## Frugal: Cheaper Methods for SBSE

Vivek Nair

# Why configurations are so important?

- Software systems are configurable
- Configurations are parameters to control the behavior of a system
  - Configurations of <u>Apache</u>:
    - HostNameLookups
    - FollowSimLinks
    - •
- Different configurations of system will result in different performance



# Why configurations are so important?

- Software systems are configurable
- Configurations are parameters to control the behavior of a system
  - Configurations of <u>Apache</u>:
    - HostNameLookups
    - FollowSimLinks
    - ....
- Different configurations of system will result in different performance



# **Example**

| Conf. | Features |       |       |   |       |   |   |       |  |  |
|-------|----------|-------|-------|---|-------|---|---|-------|--|--|
|       | $x_1$    | $x_2$ | $x_3$ |   | $x_i$ |   |   | $x_N$ |  |  |
| 1     | 1        | 0     | 1     | 0 | 0     | 0 | 1 | 1     |  |  |
| 2     | 0        | 1     | 1     | 1 | 1     | 0 | 0 | 1     |  |  |
| 3     | 1        | 0     | 0     | 1 | 0     | 1 | 0 | 0     |  |  |
| 4     | 1        | 1     | 0     | 1 | 0     | 1 | 0 | 1     |  |  |
| 5     | 1        | 0     | 1     | 1 | 0     | 1 | 1 | 0     |  |  |

Find the fastest configuration setting for given a sample program?

Just run it?

# **Example**

| Conf.     | Features |       |       |   |       |   |   |       |  |  |
|-----------|----------|-------|-------|---|-------|---|---|-------|--|--|
|           | $x_1$    | $x_2$ | $x_3$ |   | $x_i$ |   |   | $x_N$ |  |  |
| 1         | 1        | 0     | 1     | 0 | 0     | 0 | 1 | 1     |  |  |
| 2         | 0        | 1     | 1     | 1 | 1     | 0 | 0 | 1     |  |  |
| 3         | 1        | 0     | 0     | 1 | 0     | 1 | 0 | 0     |  |  |
| 4         | 1        | 1     | 0     | 1 | 0     | 1 | 0 | 1     |  |  |
| 5<br>•    | 1        | 0     | 1     | 1 | 0     | 1 | 1 | 0     |  |  |
| (■ )      |          |       |       |   |       |   |   |       |  |  |
| 3,932,160 | 1        | 0     | 1     | 1 | 0     | 1 | 1 | 0     |  |  |

Find the fastest configuration setting for given a sample program?

Just run it?

How about now?

# We need a Surrogate!

Surrogate is a cheap version of the actual system





# Who endorses Surrogates?

#### **Other Communities**

- Aerospace
  - Axial compressor blade shape optimization [Samad08]
  - Hydraulic turbine diffuser
     shape optimization [Marjavaara07]
- Engineering Design
  - Enhanced oil recovery process [Sanchez06]
  - Design of composite materials [Sakata08]
  - Alkaline-surfactant-polymer flooding processes [Zerpa05]

**Software Engineering** 

No surrogates....

## Who endorses Surrogates?

#### **Other Communities**

#### Aerospace

- Axial compressor blade shape optimization [Samad08]
- Hydraulic turbine diffuser
   shape optimization [Marjavaara07]

### Engineering Design

- Enhanced oil recovery process [Sanchez06]
- Design of composite materials [Sakata08]
- Alkaline-surfactant-polymer flooding processes [Zerpa05]

### **Software Engineering**

## No surrogates....

#### Most Similar But **NOT Surrogates**:

- Heuristic method to predict response times [Siegmund'12]
- Random Sampling to build a prediction model [Guo'13, Sarkar'15]

## **Our Surrogate Method!**

Our method "WHAT" is better than the state of the art

- Similar result using 2 to 10 times less evaluations
- Predictions are more stable

## **Paper Submitted**

<u>Vivek Nair</u>, Tim Menzies, Norbert Siegmund, Sven Apel. Faster Discovery of Faster System Configurations with Spectral Learning. Submitted to FSE - 2016

# **BACKGROUND**

## "Search" in Software Engineering

What is the: [Harman'12]

- best way to structure this system to enhance its maintainability?
- smallest set of test cases that covers all branches?
- fastest configuration of this system to run this benchmark program?

## Software Engineering problems are

- MultiObjective [Mkaouer'15]
  - The are more than one objective to optimize
- Multi-Modal
  - There are more than one optimum solution
- Non-Separability
  - The optimum of one of the objectives is not the optimum for the other objective/s.
- High Dimensions
  - Number of dimensions of the search space is large

## Which optimization algorithms can we use?

#### Mathematical optimization

- Based on the property of objective function and constraint function:
  - linear programing
  - non-linear programing
- Assumes properties like differentiability etc.

