

VSR | EDU

XML

Prof. Dr.-Ing. Martin Gaedke

Technische Universität Chemnitz

Fakultät für Informatik

Professur Verteilte und Selbstorganisierende Rechnersysteme

http://vsr.informatik.tu-chemnitz.de

Problem: XML and Data

"Understanding" of data – Example:

Does <animal name="Knut"> describe the same animal?

What about...

What is needded? (technically)

- For machines to be able to process data on the Web, the following concepts (and the related technologies) are needed:
 - Unique resource names (possibly also for objects in the real world): URIs
 - Data model to link, describe and access resources: RDF
 - "Access" / search: SPARQL
 - Definition of vocabularies: RDF, OWL, SKOS
 - Inference logic: OWL, Rules
- "Semantic Web" is an extension (not a replacement!)
 of the Web, providing an infrastructure for
 integration of data on the Web.

Chapter 15 RESOURCE DESCRIPTION FRAMEWORK (RDF)

RDF - Overview

- Resource Description Framework (RDF)
 - W3C Recommendation
 - http://www.w3.org/TR/rdf-primer/
 - http://www.w3.org/RDF/
- RDF is a data model
 - Enables data description
 - Data on data metadata
 - RDF enables description of metadata in machinereadable form by means of the according notation

Introduction

- Linking / connection of data in detail...
 - "I have a calendar."
 - "This is my CV."
 - These phrases are understandable for humans, but for machines...
- Statement analysis for machines:
 - <l>, <have>, <calendar>
 - <This>, <is>, <my>, <CV>
 - Is the connection <I> <calendar> the same as for <I> - <CV>?
- Idea: Statements are connections
 - Connections assign things to other things
 - Connections are data on data
 - Connections should be named
 - <Data> <CONNECTION> <Data>
 - →Represent statements as triples...

RDF Triple

- RDF triple: Describes a statement in form of a relationship (P) between a subject (S) and an object (O)
 - Statement describes a thing S, where a property P is provided with a value of O
 - RDF triple (S,P,O)
 - Subject Predicate Object
 - Or, technically: Subject Property Object
- RDF triple properties
 - S, P are URIs, O is a URI or a literal
 - Conceptually, P connects: S and O (directed description)
 - RDF is a model for such triples

RDF Triple – First Example

- Statement: "Gaedke has (a) CV"
 - S,P,O resources: S: http://.../CV
 P: http://.../CV
- Statement as an RDF triple
 - <http://gaedke.com/>,<http://.../has >,<http://.../CV>
- Resources can be any URIs
 - http://example.org/people/gaedke.html
 - http://example.org/people/g.html#fragmentId
 - http://example.org/#xpointer(id('g12,))

RDF Triple – Second Example

 If this image is encoded in SVG (an XML application), then any element can be addressed by a URI

Detailed statements about the image are

possible

- <http://.../graph.svg#xpointer(...)>
 - http://biz.../def#BreakEven

RDF as a Graph

- Triple (S,P,O) can be seen as an edge of a graph
 - Subjects and objects are nodes in a graph
 - Properties are edges

Note:

RDF deals with graphs

Simple Example of RDF Graphs

- Animal 34 has a name Knut. (RDF concept: literal)
- He is 1 year old. (RDF concept: literal)
- He is a bear. (RDF concept URI-based vocabulary)

Statements about Statements

- Each element of a statement can be some element of another statement.
 - Example:
 Subject of a statement can be an object of another statement
 - Predicate of a statement can be a subject of another statement
- Multiple statements can be viewed as an RDF graph, a socalled semantic network

RDF Machine-Readable...

- RDF is a data model...machine-readable implementations include RDF/XML, Notation 3 (N3), Turtle, etc.
- Example RDF in XML
 - Each rdf:Description element describes a resource (subject)
 - Nested elements are properties
 - Attribute or content of a property element describes an Object

RDF/XML

RDF/XML allows various syntax in XML – the meaning is preserved

RDF(S) in Turtle

RDF allows various syntax, here's a Turtle example:

```
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
@prefix zt: <http://example.org/evkonzept#>.
<http://zoo.../animals#t12>
   zt:FatherOf zt:t34;
   zt:Name "Teddy".
```

Compared to XML/RDF

RDF and URIs

- Statements are flexible: $(S, P, O) \rightarrow (S, P, (S', P', O'))$
- URIs enable statements about external resources
- External resource statements can be merged to produce a new statement graph
- Merge example... "tabulator project"
 - http://www.w3.org/2005/ajar/tab

Internal Nodes

- What if you want to make a statement about a thing?
 - Zoo is a thing, which consists of animals and shelters for those animals.

What is the URI of a thing?

