<u>Dashboard</u> / My courses / <u>Computer Vision</u> / In-Class Quizzes / <u>Lecture 12: (Even) Quiz</u>

Started on	Thursday, 18 February 2021, 2:30 PM	
State	Finished	
Completed on	Thursday, 18 February 2021, 2:46 PM	
Time taken	15 mins 36 secs	
Grade	10.00 out of 10.00 (100 %)	
Question 1		
Correct		
Mark 3.00 out of 3.00		
Which of the followi	ing statements are correct w.r.t. the GrabCut algorithm?	
a. It is an intera	active segmentation algorithm	~
b. It uses a mix	cture of gaussians model to capture foreground and background pixel statistics	~
c. The algorithr	m is agnostic to (discards) color information during the segmentation.	
d. It always give	es the correct segmentation with a single user interaction (drawing of the rectangle)	
e. It is an iterati	ive algorithm that needs multiple tries to converge	~
Vous angular is assured		
Your answer is corr		
The correct answer		
	segmentation algorithm,	
It uses a mixture of	gaussians model to capture foreground and background pixel statistics,	
It is an iterative algo	orithm that needs multiple tries to converge	

Question 2	
Correct	
Mark 3.00 out of 3.00	
Which type of energy functions are easy (polynomial) to solve in graph-based optimisation?	
	~
□ b. Any arbitrary function	
c. Functions defined on trees	•
d. Continuous functions	
Your answer is correct.	
The correct answers are:	
Submodular functions,	
Functions defined on trees	
Question 3	
correct	
1ark 4.00 out of 4.00	
Which of the following are the reason(s) behind the ability of graphical models to incorporate neighbourhood constraint the pixel labelling problem?	s into
a. The use of pair-wise potentials in the cost function	•
□ b. None of the others	
c. Modelling the problem as two-class segmentation as opposed to multi-class segmentation	
d. The use of unary potentials in the cost function	
	•
e. The use of min-cut that pass through between pixel edges in the graph-cut	•
Your answer is correct.	
The correct answers are: The use of pair-wise potentials in the cost function,	
The use of min-cut that pass through between pixel edges in the graph-cut	
Jump to	
	Quiz ▶