高数2笔记

dcldyhb

2025年6月8日

目 录

第1章	重积分	1
1.1	重积分的概念和性质	1
1.2	二重积分的性质	1
1.3	二重积分的计算	3
	1.3.1 直角坐标系下的计算	3
	1.3.2 极坐标系下的计算	4
	1.3.3 二重积分的变量代换	4
1.4	三重积分	5
	1.4.1 三重积分的定义	5
	1.4.2 直角坐标系下的计算	5
	1.4.3 三重积分的变量代换	7
1.5	重积分的应用	8
	1.5.1 重积分的几何应用	8
	1.5.2 重积分的物理应用	8
第2章	曲线积分和曲面积分	.10
2.1	第一类曲线积分和曲面积分	.10
	2.1.1 第一类曲线积分的概念	.10
	2.1.2 第一类曲线积分的性质	.10
	2.1.3 一类曲线积分的计算	.11
2.2	第二类曲线积分与曲面积分	.12
	2.2.1 第二类曲线积分的概念	.12
	2.2.2 第二类曲面积分的概念	.13
	2.2.3 第二类曲面积分的计算	.14
2.3	Green 公式及其应用	. 14
	2.3.1 Green 公式	. 14
	2.3.2 线积分与路径无关的条件	. 15
	2.3.3 全微分求积与全微分方程	. 15
2.4	Gauss 公式和 Strokes 公式	. 16

	2.4.2 通量和散度	16
第3章	级数	18
3.1	数项级数	18
	3.1.1 数项级数的概念	18
	3.1.2 数项级数的概念	18
	3.1.3 数项级数的基本性质	18
3.2	正项级数敛散性	19
	3.2.1 正项级数	19
	3.2.2 正项级数敛散性判别法	19
3.3	任意项级数的敛散性	21
	3.3.1 错级数敛散性的判别法	21
	3.3.2 Abel 判别法和 Dirichlet 判别法	22
	3.3.3 绝对收敛与条件收敛	22
3.4	函数项级数	23
3.5	幂级数	23
	3.5.1 幂级数及其收敛半径	23
3.6	幂级数收敛半径的求法	24
	3.6.1 系数模比值法	24
	3.6.2 系数模根值法	24
3.7	幂级数的性质	24
	3.7.1 幂级数的分析性质	25
	3.7.2 Taylor 级数	26
	3.7.3 常用的初等函数的幂级数展开式	
	3.7.4 正弦级数和余弦级数	27
	3.7.5 周期为 2 <i>l</i> 的 Fourier 级数	28

第1章 重积分

1.1 重积分的概念和性质

定义 1.1 设 D 是平面上的有界闭区域,f(x,y) 为 D 上的有界函数,I 为实数. 若对 D 的任意分割 $\Delta D_1, \Delta D_2, \cdots, \Delta D_n$,任 $(\xi_i, \eta_i) \in \Delta D_i (i = 1, \ldots, n)$,作和 $\sum_{i=1}^n f(\xi_i, \eta_i) \Delta \sigma_i$ ($\Delta \sigma_i$ 为 D_i 的面积),总有

$$\lim_{\lambda \to 0} \sum_{i=1}^{n} f(\xi_i, \eta_i) \Delta \sigma_i = I$$

其中 $\lambda = \max_{1 \le i \le d} \{d_i\}$, d_i 是小区域 ΔD_i 的直径,则称函数 f(x,y) 在 D 上可积,记为 $f \in R(D)$;极限值 I 称为 f(x,y) 在 D 上的二重积分,记作

$$\iint_D f(x, y) \, \mathrm{d}\sigma.$$

- 2. D 积分区域
- 3. f(x, y) 被积函数
- 4. $d\sigma$ 面积元素 (微元)
- 5. 二重积分的几何意义
 - (a) 当被积函数大于 0 时, 二重积分是柱体体积
 - (b) 当被积函数小于 0 时,二重积分是柱体体积的负值
 - (c) 一般的,为曲顶柱体体积的代数和
- 6. 可积的充分条件
 - (a) **定理:** 若函数 f(x, y) 在区域 D 上连续,则 $f(x, y) \in D$.
- 7. f(x,y) 在 D 上的可积性及积分值与其在 D 内**有限条光滑曲线**上的定义无关

1.2 二重积分的性质

- 1. $\iint_{D} d\sigma = \iint_{D} 1 d\sigma = A_{D} \quad (D 的面积).$
- J_D J_D J_D 2. **线性性:** 设 $f,g \in R(D)$, α,β , 是任意常数,则 $\alpha f + \beta g \in R(D)$,且

$$\iint_D (\alpha f + \beta g) \, \mathrm{d}\sigma = \alpha \iint_D f \, \mathrm{d}\sigma + \beta \iint_D g \, \mathrm{d}\sigma$$

3. **区域可加性:** 若 $f \in R(D)$ 且积分区域 D 分为内部不相交的子区域 D_1, D_2 ,则

$$\iint_D f(x, y) d\sigma = \iint_{D_1} f(x, y) d\sigma + \iint_{D_2} f(x, y) d\sigma$$

4. 保序性: 若 $f, g \in R(D)$, 且当 $(x, y) \in D$ 时, $f(x, y) \leq g(x, y)$, 则

$$\iint_D f(x, y) \, d\sigma \le \iint_D g(x, y) \, d\sigma$$

(a) 推论 1: 若 $f \in R(D)$, 则 $|f(x,y)| \in R(D)$, 且

$$\left| \iint_D f(x, y) \, d\sigma \right| \le \iint_D |f(x, y)| \, d\sigma$$

(a) 推论 2: 若 $f \in R(D)$, 且当 $(x,y) \in D$ 时, $m \le f(x,y) \le M$, 则

$$mA_D \le \iint_D f(x, y) \, d\sigma \le MA_D$$

(a) 推论 3: 若 $f \in R(D)$, 且当 $(x,y) \in D$ 时, $f(x,y) \ge 0$, 则

$$\iint_D f(x, y) \, \mathrm{d}\sigma \ge 0$$

5. **积分中值定理:** 若 $f(x,y) \in C(D)$, $g(x,y) \in R(D)$, 且 g 在 D 上不变号,则 $\exists \xi, \eta \in D$, 使得

$$\iint_D f(x, y)g(x, y) d\sigma = f(\xi, \eta) \iint_D g(x, y) d\sigma$$

(a) **推论:** 若 $f(x,y) \in C(D)$, 则存在 $(\xi,\eta) \in D$, 使得

$$\iint_D f(x, y) d\sigma = f(\xi, \eta) A_D$$

称 $f(\xi,\eta) = \frac{\iint_D f d\sigma}{A_D}$ 为函数 f(x,y) 在有界闭区域 D 上的**平均值**

1.3 二重积分的计算

1.3.1 直角坐标系下的计算

当二重积分存在时,可利用平行于坐标轴的直线来划分积分区域 D,此时,面积元素

$$d\sigma = dxdy$$

故二重积分在直角坐标系下可表示为

$$\iint_D f(x, y) d\sigma = \iint_D f(x, y) dxdy$$

1.3.1.1 x型正则区域

$$D = \left\{ (x, y) \middle| \varphi_1(x) \le y \le \varphi_2(x), a \le x \le b \right\}$$

