CS 370 - A1

Bilal Khan bilal2vec@gmail.com

September 24, 2023

Contents

1	1																								1
	1.1	a																	 						1
	1.2	b																	 						1
	1.3	\mathbf{c}																	 						2
	1.4	d																	 						2
2	2																								2
3	3																								2
	3.1	a																	 						2
	3.2	b																	 						3
	3.3	\mathbf{c}																	 						3
	3.4	d																							3
4	4																								4
5	5																								4
6	6																								4
7	7																								4

1 1

1.1 a

The smallest value is given by $(0.10000)_4 \times 4^{-10}$. The largest value is given by $(0.33333)_4 \times 4^{10}$.

1.2 b

 $(0.0321223)_4/(10)_4=(0.0321223)_4\times 4^{-1}=(0.321223)_4\times 4^{-2}$. The mantissa here has 6 digits and has to be rounded to 5 digits. Since the 6th digit (3) is larger than half the maximum significand (2), we round up. The result is $(0.32123)_4\times 4^{-2}$.

1.3 c

Machine epsilon is given by $\frac{1}{2}\beta^{-(m-1)}$. In this case, $\beta = 4$ and m = 5 and machine epsilon is given by $\frac{1}{2} \times 4^{-4}$.

1.4 d

All values in this number system where the exponent $p \leq 0$ are smaller than one. There are 21 possible exponents in [-10, 10] and so 11/21 of the numbers are smaller than one.

2 2

Given a machine epsilon E, $f(\bar{x} \ominus \bar{y}) = (\bar{x} - \bar{y})(1 + E)$, and $f(\bar{x} \otimes \bar{y}) = (\bar{x} \times \bar{y})(1 + E)$, We can find the relative error of the whole expression.

$$f(y \ominus 1) = (y - 1)(1 + E)$$

$$f(y \ominus 1) = (y + 1)(1 + E)$$

$$f(x \otimes y) = (x \times y)(1 + E)$$

$$f((y \ominus 1) \otimes (y \oplus 1)) = (((y-1)(1+E)) \times ((y+1)(1+E)))(1+E)$$

$$= ((y-1)(1+E)(y+1)(1+E))(1+E)$$

$$= ((y-1)(y+1)(1+E)(1+E))(1+E)$$

$$= ((y^2-y+y-1)(1^2+2E+E^2))(1+E)$$

$$= (y^2-1)(1+2E+E^2)(1+E)$$

$$= (y^2-1)(1+2E+E^2+E+2E^2+E^3)$$

$$= (y^2-1)(1+3E+3E^2+E^3)$$

The bound on the relative error is then $3E + 3E^2 + E^3$.

3 3

3.1 a

```
import math

def PowerSin(x):
   idx = 1
   exp = 3
   sum = 0
   term = x

while sum + term != sum:
```

```
sum = sum + term
term = ((-1)**idx) * (x**exp) / math.factorial(exp)
idx += 1
exp += 2
return sum
```

3.2 b

3.3 c

	x	PowerSin(x)	$\sin(x)$	Error	Number of Terms
ĺ	$\pi/2$	1.000000000000000002	1.0	0.0000000000000000000000000000000000000	11
	$11\pi/2$	-1.000000000155901	-1.0	0.000000000155901	37
	$21\pi/2$	1.0046249045393962	1.0	0.0046249045393962	59
	$31\pi/2$	17863.02585515233	-1.0	17864.02585515233	77

3.4 d

At sufficiently large values, the floating point errors become large enough that the power series no longer converges to the correct value. This can be fixed in a way for this example by always computing PowerSin(x % (2 * math.pi)) since the sin function is periodic.

- 4 4
- **5 5**
- 6 6
- 7 7