

Key takeaways from previous units

- Numerous applications
- Abstract model: Network is composed of devices and links
- Based on direction of communications, network can be
 - Simplex, half duplex, full duplex
- Networks can be classified based on geographical coverage
 - PAN, LAN, MAN, WAN
- Network has a topology, which defines how devices are connected
 - Star, tree, mesh, ring

Objectives of This unit

- Intro to performance metrics
- Technology milestones

Value of Communications Systems

- Depends on context / objective
 - Depends on function

- Depends on performance
 - How to measure the performance?

What are the Elements of Performance in Networks?

- Delay: response time, latency (seconds)
- Jitter: variations in delay
- Speed: Bit rate, throughput (bits per second)
- Power consumption
- Accuracy: error rate (ratio, percentage)
- Dependability: Reliability and security

Performance

Performance requirements depend on application:

(Tophat) Q_Performance
 Voice calls: low errors or less delay is more important?

Delay vs. Data Chunk Size

Delay vs. Data Chunk Size

Based on the data rate, transmissions can be classified into narrowband, wideband, broadband

Milestones in Networks

- Telegraph
- Circuit switching
- Packet switching

Telegraph infrastructure

- Telegraph is one of the earliest instances of networks
 - Patented in the United States in 1840 by Samuel F. B. Morse
- Information carried as electrical signals over wires
- Early infrastructure
 - Vail's finger key

Morse Register

Technology Milestones – Telegraph

- Transmitter: Connect and release a switch to send data
- Receiver: electromagnet, pull a marker to draw a line on a paper

How can information be exchanged?

Technology Milestones – Telegraph Morse Code

 Morse code is combination of dots & dashes that represent the alphabet

example: $a = \bullet -$

International Morse Code

- 1. The length of a dot is one unit.
- 2. A dash is three units.
- 3. The space between parts of the same letter is one unit.
- 4. The space between letters is three units.
- 5. The space between words is seven units.

Technology Milestones – Telegraph (3)

- Relevance to modern networks:
 - Information is carried as energy on a medium between
 Tx and Rx

There is an agreed upon pattern between the transmitter and receiver

Today, instead of dots & dashes we use '0' & '1'.

NYC around 1900, Each cable enable one telephone connection

 Telegraph enabled long distance communications over a wire,

but it can send only one message at a time

Technology Milestones – Multiplexing

- Enables sending more than one message over the same link (wire)
 - Patented in 1874, by Thomas Edison (Quadruplex telegraph , 4 messages)

Without multiplexing:

- You would be able to listen to only one radio station at a time in your location (cannot change it)
- Need a cable for each TV channel
 - Imagine laying 200 cables to support 200 TV channels

With multiplexing:

Single cable for all TV channels

Multiplexing

Technology Milestones – Circuit Switching

- One wire can connect to multiple destinations (patented in 1891, Strowger)
- Switch: connect different locations on as-needed basis

6 wires needed without a switch

Technology Milestones – Circuit Switching

- One wire can connect to multiple destinations (patented in 1891, Strowger)
- Switch: connect different locations on as-needed basis
- Reduce cabling

6 wires needed without a switch

4 wires needed with a switch

Telegraph, multiplexing and circuit switching led to the development of phone networks

Circuit Switching

 Circuit Establishment: Prior to communications, the "network" establishes the circuit

- The circuit reserves resources
 - Bandwidth (time slots, frequency chunks) (details later)
- "Resources" are dedicated until connection is terminated

Circuit Switched Voice Call (simplified)

As if there is an exclusive "wire" between phones

Voice Call on Landline

- The "trunk" "multiplexes" many voice calls
 - Trunk between central office and other switching offices.
 Analogy: many pieces of mail and packages to the same state being flown over a plane
- You terminate the connection to release resource and it can go to someone else
- Circuit switched networks typically bill by the minute

Circuit Switching Performance

- Performance (e.g. delay) predictability?
- Tophat: Q_CircuitSwitching
- Circuit switching