#### Grid Search

- Divide dimensions into bins
- Choose one from each bin
- Slow and can miss important optimization opportunities



# Which optimization algorithms can we use?



### **Biased towards EA**

- Simple implementation
  - Basic EA application can be coded
     up in 50 lines of python
- Distributed computation
  - Algorithms can be parallelized
- Generation of new ideas that have not been explored before



EA is most explored technique in SBSE [Harman'12]

## EA is really slow!

#### EAs require a high number of objective function evaluations

- Evaluation of single instance of software /hardware co-design problem
   can take weeks [Zuluaga'13]
- Test suite generation using EA can take weeks [Harman'12]
- Popular EA (NSGA-II) taking 7 days of execution time for Aviation Models [Krall'15]



## Surrogate models might be the answer?

Surrogates



#### Motivation

- Replacement of expensive function, evaluated many times
- Widely used in Airfoil design, CFD, reservoir planning etc.
- No known usage in Software Engineering

## Surrogate can also be used to inform

Initialization

 Use only the best candidates evaluated using a surrogate [Rasheed'00]



## Surrogate can also be used to inform

#### Initialization

 Use only the best candidates evaluated using a surrogate [Rasheed'00]

#### Recombination + Mutation

- Create multiple children and use the fittest of them all [Loshchilov'10]
- Create local surrogate and and search locally [Abboud'01]



# Surrogate can also be used to inform

#### Initialization

 Use only the best candidates evaluated using a surrogate [Rasheed00]

#### Recombination + Mutation

- Create multiple children and use the fittest of them all [Loshchilov'10]
- Create local surrogate and and search locally [Abboud'01]

#### Evaluate

- Multiple Surrogates [Zhou'07]
- WHAT is an evaluate surrogate



### **To Summarize**



### **To Summarize**



### **To Summarize**



# **APPROACH**

# WHAT = Clustering + Sampling

- Phase 1: Clustering
  - WHERE



- Phase 2: Sampling
  - Random Sampling Select any point at random
  - East West Sampling Find extreme points on the dimension of highest variance
  - Exemplar The point with minimum performance measure
- Phase 3: Generate Surrogate CART
  - Samples selected by our sampler is used to train a CART model









### **Definition**

### Real System

- Features can be either True or False
- Configuration is a set of features
- Each configuration has a corresponding response time or <u>performance measure</u>



### **Definition**

#### Real System

- Features can be either True or False
- Configuration is a set of features
- Each configuration has a corresponding response time or <u>performance measure</u>

### Surrogate System

- Configuration = independent variable
- Performance measure = dependent variable



## Phase 1: Clustering

#### Clustering via WHERE

- Novel near-linear time spectral learner
- Exploits underlying lower dimensionality of search space

#### In brief:

- Find a dimension "d" with most variance
- Project points to "d"
- Split data at median "d"
- Recurse
- $\circ$  Stop when |n| < sqrt(N)

#### • Future work:

- Fast Spectral clustering [Yan'09]
- In brief:
  - Polynomial time operations
    - An initial k-means pass
    - O(N<sup>2</sup>) operations on the centroids founds by K-means
    - Final pass: map all points to the centroids found in b

#### **NC STATE UNIVERSITY**

- Number of samples (N) = 64

#### Algorithm:

- Find a dimension "d" with most variance
- Project points to "d"
- Split data at median "d"
- Recurse
- Stop when |n| < sqrt(N)



Configuration Space

#### **NC STATE UNIVERSITY**

- Number of samples (N) = 64

#### Algorithm:

- Find a dimension "d" with most variance
  - Choose point at random (initial)
  - Find furthest point (east)
  - Find furthest point from east (west)
- Project points to "d"
- Split data at median "d"
- Recurse
- Stop when |n| < sqrt(N)</li>



Configuration Space

#### **NC STATE UNIVERSITY**

Number of samples (N) = 64

#### Algorithm:

- Find a dimension "d" with most variance
  - Choose point at random (initial)
  - Find furthest point (east)
  - Find furthest point from east (west)
- Project points to "d"
- Split data at median "d"
- Recurse
- Stop when |n| < sqrt(N)</li>



Configuration Space

Number of samples (N) = 64

- Find a dimension "d" with most variance
  - Choose point at random (initial)
  - Find furthest point (east)
  - Find furthest point from east (west)
- Project points to "d"
- Split data at median "d"
- Recurse
- Stop when |n| < sqrt(N)</li>



