Сдать задание нужно до 25 октября 2014г. включительно. Задача № 1 (3 балла)

1_1. Найти, на сколько нулей оканчивается n! = 1 * 2 * 3 * ... * n. Пример:

_		
	in	out
	25	6

1_2. Вывести разложение натурального числа n на простые множители. Простые множители должны быть упорядочены по возрастанию и разделены пробелами. Пример:

in			out
75		;	3 5 5

1_3. Даны две рациональные дроби: a/b и c/d. Сложить их и результат представьте в виде несократимой дроби m/n. Вывести числа m и n. Пример:

in	out
3 10 5 18	26 45

1_4. Дано натуральное число N. Представить N в виде A + B, так, что НОД(A, B) максимален, A <= B. Вывести A и B. Если возможно несколько ответов - вывести ответ с минимальным A. Пример:

in	out
35	7 28

1_5. Вывести квадраты натуральных чисел от 1 до n, используя только O(n) операций сложения и вычитания (умножением пользоваться нельзя). Пример:

in	out
5	1 4 9 16 25

1_6. Дан массив целых чисел A[0..n). Не используя других массивов переставить элементы массива A в обратном порядке за O(n). Пример:

in	out
4	2 -5 9 3
3 9 -5 2	

1_*. Найти все простые числа в диапазоне [2..n] за O(n). Пример:

in	out
15	2 3 5 7 11 13

Задача № 2 (4 балла)

В каждой задаче, где начальными данными является массив вначале вводится количество элементов, а затем и сами элементы массива.

2_1. Даны два массива целых чисел одинаковой длины A[0..n-1] и B[0..n-1]. Необходимо найти <u>первую</u> пару индексов i0 и j0, <u>i0 <= j0</u>, такую что A[i0] + B[j0] = max {A[i] + B[j], где 0 <= i < n, 0 <= j < n, $\underline{i <= \underline{j}}$ }. Время работы - O(n).

in	out
4	0 1
4 -8 6 0 -10 3 1 1	
-10 3 1 1	

2_2. Вычислить площадь выпуклого n-угольника, заданного координатами своих вершин. Вначале вводится количество вершин, затем последовательно координаты всех вершин.

Указание. Для вычисления площади п-угольника можно посчитать сумму ориентированных площадей

трапеций под каждой стороной многоугольника.

in	out
3	1.5
0 1	
10	
2 2	

2_3. Даны два строго возрастающих массива целых чисел A[0..n) и B[0..m) и число k. Найти количество таких пар индексов (i, j), что A[i] + B[j] = k. Время работы O(n + m).

Указание. Обходите массив В от конца к началу.

in	out
4	3
-5 0 3 18	
5	
-10 -2 4 7 12	
7	

2_4. "Считалочка". В круг выстроено N человек, пронумерованных числами от 1 до N. Будем исключать каждого k-ого до тех пор, пока не уцелеет только один человек. (Например, если N=10, k=3, то сначала умрет 3-й, потом 6-й, затем 9-й, затем 2-й, затем 7-й, потом 1-й, потом 8-й, за ним - 5-й, и потом 10-й. Таким образом, уцелеет 4-й.) Необходимо определить номер уцелевшего.

in	out
10 3	4

2_*. Дан массив целых чисел A[0..n). Массив произвольным образом заполнен натуральными числами из диапазона [0..n - 1). Одно или несколько значений в массиве может повторяться. Необходимо найти любой повтор за O(n), памяти O(1). Исходный массив хранить можно, модифицировать нельзя.

in	out
8	1
12456103	

Задача № 3 (4 балла)

3_1. Дан отсортированный массив целых чисел A[0..n-1] и массив целых чисел B[0..m-1]. Для каждого элемента массива B[i] найдите минимальный индекс минимального элемента массива, равного или превосходящего b: A[k] >= B[i]. Если такого элемента нет, выведите n. Время работы поиска каждого элемента B[i]: O(log(k)).

Формат входных данных.

