TOPOLOGÍAS DE MICROINVERSORES

B

Universidad Industrial de Santander

Juan José León Carreño Maribel Duarte Romero

Somos **el mejor** escenario de creación e innovación.

www.uis.edu.co

Convertidores basados en:

Universidad Industrial de

No aisladas: Principios basados en tipo boost

- Estructura simple.
- Alcanza altas potencias.
- Sufre de baja eficiencia.
- Ruido por interferencia electromagnética.

Universidad Industrial de

No aisladas: Principios basados en tipo boost

- Mejora el rendimiento sin transformador.
- Corriente de salida no depende del ciclo de trabajo instantáneo.
- Bajo rendimiento en condiciones de sombreado parcial debido a su control digital.

I Iniversidad

Industrial de

No aisladas: Principios basados en tipo **buck-boost**

Fig. 3. Topología propuesta por Jain y Agarwal

- Actúa como inversor de fuente de corriente con bajas pérdidas de conmutación.
- Ganancia de bajo voltaje y baja eficiencia.

Universidad Industrial de

Aisladas: Principios basados en tipo flyback

- Permite utilizar condensadores pequeños.
- Capacitor de desacoplamiento actúa como capacitor amortiguador.

Fig. 4 Topología propuesta por Hu y al.

No aisladas: Principios basados en tipo flyback interleaved

- Altamente eficiente.
- Diseño de filtro simple.
- Interferencia electromagnética muy baja.
- Necesita alta inductaciia de magnetización.

Fig. 5. Topología propuesta por Edwin y Gao.

	P [W]	%	Sw	% THD	\$
Fig. 1	500	-	4	4.74	Bajo
Fig. 2	260	97.5	4	<3	Bajo
Fig. 3	30	87	4	5	Bajo
Fig. 4	100	90.2	4	1.9	Moder ado
Fig. 5	200	95.1	8	_	Alto

Topologías de dos etapa

No Aisladas (inversores)

Full Bridge Inverter

Fc = 30 [kHz]

Ventajas

- Simplicidad estructural.
- corre diferentes esquemas de modulación .(PWM)

Topologías de dos etapa

No Aisladas (inversores)

Full Bridge Inverter

Fc = 30 [kHz]

Ventajas

- Simplicidad estructural.
- corre diferentes esquemas de modulación .(PWM)

Modulación Unipolar

Modulación Unipolar Asimétrica

Universidad lustrial de antander

escenario

Dual Buck inverter

Single Buck Inverter

H5 inverter

Heric Inverter

SHREC INVERTER

Tabla Comparativa

Inversor	Eficiencia %	# Swicht	# Diodos	# Inductores	\$
Full Bridge	97-98	4	0	4.74	Bajo
Unipolar dual buck	98.49	4	2	2	HIGH
Single Buck	98.42	5	1	1	MEDIUM
SHREC	98.67	6	2	2	HIGH

MI propuesto por Andersen y Alvsten (ZVRT)

Eficiencia 96%

Aisladas (inversores)

ual boost converter with full-bridge inverter

Boost half-bridge converter with full-bridge inverter

