Applied_Stats_project_1

Payden Bullis, Hayoung Chen, Solomon Mathew 2025-02-02

R Markdown

This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com (http://rmarkdown.rstudio.com).

When you click the **Knit** button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:

```
hospitaldataoriginal <- read.csv("C:\\Users\\payde\\Desktop\\Homework and data sets\\HospitalDurations_2.cs
v")
#na explore
sum(is.na(hospitaldataoriginal))</pre>
```

```
## [1] 0
```

```
#no NA's found.

# Convert Region to factor
hospitaldataoriginal$Region <- as.factor(hospitaldataoriginal$Region)
hospitaldataoriginal$Med.Sc.Aff <- as.factor(hospitaldataoriginal$Med.Sc.Aff)</pre>
```

##Plots with color palette

```
library(GGally)
```

```
## Warning: package 'GGally' was built under R version 4.4.2
```

```
## Loading required package: ggplot2
```

```
## Registered S3 method overwritten by 'GGally':
## method from
## +.gg ggplot2
```

```
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
```

```
## `stat bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat bin()` using `bins = 30`. Pick better value with `binwidth`.
```

Correlation Scatterplot Matrix

#troubleshoot column issues
str(hospitaldataoriginal[, c(2,10,11,12)])

```
## 'data.frame': 113 obs. of 4 variables:

## $ Lgth.of.Sty: num 7.13 8.82 8.34 8.95 11.2 ...

## $ Avg.Pat : int 207 51 82 53 134 147 151 399 130 59 ...

## $ Avg.Nur : int 241 52 54 148 151 106 129 360 118 66 ...

## $ Pct.Ser.Fac: num 60 40 20 40 40 40 40 60 40 40 ...
```

Correlation Scatterplot Matrix

Regional difference by Infection Risk and Length of Stay with Regions Separated by

Regional difference by Culture rates with Regions Separated by Color

Regional difference in Average Age with Regions Separated by Color

Regional difference in Average Number of Beds with Regions Separated by Color


```
#reviewing the data of the correlations we see that typically there is an association of more patients and m
ore beds with medical school
#SW appears to have a longer stay and infection risk
#W has the lowest infection risk
#need help with data wrangling for nures ratio.
#create new variable Nurse/patient ratio to reflect number of nurse to patients to address collinearity and
possible lapses in coverage.
# Create a loop that displays all variables of boxplots except for ID.
for (i in 2:12) {
  # Ensure the column index is valid
  if (i <= ncol(hospitaldataoriginal)) {</pre>
    p \leftarrow gpplot(hospitaldataoriginal, aes(x = "", y = hospitaldataoriginal[[i]])) +
      geom_boxplot() +
      labs(y = colnames(hospitaldataoriginal)[i], x = "") +
      ggtitle(paste("Boxplot of", colnames(hospitaldataoriginal)[i])) +
      theme_minimal()
    print(p)
  }
}
```

```
## Warning: Use of `hospitaldataoriginal[[i]]` is discouraged.
## i Use `.data[[i]]` instead.
```



```
## Warning: Use of `hospitaldataoriginal[[i]]` is discouraged.
## i Use `.data[[i]]` instead.
```



```
## Warning: Use of `hospitaldataoriginal[[i]]` is discouraged.
## i Use `.data[[i]]` instead.
```


Boxplot of R.CX.ray.Rat


```
## Warning: Use of `hospitaldataoriginal[[i]]` is discouraged.
## i Use `.data[[i]]` instead.
```



```
## Warning: Use of `hospitaldataoriginal[[i]]` is discouraged.
## i Use `.data[[i]]` instead.
```



```
## Warning: Use of `hospitaldataoriginal[[i]]` is discouraged.
## i Use `.data[[i]]` instead.
```



```
## Warning: Use of `hospitaldataoriginal[[i]]` is discouraged.
## i Use `.data[[i]]` instead.
```


