Nekonečné rady Fourierove rady

Aleš Kozubík

Katedra Matematických metód Fakulta Riadenia a Informatiky Žilinská Univerzita v Žiline

25. októbra 2011

Skalárny súčin funkcií

Skalárny súčin, Ortogonalita, norma funkcie

Definícia (Skalárny súčin funkcií)

Nech f,g sú funkcie integrovateľné na intervale $\langle a,b \rangle$. Číslo

$$(f,g) = \int_a^b f(x)g(x) \, \mathrm{d}x$$

nazývame skalárnym súčinom funkcií f,g.

Skalárny súčin funkcií

Skalárny súčin, Ortogonalita, norma funkcie

Definícia (Skalárny súčin funkcií)

Nech f,g sú funkcie integrovateľné na intervale $\langle a,b\rangle$. Číslo

$$(f,g) = \int_a^b f(x)g(x) \, \mathrm{d}x$$

nazývame skalárnym súčinom funkcií f,g.

Funkcie f, g sa nazývajú ortogonálne (na intervale $\langle a, b \rangle$) práve vtedy ak (f, g) = 0.

Skalárny súčin funkcií

Skalárny súčin, Ortogonalita, norma funkcie

Definícia (Skalárny súčin funkcií)

Nech f,g sú funkcie integrovateľné na intervale $\langle a,b\rangle$. Číslo

$$(f,g) = \int_a^b f(x)g(x) \, \mathrm{d}x$$

nazývame skalárnym súčinom funkcií f, g.

Funkcie f, g sa nazývajú ortogonálne (na intervale $\langle a, b \rangle$) práve vtedy ak (f, g) = 0.

Definícia (Norma a normovaná funkcia)

Nech f je funkcia integrovateľná na intervale $\langle a,b \rangle$. Normou funkcie nazývame číslo $\|f\|=\sqrt{(f,f)}$. Funkcia sa nazýva normovaná ak $\|f\|=1$.

Ortogonálny systém funkcií Ortogonálny a ortonormálny systém funkcií

Definícia (Ortogonálny systém funkcií)

Nech $\{\varphi_n\}$ je konečná alebo spočítateľná postupnosť funkcií integrovateľných na intervale $\langle a,b\rangle$. Táto postupnosť sa nazýva ortogonálny systém funkcií práve vtedy, ak pre každé dve funkcie $\varphi_m, \varphi_n, m \neq n$ sú ortogonálne a každá funkcia φ_n má kladnú normu.

Ortogonálny systém funkcií Ortogonálny a ortonormálny systém funkcií

Definícia (Ortogonálny systém funkcií)

Nech $\{\varphi_n\}$ je konečná alebo spočítateľná postupnosť funkcií integrovateľných na intervale $\langle a,b\rangle$. Táto postupnosť sa nazýva ortogonálny systém funkcií práve vtedy, ak pre každé dve funkcie $\varphi_m,\varphi_n,m\neq n$ sú ortogonálne a každá funkcia φ_n má kladnú normu.

Táto postupnosť funkcií sa nazýva ortonormálna, ak je ortogonálna a každá funkcia je normovaná.

Ortogonálny systém funkcií Ortogonálny a ortonormálny systém funkcií

Definícia (Ortogonálny systém funkcií)

Nech $\{\varphi_n\}$ je konečná alebo spočítateľná postupnosť funkcií integrovateľných na intervale $\langle a,b\rangle$. Táto postupnosť sa nazýva ortogonálny systém funkcií práve vtedy, ak pre každé dve funkcie $\varphi_m,\varphi_n,m\neq n$ sú ortogonálne a každá funkcia φ_n má kladnú normu.

Táto postupnosť funkcií sa nazýva ortonormálna, ak je ortogonálna a každá funkcia je normovaná.

Postupnosť $\{\varphi_n\}$ je ortonormálna, práve vtedy ak

$$(\varphi_m, \varphi_n) = \left\{ egin{array}{ll} 0 & \mathrm{pre} & m
eq n \\ 1 & \mathrm{pre} & m = n \end{array} \right.$$

Trigonometrický systém

Ortogonalita trigonometrického systému a jeho ortonormalizácia

Úloha 1

Overte, že tzv. trigonometrický systém funkcií

$$1, \cos x, \sin x, \cos 2x, \sin 2x, \dots \cos nx, \sin nx, \dots$$

je ortogonálny na ľubovoľnom intervale dĺžky 2π .