Internal Nodes – rdf:ID

- Anything needs a name, even a thing...
- Approach:
 - Name can be given by means of an identifier: rdf:ID (in α true sense of α URI)
 - Not to be confused with xml:id (semantically different term)

Internal Nodes – Blank Nodes

- Anything needs a name, even a thing...
- Approach:
 - By means of an internal identifier rdf:nodeID (invisible outside of the resource, so, no URI)
 - Is an internal identifier
 - Caution when merging various RDF resources i.e. w.r.t. uniqueness/unambiguity of nodeID

9/20

Internal Nodes – Blank Nodes (2)

- Names are smoke and mirrors, but structure...
- Approach:
 - Use system support. System creates an identifier internally, the according description is determined by the XML structure of the statements
 - Logically, this approach represents existential statements ("There is a resource, which")

RDF in Action

- Libraries, support tools for the RDF approach already exist, for example:
 - Dave Beckett (Editor RDF- W3C-Standard),
 - Redland RDF Libraries
 - http://librdf.org/
 - Support for different languages,
 like C#, Java, Perl, PHP, Python, Ruby
 - RDF Resource Guide
 - http://planetrdf.com/guide/
 - HP Labs: Java + Jena
 - http://jena.sourceforge.net/
 - Various RDF TripleStores...
 Editors...
 and much more...

RDF – Final Remarks

- RDF Very simple, very flexible, very powerful
 - Subjects, relations and concepts shape RDF modelling/description
 - Relations are explicit (also while merging)
 - Data model is available in different syntactic forms
- But:
 - No vocabulary definition...

Chapter 16 RDF SCHEMA

Introduction

- Statement reading is easy, but
 - how should they be processed by a program
 - (as in, how should they be understood)?
- Programs must be capable of understanding RDF vocabulary
- One requires something similar to the XML
 Schema, some kind of an RDF Schema
- To be more specific: RDF Vocabulary
 Description Language

RDF Vocabulary Description Language

- RDF Vocabulary Description Language 1.0: RDF Schema
 - W3C Recommendation 10 February 2004
 - Commonly known as RDF Schema or, in short, vocabulary
 - Specification of the six RDF specifications
 - xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
- Defines rules for
 - Especially: Classes, Properties
 - Also: Domain, Range
- It also provides for reification (objectification, concretisation) of the original RDFMS (RDF Model and Syntax)
 - Defines: Statement, subject, predicate, object
 - As well as helper properties, like, for example, seeAlso

RDFS – Classes (1)

- RDF Schema Classes & Co.
 - Resources can be divided into groups, which are referred to as Classes.
 - Members of such a class are instances, which are typically identified by RDF-URI references and described by properties
 - rdf:type can indicate whether a resource is an instance of a class

[Translated (twice) excerpt from the RDF Schema]

RDFS – Classes (2)

- So: Relationships between resources and classes
 - Typing: Individual belongs to a class (Knut and Teddy belong to class Bears)
 - Subclassing: Class is an instance of another one (Bears belong to class Mammals)
 - Note: Differentiate rdf: and rdfs:

RDFS – Classes (3)

- Data types of an application
 - Describes terminological knowledge

RDFS – Classes (4)

- Instances of an application
 - Separation of terminological and assertional knowledge

RDFS – Classes (5)

- Is <#t34> <rdf:type> <#animal>?
 - Is not contained in RDF data, but can be concluded (inference)
 - Good RDF systems deliver such information upon any request to subject <#t34>
 - rdf:type is, therefore, a frequently used property
 - Note: rdf:type is a property, i.e. a subject can be described by multiple rdf:type properties.

RDFS & Inference (1)

RDF Semantics

- W3C Recommendation 10 February 2004
- Specification of the six RDF specifications
- Defines semantics and reasoning system, i.e. inference rules, for RDF and RDFS, by means of model theory
- Describes rules for derivation of statements about subjects, property and values
- Discusses the problem of inference w.r.t. literals
- RDF is an assertional language
 - (i.e. for allegations/statements about the world)
 - Especially if using the vocabulary defined with RDFS
 - Basis for description of further assertional languages
 - Meaning is not fixed
 - RDF Semantics describes the meaning of relationships in the context of RDF and RDFS, and provides rules to gain knowledge in specific situations (meaning) on certain elements.

RDFS & Inference (2)

- So: RDF + Vocabularies + RDF Semantic enables interpretation / inference
 - Since vocabularies can be added as desired, there can exist different interpretations of RDF data
 - Specifically, one always talks about RDF interpretations
- Sample rule:
 - IF (<e><rdfs:subClassOf><m>) and (<k><rdf:type><e>)
 - → addTriple (<k><rdf:type><m>)

Properties (1)

- Property is a concept connecting a subject to an object (see RDF Concepts and Abstract Syntax)
- rdf:Property
 - Property is also a resource identified by a URI
 - Property is bound to range and domains
 - Property can be split into subproperties (rdfs:subproperty)
- Statements about properties are possible as well as properties of properties (URI of a URI)

Properties (2)

- Initial situation (<S><P><O>)
- Example:
 - (<P> <rdfs:range> <C>) means:
 - P is a property (in the range-statement, however, the Subject)
 - C is a class
 - → If P is used, O has to be an instance of C

Confusing? You'll get used to it ;-)

