Propriedades de Séries de Potências

Reginaldo J. Santos Departamento de Matemática-ICEx Universidade Federal de Minas Gerais

http://www.mat.ufmg.br/~regi

2 de outubro de 2011

Uma **série de potências** de *x* é uma expressão da forma

$$\sum_{n=0}^{\infty} a_n x^n = a_0 + a_1 x + a_2 x^2 + \dots,$$

em que a_0, a_1, a_2, \dots são números denominados **coeficientes da série**. Podemos definir uma função f(x) que associa a cada valor de x, para o qual existe o limite

$$\lim_{N\to\infty} \sum_{n=0}^{N} a_n x^n = \lim_{N\to\infty} (a_0 + a_1 x + a_2 x^2 + \ldots + a_N x^N),$$

o valor deste limite e escrevemos

$$f(x) = \sum_{n=0}^{\infty} a_n x^n = a_0 + a_1 x + a_2 x^2 + \dots$$

O maior valor de r para o qual o limite acima existe para |x| < r, ou seja, a **série converge** é chamado **raio de convergência** da série.

Exemplo 1. A série geométrica

$$f(x) = 1 + x + x^2 + \dots = \sum_{n=0}^{\infty} x^n = \lim_{N \to \infty} \frac{1 - x^{N+1}}{1 - x} = \frac{1}{1 - x}, \text{ para } |x| < 1$$

tem raio de convergência r = 1.

A seguir apresentamos as propriedades das séries de potências que são usadas no estudo das soluções de equações diferenciais em série de potências.

Proposição 1. São válidas as seguintes propriedades para as séries de potências:

(a) Se $f(x) = \sum_{n=0}^{\infty} a_n x^n$ tem raio de convergência $r_1 > 0$ e $g(x) = \sum_{n=0}^{\infty} b_n x^n$ tem raio de convergência $r_2 > 0$, então para todos os números α e β ,

$$\alpha f(x) + \beta g(x) = \alpha \sum_{n=0}^{\infty} a_n x^n + \beta \sum_{n=0}^{\infty} b_n x^n = \sum_{n=0}^{\infty} (\alpha a_n + \beta b_n) x^n,$$

tem raio de convergência que é pelo menos $r = \min\{r_1, r_2\}$.

(b) Se $f(x) = \sum_{n=0}^{\infty} a_n x^n = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \cdots$ tem raio de convergência r > 0, então para $k, l = 0, 1, 2, \ldots$

$$(\alpha x^{k} + \beta x^{l}) f(x) = \alpha x^{k} \sum_{n=0}^{\infty} a_{n} x^{n} + \beta x^{l} \sum_{n=0}^{\infty} a_{n} x^{n} = \alpha \sum_{n=0}^{\infty} a_{n} x^{n+k} + \beta \sum_{n=0}^{\infty} a_{n} x^{n+l}$$
$$= \alpha \sum_{n'=k}^{\infty} a_{n'-k} x^{n'} + \beta \sum_{n'=l}^{\infty} a_{n'-l} x^{n'} = \alpha \sum_{n=k}^{\infty} a_{n-k} x^{n} + \beta \sum_{n=l}^{\infty} a_{n-l} x^{n}.$$

(c) Se $f(x) = \sum_{n=0}^{\infty} a_n x^n = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \cdots$ tem raio de convergência r > 0, então f(x) tem derivadas de todas as ordens, para |x| < r e

$$f'(x) = a_1 + 2a_2x + 3a_3x^2 + \dots = \sum_{n=1}^{\infty} na_n x^{n-1} = \sum_{n=0}^{\infty} (n+1)a_{n+1}x^n$$

$$f''(x) = 2a_2 + 2 \cdot 3x + 3 \cdot 2x^2 + \dots = \sum_{n=2}^{\infty} (n-1)na_n x^{n-2} = \sum_{n=0}^{\infty} (n+1)(n+2)a_{n+2}x^n$$

$$f^{(k)}(x) = \sum_{n=k}^{\infty} (n-k+1) \cdot \dots \cdot (n-1)na_n x^{n-k} = \sum_{n=0}^{\infty} (n+1)(n+2) \cdot \dots \cdot (n+k-1)a_{n+k}x^n$$

(d) $Se \sum_{n=0}^{\infty} a_n x^n = 0$, para todo x, com |x| < rer > 0, então $a_n = 0$, para n = 0, 1, 2, ...

Demonstração.

