NLNP Praktikum 1

Robin Baudisch, Merlin Kopfmann, Maximilian Neudert

Inhaltsverzeichnis

A1																											2
	a)					 																 					2
	b)					 							 									 					2

A1

a)

Im folgenden sei $E(\bullet) = E(\bullet|x=1)$. Wir rechnen:

$$E[(Y - \hat{b}x)^{2}] = E[(Y - E(Y) + E(Y) - \hat{b}x)^{2}]$$
(1)

$$= E[(Y - E(Y))^{2} + 2(Y - E(Y))(E(Y) - \hat{b}x) + (E(Y) - \hat{b}x)^{2}]$$
 (2)

$$= V(Y) + E[(E(Y) - \hat{b}x)^{2}]$$
 (3)

$$= V(bx + \varepsilon) + E[(E(bx + \varepsilon) - \hat{b}x)^{2}]$$
(4)

$$= V(bx) + V(\varepsilon) + E[(E(bx) + E(\varepsilon) - \hat{b}x)^{2}]$$
(5)

$$= 0 + \sigma^2 + E[(2 + 0 - 2.2)^2] = \sigma^2 + 0.04 = 4.04$$
 (6)

b)

Schaut man sich das Ergebnis in "a)" an, so stellt man fest, dass für den Punkt x=1 der irreduceable Error σ^2 bereits so groß ist, dass die Abweichung in \hat{b} weniger ins Gewicht fällt. Deswegen fällt hier der Unterschied mit 0.04 zum optimalen Modell verhältnismäßig klein aus.