Variables aléatoires continues

Densité de probabilité	Fonction de répartition	Espérance mathématique	Variance
• On dit qu'une fonction f est une densité de probabilité si et seulement si: • f est positive ou nulle sur \mathbb{R} • $\int_{-\infty}^{+\infty} f(x) dx = 1$	• La fonction de répartition d'une va continue X est définie par: $F(x) = P(X \le x)$ $= \int_{-\infty}^{x} f_X(t) dt$	• $E(X) = \int_{-\infty}^{+\infty} x f(x) dx$	• $V(X) = \int_{-\infty}^{+\infty} (x - E(X))^2 f(x) dx = E(X^2) - E(X)^2 = \int_{-\infty}^{+\infty} x^2 f(x) dx - E(X)^2$
	Les propriétés d'une fonction de répartition : F est définie sur \mathbb{R} , et à valeurs dans $[0,1]$ F est continue sur \mathbb{R} et croissante $\lim_{x \to -\infty} F(x) = 0$ et $\lim_{x \to -\infty} F(x) = 1$ F $(X > x) = 1 - P(X \le x) = 1 - F(x)$ F $(X \le x) = 1 - F(x)$ P $(X \le x) = 1 - F(x) = 1 - F(x)$ Remarque: Pour une variable aléatoire continue $(X = x) = 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1$	Les propriétés de l'espérance sont : $E(a) = a$ $où a une constante \in \mathbb{R}$ $E(aX) = aE(X)$ $où a une constante \in \mathbb{R}$ $E(X + Y) = E(X) + E(Y)$ $on a ainsi E(aX + b) = aE(X) + b, où$ $a et b deux constantes \in \mathbb{R}$	Les propriétés de la variance sont : $V(a) = 0 où a \ une \ constante \in \mathbb{R}$ $V(aX) = a^2V(X)$ $où a \ une \ constante \in \mathbb{R}$ $V(X+Y) = V(X) + V(Y) \text{ si } X \text{ et } Y \text{ sont indépendantes}$ $on a ainsi \ V(aX+b) = a^2V(X), où a \ et \ b \ deux \ constantes \in \mathbb{R}$

Lois usuelles continues

On dit qu'une va X suit la loi uniforme sur l'intervalle [a, b], si elle a pour densité:

Loi uniforme

$$f_X(x) = \begin{cases} \frac{1}{b-a} & si \ a \le x \le b \\ 0 & sinon \end{cases}$$

f est une d.d.p car:

f est positive ou nulle sur $\mathbb R$ $\int_{-\infty}^{+\infty} f_X(x) dx =$

$$\int_{-\infty}^{+\infty} f_X(x) dx = \int_a^b \frac{1}{b-a} dx = \frac{1}{b-a} [x]_a^b = \frac{b-a}{b-a} = 1$$

Loi exponentielle

On dit qu'une va X suit la loi exponentielle de paramètre $\lambda > 0$ si elle a pour densité:

$$f_X(x) = \begin{cases} \lambda e^{-\lambda x} & si \ x \ge 0 \\ 0 & sinon \end{cases}$$

f est une d.d.p car:

f est positive ou nulle sur \mathbb{R} $\int_{-\infty}^{+\infty} f_X(x) dx = \int_{0}^{+\infty} \lambda e^{-\lambda x} dx =$

$$\lambda \left[-\frac{1}{\lambda} e^{-\lambda x} \right]_0^{+\infty} = -\lim_{+\infty} e^{-\lambda x} + e^0 = 0 + 1 - 1$$

Loi normale Généralisée

Une variable aléatoire X à valeurs dans \mathbb{R} est dite normale de paramètres $m \in \mathbb{R}$ et $\sigma \in$ \mathbb{R}_{+}^{*} si elle a pour densité la fonction réelle f définie

$$par: f_X(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-m)^2}{2\sigma^2}}$$

$$\forall x \in \mathbb{R}$$

- La courbe admet comme axe de symétrie la droite d'équation x =m
- maximum de la courbe est atteint en m, espérance de la variable X, ce maximum vaut $\sigma\sqrt{2\Pi}$

Loi normale centrée réduite

Une variable aléatoire *X* à valeurs dans \mathbb{R} est dite normale centrée réduite, si elle a pour densité la fonction réelle *f* définie par:

$$f_X(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} \quad \forall \ x \in \mathbb{R}$$

