Applied Economic Forecasting

2. Exploring & Visualizing Time series

- 1 Time series in R
- 2 Time plots
- 3 Seasonal plots
- 4 Scatterplots
- 5 Lag plots and autocorrelation
- 6 White Noise Process

Section 1

Time series in R

What is a Time Series?

- A time series can be thought of as a list of observations (the measurements), along with some information about what times those numbers were recorded (the index).
- A basic way of storing a time series is as a ts object.
- The fpp3 package stores this information as a tsibble object.

ts objects and ts function

Let us get familiar with ts objects before tackling tstibble objects.

Example

Year	Obs.
2012	123
2013	39
2014	78
2015	52
2016	110

 $y \leftarrow ts(c(123,39,78,52,110), start=2012)$

ts objects and the ts function

For observations that are more frequent than once per year, we need to add a frequency argument. We usually think of the frequency argument as the number of time the series will be observed (collected) in a year.

E.g., monthly data (frequency = 12) stored as a numerical vector z:

```
y <- ts(z, frequency=12, start=c(2003, 1))</pre>
```

ts objects and ts function

'ts(data, frequency, start, end)'

Type of data	frequency	start example
Annual	1	1995
Quarterly	4	c(1995,2)
Monthly	12	c(1995,9)
Daily	$7 \ or \ 365.25$	$or\ c(1995,234)$
Weekly	52.18	c(1995,23)
Hourly	$24\ or\ 168\ or\ 8{,}766$	1
Half-hourly	$48\ or\ 336\ or\ 17{,}532$	1
Daily Weekly Hourly	7 or 365.25 52.18 24 or 168 or 8,766	$or\ c(1995,234)$

We do not need to always specify both the start and end arguments. In many cases, just one will suffice.

Let's Practice!!!

- Set a seed as 10³
- ② Generate a random normal variable (x) with 200 observations, mean = 75, and sd = 5
- Object ending December 2018 (x.ts)
- Now repeat step 3 with weekly, monthly and annual frequencies (How about using a loop?)

tsibble function

The tsibble function offers a nice mix between the ts objects/function and the tidyverse package.

Let's assume I have the following data:

Year	GDP
2010	155
2011	134
2012	80
2013	100
2014	120
2015	110

The tsibble function

We can record this as a tsibble object using the following syntax:

```
## # A tsibble: 6 x 2 [1Y]

## Year GDP

## <int> <dbl>
## 1 2010 155

## 2 2011 134

## 3 2012 80

## 4 2013 100

## 5 2014 120

## 6 2015 110
```

The tsibble() function

Similar to the ts() function earlier, we have the ability to work with variables observed at higher frequencies, say quarterly, monthly, daily, etc...

For instance:

Month	Observation	
2020 Jan	50	
2020 Feb	23	
$2020~\mathrm{Mar}$	45	
$2020~\mathrm{Apr}$	67	
2020 May	78	
2020 Jun	98	

The tsibble() function

We would first need to convert our dataset to a tsibble object.

```
z %>% mutate(Month = yearmonth(Month)) %>%
as_tsibble(index = Month)
```

```
## # A tsibble: 6 x 2 [1M]
        Month Observation
##
##
        <mth>
                    <dbl>
                       50
  1 2020 Jan
## 2 2020 Feb
                       23
  3 2020 Mar
                       45
  4 2020 Apr
                      67
  5 2020 May
                       78
## 6 2020 Jun
                       98
```

Note:

It is worth mentioning the difference between the as_tsibble function in the code above and tsibble. The former is used when you would like to convert a dataframe or variable that *already exists*. tsibble is usually reserved for creating a new variable.

Other Classes we might encounter:

Frequency	Function
Annual	start:end
Quarterly	yearquarter()
Monthly	yearmonth()
Weekly	yearweek()
Daily	$as_date(), ymd()$
Sub-daily	as_datetime(), ymd_hms()

Working with tsibble objects

In many instances, we will be required to forecast a single (or subset of) variable(s) from our dataset. This is where dplyr functions such as mutate(), filter(), and select() come in handy.

