var openInterestDict in allHistoryOpenInterest)
       foreach (var kvp in openInterestDict)
             var symbol = kvp.Key;
var openInterest = kvp.Value;
for open_interest_dict in all history_open_interest:
    for kvp in open_interest_dict:
        symbol = kvp.Key
        open_interest = kvp.Value
```

FutureHistory Objects

The GetFutureHistory method returns a FutureHistory object. To get each slice in the FutureHistory object, iterate through it.

```
foreach (var slice in futureHistory)
    foreach (var kvp in slice.FuturesChains)
         var continuousContractSymbol = kvp.Key;
var chain = kvp.Value;
foreach (var contract in chain)
    }
for slice in future history:
    for continuous contract symbol, chain in slice.FuturesChains.items():
         for contract in chain:
```

To convert the FutureHistory object to a DataFrame that contains the trade and quote information of each contract, call the GetAllData method.

future history.GetAllData()

To get the expiration dates of all the contracts in an Future History object, call the GetExpiryDates method.

future_history.GetExpiryDates()

Plot Data

You need some historical Futures data to produce plots. You can use many of the supported plotting libraries Plot. NET package to visualize data in various formats. For example, you can plot candlestick and line charts.

Candlestick Chart

Follow these steps to plot candlestick charts:

1. Get some historical data.

```
history = qb.History(contract_symbol, datetime(2021, 12, 1), datetime(2021, 12, 31), Resolution.Daily)
```

2. Drop the first two index levels.

```
var history = qb.History<TradeBar>(contractSymbol, new DateTime(2021, 12, 1), new DateTime(2021, 12, 31), Resolution.Daily);
```

history.index = history.index.droplevel([0, 1]) 3. Import the plotly Plotly NET library

```
import plotly.graph_objects as go
#r "../Plotly.NET.dll"
using Plotly.NET:
using Plotly.NET.LayoutObjects;
```

4. Create a Candlestick

```
candlestick = go.Candlestick(x=history.index,
                                                      open=history['open'],
high=history['high'],
low=history['low'],
                                                      close=history['close'])
var chart = Chart2D.Chart.Candlestick<decimal, decimal, decimal, decimal, DateTime, string>(
       cnart = Chart2D.Chart.Candlest
history.Select(x => x.Open),
history.Select(x => x.High),
history.Select(x => x.Low),
history.Select(x => x.Close),
history.Select(x => x.EndTime)
```

5. Create a Layout .

```
LinearAxis xAxis = new LinearAxis();
xAxis.SetValue("title", "Time");
LinearAxis yAxis = new LinearAxis();
yAxis.SetValue("title", "Price ($)");
Title title = Title.init($"{contractSymbol} OHLC");
Layout layout = new Layout();
layout.SetValue("xaxis", xAxis);
layout.SetValue("yaxis", yAxis);
layout.SetValue("title", title);
```

6. Create the Figure .

```
fig = go.Figure(data=[candlestick], layout=layout)
```

Assign the Layout to the chart.

```
chart.WithLayout(layout);
```

 $8. \ \, \text{Show the Figure} \,\, .$

```
HTML(GenericChart.toChartHTML(chart))
```

Candlestick charts display the open, high, low, and close prices of the contract.

Follow these steps to plot line charts using built-in methods ${\tt Plotly.NET}\,$ package :

```
    Get some historical data.
```

```
history = qb.History(symbols, datetime(2021, 12, 1), datetime(2021, 12, 31), Resolution.Daily)
var history = qb.History<OpenInterest>(contractSymbol, new DateTime(2021, 12, 1), new DateTime(2021, 12, 31));
```

2. Drop the first index level.

```
history.index = history.index.droplevel(0)
```

3. Select data to plot.

```
closing prices = history['close'].unstack(level=0)
```

4. Rename the columns to be the Symbol of each contract.

```
closing_prices.columns = [Symbol.GetAlias(SecurityIdentifier.Parse(x)) for x in closing_prices.columns]
```

5. Call the plot method on the pandas object.

```
closing_prices.plot(title="Close", figsize=(15, 8))
```

6. Create Line charts.

```
var chart = Chart2D.Chart.Line<DateTime, decimal, string>(
   history.Select(x => x.EndTime),
   history.Select(x => x.Value)
).
```

7. Create a Layout $\,$.

```
LinearAxis xAxis = new LinearAxis();
xAxis.SetValue("title", "Time");
LinearAxis yAxis = new LinearAxis();
yAxis.SetValue("title", "Open Interest");
Title title = Title.init($"(contractSymbol) Open Interest");
Layout layout = new Layout();
layout.SetValue("xaxis", xAxis);
layout.SetValue("yaxis", yAxis);
layout.SetValue("title", title);
```

8. Assign the Layout to the chart.

```
chart.WithLayout(layout);
```

9. Show the plot.

```
plt.show()
HTML(GenericChart.toChartHTML(chart))
```

Line charts display the value of the property you selected in a time series.

3.8 Futures Options

Introduction

This page explains how to request, manipulate, and visualize historical Future Options data.

Create Subscriptions

Follow these steps to subscribe to a Futures Option contract:

1. Load the required assembly files and data types.

```
#load "../Initialize.csx"
#load "../QuantConnect.cs
     using QuantConnect;
     using QuantConnect, using QuantConnect.Data;
using QuantConnect.Data.Market;
using QuantConnect.Algorithm;
using QuantConnect.Securities;
using QuantConnect.Securities.Future;
using QuantConnect.Research;
2. Create a QuantBook .
     var gb = new OuantBook();
     qb = QuantBook()
Subscribe to a Futures contract.
```

```
var future = qb.AddFuture(Futures.Indices.SP500EMini, Resolution.Minute);
var startDate = new DateTime(2021,12,20);
var futuresContractSymbols = qb.FutureChainProvider.GetFutureContractList(future.Symbol, startDate);
var futuresContractSymbol = futuresContractSymbols.OrderBy(s => s.ID.Date).FirstOrDefault();
qb.AddFutureContract(futuresContractSymbol, fillForward: false);
future = qb.AddFuture(Futures.Indices.SP500EMini, Resolution.Minute)
start_date = datetime(2021,12,20)
futures_contract_symbols = qb.FutureChainProvider.GetFutureContractList(future.Symbol, start_date)
futures_contract_symbol = sorted(futures_contract_symbols, key=lambda s: s.ID.Date)[0]
qb.AddFutureContract(futures_contract_symbol, fillForward = False)
```

To view the available underlying Futures in the US Future Options dataset, see Supported Assets.

4. (Optional) Set a contract filter.

```
qb.AddFutureOption(future.Symbol, optionFilterUniverse => optionFilterUniverse.Strikes(-1, 1));
qb.AddFutureOption(future.Symbol, lambda option_filter_universe: option_filter_universe.Strikes(-1, 1))
```

The filter determines which contracts the GetOptionHistory method returns. If you don't set a filter, the default filter selects the contracts that have the following characteristics:

- Standard type (exclude weeklys)
- Within 1 strike price of the underlying asset price
- Expire within 31 days

If you want historical data on individual contracts and their OpenInterest , follow these steps to subscribe to the individual Futures Option contracts:

1. Call the GetOptionsContractList method with the underlying Futures Contract Symbol and a datetime DateTime object.

```
var fopContractSymbols = qb.OptionChainProvider.GetOptionContractList(futuresContractSymbol, startDate);
fop_contract_symbols = qb.OptionChainProvider.GetOptionContractList(futures_contract_symbol, start_date)
```

This method returns a list of Symbol objects that reference the Option contracts that were trading for the underlying Future contract at the given time. If you set a contract filter with SetFilter , it doesn't affect the results of

2. Select the Symbol of the OptionContract object(s) for which you want to get historical data.

To filter and select contracts, you can use the following properties of each Symbol object:

```
Property
                                                                   Description
ID.Date
                         The expiration date of the contract.
ID. StrikePrice The strike price of the contract.
ID.OptionRight The contract type. The OptionRight enumeration has the following members:
ID.OptionStyle The contract style. The OptionStyle enumeration has the following members:
var closestExpiry = fopContractSymbols.Select(c => c.ID.Date).Min();
var fopContractSymbol = fopContractSymbols
.Where(c => c.ID.Date == closestExpiry && c.ID.OptionRight == OptionRight.Call)
.OrderBy(c => c.ID.StrikePrice)
       .FirstOrDefault();
closest_expiry = min([c.ID.Date for c in fop_contract_symbols])
calls = [c for c in fop_contract_symbols if c.ID.Date == closest_expir
fop_contract_symbol = sorted(calls, key=lambda c: c.ID.StrikePrice)[0]
                                                                                                closest expiry and c.ID.OptionRight == OptionRight.Call]
```

 $3. \ \ Call \ the \ {\tt AddFutureOptionContract} \ \ method \ with \ an \ {\tt OptionContract} \ \ Symbol \ and \ disable \ fill-forward.$

```
qb.AddFutureOptionContract(fopContractSymbol, fillForward: false);
qb.AddFutureOptionContract(fop_contract_symbol, fillForward = False)
```

Disable fill-forward because there are only a few OpenInterest data points per day.

Get Historical Data

You need a subscription before you can request historical data for Futures Option contracts. On the time dimension, you can request an amount of historical data based on a trailing number of bars, a trailing period of time, or a defined period of time. On the contract dimension, you can request historical data for a single contract, a subset of the contracts you created subscriptions for in your notebook, or all of the contracts in your notebook

Before you request historical data, call the SetStartDate method with a datetime DateTime to reduce the risk of look-ahead bias

```
qb.SetStartDate(start_date)
```

If you call the SetStartDate method, the date that you pass to the method is the latest date for which your history requests will return data,

To get historical data for a number of trailing bars, call the History method with the contract Symbol object(s) and an integer.

```
// Slice objects
var singleHistorySlice = qb.History(fopContractSymbol, 10);
var subsetHistorySlice = qb.History(new[] {fopContractSymbol}, 10);
var allHistorySlice = qb.History(10);
// TradeBar objects
var singleHistoryTradeBars = qb.History<TradeBar>(fopContractSymbol, 10);
var subsetHistoryTradeBars = qb.History<TradeBar>(new[] {fopContractSymbol}, 10);
```

```
var allHistoryTradeBars = qb.History<TradeBar>(qb.Securities.Keys, 10);
// OuoteBar objects
// QuoteBal Objects
var singleHistoryQuoteBars = qb.History<QuoteBar>(fopContractSymbol, 10);
var subsetHistoryQuoteBars = qb.History<QuoteBar>(new[] {fopContractSymbol
var allHistoryQuoteBars = qb.History<QuoteBar>(qb.Securities.Keys, 10);
// OpenInterest objects var singleHistoryOpenInterest = qb.HistoryOpenInterest>(fopContractSymbol, 400); var subsetHistoryOpenInterest = qb.HistoryOpenInterest>(new[] {fopContractSymbol}, 400); var allHistoryOpenInterest = qb.HistoryOpenInterest>(qb.Securities.Keys, 400);
# DataFrame of trade and quote data
single history df = qb.History(fop_contract_symbol, 10)
subset_history_df = qb.History([fop_contract_symbol], 1
all_history_df = qb.History(qb.Securities.Keys, 10)
single_history_trade_bar_df = qb.History(TradeBar, fop_contract_symbol, 10) subset history_trade_bar_df = qb.History(TradeBar, [fop_contract_symbol], 10 all_history_trade_bar_df = qb.History(TradeBar, qb.Securities.Keys, 10)
# DataFrame of quote data
single history_quote bar_df = qb.History(QuoteBar, fop_contract_symbol, 10)
subset_history_quote_bar_df = qb.History(QuoteBar, [fop_contract_symbol], 10)
all_history_quote_bar_df = qb.History(QuoteBar, qb.Securities.Keys, 10)
# DataFrame of open interest data
single history open interest df = qb.History(OpenInterest, fop contract_symbol, 400)
subset history open interest_df = qb.History(OpenInterest, [fop_contract_symbol], 40
all_history_open_interest_df = qb.History(OpenInterest, qb.Securities.Keys, 400)
# Slice objects
all_history_slice = qb.History(10)
# TradeBar objects
* Hadebar Objects single history_trade_bars = qb.History[TradeBar](fop_contract_symbol, 10) subset history_trade_bars = qb.History[TradeBar]([fop_contract_symbol], 10) all_history_trade_bars = qb.History[TradeBar](qb.Securities.Keys, 10)
# QuoteBar objects
single history quote bars = qb.History[QuoteBar](fop_contract_symbol, 10) subset_history_quote_bars = qb.History[QuoteBar]([fop_contract_symbol], 10) all_history_quote_bars = qb.History[QuoteBar](qb.Securities.Keys, 10)
single_history_open_interest = qb.History[OpenInterest](fop_contract_symbol, 400)
subset_history_open_interest = qb.History[OpenInterest]([fop_contract_symbol], 400)
all_history_open_interest = qb.History[OpenInterest](qb.Securities.Keys, 400)
```

The preceding calls return the most recent bars, excluding periods of time when the exchange was closed.

Trailing Period of Time

To get historical data for a trailing period of time, call the History method with the contract Symbol object(s) and a TimeSpan timedelta .

```
// Inter Objects
var singleHistorySlice = qb.History(fopContractSymbol, TimeSpan.FromDays(3));
var subsetHistorySlice = qb.History(new[] {fopContractSymbol}, TimeSpan.FromDays(3));
var allHistorySlice = qb.History(10);
// TradeBar objects
var singleHistoryTradeBars = qb.History<TradeBar>(fopContractSymbol, TimeSpan.FromDays(3));
var subsetHistoryTradeBars = qb.History<TradeBar>(new[] {fopContractSymbol}, TimeSpan.FromDays(3));
var allHistoryTradeBars = qb.History<TradeBar>(TimeSpan.FromDays(3));
// QuoteBar objects
var singleHistoryQuoteBars = qb.History<QuoteBar>(fopContractSymbol, TimeSpan.FromDays(3), Resolution.Minute);
var subsetHistoryQuoteBars = qb.History<QuoteBar>(new[] {fopContractSymbol}, TimeSpan.FromDays(3), Resolution.Minute);
var allHistoryQuoteBars = qb.History<QuoteBar>(qb.Securities.Keys, TimeSpan.FromDays(3), Resolution.Minute);
// OpenInterest objects
var singleHistoryOpenInterest = qb.History<OpenInterest>(fopContractSymbol, TimeSpan.FromDays(2));
var subsetHistoryOpenInterest = qb.History<OpenInterest>(new[] {fopContractSymbol}, TimeSpan.FromDays(2));
var allHistoryOpenInterest = qb.History<OpenInterest>(qb.Securities.Keys, TimeSpan.FromDays(2));
# DataFrame of trade and quote data
single history_df = qb.History(fop_contract_symbol, timedelta(days=3))
subset_history_df = qb.History([fop_contract_symbol], timedelta(days=3))
all_history_df = qb.History(gb.Securities.Keys, timedelta(days=3))
# DataFrame of trade data
# bdarlame of tade data
single history_trade_bar_df = qb.History(TradeBar, fop_contract_symbol, timedelta(days=3))
subset_history_trade_bar_df = qb.History(TradeBar, [fop_contract_symbol], timedelta(days=3)
all_history_trade_bar_df = qb.History(TradeBar, qb.Securities.Keys, timedelta(days=3))
# DataFrame of quote data
# Datarrame or quote data
single_history_quote_bar_df = qb.History(QuoteBar, fop_contract_symbol, timedelta(days=3))
subset_history_quote_bar_df = qb.History(QuoteBar, [fop_contract_symbol], timedelta(days=3))
all_history_quote_bar_df = qb.History(QuoteBar, qb.Securities.Keys, timedelta(days=3))
# DataFrame of open interest data
single history_open_interest df = qb.History(OpenInterest, fop_contract_symbol, timedelta(days=3))
subset_history_open_interest_df = qb.History(OpenInterest, [fop_contract_symbol], timedelta(days=3))
all_history_open_interest_df = qb.History(OpenInterest, qb.Securities.Keys, timedelta(days=3))
# Slice objects
 all_history_slice = qb.History(timedelta(days=3))
# TradeBar objects
single_history_trade_bars = qb.History[TradeBar](fop_contract_symbol, timedelta(days=3)) subset history_trade_bars = qb.History[TradeBar]([fop_contract_symbol], timedelta(days=3)) all_history_trade_bars = qb.History[TradeBar](qb.Securities.Keys, timedelta(days=3))
* Quotebar Objects single_history_quote_bars = qb.History[QuoteBar](fop_contract_symbol, timedelta(days=3), Resolution.Minute) subset history_quote_bars = qb.History[QuoteBar]([fop_contract_symbol], timedelta(days=3), Resolution.Minute) all_history_quote_bars = qb.History[QuoteBar](qb.Securities.Keys, timedelta(days=3), Resolution.Minute)
* Open netrest objects single history_open_interest = qb.History[OpenInterest](fop_contract_symbol, timedelta(days=2)) subset history_open_interest = qb.History[OpenInterest]([fop_contract_symbol], timedelta(days=2)) all_history_open_interest = qb.History[OpenInterest](qb.Securities.Keys, timedelta(days=2))
```

The preceding calls return the most recent bars, excluding periods of time when the exchange was closed.

Defined Period of Time

To get historical data for individual Futures Option contracts during a specific period of time, call the History method with the Futures Option contract Symbol object(s), a start DateTime datetime , and an end DateTime datetime . The start and end times you provide are based in the notebook time zone.

```
var startTime = new DateTime(2021, 12, 1);
var endTime = new DateTime(2021, 12, 31);

// Slice objects
var singleHistorySlice = qb.History(fopContractSymbol, startTime, endTime);
```

```
var subsetHistorySlice = qb.History(new[] {fopContractSymbol}, startTime, endTime);
var allHistorySlice = qb.History(startTime, endTime);
// Indeeds Details
// Indee
var singleHistoryQuoteBars = qb.HistoryQuoteBar>(fopContractSymbol, startTime, endTime, Resolution.Minute);
var subsetHistoryQuoteBars = qb.HistoryQuoteBar>(new[] {fopContractSymbol}, startTime, endTime, Resolution.Minute);
var allHistoryQuoteBars = qb.HistoryQuoteBar>(qb.Securities.Keys, startTime, endTime, Resolution.Minute);
,/ openInterest = qb.History<OpenInterest>(fopContractSymbol, startTime, endTime);
var subsetHistoryOpenInterest = qb.History<OpenInterest>(new[] {fopContractSymbol}, startTime, endTime);
var allHistoryOpenInterest = qb.History<OpenInterest>(qb.Securities.Keys, startTime, endTime);
start\_time = datetime(2021, 12, 1) end time = datetime(2021, 12, 31)
# DataFrame of trade and quote data
single history df = qb.History(fop_contract_symbol, start_time, end_time)
subset_history_df = qb.History([fop_contract_symbol], start_time, end_time)
all_history_df = qb.History(qb.Securities.Keys, start_time, end_time)
# DataFrame of trade data
single history trade bar_df = qb.History(TradeBar, fop_contract_symbol, start_time, end_time)
subset_history_trade_bar_df = qb.History(TradeBar, [fop_contract_symbol], start_time, end_time)
all_history_trade_bar_df = qb.History(TradeBar, qb.Securities.Keys, start_time, end_time)
# DataFrame of quote data
* batarame of quote data single history quote bar df = qb.History(QuoteBar, fop_contract_symbol, start_time, end_time) subset_history_quote_bar_df = qb.History(QuoteBar, [fop_contract_symbol], start_time, end_time all_history_quote_bar_df = qb.History(QuoteBar, qb.Securities.Keys, start_time, end_time)
# DataFrame of open interest data
single history_open_interest_df = qb.History(OpenInterest, fop_contract_symbol, start_time, end_time)
subset_history_open_interest_df = qb.History(OpenInterest, [fop_contract_symbol], start_time, end_time)
all history_trade_open_interest_df = qb.History(OpenInterest, qb.Securities.Keys, start_time, end_time)
# TradeBar objects
windle history trade bars = qb.History[TradeBar](fop_contract_symbol, start_time, end_time) subset_history_trade_bars = qb.History[TradeBar]([fop_contract_symbol], start_time, end_time) all_history_trade_bars = qb.History[TradeBar](qb.Securities.Keys, start_time, end_time)
single history quote bars = qb.History[QuoteBar](fop_contract_symbol, start_time, end_time, Resolution.Minute)
subset_history_quote_bars = qb.History[QuoteBar]([fop_contract_symbol], start_time, end_time, Resolution.Minute)
all_history_quote_bars = qb.History[QuoteBar](qb.Securities.Keys, start_time, end_time, Resolution.Minute)
single_history_open_interest = qb.History[OpenInterest](fop_contract_symbol, start_time, end_time) subset history_open_interest = qb.History[OpenInterest]([fop_contract_symbol], start_time, end_time all_history_open_interest = qb.History[OpenInterest](qb.Securities.Keys, start_time, end_time)
To get historical data for all of the Futures Option contracts that traded during a specific period of time, call the GetOptionHistory method with the underlying Futures contract Symbol object, a start DateTime datetime, and an
\stackrel{-}{\text{end}} DateTime datetime
option_history = qb.GetOptionHistory(futures_contract_symbol, end_time-timedelta(days=2), end_time, Resolution.Minute, fillForward=False, extendedMarketHours=False)
var optionHistory = qb.GetOptionHistory(futuresContractSymbol, endTime-TimeSpan.FromDays(2), endTime, Resolution.Minute, fillForward: False, extendedMarketHours: False);
The preceding calls return data that have a timestamp within the defined period of time.
Resolutions
The following table shows the available resolutions and data formats for Future Option contract subscriptions:
Resolution TradeBar QuoteBar Trade Tick Quote Tick
Tick
Minute
 Hour
Daily
Markets
The following Market enumeration members are available for Future Options:
Wrangle Data
You need some historical data to perform wrangling operations. The process to manipulate the historical data depends on its data type. To display pandas objects, run a cell in a notebook with the pandas object as the last line. To
display other data formats, call the print method.
You need some historical data to perform wrangling operations. Use LINO to wrangle the data and then call the Console, WriteLine method in a Jupyter Notebook to display the data. The process to manipulate the historical data
depends on its data type.
DataFrame Objects
If your history request returns a DataFrame , the DataFrame has the following index levels:
       1. Contract expiry
     2. Contract strike price
```

- 3. Contract type (call or put)
- Encoded contract Symbol
- 5. The EndTime of the data sample

The columns of the DataFrame are the data properties. Depending on how you request data, the DataFrame may contain data for the underlying security, which causes some of the index levels to be an empty string for the corresponding rows.

To select the rows of the contract(s) that expire at a specific time, index the loc property of the DataFrame with the expiry time.

all_history_df.loc[datetime(2022, 3, 18)]

If you remove the first three index levels, you can index the DataFrame with just the contract Symbol , similar to how you would with non-derivative asset classes. To remove the first three index levels, call the droplevel method.

all_history_df.index = all_history_df.index.droplevel([0,1,2])

To select the historical data of a single Futures Option contract, index the loc property of the DataFrame with the contract Symbol .

To select a column of the DataFrame , index it with the column name.

```
all_history_df.loc[fop_contract_symbol]['close']
```

If you request historical data for multiple Futures Option contracts, you can transform the DataFrame so that it's a time series of close values for all of the Futures Option contracts. To transform the DataFrame, select the column you want to display for each Futures Option contract and then call the unstack method.

```
all_history_df['close'].unstack(level=0)
```

The DataFrame is transformed so that the column indices are the Symbol of each security and each row contains the close value.

The historical data methods don't return DataFrame objects, but you can create one for efficient vectorized data wrangling.

```
using Microsoft.Data.Analysis;
var columns = new DataFrameColumn("Time", history.Select(x => x[fopContractSymbol].EndTime)),
    new PrimitiveDataFrameColumn("Open", history.Select(x => x[fopContractSymbol].Open)),
    new DecimalDataFrameColumn("High", history.Select(x => x[fopContractSymbol].High)),
    new DecimalDataFrameColumn("Low", history.Select(x => x[fopContractSymbol].Low)),
    new DecimalDataFrameColumn("Close", history.Select(x => x[fopContractSymbol].Close))
};
var df = new DataFrame(columns);
df
```

To select a particular column of the DataFrame, index it with the column name.

```
di[" close"]
```

Slice Objects

If the History method returns Slice objects, iterate through the Slice objects to get each one. The Slice objects may not have data for all of your Futures Option subscriptions. To avoid issues, check if the Slice contains data for your Futures Option contract before you index it with the Futures Option Symbol .

```
foreach (var slice in allHistorySlice) {
    if (slice.Bars.ContainsKey(fopContractSymbol)) {
        var tradeBar = slice.Bars[fopContractSymbol];
    }
    if (slice.QuoteBars.ContainsKey(fopContractSymbol)) {
        var quoteBar = slice.QuoteBars[fopContractSymbol);
    }
}

for slice in all_history_slice:
    if slice.Bars.ContainsKey(fop_contract_symbol):
        trade bar = slice.Bars[fop_contract_symbol] if slice.QuoteBars.ContainsKey(fop_contract_symbol):
        quote bar = slice.QuoteBars[fop_contract_symbol]
```

You can also iterate through each ${\tt TradeBar}\,$ and ${\tt QuoteBar}\,$ in the ${\tt Slice}\,$.

```
foreach (var slice in allHistorySlice)
{
    foreach (var kvp in slice.Bars)
    {
       var symbol = kvp.Key;
      var tradeBar = kvp.Value;
    }
    foreach (var kvp in slice.QuoteBars)
    {
       var symbol = kvp.Key;
      var quoteBar = kvp.Value;
    }
}

for slice in all_history_slice:
    for kvp in slice.Bars:
      symbol = kvp.Key
      trade bar = kvp.Value
    for kvp in slice.QuoteBars:
      symbol = kvp.Key
      varde bar = kvp.Value
    for kvp in slice.QuoteBars:
      symbol = kvp.Key
      quote_bar = kvp.Value
```

You can also use LINQ to select each ${\tt TradeBar}$ in the ${\tt Slice}$ for a given ${\tt Symbol}$.

var tradeBars = allHistorySlice.Where(slice => slice.Bars.ContainsKey(fopContractSymbol)).Select(slice => slice.Bars[fopContractSymbol]);

TradeBar Objects

If the History method returns TradeBar objects, iterate through the TradeBar objects to get each one.

```
foreach (var tradeBar in singleHistoryTradeBars)
{
    Console.WriteLine(tradeBar);
}
for trade_bar in single_history_trade_bars:
    print(trade_bar)
```

If the History method returns TradeBars , iterate through the TradeBars to get the TradeBar of each Futures Option contract. The TradeBars may not have data for all of your Futures Option subscriptions. To avoid issues, check if the TradeBars object contains data for your security before you index it with the Futures Option Symbol .

```
foreach (var tradeBars in allHistoryTradeBars)
{
    if (tradeBars.ContainsKey(fopContractSymbol))
    {
       var tradeBar = tradeBars[fopContractSymbol];
    }
}
for trade bars in all_history_trade bars:
    if trade bars.ContainsKey(fop_contract_symbol):
       trade_bar = trade_bars[fop_contract_symbol]
```

You can also iterate through each of the TradeBars .

```
foreach (var tradeBars in allHistoryTradeBars)
{
   foreach (var kvp in tradeBars)
   {
      var symbol = kvp.Key;
      var tradeBar = kvp.Value;
   }
}
```

```
for trade_bars in all_history_trade_bars:
    for kvp in trade_bars:
    symbol = kvp.Key
    trade_bar = kvp.Value
```

QuoteBar Objects

If the History method returns QuoteBar objects, iterate through the QuoteBar objects to get each one.

```
foreach (var quoteBar in singleHistoryQuoteBars)
{
    Console.WriteLine(quoteBar);
}
for quote_bar in single_history_quote_bars:
    print(quote_bar)
```

If the History method returns QuoteBars , iterate through the QuoteBars to get the QuoteBar of each Futures Option contract. The QuoteBars may not have data for all of your Futures Option subscriptions. To avoid issues, check if the QuoteBars object contains data for your security before you index it with the Futures Option Symbol .

```
foreach (var quoteBars in allHistoryQuoteBars)
{
    if (quoteBars.ContainsKey(fopContractSymbol))
    {
        var quoteBar = quoteBars[fopContractSymbol];
    }
}

for quote bars in all_history_quote_bars:
    if quote_bars.ContainsKey(fop_contract_symbol):
        quote_bar = quote_bars[fop_contract_symbol]

You can also iterate through each of the QuoteBars .

foreach (var quoteBars in allHistoryQuoteBars)
{
        var symbol = kvp.Key;
        var quoteBar = kvp.Value;
    }
}

for quote_bars in all_history_quote_bars:
    for kvp in quote_bars:
        symbol = kvp.Key
        quote_bar = kvp.Value
```

OpenInterest Objects

If the History method returns OpenInterest objects, iterate through the OpenInterest objects to get each one.

```
foreach (var openInterest in singleHistoryOpenInterest)
{
    Console.WriteLine(openInterest);
}
for open_interest in single_history_open_interest:
    print(open_interest)
```

If the History method returns a dictionary of OpenInterest objects, iterate through the dictionary to get the OpenInterest of each Futures Option contract. The dictionary of OpenInterest objects may not have data for all of your Futures Option contract subscriptions. To avoid issues, check if the dictionary contains data for your contract before you index it with the Futures Option contract Symbol .

```
foreach (var openInterestDict in allHistoryOpenInterest)
{
    if (openInterestDict.ContainsKey(fopContractSymbol))
    {
        var openInterest = openInterestDict[fopContractSymbol];
    }
}
for open_interest_dict in all_history_open_interest:
    if open_interest_dict.ContainsKey(fop_contract_symbol):
        open_interest = open_interest_dict[fop_contract_symbol]
```

You can also iterate through each of the OpenInterest dictionaries.

```
foreach (var openInterestDict in allHistoryOpenInterest)
{
    foreach (var kvp in openInterestDict)
    {
        var symbol = kvp.Key;
        var openInterest = kvp.Value;
    }
}

for open_interest_dict in all_history_open_interest:
    for kvp in open_interest_dict:
        symbol = kvp.Key
        open_interest = kvp.Value
```

OptionHistory Objects

 $\textbf{The} \; \texttt{GetOptionHistory} \; \; \textbf{method} \; \textbf{returns} \; \textbf{an} \; \texttt{OptionHistory} \; \; \textbf{object.} \; \; \textbf{To} \; \textbf{get} \; \textbf{each} \; \underline{\textbf{slice}} \; \underline{\textbf{in}} \; \textbf{the} \; \texttt{OptionHistory} \; \; \textbf{object,} \; \textbf{iterate} \; \textbf{through} \; \textbf{it.} \; \textbf{object.} \; \textbf{object.} \; \textbf{object.} \; \textbf{object.} \; \textbf{object.} \; \textbf{iterate} \; \textbf{through} \; \underline{\textbf{it.}} \; \textbf{object.} \; \textbf{obje$

```
foreach (var slice in optionHistory)
{
    foreach (var kvp in slice.OptionChains)
    {
       var canonicalSymbol = kvp.Key;
      var chain = kvp.Value;
      foreach (var contract in chain)
      {
        }
    }
}
for slice in option_history:
    for canonical_symbol, chain in slice.OptionChains.items():
      for contract in chain:
```

To convert the OptionHistory object to a DataFrame that contains the trade and quote information of each contract and the underlying, call the GetAllData method.

option_history.GetAllData()

To get the expiration dates of all the contracts in an OptionHistory object, call the GetExpiryDates method.

option_history.GetExpiryDates()

To get the strike prices of all the contracts in an ${\tt OptionHistory}$ object, call the ${\tt GetStrikes}$ method.

option_history.GetStrikes()

Jupyter Notebooks don't currently support libraries to plot historical data, but we are working on adding the functionality. Until we add the functionality, use Python to plot historical Future Options data.

You need to get some historical Future Options data to plot it. You can use many of the supported plotting libraries to visualize data in various formats. For example, you can plot candlestick and line charts.

Candlestick Chart

```
Follow these steps to plot candlestick charts:
```

1. Get some historical data.

```
history = qb.History(fop_contract_symbol, datetime(2021, 12, 2), datetime(2021, 12, 3))
      var history = qb.History<QuoteBar>(fopContractSymbol, new DateTime(2021, 12, 2), new DateTime(2021, 12, 3));
  2. Drop the first four index levels of the DataFrame that returns.
      history.index = history.index.droplevel([0,1,2,3])
  3. Import the plotly Plotly.NET library.
      import plotly.graph_objects as go
      #r "../Plotly.NET.dll"
      using Plotly.NET;
using Plotly.NET.LayoutObjects;
  4. Create a Candlestick .
      candlestick = go.Candlestick(x=history.index,
                                                open=history['open'],
high=history['high'],
low=history['low'],
                                                 close=history['close'])
      var chart = Chart2D.Chart.Candlestick<decimal, decimal, decimal, decimal, DateTime, string>(
            chart = Chart2D.Chart.Candlest
history.Select(x => x.Open),
history.Select(x => x.High),
history.Select(x => x.Low),
history.Select(x => x.Close),
history.Select(x => x.EndTime)
  5. Create a Layout .
      LinearAxis xAxis = new LinearAxis();
xAxis.SetValue("title", "Time");
LinearAxis yAxis = new LinearAxis();
yAxis.SetValue("title", "Price ($)");
Title title = Title.init($"{fopContractSymbol} OHLC");
      Layout layout = new Layout();
layout.SetValue("xaxis", xAxis);
layout.SetValue("yaxis", yAxis);
layout.SetValue("title", title);
  6. Create the Figure .
      fig = go.Figure(data=[candlestick], layout=layout)
  Assign the Layout to the chart.
      chart.WithLayout(layout);
  8. \  \, \text{Show the Figure} \,\, .
      fig.show()
      HTML(GenericChart.toChartHTML(chart))
      Candlestick charts display the open, high, low, and close prices of the contract.
Line Chart
Follow these steps to plot line charts using built-in methods {\tt Plotly.NET} package:

    Get some historical data.

      history = qb.History(fop contract symbols[:5], datetime(2021, 12, 2), datetime(2021, 12, 30), Resolution.Daily)
  2. Drop the first three index levels of the returned {\tt pandas.DataFrame} .
      history.index = history.index.droplevel([0,1,2])
  3. Select the data to plot.
      closes = history['close'].unstack(level=0)
  4. Call the plot method on the pandas object.
      closes.plot(title="Close", figsize=(15, 5))
  Create Line charts.
      var chart = Chart2D.Chart.Line<DateTime, decimal, string>(
    history.Select(x => x.EndTime),
    history.Select(x => x.Close)
  6. Create a Layout \, .
      LinearAxis xAxis = new LinearAxis();
xAxis.SetValue("title", "Time");
LinearAxis yAxis = new LinearAxis();
yAxis.SetValue("title", "Price ($)");
Title title = Title.init($"{fopContractSymbol} Close");
      Layout layout = new Layout();
layout.SetValue("xaxis", xAxis);
layout.SetValue("yaxis", yAxis);
layout.SetValue("title", title);
   7. Assign the Layout to the chart
      chart.WithLayout(layout);
   8. Show the plot.
      plt.show()
      HTML(GenericChart.toChartHTML(chart))
```

Line charts display the value of the property you selected in a time series.

3.9 Forex

Introduction

This page explains how to request, manipulate, and visualize historical Forex data.

Create Subscriptions

Follow these steps to subscribe to a Forex security:

1. Load the required assembly files and data types.

```
#load ".../Initialize.csx"
#load ".../QuantConnect.csx"
using QuantConnect.Data;
using QuantConnect.Data;
using QuantConnect.Data;
using QuantConnect.Algorithm;
using QuantConnect.Research;

2. Create a QuantBook .
   var qb = new QuantBook();
   qb = QuantBook()

3. Call the AddForex method with a ticker and then save a reference to the Forex Symbol .
   var eurusd = qb.AddForex("EURUSD").Symbol;
   var gbpusd = qb.AddForex("EURUSD").Symbol;
   eurusd = qb.AddForex("EURUSD").Symbol
gbpusd = qb.AddForex("GBPUSD").Symbol
```

To view all of the available Forex pairs, see Supported Assets.

Get Historical Data

You need a <u>subscription</u> before you can request historical data for a security. On the time dimension, you can request an amount of historical data based on a trailing number of bars, a trailing period of time, or a defined period of time. On the security dimension, you can request historical data for a single Forex pair, a subset of the pairs you created subscriptions for in your notebook, or all of the pairs in your notebook.

Trailing Number of Bars

To get historical data for a number of trailing bars, call the History method with the Symbol object(s) and an integer.

```
// Slice objects
var singleHistorySlice = qb.History(eurusd, 10);
var subsetHistorySlice = qb.History(new[] (eurusd, gbpusd), 10);
var allHistorySlice = qb.History(10);

// QuoteBar objects
var singleHistoryQuoteBars = qb.History<QuoteBar>(eurusd, 10);
var subsetHistoryQuoteBars = qb.History<QuoteBar>(new[] {eurusd, gbpusd}, 10);
var allHistoryQuoteBars = qb.History<QuoteBar>(qb.Securities.Keys, 10);

# DataFrame
single_history_df = qb.History(eurusd, 10)
subset history_df = qb.History(gb.Securities.Keys, 10)

# Slice objects
all_history_tice = qb.History(10)

# QuoteBar objects
single_history_quote_bars = qb.History[QuoteBar](eurusd, 10)
subset_history_quote_bars = qb.History[QuoteBar](eurusd, 10)
subset_history_quote_bars = qb.History[QuoteBar](eurusd, gbpusd], 10)
all_history_quote_bars = qb.History[QuoteBar](eurusd, gbpusd], 10)
all_history_quote_bars = qb.History[QuoteBar](qb.Securities.Keys, 10)
```

The preceding calls return the most recent bars, excluding periods of time when the exchange was closed.

Trailing Period of Time

 $To \ get \ historical \ data \ for \ a \ trailing \ period \ of \ time, \ call \ the \ \texttt{History} \ \ method \ with \ the \ \texttt{Symbol} \ \ object(s) \ and \ a \ \texttt{TimeSpan} \ \ \texttt{timedelta} \ .$

```
// Jive Objects
var singleHistorySlice = qb.History(eurusd, TimeSpan.FromDays(3));
var subsetHistorySlice = qb.History(new[] {eurusd, gbpusd}, TimeSpan.FromDays(3));
var alHistorySlice = qb.History(10);

// QuoteBar objects
var singleHistoryQuoteBars = qb.HistoryQuoteBar>(eurusd, TimeSpan.FromDays(3), Resolution.Minute);
var subsetHistoryQuoteBars = qb.HistoryQuoteBar>(qb.Securities.Keys, TimeSpan.FromDays(3), Resolution.Minute);
var alHistoryGuoteBars = qb.HistoryGuoteBar>(qb.Securities.Keys, TimeSpan.FromDays(3), Resolution.Minute);

// Tick objects
var singleHistoryTicks = qb.HistoryGick>(eurusd, TimeSpan.FromDays(3), Resolution.Tick);
var subsetHistoryTicks = qb.HistoryGick>(eurusd, JimeSpan.FromDays(3), Resolution.Tick);
var subsetHistoryTicks = qb.HistoryGick>(eurusd, JimeSpan.FromDays(3), Resolution.Tick);
var alHistoryTicks = qb.HistoryGick>(eurusd, JimeSpan.FromDays(3), Resolution.Tick);

# DataFrame of quote data (Forex data doesn't have trade data)
single history df = qb.History(eurusd, timedelta(days=3))
subset history df = qb.History(eurusd, timedelta(days=3))

# DataFrame of tick data
single history tick df = qb.History(eurusd, timedelta(days=3), Resolution.Tick)
subset history tick df = qb.History(eurusd, gbpusd), timedelta(days=3), Resolution.Tick)
all_history_tick_df = qb.History(qb.Securities.Keys, timedelta(days=3), Resolution.Tick)

# Slice objects
single history_quote bars = qb.History[QuoteBar] (eurusd, timedelta(days=3), Resolution.Minute)
subset history_quote bars = qb.History[QuoteBar] (eurusd, timedelta(days=3), Resolution.Minute)

# Tick objects
single history_quote bars = qb.History[QuoteBar] (eurusd, timedelta(days=3), Resolution.Minute)

# Tick objects
single history_ticks = qb.History[Tick] (eurusd, timedelta(days=3), Resolution.Tick)
subset history_ticks = qb.History[Tick] (eurusd, gbpusd], timedelta(days=3), Resolution.Tick)
all_history_ticks = qb.History[Tick] (eurusd, gbpusd], timedelta(days=3), Resolution.Tick)
all_history_ticks = qb.History[Tick] (eurusd, gbpusd], timed
```

The preceding calls return the most recent bars or ticks, excluding periods of time when the exchange was closed.

Defined Period of Time

To get historical data for a specific period of time, call the History method with the Symbol object(s), a start DateTime datetime, and an end DateTime datetime. The start and end times you provide are based in the notebook time zone.

```
var startTime = new DateTime(2021, 1, 1);
var endTime = new DateTime(2021, 2, 1);
// Slice objects
```

```
var singleHistorySlice = qb.History(eurusd, startTime, endTime);
var subsetHistorySlice = qb.History(qb.Securities.Keys, startTime, endTime);
var allHistorySlice = qb.History(qb.Securities.Keys, startTime, endTime);

// QuoteBar objects
var singleHistoryQuoteBars = qb.History<QuoteBar>(eurusd, startTime, endTime, Resolution.Minute);
var subsetHistoryQuoteBars = qb.History<QuoteBar>(new[] (eurusd, gbpusd), startTime, endTime, Resolution.Minute);
var subsetHistoryTickBars = qb.History<TickPoleoteBar>(qb.Securities.Keys, startTime, endTime, Resolution.Minute);
// Tick objects
var singleHistoryTickS = qb.History<TickPoleoteBar>(qb.Securities.Keys, startTime, endTime, Resolution.Tick);
var subsetHistoryTicks = qb.History<TickPoleoteBarPoleoteBarPoleoteBarPoleoteBarPoleoteBarPoleoteBarPoleoteBarPoleoteBarPoleoteBarPoleoteBarPoleoteBarPoleoteBarPoleoteBarPoleoteBarPoleoteBarPoleoteBarPoleoteBarPoleoteBarPoleoteBarPoleoteBarPoleoteBarPoleoteBarPoleoteBarPoleoteBarPoleoteBarPoleoteBarPoleoteBarPoleoteBarPoleoteBarPoleoteBarPoleoteBarPoleoteBarPoleoteBarPoleoteBarPoleoteBarPoleoteBarPoleoteBarPoleoteBarPoleoteBarPoleoteBarPoleoteBarPoleoteBarPoleoteBarPoleoteBarPoleoteBarPoleoteBarPoleoteBarPoleoteBarPoleoteBarPoleoteBarPoleoteBarPoleoteBarPoleoteBarPoleoteBarPoleoteBarPoleoteBarPoleoteBarPoleoteBarPoleoteBarPoleoteBarPoleoteBarPoleoteBarPoleoteBarPoleoteBarPoleoteBarPoleoteBarPoleoteBarPoleoteBarPoleoteBarPoleoteBarPoleoteBarPoleoteBarPoleoteBarPoleoteBarPoleoteBarPoleoteBarPoleoteBarPoleoteBarPoleoteBarPoleoteBarPoleoteBarPoleoteBarPoleoteBarPoleoteBarPoleoteBarPoleoteBarPoleoteBarPoleoteBarPoleoteBarPoleoteBarPoleoteBarPoleoteBarPoleoteBarPoleoteBarPoleoteBarPoleoteBarPoleoteBarPoleoteBarPoleoteBarPoleoteBarPoleoteBarPoleoteBarPoleoteBarPoleoteBarPoleoteBarPoleoteBarPoleoteBarPoleoteBarPoleoteBarPoleoteBarPoleoteBarPoleoteBarPoleoteBarPoleoteBarPoleoteBarPoleoteBarPoleoteBarPoleoteBarPoleoteBarPoleoteBarPoleoteBarPoleoteBarPoleoteBarPoleoteBarPoleoteBarPoleoteBarPoleoteBarPoleoteBarPoleoteBarPoleoteBarPoleoteBarP
```

The preceding calls return the bars or ticks that have a timestamp within the defined period of time.

Resolutions

The following table shows the available resolutions and data formats for Forex subscriptions:

Resolution TradeBar QuoteBar Trade Tick Quote Tick

Markets

The only market available for Forex pairs is ${\tt Market.Oanda}$.

Wrangle Data

You need some historical data to perform wrangling operations. The process to manipulate the historical data depends on its data type. To display pandas objects, run a cell in a notebook with the pandas object as the last line. To display other data formats, call the print method.

You need some historical data to perform wrangling operations. Use LINQ to wrangle the data and then call the Console.WriteLine method in a Jupyter Notebook to display the data. The process to manipulate the historical data depends on its data type.

DataFrame Objects

If the History method returns a DataFrame , the first level of the DataFrame index is the encoded Forex Symbol and the second level is the EndTime of the data sample. The columns of the DataFrame are the data properties.

To select the historical data of a single Forex, index the loc property of the DataFrame with the Forex Symbol .

all_history_df.loc[eurusd] # or all_history_df.loc['EURUSD']

To select a column of the DataFrame, index it with the column name.

all_history_df.loc[eurusd]['close']

If you request historical data for multiple Forex pairs, you can transform the DataFrame so that it's a time series of close values for all of the Forex pairs. To transform the DataFrame, select the column you want to display for each Forex pair and then call the <u>unstack</u> method.

all_history_df['close'].unstack(level=0)

The DataFrame is transformed so that the column indices are the Symbol of each Forex pair and each row contains the close value.

The historical data methods don't return DataFrame objects, but you can create one for efficient vectorized data wrangling.

using Microsoft.Data.Analysis;
var columns = new DataFrameColumn("Time", history.Select(x => x[eurusd].EndTime)),
 new PrimitiveDataFrameColumn("EURUSD Open", history.Select(x => x[eurusd].Open)),
 new DecimalDataFrameColumn("EURUSD High", history.Select(x => x[eurusd].High)),
 new DecimalDataFrameColumn("EURUSD Low", history.Select(x => x[eurusd].Low)),
 new DecimalDataFrameColumn("EURUSD Close", history.Select(x => x[eurusd].Close)));
var df = new DataFrame(columns);
df

To select a particular column of the DataFrame, index it with the column name.

df["EURUSD close"]

Slice Objects

If the History method returns Slice objects, iterate through the Slice objects to get each one. The Slice objects may not have data for all of your Forex subscriptions. To avoid issues, check if the Slice contains data for your Forex pair before you index it with the Forex Symbol .

```
Foreach (var slice in allHistorySlice) {
   if (slice.QuoteBars.ContainsKey(eurusd))
   {
```

```
var quoteBar = slice.QuoteBars[eurusd];
for slice in all_history_slice:
          if slice.QuoteBars.ContainsKey(eurusd):
   quote_bar = slice.QuoteBars[eurusd]
You can also iterate through each QuoteBar in the Slice .
foreach (var slice in allHistorySlice)
     foreach (var kvp in slice.QuoteBars)
          var symbol = kvp.Key;
var quoteBar = kvp.Value;
for slice in all_history_slice:
   for kvp in slice.QuoteBars:
        symbol = kvp.Key
        quote_bar = kvp.Value
You can also use LINO to select each QuoteBar in the Slice for a given Symbol .
var quoteBars = allHistorySlice.Where(slice => slice.QuoteBars.ContainsKey(eurusd)).Select(slice => slice.QuoteBars[eurusd]);
QuoteBar Objects
If the History method returns QuoteBar objects, iterate through the QuoteBar objects to get each one.
foreach (var quoteBar in singleHistoryQuoteBars)
    Console.WriteLine(quoteBar);
for quote_bar in single_history_quote_bars:
    print(quote_bar)
If the History method returns QuoteBars , iterate through the QuoteBars to get the QuoteBar of each Forex pair. The QuoteBars may not have data for all of your Forex subscriptions. To avoid issues, check if the QuoteBars
object contains data for your security before you index it with the Forex Symbol .
foreach (var quoteBars in allHistoryQuoteBars)
     if (quoteBars.ContainsKey(eurusd))
          var quoteBar = quoteBars[eurusd];
for quote_bars in all_history_quote_bars:
      if quote_bars.ContainsKey(eurusd):
    quote_bar = quote_bars[eurusd]
You can also iterate through each of the {\tt QuoteBars}\, .
foreach (var quoteBars in allHistorvOuoteBars)
     foreach (var kvp in quoteBars)
          var symbol = kvp.Key;
var quoteBar = kvp.Value;
for quote_bars in all_history_quote_bars:
    for kvp in quote bars:
        symbol = kvp.Key
        quote_bar = kvp.Value
Tick Objects
If the History method returns Tick objects, iterate through the Tick objects to get each one.
foreach (var tick in singleHistoryTicks)
    Console.WriteLine(tick);
for tick in single_history_ticks:
    print(tick)
If the History method returns Ticks , iterate through the Ticks to get the Tick of each Forex pair. The Ticks may not have data for all of your Forex subscriptions. To avoid issues, check if the Ticks object contains data for
your security before you index it with the Forex {\tt Symbol} .
foreach (var ticks in allHistoryTicks)
     if (ticks.ContainsKey(eurusd))
         var tick = ticks[eurusd];
for ticks in all_history_ticks:
    if ticks.ContainsKey(eurusd):
        ticks = ticks[eurusd]
You can also iterate through each of the {\tt Ticks} .
foreach (var ticks in allHistoryTicks)
     foreach (var kvp in ticks)
          var symbol = kvp.Key;
var tick = kvp.Value;
for ticks in all_history_ticks:
    for kvp in ticks:
        symbol = kvp.Key
        tick = kvp.Value
```

Plot Data

You need some historical Forex data to produce plots. You can use many of the supported plotting libraries. Plot. NET package to visualize data in various formats. For example, you can plot candlestick and line charts.

Candlestick Chart

Follow these steps to plot candlestick charts:

Get some historical data.

