AMENDMENTS TO THE CLAIMS

Please substitute the following pending claims 94, 96-121, 124, 127-170 as replacement claims for the previously-pending version of such claims. In this Amendment G, claims 98, 99, 130 and 133 have been amended.

1-93. (canceled)

94. **(previously presented)** A method for preparing an array of polymeric materials, the method comprising

preparing an array comprising first and second non-biological organic polymers on a substrate, the first and second non-biological organic polymers being copolymers or higher-ordered polymers, the first non-biological organic polymer being different from the second non-biological organic polymer, the array being prepared by a method that includes

delivering a first component and a second component of the first non-biological organic polymer to a first region of a substrate,

delivering a first component and a second component of the second non-biological organic polymer to a second region on the substrate,

polymerizing the delivered first and second components of the first non-biological organic polymer to form the first non-biological organic polymer at the first region of the substrate, and simultaneously

polymerizing the delivered first and second components of the second non-biological organic polymer to form the second non-biological organic polymer at the second region of the substrate.

95. (canceled).

96. (previously presented) The method of claim 94 wherein said non-biological organic polymers are selected from the group consisting of natural polymers, synthetic polymers, cross-linked polymers and non-cross-linked polymers.

- 97. (previously presented) The method of claim 94 wherein said non-biological organic polymers are selected from the group consisting of polyurethanes, polyesters, polycarbonates, polyethyleneimines, polyacetates, polystyrenes, polyamides, polyanilines, polyacetylenes and polypyrroles.
- 98. (currently amended) The method of claim 94 wherein said first component of said first material and said second component of said first material are simultaneously delivered to said first region on the said single substrate.
- 99. (currently amended) The method of claim 94 wherein said first component of said first material and said first component of said second material are simultaneously delivered to said first region and said second region on the said single substrate, respectively.
- 100. (previously presented) The method of claim 94 wherein said first component of said first material and said first component of said second material are the same, but are offered in different concentrations.
- 101. (previously presented) The method of claim 94 wherein said second component of said first material and said second component of said second material are the same, but are offered in different concentrations.
- 102. (previously presented) The method of claim 94 wherein the components of said materials are delivered to said first and second regions on said substrate from a dispenser.
- 103. (previously presented) The method of claim 102 wherein said dispenser is a pipette.

- 104. (rejoined) The method of claim 102 wherein said dispenser is selected from the group consisting of a pulse pressure ink-jet dispenser, a bubble jet ink-jet dispenser and a slit jet ink-jet dispenser.
- 105. (rejoined) The method of claim 94 wherein said steps of delivering said components each comprises the following steps:
 - (i) identifying a reference point on said substrate;
 - (ii) moving a dispenser of said component a fixed distance and direction from said reference point such that said dispenser is positioned approximately above said first region of said substrate;
 - (iii) delivering said component to said first region; and
- (iv) repeating steps (ii) and (iii) for each remaining component for each remaining region.
- 106. (previously presented) The method of claim 94 wherein there is a sufficient amount of space between each of said regions on said single substrate such that said components cannot interdiffuse between said regions.
- 107. (previously presented) The method of claims 94 wherein at least 10 different materials are synthesized on said substrate.
- 108. (rejoined) The method of claims 94 wherein at least 100 different materials are synthesized on said substrate.
- 109. (rejoined) The method of claims 94 wherein at least 1000 different materials are synthesized on said substrate.
- 110. (rejoined) The method of claims 94 wherein at least 10⁶ different materials are synthesized on said substrate.