For example, say we are interested in the winning times in the Olympic track events stored in the olympic_running data.

olympic_running

```
## # A tsibble: 312 x 4 [4Y]
## # Key: Length, Sex [14]
##
     Year Length Sex Time
##
     <int> <int> <chr> <dbl>
   1 1896
            100 men 12
##
##
   2 1900
            100 men 11
   3 1904
            100 men 11
##
     1908
            100 men 10.8
##
            100 men 10.8
##
     1912
```

Working with tsibble objects

We can filter to see only the female races.

```
## # A tsibble: 104 x 4 [4Y]
## # Key: Length, Sex [7]
##
      Year Length Sex
                         Time
##
     <int> <int> <chr> <dbl>
##
   1
      1928
              100 women 12.2
##
   2
      1932
              100 women 11.9
   3
      1936
              100 women 11.5
##
##
   4
      1940
              100 women
                        NA
##
   5
      1944
              100 women
                        NA
##
   6
      1948
              100 women 11.9
##
   7
      1952
              100 women 11.5
##
   8
      1956
              100 women 11.5
##
   9
      1960
              100 women
                         11
## 10
      1964
              100 women
                     Applied Economic Forecasting
```

olympic running %>% filter(Sex == "women")

Exercise Time

Let us explore a few exercises for selecting, mutating, and summarizing the data.

Section 2

Time plots

```
mutate(Passengers = Passengers/1000)

melsyd %>% autoplot(Passengers, col = "red") +
  labs(title = "Ansett airlines Economy class",
        subtitle = "Melbourne-Sydney", y = "Passengers ('000)")
```

filter(Airports == "MEL-SYD", Class == "Economy") %>%

Ansett airlines Economy class Melbourne–Sydney

melsyd <- ansett %>%


```
a10 <- PBS %>% filter(ATC2 == "A10") %>%
   summarise(TC = sum(Cost)/1e6)

autoplot(a10, TC, col = "darkgreen") +
   labs(y = "$M", title = "Antidiabetic drug sales")
```

Antidiabetic drug sales

Let's Practice

- Using the data from our earlier exercise: Plot x.ts at the monthly, quarterly and yearly frequencies.
- Create plots of the following time series: Bricks from aus_production, Lynx from pelt, Close from gafa_stock. Redo your plot for Close focusing in on GOOG instead.
 - Use help() or ?seriesName to find out about the data in each series.
 - For each of the plots, be sure to modify the axis labels and title.

Section 3

Seasonal plots

Seasonal plots

Seasonal plot: Antidiabetic drug sales

Seasonal plots

- Data plotted against the individual "seasons" in which the data were observed. (In this case a "season" is a month.)
- Something like a time plot except that the data from each season are overlapped.
- Enables the underlying seasonal pattern to be seen more clearly, and also allows any substantial departures from the seasonal pattern to be easily identified.
- In R: gg_season()

Seasonal polar plots

```
a10 %>% gg_season(TC, labels = "both", polar = TRUE) +
labs( y = "$M", title = "Seasonal plot: Antidiabetic drug sales")
```

Seasonal plot: Antidiabetic drug sales

Multiple Seasonal Plots

```
# Plot daily pattern
vic_elec %>% gg_season(Demand, period = "day") +
   theme(legend.pos = "none") +
   labs(title = "Electricity Demand", subtitle = "Victoria - Daily",
        y = "MWh")
```

Electricity Demand Victoria – Daily

Electricity Demand

Seasonal subseries plots

```
a10 %>% gg_subseries(TC) +
labs(y = "$M", title= "Subseries plot: Antidiabetic drug sales")
```


Seasonal subseries plots

- Data for each season collected together in time plot as separate time series.
- Enables the underlying seasonal pattern to be seen clearly, and changes in seasonality over time to be visualized.
- In R: gg_subseries()

Australian Tourism Data

Quarter [1Q]

Let's Practice!!!

The aus_arrivals data set reports quarterly international arrivals to Australia from Japan, New Zealand, UK, and the US.

- Using the autoplot() and gg_season(), and gg_subseries() functions, discuss and compare the arrivals from each of these.
- Can you identify any unusual observations?

Section 4

Scatterplots

Scatterplots: Relationship Between Time Series

p1 <- vic elec %>% filter(year(Date) == 2014) %>% autoplot(Demand) +

Scatterplots are commonly used tools for visualizing the relationship between 2 variables. Take the text example of Electricity Demand and Temperature in Victoria, Australia:

```
labs(title = "Electricity Demand in Victoria (2014)".
        subtitle = "Half-Hourly", y = "GW")
p2 <- vic_elec %>% filter(year(Date) == 2014) %>% autoplot(Temperature) +
  labs(title = "Temperature in Victoria (2014)", subtitle = "Half-Hourly",
        v = "GW")
gridExtra::grid.arrange(p1,p2, ncol = 1)
     Electricity Demand in Victoria (2014)
      Half-Hourly
  8000 -
€ 6000 -
  4000 -
                                                 Jul 2014
       Jan 2014
                            Apr 2014
                                                                      Oct 2014
                                                                                            Jan 2015
                                                Time [30m]
    Temperature in Victoria (2014)
    Half-Hourly
  40 -
  30
≥ 30·
  10 -
```

Jul 2014

Time [30m]

Oct 2014

Jan 2015

Jan 2014

Electricity Demand in Victoria (2014)

Temperature in Victoria (2014) Half-Hourly

What would you make of this relationship?