(a) Para x tal que $|x| < \min\{r_1, r_2\}$ temos

$$\alpha f(x) + \beta g(x) = \alpha \lim_{N \to \infty} \sum_{n=0}^{N} a_n x^n + \beta \lim_{N \to \infty} \sum_{n=0}^{N} b_n x^n = \lim_{N \to \infty} \sum_{n=0}^{N} (\alpha a_n + \beta b_n) x^n.$$

(b) Para x tal que |x| < r temos

$$(\alpha x^{k} + \beta x^{l}) f(x) = (\alpha x^{k} + \beta x^{l}) \lim_{N \to \infty} \sum_{n=0}^{N} a_{n} x^{n} = \lim_{N \to \infty} (\alpha x^{k} + \beta x^{l}) \sum_{n=0}^{N} a_{n} x^{n}$$

$$= \lim_{N \to \infty} \left(\alpha \sum_{n=0}^{N} a_{n} x^{n+k} + \beta \sum_{n=0}^{N} a_{n} x^{n+l} \right)$$

$$= \alpha \lim_{N \to \infty} \sum_{n=0}^{N} a_{n} x^{n+k} + \beta \lim_{N \to \infty} \sum_{n=0}^{N} a_{n} x^{n+l}.$$

(c) Basta provarmos para a primeira derivada. Como

$$\sqrt[n]{|na_nx^n|} = \sqrt[n]{n} \sqrt[n]{|a_n|} |x|$$

e $\lim_{n\to\infty} \sqrt[n]{n} = 1$, então $\sum_{n=1}^{\infty} na_n x^n = x \sum_{n=1}^{\infty} na_n x^{n-1}$ e $\sum_{n=0}^{\infty} a_n x^n$ possuem o mesmo raio de convergência. Assim a série $\sum_{n=1}^{\infty} na_n x^{n-1}$ converge para |x| < r. Sejam s,t tais que $0 < |x| \le s < t < r$. Então, existe K > 0 tal que $n|a_n|t^{n-1} \le K$ e assim

$$|na_nx^{n-1}| \le n|a_n|t^{n-1}\frac{s^{n-1}}{t^{n-1}} \le K\left(\frac{s}{t}\right)^{n-1}.$$

Seja $\epsilon > 0$. Sejam

$$g(x) = \sum_{n=1}^{\infty} n a_n x^{n-1},$$

$$S_N(x) = \sum_{n=1}^{N} a_n x^n,$$

$$q_N(x,h) = \frac{S_N(x+h) - S_N(x)}{h},$$

$$q(x,h) = \frac{f(x+h) - f(x)}{h}.$$

Existe $N_0 \in \mathbb{N}$ tal que $M, N > N_0$ implica $\sum_{n=M}^N K\left(\frac{s}{t}\right)^{n-1} < \frac{\epsilon}{3}$. Então

$$|S_N'(x) - S_M'(x)| = \left| \sum_{n=M}^N n a_n x^{n-1} \right| \le \sum_{n=M}^N \left| n a_n x^{n-1} \right| \le \sum_{n=M}^N K\left(\frac{s}{t}\right)^{n-1} < \frac{\epsilon}{3}, \quad (1)$$

para todo $x \in [-s,s]$. Deixando N fixo e passando ao limite quando M tende a infinito obtemos

$$|S_N'(x) - g(x)| \le \frac{\epsilon}{3}. (2)$$

Sejam M, $N > N_0$. Pelo Teorema do Valor Médio aplicado a $S_N(x) - S_M(x)$ e por (1) obtemos que existe ξ entre x e x + h tal que

$$|q_N(x,h) - q_M(x,h)| = |S'_N(\xi) - S'_M(\xi)| < \frac{\epsilon}{3}.$$

Deixando *N* fixo e passando ao limite quando *M* tende a infinito obtemos

$$|q_N(x,h) - q(x,h)| \le \frac{\epsilon}{3}$$
, para todo h tal que $x + h \in [-s,s]$. (3)

Como $\lim_{h\to 0} q_N(x,h) = S_N'(x)$, existe $\delta>0$ tal que $0< h<\delta$ implica que

$$|q_N(x,h) - S_N'(x)| < \frac{\epsilon}{3} \tag{4}$$

De (3), (4) e (2) segue-se que

$$|q(x,h) - g(x)| \le |q(x,h) - q_N(x,h)| + |q_N(x,h) - S'_N(x)| + |S'_N(x) - g(x)| < \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3}.$$

(d) Usando o item anterior temos que

$$f(0) = a_0 = 0$$
, $f'(0) = a_1 = 0$, $f''(0) = 2a_2 = 0$, ... $f^{(k)}(0) = (k-1)! a_k = 0$.

Logo todos os coeficientes da série são iguais a zero.