Configuration Space

Number of samples (N) = 64

- Find a dimension "d" with most variance
  - Choose point at random (initial)
  - Find furthest point (east)
  - Find furthest point from east (west)
- Project points to "d"
- Split data at median "d"
- Recurse
- Stop when |n| < sqrt(N)</li>



Configuration Space

Number of samples = 64

- Find a dimension "d" with most variance
  - Choose point at random (initial)
  - Find furthest point (east)
  - Find furthest point from east (west)
- Project points to "d"
- Split data at median "d"
- Recurse
- Stop when |n| < sqrt(N)</li>



Configuration Space

- Number of samples (N) = 64

- Find a dimension "d" with most variance
  - Choose point at random (initial)
  - Find furthest point (east)
  - Find furthest point from east (west)
- Project points to "d"
  - For all points
    - Choose a point (candidate)
    - Calculate position on d dimension
- Split data at median "d"
- Recurse
- Stop when |n| < sqrt(N)</li>



Configuration Space

Number of samples (N) = 64

- Find a dimension "d" with most variance
  - Choose point at random (initial)
  - Find furthest point (east)
  - Find furthest point from east (west)
- Project points to "d"
  - For all points
    - Choose a point (candidate)
    - Calculate position on d dimension
- Split data at median "d"
- Recurse
- Stop when |n| < sqrt(N)</li>



Configuration Space

Number of samples (N) = 64

### Algorithm:

- Find a dimension "d" with most variance
  - Choose point at random (initial)
  - Find furthest point (east)
  - Find furthest point from east (west)
- Project points to "d"
  - For all points
    - Choose a point (candidate)
    - Calculate position on d dimension
- Split data at median "d"
- Recurse
- Stop when |n| < sqrt(N)</li>



#### **Configuration Space**



Number of samples (N) = 64

### Algorithm:

- Find a dimension "d" with most variance
  - Choose point at random (initial)
  - Find furthest point (east)
  - Find furthest point from east (west)
- Project points to "d"
  - For all points
    - Choose a point (candidate)
    - Calculate position on d dimension
- Split data at median "d"
- Recurse
- Stop when |n| < sqrt(N)</li>



### Configuration Space



Number of samples (N) = 64

- Find a dimension "d" with most variance
  - Choose point at random (initial)
  - Find furthest point (east)
  - Find furthest point from east (west)
- Project points to "d"
  - For all points
    - Choose a point (candidate)
    - Calculate position on d dimension
- Split data at median of "d"
- Recurse
- Stop when |n| < sqrt(N)</li>



Configuration Space

Number of samples (N) = 64

### Algorithm:

- Find a dimension "d" with most variance
  - Choose point at random (initial)
  - Find furthest point (east)
  - Find furthest point from east (west)
- Project points to "d"
  - For all points
    - Choose a point (candidate)
    - Calculate position on d dimension
- Split data at median of "d"
- Recurse
- Stop when |n| < sqrt(N)</li>



#### **Configuration Space**



Number of samples (N) = 64

### Algorithm:

- Find a dimension "d" with most variance
  - Choose point at random (initial)
  - Find furthest point (east)
  - Find furthest point from east (west)
- Project points to "d"
  - For all points
    - Choose a point (candidate)
    - · Calculate position on d dimension
- Split data at median of "d"
- Recurse
- Stop when |n| < sqrt(N)</li>



#### **Configuration Space**



Number of samples (N) = 64

- Find a dimension "d" with most variance
  - Choose point at random (initial)
  - Find furthest point (east)
  - Find furthest point from east (west)
- Project points to "d"
  - For all points
    - Choose a point (candidate)
    - · Calculate position on d dimension
- Split data at median of "d"
- Recurse
- Stop when |n| < sqrt(N)</li>







## **Phase 2: Sampling**

## Choosing representative candidates from clusters

#### Random

- Choose a candidate at random
- Number of evaluations/Cluster = 1
- Point selected/Cluster = 1

#### East-West

- Choose extreme points in dimension of maximum variance
- Number of evaluations/Cluster = 2
- Point selected/Cluster = 2

### Exemplar

- Choose the best candidate from the cluster
- Number of evaluations/Cluster = n
- Point selected/Cluster = 1

## Cluster,







## **Phase 3: Generate Surrogate**

- Use the configuration/s sampled from each cluster
- Run the configuration
  - In this work, we performed a table lookup
- Train a CART decision tree learner using:
  - Configurations (Independent Variable)
  - Performance Measure (Dependent Variable)

# **Experiments**

Collecting "Ground Truth" = 26 days of computation

## **Experiments**

#### Datasets Used:

- Apache open-source Web server
- Berkeley DB C (BDBC) embedded database system written in C
- Berkeley DB Java (BDBJ) BDBC in Java with SQL support
- LLVM a compiler infrastructure written in C++
- SQLite embedded database system
- X264 is a video encoder in C
- Surrogate Used: CART

## Techniques compared against:

- Siegmund et al.
- o Guo et al.
- Sarkar et al.

