```
name: <unnamed>
         log: /Users/aidan/Dropbox/India FDI/friedt_toner-rodgers_replication/r
  > eplication.smcl
    log type:
              smcl
   opened on: 26 Apr 2022, 12:29:50
1.
2 . * -----
3 . * BUILD DATASET
6 . do _2code/_1build_data/build_census_data
7 . *****************
8 . ** Clean 2001 Census Data*******
9 . ************
10 .
11 . clear all
12 .
13 . ** 1) Skill measured via literacy and education:
14 . import excel using _ldata/raw/regional_characteristics/census/skill.xlsx, cl
  > ear first
  (13 vars, 37 obs)
16 . drop in 1/2
  (2 observations deleted)
17 .
18 . rename StateUT State
19 . rename Graduateabove grad
20 .
21 . foreach var of varlis Literatewithouteducation-Unclassified {
    2. destring `var' , replace force
    3. }
  Literatewithouteducationallev: all characters numeric; replaced as long
  BelowPrimary: all characters numeric; replaced as long
  Primary: all characters numeric; replaced as long
  Middle: all characters numeric; replaced as long
  MatricSecondary: all characters numeric; replaced as long
  HighersecondaryIntermediatePr: all characters numeric; replaced as long
  Nontechnical diploma or certifi: all characters numeric; replaced as long
  Technicaldiplomaorcertificate: all characters numeric; replaced as long
  grad: all characters numeric; replaced as long
  Unclassified: all characters numeric; replaced as int
```

```
22 .
23 . egen literate = rowtotal(Literatewithouteducation-Unclassified)
24 .
25 . keep State literate grad total pop
26 .
27 . ** Clean state names:
28 . replace State="Dadra and Nagar Haveli" if State=="Dadra & Nagar Haveli"
   (1 real change made)
29 . replace State="Andaman and Nicobar Islands" if State=="Andaman & Nicobar Isl
   > ands"
   variable State was str25 now str27
   (1 real change made)
30 . replace State="Daman and Diu" if State=="Daman & Diu"
   (1 real change made)
31 . replace State="Jammu and Kashmir" if State=="Jammu & Kashmir"
   (1 real change made)
32 . replace State="Odisha" if State=="Orissa"
   (1 real change made)
33 . replace State="Puducherry" if State=="Pondicherry"
   (1 real change made)
34 . replace State="Uttarakhand" if State=="Uttaranchal"
   (1 real change made)
35 .
36 . ** Merge region-to-state concordances
37 . merge 1:1 State using _ldata/xwalks/state_region_concordance
       Result
                                   Number of obs
       Not matched
                                                0
       Matched
                                               35
                                                   (_merge==3)
```

```
38 .
39 .
40 . ** Aggregate by region
41 . collapse (sum) total_pop literate grad, by(District)
42 . rename District region
43 .
44 .
45 . ** Calculate literacy and college graduate rates
46 . gen lit_s = literate/total_pop *100
47 . gen grad_s = grad/total_pop *100
48 . drop grad literate total pop
49 .
50 .
51 . ** Clean region:
52 . replace region=lower(region)
   (17 real changes made)
53 .
54 . replace region="new_delhi" if region=="new delhi"
   (1 real change made)
55 . replace region="guwahati" if region=="guwhati"
   (1 real change made)
56 . replace region="bubaneshwar" if region=="bhubaneshwar"
   (1 real change made)
57 . drop if region=="na"
   (1 observation deleted)
58 .
59 . save _ldata/raw/regional_characteristics/census/skill , replace
   file _ldata/raw/regional_characteristics/census/skill.dta saved
```

```
60 .
61 .
62 .
63 .
64 .
65 . ** 2) Development measured via water access, electicity, and latrine:
67 . import excel using _ldata/raw/regional_characteristics/census/water_etc.xlsx
  > , clear first
   (9 vars, 902 obs)
68 .
69 . drop in 1/27
   (27 observations deleted)
70 . drop G I
71 .
72 . drop if SNo==.
   (35 observations deleted)
73 . rename Sourceandlocationofdrinking source
75 . keep if source=="All Sources" & inlist(D, "Total", "Within Premises")
   (770 observations deleted)
76 . drop source SNo
77 .
78 . foreach var of varlist Totalnumberofhouseholds-Latrine {
     2. destring `var', replace
     3. }
   Totalnumberofhouseholds: all characters numeric; replaced as long
   Electricity: all characters numeric; replaced as long
  Latrine: all characters numeric; replaced as long
```

```
79 .
80 .
81 . rename StateUT State
82 . bysort State: gen id=_n
83 . bysort State (id): gen access_water = Totalnumberofhouseholds[2]
84 . bysort State (id): gen access elec = Electricity[2]
85 . bysort State (id): gen access_lat = Latrine[2]
86 .
87 .
88 . keep if D=="Total"
   (35 observations deleted)
89 .
90 .
91 . ** Clean state names:
92 . replace State=strrtrim(State)
   (26 real changes made)
93 . replace State="Dadra and Nagar Haveli" if State=="Dadra & Nagar Haveli"
   (1 real change made)
94 . replace State="Andaman and Nicobar Islands" if State=="Andaman & Nicobar Isl
  > ands"
  variable State was str26 now str27
   (1 real change made)
95 . replace State="Daman and Diu" if State=="Daman & Diu"
   (1 real change made)
96 . replace State="Jammu and Kashmir" if State=="Jammu & Kashmir"
   (1 real change made)
```

```
97 . replace State="Odisha" if State=="Orissa"
    (1 real change made)
 98 . replace State="Puducherry" if State=="Pondicherry"
    (1 real change made)
 99 . replace State="Uttarakhand" if State=="Uttaranchal"
    (1 real change made)
100 .
101 . ** Merge region-to-state concordances
102 . merge 1:1 State using _1data/xwalks/state_region_concordance
        Result
                                    Number of obs
        Not matched
                                                 0
        Matched
                                                35
                                                   (merge==3)
103 . drop _merge D id Electricity Latrine
104 .
105 . ** Aggregate by region
106 . collapse (sum) Totalnumberofhouseholds-access_lat, by(District)
107 . rename District region
108 .
109 .
110 . ** Calculate literacy and college graduate rates
111 .
112 .
113 .
114 . gen water_s = access_water/Totalnumberofhouseholds * 100
115 . gen elec s = access elec/Totalnumberofhouseholds *100
```

```
116 . gen lat_s = access_lat/Totalnumberofhouseholds * 100
117 .
118 . drop Totalnumberofhouseholds-access_lat
119 .
120 .
121 . ** Clean region:
122 . replace region=lower(region)
    (17 real changes made)
123 .
124 . replace region="new_delhi" if region=="new delhi"
    (1 real change made)
125 . replace region="guwahati" if region=="guwhati"
    (1 real change made)
126 . replace region="bubaneshwar" if region=="bhubaneshwar"
    (1 real change made)
127 . drop if region=="na"
    (1 observation deleted)
128 .
129 . save _ldata/raw/regional_characteristics/census/development, replace
    file _ldata/raw/regional_characteristics/census/development.dta saved
130 .
131 .
132 .
133 .
134 . ** 3) Composition of Employment
135 .
136 . import excel using _1data/raw/regional_characteristics/census/employment.xls
    > x, first clear
    (14 vars, 39 obs)
```

```
137 .
138 . drop in 1/2
    (2 observations deleted)
139 . drop if SNo ==.
    (2 observations deleted)
140 . rename StateUT State
141 . rename TotalMainworkers total
142 . rename WholesaleandRetailTrade retail
143 .
144 . keep SNo State total retail Manufacturing G
145 .
146 . foreach var of varlist total-retail {
      2. destring `var' , replace
      3. }
   total: all characters numeric; replaced as long
   Manufacturing: all characters numeric; replaced as long
   G: all characters numeric; replaced as long
   retail: all characters numeric; replaced as long
147 .
148 . egen manu = rowtotal(Manufacturing G)
149 . keep State total retail manu
150 .
151 .
152 .
153 . ** Clean state names:
154 . replace State="Dadra and Nagar Haveli" if State=="Dadra & Nagar Haveli"
    (1 real change made)
```

```
155 . replace State="Andaman and Nicobar Islands" if State=="Andaman & Nicobar Isl
   > ands"
   variable State was str25 now str27
    (1 real change made)
156 . replace State="Daman and Diu" if State=="Daman & Diu"
    (1 real change made)
157 . replace State="Jammu and Kashmir" if State=="Jammu & Kashmir"
    (1 real change made)
158 . replace State="Odisha" if State=="Orissa"
    (1 real change made)
159 . replace State="Puducherry" if State=="Pondicherry"
    (1 real change made)
160 . replace State="Uttarakhand" if State=="Uttaranchal"
    (1 real change made)
161 . replace State="Maharashtra" if State=="Maharastra"
    (1 real change made)
163 . ** Merge region-to-state concordances
164 . merge 1:1 State using _ldata/xwalks/state_region_concordance
        Result
                                    Number of obs
        Not matched
                                                0
        Matched
                                               35
                                                   (merge==3)
165 .
166 . ** Aggregate by region
167 . collapse (sum) total-manu, by(District)
```

```
168 . rename District region
169 .
170 . ** Calculate share of manufacturing or retail trade workers:
171 . gen manu_s = manu/total *100
172 . gen retail_s = retail/total *100
173 .
174 . drop total retail manu
175 .
176 . ** Clean region:
177 . replace region=lower(region)
    (17 real changes made)
178 .
179 . replace region="new delhi" if region=="new delhi"
    (1 real change made)
180 . replace region="guwahati" if region=="guwhati"
    (1 real change made)
181 . replace region="bubaneshwar" if region=="bhubaneshwar"
    (1 real change made)
182 . drop if region=="na"
    (1 observation deleted)
183 .
184 . save ldata/raw/regional characteristics/census/employment, replace
    file _ldata/raw/regional_characteristics/census/employment.dta saved
185 .
186 .
187 .
188 . ** 4) Similarity in employment
```

189 . 190 . import excel using _ldata/raw/regional_characteristics/census/employment.xls > x, first clear (14 vars, 39 obs) 191 . 192 . drop in 1/2 (2 observations deleted) 193 . drop if SNo ==. (2 observations deleted) 194 . rename StateUT State 195 . rename TotalMainworkers total 196 . rename WholesaleandRetailTrade retail 197 . rename Agriculturalalliedactivities agri 198 . rename Miningandquarrying mining 199 . rename Manufacturing manul 200 . rename G manu2 201 . rename ElectricityGasandWaterSuppl util 202 . rename Construction cons 203 . rename HotelsandRestaurants leisure 204 . rename TransportStorageandCommunica transp

205 . rename FinancialIntermediationandRea finance

206 . rename Otherservices other

```
207 .
208 .
209 . foreach var of varlist total-other {
      2. destring `var' , replace
      3. }
    total: all characters numeric; replaced as long
    agri: all characters numeric; replaced as long
    mining: all characters numeric; replaced as long
   manul: all characters numeric; replaced as long
    manu2: all characters numeric; replaced as long
    util: all characters numeric; replaced as long
    cons: all characters numeric; replaced as long
    retail: all characters numeric; replaced as long
    leisure: all characters numeric; replaced as long
    transp: all characters numeric; replaced as long
    finance: all characters numeric; replaced as long
    other: all characters numeric; replaced as long
210 .
211 .
212 . ** Clean state names:
213 . replace State="Dadra and Nagar Haveli" if State=="Dadra & Nagar Haveli"
    (1 real change made)
214 . replace State="Andaman and Nicobar Islands" if State=="Andaman & Nicobar Isl
    > ands"
    variable State was str25 now str27
    (1 real change made)
215 . replace State="Daman and Diu" if State=="Daman & Diu"
    (1 real change made)
216 . replace State="Jammu and Kashmir" if State=="Jammu & Kashmir"
    (1 real change made)
217 . replace State="Odisha" if State=="Orissa"
    (1 real change made)
```

```
218 . replace State="Puducherry" if State=="Pondicherry"
    (1 real change made)
219 . replace State="Uttarakhand" if State=="Uttaranchal"
    (1 real change made)
220 . replace State="Maharashtra" if State=="Maharastra"
    (1 real change made)
221 .
222 . ** Merge region-to-state concordances
223 . merge 1:1 State using _1data/xwalks/state_region_concordance
        Result
                                    Number of obs
        Not matched
                                                 0
        Matched
                                                35
                                                   (merge==3)
224 .
225 . ** Aggregate by region
226 . collapse (sum) total-other, by(District)
227 . rename District region
228 .
229 . ** Calculate share of manufacturing or retail trade workers:
230 . foreach var of varlist agri-other {
      2. gen var'_s = var'/total *100
      3. }
231 .
232 . drop total-other
233 .
234 . ** Clean region:
235 . replace region=lower(region)
    (17 real changes made)
```

```
236 .
237 . replace region="new_delhi" if region=="new delhi"
   (1 real change made)
238 . replace region="guwahati" if region=="guwhati"
   (1 real change made)
239 . replace region="bubaneshwar" if region=="bhubaneshwar"
   (1 real change made)
240 . drop if region=="na"
   (1 observation deleted)
241 .
242 .
243 . save _ldata/raw/regional_characteristics/census/ind_comp, replace
   file _ldata/raw/regional_characteristics/census/ind_comp.dta saved
244 .
245 .
   end of do-file
246 . do _2code/_1build_data/build_state_indicators
> ****
   > Table 3: Build dataset with economic indicators
               - annual "principal characteristics" by state
   > Inputs:
               - annual "important characteritsics" by state
   >
   >
                          - insurance rates
                          - annual CPI data
   >
   > Output:
               -principal_indicators.dta
   > **********************************
   > ****/
```

```
248 .
249 .
250 .
251 . forvalues i=2006/2017 {
      2.
252 .
253 . if `i'==2006{
      3. import excel using _ldata/raw/indicators/ministry_statistics/pc_`i'.xlsx,
   > first cellrange(A4:H37) clear
      4. drop in 1/2
      5. }
      6.
254 . if `i'==2007 {
      7. import excel using _ldata/raw/indicators/ministry_statistics/pc_`i'.xlsx,
   > first cellrange(A1:H33) clear
      8. drop in 1
      9. }
     10.
255 . if `i'==2008 {
     11. import excel using _ldata/raw/indicators/ministry_statistics/pc_`i'.xlsx,
   > first cellrange(A2:H34) clear
    12. drop in 1
     13. }
    14.
256 . if `i'==2009 {
     15. import excel using _ldata/raw/indicators/ministry_statistics/pc_`i'.xlsx,
   > first cellrange(A3:H36) clear
     16. drop in 1
     17. }
     18.
257 . if inlist(`i', 2010, 2011) {
     19. import excel using _ldata/raw/indicators/ministry_statistics/pc_`i'.xls,
   > first cellrange(A4:H38) clear
     20. drop in 1/2
     21. }
     22.
258 . if inlist(`i', 2012) {
     23. import excel using _ldata/raw/indicators/ministry_statistics/pc_`i'.xls,
   > first cellrange(A4:H39) clear
     24. drop in 1/2
     25. }
     26.
```

```
259 . if `i'==2013 {
     27. import excel using _ldata/raw/indicators/ministry_statistics/pc_i'.xlsx,
    > first cellrange(A3:H37) clear
     28. drop in 1
     29. }
     30.
260 . if inlist(`i', 2014, 2015, 2016, 2017) {
     31. import excel using _ldata/raw/indicators/ministry_statistics/pc_`i'.xls,
    > first cellrange(A4:H40) clear
     32. drop in 1/2
     33. }
     34.
261 .
262 . rename States State
     35. rename Factories factories
     36. rename Fixed fixed cap
     37. rename Productive productive cap
     38. rename Invested invested cap
     39. rename Workers workers
     40. rename TotalPersons persons_engaged
     41. rename Wagesto wages
     42.
263 .
265 . foreach var of varlist factories-wages {
     43. destring `var', replace
     44. }
     45.
266 . gen year=`i'
     46. order State year
     47. save _1data/raw/indicators/temp/\i'_1, replace
     48.
267 \cdot if 'i'==2006{
     49. import excel using _ldata/raw/indicators/ministry_statistics/pc_`i'.xlsx,
    > first cellrange(A43:H76) clear
     50. drop in 1/2
     51. }
     52.
```

```
268 . if `i'==2007 {
     53. import excel using _1data/raw/indicators/ministry_statistics/pc_i'.xlsx,
    > first cellrange(A35:H68) clear
     54. drop in 1/2
     55. }
     56.
269 . if `i'==2008 {
     57. import excel using _ldata/raw/indicators/ministry_statistics/pc_`i'.xlsx,
    > first cellrange(A37:H69) clear
     58. drop in 1
     59. }
     60.
270 . if `i'==2009 {
     61. import excel using _ldata/raw/indicators/ministry_statistics/pc_`i'.xlsx,
    > first cellrange(A40:H73) clear
     62. drop in 1
     63. }
     64.
271 . if inlist(`i', 2010, 2011) {
     65. import excel using ldata/raw/indicators/ministry statistics/pc \int i'.xls,
    > first cellrange(A44:H78) clear
     66. drop in 1/2
     67. }
     68.
272 . if inlist(`i', 2012) {
     69. import excel using ldata/raw/indicators/ministry statistics/pc \int i'.xls,
    > first cellrange(A45:H80) clear
     70. drop in 1/2
     71. }
     72.
273 . if inlist(`i', 2013) {
     73. import excel using _ldata/raw/indicators/ministry_statistics/pc_`i'.xlsx,
    > first cellrange(A41:H75) clear
     74. drop in 1
     75. }
     76.
274 . if inlist(`i', 2014, 2015, 2016, 2017) {
     77. import excel using _ldata/raw/indicators/ministry_statistics/pc_`i'.xls,
    > first cellrange(A46:H82) clear
     78. drop in 1/2
     79. }
     80.
```

```
275 . rename States State
     81. if inlist(`i', 2008, 2009, 2013) {
     82. rename TotalEmol total earnings
     83. }
     84. else {
     85. rename Total total earnings
     86. }
     87.
276 . if inlist(`i', 2007, 2008, 2009, 2013) {
     88. rename TotalInput inputs
     89. }
     90. else {
     91. rename C inputs
     92. }
     93.
277 .
278 . if inlist(`i', 2008, 2009, 2013) {
     94. rename TotalOutput output
     95. }
     96. else if inlist(`i', 2010, 2011, 2012, 2014, 2015, 2016, 2017) {
     97. rename D output
     98. }
     99. else {
    100. rename Gross output
    101. }
    102. rename Deprec depreciation
    103. rename NetValue nva
    104. rename RentPaid rents
    105. rename Interest interest
    106.
279 .
280 .
281 . foreach var of varlist total_earnings-interest {
    107. destring `var', replace
    108. }
    109.
282 . gen year=`i'
    110. order State year
    111.
```

```
283 . save ldata/raw/indicators/temp/`i' 2, replace
    112.
284 .
285 . use ldata/raw/indicators/temp/`i' 1, clear
    113. merge 1:1 State using _1data/raw/indicators/temp/\i'_2
    114.
286 .
287 . save _ldata/raw/indicators/temp/\i', replace
    115. }
    (8 vars, 33 obs)
    (2 observations deleted)
    factories already numeric; no replace
    fixed cap: all characters numeric; replaced as long
    productive_cap: all characters numeric; replaced as long
    invested cap: all characters numeric; replaced as long
    workers already numeric; no replace
    persons engaged: all characters numeric; replaced as long
    wages: all characters numeric; replaced as long
    file _1data/raw/indicators/temp/2006_1.dta saved
    (8 vars, 33 obs)
    (2 observations deleted)
    total_earnings: all characters numeric; replaced as long
    inputs: all characters numeric; replaced as long
    output: all characters numeric; replaced as long
    depreciation: all characters numeric; replaced as long
    nva: all characters numeric; replaced as long
    rents already numeric; no replace
    interest: all characters numeric; replaced as long
    file 1data/raw/indicators/temp/2006 2.dta saved
```

Result	Number of obs	
Not matched	0	
Matched	31	(_merge==3)

```
file _ldata/raw/indicators/temp/2006.dta saved
(8 vars, 32 obs)
(1 observation deleted)
factories already numeric; no replace
fixed_cap already numeric; no replace
productive_cap already numeric; no replace
invested_cap already numeric; no replace
workers already numeric; no replace
persons_engaged already numeric; no replace
wages already numeric; no replace
file _ldata/raw/indicators/temp/2007_l.dta saved
(8 vars, 33 obs)
(2 observations deleted)
total_earnings already numeric; no replace
```

inputs already numeric; no replace
output already numeric; no replace
depreciation already numeric; no replace
nva already numeric; no replace
rents already numeric; no replace
interest already numeric; no replace
file ldata/raw/indicators/temp/2007 2.dta saved

Result Number of obs

Not matched 0

Matched 31 (_merge==3)

file _1data/raw/indicators/temp/2007.dta saved

(8 vars, 32 obs)

(1 observation deleted)

factories already numeric; no replace
fixed_cap already numeric; no replace
productive_cap already numeric; no replace
invested_cap already numeric; no replace
workers already numeric; no replace
persons_engaged already numeric; no replace
wages already numeric; no replace

 ${\tt file~_1data/raw/indicators/temp/2008_1.dta~saved}$

(8 vars, 32 obs)

(1 observation deleted)

total_earnings already numeric; no replace inputs already numeric; no replace output already numeric; no replace depreciation already numeric; no replace nva already numeric; no replace rents already numeric; no replace interest already numeric; no replace

file 1data/raw/indicators/temp/2008 2.dta saved

Result	Number of obs	
Not matched	0	
Matched	31	(_merge==3)

file _ldata/raw/indicators/temp/2008.dta saved

(8 vars, 33 obs)

(1 observation deleted)

factories already numeric; no replace fixed_cap already numeric; no replace productive_cap already numeric; no replace invested_cap already numeric; no replace workers already numeric; no replace persons_engaged already numeric; no replace wages already numeric; no replace
file _ldata/raw/indicators/temp/2009_l.dta saved
(8 vars, 33 obs)
(1 observation deleted)
total_earnings already numeric; no replace
inputs already numeric; no replace
output already numeric; no replace
depreciation already numeric; no replace
nva already numeric; no replace
rents already numeric; no replace
interest already numeric; no replace
file _ldata/raw/indicators/temp/2009_2.dta saved

Result	Number of obs	
Not matched Matched	0 32	(_merge==3)

file _1data/raw/indicators/temp/2009.dta saved (8 vars, 34 obs) (2 observations deleted) factories already numeric; no replace fixed_cap: all characters numeric; replaced as long productive cap: all characters numeric; replaced as long invested_cap: all characters numeric; replaced as long workers already numeric; no replace persons engaged: all characters numeric; replaced as long wages: all characters numeric; replaced as long file 1data/raw/indicators/temp/2010 1.dta saved (8 vars, 34 obs) (2 observations deleted) total earnings: all characters numeric; replaced as long inputs: all characters numeric; replaced as long output: all characters numeric; replaced as long depreciation: all characters numeric; replaced as long nva: all characters numeric; replaced as long rents already numeric; no replace interest: all characters numeric; replaced as long file _1data/raw/indicators/temp/2010_2.dta saved

Result	Number of obs	
Not matched	0	
Matched	32	(_merge==3)

file _ldata/raw/indicators/temp/2010.dta saved (8 vars, 34 obs) (2 observations deleted) factories already numeric; no replace fixed_cap: all characters numeric; replaced as long productive_cap: all characters numeric; replaced as long invested cap: all characters numeric; replaced as long workers already numeric; no replace persons engaged: all characters numeric; replaced as long wages: all characters numeric; replaced as long file 1data/raw/indicators/temp/2011 1.dta saved (8 vars, 34 obs) (2 observations deleted) total earnings: all characters numeric; replaced as long inputs: all characters numeric; replaced as long output: all characters numeric; replaced as long depreciation: all characters numeric; replaced as long nva: all characters numeric; replaced as long rents already numeric; no replace interest: all characters numeric; replaced as long

Result	Number of obs	
Not matched	0	
Matched	32	(_merge==3)

file 1data/raw/indicators/temp/2011 2.dta saved

file _ldata/raw/indicators/temp/2011.dta saved (8 vars, 35 obs) (2 observations deleted) factories already numeric; no replace fixed_cap: all characters numeric; replaced as long productive_cap: all characters numeric; replaced as long invested cap: all characters numeric; replaced as long workers already numeric; no replace persons_engaged: all characters numeric; replaced as long wages: all characters numeric; replaced as long file 1data/raw/indicators/temp/2012 1.dta saved (8 vars, 35 obs) (2 observations deleted) total earnings: all characters numeric; replaced as long inputs: all characters numeric; replaced as long output: all characters numeric; replaced as long depreciation: all characters numeric; replaced as long

nva: all characters numeric; replaced as long
rents already numeric; no replace
interest: all characters numeric; replaced as long
file ldata/raw/indicators/temp/2012 2.dta saved

Result	Number of obs	
Not matched	0	
Matched	33	(_merge==3)

file _1data/raw/indicators/temp/2012.dta saved (8 vars, 34 obs) (1 observation deleted) factories already numeric; no replace fixed cap already numeric; no replace productive cap already numeric; no replace invested cap already numeric; no replace workers already numeric; no replace persons_engaged already numeric; no replace wages already numeric; no replace file _1data/raw/indicators/temp/2013_1.dta saved (8 vars, 34 obs) (1 observation deleted) total earnings already numeric; no replace inputs already numeric; no replace output already numeric; no replace depreciation already numeric; no replace nva already numeric; no replace rents already numeric; no replace interest already numeric; no replace file 1data/raw/indicators/temp/2013 2.dta saved

Result	Number of obs	
Not matched	0	
Matched	33	(_merge==3)

file _ldata/raw/indicators/temp/2013.dta saved
(8 vars, 36 obs)
(2 observations deleted)
factories already numeric; no replace
fixed_cap: all characters numeric; replaced as long
productive_cap: all characters numeric; replaced as long
invested_cap: all characters numeric; replaced as long
workers already numeric; no replace
persons_engaged: all characters numeric; replaced as long
wages: all characters numeric; replaced as long
file _ldata/raw/indicators/temp/2014_l.dta saved
(8 vars, 36 obs)

(2 observations deleted)
total_earnings: all characters numeric; replaced as long
inputs: all characters numeric; replaced as long
output: all characters numeric; replaced as long
depreciation already numeric; no replace
nva: all characters numeric; replaced as long
rents already numeric; no replace
interest: all characters numeric; replaced as long
file _ldata/raw/indicators/temp/2014_2.dta saved

Result	Number of obs	
Not matched	0	
Matched	34	(_merge==3)

file _1data/raw/indicators/temp/2014.dta saved

(8 vars, 36 obs)

(2 observations deleted)

factories already numeric; no replace
fixed_cap: all characters numeric; replaced as long
productive_cap: all characters numeric; replaced as long
invested_cap: all characters numeric; replaced as long
workers already numeric; no replace

persons_engaged: all characters numeric; replaced as long
wages: all characters numeric; replaced as long
file _ldata/raw/indicators/temp/2015_1.dta saved
(8 vars, 36 obs)

(2 observations deleted)

total_earnings: all characters numeric; replaced as long inputs: all characters numeric; replaced as long output: all characters numeric; replaced as long depreciation already numeric; no replace nva: all characters numeric; replaced as long rents already numeric; no replace interest: all characters numeric; replaced as long

file _1data/raw/indicators/temp/2015_2.dta saved

Result	Number of obs	
Not matched	0	
Matched	34	(_merge==3)

file _1data/raw/indicators/temp/2015.dta saved
(8 vars, 36 obs)

(2 observations deleted)

factories already numeric; no $\ensuremath{\mathbf{replace}}$

fixed_cap: all characters numeric; replaced as long
productive_cap: all characters numeric; replaced as long
invested_cap: all characters numeric; replaced as long

workers already numeric; no replace
persons_engaged: all characters numeric; replaced as long
wages: all characters numeric; replaced as long
file _ldata/raw/indicators/temp/2016_1.dta saved
(8 vars, 36 obs)
(2 observations deleted)
total_earnings: all characters numeric; replaced as long
inputs: all characters numeric; replaced as long
output: all characters numeric; replaced as long
depreciation already numeric; no replace
nva: all characters numeric; replaced as long
rents already numeric; no replace
interest: all characters numeric; replaced as long
file _ldata/raw/indicators/temp/2016_2.dta saved

Number of obs	
0	
34	(_merge==3)
	0

```
file _ldata/raw/indicators/temp/2016.dta saved
(8 vars, 36 obs)
(2 observations deleted)
factories already numeric; no replace
fixed_cap: all characters numeric; replaced as long
productive cap: all characters numeric; replaced as long
invested cap: all characters numeric; replaced as long
workers already numeric; no replace
persons engaged: all characters numeric; replaced as long
wages: all characters numeric; replaced as long
file 1data/raw/indicators/temp/2017 1.dta saved
(8 vars, 36 obs)
(2 observations deleted)
total earnings: all characters numeric; replaced as long
inputs: all characters numeric; replaced as long
output: all characters numeric; replaced as long
depreciation already numeric; no replace
nva: all characters numeric; replaced as long
rents already numeric; no replace
```

Result	Number of obs	
Not matched	0	
Matched	34	(_merge==3)

file _ldata/raw/indicators/temp/2017.dta saved

interest: all characters numeric; replaced as long
file _ldata/raw/indicators/temp/2017_2.dta saved

```
288 .
289 .
290 . ** Append all files:
291 . forvalues i=2006/2016 {
      2. append using _1data/raw/indicators/temp/`i'
      3. }
    (variable State was str17, now str20 to accommodate using data's values)
    (label _merge already defined)
    (label merge already defined)
    (label _merge already defined)
    (label _merge already defined)
    (label _merge already defined)
    (label merge already defined)
    (label _merge already defined)
292 . sort State year
293 .
294 . drop _merge
295 .
296 . ** Fix State names:
297 . replace State="Andaman & N. Island" if State=="A & N. Island"
    (3 real changes made)
298 . replace State="Chandigarh" if State=="Chandigarh (U.T.)" | State=="Chandigar
    > h(U.T.)" | State=="Chandigarh "
    (12 real changes made)
299 . replace State="Dadra & Nagar Haveli" if State=="Dadra & N Haveli"
    (3 real changes made)
300 . replace State="Odisha" if State=="Orissa"
    (2 real changes made)
```

- 301 . replace State="Puducherry" if State=="Pondicherry"
 (1 real change made)
- 303 . replace State="Uttarakhand" if State=="Uttaranchal"
 (2 real changes made)

304 .

306 .

307 . tab State

States	Freq.	Percent	Cum.
Andaman & N. Island	12	3.23	3.23
Andhra Pradesh	12	3.23	6.45
Assam	12	3.23	9.68
Bihar	12	3.23	12.90
Chandigarh	12	3.23	16.13
Chattisgarh	12	3.23	19.35
Dadra & Nagar Haveli	12	3.23	22.58
Daman & Diu	12	3.23	25.81
Delhi	12	3.23	29.03
Goa	12	3.23	32.26
Gujarat	12	3.23	35.48
Haryana	12	3.23	38.71
Himachal Pradesh	12	3.23	41.94
Jammu & Kashmir	12	3.23	45.16
Jharkhand	12	3.23	48.39
Karnataka	12	3.23	51.61
Kerala	12	3.23	54.84
Madhya Pradesh	12	3.23	58.06
Maharashtra	12	3.23	61.29
Manipur	12	3.23	64.52
Meghalaya	12	3.23	67.74
Nagaland	12	3.23	70.97
Odisha	12	3.23	74.19
Puducherry	12	3.23	77.42
Punjab	12	3.23	80.65
Rajasthan	12	3.23	83.87
Tamil Nadu	12	3.23	87.10
Tripura	12	3.23	90.32
Uttar Pradesh	12	3.23	93.55
Uttarakhand	12	3.23	96.77
West Bengal	12	3.23	100.00

```
372
                   Total
                                            100.00
308 .
309 .
310 . foreach var of varlist factories-interest {
      2. gen l`var' = ln(`var')
      3. }
    (6 missing values generated)
311 .
312 .
313 . ** Merge in State-Region concordance:
314 . replace State="Delhi" if State=="NCT Delhi"
    (0 real changes made)
315 . replace State="Andaman and Nicobar Islands" if State=="Andaman & N. Island"
    variable State was str20 now str27
    (12 real changes made)
316 . replace State="Chhattisgarh" if State=="Chattisgarh"
    (12 real changes made)
317 . replace State="Dadra and Nagar Haveli" if State=="Dadra & Nagar Haveli"
    (12 real changes made)
318 . replace State="Daman and Diu" if State=="Daman & Diu"
    (12 real changes made)
319 . replace State="Jammu and Kashmir" if State=="Jammu & Kashmir"
    (12 real changes made)
320 .
321 . ** Merge in state-region concordance:
322 . merge m:1 State using _ldata/xwalks/states_affected
        Result
                                     Number of obs
        Not matched
                                                    (_merge==1)
            from master
                                                 0
            from using
                                                    (_merge==2)
        Matched
                                               372
                                                    (_merge==3)
```

```
323 . keep if _merge==3
    (4 observations deleted)
324 . drop _merge
325 . rename District region
326 . replace region=lower(region)
    (372 real changes made)
327 . foreach x in one two three four five {
      2. rename `x'_affected s_`x'_affected
      3. }
328 .
329 . replace region="bubaneshwar" if region=="bhubaneshwar"
    (12 real changes made)
330 . replace region="guwahati" if region=="guwhati"
    (60 real changes made)
331 . replace region="new_delhi" if region=="new delhi"
    (12 real changes made)
332 . drop if region=="na"
    (24 observations deleted)
333 .
334 . /*
    > collapse (mean) factories-interest, by(region year)
    > foreach var of varlist factories-interest {
    > gen l`var' = ln(`var')
    > }
    > */
336 . merge 1:1 State year using ldata/raw/indicators/insurance/ins data
        Result
                                    Number of obs
        Not matched
                                                48
            from master
                                                 0 (_merge==1)
            from using
                                                48
                                                   (merge==2)
        Matched
                                                   (_merge==3)
                                               348
```

```
337 . keep if _{merge==3}
   (48 observations deleted)
338 . drop _merge
339 .
340 .
341 .
342 . merge 1:1 State year using _1data/raw/indicators/cpi/cpi_annual
      Result
                              Number of obs
      Not matched
                                        95
          from master
                                        72
                                           (_merge==1)
          from using
                                        23 ( merge==2)
      Matched
                                       276
                                           (merge==3)
343 . drop if _merge==2
   (23 observations deleted)
344 . drop _merge
345 .
346 . save _ldata/clean/principal_indicators.dta, replace
   file _1data/clean/principal_indicators.dta saved
347 .
348 .
349 .
   end of do-file
350 . do _2code/_1build_data/build_disaster_risk
> Create disaster risk by region based on past disasters
   > ********************************
   > ****/
```

```
352 .
353 . use _ldata/xwalks/regions_list.dta, clear
354 .
355 . *past 10 years
356 . generate damages cum past10=0
357 . generate number_major1_past10=0
358 . generate number_major2_past10=0
359 . generate number any past10=0
360 . generate number_flood_past10=0
361 .
362 .
363 . replace damages cum past10 = 5853100 if region == "ahmedabad"
    (1 real change made)
364 . replace damages cum past10 = 1500300 if region == "bangalore"
    (1 real change made)
365 . replace damages_cum_past10 = 90400 if region == "bhopal"
    (1 real change made)
366 . replace damages_cum_past10 = 3322800 if region == "bubaneshwar"
    (1 real change made)
367 . replace damages cum past10 = 116924 if region == "chandigarh"
    (1 real change made)
368 . replace damages_cum_past10 = 4214300 if region == "chennai"
    (1 real change made)
369 . replace damages cum past10 = 2623000 if region == "guwahati"
    (1 real change made)
```

- 370 . replace damages_cum_past10 = 7051000 if region == "hyderabad"
 (1 real change made)
- 371 . replace damages_cum_past10 =158000 if region == "jaipur"
 (1 real change made)
- 372 . replace damages_cum_past10 = 276000 if region == "kanpur"
 (1 real change made)
- 373 . replace damages_cum_past10 = 13138240 if region == "kochi"
 (1 real change made)
- 374 . replace damages_cum_past10 = 1022930 if region == "kolkata"
 (1 real change made)
- 375 . replace damages_cum_past10 = 2300000 if region == "mumbai"
 (1 real change made)
- 376 . replace damages_cum_past10 = 7830 if region == "new_delhi"
 (1 real change made)
- 377 . replace damages_cum_past10 = 1585300 if region == "panaji"
 (1 real change made)
- 378 . replace damages_cum_past10 = 691500 if region == "patna"
 (1 real change made)
- 379 .
- 380 . replace number_major1_past10 = 3 if region == "ahmedabad"
 (1 real change made)
- 381 . replace number_major1_past10 = 1 if region == "bangalore"
 (1 real change made)
- 382 . replace number_major1_past10 = 0 if region == "bhopal"
 (0 real changes made)

- 383 . replace number_major1_past10 = 2 if region == "bubaneshwar"
 (1 real change made)
- 384 . replace number_major1_past10 = 0 if region == "chandigarh"
 (0 real changes made)
- 385 . replace number_major1_past10 = 4 if region == "chennai"
 (1 real change made)
- 386 . replace number_major1_past10 = 1 if region == "guwahati"
 (1 real change made)
- 387 . replace number_major1_past10 = 5 if region == "hyderabad"
 (1 real change made)
- 388 . replace number_major1_past10 = 0 if region == "jaipur"
 (0 real changes made)
- 389 . replace number_majorl_past10 = 0 if region == "kanpur"
 (0 real changes made)
- 390 . replace number_major1_past10 = 7 if region == "kochi"
 (1 real change made)
- 391 . replace number_major1_past10 = 1 if region == "kolkata"
 (1 real change made)
- 392 . replace number_major1_past10 = 1 if region == "mumbai"
 (1 real change made)
- 393 . replace number_major1_past10 = 0 if region == "new_delhi"
 (0 real changes made)
- 394 . replace number_major1_past10 = 1 if region == "panaji"
 (1 real change made)
- 395 . replace number_major1_past10 = 1 if region == "patna"
 (1 real change made)

- 396 .
- 397 . replace number_major2_past10 = 1 if region == "ahmedabad" (1 real change made)
- 398 . replace number_major2_past10 = 0 if region == "bangalore" (0 real changes made)
- 399 . replace number_major2_past10 = 0 if region == "bhopal" (0 real changes made)
- 400 . replace number_major2_past10 = 1 if region == "bubaneshwar" (1 real change made)
- 401 . replace number_major2_past10 = 0 if region == "chandigarh" (0 real changes made)
- 402 . replace number major2 past10 = 1 if region == "chennai" (1 real change made)
- 403 . replace number_major2_past10 = 1 if region == "guwahati" (1 real change made)
- 404 . replace number_major2_past10 = 2 if region == "hyderabad" (1 real change made)
- 405 . replace number_major2_past10 = 0 if region == "jaipur" (0 real changes made)
- 406 . replace number_major2_past10 = 0 if region == "kanpur" (0 real changes made)
- 407 . replace number_major2_past10 = 2 if region == "kochi" (1 real change made)
- 408 . replace number_major2_past10 = 0 if region == "kolkata" (0 real changes made)

- 409 . replace number_major2_past10 = 1 if region == "mumbai"
 (1 real change made)
- 410 . replace number_major2_past10 = 0 if region == "new_delhi"
 (0 real changes made)
- 411 . replace number_major2_past10 = 0 if region == "panaji"
 (0 real changes made)
- 412 . replace number_major2_past10 = 0 if region == "patna"
 (0 real changes made)
- 413 .
- 414 . replace number_any_past10 = 23 if region == "ahmedabad"
 (1 real change made)
- 415 . replace number_any_past10 = 39 if region == "bangalore"
 (1 real change made)
- 416 . replace number_any_past10 = 33 if region == "bhopal"
 (1 real change made)
- 417 . replace number_any_past10 = 23 if region == "bubaneshwar"
 (1 real change made)
- 418 . replace number_any_past10 = 30 if region == "chandigarh"
 (1 real change made)
- 419 . replace number_any_past10 = 40 if region == "chennai"
 (1 real change made)
- 420 . replace number_any_past10 = 34 if region == "guwahati"
 (1 real change made)
- 421 . replace number_any_past10 =18 if region == "hyderabad"
 (1 real change made)

422 . replace number_any_past10 = 34 if region == "jaipur" (1 real change made) 423 . replace number_any_past10 = 7 if region == "kanpur" (1 real change made) 424 . replace number_any_past10 = 35 if region == "kochi" (1 real change made) 425 . replace number_any_past10 = 20 if region == "kolkata" (1 real change made) 426 . replace number_any_past10 = 31 if region == "mumbai" (1 real change made) 427 . replace number_any_past10 = 38 if region == "new_delhi" (1 real change made) 428 . replace number_any_past10 = 46 if region == "panaji" (1 real change made) 429 . replace number_any_past10 = 20 if region == "patna" (1 real change made) 430 . 431 . replace number_flood_past10 = 13 if region == "ahmedabad" (1 real change made) 432 . replace number_flood_past10 = 25 if region == "bangalore" (1 real change made) 433 . replace number_flood_past10 = 20 if region == "bhopal"

434 . replace number_flood_past10 = 13 if region == "bubaneshwar"

(1 real change made)

(1 real change made)

- 435 . replace number_flood_past10 = 18 if region == "chandigarh"
 (1 real change made)

 436 . replace number_flood_past10 = 26 if region == "chennai"
 (1 real change made)
- 438 . replace number_flood_past10 = 10 if region == "hyderabad" (1 real change made)
- 439 . replace number_flood_past10 = 21 if region == "jaipur" (1 real change made)
- 440 . replace number_flood_past10 = 3 if region == "kanpur"
 (1 real change made)
- 442 . replace number_flood_past10 = 12 if region == "kolkata"
 (1 real change made)
- 443 . replace number_flood_past10 = 19 if region == "mumbai"
 (1 real change made)
- 445 . replace number_flood_past10 = 30 if region == "panaji"
 (1 real change made)
- 447 .

```
448 .
449 . *past 20
450 .
451 . generate damages_cum_past20=0
452 . generate number major1 past20=0
453 . generate number_major2_past20=0
454 . generate number_any_past20=0
455 . generate number flood past20=0
456 .
457 . replace damages cum past20 = 5853100+10750100 if region == "ahmedabad"
    (1 real change made)
458 . replace damages cum past20 = 1500300+1189420 if region == "bangalore"
    (1 real change made)
459 . replace damages cum past20 = 90400+32900 if region == "bhopa1"
    (1 real change made)
460 . replace damages_cum_past20 = 3322800+1090500 if region == "bubaneshwar"
    (1 real change made)
461 . replace damages cum past20 = 116924+47842 if region == "chandigarh"
    (1 real change made)
462 . replace damages cum past20 = 4214300+3884000 if region == "chennai"
    (1 real change made)
463 . replace damages_cum_past20 = 2623000+1840000 if region == "guwahati"
    (1 real change made)
```

464 . replace damages cum past20 = 7051000+4013100 if region == "hyderabad"

- 465 . replace damages_cum_past20 =158000+90000 if region == "jaipur" (1 real change made)
- 466 . replace damages_cum_past20 = 276000+119700 if region == "kanpur"
 (1 real change made)
- 467 . replace damages_cum_past20 = 13138240+9138240 if region == "kochi" (1 real change made)
- 468 . replace damages_cum_past20 = 1022930+610120 if region == "kolkata" (1 real change made)
- 469 . replace damages_cum_past20 = 2300000+189670 if region == "mumbai"
 (1 real change made)
- 470 . replace damages_cum_past20 = 7830+3450 if region == "new_delhi" (1 real change made)
- 471 . replace damages_cum_past20 = 1585300+670300 if region == "panaji" (1 real change made)
- 472 . replace damages_cum_past20 = 691500+23980 if region == "patna" (1 real change made)
- 473 .
- 474 .
- 475 . replace number_major1_past20 = 3+2 if region == "ahmedabad" (1 real change made)
- 476 . replace number_major1_past20 = 1 if region == "bangalore" (1 real change made)
- 477 . replace number_major1_past20 = 0 if region == "bhopal" (0 real changes made)
- 478 . replace number_major1_past20 = 2+1 if region == "bubaneshwar" (1 real change made)

- 479 . replace number_major1_past20 = 0 if region == "chandigarh"
 (0 real changes made)

 480 . replace number major1 past20 = 4+2 if region == "chennai"
- 481 . replace number_major1_past20 = 1+1 if region == "guwahati" (1 real change made)

- 482 . replace number_major1_past20 = 5+2 if region == "hyderabad" (1 real change made)
- 483 . replace number_major1_past20 = 0+1 if region == "jaipur" (1 real change made)
- 484 . replace number_major1_past20 = 0 if region == "kanpur"
 (0 real changes made)
- 485 . replace number_major1_past20 = 7+4 if region == "kochi" (1 real change made)
- 486 . replace number_major1_past20 = 1 if region == "kolkata" (1 real change made)
- 487 . replace number_major1_past20 = 1 if region == "mumbai" (1 real change made)
- 488 . replace number_major1_past20 = 0 if region == "new_delhi" (0 real changes made)
- 489 . replace number_major1_past20 = 1 if region == "panaji" (1 real change made)
- 490 . replace number_major1_past20 = 1 if region == "patna"
 (1 real change made)
- 491 .

- 492 . replace number_major2_past20 = 1+1 if region == "ahmedabad"
 (1 real change made)
- 493 . replace number_major2_past20 = 0 if region == "bangalore"
 (0 real changes made)
- 494 . replace number_major2_past20 = 0 if region == "bhopal"
 (0 real changes made)
- 496 . replace number_major2_past20 = 0 if region == "chandigarh"
 (0 real changes made)
- 497 . replace number_major2_past20 = 2 if region == "chennai" (1 real change made)
- 498 . replace number_major2_past20 = 1 if region == "guwahati"
 (1 real change made)
- 499 . replace number_major2_past20 = 3 if region == "hyderabad"
 (1 real change made)
- 500 . replace number_major2_past20 = 0 if region == "jaipur"
 (0 real changes made)
- 501 . replace number_major2_past20 = 0 if region == "kanpur"
 (0 real changes made)
- 502 . replace number_major2_past20 = 3 if region == "kochi"
 (1 real change made)
- 503 . replace number_major2_past20 = 0 if region == "kolkata"
 (0 real changes made)

505 . replace number_major2_past20 = 0 if region == "new_delhi" (0 real changes made) 506 . replace number major2 past20 = 0 if region == "panaji" (0 real changes made) 507 . replace number_major2_past20 = 0 if region == "patna" (0 real changes made) 508 . 509 . *done 510 . replace number any past20 = 23+30 if region == "ahmedabad" (1 real change made) 511 . replace number_any_past20 = 39+28 if region == "bangalore" (1 real change made) 512 . replace number any past20 = 33+29 if region == "bhopal" (1 real change made) 513 . replace number_any_past20 = 23+18 if region == "bubaneshwar" (1 real change made) 514 . replace number_any_past20 = 30+28 if region == "chandigarh" (1 real change made) 515 . replace number_any_past20 = 40+28 if region == "chennai" (1 real change made) 516 . replace number any past20 = 34+18 if region == "guwahati" (1 real change made) 517 . replace number_any_past20 =18+25 if region == "hyderabad" (1 real change made)

518 . replace number any past20 = 34+30 if region == "jaipur"

519 . replace number_any_past20 = 7+11 if region == "kanpur" (1 real change made) 520 . replace number any past20 = 35+30 if region == "kochi" (1 real change made) 521 . replace number_any_past20 = 20+18 if region == "kolkata" (1 real change made) 522 . replace number_any_past20 = 31+15 if region == "mumbai" (1 real change made) 523 . replace number_any_past20 = 38+9 if region == "new_delhi" (1 real change made) 524 . replace number_any_past20 = 46+27 if region == "panaji" (1 real change made) 525 . replace number_any_past20 = 20+18 if region == "patna" (1 real change made) 526 . 527 . *done 528 . replace number_flood_past20 = 13+10 if region == "ahmedabad" (1 real change made) 529 . replace number flood past20 = 25+37 if region == "bangalore" (1 real change made) 530 . replace number flood past20 = 20+19 if region == "bhopa1" (1 real change made) 531 . replace number_flood_past20 = 13+17 if region == "bubaneshwar" (1 real change made)

532 . replace number flood past20 = 18+25 if region == "chandigarh"

533 . replace number flood past20 = 26+32 if region == "chennai" (1 real change made) 534 . replace number_flood_past20 = 21+33 if region == "guwahati" (1 real change made) 535 . replace number_flood_past20 = 10+6 if region == "hyderabad" (1 real change made) 536 . replace number_flood_past20 = 21+16 if region == "jaipur" (1 real change made) 537 . replace number_flood_past20 = 3+6 if region == "kanpur" (1 real change made) 538 . replace number_flood_past20 = 21+15 if region == "kochi" (1 real change made) 539 . replace number_flood_past20 = 12+8 if region == "kolkata" (1 real change made) 540 . replace number_flood_past20 = 19+17 if region == "mumbai" (1 real change made) 541 . replace number_flood_past20 = 24+18 if region == "new_delhi" (1 real change made) 542 . replace number flood past20 = 30+22 if region == "panaji" (1 real change made) 543 . replace number flood past20 = 12+8 if region == "patna" (1 real change made) 544 . 545 . 546 . 547 . *past 30 years

```
548 .
549 . generate damages_cum_past30=0
550 . generate number_major1_past30=0
551 . generate number major2 past30=0
552 . generate number_any_past30=0
553 . generate number_flood_past30=0
554 .
555 .
556 . replace damages_cum_past30 = 5853100+10750100 if region == "ahmedabad"
    (1 real change made)
557 . replace damages cum past30 = 1500300+1189420 if region == "bangalore"
    (1 real change made)
558 . replace damages_cum_past30 = 90400+32900 if region == "bhopa1"
    (1 real change made)
559 . replace damages_cum_past30 = 3322800+1090500 if region == "bubaneshwar"
    (1 real change made)
560 . replace damages_cum_past30 = 116924+47842 if region == "chandigarh"
    (1 real change made)
561 \cdot replace damages\_cum\_past30 = 4214300+3884000 if region == "chennai"
    (1 real change made)
562 . replace damages_cum_past30 = 2623000+1840000 if region == "guwahati"
    (1 real change made)
```

563 . replace damages_cum_past30 = 7051000+4013100 if region == "hyderabad"

564 . replace damages cum past30 =158000+90000 if region == "jaipur" (1 real change made) 565 . replace damages cum past30 = 276000+119700 if region == "kanpur" (1 real change made) 566 . replace damages_cum_past30 = 13138240+9138240 if region == "kochi" (1 real change made) 567 . replace damages_cum_past30 = 1022930+610120 if region == "kolkata" (1 real change made) 568 . replace damages_cum_past30 = 2300000+189670 if region == "mumbai" (1 real change made) 569 . replace damages_cum_past30 = 7830+3450 if region == "new_delhi" (1 real change made) 570 . replace damages_cum_past30 = 1585300+670300 if region == "panaji" (1 real change made) 571 . replace damages_cum_past30 = 691500+23980 if region == "patna" (1 real change made) 572 . 573 . 574 . replace number major1 past30 = 3+2+1 if region == "ahmedabad" (1 real change made) 575 . replace number major1 past30 = 1 if region == "bangalore" (1 real change made) 576 . replace number_major1_past30 = 0 if region == "bhopal" (0 real changes made)

577 . replace number major1 past30 = 2+1+1 if region == "bubaneshwar"

```
578 . replace number_major1_past30 = 1 if region == "chandigarh"
    (1 real change made)
579 . replace number major1 past30 = 4+2+1 if region == "chennai"
    (1 real change made)
580 . replace number_major1_past30 = 1+1 if region == "guwahati"
    (1 real change made)
581 . replace number_major1_past30 = 5+2+1 if region == "hyderabad"
    (1 real change made)
582 . replace number_major1_past30 = 0+1 if region == "jaipur"
    (1 real change made)
583 . replace number_major1_past30 = 0 if region == "kanpur"
    (0 real changes made)
584 . replace number_major1_past30 = 7+4+3 if region == "kochi"
    (1 real change made)
585 . replace number_major1_past30 = 1 if region == "kolkata"
    (1 real change made)
586 . replace number_major1_past30 = 1 if region == "mumbai"
    (1 real change made)
587 . replace number_major1_past30 = 0 if region == "new_delhi"
    (0 real changes made)
588 . replace number major1 past30 = 1 if region == "panaji"
    (1 real change made)
589 . replace number_major1_past30 = 1 if region == "patna"
    (1 real change made)
590 .
```

- 591 . replace number_major2_past30 = 1+1 if region == "ahmedabad"
 (1 real change made)
- 592 . replace number_major2_past30 = 0 if region == "bangalore"
 (0 real changes made)
- 593 . replace number_major2_past30 = 0 if region == "bhopal"
 (0 real changes made)
- 594 . replace number_major2_past30 = 2+1 if region == "bubaneshwar"
 (1 real change made)
- 595 . replace number_major2_past30 = 0 if region == "chandigarh"
 (0 real changes made)
- 596 . replace number_major2_past30 = 2+1 if region == "chennai"
 (1 real change made)
- 597 . replace number_major2_past30 = 1+1 if region == "guwahati"
 (1 real change made)
- 599 . replace number_major2_past30 = 0 if region == "jaipur"
 (0 real changes made)
- 600 . replace number_major2_past30 = 0 if region == "kanpur"
 (0 real changes made)
- 601 . replace number_major2_past30 = 3+1 if region == "kochi"
 (1 real change made)
- 602 . replace number_major2_past30 = 0 if region == "kolkata"
 (0 real changes made)
- 603 . replace number_major2_past30 = 2 if region == "mumbai"
 (1 real change made)

604 . replace number_major2_past30 = 0 if region == "new_delhi" (0 real changes made) 605 . replace number major2 past30 = 0 if region == "panaji" (0 real changes made) 606 . replace number_major2_past30 = 0 if region == "patna" (0 real changes made) 607 . 608 . *done 609 . replace number any past30 = 23+30+18 if region == "ahmedabad" (1 real change made) 610 . replace number any past30 = 39+28+40 if region == "bangalore" (1 real change made) 611 . replace number any past30 = 33+29+20 if region == "bhopal" (1 real change made) 612 . replace number_any_past30 = 23+18+27 if region == "bubaneshwar" (1 real change made) 613 . replace number_any_past30 = 30+28+27 if region == "chandigarh" (1 real change made) 614 . replace number_any_past30 = 40+28+46 if region == "chennai" (1 real change made) 615 . replace number any past30 = 34+18+38 if region == "guwahati" (1 real change made) 616 . replace number_any_past30 =18+25+23 if region == "hyderabad" (1 real change made)

617 . replace number any past30 = 34+30+37 if region == "jaipur"

618 . replace number_any_past30 = 7+11+6 if region == "kanpur" (1 real change made) 619 . replace number any past30 = 35+30+42 if region == "kochi" (1 real change made) 620 . replace number_any_past30 = 20+18+17 if region == "kolkata" (1 real change made) 621 . replace number_any_past30 = 31+15+42 if region == "mumbai" (1 real change made) 622 . replace number_any_past30 = 38+9+20 if region == "new_delhi" (1 real change made) 623 . replace number_any_past30 = 46+27+35 if region == "panaji" (1 real change made) 624 . replace number_any_past30 = 20+18+16 if region == "patna" (1 real change made) 625 . 626 . *done 627 . replace number flood past30 = 13+10+16 if region == "ahmedabad" (1 real change made) 628 . replace number flood past30 = 25+37+35 if region == "bangalore" (1 real change made) 629 . replace number flood past30 = 20+19+16 if region == "bhopal" (1 real change made) 630 . replace number_flood_past30 = 13+17+22 if region == "bubaneshwar" (1 real change made)

631 . replace number flood past30 = 18+25+23 if region == "chandigarh"

632 . replace number flood past30 = 26+32+39 if region == "chennai" (1 real change made) 633 . replace number flood past30 = 21+33+30 if region == "quwahati" (1 real change made) 634 . replace number_flood_past30 = 10+6+14 if region == "hyderabad" (1 real change made) 635 . replace number_flood_past30 = 21+16+27 if region == "jaipur" (1 real change made) 636 . replace number_flood_past30 = 3+6+4 if region == "kanpur" (1 real change made) 637 . replace number_flood_past30 = 21+15+32 if region == "kochi" (1 real change made) 638 . replace number_flood_past30 = 12+8+13 if region == "kolkata" (1 real change made) 639 . replace number_flood_past30 = 19+17+26 if region == "mumbai" (1 real change made) 640 . replace number_flood_past30 = 24+18+16 if region == "new_delhi" (1 real change made) 641 . replace number flood past30 = 30+22+30 if region == "panaji" (1 real change made) 642 . replace number flood past30 = 12+8+12 if region == "patna" (1 real change made) 643 . 644 . 645 .

646 . generate damages avg past10=damages cum past10/number any past10

```
647 . generate damages avg past20=damages cum past10/number any past20
648 . generate damages avg past30=damages cum past10/number any past30
649 .
650 .
651 . generate dif_any_past10=0
652 .
653 . replace dif_any_past10 = . if region == "ahmedabad"
    (1 real change made, 1 to missing)
654 . replace dif_any_past10 = . if region == "bangalore"
    (1 real change made, 1 to missing)
655 . replace dif_any_past10 = . if region == "bhopal"
    (1 real change made, 1 to missing)
656 . replace dif_any_past10 = 1300000-damages_avg_past10 if region == "bubaneshw
   > ar"
    (1 real change made)
657 . replace dif any past10 = 11000000-damages avg past10 if region == "chandigar
    (1 real change made)
658 . replace dif_any_past10 = 12000000-damages_avg_past10 if region == "chennai"
    (1 real change made)
659 . replace dif any past10 = 1300000-damages avg past10 if region == "guwahati"
    (1 real change made)
660 . replace dif_any_past10 = 12000000-damages_avg_past10 if region == "hyderaba
   > d"
    (1 real change made)
661 . replace dif_any_past10 = . if region == "jaipur"
    (1 real change made, 1 to missing)
```

```
662 . replace dif_any_past10 = 11000000-damages_avg_past10 if region == "kanpur"
    (1 real change made)
663 . replace dif_any_past10 = 9500248-damages_avg_past10 if region == "kochi"
    (1 real change made)
664 . replace dif_any past10 = 1300000-damages_avg_past10 if region == "kolkata"
    (1 real change made)
665 . replace dif_any_past10 = . if region == "mumbai"
    (1 real change made, 1 to missing)
666 . replace dif_any_past10 = 11000000-damages_avg_past10 if region == "new_delh
   > i"
    (1 real change made)
667 . replace dif any past10 = . if region == "panaji"
    (1 real change made, 1 to missing)
668 . replace dif_any_past10 = 1300000-damages_avg_past10 if region == "patna"
    (1 real change made)
669 .
670 . generate dif any past20=0
671 .
672 . replace dif any past20 = . if region == "ahmedabad"
    (1 real change made, 1 to missing)
673 . replace dif any past20 = . if region == "bangalore"
    (1 real change made, 1 to missing)
674 . replace dif_any_past20 = . if region == "bhopal"
    (1 real change made, 1 to missing)
675 . replace dif any past20 = 1300000-damages avg past20 if region == "bubaneshw
    > ar"
    (1 real change made)
```

676 . replace dif any past20 = 11000000-damages avg past20 if region == "chandigar > h" (1 real change made) 677 . replace dif_any_past20 = 12000000-damages_avg_past20 if region == "chennai" (1 real change made) 678 . replace dif_any_past20 = 1300000-damages_avg_past20 if region == "guwahati" (1 real change made) 679 . replace dif_any_past20 = 12000000-damages_avg_past20 if region == "hyderaba (1 real change made) 680 . replace dif any past20 = . if region == "jaipur" (1 real change made, 1 to missing) 681 . replace dif any past20 = 11000000-damages avg past20 if region == "kanpur" (1 real change made) 682 . replace dif any past20 = 9500248-damages avg past20 if region == "kochi" (1 real change made) 683 . replace dif_any_past20 = 1300000-damages_avg_past20 if region == "kolkata" (1 real change made) 684 . replace dif any past20 = . if region == "mumbai" (1 real change made, 1 to missing) 685 . replace dif any past20 = 11000000-damages avg past20 if region == "new delh > i" (1 real change made) 686 . replace dif_any_past20 = . if region == "panaji" (1 real change made, 1 to missing) 687 . replace dif_any_past20 = 1300000-damages_avg_past20 if region == "patna"

```
688 .
689 . generate dif_any_past30=0
690 .
691 . replace dif_any_past30 = . if region == "ahmedabad"
    (1 real change made, 1 to missing)
692 . replace dif_any_past30 = . if region == "bangalore"
    (1 real change made, 1 to missing)
693 . replace dif_any_past30 = . if region == "bhopal"
    (1 real change made, 1 to missing)
694 . replace dif_any_past30 = 1300000-damages_avg_past30 if region == "bubaneshw
   > ar"
    (1 real change made)
695 . replace dif any past30 = 11000000-damages avg past30 if region == "chandigar
    (1 real change made)
696 . replace dif_any_past30 = 12000000-damages_avg_past30 if region == "chennai"
    (1 real change made)
697 . replace dif_any_past30 = 1300000-damages_avg_past30 if region == "guwahati"
    (1 real change made)
698 . replace dif_any_past30 = 12000000-damages_avg_past30 if region == "hyderaba
   > d"
    (1 real change made)
699 . replace dif_any_past30 = . if region == "jaipur"
    (1 real change made, 1 to missing)
700 . replace dif_any past30 = 11000000-damages_avg_past30 if region == "kanpur"
    (1 real change made)
```

```
701 . replace dif_any_past30 = 9500248-damages_avg_past30 if region == "kochi"
    (1 real change made)
702 . replace dif_any_past30 = 1300000-damages_avg_past30 if region == "kolkata"
    (1 real change made)
703 . replace dif_any_past30 = . if region == "mumbai"
    (1 real change made, 1 to missing)
704 . replace dif_any_past30 = 11000000-damages_avg_past30 if region == "new_delh
    (1 real change made)
705 . replace dif_any_past30 = . if region == "panaji"
    (1 real change made, 1 to missing)
706 . replace dif any past30 = 1300000-damages avg past30 if region == "patna"
    (1 real change made)
707 .
708 .
709 . generate dif_largest_past10=0
710 . generate dif largest past20=0
711 . generate dif largest past30=0
712 .
713 . replace dif_largest_past10 = . if region == "ahmedabad"
    (1 real change made, 1 to missing)
714 . replace dif_largest_past10 = . if region == "bangalore"
    (1 real change made, 1 to missing)
715 . replace dif_largest_past10 = . if region == "bhopal"
    (1 real change made, 1 to missing)
```

- 716 . replace dif_largest_past10 = 1300000-2500000 if region == "bubaneshwar"
 (1 real change made)
- 717 . replace dif_largest_past10 = 11000000-906000 if region == "chandigarh"
 (1 real change made)
- 718 . replace dif_largest_past10 = 12000000-2150000 if region == "chennai"
 (1 real change made)

- 721 . replace dif_largest_past10 = . if region == "jaipur"
 (1 real change made, 1 to missing)
- 723 . replace dif_largest_past10 = 9500248-8000000 if region == "kochi"
 (1 real change made)
- 724 . replace dif_largest_past10 = 1300000-1500300 if region == "kolkata" (1 real change made)
- 725 . replace dif_largest_past10 = . if region == "mumbai"
 (1 real change made, 1 to missing)
- 726 . replace dif_largest_past10 = 11000000-906000 if region == "new_delhi"
 (1 real change made)
- 727 . replace dif_largest_past10 = . if region == "panaji"
 (1 real change made, 1 to missing)
- 728 . replace dif_largest_past10 = 1300000-1022800 if region == "patna"
 (1 real change made)

```
730 . replace dif_largest_past20 = . if region == "ahmedabad"
    (1 real change made, 1 to missing)
731 . replace dif_largest_past20 = . if region == "bangalore"
    (1 real change made, 1 to missing)
732 . replace dif_largest_past20 = . if region == "bhopal"
    (1 real change made, 1 to missing)
733 . replace dif_largest_past20 = 1300000-2844000 if region == "bubaneshwar"
    (1 real change made)
734 . replace dif_largest_past20 = 11000000-1060000 if region == "chandigarh"
    (1 real change made)
735 . replace dif largest past20 = 12000000-2150000 if region == "chennai"
    (1 real change made)
736 . replace dif_largest_past20 = 1300000-633471 if region == "guwahati"
    (1 real change made)
737 . replace dif_largest_past20 = 12000000-2150000 if region == "hyderabad"
    (1 real change made)
738 . replace dif_largest_past20 = . if region == "jaipur"
    (1 real change made, 1 to missing)
739 . replace dif_largest_past20 = 11000000-775000 if region == "kanpur"
    (1 real change made)
740 . replace dif_largest_past20 = 9500248-8000000 if region == "kochi"
    (1 real change made)
```

741 . replace dif_largest_past20 = 1300000-1500300 if region == "kolkata"

(1 real change made)

729 .

742 . replace dif_largest_past20 = . if region == "mumbai" (1 real change made, 1 to missing) 743 . replace dif largest past20 = 11000000-906000 if region == "new delhi" (1 real change made) 744 . replace dif_largest_past20 = . if region == "panaji" (1 real change made, 1 to missing) 745 . replace dif_largest_past20 = 1300000-1022800 if region == "patna" (1 real change made) 746 . 747 . replace dif_largest_past30 = . if region == "ahmedabad" (1 real change made, 1 to missing) 748 . replace dif largest past30 = . if region == "bangalore" (1 real change made, 1 to missing) 749 . replace dif largest past30 = . if region == "bhopal" (1 real change made, 1 to missing) 750 . replace dif_largest_past30 = 1300000-2844000 if region == "bubaneshwar" (1 real change made) 751 . replace dif_largest_past30 = 11000000-1060000 if region == "chandigarh" (1 real change made) 752 . replace dif largest past30 = 12000000-2150000 if region == "chennai" (1 real change made) 753 . replace dif_largest_past30 = 1300000-633471 if region == "guwahati" (1 real change made)

754 . replace dif_largest_past30 = 12000000-2150000 if region == "hyderabad"

```
755 . replace dif_largest_past30 = . if region == "jaipur"
    (1 real change made, 1 to missing)
756 . replace dif largest past30 = 11000000-775000 if region == "kanpur"
    (1 real change made)
757 . replace dif_largest_past30 = 9500248-8000000 if region == "kochi"
    (1 real change made)
758 . replace dif_largest_past30 = 1300000-1500300 if region == "kolkata"
    (1 real change made)
759 . replace dif_largest_past30 = . if region == "mumbai"
    (1 real change made, 1 to missing)
760 . replace dif_largest_past30 = 11000000-906000 if region == "new_delhi"
    (1 real change made)
761 . replace dif_largest_past30 = . if region == "panaji"
    (1 real change made, 1 to missing)
762 . replace dif_largest_past30 = 1300000-1022800 if region == "patna"
    (1 real change made)
763 .
764 .
765 . rename dif any past30 dif avg past30
766 . rename dif_any_past20 dif_avg_past20
767 . rename dif any past10 dif avg past10
768 .
769 .
770 . keep region number_any_past10 number_major1_past10 number_major2_past10 numb
    > er flood past10 damages cum past10 dif avg past10 dif largest past10 number
   > any past20 number_major1_past20 number_major2_past20 number_flood_past20 dam
   > ages_cum_past20 dif_avg_past20 dif_largest_past20 number_any_past30 number_
    > major1 past30 number major2 past30 number flood past30 damages cum past30 di
   > f avg past30 dif largest past30
```

```
771 .
772 . order region number_any_past10 number_major1_past10 number_major2_past10 num
   > ber flood past10 damages cum past10 dif avg past10 dif largest past10 number
   > any past20 number major1 past20 number major2 past20 number flood past20 da
   > mages_cum past20 dif_avg_past20 dif_largest_past20 number_any_past30 number
   > major1 past30 number major2 past30 number flood past30 damages cum past30 d
   > if_avg_past30 dif_largest_past30
773 .
774 . save _ldata/raw/disasters/disaster_risk.dta, replace
   file _ldata/raw/disasters/disaster_risk.dta saved
775 .
   end of do-file
776 . do _2code/_1build_data/merge_main
777 .
> ****
   > Merge clean data to create main panel
   > Inputs: - regional_fdi_month.dta
               - regional controls.dta
   >
                          - insurance rates
                          - annual CPI data
   > Output:
              -clean_data.dta
   > **********************
   > ****/
779 .
780 .
781 . *load raw FDI data
783 . use ldata/raw/fdi/regional fdi month.dta, clear
```

784 .

785 . *merge controls

786

787 . *use _ldata/raw/regional_characteristics/regional_controls.dta, clear

788 .

789 . merge 1:1 region date using _ldata/raw/regional_characteristics/regional_co > ntrols.dta, keep(3) nogen

Result	Number	of	obs
Not matched Matched		2	0 ,736

790 .

791 . *merge disaster info

792 .

793 .

794 . merge 1:1 region date using _ldata/raw/disasters/disaster_timing_affected.d > ta, keep(3) nogen

Result	Number	of	obs
Not matched Matched		2	0 ,736

795 .

796 . merge m:1 region using _ldata/raw/disasters/spatial_disaster.dta, nogen

Result	Number	of	obs
Not matched Matched		2	0 ,736

797 .

```
798 . encode region, gen(region1)
799 .
800 . /*
   > *generate the appropriate monthly date
   > gen month=month(date)
   > gen year = year(date)
    > drop date
    > gen date = ym(year, month)
   > format date %tm
   > drop year month
   > order region date
   > */
801 .
802 . gen year = yofd(dofm(date))
803 .
804 . *month count
805 .
806 . bysort region1: gen Count = _n
807 . *fill education values
808 . replace edu = edu[_n-1] if missing(edu)
    (767 real changes made)
809 .
810 . * generate the logged variables
811 . generate pop_log = ln(pop)
812 . generate GDP_log = ln(GDP)
813 . generate edu_log = ln(edu)
814 . gen lfdi = ln(fdi)
    (489 missing values generated)
```

```
815 . generate fdi_ihs = asinh(fdi)
816 . replace density = density/100
    variable density was int now float
    (2,736 real changes made)
817 .
818 .
819 . ** We want to lag these controls by at least one year bc the disaster has an
    > impact on GDP and/or Population.
820 . ** Given that we observe the controls at yearly frequency and the panel star
    > ts middle of 2005,
821 . ** the lagging by 12 month is tricky and some values need to be fixed.
822 . * generate lagged variables:
823 . gen lag lgdp = .
    (2,736 missing values generated)
824 . bysort region (date): replace lag lgdp=GDP log[ n-12]
    (2544 real changes made)
825 . bysort region (date): replace lag_lgdp=GDP_log[1] if year==2006
    (144 real changes made)
826 .
827 . gen lag_gdp = .
    (2,736 missing values generated)
828 . bysort region (date): replace lag_gdp=GDP[_n-12]
    (2544 real changes made)
829 . bysort region (date): replace lag gdp=GDP[1] if year==2006
    (144 real changes made)
830 .
831 .
832 . ** I noticed that there is a weird empty observation. Not sure where it came
    > from. This drops the empty line:
```

```
833 .
834 .
835 . ** Back to creating the lags:
836 \cdot gen lag_lpop = \cdot
    (2,736 missing values generated)
837 . bysort region (date): replace lag_lpop=pop_log[_n-12]
    (2544 real changes made)
838 . bysort region (date): replace lag_lpop=pop_log[1] if year==2006
    (144 real changes made)
839 .
840 . gen lag_pop = \cdot
    (2,736 missing values generated)
841 . bysort region (date): replace lag_pop=pop[_n-12]
    (2544 real changes made)
842 . bysort region (date): replace lag_pop=pop[1] if year==2006
    (144 real changes made)
843 .
844 .
845 \cdot gen lag_ledu = .
    (2,736 missing values generated)
846 . bysort region (date): replace lag_ledu=edu_log[_n-12]
    (2544 real changes made)
847 . bysort region (date): replace lag_ledu=edu_log[1] if year==2006
    (144 real changes made)
848 .
849 \cdot gen lag_edu = .
    (2,736 missing values generated)
```

```
850 . bysort region (date): replace lag_edu=edu[_n-12]
    (2544 real changes made)
851 . bysort region (date): replace lag_edu=edu[1] if year==2006
    (144 real changes made)
852 .
853 .
854 .
855 . ** Declare the panel dataset:
856 . xtset region1 date
    Panel variable: region1 (strongly balanced)
     Time variable: date, 2005m10 to 2019m12
             Delta: 1 month
857 .
858 .
859 . ** YOUR PREVIOUS DEFINITIONS OF AFFECTED AND CONTINGUOUS REGIONS DO NO MATCH
    > YOUR CODE!!! ****
860 . ** PLEASE DOUBLE CHECK THIS!!! ***
861 . ** HERE I ADJUST ACCORDING TO TABLE 1 IN THE PAPER
862 . ** IF THE CODE IS RIGHT AND THE PAPER TABLE 1 IS WRONG, WE JUST DELETE THIS
    > PART:
863 .
864 . * Disaster 1:
865 . tab region if one_affected==1 /*According to your paper this should only inc
    > lude Patna Kolkata*/
```

region	Freq.	Percent	Cum.
kanpur	171	33.33	33.33
kolkata	171	33.33	66.67
patna	171	33.33	100.00
Total	513	100.00	

867 .

868 . tab region if one_contiguous==1

region	Freq.	Percent	Cum.
bubaneshwar	171	25.00	25.00
guwahati	171	25.00	50.00
kanpur	171	25.00	75.00
patna	171	25.00	100.00
Total	684	100.00	

870 .

871 .

872 . * Disaster 2:

873 . tab region if two_affected==1 /*Please double check*/

Cum.	Percent	Freq.	region
25.00	25.00	171	bubaneshwar
50.00	25.00	171	guwahati
75.00	25.00	171	kolkata
100.00	25.00	171	patna
	100.00	684	Total

874 . tab region if two_contiguous==1 /*Please double check*/

region	Freq.	Percent	Cum.
bhopal hyderabad kanpur	171 171 171	33.33 33.33 33.33	33.33 66.67 100.00
Total	513	100.00	

875 .

876 .

877 . * Disaster 3:

878 . tab region if three_affected==1 /*Please double check*/

region	Freq.	Percent	Cum.
chandigarh kanpur	171 171	33.33 33.33	33.33 66.67
new_delhi	171	33.33	100.00
Total	513	100.00	

879 . tab region if three_contiguous==1 /*Please double check*/

Cum.	Percent	Freq.	region
33.33 66.67 100.00	33.33 33.33 33.33	171 171 171	bhopal jaipur patna
	100.00	513	Total

880 .

881 .

882 . * Disaster 4:

883 . tab region if four_affected==1 /*Please double check*/

Cum.	Percent	Freq.	region
50.00 100.00	50.00 50.00	171 171	chennai hyderabad
	100.00	342	Total

884 . tab region if four_contiguous==1 /*Please double check*/

region	Freq.	Percent	Cum.
bangalore	171	20.00	20.00
bhopal	171	20.00	40.00
bubaneshwar	171	20.00	60.00
kochi	171	20.00	80.00
mumbai	171	20.00	100.00
Total	855	100.00	

885 .

886 .

887 . * Disaster 5:

888 . tab region if five_affected==1 /*Please double check*/

Cum.	Percent	Freq.	region
100.00	100.00	171	kochi
	100.00	171	Total

889 . tab region if five_contiguous==1 /*Please double check*/

Cum.	Percent	Freq.	region
50.00 100.00	50.00 50.00	171 171	bangalore chennai
	100.00	342	Total

890 .

891 .

892 .

893 . * The previous regression with the interaction terms (##) let's stata decide > what to exclude due to multicollinearity

894 . * As a result, STATA drops some fixed effects and keeps some of the bin and/ > or affected variables, which it shouldn't

895 . * This messes with the interpretation. Instead, we need to only include what > needs to be included.

896 . * I.e. we only include the region and time (year and month or monthly) fixed > effects and the interaction terms

897 . * Here I generate these treatment indicators:

898 . gen one = one_bin*one_affected

899 . gen two = two_bin*two_affected

900 . gen three = three_bin*three_affected

```
901 . gen four = four_bin*four_affected
902 . gen five = five bin*five affected
903 .
904 . ***************************
905 . ****************************
907 . ********** GEOGRAPHY SPILLOVER MECHANISMS *************
> **********
909 . ****************************
  > **********
910 . *****************************
  > **********
911 .
912 . ** 1) Continguity treatment indicator:
913 . gen one_cont = one_bin*one_contiguous
914 . gen two_cont = two_bin*two_contiguous
915 . gen three_cont = three_bin*three_contiguous
916 . gen four_cont = four_bin*four_contiguous
917 . gen five_cont = five_bin*five_contiguous
918 .
919 . ** 2) Inverse distance:
920 . replace one_distance = one_bin/one_distance
  (2,394 real changes made)
921 . replace two distance = two bin/two distance
  (2,052 real changes made)
```

```
922 . replace three_distance = three_bin/three_distance
    (2,223 real changes made)
923 . replace four_distance = four_bin/four_distance
    (2,394 real changes made)
924 . replace five_distance = five_bin/five_distance
    (2,565 real changes made)
925 .
926 . foreach y in "one_" "two_" "three_" "four_" "five_" {
      2. replace `y'distance = 0 if `y'affected==1
      3. }
    (342 real changes made)
    (684 real changes made)
    (513 real changes made)
    (342 real changes made)
    (171 real changes made)
927 .
928 . /*
    > ** Robustness: X) Kth nearest neighbor indicator - does not yield any striki
    > ng results
    > replace one_kth_neighbor = one_kth_neighbor * one_bin
    > replace two_kth_neighbor = two_kth_neighbor * two_bin
    > replace three_kth_neighbor = three_kth_neighbor * three_bin
    > replace four_kth_neighbor = four_kth_neighbor * four_bin
    > replace five_kth_neighbor = five_kth_neighbor * five_bin
    > * set it = 0 for directly affected regions
    > foreach x in "one_kth_neighbor" "two_kth_neighbor" "three_kth_neighbor" "fou
    > r_kth_neighbor" "five_kth_neighbor" {
    > replace `x'=0 if `x'==.
   > }
    > */
929 .
930 .
```

```
Not matched 0
Matched 2,736
```

```
941 .
942 .
943 .
944 . foreach x in "density" "urban" "water_s" "elec_s" "lat_s" {
      2. foreach y in "one_" "two_" "three_" "four_" "five_" {
      3. gen 'y' x' = 'y'bin*'x'
      4. replace `y'`x' = 0 if `y'affected==1
      5. }
      6. }
    (298 real changes made)
    (468 real changes made)
    (237 real changes made)
    (100 real changes made)
    (17 real changes made)
    (298 real changes made)
    (468 real changes made)
    (237 real changes made)
    (100 real changes made)
    (17 real changes made)
    (298 real changes made)
    (468 real changes made)
    (237 real changes made)
    (100 real changes made)
    (17 real changes made)
    (298 real changes made)
    (468 real changes made)
    (237 real changes made)
    (100 real changes made)
    (17 real changes made)
```

```
(298 real changes made)
    (468 real changes made)
    (237 real changes made)
   (100 real changes made)
    (17 real changes made)
945 .
946 .
947 .
948 .
950 .
951 . ** 8 & 9) Access to Golden Quadriladeral (GQ) and Major Seaport:
952 .
953 . * Create Port Indicator:
954 . gen port=0
955 . replace port=1 if inlist(region, "chandigarh", "mumbai", "bangalore", "panaj
   > i", "kochi", "chennai", "hyderabad", "bhubaneshwar", "kolkata")
   (1,368 real changes made)
956 .
957 . * rename
958 . rename golden_quad gq
959 .
960 . ** Create weighted spillover indicator:
961 . foreach x in "gq" "port" \{
     2. foreach y in "one_" "two_" "three " "four " "five " {
     3. gen 'y''x' = 'y'bin*'x'
     4. replace y'x' = 0 if y'affected==1
     5. }
     6. }
    (149 real changes made)
    (234 real changes made)
    (237 real changes made)
    (100 real changes made)
    (0 real changes made)
    (149 real changes made)
    (117 real changes made)
    (79 real changes made)
    (100 real changes made)
    (17 real changes made)
```

```
962 .
963 .
964 .
965 .
966 .
967 .
968 .
970 .
971 . ** Merge 2 datasets on skill and composition:
972 . merge m:1 region using _1data/raw/regional_characteristics/census/skill.dta,
   > nogen
                                 Number of obs
       Result
       Not matched
                                             0
       Matched
                                         2,736
973 .
974 .
975 . merge m:1 region using _ldata/raw/regional_characteristics/census/employment
   > .dta, nogen
       Result
                                 Number of obs
       Not matched
                                             0
       Matched
                                         2,736
976 .
977 .
978 .
979 . ** Create weighted spillover indicator:
980 . foreach x in "lit_s" "grad_s" "manu_s" "retail_s" {
     2. foreach y in "one_" "two_" "three_" "four_" "five_" {
     3. gen y' x' = y' bin * x'
     4. replace y'x' = 0 if y'affected==1
     5. }
     6. }
    (298 real changes made)
   (468 real changes made)
   (237 real changes made)
   (100 real changes made)
   (17 real changes made)
   (298 real changes made)
   (468 real changes made)
   (237 real changes made)
```

```
(100 real changes made)
    (17 real changes made)
    (298 real changes made)
    (468 real changes made)
    (237 real changes made)
    (100 real changes made)
    (17 real changes made)
    (298 real changes made)
    (468 real changes made)
    (237 real changes made)
    (100 real changes made)
    (17 real changes made)
981 .
982 .
983 .
984 . /*
    > ** X) Robustness: Check with 2008 Labor stats
    > * Merge in employment data:
    > merge m:1 region using employment_data/mining_emp
    > drop _merge
    > merge m:1 region using employment_data/retail_emp
    > drop _merge
    > merge m:1 region using employment_data/factory_emp
    > drop _merge
    > */
985 .
986 .
987 . ***************** SPILLOVER BASED ON ECONOMIC SIMILARITY ********
    > *********
988 .
989 . ** Does it matter whether a region has more manufacturing or has a similar i
    > ndustrial composition?
990 . ** 2) Similar manufacturing or retail employment shares:
991 .
```

992 . merge m:1 region using _ldata/raw/regional_characteristics/census/ind_comp.d > ta, nogen

Result	Number	of	obs
Not matched Matched		2	0 ,736

```
993 .
994 . gen id=1
995 .
996 . foreach y in "one_" "two_" "three_" "four_" "five_" {
       2. foreach x of varlist agri s-other s {
       3. bysort `y'affected date (region): egen `y'avg_`x'=mean(`x') if `y'affecte
    > d==1
       4. bysort id (`y'avg_`x'): replace `y'avg_`x'=`y'avg_`x'[1]
997 . gen y'sim x' = (1/abs(y'avg x'-x'))
       6. bysort date (region): egen tot_`y'sim_`x'=total(`y'sim_`x') if `y'affecte
    > d == 0
       7. replace `y'sim_`x'=`y'sim_`x'/tot_`y'sim_`x'
998 . replace y'sim_x' = 0 if y'affected==1
       9. replace `y'sim_`x' = `y'sim_`x'*`y'bin
999 . drop `y'avg_`x' tot_`y'sim_`x'
     11.
1000 . }
     12.
1001 . egen `y'sim = rowtotal(`y'sim_agri_s-`y'sim_other_s)
1002 . drop `y'sim_agri_s-`y'sim_other_s
     14.
1003 .
1004 . }
     (2,394 missing values generated)
     (2394 real changes made)
     (342 missing values generated)
     (2,736 real changes made, 342 to missing)
     (342 real changes made)
     (308 real changes made)
     (2,394 missing values generated)
     (2394 real changes made)
     (342 missing values generated)
     (2,736 real changes made, 342 to missing)
     (342 real changes made)
     (308 real changes made)
```

```
(2,394 missing values generated)
(2394 real changes made)
(342 missing values generated)
(2,736 real changes made, 342 to missing)
(342 real changes made)
(308 real changes made)
(2,394 missing values generated)
(2394 real changes made)
(342 missing values generated)
(2,736 real changes made, 342 to missing)
(342 real changes made)
(308 real changes made)
(2,394 missing values generated)
(2394 real changes made)
(342 missing values generated)
(2,736 real changes made, 342 to missing)
(342 real changes made)
(308 real changes made)
(2,394 missing values generated)
(2394 real changes made)
(342 missing values generated)
(2,736 real changes made, 342 to missing)
(342 real changes made)
(308 real changes made)
(2,394 missing values generated)
(2394 real changes made)
(342 missing values generated)
(2,736 real changes made, 342 to missing)
(342 real changes made)
(308 real changes made)
(2,394 missing values generated)
(2394 real changes made)
(342 missing values generated)
(2,736 real changes made, 342 to missing)
(342 real changes made)
(308 real changes made)
(2,394 missing values generated)
(2394 real changes made)
(342 missing values generated)
(2,736 real changes made, 342 to missing)
(342 real changes made)
(308 real changes made)
(2,394 missing values generated)
(2394 real changes made)
(342 missing values generated)
(2,736 real changes made, 342 to missing)
(342 real changes made)
(308 real changes made)
(2,052 missing values generated)
```

```
(2052 real changes made)
(684 missing values generated)
(2,736 real changes made, 684 to missing)
(684 real changes made)
(648 real changes made)
(2,052 missing values generated)
(2052 real changes made)
(684 missing values generated)
(2,736 real changes made, 684 to missing)
(684 real changes made)
(648 real changes made)
(2,052 missing values generated)
(2052 real changes made)
(684 missing values generated)
(2,736 real changes made, 684 to missing)
(684 real changes made)
(648 real changes made)
(2,052 missing values generated)
(2052 real changes made)
(684 missing values generated)
(2,736 real changes made, 684 to missing)
(684 real changes made)
(648 real changes made)
(2,052 missing values generated)
(2052 real changes made)
(684 missing values generated)
(2,736 real changes made, 684 to missing)
(684 real changes made)
(648 real changes made)
(2,052 missing values generated)
(2052 real changes made)
(684 missing values generated)
(2,736 real changes made, 684 to missing)
(684 real changes made)
(648 real changes made)
(2,052 missing values generated)
(2052 real changes made)
(684 missing values generated)
(2,736 real changes made, 684 to missing)
(684 real changes made)
(648 real changes made)
(2,052 missing values generated)
(2052 real changes made)
(684 missing values generated)
(2,736 real changes made, 684 to missing)
(684 real changes made)
(648 real changes made)
(2,052 missing values generated)
(2052 real changes made)
```

```
(684 missing values generated)
(2,736 real changes made, 684 to missing)
(684 real changes made)
(648 real changes made)
(2,052 missing values generated)
(2052 real changes made)
(684 missing values generated)
(2,736 real changes made, 684 to missing)
(684 real changes made)
(648 real changes made)
(2,223 missing values generated)
(2223 real changes made)
(513 missing values generated)
(2,736 real changes made, 513 to missing)
(513 real changes made)
(1,196 real changes made)
(2,223 missing values generated)
(2223 real changes made)
(513 missing values generated)
(2,736 real changes made, 513 to missing)
(513 real changes made)
(1,196 real changes made)
(2,223 missing values generated)
(2223 real changes made)
(513 missing values generated)
(2,736 real changes made, 513 to missing)
(513 real changes made)
(1,196 real changes made)
(2,223 missing values generated)
(2223 real changes made)
(513 missing values generated)
(2,736 real changes made, 513 to missing)
(513 real changes made)
(1,196 real changes made)
(2,223 missing values generated)
(2223 real changes made)
(513 missing values generated)
(2,736 real changes made, 513 to missing)
(513 real changes made)
(1,196 real changes made)
(2,223 missing values generated)
(2223 real changes made)
(513 missing values generated)
(2,736 real changes made, 513 to missing)
(513 real changes made)
(1,196 real changes made)
(2,223 missing values generated)
(2223 real changes made)
(513 missing values generated)
```

```
(2,736 real changes made, 513 to missing)
(513 real changes made)
(1,196 real changes made)
(2,223 missing values generated)
(2223 real changes made)
(513 missing values generated)
(2,736 real changes made, 513 to missing)
(513 real changes made)
(1,196 real changes made)
(2,223 missing values generated)
(2223 real changes made)
(513 missing values generated)
(2,736 real changes made, 513 to missing)
(513 real changes made)
(1,196 real changes made)
(2,223 missing values generated)
(2223 real changes made)
(513 missing values generated)
(2,736 real changes made, 513 to missing)
(513 real changes made)
(1,196 real changes made)
(2,394 missing values generated)
(2394 real changes made)
(342 missing values generated)
(2,736 real changes made, 342 to missing)
(342 real changes made)
(1,694 real changes made)
(2,394 missing values generated)
(2394 real changes made)
(342 missing values generated)
(2,736 real changes made, 342 to missing)
(342 real changes made)
(1,694 real changes made)
(2,394 missing values generated)
(2394 real changes made)
(342 missing values generated)
(2,736 real changes made, 342 to missing)
(342 real changes made)
(1,694 real changes made)
(2,394 missing values generated)
(2394 real changes made)
(342 missing values generated)
(2,736 real changes made, 342 to missing)
(342 real changes made)
(1,694 real changes made)
(2,394 missing values generated)
(2394 real changes made)
(342 missing values generated)
(2,736 real changes made, 342 to missing)
```

```
(342 real changes made)
(1,694 real changes made)
(2,394 missing values generated)
(2394 real changes made)
(342 missing values generated)
(2,736 real changes made, 342 to missing)
(342 real changes made)
(1,694 real changes made)
(2,394 missing values generated)
(2394 real changes made)
(342 missing values generated)
(2,736 real changes made, 342 to missing)
(342 real changes made)
(1,694 real changes made)
(2,394 missing values generated)
(2394 real changes made)
(342 missing values generated)
(2,736 real changes made, 342 to missing)
(342 real changes made)
(1,694 real changes made)
(2,394 missing values generated)
(2394 real changes made)
(342 missing values generated)
(2,736 real changes made, 342 to missing)
(342 real changes made)
(1,694 real changes made)
(2,394 missing values generated)
(2394 real changes made)
(342 missing values generated)
(2,736 real changes made, 342 to missing)
(342 real changes made)
(1,694 real changes made)
(2,565 missing values generated)
(2565 real changes made)
(171 missing values generated)
(171 missing values generated)
(2,565 real changes made)
(171 real changes made)
(2,310 real changes made)
(2,565 missing values generated)
(2565 real changes made)
(171 missing values generated)
(171 missing values generated)
(2,565 real changes made)
(171 real changes made)
(2,310 real changes made)
(2,565 missing values generated)
(2565 real changes made)
(171 missing values generated)
```

(171 missing values generated) (2,565 real changes made) (171 real changes made) (2,310 real changes made) (2,565 missing values generated) (2565 real changes made) (171 missing values generated) (171 missing values generated) (2,565 real changes made) (171 real changes made) (2,310 real changes made) (2,565 missing values generated) (2565 real changes made) (171 missing values generated) (171 missing values generated) (2,565 real changes made) (171 real changes made) (2,310 real changes made) (2,565 missing values generated) (2565 real changes made) (171 missing values generated) (171 missing values generated) (2,565 real changes made) (171 real changes made) (2,310 real changes made) (2,565 missing values generated) (2565 real changes made) (171 missing values generated) (171 missing values generated) (2,565 real changes made) (171 real changes made) (2,310 real changes made) (2,565 missing values generated) (2565 real changes made) (171 missing values generated) (171 missing values generated) (2,565 real changes made) (171 real changes made) (2,310 real changes made) (2,565 missing values generated) (2565 real changes made) (171 missing values generated) (171 missing values generated) (2,565 real changes made) (171 real changes made) (2,310 real changes made)

(2,565 missing values generated)

(171 missing values generated)

(2565 real changes made)

```
(171 missing values generated)
     (2,565 real changes made)
     (171 real changes made)
     (2,310 real changes made)
1005 .
1006 .
1007 .
1008 .
1009 .
1010 .
1011 . ****************** SPILLOVER BASED ON RISK BASED ON PREVIOUS DISASTER
    > S **************
1012 .
1013 .
1014 .
1015 . merge m:1 region using ldata/raw/disasters/disaster risk.dta, nogen
         Result
                                     Number of obs
        Not matched
                                                 O
        Matched
                                             2,736
1016 .
1017 .
1018 .
1019 . * set time horizon on risk variable
1020 .
1021 .
1022 . ** Create weighted spillover indicator:
1023 . foreach i in "_past10" "_past20" "_past30" {
       2. foreach x in "number_any`i'" "number_major1`i'" "number_major2`i'" "damag
    > es cum`i'" {
       3. foreach y in "one_" "two_" "three_" "four_" "five_" {
       4. gen y' x' = y' bin* x'
       5. replace y'x' = 0 if y'affected==1
       6. }
       7. }
       8. }
     (298 real changes made)
     (468 real changes made)
     (237 real changes made)
     (100 real changes made)
     (17 real changes made)
     (298 real changes made)
     (468 real changes made)
     (0 real changes made)
     (100 real changes made)
```

(17 real changes made) (0 real changes made) (234 real changes made) (0 real changes made) (100 real changes made) (17 real changes made) (298 real changes made) (468 real changes made) (237 real changes made) (100 real changes made) (17 real changes made) (298 real changes made) (468 real changes made) (237 real changes made) (100 real changes made) (17 real changes made) (298 real changes made) (468 real changes made) (0 real changes made) (100 real changes made) (17 real changes made) (0 real changes made) (234 real changes made) (0 real changes made) (100 real changes made) (17 real changes made) (298 real changes made) (468 real changes made) (237 real changes made) (100 real changes made) (17 real changes made) (298 real changes made) (468 real changes made) (237 real changes made) (100 real changes made) (17 real changes made) (298 real changes made) (468 real changes made) (79 real changes made) (100 real changes made) (17 real changes made) (0 real changes made) (234 real changes made) (0 real changes made) (100 real changes made) (17 real changes made) (298 real changes made) (468 real changes made)

(237 real changes made)

```
(100 real changes made)
     (17 real changes made)
1024 .
1025 .
1026 . *** Set spillover channels equal to 0 if a region was already hit by a disas
    > ter
1027 . ** That is only focus on regions that have not been previously affected by a
    > disaster.
1028 .
1029 . foreach x in "cont" "distance" "density" "urban" "water_s" "elec_s" "lat_s"
    > "gq" "port" "lit_s" "grad_s" "manu_s" "retail_s" "sim" ///
               "number_any_past10" "number_any_past20" "number_any_past30" "number_
    > major1_past10" "number_major1_past20" "number_major1_past30" ///
               "number major2 past10" "number major2 past20" "number major2 past30"
    > "damages_cum_past10" "damages_cum_past20" "damages_cum_past30" {
      2. * should not make any changes as all other regions were not hit before:
1030 . replace one `x' = 0 if inlist(region, "kolkata", "patna")
1031 . * should not make any changes as all other regions were also not affected by
    > disaster one:
1032 . replace two_`x' = 0 if inlist(region, "bubaneshwar", "guwahati", "kolkata",
    > "patna")
      4.
1033 . * should make changes:
1034 . replace three `x' =0 if inlist(region, "bubaneshwar", "chandigarh", "guwahat
    > i", ///
                       "kanpur", "kolkata", "new dehli", "patna")
      5.
1035 . replace four_`x' =0 if inlist(region, "bubaneshwar", "chandigarh", "chennai"
    > , "guwahati", "hyderabad", ///
                       "kanpur", "kolkata", "new_dehli", "patna")
1036 . replace five_`x' =0 if (inlist(region, "bubaneshwar", "chandigarh", "chennai
    > ", "guwahati", "hyderabad") | ///
                       inlist(region, "kanpur", "kochi", "kolkata", "new dehli", "p
    > atna"))
      7.
```

```
1037 . }
     (0 real changes made)
     (0 real changes made)
     (79 real changes made)
     (50 real changes made)
     (17 real changes made)
     (0 real changes made)
     (0 real changes made)
     (316 real changes made)
     (300 real changes made)
     (136 real changes made)
     (0 real changes made)
     (0 real changes made)
     (316 real changes made)
     (300 real changes made)
     (136 real changes made)
     (0 real changes made)
     (0 real changes made)
     (316 real changes made)
     (300 real changes made)
     (136 real changes made)
     (0 real changes made)
     (0 real changes made)
     (316 real changes made)
     (300 real changes made)
     (136 real changes made)
     (0 real changes made)
     (0 real changes made)
     (316 real changes made)
     (300 real changes made)
     (136 real changes made)
     (0 real changes made)
     (0 real changes made)
     (316 real changes made)
     (300 real changes made)
     (136 real changes made)
     (0 real changes made)
     (0 real changes made)
     (158 real changes made)
     (200 real changes made)
     (102 real changes made)
     (0 real changes made)
     (0 real changes made)
     (79 real changes made)
     (100 real changes made)
     (68 real changes made)
     (0 real changes made)
     (0 real changes made)
     (316 real changes made)
```

```
(300 real changes made)
(136 real changes made)
(0 real changes made)
(0 real changes made)
(316 real changes made)
(300 real changes made)
(136 real changes made)
(0 real changes made)
(0 real changes made)
(316 real changes made)
(300 real changes made)
(136 real changes made)
(0 real changes made)
(0 real changes made)
(316 real changes made)
(300 real changes made)
(136 real changes made)
(0 real changes made)
(0 real changes made)
(316 real changes made)
(300 real changes made)
(136 real changes made)
(0 real changes made)
(0 real changes made)
(316 real changes made)
(300 real changes made)
(136 real changes made)
(0 real changes made)
(0 real changes made)
(316 real changes made)
(300 real changes made)
(136 real changes made)
(0 real changes made)
(0 real changes made)
(316 real changes made)
(300 real changes made)
(136 real changes made)
(0 real changes made)
(0 real changes made)
(316 real changes made)
(200 real changes made)
(102 real changes made)
(0 real changes made)
(0 real changes made)
(316 real changes made)
(200 real changes made)
(102 real changes made)
(0 real changes made)
```

(0 real changes made)

```
(316 real changes made)
(250 real changes made)
(119 real changes made)
(0 real changes made)
(0 real changes made)
(158 real changes made)
(100 real changes made)
(68 real changes made)
(0 real changes made)
(0 real changes made)
(158 real changes made)
(100 real changes made)
(68 real changes made)
(0 real changes made)
(0 real changes made)
(158 real changes made)
(100 real changes made)
(68 real changes made)
(0 real changes made)
(0 real changes made)
(316 real changes made)
(300 real changes made)
(136 real changes made)
(0 real changes made)
(0 real changes made)
(316 real changes made)
(300 real changes made)
(136 real changes made)
(0 real changes made)
(0 real changes made)
(316 real changes made)
(300 real changes made)
(136 real changes made)
```

1038 .

1039 . sort region date

```
1040 .
1041 .
1042 . save ldata/clean/clean data, replace
   file _1data/clean/clean_data.dta saved
1043 .
1044 .
1045 .
1046 .
1047 .
   end of do-file
1048 .
1049 . * -----
1050 . * ANALYSIS
1051 . * -----
1052 .
1053 . *tables
1054 .
1055 .
1056 . do _2code/_2analysis/table1
1057 .
1059 . * Table 1: Regional Sample Averages
> ****
1062 .
1063 . use _ldata/clean/clean_data, clear
1064 .
1065 . keep if date >= ym(2006,1)
   (48 observations deleted)
1066 .
```

```
1067 .
1068 . gen disaster = 0
1069 . replace disaster = 1 if inlist(region, "kolkata", "patna")
     (336 real changes made)
1070 . replace disaster = 2 if inlist(region, "bubaneshwar", "guwahati", "kolkata",
    > "patna")
     (672 real changes made)
1071 . replace disaster = 3 if inlist(region, "chandigarh", "kanpur", "new_delhi")
     (504 real changes made)
1072 . replace disaster = 4 if inlist(region, "chennai", "hyderabad")
     (336 real changes made)
1073 . replace disaster = 5 if inlist(region, "kochi")
     (168 real changes made)
1074 .
1075 .
1076 . replace GDP=GDP/1000
     (2,688 real changes made)
1077 . replace pop=pop/1000
     (2,688 real changes made)
1078 .
1079 .
1080 . estimates clear
1081 .
1082 . estpost tabstat fdi disaster GDP pop density urban lat_s port lit_s grad_s m
    > anu_s, ///
               by(region) statistics(mean) nototal
     Summary statistics: mean
          for variables: fdi disaster GDP pop density urban lat_s port lit_s grad_s
     > manu s
       by categories of: region
```

		region	e(fdi)	e(disas~)	e(GDP)	e(pop)	e(densi~)	e(urban
>)	e(lat_s)	e(port)	e(lit_s)	e(grad_s)	e(manu_s)		
_								
>		· · · · · · · · · · · · · · · · · · ·					_	
		hmedabad	123.7024	0	768.4008	61.70957	2.58	37.3
>	5		0	58.86551	3.701802	32.93378		
	b	angalore	447.5655	0	727.8571	48.28664	2.75	33.9
>	8	22.88688	1		4.21369	28.57805		
		bhopal	19.27976	0	413.5369	74.41093	2.75	46.7
	5	13.84648	0		3.089078	28.42156		
		aneshwar	2.690476	2	267.6651	41.91359	2.36	14.9
	7	9.601776	0		3.22144			
		andigarh	29.27381	3	765.0014	61.72664	3.56	24.2
>	5	40.40336	1		4.048327			
		chennai	216.2202	4	866.1026	59.71221	4.78	43.8
>	6		1	65.0377	3.573779			
		guwahati	7.339286	2	254.7046	44.91219	.78	23.4
>	2	25.81423	0		2.826608	17.97024		
		yderabad	83.0119		470.9139		2.75	27.7
>	8	20.76061	1	52.40037	3.708651			
		jaipur	16.99405	0	502.7478	70.06648	1.65	23.3
>	8	21.93234	0	49.02387	2.604647			
		kanpur	5.130952	3	980.4028	214.6582	4.24	23.1
>	9	23.45525	0		3.108155	38.70926		
		kochi	19.10119	5	412.3594	33.91186	8.19	25.9
>	7	65.06091	1		4.526384	21.06291		
		kolkata	25.95833	2	646.174	92.18057	9.04	28.0
>	3	23.51331	1	58.8658	3.965361	33.77612		
		mumbai	662.5952	0	1478.714	92.84471	3.14	42.
>	4	28.27212	1	65.98727	5.038646	30.9865		
	n	w_delhi	209.4524	3	399.7761	17.51164	92.94	93.0
>	1	68.02806	0	69.77914	12.72094	25.99221		
		panaji	9.303571	0	44.61421	1.483357	3.63	49.7
>	7	45.76815	1		7.293859	17.51661		
		patna	1.511905	2	296.3974	106.4529	6.09	16.3
>	6	13.75642	0	39.00772	2.654155	33.11117		

```
1083 .
1084 . esttab using _3results/tables/table1.tex, cells("fdi(fmt(1)) disaster(fmt(0)
    > ) GDP pop density urban lat s port lit s grad s manu s") ///
             noobs nomtitle nonumber replace
    (output written to <u>3results/tables/table1.tex</u>)
1085 .
1086 .
1087 .
    end of do-file
1088 . do 2code/ 2analysis/table2 baseline
1089 .
> ****
1091 . * Table 2: Baseline estimates
1092 .
> ****
1094 .
1095 .
1096 . ** Regression of IHS FDI with Year and Month fixed effects
1097 . * It's robust to true alternative fixed effect specificaions and not sensiti
    > ve to changing controls
1098 . * We estimate the relative average treatment effect of each disaster separat
    > ely and then jointly
1099 . * Then we measure the outcome variable (FDI) in absolute terms and logs (ln(
    > FDI)), which ignores the negative and 0-valued FDI inflows
1100 .
1101 .
1102 . ** Set the control variables:
1104 . use _ldata/clean/clean_data, clear
1105 .
1106 . keep if date >= ym(2006,1)
    (48 observations deleted)
```

```
1107 . global control lag lgdp lag lpop
1108 .
1109 .
1110 . *reg fdi_ihs one two three four five i.date i.region1, cluster(region1)
1112 . ** Set up matrix:
1113 . mat p_val=J(8,9,.)
1114 . estimates clear
1115 . local j=1
1116 . foreach x in "one" "two" "three" "four" "five" "one two three four five" {
       2. reg fdi ihs `x' $control i.date i.region1, cluster(region1)
       3.
1117 .
1118 .
1119 .
1120 . if "x'"=="one" {
       4. boottest {one} {lag_lgdp} {lag_lpop} {_cons}, reps(9999) gridpoints(10) c
     > luster(region1 date) bootcluster(region1 date) nograph seed(123)
       5. mat p_{val}[1,1]=r(p_1)
       6. mat p_val[6,1]=r(p_2)
       7. mat p_{val}[7,1]=r(p_3)
       8. mat p_{val}[8,1]=r(p_4)
       9. }
      10.
1121 . if "`x'"=="two" {
      11. boottest {two} {lag_lgdp} {lag_lpop} {_cons}, reps(9999) gridpoints(10) c
     > luster(region1 date) bootcluster(region1 date) nograph seed(123)
      12. mat p_{val}[2,2]=r(p_1)
      13. mat p_val[6,2]=r(p_2)
      14. mat p_{val}[7,2]=r(p_3)
      15. mat p_{val}[8,2]=r(p_4)
      16. }
      17. if "`x'"=="three" {
      18. boottest {three} {lag_lgdp} {lag_lpop} {_cons}, reps(9999) gridpoints(10)
     > cluster(region1 date) bootcluster(region1 date) nograph seed(123)
      19. mat p_{val}[3,3]=r(p_1)
      20. mat p_val[6,3]=r(p_2)
      21. mat p val[7,3]=r(p 3)
      22. mat p_val[8,3]=r(p_4)
      23. }
      24. if "`x'"=="four" {
      25. boottest {four} {lag_lgdp} {lag_lpop} {_cons}, reps(9999) gridpoints(10)
     > cluster(region1 date) bootcluster(region1 date) nograph seed(123)
      26. mat p val[4,4]=r(p 1)
      27. mat p_{val}[6,4]=r(p_2)
```

```
28. mat p_val[7,4]=r(p_3)
      29. mat p_val[8,4]=r(p_4)
      30. }
      31. if "`x'"=="five" {
      32. boottest {five} {lag_lgdp} {lag_lpop} {_cons}, reps(9999) gridpoints(10)
     > cluster(region1 date) bootcluster(region1 date) nograph seed(123)
      33. mat p_{val}[5,5]=r(p_1)
      34. mat p_val[6,5]=r(p_2)
      35. mat p val[7,5]=r(p 3)
      36. mat p_{val}[8,5]=r(p_4)
      37. }
      38. if "x'"=="one two three four five" {
      39. boottest {one} {two} {three} {four} {five} {lag_lgdp} {lag_lpop} {_cons},
     > reps(9999) gridpoints(10) cluster(region1 date) bootcluster(region1 date) n
     > ograph seed(123)
      40. mat p_val[1,6]=r(p_1)
      41. mat p_val[2,6]=r(p_2)
      42. mat p val[3,6]=r(p 3)
      43. mat p_{val}[4,6]=r(p_4)
      44. mat p_val[5,6]=r(p_5)
      45. mat p_{val}[6,6]=r(p_6)
      46. mat p_val[7,6]=r(p_7)
      47. mat p_val[8,6]=r(p_8)
      48. }
      49.
1122 . eststo tb1 `j'
      50. local j=`j'+1
      51.
1123 . }
                                                      Number of obs
     Linear regression
                                                                               2,688
                                                      F(14, 15)
                                                      Prob > F
                                                      R-squared
                                                                              0.7222
                                                                        =
                                                      Root MSE
                                                                              1.3048
```

(Std. err. adjusted for 16 clusters in region1)

fdi_ihs	Coefficient	Robust std. err.	t	P> t	[95% conf.	interval]
one lag_lgdp lag_lpop	-3.709071 2.254595 .6326002	.4719851 1.82286 .4204405	-7.86 1.24 1.50	0.000 0.235 0.153	-4.715083 -1.63074 2635475	-2.703059 6.13993 1.528748
date 553 554 555	0531386 4915856 2011631	.2721267 .2833452 .3040009	-0.20 -1.73 -0.66	0.848 0.103 0.518	633163 -1.095522 8491256	.5268858 .1123505 .4467994

556	2330706	.2895211	-0.81	0.433	8501701	.3840289
557	.0419503	.2871265	0.15	0.886	5700453	.6539459
558	.3595212	.3467316	1.04	0.316	3795197	1.098562
559	.1886232	.3868755	0.49	0.633	6359824	1.013229
560	.0725879	.3753808	0.19	0.849	7275172	.8726931
561	172525	.2878324	-0.60	0.558	7860253	.4409752
562	0148782	.3202635	-0.05	0.964	6975036	.6677473
563	0206692	.3222327	-0.06	0.950	7074919	.6661535
564	7745708	.4335529	-1.79	0.094	-1.698667	.1495252
565	3583874	.4974612	-0.72	0.482	-1.418701	.701926
566	3398022	.419059	-0.81	0.430	-1.233005	.5534009
567	5626153	.4484626	-1.25	0.229	-1.518491	.3932602
568	4555925	.4762082	-0.96	0.354	-1.470606	.5594212
569	6262649	.4320641	-1.45	0.168	-1.547188	.2946578
570	.1006901	.4570827	0.22	0.829	8735586	1.074939
571	7187516	.4025407	-1.79	0.094	-1.576747	.1392435
572	9145153	.4227582	-2.16	0.047	-1.815603	0134275
573	5577088	.5062241	-1.10	0.288	-1.6367	.5212823
574	4110692	.4643991	-0.89	0.390	-1.400913	.5787742
575	1389026	.5750809	-0.24	0.812	-1.364659	1.086853
576	9188959	.6087222	-1.51	0.152	-2.216356	.3785648
577	3707366	.833461	-0.44	0.663	-2.147217	1.405744
578	6599302	.7237307	-0.91	0.376	-2.202526	.8826653
579	5068661	.7051011	-0.72	0.483	-2.009754	.9960213
580	0434298	.5328605	-0.08	0.936	-1.179195	1.092335
581	19772	.651986	-0.30	0.766	-1.587395	1.191955
582	1745007	.6793165	-0.26	0.801	-1.62243	1.273428
583	3118078	.7348546	-0.42	0.677	-1.878113	1.254498
584	1456251	.6758045	-0.22	0.832	-1.586068	1.294818
585	2199756	.6025367	-0.37	0.720	-1.504252	1.064301
586	3213572	.6558863	-0.49	0.631	-1.719346	1.076631
587	5409178	.7757738	-0.70	0.496	-2.19444	1.112605
588	5552902	.9451956	-0.59	0.566	-2.569927	1.459347
589	3571677	.842227	-0.42	0.678	-2.152332	1.437997
590	4286892	.8905132	-0.48	0.637	-2.326773	1.469395
591	-1.013659	.8935038	-1.13	0.274	-2.918117	.8907996
592	4317751	.8159242	-0.53	0.604	-2.170876	1.307326
593	1307856	.9569167	-0.14	0.893	-2.170405	1.908834
594	1205902	.9618717	-0.13	0.902	-2.170771	1.929591
595	1256032	.99275	-0.13	0.901	-2.2416	1.990393
596	4214126	.8273193	-0.51	0.618	-2.184802	1.341977
597	4204869	.9735235	-0.43	0.672	-2.495503	1.654529
598	3072683	.8463429	-0.36	0.722	-2.111206	1.496669
599	5129808	.8813391	-0.58	0.569	-2.391511	1.365549
600	5892484	1.185787	-0.50	0.626	-3.116693	1.938196
601	8322789	1.110014	-0.75	0.465	-3.198218	1.53366
602	3953263	1.190682	-0.33	0.744	-2.933204	2.142552
603	-1.536428	1.242114	-1.24	0.235	-4.183931	1.111075
604	-1.260169	1.194126	-1.06	0.308	-3.805389	1.285051

605	8724722	1.256231	-0.69	0.498	-3.550065	1.805121
606	-1.269173	1.299613	-0.98	0.344	-4.039233	1.500886
607	9518861	1.225521	-0.78	0.449	-3.564022	1.66025
608	-1.130176	1.266634	-0.89	0.386	-3.829943	1.569592
609	-1.162196	1.391003	-0.84	0.417	-4.127049	1.802658
610	8022512	1.424089	-0.56	0.582	-3.837626	2.233124
611	5485021	1.159315	-0.47	0.643	-3.019523	1.922519
612	-1.333977	1.600247	-0.83	0.418	-4.744822	2.076868
613	-1.27563	1.710662	-0.75	0.467	-4.92182	2.37056
614	-1.357875	1.450626	-0.94	0.364	-4.449811	1.734061
615	-1.183722	1.551224	-0.76	0.457	-4.490077	2.122634
616	-1.289845	1.485722	-0.87	0.399	-4.456587	1.876898
617	-1.760335	1.720137	-1.02	0.322	-5.426719	1.906049
618	-1.39999	1.502014	-0.93	0.366	-4.601456	1.801477
619	9266828	1.601912	-0.58	0.572	-4.341077	2.487711
620	-1.154541	1.7494	-0.66	0.519	-4.883298	2.574217
621	-1.049691	1.516501	-0.69	0.499	-4.282036	2.182654
622	-1.241964	1.471643	-0.84	0.412	-4.378697	1.894768
623	-1.244683	1.507359	-0.83	0.422	-4.457543	1.968177
624	-1.745016	1.776855	-0.98	0.342	-5.532294	2.042262
625	-1.742888	1.800604	-0.97	0.348	-5.580784	2.095008
626	-1.45127	1.843428	-0.79	0.443	-5.380444	2.477904
627	-1.8589	1.829147	-1.02	0.326	-5.757634	2.039834
628	-2.313964	1.899189	-1.22	0.242	-6.361989	1.734061
629	-1.928868	1.73058	-1.11	0.283	-5.617511	1.759775
630	-1.470188	1.726902	-0.85	0.408	-5.150992	2.210616
631	-2.28422	1.88048	-1.21	0.243	-6.292367	1.723928
632	-1.773174	1.820231	-0.97	0.345	-5.652905	2.106556
633	-1.311698	1.634529	-0.80	0.435	-4.795616	2.172219
634	-1.800607	1.750882	-1.03	0.320	-5.532525	1.931311
635	-1.533287	1.73157	-0.89	0.390	-5.224041	2.157468
636	-1.951734	2.005972	-0.97	0.346	-6.227362	2.323893
637	-2.350396	1.98514	-1.18	0.255	-6.58162	1.880829
638	-1.388698	1.897326	-0.73	0.475	-5.432753	2.655357
639	-1.749828	1.999373	-0.88	0.395	-6.011391	2.511735
640	-1.579093	1.912559	-0.83	0.422	-5.655616	2.497431
641	-2.225868	2.006688	-1.11	0.285	-6.503023	2.051287
642	-2.310833	2.064904	-1.12	0.281	-6.712072	2.090405
643	-2.171899	2.011048	-1.08	0.297	-6.458346	2.114548
644	-2.478781	2.042316	-1.21	0.244	-6.831876	1.874313
645	-1.660386	2.242094	-0.74	0.470	-6.439296	3.118525
646	-2.024753	2.297286	-0.88	0.392	-6.921302	2.871796
647	-1.885465	2.306669	-0.82	0.426	-6.802014	3.031084
648	-1.765412	2.329499	-0.76	0.460	-6.730622	3.199797
649	-1.520529	2.296713	-0.66	0.518	-6.415857	3.3748
650	-2.096126	2.335785	-0.90	0.384	-7.074735	2.882483
651	-2.242933	2.406086	-0.93	0.366	-7.371385	2.885518
652	-2.083548	2.139702	-0.97	0.346	-6.644213	2.477118
653	-1.344477	2.338522	-0.57	0.574	-6.328918	3.639965

654	-1.741553	2.276248	-0.77	0.456	-6.593261	3.110154
655	-1.736628	2.28548	-0.76	0.459	-6.608013	3.134756
656	-1.896507	2.415773	-0.79	0.445	-7.045605	3.252592
657	-2.085198	2.342177	-0.89	0.387	-7.07743	2.907034
658	-2.407208	2.45447	-0.98	0.342	-7.638788	2.824371
659	-1.86499	2.328116	-0.80	0.436	-6.827251	3.097271
660	-2.397556	2.456406	-0.98	0.345	-7.633262	2.83815
661	-2.362029	2.381267	-0.99	0.337	-7.437578	2.71352
662	-1.832589	2.526907	-0.73	0.479	-7.218564	3.553385
663	-2.373911	2.522015	-0.94	0.361	-7.749459	3.001636
664	-2.15103	2.60133	-0.83	0.421	-7.695634	3.393574
665	-1.77671	2.480553	-0.72	0.485	-7.063885	3.510464
666	-1.820735	2.515122	-0.72	0.480	-7.181591	3.540122
667	-1.982127	2.469386	-0.80	0.435	-7.245498	3.281245
668	-2.120377	2.521306	-0.84	0.414	-7.494412	3.253659
669	-2.004888	2.511716	-0.80	0.437	-7.358484	3.348708
670	-2.530334	2.477251	-1.02	0.323	-7.810469	2.749802
671	-2.239047	2.55429	-0.88	0.395	-7.683387	3.205292
672	-2.472803	2.594481	-0.95	0.356	-8.002809	3.057203
673	-2.340948	2.596423	-0.90	0.382	-7.875093	3.193197
674	-2.175734	2.631063	-0.83	0.421	-7.783712	3.432245
675	-1.813977	2.654392	-0.68	0.505	-7.471679	3.843726
676	-1.753801	2.678036	-0.65	0.522	-7.461899	3.954297
677	-2.068605	2.633398	-0.79	0.444	-7.68156	3.544349
678	-1.84246	2.637161	-0.70	0.495	-7.463435	3.778516
679	-1.745257	2.623902	-0.67	0.516	-7.337972	3.847457
680	-1.694127	2.692705	-0.63	0.539	-7.433491	4.045238
681	-1.682504	2.608955	-0.64	0.529	-7.243361	3.878353
682	-2.022354	2.52683	-0.80	0.436	-7.408165	3.363457
683	-2.180321	2.723572	-0.80	0.436	-7.985477	3.624835
684	-2.169822	2.896786	-0.75	0.465	-8.344175	4.00453
685	-2.350072	2.791368	-0.84	0.413	-8.299732	3.599587
686	-2.356398	2.871068	-0.82	0.425	-8.475935	3.763138
687	-2.014197	2.772453	-0.73	0.479	-7.92354	3.895146
688	-2.308395	2.879372	-0.80	0.435	-8.445632	3.828841
689	-2.329626	2.885304	-0.81	0.432	-8.479506	3.820255
690	-2.613233	2.878925	-0.91	0.378	-8.749516	3.523049
691	-2.467659	2.777502	-0.89	0.388	-8.387765	3.452447
692	-2.289161	2.861638	-0.80	0.436	-8.388597	3.810274
693	-2.381657	2.806668	-0.85	0.409	-8.363929	3.600615
694	-2.296933	2.917751	-0.79	0.443	-8.515972	3.922107
695	-2.507569	2.862475	-0.88	0.395	-8.60879	3.593651
696 697	-2.415922 -2.456149	2.975391 2.957068	-0.81 -0.83	0.430 0.419	-8.757818 -8.758989	3.925974 3.846692
698	-2.398057	2.957068	-0.83 -0.81	0.419	-8.728306	3.932191
699	-2.605013	2.952803	-0.88	0.432	-8.898763	3.688736
700	-2.32892	2.952803	-0.80	0.392	-8.503979	3.846139
701	-2.693398	2.939143	-0.92	0.374	-8.958033	3.571236
701	-2.89836	3.073572	-0.92 -0.94	0.361	-9.449523	3.652804
, 02	I -2.09030	3.0/33/2	-U.JE	0.301	-,	J. UJ20U4

703	-2.494246	2.93478	-0.85	0.409	-8.749581	3.761089
704	-2.24955	2.903652	-0.77	0.451	-8.438537	3.939438
705	-2.186484	2.922868	-0.75	0.466	-8.41643	4.043462
706	-2.27171	2.949873	-0.77	0.453	-8.559214	4.015795
707	-2.395917	3.043957	-0.79	0.443	-8.883958	4.092124
708	-2.101769	3.209788	-0.65	0.523	-8.94327	4.739731
709	-2.690874	3.339397	-0.81	0.433	-9.80863	4.426881
710	-2.377673	3.152456	-0.75	0.462	-9.096974	4.341627
711	-2.05619	3.082495	-0.67	0.515	-8.626371	4.513992
712	-2.469288	3.166258	-0.78	0.448	-9.218007	4.279431
713	-2.00806	3.114087	-0.64	0.529	-8.64558	4.62946
714	-2.352064	3.177213	-0.74	0.471	-9.124132	4.420005
715	-2.337191	3.107741	-0.75	0.464	-8.961183	4.286801
716	-2.434695	3.130977	-0.78	0.449	-9.108214	4.238825
717	-2.587886	3.152125	-0.82	0.425	-9.306481	4.130708
718	-2.210975	3.125962	-0.71	0.490	-8.873805	4.451854
719	-2.351981	3.153243	-0.75	0.467	-9.072959	4.368997
region1						
bangalore	1.920396	.2844311	6.75	0.000	1.314146	2.526647
bhopal	-1.149473	1.180859	-0.97	0.346	-3.666414	1.367468
bubaneshwar	-1.649585	1.855067	-0.89	0.388	-5.603567	2.304396
chandigarh	-2.021063	.0384899	-52.51	0.000	-2.103102	-1.939024
chennai	.39182	.2113845	1.85	0.084	0587355	.8423755
guwahati	4367306	1.96724	-0.22	0.827	-4.629803	3.756342
hyderabad	.8096999	.8917988	0.91	0.378	-1.091124	2.710524
jaipur	-1.947313	.8115876	-2.40	0.030	-3.677171	2174555
kanpur	-4.784242	.6541116	-7.31	0.000	-6.178448	-3.390037
kochi	8243748	1.120556	-0.74	0.473	-3.212783	1.564034
kolkata	1.143519	.5326061	2.15	0.049	.008296	2.278742
mumbai	2729668	1.222812	-0.22	0.826	-2.879329	2.333395
new_delhi	2.972663	1.274352	2.33	0.034	.2564464	5.68888
panaji	5.668863	5.127251	1.11	0.286	-5.259614	16.59734
patna	.4692568	1.800973	0.26	0.798	-3.369426	4.30794
_cons	-30.46999	22.27054	-1.37	0.191	-77.93852	16.99855
	L					

Overriding estimator's cluster/robust settings with cluster(region1 date)

Warning: 1133 replications returned an infeasible test statistic and were dele > ted from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 one

$$t(15) = -8.0028$$

Prob>|t| = 0.0115

95% confidence set for null hypothesis expression: [-4.485, -2.971]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 lag_lgdp

$$t(15) = 1.2408$$

Prob> $|t| = 0.2247$

95% confidence set for null hypothesis expression: [-1.451, 6.785]

Warning: 8 replications returned an infeasible test statistic and were deleted > from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 lag_lpop

$$t(15) = 1.5109$$

Prob>|t| = 0.1873

95% confidence set for null hypothesis expression: [-.4605, 1.604]

Warning: 1 replications returned an infeasible test statistic and were deleted > from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 _cons

$$t(15) = -1.3731$$

Prob>|t| = 0.1788

95% confidence set for null hypothesis expression: [-86.68, 15.1]

inear regression	Number of obs	=	2,688
	<u>F(14, 15)</u>	=	•
	Prob > F	=	•
	R-squared	=	0.7285
	Root MSE	=	1.2898

(Std. err. adjusted for 16 clusters in region1)

fdi_ihs	Coefficient	Robust std. err.	t	P> t	[95% conf.	interval]
two	-2.212191	.3855162	-5.74	0.000	-3.033899	-1.390483
lag_lgdp	1.297859	1.506051	0.86	0.402	-1.912213	4.507931
lag_lpop	.4265272	.4076285	1.05	0.312	4423124	1.295367
- 5_ 1 -1						
date						
553	0531386	.2721267	-0.20	0.848	633163	.5268858
554	4915856	.2833452	-1.73	0.103	-1.095522	.1123505
555	2011631	.3040009	-0.66	0.518	8491256	.4467994
556	2330706	.2895211	-0.81	0.433	8501701	.3840289
557	.0419503	.2871265	0.15	0.886	5700453	.6539459
558	.3595212	.3467316	1.04	0.316	3795197	1.098562
559	.1886232	.3868755	0.49	0.633	6359824	1.013229
560	.0725879	.3753808	0.19	0.849	7275172	.8726931
561	172525 0148782	.2878324 .3202635	-0.60	0.558	7860253	.4409752
562 563	0206692	.3202635	-0.05 -0.06	0.964 0.950	6975036 7074919	.6677473 .6661535
564	6165682	.3273327	-0.06 -1.55	0.930	-1.46341	.230274
565	2003847	.4526647	-0.44	0.142	-1.165217	.7644473
566	1817995	.3970747	-0.46	0.654	-1.028144	.6645453
567	4046127	.4322687	-0.94	0.364	-1.325972	.5167464
568	2975899	.4520474	-0.66	0.520	-1.261106	.6659264
569	4682623	.4010975	-1.17	0.261	-1.323181	.3866567
570	.2586927	.467116	0.55	0.588	7369414	1.254327
571	-1.024383	.406369	-2.52	0.024	-1.890538	1582279
572	-1.220147	.4357918	-2.80	0.013	-2.149015	2912782
573	8633401	.6223574	-1.39	0.186	-2.189864	.4631834
574	7167004	.550767	-1.30	0.213	-1.890632	.4572316
575	4445338	.6660664	-0.67	0.515	-1.864221	.975153
576	-1.085885	.7018568	-1.55	0.143	-2.581858	.410087
577	5377262	.795979	-0.68	0.510	-2.234315	1.158863
578	8269198	.796616	-1.04	0.316	-2.524867	.8710269
579 580	6738557 2104194	.7076913 .5653279	-0.95 -0.37	0.356 0.715	-2.182264 -1.415387	.8345526 .9945484
581	3647096	.6517723	-0.56	0.713	-1.753929	1.02451
582	3414903	.6487952	-0.53	0.606	-1.724365	1.041384
583	4787974	.6899047	-0.69	0.498	-1.949295	.9916997
584	3126147	.6959811	-0.45	0.660	-1.796063	1.170834
585	3869652	.6274427	-0.62	0.547	-1.724328	.9503972
586	4883468	.6523618	-0.75	0.466	-1.878823	.9021295
587	7079074	.6980378	-1.01	0.327	-2.19574	.7799251
588	5702418	.8619612	-0.66	0.518	-2.407469	1.266985
589	3721193	.7871725	-0.47	0.643	-2.049938	1.305699
590	4436408	.7983395	-0.56	0.587	-2.145261	1.25798
591	-1.02861	.8256959	-1.25	0.232	-2.78854	.7313189

	_					
592	4467267	.712931	-0.63	0.540	-1.966303	1.07285
593	1457372	.8946057	-0.16	0.873	-2.052544	1.76107
594	1355418	.9088679	-0.15	0.883	-2.072748	1.801664
595	1405548	.9609509	-0.15	0.886	-2.188773	1.907664
596	4363642	.7907906	-0.55	0.589	-2.121894	1.249166
597	4354385	.8571356	-0.51	0.619	-2.26238	1.391503
598	3222199	.7897926	-0.41	0.689	-2.005623	1.361183
599	5279324	.7673214	-0.69	0.502	-2.163439	1.107575
600	4673358	1.047495	-0.45	0.662	-2.700018	1.765347
601	7103663	.9994136	-0.71	0.488	-2.840566	1.419833
602	2734136	1.08116	-0.25	0.804	-2.577852	2.031025
603	8614677	.9941433	-0.87	0.400	-2.980434	1.257499
604	5852089	.9100179	-0.64	0.530	-2.524866	1.354448
605	1975118	.9748024	-0.20	0.842	-2.275254	1.88023
606	5942129	1.108225	-0.54	0.600	-2.956338	1.767913
607	2769257	.9619068	-0.29	0.777	-2.327181	1.77333
608	4552153	.9358811	-0.49	0.634	-2.449999	1.539568
609	4872353	1.038798	-0.47	0.646	-2.70138	1.726909
610	1272908	1.069116	-0.12	0.907	-2.406057	2.151475
611	.1264583	.9245036	0.14	0.893	-1.844075	2.096991
612	4918578	1.226264	-0.40	0.694	-3.105577	2.121861
613	4335107	1.314903	-0.33	0.746	-3.236161	2.369139
614	5157554	1.251514	-0.41	0.686	-3.183294	2.151783
615	3416021	1.195969	-0.29	0.779	-2.890751	2.207546
616	4477252	1.147789	-0.39	0.702	-2.89418	1.998729
617	9182157	1.360451	-0.67	0.510	-3.817948	1.981517
618	5578701	1.177798	-0.47	0.643	-3.068287	1.952546
619	0845633	1.245568	-0.07	0.947	-2.739429	2.570302
620	3124211	1.431131	-0.22	0.830	-3.362804	2.737962
621	2075713	1.210096	-0.17	0.866	-2.78683	2.371687
622	3998448	1.133329	-0.35	0.729	-2.815478	2.015789
623	4025633	1.191957	-0.34	0.740	-2.943159	2.138032
624	7304645	1.446278	-0.51	0.621	-3.813132	2.352203
625	7283366	1.349753	-0.54	0.597	-3.605267	2.148594
626	4367181	1.512383	-0.29	0.777	-3.660286	2.78685
627	8443486	1.433536	-0.59	0.565	-3.899858	2.211161
628	-1.299412	1.437049	-0.90	0.380	-4.36241	1.763585
629	9143163	1.350547	-0.68	0.509	-3.79294	1.964307
630	4556363	1.34736	-0.34	0.740	-3.327467	2.416194
631	-1.269668	1.463814	-0.87	0.399	-4.389713	1.850377
632	7586225	1.373728	-0.55	0.589	-3.686655	2.16941
633	2971468	1.325948	-0.22	0.826	-3.123338	2.529045
634	7860556	1.381797	-0.57	0.578	-3.731287	2.159176
635	518735	1.340487	-0.39	0.704	-3.375916	2.338446
636	8191733	1.575573	-0.52	0.611	-4.177427 4.539376	2.539081
637	-1.217834	1.55788	-0.78 0.17	0.447	-4.538376 2.469451	2.102708
638	2561365	1.507103	-0.17	0.867	-3.468451	2.956178
639	617267	1.597759	-0.39	0.705	-4.02281	2.788276
640	4465316	1.532291	-0.29	0.775	-3.712532	2.819468

641	-1.093307	1.655763	-0.66	0.519	-4.622481	2.435867
642	-1.178272	1.82376	-0.65	0.528	-5.065525	2.708981
643	-1.039338	1.709186	-0.61	0.552	-4.682381	2.603705
644	-1.34622	1.897424	-0.71	0.489	-5.390484	2.698044
645	5278246	2.093293	-0.25	0.804	-4.989572	3.933923
646	8921922	2.095514	-0.43	0.676	-5.358676	3.574291
647	752904	2.120289	-0.36	0.727	-5.272193	3.766385
648	5008081	1.953138	-0.26	0.801	-4.663824	3.662207
649	2559247	2.018772	-0.13	0.901	-4.558836	4.046986
650	8315221	2.023645	-0.41	0.687	-5.144818	3.481774
651	9783293	2.152188	-0.45	0.656	-5.56561	3.608951
652	8189435	1.854131	-0.44	0.665	-4.770929	3.133042
653	0798727	2.050539	-0.04	0.969	-4.450494	4.290748
654	4769494	1.967755	-0.24	0.812	-4.67112	3.717221
655	472024	2.011928	-0.23	0.818	-4.760347	3.816299
656	6319025	2.112157	-0.30	0.769	-5.133859	3.870054
657	8205938	2.006642	-0.41	0.688	-5.097651	3.456463
658	-1.142604	2.148329	-0.53	0.603	-5.72166	3.436451
659	6003862	2.053741	-0.29	0.774	-4.977832	3.77706
660	-1.046725	2.109436	-0.50	0.627	-5.542881	3.449431
661	-1.011198	2.05838	-0.49	0.630	-5.398531	3.376135
662	4817588	2.230714	-0.22	0.832	-5.236414	4.272896
663	-1.023081	2.221996	-0.46	0.652	-5.759153	3.712992
664	8001989	2.296608	-0.35	0.732	-5.695304	4.094906
665	4258798	2.131773	-0.20	0.844	-4.969645	4.117886
666	469904	2.149396	-0.22	0.830	-5.051234	4.111426
667	6312962	2.130546	-0.30	0.771	-5.172448	3.909856
668	769546	2.151784	-0.36	0.726	-5.355964	3.816872
669	6540572	2.194878	-0.30	0.770	-5.332328	4.024214
670	-1.179503	2.16131	-0.55	0.593	-5.786227	3.427221
671	8882166	2.230781	-0.40	0.696	-5.643014	3.86658
672	-1.02034	2.233225	-0.46	0.654	-5.780346	3.739666
673	8884853	2.248285	-0.40	0.698	-5.680592	3.903621
674	723271	2.286879	-0.32	0.756	-5.597638	4.151096
675	361514	2.274946	-0.16	0.876	-5.210447	4.487419
676	3013383	2.358868	-0.13	0.900	-5.329147	4.72647
677	6161427	2.321046	-0.27	0.794	-5.563334	4.331049
678	3899971	2.244082	-0.17	0.864	-5.173145	4.393151
679	2927945	2.291259	-0.13	0.900	-5.176498	4.590909
680	2416639	2.311941	-0.10	0.918	-5.16945	4.686122
681	2300411	2.290186	-0.10	0.921	-5.111456	4.651374
682	5698915	2.14423	-0.27	0.794	-5.14021	4.000427
683	7278579	2.403611	-0.30	0.766	-5.851033	4.395317
684	5965421	2.526321	-0.24	0.817	-5.981267	4.788183
685	7767922	2.353004	-0.33	0.746	-5.792102	4.238517
686	783118	2.450589	-0.32	0.754	-6.006424 5.407095	4.440188
687	446176	2.370128	-0.19	0.853	-5.497985 5.097976	4.605633
688	7400206	2.462106	-0.30	0.768	-5.987876	4.507835
689	7608995	2.495469	-0.30	0.765	-6.079866	4.558067

	1					
690	-1.044158	2.48833	-0.42	0.681	-6.347908	4.259592
691	8982359	2.356954	-0.38	0.708	-5.921965	4.125493
692	7193932	2.428519	-0.30	0.771	-5.895658	4.456872
693	8115452	2.417508	-0.34	0.742	-5.964341	4.341251
694	7264794	2.530677	-0.29	0.778	-6.12049	4.667531
695	9367767	2.458457	-0.38	0.709	-6.176855	4.303301
696	7754348	2.53927	-0.31	0.764	-6.187761	4.636891
697	8156613	2.500258	-0.33	0.749	-6.144834	4.513512
698	7575698	2.519791	-0.30	0.768	-6.128377	4.613237
699	9645258	2.530747	-0.38	0.708	-6.358684	4.429633
700	6884325	2.440482	-0.28	0.782	-5.890196	4.513331
701	-1.052911	2.50133	-0.42	0.680	-6.384369	4.278548
702	-1.257872	2.685248	-0.47	0.646	-6.981342	4.465598
703	8537582	2.471389	-0.35	0.735	-6.1214	4.413884
704	609062	2.464489	-0.25	0.808	-5.861997	4.643873
705	5459964	2.472756	-0.22	0.828	-5.816552	4.724559
706	6312219	2.523992	-0.25	0.806	-6.010984	4.74854
707	7554294	2.669745	-0.28	0.781	-6.445857	4.934998
708	3429029	2.771443	-0.12	0.903	-6.250094	5.564289
709	932008	2.994834	-0.31	0.760	-7.315346	5.45133
710	6188067	2.675004	-0.23	0.820	-6.320442	5.082828
711	2973232	2.592963	-0.11	0.910	-5.824092	5.229446
712	7104214	2.662348	-0.27	0.793	-6.385081	4.964238
713	2491933	2.63714	-0.09	0.926	-5.870124	5.371737
714	5931973	2.747144	-0.22	0.832	-6.448596	5.262202
715	5783246	2.600697	-0.22	0.827	-6.12158	4.96493
716	6758282	2.658242	-0.25	0.803	-6.341738	4.990081
717	82902	2.650416	-0.31	0.759	-6.478248	4.820208
718	4521087	2.660842	-0.17	0.867	-6.12356	5.219343
719	5931148	2.651408	-0.22	0.826	-6.244457	5.058228
region1						
bangalore	1.700988	.2678886	6.35	0.000	1.129997	2.271979
bhopal	-1.723275	.9682994	-1.78	0.095	-3.787156	.3406069
bubaneshwar	-1.169525	1.464715	-0.80	0.437	-4.291492	1.952442
chandigarh	-2.003441	.0314323	-63.74	0.000	-2.070438	-1.936445
chennai	.4643608	.1715096	2.71	0.016	.0987968	.8299249
guwahati	0040436	1.556471	-0.00	0.998	-3.321583	3.313496
hyderabad	.3257141	.7399252	0.44	0.666	-1.251399	1.902827
jaipur	-2.342174	.6655658	-3.52	0.003	-3.760794	9235539
kanpur	-4.276628	.6372579	-6.71	0.000	-5.634911	-2.918344
kochi	-1.538404	.9595787	-1.60	0.130	-3.583698	.5068892
kolkata	6515736	.404447	-1.61	0.128	-1.513632	.2104848
mumbai	.4319681	1.024164	0.42	0.679	-1.750986	2.614922
new_delhi	2.06076	1.138252	1.81	0.090	3653665	4.486887
panaji	2.21443	4.467244	0.50	0.627	-7.307276	11.73614
patna	-2.091268	1.433451	-1.46	0.165	-5.146597	.9640617
_cons	-16.35546	19.00965	-0.86	0.403	-56.87357	24.16266

Overriding estimator's cluster/robust settings with cluster(region1 date)

Warning: 20 replications returned an infeasible test statistic and were delete > d from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 two

$$t(15) = -5.5862$$

Prob>|t| = 0.0026

95% confidence set for null hypothesis expression: [-3.084, -1.33]

Warning: 1 replications returned an infeasible test statistic and were deleted > from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 lag_lgdp

$$t(15) = 0.8688$$

Prob>|t| = 0.4087

95% confidence set for null hypothesis expression: [-1.85, 4.942]

Warning: 8 replications returned an infeasible test statistic and were deleted > from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 lag_lpop

$$t(15) = 1.0503$$

Prob>|t| = 0.3446

95% confidence set for null hypothesis expression: [-.6286, 1.414]

Warning: 1 replications returned an infeasible test statistic and were deleted > from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 _cons

t(15) = -0.8678Prob>|t| = 0.4103

95% confidence set for null hypothesis expression: [-60.82, 23.32]

(Std. err. adjusted for 16 clusters in region1)

fdi_ihs	Coefficient	Robust std. err.	t	P> t	[95% conf.	. interval]
three	-2.253751	.5743649	-3.92	0.001	-3.477981	-1.029521
lag_lgdp	2.240934	2.067844	1.08	0.296	-2.166572	6.64844
lag_lpop	.4242784	.40971	1.04	0.317	4489977	1.297555
date						
553	0531386	.2721267	-0.20	0.848	633163	.5268858
554	4915856	.2833452	-1.73	0.103	-1.095522	.1123505
555	2011631	.3040009	-0.66	0.518	8491256	.4467994
556	2330706	.2895211	-0.81	0.433	8501701	.3840289
557	.0419503	.2871265	0.15	0.886	5700453	.6539459
558	.3595212	.3467316	1.04	0.316	3795197	1.098562
559	.1886232	.3868755	0.49	0.633	6359824	1.013229
560	.0725879	.3753808	0.19	0.849	7275172	.8726931
561	172525	.2878324	-0.60	0.558	7860253	.4409752
562	0148782	.3202635	-0.05	0.964	6975036	.6677473
563	0206692	.3222327	-0.06	0.950	7074919	.6661535
564	7699579	.5509217	-1.40	0.183	-1.94422	.404304
565	3537744	.6330312	-0.56	0.585	-1.703049	.9954998
566	3351892	.5248255	-0.64	0.533	-1.453828	.7834499
567	5580023	.5883473	-0.95	0.358	-1.812035	.6960304
568	4509795	.599422	-0.75	0.463	-1.728617	.8266582
569	6216519	.5518465	-1.13	0.278	-1.797885	.5545811
570	.1053031	.5904934	0.18	0.861	-1.153304	1.36391
571	-1.177772	.5449455	-2.16	0.047	-2.339296	0162486
572	-1.373536	.5102399	-2.69	0.017	-2.461087	2859856
573	-1.01673	.7120891	-1.43	0.174	-2.534512	.5010522
574	8700901	.6073228	-1.43	0.172	-2.164568	.4243879
575	5979235	.7465982	-0.80	0.436	-2.18926	.9934128
576	-1.373592	.8552627	-1.61	0.129	-3.196542	.4493571
577	825433	.9232048	-0.89	0.385	-2.793197	1.142331
578	-1.114627	.8645448	-1.29	0.217	-2.95736	.728107
579	9615625	.9118263	-1.05	0.308	-2.905074	.9819493
580	4981262	.7863527	-0.63	0.536	-2.174197	1.177945

	_					
581	6524164	.7765653	-0.84	0.414	-2.307626	1.002793
582	6291971	.8573801	-0.73	0.474	-2.45666	1.198265
583	7665042	.8934762	-0.86	0.404	-2.670904	1.137895
584	6003215	.8981565	-0.67	0.514	-2.514697	1.314054
585	674672	.8178292	-0.82	0.422	-2.417834	1.06849
586	7760536	.8803727	-0.88	0.392	-2.652524	1.100416
587	9956142	.8730235	-1.14	0.272	-2.85642	.8651913
588	-1.005492	1.108541	-0.91	0.379	-3.368291	1.357306
589	8073697	1.123508	-0.72	0.483	-3.20207	1.587331
590	8788912	1.114694	-0.79	0.443	-3.254805	1.497022
591	-1.463861	1.138145	-1.29	0.218	-3.88976	.9620384
592	8819771	1.003375	-0.88	0.393	-3.02062	1.256666
593	5809876	1.155806	-0.50	0.622	-3.044529	1.882554
594	5707922	1.187836	-0.48	0.638	-3.102604	1.96102
595	5758053	1.193806	-0.48	0.637	-3.120343	1.968733
596	8716146	1.026669	-0.85	0.409	-3.059909	1.316679
597	8706889	1.151169	-0.76	0.461	-3.324347	1.582969
598	7574703	1.056817	-0.72	0.485	-3.010023	1.495083
599	9631829	1.075533	-0.90	0.385	-3.255628	1.329262
600	-1.035431	1.38676	-0.75	0.467	-3.991239	1.920378
601	-1.278461	1.380128	-0.93	0.369	-4.220135	1.663212
602	8415088	1.503498	-0.56	0.584	-4.046139	2.363121
603	-1.982611	1.487359	-1.33	0.202	-5.152842	1.18762
604	-1.706352	1.478633	-1.15	0.267	-4.857983	1.44528
605	-1.318655	1.518685	-0.87	0.399	-4.555654	1.918345
606	-1.715356	1.635271	-1.05	0.311	-5.200853	1.770141
607	-1.398069	1.505063	-0.93	0.368	-4.606035	1.809898
608	-1.576358	1.526807	-1.03	0.318	-4.83067	1.677954
609	-1.608378	1.631384	-0.99	0.340	-5.085591	1.868834
610	-1.248434	1.667001	-0.75	0.465	-4.801562	2.304695
611	9946847	1.408253	-0.71	0.491	-3.996305	2.006936
612	-1.775404	1.867751	-0.95	0.357	-5.75642	2.205612
613	-1.717057	1.985507	-0.86	0.401	-5.949065	2.514951
614	-1.799302	1.890525	-0.95	0.356	-5.828861	2.230258
615	-1.625148	1.906987	-0.85	0.408	-5.689796	2.439499
616	-1.731271	1.802462	-0.96	0.352	-5.573128	2.110585
617	-2.201762	2.058351	-1.07	0.302	-6.589034	2.18551
618	-1.841416	1.823654	-1.01	0.329	-5.728443	2.045611
619	-1.368109	1.918557	-0.71	0.487	-5.457416	2.721197
620	-1.595967	2.015225	-0.79	0.441	-5.891318	2.699383
621	-1.491117	1.815655	-0.82	0.424	-5.361094	2.378859
622	-1.683391	1.781494	-0.94	0.360	-5.480556	2.113774
623	-1.68611	1.785607	-0.94	0.360	-5.492042	2.119823
624	-2.150361	2.078419	-1.03	0.317	-6.580407	2.279684
625	-2.148233	2.143586	-1.00	0.332	-6.71718	2.420713
626	-1.856615	2.163524	-0.86 1.05	0.404	-6.468057	2.754827
627	-2.264245	2.151936	-1.05 1.26	0.309	-6.850989	2.322498
628	-2.719309	2.164547	-1.26	0.228	-7.332932 6.773091	1.894314
629	-2.334213	2.082511	-1.12	0.280	-6.772981	2.104554

	_					
630	-1.875533	2.106382	-0.89	0.387	-6.365179	2.614113
631	-2.689565	2.354205	-1.14	0.271	-7.707435	2.328305
632	-2.178519	2.157564	-1.01	0.329	-6.777257	2.420219
633	-1.717044	2.000058	-0.86	0.404	-5.980067	2.54598
634	-2.205952	2.107933	-1.05	0.312	-6.698904	2.287
635	-1.938632	2.099608	-0.92	0.370	-6.41384	2.536577
636	-2.352904	2.350264	-1.00	0.333	-7.362374	2.656566
637	-2.751565	2.316785	-1.19	0.253	-7.689675	2.186546
638	-1.789867	2.298583	-0.78	0.448	-6.68918	3.109446
639	-2.150997	2.279655	-0.94	0.360	-7.009967	2.707973
640	-1.980262	2.273593	-0.87	0.397	-6.82631	2.865786
641	-2.204459	2.288793	-0.96	0.351	-7.082905	2.673987
642	-2.289424	2.255993	-1.01	0.326	-7.097959	2.51911
643	-2.15049	2.347477	-0.92	0.374	-7.15402	2.853039
644	-2.457372	2.214587	-1.11	0.285	-7.177652	2.262908
645	-1.638977	2.332618	-0.70	0.493	-6.610835	3.332881
646	-2.003344	2.359223	-0.85	0.409	-7.03191	3.025222
647	-1.864056	2.39166	-0.78	0.448	-6.961759	3.233647
648	-1.740551	2.673452	-0.65	0.525	-7.438879	3.957776
649	-1.495668	2.584444	-0.58	0.571	-7.004279	4.012943
650	-2.071265	2.602233	-0.80	0.438	-7.617794	3.475263
651	-2.218073	2.643237	-0.84	0.415	-7.851998	3.415853
652	-2.058687	2.465002	-0.84	0.417	-7.312713	3.19534
653	-1.319616	2.649101	-0.50	0.626	-6.966041	4.326809
654	-1.716693	2.622684	-0.65	0.523	-7.306811	3.873426
655	-1.711767	2.606736	-0.66	0.521	-7.267893	3.844358
656	-1.871646	2.638898	-0.71	0.489	-7.496323	3.753031
657	-2.060337	2.676446	-0.77	0.453	-7.765047	3.644373
658	-2.382348	2.895344	-0.82	0.423	-8.553627	3.788932
659	-1.84013	2.584394	-0.71	0.487	-7.348634	3.668375
660	-2.368135	2.894731	-0.82	0.426	-8.538109	3.801839
661	-2.332608	2.688204	-0.87	0.399	-8.062379	3.397162
662	-1.803169	2.781698	-0.65	0.527	-7.732217	4.12588
663	-2.344491	2.724976	-0.86	0.403	-8.15264	3.463659
664	-2.121609	2.785206	-0.76	0.458	-8.058135	3.814917
665	-1.74729	2.771214	-0.63	0.538	-7.653993	4.159413
666	-1.791314	2.796206	-0.64	0.531	-7.751287	4.168659
667	-1.952706	2.758151	-0.71	0.490	-7.831566	3.926154
668	-2.090956	2.816452	-0.74	0.469	-8.094081	3.912168
669	-1.975467	2.727124	-0.72	0.480	-7.788195	3.83726
670	-2.500913	2.727651	-0.92	0.374	-8.314763	3.312937
671	-2.209627 -2.439542	2.71213 2.849745	-0.81 -0.86	0.428	-7.990396	3.571142
672 673	-2.307687		-0.86	0.405	-8.51363 9.39391	3.634546 3.767437
674	-2.142472	2.850231 2.92442	-0.73	0.431 0.475	-8.38281 -8.375727	4.090782
675	-1.780715	2.92442	-0.73 -0.60	0.475	-8.076172	4.090782
676	-1.72054	2.933604	-0.59	0.567	-7.98507	4.543991
677	-2.035344	2.868778	-0.71	0.489	-8.149999	4.079311
678	-1.809199	2.954327	-0.71	0.549	-8.106198	4.487801
0 / 0	1 -1.009199	2.754541	-0.01	0.349	-0.100170	4.40100I

679	-1.711996	2.913792	-0.59	0.566	-7.922597	4.498605
680	-1.660865	3.022896	-0.55	0.591	-8.104015	4.782285
681	-1.649243	2.893338	-0.57	0.577	-7.816247	4.517762
682	-1.989093	2.957057	-0.67	0.511	-8.29191	4.313724
683	-2.147059	2.946245	-0.73	0.477	-8.426833	4.132714
684	-2.132469	3.180636	-0.67	0.513	-8.911835	4.646897
685	-2.312719	3.165714	-0.73	0.476	-9.060279	4.434841
686	-2.319045	3.239634	-0.72	0.485	-9.224162	4.586072
687	-1.976919	3.139383	-0.63	0.538	-8.668355	4.714518
688	-2.271112	3.194759	-0.71	0.488	-9.080579	4.538355
689	-2.292337	3.164711	-0.72	0.480	-9.03776	4.453086
690	-2.57594	3.180753	-0.81	0.431	-9.355554	4.203674
691	-2.430361	3.242433	-0.75	0.465	-9.341443	4.480722
692	-2.251858	3.2411	-0.69	0.498	-9.1601	4.656383
693	-2.344349	3.130006	-0.75	0.465	-9.015798	4.327101
694	-2.25962	3.195457	-0.71	0.490	-9.070575	4.551336
695	-2.470252	3.190486	-0.77	0.451	-9.270612	4.330108
696	-2.375501	3.344973	-0.71	0.488	-9.505142	4.75414
697	-2.415728	3.317032	-0.73	0.478	-9.485814	4.654359
698	-2.357636	3.324922	-0.71	0.489	-9.44454	4.729268
699	-2.564592	3.305305	-0.78	0.450	-9.609683	4.480499
700	-2.288499	3.429219	-0.67	0.515	-9.597706	5.020708
701	-2.652977	3.305379	-0.80	0.435	-9.698226	4.392272
702	-2.857938	3.430268	-0.83	0.418	-10.16938	4.453506
703	-2.453825	3.293494	-0.75	0.468	-9.47374	4.566091
704	-2.209128	3.264076	-0.68	0.509	-9.166341	4.748085
705	-2.146063	3.280416	-0.65	0.523	-9.138105	4.845979
706	-2.231288	3.293682	-0.68	0.508	-9.251605	4.789029
707	-2.355496	3.299644	-0.71	0.486	-9.388521	4.67753
708	-2.056461	3.607595	-0.57	0.577	-9.745868	5.632946
709	-2.645566	3.539177	-0.75	0.466	-10.18914	4.898011
710	-2.332365	3.584603	-0.65	0.525	-9.972766	5.308036
711	-2.010881	3.572235	-0.56	0.582	-9.62492	5.603157
712	-2.42398	3.570269	-0.68	0.508	-10.03383	5.185868
713	-1.962752	3.536296	-0.56	0.587	-9.500188	5.574685
714	-2.306755	3.555003	-0.65	0.526	-9.884065	5.270554
715	-2.291883	3.578132	-0.64	0.531	-9.918491	5.334725
716	-2.389386	3.562629	-0.67	0.513	-9.982951	5.204178
717	-2.542578	3.558636	-0.71	0.486	-10.12763	5.042474
718	-2.165667	3.533415	-0.61	0.549	-9.696963	5.36563
719	-2.306673	3.577008	-0.64	0.529	-9.930884	5.317538
region1						
bangalore	1.827416	.2888469	6.33	0.000	1.211754	2.443079
bhopal	-1.119332	1.345761	-0.83	0.419	-3.987754	1.74909
bubaneshwar	-1.742393	2.087821	-0.83	0.417	-6.192478	2.707692
chandigarh	9631207	.2773821	-3.47	0.003	-1.554347	3718947
chennai	.36367	.2422154	1.50	0.154	1525998	.8799398
guwahati	519432	2.217723	-0.23	0.818	-5.246397	4.207534

hyderabad	.788917	1.008943	0.78	0.446	-1.361594	2.939428
jaipur	-1.927006	.9248668	-2.08	0.055	-3.898313	.0443012
kanpur	-3.461105	.768098	-4.51	0.000	-5.098267	-1.823943
kochi	9547319	1.240374	-0.77	0.453	-3.598525	1.689062
kolkata	-2.062674	.3645529	-5.66	0.000	-2.8397	-1.285648
mumbai	2062521	1.374904	-0.15	0.883	-3.136792	2.724287
new_delhi	3.759453	1.328973	2.83	0.013	.9268143	6.592091
panaji	4.856686	5.600939	0.87	0.400	-7.081432	16.7948
patna	-2.721161	2.064296	-1.32	0.207	-7.121105	1.678782
_cons	-27.82778	24.67195	-1.13	0.277	-80.41479	24.75923

Warning: 20 replications returned an infeasible test statistic and were delete > d from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 three

$$t(15) = -3.8831$$

Prob>|t| = 0.0161

95% confidence set for null hypothesis expression: [-3.788, -.7867]

Warning: 3 replications returned an infeasible test statistic and were deleted > from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 lag_lgdp

$$t(15) = 1.0906$$

Prob>|t| = 0.2940

95% confidence set for null hypothesis expression: [-1.974, 7.474]

Warning: 10 replications returned an infeasible test statistic and were delete > d from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 lag_lpop

$$t(15) = 1.0357$$

Prob>|t| = 0.3546

95% confidence set for null hypothesis expression: [-.7098, 1.415]

Warning: 1 replications returned an infeasible test statistic and were deleted > from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 _cons

t(15) = -1.1355Prob>|t| = 0.2725

95% confidence set for null hypothesis expression: [-90.15, 22.6]

Linear regression Number of obs = 2,688 $\frac{F(14, 15)}{Prob > F} = .$ $R-squared = 0.7037 \\ Root MSE = 1.3474$

(Std. err. adjusted for 16 clusters in region1)

fdi_ihs	Coefficient	Robust std. err.	t	P> t	[95% conf.	interval]
four	-1.413278	.2762783	-5.12	0.000	-2.002151	8244044
lag_lgdp	2.409006	2.072773	1.16	0.263	-2.009004	6.827016
lag_lpop	.7146304	.5228863	1.37	0.192	3998753	1.829136
date						
553	0531386	.2721267	-0.20	0.848	633163	.5268858
554	4915856	.2833452	-1.73	0.103	-1.095522	.1123505
555	2011631	.3040009	-0.66	0.518	8491256	.4467994
556	2330706	.2895211	-0.81	0.433	8501701	.3840289
557	.0419503	.2871265	0.15	0.886	5700453	.6539459
558	.3595212	.3467316	1.04	0.316	3795197	1.098562
559	.1886232	.3868755	0.49	0.633	6359824	1.013229
560	.0725879	.3753808	0.19	0.849	7275172	.8726931
561	172525	.2878324	-0.60	0.558	7860253	.4409752
562	0148782	.3202635	-0.05	0.964	6975036	.6677473
563	0206692	.3222327	-0.06	0.950	7074919	.6661535
564	8006311	.5304021	-1.51	0.152	-1.931156	.3298942
565	3844477	.5684266	-0.68	0.509	-1.59602	.8271249
566	3658625	.5074236	-0.72	0.482	-1.44741	.7156853
567	5886756	.5544934	-1.06	0.305	-1.77055	.5931991
568	4816528	.5714542	-0.84	0.413	-1.699679	.736373
569	6523252	.5377365	-1.21	0.244	-1.798483	.4938329
570	.0746298	.5542436	0.13	0.895	-1.106712	1.255972
571	-1.208446	.5047016	-2.39	0.030	-2.284192	1326997

	_					
572	-1.404209	.5125689	-2.74	0.015	-2.496724	3116946
573	-1.047403	.6895954	-1.52	0.150	-2.517241	.4224348
574	9007633	.6140374	-1.47	0.163	-2.209553	.4080264
575	6285968	.7301926	-0.86	0.403	-2.184966	.927772
576	-1.431523	.8257805	-1.73	0.103	-3.191632	.3285867
577	8833635	.9357572	-0.94	0.360	-2.877883	1.111156
578	-1.172557	.8805829	-1.33	0.203	-3.049475	.7043608
579	-1.019493	.8919671	-1.14	0.271	-2.920676	.8816898
580	5560567	.7216359	-0.77	0.453	-2.094187	.9820738
581	7103468	.774278	-0.92	0.373	-2.360681	.9399877
582	6871276	.8267179	-0.83	0.419	-2.449235	1.07498
583	8244347	.8715843	-0.95	0.359	-2.682173	1.033303
584	658252	.8622509	-0.76	0.457	-2.496096	1.179592
585	7326025	.7925647	-0.92	0.370	-2.421914	.9567091
586	8339841	.8438728	-0.99	0.339	-2.632656	.9646883
587	-1.053545	.8717466	-1.21	0.246	-2.911629	.8045392
588	-1.093007	1.105588	-0.99	0.339	-3.449511	1.263497
589	8948843	1.065805	-0.84	0.414	-3.166594	1.376826
590	9664057	1.070043	-0.90	0.381	-3.247148	1.314337
591	-1.551375	1.119111	-1.39	0.186	-3.936704	.8339535
592	9694917	.9703802	-1.00	0.334	-3.037808	1.098825
593	6685022	1.122289	-0.60	0.560	-3.060605	1.723601
594	6583068	1.158853	-0.57	0.578	-3.128345	1.811731
595	6633198	1.171261	-0.57	0.580	-3.159803	1.833164
596	9591291	1.01117	-0.95	0.358	-3.114388	1.19613
597	9582035	1.130467	-0.85	0.410	-3.367738	1.451331
598	8449849	1.019936	-0.83	0.420	-3.018927	1.328957
599	-1.050697	1.029803	-1.02	0.324	-3.24567	1.144276
600	-1.149544	1.3633	-0.84	0.412	-4.055349	1.75626
601	-1.392575	1.342992	-1.04	0.316	-4.255095	1.469946
602	9556223	1.427607	-0.67	0.513	-3.998495	2.087251
603	-2.096724	1.415927	-1.48	0.159	-5.114702	.9212534
604	-1.820465	1.385199	-1.31	0.209	-4.772948	1.132017
605	-1.432768	1.424351	-1.01	0.330	-4.4687	1.603164
606	-1.829469	1.565262	-1.17	0.261	-5.165747	1.506809
607	-1.512182	1.423113	-1.06	0.305	-4.545475	1.521111
608	-1.690472	1.444569	-1.17	0.260	-4.769498	1.388554
609	-1.722492	1.55807	-1.11	0.286	-5.043439	1.598456
610	-1.362547	1.581637	-0.86	0.403	-4.733726	2.008632
611	-1.108798	1.329925	-0.83	0.418	-3.943466	1.72587
612	-1.921814	1.791001	-1.07	0.300	-5.739244	1.895615
613	-1.863467	1.914102	-0.97	0.346	-5.943279	2.216345
614	-1.945712	1.802801	-1.08	0.298	-5.788291	1.896867
615	-1.771559	1.797744	-0.99	0.340	-5.603359	2.060242
616	-1.877682	1.707199	-1.10	0.289	-5.516491	1.761127
617	-2.348172	1.97049	-1.19	0.252	-6.548173	1.851829
618	-1.987827	1.74225	-1.14	0.272	-5.701345	1.725692
619	-1.51452	1.820967	-0.83	0.419	-5.395819	2.36678
620	-1.742378	1.970651	-0.88	0.391	-5.94272	2.457965

621	-1.637528	1.74266	-0.94	0.362	-5.35192	2.076864
622	-1.829801	1.691677	-1.08	0.296	-5.435526	1.775923
623	-1.83252	1.722479	-1.06	0.304	-5.503897	1.838857
624	-2.368666	2.027675	-1.17	0.261	-6.690554	1.953222
625	-2.366538	2.036192	-1.16	0.263	-6.706578	1.973502
626	-2.07492	2.094348	-0.99	0.338	-6.538916	2.389077
627	-2.48255	2.072036	-1.20	0.249	-6.89899	1.93389
628	-2.937614	2.087503	-1.41	0.180	-7.387021	1.511793
629	-2.552518	1.982442	-1.29	0.217	-6.777992	1.672957
630	-2.093838	1.997626	-1.05	0.311	-6.351677	2.164001
631	-2.907869	2.222454	-1.31	0.210	-7.644918	1.829179
632	-2.396824	2.05802	-1.16	0.262	-6.783391	1.989743
633	-1.935348	1.904356	-1.02	0.326	-5.994388	2.123691
634	-2.424257	2.017851	-1.20	0.248	-6.725204	1.87669
635	-2.156937	1.995637	-1.08	0.297	-6.410536	2.096663
636	-2.595022	2.275251	-1.14	0.272	-7.444605	2.254561
637	-2.993683	2.262699	-1.32	0.206	-7.816513	1.829147
638	-2.031985	2.197953	-0.92	0.370	-6.71681	2.65284
639	-2.393116	2.231394	-1.07	0.300	-7.149218	2.362987
640	-2.22238	2.199117	-1.01	0.328	-6.909688	2.464927
641	-2.869155	2.254642	-1.27	0.223	-7.674812	1.936501
642	-2.954121	2.301959	-1.28	0.219	-7.860631	1.952389
643	-2.815187	2.272711	-1.24	0.234	-7.659355	2.028982
644	-3.122069	2.284394	-1.37	0.192	-7.991139	1.747002
645	-2.303673	2.46052	-0.94	0.364	-7.548148	2.940802
646	-2.668041	2.501599	-1.07	0.303	-8.000072	2.66399
647	-2.528752	2.519918	-1.00	0.332	-7.89983	2.842325
648	-2.430382	2.582334	-0.94	0.362	-7.934496	3.073731
649	-2.185499	2.575095	-0.85	0.409	-7.674184	3.303186
650	-2.761096	2.60521	-1.06	0.306	-8.313969	2.791776
651	-2.907904	2.684242	-1.08	0.296	-8.629231	2.813424
652	-2.748518	2.436528	-1.13	0.277	-7.941855	2.44482
653	-2.009447	2.621306	-0.77	0.455	-7.596627	3.577733
654	-2.406524	2.568651	-0.94	0.364	-7.881474	3.068427
655	-2.401598	2.594801	-0.93	0.369	-7.932286	3.12909
656	-2.561477	2.687771	-0.95	0.356	-8.290326	3.167372
657	-2.750168	2.616127	-1.05	0.310	-8.326311	2.825974
658	-3.072179	2.687893	-1.14	0.271	-8.801287	2.65693
659	-2.529961	2.606678	-0.97	0.347	-8.085963	3.026042
660	-3.077233	2.791176	-1.10	0.288	-9.026483	2.872018
661	-3.041706	2.688004	-1.13	0.276	-8.77105	2.687638
662	-2.512267	2.812733	-0.89	0.386	-8.507464	3.482931
663	-3.053588	2.80333	-1.09	0.293	-9.028745	2.921568
664	-2.830707	2.881136	-0.98	0.341	-8.971702	3.310289
665	-2.456388	2.756309	-0.89	0.387	-8.33132	3.418545
666	-2.500412	2.797625	-0.89	0.386	-8.463409	3.462585
667	-2.661804	2.759412	-0.96	0.350	-8.543352	3.219744
668	-2.800054	2.799956	-1.00	0.333	-8.76802	3.167912
669	-2.684565	2.783894	-0.96	0.350	-8.618294	3.249165

	_					
670	-3.033351	2.804458	-1.08	0.297	-9.010912	2.94421
671	-2.742065	2.842163	-0.96	0.350	-8.799991	3.315862
672	-2.992791	2.921718	-1.02	0.322	-9.220284	3.234703
673	-2.860936	2.925924	-0.98	0.344	-9.097395	3.375523
674	-2.695721	2.991958	-0.90	0.382	-9.072929	3.681486
675	-2.333964	3.007954	-0.78	0.450	-8.745267	4.077338
676	-2.273789	3.020778	-0.75	0.463	-8.712425	4.164848
677	-2.588593	2.962393	-0.87	0.396	-8.902785	3.725599
678	-2.362448	2.971789	-0.79	0.439	-8.696666	3.971771
679	-2.265245	2.976769	-0.76	0.458	-8.610079	4.079589
680	-2.214114	3.064735	-0.72	0.481	-8.746441	4.318213
681	-2.202492	2.948537	-0.75	0.467	-8.487149	4.082166
682	-2.542342	2.93597	-0.87	0.400	-8.800213	3.715529
683	-2.700308	3.057327	-0.88	0.391	-9.216847	3.816231
684	-2.709871	3.259049	-0.83	0.419	-9.656369	4.236627
685	-2.890121	3.166245	-0.91	0.376	-9.638813	3.858571
686	-2.896447	3.255119	-0.89	0.388	-9.83457	4.041675
687	-2.553397	3.146129	-0.81	0.430	-9.259211	4.152417
688	-2.847652	3.232711	-0.88	0.392	-9.738014	4.042709
689	-2.868939	3.228156	-0.89	0.388	-9.749592	4.011713
690	-3.152604	3.243375	-0.97	0.346	-10.06569	3.760487
691	-3.007085	3.196556	-0.94	0.362	-9.820383	3.806213
692	-2.828644	3.242884	-0.87	0.397	-9.740688	4.083401
693	-2.921194	3.168258	-0.92	0.371	-9.674177	3.831789
694	-2.836525	3.270949	-0.87	0.399	-9.808387	4.135337
695	-3.047217	3.228437	-0.94	0.360	-9.928466	3.834033
696	-2.967319	3.381521	-0.88	0.394	-10.17486	4.240222
697	-3.007545	3.336325	-0.90	0.382	-10.11875	4.103664
698	-2.949454	3.340218	-0.88	0.391	-10.06896	4.170053
699	-3.15641	3.342647	-0.94	0.360	-10.28109	3.968274
700	-2.880316	3.373439	-0.85	0.407	-10.07063	4.309999
701	-3.244795	3.329866	-0.97	0.345	-10.34224	3.852647
702	-3.449756	3.498994	-0.99	0.340	-10.90768	4.008173
703	-3.045642	3.308612	-0.92	0.372	-10.09778	4.006499
704	-2.800946	3.286249	-0.85	0.407	-9.805421	4.203529
705	-2.73788	3.303262	-0.83	0.420	-9.778617	4.302857
706	-2.823106	3.33191	-0.85	0.410	-9.924903	4.278692
707	-2.947313	3.418431	-0.86	0.402	-10.23353	4.3389
708	-2.67303	3.638973	-0.73	0.474	-10.42932	5.083258
709	-3.262136	3.722093	-0.88	0.395	-11.19559	4.671318
710	-2.948934	3.601847	-0.82	0.426	-10.62609	4.72822
711	-2.627451	3.533389	-0.74	0.469	-10.15869	4.90379
712	-3.040549	3.576376	-0.85	0.409	-10.66341	4.582316
713	-2.579321	3.526306	-0.73	0.476	-10.09546	4.936822
714	-2.923325	3.595312	-0.81	0.429	-10.58655	4.739902
715	-2.908452	3.549777	-0.82	0.425	-10.47462	4.657719
716	-3.005956	3.561604	-0.84	0.412	-10.59734	4.585424
717	-3.159147	3.56763	-0.89	0.390	-10.76337	4.445075
718	-2.782236	3.54954	-0.78	0.445	-10.3479	4.78343

719	-2.923242	3.569165	-0.82	0.426	-10.53074	4.684252
region1						
bangalore	1.977143	.3353935	5.89	0.000	1.262269	2.692017
bhopal	-1.065969	1.34386	-0.79	0.440	-3.930339	1.798402
bubaneshwar	-1.459973	2.109827	-0.69	0.500	-5.956962	3.037016
chandigarh	-2.023407	.0438493	-46.14	0.000	-2.116869	-1.929944
chennai	.8076615	.2399759	3.37	0.004	.2961651	1.319158
guwahati	242033	2.237073	-0.11	0.915	-5.010242	4.526176
hyderabad	1.311725	1.022478	1.28	0.219	8676349	3.491084
jaipur	-1.889747	.9235988	-2.05	0.059	-3.858351	.0788572
kanpur	-4.926982	.7868225	-6.26	0.000	-6.604054	-3.249909
kochi	6806003	1.278517	-0.53	0.602	-3.405694	2.044493
kolkata	-2.158589	.3780829	-5.71	0.000	-2.964454	-1.352725
mumbai	4001912	1.390891	-0.29	0.777	-3.364805	2.564423
new_delhi	3.181578	1.470195	2.16	0.047	.0479313	6.315224
panaji	6.40754	5.872519	1.09	0.292	-6.109439	18.92452
patna	-2.715657	2.058236	-1.32	0.207	-7.102684	1.671369
_cons	-32.91437	25.40578	-1.30	0.215	-87.0655	21.23676

Warning: 148 replications returned an infeasible test statistic and were delet > ed from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 four

$$t(15) = -5.0474$$

Prob>|t| = 0.0167

95% confidence set for null hypothesis expression: [-2.276, -.5549]

Warning: 2 replications returned an infeasible test statistic and were deleted > from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 lag_lgdp

$$t(15) = 1.1704$$

Prob>|t| = 0.2491

95% confidence set for null hypothesis expression: [-1.779, 7.682]

Warning: 17 replications returned an infeasible test statistic and were delete > d from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 lag_lpop

$$t(15) = 1.3708$$

Prob>|t| = 0.2449

95% confidence set for null hypothesis expression: [-.7738, 2.09]

Warning: 1 replications returned an infeasible test statistic and were deleted > from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 _cons

$$t(15) = -1.3048$$

Prob>|t| = 0.1948

95% confidence set for null hypothesis expression: [-98.23, 18.32]

Linear regression	Number of obs	=	2,688
	<u>F(14, 15)</u>	=	•
	Prob > F	=	•
	R-squared	=	0.6961
	Root MSE	=	1.3646

(Std. err. adjusted for 16 clusters in region1)

fdi_ihs	Coefficient	Robust std. err.	t	P> t	[95% conf.	interval]
five	6420112	.244597	-2.62	0.019	-1.163357	1206652
lag_lgdp	2.22893	2.041004	1.09	0.292	-2.121367	6.579227
lag_lpop	.707137	.4659768	1.52	0.150	286069	1.700343
date 553 554 555 556 557	0531386 4915856 2011631 2330706 .0419503	.2721267 .2833452 .3040009 .2895211 .2871265	-0.20 -1.73 -0.66 -0.81 0.15	0.848 0.103 0.518 0.433 0.886	633163 -1.095522 8491256 8501701 5700453	.5268858 .1123505 .4467994 .3840289
558	.3595212	.3467316	1.04	0.316	3795197	1.098562
559	.1886232	.3868755	0.49	0.633	6359824	1.013229
560	.0725879	.3753808	0.19	0.849	7275172	.8726931
561	172525	.2878324	-0.60	0.558	7860253	.4409752

	_					
562	0148782	.3202635	-0.05	0.964	6975036	.6677473
563	0206692	.3222327	-0.06	0.950	7074919	.6661535
564	7712511	.5148358	-1.50	0.155	-1.868598	.3260954
565	3550676	.5585684	-0.64	0.535	-1.545628	.8354927
566	3364824	.5031157	-0.67	0.514	-1.408848	.7358833
567	5592955	.5428439	-1.03	0.319	-1.71634	.5977488
568	4522728	.5604522	-0.81	0.432	-1.646848	.7423028
569	6229452	.5223912	-1.19	0.252	-1.736396	.4905053
570	.1040098	.5438388	0.19	0.851	-1.055155	1.263175
571	-1.179066	.4841333	-2.44	0.028	-2.210971	14716
572	-1.374829	.4918147	-2.80	0.014	-2.423108	3265512
573	-1.018023	.6771042	-1.50	0.153	-2.461236	.4251905
574	8713833	.6014592	-1.45	0.168	-2.153363	.4105966
575	5992167	.7191811	-0.83	0.418	-2.132115	.9336814
576	-1.376405	.7981497	-1.72	0.105	-3.077621	.3248108
577	8282456	.9206859	-0.90	0.383	-2.790641	1.13415
578	-1.117439	.8417271	-1.33	0.204	-2.911538	.6766596
579	9643752	.870248	-1.11	0.285	-2.819265	.8905145
580	5009389	.6909479	-0.73	0.480	-1.973659	.9717816
581	655229	.751073	-0.87	0.397	-2.256103	.9456452
582	6320098	.8021398	-0.79	0.443	-2.34173	1.077711
583	7693169	.8437771	-0.91	0.376	-2.567785	1.029151
584	6031341	.8365208	-0.72	0.482	-2.386136	1.179868
585	6774847	.77035	-0.88	0.393	-2.319447	.9644775
586	7788662	.8157916	-0.95	0.355	-2.517685	.9599524
587	9984268	.8444551	-1.18	0.255	-2.79834	.8014867
588	-1.009626	1.076193	-0.94	0.363	-3.303477	1.284224
589	811504	1.024364	-0.79	0.441	-2.994884	1.371876
590	8830254	1.032441	-0.86	0.406	-3.083622	1.317571
591	-1.467995	1.07059	-1.37	0.190	-3.749903	.8139135
592	8861114	.9353565	-0.95	0.358	-2.879777	1.107554
593	5851219	1.095461	-0.53	0.601	-2.920043	1.749799
594	5749265	1.139368	-0.50	0.621	-3.003431	1.853578
595	5799395	1.142993	-0.51	0.619	-3.016172	1.856293
596	8757488	.9806668	-0.89	0.386	-2.965991	1.214493
597	8748231	1.103584	-0.79	0.440	-3.227057	1.477411
598	7616046	.9814017	-0.78	0.450	-2.853413	1.330204
599	9673171	.9910873	-0.98	0.345	-3.07977	1.145136
600	-1.040718	1.328992	-0.78	0.446	-3.873398	1.791962
601	-1.283749	1.300798	-0.99	0.339	-4.056334	1.488836
602	8467961	1.393272	-0.61	0.552	-3.816485	2.122893
603	-1.987898	1.385492	-1.43	0.172	-4.941005	.965209
604	-1.711639	1.344018	-1.27	0.222	-4.576345	1.153067
605	-1.323942	1.394245	-0.95	0.357	-4.295704	1.64782
606	-1.720643	1.530202	-1.12	0.278	-4.982192	1.540906
607	-1.403356	1.38111	-1.02	0.326	-4.347123	1.540411
608	-1.581646	1.398608	-1.13	0.276	-4.562707	1.399416
609	-1.613666	1.51273	-1.07	0.303	-4.837974	1.610643
610	-1.253721	1.538621	-0.81	0.428	-4.533213	2.025771

611	999972	1.286423	-0.78	0.449	-3.741917	1.741973
612	-1.781887	1.743507	-1.02	0.323	-5.498085	1.934312
613	-1.723539	1.858155	-0.93	0.368	-5.684103	2.237024
614	-1.805784	1.749279	-1.03	0.318	-5.534285	1.922716
615	-1.631631	1.735749	-0.94	0.362	-5.331291	2.06803
616	-1.737754	1.64924	-1.05	0.309	-5.253025	1.777517
617	-2.208244	1.909504	-1.16	0.266	-6.278256	1.861767
618	-1.847899	1.688911	-1.09	0.291	-5.447727	1.751929
619	-1.374592	1.773552	-0.78	0.450	-5.154829	2.405645
620	-1.60245	1.910736	-0.84	0.415	-5.675086	2.470187
621	-1.4976	1.694197	-0.88	0.391	-5.108695	2.113495
622	-1.689873	1.636009	-1.03	0.318	-5.176944	1.797197
623	-1.692592	1.667722	-1.01	0.326	-5.247257	1.862073
624	-2.201406	1.961884	-1.12	0.279	-6.383063	1.980251
625	-2.199278	1.971436	-1.12	0.282	-6.401294	2.002739
626	-1.907659	2.030989	-0.94	0.362	-6.236609	2.421291
627	-2.31529	2.0077	-1.15	0.267	-6.594602	1.964023
628	-2.770353	2.037847	-1.36	0.194	-7.113921	1.573215
629	-2.385257	1.920803	-1.24	0.233	-6.479351	1.708836
630	-1.926577	1.929238	-1.00	0.334	-6.038652	2.185497
631	-2.740609	2.162308	-1.27	0.224	-7.34946	1.868242
632	-2.229564	1.995065	-1.12	0.281	-6.481944	2.022817
633	-1.768088	1.839803	-0.96	0.352	-5.689535	2.153359
634	-2.256997	1.959555	-1.15	0.267	-6.43369	1.919696
635	-1.989676	1.927881	-1.03	0.318	-6.098857	2.119504
636	-2.405929	2.206592	-1.09	0.293	-7.109169	2.297311
637	-2.804591	2.193669	-1.28	0.221	-7.480286	1.871105
638	-1.842893	2.124842	-0.87	0.399	-6.371885	2.6861
639	-2.204023	2.176626	-1.01	0.327	-6.843392	2.435346
640	-2.033288	2.128524	-0.96	0.355	-6.57013	2.503555
641	-2.680063	2.195669	-1.22	0.241	-7.36002	1.999894
642	-2.765028	2.246696	-1.23	0.237	-7.553747	2.02369
643	-2.626094	2.224224	-1.18	0.256	-7.366915	2.114727
644	-2.932976	2.229011	-1.32	0.208	-7.684	1.818048
645	-2.114581	2.399223	-0.88	0.392	-7.228404	2.999243
646	-2.478948	2.448513	-1.01	0.327	-7.697829	2.739933
647	-2.33966	2.459329	-0.95	0.357	-7.581596	2.902276
648	-2.216676	2.5224	-0.88	0.393	-7.593044	3.159693
649	-1.971792	2.516361	-0.78	0.445	-7.335289	3.391704
650	-2.54739	2.544364	-1.00	0.333	-7.970573	2.875794
651	-2.694197	2.628186	-1.03	0.322	-8.296042	2.907648
652	-2.534811	2.360072	-1.07	0.300	-7.565184	2.495563
653	-1.79574	2.559441	-0.70	0.494	-7.251059	3.659578
654	-2.192817	2.503804	-0.88	0.395	-7.529549	3.143915
655	-2.187892	2.525624	-0.87	0.400	-7.571132	3.195349
656	-2.34777	2.627901	-0.89	0.386	-7.949008	3.253468
657	-2.536461	2.553109	-0.99	0.336	-7.978284	2.905361
658	-2.858472	2.647547	-1.08	0.297	-8.501584	2.78464
659	-2.316254	2.54374	-0.91	0.377	-7.738106	3.105599

	_					
660	-2.847804	2.726971	-1.04	0.313	-8.660204	2.964597
661	-2.812277	2.605704	-1.08	0.298	-8.366203	2.741649
662	-2.282837	2.74542	-0.83	0.419	-8.134562	3.568887
663	-2.824159	2.740172	-1.03	0.319	-8.664697	3.016378
664	-2.601278	2.818563	-0.92	0.371	-8.608903	3.406348
665	-2.226958	2.69243	-0.83	0.421	-7.965737	3.51182
666	-2.270983	2.743259	-0.83	0.421	-8.1181	3.576135
667	-2.432375	2.701882	-0.90	0.382	-8.1913	3.32655
668	-2.570625	2.743764	-0.94	0.364	-8.418819	3.27757
669	-2.455136	2.716665	-0.90	0.380	-8.24557	3.335299
670	-2.980582	2.711505	-1.10	0.289	-8.760017	2.798854
671	-2.689295	2.751947	-0.98	0.344	-8.554931	3.176341
672	-2.921256	2.828574	-1.03	0.318	-8.950219	3.107707
673	-2.789401	2.830947	-0.99	0.340	-8.823421	3.244619
674	-2.624187	2.892308	-0.91	0.379	-8.788995	3.540621
675	-2.26243	2.909654	-0.78	0.449	-8.46421	3.93935
676	-2.202254	2.927748	-0.75	0.464	-8.442601	4.038092
677	-2.517059	2.870041	-0.88	0.394	-8.634406	3.600288
678	-2.290913	2.882856	-0.79	0.439	-8.435574	3.853748
679	-2.19371	2.882162	-0.76	0.458	-8.336893	3.949472
680	-2.14258	2.974673	-0.72	0.482	-8.482946	4.197787
681	-2.130957	2.863905	-0.74	0.468	-8.235226	3.973312
682	-2.470807	2.833272	-0.87	0.397	-8.509783	3.568168
683	-2.628774	2.966567	-0.89	0.390	-8.951862	3.694314
684	-2.615957	3.159122	-0.83	0.421	-9.349467	4.117553
685	-2.796207	3.069246	-0.91	0.377	-9.338151	3.745736
686	-2.802533	3.157197	-0.89	0.389	-9.53194	3.926873
687	-2.460473	3.058776	-0.80	0.434	-8.9801	4.059154
688	-2.754662	3.140158	-0.88	0.394	-9.44775	3.938427
689	-2.775883	3.136761	-0.88	0.390	-9.461731	3.909966
690	-3.059481	3.146988	-0.97	0.346	-9.767126	3.648164
691	-2.913897	3.097654	-0.94	0.362	-9.51639	3.688596
692	-2.73539	3.150833	-0.87	0.399	-9.451231	3.98045
693	-2.827877	3.070699	-0.92	0.372	-9.372916	3.717163
694	-2.743143	3.175417	-0.86	0.401	-9.511384	4.025098
695	-2.953771	3.13465	-0.94	0.361	-9.635119	3.727577
696	-2.861076	3.280046	-0.87	0.397	-9.852328	4.130176
697	-2.901303	3.240098	-0.90	0.385	-9.807409	4.004804
698	-2.843211	3.251515	-0.87	0.396	-9.773651	4.087229
699	-3.050167	3.241151	-0.94	0.362	-9.958517	3.858183
700	-2.774074	3.27415	-0.85	0.410	-9.75276	4.204612
701	-3.138552	3.229077	-0.97	0.346	-10.02117 -10.59071	3.744063
702 703	-3.343513 -2.899274	3.400126 3.214425	-0.98 -0.90	0.341 0.381	-10.59071 -9.750659	3.903684 3.952111
703	-2.654578	3.195951	-0.90	0.381	-9.466586	4.157431
704	-2.591512	3.195951	-0.83 -0.81	0.419	-9.428906	4.157431
705 706	-2.591512	3.239168	-0.81	0.432	-9.428906 -9.58086	4.245882
707	-2.800945	3.314963	-0.83 -0.84	0.422	-9.866621	4.264731
707	-2.504868	3.54317	-0.84 -0.71	0.411	-10.05696	5.04722
100	-2.504000	3.3431/	-0./1	0.470	-10.03636	5.04/22

709	-3.093973	3.622442	-0.85	0.406	-10.81502	4.627079
710	-2.780772	3.49415	-0.80	0.439	-10.22838	4.666832
711	-2.459288	3.437478	-0.72	0.485	-9.7861	4.867523
712	-2.872387	3.474173	-0.83	0.421	-10.27741	4.532638
713	-2.411158	3.431009	-0.70	0.493	-9.724181	4.901864
714	-2.755162	3.503451	-0.79	0.444	-10.22259	4.712268
715	-2.74029	3.44488	-0.80	0.439	-10.08288	4.602298
716	-2.837793	3.458414	-0.82	0.425	-10.20923	4.533642
717	-2.990985	3.465861	-0.86	0.402	-10.37829	4.396322
718	-2.614074	3.449609	-0.76	0.460	-9.966742	4.738595
719	-2.75508	3.467054	-0.79	0.439	-10.14493	4.63477
region1						
bangalore	1.949536	.2954722	6.60	0.000	1.319752	2.57932
bhopal	-1.17981	1.332212	-0.89	0.390	-4.019354	1.659733
bubaneshwar	-1.64776	2.055822	-0.80	0.435	-6.029641	2.734122
chandigarh	-2.019769	.0436385	-46.28	0.000	-2.112782	-1.926755
chennai	.4051438	.2435597	1.66	0.117	1139915	.9242791
guwahati	4403794	2.184433	-0.20	0.843	-5.096388	4.215629
hyderabad	.8021245	.9947751	0.81	0.433	-1.318189	2.922438
jaipur	-1.968021	.9155081	-2.15	0.048	-3.91938	0166613
kanpur	-4.870459	.6753746	-7.21	0.000	-6.309986	-3.430932
kochi	7317202	1.226774	-0.60	0.560	-3.346528	1.883087
kolkata	-2.18008	.377425	-5.78	0.000	-2.984543	-1.375618
mumbai	2761403	1.353624	-0.20	0.841	-3.161321	2.60904
new_delhi	3.049554	1.354788	2.25	0.040	.1618928	5.937216
panaji	5.873584	5.527467	1.06	0.305	-5.907933	17.6551
patna	-2.885287	2.050433	-1.41	0.180	-7.255681	1.485107
	,					
_cons	-30.55369	24.3414	-1.26	0.229	-82.43614	21.32877

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 five

$$t(15) = -2.5891$$

Prob>|t| = 0.3794

95% confidence set for null hypothesis expression: [., .]
(A confidence interval could not be bounded. Try widening the search range wit
> h the gridmin() and gridmax() options.)

Warning: 1 replications returned an infeasible test statistic and were deleted > from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 lag_lgdp

$$t(15) = 1.0998$$

Prob> $|t| = 0.2830$

95% confidence set for null hypothesis expression: [-1.924, 7.228]

Warning: 13 replications returned an infeasible test statistic and were delete > d from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 lag_lpop

$$t(15) = 1.5233$$

Prob>|t| = 0.1908

95% confidence set for null hypothesis expression: [-.562, 1.82]

Warning: 3 replications returned an infeasible test statistic and were deleted > from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 _cons

$$t(15) = -1.2645$$

Prob>|t| = 0.2118

95% confidence set for null hypothesis expression: [-89.67, 19.08]

Linear regression Number of obs = 2,688 $\frac{F(14, 15)}{Prob > F} = .$ $R-squared = 0.8106 \\ Root MSE = 1.0781$

(Std. err. adjusted for 16 clusters in region1)

fdi_ihs	Coefficient	Robust std. err.	t	P> t	[95% conf.	interval]
one	-2.553786	.4498183	-5.68	0.000	-3.512551	-1.595021
two	-2.499116	.5413475	-4.62	0.000	-3.652971	-1.345261
three	-3.094019	.5827268	-5.31	0.000	-4.336071	-1.851966
four	-2.29701	.3606139	-6.37	0.000	-3.06564	-1.528379
five	-1.609404	.2180525	-7.38	0.000	-2.074172	-1.144636
lag_lgdp	1.722182	1.378347	1.25	0.231	-1.215694	4.660059
lag_lpop	1418764	.3390463	-0.42	0.682	8645366	.5807837
date						
553	0531386	.2723445	-0.20	0.848	6336272	.52735
554	4915856	.283572	-1.73	0.103	-1.096005	.1128338
555	2011631	.3042442	-0.66	0.519	8496442	.447318
556	2330706	.2897528	-0.80	0.434	850664	.3845228
557	.0419503	.2873563	0.15	0.886	5705351	.6544356
558 559	.3595212 .1886232	.3470091 .3871851	1.04 0.49	0.317 0.633	3801112 6366424	1.099153 1.013889
560	.0725879	.3756812	0.49	0.849	7281575	.8733334
561	172525	.2880628	-0.60	0.558	7865163	.4414662
562	0148782	.3205198	-0.05	0.964	6980499	.6682936
563	0206692	.3224906	-0.06	0.950	7080416	.6667032
564	6790723	.4249743	-1.60	0.131	-1.584884	.226739
565	2628889	.5512769	-0.48	0.640	-1.437908	.9121299
566	2443037	.3790756	-0.64	0.529	-1.052284	.563677
567	4671168	.4624605	-1.01	0.328	-1.452828	.5185945
568	360094	.4902786	-0.73	0.474	-1.405098	.6849101
569	5307664	.4174334	-1.27	0.223	-1.420505	.3589719
570	.1961886	.5032375	0.39	0.702	8764368	1.268814
571	7676637	.4262208	-1.80	0.092	-1.676132	.1408044
572	9634274	.3714448	-2.59	0.020	-1.755143	1717115
573	606621	.5055814	-1.20	0.249	-1.684242	.4710004
574	4599813	.3906167	-1.18	0.257	-1.292561	.3725986
575	1878147	.5658557	-0.33	0.745	-1.393908	1.018278
576 577	8831223 3349631	.639795 .6764651	-1.38 -0.50	0.188 0.628	-2.246813 -1.776814	.4805685 1.106888
578	6241567	.7444077	-0.30 -0.84	0.028	-2.210824	.9625108
579	4710926	.6089459	-0.77	0.451	-1.76903	.8268449
580	0076563	.587002	-0.01	0.990	-1.258822	1.243509
581	1619465	.5656827	-0.29	0.779	-1.367671	1.043778
582	1387272	.6068308	-0.23	0.822	-1.432157	1.154702
583	2760343	.6731718	-0.41	0.688	-1.710866	1.158797
584	1098516	.6424361	-0.17	0.867	-1.479172	1.259469
585	1842021	.5366517	-0.34	0.736	-1.328048	.9596438
586	2855837	.6124353	-0.47	0.648	-1.590959	1.019791
587	5051443	.6646872	-0.76	0.459	-1.921891	.9116029

	_					
588	4274449	.7818859	-0.55	0.593	-2.093995	1.239105
589	2293224	.809952	-0.28	0.781	-1.955694	1.497049
590	3008438	.8034888	-0.37	0.713	-2.01344	1.411752
591	8858134	.8103051	-1.09	0.292	-2.612938	.8413111
592	3039298	.7156213	-0.42	0.677	-1.82924	1.221381
593	0029403	.8416976	-0.00	0.997	-1.796976	1.791096
594	.0072551	.8019878	0.01	0.993	-1.702141	1.716652
595	.0022421	.8940165	0.00	0.998	-1.903309	1.907793
596	2935672	.7252394	-0.40	0.691	-1.839378	1.252244
597	2926416	.7960346	-0.37	0.718	-1.989349	1.404066
598	179423	.780385	-0.23	0.821	-1.842774	1.483928
599	3851355	.8041022	-0.48	0.639	-2.099039	1.328768
600	3786049	.9981505	-0.38	0.710	-2.506112	1.748903
601	6216354	.9795537	-0.63	0.535	-2.709505	1.466234
602	1846828	1.073415	-0.17	0.866	-2.472612	2.103246
603	7010057	.9332312	-0.75	0.464	-2.690141	1.288129
604	4247469	.9469753	-0.45	0.660	-2.443177	1.593683
605	0370497	.9422736	-0.04	0.969	-2.045458	1.971359
606	4337509	1.01327	-0.43	0.675	-2.593484	1.725982
607	1164637	.9586612	-0.12	0.905	-2.159802	1.926874
608	2947533	.9887549	-0.30	0.770	-2.402235	1.812728
609	3267733	1.089599	-0.30	0.768	-2.649199	1.995652
610	.0331712	1.078218	0.03	0.976	-2.264997	2.331339
611	.2869203	.9369124	0.31	0.764	-1.710061	2.283902
612	3979218	1.225968	-0.32	0.750	-3.011012	2.215168
613	3395747	1.336371	-0.25	0.803	-3.187981	2.508832
614	4218194	1.206244	-0.35	0.731	-2.992867	2.149228
615	2476661	1.267723	-0.20	0.848	-2.949755	2.454423
616	3537892	1.208391	-0.29	0.774	-2.929413	2.221835
617	8242797	1.385094	-0.60	0.561	-3.776537	2.127978
618	4639341	1.163887	-0.40	0.696	-2.944701	2.016833
619	.0093727	1.242921	0.01	0.994	-2.639851	2.658597
620	2184851	1.364807	-0.16	0.875	-3.127502	2.690532
621	1136353	1.181433	-0.10	0.925	-2.6318	2.40453
622	3059088	1.17856	-0.26	0.799	-2.817949	2.206131
623	3086274	1.144174	-0.27	0.791	-2.747375	2.130121
624	6049992	1.396386	-0.43	0.671	-3.581325	2.371327
625	6028712	1.394447	-0.43	0.672	-3.575065	2.369322
626	3112527	1.464666	-0.21	0.835	-3.433114	2.810608
627	7188832	1.426165	-0.50	0.622	-3.758681	2.320915
628	-1.173947	1.412376	-0.83	0.419	-4.184356	1.836462
629	7888509	1.393197	-0.57	0.580	-3.758381	2.180679
630	3301709	1.388961	-0.24	0.815	-3.290671	2.630329
631	-1.144203	1.486679	-0.77	0.453	-4.312984	2.024579
632	6331572	1.409956	-0.45	0.660	-3.638408	2.372094
633	1716815	1.353264	-0.13	0.901	-3.056095	2.712732
634	6605902	1.38627	-0.48	0.641	-3.615355	2.294175
635	3932697	1.382187	-0.28	0.780	-3.339332	2.552792
636	7380439	1.55706	-0.47	0.642	-4.056838	2.580751

637	-1.136705	1.518818	-0.75	0.466	-4.373988	2.100578
638	1750071	1.543142	-0.11	0.911	-3.464136	3.114122
639	5361377	1.51376	-0.35	0.728	-3.76264	2.690365
640	3654023	1.508309	-0.24	0.812	-3.580286	2.849482
641	4320491	1.484397	-0.29	0.775	-3.595967	2.731869
642	5170144	1.482964	-0.35	0.732	-3.677878	2.643849
643	3780803	1.562757	-0.24	0.812	-3.709017	2.952857
644	6849623	1.561776	-0.44	0.667	-4.013809	2.643885
645	.1334333	1.690172	0.08	0.938	-3.469082	3.735949
646	2309343	1.617436	-0.14	0.888	-3.678417	3.216548
647	0916461	1.697237	-0.05	0.958	-3.709221	3.525929
648	.1069193	1.852536	0.06	0.955	-3.841668	4.055507
649	.3518027	1.769226	0.20	0.845	-3.419213	4.122819
650	2237947	1.752402	-0.13	0.900	-3.958952	3.511363
651	3706019	1.791421	-0.21	0.839	-4.188925	3.447721
652	2112161	1.710995	-0.12	0.903	-3.858116	3.435683
653	.5278547	1.835178	0.29	0.778	-3.383735	4.439445
654	.130778	1.799217	0.07	0.943	-3.704162	3.965718
655	.1357034	1.796379	0.08	0.941	-3.693187	3.964594
656	0241751	1.743158	-0.01	0.989	-3.739628	3.691277
657	2128664	1.859963	-0.11	0.910	-4.177284	3.751551
658	5348769	2.186862	-0.24	0.810	-5.196062	4.126308
659	.0073412	1.766962	0.00	0.997	-3.758849	3.773532
660	4665467	1.995529	-0.23	0.818	-4.719915	3.786822
661	4310201	1.863475	-0.23	0.820	-4.402923	3.540883
662	.0984195	1.929506	0.05	0.960	-4.014225	4.211064
663	4429023	1.812038	-0.24	0.810	-4.305171	3.419366
664	2200207	1.843969	-0.12	0.907	-4.150348	3.710307
665	.1542985	1.898802	0.08	0.936	-3.892902	4.201499
666	.1102742	1.831154	0.06	0.953	-3.792738	4.013286
667	051118	1.825867	-0.03	0.978	-3.942861	3.840625
668	1893678	1.871558	-0.10	0.921	-4.178499	3.799763
669	0738789	1.846397	-0.04	0.969	-4.009381	3.861623
670	3121985	1.798617	-0.17	0.865	-4.145859	3.521462
671	0209121	1.794872	-0.01	0.991	-3.846591	3.804767
672	190434	1.877331	-0.10	0.921	-4.191871	3.811003
673	0585789	1.898956	-0.03	0.976	-4.106108	3.988951
674	.1066354	1.955565	0.05	0.957	-4.061553	4.274824
675	.4683924	1.97007	0.24	0.815	-3.730711	4.667496
676	.5285681	1.992019	0.27	0.794	-3.71732	4.774457
677	.2137637	1.943557	0.11	0.914	-3.928829	4.356357
678	.4399093	1.974624	0.22	0.827	-3.768902	4.64872
679	.5371119	1.957937	0.27	0.788	-3.636131	4.710355
680	.5882425	1.948867	0.30	0.767	-3.565669	4.742154
681	.5998653	1.948307	0.31	0.762	-3.552853	4.752583
682	.2600149	1.969765	0.13	0.897	-3.93844	4.458469
683	.1020485	1.977417	0.05	0.960	-4.112716	4.316813
684	.1873842	2.166038	0.09	0.932	-4.429417	4.804186
685	.0071342	2.120306	0.00	0.997	-4.51219	4.526459

686	.0008083	2.175449	0.00	1.000	-4.636051	4.637667
687	.340083	2.106047	0.16	0.874	-4.14885	4.829015
688	.0460815	2.163216	0.02	0.983	-4.564703	4.656866
689	.0250467	2.156696	0.01	0.991	-4.571842	4.621935
690	2583665	2.157477	-0.12	0.906	-4.856921	4.340187
691	1125988	2.188635	-0.05	0.960	-4.777564	4.552366
692	.0660908	2.167196	0.03	0.976	-4.553179	4.68536
693	0262135	2.133101	-0.01	0.990	-4.57281	4.520383
694	.0587008	2.175705	0.03	0.979	-4.578704	4.696105
695	1517471	2.15539	-0.07	0.945	-4.745851	4.442357
696	0145427	2.242281	-0.01	0.995	-4.793852	4.764767
697	0547693	2.23017	-0.02	0.981	-4.808264	4.698725
698	.0033222	2.240325	0.00	0.999	-4.771818	4.778462
699	2036338	2.240758	-0.09	0.929	-4.979697	4.57243
700	.0724595	2.255622	0.03	0.975	-4.735285	4.880204
701	2920188	2.236333	-0.13	0.898	-5.05865	4.474613
702	4969799	2.309247	-0.22	0.833	-5.419023	4.425063
703	.0077216	2.220338	0.00	0.997	-4.724818	4.740261
704	.2524177	2.142346	0.12	0.908	-4.313885	4.818721
705	.3154833	2.186747	0.14	0.887	-4.345457	4.976424
706	.2302578	2.191943	0.11	0.918	-4.441759	4.902275
707	.1060503	2.265261	0.05	0.963	-4.72224	4.934341
708	.4763444	2.430074	0.20	0.847	-4.703237	5.655925
709	1127607	2.44433	-0.05	0.964	-5.322728	5.097206
710	.2004405	2.405812	0.08	0.935	-4.927426	5.328307
711	.5219241	2.354318	0.22	0.828	-4.496185	5.540033
712	.1088259	2.40191	0.05	0.964	-5.010723	5.228375
713	.5700539	2.39544	0.24	0.815	-4.535705	5.675813
714	.22605	2.365435	0.10	0.925	-4.815755	5.267855
715	.2409226	2.403759	0.10	0.921	-4.882569	5.364414
716	.143419	2.417584	0.06	0.953	-5.00954	5.296378
717	0097727	2.394371	-0.00	0.997	-5.113253	5.093707
718	.3671386	2.372415	0.15	0.879	-4.689545	5.423822
719	.2261325	2.418115	0.09	0.927	-4.927958	5.380223
region1						
bangalore	1.509656	.2606921	5.79	0.000	.9540043	2.065308
bhopal	-1.345634	.8713547	-1.54	0.143	-3.202882	.5116149
bubaneshwar	7488301	1.459789	-0.51	0.615	-3.860296	2.362636
chandigarh	5631052	.2816323	-2.00	0.064	-1.16339	.03718
chennai	1.02206	.1491846	6.85	0.000	.7040805	1.340039
guwahati	.472303	1.537954	0.31	0.763	-2.805767	3.750374
hyderabad	1.179435	.7166853	1.65	0.121	3481434	2.707014
jaipur	-2.083696	.5990918	-3.48	0.003	-3.360629	8067617
kanpur	-2.224124	.7256007	-3.07	0.008	-3.770706	6775433
kochi	-1.444898	.922484	-1.57	0.138	-3.411126	.5213301
kolkata	2.103719	.453443	4.64	0.000	1.137228	3.07021
mumbai	.301312	.9571839	0.31	0.757	-1.738877	2.341501
new_delhi	3.084887	1.071275	2.88	0.011	.8015182	5.368256
'	-					

panaji patna	1.29578 1.089293	4.311231 1.416753			-7.893392 -1.930444	
_cons	-16.14593	18.12136	-0.89	0.387	-54.7707	22.47884

Warning: 763 replications returned an infeasible test statistic and were delet > ed from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 one

$$t(15) = -5.6613$$

Prob>|t| = 0.0243

95% confidence set for null hypothesis expression: [-3.776, -1.26]

Warning: 24 replications returned an infeasible test statistic and were delete > d from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 two

$$t(15) = -4.6137$$

Prob>|t| = 0.0044

95% confidence set for null hypothesis expression: [-3.758, -1.401]

Warning: 29 replications returned an infeasible test statistic and were delete > d from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 three

$$t(15) = -5.2969$$

Prob>|t| = 0.0042

95% confidence set for null hypothesis expression: [-4.422, -1.773]

Warning: 205 replications returned an infeasible test statistic and were delet > ed from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 four

$$t(15) = -6.3595$$

Prob>|t| = 0.0110

95% confidence set for null hypothesis expression: [-3.174, -1.444]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 five

$$t(15) = -7.2296$$

Prob>|t| = 0.0146

95% confidence set for null hypothesis expression: [-2.448, -.7376]

Warning: 3 replications returned an infeasible test statistic and were deleted > from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 lag_lgdp

$$t(15) = 1.2557$$

Prob>|t| = 0.2350

95% confidence set for null hypothesis expression: [-1.227, 5.297]

Warning: 16 replications returned an infeasible test statistic and were delete > d from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 lag_lpop

$$t(15) = -0.4170$$

Prob>|t| = 0.7198

95% confidence set for null hypothesis expression: [-1.123, .8217]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 _cons

$$t(15) = -0.8963$$

Prob>|t| = 0.4010

95% confidence set for null hypothesis expression: [-68.01, 23.06]

1124 .

1125 .

1126 . ** Absolute FDI

1127 .

1128 . reg fdi one two three four five \$control i.date i.region1, cluster(region1)

Linear regression Number of obs = 2,688 $\frac{F(14, 15)}{Prob > F} = .$ R-squared = 0.4752 Root MSE = 249.52

(Std. err. adjusted for 16 clusters in region1)

						
		Robust				
fdi	Coefficient	std. err.	t	P> t	[95% conf.	interval]
one	-109.3349	40.74663	-2.68	0.017	-196.1843	-22.48555
two	-130.0412	58.74348	-2.21	0.043	-255.2499	-4.832412
three	-146.3815	73.58068	-1.99	0.065	-303.215	10.45199
four	-293.0864	155.1627	-1.89	0.078	-623.8078	37.63498
five	-234.519	130.9328	-1.79	0.093	-513.5956	44.55764
lag_lgdp	78.89157	395.5849	0.20	0.845	-764.2776	922.0607
lag_lpop	448.4136	210.9654	2.13	0.051	-1.248475	898.0757
4040						
date 553	-68.91667	62.74663	-1.10	0.289	-202.658	64.82462
554	-72.83333	68.96658	-1.10 -1.06	0.209	-202.658	74.16544
555	-72.83333 -68	75.71304	-0.90	0.383	-219.8321	93.37852
556	-62.29167	70.29852	-0.89	0.390	-212.1294	93.37652 87.54609
557	-59.39583	58.57007	-1.01	0.327	-184.235	65.44331
558	-58.4375	70.74054	-0.83	0.327	-209.2174	92.34238
559	-67.97917	70.74034	-0.83 -0.97	0.422	-209.2174	81.34019
560	-77.64583	75.50786	-1.03	0.320	-238.587	83.29537
561	-57.5	63.67028	-0.90	0.320	-193.21	78.20999
562	-67.35417	68.16639	-0.99	0.339	-212.6474	77.93905
563	-67.64583	74.80974	-0.90	0.380	-212.0474	91.80736
564	-87.91723	100.7718	-0.87	0.397	-302.7073	126.8728
565	-73.4589	100.7710	-0.73	0.477	-287.9039	140.9861
566	-87.93806	99.09153	-0.75	0.389	-299.1467	123.2705
567	-85.85473	103.6031	-0.83	0.420	-306.6795	134.9701
568	-78.0214	103.1394	-0.76	0.461	-297.8578	141.815
569	-90.81306	104.4007	-0.87	0.398	-313.3378	131.7117
570	-74.35473	112.3571	-0.66	0.518	-313.8382	165.1288
571	-84.60453	94.59566	-0.89	0.385	-286.2304	117.0213
572	-93.5837	94.10816	-0.99	0.336	-294.1705	107.0031
573	-87.56286	95.5542	-0.92	0.374	-291.2318	116.1061
3,3	1 0,	50.00.2		0.0,1		

574	-64.35453	97.45534	-0.66	0.519	-272.0757	143.3666
575	-50.2087	110.3174	-0.46	0.656	-285.3446	184.9272
576	-86.4833	145.1248	-0.60	0.560	-395.8094	222.8428
577	-83.39997	141.0033	-0.59	0.563	-383.9414	217.1415
578	-88.62914	141.5545	-0.63	0.541	-390.3455	213.0872
579	-81.4833	143.2398	-0.57	0.578	-386.7916	223.825
580	-84.08747	141.563	-0.59	0.561	-385.8219	217.6469
581	-76.19164	140.0765	-0.54	0.594	-374.7577	222.3744
582	-75.6708	142.2906	-0.53	0.603	-378.956	227.6143
583	-35.33747	137.9583	-0.26	0.801	-329.3885	258.7136
584	-79.81664	141.1028	-0.57	0.580	-380.5702	220.9369
585	-69.6708	146.0883	-0.48	0.640	-381.0506	241.709
586	-81.21247	140.214	-0.58	0.571	-380.0715	217.6466
587	-85.25414	141.2436	-0.60	0.555	-386.3077	215.7994
588	-86.46345	192.6452	-0.45	0.660	-497.0769	324.15
589	-93.31762	194.8792	-0.48	0.639	-508.6928	322.0575
590	-92.73429	193.4194	-0.48	0.639	-504.998	319.5295
591	-93.08845	195.2872	-0.48	0.640	-509.3332	323.1563
592	-82.88012	196.2199	-0.42	0.679	-501.1129	335.3526
593	-88.73429	196.5326	-0.45	0.658	-507.6337	330.1651
594	-70.77595	198.2186	-0.36	0.726	-493.2689	351.717
595	-91.00512	192.8719	-0.47	0.644	-502.1017	320.0915
596	-89.48429	196.1779	-0.46	0.655	-507.6276	328.659
597	-91.58845	191.4942	-0.48	0.639	-499.7486	316.5717
598	-99.38012	193.7284	-0.51	0.615	-512.3025	313.5423
599	-95.48429	189.2826	-0.50	0.621	-498.9305	307.9619
600	-105.2749	242.0031	-0.44	0.670	-621.0923	410.5425
601	-109.7541	245.0642	-0.45	0.661	-632.0961	412.588
602	-105.7332	244.6708	-0.43	0.672	-627.2368	415.7703
603	-99.26461	252.0512	-0.39	0.699	-636.499	437.9698
604	-89.74378	248.3238	-0.36	0.723	-619.0334	439.5458
605	-77.03544	254.5505	-0.30	0.766	-619.597	465.5261
606	-83.26461	252.6146	-0.33	0.746	-621.6999	455.1707
607	-66.05628	252.7836	-0.26	0.797	-604.8519	472.7393
608	-60.34794	266.0973	-0.23	0.824	-627.5209	506.825
609	2.922892	234.4994	0.01	0.990	-496.9007	502.7465
610	-64.80628	255.9606	-0.25	0.804	-610.3734	480.7609
611	-59.09794	256.0047	-0.23	0.821	-604.759	486.5631
612	-67.46245	319.8772	-0.21	0.836	-749.2645	614.3396
613	39.12089	300.5986	0.13	0.898	-601.59	679.8317
614	-82.67078	316.2504	-0.26	0.797	-756.7426	591.4011
615	-74.27495	315.7787	-0.24	0.817	-747.3413	598.7914
616	-84.56661	313.4363	-0.27	0.791	-752.6402	583.5069
617	-29.42078	301.0347	-0.10	0.923	-671.061	612.2195
618	-85.08745	317.9673	-0.27	0.793	-762.8187	592.6438
619	-75.44161 -12.35929	314.2219	-0.24 -0.04	0.814	-745.1897 -642 1187	594.3064
620	-12.35828	295.4611	-0.04	0.967	-642.1187	617.4021
621	-73.02495	316.307	-0.23	0.821	-747.2174	601.1675
622	-80.31661	320.2344	-0.25	0.805	-762.8802	602.2469

623	-80.92078	312.6896	-0.26	0.799	-747.4028	585.5613
624	-147.9269	337.4411	-0.44	0.667	-867.1656	571.3119
625	-155.2811	346.3136	-0.45	0.660	-893.4309	582.8688
626	-165.6352	338.1125	-0.49	0.631	-886.3049	555.0345
627	-170.4894	342.3982	-0.50	0.626	-900.2939	559.3151
628	-177.0936	344.2661	-0.51	0.614	-910.8795	556.6923
629	-166.9477	344.8605	-0.48	0.635	-902.0004	568.1049
630	-148.3644	347.0417	-0.43	0.675	-888.0662	591.3375
631	-165.4686	337.9813	-0.49	0.632	-885.8587	554.9216
632	-144.4477	344.6128	-0.42	0.681	-878.9725	590.0771
633	-155.8644	338.9217	-0.46	0.652	-878.2588	566.5301
634	-139.1561	345.6686	-0.40	0.693	-875.9312	597.6191
635	-144.6352	348.8584	-0.41	0.684	-888.2092	598.9388
636	-170.1405	382.8882	-0.44	0.663	-986.2473	645.9663
637	-155.6821	379.6184	-0.41	0.688	-964.8196	653.4553
638	-133.2863	379.5517	-0.35	0.730	-942.2816	675.7089
639	-152.203	387.997	-0.39	0.700	-979.199	674.7931
640	-147.9321	380.7434	-0.39	0.703	-959.4676	663.6033
641	-139.0898	394.8574	-0.35	0.730	-980.7083	702.5287
642	-162.1314	392.5013	-0.41	0.685	-998.7282	674.4653
643	-157.6731	400.6874	-0.39	0.699	-1011.718	696.3719
644	-169.4023	395.1947	-0.43	0.674	-1011.74	672.9353
645	-71.50644	394.6646	-0.18	0.859	-912.7142	769.7013
646	-45.67311	464.3286	-0.10	0.923	-1035.366	944.0199
647	-53.90227	452.9806	-0.12	0.907	-1019.408	911.603
648	-110.3724	461.9741	-0.24	0.814	-1095.047	874.3021
649	-104.6016	455.3242	-0.23	0.821	-1075.102	865.899
650	-144.5182	455.4844	-0.32	0.755	-1115.36	826.3238
651	-70.62241	466.8015	-0.15	0.882	-1065.586	924.3414
652	-134.1641	447.7364	-0.30	0.769	-1088.492	820.1635
653	-13.26824	479.6136	-0.03	0.978	-1035.54	1009.004
654	-108.3724	466.6362	-0.23	0.819	-1102.984	886.2391
655	-41.97657	467.1922	-0.09	0.930	-1037.773	953.82
656	-63.64324	474.9864	-0.13	0.895	-1076.053	948.7662
657	-108.3724	456.4141	-0.24	0.816	-1081.196	864.4512
658	-115.9141	449.4131	-0.26	0.800	-1073.815	841.9873
659	-43.08074	479.8264	-0.09	0.930	-1065.806	979.6449
660	-113.8496	471.888	-0.24	0.813	-1119.655	891.9558
661	-107.4538	475.0417	-0.23	0.824	-1119.981	905.0735
662	-107.9954	491.1206	-0.22	0.829	-1154.794	938.8033
663	-104.2871	490.7695	-0.21	0.835	-1150.337	941.7633
664	-94.95376	503.4331	-0.19	0.853	-1167.996	978.0884
665	-17.30793	504.0391	-0.03	0.973 0.895	-1091.642	1057.026
666 667	-66.41209	496.5277	-0.13 0.15		-1124.736	991.9117
667	-72.64126	485.1084	-0.15 0.27	0.883	-1106.625	961.3429
668 669	-129.0579 -93.47459	479.0696 475.0503	-0.27 -0.20	0.791 0.847	-1150.171 -1106.02	892.0548 919.0711
670	-134.6305	475.0503	-0.20 -0.27	0.847	-1106.02	919.0711
671	-92.79713					930.8879
0/1	-32.13113	480.2765	-0.19	0.849	-1116.482	330.0019

672	-150.6765	519.6301	-0.29	0.776	-1258.242	956.8889
673	-130.9056	527.891	-0.25	0.808	-1256.079	994.2673
674	-70.6348	545.4837	-0.13	0.899	-1233.306	1092.036
675	5.198529	532.7815	0.01	0.992	-1130.398	1140.795
676	-15.21814	568.8548	-0.03	0.979	-1227.703	1197.267
677	-50.5723	570.0561	-0.09	0.930	-1265.618	1164.473
678	137.011	749.3616	0.18	0.857	-1460.216	1734.238
679	-25.34314	564.7143	-0.04	0.965	-1229.003	1178.317
680	-19.5723	594.2994	-0.03	0.974	-1286.292	1247.147
681	-22.61397	578.9056	-0.04	0.969	-1256.522	1211.294
682	7.094363	588.152	0.01	0.991	-1246.522	1260.711
683	-91.8848	534.844	-0.17	0.866	-1231.878	1048.108
684	-51.48592	591.8697	-0.09	0.932	-1313.026	1210.055
685	-120.0901	582.0714	-0.21	0.839	-1360.746	1120.566
686	-86.94425	597.6364	-0.15	0.886	-1360.776	1186.888
687	-35.61474	642.2456	-0.06	0.957	-1404.529	1333.299
688	-103.7481	576.7682	-0.18	0.860	-1333.1	1125.604
689	-79.06872	600.134	-0.13	0.897	-1358.224	1200.087
690	-107.8892	591.4765	-0.18	0.858	-1368.591	1152.813
691	-108.772	581.7239	-0.19	0.854	-1348.687	1131.143
692	1.157839	678.4673	0.00	0.999	-1444.961	1447.277
693	-104.0371	599.524	-0.17	0.865	-1381.892	1173.818
694	-41.66947	598.8682	-0.07	0.945	-1318.127	1234.788
695	-75.48913	627.0509	-0.12	0.906	-1412.016	1261.038
696	-77.0813	599.7844	-0.13	0.899	-1355.491	1201.329
697	-104.748	599.7863	-0.17	0.864	-1383.162	1173.666
698	-103.2896	615.7982	-0.17	0.869	-1415.832	1209.253
699	-97.3313	605.8884	-0.16	0.875	-1388.752	1194.089
700	-25.56047	651.7722	-0.04	0.969	-1414.78	1363.659
701	-131.0396	590.0728	-0.22	0.827	-1388.75	1126.671
702	17.0437	699.4215	0.02	0.981	-1473.738	1507.825
703	-22.34053	651.4744	-0.03	0.973	-1410.925	1366.244
704	-52.5072	657.2027	-0.08	0.937	-1453.302	1348.287
705	-23.42387	655.5137	-0.04	0.972	-1420.618	1373.77
706	-18.65303	685.7815	-0.03	0.979	-1480.362	1443.056
707	63.4928	659.4286	0.10	0.925	-1342.046	1469.032
708	48.16204	706.8555	0.07	0.947	-1458.465	1554.789
709	-6.192126	720.7227	-0.01	0.993	-1542.376	1529.992
710	-23.42129	647.3617	-0.04	0.972	-1403.24	1356.398
711	-27.90046	661.9652	-0.04	0.967	-1438.846	1383.045
712	-32.12963	707.0082	-0.05	0.964	-1539.082	1474.823
713	91.95371	753.262	0.12	0.904	-1513.586	1697.494
714	200.7245	936.256	0.21	0.833	-1794.858	2196.307
715	115.3079	828.5758	0.14	0.891	-1650.76	1881.375
716	124.2662	800.5043	0.16	0.879	-1581.968	1830.501
717	287.0995	965.0895	0.30	0.770	-1769.94	2344.139
718	124.5579	822.9928	0.15	0.882	-1629.61	1878.725
719	103.8912	814.4612	0.13	0.900	-1632.092	1839.874
	i					

region1						
bangalore	530.6885	52.47242	10.11	0.000	418.8461	642.5308
bhopal	-137.6334	288.2022	-0.48	0.640	-751.922	476.6551
bubaneshwar	220.1485	313.6972	0.70	0.494	-448.4811	888.7782
chandigarh	-22.61841	41.27784	-0.55	0.592	-110.6	65.36321
chennai	235.0723	99.17101	2.37	0.032	23.69426	446.4503
guwahati	206.0531	346.9435	0.59	0.561	-533.4395	945.5457
hyderabad	115.5869	170.2103	0.68	0.507	-247.2078	478.3817
jaipur	-128.6504	197.743	-0.65	0.525	-550.1297	292.8289
kanpur	-629.538	175.2912	-3.59	0.003	-1003.162	-255.9138
kochi	230.4206	142.1094	1.62	0.126	-72.47832	533.3195
kolkata	-82.97934	135.4316	-0.61	0.549	-371.6449	205.6862
mumbai	361.7669	218.9551	1.65	0.119	-104.9248	828.4587
new_delhi	775.9133	123.2736	6.29	0.000	513.1618	1038.665
panaji	1772.902	572.2999	3.10	0.007	553.0741	2992.731
patna	-100.4041	473.3308	-0.21	0.835	-1109.285	908.4766
_cons	-5793.074	3063.419	-1.89	0.078	-12322.6	736.4496

Overriding estimator's cluster/robust settings with cluster(region1 date)

Warning: 26 replications returned an infeasible test statistic and were delete > d from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 one

$$t(15) = -2.6770$$

Prob>|t| = 0.0377

95% confidence set for null hypothesis expression: [-234, -8.743]

Warning: 30 replications returned an infeasible test statistic and were delete > d from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 two

$$t(15) = -2.2139$$

Prob>|t| = 0.0377

95% confidence set for null hypothesis expression: [-255.8, -7.937]

Warning: 209 replications returned an infeasible test statistic and were delet > ed from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 three

$$t(15) = -1.9914$$

Prob>|t| = 0.1122

95% confidence set for null hypothesis expression: [-350.5, 53.51]

Warning: 561 replications returned an infeasible test statistic and were delet > ed from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 four

$$t(15) = -1.8966$$

Prob>|t| = 0.1431

95% confidence set for null hypothesis expression: [., .]
(A confidence interval could not be bounded. Try widening the search range wit > h the gridmin() and gridmax() options.)

Warning: 5114 replications returned an infeasible test statistic and were dele > ted from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 five

$$t(15) = -1.8600$$

Prob>|t| = 0.4170

95% confidence set for null hypothesis expression: [., .]
(A confidence interval could not be bounded. Try widening the search range wit > h the gridmin() and gridmax() options.)

Warning: 114 replications returned an infeasible test statistic and were delet > ed from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 lag_lgdp

$$t(15) = 0.1997$$

Prob>|t| = 0.8926

95% confidence set for null hypothesis expression: [-1031, 905.8]

Warning: 13 replications returned an infeasible test statistic and were delete > d from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 lag_lpop

$$t(15) = 2.1119$$

Prob>|t| = 0.0750

95% confidence set for null hypothesis expression: [-55.22, 1294]

Warning: 62 replications returned an infeasible test statistic and were delete > d from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 _cons

$$t(15) = -1.9017$$

Prob>|t| = 0.0973

95% confidence set for null hypothesis expression: [-12494, 1314]

1130 . mat p_val[1,8]=r(p_1)

1131 . mat $p_val[2,8]=r(p_2)$

1132 . mat $p_val[3,8]=r(p_3)$

1133 . mat $p_{val}[4,8]=r(p_4)$

```
1134 . mat p_val[5,8]=r(p_5)

1135 . mat p_val[6,8]=r(p_6)

1136 . mat p_val[7,8]=r(p_7)

1137 . mat p_val[8,8]=r(p_8)

1138 . eststo tbl_`j'

1139 . local j=`j'+1

1140 .

1141 .

1142 .

1143 .

1144 .

1145 . * ROBUSTNESS - UNREPORTED: No controls:

1146 . reg fdi_ihs one two three four five i.date i.region1, cluster(region1)
```

Linear regression Number of obs = 2,688 $\frac{F(14, 15)}{Prob > F} = .$ R-squared = 0.8090 Root MSE = 1.0823

(Std. err. adjusted for 16 clusters in region1)

fdi_ihs	Coefficient	Robust std. err.	t	P> t	[95% conf.	interval]
one	-2.500458	.4034472	-6.20	0.000	-3.360386	-1.640531
two	-2.564038	.5510899	-4.65	0.000	-3.738658	-1.389417
three	-3.097078	.6329645	-4.89	0.000	-4.44621	-1.747946
four	-2.265966	.3491953	-6.49	0.000	-3.010258	-1.521674
five	-1.555632	.1972863	-7.89	0.000	-1.976138	-1.135126
date						
553	0531386	.2722356	-0.20	0.848	6333949	.5271178
554	4915856	.2834585	-1.73	0.103	-1.095763	.112592
555	2011631	.3041224	-0.66	0.518	8493847	.4470586
556	2330706	.2896368	-0.80	0.434	8504169	.3842757
557	.0419503	.2872413	0.15	0.886	57029	.6541906
558	.3595212	.3468702	1.04	0.316	3798152	1.098858
559	.1886232	.3870302	0.49	0.633	6363122	1.013559
560	.0725879	.3755309	0.19	0.849	7278372	.8730131
561	172525	.2879475	-0.60	0.558	7862706	.4412206
562	0148782	.3203915	-0.05	0.964	6977766	.6680203
563	0206692	.3223616	-0.06	0.950	7077666	.6664282
	•					

564	4005432	.3029381	-1.32	0.206	-1.04624	.245154
565	.0156402	.4425594	0.04	0.972	9276529	.9589334
566	.0342255	.2948188	0.12	0.909	594166	.6626169
567	1885877	.3892333	-0.48	0.635	-1.018219	.6410434
568	0815649	.4011428	-0.20	0.842	9365805	.7734507
569	2522373	.3126013	-0.81	0.432	9185313	.4140567
570	.4747177	.4728638	1.00	0.331	5331676	1.482603
571	4958005	.3438644	-1.44	0.170	-1.22873	.237129
572	6915642	.279619	-2.47	0.026	-1.287558	0955704
573	3347578	.4276457	-0.78	0.446	-1.246263	.5767475
574	1881181	.3283094	-0.57	0.575	8878931	.5116568
575	.0840485	.439054	0.19	0.851	8517729	1.01987
576	3675509	.3840681	-0.96	0.354	-1.186173	.451071
577	.1806084	.3974392	0.45	0.656	6665133	1.02773
578	1085853	.4759422	-0.23	0.823	-1.123032	.9058615
579	.0444788	.3748114	0.12	0.907	7544127	.8433704
580	.5079151	.3430184	1.48	0.159	2232112	1.239041
581	.353625	.3098346	1.14	0.272	3067718	1.014022
582	.3768443	.3231843	1.17	0.262	3120069	1.065695
583	.2395371	.3633321	0.66	0.520	534887	1.013961
584	.4057199	.4046524	1.00	0.332	4567764	1.268216
585	.3313693	.3029576	1.09	0.291	3143694	.9771081
586	.2299878	.3754076	0.61	0.549	5701747	1.03015
587	.0104272	.4188045	0.02	0.980	8822335	.9030879
588	.3560025	.3109825	1.14	0.270	306841	1.018846
589	.554125	.4095921	1.35	0.196	3188999	1.42715
590	.4826035	.3364533	1.43	0.172	2345298	1.199737
591	102366	.4520803	-0.23	0.824	-1.065952	.8612203
592	.4795176	.3155436	1.52	0.149	1930477	1.152083
593	.7805071	.363184	2.15	0.048	.0063986	1.554615
594	.7907025	.409001	1.93	0.072	0810626	1.662468
595	.7856894	.4654023	1.69	0.112	2062922	1.777671
596	.4898801	.29291	1.67	0.115	1344428	1.114203
597	.4908058	.331085	1.48	0.159	2148853	1.196497
598	.6040244	.3777995	1.60	0.131	2012363	1.409285
599	.3983118	.3574301	1.11	0.283	3635324	1.160156
600	.6460495	.3221719	2.01	0.063	0406436	1.332743
601	.403019	.3721585	1.08	0.296	3902181	1.196256
602	.8399717	.4455823	1.89	0.079	1097646	1.789708
603	.3398793	.3341286	1.02	0.325	372299	1.052058
604	.6161381	.3323562	1.85	0.084	0922623	1.324538
605	1.003835	.4080929	2.46	0.027	.1340058	1.873665
606	.6071341	.5534961	1.10	0.290	572615	1.786883
607	.9244213	.4037756	2.29	0.037	.063794	1.785049
608	.7461317	.4617362	1.62	0.127	2380358	1.730299
609	.7141116	.4967231	1.44	0.171	3446286	1.772852
610	1.074056	.5094672	2.11	0.052	0118474	2.15996
611	1.327805	.3212114	4.13	0.001	.6431594	2.012451
612	.9379441	.4615816	2.03	0.060	0458938	1.921782

	_					
613	.9962912	.4512046	2.21	0.043	.0345714	1.958011
614	.9140465	.5202459	1.76	0.099	1948314	2.022925
615	1.0882	.4935919	2.20	0.044	.0361337	2.140266
616	.9820767	.4762121	2.06	0.057	0329454	1.997099
617	.5115862	.6249591	0.82	0.426	8204825	1.843655
618	.8719318	.328801	2.65	0.018	.1711092	1.572754
619	1.345239	.3831027	3.51	0.003	.5286747	2.161803
620	1.117381	.5533233	2.02	0.062	062	2.296761
621	1.222231	.3958415	3.09	0.008	.3785145	2.065947
622	1.029957	.3292028	3.13	0.007	.328278	1.731636
623	1.027239	.3911269	2.63	0.019	.1935713	1.860906
624	.9573094	.3170114	3.02	0.009	.2816157	1.633003
625	.9594373	.4654922	2.06	0.057	0327358	1.951611
626	1.251056	.4067712	3.08	0.008	.3840435	2.118068
627	.8434253	.3729688	2.26	0.039	.0484611	1.63839
628	.3883617	.487817	0.80	0.438	6513957	1.428119
629	.7734576	.368664	2.10	0.053	012331	1.559246
630	1.232138	.4524765	2.72	0.016	.2677069	2.196568
631	.4181059	.6693535	0.62	0.542	-1.008587	1.844799
632	.9291514	.3924197	2.37	0.032	.0927286	1.765574
633	1.390627	.329026	4.23	0.001	.6893248	2.091929
634	.9017184	.3540719	2.55	0.022	.1470319	1.656405
635	1.169039	.4566901	2.56	0.022	.195627	2.142451
636	1.030469	.3858707	2.67	0.017	.2080051	1.852933
637	.6318078	.4130646	1.53	0.147	2486186	1.512234
638	1.593506	.4267261	3.73	0.002	.6839607	2.503051
639	1.232375	.3098583	3.98	0.001	.571928	1.892822
640	1.403111	.4034432	3.48	0.003	.5431918	2.263029
641	1.337037	.3840485	3.48	0.003	.5184574	2.155617
642	1.252072	.4139581	3.02	0.009	.3697412	2.134403
643	1.391006	.4567193	3.05	0.008	.4175321	2.36448
644	1.084124	.4824865	2.25	0.040	.0557285	2.11252
645	1.90252	.5645541	3.37	0.004	.6992012	3.105838
646	1.538152	.5469394	2.81	0.013	.3723783	2.703926
647	1.67744	.5874939	2.86	0.012	.4252267	2.929654
648	2.10978	.4702707	4.49	0.000	1.107422	3.112138
649	2.354663	.4709934	5.00	0.000	1.350765	3.358562
650	1.779066	.3547169	5.02	0.000	1.023005	2.535127
651	1.632259	.5567164	2.93	0.010	.4456457	2.818872
652	1.791644	.4950639	3.62	0.003	.7364407	2.846848
653	2.530715	.5602056	4.52	0.000	1.336665	3.724765
654	2.133639	.5368389	3.97	0.001	.9893935	3.277884
655	2.138564	.510038	4.19	0.001	1.051444	3.225684
656	1.978685	.3669682	5.39	0.000	1.196511	2.76086
657	1.789994	.4625138	3.87	0.002	.8041693	2.775819
658	1.467984	.7896414	1.86	0.083	2150972	3.151064
659	2.010202	.4857691	4.14	0.001	.9748094	3.045594
660	1.683216	.5092015	3.31	0.005	.5978785	2.768553
661	1.718742	.5331803	3.22	0.006	.5822954	2.855189

662	2.248182	.4589584	4.90	0.000	1.269935	3.226428
663	1.70686	.3731944	4.57	0.000	.911415	2.502305
664	1.929742	.3585446	5.38	0.000	1.165522	2.693961
665	2.304061	.4889152	4.71	0.000	1.261963	3.346159
666	2.260037	.3783816	5.97	0.000	1.453535	3.066538
667	2.098644	.3855061	5.44	0.000	1.276958	2.920331
668	1.960395	.3732654	5.25	0.000	1.164798	2.755991
669	2.075883	.3670591	5.66	0.000	1.293516	2.858251
670	1.833683	.400434	4.58	0.000	.9801786	2.687188
671	2.12497	.3888507	5.46	0.000	1.296154	2.953786
672	2.132425	.3807943	5.60	0.000	1.320781	2.944069
673	2.26428	.3767935	6.01	0.000	1.461164	3.067396
674	2.429494	.4294574	5.66	0.000	1.514128	3.344861
675	2.791251	.4709949	5.93	0.000	1.787349	3.795153
676	2.851427	.4532149	6.29	0.000	1.885423	3.817432
677	2.536623	.395526	6.41	0.000	1.693579	3.379666
678	2.762768	.4147829	6.66	0.000	1.87868	3.646857
679	2.859971	.4285489	6.67	0.000	1.946541	3.773401
680	2.911101	.4800468	6.06	0.000	1.887906	3.934297
681	2.922724	.4016733	7.28	0.000	2.066578	3.778871
682	2.582874	.5228362	4.94	0.000	1.468475	3.697273
683	2.424908	.3983816	6.09	0.000	1.575777	3.274038
684	2.721812	.3943503	6.90	0.000	1.881274	3.56235
685	2.541562	.4415769	5.76	0.000	1.600363	3.482761
686	2.535236	.5024746	5.05	0.000	1.464237	3.606235
687	2.865044	.4840606	5.92	0.000	1.833293	3.896794
688	2.571679	.4228359	6.08	0.000	1.670425	3.472932
689	2.551277	.4877191	5.23	0.000	1.511728	3.590825
690	2.268492	.4593573	4.94	0.000	1.289395	3.247589
691	2.414886	.6682583	3.61	0.003	.9905267	3.839244
692	2.594197	.4854491	5.34	0.000	1.559487	3.628907
693	2.502511	.4499836	5.56	0.000	1.543393	3.461628
694	2.58804	.4162319	6.22	0.000	1.700862	3.475217
695	2.378203	.5006914	4.75	0.000	1.311005	3.445401
696	2.635598	.5013921	5.26	0.000	1.566906	3.70429
697	2.595372	.4911041	5.28	0.000	1.548608	3.642135
698	2.653463	.4612532	5.75	0.000	1.670325	3.636601
699	2.446507	.4743082	5.16	0.000	1.435543	3.457471
700	2.7226	.5857745	4.65	0.000	1.474052	3.971149
701	2.358122	.4909559	4.80	0.000	1.311674	3.40457
702	2.153161	.5583258	3.86	0.002	.9631176	3.343204
703 704	2.654502	.5675232	4.68	0.000	1.444855 1.937844	3.864149 3.860551
704 705	2.899198 2.962263	.4510328 .4482672	6.43 6.61	0.000	2.006804	3.860551
705	2.962263	.4834808	5.95	0.000	1.846523	3.917722
706	2.75283	.4634808	5.93	0.000	1.763742	3.741919
707	3.328231	.4849516	6.86	0.000	2.294582	4.361881
708	2.739126	.5109339	5.36	0.000	1.650097	3.828156
710	3.052328	.5142861	5.94	0.000	1.956153	4.148503
110	1 3.052320	. 7147001	3.74	0.000	1.930133	4.140303

711	3.373811	.4690639	7.19	0.000	2.374025	4.373597
712	2.960713	.4553358	6.50	0.000	1.990188	3.931238
713	3.421941	.4739337	7.22	0.000	2.411775	4.432107
714	3.077937	.3905926	7.88	0.000	2.245409	3.910466
715	3.09281	.5254005	5.89	0.000	1.972945	4.212674
716	2.995306	.4518302	6.63	0.000	2.032253	3.958359
717	2.842114	.4814915	5.90	0.000	1.815839	3.868389
718	3.219026	.4358049	7.39	0.000	2.29013	4.147922
719	3.07802	.4519894	6.81	0.000	2.114627	4.041412
region1						
bangalore	1.339051	5.36e-14	2.5e+13	0.000	1.339051	1.339051
bhopal	-2.47423	5.37e-14	-4.6e+13	0.000	-2.47423	-2.47423
bubaneshwar	-2.418788	.3837948	-6.30	0.000	-3.236828	-1.600749
chandigarh	5246817	.297644	-1.76	0.098	-1.159095	.1097315
chennai	1.216274	.1039272	11.70	0.000	.9947583	1.437789
guwahati	-1.309854	.3837948	-3.41	0.004	-2.127893	4918144
hyderabad	.3336309	.1039272	3.21	0.006	.1121154	.5551464
jaipur	-2.859253	5.37e-14	-5.3e+13	0.000	-2.859253	-2.859253
kanpur	-1.94839	.297644	-6.55	0.000	-2.582803	-1.313976
kochi	-2.435598	.0199635	-122.00	0.000	-2.47815	-2.393047
kolkata	1.808706	.2261415	8.00	0.000	1.326697	2.290715
mumbai	1.428787	5.36e-14	2.7e+13	0.000	1.428787	1.428787
new_delhi	2.094023	.297644	7.04	0.000	1.45961	2.728436
panaji	-3.01761	5.37e-14	-5.6e+13	0.000	-3.01761	-3.01761
patna	6502228	.2261415	-2.88	0.012	-1.132232	1682136
_cons	3.645444	.3248164	11.22	0.000	2.953114	4.337774

Overriding estimator's cluster/robust settings with cluster(region1 date)

Warning: 744 replications returned an infeasible test statistic and were delet > ed from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 one

t(15) = -6.1478Prob>|t| = 0.0198

95% confidence set for null hypothesis expression: [-3.545, -1.418]

Warning: 37 replications returned an infeasible test statistic and were delete > d from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 two

$$t(15) = -4.6537$$

Prob>|t| = 0.0045

95% confidence set for null hypothesis expression: [-3.824, -1.456]

Warning: 29 replications returned an infeasible test statistic and were delete > d from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 three

$$t(15) = -4.8876$$

Prob>|t| = 0.0064

95% confidence set for null hypothesis expression: [-4.577, -1.626]

Warning: 198 replications returned an infeasible test statistic and were delet > ed from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 four

$$t(15) = -6.4760$$

Prob>|t| = 0.0094

95% confidence set for null hypothesis expression: [-3.065, -1.464]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 five

$$t(15) = -7.6796$$

Prob>|t| = 0.0098

95% confidence set for null hypothesis expression: [-2.306, -.7723]

Warning: 39 replications returned an infeasible test statistic and were delete > d from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 _cons

```
t(15) = 19.8700
Prob>|t| = 0.0053
```

95% confidence set for null hypothesis expression: [3.084, 4.22]

```
1148 . mat p_val[1,7]=r(p_1)
1149 . mat p_val[2,7]=r(p_2)
1150 . mat p_val[3,7]=r(p_3)
1151 . mat p_val[4,7]=r(p_4)
1152 . mat p_val[5,7]=r(p_5)
1153 .
1154 . mat p_val[8,7]=r(p_6)
1155 . eststo tb1_`j'
1156 . local j=`j'+1
1157 .
1158 .
1159 .
1160 . * ROBUSTNESS - UNREPORTED: Logged FDI
1161 . reg lfdi one two three four five $control i.date i.region1, cluster(region1)
```

Linear regression Number of obs = 2,209 $\frac{F(14, 15)}{Prob > F} = .$ R-squared = 0.8106 Root MSE = .8485

(Std. err. adjusted for 16 clusters in region1)

lfdi	Coefficient	Robust std. err.	t	P> t	[95% conf.	interval]
one	-2.528618	.2026819	-12.48	0.000	-2.960624	-2.096612
two	-1.685601	.4544165	-3.71	0.002	-2.654167	7170351
three	-2.102078	.4594935	-4.57	0.000	-3.081465	-1.122691
four	-1.914929	.2824128	-6.78	0.000	-2.516878	-1.31298
five	-1.503247	.1350012	-11.14	0.000	-1.790995	-1.215499
lag_lgdp	.7280985	1.07802	0.68	0.510	-1.569646	3.025843
lag_lpop	.3227082	.2934329	1.10	0.289	3027293	.9481457
date		222772			510560	
553	0730893	.3005799	-0.24	0.811	7137603	.5675817
554 555	2774066 .0117767	.3325238 .3657813	-0.83 0.03	0.417 0.975	9861643 7678676	.4313511 .7914211
556	.1360063	.3340318	0.03	0.690	5759657	.8479783
557	.2189613	.3553993	0.41	0.547	5385543	.9764769
558	.484426	.3780405	1.28	0.220	3213483	1.2902
559	.0791314	.3685224	0.21	0.833	7063555	.8646182
560	0446092	.3722009	-0.12	0.906	8379365	.7487182
561	.0387002	.3422325	0.11	0.911	6907511	.7681515
562	.1172324	.3409132	0.34	0.736	6094068	.8438717
563	0234547	.3596155	-0.07	0.949	7899569	.7430475
564	2505628	.4896376	-0.51	0.616	-1.294201	.793075
565	005119	.5781472	-0.01	0.993	-1.237411	1.227173
566	.0770904	.4299628	0.18	0.860	8393535	.9935344
567	1374365	.5500741	-0.25	0.806	-1.309892	1.035019
568	.1100791	.5629375	0.20	0.848	-1.089794	1.309952
569	1789481	.4822685	-0.37	0.716	-1.206879	.8489828
570	.2741612	.51156	0.54	0.600	8162033	1.364526
571 572	0644056 6606477	.4292483	-0.15 -1.61	0.883 0.129	9793268 -1.537236	.8505156
572 573	.0030351	.411264 .4792906	0.01	0.129	-1.018549	.2159409 1.024619
574	0421785	.4709609	-0.09	0.930	-1.046008	.9616508
575	.1674474	.5808883	0.29	0.777	-1.070687	1.405581
576	31003	.6402832	-0.48	0.635	-1.674761	1.054701
577	.094855	.6959606	0.14	0.893	-1.38855	1.57826
578	.1254006	.6446392	0.19	0.848	-1.248615	1.499416
579	1426359	.6588395	-0.22	0.832	-1.546919	1.261647
580	.2702198	.5822275	0.46	0.649	9707688	1.511208
581	.1207446	.5217837	0.23	0.820	9914109	1.2329
582	.1725216	.5713456	0.30	0.767	-1.045273	1.390316
583	.1515457	.6464339	0.23	0.818	-1.226295	1.529387
584	.0308128	.6245486	0.05	0.961	-1.300381	1.362007
585	.3763289	.5878243	0.64	0.532	8765889	1.629247
586	1612479	.5938642	-0.27	0.790	-1.427039	1.104544
587	.2462342	.5731609	0.43	0.674	9754293	1.467898

588	.3595686	.7400215	0.49	0.634	-1.21775	1.936887
589	.0874782	.740094	0.12	0.907	-1.489995	1.664951
590	.1787641	.6872088	0.26	0.798	-1.285987	1.643515
591	.0703366	.763392	0.09	0.928	-1.556795	1.697468
592	.3016641	.6364336	0.47	0.642	-1.054862	1.65819
593	.5324053	.8024536	0.66	0.517	-1.177984	2.242795
594	.6254713	.7739012	0.81	0.432	-1.02406	2.275003
595	.3400534	.8638664	0.39	0.699	-1.501234	2.181341
596	.3530297	.6715868	0.53	0.607	-1.078424	1.784483
597	.4164305	.7499079	0.56	0.587	-1.18196	2.014821
598	.2723812	.721364	0.38	0.711	-1.26517	1.809932
599	.1290237	.7350215	0.18	0.863	-1.437637	1.695685
600	.2099514	.9270215	0.23	0.824	-1.765948	2.185851
601	.1007673	.8972713	0.11	0.912	-1.811721	2.013256
602	.2978401	1.007638	0.30	0.772	-1.849888	2.445569
603	3052818	.8736139	-0.35	0.732	-2.167346	1.556782
604	2519091	.8376006	-0.30	0.768	-2.037213	1.533394
605	.4168774	.8378126	0.50	0.626	-1.368878	2.202633
606	.1974292	.898131	0.22	0.829	-1.716892	2.11175
607	.3206627	.8665112	0.37	0.717	-1.526262	2.167588
608	.3620294	.8563938	0.42	0.678	-1.463331	2.18739
609	.6041038	.9486647	0.64	0.534	-1.417927	2.626135
610	.7561642	.9208047	0.82	0.424	-1.206484	2.718813
611	.5264917	.7957399	0.66	0.518	-1.169588	2.222571
612	.485286	1.026841	0.47	0.643	-1.703374	2.673946
613	.5999737	1.139734	0.53	0.606	-1.829312	3.029259
614	.1262505	1.011867	0.12	0.902	-2.030493	2.282993
615	.8277391	1.094245	0.76	0.461	-1.504588	3.160066
616	.3633456	1.080644	0.34	0.741	-1.939992	2.666683
617	.3963923	1.252653	0.32	0.756	-2.273574	3.066358
618	.1126203	1.046247	0.11	0.916	-2.117403	2.342644
619	.5784789	1.071968	0.54	0.597	-1.706366	2.863324
620	.6747926	1.245498	0.54	0.596	-1.979924	3.329509
621	.4087249	1.028341	0.40	0.697	-1.783133	2.600583
622	.3357035	1.045084	0.32	0.752	-1.89184	2.563248
623	.5480714	1.021166	0.54	0.599	-1.628492	2.724634
624	.1047472	1.122897	0.09	0.927	-2.288651	2.498145
625	.6025143	1.153137	0.52	0.609	-1.85534	3.060368
626	.528164	1.252152	0.42	0.679	-2.140736	3.197064
627	.1276683	1.166388	0.11	0.914	-2.358429	2.613765
628	1017284	1.113734	-0.09	0.928	-2.475597	2.27214
629	0672903	1.17388	-0.06	0.955	-2.569357	2.434776
630	.3996551	1.124959	0.36	0.727	-1.998139	2.797449
631	.1106538	1.124657	0.10	0.923	-2.286496	2.507803
632	.212542	1.107355	0.19	0.850	-2.147729	2.572813
633	.310231	1.094474	0.28	0.781	-2.022584	2.643047
634	.2471513	1.151813	0.21	0.833	-2.207881	2.702183
635	.5070971	1.174954	0.43	0.672	-1.997259	3.011453
636	.0894254	1.237622	0.07	0.943	-2.548503	2.727354

637	1254115	1.244537	-0.10	0.921	-2.77808	2.527257
638	.6089413	1.239068	0.49	0.630	-2.03207	3.249952
639	.5020431	1.222321	0.41	0.687	-2.103272	3.107358
640	.3748008	1.19611	0.31	0.758	-2.174647	2.924249
641	.2936479	1.243935	0.24	0.817	-2.357736	2.945032
642	.2448733	1.226942	0.20	0.844	-2.370292	2.860039
643	.1665406	1.36022	0.12	0.904	-2.732701	3.065782
644	.4514679	1.377964	0.33	0.748	-2.485593	3.388529
645	1.122869	1.422707	0.79	0.442	-1.90956	4.155298
646	1.15445	1.314994	0.88	0.394	-1.648394	3.957294
647	.8637283	1.426075	0.61	0.554	-2.175879	3.903335
648	.9240338	1.587701	0.58	0.569	-2.460071	4.308139
649	1.071846	1.518412	0.71	0.491	-2.164572	4.308263
650	.5016774	1.481061	0.34	0.740	-2.65513	3.658485
651	.4031981	1.565435	0.26	0.800	-2.933448	3.739844
652	.5571677	1.500753	0.37	0.716	-2.641612	3.755948
653	1.210989	1.605036	0.75	0.462	-2.210065	4.632043
654	.9400498	1.543928	0.61	0.552	-2.350755	4.230855
655	.862849	1.54234	0.56	0.584	-2.424571	4.150269
656	.654106	1.506892	0.43	0.670	-2.557758	3.86597
657	.3556655	1.606408	0.22	0.828	-3.068312	3.779643
658	.9044308	1.503302	0.60	0.556	-2.299782	4.108644
659	.7158694	1.519662	0.47	0.644	-2.523213	3.954951
660	.1447998	1.772222	0.08	0.936	-3.632602	3.922201
661	1.11979	1.598047	0.70	0.494	-2.286367	4.525947
662	.897912	1.655946	0.54	0.596	-2.631653	4.427477
663	.5677522	1.470161	0.39	0.705	-2.565822	3.701326
664	.8830492	1.532114	0.58	0.573	-2.382574	4.148672
665	1.062109	1.594965	0.67	0.516	-2.337478	4.461696
666	.7003805	1.565963	0.45	0.661	-2.637392	4.038152
667	.5192215	1.560565	0.33	0.744	-2.807045	3.845488
668	.3604939	1.604717	0.22	0.825	-3.059879	3.780867
669	.958787	1.484985	0.65	0.528	-2.206383	4.123957
670	.5719845	1.480833	0.39	0.705	-2.584336	3.728305
671	.9647316	1.449055	0.67	0.516	-2.123856	4.053319
672	.5311444	1.564259	0.34	0.739	-2.802994	3.865283
673	.6827034	1.593549	0.43	0.674	-2.713865	4.079272
674	.8711717	1.674167	0.52	0.610	-2.697232	4.439575
675	1.150851	1.680279	0.68	0.504	-2.430579	4.73228
676	1.215065	1.733345	0.70	0.494	-2.479472	4.909603
677	1.007073	1.664761	0.60	0.554	-2.541282	4.555428
678	1.265929	1.675831	0.76	0.462	-2.30602	4.837879
679	1.231717	1.694855	0.73	0.479	-2.380781	4.844215
680	1.345132	1.741247	0.77	0.452	-2.366249	5.056512
681	1.29538	1.684524	0.77	0.454	-2.295097	4.885857
682	1.067148	1.680885	0.63	0.535	-2.515572	4.649869
683	1.024214	1.685491	0.61	0.552	-2.568325	4.616753
684	1.223413	1.795135	0.68	0.506	-2.602827	5.049652
685	.9340229	1.763311	0.53	0.604	-2.824385	4.692431

686	.9149393	1.86314	0.49	0.630	-3.05625	4.886129
687	1.155944	1.787806	0.65	0.528	-2.654675	4.966563
688	.9676657	1.832097	0.53	0.605	-2.937357	4.872688
689	1.188739	1.77467	0.67	0.513	-2.593882	4.971359
690	.8399275	1.798252	0.47	0.647	-2.992957	4.672812
691	.9093753	1.895462	0.48	0.638	-3.130707	4.949458
692	.9917138	1.861073	0.53	0.602	-2.975069	4.958497
693	.8856268	1.797516	0.49	0.629	-2.945688	4.716942
694	.8222705	1.865401	0.44	0.666	-3.153738	4.798279
695	.7432901	1.845332	0.40	0.693	-3.189941	4.676521
696	.9894334	1.895998	0.52	0.609	-3.051791	5.030657
697	.9319018	1.860121	0.50	0.624	-3.032852	4.896655
698	.8603308	1.890592	0.46	0.656	-3.169372	4.890033
699	.7481474	1.887357	0.40	0.697	-3.27466	4.770954
700	1.144045	1.848072	0.62	0.545	-2.795028	5.083119
701	.7917252	1.863655	0.42	0.677	-3.180562	4.764012
702	.6178086	2.008498	0.31	0.763	-3.663204	4.898821
703	1.196274	1.85702	0.64	0.529	-2.76187	5.154418
704	1.287764	1.775688	0.73	0.479	-2.497026	5.072553
705	1.359042	1.806061	0.75	0.463	-2.490485	5.208569
706	1.250006	1.850701	0.68	0.510	-2.694671	5.194682
707	1.352357	1.880711	0.72	0.483	-2.656283	5.360997
708	1.537161	2.091176	0.74	0.474	-2.920077	5.994398
709	1.460392	2.010259	0.73	0.479	-2.824375	5.745158
710	1.198462	2.032235	0.59	0.564	-3.133145	5.530069
711	1.434513	1.998682	0.72	0.484	-2.825578	5.694603
712	1.264776	1.986306	0.64	0.534	-2.968934	5.498487
713	1.597799	2.014407	0.79	0.440	-2.695808	5.891407
714	1.126725	2.043079	0.55	0.589	-3.227995	5.481444
715	1.416661	2.003124	0.71	0.490	-2.852898	5.686219
716	1.136144	2.041213	0.56	0.586	-3.214598	5.486886
717	1.101878	1.993577	0.55	0.589	-3.14733	5.351087
718	1.380428	1.997805	0.69	0.500	-2.877794	5.638649
719	1.399865	2.015643	0.69	0.498	-2.896375	5.696106
region1						
bangalore	1.578788	.197138	8.01	0.000	1.158598	1.998977
bhopal	-1.482634	.6742474	-2.20	0.044	-2.919758	0455095
bubaneshwar	-1.339653	1.060982	-1.26	0.226	-3.601083	.9217761
chandigarh	5944843	.1987818	-2.99	0.009	-1.018178	1707908
chennai	1.080335	.1284549	8.41	0.000	.80654	1.35413
guwahati	4324627	1.097286	-0.39	0.699	-2.771271	1.906346
hyderabad	.6909017	.5513609	1.25	0.229	4842962	1.8661
jaipur	-2.259948	.4629193	-4.88	0.000	-3.246637	-1.273259
kanpur	-2.59102	.5437037	-4.77	0.000	-3.749897	-1.432143
kochi	-1.391102	.7002935	-1.99	0.066	-2.883742	.1015387
kolkata	1.285654	.2914292	4.41	0.001	.6644877	1.906821
mumbai	.846759	.7372429	1.15	0.269	724637	2.418155
new_delhi	2.587384	.7966635	3.25	0.005	.8893358	4.285432

panaji	.6236839	3.264366	0.19	0.851	-6.334147 -2.594001	7.581515
patna	1478342	1.147654	-0.13	0.899	-2.594001	2.298332
_cons	-9.452865	13.66729	-0.69	0.500	-38.58401	19.67828

Overriding estimator's cluster/robust settings with cluster(region1 date)

Warning: 1 replications returned an infeasible test statistic and were deleted > from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 one

$$t(15) = -11.6989$$

Prob>|t| = 0.0006

95% confidence set for null hypothesis expression: [-3.004, -2.039]

Warning: 20 replications returned an infeasible test statistic and were delete > d from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 two

$$t(15) = -3.6974$$

Prob>|t| = 0.0148

95% confidence set for null hypothesis expression: [-2.901, -.5924]

Warning: 13 replications returned an infeasible test statistic and were delete > d from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 three

$$t(15) = -4.5690$$

Prob>|t| = 0.0053

95% confidence set for null hypothesis expression: [-3.089, -1.131]

Warning: 189 replications returned an infeasible test statistic and were delet > ed from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 four

$$t(15) = -6.7038$$

Prob>|t| = 0.0080

95% confidence set for null hypothesis expression: [-2.603, -1.252]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 five

$$t(15) = -10.3161$$

Prob>|t| = 0.0010

95% confidence set for null hypothesis expression: [-1.882, -1.11]

Warning: 1 replications returned an infeasible test statistic and were deleted > from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 lag_lgdp

$$t(15) = 0.6785$$

Prob>|t| = 0.5328

95% confidence set for null hypothesis expression: [-1.635, 3.468]

Warning: 5 replications returned an infeasible test statistic and were deleted > from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 lag_lpop

$$t(15) = 1.0982$$

Prob>|t| = 0.3258

95% confidence set for null hypothesis expression: [-.4228, 1.076]

Warning: 1 replications returned an infeasible test statistic and were deleted > from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 _cons

t(15) = -0.6953Prob>|t| = 0.5233

95% confidence set for null hypothesis expression: [-47.31, 21.65]

```
1163 . mat p_{val}[1,9]=r(p_1)
1164 . mat p_val[2,9]=r(p_2)
1165 . mat p_val[3,9]=r(p_3)
1166 . mat p_{val}[4,9]=r(p_4)
1167 . mat p val[5,9]=r(p 5)
1168 . mat p_{val}[6,9]=r(p_6)
1169 . mat p_{val}[7,9]=r(p_7)
1170 . mat p_val[8,9]=r(p_8)
1171 .
1172 . eststo tb1 `j'
1173 .
1174 .
1175 .
1176 . mat list p_val
     p_val[8,9]
                c1
                           c2
                                       c3
                                                 c4
                                                            c5
                                                                         c6
                                                                                    С
     > 7
                 С8
                             c9
        .01150462
                                                               . .02425292
                                                                              .019773
     r1
     > 1 .03770179
                     .00060012
     r2
                    .00260547
                                                                  .00441103
                                                                             .0045171
     > 7
          .03771692
                     .01483115
     r3
                               .01613388
                                                                  .00421264
                                                                             .0064192
          .11215526
                     .00530743
     > 6
     r4
                                           .01674957
                                                                  .01102716
                                                                              .009386
                      .00795107
     > 8
         .14314473
     r5
                                                      .37943794
                                                                 .01460146
                                                                            .0098009
                      .0010001
     > 8 .41699079
                    .40868174
     r6 .22472247
                               .29401761
                                          .24907472
                                                     .28295659
                                                                    .234994
     > . .89256449
                     .53280656
```

.19076707

.7198237

.18726854 .34461015 .35459005 .24494089

r7

```
> . .07500501 .32579548
     r8 .17883577 .41028206 .27245449 .19483897 .21178471 .4010401 .0053212
     > 9 .09731307 .52330466
1177 . outtable using _3results/tables/p_val1, mat(p_val) replace format(%9.3f) nor
     > ow nodots
1178 .
1179 . esttab all using 3results/tables/table2 baseline.tex, order(one two three
     > four five lag_lgdp lag_lpop _cons) keep(one two three four five lag_lgdp lag
     > _lpop _cons) ///
               nostar b(3) p(3) coeflabel(lag_lgdp "Lagged ln(GDP)" lag_lpop "Lagge
     > d ln(Pop.)" _cons "Constant") replace r2
     (output written to <u>3results/tables/table2</u> <u>baseline.tex</u>)
1180 .
1181 .
1182 .
1183 .
1184 .
1185 .
1186 .
1187 .
1188 .
1189 .
1190 .
1191 .
1192 .
1193 .
1194 .
1195 .
1196 .
1197 .
1198 .
1199 .
1200 .
```

1201 .

```
1202 .
1203 .
1204 .
1205 .
1206 .
1207 .
1208 .
1209 .
1210 .
1211 .
   end of do-file
1212 . *do _2code/_2analysis/table2_spatial
1213 . do _2code/_2analysis/table3
1214 .
> ****
1216 . * Table 3: Differences-in-differences for economic indicators
1217 .
1219 .
1220 .
1221 .
1222 .
1223 . ** collapse existing data to yearly obs:
1224 . use _ldata/clean/clean_data, clear
1225 .
1226 . collapse (mean) GDP pop lag_lgdp lag_lpop one_bin-five_affected region1 (sum
   > ) fdi, by(region year)
1227 . drop if year==2005
    (16 observations deleted)
1228 .
```

```
1229 . foreach var of varlist one_bin-five_bin {
       2. replace `var'=1 if `var'>0
       3. }
     (16 real changes made)
     (16 real changes made)
     (16 real changes made)
     (16 real changes made)
     (16 real changes made)
1230 .
1231 . foreach x in one two three four five {
       2. gen `x' = `x'_bin*`x'_affected
       3. }
1232 .
1233 .
1234 . ** Merge in clean data:
1235 . drop if year>2017
     (32 observations deleted)
1236 . merge 1:m region year using _ldata/clean/principal_indicators.dta
         Result
                                      Number of obs
         Not matched
                                                  0
         Matched
                                                348 (_merge==3)
1237 . keep if _{merge==3}
     (0 observations deleted)
1238 . drop _merge
1239 .
1240 .
1241 .
1242 .
```

```
1243 .
1244 .
1245 . * Identify the pre-treatment years for the affected regions.
1246 . * These are the relavant pre-treatment dummies = 1 for the specific year for
    > the affected regions
1247 . drop pre* post* affected
1248 . gen pre_1 =0
1249 . replace pre_1=1 if (year==2008 & inlist(State, "Odisha", "Assam")) | //
    > /
    >
                                               (year==2011 & inlist(State, "Himacha
    > l Pradesh", "Uttar Pradesh", "Uttarakhand", "Delhi")) | ///
                                               (year==2013 & inlist(State, "Puduche
     > rry", "Tamil Nadu", "Andhra Pradesh"))
     (9 real changes made)
1250 . gen pre 2 = 0
1251 . replace pre_2=1 if (year==2007 & inlist(State, "Odisha", "Assam")) | ///
                                               (year==2010 & inlist(State, "Himacha
    > l Pradesh", "Uttar Pradesh", "Uttarakhand", "Delhi")) | ///
                                               (year==2012 & inlist(State, "Puduche
    > rry", "Tamil Nadu", "Andhra Pradesh"))
     (9 real changes made)
1252 . gen pre 3 = 0
1253 . replace pre_3=1 if (year==2006 & inlist(State, "Odisha", "Assam")) | ///
                                               (year==2009 & inlist(State, "Himacha
    > l Pradesh", "Uttar Pradesh", "Uttarakhand", "Delhi")) | ///
                                               (year==2011 & inlist(State, "Puduche
    > rry", "Tamil Nadu", "Andhra Pradesh"))
     (9 real changes made)
1254 .
1255 \cdot gen pre_4 = 0
```

```
1256 . replace pre_4=1 if (year==2008 & inlist(State, "Himachal Pradesh", "Uttar Pr
    > adesh", "Uttarakhand", "Delhi")) | ///
                                                (year==2010 & inlist(State, "Puduche
    > rry", "Tamil Nadu", "Andhra Pradesh"))
     (7 real changes made)
1257 .
1258 . gen pre_5 =0
1259 . replace pre_5=1 if (year==2007 & inlist(State, "Himachal Pradesh", "Uttar Pr
    > adesh", "Uttarakhand", "Delhi")) | ///
                                                (year==2009 & inlist(State, "Puduche
    > rry", "Tamil Nadu", "Andhra Pradesh"))
     (7 real changes made)
1260 .
1261 . gen pre 6 = 0
1262 . replace pre_6=1 if (year==2006 & inlist(State, "Himachal Pradesh", "Uttar Pr
    > adesh", "Uttarakhand", "Delhi")) | ///
                                                (year==2008 & inlist(State, "Puduche
    > rry", "Tamil Nadu", "Andhra Pradesh"))
     (7 real changes made)
1263 .
1264 . gen pre_7 =0
1265 . replace pre 7=1 if (year==2007 & inlist(State, "Puducherry", "Tamil Nadu", "
    > Andhra Pradesh"))
     (3 real changes made)
1266 .
1267 . gen pre_8 =0
1268 . replace pre_8=1 if (year==2006 & inlist(State, "Puducherry", "Tamil Nadu", "
     > Andhra Pradesh"))
     (3 real changes made)
```

```
1269 .
1270 .
1271 . gen post 1=0
1272 . replace post_1=1 if (year==2007 & inlist(State, "Sikkim", "Bihar")) | ///
                                               (year==2010 & inlist(State, "Odisha"
    > , "Assam")) | ///
                                               (year==2013 & inlist(State, "Himacha
    > l Pradesh", "Uttar Pradesh", "Uttarakhand", "Delhi")) | ///
                                               (year==2015 & inlist(State, "Puduche
    > rry", "Tamil Nadu", "Andhra Pradesh"))
    (10 real changes made)
1273 .
1274 . gen post_2=0
1275 . replace post 2=1 if (year==2008 & inlist(State, "Sikkim", "Bihar")) | ///
                                               (year==2011 & inlist(State, "Odisha"
    > , "Assam")) | ///
                                               (year==2014 & inlist(State, "Himacha
    > l Pradesh", "Uttar Pradesh", "Uttarakhand", "Delhi")) | ///
                                               (year==2016 & inlist(State, "Puduche
    > rry", "Tamil Nadu", "Andhra Pradesh"))
    (10 real changes made)
1276 .
1277 . gen post 3=0
1278 . replace post 3=1 if (year==2009 & inlist(State, "Sikkim", "Bihar")) | ///
    >
                                               (year==2012 & inlist(State, "Odisha"
    > , "Assam")) | ///
                                               (year==2015 & inlist(State, "Himacha
    > l Pradesh", "Uttar Pradesh", "Uttarakhand", "Delhi")) | ///
                                               (year==2017 & inlist(State, "Puduche
    > rry", "Tamil Nadu", "Andhra Pradesh"))
    (10 real changes made)
```

```
1279 .
1280 . gen post_4=0
1281 . replace post_4=1 if (year==2010 & inlist(State, "Sikkim", "Bihar")) | ///
    >
                                               (year==2013 & inlist(State, "Odisha"
    > , "Assam")) | ///
                                               (year==2016 & inlist(State, "Himacha
    > l Pradesh", "Uttar Pradesh", "Uttarakhand", "Delhi"))
     (7 real changes made)
1282 .
1283 . gen post 5=0
1284 . replace post_5=1 if (year==2011 & inlist(State, "Sikkim", "Bihar")) | ///
                                               (year==2014 & inlist(State, "Odisha"
    > , "Assam")) | ///
                                               (year==2017 & inlist(State, "Himacha
    > l Pradesh", "Uttar Pradesh", "Uttarakhand", "Delhi"))
     (7 real changes made)
1285 .
1286 . gen post_6=0
1287 . replace post_6=1 if (year==2012 & inlist(State, "Sikkim", "Bihar")) | ///
    >
                                               (year==2015 & inlist(State, "Odisha"
    > , "Assam"))
    (3 real changes made)
1288 .
1289 . gen post 7=0
1290 . replace post_7=1 if (year==2013 & inlist(State, "Sikkim", "Bihar")) | ///
                                               (year==2016 & inlist(State, "Odisha"
    >
    > , "Assam"))
     (3 real changes made)
```

```
1291 .
1292 . gen post_8=0
1293 . replace post_8=1 if (year==2014 & inlist(State, "Sikkim", "Bihar")) | ///
     >
                                                (year==2017 & inlist(State, "Odisha"
     > , "Assam"))
     (3 real changes made)
1294 .
1295 . gen post_9=0
1296 . replace post_9=1 if (year==2015 & inlist(State, "Sikkim", "Bihar"))
     (1 real change made)
1297 .
1298 . gen post_10=0
1299 . replace post_10=1 if (year==2016 & inlist(State, "Sikkim", "Bihar"))
     (1 real change made)
1300 .
1301 . gen post_11=0
1302 . replace post_11=1 if (year==2017 & inlist(State, "Sikkim", "Bihar"))
     (1 real change made)
1303 .
1304 .
1305 .
1306 .
1307 . gen affected=0
1308 . replace affected=1 if inlist(region, "kolkata" , "patna", "bubaneshwar" , "gu
     > wahati")
     (108 real changes made)
1309 . replace affected=1 if inlist(region, "chandigarh", "new_delhi", "kanpur", "h
     > yderabad", "chennai")
     (120 real changes made)
```

```
1310 .
1311 .
1312 . egen s_id=group(State)
1313 . local k=1
1314 . xtset s_id year
     Panel variable: s_id (strongly balanced)
      Time variable: year, 2006 to 2017
              Delta: 1 unit
1315 . gen lfdi = ln(fdi)
     (30 missing values generated)
1316 . gen lcpi = ln(cpi)
    (72 missing values generated)
1317 .
1318 .
1319 . foreach x in one two three four {
       2. tab State if x'==1
       3. }
```

States	Freq.	Percent	Cum.
Bihar	11	33.33	33.33
Jharkhand	11	33.33	66.67
West Bengal	11	33.33	100.00
Total	33	100.00	
States	Freq.	Percent	Cum.
Assam	8	11.11	11.11
Bihar	8	11.11	22.22
Jharkhand	8	11.11	33.33
Manipur	8	11.11	44.44
Meghalaya	8	11.11	55.56
Nagaland	8	11.11	66.67
Odisha	8	11.11	77.78
Tripura	8	11.11	88.89
West Bengal	8	11.11	100.00
Total	72	100.00	

States	Freq.	Percent	Cum.
Chandigarh	5	14.29	14.29
Delhi	5	14.29	28.57
Haryana	5	14.29	42.86
Himachal Pradesh	5	14.29	57.14
Punjab	5	14.29	71.43
Uttar Pradesh	5	14.29	85.71
Uttarakhand	5	14.29	100.00
Total	35	100.00	
Total	35	100.00 Percent	Cum.
	' I		Cum.
States Andhra Pradesh	Freq.	Percent	
States	Freq.	Percent 33.33	33.33

1320 .

1321 . distinct State

	Obse	cvations
	total	distinct
State	348	29

1322 . tab year

year	Freq.	Percent	Cum.
2006	29	8.33	8.33
2007	29	8.33	16.67
2008	29	8.33	25.00
2009	29	8.33	33.33
2010	29	8.33	41.67
2011	29	8.33	50.00
2012	29	8.33	58.33
2013	29	8.33	66.67
2014	29	8.33	75.00
2015	29	8.33	83.33
2016	29	8.33	91.67
2017	29	8.33	100.00
Total	348	100.00	

```
1323 .
1324 . * Iniate p-value matrix:
1325 . mat p val ei=J(4,6,.)
1326 .
1327 .
1328 . * Static Effects:
1329 . local i = 1
1330 . foreach var of varlist lfixed_cap lworkers lwages lrents lcpi lper_prem {
       2. xtreg `var' one two three four i.year, fe
1331 . boottest {one} {two} {three} {four} ///
    > , reps(9999) gridpoints(10) cluster(s_id year) bootcluster(s_id year
    > ) nograph seed(123)
      4.
1332 . eststo tb ei `i'
       5.
1333 . * Collect p-values:
1334 . mat p_val_ei[1, i']=r(p_1)
       6. mat p_val_ei[2, i']=r(p_2)
       7. mat p_val_ei[3, i']=r(p_3)
       8. mat p_val_ei[4, i']=r(p_4)
      9.
1335 . local i = i'+1
     10.
1336 . }
     Fixed-effects (within) regression
                                                    Number of obs =
                                                                              348
     Group variable: s_id
                                                    Number of groups =
                                                                               29
     R-squared:
                                                    Obs per group:
         Within = 0.8102
                                                                              12
                                                                  min =
         Between = 0.2480
                                                                             12.0
                                                                  avg =
         Overall = 0.0163
                                                                  max =
                                                                                12
                                                    F(15,304)
                                                                            86.50
     corr(u_i, Xb) = -0.0934
                                                    Prob > F
                                                                            0.0000
```

lfixed_cap	Coefficient	Std. err.	t	P> t	[95% conf.	interval]
one	1988551	.164839	-1.21	0.229	5232249	.1255148
two	.2514656	.0657425	3.83	0.000	.1220975	.3808336
three	1867238	.0667475	-2.80	0.005	3180695	0553781
four	2684254	.1044695	-2.57	0.011	4740003	0628504
year						
2007	.1867253	.0685243	2.72	0.007	.0518833	.3215672
2008	.3805171	.0685243	5.55	0.000	.2456752	.5153591
2009	.7090639	.0685243	10.35	0.000	.5742219	.8439058
2010	.7708098	.0704731	10.94	0.000	.6321329	.9094867
2011	.9656901	.0704731	13.70	0.000	.8270132	1.104367
2012	1.060546	.0704731	15.05	0.000	.9218686	1.199222
2013	1.179031	.0733571	16.07	0.000	1.034679	1.323383
2014	1.215697	.0733571	16.57	0.000	1.071345	1.360049
2015	1.358608	.0748824	18.14	0.000	1.211255	1.505962
2016	1.476276	.0748824	19.71	0.000	1.328922	1.623629
2017	1.483488	.0748824	19.81	0.000	1.336134	1.630841
_cons	13.43752	.0469297	286.33	0.000	13.34517	13.52987
sigma_u sigma_e	2.2724611 .25272425					
rho	.98778306	(fraction	of varia	nce due t	o u_i)	

F test that all $u_i=0$: F(28, 304) = 744.54

Prob > F = 0.0000

Overriding estimator's cluster/robust settings with cluster(s_id year)

Warning: 759 replications returned an infeasible test statistic and were delet > ed from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by s_ id year, bootstrap clustering by s_id year, Rademacher weights:
 one

$$t(11) = -1.3734$$

Prob>|t| = 0.5269

95% confidence set for null hypothesis expression: [., .]
(A confidence interval could not be bounded. Try widening the search range wit
> h the gridmin() and gridmax() options.)

Warning: 711 replications returned an infeasible test statistic and were delet > ed from the bootstrap distribution.

$$t(11) = 1.2303$$

Prob>|t| = 0.2882

95% confidence set for null hypothesis expression: [-.398, .906]

Warning: 235 replications returned an infeasible test statistic and were delet > ed from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by s_
id year, bootstrap clustering by s_id year, Rademacher weights:
three

$$t(11) = -2.0252$$

Prob>|t| = 0.0958

95% confidence set for null hypothesis expression: [-.4386, .05172]

Warning: 1322 replications returned an infeasible test statistic and were dele > ted from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by s_ id year, bootstrap clustering by s_id year, Rademacher weights:
 four

$$t(11) = -3.0109$$

Prob>|t| = 0.0494

95% confidence set for null hypothesis expression: [-.6319, -.001988]

Fixed-effects (within) regression	Number of obs	=	348
Group variable: s_id	Number of group	s =	29
R-squared:	Obs per group:		
Within = 0.4075	m	in =	12
Between = 0.3380	a	vg =	12.0
Overall = 0.0210	m	ax =	12
	F(15,304)	=	13.94
$corr(u_i, Xb) = -0.2344$	Prob > F	=	0.0000

lworkers	Coefficient	Std. err.	t	P> t	[95% conf.	interval]
	<u> </u>					
one	1211081	.1195635	-1.01	0.312	3563849	.1141687
two	.2061134	.0476854	4.32	0.000	.1122782	.2999485
three	.0403212	.0484143	0.83	0.406	0549484	.1355908
four	2388133	.0757754	-3.15	0.002	387924	0897026
year						
2007	.0851937	.0497031	1.71	0.088	0126119	.1829993
2008	.1440259	.0497031	2.90	0.004	.0462203	.2418315
2009	.2008707	.0497031	4.04	0.000	.1030651	.2986763
2010	.224425	.0511166	4.39	0.000	.1238377	.3250122
2011	.2867963	.0511166	5.61	0.000	.1862091	.3873835
2012	.2299259	.0511166	4.50	0.000	.1293386	.3305131
2013	.252705	.0532085	4.75	0.000	.1480014	.3574085
2014	.3098225	.0532085	5.82	0.000	.2051189	.414526
2015	.3367309	.0543148	6.20	0.000	.2298504	.4436115
2016	.3614156	.0543148	6.65	0.000	.2545351	.4682962
2017	.3862724	.0543148	7.11	0.000	.2793918	.493153
_cons	11.51807	.0340398	338.37	0.000	11.45108	11.58505
gigma ::	1.7154689					
sigma_u	•					
sigma_e	.18330975	/ F				
rho	.9887105	(fraction	or varia	nce aue t	co u_1)	

F test that all $u_i=0$: F(28, 304) = 812.84

Prob > F = 0.0000

Overriding estimator's cluster/robust settings with cluster(s_id year)

Warning: 174 replications returned an infeasible test statistic and were delet > ed from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by s_ id year, bootstrap clustering by s_id year, Rademacher weights:
 one

$$t(11) = -2.8649$$

Prob>|t| = 0.2871

95% confidence set for null hypothesis expression: [-.4743, .5039]

Warning: 389 replications returned an infeasible test statistic and were delet > ed from the bootstrap distribution.

$$t(11) = 2.2221$$

Prob>|t| = 0.0647

95% confidence set for null hypothesis expression: [-.02144, .4683]

Warning: 367 replications returned an infeasible test statistic and were delet > ed from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by s_
id year, bootstrap clustering by s_id year, Rademacher weights:
three

$$t(11) = 0.3644$$

Prob>|t| = 0.7442

95% confidence set for null hypothesis expression: [-.2623, .3694]

Warning: 1144 replications returned an infeasible test statistic and were dele > ted from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by s_ id year, bootstrap clustering by s_id year, Rademacher weights:
 four

$$t(11) = -1.4232$$

Prob>|t| = 0.2682

95% confidence set for null hypothesis expression: [., .]
(A confidence interval could not be bounded. Try widening the search range wit > h the gridmin() and gridmax() options.)

Fixed-effects (within) regression Group variable: s_id	Number of obs Number of groups	=	348 29
R-squared:	Obs per group:		
Within = 0.8939	min	=	12
Between = 0.2422	avg	=	12.0
Overall = 0.0357	max	=	12
	F(15,304)	=	170.76
$corr(u_i, Xb) = -0.0624$	Prob > F	=	0.0000

lwages	Coefficient	Std. err.	t	P> t	[95% conf.	interval]
one	2298739	.1147586	-2.00	0.046	4556957	004052
two	.1362988	.0457691	2.98	0.003	.0462345	.226363
three	.0144156	.0464687	0.31	0.757	0770255	.1058566
four	1749881	.0727303	-2.41	0.017	3181066	0318696
year						
2007	.1918486	.0477057	4.02	0.000	.0979735	.2857237
2008	.3451465	.0477057	7.23	0.000	.2512714	.4390216
2009	.5022412	.0477057	10.53	0.000	.4083661	.5961164
2010	.7321566	.0490624	14.92	0.000	.6356116	.8287016
2011	.8705765	.0490624	17.74	0.000	.7740315	.9671214
2012	.9464242	.0490624	19.29	0.000	.8498792	1.042969
2013	1.086597	.0510702	21.28	0.000	.9861009	1.187093
2014	1.208908	.0510702	23.67	0.000	1.108412	1.309404
2015	1.306323	.0521321	25.06	0.000	1.203737	1.408908
2016	1.37837	.0521321	26.44	0.000	1.275784	1.480955
2017	1.461796	.0521321	28.04	0.000	1.359211	1.564382
_cons	10.81842	.0326718	331.12	0.000	10.75413	10.88271
sigma_u	1.9183249					
sigma e	.17594317					
rho	.99165815	(fraction	of varia	nce due t	o u_i)	

F test that all $u_i=0$: F(28, 304) = 1043.72

Prob > F = 0.0000

Overriding estimator's cluster/robust settings with cluster(s_id year)

Warning: 461 replications returned an infeasible test statistic and were delet > ed from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by s_ id year, bootstrap clustering by s_id year, Rademacher weights:
 one

$$t(11) = -3.3150$$

Prob>|t| = 0.2862

95% confidence set for null hypothesis expression: [., .]
(A confidence interval could not be bounded. Try widening the search range wit
> h the gridmin() and gridmax() options.)

Warning: 543 replications returned an infeasible test statistic and were delet > ed from the bootstrap distribution.

$$t(11) = 1.3346$$

Prob>|t| = 0.2478

95% confidence set for null hypothesis expression: [-.1386, .4539]

Warning: 310 replications returned an infeasible test statistic and were delet > ed from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by s_
id year, bootstrap clustering by s_id year, Rademacher weights:
three

$$t(11) = 0.1637$$

Prob>|t| = 0.8843

95% confidence set for null hypothesis expression: [-.2315, .265]

Warning: 1222 replications returned an infeasible test statistic and were dele > ted from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by s_ id year, bootstrap clustering by s_id year, Rademacher weights:
 four

$$t(11) = -1.4854$$

Prob>|t| = 0.2526

95% confidence set for null hypothesis expression: [., .]
(A confidence interval could not be bounded. Try widening the search range wit > h the gridmin() and gridmax() options.)

Fixed-effects (within) regression Group variable: s_id	Number of obs Number of groups	= =	348 29
R-squared:	Obs per group:		
Within = 0.4477	min	=	12
Between = 0.0045	avg	=	12.0
Overall = 0.0200	max	=	12
	F(15,304)	=	16.43
$corr(u_i, Xb) = -0.0171$	Prob > F	=	0.0000

lrents	Coefficient	Std. err.	t	P> t	[95% conf.	interval]
one	.1658738	.2525752	0.66	0.512	3311432	.6628907
two	0063845	.1007343	-0.06	0.950	2046092	.1918402
three	.0137151	.1022742	0.13	0.893	1875399	.21497
four	4387666	.1600739	-2.74	0.006	7537597	1237735
year						
2007	.1978758	.1049966	1.88	0.060	0087363	.404488
2008	.4495491	.1049966	4.28	0.000	.242937	.6561613
2009	.5754531	.1049966	5.48	0.000	.368841	.7820652
2010	.805852	.1079828	7.46	0.000	.5933638	1.01834
2011	.9639475	.1079828	8.93	0.000	.7514593	1.176436
2012	.7692978	.1079828	7.12	0.000	.5568095	.981786
2013	.7132392	.1124017	6.35	0.000	.4920554	.934423
2014	.9181101	.1124017	8.17	0.000	.6969263	1.139294
2015	.9285851	.1147388	8.09	0.000	.7028023	1.154368
2016	1.034054	.1147388	9.01	0.000	.8082713	1.259837
2017	1.113711	.1147388	9.71	0.000	.8879283	1.339494
_cons	8.825075	.0719082	122.73	0.000	8.683574	8.966576
	2 0702254					
sigma_u	2.0793354					
sigma_e	.38723776					
rho	.96648036	(fraction	of varia	nce due t	o u_i)	

F test that all $u_i=0$: F(28, 304) = 239.35

Prob > F = 0.0000

Overriding estimator's cluster/robust settings with cluster(s_id year)

Warning: 979 replications returned an infeasible test statistic and were delet > ed from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by s_ id year, bootstrap clustering by s_id year, Rademacher weights:
 one

$$t(11) = 1.4805$$

Prob>|t| = 0.5164

95% confidence set for null hypothesis expression: [., .]
(A confidence interval could not be bounded. Try widening the search range wit
> h the gridmin() and gridmax() options.)

Warning: 173 replications returned an infeasible test statistic and were delet > ed from the bootstrap distribution.

$$t(11) = -0.0353$$

Prob>|t| = 0.9763

95% confidence set for null hypothesis expression: [-.4905, .4726]

Warning: 153 replications returned an infeasible test statistic and were delet > ed from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by s_
id year, bootstrap clustering by s_id year, Rademacher weights:
three

$$t(11) = 0.0924$$

Prob>|t| = 0.9340

95% confidence set for null hypothesis expression: [-.3715, .408]

Warning: 1671 replications returned an infeasible test statistic and were dele > ted from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by s_ id year, bootstrap clustering by s_id year, Rademacher weights:
 four

$$t(11) = -1.7359$$

Prob>|t| = 0.2011

95% confidence set for null hypothesis expression: [-2.892, 1.882]

Fixed-effects (within) regression	Number of obs =	276
Group variable: s_id	Number of groups =	23
R-squared:	Obs per group:	
Within = 0.9929	min =	12
Between = 0.2003	avg =	12.0
Overall = 0.9666	max =	12
	F(15,238) =	2227.77
$corr(u_i, Xb) = 0.0098$	Prob > F =	0.0000

lcpi	Coefficient	Std. err.	t	P> t	[95% conf.	interval]
one	.0304795	.017175	1.77	0.077	0033548	.0643139
two	0173849	.0079514	-2.19	0.030	0330491	0017208
three	0481124	.00738	-6.52	0.000	0626509	0335739
four	.0081452	.0107566	0.76	0.450	0130451	.0293355
year						
2007	.059258	.0078496	7.55	0.000	.0437944	.0747216
2008	.1406893	.0078496	17.92	0.000	.1252257	.156153
2009	.2436259	.0078496	31.04	0.000	.2281623	.2590895
2010	.3590557	.007963	45.09	0.000	.3433686	.3747427
2011	.4437702	.007963	55.73	0.000	.4280832	.4594573
2012	.5334674	.007963	66.99	0.000	.5177804	.5491545
2013	.6456062	.0082995	77.79	0.000	.6292563	.6619561
2014	.705971	.0082995	85.06	0.000	.6896212	.7223209
2015	.7577278	.0085188	88.95	0.000	.7409458	.7745097
2016	.8105702	.0085188	95.15	0.000	.7937882	.8273521
2017	.8390342	.0085188	98.49	0.000	.8222523	.8558162
_cons	4.807131	.0053197	903.65	0.000	4.796651	4.817611
sigma u	.04769356					
sigma_e	.02551232					
rho	.77751962	(fraction	of varia	nce due t	o u_i)	

F test that all $u_i=0$: F(22, 238) = 37.25

Prob > F = 0.0000

Overriding estimator's cluster/robust settings with cluster(s_id year)

Warning: 1116 replications returned an infeasible test statistic and were dele > ted from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by s_ id year, bootstrap clustering by s_id year, Rademacher weights:
 one

$$t(11) = 2.7224$$

Prob>|t| = 0.2845

95% confidence set for null hypothesis expression: [., .]
(A confidence interval could not be bounded. Try widening the search range wit
> h the gridmin() and gridmax() options.)

Warning: 646 replications returned an infeasible test statistic and were delet > ed from the bootstrap distribution.

$$t(11) = -0.8330$$

Prob>|t| = 0.4628

95% confidence set for null hypothesis expression: [-.1141, .04729]

Warning: 222 replications returned an infeasible test statistic and were delet > ed from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by s_
id year, bootstrap clustering by s_id year, Rademacher weights:
three

$$t(11) = -3.7481$$

Prob>|t| = 0.0144

95% confidence set for null hypothesis expression: [-.07846, -.02055]

Warning: 1103 replications returned an infeasible test statistic and were dele > ted from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by s_ id year, bootstrap clustering by s_id year, Rademacher weights:
 four

$$t(11) = 0.5316$$

Prob>|t| = 0.6583

95% confidence set for null hypothesis expression: [., .]
(A confidence interval could not be bounded. Try widening the search range wit > h the gridmin() and gridmax() options.)

Fixed-effects (within) regression	Number of obs	=	348
Group variable: s_id	Number of groups	=	29
R-squared:	Obs per group:		
Within = 0.4350	mi	n =	12
Between = 0.0480	av	g =	12.0
Overall = 0.2015	ma	x =	12
	F(15,304)	=	15.61
$corr(u_i, Xb) = -0.1056$	Prob > F	=	0.0000

lper_prem	Coefficient	Std. err.	t	P> t	[95% conf.	interval]
one	0470541	.2082556	-0.23	0.821	4568591	.362751
two	.2569972	.0830584	3.09	0.002	.0935551	.4204393
three	.0088772	.0843281	0.11	0.916	1570634	.1748178
four	.1868334	.1319856	1.42	0.158	0728876	.4465544
year						
2007	.1782924	.0865728	2.06	0.040	.0079347	.3486502
2008	.1975939	.0865728	2.28	0.023	.0272362	.3679517
2009	.2797514	.0865728	3.23	0.001	.1093936	.4501092
2010	.2205196	.0890349	2.48	0.014	.0453168	.3957224
2011	0363763	.0890349	-0.41	0.683	2115791	.1388265
2012	0997047	.0890349	-1.12	0.264	2749075	.0754981
2013	.0109045	.0926785	0.12	0.906	1714681	.1932771
2014	.324106	.0926785	3.50	0.001	.1417335	.5064786
2015	.3398002	.0946055	3.59	0.000	.1536357	.5259648
2016	.5958707	.0946055	6.30	0.000	.4097061	.7820353
2017	.7201931	.0946055	7.61	0.000	.5340286	.9063577
_cons	-6.548321	.0592905	-110.44	0.000	-6.664993	-6.431649
sigma u	.36465804					
sigma_e	.31928889					
rho	.56604372	(fraction	of varia	nce due t	co u_i)	

F test that all $u_i=0$: F(28, 304) = 12.93

Prob > F = 0.0000

Overriding estimator's cluster/robust settings with cluster(s_id year)

Warning: 427 replications returned an infeasible test statistic and were delet > ed from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by s_
id year, bootstrap clustering by s_id year, Rademacher weights:
 one

$$t(11) = -0.5857$$

Prob>|t| = 0.7391

95% confidence set for null hypothesis expression: [., .]
(A confidence interval could not be bounded. Try widening the search range wit
> h the gridmin() and gridmax() options.)

Warning: 806 replications returned an infeasible test statistic and were delet > ed from the bootstrap distribution.

$$t(11) = 1.9515$$

Prob> $|t| = 0.0826$

95% confidence set for null hypothesis expression: [-.05546, .5807]

Warning: 270 replications returned an infeasible test statistic and were delet > ed from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by s_
id year, bootstrap clustering by s_id year, Rademacher weights:
three

$$t(11) = 0.0792$$

Prob>|t| = 0.9466

95% confidence set for null hypothesis expression: [-.2545, .2809]

Warning: 727 replications returned an infeasible test statistic and were delet > ed from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by s_ id year, bootstrap clustering by s_id year, Rademacher weights:
 four

$$t(11) = 1.8872$$

Prob>|t| = 0.1499

95% confidence set for null hypothesis expression: [-.2511, .7131]

- 1337 **.** 1338 **.**
- 1339 . mat list p_val_ei

```
1340 . outtable using _3results/tables/table3_pval_ei, mat(p_val_ei) replace format
    > (%9.3f) norow nodots
1341 .
1342 . esttab _all using _3results/tables/table3.tex, order(one two three four) kee
    > p(one two three four) ///
            nostar b(3) p(3) coeflabel(one "Disaster 1" two "Disaster 2" three "
    > Disaster 3" four "Disaster 4") replace r2
    (output written to <u>_3results/tables/table3.tex</u>)
1343 .
1344 .
1345 .
1346 .
    end of do-file
1347 .
1348 .
1349 .
1350 . do _2code/_2analysis/table4
1351 .
1353 . * Table 4: Spillover Patterns
> ****
1356 .
1357 . use ldata/clean/clean data, clear
1358 .
1359 .
1360 . ** Set the control variables:
1361 . global control lag_lgdp lag_lpop
1362 .
```

```
1363 . ** Identify spillovers:
1364 . * Note: * indicate additional spillover weights that don't produce meaningfu
    > 1 results
1365 .
1366 . * five events:
1367 . global x "one two three four five"
1368 .
1369 . * Risk
1370 . foreach v of varlist one_damages_cum_past20-five_damages_cum_past20 {
       2. replace `v'=ln(`v'+1)
       3. }
     (2,086 real changes made)
     (1,404 real changes made)
     (711 real changes made)
     (400 real changes made)
     (119 real changes made)
1371 . global spill "one_damages_cum_past20 two_damages_cum_past20 three_damages_cu
    > m_past20 four_damages_cum_past20 five_damages_cum_past20"
1372 .
1373 . global spil2 "one_number_major2_past20 two_number_major2_past20 three_number
     > _major2_past20 four_number_major2_past20 five_number_major2_past20"
1374 .
1375 . * Development characteristics:
1376 . global spil3 "one_density two_density three_density four_density five_densit
    > y"
1377 . global spil4 "one urban two urban three urban four urban five urban"
1378 . global spil5 "one_elec_s two_elec_s three_elec_s four_elec_s five_elec_s"
1379 .
1380 .
1381 . * Infrastructure characteristics:
```

```
1382 . global spil6 "one_port two_port three_port four_port five_port"
1383 .
1384 .
1385 . * Labor skill and composition characteristics:
1386 . global spil7 "one grad s two grad s three grad s four grad s five grad s"
1387 .
1388 . global spil8 "one manu s two manu s three manu s four manu s five manu s
     > "
1389 .
1390 .
1391 . * Economic similarity
1392 . global spil9 "one sim two sim three sim four sim five sim"
1393 .
1394 . * Geography Spillovers:
1395 . global spil10 "one_cont two_cont three_cont four_cont five_cont"
1396 .
1397 .
1398 .
1399 . * Define empty p-value matrix:
1400 . mat p_val4=J(10,10,.)
1401 .
1402 . *** Regression with all five events by spillover characteristic:
1403 . estimates clear
1404 \cdot local j=1
1405 . foreach y in "$spil1" "$spil2" "$spil3" "$spil4" "$spil5" "$spil6" "$spil7"
     > "$spil8" "$spil9" "$spil10" {
       2. reg fdi_ihs $x `y' $control i.date i.region1, cluster(region1)
1406 .
```

```
1407 . if "`y'"=="$spil1" {
       4. boottest {one} {two} {three} {four} {five} ///
               {one damages cum past20} {two damages cum past20} {three damages cum
    > _past20} {four_damages_cum_past20} {five_damages_cum_past20} ///
               , reps(9999) gridpoints(10) cluster(region1 date) bootcluster(region
    > 1 date) nograph seed(123)
      5. }
      6.
1408 . if "`y'"=="$spil2" {
       7. boottest {one} {two} {three} {four} {five} ///
               {one_number_major2_past20} {two_number_major2_past20} {three_number_
    > major2_past20} {four_number_major2_past20} {five_number_major2_past20} ///
               , reps(9999) gridpoints(10) cluster(region1 date) bootcluster(region
    > 1 date) nograph seed(123)
      8. }
      9.
1409 .
1410 . if "`y'"=="$spil3" {
     10. boottest {one} {two} {three} {four} {five} ///
               {one_density} {two_density} {three_density} {four_density} {five_den
    > sity} ///
               , reps(9999) gridpoints(10) cluster(region1 date) bootcluster(region
    > 1 date) nograph seed(123)
     11. }
     12.
1411 .
1412 . if "`y'"=="$spil4" {
     13. boottest {one} {two} {three} {four} {five} ///
               {one_urban} {two_urban} {three_urban} {four_urban} {five_urban} ///
    >
               , reps(9999) gridpoints(10) cluster(region1 date) bootcluster(region
    > 1 date) nograph seed(123)
     14. }
     15.
1413 . if "`y'"=="$spil5" {
     16. boottest {one} {two} {three} {four} {five} ///
    >
               {one_elec_s} {two_elec_s} {three_elec_s} {four_elec_s} {five_elec_s}
    > ///
               , reps(9999) gridpoints(10) cluster(region1 date) bootcluster(region
    > 1 date) nograph seed(123)
     17. }
     18.
```

```
1414 .
1415 . if "`y'"=="$spil6" {
      19. boottest {one} {two} {three} {four} {five} ///
               {one port} {two port} {three port} {four port} {five port} ///
               , reps(9999) gridpoints(10) cluster(region1 date) bootcluster(region
     > 1 date) nograph seed(123)
      20. }
      21.
1416 . if "`y'"=="$spil7" {
      22. boottest {one} {two} {three} {four} {five} ///
               {one_grad_s} {two_grad_s} {three_grad_s} {four_grad_s} {five_grad_s}
    > ///
               , reps(9999) gridpoints(10) cluster(region1 date) bootcluster(region
     > 1 date) nograph seed(123)
      23. }
      24.
1417 .
1418 .
1419 . if "`y'"=="$spil8" {
      25. boottest {one} {two} {three} {four} {five} ///
               {one_manu_s} {two_manu_s} {three_manu_s} {four_manu_s} {five_manu_s}
     >
    > ///
    >
               , reps(9999) gridpoints(10) cluster(region1 date) bootcluster(region
     > 1 date) nograph seed(123)
      26. }
      27.
1420 . if "`y'"=="$spil9" {
      28. boottest {one} {two} {three} {four} {five} ///
                \{ one\_sim \} \ \{ two\_sim \} \ \{ three\_sim \} \ \{ four\_sim \} \ /// 
    >
               , reps(9999) gridpoints(10) cluster(region1 date) bootcluster(region
     > 1 date) nograph seed(123)
      29. }
      30.
1421 .
1422 . if "`y'"=="$spil10" {
      31. boottest {one} {two} {three} {four} {five} ///
    >
               {one_cont} {two_cont} {three_cont} {four_cont} {five_cont} ///
               , reps(9999) gridpoints(10) cluster(region1 date) bootcluster(region
     >
     > 1 date) nograph seed(123)
      32. }
      33.
```

```
1423 .
1424 .
1425 .
1426 . * Collect p-values:
1427 .
1428 .
1429 . forvalues i=1/10 {
     34. mat p_val4[`i', `j']=r(p_`i')
     35. mat p_val4[\i',\j'] = round(p_val4[\i',\j'], 0.001)
     36.
1430 . }
     37.
1431 .
1432 . eststo spil`j'
     38. local j=`j'+1
     39.
1433 . }
    Linear regression
                                                   Number of obs
                                                                          2,688
                                                   F(14, 15)
                                                   Prob > F
                                                   R-squared
                                                                     =
                                                                           0.8117
                                                   Root MSE
                                                                     =
                                                                           1.0761
                                               (Std. err. adjusted for 16 clusters
    > in region1)
                                            Robust
                     fdi_ihs | Coefficient std. err.
                                                               P>|t|
                                                                       [95% con
    > f. interval]
                                -3.569913 .6793264
                                                               0.000
                                                                        -5.017863
                         one
                                                       -5.26
         -2.121963
                                -3.189664
                                           1.37037
                                                       -2.33
                                                               0.034
                                                                        -6.110539
                         two
         -.2687882
                       three
                                 -3.27264
                                           .8026513
                                                       -4.08
                                                               0.001
                                                                         -4.98345
         -1.561829
                        four
                                -2.095834
                                           .3519271
                                                       -5.96
                                                               0.000
                                                                        -2.845949
         -1.345719
                        five
                                 -1.63732
                                           .3467495
                                                       -4.72 0.000
                                                                        -2.376399
         -.8982405
      one_damages_cum_past20
                                -.0711766
                                           .030903
                                                       -2.30
                                                               0.036
                                                                        -.1370447
         -.0053085
      two_damages_cum_past20
                               -.0474907
                                           .0849449
                                                               0.584
                                                       -0.56
                                                                        -.2285465
          .1335652
    three damages cum past20 -.0088638
                                           .0412372
                                                       -0.21 0.833
                                                                        -.0967587
          .0790311
```

fou:	r_damages_c	cum_past20	.0140392	.0210931	0.67	0.516	0309197
	e_damages_c .0244624	cum_past20	0067519	.0146447	-0.46	0.651	0379663
>	4.230176	lag_lgdp	1.407701	1.324204	1.06	0.305	-1.414774
>	.5990522	lag_lpop	1145069	.3347764	-0.34	0.737	828066
		date					
>	.5279318	553	0531386	.2726175	-0.19	0.848	634209
>	.1134396	554	4915856	.2838562	-1.73	0.104	-1.096611
>	.447968	555	2011631	.3045491	-0.66	0.519	8502942
>	.3851418	556	2330706	.2900432	-0.80	0.434	851283
>	.6550495	557	.0419503	.2876443	0.15	0.886	571149
		558	.3595212	.3473569	1.04	0.317	3808525
>	1.099895	559	.1886232	.3875732	0.49	0.634	6374695
>	1.014716	560	.0725879	.3760577	0.19	0.850	7289601
>	.874136	561	172525	.2883515	-0.60	0.559	7871317
>	.4420816	562	0148782	.320841	-0.05	0.964	6987346
>	.6689783	563	0206692	.3228138	-0.06	0.950	7087306
>	.6673921	564	628228	.4163717	-1.51	0.152	-1.515703
>	.2592473	565	2120445	.5491374	-0.39	0.705	-1.382503
>	.9584142	566	1934593	.3705261	-0.52	0.609	9832169
>	.5962984	567	4162724	.4380167	-0.95	0.357	-1.349883
>	.5173381	568	3092496	.4685499	-0.66	0.519	-1.30794
>	.6894407	569	479922	.4081538	-1.18	0.258	-1.349881
>	.3900372	570	.247033	.5041718	0.49	0.631	8275839
>	1.32165	571	.2946485	.6397024	0.46	0.652	-1.068845
>	1.658142	572	.0988847	.5496197	0.18	0.860	-1.072602

	1 270271						
>	1.270371	573	.4556912	.6180796	0.74	0.472	8617143
>	1.773097	574	.6023309	.5778237	1.04	0.314	6292712
>	1.833933	575	.8744974	.7351309	1.19	0.253	6923969
>	2.441392	576	.2236758	.6990099	0.32	0.753	-1.266229
>	1.71358	577	.771835	.873806	0.88	0.391	-1.090638
>	2.634308						
>	2.112862	578	.4826414	.7648412	0.63	0.538	-1.147579
>	2.231881	579	.6357055	.7488685	0.85	0.409	9604699
>	2.627253	580	1.099142	.7169351	1.53	0.146	4289692
>	2.533961	581	.9448517	.7455536	1.27	0.224	6442581
		582	.9680709	.7651244	1.27	0.225	6627532
>	2.598895	583	.8307638	.8490952	0.98	0.343	9790398
>	2.640567	584	.9969465	.7269766	1.37	0.190	5525674
>	2.54646	585	.922596	.681502	1.35	0.196	5299911
>	2.375183	586	.8212144	.7397852	1.11	0.284	7556004
>	2.398029	'					
>	2.255037	587	.6016538	.7757083	0.78	0.450	-1.051729
>	2.639652	588	.7282525	.8967602	0.81	0.429	-1.183147
>	2.751598	589	.926375	.8563294	1.08	0.296	8988478
>	2.834889	590	.8548536	.9289619	0.92	0.372	-1.125182
		591	.269884	.8459389	0.32	0.754	-1.533192
>	2.07296	592	.8517676	.8451747	1.01	0.330	9496795
>	2.653215	593	1.152757	.9119624	1.26	0.226	7910447
>	3.096559	594	1.162953	.9655412	1.20	0.247	8950498
>	3.220955	595	1.15794	.9722425	1.19	0.252	9143464
>	3.230225						
>	2.634317	596	.8621302	.8314467	1.04	0.316	9100565

		597	.8630558	.9125285	0.95	0.359	-1.081953
>	2.808064	598	.9762744	.8049913	1.21	0.244	739524
>	2.692073	599	.7705619	.9233434	0.83	0.417	-1.197498
>	2.738622	600	.8211237	1.072432	0.77	0.456	-1.464711
>	3.106958	601	.5780932	1.025926	0.56	0.581	-1.608616
>	2.764802	602	1.015046	1.102166	0.92	0.372	-1.334165
>	3.364256	603	1.170627	1.734991	0.67	0.510	-2.527419
>	4.868672	604	1.446886	1.687704	0.86	0.405	-2.15037
>	5.044141	605	1.834583	1.706082	1.08	0.299	-1.801845
>	5.47101	606	1.437882	1.759192	0.82	0.427	-2.311747
>	5.187511	607	1.755169	1.65751	1.06	0.306	-1.77773
>	5.288068	608	1.576879	1.723915	0.91	0.375	-2.097558
>	5.251316	609	1.544859	1.843215	0.84	0.415	-2.383862
>	5.47358	610	1.904804	1.739347	1.10	0.291	-1.802527
>	5.612135	611	2.158553	1.626866	1.33	0.204	-1.30903
>	5.626135	612	1.527559	1.979143	0.77	0.452	-2.690883
>	5.746002	613	1.585906	1.941861	0.82	0.427	-2.553073
>	5.724886	614	1.503662	1.833486	0.82	0.425	-2.404322
>	5.411645	615	1.677815	1.717772	0.98	0.344	-1.983529
>	5.339159	616	1.571692	1.822029	0.86	0.402	-2.311871
>	5.455254	617	1.101201	1.9043	0.58	0.572	-2.957718
>	5.16012	618	1.461547	1.762595	0.83	0.420	-2.295336
>	5.21843	619	1.934854	1.833538	1.06	0.308	-1.973239
>	5.842947	620	1.706996	1.842732	0.93	0.369	-2.220694
>	5.634686	621	1.811846	1.878528	0.96	0.350	-2.192142
		•					

	E 01E022						
>	5.815833	622	1.619572	1.833774	0.88	0.391	-2.289024
>	5.528168	623	1.616854	1.693083	0.95	0.355	-1.991867
>	5.225575	624	1.361592	1.971974	0.69	0.500	-2.84157
>	5.564754	625	1.36372	1.969342	0.69	0.499	-2.833832
>	5.561272	626	1.655339	1.899571	0.87	0.397	-2.393502
>	5.704179	627	1.247708	1.938532	0.64	0.530	-2.884175
>	5.379591	628	.7926446	2.112902	0.38	0.713	-3.710899
>	5.296189	,	1.177741	1.974403			
>	5.386081	629	1.1///41	1.9/4403	0.60	0.560	-3.0306
>	5.776879	630	1.636421	1.942555	0.84	0.413	-2.504038
	5.39982	631	.8223889	2.147567	0.38	0.707	-3.755042
>		632	1.333434	2.057669	0.65	0.527	-3.052384
>	5.719253	633	1.79491	1.923926	0.93	0.366	-2.305841
>	5.895661	634	1.306001	1.965176	0.66	0.516	-2.882671
>	5.494674	635	1.573322	1.95201	0.81	0.433	-2.587289
>	5.733933	636	1.266184	2.161937	0.59	0.567	-3.341875
>	5.874243	637	.8675229	2.073932	0.42	0.682	-3.55296
>	5.288005	,					
>	6.269396	638	1.829221	2.083171	0.88	0.394	-2.610954
>	6.10703	639	1.46809	2.176425	0.67	0.510	-3.170849
		640	1.638826	2.033076	0.81	0.433	-2.694574
>	5.972226	641	1.679891	2.061743	0.81	0.428	-2.714611
>	6.074393	642	1.594926	2.006141	0.80	0.439	-2.681062
>	5.870913	643	1.73386	2.132903	0.81	0.429	-2.812316
>	6.280035	644	1.426978	2.119465	0.67	0.511	-3.090556
>	5.944511						
>	6.666173	645	2.245373	2.074081	1.08	0.296	-2.175426

		646	1.881006	2.071361	0.91	0.378	-2.533995
>	6.296006	647	2.020294	2.055349	0.98	0.341	-2.360579
>	6.401167	648	2.261537	2.250284	1.01	0.331	-2.53483
>	7.057904	649	2.50642	2.199891	1.14	0.272	-2.182538
>	7.195378	650	1.930823	2.222093	0.87	0.399	-2.805456
>	6.667101	651	1.784016	2.197995	0.81	0.430	-2.9009
>	6.468931	652	1.943401	2.099015	0.93	0.369	-2.530544
>	6.417347	653	2.682472	2.197485	1.22	0.241	-2.001356
>	7.3663	654	2.285395	2.227816	1.03	0.321	-2.463081
>	7.033872	655	2.290321	2.195032	1.04	0.313	-2.38828
>	6.968922	656	2.130442	2.178337	0.98	0.344	-2.512573
>	6.773458						
>	6.707498	657	1.941751	2.235918	0.87	0.399	-2.823996
>	6.977664	658	1.619741	2.513746	0.64	0.529	-3.738183
>	6.68617	659	2.161959	2.122598	1.02	0.325	-2.362252
>	6.826595	660	1.714872	2.398238	0.72	0.486	-3.39685
>	6.331082	661	1.750399	2.149093	0.81	0.428	-2.830285
>	7.176523	662	2.279838	2.29735	0.99	0.337	-2.616846
>	6.481014	663	1.738517	2.22501	0.78	0.447	-3.003981
>	6.790595	664	1.961398	2.265686	0.87	0.400	-2.867798
>	7.259269	665	2.335717	2.309954	1.01	0.328	-2.587834
>	7.105589	666	2.291693	2.258508	1.01	0.326	-2.522203
	6.921369	667	2.130301	2.247798	0.95	0.358	-2.660767
>		668	1.992051	2.302361	0.87	0.401	-2.915315
>	6.899417	669	2.10754	2.247385	0.94	0.363	-2.682649
>	6.897729	670	1.746518	2.219785	0.79	0.444	-2.984842

	6 477070						
>	6.477879	671	2.037805	2.222772	0.92	0.374	-2.699923
>	6.775532	672	1.900583	2.314445	0.82	0.424	-3.032539
>	6.833705	673	2.032438	2.319709	0.88	0.395	-2.911905
>	6.976781	674	2.197653	2.342777	0.94	0.363	-2.795859
>	7.191164	675	2.559409	2.334143	1.10	0.290	-2.415698
>	7.534517	676	2.619585	2.340163	1.12	0.281	-2.368354
>	7.607524	677	2.304781	2.358541	0.98	0.344	-2.722329
>	7.331891	678	2.530926	2.3966	1.06	0.308	-2.577305
>	7.639158						
>	7.706889	679	2.628129	2.382773	1.10	0.287	-2.450631
>	7.701717	680	2.67926	2.356357	1.14	0.273	-2.343198
>	7.734166	681	2.690882	2.366129	1.14	0.273	-2.352402
>	7.38896	682	2.351032	2.363616	0.99	0.336	-2.686896
>	7.251137	683	2.193066	2.373066	0.92	0.370	-2.865006
>	7.620508	684	2.317018	2.488208	0.93	0.366	-2.986471
		685	2.136768	2.503768	0.85	0.407	-3.199887
>	7.473423	686	2.130442	2.50083	0.85	0.408	-3.199951
>	7.460835	687	2.467988	2.481054	0.99	0.336	-2.820253
>	7.75623	688	2.174103	2.52395	0.86	0.403	-3.205568
>	7.553774	689	2.153184	2.488487	0.87	0.401	-3.1509
>	7.457267	690	1.869885	2.504217	0.75	0.467	-3.467728
>	7.207498	691	2.015767	2.488709	0.81	0.431	-3.288789
>	7.320324	692	2.19457	2.532586	0.87	0.400	-3.20351
>	7.592651						
>	7.365468	693	2.102379	2.469253	0.85	0.408	-3.16071
>	7.577981	694	2.187406	2.529065	0.86	0.401	-3.20317

	7 202007	695	1.977069	2.494466	0.79	0.440	-3.339759
>	7.293897	696	2.136206	2.583772	0.83	0.421	-3.370974
>	7.643386	697	2.09598	2.584659	0.81	0.430	-3.413091
>	7.605051	698	2.154071	2.620613	0.82	0.424	-3.431633
>	7.739775	699	1.947115	2.588043	0.75	0.463	-3.569167
>	7.463397	700	2.223208	2.620876	0.85	0.410	-3.363057
>	7.809474	701	1.85873	2.605865	0.71	0.487	-3.69554
>	7.413001	702	1.653769	2.62372	0.63	0.538	-3.938558
>	7.246096	703	2.199993	2.646272	0.83	0.419	-3.440402
>	7.840387	704	2.444689	2.521998	0.97	0.348	-2.930823
>	7.820201	705	2.507755	2.584302	0.97	0.347	-3.000554
>	8.016063	706	2.422529	2.553334	0.95	0.358	-3.019772
>	7.864831	707	2.298322	2.618221	0.88	0.394	-3.282284
>	7.878927	708	2.706047	2.787414	0.97	0.347	-3.235186
>	8.647279	709	2.116942	2.749098	0.77	0.453	-3.742621
>	7.976504	710	2.430143	2.746641	0.88	0.390	-3.424183
>	8.284469	711	2.751626	2.736737	1.01	0.331	-3.08159
>	8.584843	712	2.338528	2.730067	0.86	0.405	-3.480473
>	8.157529	713	2.799756	2.791823	1.00	0.332	-3.150874
>	8.750387	714	2.455752	2.729914	0.90	0.383	-3.362921
>	8.274426	715	2.470625	2.730886	0.90	0.380	-3.350121
>	8.291371	716	2.373121	2.778241	0.85	0.406	-3.548558
>	8.294801	717	2.21993	2.787195	0.80	0.438	-3.720836
>	8.160696	718	2.596841	2.73249	0.95	0.357	-3.227323
>	8.421005	719	2.455835	2.764605	0.89	0.388	-3.436782

>	8.348452					
	region1					
	bangalore	1.302817	.2555239	5.10	0.000	.7581805
>	1.847453					
	bhopal	-2.02694	.9624771	-2.11	0.052	-4.078411
>	.0245314					
	bubaneshwar	-1.225247	1.494214	-0.82	0.425	-4.410088
>	1.959594					
	chandigarh	9272867	.3753635	-2.47	0.026	-1.727355
>	1272183	0055033	1606015	F 0F	0 000	6262277
>	chennai 1.344959	.9855933	.1686015	5.85	0.000	.6262277
_	guwahati	0239719	1.569901	-0.02	0.988	-3.370136
>	3.322193	0239719	1.509901	-0.02	0.366	-3.370136
	hyderabad	.9842659	.6992988	1.41	0.180	5062541
>	2.474786	.9042039	.0992988	1.41	0.100	5002541
	jaipur	-2.632751	.693529	-3.80	0.002	-4.110973
>	-1.154529	-2.032/31	.055525	-3.00	0.002	-1.110373
•	kanpur	-2.462526	.7731942	-3.18	0.006	-4.11055
>	8145011		.,,,,,,	0120	0.000	1111000
	kochi	-1.604217	.8868449	-1.81	0.091	-3.494482
>	.2860479					
	kolkata	1.82122	.5482327	3.32	0.005	.6526901
>	2.989751					
	mumbai	.3229803	.9167366	0.35	0.730	-1.630998
>	2.276958					
	new delhi	2.244021	1.113497	2.02	0.062	1293416
>	4.617383					
	panaji	.320181	4.127342	0.08	0.939	-8.47704
>	9.117402					
	patna	.5428288	1.41237	0.38	0.706	-2.467567
>	3.553225					

> -----

24.68281

Overriding estimator's cluster/robust settings with cluster(region1 date)

-12.31981

Warning: 80 replications returned an infeasible test statistic and were delete > d from the bootstrap distribution.

17.36031 -0.71

-49.32243

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 one

$$t(15) = -5.4315$$

Prob>|t| = 0.0040

95% confidence set for null hypothesis expression: [-5.058, -2.013]

Warning: 24 replications returned an infeasible test statistic and were delete > d from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 two

$$t(15) = -2.3488$$

Prob>|t| = 0.0605

95% confidence set for null hypothesis expression: [-6.447, .2446]

Warning: 22 replications returned an infeasible test statistic and were delete > d from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 three

$$t(15) = -4.0848$$

Prob>|t| = 0.0058

95% confidence set for null hypothesis expression: [-5.068, -1.562]

Warning: 15 replications returned an infeasible test statistic and were delete > d from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 four

$$t(15) = -6.0130$$

Prob>|t| = 0.0023

95% confidence set for null hypothesis expression: [-2.841, -1.343]

Warning: 54 replications returned an infeasible test statistic and were delete > d from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 five

$$t(15) = -4.5883$$

Prob>|t| = 0.0673

95% confidence set for null hypothesis expression: [-3.735, .483]

Warning: 65 replications returned an infeasible test statistic and were delete > d from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 one_damages_cum_past20

$$t(15) = -2.9607$$

Prob>|t| = 0.0257

95% confidence set for null hypothesis expression: [-.128, -.01272]

Warning: 28 replications returned an infeasible test statistic and were delete > d from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 two_damages_cum_past20

$$t(15) = -0.5647$$

Prob>|t| = 0.6108

95% confidence set for null hypothesis expression: [-.2658, .1777]

Warning: 18 replications returned an infeasible test statistic and were delete > d from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 three_damages_cum_past20

$$t(15) = -0.2164$$

Prob>|t| = 0.8399

95% confidence set for null hypothesis expression: [-.1092, .08893]

Warning: 9 replications returned an infeasible test statistic and were deleted > from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 four_damages_cum_past20

t(15) = 0.6699Prob>|t| = 0.5216

95% confidence set for null hypothesis expression: [-.03248, .06117]

Warning: 27 replications returned an infeasible test statistic and were delete > d from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 five_damages_cum_past20

t(15) = -0.4806Prob>|t| = 0.6404

95% confidence set for null hypothesis expression: [-.03916, .02568]

Linear regression Number of obs = 2,688 $\frac{F(14, 15)}{Prob > F} = .$ R-squared = 0.8113 $\frac{F(14, 15)}{F(14, 15)} = \frac{1.0772}{F(14, 15)}$

(Std. err. adjusted for 16 cluste

> rs in region1)

- 15 111 10g10111)						
> on	fdi_ihs	Coefficient	Robust std. err.	t	P> t	[95% c
>	one	-2.748973	.4594266	-5.98	0.000	-3.7282
> -1.769729 > 59	two	-2.340897	.5598356	-4.18	0.001	-3.5341
> -1.147636 > 55	three	-3.029126	.6074876	-4.99	0.000	-4.3239
> -1.734297 > 65	four	-2.450294	.3586154	-6.83	0.000	-3.2146
> -1.685923	five	-1.587874	.4780145	-3.32	0.005	-2.6067
>5690103 one_number_majo	or2_past20	1664379	.0783447	-2.12	0.051	33342

> 57							
>	.0005499						
two_	number_majo	or2_past20	.0989471	.1172816	0.84	0.412	15103
> 26							
	.3489269	1					
_	_numbermajo	or2_past20	.0717889	.1532089	0.47	0.646	25476
> 81	.3983458						
		or2_past20	0697649	1522522	0.45	0 660	30563
> 73	_number_majc	piz_pastz0	000/048	.1555522	-0.45	0.000	39362
	.2580977						
		or2_past20	.0316965	.1529728	0.21	0.839	29435
> 74		'					
>	.3577504						
		lag_lgdp	1.811727	1.436626	1.26	0.227	-1.2503
> 69							
>	4.873824	1					
		lag_lpop	1322881	.3171566	-0.42	0.683	80829
> 14 >	.5437152						
_	.543/152	1					
		date					
		553	0531386	.2726175	-0.19	0.848	6342
> 09		'					
>	.5279318						
		554	4915856	.2838562	-1.73	0.104	-1.0966
> 11							
>	.1134396	1					
. 40		555	2011631	.3045491	-0.66	0.519	85029
> 42 >	.447968						
	.44/900	556 I	2330706	2900432	-0.80	0 434	8512
> 83		330	12330700	.2300102	0.00	0.101	.0312
>	.3851418						
		557	.0419503	.2876443	0.15	0.886	5711
> 49		•					
>	.6550495						
		558	.3595212	.3473569	1.04	0.317	38085
> 25							
>	1.099895	550 l	.1886232	2075722	0.40	0 634	62746
> 95		229	.1880232	.38/5/32	0.49	0.634	03/40
> 95	1.014716						
-	1.011/10	560 l	.0725879	.3760577	0.19	0.850	72896
> 01		I					3
>	.874136						
		561	172525	.2883515	-0.60	0.559	78713
> 17							
>	.4420816						

> 46		562	0148782	.320841	-0.05	0.964	69873
> 46	.6689783						
> 06		563	0206692	.3228138	-0.06	0.950	70873
>	.6673921	564	6937492	.4327532	-1.60	0.130	-1.6161
> 41 >	.2286424	·					
> 03		565	2775657	.5601057	-0.50	0.627	-1.4714
> 03	.9162713	1					
> 97		566	2589805	.3839716	-0.67	0.510	-1.0773
>	.5594355	567	4817936	.4665237	-1.03	0.318	-1.4761
> 65 >	.512578						
> 65		568	3747709	.4977266	-0.75	0.463	-1.435
	.6861082	E60	5454433	4227202	1 20	0.216	1 4464
> 69		209	5454433	.422/292	-1.29	0.216	-1.4464
>	.3555827	570	.1815117	.5052865	0.36	0.724	8954
> 81 >	1.258504						
> 88		571	6019066	.4496382	-1.34	0.201	-1.5602
>	.3564745	572	7976703	. 3842569	-2.08	0.056	-1.6166
> 94 >	.0213538	3,2	1,3,0,00	10012009	2.00		210200
	.0213536	573	4408638	.5239224	-0.84	0.413	-1.5575
> 78 >	.6758504						
> 39		574	2942242	.4223955	-0.70	0.497	-1.1945
>	.6060905	575	0220576	.5828248	-0.04	0.970	-1.2643
> 19 >	1.220204						
> 01	1.220201	576	7302306	.66315	-1.10	0.288	-2.1437
> 01	.6832403	1					_
> 65		577	1820713	.7137369	-0.26	0.802	-1.7033
>	1.339223	578	4712649	.7405179	-0.64	0.534	-2.0496

> 41							
>	1.107112	579	3182008	.6422016	-0.50	0.627	-1.6870
> 21 >	1.050619						
		580	.1452355	.6078745	0.24	0.814	-1.1504
> 18 >	1.440889						
		581	0090547	.6016018	-0.02	0.988	-1.2913
> 39 >	1.273229						
		582	.0141646	.6276615	0.02	0.982	-1.3236
> 64 >	1.351993						
	_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	583	1231425	.7132168	-0.17	0.865	-1.6433
> 28 >	1.397043						
-	20037010	584	.0430402	.6668926	0.06	0.949	-1.3784
> 08 >	1.464488						
	1.101100	585	0313103	.5695845	-0.05	0.957	-1.2453
> 51 >	1.18273						
	1.10273	586	1326919	.6311534	-0.21	0.836	-1.4779
> 64 >	1.21258						
	1.21230	587	3522525	.6725773	-0.52	0.608	-1.7858
> 17 >	1.081312						
	1.001312	588	2886733	.8306261	-0.35	0.733	-2.0591
> 11 >	1.481764						
	1.401/04	589	0905508	.8368679	-0.11	0.915	-1.8742
> 92 >	1.693191						
	1.093191	590	1620722	.8335765	-0.19	0.848	-1.9387
> 99 >	1.614654						
	1.011031	591	7470418	.8325195	-0.90	0.384	-2.5215
> 15 >	1.027432						
	1.02/432	592	1651582	.763218	-0.22	0.832	-1.7919
> 19 >	1.461602						
	1.401002	593	.1358313	.8653532	0.16	0.877	-1.7086
> 25	1.980288	·					
>	1.700200	594	.1460267	.8557138	0.17	0.867	-1.6778
> 84		•					

>	1.969938	595	l	1410137	.925131	0 15	0 881	_1 8308
> 56		373	I	.1410137	. 723131	0.13	0.001	-1.0500
>	2.112884							
		596	-	1547956	.7731641	-0.20	0.844	-1.8027
> 56								
>	1.493165							
> 00		597	l	15387	.8425385	-0.18	0.858	-1.9496
> 98 >	1.641958							
	1.041930	598	۱ -	0406514	.8019622	-0.05	0.960	-1.7499
> 93			1					
>	1.668691							
		599	-	2463639	.8355217	-0.29	0.772	-2.0272
> 36								
>	1.534508	600		0-0-4	1 054505			2 -226
> 39		600	-	2525455	1.054725	-0.24	0.814	-2.5006
> 39	1.995548							
	1.555510	601	I	495576	1.033012	-0.48	0.638	-2.697
> 39			•					
>	1.706238							
		602	-	0586234	1.106242	-0.05	0.958	-2.4165
> 22								
>	2.299275	602	ı	6007112	1.02362	0.67	0 511	2 0705
> 05		603	-	088/112	1.02362	-0.67	0.511	-2.8/05
> 05	1.493083							
		604	l -	4124524	1.024298	-0.40	0.693	-2.5956
> 92			•					
>	1.770787							
		605	-	0247552	1.019693	-0.02	0.981	-2.1981
> 79	0 140660							
>	2.148669	606	I _	1211561	1.093888	_0 30	0 705	_2 7530
> 24		000	-	4214304	1.093666	-0.39	0.703	-2.7550
	1.910111							
		607	-	1041692	1.029332	-0.10	0.921	-2.2981
> 39								
>	2.0898							
		608	-	2824587	1.06303	-0.27	0.794	-2.5482
> 54 >	1.983337							
	1.90333/	609	۱ ـ	3144788	1.176032	-0.27	0.793	-2.8211
> 32			1			J.27	23,75	
	2.192174							
		610		.0454658	1.127271	0.04	0.968	-2.3572
> 56								
>	2.448187							

		611	.2992148	1.001588	0.30	0.769	-1.8356
> 19		•					
>	2.434049	610 l	4011606	1 220705	0.20	0.767	2 222
> 42		612	4011606	1.328/95	-0.30	0.767	-3.233
>	2.431099						
		613	3428135	1.404642	-0.24	0.810	-3.3367
> 37	0 (=111						
>	2.65111	614	4250581	1 290767	_0 33	0 746	_3 1762
> 63		014	4250501	1.230707	-0.33	0.740	-311702
>	2.326147						
		615	2509049	1.298681	-0.19	0.849	-3.0189
> 78 >	2.517168						
	2.31/100	616	357028	1.280672	-0.28	0.784	-3.0867
> 15		'					
>	2.372659	1					
> 72		617	8275185	1.433463	-0.58	0.572	-3.8828
	2.227835						
		618	4671728	1.229271	-0.38	0.709	-3.0873
> 02		•					
>	2.152956	1					
> 04		619	.006134	1.305327	0.00	0.996	-2.7761
> 04	2.788372						
		620	2217239	1.399674	-0.16	0.876	-3.2050
> 59							
>	2.761611	621	1168741	1 271022	0.00	0.020	2 0276
> 98		021	1108/41	1.2/1822	-0.09	0.928	-2.82/6
	2.59395						
		622	3091476	1.25718	-0.25	0.809	-2.9887
> 64	2 270460						
>	2.370469	623	3118661	1.196588	-0.26	0.798	-2.8623
> 32		020	10110001		0.20	01750	
>	2.2386						
		624	622789	1.476155	-0.42	0.679	-3.7691
> 39 >	2.523561						
	2.323301	625	620661	1.468434	-0.42	0.679	-3.7505
> 54		ļ		-			
>	2.509232	1					
> 81		626	3290425	1.503455	-0.22	0.830	-3.5335
> 81	2.875496						
		627	736673	1.482626	-0.50	0.626	-3.8968

> 16							
>	2.42347	ı					
> 57		628	-1.191737	1.517944	-0.79	0.445	-4.4271
	2.043683						
		629	8066407	1.477053	-0.55	0.593	-3.9549
> 05	0.041600						
>	2.341623	630 l	3479607	1.465639	-0.24	0.816	-3.4718
> 96		030	131/300/	11103003	0.21	0.010	3.1710
>	2.775975						
. 04		631	-1.161992	1.587657	-0.73	0.476	-4.5460
> 04 >	2.222019						
		632	650947	1.506668	-0.43	0.672	-3.8623
> 33		·					
>	2.560439	622 l	1894713	1 420054	0 12	0 007	2 256
> 53		633	1894/13	1.438954	-0.13	0.897	-3.256
	2.877587						
		634	67838	1.47429	-0.46	0.652	-3.8207
> 54	2.462004						
>	2.463994	635	4110595	1 461133	-0.28	0 782	_3 5253
> 91		033	4110393	1.401133	-0.20	0.702	-3.3233
>	2.703273						
		636	7667611	1.65738	-0.46	0.650	-4.2993
> 83 >	2.765861						
	2.703001	637	-1.165422	1.604312	-0.73	0.479	-4.5849
> 33		'					
>	2.254089	دءه ا	222242	1 (0.11.0			2 (0(2
> 31		638	2037243	1.634149	-0.12	0.902	-3.6868
>	3.279383						
		639	5648548	1.635147	-0.35	0.735	-4.0500
> 87							
>	2.920378	640	3941195	1 502100	_0 25	0 808	_3 7877
> 88		040	5741173	1.392100	-0.25	0.000	-3.7077
>	2.999549						
		641	5267753	1.601771	-0.33	0.747	-3.940
> 87 >	2.88732						
-	2.00/32	642	6117406	1.591791	-0.38	0.706	-4.0045
> 64		'					
>	2.781082	ا می	480005	1			
> 94		643	4728065	1.694615	-0.28	U.784	-4.0847
∠ 3 ±							

>	3.139181	644	7796885	1.694652	-0.46	0.652	-4.3917
> 53							
>	2.832376						
		645	.0387071	1.759268	0.02	0.983	-3.7110
> 84		'					
>	3.788498						
		646	3256605	1.712559	-0.19	0.852	-3.9758
> 94		'					
>	3.324573						
		647	1863723	1.753583	-0.11	0.917	-3.9240
> 46		·					
>	3.551302						
		648	0000914	1.938256	-0.00	1.000	-4.1313
> 86		·					
>	4.131203						
		649	.244792	1.869377	0.13	0.898	-3.7396
> 92		·					
>	4.229276						
		650	3308054	1.863798	-0.18	0.861	-4.3033
> 97		·					
>	3.641786						
		651	4776126	1.885481	-0.25	0.803	-4.496
> 42							
>	3.541195						
		652	3182268	1.801464	-0.18	0.862	-4.1579
> 56							
>	3.521503						
		653	.420844	1.912258	0.22	0.829	-3.6550
> 37							
>	4.496725						
		654	.0237673	1.898993	0.01	0.990	-4.023
> 84							
>	4.071374						
		655	.0286927	1.885328	0.02	0.988	-3.9897
> 88							
>	4.047173	1					
		656	1311858	1.839459	-0.07	0.944	-4.05
> 19							
>	3.789528	I	01001	4 6-6	<u>.</u>		
		657	3198771	1.950615	-0.16	0.872	-4.4775
> 15	2 00====						
>	3.837761	650 I	C41007C	2 20255	0.00	0.700	E 5000
> 04		658	6418876	2.280756	-0.28	0.782	-5.5032
	4 210420						
>	4.219429	650 I	0996695	1 047455	0.05	0.050	4 0274
> 26		009	055055	1.64/433	-0.05	0.938	-4.03/4
	2 020007						
>	3.838087						

		660	5814706	2.111119	-0.28	0.787	-5.0812
> 15		·					
>	3.918274	661	5459439	1 025072	0.20	0.701	4 (510
> 56		991	5459439	1.925972	-0.28	0.781	-4.6510
>	3.559168						
		662	0165044	2.019306	-0.01	0.994	-4.3205
> 53	4 207544						
>	4.287544	663	5578262	1 918309	-0.29	0 775	-4 6466
> 04		003	5570202	1.910309	-0.23	0.775	-110100
>	3.530952						
		664	3349445	1.943372	-0.17	0.865	-4.4771
> 44	3.807255						
>	3.607255	665 l	.0393746	1.99056	0.02	0.984	-4.2034
> 04		000		2133000	0.02	0.301	
>	4.282154						
		666	0046496	1.938458	-0.00	0.998	-4.1363
> 75 >	4.127075						
	4.12/0/5	667 l	1660418	1.93545	-0.09	0.933	-4.2913
> 56		۰۰, ۱	11000110		0.03	0.300	1,1310
>	3.959272						
		668	3042916	1.98149	-0.15	0.880	-4.5277
> 37	3.919154						
>	3.919154	669 l	1888028	1.947952	-0.10	0.924	-4.3407
> 64		003	11000010		0.120	0.722	110107
>	3.963158						
		670	3778772	1.859464	-0.20	0.842	-4.3412
> 31 >	3.585476						
	3.363476	671	0865908	1.857844	-0.05	0.963	-4.0464
> 91		۱ - ۱		2000,022			
>	3.87331						
		672	265512	1.959149	-0.14	0.894	-4.441
> 34 >	3.910316						
	3.910316	673	1336569	1.976999	-0.07	0.947	-4.3475
> 31		3,5 1					2.02.0
>	4.080217						
		674	.0315574	2.024481	0.02	0.988	-4.2835
> 21 >	4.346636						
	4.340030	675 l	.3933143	2.025342	0.19	0.849	-3.9235
> 99							
>	4.710228						
		676	.45349	2.047028	0.22	0.828	-3.9096

> 46							
>	4.816626	677	.1386857	2.017397	0.07	0.946	-4.1612
> 95 >	4.438666						
		678	.3648312	2.049514	0.18	0.861	-4.0036
> 05 >	4.733267						
	11700107	679	.4620338	2.038542	0.23	0.824	-3.8830
> 15 >	4.807083						
	4.007003	680	.5131644	2.01685	0.25	0.803	-3.785
> 65	4 011070	·					
>	4.811979	681	.5247872	2.026936	0.26	0.799	-3.7955
> 25		'					
>	4.8451	682	.1849368	2.037861	0.09	0.929	-4.1586
> 62		,					
>	4.528535	683	.0269704	2 046807	0.01	0 990	_4 3356
> 96		003	10203704	2.010007	0.01	0.330	-1.3330
>	4.389637	604	.1011101	2 220526	0.05	0.064	4 6521
> 64		004	.1011101	2.230536	0.05	0.904	-4.6531
>	4.855385	ا دە	0.0014	2 222552			4 == 61
> 49		685	07914	2.203669	-0.04	0.972	-4.//61
>	4.617869	1					
> 17		686	0854658	2.238454	-0.04	0.970	-4.8566
-	4.685686	,					
> 73		687	.2543011	2.184444	0.12	0.909	-4.401
>	4.910332						
> 07		688	0397335	2.23823	-0.02	0.986	-4.8104
> 07	4.73094						
. 0=		689	0608012	2.222147	-0.03	0.979	-4.7971
> 95 >	4.675592						
		690	3442471	2.23018	-0.15	0.879	-5.0977
> 63 >	4.409269						
		691	1985119	2.242661	-0.09	0.931	-4.978
> 63 >	4.581606						
	4.301000	692	0198546	2.241998	-0.01	0.993	-4.7985
> 61		·					

>	4.758851	693 	1121911	2.202397	-0.05	0.960	-4.8064
> 88		0,3		21202097	0.05	0.300	1.0001
>	4.582106						
		694	0273087	2.249948	-0.01	0.990	-4.8229
> 59		•					
>	4.768342						
		695	2377884	2.223247	-0.11	0.916	-4.9765
> 27							
>	4.50095	ı					
		696	1070075	2.322132	-0.05	0.964	-5.0565
> 15							
>	4.8425	607 I	1472341	2 212020	0.00	0.050	E 0773
> 59		69/	14/2341	2.313039	-0.06	0.950	-5.0773
	4.782891						
	4.702091	698 I	0891426	2 333632	_0_04	0 970	_5_0631
> 61		050	0071420	2.333032	-0.01	0.570	-3.0031
_	4.884876						
	21002070	699	2960986	2.321192	-0.13	0.900	-5.2436
> 03							
>	4.651406						
		700	0200052	2.342543	-0.01	0.993	-5.0130
> 18		'					
>	4.973007	_					
		701	3844836	2.326824	-0.17	0.871	-5.3439
> 92		-					
>	4.575025						
		702	5894447	2.380987	-0.25	0.808	-5.6643
> 98							
>	4.485508	1					
		703	0940129	2.329362	-0.04	0.968	-5.058
> 93	4.870904						
>	4.8/0904	704 l	.1506832	2 220026	0 07	0 047	4 6105
> 78		/04	.1500832	2.238030	0.07	0.347	-4.0195
	4.920945						
	1.720713	705 l	.2137488	2.289689	0.09	0.927	-4.6666
> 08		, 00	10,0		3.43	.	_ 3 0 0 0 0
	5.094105						
		706	.1285233	2.282425	0.06	0.956	-4.736
> 35		'					
>	4.993397						
		707	.0043158	2.356479	0.00	0.999	-5.01
> 84		•					
>	5.027032						
		708	.3636813	2.534649	0.14	0.888	-5.0387
> 95							
>	5.766157						

		709		2254239	2.533146	-0.09	0.930	-5.6246
> 97	5.17385							
	5.1/305	710		.0877774	2.504388	0.04	0.973	-5.2501
> 99		'	•					
>	5.425754	711	ı	4000600	2 466215	0 17	0.070	4 0453
> 53		/11	l	.4092609	2.466215	0.17	0.870	-4.84/3
>	5.665875							
. 10		712		0038372	2.495147	-0.00	0.999	-5.3221
> 18 >	5.314443							
		713		.4573908	2.512272	0.18	0.858	-4.897
> 39								
>	5.812172	714	l	.1133869	2.472219	0.05	0.964	-5.1560
> 23		, = -	I	1110000	_,,,	0.00	01301	312300
>	5.382797	1	ı					
> 94		715		.1282595	2.497924	0.05	0.960	-5.195
	5.452459							
		716		.0307559	2.524586	0.01	0.990	-5.3502
> 72 >	5.411783							
	3.111703	717		1224358	2.508241	-0.05	0.962	-5.4686
> 25		•						
>	5.223753	718	l	2544755	2.476076	0 10	0 920	_5 0231
> 55		710	I	.2541755	2.170070	0.10	0.520	-3.0231
>	5.532106		ı					
> 24		719		.1134693	2.519175	0.05	0.965	-5.2560
	5.482963							
	h:	region1 angalore		1.401538	.3880783	3 61	0 003	.57436
> 86	Di	anguiore	I	1.401550	.3000703	3.01	0.003	137430
>	2.228707	1	ı					
> 19		bhopal		-1.41453	1.005729	-1.41	0.180	-3.558
> 19	.7291307							
	buba	aneshwar		5926035	1.518089	-0.39	0.702	-3.8283
> 33 >	2.643126							
		andigarh		7197799	.3832973	-1.88	0.080	-1.5367
> 59		- 1						
>	.0971989	chennai	l	1 024006	.1850088	E	0 000	62065
> 89		CHEIHIAI	I	1.024770	.1030088	3.54	0.000	.63065

>	1.419333 guwal	_{hati}	.4858581	1.628393	0.30	0.770	-2.9849
> 79	gawa	1	710000	2102000	0.00	01770	
>	3.956695 hydera	abad	1.280129	.7031832	1.82	0.089	21867
> 04							
> 45	2.778929 ja:	ipur	-2.169925	.7385682	-2.94	0.010	-3.7441
> 42	5957037						
> 38		npur	-2.414467	.7801798	-3.09	0.007	-4.077
> 30	7515527						
		ochi	-1.314094	.9399116	-1.40	0.182	-3.3174
> 69	6000700						
>	.6892798 koll	kata	2.050521	.5366881	3.82	0.002	.9065
> 97	2 12444						
>	3.194444 mur	mbai	.2380093	.9939767	0.24	0.814	-1.8806
> 02							
>	2.356621	-11-2	2 002022	1 120104	2.66	0.010	F0.621
> 18	new_de	erur	3.003033	1.129194	2.00	0.018	.59621
> 10	5.409853						
		naji	1.458659	4.450379	0.33	0.748	-8.0270
> 99	-	- 1					
>	10.94442						
	pa	atna	1.108995	1.523105	0.73	0.478	-2.1374
> 26							
>	4.355417	1					
	-	_cons	-17.29836	18.73279	-0.92	0.370	-57.226
> 36							
>	22.62965	1					

Overriding estimator's cluster/robust settings with cluster(region1 date)

Warning: 551 replications returned an infeasible test statistic and were delet > ed from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 one

$$t(15) = -5.9368$$

Prob>|t| = 0.0176

95% confidence set for null hypothesis expression: [-3.928, -1.493]

Warning: 20 replications returned an infeasible test statistic and were delete > d from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 two

$$t(15) = -4.1766$$

Prob>|t| = 0.0047

95% confidence set for null hypothesis expression: [-3.639, -1.151]

Warning: 13 replications returned an infeasible test statistic and were delete > d from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 three

$$t(15) = -4.9752$$

Prob>|t| = 0.0039

95% confidence set for null hypothesis expression: [-4.388, -1.684]

Warning: 31 replications returned an infeasible test statistic and were delete > d from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 four

$$t(15) = -6.9626$$

Prob>|t| = 0.0020

95% confidence set for null hypothesis expression: [-3.185, -1.73]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 five

$$t(15) = -3.3169$$

Prob>|t| = 0.1645

95% confidence set for null hypothesis expression: [., .]
(A confidence interval could not be bounded. Try widening the search range wit > h the gridmin() and gridmax() options.)