В первой строчке записаны числа m и n. Во второй и третьей массивы A и B соответственно.

in	out
2 1	1
1 2	
2	
4 3	130
4 3 2 4 5 7 4 6 1	
4 6 1	

3_2. Дан массив целых чисел A[0..n-1]). Известно, что на интервале [0, m] значения массива строго возрастают, а на интервале [m, n-1] строго убывают. Найти m за O(log m).

in	out
10	6

1004567654	
1234567654	
3_3. Даны два массива неповторяющихся целых чис В[0m-1]. n >> m. Найдите их пересечение. Требуем В[m-1] в массиве А В процессе поиска очередного в поиска элемента В[i-1].	ое время работы: O(m * log k), где k - позиция элементта
in	out
5	1 3 5
3	133
1 2 3 4 5	
135	
133	
3_4. Дан отсортированный массив целых чисел A[0 элемента массива B[i] найдите минимальный индекс Время работы поиска для каждого элемента B[i]: O(le	с элемента массива A[k], ближайшего по значению к B[i]
in	out
3	0 1 2
10 20 30	V
3	
9 18 35	
Задача №	♀ 4 (4 балла)
Во всех задачах из следующего списка следует напи	исать структуру данных, обрабатывающую команды
push* и pop*.	
Формат входных данных.	
В первой строке количество команд.	
Каждая команда задаётся как 2 целых числа: a b.	
a = 1 - push front	
a = 2 - pop front	
a = 3 - push back	
a = 4 - pop back	
Для очереди используются команды 2 и 3. Для дека	используются все четыре команды.
· · · · · · · · · · · · · · · · · · ·	ачение. Если команда рор вызвана для пустой структур
данных, то ожидается "-1".	
Формат выходных данных.	
·	ачения совпали. Иначе, если хотя бы одно ожидание н
оправдалось, то напечатать NO.	,
4_1. Реализовать очередь с динамическим буфером	ı.
in	out
3	YES
3 44	
13 50	
3 50 2 44	

2	YES
2 -1	
3 10	
2	NO
3 44 2 66	
2 66	

4_2. Реализовать дек с динамическим буфером.

in	out
3	YES
1 44	
1 44 3 50 2 44	
2 44	
2	YES
2 -1	
1 10	
2	NO
3 44 4 66	
4 66	

4_3. Реализовать очередь с помощью двух стеков. Использовать стек, реализованный с помощью динамического буфера.

in	out	
3	YES	
3 44		
3 50 2 44		
2 44		
2	YES	
2 -1		
3 10		
2	NO	
3 44		
2 66		

4_*. Реализовать очередь при помощи нескольких стеков. Каждая операция рор front и push back должна выполняться за O(n).

Задача № 5 (4 балла)

Решение всех задач данного раздела предполагает использование стека. Способ реализации стека может быть любым (список/динамический массив).

5_1. Скобочная последовательность.

Дан фрагмент последовательности скобок, состоящей из символов (){}[].

Требуется определить, возможно ли продолжить фрагмент в обе стороны, получив корректную последовательность.

<u>Формат входных данных.</u> Строка, содержащая символы (){}[] и, возможно, перевод строки. Максимальная длина строки 10⁶ символов.

<u>Формат выходных данных.</u> Если возможно - вывести минимальную корректную последовательность, иначе - напечатать "**IMPOSSIBLE**".

in	out
OIIIIOD	OUIIODIIII
OUULOO	IMPOSSIBLE
1()}(({}	{((\frac{1}{2})}((\frac{1}{2}))

5 2. Стековые анаграммы.

Пара слов называется стековой анаграмой, если одно слово можно получить из другого, проведя последовательность стековых операций с его буквами (взять очередную букву исходного слова и поместить ее в стек; взять букву из стека и добавить ее в конец выходного слова).

Для заданной пары слов требуется определить, можно ли выполнить последовательность стековых операций, переводящую первое слово во второе.

Формат входных данных. Пара слов, являющихся анаграммой

<u>Формат выходных данных.</u> **YES**, если последовательность стековых операций существует и **NO** в противном случае.

in	out
STOL SLOT	YES
ABC CAB	NO

5 3. Прямоугольники.

Дана последовательность N прямоугольников различной ширины и высоты (w_i , h_i). Прямоугольники расположены, начиная с точки (0, 0), на оси ОХ вплотную друг за другом (вправо). Требуется найти M - площадь максимального прямоугольника (параллельного осям координат), который можно вырезать из этой фигуры.

Время работы - O(n).

<u>Формат входных данных.</u> В первой строке задано число N (1 ≤ N ≤ 8000). Далее идет N строк. В каждой строке содержится два числа: ширина и высота i-го прямоугольника

<u>Формат выходных данных.</u> вывести число M.

in	out
4	1200
30 30 10 40 20 10 10 40	
10 40	
20 10	
10 40	

1 1 3000	3000
5	600
10 10	
10 20	
10 30	
10 40	
10 10	

5 4. Вычисление выражения.