#### Performance Measure:

o MRE: Mean Relative Error

$$MRE = \frac{|actual - predicted|}{actual} \times 100$$





#### Uses Feature Wise heuristics:

- Find
  - a pair of configuration
     (C<sub>1</sub> and C<sub>2</sub>)
  - has same features except for one (Fi)
- Performance score (PS) of Fi PS(Fi) = PS(C1) - PS(C2)



Progressive Sampling Approach:

While terminationCriteria() is

- True:
  - Random Sampling
  - Samples in step of |F|
  - Build a CART tree



Uses Feature Frequencies:

- Projective sampling to decide number of configurations to sample
- Random Sampling
- Build a CART tree

## **Research Questions**

RQ 1: Can WHAT generate good predictions using only a small number of configurations?

RQ 2: Do less data cause larger variances in predicted values?

RQ 3: Can "good" surrogate models (to be used in optimizers) be built using WHAT?

RQ 4: How good is WHAT compared to the state of the art predictors?

## RQ1 + RQ2

### RQ1 + RQ2 explore

- if WHAT can generate good predictors with low variance
- how much of data should WHAT reflect upon

## Comparison between:

- Baseline (using all the data)
- WHERE + Random
- WHERE + EAST-West
- WHERE + Exemplar

Data (100)

Data (100)

Train (10)

Test (90)











65



















| Random                |        |      |      |      |        |      |
|-----------------------|--------|------|------|------|--------|------|
| Software<br>System    | Apache | BDBC | BDBJ | LLVM | SQLite | X264 |
| Mean MRE              | ?      | ?    | ?    | ?    | ?      | ?    |
| Standard<br>Deviation | ?      | ?    | ?    | ?    | ?      | ?    |

| East-West             |        |      |      |      |        |      |
|-----------------------|--------|------|------|------|--------|------|
| Software<br>System    | Apache | BDBC | BDBJ | LLVM | SQLite | X264 |
| Mean MRE              | ?      | ?    | ?    | ?    | ?      | ?    |
| Standard<br>Deviation | ?      | ?    | ?    | ?    | ?      | ?    |

| Exemplar              |        |      |      |      |        |      |
|-----------------------|--------|------|------|------|--------|------|
| Software<br>System    | Apache | BDBC | BDBJ | LLVM | SQLite | X264 |
| Mean MRE              | ?      | ?    | ?    | ?    | ?      | ?    |
| Standard<br>Deviation | ?      | ?    | ?    | ?    | ?      | ?    |

Exemplar Software System

> Mean MRE Standard

Deviation

Apache

**BDBC** 

?



| Random                          | 5        |      |      |      |        |           |
|---------------------------------|----------|------|------|------|--------|-----------|
| Software<br>System              | Apache   | BDBC | BDBJ | LLVM | SQLite | X264      |
| Mean MRE                        | V        | ?    | ?    | ?    | ?      | ?         |
| Standard<br>Deviation           | ?        | ?    | ?    | ?    | ?      | ?         |
|                                 |          |      |      |      |        |           |
| East-West                       |          |      |      |      |        |           |
| East-West<br>Software<br>System | Apache   | BDBC | BDBJ | LLVM | SQLite | X264      |
| Software                        | Apache × | BDBC | BDBJ | LLVM | SQLite | X264<br>? |

**BDBJ** 

?

LLVM

**SQLite** 

?

X264

?



| Random                |        |      |      |      |        |      |
|-----------------------|--------|------|------|------|--------|------|
| Software<br>System    | Apache | BDBC | BDBJ | LLVM | SQLite | X264 |
| Mean MRE              | ~      | ×    | ~    | V    | ×      | V    |
| Standard<br>Deviation | ?      | ?    | ?    | ?    | ?      | ?    |
|                       |        |      |      |      |        |      |
| East-West             |        |      |      |      |        |      |
| Software<br>System    | Apache | BDBC | BDBJ | LLVM | SQLite | X264 |
| Mean MRE              | ×      | ~    | ×    | ×    | V      | V    |
| Standard<br>Deviation | ?      | ?    | ?    | ?    | ?      | ?    |
|                       |        | Visi | *    | 864  | 011    | 98   |
| Exemplar              |        |      |      |      |        |      |
| Software<br>System    | Apache | BDBC | BDBJ | LLVM | SQLite | X264 |
| Mean MRE              | ×      | ×    | ×    | ×    | ×      | ×    |
| Standard<br>Deviation | ?      | ?    | ?    | ?    | ?      | ?    |

RQ2: Do less data cause larger variances in predicted values?