Warning: 35 replications returned an infeasible test statistic and were delete > d from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 one_number_major2_past20

$$t(15) = -2.4189$$

Prob>|t| = 0.0484

95% confidence set for null hypothesis expression: [-.3352, -.001645]

Warning: 15 replications returned an infeasible test statistic and were delete > d from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 two_number_major2_past20

$$t(15) = 0.8417$$

Prob>|t| = 0.4638

95% confidence set for null hypothesis expression: [-.2029, .3933]

Warning: 11 replications returned an infeasible test statistic and were delete > d from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 three_number_major2_past20

$$t(15) = 0.4764$$

Prob>|t| = 0.6667

95% confidence set for null hypothesis expression: [-.2849, .4362]

Warning: 29 replications returned an infeasible test statistic and were delete > d from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 four_number_major2_past20

$$t(15) = -0.4624$$

Prob>|t| = 0.6814

95% confidence set for null hypothesis expression: [-.4851, .3166]

Warning: 197 replications returned an infeasible test statistic and were delet > ed from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 five_number_major2_past20

t(15) = 0.2106Prob>|t| = 0.8636

95% confidence set for null hypothesis expression: [-.6746, .6847]

Linear regression Number of obs = 2,688 $\frac{F(14, 15)}{Prob > F} = .$ R-squared = 0.8196 Root MSE = 1.0532

(Std. err. adjusted for 16 clusters in region1

>)						
> -	I I	Robust				
fdi_ihs >]	Coefficient	std. err.	t	P> t	[95% conf.	interval
						
> -	l					
one	-2.480361	.4148007	-5.98	0.000	-3.364488	-1.59623
> 4 two	-2.238725	.6739833	-3.32	0.005	-3.675287	802163
three	-3.169122	.5258422	-6.03	0.000	-4.289928	-2.04831
> 6 four	-2.275203	.2730667	-8.33	0.000	-2.857231	-1.69317
> 5 five	-2.093821	.2307606	-9.07	0.000	-2.585676	-1.60196
<pre>> 7 one_density > 9</pre>	.0052222	.0011596	4.50	0.000	.0027505	.007693
two_density > 8	.000691	.0024447	0.28	0.781	0045198	.005901
three_density	.1212951	.0874144	1.39	0.186	0650242	.307614
<pre>> 5 four_density</pre>	.0216732	.0024939	8.69	0.000	.0163575	.026988

> 8						
five_density > 1	0052436	.0010451	-5.02	0.000	0074712	003016
lag_lgdp	.7877042	.9420456	0.84	0.416	-1.220219	2.79562
lag_lpop	1341087	.25954	-0.52	0.613	687305	.419087
> 6						
date 553	0531386	.2726175	-0.19	0.848	634209	.527931
> 8 554	4915856	.2838562	-1.73	0.104	-1.096611	.113439
> 6 555	2011631	.3045491	-0.66	0.519	8502942	.44796
> 8						
556 > 8	2330706	.2900432	-0.80	0.434	851283	.385141
557 > 5	.0419503	.2876443	0.15	0.886	571149	.655049
558 > 5	.3595212	.3473569	1.04	0.317	3808525	1.09989
559 > 6	.1886232	.3875732	0.49	0.634	6374695	1.01471
560	.0725879	.3760577	0.19	0.850	7289601	.87413
> 6 561	172525	.2883515	-0.60	0.559	7871317	.442081
> 6 562	0148782	.320841	-0.05	0.964	6987346	.668978
> 3 563	0206692	.3228138	-0.06	0.950	7087306	.667392
> 1 564	5271446	.3566383	-1.48	0.160	-1.287301	.23301
> 2 565				0.824	-1.153385	.931462
> 3	1109611	.4890678	-0.23			
566 > 8	0923759	.3179032	-0.29	0.775	7699705	.585218
567 > 6	315189	.4188459	-0.75	0.463	-1.207938	.5775
568 > 4	2081662	.4441924	-0.47	0.646	-1.15494	.738607
569	3788387	.3644549	-1.04	0.315	-1.155656	.397978
> 7 570	.3481164	.46163	0.75	0.462	6358246	1.33205
> 7 571	6693356	.3908791	-1.71	0.107	-1.502475	.163803
> 4 572	8650994	.3240982	-2.67	0.018	-1.555898	174300
> 5			,			

> 9	573		5082929	.4715992	-1.08	0.298	-1.513483	.496896
> 3	574		3616532	.3573747	-1.01	0.328	-1.123379	.40007
	575		0894866	.5252632	-0.17	0.867	-1.209059	1.03008
> 5	576		6517648	.5532435	-1.18	0.257	-1.830975	.527445
> 8	577		1036055	.5589807	-0.19	0.855	-1.295045	1.08783
> 4	578		3927991	.6461921	-0.61	0.552	-1.770125	.984526
> 7	579		2397351	.5118235	-0.47	0.646	-1.330661	.85119
> 1	580	ı	.2237012	.4756188	0.47	0.645	7900562	1.23745
> 9	581	İ	.0694111	.4507273	0.15	0.880	8912913	1.03011
> 4	582	i	.0926304	.5065153	0.18	0.857	9869814	1.17224
> 2	583	ı	0446768	.5643195	-0.08	0.938	-1.247495	1.15814
> 2	584	' 	.121506	.5261298	0.23	0.820	9999131	1.24292
> 5		 						
> 3	585	ı	.0471554	.4455929	0.11	0.917	9026034	.996914
> 5	586		0542261	.5166585	-0.10	0.918	-1.155458	1.04700
> 2	587		2737867	.5702579	-0.48	0.638	-1.489263	.941689
> 3	588	I	0499514	.6066128	-0.08	0.935	-1.342916	1.24301
> 1	589		.1481711	.6298715	0.24	0.817	-1.194368	1.4907
> 5	590		.0766497	.6382726	0.12	0.906	-1.283796	1.43709
> 9	591		5083199	.677559	-0.75	0.465	-1.952503	.935862
> 5	592		.0735637	.539204	0.14	0.893	-1.075722	1.2228
	593		.3745532	.663519	0.56	0.581	-1.039704	1.78881
> 1	594		.3847486	.6187411	0.62	0.543	9340668	1.70356
> 4	595		.3797356	.6912701	0.55	0.591	-1.093672	1.85314
> 3	596		.0839262	.548028	0.15	0.880	-1.084168	1.2520
> 2	597		.0848519	.6071275	0.14	0.891	-1.20921	1.37891

> 3	598		.1980705	.5988489	0.33	0.745	-1.078346	1.47448
> 7	599		007642	.6254252	-0.01	0.990	-1.340704	1.3254
> 2	600		.1304666	.7415531	0.18	0.863	-1.450116	1.7110
> 5	601	-	1125639	.7094385	-0.16	0.876	-1.624696	1.39956
> 8	602		.3243888	.8177459	0.40	0.697	-1.418595	2.06737
> 3	603		2627741	.6477308	-0.41	0.691	-1.64338	1.11783
> 2	604		.0134847	.6910968	0.02	0.985	-1.459553	1.48652
> 3	605		.4011819	.6710867	0.60	0.559	-1.029205	1.83156
> 9	606		.0044808	.7649434	0.01	0.995	-1.625957	1.63491
> 9	607		.3217679	.7151726	0.45	0.659	-1.202586	1.84612
> 2	608		.1434784	.7544411	0.19	0.852	-1.464575	1.75153
> 2	609		.1114583	.8814035	0.13	0.901	-1.767209	1.99012
> 5	610		.4714029	.8565369	0.55	0.590	-1.354262	2.29706
> 8	611		.7251519	.6705933	1.08	0.297	7041838	2.15448
> 8	612		.2011686	.9126632	0.22	0.829	-1.744127	2.14646
> 4	613		.2595157	1.037821	0.25	0.806	-1.952546	2.47157
> 8	614		.1772711	.8703417	0.20	0.841	-1.677818	2.03236
> 1	615		.3514244	.9739986	0.36	0.723	-1.724604	2.42745
> 3	616	1	.2453013	.9008454	0.27	0.789	-1.674805	2.16540
> 8	617	1	2251892	1.110455	-0.20	0.842	-2.592069	2.14169
> 1	618		.1351564	.8483308	0.16	0.876	-1.673018	1.94333
> 1	619		.6084632	.9038328	0.67	0.511	-1.318011	2.53493
> 7	620		.3806053	1.071533	0.36	0.727	-1.903313	2.66452
> 3	621	· 	.4854552	.8420696	0.58	0.573	-1.309374	2.28028
> 4		•						

> 4	622		.2931817	.8520223	0.34	0.736	-1.522861	2.10922
> 7	623		.2904631	.8499447	0.34	0.737	-1.521151	2.10207
-	624		.1282922	1.011273	0.13	0.901	-2.027186	2.2837
> 7	625		.1304202	1.063795	0.12	0.904	-2.137005	2.39784
> 6	626		.4220387	1.08504	0.39	0.703	-1.89067	2.73474
> 7	627		.0144082	1.065779	0.01	0.989	-2.257247	2.28606
> 3	628		4406555	1.065617	-0.41	0.685	-2.711965	1.83065
> 4	629	İ	0555595	1.009022	-0.06	0.957	-2.20624	2.09512
> 1	630	i	.4031205	1.009124	0.40	0.695	-1.747776	2.55401
> 7		' 	4109112	1.156691				
> 6	631		4109112	1.130091	-0.36	0.727	-2.876339	2.05451
> 1	632		.1001342	1.037912	0.10	0.924	-2.112123	2.31239
> 1	633		.5616099	.9471824	0.59	0.562	-1.457262	2.58048
	634		.0727012	1.006679	0.07	0.943	-2.072984	2.21838
> 6	635		.3400217	1.024718	0.33	0.745	-1.844113	2.52415
> 7	636		.1079761	1.117976	0.10	0.924	-2.274932	2.49088
> 5	637		2906851	1.128896	-0.26	0.800	-2.696871	2.115
> 5	638		.6710129	1.10677	0.61	0.553	-1.688012	3.03003
> 8	639		.3098824	1.06027	0.29	0.774	-1.950029	2.56979
> 4	640	ı	.4806177	1.079441	0.45	0.662	-1.820157	2.78139
> 2	641	·	.1837948	1.066663	0.17	0.865	-2.089744	2.45733
> 4		'						
> 9	642	ı	.0988294	1.037238	0.10	0.925	-2.11199	2.30964
> 7	643		.2377636	1.088824	0.22	0.830	-2.08301	2.55853
	644		0691185	1.07224	-0.06	0.949	-2.354545	2.21630
> 8	645		.7492771	1.213844	0.62	0.546	-1.837971	3.33652
> 5	646		.3849095	1.131563	0.34	0.738	-2.026961	2.7967

> 8	647		.5241978	1.200393	0.44	0.669	-2.03438	3.08277
> 5	648		.8501398	1.277826	0.67	0.516	-1.873482	3.57376
> 2 > 8	649		1.095023	1.256148	0.87	0.397	-1.582392	3.77243
-	650		.5194259	1.202766	0.43	0.672	-2.044208	3.0830
> 6	651		.3726187	1.256719	0.30	0.771	-2.306015	3.05125
> 3	652		.5320045	1.212459	0.44	0.667	-2.05229	3.11629
> 8	653		1.271075	1.286806	0.99	0.339	-1.471687	4.01383
> 7 > 7	654		.8739986	1.256674	0.70	0.497	-1.80454	3.55253
-	655		.878924	1.292729	0.68	0.507	-1.876463	3.6343
> 1	656		.7190455	1.206298	0.60	0.560	-1.852118	3.29020
> 8	657		.5303542	1.28998	0.41	0.687	-2.219174	3.27988
> 2	658		.2083436	1.50124	0.14	0.891	-2.991474	3.40816
> 1	659		.7505617	1.260193	0.60	0.560	-1.935476	3.43659
> 9	660		.3575064	1.359538	0.26	0.796	-2.540281	3.25529
> 4 > 3	661		.3930331	1.35527	0.29	0.776	-2.495657	3.28172
	662		.9224726	1.341865	0.69	0.502	-1.937644	3.7825
> 9	663		.3811508	1.25978	0.30	0.766	-2.304007	3.06630
> 9	664		.6040325	1.277615	0.47	0.643	-2.11914	3.32720
> 5	665		.9783516	1.359848	0.72	0.483	-1.920095	3.87679
> 8	666		.9343274	1.269533	0.74	0.473	-1.771618	3.64027
> 3	667		.7729352	1.264645	0.61	0.550	-1.922591	3.46846
> 1	668	1	.6346854	1.281255	0.50	0.628	-2.096246	3.36561
> 7	669		.7501742	1.277412	0.59	0.566	-1.972565	3.47291
> 3	670		.3497905	1.249468	0.28	0.783	-2.313387	3.01296
> 8								

> 3	671		.6410769	1.261314	0.51	0.619	-2.047349	3.32950
> 1	672		.5683904	1.299449	0.44	0.668	-2.201319	3.338
	673		.7002455	1.323575	0.53	0.605	-2.120887	3.52137
> 8	674		.8654598	1.379094	0.63	0.540	-2.07401	3.80492
> 9	675		1.227217	1.429288	0.86	0.404	-1.819239	4.27367
> 2	676		1.287392	1.40952	0.91	0.376	-1.716928	4.29171
> 3	677		.9725881	1.370563	0.71	0.489	-1.948698	3.89387
> 4	678		1.198734	1.397692	0.86	0.405	-1.780377	4.17784
> 4	679	İ	1.295936	1.375574	0.94	0.361	-1.63603	4.22790
> 3	680	i	1.347067	1.31418	1.03	0.322	-1.454042	4.14817
> 5		!	_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			0.011		
> 5	681		1.35869	1.385961	0.98	0.342	-1.595415	4.31279
> 8	682		1.018839	1.434887	0.71	0.489	-2.039549	4.07722
	683		.8608728	1.371405	0.63	0.540	-2.062207	3.78395
> 3	684		1.061806	1.518042	0.70	0.495	-2.173825	4.29743
> 7	685		.8815561	1.505207	0.59	0.567	-2.326716	4.08982
> 8	686		.8752302	1.552793	0.56	0.581	-2.43447	4.1849
> 3	687		1.209368	1.510088	0.80	0.436	-2.009309	4.42804
> 4	688	1	.9157118	1.533489	0.60	0.559	-2.352842	4.18426
> 6	689	i	.8950204	1.522278	0.59	0.565	-2.349639	4.1396
> 8	009		.0930204	1.322276	0.39	0.303	-2.349039	4.1390
> 3	690		.6119484	1.518429	0.40	0.693	-2.624507	3.84840
	691		.7580555	1.600274	0.47	0.643	-2.652847	4.16895
> 8	692		.9370825	1.548146	0.61	0.554	-2.362712	4.23687
> 7	693	ı	.8451136	1.510835	0.56	0.584	-2.375155	4.06538
> 2		' 						
> 9	694	I	.9303614	1.532679	0.61	0.553	-2.336466	4.19718
	695		.7202452	1.525856	0.47	0.644	-2.532041	3.97253

_								
> 1	696		.9233771	1.602558	0.58	0.573	-2.492393	4.33914
> 8	697		.8831505	1.60497	0.55	0.590	-2.537762	4.30406
> 3	698		.941242	1.591536	0.59	0.563	-2.451037	4.33352
> 1	699		.734286	1.592138	0.46	0.651	-2.659275	4.12784
> 7	700		1.010379	1.631426	0.62	0.545	-2.466923	4.48768
> 2	701		.645901	1.591718	0.41	0.691	-2.746766	4.03856
> 8	702		.4409399	1.636	0.27	0.791	-3.046111	3.92799
> 1	703		1.011784	1.590919	0.64	0.534	-2.37918	4.40274
> 8	704		1.25648	1.489322	0.84	0.412	-1.917934	4.43089
> 4	705		1.319546	1.534535	0.86	0.403	-1.951239	4.5903
> 3	706		1.23432	1.539456	0.80	0.435	-2.046952	4.51559
> 2	707		1.110113	1.586797	0.70	0.495	-2.272066	4.49229
> 1	708		1.592778	1.690198	0.94	0.361	-2.009794	5.1953
> 5	709		1.003673	1.679574	0.60	0.559	-2.576255	4.583
> 6	710	l	1.316874	1.710582	0.77	0.453	-2.329145	4.96289
> 3	711	l	1.638358	1.632345	1.00	0.331	-1.840904	5.11761
> 9	712	İ	1.225259	1.67943	0.73	0.477	-2.35436	4.80487
> 9	713	İ	1.686487	1.696326	0.99	0.336	-1.929146	5.30212
> 1	714	·	1.342484	1.596898	0.84	0.414	-2.061223	4.7461
> 9	715	i I	1.357356	1.709668	0.79	0.440	-2.286715	5.00142
> 7	716	' 	1.259853	1.704596	0.74	0.471	-2.373407	4.89311
> 2	717	' 	1.106661	1.701815	0.65	0.525	-2.520671	4.73399
> 3	718	l I	1.483572	1.668281	0.89	0.388	-2.072284	5.03942
> 8	719	l I	1.342566	1.699885	0.79	0.442		4.96578
> 5	113	I	1.342300	1.022003	0.73	U.444	-2.200033	±.703/6

region1 bangalore	1.375232	.1885838	7.29	0.000	.9732749	1.77718
> 8 bhopal	-1.956677	.5948532	-3.29	0.005	-3.224576	688777
> 2 bubaneshwar	-1.722331	1.055885	-1.63	0.124	-3.972898	.528235
> 1 chandigarh	3510113	.1821684	-1.93	0.073	7392941	.037271
> 5 chennai	.9946718	.1427077	6.97	0.000	.6904976	1.29884
> 6 guwahati	5511264	1.107467	-0.50	0.626	-2.911637	1.80938
> 4 hyderabad	.7190463	.4916524	1.46	0.164	328886	1.76697
jaipur	-2.432473	.4040888	-6.02	0.000	-3.293768	-1.57117
kanpur	-1.799722	.5200367	-3.46	0.003	-2.908154	6912
kochi	-2.35721	.6868448	-3.43	0.004	-3.821185	893234
kolkata	1.902257	.3703096	5.14	0.000	1.112961	2.69155
mumbai	.8940669	.6561416	1.36	0.193	5044657	2.292
new_delhi	1.644399	.8039077	2.05	0.059	0690901	3.35788
panaji	-1.373288	3.018663	-0.45	0.656	-7.807415	5.06083
patna	.1130252	1.010931	0.11	0.912	-2.041724	2.26777
_cons > 1	-4.582526	12.564	-0.36	0.720	-31.36206	22.1970

Overriding estimator's cluster/robust settings with cluster(region1 date)

Warning: 710 replications returned an infeasible test statistic and were delet > ed from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 one

$$t(15) = -5.9339$$

Prob>|t| = 0.0217

95% confidence set for null hypothesis expression: [-3.59, -1.279]

Warning: 7 replications returned an infeasible test statistic and were deleted > from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 two

$$t(15) = -3.3163$$

Prob>|t| = 0.0115

95% confidence set for null hypothesis expression: [-3.906, -.7392]

Warning: 15 replications returned an infeasible test statistic and were delete > d from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 three

$$t(15) = -6.0093$$

Prob>|t| = 0.0021

95% confidence set for null hypothesis expression: [-4.373, -1.987]

Warning: 236 replications returned an infeasible test statistic and were delet > ed from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 four

$$t(15) = -8.2971$$

Prob>|t| = 0.0054

95% confidence set for null hypothesis expression: [-2.911, -1.641]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 five

$$t(15) = -9.0257$$

Prob>|t| = 0.0028

95% confidence set for null hypothesis expression: [-2.742, -1.425]

Warning: 183 replications returned an infeasible test statistic and were delet > ed from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 one_density

t(15) = 5.3880Prob>|t| = 0.0720

95% confidence set for null hypothesis expression: [-.0008874, .01141]

Warning: 130 replications returned an infeasible test statistic and were delet > ed from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 two_density

t(15) = 0.2701Prob>|t| = 0.9050

95% confidence set for null hypothesis expression: [-.01644, .0215]

Warning: 39 replications returned an infeasible test statistic and were delete > d from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 three_density

t(15) = 1.3908Prob>|t| = 0.2913

95% confidence set for null hypothesis expression: [-.1748, .3942]

Warning: 1 replications returned an infeasible test statistic and were deleted > from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 four_density

t(15) = 8.5751Prob>|t| = 0.0018 95% confidence set for null hypothesis expression: [.01229, .03141]

Warning: 115 replications returned an infeasible test statistic and were delet > ed from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 five_density

t(15) = -5.4495Prob>|t| = 0.0668

95% confidence set for null hypothesis expression: [-.01124, .000611]

Linear regression Number of obs = 2,688 $\frac{F(14, 15)}{Prob > F} = .$ R-squared = 0.8152 $Root \ MSE = 1.066$

(Std. err. adjusted for 16 clusters in region1)

	,				 	
fdi_ihs	Coefficient	Robust std. err.	t	P> t	[95% conf.	interval]
one	-2.294508	.3583231	-6.40	0.000	-3.058256	-1.530761
two	-2.496259	.719654	-3.47	0.003	-4.030166	9623531
three	-3.343156	.6341925	-5.27	0.000	-4.694905	-1.991407
four	-1.825234	.394624	-4.63	0.000	-2.666355	984113
five	-1.634467	.2392395	-6.83	0.000	-2.144394	-1.12454
one_urban	.0070249	.0035684	1.97	0.068	000581	.0146307
two_urban	0012928	.005726	-0.23	0.824	0134975	.010912
three_urban	0071959	.0139845	-0.51	0.614	0370032	.0226114
four_urban	.0164051	.0061582	2.66	0.018	.0032792	.029531
five_urban	0022453	.0030394	-0.74	0.471	0087237	.004233
lag_lgdp	.8800446	1.019695	0.86	0.402	-1.293385	3.053474
lag_lpop	0874347	.3222344	-0.27	0.790	774261	.5993916
date						
553	0531386	.2726175	-0.19	0.848	634209	.5279318
554	4915856	.2838562	-1.73	0.104	-1.096611	.1134396
555	2011631	.3045491	-0.66	0.519	8502942	.447968
556	2330706	.2900432	-0.80	0.434	851283	.3851418
557	.0419503	.2876443	0.15	0.886	571149	.6550495
558	.3595212	.3473569	1.04	0.317	3808525	1.099895
559	.1886232	.3875732	0.49	0.634	6374695	1.014716
560	.0725879	.3760577	0.19	0.850	7289601	.874136
561	172525	.2883515	-0.60	0.559	7871317	.4420816
562	0148782	.320841	-0.05	0.964	6987346	.6689783

	_					
563	0206692	.3228138	-0.06	0.950	7087306	.6673921
564	5427017	.3762353	-1.44	0.170	-1.344628	.2592248
565	1265183	.5042146	-0.25	0.805	-1.201226	.9481898
566	107933	.3331654	-0.32	0.750	8180584	.6021923
567	3307462	.4273727	-0.77	0.451	-1.241669	.5801771
568	2237234	.4576207	-0.49	0.632	-1.199119	.7516721
569	3943958	.3816659	-1.03	0.318	-1.207897	.4191057
570	.3325592	.475047	0.70	0.495	6799796	1.345098
571	8876557	.4484958	-1.98	0.066	-1.843602	.0682904
572	-1.083419	.3834463	-2.83	0.013	-1.900716	266123
573	726613	.5328371	-1.36	0.193	-1.862328	.4091023
574	5799733	.4077029	-1.42	0.175	-1.448972	.2890249
575	3078067	.5623461	-0.55	0.592	-1.506419	.8908056
576	8837718	.608241	-1.45	0.167	-2.180207	.4126631
577	3356126	.5903056	-0.57	0.578	-1.593819	.922594
578	6248062	.7093532	-0.88	0.392	-2.136757	.8871444
579	4717421	.5563294	-0.85	0.410	-1.65753	.7140459
580	0083058	.5495178	-0.02	0.988	-1.179575	1.162964
581	1625959	.5146584	-0.32	0.756	-1.259564	.9343724
582	1393767	.5537534	-0.25	0.805	-1.319674	1.040921
583	2766838	.610366	-0.45	0.657	-1.577648	1.02428
584	1105011	.5818628	-0.19	0.852	-1.350712	1.12971
585	1848516	.5000583	-0.37	0.717	-1.250701	.8809974
586	2862332	.5726438	-0.50	0.624	-1.506795	.9343282
587	5057938	.6027478	-0.84	0.415	-1.79052	.7789328
588	2969355	.6572173	-0.45	0.658	-1.697761	1.10389
589	098813	.700604	-0.14	0.890	-1.592115	1.394489
590	1703345	.6988324	-0.24	0.811	-1.659861	1.319192
591	7553041	.7364154	-1.03	0.321	-2.324936	.8143281
592	1734204	.6057045	-0.29	0.779	-1.464449	1.117608
593	.1275691	.7048219	0.18	0.859	-1.374723	1.629861
594	.1377644	.6815361	0.20	0.843	-1.314895	1.590424
595	.1327514	.7529846	0.18	0.862	-1.472197	1.7377
596	1630579	.6120663	-0.27	0.794	-1.467646	1.141531
597	1621322	.6482635	-0.25	0.806	-1.543873	1.219609
598	0489137	.6544735	-0.07	0.941	-1.443891	1.346063
599	2546262	.6887399	-0.37	0.717	-1.722641	1.213388
600	1299965	.7904761	-0.16	0.872	-1.814856	1.554863
601	373027	.7820613	-0.48	0.640	-2.039951	1.293897
602	.0639257	.8682129	0.07	0.942	-1.786626	1.914478
603	4149999	.6892149	-0.60	0.556	-1.884027	1.054027
604	1387411	.7342193	-0.19	0.853	-1.703693	1.42621
605	.2489561	.7080735	0.35	0.730	-1.260267	1.758179
606	1477451	.797053	-0.19	0.855	-1.846623	1.551133
607	.1695421	.7546269	0.22	0.825	-1.438907	1.777991
608	0087474	.7835053	-0.01	0.991	-1.678749	1.661255
609	0407675	.9364983	-0.04	0.966	-2.036866	1.955331
610	.3191771	.9312688	0.34	0.737	-1.665775	2.30413
611	.5729261	.7275514	0.79	0.443	977813	2.123665

	_					
612	.0325003	.9821982	0.03	0.974	-2.061006	2.126006
613	.0908474	1.118341	0.08	0.936	-2.29284	2.474535
614	.0086028	.907686	0.01	0.993	-1.926084	1.94329
615	.1827561	1.04345	0.18	0.863	-2.041304	2.406817
616	.076633	.9695633	0.08	0.938	-1.989942	2.143208
617	3938575	1.203393	-0.33	0.748	-2.95883	2.171115
618	0335119	.9144574	-0.04	0.971	-1.982632	1.915608
619	.4397949	.9563761	0.46	0.652	-1.598672	2.478262
620	.211937	1.177701	0.18	0.860	-2.298273	2.722147
621	.3167869	.9039191	0.35	0.731	-1.609871	2.243445
622	.1245134	.9185006	0.14	0.894	-1.833224	2.082251
623	.1217948	.9240101	0.13	0.897	-1.847686	2.091276
624	061403	1.108918	-0.06	0.957	-2.425006	2.3022
625	0592751	1.140543	-0.05	0.959	-2.490284	2.371734
626	.2323434	1.189941	0.20	0.848	-2.303955	2.768642
627	1752871	1.160768	-0.15	0.882	-2.649406	2.298832
628	6303507	1.145483	-0.55	0.590	-3.07189	1.811188
629	2452548	1.085373	-0.23	0.824	-2.558672	2.068163
630	.2134252	1.073777	0.20	0.845	-2.075277	2.502128
631	6006065	1.218757	-0.49	0.629	-3.198326	1.997114
632	089561	1.113517	-0.08	0.937	-2.462966	2.283844
633	.3719147	1.013928	0.37	0.719	-1.789221	2.53305
634	116994	1.064359	-0.11	0.914	-2.385623	2.151635
635	.1503265	1.096689	0.14	0.893	-2.187211	2.487864
636	0934338	1.217945	-0.08	0.940	-2.689421	2.502554
637	492095	1.227167	-0.40	0.694	-3.10774	2.12355
638	.469603	1.187437	0.40	0.698	-2.061359	3.000565
639	.1084725	1.133709	0.10	0.925	-2.307971	2.524916
640	.2792078	1.172804	0.24	0.815	-2.220564	2.77898
641	.4082476	1.20089	0.34	0.739	-2.151389	2.967884
642	.3232823	1.200773	0.27	0.791	-2.236105	2.882669
643	.4622164	1.183259	0.39	0.702	-2.059839	2.984272
644	.1553343	1.209209	0.13	0.899	-2.422034	2.732703
645	.97373	1.418244	0.69	0.503	-2.049186	3.996646
646	.6093624	1.297674	0.47	0.645	-2.156565	3.37529
647	.7486506	1.401298	0.53	0.601	-2.238145	3.735446
648	1.061644	1.43522	0.74	0.471	-1.997456	4.120744
649	1.306528	1.42048	0.92	0.372	-1.721153	4.334208
650	.7309302	1.3766	0.53	0.603	-2.203223	3.665084
651	.5841229	1.430579	0.41	0.689	-2.465085	3.633331
652	.7435088	1.364098	0.55	0.594	-2.163997	3.651015
653	1.48258	1.460632	1.02	0.326	-1.630684	4.595844
654	1.085503	1.420088	0.76	0.456	-1.941344	4.11235
655	1.090428	1.463245	0.75	0.468	-2.028404	4.209261
656	.9305497	1.390552	0.67	0.514	-2.033341	3.894441
657 659	.7418584	1.437015	0.52	0.613	-2.321066	3.804783
658 650	.4198479	1.602714	0.26	0.797	-2.996256	3.835952
659	.962066	1.429511	0.67	0.511	-2.084866	4.008998
660	.5602544	1.500982	0.37	0.714	-2.639012	3.759521

	•					
661	.595781	1.551366	0.38	0.706	-2.710877	3.902439
662	1.125221	1.530848	0.74	0.474	-2.137704	4.388145
663	.5838988	1.455628	0.40	0.694	-2.518699	3.686496
664	.8067804	1.495932	0.54	0.598	-2.381724	3.995284
665	1.1811	1.555348	0.76	0.459	-2.134046	4.496246
666	1.137075	1.433095	0.79	0.440	-1.917495	4.191645
667	.9756831	1.430933	0.68	0.506	-2.074279	4.025646
668	.8374333	1.447408	0.58	0.571	-2.247644	3.92251
669	.9529222	1.475054	0.65	0.528	-2.19108	4.096925
670	.2940935	1.398064	0.21	0.836	-2.685809	3.273996
671	.5853798	1.412111	0.41	0.684	-2.424464	3.595224
672	.5025726	1.443023	0.35	0.732	-2.573159	3.578304
673	.6344277	1.467235	0.43	0.672	-2.492909	3.761764
674	.799642	1.525519	0.52	0.608	-2.451924	4.051208
675	1.161399	1.57409	0.74	0.472	-2.193695	4.516493
676	1.221575	1.552538	0.79	0.444	-2.087582	4.530732
677	.9067703	1.51033	0.60	0.557	-2.312421	4.125962
678	1.132916	1.521991	0.74	0.468	-2.111131	4.376962
679	1.230118	1.510293	0.81	0.428	-1.988994	4.449231
680	1.281249	1.457126	0.88	0.393	-1.824542	4.38704
681	1.292872	1.510162	0.86	0.405	-1.925963	4.511707
682	.9530214	1.563652	0.61	0.551	-2.379823	4.285866
683	.7950551	1.522377	0.52	0.609	-2.449815	4.039926
684	.9840189	1.675279	0.59	0.566	-2.586753	4.554791
685	.8037688	1.634431	0.49	0.630	-2.679938	4.287476
686	.7974429	1.692734	0.47	0.644	-2.810534	4.40542
687	1.132088	1.62562	0.70	0.497	-2.33284	4.597016
688	.838398	1.670813	0.50	0.623	-2.722856	4.399652
689	.8176726	1.658578	0.49	0.629	-2.717503	4.352848
690	.534567	1.657318	0.32	0.751	-2.997924	4.067058
691	.6806405	1.728233	0.39	0.699	-3.003002	4.364283
692	.8596341	1.673451	0.51	0.615	-2.707242	4.42651
693	.7676321	1.651157	0.46	0.649	-2.751727	4.286991
694	.852847	1.674291	0.51	0.618	-2.71582	4.421514
695	.642698	1.655545	0.39	0.703	-2.886013	4.171409
696	.8388282	1.743113	0.48	0.637	-2.87653	4.554187
697	.7986017	1.737547	0.46	0.652	-2.904892	4.502095
698	.8566932	1.712067	0.50	0.624	-2.792491	4.505878
699	.6497372	1.731496	0.38	0.713	-3.040859	4.340334
700	.9258305	1.754915	0.53	0.606	-2.814683	4.666344
701	.5613522	1.727527	0.32	0.750	-3.120785	4.243489
702	.356391	1.779792	0.20	0.844	-3.437146	4.149928
703	.9084976	1.73083	0.52	0.607	-2.780679	4.597674
704	1.153194	1.643829	0.70	0.494	-2.350545	4.656933
705	1.216259	1.689603	0.72	0.483	-2.385043	4.817562
706	1.131034	1.697027	0.67	0.515	-2.486094	4.748162
707	1.006826	1.762884	0.57	0.576	-2.750672	4.764325
708	1.477649	1.85896	0.79	0.439	-2.48463	5.439928
709	.888544	1.870033	0.48	0.642	-3.097336	4.874424

710	1.201745	1.882068	0.64	0.533	-2.809788	5.213279
711	1.523229	1.787698	0.85	0.408	-2.28716	5.333618
712	1.110131	1.839078	0.60	0.555	-2.809772	5.030033
713	1.571359	1.838916	0.85	0.406	-2.348199	5.490916
714	1.227355	1.754552	0.70	0.495	-2.512384	4.967093
715	1.242227	1.863583	0.67	0.515	-2.729907	5.214361
716	1.144724	1.859402	0.62	0.547	-2.818499	5.107946
717	.991532	1.852218	0.54	0.600	-2.956376	4.93944
718	1.368443	1.825849	0.75	0.465	-2.523262	5.260148
719	1.227437	1.855375	0.66	0.518	-2.727202	5.182076
region1						
bangalore	1.441945	.2259711	6.38	0.000	.9602987	1.923591
bhopal	-1.956778	.64652	-3.03	0.008	-3.334803	5787532
bubaneshwar	-1.441878	1.146937	-1.26	0.228	-3.886516	1.00276
chandigarh	3107058	.1688697	-1.84	0.086	6706431	.0492314
chennai	1.140219	.1355931	8.41	0.000	.8512094	1.429229
guwahati	327472	1.210348	-0.27	0.790	-2.907268	2.252324
hyderabad	.821441	.5397458	1.52	0.149	3289999	1.971882
jaipur	-2.368829	.4380663	-5.41	0.000	-3.302545	-1.435112
kanpur	-1.831255	.6125067	-2.99	0.009	-3.136782	5257282
kochi	-1.863661	.718004	-2.60	0.020	-3.394051	3332721
kolkata	1.981214	.3994631	4.96	0.000	1.129779	2.83265
mumbai	.823423	.7217081	1.14	0.272	7148614	2.361707
new_delhi	2.015736	.9837434	2.05	0.058	0810633	4.112536
panaji	9509096	3.465294	-0.27	0.788	-8.337009	6.43519
patna	.262376	1.064406	0.25	0.809	-2.006352	2.531104
_cons	-6.320867	14.11973	-0.45	0.661	-36.41636	23.77463

Warning: 361 replications returned an infeasible test statistic and were delet > ed from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 one

$$t(15) = -6.3564$$

Prob>|t| = 0.0118

95% confidence set for null hypothesis expression: [-3.318, -1.299]

Warning: 6 replications returned an infeasible test statistic and were deleted > from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 two

$$t(15) = -3.4619$$

Prob> $|t| = 0.0119$

95% confidence set for null hypothesis expression: [-4.205, -.802]

Warning: 9 replications returned an infeasible test statistic and were deleted > from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 three

$$t(15) = -5.2749$$

Prob>|t| = 0.0023

95% confidence set for null hypothesis expression: [-4.72, -1.99]

Warning: 17 replications returned an infeasible test statistic and were delete > d from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 four

$$t(15) = -4.6340$$

Prob>|t| = 0.0087

95% confidence set for null hypothesis expression: [-2.791, -.8594]

Warning: 19 replications returned an infeasible test statistic and were delete > d from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 five

$$t(15) = -6.5975$$

Prob>|t| = 0.0279

95% confidence set for null hypothesis expression: [-2.719, -.5482]

Warning: 89 replications returned an infeasible test statistic and were delete > d from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 one_urban

$$t(15) = 2.2994$$

Prob>|t| = 0.0758

95% confidence set for null hypothesis expression: [-.001053, .01451]

Warning: 29 replications returned an infeasible test statistic and were delete > d from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 two_urban

$$t(15) = -0.2203$$

Prob>|t| = 0.8573

95% confidence set for null hypothesis expression: [-.01954, .01614]

Warning: 22 replications returned an infeasible test statistic and were delete > d from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 three_urban

$$t(15) = -0.5174$$

Prob>|t| = 0.6443

95% confidence set for null hypothesis expression: [-.04259, .02594]

Warning: 24 replications returned an infeasible test statistic and were delete > d from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 four_urban

$$t(15) = 2.6625$$

Prob>|t| = 0.0587

95% confidence set for null hypothesis expression: [-.001184, .03148]

Warning: 69 replications returned an infeasible test statistic and were delete > d from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 five_urban

t(15) = -0.7747Prob>|t| = 0.4877

95% confidence set for null hypothesis expression: [-.009588, .004967]

Linear regression Number of obs = 2,688 $\frac{F(14, 15)}{Prob > F} = .$ R-squared = 0.8143 Root MSE = 1.0685

(Std. err. adjusted for 16 clusters in region1)

		(- J - ,
fdi_ihs	Coefficient	Robust std. err.	t	P> t	[95% conf.	interval]
one	-2.168508	.3336825	-6.50	0.000	-2.879736	-1.457281
two	-2.593253	.633182	-4.10	0.001	-3.942848	-1.243657
three	-3.253981	.6277136	-5.18	0.000	-4.591921	-1.916041
four	-1.884876	.4207344	-4.48	0.000	-2.78165	9881021
five	-1.935529	.2984207	-6.49	0.000	-2.571597	-1.29946
one_elec_s	.0109612	.0048248	2.27	0.038	.0006774	.021245
two_elec_s	004675	.0096617	-0.48	0.635	0252683	.0159184
three_elec_s	0071669	.0129677	-0.55	0.589	034807	.0204732
four_elec_s	.0162363	.0078319	2.07	0.056	0004571	.0329297
five_elec_s	0033273	.0031381	-1.06	0.306	0100161	.0033615
lag_lgdp	1.078074	1.04787	1.03	0.320	-1.155407	3.311555
lag_lpop	1128765	.3184645	-0.35	0.728	7916676	.5659146
date						
553	0531386	.2726175	-0.19	0.848	634209	.5279318
554	4915856	.2838562	-1.73	0.104	-1.096611	.1134396
555	2011631	.3045491	-0.66	0.519	8502942	.447968
556	2330706	.2900432	-0.80	0.434	851283	.3851418
557	.0419503	.2876443	0.15	0.886	571149	.6550495
558	.3595212	.3473569	1.04	0.317	3808525	1.099895
559	.1886232	.3875732	0.49	0.634	6374695	1.014716
560	.0725879	.3760577	0.19	0.850	7289601	.874136
561	172525	.2883515	-0.60	0.559	7871317	.4420816
562	0148782	.320841	-0.05	0.964	6987346	.6689783
563	0206692	.3228138	-0.06	0.950	7087306	.6673921
564	5746243	.3849969	-1.49	0.156	-1.395226	.2459772
565	1584408	.5136048	-0.31	0.762	-1.253164	.936282
566	1398556	.3419939	-0.41	0.688	8687984	.5890871
567	3626688	.4350117	-0.83	0.418	-1.289874	.5645367

568	255646	.4695103	-0.54	0.594	-1.256384	.7450916
569	4263184	.3855842	-1.11	0.286	-1.248172	.3955349
570	.3006366	.4808648	0.63	0.541	7243024	1.325576
571	-1.073509	.4874583	-2.20	0.044	-2.112501	0345158
572	-1.269272	.4330761	-2.93	0.010	-2.192352	3461924
573	9124658	.5696018	-1.60	0.130	-2.126543	.3016118
574	7658261	.4458925	-1.72	0.106	-1.716224	.1845713
575	4936595	.5806542	-0.85	0.409	-1.731295	.7439756
576	-1.097544	.6654013	-1.65	0.120	-2.515813	.3207255
577	5493845	.6295649	-0.87	0.397	-1.89127	.7925013
578	8385782	.7589861	-1.10	0.287	-2.456319	.7791624
579	6855141	.6068342	-1.13	0.276	-1.978951	.6079224
580	2220778	.6096686	-0.36	0.721	-1.521556	1.0774
581	3763679	.5568493	-0.68	0.509	-1.563264	.8105282
582	3531487	.58156	-0.61	0.553	-1.592715	.8864172
583	4904558	.6556903	-0.75	0.466	-1.888027	.9071151
584	324273	.636008	-0.51	0.618	-1.679892	1.031346
585	3986236	.5591314	-0.71	0.487	-1.590384	.7931367
586	5000051	.6129644	-0.82	0.427	-1.806508	.8064975
587	7195657	.6318885	-1.14	0.273	-2.066404	.6272727
588	5414066	.7205643	-0.75	0.464	-2.077253	.9944398
589	3432841	.7597817	-0.45	0.658	-1.96272	1.276152
590	4148055	.7309516	-0.57	0.579	-1.972792	1.143181
591	9997751	.7799182	-1.28	0.219	-2.662131	.6625812
592	4178915	.6773388	-0.62	0.547	-1.861605	1.025822
593	116902	.7519825	-0.16	0.879	-1.719715	1.485911
594	1067066	.7466764	-0.14	0.888	-1.69821	1.484796
595	1117196	.8211959	-0.14	0.894	-1.862057	1.638618
596	407529	.698576	-0.58	0.568	-1.896509	1.081451
597	4066033	.7168977	-0.57	0.579	-1.934635	1.121428
598	2933847	.7150404	-0.41	0.687	-1.817457	1.230688
599	4990972	.7337009	-0.68	0.507	-2.062944	1.064749
600	4021115	.8632845	-0.47	0.648	-2.242159	1.437936
601	645142	.8732605	-0.74	0.471	-2.506453	1.216169
602	2081894	.9209618	-0.23	0.824	-2.171173	1.754794
603	5548738	.8945776	-0.62	0.544	-2.461621	1.351873
604	278615	.8819549	-0.32	0.756	-2.158457	1.601227
605	.1090822	.9191042	0.12	0.907	-1.849942	2.068106
606	287619	1.031475	-0.28	0.784	-2.486156	1.910918
607	.0296682	.9038359	0.03	0.974	-1.896812	1.956149
608	1486214	.9809249	-0.15	0.882	-2.239413	1.942171
609	1806414	1.057251	-0.17	0.867	-2.434119	2.072836
610	.1793031	1.006112	0.18	0.861	-1.965174	2.32378
611	.4330522	.8591584	0.50	0.622	-1.398201	2.264305
612	1411874	1.163867	-0.12	0.905	-2.621911	2.339537
613	0828403	1.18788	-0.07	0.945	-2.614747	2.449066
614	1650849	1.10573	-0.15	0.883	-2.521893	2.191723
615	.0090683	1.037904	0.01	0.993	-2.203172	2.221309
616	0970548	1.102779	-0.09	0.931	-2.447573	2.253463

617	5675452	1.213844	-0.47	0.647	-3.154792	2.019701
618	2071996	.9865983	-0.21	0.836	-2.310084	1.895685
619	.2661072	1.076778	0.25	0.808	-2.028991	2.561205
620	.0382493	1.16981	0.03	0.974	-2.455141	2.53164
621	.1430991	1.106055	0.13	0.899	-2.214402	2.5006
622	0491743	1.038476	-0.05	0.963	-2.262633	2.164285
623	0518929	.9572113	-0.05	0.957	-2.092141	1.988355
624	2596346	1.193988	-0.22	0.831	-2.80456	2.285291
625	2575067	1.193258	-0.22	0.832	-2.800876	2.285862
626	.0341118	1.196431	0.03	0.978	-2.51602	2.584244
627	3735187	1.188802	-0.31	0.758	-2.90739	2.160352
628	8285823	1.29111	-0.64	0.531	-3.580519	1.923354
629	4434864	1.209784	-0.37	0.719	-3.02208	2.135107
630	.0151936	1.209648	0.01	0.990	-2.563109	2.593497
631	7988381	1.360399	-0.59	0.566	-3.698461	2.100785
632	2877926	1.255232	-0.23	0.822	-2.963256	2.38767
633	.1736831	1.172662	0.15	0.884	-2.325787	2.673153
634	3152256	1.188925	-0.27	0.795	-2.849359	2.218908
635	0479051	1.209454	-0.04	0.969	-2.625795	2.529985
636	3152656	1.364375	-0.23	0.820	-3.223362	2.592831
637	7139268	1.320305	-0.54	0.597	-3.52809	2.100237
638	.2477712	1.341169	0.18	0.856	-2.610863	3.106405
639	1133593	1.341679	-0.08	0.934	-2.97308	2.746361
640	.057376	1.300302	0.04	0.965	-2.714151	2.828903
641	.1752538	1.362526	0.13	0.899	-2.728901	3.079409
642	.0902885	1.363163	0.07	0.948	-2.815225	2.995801
643	.2292226	1.420485	0.16	0.874	-2.79847	3.256915
644	0776594	1.465562	-0.05	0.958	-3.201431	3.046112
645	.7407362	1.528172	0.48	0.635	-2.516486	3.997958
646	.3763686	1.495415	0.25	0.805	-2.811033	3.563771
647	.5156568	1.519223	0.34	0.739	-2.722491	3.753805
648	.8018389	1.550773	0.52	0.613	-2.503556	4.107233
649	1.046722	1.538038	0.68	0.507	-2.231528	4.324973
650	.4711249	1.536988	0.31	0.763	-2.804888	3.747137
651	.3243177	1.572142	0.21	0.839	-3.026624	3.675259
652	.4837035	1.496532	0.32	0.751	-2.706079	3.673486
653	1.222774	1.596777	0.77	0.456	-2.180675	4.626224
654	.8256976	1.575334	0.52	0.608	-2.532047	4.183442
655	.830623	1.568969	0.53	0.604	-2.513556	4.174802
656	.6707445	1.526126	0.44	0.667	-2.582116	3.923605
657	.4820532	1.563916	0.31	0.762	-2.851354	3.815461
658	.1600427	1.752331	0.09	0.928	-3.574962	3.895048
659	.7022608	1.542733	0.46	0.655	-2.585997	3.990519
660	.2837052	1.674046	0.17	0.868	-3.284438	3.851849
661	.3192319	1.567261	0.20	0.841	-3.021306	3.659769
662	.8486714	1.670777	0.51	0.619	-2.712506	4.409849
663	.3073496	1.587703	0.19	0.849	-3.07676	3.691459
664	.5302313	1.617643	0.33	0.748	-2.917694	3.978157
665	.9045504	1.640825	0.55	0.590	-2.592786	4.401886

	_					
666	.8605262	1.575522	0.55	0.593	-2.497619	4.218671
667	.699134	1.575641	0.44	0.664	-2.659265	4.057533
668	.5608842	1.58933	0.35	0.729	-2.826692	3.948461
669	.676373	1.614638	0.42	0.681	-2.765146	4.117892
670	.0195896	1.538737	0.01	0.990	-3.260152	3.299331
671	.3108759	1.553816	0.20	0.844	-3.001005	3.622757
672	.2078248	1.613322	0.13	0.899	-3.230891	3.64654
673	.3396799	1.632885	0.21	0.838	-3.140732	3.820092
674	.5048942	1.672754	0.30	0.767	-3.060497	4.070286
675	.8666511	1.671672	0.52	0.612	-2.696432	4.429735
676	.9268268	1.672573	0.55	0.588	-2.638178	4.491831
677	.6120224	1.668381	0.37	0.719	-2.944047	4.168092
678	.838168	1.673681	0.50	0.624	-2.729198	4.405534
679	.9353706	1.694134	0.55	0.589	-2.67559	4.546331
680	.9865012	1.640473	0.60	0.557	-2.510084	4.483086
681	.998124	1.651192	0.60	0.555	-2.521309	4.517557
682	.6582736	1.693626	0.39	0.703	-2.951605	4.268152
683	.5003072	1.683829	0.30	0.770	-3.088689	4.089303
684	.6650485	1.79782	0.37	0.717	-3.166915	4.497012
685	.4847984	1.790149	0.27	0.790	-3.330814	4.300411
686	.4784726	1.806545	0.26	0.795	-3.372087	4.329032
687	.8142065	1.777489	0.46	0.653	-2.974422	4.602835
688	.520443	1.821398	0.29	0.779	-3.361775	4.402661
689	.4996449	1.820966	0.27	0.788	-3.381653	4.380943
690	.2164669	1.827286	0.12	0.907	-3.678301	4.111235
691	.3624686	1.823555	0.20	0.845	-3.524347	4.249284
692	.5413907	1.816559	0.30	0.770	-3.330514	4.413295
693	.4493176	1.793804	0.25	0.806	-3.374084	4.272719
694	.5344618	1.83283	0.29	0.775	-3.372122	4.441046
695	.3242425	1.817114	0.18	0.861	-3.548844	4.197328
696	.506646	1.898239	0.27	0.793	-3.539354	4.552646
697	.4664195	1.878674	0.25	0.807	-3.537879	4.470717
698	.524511	1.891773	0.28	0.785	-3.507708	4.55673
699	.317555	1.885007	0.17	0.868	-3.700242	4.335352
700	.5936483	1.891453	0.31	0.758	-3.437888	4.625184
701	.22917	1.897997	0.12	0.905	-3.816315	4.274655
702	.0242088	1.949023	0.01	0.990	-4.130036	4.178453
703	.6126208	1.947471	0.31	0.757	-3.538315	4.763557
704	.857317	1.804984	0.47	0.642	-2.989915	4.704549
705	.9203826	1.866602	0.49	0.629	-3.058186	4.898951
706	.835157	1.852877	0.45	0.659	-3.114157	4.784471
707	.7109495	1.94451	0.37	0.720	-3.433676	4.855575
708	1.15833	2.021947	0.57	0.575	-3.151349	5.468008
709	.5692245	2.056601	0.28	0.786	-3.814317	4.952766
710	.8824258	2.031055	0.43	0.670	-3.446666	5.211518
711	1.203909	1.94407	0.62	0.545	-2.939778	5.347597
712	.7908112	1.997174	0.40	0.698	-3.466064	5.047687
713	1.252039	2.023539	0.62	0.545	-3.061032	5.565111
714	.9080353	1.951073	0.47	0.648	-3.250578	5.066649

715	.9229079	2.007674	0.46	0.652	-3.356347	5.202163
716	.8254043	2.032506	0.41	0.690	-3.50678	5.157589
717	.6722126	2.028812	0.33	0.745	-3.652098	4.996523
718	1.049124	1.985539	0.53	0.605	-3.182952	5.2812
719	.9081177	2.020027	0.45	0.659	-3.397468	5.213703
region1						
bangalore	1.552112	.264238	5.87	0.000	.9889025	2.115322
bhopal	-1.577485	.724963	-2.18	0.046	-3.122707	0322631
bubaneshwar	-1.117692	1.158317	-0.96	0.350	-3.586586	1.351202
chandigarh	5177363	.189371	-2.73	0.015	921371	1141015
chennai	1.230835	.1617885	7.61	0.000	.8859909	1.575679
guwahati	.0338273	1.217757	0.03	0.978	-2.56176	2.629414
hyderabad	.993725	.5893529	1.69	0.112	262451	2.249901
jaipur	-2.24868	.4956544	-4.54	0.000	-3.305142	-1.192217
kanpur	-1.829889	.6158598	-2.97	0.010	-3.142563	5172152
kochi	-1.906473	.7200582	-2.65	0.018	-3.44124	3717047
kolkata	2.068419	.4215919	4.91	0.000	1.169817	2.967021
mumbai	.7001578	.7429922	0.94	0.361	8834925	2.283808
new_delhi	2.311828	.9277826	2.49	0.025	.3343059	4.28935
panaji	5251047	3.427191	-0.15	0.880	-7.82999	6.779781
patna	.5168674	1.130061	0.46	0.654	-1.891801	2.925536
_cons	-8.546655	14.20661	-0.60	0.556	-38.82732	21.73401

Warning: 262 replications returned an infeasible test statistic and were delet > ed from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 one

$$t(15) = -6.0605$$

Prob>|t| = 0.0083

95% confidence set for null hypothesis expression: [-3.108, -1.232]

Warning: 4 replications returned an infeasible test statistic and were deleted > from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 two

$$t(15) = -4.0757$$

Prob>|t| = 0.0030

95% confidence set for null hypothesis expression: [-4, -1.175]

Warning: 12 replications returned an infeasible test statistic and were delete > d from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 three

$$t(15) = -5.1976$$

Prob>|t| = 0.0024

95% confidence set for null hypothesis expression: [-4.586, -1.93]

Warning: 30 replications returned an infeasible test statistic and were delete > d from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 four

$$t(15) = -4.4889$$

Prob>|t| = 0.0098

95% confidence set for null hypothesis expression: [-2.931, -.8826]

Warning: 14 replications returned an infeasible test statistic and were delete > d from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 five

$$t(15) = -6.2949$$

Prob>|t| = 0.0239

95% confidence set for null hypothesis expression: [-3.1, -.7295]

Warning: 43 replications returned an infeasible test statistic and were delete > d from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 one_elec_s

$$t(15) = 2.3492$$

Prob>|t| = 0.0488

95% confidence set for null hypothesis expression: [.00007484, .02155]

Warning: 7 replications returned an infeasible test statistic and were deleted > from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 two_elec_s

$$t(15) = -0.4882$$

Prob>|t| = 0.6530

95% confidence set for null hypothesis expression: [-.02798, .0182]

Warning: 17 replications returned an infeasible test statistic and were delete > d from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 three_elec_s

$$t(15) = -0.5529$$

Prob>|t| = 0.6140

95% confidence set for null hypothesis expression: [-.04134, .02393]

Warning: 12 replications returned an infeasible test statistic and were delete > d from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 four_elec_s

$$t(15) = 2.0598$$

Prob>|t| = 0.0886

95% confidence set for null hypothesis expression: [-.00342, .03402]

Warning: 55 replications returned an infeasible test statistic and were delete > d from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 five_elec_s

t(15) = -1.1439Prob>|t| = 0.2923

95% confidence set for null hypothesis expression: [-.0104, .003528]

(Std. err. adjusted for 16 clusters in region1)

		Robust				
fdi_ihs	Coefficient	std. err.	t	P> t	[95% conf.	interval]
one	-2.521809	.4329821	-5.82	0.000	-3.444688	-1.59893
two	-2.445274	.6168143	-3.96	0.001	-3.759982	-1.130565
three	-2.954383	.6360705	-4.64	0.000	-4.310135	-1.598631
four	-2.518917	.3572401	-7.05	0.000	-3.280356	-1.757477
five	-1.750832	.2537914	-6.90	0.000	-2.291776	-1.209889
one_port	.0780025	.2146798	0.36	0.721	3795767	.5355817
two_port	1338274	.3683375	-0.36	0.721	9189201	.6512654
three_port	.4339113	.4416078	0.98	0.341	5073533	1.375176
four_port	1002283	.297528	-0.34	0.741	7343941	.5339376
five_port	1993316	.2633547	-0.76	0.461	7606589	.3619957
lag_lgdp	1.787986	1.486374	1.20	0.248	-1.380145	4.956118
lag_lpop	2392466	.3449922	-0.69	0.499	9745801	.4960868
date						
553	0531386	.2726175	-0.19	0.848	634209	.5279318
554	4915856	.2838562	-1.73	0.104	-1.096611	.1134396
555	2011631	.3045491	-0.66	0.519	8502942	.447968
556	2330706	.2900432	-0.80	0.434	851283	.3851418
557	.0419503	.2876443	0.15	0.886	571149	.6550495
558	.3595212	.3473569	1.04	0.317	3808525	1.099895
559	.1886232	.3875732	0.49	0.634	6374695	1.014716
560	.0725879	.3760577	0.19	0.850	7289601	.874136
561	172525	.2883515	-0.60	0.559	7871317	.4420816
562	0148782	.320841	-0.05	0.964	6987346	.6689783
563	0206692	.3228138	-0.06	0.950	7087306	.6673921
564	6886596	.4342385	-1.59	0.134	-1.614217	.2368979
565	2724762	.5722185	-0.48	0.641	-1.492131	.9471788
566	253891	.3946473	-0.64	0.530	-1.095062	.5872799
567	4767041	.4660777	-1.02	0.323	-1.470125	.516717
568	3696813	.4982186	-0.74	0.470	-1.431609	.6922464
569	5403537	.4265601	-1.27	0.225	-1.449545	.3688377
570	.1866013	.5124036	0.36	0.721	9055611	1.278764
571	8153742	.427796	-1.91	0.076	-1.7272	.0964513

572	-1.011138	.3618774	-2.79	0.014	-1.782461	2398146
573	6543315	.5183608	-1.26	0.226	-1.759191	.4505284
574	5076918	.3992949	-1.27	0.223	-1.358769	.3433851
575	2355252	.5747304	-0.41	0.688	-1.460534	.9894836
576	939095	.642814	-1.46	0.165	-2.309221	.4310305
577	3909358	.6808716	-0.57	0.574	-1.842179	1.060308
578	6801294	.7255497	-0.94	0.363	-2.226602	.8663431
579	5270653	.6040981	-0.87	0.397	-1.81467	.7605394
580	063629	.5942845	-0.11	0.916	-1.330317	1.203058
581	2179192	.5724227	-0.38	0.709	-1.438009	1.002171
582	1946999	.6041468	-0.32	0.752	-1.482408	1.093008
583	332007	.6723621	-0.49	0.629	-1.765113	1.101099
584	1658243	.646213	-0.26	0.801	-1.543195	1.211546
585	2401748	.5357207	-0.45	0.660	-1.382037	.9016869
586	3415564	.6165591	-0.55	0.588	-1.655721	.9726082
587	561117	.6396735	-0.88	0.394	-1.924549	.8023147
588	4926128	.7842678	-0.63	0.539	-2.16424	1.179015
589	2944903	.8170948	-0.36	0.724	-2.036087	1.447106
590	3660117	.8040592	-0.46	0.655	-2.079823	1.3478
591	9509813	.7925891	-1.20	0.249	-2.640345	.7383824
592	3690977	.7368762	-0.50	0.624	-1.939712	1.201517
593	0681082	.8476523	-0.08	0.937	-1.874836	1.73862
594	0579128	.8229868	-0.07	0.945	-1.812068	1.696242
595	0629258	.9120189	-0.07	0.946	-2.006848	1.880996
596	3587352	.7367502	-0.49	0.633	-1.929081	1.211611
597	3578095	.8023925	-0.45	0.662	-2.068069	1.35245
598	2445909	.7925426	-0.31	0.762	-1.933856	1.444674
599	4503034	.814181	-0.55	0.588	-2.185689	1.285082
600	4520647	1.023073	-0.44	0.665	-2.632693	1.728564
601	6950952	1.003377	-0.69	0.499	-2.833742	1.443552
602	2581425	1.089947	-0.24	0.816	-2.581309	2.065024
603	7293765	1.075477	-0.68	0.508	-3.021702	1.562949
604	4531177	1.067123	-0.42	0.677	-2.727637	1.821402
605	0654205	1.091669	-0.06	0.953	-2.392257	2.261416
606	4621216	1.176432	-0.39	0.700	-2.969628	2.045384
607	1448345	1.098327	-0.13	0.897	-2.485864	2.196195
608	323124	1.135345	-0.28	0.780	-2.743054	2.096806
609	3551441	1.220816	-0.29	0.775	-2.957252	2.246963
610	.0048005	1.197567	0.00	0.997	-2.547754	2.557355
611	.2585495	1.052156	0.25	0.809	-1.984068	2.501167
612	4365031	1.381174	-0.32	0.756	-3.380407	2.507401
613	378156	1.454345	-0.26	0.798	-3.47802	2.721708
614	4604006	1.331298	-0.35	0.734	-3.297995	2.377194
615	2862474	1.333636	-0.21	0.833	-3.128826	2.556331
616	3923705	1.362193	-0.29	0.777	-3.295816	2.511075
617	862861	1.495748	-0.58	0.573	-4.050972	2.32525
618	5025153	1.269621	-0.40	0.698	-3.208649	2.203618
619	0292085	1.356695	-0.02	0.983	-2.920936	2.862519
620	2570664	1.466969	-0.18	0.863	-3.383837	2.869704

621	1522166	1.334787	-0.11	0.911	-2.997248	2.692815
622	34449	1.288062	-0.27	0.793	-3.089929	2.400949
623	3472086	1.247503	-0.28	0.785	-3.006198	2.311781
624	6371813	1.501117	-0.42	0.677	-3.836736	2.562373
625	6350533	1.518852	-0.42	0.682	-3.87241	2.602303
626	3434348	1.56708	-0.22	0.829	-3.683587	2.996718
627	7510653	1.539431	-0.49	0.633	-4.032284	2.530153
628	-1.206129	1.588349	-0.76	0.459	-4.591614	2.179356
629	821033	1.523397	-0.54	0.598	-4.068076	2.42601
630	362353	1.512254	-0.24	0.814	-3.585646	2.86094
631	-1.176385	1.625491	-0.72	0.480	-4.641037	2.288268
632	6653392	1.543719	-0.43	0.673	-3.955697	2.625019
633	2038636	1.474021	-0.14	0.892	-3.345665	2.937937
634	6927723	1.494116	-0.46	0.650	-3.877404	2.49186
635	4254518	1.515482	-0.28	0.783	-3.655626	2.804723
636	7769897	1.701565	-0.46	0.654	-4.403789	2.84981
637	-1.175651	1.661114	-0.71	0.490	-4.716232	2.36493
638	2139529	1.682252	-0.13	0.900	-3.799588	3.371682
639	5750835	1.68076	-0.34	0.737	-4.157538	3.007371
640	4043481	1.654642	-0.24	0.810	-3.931135	3.122439
641	6598934	1.693784	-0.39	0.702	-4.270108	2.950321
642	7448588	1.701497	-0.44	0.668	-4.371513	2.881796
643	6059246	1.798946	-0.34	0.741	-4.440288	3.228438
644	9128067	1.788148	-0.51	0.617	-4.724154	2.898541
645	0944111	1.882205	-0.05	0.961	-4.106235	3.917413
646	4587786	1.838349	-0.25	0.806	-4.377127	3.45957
647	3194904	1.89875	-0.17	0.869	-4.366579	3.727598
648	1291562	2.05204	-0.06	0.951	-4.502976	4.244663
649	.1157272	2.001296	0.06	0.955	-4.149934	4.381388
650	4598702	1.97403	-0.23	0.819	-4.667414	3.747674
651	6066774	2.026871	-0.30	0.769	-4.92685	3.713495
652	4472916	1.91751	-0.23	0.819	-4.534367	3.639784
653	.2917792	2.037735	0.14	0.888	-4.05155	4.635108
654	1052975	2.030961	-0.05	0.959	-4.434189	4.223594
655	1003721	2.013947	-0.05	0.961	-4.392998	4.192254
656	2602506	1.93909	-0.13	0.895	-4.393323	3.872822
657	4489419	2.0703	-0.22	0.831	-4.861682	3.963798
658	7709524	2.386685	-0.32	0.751	-5.85805	4.316145
659	2287344	1.9882	-0.12	0.910	-4.466482	4.009014
660	7067451	2.193437	-0.32	0.752	-5.381945	3.968455
661	6712184	2.011309	-0.33	0.743	-4.958223	3.615786
662	1417789	2.140669	-0.07	0.948	-4.704507	4.420949
663	6831007	2.023062	-0.34	0.740	-4.995156	3.628954
664	4602191	2.045161	-0.23	0.825	-4.819376	3.898937
665	0858999	2.086461	-0.04	0.968	-4.533085	4.361285
666	1299242	2.047483	-0.06	0.950	-4.494031	4.234183
667	2913164	2.042485	-0.14	0.888	-4.64477	4.062137
668	4295662	2.087565	-0.21	0.840	-4.879107	4.019974
669	3140773	2.055193	-0.15	0.881	-4.694617	4.066463

	_					
670	4996014	1.98428	-0.25	0.805	-4.728995	3.729792
671	2083151	1.987644	-0.10	0.918	-4.444878	4.028248
672	3835293	2.08531	-0.18	0.857	-4.828262	4.061204
673	2516742	2.10606	-0.12	0.906	-4.740634	4.237286
674	0864599	2.157179	-0.04	0.969	-4.684378	4.511458
675	.275297	2.176597	0.13	0.901	-4.364009	4.914604
676	.3354727	2.199895	0.15	0.881	-4.353493	5.024438
677	.0206684	2.156305	0.01	0.992	-4.575386	4.616723
678	.2468139	2.189195	0.11	0.912	-4.419344	4.912972
679	.3440165	2.169569	0.16	0.876	-4.280311	4.968344
680	.3951471	2.163899	0.18	0.858	-4.217095	5.007389
681	.4067699	2.166178	0.19	0.854	-4.21033	5.02387
682	.0669195	2.169605	0.03	0.976	-4.557483	4.691323
683	0910468	2.188442	-0.04	0.967	-4.7556	4.573506
684	0127354	2.358285	-0.01	0.996	-5.039301	5.013831
685	1929855	2.347408	-0.08	0.936	-5.196368	4.810397
686	1993113	2.392245	-0.08	0.935	-5.29826	4.899637
687	.1403251	2.349416	0.06	0.953	-4.867337	5.147988
688	1537008	2.381693	-0.06	0.949	-5.230159	4.922757
689	1747597	2.376824	-0.07	0.942	-5.240841	4.891321
690	458197	2.384144	-0.19	0.850	-5.539879	4.623485
691	3124531	2.421238	-0.13	0.899	-5.473201	4.848294
692	1337873	2.393831	-0.06	0.956	-5.236118	4.968544
693	2261152	2.357405	-0.10	0.925	-5.250804	4.798574
694	1412244	2.398182	-0.06	0.954	-5.252828	4.970379
695	3516956	2.392411	-0.15	0.885	-5.450999	4.747607
696	2181399	2.476874	-0.09	0.931	-5.497471	5.061191
697	2583664	2.471221	-0.10	0.918	-5.525649	5.008916
698	2002749	2.493456	-0.08	0.937	-5.51495	5.1144
699	4072309	2.48072	-0.16	0.872	-5.694761	4.880299
700	1311376	2.470067	-0.05	0.958	-5.395961	5.133685
701	4956159	2.485851	-0.20	0.845	-5.794083	4.802851
702	7005771	2.538692	-0.28	0.786	-6.111672	4.710518
703	1496616	2.518856	-0.06	0.953	-5.518476	5.219152
704	.0950346	2.391468	0.04	0.969	-5.002259	5.192328
705	.1581002	2.446457	0.06	0.949	-5.0564	5.372601
706	.0728746	2.450636	0.03	0.977	-5.150532	5.296281
707	0513329	2.522711	-0.02	0.984	-5.428364	5.325699
708	.3125554	2.704435	0.12	0.910	-5.451811	6.076921
709	2765498	2.69444	-0.10	0.920	-6.019613	5.466514
710	.0366515	2.672168	0.01	0.989	-5.658939	5.732242
711	.358135	2.617467	0.14	0.893	-5.220865	5.937135
712	0549631	2.648919	-0.02	0.984	-5.701	5.591074
713	.4062649	2.676077	0.15	0.881	-5.297658	6.110188
714	.062261	2.625397	0.02	0.981	-5.53364	5.658162
715	.0771336	2.663376	0.03	0.977	-5.599718	5.753986
716	02037	2.682413	-0.01	0.994	-5.737799	5.697059
717	1735617	2.675991	-0.06	0.949	-5.877302	5.530178
718	.2033496	2.636129	0.08	0.940	-5.415426	5.822125

719	.0623434	2.675282	0.02	0.982	-5.639885	5.764572
region1						
bangalore	1.345929	.4570121	2.95	0.010	.3718311	2.320028
bhopal	-1.285348	.954139	-1.35	0.198	-3.319047	.7483513
bubaneshwar	7555617	1.506379	-0.50	0.623	-3.966333	2.45521
chandigarh	6071041	.4059598	-1.50	0.156	-1.472387	.2581788
chennai	.8872419	.3952065	2.25	0.040	.0448793	1.729605
guwahati	.4746861	1.591748	0.30	0.770	-2.918044	3.867416
hyderabad	1.091212	.8095308	1.35	0.198	6342621	2.816686
jaipur	-2.042446	.6558565	-3.11	0.007	-3.440371	6445207
kanpur	-2.185615	.6959193	-3.14	0.007	-3.668932	7022983
kochi	-1.596929	1.009562	-1.58	0.135	-3.74876	.5549029
kolkata	2.086688	.4807975	4.34	0.001	1.061892	3.111483
mumbai	.1535727	1.085872	0.14	0.889	-2.160909	2.468054
new_delhi	2.940743	1.053187	2.79	0.014	.6959277	5.185557
panaji	.9890402	4.379746	0.23	0.824	-8.346168	10.32425
patna	1.139411	1.540179	0.74	0.471	-2.143404	4.422225
_cons	-15.83373	18.68761	-0.85	0.410	-55.66542	23.99796

Warning: 631 replications returned an infeasible test statistic and were delet > ed from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 one

$$t(15) = -5.6943$$

Prob>|t| = 0.0207

95% confidence set for null hypothesis expression: [-3.752, -1.275]

Warning: 14 replications returned an infeasible test statistic and were delete > d from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 two

$$t(15) = -3.9614$$

Prob>|t| = 0.0062

95% confidence set for null hypothesis expression: [-3.965, -1.075]

Warning: 10 replications returned an infeasible test statistic and were delete > d from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 three

$$t(15) = -4.6397$$

Prob>|t| = 0.0038

95% confidence set for null hypothesis expression: [-4.404, -1.54]

Warning: 16 replications returned an infeasible test statistic and were delete > d from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 four

$$t(15) = -7.0839$$

Prob>|t| = 0.0007

95% confidence set for null hypothesis expression: [-3.248, -1.792]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 five

$$t(15) = -6.8766$$

Prob>|t| = 0.0113

95% confidence set for null hypothesis expression: [-2.673, -.8117]

Warning: 20 replications returned an infeasible test statistic and were delete > d from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 one_port

$$t(15) = 0.3728$$

Prob>|t| = 0.7180

95% confidence set for null hypothesis expression: [-.3915, .5421]

Warning: 7 replications returned an infeasible test statistic and were deleted > from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 two port

$$t(15) = -0.3672$$

Prob>|t| = 0.7325

95% confidence set for null hypothesis expression: [-.9785, .7022]

Warning: 9 replications returned an infeasible test statistic and were deleted > from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 three port

$$t(15) = 0.9868$$

Prob>|t| = 0.3485

95% confidence set for null hypothesis expression: [-.5367, 1.409]

Warning: 11 replications returned an infeasible test statistic and were delete > d from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 four_port

$$t(15) = -0.3366$$

Prob>|t| = 0.7473

95% confidence set for null hypothesis expression: [-.7836, .5765]

Warning: 92 replications returned an infeasible test statistic and were delete > d from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 five_port

$$t(15) = -0.7842$$

Prob>|t| = 0.4963

95% confidence set for null hypothesis expression: [-.9562, .5152]

Linear regression Number of obs = 2,688

 $\frac{F(14, 15)}{Prob > F}$ = . R-squared = 0.8163 Root MSE = 1.063

(Std. err. adjusted for 16 clusters in region1)

	•	Robust				
fdi_ihs	Coefficient	std. err.	t	P> t	[95% conf.	interval]
one	-2.230561	.3922842	-5.69	0.000	-3.066695	-1.394427
two	-2.607272	.6942573	-3.76	0.002	-4.087047	-1.127498
three	-3.394488	.6132158	-5.54	0.000	-4.701526	-2.087449
four	-1.850876	.3808983	-4.86	0.000	-2.662741	-1.03901
five	-1.779674	.2001148	-8.89	0.000	-2.206208	-1.353139
one_grad_s	.0691966	.0243124	2.85	0.012	.0173761	.1210172
two_grad_s	0295143	.0403602	-0.73	0.476	1155401	.0565115
three_grad_s	0654681	.1073694	-0.61	0.551	2943207	.1633844
four_grad_s	.1416907	.0338227	4.19	0.001	.0695993	.2137821
five_grad_s	0310308	.0166467	-1.86	0.082	0665123	.0044507
lag_lgdp	.8260593	1.023816	0.81	0.432	-1.356153	3.008271
lag_lpop	1019279	.3173176	-0.32	0.752	7782744	.5744186
مدمة						
date	0521206	2726175	-0.19	0.848	624200	E270210
553	0531386 4915856	.2726175			634209	.5279318
554	ł	.2838562	-1.73	0.104	-1.096611	.1134396
555	2011631	.3045491	-0.66	0.519	8502942	.447968
556	2330706	.2900432	-0.80	0.434	851283	.3851418
557	.0419503	.2876443	0.15	0.886	571149	.6550495
558	.3595212	.3473569	1.04	0.317	3808525	1.099895
559	.1886232	.3875732	0.49	0.634	6374695	1.014716
560	.0725879	.3760577	0.19	0.850	7289601	.874136
561	172525	.2883515	-0.60	0.559	7871317	.4420816
562	0148782	.320841	-0.05	0.964	6987346	.6689783
563	0206692	.3228138	-0.06	0.950	7087306	.6673921
564	5337533	.3778824	-1.41	0.178	-1.339191	.271684
565	1175698	.5061045	-0.23	0.819	-1.196306	.9611664
566	0989846	.334575	-0.30	0.771	8121144	.6141452
567	3217978	.4370132	-0.74	0.473	-1.253269	.6096738
568	214775	.4669073	-0.46	0.652	-1.209964	.7804144
569	3854474	.3833061	-1.01	0.331	-1.202445	.4315502
570	.3415076	.4770755	0.72	0.485	6753548	1.35837
571	9381331	.4361666	-2.15	0.048	-1.8678	008466
572	-1.133897	.3659091	-3.10	0.007	-1.913814	35398
573	7770904	.4969693	-1.56	0.139	-1.836355	.2821746
574	6304507	.389849	-1.62	0.127	-1.461394	.2004928
575	3582841	.5429603	-0.66	0.519	-1.515577	.7990084
576	9263934	.5951901	-1.56	0.140	-2.195011	.3422242
	•					

	_					
577	3782342	.575723	-0.66	0.521	-1.605359	.8488903
578	6674278	.6956086	-0.96	0.353	-2.150082	.8152268
579	5143637	.5358045	-0.96	0.352	-1.656404	.6276767
580	0509274	.5449815	-0.09	0.927	-1.212528	1.110673
581	2052175	.5029915	-0.41	0.689	-1.277319	.8668835
582	1819983	.5364532	-0.34	0.739	-1.325421	.9614247
583	3193054	.5983454	-0.53	0.601	-1.594648	.9560376
584	1531227	.5596705	-0.27	0.788	-1.346032	1.039787
585	2274732	.486674	-0.47	0.647	-1.264794	.8098479
586	3288548	.5599517	-0.59	0.566	-1.522364	.8646541
587	5484154	.5803902	-0.94	0.360	-1.785488	.688657
588	3309457	.6429977	-0.51	0.614	-1.701463	1.039571
589	1328232	.6877843	-0.19	0.849	-1.598801	1.333154
590	2043447	.6898942	-0.30	0.771	-1.674819	1.26613
591	7893143	.7194761	-1.10	0.290	-2.322841	.7442127
592	2074306	.6134348	-0.34	0.740	-1.514936	1.100075
593	.0935588	.6840491	0.14	0.893	-1.364457	1.551575
594	.1037542	.671694	0.15	0.879	-1.327928	1.535436
595	.0987412	.7447048	0.13	0.896	-1.48856	1.686042
596	1970681	.613966	-0.32	0.753	-1.505706	1.11157
597	1961424	.6403349	-0.31	0.764	-1.560984	1.168699
598	0829239	.6404032	-0.13	0.899	-1.447911	1.282063
599	2886364	.6840428	-0.42	0.679	-1.746639	1.169366
600	1562551	.7751589	-0.20	0.843	-1.808467	1.495957
601	3992856	.7809127	-0.51	0.617	-2.063762	1.26519
602	.0376671	.8529416	0.04	0.965	-1.780335	1.855669
603	3453138	.7297466	-0.47	0.643	-1.900732	1.210104
604	069055	.7593519	-0.09	0.929	-1.687575	1.549465
605	.3186422	.7634351	0.42	0.682	-1.308581	1.945866
606	078059	.8659348	-0.09	0.929	-1.923755	1.767637
607	.2392282	.7939443	0.30	0.767	-1.453024	1.931481
608	.0609387	.8490759	0.07	0.944	-1.748824	1.870701
609	.0289186	.9527702	0.03	0.976	-2.001863	2.0597
610	.3888632	.9186455	0.42	0.678	-1.569183	2.34691
611	.6426122	.7592986	0.85	0.411	9757945	2.261019
612	.1116517	1.018816	0.11	0.914	-2.059902	2.283206
613	.1699988	1.110319	0.15	0.880	-2.19659	2.536588
614	.0877542	.9736445	0.09	0.929	-1.98752	2.163028
615	.2619074	1.03106	0.25	0.803	-1.935746	2.459561
616	.1557843	1.007649	0.15	0.879	-1.99197	2.303538
617	3147062	1.17979	-0.27	0.793	-2.829369	2.199957
618	.0456395	.9158831	0.05	0.961	-1.906519	1.997798
619	.5189463	.9716112	0.53	0.601	-1.551994	2.589886
620	.2910884	1.139242	0.26	0.802	-2.137149	2.719326
621	.3959382	.9576457	0.41	0.685	-1.645235	2.437112
622	.2036647	.9367276	0.22	0.831	-1.792923	2.200252
623	.2009462	.9142077	0.22	0.829	-1.747641	2.149534
624	.0279471	1.109266	0.03	0.980	-2.336397	2.392291
625	.030075	1.12371	0.03	0.979	-2.365055	2.425205

626	.3216936	1.159751	0.28	0.785	-2.150258	2.793645
627	0859369	1.134356	-0.08	0.941	-2.503761	2.331887
628	5410006	1.157088	-0.47	0.647	-3.007275	1.925274
629	1559046	1.114144	-0.14	0.891	-2.530646	2.218837
630	.3027754	1.103889	0.27	0.788	-2.050109	2.655659
631	5112564	1.229313	-0.42	0.683	-3.131475	2.108962
632	0002109	1.134007	-0.00	1.000	-2.41729	2.416868
633	.4612648	1.056362	0.44	0.669	-1.790318	2.712847
634	0276439	1.096957	-0.03	0.980	-2.365753	2.310465
635	.2396766	1.11397	0.22	0.833	-2.134694	2.614047
636	.0026099	1.235232	0.00	0.998	-2.630225	2.635445
637	3960513	1.235121	-0.32	0.753	-3.028649	2.236547
638	.5656467	1.224566	0.46	0.651	-2.044454	3.175748
639	.2045162	1.175309	0.17	0.864	-2.300596	2.709629
640	.3752516	1.20145	0.31	0.759	-2.185579	2.936083
641	.5194088	1.302767	0.40	0.696	-2.257374	3.296192
642	.4344434	1.299995	0.33	0.743	-2.336429	3.205316
643	.5733775	1.318617	0.43	0.670	-2.237188	3.383944
644	.2664955	1.343692	0.20	0.845	-2.597515	3.130506
645	1.084891	1.488029	0.73	0.477	-2.086768	4.25655
646	.7205235	1.411567	0.51	0.617	-2.288161	3.729208
647	.8598118	1.477388	0.58	0.569	-2.289166	4.00879
648	1.180278	1.510825	0.78	0.447	-2.039969	4.400525
649	1.425161	1.50124	0.95	0.358	-1.774655	4.624978
650	.8495639	1.471127	0.58	0.572	-2.286069	3.985196
651	.7027567	1.52864	0.46	0.652	-2.555462	3.960975
652	.8621425	1.472682	0.59	0.567	-2.276805	4.00109
653	1.601213	1.554596	1.03	0.319	-1.712329	4.914756
654	1.204137	1.525872	0.79	0.442	-2.048183	4.456456
655	1.209062	1.547233	0.78	0.447	-2.088788	4.506912
656	1.049183	1.468246	0.71	0.486	-2.080308	4.178675
657	.8604922	1.525998	0.56	0.581	-2.392096	4.11308
658	.5384816	1.688875	0.32	0.754	-3.061269	4.138233
659	1.0807	1.528432	0.71	0.490	-2.177077	4.338476
660	.6838	1.602465	0.43	0.676	-2.731773	4.099373
661	.7193267	1.606554	0.45	0.661	-2.704962	4.143616
662	1.248766	1.616345	0.77	0.452	-2.196392	4.693925
663	.7074444	1.548666	0.46	0.654	-2.593459	4.008348
664	.9303261	1.567123	0.59	0.562	-2.409918	4.27057
665	1.304645	1.618643	0.81	0.433	-2.145411	4.754701
666	1.260621	1.522805	0.83	0.421	-1.985162	4.506404
667	1.099229	1.527141	0.72	0.483	-2.155796	4.354253
668	.960979	1.530092	0.63	0.539	-2.300334	4.222292
669	1.076468	1.567806	0.69	0.503	-2.265232	4.418168
670	.3999135	1.481708	0.27	0.791	-2.758271	3.558099
671	.6911999	1.492048	0.46	0.650	-2.489024	3.871424
672	.6141608	1.544584	0.40	0.697	-2.678041	3.906363
673	.7460158	1.569598	0.48	0.641	-2.599503	4.091535
674	.9112301	1.625483	0.56	0.583	-2.553404	4.375864

675	1.272987	1.650792	0.77	0.453	-2.245593	4.791567
676	1.333163	1.634701	0.82	0.428	-2.151119	4.817445
677	1.018358	1.602168	0.64	0.535	-2.396581	4.433298
678	1.244504	1.621767	0.77	0.455	-2.21221	4.701218
679	1.341707	1.616108	0.83	0.419	-2.102947	4.78636
680	1.392837	1.555913	0.90	0.385	-1.923514	4.709188
681	1.40446	1.597131	0.88	0.393	-1.999745	4.808665
682	1.06461	1.664023	0.64	0.532	-2.482171	4.611391
683	.9066432	1.613195	0.56	0.582	-2.531801	4.345088
684	1.102457	1.755203	0.63	0.539	-2.638669	4.843583
685	.9222073	1.740505	0.53	0.604	-2.787592	4.632007
686	.9158814	1.7775	0.52	0.614	-2.872771	4.704534
687	1.25023	1.73672	0.72	0.483	-2.4515	4.95196
688	.9565597	1.76916	0.54	0.597	-2.814316	4.727435
689	.9358541	1.770245	0.53	0.605	-2.837335	4.709043
690	.6527682	1.768774	0.37	0.717	-3.117284	4.422821
691	.7988614	1.823312	0.44	0.668	-3.087436	4.685159
692	.9778745	1.770949	0.55	0.589	-2.796813	4.752562
693	.8858918	1.757124	0.50	0.621	-2.859329	4.631112
694	.971126	1.775003	0.55	0.592	-2.812203	4.754455
695	.7609961	1.76824	0.43	0.673	-3.007919	4.529911
696	.9610884	1.852806	0.52	0.612	-2.988073	4.91025
697	.9208619	1.841828	0.50	0.624	-3.004902	4.846626
698	.9789534	1.831091	0.53	0.601	-2.923924	4.881831
699	.7719974	1.83917	0.42	0.681	-3.148102	4.692096
700	1.048091	1.856622	0.56	0.581	-2.909205	5.005387
701	.6836123	1.845547	0.37	0.716	-3.250078	4.617303
702	.4786512	1.896025	0.25	0.804	-3.56263	4.519932
703	1.068978	1.875738	0.57	0.577	-2.929063	5.067019
704	1.313674	1.757682	0.75	0.466	-2.432736	5.060084
705	1.37674	1.811814	0.76	0.459	-2.48505	5.23853
706	1.291514	1.808336	0.71	0.486	-2.562863	5.145891
707	1.167307	1.881409	0.62	0.544	-2.842821	5.177435
708	1.644854	1.961588	0.84	0.415	-2.536172	5.82588
709	1.055749	1.975746	0.53	0.601	-3.155454	5.266951
710	1.36895	1.988176	0.69	0.502	-2.868747	5.606647
711	1.690434	1.887796	0.90	0.385	-2.333308	5.714175
712	1.277335	1.945974	0.66	0.522	-2.870411	5.425081
713	1.738563	1.952529	0.89	0.387	-2.423154	5.900281
714	1.394559	1.868741	0.75	0.467	-2.588568	5.377687
715	1.409432	1.974673	0.71	0.486	-2.799485	5.618349
716	1.311928	1.974594	0.66	0.517	-2.89682	5.520677
717	1.158737	1.972237	0.59	0.566	-3.044987	5.362461
718	1.535648	1.932512	0.79	0.439	-2.583405	5.654701
719	1.394642	1.965972	0.71	0.489	-2.795729	5.585013
region1						
bangalore	1.38095	.2184872	6.32	0.000	.9152558	1.846644
bhopal	-1.896506	.6472399	-2.93	0.010	-3.276065	5169463
- '	•					

bubaneshwar	-1.594882	1.12527	-1.42	0.177	-3.993338	.8035728
chandigarh	3865413	.1716164	-2.25	0.040	752333	0207497
chennai	1.136098	.1187189	9.57	0.000	.8830545	1.389141
guwahati	4061211	1.177565	-0.34	0.735	-2.916042	2.1038
hyderabad	.7534814	.5423585	1.39	0.185	4025283	1.909491
jaipur	-2.429144	.4524484	-5.37	0.000	-3.393515	-1.464773
kanpur	-1.843116	.5935744	-3.11	0.007	-3.10829	577942
kochi	-2.014827	.7087718	-2.84	0.012	-3.525538	5041153
kolkata	1.935426	.4009626	4.83	0.000	1.080794	2.790057
mumbai	.831742	.7340423	1.13	0.275	7328321	2.396316
new_delhi	1.832855	.9276743	1.98	0.067	1444361	3.810146
panaji	-1.25071	3.363634	-0.37	0.715	-8.420128	5.918707
patna	.1737695	1.082684	0.16	0.875	-2.133918	2.481457
_cons	-5.449672	13.92794	-0.39	0.701	-35.13637	24.23703

Warning: 336 replications returned an infeasible test statistic and were delet > ed from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 one

$$t(15) = -5.4969$$

Prob>|t| = 0.0153

95% confidence set for null hypothesis expression: [-3.379, -1.094]

Warning: 8 replications returned an infeasible test statistic and were deleted > from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 two

$$t(15) = -3.7498$$

Prob>|t| = 0.0059

95% confidence set for null hypothesis expression: [-4.278, -1.028]

Warning: 11 replications returned an infeasible test statistic and were delete > d from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 three

$$t(15) = -5.5509$$

Prob>|t| = 0.0018

95% confidence set for null hypothesis expression: [-4.724, -2.098]

Warning: 59 replications returned an infeasible test statistic and were delete > d from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 four

$$t(15) = -4.8612$$

Prob>|t| = 0.0106

95% confidence set for null hypothesis expression: [-2.843, -.8978]

Warning: 5 replications returned an infeasible test statistic and were deleted > from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 five

$$t(15) = -8.5489$$

Prob>|t| = 0.0063

95% confidence set for null hypothesis expression: [-2.5, -1.046]

Warning: 135 replications returned an infeasible test statistic and were delet > ed from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 one_grad_s

$$t(15) = 2.7728$$

Prob>|t| = 0.0620

95% confidence set for null hypothesis expression: [-.006589, .1437]

Warning: 58 replications returned an infeasible test statistic and were delete > d from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 two grad s

$$t(15) = -0.7239$$

Prob>|t| = 0.5704

95% confidence set for null hypothesis expression: [-.1817, .1036]

Warning: 17 replications returned an infeasible test statistic and were delete > d from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 three_grad_s

$$t(15) = -0.6125$$

Prob>|t| = 0.6005

95% confidence set for null hypothesis expression: [-.3718, .2124]

Warning: 47 replications returned an infeasible test statistic and were delete > d from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 four_grad_s

$$t(15) = 4.1471$$

Prob>|t| = 0.0183

95% confidence set for null hypothesis expression: [.04374, .2301]

Warning: 80 replications returned an infeasible test statistic and were delete > d from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 five_grad_s

$$t(15) = -1.9915$$

Prob>|t| = 0.1053

95% confidence set for null hypothesis expression: [-.07308, .008888]

Linear regression Number of obs = 2,688

 $\frac{F(14, 15)}{Prob > F}$ = . R-squared = 0.8120 Root MSE = 1.0752

(Std. err. adjusted for 16 clusters in region1)

	<u> </u>					
		Robust				
fdi_ihs	Coefficient	std. err.	t	P> t	[95% conf.	interval]
one	-3.060741	.5067608	-6.04	0.000	-4.140876	-1.980606
two	-3.035161	1.22462	-2.48	0.026	-5.645378	424945
three	-3.298453	.7765257	-4.25	0.001	-4.953579	-1.643328
four	-1.911575	.3622124	-5.28	0.000	-2.683613	-1.139538
five	-1.662215	.2483791	-6.69	0.000	-2.191622	-1.132807
one_manu_s	0189364	.0132481	-1.43	0.173	0471741	.0093013
two_manu_s	0132812	.0363887	-0.36	0.720	0908418	.0642795
three_manu_s	0155358	.0214674	-0.72	0.480	0612925	.030221
four_manu_s	.0111535	.0153681	0.73	0.479	0216028	.0439097
five_manu_s	0002121	.0072916	-0.03	0.977	0157539	.0153296
lag_lgdp	1.550982	1.346761	1.15	0.267	-1.319572	4.421536
lag_lpop	0096946	.3459456	-0.03	0.978	7470601	.727671
date						
553	0531386	.2726175	-0.19	0.848	634209	.5279318
554	4915856	.2838562	-1.73	0.104	-1.096611	.1134396
555	2011631	.3045491	-0.66	0.519	8502942	.447968
556	2330706	.2900432	-0.80	0.434	851283	.3851418
557	.0419503	.2876443	0.15	0.886	571149	.6550495
558	.3595212	.3473569	1.04	0.317	3808525	1.099895
559	.1886232	.3875732	0.49	0.634	6374695	1.014716
560	.0725879	.3760577	0.19	0.850	7289601	.874136
561	172525	.2883515	-0.60	0.559	7871317	.4420816
562	0148782	.320841	-0.05	0.964	6987346	.6689783
563	0206692	.3228138	-0.06	0.950	7087306	.6673921
564	6527391	.4162443	-1.57	0.138	-1.539943	.2344647
565	2365556	.5492425	-0.43	0.673	-1.407238	.9341272
566	2179704	.3820989	-0.57	0.577	-1.032395	.5964542
567	4407835	.4368675	-1.01	0.329	-1.371944	.4903774
568	3337608	.4704496	-0.71	0.489	-1.3365	.6689788
569	5044332	.4170173	-1.21	0.245	-1.393284	.3844181
570	.2225219	.5036309	0.44	0.665	8509421	1.295986
571	218253	.4991064	-0.44	0.668	-1.282073	.8455672
572	4140167	.5183789	-0.80	0.437	-1.518915	.6908816
573	0572103	.7253202	-0.08	0.938	-1.603194	1.488773
574	.0894294	.6345889	0.14	0.890	-1.263165	1.442024
575	.361596	.7431343	0.49	0.634	-1.222357	1.945549
576	3108329	.7628021	-0.41	0.689	-1.936707	1.315041

577	.2373263	.8451786	0.28	0.783	-1.564129	2.038782
578	0518673	.8152062	-0.06	0.950	-1.789438	1.685704
579	.1011968	.7867732	0.13	0.899	-1.575771	1.778164
580	.5646331	.6668136	0.85	0.410	8566464	1.985913
581	.4103429	.7060057	0.58	0.570	-1.094473	1.915159
582	.4335622	.738358	0.59	0.566	-1.140211	2.007335
583	.2962551	.7833711	0.38	0.711	-1.373461	1.965971
584	.4624378	.77911	0.59	0.562	-1.198196	2.123071
585	.3880873	.6725789	0.58	0.572	-1.045481	1.821655
586	.2867057	.7518643	0.38	0.708	-1.315855	1.889266
587	.0671451	.7572955	0.09	0.931	-1.546992	1.681282
588	.170138	.8738983	0.19	0.848	-1.692532	2.032808
589	.3682605	.8830668	0.42	0.683	-1.513952	2.250473
590	.296739	.9022278	0.33	0.747	-1.626314	2.219792
591	2882305	.9023181	-0.32	0.754	-2.211476	1.635015
592	.2936531	.7831265	0.37	0.713	-1.375542	1.962848
593	.5946426	.9175818	0.65	0.527	-1.361137	2.550422
594	.604838	.9338	0.65	0.527	-1.38551	2.595186
595	.599825	.9615815	0.62	0.542	-1.449737	2.649387
596	.3040156	.7864965	0.39	0.705	-1.372362	1.980393
597	.3049413	.8429213	0.36	0.723	-1.491703	2.101585
598	.4181599	.8432384	0.50	0.627	-1.37916	2.21548
599	.2124473	.8493593	0.25	0.806	-1.597919	2.022814
600	.2417687	1.07577	0.22	0.825	-2.051181	2.534719
601	0012618	1.012372	-0.00	0.999	-2.159082	2.156558
602	.4356909	1.111058	0.39	0.700	-1.932474	2.803856
603	.337212	1.089451	0.31	0.761	-1.984897	2.659321
604	.6134708	1.134493	0.54	0.597	-1.804645	3.031586
605	1.001168	1.095577	0.91	0.375	-1.333999	3.336335
606	.6044669	1.099562	0.55	0.591	-1.739195	2.948129
607	.9217541	1.197597	0.77	0.453	-1.630863	3.474371
608	.7434645	1.108385	0.67	0.513	-1.619003	3.105932
609	.7114444	1.329271	0.54	0.600	-2.12183	3.544719
610	1.071389	1.371379	0.78	0.447	-1.851637	3.994415
611	1.325138	1.175697	1.13	0.277	-1.180801	3.831077
612	.6682576	1.419255	0.47	0.645	-2.356812	3.693327
613	.7266047	1.528026	0.48	0.641	-2.530306	3.983515
614	.6443601	1.244842	0.52	0.612	-2.008958	3.297678
615	.8185134	1.434921	0.57	0.577	-2.239948	3.876975
616	.7123903	1.379683	0.52	0.613	-2.228335	3.653116
617	.2418998	1.662139	0.15	0.886	-3.300865	3.784665
618	.6022454	1.376606	0.44	0.668	-2.33192	3.536411
619	1.075552	1.299804	0.83	0.421	-1.694915	3.84602
620	.8476943	1.604238	0.53	0.605	-2.571658	4.267047
621	.9525442	1.282984	0.74	0.469	-1.782071	3.687159
622	.7602707	1.348792	0.56	0.581	-2.11461	3.635152
623	.7575521	1.425764	0.53	0.603	-2.281391	3.796495
624	.4643621	1.536681	0.30	0.767	-2.810996	3.73972
625	.4664901	1.64134	0.28	0.780	-3.031943	3.964923

	_					
626	.7581086	1.559804	0.49	0.634	-2.566536	4.082753
627	.3504781	1.574705	0.22	0.827	-3.005926	3.706882
628	1045856	1.579328	-0.07	0.948	-3.470844	3.261673
629	.2805104	1.464559	0.19	0.851	-2.841123	3.402144
630	.7391904	1.502862	0.49	0.630	-2.464084	3.942465
631	0748413	1.651201	-0.05	0.964	-3.594292	3.44461
632	.4362041	1.545871	0.28	0.782	-2.858742	3.73115
633	.8976798	1.399032	0.64	0.531	-2.084287	3.879646
634	.4087711	1.435049	0.28	0.780	-2.649963	3.467505
635	.6760916	1.573905	0.43	0.674	-2.678608	4.030791
636	.3503838	1.669845	0.21	0.837	-3.208806	3.909573
637	0482774	1.6092	-0.03	0.976	-3.478206	3.381652
638	.9134206	1.601743	0.57	0.577	-2.500613	4.327454
639	.5522901	1.512009	0.37	0.720	-2.670481	3.775061
640	.7230255	1.588122	0.46	0.655	-2.661976	4.108027
641	.9378054	1.442937	0.65	0.526	-2.137742	4.013353
642	.8528401	1.40074	0.61	0.552	-2.132766	3.838446
643	.9917742	1.332341	0.74	0.468	-1.848044	3.831592
644	.6848921	1.481421	0.46	0.650	-2.472682	3.842466
645	1.503288	1.655356	0.91	0.378	-2.025021	5.031596
646	1.13892	1.544063	0.74	0.472	-2.152171	4.430012
647	1.278208	1.667625	0.77	0.455	-2.27625	4.832667
648	1.499112	1.680212	0.89	0.386	-2.082176	5.0804
649	1.743996	1.599315	1.09	0.293	-1.664864	5.152856
650	1.168399	1.583349	0.74	0.472	-2.20643	4.543227
651	1.021591	1.656502	0.62	0.547	-2.509159	4.552342
652	1.180977	1.643441	0.72	0.483	-2.321936	4.68389
653	1.920048	1.650934	1.16	0.263	-1.598834	5.43893
654	1.522971	1.618369	0.94	0.362	-1.926501	4.972444
655	1.527897	1.666701	0.92	0.374	-2.024592	5.080386
656	1.368018	1.60113	0.85	0.406	-2.04471	4.780747
657	1.179327	1.653763	0.71	0.487	-2.345585	4.704239
658	.8573163	1.831392	0.47	0.646	-3.046204	4.760836
659	1.399534	1.604566	0.87	0.397	-2.020518	4.819587
660	.9383362	1.745327	0.54	0.599	-2.781741	4.658413
661	.9738628	1.845095	0.53	0.605	-2.958864	4.90659
662	1.503302	1.722053	0.87	0.396	-2.167166	5.173771
663	.9619805	1.702562	0.57	0.580	-2.666944	4.590905
664	1.184862	1.72287	0.69	0.502	-2.487348	4.857073
665	1.559181	1.755759	0.89	0.389	-2.18313	5.301493
666	1.515157	1.646895	0.92	0.372	-1.995115	5.02543
667	1.353765	1.648022	0.82	0.424	-2.15891	4.86644
668	1.215515	1.680332	0.72	0.481	-2.366028	4.797058
669	1.331004	1.71921	0.77	0.451	-2.333406	4.995414
670	.8971878	1.672505	0.54	0.600	-2.667671	4.462047
671	1.188474	1.6482	0.72	0.482	-2.324582	4.70153
672	1.035172	1.693548	0.61	0.550	-2.574541	4.644885
673	1.167027	1.704974	0.68	0.504	-2.467038	4.801092
674	1.332241	1.777726	0.75	0.465	-2.456891	5.121373

675	1 602000	1 772204	0.06	0.254	2 002550	E 471EE2
675	1.693998	1.772294	0.96	0.354	-2.083558	5.471553
676	1.754174	1.814091	0.97	0.349	-2.112469	5.620817
677	1.439369	1.740941	0.83	0.421	-2.271358	5.150097
678	1.665515	1.75503	0.95	0.358	-2.075242	5.406272
679	1.762717	1.734075	1.02	0.325	-1.933376	5.458811
680	1.813848	1.720025	1.05	0.308	-1.852299	5.479995
681	1.825471	1.731441	1.05	0.308	-1.865009	5.515951
682	1.48562	1.765683	0.84	0.413	-2.277843	5.249084
683	1.327654	1.766161	0.75	0.464	-2.436829	5.092137
684	1.432661	1.95943	0.73	0.476	-2.743765	5.609087
685	1.252411	1.84594	0.68	0.508	-2.682117	5.186939
686	1.246085	1.904126	0.65	0.523	-2.812464	5.304634
687	1.584418	1.822354	0.87	0.398	-2.299837	5.468674
688	1.29048	1.883123	0.69	0.504	-2.723301	5.304262
689	1.269508	1.900304	0.67	0.514	-2.780894	5.31991
690	.9861577	1.893762	0.52	0.610	-3.0503	5.022616
691	1.131988	1.907799	0.59	0.562	-2.93439	5.198365
692	1.310739	1.8703	0.70	0.494	-2.675711	5.297189
693	1.218496	1.865655	0.65	0.524	-2.758053	5.195045
694	1.303472	1.924089	0.68	0.508	-2.797628	5.404571
695	1.093084	1.872973	0.58	0.568	-2.899062	5.085231
696	1.241025	1.946262	0.64	0.533	-2.907336	5.389385
697	1.200798	1.920166	0.63	0.541	-2.891938	5.293535
698	1.25889	1.91563	0.66	0.521	-2.82418	5.341959
699	1.051934	1.967215	0.53	0.601	-3.141087	5.244954
700	1.328027	1.970948	0.67	0.511	-2.872949	5.529003
701	.9635487	1.937374	0.50	0.626	-3.165866	5.092963
702	.7585876	2.030497	0.37	0.714	-3.569314	5.08649
703	1.269113	1.89887	0.67	0.514	-2.778234	5.316459
704	1.513809	1.890722	0.80	0.436	-2.51617	5.543787
705	1.576874	1.931079	0.82	0.427	-2.539122	5.692871
706	1.491649	1.919235	0.78	0.449	-2.599104	5.582401
707	1.367441	2.033226	0.67	0.511	-2.966278	5.701161
708	1.756287	2.147079	0.82	0.426	-2.820103	6.332677
709	1.167182	2.201863	0.53	0.604	-3.525979	5.860343
710	1.480383	2.129807	0.70	0.498	-3.059192	6.019959
711	1.801867	2.081503	0.87	0.400	-2.634751	6.238484
712	1.388768	2.131322	0.65	0.525	-3.154036	5.931573
713	1.849997	2.074774	0.89	0.387	-2.572279	6.272272
714	1.505993	2.078207	0.72	0.480	-2.923601	5.935586
715	1.520865	2.106094	0.72	0.481	-2.968169	6.009899
716	1.423362	2.108875	0.67	0.510	-3.071598	5.918321
717	1.27017	2.099201	0.61	0.554	-3.20417	5.74451
718	1.647081	2.081341	0.79	0.441	-2.789192	6.083354
719	1.506075	2.107446	0.71	0.486	-2.985841	5.997991
region1						
bangalore	1.413455	.2599379	5.44	0.000	.8594109	1.9675
bhopal	-1.615466	.7947903	-2.03	0.060	-3.309521	.0785899

bubaneshwar	-1.012173	1.500021	-0.67	0.510	-4.209392	2.185046
chandigarh	7518229	.3588793	-2.09	0.054	-1.516756	.0131103
chennai	1.095151	.1621089	6.76	0.000	.7496246	1.440678
guwahati	.0145075	1.565861	0.01	0.993	-3.323046	3.352061
hyderabad	1.027718	.6677543	1.54	0.145	3955664	2.451003
jaipur	-2.388901	.5307431	-4.50	0.000	-3.520153	-1.257649
kanpur	-2.229521	.7519975	-2.96	0.010	-3.832366	626676
kochi	-1.825605	.8744584	-2.09	0.054	-3.689469	.0382592
kolkata	1.859496	.4386477	4.24	0.001	.9245404	2.794451
mumbai	.3223054	.9829058	0.33	0.748	-1.772709	2.41732
new_delhi	2.833359	1.14842	2.47	0.026	.3855591	5.28116
panaji	.8422627	4.360228	0.19	0.849	-8.451344	10.13587
patna	.6861198	1.274385	0.54	0.598	-2.030168	3.402408
_cons	-15.29928	18.57681	-0.82	0.423	-54.89482	24.29627

