The Why and How of Nonnegative Matrix Factorization Topic Presentation

Group 02

LINMA2380 — Matrix computations

December 10, 2020

Summary

1 Introduction

2 Applications

3 Connections to other problems

Agenda

Use: Analysis of high-dimensional data by automatically extracts sparse and meaningful features from a set of nonnegative data vectors

- What : Definitions and properties
- Why : Applications
- How : Algorithms
- What next : Connections with Problems in Mathematics and Computer Science
- Conclusion

What: Definitions and properties

Nonnegative matrix factorization (NMF) is a Linear dimensionality reduction (LDR)

LDR:

- From a set of data points $x_j \in \mathbb{R}^p$ for $1 \leq j \leq n$
- lacksquare To a set of dimension r < min(p, n)
- Thanks to $w_k \in R^p$ for $1 \le k \le r$
- Such that : $\forall j, x_j \approx \sum_{k=1}^r w_k h_j(k)$, for some weights $h_j \in R^r$

Equivalent to low-rank matrix approximation : $X \approx WH$

- $X \in \mathbb{R}^{p \times n} : X(:,j) = x_j \text{ for } 1 \le j \le n$
- $W \in \mathbb{R}^{p \times r} : W(:,k) = w_k \text{ for } 1 \le k \le r$
- $\blacksquare H \in R^{r \times n} : H(:,j) = h_j \text{ for } 1 \le j \le n$

NMF : decomposing a given nonnegative data matrix X as $X \approx WH$

Applications - Image processing

Goal: Facial Feature Extraction

Data matrix : $X \in \mathbb{R}^{p \times n}_+$

- lacksquare p: total number of pixels
- \blacksquare n: number of faces
- lacksquare X(i,j) : the gray-level of the i-th pixel in the j-th face

Applications - Image processing

W(:,k)

facial features

H(k,j)

importance of features in jth image

WH(:,j)

approximation of jth image

Applications - Image processing

NMF decomposition

PCA decompostion

Applications - Text Mining

Goal: Topic Recovery and Document Classification

Data matrix : $X \in \mathbb{R}^{n \times m}_+$

- each column: a document
- each line: a word
- lacksquare X(i,j) : number of times the i-th word appears in the j-th document

$$\underbrace{X(:,j)}_{j\text{th document}} \approx \sum_{k=1}^{r} \underbrace{W(:,k)}_{k\text{th topic}} \underbrace{\underbrace{H(k,j)}_{importance \ of \ k\text{th topic}}}_{importance \ of \ k\text{th topic}}, \quad \text{with } W \geq 0 \text{ and } H \geq 0.$$

Applications - Hyperspectral Unmixing

Goal:

- Identify the constitutive materials present in an image
- Classify the pixels according to their constitutive materials

Spectral signature of a pixel: fraction of incident light being reflected by that pixel at different wavelengths

Applications - Hyperspectral Unmixing

Data matrix : $X \in \mathbb{R}^{n \times m}$

each column: spectral signature of a pixel

Nonnegative rank

Definition (Nonnegative rank)

Given $X \in \mathbb{R}^{p \times n}_+$, the nonnegative rank of X, denoted $\operatorname{rank}_+(X)$ is the minimum r s.t. $\exists W \in \mathbb{R}^{p \times r}_+, H \in \mathbb{R}^{r \times n}_+$ with X = WH.

Computational Geometry : Nested polytopes problem

Figure: Finding a polytope with minimum nb of vertices nested between 2 polytopes

Graph Theory: Bipartite dimension

Let $G(X)=(V_1\cup V_2,E)$ be a bipartite graph induced by X (i.e. $(i,j)\in E\Leftrightarrow X_{ij}\neq 0$).

Definition (Biclique and bipartite dimension)

- A biclique (or a complete bipartite graph) is a bipartite graph s.t. every vertex in V_1 is connected to every vertex in V_2 .
- The bipartite dimension (or the minimum biclique cover) bc(G(X)) is the minimum number of bicliques needed to cover all edges in E.

Figure: Example for biclique edge cover [biclique]

For any
$$(W,H) \geq 0$$
 s.t. $X = WH = \sum_{k=1}^{r} W_{:k} H_{k:}$, we have

$$G(X) = \cup_{k=1}^r G(W_{:k} H_{k:})$$

where $G(W_{:k}H_{k:})$ are complete bipartite subgraphs (bc $(G(W_{:k}H_{k:}=1\forall k)$).

Theorem (Rectangle covering bound)

$$bc(G(X)) \leq rank_{+}(X)$$

Communication complexity

Alice and Bob want to compute:

$$f: \{0,1\}^m \times \{0,1\}^n \to \{0,1\}: (x,y) \to f(x,y)$$

While minimizing the nb of bits exchanged (i.e. communication complexity (CC)). **Nondeterministic comm. complex. of** f **(NCC)**: CC of f with oracle/message before starting the communication.

The communication matrix $X \in \{0,1\}^{2^n \times 2^m}$ is equal to the function f for all possible combinations of inputs.

Theorem (Yannakis)

$$NCC ext{ of } f \leq \log_2(rank_+(X))$$

Linear Optimization : Extended formulation

(LP) max
$$c^T x$$

 $s.t.$ $Ax \le b$
 $x \in \mathbb{R}^n > 0$

Definition (Extended formulation)

The extended formulation of a polytope P is a higher dimensional polytope Q and a linear projection π s.t. $\pi(Q) = P$.

In our LP problem, an extended formulation of the polytope $P \subset \mathbb{R}^n$ defined by the constraints $Ax \leq b$, is a polytope $Q \subset \mathbb{R}^{n+r}$ defined by $Cx + Dy \leq d$ with $y \in \mathbb{R}^r$, s.t. $\pi(Q) = P$.

The slack matrix $X(i,j)=b_i-A_iv_j$. With v_j , the j^{th} vertex of P and $\{x\in\mathbb{R}^n|b_i-A_ix\geq 0\}$ its i^{th} facet. The (i,j) entry measures the slack of the i^{th} inequality for the vertex j.

Theorem (Yannakis)

The minimum size of an extended formulation Q of P is equal to $rank_+(X)$.