

UNIVERSIDAD TECNICA FEDERICO SANTA MARIA

Trabajo de Tesis

Design and Sizing of an Energy Storage System for a Hybrid Tugboat

Tesis para optar al título de Magister en Ciencias de la Ingeniería Electrónico

> Alumno Leonardo Solis Zamora

Profesor Guía **Dr. Marcelo Pérez Leiva**

Comisión evaluadora Nombre del primer correferente, Correferente, UTFSM Nombre del segundo correferente, CODELCO

Enero 2025, Valparaíso, Chile

This is the dedicatory page.

Agradecimientos

This is the abstract

Resumen

This is the abstract

Abstract

This is the abstract

Índice general

Ą	Agradecimientos		
Re	esumen	iii	
Al	bstract	iv	
1.	Introducción 1.1. Motivation and Background	1	
2.	Remolcador: Descripción y Requerimientos 2.1. section one	2 2	
3.	Hibridación de Remolcadores	3	
4.	Metodología para diseño de Banco de Baterías	4	
5.	Resultados de Simulación 5.1. Celda de Batería	5 5 5	
6.	Conclusiones	6	
Α.	Sample Code for Appendix A.1. Example Code: Bandgap Calculation in Python	7 7	
В.	Supplementary Tables B.1. Material Properties of GaN and Related Semiconductors	8 9	
Ri	hliografía	10	

Índice de figuras

Índice de tablas

B.1.	Material Properties of GaN and Related Semiconductors	8
B.2.	Experimental Parameters for MOCVD Growth of GaN	8
B.3.	Performance Metrics of Fabricated GaN HEMTs	9
B.4.	Comparison of Simulation and Experimental Results	9

Introducción

- 1.1. Motivation and Background
- 1.2. Challenges and Research Opportunities
- 1.3. Thesis Objectives and Outline

[1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19], [20], [21], [22], [23],

Remolcador: Descripción y Requerimientos

2.1. section one

This is section two point one.

Hibridación de Remolcadores

Metodología para diseño de Banco de Baterías

Resultados de Simulación

- 5.1. Celda de Batería
- 5.2. Banco de Batería
- 5.3. Motor diesel
- 5.4. Motor eléctrico
- 5.5. Tren de Potencia

Conclusiones

Apéndice A

Sample Code for Appendix

This appendix provides an example of code used in the project. The code is displayed using the verbatim environment to preserve formatting and indentation.

A.1. Example Code: Bandgap Calculation in Python

```
# Python code to calculate the bandgap of a semiconductor
def calculate_bandgap(Ec, Ev):
    """
    Function to calculate the bandgap energy.
    Ec: Conduction band energy (in eV)
    Ev: Valence band energy (in eV)
    Returns: Bandgap energy (in eV)
    """
    bandgap = Ec - Ev
    return bandgap

# Example usage
Ec = 3.4  # Conduction band energy for GaN (eV)
Ev = 0.0  # Valence band energy (reference, eV)

bandgap = calculate_bandgap(Ec, Ev)
print(f"The bandgap energy is {bandgap} eV.")
```

Apéndice B

Supplementary Tables

This appendix contains supplementary tables that provide additional data and detailed information used in this study.

B.1. Material Properties of GaN and Related Semiconductors

Tabla B.1: Material Properties of GaN and Related Semiconductors.

Property	GaN	SiC	Si
Bandgap Energy (eV)	3.4	3.3	1.1
Thermal Conductivity (W/m·K)	130	490	150
Breakdown Electric Field (MV/cm)	3.3	2.8	0.3
Electron Mobility (cm ² /V·s)	1200	900	1400
Lattice Constant (Å)	3.189	4.358	5.431

B.2. Experimental Parameters for Epitaxial Growth

Tabla B.2: Experimental Parameters for MOCVD Growth of GaN.

Parameter	Value	Unit
Growth Temperature	1050	°C
Reactor Pressure	200	mbar
Precursor Flow Rate (TMA/Ga)	50	sccm
NH ₃ Flow Rate	5000	sccm
Growth Rate	2.5	μm/hr
Buffer Layer Thickness	25	nm

Tabla B.3: Performance Metrics of Fabricated GaN HEMTs.

