More Problems

This is to prepare you for the final. The difficulty will be slightly above the actual exam. Make sure you can do every problem independently.

- 1. Consider i.i.d. observations $X_1, ..., X_n \sim N(\mu, 1)$.
 - (a) Compute $\mathbb{E}\left(X_1|\frac{X_1+X_2}{2}\right)$.
 - (b) Compute $\mathbb{E}(X_1|\frac{X_1+X_2+X_3+X_4}{4})$.
 - (c) Compute $\mathbb{E}\left(\frac{X_1+X_2}{2}\left|\frac{X_1+X_2+\cdots+X_n}{n}\right.\right)$
 - (d) Compute $\mathbb{E}\left(\frac{X_1+X_2+\cdots+X_n}{n}\left|\frac{X_1+X_2}{2}\right.\right)$.
 - (e) In general, compute $\mathbb{E}\left(\frac{X_1 + X_2 + \dots + X_m}{m} \middle| \frac{X_1 + X_2 + \dots + X_k}{k}\right)$. You may consider three situations: m < k, m = k, m > k.
 - (f) Discuss your finding.
- 2. Consider independent observations $X_i \sim N(\mu, 2^i)$ for i = 1, ..., n.
 - (a) Compute the mean squared error $\mathbb{E}(\bar{X}-\mu)^2$, where $\bar{X}=\frac{1}{n}\sum_{i=1}^n X_i$.
 - (b) Find the MLE $\hat{\mu}$, and compute $\mathbb{E}(\hat{\mu} \mu)^2$.
 - (c) Which estimator is more accurate?
 - (d) Construct a 95% confidence interval using the MLE.
- 3. Consider i.i.d. observations $X_1, ..., X_n \sim \text{Bernoulli}(p)$.
 - (a) Find the MLE of p, denoted by \hat{p} .
 - (b) Find the asymptotic distribution that $\sqrt{n}(\hat{p}-p)$ converges to.
 - (c) Find a variance stabilization transformation so that $\sqrt{n}(g(\hat{p}) g(p))$ converges to a distribution that does not depend on p.
 - (d) Find a testing procedure using $g(\hat{p})$ for $H_0: p = p_0$ against $H_1: p > p_0$ with (approximate) significance level 0.05.
- 4. Consider independent random variables X and Y, with density functions

$$f(x) = \frac{1}{\sqrt{2\pi\sigma_1^2}} e^{-\frac{(x-\mu_1)^2}{2\sigma_1^2}}, \quad g(y) = \frac{1}{\sqrt{2\pi\sigma_2^2}} e^{-\frac{(y-\mu_2)^2}{2\sigma_2^2}}.$$

Find the density function of X + Y. Check whether you can get the density of $N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$.

- 5. Suppose the density function of X is f(x), what is the density function of aX + b?
- 6. (Regression with different variances.) Consider $y_i \sim N(\beta_0 + \beta_1 x_i, \sigma_i^2)$ independently for each i = 1, ..., n. Each data point has its own variance σ_i^2 , which is assumed known.

