RECURSIVE IDENTIFICATION

ARX IDENTIFICATION OUTLINE

- · Least square } RECAP
- · Recursive Least square (I, II, III) form
- · Recursive Least square with forgetting factor

NEW

ARX System

$$y(t) = \frac{\beta(2)}{A(2)} \mu(t-1) + \frac{1}{A(2)} e(t)$$

elt) N WN(Me, 2e2)

LEAST SQUARE

$$\hat{\mathcal{U}}_{N} = \operatorname{arg\,mim} \left\{ J_{29}(N) = \frac{1}{N} \sum_{t=1}^{N} \left(y(t) - \hat{y}(t) + y(t) - \hat{y}(t) \right)^{2} \right\} - \operatorname{Rediction} \text{ Error Method}$$

$$(P. E.M.)$$

model predictor ĝ(t lt-1)

y(t) =
$$\varphi(t)^T 2^0 + e(t)$$

Lo totally unpredictable at time t-1

Totally known at time t-1

$$J_{N}(v) = \frac{1}{N} \sum_{t=1}^{N} (y|t) - \varphi(t)^{T} v^{2} + quadratic function of v^{2}$$

It is possible to find explicitely the minimize

$$\hat{\mathcal{T}} \text{ is such that } \frac{\partial J_{n}(v)}{\partial \mathcal{P}} \Big|_{\mathcal{P}_{2}, \frac{\partial J_{n}}{\partial x}} = 0$$

$$\hat{\mathcal{T}}_{n} = S(n)^{-1} \stackrel{\mathcal{L}}{\underset{t=1}{\sum}} \varphi(t) \varphi(t)^{T}$$

$$\hat{\mathcal{T}}_{n} = S(n)^{-1} \stackrel{\mathcal{L}}{\underset{t=1}{\sum}} \varphi(t) \varphi(t) = S(n)^{T} \hat{\mathcal{L}}_{n}$$

$$\hat{\mathcal{L}}_{n} = S(n)^{-1} \stackrel{\mathcal{L}}{\underset{t=1}{\sum}} \varphi(t) \varphi(t) = S(n)^{T} \hat{\mathcal{L}}_{n}$$

$$\hat{\mathcal{L}}_{n} = S(n)^{-1} \stackrel{\mathcal{L}}{\underset{t=1}{\sum}} \varphi(t) \varphi(t) = S(n)^{T} \hat{\mathcal{L}}_{n}$$

$$\hat{\mathcal{L}}_{n} = S(n)^{-1} \stackrel{\mathcal{L}}{\underset{t=1}{\sum}} \varphi(t) \varphi(t) = S(n)^{T} \hat{\mathcal{L}}_{n}$$

$$\hat{\mathcal{L}}_{n} = S(n)^{-1} \stackrel{\mathcal{L}}{\underset{t=1}{\sum}} \varphi(t) \varphi(t) = S(n)^{T} \hat{\mathcal{L}}_{n}$$

$$\hat{\mathcal{L}}_{n} = S(n)^{-1} \stackrel{\mathcal{L}}{\underset{t=1}{\sum}} \varphi(t) \varphi(t) = S(n)^{T} \hat{\mathcal{L}}_{n}$$

$$\hat{\mathcal{L}}_{n} = S(n)^{-1} \stackrel{\mathcal{L}}{\underset{t=1}{\sum}} \varphi(t) \varphi(t) = S(n)^{T} \hat{\mathcal{L}}_{n}$$

$$\hat{\mathcal{L}}_{n} = S(n)^{-1} \stackrel{\mathcal{L}}{\underset{t=1}{\sum}} \varphi(t) \varphi(t) = S(n)^{T} \hat{\mathcal{L}}_{n}$$

$$\hat{\mathcal{L}}_{n} = S(n)^{-1} \stackrel{\mathcal{L}}{\underset{t=1}{\sum}} \varphi(t) \varphi(t) = S(n)^{T} \hat{\mathcal{L}}_{n}$$

$$\hat{\mathcal{L}}_{n} = S(n)^{-1} \stackrel{\mathcal{L}}{\underset{t=1}{\sum}} \varphi(t) \varphi(t) = S(n)^{T} \hat{\mathcal{L}}_{n}$$

$$\hat{\mathcal{L}}_{n} = S(n)^{-1} \stackrel{\mathcal{L}}{\underset{t=1}{\sum}} \varphi(t) \varphi(t) = S(n)^{T} \hat{\mathcal{L}}_{n}$$

$$\hat{\mathcal{L}}_{n} = S(n)^{T} \stackrel{\mathcal{L}}{\underset{t=1}{\sum}} \varphi(t) \varphi(t) = S(n)^{T} \hat{\mathcal{L}}_{n}$$

