Dodson & Poston Exercise VI.4.1a

Peter Mao

February 16, 2022

(a) If the function $g:[0,1]\to\mathbb{R}$ is continuous, with $g(x)\neq 0$ for any $x\in[0,1]$, show that $\frac{1}{g}:[0,1]\to\mathbb{R}:x\to\frac{1}{g(x)}$ is also continuous.

This is pretty obviously true, but since I have no formal training in continuity proofs, I wanted to write up something semi-credible. The attempted proof that I tried in our February 13, 2022 meeting had the failing that I inadvertently assumed that g is bijective, which leaves many holes in the solution. Hopefully, this version of the proof is more solid.

Proof. For brevity, let X = [0, 1], and $0 < a < b \in \mathbb{R}$.

By Corollary VI.1.06 (p. 120), the continuity of g ensures that for any open interval $(a,b) \subset g(X)$, $g^{\leftarrow}((a,b)) = U \subset X$ is an open set. In general, U could consist of any number of disjoint open intervals in X (see condition OC for a topology on page 121), so we denote the intervals by U_i and $U = \bigcup_i U_i$.

By construction,

$$g(U) = (a, b) \tag{1}$$

$$g(U_i) \subset (a,b).$$
 (2)

Note that the second equation is not necessary for the proof; it merely serves as a reminder that any given $g(U_i)$ man not necessarily cover (a,b). In order for $\frac{1}{g}$ to be continuous, we need to show that the inverse mapping of any open set in $\frac{1}{g}(X)$ is also open. For convenience of notation, let us consider the interval $(\frac{1}{b},\frac{1}{a})\subset \frac{1}{g}(X)$. We want to show that the preimage of this interval, $\frac{1}{g}^{\leftarrow}((\frac{1}{b},\frac{1}{a}))=V\subset X$, is open. As with U and g, we have the relations

$$\frac{1}{a}\left(V\right) = \left(\frac{1}{b}, \frac{1}{a}\right) \tag{3}$$

$$\frac{1}{q}\left(V_i\right) \subset \left(\frac{1}{b}, \frac{1}{a}\right). \tag{4}$$

Claim: V = U, so V is open.

Suppose there is a $u \in X$ such that $U \ni u \notin V$. By Equation 1, $g(u) \in (a,b)$, so a < g(u) < b. Since $u \notin V$, $\frac{1}{g}(u) = \frac{1}{g(u)} \notin (\frac{1}{b}, \frac{1}{a})$. Thus, either

$$\frac{1}{g(u)} \le \frac{1}{b} \Longrightarrow b < g(u), \tag{5}$$

or

$$\frac{1}{g(u)} \ge \frac{1}{a} \Longrightarrow g(u) < a, \tag{6}$$

¹This seems obvious, but aren't we using the mean value theorem here, while trying to prove a part of it?

which is a contradiction. Therefore, any $u \in U$ is also in V so $U \subseteq V$.

Likewise, by considering some $v \in X$ such that $U \not\ni v \in V$, we conclude that $V \subseteq U$. Therefore, V = U, V is open, and $\frac{1}{g}$ is continuous.

(b) If the function $g:[0,1]\to\mathbb{R}$ is continuous, show that $|g|:[0,1]\to\mathbb{R}:x\to |g(x)|$ is also continuous.

For this proof, we find a suitable pair of intervals in g(X) that have the same preimage as an arbitrary interval in |g|(X). Although we know that the image of |g| is strictly non-negative, let us allow the lower end of open interval to be negative in order to capture zero.

Proof. Consider an open interval interval in \mathbb{R} , (a,b), subject to the conditions that a < b and |a| < |b|. We want to show that $|g| \leftarrow ((a,b)) = U \subset X$ is open.

Notice that $g(U) = (a, b) \cup (-b, -a)$. If a > 0, then g(U) consists of two open intervals. If a < 0, then g(U) = (-b, b), since |a| < |b| and b > 0 by construction. In either case, g(U) is open, so U is open by the continuity of g.

Therefore, |g| is also continuous.