Introduction to diversification

Tobias Ingebrigtsen

Master of Financial Engineering Bootcamp

Summer 2022

MOTIVATION

"There is no such thing as a free lunch"

MOTIVATION

"There is no such thing as a free lunch"

■ Diversification

DIVERSIFICATION

- Central idea in finance
- Risk-Reward (no free lunch)
- You can achieve the same expected return with lower overall risk (!!)

EXAMPLE

Assume that you have \$200 and that you would like to invest one of two stocks, A and B, over the next two periods, 1 and 2. The share price is \$100 for both stocks today.

Period	1	2	Value of position after period 2
Stock A	+100%	-50%	\$100
Stock B	-50%	+100%	\$100

EXAMPLE

The return after period two is zero!

But what if we invested in both stocks?

EXAMPLE

Now you invest \$100 in each stock and rebalance every period to keep the ratio 50/50 (assume you can buy fractions of a share).

Period	1	2	Value of position after period 2
Stock A Stock B		$-50\% \\ +100\%$	\$100 \$100
A + B	\$200 + 50	62.5 + 250	\$312.5

- Stocks in a portfolio usually co-move in one way or another
- Risk (Portfolio variance?)
- Systematic and idiosyncratic risk

- Variance of a single stock: $\sigma_i^2 = T^{-1} \sum_{t=1}^T (r_i \overline{r})^2$
- Variance of a portfolio of n assets: $\sigma_p^2 = \omega' \Sigma \omega$, where $\omega' = [\omega_1, ..., \omega_n]$ is a vector of weights and Σ is an n×n covariance matrix.

- Variance of a single stock: $\sigma_i^2 = T^{-1} \sum_{t=1}^T (r_i \overline{r})^2$
- Variance of a portfolio of n assets: $\sigma_p^2 = \omega' \Sigma \omega$, where $\omega' = [\omega_1, ..., \omega_n]$ is a vector of weights and Σ is an n×n covariance matrix.

$$\sigma_p^2 = \sum_{i=1}^n \sum_{j=1}^n \omega_i \omega_j \operatorname{Cov}(s_i, s_j) = \sum_{i=1}^n \omega_i^2 \sigma_i^2 + \sum_{i=1}^n \sum_{j=1}^n \omega_i \omega_j \sigma_{i,j}.$$

Suppose the portfolio is equal-weighted. We can write

1.
$$\overline{\sigma}^2 = n^{-1} \sum_{i=1}^n \sigma_i^2$$

2.
$$\overline{\text{Cov}} = (n(n-1))^{-1} \sum_{i=1}^{n} \sum_{j \neq i}^{n} \sigma_{i,j}$$

which we can insert in the original equation:

$$\sigma_p^2 = \frac{1}{n^2} \overline{\sigma}^2 + \frac{n-1}{n} \overline{\mathsf{Cov}}$$

Result:

$$\lim_{n\to\infty}\sigma_p^2=\overline{\mathit{Cov}}\quad\Rightarrow\;\mathsf{only\;covariances\;matter!}$$

DIVERSIFICATION

Number of stocks in portfolio