In circuit switching, after a circuit is established, the performance is

A Predictable

Highly unpredictable

B

Circuit Switching Performance

- One performance metric reflecting reliability is "call blocking"
 - Happens when there is no sufficient resources to establish circuits
 - Analogy: bus is full

Technologies Milestones By 1972, the ARPANET comprised 37 computers

First packet switching transmission in 1969

- ARPA project:
 - First packet transmission occurred on Oct 29,
 1969, in California Between SRI and UCLA

Milestones – Packet Switching

- Limitation of circuit switching
 - Typically cannot communicate with more than one receiver at the same time
 - Resources wasted ...
 - Since they are reserved for connection (even if it is not used) until connection is terminated -- **Not scalable**
- Packet switching is used in computer networks

Browsing Amazon.com

Alice

Questions

- How does the browser know what and where amazon.com is?
- How does request reach amazon server?
- What if Alice is also browsing pitt.edu at the "same" time she is browsing amazon?
- How does the browser know if it has received the elements of the html page correctly?

Questions

- How does the browser know what and where amazon.com is?
 - Addressing
- How does request reach amazon server?
 - Routing & protocols
- What if Alice is also browsing pitt.edu at the "same" time she is browsing amazon?
 - Multiplexing of applications
- How does the browser know if it has received the elements of the html page correctly?
 - Error control

Analogy to Sending a Greeting Card (1)

Alice wishes to send a greeting card to grandma

Goes to store, gets card

Analogy to computer network:

Computer

CRUNDMA. I just wanted to tell you Nappy Mather's Day iz. I Lave you...

Prepare information

Calls Mom for address!

DNS

Fixes stamp, Drives

Mails card

Send to OS

Alice

Sending a Greeting Card (2)

- Truck picks up the mail from mail box & mail goes to "sorting facility"
 - Mail to the same zip code go together (multiplexed)

Mail is sorted by route and delivered

In computer system: addressing & routing

Things to note

- Performance metric is
 - Delay
 - Analogy: Delayed Christmas deliveries
- Bottleneck due to limited capacity or other reasons
 - Analogy: Weather, trucks, flights, people

 What if you need to send many items? Some are bulky?

Packet Switching

- Information are in "addressed" packets
- Routing data based on address in packets
- Packet switches are called routers
 - Routers are devices used to interconnect two or more networks

Packetization -- Analogy in retail

 Large items are broken down into smaller kits to easily ship/transport them

Packetization overview

- Packetization is
 - Breaking down user data into small segments
- Seg Seg Seg

 1
 2

Header

- Each packet has two parts
 - Data to be delivered
 - "Overhead" required for successful delivery and integration with other packets

Packets Analogy

Advantages of Packet Switching

- Allow you to connect with multiple devices:
 - E.g. At the same time access information from server A, download music from server C, while chatting

Advantages of Packet Switching

- Network resources are allocated as needed
 - In packet switching "Channel" is occupied only during the transmission of the packet

- Packet switching improves link utilization
 - No resource waste like in circuit switching
 - Packet switching is 3-100 times more efficient than circuit switching

Why Packet Switching Is better Suited for Internet?

Bursty traffic

- short periods of large volume of data downloaded or uploaded, followed by idle periods of minimal activity
 - Browsing behavior: download a page (burst of data) then idle time to read it (no data sent or received)

Traffic aggregation

Packet switching aggregates network data traffic

Traffic Aggregation

Why Packet Switching is Reliable?

- Packet switches are called routers
 - Routers connect two or more networks
 - Routers locate other routers close to destination

- Mesh topology in backbone improves reliability
 - If one router failed, another router serves
 - Note in circuit switching, if a link or switch failed, the call is dropped.

Packet Switching vs. Circuit Switching

 No connection set-up and tear-down in packet switching

- Packet switched networks typically bill by MB (Mega Byte)
 - Instead of by minutes as in circuit switching

Dial a number and wait for an answer, this is

A Circuit switching

B Packet switching

Q_switching_2

В

Send a text message or an email

A This is circuit switching

This is packet switching

The Network Core

Mesh of interconnected routers or switches

 The fundamental question: how is data transferred through net?

Figure from Kurose & Ross

Anatomy of a web request

