

Cálculo computacional II

Unidade 4: Máximos e Mínimos

Cristina Vaz

C2-aula 30/6/25

UFPA

Sumário

<u>∂f</u> ∂t

Derivada direcional máxima

Vetor gradiente e curvas de nível

Máximos e mínimos 1 Derivada direcional máxima

2 Vetor gradiente e curvas de nível

3 Máximos e mínimos

Vetor gradiente

Derivada direcional máxima

Vetor gradiente e curvas de nível

Máximos e mínimos

Definição

Seja $f: D_f \subset \mathbb{R}^n \to \mathbb{R}$ uma função diferenciável em D_f . O gradiente de f é o vetor dado por

$$\nabla f(x,y) = (f_1(x,y), f_2(x,y), \cdots, f_n(x,y))$$

ou

$$\nabla f(x,y) = \frac{\partial f}{\partial x_1} \mathbf{e}_1 + \frac{\partial f}{\partial x_2} \mathbf{e}_2 + \dots + \frac{\partial f}{\partial x_n} \mathbf{e}_n$$

Derivada direcional máxima

Vetor gradiente e curvas de nível

Máximos e mínimos

Pergunta: Como a derivada direcional fornece taxa de variação da função em qualquer direção unitária \vec{u} , podemos perguntar qual é a taxa de variação máxima de f e em qual direção isso ocorre?

Derivada direcional máxima

Vetor gradiente e curvas de nível

Máximos mínimos

Teorema (1)

Se $f: \mathbb{R}^n \to \mathbb{R}$ é uma função diferenciável em \vec{x}_0 tal que $\nabla f(\vec{x}_0) \neq \vec{0}$. Então o valor máximo da derivada direcional $D_{\vec{u}}f(\vec{x}_0)$ é dado por $\|\nabla f(\vec{x}_0)\|$ e ocorre quando \vec{u} tem a mesma direção do vetor gradiente $\nabla f(\vec{x}_0)$, ou seja,

$$\vec{u} = \frac{\nabla f(\vec{x}_0)}{\|\nabla f(\vec{x}_0)\|}$$

Portanto, o vetor gradiente $\nabla f(\vec{x})$ indica a direção de maior crescimento de f.

Derivada direcional máxima

Vetor gradiente e curvas de nível

Máximos e mínimos

Exemplo

Seja $f(x,y) = x^2y$. Determine:

- (a) o vetor \vec{u} tal que $D_{\vec{u}}f(1,1)$ seja máxima;
- (b) o valor máximo de $D_{\vec{u}}f(1,1)$;
- (c) Estando no ponto P = (1,1), qual é direção e sentido deve-se tomar para que f cresça mais rapidamente?

Derivada direcional máxima

Vetor gradiente e curvas de nível

Máximos e mínimos

$$\frac{\partial f}{\partial x} = 2xy \text{ e } \frac{\partial f}{\partial y} = x^2 \Rightarrow \frac{\partial f}{\partial x}(1,1) = 2 \text{ e } \frac{\partial f}{\partial y}(1,1) = 1 \Rightarrow$$

$$\nabla f(1,1) = (2,1) \neq (0,0) \text{ e } f \text{ diferenciável em } (2,1).$$

Derivada direcional máxima

Vetor gradiente e curvas de nível

Máximos mínimos Solução: Aplicar o teorema (1)

$$\frac{\partial f}{\partial x} = 2xy \text{ e } \frac{\partial f}{\partial y} = x^2 \Rightarrow \frac{\partial f}{\partial x}(1,1) = 2 \text{ e } \frac{\partial f}{\partial y}(1,1) = 1 \Rightarrow$$

$$\nabla f(1,1) = (2,1) \neq (0,0)$$
 e f diferenciável em $(2,1)$.

(a)
$$D_{\vec{u}}f(1,1)$$
 é máxima na direção de $\vec{u} = \frac{\nabla f(\vec{x}_0)}{\|\nabla f(\vec{x}_0)\|}$, mas

$$\|\nabla f(1,1)\| = \sqrt{4+1} = \sqrt{5}$$

е

$$\vec{u} = \left(\frac{2}{\sqrt{5}}, \frac{1}{\sqrt{5}}\right)$$

Derivada direcional máxima

Vetor gradiente e curvas de nível

Máximos e mínimos

(b) o valor máximo de
$$D_{\vec{u}}f(1,1)$$
 é $\|\nabla f(1,1)\| = \sqrt{5}$

Vetor gradiente e curvas de nível

Máximos e mínimos

- (b) o valor máximo de $D_{\vec{u}}f(1,1)$ é $\|\nabla f(1,1)\| = \sqrt{5}$
- (c) $\nabla f(1,1) = (2,1)$ aponta a direção e sentido em que f cresce mais rapidamente em P = (1,1)

Derivada direcional máxima

Vetor gradiente e curvas de nível

Máximos e mínimos Seja $\mathcal C$ uma curva de nível da superfície z=f(x,y) dada por (x(t),y(t)) então f(x(t),y(t))=k e pela regra da cadeia temos que

$$\frac{\partial f}{\partial x}\frac{dx}{dt} + \frac{\partial f}{\partial y}\frac{dy}{dt} = 0$$

Usando o gradiente podemos escrever $\nabla f = (f_x, f_y)$ e $\frac{d\vec{r}}{dt} = (x', y')$ e

$$\nabla f \cdot \frac{d\vec{r}}{dt} = 0$$

Derivada direciona máxima

Vetor gradiente e curvas de nível

Máximos e mínimos

Agora, se
$$t_0 = (x(t_0), y(t_0) = (x_0, y_0)$$
 é um ponto de $\mathcal C$ então temos que

$$\nabla f(x_0, y_0). \frac{d\vec{r}}{dt}(t_0) = 0$$

Assim, o vetor gradiente é perpendicular ao vetor tangente à curva de nível no ponto $P = (x_0, y_0)$