- 111. **(rejoined)** The method of claims 94 wherein at least 100 different materials are synthesized on said substrate, and each different material is contained within an area of about 1 cm² or less.
- 112. (previously presented) The method of claim 94, further comprising screening the first and second non-biological organic polymers for a property of interest selected from the group consisting of a thermal property, a mechanical property, a morphological property, a chemical property, an optical property, a magnetic property and an electrical property.
- 113. (rejoined) The method of claim 112 wherein said property of interest is an optical property.
- 114. **(rejoined)** The method of claim 113 wherein said optical property is measured using light scattering techniques.
- 115. (previously presented) The method of claim 112 wherein said property of interest is a chemical property.
- 116. (previously presented) The method of claim 112 wherein said array of materials is screened in parallel.
- 117. **(rejoined)** The method of claim 112 wherein said array of materials is screened sequentially.
- 118. **(rejoined)** The method of claim 112 wherein the array of non-biological organic polymers is screened for a thermal property.
- 119. **(rejoined)** The method of claim 112 wherein the array of non-biological organic polymers is screened for a mechanical property.

- 120. **(rejoined)** The method of claim 112 wherein the array of non-biological organic polymers is screened for a morphological property.
 - 121. **(previously presented)** A method for evaluating polymeric materials, the method comprising

delivering monomers of non-biological organic polymers to ten or more regions of a substrate,

simultaneously polymerizing the delivered monomers to form ten or more different non-biological organic polymers on the substrate, the ten or more non-biological organic polymers being copolymers or higher-ordered polymers, and

screening the ten or more non-biological organic polymers for a property of interest selected from the group consisting of a thermal property, a mechanical property, a morphological property, a chemical property, an optical property, a magnetic property and an electrical property.

- 122. (canceled).
- 123. (canceled).
- 124. **(previously presented)** A method for preparing an array of polymeric materials, the method comprising

delivering monomers of a first non-biological organic polymer to a first region on the substrate,

delivering monomers of a second non-biological organic polymer to a second region on the substrate,

polymerizing the delivered monomers of the first non-biological organic polymer, such that the monomers react, without linear, stepwise coupling thereof, to form the first non-biological organic polymer, and simultaneously,

polymerizing the delivered monomers of the second non-biological organic polymer, such that the monomers react, without linear, stepwise coupling thereof, to form the second non-biological organic polymer,

the first and second non-biological organic polymers being copolymers or higherordered polymers, the second non-biological organic polymer being different from the first non-biological organic polymer.

- 125. (canceled).
- 126. (canceled).
- 127. (previously presented) A method for preparing an array of polymeric materials, the method comprising

delivering one or more monomers of a first non-biological organic polymer to a first region on the substrate,

delivering one or more monomers of a second non-biological organic polymer to a second region on the substrate,

polymerizing the delivered monomers of the first non-biological organic polymer, to form the first non-biological organic polymer,

polymerizing the delivered monomers of the second non-biological organic polymer to form the second non-biological organic polymer, and

independently controlling the polymerization reaction conditions at the first region and the second region of the substrate.

- 128. **(rejoined)** The method of claim 127 wherein the first and second non-biological organic polymers are homopolymers.
- 129. (previously presented) The method of claim 127 wherein the first and second non-biological organic polymers are copolymers or higher-ordered polymers.
- 130. (currently amended) The method of claim 127 wherein the delivered monomers first and second components of each of the first and second non-biological organic polymers are simultaneously polymerized.

- 131. (previously presented) The method of claim 127 wherein the temperatures at the first region and the second region of the substrate are independently controlled.
- 132. (previously presented) The method of claim 127 wherein the reaction times at the first region and the second region of the substrate are independently controlled.
- 133. (currently amended) The method of claim 127 wherein the reaction solvents at the first region and the second region of the substrate are independently controlled.
- 134. (previously presented) The method of claim 127 wherein the reaction conditions are controllably varied between the first region and the second region of the substrate.
- 135. (previously presented) A method for preparing an array of polymeric materials, the method comprising

forming ten or more different non-biological organic polymers on a substrate, each of the ten or more non-biological organic polymers being copolymers or higher-ordered polymers comprising a first component and a second component, the first component being the same between the ten or more non-biological organic polymers, the polymers being formed by a method that includes

delivering the first component of the ten or more non-biological organic polymers in a gradient of stoichiometries to ten or more regions of the substrate,

delivering the second component of the ten or more non-biological organic polymers to the ten or more regions of the substrate, and

polymerizing the delivered first and second components of the ten or more non-biological organic polymers to form the ten or more non-biological organic polymers.

