Concavidad y Optimización

Abelardo Jordán Liza

Maestría en Matemáticas Aplicadas PUCP

Semana2, Agosto 2023

Conjuntos convexos

En la teoría de optimización, generalmente deseamos tener condiciones "favorables" para el tratamiento de los problemas relacionados. La convexidad de conjuntos, aporta un rico despliegue geométrico-algebraico que debe ser explotado tanto para los conjuntos de las variables de decisión como para otros conjuntos determinados por la función objetivo.

En esta parte, presentamos algunas definiciones y resultados en un espacio vectorial real E, si el caso lo demanda lo especificaremos en el ambiente \mathbb{R}^n .

Definición

Para $x,y\in E$, definimos segmentos de extremos x e y, mediante

$$[x,y] := \{x + t(y-x) : t \in [0,1] \}$$
$$[x,y] := \{x + t(y-x) : t \in [0,1] \}$$

análogamente para]x,y] y]x,y[.

Conjuntos convexos

Sea C un subconjunto de E. Se dice que:

a) C es convexo, si

$$\forall x, y \in C, \forall t \in [0, 1] \text{ se cumple } tx + (1 - t)y \in C$$
 (1)

Es decir, si C contiene a todos los segmentos cerrados que conectan a dos cualesquiera de sus propios puntos . Equivalentemente, C es convexo si $[x,y]\subset C,\ \forall x,y\in C.$

b) C es **afín**, si

$$\forall x, y \in C, \forall t \in \mathbb{R} \text{ se cumple } tx + (1-t)y \in C$$
 (2)

Todo conjunto afín es convexo.

Propiedades

Dado un espacio vectorial E,

- (i) $E ext{ y } \emptyset$ son subconjuntos convexos y afines a la vez de E.
- (ii) Si $\{C_i\}_{i\in I}$ es una colección arbitraria de subconjuntos convexos de E, entonces $\cap_{i\in I}C_i$ es un subconjunto convexo de E.
- (iii) Si $\{C_i\}_{i\in I}$ es una colección arbitraria de subconjuntos afines de E, entonces $\bigcap_{i\in I}C_i$ es un subconjunto afín de E.

Definición

a) Sea $C \subset E$, se dice que $z \in E$ es combinación convexa de elementos de C si existen $m \in \mathbb{N}$, $\{x_i\}_{i=1}^m \subset C$ y $\{t_i\}_{i=1}^m \subset [0,1]$ tales que

$$\sum_{i=1}^{m} t_i = 1 \quad y \quad z = \sum_{i=1}^{m} t_i x_i$$
 (3)

b) Sea $C \subset E$, se dice que $z \in E$ es combinación afín de elementos de C si existen $m \in \mathbb{N}$, $\{x_i\}_{i=1}^m \subset C$ y $\{t_i\}_{i=1}^m \subset \mathbb{R}$ tales que (3).

Proposición

 $C \subset E$ es convexo (afín) si y solamente si, contiene a cualquier combinación convexa (afín) de sus propios elementos.

Ejemplos

- El espacio vectorial E y todo conjunto unitario de E son ejemplos de conjuntos convexos y afines a la vez.
- (ii) Toda bola abierta o cerrada de R^n es un conjunto convexo mas no es afín.
- (iii) Dado $p \in \mathbb{R}^n$ y $\alpha \in \mathbb{R}$, el conjunto $\{x \in \mathbb{R}^n : p^t x = \alpha\}$ es afín.
- (iv) El simplex unitario de R^n denotado por \triangle_n es un conjunto convexo y está definido por

$$\triangle_n := \{x = (x_1, \dots, x_n) : \sum_{i=1}^n x_i = 1, x_i \ge 0, \forall i = \overline{1, n}\}$$

(v) Una matrix de \mathcal{M}_n se llama estocástica si todas sus entradas son no-negativas y los elementos de cada columna suman uno. Si \mathcal{E}_n es el conjunto de estas matrices, entonces \mathcal{E}_n es un conjunto convexo de \mathcal{M}_n .

Conjuntos afines y dimensión

Sea A un conjunto afín de \mathbb{R}^n , entonces para $a \in A$, el conjunto

$$V_a = A - \{a\} := \{x - a : x \in A\}$$

es un subespacio vectorial de \mathbb{R}^n . (Esto es independiente de la elección de a) En tal caso, se dice que A es un subespacio paralelo a V_a , y se define la dimensión de A como la dimensión de V_a .

