MATH 5473 Homework6 LUO Yuanhui

3. Nyström method: In class, we have shown that every manifold learning algorithm can be regarded as Kernel PCA on graphs: (1) given N data points, define a neighborhood graph with N nodes for data points; (2) construct a positive semidefinite kernel K; (3) pursue spectral decomposition of K to find the embedding (using top or bottom eigenvectors). However, this approach might suffer from the expensive computational cost in spectral decomposition of K if N is large and K is non-sparse, e.g. ISOMAP and MDS.

To overcome this hurdle, Nyström method leads us to a scalable approach to compute eigenvectors of low rank matrices. Suppose that an N-by-N positive semidefinite matrix $K \succeq 0$ admits the following block partition

$$K = \begin{bmatrix} A & B \\ B^T & C \end{bmatrix}. \tag{1}$$

where A is an n-by-n block. Assume that A has the spectral decomposition $A = U\Lambda U^T$, $\Lambda = \operatorname{diag}(\lambda_i)$ ($\lambda_1 \geq \lambda_2 \geq \ldots \lambda_k > \lambda_{k+1} = \ldots = 0$) and $U = [u_1, \ldots, u_n]$ satisfies $U^T U = I$.

(a) Assume that $K = XX^T$ for some $X = [X_1; X_2] \in \mathbb{R}^{N \times k}$ with the block $X_1 \in \mathbb{R}^{n \times k}$. Show that X_1 and X_2 can be decided by:

$$X_1 = U_k \Lambda_k^{1/2},\tag{2}$$

$$X_2 = B^T U_k \Lambda_k^{-1/2},\tag{3}$$

where $U_k = [u_1, \dots, u_k]$ consists of those k columns of U corresponding to top k eigenvalues λ_i $(i = 1, \dots, k)$.

Proof: Since
$$A = U \wedge U^T$$
, $\Lambda = d \log (\lambda_i)$, $\lambda_1 > \lambda_2 > \dots > \lambda_{K} > \lambda_{K+1}$
 $= \dots = 0$, we have $A = U_K \wedge_K U_K^T$, $\Lambda_K = d \log (\lambda_1 \dots \lambda_{K})$
 $X \times X^T = \begin{pmatrix} X_1 \times X^T & X_1 \times X^T \\ X_2 \times X^T & X_2 \times X^T \end{pmatrix} = \begin{pmatrix} A & B \\ B^T & C \end{pmatrix}$

On the one hand, $X_1X_1^T = A = U_k \Lambda_k U_k^T = (U_k \Lambda_k^{\frac{1}{2}})[U_k \Lambda_k^{\frac{1}{2}}]^T$, then $X_1 = U_k \Lambda_k^{\frac{1}{2}}$

On the other hand, $X_2X_1^T = X_2 \Lambda_k^{\frac{1}{2}} U_k^{-1} = B^T$, then

(b) Show that for general $K \succeq 0$, one can construct an approximation from (2) and (3),

$$\hat{K} = \begin{bmatrix} A & B \\ B^T & \hat{C} \end{bmatrix}. \tag{4}$$

where $A = X_1 X_1^T$, $B = X_1 X_2^T$, and $\hat{C} = X_2 X_2^T = B^T A^{\dagger} B$, A^{\dagger} denoting the Moore-Penrose (pseudo-) inverse of A. Therefore $\|\hat{K} - K\|_F = \|C - B^T A^{\dagger} B\|_F$. Here the matrix $C - B^T A^{\dagger} B =: K/A$ is called the (generalized) Schur Complement of A in K.

Proof: Based on $X_1 = U_k \Lambda_k^{\frac{1}{2}}$, $X_2 = B^T U_k \Lambda_k^{-\frac{1}{2}}$ from (α) , we can construct $\hat{K} = XX^T = \begin{pmatrix} X_1 X_1^T & X_1 X_2^T \\ Y_2 X_1^T & X_2 X_2^T \end{pmatrix} = \begin{pmatrix} A & B \\ B^T & X_2 X_2^T \end{pmatrix}$

and $\chi_2 \chi_2^T = B^T U_k \Lambda_k^T U_k^T B$

Let $G = U_k \wedge_k U_k^T$, then it's easy to verify that $GAG = G \ , \ AGA = A \ , \ (AG)^T = I = AG \ , \ (GA)^T = I = GA$

By the definition of Moore-Penrose inverse, we have

At= and it's unique

Therefore, $||k-\hat{k}||_F = \sqrt{||A-A||_F^2 + ||B-B||_F^2 + ||B^T-B^T||_F^2 + ||C-B^TA^TB||_F^2}$ $= ||C-B^TA^TB||_F$

(c) Explore Nyström method on the Swiss-Roll dataset (http://yao-lab.github.io/data/swiss-roll_data.mat contains 3D-data X; http://yao-lab.github.io/data/swissroll.m is the matlab code) with ISOMAP. To construct the block A, you may choose either of the following:

n random data points;

*n landmarks as minimax k-centers (https://yao-lab.github.io/data/kcenter.m);

Some references can be found at:

[dVT04] Vin de Silva and J. B. Tenenbaum, "Sparse multidimensional scaling using landmark points", 2004, downloadable at http://pages.pomona.edu/~vds04747/public/papers/landmarks.pdf;

[P05] John C. Platt, "FastMap, MetricMap, and Landmark MDS are all Nyström Algorithms", 2005, downloadable at http://research.microsoft.com/en-us/um/people/jplatt/nystrom2.pdf.

Please see the mother codes in the folder.