```
var history = qb.History<QuoteBar>(eurusd, new DateTime(2021, 11, 26), new DateTime(2021, 12, 8), Resolution.Daily);
   2. Import the plotly Plotly NET library.
       import plotly.graph objects as go
       #r "../Plotly.NET.dll"
       using Plotly.NET;
using Plotly.NET.LayoutObjects;
   3. Create a Candlestick .
       candlestick = go.Candlestick(x=history.index,
                                                   open=history['open'],
high=history['high'],
low=history['low'],
close=history['close'])
       var chart = Chart2D.Chart.Candlestick<decimal, decimal, decimal, decimal, DateTime, string>(
            cnart = Cnart2D.Cnart.candless
history.Select(x => x.Open),
history.Select(x => x.High),
history.Select(x => x.Low),
history.Select(x => x.Close),
history.Select(x => x.EndTime)
   4. Create a Lavout .
      LinearAxis xAxis = new LinearAxis();
xAxis.SetValue("title", "Time");
LinearAxis yAxis = new LinearAxis();
yAxis.SetValue("title", "Price ($)");
Title title = Title.init($"(eurusd) OHLC");
      Layout layout = new Layout();
layout.SetValue("xaxis", xAxis);
layout.SetValue("yaxis", yAxis);
layout.SetValue("title", title);
   5. Create the Figure .
       fig = go.Figure(data=[candlestick], layout=layout)
   6. Assign the Layout to the chart.
       chart.WithLayout(layout);
   7. Show the Figure .
       fig.show()
       HTML(GenericChart.toChartHTML(chart))
       Candlestick charts display the open, high, low, and close prices of the security.
Follow these steps to plot line charts using built-in methods {\tt Plotly.NET} package:
   1. Get some historical data
      history = qb.History([eurusd, qbpusd], datetime(2021, 11, 26), datetime(2021, 12, 8), Resolution.Daily)
       var history = qb.History<QuoteBar>(new [] {eurusd, gbpusd}, new DateTime(2021, 11, 26), new DateTime(2021, 12, 8), Resolution.Daily);
   2. Select the data to plot.
       pct_change = history['close'].unstack(0).pct_change().dropna()
   3. Call the plot method on the pandas object.
       pct_change.plot(title="Close Price %Change", figsize=(15, 10))
       var chart1 = Chart2D.Chart.Line<DateTime, decimal, string>(
             history.Select(x => x[eurusd].EndTime),
history.Select(x => x[eurusd].Close),
Name: "EURUSD"
        );
var chart2 = Chart2D.Chart.Line<DateTime, decimal, string>(
    history.Select(x => x[gbpusd].EndTime),
    history.Select(x => x[gbpusd].Close),
    Name: "GBFUSD"
   5. Create a \texttt{Layout} .
      LinearAxis xAxis = new LinearAxis();
xAxis.SetValue("title", "Time");
LinearAxis yAxis = new LinearAxis();
yAxis.SetValue("title", "Price ($)");
Title title = Title.init("EURUSD & GBPUSD Close Price");
      Layout layout = new Layout();
layout.SetValue("xaxis", xAxis);
layout.SetValue("yaxis", yAxis);
layout.SetValue("title", title);
   6. Combine the charts and assign the Layout to the chart.
       var chart = Plotly.NET.Chart.Combine(new []{chart1, chart2});
       chart.WithLayout(layout);
   7. Show the plot.
```

Line charts display the value of the property you selected in a time series.

HTML(GenericChart.toChartHTML(chart))

3.10 CFD

Introduction

This page explains how to request, manipulate, and visualize historical CFD data.

Create Subscriptions

Follow these steps to subscribe to a CFD security:

1. Load the required assembly files and data types.

```
#load "../Initialize.csx"
#load "../QuantConnect.csx"
using QuantConnect.Data;
using QuantConnect.Data;
using QuantConnect.Algorithm;
using QuantConnect.Research;

2. Create a QuantBook.
    var qb = new QuantBook();
    qb = QuantBook()

3. Call the AddCfd method with a ticker and then save a reference to the CFD Symbol .
    var spx = qb.AddCfd("SPX500USD").Symbol;
    var usb = qb.AddCfd("USBIOYUSD").Symbol;
    spx = qb.AddCfd("SPX500USD").Symbol;
    spx = qb.AddCfd("SPX500USD").Symbol
usb = qb.AddCfd("USBIOYUSD").Symbol
```

To view all of the available contracts, see Supported Assets

Get Historical Data

You need a <u>subscription</u> before you can request historical data for a security. On the time dimension, you can request an amount of historical data based on a trailing number of bars, a trailing period of time, or a defined period of time. On the security dimension, you can request historical data for a single CFD contract, a subset of the contracts you created subscriptions for in your notebook, or all of the contracts in your notebook.

Trailing Number of Bars

To get historical data for a number of trailing bars, call the History method with the Symbol object(s) and an integer.

```
// Slice objects
var singleHistorySlice = qb.History(spx, 10);
var subsetHistorySlice = qb.History(new[] {spx, usb}, 10);
var allHistorySlice = qb.History(10);

// QuoteBar objects
var singleHistoryQuoteBars = qb.History<QuoteBar>(spx, 10);
var subsetHistoryQuoteBars = qb.History<QuoteBar>(new[] {spx, usb}, 10);
var allHistoryQuoteBars = qb.History<QuoteBar>(qb.Securities.Keys, 10);
var allHistory_df = qb.History(spx, 10)
subset history_df = qb.History(spx, usb], 10)
subset history_df = qb.History(qb.Securities.Keys, 10)

# Slice objects
all_history_slice = qb.History(10)

# QuoteBar objects
single history_quote_bars = qb.History[QuoteBar](spx, 10)
subset history_quote_bars = qb.History[QuoteBar](fspx, usb], 10)
all_history_quote_bars = qb.History[QuoteBar](fspx, usb], 10)
all_history_quote_bars = qb.History[QuoteBar](db.Securities.Keys, 10)
```

The preceding calls return the most recent bars, excluding periods of time when the exchange was closed.

Trailing Period of Time

 $To get \ historical \ data \ for \ a \ trailing \ period \ of \ time, \ call \ the \ \texttt{History} \ \ method \ with \ the \ \texttt{Symbol} \ \ object(s) \ and \ a \ \texttt{TimeSpan} \ \ \texttt{timedelta} \ .$

```
// Jince Objects
var singleHistorySlice = qb.History(epx, TimeSpan.FromDays(3));
var subsetHistorySlice = qb.History(new[] {spx, usb}, TimeSpan.FromDays(3));
var allHistorySlice = qb.History(10);

// QuoteBar objects
var singleHistoryQuoteBars = qb.History<QuoteBar>(spx, TimeSpan.FromDays(3), Resolution.Minute);
var subsetHistoryQuoteBars = qb.History<QuoteBar>(epx, TimeSpan.FromDays(3), Resolution.Minute);
var allHistoryQuoteBars = qb.History<QuoteBar>(qb.Securities.Keys, TimeSpan.FromDays(3), Resolution.Minute);
var allHistoryTicks = qb.History<Tick>(spx, TimeSpan.FromDays(3), Resolution.Tick);
var subsetHistoryTicks = qb.History<Tick>(epx, TimeSpan.FromDays(3), Resolution.Tick);
var subsetHistoryTicks = qb.History<Tick>(new[] {spx, usb}, TimeSpan.FromDays(3), Resolution.Tick);
var allHistoryTicks = qb.History<Tick>(qb.Securities.Keys, TimeSpan.FromDays(3), Resolution.Tick);

# DataFrame of quote data (CFD data doesn't have trade data)
single history df = qb.History(spx, timedelta(days=3))
subset history df = qb.History(spx, timedelta(days=3))
all_history_df = qb.History(gb.Securities.Keys, timedelta(days=3))

# DataFrame of tick data
single history tick df = qb.History(spx, timedelta(days=3), Resolution.Tick)
subset history_tick df = qb.History(qb.Securities.Keys, timedelta(days=3), Resolution.Tick)

# Slice objects
all_history_tick_df = qb.History(timedelta(days=3))

# QuoteBar objects
single history_quote_bars = qb.History[QuoteBar](spx, timedelta(days=3), Resolution.Minute)
subset_history_quote_bars = qb.History[QuoteBar](gb.Securities.Keys, timedelta(days=3), Resolution.Minute)

# Tick objects
single history_ticks = qb.History[Tick](spx, timedelta(days=3), Resolution.Tick)
all_history_ticks = qb.History[Tick](spx, usb], timedelta(days=3), Resolution.Tick)
all_history_ticks = qb.History[Tick](spx, usb], timedelta(days=3), Resolution.Tick)
all_history_ticks = qb.History[Tick](spx, timedelta(days=3), Resolution.Tick)
all_history_ticks = qb.History[Tick](spx, timedelta(days=3), Resolution.Tick)
all_hist
```

The preceding calls return the most recent bars or ticks, excluding periods of time when the exchange was closed.

Defined Period of Time

To get historical data for a specific period of time, call the History method with the Symbol object(s), a start DateTime datetime, and an end DateTime datetime. The start and end times you provide are based in the notebook time zone.

```
var startTime = new DateTime(2021, 1, 1);
var endTime = new DateTime(2021, 2, 1);
// Slice objects
```

```
var singleHistorySlice = qb.History(spx, startTime, endTime);
var subsetHistorySlice = qb.History(qb.Securities.Keys, startTime, endTime);
var allHistorySlice = qb.History(qb.Securities.Keys, startTime, endTime);

// QuoteBar objects
var singleHistoryQuoteBars = qb.History<QuoteBar>(spx, startTime, endTime, Resolution.Minute);
var subsetHistoryQuoteBars = qb.History<QuoteBar>(qb.Securities.Keys, startTime, endTime, Resolution.Minute);
var allHistoryQuoteBars = qb.History<QuoteBar>(qb.Securities.Keys, startTime, endTime, Resolution.Minute);

// Tick objects
var singleHistoryTicks = qb.History<Tick>(spx, startTime, endTime, Resolution.Tick);
var subsetHistoryTicks = qb.History<Tick>(spx, startTime, endTime, Resolution.Tick);
var subsetHistoryTicks = qb.History<Tick>(qb.Securities.Keys, startTime, endTime, Resolution.Tick);
var allHistoryTicks = qb.History<Tick>(pb.Securities.Keys, startTime, endTime, Resolution.Tick);

start_time = datetime(2021, 1, 1)
end_time = datetime(2021, 2, 1)

# DataFrame of quote data (CFD data doesn't have trade data)
single history_df = qb.History(spx, start_time, end_time)
subset_history_df = qb.History(spx, usb], start_time, end_time)

# DataFrame of tick data
single history_tick_df = qb.History(spx, start_time, end_time, Resolution.Tick)
all_history_tick_df = qb.History(spx, usb], start_time, end_time, Resolution.Tick)

# QuoteBar objects
single history_quote_bars = qb.History[QuoteBar](spx, usbT_time, end_time, Resolution.Minute)
all_history_quote_bars = qb.History[QuoteBar](spx, usbT_time, end_time, Resolution.Minute)

# Tick objects
single history_ticks = qb.History[Tick](spx, usbT_time, end_time, Resolution.Tick)
all_history_ticks = qb.History[Tick](spx, usbT_time, end_time, end_time, Resolution.Tick)
all_history_ticks = qb.History[Tick](
```

The preceding calls return the bars or ticks that have a timestamp within the defined period of time.

Resolutions

The following table shows the available resolutions and data formats for CFD subscriptions:

Resolution TradeBar QuoteBar Trade Tick Quote Tick

Markets

The only market available for CFD contracts is Market.Oanda .

Wrangle Data

You need some historical data to perform wrangling operations. The process to manipulate the historical data depends on its data type. To display pandas objects, run a cell in a notebook with the pandas object as the last line. To display other data formats, call the print method.

You need some historical data to perform wrangling operations. Use LINQ to wrangle the data and then call the Console.WriteLine method in a Jupyter Notebook to display the data. The process to manipulate the historical data depends on its data type.

DataFrame Objects

If the History method returns a DataFrame , the first level of the DataFrame index is the encoded CFD Symbol and the second level is the EndTime of the data sample. The columns of the DataFrame are the data properties.

To select the historical data of a single CFD, index the loc property of the DataFrame with the CFD Symbol . all_history_df.loc[spx] # or all_history_df.loc['SPX500USD']

To select a column of the DataFrame, index it with the column name.

all_history_df.loc[spx]['close']

If you request historical data for multiple CFD contracts, you can transform the DataFrame so that it's a time series of close values for all of the CFD contracts. To transform the DataFrame , select the column you want to display for each CFD contract and then call the <u>unstack</u> method.

all_history_df['close'].unstack(level=0)

The DataFrame is transformed so that the column indices are the Symbol of each CFD contract and each row contains the close value.

The historical data methods don't return DataFrame objects, but you can create one for efficient vectorized data wrangling.

using Microsoft.Data.Analysis;
var columns = new DataFrameColumn("Time", history.Select(x => x[spx].EndTime)),
 new PrimitiveDataFrameColumn("SPX50USD Open", history.Select(x => x[spx].Open)),
 new DecimalDataFrameColumn("SPX50USD High", history.Select(x => x[spx].High)),
 new DecimalDataFrameColumn("SPX50USD Low", history.Select(x => x[spx].High)),
 new DecimalDataFrameColumn("SPX50USD Close", history.Select(x => x[spx].Close))
};
var df = new DataFrame(columns);
df

To select a particular column of the DataFrame, index it with the column name.

df["SPX500USD close"]

Slice Objects

If the History method returns Slice objects, iterate through the Slice objects to get each one. The Slice objects may not have data for all of your CFD subscriptions. To avoid issues, check if the Slice contains data for your CFD contract before you index it with the CFD Symbol .

```
foreach (var slice in allHistorySlice) {
   if (slice.QuoteBars.ContainsKey(spx))
   {
```

```
var quoteBar = slice.QuoteBars[spx];
for slice in all_history_slice:
          if slice.QuoteBars.ContainsKey(spx):
   quote_bar = slice.QuoteBars[spx]
You can also iterate through each QuoteBar in the Slice .
foreach (var slice in allHistorySlice)
     foreach (var kvp in slice.QuoteBars)
           var symbol = kvp.Key;
var quoteBar = kvp.Value;
for slice in all_history_slice:
   for kvp in slice.QuoteBars:
        symbol = kvp.Key
        quote_bar = kvp.Value
You can also use LINO to select each QuoteBar in the Slice for a given Symbol .
var quoteBars = allHistorySlice.Where(slice => slice.QuoteBars.ContainsKey(spx)).Select(slice => slice.QuoteBars[spx]);
QuoteBar Objects
If the History method returns QuoteBar objects, iterate through the QuoteBar objects to get each one.
foreach (var quoteBar in singleHistoryQuoteBars)
     Console.WriteLine(quoteBar);
for quote_bar in single_history_quote_bars:
    print(quote_bar)
If the History method returns QuoteBars , iterate through the QuoteBars to get the QuoteBar of each CFD contract. The QuoteBars may not have data for all of your CFD subscriptions. To avoid issues, check if the QuoteBars
object contains data for your security before you index it with the CFD {\tt Symbol}\, .
foreach (var quoteBars in allHistoryQuoteBars)
     if (quoteBars.ContainsKey(spx))
          var quoteBar = quoteBars[spx];
for quote_bars in all_history_quote_bars:
      if quote_bars.ContainsKey(spx):
    quote_bar = quote_bars[spx]
You can also iterate through each of the {\tt QuoteBars}\, .
foreach (var quoteBars in allHistorvOuoteBars)
     foreach (var kvp in quoteBars)
          var symbol = kvp.Key;
var quoteBar = kvp.Value;
for quote_bars in all_history_quote_bars:
    for kvp in quote bars:
        symbol = kvp.Key
        quote_bar = kvp.Value
Tick Objects
If the History method returns Tick objects, iterate through the Tick objects to get each one.
foreach (var tick in singleHistoryTicks)
     Console.WriteLine(tick);
for tick in single_history_ticks:
     print(tick)
If the History method returns Ticks , iterate through the Ticks to get the Tick of each CFD contract. The Ticks may not have data for all of your CFD subscriptions. To avoid issues, check if the Ticks object contains data for
your security before you index it with the CFD symbol .
foreach (var ticks in allHistoryTicks)
     if (ticks.ContainsKey(spx))
          var tick = ticks[spx];
for ticks in all_history_ticks:
    if ticks.ContainsKey(spx):
        ticks = ticks[spx]
You can also iterate through each of the {\tt Ticks} .
foreach (var ticks in allHistoryTicks)
     foreach (var kvp in ticks)
          var symbol = kvp.Key;
var tick = kvp.Value;
for ticks in all_history_ticks:
   for kvp in ticks:
     symbol = kvp.Key
     tick = kvp.Value
```

Plot Data

You need some historical CFD data to produce plots. You can use many of the supported plotting libraries. Plot. NET package to visualize data in various formats. For example, you can plot candlestick and line charts.

Candlestick Chart

Follow these steps to plot candlestick charts:

Get some historical data.

```
var history = qb.History<QuoteBar>(spx, new DateTime(2021, 11, 26), new DateTime(2021, 12, 8), Resolution.Daily);
   2. Import the plotly Plotly NET library.
       import plotly.graph objects as go
       #r "../Plotly.NET.dll"
       using Plotly.NET;
using Plotly.NET.LayoutObjects;
   3. Create a Candlestick .
       candlestick = go.Candlestick(x=history.index,
                                                   open=history['open'],
high=history['high'],
low=history['low'],
close=history['close'])
       var chart = Chart2D.Chart.Candlestick<decimal, decimal, decimal, decimal, DateTime, string>(
             cnart = (nart2).tnart.candles
history.Select(x => x.Open),
history.Select(x => x.High),
history.Select(x => x.Low),
history.Select(x => x.Close),
history.Select(x => x.EndTime)
   4. Create a Lavout .
      LinearAxis xAxis = new LinearAxis();
xAxis.SetValue("title", "Time");
LinearAxis yAxis = new LinearAxis();
yAxis.SetValue("title", "Price ($)");
Title title = Title.init($"{spx} OHLC");
      Layout layout = new Layout();
layout.SetValue("xaxis", xAxis);
layout.SetValue("yaxis", yAxis);
layout.SetValue("title", title);
   5. Create the Figure .
       fig = go.Figure(data=[candlestick], layout=layout)
   6. Assign the Layout to the chart.
       chart.WithLayout(layout);
   7. Show the Figure .
       fig.show()
       HTML(GenericChart.toChartHTML(chart))
       Candlestick charts display the open, high, low, and close prices of the security.
Follow these steps to plot line charts using built-in methods {\tt Plotly.NET} package:
   1. Get some historical data
      history = qb.History([spx, usb], datetime(2021, 11, 26), datetime(2021, 12, 8), Resolution.Daily)
       var history = qb.History<QuoteBar>(new [] {spx, usb}, new DateTime(2021, 11, 26), new DateTime(2021, 12, 8), Resolution.Daily);
   2. Select the data to plot.
       pct_change = history['close'].unstack(0).pct_change().dropna()
   3. Call the plot method on the pandas object.
       pct_change.plot(title="Close Price %Change", figsize=(15, 10))
       var chart1 = Chart2D.Chart.Line<DateTime, decimal, string>(
             history.Select(x => x[spx].EndTime),
history.Select(x => x[spx].Close - x[spx].Open),
Name: $"{spx}"
        n/sur chart2 = Chart2D.Chart.Line<DateTime, decimal, string>(
    history.Select(x => x[usb].EndTime),
    history.Select(x => x[usb].Close - x[usb].Open),
    Name: $"(usb)"
   5. Create a \texttt{Layout} .
      LinearAxis xAxis = new LinearAxis();
xAxis.SetValue("title", "Time");
LinearAxis yAxis = new LinearAxis();
yAxis.SetValue("title", "Price ($)");
Title title = Title.init($"{spx} & {usb} Daily Spread");
      Layout layout = new Layout();
layout.SetValue("xaxis", xAxis);
layout.SetValue("yaxis", yAxis);
layout.SetValue("title", title);
   6. Combine the charts and assign the Layout to the chart.
       var chart = Plotly.NET.Chart.Combine(new []{chart1, chart2});
       chart.WithLayout(layout);
   7. Show the plot.
```

Line charts display the value of the property you selected in a time series.

HTML(GenericChart.toChartHTML(chart))

3.11 Indices

Introduction

This page explains how to request, manipulate, and visualize historical Index data.

Create Subscriptions

Follow these steps to subscribe to an Index security:

1. Load the required assembly files and data types.

```
#load "../Initialize.csx"
#load "../QuantConnect.csx"

using QuantConnect.Data;
using QuantConnect.Data;
using QuantConnect.Algorithm;
using QuantConnect.Algorithm;
using QuantConnect.Research;

2. Create a QuantBook .
    var qb = new QuantBook();
    qb = QuantBook()

3. Call the AddIndex method with a ticker and then save a reference to the Index Symbol .
    var spx = qb.AddIndex("SPX").Symbol;
    var vix = qb.AddIndex("VIX").Symbol;
    spx = qb.AddIndex("SPX").Symbol
    vix = qb.AddIndex("VIX").Symbol
    vix = qb.AddIndex("VIX").Symbol
    vix = qb.AddIndex("VIX").Symbol
```

To view all of the available indices, see Supported Indices

Get Historical Data

You need a <u>subscription</u> before you can request historical data for a security. On the time dimension, you can request an amount of historical data based on a trailing number of bars, a trailing period of time, or a defined period of time. On the security dimension, you can request historical data for a single Index, a subset of the Indices you created subscriptions for in your notebook, or all of the Indices in your notebook.

Trailing Number of Bars

To get historical data for a number of trailing bars, call the History method with the Symbol object(s) and an integer.

```
// Slice objects
var singleHistorySlice = qb.History(spx, 10);
var subsetHistorySlice = qb.History(new[] {spx, vix}, 10);
var allHistorySlice = qb.History(10);

// TradeBar objects
var singleHistoryTradeBars = qb.History<TradeBar>(spx, 10);
var subsetHistoryTradeBars = qb.History<TradeBar>(new[] {spx, vix}, 10);
var allHistoryTradeBars = qb.History<TradeBar>(qb.Securities.Keys, 10);

# DataFrame
single history df = qb.History(spx, 10)
single history trade bar df = qb.History(TradeBar, spx, 10)
subset history trade bar df = qb.History(TradeBar, [spx, vix], 10)
subset history trade bar df = qb.History(TradeBar, gpx, vix], 10)
all history df = qb.History(qb.Securities.Keys, 10)
all history trade bar df = qb.History(TradeBar, qb.Securities.Keys, 10)

# Slice objects
all history slice = qb.History(10)

# TradeBar objects
single history trade bars = qb.History[TradeBar](spx, 10)
subset history_trade_bars = qb.History[TradeBar](spx, vix], 10)
all history_trade_bars = qb.History[TradeBar](dp.Securities.Keys, 10)
all history_trade_bars = qb.History[TradeBar](spx, vix], 10)
all history_trade_bars = qb.History[TradeBar](spx, vix], 10)
```

The preceding calls return the most recent bars, excluding periods of time when the exchange was closed.

Trailing Period of Time

To get historical data for a trailing period of time, call the ${\tt History}$ method with the ${\tt Symbol}$ object(s) and a ${\tt TimeSpan}$ timedelta .

The preceding calls return the most recent bars or ticks, excluding periods of time when the exchange was closed.

Defined Period of Time

To get historical data for a specific period of time, call the History method with the Symbol object(s), a start DateTime datetime, and an end DateTime datetime. The start and end times you provide are based in the notebook time zone.

```
var startTime = new DateTime(2021, 1, 1);
```

```
var endTime = new DateTime(2021, 2, 1);

// Slice objects
var singleHistorySlice = qb.History(spx, startTime, endTime);
var subsetHistorySlice = qb.History(qpx.) {spx, vix}, startTime, endTime);
var allHistorySlice = qb.History(qpx.Securities.Keys, startTime, endTime);

// TradeBar objects
var singleHistoryTradeBars = qb.History<TradeBar>(spx, startTime, endTime);
var allHistoryTradeBars = qb.History<TradeBar>(qpx., vix), startTime, endTime);
var allHistoryTradeBars = qb.History<TradeBar>(qpx., vix), startTime, endTime);

// Tick objects
var singleHistoryTicks = qb.History<Tick>(spx, startTime, endTime, Resolution.Tick);
var allHistoryTicks = qb.History<Tick>(spx, vix), startTime, endTime, Resolution.Tick);
var subsetHistoryTicks = qb.History<Tick>(qpx., vix), startTime, endTime, Resolution.Tick);
var allHistoryTicks = qb.History<Tick>(qpx., vix), startTime, endTime, Resolution.Tick);
var allHistoryTicks = qb.History(Tick) {spx, vix}, startTime, endTime, Resolution.Tick);
var allHistory_dick = qb.History(spx., vix), start_time, end_time, end_time, end_time, all history_df = qb.History(spx, vix), start_time, end_time)

# DataFrame of trade data (indices don't have quote data)
single history_df = qb.History(spx, vix], start_time, end_time)

# DataFrame of tick data
single history_tick_df = qb.History(spx, vix], start_time, end_time, Resolution.Tick)
subset_history_tick_df = qb.History(spx, vix], start_time, end_time, Resolution.Tick)

# TradeBar objects
single history_trade bars = qb.History(TradeBar)(spx, vix), start_time, end_time)

# TradeBar objects
single history_trade bars = qb.History(TradeBar)(spx, vix), start_time, end_time)

# Tick objects
single history_ticks = qb.History(TradeBar)(spx, vix), start_time, end_time)

# Tick objects
single history_ticks = qb.History(TradeBar)(spx, vix), start_time, end_time, Resolution.Tick)

# Tick objects
single history_ticks = qb.History(TradeBar)(spx, vix), start_time, end_time, Resolution.Tick)

# Tick objects
single history_ticks = qb.History(TradeBar)(spx, vix
```

The preceding calls return the bars or ticks that have a timestamp within the defined period of time.

Resolutions

The following table shows the available resolutions and data formats for Index subscriptions:

Resolution TradeBar QuoteBar Trade Tick Quote Tick

Tick	
Second	
Minute	
Hour	
Daily	

Markets

The only market available for Indices is Market.USA .

Wrangle Data

You need some historical data to perform wrangling operations. The process to manipulate the historical data depends on its data type. To display pandas objects, run a cell in a notebook with the pandas object as the last line. To display other data formats, call the print method.

You need some historical data to perform wrangling operations. Use LINQ to wrangle the data and then call the Console.WriteLine method in a Jupyter Notebook to display the data. The process to manipulate the historical data depends on its data type.

DataFrame Objects

If the History method returns a DataFrame , the first level of the DataFrame index is the encoded Index Symbol and the second level is the EndTime of the data sample. The columns of the DataFrame are the data properties.

To select the historical data of a single Index, index the loc property of the DataFrame with the Index Symbol .

```
all_history_df.loc[spx] # or all_history_df.loc['SPX']
```

To select a column of the DataFrame, index it with the column name.

```
all_history_df.loc[spx]['close']
```

If you request historical data for multiple Indices, you can transform the DataFrame so that it's a time series of close values for all of the Indices. To transform the DataFrame , select the column you want to display for each Index and then call the <u>unstack</u> method.

```
all_history_df['close'].unstack(level=0)
```

The DataFrame is transformed so that the column indices are the Symbol of each Index and each row contains the close value.

The historical data methods don't return DataFrame objects, but you can create one for efficient vectorized data wrangling.

```
using Microsoft.Data.Analysis;
var columns = new DataFrameColumn("Time", history.Select(x => x[spx].EndTime)),
    new PrimitiveDataFrameColumn("Time", history.Select(x => x[spx].Cpen)),
    new DecimalDataFrameColumn("SPX High", history.Select(x => x[spx].tigh)),
    new DecimalDataFrameColumn("SPX Low", history.Select(x => x[spx].Low)),
    new DecimalDataFrameColumn("SPX Low", history.Select(x => x[spx].Low)),
    new DecimalDataFrameColumn("SPX Close", history.Select(x => x[spx].Close))
};
var df = new DataFrame(columns);
df
```

To select a particular column of the DataFrame, index it with the column name.

```
df["SPX close"]
```

Slice Objects

If the History method returns Slice objects, iterate through the Slice objects to get each one. The Slice objects may not have data for all of your Index subscriptions. To avoid issues, check if the Slice contains data for your Index before you index it with the Index Symbol .

```
foreach (var slice in allHistorySlice) {
   if (slice.Bars.ContainsKey(spx))
          var tradeBar = slice.Bars[spx];
for slice in all_history_slice:
    if slice.Bars.ContainsKey(spx):
        trade_bar = slice.Bars[spx]
You can also iterate through each TradeBar in the Slice .
foreach (var slice in allHistorySlice)
     foreach (var kvp in slice.Bars)
          var symbol = kvp.Key;
var tradeBar = kvp.Value;
for slice in all_history_slice:
     for kvp in slice.Bars:

symbol = kvp.Key

trade_bar = kvp.Value
You can also use LINQ to select each {\tt TradeBar} in the {\tt Slice} for a given {\tt Symbol} .
var tradeBars = allHistorySlice.Where(slice => slice.Bars.ContainsKey(spx)).Select(slice => slice.Bars[spx]);
TradeBar Objects
If the History method returns TradeBar objects, iterate through the TradeBar objects to get each one.
foreach (var tradeBar in singleHistoryTradeBars)
    Console.WriteLine(tradeBar);
for trade_bar in single_history_trade_bars:
    print(trade_bar)
If the History method returns TradeBars , iterate through the TradeBars to get the TradeBar of each Index. The TradeBars may not have data for all of your Index subscriptions. To avoid issues, check if the TradeBars object
contains data for your security before you index it with the Index Symbol.
foreach (var tradeBars in allHistoryTradeBars)
     if (tradeBars.ContainsKey(spx))
          var tradeBar = tradeBars[spx];
for trade_bars in all_history_trade_bars:
    if trade_bars.ContainsKey(spx):
        trade_bar = trade_bars[spx]
You can also iterate through each of the TradeBars .
foreach (var tradeBars in allHistoryTradeBars)
     foreach (var kvp in tradeBars)
          var symbol = kvp.Key;
var tradeBar = kvp.Value;
for trade_bars in all_history_trade_bars:
for kvp in trade_bars:
symbol = kvp.Key
trade_bar = kvp.Value
Tick Objects
If the {\tt History} method returns {\tt Tick} objects, iterate through the {\tt Tick} objects to get each one.
foreach (var tick in singleHistoryTicks)
    Console.WriteLine(tick);
for tick in single_history_ticks:
If the History method returns Ticks , iterate through the Ticks to get the Tick of each Index. The Ticks may not have data for all of your Index subscriptions. To avoid issues, check if the Ticks object contains data for your
security before you index it with the Index Symbol
foreach (var ticks in allHistoryTicks)
    if (ticks.ContainsKey(spx))
         var tick = ticks[spx];
    }
for ticks in all_history_ticks:
     if ticks.ContainsKey(spx):
    ticks = ticks[spx]
You can also iterate through each of the Ticks .
foreach (var ticks in allHistoryTicks)
     foreach (var kvp in ticks)
          var symbol = kvp.Key;
var tick = kvp.Value;
for ticks in all_history_ticks:
    for kvp in ticks:
        symbol = kvp.Key
        tick = kvp.Value
```

Plot Data

You need some historical Indices data to produce plots. You can use many of the supported plotting libraries. Plot. NET package to visualize data in various formats. For example, you can plot candlestick and line charts.

Candlestick Chart

Follow these steps to plot candlestick charts:

```
    Get some historical data.

      history = qb.History(spx, datetime(2021, 11, 24), datetime(2021, 12, 8), Resolution.Daily).loc[spx]
       var history = gb.History<TradeBar>(spx, new DateTime(2021, 11, 24), new DateTime(2021, 12, 8), Resolution.Daily);
   2. Import the plotly Plotly.NET library.
       import plotly.graph_objects as go
       #r "../Plotly.NET.dll"
       using Plotly.NET;
using Plotly.NET.LayoutObjects;
   3. Create a Candlestick .
       candlestick = go.Candlestick(x=history.index,
                                                  open=history['open'],
high=history['high'],
low=history['low'],
close=history['close'])
       var chart = Chart2D.Chart.Candlestick<decimal, decimal, decimal, decimal, DateTime, string>(
            chart = Chart2D.Chart.Candlest
history.Select(x => x.Open),
history.Select(x => x.High),
history.Select(x => x.Low),
history.Select(x => x.Close),
history.Select(x => x.EndTime)
   4. Create a Layout .
      LinearAxis xAxis = new LinearAxis();
xAxis.SetValue("title", "Time");
LinearAxis yAxis = new LinearAxis();
yAxis.SetValue("title", "Price ($)");
Title title = Title.init($"(spx) OHLC");
      Layout layout = new Layout();
layout.SetValue("xaxis", xAxis);
layout.SetValue("yaxis", yAxis);
layout.SetValue("title", title);
   5. Create a Figure .
       fig = go.Figure(data=[candlestick], layout=layout)
   6. Assign the Layout to the chart.
       chart.WithLayout(layout);
   7. Show the Figure .
       HTML(GenericChart.toChartHTML(chart))
       Candlestick charts display the open, high, low, and close prices of the security.
Line Chart
Follow these steps to plot line charts using built-in methods {\tt Plotly.NET} package:

    Get some historical data

      \texttt{history} = \texttt{qb.History}([\texttt{spx, vix}], \ \texttt{datetime}(\texttt{2021, 11, 24}), \ \texttt{datetime}(\texttt{2021, 12, 8}), \ \texttt{Resolution.Daily})
       var history = qb.History<TradeBar>(new [] {spx, vix}, new DateTime(2021, 11, 24), new DateTime(2021, 12, 8), Resolution.Daily);
   2. Select the data to plot.
       pct_change = history['close'].unstack(0).pct_change().dropna()
   3. Call the plot method on the pandas object.
       pct_change.plot(title="Close Price %Change", figsize=(15, 10))
   4. Create Line charts.
       var chart1 = Chart2D.Chart.Line<DateTime, decimal, string>(
             history.Select(x => x[spx].Close - x[spx].Open),
Name: $"{spx}"
       );
var chart2 = Chart2D.Chart.Line<DateTime, decimal, string>(
history.Select(x => x[vix].EndTime),
history.Select(x => x[vix].Close - x[vix].Open),
Name: $"(vix)"
   5. Create a Layout \, .
      LinearAxis xAxis = new LinearAxis();
xAxis.SetValue("title", "Time");
LinearAxis yAxis = new LinearAxis();
yAxis.SetValue("title", "Price ($)");
Title title = Title.init($"{spx} & {vix} Daily Spread");
       Layout layout = new Layout();
layout.SetValue("xaxis", xAxis);
layout.SetValue("yaxis", yAxis);
layout.SetValue("title", title);
   Combine the charts and assign the Layout to the chart.
       var chart = Plotly.NET.Chart.Combine(new []{chart1, chart2});
       chart.WithLayout(layout);
   7. Show the plot.
       HTML(GenericChart.toChartHTML(chart))
```

Line charts display the value of the property you selected in a time series.

3.12 Index Options

Introduction

This page explains how to request, manipulate, and visualize historical Index Options data.

Create Subscriptions

Follow these steps to subscribe to an Index Option security:

1. Load the required assembly files and data types.

```
#load "../Initialize.csx"
#load "../QuantConnect.csx"
using QuantConnect.Data;
using QuantConnect.Data;
using QuantConnect.Data.Market;
using QuantConnect.Algorithm;
using QuantConnect.Securities;
using QuantConnect.Securities.Index;
using QuantConnect.Securities.Option;
using QuantConnect.Securities.Option;
using QuantConnect.Research;

2. Instantiate a QuantBook .
   var qb = new QuantBook ();
   qb = QuantBook()

3. Call the AddIndex method with a ticker and resolution.
   var indexSymbol = qb.AddIndex("SPX", Resolution.Minute).Symbol;
index symbol = qb.AddIndex("SPX", Resolution.Minute).Symbol;
```

To view the available indices, see $\underline{\text{Supported Assets}}$.

If you do not pass a resolution argument, ${\tt Resolution.Minute}\,$ is used by default.

4. Call the AddIndexOption method with the underlying Index Symbol and, if you want non-standard Index Options, the target Option ticker.

```
var option = qb.AddIndexOption(indexSymbol);
option = qb.AddIndexOption(index_symbol)
5. (Optional) Set a contract filter.
```

option.SetFilter(-1, 1, 0, 90);

```
option.SetFilter(-1, 1, 0, 90)
```

The filter determines which contracts the GetOptionHistory method returns. If you don't set a filter, the default filter selects the contracts that have the following characteristics:

- · Standard type (exclude weeklys)
- Within 1 strike price of the underlying asset price
- · Expire within 31 days

If you want historical data on individual contracts and their OpenInterest , follow these steps to subscribe to individual Index Option contracts:

 $1. \ \ Call \ the \ {\tt GetOptionsContractList} \ \ method \ with \ the \ underlying \ {\tt Index} \ \ {\tt Symbol} \ \ and \ a \ {\tt datetime} \ \ {\tt DateTime} \ .$

This method returns a list of Symbol objects that reference the Option contracts that were trading at the given time. If you set a contract filter with SetFilter, it doesn't affect the results of GetOptionContractList.

2. Select the Symbol of the OptionContract object(s) for which you want to get historical data.

To filter and select contracts, you can use the following properties of each Symbol object:

```
Property

The expiration date of the contract.

ID.StrikePrice The strike price of the contract.

ID.OptionRight The contract type. The optionRight enumeration has the following members:

ID.OptionStyle The contract style. The OptionStyle enumeration has the following members:

// Standard contracts
var contractSymbol = contractSymbols.Where(s =>
s.ID.OptionRight == OptionRight.Call &&
s.ID.StrikePrice == 4460 &&
s.ID.StrikePrice == 4460 &&
s.ID.StrikePrice == 0ptionRight.Call &&
s.ID.OptionRight == OptionRight.Call &&
s.ID.OptionRight == OptionRight.Call &&
s.ID.StrikePrice == 4460 &&
s.ID.StrikePrice == 4460 &&
s.ID.Date == new DateTime(2021, 12, 31)).First();

$ Standard contracts

contract_symbol = [s for s in contract_symbols
if s.ID.OptionRight == OptionRight.Call
    and s.ID.StrikePrice == 4460
    and s.ID.Date == datetime(2022, 4, 14)][0]

$ Weekly contracts

weekly contracts

weekly contracts

weekly contracts

seekly contracts

seekly contracts

seekly contracts == datetime(2021, 12, 31)][0]
```

3. Call the AddIndexOptionContract method with an OptionContract Symbol and disable fill-forward.

```
qb.AddIndexOptionContract(contractSymbol, fillForward: false);
qb.AddIndexOptionContract(contract_symbol, fillForward = False
```

Disable fill-forward because there are only a few OpenInterest data points per day.

Get Historical Data

You need a <u>subscription</u> before you can request historical data for Index Option contracts. On the time dimension, you can request an amount of historical data based on a trailing number of bars, a trailing period of time, or a defined period of time. On the contract dimension, you can request historical data for a single contract, a subset of the contracts you created subscriptions for in your notebook, or all of the contracts in your notebook.

Before you request historical data, call the SetStartDate method with a datetime DateTime to reduce the risk of look-ahead bias

```
qb.SetStartDate(startDate);
qb.SetStartDate(start date)
```

If you call the SetStartDate method, the date that you pass to the method is the latest date for which your history requests will return data.

Trailing Number of Bars

To get historical data for a number of trailing bars, call the History method with the contract symbol object(s) and an integer.

```
// Slice objects
var singleHistorySlice = qb.History("SPX", 10);
var subsetHistorySlice = qb.History(new[] {"SPX"}, 10);
var allHistorySlice = qb.History(10);
// TradeBar objects
// QuoteBar Objects
var singleHistoryQuoteBars = qb.History<QuoteBar>("SPX", 10);
var subsetHistoryQuoteBars = qb.History<QuoteBar>(new[] {"SPX"}, 10);
var allHistoryQuoteBars = qb.History<QuoteBar>(qb.Securities.Keys, 10);
// OpenInterest objects
var singleHistoryOpenInterest = qb.History<OpenInterest>("SPX", 400);
var subsetHistoryOpenInterest = qb.History<OpenInterest>(new[] {"SPX"}, 400);
var allHistoryOpenInterest = qb.History<OpenInterest>(qb.Securities.Keys, 400);
# DataFrame of trade and quote data
single history df = qb.History("SPX", 10)
subset_history_df = qb.History(["SPX"], 10)
all_history_df = qb.History(qb.Securities.Keys, 10)
single_history_trade_bar_df = qb.History(TradeBar, "SPX", 10) subset history_trade_bar_df = qb.History(TradeBar, ["SPX"], 10) all_history_trade_bar_df = qb.History(TradeBar, qb.Securities.Keys, 10)
# DataFrame of quote data
single history quote bar_df = qb.History(QuoteBar, "SPX", 10)
subset_history_quote_bar_df = qb.History(QuoteBar, ["SPX"], 10)
all_history_quote_bar_df = qb.History(QuoteBar, qb.Securities.Keys, 10)
# DataFrame of open interest data
single history_open_interest_df = qb.History(OpenInterest, "SPX", 400)
subset_history_open_interest_df = qb.History(OpenInterest, ["SPX"], 400)
all_history_open_interest_df = qb.History(OpenInterest, qb.Securities.Keys, 400)
# Slice objects
all_history_slice = qb.History(10)
# TradeBar objects
# Indexed Objects
single history_trade_bars = qb.History[TradeBar]("SPX", 10)
subset_history_trade_bars = qb.History[TradeBar](["SPX"], 10)
all_history_trade_bars = qb.History[TradeBar](qb.Securities.Keys, 10)
# QuoteBar objects
* YOUTEDAL ODJECTS
single_history_quote_bars = qb.History[QuoteBar] ("SPX", 10)
subset history_quote_bars = qb.History[QuoteBar] (["SPX"], 10)
all_history_quote_bars = qb.History[QuoteBar] (qb.Securities.Keys, 10)
# OpenInterest objects
# OpenInterest objects
single_history_open_interest = qb.History[OpenInterest]("SPX", 400)
subset history_open_interest = qb.History[OpenInterest](["SPX"], 400)
all_history_open_interest = qb.History[OpenInterest](qb.Securities.Keys, 400)
```

The preceding calls return the most recent bars, excluding periods of time when the exchange was closed.

Trailing Period of Time

To get historical data for a trailing period of time, call the History method with the contract Symbol object(s) and a TimeSpan timedelta .

```
// Slice objects
var singleHistorySlice = qb.History("SPX", TimeSpan.FromDays(3));
var subsetHistorySlice = qb.History(new[] {"SPX"}, TimeSpan.FromDays(3));
var subsetHistorySlice = qb.History(TradeBars ("SPX", TimeSpan.FromDays(3));
var alHistoryTradeBars = qb.History<TradeBars("SPX", TimeSpan.FromDays(3));
var subsetHistoryTradeBars = qb.History<TradeBars(new[] ("SPX"), TimeSpan.FromDays(3));
var alHistoryTradeBars = qb.History<TradeBars(new[] ("SPX"), TimeSpan.FromDays(3));
var alHistoryQuoteBars = qb.History<QuoteBars("SPX", TimeSpan.FromDays(3), Resolution.Minute);
var subsetHistoryQuoteBars = qb.History<QuoteBars("SPX", TimeSpan.FromDays(3), Resolution.Minute);
var alHistoryQuoteBars = qb.History<QuoteBars(qb.Securities.Keys, TimeSpan.FromDays(3), Resolution.Minute);
var alHistoryQuoteBars = qb.History<QuoteBars(qb.Securities.Keys, TimeSpan.FromDays(2));
var alHistoryQuoteBars = qb.History<QpenInterest>(mspin, TimeSpan.FromDays(2));
var subsetHistoryOpenInterest = qb.History<QpenInterest>(mspin, TimeSpan.FromDays(2));
var alHistoryOpenInterest = qb.History<QpenInterest>(qb.Securities.Keys, TimeSpan.FromDays(2));

# DataFrame of trade and quote data
single history df = qb.History("SpX", timedelta(days=3))
subset history df = qb.History("SpX", timedelta(days=3))
all_history_df = qb.History(qb.Securities.Keys, timedelta(days=3))
subset history_trade_bar_df = qb.History(TradeBar, "SpX", timedelta(days=3))
subset history_trade_bar_df = qb.History(TradeBar, "SpX", timedelta(days=3))

# DataFrame of quote data
single_history_quote_bar_df = qb.History(QuoteBar, "SpX", timedelta(days=3))
all_history_quote_bar_df = qb.History(QuoteBar, "SpX", timedelta(days=3))
subset history_quote_bar_df = qb.History(QuoteBar, "SpX", timedelta(days=3))
subset history_quote_bar_df = qb.History(QuoteBar, "SpX", timedelta(days=3))
subset history_open_interest_df = qb.History(OpenInterest, "SpX", timedelta(days=3))
subset_history_open_interest_df = qb.History(OpenInterest, "SpX", timedelta(days=3))
subset_history_open_interest_df
```

```
# TradeBar objects
single history trade bars = qb.History[TradeBar]("SPX", timedelta(days=3))
subset history trade bars = qb.History[TradeBar](["SPX"], timedelta(days=3))
all_history_trade_bars = qb.History[TradeBar](qb.Securities.Keys, timedelta(days=3))

# QuoteBar objects
single history_quote_bars = qb.History[QuoteBar]("SPX", timedelta(days=3), Resolution.Minute)
subset history_quote_bars = qb.History[QuoteBar](["SPX"], timedelta(days=3), Resolution.Minute)
all_history_quote_bars = qb.History[QuoteBar](qb.Securities.Keys, timedelta(days=3), Resolution.Minute)

# OpenInterest objects
single history_open_interest = qb.History[OpenInterest]("SPX", timedelta(days=2))
subset_history_open_interest = qb.History[OpenInterest](["SPX"], timedelta(days=2))
all_history_open_interest = qb.History[OpenInterest](qb.Securities.Keys, timedelta(days=2))
```

The preceding calls return the most recent bars, excluding periods of time when the exchange was closed.

Defined Period of Time

To get historical data for individual Index Option contracts during a specific period of time, call the History method with the Index Option contract Symbol object(s), a start DateTime datetime, and an end DateTime datetime datetime are based in the notebook time zone.

```
var startTime = new DateTime(2021, 12, 1
var endTime = new DateTime(2021, 12, 31)
// Silce objects
var singleHistorySlice = qb.History("SPX", startTime, endTime);
var subsetHistorySlice = qb.History(new[] ("SPX"), startTime, endTime);
var allHistorySlice = qb.History(startTime, endTime);
// TradeBar objects
var singleHistoryTradeBars = qb.History<TradeBar>("SPX", startTime, endTime);
var subsetHistoryTradeBars = qb.History<TradeBar>(new[] {"SPX"}, startTime, endTime);
var allHistoryTradeBars = qb.History<TradeBar>(qb.Securities.Keys, startTime, endTime);
// OuoteBar objects
// QuoteBar Objects
var singleHistoryQuoteBars = qb.History<QuoteBar>("SPX", startTime, endTime, Resolution.Minute);
var subsetHistoryQuoteBars = qb.History<QuoteBar>(new[] {"SPX"}, startTime, endTime, Resolution.Minute);
var allHistoryQuoteBars = qb.History<QuoteBar>(qb.Securities.Keys, startTime, endTime, Resolution.Minute);
// OpenInterest objects
var singleHistoryOpenInterest = qb.History<OpenInterest>("SPX", startTime, endTime);
var subsetHistoryOpenInterest = qb.History<OpenInterest>(new[] {"SPX"}, startTime, endTime);
var allHistoryOpenInterest = qb.History<OpenInterest>(qb.Securities.Keys, startTime,
start_time = datetime(2021, 12, 1)
end_time = datetime(2021, 12, 31)
# DataFrame of trade and quote data
single history_df = qb.History("SFX", start_time, end_time)
subset history_df = qb.History("SFX"), start_time, end_time)
all_history_df = qb.History(qb.Securities.Keys, start_time, end_time)
# DataFrame of trade data
single history trade bar_df = qb.History(TradeBar, "SPX", start time, end time)
subset history trade_bar_df = qb.History(TradeBar, ["SPX"], start time, end time)
all history_trade_bar_df = qb.History(TradeBar, qb.Securities.Keys, start_time, end_time)
# DataFrame of quote data
single history_quote bar_df = qb.History(QuoteBar, "SPX", start_time, end_time)
subset_history_quote_bar_df = qb.History(QuoteBar, ["SPX"], start_time, end_time)
all_history_quote_bar_df = qb.History(QuoteBar, qb.Securities.Keys, start_time, end_time)
# DataFrame of open interest data
single history open interest df = qb.History(OpenInterest, "SFX", start_time, end time)
subset history_open_interest_df = qb.History(OpenInterest, ["SFX"], start_time, end_time)
all_history_trade_open_interest_df = qb.History(OpenInterest, qb.Securities.Keys, start_time, end_time)
# TradeBar objects
single history_trade bars = qb.History[TradeBar]("SPX", start_time, end_time)
subset_history_trade_bars = qb.History[TradeBar](["SPX"], start_time, end_time)
all_history_trade_bars = qb.History[TradeBar](qb.Securities.Keys, start_time, end_time)
single history quote bars = qb.History[QuoteBar]("SPX", start_time, end_time, Resolution.Minute)
subset_history_quote_bars = qb.History[QuoteBar](["SPX"], start_time, end_time, Resolution.Minute)
all_history_quote_bars = qb.History[QuoteBar](qb.Securities.Keys, start_time, end_time, Resolution.Minute)
# OpenInterest objects
# OpenInterest objects
single_history_open_interest = qb.History[OpenInterest]("SPX", start_time, end_time)
subset history_open_interest = qb.History[OpenInterest](["SPX"], start_time, end_time)
all_history_open_interest = qb.History[OpenInterest](qb.Securities.Keys, start_time, end_time)
```

To get historical data for all of the Index Option contracts that pass your filter during a specific period of time, call the GetOptionHistory method with the canonical Index Option Symbol object, a start DateTime datetime, and an end DateTime datetime.

```
option_history = qb.GetOptionHistory(option.Symbol, end_time-timedelta(days=2), end_time, Resolution.Minute, fillForward=False, extendedMarketHours=False)
var optionHistory = qb.GetOptionHistory(option.Symbol, endTime-TimeSpan.FromDays(2), endTime, Resolution.Minute, fillForward: False, extendedMarketHours: False);
```

The preceding calls return data that have a timestamp within the defined period of time.

Resolutions

The following table shows the available resolutions and data formats for Index Option contract subscriptions

Resolution TradeBar QuoteBar Trade Tick Quote Tick

Markets

The following Market enumeration members are available for Index Options

Wrangle Data

You need some historical data to perform wrangling operations. The process to manipulate the historical data depends on its data type. To display pandas objects, run a cell in a notebook with the pandas object as the last line. To display other data formats, call the print method.

You need some historical data to perform wranging operations. Use LINQ to wrangle the data and then call the Console. WriteLine method in a Jupyter Notebook to display the data. The process to manipulate the historical data depends on its data type.

DataFrame Objects

If your history request returns a ${\tt DataFrame}\,$, the ${\tt DataFrame}\,$ has the following index levels:

- 1. Contract expiry
- 2. Contract strike price
- 3. Contract type (call or put)
- 4. Encoded contract Symbol
- 5. The EndTime of the data sample

The columns of the DataFrame are the data properties. Depending on how you request data, the DataFrame may contain data for the underlying security, which causes some of the index levels to be an empty string for the corresponding rows.

To select the rows of the contract(s) that expire at a specific time, index the loc property of the DataFrame with the expiry time.

```
all_history_df.loc[datetime(2022, 4, 14)]
```

If you remove the first three index levels, you can index the DataFrame with just the contract Symbol , similar to how you would with non-derivative asset classes. To remove the first three index levels, call the droplevel method.

```
all_history_df.index = all_history_df.index.droplevel([0,1,2])
```

To select the historical data of a single Index Options contract, index the loc property of the DataFrame with the contract Symbol .

```
all_history_df.loc[contract_symbol]
```

To select a column of the DataFrame , index it with the column name.

```
all_history_df.loc[contract_symbol]['close']
```

If you request historical data for multiple Index Option contracts, you can transform the DataFrame so that it's a time series of close values for all of the Index Option contracts. To transform the DataFrame , select the column you want to display for each Index Option contract and then call the <u>unstack</u> method.

```
all_history_df['close'].unstack(level=0)
```

The DataFrame is transformed so that the column indices are the Symbol of each security and each row contains the close value.

The historical data methods don't return DataFrame objects, but you can create one for efficient vectorized data wrangling.

```
using Microsoft.Data.Analysis;
var columns = new DataFrameColumn("Time", history.Select(x => x[contractSymbol].EndTime)),
    new PrimitiveDataFrameColumn("Time", history.Select(x => x[contractSymbol].Open)),
    new DecimalDataFrameColumn(" High", history.Select(x => x[contractSymbol].High)),
    new DecimalDataFrameColumn(" Low", history.Select(x => x[contractSymbol].Low)),
    new DecimalDataFrameColumn(" Close", history.Select(x => x[contractSymbol].Close))
};
var df = new DataFrame(columns);
df
```

To select a particular column of the DataFrame, index it with the column name.

```
ar[" close"]
```

Slice Objects

If the History method returns Slice objects, iterate through the Slice objects to get each one. The Slice objects may not have data for all of your Index Options subscriptions. To avoid issues, check if the Slice contains data for your Index Option contract before you index it with the Index Options Symbol .

```
foreach (var slice in allHistorySlice) {
    if (slice.Bars.ContainsKey(contractSymbol)) {
        var tradeBar = slice.Bars[contractSymbol];
    }
    if (slice.QuoteBars.ContainsKey(contractSymbol)) {
        var quoteBar = slice.QuoteBars[contractSymbol];
    }
}
for slice in all_history_slice:
        if slice.Bars.ContainsKey(contract_symbol):
            trade_bar = slice.Bars[contract_symbol]
        if slice.QuoteBars.ContainsKey(contract_symbol):
            quote_bar = slice.QuoteBars[contract_symbol]
```

You can also iterate through each TradeBar and QuoteBar in the Slice .

```
foreach (var slice in allHistorySlice)
{
    foreach (var kvp in slice.Bars)
    {
       var symbol = kvp.Key;
      var tradeBar = kvp.Value;
    }
    foreach (var kvp in slice.QuoteBars)
    {
       var symbol = kvp.Key;
      var quoteBar = kvp.Value;
    }
}
for slice in all history_slice:
    for kvp in slice.Bars:
      symbol = kvp.Key
      trade bar = kvp.Value
    for kvp in slice.QuoteBars:
      symbol = kvp.Key
      quote_bar = kvp.Value
}
```

You can also use LINQ to select each ${\tt TradeBar}\,$ in the ${\tt Slice}\,$ for a given ${\tt Symbol}\,$.

```
var tradeBars = allHistorySlice.Where(slice => slice.Bars.ContainsKey(contractSymbol)).Select(slice => slice.Bars[contractSymbol]);
```

TradeBar Objects

If the History method returns TradeBar objects, iterate through the TradeBar objects to get each one.

```
foreach (var tradeBar in singleHistoryTradeBars)
{
    Console.WriteLine(tradeBar);
```

```
for trade_bar in single_history_trade_bars:
    print(trade_bar)
```

If the History method returns TradeBars , iterate through the TradeBars to get the TradeBar of each Index Option contract. The TradeBars may not have data for all of your Index Options subscriptions. To avoid issues, check if the TradeBars object contains data for your security before you index it with the Index Options Symbol .

```
foreach (var tradeBars in allHistoryTradeBars)
{
    if (tradeBars.ContainsKey(contractSymbol))
    {
        var tradeBar = tradeBars[contractSymbol);
    }
}
for trade_bars in all_history_trade_bars:
    if trade_bars.ContainsKey(contract_symbol):
        trade_bar = trade_bars[contract_symbol]

You can also iterate through each of the TradeBars .

foreach (var tradeBars in allHistoryTradeBars)
{
        var symbol = kvp.Key;
        var tradeBar = kvp.Value;
    }
}
for trade_bars in all history_trade_bars:
    for kvp in trade_bars:
        symbol = kvp.Key
        trade_bar = kvp.Value
```

OuoteBar Objects

If the History method returns QuoteBar objects, iterate through the QuoteBar objects to get each one.

```
foreach (var quoteBar in singleHistoryQuoteBars)
{
    Console.WriteLine(quoteBar);
}
for quote_bar in single_history_quote_bars:
    print(quote_bar)
```

If the History method returns QuoteBars , iterate through the QuoteBars to get the QuoteBar of each Index Option contract. The QuoteBars may not have data for all of your Index Options subscriptions. To avoid issues, check if the QuoteBars object contains data for your security before you index it with the Index Options Symbol .

```
foreach (var quoteBars in allHistoryQuoteBars)
{
    if (quoteBars.ContainsKey(contractSymbol))
    {
       var quoteBar = quoteBars[contractSymbol];
    }
}
for quote_bars in all_history_quote_bars:
    if quote_bars.ContainsKey(contract_symbol):
       quote_bar = quote_bars[contract_symbol]
```

You can also iterate through each of the ${\tt QuoteBars}\,$.

```
foreach (var quoteBars in allHistoryQuoteBars)
{
    foreach (var kvp in quoteBars)
    {
        var symbol = kvp.Key;
        var quoteBar = kvp.Value;
    }
}
for quote bars in all history_quote_bars:
    for kvp in quote_bars:
        symbol = kvp.Key
        quote_bar = kvp.Value
```

OpenInterest Objects

 $If the \ {\tt History} \ \ {\tt method} \ \ {\tt returns} \ {\tt OpenInterest} \ \ objects, \ {\tt iterate} \ \ {\tt through} \ the \ {\tt OpenInterest} \ \ objects \ to \ {\tt get} \ \ {\tt each \ one}.$

```
foreach (var openInterest in singleHistoryOpenInterest)
{
    Console.WriteLine(openInterest);
}
for open_interest in single_history_open_interest:
    print(open_interest)
```

If the History method returns a dictionary of OpenInterest objects, iterate through the dictionary to get the OpenInterest of each Index Option contract. The dictionary of OpenInterest objects may not have data for all of your Index Options contract subscriptions. To avoid issues, check if the dictionary contains data for your contract before you index it with the Index Options contract Symbol .

```
foreach (var openInterestDict in allHistoryOpenInterest)
{
    if (openInterestDict.ContainsKey(contractSymbol))
    {
        var openInterest = openInterestDict[contractSymbol];
    }
}
for open_interest_dict in all_history_open_interest:
    if open_interest_dict.ContainsKey(contract_symbol):
        open_interest = open_interest_dict[contract_symbol]
```

You can also iterate through each of the OpenInterest dictionaries.

```
foreach (var openInterestDict in allHistoryOpenInterest)
{
    foreach (var kvp in openInterestDict)
    {
        var symbol = kvp.Key;
        var openInterest = kvp.Value;
    }
}

for open_interest_dict in all_history_open_interest:
    for kvp in open_interest_dict:
        symbol = kvp.Key
        open_interest = kvp.Value
```

OptionHistory Objects

 $\textit{The} \ \texttt{GetOptionHistory} \ \ \textit{method} \ \ \textit{returns} \ \ \textit{an} \ \texttt{OptionHistory} \ \ \textit{object}. \ \ \textit{To} \ \ \textit{get} \ \ \textit{each} \ \underline{\textit{slice}} \ \ \textit{in} \ \ \textit{the} \ \ \texttt{OptionHistory} \ \ \textit{object}, \ \ \textit{iterate} \ \ \textit{through} \ \ \textit{it}.$

To convert the OptionHistory object to a DataFrame that contains the trade and quote information of each contract and the underlying, call the GetAllData method.

option history.GetAllData()

To get the expiration dates of all the contracts in an OptionHistory object, call the GetExpiryDates method.

option_history.GetExpiryDates()

To get the strike prices of all the contracts in an OptionHistory object, call the GetStrikes method.

option_history.GetStrikes()

Plot Data

You need some historical Index Options data to produce plots. You can use many of the supported plotting libraries. Plot. NET package to visualize data in various formats. For example, you can plot candlestick and line charts.

Candlestick Chart

Follow these steps to plot candlestick charts:

1. Get some historical data.

```
history = qb.History(contract_symbol, datetime(2021, 12, 30), datetime(2021, 12, 31))
var history = qb.History<QuoteBar>(contractSymbol, new DateTime(2021, 12, 30), new DateTime(2021, 12, 30));
```

2. Drop the first four index levels of DataFrame that returns.

```
history.index = history.index.droplevel([0,1,2,3])
```

3. Import the plotly Plotly.NET library.

```
import plotly.graph_objects as go
#r "../Plotly.NET.dll"
using Plotly.NET;
using Plotly.NET.LayoutObjects;
```

4. Create a Candlestick .

5. Create a Layout .

6. Create a Figure .

fig = go.Figure(data=[candlestick], layout=layout)

7. Assign the Layout to the chart.

chart.WithLayout(layout);

8. Show the Figure .

fig.show()
HTML(GenericChart.toChartHTML(chart))

The Jupyter Notebook displays a candlestick chart of the Option contract's price.

Line Chart

Follow these steps to plot line charts using built-in methods ${\tt Plotly.NET}$ package:

1. Get some historical data.

```
history = qb.History(OpenInterest, contract_symbol, datetime(2021, 12, 1), datetime(2021, 12, 31))
var history = qb.History<OpenInterest>(contractSymbol, new DateTime(2021, 12, 1), new DateTime(2021, 12, 31));
```

2. Drop the first three index levels of the DataFrame that returns.

```
history.index = history.index.droplevel([0,1,2])
```

3. Select the open interest data.

```
history = history['openinterest'].unstack(level=0).ffill()
```

4. Rename the column to be the Symbol of each contract.

The Jupyter Notebook displays a line chart of open interest data.

HTML(GenericChart.toChartHTML(chart))

plt.show()

3.13 Alternative Data

Introduction

This page explains how to request, manipulate, and visualize historical alternative data. This tutorial uses the VIX Daily Price dataset from the CBOE as the example dataset.

Create Subscriptions

Follow these steps to subscribe to an alternative dataset from the <u>Dataset Market</u>:

1. Load the required assembly files and data types.

```
#load "../Initialize.csx"
#load "../QuantConnect.csx"
using QuantConnect,
using QuantConnect.Data;
using QuantConnect.Algorithm;
using QuantConnect.Research;
using QuantConnect.DataSource;
```

2. Load the dynamic link library (DLL) of the dataset.

To load the DLL of any dataset, type:

```
#r "../QuantConnect.DataSource.<nameOfAlternativeDatasetClass>.dll"
```

For example, to load the DLL of the CBOE dataset, type:

```
#r "../QuantConnect.DataSource.CBOE.dll"
```

3. Create a QuantBook .

 $\textbf{4. Call the} \ \texttt{AddData} \ \ \textbf{method with the dataset class, a ticker, and a resolution and then save a reference to the alternative data <math>\texttt{Symbol}$.}

```
var vix = qb.AddData<CBOE>("VIX", Resolution.Daily).Symbol;
var v3m = qb.AddData<CBOE>("VIX3M", Resolution.Daily).Symbol;
vix = qb.AddData(CBOE, "VIX", Resolution.Daily).Symbol
v3m = qb.AddData(CBOE, "VIX3M", Resolution.Daily).Symbol
```

To view the arguments that the AddData method accepts for each dataset, see the dataset listing.

If you don't pass a resolution argument, the default resolution of the dataset is used by default. To view the supported resolutions and the default resolution of each dataset, see the dataset listing.

Get Historical Data

You need a <u>subscription</u> before you can request historical data for a dataset. On the time dimension, you can request an amount of historical data based on a trailing number of bars, a trailing period of time, or a defined period of time. On the dataset dimension, you can request historical data for a single dataset subscription, a subset of the dataset subscriptions you created in your notebook, or all of the dataset subscriptions in your notebook.

Trailing Number of Bars

To get historical data for a number of trailing bars, call the History method with the Symbol object(s) and an integer.

```
// Slice objects
var singleHistorySlice = qb.History(vix, 10);
var subsetHistorySlice = qb.History(new[] {vix, v3m}, 10);
var allHistorySlice = qb.History(10);

// CBOE objects
var singleHistoryDataObjects = qb.History<CBOE>(vix, 10);
var subsetHistoryDataObjects = qb.History<CBOE>(mew[] {vix, v3m}, 10);
var allHistoryDataObjects = qb.History<CBOE>(qb.Securities.Keys, 10);

# DataFrame
single history_df = qb.History(vix, 10)
subset history_df = qb.History(vix, v3m], 10)
all_history_df = qb.History(qb.Securities.Keys, 10)

# Slice objects
all_history_slice = qb.History[CBOE](vix, 10)
subset history_data_objects = qb.History[CBOE](vix, 10)
subset history_data_objects = qb.History[CBOE]([vix, v3m], 10)
all_history_data_objects = qb.History[CBOE]([vix, v3m], 10)
all_history_data_objects = qb.History[CBOE](gb.Securities.Keys, 10)
```

The preceding calls return the most recent bars, excluding periods of time when the exchange was closed.

Trailing Period of Time

To get historical data for a trailing period of time, call the History method with the Symbol object(s) and a TimeSpan timedelta .

```
// Site Objects
var singleHistorySlice = qb.History(vix, TimeSpan.FromDays(3));
var subsetHistorySlice = qb.History(new[] {vix, v3m}, TimeSpan.FromDays(3));
var allHistorySlice = qb.History(10);

// CBOE objects
var singleHistoryDataObjects = qb.History<CBOE>(vix, TimeSpan.FromDays(3));
var subsetHistoryDataObjects = qb.History<CBOE>(mew[] {vix, v3m}, TimeSpan.FromDays(3));
var allHistoryDataObjects = qb.History<CBOE>(TimeSpan.FromDays(3));

# DataFrame
single history_df = qb.History(vix, timedelta(days=3))
subset history_df = qb.History(vix, v3m], timedelta(days=3))
all_history_df = qb.History(qb.Securities.Keys, timedelta(days=3))

# Slice objects
all_history_slice = qb.History(timedelta(days=3))

# CBOE objects
single history_data_objects = qb.History[CBOE](vix, timedelta(days=3))
subset_history_data_objects = qb.History[CBOE]([vix, v3m], timedelta(days=3))
all_history_data_objects = qb.History[CBOE]([vix, v3m], timedelta(days=3))
all_history_data_objects = qb.History[CBOE](qb.Securities.Keys, timedelta(days=3))
all_history_data_objects = qb.History[CBOE](qb.Securities.Keys, timedelta(days=3))
```

The preceding calls return the most recent bars or ticks, excluding periods of time when the exchange was closed.

Defined Period of Time

To get historical data for a specific period of time, call the History method with the Symbol object(s), a start DateTime datetime, and an end DateTime datetime. The start and end times you provide are based in the notebook time zone.

```
var startTime = new DateTime(2021, 1, 1);
var endTime = new DateTime(2021, 3, 1);

// Slice objects
var singleHistorySlice = qb.History(vix, startTime, endTime);
var subsetHistorySlice = qb.History(new[] {vix, v3m}, startTime, endTime);
```

```
var allHistorySlice = qb.History(startTime, endTime);
// CBOE objects
var singleHistoryDataObjects = qb.History<CBOE>(vix, startTime, endTime);
var subsetHistoryDataObjects = qb.History<CBOE>(new[] {vix, v3m], startTime, endTime);
var allHistoryDataObjects = qb.History<CBOE>(qb.Securities.Keys, startTime, endTime);
start_time = datetime(2021, 1, 1)
end_time = datetime(2021, 3, 1)

# DataFrame
single history df = qb.History(vix, start_time, end_time)
subset history_df = qb.History([vix, v3m], start_time, end_time)
subset history_df = qb.History(qb.Securities.Keys, start_time, end_time)

# Slice objects
all_history_slice = qb.History(start_time, end_time)

# CBOE objects
single history_data_objects = qb.History[CBOE](vix, start_time, end_time)
subset history_data_objects = qb.History[CBOE](vix, v3m], start_time, end_time)

# CBOE objects
single history_data_objects = qb.History[CBOE](vix, v3m], start_time, end_time)
all_history_data_objects = qb.History[CBOE](qb.Securities.Keys, start_time, end_time)
all_history_data_objects = qb.History[CBOE](qb.Securities.Keys, start_time, end_time)
```

The preceding calls return the bars or ticks that have a timestamp within the defined period of time.

If you do not pass a resolution to the History method, the History method uses the resolution that the AddData method used when you created the <u>subscription</u>.

Wrangle Data

You need some historical data to perform wrangling operations. The process to manipulate the historical data depends on its data type. To display pandas objects, run a cell in a notebook with the pandas object as the last line. To display other data formats, call the print method.

You need some historical data to perform wrangling operations. Use LINQ to wrangle the data and then call the Console. WriteLine method in a Jupyter Notebook to display the data. The process to manipulate the historical data depends on its data type.

DataFrame Objects

If the History method returns a DataFrame , the first level of the DataFrame index is the encoded dataset Symbol and the second level is the EndTime of the data sample. The columns of the DataFrame are the data properties.

To select the historical data of a single dataset, index the loc property of the DataFrame with the dataset Symbol .

```
all_history_df.loc[vix] # or all_history_df.loc['VIX']
```

To select a column of the DataFrame, index it with the column name.

```
all_history_df.loc[vix]['close']
```

If you request historical data for multiple tickers, you can transform the DataFrame so that it's a time series of close values for all of the tickers. To transform the DataFrame , select the column you want to display for each ticker and then call the <u>unstack</u> method.

```
all_history_df['close'].unstack(level=0)
```

The DataFrame is transformed so that the column indices are the Symbol of each ticker and each row contains the close value.

The historical data methods don't return DataFrame objects, but you can create one for efficient vectorized data wrangling.

```
using Microsoft.Data.Analysis;
var columns = new DataFrameColumn("Time", history.Select(x => x[vix].EndTime)),
    new PrimitiveDataFrameColumn("VIX Open", history.Select(x => x[vix].Open)),
    new DecimalDataFrameColumn("VIX High", history.Select(x => x[vix].High])),
    new DecimalDataFrameColumn("VIX Low", history.Select(x => x[vix].Low)),
    new DecimalDataFrameColumn("VIX Close", history.Select(x => x[vix].Close))
};
var df = new DataFrame(columns);
df
```

To select a particular column of the DataFrame, index it with the column name.

```
df["VIX close"]
```

Slice Objects

If the ${\tt History}$ method returns ${\tt Slice}$ objects, iterate through the ${\tt Slice}$ objects to get each one. The ${\tt Slice}$ objects may not have data for all of your dataset subscriptions. To avoid issues, check if the ${\tt Slice}$ contains data for your ticker before you index it with the dataset ${\tt Symbol}$.

```
foreach (var slice in allHistorySlice) {
    if (slice.ContainsKey(vix)) {
        var data = slice[vix];
    }
}
for slice in all_history_slice:
    if slice.ContainsKey(vix):
    data = slice[vix]
```

Plot Data

You need some historical alternative data to produce plots. You can use many of the supported plotting libraries. Plot. NET package to visualize data in various formats. For example, you can plot candlestick and line charts.

Candlestick Chart

You can only create candlestick charts for alternative datasets that have open, high, low, and close properties.

Follow these steps to plot candlestick charts:

1. Get some historical data

```
history = qb.History(vix, datetime(2021, 1, 1), datetime(2021, 2, 1)).loc[vix]

var history = qb.History<CBOE>(vix, new DateTime(2021, 12, 1), new DateTime(2021, 12, 31));
```

2. Import the plotly Plotly.NET library.

```
import plotly.graph_objects as go
#r "../Plotly.NET.dll"
using Plotly.NET;
```

```
using Plotly.NET.LayoutObjects;
   3. Create a Candlestick .
        candlestick = go.Candlestick(x=history.index.
                                                         open=history['open'],
high=history['high'],
low=history['low'],
close=history['close'])
        var chart = Chart2D.Chart.Candlestick<decimal, decimal, decimal, decimal, DateTime, string>(
   history.Select(x => x.Open),
   history.Select(x => x.Low),
   history.Select(x => x.Low),
   history.Select(x => x.EndTime)
)
   4. Create a Layout \, .
       LinearAxis xAxis = new LinearAxis();
xAxis.SetValue("title", "Time");
LinearAxis yAxis = new LinearAxis();
yAxis.SetValue("title", "Price ($)");
Title title = Title.init($"{vix} OHLC");
        Layout layout = new Layout();
layout.SetValue("xaxis", xAxis);
layout.SetValue("yaxis", yAxis);
layout.SetValue("title", title);
   5. Create a Figure .
        fig = go.Figure(data=[candlestick], layout=layout)
   6. Assign the Layout to the chart.
        chart.WithLayout(layout);
   7. Show the Figure .
       fig.show()
        HTML(GenericChart.toChartHTML(chart))
       Candlestick charts display the open, high, low, and close prices of the alternative data.
Line Chart
Follow these steps to plot line charts using built-in methods Plotly.NET package:
   1. Get some historical data.
       \label{eq:history}  \mbox{history([vix, v3m], datetime(2021, 1, 1), datetime(2021, 2, 1))} 
         \text{var history} = \text{qb.History} \\ < \text{CBOE} \\ \\ \text{(new [] {vix, v3x}, new DateTime(2021, 1, 1), new DateTime(2021, 2, 1)); } 
        values = history['close'].unstack(0)
   3. Call the plot method on the pandas object.
        values.plot(title = 'Close', figsize=(15, 10))
   4. Create Line charts.
        var chart1 = Chart2D.Chart.Line<DateTime, decimal, string>(
   history.Select(x => x[vix].EndTime),
   history.Select(x => x[vix].Close),
   Name: $"{vix}"
        //:
var chart2 = Chart2D.Chart.Line<DateTime, decimal, string>(
    history.Select(x => x[v3m].EndTime),
    history.Select(x => x[v3m].Close),
Name: $"{v3m}"
   5. Create a Layout .
       LinearAxis xAxis = new LinearAxis();
xAxis.SetValue("title", "Time");
LinearAxis yAxis = new LinearAxis();
yAxis.SetValue("title", "Price ($)");
Title title = Title.init($"{vix} & {v3m} Close Price");
        Layout layout = new Layout();
layout.SetValue("xaxis", xAxis);
layout.SetValue("yaxis", yAxis);
layout.SetValue("title", title);
   6. Combine the charts and assign the Layout to the chart.
        var chart = Plotly.NET.Chart.Combine(new []{chart1, chart2});
chart.WithLayout(layout);
   7. Show the plot.
       plt.show()
```

Line charts display the value of the property you selected in a time series.

HTML(GenericChart.toChartHTML(chart))

3.14 Custom Data

Introduction

This page explains how to request, manipulate, and visualize historical user-defined custom data.

Define Custom Data

You must format the data file into chronological order before you define the custom data class

To define a custom data class, extend the BaseData PythonData class and override the GetSource and Reader methods.

```
#load "../Initialize.csx"
#load "../QuantConnect.csx"
using QuantConnect:
using QuantConnect;
using QuantConnect.Data;
using QuantConnect.Algorithm;
using QuantConnect.Research;
public class Nifty : BaseData
       public decimal Open;
public decimal High;
public decimal Low;
public decimal Close;
        public Nifty()
        public override SubscriptionDataSource GetSource(SubscriptionDataConfig config, DateTime date, bool isLiveMode)
                 var url = "http://cdn.quantconnect.com.s3.us-east-1.amazonaws.com/uploads/CNXNIFTY.csv";
return new SubscriptionDataSource(url, SubscriptionTransportMedium.RemoteFile);
        public override BaseData Reader(SubscriptionDataConfig config, string line, DateTime date, bool isLiveMode)
                 var index = new Nifty();
index.Symbol = config.Symbol;
                 try
                          //Example File Format:
                         //Baten Open High Low Close Volume //2011-09-13 7792.9 7799.9 7722.65 7748.7 116534670 var data = line.Split(','); index.Time = DateTime.Parse(data[0], CultureInfo.InvariantCulture);
                         index.EndTime = index.Time.AddDays(1);
index.Open = Convert.ToDecimal(data[1], CultureInfo.InvariantCulture);
index.High = Convert.ToDecimal(data[2], CultureInfo.InvariantCulture);
index.Low = Convert.ToDecimal(data[3], CultureInfo.InvariantCulture);
index.Close = Convert.ToDecimal(data[4], CultureInfo.InvariantCulture);
index.Close = Convert.ToDecimal(data[4], CultureInfo.InvariantCulture);
                          index.EndTime = index.Time.AddDays(1);
                 catch
                           // Do nothing
                 return index;
class Nifty(PythonData):
    '''NIFTY Custom Data Class'''
        def GetSource(self, config: SubscriptionDataConfig, date: datetime, isLiveMode: bool) -> SubscriptionDataSource:
    url = "http://cdn.quantconnect.com.s3.us-east-1.amazonaws.com/uploads/CNXNIFTY.csv"
    return SubscriptionDataSource(url, SubscriptionTransportMedium.RemoteFile)
        def Reader(self, config: SubscriptionDataConfig, line: str, date: datetime, isLiveMode: bool) -> BaseData:
   if not (line.strip() and line[0].isdigit()): return None
                 # New Nifty object
index = Nifty()
index.Symbol = config.Symbol
                          # Example File Format:
                         # Example File Format:
# Date, Open High Low Closs
# 2011-09-13 7792.9 7799.9 7722.65 7748.'
data = line.split(',')
index.Time = datetime.strptime(data[0], "%Y-%m-%d")
index.EndTime = index.Time + timedelta(days=1)
index.Value = data[4]
index["Open"] = float(data[1])
index["High"] = float(data[2])
index["Close"] = float(data[4])
                                                                                                   Low Close 7722.65 7748.7
                                                                                                                                                  Volume
116534670
                 except:
pass
                 return index
```

Create Subscriptions

You need to define a custom data class before you can subscribe to it.

Follow these steps to subscribe to custom dataset:

```
    Create a QuantBook .
    var qb = new QuantBook();
    qb = QuantBook()
```

2. Call the ${\tt AddData}\,$ method with a ticker and then save a reference to the data ${\tt Symbol}\,$.

```
var symbol = qb.AddData<Nifty>("NIFTY").Symbol;
symbol = qb.AddData(Nifty, "NIFTY").Symbol
```

Custom data has its own resolution, so you don't need to specify it.

Get Historical Data

You need a subscription before you can request historical data for a security. You can request an amount of historical data based on a trailing number of bars, a trailing period of time, or a defined period of time.

Before you request data, call SetStartDate method with a datetime DateTime to reduce the risk of $\underline{look-ahead\ bias}$.

```
qb.SetStartDate(2014, 7, 29);
qb.SetStartDate(2014, 7, 29)
```

If you call the SetStartDate method, the date that you pass to the method is the latest date for which your history requests will return data

Trailing Number of Bars

Call the History method with a symbol, integer, and resolution to request historical data based on the given number of trailing bars and resolution.

```
var history = qb.History(symbol, 10);
history = qb.History(symbol, 10)
```

This method returns the most recent bars, excluding periods of time when the exchange was closed.

Trailing Period of Time

Call the History method with a symbol, TimeSpan timedelta, and resolution to request historical data based on the given trailing period of time and resolution.

```
var history = qb.History(symbol, TimeSpan.FromDays(10));
history = qb.History(symbol, timedelta(days=10))
```

This method returns the most recent bars, excluding periods of time when the exchange was closed.

Defined Period of Time

Call the History method with a symbol, start DateTime datetime, end DateTime datetime, and resolution to request historical data based on the defined period of time and resolution. The start and end times you provide are based in the notebook time zone.

```
var startTime = new DateTime(2013, 7, 29);
var endTime = new DateTime(2014, 7, 29);
var history = qb.History(symbol, startTime, endTime);
start_time = datetime(2013, 7, 29)
end_time = datetime(2014, 7, 29)
history = qb.History(symbol, start_time, end_time)
```

This method returns the bars that are timestamped within the defined period of time.

In all of the cases above, the ${\tt History}\,$ method returns a ${\tt DataFrame}\,$ with a ${\tt MultiIndex}\,$.

In all of the cases above, the History method returns an IEnumerable<Nifty> for single-security requests.

Download Method

To download the data directly from the remote file location instead of using your custom data class, call the Download method with the data URL.

```
var content = qb.Download("http://cdn.quantconnect.com.s3.us-east-1.amazonaws.com/uploads/CNXNIFTY.csv");
content = qb.Download("http://cdn.quantconnect.com.s3.us-east-1.amazonaws.com/uploads/CNXNIFTY.csv")
```

Follow these steps to convert the content to a ${\tt DataFrame}\,$:

```
    Import the StringIO from the io library.
        from io import StringIO
    Create a StringIO .
        data = StringIO(content)
```

3. Call the read_csv method.

dataframe = pd.read_csv(data, index_col=0)

Wrangle Data

You need some historical data to perform wrangling operations. To display pandas objects, run a cell in a notebook with the pandas object as the last line. To display other data formats, call the print method.

You need some historical data to perform wrangling operations. Use LINQ to wrangle the data and then call the Console.WriteLine method in a Jupyter Notebook to display the data.

The DataFrame that the History method returns has the following index levels:

- 1. Dataset Symbol
- 2. The EndTime of the data sample

The columns of the DataFrame are the data properties.

To select the data of a single dataset, index the loc property of the DataFrame with the data Symbol . history.loc[symbol]

To select a column of the DataFrame, index it with the column name.

history.loc[symbol]['close']

To get each custom data object, iterate through the result of the history request.

```
foreach(var nifty in history)
{
    Console.WriteLine($"{nifty} EndTime: {nifty.EndTime}");
}
```

Plot Data

You need some historical custom data to produce plots. You can use many of the supported plotting libraries_Plot.NET package to visualize data in various formats. For example, you can plot candlestick and line charts.

Candlestick Chart

Follow these steps to plot candlestick charts:

1. Import the plotly Plotly.NET library.

```
import plotly.graph_objects as go
#r "../Plotly.NET.dll"
using Plotly.NET;
using Plotly.NET.LayoutObjects;
```

2. Select the data:

```
history = history.loc[symbol] var history = qb.History<Nifty>(symbol, new DateTime(2013, 7, 1), new DateTime(2014, 7, 31));
```

```
3. Create a Candlestick .
        candlestick = qo.Candlestick(x=history.index,
                                                        open=history['open'],
high=history['high'],
low=history['low'],
close=history['close'])
        var chart = Chart2D.Chart.Candlestick<decimal, decimal, decimal, decimal, DateTime, string>(
              cnart = (nart2).tnart.candlest
history.Select(x => x.Open),
history.Select(x => x.High),
history.Select(x => x.Low),
history.Select(x => x.Close),
history.Select(x => x.EndTime)
   4. Create a Layout \, .
       LinearAxis xAxis = new LinearAxis();
xAxis.SetValue("title", "Time");
LinearAxis yAxis = new LinearAxis();
yAxis.SetValue("title", "Price ($)");
Title title = Title.init($"{symbol} OHLC");
        Layout layout = new Layout();
layout.SetValue("xaxis", xAxis);
layout.SetValue("yaxis", yAxis);
layout.SetValue("title", title);
   5. Create a Figure .
        fig = go.Figure(data=[candlestick], layout=layout)
   6. Assign the Layout to the chart.
        chart.WithLayout(layout);
   7. Show the Figure .
        fig.show()
        HTML(GenericChart.toChartHTML(chart))
        Candlestick charts display the open, high, low, and close prices of the security.
Line Chart
Follow these steps to plot line charts using built-in methods Plotly.NET package:
        values = history['value'].unstack(level=0)
   2. Call the plot method on the pandas object.
        values.plot(title="Value", figsize=(15, 10))
   3. Create a Line chart.
        var chart = Chart2D.Chart.Line<DateTime, decimal, string>(
   history.Select(x => x.EndTime),
   history.Select(x => x.Close)
   4. Create a Layout .
       LinearAxis xAxis = new LinearAxis();
xAxis.SetValue("title", "Time");
LinearAxis yAxis = new LinearAxis();
yAxis.SetValue("title", "Price ($)");
Title title = Title.init($"{symbol} Close");
        Layout layout = new Layout();
layout.SetValue("xaxis", xAxis);
layout.SetValue("yaxis", yAxis);
layout.SetValue("title", title);
   5. Assign the Layout to the chart.
        chart.WithLayout(layout);
   6. Show the plot.
        plt.show()
        HTML(GenericChart.toChartHTML(chart))
```

Line charts display the value of the property you selected in a time series.

4 Charting

The Research Environment is centered around analyzing and understanding data. One way to gain a more intuitive understanding of the existing relationships in our data is to visualize it using	charts. There are many different libraries that
allow you to chart our data in different ways. Sometimes the right chart can illuminate an interesting relationship in the data. Click one of the following libraries to learn more about it:	

Bokeh

Matplotlib

Plotly

Seaborn

Plotly NET

See Also

Supported Libraries
Algorithm Charting

4 1 Rokeh

Introduction

bokeh is a Python library you can use to create interactive visualizations. It helps you build beautiful graphics, ranging from simple plots to complex dashboards with streaming datasets. With bokeh, you can create JavaScript-powered visualizations without writing any JavaScript.

Import Libraries

Follow these steps to import the libraries that you need:

1. Import the bokeh library.

```
from bokeh.plotting import figure, show from bokeh.models import BasicTicker, ColorBar, ColumnDataSource, LinearColorMapper from bokeh.palettes import Category20c from bokeh.transform import cunsum, transform from bokeh.io import output_notebook
2. Call the output notebook method.
```

```
output notebook()
```

3. Import the numpy library.

```
import numpy as np
```

Get Historical Data

Get some historical market data to produce the plots. For example, to get data for a bank sector ETF and some banking companies over 2021, run:

```
qb = QuantBook,,
tickers = ["XLF",
"COF",
                                                 # Financial Select Sector SPDR Fund
# Capital One Financial Corporation
# Goldman Sachs Group, Inc.
# JP Morgan Chase & Co
# Wells Fargo & Company
                            "WFC
symbols = [qb.AddEquity(ticker, Resolution.Daily).Symbol for ticker in tickers]
history = qb.History(symbols, datetime(2021, 1, 1), datetime(2022, 1, 1))
```

Create Candlestick Chart

You must import the plotting libraries and get some historical data to create candlestick charts.

In this example, you create a candlestick chart that shows the open, high, low, and close prices of one of the banking securities. Follow these steps to create the candlestick chart:

```
1. Select a Symbol .
   symbol = symbols[0]
2. Slice the history DataFrame with the symbol .
```

data = history.loc[symbol]

```
3. Divide the \mathtt{data} into days with positive returns and days with negative returns
    up_days = data[data['close'] > data['open']]
down_days = data[data['open'] > data['close']]
```

4. Call the figure function with a title, axis labels and x-axis type.

```
plot = figure(title=f"{symbol} OHLC", x_axis_label='Date', y_axis_label='Price', x_axis_type='datetime')
```

5. Call the segment method with the data timestamps, high prices, low prices, and a color.

```
plot.segment(data.index, data['high'], data.index, data['low'], color="black")
```

This method call plots the candlestick wicks.

6. Call the vbar method for the up and down days with the data timestamps, open prices, close prices, and a color.

```
width = 12*60*60*1000
plot.vbar(up days.index, width, up_days['open'], up_days['close'], fill_color="green", line_color="green")
plot.vbar(down_days.index, width, down_days['open'], down_days['close'], fill_color="red", line_color="red")
```

This method call plots the candlestick bodies

7. Call the show function.

show(plot)

The Jupyter Notebook displays the candlestick chart.

Create Line Plot

You must import the plotting libraries and get some historical data to create line charts.

In this example, you create a line chart that shows the closing price for one of the banking securities. Follow these steps to create the line chart:

```
1. Select a Symbol .
   symbol = symbols[0]
```

2. Slice the history DataFrame with the symbol and then select the close column.

```
close prices = history.loc[symbol]['close']
```

3. Call the figure function with title, axis labels and x-axis type...

```
plot = figure(title=f"{symbol} Close Price", x_axis_label='Date', y_axis_label='Price', x_axis_type='datetime')
```

4. Call the line method with the timestamps, close_prices , and some design settings.

5. Call the show function.

show(plot)

The Jupyter Notebook displays the line plot.

Create Scatter Plot

You must import the plotting libraries and get some historical data to create scatter plots.

In this example, you create a scatter plot that shows the relationship between the daily returns of two banking securities. Follow these steps to create the scatter plot:

1. Select 2 symbol s. For example, to select the Symbol s of the first 2 bank stocks, run: symbol1 = symbols[1] symbol2 = symbols[2] 2. Slice the history DataFrame with each Symbol and then select the close column. close_price1 = history.loc[symbol1]['close']
close_price2 = history.loc[symbol2]['close'] 3. Call the pct change and dropna methods on each Series . daily_return1 = close_price1.pct_change().dropna()
daily_return2 = close_price2.pct_change().dropna() 4. Call the polyfit $\,$ method with the <code>daily_returns1</code> , <code>daily_returns2</code> , and a degree. m, b = np.polyfit(daily_returns1, daily_returns2, deg=1) This method call returns the slope and intercept of the ordinary least squares regression line. 5. Call the linspace method with the minimum and maximum values on the x-axis. x = np.linspace(daily returns1.min(), daily returns1.max()) 6. Calculate the y-axis coordinates of the regression line. y = m*x + h 7. Call the figure function with a title and axis labels.

8. Call the line method with x- and y-axis values, a color, and a line width.

```
plot.line(x, y, color="red", line width=2)
```

This method call plots the regression line.

9. Call the dot $\,$ method with the ${\tt daily_returns1}\,$, ${\tt daily_returns2}\,$, and some design settings.

```
plot.dot(daily_returns1, daily_returns2, size=20, color="navy", alpha=0.5)
```

This method call plots the scatter plot dots.

10. Call the show function.

show(plot)

The Jupyter Notebook displays the scatter plot.

Create Histogram

You must import the plotting libraries and get some historical data to create histograms.

In this example, you create a histogram that shows the distribution of the daily percent returns of the bank sector ETF. In addition to the bins in the histogram, you overlay a normal distribution curve for comparison. Follow these steps to create the histogram:

Select the Symbol .

symbol = symbols[0]

2. Slice the history DataFrame with the symbol and then select the close column.

```
close_prices = history.loc[symbol]['close']
```

3. Call the pct_change method and then call the dropna method.

```
daily_returns = close_prices.pct_change().dropna()
```

 $4. \ \ Call \ the \ {\tt histogram} \ \ \textit{method with the } \ {\tt daily_returns} \ \ \textit{, the density argument enabled, and a number of bins.}$

```
hist, edges = np.histogram(daily_returns, density=True, bins=20)
```

This method call returns the following objects:

- hist: The value of the probability density function at each bin, normalized such that the integral over the range is 1.
- · edges: The x-axis value of the edges of each bin.
- · Call the figure method with a title and axis labels.

Call the quad method with the coordinates of the bins and some design settings.

```
plot.quad(top=hist, bottom=0, left=edges[:-1], right=edges[1:],
    fill_color="navy", line_color="white", alpha=0.5)
```

This method call plots the histogram bins.

· Call the mean and std methods

```
mean = daily_returns.mean()
std = daily_returns.std()
```

• Call the linspace method with the lower limit, upper limit, and number data points for the x-axis of the normal distribution curve.

```
x = np.linspace(-3*std, 3*std, 1000)
```

· Calculate the y-axis values of the normal distribution curve.

```
pdf = 1/(std * np.sqrt(2*np.pi)) * np.exp(-(x-mean)**2 / (2*std**2))
```

• Call the line method with the data and style of the normal distribution PDF curve.

This method call plots the normal distribution PDF curve.

Call show to show the plot.

show(plot)

The Jupyter Notebook displays the histogram.

You must import the plotting libraries and get some historical data to create bar charts

In this example, you create a bar chart that shows the average daily percent return of the banking securities. Follow these steps to create the bar chart:

1. Select the close column and then call the ${\tt unstack}$ method.

```
close_prices = history['close'].unstack(level=0)
```

2. Call the pot change method and then multiply by 100.

```
daily_returns = close_prices.pct_change() * 100
```

3. Call the mean method.

```
avg_daily_returns = daily_returns.mean()
```

4. Call the DataFrame constructor with the data Series and then call the reset index method.

```
avg_daily_returns = pd.DataFrame(avg_daily_returns, columns=['avg_return']).reset_index()
```

5. Call the figure function with a title, x-axis values, and axis labels.

 $6. \ \ Call \ the \ {\tt vbar} \ \ {\tt method} \ \ with \ the \ {\tt avg_daily_returns} \ \ \hbox{\it, x- and y-axis column names, and a bar width.}$

```
plot.vbar(source=avg_daily_returns, x='symbol', top='avg_return', width=0.8)
```

7. Rotate the x-axis label and then call the show function.

```
plot.xaxis.major_label_orientation = 0.6
```

The Jupyter Notebook displays the bar chart.

Create Heat Map

You must import the plotting libraries and get some historical data to create heat maps.

In this example, you create a heat map that shows the correlation between the daily returns of the banking securities. Follow these steps to create the heat map:

1. Select the close column and then call the unstack, method.

```
close prices = history['close'].unstack(level=0)
```

2. Call the pct_change method.

```
daily_returns = close_prices.pct_change()
```

3. Call the corr method.

```
corr_matrix = daily_returns.corr()
```

4. Set the index and columns of the corr matrix to the ticker of each security and then set the name of the column and row indices.

```
corr_matrix.index = corr_matrix.columns = [symbol.Value for symbol in symbols]
corr_matrix.index.name = 'symbol'
corr_matrix.columns.name = "stocks"
```

```
corr_matrix = corr_matrix.stack().rename("value").reset_index()
```

6. Call the figure function with a title, axis ticks, and some design settings.

```
plot = figure(title=f"Banking Stocks and Bank Sector ETF Correlation Heat Map",
                              (title=""manking stocks and Bank Sector EIT Correlat
x range=list(corr_matrix.symbol.drop_duplicates()),
y_range=list(corr_matrix.stocks.drop_duplicates()),
toolbar_location=None,
tools="",
x_axis_location="above")
```

7. Select a color palette and then call the LinearColorMapper constructor with the color pallet, the minimum correlation, and the maximum correlation.

```
colors = Category20c[len(corr_matrix.columns)]
mapper = LinearColorMapper(palette=colors, low=corr_matri
high=corr_matrix.value.max())
                                                                                                corr matrix.value.min(),
```

8. Call the rect method with the correlation plot data and design setting.

```
plot.rect(source=ColumnDataSource(corr_matrix),
    x="stocks",
    y="symbol",
    width=1,
                 height=1.
                line_color=None,
fill_color=transform('value', mapper))
```

9. Call the ${\tt ColorBar}$ constructor with the ${\tt mapper}$, a location, and a ${\tt BaseTicker}$.

This snippet creates a color bar to represent the correlation coefficients of the heat map cells.

10. Call the add_layout method with the color_bar and a location.

```
plot.add_layout(color_bar, 'right')
```

This method call plots the color bar to the right of the heat man.

11. Call the show function.

show (plot)

The Jupyter Notebook displays the heat map.

Create Pie Chart

You must import the plotting libraries and get some historical data to create pie charts.

In this example, you create a pie chart that shows the weights of the banking securities in a portfolio if you allocate to them based on their inverse volatility. Follow these steps to create the pie chart:

1. Select the close column and then call the unstack method.

```
close_prices = history['close'].unstack(level=0)
```

2. Call the pct_change method.

```
daily returns = close prices.pct change()
```

3. Call the var method, take the inverse, and then normalize the result

```
inverse_variance = 1 / daily_returns.var()
inverse_variance /= np.sum(inverse_variance)  # Normalization
inverse_variance *= np.pi*2  # For a full circle circumference in radian
```

 $\textbf{4. Call the} \ \mathtt{DataFrame} \ \ \textbf{constructor} \ \ \textbf{with the} \ \mathtt{inverse_variance} \ \ \mathtt{Series} \ \ \textbf{and then call the} \ \mathtt{reset_index} \ \ \textbf{method}.$

inverse_variance = pd.DataFrame(inverse_variance, columns=["inverse variance"]).reset_index()

5. Add a color column to the ${\tt inverse_variance}$ ${\tt DataFrame}$.

