

KOD UCZNIA

KONKURS FIZYCZNY DLA UCZNIÓW GIMNAZJÓW WOJEWÓDZTWA MAZOWIECKIEGO

II ETAP REJONOWY

6 grudnia 2017 r.

Uczennico/Uczniu:

- 1. Na rozwiązanie wszystkich zadań masz 90 minut.
- 2. Pisz długopisem/piórem dozwolony czarny lub niebieski kolor tuszu.
- 3. Nie używaj ołówka (wyjątek rysunki) ani korektora. Jeżeli się pomylisz, przekreśl błąd i zaznacz/napisz inną odpowiedź.
- 4. Pisz czytelnie i zamieszczaj odpowiedzi w miejscu do tego przeznaczonym.
- 5. Pamiętaj, że zapisy w brudnopisie nie podlegają ocenie.

Życzymy powodzenia!

Maksymalna liczba punktów	30	100 %
Uzyskana liczba punktów		%
Podpis Przewodniczącej/-ego		

UWAGA:

W zadaniach o numerach od 1. do 7. spośród podanych propozycji odpowiedzi **wybierz** i **zaznacz** (otaczając kółkiem) tę, która stanowi prawidłowe zakończenie ostatniego zdania w zadaniu.

Zadanie 1. (0-1 pkt)

Poniższy wykres przedstawia zmiany szybkości pewnego ciała w czasie 4 sekund ruchu.

Korzystając z danych przedstawionych na wykresie można stwierdzić, że średnia szybkość tego ciała w tym czasie była równa

A.
$$4\frac{m}{s}$$
.

B.
$$3\frac{m}{s}$$
.

C.
$$2,5 \frac{m}{s}$$
.

D.
$$2\frac{m}{s}$$
.

Zadanie 2. (0 – 1 pkt)

W czasie, gdy wahadło matematyczne przechodzi z położenia maksymalnego wychylenia do położenia równowagi,

A. jego szybkość zwiększa się a wahadło porusza się z coraz większym przyspieszeniem.

B. jego szybkość zmniejsza się a wahadło porusza się z coraz mniejszym przyspieszeniem.

 $C.\;$ jego szybkość zwiększa się a wahadło porusza się z coraz mniejszym przyspieszeniem.

D. jego szybkość zmniejsza się a wahadło porusza się z coraz większym przyspieszeniem.

Zadanie 3. (0 – 1 pkt)

Po zmieszaniu pewnej cieczy o masie 1 kg i temperaturze 20 0 C z inną cieczą o takiej samej masie i temperaturze 55 0 C otrzymano mieszaninę cieczy o temperaturze 35 0 C. Oznaczając ciepła właściwe tych cieczy odpowiednio, jako c_{w1} oraz c_{w2} stwierdzono, że

A.
$$c_{w1} = \frac{1}{4} c_{w2}$$
.

B.
$$c_{w1} = \frac{1}{2} c_{w2}$$
.

C.
$$c_{w1} = \frac{3}{4}c_{w2}$$
.

D.
$$c_{w1} = \frac{4}{3}c_{w2}$$
.

Zadanie 4 (0 - 1 pkt)

Natężenie prądu I w przewodzie na rysunku poniżej ma wartość

- A. 8 A.
- B. 6 A.
- C. 4 A.
- D. 2 A.

Zadanie 5 (0 - 1 pkt)

Na poniższym rysunku przedstawiono układ oporników, do którego dopływa prąd o natężeniu równym 2,5 A. Jeżeli wartości oporników spełniają zależność $R_1 = 4 \cdot R_2$, to natężenie prądu płynącego przez opornik R_1 jest równe

- A. 0,5 A.
- B. 1 A.
- C. 1,5 A.
- D. 2 A.

Zadanie 6 (0 – 1 pkt)

Oporniki o oporach równych $R_1=1\Omega$, $R_2=2\Omega$ i $R_3=3\Omega$ połączono w sposób pokazany na poniższym rysunku i dołączono do źródła napięcia o wartości U.

Największa moc wydzieli się na oporniku

- A. R_2 i R_3 .
- B. R_1 .
- C. R_2 .
- D. R₃.

Zadanie 7. (0 - 1 pkt)

Maszyny proste to nieskomplikowane urządzenia mechaniczne, ułatwiające wykonywanie pracy. **Nieprawdą jest**, że ich zastosowanie pozwala na to, żeby

- A. nie zmniejszając wykonanej pracy ułatwić sobie jej wykonanie.
- B. działać mniejszą siłą na dłuższej drodze i wykonać taką samą pracę.
- C. wykonać jakaś czynność wykonując przy tym mniejszą pracę.
- D. pokonać większą siłę za pomocą mniejszej, na zasadzie równości wykonanych prac.

UWAGA:

W zadaniach 8. i 9. **wybierz** i **zaznacz** w tabeli (otaczając kółkiem) właściwe stwierdzenie oraz jego prawidłowe uzasadnienie dotyczące sytuacji przedstawionej w treści zadania.

Zadanie 8 (0 - 1 pkt)

Lecąca kula karabinowa w chwili, gdy uderza w deskę ma energię E_k . Po przebiciu deski szybkość kuli jest o połowę mniejsza niż przed uderzeniem w deskę. Praca siły oporu podczas przebijania deski przez kulę jest liczbowo równa

Stv	wierdzenie		Uzasadnienie					
1	$0,25 E_k,$		A	A energia kinetyczna jest wprost proporcjonalna do szybkość kuli.				
2	$0,5 E_k,$	ponieważ	В	energia kinetyczna jest wprost proporcjonalna do kwadratu szybkości kuli.				
3	$0,75 E_k,$		С	energia kinetyczna jest odwrotnie proporcjonalna do kwadratu szybkości kuli.				

