### **Part 1: Project Objective**

NCAA Division I Men's Basketball Tournament currently featuring 68 college basketball teams from 350 teams.

Our objective: predict and simulate Final Results at 2018 NCAA Basketball Tournament

### **Part 2: Description of Dataset**

2017 & 2018 NCAA Regular Season Champion data including team and player statistics

#### For Team dataset:

- \* Each row represents data for a single game
- \* First half columns represent Home Team's performance
- \* Second half columns represent Away Team's performance e.g. PTS(Total Points), 3P% (3-Point Field Goal Percentage)
- \* After cleaning, we have 351 teams and 10795 games

```
In [59]:
         df1.head(0)
Out[59]:
           Unnamed:
                         MP
                             FG FGA
                                     FG%
                                          2P
                                             2PA 2P%
                                                      3P
                                                         3PA
                                                              3P%
                                                                      FTA
                    Team
                  0
         #### Maryland 2017 & 2018 winning rate in regular season!
In [60]:
         100 * len(df1[(df1.Team == 'maryland')][(df1['Win?'] == 1)])/len(df1[(
         df1.Team == 'maryland')])
Out[60]: 64.51612903225806
```

#### For Player dataset:

\* Usually people think key player can carry the whole team, but we find it 's not true!

- \* We identified key players who are ranked on top of a single metric (E.g. points per game or 3P%)
- \* BUT these player's team even cannot get into the final rounds

Out[12]:

|               |                      | PTS      |
|---------------|----------------------|----------|
| player        | Team                 |          |
| DJ Hanes      | nebraska-christian   | 39.00000 |
| Jalen Adams   | olivet               | 37.00000 |
| Taylor Gilpin | johnson-university   | 32.00000 |
| Keith Hayes   | william-jewell       | 31.00000 |
| George Brock  | southern-new-orleans | 31.00000 |
| Denzel Famble | voorhees             | 30.00000 |
| Brian Cameron | wesley               | 30.00000 |
| Marcus Keene  | central-michigan     | 29.96875 |
| Rob Davis     | fort-hays-state      | 29.00000 |
| Tracy Edmond  | olivet               | 29.00000 |

## **Part 3: Feature Engineering**

- \* Average performance data for each team between 2017-2018 based on existi ng data;
- \* Add 23 new features based on current and outsource dataset;
- \* E.g. Margin of Victory = PTS Opp PTS;
- \* E.g. True Shooting Percentage is shooting efficiency uses field goals, 3 -point field goals, and free throws.

In [40]: # top 5 wining rate teams during 2017-2018 and their statistics teamStats.sort\_values(['W%'], ascending=False).head(5)

Out[40]: \_\_\_\_\_

|                    | MP     | FG    | FGA   | FG%  | 2P    | 2PA   | 2P%  | 3P    | 3РА   | 3P%  | FT    | FΤ   |
|--------------------|--------|-------|-------|------|-------|-------|------|-------|-------|------|-------|------|
| gonzaga            | 201.37 | 30.01 | 59.51 | 0.51 | 21.89 | 37.97 | 0.58 | 8.13  | 21.54 | 0.38 | 15.23 | 21.1 |
| villanova          | 201.09 | 28.88 | 57.58 | 0.50 | 18.86 | 31.70 | 0.60 | 10.03 | 25.88 | 0.38 | 14.29 | 18.2 |
| cincinnati         | 200.72 | 26.39 | 58.00 | 0.45 | 19.16 | 37.42 | 0.51 | 7.23  | 20.58 | 0.35 | 13.88 | 20.1 |
| saint-<br>marys-ca | 200.76 | 27.20 | 53.68 | 0.51 | 18.97 | 33.15 | 0.57 | 8.23  | 20.53 | 0.40 | 11.98 | 15.7 |
| arizona            | 201.45 | 27.41 | 56.14 | 0.49 | 20.67 | 38.52 | 0.54 | 6.74  | 17.62 | 0.38 | 16.72 | 21.9 |

In [42]: # Effective Field Goal Percentage (eFG%) with wining rate visualizatio
n
teamStats.plot(kind='scatter', x='EFG%', y='W%', color='k', marker='.'
);



In [43]: # Opp 3P (Opponents 3 Point Field Goals Made) with winging rate
teamStats.plot(kind='scatter', x='Opp 3P%', y='W%', color='k', marker=
'.');



### **Part 4: Feature Transformation**

```
* Our X: For each game, the features' differences between two teams' avera ge statistics

* Our Y: whether will win or not (0 or 1)
```

```
In [54]: def compareTwoTeams(id_1, id_2):
    team_1 = getSeasonData(id_1)
    team_2 = getSeasonData(id_2)
    diff = [float(a) - float(b) for a, b in zip(team_1, team_2)]
    diff.pop(0)
    return diff
```