```
inverse_variance['color'] = Category20c[len(inverse_variance.index)]
```

6. Call the figure function with a title.

```
plot = figure(title=f"Banking Stocks and Bank Sector ETF Allocation")
```

7. Call the ${\tt wedge}\ method$ with design settings and the ${\tt inverse_variance}\ {\tt DataFrame}\ .$

8. Call the show function.

show(plot)

The Jupyter Notebook displays the pie chart.

4.2 Matplotlib

Introduction

matplotlib is the most popular 2d-charting library for python. It allows you to easily create histograms, scatter plots, and various other charts. In addition, pandas is integrated with matplotlib, so you can seamlessly move between data manipulation and data visualization. This makes matplotlib great for quickly producing a chart to visualize your data.

Import Libraries

Follow these steps to import the libraries that you need:

1. Import the matplotlib , mplfinance , and numpy libraries.

```
import matplotlib.pyplot as plt
import mplfinance
import numpy as np
```

2. Import, and then call, the $register_matplotlib_converters$ method.

```
from pandas.plotting import register_matplotlib_converters
register_matplotlib_converters()
```

Get Historical Data

Get some historical market data to produce the plots. For example, to get data for a bank sector ETF and some banking companies over 2021, run:

```
qb = QuantBook()
tickers = ["MLF",  # Financial Select Sector SPDR Fund
    "COF",  # Capital One Financial Corporation
    "GS",  # Goldman Sachs Group, Inc.
    "JPM",  # J F Morgan Chase & Co
    "WFC"]  # Wells Fargo & Company
symbols = [qb.AddEquity(ticker, Resolution.Daily).Symbol for ticker in tickers]
history = qb.History(symbols, datetime(2021, 1, 1), datetime(2022, 1, 1))
```

Create Candlestick Chart

You must import the plotting libraries and get some historical data to create candlestick charts.

In this example, we'll create a candlestick chart that shows the open, high, low, and close prices of one of the banking securities. Follow these steps to create the candlestick chart:

```
    Select a Symbol .
        symbol = symbols[0]
    Slice the history DataFrame with the symbol .
        data = history.loc[symbol]
    Rename the columns.
        data.columns = ['Close', 'High', 'Low', 'Open', 'Volume']
```

4. Call the plot method with the data, chart type, style, title, y-axis label, and figure size.

The Jupyter Notebook displays the candlestick chart.

Create Line Plot

You must import the plotting libraries and get some historical data to create line charts.

In this example, you create a line chart that shows the closing price for one of the banking securities. Follow these steps to create the line chart:

```
symbol = symbols[0]
2. Slice the history DataFrame with symbol and then select the close column.
data = history.loc[symbol]['close']
3. Call the plot method with a title and figure size.
data.plot(title=f"(symbol) Close Price", figsize=(15, 10));
The Jupyter Notebook displays the line plot.
```

Create Scatter Plot

You must import the plotting libraries and get some historical data to create scatter plots.

In this example, you create a scatter plot that shows the relationship between the daily returns of two banking securities. Follow these steps to create the scatter plot:

1. Select the 2 symbol s.

For example, to select the ${\tt Symbol}\ s$ of the first 2 bank stocks, run:

```
symbol1 = symbols[1]
symbol2 = symbols[2]
```

2. Slice the history DataFrame with each Symbol and then select the close column.

```
close_price1 = history.loc[symbol1]['close']
close_price2 = history.loc[symbol2]['close']
```

3. Call the ${\tt pct_change}$ and ${\tt dropna}$ methods on each ${\tt Series}$.

```
daily_returns1 = close_price1.pct_change().dropna()
daily_returns2 = close_price2.pct_change().dropna()
```

4. Call the polyfit method with the daily_returns1 , daily_returns2 , and a degree.

```
m, b = np.polyfit(daily_returns1, daily_returns2, deg=1)
```

This method call returns the slope and intercept of the ordinary least squares regression line.

- 5. Call the linspace method with the minimum and maximum values on the x-axis.
 - $x = np.linspace(daily_returns1.min(), daily_returns1.max())$
- 6. Calculate the y-axis coordinates of the regression line.

```
v = m*x + b
```

7. Call the plot method with the coordinates and color of the regression line.

```
plt.plot(x, y, color='red')
```

 $8. \ \ \text{In the same cell that you called the plot} \ \ \text{method, call the scatter} \ \ \text{method with the 2 daily return series}.$

```
plt.scatter(daily_returns1, daily_returns2)
```

9. In the same cell that you called the scatter method, call the title , xlabel , and ylabel methods with a title and axis labels.

```
plt.title(f'{symbol1} vs {symbol2} daily returns Scatter Plot')
plt.xlabel(symbol1.Value)
plt.ylabel(symbol2.Value);
```

The Jupyter Notebook displays the scatter plot.

Create Histogram

You must import the plotting libraries and get some historical data to create histograms.

In this example, you create a histogram that shows the distribution of the daily percent returns of the bank sector ETF. In addition to the bins in the histogram, you overlay a normal distribution curve for comparison. Follow these steps to create the histogram?

1. Select the symbol .

```
symbol = symbols[0]
```

2. Slice the history DataFrame with the symbol and then select the close column.

```
close_prices = history.loc[symbol]['close']
```

3. Call the pct_change method and then call the dropna method.

```
daily_returns = close_prices.pct_change().dropna()
```

4. Call the mean and std methods.

```
mean = daily_returns.mean()
std = daily returns.std()
```

5. Call the linspace method with the lower limit, upper limit, and number data points for the x-axis of the normal distribution curve.

```
x = np.linspace(-3*std, 3*std, 1000)
```

6. Calculate the y-axis values of the normal distribution curve.

```
pdf = 1/(std * np.sqrt(2*np.pi)) * np.exp(-(x-mean)**2 / (2*std**2))
```

7. Call the plot method with the data for the normal distribution curve.

```
plt.plot(x, pdf, label="Normal Distribution")
```

8. In the same cell that you called the plot method, call the hist method with the daily return data and the number of bins.

```
plt.hist(daily returns, bins=20)
```

9. In the same cell that you called the hist method, call the title , xlabel , and ylabel methods with a title and the axis labels.

```
plt.title(f'{symbol} Return Distribution')
plt.xlabel('Daily Return')
plt.ylabel('Count');
```

The Jupyter Notebook displays the histogram.

Create Bar Chart

You must import the plotting libraries and get some historical data to create bar charts.

In this example, you create a bar chart that shows the average daily percent return of the banking securities. Follow these steps to create the bar chart:

1. Select the close column and then call the unstack method.

```
close_prices = history['close'].unstack(level=0)
```

2. Call the ${\tt pct_change}\$ method and then multiply by 100.

```
daily_returns = close_prices.pct_change() * 100
```

3. Call the mean method.

```
avg_daily_returns = daily_returns.mean()
```

4. Call the figure method with a figure size.

```
plt.figure(figsize=(15, 10))
```

5. Call the ${\tt bar}\,$ method with the x-axis and y-axis values.

```
plt.bar(avg_daily_returns.index, avg_daily_returns)
```

 $6. \ \ \text{In the same cell that you called the } \text{bar method, call the } \text{title } \text{,} \text{xlabel } \text{, and } \text{ylabel } \text{ methods with a title and the axis labels.}$

```
plt.title('Banking Stocks Average Daily % Returns')
plt.xlabel('Tickers')
plt.ylabel('%');
```

The Jupyter Notebook displays the bar chart.

Create Heat Map

You must import the plotting libraries and get some historical data to create heat maps.

In this example, you create a heat map that shows the correlation between the daily returns of the banking securities. Follow these steps to create the heat map:

1. Select the close column and then call the ${\tt unstack}\,$ method.

```
close_prices = history['close'].unstack(level=0)
```

2. Call the pct_change method.

```
daily_returns = close_prices.pct_change()
```

3. Call the corr method.

```
corr_matrix = daily_returns.corr()
```

4. Call the imshow method with the correlation matrix, a color map, and an interpolation method.

```
plt.imshow(corr_matrix, cmap='hot', interpolation='nearest')
```

 $5. \ \ In the same cell that you called the \verb|imshow|| method, call the \verb|title|| and the title | and title | an$

plt.	title('Banking	Stocks	and	Bank	Sector	ETF	Correlation	Heat	Map'
plt.	xticks	(np.arano	ge (len (†	ticke	ers)),	labels	s=tio	ckers)		
n1+	ret i alca	Inn arang	70 /1 on /	- i ale	11000	labol	-+-	alcoro)		

 $6. \ \,$ In the same cell that you called the ${\tt imshow}$ method, call the ${\tt colorbar}$ method.

```
plt.colorbar();
```

The Jupyter Notebook displays the heat map.

Create Pie Chart

You must import the plotting libraries and get some historical data to create pie charts.

In this example, you create a pie chart that shows the weights of the banking securities in a portfolio if you allocate to them based on their inverse volatility. Follow these steps to create the pie chart:

1. Select the close column and then call the unstack method.

```
close_prices = history['close'].unstack(level=0)
```

2. Call the pct_change method.

```
daily_returns = close_prices.pct_change()
```

3. Call the var method and then take the inverse.

```
inverse_variance = 1 / daily_returns.var()
```

 $4. \ \ Call \ the \ {\tt pie} \ \ method \ with \ the \ {\tt inverse_variance} \ \ {\tt Series} \ \ , \ the \ plot \ labels, \ and \ a \ display \ format.$

```
plt.pie(inverse_variance, labels=inverse_variance.index, autopct='%1.1f%%')
```

5. In the cell that you called the pie method, call the title method with a title.

```
plt.title('Banking Stocks and Bank Sector ETF Allocation');
```

The Jupyter Notebook displays the pie chart.

4.3 Plotly

Introduction

plotly is an online charting tool with a python API. It offers the ability to create rich and interactive graphs.

Import Libraries

```
Import the plotly library.
```

```
import plotly.express as px import plotly.graph objects as go
```

Get Historical Data

Get some historical market data to produce the plots. For example, to get data for a bank sector ETF and some banking companies over 2021, run:

```
qb = QuantBook()
tickers = ["XLF",  # Financial Select Sector SPDR Fund
    "COF",  # Capital One Financial Corporation
    "GS",  # Goldman Sachs Group, Inc.
    "JDM",  # J P Morgan Chase & Co
    "WFC"]  # Wells Fargo & Company
symbols = [qb.AddEquity(ticker, Resolution.Daily).Symbol for ticker in tickers]
history = qb.History(symbols, datetime(2021, 1, 1), datetime(2022, 1, 1))
```

Create Candlestick Chart

1. Select a Symbol .

You must import the plotting libraries and get some historical data to create candlestick charts.

In this example, you create a candlestick chart that shows the open, high, low, and close prices of one of the banking securities. Follow these steps to create the candlestick chart:

```
fig = go.Figure(data=[candlestick], layout=layout)
```

5. Call the Figure constructor with the candlestick and layout .

6. Call the show method.

fig.show()

The Jupyter Notebook displays the candlestick chart.

Create Line Chart

You must import the plotting libraries and get some historical data to create line charts.

In this example, you create a line chart that shows the closing price for one of the banking securities. Follow these steps to create the line chart:

```
    Select a Symbol .
    symbol = symbols[0]
```

2. Slice the history DataFrame with the symbol and then select the close column.

```
data = history.loc[symbol]['close']
```

3. Call the $\mathtt{DataFrame}$ constructor with the \mathtt{data} \mathtt{Series} and then call the $\mathtt{reset_index}$ method.

```
data = pd.DataFrame(data).reset_index()
```

4. Call the line method with \mathtt{data} , the column names of the x- and y-axis in \mathtt{data} , and the plot title.

```
fig = px.line(data, x='time', y='close', title=f'{symbol} Close price')
```

5. Call the show method.

fig.show()

The Jupyter Notebook displays the line chart.

Create Scatter Plot

You must import the plotting libraries and get some historical data to create scatter plots.

In this example, you create a scatter plot that shows the relationship between the daily returns of two banking securities. Follow these steps to create the scatter plot

Select 2 Symbol s

For example, to select the ${\tt Symbol}\ s$ of the first 2 bank stocks, run:

```
symbol1 = symbols[1]
symbol2 = symbols[2]
```

2. Slice the ${\tt history}$ DataFrame with each ${\tt Symbol}$ and then select the close column.

```
close_price1 = history.loc[symbol1]['close']
close_price2 = history.loc[symbol2]['close']
```

3. Call the pct_change and dropna methods on each Series .

```
daily_return1 = close_price1.pct_change().dropna()
daily_return2 = close_price2.pct_change().dropna()
```

 $4. \ \ Call \ the \ {\tt scatter} \ \ method \ with \ the \ 2 \ return \ {\tt Series} \ \ , \ the \ trendline \ option, \ and \ axes \ labels.$

5. Call the update layout method with a title. fig.update layout(title=f'{symbol1.Value} vs {symbol2.Value} Daily % Returns'); 6. Call the show method. The Jupyter Notebook displays the scatter plot. Create Histogram You must import the plotting libraries and get some historical data to create histograms In this example, you create a histogram that shows the distribution of the daily percent returns of the bank sector ETF. Follow these steps to create the histogram: 1. Select the Symbol . symbol = symbols[0] 2. Slice the history DataFrame with the symbol and then select the close column. data = history.loc[symbol]['close'] 3. Call the pct_change method and then call the dropna method. daily_returns = data.pct_change().dropna() 4. Call the DataFrame constructor with the data Series and then call the reset_index method. daily_returns = pd.DataFrame(daily_returns).reset_index() 5. Call the histogram method with the daily_returns DataFrame, the x-axis label, a title, and the number of bins. 6. Call the show method. fig.show() The Jupyter Notebook displays the histogram. Create Bar Chart You must import the plotting libraries and get some historical data to create bar charts.

In this example, you create a bar chart that shows the average daily percent return of the banking securities. Follow these steps to create the bar chart:

1. Select the close column and then call the unstack method. close_prices = history['close'].unstack(level=0) 2. Call the pct_change method and then multiply by 100. daily_returns = close_prices.pct_change() * 100 3. Call the mean method.

avg_daily_returns = daily_returns.mean()

4. Call the DataFrame constructor with the avg_daily_returns Series and then call the reset_index method.

avg_daily_returns = pd.DataFrame(avg_daily_returns, columns=["avg_daily_ret"]).reset_index()

5. Call the ${\tt bar}\ method\ with\ the\ {\tt avg_daily_returns}\$ and the axes column names.

fig = px.bar(avg_daily_returns, x='symbol', y='avg_daily_ret')

6. Call the update_layout method with a title.

fig.update_layout(title='Banking Stocks Average Daily % Returns');

The Jupyter Notebook displays the bar plot.

Create Heat Map

You must import the plotting libraries and get some historical data to create heat maps.

In this example, you create a heat map that shows the correlation between the daily returns of the banking securities. Follow these steps to create the heat map:

1. Select the close column and then call the unstack method.

close_prices = history['close'].unstack(level=0)

2. Call the pct_change method.

daily_returns = close_prices.pct_change()

3. Call the corr method.

corr matrix = daily returns.corr()

4. Call the imshow method with the corr_matrix and the axes labels.

fig = px.imshow(corr_matrix, x=tickers, y=tickers)

5. Call the update_layout method with a title.

fig.update_layout(title='Banking Stocks and bank sector ETF Correlation Heat Map');

6. Call the show method.

fig.show()

The Jupyter Notebook displays the heat map.

Create Pie Chart

You must import the plotting libraries and get some historical data to create pie charts

In this example, you create a pie chart that shows the weights of the banking securities in a portfolio if you allocate to them based on their inverse volatility. Follow these steps to create the pie chart:

Select the close column and then call the unstack method.
 close_prices = history['close'].unstack(level=0)
 Call the pct_change method.
 daily_returns = close_prices.pct_change()

3. Call the var method and then take the inverse.

inverse_variance = 1 / daily_returns.var()

 $\textbf{4. Call the } \texttt{DataFrame } \textbf{ constructor with the } \texttt{inverse_variance } \texttt{Series } \textbf{ and then } \textbf{call the } \texttt{reset_index } \textbf{ method.}$

inverse_variance = pd.DataFrame(inverse_variance, columns=["inverse variance"]).reset_index()

 $5. \ \ Call \ the \ \texttt{pie} \ \ method \ with \ the \ \texttt{inverse_variance} \ \ \texttt{DataFrame} \ \ , \ the \ column \ name \ of the \ values, \ and \ the \ column \ name \ of the \ names.$

fig = px.pie(inverse_variance, values='inverse variance', names='symbol')

 $6. \ \ Call \ the \ {\tt update_layout} \ \ method \ with \ a \ title.$

fig.update_layout(title='Asset Allocation of bank stocks and bank sector ETF');

7. Call the show method.

fig.show()

The Jupyter Notebook displays the pie chart.

4.4 Seaborn

Introduction

seaborn is a data visualization library based on matplotlib. It makes it easier to create more complicated plots and allows us to create much more visually-appealing charts than matplotlib charts.

Import Libraries

Follow these steps to import the libraries that you need:

1. Import the seaborn and matplotlib libraries.

```
import seaborn as sns
import matplotlib.pyplot as plt
```

2. Import, and then call, the register_matplotlib_converters method.

```
from pandas.plotting import register_matplotlib_converters
register matplotlib converters()
```

Get Historical Data

Get some historical market data to produce the plots. For example, to get data for a bank sector ETF and some banking companies over 2021, run:

```
qb = QuantBook()
tickers = ["XLF",  # Financial Select Sector SPDR Fund
    "COF",  # Capital One Financial Corporation
    "GS",  # Goldman Sachs Group, Inc.
    "JDM",  # J P Morgan Chase & Co
    "WFC"]  # Wells Fargo & Company
symbols = [qb.AddEquity(ticker, Resolution.Daily).Symbol for ticker in tickers]
history = qb.History(symbols, datetime(2021, 1, 1), datetime(2022, 1, 1))
```

Create Candlestick Chart

Seaborn does not currently support candlestick charts. Use one of the other plotting libraries to create candlestick charts.

Create Line Chart

You must import the plotting libraries and get some historical data to create line charts.

In this example, you create a line chart that shows the closing price for one of the banking securities. Follow these steps to create the chart:

```
1. Select a \mathsf{Symbol} .
```

symbol = symbols[0]

2. Slice the history DataFrame with the ${\tt symbol}$ and then select the close column.

```
data = history.loc[symbol]['close']
```

3. Call the DataFrame constructor with the data Series and then call the reset index method.

```
data = pd.DataFrame(data).reset index()
```

4. Call the lineplot method with the data Series and the column name of each axis.

 $5. \ \ In the same cell that you called the {\tt lineplot} \ \ method, call the {\tt set} \ \ method with the {\it y-axis} \ label and a title.$

```
plot.set(ylabel="price", title=f"{symbol} Price Over Time");
```

The Jupyter Notebook displays the line chart.

Create Scatter Plot

You must import the plotting libraries and get some historical data to create scatter plots.

In this example, you create a scatter plot that shows the relationship between the daily returns of two banking securities. Follow these steps to create the scatter plot

1. Select 2 Symbol s.

For example, to select the symbol s of the first 2 bank stocks, run:

```
symbol1 = symbols[1]
symbol2 = symbols[2]
```

2. Select the close column of the history DataFrame, call the unstack method, and then select the symbol1 and symbol2 columns.

```
close_prices = history['close'].unstack(0)[[symbol1, symbol2]]
```

3. Call the pot change method and then call the droppia method.

```
daily_returns = close_prices.pct_change().dropna()
```

4. Call the ${\tt regplot}$ method with the ${\tt daily_returns}$ ${\tt DataFrame}$ and the column names.

 $5. \ \ \text{In the same cell that you called the } \textit{regplot} \ \ \textit{method}, \textit{call the } \textit{set} \ \ \textit{method with the axis labels and a title}.$

The Jupyter Notebook displays the scatter plot.

Create Histogram

You must import the plotting libraries and get some historical data to create histograms.

In this example, you create a histogram that shows the distribution of the daily percent returns of the bank sector ETF. Follow these steps to create the histogram:

```
1. Select the Symbol .
```

```
symbol = symbols[0]
```

2. Slice the history DataFrame with the symbol and then select the close column.

```
data = history.loc[symbol]['close']
```

3. Call the pct_change method and then call the dropna method.

```
daily_returns = data.pct_change().dropna()
  4. Call the DataFrame constructor with the daily returns Series and then call the reset index method.
      daily returns = pd.DataFrame(daily returns).reset index()
  5. \ \ Call \ the \ {\tt histplot} \ \ \textbf{method} \ \ \textbf{with} \ \ \textbf{the} \ \ \texttt{daily\_returns} \ \ \textbf{,} \ \ \textbf{the} \ \ \textbf{close} \ \ \textbf{column} \ \ \textbf{name}, \ \textbf{and} \ \ \textbf{the} \ \ \textbf{number} \ \ \textbf{of} \ \ \textbf{bins}.
      plot = sns.histplot(daily_returns, x='close', bins=20)
  6. In the same cell that you called the histplot method, call the set method with the axis labels and a title.
      plot.set(xlabel='Return',
                 ylabel='Frequency',
title=f'{symbol} Daily Return of Close Price Distribution');
      The Jupyter Notebook displays the histogram.
Create Bar Chart
You must import the plotting libraries and get some historical data to create bar charts
In this example, you create a bar chart that shows the average daily percent return of the banking securities. Follow these steps to create the bar chart:
  1. Select the close column and then call the unstack method.
      close prices = history['close'].unstack(level=0)
  2. Call the pct change method and then multiply by 100.
      daily_returns = close_prices.pct_change() * 100
  3. Call the mean method.
      avg daily returns = daily returns.mean()
  4. Call the DataFrame constructor with the avg_daily_returns Series and then call the reset_index method.
      avg_daily_returns = pd.DataFrame(avg_daily_returns, columns=["avg_daily_ret"]).reset_index()
  5. Call barplot method with the avg_daily_returns Series and the axes column names.
     plot = sns.barplot(data=avg_daily_returns, x='symbol', y='avg_daily_ret')
  6. In the same cell that you called the <code>barplot</code> method, call the <code>set</code> method with the axis labels and a title.
      plot.set(xlabel='Tickers',
                 ylabel='%',
title='Banking Stocks Average Daily % Returns')
  7. \ \ \text{In the same cell that you called the $\tt set method$, call the $\tt tick\_params method$ to rotate the $x$-axis labels.}
      plot.tick params(axis='x', rotation=90)
      The Jupyter Notebook displays the bar chart.
Create Heat Map
You must import the plotting libraries and get some historical data to create heat maps.
In this example, you create a heat map that shows the correlation between the daily returns of the banking securities. Follow these steps to create the heat map:
  1. Select the close column and then call the unstack method.
      close_prices = history['close'].unstack(level=0)
  2. Call the pot change method.
      daily_returns = close_prices.pct_change()
  3. Call the corr method.
      corr_matrix = daily_returns.corr()
  4. Call the heatmap method with the corr matrix and the annotation argument enabled.
      plot = sns.heatmap(corr_matrix, annot=True)
  5. In the same cell that you called the heatmap method, call the set method with a title.
      plot.set(title='Bank Stocks and Bank Sector ETF Correlation Coefficients');
      The Jupyter Notebook displays the heat map.
Create Pie Chart
You must import the plotting libraries and get some historical data to create pie charts.
In this example, you create a pie chart that shows the weights of the banking securities in a portfolio if you allocate to them based on their inverse volatility. Follow these steps to create the pie chart:
  1. Select the close column and then call the {\tt unstack} method.
      close prices = history['close'].unstack(level=0)
  2. Call the pct change method.
      daily returns = close prices.pct change()
  3. Call var method and then take the inverse.
      inverse variance = 1 / daily returns.var()
  4. Call the color_palette method with a palette name and then truncate the returned colors to so that you have one color for each security.
      colors = sns.color_palette('pastel')[:len(inverse_variance.index)]
  5. Call the pie method with the security weights, labels, and colors.
      plt.pie(inverse_variance, labels=inverse_variance.index, colors=colors, autopct='%1.1f%%')
  6. In the same cell that you called the pie method, call the title method with a title.
```

plt.title(title='Banking Stocks and Bank Sector ETF Allocation');

The Jupyter Notebook displays the pie chart.

4.5 Plotly NET

Introduction

Plotly.NET provides functions for generating and rendering plotly, is charts in .NET programming languages. Our .NET interactive notebooks support its C# implementation.

Import Libraries

Follow these steps to import the libraries that you need:

1. Load the necessary assembly files.

```
#r "../Plotly.NET.dll"
```

2. Import the Plotly.NET and Plotly.NET.LayoutObjects packages.

```
using Plotly.NET;
using Plotly.NET.LayoutObjects;
```

Get Historical Data

Get some historical market data to produce the plots. For example, to get data for a bank sector ETF and some banking companies over 2021, run:

Create Candlestick Chart

You must import the plotting libraries and get some historical data to create candlestick charts.

In this example, you create a candlestick chart that shows the open, high, low, and close prices of one of the banking securities. Follow these steps to create the candlestick chart:

```
    Select a Symbol .
    var symbol = symbols.First();
```

 $2. \ \ Call \ the \ {\tt Chart2D.Chart.Candlestick} \ \ constructor \ with \ the \ time \ and \ open, \ high, \ low, \ and \ close \ price \ {\tt IEnumerable} \ .$

```
var bars = history.Select(slice => slice.Bars[symbol]);
var chart = Chart2D.Chart.Candlestick<decimal, decimal, decimal, decimal, DateTime, string>(
   bars.Select(x => x.Open),
   bars.Select(x => x.Low),
   bars.Select(x => x.Low),
   bars.Select(x => x.Close),
   bars.Select(x => x.EndTime)
);
```

3. Call the ${ t Layout}$ constructor and set the ${ t title}$, ${ t xaxis}$, and ${ t yaxis}$ properties as the title and axes label objects.

```
LinearAxis xAxis = new LinearAxis();
xAxis.SetValue("title", "Time");
LinearAxis yAxis = new LinearAxis();
yAxis.SetValue("title", "Price (5)");
Title title = Title.init($"{symbol} OHLC");
Layout layout = new Layout();
layout.SetValue("xaxis", xAxis);
layout.SetValue("yaxis", yAxis);
layout.SetValue("title", title);
```

4. Assign the Layout to the chart.

```
chart.WithLayout(layout);
```

5. Show the plot.

```
HTML(GenericChart.toChartHTML(chart));
```

The Jupyter Notebook displays the candlestick chart.

Create Line Chart

You must import the plotting libraries and get some historical data to create line charts.

In this example, you create a line chart that shows the volume of a security. Follow these steps to create the chart:

```
    Select a Symbol .
    var symbol = symbols.First();
```

 $2. \ \ Call \ the \ {\tt Chart2D.Chart.Line} \ \ constructor \ with \ the \ timestamps \ and \ volumes.$

```
var bars = history.Select(slice => slice.Bars[symbol]);
var chart = (Chart2D.Chart.LineCDateTime, decimal, string>(
    bars.Select(x => x.EndTime),
    bars.Select(x => x.Volume)
);

3. Create a Layout .

LinearAxis xAxis = new LinearAxis();
xAxis.SetValue("title", "Time");
LinearAxis yAxis = new LinearAxis();
yAxis.SetValue("title", "Volume");
Title title = Title.init($"(symbol) Volume");

Layout layout = new Layout();
layout.SetValue("xaxis", xAxis);
layout.SetValue("yaxis", yAxis);
layout.SetValue("vitle", title);
```

4. Assign the Layout to the chart.

```
chart.WithLayout(layout);
```

5. Show the plot.

```
HTML(GenericChart.toChartHTML(chart));
```

The Jupyter Notebook displays the line chart.

You must import the plotting libraries and get some historical data to create scatter plots.

In this example, you create a scatter plot that shows the relationship between the daily price of two securities. Follow these steps to create the scatter plot:

1. Select two symbol objects.

```
var symbol1 = symbols.First();
var symbol2 = symbols.Last();
```

 $2. \ \ Call \ the \ {\tt Chart2D.Chart.Point} \ \ constructor \ with \ the \ closing \ prices \ of \ both \ securities.$

```
var chart = Chart2D.Chart.Point<decimal, decimal, string>(
   history.Select(slice => slice.Bars[symbol1].Close),
   history.Select(slice => slice.Bars[symbol2].Close)
);
```

3. Create a Layout $\,$.

```
LinearAxis xAxis = new LinearAxis();
xAxis.SetValue("title", $"{symbol1} Price ($)");
LinearAxis yAxis = new LinearAxis();
yAxis.SetValue("title", $"{symbol2} Price ($)");
Title title = Title.init($"{symbol2} Price ($)");
Layout layout = new Layout();
layout.SetValue("xaxis", xAxis);
layout.SetValue("xaxis", xAxis);
layout.SetValue("title", title);
```

4. Assign the Layout to the chart.

chart.WithLayout(layout);

5. Show the plot.

HTML(GenericChart.toChartHTML(chart));

The Jupyter Notebook displays the scatter plot.

5 Indicators

Indicators let you analyze market data in an abstract form rather than in its raw form. For example, indicators like the RSI tell you, based on price and volume data, if the market is overbought or oversold. Because indicators can extract overall market trends from price data, sometimes, you may want to look for correlations between indicators and the market, instead of between raw price data and the market. To view all of the indicators and candlestick patterns we provide, see the Supported Indicators.

Data Point Indicators

 $Indicators\ that\ process\ {\tt IndicatorDataPoint}\ objects$

Bar Indicators

Indicators that process Bar objects

Trade Bar Indicators

Indicators that process TradeBar objects

Combining Indicators

Chain indicators together

Custom Indicators

Create your own

Custom Resolutions

Beyond the standard resolutions

See Also

Key Concepts

5.1 Data Point Indicators

Introduction

This page explains how to create, update, and visualize LEAN data-point indicators.

Create Subscriptions

You need to subscribe to some market data in order to calculate indicator values.

```
var qb = new QuantBook();
var symbol = qb.AddEquity("SPY").Symbol;
qb = QuantBook()
symbol = qb.AddEquity("SPY").Symbol
```

Create Indicator Timeseries

You need to subscribe to some market data and create an indicator in order to calculate a timeseries of indicator values. In this example, use a 20-period 2-standard-deviation BollingerBands indicator.

```
var bb = new BollingerBands(20, 2);
bb = BollingerBands(20, 2)
```

You can create the indicator timeseries with the Indicator helper method or you can manually create the timeseries.

Indicator Helper Method

To create an indicator timeseries with the helper method, call the Indicator method.

```
var bbIndicator = qb.Indicator(bb, symbol, 50, Resolution.Daily);
bb_dataframe = qb.Indicator(bb, symbol, 50, Resolution.Daily)
```

Manually Create the Indicator Timeseries

Follow these steps to manually create the indicator timeseries:

1. Get some historical data.

```
var history = qb.History(symbol, 70, Resolution.Daily);
history = qb.History[TradeBar](symbol, 70, Resolution.Daily)
```

2. Create a RollingWindow for each attribute of the indicator to hold their values.

```
var time = new RollingWindow<DateTime>(50);
var window = new Dictionary<String, RollingWindow<decimal>>();
window["bollingerbands"] = new RollingWindow<decimal>(50);
window["lowerband"] = new RollingWindow<decimal>(50);
window["middleband"] = new RollingWindow<decimal>(50);
window["middleband"] = new RollingWindow<decimal>(50);
window["bandwidth"] = new RollingWindow<decimal>(50);
window["bercentb"] = new RollingWindow<decimal>(50);
window["percentb"] = new RollingWindow<decimal>(50);
window["price"] = new RollingWindow<decimal>(50);
window["price"] = new RollingWindow<decimal>(50);
window["tandarddeviation"] = new RollingWindow<decimal>(50);
window["bollingPrice"] = RollingWindow[DateTime](50)
window["time"] = RollingWindow[DateTime](50)
window["lowerband"] = RollingWindow[float](50)
window["middleband"] = RollingWindow[float](50)
window["percantb"] = RollingWindow[float](50)
window["percentb"] = RollingWindow[float](50)
window["standarddeviation"] = RollingWindow[float](50)
window["price"] = RollingWindow[float](50)
window["price"] = RollingWindow[float](50)
```

 $3. \ \ Attach\ a\ handler\ method\ to\ the\ indicator\ that\ updates\ the\ {\tt RollingWindow}\ objects.$

```
bb.Updated += (sender, updated) =>
{
    var indicator = (BollingerBands) sender;
    time.Add(updated.EndTime);
    window["bollingerbands"].Add(updated);
    window["bollingerbands"].Add(indicator.LowerBand);
    window["lowerband"].Add(indicator.DiperBand);
    window["middleband"].Add(indicator.BandWidth);
    window["bandwidth"].Add(indicator.BandWidth);
    window["percentb"].Add(indicator.PicentB);
    window["percentb"].Add(indicator.Price);
};

def UpdateBollingerBandWindow(sender: object, updated: IndicatorDataPoint) -> None:
    indicator = sender
    window["time"].Add(updated.EndTime)
    window["bollingerbands"].Add(updated.Value)
    window["lowerband"].Add (indicator.LowerBand.Current.Value)
    window["lowerband"].Add (indicator.WipderBand.Current.Value)
    window["upperband"].Add(indicator.WipderBand.Current.Value)
    window["bollingerBandWindow].Add(indicator.StandardDeviation.Current.Value)
    window["bandwidth"].Add(indicator.PercentB.Current.Value)
    window["bandwidth"].Add(indicator.PercentB.Current.Value)
    window["percentb"].Add(indicator.PercentB.Current.Value)
    window["standarddeviation"].Add(indicator.StandardDeviation.Current.Value)
    window["standarddeviation"].Add(indicator.PercentB.Current.Value)
    window["price"].Add(indicator.Price.Current.Value)
    window["standarddeviation"].Add(indicator.Price.Current.Value)
    window["standarddeviation"].Add(indicator.Price.Current.Value)
    window["standarddeviation"].Add(indicator.Price.Current.Value)
    window["standarddeviation"].Add(indicator.Price.Current.Value)
    window["standarddeviation"].Add(indicator.Price.Current.Value)
    window["standarddeviation"].Add(indicator.Price.Current.Value)
    window["standarddeviation"].Add(indicator.Price.Current.Value)
    window["standarddeviation"].Add(indicator.Price.Current.Value)
    window["standarddeviation"].Add(indicator.Price.Current.Value)
```

When the indicator receives new data, the preceding handler method adds the new $Indicator DataPoint\ values\ into\ the\ respective\ Rolling Window\ .$

4. Iterate through the historical market data and update the indicator.

```
foreach(var bar in history)
{
    bb.Update(bar.EndTime, bar.Close);
}
for bar in history:
    bb.Update(bar.EndTime, bar.Close)
```

5. Display the data.

```
Console.WriteLine($"time,{string.Join(',', window.Select(kvp => kvp.Key))}");
foreach (var i i Enumerable.Range(0, 5).Reverse())
{
   var data = string.Join(", ", window.Select(kvp => Math.Round(kvp.Value[i],6)));
   Console.WriteLine($"{time[i]:yyyyAMdd}, {data}");
}
```

6. Populate a DataFrame with the data in the RollingWindow objects.

```
bb_dataframe = pd.DataFrame(window).set_index('time')
```

Plot Indicators

Jupyter Notebooks don't currently support libraries to plot historical data, but we are working on adding the functionality. Until the functionality is added, use Python to plot data point indicators.

You need to create an indicator timeseries to plot the indicator values.

Follow these steps to plot the indicator values:

1. Select the columns/features to plot.

```
bb_plot = bb_indicator[["upperband", "middleband", "lowerband", "price"]]
```

2. Call the plot method.

```
bb_plot.plot(figsize=(15, 10), title="SPY BB(20,2)"))
```

3. Show the plots.

plt.show()

5.2 Bar Indicators

Introduction

This page explains how to create, update, and visualize LEAN bar indicators.

Create Subscriptions

You need to subscribe to some market data in order to calculate indicator values.

```
var qb = new QuantBook();
var symbol = qb.AddEquity("SPY").Symbol;
qb = QuantBook()
symbol = qb.AddEquity("SPY").Symbol
```

Create Indicator Timeseries

You need to subscribe to some market data and create an indicator in order to calculate a timeseries of indicator values. In this example, use a 20-period AverageTrueRange indicator.

```
var atr = new AverageTrueRange(20);
atr = AverageTrueRange(20)
```

You can create the indicator timeseries with the Indicator helper method or you can manually create the timeseries.

Indicator Helper Method

To create an indicator timeseries with the helper method, call the Indicator method.

```
var atrIndicator = qb.Indicator(atr, symbol, 50, Resolution.Daily);
atr_dataframe = qb.Indicator(atr, symbol, 50, Resolution.Daily)
```

Manually Create the Indicator Timeseries

Follow these steps to manually create the indicator timeseries:

1. Get some historical data

```
var history = qb.History(symbol, 70, Resolution.Daily);
history = qb.History[TradeBar](symbol, 70, Resolution.Daily)
```

2. Create a RollingWindow for each attribute of the indicator to hold their values.

```
var time = new RollingWindow<DateTime>(50);
var window = new Dictionary/string, RollingWindow<decimal>>();
window["averagetruerange"] = new RollingWindow<decimal>(50);
window["truerange"] = new RollingWindow<decimal>(50);
window = {}
window['time'] = RollingWindow[DateTime] (50)
window['averagetruerange'] = RollingWindow[float] (50)
window["truerange"] = RollingWindow[float] (50)
```

3. Attach a handler method to the indicator that updates the RollingWindow objects.

```
atr.Updated += (sender, updated) =>
      var indicator = (AverageTrueRange) sender;
time.Add(updated.EndTime);
window("averagetruerange"].Add(updated);
window["truerange"].Add(indicator.TrueRange);
def UpdateAverageTrueRangeWindow(sender: object, updated: IndicatorDataPoint) -> None:
       indicator = sender
window['time'].Add(updated.EndTime)
      window["averagetruerange"].Add(updated.Value)
window["truerange"].Add(indicator.TrueRange.Current.Value)
atr.Updated += UpdateAverageTrueRangeWindow
```

When the indicator receives new data, the preceding handler method adds the new Indicator DataPoint values into the respective RollingWindow.

4. Iterate through the historical market data and update the indicator.

```
foreach(var bar in history) {
    // Update the indicators with the whole bar.
    atr.Update(bar);
   for bar in history:
atr.Update(bar)
5. Display the data.
   \label{local_console} $$\operatorname{Console.WriteLine}(S^{"time, \{string.Join(',', window.Select(kvp => kvp.Key))\}");$ for each (var i in Enumerable.Range(0, 5).Reverse()) $$
        6. Populate a DataFrame with the data in the RollingWindow objects.
   atr dataframe = pd.DataFrame(window).set index('time')
```

Plot Indicators

Jupyter Notebooks don't currently support libraries to plot historical data, but we are working on adding the functionality. Until the functionality is added, use Python to plot bar indicators.

You need to create an indicator timeseries to plot the indicator values.

Follow these steps to plot the indicator values:

```
1. Call the plot method.
  atr_indicator.plot(title="SPY ATR(20)", figsize=(15, 10))
2. Show the plots.
```

plt.show()

5.3 Trade Bar Indicators

Introduction

This page explains how to create, update, and visualize LEAN TradeBar indicators.

Create Subscriptions

You need to subscribe to some market data in order to calculate indicator values.

```
var qb = new QuantBook();
var symbol = qb.AddEquity("SPY").Symbol;
qb = QuantBook()
symbol = qb.AddEquity("SPY").Symbol
```

Create Indicator Timeseries

You need to subscribe to some market data and create an indicator in order to calculate a timeseries of indicator values. In this example, use a 20-period <code>VolumeWeightedAveragePriceIndicator</code> indicator.

```
var vwap = new VolumeWeightedAveragePriceIndicator(20);
vwap = VolumeWeightedAveragePriceIndicator(20)
```

You can create the indicator timeseries with the Indicator helper method or you can manually create the timeseries.

Indicator Helper Method

To create an indicator timeseries with the helper method, call the Indicator method.

```
var vwapIndicator = qb.Indicator(vwap, symbol, 50, Resolution.Daily);
vwap_dataframe = qb.Indicator(vwap, symbol, 50, Resolution.Daily)
```

Manually Create the Indicator Timeseries

Follow these steps to create an indicator timeseries:

1. Get some historical data

```
var history = qb.History(symbol, 70, Resolution.Daily);
history = qb.History[TradeBar](symbol, 70, Resolution.Daily)
```

2. Create a RollingWindow for each attribute of the indicator to hold their values.

```
var time = new RollingWindow<DateTime>(50);
var window = new Dictionary<string, RollingWindow<decimal>>();
window["volumeweightedaveragepriceindicator"] = new RollingWindow<decimal>(50);
window = {}
window ['time'] = RollingWindow[DateTime](50)
window['volumeweightedaveragepriceindicator'] = RollingWindow[float](50)
```

 $3. \ \, \text{Attach a handler method to the indicator that updates the } \, \text{RollingWindow} \, \, \, \text{objects}.$

```
vwap.Updated += (sender, updated) =>
{
    time.Add(updated.EndTime);
    window["volumeweightedaveragepriceindicator"].Add(updated);
};

def UpdateVWAPWindow(sender: object, updated: IndicatorDataPoint) -> None:
    window['time'].Add(updated.EndTime)
    window['volumeweightedaveragepriceindicator"].Add(updated.Value)

    veap.Updated += UpdateVWAPWindow
```

When the indicator receives new data, the preceding handler method adds the new IndicatorDataPoint values into the respective RollingWindow.

4. Iterate through the historical market data and update the indicator.

```
foreach(var bar in history){
    // Update the indicators with the whole TradeBar.
    vwap.Update(bar);
}

for bar in history:
    vwap.Update(bar)

5. Display the data.

Console.WriteLine($"time, {string.Join(',', window.Select(kvp => kvp.Key))}");
    foreach (var i in Enumerable.Range(0, 5).Reverse())
{
       var data = string.Join(", ", window.Select(kvp => Math.Round(kvp.Value[i],6)));
       Console.WriteLine($"{time[i]:yyyyMMdd}, {data}");
}

6. Populate a DataFrame with the data in the RollingWindow objects.
       vwap dataframe = pd.DataFrame(window).set index('time')
```

Plot Indicators

Jupyter Notebooks don't currently support libraries to plot historical data, but we are working on adding the functionality. Until the functionality is added, use Python to plot TradeBar indicators.

Follow these steps to plot the indicator values:

```
. Call the plot method.
vwap_indicator.plot(title="SPY VWAP(20)", figsize=(15, 10))
```

2. Show the plots.

```
plt.show()
```

5.4 Combining Indicators

Introduction

This page explains how to create, update, and visualize LEAN Composite indicators.

Create Subscriptions

You need to subscribe to some market data in order to calculate indicator values.

```
var qb = new QuantBook();
var symbol = qb.AddEquity("SPY").Symbol;
qb = QuantBook()
symbol = qb.AddEquity("SPY").Symbol
```

Create Indicator Timeseries

You need to <u>subscribe to some market data</u> and create a composite indicator in order to calculate a timeseries of indicator values. In this example, use a 10-period SimpleMovingAverage of a 10-period RelativeStrengthIndex indicator.

```
var rsi = new RelativeStrengthIndex(10);
var sma = new SimpleMovingAverage(10);
var smaOfRsi = IndicatorExtensions.Of(sma, rsi);
rsi = RelativeStrengthIndex(10)
sma = SimpleMovingAverage(10)
sma_of_rsi = IndicatorExtensions.Of(sma, rsi)
```

Follow these steps to create an indicator timeseries:

1. Get some historical data

```
var history = qb.History(symbol, 70, Resolution.Daily);
history = qb.History[TradeBar](symbol, 70, Resolution.Daily)
```

2. Create a RollingWindow for each attribute of the indicator to hold their values.

In this example, save 50 data points.

```
var time = new RollingWindow<DateTime>(50);
var window = new Dictionary<string, RollingWindow<decimal>>();
window["MM Of RSI"] = new RollingWindow<decimal>(50);
window["rollingsum"] = new RollingWindow<decimal>(50);
window = {}
window [ 'time'] = RollingWindow [DateTime] (50)
window["MM Of RSI"] = RollingWindow[float] (50)
window["rollingsum"] = RollingWindow[float] (50)
```

3. Attach a handler method to the indicator that updates the RollingWindow objects.

When the indicator receives new data, the preceding handler method adds the new $IndicatorDataPoint\ values$ into the respective $RollingWindow\ .$

4. Iterate the $\underline{\text{historical market data}}$ to update the indicators and the $\underline{\text{RollingWindow}}$ s.

```
foreach(var bar in history) {
    // Update the base indicators, the composite indicator will update automatically when the base indicator is updated.
    rsi.Update(bar.EndTime, bar.Close);
}
for bar in history:
    rsi.Update(bar.EndTime, bar.Close)
Pirabutha data
```

5. Display the data.

```
Console.WriteLine($"time,{string.Join(',', window.Select(kvp => kvp.Key))}");
foreach (var i in Enumerable.Range(0, 5).Reverse())
{
    var data = string.Join(", ", window.Select(kvp => Math.Round(kvp.Value[i],6)));
    Console.WriteLine($"{time[i]:yyyyyMMdd}, {data}");
}
```

6. Populate a DataFrame with the data in the RollingWindow objects.

```
sma_of_rsi_dataframe = pd.DataFrame(window).set_index('time')
```

Plot Indicators

Jupyter Notebooks don't currently support libraries to plot historical data, but we are working on adding the functionality. Until the functionality is added, use Python to plot composite indicators.

Follow these steps to plot the indicator values:

1. Select the columns/features to plot.

```
sma_of_rsi_plot = sma_of_rsi_dataframe[["SMA Of RSI"]]
2. Call the plot method.
sma_of_rsi_plot.plot(title="SPY SMA(10) of RSI(10)", figsize=(15, 10))
3. Show the plots.
plt.show()
```

5.5 Custom Indicators

Introduction

This page explains how to create and update custom indicators.

Create Subscriptions

You need to subscribe to some market data in order to calculate indicator values

```
var qb = new QuantBook();
var symbol = qb.AddEquity("SPY").Symbol;
qb = QuantBook()
symbol = qb.AddEquity("SPY").Symbol
```

Create Indicator Timeseries

You need to subscribe to some market data in order to calculate a timeseries of indicator values.

Follow these steps to create an indicator timeseries:

Get some historical data .

```
var history = qb.History(symbol, 70, Resolution.Daily);
history = qb.History[TradeBar](symbol, 70, Resolution.Daily)
```

- 2. Define a custom indicator class that inherits from the Indicator superclass.
- 3. Define a custom indicator class. Note the PythonIndicator superclass inheritance, Value attribute, and Update method are mandatory.

In this tutorial, create an ExpectedShortfallPercent indicator that uses Monte Carlo to calculate the expected shortfall of returns. Use the WindowIndicator superclass instead of Indicator for using a period of historical data stored in a RollingWindow.

In this tutorial, create an ExpectedShortfallPercent indicator that uses Monte Carlo to calculate the expected shortfall of returns.

```
private decimal alpha;
     // Set up IndicatorDataPoint attributes for the indicator.
public IndicatorBase<IndicatorDataPoint> ValueAtRisk { get; }
     // Set up the WarmUpPeriod attribute to provide implementation of the IIndicatorWarmUpPeriodProvider interface.public override int WarmUpPeriod => Period;
    _alpha = alpha;
ValueAtRisk = new Identity("ES_VaR");
     // \  \, \text{Override the IsReady method to set up the flag of the Indicator and its IndicatorDataPoint attributes are ready.} \\ \text{public override bool IsReady} \Rightarrow \text{ValueAtRisk.IsReady;} \\
     // Mandatory: Override the ComputeNextValue method to calculate the indictor value. protected override decimal ComputeNextValue(IReadOnlyWindow<IndicatorDataPoint> window, IndicatorDataPoint input)
         if (Samples < 2)
return 0m;
          var n = Math.Min(Period, Samples);
var cutoff = (int) Math.Ceiling(n * _alpha);
          var samples = new List<decimal>();
for (int i = 0; i < window.Count - 1; i++)</pre>
               samples.Add( (window[i] - window[i+1]) / window[i+1] );
          var lowest = samples.OrderBy(x => x).Take(cutoff);
          ValueAtRisk.Update(input.Time, lowest.Last());
return lowest.Average();
class ExpectedShortfallPercent(PythonIndicator):
    import math, numpy as np
     def __init__(self, period, alpha):
    self.Value = None # Attribute represents the indicator value
          self.Value = None # A
self.ValueAtRisk = None
          self.window = RollingWindow[float](period)
     # Override the IsReady attribute to flag all attributes values are ready.
      @property
     def IsReady(self) -> bool:
    return self.Value and self.ValueAtRisk
       Method to update the indicator values. Note that it only receives 1 IBaseData object (Tick, TradeBar, QuoteBar) argument.
     def Update(self, input: BaseData) -> bool:
    count = self.window.Count
          self.window.Add(input.Close)
           \sp{\#} Update the Value and other attributes as the indicator current value. if count >= 2:
               count >= 2:
  cutoff = math.ceil(self.alpha * count)
               ret = [ (self.window[i] - self.window[i+1]) / self.window[i+1] for i in range(count-1) ]
lowest = sorted(ret)[:cutoff]
               self.Value = np.mean(lowest)
self.ValueAtRisk = lowest[-1]
          # return a boolean to indicate IsReady.
return count >= 2
```

4. Initialize a new instance of the custom indicator.

