1.
$$X = A \cos(\omega t)$$

i)
$$A = 0.2$$
, $T = 2 \Rightarrow \omega = \frac{2\pi}{T} = \frac{\pi}{T}$

:.
$$X = 0.2 \cos(\pi t)$$

at
$$t=0$$
, $x=0.2m$

ii)
$$t = 0.25$$

$$X = 0.2 \cos(0.25\pi)$$

$$= 0.141 \text{ m}$$

$$X = 0.2 \cos (0.5 \pi)$$

$$= 0 m$$

$$t = 1.00$$

 $x = 0.2 \cos(\pi)$
 $= -0.2m$

2.
$$A = 40 \times 10^{-3} \text{m}, f = 4 \text{ Hz}$$

$$W = 2\pi f$$

$$= 8\pi$$

$$\alpha = -\omega^2 x$$

$$Q = -64\pi^2 \times$$

i) at
$$X = \pm 40 \times 10^{-3}$$
 at $X = -40 \times 10^{-3}$

$$Q = -64\pi^{2} \times (40 \times 10^{-3})^{4}$$

$$= -4.54 \times (40 \times 10^{-3})^{4}$$

$$= -25.3 \, \text{m/s}^{2}$$

$$= 25.3 \, \text{m/s}^{2}$$

ii) at equilibrin position,
$$x = 0$$

$$\frac{\alpha = 0}{2}$$

$$A = 1.8 m$$

$$ii)$$
 $4\pi = \omega = 2\pi f$

$$\frac{f = 2Hz}{}$$

T=
$$\frac{1}{f} = \frac{1}{2}$$

$$V_{\text{Max}} = WA$$

$$= 4\pi x 1.8$$

$$= 22.6 \, \text{m/s}$$

v)
$$Q_{\text{max}} = \omega^2 A$$

= $16 \text{Ti}^2 \times 1.8$
= 284 m/s^2

$$f = \frac{1}{T} = \frac{1}{0.25}$$

$$f = 4 + 12$$

ii)
$$a_{\text{max}} = \omega^2 A$$

$$\omega = 2\pi f = 8\pi$$

$$A_{\text{MAX}} = (8\pi)^2 \times 0.025$$

$$= 15.8 \, \text{m/s}^2$$

(iii)
$$V_{\text{MAX}} = WA$$

$$= 8\pi \times 0.025$$

$$= 0.628 \text{ u/s}$$

5.
$$f = 40 \text{Hz}$$
, $A = 0.5 \times 10^{-3} \text{ m}$

$$W = 2\pi f$$

$$W = 80\pi$$

i)
$$V_{MAX} = WA$$

$$= 80\pi \times 0.5 \times 10^{-3}$$

$$= 0.126 \text{ M/s}$$

ii)
$$Q_{\text{max}} = \omega^2 A = (80\pi)^2 \times 0.5 \times 10^{-3}$$

$$= 31.6 \, \text{m/s}^2$$

$$W = 2\pi f = 2094.4 \text{ rod/s}$$

$$V_{MAX} = 2094.4 \times 0.0125$$

$$= 26.2 \text{ M/s}$$

Tiii)
$$Q_{Max} = \omega^2 A$$

= $(2094.4)^2 \times 0.0125$
= $54,831.4$
= $54,800 \text{ m/s}^2$ (= 5589 g)

$$\overline{IV}$$
 $F = mq$
= 0.2 ×54,800
= 10966.3
= 12,900 N

$$300 = \omega^2$$

$$\omega = \sqrt{300} = 10\sqrt{3}$$

= $2\pi f$

$$\therefore f = \frac{5\sqrt{3}}{\pi}$$

8.
$$\alpha_{\text{max}} = -\omega^2 \times 9.81$$

•

$$: W^{2} > \frac{9.81}{A} \iff f > \frac{1}{2\pi} \sqrt{\frac{9.81}{A}}$$

$$\therefore f \Rightarrow \frac{1}{2\pi} \sqrt{\frac{9.81}{1.6 \times 10^{-3}6}} = \frac{394 \, \text{Hz}}{2}$$

$$= 2\pi \times 4.16 \times 7.5 \times 10^{-3}$$

10.*
$$A = 0.1 \times 10^{-2} \text{ m}$$

$$\therefore \omega \rangle \int_{A}^{g}$$

$$\therefore f \neq \frac{1}{2\pi} \sqrt{\frac{9}{A}}$$

$$f > \frac{1}{2\pi} \sqrt{\frac{9.81}{1\times10^{-3}}} = \frac{15.8 \text{ Hz}}{1}$$

11.* Assure tide height is SHM.

1/2 cycle = 6 hours 15 mins.

: T = 12 hours 30 mins

= 750 Hims

Equillonin position: X = 20

Amplitude = 10m.

in $X = 20 + 10 \cos(\omega t + E)$ to cornect for lowest point when t = 0.

=> 1000s € = -10

 $W = \frac{2\pi}{750} \text{ if thas}$ Units of Mins.

$$X = 20 + 10 \cos \left(\frac{2\pi t}{750} + \pi \right)$$

$$1. 17.5 = 20 + 10 \cos\left(\frac{2\pi t}{750} + \pi\right)$$

$$\therefore \cos\left(\frac{2\pi t}{750} + \pi t\right) = -0.25$$

 $\frac{2\pi t}{750}$ + $\pi = 1.823$ or 4.4597

$$\frac{2\pi t}{750} = 1.318$$

$$t = \frac{1.318 \times 750}{2\pi}$$