## **Part 5: Modeling Preperation**

- We decide do not do normalization process, because our data is relatively evenly distributed.
- · Create Training, Validation and Testing Dataset

```
In [65]: # Full dataset after feature transformation
    x.head(5)
```

Out[65]:

|   | MP    | FG    | FGA   | FG%   | 2P    | 2PA   | 2P%   | 3Р    | 3РА   | 3P%   | FT    | FTA   | FT%   | OR   |
|---|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|------|
| 0 | -0.83 | -1.36 | -3.08 | 0.00  | -1.89 | -4.02 | 0.01  | 0.53  | 0.93  | 0.01  | -1.57 | -3.14 | 0.05  | -1.6 |
| 1 | 0.83  | 1.36  | 3.08  | 0.00  | 1.89  | 4.02  | -0.01 | -0.53 | -0.93 | -0.01 | 1.57  | 3.14  | -0.05 | 1.6  |
| 2 | 0.66  | -0.39 | -2.27 | 0.01  | -0.02 | -0.73 | 0.01  | -0.37 | -1.54 | 0.01  | -0.72 | -0.12 | -0.02 | -0.3 |
| 3 | -0.66 | 0.39  | 2.27  | -0.01 | 0.02  | 0.73  | -0.01 | 0.37  | 1.54  | -0.01 | 0.72  | 0.12  | 0.02  | 0.3  |
| 4 | 1.84  | -4.53 | -2.21 | -0.06 | -6.56 | -8.14 | -0.07 | 2.03  | 5.94  | -0.01 | -2.06 | -1.77 | -0.06 | 3.0- |

## Part 6: Modeling

- Check general features significance based on random forest
  - 1. Using grid search to find the best parameter;
  - 2. Performing stepwise feature selections for models;
  - 3. Performing cross validation on validation dataset to select best models;
  - 4. Testing accuarcy on Testing Dataset;
  - 5. Using voting strategy assembling 4 models and Neural Network Model;

#### **Parameter Insights Visualization**

```
In [68]: sns.set_style('darkgrid')
    features = pd.DataFrame()
    features['feature'] = x.columns
    features['importance'] = model2.feature_importances_
    features.sort_values(by=['importance'], ascending=True, inplace=True)
    features.set_index('feature', inplace=True)
    features.plot(kind='barh', figsize=(20, 20))
```

Out[68]: <matplotlib.axes. subplots.AxesSubplot at 0x1a330fb400>



### **Feature Selection Example and Visualization**

Optimal number of features : 63



#### Grid serach example

```
In [81]:
         # logistic regression
         model1 = linear model.LogisticRegression()
         model1 params = {'penalty':['11','12']}
         model1 grid = GridSearchCV(estimator=model1, param grid=model1 params,
         scoring='accuracy', cv=5, n jobs=4)
         %time model1 grid.fit(X prep, Y prep)
         CPU times: user 2.47 s, sys: 287 ms, total: 2.76 s
         Wall time: 15.4 s
Out[81]: GridSearchCV(cv=5, error score='raise',
                estimator=LogisticRegression(C=1.0, class weight=None, dual=F
         alse, fit intercept=True,
                   intercept scaling=1, max iter=100, multi class='ovr', n jo
         bs=1,
                   penalty='12', random state=None, solver='liblinear', tol=0
         .0001,
                   verbose=0, warm start=False),
                fit params=None, iid=True, n jobs=4,
                param grid={'penalty': ['l1', 'l2']}, pre dispatch='2*n jobs'
                refit=True, return train score='warn', scoring='accuracy',
                verbose=0)
In [82]: print(model1 grid.best score )
         print(model1 grid.best params )
         0.7196763833992095
         {'penalty': '11'}
```

#### **Neural Network Example**

```
In [126]: labels = to_categorical(np.asarray(Y_prep))
    adam=Adam()
    # Assembling MLP
    model = Sequential()
    model.add(Dense(48, input_shape=(71,), activation='relu'))
    model.add(Dropout(0.05))
    model.add(Dense(labels.shape[1], activation='sigmoid'))
    model.summary()
```

| Layer (type)                                                        | Output | Shape | Param # |
|---------------------------------------------------------------------|--------|-------|---------|
| dense_29 (Dense)                                                    | (None, | 48)   | 3456    |
| dropout_15 (Dropout)                                                | (None, | 48)   | 0       |
| dense_30 (Dense)                                                    | (None, | 2)    | 98      |
| Total params: 3,554 Trainable params: 3,554 Non-trainable params: 0 |        |       |         |