Zadanie 9. (0 - 1 pkt)

Dwie kulki naelektryzowano ładunkami przeciwnego znaku, których wartości są równe odpowiednio $q_1 = +2 \cdot q$ i $q_2 = -4 \cdot q$ umieszczono w pewnej odległości od siebie. Oznaczając wartości sił, jakimi ładunki działają na siebie, odpowiednio F_1 oraz F_2 można powiedzieć, że spełniają zależność

St	wierdzenie			Uzasadnienie		
1	$F_1 = F_2$,		A	ładunki kul mają stała wartość i spełniona jest zasada zachowania ładunku.		
2	$F_1=2F_2,$	ponieważ	В	ładunki nie poruszają się i spełniona jest I zasada dynamiki.		
3	$F_1=4F_2,$		С	oddziaływanie ładunków jest wzajemne czyli spełniona jest III zasada dynamiki.		

Zadanie 10 (0 – 4 pkt.)
Ciało spada swobodnie z pewnej wysokości i uderza w podłoże po 3 sekundach. Wykaż, że zmiana energii potencjalnej ciała w kolejnych sekundach ruchu, licząc od początku spadku,
zmienia się w stosunku 1 : 3 : 5.
Zadanie 11 (0 – 4 pkt.)
Elektrotechnik miał wykonać grzałkę o mocy $P = 500 \text{ W}$, która będzie zasilana napięciem 230 V. Oblicz długość przewodnika z chromonikieliny o oporze właściwym
$9.8 \cdot 10^{-7} \Omega \text{m}$ i średnicy 0.5 mm , którego elektrotechnik użyje do wykonania opisanej wyżej
grzałki.

Zadanie 12. (0 – 4 pkt)

Dwie kuleczki naelektryzowane dodatnio ładunkami o wartościach 16 μC i 4 μC umieszczono
w odległości 10 cm od siebie. Oblicz odległość od większego ładunku do punktu, w którym
równoważą się siły działające na umieszczony w nim ujemny ładunek o wartości 1 μC. Narysuj
siły działające na ujemny ładunek przy spełnieniu warunku równowagi.

Zadanie 13.

Samochód jedzie z szybkością $54\frac{\text{km}}{\text{h}}$. Współczynnik tarcia statycznego kół o podłoże ma
wartość 0,55.
Zadanie 13.1. (0 – 3 pkt.)
Oblicz najkrótszą drogę hamowania tego samochodu.
······································
Zadanie 13.2. (0 – 2 pkt.) Wykaż, odwołując się do odpowiednich zależności, że przy dwukrotnym zwiększeniu
Zadanie 13.2. (0 – 2 pkt.)
Zadanie 13.2. (0 – 2 pkt.) Wykaż, odwołując się do odpowiednich zależności, że przy dwukrotnym zwiększeniu
Zadanie 13.2. (0 – 2 pkt.) Wykaż, odwołując się do odpowiednich zależności, że przy dwukrotnym zwiększeniu
Zadanie 13.2. (0 – 2 pkt.) Wykaż, odwołując się do odpowiednich zależności, że przy dwukrotnym zwiększeniu
Zadanie 13.2. (0 – 2 pkt.) Wykaż, odwołując się do odpowiednich zależności, że przy dwukrotnym zwiększeniu
Zadanie 13.2. (0 – 2 pkt.) Wykaż, odwołując się do odpowiednich zależności, że przy dwukrotnym zwiększeniu
Zadanie 13.2. (0 – 2 pkt.) Wykaż, odwołując się do odpowiednich zależności, że przy dwukrotnym zwiększeniu
Zadanie 13.2. (0 – 2 pkt.) Wykaż, odwołując się do odpowiednich zależności, że przy dwukrotnym zwiększeniu
Zadanie 13.2. (0 – 2 pkt.) Wykaż, odwołując się do odpowiednich zależności, że przy dwukrotnym zwiększeniu
Zadanie 13.2. (0 – 2 pkt.) Wykaż, odwołując się do odpowiednich zależności, że przy dwukrotnym zwiększeniu

		4 4
700	Onio	1/1
La	lanie	17.

Aby wy	zna	acz	yć opór niezna	anego p	orzewodn	ika uczniowie	e zaprojel	ktowali d	oświ	adczenie,
w któryi	n ·	_	wykorzystując	prawo	Ohma,	wykonywali	pomiary	napięcia	na	końcach
przewod	lnik	a i	natężenia prądu	ı przez ı	niego pły	nącego.				

Zadanie 14.1. ((0-2)	pkt.)
------------------------	-------	-------

	-	•			z i amperomierz			
pomiarów.	schemat	obwodu,	Kiory	powiniii	zaprojektować	uczniowie	uo v	vykonama
							• • • • • • •	
							• • • • • • •	
Zadanie 14.2	2. (0 – 2 pl	kt.)						
Uczniowie zi	mierzyli ki	ilka wartoś	sci natę	żenia prąc	lu płynącego prz	ez przewodr	nik w	zależności

Uczniowie zmierzyli kilka wartości natężenia prądu płynącego przez przewodnik w zale od napięcia na jego końcach. Wyniki tych pomiarów zawiera poniższa tabelka.

U, V	1,5	2,3	2,8	4,5
<i>I</i> , mA	105	150	190	300
R, Ω				

Oblicz, korzystając z danych w tabeli, opór elektryczny nieznanego przewodnika i wpisz
wyniki w wolne pola w tabeli. Oblicz wartość średnią z otrzymanych wyników obliczeń i zapisz
wynik z dokładnością do 1 miejsca po przecinku.

Brudnopis