$$\hat{\mathcal{L}}_{n} = S(n)^{T} \stackrel{\mathcal{L}}{\underset{t=1}{\sum}} \varphi(t) \varphi(t) = S(n)^{T} \hat{\mathcal{L}}_{n}$$

$$\hat{\mathcal{L}}_{n} = S(n)^{T} \stackrel{\mathcal{L}}{\underset{t=1}{\sum}} \varphi(t) \varphi(t) = S(n)^{T} \hat{\mathcal{L}}_{n}$$

$$\hat{\mathcal{L}}_{n} = S(n)^{T} \stackrel{\mathcal{L}}{\underset{t=1}{\sum}} \varphi(t) \varphi(t) = S(n)^{T} \hat{\mathcal{L}}_{n}$$

$$\hat{\mathcal{L}}_{n} = S(n)^{T} \stackrel{\mathcal{L}}{\underset{t=1}{\sum}} \varphi(t) \varphi(t) = S(n)^{T} \hat{\mathcal{L}}_{n}$$

$$\hat{\mathcal{L}}_{n} = S(n)^{T} \stackrel{\mathcal{L}}{\underset{t=1}{\sum}} \varphi(t) \varphi(t) = S(n)^{T} \hat{\mathcal{L}}_{n}$$

$$\hat{\mathcal{L}}_{n} = S(n)^{T} \stackrel{\mathcal{L}}{\underset{t=1}{\sum}} \varphi(t) \varphi(t) = S(n)^{T} \hat{\mathcal{L}}_{n}$$

$$\hat{\mathcal{L}}_{n} = S(n)^{T} \stackrel{\mathcal{L}}{\underset{t=1}{\sum}} \varphi(t) \varphi(t) = S(n)^{T} \hat{\mathcal{L}}_{n}$$

$$\hat{\mathcal{L}}_{n} = S(n)^{T} \stackrel{\mathcal{L}}{\underset{t=1}{\sum}} \varphi(t) \varphi(t) = S(n)^{T} \hat{\mathcal{L}}_{n}$$

$$\hat{\mathcal{L}}_{n} = S(n)^{T} \stackrel{\mathcal{L}}{\underset{t=1}{\sum}} \varphi(t) \varphi(t) = S(n)^{T} \hat{\mathcal{L}}_{n}$$

$$\hat{\mathcal{L}}_{n} = S(n)^{T} \stackrel{\mathcal{L}}{\underset{t=1}{\sum}} \varphi(t) \varphi(t) = S(n)^{T} \hat{\mathcal{L}}_{n}$$

$$\hat{\mathcal{L}}_{n} = S(n)$$

```
\sum_{i=1}^{\infty} q(t) y(t) = S(N-1) \hat{2}_{N-1} + Q(N) y(N)
                          S(N)\hat{\mathcal{O}}_{N} = S(N-1)\hat{\mathcal{O}}_{N-1} + \varphi(N)g(N) (2)
      Find an expression of S(N-1)
      S(N) = \sum_{t=1}^{N} \varphi(t) \varphi(t)^{T} = \sum_{t=1}^{N-1} \varphi(t) \varphi(t)^{T} + \varphi(N) \varphi(N)^{T}
S(N-1)
       S(u-1) = S(u) - \varphi(u)\varphi(u)^T
      Replace (8) im (7)
       S(N) \hat{\mathcal{O}}_{N} = (S(N) - \varphi(N)\varphi(N)^{T}) \hat{\mathcal{O}}_{N-1} + \varphi(N) y(N)
       S(N)\hat{\mathcal{D}}_{N} = S(N)\hat{\mathcal{D}}_{N-1} - \varphi(N)\varphi(N)^{T}\hat{\mathcal{D}}_{N-1} + \varphi(N)\gamma(N)
       \hat{\mathcal{Q}}_{N} = \hat{\mathcal{Q}}_{N-1} + S(N)^{-1} \varphi(N) \left[ y(N) - \varphi(N)^{T} \hat{\mathcal{Q}}_{N-1} \right]
                                   K(N)
                                                                  Elu)
                                 (gain)
                                                          Prediction everor
        θη= θη-1 + K(N) ε(N)
        K(N) = 5(N) -1 P(N)
                                                                 RLS - I
       \mathcal{E}(\omega) = \mathcal{Y}(\omega) - \varphi(\omega)^{\mathsf{T}} \hat{\mathcal{O}}_{\omega-1}
         S(N) = S(N-1) + \varphi(N) \varphi(N)^T
Drawback
       S(N) - S(N-1) = \varphi(N) \varphi(N)^{T} > 0 \Rightarrow S(N) \xrightarrow{N-p(N)} 0
    S(N) is a matrix wich continuously increases, and tends to saturate the numerical precision of the digital computing unit.
       SOUTION -> RECURSIVE LEAST SQUARE
  Recursive Least square I form
      Trick: mormalization with respect to N
         S(u) = S(u-1) + \varphi(u) \varphi(u)^T
        R(N) = \frac{1}{N} S(N) \longrightarrow R(N) = \frac{1}{N} \frac{N-1}{N-1} S(N-1) + \frac{1}{N} \varphi(N) \varphi(N)^{T}
        R(N) = \frac{N-1}{N} R(N-1) + \frac{1}{N} \varphi(N) \varphi(N)^{T}
```