136. (previously presented) The method of claim 135 wherein the second component is the same between the ten or more non-biological organic polymers.

- 137. (previously presented) The method of claim 135 wherein the second component is the same between the ten or more non-biological organic polymers, and the second component is delivered in a gradient of stoichiometries to the ten or more regions of the substrate.
- 138. (previously presented) The method of claim 124, further comprising screening the first and second non-biological organic polymers for a property of interest selected from the group consisting of a thermal property, a mechanical property, a morphological property, a chemical property, an optical property, a magnetic property and an electrical property.
- 139. (previously presented) The method of claim 138 wherein the first and second regions of the substrate are defined by dimples, wells or vessels, and the first and second non-biological organic polymers are screened in parallel for a property selected from the group consisting of a thermal property, a mechanical property, and a chemical property.
- 140. **(previously presented)** The method of claim 127, further comprising: screening the first and second non-biological organic polymers for a property of interest selected from the group consisting of a thermal property, a mechanical property, a morphological property, a chemical property, an optical property, a magnetic property and an electrical property.
- 141. (previously presented) The method of claim 140 wherein the first and second regions of the substrate are defined by dimples, wells or vessels, and the first and second non-biological organic polymers are screened in parallel for a property selected from the group consisting of a thermal property, a mechanical property, and a chemical property.
 - 142. (previously presented) The method of claim 135, further comprising:

screening the ten or more non-biological organic polymers for a property of interest selected from the group consisting of a thermal property, a mechanical property, a morphological property, a chemical property, an optical property, a magnetic property and an electrical property.

- 143. **(previously presented)** The method of claim 142 wherein the ten or more regions of the substrate are defined by dimples, wells or vessels, and the ten or more non-biological organic polymers are screened in parallel for a property selected from the group consisting of a thermal property, a mechanical property and a chemical property.
- 144. (previously presented) The method of claim 135 or 142 wherein said delivered components are simultaneously polymerized.
- 145. (previously presented) The method of claim 124, 127, 138 or 140 wherein at least 10 different materials are synthesized on said substrate.
- 146. **(rejoined)** The method of claim 121, 124, 127, 135, 138, 140 or 142 wherein at least 100 different materials are synthesized on said substrate.
- 147. **(rejoined)** The method of claim 121, 124 or 138 wherein at least 1000 different materials are synthesized on said substrate.
- 148. (rejoined) The method of claim 121, 124 or 138 wherein at least 10⁶ different materials are synthesized on said substrate.
- 149. (rejoined) The method of claim 121, 124 or 138 wherein at least 100 different materials are synthesized on said substrate, and each different material is contained within an area of about 1 mm² or less.
- 150. (rejoined) The method of claim 121, 138, 140 or 142 wherein said property of interest is an optical property.

- 151. (previously presented) The method of claim 121, 138, 140 or 142 wherein said property of interest is a chemical property.
- 152. (previously presented) The method of claim 121, 138, 140 or 142 wherein said array of materials is screened in parallel.
- 153. (rejoined) The method of claim 121, 138, 140 or 142 wherein said array of materials is screened sequentially.
- 154. **(rejoined)** The method of claims 121, 138, 140 or 142 wherein the array of non-biological organic polymers is screened for a thermal property.
- 155. **(rejoined)** The method of claims 121, 138, 140 or 142 wherein the array of non-biological organic polymers is screened for a mechanical property.
- 156. **(rejoined)** The method of claims 121, 138, 140 or 142 wherein the array of non-biological organic polymers is screened for a morphological property.
- 157. (rejoined) The method of claim 121, 124, 127 or 135 wherein at least 100 different materials are synthesized on said substrate, and each different material is contained within an area of about 1 cm² or less.
- 158. (previously presented) The method of claim 94, 121, 124, 127 or 135 wherein the substrate is a plate-type substrate.
- 159. (**rejoined**) The method of claim 94, 121, 124, 127 or 135 further comprising pressurizing with a gas during polymerization.