```
var es = new ExpectedShortfallPercent(50, 0.05m);
custom = ExpectedShortfallPercent(50, 0.05)
```

5. Create a RollingWindow for each attribute of the indicator to hold their values.

In this example, save 20 data points.

```
var time = new RollingWindow<DateTime>(20);
```

```
var window = new Dictionary<string, RollingWindow<decimal>>();
window["expectedshortfal1"] = new RollingWindow<decimal>(20);
window["valueatrisk"] = new RollingWindow<decimal>(20);
window = {}
window['time'] = RollingWindow[DateTime] (20)
window['expectedshortfall'] = RollingWindow[float] (20)
window['valueatrisk'] = RollingWindow[float] (20)
```

6. Attach a handler method to the indicator that updates the RollingWindow objects.

```
es.Updated += (sender, updated) =>
         var indicator = (ExpectedShortfallPercent) sender;
time.Add(updated.EndTime);
window(["expectedshortfall"].Add(updated);
window(["valueatrisk"].Add(indicator.ValueAtRisk.Current);
```

When the indicator receives new data, the preceding handler method adds the new IndicatorDataPoint values into the respective RollingWindow .

7. Iterate through the historical market data and update the indicator.

```
foreach(var bar in history) {
    es.Update(bar.EndTime, bar.Close);
    for bar in history: custom.Update(bar)
            # The Updated event handler is not available for custom indicator in Python, RollingWindows are needed to be updated in here.

if custom.IsReady:
   window['time'].Add(bar.EndTime)
   window['texpectedshortfall'].Add(custom.Value)
   window['valueatrisk'].Add(custom.ValueAtRisk)
8. Display the data.
    \label{local_console_write_line} $$\operatorname{Console.WriteLine}(\$"time, \{string.Join(',', window.Select(kvp => kvp.Key))}");$$ for each (var i in Enumerable.Range(0, 5).Reverse()) $$
           var data = string.Join(", ", window.Select(kvp => Math.Round(kvp.Value[i],6)));
Console.WriteLine($"{time[i]:yyyyMMdd], {data}");
9. Populate a DataFrame with the data in the RollingWindow objects.
    custom_dataframe = pd.DataFrame(window).set_index('time'))
```

Plot Indicators

Jupyter Notebooks don't currently support libraries to plot historical data, but we are working on adding the functionality. Until the functionality is added, use Python to plot custom indicators.

Follow these steps to plot the indicator values:

1. Call the plot method.

custom_dataframe.plot()

2. Show the plot.

plt.show()

5.6 Custom Resolutions

Introduction

This page explains how to create and update indicators with data of a custom resolution.

Create Subscriptions

You need to subscribe to some market data in order to calculate indicator values.

```
var qb = new QuantBook();
var symbol = qb.AddEquity("SPY").Symbol;
qb = QuantBook()
symbol = qb.AddEquity("SPY").Symbol
```

Create Indicator Timeseries

You need to subscribe to some market data and create an indicator in order to calculate a timeseries of indicator values.

Follow these steps to create an indicator timeseries:

1. Get some historical data.

```
var history = qb.History(symbol, 70, Resolution.Daily);
history = qb.History[TradeBar](symbol, 70, Resolution.Daily)
```

2. Create a data-point indicator.

In this example, use a 20-period 2-standard-deviation BollingerBands indicator.

```
var bb = new BollingerBands(20, 2);
bb = BollingerBands(20, 2)
```

3. Create a RollingWindow for each attribute of the indicator to hold their values.

```
var time = new RollingWindow<DateTime>(50);
var window = new Dictionary<string, RollingWindow<decimal>>();
var window = new Dictionary<string, RollingWindow<decimal>>(50);
window ["bollingerbands"] = new RollingWindow<decimal>(50);
window ["nowerband"] = new RollingWindow<decimal>(50);
window ["upperband"] = new RollingWindow<decimal>(50);
window ["upperband"] = new RollingWindow<decimal>(50);
window ["percenth"] = new RollingWindow<decimal>(50);
window ["percenth"] = new RollingWindow<decimal>(50);
window ["price"] = new RollingWindow<decimal>(50);
window ["standarddeviation"] = new RollingWindow<decimal>(50);
window ["brice"] = RollingWindow[DateTime] (50)
window ["billingerbands"] = RollingWindow[float] (50)
window ["bollingerband"] = RollingWindow[float] (50)
window ["bandwidth"] = RollingWindow[float] (50)
window ["bandwidth"] = RollingWindow[float] (50)
window ["percentb"] = RollingWindow[float] (50)
window ["percentb"] = RollingWindow[float] (50)
window ["price"] = RollingWindow[float] (50)
window ["price"] = RollingWindow[float] (50)
window ["price"] = RollingWindow[float] (50)
```

4. Attach a handler method to the indicator that updates the RollingWindow objects.

```
bb.Updated += (sender, updated) =>
{
    var indicator = (BollingerBands)sender;
    time.Add(updated.EndTime);
    window["bollingerbands"].Add(updated);
    window["lowerband"].Add(indicator.LowerBand);
    window["lowerband"].Add(indicator.UpderBand);
    window["upperband"].Add (indicator.BindleBand);
    window["upperband"].Add (indicator.BandWidth);
    window["bercenth"].Add (indicator.BandWidth);
    window["percenth"].Add (indicator.BercentB);
    window["percenth"].Add (indicator.PercentB);
    window["percenth"].Add (indicator.Price);
};

def UpdateBollingerBandWindow(sender: object, updated: IndicatorDataPoint) -> None:
    indicator = sender
    window['time'].Add (updated.EndTime)
    window['time'].Add (updated.Value)
    window["bollingerBandS"].Add (updated.Value)
    window["lowerband"].Add (indicator.LowerBand.Current.Value)
    window["middleband"].Add (indicator.WiddleBand.Current.Value)
    window["bandwidth"].Add (indicator.UpperBand.Current.Value)
    window["bandwidth"].Add (indicator.UpperBand.Current.Value)
    window["bandwidth"].Add (indicator.PercentB.Current.Value)
    window["price"].Add(indicator.PercentB.Current.Value)
    window["standarddeviation"].Add (indicator.StandardDeviation.Current.Value)
    window["price"].Add(indicator.PercentB.Current.Value)
    window["price"].Add(indicator.Price.Current.Value)
```

When the indicator receives new data, the preceding handler method adds the new ${\tt IndicatorDataPoint}$ values into the respective ${\tt RollingWindow}$.

5. Create a TradeBarConsolidator to consolidate data into the custom resolution.

```
var consolidator = new TradeBarConsolidator(TimeSpan.FromDays(7));
consolidator = TradeBarConsolidator(timedelta(days=7))
```

6. Attach a handler method to feed data into the consolidator and updates the indicator with the consolidated bars.

```
consolidator.DataConsolidated += (sender, consolidated) =>
{
   bb.Update(consolidated.EndTime, consolidated.Close);
};
consolidator.DataConsolidated += lambda sender, consolidated: bb.Update(consolidated.EndTime, consolidated.Close)
```

When the consolidator receives 7 days of data, the handler generates a 7-day ${\tt TradeBar}$ and update the indicator.

7. Iterate through the historical market data and update the indicator.

```
foreach(var bar in history)
{
    consolidator.Update(bar);
}

for bar in history:
    consolidator.Update(bar)

8. Display the data.

Console.WriteLine($"time, {string.Join(',', window.Select(kvp => kvp.Key))}");
    foreach (var i in Enumerable.Range(0, 5).Reverse())
{
        var data = string.Join(", ", window.Select(kvp => Math.Round(kvp.Value[i],6)));
        Console.WriteLine($"(time[i]:yyyyMMdd], {data}");
}
```


Plot Indicators

Jupyter Notebooks don't currently support libraries to plot historical data, but we are working on adding the functionality. Until the functionality is added, use Python to plot indicators.

Follow these steps to plot the indicator values:

1. Select the column to plot.

```
df = bb_dataframe[['lowerband', 'middleband', 'upperband', 'price']]
```

2. Call the plot method.

df.plot()

3. Show the plot.

plt.show()

6 Object Store

Introduction

The Object Store is a file system that you can use in your algorithms to save, read, and delete data. The Object Store is organization-specific, so you can save or read data from the same Object Store in all of your organization's projects. The Object Store works like a key-value storage system where you can store regular strings, JSON encoded strings, XML encoded strings, and bytes. You can access the data you store in the Object Store from backtests, the Research Environment, and live algorithms.

When you deploy live algorithms, the state of the Object Store is copied, but it never refreshes. Therefore, if you save data in the Object Store in a live algorithm, you can access the data from the live algorithm, backtests, and the Research Environment. However, if you save content into the Object Store from the Research Environment or a backtest after you deploy a live algorithm, you can't access the new content from the live algorithm.

Get All Stored Data

To get all of the keys and values in the Object Store, iterate through the ObjectStore object.

```
foreach (var kvp in qb.ObjectStore)
{
   var key = kvp.Key;
   var value = kvp.Value;
}
for kvp in qb.ObjectStore:
   key = kvp.Key
   value = kvp.Value
```

To iterate through just the keys in the Object Store, iterate through the Keys property.

```
foreach (var key in qb.ObjectStore.Keys)
{
    continue;
}
for key in qb.ObjectStore.Keys:
    continue
```

Create Sample Data

You need some data to store data in the Object Store.

Follow these steps to create some sample data:

Save Data

The Object Store saves objects under a key-value system. If you save objects in backtests, you can access them from the Research Environment.

 $If you \ run \ algorithms \ in \ Quant Connect \ Cloud, \ you \ need \ \underline{storage \ create \ permissions} \ to \ save \ data \ in \ the \ Object \ Store.$

If you don't have data to store, create some sample data.

You can save the following types of objects in the Object Store:

- Bytes objects
- string objects
- JSON objects
- XML-formatted objects

You can save Bytes and string objects in the Object Store.

Bytes

To save a Bytes object, call the SaveBytes method.

```
var saveSuccessful = qb.ObjectStore.SaveBytes($"{qb.ProjectId}/bytesKey", bytesSample)
save_successful = qb.ObjectStore.SaveBytes(f"{qb.ProjectId}/bytes_key", bytes_sample)
```

Strings

To save a string object, call the Save or SaveString method.

```
var\ saveSuccessful = qb.ObjectStore.Save($"(qb.ProjectId)/stringKey", stringSample); \\ save\_successful = qb.ObjectStore.Save(f"(qb.ProjectId)/string_key", string_sample) \\ \end{cases}
```

JSON

To save a JSON object, call the <code>SaveJson<T></code> method. This method helps to serialize the data into JSON format.

```
var saveSuccessful = qb.ObjectStore.SaveJson<Dictionary<string, int>>($"{qb.ProjectId}/jsonKey", dictSample);
```

XML

To save an XML-formatted object, call the SaveXml<T> method.

```
var saveSuccessful = qb.ObjectStore.SaveXml<XElement>($"{qb.ProjectId}/xmlKey", xmlSample);
```

Read Data

To read data from the Object Store, you need to provide the key you used to store the object.

You can load the following types of objects from the Object Store:

- Bytes objects
- string objects

- · JSON objects
- XML-formatted objects

You can load Bytes and string objects from the Object Store.

Before you read data from the Object Store, check if the key exists.

```
if (qb.ObjectStore.ContainsKey(key))
{
    // Read data
}
if qb.ObjectStore.ContainsKey(key):
    # Read data
```

Bytes

To read a Bytes object, call the ReadBytes method.

```
var bytesData = qb.ObjectStore.ReadBytes($"{qb.ProjectId}/bytesKey");
byte_data = qb.ObjectStore.ReadBytes(f"{qb.ProjectId}/bytes_key")
```

Strings

To read a string object, call the Read or ReadString method.

```
var stringData = qb.ObjectStore.Read($"{qb.ProjectId}/stringKey");
string_data = qb.ObjectStore.Read(f"{qb.ProjectId}/string_key")
```

JSON

To read a JSON object, call the ReadJson<T> method.

```
var jsonData = qb.ObjectStore.ReadJson<Dictionary<string, int>>($"{qb.ProjectId}/jsonKey");
```

XML

To read an XML-formatted object, call the ${\tt ReadXml< T>}$ method.

```
var xmlData = qb.ObjectStore.ReadXml<XElement>($"{qb.ProjectId}/xmlKey");
```

If you created the XML object from a dictionary, reconstruct the dictionary

```
var dict = xmlData.Elements().ToDictionary(x => x.Name.LocalName, x => int.Parse(x.Value));
```

Delete Data

Delete objects in the Object Store to remove objects that you no longer need. If you use the Research Environment in QuantConnect Cloud, you need storage delete permissions to delete data from the Object Store.

To delete objects from the Object Store, call the Delete method. Before you delete data, check if the key exists. If you try to delete an object with a key that doesn't exist in the Object Store, the method raises an exception.

```
if (qb.ObjectStore.ContainsKey(key))
{
    qb.ObjectStore.Delete(key);
}
if qb.ObjectStore.ContainsKey(key):
    qb.ObjectStore.Delete(key)
```

To delete all of the content in the Object Store, iterate through all the stored data

```
foreach (var kvp in qb.ObjectStore)
{
   qb.ObjectStore.Delete(kvp.Key);
}
for kvp in qb.ObjectStore:
   qb.ObjectStore.Delete(kvp.Key)
```

Cache Data

When you write to or read from the Object Store, the notebook caches the data. The cache speeds up the notebook execution because if you try to read the Object Store data again with the same key, it returns the cached data instead of downloading the data again. The cache speeds up execution, but it can cause problems if you are trying to share data between two nodes under the same Object Store key. For example, consider the following scenario:

- 1. You open project A and save data under the key 123
- 2. You open project B and save new data under the same key 123.
- 3. In project A, you read the Object Store data under the key 123, expecting the data from project B, but you get the original data you saved in step #1 instead.

You get the data from step 1 instead of step 2 because the cache contains the data from step 1.

To clear the cache, call the clear method.

```
qb.ObjectStore.Clear();
qb.ObjectStore.Clear()
```

Get File Path

To get the file path for a specific key in the Object Store, call the GetFilePath method. If the key you pass to the method doesn't already exist in the Object Store, it's added to the Object Store.

```
var filePath = qb.ObjectStore.GetFilePath(key);
file_path = qb.ObjectStore.GetFilePath(key)
```

Storage Quotas

If you use the Research Environment locally, you can store as much data as your hardware will allow. If you use the Research Environment in QuantConnect Cloud, you must stay within your storage quota. If you need more storage space, edit your storage plan.

Example

You can use the ObjectStore to plot data from your backtests and live algorithm in the Research Environment. In the following example, you will learn how to plot the Simple Moving Average indicator generated in a backtest.

1. Create a algorithm, add a data subscription and a Simple Moving Average indicator.

```
public class ObjectStoreChartingAlgorithm : QCAlgorithm
{
   private SimpleMovingAverage _sma;
   private string _content;

   public override void Initialize()
   {
      AddEquity("SPY", Resolution.Minute);
      _sma = SMA("SPY", 22);
   }
}
```

```
class ObjectStoreChartingAlgorithm(QCAlgorithm):
         def Initialize(self)
               self.AddEquity("SPY")
              self.content = ''
self.sma = self.SMA("SPY", 22)
   The algorithm will save \_\mathtt{content} self.content to the <code>ObjectStore</code> .
2. Save indicator data as string in content self.content .
   public override void OnData(Slice data)
         _content += $"{_sma.Current.EndTime},{_sma}\n";
   def OnData(self, data: Slice):
    self.Plot('SMA', 'Value', self.sma.Current.Value)
    self.content += f'{self.sma.Current.EndTime},{self.sma.Current.Value}\n'
3. To store the collected data, call the save method with a key.
   public override void OnEndOfAlgorithm()
         ObjectStore.Save("sma values csharp", content);
   def OnEndOfAlgorithm(self):
    self.ObjectStore.Save('sma_values_python', self.content)
4. Open the Research Environment, and create a {\tt QuantBook}\, .
    // Execute the following command in first #load "../Initialize.csx"
    // Create a QuantBook object
    #load "../QuantConnect.csx
   using QuantConnect;
using QuantConnect.Research;
   var qb = new QuantBook();
   qb = QuantBook()
5. To read data from the Object Store, call the Read method. You need to provide the key you used to store the object.
   var content = qb.ObjectStore.Read("sma_values_csharp");
   content = qb.ObjectStore.Read("sma_values_python")
6. Convert the data to a pandas object, and create a chart.
  data = {}
for line in content.split('\n'):
    csv = line.split(',')
    if len(csv) > 1:
        data[csv[0]] = float(csv[1])
   series = pd.Series(data, index=data.keys())
series.plot()
7. Import the Plotly.NET and Plotly.NET.LayoutObjects packages.
   #r "../Plotly.NET.dll"
    using Plotly.NET;
using Plotly.NET.LayoutObjects;
8. Create the Layout object, and set the title , xaxis , and yaxis properties.
   var layout = new Layout();
layout.SetValue("title", Title.init("SMA"));
   var xAxis = new LinearAxis();
xAxis.SetValue("title", "Time");
layout.SetValue("xaxis", xAxis);
   var yAxis = new LinearAxis();
yAxis.SetValue("title", "SMA");
layout.SetValue("yaxis", yAxis);
9. Convert the data to a list of DateTime objects for the chart x-axis and a list of decimal objects for the chart y-axis. Create a Chart 2D. Chart. Line object with the data
   var index = new List<DateTimee>();
var values = new List<decimal>();
    foreach (var line in content.Split('\n'))
         var csv = line.Split(',');
if (csv.Length > 1)
              index.Add(Parse.DateTime(csv[0]));
values.Add(decimal.Parse(csv[1]));
   var chart = Chart2D.Chart.Linee<DateTime, decimal, stringe>(index, values);
```

```
• Charts
• Statistics
   • Code

    Main.cs
    Research.ipynb

      2 Clone Algorithm
                                                                                                                                                                                                                 QUANTCONNECT
                                    Overall Statistics
                                    Total Trades
                                    Average Win
                                                                                                                 0%
                                    Average Loss
                                                                                                                 0%
                                    Compounding Annual Return
                                                                                                                 0%
                                    Drawdown
                                                                                                                 0%
                                    Expectancy
                                     Net Profit
                                                                                                                 0%
                                    Sharpe Ratio
                                                                                                                 0
                                    Probabilistic Sharpe Ratio
                                                                                                                 0%
                                    Loss Rate
                                                                                                                 0%
                                                                                                                 0%
                                    Win Rate
                                    Profit-Loss Ratio
                                    Alpha
                                                                                                                 0
                                    Beta
                                                                                                                 0
                                    Annual Standard Deviation
                                                                                                                 0
                                    Annual Variance
                                                                                                                 0
                                    Information Ratio
                                    Tracking Error
                                                                                                                 0.138
                                    Treynor Ratio
                                                                                                                 0
                                                                                                                 $0.00
                                    Total Fees
                                    Estimated Strategy Capacity
                                                                                                                 $0
                                    Lowest Capacity Asset
#region imports
using QuantConnect.Indicators;
using QuantConnect.Data;
using QuantConnect.Storage;
#endregion
namespace QuantConnect.Algorithm.CSharp
    public class ObjectStoreChartingAlgorithm : QCAlgorithm
  private SimpleMovingAverage sma;

• Charts
   • Statistics
   • <u>Code</u>

    main.py
    research.ipynb

     2 Clone Agorithm
                                                                                                                                                                                                                  QUANTCONNECT
                                    Overall Statistics
                                    Total Trades
                                    Average Win
                                                                                                                 0%
                                                                                                                 0%
                                    Average Loss
                                    Compounding Annual Return
                                                                                                                 0%
                                    Drawdown
                                    Expectancy
                                                                                                                 0
                                    Net Profit
                                                                                                                 0%
                                    Sharpe Ratio
Probabilistic Sharpe Ratio
                                                                                                                 0
                                                                                                                 0%
                                    Loss Rate
                                    Win Rate
                                                                                                                 0%
                                    Profit-Loss Ratio
                                                                                                                 0
                                                                                                                 0
                                    Alpha
                                    Beta
                                                                                                                 0
                                    Annual Standard Deviation
                                     Annual Variance
                                                                                                                  -1.692
                                    Information Ratio
                                    Tracking Error
                                                                                                                 0.138
                                    Treynor Ratio
                                                                                                                 $0.00
                                    Total Fees
                                    Estimated Strategy Capacity
                                    Lowest Capacity Asset
# region imports
from AlgorithmImports import *
# endregion
class ObjectStoreChartingAlgorithm(QCAlgorithm):
    def Initialize(self):
    self.SetStartDate(2023, 1, 1)  # Set Start Date
    self.SetCash(100000)  # Set Strategy Cash
    self.AddEouitv("SPY". Resolution.Minute)
```

7 Machine Learning

7.1 Key Concepts

Introduction

Machine learning is a field of study that combines statistics and computer science to build intelligent systems that predict outcomes. Quant researchers commonly use machine learning models to optimize portfolios, make trading signals, and manage risk. These models can find relationships in datasets that humans struggle to find, are subtle, or are too complex. You can use machine learning techniques in your research notebooks.

Supported Libraries

The following table shows the supported machine learning libraries:

Library	Research Tutoria	l Documentation
Keras	Tutorial	<u>Documentation</u>
TensorFlow	Tutorial	<u>Documentation</u>
Scikit-Learn	Tutorial	<u>Documentation</u>
hmmlearn	Tutorial	<u>Documentation</u>
gplearn	Tutorial	<u>Documentation</u>
PyTorch	Tutorial	<u>Documentation</u>
Stable Baseline	s <u>Tutorial</u>	<u>Documentation</u>
tslearn	Tutorial	<u>Documentation</u>
XGBoost	Tutorial	<u>Documentation</u>

Add New Libraries

To request a new library, <u>contact us</u>. We will add the library to the queue for review and deployment. Since the libraries run on our servers, we need to ensure they are secure and won't cause harm. The process of adding new libraries takes 2-4 weeks to complete. View the list of libraries currently under review on the <u>Issues list of the Lean GitHub repository</u>.

Transfer Models

You can load machine learning models from the Object Store or a custom data file like pickle. If you train a model in the Research Environment, you can also save it into the Object Store to transfer it to the backtesting and live trading environment.

7.2 Keras

Introduction

This page explains how to build, train, test, and store keras models.

Import Libraries

Import the keras libraries.

```
from tensorflow.keras import utils, models from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, Flatten from tensorflow.keras.optimizers import RMSprop
```

Get Historical Data

Get some historical market data to train and test the model. For example, to get data for the SPY ETF during 2020 and 2021, run:

```
qb = QuantBook()
symbol = qb.AddEquity("SPY", Resolution.Daily).Symbol
history = qb.History(symbol, datetime(2020, 1, 1), datetime(2022, 1, 1)).loc[symbol]
```

Prepare Data

You need some historical data to prepare the data for the model. If you have historical data, manipulate it to train and test the model. In this example, use the following features and labels:

Data Category Description

Features Daily percent change of the open, high, low, close, and volume of the SPY over the last 5 days

Labels Daily percent return of the SPY over the next day

The following image shows the time difference between the features and labels:

Follow these steps to prepare the data:

1. Call the pct_change and dropna methods.

```
daily_pct_change = history.pct_change().dropna()
```

2. Loop through the ${\tt daily_pct_change}$ DataFrame and collect the features and labels

```
n_steps = 5
features = []
labels = []
for i in range(len(daily_pct_change)-n_steps):
    features.append(daily_pct_change.iloc[i:i+n_steps].values)
    labels.append(daily_pct_change['close'].iloc[i+n_steps])
```

3. Convert the lists of features and labels into numpy arrays.

```
features = np.array(features)
labels = np.array(labels)
```

4. Split the data into training and testing periods.

```
train_length = int(len(features) * 0.7)
X train = features[:train_length]
X_test = features[train_length:]
y train = labels[:train_length]
y_test = labels[train_length:]
```

Train Models

You need to prepare the historical data for training before you train the model. If you have prepared the data, build and train the model. In this example, build a neural network model that predicts the future return of the SPY. Follow these steps to create the model:

1. Call the Sequential constructor with a list of layers.

Set the input_shape of the first layer to (5, 5) because each sample contains the percent change of 5 factors (percent change of the open, high, low, close, and volume) over the previous 5 days. Call the Flatten constructor because the input is 2-dimensional but the output is just a single value.

 $2. \ \ Call \ the \ {\tt compile} \ \ method \ with \ a \ loss \ function, \ an \ optimizer, \ and \ a \ list \ of \ metrics \ to \ monitor.$

3. Call the fit method with the features and labels of the training dataset and a number of epochs.

```
model.fit(X_train, y_train, epochs=5)
```

Test Models

You need to build and train the model before you test its performance. If you have trained the model, test it on the out-of-sample data. Follow these steps to test the model:

1. Call the ${\tt predict}\$ method with the features of the testing period.

```
y hat = model.predict(X test)
```

2. Plot the actual and predicted labels of the testing period.

```
results = pd.DataFrame(\{'y': y\_test.flatten(), 'y\_hat': y\_hat.flatten()\}) \\ df.plot(title='Model Performance: predicted vs actual %change in closing price')
```

Store Models

You can save and load keras models using the ObjectStore.

Save Models

Follow these steps to save models in the ObjectStore:

1. Set the key name of the model to be stored in the ObjectStore.

```
model_key = "model"
```

2. Call the GetFilePath method with the key.

```
file_name = qb.ObjectStore.GetFilePath(model_key)
```

This method returns the file path where the model will be stored.

3. Call the save method the file path.

model.save(file_name)

Load Models

You must save a model into the ObjectStore before you can load it from the ObjectStore. If you saved a model, follow these steps to load it:

1. Call the ${\tt ContainsKey}\,$ method with the model key.

qb.ObjectStore.ContainsKey(model_key)

This method returns a boolean that represents if the $model_key$ is in the ObjectStore. If the ObjectStore does not contain the $model_key$, save the $model_key$ before you proceed.

2. Call the GetFilePath method with the key name.

file name = qb.ObjectStore.GetFilePath(model key)

This method returns the path where the model is stored.

3. Call the load_model method with the file path.

loaded_model = load_model(file_name)

This method returns the saved model.

7.3 TensorFlow

Introduction

This page explains how to build, train, test, and store Tensorflow models.

Import Libraries

Import the tensorflow , sklearn , json5 $\ and$ google.protobuf $\ libraries$

```
import tensorflow as tf
from sklearn.model_selection import train_test_split
import json5
from google.protobuf import json_format
```

You need the sklearn library to prepare the data and the json5 and google.protobuf libraries to save models.

Get Historical Data

Get some historical market data to train and test the model. For example, to get data for the SPY ETF during 2020 and 2021, runs

```
 qb = \mbox{QuantBook()} \\ symbol = \mbox{qb.AddEquity("SPY", Resolution.Daily).Symbol} \\ history = \mbox{qb.History(symbol, datetime(2020, 1, 1), datetime(2022, 1, 1)).loc[symbol]}
```

Prepare Data

You need some historical data to prepare the data for the model. If you have historical data, manipulate it to train and test the model. In this example, use the following features and labels:

 Data Category
 Description

 Features
 The last 5 closing prices

 Labels
 The following day's closing price

Follow these steps to prepare the data:

1. Loop through the DataFrame of historical prices and collect the features.

```
lookback = 5
lookback series = []
for i in range(1, lookback + 1):
    df = history['close'].shift(i)[lookback:-1]
    df.name = f"close_-(i)"
    lookback series.append(df)
X = pd.concat(lookback_series, axis=1).reset_index(drop=True)
```

The following image shows the format of the features DataFrame:

2. Select the close column and then call the shift method to collect the labels.

```
Y = history['close'].shift(-1)
```

3. Drop the first 5 features and then call the reset_index method.

```
Y = Y[lookback:-1].reset_index(drop=True)
```

This method aligns the history of the features and labels.

4. Call the ${\tt train_text_split}$ method with the datasets and a split size.

For example, to use the last third of data to test the model, run:

```
X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.33, shuffle=False)
```

Train Models

You need to prepare the historical data for training before you train the model. If you have prepared the data, build and train the model. In this example, build a neural network model that predicts the future price of the SPY.

Build the Model

Follow these steps to build the model:

1. Call the ${\tt reset_default_graph}$ method

```
tf.reset_default_graph()
```

This method clears the default graph stack and resets the global default graph.

2. Call the Session constructor.

```
sess = tf.Session()
```

3. Declare the number of factors and then create placeholders for the input and output layers

```
num_factors = X_test.shape[1]
X = tf.placeholder(dtype=tf.float32, shape=[None, num_factors], name='X')
Y = tf.placeholder(dtype=tf.float32, shape=[None])
```

4. Set up the weights and bias initializers for each layer.

```
weight_initializer = tf.variance_scaling_initializer(mode="fan_avg", distribution="uniform", scale=1)
bias_initializer = tf.zeros_initializer()
```

5. Create hidden layers that use the Relu activator.

```
num_neurons_1 = 32
num_neurons_2 = 16
num_neurons_3 = 8

W_hidden_1 = tf.Variable(weight_initializer([num_factors, num_neurons_1]))
bias hidden_1 = tf.Variable(bias_initializer([num_neurons_1]))
hidden_1 = tf.nn.relu(tf.add(tf.matmul(X, W_hidden_1), bias_hidden_1))

W_hidden_2 = tf.Variable(weight_initializer([num_neurons_1, num_neurons_2]))
bias hidden_2 = tf.Variable(bias_initializer([num_neurons_2]))
hidden_2 = tf.nn.relu(tf.add(tf.matmul(hidden_1, W_hidden_2), bias_hidden_2))

W_hidden_3 = tf.Variable(weight_initializer([num_neurons_2, num_neurons_3]))
bias_hidden_3 = tf.Variable(bias_initializer([num_neurons_3]))
hidden_3 = tf.Nariable(weight_initializer([num_neurons_3]))
hidden_3 = tf.Nariable(bias_initializer([num_neurons_3]))
```

6. Create the output layer and give it a name.

```
W_out = tf.Variable(weight_initializer([num_neurons_3, 1]))
bias_out = tf.Variable(bias_initializer([1]))
output = tf.transpose(tf.add(tf.matmul(hidden_3, W_out), bias_out), name='outer')
```

This snippet creates a 1-node output for both weight and bias. You must name the output layer so you can access it after you load and save the model.

7. Set up the loss function and optimizers for gradient descent optimization and backpropagation.

```
loss = tf.reduce_mean(tf.squared_difference(output, Y))
optimizer = tf.train.AdamOptimizer().minimize(loss)
```

Use mean-square error as the loss function because the close price is a continuous data and use Adam as the optimizer because of its adaptive step size.

8. Set the batch size and number of epochs to bootstrap the training process.

```
batch_size = len(y_train) // 10
epochs = 20
```

Train the Model

Follow these steps to train the model:

1. Call the run method with the result from the global_variables_initializer method.

```
sess.run(tf.global_variables_initializer())
```

2. Loop through the number of epochs, select a subset of the training data, and then call the run method with the subset of data.

```
for _ in range(epochs):
    for i in range(0, len(y_train) // batch_size):
        start = i * batch_size
        batch_x = X_train[start:start + batch_size]
        batch_y = y_train[start:start + batch_size]
        sess.run(optimizer, feed_dict={X: batch_x, Y: batch_y})
```

Test Models

To test the model, we'll setup a method to plot test set predictions ontop of the SPY price.

```
def test_model(sess, output, title, X):
    prediction = sess.run(output, feed dict={X: X test})
    prediction = prediction.reshape(prediction.shape[1], 1)

    y_test.reset_index(drop=True).plot(figsize=(16, 6), label="Actual")
    plt.plot(prediction, label="Prediction")
    plt.title(title)
    plt.xlabel("Time step")
    plt.ylabel("SPY Price")
    plt.legend()
    plt.show()

test_model(sess, output, "Test Set Results from Original Model", X)
```

Store Models

You can save and load TensorFlow models using the ObjectStore.

Save Models

Follow these steps to save models in the ObjectStore:

1. Export the TensorFlow graph as a JSON object.

```
graph_definition = tf.compat.v1.train.export_meta_graph()
json_graph = json_format.MessageToJson(graph_definition)
```

2. Export the ${\tt TensorFlow}$ weights as a JSON object.

```
# Define a function to get the weights from the tensorflow session
def get json_weights(sess):
    weights = sess.run(tf.compat.v1.trainable_variables())
    weights = [w.tolist() for w in weights]
    weights list = json5.dumps(weights)
    return weights_list

json_weights = get json_weights(sess)
sess.close()    # Close the session opened by the `get_json_weights` function
```

3. Save the graph and weights to the ObjectStore .

```
qb.ObjectStore.Save('graph', json_graph)
qb.ObjectStore.Save('weights', json weights)
```

Load Models

You must save a model into the ObjectStore before you can load it from the ObjectStore. If you saved a model, follow these steps to load it:

1. Read the model graph and weights from the ${\tt ObjectStore}\,$.

```
json_graph = qb.ObjectStore.Read('graph')
json_weights = qb.ObjectStore.Read('weights')
```

2. Restore the ${\tt TensorFlow}$ graph from the JSON object.

```
tf.reset_default_graph()
graph_definition = json_format.Parse(json_graph, tf.compat.v1.MetaGraphDef())
sess = tf.Session()
tf.compat.v1.train.import_meta_graph(graph_definition)
```

3. Select the input and output tensors.

```
 \begin{tabular}{ll} $X = tf.compat.vl.get\_default\_graph().get\_tensor\_by\_name('X:0') \\ output = tf.compat.vl.get\_default\_graph().get\_tensor\_by\_name('outer:0') \\ \end{tabular}
```

4. Restore the model weights from the JSON object.

```
weights = [np.asarray(x) for x in json5.loads(json_weights)]
assign_ops = []
feed_dict = {}
vs = tf.compat.vl.trainable_variables()
zipped_values = zip(vs, weights)
for var, value in zipped_values:
    value = np.asarray(value)
    assign_placeholder = tf.placeholder(var.dtype, shape=value.shape)
    assign_op = var.assign(assign_placeholder)
    assign_ops.append(assign_op)
feed_dict[assign_placeholder] = value
sess.run(assign_ops, feed_dict=feed_dict)
```

7.4 Scikit-Learn

Introduction

This page explains how to build, train, test, and store Scikit-Learn / sklearn models

Import Libraries

Import the sklearn libraries

```
from sklearn.svm import SVR
from sklearn.model_selection import GridSearchCV from sklearn.model_selection import train_test_split import joblib
```

You need the joblib library to store models.

Get Historical Data

Get some historical market data to train and test the model. For example, to get data for the SPY ETF during 2020 and 2021, run:

```
qu = quantimeters();
symbol = qb.AddEquity("SPY", Resolution.Daily).Symbol
history = qb.History(symbol, datetime(2020, 1, 1), datetime(2022, 1, 1)).loc[symbol]
```

Prepare Data

You need some historical data to prepare the data for the model. If you have historical data, manipulate it to train and test the model. In this example, use the following features and labels:

Data Category Description

Features Daily percent change of the open, high, low, close, and volume of the SPY over the last 5 days

Daily percent return of the SPY over the next day Labels

The following image shows the time difference between the features and labels:

Follow these steps to prepare the data:

1. Call the pct change method and then drop the first row.

```
daily returns = history['close'].pct change()[1:]
```

 $2. \ \ Loop \ through \ the \ {\tt daily_returns} \ \ Data Frame \ and \ collect \ the \ features \ and \ labels.$

```
n_steps = 5
features = []
labels = []
for i in range(len(daily_returns)-n_steps):
    features.append(daily_returns.iloc[i:i+n_steps].values)
    labels.append(daily_returns.iloc[i+n_steps])
```

3. Convert the lists of features and labels into numpy arrays.

```
X = np.array(features)
y = np.array(labels)
```

4. Split the data into training and testing periods.

```
X train, X test, y train, y test = train test split(X, y)
```

Train Models

You need to prepare the historical data for training before you train the model. If you have prepared the data, build and train the model. In this example, build a Support Vector Regressor model and optimize its hyperparameters with grid search cross-validation. Follow these steps to create the model:

1. Set the choices of hyperparameters used for grid search testing

2. Call the GridSearchCV constructor with the SVR model, the parameter grid, a scoring method, the number of cross-validation folds

```
gsc = GridSearchCV(SVR(), param_grid, scoring='neg_mean_squared_error', cv=5)
```

3. Call the fit method and then select the best estimator

```
model = gsc.fit(X_train, y_train).best_estimator_
```

You need to build and train the model before you test its performance. If you have trained the model, test it on the out-of-sample data. Follow these steps to test the model:

1. Call the predict method with the features of the testing period.

```
y hat = model.predict(X test)
```

2. Plot the actual and predicted labels of the testing period.

```
 \label{eq:df}  df = pd.DataFrame(\{'y': y\_test.flatten(), 'y\_hat': y\_hat.flatten()\}) \\  df.plot(title='Model Performance: predicted vs actual %change in closing price', figsize=(15, 10))
```

Store Models

You can save and load sklearn models using the ObjectStore.

Save Models

Follow these steps to save models in the ObjectStore:

1. Set the key name of the model to be stored in the ObjectStore.

```
model key = "model"
```

2. Call the GetFilePath method with the key.

```
file_name = qb.ObjectStore.GetFilePath(model_key)
```

This method returns the file path where the model will be stored.

3. Call the dump method with the model and file path.

```
joblib.dump(model, file name)
```

If you dump the model using the joblib module before you save the model, you don't need to retrain the model

Load Models

You must save a model into the ObjectStore before you can load it from the ObjectStore. If you saved a model, follow these steps to load it:

1. Call the ContainsKey method with the model key.

qb.ObjectStore.ContainsKey(model_key)

This method returns a boolean that represents if the $model_key$ is in the ObjectStore. If the ObjectStore does not contain the $model_key$, save the $model_key$ before you proceed.

2. Call GetFilePath with the key.

file_name = qb.ObjectStore.GetFilePath(model_key)

This method returns the path where the model is stored.

3. Call load with the file path.

loaded_model = joblib.load(file_name)

This method returns the saved model.

7.5 Hmmlearn

Introduction

This page explains how to build, train, test, and store Hmmlearn models.

Import Libraries

Import the Hmmlearn library.

```
from hmmlearn import hmm import joblib
```

You need the joblib library to store models.

Get Historical Data

Get some historical market data to train and test the model. For example, to get data for the SPY ETF during 2020 and 2021, run:

```
qb = QuantBook()
symbol = qb.AddEquity("SPY", Resolution.Daily).Symbol
history = qb.History(symbol, datetime(2020, 1, 1), datetime(2022, 1, 1)).loc[symbol]
```

Prepare Data

You need some historical data to prepare the data for the model. If you have historical data, manipulate it to train and test the model. Follow these steps to prepare the data:

1. Select the close column of the historical data DataFrame.

```
closes = history['close']
```

2. Call the ${\tt pct_change}\$ method and then drop the first row.

```
daily_returns = closes.pct_change().iloc[1:]
```

3. Call the reshape method.

```
X = daily_returns.values.reshape(-1, 1)
```

Train Models

You need to prepare the historical data for training before you train the model. If you have prepared the data, build and train the model. In this example, assume the market has only 2 regimes and the market returns follow a Gaussian distribution. Therefore, create a 2-component Hidden Markov Model with Gaussian emissions, which is equivalent to a Gaussian mixture model with 2 means. Follow these steps to create the model:

1. Call the Gaussian HMM constructor with the number of components, a covariance type, and the number of iterations.

```
model = hmm.GaussianHMM(n_components=2, covariance_type="full", n_iter=100)
```

2. Call the fit method with the training data.

model.fit(X)

Test Models

You need to build and train the model before you test its performance. If you have trained the model, test it on the out-of-sample data. Follow these steps to test the model:

1. Call the predict method with the testing dataset.

```
y = model.predict(X)
```

2. Plot the regimes in a scatter plot.

```
plt.figure(figsize=(15, 10))
plt.scatter(ret.index, [f'Regime {n+1}' for n in y])
plt.title(f'(symbol) market regime')
plt.xlabel("time")
plt.show()
```

Store Models

You can save and load Hmmlearn models using the ObjectStore.

Save Models

Follow these steps to save models in the ObjectStore:

1. Set the key name of the model to be stored in the ObjectStore.

```
model_key = "model"
```

2. Call the GetFilePath method with the key.

```
file_name = qb.ObjectStore.GetFilePath(model_key)
```

This method returns the file path where the model will be stored.

3. Call the dump method with the model and file path.

```
joblib.dump(model, file_name)
```

If you dump the model using the joblib module before you save the model, you don't need to retrain the model

Load Models

You must save a model into the ObjectStore before you can load it from the ObjectStore. If you saved a model, follow these steps to load it:

1. Call the ContainsKey method.

```
qb.ObjectStore.ContainsKey(model_key)
```

This method returns a boolean that represents if the $model_key$ is in the ObjectStore. If the ObjectStore does not contain the $model_key$, save the model $_key$ before you proceed.

2. Call the ${\tt GetFilePath}\,$ method with the key.

```
file_name = qb.ObjectStore.GetFilePath(model_key)
```

This method returns the path where the model is stored.

3. Call the load method with the file path.

```
loaded_model = joblib.load(file_name)
```

This method returns the saved model.

7.6 Gplearn

Introduction

This page introduces how to build, train, test, and store GPlearn models.

Import Libraries

Import the GPlearn library.

from gplearn.genetic import SymbolicRegressor, SymbolicTransformer from sklearn.model_selection import train_test_split

You need the sklearn library to prepare the data and the joblib library to store models.

Get Historical Data

Get some historical market data to train and test the model. For example, to get data for the SPY ETF during 2020 and 2021, run:

```
qb = QuantBook()
qu = quantimeters();
symbol = qb.AddEquity("SPY", Resolution.Daily).Symbol
history = qb.History(symbol, datetime(2020, 1, 1), datetime(2022, 1, 1)).loc[symbol]
```

Prepare Data

You need some historical data to prepare the data for the model. If you have historical data, manipulate it to train and test the model. In this example, use the following features and labels:

Data Category Description

Features Daily percent change of the open, high, low, close, and volume of the SPY over the last 5 days

Labels Daily percent return of the SPY over the next day

The following image shows the time difference between the features and labels:

Follow these steps to prepare the data:

1. Call the pot change method and then drop the first row.

```
daily returns = history['close'].pct change()[1:]
```

2. Loop through the daily_returns DataFrame and collect the features and labels.

```
n_steps = 5
features = []
labels = []
for i in range(len(daily_returns)-n_steps):
    features.append(daily_returns.iloc[i:in_steps].values)
    labels.append(daily_returns.iloc[i+n_steps])
```

3. Convert the lists of features and labels into numpy arrays.

```
X = np.array(features)
y = np.array(labels)
```

4. Split the data into training and testing periods.

```
X_train, X_test, y_train, y_test = train_test_split(X, y)
```

Train Models

You need to prepare the historical data for training before you train the model. If you have prepared the data, build and train the model. In this example, create a Symbolic Transformer to generate new non-linear features and then build a Symbolic Regressor model. Follow these steps to create the model:

1. Declare a set of functions to use for feature engineering

2. Call the Symbolic Transformer constructor with the preceding set of functions.

3. Call the fit method with the training features and labels.

```
gp_transformer.fit(X_train, y_train)
```

This method displays the following output:

4. Call the transform method with the original features.

```
gp_features_train = gp_transformer.transform(X_train)
```

5. Call the hstack method with the original features and the transformed features.

```
new_X_train = np.hstack((X_train, gp_features_train))
```

6. Call the SymbolicRegressor constructor.

```
gp_regressor = SymbolicRegressor(random_state=0, verbose=1)
```

7. Call the fit method with the engineered features and the original labels.

```
gp_regressor.fit(new_X_train, y_train)
```

Test Models

You need to build and train the model before you test its performance. If you have trained the model, test it on the out-of-sample data. Follow these steps to test the model:

Feature engineer the testing set data.

```
\begin{array}{ll} gp\_features\_test = gp\_transformer.transform(X\_test) \\ new\_X\_test = np.hstack((X\_test, gp\_features\_test)) \end{array}
```

2. Call the predict method with the engineered testing set data.

```
y_predict = gp_regressor.predict(new_X_test)
```

3. Plot the actual and predicted labels of the testing period.

```
df = pd.DataFrame(('Real': y_test.flatten(), 'Predicted': y_predict.flatten()))
df.plot(title='Model Performance: predicted vs actual closing price', figsize=(15, 10))
plt.show()
```

4. Calculate the R-square value.

```
r2 = gp_regressor.score(new_X_test, y_test) print(f"The explained variance of the GP model: {r2*100:.2f}%")
```

Store Models

You can save and load GPlearn models using the ObjectStore.

Save Models

Follow these steps to save models in the ObjectStore:

1. Set the key names of the models to be stored in the ObjectStore.

```
transformer_key = "transformer"
regressor_key = "regressor"
```

2. Call the GetFilePath method with the key names.

```
transformer_file = qb.ObjectStore.GetFilePath(transformer_key)
regressor_file = qb.ObjectStore.GetFilePath(regressor_key)
```

This method returns the file paths where the models will be stored.

3. Call the dump method with the models and file paths.

```
joblib.dump(gp_transformer, transformer_file)
joblib.dump(gp_regressor, regressor_file)
```

If you dump the model using the <code>joblib</code> module before you save the model, you don't need to retrain the model.

Load Models

You must save a model into the ObjectStore before you can load it from the ObjectStore. If you saved a model, follow these steps to load it:

Call the ContainsKey method.

```
qb.ObjectStore.ContainsKey(transformer_key)
qb.ObjectStore.ContainsKey(regressor_key)
```

This method returns a boolean that represents if the $model_key$ is in the ObjectStore. If the ObjectStore does not contain the $model_key$, save the model $_key$ before you proceed.

2. Call the GetFilePath method with the keys.

```
transformer_file = qb.ObjectStore.GetFilePath(transformer_key)
regressor_file = qb.ObjectStore.GetFilePath(regressor_key)
```

This method returns the path where the model is stored.

3. Call the load method with the file paths.

```
loaded_transformer = joblib.load(transformer_file)
loaded_regressor = joblib.load(regressor_file)
```

This method returns the saved models.

7.7 PyTorch

Introduction

This page explains how how to build, train, test, and store PyTorch models.

Import Libraries

Import the torch , sklearn , and joblib libraries by the following:

```
import torch
from torch import nn
from sklearn.model_selection import train_test_split
import joblib
```

You need the sklearn library to prepare the data and the joblib library to store models.

Get Historical Data

Get some historical market data to train and test the model. For example, to get data for the SPY ETF during 2020 and 2021, runs

```
 qb = QuantBook() \\ symbol = qb.AddEquity("SPY", Resolution.Daily).Symbol \\ history = qb.History(symbol, datetime(2020, 1, 1), datetime(2022, 1, 1)).loc[symbol]
```

Prepare Data

You need some historical data to prepare the data for the model. If you have historical data, manipulate it to train and test the model. In this example, use the following features and labels:

 Data Category
 Description

 Features
 The last 5 closing prices

 Labels
 The following day's closing price

The following image shows the time difference between the features and labels:

Follow these steps to prepare the data:

1. Perform fractional differencing on the historical data.

```
df = (history['close'] * 0.5 + history['close'].diff() * 0.5)[1:]
```

Fractional differencing helps make the data stationary yet retains the variance information.

2. Loop through the df DataFrame and collect the features and labels.

```
n_steps = 5
features = []
labels = []
for i in range(len(df)-n_steps):
    features.append(df.iloc[i::+n_steps].values)
    labels.append(df.iloc[i+n_steps])
```

3. Convert the lists of features and labels into numpy arrays.

```
features = np.array(features)
labels = np.array(labels)
```

4. Standardize the features and labels

```
X = (features - features.mean()) / features.std()
y = (labels - labels.mean()) / labels.std()
```

5. Split the data into training and testing periods.

```
X_train, X_test, y_train, y_test = train_test_split(X, y)
```

Train Models

You need to prepare the historical data for training before you train the model. If you have prepared the data, build and train the model. In this example, create a deep neural network with 2 hidden layers. Follow these steps to create the model:

1. Define a subclass of nn. Module to be the model.

In this example, use the ReLU activation function for each laver.

2. Create an instance of the model and set its configuration to train on the GPU if it's available.