#### **Voting Strategy Example**

```
In [128]:
          def predictTwoTeams(team1 name, team2 name):
              team1 id = teamIndex[teamIndex['Team']==team1 name].values[0][0]
              team2_id = teamIndex[teamIndex['Team']==team2_name].values[0][0]
              ## voting
              predResult1 = model1.predict([compareTwoTeams(team1 id,team2 id)])
              predResult3 = model3.predict([compareTwoTeams(team1_id,team2_id)])
              predResult6 = model6.predict([compareTwoTeams(team1 id,team2 id)])
              predResult10 = model10.predict([compareTwoTeams(team1 id,team2 id)
          1)
              predResult n = model.predict(np.array([compareTwoTeams(team1 id,te
          am2 id)]))
              if (predResult1[0]+predResult3[0]+predResult6[0]+predResult10[0]+p
          redResult n[0][1])/5 >= 0.5:
                  return team1 name
              else:
                  return team2 name
```

### Part 7: Simulate Tournament

```
In [129]: | simulate tournament()
          First Round: 64 >>> 32
          south
          virginia VS maryland-baltimore-county : virginia win!!!
          creighton VS kansas-state : kansas-state win!!!
          kentucky VS davidson : kentucky win!!!
          arizona VS buffalo : arizona win!!!
          miami-fl VS loyola-il : miami-fl win!!!
          tennessee VS wright-state : tennessee win!!!
          nevada VS texas : nevada win!!!
          cincinnati VS georgia-state : cincinnati win!!!
          west
          xavier VS texas-southern : xavier win!!!
          missouri VS florida-state : florida-state win!!!
          ohio-state VS south-dakota-state : ohio-state win!!!
          gonzaga VS north-carolina-greensboro : gonzaga win!!!
          houston VS san-diego-state : houston win!!!
          michigan VS montana : michigan win!!!
          texas-am VS providence : providence win!!!
          north-carolina-state VS lipscomb : north-carolina-state win!!!
          east.
          villanova VS radford : villanova win!!!
          virginia-tech VS alabama : virginia-tech win!!!
          west-virginia VS murray-state : west-virginia win!!!
          wichita-state VS marshall : wichita-state win!!!
          florida VS st-bonaventure : florida win!!!
          texas-tech VS stephen-f-austin : texas-tech win!!!
          arkansas VS butler : arkansas win!!!
          purdue VS cal-state-fullerton : purdue win!!!
          midwest
          kansas VS pennsylvania : kansas win!!!
          seton-hall VS north-carolina-state : seton-hall win!!!
          clemson VS new-mexico-state : clemson win!!!
          auburn VS college-of-charleston : auburn win!!!
          texas-christian VS syracuse : texas-christian win!!!
          michigan-state VS bucknell : michigan-state win!!!
          rhode-island VS oklahoma: rhode-island win!!!
          duke VS iona : duke win!!!
```

second round 32>>>16 virginia VS kansas-state : virginia win!!! kentucky VS arizona : arizona win!!! miami-fl VS tennessee : tennessee win!!! nevada VS cincinnati : cincinnati win!!! xavier VS florida-state : xavier win!!! ohio-state VS gonzaga : gonzaga win!!! houston VS michigan : michigan win!!! providence VS north-carolina-state : providence win!!! villanova VS virginia-tech : villanova win!!! west-virginia VS wichita-state : west-virginia win!!! florida VS texas-tech : florida win!!! arkansas VS purdue : purdue win!!! kansas VS seton-hall : kansas win!!! clemson VS auburn : auburn win!!! texas-christian VS michigan-state : michigan-state win!!! rhode-island VS duke : duke win!!!

third round 16>>>8
virginia VS arizona : virginia win!!!
tennessee VS cincinnati : cincinnati win!!!
xavier VS gonzaga : gonzaga win!!!
michigan VS providence : michigan win!!!
villanova VS west-virginia : villanova win!!!
florida VS purdue : purdue win!!!
kansas VS auburn : kansas win!!!
michigan-state VS duke : duke win!!!

final four 8>>>4
virginia VS cincinnati : virginia win!!!
gonzaga VS michigan : michigan win!!!
villanova VS purdue : villanova win!!!
kansas VS duke : kansas win!!!

semifinals 4>>>2
virginia VS michigan : virginia win!!!
villanova VS kansas : kansas win!!!

Championship!!!!!
Congratulation!!!! kansas

# Our overall accuracy is around 70% compared to this year's results