Boxplot of Pct.Ser.Fac


```
#log transforms
ggplot(hospitaldataoriginal, aes(x = R.Cul.Rat, y = Lgth.of.Sty )) +
    geom_point(size=3, color="#21295C") +
    geom_smooth() +
    labs(x = "Routine Culturing Ratio", y = "Length of Stay") +
    ggtitle("A scatterplot of Culture Ratio vs. Length of Stay")
```

```
## geom_smooth() using method = 'loess' and formula = 'y ~ x'
```

A scatterplot of Culture Ratio vs. Length of Stay


```
ggplot(hospitaldataoriginal, aes(x = N.Beds, y = Lgth.of.Sty )) +
    geom_point(size=3, color="#21295C") +
    geom_smooth() +
    labs(x = "Number of Beds", y = "Length of Stay") +
    ggtitle("A scatterplot of Number of Beds vs. Length of Stay")
```

```
## geom_smooth() using method = 'loess' and formula = 'y \sim x'
```

A scatterplot of Number of Beds vs. Length of Stay

#Model Building and Correlation - objective 1
library(caret)

Loading required package: lattice

library(car)

Warning: package 'car' was built under R version 4.4.2

Loading required package: carData

Warning: package 'carData' was built under R version 4.4.2

#model and testing.

hospitaldataoriginal\$Region <- factor(hospitaldataoriginal\$Region)</pre>

hospitaldataoriginal\$Med.Sc.Aff <- factor(hospitaldataoriginal\$Med.Sc.Aff)</pre>

model <- lm(Lgth.of.Sty ~ Inf.Risk + R.Cul.Rat + R.Cx.ray.Rat + Age +N.Beds + Med.Sc.Aff + Region + Avg.Pat

+ Avg.Nur + Pct.Ser.Fac, data =hospitaldataoriginal)

summary(model)

```
##
## Call:
## lm(formula = Lgth.of.Sty ~ Inf.Risk + R.Cul.Rat + R.CX.ray.Rat +
      Age + N.Beds + Med.Sc.Aff + Region + Avg.Pat + Avg.Nur +
##
      Pct.Ser.Fac, data = hospitaldataoriginal)
##
## Residuals:
##
      Min
               1Q Median
                               3Q
                                     Max
## -2.3048 -0.6608 -0.0272 0.5862 6.3001
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                3.322292
                          1.782122 1.864 0.065222 .
                                    3.454 0.000812 ***
## Inf.Risk
                0.439665
                           0.127298
## R.Cul.Rat
                0.005546
                           0.015982 0.347 0.729299
## R.CX.ray.Rat 0.012688
                           0.007147 1.775 0.078892 .
## Age
                0.079922
                           0.028266 2.827 0.005668 **
## N.Beds
               -0.004851 0.003603 -1.346 0.181224
## Med.Sc.Aff2 -0.266644
                          0.441089 -0.605 0.546872
## Region2
               -0.812966
                           0.351406 -2.313 0.022744 *
                          0.351704 -3.293 0.001370 **
## Region3
               -1.158277
## Region4
                          0.444136 -4.234 5.1e-05 ***
               -1.880560
## Avg.Pat
                0.015182
                           0.004424
                                    3.432 0.000872 ***
## Avg.Nur
               -0.005891
                           0.002218 -2.656 0.009203 **
## Pct.Ser.Fac -0.012179
                           0.013774 -0.884 0.378698
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 1.231 on 100 degrees of freedom
## Multiple R-squared: 0.6299, Adjusted R-squared: 0.5855
## F-statistic: 14.18 on 12 and 100 DF, p-value: < 2.2e-16
```

```
modelall <- lm(Lgth.of.Sty ~.,data = hospitaldataoriginal)
summary(modelall)</pre>
```

```
##
## Call:
## lm(formula = Lgth.of.Sty ~ ., data = hospitaldataoriginal)
## Residuals:
##
      Min
               1Q Median
                               3Q
                                      Max
  -2.2041 -0.6967 -0.0619 0.5284 6.3268
##
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.020361
                           1.827912
                                     1.652 0.101630
## ID
                0.002960
                           0.003828
                                     0.773 0.441235
## Age
                0.080410
                           0.028330
                                    2.838 0.005504 **
## Inf.Risk
                0.444081
                           0.127682
                                    3.478 0.000752 ***
## R.Cul.Rat
                0.007403
                           0.016193
                                     0.457 0.648529
## R.CX.ray.Rat 0.012896
                           0.007166
                                    1.799 0.074987 .
## N.Beds
               -0.004929
                           0.003612 -1.365 0.175445
## Med.Sc.Aff2 -0.239421
                           0.443379 -0.540 0.590416
## Region2
               -0.802425
                           0.352378 -2.277 0.024927 *
## Region3
                           0.352413 -3.286 0.001409 **
               -1.157860
                           0.445114 -4.240 5.03e-05 ***
## Region4
               -1.887197
                                    3.366 0.001086 **
                           0.004442
## Avg.Pat
                0.014953
## Avg.Nur
               -0.005501
                           0.002279 -2.414 0.017618 *
## Pct.Ser.Fac -0.011895
                           0.013806 -0.862 0.391015
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 1.233 on 99 degrees of freedom
## Multiple R-squared: 0.6321, Adjusted R-squared: 0.5838
## F-statistic: 13.09 on 13 and 99 DF, p-value: 2.799e-16
```