RQ2: Do less data cause larger variances in predicted values?



RQ2: Do less data cause larger variances in predicted values?



RQ2: Do less data cause larger variances in predicted values?



RQ2: Do less data cause larger variances in predicted values?



RQ2: Do less data cause larger variances in predicted values?



RQ2: Do less data cause larger variances in predicted values?



RQ2: Do less data cause larger variances in predicted values?





| Random                |        |      |      |      |        |      |
|-----------------------|--------|------|------|------|--------|------|
| Software<br>System    | Apache | BDBC | BDBJ | LLVM | SQLite | X264 |
| Mean MRE              | ~      | ×    | ~    | ~    | ×      | ~    |
| Standard<br>Deviation | ?      | ?    | ?    | ?    | ?      | ?    |
| East-West             |        |      |      |      |        |      |
| Software<br>System    | Apache | BDBC | BDBJ | LLVM | SQLite | X264 |
| Mean MRE              | ×      | V    | ×    | ×    | V      | V    |
| Standard<br>Deviation | ?      | ?    | ?    | ,    | ?      | ?    |
| Exemplar              | -      |      |      |      |        |      |
| Software<br>System    | Apache | BDBC | BDBJ | LLVM | SQLite | X264 |
| Mean MRE              | ×      | ×    | ×    | ×    | ×      | ×    |
| Standard<br>Deviation | ?      | ?    | ?    | ?    | ?      | ?    |



| Random                |        |      |      |      |        |      |
|-----------------------|--------|------|------|------|--------|------|
| Software<br>System    | Apache | BDBC | BDBJ | LLVM | SQLite | X264 |
| Mean MRE              | V      | ×    | V    | V    | ×      | V    |
| Standard<br>Deviation | ?      | ×    | ?    | ?    | ?      | ?    |
|                       |        |      |      |      |        |      |
| East-West             | S.     |      |      |      |        |      |
| Software<br>System    | Apache | BDBC | BDBJ | LLVM | SQLite | X264 |
| Mean MRE              | ×      | V    | ×    | ×    | V      | V    |
| Standard<br>Deviation | ?      | ~    | ?    | ?    | ?      | ?    |
|                       |        |      |      |      |        |      |
| Exemplar              | o'     |      |      |      |        |      |
| Software<br>System    | Apache | BDBC | BDBJ | LLVM | SQLite | X264 |
| Mean MRE              | ×      | ×    | ×    | ×    | ×      | ×    |
| Standard<br>Deviation | ?      | ~    | ?    | ?    | ?      | ?    |



| Random                |        |      |      |      |        |      |
|-----------------------|--------|------|------|------|--------|------|
| Software<br>System    | Apache | BDBC | BDBJ | LLVM | SQLite | X264 |
| Mean MRE              | ~      | ×    | ~    | ~    | ×      | V    |
| Standard<br>Deviation | ?      | ×    | ?    | ?    | V      | ?    |
| East-West             |        |      |      |      |        |      |
| Software              |        | 4    | -    | 9    | 4      |      |
| System                | Apache | BDBC | BDBJ | LLVM | SQLite | X264 |
| Mean MRE              | ×      | ~    | ×    | ×    | V      | V    |
| Standard<br>Deviation | ?      | ~    | ?    | ?    | ~      | ?    |
| Exemplar              |        |      |      |      |        |      |
| Software<br>System    | Apache | BDBC | BDBJ | LLVM | SQLite | X264 |
| Mean MRE              | ×      | ×    | ×    | ×    | X      | ×    |
| Standard<br>Deviation | ?      | ~    | ?    | ?    | V      | ?    |



| Random                |        |      |      |      |        |      |
|-----------------------|--------|------|------|------|--------|------|
| Software<br>System    | Apache | BDBC | BDBJ | LLVM | SQLite | X264 |
| Mean MRE              | V      | ×    | V    | V    | ×      | V    |
| Standard<br>Deviation | ~      | ×    | ~    | ~    | ~      | ~    |
| y                     |        |      |      |      |        |      |
| East-West             |        |      |      |      |        |      |
| Software<br>System    | Apache | вовс | BDBJ | LLVM | SQLite | X264 |
| Mean MRE              | ×      | V    | ×    | ×    | ~      | V    |
| Standard<br>Deviation | ×      | ~    | ×    | ~    | ~      | V    |
|                       |        | 500  | 02   | 23   | 578    |      |
| Exemplar              |        |      |      |      |        |      |
| Software<br>System    | Apache | BDBC | BDBJ | LLVM | SQLite | X264 |
| Mean MRE              | ×      | ×    | ×    | ×    | ×      | ×    |
| Standard<br>Deviation | ×      | ~    | ×    | ×    | V      | ~    |

