DOKUMENTACJA PROJEKTOWA 2 - TESTBENCH

Agnieszka Klępka 310712 01158709@pw.edu.pl

PLATFORMA SPRZĘTOWA:

Synteza i symulacja układu została przeprowadzona na systemie macOS Catalina wersja 10.15.2

SPOSÓB URUCHAMIANIA:

Należy uruchomić terminal w katalogu /WORK i wpisać następujące polecenia do przeprowadzenia następujących działań:

- 1. Samodzielna synteza: make rtl
- 2. Test działania: make sim
- 3. Wyświetlanie przebiegów sygnałów w programie gtkwave: make wave Komendy te zapisane są w pliku makefile.

FLAGI

- BF0 znacznik informujący, że w wyniku jest tylko jedno zero
- BF1 znacznik informujący, że w wyniku jest tylko jedna jedynka
- PF znacznik uzupełnienia do parzystej liczby jedynek
- NF znacznik uzupełnienia do nieparzystej liczby jedynek

BF0 = 0 ->więcej niż jedno 0 w wyniku

BF1 = 1 ->w wyniku znajduje się jedna 1

PF = 1 -> uzupełnienie do parzystej liczby (nieparzysta liczba 1)

NF = 0 -> nieparzysta liczba 1

NF = 0 -> nieparzysta liczba 1

BF0 = 0 ->więcej niż jedno 0 w wyniku

BF1 = 1 ->w wyniku znajduje się jedna 1

PF = 1 -> uzupełnienie do parzystej liczby (nieparzysta liczba 1)

		i_argA	i_argB	o_result	o_result sim	Flagi	Flagi sim
1	Dodawanie	.01100110	.01001010	10110000	10110000	.0110	.0110
2		.00000001	10100011	10100100	10100100	.0110	.0110
3		.00001001	10110001	10111010	10111010	.0110	.0110
4		11001101	.00001000	11010101	11010101	.0101	.0101
1	OR	.00000000	.00111000	.00111000	.00111000	.0110	.0110
2		10000110	.01011100	11011110	11011110	.1001	.1001
3		11001110	11000111	11001111	11001111	.1010	.1010
4		11000110	11110011	11110111	11110111	.0101	.0101
1	NOR	11000110	11110011	.00001000	.00001000	.0110	.0110
2		11000011	.01011111	.00100000	.00100000	.0110	.0110
3		.01000111	10001001	.00110000	.00110000	.1001	.1001
4		.01101110	10001111	.00010000	.00010000	.0110	.0110
1	<<	.00000000	.00111000	.00000000	.00000000	.1001	.1001
2		10000110	.01011100	.00000000	.00000000	.1001	.1001
3		11000110	11110011	.00000000	.00000000	.1001	.1001
4		11000011	.01011111	.00000000	.00000000	.1001	.1001
1	<<<	11000110	11110011	.00000000	.00000000	.1001	.1001
2		10000110	.01011100	.00000000	.00000000	.1001	.1001
3		11001110	11000111	.00000000	.00000000	.1001	.1001
4		11000011	.01011111	.00000000	.00000000	.1001	.1001

		i_argA	i_argB	o_result	o_result sim	Flagi	Flagi sim
1	U2 -> Gray	.00010011		.00011010	.00011010	.0110	.0110
2		10110100	*	11101110	11101110	.1001	.1001
3		.01000011		.01100010	.01100010	.0110	.0110
4		10010010		11011011	11011011	.1010	.1010
1	U1 -> U2	10011010	10110111	.01001101	.01001101	.1010	.1010
2		.00000110	10001101	.00000110	.00000110	.1001	.1001
3	-	11110010	11000100	.01111001	.01111001	.0101	.0101
4		.01001001	.01011010	.01001001	.01001001	.0101	.0101
1	CRC4 -	.0110	.1100	.0000	.0000	.1001	.1001
2	check	.1110	.0111	.0000	.0000	.1001	.1001
3		.0111	.1001	.0000	.0000	.1001	.1001
4		.1110	.1111	.0000	.0000	.1001	.1001
1	4 CRC	.0011	.1111	.0010	.0010	.0110	.0110
2		.1110	.0101	.0011	.0011	.1010	.1010
3		.1100	.1001	.0001	.0001	.0101	.0101
4		.0111	.1001	.0010	.0010	.0110	.0110
1	Zliczanie	.00000000	.00111000	.00000011	.00000011	.1010	.1010
2	1	11001110	11000111	.00001010	.00001010	.1001	.1001
3		11000011	.01011111	.00001010	.00001010	.1001	.1001
4		.01011101	.10010001	.00001000	.00001000	.0110	.0110
1	Dekoder termomet rowy	11111000		.00000111	.00000111	.0101	.0101
2		.00010010		.00000100	.00000100	.0110	.0110
3		.00001000		.00000011	.00000011	.1010	.1010
4		10100000	+	.00000111	.00000111	.0101	.0101
1	Dekoder prioryteto wy	.01000100		.00000110	.00000110	.1001	.1001
2		10110101	+	.00001000	.00001000	.0110	.0110
3		10001000		.00000101	.00000101	.1010	.1010
4		10101001		.00001000	.00001000	.0110	.0110

WERYFIKACJA REALIZACJI JEDNOSTKI:

Dodawanie i oper = 0000

Operacja dodawania przebiega poprawnie, jak jest to zaprezentowane na powyższych przebiegach.