1

- (a) Find the MLE of β_0, β_1 , denoted as $\hat{\beta}_0, \hat{\beta}_1$.
- (b) Find the distribution of $\hat{\beta}_0$, $\hat{\beta}_1$.
- (c) Construction a testing procedure for $H_0: \beta_1 = 0$ vs $H_1: \beta \neq 0$.
- 7. (Regression Fit.) Consider the linear model $y \sim N(X\beta, \sigma^2 I_n)$. Let $\hat{\beta}$ be the LSE and $\hat{y} = X\hat{\beta}$ be the fit.
 - (a) Find the distribution of \hat{y} .
 - (b) Suppose you only have $y_1 \sim N(\beta_0 + \beta_1 x_1, \sigma^2)$ and $y_2 \sim N(\beta_0 + \beta_1 x_2, \sigma^2)$. In other words, p = 2 and n = 2. What is the joint distribution of \hat{y}_1 and \hat{y}_2 ?
 - (c) Find $\mathbb{E}(\hat{y}_1|\hat{y}_2)$.
- 8. (Common variance, different mean.) Consider $X_1, ..., X_n \sim N(\mu_1, \sigma^2)$ and $X_{n+1}, ..., X_{2n} \sim N(\mu_2, \sigma^2)$. Everything is independent here.
 - (a) Find the MLE of σ^2 , denoted as $\hat{\sigma}^2$.
 - (b) Based on $\hat{\sigma}^2$, construct an exact confidence interval of σ^2 .
 - (c) Calculate $\mathbb{E}(\hat{\sigma}^2 \sigma^2)^2$.
 - (d) Find a c such that $\mathbb{E}(c\hat{\sigma}^2 \sigma^2)^2$ is minimized. Is $c\hat{\sigma}^2$ a better estimator of σ^2 than $\hat{\sigma}^2$.
- 9. (Poisson Regression.) Consider $y_i \sim \text{Poisson}(\beta_1 x_i)$ independently for i = 1, ..., n.
 - (a) What is the distribution of $\sum_{i=1}^{n} y_i$?
 - (b) Consider the estimator $\hat{\beta}_1 = \bar{y}/\bar{x}$. Find $\mathbb{E}(\hat{\beta}_1)$ and $\mathsf{Var}(\hat{\beta}_1)$.
 - (c) Find the asymptotic distribution of $\sqrt{n}(\hat{\beta}_1 \beta_1)$. (Hint: it is normal, just find the mean and variance.)
 - (d) Find a transformation g such that the asymptotic distribution of $\sqrt{n}(g(\hat{\beta}_1) g(\beta_1))$ does not depend on β_1 .
 - (e) Construct a testing procedure with significance level (approximately) α for H_0 : $\beta_1 = 0$ vs $H_1: \beta_1 \neq 0$.
 - (f) Is $\hat{\beta}_1$ the MLE?
- 10. (Quadratic Regression.) Consider $y_i = \beta_1 x_i + \beta_2 x_i^2 + e_i$ with $e_i \sim N(0, \sigma^2)$ independently for i = 1, ..., n.
 - (a) Find the MLE of β_1, β_2 , denoted as $\hat{\beta}_1, \hat{\beta}_2$.
 - (b) Find the mean and variance of the MLE.
 - (c) Construct a t-statistic for testing $H_0: \beta_2 = 0$. What is the degree of freedom?
- 11. (Regression Variance.) Consider $y \sim N(X\beta, \sigma^2 I_n)$. In the class, we showed that $\sum_{i=1}^n \hat{e}_i^2/\sigma^2 \sim \chi_{n-p}^2$.

- (a) An unbiased estimator for σ^2 is $\hat{\sigma}^2 = \frac{1}{n-p} \sum_{i=1}^n \hat{e}_i^2$. Find the asymptotic distribution of $\sqrt{n-p}(\hat{\sigma}^2 \sigma^2)$.
- (b) Find a transformation g, such that $\sqrt{n-p}(g(\hat{\sigma}^2)-g(\sigma^2))$ converges to a distribution that does not depend on σ^2 .
- (c) Can you do the above two questions for the intercept model?
- 12. (Experiment Design.) Consider the simple linear model $y_i \sim N(\beta_0 + \beta_1 x_i, \sigma^2)$ for i = 1, 2, 3, 4. Before you collect the four data points, you have freedom to choose x_1, x_2, x_3, x_4 and then observe y_1, y_2, y_3, y_4 . Suppose you can only choose x_1, x_2, x_3, x_4 in the range [-1, 1]. How would you choose x_1, x_2, x_3, x_4 so that the accuracy of the MLE/LSE is the best?
- 13. (Pythagorean Identity.) Review and prove the following lists of Pythagorean identities:
 - (a) For any random variable $\hat{\theta}$ and any number θ , $\mathbb{E}(\hat{\theta} \theta)^2 = \mathsf{Var}(\hat{\theta}) + (\mathbb{E}\hat{\theta} \theta)^2$.
 - (b) For any real numbers $x_1, ..., x_n, \theta, \sum_{i=1}^n (x_i \theta)^2 = \sum_{i=1}^n (x_i \bar{x})^2 + n(\bar{x} \theta)^2$.
 - (c) For any vectors $X_1, ..., X_n, \theta, \sum_{i=1}^n ||X_i \theta||^2 = \sum_{i=1}^n ||X_i \bar{X}||^2 + n||\bar{X} \theta||^2$.
 - (d) For any $X \in \mathbb{R}^{n \times p}$, $y \in \mathbb{R}^{n \times 1}$ and $\mathbb{R}^{p \times 1}$, $\|y X\beta\|^2 = \|y X\hat{\beta}\|^2 + \|X\hat{\beta} X\beta\|^2$, where $\hat{\beta} = (X^T X)^{-1} X^T y$.
 - (e) TSS = RSS + MSS.
- 14. Teach linear regression to your friend who does not know linear regression.