Warning: 151 replications returned an infeasible test statistic and were delet > ed from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 one

$$t(15) = -6.4645$$

Prob>|t| = 0.0050

95% confidence set for null hypothesis expression: [-4.351, -1.859]

Warning: 32 replications returned an infeasible test statistic and were delete > d from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 two

$$t(15) = -2.4800$$

Prob>|t| = 0.0762

95% confidence set for null hypothesis expression: [-7.062, .5106]

Warning: 23 replications returned an infeasible test statistic and were delete > d from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 three

$$t(15) = -4.2558$$

Prob>|t| = 0.0051

95% confidence set for null hypothesis expression: [-4.982, -1.626]

Warning: 15 replications returned an infeasible test statistic and were delete > d from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 four

$$t(15) = -5.3370$$

Prob>|t| = 0.0032

95% confidence set for null hypothesis expression: [-2.678, -1.127]

Warning: 115 replications returned an infeasible test statistic and were delet > ed from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 five

$$t(15) = -6.2862$$

Prob>|t| = 0.0345

95% confidence set for null hypothesis expression: [-2.955, -.4203]

Warning: 123 replications returned an infeasible test statistic and were delet > ed from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 one_manu_s

$$t(15) = -1.5527$$

Prob>|t| = 0.1993

95% confidence set for null hypothesis expression: [-.05287, .01311]

Warning: 50 replications returned an infeasible test statistic and were delete > d from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 two_manu_s

$$t(15) = -0.3649$$

Prob>|t| = 0.7636

95% confidence set for null hypothesis expression: [-.1324, .1034]

Warning: 23 replications returned an infeasible test statistic and were delete > d from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 three_manu_s

$$t(15) = -0.7308$$

Prob>|t| = 0.5061

95% confidence set for null hypothesis expression: [-.06839, .03411]

Warning: 8 replications returned an infeasible test statistic and were deleted > from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 four_manu_s

$$t(15) = 0.7308$$

Prob>|t| = 0.4852

95% confidence set for null hypothesis expression: [-.02251, .045]

Warning: 21 replications returned an infeasible test statistic and were delete > d from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 five_manu_s

$$t(15) = -0.0310$$

Prob>|t| = 0.9739

95% confidence set for null hypothesis expression: [-.01619, .01571]

Number of obs = 2,688 Linear regression

 $\frac{F(14, 15)}{Prob > F} = R-squared = Root MSE =$ 0.8131

1.0721

(Std. err. adjusted for 16 clusters in region1)

		Robust				
fdi_ihs	Coefficient	std. err.	t	P> t	[95% conf.	interval]
one	-3.238604	.4996529	-6.48	0.000	-4.303589	-2.173619
two	-2.300138	.6936252	-3.32	0.005	-3.778565	821711
three	-3.022889	.6299253	-4.80	0.000	-4.365543	-1.680235
four	-2.615553	.2374673	-11.01	0.000	-3.121703	-2.109404
five	-1.698212	.2646204	-6.42	0.000	-2.262237	-1.134187
one_sim	9893716	.2323663	-4.26	0.001	-1.484649	4940944
two sim	.2123584	.2587293	0.82	0.425	33911	.7638268
three sim	.3835204	.2435351	1.57	0.136	1355623	.9026032
four_sim	2209153	.4661706	-0.47	0.642	-1.214534	.7727038
five_sim	2763427	.2245086	-1.23	0.237	7548714	.202186
lag_lgdp	1.843799	1.319305	1.40	0.183	9682336	4.655831
lag_lpop	2663583	.3301234	-0.81	0.432	9699997	.4372831
5_ 1 1						
date						
553	0531386	.2726175	-0.19	0.848	634209	.5279318
554	4915856	.2838562	-1.73	0.104	-1.096611	.1134396
555	2011631	.3045491	-0.66	0.519	8502942	.447968
556	2330706	.2900432	-0.80	0.434	851283	.3851418
557	.0419503	.2876443	0.15	0.886	571149	.6550495
558	.3595212	.3473569	1.04	0.317	3808525	1.099895
559	.1886232	.3875732	0.49	0.634	6374695	1.014716
560	.0725879	.3760577	0.19	0.850	7289601	.874136
561	172525	.2883515	-0.60	0.559	7871317	.4420816
562	0148782	.320841	-0.05	0.964	6987346	.6689783
563	0206692	.3228138	-0.06	0.950	7087306	.6673921
564	6974278	.4092392	-1.70	0.109	-1.569701	.174845
565	2812444	.5513367	-0.51	0.617	-1.456391	.893902
566	2626592	.3777341	-0.70	0.497	-1.06778	.5424621
567	4854723	.4369347	-1.11	0.284	-1.416777	.4458319
568	3784495	.4720347	-0.80	0.435	-1.384568	.6276686
569	5491219	.4049473	-1.36	0.195	-1.412247	.3140028
570	.1778331	.5110052	0.35	0.733	9113486	1.267015
571	0820598	.4550108	-0.18	0.859	-1.051892	.8877729
572	2778235	.3779515	-0.74	0.474	-1.083408	.5277612
573	.078983	.5400253	0.15	0.886	-1.072054	1.23002
574	.2256226	.4409305	0.51	0.616	7141985	1.165444
575	.4977892	.5697844	0.87	0.396	7166774	1.712256
576	2134216	.6352449	-0.34	0.742	-1.567414	1.140571

577	.3347376	.6513776	0.51	0.615	-1.053641	1.723116
578	.045544	.7057865	0.06	0.949	-1.458804	1.549892
579	.1986081	.6047889	0.33	0.747	-1.090469	1.487685
580	.6620444	.5828755	1.14	0.274	5803253	1.904414
581	.5077543	.5462214	0.93	0.367	6564892	1.671998
582	.5309735	.594909	0.89	0.386	7370451	1.798992
583	.3936664	.6566993	0.60	0.558	-1.006055	1.793388
584	.5598491	.6440974	0.87	0.398	8130121	1.93271
585	.4854986	.5209817	0.93	0.366	6249476	1.595945
586	.384117	.6219655	0.62	0.546	9415711	1.709805
587	.1645564	.6280244	0.26	0.797	-1.174046	1.503159
588	.224634	.7194487	0.31	0.759	-1.308835	1.758103
589	.4227565	.7854825	0.54	0.598	-1.25146	2.096973
590	.3512351	.7682672	0.46	0.654	-1.286288	1.988758
591	2337345	.7675234	-0.30	0.765	-1.869672	1.402203
592	.3481491	.6978643	0.50	0.625	-1.139313	1.835612
593	.6491386	.7869237	0.82	0.422	-1.028149	2.326427
594	.659334	.7555104	0.87	0.397	9509983	2.269666
595	.654321	.854519	0.77	0.456	-1.167043	2.475685
596	.3585116	.6630643	0.54	0.597	-1.054776	1.7718
597	.3594373	.735086	0.49	0.632	-1.207361	1.926236
598	.4726559	.7598049	0.62	0.543	-1.14683	2.092142
599	.2669434	.7600787	0.35	0.730	-1.353126	1.887013
600	.2575915	.9442278	0.27	0.789	-1.754982	2.270165
601	.014561	.9265516	0.02	0.988	-1.960337	1.989459
602	.4515136	1.009522	0.45	0.661	-1.700231	2.603259
603	2472777	.8594607	-0.29	0.778	-2.079175	1.584619
604	.0289811	.8911406	0.03	0.974	-1.87044	1.928402
605	.4166783	.8768586	0.48	0.641	-1.452302	2.285658
606	.0199772	.9361585	0.02	0.983	-1.975397	2.015352
607	.3372643	.9174566	0.37	0.718	-1.618248	2.292777
608	.1589748	.9234831	0.17	0.866	-1.809383	2.127332
609	.1269547	1.054636	0.12	0.906	-2.12095	2.374859
610	.4868993	1.073772	0.45	0.657	-1.801792	2.77559
611	.7406483	.8875402	0.83	0.417	-1.151099	2.632395
612	.0362957	1.162918	0.03	0.976	-2.442406	2.514998
613	.0946428	1.289282	0.07	0.942	-2.653396	2.842681
614	.0123982	1.097325	0.01	0.991	-2.326494	2.351291
615	.1865514	1.208122	0.15	0.879	-2.3885	2.761603
616	.0804283	1.15254	0.07	0.945	-2.376153	2.53701
617	3900622	1.359674	-0.29	0.778	-3.288139	2.508014
618	0297166	1.100887	-0.03	0.979	-2.376202	2.316769
619	.4435903	1.164177	0.38	0.709	-2.037795	2.924975
620	.2157324	1.333526	0.16	0.874	-2.626612	3.058076
621	.3205822	1.097187	0.29	0.774	-2.018016	2.659181
622	.1283087	1.104835	0.12	0.909	-2.226591	2.483208
623	.1255902	1.098726	0.11	0.911	-2.216289	2.46747
624	1680357	1.306133	-0.13	0.899	-2.951992	2.61592
625	1659077	1.353175	-0.12	0.904	-3.050133	2.718318

626	.1257108	1.396041	0.09	0.929	-2.84988	3.101302
627	2819197	1.36737	-0.21	0.839	-3.1964	2.63256
628	7369834	1.361881	-0.54	0.596	-3.639764	2.165797
629	3518874	1.300493	-0.27	0.790	-3.123822	2.420047
630	.1067926	1.306756	0.08	0.936	-2.678491	2.892076
631	7072391	1.424431	-0.50	0.627	-3.743342	2.328863
632	1961937	1.331638	-0.15	0.885	-3.034512	2.642125
633	.265282	1.244773	0.21	0.834	-2.387889	2.918453
634	2236267	1.273471	-0.18	0.863	-2.937966	2.490713
635	.0436938	1.32198	0.03	0.974	-2.77404	2.861427
636	3142538	1.4689	-0.21	0.833	-3.445139	2.816632
637	712915	1.428097	-0.50	0.625	-3.756831	2.331001
638	.248783	1.440523	0.17	0.865	-2.821619	3.319185
639	1123475	1.399596	-0.08	0.937	-3.095515	2.87082
640	.0583879	1.412224	0.04	0.968	-2.951696	3.068472
641	1726815	1.334632	-0.13	0.899	-3.017383	2.672019
642	2576469	1.338919	-0.19	0.850	-3.111486	2.596192
643	1187128	1.406699	-0.08	0.934	-3.117021	2.879596
644	4255948	1.414251	-0.30	0.768	-3.44	2.58881
645	.3928008	1.573748	0.25	0.806	-2.961563	3.747164
646	.0284332	1.4908	0.02	0.985	-3.149132	3.205998
647	.1677214	1.595492	0.11	0.918	-3.232988	3.568431
648	.3506512	1.714367	0.20	0.841	-3.303435	4.004738
649	.5955346	1.629782	0.37	0.720	-2.878264	4.069333
650	.0199373	1.598166	0.01	0.990	-3.386474	3.426348
651	12687	1.649692	-0.08	0.940	-3.643106	3.389366
652	.0325158	1.559722	0.02	0.984	-3.291954	3.356986
653	.7715866	1.694905	0.46	0.655	-2.841018	4.384191
654	.3745099	1.655422	0.23	0.824	-3.153938	3.902958
655	.3794353	1.650786	0.23	0.821	-3.139132	3.898002
656	.2195568	1.588163	0.14	0.892	-3.165532	3.604646
657	.0308655	1.711869	0.02	0.986	-3.617897	3.679628
658	291145	2.037075	-0.14	0.888	-4.633067	4.050777
659	.2510731	1.61833	0.16	0.879	-3.198316	3.700462
660	2313336	1.815794	-0.13	0.900	-4.101607	3.63894
661	1958069	1.694433	-0.12	0.910	-3.807406	3.415792
662	.3336326	1.780342	0.19	0.854	-3.461076	4.128342
663	2076892	1.640133	-0.13	0.901	-3.703549	3.288171
664	.0151925	1.684605	0.01	0.993	-3.575458	3.605843
665	.3895116	1.735118	0.22	0.825	-3.308805	4.087829
666	.3454873	1.669249	0.21	0.839	-3.212432	3.903407
667	.1840951	1.65615	0.11	0.913	-3.345905	3.714095
668	.0458454	1.711877	0.03	0.979	-3.602933	3.694624
669	.1613342	1.682323	0.10	0.925	-3.424452	3.747121
670	.0319931	1.656204	0.02	0.985	-3.498123	3.562109
671	.3232794	1.655521	0.20	0.848	-3.20538	3.851939
672	.1425917	1.719078	0.08	0.935	-3.521537	3.806721
673	.2744468	1.739118	0.16	0.877	-3.432396	3.981289
674	.4396611	1.794971	0.24	0.810	-3.38623	4.265552

675	.801418	1.818712	0.44	0.666	-3.075075	4.677911
676	.8615937	1.84519	0.47	0.647	-3.071335	4.794522
677	.5467894	1.789813	0.31	0.764	-3.268107	4.361686
678	.7729349	1.815632	0.43	0.676	-3.096992	4.642862
679	.8701375	1.803127	0.48	0.636	-2.973136	4.713411
680	.9212681	1.791599	0.51	0.615	-2.897436	4.739972
681	.9328909	1.792461	0.52	0.610	-2.887649	4.75343
682	.5930405	1.802474	0.33	0.747	-3.248841	4.434922
683	.4350741	1.821134	0.24	0.814	-3.446581	4.316729
684	.5067885	1.997702	0.25	0.803	-3.751213	4.76479
685	.3265384	1.943936	0.17	0.869	-3.816862	4.469939
686	.3202126	2.007557	0.16	0.875	-3.958794	4.599219
687	.6601558	1.932824	0.34	0.737	-3.459561	4.779873
688	.3661094	1.989845	0.18	0.856	-3.875145	4.607364
689	.3450299	1.984887	0.17	0.864	-3.885656	4.575715
690	.0615722	1.985485	0.03	0.976	-4.170388	4.293532
691	.2072959	2.018084	0.10	0.920	-4.094149	4.508741
692	.3859415	1.995543	0.19	0.849	-3.867457	4.63934
693	.2935935	1.958096	0.15	0.883	-3.87999	4.467177
694	.3784645	2.005098	0.19	0.853	-3.8953	4.652229
695	.1679734	1.985999	0.08	0.934	-4.065083	4.40103
696	.2978651	2.060608	0.14	0.887	-4.094216	4.689946
697	.2576386	2.046213	0.13	0.901	-4.103762	4.619039
698	.3157301	2.056762	0.15	0.880	-4.068153	4.699614
699	.1087741	2.059609	0.05	0.959	-4.281178	4.498726
700	.3848674	2.063693	0.19	0.855	-4.01379	4.783525
701	.0203891	2.051037	0.01	0.992	-4.351293	4.392071
702	1845721	2.125419	-0.09	0.932	-4.714796	4.345652
703	.4194719	2.072771	0.20	0.842	-3.998534	4.837478
704	.6641681	1.993085	0.33	0.744	-3.583993	4.912329
705	.7272337	2.03506	0.36	0.726	-3.610394	5.064861
706	.6420081	2.047816	0.31	0.758	-3.722809	5.006825
707	.5178006	2.120385	0.24	0.810	-4.001693	5.037294
708	.8753922	2.273781	0.38	0.706	-3.971057	5.721842
709	.2862871	2.29616	0.12	0.902	-4.607863	5.180437
710	.5994884	2.250029	0.27	0.794	-4.196334	5.395311
711	.9209719	2.187106	0.42	0.680	-3.740733	5.582677
712	.5078737	2.24226	0.23	0.824	-4.271391	5.287138
713	.9691017	2.238844	0.43	0.671	-3.80288	5.741084
714	.6250978	2.204752	0.28	0.781	-4.074221	5.324416
715	.6399704	2.242986	0.29	0.779	-4.14084	5.420781
716	.5424669	2.252758	0.24	0.813	-4.259173	5.344106
717	.3892751	2.231561	0.17	0.864	-4.367185	5.145735
718	.7661864	2.214984	0.35	0.734	-3.95494	5.487313
719	.6251803	2.256828	0.28	0.786	-4.185135	5.435496
region1						
bangalore	1.497947	.2889054	5.18	0.000	.8821598	2.113734
bhopal	-1.402574	.9402065	-1.49	0.156	-3.406577	.6014284

bubaneshwar	7922694	1.372723	-0.58	0.572	-3.718159	2.13362
chandigarh	5478863	.2789622	-1.96	0.068	-1.14248	.0467076
chennai	1.215889	.2396816	5.07	0.000	.7050197	1.726758
guwahati	.404417	1.446883	0.28	0.784	-2.679542	3.488376
hyderabad	1.673952	.6986413	2.40	0.030	.1848334	3.163071
jaipur	-2.151213	.55354	-3.89	0.001	-3.331056	9713708
kanpur	-1.997953	.6329566	-3.16	0.007	-3.347069	6488382
kochi	-1.621232	.8269784	-1.96	0.069	-3.383894	.141431
kolkata	2.116121	.4444822	4.76	0.000	1.168729	3.063512
mumbai	0205458	.9519122	-0.02	0.983	-2.049499	2.008407
new_delhi	2.621873	.9652225	2.72	0.016	.5645498	4.679196
panaji	.9025182	3.839827	0.24	0.817	-7.28188	9.086917
patna	1.218585	1.372846	0.89	0.389	-1.707568	4.144738
_cons	-16.24033	16.52844	-0.98	0.341	-51.46986	18.98921

Warning: 330 replications returned an infeasible test statistic and were delet > ed from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 one

$$t(15) = -6.4754$$

Prob>|t| = 0.0089

95% confidence set for null hypothesis expression: [-4.418, -2.066]

Warning: 11 replications returned an infeasible test statistic and were delete > d from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 two

$$t(15) = -3.3131$$

Prob>|t| = 0.0133

95% confidence set for null hypothesis expression: [-4.004, -.6584]

Warning: 18 replications returned an infeasible test statistic and were delete > d from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 three

$$t(15) = -4.7904$$

Prob>|t| = 0.0038

95% confidence set for null hypothesis expression: [-4.46, -1.584]

Warning: 8 replications returned an infeasible test statistic and were deleted > from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 four

$$t(15) = -11.4133$$

Prob>|t| = 0.0004

95% confidence set for null hypothesis expression: [-3.047, -2.166]

Warning: 21 replications returned an infeasible test statistic and were delete > d from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 five

$$t(15) = -5.9725$$

Prob>|t| = 0.0471

95% confidence set for null hypothesis expression: [-3.346, -.09806]

Warning: 96 replications returned an infeasible test statistic and were delete > d from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 one_sim

$$t(15) = -3.8079$$

Prob>|t| = 0.0170

95% confidence set for null hypothesis expression: [-1.646, -.321]

Warning: 32 replications returned an infeasible test statistic and were delete > d from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 two sim

$$t(15) = 0.8117$$

Prob>|t| = 0.5714

95% confidence set for null hypothesis expression: [-.8111, 1.144]

Warning: 33 replications returned an infeasible test statistic and were delete > d from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 three sim

$$t(15) = 1.5784$$

Prob>|t| = 0.1930

95% confidence set for null hypothesis expression: [-.308, 1.024]

Warning: 3 replications returned an infeasible test statistic and were deleted > from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 four_sim

$$t(15) = -0.4778$$

Prob>|t| = 0.6646

95% confidence set for null hypothesis expression: [-1.329, .8909]

Warning: 72 replications returned an infeasible test statistic and were delete > d from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 five_sim

$$t(15) = -1.2551$$

Prob>|t| = 0.3014

95% confidence set for null hypothesis expression: [-.9378, .4223]

Linear regression Number of obs = 2,688

F(14, 15) = . Prob > F = . R-squared = 0.8120 Root MSE = 1.0753

(Std. err. adjusted for 16 clusters in region1)

		Robust				
fdi_ihs	Coefficient	std. err.	t	P> t	[95% conf.	interval]
one	-2.681821	.4941541	-5.43	0.000	-3.735086	-1.628557
two	-2.341849	.6406317	-3.66	0.002	-3.707323	9763749
three	-3.05514	.6218786	-4.91	0.000	-4.380643	-1.729638
four	-2.306714	.4367212	-5.28	0.000	-3.237563	-1.375865
five	-1.725791	.2567359	-6.72	0.000	-2.273011	-1.178572
one_cont	3328921	.3193112	-1.04	0.314	-1.013488	.3477037
two_cont	.1941801	.3080212	0.63	0.538	4623516	.8507118
three cont	.0404391	.3666603	0.11	0.914	7410788	.8219571
four_cont	.127684	.3820676	0.33	0.743	6866738	.9420418
five_cont	-1.047286	.4289887	-2.44	0.028	-1.961654	1329184
lag_lgdp	1.844275	1.55024	1.19	0.253	-1.459984	5.148533
lag_lpop	0427425	.4040182	-0.11	0.917	9038869	.8184019
date						
553	0531386	.2726175	-0.19	0.848	634209	.5279318
554	4915856	.2838562	-1.73	0.104	-1.096611	.1134396
555	2011631	.3045491	-0.66	0.519	8502942	.447968
556	2330706	.2900432	-0.80	0.434	851283	.3851418
557	.0419503	.2876443	0.15	0.886	571149	.6550495
558	.3595212	.3473569	1.04	0.317	3808525	1.099895
559	.1886232	.3875732	0.49	0.634	6374695	1.014716
560	.0725879	.3760577	0.19	0.850	7289601	.874136
561	172525	.2883515	-0.60	0.559	7871317	.4420816
562	0148782	.320841	-0.05	0.964	6987346	.6689783
563	0206692	.3228138	-0.06	0.950	7087306	.6673921
564	7000715	.4404968	-1.59	0.133	-1.638968	.2388251
565	283888	.5600509	-0.51	0.620	-1.477608	.9098321
566	2653028	.373529	-0.71	0.488	-1.061461	.5308554
567	4881159	.4480659	-1.09	0.293	-1.443146	.4669138
568	3810932	.4677261	-0.81	0.428	-1.378028	.6158414
569	5517656	.4174667	-1.32	0.206	-1.441575	.3380437
570	.1751895	.5082759	0.34	0.735	9081749	1.258554
571	7102411	.4204515	-1.69	0.112	-1.606412	.1859299
572	9060049	.38076	-2.38	0.031	-1.717576	0944342
573	5491984	.485303	-1.13	0.276	-1.583597	.4852005
574	4025587	.3971479	-1.01	0.327	-1.249059	.4439419
575	1303921	.5452408	-0.24	0.814	-1.292546	1.031761
576	8442239	.6339687	-1.33	0.203	-2.195496	.5070485

577	2960646	.7011803	-0.42	0.679	-1.790595	1.198466
578	5852583	.7551675	-0.78	0.450	-2.19486	1.024343
579	4321942	.6381242	-0.68	0.509	-1.792324	.9279353
580	.0312421	.5930268	0.05	0.959	-1.232765	1.295249
581	123048	.579497	-0.21	0.835	-1.358217	1.112121
582	0998288	.6173069	-0.16	0.874	-1.415587	1.21593
583	2371359	.6830104	-0.35	0.733	-1.692938	1.218666
584	0709532	.6670648	-0.11	0.917	-1.492768	1.350862
585	1453037	.5388956	-0.27	0.791	-1.293933	1.003325
586	2466852	.6234708	-0.40	0.698	-1.575582	1.082211
587	4662458	.6961764	-0.67	0.513	-1.950111	1.017619
588	4087725	.8096497	-0.50	0.621	-2.1345	1.316955
589	21065	.8450064	-0.25	0.807	-2.011738	1.590438
590	2821715	.8411848	-0.34	0.742	-2.075114	1.510771
591	867141	.8468725	-1.02	0.322	-2.672207	.9379249
592	2852574	.7540079	-0.38	0.710	-1.892387	1.321872
593	.0157321	.854742	0.02	0.986	-1.806107	1.837571
594	.0259275	.8184447	0.03	0.975	-1.718546	1.770401
595	.0209144	.9138583	0.02	0.982	-1.926928	1.968757
596	2748949	.7356567	-0.37	0.714	-1.84291	1.29312
597	2739692	.8199648	-0.33	0.743	-2.021683	1.473744
598	1607506	.8230799	-0.20	0.848	-1.915104	1.593603
599	3664632	.8246969	-0.44	0.663	-2.124263	1.391337
600	3781307	1.06781	-0.35	0.728	-2.654114	1.897852
601	6211612	1.039286	-0.60	0.559	-2.836347	1.594025
602	1842086	1.108852	-0.17	0.870	-2.547671	2.179253
603	7762569	1.011967	-0.77	0.455	-2.933214	1.3807
604	4999981	1.02189	-0.49	0.632	-2.678104	1.678108
605	1123009	1.028727	-0.11	0.915	-2.304981	2.080379
606	5090021	1.050727	-0.48	0.635	-2.748574	1.730569
607	1917149	1.037436	-0.18	0.856	-2.402957	2.019527
608	3700044	1.042635	-0.35	0.728	-2.592329	1.85232
609	4020245	1.16668	-0.34	0.735	-2.888744	2.084695
610	0420799	1.207021	-0.03	0.973	-2.614784	2.530624
611	.2116691	1.011284	0.21	0.837	-1.943833	2.367171
612	495345	1.35142	-0.37	0.719	-3.375828	2.385138
613	4369979	1.462944	-0.30	0.769	-3.555189	2.681193
614	5192425	1.248612	-0.42	0.683	-3.180595	2.14211
615	3450892	1.365119	-0.25	0.804	-3.254772	2.564593
616	4512123	1.312215	-0.34	0.736	-3.248133	2.345709
617	9217028	1.50894	-0.61	0.550	-4.137933	2.294528
618	5613572	1.27949	-0.44	0.667	-3.288525	2.165811
619	0880504	1.360589	-0.06	0.949	-2.988077	2.811976
620	3159083	1.502822	-0.21	0.836	-3.519098	2.887281
621	2110584	1.278446	-0.17	0.871	-2.936003	2.513886
622	4033319	1.286791	-0.31	0.758	-3.146062	2.339399
623	4060505	1.283304	-0.32	0.756	-3.141348	2.329248
624	7363498	1.525644	-0.48	0.636	-3.988184	2.515484
625	7342218	1.578147	-0.47	0.648	-4.097964	2.62952

626	4426033	1.60038	-0.28	0.786	-3.853732	2.968525
627	8502338	1.575404	-0.54	0.597	-4.208128	2.50766
628	-1.305298	1.572002	-0.83	0.419	-4.65594	2.045345
629	9202015	1.494799	-0.62	0.547	-4.106291	2.265888
630	4615215	1.532933	-0.30	0.767	-3.728891	2.805848
631	-1.275553	1.626185	-0.78	0.445	-4.741686	2.190579
632	7645078	1.558108	-0.49	0.631	-4.085536	2.55652
633	3030321	1.461592	-0.21	0.839	-3.418343	2.812278
634	7919408	1.474805	-0.54	0.599	-3.935414	2.351532
635	5246203	1.537858	-0.34	0.738	-3.802486	2.753246
636	8853375	1.734071	-0.51	0.617	-4.581422	2.810747
637	-1.283999	1.642129	-0.78	0.446	-4.784114	2.216116
638	3223007	1.690115	-0.19	0.851	-3.924697	3.280095
639	6834313	1.659104	-0.41	0.686	-4.219728	2.852866
640	5126959	1.653644	-0.31	0.761	-4.037355	3.011963
641	5916872	1.570438	-0.38	0.712	-3.938997	2.755622
642	6766526	1.574107	-0.43	0.673	-4.031783	2.678477
643	5377185	1.637159	-0.33	0.747	-4.027241	2.951804
644	8446005	1.658219	-0.51	0.618	-4.379011	2.68981
645	0262049	1.783444	-0.01	0.988	-3.827526	3.775116
646	3905725	1.728359	-0.23	0.824	-4.074482	3.293337
647	2512843	1.80761	-0.14	0.891	-4.104115	3.601546
648	0701249	1.991614	-0.04	0.972	-4.31515	4.1749
649	.1747585	1.861909	0.09	0.926	-3.793806	4.143323
650	4008388	1.866802	-0.21	0.833	-4.379833	3.578155
651	547646	1.8936	-0.29	0.776	-4.583759	3.488467
652	3882602	1.823029	-0.21	0.834	-4.273955	3.497434
653	.3508106	1.934234	0.18	0.859	-3.771912	4.473533
654	0462661	1.900607	-0.02	0.981	-4.097314	4.004782
655	0413408	1.879322	-0.02	0.983	-4.04702	3.964338
656	2012193	1.863996	-0.11	0.915	-4.174232	3.771793
657	3899105	1.984805	-0.20	0.847	-4.620422	3.840601
658	7119211	2.344661	-0.30	0.766	-5.709448	4.285605
659	169703	1.845309	-0.09	0.928	-4.102886	3.76348
660	655775	2.150139	-0.30	0.765	-5.238689	3.927139
661	6202483	2.003601	-0.31	0.761	-4.890823	3.650326
662	0908088	2.055174	-0.04	0.965	-4.471309	4.289692
663	6321306	1.944429	-0.33	0.750	-4.776583	3.512322
664	409249	1.979152	-0.21	0.839	-4.627711	3.809213
665	0349298	2.013872	-0.02	0.986	-4.327397	4.257538
666	0789541	1.967175	-0.04	0.969	-4.271888	4.11398
667	2403463	1.957514	-0.12	0.904	-4.412689	3.931997
668	3785961	2.026196	-0.19	0.854	-4.697331	3.940139
669	2631072	1.989667	-0.13	0.897	-4.503983	3.977768
670	5321347	1.899624	-0.28	0.783	-4.581088	3.516819
671	2408484	1.895358	-0.13	0.901	-4.280709	3.799012
672	4241873	1.994153	-0.21	0.834	-4.674625	3.82625
673	2923322	2.00605	-0.15	0.886	-4.568126	3.983462
674	1271179	2.051196	-0.06	0.951	-4.499139	4.244903

675	.234639	2.050427	0.11	0.910	-4.135743	4.605021
676	.2948147	2.093456	0.14	0.890	-4.167282	4.756911
677	0199896	2.038707	-0.01	0.992	-4.36539	4.325411
678	.2061559	2.062898	0.10	0.922	-4.190808	4.603119
679	.3033585	2.0514	0.15	0.884	-4.069098	4.675815
680	.3544891	2.075292	0.17	0.867	-4.068891	4.777869
681	.3661119	2.035839	0.18	0.860	-3.973176	4.705399
682	.0262615	2.031074	0.01	0.990	-4.30287	4.355393
683	1317048	2.083374	-0.06	0.950	-4.572312	4.308902
684	0626264	2.297774	-0.03	0.979	-4.960215	4.834962
685	2428765	2.221698	-0.11	0.914	-4.978313	4.49256
686	2492023	2.276048	-0.11	0.914	-5.100484	4.60208
687	.0907434	2.180451	0.04	0.967	-4.556777	4.738264
688	2033032	2.264057	-0.09	0.930	-5.029027	4.62242
689	2243828	2.257621	-0.10	0.922	-5.036388	4.587623
690	5078406	2.262059	-0.22	0.825	-5.329306	4.313624
691	3621172	2.253933	-0.16	0.875	-5.166262	4.442027
692	1834717	2.255385	-0.08	0.936	-4.990711	4.623768
693	2758199	2.22871	-0.12	0.903	-5.026203	4.474563
694	1909491	2.286108	-0.08	0.935	-5.063673	4.681775
695	4014403	2.248111	-0.18	0.861	-5.193176	4.390296
696	2738776	2.333162	-0.12	0.908	-5.246895	4.69914
697	3141042	2.318454	-0.14	0.894	-5.255772	4.627564
698	2560127	2.333545	-0.11	0.914	-5.229846	4.71782
699	4629687	2.344135	-0.20	0.846	-5.459374	4.533437
700	1868754	2.334678	-0.08	0.937	-5.163124	4.789374
701	5513537	2.332389	-0.24	0.816	-5.522722	4.420015
702	7563148	2.395563	-0.32	0.757	-5.862337	4.349707
703	1788837	2.310717	-0.08	0.939	-5.104061	4.746293
704	.0658125	2.284772	0.03	0.977	-4.804064	4.935689
705	.1288781	2.321291	0.06	0.956	-4.818837	5.076593
706	.0436525	2.322631	0.02	0.985	-4.906918	4.994223
707	080555	2.408065	-0.03	0.974	-5.213225	5.052115
708	.2734987	2.587151	0.11	0.917	-5.240883	5.787881
709	3156065	2.625858	-0.12	0.906	-5.912491	5.281278
710	0024052	2.545408	-0.00	0.999	-5.427813	5.423003
711	.3190783	2.525792	0.13	0.901	-5.06452	5.702677
712	0940199	2.574118	-0.04	0.971	-5.580622	5.392582
713	.3672082	2.535967	0.14	0.887	-5.038077	5.772493
714	.0232043	2.548356	0.01	0.993	-5.408488	5.454897
715	.0380769	2.542762	0.01	0.988	-5.381693	5.457846
716	0594267	2.560418	-0.02	0.982	-5.516829	5.397976
717	2126184	2.531939	-0.08	0.934	-5.609319	5.184082
718	.1642929	2.521045	0.07	0.949	-5.209187	5.537772
719	.0232867	2.572529	0.01	0.993	-5.459928	5.506501
region1						
bangalore	1.637494	.3705742	4.42	0.000	.8476333	2.427354
bhopal	-1.478254	1.168118	-1.27	0.225	-3.968039	1.011532
	•					

bubaneshwar	4002249	1.652418	-0.24	0.812	-3.922271	3.121821
chandigarh	5828883	.2954097	-1.97	0.067	-1.212539	.0467625
chennai	1.026041	.1539103	6.67	0.000	.6979893	1.354094
guwahati	.8231296	1.744575	0.47	0.644	-2.895343	4.541602
hyderabad	1.113774	.8604415	1.29	0.215	720214	2.947761
jaipur	-2.061524	.7825487	-2.63	0.019	-3.729487	3935606
kanpur	-2.237994	.9055884	-2.47	0.026	-4.16821	3077783
kochi	-1.337388	1.060313	-1.26	0.226	-3.597391	.9226153
kolkata	2.083826	.5475875	3.81	0.002	.9166709	3.250981
mumbai	.1532614	1.034112	0.15	0.884	-2.050897	2.35742
new_delhi	3.275179	1.222456	2.68	0.017	.6695758	5.880783
panaji	2.007152	4.758064	0.42	0.679	-8.134421	12.14872
patna	1.157609	1.652618	0.70	0.494	-2.364864	4.680081
_cons	-18.74338	20.15111	-0.93	0.367	-61.69445	24.20769

Overriding estimator's cluster/robust settings with cluster(region1 date)

Warning: 580 replications returned an infeasible test statistic and were delet > ed from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 one

$$t(15) = -5.4589$$

Prob>|t| = 0.0222

95% confidence set for null hypothesis expression: [-3.961, -1.279]

Warning: 47 replications returned an infeasible test statistic and were delete > d from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 two

$$t(15) = -3.6587$$

Prob>|t| = 0.0085

95% confidence set for null hypothesis expression: [-3.86, -.9904]

Warning: 23 replications returned an infeasible test statistic and were delete > d from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 three

$$t(15) = -4.8920$$

Prob>|t| = 0.0057

95% confidence set for null hypothesis expression: [-4.474, -1.55]

Warning: 31 replications returned an infeasible test statistic and were delete > d from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 four

$$t(15) = -5.2859$$

Prob>|t| = 0.0055

95% confidence set for null hypothesis expression: [-3.267, -1.374]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 five

$$t(15) = -6.6428$$

Prob>|t| = 0.0171

95% confidence set for null hypothesis expression: [-2.686, -.7073]

Warning: 55 replications returned an infeasible test statistic and were delete > d from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 one_cont

$$t(15) = -1.0598$$

Prob> $|t| = 0.3523$

95% confidence set for null hypothesis expression: [-1.25, .5636]

Warning: 15 replications returned an infeasible test statistic and were delete > d from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 two_cont

$$t(15) = 0.6171$$

Prob>|t| = 0.6002

95% confidence set for null hypothesis expression: [-.6896, 1.097]

Warning: 62 replications returned an infeasible test statistic and were delete > d from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 three_cont

$$t(15) = 0.1122$$

Prob>|t| = 0.9340

95% confidence set for null hypothesis expression: [-1.184, 1.273]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 four_cont

$$t(15) = 0.3354$$

Prob>|t| = 0.7412

95% confidence set for null hypothesis expression: [-.7933, .9614]

Warning: 1 replications returned an infeasible test statistic and were deleted > from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 five_cont

$$t(15) = -2.4651$$

Prob>|t| = 0.2727

95% confidence set for null hypothesis expression: [., .]
(A confidence interval could not be bounded. Try widening the search range wit > h the gridmin() and gridmax() options.)

```
1435 .
1436 . mat list p val4
     p_val4[10,10]
                               c4
                                     c5
                                           c6
                                                              c9
                                                                   c10
            c1
                  c2
                        c3
                                                  c7
                                                        c8
          .004
                .018
                      .022
                             .012
                                   .008
                                          .021
                                                .015
                                                      .005
                                                            .009
                                                                   .022
      r1
      r2
           .06
                .005
                       .012
                             .012
                                   .003
                                         .006
                                                .006
                                                      .076
                                                            .013
                                                                   .009
                                                            .004
      r3
          .006
                .004
                      .002
                             .002
                                   .002
                                         .004
                                                .002
                                                      .005
                                                                   .006
                .002
                       .005
                             .009
                                          .001
      r4
          .002
                                    .01
                                                .011
                                                      .003
                                                               0
                                                                   .006
                                                                   .017
          .067
                .165
                      .003
                             .028
                                   .024
                                         .011
                                                .006
                                                      .035
      r5
                                                            .047
          .026
                .048
                      .072
                             .076
                                   .049
                                         .718
                                                .062
                                                      .199
                                                            .017
                                                                   .352
      r6
                                                            .571
      r7
          .611
                .464
                      .905
                             .857
                                   .653
                                         .732
                                                 .57
                                                      .764
                                                                    . 6
                .667
                       .291
                                   .614
                                         .349
                                                      .506
      r8
           .84
                             .644
                                                  .6
                                                            .193
                                                                   .934
          .522
                .681
                      .002
                                   .089
                                         .747
      r9
                             .059
                                                .018
                                                      .485
                                                            .665
                                                                   .741
                .864
                      .067
                             .488
                                   .292
                                         .496
                                                .105
                                                      .974
                                                            .301
                                                                   .273
     r10
           .64
1437 .
1438 . outtable using _3results/tables/p_val4, mat(p_val4) replace format(%9.3f) no
     > row nodots
1439 .
1440 .
1441 . esttab _all using _3results/tables/table4.tex, rename(one_damages_cum_past20
       one spil two damages cum past20 two spil ///
     >
               three_damages_cum_past20 three_spil four_damages_cum_past20 four_spi
     > 1 five damages cum past20 five spil ///
           one number major2 past20 one spil two number major2 past20 two spil thre
     > e number major2 past20 three spil ///
               four number major2 past20 four spil five number major2 past20 five s
     > pil ///
           one_cont one_spil one_distance one_spil one_density one_spil one_urban o
     >
     > ne spil ///
               one water_s one_spil one_elec_s one_spil one_lat_s one_spil one_gq o
     >
     > ne_spil one_port one_spil ///
               one lit s one spil one grad s one spil one manu s one spil one retai
     > l_s one_spil one_sim one_spil ///
               two_cont two_spil two_distance two_spil two_density two_spil two_urb
     >
     > an two spil ///
               two_water_s two_spil two_elec_s two_spil two_lat_s two_spil two_gq t
     > wo spil two port two spil ///
               two lit s two spil two grad s two spil two manu s two spil two retai
     > 1 s two spil two sim two spil ///
               three_cont three_spil three_distance three_spil three_density three_
     >
     > spil three urban three spil ///
               three_water_s three_spil three_elec_s three_spil three_lat_s three_s
     > pil three_gq three_spil three_port three_spil ///
               three lit s three spil three grad s three spil three manu s three sp
     > il three_retail_s three_spil three_sim three_spil ///
```

1434 .

```
> our urban four spil ///
               four water s four spil four elec s four spil four lat s four spil fo
    > ur gq four spil four port four spil ///
               four_lit_s four_spil four_grad_s four_spil four_manu_s four_spil fou
    > r retail s four spil four sim four spil ///
               five_cont five_spil five_distance five_spil five_density five_spil f
    > ive_urban five_spil ///
               five water s five spil five elec s five spil five lat s five spil fi
     > ve_gq five_spil five_port five spil ///
              five_lit_s five_spil five_grad_s five_spil five_manu_s five_spil fiv
    > e retail s five spil five sim five spil) ///
               order(one two three four five one_spil two_spil three_spil four_spil
     > five_spil) replace nostar r2 b(3) p(3)
     (output written to <u>3results/tables/table4.tex</u>)
1442 .
1443 .
1444 .
1445 .
1446 .
1447 .
1448 .
1449 .
1450 .
1451 .
    end of do-file
1452 . do _2code/_2analysis/tableB1
1453 .
1454 . use _ldata/clean/clean_data, clear
1455 .
1456 . ** Regression of IHS FDI with Year and Month fixed effects
1457 . * USING ONLY CENTROIDS OF FLOODS/STORMS AS TREATED REGION
1458 .
```

four cont four spil four distance four spil four density four spil f

- 1459 . ** Merge centroid regions:
- 1460 . merge m:1 region using _1data/raw/disasters/centroid_regions.dta

Result	Number of obs	
Not matched	344	
from master	342	(_merge==1)
from using	2	(_merge==2)
Matched	2,394	(_merge==3)

- 1461 . drop _merge
- 1462 .
- 1463 . ** redefine treatment variables:
- 1464 . drop one two three four five
- 1465 .

- 1468 . gen three = three_bin*three_centroid
 (344 missing values generated)
- 1469 . gen four = four_bin*four_centroid
 (344 missing values generated)
- 1470 . gen five = five_bin*five_centroid
 (344 missing values generated)
- 1471 .
- 1472 . ** Set the control variables:
- 1473 . global control lag_lgdp lag_lpop

```
1474 .
1475 . ** Identify regions partially affected:
1476 \cdot gen partial = 0
1477 . foreach x in "one" "two" "three" "four" "five" {
       2. replace partial=1 if `x' affected==1 & `x' centroid==0
       3. }
     (171 real changes made)
     (0 real changes made)
     (342 real changes made)
     (171 real changes made)
     (0 real changes made)
1478 .
1479 . ** Set up matrix:
1480 . mat p_val=J(8,6,.)
1481 . estimates clear
1482 \cdot local j=1
1483 . foreach x in "one" "two" "three" "four" "five" "one two three four five" {
       2. reg fdi_ihs `x' $control i.date i.region1 if partial==0, cluster(region1)
       3.
1484 . if "`x'"=="one" {
       4. boottest {one} {lag_lgdp} {lag_lpop} {_cons}, reps(9999) gridpoints(10) c
     > luster(region1 date) bootcluster(region1 date) nograph seed(123)
       5. mat p_val[1,1]=r(p_1)
       6. mat p_{val}[6,1]=r(p_2)
       7. mat p_{val}[7,1]=r(p_3)
       8. mat p_{val}[8,1]=r(p_4)
       9. }
      10.
1485 . if "`x'"=="two" {
      11. boottest {two} {lag_lgdp} {lag_lpop} {_cons}, reps(9999) gridpoints(10) c
     > luster(region1 date) bootcluster(region1 date) nograph seed(123)
      12. mat p_val[2,2]=r(p_1)
      13. mat p_val[6,2]=r(p_2)
      14. mat p val[7,2]=r(p 3)
      15. mat p_val[8,2]=r(p_4)
      16. }
      17. if "`x'"=="three" {
      18. boottest {three} {lag_lgdp} {lag_lpop} {_cons}, reps(9999) gridpoints(10)
     > cluster(region1 date) bootcluster(region1 date) nograph seed(123)
      19. mat p val[3,3]=r(p 1)
      20. mat p_val[6,3]=r(p_2)
      21. mat p_val[7,3]=r(p_3)
      22. mat p_val[8,3]=r(p_4)
      23. }
```

```
24. if "`x'"=="four" {
      25. boottest {four} {lag_lgdp} {lag_lpop} {_cons}, reps(9999) gridpoints(10)
    > cluster(region1 date) bootcluster(region1 date) nograph seed(123)
      26. mat p val[4,4]=r(p 1)
      27. mat p_val[6,4]=r(p_2)
      28. mat p_{val}[7,4]=r(p_3)
      29. mat p_val[8,4]=r(p_4)
      30. }
      31. if "`x'"=="five" {
      32. boottest {five} {lag_lgdp} {lag_lpop} {_cons}, reps(9999) gridpoints(10)
    > cluster(region1 date) bootcluster(region1 date) nograph seed(123)
      33. mat p val[5,5]=r(p 1)
      34. mat p_{val}[6,5]=r(p_2)
      35. mat p_{val}[7,5]=r(p_3)
      36. mat p_{val}[8,5]=r(p_4)
      37. }
      38. if "`x'"=="one two three four five" {
      39. boottest {one} {two} {three} {four} {five} {lag lgdp} {lag lpop} { cons},
    > reps(9999) gridpoints(10) cluster(region1 date) bootcluster(region1 date) n
    > ograph seed(123)
     40. mat p_val[1,6]=r(p_1)
      41. mat p_val[2,6]=r(p_2)
      42. mat p_val[3,6]=r(p_3)
      43. mat p_{val}[4,6]=r(p_4)
      44. mat p_val[5,6]=r(p_5)
      45. mat p_{val[6,6]}=r(p_6)
      46. mat p_{val}[7,6]=r(p_7)
      47. mat p_val[8,6]=r(p_8)
      48. }
      49.
1486 . eststo tb1_`j'
      50. local j=\j'+1
      51.
1487 . }
                                                      Number of obs =
    Linear regression
                                                                               1,680
                                                      F(8, 9)
                                                      Prob > F
                                                      R-squared
                                                                              0.8123
                                                      Root MSE
                                                                              1.1395
```

(Std. err. adjusted for 10 clusters in region1)

		Robust				
fdi_ihs	Coefficient	std. err.	t	P> t	[95% conf.	interval]
one	-4.560162	.3075894	-14.83	0.000	-5.255978	-3.864347
lag_lgdp	.5008141	1.610735	0.31	0.763	-3.142922	4.14455
lag_lpop	.0777345	.5294182	0.15	0.887	-1.119893	1.275362
_						
date						
553	.341176	.3187671	1.07	0.312	3799252	1.062277
554	1628449	.3295322	-0.49	0.633	9082986	.5826088
555	.1900673	.2630896	0.72	0.488	4050827	.7852173
556	.0918941	.3905814	0.24	0.819	7916624	.9754506
557	.2113414	.4370946	0.48	0.640	7774354	1.200118
558	.772518	.4601662	1.68	0.128	2684503	1.813486
559	.3085577	.5618239	0.55	0.596	9623763	1.579492
560	.4590527	.410937	1.12	0.293	4705514	1.388657
561	0292869	.4052936	-0.07	0.944	9461247	.8875508
562	.4496955	.3896151	1.15	0.278	4316751	1.331066
563	.3459176	.3895354	0.89	0.398	5352727	1.227108
564	0332992	.5001251	-0.07	0.948	-1.164661	1.098062
565	.3478673	.6145033	0.57	0.585	-1.042236	1.73797
566	.1189077	.4482332	0.27	0.797	8950662	1.132882
567	0257131	.4862984	-0.05	0.959	-1.125796	1.07437
568	.0506418	.4766238	0.11	0.918	-1.027556	1.12884
569	.023844	.3508543	0.07	0.947	7698435	.8175314
570	.8497483	.5031688	1.69	0.126	2884987	1.987995
571	2155944	.5176133	-0.42	0.687	-1.386517	.9553281
572	43417	.5624663	-0.77	0.460	-1.706557	.8382172
573	.0086591	.5882059	0.01	0.989	-1.321955	1.339273
574	.1144551	.5092172	0.22	0.827	-1.037474	1.266384
575	.6701823	.62619	1.07	0.312	7463578	2.086722
576	.0784029	.4941195	0.16	0.877	-1.039373	1.196179
577	.5488171	.934459	0.59	0.571	-1.565076	2.66271
578	.611315	.6712841	0.91	0.386	9072351	2.129865
579	.5689733	.5639307	1.01	0.339	7067265	1.844673
580	.7617458	.5176179	1.47	0.175	4091873	1.932679
581	.5675523	.7496855	0.76	0.468	-1.128354	2.263459
582	.8130395	.6305604	1.29	0.229	6133872	2.239466
583	.6163552	.7357382	0.84	0.424	-1.048	2.280711
584	1.004537	.637963	1.57	0.150	4386352	2.44771
585	.5360204	.5147823	1.04	0.325	6284981	1.700539
586	.7047217	.5315887	1.33	0.218	4978155	1.907259
587	.6279189	.7373086	0.85	0.417	-1.039989	2.295827
588	.4479557	.9967853	0.45	0.664	-1.806929	2.702841
589	1.042614	.7692424	1.36	0.208	6975337	2.782761
590	.7887502	.8185314	0.96	0.360	-1.062896	2.640397
591	.273833	.8220463	0.33	0.747	-1.585765	2.133431

	•					
592	.4228991	.7460749	0.57	0.585	-1.26484	2.110638
593	.9884911	1.005728	0.98	0.351	-1.286624	3.263606
594	.7789849	1.020842	0.76	0.465	-1.530319	3.088289
595	1.115698	1.058646	1.05	0.319	-1.279126	3.510521
596	.280445	.8326263	0.34	0.744	-1.603087	2.163977
597	.5024266	1.016793	0.49	0.633	-1.797718	2.802571
598	.8322287	.8351492	1.00	0.345	-1.05701	2.721467
599	.4000178	.9496191	0.42	0.683	-1.74817	2.548205
600	.5440735	1.192257	0.46	0.659	-2.152999	3.241146
601	.6002195	.9685136	0.62	0.551	-1.590711	2.79115
602	1.218004	1.128833	1.08	0.309	-1.335595	3.771602
603	.110302	1.163681	0.09	0.927	-2.522127	2.742731
604	.4388478	.9545355	0.46	0.657	-1.720461	2.598157
605	1.049463	1.037366	1.01	0.338	-1.297221	3.396147
606	.6303636	1.157525	0.54	0.599	-1.988141	3.248868
607	.7481163	1.058997	0.71	0.498	-1.647501	3.143734
608	.8427285	.9560354	0.88	0.401	-1.319974	3.005431
609	.6763769	1.156111	0.59	0.573	-1.938927	3.291681
610	1.553035	1.047823	1.48	0.172	8173057	3.923376
611	1.085821	.9980122	1.09	0.305	-1.17184	3.343481
612	.8726014	1.340729	0.65	0.531	-2.160339	3.905541
613	1.077341	1.363092	0.79	0.450	-2.006188	4.16087
614	.7176386	1.225211	0.59	0.572	-2.053982	3.489259
615	1.162099	1.195847	0.97	0.357	-1.543094	3.867293
616	.8260481	1.258004	0.66	0.528	-2.019755	3.671851
617	.7467236	1.522867	0.49	0.636	-2.69824	4.191688
618	.6778246	1.25397	0.54	0.602	-2.158853	3.514503
619	1.492837	1.251907	1.19	0.264	-1.339174	4.324848
620	1.273064	1.717606	0.74	0.477	-2.612432	5.158559
621	1.151856	1.295877	0.89	0.397	-1.779623	4.083334
622	.8868651	1.17234	0.76	0.469	-1.765151	3.538882
623	.7555045	1.331691	0.57	0.584	-2.256989	3.767998
624	.613146	1.702883	0.36	0.727	-3.239044	4.465336
625	.9036457	1.471267	0.61	0.554	-2.424593	4.231884
626	1.132067	1.788732	0.63	0.543	-2.914325	5.17846
627	.7320408	1.616479	0.45	0.661	-2.924689	4.38877
628	.1651151	1.634895	0.10	0.922	-3.533274	3.863504
629	.4980678	1.509807	0.33	0.749	-2.917354	3.913489
630	1.323636	1.472007	0.90	0.392	-2.006274	4.653546
631	.7105183	1.46439	0.49	0.639	-2.602162	4.023199
632	.9578639	1.507697	0.64	0.541	-2.452784	4.368511
633	1.096871	1.42945	0.77	0.463	-2.136769	4.330511
634	.526998	1.482391	0.36	0.730	-2.826403	3.880399
635	1.143304	1.436727	0.80	0.447	-2.106799	4.393406
636	.9041421	1.624655	0.56	0.591	-2.771083	4.579367
637	.2436608	1.690903	0.14	0.889	-3.581428	4.06875
638	1.481903	1.552342	0.95	0.365	-2.029739	4.993546
639	.7063515	1.794454	0.39	0.703	-3.352985	4.765688
640	1.095213	1.660477	0.66	0.526	-2.661047	4.851474

641	.386767	1.886652	0.21	0.842	-3.881137	4.654671
642	.311756	2.181358	0.14	0.890	-4.622818	5.24633
643	.6233552	1.880956	0.33	0.748	-3.631663	4.878374
644	.2949224	1.906449	0.15	0.880	-4.017764	4.607609
645	1.347765	2.341883	0.58	0.579	-3.949942	6.645472
646	1.031992	2.264057	0.46	0.659	-4.08966	6.153644
647	1.39571	2.298993	0.61	0.559	-3.804973	6.596393
648	1.735298	2.129002	0.82	0.436	-3.08084	6.551437
649	1.331925	2.444788	0.54	0.599	-4.198569	6.86242
650	1.034756	2.350024	0.44	0.670	-4.281367	6.35088
651	.8155976	2.643356	0.31	0.765	-5.16409	6.795285
652	.9938719	1.898003	0.52	0.613	-3.29971	5.287454
653	2.22935	2.192828	1.02	0.336	-2.731171	7.189871
654	1.501844	2.367749	0.63	0.542	-3.854377	6.858064
655	1.28836	2.439783	0.53	0.610	-4.230813	6.807533
656	1.426127	2.387649	0.60	0.565	-3.975111	6.827364
657	1.280863	2.216989	0.58	0.578	-3.734315	6.29604
658	1.525187	2.257866	0.68	0.516	-3.582461	6.632835
659	1.192245	2.353775	0.51	0.625	-4.132364	6.516855
660	1.418302	2.212986	0.64	0.538	-3.58782	6.424424
661	.9923126	2.150897	0.46	0.655	-3.873355	5.85798
662	1.821455	2.431752	0.75	0.473	-3.67955	7.322461
663	.8243882	2.513619	0.33	0.750	-4.861812	6.510589
664	1.261324	2.632073	0.48	0.643	-4.69284	7.215487
665	1.592704	2.602449	0.61	0.556	-4.294446	7.479853
666	1.547641	2.356627	0.66	0.528	-3.783419	6.878701
667	1.311532	2.387634	0.55	0.596	-4.089671	6.712735
668	1.305708	2.427637	0.54	0.604	-4.185989	6.797404
669	1.403702	2.410425	0.58	0.575	-4.049057	6.856461
670	1.051533	2.370681	0.44	0.668	-4.311319	6.414386
671	1.228332	2.476485	0.50	0.632	-4.373867	6.830531
672	1.054736	2.424397	0.44	0.674	-4.429631	6.539103
673	1.205601	2.447148	0.49	0.634	-4.330231	6.741434
674	1.483468	2.488026	0.60	0.566	-4.144837	7.111773
675	1.719168	2.596597	0.66	0.525	-4.154742	7.593078
676	1.816675	2.574965	0.71	0.498	-4.008301	7.641651
677	1.461882	2.624707	0.56	0.591	-4.475619	7.399382
678	1.75801	2.578476	0.68	0.513	-4.074909	7.590928
679	1.968241	2.483716	0.79	0.448	-3.650314	7.586796
680	2.213397	2.496974	0.89	0.398	-3.43515	7.861944
681	1.585412	2.605639	0.61	0.558	-4.308952	7.479776
682	1.655544	2.38023	0.70	0.504	-3.72891	7.039999
683	1.456596	2.673237	0.54	0.599	-4.590685	7.503877
684	1.803436	2.677243	0.67	0.517	-4.252909	7.859781
685	1.381065	2.64254	0.52	0.614	-4.596775	7.358906
686	1.520242	2.84791	0.53	0.606	-4.922178	7.962663
687	1.495491	2.676502	0.56	0.590	-4.559178	7.550159
688	1.544738	2.724852	0.57	0.585	-4.619304	7.70878
689	1.615057	2.637589	0.61	0.555	-4.351583	7.581697

690	1.280203	2.630156	0.49	0.638	-4.669624	7.230029
691	1.219585	2.882539	0.42	0.682	-5.301171	7.74034
692	1.56022	2.810741	0.56	0.592	-4.798119	7.918558
693	1.332031	2.687051	0.50	0.632	-4.746501	7.410563
694	1.583838	2.81131	0.56	0.587	-4.775788	7.943464
695	1.347806	2.71655	0.50	0.632	-4.797456	7.493068
696	1.501325	2.810584	0.53	0.606	-4.856658	7.859308
697	1.233578	2.920345	0.42	0.683	-5.3727	7.839857
698	1.285477	2.842031	0.45	0.662	-5.143643	7.714597
699	1.225438	2.924094	0.42	0.685	-5.389321	7.840197
700	1.657992	2.739504	0.61	0.560	-4.539196	7.855181
701	1.020094	2.901087	0.35	0.733	-5.542622	7.582809
702	1.278519	2.926068	0.44	0.672	-5.340707	7.897745
703	1.095788	2.786901	0.39	0.703	-5.20862	7.400196
704	1.556482	2.680373	0.58	0.576	-4.506943	7.619906
705	1.555784	2.691704	0.58	0.577	-4.533273	7.644841
706	1.53387	2.876228	0.53	0.607	-4.972611	8.04035
707	1.513722	2.914266	0.52	0.616	-5.078805	8.10625
708	1.825337	3.202459	0.57	0.583	-5.419129	9.069803
709	1.600261	3.157222	0.51	0.624	-5.54187	8.742392
710	1.658678	2.961764	0.56	0.589	-5.041298	8.358654
711	1.877888	2.93812	0.64	0.539	-4.768601	8.524377
712	1.877108	2.802416	0.67	0.520	-4.462397	8.216613
713	1.867038	2.985604	0.63	0.547	-4.886868	8.620943
714	1.817108	2.962576	0.61	0.555	-4.884704	8.51892
715	1.793302	2.897847	0.62	0.551	-4.762083	8.348687
716	1.634223	2.99825	0.55	0.599	-5.148289	8.416735
717	1.269973	3.106449	0.41	0.692	-5.757302	8.297247
718	1.797945	2.991458	0.60	0.563	-4.969203	8.565094
719	1.852626	2.935446	0.63	0.544	-4.787814	8.493066
region1	,					
bangalore	1.440719	.340629	4.23	0.002	.6701623	2.211275
bhopal	-2.168242	1.020746	-2.12	0.063	-4.477329	.1408449
chennai	.4996242	.1766408	2.83	0.020	.1000349	.8992136
jaipur	-2.648752	.7017553	-3.77	0.004	-4.236232	-1.061271
kanpur	-3.632892	.8348367	-4.35	0.002	-5.521424	-1.74436
kochi	-2.236879	1.089273	-2.05	0.070	-4.700987	.2272285
mumbai	1.068094	1.122218	0.95	0.366	-1.47054	3.606728
panaji	-1.321287	5.197778	-0.25	0.805	-13.07948	10.4369
patna	1680553	1.624377	-0.10	0.920	-3.842651	3.50654
_cons	-3.480724	21.42022	-0.16	0.875	-51.93663	44.97518
	L					

Overriding estimator's cluster/robust settings with cluster(region1 date)

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 one

$$t(9) = -15.1422$$

Prob>|t| = 0.0000

95% confidence set for null hypothesis expression: [-4.826, -4.294]

Warning: 1 replications returned an infeasible test statistic and were deleted > from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 lag_lgdp

$$t(9) = 0.3113$$

Prob>|t| = 0.7659

95% confidence set for null hypothesis expression: [-3.08, 4.621]

Warning: 5 replications returned an infeasible test statistic and were deleted > from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 lag_lpop

$$t(9) = 0.1471$$

Prob>|t| = 0.8906

95% confidence set for null hypothesis expression: [-1.27, 1.356]

Warning: 4 replications returned an infeasible test statistic and were deleted > from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 _cons

$$t(9) = -0.1626$$

Prob>|t| = 0.8806

95% confidence set for null hypothesis expression: [-64.13, 48.51]

Linear regression Number of obs = 1,680

F(8, 9) = . Prob > F = . R-squared = 0.8006 Root MSE = 1.1747

(Std. err. adjusted for 10 clusters in region1)

		Robust				
fdi_ihs	Coefficient	std. err.	t	P> t	[95% conf.	interval]
two	-2.472847	.3809602	-6.49	0.000	-3.334639	-1.611056
lag_lgdp	.5360951	1.543866	0.35	0.736	-2.956372	4.028562
lag_lpop	0034829	.5354364	-0.01	0.995	-1.214724	1.207758
date						
553	.341176	.3187671	1.07	0.312	3799252	1.062277
554	1628449	.3295322	-0.49	0.633	9082986	.5826088
555	.1900673	.2630896	0.72	0.488	4050827	.7852173
556	.0918941	.3905814	0.24	0.819	7916624	.9754506
557	.2113414	.4370946	0.48	0.640	7774354	1.200118
558	.772518	.4601662	1.68	0.128	2684503	1.813486
559	.3085577	.5618239	0.55	0.596	9623763	1.579492
560	.4590527	.410937	1.12	0.293	4705514	1.388657
561	0292869	.4052936	-0.07	0.944	9461247	.8875508
562	.4496955	.3896151	1.15	0.278	4316751	1.331066
563	.3459176	.3895354	0.89	0.398	5352727	1.227108
564	0375389	.4942318	-0.08	0.941	-1.155569	1.080491
565	.3436276	.6075744	0.57	0.586	-1.030801	1.718057
566	.114668	.4419339	0.26	0.801	885056	1.114392
567	0299528	.4805088	-0.06	0.952	-1.116939	1.057034
568	.0464021	.4753314	0.10	0.924	-1.028872	1.121676
569	.0196043	.3460356	0.06	0.956	7631827	.8023913
570	.8455086	.4989633	1.69	0.124	2832249	1.974242
571	6758504	.4509439	-1.50	0.168	-1.695956	.3442557
572	8944259	.4560145	-1.96	0.081	-1.926002	.1371505
573	4515968	.5316319	-0.85	0.418	-1.654232	.7510381
574	3458008	.4630013	-0.75	0.474	-1.393183	.701581
575	.2099264	.7584688	0.28	0.788	-1.505849	1.925702
576	3853948	.7507802	-0.51	0.620	-2.083778	1.312988
577	.0850195	.9265621	0.09	0.929	-2.01101	2.181049
578	.1475173	.8603727	0.17	0.868	-1.798781	2.093816
579	.1051757	.5723145	0.18	0.858	-1.18949	1.399841
580	.2979481	.5433396	0.55	0.597	9311714	1.527068
581	.1037547	.7431584	0.14	0.892	-1.577386	1.784896
582	.3492418	.6574357	0.53	0.608	-1.137981	1.836465
583	.1525576	.7457574	0.20	0.842	-1.534463	1.839578
584	.5407397	.6644408	0.81	0.437	9623298	2.043809
585	.0722227	.5286284	0.14	0.894	-1.123618	1.268063

	•					
586	.240924	.5480691	0.44	0.671	9988944	1.480742
587	.1641213	.7461334	0.22	0.831	-1.52375	1.851992
588	0202121	.9806411	-0.02	0.984	-2.238576	2.198152
589	.5744457	.784249	0.73	0.483	-1.199649	2.34854
590	.3205824	.8281399	0.39	0.708	-1.5528	2.193965
591	1943348	.7954705	-0.24	0.812	-1.993814	1.605144
592	0452688	.7180935	-0.06	0.951	-1.669709	1.579172
593	.5203233	1.015287	0.51	0.621	-1.776415	2.817062
594	.3108171	.940593	0.33	0.749	-1.816952	2.438586
595	.64753	1.064715	0.61	0.558	-1.761022	3.056082
596	1877229	.8072638	-0.23	0.821	-2.01388	1.638435
597	.0342588	.9497092	0.04	0.972	-2.114133	2.18265
598	.3640609	.8238733	0.44	0.669	-1.49967	2.227792
599	06815	.8710321	-0.08	0.939	-2.038562	1.902262
600	.0723313	1.15826	0.06	0.952	-2.547834	2.692496
601	.1284773	.9417566	0.14	0.894	-2.001924	2.258879
602	.7462614	1.132142	0.66	0.526	-1.814822	3.307345
603	1141555	1.092249	-0.10	0.919	-2.584994	2.356683
604	.2143903	.8885038	0.24	0.815	-1.795545	2.224326
605	.8250052	.982797	0.84	0.423	-1.398236	3.048247
606	.4059061	1.092923	0.37	0.719	-2.066456	2.878269
607	.5236588	.9984794	0.52	0.613	-1.735058	2.782376
608	.618271	.9028842	0.68	0.511	-1.424195	2.660737
609	.4519194	1.111957	0.41	0.694	-2.063502	2.967341
610	1.328578	1.010195	1.32	0.221	9566414	3.613797
611	.8613632	.9545696	0.90	0.390	-1.298023	3.02075
612	.6431393	1.286711	0.50	0.629	-2.267603	3.553882
613	.847879	1.31289	0.65	0.535	-2.122084	3.817842
614	.4881765	1.156255	0.42	0.683	-2.127454	3.103807
615	.9326372	1.149961	0.81	0.438	-1.668756	3.534031
616	.596586	1.196083	0.50	0.630	-2.109141	3.302313
617	.5172615	1.471238	0.35	0.733	-2.81091	3.845433
618	.4483626	1.190977	0.38	0.715	-2.245814	3.142539
619	1.263375	1.194188	1.06	0.318	-1.438066	3.964817
620	1.043602	1.665958	0.63	0.547	-2.725057	4.81226
621	.9223935	1.24009	0.74	0.476	-1.882885	3.727672
622	.6574031	1.120819	0.59	0.572	-1.878066	3.192872
623	.5260424	1.267176	0.42	0.688	-2.340509	3.392593
624	.3995232	1.646933	0.24	0.814	-3.326097	4.125144
625	.6900229	1.406355	0.49	0.635	-2.491374	3.871419
626	.9184445	1.729696	0.53	0.608	-2.9944	4.831289
627	.518418	1.552605	0.33	0.746	-2.993819	4.030655
628	0485077	1.560962	-0.03	0.976	-3.579649	3.482634
629	.284445	1.450099	0.20	0.849	-2.995906	3.564796
630	1.110013	1.410252	0.79	0.451	-2.0802	4.300226
631	.4968954	1.395601	0.36	0.730	-2.660173	3.653964
632	.7442411	1.448232	0.51	0.620	-2.531888	4.02037
633	.8832478	1.370789	0.64	0.535	-2.217692	3.984188
634	.3133752	1.424572	0.22	0.831	-2.90923	3.53598

635	.9296808	1.37552	0.68	0.516	-2.181961	4.041323
636	.6874438	1.555135	0.44	0.669	-2.830516	4.205404
637	.0269626	1.620647	0.02	0.987	-3.639195	3.69312
638	1.265205	1.489344	0.85	0.418	-2.103926	4.634336
639	.4896533	1.720134	0.28	0.782	-3.40156	4.380867
640	.8785152	1.591036	0.55	0.594	-2.720658	4.477688
641	.1700688	1.818468	0.09	0.928	-3.943591	4.283729
642	.0950577	2.105176	0.05	0.965	-4.667182	4.857297
643	.406657	1.80286	0.23	0.827	-3.671696	4.48501
644	.0782242	1.839618	0.04	0.967	-4.08328	4.239729
645	1.131067	2.289307	0.49	0.633	-4.047705	6.309838
646	.8152937	2.191557	0.37	0.718	-4.142353	5.772941
647	1.179012	2.240702	0.53	0.611	-3.889809	6.247832
648	1.514685	2.062642	0.73	0.481	-3.151336	6.180706
649	1.111312	2.370742	0.47	0.650	-4.251679	6.474303
650	.814143	2.273387	0.36	0.729	-4.328617	5.956903
651	.5949842	2.564147	0.23	0.822	-5.20552	6.395488
652	.7732585	1.829917	0.42	0.683	-3.3663	4.912817
653	2.008736	2.133841	0.94	0.371	-2.818348	6.83582
654	1.28123	2.295763	0.56	0.590	-3.912147	6.474607
655	1.067746	2.371266	0.45	0.663	-4.296431	6.431924
656	1.205513	2.312806	0.52	0.615	-4.026417	6.437443
657	1.060249	2.138287	0.50	0.632	-3.776891	5.89739
658	1.304574	2.183226	0.60	0.565	-3.634226	6.243373
659	.971632	2.279871	0.43	0.680	-4.185794	6.129058
660	1.195161	2.129341	0.56	0.588	-3.621742	6.012064
661	.7691718	2.090347	0.37	0.721	-3.959522	5.497865
662	1.598314	2.356874	0.68	0.515	-3.733305	6.929934
663	.6012475	2.431535	0.25	0.810	-4.899267	6.101762
664	1.038183	2.554529	0.41	0.694	-4.740564	6.81693
665	1.369563	2.541056	0.54	0.603	-4.378706	7.117832
666	1.3245	2.273449	0.58	0.574	-3.818398	6.467399
667	1.088391	2.304745	0.47	0.648	-4.125304	6.302086
668	1.082567	2.341128	0.46	0.655	-4.213433	6.378567
669	1.180561	2.331812	0.51	0.625	-4.094365	6.455486
670	.8283926	2.283051	0.36	0.725	-4.336228	5.993014
671	1.005191	2.387652	0.42	0.684	-4.396054	6.406436
672	.8290056	2.326608	0.36	0.730	-4.434148	6.092159
673	.9798709	2.351912	0.42	0.687	-4.340523	6.300265
674	1.257737	2.397443	0.52	0.613	-4.165656	6.681131
675	1.493438	2.506344	0.60	0.566	-4.176307	7.163183
676	1.590945	2.484917	0.64	0.538	-4.030328	7.212217
677	1.236151	2.535227	0.49	0.637	-4.498931	6.971234
678	1.532279	2.49258	0.61	0.554	-4.106328	7.170887
679	1.742511	2.39553	0.73	0.485	-3.676554	7.161575
680	1.987667	2.37467	0.84	0.424	-3.384209	7.359543
681	1.359682	2.515297	0.54	0.602	-4.330316	7.04968
682	1.429814	2.295989	0.62	0.549	-3.764074	6.623703
683	1.230866	2.573839	0.48	0.644	-4.591562	7.053293

684	1.574294	2.581246	0.61	0.557	-4.26489	7.413478
685	1.151924	2.539028	0.45	0.661	-4.591757	6.895604
686	1.2911	2.744381	0.47	0.649	-4.917121	7.499321
687	1.266349	2.577487	0.49	0.635	-4.564331	7.097029
688	1.315596	2.626	0.50	0.628	-4.624828	7.25602
689	1.385915	2.541636	0.55	0.599	-4.363664	7.135495
690	1.051061	2.525824	0.42	0.687	-4.662751	6.764872
691	.9904427	2.77979	0.36	0.730	-5.297878	7.278764
692	1.331078	2.709428	0.49	0.635	-4.798075	7.460231
693	1.102889	2.585879	0.43	0.680	-4.746776	6.952554
694	1.354696	2.711476	0.50	0.629	-4.779089	7.488481
695	1.118664	2.612287	0.43	0.679	-4.790739	7.028066
696	1.270729	2.704123	0.47	0.650	-4.846423	7.387881
697	1.002982	2.812788	0.36	0.730	-5.359988	7.365952
698	1.05488	2.734603	0.39	0.709	-5.13122	7.240981
699	.9948414	2.817526	0.35	0.732	-5.378846	7.368529
700	1.427396	2.640888	0.54	0.602	-4.546708	7.401499
701	.7894975	2.79127	0.28	0.784	-5.524794	7.10379
702	1.047922	2.823641	0.37	0.719	-5.339598	7.435443
703	.8651918	2.681884	0.32	0.754	-5.20165	6.932034
704	1.325885	2.576794	0.51	0.619	-4.503227	7.154998
705	1.325188	2.589705	0.51	0.621	-4.533132	7.183508
706	1.303273	2.770578	0.47	0.649	-4.96421	7.570756
707	1.283126	2.811904	0.46	0.659	-5.077843	7.644095
708	1.591416	3.087407	0.52	0.619	-5.392784	8.575615
709	1.36634	3.047983	0.45	0.665	-5.528677	8.261356
710	1.424757	2.850595	0.50	0.629	-5.023736	7.87325
711	1.643967	2.818743	0.58	0.574	-4.732472	8.020406
712	1.643187	2.6937	0.61	0.557	-4.450385	7.736759
713	1.633116	2.877205	0.57	0.584	-4.875574	8.141807
714	1.583187	2.846118	0.56	0.592	-4.855179	8.021553
715	1.559381	2.788347	0.56	0.590	-4.748298	7.867059
716	1.400302	2.890252	0.48	0.640	-5.137903	7.938506
717	1.036051	2.995778	0.35	0.737	-5.740869	7.812972
718	1.564024	2.883222	0.54	0.601	-4.958278	8.086326
719	1.618705	2.826201	0.57	0.581	-4.774606	8.012016
region1						
bangalore	1.409955	.3350627	4.21	0.002	.6519905	2.16792
bhopal	-2.130504	.9788013	-2.18	0.057	-4.344707	.0836981
chennai	.4843277	.1709764	2.83	0.020	.0975522	.8711032
jaipur	-2.62297	.6729088	-3.90	0.004	-4.145196	-1.100745
kanpur	-3.540865	.8283425	-4.27	0.002	-5.414706	-1.667024
kochi	-2.262512	1.049077	-2.16	0.059	-4.635689	.1106638
mumbai 	1.066597	1.076786	0.99	0.348	-1.369263	3.502456
panaji	-1.523797	5.023753	-0.30	0.769	-12.88832	9.840722
patna	-2.412496	1.556087	-1.55	0.155	-5.93261	1.107617
_cons	-2.810311	20.61017	-0.14	0.895	-49.43375	43.81313

Overriding estimator's cluster/robust settings with cluster(region1 date)

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 two

$$t(9) = -6.2049$$

Prob>|t| = 0.0051

95% confidence set for null hypothesis expression: [-3.905, -1.059]

Warning: 5 replications returned an infeasible test statistic and were deleted > from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 lag_lgdp

$$t(9) = 0.3477$$

Prob>|t| = 0.7303

95% confidence set for null hypothesis expression: [-2.87, 4.41]

Warning: 6 replications returned an infeasible test statistic and were deleted > from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 lag_lpop

$$t(9) = -0.0065$$

Prob>|t| = 0.9957

95% confidence set for null hypothesis expression: [-1.411, 1.327]

Warning: 2 replications returned an infeasible test statistic and were deleted > from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 _cons

$$t(9) = -0.1365$$

Prob>|t| = 0.9025

95% confidence set for null hypothesis expression: [-60.61, 47.16]

Linear regression

Number of obs = 1,680 $\frac{F(8,9)}{Prob > F}$ = . R-squared = 0.8139 Root MSE = 1.1347

(Std. err. adjusted for 10 clusters in region1)

		Robust				
fdi_ihs	Coefficient	std. err.	t	P> t	[95% conf.	interval]
three	-3.002886	.3660149	-8.20	0.000	-3.83087	-2.174903
lag_lgdp	-1.69693	1.236687	-1.37	0.203	-4.494511	1.100651
lag_lpop	0447276	.4845587	-0.09	0.928	-1.140875	1.05142
date						
553	.341176	.3187671	1.07	0.312	3799252	1.062277
554	1628449	.3295322	-0.49	0.633	9082986	.5826088
555	.1900673	.2630896	0.72	0.488	4050827	.7852173
556	.0918941	.3905814	0.24	0.819	7916624	.9754506
557	.2113414	.4370946	0.48	0.640	7774354	1.200118
558	.772518	.4601662	1.68	0.128	2684503	1.813486
559	.3085577	.5618239	0.55	0.596	9623763	1.579492
560	.4590527	.410937	1.12	0.293	4705514	1.388657
561	0292869	.4052936	-0.07	0.944	9461247	.8875508
562	.4496955	.3896151	1.15	0.278	4316751	1.331066
563	.3459176	.3895354	0.89	0.398	5352727	1.227108
564	.3212928	.425763	0.75	0.470	6418501	1.284436
565	.7024593	.5863816	1.20	0.262	624028	2.028947
566	.4734996	.498706	0.95	0.367	6546518	1.601651
567	.3288789	.4654232	0.71	0.498	7239817	1.381739
568	.4052338	.487808	0.83	0.428	6982645	1.508732
569	.378436	.3430345	1.10	0.299	397562	1.154434
570	1.20434	.5574589	2.16	0.059	0567193	2.4654
571	3170187	.4232171	-0.75	0.473	-1.274402	.6403649
572	5355942	.2812205	-1.90	0.089	-1.171759	.1005707
573	0927651	.3826412	-0.24	0.814	9583597	.7728294
574	.0130309	.2924623	0.04	0.965	6485649	.6746266
575	.5687581	.5436049	1.05	0.323	6609617	1.798478
576	.2876984	.4208886	0.68	0.511	6644178	1.239815
577	.7581127	.5467098	1.39	0.199	4786308	1.994856
578	.8206106	.5144636	1.60	0.145	3431869	1.984408
579	.7782689	.2676062	2.91	0.017	.1729016	1.383636
580	.9710413	.3658915	2.65	0.026	.1433373	1.798745
581	.7768479	.3918287	1.98	0.079	1095303	1.663226
582	1.022335	.4227966	2.42	0.039	.0659026	1.978768
583	.8256508	.4310391	1.92	0.088	1494274	1.800729
584	1.213833	.3292522	3.69	0.005	.4690127	1.958653
585	.745316	.3641036	2.05	0.071	0783436	1.568976

	_					
586	.9140172	.34312	2.66	0.026	.1378258	1.690209
587	.8372145	.47027	1.78	0.109	2266101	1.901039
588	1.018954	.4744352	2.15	0.060	0542932	2.092201
589	1.613612	.3852364	4.19	0.002	.7421463	2.485077
590	1.359748	.4743298	2.87	0.019	.2867398	2.432757
591	.8448311	.3954059	2.14	0.061	0496392	1.739301
592	.9938971	.363628	2.73	0.023	.1713135	1.816481
593	1.559489	.6618933	2.36	0.043	.0621826	3.056796
594	1.349983	.5397837	2.50	0.034	.1289075	2.571058
595	1.686696	.5994792	2.81	0.020	.3305797	3.042812
596	.8514431	.3758965	2.27	0.050	.0011061	1.70178
597	1.073425	.5439078	1.97	0.080	1569802	2.30383
598	1.403227	.5796247	2.42	0.039	.0920247	2.714429
599	.9710159	.6001716	1.62	0.140	3866667	2.328698
600	1.426842	.539473	2.64	0.027	.2064689	2.647214
601	1.482988	.4891394	3.03	0.014	.3764775	2.589498
602	2.100772	.6935505	3.03	0.014	.5318517	3.669692
603	.9930702	.5854552	1.70	0.124	3313216	2.317462
604	1.321616	.576088	2.29	0.047	.0184143	2.624818
605	1.932231	.6429109	3.01	0.015	.4778654	3.386596
606	1.513132	.6581629	2.30	0.047	.0242639	3.002
607	1.630885	.6063049	2.69	0.025	.2593276	3.002441
608	1.725497	.6977093	2.47	0.035	.1471687	3.303825
609	1.559145	.6055425	2.57	0.030	.1893129	2.928977
610	2.435803	.6143191	3.97	0.003	1.046117	3.82549
611	1.968589	.5305055	3.71	0.005	.7685021	3.168676
612	2.15545	.6549431	3.29	0.009	.6738657	3.637034
613	2.36019	.7601801	3.10	0.013	.6405427	4.079837
614	2.000487	.6348163	3.15	0.012	.564433	3.436541
615	2.444948	.9428542	2.59	0.029	.3120634	4.577832
616	2.108897	.7921269	2.66	0.026	.3169811	3.900812
617	2.029572	.8977468	2.26	0.050	0012722	4.060416
618	1.960673	.7794246	2.52	0.033	.1974922	3.723854
619	2.775686	.7960644	3.49	0.007	.974863	4.576508
620	2.555912	.9371712	2.73	0.023	.4358836	4.675941
621	2.434704	.686166	3.55	0.006	.8824887	3.98692
622	2.169714	.7256275	2.99	0.015	.5282302	3.811197
623	2.038353	.8686484	2.35	0.044	.0733338	4.003372
624	2.272653	.8563455	2.65	0.026	.3354652	4.209841
625	2.563153	.9606579	2.67	0.026	.3899938	4.736312
626	2.791575	1.10209	2.53	0.032	.2984737	5.284676
627	2.391548	1.023238	2.34	0.044	.0768221	4.706274
628	1.824622	.9241451	1.97	0.080	265939	3.915184
629	2.157575	.9274559	2.33	0.045	.0595241	4.255626
630	2.983143	.9176164	3.25	0.010	.9073505	5.058936
631	2.370026	.8205017	2.89	0.018	.5139218	4.226129
632	2.617371	.7736952	3.38	0.008	.8671511	4.367591
633	2.756378	.8294339	3.32	0.009	.8800681	4.632688
634	2.186505	.9298626	2.35	0.043	.0830099	4.290001

	•					
635	2.802811	.9176433	3.05	0.014	.7269575	4.878664
636	2.820622	.8753642	3.22	0.010	.8404111	4.800834
637	2.160141	1.10937	1.95	0.083	349429	4.669711
638	3.398384	.953927	3.56	0.006	1.240451	5.556316
639	2.622832	.9442861	2.78	0.021	.4867082	4.758956
640	3.011694	1.008215	2.99	0.015	.7309528	5.292435
641	2.603536	.9826128	2.65	0.026	.3807115	4.826361
642	2.528525	1.092463	2.31	0.046	.0572022	4.999848
643	2.840124	1.062203	2.67	0.025	.4372546	5.242994
644	2.511691	.9152317	2.74	0.023	.4412934	4.582089
645	3.564534	1.153673	3.09	0.013	.9547435	6.174325
646	3.248761	1.174325	2.77	0.022	.5922525	5.905269
647	3.612479	1.194346	3.02	0.014	.9106803	6.314277
648	4.260754	1.235098	3.45	0.007	1.466769	7.05474
649	3.857381	1.212158	3.18	0.011	1.11529	6.599472
650	3.560212	1.136971	3.13	0.012	.9882058	6.132219
651	3.341054	1.362459	2.45	0.037	.2589581	6.423149
652	3.519328	1.243679	2.83	0.020	.7059314	6.332724
653	4.754806	1.322309	3.60	0.006	1.763536	7.746076
654	4.0273	1.204024	3.34	0.009	1.303607	6.750992
655	3.813816	1.208556	3.16	0.012	1.079873	6.547759
656	3.951582	1.240266	3.19	0.011	1.145906	6.757259
657	3.806319	1.254924	3.03	0.014	.9674839	6.645154
658	4.050643	1.290251	3.14	0.012	1.131891	6.969394
659	3.717701	1.335167	2.78	0.021	.6973428	6.73806
660	4.165102	1.202549	3.46	0.007	1.444747	6.885457
661	3.739112	1.491492	2.51	0.033	.365123	7.113102
662	4.568255	1.280189	3.57	0.006	1.672267	7.464243
663	3.571188	1.289598	2.77	0.022	.6539144	6.488462
664	4.008123	1.269805	3.16	0.012	1.135624	6.880622
665	4.339503	1.3606	3.19	0.011	1.261612	7.417394
666	4.294441	1.335685	3.22	0.011	1.272912	7.31597
667	4.058332	1.307704	3.10	0.013	1.1001	7.016564
668	4.052507	1.287248	3.15	0.012	1.14055	6.964464
669	4.150501	1.216217	3.41	0.008	1.399227	6.901776
670	3.798333	1.202492	3.16	0.012	1.078107	6.518559
671	3.975132	1.203114	3.30	0.009	1.253499	6.696765
672	4.025564	1.276879	3.15	0.012	1.137063	6.914064
673	4.176429	1.267538	3.29	0.009	1.30906	7.043798
674	4.454296	1.26123	3.53	0.006	1.601196	7.307396
675	4.689996	1.338766	3.50	0.007	1.661497	7.718494
676	4.787503	1.338438	3.58	0.006	1.759745	7.815261
677	4.43271	1.254083	3.53	0.006	1.595776	7.269643
678	4.728837	1.305836	3.62	0.006	1.774831	7.682843
679	4.939069	1.218624	4.05	0.003	2.182351	7.695787
680	5.184225	1.472018	3.52	0.006	1.854289	8.514161
681	4.55624	1.288018	3.54	0.006	1.64254	7.46994
682	4.626372	1.281438	3.61	0.006	1.727557	7.525188
683	4.427424	1.322876	3.35	0.009	1.434871	7.419976

684	5.048991	1.439829	3.51	0.007	1.791872	8.306111
685	4.626621	1.430163	3.24	0.010	1.391367	7.861874
686	4.765798	1.522391	3.13	0.012	1.32191	8.209685
687	4.741046	1.513872	3.13	0.012	1.316429	8.165663
688	4.790293	1.472407	3.25	0.010	1.459477	8.121109
689	4.860613	1.537902	3.16	0.012	1.381637	8.339589
690	4.525758	1.477692	3.06	0.014	1.182986	7.86853
691	4.46514	1.602347	2.79	0.021	.8403782	8.089902
692	4.805775	1.50447	3.19	0.011	1.402427	8.209123
693	4.577587	1.485114	3.08	0.013	1.218024	7.937149
694	4.829393	1.428263	3.38	0.008	1.598438	8.060349
695	4.593361	1.540728	2.98	0.015	1.107991	8.078731
696	4.891706	1.53539	3.19	0.011	1.418413	8.364999
697	4.623959	1.564824	2.95	0.016	1.084082	8.163837
698	4.675858	1.557289	3.00	0.015	1.153025	8.19869
699	4.615819	1.511195	3.05	0.014	1.197257	8.03438
700	5.048373	1.522275	3.32	0.009	1.604747	8.491998
701	4.410475	1.486768	2.97	0.016	1.047172	7.773777
702	4.668899	1.59389	2.93	0.017	1.063271	8.274528
703	4.486169	1.497455	3.00	0.015	1.09869	7.873648
704	4.946863	1.509008	3.28	0.010	1.533249	8.360476
705	4.946165	1.413777	3.50	0.007	1.74798	8.14435
706	4.92425	1.500083	3.28	0.009	1.530827	8.317673
707	4.904103	1.347687	3.64	0.005	1.855423	7.952783
708	5.476729	1.565397	3.50	0.007	1.935555	9.017903
709	5.251653	1.531994	3.43	0.008	1.786043	8.717264
710	5.31007	1.516045	3.50	0.007	1.880537	8.739603
711	5.52928	1.590584	3.48	0.007	1.931129	9.127432
712	5.5285	1.592426	3.47	0.007	1.926182	9.130818
713	5.51843	1.504883	3.67	0.005	2.114149	8.922711
714	5.4685	1.614282	3.39	0.008	1.816742	9.120259
715	5.444694	1.591879	3.42	0.008	1.843613	9.045775
716	5.285615	1.507369	3.51	0.007	1.87571	8.69552
717	4.921365	1.525503	3.23	0.010	1.470436	8.372293
718	5.449338	1.539241	3.54	0.006	1.967332	8.931343
719	5.504018	1.551555	3.55	0.006	1.994158	9.013878
region1						
bangalore	1.090223	.1923997	5.67	0.000	.6549849	1.525462
bhopal	-3.551835	.8408012	-4.22	0.002	-5.453859	-1.649811
chennai	.7161269	.1767348	4.05	0.003	.3163251	1.115929
jaipur	-3.600127	.5774379	-6.23	0.000	-4.906383	-2.293872
kanpur	-1.492323	.6652232	-2.24	0.052	-2.997163	.0125163
kochi	-3.671785	.6699309	-5.48	0.000	-5.187274	-2.156297
mumbai	2.590627	.778704	3.33	0.009	.8290763	4.352178
panaji	-7.953139	2.998577	-2.65	0.026	-14.73639	-1.169886
patna	-6.266002	1.343931	-4.66	0.001	-9.306185	-3.225819
-						
_cons	25.29	13.70774	1.84	0.098	-5.719072	56.29906

Overriding estimator's cluster/robust settings with cluster(region1 date)

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 three

$$t(9) = -8.0858$$

Prob>|t| = 0.0005

95% confidence set for null hypothesis expression: [-4.077, -1.92]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 lag_lgdp

$$t(9) = -1.3731$$

Prob>|t| = 0.1849

95% confidence set for null hypothesis expression: [-4.464, .9378]

Warning: 14 replications returned an infeasible test statistic and were delete > d from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 lag_lpop

$$t(9) = -0.0926$$

Prob>|t| = 0.9274

95% confidence set for null hypothesis expression: [-1.297, 1.16]

Warning: 3 replications returned an infeasible test statistic and were deleted > from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 _cons

$$t(9) = 1.8449$$

Prob>|t| = 0.0981

95% confidence set for null hypothesis expression: [-5.64, 59.01]

Linear regression

 Number of obs
 =
 1,680

 $\underline{F(8, 9)}$ =
 .

 Prob > F
 =
 .

 R-squared
 =
 0.7888

 Root MSE
 =
 1.2088

(Std. err. adjusted for 10 clusters in region1)

		(564.6				
		Robust				
fdi_ihs	Coefficient	std. err.	t	P> t	[95% conf.	interval]
four	-1.443299	.2405776	-6.00	0.000	-1.987523	8990746
lag_lgdp	5328373	1.673103	-0.32	0.757	-4.31766	3.251985
lag_lpop	.4647159	.5849367	0.79	0.447	8585028	1.787934
date						
553	.341176	.3187671	1.07	0.312	3799252	1.062277
554	1628449	.3295322	-0.49	0.633	9082986	.5826088
555	.1900673	.2630896	0.72	0.488	4050827	.7852173
556	.0918941	.3905814	0.72	0.819	7916624	.9754506
557	.2113414	.4370946	0.48	0.640	7774354	1.200118
558	.772518	.4601662	1.68	0.040	2684503	1.813486
559	.3085577	.5618239	0.55	0.126	9623763	1.579492
560	.4590527	.410937	1.12	0.293	4705514	1.388657
561	0292869	.4052936	-0.07	0.293	9461247	.8875508
562	.4496955	.3896151	1.15	0.278	4316751	1.331066
563	.3459176	.3895354	0.89	0.398	5352727	1.227108
564	•	.5453668				
	.12571		0.23	0.823	-1.107995 9211637	1.359415 1.934917
565	.5068765	.6312736	0.80	0.443		
566	.2779168	.4971485	0.56	0.590	8467112	1.402545
567	.1332961	.5309653	0.25	0.807	-1.067831	1.334423
568	.209651	.49659	0.42	0.683	9137137	1.333016
569	.1828532	.3931164	0.47	0.653	706438	1.072144
570 571	1.008757	.5266037	1.92	0.088	182503	2.200018
571	5126015	.4072345	-1.26	0.240	-1.43383	.4086271
572	731177	.4082661	-1.79	0.107	-1.654739	.1923851
573	2883479	.4929634	-0.58	0.573	-1.403509	.8268126
574	1825519	.4188532	-0.44	0.673	-1.130064	.7649598
575	.3731753	.6446863	0.58	0.577	-1.085206	1.831557
576	0801951	.5244059	-0.15	0.882	-1.266484	1.106093
577	.3902191	.810046	0.48	0.641	-1.442232	2.22267
578	.452717	.6518085	0.69	0.505	-1.021776	1.92721
579	.4103753	.4402212	0.93	0.376	5854743	1.406225
580	.6031477	.4023209	1.50	0.168	3069653	1.513261
581	.4089543	.6516936	0.63	0.546	-1.065279	1.883188
582	.6544415	.5251872	1.25	0.244	5336146	1.842498
583	.4577572	.6357228	0.72	0.490	9803477	1.895862
584	.8459393	.5444987	1.55	0.155	3858024	2.077681
585	.3774224	.4143693	0.91	0.386	5599461	1.314791

586	.5461237	.4087559	1.34	0.214	3785465	1.470794
587	.4693209	.6137194	0.76	0.464	9190087	1.857651
588	.4517983	.8705245	0.52	0.616	-1.517465	2.421062
589	1.046456	.6425045	1.63	0.138	40699	2.499902
590	.7925928	.6986885	1.13	0.286	7879503	2.373136
591	.2776756	.7154491	0.39	0.707	-1.340783	1.896134
592	.4267417	.6188417	0.69	0.508	9731755	1.826659
593	.9923337	.8820141	1.13	0.290	-1.002921	2.987588
594	.7828275	.8740432	0.90	0.394	-1.194396	2.760051
595	1.11954	.9155215	1.22	0.252	951513	3.190594
596	.2842876	.6971966	0.41	0.693	-1.292881	1.861456
597	.5062692	.8791634	0.58	0.579	-1.482537	2.495075
598	.8360713	.7499834	1.11	0.294	8605089	2.532652
599	.4038604	.8392875	0.48	0.642	-1.49474	2.302461
600	.6869035	1.054319	0.65	0.531	-1.698132	3.071939
601	.7430495	.840143	0.88	0.399	-1.157486	2.643585
602	1.360834	.9836641	1.38	0.200	8643691	3.586036
603	.253132	1.029763	0.25	0.811	-2.076354	2.582618
604	.5816778	.8276828	0.70	0.500	-1.290671	2.454026
605	1.192293	.8963149	1.33	0.216	8353123	3.219898
606	.7731936	1.00656	0.77	0.462	-1.503804	3.050192
607	.8909463	.9554593	0.93	0.375	-1.270453	3.052346
608	.9855586	.7877112	1.25	0.242	7963679	2.767485
609	.8192069	1.00806	0.81	0.437	-1.461184	3.099598
610	1.695865	.909427	1.86	0.095	3614016	3.753132
611	1.228651	.8670761	1.42	0.190	7328117	3.190113
612	1.19602	1.183028	1.01	0.338	-1.480175	3.872215
613	1.40076	1.225816	1.14	0.283	-1.37223	4.173749
614	1.041057	1.102364	0.94	0.370	-1.452664	3.534778
615	1.485518	1.116438	1.33	0.216	-1.040041	4.011077
616	1.149467	1.136564	1.01	0.338	-1.421621	3.720554
617	1.070142	1.420562	0.75	0.471	-2.143392	4.283676
618	1.001243	1.16807	0.86	0.414	-1.641115	3.643602
619	1.816256	1.122499	1.62	0.140	7230144	4.355526
620	1.596482	1.611968	0.99	0.348	-2.050044	5.243008
621	1.475274	1.135672	1.30	0.226	-1.093794	4.044342
622	1.210284	1.042937	1.16	0.276	-1.149005	3.569572
623	1.078923	1.282423	0.84	0.422	-1.822119	3.979965
624	.9967461	1.57552	0.63	0.543	-2.567328	4.56082
625	1.287246	1.392232	0.92	0.379	-1.862202	4.436693
626	1.515667	1.662026	0.91	0.386	-2.244097	5.275432
627	1.115641	1.498507	0.74	0.476	-2.274218	4.505499
628	.5487151	1.483682	0.37	0.720	-2.807607	3.905038
629	.8816678	1.35872	0.65	0.533	-2.19197	3.955306
630	1.707236	1.365762	1.25	0.243	-1.382332	4.796804
631	1.094118	1.333823	0.82	0.433	-1.9232	4.111437
632	1.341464	1.362686	0.98	0.351	-1.741145	4.424073
633	1.480471	1.29164	1.15	0.281	-1.441422	4.402363
634	.910598	1.34518	0.68	0.515	-2.13241	3.953606

635	1.526904	1.33555	1.14	0.282	-1.494321	4.548128
636	1.402992	1.479118	0.95	0.368	-1.943005	4.748988
637	.7425103	1.546459	0.48	0.643	-2.755824	4.240844
638	1.980753	1.409005	1.41	0.193	-1.206638	5.168144
639	1.205201	1.624071	0.74	0.477	-2.468703	4.879105
640	1.594063	1.529136	1.04	0.324	-1.865082	5.053208
641	.8856165	1.760444	0.50	0.627	-3.096784	4.868017
642	.8106055	2.058709	0.39	0.703	-3.846518	5.467729
643	1.122205	1.721931	0.65	0.531	-2.773073	5.017482
644	.7937719	1.762124	0.45	0.663	-3.19243	4.779974
645	1.846615	2.159017	0.86	0.415	-3.037421	6.73065
646	1.530841	2.112077	0.72	0.487	-3.247008	6.308691
647	1.894559	2.112662	0.90	0.393	-2.884614	6.673732
648	2.373771	1.943813	1.22	0.253	-2.023439	6.770981
649	1.970398	2.266425	0.87	0.407	-3.156611	7.097407
650	1.673229	2.182511	0.77	0.463	-3.263955	6.610413
651	1.45407	2.490096	0.58	0.574	-4.178919	7.087059
652	1.632344	1.804807	0.90	0.389	-2.450412	5.715101
653	2.867822	1.971645	1.45	0.180	-1.59235	7.327994
654	2.140316	2.192039	0.98	0.354	-2.81842	7.099053
655	1.926832	2.274423	0.85	0.419	-3.218269	7.071934
656	2.064599	2.219949	0.93	0.377	-2.957274	7.086472
657	1.919335	2.067387	0.93	0.377	-2.75742	6.596091
658	2.163659	2.075362	1.04	0.324	-2.531135	6.858454
659	1.830718	2.192786	0.83	0.425	-3.129709	6.791145
660	2.155395	2.072245	1.04	0.325	-2.53235	6.84314
661	1.729405	2.090784	0.83	0.430	-3.000276	6.459086
662	2.558548	2.215859	1.15	0.278	-2.454073	7.57117
663	1.561481	2.382156	0.66	0.529	-3.82733	6.950292
664	1.998416	2.44828	0.82	0.435	-3.539978	7.536811
665	2.329796	2.406069	0.97	0.358	-3.11311	7.772703
666	2.284734	2.180696	1.05	0.322	-2.648343	7.217811
667	2.048625	2.232968	0.92	0.383	-3.0027	7.099949
668	2.0428	2.264881	0.90	0.391	-3.080717	7.166318
669	2.140794	2.254168	0.95	0.367	-2.958488	7.240077
670	1.932956	2.242569	0.86	0.411	-3.140086	7.005999
671	2.109755	2.323008	0.91	0.387	-3.145254	7.364764
672	2.036144	2.292258	0.89	0.398	-3.149304	7.221591
673	2.187009	2.305685	0.95	0.368	-3.028812	7.40283
674	2.464875	2.339726	1.05	0.320	-2.827953	7.757704
675	2.700576	2.414727	1.12	0.292	-2.761917	8.163068
676	2.798083	2.398296	1.17	0.273	-2.627241	8.223406
677	2.443289	2.445207	1.00	0.344	-3.088154	7.974732
678	2.739417	2.389628	1.15	0.281	-2.666296	8.14513
679	2.949648	2.28539	1.29	0.229	-2.220262	8.119559
680	3.194805	2.408716	1.33	0.217	-2.25409	8.6437
681	2.56682	2.426997	1.06	0.318	-2.923428	8.057067
682	2.636952	2.223169	1.19	0.266	-2.392205	7.666109
683	2.438004	2.517471	0.97	0.358	-3.256911	8.132918

684	2.908716	2.513188	1.16	0.277	-2.77651	8.593942
685	2.486346	2.482574	1.00	0.343	-3.129626	8.102318
686	2.625523	2.677273	0.98	0.352	-3.430889	8.681935
687	2.600771	2.489805	1.04	0.323	-3.031559	8.233102
688	2.650019	2.534957	1.05	0.323	-3.084453	8.38449
689	2.720338	2.456933	1.11	0.297	-2.837631	8.278307
690	2.385483	2.460583	0.97	0.358	-3.180743	7.95171
691	2.324865	2.730261	0.85	0.417	-3.851413	8.501144
692	2.6655	2.618233	1.02	0.335	-3.257355	8.588356
693	2.437312	2.527571	0.96	0.360	-3.280452	8.155075
694	2.689118	2.630762	1.02	0.333	-3.262078	8.640315
695	2.453086	2.540495	0.97	0.359	-3.293913	8.200086
696	2.670069	2.626623	1.02	0.336	-3.271766	8.611903
697	2.402322	2.747336	0.87	0.405	-3.812583	8.617227
698	2.45422	2.653539	0.92	0.379	-3.548502	8.456943
699	2.394181	2.764669	0.87	0.409	-3.859935	8.648298
700	2.826736	2.566173	1.10	0.299	-2.978351	8.631822
701	2.188838	2.743172	0.80	0.445	-4.016649	8.394325
702	2.447262	2.742515	0.89	0.395	-3.756739	8.651263
703	2.264532	2.56688	0.88	0.401	-3.542154	8.071217
704	2.725225	2.504795	1.09	0.305	-2.941014	8.391464
705	2.724528	2.502823	1.09	0.305	-2.937251	8.386307
706	2.702613	2.687634	1.01	0.341	-3.377237	8.782463
707	2.682466	2.721244	0.99	0.350	-3.473415	8.838347
708	3.112216	3.014222	1.03	0.329	-3.706429	9.930861
709	2.88714	2.946756	0.98	0.353	-3.778885	9.553165
710	2.945557	2.754721	1.07	0.313	-3.286054	9.177168
711	3.164767	2.809241	1.13	0.289	-3.190177	9.519711
712	3.163987	2.609382	1.21	0.256	-2.738845	9.066819
713	3.153917	2.754258	1.15	0.282	-3.076648	9.384481
714	3.103987	2.793873	1.11	0.295	-3.216192	9.424166
715	3.080181	2.702064	1.14	0.284	-3.032313	9.192675
716	2.921102	2.795738	1.04	0.323	-3.403298	9.245502
717	2.556852	2.913666	0.88	0.403	-4.034319	9.148023
718	3.084824	2.780829	1.11	0.296	-3.205849	9.375498
719	3.139505	2.725586	1.15	0.279	-3.0262	9.30521
region1						
bangalore	1.470361	.3296746	4.46	0.002	.7245856	2.216137
bhopal	-2.901961	1.083641	-2.68	0.025	-5.353326	450595
chennai	1.094182	.1924742	5.68	0.000	.6587747	1.529588
jaipur	-3.15237	.7447406	-4.23	0.002	-4.837091	-1.46765
kanpur	-3.844612	.8249289	-4.66	0.001	-5.710731	-1.978493
kochi	-2.651639	1.070398	-2.48	0.035	-5.073048	2302306
mumbai	1.661551	1.133843	1.47	0.177	9033794	4.226481
panaji	-2.789083	5.043778	-0.55	0.594	-14.1989	8.620735
patna	-5.418067	1.665113	-3.25	0.010	-9.184816	-1.651319
_cons	5.500726	21.2765	0.26	0.802	-42.63007	53.63152

Overriding estimator's cluster/robust settings with cluster(region1 date)

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 four

$$t(9) = -6.0823$$

Prob>|t| = 0.0115

95% confidence set for null hypothesis expression: [-2.245, -.6019]

Warning: 3 replications returned an infeasible test statistic and were deleted > from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 lag_lgdp

$$t(9) = -0.3197$$

Prob>|t| = 0.7590

95% confidence set for null hypothesis expression: [-4.096, 3.42]

Warning: 8 replications returned an infeasible test statistic and were deleted > from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 lag_lpop

$$t(9) = 0.7975$$

Prob>|t| = 0.4598

95% confidence set for null hypothesis expression: [-1.072, 2.013]

Warning: 3 replications returned an infeasible test statistic and were deleted > from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 _cons

$$t(9) = 0.2593$$

Prob>|t| = 0.8108

95% confidence set for null hypothesis expression: [-49.52, 54.57]

Linear regression

Number of obs = 1,680 $\frac{F(8,9)}{Prob > F}$ = . R-squared = 0.7838 Root MSE = 1.2231

(Std. err. adjusted for 10 clusters in region1)

		,				- J - ,
		Robust				
fdi_ihs	Coefficient	std. err.	t	P> t	[95% conf.	interval]
five	8926192	.415019	-2.15	0.060	-1.831457	.046219
lag_lgdp	5566919	1.775532	-0.31	0.761	-4.573225	3.459841
lag_lpop	.2247272	.6306704	0.36	0.730	-1.201948	1.651403
date						
553	.341176	.3187671	1.07	0.312	3799252	1.062277
554	1628449	.3295322	-0.49	0.633	9082986	.5826088
555	.1900673	.2630896	0.72	0.488	4050827	.7852173
556	.0918941	.3905814	0.24	0.819	7916624	.9754506
557	.2113414	.4370946	0.48	0.640	7774354	1.200118
558	.772518	.4601662	1.68	0.128	2684503	1.813486
559	.3085577	.5618239	0.55	0.596	9623763	1.579492
560	.4590527	.410937	1.12	0.293	4705514	1.388657
561	0292869	.4052936	-0.07	0.944	9461247	.8875508
562	.4496955	.3896151	1.15	0.278	4316751	1.331066
563	.3459176	.3895354	0.89	0.398	5352727	1.227108
564	.1337266	.5452852	0.25	0.812	-1.099794	1.367247
565	.5148931	.6261359	0.82	0.432	9015247	1.931311
566	.2859335	.5087782	0.56	0.588	8650027	1.43687
567	.1413127	.5315688	0.27	0.796	-1.06118	1.343805
568	.2176676	.4939433	0.44	0.670	8997097	1.335045
569	.1908698	.3893245	0.49	0.636	6898435	1.071583
570	1.016774	.5399801	1.88	0.092	2047457	2.238294
571	5045849	.3939336	-1.28	0.232	-1.395724	.3865548
572	7231604	.3982275	-1.82	0.103	-1.624014	.1776927
573	2803313	.4800213	-0.58	0.574	-1.366215	.8055524
574	1745353	.4124532	-0.42	0.682	-1.107569	.7584985
575	.3811919	.6415302	0.59	0.567	-1.07005	1.832434
576	0646563	.5136844	-0.13	0.903	-1.226691	1.097379
577	.4057579	.8147089	0.50	0.630	-1.437242	2.248758
578	.4682558	.637976	0.73	0.482	9749462	1.911458
579	.4259141	.4438218	0.96	0.362	5780805	1.429909
580	.6186865	.389236	1.59	0.146	2618265	1.4992
581	.4244931	.6518059	0.65	0.531	-1.049994	1.898981
582	.6699803	.5223368	1.28	0.232	5116276	1.851588
583	.473296	.6122706	0.77	0.459	9117563	1.858348
584	.8614781	.5396978	1.60	0.145	3594031	2.082359
585	.3929612	.4161693	0.94	0.370	5484791	1.334402

586	.5616625	.3965412	1.42	0.190	3353759	1.458701
587	.4848597	.6252865	0.78	0.458	9296366	1.899356
588	.4753841	.8823595	0.54	0.603	-1.520652	2.47142
589	1.070042	.6543738	1.64	0.136	4102544	2.550338
590	.8161786	.6984313	1.17	0.273	7637827	2.39614
591	.3012614	.7168685	0.42	0.684	-1.320408	1.922931
592	.4503275	.6272005	0.72	0.491	9684986	1.869154
593	1.01592	.8935331	1.14	0.285	-1.005393	3.037232
594	.8064133	.8969413	0.90	0.392	-1.222609	2.835436
595	1.143126	.9256667	1.23	0.248	9508772	3.23713
596	.3078734	.7100411	0.43	0.675	-1.298351	1.914098
597	.529855	.8877908	0.60	0.565	-1.478467	2.538177
598	.8596571	.746185	1.15	0.279	8283307	2.547645
599	.4274462	.8293728	0.52	0.619	-1.448725	2.303618
600	.7179776	1.062347	0.68	0.516	-1.685218	3.121173
601	.7741236	.8616061	0.90	0.392	-1.174965	2.723212
602	1.391908	1.009236	1.38	0.201	8911433	3.674959
603	.2842061	1.067416	0.27	0.796	-2.130456	2.698868
604	.6127519	.8464478	0.72	0.488	-1.302046	2.52755
605	1.223367	.9485767	1.29	0.229	9224629	3.369196
606	.8042677	1.044493	0.77	0.461	-1.558541	3.167076
607	.9220204	.9647936	0.96	0.364	-1.260494	3.104535
608	1.016633	.8348262	1.22	0.254	8718755	2.905141
609	.850281	.9998211	0.85	0.417	-1.411471	3.112033
610	1.726939	.9240155	1.87	0.094	3633291	3.817208
611	1.259725	.8874876	1.42	0.189	7479117	3.267361
612	1.235505	1.226725	1.01	0.340	-1.53954	4.01055
613	1.440245	1.221251	1.18	0.269	-1.322417	4.202906
614	1.080542	1.144121	0.94	0.370	-1.507639	3.668723
615	1.525003	1.134813	1.34	0.212	-1.042123	4.092129
616	1.188952	1.162515	1.02	0.333	-1.440839	3.818743
617	1.109627	1.414573	0.78	0.453	-2.09036	4.309614
618	1.040728	1.196958	0.87	0.407	-1.66698	3.748436
619	1.855741	1.159837	1.60	0.144	7679929	4.479475
620	1.635967	1.599908	1.02	0.333	-1.983276	5.25521
621	1.514759	1.188999	1.27	0.235	-1.174942	4.204461
622	1.249769	1.085869	1.15	0.279	-1.206638	3.706175
623	1.118408	1.29673	0.86	0.411	-1.814998	4.051814
624	1.103112	1.615372	0.68	0.512	-2.551114	4.757338
625	1.393611	1.435833	0.97	0.357	-1.854469	4.641692
626	1.622033	1.695715	0.96	0.364	-2.21394	5.458006
627	1.222006	1.539081	0.79	0.448	-2.259637	4.703649
628	.6550807	1.553482	0.42	0.683	-2.859139	4.169301
629	.9880334	1.428506	0.69	0.507	-2.243472	4.219539
630	1.813601	1.427004	1.27	0.236	-1.414505	5.041708
631	1.200484	1.396359	0.86	0.412	-1.9583	4.359267
632	1.447829	1.424516	1.02	0.336	-1.77465	4.670309
633	1.586836	1.357667	1.17	0.273	-1.484419	4.658091
634	1.016964	1.415179	0.72	0.491	-2.184394	4.218322

635	1.633269	1.389409	1.18	0.270	-1.509792	4.77633
636	1.515158	1.541516	0.98	0.351	-1.971992	5.002309
637	.8546772	1.621919	0.53	0.611	-2.814359	4.523714
638	2.09292	1.478993	1.42	0.191	-1.252795	5.438635
639	1.317368	1.706775	0.77	0.460	-2.543626	5.178361
640	1.70623	1.596247	1.07	0.313	-1.904732	5.317191
641	.9977834	1.827659	0.55	0.598	-3.136668	5.132234
642	.9227724	2.12622	0.43	0.675	-3.887071	5.732616
643	1.234372	1.806268	0.68	0.512	-2.851691	5.320434
644	.9059388	1.835844	0.49	0.633	-3.24703	5.058907
645	1.958782	2.209885	0.89	0.398	-3.040325	6.957888
646	1.643008	2.181033	0.75	0.471	-3.290832	6.576848
647	2.006726	2.174205	0.92	0.380	-2.911667	6.92512
648	2.492273	2.026623	1.23	0.250	-2.092266	7.076812
649	2.0889	2.336691	0.89	0.395	-3.197061	7.374861
650	1.791731	2.260545	0.79	0.448	-3.321976	6.905438
651	1.572572	2.565914	0.61	0.555	-4.231929	7.377074
652	1.750846	1.876496	0.93	0.375	-2.494083	5.995776
653	2.986324	2.073338	1.44	0.184	-1.703893	7.676542
654	2.258818	2.270724	0.99	0.346	-2.877916	7.395552
655	2.045334	2.338554	0.87	0.405	-3.244843	7.335512
656	2.183101	2.306136	0.95	0.369	-3.03374	7.399942
657	2.037837	2.131913	0.96	0.364	-2.784884	6.860559
658	2.282162	2.149433	1.06	0.316	-2.580193	7.144516
659	1.94922	2.274317	0.86	0.414	-3.195642	7.094082
660	2.279243	2.1416	1.06	0.315	-2.565392	7.123878
661	1.853253	2.146643	0.86	0.410	-3.002791	6.709298
662	2.682396	2.300891	1.17	0.274	-2.522582	7.887374
663	1.685329	2.459772	0.69	0.511	-3.879062	7.24972
664	2.122264	2.533441	0.84	0.424	-3.608777	7.853305
665	2.453644	2.494917	0.98	0.351	-3.190249	8.097538
666	2.408582	2.275594	1.06	0.317	-2.73917	7.556333
667	2.172473	2.320344	0.94	0.374	-3.07651	7.421455
668	2.166648	2.345385	0.92	0.380	-3.138981	7.472278
669	2.264642	2.327483	0.97	0.356	-3.000491	7.529775
670	1.912474	2.300382	0.83	0.427	-3.291352	7.1163
671	2.089273	2.376284	0.88	0.402	-3.286255	7.4648
672	2.020982	2.365327	0.85	0.415	-3.329759	7.371723
673	2.171847	2.378042	0.91	0.385	-3.207657	7.551351
674	2.449714	2.401987	1.02	0.334	-2.983958	7.883385
675	2.685414	2.470903	1.09	0.305	-2.904158	8.274986
676	2.782921	2.459258	1.13	0.287	-2.780308	8.346149
677	2.428128	2.515377	0.97	0.360	-3.262051	8.118306
678	2.724255	2.472861	1.10	0.299	-2.869746	8.318257
679	2.934487	2.362111	1.24	0.246	-2.40898	8.277954
680	3.179643	2.496222	1.27	0.235	-2.467204	8.82649
681	2.551658	2.495163	1.02	0.333	-3.092792	8.196108
682	2.62179	2.289834	1.14	0.282	-2.558174	7.801755
683	2.422842	2.583297	0.94	0.373	-3.420981	8.266665

684	2.899402	2.585766	1.12	0.291	-2.950006	8.748811
685	2.477032	2.562934	0.97	0.359	-3.320727	8.274791
686	2.616209	2.750221	0.95	0.366	-3.605224	8.837641
687	2.591457	2.583638	1.00	0.342	-3.253139	8.436053
688	2.640704	2.616693	1.01	0.339	-3.278668	8.560076
689	2.711024	2.550412	1.06	0.315	-3.05841	8.480457
690	2.376169	2.543756	0.93	0.375	-3.378207	8.130545
691	2.315551	2.797636	0.83	0.429	-4.013141	8.644243
692	2.656186	2.706217	0.98	0.352	-3.465702	8.778074
693	2.427997	2.608489	0.93	0.376	-3.472815	8.32881
694	2.679804	2.702926	0.99	0.347	-3.43464	8.794248
695	2.443772	2.629077	0.93	0.377	-3.503614	8.391158
696	2.664824	2.710088	0.98	0.351	-3.465821	8.795468
697	2.397077	2.828334	0.85	0.419	-4.00106	8.795214
698	2.448975	2.746447	0.89	0.396	-3.763918	8.661869
699	2.388936	2.8386	0.84	0.422	-4.032423	8.810296
700	2.821491	2.658955	1.06	0.316	-3.193484	8.836465
701	2.183592	2.816385	0.78	0.458	-4.187513	8.554698
702	2.442017	2.83263	0.86	0.411	-3.965838	8.849872
703	2.348549	2.685405	0.87	0.405	-3.726259	8.423356
704	2.809242	2.650011	1.06	0.317	-3.185499	8.803984
705	2.808545	2.629433	1.07	0.313	-3.139646	8.756735
706	2.78663	2.817645	0.99	0.349	-3.587326	9.160586
707	2.766483	2.82168	0.98	0.352	-3.6166	9.149566
708	3.201548	3.131365	1.02	0.333	-3.882091	10.28519
709	2.976472	3.073628	0.97	0.358	-3.976557	9.929502
710	3.03489	2.870536	1.06	0.318	-3.458713	9.528492
711	3.2541	2.934672	1.11	0.296	-3.384589	9.892788
712	3.253319	2.749716	1.18	0.267	-2.96697	9.473608
713	3.243249	2.883253	1.12	0.290	-3.279123	9.765621
714	3.193319	2.945604	1.08	0.307	-3.470099	9.856738
715	3.169513	2.838179	1.12	0.293	-3.250893	9.589919
716	3.010434	2.919891	1.03	0.329	-3.594817	9.615686
717	2.646184	3.036088	0.87	0.406	-4.221925	9.514293
718	3.174157	2.916822	1.09	0.305	-3.424153	9.772467
719	3.228837	2.861637	1.13	0.288	-3.244635	9.702309
region1	1 262151	2200624	4 01	0 002	E022207	2 120072
bangalore	1.362151	.3398624	4.01	0.003 0.035	.5933287	2.130973
bhopal chennai	-2.872432	1.158286	-2.48 2.88	0.035	-5.492658	2522058
	.6330631	.2199721			.1354515	1.130675
jaipur kanpur	-3.132547 -3.539117	.7959546 .8569993	-3.94 -4.13	0.003	-4.933121 -5.477785	-1.331972 -1.60045
kanpur kochi	-3.539117	1.109415	-4.13 -2.45	0.003	-5.477785 -5.226194	2068512
mumbai	1.743905	1.109415	1.46	0.037	9512597	4.439071
panaji	-3.747533	5.213808	-0.72	0.177	9512597 -15.54199	8.046921
panaji patna	-5.311646	1.790997	-0.72 -2.97	0.491	-9.363163	-1.260129
paciia	-3.311040	1.190331	-4.31	0.010	-2.303103	-1.200129
_cons	8.414264	22.16331	0.38	0.713	-41.72262	58.55115

Overriding estimator's cluster/robust settings with cluster(region1 date)

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 five

$$t(9) = -2.1419$$

Prob>|t| = 0.3263

95% confidence set for null hypothesis expression: [., .]
(A confidence interval could not be bounded. Try widening the search range wit > h the gridmin() and gridmax() options.)