化为先 y 后 x 的二次积分

$$\iint_{D} f(x, y) \, dxdy = \int_{a}^{b} \left[\int_{\varphi_{1}(x)}^{\varphi_{2}(x)} f(x, y) \, dy \right] dx$$
$$\equiv \int_{a}^{b} f(x, y) \, dxdy$$

1.3.1.2 y型正则区域

$$D = \left\{ (x, y) \middle| \varphi_1(y) \le x \le \varphi_2(y), c \le y \le d \right\}$$

化为先x后y的二次积分

$$\iint_D f(x, y) \, dx dy = \int_c^d \left[\int_{\varphi_1(y)}^{\varphi_2(y)} f(x, y) \, dx \right] dy$$
$$\equiv \int_c^d f(x, y) \, dx dy$$

1.3.1.3 一般区域的二重积分

分割成若干个正则子区域,利用积分区域可加性,分别在子区域上积分后求和

注 直角坐标计算二重积分的步骤

- 1. **画出积分区域** D 的草图,并**确定类型**
- 2. 按照所确定的类型表示区域 D
- 3. 化二重积分为二次积分(注意上下限)
- 4. 计算二重积分

1.3.2 极坐标系下的计算

当积分区域的边界曲线或被积函数用极坐标表示较为简单时,可用极坐标来计算二重积分.

面积元素 $\Delta \sigma$ 在极坐标下为

$$\Delta \sigma = r dr d\theta$$

从直角坐标到极坐标时的二重积分变换公式为

$$\iint_D f(x, y) d\sigma = \iint_D f(r \cos \theta, r \sin \theta) r dr d\theta$$

$$\{(r,\theta) | r_1(\theta) \le r \le r_2(\theta), \alpha \le \theta \le \beta\}$$

则

$$\iint_D f(x, y) d\sigma = \int_{\alpha}^{\beta} d\theta \int_{r_1(\theta)}^{r_2(\theta)} f(r \cos \theta, r \sin \theta) r dr$$

1.3.3 二重积分的变量代换

定理 1.1 设变换
$$\begin{cases} T: & x = x(u, v) \\ y = y(u, v) \end{cases}$$
 有连续偏导数,且满足

$$J = \frac{\partial(x,y)}{\partial(u,v)} \coloneqq \begin{vmatrix} x_u, x_v \\ y_u, y_v \end{vmatrix}$$
 (Jacobi 行列式) $\neq 0$

,而 $f(x,y) \in C(D)$,则

$$\iint_D f(x, y) d\sigma = \iint_{D^*} f(x(u, v), y(u, v)) |J| dudv$$

- 2. 当 Jacobi 行列式仅在区域 D^* 内个别点上或个别曲线上为 0 时,定理结论仍成立

3. 在广义极坐标
$$\begin{cases} x = ar\cos\theta \\ y = br\sin\theta \end{cases}$$
 下, $J = abr$

1.4 三重积分

1.4.1 三重积分的定义

定义 1.2 设 Ω 是 \mathbb{R}^3 中的有界闭区域,三元函数 f(x,y,z) 在 Ω 上有界,I 为实数. 若将 Ω 任意分割成 n 个小区域 $\Delta\Omega_1, \Delta\Omega_2, \ldots, \Delta\Omega_n$,任取 $(\varepsilon_i, \eta_i, \xi_i) \in \Delta\Omega_i$ $(i = 1, 2, \ldots, n)$,作和 $\sum_{i=1}^n f(\varepsilon_i, \eta_i, \xi_i) \Delta V_i$, $(\Delta V_i, \xi_i) \Delta V_i$

$$\lim_{\lambda \to 0} \sum_{i=1}^{n} f(\varepsilon_i, \eta_i, \xi_i) \, \Delta V_i = I$$

其中 $\lambda = \max_{1 \le i \le n} \{d_i\}$, d_i 是 $\Delta\Omega_i$ 的直径,则称函数 f(x, y, z) 在 Ω 上**可积**,记为 $f \in R(\Omega)$; I 称为 f(x, y, z) 在 Ω 上的**三重积分**,记作

$$\iiint_{\Omega} f(x, y, z) \, \mathrm{d}V$$

其中 V_{Ω} 是区域 Ω 的体积

- 1. 若 f(x,y,z) 表示占有三维空间区域 Ω 的物体的体密度函数,则 $\iint_{\Omega} f(x,y,z) \, dV$ 给出了物体的**质量**
- 2. 类似二重积分,三重积分具有线性性,区域可加性,保序性以及推论和积分中值定理,并且有 $\iint_{\Omega} dV = V_{\Omega}$

1.4.2 直角坐标系下的计算

直角坐标系下,由于 dV = dxdydz,故

$$\iiint_{\Omega} f(x, y, z) \, dV = \iiint_{\Omega} f(x, y, z) \, dx \, dy \, dz$$

1.4.2.1 柱线法(坐标面投影法)

设 Ω 是以曲面 $z=z_1(x,y)$ 为底,曲面 $x=x_2(x,y)$,而侧面是母线平行于z轴的柱体所围成的区域

设 Ω 在xOy面上的投影区域为 D_1 ,则 Ω 可表示为

$$\Omega = \left\{ (x, y, z) \middle| (x, y) \in D_1, z_1(x, y) \le z \le z_2(x, y)(x, y) \in D \right\}$$

则物体总质量为

$$\iint_D \left(\int_{z_1(x,y)}^{z_2(x,y)} f(x,y,z) \, \mathrm{d}z \right) \, \mathrm{d}x \mathrm{d}y$$

故有

$$\iiint_{\Omega} f(x, y, z) \, dV = \iint_{D_1} dx dy \int_{z_1(x, y)}^{z_2(x, y)} f(x, y, z) \, dz$$

1.4.2.2 截面法(坐标轴投影法)

设区域 Ω 在 z 轴上的投影区间为 $[h_1,h_2]$,即 Ω 介于平面 $z=h_1$ 和 $z=h_2$ 之间,过 z 处且垂直于 z 轴的平面截 Ω 得截面区域 D_z ,则 Ω 可表示为

$$\Omega = \left\{ (x, y, z) \middle| h_1 \le z \le h_2, (x, y) \in D_z \right\}$$

物体总质量为

$$\int_{h_1}^{h_2} \left(\iint_{D_z} f(x, y, z) \, \mathrm{d}x \mathrm{d}y \right) \, \mathrm{d}z$$

故有

$$\iiint_{\Omega} f(x, y, z) dV = \int_{h_1}^{h_2} dz \iint_{D_z} f(x, y, z) dxdy$$

1.4.3 三重积分的变量代换

定理 1.2 设变换
$$T:$$

$$\begin{cases} x=x(u,v,w) \\ y=y(u,v,w) \text{ 有连续偏导数,且满足 } J=\frac{\partial(x,y,z)}{\partial(u,v,w)} \neq 0, \text{而 } f(x,y,z) \in z \end{cases}$$

 $C(\Omega)$,则

$$\iiint_{\Omega} f(x, y, z) dV = \iiint_{\Omega^*} f(x(u, v, w), y(u, v, w), z(u, v, w)) |J| dudvdw$$