vif(modelall)

```
##
                     GVIF Df GVIF^(1/(2*Df))
## ID
                 1.158549 1
                                    1.076359
## Age
                 1.176754 1
                                    1.084783
## Inf.Risk
                 2.159012 1
                                    1.469358
## R.Cul.Rat
                 2.023038 1
                                    1.422335
## R.CX.ray.Rat 1.418264 1
                                    1.190909
## N.Beds
                35.726926 1
                                    5.977201
## Med.Sc.Aff
                 1.867108 1
                                    1.366421
## Region
                 1.721747 3
                                    1.094783
## Avg.Pat
                34.363637 1
                                    5.862051
## Avg.Nur
                 7.418642 1
                                    2.723718
## Pct.Ser.Fac
                 3.244109 1
                                    1.801141
```

```
modellog <- lm(Lgth.of.Sty ~ Inf.Risk + R.Cul.Rat + R.CX.ray.Rat + Age +N.Beds + Med.Sc.Aff + Region + Avg.P
at + Avg.Nur + Pct.Ser.Fac, data =hospitaldataoriginal)
summary(modellog)</pre>
```

```
##
## Call:
## lm(formula = Lgth.of.Sty ~ Inf.Risk + R.Cul.Rat + R.CX.ray.Rat +
      Age + N.Beds + Med.Sc.Aff + Region + Avg.Pat + Avg.Nur +
##
      Pct.Ser.Fac, data = hospitaldataoriginal)
##
## Residuals:
##
      Min
               1Q Median
                              3Q
                                     Max
## -2.3048 -0.6608 -0.0272 0.5862 6.3001
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.322292
                          1.782122 1.864 0.065222 .
                          0.127298 3.454 0.000812 ***
## Inf.Risk
                0.439665
## R.Cul.Rat
                0.005546
                          0.015982 0.347 0.729299
## R.CX.ray.Rat 0.012688
                          0.007147 1.775 0.078892 .
                          0.028266 2.827 0.005668 **
## Age
                0.079922
## N.Beds
               -0.004851 0.003603 -1.346 0.181224
## Med.Sc.Aff2 -0.266644
                          0.441089 -0.605 0.546872
## Region2
               -0.812966
                          0.351406 -2.313 0.022744 *
                          0.351704 -3.293 0.001370 **
## Region3
               -1.158277
## Region4
                          0.444136 -4.234 5.1e-05 ***
               -1.880560
## Avg.Pat
                0.015182
                          0.004424
                                    3.432 0.000872 ***
## Avg.Nur
               -0.005891
                          0.002218 -2.656 0.009203 **
## Pct.Ser.Fac -0.012179
                          0.013774 -0.884 0.378698
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 1.231 on 100 degrees of freedom
## Multiple R-squared: 0.6299, Adjusted R-squared: 0.5855
## F-statistic: 14.18 on 12 and 100 DF, p-value: < 2.2e-16
```

```
#residual plot
par(mfrow=c(2,2))
plot(model) #how to add color on this plot format?
```



```
par(mfrow=c(1,1))

#All not transform
# Set up the K-fold cross-validation
train_control <- trainControl(method = "cv", number = 10) # 10-fold cross-validation
# Train the model using K-fold cross-validation
modellog <- train(Lgth.of.Sty ~ ., data = hospitaldataoriginal, method = "lm", trControl = train_control)
# Print the results
print(modellog)</pre>
```

```
## Linear Regression
##
## 113 samples
##
   11 predictor
##
## No pre-processing
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 101, 102, 102, 102, 101, 101, ...
##
  Resampling results:
##
##
     RMSE
               Rsquared
                          MAE
##
     1.273548 0.5527278 0.9645423
##
## Tuning parameter 'intercept' was held constant at a value of TRUE
```

```
#model building objective 2
# full model
#lasso for significance check
# Define the fit control
fitControl <- trainControl(</pre>
  method = "cv", # cross-validation
  number = 10
                 # number of folds
)
complex.glmnet.fit<-train(log(Lgth.of.Sty) ~</pre>
                             Age +
                             Inf.Risk +
                             log(R.Cul.Rat) +
                             R.CX.ray.Rat +
                             log(N.Beds) +
                             Pct.Ser.Fac +
                             Region +
                             Med.Sc.Aff,
                           data = hospitaldataoriginal,
                  method="glmnet",
                  trControl=fitControl,
                  tuneGrid=expand.grid(data.frame(alpha=1,lambda=seq(0,0.05,0.001)))
)
