

Apr 19, 2022

aa-Onepot-seq

Dongju Shin¹, JungWon Choi¹, Ji Hyun Lee^{2,3}, Duhee Bang¹

¹Department of Chemistry, Yonsei University, Seoul, Korea;

²Department of Clinical Pharmacology and Therapeutics, College of Medicine, Kyung Hee University, Seoul, Korea;

³Department of Biomedical Science and Technology, Kyung Hee University, Seoul, Korea

Yonsei synbio

JungWon Choi

aa-Onepot-seq follows protocol below:

- 1. Cells and beads preparation and incubation
- 2. Transfer and Scatter Cell-bead complexes
- 3. Cell lysis and beads isolation
- 4. cDNA synthesis
- 5. cDNA library amplification
- 6. NGS library preparation

Dongju Shin, JungWon Choi, Ji Hyun Lee, Duhee Bang 2022. aa-Onepot-seq. **protocols.io**

https://protocols.io/view/aa-onepot-seq-b7mtrk6n

_____ protocol,

Apr 15, 2022

Apr 19, 2022

60819

This protocol is modified based on Onepot-seq protocol. https://www.protocols.io/view/onepot-seq-b5u3q6yn

Onepot-seq protocol follows steps below:

- 1. Cells and beads preparation
- 2. Scatteration of beads and cells in well
- 3. Cell lysis and beads isolation
- 4. cDNA synthesis
- 5. cDNA library amplification
- 6. NGS library preparation

aa-Onepot-Seq protocol requires additional steps in step1 and 2 from Onepot-Seq protocol

The subsequent process is same as Onepot-seq protocol.

aa-Onepot-seq follows protocol below:

- 1. Cells and beads preparation and incubation
- 2. Transfer and Scatter Cell-bead complexes
- 3. Cell lysis and beads isolation
- 4. cDNA synthesis
- 5. cDNA library amplification
- 6. NGS library preparation

Therefore, this protocol describes only the parts added to step 1 and 2.

- Poly T beads (Chemgene, MACOSKO-2011-10(V+))
- PBSB: PBS supplemented with 0.1% BSA
- incubation buffer: 6% FicoII PM-400, 20mM EDTA, 0.2M Tris pH 7.5

Α	В
1ml of Incubation buffer composition	
H20	460 μl
20% Ficoll PM-400 (GE	300 μΙ
healthcare)	
500mM EDTA (Life	40 μΙ
Technologies)	
1M Tris pH 7.5 (Sigma)	200 μΙ
Total	1000 μΙ

- Lysis buffer: 1:1 mixture of incubation buffer and 20% Sarkosyl
- 6X SSC

- TE-SDS: TE buffer + 0.5% SDS

- TE-TW: TE buffer + 0.01% Tween-20

- 10mM Tris pH8.0

- DNase free Water (DW)

- Reverse Transcription mix (RT mix)

Α	В	
RT mix composition		
H20	80 μΙ	
Maxima 5X RT buffer	40 μΙ	
20% FicoII PM-400	40 μΙ	
10mM dNTPs	20 μΙ	
100uM TSO	5 μΙ	
RNase inhibitor	5 μΙ	
Maxima H- RTase	10 μΙ	
Total	200 μΙ	

- Exonuclease I mix (Exo I mix)

Α	В
Exonuclease mix composition	
10X Exolbuffer	20 μΙ
H20	170 μΙ
Exol	10 μΙ
Total	200 μΙ

- AMPure XP beads

- pluriSelect strainer (20µm)

- 10ml syringe

Cells and beads preparation and incubation

1 Prepare 1X10⁶ cells to be stained

2 Add ⊒100 μL of staining buffer to cell pellet and incubate for ⊙00:05:00 at δ4°C

5m

- 3 Add $\mathbf{2}\mu\mathbf{L}$ ADT Antibody and incubate for $\mathbf{000:30:00}$ at $\mathbf{8}\mathbf{4}\mathbf{^{\circ}C}$
- 4 Centrifuge and discard staining buffer (Determine the centrifugation rcf depending on the cell line)
- 5 Wash twice with **□1 mL** PBS
- 6 Cell count using hemocytometer
- 7 Dilute cells with PBSB (1,000 cells/μl is recommended) (PBSB : PBS supplemented with 0.1% BSA)
- 8 Wash Poly T beads 3 times with **1 mL** of PBSB
- 9 Suspend beads in PBSB (20,000 beads in $\blacksquare 100 \, \mu L$ PBSB)
- 10 Add 20,000 beads to 96 well plate
- 11 Add 10,000 cells to beads and incubate for 1h at 4C * In PBMC experiment, considering the ratio of each cell types of PBMC (Since antibody efficiencies vary by cell type, the number of cells should be adjusted for each experiment)

Transfer and Scatter Cell-bead complexes

12

Transfer $\blacksquare 100~\mu L$ of solutions (containing bead-cell complexes) to 20um pluriSelect 20 μL strainer

(Check the picture below for strainer and sytinge setting)

- Wash 3 times with **□2 mL** PBSB using syringe (Pulling piston with low pressure to prevent bead-cell complex dissociation)
- 14 Invert the strainer and transfer bead-cell complexes to 12 well plate with adding of □1 mL incubation buffer (Incubation buffer : 6% Ficoll PM-400, 20mM EDTA, 0.2M Tris pH 7.5)
- $15 \quad \text{Gently pipette } \; \textcolor{red}{\blacksquare 1} \; \text{mL} \; \text{ of incubation buffer to spread bead-cell complexes evenly}.$
- 16 Wait © 00:05:00 to sink the bead-cell complexes down to the bottom

5m

Subsequent process

17 The subsequent process is same as Onepot-seq protocol.