# RQ1 + RQ2: Observations

- Baseline results is the best
  - o It uses 100% of data
- Results plateaued after 40%
- WHERE + Exemplar
  - largest Mean MRE
  - Not Recommended
- WHERE + East-West
  - MRE 3/6 times better/similar
  - Standard deviation is low
  - Recommended
- WHERE + Random
  - MRE 4/6 times better/similar
  - Standard deviation is low
  - Recommended

| Random                |        |      |      |      |        |      |
|-----------------------|--------|------|------|------|--------|------|
| Software<br>System    | Apache | BDBC | BDBJ | LLVM | SQLite | X264 |
| Mean MRE              | V      | ×    | V    | ~    | ×      | V    |
| Standard<br>Deviation | V      | ×    | V    | V    | V      | V    |

| East-West             |        |      |      |      |        |      |
|-----------------------|--------|------|------|------|--------|------|
| Software<br>System    | Apache | BDBC | BDBJ | LLVM | SQLite | X264 |
| Mean MRE              | ×      | V    | ×    | ×    | ~      | V    |
| Standard<br>Deviation | ×      | ~    | ×    | V    | V      | V    |

| Exemplar              |        |      |      |      |        |      |
|-----------------------|--------|------|------|------|--------|------|
| Software<br>System    | Apache | BDBC | BDBJ | LLVM | SQLite | X264 |
| Mean MRE              | ×      | ×    | ×    | ×    | ×      | ×    |
| Standard<br>Deviation | ×      | ~    | ×    | ×    | ~      | ~    |

- WHERE + East-West
  - MRE 3/6 times better/similar
  - Standard deviation is low
  - Recommended
- WHERE + Random
  - MRE 4/6 times better/similar
  - Standard deviation is low
  - Recommended



- WHERE + East-West
  - MRE 3/6 times better/similar
  - Standard deviation is low
  - Recommended

# of Evaluations

(When Training Data = 40%)

- WHERE + Random
  - MRE 4/6 times better/similar
  - Standard deviation is low
  - Recommended



- WHERE + East-West
  - MRE 3/6 times better/similar
  - Standard deviation is low
  - Recommended

# of Evaluations

(When Training Data = 40%)

- WHERE + Random
  - MRE 4/6 times better/similar
  - Standard deviation is low
  - Recommended



- WHERE + East-West
  - MRE 3/6 times better/similar
  - Standard deviation is low
  - Recommended

# of Evaluations

(When Training Data = 40%)

- WHERE + Random
  - MRE 4/6 times better/similar
  - Standard deviation is low
  - Recommended



#### **NC STATE UNIVERSITY**

RQ 3: Can "good" surrogate models (to be used in optimizers) be built using WHAT?

#### RQ 3 explore

 if predictors generated using samples from WHAT can find faster performance scores (eg. Response time)

### **Optimization Goal**

Minimize the performance score of the system

### Comparison between:

- GALE [Krall'15]
- DE [Storn'95]
- NSGA-II [Deb'02]



RQ 3: Can "good" surrogate models (to be used in optimizers) be built using WHAT?



Instances sorted based on Performance Scores

RQ 3: Can "good" surrogate models (to be used in optimizers) be built using WHAT?



**RQ 3:** Can "good" surrogate models (to be used in optimizers) be built using WHAT?



RQ 3: Can "good" surrogate models (to be used in optimizers) be built using WHAT?

Optimization Goal: Minimization



RQ 3: Can "good" surrogate models (to be used in optimizers) be built using WHAT?

Optimization Goal: Minimization

- Optimized configurations
  - within 1% of the fastest configuration



- If WHAT is better than state-of-the-art techniques
  - Siegmund et al. FW heuristics
  - Guo et al. Progressive Sampling
  - Sarkar et al. Random Sampling + Feature-wise heuristics



- If WHAT is better than state-of-the-art techniques
  - Siegmund et al. FW heuristics
  - Guo et al. Progressive Sampling
  - Sarkar et al. Random Sampling + Feature-wise heuristics



- If WHAT is better than state-of-the-art techniques
  - Siegmund et al. FW heuristics
  - Guo et al. Progressive Sampling
  - Sarkar et al. Random Sampling + Feature-wise heuristics