Warning: 2 replications returned an infeasible test statistic and were deleted > from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 lag_lgdp

$$t(9) = -0.3144$$

Prob>|t| = 0.7591

95% confidence set for null hypothesis expression: [-4.404, 3.599]

Warning: 3 replications returned an infeasible test statistic and were deleted > from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 lag_lpop

$$t(9) = 0.3576$$

Prob>|t| = 0.7375

95% confidence set for null hypothesis expression: [-1.499, 1.848]

Warning: 2 replications returned an infeasible test statistic and were deleted > from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 _cons

$$t(9) = 0.3806$$

Prob>|t| = 0.7170

95% confidence set for null hypothesis expression: [-46.53, 62.22]

R-squared = **0.8598** Root MSE = **.98627**

(Std. err. adjusted for 10 clusters in region1)

		Robust				
fdi_ihs	Coefficient	std. err.	t	P> t	[95% conf.	interval]
one	-3.688731	.1031713	-35.75	0.000	-3.922121	-3.455341
two	-1.428908	.3038047	-4.70	0.001	-2.116162	7416537
three	-3.258243	.3110093	-10.48	0.000	-3.961795	-2.554691
four	-1.72688	.1891029	-9.13	0.000	-2.15466	-1.2991
five	-1.444225	.2408007	-6.00	0.000	-1.988954	899496
lag_lgdp	1248412	.8159117	-0.15	0.882	-1.970562	1.720879
lag_lpop	1964152	.3829791	-0.51	0.620	-1.062774	.6699437
date						
553	.341176	.3191929	1.07	0.313	3808886	1.063241
554	1628449	.3299725	-0.49	0.633	9092945	.5836047
555	.1900673	.2634411	0.72	0.489	4058779	.7860124
556	.0918941	.3911032	0.23	0.819	7928428	.9766311
557	.2113414	.4376786	0.48	0.641	7787564	1.201439
558	.772518	.460781	1.68	0.128	2698411	1.814877
559	.3085577	.5625745	0.55	0.597	9640742	1.58119
560	.4590527	.411486	1.12	0.293	4717933	1.389899
561	0292869	.4058351	-0.07	0.944	9473496	.8887757
562	.4496955	.3901357	1.15	0.279	4328526	1.332244
563	.3459176	.3900558	0.89	0.398	53645	1.228285
564	.0718251	.3869645	0.19	0.857	8035494	.9471996
565	.4529916	.6101421	0.74	0.477	9272457	1.833229
566	.2240319	.4164365	0.54	0.604	7180128	1.166077
567	.0794112	.4214434	0.19	0.855	8739601	1.032782
568	.1557661	.5073799	0.31	0.766	9920071	1.303539
569	.1289683	.3360038	0.38	0.710	6311252	.8890617
570	.9548725	.5214779	1.83	0.100	2247923	2.134537
571	1976133	.50052	-0.39	0.702	-1.329868	.9346415
572	4161888	.4003011	-1.04	0.326	-1.321733	.4893552
573	.0266403	.4310401	0.06	0.952	9484402	1.001721
574	.1324363	.2993971	0.44	0.669	5448471	.8097196
575	.6881635	.5356378	1.28	0.231	5235334	1.89986
576	.1890005	.4942836	0.38	0.711	9291466	1.307148
577	.6594147	.6707228	0.98	0.351	8578658	2.176695
578	.7219126	.6276455	1.15	0.280	6979201	2.141745
579	.6795709	.3746303	1.81	0.103	1679018	1.527044

	•					
580	.8723434	.4841757	1.80	0.105	2229381	1.967625
581	.6781499	.4807282	1.41	0.192	4093328	1.765633
582	.9236371	.5146292	1.79	0.106	240535	2.087809
583	.7269528	.6258736	1.16	0.275	6888716	2.142777
584	1.115135	.4334361	2.57	0.030	.1346343	2.095636
585	.646618	.4097446	1.58	0.149	2802887	1.573525
586	.8153193	.4607975	1.77	0.111	2270771	1.857716
587	.7385165	.553192	1.34	0.215	5128907	1.989924
588	.6656549	.6184266	1.08	0.310	7333232	2.064633
589	1.260313	.5284182	2.39	0.041	.0649476	2.455678
590	1.006449	.623338	1.61	0.141	4036391	2.416538
591	.4915322	.5203908	0.94	0.370	6856736	1.668738
592	.6405982	.5064306	1.26	0.238	5050273	1.786224
593	1.20619	.7496584	1.61	0.142	4896548	2.902035
594	.9966841	.6272969	1.59	0.147	4223601	2.415728
595	1.333397	.7557821	1.76	0.112	3763009	3.043095
596	.4981442	.523031	0.95	0.366	6850341	1.681322
597	.7201258	.6559773	1.10	0.301	7637979	2.20405
598	1.049928	.6325753	1.66	0.131	3810568	2.480913
599	.617717	.7171795	0.86	0.411	-1.004656	2.24009
600	.8546427	.7123364	1.20	0.261	7567741	2.466059
601	.9107887	.6139655	1.48	0.172	4780978	2.299675
602	1.528573	.775692	1.97	0.080	2261643	3.28331
603	.563762	.5795977	0.97	0.356	7473791	1.874903
604	.8923078	.6341481	1.41	0.193	542235	2.326851
605	1.502923	.5725527	2.62	0.028	.2077184	2.798127
606	1.083824	.693149	1.56	0.152	4841883	2.651836
607	1.201576	.6566182	1.83	0.101	2837973	2.68695
608	1.296188	.7584464	1.71	0.122	4195366	3.011914
609	1.129837	.8842335	1.28	0.233	8704384	3.130112
610	2.006495	.6935789	2.89	0.018	.4375107	3.57548
611	1.539281	.6164389	2.50	0.034	.144799	2.933762
612	1.444036	.7973705	1.81	0.104	3597417	3.247813
613	1.648775	.9876023	1.67	0.129	5853364	3.882887
614	1.289073	.642564	2.01	0.076	1645078	2.742654
615	1.733534	.9190802	1.89	0.092	3455703	3.812637
616	1.397482	.8727231	1.60	0.144	5767544	3.371719
617	1.318158	1.064186	1.24	0.247	-1.089198	3.725513
618	1.249259	.73275	1.70	0.122	4083368	2.906855
619	2.064271	.7560725	2.73	0.023	.3539166	3.774626
620	1.844498	1.086919	1.70	0.124	6142834	4.303279
621	1.72329	.7468783	2.31	0.046	.0337338	3.412846
622	1.458299	.766859	1.90	0.090	2764561	3.193055
623	1.326939	.7742169	1.71	0.121	4244616	3.078339
624	1.354765	.9288583	1.46	0.179	7464583	3.455989
625	1.645265	.8695969	1.89	0.091	3219001	3.61243
626	1.873686	1.104859	1.70	0.124	6256774	4.37305
627	1.47366	1.00615	1.46	0.177	8024098	3.74973
628	.9067342	.9136321	0.99	0.347	-1.160045	2.973513

629	1.239687	.9422532	1.32	0.221	8918379	3.371212
630	2.065255	.8126414	2.54	0.032	.2269321	3.903577
631	1.452137	.7919365	1.83	0.100	3393476	3.243622
632	1.699483	.7983951	2.13	0.062	1066123	3.505578
633	1.83849	.8024288	2.29	0.048	.0232697	3.65371
634	1.268617	.9085148	1.40	0.196	7865862	3.32382
635	1.884923	.8611463	2.19	0.056	0631255	3.832971
636	1.721936	.8847057	1.95	0.083	2794068	3.72328
637	1.061455	1.068391	0.99	0.346	-1.355413	3.478323
638	2.299698	.9277687	2.48	0.035	.2009392	4.398456
639	1.524146	.9015922	1.69	0.125	5153973	3.563689
640	1.913008	.9427682	2.03	0.073	219682	4.045698
641	1.530386	.9272895	1.65	0.133	5672888	3.62806
642	1.455375	.9377551	1.55	0.155	6659747	3.576724
643	1.766974	.9595858	1.84	0.099	4037599	3.937708
644	1.438541	.897333	1.60	0.143	5913671	3.468449
645	2.491384	1.294346	1.92	0.086	4366293	5.419397
646	2.175611	1.099693	1.98	0.079	3120669	4.663288
647	2.539328	1.271026	2.00	0.077	3359332	5.41459
648	2.969787	1.225853	2.42	0.038	.1967151	5.742859
649	2.566414	1.225785	2.09	0.066	2065037	5.339331
650	2.269245	1.092291	2.08	0.068	2016893	4.740179
651	2.050086	1.286635	1.59	0.146	8604851	4.960657
652	2.22836	1.1642	1.91	0.088	4052427	4.861963
653	3.463838	1.31741	2.63	0.027	.48365	6.444027
654	2.736332	1.19298	2.29	0.047	.0376237	5.43504
655	2.522848	1.263706	2.00	0.077	3358522	5.381549
656	2.660615	1.121442	2.37	0.042	.1237368	5.197493
657	2.515351	1.229021	2.05	0.071	2648884	5.295591
658	2.759675	1.287292	2.14	0.061	1523807	5.671731
659	2.426734	1.272105	1.91	0.089	4509675	5.304435
660	2.718754	1.160951	2.34	0.044	.0925	5.345008
661	2.292764	1.412219	1.62	0.139	9018972	5.487426
662	3.121907	1.335093	2.34	0.044	.101716	6.142098
663	2.12484	1.175254	1.81	0.104	5337698	4.78345
664	2.561775	1.226506	2.09	0.066	2127733	5.336324
665	2.893155	1.387294	2.09	0.067	2451209	6.031432
666	2.848093	1.220965	2.33	0.045	.0860781	5.610108
667	2.611984	1.190966	2.19	0.056	0821678	5.306135
668	2.606159	1.19862	2.17	0.058	1053084	5.317627
669	2.704153	1.193755	2.27	0.050	.0036928	5.404614
670	2.524673	1.134171	2.23	0.053	0410006	5.090347
671	2.701472	1.201802	2.25	0.051	0171935	5.420137
672	2.594549	1.168356	2.22	0.054	0484562	5.237553
673	2.745414	1.19424	2.30	0.047	.0438545	5.446973
674	3.02328	1.270422	2.38	0.041	.149386	5.897175
675	3.258981	1.428182	2.28	0.048	.028208	6.489753
676	3.356488	1.392595	2.41	0.039	.2062197	6.506756
677	3.001694	1.297165	2.31	0.046	.0673021	5.936086

678	3.297822	1.310427	2.52	0.033	.3334298	6.262215
679	3.508053	1.277433	2.75	0.023	.6182999	6.397807
680	3.75321	1.166811	3.22	0.011	1.113701	6.392719
681	3.125225	1.318962	2.37	0.042	.1415249	6.108924
682	3.195357	1.325416	2.41	0.039	.1970577	6.193656
683	2.996409	1.310022	2.29	0.048	.0329324	5.959885
684	3.424331	1.444217	2.37	0.042	.1572844	6.691378
685	3.001961	1.404063	2.14	0.061	1742514	6.178173
686	3.141137	1.514479	2.07	0.068	2848511	6.567126
687	3.116386	1.499437	2.08	0.067	2755759	6.508348
688	3.165633	1.506341	2.10	0.065	2419476	6.573214
689	3.235953	1.518759	2.13	0.062	1997199	6.671625
690	2.901098	1.472075	1.97	0.080	4289676	6.231163
691	2.84048	1.600753	1.77	0.110	7806746	6.461634
692	3.181115	1.499544	2.12	0.063	2110883	6.573318
693	2.952926	1.457784	2.03	0.073	344811	6.250664
694	3.204733	1.488432	2.15	0.060	1623332	6.571799
695	2.968701	1.513409	1.96	0.081	454868	6.39227
696	3.165953	1.563454	2.02	0.074	3708248	6.702731
697	2.898206	1.5661	1.85	0.097	6445586	6.440971
698	2.950105	1.557692	1.89	0.091	5736404	6.47385
699	2.890066	1.534417	1.88	0.092	5810274	6.361159
700	3.32262	1.499717	2.22	0.054	0699758	6.715216
701	2.684722	1.514486	1.77	0.110	7412825	6.110726
702	2.943147	1.611935	1.83	0.101	703303	6.589596
703	2.904839	1.576312	1.84	0.098	661027	6.470704
704	3.365532	1.360401	2.47	0.035	.2880909	6.442974
705	3.364835	1.404564	2.40	0.040	.18749	6.542179
706	3.34292	1.44978	2.31	0.047	.0632907	6.622549
707	3.322773	1.50036	2.21	0.054	071278	6.716823
708	3.711181	1.585033	2.34	0.044	.125588	7.296775
709	3.486105	1.570981	2.22	0.054	0677002	7.039911
710	3.544523	1.620126	2.19	0.056	1204572	7.209502
711	3.763733	1.425571	2.64	0.027	.5388679	6.988597
712	3.762952	1.553528	2.42	0.038	.248628	7.277277
713	3.752882	1.582574	2.37	0.042	.172852	7.332912
714	3.702952	1.403417	2.64	0.027	.5282035	6.877701
715	3.679146	1.584655	2.32	0.045	.0944073	7.263885
716	3.520067	1.564147	2.25	0.051	0182789	7.058413
717	3.155817	1.562514	2.02	0.074	3788346	6.690469
718	3.68379	1.543498	2.39	0.041	.1921557	7.175424
719	3.73847	1.558479	2.40	0.040	.2129458	7.263995
region1						
bangalore	1.236259	.2069769	5.97	0.000	.7680445	1.704473
bhopal	-2.517461	.5219707	-4.82	0.001	-3.69824	-1.336681
chennai	1.041206	.1181287	8.81	0.000	.7739807	1.308432
jaipur	-2.889361	.3587726	-8.05	0.000	-3.700961	-2.077761
kanpur	-1.594983	.6573776	-2.43	0.038	-3.082075	107892

kochi	-2.639228	.5606555	-4.71	0.001	-3.907519	-1.370937
mumbai	1.567532	.5700114	2.75	0.022	.2780762	2.856987
panaji	-4.098045	2.782949	-1.47	0.175	-10.39351	2.197424
patna	4013471	.9066292	-0.44	0.668	-2.452285	1.649591
_cons	6.970306	11.10259	0.63	0.546	-18.1455	32.08611

Overriding estimator's cluster/robust settings with cluster(region1 date)

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 one

$$t(9) = -36.0234$$

Prob>|t| = 0.0000

95% confidence set for null hypothesis expression: [-3.853, -3.523]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 two

$$t(9) = -4.5904$$

Prob>|t| = 0.0392

95% confidence set for null hypothesis expression: [-2.567, -.1433]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 three

$$t(9) = -10.2517$$

Prob>|t| = 0.0000

95% confidence set for null hypothesis expression: [-4.111, -2.41]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 four

$$t(9) = -9.1302$$

Prob>|t| = 0.0001

95% confidence set for null hypothesis expression: [-2.207, -1.235]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 five

$$t(9) = -5.7722$$

Prob>|t| = 0.0160

95% confidence set for null hypothesis expression: [-2.181, -.6399]

Warning: 5 replications returned an infeasible test statistic and were deleted > from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 lag_lgdp

$$t(9) = -0.1520$$

Prob>|t| = 0.8892

95% confidence set for null hypothesis expression: [-1.973, 1.858]

Warning: 3 replications returned an infeasible test statistic and were deleted > from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 lag_lpop

$$t(9) = -0.5124$$

Prob>|t| = 0.6271

95% confidence set for null hypothesis expression: [-1.15, .7613]

Warning: 5 replications returned an infeasible test statistic and were deleted > from the bootstrap distribution.

Wild bootstrap-t, null imposed, 9999 replications, Wald test, clustering by re
> gion1 date, bootstrap clustering by region1 date, Rademacher weights:
 _cons

$$t(9) = 0.6250$$

Prob>|t| = 0.5773

95% confidence set for null hypothesis expression: [-22.07, 33.55]

```
1488 .
1489 .
1490 .
1491 . mat list p_val
    p val[8,6]
                          c2
                                    c3
                                               c4
                                                          c5
               c1
                                                                       c6
    r1
                0
                                                                        0
                    .00510051
    r2
                                                                .03920392
                               .00050005
    r3
    r4
                                          .01150115
                                                               .00010001
     r5
                                                 . .32633263
                                                                .0160016
     r6 .76585317
                    .7303382 .18491849
                                          .7590036
                                                    .75912774 .88923354
         .89063438 .99569699 .92739109
                                                       .737495
     r7
                                          .45981383
                                                               .62705082
     r8 .88064032 .90247074 .09813926
                                         .81082433
                                                      .7170151
                                                               .57734641
1492 . outtable using _3results/tables/p_val_b1, mat(p_val) replace format(%9.3f) n
    > orow nodots
1493 .
1494 . esttab _all using _3results/tables/tableb2.tex, order(one two three four fiv
    > e lag_lgdp lag_lpop _cons) keep(one two three four five lag_lgdp lag_lpop _c
    > ons) ///
              nostar b(3) p(3) coeflabel(lag_lgdp "Lagged ln(GDP)" lag_lpop "Lagge
    > d ln(Pop.)" _cons "Constant") replace r2
     (output written to <u>3results/tables/tableb2.tex</u>)
1495 .
1496 .
1497 .
1498 .
1499 .
    end of do-file
1500 .
1501 . *figures
1502 .
```

```
1503 . do _2code/_2analysis/figure2
1505 . * Figure 2: Raw FDI inflows by disaster-affected regions
> ****
1508 .
1509 . use _ldata/clean/clean_data, clear
1510 . set scheme plotplain
1511 .
1512 .
1513 . gen log_fdi = asinh(fdi)
1514 . * Graph of the raw data differentiating between unaffected and each of the f
    > ive disasters:
1515 . keep if date >= ym(2006,2)
    (64 observations deleted)
1516 . gen affected=0
1517 . replace affected=1 if one_affected==1
    (334 real changes made)
1518 . replace affected=2 if two_affected==1
    (668 real changes made)
1519 . replace affected=3 if three_affected==1
    (501 real changes made)
1520 . replace affected=4 if four_affected==1
    (334 real changes made)
1521 . replace affected=5 if five_affected==1
    (167 real changes made)
```

```
1522 . *replace affected = 77 if one affected==1 & two affected==1
1523 . bysort affected date (region): egen avg_fdi_each=mean(fdi)
1524 .
1525 . tssmooth ma avg_fdi=avg_fdi_each, window(2 1 0)
     The smoother applied was
         by region1: (1/3)*[x(t-2) + x(t-1) + 1*x(t)]; x(t) = avg_fdi_each
1526 .
1527 . * FIGURE 2A:
1528 . graph twoway (line avg_fdi date if affected==2, lp(solid) lw(medthick) lcolo
    > r(gold)) ///
               (line avg_fdi date if affected==3, lw(medthick) lcolor(maroon) lp(so
    > lid) ) ///
               (line avg fdi date if affected==4, lw(medthick) lcolor(ltblue) lp(so
    > lid) ) ///
               (line avg fdi date if affected==5, lw(medthick) lcolor(dkgreen) lp(s
    > olid) ) ///
               (line avg_fdi date if affected==0, lw(medthick) lcolor(navy) lp(soli
    > d) xaxis(1 2) xla(569 "ND 1" 601 "ND 2" ///
               639 "ND 3" 668 "ND 4" 701 "ND 5", axis(1) grid glcolor(black) glpatt
    > ern(dash) glwidth(medthin) tlength(0)) xtitle("", axis(2))), ///
               legend(position(6) label(1 "Affected ND 1 & 2") label(2 "Affected ND
    > 3") ///
               label(3 "Affected ND 4") label(4 "Affected ND 5") ///
    >
               label(5 "Unaffected")) ylabel(,labsize(medium)) xtitle("", axis(2))
    > xtitle("", axis(1)) xlabel(552 "2006" 576 "2008" 600 "2010" 624 "2012" 648
     > "2014" 672 "2016" 696 "2018" 720 "2020",axis(2) labsize(medium)) ///
               ytitle(Monthly FDI Inflows ($ mil.)) legend(on region(lwidth(none))
     > size(med) symysize(*1) col(3) ) xscale(noline)
     (note: named style med not found in class gsize, default attributes used)
1529 .
1530 .
1531 . graph export _3results/figures/figure2a.pdf, replace
     file
         /Users/aidan/Dropbox/India_FDI/friedt_toner-rodgers_replication/_3result
         > s/figures/figure2a.pdf saved as PDF format
```

```
1532 .
1533 .
1534 . ** Change and focus on regions only affected by disaster 2:
1535 . drop affected avg fdi each avg fdi
1536 . gen affected=0
1537 . replace affected=1 if one_affected==1
     (334 real changes made)
1538 . replace affected=2 if two_affected==1 & one_affected==0
     (334 real changes made)
1539 . replace affected=3 if three_affected==1
     (501 real changes made)
1540 . replace affected=4 if four affected==1
     (334 real changes made)
1541 . replace affected=5 if five affected==1
     (167 real changes made)
1542 . bysort affected date (region): egen avg_fdi_each=mean(fdi)
1543 .
1544 . tssmooth ma avg fdi=avg fdi each, window(2 1 0)
     The smoother applied was
          by region1: (1/3)*[x(t-2) + x(t-1) + 1*x(t)]; x(t) = avg_fdi_each
1545 .
1546 .
1547 . * FIGURE 2b:
1548 . graph twoway (line avg_fdi date if affected==1, lp(solid) lw(medthick) lc(ed
    > kblue) ///
               xaxis(1 2) xla(569 "ND 1" 601 "ND 2" 639 "ND 3" 668 "ND 4" 701 "ND 5
    > ", axis(2) grid glcolor(black) glpattern(dash) glwidth(medthin) tlength(0))
    > ///
               xtitle("", axis(2)) xtitle("", axis(1)) xlabel(552 "2006" 576 "2008"
    > 600 "2010" 624 "2012" 648 "2014" 672 "2016" 696 "2018" 720 "2020", axis(1)
    > nogrid labsize(medium)) ytitle(Monthly FDI Inflows ($ mil.)) ylabel(,labsiz
     > e(medium)) xscale(noline axis(2)))
```

```
1549 .
1550 .
1551 . graph export 3results/figures/figure2b.pdf, replace
         /Users/aidan/Dropbox/India_FDI/friedt_toner-rodgers_replication/_3result
        > s/figures/figure2b.pdf saved as PDF format
1552 .
1553 .
1554 . * FIGURE 2c:
1555 . graph twoway (line avg_fdi date if affected==2, lp(solid) lw(medthick) lc(ed
    > kblue) ///
              xaxis(1 2) xla(569 "ND 1" 601 "ND 2" 639 "ND 3" 668 "ND 4" 701 "ND 5
    > ", axis(2) grid glcolor(black) glpattern(dash) glwidth(medthin) tlength(0))
    > ///
              xtitle("", axis(2)) xtitle("", axis(1)) xlabel(552 "2006" 576 "2008"
    > 600 "2010" 624 "2012" 648 "2014" 672 "2016" 696 "2018" 720 "2020", axis(1)
    > nogrid labsize(medium)) ytitle(Monthly FDI Inflows ($ mil.)) ylabel(,labsiz
    > e(medium)) xscale(noline axis(2)))
1556 .
1557 .
1558 . graph export _3results/figures/figure2c.pdf, replace
    file
         /Users/aidan/Dropbox/India_FDI/friedt_toner-rodgers_replication/_3result
         > s/figures/figure2c.pdf saved as PDF format
1559 .
1560 . * FIGURE 2d:
1561 . graph twoway (line avg fdi date if affected==3, lp(solid) lw(medthick) lc(ed
    > kblue) ///
              xaxis(1 2) xla(569 "ND 1" 601 "ND 2" 639 "ND 3" 668 "ND 4" 701 "ND 5
    > ", axis(2) grid glcolor(black) glpattern(dash) glwidth(medthin) tlength(0))
    > ///
              xtitle("", axis(2)) xtitle("", axis(1)) xlabel(552 "2006" 576 "2008"
    > 600 "2010" 624 "2012" 648 "2014" 672 "2016" 696 "2018" 720 "2020", axis(1)
    > nogrid labsize(medium)) ytitle(Monthly FDI Inflows ($ mil.)) ylabel(,labsiz
    > e(medium)) xscale(noline axis(2)) )
```

```
1562 .
1563 .
1564 . graph export 3results/figures/figure2d.pdf, replace
         /Users/aidan/Dropbox/India_FDI/friedt_toner-rodgers_replication/_3result
         > s/figures/figure2d.pdf saved as PDF format
1565 .
1566 . * FIGURE 2e:
1567 . graph twoway (line avg_fdi date if affected == 4, lp(solid) lw(medthick) lc(ed
    > kblue) ///
               xaxis(1 2) xla(569 "ND 1" 601 "ND 2" 639 "ND 3" 668 "ND 4" 701 "ND 5
     > ", axis(2) grid glcolor(black) glpattern(dash) glwidth(medthin) tlength(0))
               xtitle("", axis(2)) xtitle("", axis(1)) xlabel(552 "2006" 576 "2008"
    >
            "2010" 624 "2012" 648 "2014" 672 "2016" 696 "2018" 720 "2020", axis(1)
    > 600
    > nogrid labsize(medium)) ytitle(Monthly FDI Inflows ($ mil.)) ylabel(,labsiz
    > e(medium)) xscale(noline axis(2)) )
1568 .
1569 .
1570 . graph export _3results/figures/figure2e.pdf, replace
     file
         /Users/aidan/Dropbox/India_FDI/friedt_toner-rodgers_replication/_3result
         > s/figures/figure2e.pdf saved as PDF format
1571 .
1572 . * FIGURE 2f:
1573 . graph twoway (line avg fdi date if affected==5, lp(solid) lw(medthick) lc(ed
    > kblue) ///
               xaxis(1 2) xla(569 "ND 1" 601 "ND 2" 639 "ND 3" 668 "ND 4" 701 "ND 5
    >
    > ", axis(2) grid glcolor(black) glpattern(dash) glwidth(medthin) tlength(0))
    > ///
               xtitle("", axis(2)) xtitle("", axis(1)) xlabel(552 "2006" 576 "2008"
    >
    > 600 "2010" 624 "2012" 648 "2014" 672 "2016" 696 "2018" 720 "2020", axis(1)
     > nogrid labsize(medium)) ytitle(Monthly FDI Inflows ($ mil.)) ylabel(,labsiz
    > e(medium)) xscale(noline axis(2)) )
```

```
1574 .
1575 .
1576 . graph export _3results/figures/figure2f.pdf, replace
       /Users/aidan/Dropbox/India_FDI/friedt_toner-rodgers_replication/_3result
       > s/figures/figure2f.pdf saved as PDF format
1577 .
1578 .
1579 .
1580 .
1581 .
1582 .
1583 .
1584 .
1585 .
1586 .
1587 .
    end of do-file
1588 . do _2code/_2analysis/figure4
1590 . * Figure 4: Dynamic difference-in-differences
> ****
1593 .
1594 . ** To do this we can only include regions that were treated one time or thos
    > e that were never treated
1595 . ** This implies we exclude Patna and Kolkata and focus only on disasters 2 t
    > hrough 5.
1596 . ** We also test the robustness of this assumption if we only include those r
    > egions that appear to be
1597 . ** on similar trends and therefore exclude all regions affect by disasters 1
```

> , 2, and 5:

```
1598 .
1599 .
1600 . use ldata/clean/clean data, clear
1601 .
1602 . global control lag lgdp lag lpop
1603 .
1604 . ** 2.1 Full Sample (only excluding Patna and Kolkata):
1605 . drop if inlist(region, "patna", "kolkata")
     (342 observations deleted)
1606 .
1607 .
1608 . * We evaluate these treatment effects against a refence month (i.e. the mont
     > h before the disaster),
1609 . * which changes for every disaster
1610 .
1611 . * Here we put the timing of every disaster on the same footing:
1612 . * For example, for each region t=0 the month before the disaster struck:
1613 .
1614 . gen t=Count-171
```

1615 . tab Count if two_bin==1

Count	Freq.	Percent	Cum.
55	14	0.85	0.85
56	14	0.85	1.71
57	14	0.85	2.56
58	14	0.85	3.42
59	14	0.85	4.27
60	14	0.85	5.13
61	14	0.85	5.98
62	14	0.85	6.84
63	14	0.85	7.69
64	14	0.85	8.55
65	14	0.85	9.40
66	14	0.85	10.26
67	14	0.85	11.11
68	14	0.85	11.97
69	14	0.85	12.82
70	14	0.85	13.68
71	14	0.85	14.53
72	14	0.85	15.38
73	14	0.85	16.24
74	14	0.85	17.09
75	14	0.85	17.95
76	14	0.85	18.80

77	14	0.85	19.66
78	14	0.85	20.51
79	14	0.85	21.37
80	14	0.85	22.22
81	14	0.85	23.08
82	14	0.85	23.93
83	14	0.85	24.79
84	14	0.85	25.64
85	14	0.85	26.50
86	14	0.85	27.35
87	14	0.85	28.21
88	14	0.85	29.06
89	14	0.85	29.91
90	14	0.85	30.77
91	14	0.85	31.62
92	14	0.85	32.48
93	14	0.85	33.33
94	14	0.85	34.19
95	14	0.85	35.04
96	14	0.85	35.90
97	14	0.85	36.75
98	14	0.85	37.61
99	14	0.85	38.46
100	14	0.85	39.32
101	14	0.85	40.17
102	14	0.85	41.03
103	14	0.85	41.88
104	14	0.85	42.74
105	14	0.85	43.59
106	14	0.85	44.44
107	14	0.85	45.30
108	14	0.85	46.15
109	14	0.85	47.01
110	14	0.85	47.86
111	14	0.85	48.72
112	14	0.85	49.57
113	14	0.85	50.43
114	14	0.85	51.28
115	14	0.85	52.14
116	14	0.85	52.99
117	14	0.85	53.85
118	14	0.85	54.70
119	14	0.85	55.56
120	14	0.85	56.41
121	14	0.85	57.26
122	14	0.85	58.12
123	14	0.85	58.97
124	14	0.85	59.83
125	14	0.85	60.68

14 14 14 14 14 14 14	0.85 0.85 0.85 0.85 0.85 0.85 0.85	94.02 94.87 95.73 96.58 97.44 98.29 99.15 100.00
14 14 14 14 14	0.85 0.85 0.85 0.85 0.85	94.87 95.73 96.58 97.44 98.29 99.15
14 14 14 14 14	0.85 0.85 0.85 0.85	94.87 95.73 96.58 97.44 98.29
14 14 14 14	0.85 0.85 0.85 0.85	94.87 95.73 96.58 97.44
14 14 14	0.85 0.85 0.85	94.87 95.73 96.58
14 14	0.85	94.87 95.73
•		
14	0.85	94.02
1 14		04.00
14	0.85	93.16
14	0.85	92.31
14	0.85	91.45
14	0.85	90.60
14	0.85	89.74
14	0.85	88.89
14	0.85	88.03
14	0.85	87.18
14	0.85	86.32
14	0.85	85.47
14	0.85	84.62
14	0.85	83.76
14	0.85	82.91
14	0.85	82.05
14	0.85	81.20
14	0.85	80.34
14	0.85	79.49
14	0.85	78.63
•		77.78
1		76.92
14		76.07
14	0.85	75.21
14		74.36
14		73.50
14	0.85	72.65
1		71.79
14	0.85	70.94
14	0.85	70.09
14	0.85	69.23
14	0.85	68.38
14	0.85	67.52
14	0.85	66.67
14	0.85	65.81
14	0.85	64.96
14	0.85	64.10
14	0.85	63.25
14		62.39
14	0.85	61.54
	14 14 14 14 14 14 14 14 14 14 14 14 14 1	14 0.85 14 0.

1616 . replace t=t+(171-54) if region=="bubaneshwar" | region=="guwahati" (342 real changes made)

1617 .
1618 . tab Count if three_bin==1

Count	Freq.	Percent	Cum.
93	14	1.27	1.27
94	14	1.27	2.53
95	14	1.27	3.80
96	14	1.27	5.06
97	14	1.27	6.33
98	14	1.27	7.59
99	14	1.27	8.86
100	14	1.27	10.13
101	14	1.27	11.39
102	14	1.27	12.66
103	14	1.27	13.92
104	14	1.27	15.19
105	14	1.27	16.46
106	14	1.27	17.72
107	14	1.27	18.99
108	14	1.27	20.25
109	14	1.27	21.52
110	14	1.27	22.78
111	14	1.27	24.05
112	14	1.27	25.32
113	14	1.27	26.58
114	14	1.27	27.85
115	14	1.27	29.11
116	14	1.27	30.38
117	14	1.27	31.65
118	14	1.27	32.91
119	14	1.27	34.18
120	14	1.27	35.44
121	14	1.27	36.71
122	14	1.27	37.97
123	14	1.27	39.24
124	14	1.27	40.51
125	14	1.27	41.77
126	14	1.27	43.04
127	14	1.27	44.30
128	14	1.27	45.57
129	14	1.27	46.84
130	14	1.27	48.10
131	14	1.27	49.37
132	14	1.27	50.63
133	14	1.27	51.90

134	14	1.27	53.16
135	14	1.27	54.43
136	14	1.27	55.70
137	14	1.27	56.96
138	14	1.27	58.23
139	14	1.27	59.49
140	14	1.27	60.76
141	14	1.27	62.03
142	14	1.27	63.29
143	14	1.27	64.56
144	14	1.27	65.82
145	14	1.27	67.09
146	14	1.27	68.35
147	14	1.27	69.62
148	14	1.27	70.89
149	14	1.27	72.15
150	14	1.27	73.42
151	14	1.27	74.68
152	14	1.27	75.95
153	14	1.27	77.22
154	14	1.27	78.48
155	14	1.27	79.75
156	14	1.27	81.01
157	14	1.27	82.28
158	14	1.27	83.54
159	14	1.27	84.81
160	14	1.27	86.08
161	14	1.27	87.34
162	14	1.27	88.61
163	14	1.27	89.87
164	14	1.27	91.14
165	14	1.27	92.41
166	14	1.27	93.67
167	14	1.27	94.94
168	14	1.27	96.20
169	14	1.27	97.47
170	14	1.27	98.73
171	14	1.27	100.00
Total	1,106	100.00	

1620 .
1621 . tab Count if four_bin==1

Count	Freq.	Percent	Cum.
122	14	2.00	2.00
123	14	2.00	4.00
124	14	2.00	6.00
125	14	2.00	8.00
126	14	2.00	10.00
127	14	2.00	12.00
128	14	2.00	14.00
129	14	2.00	16.00
130	14	2.00	18.00
131	14	2.00	20.00
132	14	2.00	22.00
133	14	2.00	24.00
134	14	2.00	26.00
135	14	2.00	28.00
136	14	2.00	30.00
137	14	2.00	32.00
138	14	2.00	34.00
139	14	2.00	36.00
140	14	2.00	38.00
141	14	2.00	40.00
142	14	2.00	42.00
143	14	2.00	44.00
144	14	2.00	46.00
145	14	2.00	48.00
146	14	2.00	50.00
147	14	2.00	52.00
148	14	2.00	54.00
149	14	2.00	56.00
150	14	2.00	58.00
151	14	2.00	60.00
152	14	2.00	62.00
153	14	2.00	64.00
154	14	2.00	66.00
155	14	2.00	68.00
156	14	2.00	70.00
157	14	2.00	72.00
158	14	2.00	74.00
159	14	2.00	76.00
160	14	2.00	78.00
161	14	2.00	80.00

162	14	2.00	82.00
163	14	2.00	84.00
164	14	2.00	86.00
165	14	2.00	88.00
166	14	2.00	90.00
167	14	2.00	92.00
168	14	2.00	94.00
169	14	2.00	96.00
170	14	2.00	98.00
171	14	2.00	100.00
Total	700	100.00	

1622 . replace t=t+(171-121) if region=="hyderabad" | region=="chennai" (342 real changes made)

1623 . 1624 .

1625 . tab Count if five_bin==1

Count	Freq.	Freq. Percent	
155	14	5.88	5.88
156	14	5.88	11.76
157	14	5.88	17.65
158	14	5.88	23.53
159	14	5.88	29.41
160	14	5.88	35.29
161	14	5.88	41.18
162	14	5.88	47.06
163	14	5.88	52.94
164	14	5.88	58.82
165	14	5.88	64.71
166	14	5.88	70.59
167	14	5.88	76.47
168	14	5.88	82.35
169	14	5.88	88.24
170	14	5.88	94.12
171	14	5.88	100.00
Total	238	100.00	

1627 . 1628 . 1629 . 1630 .

1631 . * Generate fixed effects based on these values

1632 . tab t, $gen(t_fe)$

t	Freq.	Percent	Cum.
-170	6	0.25	0.25
-169	6	0.25	0.50
-168	6	0.25	0.75
-167	6	0.25	1.00
-166	6	0.25	1.25
-165	6	0.25	1.50
-164	6	0.25	1.75
-163	6	0.25	2.01
-162	6	0.25	2.26
-161	6	0.25	2.51
-160	6	0.25	2.76
-159	6	0.25	3.01
-158	6	0.25	3.26
-157	6	0.25	3.51
-156	6	0.25	3.76
-155	6	0.25	4.01
-154	6	0.25	4.26
-153	7	0.29	4.55
-152	7	0.29	4.85
-151	7	0.29	5.14
-150	7	0.29	5.43
-149	7	0.29	5.72
-148	7	0.29	6.02
-147	7	0.29	6.31
-146	7	0.29	6.60
-145	7	0.29	6.89
-144	7	0.29	7.18
-143	7	0.29	7.48
-142	7	0.29	7.77
-141	7	0.29	8.06
-140	7	0.29	8.35
-139	7	0.29	8.65
-138	7	0.29	8.94
-137	7	0.29	9.23
-136	7	0.29	9.52
-135	7	0.29	9.82
-134	7	0.29	10.11

-133	7	0.29	10.40
-132	7	0.29	10.69
-131	7	0.29	10.99
-130	7	0.29	11.28
-129	7	0.29	11.57
-128	7	0.29	11.86
-127	7	0.29	12.16
-126	7	0.29	12.45
-125	7	0.29	12.74
-124	7	0.29	13.03
-123	7	0.29	13.32
-122	7	0.29	13.62
-121	7	0.29	13.91
-120	9	0.38	14.29
-119	9	0.38	14.66
-118	9	0.38	15.04
-117	9	0.38	15.41
-11 <i>7</i>	9	0.38	15.79
-115 -115	9	0.38	16.17
-114	9	0.38	16.54
-113	9	0.38	16.92
-113 -112	9	0.38	17.29
-112	9	0.38	
			17.67
-110	9	0.38	18.05
-109	9	0.38	18.42
-108	9	0.38	18.80
-107	9	0.38	19.17
-106	9	0.38	19.55
-105	9	0.38	19.92
-104	9	0.38	20.30
-103	9	0.38	20.68
-102	9	0.38	21.05
-101	9	0.38	21.43
-100	9	0.38	21.80
-99	9	0.38	22.18
-98	9	0.38	22.56
-97	9	0.38	22.93
-96	9	0.38	23.31
-95	9	0.38	23.68
-94	9	0.38	24.06
-93	9	0.38	24.44
-92	9	0.38	24.81
-91	12	0.50	25.31
-90	12	0.50	25.81
-89	12	0.50	26.32
-88	12	0.50	26.82
-87	12	0.50	27.32
-86	12	0.50	27.82
-85	12	0.50	28.32

-84	12	0.50	28.82
-83	12	0.50	29.32
-82	12	0.50	29.82
-81	12	0.50	30.33
-80	12	0.50	30.83
-79	12	0.50	31.33
-78	12	0.50	31.83
-77	12	0.50	32.33
-76	12	0.50	32.83
-75	12	0.50	33.33
-74	12	0.50	33.83
-73	12	0.50	34.34
-72	12	0.50	34.84
-71	12	0.50	35.34
-70	12	0.50	35.84
-69	12	0.50	36.34
-68	12	0.50	36.84
-67	12	0.50	37.34
-66	12	0.50	37.84
-65	12	0.50	38.35
-64	12	0.50	38.85
-63	12	0.50	39.35
-62	12	0.50	39.85
-61	12	0.50	40.35
-60	12	0.50	40.85
-59	12	0.50	41.35
-58	12	0.50	41.85
-57	12	0.50	42.36
-56	12	0.50	42.86
-55	12	0.50	43.36
-54	12	0.50	43.86
-53	14	0.58	44.44
-52	14	0.58	45.03
-51	14	0.58	45.61
-50	14	0.58	46.20
-49	14	0.58	46.78
-48	14	0.58	47.37
-47	14	0.58	47.95
-46	14	0.58	48.54
-45	14	0.58	49.12
-44	14	0.58	49.71
-43	14	0.58	50.29
-42	14	0.58	50.88
-41	14	0.58	51.46
-40	14	0.58	52.05
-39	14	0.58	52.63
-38	14	0.58	53.22
-37	14	0.58	53.80
-36	14	0.58	54.39

	_		
-35	14	0.58	54.97
-34	14	0.58	55.56
-33	14	0.58	56.14
-32	14	0.58	56.73
-31	14	0.58	57.31
-30	14	0.58	57.89
-29	14	0.58	58.48
-28	14	0.58	59.06
-27	14	0.58	59.65
-26	14	0.58	60.23
-25	14	0.58	60.82
-24	14	0.58	61.40
-23	14	0.58	61.99
-22	14	0.58	62.57
-21	14	0.58	63.16
-20	14	0.58	63.74
-19	14	0.58	64.33
-18	14	0.58	64.91
-17	14	0.58	65.50
-16	14	0.58	66.08
-15	14	0.58	66.67
-14	14	0.58	67.25
-13	14	0.58	67.84
-12	14	0.58	68.42
-11	14	0.58	69.01
-10	14	0.58	69.59
-9	14	0.58	70.18
-8	14	0.58	70.76
- 7	14	0.58	71.35
-6	14	0.58	71.93
-5 4	14	0.58	72.51
-4	14	0.58	73.10
-3	14	0.58	73.68
-2 -1	14 14	0.58 0.58	74.27 74.85
0	14	0.58	75.44
1	8	0.33	75.77
2	8	0.33	76.11
3	8	0.33	76.44
4	8	0.33	76.78
5	8	0.33	77.11
6	8	0.33	77.44
7	8	0.33	77.78
8	8	0.33	78.11
9	8	0.33	78.45
10	8	0.33	78.78
11	8	0.33	79.11
12	8	0.33	79.45
13	8	0.33	79.78
	1	_	_

14	8	0.33	80.12
15	8	0.33	80.45
16	8	0.33	80.79
17	8	0.33	81.12
18	7	0.29	81.41
19	7	0.29	81.70
20	7	0.29	82.00
21	7	0.29	82.29
22	7	0.29	82.58
23	7	0.29	82.87
24	7	0.29	83.17
25	7	0.29	83.46
26	7	0.29	83.75
27	7	0.29	84.04
28	7	0.29	84.34
29	7	0.29	84.63
30	7	0.29	84.92
31	7	0.29	85.21
32	7	0.29	85.51
33	7	0.29	85.80
34	7	0.29	86.09
35	7	0.29	86.38
36	7	0.29	86.68
37	7	0.29	86.97
38	7	0.29	87.26
39	7	0.29	87.55
40	7	0.29	87.84
41	7	0.29	88.14
42	7	0.29	88.43
43	7	0.29	88.72
44	7	0.29	89.01
45	7	0.29	89.31
46	7	0.29	89.60
47	7	0.29	89.89
48	7	0.29	90.18
49	7	0.29	90.48
50	7	0.29	90.77
51	5	0.21	90.98
52	5	0.21	91.19
53	5	0.21	91.40
54	5	0.21	91.60
55	5	0.21	91.81
56	5	0.21	92.02
57	5	0.21	92.23
58	5	0.21	92.44
59	5	0.21	92.65
60	5	0.21	92.86
61	5	0.21	93.07
62	5	0.21	93.27
02	1	0.21	93.41

63	5	0.21	93.48
64	5	0.21	93.69
65	5	0.21	93.90
66	5	0.21	94.11
67	5	0.21	94.32
68	5	0.21	94.53
69	5	0.21	94.74
70	5	0.21	94.95
71	5	0.21	95.15
72	5	0.21	95.36
73	5	0.21	95.57
74	5	0.21	95.78
75	5	0.21	95.99
76	5	0.21	96.20
77	5	0.21	96.41
78	5	0.21	96.62
79	5	0.21	96.83
80	2	0.08	96.91
81	2	0.08	96.99
82	2	0.08	97.08
83	2	0.08	97.16
84	2	0.08	97.24
85	2	0.08	97.33
86	2	0.08	97.41
87	2	0.08	97.49
88	2	0.08	97.58
89	2	0.08	97.66
90	2	0.08	97.74
91	2	0.08	97.83
92	2	0.08	97.91
93	2	0.08	97.99
94	2	0.08	98.08
95	2	0.08	98.16
96	2	0.08	98.25
97	2	0.08	98.33
98	2	0.08	98.41
99	2	0.08	98.50
100	2	0.08	98.58
101	2	0.08	98.66
102	2	0.08	98.75
103	2	0.08	98.83
104	2	0.08	98.91
105	2	0.08	99.00
106	2	0.08	99.08
107	2	0.08	99.16
108	2	0.08	99.25
109	2	0.08	99.33
110	2	0.08	99.42
111	2	0.08	99.50
	•		

```
112
                  2
                            0.08
                                        99.58
  113
                  2
                            0.08
                                        99.67
                  2
  114
                            0.08
                                        99.75
                  2
  115
                            0.08
                                        99.83
  116
                  2
                            0.08
                                        99.92
                  2
                            0.08
                                       100.00
  117
Total
              2,394
                          100.00
```

1633 .

1634 .

1635 . forvalues i=1/288 {

2. * Remove the t_fe=1 for untreated regions:

1637 . * Drop the t_fe that are always zero (i.e. we never observe a the month 171 > before the disaster bc there is no

1638 . * region that was treated the last month of our sample. Therefore we must dr > op t_fe171):

1639 . sum t_fe`i'

4. if r(max) == 0 {

5. drop t_fe`i'

6. }

7. }

(6 real changes made)

Variable	Obs	Mean	Std. dev.	Min	Max
t_fel (6 real change	2,394 es made)	0	0	0	0
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe2 (6 real change	2,394 es made)	0	0	0	0
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe3 (6 real change	2,394 es made)	0	0	0	0
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe4 (6 real change	2,394 es made)	0	0	0	0

Variable	Obs	Mean	Std. dev.	Min	Max
t_fe5 (6 real change	2,394 es made)	0	0	0	0
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe6 (6 real change	2,394 es made)	0	0	0	0
Variable	0bs	Mean	Std. dev.	Min	Max
t_fe7 (6 real change	2,394 es made)	0	0	0	0
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe8 (6 real change	2,394 es made)	0	0	0	0
Variable	0bs	Mean	Std. dev.	Min	Max
t_fe9 (6 real change	2,394 es made)	0	0	0	0
Variable	Obs	Mean	Std. dev.	Min	Max
			Dear devi		
t_fe10 (6 real change	2,394 es made)	0	0	0	0
_					0 Max
(6 real change	Obs 2,394	0	0	0	
(6 real change Variable t_fell	Obs 2,394	0 Mean	O Std. dev.	O Min	Max
Variable t_fell (6 real change	Obs 2,394 es made) Obs 2,394	0 Mean 0	O Std. dev.	O Min O	Max O
Variable t_fell (6 real change t_fell Variable t_fel2	Obs 2,394 es made) Obs 2,394	Mean Mean	O Std. dev.	O Min O Min	Max 0 Max

Variable	Obs	Mean	Std. dev.	Min	Max
t_fe14 (6 real change	2,394 es made)	0	0	0	0
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe15 (6 real change	2,394 es made)	0	0	0	0
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe16 (6 real change	2,394 es made)	0	0	0	0
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe17 (6 real change	2,394 es made)	0	0	0	0
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe18 (6 real change	2,394 es made)	.0004177	.020438	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe19 (6 real change	2,394 es made)	.0004177	.020438	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe20 (6 real change	2,394 es made)	.0004177	.020438	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe21 (6 real change	2,394 es made)	.0004177	.020438	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe22 (6 real change	2,394 es made)	.0004177	.020438	0	1

Variable	Obs	Mean	Std. dev.	Min	Max
t_fe23 (6 real change	2,394 es made)	.0004177	.020438	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe24 (6 real change	2,394 es made)	.0004177	.020438	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe25 (6 real change	2,394 es made)	.0004177	.020438	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe26 (6 real change	2,394 es made)	.0004177	.020438	0	1
Variable	0bs	Mean	Std. dev.	Min	Max
t_fe27 (6 real change	2,394 es made)	.0004177	.020438	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe28 (6 real change	2,394 es made)	.0004177	.020438	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe29 (6 real change	2,394 es made)	.0004177	.020438	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe30 (6 real change	2,394 es made)	.0004177	.020438	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe31 (6 real change	2,394 es made)	.0004177	.020438	0	1

Variable	Obs	Mean	Std. dev.	Min	Max
t_fe32 (6 real change	2,394 es made)	.0004177	.020438	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe33 (6 real change	2,394 es made)	.0004177	.020438	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe34 (6 real change	2,394 es made)	.0004177	.020438	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe35 (6 real change	2,394 es made)	.0004177	.020438	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe36 (6 real change	2,394 es made)	.0004177	.020438	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe37 (6 real change	2,394 es made)	.0004177	.020438	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe38 (6 real change	2,394 es made)	.0004177	.020438	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe39 (6 real change	2,394 es made)	.0004177	.020438	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe40 (6 real change	2,394 es made)	.0004177	.020438	0	1

Variable	Obs	Mean	Std. dev.	Min	Max
t_fe41 (6 real change	2,394 es made)	.0004177	.020438	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe42 (6 real change	2,394 es made)	.0004177	.020438	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe43 (6 real change	2,394 es made)	.0004177	.020438	o	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe44 (6 real change	2,394 es made)	.0004177	.020438	o	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe45 (6 real change	2,394 es made)	.0004177	.020438	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe46 (6 real change	2,394 es made)	.0004177	.020438	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe47 (6 real change	2,394 es made)	.0004177	.020438	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe48 (6 real change	2,394 es made)	.0004177	.020438	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe49 (6 real change	2,394 es made)	.0004177	.020438	0	1

Variable	Obs	Mean	Std. dev.	Min	Max
t_fe50 (6 real change	2,394 es made)	.0004177	.020438	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe51 (6 real change	2,394 es made)	.0012531	.0353848	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe52 (6 real change	2,394 es made)	.0012531	.0353848	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe53 (6 real change	2,394 es made)	.0012531	.0353848	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe54 (6 real change	2,394 es made)	.0012531	.0353848	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe55 (6 real change	2,394 es made)	.0012531	.0353848	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe56 (6 real change	2,394 es made)	.0012531	.0353848	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe57 (6 real change	2,394 es made)	.0012531	.0353848	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe58 (6 real change	2,394 es made)	.0012531	.0353848	0	1

Variable	Obs	Mean	Std. dev.	Min	Max
t_fe59 (6 real change	2,394 es made)	.0012531	.0353848	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe60 (6 real change	2,394 es made)	.0012531	.0353848	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe61 (6 real change	2,394 es made)	.0012531	.0353848	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe62 (6 real change	2,394 es made)	.0012531	.0353848	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe63 (6 real change	2,394 es made)	.0012531	.0353848	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe64 (6 real change	2,394 es made)	.0012531	.0353848	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe65 (6 real change	2,394 es made)	.0012531	.0353848	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe66 (6 real change	2,394 es made)	.0012531	.0353848	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe67 (6 real change	2,394 es made)	.0012531	.0353848	0	1

Variable	Obs	Mean	Std. dev.	Min	Max
t_fe68 (6 real change	2,394 es made)	.0012531	.0353848	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe69 (6 real change	2,394 es made)	.0012531	.0353848	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe70 (6 real change	2,394 es made)	.0012531	.0353848	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe71 (6 real change	2,394 es made)	.0012531	.0353848	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe72 (6 real change	2,394 es made)	.0012531	.0353848	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe73 (6 real change	2,394 es made)	.0012531	.0353848	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe74 (6 real change	2,394 es made)	.0012531	.0353848	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe75 (6 real change	2,394 es made)	.0012531	.0353848	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe76 (6 real change	2,394 es made)	.0012531	.0353848	0	1

Variable	Obs	Mean	Std. dev.	Min	Max
t_fe77 (6 real change	2,394 es made)	.0012531	.0353848	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe78 (6 real change	2,394 es made)	.0012531	.0353848	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe79 (6 real change	2,394 es made)	.0012531	.0353848	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe80 (6 real change	2,394 es made)	.0025063	.0500103	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe81 (6 real change	2,394 es made)	.0025063	.0500103	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe82 (6 real change	2,394 es made)	.0025063	.0500103	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe83 (6 real change	2,394 es made)	.0025063	.0500103	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe84 (6 real change	2,394 es made)	.0025063	.0500103	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe85 (6 real change	2,394 es made)	.0025063	.0500103	0	1

Variable	Obs	Mean	Std. dev.	Min	Max
t_fe86 (6 real change	2,394 es made)	.0025063	.0500103	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe87 (6 real change	2,394 es made)	.0025063	.0500103	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe88 (6 real change	2,394 es made)	.0025063	.0500103	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe89 (6 real change	2,394 es made)	.0025063	.0500103	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe90 (6 real change	2,394 es made)	.0025063	.0500103	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe91 (6 real change	2,394 es made)	.0025063	.0500103	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe92 (6 real change	2,394 es made)	.0025063	.0500103	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe93 (6 real change	2,394 es made)	.0025063	.0500103	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe94 (6 real change	2,394 es made)	.0025063	.0500103	0	1

Variable	Obs	Mean	Std. dev.	Min	Max
t_fe95 (6 real change	2,394 es made)	.0025063	.0500103	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe96 (6 real change	2,394 es made)	.0025063	.0500103	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe97 (6 real change	2,394 es made)	.0025063	.0500103	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe98 (6 real change	2,394 es made)	.0025063	.0500103	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe99 (6 real change	2,394 es made)	.0025063	.0500103	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe100 (6 real change	2,394 es made)	.0025063	.0500103	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe101 (6 real change	2,394 es made)	.0025063	.0500103	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe102 (6 real change	2,394 es made)	.0025063	.0500103	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe103 (6 real change	2,394 es made)	.0025063	.0500103	0	1

Variable	Obs	Mean	Std. dev.	Min	Max
t_fe104 (6 real change	2,394 es made)	.0025063	.0500103	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe105 (6 real change	2,394 es made)	.0025063	.0500103	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe106 (6 real change	2,394 es made)	.0025063	.0500103	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe107 (6 real change	2,394 es made)	.0025063	.0500103	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe108 (6 real change	2,394 es made)	.0025063	.0500103	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe109 (6 real change	2,394 es made)	.0025063	.0500103	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe110 (6 real change	2,394 es made)	.0025063	.0500103	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fell1 (6 real change	2,394 es made)	.0025063	.0500103	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe112 (6 real change	2,394 es made)	.0025063	.0500103	0	1

Variable	Obs	Mean	Std. dev.	Min	Max
t_fell3 (6 real change	2,394 es made)	.0025063	.0500103	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe114 (6 real change	2,394 es made)	.0025063	.0500103	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe115 (6 real change	2,394 es made)	.0025063	.0500103	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe116 (6 real change	2,394 es made)	.0025063	.0500103	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe117 (7 real change	2,394 es made)	.0025063	.0500103	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe118 (7 real change	2,394 es made)	.002924	.054006	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe119 (7 real change	2,394 es made)	.002924	.054006	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe120 (7 real change	2,394 es made)	.002924	.054006	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe121 (7 real change	2,394 es made)	.002924	.054006	0	1

Variable	Obs	Mean	Std. dev.	Min	Max
t_fe122 (7 real change	2,394 es made)	.002924	.054006	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe123 (7 real change	2,394 es made)	.002924	.054006	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe124 (7 real change	2,394 es made)	.002924	.054006	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe125 (7 real change	2,394 es made)	.002924	.054006	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe126 (7 real change	2,394 es made)	.002924	.054006	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe127 (7 real change	2,394 es made)	.002924	.054006	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe128 (7 real change	2,394 es made)	.002924	.054006	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe129 (7 real change	2,394 es made)	.002924	.054006	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe130 (7 real change	2,394 es made)	.002924	.054006	0	1

Variable	Obs	Mean	Std. dev.	Min	Max
t_fe131 (7 real change	2,394 es made)	.002924	.054006	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe132 (7 real change	2,394 es made)	.002924	.054006	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe133 (7 real change	2,394 es made)	.002924	.054006	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe134 (7 real change	2,394 es made)	.002924	.054006	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe135 (7 real change	2,394 es made)	.002924	.054006	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe136 (7 real change	2,394 es made)	.002924	.054006	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe137 (7 real change	2,394 es made)	.002924	.054006	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe138 (7 real change	2,394 es made)	.002924	.054006	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe139 (7 real change	2,394 es made)	.002924	.054006	0	1

Variable	Obs	Mean	Std. dev.	Min	Max
t_fe140 (7 real change	2,394 es made)	.002924	.054006	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe141 (7 real change	2,394 es made)	.002924	.054006	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe142 (7 real change	2,394 es made)	.002924	.054006	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe143 (7 real change	2,394 es made)	.002924	.054006	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe144 (7 real change	2,394 es made)	.002924	.054006	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe145 (7 real change	2,394 es made)	.002924	.054006	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe146 (7 real change	2,394 es made)	.002924	.054006	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe147 (7 real change	2,394 es made)	.002924	.054006	o	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe148 (7 real change	2,394 es made)	.002924	.054006	0	1

Variable	Obs	Mean	Std. dev.	Min	Max
t_fe149 (7 real change	2,394 es made)	.002924	.054006	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe150 (7 real change	2,394 es made)	.002924	.054006	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe151 (7 real change	2,394 es made)	.002924	.054006	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe152 (7 real change	2,394 es made)	.002924	.054006	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe153 (7 real change	2,394 es made)	.002924	.054006	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe154 (7 real change	2,394 es made)	.002924	.054006	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe155 (7 real change	2,394 es made)	.002924	.054006	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe156 (7 real change	2,394 es made)	.002924	.054006	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe157 (7 real change	2,394 es made)	.002924	.054006	0	1

Variable	Obs	Mean	Std. dev.	Min	Max
t_fe158 (7 real change	2,394 es made)	.002924	.054006	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe159 (7 real change	2,394 es made)	.002924	.054006	o	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe160 (7 real change	2,394 es made)	.002924	.054006	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe161 (7 real change	2,394 es made)	.002924	.054006	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe162 (7 real change	2,394 es made)	.002924	.054006	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe163 (7 real change	2,394 es made)	.002924	.054006	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe164 (7 real change	2,394 es made)	.002924	.054006	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe165 (7 real change	2,394 es made)	.002924	.054006	o	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe166 (7 real change	2,394 es made)	.002924	.054006	0	1

Variable	Obs	Mean	Std. dev.	Min	Max
t_fe167 (7 real change	2,394 es made)	.002924	.054006	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe168 (7 real change	2,394 es made)	.002924	.054006	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe169 (7 real change	2,394 es made)	.002924	.054006	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe170 (7 real change	2,394 es made)	.002924	.054006	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe171 (1 real change	2,394 e made)	.002924	.054006	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe172 (1 real change	2,394 e made)	.002924	.054006	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe173 (1 real change	2,394 e made)	.002924	.054006	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe174 (1 real change	2,394 e made)	.002924	.054006	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe175 (1 real change	2,394 e made)	.002924	.054006	0	1

Variable	Obs	Mean	Std. dev.	Min	Max
t_fe176 (1 real change	2,394 e made)	.002924	.054006	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe177 (1 real change	2,394 e made)	.002924	.054006	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe178 (1 real change	2,394 e made)	.002924	.054006	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe179 (1 real change	2,394 e made)	.002924	.054006	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe180 (1 real change	2,394 e made)	.002924	.054006	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe181 (1 real change	2,394 e made)	.002924	.054006	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe182 (1 real change	2,394 e made)	.002924	.054006	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe183 (1 real change	2,394 e made)	.002924	.054006	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe184 (1 real change	2,394 e made)	.002924	.054006	0	1

Variable	Obs	Mean	Std. dev.	Min	Max
t_fe185 (1 real change	2,394 e made)	.002924	.054006	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe186 (1 real change	2,394 e made)	.002924	.054006	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe187 (1 real change	2,394 e made)	.002924	.054006	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe188 (1 real change	2,394 e made)	.002924	.054006	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe189 (1 real change	2,394 e made)	.0025063	.0500103	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe190 (1 real change	2,394 e made)	.0025063	.0500103	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe191 (1 real change	2,394 e made)	.0025063	.0500103	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe192 (1 real change	2,394 e made)	.0025063	.0500103	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe193 (1 real change	2,394 e made)	.0025063	.0500103	0	1

Variable	Obs	Mean	Std. dev.	Min	Max
t_fe194 (1 real change	2,394 e made)	.0025063	.0500103	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe195 (1 real change	2,394 e made)	.0025063	.0500103	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe196 (1 real change	2,394 e made)	.0025063	.0500103	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe197 (1 real change	2,394 e made)	.0025063	.0500103	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe198 (1 real change	2,394 e made)	.0025063	.0500103	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe199 (1 real change	2,394 e made)	.0025063	.0500103	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe200 (1 real change	2,394 e made)	.0025063	.0500103	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe201 (1 real change	2,394 e made)	.0025063	.0500103	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe202 (1 real change	2,394 e made)	.0025063	.0500103	0	1

Variable	Obs	Mean	Std. dev.	Min	Max
t_fe203 (1 real change	2,394 e made)	.0025063	.0500103	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe204 (1 real change	2,394 e made)	.0025063	.0500103	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe205 (1 real change	2,394 e made)	.0025063	.0500103	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe206 (1 real change	2,394 e made)	.0025063	.0500103	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe207 (1 real change	2,394 e made)	.0025063	.0500103	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe208 (1 real change	2,394 e made)	.0025063	.0500103	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe209 (1 real change	2,394 e made)	.0025063	.0500103	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe210 (1 real change	2,394 e made)	.0025063	.0500103	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe211 (1 real change	2,394 e made)	.0025063	.0500103	0	1

Variable	Obs	Mean	Std. dev.	Min	Max
t_fe212 (1 real change	2,394 e made)	.0025063	.0500103	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe213 (1 real change	2,394 e made)	.0025063	.0500103	0	1
Variable	0bs	Mean	Std. dev.	Min	Max
t_fe214 (1 real change	2,394 e made)	.0025063	.0500103	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe215 (1 real change	2,394 e made)	.0025063	.0500103	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe216 (1 real change	2,394 e made)	.0025063	.0500103	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe217 (1 real change	2,394 e made)	.0025063	.0500103	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe218 (1 real change	2,394 e made)	.0025063	.0500103	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe219 (1 real change	2,394 e made)	.0025063	.0500103	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe220 (1 real change	2,394 e made)	.0025063	.0500103	0	1

Variable	Obs	Mean	Std. dev.	Min	Max
t_fe221 (1 real change	2,394 e made)	.0025063	.0500103	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe222 (1 real change	2,394 e made)	.0016708	.0408503	0	1
Variable	0bs	Mean	Std. dev.	Min	Max
t_fe223 (1 real change	2,394 e made)	.0016708	.0408503	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe224 (1 real change	2,394 e made)	.0016708	.0408503	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe225 (1 real change	2,394 e made)	.0016708	.0408503	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe226 (1 real change	2,394 e made)	.0016708	.0408503	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe227 (1 real change	2,394 e made)	.0016708	.0408503	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe228 (1 real change	2,394 e made)	.0016708	.0408503	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe229 (1 real change	2,394 e made)	.0016708	.0408503	0	1

Variable	Obs	Mean	Std. dev.	Min	Max
t_fe230 (1 real change	2,394 e made)	.0016708	.0408503	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe231 (1 real change	2,394 e made)	.0016708	.0408503	0	1
Variable	0bs	Mean	Std. dev.	Min	Max
t_fe232 (1 real change	2,394 e made)	.0016708	.0408503	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe233 (1 real change	2,394 e made)	.0016708	.0408503	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe234 (1 real change	2,394 e made)	.0016708	.0408503	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe235 (1 real change	2,394 e made)	.0016708	.0408503	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe236 (1 real change	2,394 e made)	.0016708	.0408503	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe237 (1 real change	2,394 e made)	.0016708	.0408503	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe238 (1 real change	2,394 e made)	.0016708	.0408503	0	1

Variable	Obs	Mean	Std. dev.	Min	Max
t_fe239 (1 real change	2,394 e made)	.0016708	.0408503	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe240 (1 real change	2,394 e made)	.0016708	.0408503	0	1
Variable	0bs	Mean	Std. dev.	Min	Max
t_fe241 (1 real change	2,394 e made)	.0016708	.0408503	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe242 (1 real change	2,394 e made)	.0016708	.0408503	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe243 (1 real change	2,394 e made)	.0016708	.0408503	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe244 (1 real change	2,394 e made)	.0016708	.0408503	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe245 (1 real change	2,394 e made)	.0016708	.0408503	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe246 (1 real change	2,394 e made)	.0016708	.0408503	0	1
Variable	0bs	Mean	Std. dev.	Min	Max
t_fe247 (1 real change	2,394 e made)	.0016708	.0408503	0	1

Variable	Obs	Mean	Std. dev.	Min	Max
t_fe248 (1 real change	2,394 e made)	.0016708	.0408503	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe249 (1 real change	2,394 e made)	.0016708	.0408503	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe250 (1 real change	2,394 e made)	.0016708	.0408503	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe251 (1 real change	2,394 e made)	.0004177	.020438	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe252 (1 real change	2,394 e made)	.0004177	.020438	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe253 (1 real change	2,394 e made)	.0004177	.020438	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe254 (1 real change	2,394 e made)	.0004177	.020438	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe255 (1 real change	2,394 e made)	.0004177	.020438	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe256 (1 real change	2,394 e made)	.0004177	.020438	0	1

Variable	Obs	Mean	Std. dev.	Min	Max
t_fe257 (1 real change	2,394 e made)	.0004177	.020438	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe258 (1 real change	2,394 e made)	.0004177	.020438	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe259 (1 real change	2,394 e made)	.0004177	.020438	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe260 (1 real change	2,394 e made)	.0004177	.020438	0	1
Variable	0bs	Mean	Std. dev.	Min	Max
t_fe261 (1 real change	2,394 e made)	.0004177	.020438	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe262 (1 real change	2,394 e made)	.0004177	.020438	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe263 (1 real change	2,394 e made)	.0004177	.020438	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe264 (1 real change	2,394 e made)	.0004177	.020438	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe265 (1 real change	2,394 e made)	.0004177	.020438	0	1

Variable	Obs	Mean	Std. dev.	Min	Max
t_fe266 (1 real change	2,394 e made)	.0004177	.020438	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe267 (1 real change	2,394 e made)	.0004177	.020438	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe268 (1 real change	2,394 e made)	.0004177	.020438	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe269 (1 real change	2,394 e made)	.0004177	.020438	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe270 (1 real change	2,394 e made)	.0004177	.020438	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe271 (1 real change	2,394 e made)	.0004177	.020438	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe272 (1 real change	2,394 e made)	.0004177	.020438	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe273 (1 real change	2,394 e made)	.0004177	.020438	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe274 (1 real change	2,394 e made)	.0004177	.020438	0	1

Variable	Obs	Mean	Std. dev.	Min	Max
t_fe275 (1 real change	2,394 e made)	.0004177	.020438	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe276 (1 real change	2,394 e made)	.0004177	.020438	0	1
Variable	0bs	Mean	Std. dev.	Min	Max
t_fe277 (1 real change	2,394 e made)	.0004177	.020438	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe278 (1 real change	2,394 e made)	.0004177	.020438	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe279 (1 real change	2,394 e made)	.0004177	.020438	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe280 (1 real change	2,394 e made)	.0004177	.020438	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe281 (1 real change	2,394 e made)	.0004177	.020438	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe282 (1 real change	2,394 e made)	.0004177	.020438	0	1
Variable	0bs	Mean	Std. dev.	Min	Max
t_fe283 (1 real change	2,394 e made)	.0004177	.020438	0	1

Variable	Obs	Mean	Std. dev.	Min	Max
t_fe284 (1 real change	2,394 e made)	.0004177	.020438	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe285 (1 real change	l '	.0004177	.020438	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe286 (1 real change	•	.0004177	.020438	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe287 (1 real change	•	.0004177	.020438	0	1
Variable	Obs	Mean	Std. dev.	Min	Max
t_fe288	2,394	.0004177	.020438	0	1

1640 .

1641 . * Drop the fixed effect for the reference month:

1642 . drop t_fe171

1643 . sort region date

- 1644 . * Identify the pre-treatment month for the affected regions.
- 1645 . * These are the relavant pre-treatment dummies = 1 for the specific month fo
 - > r the affected regions
- 1646 . forvalues i=18/170 {
 - 2. local j=171-`i'
 - 3. gen pre_`j'=t_fe`i'
 - 4. }

```
1648 . * Identify the post-treatment month for the affected regions.
1649 . * These are the relavant post-treatment dummies = 1 for the specific month f
    > or the affected regions
1650 . forvalues i=172/288{
      2. local j=`i'-171
      3. gen post_`j'=t_fe`i'
      4. }
1651 .
1652 . * Drop the t_fe* which are no longer needed:
1653 . drop t fe*
1654 .
1655 .
1656 .
1657 .
1658 .
1659 . ** Set up CI matrix:
1660 .
1661 .
1662 . *** Dynamic Dif-in-Difs regression with controls and region and time fixed e
    > ffects:
1663 .
1664 .
1665 . reg fdi_ihs pre* post* $control i.date i.region1, robust
    note: pre_153 omitted because of collinearity.
    note: pre 152 omitted because of collinearity.
    note: pre_151 omitted because of collinearity.
    Linear regression
                                                    Number of obs
                                                                            2,352
                                                    F(378, 1902)
                                                                     =
                                                    Prob > F
                                                    R-squared
                                                                           0.8071
                                                                     =
                                                    Root MSE
                                                                           1.1556
                                 Robust
         fdi ihs
                   Coefficient std. err.
                                                    P>|t|
                                                              [95% conf. interval]
         pre_153
                            0 (omitted)
         pre 152
                              (omitted)
         pre 151
                            0 (omitted)
                                                    0.002
         pre_150
                    -1.674162
                               .5325371
                                           -3.14
                                                             -2.71858
                                                                        -.6297435
                                           -1.76
                                                    0.078
         pre 149
                    -.8470853 .4804792
                                                            -1.789407
                                                                         .0952363
         pre_148
                    -2.050336 .4663535
                                            -4.40
                                                    0.000
                                                            -2.964954
                                                                        -1.135718
                                           -4.75
                                                    0.000 -3.552881 -1.475658
                    -2.514269 .5295762
         pre_147
                    -2.342447
                                           -4.61
                                                    0.000
         pre 146
                                .508567
                                                            -3.339855
                                                                         -1.34504
         pre_145
                    -2.608137
                                .6202707
                                            -4.20
                                                    0.000
                                                            -3.824619
                                                                        -1.391655
```

1647 .

pre_144	-3.216496	.6137211	-5.24	0.000	-4.420133	-2.012859
pre_143	-2.074263	.5702446	-3.64	0.000	-3.192633	9558922
pre_142	-1.936834	.4546901	-4.26	0.000	-2.828578	-1.04509
pre_141	-2.126671	.4898305	-4.34	0.000	-3.087332	-1.166009
pre_140	-1.140288	.5196412	-2.19	0.028	-2.159415	1211615
pre_139	-1.644429	.4926666	-3.34	0.001	-2.610653	6782055
pre_138	-2.17004	.5229828	-4.15	0.000	-3.19572	-1.144359
pre_137	-2.324207	.5227104	-4.45	0.000	-3.349353	-1.299061
pre_136	-2.47373	.5230176	-4.73	0.000	-3.499479	-1.447982
pre_135	-1.489011	.6114463	-2.44	0.015	-2.688187	2898357
pre_134	-3.474632	.5802046	-5.99	0.000	-4.612536	-2.336727
pre_133	-2.38307	.458487	-5.20	0.000	-3.28226	-1.48388
pre_132	-2.357675	.5499142	-4.29	0.000	-3.436173	-1.279177
pre_131	-2.916164	.612473	-4.76	0.000	-4.117353	-1.714974
pre_130	-1.934115	.5020724	-3.85	0.000	-2.918785	9494441
pre_129	.0400513	.5167882	0.08	0.938	9734799	1.053583
pre_128	1622771	.5533465	-0.29	0.769	-1.247507	.9229527
pre_127	-2.098734	.538205	-3.90	0.000	-3.154268	-1.0432
pre_126	-2.535392	.4880571	-5.19	0.000	-3.492575	-1.578209
pre_125	-2.827412	.5780732	-4.89	0.000	-3.961136	-1.693688
pre_124	-1.376727	.5693788	-2.42	0.016	-2.4934	2600548
pre_123	-2.967193	.4548012	-6.52	0.000	-3.859155	-2.075232
pre_122	-2.161633	.5554062	-3.89	0.000	-3.250902	-1.072363
pre_121	-1.50287	.5202449	-2.89	0.004	-2.523181	4825598
pre_120	-1.388502	.4677275	-2.97	0.003	-2.305815	4711897
pre_119	-2.718311	.5049839	-5.38	0.000	-3.708691	-1.72793
pre_118	-2.064029	.4871039	-4.24	0.000	-3.019343	-1.108715
pre_117	-1.504892	.5596858	-2.69	0.007	-2.602555	40723
pre_116	8612638	.5905539	-1.46	0.145	-2.019465	.2969376
pre_115	9207778	.7367541	-1.25	0.212	-2.365709	.5241532
pre_114	-1.592495	.7421264	-2.15	0.032	-3.047963	1370283
pre_113	-1.071024	.7961004	-1.35	0.179	-2.632346	.4902979
pre_112	7674245	.5355926	-1.43	0.152	-1.817835	.2829862
pre_111	-1.426485	.5482176	-2.60	0.009	-2.501656	3513138
pre_110	-1.134548	.8730982	-1.30	0.194	-2.846879	.5777825
pre_109	8364033	.4940756	-1.69	0.091	-1.80539	.1325837
pre_108	7920045	1.136065	-0.70	0.486	-3.02007	1.43606
pre_107	970407	.8369218	-1.16	0.246	-2.611788	.6709741
pre_106	9630295	.9428502	-1.02	0.307	-2.812159	.8860997
pre_105	-1.675376	.8178478	-2.05	0.041	-3.279349	0714028
pre_104	.1227091	.492722	0.25	0.803	8436232	1.089041
pre_103	4297015	.482138	-0.89	0.373	-1.375276	.5158734
pre_102	607631	.8884412	-0.68	0.494	-2.350053	1.134791
pre_101	8606104	1.053364	-0.82	0.414	-2.92648	1.20526
pre_100	9472796	.4178108	-2.27	0.023	-1.766695	1278639
pre_99	-1.369109	.683415	-2.00	0.045	-2.709431	0287869
pre_98	-1.041538	.6032237	-1.73	0.084	-2.224587	.1415119
pre_97	-1.747797	.5560969	-3.14	0.002	-2.838421	6571731
pre_96	-1.12644	.9623274	-1.17	0.242	-3.013768	.7608881

pre_95	3813091	.7457987	-0.51	0.609	-1.843978	1.08136
pre_94	-1.343814	.8523585	-1.58	0.115	-3.01547	.3278418
pre_93	-1.566043	.6628277	-2.36	0.018	-2.865988	266097
pre_92	4157439	.8012852	-0.52	0.604	-1.987234	1.155746
pre_91	-2.682952	1.296026	-2.07	0.039	-5.224733	1411716
pre_90	-1.757571	.6066497	-2.90	0.004	-2.94734	5678024
pre_89	9781537	.7089535	-1.38	0.168	-2.368562	.4122544
pre_88	5388804	.5284815	-1.02	0.308	-1.575345	.4975839
pre_87	.0133343	.6564107	0.02	0.984	-1.274026	1.300695
pre_86	4776671	.5126322	-0.93	0.352	-1.483048	.5277132
pre_85	114658	.6277717	-0.18	0.855	-1.345851	1.116535
pre_84	6497245	.5185744	-1.25	0.210	-1.666759	.3673099
pre_83	1754317	.4928589	-0.36	0.722	-1.142033	.7911692
pre_82	8567126	1.163656	-0.74	0.462	-3.13889	1.425464
pre_81	-1.076285	.6346497	-1.70	0.090	-2.320967	.168398
pre_80	8836872	.476287	-1.86	0.064	-1.817787	.0504125
pre_79	.2761505	.6562889	0.42	0.674	-1.010971	1.563272
pre_78	-1.109531	.8860472	-1.25	0.211	-2.847257	.6281958
pre_77	0285101	.6380774	-0.04	0.964	-1.279915	1.222895
pre_76	586689	.7596561	-0.77	0.440	-2.076536	.9031577
pre_75	1168943	.6784678	-0.17	0.863	-1.447514	1.213725
pre_74	739236	.6373488	-1.16	0.246	-1.989212	.5107402
pre_73	8074803	.5592976	-1.44	0.149	-1.904381	.2894209
pre_72	2235939	.5754663	-0.39	0.698	-1.352205	.9050176
pre_71	6737474	.4730955	-1.42	0.155	-1.601588	.2540932
pre_70	6686236	.4826506	-1.39	0.166	-1.615204	.2779565
pre_69	5177693	.5893495	-0.88	0.380	-1.673609	.63807
pre_68	7968321	.4827558	-1.65	0.099	-1.743619	.1499544
pre_67	6278221	.5292592	-1.19	0.236	-1.665812	.4101673
pre_66	7659029	.5146354	-1.49	0.137	-1.775212	.2434063
pre_65	7933361	.4547725	-1.74	0.081	-1.685241	.0985691
pre_64	2219673	.4676176	-0.47	0.635	-1.139064	.69513
pre_63	-1.121126	.6388007	-1.76	0.079	-2.37395	.1316976
pre_62	5906237	.5480796	-1.08	0.281	-1.665524	.4842766
pre_61	8090854	.460363	-1.76	0.079	-1.711955	.093784
pre_60	1053799	.511008	-0.21	0.837	-1.107575	.8968151
pre_59	-1.239251	.6036713	-2.05	0.040	-2.423178	0553234
pre_58	5140753	.6616444	-0.78	0.437	-1.8117	.7835497
pre_57	1481885	.5096403	-0.29	0.771	-1.147701	.8513242
pre_56	5207798	.5221775	-1.00	0.319	-1.544881	.503321
pre_55	.1678677	.4928068	0.34	0.733	798631	1.134366
pre_54	.2617333	.4885954	0.54	0.592	6965057	1.219972
pre_53	.2911579	.5093948	0.57	0.568	7078733	1.290189
pre_52	1325489	.5293145	-0.25	0.802	-1.170647	.9055491
pre_51	0094514	.4416534	-0.02	0.983	8756274	.8567246
pre_50	.1720385	.4220319	0.41	0.684	6556554	.9997324
pre_49	1673409	.5397255	-0.31	0.757	-1.225857	.8911752
pre_48	0883358	.4533544	-0.19	0.846	9774599	.8007883
pre_47	141304	.4870087	-0.29	0.772	-1.096431	.8138233

pre_46	.1701103	.4496215	0.38	0.705	7116929	1.051913
pre_45	3320724	.5130618	-0.65	0.518	-1.338295	.6741506
pre_44	.2341964	.5305097	0.44	0.659	8062457	1.274638
pre_43	.1055596	.536728	0.20	0.844	9470777	1.158197
pre_42	2522865	.4970955	-0.51	0.612	-1.227196	.7226231
pre_41	.4964441	.6051744	0.82	0.412	6904311	1.683319
pre_40	3426875	.5166661	-0.66	0.507	-1.355979	.6706042
pre_39	2880765	.4556699	-0.63	0.527	-1.181742	.6055887
pre_38	021941	.5281676	-0.04	0.967	-1.05779	1.013908
pre_37	1423225	.5027887	-0.28	0.777	-1.128398	.8437527
pre_36	.3797924	.5125523	0.74	0.459	6254312	1.385016
pre_35	.0514332	.5520462	0.09	0.926	-1.031247	1.134113
pre_34	1706699	.4692003	-0.36	0.716	-1.090871	.7495313
pre_33	.1683827	.4852132	0.35	0.729	7832233	1.119989
pre_32	.5577441	.5219225	1.07	0.285	4658566	1.581345
pre_31	.2175884	.5995097	0.36	0.717	9581772	1.393354
pre_30	.0791154	.507841	0.16	0.876	9168686	1.075099
pre_29	.1047693	.463277	0.23	0.821	803815	1.013354
pre_28	.34924	.4998367	0.70	0.485	6310457	1.329526
pre_27	0323418	.6418238	-0.05	0.960	-1.291094	1.226411
pre_26	.0660994	.4806545	0.14	0.891	876566	1.008765
pre_25	.4149522	.5763869	0.72	0.472	7154648	1.545369
pre_24	.2022255	.4732368	0.43	0.669	7258923	1.130343
pre_23	0700003	.5746462	-0.12	0.903	-1.197003	1.057003
pre_22	.0453384	.4585301	0.10	0.921	8539365	.9446132
pre_21	.1026495	.5686655	0.18	0.857	-1.012624	1.217923
pre_20	6296592	.5856219	-1.08	0.282	-1.778188	.5188695
pre_19	1511936	.4067345	-0.37	0.710	9488861	.6464989
pre_18	.3987555	.5312847	0.75	0.453	6432065	1.440718
pre_17	.3017004	.4600716	0.66	0.512	6005976	1.203998
pre_16	.0164947	.5164935	0.03	0.975	9964586	1.029448
pre_15	.3062707	.5863509	0.52	0.601	8436878	1.456229
pre_14	.082891	.4885267	0.17	0.865	8752133	1.040995
pre_13	.1644358	.5666705	0.29	0.772	9469252	1.275797
pre_12	.3496447	.5609737	0.62	0.533	7505437	1.449833
pre_11	1.103865	.4666975	2.37	0.018	.1885725	2.019158
pre_10	.1666176	.4848922	0.34	0.731	7843589	1.117594
pre_9	.7525651	.5874011	1.28	0.200	3994531	1.904583
pre_8	.6519804	.5386137	1.21	0.226	4043552	1.708316
pre_7	2685289	.5220092	-0.51	0.607	-1.2923	.7552418
pre_6	.9228507	.5318852	1.74	0.083	1202889	1.96599
pre_5	.0827602	.4787582	0.17	0.863	8561862	1.021707
pre_4	0020406	.5101109	-0.00	0.997	-1.002476	.998395
pre_3	1.021614	.5248975	1.95	0.052	0078214	2.051049
pre_2	.7628619	.5409186	1.41	0.159	2979941	1.823718
pre_1	.1590801	.4503815	0.35	0.724	7242134	1.042374
post_1	-2.241533	.6166291	-3.64	0.000	-3.450873	-1.032192
post_2	-2.528434	.568471	-4.45	0.000	-3.643326	-1.413542
post_3	-2.528642	.5433007	-4.65	0.000	-3.59417	-1.463114

post_4	-3.074612	.6647512	-4.63	0.000	-4.37833	-1.770894
post_5	-3.429279	.8300636	-4.13	0.000	-5.05721	-1.801348
post_6	-3.921362	.8291575	-4.73	0.000	-5.547515	-2.295208
post_7	-3.36196	.9128685	-3.68	0.000	-5.152289	-1.571632
post_8	-2.905944	.5877637	-4.94	0.000	-4.058673	-1.753215
post_9	-2.441756	.5282888	-4.62	0.000	-3.477843	-1.40567
post_10	-2.70379	.4655746	-5.81	0.000	-3.61688	-1.790699
post_11	-3.374817	.6292489	-5.36	0.000	-4.608907	-2.140726
post_12	-2.365365	.48833	-4.84	0.000	-3.323084	-1.407647
post_13	-3.127286	.776895	-4.03	0.000	-4.650942	-1.603631
post_14	-2.680485	.5017884	-5.34	0.000	-3.664599	-1.696372
post_15	-2.720141	.5575306	-4.88	0.000	-3.813577	-1.626706
post_16	-2.543983	.452051	-5.63	0.000	-3.430551	-1.657415
post_17	-3.149065	.6169968	-5.10	0.000	-4.359127	-1.939004
post_18	-3.799635	1.538423	-2.47	0.014	-6.816809	7824617
post_19	-2.521545	.4382777	-5.75	0.000	-3.3811	-1.661989
post_20	-2.427353	.8157574	-2.98	0.003	-4.027227	8274801
post_21	-2.133586	.6136956	-3.48	0.001	-3.337173	9299988
post_22	-2.677328	.6152149	-4.35	0.000	-3.883895	-1.470762
post_23	-2.904224	.6201099	-4.68	0.000	-4.120391	-1.688057
post_24	-2.966346	.6719102	-4.41	0.000	-4.284104	-1.648587
post_25	-2.393622	.603053	-3.97	0.000	-3.576336	-1.210907
post_26	-1.835632	.501889	-3.66	0.000	-2.819943	8513213
post_27	-2.437186	.4098601	-5.95	0.000	-3.241009	-1.633364
post_28	-2.906504	.5523276	-5.26	0.000	-3.989736	-1.823272
post_29	-2.368579	.6382395	-3.71	0.000	-3.620302	-1.116856
post_30	-3.039177	.6369846	-4.77	0.000	-4.288439	-1.789915
post_31	-2.462505	.7189159	-3.43	0.001	-3.872451	-1.052558
post_32	-2.547168	.6034625	-4.22	0.000	-3.730686	-1.36365
post_33	-2.182981	.5692458	-3.83	0.000	-3.299393	-1.066569
post_34	-2.313337	.5928882	-3.90	0.000	-3.476117	-1.150558
post_35	-1.661386	.4901105	-3.39	0.001	-2.622597	7001755
post_36	-2.547902	.6356031	-4.01	0.000	-3.794455	-1.30135
post_37	-2.439355	.5942224	-4.11	0.000	-3.604751	-1.273959
post_38	-2.540986	.3692816	-6.88	0.000	-3.265225	-1.816746
post_39	-2.390401	.5302182	-4.51	0.000	-3.430271	-1.350531
post_40	-2.743957	.5750722	-4.77	0.000	-3.871796	-1.616119
post_41	-2.50689	.4148669	-6.04	0.000	-3.320532	-1.693248
post_42	-1.22581	.6144852	-1.99	0.046	-2.430945	0206739
post_43	-2.544473	.7610826	-3.34	0.001	-4.037117	-1.051828
post_44	-2.982685	.6320526	-4.72	0.000	-4.222274	-1.743096
post_45	-1.84383	.4194635	-4.40	0.000	-2.666487	-1.021173
post_46	-2.611777	.4318741	-6.05	0.000	-3.458774	-1.764781
post_47	-1.84944	.6307411	-2.93	0.003	-3.086457	6124232
post_48	-2.519952	.4562646	-5.52	0.000	-3.414783	-1.62512
post_49	-2.572203	.739856	-3.48	0.001	-4.023217	-1.121188
post_50	-2.328303	.6928993	-3.36	0.001	-3.687226	9693808
post_51	-2.267219	1.010625	-2.24	0.025	-4.249269	2851686
post_52	-2.299513	.5175167	-4.44	0.000	-3.314473	-1.284553

	_					
post_53	-1.957519	.6303774	-3.11	0.002	-3.193823	7212156
post_54	-2.97972	.6097502	-4.89	0.000	-4.17557	-1.783871
post_55	-2.366668	.5848646	-4.05	0.000	-3.513711	-1.219624
post_56	-1.803848	.5512234	-3.27	0.001	-2.884914	7227821
post_57	-1.94992	.6484052	-3.01	0.003	-3.22158	6782594
post_58	-1.969342	.4474915	-4.40	0.000	-2.846967	-1.091716
post_59	-2.375587	.5828077	-4.08	0.000	-3.518596	-1.232577
post_60	-1.397673	.586892	-2.38	0.017	-2.548693	2466536
post_61	-2.261946	.5883285	-3.84	0.000	-3.415783	-1.108109
post_62	-3.067402	.7451155	-4.12	0.000	-4.528731	-1.606072
post_63	-1.87241	.6760439	-2.77	0.006	-3.198276	5465449
post_64	-1.931753	.4802275	-4.02	0.000	-2.873581	9899254
post 65	-2.153124	.452748	-4.76	0.000	-3.041059	-1.265189
post_66	-2.389901	.5584846	-4.28	0.000	-3.485207	-1.294594
post_67	-3.738077	.8717634	-4.29	0.000	-5.44779	-2.028364
post_68	-3.247209	.6316997	-5.14	0.000	-4.486106	-2.008312
post_69	-4.493599	1.371961	-3.28	0.001	-7.184304	-1.802893
post_70	-2.132965	.4891599	-4.36	0.000	-3.092311	-1.173619
post_71	-2.059432	.6800682	-3.03	0.002	-3.39319	7256738
post_72	-2.548675	.7161188	-3.56	0.000	-3.953136	-1.144214
post_73	-2.073186	.5689831	-3.64	0.000	-3.189082	9572892
post_74	-2.534874	.78128	-3.24	0.001	-4.06713	-1.002618
post_75	-1.468869	.5005657	-2.93	0.003	-2.450585	487154
post_76	-2.629249	.5474185	-4.80	0.000	-3.702853	-1.555646
post_77	-2.213918	.7776919	-2.85	0.004	-3.739136	6886989
post_78	-2.541943	.5853036	-4.34	0.000	-3.689848	-1.394039
post_79	-1.414984	.7839247	-1.80	0.071	-2.952426	.1224588
post_80	-3.416739	.4290457	-7.96	0.000	-4.258188	-2.575289
post_81	-1.658912	.4477133	-3.71	0.000	-2.536973	780851
post_82	-2.27717	.4171836	-5.46	0.000	-3.095355	-1.458984
post_83	-3.333697	.3886653	-8.58	0.000	-4.095952	-2.571442
post_84	-3.671082	.4363241	-8.41	0.000	-4.526806	-2.815358
post_85	-1.269863	.547547	-2.32	0.020	-2.343719	1960074
post_86	-3.360698	.4260243	-7.89	0.000	-4.196222	-2.525174
post_87	-3.315448	.4805666	-6.90	0.000	-4.257941	-2.372955
post_88	-2.912857	.4456792	-6.54	0.000	-3.786929	-2.038786
post_89	-3.236029	.5171352	-6.26	0.000	-4.250241	-2.221817
post_90	-3.502353	.4572113	-7.66	0.000	-4.399041	-2.605665
post_91	-3.198615	.4462571	-7.17	0.000	-4.07382	-2.32341
post_92	-2.545344	.4174165	-6.10	0.000	-3.363986	-1.726702
post_93	-3.117137	.4754704	-6.56	0.000	-4.049636	-2.184639
post_94	-3.452304	.4331747	-7.97	0.000	-4.301852	-2.602757
post_95	-3.489492	.442842	-7.88	0.000	-4.357999	-2.620985
post_96	-2.540065	.4589572	-5.53	0.000	-3.440178	-1.639953
post_97	-2.434609	.4314654	-5.64	0.000	-3.280804	-1.588414
post_98	-2.710561	.4262236	-6.36	0.000	-3.546476	-1.874647
post_99	-3.239429	.4355182	-7.44	0.000	-4.093573	-2.385286
post_100	-3.292086	.4312807	-7.63	0.000	-4.137919	-2.446253
post_101	-3.517547	.5505409	-6.39	0.000	-4.597275	-2.43782

post_102	-3.765998	.4636232	-8.12	0.000	-4.675261	-2.856734
post_103	-4.019283	.4328628	-9.29	0.000	-4.868219	-3.170347
post_104	-4.006151	.4802408	-8.34	0.000	-4.948006	-3.064297
post_105	-3.252007	.4139713	-7.86	0.000	-4.063892	-2.440121
post_106	-1.088998	.4539663	-2.40	0.017	-1.979322	1986742
post_107	-1.016381	.4626406	-2.20	0.028	-1.923718	1090451
post_108	-2.672753	.4226348	-6.32	0.000	-3.501629	-1.843876
post_109	6692941	.4311128	-1.55	0.121	-1.514798	.1762095
post_110	-4.08999	.4508205	-9.07	0.000	-4.974144	-3.205835
post_111	6354837	.428764	-1.48	0.138	-1.476381	.2054135
post_112	-1.181944	.4842252	-2.44	0.015	-2.131612	2322759
post_113	-4.093658	.4423457	-9.25	0.000	-4.961192	-3.226124
post_114	-2.515918	.42068	-5.98	0.000	-3.340961	-1.690876
post_115	-2.909399	.4549321	-6.40	0.000	-3.801618	-2.017181
post_116	-1.928118	.4314458	-4.47	0.000	-2.774275	-1.081962
post_117	-3.968056	.4621586	-8.59	0.000	-4.874447	-3.061665
lag_lgdp	2.043512	.4333531	4.72	0.000	1.193615	2.89341
lag_lpop	.2624855	.1113302	2.36	0.018	.0441433	.4808276
date						
553	2648144	.5021046	-0.53	0.598	-1.249548	.7199192
554	505199	.4866415	-1.04	0.299	-1.459606	.4492082
555	0412657	.5451787	-0.08	0.940	-1.110477	1.027945
556	2130877	.5194978	-0.41	0.682	-1.231933	.8057576
557	.0526019	.6238718	0.08	0.933	-1.170943	1.276147
558	.6609605	.633774	1.04	0.297	5820046	1.903926
559	.4001011	.5863766	0.68	0.495	7499077	1.55011
560	.2626724	.4739351	0.55	0.579	6668147	1.19216
561	4288646	.512464	-0.84	0.403	-1.433915	.576186
562	.0283883	.5390576	0.05	0.958	-1.028818	1.085595
563	0297325	.5130756	-0.06	0.954	-1.035982	.9765175
564	6245809	.5515033	-1.13	0.258	-1.706196	.457034
565	4704134	.5460779	-0.86	0.389	-1.541388	.6005612
566	3208899	.541999	-0.59	0.554	-1.383865	.742085
567	4242354	.6252378	-0.68	0.498	-1.650459	.8019885
568	2013624	.5980825	-0.34	0.736	-1.374329	.9716041
569	4115505	.4904364	-0.84	0.401	-1.3734	.5502993
570	.4444281	.5710942	0.78	0.437	6756086	1.564465
571	7598301	.6248747	-1.22	0.224	-1.985342	.4656817
572	8605058	.5186321	-1.66	0.097	-1.877653	.1566418
573	5222335	.5472071	-0.95	0.340	-1.595423	.5509556
574	5376308	.5723862	-0.94	0.348	-1.660202	.5849399
575	.185487	.5626412	0.33	0.742	9179718	1.288946
576	5255064	.5243547	-1.00	0.316	-1.553877	.5028642
577	2334868	.6083532	-0.38	0.701	-1.426596	.9596228
578	2405356	.6136345	-0.39	0.695	-1.444003	.9629318
579	0937053	.4979238	-0.19	0.851	-1.07024	.8828289
580	0178923	.5863462	-0.03	0.976	-1.167842	1.132057
581	1143927	.4960887	-0.23	0.818	-1.087328	.8585424

	_					
582	2287606	.5162355	-0.44	0.658	-1.241208	.7836866
583	3425878	.544109	-0.63	0.529	-1.409701	.7245254
584	1154959	.5277236	-0.22	0.827	-1.150474	.9194819
585	3511085	.5240046	-0.67	0.503	-1.378793	.6765756
586	5339395	.4542763	-1.18	0.240	-1.424872	.3569927
587	8631965	.5938069	-1.45	0.146	-2.027778	.3013847
588	5629143	.6036474	-0.93	0.351	-1.746795	.6209663
589	3424063	.5346263	-0.64	0.522	-1.390922	.7061093
590	7226185	.5335759	-1.35	0.176	-1.769074	.323837
591	-1.041525	.5961374	-1.75	0.081	-2.210677	.1276271
592	6721737	.5773816	-1.16	0.244	-1.804541	.4601939
593	2476727	.610786	-0.41	0.685	-1.445554	.9502082
594	3779227	.5896743	-0.64	0.522	-1.534399	.7785536
595	0252581	.646908	-0.04	0.969	-1.293982	1.243466
596	6380508	.6362946	-1.00	0.316	-1.885959	.6098578
597	6506062	.646492	-1.01	0.314	-1.918514	.6173017
598	449842	.6075627	-0.74	0.459	-1.641401	.7417171
599	981968	.6488196	-1.51	0.130	-2.254441	.2905047
600	7003619	.6021425	-1.16	0.245	-1.881291	.4805671
601	7907502	.6103085	-1.30	0.195	-1.987695	.4061941
602	30849	.598887	-0.52	0.607	-1.483034	.8660543
603	-1.42335	.5195935	-2.74	0.006	-2.442383	4043168
604	-1.234045	.5217831	-2.37	0.018	-2.257372	2107179
605	7517622	.5872776	-1.28	0.201	-1.903538	.4000138
606	7661839	.5924019	-1.29	0.196	-1.92801	.3956419
607	8326396	.5808036	-1.43	0.152	-1.971719	.3064395
608	-1.013088	.5803205	-1.75	0.081	-2.151219	.1250438
609	-1.073043	.7739514	-1.39	0.166	-2.590925	.44484
610	5847599	.7769772	-0.75	0.452	-2.108577	.939057
611	3730675	.5492392	-0.68	0.497	-1.450242	.7041071
612	-1.252169	.739801	-1.69	0.091	-2.703075	.1987376
613	-1.045424	.7975181	-1.31	0.190	-2.609526	.5186783
614	-1.09408	.5749725	-1.90	0.057	-2.221723	.0335633
615	-1.220971	.6723715	-1.82	0.070	-2.539634	.0976919
616	-1.326079	.6572978	-2.02	0.044	-2.615179	0369782
617	-1.590031	.8556946	-1.86	0.063	-3.268229	.0881677
618	-1.344494	.5830661	-2.31	0.021	-2.48801	2009777
619	8607999	.5784261	-1.49	0.137	-1.995216	.2736163
620	7458031	.795444	-0.94	0.349	-2.305837	.8142311
621	8619036	.5902474	-1.46	0.144	-2.019504	.2956968
622	-1.269461	.6235767	-2.04	0.042	-2.492427	0464951
623	-1.407571	.603108	-2.33	0.020	-2.590394	2247488
624	-1.508498	.6654586	-2.27	0.024	-2.813603	2033924
625	-1.733757	.794091	-2.18	0.029	-3.291138	1763761
626	-1.250684	.6828255	-1.83	0.067	-2.58985	.0884815
627	-1.772918	.6836744	-2.59	0.010	-3.113748	4320875
628	-2.484028	.8083818	-3.07	0.002	-4.069436	8986199
629	-1.988834	.6110834	-3.25	0.001	-3.187298	7903696
630	-1.264222	.6867591	-1.84	0.066	-2.611103	.0826578