```
device = 'cuda' if torch.cuda.is_available() else 'cpu'
model = NeuralNetwork().to(device)
```

3. Set the loss and optimization functions.

In this example, use the mean squared error as the loss function and stochastic gradient descent as the optimizer.

```
loss_fn = nn.MSELoss()
learning_rate = 0.001
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)
```

4. Train the model.

In this example, train the model through 5 epochs.

```
epochs = 5
for t in range(epochs):
    print(f"Epoch (t+1)\n-----")

# Since we're using SGD, we'll be using the size of data as batch number.
for batch, (X, y) in enumerate(zip(X_train, y_train)):
    # Compute prediction and loss
    pred = model(X)
```

```
real = torch.from_numpy(np.array(y).flatten()).float()
loss = loss_fn(pred, real)
# Backpropagation
optimizer.zero_grad()
loss.backward()
optimizer.step()
if batch % 100 == 0:
   loss, current = loss.item(), batch
   print(f"loss: {loss:.5f} [{current:5d}/{len(X_train):5d}]")
```

Test Models

You need to build and train the model before you test its performance. If you have trained the model, test it on the out-of-sample data. Follow these steps to test the model:

1. Predict with the testing data

```
predict = model(X_test)
y_predict = predict.detach().numpy()  # Convert tensor to numpy ndarray
2. Plot the actual and predicted values of the testing period.
    df = pd.DataFrame(('Real': y_test.flatten(), 'Predicted': y_predict.flatten()))
df.plot(title='Model Performance: predicted vs actual standardized fractional return', figsize=(15, 10))
```

```
3. Calculate the R-square value.
     r2 = 1 - np.sum(np.square(y\_test.flatten() - y\_predict.flatten())) / np.sum(np.square(y\_test.flatten() - y\_test.mean())) \\ print(f"The explained variance by the model (r-square): {r2*100:.2f}%")
```

Store Models

You can save and load PyTorch models using the ObjectStore.

Save Models

Don't use the torch.save method to save models because the tensor data will be lost and corrupt the save. Follow these steps to save models in the ObjectStore:

1. Set the key name of the model to be stored in the ObjectStore.

```
model_key = "model'
```

2. Call the GetFilePath method with the key.

```
file name = qb.ObjectStore.GetFilePath(model key)
```

This method returns the file path where the model will be stored.

3. Call the dump method with the model and file path.

```
joblib.dump(model, file_name)
```

If you dump the model using the joblib module before you save the model, you don't need to retrain the model.

You must save a model into the ObjectStore before you can load it from the ObjectStore. If you saved a model, follow these steps to load it:

1. Call the ContainsKey method.

```
qb.ObjectStore.ContainsKey(model key)
```

This method returns a boolean that represents if the $model_key$ is in the ObjectStore. If the ObjectStore does not contain the $model_key$, save the $model_key$ before you proceed.

2. Call the GetFilePath method with the key.

```
file_name = qb.ObjectStore.GetFilePath(model_key)
```

This method returns the path where the model is stored.

3. Call the load method with the file path.

```
loaded model = joblib.load(file name)
```

This method returns the saved model.

7.8 Stable Baselines

Introduction

This page introduces how to use stable baselines library in Python for reinforcement machine learning (RL) model building, training, saving in the ObjectStore, and loading, through an example of a single-asset deep Q-network learning (DQN) trading bot.

Import Libraries

```
Import the stable_baselines , and gym .
import gym
from stable_baselines import DQN
from stable_baselines.deepq.policies import MlpPolicy
```

Get Historical Data

Get some historical market data to train and test the model. For example, to get data for the SPY ETF during 2020 and 2021, run:

```
qb = QuantBook()
symbol = qb.AddEquity("SPY", Resolution.Daily).Symbol
history = qb.History(symbol, datetime(2020, 1, 1), datetime(2022, 1, 1)).loc[symbol]
```

Prepare Data

You need some historical data to prepare the data for the model. If you have historical data, manipulate it to train and test the model. In this example, calculate the log return time-series of the securities:

```
ret = np.log(history/history.shift(1)).iloc[1:].close
```

Train Models

You need to prepare the historical data for training before you train the model. If you have prepared the data, build and train the environment and the model. In this example, create a gym environment to initialize the training environment, agent and reward. Then, create a RL model by DQN algorithm. Follow these steps to create the environment and the model:

1. Split the data for training and testing to evaluate our model.

```
X_train = history.iloc[:-50].values
X_test = history.iloc[-50:].values
y_train = ret.iloc[:-50].values
y_test = ret.iloc[-50:].values
```

2. Create a custom gym environment class.

In this example, create a custom environment with previous 5 OHLCV log-return data as observation and the highest portfolio value as reward.

```
class TradingEnv(gym.Env):
     metadata = {'render.modes': ['console']}
      FLAT = 0
      SHORT = 2
      def __init__(self, ohlcv, ret):
    super(TradingEnv, self).__init__()
            self.ohlcv = ohlcv
self.ret = ret
            self.trading_cost = 0.01
self.reward = 1
            # The number of step the training has taken, starts at 5 since we're using the previous 5 data for observation.
             self.current step :
            # The last action
            self.last_action = 0
            \sharp Define action and observation space \sharp Example when using discrete actions, we have 3: LONG, SHORT and FLAT. n_actions = 3
            n_actions = 3
self.action_space = gym.spaces.Discrete(n_actions)
# The observation will be the coordinate of the agent, shape for (5 previous data poionts, OHLCV)
self.observation_space = gym.spaces.Box(low=-np.inf, high=np.inf, shape=(5, 5), dtype=np.float64)
     def reset(self):
    # Reset the number of step the training has taken
    self.current_step = 5
    # Reset the last action
    self.last_action = 0
            # must return np.array type
return self.ohlcv[self.current_step-5:self.current_step].astype(np.float32)
      def step(self, action)
           step(seir, action):
if action == self.LONG:
    self.reward *= 1 + self.ret[self.current_step] - (self.trading_cost if self.last_action != action else 0)
elif action == self.SHORT:
    self.reward *= 1 + -1 * self.ret[self.current_step] - (self.trading_cost if self.last_action != action else 0)
           raise ValueError("Received invalid action={} which is not part of the action space".format(action))
            self.last action = action
            self.current_step += 1
           # Have we iterate all data points?
done = (self.current_step == self.ret.shape[0]-1)
            # Reward as return
            return self.ohlcv[self.current step-5:self.current step].astype(np.float32), self.reward, done, {}
      def render(self, mode='console'):
   if mode != 'console':
    raise NotImplementedError()
   print(f'Equity Value: {self.reward}')
```

3. Initialize the environment.

```
env = TradingEnv(X_train, y_train)
```

4. Train the model.

In this example, create a RL model and train with MLP-policy DQN algorithm

```
model = DQN(MlpPolicy, env, verbose=1
model.learn(total_timesteps=1000)
```

Test Models

You need to build and train the model, before you test its performance. If you have trained the model, test it on the out-of-sample data. Follow these steps to test the model:

1. Initialize a list to store the equity value with initial capital in each timestep, and variables to store last action and trading cost

```
equity = [1]
last action = 0
```

```
trading_cost = 0.01
```

2. Iterate each testing data point for prediction and trading.

```
for i in range(5, X test.shape[0]):
    action, _ = model.predict(X_test[i-5:i], deterministic=True)

if action == 0:
    new = equity[-1] * (1 - (trading_cost if last_action != action else 0))
    elif action == 1:
        new = equity[-1] * (1 + y_test[i] - (trading_cost if last_action != action else 0))
    elif action == 2:
        new = equity[-1] * (1 + -1 * y_test[i] - (trading_cost if last_action != action else 0))
    equity.append(new)
    last_action = action

3. Plot the result.

plt.figure(figsize=(15, 10))
    plt.title("Equity Curve")
    plt.ylabel("timestep")
    plt.ylabel("equity")
    plt.ylabel("equity")
    plt.plot(equity)
    plt.show()
```

Store Models

You can save and load stable baselines models using the ObjectStore.

Save Models

1. Set the key name of the model to be stored in the ObjectStore.

```
model_key = "model"
```

2. Call the GetFilePath method with the key.

```
file_name = qb.ObjectStore.GetFilePath(model_key)
```

This method returns the file path where the model will be stored.

3. Call the save method with the file path.

```
model.save(file_name)
```

Load Models

You must save a model into the ObjectStore before you can load it from the ObjectStore. If you saved a model, follow these steps to load it:

 $1. \ \, \textbf{Call the } \texttt{ContainsKey } \, \, \textbf{method.}$

```
qb.ObjectStore.ContainsKey(model_key)
```

This method returns a boolean that represents if the $model_key$ is in the ObjectStore. If the ObjectStore does not contain the $model_key$, save the model_key before you proceed.

2. Call the GetFilePath method with the key.

```
file_name = qb.ObjectStore.GetFilePath(model_key)
```

This method returns the path where the model is stored.

3. Call the load method with the file path, environment and policy.

```
loaded_model = DQN.load(file_name, env=env, policy=MlpPolicy)
```

This method returns the saved model.

7.9 Tslearn

Introduction

This page explains how to build, train, test, and store tslearn models.

Import Libraries

```
Import the tslearn libraries.
```

from tslearn.barycenters import softdtw_barycenter from tslearn.clustering import TimeSeriesKMeans

Get Historical Data

Get some historical market data to train and test the model. For example, get data for the securities shown in the following table:

Prepare Data

You need some historical data to prepare the data for the model. If you have historical data, manipulate it to train and test the model. In this example, standardize the log close price time-series of the securities. Follow these steps to prepare the data:

1. Unstack the historical DataFrame and select the close column.

```
close = history.unstack(0).close
```

2. Take the logarithm of the historical time series.

```
log close = np.log(close)
```

Taking the logarithm eases the compounding effect.

Standardize the data.

```
standard_close = (log_close - log_close.mean()) / log_close.std()
```

Train Models

Instead of using real-time comparison, we could apply a technique call Dynamic Time Wrapping (DTW) with Barycenter Averaging (DBA). Intuitively, it is a technique of averaging a few time-series into a single one without losing much of their information. Since not all time-series would move efficiently like in ideal EMH assumption, this would allow similarity analysis of different time-series with sticky lags. Check the technical details from tsleam documentation page.

We then can separate different clusters by KMean after DBA.

Test Models

We visualize the clusters and their corresponding underlying series.

1. Predict with the label of the data.

```
labels = km.predict(standard_close.T)
```

2. Create a class to aid plotting.

```
def plot_helper(ts):
    # plot all points of the data set
    for i in range(ts.shape[0]):
        plt.plot(ts[i, :], "k-", alpha=.2)

# plot the given barycenter of them
    barycenter = softdtw barycenter(ts, gamma=1.)
    plt.plot(barycenter, "r-", linewidth=2)
```

3. Plot the results.

```
j = 1
plt.figure(figsize=(15, 10))
for i in set(labels):
    # Select the series in the i-th cluster.
    X = standard_close.iloc[:, [n for n, k in enumerate(labels) if k == i]].values

    # Plot the series and barycenter-averaged series.
    plt.subplot(len(set(labels)) // 3 + (1 if len(set(labels))%3 != 0 else 0), 3, j)
    plt.title(f"Cluster {i+1}")
    plot_helper(X.T)
    j += 1
plt.show()
```

4. Display the groupings.

```
for i in set(labels):
    print(f"Cluster {i+1}: {standard_close.columns[[n for n, k in enumerate(labels) if k == i]]}")
```

Store Models

You can save and load tslearn models using the ObjectStore.

Save Models

Follow these steps to save models in the ObjectStore:

1. Set the key name of the model to be stored in the ObjectStore.

```
model_key = "model"
```

2. Call the GetFilePath method with the key.

```
file_name = qb.ObjectStore.GetFilePath(model_key)
```

This method returns the file path where the model will be stored.

3. Call the to_hdf5 method with the file path.

```
km.to_hdf5(file_name + ".hdf5")
```

Load Models

You must save a model into the ObjectStore before you can load it from the ObjectStore. If you saved a model, follow these steps to load it:

1. Call the ContainsKey method.

```
qb.ObjectStore.ContainsKey(model_key)
```

This method returns a boolean that represents if the $model_key$ is in the ObjectStore. If the ObjectStore does not contain the $model_key$, save the $model_key$ before you proceed.

2. Call the GetFilePath method with the key.

```
file_name = qb.ObjectStore.GetFilePath(model_key)
```

This method returns the path where the model is stored.

3. Call the from_hdf5 method with the file path.

```
loaded_model = TimeSeriesKMeans.from_hdf5(file_name + ".hdf5")
```

This method returns the saved model.

Reference

• F. Petitjean, A. Ketterlin, P. Gancarski. (2010). A global averaging method for dynamic time warping, with applications to clustering. Pattern Recognition. 44(2011). 678-693. Retreived from https://lig-membres.imag.fr/bisson/cours/M2INFO-AIW-ML/papers/PetitJean11.pdf

7.10 XGBoost

Introduction

This page explains how to build, train, test, and store XGBoost models.

Import Libraries

Import the ${\tt xgboost}$, ${\tt sklearn}$, and ${\tt joblib}$ libraries.

```
import xgboost as xgb
from sklearn.model_selection import train_test_split
import ioblib
```

You need the sklearn library to prepare the data and the joblib library to save models.

Get Historical Data

Get some historical market data to train and test the model. For example, to get data for the SPY ETF during 2020 and 2021, run:

```
 \begin{aligned} &qb = \text{QuantBook()} \\ &symbol = &qb. \text{AddEquity("SPY", Resolution.Daily).Symbol} \\ &history = &qb. \text{History(symbol, datetime(2020, 1, 1), datetime(2022, 1, 1)).loc[symbol]} \end{aligned}
```

Prepare Data

You need some historical data to prepare the data for the model. If you have historical data, manipulate it to train and test the model. In this example, use the following features and labels:

Data Category Description Features The last 5 closing prices Labels The following day's closing price

The following image shows the time difference between the features and labels:

Follow these steps to prepare the data:

1. Perform fractional differencing on the historical data.

```
df = (history['close'] * 0.5 + history['close'].diff() * 0.5)[1:]
```

Fractional differencing helps make the data stationary yet retains the variance information.

2. Loop through the df DataFrame and collect the features and labels.

```
n_steps = 5
features = []
labels = []
for i in range(len(df)-n_steps):
    features.append(df.iloc[i:i+n_steps].values)
    labels.append(df.iloc[i+n_steps])
```

3. Convert the lists of features and labels into numpy arrays.

```
features = np.array(features)
labels = np.array(labels)
```

4. Standardize the features and labels

```
X = (features - features.mean()) / features.std()
y = (labels - labels.mean()) / labels.std()
```

5. Split the data into training and testing periods.

```
X_train, X_test, y_train, y_test = train_test_split(X, y)
```

Train Models

We're about to train a gradient-boosted random forest for future price prediction.

1. Split the data for training and testing to evaluate our model.

```
X_train, X_test, y_train, y_test = train_test_split(X, y)
```

2. Format training set into XGBoost matrix.

```
dtrain = xgb.DMatrix(X_train, label=y_train)
```

3. Train the model with parameters.

```
params = {
    'booster': 'gbtree',
    'colsample_bynode': 0.8,
    'learning_rate': 0.1,
    'lambda': 0.1,
    'max_depth': 5,
    'num_parallel_tree': 100,
    'objective': 'reg:squarederror',
    'subsample': 0.8,
}
model = xgb.train(params, dtrain, num_boost_round=10)
```

Test Models

We then make predictions on the testing data set. We compare our Predicted Values with the Expected Values by plotting both to see if our Model has predictive power.

1. Format testing set into XGBoost matrix.

```
dtest = xgb.DMatrix(X_test, label=y_test)
```

2. Predict with the testing set data.

```
y_predict = model.predict(dtest)
```

3. Plot the result.

```
df = pd.DataFrame({'Real': y_test.flatten(), 'Predicted': y_predict.flatten()})
df.plot(title='Model Performance: predicted vs actual closing price', figsize=(15, 10))
plt.show()
```

Store Models

Saving the Model

We dump the model using the joblib module and save it to ObjectStore file path. This way, the model doesn't need to be retrained, saving time and computational resources

1. Set the key name of the model to be stored in the ObjectStore.

```
model_key = "model"
```

2. Call GetFilePath with the key's name to get the file path.

```
file_name = qb.ObjectStore.GetFilePath(model_key)
```

3. Call dump with the model and file path to save the model to the file path.

```
joblib.dump(model, file_name)
```

Loading the Model

Let's retrieve the model from ${\tt ObjectStore}\$ file path and load by ${\tt joblib}\$.

1. Call the ContainsKey method.

```
qb.ObjectStore.ContainsKey(model_key)
```

This method returns a boolean that represents if the $model_key$ is in the ObjectStore. If the ObjectStore does not contain the $model_key$, save the $model_key$ before you proceed.

2. Call GetFilePath with the key's name to get the file path.

```
file_name = qb.ObjectStore.GetFilePath(model_key)
```

3. Call load with the file path to fetch the saved model.

```
loaded_model = joblib.load(file_name)
```

To ensure loading the model was successfuly, let's test the model.

```
y_pred = loaded_model.predict(dtest)
df = pd.DataFrame({'Real': y_test.flatten(), 'Predicted': y_pred.flatten()})
df.plot(title='Model Performance: predicted vs actual closing price', figsize=(15, 10))
```

7.11 Aesera

Introduction

This page explains how to build, train, test, and store Aesera models.

Import Libraries

Import the aesera , and sklearn libraries.

```
import aesara
import aesara.tensor as at
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import MinMaxScaler
import joblib
```

You need the joblib library to store models

Get Historical Data

Get some historical market data to train and test the model. For example, to get data for the SPY ETF during 2020 and 2021, run:

```
 \begin{aligned} &qb = \text{QuantBook()} \\ &\text{symbol} = &qb.\text{AddEquity("SPY", Resolution.Daily).Symbol} \\ &\text{history} = &qb.\text{History(symbol, datetime(2020, 1, 1), datetime(2022, 1, 1)).loc[symbol]} \end{aligned}
```

Prepare Data

You need some historical data to prepare the data for the model. If you have historical data, manipulate it to train and test the model. In this example, use the following features and labels:

Data Category Description

Features Normalized close price of the SPY over the last 5 days Labels Return direction of the SPY over the next day

The following image shows the time difference between the features and labels:

Follow these steps to prepare the data:

1. Obtain the close price and return direction series.

```
\label{loss} $$ \begin{array}{ll} close = history['close'] \\ returns = data['close'].pct\_change().shift(-1)[lookback*2-1:-1].reset\_index(drop=True) \\ labels = pd.Series([1 if y > 0 else 0 for y in returns]) & $$ $$ binary $class $$ $$ $$ $$ $$
```

2. Loop through the close Series and collect the features.

```
lookback = 5
lookback_series = []
for i in range(1, lookback + 1):
    df = data['close'].shift(i)[lookback:-1]
    df.name = f"close-{i}"
    lookback_series.append(df)
X = pd.concat(lookback_series, axis=1)
# Normalize using the 5 day interval
X = MinMaxScaler().fit_transform(X.T).T[4:]
```

3. Convert the lists of features and labels into numpy arrays.

```
X = np.array(features)
y = np.array(labels)
```

4. Split the data into training and testing periods.

```
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
```

Train Models

You need to prepare the historical data for training before you train the model. If you have prepared the data, build and train the model. In this example, build a Logistic Regression model with log loss cross entropy and square error as cost function. Follow these steps to create the model:

1. Generate a dataset.

```
# D = (input_values, target_class)
D = (np.array(X_train), np.array(y_train))
```

2. Initialize variables.

```
# Declare Aesara symbolic variables
x = at.dmatrix("x")
y = at.dvector("y")
# initialize the weight vector w randomly using share so model coefficients keep their values
# between training iterations (updates)
rng = np.random.default_rng(100)
w = aesara.shared(rng.standard_normal(X.shape[1]), name="w")
# initialize the bias term
b = aesara.shared(O., name="b")
```

3. Construct the model graph.

4. Compile the model.

5. Train the model with training dataset.

```
pred, err = train(D[0], D[1])

# We can also inspect the final outcome
print("Final model:")
print(w.get_value())
print(b.get_value())
print("target values for D:")
print(D[1])
print("prediction on D:")
print(predict(D[0]))  # whether > 0.5 or not
```

Test Models

You need to build and train the model before you test its performance. If you have trained the model, test it on the out-of-sample data. Follow these steps to test the model:

1. Call the predict method with the features of the testing period.

```
y_hat = predict(np.array(X_test))
```

2. Plot the actual and predicted labels of the testing period.

```
\label{eq:df} \begin{split} & df = pd.DataFrame(\{'y': y\_test, 'y\_hat': y\_hat\}).astype(int) \\ & df.plot(title='Model Performance: predicted vs actual return direction in closing price', figsize=(12, 5)) \end{split}
```

3. Calculate the prediction accuracy.

```
correct = sum([1 if x==y else 0 for x, y in zip(y_test, y_hat)])
print(f"Accuracy: {correct}/{y_test.shape[0]} ({correct/y_test.shape[0]}%)")
```

Store Models

You can save and load aesera models using the ObjectStore.

Save Models

Follow these steps to save models in the ObjectStore:

1. Set the key name of the model to be stored in the ObjectStore.

```
model_key = "model"
```

2. Call the GetFilePath method with the key.

```
file_name = qb.ObjectStore.GetFilePath(model_key)
```

This method returns the file path where the model will be stored.

3. Call the dump method with the model and file path.

```
joblib.dump(predict, file_name)
```

If you dump the model using the joblib module before you save the model, you don't need to retrain the model.

Load Models

You must save a model into the ObjectStore before you can load it from the ObjectStore. If you saved a model, follow these steps to load it:

1. Call the ContainsKey method with the model key.

```
qb.ObjectStore.ContainsKey(model_key)
```

This method returns a boolean that represents if the $model_key$ is in the ObjectStore. If the ObjectStore does not contain the $model_key$, save the model using the $model_key$ before you proceed.

2. Call GetFilePath with the key.

```
file_name = qb.ObjectStore.GetFilePath(model_key)
```

This method returns the path where the model is stored.

3. Call load with the file path.

```
loaded_model = joblib.load(file_name)
```

This method returns the saved model.

8 Debugging

Introduction

The debugger is a built-in tool to help you debug coding errors while in the Research Environment. The debugger enables you to slow down the code execution, step through the program line-by-line, and inspect the variables to understand the internal state of the notebook.

The Research Environment debugger isn't currently available for C#.

Breakpoints

Breakpoints are lines in your notebook where execution pauses. You need at least one breakpoint in your notebook to start the debugger. Open a project to start adjusting its breakpoints.

Add Breakpoints

Click to the left of a line to add a breakpoint on that line

Edit Breakpoint Conditions

Follow these steps to customize what happens when a breakpoint is hit:

- 1. Right-click the breakpoint and then click Edit Breakpoint...
- 2. Click one of the options in the following table:

Additional Steps Description Option

 $Expression \ Enter\ an\ expression\ and\ then\ press\ Enter\ .\ The\ breakpoint\ only\ pauses\ the\ notebook\ when\ the\ expression\ is\ true.$

Hit Count Enter an integer and then press Enter . The breakpoint doesn't pause the notebook until its hit the number of times you specify.

Enable and Disable Breakpoints

To enable a breakpoint, right-click it and then click Enable Breakpoint.

To disable a breakpoint, right-click it and then click Disable Breakpoint

Follow these steps to enable and disable all breakpoints:

- 1. In the right navigation menu, click the Run and Debug icon.
- 2. In the Run and Debug panel, hover over the Breakpoints section and then click the Toggle Active Breakpoints icon.

Remove Breakpoints

To remove a breakpoint, right-click it and then click Remove Breakpoint .

Follow these steps to remove all breakpoints:

- Run and Debug icon. 1. In the right navigation menu, click the
- 2. In the Run and Debug panel, hover over the Breakpoints section and then click the a Remove All Breakpoints icon.

Launch Debugger

Follow these steps to launch the debugger:

- 1. Open the project you want to debug.
- Open the notebook file in your project.
- In a notebook cell, add at least one breakpoint.
 In the top-left corner of the cell, click the drop-down arrow and then click Debug Cell.

If the Run and Debug panel is not open, it opens when the first breakpoint is hit.

Control Debugger

After you launch the debugger, you can use the following buttons to control it:

Button	Name	Default Keyboard Shortcut	Description
	Continue		Continue execution until the next breakpoint
	Step Over	Alt+F10	Step to the next line of code in the current or parent scope
	Step Into	Alt+F11	Step into the definition of the function call on the current line
	Restart	Shift+F11	Restart the debugger
	Disconnect	Shift+F5	Exit the debugger

Inspect Variables

After you launch the debugger, you can inspect the state of your notebook as it executes each line of code. You can inspect local variables or custom expressions. The values of variables in your notebook are formatted in the IDE to improve readability. For example, if you inspect a variable that references a DataFrame, the debugger represents the variable value as the following:

Local Variables

The Variables section of the Run and Debug panel shows the local variables at the current breakpoint. If a variable in the panel is an object, click it to see its members. The panel updates as the notebook runs.

Follow these steps to update the value of a variable:

- 1. In the Run and Debug panel, right-click a variable and then click Set Value .
- 2. Enter the new value and then press Enter.

Custom Expressions

The Watch section of the Run and Debug panel shows any custom expressions you add. For example, you can add an expression to show a datetime object.

Follow these steps to add a custom expression:

- 1. Hover over the Watch section and then click the plus icon that appears.
- 2. Enter an expression and then press Enter.

9 Meta Analysis

9.1 Key Concepts

Introduction

Understanding your strategy trades in detail is key to attributing performance, and determining areas to focus for improvement. This analysis can be done with the QuantConnect API. We enable you to load backtest, optimization, and live trading results into the Research Environment.

Backtest Analysis

Load your backtest results into the Research Environment to analyze trades and easily compare them against the raw backtesting data. For more information on loading and manipulating backtest results, see Backtest Analysis

Optimization Analysis

Load your optimization results into the Research Environment to analyze how different combinations of parameters affect the algorithm's performance. For more information on loading and manipulating optimizations results, see Optimization Analysis.

Live Analysis

Load your live trading results into the Research Environment to compare live trading performance against simulated backtest results, or analyze your trades to improve your slippage and fee models. For more information on loading and manipulating live trading results, see <u>Live Analysis</u>.

9.2 Backtest Analysis

Introduction

Load your backtest results into the Research Environment to analyze trades and easily compare them against the raw backtesting data. Compare backtests from different projects to find uncorrelated strategies to combine for better performance.

Loading your backtest trades allows you to plot fills against detailed data, or locate the source of profits. Similarly you can search for periods of high churn to reduce turnover and trading fees.

Read Backtest Results

To get the results of a backtest, call the ReadBacktest method with the project Id and backtest ID.

```
#load "../Initialize.csx"
#load "../QuantConnect.csx"
using QuantConnect;
using QuantConnect.Api;
var backtest = api.ReadBacktest(projectId, backtestId);
backtest = api.ReadBacktest(project id, backtest id)
```

To get the project Id, open the project in the Algorithm Lab and check the URL. For example, the project Id of https://www.quantconnect.com/project/13946911 is 13946911.

To get the backtest Id, open a backtest result in the Algorithm Lab and check the last line of its log file. An example backtest Id is 97e7717f387cadd070e4b77015aacece.

Note that this method returns a snapshot of the backtest at the current moment. If the backtest is still executing, the result won't include all of the backtest data.

The ReadBacktest method returns a Backtest object, which have the following attributes:

Plot Order Fills

Follow these steps to plot the daily order fills of a backtest:

1. Get the backtest orders.

```
orders = api.ReadBacktestOrders(project_id, backtest_id)
```

To get the project Id, open the project in the Algorithm Lab and check the URL. For example, the project Id of https://www.quantconnect.com/project/13946911 is 13946911.

To get the backtest Id, open a backtest result in the Algorithm Lab and check the last line of its log file. An example backtest Id is 97e7717f587cadd070e4b77015aacece.

The ReadBacktestOrders method returns a list of Order objects, which have the following properties:

2. Organize the trade times and prices for each security into a dictionary.

```
class OrderData:
    def __init__ (self):
        self.buy_fill_times = []
        self.buy_fill_prices = []
        self.buy_fill_prices = []
        self.sell_fill_times = []
        self.sell_fill_prices = []

order_data_by_symbol = {}

for order in orders:
    if order.Symbol not in order_data_by_symbol:
        order_data_by_symbol[order.Symbol] = OrderData()
    order_data = order_data_by_symbol[order.Symbol]
    is_buy = order.Quantity > 0
    (order_data.buy_fill_times if is_buy_else_order_data.sell_fill_times).append(order.LastFillTime.date())
    (order_data.buy_fill_prices if is_buy_else_order_data.sell_fill_prices).append(order.Price)
```

3. Get the price history of each security you traded.

```
qb = QuantBook()
start_date = datetime.max.date()
end_date = datetime.min.date()
for symbol, order_data in order_data_by_symbol.items():
    start_date = min(start_date, min(order_data.buy_fill_times), min(order_data.sell_fill_times))
    end_date = max(end_date, max(order_data.buy_fill_times), max(order_data.sell_fill_times))
start_date = timedelta(days=1)
all_history = qb.History(list(order_data_by_symbol.keys()), start_date, end_date, Resolution.Daily)
```

4. Create a candlestick plot for each security and annotate each plot with buy and sell markers.

Note: The preceding plots only show the last fill of each trade. If your trade has partial fills, the plots only display the last fill.

Plot Metadata

Follow these steps to plot the equity curve, benchmark, and drawdown of a backtest:

Get the backtest instance.

```
backtest = api.ReadBacktest(project_id, backtest_id)
```

To get the project Id, open the project in the Algorithm Lab and check the URL. For example, the project Id of https://www.quantconnect.com/project/13946911 is 13946911.

To get the backtest Id, open a backtest result in the Algorithm Lab and check the last line of its log file. An example backtest Id is 97e7717f387cadd070e4b77015aacece.

2. Get the "Strategy Equity", "Drawdown", and "Benchmark" Chart objects.

```
equity_chart = backtest.Charts["Strategy Equity"]
drawdown chart = backtest.Charts["Drawdown"]
benchmark_chart = backtest.Charts["Benchmark"]
```

3. Get the "Equity", "Equity Drawdown", and "Benchmark" series from the preceding charts.

```
equity = equity_chart.Series["Equity"].Values
drawdown = drawdown_chart.Series["Equity Drawdown"].Values
benchmark = benchmark_chart.Series["Benchmark"].Values
```

4. Create a pandas.DataFrame from the series values.

```
df = pd.DataFrame({
    "Equity": pd.Series({datetime.fromtimestamp(value.x): value.y for value in equity}),
    "Drawdown": pd.Series({datetime.fromtimestamp(value.x): value.y for value in drawdown)),
    "Benchmark": pd.Series({datetime.fromtimestamp(value.x): value.y for value in benchmark}))).ffill()
```

5. Plot the performance chart.

```
# Create subplots to plot series on same/different plots
fig, ax = plt.subplots(2, 1, figsize=(12, 12), sharex=True, gridspec_kw={'height_ratios': [2, 1]})

# Plot the equity curve
ax[0].plot(df.index, df["Equity"])
ax[0].set_title("Strategy Equity Curve")
ax[0].set_ylabel("Portfolio Value ($)")

# Plot the benchmark on the same plot, scale by using another y-axis
ax2 = ax[0].twinx()
ax2.plot(df.index, df["Benchmark"], color="grey")
ax2.pst_ylabel("Benchmark Price ($)", color="grey")

# Plot the drawdown on another plot
ax[1].plot(df.index, df["Drawdown"], color="red")
ax[1].set_title("Drawdown")
ax[1].set_xlabel("Time")
ax[1].set_ylabel("%")
```

The following table shows all the chart series you can plot:

Chart	Series	Description
Strategy Equity	Equity	Time series of the equity curve
	Daily Performance	Time series of daily percentage change
Capacity	Strategy Capacity	Time series of strategy capacity snapshots
Drawdown	Equity Drawdown	Time series of equity peak-to-trough value
Benchmark	Benchmark	Time series of the benchmark closing price (SPY, by default)
Exposure	SecurityType - Long Ratio	Time series of the overall ratio of SecurityType long positions of the whole portfolio if any SecurityType is ever in the universe
	SecurityType - Short Ratio	Time series of the overall ratio of SecurityType short position of the whole portfolio if any SecurityType is ever in the universe
Custom Chart	Custom Series	Time series of a Series in a custom chart

9.3 Optimization Analysis

Introduction

Load your optimization results into the Research Environment to analyze how different combinations of parameters affect the algorithm's performance.

Read Optimization Results

To get the results of an optimization, call the ${\tt ReadOptimization}$ method with the optimization Id.

var optimization = api.ReadOptimization(optimizationId);
optimization = api.ReadOptimization(optimization_id)

To get the optimization Id, check the Cloud Terminal when you run an optimization in the Algorithm Lab. An example optimization Id is O-696d861d6dbbed45a8442659bd24e59f.

 $\label{thm:condition} The \, \textit{ReadOptimization} \,\,\, method \,\, returns \,\, an \, \textit{Optimization} \,\,\, object, \,\, which \, have \,\, the \,\, following \,\, attributes: \,\, condition \,\, attributes: \,\, condition \,\,\, condition \,\, condition$

9.4 Live Analysis

Introduction

Load your live trading results into the Research Environment to compare live trading performance against simulated backtest results.

Read Live Results

To get the results of a live algorithm, call the ReadLiveAlgorithm method with the project Id and deployment ID.

```
#load "../Initialize.csx"
#load "../QuantConnect.csx"
using QuantConnect;
using QuantConnect.Api;
var liveAlgorithm = api.ReadLiveAlgorithm(projectId, deployId);
live_algorithm = api.ReadLiveAlgorithm(project_id, deploy_id)
```

To get the project Id, open the project in the Algorithm Lab and check the URL. For example, the project Id of https://www.quantconnect.com/project/13946911 is 13946911.

To get the deployment Id, open a live result in the Algorithm Lab and check its log file. An example deployment Id is L-ac54ffadf4ca52efabcd1ac29e4735cf. If you have deployed the project multiple times, the log file has multiple deployment Ids. In this case, use the most recent Id.

 $The {\tt ReadLiveAlgorithm} \ \ method \ \ returns \ \ a \ {\tt LiveAlgorithmResults} \ \ object, \ which \ have \ the \ following \ \ attributes:$

Reconciliation

Reconciliation is a way to quantify the difference between an algorithm's live performance and its out-of-sample (OOS) performance (a backtest run over the live deployment period).

Seeing the difference between live performance and OOS performance gives you a way to determine if the algorithm is making unrealistic assumptions, exploiting data differences, or merely exhibiting behavior that is impractical or impossible in live trading.

A perfectly reconciled algorithm has an exact overlap between its live equity and OOS backtest curves. Any deviation means that the performance of the algorithm has differed for some reason. Several factors can contribute to this, often stemming from the algorithm design.

Live Deployment Reconciliation

Reconciliation is scored using two metrics: returns correlation and dynamic time warping (DTW) distance.

What is DTW Distance?

Dynamic Time Warp (DTW) Distance quantifies the difference between two time-series. It is an algorithm that measures the shortest path between the points of two time-series. It uses Euclidean distance as a measurement of point-to-point distance and returns an overall measurement of the distance on the scale of the initial time-series values. We apply DTW to the returns curve of the live and OOS performance, so the DTW distance measurement is on the scale of percent returns.

For the reasons outlined in our research notebook on the topic (linked below), QuantConnect annualizes the daily DTW. An annualized distance provides a user with a measurement of the annual difference in the magnitude of returns between the two curves. A perfect score is 0, meaning the returns for each day were precisely the same. A DTW score of 0 is nearly impossible to achieve, and we consider anything below 0.2 to be a decent score. A distance of 0.2 means the returns between an algorithm's live and OOS performance deviated by 20% over a year.

What is Returns Correlation?

Returns correlation is the simple Pearson correlation between the live and OOS returns. Correlation gives us a rudimentary understanding of how the returns move together. Do they trend up and down at the same time? Do they deviate in direction or timing?

 $\label{eq:cov} $$\left(x, y \right) \in \left(x, y \right) \in$

An algorithm's returns correlation should be as close to 1 as possible. We consider a good score to be 0.8 or above, meaning that there is a strong positive correlation. This indicates that the returns move together most of the time and that for any given return you see from one of the curves, the other curve usually has a similar direction return (positive or negative).

Why Do We Need Both DTW and Returns Correlation?

Each measurement provides insight into distinct elements of time-series similarity, but neither measurement alone gives us the whole picture. Returns correlation tells us whether or not the live and OOS returns move in the same direction. It is possible for there to be two cases of equity curve similarity where both pairs have the same DTW distance, but one has perfectly negatively correlated returns, and the other has a perfectly positive correlation. Similarly, it is possible for two pairs of equity curves to each have perfect correlation but substantially different DTW distance. Having both measurements provides us with a more comprehensive understanding of the actual similarity between live and OOS performance. We outline several interesting cases and go into more depth on the topic of reconciliation in research we have published.

Plot Order Fill

Follow these steps to plot the daily order fills of a live algorithm:

Get the live trading orders.

```
orders = api.ReadLiveOrders(project_id)
```

To get the project Id, open the project in the Algorithm Lab and check the URL. For example, the project Id of https://www.quantconnect.com/project/13946911 is 13946911.

By default, the orders with an ID between 0 and 100. To get orders with an ID greater than 100, pass start and end arguments to the ReadLiveOrders method. Note that end - start must be less than 100.

```
orders = api.ReadLiveOrders(project_id, 100, 150)
```

 $\label{thm:condition} The {\tt ReadLiveOrders} \ \ \text{method returns a list of \tt Order} \ \ \text{objects, which have the following properties:}$

Organize the trade times and prices for each security into a dictionary.

```
class OrderData:
    def __init__ (self):
        self.buy_fill_times = []
        self.buy_fill_prices = []
        self.sell_fill_prices = []
        self.sell_fill_prices = []
        self.sell_fill_prices = []

order_data_by_symbol = {}

for order in orders:
    if order.Symbol not in order_data_by_symbol:
        order_data_by_symbol[order.Symbol] = OrderData()
        order_data = order_data_by_symbol[order.Symbol]
    is_buy = order.Quantity > 0
        (order_data.buy_fill_times if is_buy_else_order_data.sell_fill_times).append(order.LastFillTime.date())
        (order_data.buy_fill_prices if is_buy_else_order_data.sell_fill_prices).append(order.Price)
```

Get the price history of each security you traded.

```
qb = QuantBook()
start_date = datetime.max.date()
end_date = datetime.min.date()
for symbol, order_data in order_data_by_symbol.items():
    start_date = min(start_date, min(order_data.buy_fill_times), min(order_data.sell_fill_times))
    end_date = max(end_date, max(order_data.buy_fill_times), max(order_data.sell_fill_times))
start_date = timedelta(days=)
all_history = qb.History(list(order_data.buy_symbol.keys()), start_date, end_date, Resolution.Daily)
```

· Create a candlestick plot for each security and annotate each plot with buy and sell markers

Note: The preceding plots only show the last fill of each trade. If your trade has partial fills, the plots only display the last fill.

Plot Metadata

Follow these steps to plot the equity curve, benchmark, and drawdown of a live algorithm:

1. Get the live algorithm instance.

```
live_algorithm = api.ReadLiveAlgorithm(project_id, deploy_id)
```

To get the project Id, open the project in the Algorithm Lab and check the URL. For example, the project Id of https://www.quantconnect.com/project/13946911 is 13946911.

To get the deployment Id, open a live result in the Algorithm Lab and check its log file. An example deployment Id is L-ac54ffadf4ca52efabcd1ac29e4735cf. If you have deployed the project multiple times, the log file has multiple deployment Ids. In this case, use the most recent Id.

2. Get the results of the live algorithm.

```
results = live_algorithm.LiveResults.Results
```

 $3. \ \ Get the \ "Strategy \ Equity", \ "Drawdown", \ and \ "Benchmark" \ {\tt Chart} \ \ objects.$

```
equity_chart = results.Charts["Strategy Equity"]
drawdown_chart = results.Charts["Drawdown"]
benchmark_chart = results.Charts["Benchmark"]
```

 $4. \ \ \ Get the "Equity", "Equity Drawdown", and "Benchmark" {\tt Series} \ \ from the preceding charts.$

```
equity = equity_chart.Series["Equity"].Values
drawdown = drawdown_chart.Series["Equity Drawdown"].Values
benchmark = benchmark_chart.Series["Benchmark"].Values
```

5. Create a pandas. DataFrame from the series values.

```
df = pd.DataFrame({
    "Equity": pd.Series({datetime.fromtimestamp(value.x): value.y for value in equity}),
    "Drawdown": pd.Series({datetime.fromtimestamp(value.x): value.y for value in drawdown)),
    "Benchmark": pd.Series({datetime.fromtimestamp(value.x): value.y for value in benchmark})),
    ).ffill()
```

6. Plot the performance chart.

```
# Create subplots to plot series on same/different plots
fig, ax = plt.subplots(2, 1, figsize=(12, 12), sharex=True, gridspec_kw={'height_ratios': [2, 1]})
# Plot the equity curve
ax[0].plot(df.index, df["Equity"])
ax[0].set_title("Strategy Equity Curve")
ax[0].set_ylabel("Portfolio Value ($)")
# Plot the benchmark on the same plot, scale by using another y-axis
ax2 = ax[0].twinx()
ax2.plot(df.index, df["Benchmark"], color="grey")
ax2.plot(df.index, df["Benchmark"], color="grey")
# Plot the drawdown on another plot
ax[1].plot(df.index, df["Drawdown"], color="red")
ax[1].set_title("Drawdown")
ax[1].set_tlabel("Time")
ax[1].set_ylabel("%")
```

The following table shows all the chart series you can plot:

Chart	Series	Description
Strategy Equity	Equity	Time series of the equity curve
	Daily Performance	Time series of daily percentage change
Capacity	Strategy Capacity	Time series of strategy capacity snapshots
Drawdown	Equity Drawdown	Time series of equity peak-to-trough value
Benchmark	Benchmark	Time series of the benchmark closing price (SPY, by default)
Exposure	SecurityType - Long Ratio	Time series of the overall ratio of SecurityType long positions of the whole portfolio if any SecurityType is ever in the universe
-	SecurityType - Short Ratio	Time series of the overall ratio of SecurityType short position of the whole portfolio if any SecurityType is ever in the universe
Custom Chart	Custom Series	Time series of a Series in a custom chart

10 Applying Research

10.1 Key Concepts

Introduction

The ultimate goal of research is to produce a strategy that you can backtest and eventually trade live. Once you've developed a hypothesis that you're confident in, you can start working towards exporting your research into backtesting. To export the code, you need to replace QuantBook () with self and replace the QuantBook methods with their QCAlgorithm counterparts.

Workflow

Imagine that you've developed the following hypothesis: stocks that are below 1 standard deviation of their 30-day mean are due to revert and increase in value. The following Research Environment code picks out such stocks from a preselected basket of stocks:

```
import numpy as np
qb = QuantBook()

symbols = {}
assets = ["SHY", "TLT", "SHV", "TLH", "EDV", "BIL",
"SFTI", "TBF", "TMF", "TMW", "TBF", "VGSH", "VGIT",
"VGLT", "SCHO", "SCHR", "SPTS", "GOVT"]

for i in range(len(assets)):
    symbols[assets[i]] = qb.AddEquity(assets[i], Resolution.Minute).Symbol

# Fetch history on our universe
df = qb.History(qb.Securities.Keys, 30, Resolution.Daily)

# Make all of them into a single time index.
df = df.close.unstack(level=0)

# Calculate the truth value of the most recent price being less than 1 std away from the mean
classifier = df.le(df.mean().subtract(df.std())).tail(1)

# Get indexes of the True values
classifier_indexes = np.where(classifier)[1]

# Get the Symbols for the True values
classifier = classifier.transpose().iloc[classifier_indexes].index.values

# Get the std values for the True values (used for magnitude)
magnitude = df.std().transpose()[classifier_indexes].values

# Zip together to iterate over later
selected = zip(classifier, magnitude)
```

Once you are confident in your hypothesis, you can export this code into the backtesting environment. The algorithm will ultimately go long on the stocks that pass the classifier logic. One way to accommodate this model into a backtest is to create a Scheduled Event that uses the model to pick stocks and place orders.

Now that the Initialize method of the algorithm is set, export the model into the Scheduled Event method. You just need to switch qb with self and replace QuantBook methods with their QCAlgorithm counterparts. In this example, you don't need to switch any methods because the model only uses methods that exist in QCAlgorithm .

With the Research Environment model now in the backtesting environment, you can further analyze its performance with its backtesting metrics. If you are confident in the backtest, you can eventually live trade this strategy,

To view full examples of this Research to Production workflow, see the examples in the menu.

Contribute Tutorials

If you contribute Research to Production tutorials, you'll get the following benefits:

- A OCC reward
- You'll learn the Research to Production methodology to improve your own strategy research and development
- Your contribution will be featured in the community forum

To view the topics the community wants Research to Production tutorials for, see the issues with the WishList tag in the Research GitHub repository. If you find a topic you want to create a tutorial for, make a pull request to the repository with your tutorial and we will review it.

To request new tutorial topics, contact us

10.2 Mean Reversion

Introduction

This page explains how to you can use the Research Environment to develop and test a Mean Reversion hypothesis, then put the hypothesis in production.

Create Hypothesis

Imagine that we've developed the following hypothesis: stocks that are below 1 standard deviation of their 30-day-mean are due to revert and increase in value, statistically around 85% chance if we assume the return series is stationary and the price series is a Random Process. We've developed the following code in research to pick out such stocks from a preselected basket of stocks.

Import Libraries

Load the required assembly files and data types.

We'll need to import libraries to help with data processing. Import numpy and scipy libraries by the following:

```
#load "../Initialize.csx"
#load "../QuantConnect.csx"
using QuantConnect.Data;
using QuantConnect.Data;
using QuantConnect.Data.Market;
using QuantConnect.Algorithm;
using QuantConnect.Research;
using System;
using MathNet.Numerics.Distributions;
import numpy as np
from scipy.stats import norm, zscore
```

Get Historical Data

To begin, we retrieve historical data for researching.

```
1. Instantiate a QuantBook .
  var qb = new QuantBook();
  qb = QuantBook()
```

2. Select the desired tickers for research.

3. Call the AddEquity method with the tickers, and their corresponding resolution.

```
foreach(var ticker in assets) {
    qb.AddEquity(ticker, Resolution.Minute);
}
for i in range(len(assets)):
    qb.AddEquity(assets[i], Resolution.Minute)
```

If you do not pass a resolution argument, Resolution . Minute is used by default.

 $4. \ \ \, \text{Call the {\tt History } method with $\tt qb.Securities.Keys} \ \, \text{for all tickers, time argument(s), and resolution to request historical data for the symbol.} \\$

```
var history = qb.History(qb.Securities.Keys, new DateTime(2021, 1, 1), new DateTime(2021, 12, 31), Resolution.Daily);
history = qb.History(qb.Securities.Keys, datetime(2021, 1, 1), datetime(2021, 12, 31), Resolution.Daily)
```

Prepare Data

We'll have to process our data to get an extent of the signal on how much the stock is deviated from its norm for each ticker.

- 1. Extract close prices for each Symbol from Slice data.
- Select the close column and then call the unstack method.

```
var closes = new Dictionary<Symbol, List<Decimal>>();
foreach(var slice in history) {
    foreach(var symbol in slice.Keys) {
        if(!closes.ContainsKey(symbol)) {
            closes.Add(symbol, new List<Decimal>());
        }
        closes[symbol].Add(slice.Bars[symbol].Close);
    }
}
df = history['close'].unstack(level=0)
```

- 3. Get the 30-day rolling mean, standard deviation series, z-score and filtration for each ${\tt Symbol}$
- 4. Calculate the truth value of the most recent price being less than 1 standard deviation away from the mean price.