Дано выражение в инфиксной записи. Вычислить его, используя перевод выражения в постфиксную запись. Выражение не содержит отрицительных чисел.

Формат входных данных. Строка, состоящая их символов "0123456789-+*/()"

Гарантируется, что входное выражение корректно, нет деления на 0.

Формат выходных данных.

Значение выражения.

in	out
1 + 2	3
200-(123+34*2)+(48-2)	55

Задача № 6 (4 балла)

Решение всех задач данного раздела предполагает использование кучи.

6_1. Жадина.

Вовочка ест фрукты из бабушкиной корзины. В корзине лежат фрукты разной массы. Вовочка может поднять не более К грамм. Каждый фрукт весит не более К грамм. За раз он выбирает несколько самых тяжелых фруктов, которые может поднять одновременно, откусывает от каждого половину и кладет огрызки обратно в корзину. Если фрукт весит нечетное число грамм, он откусывает большую половину. Фрукт массы 1гр он съедает полностью.

Определить за сколько подходов Вовочка съест все фрукты в корзине.

<u>Формат входных данных.</u> Вначале вводится n - количество фруктов и n строк с массами фруктов. Затем K - "грузоподъемность".

Формат выходных данных. Неотрицательное число - количество подходов к корзине.

in	out
3	4
1 2 2 2	
3	5
4 3 5 6	
7	3
1111111	

6_2. Быстрое сложение.

Для сложения чисел используется старый компьютер. Время, затрачиваемое на нахождение суммы двух чисел равно их сумме.

Таким образом для нахождения суммы чисел 1,2,3 может потребоваться разное время, в зачисимости от порядка вычислений.

 $((1+2)+3) \rightarrow 1+2+3+3=9$

 $((1+3)+2) \rightarrow 1+3+4+2=10$

 $((2+3)+1) \rightarrow 2+3+5+1=11$

Требуется написать программу, которая определяет минимальное время, достаточное для вычисления суммы заданного набора чисел.

<u>Формат входных данных.</u> Вначале вводится n - количество чисел. Затем вводится n строк - значения чисел (значение каждого числа не превосходит 10^{4} 9, сумма всех чисел не превосходит $2*10^{4}$ 9).

Формат выходных данных. Натуральное число - минимальное время.

in	out
5 5 2 3 4 6	45
5 3 7 6 1 9	56

6 3. Тупики.

На вокзале есть некоторое количество тупиков, куда прибывают электрички. Этот вокзал является их конечной станцией. Дано расписание движения электричек, в котором для каждой электрички указано время ее прибытия, а также время отправления в следующий рейс. Электрички в расписании упорядочены по времени прибытия. Когда электричка прибывает, ее ставят в свободный тупик с минимальным номером. При этом если электричка из какого-то тупика отправилась в момент времени X, то электричку, которая прибывает в момент времени X, в этот тупик ставить нельзя, а электричку, прибывающую в момент X+1 — можно. В данный момент на вокзале достаточное количество тупиков для работы по расписанию.

Напишите программу, которая по данному расписанию определяет, какое минимальное количество тупиков требуется для работы вокзала.

<u>Формат входных данных.</u> Вначале вводится n - количество электричек в расписании. Затем вводится n строк для каждой электрички, в строке - время прибытия и время отправления. Время - натуральное число от 0 до 10^9. Строки в расписании упорядочены по времени прибытия.

Формат выходных данных. Натуральное число - минимальное количеством тупиков.

Максимальное время: 50мс, память: 5Мб.

in	out
1 10 20	1
2 10 20 20 25	2
3 10 20 20 25 21 30	2

6_4. Скользящий максимум.

Дан массив натуральных чисел A[0..n), n не превосходит 10⁸. Так же задан размер некотрого окна (последовательно расположенных элементов массива) в этом массиве k, k<=n. Требуется для каждого положения окна (от 0 и до n-k) вывести значение максимума в окне. Скорость работы O(n log n)

<u>Формат входных данных.</u> Вначале вводится n - количество элементов массива. Затем вводится n строк со значением каждого элемента. Затем вводится k - размер окна.

Формат выходных данных. Разделенные пробелом значения максимумов для каждого положения окна.

	<u> </u>
in	out
3 123 2	2 3
9 0 7 3 8 4 5 10 4 6 4	8 8 8 10 10 10