Ejemplos

- (a) Para cada $x \in \mathbb{R}^n$, el conjunto $A = \{x\}$ es afín, y es traslación de \cdots .
- (b) Para dos puntos distintos x, y de \mathbb{R}^n , la recta $\{tx+(1-t)y:t\in\mathbb{R}\}$ es un conjunto afín, paralelo al subespacio vectorial $\{\alpha(x-y):\alpha\in\mathbb{R}\}$.
- (c) Sean M Una matriz de orden $m \times n$, $b \in \mathbb{R}^m$ y $A := \{x \in \mathbb{R}^n : Mx = b\}$, A es un conjunto afín de dimensión \cdots

Cápsula convexa

Dado un subconjunto C de un espacio vectorial E, la cápsula convexa de C denotada por co(C) se define como el "menor" conjunto convexo que contiene a C. Es decir, si ζ es la colección de subconjuntos convexos de E que contienen a C, entonces

$$co(C) = \bigcap_{D \in \zeta} D$$

Cápsula convexa

Dado un subconjunto C de un espacio vectorial E, la cápsula convexa de C denotada por co(C) se define como el "menor" conjunto convexo que contiene a C. Es decir, si ζ es la colección de subconjuntos convexos de E que contienen a C, entonces

$$co(C) = \bigcap_{D \in \zeta} D$$

 $\mbox{{\bf Politopo}} : \mbox{{\bf Un conjunto}} \ C \ \mbox{{\bf es un politopo si es la cápsula convexa de un número finito de puntos de } E.$

Cápsula afín

Dado un subconjunto C de un espacio vectorial E, la cápsula afín de C denotada por aff(C) se define como el "menor" conjunto afín que contiene a C. Es decir, si ζ es la colección de subconjuntos afines de E que contienen a C, entonces

$$aff(C) = \bigcap_{D \in \zeta} D$$

Cápsula afín

Dado un subconjunto C de un espacio vectorial E, la cápsula afín de C denotada por aff(C) se define como el "menor" conjunto afín que contiene a C. Es decir, si ζ es la colección de subconjuntos afines de E que contienen a C, entonces

$$aff(C) = \bigcap_{D \in \zeta} D$$

Ejemplos:

- (i) Para cada $x \in E$, se cumple $aff\{x\} = \{x\}$.
- (ii) Sean x , y dos vectores diferentes de E , entonces $aff\{x,y\}=\{x+t(y-x):t\in\mathbb{R}\}.$
- (iii) Si x,y,z son elementos no colineales de E, entonces $aff\{x,y,z\}=\cdots$

Cápsula afín

Dado un subconjunto C de un espacio vectorial E, la cápsula afín de C denotada por aff(C) se define como el "menor" conjunto afín que contiene a C. Es decir, si ζ es la colección de subconjuntos afines de E que contienen a C, entonces

$$aff(C) = \bigcap_{D \in \zeta} D$$

Ejemplos:

- (i) Para cada $x \in E$, se cumple $aff\{x\} = \{x\}$.
- (ii) Sean x , y dos vectores diferentes de E, entonces $aff\{x,y\} = \{x+t(y-x): t \in \mathbb{R}\}.$
- (iii) Si x,y,z son elementos no colineales de E, entonces $aff\{x,y,z\}=\cdots$

En general, co(C) consiste precisamente de todas las combinaciones convexas de elementos de C. Análogamente, aff(C) consiste de todas las combinaciones afines de elementos de C.

Hiperplanos

Definición

Dados $p \in \mathbb{R}^n \setminus \{0\}$, $\alpha \in \mathbb{R}$, el hiperplano $H(p,\alpha)$ se define como el conjunto

$$H(p,\alpha) := \{ x \in \mathbb{R}^n : \langle p, x \rangle = \alpha \}$$
 (4)

Note que cuando $\alpha=0$, H(p,0) es un subespacio vectorial de \mathbb{R}^n de dimensión n-1 y $x\in H(p,0)$ si y solo si, $x\perp p$. En tal caso, se dice que el p es un vector ortogonal al subespacio vectorial H(0,p) (comúnmente se dice que p es normal a H(p,0).) En general, se dice que el hiperplano $H(p,\alpha)$ es paralelo al subespacio vectorial H(p,0) y que tiene vector normal p.

