Math 111C HW5

Zih-Yu Hsieh

May 15, 2025

1

Question 1 Let F be a finite field. Prove that $|F| = p^n$ for some prime p and $n \in \mathbb{N}$.

Pf:

Since F is a finite field, then $\operatorname{char}(F)=p$ for some prime p. It suffices to show that $|F|=p^n$ for some $n\in\mathbb{N}$

Suppose the contrary that the above statement doesn't hold, then there exists some distinct prime number $q \neq p$, such that q divides |F|. Recall that F is a finite abelian group under addition, hence **Cauchy's Theorem** applies, there exists $a \in F$, such that its order with respect to addition (denoted as order(a)) is q.

However, since p, q are distinct primes, then by **Bezout's Lemma**, there exists $s, t \in \mathbb{Z}$, with sp+tq=1. Then, let $n \cdot a$ denotes the addition of a total of n times (if n is negative, do the addition of -a total of |n| times instead) and let 1_p denote the identity of F, then we get the following:

$$a = (sp + tq) \cdot a = (s \cdot (p \cdot 1_p)) \cdot a + t(q \cdot a) = (s \cdot 0) \cdot a + t \cdot 0 = 0$$

Which shows that a = 0. But, if a = 0, then order(a) = 1, which contradicts the statement that order(a) = q > 1.

So, our assumption is false, $|F| = p^n$ for some $n \in \mathbb{N}$.

2 (not done)

Question 2 Show that $\mathbb{F}_2[x]/(x^3+x+1) \cong \mathbb{F}_2[y]/(y^3+y^2+1)$ and find an explicit isomorphism.

Pf:

Let $K_1 = \mathbb{F}_2[x]/(x^3 + x + 1)$, and $K_2 = \mathbb{F}_2[y]/(y^3 + y^2 + 1)$. Which, since the extensions are based on two degree 3 polynomial, then $[K_1 : \mathbb{F}_2] = [K_2 : \mathbb{F}_2] = 3$, which implies that $|K_1| = |K_2| = 2^3 = 8$.

Now, consider $\overline{\mathbb{F}}_2$: Since both K_1, K_2 are finite extensions of \mathbb{F}_2 , they're algebraic extensions of \mathbb{F}_2 . Hence, there exists embeddings $\phi_1: K_1 \to \overline{\mathbb{F}}_2$ and $\phi_2: K_2 \to \overline{\mathbb{F}}_2$.

Now, since $\phi_1(K_1) \cong K_1$ and $\phi_2(K_2) \cong K_2$, then $|\phi_1(K_1)| = |K_1| = 8 = |K_2| = |\phi_2(K_2)|$. Then, since $8 = 2^3$, under $\overline{\mathbb{F}}_2$, there exists a unique finite field $\mathbb{F}_{2^3} \subset \overline{\mathbb{F}}_2$ with order $|\mathbb{F}_{2^3}| = 2^3$. Hence, this enforces $\phi_1(K_1) = \phi_2(K_2) = \mathbb{F}_{2^3}$.

So, after restriction, we get the following relationships of isomorphisms:

$$\phi_1: K_1 \stackrel{\sim}{\to} \mathbb{F}_{2^3}, \quad \phi_2: K_2 \stackrel{\sim}{\to} \mathbb{F}_{2^3}$$

Hence, $\phi_2^{-1} \circ \phi_1 : K_1 \to K_2$ is an isomorphism, showing that $K_1 \cong K_2$.

Question 3 Let F be a perfect field with char(F) = p. Prove that $F = F^p$.

Pf:

We'll prove by contradiction. Suppose F is a perfect field, while $F \neq F^p$, then since $F^p \subsetneq F$, there exists $\alpha \in F \setminus F^p$, which implies that for all $\beta \in F$, $\beta^p \neq \alpha$.

So, the polynomial $x^p - \alpha \in F[x]$ has no solution in F, which based on **HW 2 Question 3**, this polynomial is in fact irreducible in F[x].

Now, consider $K = F[x]/(x^p - \alpha)$ (a finite extension, hence K/F is algebraic), and take $\theta = \overline{x} \in K$: since it satisfies $\overline{x}^p - \alpha = \overline{(x^p - \alpha)} = 0$, then $\overline{x}^p = \alpha$, and $\theta = \overline{x}$ is a root of the monic polynomial $x^p - \alpha \in F[x] \subset K[x]$; also, since $x^p - \alpha$ is proven to be irreducible, then $m_{\theta,F}(x) = x^p - \alpha$.

But, because $\operatorname{char}(F) = p$, then $\operatorname{char}(K) = p$, which $\operatorname{char}(K[x]) = p$. So, based on Frobenius Endomorphism, $(x - \theta)^p = x^p - \theta^p$, showing that $(x - \theta)^p$ is a factorization of $x^p - \alpha$ in K[x]; then, since K[x] is a UFD, such factorization is unique. Hence, $m_{\theta,F}(x) = (x - \theta)^p$, showing that the minimal polynomial of θ over F has θ as a root with multiplicity p > 1, so $\theta \in K$ is not separable over F, or K/F is not a separable extension.

Yet, recall that F is assumed to be a perfect field, while K/F is an algebraic extension, then K/F should be a separable extension by the definition of perfect field. So, we reach a contradiction, therefore the initial assumption is false, if F is a perfect field, then $F = F^p$.

4

Question 4 Show that an algebraic extension of a perfect field is perfect.

Pf:

5

Question 5 Let $K = \mathbb{F}_p(t, w)$ be the rational function field with two indeterminates t, w over \mathbb{F}_p . Let L be the splitting field over K of the polynomial h(x) = f(x)g(x) where $f(x) = x^p - t$ and $g(x) = x^p - w$. Prove the following:

- (a) f and g are irreducible over K.
- (b) $[L:K] = p^2$.
- (c) L/K is not seperable.
- (d) $a^p \in K$ for all $a \in L$.

Pf: