Tehát előző órán láttuk, hogy u_k és v_k -ra az alábbi feltételek adódtak: $u_k^2 - v_k^2 = 1$ és $[e_{\mathbf{k}} + nv(\mathbf{k})]u_{\mathbf{k}}v_{\mathbf{k}} + nv(\mathbf{k})(u_{\mathbf{k}}^2 + v_{\mathbf{k}}^2) = 0$. Utóbbi abból jött, hogy azt akartuk, hogy $\alpha_{\mathbf{k}}$ és $\alpha_{\mathbf{k}}^+$ bevezetésével a Hamilton operátor diagonális legyen, azaz a $H=U+H_{11}+H_{20}\,$ egyenletből a H_{20} tagra $H_{20} = 0$ fennálljon.

 $u_k = \operatorname{ch} \chi_k$ és $v_k = \operatorname{sh} \chi_k$ választással $u_k^2 - v_k^2 = 1$ egyenletet azonnal kielégítjük. A sh és ch függvények azonosságait felhasználva vegyük észre, hogy $2u_kv_k=\mathrm{sh}\big(2\chi_k\big)$ és $u_k^2+v_k^2=\mathrm{ch}\big(2\chi_k\big)$!

Felhasználva, hogy H-t diagonálisnak szeretnénk, $\operatorname{th}(2\chi_k) = -\frac{nv(\mathbf{k})}{e_k + nv(\mathbf{k})}$ adódik. Ebből ???hogyan???

inflexiós

 $E(\mathbf{k}) \sim k$

gerjesztés

$$\mathrm{sh}\big(2\chi_{k}\big) = -\frac{nv(\mathbf{k})}{E(\mathbf{k})} \text{ \'es } \mathrm{ch}\big(2\chi_{k}\big) = \frac{e_{\mathbf{k}} + nv(\mathbf{k})}{E(\mathbf{k})} \text{ ad\'odik. Ebből már kifejezhető } E(\mathbf{k}) :$$

$$E\left(\mathbf{k}\right) = \sqrt{\left[e_{\mathbf{k}} + nv(\mathbf{k})\right]^{2} + n^{2}v^{2}(\mathbf{k})} = E_{\mathbf{k}} \text{ , továbbá } u_{k}^{2} = \frac{1}{2} \left[\frac{e_{\mathbf{k}} + nv(\mathbf{k})}{E_{\mathbf{k}}} + 1\right], \ u_{k}^{2} = \frac{1}{2} \left[\frac{e_{\mathbf{k}} + nv(\mathbf{k})}{E_{\mathbf{k}}} - 1\right].$$

Ábrázolhatjuk az $E(\mathbf{k})$ függvényt. Kicsi \mathbf{k} esetén

 $E_{\bf k} \approx \sqrt{2nv(0)e_{\bf k}} \sim k$, mivel $e_{\bf k} \sim {\bf k}^2$, tehát lineárisként indul a függvény. Ezeket a gerjesztéseket nevezhetjük fononoknak. A közelítésben feltettük, hogy a kölcsönhatás gyenge, így az erős kölcsönhatásokat nem tudja leírni, ami pl. a rotonokat okozza (pl. He⁴ esetében). Állítás, hogy a gyenge kölcsönhatású közelítés az inflexiós pontot jól leírja.

A kondenzátumon kívüli atomok száma:

. ???Miért 0??? Ahol az összegre vonatkozó közelítést (határátmenetet) alkalmaztuk.

A szög szerinti integrálást elvégezve $N' = V \frac{4\pi}{(2\pi)^3} \int_0^\infty dk \cdot k^2 \frac{1}{2} \left| -1 + \frac{e_k + nv(0)}{E_k} \right|$. Használjuk a $\frac{e_k}{nv(0)} = z^2$

helyettesítést, ekkor $z=k\xi_{\scriptscriptstyle B}$ és $\xi_{\scriptscriptstyle B}=\frac{\hbar}{\sqrt{2mnv(0)}}$, így

$$N' = \frac{V}{4\pi^2} \frac{1}{\xi_B^3} \int_0^\infty dz \cdot z^2 \left[-1 + \frac{z^2 + 1}{\left(z^4 + 2z^2\right)^{1/2}} \right] = \frac{8N}{2\sqrt{\pi}} \sqrt{na^3} + \dots, \text{ ahol } a \text{ szórási hosszt a } v(0) = \frac{4\pi\hbar^2 a}{m} \text{ egyenlet}$$

definiálja. Ez a potenciál az ${\bf r}$ helyen: $v({\bf r}) = \frac{4\pi\hbar^2 a}{m} \delta^{(3)}({\bf r})$. Láthatjuk, hogy a=0 esetén – ami a kölcsönhatás nélküli gáznak felel meg – nincs a kondenzátumon kívül részecske, azaz N'=0 .