- La courbe admet comme axe de symétrie la droite d'équation x = 0
- Le maximum de la courbe est atteint en 0, espérance de la variable X, ce maximum vaut $\frac{1}{\sqrt{2\pi}}$
- Si $X \sim N(0,1)$ alors E(X) =0, et V(X) = 1
- Si $X \sim N(m, \sigma)$, (X suit la loi normale d'espérance m et d'écart type σ), alors la variable définie par Z =

		 Plus σ est grand, plus la courbe s'étale autour de la moyenne. 	$rac{X-m}{\sigma}$ suit la loi normale centrée réduite $N(0,1)$
		 Si X~N(m, σ), (X suit la loi normale d'espérance m et d'écart type σ), alors la variable définie par Z = (X-m)/σ suit la loi normale centrée réduite N(0,1) Si X~N(m, σ) alors E(X) = m, et V(X) = σ² 	
La fonction de répartition de X est donnée par $F_X(x) = \begin{cases} 0 & \text{si } x \le a \\ \frac{x-a}{b-a} & \text{si } a \le x \le b \\ 1 & \text{si } x \ge b \end{cases}$	La fonction de répartition de X est donnée par $F_X(x) \begin{cases} 0 & si \ x \le 0 \\ 1 - e^{-\lambda x} & si \ x \ge 0 \end{cases}$	Si $X \sim N(m, \sigma)$, $P(a \le X \le b) = P\left(\frac{a - m}{\sigma}\right)$ $\le \frac{X - m}{\sigma}$ $\le \frac{b - m}{\sigma}$ $= F_Z\left(\frac{b - m}{\sigma}\right)$ $- F_Z\left(\frac{a - m}{\sigma}\right)$	• $F_Z(-z) = 1 - F_Z(z)$ • $P(Z > z) = 1 - P(Z \le z) = 1 - F_Z(z)$ • Pour tout $a, b \in \mathbb{R}, P(a \le X \le b) = F_Z(b) - F_Z(a) = P(X > a) - P(X > b)$ • Pour tout $z \ge 0, P(-z \le Z \le z) = F_Z(z) - F_Z(-z) = 2F_Z(z) - 1 = 1 - 2P(Z \ge z)$ • $P(Z < -a) = P(Z > a)$
$F(x) = P(X \le x) = \int_{-\infty}^{x} f(t)dt$ $\underline{si \ x \le a} F(x) = \int_{-\infty}^{x} f(t)dt = \int_{-\infty}^{x} 0dt = 0$	$F(x) = P(X \le x) = \int_{-\infty}^{x} f(t)dt$		• Si on cherche z tel que $P(Z>z)=b$ <0,5 ; on doit regarder sur la table une probabilité de valeur s'approchant le plus de b ,

$0 + \frac{1}{b-a} [t]_a^x = \frac{x-a}{b-a}$ $\underline{si \ b \le x} F(x) = \int_{-\infty}^x f(t) dt =$	$\underbrace{si \ x \le 0}_{-\infty} F(x) = \int_{-\infty}^{x} f(t)dt = $ $\int_{-\infty}^{x} 0dt = 0$ $\underbrace{si \ 0 \le x}_{-\infty} F(x) = \int_{-\infty}^{x} f(t)dt = $ $\int_{-\infty}^{0} 0dt + \int_{0}^{x} \lambda e^{-\lambda t} dt = 0 + $ $\lambda \left[-\frac{1}{\lambda} e^{-\lambda t} \right]_{0}^{x} = -e^{-\lambda x} + 1$		puis projeter sur les lignes et les colonnes pour trouver z • Si on cherche z tel que $P(Z>z)=b>0.5$; alors on conclut que z et négatif et avant de regarder la valeur sur la table, il faut effectuer la transformation suivante $P(Z>z)=1-P(Z>-z)$, donc $P(Z>-z)=1-b<0.5$; on n'aura ainsi qu'à lire $1-b$ sur la table et projeter sur les lignes et les colonnes pour trouver la valeur de $-z$
L'espérance de X est $E(X) = \frac{b+a}{2}$ $E(X) = \int_{-\infty}^{+\infty} x f_X(x) dx = \int_a^b x \frac{1}{b-a} dx = \frac{1}{b-a} \left[\frac{x^2}{2} \right]_a^b = \frac{b^2 - a^2}{2(b-a)} = \frac{b+a}{2}$	L'espérance de X est $E(X) = \frac{1}{\lambda}$ $E(X) = \int_{-\infty}^{+\infty} x f_X(x) dx = \int_{0}^{+\infty} x \lambda e^{-\lambda x} dx = \lambda \int_{0}^{+\infty} x e^{-\lambda x} dx = \lambda \left[\left[-\frac{1}{\lambda} x e^{-\lambda x} \right]_{0}^{+\infty} + \frac{1}{\lambda} \int_{0}^{+\infty} e^{-\lambda x} dx \right] = \left[-\frac{1}{\lambda} e^{-\lambda x} \right]_{0}^{+\infty} = -\frac{1}{\lambda} \lim_{n \to \infty} e^{-\lambda x} + \frac{1}{\lambda} e^0 = \frac{1}{\lambda}$ (en utilisant l'intégration par parties)	E(X) = m	E(X) = 0
La variance de X est $V(X) = \frac{(b-a)^2}{12}$ $V(X) = E(X^2) - (E(X))^2$ où	La variance de X est $V(X) = \frac{1}{\lambda^2}$ $V(X) = E(X^2) - (E(X))^2$ où	$V(X) = \sigma^2$	V(X) = 1

