Time Series Modeling Seasonal ARIMA Model

Contents

- 1. Seasonal Box-Jenkins (ARIMA) Models
- 2. Five Step Iterative Procedure
 - i. Stationarity Checking and Seasonal Differencing
 - Differencing, Correlograms, and Dickey Fuller Test in Python
 - ii. Model Identification
 - iii. Parameter Estimation
 - Simple and Automated Model Estimation in Python
 - Running ARIMA in Python
 - iv. Diagnostic Checking
 - Residual plot in Python
 - v. Forecasting
 - Predictions on ARIMA Model in Python

Seasonal Box-Jenkins (ARIMA) Models

 ARIMA (Auto Regressive Integrated Moving Average) models are Regression models that use lagged values of the dependent variable and/or random disturbance term as explanatory variables.

• Seasonal ARIMA (Often abbreviated as SARIMA) Model is formed by including seasonal terms in the ARIMA model.

• Several real world time series have a seasonal component. Some examples are: Sales of woolen clothes, demand for fertilizers, electricity consumption, etc.

Seasonal Box-Jenkins (ARIMA) Models

- The seasonal ARIMA model incorporates both non-seasonal and seasonal factors in a multiplicative model.
- Shorthand notation for the model is,

ARIMA (p, d, q) \times (P, D, Q)S,

```
with,
p = non-seasonal AR order,
d = non-seasonal differencing,
q = non-seasonal MA order,
P = seasonal AR order,
D = seasonal differencing,
Q = seasonal MA order, and
S = time span of repeating seasonal pattern.
```

Five-Step Iterative Procedure

Step 1: Stationarity Checking

Assessing Stationarity of Time Series

Stationarity of a time series can be assessed using:

• If a time series is non-stationary then it can be converted via

Differencing

De-trending

Seasonal Differencing

Seasonal differencing is denoted as ,

$$\Delta_{s} y_{t} = y_{t} - y_{t-s}$$

Where,

s denotes **frequency of season**

s = 12 if data is monthly; s = 4 if data is quarterly and so on

First and seasonal span differencing for monthly data is,

$$\Delta_1 \Delta_s y_t = \Delta_1 (y_t - y_{t-s}) = y_t - y_{t-1} - y_{t-s} + y_{t-s-1}$$

Case Study

Background

• Sales Data for 3 Years (2013, 2014, 2015)

Objective

• To fit a Seasonal ARIMA Model and forecast next 3 Months sales.

Available Information

- Sample size is 36
- Variables: Year, Month, Sales

Data Snapshot

Sales Data for 3 Years

Variables

ations
)bserv
onthly (

Year	Month	Sales
2013	Jan	123
2013	Feb	142
2013	Mar	164
2013	Apr	173
2013	May	183
2013	Jun	192
2013	Jul	199
2013	Aug	203
2013	Sep	207
2013	Oct	209
2013	Nov	214
2012	D	255

2012 D 2FF				
Columns	Description	Type	Measurement	Possible values
Year	Year	numeric	2013, 2014, 2015	3
Month	Month	character	Jan - Dec	12
Sales	Sales in USD Million	numeric	USD Million	Positive values
	2014	Iul	245	

Plotting a Time Series in Python

Importing the Data
import pandas as pd
salesdata = pd.read_csv('Sales Data for 3 Years.csv')
#Creating and Plotting a Time Series Object
rng = pd.date_range('01-01-2013','31-12-2015',freq='M')
s = salesdata.Sales.values
salesseries = pd.Series(s, rng)
salesseries.plot()

Output

Interpretation:

 The time series shows periodic peaks, indicative of seasonality.

Correlogram

from statsmodels.graphics.tsaplots import plot_acf
plot_acf(salesseries)

Output

Interpretation:

ACF plot shows a slow decay indicating non-stationarit y.

Dickey Fuller Test

Dickey Fuller Test

```
from arch.unitroot import ADF

adf = ADF(salesseries,lags=0,trend='nc')
adf.summary()
```

Output

Augmented Dic	key-Fuller Results
Test Statistic	1.621
P-value	0.975
Lags	0
Trend: No Trend	
Critical Values:	-2.63 (1%), -1.95 (5%), -1.61 (10%)
Null Hypothesis:	The process contains a unit root.
Alternative Hypo	thesis: The process is weakly stationary.

Interpretation:

Time series is non-stationary.
 Value of test statistic is greater than 5% critical value.

Dickey Fuller Test – Differenced Series

Dickey Fuller Test for Difference Series

```
from statsmodels.tsa.statespace.tools import diff
salesdiff = diff(salesseries)
(ADF(salesdiff,lags=0,trend='nc')).summary()
```

Output

Interpretation:

Time series is stationary.Value of test statistic is less than 5%

critical value.

