HW 4 Math 672

Due Wed, Sept 28 in class.

- 0. Read Chapter 3 and Section 4.1.
- 1. Define a line in \mathbb{P}^2 to be a closed subset of the form $L = \{[x:y:z]|ax+by+cz=0\}$ for some constants $a,b,c \in \mathbb{C}$, not all zero.
 - (a) If (a, b, c) = (1, 0, 0), we saw in class that $\mathbb{P}^2 \setminus L = \{[x : y : z] | x \neq 0\} = U_x$ could be identified with \mathbb{C}^2 . Similarly, show that for any line L there is a bijection $\mathbb{P}^2 \setminus L \cong \mathbb{C}^2$.
 - (b) Prove that any two distinct lines L_1 and L_2 intersect in a single point.
 - (c) Prove that there is a unique line L through any two distinct points in \mathbb{P}^2 .
- 2. Consider the sequence $\{p_n=(n^3,2n^2,3n^3)|n\in\mathbb{N}\}\subset\mathbb{C}^3$. Identifying \mathbb{C}^3 with $U_0=\{[x_0:x_1:x_2:x_3]|x_0\neq 0\}\subset\mathbb{P}^3$ as in section 3.1, what is the limit of this sequence as $n\mapsto\infty$.
- 3. In \mathbb{A}^2 , let V be the line $\mathbb{V}(x)$, let W be the line $\mathbb{V}(x-1)$, and let Z be the curve $\mathbb{V}(y-x^2)$. Let \overline{V} , \overline{W} , and \overline{Z} denote the respective *projective closures* in \mathbb{P}^2 . Find all of the points in the following intersections: $\overline{V} \cap \overline{W}$, $\overline{V} \cap \overline{Z}$, $\overline{W} \cap \overline{Z}$.
- 4. 3.2.2
- 5. (a) Find an affine variety whose coordinate ring is isomorphic to $\mathbb{C}[x, 1/x, y]$, i.e. rational functions whose denominator is a polynomial in x. (hint: see exercise 4.1.1 and the preceding paragraphs)
 - (b) Find an affine variety whose coordinate ring is $\mathbb{C}[x, y, 1/(x^2 + y^2)]$, i.e. rational functions whose denominator is a polynomial in $x^2 + y^2$.