	$E(X^2) = \int_{-\infty}^{+\infty} x^2 f_X(x) dx =$	
$\int_{a}^{b} x^{2} \frac{1}{b-a} dx = \frac{1}{b-a} \left[\frac{x^{3}}{3} \right]_{a}^{b} = \frac{b^{3} - a^{3}}{3(b-a)} =$	$\int_0^{+\infty} x^2 \lambda e^{-\lambda x} dx = \lambda \left(\left[-\frac{1}{\lambda} x^2 e^{-\lambda x} \right]_0^{+\infty} + \right.$	
$\frac{b^2 + ab + b^2}{3}$	$\left(\frac{2}{\lambda}\int_{0}^{+\infty}xe^{-\lambda x}dx\right) = \lambda\left(0 + \frac{2}{\lambda}\frac{1}{\lambda^{2}}\right) = \frac{2}{\lambda^{2}}$	
3 4	(on a effectué une intégration par partie et on a utilisé le fait que	
$\frac{(b-a)^2}{12}$	$\int_0^{+\infty} x \lambda e^{-\lambda x} dx = \frac{1}{\lambda}$	
	d'où $V(X) = \frac{2}{\lambda^2} - \frac{1}{\lambda^2} = \frac{1}{\lambda^2}$	

Estimation ponctuelle : Méthode des moments

Soient les moments théoriques et empiriques non centrés suivants :

Moments théoriques	Moments empiriques
E(X)	$\bar{X} = \frac{\sum_{i=1}^{n} X_i}{n}$
$E(X^2)$	$\frac{\sum_{i=1}^{n} X_i^2}{n}$
$E(X^k)$	$\frac{\sum_{i=1}^{n} X_{i}^{k}}{n}$

On définit l'estimateur par la méthode des moments du paramètre θ la valeur $\hat{\theta}^{EMM}$ qui est solution de l'équation $E(X) = \bar{X}$,

Si cette équation ne permet pas de trouver θ , on passe à l'équation suivante: $E(X^2) = \frac{\sum_{i=1}^{n} X_i^2}{n}$, et ainsi de suite jusqu'à trouver $\hat{\theta}^{EMM}$

En d'autres termes: on estime une espérance mathématique E(X) (qui est une fonction de θ) par la moyenne empirique $\bar{X} = \frac{\sum_{i=1}^{n} X_i}{n}$,

(On estime $E(X^2)$ par $\frac{\sum_{i=1}^n X_i^2}{n}$. ,Ce qui implique que la variance théorique qui est égale à $\sigma_{pop}^2 = E(X^2) - (E(X))^2$ est estimée par: $\frac{\sum_{i=1}^n X_i^2}{n} - \left(\frac{\sum_{i=1}^n X_i}{n}\right)^2 = \sigma_{ech}^2$)

Ce qui entraine :

- si $E(X) = \theta$ alors $\hat{\theta}^{EMM} = \bar{X}$
- si $E(X) = \rho(\theta)$ alors $\hat{\theta}^{EMM} = \rho^{-1}(\bar{X})$, avec ρ , une fonction bijective

Exemples:

- 1. Prenons la loi exponentielle de paramètre $\frac{1}{\theta} > 0$, comme $E(X) = \frac{1}{1/\theta} = \theta$ alors la résolution de l'équation $E(X) = \overline{X}$ nous donne $\widehat{\theta}^{EMM} = \overline{X}$
- 2. Prenons la loi exponentielle de paramètre $\theta>0$, comme $E(X)=\frac{1}{\theta}$ alors la résolution de l'équation $\frac{1}{\theta}=\bar{X}$ nous donne $\hat{\theta}^{EMM}=\frac{1}{\bar{X}}$

Estimation ponctuelle : Méthode de maximum de vraisemblance

Soit $(X_1, ..., X_n)$ un échantillon aléatoire de taille n d'une variable aléatoire X de loi \mathbb{P}_{θ} (discrète ou continue), avec $\theta \in \mathbb{R}$ un paramètre inconnu qu'on cherche à estimer.

La méthode de maximum de vraisemblance se résume en ces trois étapes :

- \checkmark Etape1: écrire la fonction de vraisemblance de θ (le paramètre à estimer) pour une réalisation $(x_1, x_2, ..., x_n)$
- Si X est discrète, la fonction de vraisemblance est donnée par: $L(x_1, ..., x_n; \theta) = \prod_{i=1}^n \mathbb{P}_{\theta} (X_i = x_i) = \mathbb{P}_{\theta} (X_1 = x_1)$. $\mathbb{P}_{\theta} (X_2 = x_2)$ $\mathbb{P}_{\theta} (X_n = x_n)$
- Si X est continue, la fonction de vraisemblance est donnée par: $L(x_1, ..., x_n; \theta) = \prod_{i=1}^n f_{\theta}(x_i) = f_{\theta}(x_1). f_{\theta}(x_2).....f_{\theta}(x_n)$
 - <u>Etape2</u>: écrire le log de la fonction de vraisemblance de θ afin de transformer le produit en somme (puisque la dérivation d'une somme est plus simple que celle d'un produit
- Si X est discrète, la fonction de log vraisemblance est donnée par: $\ln L(x_1, ..., x_n; \theta) = \sum_{i=1}^n \ln \mathbb{P}_{\theta} \ (X_i = x_i) = \ln \mathbb{P}_{\theta} \ (X_1 = x_1) + \ln \mathbb{P}_{\theta} \ (X_2 = x_2) + + \ln \mathbb{P}_{\theta} \ (X_n = x_n)$
- Si X est continue, la fonction de log vraisemblance est donnée par: $\ln L(x_1, \dots, x_n; \theta) = \sum_{i=1}^n \ln f_{\theta_i}(x_i) = \ln f_{\theta_i}(x_1) + \ln f_{\theta_i}(x_2) + \dots + \ln f_{\theta_i}(x_n)$
 - <u>Etape 3</u>: Maximiser la fonction log vraisemblance de θ en annulant la dérivée première et en s'assurant que la dérivée seconde est négative

On appelle estimateur du maximum de vraisemblance (EMV) de θ la variable aléatoire correspondante à la valeur $\hat{\theta}_n$ pour laquelle la fonction de vraisemblance atteint son maximum.

Ce qui donne que $\hat{\theta}_n$ est solution du système:

$$\begin{cases} \frac{\partial L}{\partial \theta} = 0 & \frac{\partial lnL}{\partial \theta} = 0 \\ \frac{\partial^2 L}{\partial \theta^2} < 0 & \frac{\partial^2 lnL}{\partial \theta^2} < 0 \end{cases}$$

Propriétés des estimateurs

avant de voir les propriétés des estimateurs il faut connaître les résultats suivants: Si X est une va d'espérance E(X) = m et de variance σ_{pop}^2 . $(X_1, X_2, ..., X_n)$ un échantillon de taille n de la variable X, iid (identiquement et indépendamment distribué)

$$E(\bar{X}) = E\left(\frac{\sum_{i=1}^{n} X_i}{n}\right) = \frac{1}{n} \sum_{i=1}^{n} E(X_i) = \frac{1}{n} \sum_{i=1}^{n} E(X) = m$$

$$V(\bar{X}) = V\left(\frac{\sum_{i=1}^{n} X_i}{n}\right) = \frac{1}{n^2} \sum_{i=1}^{n} V(X_i) = \frac{1}{n^2} n \sigma_{pop}^2 = \frac{\sigma_{pop}^2}{n}$$