1.4.3.1 柱面坐标系下的计算

柱面坐标系,实际上就是将x,y坐标转换为极坐标

$$\begin{cases} x = r \cos \theta \\ y = r \sin \theta \\ z = z \end{cases}$$

其 Jacobi 行列式为

$$J = \frac{\partial(x, y, z)}{\partial(r, \theta, z)} = \begin{vmatrix} \cos \theta & -r \sin \theta & 0 \\ \sin \theta & r \cos \theta & 0 \\ 0 & 0 & 1 \end{vmatrix} = r$$

则柱面积分积分公式为

$$\iiint_{\Omega} f(x, y, z) dV = \iiint_{\Omega^*} f(r \cos \theta, r \sin \theta, z) r dr d\theta dz$$

1.4.3.2 球面坐标系下的计算

球面坐标系,实际上就是将 x, v, z 坐标转换为球坐标

$$x = \rho \sin \varphi \cos \theta$$
$$y = \rho \sin \varphi \sin \theta$$
$$z = \rho \cos \varphi$$

其 Jacobi 行列式为

$$J = \frac{\partial(x, y, z)}{\partial(\rho, \varphi, \theta)} = \begin{vmatrix} \sin \varphi \cos \theta & \rho \cos \varphi \cos \theta & -\rho \sin \varphi \sin \theta \\ \sin \varphi \sin \theta & \rho \cos \varphi \sin \theta & \rho \sin \varphi \cos \theta \\ \cos \varphi & -\rho \sin \varphi & 0 \end{vmatrix} = \rho^2 \sin \varphi$$

则球面积分积分公式为

$$\iiint_{\Omega} f(x, y, z) \, dV = \iiint_{\Omega^*} f(\rho \sin \varphi \cos \theta, \rho \sin \varphi \sin \theta, \rho \cos \varphi) \rho^2 \sin \varphi \, d\rho d\varphi d\theta$$

1.5 重积分的应用

1.5.1 重积分的几何应用

1.5.1.1 平面图形的面积

$$A(D) = \iint_D d\sigma = \iint_D dx dy$$

1.5.1.2 立体的体积

$$V(\Omega) = \iiint_{\Omega} dV = \iiint_{\Omega} dx dy dz$$

1.5.1.3 曲面的面积

空间曲面 $S: z = f(x, y), (x, y) \in D$. 则曲面 S 的面积为

$$A(S) = \iint_D \sqrt{1 + z_x^2 + z_y^2} \, \mathrm{d}x \, \mathrm{d}y$$

1.5.2 重积分的物理应用

1.5.2.1 质心

体密度为 $\rho(x,y)$ 的物体占据空间 Ω , 其质心坐标为

$$\begin{cases} \bar{x} = \frac{\iiint_{\Omega} x \rho(x, y, z) \, dV}{\iiint_{\Omega} \mu(x, y, z) \, dV} \\ \bar{y} = \frac{\iiint_{\Omega} y \rho(x, y, z) \, dV}{\iiint_{\Omega} \mu(x, y, z) \, dV} \\ \bar{z} = \frac{\iiint_{\Omega} z \rho(x, y, z) \, dV}{\iiint_{\Omega} \mu(x, y, z) \, dV} \end{cases}$$

1.5.2.2 转动惯量

设物体的密度为 $\rho(x,y,z)$,则物体分别关于x,y,z轴的转动惯量为

$$\begin{cases} I_x = \iiint_{\Omega} \rho(x, y, z)(y^2 + z^2) \, dV \\ I_y = \iiint_{\Omega} \rho(x, y, z)(x^2 + z^2) \, dV \\ I_z = \iiint_{\Omega} \rho(x, y, z)(x^2 + y^2) \, dV \end{cases}$$

1.5.2.3 引力

$$d\vec{F} = G \frac{m_0 dm}{r^3} \vec{r}$$

$$= G \frac{m_0 \rho(x, y, z) dV}{r^3} \cdot (x - x_0, y - y_0, z - z_0)$$

$$= (dF_x, dF_y, dF_z)$$

第2章 曲线积分和曲面积分

第一类曲线积分和曲面积分 2.1

第一类曲线积分的概念

定义 2.1 设 $C \in XOV$ 面上的一条光滑曲线弧,函数 f(x, y) 是定义在 C 上的有界函数, 在 C 上任意插入分点 $A = A_0, A_1, \ldots, A_{n-1}, A_n = B$,将其分成 n 个小弧段,记第 i 个小弧段 的弧长为 Δs_i , 在第 i 个小段上任取点 (ϵ_i, η_i) , 和式 $\sum_{i=1}^{+\infty} f(\epsilon_i, \eta_i) \Delta s_i$, 当 $\lambda = \max_{1 \le i \le n} \{\Delta s_i\} \to 0$ 时,有确定的极限值I,即

$$\lim_{\lambda \to 0} \sum_{i=1}^{n} f(\epsilon_i, \eta_i) \Delta s_i = I$$

则称函数 f(x,y) 在曲线 C 上**可积**,并将此极限值 I 称为函数 f(x,y) 在曲线 C 上的 第一类曲线积分,记作 $\int_C f(x,y) ds$,即

$$I = \int_C f(x, y) ds = \lim_{\lambda \to 0} \sum_{i=1}^n f(\epsilon_i, \eta_i) \Delta s_i$$

- 1. 第一类曲线积分的几何含义为柱面的面积 2. $\int_C ds = \int_C 1 ds = s_C$
- 3. 若 C 是封闭曲线,即 C 的二端点重合,则记第一类曲线积分为 $\oint_C f(x,y) \, \mathrm{d} s$

第一类曲线积分的性质 2.1.2

2.1.2.1 与曲线方向无关

若曲线 C 的端点为 A 和 B, f(x, y) 在曲线 C 上可积,则

$$\int_{\widehat{AB}} f(x, y) \, \mathrm{d}s = \oint_{\widehat{BA}} f(x, y) \, \mathrm{d}s$$

2.1.2.2 线性性

若 f,g 在曲线 C 上可积, α,β 是任意常数, 则 $\alpha f + \beta g$ 在曲线 C 上可积, 且

$$\int_C (\alpha f + \beta g) \, ds = \alpha \int_C f(x, y) \, ds + \beta \int_C g(x, y) \, ds$$

2.1.2.3 路径可加性

若曲线 C 由两段光滑曲线 C_1 和 C_2 首尾连接而成,则 f(x,y) 在曲线 C 上可积,等价于 f(x,y) 在曲线 C_1 和 C_2 上均可积,且

$$\int_{C} f(x, y) \, ds = \int_{C_{1}} f(x, y) \, ds + \int_{C_{2}} f(x, y) \, ds$$

2.1.2.4 中值定理

设函数 f 在光滑曲线 C 上连续, 则 $\exists (\epsilon, \eta) \in C$, 使得

$$\int_C f(x, y) \, \mathrm{d}s = f(\epsilon, \eta) \cdot s_C$$

其中 s_C 是曲线段C 的长度

2.1.3 一类曲线积分的计算

设函数 f(x,y) 在光滑曲线 C 上连续,C 的参数方程为 x = x(t) , $t \in [a,b]$,满足 x'(t),y'(t) 连续,且 $x'(t)^2 + y'(t)^2 \neq 0$,则

$$\int_{C} f(x, y) \, ds = \int_{\alpha}^{\beta} f(x(t), y(t)) \sqrt{x'(t)^{2} + y'(t)^{2}} \, dt$$

