IX Республиканская студенческая предметная олимпиада по направлению «Математика» 13 апреля 2017

1. (Абдикалыков А.)

Пусть
$$S = \sum_{n=1}^{\infty} \frac{T_n}{2^n}$$
. Тогда

$$\sum_{n=1}^{\infty} \frac{T_{n+1}}{2^n} = 2 \cdot \sum_{n=1}^{\infty} \frac{T_{n+1}}{2^{n+1}} = 2 \cdot \left(S - \frac{T_1}{2^1}\right) = 2S - 1,$$

$$\sum_{n=1}^{\infty} \frac{T_{n+2}}{2^n} = 4 \cdot \sum_{n=1}^{\infty} \frac{T_{n+2}}{2^{n+2}} = 4 \cdot \left(S - \frac{T_1}{2^1} - \frac{T_2}{2^2} \right) = 4S - 3,$$

$$\sum_{n=1}^{\infty} \frac{T_{n+3}}{2^n} = 8 \cdot \sum_{n=1}^{\infty} \frac{T_{n+3}}{2^{n+3}} =$$

$$= 8 \cdot \left(S - \frac{T_1}{2^1} - \frac{T_2}{2^2} - \frac{T_3}{2^3} \right) = 8S - 7.$$

Так как по условию $T_{n+3} = T_{n+2} + T_{n+1} + T_n$, то

$$8S - 7 = 4S - 3 + 2S - 1 + S,$$

откуда следует S = 3.

2. (Абдикалыков А.)

Пусть k-ичная запись простого числа p для некоторого k>1 выглядит как $\overline{a_0a_1\dots a_{k-1}}$, где (a_0,a_1,\dots,a_{k-1}) — некоторая перестановка цифр $(0,1,\dots,k-1)$. Тогда

$$p = a_0 \cdot k^{k-1} + a_1 \cdot k^{k-2} + \dots + a_{k-1} \cdot k^0 \equiv$$
$$= a_0 + a_1 + \dots + a_{k-1} \pmod{(k-1)}.$$

Поскольку сумма всех цифр равна k(k-1)/2, то можно сделать вывод, что число p делится на (k-1)/2, если k нечётно и на k-1, если k чётно. Учитывая, что $p\geqslant k^{k-1}>k-1$ — простое число, заключаем, что k должно удовлетворять совокупности соотношений

$$\begin{bmatrix} \frac{k-1}{2} = 1, & k = 2l + 1, \\ k - 1 = 1, & k = 2l. \end{bmatrix}$$

Таким образом, k=2 или k=3, а значит, достаточно перебрать числа $10_2, 102_3, 120_3, 201_3, 210_3$. Простыми среди них являются только $2=10_2, 11=102_3$ и $19=201_3$.

3. (Клячко А.)

а) Для любого элемента x порядка 2 верно $x = x^{-1}$, поэтому

$$(ab)^2 = abab = aba^{-1}b^{-1},$$

если $a^2 = b^2 = e$.

б) Аналогично, для любого элемента x порядка 3 верно $x^2 = x^{-1}$, поэтому

$$(ab)^3 = ababab = ab^4aba^4b = (ab^2)(b^2a)(ba^2)(a^2b) =$$

$$(ab^2)(b^2a)(ab^2)^{-1}(b^2a)^{-1},$$

если $a^3 = b^3 = e$.

4. (Баев А.)

Обозначим через F фокус параболы, через d директрису параболы. Рассмотрим произвольную касательную к параболе l в произвольной точке C.

Свойство 1: точка F_C , симметричная F относительно l, лежит на директрисе d.

Из определения параболы: $FC = F_C C$. Из оптического свойства параболы $\angle (FC; l) = \angle (l; F_C C)$. Получаем, что l — ось симметрии для отрезков FC и $F_C C$.

Свойство 2:

$$-\frac{1}{4} - FP \leqslant y(P_C) \leqslant -\frac{1}{4} + FP,$$

где $y(P_C)$ — ордината точки P_C .

Известна директриса данной параболы $y = -\frac{1}{4}$. Ордината точки F_C равна $-\frac{1}{4}$. А точка P_C находится на расстояния не более, чем $F_C P_C$ от директрисы. Осталось заметить, что с учетом свойства 1 треугольники FCP и $F_C CP_C$ равны, то есть $F_C P_C = FP$.

Свойство 3:
$$\max_{(x,y)\in S(P)}y=-rac{1}{4}+FP$$
 и $\min_{(x,y)\in S(P)}y=-rac{1}{4}-FP.$

Свойство 4: геометрическим местом точек в пункте б) является окружность с центром в F и радиусом $\frac{1}{4}$. Из свойства 3 следует, что $FP = F_B P_B = \frac{1}{4}$.

(Васильев А.)

Ответ: да, существует.

Можно привести множество примеров, но мы укажем самый простой:

$$f(x) = \begin{cases} 0, x \in [0, 1) \\ 1, x = 1 \end{cases}$$

Обозначив $\frac{i}{n}$ через x_i , имеем: $m_i = \inf_{x \in [x_{i-1}, x_i]} f(x) = 0$ для всех $i = \overline{1, n}$ и

$$M_i = \sup_{x \in [x_{i-1}, x_i]} f(x) = \begin{cases} 0, i = \overline{1, n-1} \\ 1, i = n \end{cases}$$

Следовательно, $s_n(f)=0$ и $S_n(f)=\frac{1}{n}$ для всех $n\in\mathbb{N}$. При этом f интегрируема на [0,1], ряд $\sum_{n=1}^{\infty}0$

сходится, а ряд $\sum_{n=1}^{\infty} \frac{1}{n}$ расходится.

6. (Высоканов Б., Клячко А.)

Обозначим через n количество участников олимпиады и присвоим им номера от 1 до n. Пусть a_{ij} — количество решений, списанных i-ым участником у j-го, при этом полагаем $a_{ii}=0$. Рассмотрим два случая:

1) $n=2k, k \in \mathbb{N}$. Если k=1, то доказательство тривиально. Пусть $k \leqslant 2$. Доказательство проведем от противного. Допустим, что, выгоняя любые k человек из 2k, мы никогда не достигнем требуемого. Тогда для любого $S' \subset S$, где |S'| = k и $S = \{1, 2, ..., 2k\}$, имеем:

$$\sum_{\substack{i \in S'\\j \in S \setminus S'}} \leqslant \frac{1}{4} \sum_{i,j \in S} a_{ij}.$$

Просуммируем эти неравенства по всем S':

$$\sum_{S'} \sum_{\substack{i \in S' \\ j \in S \setminus S'}} a_{ij} \leqslant \frac{1}{4} \sum_{S'} \sum_{i,j \in S} a_{ij}.$$

Заметим, что каждое a_{ij} при $i \neq j$ в сумме слева встретится ровно C_{2k-2}^{k-1} раз, а в сумме справа — ровно C_{2k}^k раз. Разделив обе части неравенства на $\sum_{i,j\in S}a_{ij}>0$, находим:

$$C_{2k-2}^{k-1} \leqslant \frac{1}{4}C_{2k}^k,$$

что неверно, так как

$$\frac{C_{2k}^k}{C_{2k-2}^{k-1}} = 2\left(2 - \frac{1}{k}\right) < 4.$$

2) n = 2k + 1, $k \in \mathbb{N}$. При k = 1 доказательство тривиально. При $k \geqslant 2$ рассуждаем аналогично 1), рассматривая все $S' \in S$ с условием |S'| = k (при этом $S = \{1, 2, ..., 2k + 1\}$).