Movie recommendation system with clustering algorithms using Movie lens dataset

GROUP 4

Ayesha Siddiqua Shusmoy Chowdhury

Outline

- Introduction
- Problem Specification
- Background
- Data Preprocessing
- Clustering Methodology
- Results
- Conclusion

Introduction

- The Movie recommendation system is Based on users' past ratings and observed behaviors.
- filters and predicts only those movies that a corresponding user is most likely to want to watch
- The system will be created using clustering algorithms
- The algorithms will run on MovieLens dataset

- Cluster the similar kinds of movies based on the movie features
- Provide better suggestions of movies based on users' choice
- Maintain user satisfaction by suggesting similar movies
- Compare the recommendation results of various clustering algorithms

Background

Dataset

HTTPS://GROUPLENS.ORG/DATASETS/MOVIELENS/LATEST/

- Created by 330975 users between January 09, 1995 and July 20, 2023
- Contains 33832162 ratings and 2328315 tag applications across 86537 movies
- Movies.csv file contains movield, title and genres
- Tags.csv file contains userld, movield, tag and timestamp
- Ratings.csv file contains userId, movieId, rating and timestamp

Data Preprocessing

JOIN DATASETS

- Calculated the average rating and user count for individual movies.
- Modify tag dataframe to group tags of each movie
- Merged the dataframe with movies and tag dataset

DATA TRANSFORMATION

 Transformed the genre column to set of words using RegexTokenizer

+	+	+	H
genres	movieId words		
+	+	+	F
Adventure Animation Children Comedy Fantasy	1	[adventure, animation, children, comedy, fantasy]	
Adventure Children Fantasy	2	[adventure, children, fantasy]	
Comedy Romance	3	[comedy, romance]	
Comedy Drama Romance	4	[comedy, drama, romance]	
Comedy	5	[comedy]	
Action Crime Thriller	6	[action, crime, thriller]	
Comedy Romance	7	[comedy, romance]	
Adventure Children	8	[adventure, children]	
Action	9	[action]	
Action Adventure Thriller	10	[action, adventure, thriller]	

Data Preprocessing

DATA TRANSFORMATION

- Split the tags and genres into a set of words.
- Used hastingtf
 to transform the words
 into double values.

5	Tags	genres	genrearray
ij	[match, girl, fri A [bridge, friendsh A [old, CLV, good s	dventure Childre	[adventure, child
7	[CLV, single moth C	omedy Drama Romance	[comedy, drama, r
	[father, confiden	,	[comedy]
3	[thieves, synthes A	ction Crime Thri	[action, crime, t
)	[infatuation, unr	Comedy Romance	[comedy, romance]
Ł	[bridge, friendsh	Adventure Children	[adventure, child
i	[assassination, g	Action	[action]
7	[007, bill tanner A	ction Adventure	[action, adventur

Data Preprocessing

FEATURE EXTRACTION

Used vectorassembler to merge multiple feature columns (genres, tags, average rating, user count) into one single feature col

Clustering Models

K MEANS

Clustering Models

GAUSSIAN MIXTURE MODEL

Ш

Clustering Models

LATENT DIRICHLET ALLOCATION

Ш

Clustering Models

RECOMMENDATION CRITERIA

Movies are filtered from the same cluster based on

- 1. Maximum Average rating
- 2. Maximum number of user rated the movies

Results CLUSTER SIZE

K Means

GMM

+-----|prediction|count| +-----| 0|20204| | 6|29950|

LDA

Results

MOVIE RECOMMENDATION FOR A SINGLE USER

K Means	S	GMM			LD	Α	
title	AverageRating UserCou	nt title	AverageRating	UserCount	+	AverageRating U	+ serCount +
Parasite (2019) 4 Lives of Others, Spider-Man: Into Cinema Paradiso (Manchurian Candid Knives Out (2019) African Queen, Th Raging Bull (1980) Manhattan (1979) Hoop Dreams (1994) 4	4.192053284336242 108 4.123029556650247 121 4.07504873294347 107 4.058669623059867 112 4.044937975190076 124 4.036668142245832 135 4.01723984715187 112	AWAKEN (2013) 26 Love, Kennedy (2017) 88 Placebo: Soulmate 73 The Brooklyn Bank 75 Hart to Hart: Til 95 Christmas on Salv 54 War Arrow (1954) 53 The Fallen of Wor 17 Nico the Unicorn 18 The Sandwich Man 19 Plato's Reality M	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	3 2 2	Come From Away (2 Parasite (2019) Godfather, The (1	4.448092868988391 4.423985890652557 4.421052631578948 4.416792045528881 4.395833333333333 4.3432 4.342105263157895 4.3299459633841435	2041 3015 2835 19 122296 24 625 19 12399 75004
		Asphalt Angels Tony 10 (2012)		1			

Results

SILHOUETTE COEFFICIENT

Algorithm Name	SILHOUETTE COEFFICIENT
K Means	0.9029066662575397
GMM	0.22617731117331444
LDA	-0.5828395886832082

- Explored different clustering algorithm for movie recommendation
- Different clustering models provide different size of clusters
- From the evaluation matrix, K means provides better results compared to others.
- Different feature extraction methods can be explored in the future extension of this work.

Thank You

