Processes

processes practice for CSC420 Operating Systems Spring 2022 Lyon College

README

- This file accompanies lectures on the shell and bash(1). To gain practice, you should type along in your own Org-mode file. You have to have Emacs and my .emacs file installed on your PC or the Pi you're working with.
- This section is based on chapter 10 of Shotts, The Linux Command Line (2e), NoStarch Press (2019).
- To make this easier, use the auto expansion (<s). This will only work if you have my .emacs file (<u>from GDrive</u>) installed.
- Add the following two lines at the top of your file, and activate each line with C-c C-c (this is confirmed in the echo area as Local setup has been refreshed)):

```
#+PROPERTY: header-args:bash :results output
```

• Remember that C-M-\ inside a code block indents syntactically (on Windows, this may only work if you have a marked region - set the mark with C-SPC).

Hide Org-mode emphasis markers

• []

Add the string "(setq-default org-hide-emphasis-markers t" to your \$HOME/.emacs file so that you don't see the emphasis markers in Org-mode. Then show the last line of the file to make sure it worked.

Tip: you need the commands echo, ~>>, tail.

```
echo "(setq-default org-hide-emphasis-markers t)" >> $HOME/.emacs
tail -1 $HOME/.emacs
```

Overview

- Modern operating systems are *multitasking*, which means they create an illusion of doing more than one thing at once.
- They do this by rapidly switching from one executing program to another.
- The kernel manages this through clever process management, which really is clever memory management.
- This is illustrated in the figure <u>1</u>. The simple program is all over the computer's memory.

Figure 1: Memory Layout of a C Program (Source: Silberschatz et al)

• As always, let's focus on stuff we can do ourselves. This includes a bunch of new shell commands:

COMMAND	MEANING	
ps	Report a snapshot of current processes	
top	Display tasks	
jobs	List active jobs	
bg	Place a job in the background	
fg	Place a job in the foreground	
kill	Send a kill signal to process	
killall	Kill processes by name	
shutdown	Shut down or reboot the system	

How a process works

- When the OS starts up, the **kernel** launches the init program, which in turn runs a series of shell scripts (in /etc) that start all the system services.
- [] Check /etc out now you find e.g. the directory /etc/cups, which contains scripts for the Common UNIX Printing System (CUPS).
- Many of the services are *daemon* programs they just sit in the background and do their thing without a user interface (UI).
- init itself is a daemon, also called systemd. The shell program systemct1 allows indirect access to all services.
- []

Grab a daemon!

In the code block $\underline{1}$,

- 1. run the command systemctl status,
- 2. tee its output to a text file systemctl.txt
- 3. grep for the login daemon program logind

```
systemctl status | tee systemctl.txt | grep logind
```

- If a program (like init) can launch other programs, it's a parent process producing a child process.
- How does the kernel maintain control? By assigning a process ID (PID) to every process.
- Processes are assigned in ascending order beginning with init, which has PID 1.
- The **kernel** also tracks process memory and readiness to resume execution. Like files, processes have owners and userIDs.

Viewing processes statically

- The ps program has a lot of options (check ps(1))
- []

Run ps without options.

- The result is confusing because you're inside another program now.
- []

Open a shell (in Emacs with M-x shell or a terminal) and type ps. You should see something like this:

```
PID TTY TIME CMD
12254 pts/1 00:00:00 bash
12257 pts/1 00:00:00 ps
```

- What this means:
 - You see two PID the shell program and the ps program
 - TTY ("teletype") is the *controlling terminal* for the process
 - TIME is the amount of CPU time consumed by the process
- []

Run ps again, this time add the option x

```
ps x
```

```
PID TTY STAT TIME COMMAND
21 tty1 S 0:00 bash
22 tty1 R 0:00 ps x
```

- ps x (no dash!) shows all processes regardless of what terminal they are controlled by. ? indicates no terminal (like daemons).
- []

How many processes that you own that have no terminal?

```
ps x | grep [?] | wc -l
```

• []

List only the first 5 lines of the ps x listing.

```
ps x | head -5
```

```
PID TTY STAT TIME COMMAND
29 tty1 S 0:00 bash
30 tty1 R 0:00 ps x
31 tty1 S 0:00 head -5
```

• The column STAT reveals the current status of the process, see table $\underline{1}$.

STATE	MEANING		
R	Running or ready to run		
S	Sleeping, waiting for an event (e.g. keystroke)		
D	Uninterruptible sleep, waiting for I/O (e.g. disk)		
T	Stopped, received instruction to stop		
Z	Zombie child process, abandoned by parent		
<	High priority (not <i>nice</i> - more CPU time)		
N	Low priority (<i>nice</i>) - served once < are done		

There may be more characters denoting exotic process characteristics (see ps(1)). E.g. s is a *session leader*, + is a *foreground* process, and 1 is multi-threaded.

