1ET-DI 20.11.2018

Laboratorium z fizyki

Ćw. nr: **29**

Charakterystyki diody półprzewodnikowej

1. Wstęp teoretyczny

Dioda półprzewodnikowa – element elektroniczny należący do rodziny diod, zawierający w swojej strukturze złącze "p-n" wykonane z materiałów półprzewodnikowych. Jest to nieliniowy, dwukońcówkowy element, gdzie wyprowadzenie przymocowane do warstwy "p" (+ positive) nazywane jest anodą i do "n" warstwą (- negative) katodą. Jedną z głównych zalet diod jest prąd płynący tylko w jednym kierunku (od anody do katody) po spolaryzowaniu złącza "p-n" napięciem w kierunku przewodzenia (gdy napięcie na anodzie jest większe niż na katodzie). Natomiast po spolaryzowaniu złącza "p-n" napięciem w kierunku zaporowym (napięcie na anodzie jest mniejsze niż na katodzie) "ujemny" prąd nie zostanie przepuszczony przez diodę i przez to możemy nazwać ją zaworem elektrycznym umożliwiającym przepływ prądu jedynie w jednym kierunku

rys. 1. schemat blokowy diody

rys. 2. symbol didy p-n

Dioda elektroluminescencyjna, dioda świecąca, dioda emitująca światło, LED (od ang. light-emitting diode) – dioda zaliczana do półprzewodnikowych przyrządów optoelektronicznych, emitujących promieniowanie w zakresie światła widzialnego, podczerwieni i ultrafioletu.

Mechaniczną budowę przykładowej diody LED pokazuje rysunek po prawej. Typów diod LED jest wiele i choć różnią się właśnie budową mechaniczną to sercem każdej z nich jest zawsze chip półprzewodnikowy. To on przetwarza prąd elektryczny na światło. Taki chip półprzewodnikowy w diodzie to specjalny materiał przewodzący prąd tylko w jedną stronę. Zbudowany jest najczęściej z kryształów opartych o krzem z różnymi dodatkami. W diodzie LED ten kryształ składa się z dwóch warstw, z których jedna nazywa się "p" a druga "n". Warstwa "n" ma w sobie bardzo dużo elektronów a warstwa "p" ma mnóstwo tak zwanych dziur. Jeśli do takiego kryształu podłączy się prąd to elektrony z warstwy "n" zaczynają przeskakiwać do dziur z warstwy "p" i podczas tego przeskoku zostaje im spory nadmiar energii, którą "wyrzucają" na zewnątrz w postaci światła.

2. Opis Ćwiczenia

Ćwiczenie to zostało opracowane, by student mógł poznać metody pomiaru charakterystyk diod półprzewodnikowych, świecących, oraz poznać zasady wyznaczania z nich parametrów. By wykonać to ćwiczenie, należało wiedzieć, czym są diody prostownicze, oraz świecące, oraz czym się charakteryzują.

<u>Dioda</u> półprzewodnikowa to dwukońcówkowy element półprzewodnikowy. Zbudowana jest z dwóch warstw półprzewodnika, odmiennie <u>domieszkowanych</u> - typu n i typu p, tworzących razem <u>złącze p-n</u>, lub z połączenia półprzewodnika z odpowiednim <u>metalem</u> - <u>dioda Schottky'ego</u>. Końcówka dołączona do obszaru n nazywa się <u>katodą</u>, a do obszaru p - <u>anodą</u>. Element ten charakteryzuje się jednokierunkowym przepływem <u>prądu</u> - od anody do katody, w drugą stronę prąd nie płynie (zawór elektryczny.

Natomiast **dioda LED**, jest zaliczana do półprzewodnikowych przyrządów optoelektronicznych, emitujących promieniowanie w zakresie światła widzialnego i podczerwieni.

3. Schematy połączeń

I. Kierunek zaporowy

II. Kierunek przewodzenia

4. Tabele z wynikami pomiarów

Dioda półprzewodnikowa

Kierunek	U	[V]	0,05	0,11	0,17	0,24	0,3	0,4	0,6
zaporowy	I	[µA]	2	3	5	9	9	9	9
Kierunek	U	[V]	0,1	0,2	0,3	0,4	0,5		
przewodzenia	I	[mA]	0,4	3,7	19,9	63	142		

Dioda LED

Kierunek	U	[V]	0	1,55	1,6	1,65	1,7	1,75	1,8
przewodzenia	Ι	[mA]	0	5	10	15	20	25	30

5. Obliczenia

a) Dioda półprzewodnikowa

Dioda półprzewodnikowa:

Kierunek zaporowym:

$$\Delta I' = \frac{0.5 \cdot 75}{100} + \frac{1}{2} = 0.875[uA]$$

$$\Delta I = \frac{0.875}{\sqrt{3}} = 0.5[uA]$$

$$\Delta V' = \frac{0.5 \cdot 3}{100} + \frac{0.04}{2} = 0.035[V]$$

$$\Delta V = \frac{0.035}{\sqrt{3}} = 0.02[V]$$

Kierunek przewodzenia:

$$\Delta I' = \frac{0.5 \cdot 150}{100} + 1 = 1.75[mA]$$

$$\Delta I = \frac{1.75}{\sqrt{3}} = 1.01[mA]$$

$$\Delta U' = \frac{0.5 \cdot 0.75}{100} + 0.005 = 0.009[V]$$

$$\Delta U = \frac{0.009}{\sqrt{3}} = 0.005[V]$$

b) Dioda LED

Dioda LED:

Kierunek przewodzenia:

$$\Delta I' = \frac{0.5 \cdot 75}{100} + \frac{1}{2} = 0.875[uA]$$

$$\Delta I = \frac{0.875}{\sqrt{3}} = 0.5[uA]$$

$$\Delta U' = \frac{0.5 \cdot 3}{100} + 0.02 = 0.035[V]$$

$$\Delta U = \frac{0.035}{\sqrt{3}} = 0.02[V]$$

5. Wykresy:

Dioda w kierunku przewodzenia z zaznaczonymi błędami pomiaru:

Zależność: I=f(U)

Dioda w kierunku zaporowym z zaznaczonymi błędami pomiaru:

6.Wnioski:

Celem ćwiczenia było wyznaczenie charakterystyki prądowo napięciowej diody półprzewodnikowej. Przy dużej zmianie wartości napięcia wstecznego przy pomiarze w kierunku zaporowym po przekroczeniu pewnej wartości około 0,6-0,7V wartość prądu mimo wzrostu wartości napięcia prawie się nie zwiększała i wynosiła około 6 μΑ. W kierunku przewodzenia po przekroczeniu pewnej wartości napięcia wynoszącej około 0,4V prąd zaczął gwałtownie wzrastać wraz ze wzrostem napięcia. Wykonane wykresy są obarczone dużymi błędami z powodu bardzo małej dokładności przyrządów pomiarowych.