$$N_0 = N - N' = N \left[1 - \frac{8}{3\sqrt{\pi}} \cdot \underbrace{\sqrt{na^3}}_{\text{D.lan param.} \ll 1} + \dots \right]$$

Kondenzált Bose rendszerek véges hőmérsékleten

Perturbációszámítás, nem ideális gáz vizsgálata

$$\text{A Hamilton operator: } H = \sum_{\mathbf{k}} e_{\mathbf{k}} a_{\mathbf{k}}^{+} a_{\mathbf{k}} + \frac{1}{2V} \sum_{\substack{\mathbf{k}_{1}, \mathbf{k}_{2}, \mathbf{k}_{3}, \mathbf{k}_{4} \\ \mathbf{k}_{1} + \mathbf{k}_{2} = \mathbf{k}_{3} + \mathbf{k}_{4}}} v \big(\mathbf{k}_{1} - \mathbf{k}_{3} \big) a_{\mathbf{k}_{1}}^{+} a_{\mathbf{k}_{2}}^{+} a_{\mathbf{k}_{3}} a_{\mathbf{k}_{4}} \text{ , ahol } v \big(\mathbf{k} \big) = 4\pi \hbar^{2} a \ / \ m \ .$$

$$K = H - \mu N$$
.

 $T < T_c$ esetén előírjuk, hogy $\left\langle a_0 \right\rangle = \sqrt{N_0}$. Ez persze csalás, de nem baj. Milyen szimmetria sérül ezáltal? Nézzük az $a_{\mathbf{k}} \mapsto a_{\mathbf{k}} e^{i\Theta}$ és a $a_{\mathbf{k}}^+ \mapsto a_{\mathbf{k}}^+ e^{-i\Theta}$ transzformációt! Ez a globális ???a globális itt jelent valamit??? U(1) szimmetria (ha a transzformációt elvégezhetjük a mérhető paraméterek változása nélkül). A megadott előírás ezt sérti. Goldstone tétele szerint pedig sérülő folytonos szimmetria gap nélküli gerjesztéseket eredményez.

Vezessük be a $b_{\bf k}=a_{\bf k}-\sqrt{N_0}\delta_{{\bf k},0}$ és a $b_{\bf k}^+=a_{\bf k}^+-\sqrt{N_0}\delta_{{\bf k},0}$ jelöléseket! Most írjuk be ezt a Hamilton operátorba! Vigyázat, hosszú lesz!