Step 2: Model Identification

Model Identification

• When the data are confirmed stationary, proceed to tentative identification of models through visual inspection of correlogram and partial correlogram

Model	AC	PAC
	Dies down	Cuts off after lag p
	Cuts off after lag q	Dies down
	Dies down	Dies down

Model Identification

- Seasonal ARIMA model is expressed as arima(p,d,q) (P,D,Q) where
 - p = no. of autoregressive terms
 - d = order of differencing
 - q = no. of moving average terms
 - (P,D,Q) are seasonal equivalents of autoregressive, difference and moving average terms

Step 3: Parameter Estimation

Parameter Estimation

- There are two ways in which parameters of arima models can be estimated
- 1. Ordinary Least Squares
- 2. Maximum Likelihood Method when the model involves MA component
- Given n observations $y_1, y_2, ..., y_n$, the likelihood function L is defined as the probability of obtaining the data actually observed
- The maximum likelihood estimators (MLE) are those values of the parameters for which the data actually observed are most likely, that is, the values that maximize the likelihood function L.

Parameter Estimation in Python

Automatic Model Identification and Parameter Estimation

```
import pmdarima as pm
model = pm.auto arima(salesseries,
                      max_p=2, max_q=2,
                      max P=2, max Q=2,
                      d=1, m=12,
                      seasonal=True,
                      D=1, suppress warnings=True,
                      trace=True)
model
                auto_arima() generates the best order arima
                 model. The function conducts a search over
```

- possible model within the order constraints provided.
- Seasonal model requires max_D,max_P and max_Q arguments as well.
- trace= True returns the list of all models considered.
- D= gives order of seasonal differencing

Automatic Model Identification

Output

```
Fit ARIMA: order=(2, 1, 2) seasonal_order=(1, 1, 1, 12); AIC=157.695, BIC=166.779, Fit
time=1.214 seconds
Fit ARIMA: order=(0, 1, 0) seasonal order=(0, 1, 0, 12); AIC=152.639, BIC=154.910, Fit
time=0.075 seconds
Fit ARIMA: order=(1, 1, 0) seasonal_order=(1, 1, 0, 12); AIC=156.618, BIC=161.160, Fit
time=0.140 seconds
Fit ARIMA: order=(0, 1, 1) seasonal_order=(0, 1, 1, 12); AIC=156.623, BIC=161.165, Fit
time=0.118 seconds
Fit ARIMA: order=(0, 1, 0) seasonal_order=(0, 1, 0, 12); AIC=156.110, BIC=157.245, Fit
time=0.017 seconds
Fit ARIMA: order=(0, 1, 0) seasonal_order=(1, 1, 0, 12); AIC=154.629, BIC=158.035, Fit
time=0.089 seconds
Fit ARIMA: order=(0, 1, 0) seasonal order=(0, 1, 1, 12); AIC=154.629, BIC=158.035, Fit
time=0.056 seconds
Fit ARIMA: order=(0, 1, 0) seasonal order=(1, 1, 1, 12); AIC=156.629, BIC=161.171, Fit
time=0.127 seconds
Fit ARIMA: order=(1, 1, 0) seasonal_order=(0, 1, 0, 12); AIC=154.633, BIC=158.040, Fit
time=0.068 seconds
Fit ARIMA: order=(0, 1, 1) seasonal_order=(0, 1, 0, 12); AIC=154.636, BIC=158.042, Fit
time=0.067 seconds
Fit ARIMA: order=(1, 1, 1) seasonal order=(0, 1, 0, 12); AIC=155.485, BIC=160.027, Fit
time=0.115 seconds
Total fit time: 2.118 seconds
```

Interpretation:

Model with the lowest AIC value is selected as

the best model.

ARIMA(order=(0, 1, 0), seasonal_order=(0, 1, 0, 12))

ARIMA Model in Python

Obtaining Coefficient

```
salesseries = pd.to_numeric(salesseries.astype(float))

from statsmodels.tsa.statespace.sarimax import SARIMAX
salesmodel = SARIMAX(salesseries, order=(0,1,0),
seasonal_order=(0,1,0,12)).fit(trend='nc')

salesmodel.params
salesmodel.aic
```

Output

```
sigma2 47.585895
dtype: float64
```

Output

156.10960236428923

Model Selection Criteria

Akaike Information Criterion (AIC)

$$AIC = -2 \ln(L) + 2k$$

Schwartz Bayesian Criterion

(SBC, also called Bayesian Information Criterion - BIC)

$$SBC = -2 \ln(L) + k \ln(n)$$

where L = Likelihood function

k = Number of parameters to be estimated

n = Number of observations

Ideally, the AIC and SBC should be as small as possible

Step 4: Diagnostic Checking

Residual Analysis

If an ARMA(p,q) model is an adequate representation of the data generating process then the residuals should be 'White Noise'

- White Noise time series has zero mean, constant variance and zero covariance with lagged time series.
- Residual plot is used for checking if the residuals are white noise process.

Residual Plot In Python

```
resi = salesmodel.resid
resi.plot(color="red")
```

Output

Step 5: Forecasting

Forecasting

Quick Recap

Stationarity Checking

 Plot correlogram using plot_acf() and validate stationarity using ADF()

Model Identification

 Tentative identification of models through visual inspection of correlogram and partial correlogram

Parameter Estimation

• auto_arima() is recommended for obtaining best ARIMA model & SARIMAX() for fitting the best model

It uses AIC as the model selection criteria

Diagnostic Checking

• **Residual plot** for checking whether errors follow white noise process

Forecasting

Use forecast() to generate forecasts