Metric	Measured Value	Unit	Device ID
Threshold Voltage (V_{th})	-2.5	V	D1
Maximum Current Density	800	mA/mm	D1
Peak Transconductance (g_m)	200	mS/mm	D1
Breakdown Voltage	1200	V	D1

B.3. Device Performance Metrics

B.4. Comparison of Simulation and Experimental Results

Tabla B.4: Comparison of Simulation and Experimental Results.

Parameter	Simulation	Experiment
Electron Mobility (cm ² /V·s)	1350	1200
2DEG Density (cm ⁻²)	1.5×10^{13}	$1,2 \times 10^{13}$
Threshold Voltage (V_{th})	-2.2	-2.5
Breakdown Voltage (V)	1300	1200

Bibliografía

- [1] A. Carreno, M. Malinowski, M. A. Perez, and J. Ding, "Effects of grid voltage and load unbalances on the efficiency of a hybrid distribution transformer," *IEEE Open Journal of the Industrial Electronics Society*, vol. 5, pp. 1206–1220, 2024.
- [2] J. Yin, N. Dai, S. Vazquez, M. A. Perez, B. Zhang, J. I. Leon, and L. G. Franquelo, "Direct pulsewidth modulation technique for modular multilevel converters based on full-bridge submodules," *IEEE Transactions on Power Electronics*, pp. 1–14, 2024.
- [3] J. Yin, N. Dai, J. I. Leon, M. A. Perez, S. Vazquez, and L. G. Franquelo, "Common-mode-voltage regulation of modular multilevel converters through model predictive control," *IEEE Transactions on Power Electronics*, vol. 39, no. 6, pp. 7167–7180, 2024.
- [4] A. Carreno, M. Malinowski, M. A. Perez, and C. R. Baier, "Circulating active power flow analysis in a hybrid transformer with the series converter connected to the primary side," *IEEE Transactions on Industrial Electronics*, vol. 71, no. 10, pp. 11775–11784, 2024.
- [5] J. Yin, N. Dai, S. Vazquez, A. Marquez, J. I. Leon, M. A. Perez, and L. G. Franquelo, "An improved indirect pulsewidth modulation technique for modular multilevel converters," *IEEE Transactions on Power Electronics*, vol. 39, no. 1, pp. 733–743, 2024.
- [6] A. Carreno, M. A. Perez, and M. Malinowski, "State-feedback control of a hybrid distribution transformer for power quality improvement of a distribution grid," *IEEE Transactions on Industrial Electronics*, vol. 71, no. 2, pp. 1147–1157, 2024.
- [7] D. S. D'antonio, O. López-Santos, A. Navas-Fonseca, F. Flores-Bahamonde, and M. A. Pérez, "Multi-mode master-slave control approach for more modular and reconfigurable hybrid microgrids," *IEEE Access*, vol. 11, pp. 55 334–55 348, 2023.
- [8] C. R. Baier, F. A. Villarroel, M. A. Torres, M. A. Pérez, J. C. Hernández, and E. E. Espinosa, "A predictive control scheme for a single-phase grid-supporting quasi-z-source inverter and its integration with a frequency support strategy," *IEEE Access*, vol. 11, pp. 5337–5351, 2023.
- [9] J. Samanes, L. Rosado, E. Gubia, J. Lopez, and M. A. Perez, "Deadbeat voltage control for a grid-forming power converter with lcl filter," *IEEE Transactions on Industry Applications*, vol. 59, no. 2, pp. 2473–2482, 2023.
- [10] M. Liserre, M. A. Perez, M. Langwasser, C. A. Rojas, and Z. Zhou, "Unlocking the hidden capacity of the electrical grid through smart transformer and smart transmission," *Proceedings of the IEEE*, vol. 111, no. 4, pp. 421–437, 2023.