Semiespacios

Definición

Dado el hiperplano $H(p, \alpha)$, se generan los siguientes subconjuntos:

- (a) $H(p,\alpha)^{\leq}:=\{x\in\mathbb{R}^n:\langle p,x\rangle\leq\alpha\}$ y $H(p,\alpha)^{\geq}:=\{x\in\mathbb{R}^n:\langle p,x\rangle\geq\alpha\}$ que se denominan semiespacios cerrados.
- (b) $H(p,\alpha)^{<}:=\{x\in\mathbb{R}^n:\langle p,x\rangle<\alpha\}$ y $H(p,\alpha)^{>}:=\{x\in\mathbb{R}^n:\langle p,x\rangle>\alpha\}$ que se denominan semiespacios abiertos.

Las denominaciones cerrado y abierto, a la vez concuerdan con la naturaleza topológica de estos conjuntos.

Nota

Dado el hiperplano $H(p,\alpha)$, éste coincide con $H(tp,t\alpha)$ para cualquier $t\in\mathbb{R}$ no nulo. Particularmente, podemos exigir una representación del hiperplano con un vector normal de norma uno o también si $\alpha\neq 0$ podemos imponer que $\alpha=1$.

Semiespacios

Definición

Dado el hiperplano $H(p, \alpha)$, se generan los siguientes subconjuntos:

- (a) $H(p,\alpha)^{\leq}:=\{x\in\mathbb{R}^n:\langle p,x\rangle\leq\alpha\}$ y $H(p,\alpha)^{\geq}:=\{x\in\mathbb{R}^n:\langle p,x\rangle\geq\alpha\}$ que se denominan semiespacios cerrados.
- (b) $H(p,\alpha)^{<}:=\{x\in\mathbb{R}^n:\langle p,x\rangle<\alpha\}$ y $H(p,\alpha)^{>}:=\{x\in\mathbb{R}^n:\langle p,x\rangle>\alpha\}$ que se denominan semiespacios abiertos.

Las denominaciones cerrado y abierto, a la vez concuerdan con la naturaleza topológica de estos conjuntos.

Nota

Dado el hiperplano $H(p,\alpha)$, éste coincide con $H(tp,t\alpha)$ para cualquier $t\in\mathbb{R}$ no nulo. Particularmente, podemos exigir una representación del hiperplano con un vector normal de norma uno o también si $\alpha\neq 0$ podemos imponer que $\alpha=1$.

Sean C_1, C_2 subconjuntos convexos de los espacios vectoriales E_1 y E_2 respectivamente, entonces $C_1 \times C_2$ es un subconjunto convexo de $E_1 \times E_2$. Generalmente, si para cada $i=\overline{1,p},\ C_i$ es un subconjunto convexo del espacio vectorial E_i , entonces $C_1 \times \cdots \times C_p$ es un subconjunto convexo de $E_1 \times \cdots \times E_p$.

Sean C_1, C_2 subconjuntos convexos de los espacios vectoriales E_1 y E_2 respectivamente, entonces $C_1 \times \underline{C_2}$ es un subconjunto convexo de $E_1 \times E_2$. Generalmente, si para cada $i=\overline{1,p},\ C_i$ es un subconjunto convexo del espacio vectorial E_i , entonces $C_1 \times \cdots \times C_p$ es un subconjunto convexo de $E_1 \times \cdots \times E_p$.

Las aplicaciones lineales afines tienen la propiedad de preservar la convexidad de subconjuntos. Formalmente, esto significa lo siguiente:

Proposición

Sean E y F e.v. , $T:E \to F$ una aplicación lineal afín , $C \subset E$ convexo. La imagen T(C) de C respecto a T, es convexo en F.

 $\label{eq:demass} \textit{Además, si } D \textit{ es convexo en } F, \textit{ entonces su imagen inversa respecto a } T,$

 $T^{-1}(D) = \{x \in E : T(x) \in D\}$, es convexo en E.

Sean C_1, C_2 subconjuntos convexos de los espacios vectoriales E_1 y E_2 respectivamente, entonces $C_1 \times \underline{C_2}$ es un subconjunto convexo de $E_1 \times E_2$. Generalmente, si para cada $i = \overline{1,p}, C_i$ es un subconjunto convexo del espacio vectorial E_i , entonces $C_1 \times \cdots \times C_p$ es un subconjunto convexo de $E_1 \times \cdots \times E_p$.

Las aplicaciones lineales afines tienen la propiedad de preservar la convexidad de subconjuntos. Formalmente, esto significa lo siguiente:

Proposición

Sean E y F e.v. , $T:E \to F$ una aplicación lineal afín , $C \subset E$ convexo. La imagen T(C) de C respecto a T, es convexo en F.