• []

You get even more information with the option aux. Redirect the output of ps aux to a file psaux.txt, and print only the first 5 lines.

```
ps aux | tee psaux.txt | head -5
USER
           PID %CPU %MEM
                            VSZ
                                  RSS TTY
                                                STAT START
                                                             TIME COMMAND
                                                Ssl 19:25
root
                0.0 0.0
                           8940
                                  328 ?
                                                             0:00 /init
             1
root
            32
                0.0
                     0.0
                           8940
                                  224 tty1
                                                Ss
                                                     19:25
                                                             0:00 /init
marcus
            33
                0.0
                     0.0
                          16664
                                 1568 tty1
                                                S
                                                     19:25
                                                             0:00 bash
marcus
            34
                0.0 0.0
                          18660
                                 1896 tty1
                                                R
                                                     19:25
                                                             0:00 ps aux
```

- You should see PID 1, the init program. The splash options means that you can see a splash screen during boot.
- Table 1 shows some header definitions

HEADER	MEANING	
USER	User ID - this is the process owner	
%CPU	CPU usage in percent	
%MEM	Memory usage in percent	
VSZ	Virtual memory size	
RSS	Resident set size - RAM use in kB	
START	Process starting time and date	
гі		

• []

Why is the CPU usage of init zero, while the Memory usage is non-zero? How much RAM does the program actually use?

ANSWER: The init program only runs during the booting process, but as part of the **kernel** it is loaded into the central memory. It occupies 8MB.

Viewing processes dynamically

- ps provides a snapshot, but top provides a real-time view.
- [] Open a terminal (in or outside of Emacs) and run top. You can stop the command with C-c or q.
- top refreshes every three seconds and shows the top system processes. It includes a summary at the top and a table sorted by CPU activity at the bottom.

	total, .0 us,	1 r 0.2	unning, 1 sy, 0.0	.35 slee ni, 99	eping, .8 id,	0	1 stop 0.0 wa,	ped, 0.0		si, 0.0 st
MiB Mem :	3787.4			.4 free			8.8 use		609.2 buf1	
MiB Swap:	100.0	tota	ι, 100	.0 free	≘,	U	.0 use	d. :	3512.6 avai	ll Mem
PID USER	PR	NI	VIRT	RES	SHR	S	%CPU	%MEM	TIME+	COMMAND
4722 pi	20	0	11344	3220	2652	R	0.7	0.1	0:00.08	top
67 root	0	-20	0	0	0		0.3	0.0	1:09.50	kworker/u9:0-k
1 root	20	0	33872	8660	6772		0.0	0.2	0:06.95	systemd
2 root	20	0	0	0		S	0.0	0.0		kthreadd
3 root	0	-20	0	0		Ι	0.0	0.0	0:00.00	
4 root	0	-20	0	0		Ι	0.0	0.0	0:00.00	rcu_par_gp
8 root	0	-20	0	0		Ι	0.0	0.0	0:00.00	mm_percpu_wq
9 root	20	0	0	0		S	0.0	0.0		rcu_tasks_rude
10 root	20	0	0	0		S	0.0	0.0		rcu_tasks_trac
11 root	20	0	0	0		S	0.0	0.0		ksoftirqd/0
12 root	20	0	0	0		Ι	0.0	0.0		rcu_sched
13 root	rt	0	0	0		S	0.0	0.0		migration/0
14 root	20	0	0	0		S	0.0	0.0	0:00.00	
15 root	20	0	0	0		S	0.0	0.0	0:00.00	
16 root	rt	0	0	0		S	0.0	0.0		migration/1
17 root	20	0	0	0		S	0.0	0.0		ksoftirqd/1
19 root	0	-20	0	0		Ι	0.0	0.0		kworker/1:0H-k
20 root	20	0	0	0		S	0.0	0.0	0:00.00	cpuhp/2
21 root	rt	0	0	0		S	0.0	0.0		migration/2
22 root	20	0	0	0		S	0.0	0.0		ksoftirqd/2
25 root	20	0	0	0		S	0.0	0.0	0:00.00	
26 root	rt	0	0	0		S	0.0	0.0		migration/3
27 root	20	0	0	0		S	0.0	0.0		ksoftirqd/3
30 root	20	0	0	0		S	0.0	0.0		kdevtmpfs
31 root	0	-20	0	0		Ι	0.0	0.0	0:00.00	
32 root	0	-20	0	0		Ι	0.0	0.0		inet_frag_wq
37 root	20	0	0	0		S	0.0	0.0	0:00.00	
38 root	20	0	0	0		S	0.0	0.0		khungtaskd
39 root	20	0	0	0		S	0.0	0.0		oom_reaper
40 root	0	-20	0	0	_	Ι	0.0	0.0		writeback
41 root	20	0	0	0		S	0.0	0.0		kcompactd0
61 root	0	-20	0	0	0_	Ι	0.0	0.0	0:00.00	kblockd

Figure 2: Top view

• The system summary contains a lot of good stuff. Table $\underline{1}$ gives a rundown.