- 1. 右端积分限应 $\alpha < \beta$
- 2. 当曲线 C 形式为 y = y(x), $x \in [a, b]$ 时

$$\int_{C} f(x, y) \, ds = \int_{a}^{b} f(x, y(x)) \sqrt{1 + y'^{2}(x)} \, dx$$

3. 当曲线 C 为极坐标 $r = r(\theta)$, $\theta \in [\alpha, \beta]$ 时

$$\int_C f(x, y) \, ds = \int_{\alpha}^{\beta} f(r(\theta) \cos \theta, r(\theta) \sin \theta) \sqrt{r(\theta)^2 + r'^2(\theta)} \, d\theta$$

2.2 第二类曲线积分与曲面积分

2.2.1 第二类曲线积分的概念

定义 2.2 设 C 为平面光滑定向曲线 $(A \to B)$,且向量值函数 $\vec{F}(x,y) = R(x,y)\vec{i} + Q(x,y)\vec{j}$ 在 C 上有界, \vec{e}_{τ} 为 C 上点 (x,y) 处于定向一致的单位切向量,若

$$\int_C \vec{F}(x,y) \cdot \vec{e}_\tau \, \mathrm{d}s$$

存在,则称为向量值函数 \vec{F} 在定向曲线 C 上的曲线积分或第二类曲线积分

若 $\vec{e}_{\tau}(x,y) = (\cos \alpha, \cos \beta)$,则

$$\int_C \vec{F}(x, y) \cdot \vec{e}_\tau \, ds = \int_C P(x, y) \cos \alpha + Q(x, y) \cos \beta \, ds$$

$$= \int_C P(x, y) \cos \alpha \, ds + \int_C Q(x, y) \cos \beta \, ds$$

$$= \int_C P(x, y) \, dx + Q(x, y) \, dy$$

这是对坐标的曲线积分

记 $\vec{r} = (x, y)$, 则 $d\vec{e} = \vec{e}_{\tau} ds$ 称为定向弧微分

从而有向量形式的第一类曲线积分

$$\int_{C} \vec{F}(x, y) \cdot d\vec{e} = \int_{C} \vec{F} \cdot d\vec{r}$$

2.2.1.1 第二类曲线积分的性质

第二类曲线积分与**曲线方向有关**,即

$$\int_{\widehat{AB}} \vec{F}(x, y) \cdot d\vec{r} = -\oint_{\widehat{BA}} \vec{F}(x, y) \cdot d\vec{r}$$

此外线性性与对定向积分路径的可加性等仍然成立

2.2.1.2 第二类曲线积分的计算

若曲线
$$C$$
 为 $x = x(t)$, $t : \alpha \to \beta$ $y = y(t)$ 起点 A 对应 α , 终点 B 对应 β

考察 $\int_C P dx + Q dy = \int_C \vec{F} \cdot \vec{e}_\tau ds$, 沿曲线 $C \ \vec{f} = (P(x(t), y(t)), Q(x(t), y(t)))$,

$$\int_C P dx + Q dy = \int_{\alpha}^{\beta} P(x(t), y(t)) dx(t) + Q(x(t), y(t)) dy(t)$$

2.2.2 第二类曲面积分的概念

2.2.2.1 双侧曲面

定义 2.3 若点 P 沿曲面 S 上任何不越过曲面边界的连续闭曲线移动后回到起始位置时,法向量 \vec{n} 保持原来的指向,则称 S 为**双侧曲面**

典型的,Mobius 面不是双侧曲面 选定双侧曲面 S 一侧为正向,称为**正侧**,记为 S^+ ,其相反测记作 S^-

2.2.2.2 双侧曲面定侧

若
$$S: z = z(x,y)$$
, $(x,y) \in D_{xy}$, $\vec{n}_0 = (\cos\alpha,\cos\beta,\cos\gamma) = \pm \frac{(-z_x,-z_y,1)}{\sqrt{1+z_x^2+z_y^2}}$ 若选取 $\vec{n}_0 = (\cos\alpha,\cos\beta,\cos\gamma) = \frac{(-z_x,-z_y,1)}{\sqrt{1+z_x^2+z_y^2}}$, 则说明 $\cos\gamma > 0$,选取了曲面的上侧一般的

$$\begin{cases} \cos \alpha > 0 \Leftrightarrow 前侧 \cos \alpha < 0 \Leftrightarrow 后侧 \\ \cos \beta > 0 \Leftrightarrow 右侧 \cos \beta < 0 \Leftrightarrow 左侧 \\ \cos \gamma > 0 \Leftrightarrow 上侧 \cos \gamma < 0 \Leftrightarrow 下侧 \end{cases}$$

习惯上选取曲面片的上侧为 S^+ ; 对于封闭曲面,选取外侧为 S^+ 对于向量值函数 $\vec{F}=(P,Q,R)$

$$\int_C \vec{F} \cdot dS = \int_C P \, dx \, dy + Q \, dy \, dz + R \, dz \, dx$$

2.2.2.3 第二类曲面积分的性质

第二类曲面积分与在曲面的哪一侧积分有关

$$\iint_{S^+} P \, \mathrm{d}x \mathrm{d}y + Q \, \mathrm{d}y \mathrm{d}z + R \, \mathrm{d}z \mathrm{d}x = -\iint_{S^-} P \, \mathrm{d}x \mathrm{d}y + Q \, \mathrm{d}y \mathrm{d}z + R \, \mathrm{d}z \mathrm{d}x$$

此外第二类曲面积分也具有线性性和可加性等性质

2.2.3 第二类曲面积分的计算

2.2.3.1 合一投影法

$$\iint_{S^+} P \, \mathrm{d}x \, \mathrm{d}y + Q \, \mathrm{d}y \, \mathrm{d}z + R \, \mathrm{d}z \, \mathrm{d}x = \iint_{D_{xy}} \left(-P z_x - Q z_y + R \right) \, \mathrm{d}x \, \mathrm{d}y$$

2.2.3.2 分面投影法

分 $P \, \mathrm{d}x \, \mathrm{d}y$, $Q \, \mathrm{d}y \, \mathrm{d}z$, $R \, \mathrm{d}z \, \mathrm{d}x$ 三个部分进行积分常在部分曲面垂直坐标轴时进行

2.2.3.3 公式法

常用于参数方程确定的曲面

设 $S: \vec{r} = (x(u,v), y(u,v), z(u,v))$, 其中 $(u,v) \in D_{xy}$, 则

$$\iint_{S^+} \vec{F} \cdot d\vec{S} = \iint_{D_{uv}} \vec{F} \cdot (\vec{r}_u \times \vec{r}_v) du dv$$

