泛函分析第16周作业

林陈冉

2016年12月17日

5.26

- (1) $\forall v \in H$, $v = \sum_{n=1}^{\infty} (e_n, v)$, 由 $v \in H$, 可知 $|v|^2 = \sum_{n=1}^{\infty} |(e_n, v)|^2 < \infty$, 则 $\lim_{n \to \infty} |(e_n, v)|^2 = 0$, 自然的, $\lim_{n \to \infty} (e_n, v) = 0$, 故 $(e_n, v) \to 0$.
- (2) a_n 有界, 设 $|a_n| < M$, 那么有

$$|u_n|^2 = |(\frac{1}{n} \sum_{i=1}^{\infty} a_i e_i, \frac{1}{n} \sum_{i=1}^{\infty} a_i e_i)| = \frac{1}{n^2} \sum_{n=1}^{\infty} a_n^2 < \frac{1}{n} M^2$$

則 $\lim_{n\to\infty} |u_n|^2 < \lim_{n\to\infty} \frac{1}{n} M^2 = 0$,故 $|u_n| \to 0$.

(3)

5.28

(1) H 是可分的, $V \subset H$, 则显然 V 也是可分的. 记 $\{v_n\}$ 是 V 的一个可数稠密子集, 记 $\{v_1, v_2, \cdots, v_n\}$ 张成的空间为 V_n , 则 $\bigcup_{n=1}^{\infty} V_n$ 在 V 中是稠密的, 由 V在 H 中稠密, 可知 $\bigcup_{n=1}^{\infty} V_n$ 在 H 中也是稠密的.

对于 V_1 , 可以任意找一个单位向量 e_1 ; 对于 V_2 , 当 $V_1 \neq V_2$, 因为 V_2 是有限维的, 可以找另一个单位向量 e_2 , 使 $\{e_1,e_2\}$ 是 V_2 的一组正交基; 当 $V_1=V_2$, 则直接考虑 V_3 .

对所有的 V_n 重复这样的操作, 可以得到 H 的一组正交基 $\{e_1,e_2,\cdots,e_n,\cdots\}$, 显然它是属于 V 的.

(2) 由 H 是可分的, 则存在 H 的一个可数稠密子集 $\{v_k\}$, 那么 $\{v_k\} \cup \{e_n\}$ 也是 H 的一个可数稠密子集. 记 $\{e_1, e_2, \cdots, e_n, \cdots\}$ 张成的空间为 V_0 , $\{e_1, e_2, \cdots, e_n, \cdots\} \cup \{v_1, v_2, \cdots, v_k\}$ 张成的空间为 $V_k(k > 0)$, $\bigcup_{n=1}^{\infty} V_n$ 在 H 中是稠密的 .

对于 V_1 , 当 $V_1 \neq V_0$, 令 $u_1 = \frac{P_{V_0}v_1}{|P_{V_0}v_1|}$, 因为 V_0 是 $\bigcup_{n=1}^{\infty} \{e_n\}$ 张成的, 可知它是 H 的闭凸子空间, 则有 $\forall x \in V_0$, $(x,u_1)=0$,故 $(e_n,u_i)=0$. 且显然 $|u_1|=1$,故 $\{u_1,e_1,e_2,\cdots,e_n,\cdots\}$ 是 V_1 的一组正交基. 当 $V_1=V_0$,则直接考虑 V_2 与 V_1 ,以完全相同的办法可以找到 u_2 构成 V_2 的一组正交基.

对所有的 V_n 重复这样的操作,可以到的 H 的一组正交基 $\{u_1, u_2, \dots, u_k, \dots\} \bigcup \{e_1, e_2, \dots, e_n, \dots\}$,显然它是包含 $\{e_1, e_2, \dots, e_n, \dots\}$ 的.

6.1

(1) 充分性: 当 $\lambda_i \to 0$, 则对 $\forall \epsilon > 0$, $\exists N > 0$, s.t. $\forall n > N$, $\lambda_i < \epsilon$. 设 $T_n(x) = (\lambda_1 x_1, \dots, \lambda_n x_n, 0, 0, \dots)$, 当 n > N,

$$||T - T_n|| = \sum_{i=n+1}^{\infty} \lambda_i^2 x_i^2 \le \epsilon^2 \sum_{i=n+1}^{\infty} \lambda_i^2 x_i^2 \le \epsilon^2 ||x|| \le \epsilon$$

即 $T_n \to T$, 显然 T_n 是线性的, 则 T 是紧算子.

(2) 必要性: 当 T 是紧算子,假设 $\lambda_i \to 0$ 不成立,则当 n 充分大, $\exists a > 0$,s.t. $|\lambda_n| > a$. 取序列 $x_n = \underbrace{(1, \cdots, 1, 0, 0, \cdots)}_{n \uparrow 1}$,则当 i, j 充分大, $||Tx_i - Tx_j|| > a^2$,则 Tx_n 不可能存在收敛子列,于 T 是紧算子矛盾,故必然有 $\lambda_i \to 0$.