ROW	FIELD MEANING	
1	top	Program name
	21:52:54	Current time of day
	up 2 days 9:49	uptime since last boot
	1 user	No. of users logged in
	load average	No. of processes waiting to run
		Values < 1.0 means not busy
2	Tasks:	No. of processes and their states
		total, running, sleeping, stopped

ROW	FIELD	MEANING
3	Cpu(s):	Activities that the CPU performs:
		us: user processes (not kernel)
		sy: system processes (kernel)
		ni: nice (low prio) processes
		id: idle processes
		wa: waiting for I/O
4	Mem:	Physical RAM used
5	Swap:	Swap space (virtual memory) used

- top accepts some keyboard commands like h (help) and q (quit).
- top is better than any graphical application (e.g. the Task Manager that you have on your Pi) it is faster and consumes far less resources.

Controlling processes

Interrupting a process

- As a guinea pig program, we use emacs.
- [] Open a terminal (inside Emacs after splitting the screen with C-x 2 or outside of Emacs), and enter emacs at the prompt. A new Emacs editor window appears. Notice that the terminal prompt does not return.
- [] Close the new Emacs editor manually by clicking on the x in the upper right corner. The prompt in the Shell returns.
- [] Enter emacs again in the shell, and interrupt it with CTRL-C (outside of Emacs, or with C-c C-c on the Emacs *shell*).
- Many programs can be interrupted this way by sending an **interrupt** signal to the **kernel**.

Putting a process in the background

- The terminal has a *foreground* and a *background*. To launch a program so that it is immediately placed into the background, follow it with an ampersand & character
- [] Start Emacs from the shell in the background. An Emacs window should open. Look at the terminal.
- The message that appeared is part of shell *job control*. It means that we have started job number 1 with the PID 13899. If you check the process table with ps, you should see the process

```
[1] 13899
```

• []

grep the emacs process from the process table using the PID.

```
13928 pts/1 00:00:04 emacs
```

• []

The jobs command lists the jobs that were launched from our terminal. Try it. You should see something like this:

```
[1]+ Running emacs &
```

Returning a process to the foreground

- A process in the background is immune from keyboard input you cannot interrupt it with CTRL-C. To return it to the foreground, use the fg command.
- [] On the shell where you started it, return the process to the foreground with the command fg %1. The 1 is the jobspec.
- [] Kill the Emacs process with C-c C-c or CTRL-C on the shell where you started it.

Stopping or pausing a process

• []

Start an emacs process in a terminal (NOT in an Emacs shell) - it's now in the foreground. If you press CTRL-z in the shell, the process is stopped.

```
pi@raspberrypi:~ $ emacs
^Z
[1]+ Stopped emacs
pi@raspberrypi:~ $
```

- [] To bring the process back, you can either bring it into the foreground with fg %1, or resume the process in the background with bg %. Try both.
- Why would you launch a graphical program from the shell?
 - The program may not be listed in the GUI
 - You see error messages that otherwise are invisible
 - Some graphical programs have useful command line options

Killing a process

• []

kill is used to terminate processes using the PID. Start Emacs from the shell in the background (inside or outside of emacs), and then kill it with kill PID.

Tip: you get the PID with ps, or right after executing the background command.

• kill does actually not "kill" the process, it sends it a signal. We have already used some of these signals:

SIGNAL	MEANING
INT	CTRL-C - interrupt process
TSTP	CTRL-Z - terminal stop
HUP	Hang up (used by daemons)
KILL	Kill without cleanup

SIGNAL	MEANING	
TERM	Terminate with kill	
STOP	Stop without delay	

• Some of these signals are sent to the target program (identified by PID) while others are sent straight to the kernel.

More process commands

Some fun commands to play with and explore. We already looked at pstree. You may have to install these.

COMMAND	MEANING	
pstree	Process list arranged as tree pattern	
vmstat	System usage snapshot	
xload	Draws a graph showing system load over time	
tload	Draws graph in terminal	

Summary

References

• Silberschatz, Galvin and Gagne (2018). Operating System Concepts - 10th edition, Wiley.

Author: Marcus Birkenkrahe Created: 2022-04-16 Sat 19:25