opt.pen<-complex.glmnet.fit$finalModel$lambdaOpt</pre>
coef(complex.glmnet.fit$finalModel,opt.pen)
```

```
## 11 x 1 sparse Matrix of class "dgCMatrix"
##
                            s1
                  1.392381699
## (Intercept)
## Age
                  0.007493821
## Inf.Risk
                  0.049804895
## log(R.Cul.Rat) -0.025491800
## R.CX.ray.Rat
                  0.001297288
## log(N.Beds)
                  0.089803786
## Pct.Ser.Fac
                 -0.002569695
## Region2
                 -0.085900038
## Region3
                 -0.117215037
## Region4
                 -0.239122417
## Med.Sc.Aff2
                 -0.075859848
```

```
complex.glmnet.fit
```

```
##
   glmnet
##
## 113 samples
##
     8 predictor
##
##
   No pre-processing
   Resampling: Cross-Validated (10 fold)
##
   Summary of sample sizes: 101, 101, 101, 101, 101, 101, ...
   Resampling results across tuning parameters:
##
##
     lambda
             RMSE
                          Rsquared
                                     MAE
##
     0.000
              0.1195688
                         0.5994991
                                     0.09332822
##
     0.001
              0.1197579
                         0.5988740
                                     0.09338920
##
     0.002
              0.1202951
                         0.5957051
                                     0.09376343
##
     0.003
              0.1210823
                         0.5898832
                                     0.09420030
##
     0.004
              0.1217428
                         0.5828032
                                     0.09426100
##
     0.005
              0.1222928
                         0.5769104
                                     0.09405825
##
     0.006
              0.1225708
                         0.5731090
                                     0.09383439
##
     0.007
              0.1229314
                         0.5698274
                                     0.09392464
     0.008
##
              0.1235777
                         0.5651592
                                     0.09425346
##
     0.009
              0.1243199
                         0.5597846
                                     0.09461095
##
     0.010
              0.1250209
                         0.5543290
                                     0.09495526
              0.1256027
                         0.5496166
##
     0.011
                                     0.09530283
##
     0.012
              0.1260402
                         0.5462259
                                     0.09561996
     0.013
##
              0.1264226
                         0.5436467
                                     0.09595650
##
     0.014
              0.1268502
                         0.5406878
                                     0.09628846
##
     0.015
              0.1273667
                         0.5366964
                                     0.09670084
     0.016
##
              0.1278906
                         0.5329181
                                     0.09719985
##
     0.017
              0.1284367
                         0.5291485
                                     0.09776838
##
     0.018
              0.1289716
                         0.5259372
                                     0.09833180
     0.019
##
              0.1295294
                         0.5226472
                                     0.09889134
##
     0.020
              0.1301025
                         0.5194257
                                     0.09944884
##
     0.021
              0.1306858
                         0.5160198
                                     0.10006726
     0.022
##
              0.1312790
                         0.5124468
                                     0.10067965
##
     0.023
              0.1318818
                         0.5086447
                                     0.10126066
##
     0.024
              0.1324833
                         0.5048272
                                     0.10188013
##
     0.025
              0.1331069
                         0.5007130
                                     0.10252515
     0.026
##
              0.1337340
                         0.4966537
                                     0.10317434
##
     0.027
              0.1343684
                         0.4926319
                                     0.10380243
##
     0.028
              0.1350357
                         0.4883066
                                     0.10441924
##
     0.029
              0.1356776
                         0.4842188