$$\begin{split} &\sum_{\mathbf{k}} (e_{\boldsymbol{k}} - \mu) a_{\mathbf{k}}^{\scriptscriptstyle +} a_{\mathbf{k}} = \sum_{\mathbf{k}} (e_{\boldsymbol{k}} - \mu) \Big(b_{\mathbf{k}}^{\scriptscriptstyle +} + \sqrt{N_0} \delta_{\mathbf{k}, \mathbf{0}} \Big) \Big(b_{\mathbf{k}} + \sqrt{N_0} \delta_{\mathbf{k}, \mathbf{0}} \Big) = \\ &= \sum_{\mathbf{k}} (e_{\boldsymbol{k}} - \mu) \Big[b_{\mathbf{k}}^{\scriptscriptstyle +} b_{\mathbf{k}} + N_0 \Big(b_{\mathbf{k}}^{\scriptscriptstyle +} + b_{\mathbf{k}} \Big) \delta_{\mathbf{k}, \mathbf{0}} + N_0 \delta_{\mathbf{k}, \mathbf{0}} \Big] = \underbrace{\sum_{\mathbf{k}} (e_{\mathbf{k}} - \mu) b_{\mathbf{k}}^{\scriptscriptstyle +} b_{\mathbf{k}}}_{K_0} - \underbrace{\mu \sqrt{N} \left(b_0 + b_0^{\scriptscriptstyle +} \right)}_{K_1^{\scriptscriptstyle -}} - \underbrace{\mu N_0}_{K_0^{\scriptscriptstyle -}} \Big) + \underbrace{\mu N_0}_{K_0^{\scriptscriptstyle -}} \Big(b_{\mathbf{k}}^{\scriptscriptstyle -} + b_{\mathbf{k}}^{\scriptscriptstyle -} \Big) \delta_{\mathbf{k}, \mathbf{0}} \Big) = \underbrace{\sum_{\mathbf{k}} (e_{\mathbf{k}} - \mu) b_{\mathbf{k}}^{\scriptscriptstyle +} b_{\mathbf{k}}}_{K_0^{\scriptscriptstyle -}} - \underbrace{\mu \sqrt{N} \left(b_0 + b_0^{\scriptscriptstyle +} \right)}_{K_0^{\scriptscriptstyle -}} - \underbrace{\mu N_0}_{K_0^{\scriptscriptstyle -}} \Big) \Big] = \underbrace{\sum_{\mathbf{k}} (e_{\mathbf{k}} - \mu) b_{\mathbf{k}}^{\scriptscriptstyle +} b_{\mathbf{k}}}_{K_0^{\scriptscriptstyle -}} - \underbrace{\mu \sqrt{N} \left(b_0 + b_0^{\scriptscriptstyle +} \right)}_{K_0^{\scriptscriptstyle -}} - \underbrace{\mu N_0}_{K_0^{\scriptscriptstyle -}} \Big) \Big] = \underbrace{\sum_{\mathbf{k}} (e_{\mathbf{k}} - \mu) b_{\mathbf{k}}^{\scriptscriptstyle +} b_{\mathbf{k}}}_{K_0^{\scriptscriptstyle -}} - \underbrace{\mu N_0}_{K_0^{\scriptscriptstyle -}} + \underbrace{\mu N_0}_{K_0^{\scriptscriptstyle -}} \Big) \Big] \Big] \Big[\underbrace{\sum_{\mathbf{k}} (e_{\mathbf{k}} - \mu) b_{\mathbf{k}}^{\scriptscriptstyle +} b_{\mathbf{k}}}_{K_0^{\scriptscriptstyle -}} - \underbrace{\mu N_0}_{K_0^{\scriptscriptstyle -}} + \underbrace{\mu N_0}_{K_0^{\scriptscriptstyle -}} \Big) \Big] \Big[\underbrace{\sum_{\mathbf{k}} (e_{\mathbf{k}} - \mu) b_{\mathbf{k}}^{\scriptscriptstyle +} b_{\mathbf{k}}}_{K_0^{\scriptscriptstyle -}} - \underbrace{\mu N_0}_{K_0^{\scriptscriptstyle -}} + \underbrace{\mu N_0}_{K_0^{\scriptscriptstyle -}} \Big) \Big] \Big[\underbrace{\sum_{\mathbf{k}} (e_{\mathbf{k}} - \mu) b_{\mathbf{k}}^{\scriptscriptstyle -} + \underbrace{\mu N_0}_{K_0^{\scriptscriptstyle -}} + \underbrace{\mu N_0}_{K_0^{\scriptscriptstyle -}} + \underbrace{\mu N_0}_{K_0^{\scriptscriptstyle -}} \Big) \Big] \Big[\underbrace{\sum_{\mathbf{k}} (e_{\mathbf{k}} - \mu) b_{\mathbf{k}}^{\scriptscriptstyle -} + \underbrace{\mu N_0}_{K_0^{\scriptscriptstyle -}} + \underbrace{\mu N_0}_{K_0^{\scriptscriptstyle -}} + \underbrace{\mu N_0}_{K_0^{\scriptscriptstyle -}} \Big) \Big] \Big[\underbrace{\sum_{\mathbf{k}} (e_{\mathbf{k}} - \mu) b_{\mathbf{k}}^{\scriptscriptstyle -} + \underbrace{\mu N_0}_{K_0^{\scriptscriptstyle -}} + \underbrace{\mu N_0}_{K_0^{\scriptscriptstyle -}} + \underbrace{\mu N_0}_{K_0^{\scriptscriptstyle -}} \Big) \Big] \Big[\underbrace{\sum_{\mathbf{k}} (e_{\mathbf{k}} - \mu) b_{\mathbf{k}}^{\scriptscriptstyle -} + \underbrace{\mu N_0}_{K_0^{\scriptscriptstyle -}} + \underbrace{\mu N_0}_{K_0^{\scriptscriptstyle -}} + \underbrace{\mu N_0}_{K_0^{\scriptscriptstyle -}} + \underbrace{\mu N_0}_{K_0^{\scriptscriptstyle -}} \Big) \Big] \Big[\underbrace{\sum_{\mathbf{k}} (e_{\mathbf{k}} - \mu) b_{\mathbf{k}}^{\scriptscriptstyle -} + \underbrace{\mu N_0}_{K_0^{\scriptscriptstyle -}} \Big) \Big] \Big[\underbrace{\sum_{\mathbf{k}} (e_{\mathbf{k}} - \mu) b_{\mathbf{k}}^{\scriptscriptstyle -} + \underbrace{\mu N_0}_{K_0^{\scriptscriptstyle -}} + \underbrace{\mu N_0}$$