Úloha 2

Ku trigonometrickému systému funkcií

$$1, \cos x, \sin x, \cos 2x, \sin 2x, \dots \cos nx, \sin nx, \dots$$

zostrojte systém, ktorý bude ortonormálny.

Veta

Nech $\{\varphi_n\}$ je ortogonálna postupnosť funkcií na intervale $\langle a,b\rangle$, $\{c_n\}$ postupnosť reálnych čísiel. Nech rad

$$\sum_{n=1}^{\infty} c_n \varphi_n(x)$$

na intervale $\langle a,b \rangle$ rovnomerne konverguje k funkcii f. Potom pre hodnoty c_n platí

$$c_n = \frac{(f, \varphi_n)}{(\varphi_n, \varphi_n)} = \frac{(f, \varphi_n)}{\|\varphi_n\|^2}.$$
 (1)

Fourierov rad všeobecne

Definícia (Fourierov rad)

Nech $\{\varphi_n\}$ je ortogonálna postupnosť funkcií na intervale $\langle a,b\rangle$, f funkcia integrovateľná na intervale $\langle a,b\rangle$. Čísla c_n dané vzťahom (1) nazývame Fourierove koeficienty funkcie f vzhľadom na ortogonálny systém $\{\varphi_n\}$ a rad

$$\sum_{n=1}^{\infty} c_n \varphi_n,$$

kde c_n sú Fourierove koeficienty nazývame Fourierov rad funkcie f vzhľadom na ortogonálny systém $\{\varphi_n\}$.

Fourierov rad vzhľadom k trigonometrickému systému

Ortonormálny trigonometrický systém

V ďalšom nás budú zaujímať len Fourierove rady vzhľadom na ortonormálnu postupnoť (poznáme z úlohy 2)

$$\frac{1}{\sqrt{2\pi}}, \frac{1}{\sqrt{\pi}}\cos x, \frac{1}{\sqrt{\pi}}\sin x, \frac{1}{\sqrt{\pi}}\cos 2x, \frac{1}{\sqrt{\pi}}\sin 2x, \dots \dots, \frac{1}{\sqrt{\pi}}\cos nx, \frac{1}{\sqrt{\pi}}\sin nx, \dots$$
 (2)

Fourierov rad vzhľadom k trigonometrickému systému

Fourierov rad funkcie

Fourierov rad ľubovoľnej funkcie integrovateľnej na intervale $\langle -\pi,\pi \rangle$ má vzhľadom na systém (2) tvar

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx),$$

kde a_n, b_n sú Fourierove koeficienty, pre ktoré platí

$$\begin{array}{lll} a_n & = & \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx \, dx, & n \in \mathbb{N} \cup \{0\} \\ b_n & = & \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx \, dx, & n \in \mathbb{N} \end{array}$$

Poznámka

Výsledok zrejme platí pre ľubovoľný interval $\langle c, c+2\pi \rangle$ dĺžky 2π .

Príklady

Rozviňte do Fourierovho radu funkcie:

•
$$f(x) = x$$
 na intervale $\langle -\pi, \pi \rangle$,

2
$$f(x) = x^2$$
 na intervale $\langle -\pi, \pi \rangle$,

$$f(x) = \begin{cases} 1 & x \in \langle 0, \pi \rangle \\ -1 & x \in \langle \pi, 2\pi \rangle \end{cases}$$

$$f(x) = \begin{cases} -1 & x \in \langle -\pi, -\frac{\pi}{2} \rangle \\ 1 & x \in \langle -\frac{\pi}{2}, \frac{\pi}{2} \rangle \\ -1 & x \in \langle \frac{\pi}{2}, \pi \rangle \end{cases}$$

Veta

Nech f je funkcia integrovateľná na intervale $\langle -\pi, \pi \rangle$. Ak je táto funkcia párna, tak jej Fourierov rad má tvar

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx,$$

kde $a_n = \frac{2}{\pi} \int_0^{\pi} f(x) \cos nx \, dx$.

Ak je táto funkcia nepárna, tak jej Fourierov rad má tvar

$$\sum_{n=1}^{\infty} b_n \sin nx,$$

kde $b_n = \frac{2}{\pi} \int_0^{\pi} f(x) \sin nx \, dx$.