Derivada direcional máxima

Vetor gradiente e curvas de nível

Máximos e mínimos

<u>∂f</u> ∂t

Derivada direcional máxima

Vetor gradiente e curvas de nível

Máximos e mínimos

Derivada direciona máxima

Vetor gradiente e curvas de nível

Máximos e mínimos

Definição (ponto de máximo)

Se $f: A \subset \mathbb{R}^2 \to \mathbb{R}$ com $A \subset D_f$ e $(x_0, y_0) \in A$. Dizemos que (x_0, y_0) é **ponto de máximo local** de f em A se , para todo $(x, y) \in A$ temos que

$$f(x,y) \le f(x_0,y_0)$$

 $f(x_0, y_0)$ é chamado o **valor máximo** de f em A.

Se (x_0, y_0) é máximo global de f se (x_0, y_0) é ponto de máximo de f para todos os pontos no domínio de f.

Vetor gradiente e curvas de nível

Máximos e mínimos

Definição (ponto de mínimo)

Se $f: A \subset \mathbb{R}^2 \to \mathbb{R}$ com $A \subset D_f$ e $(x_0, y_0) \in A$. Dizemos que (x_0, y_0) é **ponto de mínimo local** de f em A se , para todo $(x,y) \in A$ temos que

$$f(x,y) \geq f(x_0,y_0)$$

 $f(x_0, y_0)$ é chamado o **valor mínimo** de f em A.

Derivada direcional máxima

Vetor gradiente e curvas de nível

Máximos e mínimos

Definição (pontos extremos)

Os pontos de máximo e mínimos de f são chamados de extremos locais de f

Derivada direciona máxima

Vetor gradiente e curvas de nível

Máximos e mínimos O seguinte resultado dá uma condição necessária para que um ponto seja um extremos de f.

Teorema (2)

Sejam $f: A \subset \mathbb{R}^2 \to \mathbb{R}$ e (x_0, y_0) um ponto interior de D_f . Se as derivadas parciais $f_x(x_0, y_0)$ e $f_y(x_0, y_0)$ existem e (x_0, y_0) é um extremo local de f, então,

$$\frac{\partial f}{\partial x}(x_0, y_0) = \frac{\partial f}{\partial y}(x_0, y_0) = 0$$

Ou seja,

$$\nabla f(x_0, y_0) = (0, 0)$$

Derivada direcional máxima

Vetor gradiente e curvas de nível

Máximos e mínimos pergunta: Por que dizemos que o teorema (2) é uma condição necessária para que um ponto seja um extremos de f?

resposta: Por que, por hipótese, o ponto (x_0, y_0) já é um extremo de f.

pergunta: E como usamos o teorema (2)?

Derivada direciona máxima

Vetor gradiente e curvas de nível

Máximos e mínimos pergunta: Por que dizemos que o teorema (2) é uma condição necessária para que um ponto seja um extremos de f?

resposta: Por que, por hipótese, o ponto (x_0, y_0) já é um extremo de f.

pergunta: E como usamos o teorema (2)?

resposta: A utilidade do teorema (2) é encontrar os pontos de D_f que são os candidatos a extremos de f por que aqueles pontos que não zeram o gradiente de f não podem ser extremos.

Derivada direciona máxima

Vetor gradiente e curvas de nível

Máximos e mínimos Em resumo,

Dizemos que (x_0, y_0) é um ponto crítico ou estacionário de f se (x_0, y_0) é ponto interior de D_f e se $\nabla f(x_0, y_0) = (0, 0)$.

O teorema (2) nos diz que se f admite derivadas parciais em todos os pontos interiores de D_f , então os pontos críticos de f são, entre os pontos interiores de D_f , os únicos candidatos a extremos locais de f.

Derivada direciona máxima

Vetor gradiente e curvas de nível

Máximos e mínimos Um ponto $(x_0, y_0) \in D_f$ que não é ponto interior de D_f denomina se ponto de fronteira de D_f .

Note que,

O teorema (2) não se aplica a pontos de fronteira de D_f ; um ponto de fronteira de D_f pode ser um extremo local sem que as derivadas parciais se anulem nele. Os pontos de fronteira devem ser analisados separadamente.

Máximos e Mínimos

Derivada direcional máxima

Vetor gradiente e curvas de nível

Máximos e mínimos

Exemplo

Encontre os pontos críticos da função $f(x,y) = x^2 + y^2$.

Máximos e Mínimos

Derivada direcional máxima

Vetor gradiente e curvas de nível

Máximos e mínimos **Solução**: Aplicar o teorema (2)

Temos de
$$D_f = \mathbb{R}^2$$
 e $\frac{\partial f}{\partial x} = 2x$ e $\frac{\partial f}{\partial y} = 2y \Rightarrow P = (0,0)$ é o único ponto crítico de f .

Máximos e Mínimos

<u>∂f</u> ∂t

Derivada direciona máxima

Vetor gradiente e curvas de nível

Máximos e mínimos

Solução: Aplicar o teorema (2)

Temos de $D_f = \mathbb{R}^2$ e $\frac{\partial f}{\partial x} = 2x$ e $\frac{\partial f}{\partial y} = 2y \Rightarrow P = (0,0)$ é o único ponto crítico de f.

Note que, $f(x,y) \ge 0$ para todos $(x,y) \in \mathbb{R}^2$.

Isso implica que $f(x,y) \ge f(0,0)$, e logo, P = (0,0) é ponto de mínimo (global) de f

<u>∂f</u> ∂t

Derivada direcional máxima

Vetor gradiente e curvas de nível

Máximos e mínimos

OBRIGADA