2.3 Green 公式及其应用

2.3.1 Green 公式

2.3.1.1 连通区域及其边界方向

设 D 为平面区域, 若 D 内的任意一条闭曲线所围的区域都落在 D 内, 则称 D 是单连通的, 否则称 D 为复连通的

当点沿区域边界朝一个方向前进时,区域总在它的左侧,则将此方向规定为边界曲线 C 的正向,记为 C^+ ,与 C^+ 相反方向为 C^-

2.3.1.2 Green 公式

定理 2.1 设有界闭区域 D 由分段光滑曲线 C 围成,函数 P(x,y), Q(x,y) 在 D 上有一阶连续偏导数,则

$$\oint_{C^+} P \, \mathrm{d}x + Q \, \mathrm{d}y = \iint_D \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \, \mathrm{d}x \mathrm{d}y$$

1. 对于复连通区域 D,Green 公式仍然成立,但需将 C 分成若干个单连通区域 D_i ,并对每个区域应用 Green 公式

2. 公式也可以记为 $\oint_{C^+} P \, dx + Q \, dy = \iint_D \left| \frac{\partial}{\partial x} - \frac{\partial}{\partial y} P - Q \right| \, dx dy$

2.3.1.3 Green 公式的向量形式

2.3.2 线积分与路径无关的条件

定义 2.4 设 P(x,y), Q(x,y) 在区域 D 内连续,若对 D 内任意两点 A, B 以及 D 内连接 A, B 的任意二分段光滑曲线 C_1 , C_2 ,均有

$$\int_{C_1} P \, \mathrm{d}x + Q \, \mathrm{d}y = \int_{C_2} P \, \mathrm{d}x + Q \, \mathrm{d}y$$

则称曲线积分 $\int_C P dx + Q dy$ 在 D 内**与路径无关**

定理 2.2 设函数 P, Q 在单连通区域 D 上有连续偏导数,则下述四命题等价

1. 在
$$D$$
 内的任一条分段光滑闭曲线 C 上,有 $\int_C P dx + Q dy = 0$

2. 曲线积分 $\int_C P dx + Q dy$ 在 D 内与路径无关

3. 存在 D 上的可微函数 u(x,y) 使得 du = P dx + Q dy,此时称 u(x,y) 为 P dx + Q dy 的一个**原函数**

4. $\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}$ 在 D 内恒成立

2.3.3 全微分求积与全微分方程

设函数 P, Q 在单连通区域 D 上有连续偏导数,且 $\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}$,则 P dx + Q dy 为某函数 u 的全微分,且取定 $(x_0, y_0) \in D$

$$u(x, y) = u(x_0, y_0) + \int_{(x_0, y_0)}^{(x, y)} P dx + Q dy, \quad (x, y) \in D$$

从而全体函数为 u(x,y) + C

称求 P dx + Q dy 的原函数的过程为全微分求积

若 P dx + Q dy 是某二元函数的全微分,称方程

$$P(x, y) dx + Q(x, y) dy = 0$$

为全微分方程

求出一个原函数 u(x,y), 则方程的通解为 u(x,y) = C, 其中 C 是任意常数

2.4 Gauss 公式和 Strokes 公式

2.4.1 Gauss 公式

定理 2.3 设函数 P(x, y, z), Q(x, y, z), R(x, y, z) 在空间有界闭区域 Ω 上有连续偏导数, Ω 的边界时光滑或分片光滑的闭曲面 Σ ,则

$$\oint_{\Sigma^+} P \, \mathrm{d}x \, \mathrm{d}y + Q \, \mathrm{d}y \, \mathrm{d}z + R \, \mathrm{d}z \, \mathrm{d}x = \iiint_{\Omega} \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} \right) \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z$$

- 1. 令 $P = \frac{x}{3}$, $Q = \frac{y}{3}$, $R = \frac{z}{3}$, 则可导出 $V_{\Omega} = \frac{1}{3} \iint_{\Sigma^{+}} x \, \mathrm{d}y \, \mathrm{d}z + y \, \mathrm{d}z \, \mathrm{d}x + z \, \mathrm{d}x \, \mathrm{d}y$, 即体积公式
- 2. 使用 Gauss 公式时,注意 Σ^+ 的方向应与 Ω 的外侧一致
- 2.4.1.1 向量形式的 Gauss 公式

$$\oint_{\Sigma^+} \vec{F} \cdot d\vec{S} = \iiint_{\Omega} \nabla \cdot \vec{F} \, dx dy dz$$

2.4.2 通量和散度

2.4.2.1 通量

若给定向量场

$$\vec{F} = (P(x, y, z), Q(x, y, z), R(x, y, z))$$

则称曲面积分

$$\Phi = \iint_{\Sigma^+} \vec{F} \cdot d\vec{S} = \iint_{\Sigma^+} P \, dx dy + Q \, dy dz + R \, dz dx$$

为向量场 \vec{F} 在通过定侧曲面 $Σ^+$ 的**通量**

2.4.2.2 散度

称

$$\operatorname{div} \vec{F} = \nabla \cdot \vec{F} = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}$$

为向量场 \vec{F} 的**散度** 则 Gauss 公式可写为

$$\Phi = \iint_{\Sigma^+} \vec{F} \cdot d\vec{S} = \iiint_{\Omega} \operatorname{div} \vec{F} \, dV$$

第3章 级数

3.1 数项级数

3.1.1 数项级数的概念

定义 3.1 给定数列 $\{a_n\}$, 和式

$$\sum_{n=1}^{\infty} a_n = a_1 + a_2 + \dots + a_n + \dots$$

称为 (无穷) 极数, a_n 称为级数的通项 (或一般项)

1.
$$S_n = \sum_{k=1}^n a_k$$
 称为级数 $\sum_{n=1}^n a_n$ 的前 n 项**部分和**

2.
$$\sum_{k=n+1}^{\infty} a_k$$
 称为级数 $\sum_{n=1}^{\infty} a_n$ 的**余项级数**

定义 3.2 部分和数列

1. 若级数
$$\sum_{n=1}^{\infty} a_n$$
 的部分和数列 $\{S_n\}$ 收敛,且 $\lim_{n\to\infty} S_n = S$,则称级数 $\sum_{n=1}^{\infty} a_n$ **收敛**, S 称 为级数 $\sum_{n=1}^{\infty} a_n$ 的**和**,记作 $\sum_{n=1}^{\infty} a_n = S$

2. 若部分和数列 $\{S_n\}$ 发散,则称级数 $\sum_{n=1}^{\infty} a_n$ **发散**

注 常用结论:

等比数列
$$\sum_{n=1}^{\infty} aq^{n-1}$$
 {收敛于 $\frac{a}{1-q}$, $|q| < 1$ 发散, $|q| \ge 1$

3.1.2 数项级数的概念

3.1.3 数项级数的基本性质

3.1.3.1 基本性质

1. 若常数
$$\alpha \neq 0$$
,则级数 $\sum_{n=1}^{\infty} a_n$ 与级数 $\sum_{n=1}^{\infty} \alpha a_n$ 有相同敛散性

2. **线性性:** 若级数
$$\sum_{n=1}^{\infty} a_n = S$$
, $\sum_{n=1}^{\infty} b_n = T$, 则 $\forall \alpha, \beta \in \mathbb{R}$, 有 $\sum_{n=1}^{\infty} (\alpha a_n + \beta b_n) = \alpha S + \beta T$