A kölcsönhatási rész: $\frac{\nu(0)}{2V} \sum_{\substack{\mathbf{k}_1,\mathbf{k}_2,\mathbf{k}_3,\mathbf{k}_4\\\mathbf{k}_1+\mathbf{k}_2=\mathbf{k}_3+\mathbf{k}_4}} a_{\mathbf{k}_1}^+ a_{\mathbf{k}_2}^+ a_{\mathbf{k}_3} a_{\mathbf{k}_4} = K_{I,4} + K_{I,3} + K_{I,1} + K_{I,0} \text{ , ahol }$

$$K_{I,4} = \frac{1}{2V} \cdot \sum_{\substack{\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_3, \mathbf{k}_4 \\ \mathbf{k}_1 + \mathbf{k}_2 = \mathbf{k}_2 + \mathbf{k}_3}} b_{\mathbf{k}_1}^+ b_{\mathbf{k}_2}^+ b_{\mathbf{k}_3} b_{\mathbf{k}_4} v(\mathbf{k}_1 - \mathbf{k}_3),$$

$$K_{I,3} = \frac{\sqrt{N_0}v(0)}{2V} \cdot \sum_{\substack{\mathbf{k}_1,\mathbf{k}_2,\mathbf{k}_3,\mathbf{k}_4\\\mathbf{k}_1+\mathbf{k}_2=\mathbf{k}_3+\mathbf{k}_4}} \left(b_{\mathbf{k}_1}^+ b_{\mathbf{k}_2}^+ b_{\mathbf{k}_3} \delta_{\mathbf{k}_4,0} + b_{\mathbf{k}_1}^+ b_{\mathbf{k}_2}^+ b_{\mathbf{k}_4} \delta_{\mathbf{k}_3,0} + b_{\mathbf{k}_1}^+ b_{\mathbf{k}_3} b_{\mathbf{k}_4} \delta_{\mathbf{k}_2,0} + b_{\mathbf{k}_2}^+ b_{\mathbf{k}_3} b_{\mathbf{k}_4} \delta_{\mathbf{k}_1,0} \right),$$

$$K_{I,2} = \frac{N_0}{2V} \cdot \sum_{\substack{\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_3, \mathbf{k}_4 \\ \mathbf{k}_1 + \mathbf{k}_2 = \mathbf{k}_2 + \mathbf{k}_4}} \begin{pmatrix} b_{\mathbf{k}_1}^+ b_{\mathbf{k}_2}^+ \delta_{\mathbf{k}_3, 0} \delta_{\mathbf{k}_4, 0} + b_{\mathbf{k}_1}^+ \delta_{\mathbf{k}_2, 0} b_{\mathbf{k}_3} \delta_{\mathbf{k}_4, 0} + \delta_{\mathbf{k}_1, 0} b_{\mathbf{k}_2}^+ b_{\mathbf{k}_3} \delta_{\mathbf{k}_4, 0} + b_{\mathbf{k}_3} \delta_{\mathbf{k}_4, 0} + \delta_{\mathbf{k}_1, 0} \delta_{\mathbf{k}_2, 0} b_{\mathbf{k}_3} \delta_{\mathbf{k}_4, 0} + \delta_{\mathbf{k}_1, 0} \delta_{\mathbf{k}_2, 0} b_{\mathbf{k}_3} b_{\mathbf{k}_4} + \delta_{\mathbf{k}_1, 0} \delta_{\mathbf{k}_2, 0} b_{\mathbf{k}_3} b_{\mathbf{k}_4} \end{pmatrix} v \left(\mathbf{k}_1 - \mathbf{k}_3 \right) ,$$

$$K_{I,1} = rac{N_0^{3/2}}{2V}
u(0) ig(2b_0^+ + 2b_0^-ig)$$
 , valamint

$$K_{I,0} = \frac{N_0^2}{2V} v(0)$$
.

Így tömör írásmódban $U=K_0+\sum_{i=0}^4 K_{I,i}+K_0'+K_1'$.

Green-függvény

 $G_{1,1}(\mathbf{k},\tau)\!:=\!-\!\left\langle T_{\tau}\!\left[b_{\mathbf{k}}(\tau)\!\cdot\!b_{\mathbf{k}}^{+}(0)\right]\!\right\rangle \text{, ahol az operátor }\tau\text{ függése ezt jelenti: }O(\tau)\!=\!e^{\frac{K\tau}{\hbar}}O_{\!\scriptscriptstyle S}e^{-\frac{K\tau}{\hbar}}\text{, várható}$ értéke $\left\langle O\right\rangle\!=\!Sp(\rho_{\scriptscriptstyle G}O)$, ahol $\rho_{\scriptscriptstyle G}=e^{\frac{-\beta K}{Z_{\scriptscriptstyle G}}}$???Nem őrzi meg a részecskeszámot, anomális várható értékek

$$G_{1,2}(\mathbf{k},\tau) = -\langle T_{\tau}[b_{-\mathbf{k}}(\tau)b_{\mathbf{k}}(0)] \rangle$$
, τ 0

$$G_{2,1}\!\left(\mathbf{k},\! au
ight)\!=\!-\!\left\langle T_{\scriptscriptstyle{ au}}\!\left[b_{\scriptscriptstyle{-\mathbf{k}}}^{\scriptscriptstyle{+}}\!\left(au
ight)\!b_{\mathbf{k}}^{\scriptscriptstyle{+}}\!\left(0
ight)\!
ight]\!
ight
angle ,\qquad \qquad \underbrace{ au}_{}$$

 $T_{ au}$ időrendező operátor: a nagyobb argumentumú kerül "balra", azonos argumentum esetén pedig a keresztes kerül "balra". Vegyük észre, hogy $G_{2,1}(\mathbf{k},\tau) = G_{1,2}(-\mathbf{k},-\tau)$ és $G_{1,1}(\mathbf{k},\tau) = G_{2,2}(-\mathbf{k},\tau)$???ezek miért igazak???. Ezeket a függvényeket mátrixba foglalhatjuk:

$$G\!\left(\mathbf{k},\tau\right)\!=\!\!\begin{pmatrix} G_{1,1} & G_{1,2} \\ G_{2,1} & G_{2,2} \end{pmatrix}\!.$$

Általános összefüggés, hogy $G_{\alpha,\beta} \left(\mathbf{k}, i\omega_n \right) = \int\limits_0^{\beta\hbar} G_{\alpha,\beta} \left(\mathbf{k}, \tau \right) e^{i\omega_n \tau} d\tau$, ahol $\omega_n = \frac{2n\pi}{\beta\hbar}$, mivel valamennyi $G_{\alpha,\beta}$ periodikus $\beta\hbar$ -ban, illetve $G_{\alpha,\beta} \left(\mathbf{k}, \tau \right) = \frac{1}{\beta\hbar} \sum_n G(\mathbf{k}, i\omega_n) e^{-i\omega_n \tau}$.

A szabad Green-függvények: hhh

$$\begin{split} G_{1,1}^{(0)}\!\left(\mathbf{k},\!i\omega_{n}\right) &= \frac{1}{i\omega_{n} - \hbar^{-1}\!\left(\boldsymbol{e}_{k} - \boldsymbol{\mu}\right)} \\ G_{2,2}^{0}\!\left(\mathbf{k},\!i\omega_{n}\right) &= \frac{1}{-i\omega_{n} - \hbar^{-1}\!\left(\boldsymbol{e}_{k} - \boldsymbol{\mu}\right)} \\ G_{1,2}^{0}\!\left(\mathbf{k},\!i\omega_{n}\right) &= 0 = G_{2,1}^{0}\!\left(\mathbf{k},\!i\omega_{n}\right). \end{split}$$

Milyen Feynman-digramok fordulhatnak elő? A perturbáció most K_1 ' és $K_{I,i}$, $i \in \{1,...,4\}$ (Soktestprobléma II-ben csak a $K_{I,4}$ volt).

