CORSO KOTLIN

Sommario

INTRODUZIONE	3
VARIABILI	3
RIASSEGNAZIONE VARIABILI	
OPERAZIONI CON VARIABILI	
OPERATORI	
DIFFERENZA VAL E VAR	
TRACCIA 1 PER ESERCITAZIONE	
STRINGHE	
ARRAY	
IF ELSE STATEMENT	

INTRODUZIONE

Kotlin è un linguaggio di programmazione ufficialmente supportato per la programmazione android. Questo linguaggio funziona dovunque funzioni JAVA, dal momento che viene eseguito sulla JVM, che è la stessa macchina su cui viene eseguito anche il codice JAVA.

Kotlin è un linguaggio orientato agli oggetti, ma allo stesso tempo utilizza la programmazione funzionale. Nella programmazione funzionale si possono utilizzare funzioni come variabili, posso salvarle all'interno delle variabili, posso ritornarle da altre funzioni e posso passarle come parametri in altre funzioni.

In Kotlin si possono dichiarare degli elementi come immutabili, ovvero che non possono essere modificati.

Tutto ciò consente a Kotlin di essere un linguaggio molto coinciso e permette di scrivere molto meno codice, rispetto a quello che avremmo scritto in JAVA.

Infine Kotlin ha la capacità di poter essere eseguito e di essere richiamato da/su classi JAVA.

VARIABILI

Le variabili sono i contenitori in cui andiamo a mettere i diversi tipi di dati. La keyword var è quella che ci permette di creare una variabile. Tale keyword a sua volta chiede altre informazioni per creare la variabile, ossia il nome, il tipo e il valore. Vediamo qualche esempio:

```
var numeroDiPersone: Int = 2000
var numeroDiPersone2: Byte =20
var numeroDiPersone3: Short = 200
var numeroDiPersone4: Long = 2383848484339L

var PI: Double = 3.121537327468
var PI2: Float = 3.23629329f

var nome: String = "Ciao"

var carattere: Char = 'a'
var booleano: Boolean = true
```

In Kotlin i tipi int, short, float, char e così via, non sono considerati tipi primitivi come in JAVA, ma sono considerati comunque come oggetti.

Detto ciò, non è obbligatorio inserire il tipo della variabile, ma c'è un modo per farlo intuire automaticamente da Kotlin. Basta togliere i due punti con il tipo a seguire e, comunque, il codice continuerà a funzionare. Questo perché Kotlin riesce a dedurre il tipo della variabile semplicemente dal valore che gli andiamo ad assegnare:

```
var numeroDiPersone = 2000
var numeroDiPersone2 = 20
var numeroDiPersone3 = 200
var numeroDiPersone4 = 2383848484339L

var PI = 3.121537327468
var PI2 = 3.23629329f

var nome = "Ciao"

var carattere = 'a'
var booleano = true
```

RIASSEGNAZIONE VARIABILI

Partiamo con una semplice assegnazione di un valore ad una variabile:

```
var moneta = 1000
```

Vogliamo in seguito cambiare quel valore dentro la variabile money. Il modo giusto per farlo è semplicemente riscrivendo solo il nome della variabile, assegnandole il nuovo valore, senza utilizzare la keyword var, perché non abbiamo bisogno di crearne una nuova dato che ce l'abbiamo già:

```
moneta = 800
```

Possiamo però assegnare ad una nuova variabile un'altra variabile, come segue:

```
var accountBanca = moneta
```

Se stampiamo il valore di accountBanca, vediamo a schermo l'ultimo valore aggiunto a moneta:

```
print ("Totale soldi nel suo conto: " + accountBanca) //Totale soldi nel suo conto: 800
```

OPERAZIONI CON VARIABILI

Vediamo un esempio facendo il calcolo della media:

```
fun main() {
    //Operazione di media: (8 + 9 + 4 + 6) / 4
    var voto1 = 8
    var voto2 = 9
    var voto3 = 4
    var voto4 = 6
    var media = (voto1 + voto2 + voto3 + voto4) / 4f //la f serve per avere
risultato float, altrimenti arrotonda all'intero
    println("La media dei voti è: " + media) // 6.75
}
```

