Streaming GNN via Continual Learning ¹

Sicheng Mao, Yunhao Chen, Yang Zhang

 $\operatorname{MAP670G}$ - Data Stream Processing

January 16, 2023

Overview

- Framework: StreamingGNN
- 2 Proposed method: ContinualGNN
- 3 Our contributions & Future
- 4 Problems

Framework: StreamingGNN

- In real case, network data is formed in a *streaming* fashion
 - Nodes and edges are modified over time.
- Patterns: Neighborhood information of nodes.
 - New patterns may appear and Existing patterns still maintain

Figure: streaming networks.

StreamingGNN - current methods

- PretrainedGNN
 - Use a pre-trained GNN model to generate representations of unseen nodes and changed nodes on G^t : Inductive learning
 - Performance degrades if nodes are not in the pre-trained model.
- RetrainedGNN
 - Retrain the GNN at every time step.
 - High performance but computationally costly.

StreamingGNN - current methods

OnlineGNN

- Train GNN based on ΔG^t using θ^{t-1} to initialize.
- Catastrophic forgetting when the patterns in ΔG^t are different from θ^{t-1} , knowledge of θ^{t-1} may be abruptly lost.

Figure: streaming networks.

Proposed method: ContinualGNN

• Problem to solve: Given streaming network G, at each time t, based on G^t the current graph. Detect new patterns incrementally while preserving existing patterns.

ContinualGNN - GraphSAGE

Figure: Visual illustration of the GraphSAGE sample and aggregate approach.

2

 $^{^2}$ Inductive Representation Learning on Large Graphs

ContinualGNN

- Two main tasks:
 - Current task: Training on ΔG^t
 - Previous task: Training on $(\Delta G^1, \Delta G^2, ..., \Delta G^{t-1}) = G^{t-1}$

Figure: streaming networks.

ContinualGNN

- Loss function:
 - Using Bayes' rule:

$$\log p(\theta|G^{t-1}, \Delta G^t) = \log p(\Delta G^t|\theta) + \log p(\theta|G^{t-1}) - \log p(\Delta G^t)$$

• General loss function of Continual GNN at time t is:

$$L = L_{new} + L_{existing}$$

where the first term L_{new} is the loss function on the influenced parts of networks, and $L_{existing} = L_{data} + L_{model}$ aims to consolidate patterns on previous data.

ContinualGNN

• General loss function of ContinualGNN at time t is:

$$L = L_{new} + L_{data} + L_{model}$$

Figure: loss components.

Our contributions & Future

- Provide a more standard data format based on **Pytorch**Geometric
- Refactor the original code: more clean, efficient code
- Remove the coupling relation between the code with a specific dataset used in the paper

Problems

- Some problems of being integrated into (Deep) River:
 - ContinualGNN is not typically an online learning model, it has memories of the past data.
 - The ContinualGNN is based on graphSAGE, which is too complex and inefficient for (Deep) River.
 - The data type is different, for River the data should all be a dictionary, it's hard to convert graph data into a dictionary.