Además, si D es convexo en F, entonces su imagen inversa respecto a T, $T^{-1}(D) = \{x \in E : T(x) \in D\}$, es convexo en E.

Ejemplos

- (i) Si C es un conjunto convexo de \mathbb{R}^n y b es un elemento de \mathbb{R}^n , entonces A+b es un conjunto convexo de \mathbb{R}^n .
- (ii) Si $A \subset \mathbb{R}^n$ y $B \subset \mathbb{R}^n$ son convexos, entonces el conjunto $A + B = \{a + b : a \in A, b \in B\}$ es también convexo.
- (iii) Si $C \subset \mathbb{R}^n$ es convexo, entonces los conjuntos $\Pi_i(C)$ (i-ésima proyección) son intervalos en \mathbb{R} .

Conjuntos convexos y relaciones topológicas

En esta parte, centramos nuestro estudio en \mathbb{R}^n no solamente como espacio vectorial, sino también como espacio topológico con la topología inducida por su norma.

Como es usual, denotamos por int(C) y \overline{C} al interior y a la clausura de C, respectivamente.

Proposición

Sean $C\subset \mathbf{R}^n$ convexo, $x\in int(C), y\in C$; entonces $[x,y[\subset int(C).$ Más aun, si $x\in int(C), y\in \overline{C}$ entonces $[x,y[\subset int(C).$

Proposición

Si C es convexo, entonces int(C) y \overline{C} también son conjuntos convexos.

Interior relativo

Note que dado un conjunto convexo C con $int(C) \neq \emptyset$ entonces $aff(C) = \mathbb{R}^n$, no obstante existen conjuntos convexos no vacíos con interior vacío, en tal caso su cápsula afín no es \mathbb{R}^n .

En general dado un conjunto convexo C, implementaremos una topología relativa tomando como referencia el conjunto aff(C).

Definición

Dado un conjunto convexo C, se dice que $x \in aff(C)$ es un punto interior relativo de C, si existe $\delta>0$ tal que

$$(aff(C)) \cap \mathcal{B}_{\delta}(x) \subset C$$

Interior relativo

Note que dado un conjunto convexo C con $int(C) \neq \emptyset$ entonces $aff(C) = \mathbb{R}^n$, no obstante existen conjuntos convexos no vacíos con interior vacío, en tal caso su cápsula afín no es \mathbb{R}^n .

En general dado un conjunto convexo C, implementaremos una topología relativa tomando como referencia el conjunto aff(C).

Definición

Dado un conjunto convexo C , se dice que $x\in aff(C)$ es un punto interior relativo de C , si existe $\delta>0$ tal que

$$(aff(C)) \cap \mathcal{B}_{\delta}(x) \subset C$$

El conjunto de estos puntos se denomina el interior relativo de C, usualmente denotado por ri(C). Note que si C es convexo y no vacío, entonces $ri(C) \neq \emptyset$. La frontera relativa de C, es $\overline{C} \setminus ri(C)$.

Conos

Definición

Un subconjunto K de \mathbb{R}^n es un cono, si $\forall \alpha > 0, x \in K$ se cumple $\alpha x \in K$.

Son ejemplos de conos: $\{0\}$ y \mathbb{R}^n son conos triviales no vacíos de \mathbb{R}^n . Los conjuntos $\{(x_1,x_2)\in\mathbb{R}^2:x_1x_2=0\}$ y $\{(x_1,x_2)\in\mathbb{R}^2:x_1x_2\geq 0\}$ son conos en \mathbb{R}^2 . Todo subespacio vectorial de \mathbb{R}^n también es un cono.

Conos

Definición

Un subconjunto K de \mathbb{R}^n es un cono, si $\forall \alpha > 0, x \in K$ se cumple $\alpha x \in K$.

Son ejemplos de conos: $\{0\}$ y \mathbb{R}^n son conos triviales no vacíos de \mathbb{R}^n . Los conjuntos $\{(x_1,x_2)\in\mathbb{R}^2:x_1x_2=0\}$ y $\{(x_1,x_2)\in\mathbb{R}^2:x_1x_2\geq 0\}$ son conos en \mathbb{R}^2 . Todo subespacio vectorial de \mathbb{R}^n también es un cono.

