Contents

1	Firs	st-order ODEs	1
	1.1	Separable Equations	1
	1.2	Linear Equations	2
	1.3	Exact Equations	2
	1.4	Exact Equations with Integration Constant	3
	1.5	Homogeneous Equations	3
	1.6	Bernoulli's Equation	4
	1.7	Reduction to Separation of Variables	4
	1.8	Riccati's Equation	4

1 First-order ODEs

Form: IVP

$$\frac{dy}{dx} = f(x, y)$$
$$y(x_0) = y_0$$

Test: f(x,y) and $\partial f/\partial y$ are continuous over I **Property:** A unique solution is guaranteed over I

1.1 Separable Equations

Form:

$$\frac{dy}{dx} = g(x)h(y)$$

Solution: Divide by h(y) then integrate with respect to x.

$$\frac{dy}{dx} = g(x)h(y)$$

$$\frac{1}{h(y)}\frac{dy}{dx} = g(x)$$

$$\int \frac{1}{h(y)}\frac{dy}{dx} dx = \int g(x) dx$$

$$\int \frac{1}{h(y)} dy = \int g(x) dx$$

$$H(y) = G(x) + c$$

1.2 Linear Equations

Form:

$$\frac{dy}{dx} + P(x)y = f(x)$$

Solution:

- 1. Determine the integrating factor $e^{\int P(x) dx}$
- 2. Multiply by the integrating factor
- 3. Recognise that the left hand side of the equation is the derivative of the product of the integrating factor and y
- 4. Integrate both sides of the equation
- 5. Solve for y

1.3 Exact Equations

Form:

$$z = f(x,y) = c$$

$$dz = \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy = M(x,y) dx + N(x,y) dy = 0$$

Test:

$$\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$$

Solution:

1. Integrate M(x,y) with respect to x to find an expression for z=f(x,y)

$$\frac{\partial f}{\partial x} = M(x, y)$$

$$f(x, y) = \int M(x, y) dx + g(y)$$

2. Differentiate f(x,y) with respect to y and equate it to N(x,y) to find g'(y)

$$\frac{\partial f}{\partial y} = N(x, y) = \frac{\partial}{\partial y} \int M(x, y) \, dx + g'(y)$$
$$g'(y) = N(x, y) - \frac{\partial}{\partial y} \int M(x, y) \, dx$$

- 3. Integrate g'(y) with respect to y to find g(y) and substitute it into f(x,y)
- 4. Equate f(x,y) with an unknown constant c

Note: The steps can be performed with x and y reversed, i.e. start by integrating N(x,y) with respect to y, etc.

1.4 Exact Equations with Integration Constant

Form:

$$M(x, y) dx + N(x, y) dy = 0$$

Test: $(M_y - N_x)/N$ is a function of x alone or $(N_x - M_y)/M$ is a function of y alone

Solution:

1. Compute the integrating factor

$$\mu(x) = e^{\int \frac{M_y - N_x}{N} \, dx}$$

or

$$\mu(y) = e^{\int \frac{N_x - M_y}{M} \, dy}$$

as appropriate

- 2. Multiple the equation by this factor
- 3. The equation is now exact and can be solved as above

1.5 Homogeneous Equations

Form:

$$M(x, y) dx + N(x, y) dy = 0$$

Test: M and N are homogeneous functions of the same degree **Solution:**

1. Rewrite as

$$M(x,y) = x^{\alpha}M(1,u)$$
 and $N(x,y) = x^{\alpha}N(1,u)$ where $u = y/x$

or

$$M(x,y) = y^{\alpha}M(v,1)$$
 and $N(x,y) = y^{\alpha}N(v,1)$ where $v = x/y$

- 2. Substitute y = ux and dy = u dx + x du or x = vy and dx = v dy + y dv as appropriate
- 3. Solve the resulting first-order separable DE
- 4. Substitude u = y/x or v = x/y as appropriate

1.6 Bernoulli's Equation

Form:

$$\frac{dy}{dx} + P(x)y = f(x)y^n$$

Test: $n \neq 0$ and $n \neq 1$

Solution:

- 1. Substitude $y=u^{1/(1-n)}$ and $\frac{dy}{dx}=\frac{d}{dx}(u^{1/(1-n)})$
- 2. Solve the resulting linear equation
- 3. Substitude $u = y^{n-1}$

1.7 Reduction to Separation of Variables

Form:

$$\frac{dy}{dx} = f(Ax + By + C), B \neq 0$$

Solution:

1. Substitute

$$Ax + By + C = u$$

- 2. Solve the resulting separable equation
- 3. Substitute

$$u = Ax + By + C$$

1.8 Riccati's Equation

Form:

$$\frac{dy}{dx} = P(x) + Q(x)y + R(x)y^2$$

Test: You know a particular solution y_1 of the equation **Solution:**

- 1. Substitute $y = y_1 + u$ and $y' = y'_1 + u'$
- 2. Solve the resulting Bernoulli equation
- 3. Substitude $u = y y_1$