	•					
631	-2.036787	.8717734	-2.34	0.020	-3.746519	3270541
632	-1.709608	.7035436	-2.43	0.015	-3.089406	3298098
633	-1.135201	.5972576	-1.90	0.057	-2.30655	.0361478
634	-1.837117	.6428594	-2.86	0.004	-3.097901	5763334
635	-1.357945	.7219235	-1.88	0.060	-2.77379	.0579001
636	-1.765586	.7331724	-2.41	0.016	-3.203493	3276799
637	-2.540785	.6766439	-3.75	0.000	-3.867827	-1.213743
638	-1.315151	.6840745	-1.92	0.055	-2.656766	.0264643
639	-1.63963	.6714721	-2.44	0.015	-2.956529	3227308
640	-1.342871	.6588056	-2.04	0.042	-2.634928	0508137
641	-1.673291	.6601744	-2.53	0.011	-2.968033	3785488
642	-1.686899	.6607958	-2.55	0.011	-2.982859	3909378
643	-1.429093	.6471228	-2.21	0.027	-2.698238	1599481
644	-1.868772	.7057329	-2.65	0.008	-3.252864	4846801
645	787708	.7341539	-1.07	0.283	-2.22754	.6521235
646	-1.047148	.7585126	-1.38	0.168	-2.534752	.4404561
647	-1.091767	.7379212	-1.48	0.139	-2.538987	.3554528
648	9837902	.7260324	-1.36	0.176	-2.407694	.4401132
649	7189837	.6874289	-1.05	0.296	-2.067177	.62921
650	-1.310853	.6556538	-2.00	0.046	-2.596729	0249769
651	-1.361414	.7146071	-1.91	0.057	-2.76291	.0400824
652	-1.500572	.7181712	-2.09	0.037	-2.909058	0920865
653	3590982	.7731186	-0.46	0.642	-1.875348	1.157151
654	9533762	.7062934	-1.35	0.177	-2.338567	.4318149
655	912431	.6839476	-1.33	0.182	-2.253797	.4289353
656	-1.142473	.6948802	-1.64	0.100	-2.505281	.220334
657	-1.291646	.7011535	-1.84	0.066	-2.666757	.0834649
658	-1.72914	.7925301	-2.18	0.029	-3.283459	1748201
659	-1.203138	.6985415	-1.72	0.085	-2.573125	.1668503
660	-1.750624	.7546819	-2.32	0.020	-3.230715	2705328
661	-1.918055	.910384	-2.11	0.035	-3.703511	1325989
662	-1.035091	.7605961	-1.36	0.174	-2.526781	.4565997
663	-1.740104	.7214389	-2.41	0.016	-3.154999	3252095
664	-1.270583	.7387712	-1.72	0.086	-2.71947	.1783038
665	-1.079303	.8250316	-1.31	0.191	-2.697365	.5387589
666	-1.408024	.7381702	-1.91	0.057	-2.855732	.0396841
667	-1.387337	.7074875	-1.96	0.050	-2.77487	.0001962
668	-1.325737	.7436375	-1.78	0.075	-2.784168	.1326939
669	-1.255161	.710206	-1.77	0.077	-2.648026	.1377036
670	-1.356625	.7138926	-1.90	0.058	-2.75672	.0434694
671	-1.081472	.7541511	-1.43	0.152	-2.560522	.397578
672	-1.447097	.7600877	-1.90	0.057	-2.93779	.0435959
673	-1.316534	.7530427	-1.75	0.081	-2.79341	.1603428
674	9535968	.7516284	-1.27	0.205	-2.427699	.5205058
675	6271558	.7585995	-0.83	0.408	-2.11493	.8606186
676	4318378	.7782458	-0.55	0.579	-1.958143	1.094467
677	-1.025783	.7518631	-1.36	0.173	-2.500346	.4487797
678	7035912	.7467912	-0.94	0.346	-2.168207	.7610247
679	5535984	.7566638	-0.73	0.464	-2.037577	.9303797

680	5985548	.7629715	-0.78	0.433	-2.094904	.8977941
681	6129253	.7446451	-0.82	0.411	-2.073332	.8474816
682	8476961	.7598724	-1.12	0.265	-2.337967	.6425748
683	-1.161887	.771944	-1.51	0.132	-2.675833	.3520584
684	9152727	.7939844	-1.15	0.249	-2.472444	.6418991
685	-1.302381	.7694494	-1.69	0.091	-2.811434	.2066726
686	9649957	.803003	-1.20	0.230	-2.539855	.6098634
687	8740424	.8615952	-1.01	0.310	-2.563813	.8157286
688	-1.107729	.7974992	-1.39	0.165	-2.671794	.4563362
689	-1.164991	.8319499	-1.40	0.162	-2.796621	.4666392
690	-1.579524	.8123162	-1.94	0.052	-3.172649	.0135998
691	-1.268225	.8496512	-1.49	0.136	-2.934571	.3981208
692	-1.013706	.8171383	-1.24	0.215	-2.616287	.5888759
693	-1.329179	.8098501	-1.64	0.101	-2.917467	.2591083
694	-1.112746	.7933716	-1.40	0.161	-2.668716	.4432235
695	-1.43393	.8257665	-1.74	0.083	-3.053433	.1855732
696	-1.333173	.8249571	-1.62	0.106	-2.951088	.2847431
697	-1.295984	.8327446	-1.56	0.120	-2.929173	.3372043
698	-1.364038	.8390443	-1.63	0.104	-3.009581	.2815059
699	-1.469494	.8303236	-1.77	0.077	-3.097935	.1589464
700	-1.193542	.8218794	-1.45	0.147	-2.805422	.418338
701	-1.546048	.8273234	-1.87	0.062	-3.168604	.076509
702	-1.49339	.8464755	-1.76	0.078	-3.153508	.1667276
703	-1.26793	.8863673	-1.43	0.153	-3.006284	.4704246
704	-1.019479	.8183196	-1.25	0.213	-2.624377	.5854191
705	7661938	.8120919	-0.94	0.346	-2.358878	.8264905
706	7793253	.8354713	-0.93	0.351	-2.417862	.8592111
707	6520963	.81541	-0.80	0.424	-2.251288	.9470956
708	5050052	.8771833	-0.58	0.565	-2.225348	1.215337
709	8868265	.880524	-1.01	0.314	-2.613721	.8400678
710	8799218	.8625562	-1.02	0.308	-2.571577	.8117338
711	-1.067443	.8684618	-1.23	0.219	-2.770681	.6357943
712	9063205	.8706786	-1.04	0.298	-2.613906	.8012649
713	6225905	.8622413	-0.72	0.470	-2.313628	1.068447
714	-1.170245	.8895124	-1.32	0.188	-2.914768	.5742771
715	9026522	.8752432	-1.03	0.303	-2.61919	.8138854
716	-1.036756	.8641051	-1.20	0.230	-2.731449	.6579371
717	-1.205537	.8922481	-1.35	0.177	-2.955425	.5443504
718	7557534	.8604715	-0.88	0.380	-2.44332	.9318135
719	-1.028254	.87829	-1.17	0.242	-2.750767	.6942587
region1						
bangalore	1.729965	.1200192	14.41	0.000	1.494582	1.965348
bhopal	-1.215473	.3020561	-4.02	0.000	-1.807869	623077
bubaneshwar	2342647	.556658	-0.42	0.674	-1.325989	.8574596
chandigarh	7822047	.3586191	-2.18	0.029	-1.485533	0788765
chennai	1.382783	.3534842	3.91	0.000	.689525	2.07604
guwahati	7868958	.495071	-1.59	0.112	-1.757835	.1840433
hyderabad	1.702084	.4104833	4.15	0.000	.8970389	2.507129
, acrabaa	1 -1,02001			0.000		,

```
jaipur
               -1.993417
                            .2430436
                                        -8.20
                                                 0.000
                                                          -2.470077
                                                                       -1.516757
   kanpur
               -3.029136
                            .3848262
                                        -7.87
                                                 0.000
                                                          -3.783862
                                                                        -2.27441
               -.2326943
                                        -0.52
                                                 0.604
    kochi
                            .4485012
                                                             -1.1123
                                                                         .6469118
               -.0278915
                            .3028029
                                        -0.09
                                                 0.927
                                                          -.6217522
                                                                         .5659693
   mumbai
new_delhi
                3.598803
                            .4640703
                                         7.75
                                                 0.000
                                                            2.688663
                                                                        4.508943
                3.700856
                           1.212419
                                         3.05
                                                 0.002
                                                            1.323045
                                                                        6.078666
   panaji
               -24.11042
                           5.242763
                                        -4.60
                                                 0.000
                                                          -34.39259
                                                                       -13.82825
     _cons
```

```
1666 .
1667 . boottest {pre_72} {pre_71} {pre_70} ///
    >
                       {pre_69} {pre_68} {pre_67} {pre_66} {pre_65} {pre_64} {pre_6}
    > 3} {pre_62} {pre_61} {pre_60} ///
                       {pre_59} {pre_58} {pre_57} {pre_56} {pre_55} {pre_54} {pre_5
    > 3} {pre_52} {pre_51} {pre_50} ///
                       {pre_49} {pre_48} {pre_47} {pre_46} {pre_45} {pre_44} {pre_4}
    >
    > 3} {pre 42} {pre 41} {pre 40} ///
                       {pre_39} {pre_38} {pre_37} {pre_36} {pre_35} {pre_34} {pre_3}
    >
    > 3} {pre_32} {pre_31} {pre_30} ///
    >
                       {pre_29} {pre_28} {pre_27} {pre_26} {pre_25} {pre_24} {pre_2}
    > 3} {pre_22} {pre_21} {pre_20} ///
                       {pre_19} {pre_18} {pre_17} {pre_16} {pre_15} {pre_14} {pre_1}
    >
    > 3} {pre_12} {pre_11} {pre_10} ///
    >
                       {pre_9} {pre_8} {pre_7} {pre_6} {pre_5} {pre_4} {pre_3} {pre
      _2} {pre_1} ///
                       {post_1} {post_2} {post_3} {post_4} {post_5} {post_6} {post
      _7} {post_8} {post_9} ///
                       {post_10} {post_11} {post_12} {post_13} {post_14} {post_15}
    > {post_16} {post_17} {post_18} {post_19} ///
                       {post_20} {post_21} {post_22} {post_23} {post_24} {post_25}
    >
    > {post_26} {post_27} {post_28} {post_29} ///
                       {post_30} {post_31} {post_32} {post_33} {post_34} {post_35}
    >
    > {post_36} {post_37} {post_38} {post_39} ///
    >
                       {post_40} {post_41} {post_42} {post_43} {post_44} {post_45}
    > {post 46} {post 47} {post 48} {post 49} ///
                       {post_50} {post_51} {post_52} {post_53} {post_54} {post_55}
    >
    >
      {post_56} {post_57} {post_58} {post_59} ///
    >
                       {post 60} {post 61} {post 62} {post 63} {post 64} {post 65}
    > {post_66} {post_67} {post_68} {post_69} ///
    >
                       {post_70} {post_71} {post_72} ///
                       , reps(9999) gridpoints(10) boottype(wild) bootcluster(regi
     > on1 date) nograph seed(123)
    Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
     > ring by region1 date, Rademacher weights:
       pre_72
```

t(1902) = -0.3885Prob>|t| = 0.6957

95% confidence set for null hypothesis expression: [-1.612, 1.083]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 pre_71

t(1902) = -1.4241Prob>|t| = 0.1444

95% confidence set for null hypothesis expression: [-1.671, .3251]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 pre 70

t(1902) = -1.3853Prob>|t| = 0.1596

95% confidence set for null hypothesis expression: [-1.707, .3354]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 pre_69

t(1902) = -0.8785Prob>|t| = 0.3899

95% confidence set for null hypothesis expression: [-1.815, .912]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 pre_68

t(1902) = -1.6506Prob>|t| = 0.1038

95% confidence set for null hypothesis expression: [-1.784, .226]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 pre_67

t(1902) = -1.1862Prob>|t| = 0.2345 95% confidence set for null hypothesis expression: [-2.106, .5186]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 pre_66

$$t(1902) = -1.4882$$

Prob>|t| = 0.1423

95% confidence set for null hypothesis expression: [-1.906, .3288]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 pre_65

$$t(1902) = -1.7445$$

Prob>|t| = 0.0795

95% confidence set for null hypothesis expression: [-1.737, .109]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 pre_64

$$t(1902) = -0.4747$$

Prob>|t| = 0.6378

95% confidence set for null hypothesis expression: [-1.322, .8078]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 pre_63

$$t(1902) = -1.7550$$

Prob>|t| = 0.1084

95% confidence set for null hypothesis expression: [-2.504, .3312]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 pre_62

$$t(1902) = -1.0776$$

Prob>|t| = 0.2801

95% confidence set for null hypothesis expression: [-1.897, .5258]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 pre_61

t(1902) = -1.7575Prob>|t| = 0.0902

95% confidence set for null hypothesis expression: [-1.729, .1911]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 pre_60

t(1902) = -0.2062Prob>|t| = 0.8278

95% confidence set for null hypothesis expression: [-1.268, .9859]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 pre_59

t(1902) = -2.0529Prob>|t| = 0.0586

95% confidence set for null hypothesis expression: [-2.442, .05309]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 pre_58

t(1902) = -0.7770Prob>|t| = 0.4875

95% confidence set for null hypothesis expression: [-2.097, 1.185]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 pre_57

t(1902) = -0.2908Prob>|t| = 0.7697

95% confidence set for null hypothesis expression: [-1.334, .9406]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 pre_56

t(1902) = -0.9973Prob>|t| = 0.2908

95% confidence set for null hypothesis expression: [-1.661, .5395]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 pre_55

t(1902) = 0.3406Prob>|t| = 0.7388

95% confidence set for null hypothesis expression: [-1.029, 1.233]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 pre 54

t(1902) = 0.5357Prob>|t| = 0.6027

95% confidence set for null hypothesis expression: [-.8897, 1.294]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 pre_53

t(1902) = 0.5716Prob>|t| = 0.5592

95% confidence set for null hypothesis expression: [-.8567, 1.403]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 pre_52

t(1902) = -0.2504Prob>|t| = 0.8003

95% confidence set for null hypothesis expression: [-1.296, 1.008]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 pre_51

t(1902) = -0.0214Prob>|t| = 0.9828 95% confidence set for null hypothesis expression: [-1.103, .9489]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 pre_50

t(1902) = 0.4076Prob>|t| = 0.6739

95% confidence set for null hypothesis expression: [-.8047, 1.042]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 pre_49

t(1902) = -0.3100Prob>|t| = 0.7545

95% confidence set for null hypothesis expression: [-1.403, 1.078]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 pre_48

t(1902) = -0.1948Prob>|t| = 0.8476

95% confidence set for null hypothesis expression: [-1.122, .9329]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 pre_47

t(1902) = -0.2901Prob>|t| = 0.7688

95% confidence set for null hypothesis expression: [-1.255, .9166]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 pre_46

t(1902) = 0.3783Prob>|t| = 0.7037

95% confidence set for null hypothesis expression: [-.9169, 1.101]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 pre_45

t(1902) = -0.6472Prob>|t| = 0.5159

95% confidence set for null hypothesis expression: [-1.576, .7482]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 pre_44

t(1902) = 0.4415Prob>|t| = 0.6447

95% confidence set for null hypothesis expression: [-1.006, 1.33]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 pre_43

t(1902) = 0.1967Prob>|t| = 0.8409

95% confidence set for null hypothesis expression: [-1.202, 1.252]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 pre_42

t(1902) = -0.5075Prob>|t| = 0.6027

95% confidence set for null hypothesis expression: [-1.456, .7874]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 pre_41

t(1902) = 0.8203Prob>|t| = 0.4260

95% confidence set for null hypothesis expression: [-.9224, 1.763]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 pre_40

t(1902) = -0.6633Prob>|t| = 0.5133

95% confidence set for null hypothesis expression: [-1.575, .8316]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 pre_39

t(1902) = -0.6322Prob>|t| = 0.5087

95% confidence set for null hypothesis expression: [-1.341, .6501]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 pre 38

t(1902) = -0.0415Prob>|t| = 0.9644

95% confidence set for null hypothesis expression: [-1.378, 1.08]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 pre_37

t(1902) = -0.2831Prob>|t| = 0.7721

95% confidence set for null hypothesis expression: [-1.331, 1.002]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 pre_36

t(1902) = 0.7410Prob>|t| = 0.4672

95% confidence set for null hypothesis expression: [-.8812, 1.525]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 pre_35

t(1902) = 0.0932Prob>|t| = 0.9257 95% confidence set for null hypothesis expression: [-1.31, 1.285]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 pre_34

t(1902) = -0.3637Prob>|t| = 0.7040

95% confidence set for null hypothesis expression: [-1.244, .8357]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 pre_33

t(1902) = 0.3470Prob>|t| = 0.7256

95% confidence set for null hypothesis expression: [-1.005, 1.202]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 pre_32

t(1902) = 1.0686Prob>|t| = 0.2946

95% confidence set for null hypothesis expression: [-.5903, 1.636]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 pre_31

t(1902) = 0.3629Prob>|t| = 0.7141

95% confidence set for null hypothesis expression: [-1.112, 1.524]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 pre_30

t(1902) = 0.1558Prob>|t| = 0.8712

95% confidence set for null hypothesis expression: [-1.009, 1.112]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 pre_29

t(1902) = 0.2261Prob>|t| = 0.8375

95% confidence set for null hypothesis expression: [-1.012, 1.228]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 pre_28

t(1902) = 0.6987Prob>|t| = 0.4845

95% confidence set for null hypothesis expression: [-.7764, 1.34]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 pre_27

t(1902) = -0.0504Prob>|t| = 0.9599

95% confidence set for null hypothesis expression: [-1.591, 1.433]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 pre_26

t(1902) = 0.1375Prob>|t| = 0.8908

95% confidence set for null hypothesis expression: [-1.124, 1.186]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 pre_25

t(1902) = 0.7199Prob>|t| = 0.4761

95% confidence set for null hypothesis expression: [-.9039, 1.701]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 pre_24

t(1902) = 0.4273Prob>|t| = 0.6614

95% confidence set for null hypothesis expression: [-.8591, 1.199]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 pre_23

t(1902) = -0.1218Prob>|t| = 0.9012

95% confidence set for null hypothesis expression: [-1.329, 1.121]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 pre 22

t(1902) = 0.0989Prob>|t| = 0.9200

95% confidence set for null hypothesis expression: [-.9953, 1.042]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 pre_21

t(1902) = 0.1805Prob>|t| = 0.8565

95% confidence set for null hypothesis expression: [-1.211, 1.476]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 pre_20

t(1902) = -1.0752Prob>|t| = 0.2902

95% confidence set for null hypothesis expression: [-1.955, .536]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 pre_19

t(1902) = -0.3717Prob>|t| = 0.7024 95% confidence set for null hypothesis expression: [-1.113, .7391]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 pre_18

t(1902) = 0.7505Prob>|t| = 0.4560

95% confidence set for null hypothesis expression: [-.8852, 1.595]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 pre_17

t(1902) = 0.6558Prob>|t| = 0.5110

95% confidence set for null hypothesis expression: [-.7937, 1.273]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 pre_16

t(1902) = 0.0319Prob>|t| = 0.9743

95% confidence set for null hypothesis expression: [-1.252, 1.152]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 pre_15

t(1902) = 0.5223Prob>|t| = 0.5988

95% confidence set for null hypothesis expression: [-.9624, 1.622]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 pre_14

t(1902) = 0.1697Prob>|t| = 0.8620

95% confidence set for null hypothesis expression: [-1.104, 1.15]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 pre_13

t(1902) = 0.2902Prob>|t| = 0.7672

95% confidence set for null hypothesis expression: [-1.156, 1.5]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 pre_12

t(1902) = 0.6233Prob>|t| = 0.5362

95% confidence set for null hypothesis expression: [-.8517, 1.565]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 pre_11

t(1902) = 2.3653Prob>|t| = 0.0282

95% confidence set for null hypothesis expression: [.1607, 1.923]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 pre_10

t(1902) = 0.3436Prob>|t| = 0.7361

95% confidence set for null hypothesis expression: [-.9428, 1.245]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 pre_9

t(1902) = 1.2812Prob>|t| = 0.1979

95% confidence set for null hypothesis expression: [-.4631, 1.916]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 pre_8

t(1902) = 1.2105Prob>|t| = 0.2340

95% confidence set for null hypothesis expression: [-.564, 1.766]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 pre_7

t(1902) = -0.5144Prob>|t| = 0.6088

95% confidence set for null hypothesis expression: [-1.5, .952]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 pre 6

t(1902) = 1.7351Prob>|t| = 0.1055

95% confidence set for null hypothesis expression: [-.3022, 2.001]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 pre_5

t(1902) = 0.1729Prob>|t| = 0.8577

95% confidence set for null hypothesis expression: [-.9739, 1.126]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 pre_4

t(1902) = -0.0040Prob>|t| = 0.9966

95% confidence set for null hypothesis expression: [-1.161, 1.157]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 pre_3

t(1902) = 1.9463Prob>|t| = 0.0707 95% confidence set for null hypothesis expression: [-.1174, 2.105]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 pre_2

$$t(1902) = 1.4103$$

Prob>|t| = 0.1886

95% confidence set for null hypothesis expression: [-.4875, 1.927]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 pre_1

$$t(1902) = 0.3532$$

Prob>|t| = 0.7231

95% confidence set for null hypothesis expression: [-.8742, 1.153]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 post_1

$$t(1902) = -3.6351$$

Prob>|t| = 0.0020

95% confidence set for null hypothesis expression: [-3.266, -1.212]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 post_2

$$t(1902) = -4.4478$$

Prob>|t| = 0.0000

95% confidence set for null hypothesis expression: [-3.388, -1.716]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 post_3

$$t(1902) = -4.6542$$

Prob>|t| = 0.0003

95% confidence set for null hypothesis expression: [-3.298, -1.716]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 post_4

t(1902) = -4.6252Prob>|t| = 0.0000

95% confidence set for null hypothesis expression: [-4.054, -2.195]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 post_5

t(1902) = -4.1313Prob>|t| = 0.0000

95% confidence set for null hypothesis expression: [-4.808, -2.17]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 post_6

t(1902) = -4.7293Prob>|t| = 0.0000

95% confidence set for null hypothesis expression: [-5.118, -2.778]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 post_7

t(1902) = -3.6829Prob>|t| = 0.0002

95% confidence set for null hypothesis expression: [-4.932, -1.965]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 post_8

t(1902) = -4.9441Prob>|t| = 0.0001

95% confidence set for null hypothesis expression: [-3.73, -2.079]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 post_9

t(1902) = -4.6220Prob>|t| = 0.0001

95% confidence set for null hypothesis expression: [-3.211, -1.711]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 post_10

t(1902) = -5.8074Prob>|t| = 0.0000

95% confidence set for null hypothesis expression: [-3.318, -2.13]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 post 11

t(1902) = -5.3632Prob>|t| = 0.0000

95% confidence set for null hypothesis expression: [-4.202, -2.621]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 post 12

t(1902) = -4.8438Prob>|t| = 0.0002

95% confidence set for null hypothesis expression: [-3.052, -1.674]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 post_13

t(1902) = -4.0254Prob>|t| = 0.0004

95% confidence set for null hypothesis expression: [-4.364, -1.878]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 post_14

t(1902) = -5.3419Prob>|t| = 0.0002 95% confidence set for null hypothesis expression: [-3.34, -2.039]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 post_15

t(1902) = -4.8789Prob>|t| = 0.0000

95% confidence set for null hypothesis expression: [-3.505, -1.96]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 post_16

t(1902) = -5.6276Prob>|t| = 0.0000

95% confidence set for null hypothesis expression: [-3.131, -1.979]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 post_17

t(1902) = -5.1039Prob>|t| = 0.0002

95% confidence set for null hypothesis expression: [-3.996, -2.301]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 post_18

t(1902) = -2.4698Prob>|t| = 0.0032

95% confidence set for null hypothesis expression: [-6.875, -1.312]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 post 19

t(1902) = -5.7533Prob>|t| = 0.0001

95% confidence set for null hypothesis expression: [-3.067, -1.983]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 post 20

$$t(1902) = -2.9756$$

Prob>|t| = 0.0052

95% confidence set for null hypothesis expression: [-3.969, -.9273]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 post_21

$$t(1902) = -3.4766$$

Prob>|t| = 0.0010

95% confidence set for null hypothesis expression: [-3.127, -1.164]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 post 22

$$t(1902) = -4.3519$$

Prob>|t| = 0.0000

95% confidence set for null hypothesis expression: [-3.599, -1.816]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 post_23

$$t(1902) = -4.6834$$

Prob>|t| = 0.0004

95% confidence set for null hypothesis expression: [-3.829, -1.977]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 post 24

$$t(1902) = -4.4148$$

Prob>|t| = 0.0004

95% confidence set for null hypothesis expression: [-4.01, -1.911]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 post_25

t(1902) = -3.9692Prob>|t| = 0.0000

95% confidence set for null hypothesis expression: [-3.311, -1.528]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 post_26

t(1902) = -3.6574Prob>|t| = 0.0016

95% confidence set for null hypothesis expression: [-2.667, -1.032]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 post 27

t(1902) = -5.9464Prob>|t| = 0.0000

95% confidence set for null hypothesis expression: [-2.917, -1.947]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 post 28

t(1902) = -5.2623Prob>|t| = 0.0001

95% confidence set for null hypothesis expression: [-3.602, -2.187]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 post_29

t(1902) = -3.7111Prob>|t| = 0.0008

95% confidence set for null hypothesis expression: [-3.328, -1.38]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 post_30

t(1902) = -4.7712Prob>|t| = 0.0007 95% confidence set for null hypothesis expression: [-3.941, -2.069]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 post_31

t(1902) = -3.4253Prob>|t| = 0.0040

95% confidence set for null hypothesis expression: [-3.743, -1.112]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 post_32

t(1902) = -4.2209Prob>|t| = 0.0008

95% confidence set for null hypothesis expression: [-3.453, -1.57]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 post_33

t(1902) = -3.8349Prob>|t| = 0.0006

95% confidence set for null hypothesis expression: [-3.146, -1.258]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 post_34

t(1902) = -3.9018Prob>|t| = 0.0006

95% confidence set for null hypothesis expression: [-3.27, -1.393]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 post_35

t(1902) = -3.3898Prob>|t| = 0.0043

95% confidence set for null hypothesis expression: [-2.531, -.804]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 post_36

t(1902) = -4.0086Prob>|t| = 0.0005

95% confidence set for null hypothesis expression: [-3.552, -1.566]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 post_37

t(1902) = -4.1051Prob>|t| = 0.0004

95% confidence set for null hypothesis expression: [-3.412, -1.487]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 post_38

t(1902) = -6.8809Prob>|t| = 0.0001

95% confidence set for null hypothesis expression: [-2.908, -2.16]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 post_39

t(1902) = -4.5083Prob>|t| = 0.0002

95% confidence set for null hypothesis expression: [-3.169, -1.641]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 post_40

t(1902) = -4.7715Prob>|t| = 0.0001

95% confidence set for null hypothesis expression: [-3.547, -1.967]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 post_41

t(1902) = -6.0426Prob>|t| = 0.0001

95% confidence set for null hypothesis expression: [-3.004, -2.014]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 post_42

t(1902) = -1.9949Prob>|t| = 0.0768

95% confidence set for null hypothesis expression: [-2.583, .2204]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 post 43

t(1902) = -3.3432Prob>|t| = 0.0035

95% confidence set for null hypothesis expression: [-4.008, -1.125]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 post_44

t(1902) = -4.7190Prob>|t| = 0.0000

95% confidence set for null hypothesis expression: [-3.855, -2.143]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 post_45

t(1902) = -4.3957Prob>|t| = 0.0007

95% confidence set for null hypothesis expression: [-2.478, -1.217]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 post_46

t(1902) = -6.0475Prob>|t| = 0.0001 95% confidence set for null hypothesis expression: [-3.126, -2.085]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 post_47

$$t(1902) = -2.9322$$

Prob>|t| = 0.0110

95% confidence set for null hypothesis expression: [-3.109, -.5789]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 post_48

$$t(1902) = -5.5230$$

Prob>|t| = 0.0001

95% confidence set for null hypothesis expression: [-3.098, -1.926]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 post_49

$$t(1902) = -3.4766$$

Prob>|t| = 0.0008

95% confidence set for null hypothesis expression: [-3.881, -1.305]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 post_50

$$t(1902) = -3.3602$$

Prob>|t| = 0.0013

95% confidence set for null hypothesis expression: [-3.573, -1.151]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 post_51

$$t(1902) = -2.2434$$

Prob>|t| = 0.1356

95% confidence set for null hypothesis expression: [-4.307, 2.301]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 post_52

t(1902) = -4.4434Prob>|t| = 0.0027

95% confidence set for null hypothesis expression: [-2.988, -1.506]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 post_53

t(1902) = -3.1053Prob>|t| = 0.0050

95% confidence set for null hypothesis expression: [-3.169, -.8206]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 post_54

t(1902) = -4.8868Prob>|t| = 0.0002

95% confidence set for null hypothesis expression: [-3.75, -2.147]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 post_55

t(1902) = -4.0465Prob>|t| = 0.0008

95% confidence set for null hypothesis expression: [-3.191, -1.431]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 post_56

t(1902) = -3.2724Prob>|t| = 0.0099

95% confidence set for null hypothesis expression: [-2.71, -.6986]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 post_57

t(1902) = -3.0073Prob>|t| = 0.0093

95% confidence set for null hypothesis expression: [-3.072, -.5954]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 post_58

t(1902) = -4.4008Prob>|t| = 0.0031

95% confidence set for null hypothesis expression: [-2.592, -1.292]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 post 59

t(1902) = -4.0761Prob>|t| = 0.0004

95% confidence set for null hypothesis expression: [-3.214, -1.535]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 post_60

t(1902) = -2.3815Prob>|t| = 0.0677

95% confidence set for null hypothesis expression: [-2.489, .2113]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 post_61

t(1902) = -3.8447Prob>|t| = 0.0007

95% confidence set for null hypothesis expression: [-3.116, -1.328]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 post_62

t(1902) = -4.1167Prob>|t| = 0.0002 95% confidence set for null hypothesis expression: [-4.101, -2.056]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 post_63

$$t(1902) = -2.7697$$

Prob>|t| = 0.0202

95% confidence set for null hypothesis expression: [-3.062, -.4476]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 post_64

$$t(1902) = -4.0226$$

Prob>|t| = 0.0023

95% confidence set for null hypothesis expression: [-2.658, -1.204]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 post_65

$$t(1902) = -4.7557$$

Prob>|t| = 0.0010

95% confidence set for null hypothesis expression: [-2.782, -1.529]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 post_66

$$t(1902) = -4.2793$$

Prob>|t| = 0.0005

95% confidence set for null hypothesis expression: [-3.198, -1.618]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 post_67

$$t(1902) = -4.2879$$

Prob>|t| = 0.0002

95% confidence set for null hypothesis expression: [-4.92, -2.406]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 post_68

$$t(1902) = -5.1404$$

Prob>|t| = 0.0001

95% confidence set for null hypothesis expression: [-4.007, -2.548]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 post_69

$$t(1902) = -3.2753$$

Prob>|t| = 0.0002

95% confidence set for null hypothesis expression: [-6.767, -2.523]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 post_70

$$t(1902) = -4.3605$$

Prob>|t| = 0.0019

95% confidence set for null hypothesis expression: [-2.817, -1.348]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 post_71

$$t(1902) = -3.0283$$

Prob>|t| = 0.0633

95% confidence set for null hypothesis expression: [-3.205, .2846]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 post_72

$$t(1902) = -3.5590$$

Prob> $|t| = 0.0125$

95% confidence set for null hypothesis expression: [-3.674, -.855]

```
1668 .
1669 .
1670 . ** These are too many coefficients to report and I like to create my own coe
   > ffient plot
1671 . ** Here is the code:
1672 .
1673 . * Pull coefficients into matrix:
1674 . mat beta=e(b)
1675 .
1676 . ** Average Treatment Effects:
1677 . mat A = beta[1,82...225]
1678 .
1679 . mat pre= A[1,1...72]
1680 . mat post= A[1,73..144]
1681 .
1682 . * Need to set the reference month at 0:
1683 . mat pre post=(pre, 0, post)
1684 . mat list pre post
   pre_post[1,145]
          pre_66 pre_65 pre_64 pre_63 pre_62 pre_61
                                                                pr
    > e 60
    y1 -.22359392 -.67374738 -.66862357 -.51776934 -.79683212 -.62782211 -.
    > 76590287 -.79333613 -.22196725 -1.1211261 -.59062371 -.80908544 -.1053
   > 7995
          pre 59
                  pre_55
                                                         pre 54
    > pre 53
               pre_52 pre_51
                                  pre 50
                                            pre 49 pre 48
                                                               pr
    > e 47
    y1 -1.2392509 -.51407526 -.1481885 -.52077981 .16786765
                                                      .26173335 .
    > 29115792 -.13254887 -.00945136 .17203851 -.16734087 -.08833578 -.14
   > 1304
          pre_42
                                                          pre_41
    > pre 40 pre_39 pre_38 pre_37 pre_36 pre_35
                                                               pr
    > e 34
    y1 .17011028 -.33207238
                          .2341964 .10555959 -.25228652
                                                      .49644408 -.
   > 34268752 -.28807652 -.02194104 -.14232253 .37979245 .05143322 -.1706
   > 6993
```

y1 .1683827 .55774407 .21758839 .07911535 .1047693 .34923999 -. > 03234182 .06609937 .41495216 .20222548 -.07000028 .04533835 .1026 > 4953 > re_8 y1 -.62965925 -.15119361 .39875552 .30170036 .01649469 .30627071 . > 08289105 .16443577 .3496447 1.1038652 .16661764 .75256506 .6519 > 8045 pre_7 pre_6 pre_5 pre_4 pre_3 pre_2
> pre_1 c73 post_1 post_2 post_3 post_4 po > st 5 y1 -.26852891 .92285068 .08276025 -.00204059 1.0216139 .76286194 . > 15908008 0 -2.2415328 -2.5284336 -2.5286417 -3.074612 -3.429 > 2788 post_6 post_7 post_8 post_9 post_10 post_11 > post_12 post_13 post_14 post_15 post_16 post_17 pos y1 -3.9213616 -3.3619602 -2.9059438 -2.4417564 -2.7037897 -3.3748166 -2 > .3653654 -3.1272863 -2.6804854 -2.7201412 -2.5439827 -3.1490655 -3.799 > 6353 post_19 post_20 post_21 post_22 post_23 post_24 > post_25 post_26 post_27 post_28 post_29 post_30 pos > t 31 y1 -2.5215445 -2.4273533 -2.133586 -2.6773285 -2.9042239 -2.9663456 -2 > .3936218 -1.8356321 -2.4371865 -2.906504 -2.3685787 -3.0391774 -2.462 > 5045 $> t_44$ y1 -2.5471677 -2.1829808 -2.3133374 -1.6613861 -2.5479022 -2.4393547 -2 > .5409858 -2.390401 -2.7439575 -2.5068898 -1.2258097 -2.5444726 -2.982 > 6848 post_45 post_46 post_47 post_48 post_49 post_50 y1 -1.8438302 -2.6117772 -1.8494403 -2.5199516 -2.5722028 -2.3283032 -2 > .2672186 -2.2995127 -1.9575192 -2.9797203 -2.3666676 -1.803848 -1.949 > 9195

```
post_58    post_59    post_60    post_61    post_62    post_63
    > post_64    post_65    post_66    post_67    post_68    post_69    post_69
    > t 70
    y1 -1.9693415 -2.3755869 -1.3976732 -2.2619459 -3.0674015 -1.8724104 -1
    > .9317533 -2.1531236 -2.3899008 -3.7380772 -3.2472093 -4.4935986 -2.13
    > 2965
           post_71
                     post_72
    y1 -2.0594317 -2.548675
1685 .
1686 .
1687 . ** Create a counter column:
1688 . mat Z=J(1,145,0)
1689 . local j=1
1690 . forvalues i = -72/72 {
      2. mat Z[1, 'j'] = 'i'
      3. local j= j'+1
      4. }
1691 .
1692 . ** Grab the confidence intervals and append them together:
1693 . mat CI=r(CI_1)
1694 . mat missing=J(1,2,.)
1695 . forvalues i=2/72 {
      2. capture confirm mat r(CI `i')
      3. if ! rc {
      4. mat temp = r(CI_i')
      5. mat temp2 = temp[1, 1 .. 2]
      6.
1696 . mat CI=CI\temp2
      7. }
      8. else {
      9. mat CI=CI\missing
     10. }
     11. }
```

```
1697 .
1698 . mat zero=J(1,2,0)
1699 . mat CI = CI \setminus zero
1700 .
1701 • forvalues i=73/144 {
      2. capture confirm mat r(CI_`i')
      3. if ! rc {
      4. mat temp = r(CI_i')
      5. mat temp2 = temp[1, 1 .. 2]
1702 . mat CI=CI \setminus temp2
      7. }
      8. else {
      9. mat CI=CI\missing
     10. }
     11. }
1703 . mat list CI
    CI[145,2]
                                 hi
                     10
     pre_72 -1.6121076
                        1.0832217
     pre_71 -1.6706994
                        .32514629
     pre_70 -1.7067082 .33537625
     pre 69 -1.8151872
                          .91199899
     pre 68 -1.7841842 .22596031
     pre_67 -2.1062611
                          .51862579
     pre 66 -1.9063085 .32883953
     pre 65 -1.7373705
                          .10896739
     pre_64 -1.3223056 .80777389
     pre_63 -2.5036908 .33117083
     pre 62 -1.8971517 .52575539
     pre_61 -1.7288447 .19111925
                          .9858611
     pre 60 -1.2679002
     pre_59 -2.4422837
                          .05309233
     pre_58 -2.0970297
                        1.1847552
     pre_57 -1.3341824
                        .94064284
                         .5394895
     pre_56 -1.6612016
     pre_55 -1.0288094
                          1.2332594
     pre_54 -.88971104
                        1.2941785
     pre 53 -.85666388 1.4033773
     pre_52 -1.2958275
                        1.0075986
     pre 51 -1.1031169
                        .94889413
     pre_50 -.8047351
                          1.0417507
     pre_49 -1.4025943 1.0779474
     pre 48 -1.1221161
                          .93286023
     pre_47 -1.2549649
                          .91662573
```

```
pre_46 -.91687805
                   1.1011245
pre_45 -1.5760155
                  .74824042
pre 44 -1.0064099
                    1.3302635
pre 43 -1.2023203
                  1.2516284
pre_42 -1.4564836
                   .78741182
pre 41 -.92236341
                  1.7625769
pre_40 -1.5747779
                   .83161173
                   .65013539
pre_39 -1.3411039
pre 38 -1.3783857
                   1.0803705
pre_37 -1.3312132
                    1.0016433
pre_36 -.88121311
                    1.5252003
pre 35 -1.3098039
                   1.2847856
pre_34 -1.2442093
                   .83568746
pre_33 -1.0052885
                    1.2020308
pre 32 -.59025639
                   1.6364723
pre_31 -1.1121504
                    1.523708
pre 30 -1.0092612
                    1.1116266
pre 29 -1.0124703
                     1.22807
pre_28 -.77636432
                    1.3400884
pre_27 -1.5907624
                    1.4326003
pre 26 -1.1242726
                   1.1861126
pre_25
        -.903853
                   1.7008297
pre_24 -.85911877
                    1.1994653
pre_23 -1.3287485
                     1.12149
pre_22 -.99533447
                    1.041946
pre_21 -1.2108422
                  1.4762584
pre_20 -1.9554506
                   .53598804
pre 19 -1.1127626
                   .73908567
pre_18
       -.8851534
                    1.5946184
pre 17 -.79366934
                  1.2732273
                   1.152223
pre_16 -1.2517368
pre_15 -.96243296
                    1.6223534
pre_14 -1.1035398
                   1.1495036
                   1.499721
pre_13 -1.1559158
pre_12 -.85166639
                  1.5648739
pre_11 .16070463
                   1.9234341
pre_10 -.94284775
                   1.2451766
pre_9 -.46306279
                   1.9155571
pre 8 -.56399297
                   1.7662431
 pre_7 -1.4995778
                    .95198172
 pre_6
       -.3022065
                   2.001354
 pre 5 -.97390131
                    1.1260031
 pre 4 -1.1608427
                   1.1572215
 pre_3 -.11743553
                   2.105344
 pre_2 -.48753682
                    1.9269395
 pre_1 -.87415052
                    1.1529636
   r1
                0
                            0
post_1 -3.2656897
                  -1.2116327
post_2 -3.3883854
                  -1.7156735
```

```
post_3 -3.2975624 -1.7161407
post 4 -4.0542726 -2.1945889
 post 5 -4.8081749 -2.1695628
post 6 -5.1184139 -2.7777377
post_7 -4.9324018 -1.9646764
post 8 -3.7298853 -2.0793244
post_9 -3.2106754 -1.7105185
post_10 -3.3180877 -2.1303959
post 11 -4.2015081 -2.6211394
post_12 -3.0520332 -1.6736454
post_13 -4.3644113 -1.8775817
post 14 -3.3403394 -2.0385606
post_15 -3.5051211 -1.9595567
post_16 -3.1313348 -1.9791387
post 17 -3.9960204 -2.3013848
post_18 -6.8753209
                   -1.312482
post 19 -3.0672051 -1.9830966
post 20 -3.9694638 -.92727407
post_21 -3.1270011 -1.1643297
post 22 -3.599217 -1.8163045
post 23 -3.8286655 -1.9765075
post_24 -4.010181 -1.9105795
post_25 -3.3114533 -1.5283142
post_26 -2.6671979 -1.0320574
post_27 -2.9173545 -1.9471955
post_28 -3.6018951 -2.1869016
post 29 -3.3282994 -1.3798457
post 30 -3.9406938 -2.0694828
post_31 -3.7428017 -1.1120693
post 32 -3.4529036 -1.5704527
post 33 -3.1455994 -1.2580611
post_34 -3.269997 -1.3925025
post_35 -2.5312536 -.80397928
post 36 -3.5522681 -1.5663923
post_37 -3.4118893 -1.4873491
post_38 -2.9075138 -2.1603519
post_39 -3.1692486 -1.641433
post_40 -3.5468296 -1.9668482
post_41 -3.0041749 -2.0138106
post_42 -2.5833387
                    .2204487
post_43 -4.0079252
                   -1.1251264
post 44 -3.8551098 -2.1425208
post 45 -2.4776922 -1.2165369
post_46 -3.1259275 -2.0852496
post 47 -3.1091233 -.57887545
post_48 -3.0982338 -1.9256385
                   -1.305289
post_49 -3.8811319
post 50 -3.5729584 -1.1511391
post_51 -4.3069653
                    2.3012079
```

```
post 53 -3.1693367
                         -.82061123
    post 54 -3.7498369
                         -2.1469224
    post 55 -3.1910325
                         -1.4309815
    post_56 -2.7098546
                         -.6986231
    post 57 -3.0720218
                         -.59538475
    post_58 -2.5915737
                         -1.2921474
    post_59 -3.2143085
                         -1.535186
    post 60
             -2.488663
                         .21128981
    post_61
              -3.115673
                         -1.3279477
    post_62 -4.1010439
                         -2.0558405
    post 63 -3.0618916 -.44758616
    post_64 -2.6584797
                         -1.2035886
    post_65 -2.7817982 -1.5293275
    post 66 -3.1984331 -1.6180448
    post_67 -4.9203266 -2.4056151
    post 68 -4.0065517 -2.5481658
    post 69 -6.7671537 -2.5229872
    post_70 -2.8168449 -1.3480518
    post 71 -3.2054118
                          .28457752
    post 72 -3.6739361 -.85498779
1704 .
1705 .
1706 .
1707 . ** Build Coefficient and Confidence Interval Matrix:
1708 . mat AZ= (Z', pre post')
1709 . mat AZ = AZ,CI
1710 . mat list AZ
    AZ[145,4]
                  r1
                              у1
                                          10
                                                      hi
                 -72
                     -.22359392 -1.6121076
                                               1.0832217
      c1
      c2
                 -71
                      -.67374738 -1.6706994
                                               .32514629
                 -70
                      -.66862357 -1.7067082
                                               .33537625
      c3
                 -69
                      -.51776934 -1.8151872
      c4
                                               .91199899
      c5
                 -68
                      -.79683212 -1.7841842
                                               .22596031
                      -.62782211 -2.1062611
                 -67
      c6
                                               .51862579
      c7
                 -66
                      -.76590287 -1.9063085
                                               .32883953
      c8
                 -65
                      -.79333613 -1.7373705
                                               .10896739
      c9
                 -64
                      -.22196725 -1.3223056
                                               .80777389
                      -1.1211261 -2.5036908
                                               .33117083
     c10
                 -63
     c11
                 -62
                      -.59062371
                                 -1.8971517
                                               .52575539
     c12
                 -61 -.80908544
                                 -1.7288447
                                               .19111925
     c13
                 -60 -.10537995 -1.2679002
                                                .9858611
                 -59
                      -1.2392509 -2.4422837
                                               .05309233
     c14
                 -58
                      -.51407526
                                 -2.0970297
     c15
                                               1.1847552
```

-1.505833

post_52 **-2.9875737**

c17 -56 52077981 -1.6612016 .53948 c18 -55 .16786765 -1.0288094 1.23325 c19 -54 .26173335 88971104 1.29417 c20 -53 .29115792 85666388 1.40337 c21 -52 13254887 -1.2958275 1.00759 c22 -51 00945136 -1.1031169 .948894 c23 -50 .17203851 8047351 1.04175 c24 -49 -16734087 -1.4025943 1.07794 c25 -48 08833578 -1.1221161 .932860 c26 -47 141304 -1.2549649 .916625 c27 -46 .17011028 91687805 1.10112 c28 -45 33207238 -1.5760155 .748240 c29 -44 .2341964 -1.0064099 1.33026 c30 -43 .10555959 -1.2023203 1.25162 c31 -42 -25228					
c18 -55 .16786765 -1.0288094 1.23325 c19 -54 .26173335 88971104 1.29417 c20 -53 .29115792 85666388 1.40337 c21 -52 -13254887 -1.2958275 1.00759 c22 -51 -00945136 -1.1031169 .948894 c23 -50 .17203851 8047351 1.04175 c24 -49 16734087 -1.4025943 1.07794 c25 -48 08833578 -1.1221161 9322860 c26 -47 141304 -1.2549649 .916625 c27 -46 .17011028 91687805 1.10112 c28 -45 33207238 -1.5760155 .748240 c29 -44 .2341964 -1.0064099 1.33026 c30 -43 .10555959 -1.2023203 1.25162 c33 -40 34268752 -1.5747779 .831611 c32 -41 .49644	c16	-57	1481885	-1.3341824	.94064284
c19 -54 .26173335 88971104 1.29417 c20 -53 .29115792 85666388 1.40337 c21 -52 13254887 -1.2958275 1.00759 c22 -51 00945136 -1.1031169 948894 c23 -50 .17203851 8047351 1.04175 c24 -49 16734087 -1.4025943 1.07794 c25 -48 08833578 -1.1221161 .932860 c26 -47 141304 -1.2549649 .916625 c27 -46 .17011028 91687805 1.0112 c28 -45 33207238 -1.5760155 .748240 c29 -44 .2341964 -1.0064099 1.33026 c30 -43 .10555959 -1.2023203 1.25162 c31 -42 25228652 -1.4564836 .787411 c32 -41 .49644408 92236341 1.76257 c33 -40 -34268	c17	-56	52077981	-1.6612016	.5394895
c20 -53 .29115792 85666388 1.40337 c21 -52 13254887 -1.2958275 1.00759 c22 -51 00945136 -1.1031169 .948894 c23 -50 .17203851 8047351 1.04175 c24 -49 16734087 -1.4025943 1.077794 c25 -48 08833578 -1.1221161 .932860 c26 -47 141304 -1.2549649 .916625 c27 -46 .17011028 91687805 1.10112 c28 -45 33207238 -1.5760155 .748240 c29 -44 .2341964 -1.0064099 1.33026 c30 -43 .10555959 -1.2023203 1.25162 c31 -42 25228652 -1.4564836 .787411 c32 -41 .49644408 92236341 1.76257 c33 -40 -34268752 -1.574777 831611 c32 -51 .4964	c18	-55	.16786765	-1.0288094	1.2332594
c21 -52 13254887 -1.2958275 1.00759 c22 -51 00945136 -1.1031169 .948894 c23 -50 .17203851 8047351 1.04175 c24 -49 16734087 -1.4025943 1.07794 c25 -48 -08833578 -1.1221161 .932860 c26 -47 141304 -1.2549649 .916625 c27 -46 .17011028 91687805 1.10112 c28 -45 33207238 -1.5760155 .748240 c29 -44 .2341964 -1.0064099 1.33026 c30 -43 .10555959 -1.2023203 1.25162 c31 -42 -2.5228652 -1.4564836 .787411 c32 -41 .49644408 92236341 1.76257 c33 -40 34268752 -1.574779 .831611 c34 -39 -28807652 -1.3411039 .650135 c35 -38 021	c19	-54	.26173335	88971104	1.2941785
c22 -51 00945136 -1.1031169 .948894 c23 -50 .17203851 8047351 1.04175 c24 -49 16734087 -1.4025943 1.07794 c25 -48 08833578 -1.1221161 .93286 c26 -47 141304 -1.2549649 .916625 c27 -46 .17011028 91687805 1.10112 c28 -45 33207238 -1.5760155 .748240 c29 -44 .2341964 -1.0064099 1.33026 c30 -43 .10555959 -1.2023203 1.25162 c31 -42 -25228652 -1.4564836 .787411 c32 -41 .49644408 92236341 1.76257 c33 -40 34268752 -1.5747779 .831611 c34 -39 28807652 -1.3411039 .650135 c35 -38 02194104 -1.3783857 1.08037 c36 -37 -142	c20	-53	.29115792	85666388	1.4033773
c23 -50 .17203851 8047351 1.04175 c24 -49 16734087 -1.4025943 1.07794 c25 -48 08833578 -1.1221161 .932860 c26 -47 141304 -1.2549649 .916625 c27 -46 .17011028 91687805 1.10112 c28 -45 33207238 -1.5760155 .748240 c29 -44 .2341964 -1.0064099 1.33026 c30 -43 .10555959 -1.2023203 1.25162 c31 -42 25228652 -1.4564836 .787411 c32 -41 .49644408 92236341 1.76257 c33 -40 34268752 -1.574777 .831611 c34 -39 -28807652 -1.3411039 .650135 c33 -40 34268752 -1.5747779 .831611 c33 -36 .37979245 -88121311 1.52520 c33 -36 .37979	c21	-52	13254887	-1.2958275	1.0075986
c24 -49 16734087 -1.4025943 1.07794 c25 -48 08833578 -1.1221161 .932860 c26 -47 141304 -1.2549649 .916625 c27 -46 .17011028 91687805 1.10112 c28 -45 33207238 -1.5760155 .748240 c30 -44 .2341964 -1.0064099 1.33026 c30 -43 .10555959 -1.2023203 1.25162 c31 -42 -225228652 -1.4564836 .787411 c32 -41 .49644408 92236341 1.76257 c33 -40 34268752 -1.5747779 .831611 c34 -39 28807652 -1.3411039 .650135 c35 -38 02194104 -1.3783857 1.08037 c36 -37 -14232253 -1.3312132 1.00164 c37 -36 .37979245 -88121311 1.52520 c38 -35 .05	c22	-51	00945136	-1.1031169	.94889413
c25 -48 08833578 -1.1221161 .932860 c26 -47 141304 -1.2549649 .916625 c27 -46 .17011028 91687805 1.10112 c28 -45 33207238 -1.5760155 .748240 c29 -44 .2341964 -1.0064099 1.33026 c30 -43 .10555959 -1.2023203 1.25162 c31 -42 25228652 -1.4564836 .787411 c32 -41 .49644408 92236341 1.76257 c33 -40 34268752 -1.5747779 .831611 c34 -39 28807652 -1.3411039 .650135 c35 -38 02194104 -1.3783857 1.08037 c36 -37 -14232253 -1.3312132 1.00164 c37 -36 .37979245 -88121311 1.52520 c38 -35 .05143322 -1.3098039 1.284788 c40 -33 .16	c23	-50	.17203851	8047351	1.0417507
c26 -47 141304 -1.2549649 .916625 c27 -46 .17011028 91687805 1.10112 c28 -45 33207238 -1.5760155 .748240 c29 -44 .2341964 -1.0064099 1.33026 c30 -43 .10555959 -1.2023203 1.25162 c31 -42 25228652 -1.4564836 .787411 c32 -41 .49644408 92236341 1.76257 c33 -40 34268752 -1.5747779 .831611 c34 -39 28807652 -1.3411039 .650135 c35 -38 02194104 -1.3783857 1.08037 c36 -37 14232253 -1.3312132 1.00164 c37 -36 .37979245 88121311 1.52520 c38 -35 .05143322 -1.3098039 1.28478 c39 -34 17066993 -1.2442093 .835687 c40 -33 .1	c24	-49	16734087	-1.4025943	1.0779474
c27 -46 .17011028 91687805 1.10112 c28 -45 33207238 -1.5760155 .748240 c29 -44 .2341964 -1.0064099 1.33026 c30 -43 .10555959 -1.2023203 1.25162 c31 -42 25228652 -1.4564836 .787411 c32 -41 .49644408 92236341 1.76257 c33 -40 34268752 -1.5747779 .831611 c34 -39 28807652 -1.3411039 .650135 c35 -38 02194104 -1.3783857 1.08037 c36 -37 14232253 -1.3312132 1.00164 c37 -36 .37979245 88121311 1.52520 c38 -35 .05143322 -1.3098039 1.28478 c39 -34 17066993 -1.2442093 .835687 c40 -33 .1683827 -1.0052885 1.20203 c41 -32 .5	c25	-48	08833578	-1.1221161	.93286023
c28 -45 33207238 -1.5760155 .748240 c29 -44 .2341964 -1.0064099 1.33026 c30 -43 .10555959 -1.2023203 1.25162 c31 -42 25228652 -1.4564836 .787411 c32 -41 .49644408 92236341 1.76257 c33 -40 34268752 -1.5747779 .831611 c34 -39 28807652 -1.3411039 .650135 c35 -38 02194104 -1.3783857 1.08037 c36 -37 14232253 -1.3312132 1.00164 c37 -36 .37979245 88121311 1.52520 c38 -35 .05143322 -1.3098039 1.28478 c39 -34 17066993 -1.2442093 .835687 c40 -33 .1683827 -1.0052885 1.20203 c41 -32 .55774407 59025639 1.63647 c42 -31 .2	c26	-47	141304	-1.2549649	.91662573
c29 -44 .2341964 -1.0064099 1.33026 c30 -43 .10555959 -1.2023203 1.25162 c31 -42 25228652 -1.4564836 .787411 c32 -41 .49644408 92236341 1.76257 c33 -40 34268752 -1.574779 .831611 c34 -39 28807652 -1.3411039 .650135 c35 -38 02194104 -1.3783857 1.08037 c36 -37 14232253 -1.3312132 1.00164 c37 -36 .37979245 88121311 1.52520 c38 -35 .05143322 -1.3098039 1.28478 c39 -34 17066993 -1.2442093 .835687 c40 -33 .1683827 -1.0052885 1.20203 c41 -32 .55774407 59025639 1.63647 c42 -31 .21758839 -1.1121504 1.5237 c43 -30 .0791	c27	-46	.17011028	91687805	1.1011245
c30 -43 .10555959 -1.2023203 1.25162 c31 -42 25228652 -1.4564836 .787411 c32 -41 .49644408 92236341 1.76257 c33 -40 34268752 -1.5747779 .831611 c34 -39 28807652 -1.3411039 .650135 c35 -38 02194104 -1.3783857 1.08037 c36 -37 14232253 -1.3312132 1.00164 c37 -36 .37979245 88121311 1.52520 c38 -35 .05143322 -1.309939 1.28478 c39 -34 17066993 -1.2442093 .835687 c40 -33 .1683827 -1.0052885 1.20203 c41 -32 .55774407 -59025639 1.63647 c42 -31 .21758839 -1.1121504 1.5237 c43 -30 .07911535 -1.0092612 1.11162 c44 -29 .1047693 -1.0124703 1.228 c45 -28 .34923999 <th>c28</th> <th>-45</th> <th>33207238</th> <th>-1.5760155</th> <th>.74824042</th>	c28	-45	33207238	-1.5760155	.74824042
C31 -42 25228652 -1.4564836 .787411 C32 -41 .49644408 92236341 1.76257 C33 -40 34268752 -1.5747779 .831611 C34 -39 28807652 -1.3411039 .650135 C35 -38 02194104 -1.3783857 1.08037 C36 -37 14232253 -1.3312132 1.00164 C37 -36 .37979245 88121311 1.52520 C38 -35 .05143322 -1.3098039 1.28478 C39 -34 17066993 -1.2442093 .835687 C40 -33 .1683827 -1.0052885 1.20203 C41 -32 .55774407 -59025639 1.63647 C42 -31 .21758839 -1.1121504 1.5237 C43 -30 .07911535 -1.0092612 1.11162 C44 -29 .1047693 -1.0124703 1.228 C45 -28 .34923999 77636432 1.34008 C46 -27 -03234182 <td>c29</td> <th>-44</th> <td>.2341964</td> <td>-1.0064099</td> <td>1.3302635</td>	c29	-44	.2341964	-1.0064099	1.3302635
C32 -41 .49644408 92236341 1.76257 C33 -40 34268752 -1.5747779 .831611 C34 -39 28807652 -1.3411039 .650135 C35 -38 02194104 -1.3783857 1.08037 C36 -37 14232253 -1.3312132 1.00164 C37 -36 .37979245 88121311 1.52520 C38 -35 .05143322 -1.3098039 1.28478 C39 -34 17066993 -1.2442093 .835687 C40 -33 .1683827 -1.0052885 1.20203 C41 -32 .55774407 59025639 1.63647 C42 -31 .21758839 -1.1121504 1.5237 C43 -30 .07911535 -1.0092612 1.11162 C44 -29 .1047693 -1.0124703 1.228 C45 -28 .34923999 77636432 1.34008 C46 -27 -0.03234182 -1.5907624 1.43260 C47 -26 .06609937<	c 30	-43	.10555959	-1.2023203	1.2516284
c33 -40 34268752 -1.5747779 .831611 c34 -39 28807652 -1.3411039 .650135 c35 -38 02194104 -1.3783857 1.08037 c36 -37 14232253 -1.3312132 1.00164 c37 -36 .37979245 88121311 1.52520 c38 -35 .05143322 -1.3098039 1.28478 c39 -34 17066993 -1.2442093 .835687 c40 -33 .1683827 -1.0052885 1.20203 c41 -32 .55774407 59025639 1.63647 c42 -31 .21758839 -1.1121504 1.5237 c43 -30 .07911535 -1.0092612 1.11162 c44 -29 .1047693 -1.0124703 1.228 c45 -28 .34923999 77636432 1.34008 c46 -27 03234182 -1.5907624 1.43260 c47 -26 .06609937 -1.1242726 1.18611 c48 -25 .41495216 </td <td>c31</td> <th>-42</th> <td>25228652</td> <td>-1.4564836</td> <td>.78741182</td>	c 31	-42	25228652	-1.4564836	.78741182
c34 -39 28807652 -1.3411039 .650135 c35 -38 02194104 -1.3783857 1.08037 c36 -37 14232253 -1.3312132 1.00164 c37 -36 .37979245 88121311 1.52520 c38 -35 .05143322 -1.3098039 1.28478 c39 -34 17066993 -1.2442093 .835687 c40 -33 .1683827 -1.0052885 1.20203 c41 -32 .55774407 59025639 1.63647 c42 -31 .21758839 -1.1121504 1.5237 c43 -30 .07911535 -1.0092612 1.11162 c44 -29 .1047693 -1.0124703 1.228 c45 -28 .34923999 77636432 1.34008 c46 -27 03234182 -1.5907624 1.43260 c47 -26 .06609937 -1.1242726 1.18611 c48 -25 .41495216 903853 1.70082 c49 -24 .20222548	c32	-41	.49644408	92236341	1.7625769
c35 -38 02194104 -1.3783857 1.08037 c36 -37 14232253 -1.3312132 1.00164 c37 -36 .37979245 88121311 1.52520 c38 -35 .05143322 -1.3098039 1.28478 c39 -34 17066993 -1.2442093 .835687 c40 -33 .1683827 -1.0052885 1.20203 c41 -32 .55774407 59025639 1.63647 c42 -31 .21758839 -1.1121504 1.5237 c43 -30 .07911535 -1.0092612 1.11162 c44 -29 .1047693 -1.0124703 1.228 c45 -28 .34923999 77636432 1.34008 c46 -27 03234182 -1.5907624 1.43260 c47 -26 .06609937 -1.1242726 1.18611 c48 -25 .41495216 903853 1.70082 c49 -24 .20222548<	c33	-40	34268752	-1.5747779	.83161173
c36 -37 14232253 -1.3312132 1.00164 c37 -36 .37979245 88121311 1.52520 c38 -35 .05143322 -1.3098039 1.28478 c39 -34 17066993 -1.2442093 .835687 c40 -33 .1683827 -1.0052885 1.20203 c41 -32 .55774407 59025639 1.63647 c42 -31 .21758839 -1.1121504 1.5237 c43 -30 .07911535 -1.0092612 1.11162 c44 -29 .1047693 -1.0124703 1.228 c45 -28 .34923999 77636432 1.34008 c46 -27 03234182 -1.5907624 1.43260 c47 -26 .06609937 -1.1242726 1.18611 c48 -25 .41495216 903853 1.70082 c49 -24 .20222548 85911877 1.19946 c50 -23 0700028 -1.3287485 1.121 c51 -22 .04533835	c34	-39	28807652	-1.3411039	.65013539
c37 -36 .37979245 88121311 1.52520 c38 -35 .05143322 -1.3098039 1.28478 c39 -34 17066993 -1.2442093 .835687 c40 -33 .1683827 -1.0052885 1.20203 c41 -32 .55774407 59025639 1.63647 c42 -31 .21758839 -1.1121504 1.5237 c43 -30 .07911535 -1.0092612 1.11162 c44 -29 .1047693 -1.0124703 1.228 c45 -28 .34923999 77636432 1.34008 c46 -27 03234182 -1.5907624 1.43260 c47 -26 .06609937 -1.1242726 1.18611 c48 -25 .41495216 903853 1.70082 c49 -24 .20222548 85911877 1.19946 c50 -23 07000028 -1.3287485 1.121 c51 -22 .04533835 99533447 1.0419 c52 -21 .10264953	c 35	-38	02194104	-1.3783857	1.0803705
C38 -35 .05143322 -1.3098039 1.28478 C39 -34 17066993 -1.2442093 .835687 C40 -33 .1683827 -1.0052885 1.20203 C41 -32 .55774407 59025639 1.63647 C42 -31 .21758839 -1.1121504 1.5237 C43 -30 .07911535 -1.0092612 1.11162 C44 -29 .1047693 -1.0124703 1.228 C45 -28 .34923999 77636432 1.34008 C46 -27 03234182 -1.5907624 1.43260 C47 -26 .06609937 -1.1242726 1.18611 C48 -25 .41495216 903853 1.70082 C49 -24 .20222548 85911877 1.19946 C50 -23 07000028 -1.3287485 1.121 C51 -22 .04533835 99533447 1.0419 C52 -21 .10264953 -1.2108422 1.47625 C53 -20 62965925	c 36	-37	14232253	-1.3312132	1.0016433
C39 -34 17066993 -1.2442093 .835687 C40 -33 .1683827 -1.0052885 1.20203 C41 -32 .55774407 59025639 1.63647 C42 -31 .21758839 -1.1121504 1.5237 C43 -30 .07911535 -1.0092612 1.11162 C44 -29 .1047693 -1.0124703 1.228 C45 -28 .34923999 77636432 1.34008 C46 -27 03234182 -1.5907624 1.43260 C47 -26 .06609937 -1.1242726 1.18611 C48 -25 .41495216 903853 1.70082 C49 -24 .20222548 85911877 1.19946 C50 -23 07000028 -1.3287485 1.121 C51 -22 .04533835 99533447 1.0419 C52 -21 .10264953 -1.2108422 1.47625 C53 -20 62965925 -1.9554506 .535988 C54 -19 15119361	c 37	-36	.37979245	88121311	1.5252003
C40 -33 .1683827 -1.0052885 1.20203 C41 -32 .55774407 59025639 1.63647 C42 -31 .21758839 -1.1121504 1.5237 C43 -30 .07911535 -1.0092612 1.11162 C44 -29 .1047693 -1.0124703 1.228 C45 -28 .34923999 77636432 1.34008 C46 -27 03234182 -1.5907624 1.43260 C47 -26 .06609937 -1.1242726 1.18611 C48 -25 .41495216 903853 1.70082 C49 -24 .20222548 85911877 1.19946 C50 -23 07000028 -1.3287485 1.121 C51 -22 .04533835 99533447 1.0419 C52 -21 .10264953 -1.2108422 1.47625 C53 -20 62965925 -1.9554506 .535988 C54 -19 15119361 -1.1127626 .739085 C55 -18 .39875552	c 38	-35	.05143322	-1.3098039	1.2847856
C41 -32 .55774407 59025639 1.63647 C42 -31 .21758839 -1.1121504 1.5237 C43 -30 .07911535 -1.0092612 1.11162 C44 -29 .1047693 -1.0124703 1.228 C45 -28 .34923999 77636432 1.34008 C46 -27 03234182 -1.5907624 1.43260 C47 -26 .06609937 -1.1242726 1.18611 C48 -25 .41495216 903853 1.70082 C49 -24 .20222548 85911877 1.19946 C50 -23 07000028 -1.3287485 1.121 C51 -22 .04533835 99533447 1.0419 C52 -21 .10264953 -1.2108422 1.47625 C53 -20 62965925 -1.9554506 .535988 C54 -19 15119361 -1.1127626 .739085 C55 -18 .39875552 8851534 1.59461 C56 -17 .30170036	c39	-34	17066993	-1.2442093	.83568746
C42 -31 .21758839 -1.1121504 1.5237 C43 -30 .07911535 -1.0092612 1.11162 C44 -29 .1047693 -1.0124703 1.228 C45 -28 .34923999 77636432 1.34008 C46 -27 03234182 -1.5907624 1.43260 C47 -26 .06609937 -1.1242726 1.18611 C48 -25 .41495216 903853 1.70082 C49 -24 .20222548 85911877 1.19946 C50 -23 07000028 -1.3287485 1.121 C51 -22 .04533835 99533447 1.0419 C52 -21 .10264953 -1.2108422 1.47625 C53 -20 62965925 -1.9554506 .535988 C54 -19 15119361 -1.1127626 .739085 C55 -18 .39875552 8851534 1.59461 C56 -17 .30170036 79366934 1.27322 C57 -16 .01649469	c40	-33	.1683827	-1.0052885	1.2020308
C43 -30 .07911535 -1.0092612 1.11162 C44 -29 .1047693 -1.0124703 1.228 C45 -28 .34923999 77636432 1.34008 C46 -27 03234182 -1.5907624 1.43260 C47 -26 .06609937 -1.1242726 1.18611 C48 -25 .41495216 903853 1.70082 C49 -24 .20222548 85911877 1.19946 C50 -23 07000028 -1.3287485 1.121 C51 -22 .04533835 99533447 1.0419 C52 -21 .10264953 -1.2108422 1.47625 C53 -20 62965925 -1.9554506 .535988 C54 -19 15119361 -1.1127626 .739085 C55 -18 .39875552 8851534 1.59461 C56 -17 .30170036 79366934 1.27322 C57 -16 .01649469 -1.2517368 1.1522 C58 -15 .30627071	c41	-32	.55774407	59025639	1.6364723
C44 -29 .1047693 -1.0124703 1.228 C45 -28 .34923999 77636432 1.34008 C46 -27 03234182 -1.5907624 1.43260 C47 -26 .06609937 -1.1242726 1.18611 C48 -25 .41495216 903853 1.70082 C49 -24 .20222548 85911877 1.19946 C50 -23 07000028 -1.3287485 1.121 C51 -22 .04533835 99533447 1.0419 C52 -21 .10264953 -1.2108422 1.47625 C53 -20 62965925 -1.9554506 .535988 C54 -19 15119361 -1.1127626 .739085 C55 -18 .39875552 8851534 1.59461 C56 -17 .30170036 79366934 1.27322 C57 -16 .01649469 -1.2517368 1.1522 C58 -15 .30627071 96243296 1.62235 C59 -14 .08289105	c42	-31	.21758839	-1.1121504	1.523708
c45 -28 .34923999 77636432 1.34008 c46 -27 03234182 -1.5907624 1.43260 c47 -26 .06609937 -1.1242726 1.18611 c48 -25 .41495216 903853 1.70082 c49 -24 .20222548 85911877 1.19946 c50 -23 07000028 -1.3287485 1.121 c51 -22 .04533835 99533447 1.0419 c52 -21 .10264953 -1.2108422 1.47625 c53 -20 62965925 -1.9554506 .535988 c54 -19 15119361 -1.1127626 .739085 c55 -18 .39875552 8851534 1.59461 c56 -17 .30170036 79366934 1.27322 c57 -16 .01649469 -1.2517368 1.1522 c59 -14 .08289105 -1.1035398 1.14950 c60 -13 .16443577 -1.1559158 1.4997 c61 -12 .3496447	c43	-30	.07911535	-1.0092612	1.1116266
c46 -27 03234182 -1.5907624 1.43260 c47 -26 .06609937 -1.1242726 1.18611 c48 -25 .41495216 903853 1.70082 c49 -24 .20222548 85911877 1.19946 c50 -23 07000028 -1.3287485 1.121 c51 -22 .04533835 99533447 1.0419 c52 -21 .10264953 -1.2108422 1.47625 c53 -20 62965925 -1.9554506 .535988 c54 -19 15119361 -1.1127626 .739085 c55 -18 .39875552 8851534 1.59461 c56 -17 .30170036 79366934 1.27322 c57 -16 .01649469 -1.2517368 1.1522 c58 -15 .30627071 96243296 1.62235 c59 -14 .08289105 -1.1035398 1.14950 c60 -13 .16443577 -1.1559158 1.4997 c61 -12 .3496447	c44	-29	.1047693	-1.0124703	1.22807
c47 -26 .06609937 -1.1242726 1.18611 c48 -25 .41495216 903853 1.70082 c49 -24 .20222548 85911877 1.19946 c50 -23 07000028 -1.3287485 1.121 c51 -22 .04533835 99533447 1.0419 c52 -21 .10264953 -1.2108422 1.47625 c53 -20 62965925 -1.9554506 .535988 c54 -19 15119361 -1.1127626 .739085 c55 -18 .39875552 8851534 1.59461 c56 -17 .30170036 79366934 1.27322 c57 -16 .01649469 -1.2517368 1.1522 c58 -15 .30627071 96243296 1.62235 c59 -14 .08289105 -1.1035398 1.4997 c61 -12 .3496447 85166639 1.56487 c62 -11 1.1038652 .16070463 1.92343 c63 -10 .16661764	c45	-28	.34923999	77636432	1.3400884
c48 -25 .41495216 903853 1.70082 c49 -24 .20222548 85911877 1.19946 c50 -23 07000028 -1.3287485 1.121 c51 -22 .04533835 99533447 1.0419 c52 -21 .10264953 -1.2108422 1.47625 c53 -20 62965925 -1.9554506 .535988 c54 -19 15119361 -1.1127626 .739085 c55 -18 .39875552 8851534 1.59461 c56 -17 .30170036 79366934 1.27322 c57 -16 .01649469 -1.2517368 1.1522 c58 -15 .30627071 96243296 1.62235 c59 -14 .08289105 -1.1035398 1.14950 c60 -13 .16443577 -1.1559158 1.4997 c61 -12 .3496447 85166639 1.56487 c62 -11 1.1038652 .16070463 1.92343 c63 -10 .16661764	c46	-27	03234182	-1.5907624	1.4326003
c49 -24 .20222548 85911877 1.19946 c50 -23 07000028 -1.3287485 1.121 c51 -22 .04533835 99533447 1.0419 c52 -21 .10264953 -1.2108422 1.47625 c53 -20 62965925 -1.9554506 .535988 c54 -19 15119361 -1.1127626 .739085 c55 -18 .39875552 8851534 1.59461 c56 -17 .30170036 79366934 1.27322 c57 -16 .01649469 -1.2517368 1.1522 c58 -15 .30627071 96243296 1.62235 c59 -14 .08289105 -1.1035398 1.14950 c60 -13 .16443577 -1.1559158 1.4997 c61 -12 .3496447 85166639 1.56487 c62 -11 1.1038652 .16070463 1.92343 c63 -10 .16661764 94284775 1.24517	c47	-26	.06609937	-1.1242726	1.1861126
c50 -23 07000028 -1.3287485 1.121 c51 -22 .04533835 99533447 1.0419 c52 -21 .10264953 -1.2108422 1.47625 c53 -20 62965925 -1.9554506 .535988 c54 -19 15119361 -1.1127626 .739085 c55 -18 .39875552 8851534 1.59461 c56 -17 .30170036 79366934 1.27322 c57 -16 .01649469 -1.2517368 1.1522 c58 -15 .30627071 96243296 1.62235 c59 -14 .08289105 -1.1035398 1.14950 c60 -13 .16443577 -1.1559158 1.4997 c61 -12 .3496447 85166639 1.56487 c62 -11 1.1038652 .16070463 1.92343 c63 -10 .16661764 94284775 1.24517	c48	-25	.41495216	903853	1.7008297
c51 -22 .04533835 99533447 1.0419 c52 -21 .10264953 -1.2108422 1.47625 c53 -20 62965925 -1.9554506 .535988 c54 -19 15119361 -1.1127626 .739085 c55 -18 .39875552 8851534 1.59461 c56 -17 .30170036 79366934 1.27322 c57 -16 .01649469 -1.2517368 1.1522 c58 -15 .30627071 96243296 1.62235 c59 -14 .08289105 -1.1035398 1.14950 c60 -13 .16443577 -1.1559158 1.4997 c61 -12 .3496447 85166639 1.56487 c62 -11 1.1038652 .16070463 1.92343 c63 -10 .16661764 94284775 1.24517		-24	.20222548	85911877	1.1994653
c52 -21 .10264953 -1.2108422 1.47625 c53 -20 62965925 -1.9554506 .535988 c54 -19 15119361 -1.1127626 .739085 c55 -18 .39875552 8851534 1.59461 c56 -17 .30170036 79366934 1.27322 c57 -16 .01649469 -1.2517368 1.1522 c58 -15 .30627071 96243296 1.62235 c59 -14 .08289105 -1.1035398 1.14950 c60 -13 .16443577 -1.1559158 1.4997 c61 -12 .3496447 85166639 1.56487 c62 -11 1.1038652 .16070463 1.92343 c63 -10 .16661764 94284775 1.24517	c 50	-23	07000028	-1.3287485	1.12149
c53 -20 62965925 -1.9554506 .535988 c54 -19 15119361 -1.1127626 .739085 c55 -18 .39875552 8851534 1.59461 c56 -17 .30170036 79366934 1.27322 c57 -16 .01649469 -1.2517368 1.1522 c58 -15 .30627071 96243296 1.62235 c59 -14 .08289105 -1.1035398 1.14950 c60 -13 .16443577 -1.1559158 1.4997 c61 -12 .3496447 85166639 1.56487 c62 -11 1.1038652 .16070463 1.92343 c63 -10 .16661764 94284775 1.24517	c 51	-22	.04533835	99533447	1.041946
c54 -19 15119361 -1.1127626 .739085 c55 -18 .39875552 8851534 1.59461 c56 -17 .30170036 79366934 1.27322 c57 -16 .01649469 -1.2517368 1.1522 c58 -15 .30627071 96243296 1.62235 c59 -14 .08289105 -1.1035398 1.14950 c60 -13 .16443577 -1.1559158 1.4997 c61 -12 .3496447 85166639 1.56487 c62 -11 1.1038652 .16070463 1.92343 c63 -10 .16661764 94284775 1.24517	c52	-21	.10264953	-1.2108422	1.4762584
c55 -18 .39875552 8851534 1.59461 c56 -17 .30170036 79366934 1.27322 c57 -16 .01649469 -1.2517368 1.1522 c58 -15 .30627071 96243296 1.62235 c59 -14 .08289105 -1.1035398 1.14950 c60 -13 .16443577 -1.1559158 1.4997 c61 -12 .3496447 85166639 1.56487 c62 -11 1.1038652 .16070463 1.92343 c63 -10 .16661764 94284775 1.24517		-20	62965925	-1.9554506	.53598804
c56 -17 .30170036 79366934 1.27322 c57 -16 .01649469 -1.2517368 1.1522 c58 -15 .30627071 96243296 1.62235 c59 -14 .08289105 -1.1035398 1.14950 c60 -13 .16443577 -1.1559158 1.4997 c61 -12 .3496447 85166639 1.56487 c62 -11 1.1038652 .16070463 1.92343 c63 -10 .16661764 94284775 1.24517		-19	15119361	-1.1127626	.73908567
c57 -16 .01649469 -1.2517368 1.1522 c58 -15 .30627071 96243296 1.62235 c59 -14 .08289105 -1.1035398 1.14950 c60 -13 .16443577 -1.1559158 1.4997 c61 -12 .3496447 85166639 1.56487 c62 -11 1.1038652 .16070463 1.92343 c63 -10 .16661764 94284775 1.24517		-18	.39875552	8851534	1.5946184
c58 -15 .30627071 96243296 1.62235 c59 -14 .08289105 -1.1035398 1.14950 c60 -13 .16443577 -1.1559158 1.4997 c61 -12 .3496447 85166639 1.56487 c62 -11 1.1038652 .16070463 1.92343 c63 -10 .16661764 94284775 1.24517		-17	.30170036		1.2732273
c59 -14 .08289105 -1.1035398 1.14950 c60 -13 .16443577 -1.1559158 1.4997 c61 -12 .3496447 85166639 1.56487 c62 -11 1.1038652 .16070463 1.92343 c63 -10 .16661764 94284775 1.24517				-1.2517368	1.152223
c60 -13 .16443577 -1.1559158 1.4997 c61 -12 .3496447 85166639 1.56487 c62 -11 1.1038652 .16070463 1.92343 c63 -10 .16661764 94284775 1.24517					1.6223534
c61 -12 .3496447 85166639 1.56487 c62 -11 1.1038652 .16070463 1.92343 c63 -10 .16661764 94284775 1.24517					1.1495036
c62 -11 1.1038652 .16070463 1.92343 c63 -10 .16661764 94284775 1.24517					1.499721
c63 -10 .1666176494284775 1.24517					1.5648739
					1.9234341
c64 -9 .7525650646306279 1.91555					1.2451766
	c64	-9	.75256506	46306279	1.9155571

c 65	-8	.65198045	56399297	1.7662431
c 66	-7	26852891	-1.4995778	.95198172
c 67	-6	.92285068	3022065	2.001354
c 68	-5	.08276025	97390131	1.1260031
c 69	-4	00204059	-1.1608427	1.1572215
c 70	-3	1.0216139	11743553	2.105344
c71	-2	.76286194	48753682	1.9269395
c72	-1	.15908008	87415052	1.1529636
c73	0	0	0	0
c74	1	-2.2415328	-3.2656897	-1.2116327
c75	2	-2.5284336	-3.3883854	-1.7156735
c76	3	-2.5286417	-3.2975624	-1.7161407
c77	4	-3.074612	-4.0542726	-2.1945889
c78	5	-3.4292788	-4.8081749	-2.1695628
c79	6	-3.9213616	-5.1184139	-2.7777377
c80	7	-3.3619602	-4.9324018	-1.9646764
c81	8	-2.9059438	-3.7298853	-2.0793244
c82	9	-2.4417564	-3.2106754	-1.7105185
c83	10	-2.7037897	-3.3180877	-2.1303959
c84	11	-3.3748166	-4.2015081	-2.6211394
c85	12	-2.3653654	-3.0520332	-1.6736454
c86	13	-3.1272863	-4.3644113	-1.8775817
c87	14	-2.6804854	-3.3403394	-2.0385606
c88	15	-2.7201412	-3.5051211	-1.9595567
c89	16	-2.5439827	-3.1313348	-1.9791387
c90	17	-3.1490655	-3.9960204	-2.3013848
c91	18	-3.7996353	-6.8753209	-1.312482
c92	19	-2.5215445	-3.0672051	-1.9830966
c93	20	-2.4273533	-3.9694638	92727407
c94	21	-2.133586	-3.1270011	-1.1643297
c 95	22	-2.6773285	-3.599217	-1.8163045
c96	23	-2.9042239	-3.8286655	-1.9765075
c97	24	-2.9663456	-4.010181	-1.9105795
c98	25	-2.3936218	-3.3114533	-1.5283142
c99	26	-1.8356321	-2.6671979	-1.0320574
c100	27	-2.4371865	-2.9173545	-1.9471955
c101	28	-2.906504	-3.6018951	-2.1869016
c102	29	-2.3685787	-3.3282994	-1.3798457
c103	30	-3.0391774	-3.9406938	-2.0694828
c104	31	-2.4625045	-3.7428017	-1.1120693
c105	32	-2.5471677	-3.4529036	-1.5704527
c106	33	-2.1829808	-3.1455994	-1.2580611
c107	34	-2.3133374	-3.269997	-1.3925025
c108	35	-1.6613861	-2.5312536	80397928
c109	36	-2.5479022	-3.5522681	-1.5663923
c110	37	-2.4393547	-3.4118893	-1.4873491
c111	38	-2.5409858	-2.9075138	-2.1603519
c112	39	-2.390401	-3.1692486	-1.641433
c113	40	-2.7439575	-3.5468296	-1.9668482

```
c114
                  -2.5068898 -3.0041749 -2.0138106
c115
              42
                 -1.2258097 -2.5833387
                                            .2204487
              43
c116
                  -2.5444726
                             -4.0079252
                                          -1.1251264
                 -2.9826848
c117
              44
                             -3.8551098
                                          -2.1425208
              45
                 -1.8438302
                             -2.4776922
                                          -1.2165369
c118
              46
                  -2.6117772
                              -3.1259275
                                          -2.0852496
c119
              47
                  -1.8494403
                              -3.1091233
c120
                                          -.57887545
              48
                              -3.0982338
c121
                 -2.5199516
                                          -1.9256385
c122
              49
                 -2.5722028
                             -3.8811319
                                           -1.305289
                                          -1.1511391
c123
              50
                  -2.3283032
                              -3.5729584
c124
              51
                 -2.2672186
                             -4.3069653
                                           2.3012079
c125
              52
                  -2.2995127
                              -2.9875737
                                            -1.505833
                  -1.9575192
c126
              53
                             -3.1693367
                                          -.82061123
c127
              54
                  -2.9797203
                              -3.7498369
                                          -2.1469224
c128
              55
                  -2.3666676
                              -3.1910325
                                          -1.4309815
c129
              56
                   -1.803848
                              -2.7098546
                                            -.6986231
                  -1.9499195
                                          -.59538475
c130
              57
                             -3.0720218
              58
                  -1.9693415
                              -2.5915737
                                          -1.2921474
c131
              59
                  -2.3755869
                             -3.2143085
                                            -1.535186
c132
                 -1.3976732
                               -2.488663
c133
              60
                                            .21128981
c134
              61
                 -2.2619459
                               -3.115673
                                          -1.3279477
              62
                 -3.0674015
                             -4.1010439
                                          -2.0558405
c135
c136
              63
                  -1.8724104
                              -3.0618916
                                          -.44758616
c137
              64 -1.9317533
                             -2.6584797
                                          -1.2035886
c138
              65
                  -2.1531236
                              -2.7817982
                                          -1.5293275
c139
              66
                  -2.3899008
                             -3.1984331
                                          -1.6180448
              67
                  -3.7380772
                              -4.9203266
                                          -2.4056151
c140
c141
              68
                  -3.2472093
                              -4.0065517
                                          -2.5481658
c142
              69
                  -4.4935986
                              -6.7671537
                                           -2.5229872
c143
              70
                   -2.132965
                              -2.8168449
                                          -1.3480518
              71
                 -2.0594317
                              -3.2054118
c144
                                            .28457752
                   -2.548675
                              -3.6739361
c145
              72
                                          -.85498779
```

1711 . * Create variables from matrix so that you can graph them:

1712 . svmat AZ, names(direct)

1713 . sort direct1

1714 . 1715 . 1716 . sort direct1

1717 . sum direct2 direct3 direct4

Variable	0bs	Mean	Std. dev.	Min	Max
direct2	145	-1.277835	1.36951	-4.493598	1.103865
direct3	145	-2.355186	1.350264	-6.875321	.1607046
direct4	145	2046902	1.453447	-2.777738	2.301208

```
1718 .
1719 . graph twoway (rarea direct3 direct4 direct1, color(gs10%20) ) ///
              (connected direct2 direct1, xline(0) yline(0) lc(ebblue) mc(ebblue%7
    > 0) msymbol(smccircle)) ///
               , ytitle("Change in IHS of FDI", ax(1)) xtitle("Month Relative to Di
    > saster") ///
               scheme(plotplain) xline(0, axis(1)) yline(0, axis(2 1)) ///
    >
    >
               name(dynamic_did, replace) xscale(r(-72, 72)) xlabel(-72(12)72) ///
              ylabel( , angle(horizontal)) yscale(titlegap(*+1)) ///
    >
    >
              legend(off) ///
     (note: named style smccircle not found in class symbol, default attributes
        used)
1720 .
1721 .
1722 .
1723 . graph export 3results/figures/figure4.pdf, replace
    file
         /Users/aidan/Dropbox/India_FDI/friedt_toner-rodgers_replication/_3result
        > s/figures/figure4.pdf saved as PDF format
1724 .
```

1725 .

1726 .

```
1728 .
1729 .
1730 .
1731 .
1732 .
   end of do-file
1733 . do _2code/_2analysis/figure5
1734 .
> ****
1736 . * Figure 5: Event studies
1737 .
> ****
1739 .
1740 . use _ldata/clean/clean_data, clear
1741 .
1742 . global control lag_lgdp lag_lpop
1743 .
1744 .
1745 . *generate months to event
1746 .
1747 . generate dif=1000
1748 . replace dif=Count-23 if Count<39
    (608 real changes made)
1749 . replace dif=Count-55 if Count>=39 & Count <74
    (560 real changes made)
1750 . replace dif=Count-93 if Count>=74 & Count <107
    (528 real changes made)
```

1727 .

```
1751 . replace dif=Count-122 if Count>=107 & Count <138
     (496 real changes made)
1752 . replace dif=Count-155 if Count>=138
     (544 real changes made)
1753 .
1754 .
1755 . *generate affected region dummy for event study
1756 . gen affected_event=0
1757 . replace affected event=1 if (Count<39 & (region=="kolkata" | region=="patna"
    > ))
     (76 real changes made)
1758 . replace affected_event=1 if (Count>=39 & Count <74 & (region=="bubaneshwar"
     > | region=="guwahati" | region=="kolkata" | region=="patna"))
     (140 real changes made)
1759 . replace affected_event=1 if (Count>=74 & Count <107 & (region=="chandigarh"
     > | region=="new delhi" | region=="kanpur"))
     (99 real changes made)
1760 . replace affected event=1 if (Count>=107 & Count <138 & (region=="hyderabad
     > " | region=="chennai"))
     (62 real changes made)
1761 . replace affected event=1 if (Count>=138 & region=="kochi")
     (34 real changes made)
1762 .
1763 . *time to event variables as factors
1764 . tostring dif, replace
    dif was float now str3
1765 . destring dif, replace
     dif: all characters numeric; replaced as byte
```

1766 . tab dif, gen(t_fe)

dif	Freq.	Percent	Cum.
-22	16	0.58	0.58
-21	16	0.58	1.17
-20	16	0.58	1.75
-19	32	1.17	2.92
-18	32	1.17	4.09
-17	48	1.75	5.85
-16	64	2.34	8.19
-15	80	2.92	11.11
-14	80	2.92	14.04
-13	80	2.92	16.96
-12	80	2.92	19.88
-11	80	2.92	22.81
-10	80	2.92	25.73
-9	80	2.92	28.65
-8	80	2.92	31.58
- 7	80	2.92	34.50
-6	80	2.92	37.43
-5	80	2.92	40.35
-4	80	2.92	43.27
-3	80	2.92	46.20
-2	80	2.92	49.12
-1	80	2.92	52.05
0	80	2.92	54.97
1	80	2.92	57.89
2	80	2.92	60.82
3	80	2.92	63.74
4	80	2.92	66.67
5	80	2.92	69.59
6	80	2.92	72.51
7	80	2.92	75.44
8	80	2.92	78.36
9	80	2.92	81.29
10	80	2.92	84.21
11	80	2.92	87.13
12	80	2.92	90.06
13	80	2.92	92.98
14	64	2.34	95.32
15	64	2.34	97.66
16	32	1.17	98.83
17	16	0.58	99.42
18	16	0.58	100.00
Total	2,736	100.00	

```
1768 . * Identify the pre-treatment month for the unaffected regions.
1769 . * These are the relavant pre-treatment dummies = 1 for the specific month fo
    > r the affected regions
1770 . forvalues i=1/21 {
       2. local j=22-`i'
       3. gen pre_`j'=t_fe`i'
       4. }
1771 .
1772 .
1773 . * Identify the post-treatment month for the affected regions.
1774 . * These are the relavant post-treatment dummies = 1 for the specific month f
     > or the affected regions
1775 • forvalues i=23/41{
       2. local j=\i'-22
       3. gen post `j'=t fe`i'
       4. }
1776 .
1777 .
1778 . *** Event study regression on AFFECTED REGIONS:
1779 .
1780 . reg fdi_ihs pre* post* $control i.region1 if (affected_event==1), robust
     note: pre 21 omitted because of collinearity.
     note: pre 20 omitted because of collinearity.
     note: pre_19 omitted because of collinearity.
                                                     Number of obs
     Linear regression
                                                                                405
                                                     F(48, 356)
                                                                              57.80
                                                                       =
                                                     Prob > F
                                                                             0.0000
                                                                       =
                                                                             0.7868
                                                     R-squared
                                                                       =
                                                     Root MSE
                                                                             1.2365
                                  Robust
          fdi ihs
                    Coefficient std. err.
                                                t
                                                     P>|t|
                                                               [95% conf. interval]
           pre 21
                             0 (omitted)
                                (omitted)
           pre_20
                             0
           pre_19
                               (omitted)
                                                     0.679
           pre 18
                      .3260652
                                 .7862875
                                              0.41
                                                              -1.220287
                                                                           1.872418
           pre 17
                     -.0443813
                                   .54696
                                             -0.08
                                                     0.935
                                                               -1.12006
                                                                           1.031298
                     -.0365568
                                             -0.07
          pre_16
                                 .5296674
                                                     0.945
                                                              -1.078227
                                                                           1.005114
                                             -1.01
                                                     0.315
           pre 15
                     -.4681806 .4654538
                                                              -1.383565
                                                                           .4472041
           pre_14
                     -.0194903
                                  .424357
                                             -0.05
                                                     0.963
                                                               -.854052
                                                                           .8150714
                                             -0.64
                                                     0.525
                                                              -1.22222
                     -.2986006 .4696409
                                                                           .6250187
           pre_13
                                             -1.17
                                                     0.243
                                                               -1.26526
          pre 12
                     -.4716245 .4035469
                                                                            .322011
                     -.1108515
                                 .4753559
                                             -0.23
                                                     0.816
                                                               -1.04571
                                                                           .8240072
           pre_11
```

1767 .

pre_10	0752347	.4168302	-0.18	0.857	8949937	.7445243
pre_9	.1668461	.4647465	0.36	0.720	7471476	1.08084
pre_8	.1890684	.4703435	0.40	0.688	7359325	1.114069
pre_7	2353251	.4732745	-0.50	0.619	-1.16609	.6954402
pre_6	.3703003	.4716906	0.79	0.433	5573501	1.297951
pre_5	.128615	.4163867	0.31	0.758	6902718	.9475018
pre_4	.1560266	.4495058	0.35	0.729	7279939	1.040047
pre_3	.399011	.4107696	0.97	0.332	4088291	1.206851
pre_2	.4858791	.4655446	1.04	0.297	4296843	1.401442
pre_1	0052855	.4453049	-0.01	0.991	8810443	.8704734
post_1	-2.12328	.4539652	-4.68	0.000	-3.016071	-1.230489
post_2	-2.219944	.4457489	-4.98	0.000	-3.096576	-1.343312
post_3	-2.309616	.4711642	-4.90	0.000	-3.236231	-1.383001
post_4	-2.911257	.5694729	-5.11	0.000	-4.031211	-1.791303
post_5	-2.607767	.5818747	-4.48	0.000	-3.752111	-1.463423
post_6	-2.98338	.6763559	-4.41	0.000	-4.313536	-1.653225
post_7	-2.558672	.7074042	-3.62	0.000	-3.949889	-1.167456
post_8	-2.48811	.6364914	-3.91	0.000	-3.739866	-1.236355
post_9	-1.425797	.4618932	-3.09	0.002	-2.334179	5174144
post_10	-1.876059	.4878737	-3.85	0.000	-2.835535	9165819
post_11	-2.213997	.5717529	-3.87	0.000	-3.338435	-1.089559
post_12	-1.609988	.527945	-3.05	0.002	-2.648271	5717047
post_13	-1.601654	.5635563	-2.84	0.005	-2.709972	4933363
post_14	-1.833621	.4347773	-4.22	0.000	-2.688676	9785663
post_15	-2.395527	.6687361	-3.58	0.000	-3.710697	-1.080358
post_16	-1.656371	.4246864	-3.90	0.000	-2.49158	821161
post_17	-1.565177	.6923618	-2.26	0.024	-2.92681	2035432
post_18	-2.070496	.8180221	-2.53	0.012	-3.679259	4617328
post_19	-1.384049	.5014248	-2.76	0.006	-2.370176	3979215
lag_lgdp	-1.39621	1.104066	-1.26	0.207	-3.567522	.7751024
lag_lpop	-8.650239	8.188514	-1.06	0.292	-24.75418	7.453702
_						
region1						
chandigarh	7.552829	1.934349	3.90	0.000	3.748641	11.35702
chennai	12.88369	3.134176	4.11	0.000	6.71986	19.04751
guwahati	.6866933	.5494901	1.25	0.212	3939615	1.767348
hyderabad	7.292168	.8641975	8.44	0.000	5.592594	8.991742
kanpur	17.01216	11.85025	1.44	0.152	-6.293137	40.31747
kochi	3.066861	2.757863	1.11	0.267	-2.35689	8.490612
kolkata	9.575918	5.584292	1.71	0.087	-1.406429	20.55827
new_delhi	-2.184329	7.80727	-0.28	0.780	-17.5385	13.16984
_ patna	6.84134	7.176508	0.95	0.341	-7.272339	20.95502
_						
_cons	110.5686	74.9843	1.47	0.141	-36.89927	258.0365
						

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 pre 18

t(356) = 0.4147Prob>|t| = 0.7485

95% confidence set for null hypothesis expression: [-1.543, 2.819]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 pre_17

t(356) = -0.0811Prob>|t| = 0.9411

95% confidence set for null hypothesis expression: [-1.453, 1.554]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 pre_16

t(356) = -0.0690Prob>|t| = 0.9445

95% confidence set for null hypothesis expression: [-1.485, 1.325]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 pre 15

t(356) = -1.0059Prob>|t| = 0.3173

95% confidence set for null hypothesis expression: [-1.463, .566]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 pre_14

$$t(356) = -0.0459$$

Prob>|t| = 0.9630

95% confidence set for null hypothesis expression: [-.9485, .9626]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 pre_13

$$t(356) = -0.6358$$

Prob>|t| = 0.5347

95% confidence set for null hypothesis expression: [-1.318, .7755]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 pre_12

$$t(356) = -1.1687$$

Prob> $|t| = 0.2545$

95% confidence set for null hypothesis expression: [-1.314, .4412]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 pre_11

$$t(356) = -0.2332$$

Prob>|t| = 0.8139

95% confidence set for null hypothesis expression: [-1.121, .964]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 pre_10

$$t(356) = -0.1805$$

Prob>|t| = 0.8537

95% confidence set for null hypothesis expression: [-.9987, .8928]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 pre_9

t(356) = 0.3590Prob>|t| = 0.7158

95% confidence set for null hypothesis expression: [-.8483, 1.229]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 pre_8

t(356) = 0.4020Prob>|t| = 0.6890

95% confidence set for null hypothesis expression: [-.8284, 1.243]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 pre 7

t(356) = -0.4972Prob>|t| = 0.6217

95% confidence set for null hypothesis expression: [-1.265, .8371]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 pre_6

t(356) = 0.7850Prob>|t| = 0.4330

95% confidence set for null hypothesis expression: [-.6927, 1.419]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 pre_5

t(356) = 0.3089Prob>|t| = 0.7580

95% confidence set for null hypothesis expression: [-.8006, 1.091]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 pre_4

t(356) = 0.3471Prob>|t| = 0.7280 95% confidence set for null hypothesis expression: [-.8655, 1.173]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 pre_3

$$t(356) = 0.9714$$

Prob>|t| = 0.3365

95% confidence set for null hypothesis expression: [-.5248, 1.316]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 pre_2

$$t(356) = 1.0437$$

Prob>|t| = 0.3053

95% confidence set for null hypothesis expression: [-.5569, 1.504]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 pre_1

$$t(356) = -0.0119$$

Prob>|t| = 0.9907

95% confidence set for null hypothesis expression: [-1.018, .9966]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 post_1

$$t(356) = -4.6772$$

Prob>|t| = 0.0000

95% confidence set for null hypothesis expression: [-2.786, -1.446]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 post 2

$$t(356) = -4.9803$$

Prob>|t| = 0.0000

95% confidence set for null hypothesis expression: [-2.839, -1.584]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 post_3

$$t(356) = -4.9019$$

Prob> $|t| = 0.0001$

95% confidence set for null hypothesis expression: [-2.974, -1.617]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 post_4

$$t(356) = -5.1122$$

Prob>|t| = 0.0000

95% confidence set for null hypothesis expression: [-3.701, -2.115]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 post_5

$$t(356) = -4.4817$$

Prob>|t| = 0.0000

95% confidence set for null hypothesis expression: [-3.45, -1.726]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 post_6

$$t(356) = -4.4110$$

Prob>|t| = 0.0000

95% confidence set for null hypothesis expression: [-3.992, -1.918]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 post_7

$$t(356) = -3.6170$$

Prob>|t| = 0.0002

95% confidence set for null hypothesis expression: [-3.725, -1.388]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 post_8

t(356) = -3.9091Prob>|t| = 0.0005

95% confidence set for null hypothesis expression: [-3.501, -1.448]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 post_9

t(356) = -3.0869Prob>|t| = 0.0062

95% confidence set for null hypothesis expression: [-2.237, -.5674]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 post 10

t(356) = -3.8454Prob>|t| = 0.0000

95% confidence set for null hypothesis expression: [-2.654, -1.083]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 post_11

t(356) = -3.8723Prob>|t| = 0.0003

95% confidence set for null hypothesis expression: [-3.132, -1.283]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 post_12

t(356) = -3.0495Prob>|t| = 0.0042

95% confidence set for null hypothesis expression: [-2.544, -.6553]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 post_13

t(356) = -2.8420Prob>|t| = 0.0080 95% confidence set for null hypothesis expression: [-2.648, -.5406]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 post_14

$$t(356) = -4.2174$$

Prob>|t| = 0.0007

95% confidence set for null hypothesis expression: [-2.507, -1.141]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 post_15

$$t(356) = -3.5822$$

Prob>|t| = 0.0003

95% confidence set for null hypothesis expression: [-3.464, -1.351]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 post_16

$$t(356) = -3.9002$$

Prob>|t| = 0.0016

95% confidence set for null hypothesis expression: [-2.314, -.9448]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 post_17

$$t(356) = -2.2606$$

Prob>|t| = 0.0236

95% confidence set for null hypothesis expression: [-2.897, -.2766]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 post 18

$$t(356) = -2.5311$$

Prob>|t| = 0.0254

95% confidence set for null hypothesis expression: [-3.524, -.4386]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste > ring by region1 date, Rademacher weights: post_19 t(356) =-2.7602 Prob>|t| =0.0316 95% confidence set for null hypothesis expression: [-2.346, -.2901] 1783 . 1784 . 1785 . ** These are too many coefficients to report and I like to create my own coe > ffient plot 1786 . ** Here is the code: 1787 . 1788 . * Pull coefficients into matrix: 1789 . mat beta=e(b)1790 . 1791 . ** Average Treatment Effects: 1792 . mat A = beta[1, 4...40]1793 . 1794 . mat pre= A[1,1...18]1795 . mat post= A[1,19...37]1796 . 1797 . * Need to set the reference month at 0: 1798 . mat pre post=(pre, 0, post) 1799 . mat list pre_post pre_post[1,38] pre_13 > pre 12 pre 11 pre 10 pre 9 pre 8 pre 7 р > re 6 .32606518 -.04438133 -.03655678 -.46818063 -.01949026 -.29860062 -. > 47162451 -.11085152 -.07523471 .16684608 .18906843 -.23532506 .3703 > 0032 pre 3 pre 2 pre 5 pre 4 pre 1 > post 1 post 2 post_3 post_4 post 5 post 6 ро > st_7

> .1232799 -2.2199442 -2.309616 -2.9112571 -2.6077668 -2.9833802 -2.558

0 -2

y1 .12861501 .15602661 .39901097 .48587908 -.00528546

> 6725

```
post_8 post_9 post_10 post_11 post_12
                                                               post_13
    y1 -2.4881103 -1.4257967 -1.8760586 -2.2139973 -1.6099876 -1.6016544 -1
    > .8336211 -2.3955274 -1.6563705 -1.5651765 -2.0704959 -1.3840486
1800 .
1801 .
1802 . ** Create a counter column:
1803 . mat Z=J(1,38,0)
1804 \cdot local j=1
1805 . forvalues i=-18/19 {
      2. mat Z[1, j'] = 'i'
      3. local j=`j'+1
      4. }
1806 .
1807 . ** Grab the confidence intervals and append them together:
1808 . mat CI=r(CI_1)
1809 .
1810 .
1811 .
1812 .
1813 .
1814 . mat missing=J(1,2,.)
1815 . forvalues i=2/18 {
      2. capture confirm mat r(CI_`i')
      3. if ! rc {
      4. mat CI=CI\r(CI_\i')
      5. }
      6. else {
      7. mat CI=CI\missing
      8. }
      9. }
```

```
1816 .
1817 . mat zero=J(1,2,0)
1818 . mat CI = CI \setminus zero
1819 .
1820 . forvalues i=19/37 {
      2. capture confirm mat r(CI_`i')
      3. if ! rc {
      4. mat CI=CI\r(CI_\i')
      5. }
      6. else {
      7. mat CI=CI\missing
      8. }
      9. }
1821 . mat list CI
    CI[38,2]
                     lo
                                hi
                        2.8191854
     pre 18 -1.5430928
     pre_17 -1.452776
                        1.5537087
     pre_16 -1.4850302
                        1.3252272
     pre_15 -1.4632359
                        .56599239
                        .96260219
     pre_14 -.94846015
     pre_13 -1.3183592 .77546032
                        .44124723
     pre_12 -1.314198
     pre 11 -1.1213279 .96396634
     pre_10 -.99872763
                         .89284802
      pre 9 -.84830786 1.2289502
      pre_8 -.82840141
                        1.2432779
      pre_7 -1.2647338 .83714427
      pre_6 -.69274214
                        1.4193834
      pre_5 -.80056597
                         1.091021
      pre_4 -.86545933 1.1733478
      pre_3 -.52479492 1.3159916
      pre_2 -.55687465 1.5036178
      pre_1 -1.0184405
                        .99660949
         r1
     post_1
            -2.785666 -1.4460005
     post_2 -2.8389835 -1.5840662
     post 3 -2.9736253 -1.6169242
     post 4 -3.7011916 -2.1147306
     post_5 -3.4497094 -1.7260845
     post 6 -3.9915415 -1.9184839
     post_7 -3.7245483 -1.3884189
     post_8 -3.5009489 -1.4476954
     post 9 -2.2370444 -.56740293
    post_10 -2.6540113 -1.0832269
```

```
post_11 -3.1324568 -1.2832773
     post 12 -2.5439085 -.65531866
     post 13
             -2.6478049
                         -.54063599
     post 14
             -2.506931
                         -1.1410075
     post_15 -3.4641226
                         -1.3511325
     post 16 -2.3140596
                         -.94478744
     post_17 -2.8969108
                         -.27664532
     post_18 -3.5242396
                         -.43864728
     post_19 -2.3462487 -.29008156
1822 .
1823 .
1824 . ** Build Coefficient and Confidence Interval Matrix:
1825 . mat AZ= (Z', pre_post')
1826 . mat AZ = AZ,CI
1827 . mat list AZ
     AZ[38,4]
                  r1
                                          10
                                                      hi
                              у1
                 -18
                       .32606518 -1.5430928
                                               2.8191854
      c1
      c2
                 -17
                      -.04438133
                                  -1.452776
                                               1.5537087
      c3
                 -16 -.03655678 -1.4850302
                                               1.3252272
      c4
                 -15
                     -.46818063
                                  -1.4632359
                                               .56599239
      c5
                 -14 -.01949026
                                 -.94846015
                                               .96260219
                 -13
                      -.29860062
                                 -1.3183592
                                               .77546032
      c6
      c7
                 -12 -.47162451
                                  -1.314198
                                               .44124723
      c8
                 -11
                      -.11085152
                                  -1.1213279
                                               .96396634
                 -10
                                  -.99872763
      c9
                     -.07523471
                                               .89284802
                  -9
                       .16684608 -.84830786
     c10
                                               1.2289502
     c11
                  -8
                       .18906843
                                 -.82840141
                                               1.2432779
                  -7
                     -.23532506 -1.2647338
     c12
                                               .83714427
                                 -.69274214
                                               1.4193834
     c13
                  -6
                       .37030032
     c14
                  -5
                       .12861501
                                 -.80056597
                                                1.091021
                  -4
     c15
                       .15602661
                                  -.86545933
                                               1.1733478
                  -3
                       .39901097
                                  -.52479492
                                               1.3159916
     c16
                       .48587908
     c17
                  -2
                                  -.55687465
                                               1.5036178
     c18
                  -1
                     -.00528546
                                  -1.0184405
                                               .99660949
                   0
     c19
                               0
                                                       0
     c20
                   1
                     -2.1232799
                                   -2.785666
                                              -1.4460005
     c21
                   2
                     -2.2199442
                                  -2.8389835
                                              -1.5840662
     c22
                   3
                       -2.309616
                                  -2.9736253
                                              -1.6169242
                   4 -2.9112571
                                  -3.7011916
                                              -2.1147306
     c23
     c24
                   5 -2.6077668
                                 -3.4497094
                                              -1.7260845
     c25
                   6 -2.9833802
                                  -3.9915415
                                             -1.9184839
     c26
                   7 -2.5586725
                                  -3.7245483
                                              -1.3884189
     c27
                  8 -2.4881103
                                  -3.5009489
                                              -1.4476954
                   9 -1.4257967
                                  -2.2370444
                                              -.56740293
     c28
```

```
10 -1.8760586 -2.6540113 -1.0832269
     c29
     c30
                 11 -2.2139973 -3.1324568 -1.2832773
     c31
                 12 -1.6099876 -2.5439085 -.65531866
     c32
                 13 -1.6016544 -2.6478049 -.54063599
     c33
                 14 -1.8336211 -2.506931 -1.1410075
     c34
                 15 -2.3955274 -3.4641226 -1.3511325
    c35
                 16 -1.6563705 -2.3140596 -.94478744
     c36
                 17 -1.5651765 -2.8969108 -.27664532
    c37
                 18 -2.0704959 -3.5242396 -.43864728
                 19 -1.3840486 -2.3462487 -.29008156
     c38
1828 . * Create variables from matrix so that you can graph them:
1829 . svmat AZ, names(direct)
1830 . sort direct1
1831 .
1832 .
1833 . ** Coefficient estimates and CI are in IHS terms.
1834 . * We can transform coefficient estimates in relative terms (i.e. % change):
1835 . forvalues i = 5/7 {
       2. local j=\i'-3
       3. gen directi' = (\exp(\operatorname{direct})')-1)*100
       4. }
     (2,698 missing values generated)
     (2,698 missing values generated)
     (2,698 missing values generated)
1836 .
1837 .
1838 . * We can also transform coefficient estimates in absolute terms ($ mil.):
1839 . ** For this we need to know the average value of FDI in the pre-treatment mo
    > nth for each affected region
1840 . ** Then we take the average of that because the coefficient estimate is eval
    > uated against this average:
1841 .
1842 . * Generate pre-treatment average FDI inflows for each affected region:
```

```
1843 . egen pre_fdi_avg = mean(fdi) if inlist(dif, -1) & affected_event==1
     (2,724 missing values generated)
1844 . bysort id (pre_fdi_avg): replace pre_fdi_avg = pre_fdi_avg[1]
     (2724 real changes made)
1845 . sum pre_fdi_avg
         Variable
                                              Std. dev.
                           Obs
                                      Mean
                                                              Min
                                                                         Max
                         2,736
      pre fdi avg
                                  154.3611
                                                         154.3611
                                                                    154.3611
1846 .
1847 .
1848 . * Convert relative changes to absolute changes
1849 . /* Remember direct2 is already in percentage terms */
1850 .
1851 . forvalues i=8/10 {
       2. local j=\i'-6
       3. gen direct`i'= asinh(pre_fdi_avg) + direct`j'
       4. replace direct`i'=sinh(direct`i') - pre_fdi_avg
     (2,698 missing values generated)
     (38 real changes made)
     (2,698 missing values generated)
     (38 real changes made)
     (2,698 missing values generated)
     (38 real changes made)
1852 .
1853 .
1854 .
1855 . * FIGURE 5A: IHS FDI Effect:
1856 . sort direct1
1857 . sum direct5 if direct1>0
         Variable
                           Obs
                                      Mean
                                              Std. dev.
                                                              Min
                                                                         Max
          direct5
                            19
                                 -86.32365
                                              6.273241 -94.93786 -74.94379
```

```
1858 .
1859 .
1860 .
1861 . graph twoway (rarea direct3 direct4 direct1 if inrange(direct1,-18,18), colo
    > r(gs10%20) fintensity(100)) ///
               (connected direct2 direct1 if inrange(direct1,-18,18), msize(medium)
    > xline(0) yline(0) lc(ebblue) mc(ebblue%70) msymbol(circle)) ///
    >
               , ytitle("Change in IHS of FDI", ax(1)) xtitle("Month Relative to Di
    > saster") ///
               scheme(plotplain) xline(0) yline(0, axis(2 1)) ///
    >
               name(event_direct, replace) xscale(r(-18,18)) xlabel(-18(4)18) //
    >
               ylabel( , angle(horizontal)) yscale(titlegap(*+1)) ///
    >
               legend(off)
1862 .
1863 .
1864 .
1865 .
1866 .
              *legend(order(2 1) lab(1 "95% C. I.") lab(2 "Relative Change in FDI
    > (%)") col(2) position(6)) ///
1867 .
1868 .
1869 .
              *note("Note: Changes in IHS-transformed FDI are depicted with their
    > respective 95% C.I. Point" ///
              *"
                       estimates are based on 405 observations and range from -2.98
    > to 0.49. The regression produces "///
                       an R-squared of 0.79 and the C.I. is based on two-way wild c
    > luster bootstrapped standard errors.")
1870 .
1871 .
1872 . graph export _3results/figures/figure5a.pdf, replace
     file
         /Users/aidan/Dropbox/India_FDI/friedt_toner-rodgers_replication/_3result
         > s/figures/figure5a.pdf saved as PDF format
1873 .
```