Nel prossimo esempio, analogo a quello precedente, vediamo come convertire una stringa in un valore numerico:

```
fun main() {
    var voto1 = "8"
    var voto2 = 9
    var voto3 = 4
    var voto4 = 6
    var media = (voto1.toInt() + voto2 + voto3 + voto4) / 4f
    println("La media dei voti è: " + media)
}
```

OPERATORI

Vediamo un esempio:

```
fun main() {
    // operatori classici: + - / *

    // modulo: % ci restituisce il resto di una divisione
    println(2 % 2) // 0
    println(3 % 2) // 1

    var number = 5
    number += 10 // corrisponde a 10 + 5 e questo vale anche per - / *
    println(number) //15

    number++ // incrementa di 1 la variabile
    println(number) //16
    number-- // decrementa di 1 la variabile
    println(number) //15
}
```

C'è da approfondire una casistica che riguarda gli operatori di incremento e decremento. Infatti è possibile scrivere tali operatori anche prima della variabile e questo ne cambia anche il comportamento. Vediamo un esempio con il decremento per capire la differenza:

```
var number2 = 3
println(number2--) // 3
println(number2) //2
```

In questo esempio usiamo il decremento dopo la variabile, ma la stampa a video sulla stessa riga dell'operatore restituisce lo stesso valore con cui abbiamo inizializzato la variabile. Solo sulla seconda stampa a video avremo effettivamente il decremento del valore. Questo perché, nel caso in cui l'operatore è scritto dopo la variabile, il compilatore andrà prima a controllare il contenuto della variabile e, solo sulla riga successiva, andrà effettivamente a decrementarlo. Viceversa succede se andiamo a scrivere l'operatore prima della variabile:

```
var number2 = 3
println(--number2) // 2
```

dove il decremento avviene direttamente sulla stessa riga dove ho l'operatore. Stessa cosa vale per l'incremento.

DIFFERENZA VAL E VAR

Entrambe le keyword vengono utilizzate per dichiarare una variabile. La differenza sta nel fatto che, come abbiamo visto, quando abbiamo una variabile con la keyword var, possiamo inizializzare più volte il valore che contiene, sostituendo quello precedente. Viceversa, una variabile con la keyword val viene considerata "immutabile", cioè una volta inizializzata ad un valore, quel valore non può essere più cambiato. Vediamo un esempio:

```
val voto1 = 10
voto1 = 9 //Val cannot be reassigned

var voto2 = 10
voto2 = 9
```

TRACCIA 1 PER ESERCITAZIONE

Per completare questo esercizio dovrai:

- Creare un algoritmo in grado di calcolare la tua età .
- Per fare questo dovrai poter inserire solo l'anno in cui sei nato.
- Non potrai scrivere a mano l'anno corrente ma dovrai prenderlo tramite delle classi Kotlin o Java (cerca su Internet come fare)

```
import java.text.SimpleDateFormat
import java.time.Year
import java.util.*

fun main(args: Array<String>) {
    print("Il mio anno di nascita è ")
    var annoNascita:Int = readLine()!!.toInt()
    // readLine() è usato per accettare la stringa
    // e ".toInt()" la converte da stringa a intero.
    //val sdf = SimpleDateFormat("dd/M/yyyy hh:mm:ss")
    val sdf = SimpleDateFormat("yyyy")
    val dataCorrente = sdf.format(Date())
    //System.out.println(" La data di oggi è: "+ currentDate)
    var eta:Int= dataCorrente.toInt() - annoNascita
    print("Ho $eta anni")
}
```

STRINGHE

Come sappiamo, le stringhe sono variabili che contengono del testo. In JAVA, per stampare a video un valore numerico con del testo affianco, è necessario concatenare il valore numerico dopo o prima del testo, come nell'esempio:

```
fun main() {
    val moneta = 5.34
    println("Il totale delle monete in mio possesso è " + moneta)
}
```

In Kotlin è possibile farlo in una maniera meno macchinosa grazie all'utilizzo del simbolo \$, come nel prossimo esempio:

```
fun main() {
    val moneta = 5.34
    println("Sono in possesso di $moneta monete")
}
```

In questo modo è possibile richiamare una variabile direttamente all'interno della stringa. Il tipo della variabile da inserire nella stringa può essere qualsiasi, anche un carattere o un'altra stringa.

