Logical Equivalences

Equivalence	Name	Description
$p \wedge T \equiv p$ $p \vee F \equiv p$	Identity Laws	Focus on removing unnecessary/repetitive values
$p \lor T \equiv T$ $p \land F \equiv F$	Domination Laws	Focus on reducing to a final result
$p \lor p \equiv p$ $p \land p \equiv p$	Idempotent Laws	Focus on removing unnecessary/repetitive propositions
$\neg (\neg p) \equiv p$	Double Negation Law	Focus on removing NOTs
$p \lor q \equiv q \lor p$ $p \land q \equiv q \land p$	Commutative Laws	Focus on moving propositions around, creating an easier expression to work with
$(p \lor q) \lor r \equiv p \lor (q \lor r)$ $(p \land q) \land r \equiv p \land (q \land r)$	Associative Laws	Focus on moving propositions around, creating an easier expression to work with
$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$ $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$	Distributive Laws	Focus on Distributing ANDs & ORs
$\neg (p \land q) \equiv \neg p \lor \neg q$ $\neg (p \lor q) \equiv \neg p \land \neg q$	De Morgan's Laws	Focus on distributing NOTs and needing to flip ANDs & ORs
$p \lor (p \land q) \equiv p$ $p \land (p \lor q) \equiv p$	Absorption	Focus on removing propositions

Other Useful Logical Equivalences

$$p \lor \neg p \equiv T$$
$$p \land \neg p \equiv F$$
$$(p \to q) \equiv (\neg p \lor q)$$