README FILE for supplementary files

In the folder you will find the following subfolders:

• <u>Alphacellmodel_Figure5</u>

This folder contains a .ode file for running in XPPAUT. It is a conductance-based model of the electrical activity in an alpha-cell and is the mathematical model presented in Figure 5.

Deltacellmodel Figure6

This folder contains a .ode file for running in XPPAUT. It is a conductance-based model of the electrical activity in a delta-cell and is the mathematical model presented in Figure 6.

Example_Data

This folder contains a dataset of 200 cell recordings, <code>Example_Data.xlsx</code>. The file has 9 columns each pertaining to different experimental variables. The first is the cell-type (1=alpha, 2=beta, 3=delta) as confirmed by immunocytochemistry. The remaining are electrophysiological variables (Table 1 in manuscript). These data can be used to test the multinomial logistic regression model for predicting islet cell-type (Figure 8 in manuscript).

				Example_Data.vlsx - Exce	I			? ⊠ -
ERT PAGE LAYOUT	FORMULAS DATA REVIEW VIEW							
Calibri - 11	- A A = = ₩-	Number -		Sheet1 Normal_Shee Normal_Sheet3 N	THE HE TO SERVE	toSum - AT		
В І Щ + ⊞ +	🌣 • 🛕 • 🚍 🚍 🚝 🚝 Merge & Cen	ter • 👺 • 96 • 😘 👯 Condition	onal Format as Normal Bad	Good Neutral	alculation Insert Delete Format			
Font	G Alignment	rs Number rs		Styles	Cells	Editing		
(\sqrt{ \bar{p}}								
Α	В	C	D	E	F	G	Н	I
CellTyp	e Acurrent	TailCurrent	Leak	Ccell	Raccess	V2h	kh	Imax
	3 0	1	-13.41	4.0460	24	-26.2409	5.3095	-266.5172
	3 0	1	-20.2	3.067	21.870	-32.235	5.471	-451.500
	3 0	1	-9.007	4.352	20.780	-33.012	6.856	-475.156
	3 0	1	-11.85	4.643	19.690	-30.877	6.162	-1267.200
	3 0	0	-11.75	5.047	29.060	-87.590	12.255	-592.875
	3 0	1	-37.72	3.002	18.620	-93.954	17.279	-561.563
	3 0	1	-6.261	3.607	21.080	-79.976	18.237	-736.875
	3 0	1	-7.235	3.976	24.900	-32.968	6.601	-864.313
	3 0	1	-13.84	2.650	34.710	-33.058	5.608	-1043.900
	3 0	1	-9.177	4.337	18.750	-35.623	7.389	-589.875
	2 0	1	7 262	2 // 21	40 000	20 105	1 222	1210 400

• Example_MatlabRun

This folder contains the matlab file <code>Example_RunMatlab.m</code>. This can be used to predict islet cell-type in the example dataset <code>Example_Data.xlsx</code>. Run this file (changing the <code>cd</code> and <code>path</code> command appropriately), and it will output for every cell in the file:

- 1. The probability of it being an alpha, beta and delta cell (*Probability abd*)
- 2. The predicted cell-type (1=alpha, 2=beta or 3=delta)

This data is then written to the excel file *Example_Data_Analysed.xlsx*. You can open this and see how the predicted cell type (last column) compares the observed (first column).

• <u>IsletCellType_Toolbox</u>

This folder contains the toolbox as the matlab file *Model.m*. Open this in matlab and run it. It will open up a toolbox which you can use to predict islet cell-type. It also has a help window. Click on help in the toolbox and then the "?" symbols to see what you have to input. Try inputting data from *Example_Data.xlsx* and hitting "*Calculate Probabilities*" to see, for that cell, what the multinomial logistic regression model thinks the cell-type is (as given by the probabilities).

Matlab Functions

This contains the matlab function *IsletCellType.m*. This is the multinomial logistic regression called in matlab to predict islet cell-type.