Przykładowo dla sygnału 4 na wejściu mamy dwie wartości 205 (11001101) i 8 (00001000) a na wyjściu jest podawana wartość 213 (11010101).

Suma logiczna argumentów i_oper = 0001

Operacja OR przebiega poprawnie, jak jest to zaprezentowane na powyższych przebiegach.

0101

Przykładowo dla sygnału 4 na wejściu mamy dwie wartości (11000110) i (11110011) a na wyjściu jest podawana wartość (11110111), co zgadza się z teorią tej operacji.

```
(1 \lor 1 \rightarrow 1, 1 \lor 0 \rightarrow 1, 0 \lor 1 \rightarrow 1, 0 \lor 0 \rightarrow 0)
```

 $s_flags_synth[3:0] = 1001$

Zanegowana suma logiczna argumentów i_oper = 0010

Operacja NOR przebiega poprawnie, jak jest to zaprezentowane na powyższych przebiegach.

Przykładowo dla sygnału 4 na wejściu mamy dwie wartości (01101110) i (10001111) a na wyjściu jest podawana wartość (00010000), co zgadza się z teorią tej operacji.

```
(1 \lor 1 \rightarrow 0, 1 \lor 0 \rightarrow 0, 0 \lor 1 \rightarrow 0, 0 \lor 0 \rightarrow 1)
```

Logiczne przesunięcie argumentów w lewo i_oper = 0011

Operacja logicznego przesunięcia przebiega poprawnie, jak jest to zaprezentowane na powyższych przebiegach.

Dla liczb o dużej wartości, wynikiem przesunięcia będzie zawsze 0.

Arytmetyczne przesunięcie argumentów w lewo i_oper = 0100

Operacja arytmetycznego przesunięcia przebiega poprawnie, jak jest to zaprezentowane na powyższych przebiegach.

Dla liczb o dużej wartości, wynikiem przesunięcia będzie zawsze 0,

Konwersja danej wejściowej z kodu U2 na kod GRAY i_oper = 0101

Z powyższych symulacji można wywnioskować, że operacja działa prawidłowo.

Konwersję danej wejściowej z kodu U1 na kod U2 i_oper = 0110

Z powyższych symulacji można wywnioskować, że operacja działa prawidłowo.

Sprawdzenie zgodności kodu CRC-4 i_oper = 1001

Signals	Waves	
Time	sec 3 s	
s_oper[3:0] =1001	1001	
s_argA[3:0] =0110	0110	
s_argB[3:0] =1100	1100	
s_result_model[3:0] =0000	0000	
s_result_synth[3:0] =0000	0000	Sygnał 1
s_flags_model[3:0] =1001	1001	
s_flags_synth[3:0] =1001	1001	
Cianala	Weyee	
Signals Time	Waves	
s_oper[3:0] =1001	1001	
s_oper[3:0] =1001 s_argA[3:0] =1110	1110	
s_argA[3:0] =1110 s_argB[3:0] =0111	0111	
s_argb[3:0] =0111 s_result_model[3:0] =0000	0000	Sygnał 2
s_result_synth[3:0] =0000 s_flags_model[3:0] =1001	0000	
s_flags_model[3:0] =1001 s_flags_synth[3:0] =1001	1001	
S_Trags_Synch[5.0] =1001	1001	
Signals	Waves	
Time	sec 7 s	
s_oper[3:0] =1001	1001	
s_argA[3:0] =0111	0111	
s_argB[3:0] =1001	1001	
s_result_model[3:0] =0000	0000	Sygnał 3
s_result_synth[3:0] =0000	0000	oygilai o
s_flags_model[3:0] =1001	1001	
s_flags_synth[3:0] =1001	1001	
Signals	Waves	
Time	sec 10	
s_oper[3:0] =1001	1001	
s_argA[3:0] =1110	1110	
s_argB[3:0] =1111	1111	
s_result_model[3:0] =0000	0000	
s_result_synth[3:0] =0000	0000	Sygnał 4
s_flags_model[3:0] =1001	1001	- , ₃ , , ω, ,
67 11.50.07 4004	4004	

s_flags_synth[3:0] =1001 1001

Wyznaczenie kodu CRC-4 i_oper = 1010

Symulacja tej operacji została przeprowadzona dla liczb 4-bitowych.

0110 0110

 $s_flags_model[3:0] = 0110$

s_flags_synth[3:0] =0110

Symulacja wyznaczania kodu CRC4 przebiega poprawnie dla powyższych przebiegów (sprawdzone wg algorytmu)

Zliczanie sumarycznej liczby jedynek w obu argumentach wejściowych i_oper = 1000

Jak wynika z powyższych przebiegów, sumaryczne zliczanie jedynek działa poprawnie.

Przykładowo dla sygnału 4, ilość jedynek z obu danych wejściowych to 8, co zgadza się z wynikiem (00001000).

Dekoder termometrowy i_oper = 0111

Operacja konwersji na termometrowy przebiega poprawnie, jak jest to zaprezentowane na powyższych przebiegach.

Dekoder priorytetowy i_oper = 1011

Operacja dekodera priorytetowego przebiega poprawnie, jak jest to zaprezentowane na powyższych przebiegach.

W końcowych etapach prac pojawił się błąd w symulacji.

W jednostce nie działa do końca poprawnie flaga BF1 oraz BF0. Dla części sygnałów przyjmują prawidłową wartość, jednak nie zawsze zgadza się z teorią.