Possiamo anche eseguire delle operazioni all'interno della stringa, come nel seguente esempio:

```
fun main() {
    val moneta = 5.34
    val tasse = 2.20
    println("Sono in possesso di ${moneta - tasse} monete")
}
```

Kotlin mette a nostra disposizione quelle che sono chiamate Raw Strings, che sono stringhe racchiuse tra 3 doppie virgolette e sono utilizzate per indicare il percorso di un file, come nell'esempio seguente:

```
val path = """C:\cartella1\cartella2\file"""
```

Possiamo anche utilizzare le Raw Strings anche per creare un output ordinato, facendo in modo che venga fuori un testo allineato senza spazi o tab indesiderati, come nel seguente esempio:

L'output di tale codice è il seguente:

Mi chiamo Stefano ho 27 anni faccio l'informatico

Se al posto del simbolo |, che è utilizzato di default da Kotlin per allineare il testo, volessimo utilizzare un altro simbolo a nostra scelta, dobbiamo fare come nell'esempio seguente:

L'output di questo codice è uguale a quello precedente.

ARRAY

Un'array è un insieme di variabili. Ogni variabile occupa una posizione all'interno dell'array, contrassegnata da un indice. Si deve però prestare attenzione al fatto che l'indice in prima posizione parte da 0 e non da 1. Per dichiarare un array abbiamo bisogno della keyword val (perchè l'array nasce come struttura immutabile), seguita da un nome e un metodo arrayOf(), che ha come parametri un insieme di valori che saranno inseriti all'interno dell'array. Vediamo qualche esempio:

```
fun main() {
   val arrayInteri = arrayOf(1, 2, 3, 4)
   val arrayStringhe = arrayOf("Marco", "Anna", "Matilde", "Gianfranco")
   val arrayMisto = arrayOf("marco", 2, 5, 4.0, 8.0f, 's', false)
    //ciclo for per leggere ogni elemento dell'array di interi
   for (numero in arrayInteri) {
       println(numero)
   println()
    //ciclo for per leggere ogni elemento dell'array di stringhe
   for (nome in arrayStringhe) {
       println(nome)
   println()
    //ciclo for per leggere ogni elemento dell'array misto
   for (elemento in arrayMisto) {
       println(elemento)
    }
}
```

È possibile tuttavia dichiarare un array, scrivendo per ogni singolo indice che valore inserire. Vediamo un esempio:

```
val arrayInteri2: Array<Int?> = arrayOfNulls(3)
arrayInteri2[0] = 1
arrayInteri2[1] = 2
arrayInteri2[2] = 3
//lettura di un singolo elemento dell'array all'indice indicato
println(arrayInteri2[1])
//ciclo for per leggere ogni elemento dell'array misto
for (elemento2 in arrayInteri2) {
    println(elemento2)
}
```

IF ELSE STATEMENT

Vediamo un esempio di classico costrutto if:

```
fun main() {
    val totaleMonete = 0
    //val totaleMonete = 50
    //val totaleMonete = 10
    if (totaleMonete > 0 && totaleMonete <= 5) {
        print("posso spendere pochi soldi")
    }else if (totaleMonete > 5 && totaleMonete <= 20) {
        print("posso comprarmi un buon pasto")
    }else if(totaleMonete > 20) {
        print("sono ricco")
    }else if (totaleMonete == 0) {
        print("sono povero")
    }
}
```