                                     0.10497644
##
     0.030
              0.1363107
                         0.4805928
                                     0.10551178
##
     0.031
              0.1369446
                         0.4771321
                                     0.10602007
     0.032
##
              0.1375426
                         0.4741076
                                     0.10647020
##
     0.033
              0.1381326
                         0.4713518
                                     0.10695965
##
     0.034
                         0.4691173
              0.1386925
                                     0.10744205
##
     0.035
              0.1392270
                         0.4671432
                                     0.10793461
##
     0.036
              0.1397358
                         0.4656634
                                     0.10838532
##
     0.037
              0.1402588
                         0.4640237
                                     0.10883183
##
     0.038
              0.1407913
                         0.4621118
                                     0.10927307
##
     0.039
                         0.4603329
                                     0.10973385
              0.1413285
##
     0.040
              0.1418820
                         0.4584319
                                     0.11019549
     0.041
##
              0.1424392
                         0.4564401
                                     0.11064967
     0.042
##
              0.1430055
                         0.4543336
                                     0.11110010
##
     0.043
              0.1435842
                         0.4521124
                                     0.11155030
##
     0.044
              0.1441765
                         0.4497468
                                     0.11203094
##
     0.045
                         0.4473724
              0.1447780
                                     0.11250873
##
     0.046
              0.1453911
                         0.4449037
                                     0.11298289
```

```
## 0.047 0.1460148 0.4423626 0.11345583

## 0.048 0.1466518 0.4396479 0.11392869

## 0.049 0.1473010 0.4367892 0.11439804

## 0.050 0.1479617 0.4337934 0.11486361

##

## Tuning parameter 'alpha' was held constant at a value of 1

## RMSE was used to select the optimal model using the smallest value.

## The final values used for the model were alpha = 1 and lambda = 0.
```

```
##
## Call:
## lm(formula = log(Lgth.of.Sty) ~ Age + Inf.Risk + log(R.Cul.Rat) +
      R.CX.ray.Rat + log(N.Beds) + Pct.Ser.Fac + Region + Med.Sc.Aff,
##
      data = hospitaldataoriginal)
##
## Residuals:
       Min
##
                1Q
                    Median
                                3Q
                                        Max
  -0.26135 -0.07948 -0.00408 0.05218 0.42573
##
##
  Coefficients:
##
##
                  Estimate Std. Error t value Pr(>|t|)
                 1.3893418 0.2277768 6.100 1.93e-08 ***
## (Intercept)
## Age
                 0.0075147 0.0027352 2.747 0.007103 **
## Inf.Risk
                 0.0500108 0.0124553 4.015 0.000114 ***
## log(R.Cul.Rat) -0.0263510 0.0236476 -1.114 0.267761
## R.CX.ray.Rat 0.0013049 0.0006845 1.907 0.059397 .
## log(N.Beds) 0.0914489 0.0311439 2.936 0.004105 **
## Pct.Ser.Fac
                -0.0026640 0.0014236 -1.871 0.064169 .
## Region2
                -0.1190709 0.0321072 -3.709 0.000339 ***
## Region3
## Region4
                ## Med.Sc.Aff2
                -0.0766780 0.0368444 -2.081 0.039926 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.1154 on 102 degrees of freedom
## Multiple R-squared: 0.6174, Adjusted R-squared: 0.5798
## F-statistic: 16.46 on 10 and 102 DF, p-value: < 2.2e-16
```

```
vif(complexMLR)
```

```
GVIF Df GVIF^(1/(2*Df))
##
## Age
                   1.253306
                                       1.119511
                             1
## Inf.Risk
                   2.347541
                                       1.532169
## log(R.Cul.Rat) 2.275025
                                       1.508319
## R.CX.ray.Rat
                   1.478355
                                       1.215876
## log(N.Beds)
                   4.371156
                                       2.090731
## Pct.Ser.Fac
                   3.941102
                             1
                                       1.985221
## Region
                   1.507269
                                       1.070776
## Med.Sc.Aff
                   1.473240 1
                                       1.213771
```