$$K_{I,4} = \frac{1}{2V} \cdot \sum_{\substack{\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_3, \mathbf{k}_4 \\ \mathbf{k}_1 + \mathbf{k}_2 = \mathbf{k}_3 + \mathbf{k}_4}} b_{\mathbf{k}_1}^+ b_{\mathbf{k}_2}^+ b_{\mathbf{k}_3} b_{\mathbf{k}_4} v(\mathbf{k}_1 - \mathbf{k}_3) \text{, ehhez tartozik}$$

$$\frac{\mathbf{k}_1}{\hbar^{-1} v(\mathbf{q})} \mathbf{q} = \mathbf{k}_1 - \mathbf{k}_3$$

$$\mathbf{k}_3 \qquad \mathbf{k}_4$$

Az egyik tagja a $K_{I,3}$ -nak: $\frac{\sqrt{N_0}\nu(0)}{2V} \cdot \sum_{\substack{\mathbf{k}_1,\mathbf{k}_2,\mathbf{k}_3,\mathbf{k}_4\\\mathbf{k}_1+\mathbf{k}_2=\mathbf{k}_3+\mathbf{k}_4}} b_{\mathbf{k}_1}^+ b_{\mathbf{k}_2}^+ b_{\mathbf{k}_3} \delta_{\mathbf{k}_4,0} \text{ ehhez tartozik: } \underbrace{\begin{array}{c|c} \mathbf{k}_1 = 0 & \mathbf{k}_2\\ \hbar^{-1}\nu(\mathbf{q}) & \mathbf{q} = \mathbf{k}_1 - \mathbf{k}_3 \\ \hline \mathbf{k}_3 & \mathbf{k}_4 \\ \end{array}}_{\text{ahol kör egy } \sqrt{N_0} \text{ szorzót ad csak.}}$ ahol kör egy $\sqrt{N_{\scriptscriptstyle 0}}\,$ szorzót ad csak.

$$\begin{array}{c|c} \mathbf{k}_1 = 0 & \mathbf{k}_2 \\ \hbar^{-1} \mathbf{v}(\mathbf{q}) & \mathbf{q} = \mathbf{k}_1 - \mathbf{k}_3 \\ \hline \mathbf{k}_3 & \mathbf{k}_4 \end{array}$$

Az egyik tagja a
$$K_{I,2}$$
-nek:
$$\frac{N_0}{2V} \cdot \sum_{\substack{\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_3, \mathbf{k}_4 \\ \mathbf{k}_1 + \mathbf{k}_2 = \mathbf{k}_3 + \mathbf{k}_4}} \delta_{\mathbf{k}_1, 0} b_{\mathbf{k}_2}^+ b_{\mathbf{k}_3} \delta_{\mathbf{k}_4, 0} \nu(\mathbf{k}_1 - \mathbf{k}_3) \text{ hez tartozik:} \qquad \frac{\hbar^{-1} \nu(\mathbf{q})}{\mathbf{k}_3} \mathbf{q} = \mathbf{k}_1 - \mathbf{k}_3$$

$$\mathbf{k}_1 = 0 \\ K_{l,1} \text{ eltüntető részéhez tartozik a } \frac{N_0^{3/2}}{2V} v(0) b_0 \text{ , melynek ábrája:} \\ \mathbf{k}_1 = 0 \\ \hbar^{-1} v(\mathbf{q}) \mathbf{q} = \mathbf{k}_1 - \mathbf{k}_3 \\ \mathbf{k}_3 = 0 \\ \mathbf{k}_4$$

$$\begin{aligned} \mathbf{k}_1 &= 0 & \mathbf{k}_2 &= 0 \\ K_{I,0} &= \frac{N_0^2}{2V} \nu(0) \text{ -hoz tartozik:} & \hbar^{-1} \nu(\mathbf{q}) & \mathbf{q} &= \mathbf{k}_1 - \mathbf{k}_3 \\ \mathbf{k}_3 &= 0 & \mathbf{k}_4 &= 0 \end{aligned}$$

 K_0 ': ∞

 $K_{_1}$ ' egyik tagja (az eltüntető operátorral) $(-\mu)\sqrt{N_{_0}}b_{_0}$: \bigcirc ahol a háromszög a $-\mu$ -vel való szorzást jelöli $K_{_1}$ ' másik tagja (a keltő operátorral): $(-\mu)\sqrt{N_0}b_0^+$ —————