Scatterplots: Relationship Between Time Series

- Higher temperatures are associated with higher demand for electricity.
- Some high demand for heating on the lower end of the graph.

Measuring the strength of this relationship?

• For this, we will use the **correlation coefficient**:

$$\rho_{xy} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2} \sqrt{\sum_{i=1}^{n} (y - \bar{y})^2}} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sigma_x^2} \sqrt{\sigma_y^2}}, \quad -1 \le \rho_{xy} \le 1$$

- $\bullet\,$ Negative values indicate a negative $\it linear$ relationship between x and y.
- \bullet Positive values indicate a positive linear relationship between x and y.

```
visitors <- tourism %>% group_by(State) %>%
  summarise(Trips = sum(Trips))

visitors %>% ggplot(aes(x = Quarter, y = Trips)) +
  geom_line() +
  #plot grid by state and with indep. y-axis scalings
  facet_grid(vars(State), scales = "free_y") +
  labs(title = "Australian domestic tourism", y = "Overnight trips ('000)")
```

Australian domestic tourism

Scatterplots (Multiple Series) {plain}

We can visualize the correlation between multiple series using a scatterplot matrix. In R, we will use the ggpairs() command from the GGally package.

```
visitors %>% pivot_wider(values_from = Trips, names_from = State) %>%
GGally::ggpairs(col = 2:ncol(.))
```


Section 5

Lag plots and autocorrelation

Example: Beer production

```
recent_production <- aus_production %>%
  filter(year(Quarter) >= 2000)
recent_production %>% gg_lag(Beer, geom = "point") +
  labs(x = "lag(Beer, k)", title = "Australian Beer Production")
```

Australian Beer Production

Lagged scatterplots

- Each graph shows y_t plotted against y_{t-k} for different values of k.
- Strongly positive relationships at lags 4 and 8, reflecting the strong seasonality in the data.
- The negative relationship at lags 2 and 6 occurs because peaks (in Q4) are plotted against troughs (in Q2).
- The autocorrelations are the correlations associated with these scatterplots.

Covariance and correlation: measure extent of linear relationship between two variables (y and X).

Autocovariance and autocorrelation: measure linear relationship between lagged values of a time series y.

We measure the relationship between:

- y_t and y_{t-1}
- y_t and y_{t-2}
- y_t and y_{t-3}
- etc.

Let us denote the sample autocovariance at lag k as γ_k and the sample autocorrelation at lag k by ρ_k . Then define

$$\gamma_k = \frac{1}{T} \sum_{t=k+1}^T (y_t - \bar{y})(y_{t-k} - \bar{y})$$
 and
$$\rho_k = \frac{\gamma_k}{\gamma_0}$$

• It is easy to see that γ_0 is actually the variance of y. Let k = 0 then:

$$\gamma_0 = \frac{1}{T} \sum_{t=1}^{T} (y_t - \bar{y})(y_t - \bar{y}) = \frac{1}{T} \sum_{t=1}^{T} (y_t - \bar{y})^2$$

- ρ_1 indicates how successive values of y relate to each other
- ρ_2 indicates how y values two periods apart relate to each other
- ρ_k is almost the same as the sample correlation between y_t and y_{t-k} .

Results for first 9 lags for the Beer production data:

```
recent_production %>% ACF(Beer, lag_max = 9)
```

```
## # A tsibble: 9 x 2 [1Q]
##
          lag
                   acf
     <cf_lag> <dbl>
##
## 1
           10 -0.0530
## 2
           20 -0.758
## 3
           3Q -0.0262
## 4
           40 0.802
## 5
           5Q -0.0775
## 6
           6Q -0.657
## 7
           7Q 0.00119
## 8
           8Q 0.707
## 9
           9Q -0.0888
```

recent_production %>% ACF(Beer, lag_max = 24) %>% autoplot()

We again have confirmation that:

- ρ_4 higher than for the other lags. This is due to **the seasonal** pattern in the data: the peaks tend to be 4 quarters apart and the troughs tend to be 2 quarters apart.
- ρ_2 is more negative than for the other lags because troughs tend to be 2 quarters behind peaks.
- Together, the autocorrelations at lags 1, 2, ..., make up the autocorrelation function or ACF.
- The plot is known as a **correlogram**

Trend and seasonality in ACF plots

- When data have a trend, the autocorrelations for small lags tend to be large (near 1) and positive.
- When data are seasonal, the autocorrelations will be larger at the seasonal lags (i.e., at multiples of the seasonal frequency)
- When data are trended and seasonal, you see a combination of these effects.

