情報処理工学第2回

藤田 一寿

公立小松大学保健医療学部臨床工学科

2進数の小数の表現

■小数

0.27_{10}

0.1の位	0.01の位
.2	7
10^(-1)が2個ある	10^(-2)が7個ある

$$0.27_{10} = 2 \times 10^{-1} + 7 \times 10^{-2}$$

■ 小数の2進数

 0.11_{2}

2^(-1)の位	2^(-2)の位
.1	1
2^(-1)が1個ある	2^(-2)が1個ある

$$0.11_2 = 1 \times 2^{-1} + 1 \times 2^{-2}$$
$$= 0.5_{10} + 0.25_{10} = 0.75_{10}$$

■ 演習

• 2進数の0.101を10進数に変換せよ.

■ 2進数と10進数との対応

2進数	2^n	10進数
1000000000	2^10	1024
100000000	2^9	512
10000000	2^8	256
10000000	2^7	128
1000000	2^6	64
100000	2^5	32
10000	2^4	16
1000	2^3	8
100	2^2	4
10	2^1	2
0	2^0]
0.1	2^-1	0.5
0.01	2^-2	0.25
0.001	2^-3	0.125
0.0001	2^-4	0.0625
0.00001	2^-5	0.03125

■ 10進数の小数から2進数への変換

• 10進数の0.625を2進数に変換するにはどうすればよいか?

・掛け算を使って計算する.

■ 10進数の小数から2進数への変換

10進数のを2進 数に変換する.

■ 10進数の小数から2進数への変換

0.625 10進数のを2進 1.25 数に変換する.

矢印の順に0と1を 並べる。

0.101

2進数が導かれる.

■ 演習

• 10進数の0.375を2進数に変換せよ.

無限小数

10進数の0.1を2進数に変換しようとすると無限小数になってしまう。

この計算が 繰り返され る.

2進数における四則演算、2進数 における負数表現

■ 2進数の足し算,引き算

- •10進数の足し算、引き算と変わりはない。
- ・しかし、桁上り、桁下がりに注意する.

■足し算の例

・2進数11011と10101を足せ.

$$\begin{array}{r}
11011 \\
+ 10101 \\
\hline
0
\end{array}$$

一番下の桁から足していく. 1+1=10なので桁上りがある.

■ 足し算の例

1	1	1	
11011	11011	11011	11011
+10101	+10101	+10101	+ 10101
00	000	0000	$\overline{110000}$

■引き算の例

・2進数11011から2進数10101を引け、

■ 別のやり方

・2進数を10進数になおして計算し、その計算結果を2進数に変換する。

$$11011_2 + 10101_2 = 27_{10} + 21_{10} = 48_{10}$$
$$= 110000_2$$

■ 16進数の足し算・引き算

- 16進数同士の足し算・引き算は当然可能ですが、人間の頭が10進数や2進数に慣れているため、10進数か2進数に変換して計算したほうが楽でしょう。
- 特に16進数と2進数には便利な関係性があるので、その関係を知っていると計算が楽になります。

- 16進数の足し算を10進数に変換して行う.
 - •16進数の1Aと27を足せ.

$$1A_{16} + 27_{16} = 26_{10} + 39_{10} = 65_{10} = 41_{16}$$
 10進数に変換する 16進数に戻す

- 16進数の足し算を2進数に変換して行う.
 - •16進数の1Aと27を足せ.

16進数の各桁を2進数に変換

$$1A_{16} + 27_{16} = (0001 \ 1010)_2 + (0010 \ 0111)_2$$

= $(0100 \ 0001)_2 = 41_{16}$

2進数4桁ごとに16進数に戻す

■ 2進数の掛け算

- ・掛け算も10進数と同じように計算できる.
- 1101₂×101₂は次のように計算できる.