```
var rollingMean = new Dictionary<Symbol, List<double>>();
var rollingStd = new Dictionary<Symbol, List<double>>();
var rollingStd = new Dictionary<Symbol, List<double>>();
var zScore = new Dictionary<Symbol, List<double>>();
foreach(var kvp in closes)
{
    var symbol = kvp.Key;
    if(!rollingMean.ContainsKey(symbol)){
        rollingMean.Add(symbol, new List<double>());
        rollingMean.Add(symbol, new List<double>());
        rollingMean.Add(symbol, new List<double>());
        rollingStd.Add(symbol, new List<double>());
        filter.Add(symbol, new List<double>());
        for (int i=30; i < closes.Values.ElementAt(0).Count; i++)
        {
            var slice = kvp.Value.Skip(i).Take(30);
            rollingMean[symbol].Add(decimal.ToDouble(slice.Average()));
            rollingMean[symbol].Add(decimal.ToDouble(closes[symbol][i]) - rollingMean[symbol].Last()) / rollingStd[symbol].Last());
        filter[symbol].Add(dcimal.ToDouble(closes[symbol][i]) - rollingMean[symbol].Last()) / rollingStd[symbol].Last());
        for the filter[symbol].Add(cscore[symbol].Last()) - df.rolling(30).std())</pre>
```

- $5. \ \ Calculate the expected return and its probability, then calculate the weight.$
- 6. Get the z-score for the True values, then compute the expected return and probability (used for Insight magnitude and confidence).

```
var magnitude = new Dictionary<Symbol, List<double>>();
var confidence = new Dictionary<Symbol, List<double>>();
var weights = new Dictionary<Symbol, List<double>>();
foreach(var kvp in rollingMean)
{
```

```
var symbol = kvp.Key;
             if (!magnitude.ContainsKey(symbol)) {
                  magnitude.Add(symbol, new List<double>());
confidence.Add(symbol, new List<double>());
weights.Add(symbol, new List<double>());
             for (int i=1; i < rollingMean.Values.ElementAt(0).Count; i++)
                  magnitude[symbol].Add(-zScore[symbol][i] * rollingStd[symbol][i] / decimal.ToDouble(closes[symbol][i-1]));
confidence[symbol].Add(Normal.CDF(0, 1, -zScore[symbol][i]));
// Filter if trade or not
var trade = filter[symbol][i] ? ld : 0d;
weights[symbol].Add(trade * Math.Max(confidence[symbol].Last() - 1 / (magnitude[symbol].Last() + 1), 0));
        \begin{array}{lll} z\_score = & df.apply(zscore) \, [classifier] \\ magnitude = & -z\_score * df.rolling(30).std() \ / \ df.shift(1) \\ confidence = & (-z\_score).apply(norm.cdf) \end{array} 
   7. Convert the weights into 2-d array.
   8. Call fillna to fill NaNs with 0.
       double[,] weight = new double[weights.Values.ElementAt(0).Count, weights.Count];
       GOUDLE(), ...
int j = 0; symbol in weights.Keys){
  foreach(var symbol in weights.Keys){
    for (int i=0; i < weights[symbol].Count; i++){
        weight[i, j] = weights[symbol][i];
    ...</pre>
      magnitude.fillna(0, inplace=True) confidence.fillna(0, inplace=True)
  9. Get our trading weight, we'd take a long only portfolio and normalized to total weight = 1.
       public double[,] Normalize(double[,] array)
             for(int i=0; i < array.GetLength(0); i++)
                  var sum = 0.0;
for (int j=0; j < array.GetLength(1); j++)</pre>
                       sum += array[i, j];
                   if (sum == 0.0) continue;
for (int j=0; j < array.GetLength(1); j++)</pre>
                        array[i, j] = array[i, j] / sum;
             return array;
       weight = Normalize(weight);
       weight = confidence - 1 / (magnitude + 1)
weight = weight | weight > 0].fillna(0)
sum_ = np.sum(weight, axis=1)
for i in range(weight.shape[0]):
            if sum_[i] > 0:
    weight.iloc[i] = weight.iloc[i] / sum_[i]
             else:
       weight.iloc[i] = 0
weight = weight.iloc[:-1]
Test Hypothesis
We would test the performance of this strategy. To do so, we would make use of the calculated weight for portfolio optimization.
   1. Convert close price to 2-d array.
       double[,] close = new double[closes.Values.ElementAt(0).Count, closes.Count];
       2. Get the total daily return series.
       var totalValue = new List<double>{1.0};
var dailySum = 0.0;
for(int i=0; i < weight.GetLength(0) - 1; i++)</pre>
             totalValue.Add(totalValue.Last() * (1 + dailySum));
             dailySum = 0.0;
for (int j=0; j < weight.GetLength(1); j++)
                  if (close[i, j] != 0 && double.IsFinite(close[i+1, j]) && double.IsFinite(close[i, j]) && double.IsFinite(weight[i, j]))
                        dailySum += weight[i, j] * (close[i+1, j] - close[i, j]) / close[i, j];
       ret = pd.Series(index=range(df.shape[0] - 1))
       for i in range(df.shape[0] - 1):
    ret[i] = weight.iloc[i] @ df.pct_change().iloc[i + 1].T
  3. Call cumprod to get the cumulative return
       total ret = (ret + 1).cumprod()
   4. Set index for visualization.
       total ret.index = weight.index
  5. Display the result.
       for(int i=0; i < totalValue.Count; i=i+5)</pre>
            Console.WriteLine("Portfolio Value in Day{0}: {1}", i, totalValue[i]);
       total_ret.plot(title='Strategy Equity Curve', figsize=(15, 10))
```

Set Up Algorithm

Once we are confident in our hypothesis, we can export this code into backtesting. One way to accommodate this model into research is to create a scheduled event which uses our model to pick stocks and goes long.

```
public override void Initialize()
     // 1. Required: Five years of backtest history SetStartDate(2014, 1, 1);
     // 2. Required: Alpha Streams Models:
SetBrokerageModel(BrokerageName.AlphaStreams);
     // 3. Required: Significant AUM Capacity
SetCash(1000000);
     // 4. Required: Benchmark to SPY
SetBenchmark("SPY");
     \label{lem:setPortFolioConstruction(new InsightWeightingPortFolioConstructionModel()); \\ SetExecution(new ImmediateExecutionModel()); \\ \end{aligned}
     // Add Equity -----
foreach(var ticker in _asset)
     AddEquity(ticker, Resolution.Minute);
     // Set Scheduled Event Method For Our Model
     TimeRules.BeforeMarketClose("SHY", 5),
EveryDayBeforeMarketClose);
def Initialize(self) -> None:
     #1. Required: Five years of backtest history
self.SetStartDate(2014, 1, 1)
     #2. Required: Alpha Streams Models:
      self.SetBrokerageModel(BrokerageName.AlphaStreams)
     #3. Required: Significant AUM Capacity self.SetCash(1000000)
     #4. Required: Benchmark to SPY self.SetBenchmark("SPY")
     \verb|self.SetPortfolioConstruction(InsightWeightingPortfolioConstructionModel())| self.SetExecution(ImmediateExecutionModel())|
     # Add Equity ------
for i in range(len(self.assets)):
    self.AddEquity(self.assets[i], Resolution.Minute)
     # Set Scheduled Event Method For Our Model self.Schedule.On(self.DateRules.EveryDay(), self.TimeRules.BeforeMarketClose("SHY", 5), self.EveryDayBeforeMarketClose)
```

Now we export our model into the scheduled event method. We will remove gb and replace methods with their QCAlgorithm counterparts as needed. In this example, this is not an issue because all the methods we used in research also exist in QCAlgorithm .

Now we export our model into the scheduled event method. We will switch qb with self and replace methods with their QCAlgorithm counterparts as needed. In this example, this is not an issue because all the methods we used in research also exist in QCAlgorithm.

```
private void EveryDayBeforeMarketClose()
        // Fetch history on our universe
var history = History(Securities.Keys, 30, Resolution.Daily);
if (history.Count() < 0) return;</pre>
        // Extract close prices for each Symbol from Slice data
var closes = new Dictionary<Symbol, List<Decimal>>();
foreach(var slice in history) {
    foreach(var symbol in slice.Keys) {
        if(!closes.ContainsKey(symbol)) {
            closes.Add(symbol, new List<Decimal>());
        }
}
                          closes[symbol].Add(slice.Bars[symbol].Close);
        // Get the 30-day rolling mean, standard deviation series, z-score and filtration for each Symbol
var rollingMean = new Dictionary<string, double>();
var rollingStd = new Dictionary<string, double>();
var filter = new Dictionary<string, bool>();
var zScore = new Dictionary<string, double>();
         foreach(var kvp in closes)
                var symbol = kvp.Key;
if(!rollingMean.ContainsKey(symbol)){
   rollingMean.Add(symbol, decimal.ToDouble(kvp.Value.Average()));
   rollingStd.Add(symbol, Math.Sqrt(kvp.Value.Average(v => Math.Pow(decimal.ToDouble(v-kvp.Value.Average()), 2))));
   zScore.Add(symbol, (decimal.ToDouble(kvp.Value.Last()) - rollingMean[symbol]) / rollingStd[symbol]);
   filter.Add(symbol, zScore[symbol] < -1);
}</pre>
         // Calculate the expected return and its probability, then calculate the weight
        var magnitude = new Dictionary<Symbol, double>();
var confidence = new Dictionary<Symbol, double>();
var weights = new Dictionary<Symbol, double>();
foreach(var kvp in rollingMean)
                    ar symbol = kvp.Key;
                 if (!magnitude.ContainsKey(symbol)) {
                        !magnitude.ContainsKey(symbol)){
magnitude.Add(symbol, -zScore(symbol) * rollingStd[symbol] / decimal.ToDouble(closes[symbol].Last()));
confidence.Add(symbol, Normal.CDF(0, 1, -zScore[symbol]));
// Filter if trade or not
var trade = filter[symbol] ? ld : 0d;
weights.Add(symbol, trade * Math.Max(confidence[symbol] - 1 / (magnitude[symbol] + 1), 0));
        }
        // Normalize the weights, then emit insights var sum = weights.Sum(x => x.Value); if (sum == 0) return;
         foreach(var kvp in weights)
                 var symbol = kvp.Key;
weights[symbol] = kvp.Value / sum;
                  var insight = new Insight(symbol, TimeSpan.FromDays(1), InsightType.Price, InsightDirection.Up, magnitude[symbol], confidence[symbol], null, weights[symbol]);
                 EmitInsights(insight);
def EveryDayBeforeMarketClose(self) -> None:
         # Fetch history on our universe
```

```
df = qb.History(qb.Securities.Keys, 30, Resolution.Daily)
if df.empty: return
# Make all of them into a single time index.
df = df.close.unstack(level=0)
\sharp Calculate the truth value of the most recent price being less than 1 std away from the mean classifier = df.le(df.mean().subtract(df.std())).iloc[-1] if not classifier.any(): return
# Get the z-score for the True values, then compute the expected return and probability
z_score = df.apply(zscore)[[classifier.index[i] for i in range(classifier.size) if classifier.iloc[i]]]
magnitude = -z_score * df.std() / df
confidence = (-z_score).apply(norm.cdf)
# Get the latest values
magnitude = magnitude.iloc[-1].fillna(0)
confidence = confidence.iloc[-1].fillna(0)
# Get the weights, then zip together to iterate over later
weight = confidence - 1 / (magnitude + 1)
weight = weight[weight > 0].fillna(0)
sum = np.sum(weight)
if sum_ > 0:
    weight = (weight) / sum_
    selected = zip(weight.index, magnitude, confidence, weight)
else:
insights = []
for symbol, magnitude, confidence, weight in selected: insights.append( Insight.Price(symbol, timedelta(days=1), InsightDirection.Up, magnitude, confidence, None, weight) )
self.EmitInsights(insights)
```


- Charts
 Statistics
 Code

 Main.cs
 Research.ipynb

Clone Algorithm

Overall Statistics	
Total Trades	13445
Average Win	0.27%
Average Loss	-0.07%
Compounding Annual Return	-10.332%
Drawdown	74.600%
Expectancy	-0.166
Net Profit	-62.888%
Sharpe Ratio	-0.26
Probabilistic Sharpe Ratio	0.000%
Loss Rate	82%
Win Rate	18%
Profit-Loss Ratio	3.57
Alpha	-0.077
Beta	0.274
Annual Standard Deviation	0.204
Annual Variance	0.042
Information Ratio	-0.618
Tracking Error	0.227
Treynor Ratio	-0.193
Total Fees	\$86686.70
Estimated Strategy Capacity	\$180000.00
Lowest Capacity Asset	TMV UBTUG7D0B7TX

QUANTCONNECT

/// Please refer to Research.ipynb
using QuantConnect.Algorithm.Framework.Alphas;
using QuantConnect.Algorithm.Framework.Portfolio;
using QuantConnect.Algorithm.Framework.Execution;
using QuantConnect.Brokerages;
using System;
using System.Collections.Generic;
using System.Linq;
using MathNet.Numerics.Distributions;

10.3 Random Forest Regression

Introduction

This page explains how to you can use the Research Environment to develop and test a Random Forest Regression hypothesis, then put the hypothesis in production.

Create Hypothesis

We've assumed the price data is a time series with some auto regressive property (i.e. its expectation is related to past price information). Therefore, by using past information, we could predict the next price level. One way to do so is by Random Forest Regression, which is a supervised machine learning algorithm where its weight and bias is decided in non-linear hyperdimension.

Import Libraries

We'll need to import libraries to help with data processing and machine learning. Import sklearn , numpy and matplotlib libraries by the following:

```
from sklearn.ensemble import RandomForestRegressor
import numpy as np
from matplotlib import pyplot as plt
```

Get Historical Data

To begin, we retrieve historical data for researching.

```
    Instantiate a QuantBook .
    gb = OuantBook()
```

2. Select the desired tickers for research.

3. Call the AddEquity method with the tickers, and their corresponding resolution. Then store their Symbol s.

```
for i in range(len(assets)):
    symbols[assets[i]] = qb.AddEquity(assets[i],Resolution.Minute).Symbol
```

If you do not pass a resolution argument, Resolution. Minute is used by default.

4. Call the History method with qb.Securities.Keys for all tickers, time argument(s), and resolution to request historical data for the symbol.

```
history = qb.History(qb.Securities.Keys, datetime(2019, 1, 1), datetime(2021, 12, 31), Resolution.Daily)
```

Prepare Data

We'll have to process our data as well as to build the ML model before testing the hypothesis. Our methodology is to use fractional differencing close price as the input data in order to (1) provide stationarity, and (2) retain sufficient extent of variance of the previous price information. We assume d=0.5 is the right balance to do so.

1. Select the close column and then call the unstack method.

```
df = history['close'].unstack(level=0)
```

2. Feature engineer the data as fractional differencing for input.

```
input_ = df.diff() * 0.5 + df * 0.5
input_ = input_.iloc[1:]
```

3. Shift the data for 1-step backward as training output result.

```
output = df.shift(-1).iloc[:-1]
```

4. Split the data into training and testing sets.

```
splitter = int(input_.shape[0] * 0.8)
X_train = input_.iloc[:splitter]
X_test = input_.iloc[splitter:]
y_train = output.iloc[:splitter]
y_test = output.iloc[splitter:]
```

5. Initialize a Random Forest Regressor.

```
regressor = RandomForestRegressor(n_estimators=100, min_samples_split=5, random_state = 1990)
```

6. Fit the regressor.

```
regressor.fit(X_train, y_train)
```

Test Hypothesis

We would test the performance of this ML model to see if it could predict 1-step forward price precisely. To do so, we would compare the predicted and actual prices.

1. Predict the testing set.

```
predictions = regressor.predict(X_test)
2. Convert result into DataFrame .
    predictions = pd.DataFrame(predictions, index=y_test.index, columns=y_test.columns)
```

3. Plot the result for comparison.

```
for col in y_test.columns:
   plt.figure(figsize=(15, 10))

y_test[col].plot(label="Actual")
predictions[col].plot(label="Prediction")

plt.title(f"{col} Regression Result")
plt.legend()
plt.show()
plt.clf()
```

For more plots, please clone the project and run the notebook.

Set Up Algorithm

Once we are confident in our hypothesis, we can export this code into backtesting. One way to accomodate this model into backtest is to create a scheduled event which uses our model to predict the expected return. Since we could calculate the expected return, we'd use Mean-Variance Optimization for portfolio construction.

```
def Initialize(self) -> None:
    #1. Required: Five years of backtest history
    self.SetStartDate(2014, 1, 1)

#2. Required: Alpha Streams Models:
    self.SetBrokerageModel(BrokerageName.AlphaStreams)
```

```
#3. Required: Significant AUM Capacity self.SetCash(1000000)
          #4. Required: Benchmark to SPY self.SetBenchmark("SPY")
          \verb|self.SetPortfolioConstruction| (\verb|MeanVarianceOptimizationPortfolioConstructionModel (portfolioBias = PortfolioBias.Long, and the self-setPortfolioConstructionModel (portfolioBias) = PortfolioBias. The self-setPortfolioConstruction (meanVarianceOptimizationPortfolioConstructionModel (portfolioBias)) = PortfolioBias. The self-setPortfolioConstruction (meanVarianceOptimizationPortfolioConstructionModel (portfolioBias)) = PortfolioBias. The self-setPortfolioConstructionModel (portfolioBias) = PortfolioBias. The self-setPortfolioBias = PortfolioBias = PortfolioB
          self.SetExecution(ImmediateExecutionModel())
         # Add Equity -----
          # Add Equity ------
for i in range(len(self.assets)):
    self.AddEquity(self.assets[i], Resolution.Minute)
          \sp \# Initialize the timer to train the Machine Learning model self.time = datetime.min
          # Set Scheduled Event Method For Our Model self.Schedule.On(self.DateRules.EveryDay(), self.TimeRules.BeforeMarketClose("SHY", 5), self.EveryDayBeforeMarketClose)
We'll also need to create a function to train and update our model from time to time.
def BuildModel(self) -> None:
          # Initialize the Random Forest Regressor
self.regressor = RandomForestRegressor(n_estimators=100, min_samples_split=5, random_state = 1990)
          history = self.History(self.Securities.Keys, 360, Resolution.Daily)
         # Select the close column and then call the unstack method.
df = history['close'].unstack(level=0)
          # Feature engineer the data for input.
input_ = df.diff() * 0.5 + df * 0.5
input_ = input_.iloc[1:].ffill().fillna(0)
         # Shift the data for 1-step backward as training output result.
output = df.shift(-1).iloc[:-1].ffill().fillna(0)
          # Fit the regressor
self.regressor.fit(input_, output)
Now we export our model into the scheduled event method. We will switch qb with self and replace methods with their QCAlgorithm counterparts as needed. In this example, this is not an issue because all the methods we used in
research also exist in QCAlgorithm .
def EveryDavBeforeMarketClose(self) -> None:
          EverypayerOrean Returbos (Self) - while.

# Retrain the regressor every month
if self.time < self.Time:
self.BuildModel()
self.time = Expiry.EndOfMonth(self.Time)
          qb = self
# Fetch history on our universe
df = qb.History(qb.Securities.Keys, 2, Resolution.Daily)
if df.empty: return
          # Make all of them into a single time index.
df = df.close.unstack(level=0)
          # Feature engineer the data for input
input_ = df.diff() * 0.5 + df * 0.5
input_ = input_.iloc[-1].fillna(0).values.reshape(1, -1)
         # Predict the expected price
predictions = self.regressor.predict(input_)
          # Get the expected return
          predictions = (predictions - df.iloc[-1].values) / df.iloc[-1].values predictions = predictions.flatten()
          insights = []
          for i in range(len(predictions)):
    insights.append( Insight.Price(self.assets[i], timedelta(days=1), InsightDirection.Up, predictions[i]) )
```

Clone Example Project

self.EmitInsights(insights)

- <u>Charts</u><u>Statistics</u><u>Code</u>
- - main.pyresearch.ipynb

2 Clone Algorithm

Overall Statistics	
Total Trades	45282
Average Win	0.01%
Average Loss	0.00%
Compounding Annual Return	0.013%
Drawdown	12.700%
Expectancy	-0.011
Net Profit	0.118%
Sharpe Ratio	0.015
Probabilistic Sharpe Ratio	0.018%
Loss Rate	69%
Win Rate	31%
Profit-Loss Ratio	2.16
Alpha	0.003
Beta	-0.035
Annual Standard Deviation	0.021
Annual Variance	0
Information Ratio	-0.559
Tracking Error	0.155
Treynor Ratio	-0.009
Total Fees	\$48708.25
Estimated Strategy Capacity	\$1100000.00
Lowest Capacity Asset	BIL TT1EBZ21QWKL

QUANTCONNECT

#region imports
from AlgorithmImports import *
from Sklearn.ensemble import RandomForestRegressor
#endregion

class RandomForestRegressionDemo(QCAlgorithm):

def Initialize(self):
 #1. Required: Five years of backtest history
 self.SetStartDate(2014. 1. 1)

10.4 Uncorrelated Assets

Introduction

This page explains how to you can use the Research Environment to develop and test a Uncorrelated Assets hypothesis, then put the hypothesis in production.

Create Hypothesis

According to Modern Portfolio Thoery, asset combinations with negative or very low correlation could have lower total portfolio variance given the same level of return. Thus, uncorrelated assets allows you to find a portfolio that will, theoretically, be more diversified and resilient to extreme market events. We're testing this statement in real life scenario, while hypothesizing a portfolio with uncorrelated assets could be a consistent portfolio. In this example, we'll compare the performance of 5-least-correlated-asset portfolio (proposed) and 5-most-correlated-asset portfolio (benchmark), both equal weighting.

Import Libraries

Load the required assembly files and data types.

We'll need to import libraries to help with data processing and visualization. Import numpy and matplotlib libraries by the following:

```
#load "../Initialize.csx"
#load "../QuantConnect.csx"
using QuantConnect.Data;
using QuantConnect.Data;
using QuantConnect.Data.Market;
using QuantConnect.Algorithm;
using QuantConnect.Research;
using System,
using System.Ling;
using Accord.Statistics;
import numpy as np
from matplotlib import pyplot as plt
```

Get Historical Data

To begin, we retrieve historical data for researching.

```
1. Instantiate a QuantBook .
  var qb = new QuantBook();
  qb = QuantBook()
```

2. Select the desired tickers for research.

3. Call the AddEquity method with the tickers, and their corresponding resolution.

```
foreach(var ticker in assets) {
    qb.AddEquity(ticker, Resolution.Minute); }
}
for i in range(len(assets)):
    qb.AddEquity(assets[i],Resolution.Minute)
```

If you do not pass a resolution argument, Resolution . Minute is used by default.

4. Call the History method with qb.Securities.Keys for all tickers, time argument(s), and resolution to request historical data for the symbol

```
var history = qb.History(qb.Securities.Keys, new DateTime(2021, 1, 1), new DateTime(2021, 12, 31), Resolution.Daily);
history = qb.History(qb.Securities.Keys, datetime(2021, 1, 1), datetime(2021, 12, 31), Resolution.Daily)
```

Prepare Data

We'll have to process our data to get their correlation and select the least and most related ones.

- 1. Extract daily return for each Symbol from Slice data.
- $2. \ \ \text{Select the close column and then call the } \\ \text{unstack} \ \ \text{method, then call } \\ \text{pet_change} \ \ \text{to compute the daily return.} \\$

```
var returns = new Dictionary<string, List<Double>>();
var last = new Dictionary<string, Double>();
foreach(var slice in history){
    foreach(var symbol in slice.Bars.Keys){
        if(!returns.ContainsKey(symbol)){
            returns.Add(symbol, new List<Double>());
            last.Add(symbol, (Double)slice.Bars[symbol].Close);
    }
    var change = (Double) ((Double)slice.Bars[symbol].Close - last[symbol])/last[symbol];
    last[symbol] = (Double)slice.Bars[symbol].Close;
    returns[symbol].Add(change);
}
}
returns = history['close'].unstack(level=0).pct_change().iloc[1:]
```

3. Extract daily return for each Symbol from Slice data.

```
double[,] ret = new double[returns.Values.ElementAt(0).Count - 1, assets.Count];
int k = 0;
foreach(var kvp in returns)
{
    var symbol = kvp.Key,
    for(int i=0; i < returns[symbol].Count - 1; i++)
    {
        ret[i, k] = returns[symbol][i + 1];
        }
        k++;</pre>
```

4. Write a function to obtain the least and most correlated 5 assets.

```
public Dictionary<string, Double> GetCorrelations(double[,] returns){
    // Get correlation matrix
    var corrMatrix = Measures.Correlation(ret);

// Find the absolute sum correlation of the assets
    var correlations = new Dictionary<string, Double>();
    for(int i=0; i < corrMatrix.GetLength(0); i++)
    {
        var symbol = assets[i];
        if(!correlations.ContainsKey(symbol)){
            correlations.Add(symbol, 0);
        }
        for (int j=0; j < corrMatrix.GetLength(1); j++)
        {
            // For (int j=0; j < corrMatrix.GetLength(1); j++)
        }
        }
    }
}</pre>
```

```
var value_ = corrMatrix[i, j];
correlations[symbol] += value_ >= 0 ? value_ : -value_;
      return correlations;
var corr = GetCorrelations(ret);
var selected = corr.OrderBy(x => x.Value).Take(5);
var benchmark = corr.OrderBy(x => x.Value).TakeLast(5);
def GetUncorrelatedAssets(returns, num_assets):
      # Get correlation
correlation = returns.corr()
       # Find assets with lowest and highest absolute sum correlation
      selected = []
for index, row in correlation.iteritems():
    corr_rank = row.abs().sum()
             selected.append((index, corr rank))
      # Sort and take the top num_assets
sort_ = sorted(selected, key = lambda x: x[1])
uncorrelated = sort_[:num_assets]
correlated = sort_[-num_assets:]
      return uncorrelated, correlated
selected, benchmark = GetUncorrelatedAssets(returns, 5)
```

Test Hypothesis

To test the hypothesis: Our desired outcome would be a consistent and low fluctuation equity curve should be seen, as compared with benchmark,

1. Construct a equal weighting portfolio for the 5-uncorrelated-asset-portfolio and the 5-correlated-asset-portfolio (benchmark).

```
double[,] portRet = new double[returns.Values.ElementAt(0).Count, 5];
   int j = 0;
foreach(var kvp in selected){
       var symbol = kvp.Key;
for(int i=0; i < returns[symbol].Count; i++)</pre>
          portRet[i, j] = returns[symbol][i] / 5;
       j++;
   double[,] benchRet = new double[returns.Values.ElementAt(0).Count, 5];
   j = 0;
foreach(var kvp in benchmark){
       var symbol = kvp.Key;
for(int i=0; i < returns[symbol].Count; i++)</pre>
           benchRet[i, j] = returns[symbol][i] / 5;
   2. Get the Equity Return for both portfolios.
3. Call cumprod to get the cumulative return.
```

```
var totalValue = new List<double>{1.0};
var dailySum = 0.0;
for(int i=0; i < portRet.GetLength(0); i++)</pre>
      totalValue.Add(totalValue.Last() * (1 + dailySum));
      dailySum = 0.0;
for (int j=0; j < portRet.GetLength(1); j++)</pre>
           if (double.IsFinite(portRet[i, j]))
                dailySum += portRet[i, j];
var totalValueBench = new List<double>{1.0};
var dailySumBench = 0.0;
for(int i=0; i < benchRet.GetLength(0); i++)</pre>
      totalValueBench.Add(totalValueBench.Last() * (1 + dailySumBench));
      dailySumBench = 0.0;
for (int j=0; j < benchRet.GetLength(1); j++)</pre>
           if (double.IsFinite(benchRet[i, j]))
                dailySumBench += benchRet[i, j];
total_ret = (np.sum(port_ret, axis=1) + 1).cumprod()
total_ret_bench = (np.sum(bench_ret, axis=1) + 1).cumprod()
```

4. Calculate the variance of the 2 portfolios.

```
var returnPort = new List<double>();
previous = 0.0;
for(int i=0; i < totalValue.Count; i++)
    var current = totalValue[i];
returnPort.Add((current - previous) / previous);
previous = current;
var varPort = Math.Sqrt(returnPort.Skip(1).Average(v=>Math.Pow(v-returnPort.Skip(1).Average(),2)));
var returnBench = new List<double>();
previous = 0.0;
for(int i=0; i < totalValueBench.Count; i++)
    var current = totalValueBench[i];
returnBench.Add((current - previous) / previous);
    previous = current;
var varBench = Math.Sqrt(returnBench.Skip(1).Average(v=>Math.Pow(v-returnBench.Skip(1).Average(),2)));
```

- 5. Print the result
- 6. Plot the result.

```
Console.WriteLine("Portfolio Return: {0}, Variance: {1}", (totalValue.Last() - totalValue.First())/totalValue.First(), varPort);
Console.WriteLine("Benchmark Return: {0}, Variance: {1}", (totalValueBench.Last() - totalValueBench.First())/totalValueBench.First(), varBench);
plt.figure(figsize=(15, 10))
total_ret.plot(label='Proposed')
```

```
total_ret_bench.plot(label='Benchmark')
plt.title('Equity Curve')
plt.legend()
plt.show()
```

-image

We can clearly see from the results, the proposed uncorrelated-asset-portfolio has a lower variance/fluctuation, thus more consistent than the benchmark. This proven our hypothesis

Set Up Algorithm

Once we are confident in our hypothesis, we can export this code into backtesting. One way to accommodate this model into research is to create a scheduled event which uses our model to pick stocks and goes long.

```
public override void Initialize()
     // 1. Required: Five years of backtest history SetStartDate(2014, 1, 1);
     // 2. Required: Alpha Streams Models:
     SetBrokerageModel (BrokerageName.AlphaStreams);
     // 3. Required: Significant AUM Capacity
SetCash(1000000);
     // 4. Required: Benchmark to SPY
SetBenchmark("SPY");
     SetPortfolioConstruction(new EqualWeightingPortfolioConstructionModel());
     SetExecution(new ImmediateExecutionModel());
     // Add Equity -----
foreach(var ticker in _asset)
     AddEquity(ticker, Resolution.Minute);
     // Set Scheduled Event Method For Our Model. In this example, we'll rebalance every month.
         Set Scheduled Event Method for Our Mode
edule.On(DateRules.MonthStart(),
TimeRules.BeforeMarketClose("SHY", 5),
EveryDayBeforeMarketClose);
def Initialize(self) -> None:
     #1. Required: Five years of backtest history
     self.SetStartDate(2014, 1, 1)
     #2. Required: Alpha Streams Models:
self.SetBrokerageModel(BrokerageName.AlphaStreams)
     #3. Required: Significant AUM Capacity self.SetCash(1000000)
     #4. Required: Benchmark to SPY self.SetBenchmark("SPY")
     {\tt self.SetPortfolioConstruction} \ ({\tt EqualWeightingPortfolioConstructionModel()}) \ self.SetExecution({\tt ImmediateExecutionModel()})
     # Add Equity ------
for i in range(len(self.assets)):
    self.AddEquity(self.assets[i], Resolution.Minute)
     # Set Scheduled Event Method For Our Model. In this example, we'll rebalance every month.
self.Schedule.On(self.DateRules.MonthStart(),
    self.TimeRules.BeforeMarketClose("SHY", 5),
    self.EveryDayBeforeMarketClose)
```

Now we export our model into the scheduled event method. We will remove qb and replace methods with their QCAlgorithm counterparts as needed. In this example, this is not an issue because all the methods we used in research also exist in QCAlgorithm .

Now we export our model into the scheduled event method. We will switch qb with self and replace methods with their QCAlgorithm counterparts as needed. In this example, this is not an issue because all the methods we used in research also exist in QCAlgorithm.

```
for (int j=0; j < corrMatrix.GetLength(1); j++)
                                             var value_ = corrMatrix[i, j];
correlations[symbol] += value_ >= 0 ? value_ : -value_;
              var selected = correlations.OrderBy(x => x.Value).Take(5).Select(x => x.Key).ToList();
               // Emit insights
               foreach(var symbol in selected)
                              \label{eq:continuity} \mbox{var insight} = \mbox{new Insight}(\mbox{symbol, Expiry.EndOfMonth, InsightType.Price, InsightDirection.Up);} \\ \mbox{EmitInsights}(\mbox{insight}); \\ \mbox{EmitInsights}(\mbox{insight}); \\ \mbox{EmitInsight}(\mbox{insight}); \\ \mb
def EveryDayBeforeMarketClose(self) -> None:
             gb = self

# Fetch history on our universe

history = qb.History(qb.Securities.Keys, 252*2, Resolution.Daily)

if history.empty: return
              # Select the close column and then call the unstack method, then call pct_change to compute the daily return. returns = history['close'].unstack(level=0).pct_change().iloc[1:]
              # Get correlation
correlation = returns.corr()
             # Find 5 assets with lowest absolute sum correlation
selected = []
for index, row in correlation.iteritems():
    corr_rank = row.abs().sum()
    selected.append((index, corr_rank))
              sort_ = sorted(selected, key = lambda x: x[1])
selected = [x[0] for x in sort_[:5]]
              insights = []
             for symbol in selected:
   insights.append( Insight.Price(symbol, Expiry.EndOfMonth, InsightDirection.Up) )
              self.EmitInsights(insights)
```


- Charts
 Statistics
 Code
 Main.cs
 Research.ipynb

Clone Algorithm

Overall Statistics	
Total Trades	4428
Average Win	0.05%
Average Loss	-0.01%
Compounding Annual Return	0.018%
Drawdown	9.300%
Expectancy	0.010
Net Profit	0.091%
Sharpe Ratio	0.023
Probabilistic Sharpe Ratio	0.430%
Loss Rate	79%
Win Rate	21%
Profit-Loss Ratio	3.74
Alpha	0.007
Beta	-0.1
Annual Standard Deviation	0.04
Annual Variance	0.002
Information Ratio	-0.494
Tracking Error	0.127
Treynor Ratio	-0.009
Total Fees	\$17169.88
Estimated Strategy Capacity	\$290000.00
Lowest Capacity Asset	TLO TT1EBZ21QWKL

QUANTCONNECT

using Accord.Statistics; using System.Collections.Generic; using System.Ling; using QuantConnect.Algorithm.Framework.Alphas; using QuantConnect.Algorithm.Framework.Portfolio; using QuantConnect.Algorithm.Framework.Execution; using QuantConnect.Brokerages;

namespace QuantConnect.Algorithm.CSharp
{

10.5 Kalman Filters and Stat Arb

Introduction

This page explains how to you can use the Research Environment to develop and test a Kalman Filters and Statistical Arbitrage hypothesis, then put the hypothesis in production.

Create Hypothesis

In finance, we can often observe that 2 stocks with similar background and fundamentals (e.g. AAPL vs MSFT, SPY vs QQQ) move in similar manner. They could be correlated, although not necessary, but their price difference/sum (spread) is stationary. We call this cointegration. Thus, we could hypothesize that extreme spread could provide chance for arbitrage, just like a mean reversion of spread. This is known as pairs trading. Likewise, this could also be applied to more than 2 assets, this is known as statistical arbitrage.

However, although the fluctuation of the spread is stationary, the mean of the spread could be changing by time due to different reasons. Thus, it is important to update our expectation on the spread in order to go in and out of the market in time, as the profit margin of this type of short-window trading is tight. Kalman Filter could come in handy in this situation. We can consider it as an updater of the underlying return Markov Chain's expectation, while we're assuming the price series is a Random Process.

In this example, we're making a hypothesis on trading the spread on cointegrated assets is profitable. We'll be using forex pairs EURUSD, GBPUSD, USDCAD, USDHKD and USDJPY for this example, skipping the normalized price difference selection.

Import Libraries

We'll need to import libraries to help with data processing, model building, validation and visualization. Import arch , pykalman , scipy , statsmodels , numpy , matplotlib and pandas libraries by the following:

```
from arch.unitroot.cointegration import engle_granger from pykalman import KalmanFilter from scipy.optimize import minmize from statsmodels.tsa.vector_ar.vecm import VECM import numpy as np from matplotlib import pyplot as plt from pandas.plotting import register_matplotlib_converters register_matplotlib_converters ()
```

Get Historical Data

To begin, we retrieve historical data for researching.

```
    Instantiate a QuantBook .
    qb = QuantBook()
```

2. Select the desired tickers for research

```
assets = ["EURUSD", "GBPUSD", "USDCAD", "USDHKD", "USDJPY"]
```

3. Call the AddForex method with the tickers, and their corresponding resolution. Then store their Symbol s.

```
for i in range(len(assets)):
    qb.AddForex(assets[i],Resolution.Minute)
```

If you do not pass a resolution argument, Resolution . Minute is used by default.

4. Call the History method with qb. Securities. Keys for all tickers, time argument(s), and resolution to request historical data for the symbol.

```
history = qb.History(qb.Securities.Keys, datetime(2021, 1, 1), datetime(2021, 12, 31), Resolution.Daily)
```

Cointegration

We'll have to test if the assets are cointegrated. If so, we'll have to obtain the cointegration vector(s).

Cointegration Testing

1. Select the close column and then call the unstack method.

```
df = history['close'].unstack(level=0)
```

2. Call np. log to convert the close price into log-price series to eliminate compounding effect.

```
log_price = np.log(data)
```

3. Apply Engle Granger Test to check if the series are cointegrated.

```
coint_result = engle_granger(log_price.iloc[:, 0], log_price.iloc[:, 1:], trend='n', method='bic')
```

It shows a p-value < 0.05 for the unit test, with lag-level 0. This proven the log price series are cointegrated in realtime. The spread of the 5 forex pairs are stationary.

Get Cointegration Vectors

We would use a VECM model to obtain the cointegrated vectors.

1. Initialize a VECM model by following the unit test parameters, then fit to our data.

```
\label{eq:vecm_result} vecm\_result = VECM(log\_price, k\_ar\_diff=0, coint\_rank=len(assets)-1, deterministic='n').fit() and the coint\_rank=len(assets)-1, deter
```

 $2. \;\; \mbox{Obtain the $\tt Beta} \;\; \mbox{attribute. This is the cointegration subspaces' unit vectors.}$

```
beta = vecm_result.beta
```

3. Check the spread of different cointegration subspaces.

```
spread = log_price @ beta
```

4. Plot the results.

```
fig, axs = plt.subplots(beta.shape[1], figsize=(15, 15))
fig.suptitle('Spread for various cointegrating vectors')
for i in range(beta.shape[1]):
    axs[i].plot(spread.iloc[:, i])
    axs[i].set_title(f"The {i+1}th normalized cointegrating subspace")
plt.show()
```

Optimization of Cointegration Subspaces

Although the 4 cointegratoin subspaces are not looking stationarym, we can optimize for a mean-reverting portfolio by putting various weights in different subspaces. We use the Portmanteau statistics as a proxy for the mean reversion. So we formulate:

with s is spread, v is predetermined desirable variance level (the larger the higher the profit, but lower the trading frequency)

1. We set the weight on each vector is between -1 and 1. While overall sum is $\boldsymbol{0}$.

```
 \begin{aligned} x0 &= np.array([-1**i/beta.shape[1] \ for \ in \ range(beta.shape[1])]) \\ bounds &= tuple((-1, 1) \ for \ in \ range(beta.shape[1])) \\ constraints &= [('type':'eq', 'fun':lambda x: np.sum(x)]] \end{aligned}
```

2. Optimize the Portmanteau statistics.

3. Normalize the result.

```
opt.x = opt.x/np.sum(abs(opt.x))
for i in range(len(opt.x)):
    print(f"The weight put on {i+1}th normalized cointegrating subspace: {opt.x[i]}")
```

4. Plot the weighted spread.

```
new_spread = spread @ opt.x
new_spread.plot(title="Weighted spread", figsize=(15, 10))
plt.ylabel("Spread")
plt.show()
```

Kalman Filter

The weighted spread looks more stationary. However, the fluctuation half-life is very long accrossing zero. We aim to trade as much as we can to maximize the profit of this strategy. Kalman Filter then comes into the play. It could modify the expectation of the next step based on smoothening the prediction and actual probability distribution of return.

Image Source: Understanding Kalman Filters, Part 3: An Optimal State Estimator. Melda Ulusoy (2017). MathWorks. Retreived from: https://www.mathworks.com/videos/understanding-kalman-filters-part-3-optimal-state-estimator-1490710645421.html

1. Initialize a KalmanFilter

In this example, we use the first 20 data points to optimize its initial state. We assume the market has no regime change so that the transitional matrix and observation matrix is [1].

2. Obtain the current Mean and Covariance Matrix expectations.

```
currentMean = filtered_state_means[-1, :]
currentCov = filtered_state_covariances[-1, :]
```

3. Initialize a mean series for spread normalization using the <code>KalmanFilter</code> 's results.

```
mean_series = np.array([None]*(new_spread.shape[0]-100))
```

4. Roll over the Kalman Filter to obtain the mean series.

5. Obtain the normalized spread series.

```
normalized_spread = (new_spread.iloc[100:] - mean_series)
```

6. Plot the normalized spread series.

```
plt.figure(figsize=(15, 10))
plt.plot(normalized_spread, label="Processed spread")
plt.title("Normalized spread series")
plt.ylabel("Spread - Expectation")
plt.legend()
plt.show()
```

Determine Trading Threshold

Now we need to determine the threshold of entry. We want to maximize profit from each trade (variance of spread) x frequency of entry. To do so, we formulate:

 $$\ \egin{equation*} \ \egin{$

```
so f^* = (I+\lambda D^TD)^{-1} \bar{f}
```

1. Initialize 50 set levels for testing.

```
s0 = np.linspace(0, max(normalized_spread), 50)
```

2. Calculate the profit levels using the 50 set levels.

Set trading frequency matrix

```
D = np.zeros((49, 50))
for i in range(D.shape[0]):
   D[i, i] = 1
   D[i, i+1] = -1
```

4. Set level of lambda.

```
1 = 1.0
```

5. Obtain the normalized profit level.

```
 \begin{array}{l} f\_star = np.linalg.inv(np.eye(50) + 1 * D.T@D) @ f\_bar.reshape(-1, 1) \\ s\_star = [f\_star[i]*s0[i] for i in range(50)] \end{array}
```

6. Get the maximum profit level as threshold.

```
threshold = s0[s_star.index(max(s_star))]
print(f"The optimal threshold is {threshold}")
```

7. Plot the result.

```
plt.figure(figsize=(15, 10))
plt.plot(s0, s_star)
plt.title("Profit of mean-revertion trading")
plt.xlabel("Threshold")
```

```
plt.ylabel("Profit")
plt.show()
```

Test Hypothesis

To test the hypothesis. We wish to obtain a profiting strategy.

```
1. Set the trading weight. We would like the portfolio absolute total weight is 1 when trading
    trading_weight = beta @ opt.x
trading_weight /= np.sum(abs(trading_weight))
2. Set up the trading data.
    testing_ret = data.pct_change().iloc[1:].shift(-1)  # Shift 1 step backward as forward return result
equity = pd.DataFrame(np.ones((testing_ret.shape[0], 1)), index=testing_ret.index, columns=["Daily value"])
3. Set the buy and sell preiod when the spread exceeds the threshold.
    buy_period = normalized_spread[normalized_spread < -threshold].index
sell_period = normalized_spread[normalized_spread > threshold].index
4. Trade the portfolio.
     equity.loc[buy_period, "Daily value"] = testing_ret.loc[buy_period] @ trading_weight + 1 equity.loc[sell_period, "Daily value"] = testing_ret.loc[sell_period] @ -trading_weight + 1
5. Get the total portfolio value.
    value = equity.cumprod()
6. Plot the result.
    value.plot(title="Equity Curve", figsize=(15, 10))
plt.ylabel("Portfolio Value")
plt.show()
```

Set Up Algorithm

Once we are confident in our hypothesis, we can export this code into backtesting. One way to accommodate this model into backtest is to create a scheduled event which uses our model to predict the expected return.

```
def Initialize(self) -> None:
      #1. Required: Five years of backtest history
self.SetStartDate(2014, 1, 1)
      #2. Required: Alpha Streams Models:
self.SetBrokerageModel(BrokerageName.AlphaStreams)
      #3. Required: Significant AUM Capacity
      self.SetCash(1000000)
      #4. Required: Benchmark to SPY self.SetBenchmark("SPY")
      self.assets = ["EURUSD", "GBPUSD", "USDCAD", "USDHKD", "USDJPY"]
      # Add Equity -
      for i in range(len(self.assets)):
    self.AddForex(self.assets[i], Resolution.Minute)
      # Instantiate our model self.Recalibrate()
      # Set a variable to indicate the trading bias of the portfolio
      self.state = 0
      # Set Scheduled Event Method For Recalibrate Our Model Every Week.
self.Schedule.On(self.DateRules.WeekStart(),
    self.TimeRules.At(0, 0),
    self.Recalibrate)
      # Set Scheduled Event Method For Kalman Filter updating.
self.Schedule.On(self.DateRules.EveryDay(),
    self.TimeRules.BeforeMarketClose("EURUSD"),
    self.EveryDayBeforeMarketClose)
```

We'll also need to create a function to train and undate our model from time to time. We will switch on with self and replace methods with their OCALGORITEM counterparts as needed. In this example, this is not an issue because all the methods we used in research also exist in QCAlgorithm .

```
def Recalibrate(self) -> None:
     qb = self
history = qb.History(self.assets, 252*2, Resolution.Daily)
if history.empty: return
     # Select the close column and then call the unstack method
     data = history['close'].unstack(level=0)
     # Convert into log-price series to eliminate compounding effect
log_price = np.log(data)
     ### Get Cointegration Vectors
# Initialize a VECM model following the unit test parameters, then fit to our data.
vecm_result = VECM(log_price, k_ar_diff=0, coint_rank=len(self.assets)-1, deterministic='n').fit()
     \# Obtain the Beta attribute. This is the cointegration subspaces' unit vectors. beta = vecm_result.beta
     \sp{\#} Check the spread of different cointegration subspaces. spread = log price @ beta
     ### Optimization of Cointegration Subspaces
     # Optimize the Portmanteau statistics
      opt = minimize(lambda w: ((w.T @ np.cov(spread.T, spread.shift(1).fillna(0).T)[spread.shape[1]]:, :spread.shape[1]] @ w)/(w.T @ np.cov(spread.T) @ w))**2,
                           x0=x0,
bounds=bounds,
                           constraints=con
method="SLSQP"
     # Normalize the result
     opt.x = opt.x/np.sum(abs(opt.x))
new_spread = spread @ opt.x
     ### Kalman Filter
# Initialize a Kalman Filter. Using the first 20 data points to optimize its initial state. We assume the market has no regime change so that the transitional matrix and obsesself.kalmanFilter = KalmanFilter(transition_matrices = [1],
                                 Name and the constraint of the constraint of the constraint matrices = [1], initial state mean = new spread.iloc[:20].mean(), observation_covariance = new spread.iloc[:20].var(), em_vars=['transition_covariance', 'initial_state_cov
                                                                                                           ariance!1)
```

Now we export our model into the scheduled event method for trading. We will switch qb with self and replace methods with their QCAlgorithm counterparts as needed. In this example, this is not an issue because all the methods we used in research also exist in QCAlgorithm.

Reference

1. A Signal Processing Perspective on Financial Engineering. Y. Feng. D. P. Palomer (2016). Foundations and Trends in Signal Processing. 9(1-2). p173-200.

- <u>Charts</u><u>Statistics</u><u>Code</u>
- - main.pyresearch.ipynb

Overall Statistics	
Total Trades	1315
Average Win	0.06%
Average Loss	-0.07%
Compounding Annual Return	-3.477%
Drawdown	17.000%
Expectancy	-0.349
Net Profit	-16.232%
Sharpe Ratio	-1.024
Probabilistic Sharpe Ratio	0.000%
Loss Rate	64%
Win Rate	36%
Profit-Loss Ratio	0.79
Alpha	-0.025
Beta	0.022
Annual Standard Deviation	0.023
Annual Variance	0.001
Information Ratio	-0.796
Tracking Error	0.11
Treynor Ratio	-1.088
Total Fees	\$109.25
Estimated Strategy Capacity	\$43000000.00
Lowest Capacity Asset	USDHKD 8G

QUANTCONNECT

#region imports
from AlgorithmImports import *
from pykalman import KalmanFilter
from scipy.optimize import minimize
from statsmodels.tsa.vector_ar.vecm import VECM
#endregion

class KalmanFilterStatisticalArbitrageDemo(QCAlgorithm):

def Initialize(self):

10.6 PCA and Pairs Trading

Introduction

This page explains how to you can use the Research Environment to develop and test a Principle Component Analysis hypothesis, then put the hypothesis in production.

Create Hypothesis

Principal Component Analysis (PCA) a way of mapping the existing dataset into a new "space", where the dimensions of the new data are linearly-independent, orthogonal vectors. PCA eliminates the problem of multicollinearity. In another way of thought, can we actually make use of the collinearity it implied, to find the collinear assets to perform pairs trading?

Import Libraries

We'll need to import libraries to help with data processing, validation and visualization. Import sklearn , arch , statsmodels , numpy and matplotlib libraries by the following:

```
from sklearn.decomposition import PCA from arch.unitroot.cointegration import engle_granger from statsmodels.tsa.stattools import adfuller import numpy as np from matplotlib import pyplot as plt
```

Get Historical Data

To begin, we retrieve historical data for researching.

```
    Instantiate a QuantBook .
    gb = QuantBook()
```

2. Select the desired tickers for research.

3. Call the AddEquity method with the tickers, and their corresponding resolution. Then store their Symbol s.