- 3. 可加性:将级数增加、删减或改换有限项,不改变级数的敛散性
- 4. **结合律**: 若级数收敛于 S, 则将相邻若干项添加括号所成新级数仍收敛于 S
 - (a) 其本质是部分和数列收敛于S,则子列均收敛于S
 - (b) 加括号后级数收敛 ⇒ 原级数收敛
 - (c) 加括号后级数发散 ⇒ 原级数发散

3.1.3.2 级数收敛的必要条件

定理 3.1 若
$$\sum_{n=1}^{\infty} a_n$$
 收敛,则 $\lim_{n\to\infty} a_n = 0$

1. 若
$$\lim_{n\to\infty} a_n \neq 0 \Rightarrow \sum_{n=1}^{\infty} a_n$$
 发散

2. 若
$$\lim_{n\to\infty} a_n = 0 \Rightarrow \sum_{n=1}^{\infty} a_n$$
 收敛,比如调和级数

3.2 正项级数敛散性

3.2.1 正项级数

定义 3.3 若级数
$$\sum_{n=1}^{\infty} a_n$$
 满足 $a_n > 0$ $(n \in \mathbb{N}^+)$,则称此级数为正项级数

定理 3.2 收敛原理: 正项级数 $\sum_{n=1}^{\infty} a_n$ 收敛 \Leftrightarrow 是其部分和数列 $\{S_n\}$ 有上界,即 $\exists M \in \mathbb{R}, \forall n \in \mathbb{N}^+: S_n \leq M$

注 p级数

$$\sum_{n=1}^{\infty} \frac{1}{n^p} \begin{cases} \psi \otimes, & p > 1 \\ \xi \otimes, & p \le 1 \end{cases}$$

3.2.2 正项级数敛散性判别法

3.2.2.1 比较判别法

定理 3.3 设正项级数
$$\sum_{n=1}^{\infty} a_n$$
, $\sum_{n=1}^{\infty} b_n$ 满足 $a_n \leq b_n$ ($\forall n \in \mathbb{N}^+$), 则 $\sum_{n=1}^{\infty} b_n$ 收敛 $\Rightarrow \sum_{n=1}^{\infty} a_n$ 收敛, $\sum_{n=1}^{\infty} a_n$ 发散 $\Rightarrow \sum_{n=1}^{\infty} b_n$ 发散

- 1. 条件 $\forall n \in \mathbb{N}^+ a_n \leq b_n$ 可改为 $\exists N, C > 0, \forall n \in \mathbb{N}^+ \forall n \geq N a_n \leq C b_n$
- 2. 使用该判别法时需要有参照级数,常选**等比级数**或 *p* 级数作参照

3.2.2.2 比较判别法(极限形式)

定理 3.4 正项级数
$$\sum_{n=1}^{\infty} a_n$$
, $\sum_{n=1}^{\infty} b_n$ 满足 $\lim_{n\to\infty} \frac{a_n}{b_n} = l$

1. 当
$$0 < l < +\infty$$
 时, $\sum_{n=1}^{\infty} a_n$ 与 $\sum_{n=1}^{\infty} b_n$ 同敛散

2. 当
$$l=0$$
 时, $\sum_{n=1}^{\infty} b_n$ 收敛 $\Rightarrow \sum_{n=1}^{\infty} a_n$ 收敛

3. 当
$$l = +\infty$$
 时, $\sum_{n=1}^{\infty} b_n$ 发散 $\Rightarrow \sum_{n=1}^{\infty} a_n$ 发散

注 通常使用 $b_n = \frac{1}{n^p}$ 作为参照物,因为我们此时在分析无穷小 a_n 的阶

3.2.2.3 比值判别法 (d'Alembert 判别法)

定理 3.5 若正项级数 $\sum_{n=1}^{\infty} a_n$ 满足 $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = l$,则

1. 当
$$0 \le l < 1$$
 时, $\sum_{n=1}^{\infty} a_n$ 收敛

2. 当
$$l > 1$$
 时, $\sum_{i=1}^{\infty} a_n$ 发散

3. 当
$$l = 1$$
 时,判别法失效

注 Stirling 公式:
$$n! \sim \left(\frac{n}{e}\right)^n \sqrt{2n\pi}$$
 $(n \to \infty)$

 $\dot{\mathbf{L}}$ 当 a_n 是一些乘积构成或含 n! 时,可以考虑比值法

3.2.2.4 根值判别法(Cauchy 判别法)

定理 3.6 若正项级数 $\sum_{n=1}^{\infty} a_n$ 满足 $\lim_{n\to\infty} \sqrt[n]{a_n} = l$,则

1. 当
$$0 \le l < 1$$
 时, $\sum_{n=1}^{\infty} a_n$ 收敛

2. 当
$$1 < l \le +\infty$$
 时, $\sum_{n=1}^{\infty} a_n$ 发散

3. 当
$$l=1$$
 时,判别法失效

 $\exists a_n$ 中含有 n 次方时,可以考虑使用根值法

比值法和根值法实际上可看作是在将级数与等比级数作比较, 均智能判断收敛速度 不满与等比级数的级数. 当所求级数存在时,可称级数为拟等比级数

注 根值法优于比值法

1.
$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = l \implies \sqrt[n]{a_n} = l$$
2.
$$\sqrt[n]{a_n} = l \implies \lim_{n \to \infty} \frac{a_{n+1}}{a_n} = l$$

2.
$$\sqrt[n]{a_n} = l \Rightarrow \lim_{n \to \infty} \frac{a_{n+1}}{a_n} = l$$

3.2.2.5 积分判别法

定义 3.4 设 $\sum_{n=1}^{\infty} a_n$ 为正项级数,若非负函数 f(X) 在 $[1,+\infty)$ 上单调递减,且 $a_n=1$

$$f(n)$$
 $(\forall n \in \mathbb{N}^+)$,则级数 $\sum_{n=1}^{\infty} a_n$ 与反常积分 $\int_1^{+\infty} f(x) \, \mathrm{d}x$ 有相同的敛散性

注

条件 $[1, +\infty)$ 可改为 $[a, +\infty)$ (a > 1)

任意项级数的敛散性

任意项级数

正负项分布是任意的级数

3.3.1 错级数敛散性的判别法

3.3.1.1 交错级数

定义 3.5 各项正负相间的级数称为交错级数,其形式为

$$\pm \sum_{n=1}^{\infty} -1^{n-1} a_n \quad (\sharp + a_n > 0)$$

3.3.1.2 Leibniz 判别法

定义 3.6 若交错级数 $\sum_{n=1}^{\infty} (-1)^{n-1} a_n \ (a_n > 0)$ 满足:

1.
$$a_{n+1} \le a_n \quad (n = 1, 2, ...)$$

$$2. \lim_{n\to\infty} a_n = 0$$

则级数 $\sum_{n=1}^{\infty} (-1)^{n-1} a_n$ 收敛,且其余项级数满足

$$\left| \sum_{k=n+1}^{\infty} a_k \right| \le a_{n+1}$$

我们称满足定理条件的级数为 leibniz 型级数

3.3.2 Abel 判别法和 Dirichlet 判别法

定理 3.7 (Abel 判别法)若 $\{a_n\}$ 单调且有界, $\sum_{n=1}^{\infty} b_n$ 收敛,则 $\sum_{n=1}^{\infty} a_n b_n$ 收敛