160. (rejoined) A method for evaluating polymeric materials, the method comprising

delivering one or more monomers of non-biological organic polymers to two or more regions of a substrate, the two or more regions of the substrate being defined by dimples, wells or vessels,

simultaneously polymerizing the delivered monomers such that the monomers react, without linear, stepwise coupling thereof, to form two or more different non-biological organic polymers on the substrate,

controllably varying the reaction conditions between the two or more regions of the substrate during polymerization,

pressurizing with a gas during polymerization, and

screening the two or more non-biological organic polymers for a property of interest selected from the group consisting of a thermal property, a mechanical property and a chemical property.

- 161. (rejoined) The method of claim 160 wherein the substrate is a plate-type substrate having ten or more regions, each region having an area of about 1 cm², and at least ten different non-biological polymers are formed on the substrate.
- 162. **(rejoined)** The method of claim 160 wherein the reactant components are pressurized under an inert atmosphere during polymerization.
- 163. **(previously presented)** A method of evaluating an array of polycarbonate polymer materials, the method comprising

preparing an array comprising ten or more polycarbonate polymers on a substrate, the ten or more polycarbonate polymers being different from each other, the array being prepared by a method that includes

simultaneously delivering a first component and a second component of a first polycarbonate polymer to a first region of the substrate, simultaneously delivering a first component and a second component of a second polycarbonate polymer to a second region of the substrate, simultaneously delivering a first component and a second component of a

third polycarbonate polymer to a third region of the substrate, simultaneously delivering a first component and a second component of a fourth polycarbonate polymer to a fourth region of the substrate, simultaneously delivering a first component and a second component of a fifth polycarbonate polymer to a fifth region of the substrate, simultaneously delivering a first component and a second component of a sixth polycarbonate polymer to a sixth region of the substrate, simultaneously delivering a first component and a second component of a seventh region of the substrate, simultaneously delivering a first component and a second component of an eight polycarbonate polymer to an eighth region of the substrate, simultaneously delivering a first component of a ninth polycarbonate polymer to a ninth region of the substrate, simultaneously delivering a first component and a second component of a ninth polycarbonate polymer to a ninth region of the substrate, simultaneously delivering a first component and a second component to a tenth region of the substrate,

simultaneously polymerizing the delivered first and second components of each of the ten or more polycarbonate polymers to form the ten or more polycarbonate polymers at the ten or more regions of the substrate, respectively,

controlling the polymerization reaction conditions independently for each of the ten or more regions, and

screening the polymers in parallel for a chemical property.

- 164. (previously presented) The method of claim 163 wherein the first and second polycarbonate polymers are screened for one or more of the properties selected from the group consisting of a thermal property, a mechanical property, a morphological property, an optical property and a chemical property.
- 165. (previously presented) The method of claim 163 wherein the first and second polycarbonate polymers are screened for one or more of the properties selected from the group consisting of a thermal property, a mechanical property and a chemical property.

- 166. (previously presented) The method of claims 94, 127 or 135 further comprising mixing the delivered components at the first and second regions of the substrate during the polymerization reaction.
- 167. (previously presented) The method of claims 94, 127 or 135 further comprising heating the delivered components at the first and second regions of the substrate during the polymerization reaction.
- 168. (previously presented) The method of claims 94, 127 or 135 further comprising

mixing the delivered components at the first and second regions of the substrate simultaneously during the polymerization reaction, and

heating the delivered components at the first and second regions of the substrate simultaneously during the polymerization reaction.

169. (previously presented) The method of claims 94, 127 or 135 further comprising

pressurizing with a gas during polymerization, and

mixing the delivered components at the first and second regions of the substrate simultaneously during the polymerization reaction.

170. (previously presented) The method of claims 94, 127 or 135 further comprising

pressurizing with a gas during polymerization,

mixing the delivered components at the first and second regions of the substrate simultaneously during the polymerization reaction, and

heating the delivered components at the first and second regions of the substrate simultaneously during the polymerization reaction.