

СОЮЗ СОВЕТСКИХ
СОЦИАЛИСТИЧЕСКИХ
РЕСПУБЛИК

ГОСУДАРСТВЕННЫЙ КОМИТЕТ
ПО ИЗОБРЕТЕНИЯМ И ОТКРЫТИЯМ
ПРИ ГКНТ СССР

(19) SU (11) 1771750 A1

(51) А 61 Л 15/00, А 61 К 31/185

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

К АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

2

1

(21) 4846558/14

(22) 29.06.90

(46) 30.10.92. Бюл. № 40

(71) Центральный научно-исследовательский институт травматологии и ортопедии им. Н.Н. Приорова

(72) Г.Г. Окропиридзе и А.П. Момсенко

(56) Авторское свидетельство СССР № 562997, кл. А 61 Л 15/00, 1975.

(54) СПОСОБ ПОЛУЧЕНИЯ АНТИМИКРОБНОГО МАТЕРИАЛА

(57) Изобретение относится к созданию новых перевязочных материалов и может быть использовано для профилактики раневой инфекции. Цель – повышение гидрофильности и хемостойкости волокна. Сущность за-

ключается в том, что антимикробные волокна получают путем обработки поливинилспиртовых волокон раствором перекиси водорода, промывкой, последующей обработкой водным раствором карболовой кислоты, экстракцией водой до нейтральной реакции и обработкой водным раствором N-акрилоксаминовой кислотой, при этом дополнительно волокна обрабатывают 5–10%-ным водным раствором сульфамилона. Полученные предложенным способом волокна обладают повышенной гидрофильностью и хемостойкостью, при этом повышается антимикробная активность.

Изобретение относится к созданию новых перевязочных материалов с антимикробными свойствами, применяемых в медицине для профилактики раневой инфекции на догоспитальном этапе.

Известны перевязочные материалы с противобактериальной активностью, обработанные спиртовыми растворами, содержащими одновременно синтомицин, фурамицин и бигумаль.

Для устойчивости пропиток к стиркам неомицин и бацитрацин осаждали на волокне в виде медных и цинковых солей робного действия в качестве антисептика наружного применения.

Известен способ получения катионообменников путем обработки ПВС волокон раствором перекиси водорода, промывкой, последующей обработкой водным раствором карболовой кислоты, экстракцией во-

дой до нейтральной реакции и обработкой водным раствором N-акрилоксаминовой кислотой с дальнейшей лекарственной модификацией ампицилином.

Однако эти модификации не обладают антимикробной активностью к обширной группе микроорганизмов, выделенных из ран, особенно анаэробов. Кроме того, местное применение антибиотиков может способствовать возникновению антибиотикоустойчивых штаммов микробов, аллергизацию организма, а также, за счет снижения хемостойкости, через 5–8 лет теряют первоначальный антимикробный спектр действия.

Цель – повышение гидрофильности и хемостойкости волокна.

Поставленная цель достигается тем, что ПВС волокна обрабатываются раствором перекиси водорода, промывкой карболовой

(19) SU (11) 1771750 A1

кислоты, экстракцией водой до нейтральной реакции, обработкой N-акрилоксаминовой кислотой и согласно изобретению последующая обработка производится 5-10% водным раствором сульфамилона.

Способ получения антимикробного материала осуществляют следующим образом.

Поливинилспиртовые (ПВС) волокна со степенью ненасыщенностью 30-50% обрабатывают для активации двойных связей 15%-ным раствором перекиси водорода в течение 5-6 ч. После этого обработку продолжают 10-20%-ным раствором N-акрилоксаминовой кислоты при температуре 20-40° в течение 4-6 ч. Введение этой кислоты в структуру полимера позволило получить материал, обладающий такими свойствами, как способность к ионному, в основном катионному обмену, хемостойкости, биологической активности. В процессе химической модификации были созданы волокна с объемной емкостью натрия, серебра, двухвалентной ртути с высокой степенью гидрофильности. Для вторичной, лекарственной модификации ионоактивные волокна обрабатывают 10% водным раствором сульфамилона. Обработка препаратом происходила в течение 4 ч при температуре 40°C (модуль ванны 50). После этого тщательно промывают водой, сушат на воздухе.

Физико-механические показатели волокон позволяют из них изготовить различные перевязочные материалы. По сравнению с исходным волокном, волокна сульфамилоном приобретали такие важные свойства как гидрофильность и влагопроницаемость (см.табл.1).

Степень дегидратации волокон составляет 25-30%.