```
for i in range(len(assets)):
    symbols[assets[i]] = qb.AddEquity(assets[i],Resolution.Minute).Symbol
```

If you do not pass a resolution argument, Resolution. Minute is used by default

4. Call the <code>History</code> method with <code>qb.Securities.Keys</code> for all tickers, time argument(s), and resolution to request historical data for the symbol.

```
history = qb.History(qb.Securities.Keys, datetime(2021, 1, 1), datetime(2021, 12, 31), Resolution.Daily)
```

Prepare Data

We'll have to process our data to get the principle component unit vector that explains the most variance, then find the highest- and lowest-absolute-weighing assets as the pair, since the lowest one's variance is mostly explained by the highest.

1. Select the close column and then call the unstack method.

```
close_price = history['close'].unstack(level=0)
```

2. Call pct change to compute the daily return.

```
returns = close_price.pct_change().iloc[1:]
```

3. Initialize a PCA model, then get the principle components by the maximum likelihood.

```
pca = PCA()
pca.fit(returns)
```

 $4. \ \ \text{Get the number of principle component in a list, and their corresponding explained variance ratio.}$

```
\label{eq:components} \begin{subarray}{ll} components = [str(x + 1) for x in range(pca.n_components)] \\ explained_variance_pct = pca.explained_variance_ratio_ * 100 \\ \end{subarray}
```

 $5. \ \ Plot$ the principle components' explained variance ratio.

```
plt.figure(figsize=(15, 10))
plt.bar(components, explained variance_pct)
plt.title("Ratio of Explained Variance")
plt.xlabel("Frinciple Component #")
plt.ylabel("%")
plt.show()
```

We can see over 95% of the variance is explained by the first principle. We could conclude that collinearity exists and most assets' return are correlated. Now, we can extract the 2 most correlated pairs.

6. Get the weighting of each asset in the first principle component.

```
first_component = pca.components_[0, :]
```

7. Select the highest- and lowest-absolute-weighing asset.

```
highest = assets[abs(first_component).argmax()]
lowest = assets[abs(first_component).argmin()]
print(f'The highest-absolute-weighing asset: {highest}\nThe lowest-absolute-weighing asset: {lowest}')
```

8. Plot their weighings.

```
plt.figure(figsize=(15, 10))
plt.bar(assets, first_component)
plt.title("Weightings of each asset in the first component")
plt.xlabel("Assets")
plt.ylabel("Weighting")
plt.xticks(rotation=30)
plt.show()
```

Test Hypothesis

We now selected 2 assets as candidate for pair-trading. Hence, we're going to test if they are cointegrated and their spread is stationary to do so.

1. Call np.log to get the log price of the pair.

```
log_price = np.log(close_price[[highest, lowest]])
```

2. Test cointegration by Engle Granger Test.

```
coint_result = engle_granger(log_price.iloc[:, 0], log_price.iloc[:, 1], trend="c", lags=0)
display(coint_result)
```

Get their cointegrating vector.

```
coint vector = coint result.cointegrating vector[:2]
```

4. Calculate the spread.

```
spread = log price @ coint vector
```

5. Use Augmented Dickey Fuller test to test its stationarity

```
pvalue = adfuller(spread, maxlag=0)[1]
print(f"The ADF test p-value is {pvalue}, so it is {'' if pvalue < 0.05 else 'not '}stationary.")</pre>
6. Plot the spread.
```

```
spread.plot(figsize=(15, 10), title=f"Spread of {highest} and {lowest}")
plt.vlabel("Spread")
plt.show()
```

Result shown that the pair is cointegrated and their spread is stationary, so they are potential pair for pair-trading

Set Up Algorithm

Pairs trading is exactly a 2-asset version of statistical arbitrage. Thus, we can just modify the algorithm from the Kalman Filter and Statistical Arbitrage tutorial, except we're using only a single cointegrating unit vector so no optimization of cointegration subspace is needed.

```
#1. Required: Five years of backtest history
self.SetStartDate(2014, 1, 1)
    #2. Required: Alpha Streams Models:
self.SetBrokerageModel(BrokerageName.AlphaStreams)
    #3. Required: Significant AUM Capacity self.SetCash(1000000)
    #4. Required: Benchmark to SPY self.SetBenchmark("SPY")
    self.assets = ["SCHO", "SHY"]
    # Add Equity ---
    for i in range(len(self.assets)):
    self.AddEquity(self.assets[i], Resolution.Minute)
    # Instantiate our model
self.Recalibrate()
    # Set a variable to indicate the trading bias of the portfolio
    self.state = 0
    # Set Scheduled Event Method For Kalman Filter updating.
    self.Schedule.On(self.DateRules.EveryDay(),
     self.TimeRules.BeforeMarketClose("SHY"),
         self.EveryDayBeforeMarketClose)
def Recalibrate(self) -> None:
    qb = self
    history = qb.History(self.assets, 252*2, Resolution.Daily) if history.empty: return
    # Select the close column and then call the unstack method
data = history['close'].unstack(level=0)
    # Convert into log-price series to eliminate compounding effect
log_price = np.log(data)
    ### Get Cointegration Vectors
# Get the cointegration vector
coint_result = engle_granger(log_price.iloc[:, 0], log_price.iloc[:, 1], trend="c", lags=0)
coint_vector = coint_result.cointegrating_vector[:2]
    # Get the spread
spread = log_price @ coint_vector
    # Obtain the current Mean and Covariance Matrix expectations.
    self.currentMean = filtered_state_means[-1, :]
self.currentCov = filtered_state_covariances[-1, :]
    # Initialize a mean series for spread normalization using the Kalman Filter's results.
mean_series = np.array([None]*(spread.shape[0]-20))
     # Roll over the Kalman Filter to obtain the mean series.
    for i in range(20, spread.shape[0]):
         mean series[i-20] = float(self.currentMean)
    # Obtain the normalized spread series.
    normalized_spread = (spread.iloc[20:] - mean series)
    ### Determine Trading Threshold
# Initialize 50 set levels for testing.
s0 = np.linspace(0, max(normalized_spread), 50)
    # Set trading frequency matrix.
D = np.zeros((49, 50))
for i in range(D.shape[0]):
    D[i, i] = 1
    D[i, i+1] = -1
    \# Set level of lambda. 1 = 1.0
    # Obtain the normalized profit level.
f_star = np.linalg.inv(np.eye(50) + 1 * D.T@D) @ f_bar.reshape(-1, 1)
s_star = [f_star[i]*s0[i] for i in range(50)]
```

```
self.threshold = s0[s_star.index(max(s_star))]
\# Set the trading weight. We would like the portfolio absolute total weight is 1 when trading.self.trading_weight = coint_vector / np.sum(abs(coint_vector))
\ensuremath{\sharp} Get the real-time log close price for all assets and store in a Series
# Get the spread
spread = np.sum(series * self.trading_weight)
# Obtain the normalized spread.
normalized_spread = spread - self.currentMean
# Mean-reversion
if normalized spread < -self.threshold:
    orders = []
    for i in range(len(self.assets)):
        orders.append(PortfolioTarget(self.assets[i], self.trading_weight[i]))
        self.SetHoldings(orders)</pre>
     self.state = 1
elif normalized_spread > self.threshold:
    t normatice_vp.--
orders = []
for i in range(len(self.assets)):
    orders.append(PortfolioTarget(self.assets[i], -1 * self.trading_weight[i]))
    self.SetHoldings(orders)
# Out of position if spread recovered elif self.state == -1 and normalized_spread < self.threshold:
     self.Liquidate()
     self state = 0
```


10.7 Hidden Markov Models

Introduction

This page explains how to you can use the Research Environment to develop and test a Hidden Markov Model hypothesis, then put the hypothesis in production.

Create Hypothesis

A Markov process is a stochastic process where the possibility of switching to another state depends only on the current state of the model by the current state's probability distribution (it is usually represented by a state transition matrix). It is history-independent, or memoryless. While often a Markov process's state is observable, the states of a Hidden Markov Model (HMM) is not observable. This means the input(s) and output(s) are observable, but their intermediate, the state, is non-observable/hidden.

A 3-state HMM example, where S are the hidden states, O are the observable states and a are the probabilities of state transition.

Image source: Modeling Strategic Use of Human Computer Interfaces with Novel Hidden Markov Models. L. J. Mariano, et. al. (2015), Frontiers in Psychology 6:919. DOI:10.3389/fpsyg.2015.00919

In finance, HMM is particularly useful in determining the market regime, usually classified into "Bull" and "Bear" markets. Another popular classification is "Volatile" vs "Involatile" market, such that we can avoid entering the market when it is too risky. We hypothesis a HMM could be able to do the later, so we can produce a SPY-out-performing portfolio (positive alpha).

Import Libraries

We'll need to import libraries to help with data processing, validation and visualization. Import statsmodels , scipy , numpy , matplotlib and pandas libraries by the following:

```
from statsmodels.tsa.regime_switching.markov_regression import MarkovRegression from scipy.stats import multivariate_normal import numpy as np from matplotlib import pyplot as plt from pandas.plotting import register_matplotlib_converters register_matplotlib_converters()
```

Get Historical Data

To begin, we retrieve historical data for researching.

```
    Instantiate a QuantBook .
    qb = QuantBook()
```

2. Select the desired index for research.

```
asset = "SPX"
```

3. Call the AddIndex method with the tickers, and their corresponding resolution.

```
gb.AddIndex(asset, Resolution.Minute)
```

If you do not pass a resolution argument, Resolution. Minute is used by default.

4. Call the History method with qb.Securities.Keys for all tickers, time argument(s), and resolution to request historical data for the symbol.

```
\verb|history = qb.History(qb.Securities.Keys, datetime(2019, 1, 1), datetime(2021, 12, 31), Resolution.Daily|| \\
```

Prepare Data

We'll have to process our data to get the volatility of the market for classification.

1. Select the close column and then call the ${\tt unstack}$ method.

```
close_price = history['close'].unstack(level=0)
```

2. Call pct_change to compute the daily return.

```
returns = close price.pct change().iloc[1:]
```

3. Initialize the HMM, then fit by the daily return data. Note that we're using variance as switching regime, so switching_variance argument is set as True .

```
model = MarkovRegression(returns, k_regimes=2, switching_variance=True).fit()
display(model.summary())
```

All p-values of the regime self-transition coefficients and the regime transition probability matrix's coefficient is smaller than 0.05, indicating the model should be able to classify the data into 2 different volatility regimes.

Test Hypothesis

We now verify if the model can detect high and low volatility period effectively.

1. Get the regime as a column, 1 as Low Variance Regime, 2 as High Variance Regime.

2. Get the mean and covariance matrix of the 2 regimes, assume 0 covariance between the two.

```
 \begin{split} & mean = np.array([returns.loc[df\_1.index].mean(), returns.loc[df\_2.index].mean()]) \\ & cov = np.array([[returns.loc[df\_1.index].var(), 0], [0, returns.loc[df\_2.index].var()]]) \end{split}
```

3. Fit a 2-dimensional multivariate normal distribution by the 2 means and covriance matrix.

```
\label{eq:cov_cov} \begin{array}{ll} \mbox{dist = multivariate\_normal(mean=mean.flatten(), cov=cov)} \\ \mbox{mean\_1, mean\_2 = mean[0], mean[1]} \\ \mbox{sigma\_1, sigma\_2 = cov[0,0], cov[1,1]} \end{array}
```

4. Get the normal distribution of each of the distribution.

```
x = np.linspace(-0.05, 0.05, num=100)
y = np.linspace(-0.05, 0.05, num=100)
X, Y = np.meshgrid(x,y)
pdf = np.zeros(X.shape)
for i in range(X.shape[0]):
    for j in range(X.shape[1]):
        pdf[i,j] = dist.pdf([X[i,j], Y[i,j]])
```

5. Plot the probability of data in different regimes.

```
fig, axes = plt.subplots(2, figsize=(15, 10))
ax = axes[0]
ax.plot(model.smoothed_marginal_probabilities[0])
ax.set(title='Smoothed_probability of Low Variance Regime')
ax = axes[1]
ax.plot(model.smoothed_marginal_probabilities[1])
ax.set(title='Smoothed_probability of High Variance Regime')
fig.tight_layout()
plt.show()
```

6. Plot the series into regime-wise.

```
df 1.index = pd.to datetime(df_1.index)
df 1 = df 1.sort_index()
df 2 = df 2.sort_index()
plt.figure(figsize=(15, 10))
plt.scatter(df 1.index, df 1, color='blue', label="Low Variance Regime")
plt.scatter(df_2.index, df_2, color='red', label="High Variance Regime")
plt.title("Price series")
plt.tylabel("Price ($)")
plt.legend()
plt.show()
7. Plot the distribution surface.

fig = plt.figure(figsize=(20, 10))
ax = fig.add subplot(122, projection = '3d')
ax.plot surface(X, Y, pdf, cmap = 'viridis')
ax.axes.zaxis.set ticks([])
plt.xlabel("Low Volatility Regime")
plt.title('Bivariate normal distribution of the Regimes')
plt.tight layout()
plt.show()

8. Plot the contour.

plt.figure(figsize=(12, 8))
plt.contourf(X, Y, pdf, cmap = 'viridis')
plt.xlabel("Low Volatility Regime")
plt.xlabel("High Volatility Regime")
```

We can clearly seen from the results, the Low Volatility Regime has much lower variance than the High Volatility Regime, proven the model works.

Set Up Algorithm

Once we are confident in our hypothesis, we can export this code into backtesting. One way to accommodate this model into backtest is to create a scheduled event which uses our model to predict the expected return. Since we could calculate the expected return, we'd use Mean-Variance Optimization for portfolio construction.

Now we export our model into the scheduled event method. We will switch qb with self and replace methods with their QCAlgorithm counterparts as needed. In this example, this is not an issue because all the methods we used in research also exist in QCAlgorithm.

```
ChartsStatisticsCode
     main.pyresearch.ipynb
  Clone Algorithm
                                                                                                                                                                              QUANTCONNECT
                            Overall Statistics
                            Total Trades
                                                                                             543
                            Average Win
                                                                                             2.03%
                                                                                             -0.86%
                            Average Loss
                            Compounding Annual Return
Drawdown
                                                                                             10.462%
                                                                                             25.500%
                            Expectancy
                                                                                             0.495
                            Net Profit
                                                                                             264.919%
                            Sharpe Ratio
                                                                                             0.637
                            Probabilistic Sharpe Ratio
                                                                                             4.698%
                            Loss Rate
                                                                                             55%
                            Win Rate
                                                                                             45%
                            Profit-Loss Ratio
                                                                                             2.34
                                                                                             0.076
                            Alpha
                            Beta
                                                                                             0.037
                            Annual Standard Deviation
                                                                                             0.125
```

0.016

-0.011

0.207

2.122 \$31659.21

\$47000000.00 SPY R735QTJ8XC9X

9 #region imports from AlgorithmImports import * from AlgorithmSemoels.tsa.regime_switching.markov_regression import MarkovRegression #endregion class HMMDemo(QCAlgorithm):

Estimated Strategy Capacity
Lowest Capacity Asset

Annual Variance

Information Ratio

Tracking Error

Treynor Ratio

Total Fees

def Initialize(self):
 self.SetStartDate(2008, 1, 1)
 self.SetEndDate(2021, 1, 1)

10.8 Long Short-Term Memory

Introduction

This page explains how to you can use the Research Environment to develop and test a Long Short Term Memory hypothesis, then put the hypothesis in production.

Recurrent neural networks (RNN) are a powerful tool in deep learning. These models quite accurately mimic how humans process sequencial information and learn. Unlike traditional feedforward neural networks, RNNs have memory. That is, information fed into them persists and the network is able to draw on this to make inferences.

Long Short-term Memory (LSTM) is a type of RNN. Instead of one layer, LSTM cells generally have four, three of which are part of "gates" -- ways to optionally let information through. The three gates are commonly referred to as the forget, input, and output gates. The forget gate layer is where the model decides what information to keep from prior states. At the input gate layer, the model decides which values to update. Finally, the output gate layer is where the final output of the cell state is decided. Essentially, LSTM separately decides what to remember and the rate at which it should update.

An exmaple of a LSTM cell: x is the input data, c is the long-term memory, h is the current state and serve as short-term memory, \$\sigma\$ and \$\tanh\$\$ is the non-linear activation function of the gates. Image source: https://en.wikipedia.org/wiki/Long_short-term_memory#/media/File:LSTM_Cell.svg

Create Hypothesis

LSTM models have produced some great results when applied to time-series prediction. One of the central challenges with conventional time-series models is that, despite trying to account for trends or other non-stationary elements, it is almost impossible to truly predict an outlier like a recession, flash crash, liquidity crisis, etc. By having a long memory, LSTM models are better able to capture these difficult trends in the data without suffering from the level of overfitting a conventional model would need in order to capture the same data.

For a very basic application, we're hypothesizing LSTM can offer an accurate prediction in future price.

Import Libraries

We'll need to import libraries to help with data processing, validation and visualization. Import keras , sklearn , numpy and matplotlib libraries by the following:

```
from keras.layers import LSTM, Dense, Dropout
from keras.models import Sequential
from keras.callbacks import EarlyStopping
from sklearn.preprocessing import MinMaxScaler
import numpy as np
from matplotlib import pyplot as plt
```

Get Historical Data

To begin, we retrieve historical data for researching.

```
1. Instantiate a QuantBook .

qb = QuantBook()
```

2. Select the desired index for research.

```
asset = "SPY"
```

3. Call the AddEquity method with the tickers, and their corresponding resolution.

```
qb.AddEquity(asset, Resolution.Minute)
```

If you do not pass a resolution argument, Resolution . Minute is used by default.

4. Call the History method with qb. Securities. Keys for all tickers, time argument(s), and resolution to request historical data for the symbol.

```
history = qb.History(qb.Securities.Keys, datetime(2019, 1, 1), datetime(2021, 12, 31), Resolution.Daily)
```

Prepare Data

We'll have to process our data as well as build the LSTM model before testing the hypothesis. We would scale our data to for better covergence.

1. Select the close column and then call the unstack method.

```
close_price = history['close'].unstack(level=0)
2. Initialize MinMaxScaler to scale the data onto [0,1].
    scaler = MinMaxScaler(feature_range = (0, 1))
```

3. Transform our data.

```
df = pd.DataFrame(scaler.fit_transform(close), index=close.index)
```

4. Select input data

```
scaler = MinMaxScaler(feature_range = (0, 1))
```

5. Shift the data for 1-step backward as training output result.

```
output = df.shift(-1).iloc[:-1]
```

6. Split the data into training and testing sets.

In this example, we use the first 80% data for trianing, and the last 20% for testing.

```
splitter = int(input_.shape[0] * 0.8)
X_train = input_.iloc[:splitter]
X_test = input_.iloc[splitter:]
y_train = output.iloc[:splitter]
y_test = output.iloc[splitter:]
```

7. Build feauture and label sets (using number of steps 60, and feature rank 1).

```
features_set = []
labels = []
for i in range(60, X_train.shape[0]):
    features_set.append(X_train.iloc[i-60:i].values.reshape(-1, 1))
    labels.append(y_train.iloc[i])
features_set, labels = np.array(features_set), np.array(labels)
features_set = np.reshape(features_set, (features_set.shape[0], features_set.shape[1], 1))
```

Build Model

We construct the LSTM model.

```
1. Build a Sequential keras model.
```

```
model = Sequential()
```

2. Create the model infrastructure.

```
# Add our first LSTM layer - 50 nodes.
model.add(LSTM(units = 50, return_sequences=True, input_shape=(features_set.shape[1], 1)))
# Add Dropout layer to avoid overfitting
model.add(Dropout(0.2))
# Add additional layers
```

```
model.add(LSTM(units=50, return_sequences=True))
model.add(Dropout(0.2))
model.add(LSTM(units=50))
model.add(Dropout(0.2))
model.add(Dense(units = 5))
model.add(Dense(units = 1))
```

3. Compile the model.

We use Adam as optimizer for adpative step size and MSE as loss function since it is continuous data.

```
model.compile(optimizer = 'adam', loss = 'mean_squared_error', metrics=['mae', 'acc'])
```

4. Set early stopping callback method.

```
callback = EarlyStopping(monitor='loss', patience=3, verbose=1, restore_best_weights=True)
```

5. Display the model structure.

```
model.summary()
```

6. Fit the model to our data, running 20 training epochs.

Note that different training session's results will not be the same since the batch is randomly selected.

```
model.fit(features_set, labels, epochs = 20, batch_size = 100, callbacks=[callback])
```

Test Hypothesis

We would test the performance of this ML model to see if it could predict 1-step forward price precisely. To do so, we would compare the predicted and actual prices.

1. Get testing set features for input.

```
test features = []
for \(\bar{i}\) in range(60, \(X\) test.shape[0]):
    test_features.append(\(X\)_test.iloc(i-60:i].values.reshape(-1, 1))
test_features = np.array(test_features)
test_features = np.reshape(test_features, (test_features.shape[0], test_features.shape[1], 1))
```

2. Make predictions.

```
predictions = model.predict(test_features)
```

3. Transform predictions back to original data-scale.

```
predictions = scaler.inverse_transform(predictions)
actual = scaler.inverse_transform(y_test.values)
```

4. Plot the results.

```
plt.figure(figsize=(15, 10))
plt.plot(actual[60:], color='blue', label='Actual')
plt.plot(predictions , color='red', label='Prediction')
plt.title('Price vs Predicted Price ')
plt.legend()
plt.show()
```

Set Up Algorithm

Once we are confident in our hypothesis, we can export this code into backtesting. One way to accommodate this model into backtest is to create a scheduled event which uses our model to predict the expected return. If we predict the price will go up, we long SPY, else, we short it.

We'll also need to create a function to train and update our model from time to time.

```
def BuildModel(self) -> None:
    qb = self

### Preparing Data
# Get historical data
history = qb.History(qb.Securities.Keys, 252*2, Resolution.Daily)

# Select the close column and then call the unstack method.
close = history['close'].unstack(level=0)

# Scale data onto [0,1]
self.scaler = MinMaxScaler(feature_range = (0, 1))

# Transform our data
df = pd.DataFrame(self.scaler.fit_transform(close), index=close.index)

# Feature engineer the data for input.
input_ = df.iloc[1:]

# Shift the data for 1-step backward as training output result.
output = df.shift(-1).iloc[:-1]

# Build feauture and label sets (using number of steps 60, and feature rank 1)
features_set = []
labels = []
for i in range(60, input_.shape[0]):
    features_set.append(input_.iloc[i-60:i].values.reshape(-1, 1))
```

```
labels.append(output.iloc[i])
features_set, labels = np.array(features_set), np.array(labels)
features_set = np.reshape(features_set, features_set.shape[0], features_set.shape[1], 1))

### Build Model
# Build a Sequential keras model
self.model = Sequential()

# Add our first LSTM layer - 50 nodes
self.model.add(LSTM(units = 50, return_sequences=True, input_shape=(features_set.shape[1], 1)))
# Add Dropout layer to avoid overfitting
self.model.add(Dropout(0.2))
# Add additional layers
self.model.add(Dropout(0.2))
self.model.add(LSTM(units=50, return_sequences=True))
self.model.add(LSTM(units=50))
self.model.add(Dropout(0.2))
self.model.add(Dropout(0.2))
self.model.add(Dense(units = 5))
self.model.add(Dense(units = 5))
self.model.add(Dense(units = 1))

# Compile the model. We use Adam as optimizer for adpative step size and MSE as loss function since it is continuous data.
self.model.compile(optimizer = 'adam', loss = 'mean_squared_error', metrics=['mae', 'acc'])

# Set early stopping callback method
callback = EarlyStopping(monitor='loss', patience=3, restore_best_weights=True)

# Fit the model to our data, running 20 training epochs
self.model.fit(features_set, labels, epochs = 20, batch_size = 1000, callbacks=[callback])
```

Now we export our model into the scheduled event method. We will switch qb with self and replace methods with their QCAlgorithm counterparts as needed. In this example, this is not an issue because all the methods we used in research also exist in QCAlgorithm.

10.9 Airline Buybacks

Introduction

This page explains how to you can use the Research Environment to develop and test a Airline Buybacks hypothesis, then put the hypothesis in production.

Create Hypothesis

Buyback represents a company buy back its own stocks in the market, as (1) management is confident on its own future, and (2) wants more control over its development. Since usually buyback is in large scale on a schedule, the price of repurchasing often causes price fluctuation.

Airlines is one of the largest buyback sectors. Major US Airlines use over 90% of their free cashflow to buy back their own stocks in the recent years. [11] Therefore, we can use airline companies to test the hypothesis of buybacks would cause price action. In this particular exmaple, we're hypothesizing that difference in buyback price and close price would suggest price change in certain direction. (we don't know forward return would be in momentum or mean-reversion in this case!)

Import Libraries

We'll need to import libraries to help with data processing, validation and visualization. Import SmartInsiderTransaction class, statsmodels, sklearn, numpy, pandas and seaborn libraries by the following:

```
from QuantConnect.DataSource import SmartInsiderTransaction from statsmodels.discrete.discrete_model import Logit from sklearn.metrics import confusion_matrix import numpy as np import pandas as pd import seaborn as sns
```

Get Historical Data

To begin, we retrieve historical data for researching.

```
    Instantiate a QuantBook .
    qb = QuantBook()
```

2. Select the airline tickers for research.

```
assets = ["LUV",  # Southwest Airlines
    "DAL",  # Delta Airlines
    "UAL",  # United Airlines Holdings
    "AAL",  # American Airlines Group
    "SKYW",  # SkyWest Inc.
    "ALGT",  # Allegiant Travel Co.
    "ALK"  # Allaska Air Group Inc.
```

3. Call the AddEquity method with the tickers, and its corresponding resolution. Then call AddData with SmartInsiderTransaction to subscribe to their buyback transaction data. Save the Symbol s into a dictionary.

```
symbols = {}
for ticker in assets:
    symbol = qb.AddEquity(ticker, Resolution.Minute).Symbol
    symbols[symbol] = qb.AddData(SmartInsiderTransaction, symbol).Symbol
```

If you do not pass a resolution argument, Resolution, Minute is used by default.

4. Call the History method with a list of symbol s for all tickers, time argument(s), and resolution to request historical data for the symbols.

```
history = qb.History(list(symbols.keys()), datetime(2019, 1, 1), datetime(2021, 12, 31), Resolution.Daily)
```

5. Call SPY history as reference.

```
\texttt{spy} = \texttt{qb.History}(\texttt{qb.AddEquity}(\texttt{"SPY"}).\texttt{Symbol}, \; \texttt{datetime}(\texttt{2019}, \; 1, \; 1), \; \texttt{datetime}(\texttt{2021}, \; 12, \; 31), \; \texttt{Resolution.Daily})
```

6. Call the History method with a list of SmartInsiderTransaction Symbol s for all tickers, time argument(s), and resolution to request historical data for the symbols.

```
history_buybacks = qb.History(list(symbols.values()), datetime(2019, 1, 1), datetime(2021, 12, 31), Resolution.Daily)
```

Prepare Data

We'll have to process our data to get the buyback premium/discount% vs forward return data.

1. Select the close column and then call the unstack method.

```
df = history['close'].unstack(level=0)
spy_close = spy['close'].unstack(level=0)
```

2. Call pct_change to get the daily return of close price, then shift 1-step backward as prediction.

```
ret = df.pct_change().shift(-1).iloc[:-1]
ret_spy = spy_close.pct_change().shift(-1).iloc[:-1]
```

3. Get the active forward return

```
active_ret = ret.sub(ret_spy.values, axis=0)
```

4. Select the ExecutionPrice column and then call the unstack method to get the buyback dataframe.

```
df_buybacks = history_buybacks['executionprice'].unstack(level=0)
```

5. Convert buyback history into daily mean data.

```
\label{eq:df_buybacks} $$ df_buybacks.groupby(df_buybacks.index.date).mean() $$ df_buybacks.columns = df.columns $$ $$
```

6. Get the buyback premium/discount %.

```
df_close = df.reindex(df_buybacks.index)[~df_buybacks.isna()]
df_buybacks = (df_buybacks - df_close)/df_close
```

7. Create a $\mathtt{Dataframe}$ to hold the buyback and 1-day forward return data.

```
data = pd.DataFrame(columns=["Buybacks", "Return"])
```

8. Append the data into the Dataframe .

```
for row, row_buyback in zip(active_ret.reindex(df_buybacks.index).itertuples(), df_buybacks.itertuples()):
    index = row[0]
    for i in range(1, df_buybacks.shape[1]+1):
        if row_buyback[i] != 0:
            data = pd.concat([data, pd.DataFrame({"Buybacks": row_buyback[i], "Return":row[i]}, index=[index])])
```

9. Call dropna to drop NaNs.

```
data.dropna(inplace=True)
```

Test Hypothesis

We would test (1) if buyback has statistically significant effect on return direction, and (2) buyback could be a return predictor.

1. Get binary return (+/-).

```
binary_ret = data["Return"].copy()
binary_ret[binary_ret < 0] = 0
binary_ret[binary_ret > 0] = 1
```

2. Construct a logistic regression model.

```
model = Logit(binary_ret.values, data["Buybacks"].values).fit()
```

3. Display logistic regression results.

```
display(model.summary())
```

We can see a p-value of < 0.05 in the logistic regression model, meaning the separation of positive and negative using buyback premium/discount% is statistically significant.

```
plt.figure(figsize=(10, 6))
sns.regplot(x=data["Buybacks"]*100, y=binary_ret, logistic=True, ci=None, line_kws={'label': " Logistic Regression Line"})
plt.plot([-50, 50], [0.5, 0.5], "r--", label="Selection Cutoff Line")
plt.title("Buyback premium vs Profit/Loss")
plt.xlabel("Buyback premium %")
 plt.xlim([-50, 50])
plt.ylabel("Profit/Loss")
```

Interesting, from the logistic regression line, we observe that when the airlines brought their stock in premium price, the price tended to go down, while the opposite for buying back in discount.

Let's also study how good is the logistic regression.

5. Get in-sample prediction result.

```
predictions = model.predict(data["Buybacks"].values)
    for i in range(len(predictions)):
    predictions[i] = 1 if predictions[i] > 0.5 else 0
6. Call confusion\_matrix to contrast the results
   cm = confusion_matrix(binary_ret, predictions)
7. Display the result.
   df_result = pd.DataFrame(cm,
                                     index=pd.MultiIndex.from_tuples([("Prediction", "Positive"), ("Prediction", "Negative")]), columns=pd.MultiIndex.from_tuples([("Actual", "Positive"), ("Actual", "Negative")]))
```

The logistic regression is having a 55.8% accuracy (55% sensitivity and 56.3% specificity), this can suggest a > 50% win rate before friction costs, proven our hypothesis.

Set Up Algorithm

Once we are confident in our hypothesis, we can export this code into backtesting. One way to accommodate this model into backtest is to create a scheduled event which uses our model to predict the expected return.

```
def Initialize(self) -> None:
      \#1. Required: Five years of backtest history self.SetStartDate(2017, 1, 1)
      #2. Required: Alpha Streams Models:
self.SetBrokerageModel(BrokerageName.AlphaStreams)
      #3. Required: Significant AUM Capacity self.SetCash(1000000)
      #4. Required: Benchmark to SPY self.SetBenchmark("SPY")
      self.SetPortfolioConstruction(EqualWeightingPortfolioConstructionModel())
      self.SetExecution(ImmediateExecutionModel())
      # Set our strategy to be take 5% profit and 5% stop loss.
self.AddRiskManagement(MaximumUnrealizedProfitPercentPerSecurity(0.05))
self.AddRiskManagement(MaximumDrawdownPercentPerSecurity(0.05))
      # Select the airline tickers for research.
      UDV", # Southwest Airlines
"DAL", # Delta Airlines
"UAL", # United Airlines Holdings
"AAL", # American Airlines Group
"SKYW", # SkyWest Inc.
"ALGI", # Allegiant Travel Co.
"ALK" # Alaska Air Group Inc.
      # Call the AddEquity method with the tickers, and its corresponding resolution. Then call AddData with SmartInsiderTransaction to subscribe to their buyback transaction data. for ticker in assets:

symbol = self.AddEquity(ticker, Resolution.Minute).Symbol self.symbols[symbol] = self.AddData(SmartInsiderTransaction, symbol).Symbol
      self.AddEquity("SPY
      # Initialize the model self.BuildModel()
      # Set Scheduled Event Method For Our Model Recalibration every month self.Schedule.On(self.DateRules.MonthStart(), self.TimeRules.At(0, 0), self.BuildModel)
      # Set Scheduled Event Method For Trading
      self.Schedule.On(self.DateRules.EveryDay(), self.TimeRules.BeforeMarketClose("SPY", 5), self.EveryDayBeforeMarketClose)
```

We'll also need to create a function to train and update the logistic regression model from time to time.

```
def BuildModel(self) -> None:
      qb = self
# Call the History method with list of tickers, time argument(s), and resolution to request historical data for the symbol.
history = qb.History(list(self.symbols.keys()), datetime(2015, 1, 1), datetime.now(), Resolution.Daily)
      # Call SPY history as reference
spy = qb.History(["SPY"], datetime(2015, 1, 1), datetime.now(), Resolution.Daily)
      # Call the History method with list of buyback tickers, time argument(s), and resolution to request buyback data for the symbol. history_buybacks = qb.History(list(self.symbols.values()), datetime(2015, 1, 1), datetime.now(), Resolution.Daily)
      # Select the close column and then call the unstack method to get the close price dataframe.
df = history['close'].unstack(level=0)
spy_close = spy['close'].unstack(level=0)
      # Call pct_change to get the daily return of close price, then shift 1-step backward as prediction.
ret = df.pct_change().shift(-1).iloc[:-1]
ret_spy = spy_close.pct_change().shift(-1).iloc[:-1]
```

Now we export our model into the scheduled event method. We will switch qb with self and replace methods with their QCAlgorithm counterparts as needed. In this example, this is not an issue because all the methods we used in research also exist in QCAlgorithm.

Reference

US Airlines Spent 96% of Free Cash Flow on Buybacks: Chart. B. Kochkodin (17 March 2020). Bloomberg. Retrieve from: https://www.bloomberg.com/news/articles/2020-03-16/u-s-airlines-spent-96-of-free-cash-flow-on-buybacks-chart.

10.10 Sparse Optimization

Introduction

This page explains how to you can use the Research Environment to develop and test a Sparse Optimization Index Tracking hypothesis, then put the hypothesis in production.

Create Hypothesis

Passive index fund portfolio managers will buy in corresponding weighting of stocks from an index's constituents. The main idea is allowing market participants to trade an index in a smaller cost. Their performance is measured by Tracking Error (TE), which is the standard deviation of the active return of the portfolio versus its benchmark index. The lower the TE means that the portfolio tracks the index very accurately and consistently.

A technique called Sparse Optimization comes into the screen as the portfolio managers want to cut their cost even lower by trading less frequently and with more liquid stocks. They select a desired group/all constituents from an index and try to strike a balance between the number of stocks in the portfolio and the TE, like the idea of L1/L2-normalization.

On the other hand, long-only active fund aimed to beat the benchmark index. Their performance are measured by the mean-adjusted tracking error, which also take the mean active return into account, so the better fund can be identified as consisitently beating the index by n%.

We can combine the 2 ideas. In this tutorial, we are about to generate our own active fund and try to use Sparse Optimization to beat QQQ. However, we need a new measure on active fund for this technique -- Downward Risk (DR). This is a measure just like the tracking error, but taking out the downward period of the index, i.e. we only want to model the index's upward return, but not downward loss. We would also, for a more robust regression, combining Huber function as our loss function. This is known as Huber Downward Risk (HDR). Please refer to Optimization Methods for Financial Index Tracking: From Theory to Practice, K. Benidis, Y. Feng, D. P., Palomer (2018) for technical details.

Import Libraries

We'll need to import libraries to help with data processing and visualization. Import numpy , matplotlib and pandas libraries by the following:

```
import numpy as np
from matplotlib import pyplot as plt
from pandas.plotting import register_matplotlib_converters
register_matplotlib_converters()
```

Get Historical Data

To begin, we retrieve historical data for researching.

1. Create a class to get the index/ETF constituents on a particular date.

```
class ETFUniverse:
     A class to create a universe of equities from the constituents of an ETF
     def _{nun} init__(self, etf_ticker, universe_date):
           Input:
             - etf_ticker
Ticker of the ETF
            - universe date
           The date to gather the constituents of the ETF ^{"""}
           self.etf_ticker = etf_ticker
self.universe_date = universe_date
     def get_symbols(self, qb):
          Subscribes to the universe constituents and returns a list of symbols and their timezone
               qb
The QuantBook instance inside the DatasetAnalyzer
           Returns a list of symbols and their timezone
           etf_symbols = self._get_etf_constituents(qb, self.etf_ticker, self.universe_date)
security_timezone = None
security_symbols = []
             Subscribe to the universe price data
           for symbol in etf symbols:
security = qb.AddSecurity(symbol, Resolution.Daily)
security_timezone = security.Exchange.TimeZone
security_symbols.append(symbol)
           return security_symbols, security_timezone
     {\tt def} \ \_{\tt get\_etf\_constituents} \ ({\tt self, qb, etf\_ticker, date}) :
          \ensuremath{\mathtt{A}} helper method to retreive the ETF constituents on a given date
               \operatorname{qb} The QuantBook instance inside the DatasetAnalyzer \overset{\cdot}{\cdot}
            The Quantities - - - eff ticker - Ticker of the ETF - universe date - The date to gather the constituents of the ETF
           Returns a list of symbols
          """
date_str = date.strftime("%Y%m%d")
filename = f"/data/equity/usa/universes/etf/{etf_ticker.lower()}/{date_str}.csv"
           try:
    df = pd.read_csv(filename)
          except:

print(f'Error: The ETF universe file does not exist')
           return security_ids = df[df.columns[1]].values symbols = [qb.Symbol(security_id) for security_id in security_ids] return symbols
```

2. Instantiate a QuantBook .

```
qb = QuantBook()
```

3. Subscribe to the index/ETF.

```
In this tutorial, we'll be using QQQ.
```

```
qqq = qb.AddEquity("QQQ").Symbol
```

4. Select all the constituents for research.

In this tutorial, we select the constituents of OOO on 2020-12-31.

```
assets, _ = ETFUniverse("QQQ", datetime(2020, 12, 31)).get_symbols(qb)
```

5. Prepare the historical return data of the constituents and the benchmark index to track.

```
spy = qb.History(qb.AddEquity("SPY").Symbol, datetime(2019, 1, 1), datetime(2021, 12, 31), Resolution.Daily)
```

6. Call the History method with a list of SmartInsiderTransaction Symbol s for all tickers, time argument(s), and resolution to request historical data for the symbols

```
history = qb.History(assets, datetime(2020, 1, 1), datetime(2021, 3, 31), Resolution.Daily)
```

```
historyPortfolio = history.close.unstack(0).loc[:"2021-01-01"]
pctChangePortfolio = np.log(historyPortfolio/historyPortfolio.shift(1)).dropna()

historyQQQ_ = qb.History(qqq, datetime(2020, 1, 1), datetime(2021, 3, 31), Resolution.Daily)
historyQQQ_ = historyQQQ_ close.unstack(0).loc[:"2021-01-01"]
pctChangeQQ0 = np.log(historyQQQ/historyQQQ.shift(1)).loc[pctChangePortfolio.index]
```

Prepare Data

We'll have to process our data and construct the proposed sparse index tracking portfolio.

1. Get the dimensional sizes.

```
m = pctChangePortfolio.shape[0]; n = pctChangePortfolio.shape[1]
```

2. Set up optimization parameters (penalty of exceeding bounds, Huber statistics M-value, penalty weight).

```
p = 0.5
M = 0.0001
1 = 0.01
```

3. Set up convergence tolerance, maximum iteration of optimization, iteration counter and HDR as minimization indicator.

```
tol = 0.001
maxIter = 20
iters = 1
hdr = 10000
```

4. Initial weightings and placeholders.

```
w_ = np.array([1/n] * n).reshape(n, 1)
weights = pd.Series()
a = np.array([None] * m).reshape(m, 1)
c = np.array([None] * m).reshape(m, 1)
d = np.array([None] * n).reshape(n, 1)
```

5. Iterate minimization algorithm to minimize the HDR.

6. Save the final weights.

```
for i in range(n):
    weights[pctChangePortfolio.columns[i]] = w [i]
```

7. Get the historical return of the proposed portfolio.

```
histPort = historyPortfolio.dropna() @ np.array([weights[pctChangePortfolio.columns[i]] for i in range(pctChangePortfolio.shape[1])])
```

Test Hypothesis

To test the hypothesis. We wish to (1) outcompete the benchmark and (2) the active return is consistent in the in- and out-of-sample period.

1. Obtain the equity curve of our portfolio and normalized benchmark for comparison.

```
proposed = history.close.unstack(0).dropna() @ np.array([weights[pctChangePortfolio.columns[i]] for i in range(pctChangePortfolio.shape[1])])
benchmark = historyQQQ_.close.unstack(0).loc[proposed.index]
normalized_benchmark = benchmark / (float(benchmark.iloc[0])/float(proposed.iloc[0]))
```

Obtain the active return

```
proposed_ret = proposed.pct_change().iloc[1:]
benchmark_ret = benchmark.pct_change().iloc[1:]
active_ret = proposed_ret - benchmark_ret.values
```

3. Plot the result.

```
fig = plt.figure(figsize=(15, 10))
plt.plot(proposed, label="Proposed Portfolio")
plt.plot(normalized_benchmark, label="Normalized Benchmark")
min_ = min(min(proposed.values), min(normalized benchmark.values))
max_ = max(max(proposed.values), max(normalized benchmark.values))
plt.plot(plot.datetime("2021-01-01")]*100, np.linspace(min_, max_, 100), "r--", label="in- and out- of sample separation")
plt.title("Equity Curve")
plt.legend()
plt.show()
plt.clf()

fig, ax = plt.subplots(1, 1)
active_ret["Mean"] = float(active_ret.mean())
active_ret.plot(figsize=(15, 5), title="Active_Return", ax=ax)
plt.show()
```

We can see from the plots, both in- and out-of-sample period the proposed portfolio out preform the benchmark while remaining a high correlation with it. Although the active return might not be very consistent, but it is a stationary series above zero. So, in a long run, it does consistently outcompete the QQQ benchmark!

Set Up Algorithm

Once we are confident in our hypothesis, we can export this code into backtesting.

```
def Initialize(self) -> None:
    self.SetStartDate(2017, 1, 1)
        self.SetBrokerageModel(BrokerageName.AlphaStreams)
        self.SetCash(1000000)
       # Add our ETF constituents of the index that we would like to track.
self.QQQ = self.AddEquity("QQQ", Resolution.Minute).Symbol
self.UniverseSettings.Resolution = Resolution.Minute
self.AddUniverse(self.Universe.ETF(self.QQQ, self.UniverseSettings, self.ETFSelection))
       self.SetBenchmark("000")
       \sharp Set up variables to flag the time to recalibrate and hold the constituents. self.time = datetime.min self.assets = []
```

We'll also need to create a function for getting the ETF constituents.

```
def ETFSelection(self, constituents: ETFConstituentData) -> List[Symbol]:
    # We want all constituents to be considered.
    self.assets = [x.Symbol for x in constituents]
         return self.assets
```

Now we export our model into the OnData method. We will switch go with self and replace methods with their QCAlgorithm counterparts as needed. In this example, this is not an issue because all the methods we used in research also exist in QCAlgorithm

```
def OnData(self, slice: Slice) -> None:
               self
      if self.time > self.Time:
      \sharp Prepare the historical return data of the constituents and the ETF (as index to track). history = qb.History(self.assets, 252, Resolution.Daily)
      if history.empty: return
      historyPortfolio = history.close.unstack(0)
pctChangePortfolio = np.log(historyPortfolio/historyPortfolio.shift(1)).dropna()
      \label{eq:local_problem} \begin{split} & \text{historyQQQ} = \text{qb.History(self.AddEquity("QQQ").Symbol, 252, Resolution.Daily)} \\ & \text{historyQQQ} = & \text{historyQQQ.close.unstack(0)} \\ & \text{pctChangeQQQ} = & \text{np.log(historyQQQ/historyQQQ.shift(1)).loc[pctChangePortfolio.index]} \end{split}
      m = pctChangePortfolio.shape[0]; n = pctChangePortfolio.shape[1]
      # Set up convergence tolerance, maximum iteration of optimization, iteration counter and Huber downward risk as minimization indicator. tol = 0.001; maxIter = 20; iters = 1; hdr = 10000
      # Initial weightings and placeholders.
w_= np.array([1/n] * n).reshape(n, 1)
self.weights = pd.Series()
a = np.array([None] * m).reshape(m, 1)
c = np.array([None] * m).reshape(m, 1)
d = np.array([None] * n).reshape(n, 1)
      \# Iterate to minimize the HDR. while iters < maxIter: x k = (pctChangeQQQ.values - pctChangePortfolio.values @ w_) for i in range(n):
                     w = w_{[i]}

d[i] = d = 1/(np.log(1+1/p)*(p+w))
              a(1] = a_ = 1/(np.log(1+1)
for i in range(m):
    xk = float(x_k[i])
    if xk < 0:
        a[i] = M / (M - 2*xk)
        c[i] = xk</pre>
                    else:

c[i] = 0

if 0 <= xk <= M:

afi] = 1
                                    a[i] = M/abs(xk)
              L3 = 1/m * pctChangePortfolio.T.values @ np.diagflat(a.T) @ pctChangePortfolio.values eigVal, eigVec = np.linalg.eig(L3.astype(float)) eigVal = np.real(eigVal); eigVec = np.real(eigVec) eigVal = np.real(eigVal) * (2 * (L3 - max(eigVal) * np.eye(n)) @ w_ + eigVec @ d - 2/m * pctChangePortfolio.T.values @ np.diagflat(a.T) @ (c - pctChangeQQQ.values))
              \ensuremath{\text{\#}} We want to keep the upper bound of each asset to be 0.1
              % we want to keep the upper bound of each asset to be 0.1
uu = 0.1
mu = float(-(np.sum(q3) + 2)/n); mu_ = 0
while mu > mu;
mu = mu_
index1 = [i for i, q in enumerate(q3) if mu + q < -u*2]
index2 = [i for i, q in enumerate(q3) if -u*2 < mu + q < 0]
mu_ = float(-(np.sum([q3[i] for i in index2]) + 2 - len(index1)*u*2)/len(index2))</pre>
             # If the HDR converges, w
if abs(hdr - hdr_) < tol:
    break</pre>
                                                          we take the current weights
              # Else, we would increase the iteration count and use the current weights for the next iteration.
             iters += 1
hdr = hdr_
      orders = []
for i in range(n):
              orders.append(PortfolioTarget(pctChangePortfolio.columns[i], float(w [i])))
       self.SetHoldings (orders)
       # Recalibrate on quarter end.
self.time = Expiry.EndOfQuarter(self.Time)
```

Optimization Methods for Financial Index Tracking: From Theory to Practice. K. Benidis, Y. Feng, D. P. Palomer (2018). Foundations and Trends in Signal Processing. 3-3. p171-279.

```
ChartsStatisticsCode
     main.pyresearch.ipynb
  Clone Algorithm
                                                                                                                                                                                       QUANTCONNECT
                             Overall Statistics
                             Total Trades
                                                                                                  302
                             Average Win
                                                                                                  0.24%
                                                                                                  -0.30%
-15.479%
                             Average Loss
                             Compounding Annual Return
Drawdown
                                                                                                  28.600%
                             Expectancy
                                                                                                  -0.478
                             Net Profit
                                                                                                  -16.704%
                             Sharpe Ratio
                                                                                                  -0.333
                             Probabilistic Sharpe Ratio
                                                                                                  4.606%
                                                                                                  71%
                             Loss Rate
                             Win Rate
                                                                                                  29%
                             Profit-Loss Ratio
                                                                                                  0.79
                                                                                                  0.047
                             Alpha
                             Beta
                                                                                                  0.909
                             Annual Standard Deviation
                                                                                                  0.247
                             Annual Variance
                                                                                                  0.061
                             Information Ratio
                                                                                                  0.771
                                                                                                  0.077
                             Tracking Error
                                                                                                  -0.091
$413.22
                             Treynor Ratio
                             Total Fees
                             Estimated Strategy Capacity
Lowest Capacity Asset
                                                                                                  $4000.00
                                                                                                  QCOM R735QTJ8XC9X
```

#region imports
from AlgorithmImports import *
#endregion

class SparseOptimizationIndexTrackingDemo(QCAlgorithm):

 def Initialize(self):
 self.SetStartDate(2017, 1, 1)
 self.SetStartDate(2022, 1, 1)
 self.SetDate(accepted (BrokerageName.AlphaStreams)