1. Estimateur sans biais

Le biais d'un estimateur $\hat{\theta}$ de θ est mesuré par $biais = E(\hat{\theta}) - \theta$

Un estimateur est donc dit <u>sans biais</u> si $E(\widehat{\theta}) = \theta$ (en moyenne le décalage entre les valeurs prises par l'estimateur et la vraie valeur du paramètre est nulle)

Exemples

- Si $\theta = m = E(X)$. Alors \bar{X} est un estimateur sans biais de la moyenne m car: $E(\bar{X}) = m$
- Si $\theta = \sigma_{pop}^2$. Si on l'estime par $\hat{\theta} = \sigma_{\acute{e}ch}^2 = \frac{\sum_{i=1}^n X_i^2}{n} \left(\frac{\sum_{i=1}^n X_i}{n}\right)^2$. Calculons $E\left(\sigma_{\acute{e}ch}^2\right) = E\left(\frac{\sum_{i=1}^n X_i^2}{n} (\bar{X})^2\right) = \frac{1}{n}\sum_{i=1}^n E\left(X_i^2\right) E(\bar{X}^2)$

$$\operatorname{Or} E \big(X_i^2 \big) = V(X_i) + (E(X_i))^2 = \sigma_{pop}^2 + m^2, \ \operatorname{et} E(\bar{X}^2) = V(\bar{X}) + (E(\bar{X}))^2 = \frac{\sigma_{pop}^2}{n} + m^2,$$

• d'où: $E\left(\sigma_{\acute{e}ch}^2\right) = E\left(\frac{\sum_{i=1}^n X_i^2}{n} - (\bar{X})^2\right) = \frac{1}{n} * n\left(\sigma_{pop}^2 + m^2\right) - \frac{\sigma_{pop}^2}{n} + m^2 = \sigma_{pop}^2(\frac{n-1}{n}) \neq \sigma_{pop}^2$ donc $\sigma_{\acute{e}ch}^2$ n'est pas un estimateur sans biais de σ_{pop}^2 .

Un estimateur sans biais de σ_{pop}^2 sera $\frac{n}{n-1}\sigma_{\acute{e}ch}^2=\frac{\sum_{i=1}^n(X_i-\bar{X})^2}{n-1}=S^2$

2. Estimateur asymptotiquement sans biais

Un estimateur $\hat{\theta}$ de θ est dit asymptotiquement sans biais si: $\lim_{n\to\infty} (E(\hat{\theta}) - \theta) = 0$

Exemple:

 $\sigma_{\acute{e}ch}^2$ n'est pas un estimateur sans biais de σ_{pop}^2 , mais c'est un estimateur asymptotiquement sans biais c'est-à-dire: $\lim_{n \to \infty} \left(E(\sigma_{\acute{e}ch}^2) = \lim_{n \to \infty} \sigma_{pop}^2 \left(\frac{n-1}{n} \right) = \sigma_{pop}^2$

3. Estimateur convergent

 $\overline{\widehat{\theta}}$ un estimateur de θ est dit **convergent** si $\lim_{n\to\infty}V(\widehat{\theta})=\mathbf{0}$

Exemple:

 $ar{X}$ est un estimateur convergent car $\lim_{n \to \infty} V(ar{X}) = \lim_{n \to \infty} \frac{\sigma_{pop}^2}{n} = 0$

4. Risque quadratique d'un estimateur

On appelle risque quadratique d'un estimateur $\hat{\theta}$ de θ (s'il admet un moment d'ordre2): $R_{\hat{\theta}}(\theta) = E((\hat{\theta} - \theta)^2)$ Un estimateur est meilleur qu'un autre s'il a l'erreur quadratique la plus faible.