×	$\begin{array}{c} 1101 \\ 101 \end{array}$
	1101 0000 1101
	.000001

■ 2進数の割り算

- ・割り算も10進数と同じように計算できる。
- 1000001₂÷101₂は次のように計算できる.

・10000012÷1012は次のように計算できる
$$\frac{1101}{1000001}$$

$$\frac{101}{110}$$

$$\frac{101}{110}$$

$$\frac{101}{101}$$

$$\frac{101}{101}$$

■ 演習

- ・次の計算をせよ.
 - 1010₂+1110₂
 - 1010₂X110₂
 - 1111₂÷101₂

■ 2の負値表現

• 最上位ビットを符号とし、残りのビットを絶対値とする.

- 例:4ビットつかって数値を表現する場合
 - 10進数の5は0101
 - ・10進数の-5は1101
- マイナスの値のときは最上位ビットが符号ビットとなので、-5のときは最上位ビットは1となった。

■ 符号ビットを使う問題点

- 計算がうまくいかない
- 10進数の5と-5の足し算は0なのに、単純に足したら0にならない。

$$5_{10} + (-5_{10}) \rightarrow 0101_2 + 1101_2 = 10010_2$$

• この計算をうまくやる方法が補数.

- 2の補数を使った負値表現
 - 10進数-5を2の補数を用いて表す.
 - まず、10進数の5を2進数に変換する.
 - 10進数の5は2進数では101
 - 得られた2進数を0と1を反転させて1を加える.
 - 101を反転させると010
 - これに1を加えると011
 - 以上で得られた011が10進数-5の補数表現である。

・2の補数を使った負値表現により10進数の5と-5の足し算がどうなるのか?

$$5_{10} + (-5_{10}) \rightarrow 101_2 + (011)_2 = 1000_2$$

これも0にならない!!

- ・ここで、数値は3桁の2進数で表しているとすると、最上位の桁(ビット)は捨てることになる。
- ・つまり

$$5_{10} + (-5_{10}) \rightarrow 101_2 + (011)_2$$

= $1000_2 \rightarrow 000_2$

ちゃんと0になっている!!

なぜ補数を使うとうまくいくのか?

- -2の補数を使い3桁の2進数で表すことを考える.
- ・3桁の2進数なので数字は000から111まで表現できる.
- ・3桁の2進数を円状に並べる.
- -2は0から2戻ると考えると,
- -2は6進むことと同じになる.
- すなわち、-2は110(2の補数)で表すことができる。
- 数式で考えると、3ビットは8個の数字を表すことができるので、2戻るは8-2=6進むことと同じになる。

なぜ補数を使うとうまくいくのか?

転に相当する. 最終的にビット反転して1足 したものになる.

- 補足:時計を使った補数の直感的理解
- 現在アナログ時計が3時を示していた場合, 2時間前は何時を示しているか.
 - ・3-2=1時を示していた.
- しかし、時計においては2時間前は10 (12-2) 時間後とおなじになる。
 - 3+10=13時となるが、13時はアナログ時計では1時を示す.
- ・2の補数を使った引き算もこれと同じ原理.

・2の補数を用い、次の数を4ビットの2進数で表わせ、

• -8₁₀

• -5₁₀

• -1₁₀

■ 補数表現で正の数と負の数が混同しないのか?

- ・4ビットの2進数で数を表現する場合.
 - -8から7までの数なら、正の数と負の数を混同することがない。
 - ・ 負値の場合、最上位ビットが必ず1となる.

10進数	2の補数	1の補数
-8	1000	表現不可能
-7	1001	1000
-6	1010	1001
-5	1011	1010
-4	1100	1011
-3	1101	1100
-2	1110	1101
-1	1111	1110
-0	0000	1111

10進数	2の補数	1の補数
+0	0000	0000
+1	0001	0001
+2	0010	0010
+3	0011	0011
+4	0100	0100
+5	0101	0101
+6	0110	0110
+7	0111	0111
+8	表現不可能	表現不可能