Proposición

- (a) Si C es un cono, entonces \overline{C} e int(C) son también conos.
- (b) Si $\{C_i\}_{i\in\mathcal{I}}$ es una familia de conos en \mathbb{R}^n , entonces $\cap_{i\in\mathcal{I}}C_i$ también es un cono.

Conos

Definición

Un subconjunto K de \mathbb{R}^n es un cono, si $\forall \alpha > 0, x \in K$ se cumple $\alpha x \in K$.

Son ejemplos de conos: $\{0\}$ y \mathbb{R}^n son conos triviales no vacíos de \mathbb{R}^n . Los conjuntos $\{(x_1,x_2)\in\mathbb{R}^2:x_1x_2=0\}$ y $\{(x_1,x_2)\in\mathbb{R}^2:x_1x_2\geq0\}$ son conos en \mathbb{R}^2 . Todo subespacio vectorial de \mathbb{R}^n también es un cono.

Proposición

- (a) Si C es un cono, entonces \overline{C} e int(C) son también conos.
- (b) Si $\{C_i\}_{i\in\mathcal{I}}$ es una familia de conos en \mathbb{R}^n , entonces $\cap_{i\in\mathcal{I}}C_i$ también es un cono.

Cuando se haga referencia a un cono convexo, naturalmente se trata de un cono que es un conjunto convexo.

Definición

Un subconjunto K de \mathbb{R}^n es un cono, si $\forall \alpha > 0, x \in K$ se cumple $\alpha x \in K$.

Son ejemplos de conos: $\{0\}$ y \mathbb{R}^n son conos triviales no vacíos de \mathbb{R}^n . Los conjuntos $\{(x_1,x_2)\in\mathbb{R}^2:x_1x_2=0\}$ y $\{(x_1,x_2)\in\mathbb{R}^2:x_1x_2\geq 0\}$ son conos en \mathbb{R}^2 . Todo subespacio vectorial de \mathbb{R}^n también es un cono.

Proposición

- (a) Si C es un cono, entonces \overline{C} e int(C) son también conos.
- (b) Si $\{C_i\}_{i\in\mathcal{I}}$ es una familia de conos en \mathbb{R}^n , entonces $\cap_{i\in\mathcal{I}}C_i$ también es un cono.

Cuando se haga referencia a un cono convexo, naturalmente se trata de un cono que es un conjunto convexo.

Son conos convexos:

- $\text{(i)} \ \ \{x\in\mathbb{R}^n: \langle p,x\rangle=0\}, \ \{x\in\mathbb{R}^n: \langle p,x\rangle\geq 0\} \ \text{y} \ \{x\in\mathbb{R}^n: \langle p,x\rangle\leq 0\}.$
- (ii) Para p_1, \cdots, p_k vectores de \mathbb{R}^n , el conjunto $\{x \in \mathbb{R}^n : \langle p_i, x \rangle \leq 0, i = 1, \cdots, k\}$. (Este conjunto también puede expresarse en un formato matricial).
- (iii) Para $q_1, \dots, q_m, p_1, \dots, p_k$ vectores de \mathbb{R}^n , el conjunto $\{x \in \mathbb{R}^n : \langle q_i, x \rangle = 0, \langle p_i, x \rangle < 0, j = 1, \dots, m; i = 1, \dots, k\}.$

Son de interés los conos K que son convexos y cerrados, en tal caso $0 \in K$. Cuando $K \cap (-K) = \{0\}$ se dice que K es un cono con punta.

Definición

- (a) Una combinación cónica de los vectores x_1, \cdots, x_k es un vector de la forma $\sum_{i=1}^k \alpha_i x_i \text{ donde los coeficientes } \alpha_1, \cdots, \alpha_k \text{ son reales no negativos.}$
- (b) Para un conjunto no vacío S, por cone(S) denotamos al conjunto de las combinaciones cónicas de elementos de S. Es decir

$$cone(S) = \mathbb{R}^+(co(S)) = co(\mathbb{R}^+(S))$$

Definición

La cápsula cónica convexa cerrada de un conjunto no vacío S se define por

$$\overline{cone}(S) := \overline{cone(S)} = cl\{\sum_{i=1}^m \alpha_i x_i : \alpha_i \geq 0, x_i \in S \text{ para } i = 1, \cdots, m; m \in \mathbb{N} \}$$

(Ejercicio: Sea S un conjunto compacto no vacío tal que $0\not\in S$, pruebe que $\overline{cone}(S)=cone(S).)$

El polar de un conjunto y el cono polar

Definición

Sea C un subconjunto no vacío de \mathbb{R}^n , entonces el conjunto polar de C, denotado por C° se define por

$$C^{\circ} := \{ z \in \mathbb{R}^n : \langle z, x \rangle \le 1, \ \forall x \in C \}$$

Este conjunto resulta ser un conjunto convexo y cerrado.