5. Estimateur de variance minimale

Si $\hat{\theta}_1$ et $\hat{\theta}_2$ sont deux estimateurs sans biais et convergents de θ . $\hat{\theta}_1$ est meilleur que $\hat{\theta}_2$ si il a la variance la plus faible, c'est-à-dire $V(\hat{\theta}_1) < V(\hat{\theta}_2)$

Estimation par intervalle de confiance

• Intervalles de confiance de la moyenne :

	Loi de X		réduite Intervalle de confiance		le de confiance
	Loi de A	σ connu	σ inconnu	σ connu	σ inconnu
<i>n</i> < 30	$X \sim N(\mu, \sigma)$	$Z = \frac{\bar{X} - \mu}{\sigma / \sqrt{n}} \sim N(0,1)$	$Z = \frac{\bar{X} - \mu}{S/\sqrt{n}} \sim T(n-1)$	$IC(\mu) = \left[\bar{X} - z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}, \bar{X} + z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}} \right]$	$IC(\mu) = \left[\bar{X} - t_{\frac{\alpha}{2}, n-1} \frac{S}{\sqrt{n}}, \bar{X} + t_{\frac{\alpha}{2}, n-1} \frac{\sigma}{\sqrt{n}} \right]$
$n \ge 30$	X est de loi quelconque	$Z = \frac{\bar{X} - \mu}{\sigma / \sqrt{n}} \sim N(0,1)$	$Z = \frac{\bar{X} - \mu}{S/\sqrt{n}} \sim N(0,1)$	$IC(\mu) = \left[\bar{X} - z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}, \bar{X} + z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}} \right]$	$IC(\mu) = \left[\bar{X} - z_{\frac{\alpha}{2}} \frac{S}{\sqrt{n}}, \bar{X} + z_{\frac{\alpha}{2}} \frac{S}{\sqrt{n}} \right]$

• Intervalles de confiance de la variance :

	Loi de X	S^2	Loi de S ²	Intervalle de confiance
μ:connu	V M(u s)	$S_n^2 = \frac{\sum_{i=1}^n (X_i - \mu)^2}{n}$	$(n)\frac{S_n^2}{\sigma^2} \sim \chi^2(n)$	$IC(\mu) = \left[n \frac{S_n^2}{\chi_{\frac{\alpha}{2},n}^2}, n \frac{S_n^2}{\chi_{1-\frac{\alpha}{2},n}^2} \right]$
μ inconnu	$X \sim N(\mu, \sigma)$	$S_{n-1}^2 = \frac{\sum_{i=1}^n (X_i - \bar{X})^2}{n-1}$	$(n-1)\frac{S_{n-1}^2}{\sigma^2} \sim \chi^2(n-1)$	$IC(\mu) = \left[(n-1) \frac{S_{n-1}^2}{\chi_{\frac{\alpha}{2}, n-1}^2} , (n-1) \frac{S_{n-1}^2}{\chi_{1-\frac{\alpha}{2}, n-1}^2} \right]$

• Intervalles de la proportion :

$n \geq 30$, $np \geq 5$ et $n(1-p) \geq 5$				
Loi de \widehat{p} Loi réduite Intervalle de confiance				
$\hat{p} \sim N(p, \sqrt{\frac{p(1-p)}{n}})$	$Z = \frac{\hat{p} - p}{\sqrt{\frac{p(1-p)}{n}}} \sim N(0,1)$	$IC(p) = \left[\hat{p} - z_{\frac{\alpha}{2}}\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}, \hat{p} + z_{\frac{\alpha}{2}}\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\right]$		

RASSAA. E

Tests d'hypothèses

• Tests d'hypothèses sur la moyenne

Etapes d'un test d'hypothèse	Test Bilatéral	Test unilatéral à droite	Test unilatéral à gauche	
Etape1 : Construction du test	$ \begin{cases} H_0: \mu = \mu_0 \\ H_1: \mu \neq \mu_0 \end{cases} $	$ \begin{cases} H_0: \mu = \mu_0 \\ H_1: \mu > \mu_0 \end{cases} $	$\begin{cases} H_0 \colon \mu = \mu_0 \\ H_1 \colon \mu < \mu_0 \end{cases}$	
Etape2 : Détermination de l'écart réduit et sa distribution	$n < 30, \sigma \text{ connu}: X \sim N(\mu, \sigma)$ $Z = \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \sim N(0, 1)$			
	$n < 30, \sigma$ inconnu : $X \sim N(\mu, \sigma)$	$T = \frac{\bar{X} - \mu}{S/\sqrt{n}} \sim T(n-1)$		
	$n \geq 30, \sigma$ connu : X est de loi quelconque	$Z = \frac{\bar{X} - \mu}{\sigma / \sqrt{n}} \sim N(0, 1)$		
	$n \geq 30, \sigma$ inconnu : X est de loi quelconque	$Z = \frac{\bar{X} - \mu}{S/\sqrt{n}} \sim N(0,1)$		
Etape3: Détermination des régions critiques	Rejet de H_0 Non-rejet de H_0 Rejet de H_0 $\alpha/2$	P(HS)=1-a come de non reget de H0 acone de H0 acone	P(HD)=1-a zona de la con reset de H0 zona de la con reset de H0 a con la contract de H0 a contract	
	On accepte H_0 , si $-z_{\frac{\alpha}{2}} \le Z \le z_{\frac{\alpha}{2}}$ (ou $-t_{\frac{\alpha}{2}}(n-1) \le T \le t_{\frac{\alpha}{2}}(n-1)$	On accepte H_0 , si $Z \le z_\alpha$ (ou $T \le t_\alpha (n-1)$)	On accepte H_0 , si $-z_{\alpha} \leq Z$ (ou $-t_{\alpha}(n-1) \leq T$)	

