Chapter 1: Mathematical Preliminaries

In Chapter 1, we mainly focus on the following contents:

- Precision read section 1.1 page 2–7.
- Efficiency, Horner's algorithm read section 1.1 page 8-9.
- Taylor series read section 1.2 page 20-23 and 25-28.
- Floating-point representation read section 1.3 until example 2 in page 44.
- Loss of significance read section 1.4 until page 62.

More information on floating-point representation and rounding errors:

▶ 02635 Mathematical software programming.

Notations: sum and product (page 9)

$$\sum_{k=n}^{m} x_k = x_n + x_{n+1} + x_{n+2} + x_{n+3} + \dots + x_{m-1} + x_m$$

$$\prod_{k=n}^{m} x_k = x_n \cdot x_{n+1} \cdot x_{n+2} \cdot x_{n+3} \cdots x_{m-1} \cdot x_m$$

$$p(x) = \sum_{i=0}^{n} a_i x^i = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \dots + a_{n-1} x^{n-1} + a_n x^n.$$

Taylor's Theorem (page 25) For a function f with continuous derivatives of orders $0, 1, 2, \ldots, (n+1)$ in [a, b], then for any c and x in [a, b]:

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(c)}{k!} (x - c)^{k} + E_{n+1} \qquad f^{(k)} = k \text{th derivative}$$

$$E_{n+1} = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - c)^{n+1} \qquad \text{where } \xi \text{ lies between } c \text{ and } x.$$

Example: Taylor series

$$f(x) = e^x$$
 $\Rightarrow f'(x) = e^x$, $f''(x) = e^x$, $f^{(3)} = e^x$, etc.

Taylor series at c = 0 with $f(c) = e^0 = 1$:

$$f(x) = 1 + x + \frac{1}{2}x^2 + \frac{1}{6}x^3 + \frac{1}{24}x^4 + \cdots$$

Taylor series will be used in the week 2, 3, 4, 5, 6, 7, 8, 9, 10, 13.

Efficiency: Horner's algorithm (page 8)

Following mathematical expressions is not always the most *efficient* way to do the calculation. For example, to evaluate the polynomial:

$$p(x) = a_0 + a_1x + a_2x^2 + \dots + a_{n-1}x^{n-1} + a_nx^n$$

Require *n* additions and $\frac{1}{2}n(n+1)$ multiplications.

$$p(x) = a_0 + x(a_1 + x(a_2 + \cdots + x(a_{n-1} + x a_n) \cdots))$$

Require n additions and only n multiplications.

```
% Calculate p= the value of the polynomial at x integer i, n; real p, x real array (a_i)_{0:n} p \leftarrow a_n for i=n-1 to 0 p \leftarrow a_i + x p end for
```

Significant Digits of Precision: Example (page 3–4)

We cut a $2m \times 3m$ rectangular sheet into two equal triangular pieces, and the dimensions are accurate to 1mm. What is the diagonal measurement of each triangle?

$$a = 2.000 \pm 0.001$$

$$b = 3.000 \pm 0.001$$

$$d = \sqrt{a^2 + b^2}$$

There is *uncertainty* on the diagonal *d*:

$$3.6042... \le d \le 3.6069...$$

We only can conclude that d = 3.60 and claim that d has

- 3 significant digits, and
- 2 precise decimal places or significant decimal digits.

We should always indicate the number of the significant digits/decimal digits.

Errors: Absolute and Relative (page 5–6)

Absolute error

When we say that the *absolute* error of \bar{a} to a is ± 0.01 , it means

$$a - 0.01 \le \bar{a} \le a + 0.01$$
, $\bar{a} =$ an approximation.

But is it a big error or a small error?

- If a = 3.45, then 0.01 is a small error.
- If a = 0.0345, then 0.01 is a really big error.

Relative error

When we say that the *relative* error to a is 0.01 (or 1%), it means

$$\frac{|a-\bar{a}|}{|a|}\leq 0.01.$$

For practical reasons, the relative error is more meaningful and more commonly used.

Uncertainty: complicated example (inspired by Ex. 2)

$$0.1036 x + 0.2122 y = 0.4398$$

 $0.2081 x + 0.4247 y = 0.8981$

```
>>> import numpy as np
\rightarrow A = np.array([[0.1036, 0.2122], [0.2081, 0.4247]])
>>> b = np.array([0.4398, 0.8981])
>>> x = np.linalg.solve(A,b)
x =
23.7258
-9.5108
We perturb the 4th decimal place in b (error in b1 \approx 0.02%):
>>> b1 = np.array([0.4396, 0.8982])
>>> x1 = np.linalg.solve(A,b1)
x1 =
24.3897
-9.8359
```

It leads to a *big* perturbation in solution (error in $x1 \approx 3\%$) \Rightarrow Chapter 8. 7 / 15

Error: Rounding and Chopping (page 7)

We have seen that the calculated results are affected by errors in data:

• How the error is propagated from the data to the results depends on the problem that we solve – equation, interpolation, etc.

But there are also other sources which introduce errors:

The computer is not a continuum, and only can accept finite format!

What will computers do?

