Title

D. Zack Garza

Friday 18th September, 2020

Contents

1	Friday, September 18		1
	1.1	Frobenius Kernels]
	1.2	Induced and Coinduced Modules	2
	1.3	Verma Modules	ç

1 | Friday, September 18

1.1 Frobenius Kernels

Let char (k)p > 0 and let G be an algebraic group scheme. We have a Frobenius map $F: G \to G$ given by $F((x_{ij})) = (x_{ij}^p)$, which we can iterate to get F^r for $r \in \mathbb{N}$. Setting $G_r = \ker F^r$ the rth Frobenius kernel, we get a normal series of group schemes

$$G_1 \trianglelefteq G_2 \trianglelefteq \cdots \trianglelefteq G$$
.

There is an associated chain of finite dimensional Hopf algebras

$$\operatorname{Dist}(G_1) \leq \operatorname{Dist}(G_2) \leq \cdots \leq \operatorname{Dist}(G).$$

Then $k[G]^{\vee} = \operatorname{Dist}(G_r)$, and we get an equivalence of representations for G_r to representations for $\operatorname{Dist}(G_r)$.

A special case will be when G is a reductive algebraic group scheme. We'll start by finding a basis for $Dist(G_r)$.

Recall the PBW theorem: we have a basis for $\mathfrak g$ given by

$$\left\{ x_{\alpha} \mid \alpha \in \Phi^{+} \right\}$$
 Positive root vectors $\left\{ h_{i} \mid i = 1, \cdots, n \right\}$ A basis for t $\left\{ x_{\alpha} \mid \alpha \in \Phi^{-} \right\}$ Negative root vectors

1

We can then obtain a basis for $U(\mathfrak{g})$:

$$U(\mathfrak{g}) = \left\langle \prod_{\alpha \in \Phi^+} x_{\alpha}^{n(\alpha)} \prod_{i=1}^n h_i^{k_i} \prod_{\alpha \in \Phi^+} x_{-\alpha}^{m(\alpha)} \right\rangle.$$

We can similarly obtain a basis for the distribution algebra

$$\operatorname{Dist}(G) = \left\langle \prod_{\alpha \in \Phi^+} \frac{x_{\alpha}^{n(\alpha)}}{n!} \prod_{i=1}^{n} \binom{h_i}{k_i} \prod_{\alpha \in \Phi^+} \frac{x_{-\alpha}^{n(\alpha)}}{n!} \right\rangle,$$

and we can similar get $\mathrm{Dist}(G_r)$ by restricting to $0 \leq n(\alpha), k_i, m(\alpha) \leq p^r - 1$. Above the k_i are allowed to be any integers. This yields a triangular decomposition

$$\operatorname{Dist}(G_r) = \operatorname{Dist}(U_r^+)\operatorname{Dist}(T_r)\operatorname{Dist}(U_r^-),$$

where we'll denote the first two terms $Dist(B_r^+)$ and the last two as $Dist(B_r)$.

1.2 Induced and Coinduced Modules

Goal: Classify simple G_r -modules. We know the classification of simple G-modules, so we'll follow similar reasoning. We started by realizing $L(\lambda) \hookrightarrow \operatorname{Ind}_B^G \lambda$ as a submodule (the socle) of some "universal" module.

Let M be a B_r -module, we can then define

$$\operatorname{Ind}_{B_{-}}^{G_{r}} M = (k[G_{r}] \otimes M)^{B_{r}},$$

where we're now taking the B_r -invariants. We get a decomposition as vector spaces,

$$k[G_r] = k[U_r^+] \otimes_k k[B_r]$$

and thus an isomorphism

$$\operatorname{Ind}_{B_r}^{G_r} M = (k[G_r] \otimes M)^{B_r} \cong k[U_r^+] \otimes (k[B_r] \otimes M)^{B_r} \cong k[U_r^+] \otimes M$$

since $k[B_r] \otimes M \cong \operatorname{Ind}_{B_r}^{B_r} M \cong M$.

We then define

$$\operatorname{Coind}_{B_r}^{G_r} = \operatorname{Dist}(G_r) \otimes_{\operatorname{Dist}(B_r)} \otimes M,$$

which is an analog of $U(\mathfrak{g}) \otimes_{U(\mathfrak{b})} M$.

We have $\operatorname{Dist}(U_r^+) \otimes \operatorname{Dist}(B_r) \cong \operatorname{Dist}(G_r)$, so

$$\operatorname{Coind}_{B_r}^{G_r} = \operatorname{Dist}(G_r) \otimes_{\operatorname{Dist}(B_r)} \otimes M \cong \operatorname{Dist}(U_r^+) \otimes_k \operatorname{Dist}(B_r) \otimes_{\operatorname{Dist}(B_r)} M \cong \operatorname{Dist}(U_r^+) \otimes_k M,$$

which we'll define as the coinduced module.

We can compute the dimension:

$$\dim \operatorname{Ind}_{B_r}^{G_r} M = \dim \operatorname{Coind}_{B_r}^{G_r} M = (\dim M) p^{r|\Phi^+|}.$$

Open: don't know how to compute composition factors.

Proposition 1.1(?).

1.

$$\operatorname{Coind}_{B_r}^{G_r} M \equiv \operatorname{Ind}_{B_r}^{G_r} M \otimes 2(p^r - 1)\rho,$$

where the last term is a one-dimensional B_r -module and ρ is the Weyl weight.

2.

$$\operatorname{Coind}_{B_r^r}^{G_r} M \cong \operatorname{Ind}_{B_r^r}^{G_r} M \otimes -2(p^r-1)\rho$$

where

$$\rho = \frac{1}{2} \sum_{\alpha \in \Phi^+} \alpha = \sum_{i=1}^n w_i.$$

Proof (Sketch for (1)).

Since the tensor product satisfies a universal property, we have a map

- 1. We need to find a B_r morphism $f: M \to N$.
- 2. We need to show that f generates N as a G_r -module.

Note that if (1) and (2) hold, then ψ is surjective, but since dim Coind $_{B_r}^{G_r}M=\dim N$ this forces ψ to be an isomorphism.

We can write

$$\operatorname{Ind}_{B_r}^{G_r} M \otimes 2(p^r - 1)\rho = (k[G_r] \otimes M \otimes 2(p^r - 1)\rho)^{B_r}$$
$$\cong \operatorname{hom}_{B_r} (\operatorname{Dist}(G_r), M \otimes 2(p^r - 1)\rho).$$

Let $g_m(x) := m \otimes 2(p^r - 1)\rho$ for any $x = \prod_{\alpha \in \Phi^+} \frac{x_{\alpha}^{p^r - 1}}{(p^r - 1)!}$, and $g_m(x) = 0$ for any other x.

Now define $f(m) = g_m$, and check that im f generates N.

1.3 Verma Modules

Recall that $W(\lambda) := U(\mathfrak{g}) \otimes_{U(\mathfrak{b}^+)} \lambda$ were the Verma modules for lie algebras.

Let $\lambda \in X(T)$, we have $T_r \leq T$ and restriction yields a map $X(T) \to X(T_r)$. Given a weight λ , we can write it *p*-adically as

$$\lambda = .$$