- If WHAT is better than state-of-the-art techniques
  - Siegmund et al. FW heuristics
  - Guo et al. Progressive Sampling
  - Sarkar et al. Random Sampling + Feature-wise heuristics



- If WHAT is better than state-of-the-art techniques
  - Siegmund et al. FW heuristics
  - Guo et al. Progressive Sampling
  - Sarkar et al. Random Sampling + Feature-wise heuristics



RQ 4: How good is WHAT compared to the state of the art predictors? 2015 2012 2013 [Guo'13] [Sarkar'15] [Siegmund'12] Sarkar - 10<sup>2</sup> Siegmund 10<sup>2</sup> 10<sup>2</sup> Mean(%) Fault Rate Standard Deviation (%) Fault Rate Measurement (%) wrt Config 10<sup>1</sup> 10<sup>1</sup>  $10^{1}$ 10° LLVM LLVM SQLite X264 LLVM

RQ 4: How good is WHAT compared to the state of the art predictors? 2015 2012 2013 [Guo'13] [Sarkar'15] [Siegmund'12] Siegmund 10<sup>2</sup> 10<sup>2</sup> Mean(%) Fault Rate Standard Deviation (%) Fault Rate Measurement (%) wrt Config 10<sup>1</sup>  $10^{1}$ Percentage  $10^{1}$ Measure 10° (log scale) LLVM SQLite LLVM X264

RQ 4: How good is WHAT compared to the state of the art predictors? 2015 2012 2013 [Guo'13] [Sarkar'15] [Siegmund'12] Sarkar 10<sup>2</sup> Siegmund 10<sup>2</sup> 10<sup>2</sup> Mean(%) Fault Rate Standard Deviation (%) Fault Rate Measurement (%) wrt Config 10<sup>1</sup> Percentage  $10^{1}$  $10^{1}$ Measure 10° (log scale) LLVM SQLite LLVM

RQ 4: How good is WHAT compared to the state of the art predictors? 2015 2012 2013 [Siegmund'12] [Guo'13] [Sarkar'15] Siegmund Guo (2N) Sarkar 10<sup>2</sup> Mean(%) Fault Rate Standard Deviation (%) Fault Rate Measurement (%) wrt Config 10<sup>1</sup> 10<sup>1</sup>  $10^{1}$ 10° LLVM SQLite LLVM SQLite X264 Apache LLVM SQLite

RQ 4: How good is WHAT compared to the state of the art predictors? 2015 2012 2013 [Sarkar'15] [Siegmund'12] [Guo'13] Sarkar Siegmund 10<sup>2</sup> Mean(%) Fault Rate Standard Deviation (%) Fault Rate Measurement (%) wrt Config 10<sup>1</sup> 10<sup>1</sup> 10<sup>1</sup> 10° Apache LLVM SQLite Apache LLVM SQLite X264 Apache LLVM SQLite BDBC BDBJ BDBC BDB BDBC BDBJ

RQ 4: How good is WHAT compared to the state of the art predictors? 2015 2012 2013 [Sarkar'15] [Guo'13] [Siegmund'12] Sarkar Siegmund 10<sup>2</sup> Mean(%) Fault Rate Standard Deviation (%) Fault Rate Measurement (%) wrt Config 10<sup>1</sup> 10 10<sup>1</sup> BDBC LLVM SQLite X264 Apache LLVM SQLite X264 Apache BDB BDBC BDBJ LLVM

RQ 4: How good is WHAT compared to the state of the art predictors? 2015 2012 2013 [Sarkar'15] -[Siegmund'12] [Guo'13] Siegmund 10<sup>2</sup> Mean(%) Fault Rate Standard Deviation (%) Fault Rate Measurement (%) wrt Config 10<sup>1</sup> 10<sup>1</sup>  $10^{1}$ 10° LLVM SQLite LLVM SQLite X264 LLVM SQLite

RQ 4: How good is WHAT compared to the state of the art predictors? 2015 2012 2013 [Sarkar'15] -[Siegmund'12] [Guo'13] Sarkar Siegmund 102 10<sup>2</sup> Mean(%) Fault Rate Standard Deviation (%) Fault Rate Measurement (%) wrt Config 10<sup>1</sup> 101 10<sup>1</sup> 10° LLVM SQLite Apache BDBC LLVM SQLite BDBC LLVM Apache BDBJ BDBJ SQLite

RQ 4: How good is WHAT compared to the state of the art predictors? 2015 2012 2013 [Sarkar'15] [Guo'13] [Siegmund'12] Sarkar Siegmund 102 10<sup>2</sup> Mean(%) Fault Rate Standard Deviation (%) Fault Rate Measurement (%) wrt Config 10<sup>1</sup> 10<sup>1</sup> 10<sup>1</sup> 10° SQLite BDBC LLVM SQLite BDBC SQLite BDBJ

RQ 4: How good is WHAT compared to the state of the art predictors?



RQ 4: How good is WHAT compared to the state of the art predictors?



RQ 4: How good is WHAT compared to the state of the art predictors? 2015 2012 2013 [Sarkar'15] [Guo'13] [Siegmund'12] Siegmund Sarkar  $10^{2}$ Measurement (%) wrt Config Mean(%) Fault Rate Standard Deviation (%) Fault Rate 10<sup>1</sup> 10<sup>1</sup> 10<sup>1</sup> 10° BDBC BDBC

RQ 4: How good is WHAT compared to the state of the art predictors? 2015 2012 2013 [Sarkar'15] -[Siegmund'12] -[Guo'13] WHAT Guo (PW) Sarkar Siegmund 10<sup>2</sup> 10<sup>2</sup> Mean(%) Fault Rate Standard Deviation (%) Fault Rate Measurement (%) wrt Config 10<sup>1</sup> 10<sup>1</sup>  $10^{1}$ 10°

Apache

LLVM

SQLite

X264

Apache

LLVM

SQLite

LLVM

SQLite

RQ 4: How good is WHAT compared to the state of the art predictors?



RQ 4: How good is WHAT compared to the state of the art predictors? 2015 2012 2013 [Sarkar'15] -[Siegmund'12] [Guo'13] Sarkar WHAT Guo (PW) Siegmund 10<sup>2</sup> 10<sup>2</sup> Mean(%) Fault Rate Standard Deviation (%) Fault Rate Measurement (%) wrt Config 10<sup>1</sup> 101 10<sup>1</sup> 10° BDBC BDBC BDBC LLVM X264 BDB LLVM BDBJ LLVM BDBJ

RQ 4: How good is WHAT compared to the state of the art predictors? 2012 2015 2013 [Sarkar'15] [Guo'13] [Siegmund'12] Sarkar 10<sup>2</sup> Guo (PW) Siegmund 102 102 Mean(%) Fault Rate Measurement (%) wrt Config Standard Deviation (%) Fault Rate 191 64 7.61 10.7 64 3.46 5.5 10<sup>1</sup> 57 16 10<sup>1</sup> 10<sup>1</sup> 10° LLVM SQLite LLVM SQLite X264 X264 LLVM

RQ 4: How good is WHAT compared to the state of the art predictors?



RQ 1: Can WHAT generate good predictions using only a small number of configurations?

RQ 2: Do less data cause larger variances in predicted values?

RQ 3: Can "good" surrogate models (to be used in optimizers) be built using WHAT?

RQ 1: Can WHAT generate good predictions using only a small number of

**YES** 

configurations?

RQ 2: Do less data cause larger variances in predicted values?

RQ 3: Can "good" surrogate models (to be used in optimizers) be built using WHAT?

RQ 1: Can WHAT generate good predictions using only a small number of

**YES** 

configurations?

RQ 2: Do less data cause larger variances in predicted values?

NO

RQ 3: Can "good" surrogate models (to be used in optimizers) be built using WHAT?

RQ 1: Can WHAT generate good predictions using only a small number of

**YES** 

configurations?

RQ 2: Do less data cause larger variances in predicted values?

NO

RQ 3: Can "good" surrogate models (to be used in optimizers) be built using WHAT? YES

RQ 1: Can WHAT generate good predictions using only a small number of

**YES** 

configurations?

RQ 2: Do less data cause larger variances in predicted values?

NO

RQ 3: Can "good" surrogate models (to be used in optimizers) be built using WHAT? YES

RQ 4: How good is WHAT compared to the state of the art predictors?

Comparable

# **Future Work**

#### **Future Work**

- Progressive WHAT
  - WHAT is rigid
  - o Has no options of budget
  - Progressive Sampling using WHAT
- Multi-objective Problems
  - Problem are multi-objective
  - New surrogates required
  - New surrogate model update techniques

- Sampling Way
  - Sampling is preferable if evaluation is expensive
  - Initial results are competitive with other algorithms
- Spectral Grid Search
  - Exploit the underlying dimension while generating Grids

RQ 1: Can WHAT generate good predictions using only a small number of configurations?

YES

RQ 2: Do less data cause larger variances in predicted values?

NO

RQ 3: Can "good" surrogate models (to be used in optimizers) be built using WHAT? YES

RQ 4: How good is WHAT compared to the state of the art predictors?

Comparable

#### Question and Comments

#### References