- Rounding: reduce the number of significant digits in one digit.
- *Chopping*: discard all digits that follow the *n*th digit, but none of the remaining *n* digits are changed.

```
>>> import numpy as np
>>> n = 1000; r = np.random.rand(n,1)
>>> d = [abs(1-(ri*(1/ri))) for ri in r]
>>> np.count_nonzero(d) # number of non-zero elements
144
>>> max(d)
1.11022302e-16
```

Floating-Point Representation

In the decimal system, a real number x can be represented as:

mantissa
$$x = \pm \frac{d_0 \cdot d_1 d_2 d_3}{d_0 \cdot d_1 d_2 d_3} \dots \times 10^n$$
, $d_i = \text{decimal digits } (0,1,\dots,9)$, $n = \text{exponent}$

In the binary system, x can be written as:

$$x = \pm 1.b_1b_2...b_{52} \times 2^k$$
, $b_i = \text{binary digits (0,1)}$, $k = \text{exponent}$

Note that computers can only work with finite numbers!

The standard IEEE-754 has a word length of 64 bits:

- 1 bit for the sign \pm
- 52 bits for the mantissa b_1, \ldots, b_{52}
- 11 bits for the exponent, i.e., $-1022 \le k \le 1023$.
- Special values of k is reserved for $\pm Inf$ and NaN.

Computer Errors in Representing Numbers

Since there are only 52 digits in the mantissa, errors can occur when we attempt to represent a real number x.

- We have to use the closest machine number, fl(x), replacing x.
- It would lead to the roundoff error, x f(x).
- It is calculated by rounding to obtain the last binary digit b_{52} .

The relative error of this representation is bounded by:

$$\left| \frac{x - fl(x)}{x} \right| \le 2^{-53} \approx 1.1102 \times 10^{-16}$$
,

where $u = 2^{-53}$ is unit roundoff error.

What is np.finfo(float).eps $\approx 2.2204 \times 10^{-16}$ in Python?

• It is the difference between 1 and the next larger number that can be stored in this machine, and we have eps = 2u. It is usually called as machine epsilon or machine precision.

Note that f(1 + u) = 1, while $f(1 + eps) \neq 1$.

Loss of Significance (page 57)

Assume that our calculator works with floating-point numbers that have 10 decimal digits in the decimal system. Set $x=\frac{1}{15}$ and calculate $z=x-\sin(x)$ in this calculator:

```
input: x \leftarrow 0.66666\,6667 \times 10^{-1} calculate: y = \sin(x) \leftarrow 0.66617\,29492 \times 10^{-1} calculate: x - y = 0.00049\,37175 \times 10^{-1} normalize: z \leftarrow 0.49371\,75000 \times 10^{-4}
```

The last three 0s in z are supplied by the calculator and are not correct – they are spurious zeros.

This example shows one of the most common reasons for *loss of significance*, i.e., the subtraction of one quantity from another nearly equal quantity.

Don't try this at home!

Don't try this at home!

We use the following identity to show the loss of significance:

$$1^{2} = (1 - x + x)^{2} = ((1 - x) + (x))^{2} = (1 - x)^{2} + x^{2} - 2 * x(x - 1)$$

Don't try this at home!

We use the following identity to show the loss of significance:

$$1^{2} = (1 - x + x)^{2} = ((1 - x) + (x))^{2} = (1 - x)^{2} + x^{2} - 2 * x(x - 1)$$

There is loss of significance in subtraction due to the x^2 terms, so the error would increase in the order of

$$c * x^2$$
.

- Error becomes arge, when x is large!
- The errors are oscillated!

Tricks to Avoid Loss of Significance (page 60)

Example: $f(x) = \sqrt{x^2 + 1} - 1$ with $x \ll 1$. Two tricks:

$$f(x) = \frac{\left(\sqrt{x^2 + 1} + 1\right)\left(\sqrt{x^2 + 1} - 1\right)}{\left(\sqrt{x^2 + 1} + 1\right)} = \frac{x^2}{\sqrt{x^2 + 1} + 1}$$

$$f(x) = \frac{1}{2}x^2 - \frac{1}{8}x^4 + O(x^6) \quad \text{Taylor-expension}$$
>>> $x = \text{np.array}([10**(-p) \text{ for p in range}(1,9+1)])}$
>>> $\text{np.array}([x,\text{np.sqrt}(x**2+1)-1,x**2/(\text{np.sqrt}(x**2+1)+1), 0.5*x**2-x**4/8]).T}$

$$1.0000e-01 \quad 4.9876e-03 \quad 4.9876e-03 \quad 4.9875e-03$$

$$1.0000e-02 \quad 4.9999e-05 \quad 4.9999e-05$$

$$1.0000e-03 \quad 5.0000e-07 \quad 5.0000e-07$$

$$1.0000e-04 \quad 5.0000e-09 \quad 5.0000e-07$$

$$1.0000e-05 \quad 5.0000e-11 \quad 5.0000e-11$$

$$1.0000e-06 \quad 5.0004e-13 \quad 5.0000e-13$$

$$1.0000e-08 \quad 0 \quad 5.0000e-17 \quad 5.0000e-17$$

Quadratic Formula (not in the book)

If the quadratic equation $ax^2 + bx + c = 0$ has roots, they are given by the quadratic formula:

$$x_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$
 and $x_2 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$

Potential loss of significance in subtraction: if $\sqrt{b^2-4ac}\approx |b|$, when we calculate $-b\pm\sqrt{b^2-4ac}$.

What to do: Calculate the root that avoids the subtraction first. Then, obtain the other root based on $x_1x_2 = c/a$.

$$q = -rac{1}{2}\left(b + ext{sign}(b)\sqrt{b^2 - 4ac}
ight)$$

 $x_1 = q/a$
 $x_2 = c/q$

Conclusion: Even very simple calculations can have danger of loss of significance. Good software takes this into account.