Google Stock Prices

gafa_stock %>% filter(Symbol == "GOOG") %>% autoplot(Close)

Aus Beer production

aus_production %>% filter(year(Quarter)> 1990) %>% autoplot(Beer)

aus_production %>% filter(year(Quarter)> 1990) %>%
 ACF(Beer) %>% autoplot()

Aus Antidiabetic Sales

a10 %>% autoplot(TC)

a10 %>% ACF(TC, lag_max = 48) %>% autoplot()

Section 6

White Noise Process

White Noise Process

A time series that displays no autocorrelation is called **white noise**.

Google Returns

dgoog %>% ACF(return) %>% autoplot() +
labs(title = "ACF: Google Price Returns")

WN: What to look for

- We expect each autocorrelation to be **close to zero**.
 - They will not be exactly equal to zero as there is some random variation.
- We expect 95% of the spikes in the ACF to lie within $\pm 2/\sqrt{T}$, where T is the length of the time series (number of observations).
- These bounds are represented as the blue dashed lines above. If
- one or more large spikes are outside these bounds, or
- if substantially more than 5% of spikes are outside these bounds, then the series is probably not white noise.

White Noise Processes: Formally

A sequence $\{y_t\}$ is a **white noise** process if each value in the sequence has:

- **1** A mean of zero, such that $\mathbf{E}(y_t) = 0, \forall t$
- ② A constant (finite) variance, such that $\mathbf{var}(y_t) = \sigma^2, \forall t$
- § Is uncorrelated with all other realizations (past values), i.e. There is no serial correlation. Such that $\rho_k=0, \forall\, k\neq 0$

A slightly stronger condition is that they are independent from one another; this is an "independent white noise process."

Note: 1. and 2. are under the assumption that $\{y_t\}$ is normally distributed. Otherwise, each value in the sequence should have a finite mean and variance.

Do you Agree??

A linear combination of white noises **IS necessarily** also a White noise sequence.

Example: White noise

Assume that

$$y_t = \varepsilon_t + c_1 \varepsilon_{t-1}, \ \varepsilon_t \sim WN(0, \sigma^2), \ c_1 \neq 0$$

Show that:

- $\mathbf{E}(y_t) = 0$ (Constant Mean)
- $\mathbf{var}(y_t) = (1 + c_1^2) \cdot \sigma^2$ (Constant Variance)
- Only γ_0 and γ_1 are non-zero, and $\rho_1 = \frac{c_1}{(1+c_1^2)}$
 - That is, there is autocorrelation at lag 1, and none at any other lag.

Final Words: ACF

The kth order of the autocovariance is the covariance of y_{t} with its own kth lag:

$$Cov(y_t, y_{t-1}) = \gamma(1), \quad k = 1$$

$$Cov(y_t, y_{t-2}) = \gamma(2), \quad k = 2$$

$$\vdots$$

$$Cov(y_t, y_{t-k}) = \gamma(k), \quad k = k$$

Note that

$$Cov(y_t, y_{t-0}) = Var(y_t) = \gamma(0), \quad k = 0$$

$$ACF = \frac{Cov(y_t, y_{t-k})}{\sqrt{Var(y_t)Var(y_{t-k})}} = \frac{\gamma(k)}{\gamma(0)} = \rho(k)$$

Final Words: ACF

$$\rho_{0} = \frac{Cov(Y_{t}, Y_{t-0})}{\sqrt{Var(y_{t})Var(y_{t-0})}} = \frac{\gamma(0)}{\gamma(0)} = 1$$

$$\rho_{1} = \frac{Cov(Y_{t}, Y_{t-1})}{\sqrt{Var(y_{t})Var(y_{t-1})}} = \frac{\gamma(1)}{\gamma(0)}$$

$$\rho_{2} = \frac{Cov(Y_{t}, Y_{t-2})}{\sqrt{Var(y_{t})Var(y_{t-2})}} = \frac{\gamma(2)}{\gamma(0)}$$

$$\vdots$$

$$\rho_{k} = \frac{Cov(Y_{t}, Y_{t-k})}{\sqrt{Var(y_{t})Var(y_{t-k})}} = \frac{\gamma(k)}{\gamma(0)}$$

$$\vdots$$

Let's Practice!!!

In this lesson, we explored the following graphics functions:

- autoplot
- gg_season
- gg_subseries
- gg_lag
- ACF

Using these functions, as appropriate, explore the meat production in Australia dataset, aus_livestock. Your interest is in the Pigs slaughtered in Western Australia.

- You might need to first view the data to get familiar with the structure.
- The distinct() function should come in handy.
- Can you spot any seasonality, cycle, and trend? What do you learn about the series?