6.2

(1) 设 Tu_n 是 $T(B_E)$ 中的一个收敛列, $Tu_n \to Tu$, $u_n \subset B_E$, 要证 $T(B_E)$ 是闭的, 则要证 $u \subset B_E$. E 是自反的, 则 B_E 是弱紧的, $\exists u^* \subset B_E$, $u_n \to u^*$. $\forall v \subset F^*$, 有

$$\langle u_n, T^*v \rangle \to \langle u^*, T^*v \rangle \quad \Leftrightarrow \quad \langle Tu_n, v \rangle \to \langle Tu^*, v \rangle$$

则 $Tu_n \to Tu^*$, 但同时由 Tu_n 的强收敛性可知 $Tu_n \to Tu$, 那么 $u = u^* \subset B_E$, 故 $T(B_E)$ 是闭的

- (2) T 是紧算子,则 $\overline{T(B_E)}$ 是紧的,而 $T(B_E)$ 是闭的,则 $T(B_E) = \overline{T(B_E)}$ 是紧的
- (3) 先说明 T 是紧算子. 设 $G_n: C([0,1]) \to C([0,1])$ 是把连续函数变成分段线性函数的泛函, 即

$$G_n u(t) = \left[u(\frac{i}{n}) - u(\frac{i-1}{n})\right] \cdot n(t - \frac{i-1}{n}) + u(\frac{i-1}{n}), \quad t \in \left[\frac{i-1}{n}, \frac{i}{n}\right], \quad i = \{1, \dots, n\}$$

再定义 $T_n = T \circ G_n$, 由定积分的性质, 显然 T 是线性的, 而对于 G_n

$$G_{n}(u_{1}+u_{2})(t) = \left[u_{1}\left(\frac{i}{n}\right) + u_{2}\left(\frac{i}{n}\right) - u_{1}\left(\frac{i-1}{n}\right) - u_{2}\left(\frac{i-1}{n}\right)\right] \cdot n(t - \frac{i-1}{n}) + u_{1}\left(\frac{i-1}{n}\right) + u_{2}\left(\frac{i-1}{n}\right)$$

$$= \left\{\left[u_{1}\left(\frac{i}{n}\right) - u_{1}\left(\frac{i-1}{n}\right)\right] \cdot n(t - \frac{i-1}{n}) + u_{1}\left(\frac{i-1}{n}\right)\right\} + \left\{\left[u_{2}\left(\frac{i}{n}\right) - u_{2}\left(\frac{i-1}{n}\right)\right] \cdot n(t - \frac{i-1}{n}) + u_{2}\left(\frac{i-1}{n}\right)\right\}$$

$$= G_{n}u_{1}(t) + G_{n}u_{2}(t), \quad \forall t \in \left[\frac{i-1}{n}, \frac{i}{n}\right], \quad i = \{1, \dots, n\}$$

$$(1)$$

则 G_n 是线性的, 那么 $T_n = T \circ G_n$ 也是线性的, 易证明 $T_n \to T$, 则 T 是紧算子.

再说明 $T(B_E)$ 不是闭的. 设 $u_n \in C([0,1])$

$$u_n(t) = \begin{cases} 0, & \text{if } 0 \le t \le \frac{1}{2} \\ n(t - \frac{1}{2}), & \text{if } \frac{1}{2} \le t \le \frac{1}{2} + \frac{1}{n} \\ 1, & \text{if } \frac{1}{2} + \frac{1}{n} \le t \le 1 \end{cases}$$

已知 $Tu_n \to f$, 其中

$$f(t) = \begin{cases} 0, & \text{if } 0 \le t \le \frac{1}{2} \\ t - \frac{1}{2}, & \text{if } \frac{1}{2} \le t \le 1 \end{cases}$$

f 在 1/2 处不可导, 故 $f \notin T(B_E)$.

6.8

- (1) 把 $T: E \to F$ 看作映射 $T: E \to R(T)$, 则 T 是满射,由开映射定理, $\exists \alpha > 0$, s.t. $\alpha B_F \subset T(B_E)$. 因为 T 是紧算子,则 $\overline{T(B_E)}$ 是 F 中紧集,而 R(T) 是F 中闭集,则则 $\overline{T(B_E)}$ 是 R(T) 中紧集. αB_F 是 $\overline{T(B_E)}$ 的闭子集,因此是 R(T) 中紧集,那么 B_F 是 R(T) 中紧集,故 R(T) 是有限维的.
- (2) 满射 $T:E\to R(T)$ 诱导了商映射 $\tilde{T}:E/N(T)\to R(T)$, 商映射 \tilde{T} 是一个单射, 因而是个双射 . 这说明了 E/N(T) 与 R(T) 是等势的.

当 $\dim N(T)<\infty$,假设 $\dim E=\infty$,则 $\dim E/N(T)=\infty$,这与 R(T) 是有限维的矛盾,故 $\dim E<\infty$.