定理 3.8 (Abel 判别法)若 $\{a_n\}$ 单调趋于 0, $\sum_{n=1}^{\infty}b_n$ 的部分和数列有界,则 $\sum_{n=1}^{\infty}a_nb_n$ 收敛

3.3.3 绝对收敛与条件收敛

定义 3.7 设 $\sum_{n=1}^{\infty} a_n$ 为任意项级数

- 1. 若级数 $\sum_{n=1}^{\infty} |a_n|$ 收敛,则称级数 $\sum_{n=1}^{\infty} a_n$ 为**绝对收敛**
- 2. 若 $\sum_{n=1}^{\infty} |a_n|$ 发散,而 $\sum_{n=1}^{\infty} a_n$ 收敛,但,则称 $\sum_{n=1}^{\infty} a_n$ 条件收敛

定义 3.8 若
$$\sum_{n=1}^{\infty} a_n$$
 绝对收敛,则 $\sum_{n=1}^{\infty} a_n$ 收敛

注 常用结论:

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n^p} \begin{cases} \text{绝对收敛}, p > 1 \\ \text{条件收敛}, 0$$

定义 3.9 (绝对收敛与条件收敛的本质)

- 1. 绝对收敛的级数,可以改变任意项的顺序,其收敛性与和均不变(即满足加法交 换律)
- 2. 条件收敛的级数,总可以适当改变项的顺序,使其按照任意预定的方式收敛或者 发散

3.4 函数项级数

定义 3.10 设函数列 $\{u_n x\}(n=1,2,...)$ 在数集 X 上有定义,则称形式和

$$\sum_{n=1}^{\infty} u_n(x) = u_1(x) + u_2(x) + \dots + u_n(x) + \dots$$

为**函数项级数**,其中 $u_n(x)$ 称为**通项**

定义 3.11 若数项级数 $\sum_{n=1}^{\infty} u_n(x_0)$ 收敛,则 x_0 为函数项级数 $\sum_{n=1}^{\infty} u_n(x)$ 的一个**收敛点**,否则称为**发散点**,全体收敛点所组成的集合 I 称为**收敛域**

定义 3.12 记
$$S_n(x) = \sum_{k=1}^{\infty} u_k(x)$$
,为 $\sum_{n=1}^{\infty} u_n(x)$ 的前 n 项部分和 (函数),记 $r_n(x) = \sum_{k=n+1}^{\infty} u_k(x)$ 为余和

定义 3.13 对于收敛域 I 中的任意一点 x,记 $\sum_{n=1}^{\infty} u_n(x)$ 的和为 S(x),称此函数 S(x) 为

$$\sum_{n=1}^{\infty} u_n(x)$$
 的和函数
显然, $\forall x \in I$, $\lim_{n \to +\infty} S_n(x) = S(x)$, $\lim_{n \to +\infty} r_n(x) = 0$

3.5 幂级数

3.5.1 幂级数及其收敛半径

在函数项级数中,最简单及最重要的级数形如

$$\sum_{n=0}^{\infty} a_n (x - x_0)^n = a_0 + a_1 x + a_2 (x - x_0)^2 + \ldots + a_n (x - x_0)^n + \ldots$$

称为**幂级数**,其中常数项 $a_0, a_1, \ldots, a_n, \ldots$ 称为幂级数的**系数** 幂级数更加一半的形式为 $\sum_{n=0}^{\infty} a_n (x-x_0)^n$

3.5.1.1 Abel 定理

1. 若幂级数 $\sum_{n=0}^{\infty} a_n (x-x_0)^n$ 在 $x=x_0(x\neq 0)$ 收敛,则当 $|x|<|x_0|$,时,幂级数 $\sum_{n=0}^{\infty} a_n (x-x_0)^n$ 绝对收敛

2. 若幂级数 $\sum_{n=0}^{\infty} a_n x^n$ 在 $x = x_1$ 发散,则当 $|x| > |x_1|$ 时,幂级数 $\sum_{n=0}^{\infty} a_n x^n$ 发散

引理 3.1 (幂级数收敛域的情况)幂级数 $\sum_{n=0}^{\infty} a_n(x-x_0)^n$ 的收敛域 I 仅有以下几种情况:

- 1. 仅在 x = 0 的情况收敛 (R = 0)
- 2. 在区间 (-R,R)(R>0) 内绝对收敛,在 $(-\infty,-R)\cup(R,+\infty)$ 发散
- 3. 在区间 (-R, R) 内绝对收敛 (R = +∞)

3.6 幂级数收敛半径的求法

3.6.1 系数模比值法

定理 3.9 对幂级数 $\sum_{n=1}^{\infty} a_n x^n$,若 $\lim_{n\to+\infty} \left| \frac{a_{n+1}}{a_n} \right| = \rho$,则收敛半径

$$R = \begin{cases} 0, & \rho = +\infty \\ \frac{1}{\rho}, & 0 < \rho < +\infty \\ +\infty, & \rho = 0 \end{cases}$$

3.6.2 系数模根值法

定理 3.10 对幂级数 $\sum_{n=1}^{\infty} a_n x^n$,若 $\lim_{n\to+\infty} \sqrt[n]{|a_n|} = \rho$,则收敛半径

$$R = \begin{cases} 0, & \rho = +\infty \\ & 0 < \rho < +\infty \\ & +\infty, & \rho = 0 \end{cases}$$

3.7 幂级数的性质

- 1. 设幂级数 $\sum_{n=0}^{\infty} a_n x^n$ 和 $\sum_{n=0}^{\infty} b_n x^n$ 的收敛半径分别为 R_1 和 R_2 ,则 $\sum_{n=0}^{\infty} (a_n + b_n) x^n$ 的收敛半径为 $R = \min\{R_1, R_2\}$
- 2. 若幂级数 $\sum_{n=0}^{\infty} a_n x^n$ 的收敛半径 R > 0,在收敛区间 (-R, R) 内的和函数为 S(n),则 S(n) 在 (-R, R) 上连续;若 $\sum_{n=0}^{\infty} a_n x^n$ 在 x = R 或 x = -R 收敛,则和函数 S(n) 在

$$x = R$$
 左连续或 $x = -R$ 处右连续,即 $\lim_{x \to R^-} S(x) = S(R) = \sum_{n=0}^{\infty} a_n R^n$

3. 若幂级数 $\sum_{n=0}^{\infty} a_n x^n$ 的收敛半径 R > 0,在收敛区间 (-R, R) 内的和函数为 S(n),则 S(n) 在 (-R, R) 上可导,且有**逐项求导公式**

$$S'(x) = \left(\sum_{n=0}^{\infty} a_n x^n\right)'$$
$$= \sum_{n=0}^{\infty} (a_n x^n)'$$
$$= \sum_{n=0}^{\infty} n a_n x^{n-1}$$