Волокна, модифицированные сульфамилоном, не теряют своих свойств при нагревании его в воде при температуре 90°C в течение 30 мин и при действии органических растворителей, 96° этилового спирта, ацетона, диоксина, дихлорэтана в течение 1 ч при температуре 50°C. После экспозиции в вышеуказанных жидкостях образцы волокна промывали дистilledированной водой, сушили в термостате, после чего испытывали на чашках Пётри.

Проведено также изучение различных модификаций на жидких питательных сре-

дах и показан антимикробный эффект испытуемых волокон в разные сроки экспозиции. Зараженный музейными штаммами МПБ в присутствии волокон оставался прозрачным, в контроле отмечалось интенсивное помутнение. Волокна задерживали рост микробов до 2-3 сут и более (табл.2).

Наблюдение и изучение бульонов длилось до 3 сут. В пробирках, где были помещены волокна с сульфамилоном, роста микробов не наблюдалось. В других же помутнение отмечалось на 2-3 сут. Образцы ИПП, которые служили контролем и аналогом, не проявляли никакой антимикробной активности.

Антимикробную активность созданных волокон проверяли по отношению к основным клиническим штаммам и их ассоциациям выделенных от больных с гнойно-септическими процессами в ранах.

Как видно из табл.3, сульфамилоновым волокнам чувствительны 92,7% культур, а амициллиновым модификациям - 78,9%.

Антимикробную активность волокон проверяли также на лабораторных животных: кроликам (породы шиншилла) наносили обычные резаные раны на спине, а беспородным собакам - огнестрельные ранения в области бедра. После заражения их смесью суточных культур золотистого стафилококка, синегнойной палочки и анаэроба, вносили в рану испытуемые волокна с целью профилактики гнойно-септического процесса. Установлено, что волокна сульфамилоном задерживали развитие микрофлоры в ране на 24-48 ч.

Предложенный способ позволяет также повысить гидрофильность и хемостойкость волокна.

Ф о р м у л а и з о б р е т е н и я

Способ получения антимикробного материала путем обработки поливинилспиртовых волокон раствором перекиси водорода промывкой, последующей обработкой водным раствором карболовой кислоты, экстракцией водой до нейтральной реакции и обработкой водным раствором N-акрилоксаминовой кислотой, отличаясь тем, что, с целью повышения гидрофильности и хемостойкости, волокна дополнительно обрабатывают 5-10%-ным водным раствором сульфамилона.

BEST AVAILABLE COPY

Таблица 1

Физико-механические характеристики волокон с 10 %-ным сульфамилоном

Показатель	Модифицированное волокно	Исходное волокно
Толщина, текс.	0,253	0,250
Разрывное усилие	3,9	3,9
Прочность, гс/текс.	18,3	18–19
Удлинение, %	10	10,5
Гигроскопичность, %	13,0	10
Гидрофильность, %	68	—
Влагопроницаемость	66	—

Таблица 2

Активность волокон в жидкых питательных средах

Тест-культуры	Модифицированные волокна					Контроль (кусочки ИПП)
	сульфамилон 5 %	сульфамилон 10 %	эмпициллин	нитрат серебра	ампициллин+нитрат серебра	
—	—	—	+2	+2	+3	+
—	—	—	+2	+	+3	+
—	—	—	—	+2	—	+

Примечание: +2 – рост микрофлоры на вторые сутки

Таблица 3

Чувствительность клинических штаммов к различным модификациям

Клинические штаммы	Количество штаммов	Волокна с сульфамилоном 10%		Волокна с ампициллином		Стандартные диски с ампициллином	
		абс.	%	абс.	%	абс.	%
S.aureus	62	58	93,5	43	69,3	18	29,0
S.epidermidis	79	74	93,6	52	65,8	21	20,5
P.alraginosa	68	60	88,2	59	80,7	27	39,7
E.Coli	36	32	88,8	35	97,2	32	88,8
Proteus	31	30	98,7	29	93,5	28	90,3
Всего:	276	254	92,7	218	78,9	126	45,8

BEST AVAILABLE COPY

Редактор

Составитель С.Малютина
Техред М.Моргентал

Корректор Л.Филь

Заказ 3794

Тираж

Подписьное

ВНИИПИ Государственного комитета по изобретениям и открытиям при ГКНТ СССР
113035, Москва, Ж-35, Раушская наб., 4/5

Производственно-издательский комбинат "Патент", г. Ужгород, ул.Гагарина, 101