Stand A. Deira da décision			
Etape 4 : Prise de décision	On compare la valeur calculée de l'écart réduit et la valeur tabulée $ \bullet \text{On accepte } H_0 \text{, si } -z_{\frac{\alpha}{2}} \leq Z_0 \leq z_{\frac{\alpha}{2}} \\ (\text{ou } -t_{\frac{\alpha}{2}}(n-1) \leq T_0 \leq t_{\frac{\alpha}{2}}(n-1)) \\ \bullet \text{On rejette } H_0 \text{ si } Z_0 > z_{\frac{\alpha}{2}} \text{ ou si } -z_{\frac{\alpha}{2}} > \\ Z_0 \\ (\text{ou } -t_{\frac{\alpha}{2}}(n-1) > T_0 \text{ ou } T_0 > t_{\frac{\alpha}{2}}(n-1)) $	On compare la valeur calculée de l'écart réduit et la valeur tabulée $ \bullet \text{On accepte } H_0, \text{ si } Z_0 \leq z_\alpha \\ (\text{ou } t_\alpha(n-1) \geq T_0)) \\ \bullet \text{On rejette } H_0 \text{ si } Z_0 > z_\alpha \\ (\text{ou } T_0 \geq t_\alpha(n-1)) $	On compare la valeur calculée de l'écart réduit et la valeur tabulée $ \bullet \text{On accepte } H_0 \text{, si } Z_0 \geq -z_\alpha \\ (\text{ou } -t_\alpha (n-1) \leq T_0)) \\ \bullet \text{On rejette } H_0 \text{ si } Z_0 < -z_\alpha \\ (\text{ou } -t_\alpha (n-1) > T_0 \) $

• Tests d'hypothèses sur la variance $X \sim N(\mu, \sigma)$

Etapes d'un test	Test Bilatéral	Test unilatéral à droite	Test unilatéral à gauche
d'hypothèse Etape1: Construction du test	$\begin{cases} H_0: \sigma^2 = \sigma_0^2 \\ H_1: \sigma^2 \neq \sigma_0^2 \end{cases}$	$\begin{cases} H_0: \sigma^2 = \sigma_0^2 \\ H_1: \sigma^2 > \sigma_0^2 \end{cases}$	$\begin{cases} H_0: \sigma^2 = \sigma_0^2 \\ H_1: \sigma^2 < \sigma_0^2 \end{cases}$
Etape2 : Détermination de l'écart réduit et sa distribution	$\begin{cases} H_1\colon\sigma^2\neq\sigma_0^2\\ \mu \text{ connu , } S_n^2=\frac{\sum_{i=1}^n(X_i-\mu)^2}{n} \end{cases}$	$Y = (n) \frac{S_n^2}{\sigma^2} \sim \chi^2(n)$	
	μ inconnu , $S_{n-1}^2 = \frac{\sum_{i=1}^n (X_i - \bar{X})^2}{n-1}$	$Y = (n-1)\frac{S_{n-1}^2}{\sigma^2} \sim \chi^2(n-1)$	
Etape3: Détermination des régions critiques	Pour μ inconnue on accepte H_0 , si $\chi^2_{1-\frac{\alpha}{2}}(n-1) \leq Y \leq \chi^2_{\frac{\alpha}{2}}(n-1)$ • Pour μ connue on accepte H_0 , si $\chi^2_{1-\frac{\alpha}{2}}(n) \leq Y \leq \chi^2_{\frac{\alpha}{2}}(n)$	Zone d'acceptation de $H0$ $0 \qquad \chi^2_{\alpha} \qquad \chi^2$ • Pour μ inconnue on accepte H_0 , si $Y \leq \chi^2_{\alpha}(n-1)$ • Pour μ connue on accepte H_0 , si $Y \leq \chi^2_{\alpha}(n)$	$ \hbox{ Zone d'acceptation de HO} $ • Pour μ inconnue on accepte H_0 , si $Y \leq \chi^2_{1-\alpha}(n-1)$ • Pour μ connue on accepte H_0 , si $Y \leq \chi^2_{1-\alpha}(n)$