Tuesday, April 26, 2022 at 1:35 PM Page 418

```
1874 .
1875 . ** FIGURE 5.C: Relative FDI Effects
1876 . sum direct5
         Variable
                           Obs
                                      Mean
                                              Std. dev.
                                                              Min
                                                                          Max
          direct5
                            38
                                 -40.14486
                                              50.99448 -94.93786
                                                                     62.56034
1877 . sum direct5 if direct1>0
         Variable
                                              Std. dev.
                           Obs
                                      Mean
                                                              Min
                                                                          Max
                                 -86.32365
          direct5
                            19
                                              6.273241 -94.93786 -74.94379
1878 .
1879 . graph twoway (connected direct5 direct1 if inrange(direct1,-18,18), msize(me
     > dium) xline(0 ) yline(0 ) lc(ebblue) mc(ebblue%70) msymbol(circle)) ///
    >
               , ytitle("Change in FDI (%)", ax(1)) xtitle("Month Relative to Disas
    > ter") ///
    >
               scheme(plotplain) xline(0, axis(1)) yline(0, axis(2 1)) ///
               name(event direct rel, replace) xscale(r(-18,19)) xlabel(-18(4)19) y
    >
    > scale(r(-100,75)) ylabel(-100(25)75) ///
    >
               yscale(titlegap(*+1)) /////
1880 .
1881 .
               *legend(lab(1 "Relative Change in FDI (%)")) ///
1882 .
               *note("Note: Transformed point estimates range from -94.9% to 62.6%
    > and average -86.3% post disaster.")
1883 .
1884 . graph export _3results/figures/figure5c.pdf, replace
     file
         /Users/aidan/Dropbox/India_FDI/friedt_toner-rodgers_replication/_3result
         > s/figures/figure5c.pdf saved as PDF format
1885 .
```

```
1886 .
1887 .
1888 . * FIGURE 5.E: Absolute FDI Effect:
1889 . sum direct8
         Variable
                           Obs
                                              Std. dev.
                                                              Min
                                      Mean
                                                                          Max
          direct8
                            38
                                 -61.97528
                                               78.7231
                                                          -146.579
                                                                     96.57043
1890 . sum direct8 pre_fdi_avg if direct1>0
         Variable
                           Obs
                                      Mean
                                              Std. dev.
                                                               Min
                                                                          Max
          direct8
                                 -133.2647
                                              9.690283
                                                          -146.579
                            19
                                                                    -115.6901
      pre fdi avg
                                  154.3611
                                                          154.3611
                                                                     154.3611
                         2,717
                                                      0
1891 . replace direct10=200 if direct10>200
     (2,713 real changes made)
1892 .
1893 .
1894 . graph twoway (connected direct8 direct1 if inrange(direct1,-18,18), msize(me
     > dium) xline(0) yline(0) lc(ebblue) mc(ebblue%70) msymbol(smccircle)) ///
               , ytitle("Change in FDI ($ mil.)") xtitle("Month Relative to Disaste
    > r") ///
               scheme(plotplain) xline(0) yline(0) ///
               name(event direct abs, replace) xscale(r(-18, 19)) xlabel(-18(4)19)
     > ///
               yscale(titlegap(*+1)) ///
    >
     >
     (note: named style smccircle not found in class symbol, default attributes
         used)
1895 .
1896 .
               *note("Note: Absolute changes in FDI are calculated based the averag
     > e FDI value of $154 mil." ///
                          observed during the excluded reference month in the affec
    > ted regions. Transformed point" ///
               *"
                          estimates range from -$146 million to $96 million and ave
```

> rage -\$133 million post treatment.")

```
1897 .
1898 .
1899 .
1900 . graph export _3results/figures/figure5e.pdf, replace
    file
        /Users/aidan/Dropbox/India_FDI/friedt_toner-rodgers_replication/_3result
        > s/figures/figure5e.pdf saved as PDF format
1901 .
1902 .
1903 .
1904 .
1905 .
1906 .
1907 .
1908 .
1909 . *******************
1910 . *** Event study regression on unaffected regions:
1912 .
1913 . ** Reload the data (since I had droped two regions for the dynamic analysis)
    > :
1914 .
1915 . drop pre* post* direct*
1916 .
1917 .
1918 . * Identify the pre-treatment month for the unaffected regions.
1919 . * These are the relavant pre-treatment dummies = 1 for the specific month fo
    > r the affected regions
1920 . forvalues i=1/22 {
      2. local j=23-`i'
      3. gen pre_`j'=t_fe`i'
      4. }
1921 .
1922 . * Identify the post-treatment month for the affected regions.
```

```
1923 . * These are the relavant post-treatment dummies = 1 for the specific month f
     > or the affected regions
1924 . forvalues i=24/41{
       2. local j=\i'-23
       3. gen post_`j'=t_fe`i'
       4. }
1925 .
1926 . * Drop the t fe* which are no longer needed:
1927 . drop t_fe*
1928 .
1929 .
1930 . sort region date
1931 .
1932 . reg fdi ihs pre* post* $control i.region1 if (affected event==0), robust
     note: pre_22 omitted because of collinearity.
     note: pre_21 omitted because of collinearity.
     note: pre_20 omitted because of collinearity.
     Linear regression
                                                       Number of obs
                                                                                 2,283
                                                       F(54, 2228)
                                                                                319.40
                                                                         =
                                                       Prob > F
                                                                                0.0000
                                                       R-squared
                                                                                0.7450
                                                       Root MSE
                                                                                1.2021
                                   Robust
          fdi ihs
                    Coefficient std. err.
                                                       P>|t|
                                                                 [95% conf. interval]
                                                 t
           pre_22
                              0 (omitted)
                                (omitted)
           pre_21
                              0
                                (omitted)
           pre 20
                              0
           pre_19
                       .2137553
                                  .2535482
                                               0.84
                                                       0.399
                                                                -.2834602
                                                                              .7109708
                        .249256
                                  .2488213
                                               1.00
                                                       0.317
                                                                -.2386899
                                                                              .7372019
           pre 18
                     -.0093514
                                  .2030974
                                              -0.05
                                                       0.963
                                                                -.4076314
                                                                              .3889286
           pre_17
           pre_16
                       .1781661
                                  .2359356
                                               0.76
                                                       0.450
                                                                -.2845106
                                                                              .6408428
           pre 15
                       .2162596
                                 .1970057
                                               1.10
                                                       0.272
                                                                -.1700743
                                                                              .6025935
                       .2384471
                                  .2033617
                                               1.17
                                                       0.241
                                                                -.1603511
           pre_14
                                                                              .6372453
           pre_13
                      .1088028
                                  .2212077
                                               0.49
                                                       0.623
                                                                -.3249921
                                                                              .5425976
           pre 12
                     -.0834875
                                  .2593482
                                              -0.32
                                                       0.748
                                                                -.5920769
                                                                              .4251018
           pre 11
                       .2974728
                                 .1936123
                                               1.54
                                                       0.125
                                                                -.0822065
                                                                              .6771522
                                              -0.13
                                                       0.893
           pre_10
                      -.0312786
                                  .2329019
                                                                -.4880061
                                                                              .4254489
            pre 9
                       .1529605
                                  .2158473
                                               0.71
                                                       0.479
                                                                -.2703223
                                                                              .5762433
                       .4090335
                                  .1889071
                                               2.17
                                                       0.030
                                                                 .0385811
                                                                              .7794859
            pre_8
                     -.0635302
                                  .1957473
                                              -0.32
                                                       0.746
                                                                -.4473964
                                                                              .3203361
            pre_7
                      .1831401
                                  .2065157
                                               0.89
                                                       0.375
                                                                -.2218433
                                                                              .5881235
            pre 6
                       .2753544
                                               1.34
                                                       0.179
                                                                -.1263563
                                                                              .6770651
            pre_5
                                  .2048469
```

1	0212116	.1933231	Λ 11	0.913	4003239	2570000
pre_4	.0212110	.1933231	-0.11	0.913	4003239	.3579008
pre_3	.2983073	.1911548	1.56	0.119	0765528	.6731675
pre_2	.0843807	.1852665	0.46	0.649	2789323	.4476937
pre_1	.3764293	.2030204	1.85	0.064	0216995	.7745582
post_1	.1421201	.196173	0.72	0.469	2425809	.5268211
post_2	.3719492	.1903349	1.95	0.051	0013031	.7452015
post_3	.3580473	.1962073	1.82	0.068	0267209	.7428155
post_4	.6453975	.1988958	3.24	0.001	.255357	1.035438
post_5	.6659831	.1991325	3.34	0.001	.2754785	1.056488
post_6	.6207989	.2281859	2.72	0.007	.1733198	1.068278
post_7	.7204005	.2005666	3.59	0.000	.3270836	1.113717
post_8	.8151277	.178695	4.56	0.000	.4647015	1.165554
post_9	.7035588	.1855761	3.79	0.000	.3396386	1.067479
post_10	.8266323	.1966242	4.20	0.000	.4410464	1.212218
post_11	.6654492	.1903171	3.50	0.000	.2922317	1.038667
post_12	.770082	.2019459	3.81	0.000	.3740602	1.166104
post_13	.6716086	.1880481	3.57	0.000	.3028407	1.040376
post_14	.579064	.225495	2.57	0.010	.1368618	1.021266
post_15	.5906566	.1816241	3.25	0.001	.2344863	.9468268
post_16	.8502753	.2433133	3.49	0.000	.3731309	1.32742
post_17	.9413231	.44728	2.10	0.035	.0641939	1.818452
post_18	.852307	.2791414	3.05	0.002	.3049026	1.399711
lag_lgdp	.7301151	.0615222	11.87	0.000	.6094681	.850762
lag_lpop	.6605309	.0927731	7.12	0.000	.4786002	.8424617
	İ					
region1						
bangalore	1.726653	.0845789	20.41	0.000	1.560791	1.892515
bhopal	-2.130281	.1369364	-15.56	0.000	-2.398817	-1.861745
bubaneshwar	-3.249988	.134676	-24.13	0.000	-3.514092	-2.985885
chandigarh	-2.020034	.1717718	-11.76	0.000	-2.356883	-1.683184
chennai	.5684373	.0908349	6.26	0.000	.3903074	.7465672
guwahati	-2.002321	.155085	-12.91	0.000	-2.306447	-1.698195
hyderabad	.1141064	.1188994	0.96	0.337	1190589	.3472717
jaipur	-2.621501	.1257621	-20.84	0.000	-2.868125	-2.374878
kanpur	-4.376741	.1725206	-25.37	0.000	-4.715059	-4.038423
kochi	-1.875226	.1545514	-12.13	0.000	-2.178306	-1.572146
kolkata	-2.725652	.1117421	-24.39	0.000	-2.944781	-2.506522
mumbai	.752014	.0899535	8.36	0.000	.5756125	.9284155
new delhi	2.027616	.1482651	13.68	0.000	1.736864	2.318369
— panaji	1.487901	.2847329	5.23	0.000	.9295312	2.04627
patna	-4.950678	.1157951	-42.75	0.000	-5.177756	-4.723601
-	1					
_cons	-12.32277	.747083	-16.49	0.000	-13.78782	-10.85771

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1, Rademacher weights:
 pre_19

t(2228) = 0.8431Prob>|t| = 0.4119

95% confidence set for null hypothesis expression: [-.3215, .7456]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1, Rademacher weights:
 pre_18

t(2228) = 1.0017Prob>|t| = 0.3238

95% confidence set for null hypothesis expression: [-.2709, .7622]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1, Rademacher weights:
 pre_17

t(2228) = -0.0460Prob>|t| = 0.9644

95% confidence set for null hypothesis expression: [-.4245, .4013]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1, Rademacher weights:
 pre 16

t(2228) = 0.7551Prob>|t| = 0.4576

95% confidence set for null hypothesis expression: [-.2949, .6473]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste > ring by region1, Rademacher weights:

pre_15

t(2228) = 1.0977Prob>|t| = 0.2795

95% confidence set for null hypothesis expression: [-.1857, .6164]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste > ring by region1, Rademacher weights:

pre_14

t(2228) = 1.1725Prob>|t| = 0.2435

95% confidence set for null hypothesis expression: [-.162, .6462]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1, Rademacher weights:
 pre_13

t(2228) = 0.4919Prob>|t| = 0.6349

95% confidence set for null hypothesis expression: [-.3364, .558]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1, Rademacher weights:
 pre_12

t(2228) = -0.3219Prob>|t| = 0.7614

95% confidence set for null hypothesis expression: [-.5982, .4297]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1, Rademacher weights:
 pre_11

t(2228) = 1.5364Prob>|t| = 0.1176

95% confidence set for null hypothesis expression: [-.08106, .6726]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1, Rademacher weights:

pre_10

t(2228) = -0.1343Prob>|t| = 0.8951

95% confidence set for null hypothesis expression: [-.5011, .4317]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1, Rademacher weights:
 pre_9

t(2228) = 0.7087Prob>|t| = 0.4780

95% confidence set for null hypothesis expression: [-.2797, .5914]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1, Rademacher weights:
 pre 8

t(2228) = 2.1653Prob>|t| = 0.0317

95% confidence set for null hypothesis expression: [.03955, .7783]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1, Rademacher weights:
 pre_7

t(2228) = -0.3246Prob>|t| = 0.7457

95% confidence set for null hypothesis expression: [-.4554, .3305]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1, Rademacher weights:
 pre_6

t(2228) = 0.8868Prob>|t| = 0.3759

95% confidence set for null hypothesis expression: [-.23, .6]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1, Rademacher weights:
 pre_5

t(2228) = 1.3442Prob>|t| = 0.1881 95% confidence set for null hypothesis expression: [-.1367, .6841]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1, Rademacher weights:
 pre_4

t(2228) = -0.1097Prob>|t| = 0.9163

95% confidence set for null hypothesis expression: [-.4134, .3683]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1, Rademacher weights:
 pre_3

t(2228) = 1.5606Prob>|t| = 0.1200

95% confidence set for null hypothesis expression: [-.08708, .678]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1, Rademacher weights:
 pre_2

t(2228) = 0.4555Prob>|t| = 0.6434

95% confidence set for null hypothesis expression: [-.2891, .4556]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1, Rademacher weights:
 pre_1

t(2228) = 1.8541Prob>|t| = 0.0623

95% confidence set for null hypothesis expression: [-.02462, .7741]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1, Rademacher weights:
 post 1

t(2228) = 0.7245Prob>|t| = 0.4623

95% confidence set for null hypothesis expression: [-.2438, .53]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1, Rademacher weights:

post_2

t(2228) = 1.9542Prob>|t| = 0.0546

95% confidence set for null hypothesis expression: [-.007631, .7481]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1, Rademacher weights:
 post_3

t(2228) = 1.8248Prob>|t| = 0.0685

95% confidence set for null hypothesis expression: [-.02862, .7453]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1, Rademacher weights:
 post_4

t(2228) = 3.2449Prob>|t| = 0.0017

95% confidence set for null hypothesis expression: [.2576, 1.024]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1, Rademacher weights:
 post_5

t(2228) = 3.3444Prob>|t| = 0.0009

95% confidence set for null hypothesis expression: [.2845, 1.048]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1, Rademacher weights:
 post_6

t(2228) = 2.7206Prob>|t| = 0.0072

95% confidence set for null hypothesis expression: [.1761, 1.064]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1, Rademacher weights:
 post_7

t(2228) = 3.5918Prob>|t| = 0.0004

95% confidence set for null hypothesis expression: [.3431, 1.103]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1, Rademacher weights:
 post_8

t(2228) = 4.5616Prob>|t| = 0.0000

95% confidence set for null hypothesis expression: [.4851, 1.147]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1, Rademacher weights:
 post 9

t(2228) = 3.7912Prob>|t| = 0.0003

95% confidence set for null hypothesis expression: [.3504, 1.058]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1, Rademacher weights:
 post 10

t(2228) = 4.2041Prob>|t| = 0.0000

95% confidence set for null hypothesis expression: [.4577, 1.193]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1, Rademacher weights:
 post_11

t(2228) = 3.4965Prob>|t| = 0.0003

95% confidence set for null hypothesis expression: [.3038, 1.031]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1, Rademacher weights:
 post_12

t(2228) = 3.8133Prob>|t| = 0.0001 95% confidence set for null hypothesis expression: [.3874, 1.157]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1, Rademacher weights:
 post_13

t(2228) = 3.5715Prob>|t| = 0.0003

95% confidence set for null hypothesis expression: [.3168, 1.031]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1, Rademacher weights:
 post_14

t(2228) = 2.5680Prob>|t| = 0.0104

95% confidence set for null hypothesis expression: [.1359, 1.02]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1, Rademacher weights:
 post_15

t(2228) = 3.2521Prob>|t| = 0.0014

95% confidence set for null hypothesis expression: [.2423, .9395]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1, Rademacher weights:
 post_16

t(2228) = 3.4946Prob>|t| = 0.0010

95% confidence set for null hypothesis expression: [.3974, 1.298]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1, Rademacher weights:
 post 17

t(2228) = 2.1045Prob>|t| = 0.0599

95% confidence set for null hypothesis expression: [-.04229, 1.873]

> ring by region1, Rademacher weights: post_18 t(2228) = **3.0533** Prob>|t| =0.0098 95% confidence set for null hypothesis expression: [.3208, 1.339] 1935 . 1936 . ** These are too many coefficients to report and I like to create my own coe > ffient plot 1937 . ** Here is the code: 1938 . * Pull coefficients into matrix: 1939 . mat beta=e(b) 1940 . 1941 . ** Average Treatment Effects: 1942 . mat A = beta[1,4..40]1943 . 1944 . mat pre= A[1,1...18]1945 . mat post= A[1,19...37]1946 . 1947 . * Need to set the reference month at 0: 1948 . mat pre_post=(pre, 0, post) 1949 . mat list pre post pre_post[1,38] pre_19 pre_15 pre_14 > pre 13 pre_12 pre_11 pre 10 pre 9 pre 8 > re_7 .21375532 .249256 -.00935142 .17816612 .21625962 .23844712 > 10880276 -.08348754 .29747282 -.0312786 .15296048 .4090335 -.0635 > 3018 pre_6 pre_5 pre_4 pre_3 pre_2 post_2 post_3 pre 1 post_1 ${\tt post_4}$ post_5 ро > st 6

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste

.08438071

.66598312

.6207

.2753544 -.02121157 .29830735

> 37642935 .14212011 .37194921 .3580473 .64539753

y1 .18314013

> 9894

```
post_7    post_8    post_9    post_10    post_11    post_12
    y1 .72040051 .81512767 .70355876 .82663226 .66544923 .77008197
    > 67160856 .57906401 .5906566 .85027533 .94132306
                                                          .85230703
1950 .
1951 .
1952 . ** Create a counter column:
1953 . mat Z=J(1,38,0)
1954 . local j=1
1955 . forvalues i=-18/19 {
      2. mat Z[1, 'j'] = 'i'
      3. local j=`j'+1
      4. }
1956 .
1957 . ** Grab the confidence intervals and append them together:
1958 . mat CI=r(CI_1)
1959 .
1960 .
1961 .
1962 .
1963 .
1964 . mat missing=J(1,2,.)
1965 . forvalues i=2/18 {
      2. capture confirm mat r(CI_`i')
      3. if ! rc {
      4. mat CI=CI\r(CI_\i')
      5. }
      6. else {
      7. mat CI=CI\missing
      8. }
      9. }
```

```
1966 .
1967 . mat zero=J(1,2,0)
1968 . mat CI = CI \setminus zero
1969 .
1970 . forvalues i=19/37 {
      2. capture confirm mat r(CI_`i')
      3. if ! rc {
      4. mat CI=CI\r(CI_\i')
      5. }
      6. else {
      7. mat CI=CI\missing
      8. }
      9. }
1971 . mat list CI
    CI[38,2]
                                hi
                     lo
     pre 19 -.32146528
                        .74558051
     pre_18 -.2708568 .76217803
                        .40126043
     pre_17 -.42447455
     pre_16 -.2949236 .64728588
                        .61641676
     pre_15 -.18566474
     pre_14 -.16200382 .64620116
     pre_13 -.33642466
                         .5579986
     pre 12 -.59820774
                        .42971335
                        .67260778
     pre_11 -.08105676
     pre_10 -.50108089 .43166344
                        .5914275
      pre_9 -.27970755
      pre_8 .03954521
                          .7783446
      pre_7
                        .33049597
              -.4554359
      pre_6 -.22997977
                        .60000024
      pre_5 -.13666186
                        .68407744
      pre_4 -.41342401
                        .36831981
      pre_3 -.08707727
                          .6780449
                         .45559492
      pre_2 -.28913469
         r1
                        .77408054
      pre_1 -.02462314
     post_1 -.24380588
                        .53004135
     post 2 -.00763136
                          .74808105
     post 3 -.02861771
                         .74531477
               .2576343
                         1.0239802
     post_4
     post 5 .28448061
                        1.0481307
     post_6 .17611514
                         1.0635937
     post_7 .34307072
                        1.1026536
     post 8 .48514754
                        1.1472273
              .35042812
                          1.0580141
     post_9
```

```
post_10
               .45768328
                           1.193073
     post_11
               .30379366
                          1.0314795
     post 12
               .38736046
                            1.156739
     post 13
             .31681116
                           1.0306443
     post_14
               .13593006
                           1.0201789
     post 15
               .2422626
                           .93948411
     post_16
               .39740613
                           1.2978962
     post_17 -.04228636
                           1.8732174
     post 18
               .3207898
                           1.3385441
1972 .
1973 .
1974 . ** Build Coefficient and Confidence Interval Matrix:
1975 . mat AZ= (Z', pre_post')
1976 . mat AZ = AZ,CI
1977 . mat list AZ
     AZ[38,4]
                  r1
                                           10
                                                       hi
                               у1
                 -18
                       .21375532 -.32146528
                                                .74558051
      c1
      c2
                 -17
                          .249256
                                   -.2708568
                                                .76217803
      c3
                 -16 -.00935142 -.42447455
                                                .40126043
      c4
                 -15
                       .17816612
                                   -.2949236
                                                .64728588
      c5
                 -14
                       .21625962 -.18566474
                                                .61641676
                 -13
                       .23844712
                                  -.16200382
                                                .64620116
      c6
      c7
                 -12
                       .10880276 -.33642466
                                                 .5579986
      c8
                 -11
                      -.08348754
                                  -.59820774
                                                .42971335
                       .29747282
      c9
                 -10
                                  -.08105676
                                                .67260778
                  -9
                                  -.50108089
     c10
                       -.0312786
                                                .43166344
                  -8
                       .15296048
                                  -.27970755
     c11
                                                  .5914275
                  -7
     c12
                         .4090335
                                    .03954521
                                                  .7783446
                  -6
                      -.06353018
                                                .33049597
     c13
                                   -.4554359
     c14
                  -5
                       .18314013 -.22997977
                                                .60000024
                  -4
                                                .68407744
                         .2753544 -.13666186
     c15
                  -3 -.02121157
                                  -.41342401
                                                .36831981
     c16
                       .29830735
                                   -.08707727
                                                 .6780449
     c17
                  -2
     c18
                  -1
                       .08438071
                                   -.28913469
                                                .45559492
                   0
     c19
                                0
                                                         0
     c20
                   1
                       .37642935
                                   -.02462314
                                                .77408054
                   2
     c21
                       .14212011
                                   -.24380588
                                                .53004135
     c22
                   3
                       .37194921
                                  -.00763136
                                                .74808105
                   4
                                   -.02861771
     c23
                        .3580473
                                                .74531477
                   5
     c24
                       .64539753
                                    .2576343
                                                1.0239802
     c25
                   6
                       .66598312
                                    .28448061
                                                1.0481307
                   7
     c26
                       .62079894
                                   .17611514
                                                1.0635937
                   8
                       .72040051
     c27
                                   .34307072
                                                1.1026536
                   9
                       .81512767
                                    .48514754
     c28
                                                1.1472273
```

```
c30
                 11
                      .82663226 .45768328
                                               1.193073
                 12
                       .66544923
                                 .30379366
     c31
                                               1.0314795
                 13
                      .77008197 .38736046
                                               1.156739
     c32
     c33
                 14
                       .67160856 .31681116
                                               1.0306443
                      .57906401
                                 .13593006
                 15
                                               1.0201789
     c34
    c35
                 16
                       .5906566
                                   .2422626
                                               .93948411
     c36
                 17
                      .85027533
                                 .39740613
                                               1.2978962
                       .94132306 -.04228636
    c37
                 18
                                               1.8732174
                                   .3207898
     c38
                 19
                       .85230703
                                               1.3385441
1978 . * Create variables from matrix so that you can graph them:
1979 . symat AZ, names(direct)
1980 . sort direct1
1981 .
1982 .
1983 .
1984 .
1985 . ** Coefficient estimates and CI are in IHS terms.
1986 . * We can transform coefficient estimates in relative terms (i.e. % change):
1987 . forvalues i = 5/7 {
       2. local j=`i'-3
       3. gen directi' = (\exp(\operatorname{direct})')-1)*100
       4. }
     (2,698 missing values generated)
     (2,698 missing values generated)
     (2,698 missing values generated)
1988 .
1989 .
1990 . * We can also transform coefficient estimates in absolute terms ($ mil.):
1991 . ** For this we need to know the average value of FDI in the pre-treatment mo
    > nth for each affected region
1992 . ** Then we take the average of that because the coefficient estimate is eval
    > uated against this average:
```

1.0580141

c29

10

```
1994 . * Generate pre-treatment average FDI inflows for each affected region:
1995 . egen pre fdi avg = mean(fdi) if inlist(dif, 0) & affected event==0
     (2,668 missing values generated)
1996 . bysort id (pre fdi avg): replace pre fdi avg = pre fdi avg[1]
     (2668 real changes made)
1997 .
1998 . *fill up
1999 .
2000 . gsort -direct1
2001 . replace pre_fdi_avg = pre_fdi_avg[_n-1] if missing(pre_fdi_avg)
     (0 real changes made)
2002 . sum pre fdi avg
         Variable
                           Obs
                                      Mean
                                               Std. dev.
                                                               Min
                                                                          Max
                                                          93.68627
      pre fdi avg
                         2,736
                                  93.68627
                                                      0
                                                                     93.68627
2003 .
2004 .
2005 .
2006 . * Convert relative changes to absolute changes
2007 . /* Remember direct2 is already in percentage terms */
2008 .
2009 . forvalues i=8/10 {
       2. local j=\i'-6
       3. gen direct`i'= asinh(pre fdi avg) + direct`j'
       4. replace direct`i'=sinh(direct`i') - pre_fdi_avg
       5. }
     (2,698 missing values generated)
     (38 real changes made)
     (2,698 missing values generated)
     (38 real changes made)
     (2,698 missing values generated)
     (38 real changes made)
```

```
2010 .
2011 . * Let's graph the relative changes with CI and the absolute changes in FDI:
2012 . *** The confidence interval reaches to far and messes up the scale of the gr
2013 . ** We restrict the cofidence interval to max 300 see note on figure
2014 .
2015 .
2016 . * FIGURE 5.B: Indirect IHS FDI Effect:
2017 . sort direct1
2018 . sum direct2
         Variable
                           Obs
                                      Mean
                                              Std. dev.
                                                               Min
                                                                          Max
          direct2
                            38
                                  .3911497
                                              .3067042 -.0834875
                                                                      .941323
2019 . sum direct2 if direct1>0
         Variable
                           Obs
                                      Mean
                                              Std. dev.
                                                              Min
                                                                          Max
          direct2
                            19
                                  .6403795
                                                .204203
                                                          .1421201
                                                                      .941323
2020 .
2021 . graph twoway (rarea direct3 direct4 direct1 if inrange(direct1,-18,18), colo
     > r(gs10%20))
                   ///
               (connected direct2 direct1 if inrange(direct1,-18,18), msize(medium)
      xline(0 ) yline(0 ) lc(ebblue) mc(ebblue%70) msymbol(smccircle)) ///
               , ytitle("Change in IHS of FDI", ax(1)) xtitle("Month Relative to Di
    > saster") ///
               scheme(plotplain) xline(0, axis(1) lcolor(black)) yline(0, axis(2 1
    >
     > ) lcolor(black)) ///
               name(event_indirect, replace) xscale(r(-18,18)) xlabel(-18(4)18) ///
    >
    >
               ylabel(, angle(horizontal)) yscale(titlegap(*+1)) ///
               legend(off)
     (note: named style smccircle not found in class symbol, default attributes
```

used)

```
2023 .
2024 .
              *legend(order(2 1) lab(1 "95% C. I.") lab(2 "Relative Change in FDI
2025 .
    > (%)") col(2) position(6)) ///
2026 .
2027 .
2028 .
              *note("Note: Changes in IHS-transformed FDI are depicted with their
    > respective 95% confidence interval." ///
                       Point estimates are based on 2,283 observations and range fr
    > om -0.08 to 0.94. The regression" ///
                       produces an R-squared of 0.75 and standard errors are hetero
    > skedasticity-robust.")
2029 .
2030 .
2031 . graph export 3results/figures/figure5b.pdf, replace
     file
         /Users/aidan/Dropbox/India_FDI/friedt_toner-rodgers_replication/_3result
         > s/figures/figure5b.pdf saved as PDF format
2032 .
2033 .
2034 . * FIGURE 5.D: INDIRECT RELATIVE FDI EFFECTS
2035 . sum direct5
         Variable
                           Obs
                                      Mean
                                              Std. dev.
                                                              Min
                                                                         Max
         direct5
                            38
                                   54.8333
                                              47.98664 -8.009746
                                                                    156.3371
2036 . sum direct5 if direct1>0
        Variable
                                              Std. dev.
                                                              Min
                           Obs
                                      Mean
                                                                         Max
         direct5
                            19
                                  93.29814
                                              36.54542
                                                         15.27151
                                                                    156.3371
2037 . graph twoway (connected direct5 direct1 if inrange(direct1,-18,18), msize(me
     > dium) xline(0 ) yline(0 ) lc(ebblue) mc(ebblue%70) msymbol(smccircle)) ///
               , ytitle("Change in FDI (%)", ax(1)) xtitle("Month Relative to Disas
     > ter") ///
               scheme(plotplain) xline(0, axis(1) lcolor(black)) yline(0, axis(2 1
     > ) lcolor(black)) yscale(titlegap(*+1)) ///
               name(event_indirect_rel, replace) yscale(r(-25,150)) ylabel(-25(25)1
     > 50) xscale(r(-18,19)) xlabel(-18(4)19) ///
     (note: named style smccircle not found in class symbol, default attributes
         used)
```

```
2038 .
2039 .
               *legend(order(2 1) lab(1 "95% C. I.") lab(2 "Relative Change in FDI
    > (%)")) ///
               *note("Note: Transformed point estimates range from -8.0% to 156.3%
    > and average 93.7% post disaster.")
2040 .
2041 .
2042 . graph export _3results/figures/figure5d.pdf, replace
     file
         /Users/aidan/Dropbox/India_FDI/friedt_toner-rodgers_replication/_3result
         > s/figures/figure5d.pdf saved as PDF format
2043 .
2044 .
2045 . * FIGURE 5.F: INDIRECT ABSOLUTE FDI EFFECTS:
2046 . sum direct8 pre_fdi_avg
                                              Std. dev.
         Variable
                           Obs
                                      Mean
                                                               Min
                                                                          Max
          direct8
                            38
                                  51.37352
                                              44.95872 -7.504493
                                                                     146.4722
      pre fdi avg
                                  93.68627
                                                     0
                                                         93.68627
                                                                     93.68627
                         2,736
2047 . sum direct8 if direct1>0
         Variable
                           Obs
                                              Std. dev.
                                      Mean
                                                               Min
                                                                          Max
          direct8
                            19
                                  87.41127
                                              34.23933
                                                          14.30807
                                                                     146.4722
2048 . replace direct10=200 if direct10>200
     (2,704 real changes made)
2049 .
2050 . graph twoway (connected direct8 direct1 if inrange(direct1,-18,18), msize(me
     > dium) xline(0 ) yline(0 ) lc(ebblue) mc(ebblue%70) msymbol(smccircle)) ///
               , ytitle("Change in FDI ($ mil.)") xtitle("Month Relative to Disaste
     > r") ///
    >
               scheme(plotplain) xline(0 ) yline(0 ) ///
    >
               name(event_indirect_abs, replace) yscale(r(-25,150)) ylabel(-25(25)1
     > 50) xscale(r(-18, 19)) xlabel(-18(4)19) ///
     >
               yscale(titlegap(*+1)) ///
     >
     (note: named style smccircle not found in class symbol, default attributes
         used)
```

```
2051 .
2052 .
            *note("Note: Absolute changes in FDI are calculated based on the ave
    > rage FDI value of $94 mil." ///
                     observed during the excluded reference month in the unaff
    > ected regions. Transformed" ///
                     point estimates range from -$8 million to $146 million an
    > d average $88 million post treatment.")
2053 .
2054 .
2055 . graph export _3results/figures/figure5f.pdf, replace
       /Users/aidan/Dropbox/India_FDI/friedt_toner-rodgers_replication/_3result
       > s/figures/figure5f.pdf saved as PDF format
2056 .
2057 .
2058 .
2059 .
2060 .
2061 .
2062 .
2063 .
2064 .
    end of do-file
2065 . do _2code/_2analysis/figureB1
> ****
2067 . * Figure B1: Spillover effects excluding Mumbai and Banglore
2068 .
> ****
2070 .
2071 . use _ldata/clean/clean_data, clear
2072 .
```

```
2073 . ** Exclude Mumbai and Bangalore:
2074 .
2075 . drop if region=="mumbai" | region=="bangalore"
     (342 observations deleted)
2076 .
2077 . global control lag_lgdp lag_lpop
2078 .
2079 . *generate months to event for new disasters
2080 .
2081 . generate dif=1000
2082 . order region date Count dif
2083 .
2084 . replace dif=Count-23 if Count<39
     (532 real changes made)
2085 . replace dif=Count-55 if Count>=39 & Count <74
     (490 real changes made)
2086 . replace dif=Count-93 if Count>=74 & Count <107
     (462 real changes made)
2087 . replace dif=Count-122 if Count>=107 & Count <138
     (434 real changes made)
2088 . replace dif=Count-155 if Count>=138
     (476 real changes made)
2089 .
2090 .
2091 .
2092 . *generate affected region dummy for event study
2093 . gen affected event=0
```

```
2094 . replace affected_event=1 if (Count<39 & (region=="kolkata" | region=="patna"
    > ))
     (76 real changes made)
2095 . replace affected_event=1 if (Count>=39 & Count <74 & (region=="bubaneshwar"
     > | region=="guwahati" | region=="kolkata" | region=="patna"))
     (140 real changes made)
2096 . replace affected event=1 if (Count>=74 & Count <107 & (region=="chandigarh"
     > | region=="new_delhi" | region=="kanpur"))
     (99 real changes made)
2097 . replace affected_event=1 if (Count>=107 & Count <138 & (region=="hyderabad
    > " | region=="chennai"))
     (62 real changes made)
2098 . replace affected event=1 if (Count>=138 & region=="kochi")
     (34 real changes made)
2099 .
2100 . *time to event variables as factors
2101 . tostring dif, replace
    dif was float now str3
2102 .
2103 . destring dif, replace
     dif: all characters numeric; replaced as byte
```

2104 . tab dif, gen(t_fe)

dif	Freq.	Percent	Cum.
-22	14	0.58	0.58
-21	14	0.58	1.17
-20	14	0.58	1.75
-19	28	1.17	2.92
-18	28	1.17	4.09
-17	42	1.75	5.85
-16	56	2.34	8.19
-15	70	2.92	11.11
-14	70	2.92	14.04
-13	70	2.92	16.96
-12	70	2.92	19.88
-11	70	2.92	22.81
-10	70	2.92	25.73
- 9	70	2.92	28.65
-8	70	2.92	31.58
- 7	70	2.92	34.50
-6	70	2.92	37.43

```
-5
                  70
                             2.92
                                         40.35
   -4
                  70
                             2.92
                                         43.27
   -3
                  70
                             2.92
                                         46.20
   -2
                             2.92
                                         49.12
                  70
   -1
                  70
                             2.92
                                         52.05
    0
                             2.92
                                         54.97
                  70
    1
                  70
                             2.92
                                         57.89
    2
                  70
                             2.92
                                         60.82
    3
                             2.92
                                         63.74
                  70
    4
                             2.92
                                         66.67
                  70
    5
                  70
                             2.92
                                         69.59
    6
                  70
                             2.92
                                         72.51
    7
                  70
                             2.92
                                         75.44
    8
                  70
                             2.92
                                         78.36
    9
                  70
                             2.92
                                         81.29
   10
                  70
                             2.92
                                         84.21
   11
                  70
                             2.92
                                         87.13
   12
                  70
                             2.92
                                         90.06
   13
                                         92.98
                  70
                             2.92
   14
                  56
                             2.34
                                         95.32
   15
                  56
                             2.34
                                         97.66
                                         98.83
   16
                  28
                             1.17
   17
                  14
                             0.58
                                         99.42
   18
                  14
                             0.58
                                        100.00
Total
              2,394
                           100.00
```

```
2111 .
2112 . * Identify the post-treatment month for the affected regions.
2113 . * These are the relavant post-treatment dummies = 1 for the specific month f
     > or the affected regions
2114 \cdot \text{forvalues } i=24/41\{
       2. local j=`i'-23
       3. gen post_`j'=t_fe`i'
       4. }
2115 .
2116 . * Drop the t_fe* which are no longer needed:
2117 . drop t fe*
2118 .
2119 .
2120 .
2121 . sort region date
2122 .
2123 . reg fdi ihs pre* post* $control i.region1 if (affected event==0), robust
     note: pre_22 omitted because of collinearity.
     note: pre_21 omitted because of collinearity.
     note: pre 20 omitted because of collinearity.
                                                       Number of obs
     Linear regression
                                                                                 1,947
                                                       F(52, 1894)
                                                                                183.21
                                                       Prob > F
                                                                          =
                                                                                0.0000
                                                       R-squared
                                                                         =
                                                                                0.6493
                                                       Root MSE
                                                                                1.2737
                                   Robust
          fdi ihs
                    Coefficient std. err.
                                                 t
                                                       P>|t|
                                                                 [95% conf. interval]
           pre_22
                              0 (omitted)
                              0
                                (omitted)
           pre 21
           pre_20
                                (omitted)
                              0
                       .1956031
                                  .2880203
                                                0.68
                                                       0.497
                                                                -.3692673
                                                                              .7604734
           pre_19
           pre 18
                       .2647255
                                   .286762
                                               0.92
                                                       0.356
                                                                -.2976771
                                                                              .8271281
                      -.055737
                                  .2332871
                                              -0.24
                                                       0.811
                                                                -.5132637
                                                                              .4017897
           pre_17
           pre_16
                      .1365641
                                  .2741456
                                               0.50
                                                       0.618
                                                                -.4010951
                                                                              .6742232
           pre 15
                       .1875628
                                  .2270866
                                                0.83
                                                       0.409
                                                                -.2578034
                                                                               .632929
           pre 14
                       .2516357
                                .2345938
                                               1.07
                                                       0.284
                                                                -.2084538
                                                                              .7117251
                                  .2561982
                                               0.22
                                                       0.824
                                                                -.4453273
                                                                              .5595933
           pre_13
                        .057133
                                              -0.34
           pre 12
                     -.1031829
                                  .3001352
                                                       0.731
                                                                -.6918133
                                                                              .4854475
                        .279967
           pre_11
                                  .2232987
                                               1.25
                                                       0.210
                                                                -.1579703
                                                                              .7179043
                                  .2704829
                                              -0.30
                                                       0.760
                     -.0824959
                                                                -.6129716
                                                                              .4479799
           pre_10
```

.2176203

pre 9

pre_8

.1136144

.4355542

0.45

2.00

0.650

0.045

-.3778192

.0087536

.605048

	_					
pre_7	1260587	.2272868	-0.55	0.579	5718175	.3197001
pre_6	.1456252	.2399172	0.61	0.544	3249046	.6161549
pre_5	.3082587	.2371679	1.30	0.194	156879	.7733964
pre_4	0278555	.2224044	-0.13	0.900	4640388	.4083277
pre_3	.3042223	.2205765	1.38	0.168	1283761	.7368206
pre_2	.0675701	.2152375	0.31	0.754	3545573	.4896976
pre_1	.4077877	.2317452	1.76	0.079	0467149	.8622903
post_1	.2315185	.2245741	1.03	0.303	2089201	.6719572
post_2	.4936294	.2159161	2.29	0.022	.070171	.9170877
post_3	.4553728	.2244779	2.03	0.043	.0151229	.8956228
post_4	.6137591	.2308698	2.66	0.008	.1609734	1.066545
post_5	.6400794	.231411	2.77	0.006	.1862322	1.093927
post_6	.5753966	.2632488	2.19	0.029	.0591086	1.091685
post_7	.7431468	.2333382	3.18	0.001	.28552	1.200774
post_8	.8427572	.2062073	4.09	0.000	.4383399	1.247174
post_9	.7416408	.2150759	3.45	0.001	.3198303	1.163451
post_10	.8231639	.2249394	3.66	0.000	.3820088	1.264319
post_11	.6738651	.2186287	3.08	0.002	.2450866	1.102644
post_12	.7393086	.2325726	3.18	0.002	.2831833	1.195434
post_13	.6821652	.2172176	3.14	0.002	.2561544	1.108176
post_14	.4949088	.2559349	1.93	0.053	0070351	.9968527
post_15	.5880353	.2091866	2.81	0.005	.1777749	.9982958
post_16	.870813	.2754509	3.16	0.002	.3305941	1.411032
post_17	.9151798	.4977663	1.84	0.066	0610481	1.891408
post_18	.9270919	.3202086	2.90	0.004	.2990933	1.555091
lag_lgdp	.7127686	.0658737	10.82	0.000	.583576	.8419611
lag_lpop	.330226	.175044	1.89	0.059	0130733	.6735253
region1						
bhopal	-2.079729	.1439229	-14.45	0.000	-2.361993	-1.797465
bubaneshwar	-3.389412	.1410329	-24.03	0.000	-3.666008	-3.112816
chandigarh	-2.023987	.1710053	-11.84	0.000	-2.359365	-1.688608
chennai	.4964556	.0967602	5.13	0.000	.3066879	.6862233
guwahati	-2.123666	.1581959	-13.42	0.000	-2.433922	-1.81341
hyderabad	.0902105	.1190486	0.76	0.449	1432696	.3236906
jaipur	-2.587405	.1298973	-19.92	0.000	-2.842162	-2.332648
kanpur	-3.961138	.2497466	-15.86	0.000	-4.450945	-3.471331
kochi	-2.085073	.1730118	-12.05	0.000	-2.424387	-1.745759
kolkata	-2.576187	.1280877	-20.11	0.000	-2.827395	-2.32498
new_delhi	1.597519	.23237	6.87	0.000	1.141791	2.053247
panaji	.2122764	.5852184	0.36	0.717	9354641	1.360017
patna	-4.76087	.1520388	-31.31	0.000	-5.059051	-4.462689
_cons	-8.453038	1.628718	-5.19	0.000	-11.64731	-5.258767
	l					

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 pre 19

t(1894) = 0.6791Prob>|t| = 0.5032

95% confidence set for null hypothesis expression: [-.4125, .7991]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 pre_18

t(1894) = 0.9232Prob>|t| = 0.3607

95% confidence set for null hypothesis expression: [-.3307, .8569]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 pre_17

t(1894) = -0.2389Prob>|t| = 0.8108

95% confidence set for null hypothesis expression: [-.5329, .4243]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 pre_16

t(1894) = 0.4981Prob>|t| = 0.6144

95% confidence set for null hypothesis expression: [-.4148, .688]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 pre_15

t(1894) = 0.8260Prob>|t| = 0.4079

95% confidence set for null hypothesis expression: [-.2626, .638]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 pre_14

t(1894) = 1.0726Prob>|t| = 0.2856

95% confidence set for null hypothesis expression: [-.2126, .7168]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 pre_13

t(1894) = 0.2230Prob>|t| = 0.8287

95% confidence set for null hypothesis expression: [-.4658, .5725]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 pre_12

t(1894) = -0.3438Prob>|t| = 0.7471

95% confidence set for null hypothesis expression: [-.6922, .4925]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 pre_11

t(1894) = 1.2538Prob>|t| = 0.2173

95% confidence set for null hypothesis expression: [-.1698, .7341]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 pre_10

t(1894) = -0.3050Prob>|t| = 0.7635

95% confidence set for null hypothesis expression: [-.6202, .463]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 pre_9

t(1894) = 0.4534Prob>|t| = 0.6588

95% confidence set for null hypothesis expression: [-.3943, .6133]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 pre 8

t(1894) = 2.0014Prob>|t| = 0.0469

95% confidence set for null hypothesis expression: [.007429, .8648]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 pre_7

t(1894) = -0.5546Prob>|t| = 0.5743

95% confidence set for null hypothesis expression: [-.5811, .3299]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 pre_6

t(1894) = 0.6070Prob>|t| = 0.5503

95% confidence set for null hypothesis expression: [-.3337, .6236]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 pre_5

t(1894) = 1.2997Prob>|t| = 0.1927 95% confidence set for null hypothesis expression: [-.1592, .7711]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 pre_4

$$t(1894) = -0.1252$$

Prob>|t| = 0.9009

95% confidence set for null hypothesis expression: [-.4726, .4195]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 pre_3

$$t(1894) = 1.3792$$

Prob>|t| = 0.1692

95% confidence set for null hypothesis expression: [-.134, .7478]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 pre_2

$$t(1894) = 0.3139$$

Prob>|t| = 0.7579

95% confidence set for null hypothesis expression: [-.3719, .5035]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 pre_1

$$t(1894) = 1.7596$$

Prob> $|t| = 0.0833$

95% confidence set for null hypothesis expression: [-.05505, .8625]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 post 1

$$t(1894) = 1.0309$$

Prob>|t| = 0.3096

95% confidence set for null hypothesis expression: [-.2171, .6779]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 post 2

t(1894) = 2.2862Prob>|t| = 0.0234

95% confidence set for null hypothesis expression: [.06659, .9202]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 post 3

t(1894) = 2.0286Prob>|t| = 0.0427

95% confidence set for null hypothesis expression: [.01889, .8964]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 post_4

t(1894) = 2.6585Prob>|t| = 0.0076

95% confidence set for null hypothesis expression: [.1668, 1.063]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 post_5

t(1894) = 2.7660Prob>|t| = 0.0062

95% confidence set for null hypothesis expression: [.2007, 1.084]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 post_6

t(1894) = 2.1858Prob>|t| = 0.0327

95% confidence set for null hypothesis expression: [.06045, 1.091]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 post_7

t(1894) = 3.1848Prob>|t| = 0.0018

95% confidence set for null hypothesis expression: [.2913, 1.195]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 post_8

t(1894) = 4.0869Prob>|t| = 0.0001

95% confidence set for null hypothesis expression: [.4559, 1.232]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 post 9

t(1894) = 3.4483Prob>|t| = 0.0004

95% confidence set for null hypothesis expression: [.3302, 1.148]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 post_10

t(1894) = 3.6595Prob>|t| = 0.0003

95% confidence set for null hypothesis expression: [.3934, 1.254]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 post_11

t(1894) = 3.0822Prob>|t| = 0.0035

95% confidence set for null hypothesis expression: [.2529, 1.093]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 post_12

t(1894) = 3.1788Prob>|t| = 0.0017 95% confidence set for null hypothesis expression: [.2909, 1.186]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 post_13

t(1894) = 3.1405Prob>|t| = 0.0012

95% confidence set for null hypothesis expression: [.2703, 1.097]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 post_14

t(1894) = 1.9337Prob>|t| = 0.0604

95% confidence set for null hypothesis expression: [-.02458, 1.013]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 post_15

t(1894) = 2.8111Prob>|t| = 0.0056

95% confidence set for null hypothesis expression: [.1873, .9893]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 post_16

t(1894) = 3.1614Prob>|t| = 0.0028

95% confidence set for null hypothesis expression: [.3438, 1.385]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 post 17

t(1894) = 1.8386Prob>|t| = 0.0946

95% confidence set for null hypothesis expression: [-.2206, 2.013]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste > ring by region1 date, Rademacher weights: post_18 t(1894) =2.8953 Prob>|t| =0.0173 95% confidence set for null hypothesis expression: [.2854, 1.488] 2126 . 2127 . ** These are too many coefficients to report and I like to create my own coe > ffient plot 2128 . ** Here is the code: 2129 . 2130 . * Pull coefficients into matrix: 2131 . * Pull coefficients into matrix: 2132 . mat beta=e(b)2133 . 2134 . ** Average Treatment Effects: 2135 . mat A = beta[1, 4...40]2136 . 2137 . mat pre= A[1,1..18]2138 . mat post= A[1,19...37]2139 . 2140 . * Need to set the reference month at 0: 2141 . mat pre post=(pre, 0, post) 2142 . mat list pre_post pre_post[1,38] pre_15 pre_14 pre 13 pre 12 pre 11 pre 10 pre 9 pre 8 р > re 7 .19560307 .26472555 -.05573701 .13656407 .18756283 .25163567 y1 > 05713303 -.1031829 .27996701 -.08249588 .1136144 .43555425 -.1260 > 5873 pre 6 pre 5 pre 4 pre 3 pre 2 pre 1 post 1 post 2 post 3 post 4 post 5 ро > st_6

.49362938 .45537285

.30422226

.06757015

.64007943

.6137591

.5753

.30825872 -.02785555

y1 **.14562515**

> 9662

> 40778769 .23151852

```
post_7    post_8    post_9    post_10    post_11    post_12
    y1 .74314682 .84275716 .74164079 .8231639 .67386508 .7393086
    > 68216523 .49490877 .58803534 .87081304 .91517977 .92709193
2143 .
2144 .
2145 . ** Create a counter column:
2146 \cdot \text{mat } Z=J(1,38,0)
2147 . local j=1
2148 . forvalues i=-18/19 {
      2. mat Z[1, 'j'] = 'i'
      3. local j=`j'+1
      4. }
2149 .
2150 . ** Grab the confidence intervals and append them together:
2151 . mat CI=r(CI_1)
2152 .
2153 .
2154 .
2155 .
2156 .
2157 . mat missing=J(1,2,.)
2158 . forvalues i=2/18 {
      2. capture confirm mat r(CI_`i')
      3. if ! rc {
      4. mat CI=CI\r(CI_\i')
      5. }
      6. else {
      7. mat CI=CI\missing
      8. }
      9. }
```

```
2159 .
2160 . mat zero=J(1,2,0)
2161 . mat CI = CI \setminus zero
2162 .
2163 • forvalues i=19/37 {
      2. capture confirm mat r(CI_`i')
      3. if ! rc {
      4. mat CI=CI\r(CI_\i')
      5. }
      6. else {
      7. mat CI=CI\missing
      8. }
      9. }
2164 . mat list CI
    CI[38,2]
                                 hi
                     10
     pre 19 -.41250466
                         .79912359
     pre_18 -.33068083
                         .85694985
     pre_17 -.53285645
                         .42429718
     pre_16 -.41482696
                         .68804191
                         .63804769
     pre_15 -.26259038
     pre_14 -.2125816
                         .71683372
     pre_13 -.46578004
                          .57251894
     pre 12 -.69222313
                         .49251535
     pre_11 -.16978098
                          .73408816
     pre_10 -.62016211
                         .46300978
      pre_9 -.39432764
                          .61326474
      pre_8 .00742911
                           .8648052
      pre_7 -.58109012
                          .32993949
      pre_6 -.33374066
                         .62361762
      pre_5 -.15922743
                         .77112059
      pre_4 -.47260837
                          .41945547
      pre_3 -.13399419
                         .74780077
      pre_2 -.37189915
                          .50346878
         r1
      pre_1 -.05505088
                         .86245607
     post_1 -.21714729
                           .6779194
     post 2
               .0665872
                          .92015179
     post_3
             .01889191
                           .8964038
              .16683784
                          1.0627025
     post_4
     post 5
              .20067348
                          1.0841442
     post_6
              .06045246
                          1.0911645
                          1.195063
             .29129072
     post_7
                          1.2324503
              .45585345
     post 8
               .33015632
                          1.1476388
     post_9
```

```
post_10
               .39341594
                           1.2544192
     post_11
               .25290573
                            1.0929748
     post 12
               .29093632
                            1.1855252
     post 13
             .27028868
                           1.0974617
     post_14 -.02457885
                            1.0125532
     post 15
             .18732796
                            .98926735
     post_16
               .34382199
                            1.3846263
     post_17
               -.2206267
                            2.0127052
                           1.4883572
     post 18
               .28542257
2165 .
2166 .
2167 . ** Build Coefficient and Confidence Interval Matrix:
2168 . mat AZ= (Z', pre_post')
2169 . mat AZ = AZ,CI
2170 . mat list AZ
     AZ[38,4]
                  r1
                                           10
                                                        hi
                               у1
                 -18
                       .19560307
                                   -.41250466
                                                 .79912359
      c1
      c2
                 -17
                        .26472555
                                  -.33068083
                                                 .85694985
      c3
                 -16 -.05573701
                                  -.53285645
                                                 .42429718
      c4
                 -15
                       .13656407
                                   -.41482696
                                                 .68804191
                       .18756283 -.26259038
      c5
                 -14
                                                 .63804769
                 -13
                        .25163567
                                   -.2125816
                                                 .71683372
      c6
      c7
                 -12
                        .05713303
                                   -.46578004
                                                 .57251894
      c8
                 -11
                        -.1031829
                                   -.69222313
                                                 .49251535
                 -10
      c9
                        .27996701
                                   -.16978098
                                                 .73408816
                  -9
                                   -.62016211
     c10
                      -.08249588
                                                 .46300978
                         .1136144
                                                 .61326474
     c11
                  -8
                                  -.39432764
                  -7
     c12
                        .43555425
                                    .00742911
                                                  .8648052
                      -.12605873
                  -6
     c13
                                  -.58109012
                                                 .32993949
                  -5
                       .14562515 -.33374066
                                                 .62361762
     c14
                  -4
                        .30825872
                                  -.15922743
                                                 .77112059
     c15
                  -3 -.02785555
                                  -.47260837
                                                 .41945547
     c16
                       .30422226
                                   -.13399419
                                                 .74780077
     c17
                  -2
     c18
                  -1
                        .06757015
                                   -.37189915
                                                 .50346878
                   0
     c19
                                0
                                                         0
     c20
                   1
                       .40778769
                                   -.05505088
                                                 .86245607
                   2
     c21
                        .23151852
                                   -.21714729
                                                  .6779194
     c22
                   3
                        .49362938
                                    .0665872
                                                 .92015179
                   4
                       .45537285
     c23
                                    .01889191
                                                  .8964038
                   5
     c24
                        .6137591
                                   .16683784
                                                 1.0627025
     c25
                   6
                        .64007943
                                    .20067348
                                                 1.0841442
                   7
                       .57539662
                                                1.0911645
     c26
                                   .06045246
                   8
                       .74314682
     c27
                                    .29129072
                                                 1.195063
                   9
                        .84275716
                                    .45585345
                                                 1.2324503
     c28
```

```
c30
                  11
                       .8231639 .39341594
                                               1.2544192
                  12
                       .67386508 .25290573
     c31
                                               1.0929748
                  13
                       .7393086 .29093632
                                               1.1855252
     c32
     c33
                  14
                       .68216523
                                 .27028868
                                               1.0974617
                  15
                       .49490877 -.02457885
                                               1.0125532
     c34
     c35
                  16
                       .58803534
                                 .18732796
                                               .98926735
     c36
                  17
                       .87081304
                                 .34382199
                                               1.3846263
     c37
                  18
                       .91517977 -.2206267
                                               2.0127052
     c38
                  19
                       .92709193
                                  .28542257
                                               1.4883572
2171 . * Create variables from matrix so that you can graph them:
2172 . svmat AZ, names(direct)
2173 . sort direct1
2174 .
2175 .
2176 .
2177 .
2178 . ** Coefficient estimates and CI are in IHS terms.
2179 . * We can transform coefficient estimates in relative terms (i.e. % change):
2180 . forvalues i = 5/7 {
       2. local j=`i'-3
       3. gen directi' = (\exp(\operatorname{direct})')-1)*100
       4. }
     (2,356 missing values generated)
     (2,356 missing values generated)
     (2,356 missing values generated)
2181 .
2182 .
2183 . * We can also transform coefficient estimates in absolute terms ($ mil.):
2184 . ** For this we need to know the average value of FDI in the pre-treatment mo
     > nth for each affected region
2185 . ** Then we take the average of that because the coefficient estimate is eval
     > uated against this average:
```

1.1476388

c29

10

```
2186 .
2187 . * Generate pre-treatment average FDI inflows for each affected region:
2188 . egen pre fdi avg = mean(fdi) if inlist(dif, 0) & affected event==0
     (2,336 missing values generated)
2189 . bysort id (pre fdi avg): replace pre fdi avg = pre fdi avg[1]
     (2336 real changes made)
2190 . sum pre fdi avg
         Variable
                                              Std. dev.
                           Obs
                                      Mean
                                                               Min
                                                                          Max
                         2,394
                                                          46.66667
      pre_fdi_avg
                                  46.66667
                                                      0
                                                                     46.66667
2191 .
2192 .
2193 .
2194 . * Convert relative changes to absolute changes
2195 . /* Remember direct2 is already in percentage terms */
2196 .
2197 . forvalues i=8/10 {
       2. local j=\i'-6
       3. gen direct`i'= asinh(pre_fdi_avg) + direct`j'
       4. replace direct`i'=sinh(direct`i') - pre_fdi_avg
     (2,356 missing values generated)
     (38 real changes made)
     (2,356 missing values generated)
     (38 real changes made)
     (2,356 missing values generated)
     (38 real changes made)
2198 .
2199 . * Let's graph the relative changes with CI and the absolute changes in FDI:
2200 . *** The confidence interval reaches to far and messes up the scale of the gr
     > aph.
2201 . ** We restrict the cofidence interval to max 300 see note on figure
```

```
2203 .
2204 . * FIGURE 5.B: Indirect IHS FDI Effect:
2205 . sort direct1
2206 . sum direct2
         Variable
                           Obs
                                      Mean
                                              Std. dev.
                                                               Min
                                                                          Max
                                               .3195082 -.1260587
          direct2
                            38
                                  .3897981
                                                                      .927092
2207 . sum direct2 if direct1>0
         Variable
                           Obs
                                      Mean
                                              Std. dev.
                                                               Min
                                                                          Max
          direct2
                            19
                                  .6557695
                                               .1855947
                                                          .2315185
                                                                      .927092
2208 .
2209 .
2210 .
2211 . graph twoway (rarea direct3 direct4 direct1 if inrange(direct1,-18,18), colo
    > r(gs10%20) fintensity(100)) ///
               (connected direct2 direct1 if inrange(direct1,-18,18), msize(medium)
    >
      xline(0 ) yline(0 ) lc(ebblue) mc(ebblue%70) msymbol(smccircle)) ///
               , ytitle("Change in IHS of FDI", ax(1)) xtitle("Month Relative to Di
    >
     > saster") ///
               scheme(plotplain) xline(0, axis(1) lcolor(black)) yline(0, axis(2 1
    > ) lcolor(black)) ///
               name(event_indirect, replace) xscale(r(-18,18)) xlabel(-18(4)18) ///
    >
               ylabel(, angle(horizontal)) yscale(titlegap(*+1)) ///
    >
               legend(off)
     (note: named style smccircle not found in class symbol, default attributes
         used)
2212 .
2213 .
2214 .
```

```
2215 . graph export _3results/figures/figureB1.pdf, replace
   file
       /Users/aidan/Dropbox/India_FDI/friedt_toner-rodgers_replication/_3result
       > s/figures/figureB1.pdf saved as PDF format
2216 .
2217 .
2218 .
2219 .
2220 .
   end of do-file
2221 . do _2code/_2analysis/figureB2
> ****
2223 . * Figure B1: Event studies more disasters
2224 .
> ****
2226 .
2227 .
2228 . use _ldata/clean/clean_data, clear
2229 .
2230 .
2231 . global control lag_lgdp lag_lpop
2232 . *generate months to event
2233 .
2234 . generate dif=.
    (2,736 missing values generated)
2235 . gen affected_event=0
2236 .
```

```
2238 . ***additional disasters***
2239 . * AD1: July 2006 surate flood (Ahmedabad)
2240 .
2241 . * AD2: July 2009 (kochi bubaneshwar)
2242 .
2243 . * AD3: September 2014 ( bubaneshwar hyderabad)
2244 .
2245 . * AD4: July 2019 south asia floods (Guwhati)
2246 .
2247 . *ADD1
2248 . replace dif = Count-10 if Count < 17
     (256 real changes made)
2249 . replace affected_event=1 if Count<17 & region=="ahmedabad"
     (16 real changes made)
2250 .
2251 . *AD2
2252 . replace dif = Count-46 if inrange(Count,35,50)
     (256 real changes made)
2253 . replace affected_event=1 if inrange(Count,35,50) & (region=="bubaneshwar" |
     > region=="kochi")
     (32 real changes made)
2254 .
2255 . *AD3
2256 . replace dif = Count-108 if inrange(Count, 101, 115)
     (240 real changes made)
2257 . replace affected event=1 if inrange(Count, 101, 115) & (region=="bubaneshwar"
     > | region=="hyderabad")
     (30 real changes made)
2258 .
2259 . *AD4
2260 . replace dif = Count-166 if Count >= 161
     (176 real changes made)
```

```
2261 . replace affected_event=1 if Count >= 161 & region=="guwahati"
     (11 real changes made)
2262 . *generate affected region dummy for event study
2263 .
2264 .
2265 . ** Original Disasters:
2266 . *ND1: August 2007
2267 . replace dif=Count-23 if inrange(Count,17,35)
     (304 real changes made)
2268 . replace affected event=1 if inrange(Count, 17, 35) & (region=="kolkata" | regi
     > on=="patna")
     (38 real changes made)
2269 .
2270 .
2271 . *ND2: April 2010
2272 . replace dif=Count-55 if inrange(Count,51,73)
     (368 real changes made)
2273 . replace affected_event=1 if inrange(Count,51,73) & (region=="bubaneshwar" |
     > region=="guwahati")
     (46 real changes made)
2274 .
2275 . *ND3: June 2013
2276 . replace dif=Count-93 if inrange(Count,74,100)
     (432 real changes made)
2277 . replace affected event=1 if inrange(Count,74,100) & (region=="chandigarh" |
     > region=="new_delhi" | region=="kanpur")
     (81 real changes made)
2278 .
2279 .
2280 . *ND4: November 2015
```

```
2281 . replace dif=Count-122 if inrange(Count,116,137)
     (352 real changes made)
2282 . replace affected event=1 if inrange(Count, 116, 137) & (region=="hyderabad"
     > | region=="chennai")
     (44 real changes made)
2283 .
2284 . *ND5: August 2018
2285 . replace dif=Count-155 if inrange(Count,138,160)
     (368 real changes made)
2286 . replace affected_event=1 if inrange(Count,138,160) & region=="kochi"
     (23 real changes made)
2287 .
2288 .
2289 .
2290 .
2291 . *normal five disasters
2292 . /*
    > generate dif=1000
    > replace dif=Count-23 if Count<39</pre>
    > replace dif=Count-55 if Count>=39 & Count <74
    > replace dif=Count-93 if Count>=74 & Count <107
     > replace dif=Count-122 if Count>=107 & Count <138
    > replace dif=Count-155 if Count>=138
    >
    > *generate affected region dummy for event study
    > gen affected event=0
    > replace affected_event=1 if (Count<39 & (region=="kolkata" | region=="patna"
     > replace affected_event=1 if (Count>=39 & Count <74 & (region=="bubaneshwar"
    > | region=="guwahati" | region=="kolkata" | region=="patna"))
    > replace affected event=1 if (Count>=74 & Count <107 & (region=="chandigarh"
    > | region=="new_delhi" | region=="kanpur"))
     > replace affected_event=1 if (Count>=107 & Count <138 & (region=="hyderabad
    > " | region=="chennai"))
     > replace affected_event=1 if (Count>=138 & region=="kochi")
     > */
```

2293 .
2294 . *bro region date dif Count affected_event
2295 .
2296 .
2297 .
2298 .
2299 .
2300 . *time to event variables as factors
2301 . tostring dif, replace
 dif was float now str3

2302 .

2303 . destring dif, replace dif: all characters numeric; replaced as byte

2304 . tab dif, $gen(t_fe)$

dif	Freq.	Percent	Cum.
-19	16	0.58	0.58
-18	16	0.58	1.17
-17	32	1.17	2.34
-16	32	1.17	3.51
-15	32	1.17	4.68
-14	32	1.17	5.85
-13	32	1.17	7.02
-12	32	1.17	8.19
-11	32	1.17	9.36
-10	48	1.75	11.11
- 9	64	2.34	13.45
-8	64	2.34	15.79
-7	80	2.92	18.71
-6	112	4.09	22.81
-5	128	4.68	27.49
-4	144	5.26	32.75
-3	144	5.26	38.01
-2	144	5.26	43.27
-1	144	5.26	48.54
0	144	5.26	53.80
1	144	5.26	59.06
2	144	5.26	64.33
3	144	5.26	69.59
4	144	5.26	74.85
5	128	4.68	79.53
6	96	3.51	83.04
7	80	2.92	85.96
8	48	1.75	87.72
9	48	1.75	89.47
10	48	1.75	91.23

```
11
                 48
                            1.75
                                         92.98
   12
                 48
                            1.75
                                         94.74
   13
                 32
                            1.17
                                         95.91
   14
                 32
                            1.17
                                         97.08
   15
                 32
                            1.17
                                         98.25
   16
                 16
                            0.58
                                         98.83
   17
                 16
                            0.58
                                         99.42
   18
                 16
                            0.58
                                        100.00
Total
                          100.00
              2,736
```

```
2305 .
2306 . *bro region date dif Count
2308 . * Identify the pre-treatment month for the unaffected regions.
2309 . * These are the relavant pre-treatment dummies = 1 for the specific month fo
     > r the affected regions
2310 . forvalues i=1/18 {
       2. local j=19-`i'
       3. gen pre_`j'=t_fe`i'
       4. }
2311 .
2312 . * Identify the post-treatment month for the affected regions.
2313 . * These are the relavant post-treatment dummies = 1 for the specific month f
     > or the affected regions
2314 . forvalues i=20/38{
       2. local j=\i'-19
       3. gen post_`j'=t_fe`i'
       4. }
2315 .
2316 .
2318 . *** 2.1) Event study regression on AFFECTED REGIONS:
2319 .
2320 . reg fdi_ihs pre* post* $control i.region1 if (affected_event==1), robust
     Linear regression
                                                      Number of obs
                                                                                 318
                                                      F(49, 268)
                                                                               61.41
                                                      Prob > F
                                                                        =
                                                                              0.0000
                                                      R-squared
                                                                              0.7476
                                                      Root MSE
                                                                              1.3937
```

	 				 	
6.12. 23	ga a SSI aliani	Robust		5 5 1	50505	
fdi_ihs	Coefficient	std. err.	t 	P> t	[95% conf.	interval]
pre_18	.7439755	.5159117	1.44	0.150	27178	1.759731
pre_17	.3180359	.4758776	0.67	0.505	6188981	1.25497
pre_16	.330497	.7056466	0.47	0.640	-1.058819	1.719813
pre_15	.6457979	.5119046	1.26	0.208	3620682	1.653664
pre_14	.4392748	.3918985	1.12	0.263	3323167	1.210866
pre_13	.5861059	.4317135	1.36	0.176	2638755	1.436087
pre_12	.0779173	.4717134	0.17	0.869	850818	1.006653
pre_11	.8056484	.5041495	1.60	0.111	1869489	1.798246
pre_10	.6387007	.387838	1.65	0.101	1248961	1.402298
pre_9	.3023467	.5159902	0.59	0.558	7135632	1.318257
pre_8	.4654718	.4589965	1.01	0.311	4382259	1.36917
pre_7	.2322393	.4345043	0.53	0.593	6232368	1.087715
pre_6	.0488629	.4299701	0.11	0.910	7976859	.8954118
pre_5	1488819	.4614631	-0.32	0.747	-1.057436	.7596722
pre_4	3417887	.3889296	-0.88	0.380	-1.107535	.4239574
pre_3	0338429	.4094877	-0.08	0.934	8400649	.7723792
pre_2	.1953379	.4468485	0.44	0.662	6844422	1.075118
pre_1	3459337	.4121887	-0.84	0.402	-1.157473	.4656061
post_1	-1.799028	.471385	-3.82	0.000	-2.727117	8709393
post_2	-2.033601	.4122653	-4.93	0.000	-2.845292	-1.221911
post_3	-1.973398	.5113066	-3.86	0.000	-2.980087	9667092
post_4	-2.469385	.4846305	-5.10	0.000	-3.423552	-1.515218
post_5	-2.208027	.5489894	-4.02	0.000	-3.288907	-1.127146
post_6	-3.044562	.6157308	-4.94	0.000	-4.256847	-1.832277
post_7	-2.854827	.657318	-4.34	0.000	-4.14899	-1.560663
post_8	-3.095787	.6321691	-4.90	0.000	-4.340436	-1.851137
post_9	-2.248171	.4654049	-4.83	0.000	-3.164485	-1.331856
post_10	-2.96412	.5879817	-5.04	0.000	-4.121771	-1.806469
post_11	-2.901422	.6487061	-4.47	0.000	-4.17863	-1.624213
post_12	-1.965752	.5102833	-3.85	0.000	-2.970426	9610784
post_13	-2.44639	.7001739	-3.49	0.001	-3.824931	-1.067848
post_14	-2.987246	.3935291	-7.59	0.000	-3.762047	-2.212444
post_15	-3.738138	1.044314	-3.58	0.000	-5.79424	-1.682035
post_16	-2.730888	.3242339	-8.42	0.000	-3.369257	-2.092518
post_17	-3.309723	1.202926	-2.75	0.006	-5.67811	9413369
post_18	-3.641547	.9556636	-3.81	0.000	-5.523111	-1.759984
post_19	-2.594191	.3638884	-7.13	0.000	-3.310635	-1.877747
lag_lgdp	1.738902	.4581158	3.80	0.000	.8369389	2.640866
lag_lpop	-1.110046	4.392283	-0.25	0.801	-9.757816	7.537723
region1						
bubaneshwar	-3.340155	1.18051	-2.83	0.005	-5.664407	-1.015902
chandigarh	-3.468497	.6665496	-5.20	0.000	-4.780837	-2.156158
chennai	5895139	1.025424	-0.57	0.566	-2.608424	1.429397
guwahati	-2.851225	.827622	-3.45	0.001	-4.480693	-1.221757

```
hyderabad
              -.7057879
                         .7172653
                                     -0.98
                                             0.326
                                                      -2.117979
                                                                    .7064035
  kanpur
             -4.091541
                         5.596821
                                     -0.73
                                             0.465
                                                      -15.11087
                                                                   6.927789
   kochi
                                     -1.83
                                             0.069
             -4.117681
                         2.252156
                                                      -8.551849
                                                                    .3164874
 kolkata
             -1.101836
                                     -0.54
                                             0.592
                                                                   2.936755
                         2.051238
                                                      -5.140427
new_delhi
             -1.418327
                         5.168411
                                     -0.27
                                             0.784
                                                      -11.59418
                                                                   8.757525
             -1.508185
                         2.693395
                                     -0.56
                                             0.576
                                                      -6.811089
                                                                   3.794719
   patna
              -3.573685
                         43.66382
                                     -0.08
                                             0.935
                                                      -89.54143
                                                                   82.39406
    _cons
```

2322 .

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 pre 18

t(268) = 1.4421Prob>|t| = 0.2747

95% confidence set for null hypothesis expression: [-1.275, 3.237]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 pre_17

t(268) = 0.6683Prob>|t| = 0.5564

95% confidence set for null hypothesis expression: [-1.577, 3.257]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 pre_16

t(268) = 0.4684Prob>|t| = 0.6488

95% confidence set for null hypothesis expression: [-3.943, 2.401]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 pre_15

$$t(268) = 1.2616$$

Prob>|t| = 0.2658

95% confidence set for null hypothesis expression: [-.7512, 2.098]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 pre_14

$$t(268) = 1.1209$$

Prob>|t| = 0.2724

95% confidence set for null hypothesis expression: [-.5538, 1.541]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 pre_13

$$t(268) = 1.3576$$

Prob>|t| = 0.2122

95% confidence set for null hypothesis expression: [-.7039, 1.69]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 pre_12

$$t(268) = 0.1652$$

Prob>|t| = 0.8835

95% confidence set for null hypothesis expression: [-1.136, 2.024]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 pre_11

$$t(268) = 1.5980$$

Prob> $|t| = 0.1796$

95% confidence set for null hypothesis expression: [-.8546, 1.976]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 pre_10

t(268) = 1.6468Prob>|t| = 0.1238

95% confidence set for null hypothesis expression: [-.4047, 1.583]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 pre_9

t(268) = 0.5860Prob>|t| = 0.5813

95% confidence set for null hypothesis expression: [-1.073, 1.701]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 pre 8

t(268) = 1.0141Prob>|t| = 0.3269

95% confidence set for null hypothesis expression: [-.7611, 1.517]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 pre_7

t(268) = 0.5345Prob>|t| = 0.5905

95% confidence set for null hypothesis expression: [-.8812, 1.347]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 pre_6

t(268) = 0.1136Prob>|t| = 0.9113

95% confidence set for null hypothesis expression: [-.9648, 1.032]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 pre_5

t(268) = -0.3226Prob>|t| = 0.7470 95% confidence set for null hypothesis expression: [-1.136, .826]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 pre_4

$$t(268) = -0.8788$$

Prob>|t| = 0.3639

95% confidence set for null hypothesis expression: [-1.157, .4947]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 pre_3

$$t(268) = -0.0826$$

Prob>|t| = 0.9286

95% confidence set for null hypothesis expression: [-.8785, .814]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 pre_2

$$t(268) = 0.4371$$

Prob>|t| = 0.6536

95% confidence set for null hypothesis expression: [-.7458, 1.124]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 pre_1

$$t(268) = -0.8393$$

Prob>|t| = 0.3874

95% confidence set for null hypothesis expression: [-1.189, .5129]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 post 1

$$t(268) = -3.8165$$

Prob>|t| = 0.0006

95% confidence set for null hypothesis expression: [-2.561, -1.012]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 post_2

$$t(268) = -4.9327$$

Prob>|t| = 0.0000

95% confidence set for null hypothesis expression: [-2.629, -1.435]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 post 3

$$t(268) = -3.8595$$

Prob>|t| = 0.0004

95% confidence set for null hypothesis expression: [-2.78, -1.119]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 post_4

$$t(268) = -5.0954$$

Prob>|t| = 0.0000

95% confidence set for null hypothesis expression: [-3.158, -1.765]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 post_5

$$t(268) = -4.0220$$

Prob>|t| = 0.0001

95% confidence set for null hypothesis expression: [-3.09, -1.321]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 post_6

$$t(268) = -4.9446$$

Prob>|t| = 0.0000

95% confidence set for null hypothesis expression: [-3.932, -2.132]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 post_7

$$t(268) = -4.3431$$

Prob>|t| = 0.0000

95% confidence set for null hypothesis expression: [-3.835, -1.867]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 post_8

$$t(268) = -4.8971$$

Prob>|t| = 0.0000

95% confidence set for null hypothesis expression: [-3.962, -2.179]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 post 9

$$t(268) = -4.8306$$

Prob>|t| = 0.0016

95% confidence set for null hypothesis expression: [-2.788, -1.669]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 post_10

$$t(268) = -5.0412$$

Prob>|t| = 0.0004

95% confidence set for null hypothesis expression: [-3.571, -2.384]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 post_11

$$t(268) = -4.4726$$

Prob>|t| = 0.0001

95% confidence set for null hypothesis expression: [-3.642, -2.134]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 post_12

$$t(268) = -3.8523$$

Prob>|t| = 0.0218

95% confidence set for null hypothesis expression: [-2.62, -1.041]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 post_13

$$t(268) = -3.4940$$

Prob>|t| = 0.0003

95% confidence set for null hypothesis expression: [-3.492, -1.356]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 post_14

$$t(268) = -7.5909$$

Prob>|t| = 0.0019

95% confidence set for null hypothesis expression: [-3.329, -2.647]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 post_15

$$t(268) = -3.5795$$

Prob>|t| = 0.0032

95% confidence set for null hypothesis expression: [-5.113, -2.748]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 post_16

$$t(268) = -8.4226$$

Prob>|t| = 0.0041

95% confidence set for null hypothesis expression: [-3.019, -2.45]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 post 17

$$t(268) = -2.7514$$

Prob>|t| = 0.1358

95% confidence set for null hypothesis expression: [., .]
(A confidence interval could not be bounded. Try widening the search range wit > h the gridmin() and gridmax() options.)

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 post_18

t(268) = -3.8105Prob>|t| = 0.1451

95% confidence set for null hypothesis expression: [., .]
(A confidence interval could not be bounded. Try widening the search range wit > h the gridmin() and gridmax() options.)

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 post_19

t(268) = -7.1291Prob>|t| = 0.0546

95% confidence set for null hypothesis expression: [-6.279, .2206]

2337 . mat pre= A[1,1...18]

```
2338 . mat post= A[1,19...37]
2339 .
2340 . * Need to set the reference month at 0:
2341 . mat pre_post=(pre, 0, post)
2342 . mat list pre_post
   pre post[1,38]
         > re 6
   y1 .74397553 .31803593 .33049701 .64579791 .43927479 .58610588 .
   > 07791731 .80564839 .63870072 .30234672 .4654718 .2322393 .0488
   > 6294
         pre_5 pre_4 pre_3 pre_2 pre_1 c19
   > post_1 post_2 post_3 post_4 post_5 post_6 po
   > st 7
   y1 -.1488187 -.34178874 -.03384286 .1953379 -.34593368
   > .7990281 -2.0336013 -1.9733978 -2.4693851 -2.2080267 -3.0445618 -2.854
   > 8266
         post_8 post_9 post_10 post_11 post_12 post_13
   > post_14    post_15    post_16    post_17    post_18    post_19
   y1 -3.0957866 -2.2481707 -2.9641203 -2.9014218 -1.9657523 -2.4463895 -2
   > .9872455 -3.7381378 -2.7308878 -3.3097233 -3.6415472 -2.594191
2343 .
2344 .
2345 . ** Create a counter column:
2346 . mat Z=J(1,38,0)
2347 \cdot local j=1
2348 . forvalues i=-18/19 {
     2. mat Z[1, j'] = i'
     3. local j=`j'+1
     4. }
```

```
2349 .
2350 .
2351 . ** Grab the confidence intervals and append them together:
2352 . mat CI=r(CI 1)
2353 .
2354 . forvalues i=2/18 {
      2. mat CI=CI\r(CI_\i')
      3. }
2355 . mat zero=J(1,2,0)
2356 . mat CI = CI \setminus zero
2357 .
2358 . forvalues i=19/37 {
      2. mat CI=CI\r(CI \i')
      3. }
2359 . mat list CI
    CI[38,2]
                                 hi
                     10
     pre_18 -1.2745527
                          3.2369786
     pre_17 -1.5766486
                         3.2566195
     pre_16 -3.9427571
                        2.4012168
     pre_15 -.75122947
                         2.0978809
     pre 14 -.5537902
                        1.5406287
     pre_13 -.70385985
                         1.6895305
                        2.0243379
     pre 12 -1.136256
     pre_11
              -.8545696
                        1.9763535
     pre_10 -.40470856
                        1.5832025
      pre_9 -1.0733588
                        1.7008477
      pre_8 -.76112325 1.5169342
      pre_7 -.88124883
                        1.346798
      pre 6 -.96483774
                        1.0316355
      pre_5 -1.1361345
                        .82599706
                        .49474869
      pre_4 -1.1566528
      pre_3 -.87850784 .81396112
      pre_2 -.74583248
                          1.1240939
      pre_1 -1.1888015
                        .51286736
         r1
     post 1 -2.5614468
                        -1.0123548
     post_2 -2.6294994 -1.4346091
     post 3 -2.7795809
                        -1.119243
     post_4 -3.1575058 -1.7645647
     post_5 -3.0900135 -1.3212284
     post 6 -3.9318232 -2.1322173
     post_7 -3.8349845 -1.8673517
```

```
post_8 -3.9619567 -2.1794189
     post_9 -2.7882215 -1.6690322
     post 10 -3.5706934 -2.3835061
     post 11 -3.6423728 -2.1338945
    post_12 -2.6199599 -1.0410213
     post 13 -3.4923176 -1.3555506
    post_14 -3.3293763 -2.6470383
    post_15 -5.1132276 -2.7479268
    post_16 -3.0188646 -2.4500724
    post_17
    post_18
    post_19 -6.2791649
                         .22056094
2360 .
2361 .
2362 . ** Build Coefficient and Confidence Interval Matrix:
2363 . mat AZ= (Z', pre post')
2364 . mat AZ = AZ,CI
2365 . mat list AZ
    AZ[38,4]
                 r1
                                         10
                                                     hi
                             у1
                -18
                      .74397553 -1.2745527
     c1
                                              3.2369786
     c2
                -17
                      .31803593 -1.5766486
                                              3.2566195
                -16
                       .33049701
                                 -3.9427571
                                              2.4012168
      c3
      c4
                -15
                      .64579791 -.75122947
                                              2.0978809
      c5
                -14
                       .43927479
                                  -.5537902
                                              1.5406287
                -13
                      .58610588 -.70385985
      c6
                                              1.6895305
                -12
                       .07791731
                                 -1.136256
                                              2.0243379
      c7
                -11
      c8
                       .80564839
                                 -.8545696
                                              1.9763535
                -10
                       .63870072 -.40470856
                                              1.5832025
     c9
                 -9
                      .30234672 -1.0733588
     c10
                                              1.7008477
                 -8
                       .4654718 -.76112325
                                              1.5169342
     c11
     c12
                 -7
                       .2322393 -.88124883
                                               1.346798
                 -6
                      .04886294 -.96483774
    c13
                                              1.0316355
                 -5 -.14888187 -1.1361345
    c14
                                              .82599706
    c15
                 -4 -.34178874 -1.1566528
                                              .49474869
                 -3 -.03384286
                                 -.87850784
     c16
                                               .81396112
     c17
                 -2
                       .1953379
                                 -.74583248
                                              1.1240939
    c18
                 -1 -.34593368
                                 -1.1888015
                                               .51286736
    c19
                  0
                  1 -1.7990281
                                 -2.5614468
                                            -1.0123548
     c20
     c21
                  2 -2.0336013 -2.6294994
                                            -1.4346091
     c22
                  3 -1.9733978 -2.7795809
                                              -1.119243
                                            -1.7645647
    c23
                  4 -2.4693851 -3.1575058
                 5 -2.2080267 -3.0900135 -1.3212284
    c24
                   6 -3.0445618 -3.9318232 -2.1322173
     c25
```

```
7 -2.8548266 -3.8349845 -1.8673517
     c26
     c27
                   8 -3.0957866 -3.9619567 -2.1794189
                   9 -2.2481707 -2.7882215 -1.6690322
     c28
                  10 -2.9641203 -3.5706934 -2.3835061
     c29
     c30
                  11 -2.9014218 -3.6423728 -2.1338945
                  12 -1.9657523 -2.6199599 -1.0410213
     c31
     c32
                  13 -2.4463895 -3.4923176 -1.3555506
     c33
                  14 -2.9872455 -3.3293763 -2.6470383
     c34
                  15 -3.7381378 -5.1132276 -2.7479268
     c35
                  16 -2.7308878 -3.0188646 -2.4500724
                  17 -3.3097233
     c36
                  18 -3.6415472
     c37
     c38
                  19 -2.594191 -6.2791649
                                               .22056094
2366 .
2367 . * Create variables from matrix so that you can graph them:
2368 . symat AZ, names(direct)
2369 . sort direct1
2370 .
2371 .
2372 . ** Coefficient estimates and CI are in IHS terms.
2373 . * We can transform coefficient estimates in relative terms (i.e. % change):
2374 \cdot \text{forvalues i} = 5/7  {
       2. local j=\i'-3
       3. gen directi' = (\exp(\operatorname{direct}'j')-1)*100
       4. }
     (2,698 missing values generated)
     (2,700 missing values generated)
     (2,700 missing values generated)
2375 .
2376 .
2377 . * We can also transform coefficient estimates in absolute terms ($ mil.):
2378 . ** For this we need to know the average value of FDI in the pre-treatment mo
     > nth for each affected region
```

```
2379 . ** Then we take the average of that because the coefficient estimate is eval
    > uated against this average:
2380 .
2381 . * Generate pre-treatment average FDI inflows for each affected region:
2382 . egen pre_fdi_avg = mean(fdi) if inlist(dif, -1) & affected_event==1
     (2,720 missing values generated)
2383 . bysort id (pre_fdi_avg): replace pre_fdi_avg = pre_fdi_avg[1]
     (2720 real changes made)
2384 . sum pre_fdi_avg
         Variable
                           Obs
                                      Mean
                                               Std. dev.
                                                               Min
                                                                          Max
      pre fdi avg
                         2,736
                                  125.7708
                                                      0
                                                          125.7708
                                                                     125.7708
2385 .
2386 .
2387 . * Convert relative changes to absolute changes
2388 . /* Remember direct2 is already in percentage terms */
2389 .
2390 . forvalues i=8/10 {
       2. local j=\i'-6
       3. gen direct`i'= asinh(pre_fdi_avg) + direct`j'
       4. replace direct`i'=sinh(direct`i') - pre_fdi_avg
       5. }
     (2,698 missing values generated)
     (38 real changes made)
     (2,700 missing values generated)
     (36 real changes made)
     (2,700 missing values generated)
     (36 real changes made)
2391 .
2392 . * Let's graph the relative changes with CI and the absolute changes in FDI:
2393 . *** The confidence interval reaches to far and messes up the scale of the gr
     > aph.
```

```
2394 . ** We restrict the cofidence interval to max 300 see note on figure 2395 .
```

2396 .

2397 . * Direct FDI Effect:

2398 . sort direct1

2399 . sum direct2 direct3 direct4

Variable	Obs	Mean	Std. dev.	Min	Max
direct2	38	-1.211748	1.562193	-3.738138	.8056484
direct3	36	-2.216274	1.515578	-6.279165	0
direct4	36	.0037823	1.82605	-2.747927	3.256619

2400 . sum direct5 direct8 pre_fdi_avg if direct1>0

Variable	Obs	Mean	Std. dev.	Min	Max
direct5	19	-92.12677	4.204428	-97.62016	-83.45404
direct8	19	-115.9024	5.305159	-122.8612	-104.9725
pre_fdi_avg	2,717	125.7708	0	125.7708	125.7708

```
2401 .
```

2402 . *replace direct1 = direct1-2

2403 . *replace direct2 = direct2-2

2404 . *replace direct3 = direct3-2

2405 . *replace direct4 = direct4-2

2406 .

2407 .

2408 . * Graph:

2409 . * Note: If command excludes the end points where we only have one treated re > gion:

> (connected direct2 direct1 if inrange(direct1,-8,8), msize(medium) x
> line(0) yline(0) lc(ebblue) mc(ebblue%70) msymbol(circle)) ///

> scheme(plotplain) xline(0) yline(0, axis(2 1)) ///

> name(event_direct, replace) xscale(r(-8,8)) xlabel(-8(4)8) ///

ylabel(, angle(horizontal)) yscale(titlegap(*+1)) ///

> legend(off)

```
2411 .
2412 . graph export _3results/figures/figureB2a.pdf, replace
     file
         /Users/aidan/Dropbox/India FDI/friedt toner-rodgers replication/ 3result
         > s/figures/figureB2a.pdf saved as PDF format
2413 .
2414 .
2415 .
2416 .
2417 . *** 2.2) Event study regression on unaffected regions:
2418 .
2419 .
2420 .
2421 .
2422 . ** Reload the data (since I had droped two regions for the dynamic analysis)
2423 .
2424 . *use clean_data, clear
2425 . drop pre* post* direct*
2426 .
2427 . bro region date dif Count affected_event
2428 .
2429 . * Identify the pre-treatment month for the unaffected regions.
2430 . * These are the relavant pre-treatment dummies = 1 for the specific month fo
     > r the affected regions
2431 \cdot \text{forvalues } i=1/19 \ \{
       2. local j=20-`i'
       3. gen pre_`j'=t_fe`i'
       4. }
2432 .
2433 . * Identify the post-treatment month for the affected regions.
2434 . * These are the relavant post-treatment dummies = 1 for the specific month f
     > or the affected regions
```

```
2435 • forvalues i=21/38{
       2. local j=\i'-20
       3. gen post `j'=t fe`i'
2436 .
2437 .
2438 .
2439 . * Drop the t fe* which are no longer needed:
2440 . *drop t_fe*
2441 .
2442 .
2443 . sort region date
2444 .
2445 . reg fdi_ihs pre* post* $control i.region1 if (affected_event==0), robust
                                                        Number of obs
     Linear regression
                                                                                   2,370
                                                                            =
                                                        F(54, 2315)
                                                                                  176.52
                                                                            =
                                                        Prob > F
                                                                            =
                                                                                  0.0000
                                                        R-squared
                                                                            =
                                                                                  0.7116
                                                        Root MSE
                                                                                  1.2815
                                                                            =
                                    Robust
          fdi ihs
                     Coefficient
                                   std. err.
                                                   t
                                                        P>|t|
                                                                   [95% conf. interval]
           pre 19
                      -.3152271
                                   .3035583
                                                -1.04
                                                        0.299
                                                                  -.9105016
                                                                                .2800475
           pre_18
                      -.2202792
                                   .3723417
                                                -0.59
                                                        0.554
                                                                  -.9504373
                                                                                .5098788
           pre 17
                      -.3260174
                                   .2177748
                                                -1.50
                                                        0.135
                                                                  -.7530714
                                                                                .1010366
                                                -0.63
                                                        0.528
           pre_16
                      -.1795069
                                   .2843267
                                                                  -.7370685
                                                                                .3780546
                                                                                .3077041
           pre_15
                      -.1511278
                                   .2339798
                                                -0.65
                                                        0.518
                                                                  -.6099597
                                                -1.63
           pre_14
                      -.4168191
                                   .2562175
                                                        0.104
                                                                  -.9192588
                                                                                .0856207
                                                -2.47
                                                        0.013
           pre_13
                      -.7659727
                                   .3097328
                                                                  -1.373355
                                                                               -.1585899
           pre_12
                      -.5663501
                                   .2358761
                                                -2.40
                                                        0.016
                                                                  -1.028901
                                                                               -.1037996
                                   .2480245
                                                -0.72
                                                        0.473
                                                                  -.6644306
                      -.1780572
                                                                                .3083161
           pre 11
                      -.3469393
                                   .2709929
                                                -1.28
                                                        0.201
                                                                  -.8783535
           pre_10
                                                                                .1844749
            pre_9
                      -.1713816
                                   .2225624
                                                -0.77
                                                        0.441
                                                                  -.6078242
                                                                                .2650609
```

-.0809026

-.1562347

-.0743274

-.0231067

-.1546603

-.0465035

.0780576

.1961716

.0520445

.0489553

.0652694

pre 8

pre_7

pre_6

pre_5 pre_4

pre_3

pre 2

pre_1
post_1

post 2

post_3

.1697917

.1758088

.1791434

.1551311

.1613968

.1550859

.1620534

.1588676

.1727723

.1616848

.201315

-0.48

-0.78

-0.42

-0.13

-1.00

0.48

-0.30

1.21

0.33

0.28

0.40

0.634

0.438

0.672

0.897

0.319

0.629

0.764

0.226

0.743

0.777

0.686

-.4138623

-.5510112

-.4190865

-.4588707

-.2384399

-.3506254

-.1216133

-.2594932

-.2898493

-.2517929

-.374405

.2520572

.2385419

.2704317

.3281917

.1495502

.394555

.2576183

.5139565

.3635822

.3877599

.3823316

	_					
post_4	.2446888	.1604955	1.52	0.127	0700412	.5594188
post_5	.2396551	.1678126	1.43	0.153	0894236	.5687337
post_6	.2242253	.190646	1.18	0.240	1496295	.5980801
post_7	.2028512	.196581	1.03	0.302	1826421	.5883445
post_8	.3507228	.192006	1.83	0.068	0257989	.7272444
post_9	.4671613	.2105018	2.22	0.027	.0543696	.879953
post_10	.441133	.2154694	2.05	0.041	.0185998	.8636661
post_11	.2894078	.2184252	1.32	0.185	1389218	.7177373
post_12	.3482994	.2197271	1.59	0.113	0825831	.7791818
post_13	.1978601	.2513204	0.79	0.431	2949764	.6906966
post_14	.1488548	.2945033	0.51	0.613	4286629	.7263726
post_15	.1078737	.1989712	0.54	0.588	2823067	.4980541
post_16	.6653635	.31543	2.11	0.035	.0468086	1.283918
post_17	.4523579	.3998252	1.13	0.258	331695	1.236411
post_18	.4225639	.2583405	1.64	0.102	084039	.9291668
lag_lgdp	.5972171	.0640258	9.33	0.000	.4716633	.722771
lag_lpop	.88129	.0946314	9.31	0.000	.6957188	1.066861
region1						
bangalore	1.820827	.0862906	21.10	0.000	1.651612	1.990042
bhopal	-2.240981	.1456048	-15.39	0.000	-2.52651	-1.955451
bubaneshwar	-3.267678	.1456004	-22.44	0.000	-3.553199	-2.982157
chandigarh	-2.073163	.1656043	-12.52	0.000	-2.397911	-1.748415
chennai	.7171427	.0906748	7.91	0.000	.5393304	.894955
guwahati	-1.887049	.163893	-11.51	0.000	-2.208442	-1.565657
hyderabad	.0254767	.1223188	0.21	0.835	2143891	.2653425
jaipur	-2.692302	.1331195	-20.22	0.000	-2.953347	-2.431256
kanpur	-4.714722	.1775782	-26.55	0.000	-5.062951	-4.366493
kochi	-1.715622	.1591437	-10.78	0.000	-2.027701	-1.403543
kolkata	-2.492635	.1348628	-18.48	0.000	-2.757099	-2.22817
mumbai	.7967019	.0932262	8.55	0.000	.6138865	.9795174
new_delhi	2.154062	.1525405	14.12	0.000	1.854932	2.453193
panaji	1.94991	.2982707	6.54	0.000	1.365004	2.534815
patna	-4.626423	.1410351	-32.80	0.000	-4.902991	-4.349854
_cons	-12.68037	.7998834	-15.85	0.000	-14.24893	-11.1118

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 pre 19

t(2315) = -1.0384Prob>|t| = 0.3209

95% confidence set for null hypothesis expression: [-1.013, .4285]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 pre_18

t(2315) = -0.5916Prob>|t| = 0.5744

95% confidence set for null hypothesis expression: [-1.119, .7293]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 pre_17

t(2315) = -1.4970Prob>|t| = 0.1425

95% confidence set for null hypothesis expression: [-.7689, .1181]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 pre 16

t(2315) = -0.6313Prob>|t| = 0.5760

95% confidence set for null hypothesis expression: [-.7628, .387]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 pre_15

$$t(2315) = -0.6459$$

Prob>|t| = 0.5250

95% confidence set for null hypothesis expression: [-.644, .3491]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 pre_14

$$t(2315) = -1.6268$$

Prob>|t| = 0.1230

95% confidence set for null hypothesis expression: [-.9474, .1238]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 pre_13

$$t(2315) = -2.4730$$

Prob>|t| = 0.0101

95% confidence set for null hypothesis expression: [-1.364, -.1776]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 pre_12

$$t(2315) = -2.4010$$

Prob>|t| = 0.0223

95% confidence set for null hypothesis expression: [-1.028, -.09922]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 pre_11

$$t(2315) = -0.7179$$

Prob>|t| = 0.4778

95% confidence set for null hypothesis expression: [-.7018, .346]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 pre_10

t(2315) = -1.2803Prob>|t| = 0.2180

95% confidence set for null hypothesis expression: [-.8885, .1916]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 pre_9

t(2315) = -0.7700Prob>|t| = 0.4425

95% confidence set for null hypothesis expression: [-.6256, .2765]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 pre 8

t(2315) = -0.4765Prob>|t| = 0.6298

95% confidence set for null hypothesis expression: [-.423, .2621]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 pre_7

t(2315) = -0.7761Prob>|t| = 0.4372

95% confidence set for null hypothesis expression: [-.5567, .2442]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 pre_6

t(2315) = -0.4228Prob>|t| = 0.6751

95% confidence set for null hypothesis expression: [-.4148, .2717]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 pre_5

t(2315) = -0.1290Prob>|t| = 0.8969 95% confidence set for null hypothesis expression: [-.3788, .333]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 pre_4

$$t(2315) = -0.9970$$

Prob>|t| = 0.3138

95% confidence set for null hypothesis expression: [-.4592, .1504]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 pre_3

$$t(2315) = 0.4836$$

Prob>|t| = 0.6198

95% confidence set for null hypothesis expression: [-.243, .3965]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 pre_2

$$t(2315) = -0.2999$$

Prob>|t| = 0.7639

95% confidence set for null hypothesis expression: [-.3494, .2557]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 pre_1

$$t(2315) = 1.2105$$

Prob>|t| = 0.2261

95% confidence set for null hypothesis expression: [-.1217, .5159]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 post 1

$$t(2315) = 0.3276$$

Prob>|t| = 0.7484

95% confidence set for null hypothesis expression: [-.258, .3647]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 post_2

t(2315) = 0.2834Prob>|t| = 0.7814

95% confidence set for null hypothesis expression: [-.2893, .3874]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 post 3

t(2315) = 0.4037Prob>|t| = 0.6859

95% confidence set for null hypothesis expression: [-.2561, .3871]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 post_4

t(2315) = 1.5246Prob>|t| = 0.1208

95% confidence set for null hypothesis expression: [-.06862, .5559]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 post_5

t(2315) = 1.4281Prob>|t| = 0.1499

95% confidence set for null hypothesis expression: [-.09009, .5673]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 post_6

t(2315) = 1.1761Prob>|t| = 0.2407

95% confidence set for null hypothesis expression: [-.1515, .6007]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 post_7

t(2315) = 1.0319Prob>|t| = 0.3026

95% confidence set for null hypothesis expression: [-.1919, .5926]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 post_8

t(2315) = 1.8266Prob>|t| = 0.0673

95% confidence set for null hypothesis expression: [-.02621, .7244]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 post 9

t(2315) = 2.2193Prob>|t| = 0.0293

95% confidence set for null hypothesis expression: [.04867, .8854]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 post_10

t(2315) = 2.0473Prob>|t| = 0.0498

95% confidence set for null hypothesis expression: [.0002384, .8752]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 post_11

t(2315) = 1.3250Prob>|t| = 0.1902

95% confidence set for null hypothesis expression: [-.1518, .7174]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 post_12

t(2315) = 1.5851Prob>|t| = 0.1206 95% confidence set for null hypothesis expression: [-.097, .792]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 post_13

t(2315) = 0.7873Prob>|t| = 0.4398

95% confidence set for null hypothesis expression: [-.3306, .7134]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 post_14

t(2315) = 0.5054Prob>|t| = 0.6239

95% confidence set for null hypothesis expression: [-.4833, .7779]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 post_15

t(2315) = 0.5422Prob>|t| = 0.5834

95% confidence set for null hypothesis expression: [-.3027, .516]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 post_16

t(2315) = 2.1094Prob>|t| = 0.0504

95% confidence set for null hypothesis expression: [-.001628, 1.302]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 post 17

t(2315) = 1.1314Prob>|t| = 0.2998

95% confidence set for null hypothesis expression: [-.4809, 1.381]

Wild bootstrap-t, null imposed, 9999 replications, Wald test, bootstrap cluste
> ring by region1 date, Rademacher weights:
 post 18

t(2315) = 1.6357Prob>|t| = 0.1275

95% confidence set for null hypothesis expression: [-.1692, .9753]

2448 .

2449 . ** These are too many coefficients to report and I like to create my own coe
> ffient plot

2450 . ** Here is the code:

2451 .

2452 . * Pull coefficients into matrix:

2453 . mat beta=e(b)

2454 .

2455 . ** Average Treatment Effects:

 $2456 \cdot \text{mat A} = \text{beta}[1,1..37]$

2457 . mat list A

A[1,37]

pre_19 pre_18 pre_17 pre_16 pre_15 pre_14

> pre_13 pre_12 pre_11 pre_10 pre_9 pre_8 p

> re_7

y1 -.31522706 -.22027922 -.3260174 -.17950694 -.15112779 -.41681906
> .7659727 -.56635014 -.17805721 -.34693932 -.17138164 -.08090255 -.1562

> 3468

pre_6 pre_5 pre_4 pre_3 pre_2 pre_1
> post_1 post_2 post_3 post_4 post_5 post_6 po
> st_7
y1 -.07432742 -.02310669 -.15466029 .07805758 -.04650352 .19617159 .
> 05204449 .04895532 .06526937 .24468879 .23965508 .22422528 .2028
> 5119

post_8 post_9 post_10 post_11 post_12 post_13
> post_14 post_15 post_16 post_17 post_18
y1 .35072278 .4671613 .44113297 .28940778 .34829937 .19786008 .
> 14885482 .1078737 .66536348 .45235788 .42256393

```
2458 .
2459 \cdot \text{mat pre} = A[1,1...19]
2460 \cdot \text{mat post} = A[1,20..37]
2461 .
2462 . * Need to set the reference month at 0:
2463 . mat pre_post=(pre, 0, post)
2464 . mat list pre_post
   pre post[1,38]
         pre_13 pre_12 pre_11 pre_10 pre_9 pre_8 p
    > re 7
    y1 -.31522706 -.22027922 -.3260174 -.17950694 -.15112779 -.41681906 -
    > .7659727 -.56635014 -.17805721 -.34693932 -.17138164 -.08090255 -.1562
   > 3468
          pre_6 pre_5 pre_4 pre_3 pre_2 pre_1
        c20 post_1 post_2 post_3 post_4 post_5 po
   > st_6
    y1 -.07432742 -.02310669 -.15466029 .07805758 -.04650352 .19617159
    > 0 .05204449 .04895532 .06526937 .24468879 .23965508 .2242
   > 2528
          post_7    post_8    post_9    post_10    post_11    post_12
   y1 .20285119 .35072278 .4671613 .44113297 .28940778 .34829937 .
   > 19786008 .14885482 .1078737 .66536348 .45235788 .42256393
2465 .
2466 .
2467 . ** Create a counter column:
2468 \cdot \text{mat } Z=J(1,38,0)
2469 \cdot local j=1
```

```
2470 \cdot \text{forvalues } i = -19/18
       2. mat Z[1, j'] = i'
       3. local j=`j'+1
       4. }
2471 .
2472 .
2473 . ** Grab the confidence intervals and append them together:
2474 . mat CI=r(CI 1)
2475 .
2476 . forvalues i=2/19 {
       2. mat CI=CI\r(CI_\i')
       3. }
2477 .
2478 \cdot \text{mat zero} = J(1,2,0)
2479 . mat CI = CI\zero
2480 .
2481 \cdot \text{forvalues } i=20/37 \ \{
       2. mat CI=CI\r(CI_\i')
       3. }
2482 . mat list CI
     CI[38,2]
                      lo
                                  hi
      pre 19 -1.0127668 .42845923
      pre_18 -1.1191599 .72926918
      pre_17 -.76893591 .11806107
      pre_16 -.7628479 .38695783
      pre_15 -.64401932 .34909198
      pre_14 -.94744318 .12384594
      pre 13 -1.3643907 -.17755032
      pre_12 -1.0279505 -.09921939
      pre_11 -.70180135 .34598207
      pre_10 -.88853885 .1915929
       pre_9 -.62561918
                           .2764626
       pre_8 -.42298411 .26207595
       pre_7 -.55674093
                           .2442108
       pre 6 -.41482423 .27171829
       pre_5 -.37877561 .33300852
       pre 4 -.45916988 .15043894
       pre_3
                 -.24304 .39650266
       pre_2 -.34941512 .25570116
       pre 1 -.12171708 .51590628
          r1
                       0
                                   0
```

```
post_1 -.25799835 .3646703
     post 2 -.28933335 .38735871
     post_3 -.25613205
                          .3871023
     post 4 -.0686154 .55592835
     post_5 -.0900854 .56733324
     post_6 -.15146042 .6007463
     post_7 -.19191939 .59261073
     post_8 -.02620619 .72437855
     post 9 .04866775 .88542503
    post_10 .00023842 .87518764
    post_11 -.15175562 .71735228
                         .7920219
    post 12 -.09700068
    post_13 -.33058182 .71344419
    post_14 -.48333035 .77788231
    post 15 -.30269396 .51601649
    post_16 -.0016283 1.3015139
    post 17 -.48093515 1.3808679
    post 18 -.16920912 .97531885
2483 .
2484 .
2485 . ** Build Coefficient and Confidence Interval Matrix:
2486 . * Calculate 95% confidence interval +/- 1.96*std. error:
2487 . mat AZ= (Z', pre_post')
2488 . mat AZ = AZ,CI
2489 .
2490 . * Create variables from matrix so that you can graph them:
2491 . svmat AZ, names(direct)
2492 . sort direct1
2493 .
2494 .
2495 . ** Coefficient estimates and CI are in IHS terms.
2496 . * We can transform coefficient estimates in relative terms (i.e. % change):
```

```
2497 \cdot \text{forvalues i} = 5/7  {
       2. local j=\i'-3
       3. gen direct`i' = (exp(direct`j')-1)*100
     (2,698 missing values generated)
     (2,698 missing values generated)
     (2,698 missing values generated)
2498 .
2499 .
2500 . * We can also transform coefficient estimates in absolute terms ($ mil.):
2501 . ** For this we need to know the average value of FDI in the pre-treatment mo
     > nth for each affected region
2502 . ** Then we take the average of that because the coefficient estimate is eval
     > uated against this average:
2503 .
2504 . * Generate pre-treatment average FDI inflows for each affected region:
2505 . egen pre fdi avg = mean(fdi) if inlist(dif, 0) & affected event==0
     (2,608 missing values generated)
2506 . bysort id (pre fdi avg): replace pre fdi avg = pre fdi avg[1]
     (2608 real changes made)
2507 . sum pre fdi avg
         Variable
                           Obs
                                       Mean
                                               Std. dev.
                                                                Min
                                                                           Max
      pre fdi avg
                         2,736
                                   139.5755
                                                      0
                                                          139.5755
                                                                      139.5755
2508 .
2509 .
2510 .
2511 . * Convert relative changes to absolute changes
2512 . /* Remember direct2 is already in percentage terms */
2513 .
2514 . forvalues i=8/10 {
       2. local j=\i'-6
       3. gen direct`i'= asinh(pre_fdi_avg) + direct`j'
       4. replace direct`i'=sinh(direct`i') - pre fdi avg
     (2,698 missing values generated)
     (38 real changes made)
     (2,698 missing values generated)
     (38 real changes made)
     (2,698 missing values generated)
     (38 real changes made)
```

2515 .

2516 . * Let's graph the relative changes with CI and the absolute changes in FDI:

2517 . *** The confidence interval reaches to far and messes up the scale of the ${\tt gr}$ > aph.

2518 . ** We restrict the confidence interval to max 300 see note on figure

2519 .

2520 .

2521 . * Indirect FDI Effect:

2522 . sort direct1

2523 . sum direct2 direct3 direct4

Variable	Obs	Mean	Std. dev.	Min	Max
direct2	38	.0281606	.3078819	7659727	.6653635
direct3	38	4239505	.3584976	-1.364391	.0486677
direct4	38	.4794125	.3411407	1775503	1.380868

2524 . sum direct5 direct8 pre_fdi_avg if direct1>0

Variable	Obs	Mean	Std. dev.	Min	Max
direct5	18	33.63287	23.59263	5.017343	94.51974
direct8	18	46.94427	32.93018	7.003181	131.929
pre_fdi_avg	2,716	139.5755	0	139.5755	139.5755

2525 .

2526 .

> (connected direct2 direct1 if inrange(direct1,-8,8), msize(medium) x
> line(0) yline(0) lc(ebblue) mc(ebblue%70) msymbol(smccircle)) ///

> , ytitle("Change in IHS of FDI", ax(1)) xtitle("Month Relative to Di
> saster") ///

> scheme(plotplain) xline(0, axis(1) lcolor(black)) yline(0, axis(2 1
>) lcolor(black)) ///

> name(event_indirect, replace) xscale(r(-8,8)) xlabel(-8(4)8) ///

> ylabel(, angle(horizontal)) yscale(titlegap(*+1)) ///

> legend(off)

(note: named style smccircle not found in class symbol, default attributes used)

```
2528 .
2529 .
2530 . graph export _3results/figures/figureB2b.pdf, replace
         /Users/aidan/Dropbox/India_FDI/friedt_toner-rodgers_replication/_3result
         > s/figures/figureB2b.pdf saved as PDF format
2531 .
2532 .
2533 .
2534 .
2535 .
2536 .
2537 .
2538 .
2539 .
2540 .
     end of do-file
2541 .
2542 .
2543 . translate replication.smcl replication.pdf
     file replication.pdf already exists
     <u>r(602);</u>
     end of do-file
     r(602);
```