Príklady¹

Na intervale $\langle -\pi, \pi \rangle$ rozviňte do Fourierovho radu funkcie:

- f(x) = |x|,
- 2 $f(x) = x^2$,
- $(x) = e^{|x|},$
- $f(x) = 1 \frac{|x|}{\pi},$
- $f(x) = |\sin x|.$

Párne a nepárne rozšírenie

Sínusový a kosínusový rad

Definícia (Párne a nepárne rozšírenie funkcie)

Nech f je funkcia integrovateľná na $\langle 0,\pi \rangle$ $[(0,\pi)]$. Ak pre $x \in \langle -\pi,0 \rangle$ kladieme f(x)=f(-x)[f(x)=-f(-x),f(0)=0], tak povieme, že sme zostrojili párne (nepárne) rozšírenie funkcie f na interval $\langle -\pi,\pi \rangle$.

Párne a nepárne rozšírenie

Sínusový a kosínusový rad

Definícia (Párne a nepárne rozšírenie funkcie)

Nech f je funkcia integrovateľná na $\langle 0,\pi \rangle$ $[(0,\pi)]$. Ak pre $x \in \langle -\pi,0 \rangle$ kladieme f(x)=f(-x)[f(x)=-f(-x),f(0)=0], tak povieme, že sme zostrojili párne (nepárne) rozšírenie funkcie f na interval $\langle -\pi,\pi \rangle$.

Definícia (Kosínusový a sínusový rad funkcie)

Fourierov rad párneho (nepárneho) rozšírenia funkcie f nazývame kosínusovým (sínusovým) radom funkcie f na intervale $\langle 0, \pi \rangle$.

Príklady

Nasledujúce funkcie rozviňte na intervale $\langle 0,\pi \rangle$ do sínusového a kosínusového radu

$$f(x) = x^2$$

$$f(x) = \sin \frac{x}{2},$$

$$f(x) = \cos \frac{x}{2},$$

$$f(x) = \begin{cases} -1 & x \in \langle 0, \frac{\pi}{2} \rangle \\ 1 & x \in \langle \frac{\pi}{2}, 0\pi \rangle \end{cases}$$

Fourierov rad Rozvoj funkcie s periódou $p \neq 2\pi$

Transformácia periodickej funkcie na funkciu s periódou 2π

Nech f je periodická funkcia s periódou p=2h, integrovateľná na intervale $\langle -h,h\rangle$. Potom funkcia $g(t)=f(\frac{h}{\pi}x)$ je periodická s periódou 2π .

Funkciu g je možné známym spôsobom rozvinúť do Fourierovho radu na intervale $\langle -\pi, \pi \rangle$. Spätnou transformáciou $x = \frac{\pi}{h}t$ získame Fourierov rad funkcie f na intervale $\langle -h, h \rangle$.

Rozvoj funkcie s periódou $p \neq 2\pi$

Fourierov rad funkcie s periódou $p \neq 2\pi$

Fourierov rad funkcie f na intervale $\langle -h, h \rangle$ má tvar

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos \frac{n\pi}{h} x + b_n \sin \frac{n\pi}{h} x),$$

kde Fourierove koeficienty sú dané vzťahmi

$$a_n = \frac{1}{h} \int_{-h}^{h} f(x) \cos \frac{n\pi}{h} x \, dx, \quad n \in \mathbb{N} \cup \{0\}$$

$$b_n = \frac{1}{h} \int_{-h}^{h} f(x) \sin \frac{n\pi}{h} x \, dx, \quad n \in \mathbb{N}$$

Poznámka

Výsledok zrejme platí pre ľubovoľný interval $\langle c, c+2h \rangle$ dĺžky 2h.

Príklady

Určte Fourierov rozvoj funkcie

•
$$f(x) = x$$
 na intervale $\langle -1, 1 \rangle$,

2
$$f(x) = x$$
 na intervale $(0,2)$,

$$f(x) = \begin{cases} 1 & x \in \langle 0, 2 \rangle \\ -1 & x \in \langle -1, 0 \rangle \end{cases}$$

Rozviňte nasledujúce funkcie do sínusového a kosínusového radu:

•
$$f(x) = x$$
 na intervale $(0,2)$,

$$f(x) = \begin{cases} 1 & x \in \langle 0, 1 \rangle \\ -1 & x \in \langle 1, 2 \rangle \end{cases}$$