$\hat{\mathcal{D}}_{N} = \hat{\mathcal{D}}_{N-1} + K(N)$ $K(N) = \frac{1}{N} R(N)^{-1} Q$ $E(N) = Q(N) - Q$ $R(N) = \frac{N-1}{N} R(N)$	P(N) RLS-II	
Drawback		
at each time s a big computation	step a matrix inversion is required which require	res
SOLUTION -> 1	RIS III	
Recursive Least sq	quare III - form	
LENMA OF MATRIX	(INVERSION	
	strices F,G,H,K such that	
· F + GHK · F, H and I	Mares sense (suitable dimensions) FIGHK are square invertible naturices	
	F-'-F-'G(H-'+ KF-'G)-'KF-'	
Im our case s	$S(N)^{-1} = \left[S(N-1) + \varphi(N) + \varphi(N) \right]^{-1}$ $S(N)^{-1} = \left[S(N-1) + \varphi(N) + \varphi(N) \right]^{-1}$	
S(N)-1 = S(N-1)-1 -	$= S(N-1)^{-1} \varphi(N) \left[1 + \varphi(N)^{\top} S(N-1)^{-1} \varphi(N) \right] \varphi(N)^{\top} S(N-1)^{-1}$ is a scalar	
define V(N)=		
$V(N) = \Lambda(N-1) - \frac{1}{2}$	$\frac{V(N-1) \varphi(N) \varphi(N)^{T} V(N-1)}{1+ \varphi(N)^{T} V(N-1) \varphi(N)}$	
· It is no w	not toud to zero- ucze necessary to invort a matrix, mstead a issom is required.	

$ \hat{\mathcal{U}}_{N} = \hat{\mathcal{U}}_{N-1} + K(N) \mathcal{E}(N) $ $ \mathcal{E}(N) = \mathcal{Y}(N) - \varphi(N)^{T} \hat{\mathcal{U}}_{N-1} $ $ K(N) = V(N) \varphi(N) $ $ V(N) = V(N-1) - \frac{V(N-1) \varphi(N)^{T} V(N-1)}{1 + \varphi(N)^{T} V(N-1) \varphi(N)} $
Remark om imitialization
RLS is a reigorous vorsion of LS (not an approx) provided a
correct imitialization
CORRECT INITIALIZATION:
NITTALIZATION RLS · Collect a first set of data till to · Compute \hat{v}_t and $S(t_0)$ with LS · Use RLS to update \hat{v}_t and $S(t_0)$
to Use RLS to update v and S
IN PRACTICE
to = 0 S(0)= I - the error introduced by this wrong initialization tends to vanish for N-000
Recursive Least square with forgetting factor
Consider a time ranging Parameter
$\alpha(t)$ $\alpha(t)$
$\hat{\alpha}_{l,s}$
$\hat{\alpha}_{o}$
1
do is the correct estimation at time N, but it does not minimizes
$J_{N}(\alpha) = \frac{1}{N} \sum_{t=1}^{N} (g(t) - \hat{g}(t)t - 1, \alpha)^{2}$ because it consider the whole
time History of the system
IN ORDER TO IDENTIFY A TIME VARYING PARAMETERS THE RIS MUST BE FORCED TO FORGET OLD DATA
The shitten is mandal by the minimum of the
The solution is provided by the minimization of J_N $J_{n}(2e) = \frac{1}{2} \sum_{i=1}^{N} \rho^{N-t} (y_{i} t) - \hat{y}(t t-1, 19))^{2}$
$\int_{V} (v) = \frac{1}{N} \left(\frac{y(t) - y(t)(t-1)}{y(t)(t-1)} \right)$
O≤P≤I is called firgutting factor

P=1 -0 Previous simulation
P<1 -0 the dd data have less importance with respect to new data. ÎN = ÎN-1 + K(N) E(N) K(N) = S(N) - (VN) RLS with forgetting factor E(N) = y(N) - (P(N) 20 -1 S(N) = PS(N-1) + Q(N) Q(N) T Remark on choice of the forgetting factor PCC1 Low pracision · P-DI (P=0.95) | Cow tracking speed greater precision.