AIC(complexMLR)

[1] -154.9845

BIC(complexMLR)

[1] -122.2558

par(mfrow=c(2,2))
plot(complexMLR)


```
#All not transform
# Set up the K-fold cross-validation
train_control <- trainControl(method = "cv", number = 10) # 10-fold cross-validation
# Train the model using K-fold cross-validation
model <- train(Lgth.of.Sty ~ ., data = hospitaldataoriginal, method = "lm", trControl = train_control)
# Print the results
print(model)</pre>
```

```
## Linear Regression
## 113 samples
##
   11 predictor
## No pre-processing
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 101, 101, 102, 102, 102, 102, ...
## Resampling results:
##
     RMSE
                          MAE
##
               Rsquared
##
    1.241145 0.5266838 0.9521896
## Tuning parameter 'intercept' was held constant at a value of TRUE
```

```
## Linear Regression
##
## 113 samples
##
     8 predictor
## No pre-processing
## Resampling: Cross-Validated (5 fold)
## Summary of sample sizes: 91, 90, 90, 91, 90
## Resampling results:
##
##
     RMSE
                Rsquared
                           MAE
##
    0.1180721 0.5627052 0.08904771
## Tuning parameter 'intercept' was held constant at a value of TRUE
```

```
## k-Nearest Neighbors
##
## 113 samples
##
   10 predictor
##
## No pre-processing
  Resampling: Cross-Validated (10 fold)
##
## Summary of sample sizes: 101, 102, 102, 101, 102, 103, ...
  Resampling results across tuning parameters:
##
##
        RMSE
                  Rsquared
                             MAE
    k
##
     1 1.931874 0.2035353 1.461433
##
     2 1.835081 0.1537217 1.367330
##
     3 1.712071 0.1744278 1.249423
##
     4 1.709318 0.1713712 1.260177
     5 1.670932 0.2386659 1.248104
##
##
     6 1.623353 0.2768401 1.215800
##
     7 1.625698 0.2547864 1.210476
##
     8 1.627995 0.2610006 1.208975
##
     9
        1.609004 0.2708242 1.204524
##
    10 1.595395 0.2764421 1.193722
##
    11 1.610189 0.2697781 1.201789
##
    12 1.624102 0.2639921 1.216427
##
    13 1.621095 0.2646163 1.209822
    14 1.613763 0.2667539 1.199333
##
##
    15 1.611689 0.2638428 1.193311
##
    16 1.609333 0.2715710 1.189467
    17
        1.606180 0.2744751 1.188110
##
##
    18 1.597008 0.2761880 1.169145
##
    19 1.611736 0.2624505 1.172820
##
    20 1.610582 0.2669988 1.168927
##
    21 1.605600 0.2736155 1.166018
##
    22 1.608602 0.2642584 1.165232
    23 1.607435 0.2645986 1.164905
##
##
    24 1.608091 0.2644755 1.161224
##
    25 1.600322 0.2718914 1.157588
##
    26 1.597892 0.2757529 1.156870
    27 1.584482 0.2884484 1.152622
##
##
    28 1.588025 0.2933965 1.163574
##
    29 1.588752 0.2895604 1.164008
##
    30 1.593788 0.2872139 1.160700
##
## RMSE was used to select the optimal model using the smallest value.
## The final value used for the model was k = 27.
```

```
knn.fit$results
```

```
##
             RMSE Rsquared
                                 MAE
                                        RMSESD RsquaredSD
       1 1.931874 0.2035353 1.461433 0.6979680
                                               0.1777741 0.2770183
## 1
## 2
       2 1.835081 0.1537217 1.367330 0.8088568