El polar de un conjunto y el cono polar

Definición

Sea C un subconjunto no vacío de \mathbb{R}^n , entonces el conjunto polar de C, denotado por C° se define por

$$C^{\circ} := \{ z \in \mathbb{R}^n : \langle z, x \rangle \le 1, \ \forall x \in C \}$$

Este conjunto resulta ser un conjunto convexo y cerrado.

Ejemplos:

- (i) Si $C=[0,1]\subset\mathbb{R}^n$ entonces $C^\circ=(-\infty,1]$
- (ii) Si $C=(-\infty\,,\,1]\subset\mathbb{R}$ entonces $C^\circ=[0,1].$
- (iii) Si $C = \{(1,0); (0,1); (-1,0); (0,-1)\} \subset \mathbb{R}^2$ entonces $C^{\circ} = [-1,1] \times [-1 \times 1].$

El polar de un conjunto y el cono polar

Definición

Sea C un subconjunto no vacío de \mathbb{R}^n , entonces el conjunto polar de C, denotado por C° se define por

$$C^{\circ} := \{ z \in \mathbb{R}^n : \langle z, x \rangle \le 1, \ \forall x \in C \}$$

Este conjunto resulta ser un conjunto convexo y cerrado.

Ejemplos:

- (i) Si $C = [0,1] \subset \mathbb{R}^n$ entonces $C^{\circ} = (-\infty,1]$
- (ii) Si $C=(-\infty\,,\,1]\subset\mathbb{R}$ entonces $C^\circ=[0,1].$
- (iii) Si $C = \{(1,0); (0,1); (-1,0); (0,-1)\} \subset \mathbb{R}^2$ entonces $C^{\circ} = [-1,1] \times [-1 \times 1].$

En general, se cumple: Para cualquier subconjunto no vacío $C \subset \mathbb{R}^n$:

$$C^{\circ} = (\overline{C})^{\circ} = (co(C))^{\circ}$$

Cono polar

Particularmente si C es un cono de \mathbb{R}^n , entonces resulta $C^\circ=\{z\in\mathbb{R}^n:\,z.x\leq 0\}.$

En este caso, C° resulta ser un cono convexo cerrado.

Cono polar

Particularmente si C es un cono de \mathbb{R}^n , entonces resulta $C^\circ = \{z \in \mathbb{R}^n : z.x \leq 0\}.$

En este caso, C° resulta ser un cono convexo cerrado. Ejemplos:

- (i) Para $C = \mathbb{R}^n_+$, $C^{\circ} = \mathbb{R}^n_-$.
- (ii) Si $C = \{0\}$ entonces $C^{\circ} = \mathbb{R}^n$.
- (iii) Si H es un hiperplano de normal p de modo que $0 \in H$, entonces $H^{\circ} = \{tp: t \in \mathbb{R}\}.$
- (iv) Si $C=\{(x_1,x_2)\in\mathbb{R}^2_+:x_1-x_2<0\}$ entonces $C^\circ=\{\cdots\}$

- (i) Si A y B son conos tales que $A \subset B$ entonces $B^{\circ} \subset A^{\circ}$.
- (ii) Si C es un cono convexo cerrado, entonces $C = C^{\circ \circ}$.
- (iii) Si C es un subespacio vectorial de \mathbb{R}^n , entonces $C^{\circ} = C^{\perp}$.

- (i) Si A y B son conos tales que $A \subset B$ entonces $B^{\circ} \subset A^{\circ}$.
- (ii) Si C es un cono convexo cerrado, entonces $C = C^{\circ \circ}$.
- (iii) Si C es un subespacio vectorial de \mathbb{R}^n , entonces $C^{\circ} = C^{\perp}$.

Considere el conjunto
$$S=\{z_1,\cdots,z_m\}$$
 y
$$K=cone(S)=\{\sum_{j=1}^m\alpha_jz_j\,:\alpha_j\geq 0, j=1,\cdots,m\} \text{ entonces } K^\circ=\{y\in\mathbb{R}^n:\, \langle y,z_j\rangle\leq 0\,, j=1,\cdots,m\}.$$