且幂级数 $\sum_{n=0}^{\infty} na_n x^{n-1}$ 的收敛半径仍为 R

1. 若幂级数 $\sum_{n=0}^{\infty} a_n x^n$ 的收敛半径 R > 0,在收敛区间 (-R, R) 内的和函数为 S(n),则 S(n) 在 (-R, R) 上可导,且有**逐项求积公式**

$$\int_0^x S(t) dt = \int_0^x \left(\sum_{n=0}^\infty a_n t^n \right) dt$$
$$= \sum_{n=0}^\infty \int_0^x a_n t^n dt$$
$$= \sum_{n=0}^\infty \frac{a_n}{n+1} x^{n+1}$$

且幂级数 $\sum_{n=0}^{\infty} a_n t^n$ 的收敛半径仍为 R

3.7.1 幂级数的分析性质

1. 若幂级数 $\sum_{n=0}^{\infty} a_n x^n$ 的收敛半径为 R>0,在收敛区间 (-R,R) 上连续;若 $\sum_{n=0}^{\infty} a_n x^n$ 在 x=R 或 x=-R 收敛,则和函数 S(n) 在 x=R 左连续或 x=-R 处右连续,即

$$\lim_{x \to R^{-}} S(x) = S(R) = \sum_{n=0}^{\infty} a_n R^n$$

2. 若幂函数 $\sum_{n=0}^{\infty} a_n x^n$ 的收敛半径为 R > 0,在收敛区间 (-R, R) 上的和函数为 S(n),则 S(n) 在 (-R, R) 上可导,且有**逐项求导公式**

$$S'(x) = \left(\sum_{n=0}^{\infty} a_n x^n\right)'$$
$$= \sum_{n=0}^{\infty} (a_n x^n)'$$
$$= \sum_{n=0}^{\infty} n a_n x^{n-1}$$

且幂级数 $\sum_{n=0}^{\infty} na_n x^{n-1}$ 的收敛半径仍为 R

3. 若幂级数 $\sum_{n=0}^{\infty} a_n x^n$ 的收敛半径为 R > 0,在收敛区间 (-R, R) 上的和函数为 S(n),则 S(n) 在 (-R, R) 上可导,且有**逐项求积公式**

$$\int_0^x S(t) dt = \int_0^x \left(\sum_{n=0}^\infty a_n t^n \right) dt$$
$$= \sum_{n=0}^\infty \int_0^x a_n t^n dt$$
$$= \sum_{n=0}^\infty \frac{a_n}{n+1} x^{n+1}$$

且幂级数 $\sum_{n=0}^{\infty} a_n t^n$ 的收敛半径仍为 R

- 注 1. 幂函数逐项求导,逐项积分后,收敛半径不变,但是收敛域可能改变
 - 2. 幂函数在收敛区间内具有任意阶导数

3.7.2 Taylor 级数

定义 3.14 设函数 f(x) 在 x_0 的某领域内有任意阶导数,称幂级数

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$$

为 f(x) 在 x_0 处的 **Taylor** 级数,记为

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$$

 $x_0 = 0$ 是,称为 Maclaurin 级数

定理 3.11 (唯一性)若 f(x) 在 x_0 可展开为幂级数,则展开式唯一,且恰为 Taylor 级数

定理 3.12 设 f(x) 在 x_0 的某领域 I 内任意阶可导,则在 I 内

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n \Leftrightarrow \lim_{n \to \infty} R_n(x) = 0$$

3.7.3 常用的初等函数的幂级数展开式

$$1. e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} \quad (x \in \mathbb{R})$$

2.
$$\sin x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!} \quad (x \in \mathbb{R})$$

3.
$$\cos x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!} \quad (x \in \mathbb{R})$$

4.
$$\ln(1+x) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}x^n}{n} \quad (|x| < 1)$$

5.
$$(1+x)^{\alpha} = \sum_{n=0}^{\infty} \frac{\alpha(\alpha-1)\cdots(\alpha-n+1)}{n!} x^n \quad (|x|<1)$$

6.
$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n \quad (|x| < 1)$$

7.
$$\frac{1}{1+x} = \sum_{n=0}^{\infty} (-1)^n x^n \quad (|x| < 1)$$

8.
$$\arctan x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{2n+1} \quad (|x| \le 1)$$

3.7.4 正弦级数和余弦级数

若周期为 2π 的函数 f(x) 是奇函数时,其 Fourier 系数 $a_n = 0$,从而

$$f(x) \sim \sum_{n=1}^{+\infty} b_n \sin(nx)$$
 正弦级数

其中
$$b_n = \frac{2}{\pi} \int_0^{\pi} f(x) \sin(nx) dx$$

若周期为 2π 的函数 f(x) 是偶函数, 其 Fourier 系数 $b_n = 0$, 从而

$$f(x) \sim \frac{a_0}{2} + \sum_{n=0}^{+\infty} a_n \cos(nx)$$
 余弦级数

其中 $a_n = \frac{1}{\pi} \int_0^{\pi} f(x) \cos(nx) dx$

若函数 f(x) 定义在 $[0,\pi]$ 上,可作奇延拓

$$F(x) = \begin{cases} f(x), 0 < x < \pi \\ -f(-x), -\pi < x < 0 \\ 0, x = 0, \pm \pi \end{cases}$$

使得 F(x) 为 $[-\pi,\pi]$ 上的奇函数 也可作偶延拓

$$G(x) = \begin{cases} f(x), 0 < x < \pi \\ f(-x), -\pi < x < 0 \\ 0, x = 0, \pm \pi \end{cases}$$

使得函数 G(x) 为 $[-\pi,\pi]$ 上的偶函数

对于一定义在 $[0,\pi]$ 上的函数 f(x),可以对其先做奇延拓或者偶延拓,再将其展开为正弦级数或者余弦级数

3.7.5 周期为 2l 的 Fourier 级数

设函数 f(x) 在区间 [-l,l] 上可积,作代换 $x=\frac{l}{\pi}t$,使得 $F(t)=f\left(\frac{l}{\pi}t\right)$ 为 $[-\pi,\pi]$ 上的可积函数,从而

$$F(t) \sim \frac{a_0}{2} + \sum_{n=1}^{+\infty} a_n \cos(nt) + \sum_{n=1}^{+\infty} b_n \sin(nt)$$

其中

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} F(t) \cos(nt) dt = \frac{1}{l} \int_{-l}^{l} f(x) \cos\left(\frac{\pi n}{l}x\right) dx$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} F(t) \sin(nt) dt = \frac{1}{l} \int_{-l}^{l} f(x) \sin\left(\frac{\pi n}{l}x\right) dx$$

故

$$f(x) \sim \frac{a_0}{2} + \sum_{n=1}^{+\infty} \left(a_n \cos\left(\frac{\pi n}{l}x\right) + b_n \sin\left(\frac{\pi n}{l}x\right) \right)$$

其中

$$a_n = \frac{1}{l} \int_{-l}^{l} f(x) \cos\left(\frac{\pi n}{l}x\right) dx$$
$$b_n = \frac{1}{l} \int_{-l}^{l} f(x) \sin\left(\frac{\pi n}{l}x\right) dx$$

定理 3.13 若 f(x) 在 [-l,l] 上满足 Dirichlet 条件,则 Fourier 级数

$$\frac{a_0}{2} + \sum_{n=1}^{+\infty} \left(a_n \cos\left(\frac{\pi n}{l}x\right) + b_n \sin\left(\frac{\pi n}{l}x\right) \right)$$

收敛到