                                               0.1971560 0.4034611
## 3
       3 1.712071 0.1744278 1.249423 0.7567335
                                                0.1899604 0.3734956
## 4
       4 1.709318 0.1713712 1.260177 0.7351722 0.1788759 0.3500292
## 5
       5 1.670932 0.2386659 1.248104 0.6569790
                                               0.1751006 0.3137085
       6 1.623353 0.2768401 1.215800 0.6602331
                                               0.1856511 0.3203075
## 6
## 7
       7 1.625698 0.2547864 1.210476 0.6505152
                                               0.1495626 0.3290280
## 8
       8 1.627995 0.2610006 1.208975 0.6320418
                                               0.1574146 0.3122166
       9 1.609004 0.2708242 1.204524 0.6447646
                                               0.1634360 0.3187603
## 9
## 10 10 1.595395 0.2764421 1.193722 0.6197940
                                               0.1694124 0.3085731
## 11 11 1.610189 0.2697781 1.201789 0.6262054
                                               0.1609877 0.3253841
## 12 12 1.624102 0.2639921 1.216427 0.6422669
                                               0.1455946 0.3271783
## 13 13 1.621095 0.2646163 1.209822 0.6445161
                                               0.1422989 0.3245422
## 14 14 1.613763 0.2667539 1.199333 0.6592942
                                               0.1394791 0.3318230
## 15 15 1.611689 0.2638428 1.193311 0.6742624
                                               0.1340311 0.3394510
## 16 16 1.609333 0.2715710 1.189467 0.6761658
                                               0.1409613 0.3434679
## 17 17 1.606180 0.2744751 1.188110 0.6818061
                                               0.1616404 0.3451567
## 18 18 1.597008 0.2761880 1.169145 0.6982730
                                               0.1679167 0.3556517
  19 19 1.611736 0.2624505 1.172820 0.6968963
                                                0.1833894 0.3459264
  20 20 1.610582 0.2669988 1.168927 0.6964919
                                               0.1849379 0.3561728
## 21 21 1.605600 0.2736155 1.166018 0.7026222
                                               0.1796564 0.3530010
## 22 22 1.608602 0.2642584 1.165232 0.6902601
                                               0.1744242 0.3538911
## 23 23 1.607435 0.2645986 1.164905 0.6843779
                                               0.1676605 0.3544878
## 24 24 1.608091 0.2644755 1.161224 0.6819871
                                               0.1668138 0.3520622
## 25 25 1.600322 0.2718914 1.157588 0.6756445
                                               0.1699803 0.3524991
## 26 26 1.597892 0.2757529 1.156870 0.6758481
                                               0.1625604 0.3568347
## 27 27 1.584482 0.2884484 1.152622 0.6638921
                                                0.1674895 0.3518263
## 28 28 1.588025 0.2933965 1.163574 0.6563762
                                               0.1602739 0.3455494
## 29 29 1.588752 0.2895604 1.164008 0.6536832 0.1695549 0.3466031
## 30 30 1.593788 0.2872139 1.160700 0.6575934 0.1747443 0.3444715
```

knn.fit\$finalModel\$k

[1] 27