

Free and bounded occurrences

Find free variables in the following formulas:

- 1. $\forall x.(p(x) \rightarrow \exists y. \neg q(f(x), y, f(y)))$
- 2. $\forall x(\exists y.r(x, f(y)) \rightarrow r(x, y))$
- 3. $\forall z.(p(z) \rightarrow \exists y.(\exists x.q(x,y,z) \lor q(z,y,x)))$
- 4. $\forall z \exists u \exists y. (q(z, u, g(u, y)) \lor r(u, g(z, u)))$
- 5. $\forall z \exists x \exists y (q(z, u, g(u, y)) \lor r(u, g(z, u)))$

Solutions

- 1. no free variables
- 2. y free
- 3. x free
- 4. no free variables
- 5. u free

2

Interpretations

What is the meaning of the followinf FOL formulas?

- 1. bought(Frank, dvd)
 - 1. "Frank bought a dvd."
- 2. $\exists x.bought(Frank, x)$
 - 2. "Frank bought something."
- 3. $\forall x.(bought(Frank, x) \rightarrow bought(Susan, x))$
 - 3. "Susan bought everything that Frank bought."
- 5. $\forall x \exists y.bought(x, y)$
 - 5. "Everyone bought something."
- 6. $\exists x \forall y.bought(x, y)$
 - 6. "Someone bought everything."

3

Formalization

 $\label{lem:continuous} \textit{Define an appropriate language and formalize the following sentences using FOL formulas.}$

All Students are smart.

$$\forall x.(Student(x) \rightarrow Smart(x))$$

There exists a smart student.

$$\exists x.(Student(x) \land Smart(x))$$

Every student loves some student.

$$\forall x.(Student(x) \rightarrow \exists y.(Student(y) \land Loves(x,y)))$$

Every student loves some other student.

$$\forall x.(Student(x) \rightarrow \exists y.(Student(y) \land \neg(x = y) \land Loves(x, y)))$$

There is a student who is loved by every other student.

$$\exists x. (Student(x) \land \forall y. (Student(y) \land \neg (x = y) \rightarrow Loves(y, x)))$$

Bill is a student.

Student(Bill)

Bill takes either Analysis or Geometry (but not both).

 $Takes(Bill, Analysis) \leftrightarrow \neg Takes(Bill, Geometry)$

Bill takes Analysis and Geometry.

 $Takes(Bill, Analysis) \land Takes(Bill, Geometry)$

Bill has at least one sister.

 $\exists x. SisterOf(x, Bill)$

Bill has no sister.

 $\neg \exists x. SisterOf(x, Bill)$

Formalization (cont...)

Bill has at most one sister.

 $\forall x \forall y. (SisterOf(x, Bill) \land SisterOf(y, Bill) \rightarrow x = y)$

Bill has (exactly) one sister.

 $\exists x.(SisterOf(x, Bill) \land \forall y.(SisterOf(y, Bill) \rightarrow x = y))$

Every student who takes Analysis also takes Geometry.

 $\forall x.(Student(x) \land Takes(x, Analysis) \rightarrow Takes(x, Geometry))$

Every student takes at least one course.

 $\forall x.(Student(x) \rightarrow \exists y.(Course(y) \land Takes(x,y)))$

Define an appropriate language and formalize the following sentences in FOL:

Language Constants: A, B, C, D, E, F; Predicates: On^2 , $Above^2$, $Free^1$, Red^1 , $Green^1$.

"A is above C, D is on E and above F."

$$Above(A, C) \wedge Above(D, F) \wedge On(D, E)$$

 ${\it "A}$ is green while ${\it C}$ is not."

$$Green(A) \wedge \neg Green(C)$$

"Everything that is free has nothing on it."

$$\forall x. (Free(x) \rightarrow \neg \exists y. On(y, x))$$

"Everything that is not green and is above B, is red."

$$\forall x. (\neg Green(x) \land Above(x, B) \rightarrow Red(x))$$

Formalization (cont...)

Consider the following sentences:

- 1. All actors and journalists invited to the party are late.
- 2. There is at least a person who is on time.
- There is at least an invited person who is neither a journalist nor an actor.

Solutions

- 1. $\forall x.((a(x) \lor j(x)) \land i(x) \rightarrow l(x))$
- 2. $\exists x. \neg l(x)$
- 3. $\exists x.(i(x) \land \neg a(x) \land \neg j(x))$

- 1. $\forall x.((a(x) \lor j(x)) \land i(x) \rightarrow l(x))$
- 2. $\exists x. \neg l(x)$
- 3. $\exists x.(i(x) \land \neg a(x) \land \neg j(x))$

Prove that 3 is not a logical consequence of 1 and 2.

It's sufficient to find an interpretation $\mathcal I$ for which the logical consequence does not hold:

	l(x)	a(x)	j(x)	i(x)
Bob	F	T	F	F
Tom	T	T	F	T
Mary	T	F	T	T

Formalization (cont...)

For each of the following properties, write a formula which is true in the graphs that satisfies the property:

- 0. "each node has at most one color"
- 1."connected nodes don't have the same color"
- 2. "the graph contains only 2 yellow nodes"
- 3. "for each color there is at least a node with this color"

Language

- a binary predicate edge, where edge(n,m) means that node n is connected to node m
- a binary predicate color, where color(n,x) means that node n has color x
- the following constant: yellow

Language

- a binary predicate edge, where edge(n,m) means that node n is connected to node m
- a binary predicate color, where color(n,x) means that node n has color x
- the following constants: yellow

Axiom 0.

"each node has at most one color"

 $\forall n \forall x. (\mathsf{color}(n, x) \to \neg \exists y. (y \neq x \land \mathsf{color}(n, y)))$

Formalization (cont...)

Language

- a binary predicate edge, where edge(n,m) means that node n is connected to node m
- a binary predicate color, where color(n,x) means that node n has color x
- the following constants: yellow

Axiom 1.

"connected nodes don't have the same color"

 $\forall n \forall m \forall x. (\mathsf{edge}(n, m) \land \mathsf{color}(n, x) \rightarrow \neg \mathsf{color}(m, x))$

Language

- a binary predicate edge, where edge(n,m) means that node n is connected to node m
- a binary predicate color, where color(n,x) means that node n has color x
- the following constants: yellow

Axiom 2.

"the graph contains only 2 yellow nodes"

$$\exists n \exists n'. (\mathsf{color}(n, \mathsf{yellow}) \land \mathsf{color}(n', \mathsf{yellow}) \land n \neq n' \land \\ \forall m. (m \neq n \land m \neq n' \rightarrow \neg \mathsf{color}(m, \mathsf{yellow})))$$

Formalization (cont...)

Language

- a binary predicate edge, where edge(n,m) means that node n is connected to node m
- a binary predicate color, where color(n,x) means that node n has color x
- the following constants: yellow

Axiom 3.

"for each color there is at least a node with this color"

 $\forall x \exists n. \mathsf{color}(n, x)$