Etape 4 : Prise de décision	On compare la valeur calculée de l'écart réduit et la valeur tabulée $ \bullet \text{ On accepte } H_0, \text{ si } \chi^2_{1-\frac{\alpha}{2}}(n-1) \leq Y_0 \leq \\ \chi^2_{\frac{\alpha}{2}}(n-1) \text{ (pour } \mu \text{ inconnue)} \\ \bullet \text{ On accepte } H_0, \text{ si } \chi^2_{1-\frac{\alpha}{2}}(n) \leq Y_0 \leq \chi^2_{\frac{\alpha}{2}}(n) \\ \text{ (pour } \mu \text{ connue)} $	On compare la valeur calculée de l'écart réduit et la valeur tabulée • On accepte H_0 , si $Y_0 \le \chi^2_\alpha(n-1)$ (pour μ inconnue) • On accepte H_0 , si $Y_0 \le \chi^2_\alpha(n)$ (pour μ connue)	On compare la valeur calculée de l'écart réduit et la valeur tabulée • On accepte H_0 , si $Y_0 \geq \chi^2_{1-\alpha}(n-1)$ (Pour μ inconnue) • On accepte H_0 , si $Y_0 \geq \chi^2_{1-\alpha}(n)$ (Pour μ connue)

• Tests d'hypothèses sur la proportion

Etapes d'un test d'hypothèse	Test Bilatéral	Test unilatéral à droite	Test unilatéral à gauche
Etape1 : Construction du test	$ \begin{cases} H_0 \colon p = p_0 \\ H_1 \colon p \neq p_0 \end{cases} $	$\begin{cases} H_0: p = p_0 \\ H_1: p > p_0 \end{cases}$	$ \begin{cases} H_0: p = p_0 \\ H_1: p < p_0 \end{cases} $
Etape2 : Détermination de l'écart réduit et sa distribution		Pour $n \ge 30, np_0 \ge 5, n(1 - p_0)$ $Z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}} \sim N(0, 1)$	
Etape3: Détermination des régions critiques	Rejet de H_0 Non-rejet de H_0 Rejet de H_0 $\frac{\alpha/2}{z}$ $\frac{-z_{\alpha/2}}{2} \qquad 0 \qquad \frac{z_{\alpha/2}}{2} \qquad Z$ On accepte H_0 , si $-z_{\frac{\alpha}{2}} \leq Z \leq z_{\frac{\alpha}{2}}$	Test unilateral à droite H1: $P(H^0)=1-\alpha$ come de non reget die H0 A accepte H1: A accept	Test unilatéral à gauche $\frac{p_0p_0}{p_0} = \frac{p_0p_0}{p_0} = \frac{p_0p_0}{p_0$
Etape 4 : Prise de décision	On compare la valeur calculée de l'écart réduit et la valeur tabulée $ \bullet \text{On accepte H_0, si $-z_{\frac{\alpha}{2}} \leq Z_0 \leq z_{\frac{\alpha}{2}}$ } \\ \bullet \text{On rejette H_0 si $Z_0 > z_{\frac{\alpha}{2}}$ ou si $-z_{\frac{\alpha}{2}} > Z_0$ } $	On compare la valeur calculée de l'écart réduit et la valeur tabulée • On accepte H_0 , si $Z_0 \leq z_\alpha$ • On rejette H_0 si $Z_0 > z_\alpha$	On compare la valeur calculée de l'écart réduit et la valeur tabulée $ \bullet \text{On accepte H_0, si $Z_0 \geq -z_\alpha$} \\ \bullet \text{On rejette H_0 si $Z_0 < -z_\alpha$} $

Résumé TEI 20-21 : 3A31&28 RASSAA. E