- [11] F. A. Villarroel, J. R. Espinoza, M. A. Pérez, C. R. Baier, J. A. Rohten, R. O. Ramírez, E. S. Pulido, and J. J. Silva, "A predictive shortest-horizon voltage control algorithm for non-minimum phase three-phase rectifiers," *IEEE Access*, vol. 10, pp. 107598–107615, 2022.
- [12] M. A. Perez, S. Ceballos, G. Konstantinou, J. Pou, and R. P. Aguilera, "Modular multilevel converters: Recent achievements and challenges," *IEEE Open Journal of the Industrial Electronics Society*, vol. 2, pp. 224–239, 2021.
- [13] F. A. Villarroel, J. R. Espinoza, M. A. Pérez, R. O. Ramírez, C. R. Baier, D. Sbárbaro, J. J. Silva, and M. A. Reyes, "Stable shortest horizon fcs-mpc output voltage control in non-minimum phase boost-type converters based on input-state linearization," *IEEE Transactions on Energy Conversion*, vol. 36, no. 2, pp. 1378–1391, 2021.
- [14] J. Yin, J. I. Leon, M. A. Perez, L. G. Franquelo, A. Marquez, and S. Vazquez, "Model predictive control of modular multilevel converters using quadratic programming," *IEEE Transactions on Power Electronics*, vol. 36, no. 6, pp. 7012–7025, 2021.
- [15] J. Yin, J. I. Leon, M. A. Perez, L. G. Franquelo, A. Marquez, B. Li, and S. Vazquez, "Variable rounding level control method for modular multilevel converters," *IEEE Transactions on Power Electronics*, vol. 36, no. 4, pp. 4791–4801, 2021.
- [16] C. A. Reusser, H. A. Young, J. R. Perez Osses, M. A. Perez, and O. J. Simmonds, "Power electronics and drives: Applications to modern ship propulsion systems," *IEEE Industrial Electronics Magazine*, vol. 14, no. 4, pp. 106–122, 2020.
- [17] F. Ruiz, M. A. Perez, J. R. Espinosa, T. Gajowik, S. Stynski, and M. Malinowski, "Surveying solid-state transformer structures and controls: Providing highly efficient and controllable power flow in distribution grids," *IEEE Industrial Electronics Magazine*, vol. 14, no. 1, pp. 56–70, 2020.
- [18] Q. Yang, M. Saeedifard, and M. A. Perez, "Sliding mode control of the modular multilevel converter," *IEEE Transactions on Industrial Electronics*, vol. 66, no. 2, pp. 887–897, 2019.
- [19] C. A. Rojas, S. Kouro, M. A. Perez, and J. Echeverria, "Dc–dc mmc for hvdc grid interface of utility-scale photovoltaic conversion systems," *IEEE Transactions on Industrial Electronics*, vol. 65, no. 1, pp. 352–362, 2018.
- [20] A. Dekka, B. Wu, R. L. Fuentes, M. Perez, and N. R. Zargari, "Evolution of topologies, modeling, control schemes, and applications of modular multilevel converters," *IEEE Journal of Emerging and Selected Topics in Power Electronics*, vol. 5, no. 4, pp. 1631–1656, 2017.
- [21] O. Menendez, F. A. Auat Cheein, M. Perez, and S. Kouro, "Robotics in power systems: Enabling a more reliable and safe grid," *IEEE Industrial Electronics Magazine*, vol. 11, no. 2, pp. 22–34, 2017.
- [22] A. Dekka, B. Wu, R. L. Fuentes, M. Perez, and N. R. Zargari, "Voltage-balancing approach with improved harmonic performance for modular multilevel converters," *IEEE Transactions on Power Electronics*, vol. 32, no. 8, pp. 5878–5884, 2017.
- [23] C. D. Fuentes, C. A. Rojas, H. Renaudineau, S. Kouro, M. A. Perez, and T. Meynard, "Experimental validation of a single dc bus cascaded h-bridge multilevel inverter for multistring photovoltaic systems," *IEEE Transactions on Industrial Electronics*, vol. 64, no. 2, pp. 930–934, 2017.