STAT-225 Group 8 Final Project Presentation

Investigating Diamond Price

Anna Ballou, Nicole Frontero, Alex Russell 5/3/2020

Introduction

- Dataset: diamonds
- Random sample: (500 observations from 54,000)
- The observational unit: a diamond
- · Response variable: price in US dollars
- Explanatory variables: carat + cut + color + clarity + depth + table + x + y + z + depth_percent
- Note: x = length; y = width; z = depth; carat = mass; table = width of top of diamond

EDA: ggpairs

Response variable: price

Spearman's test for correlation on carat vs. log(price)

OLS model: forward stepwise regression

Table 1: Stepwise regression results

Step	Predictors	$R_{\rm adj.}^2$	AIC
1	width	0.931	116.286
2	clarity	0.956	-100.052
3	color	0.969	-265.746
4	carat	0.974	-360.658
5	depth	0.982	-545.237
6	cut	0.983	-563.024
7	length	0.983	-567.463

 Note that forward stepwise regression excluded depth_percent and table.

OLS model: final model summary

Table 2: OLS model summary results

log(price) ~ width + clarity + color + carat + depth + length

Predictors	Estimate	P-value	Predictors	Estimate	P-value
(Intercept)	-0.0651831	0.59156	colorE	-0.0227264	0.30612
width	0.2949006	0.01319	colorF	-0.0803849	0.00034
clarityIF	1.0487289	< 0.0001	colorG	-0.1564346	< 0.0001
claritySI1	0.5720697	< 0.0001	colorH	-0.2358815	< 0.0001
claritySI2	0.3951465	< 0.0001	colorl	-0.3170297	< 0.0001
clarityVS1	0.7991108	< 0.0001	colorJ	-0.4649712	< 0.0001
clarityVS2	0.7011019	< 0.0001	carat	-1.1056764	< 0.0001
clarityVVS1	0.9785003	< 0.0001	depth	1.0667157	< 0.0001
clarityVVS2	0.9082077	< 0.0001	length	0.4792458	< 0.0001

$$R_{\rm adj}^2 = 0.983$$

OLS or JHM? Visually examine OLS residuals for normality

OLS or JHM? Test OLS residuals for normality (KS)

Building a JHM model

Table 3: JHM model summary results

log(price) ~ width + clarity + color + carat + depth + length

Predictors	Estimate	P-value	Predictors	Estimate	P-value
(Intercept)	0.0090945	0.93893	colorE	-0.0227499	0.29299
width	0.2735470	0.01848	colorF	-0.0757285	0.00054
clarityIF	1.0108864	< 0.0001	colorG	-0.1425860	< 0.0001
claritySl1	0.5289852	< 0.0001	colorH	-0.2383103	< 0.0001
claritySI2	0.3557141	< 0.0001	colori	-0.3201962	< 0.0001
clarityVS1	0.7575702	< 0.0001	colorJ	-0.4729935	< 0.0001
clarityVS2	0.6611988	< 0.0001	carat	-1.0753752	< 0.0001
clarityVVS1	0.9197320	< 0.0001	depth	1.0497605	< 0.0001
clarityVVS2	0.8545020	< 0.0001	length	0.5006167	< 0.0001

$$R_{\rm adj}^2 = 0.9811$$

Plotting JHM model - quantitative predictors

Plotting JHM model - categorical predictors

GAM: smoother or SLR for quantitative predictors?

• For each quantitative predictor, we created two models - a GAM with a s-spline smoother, and a SLR - and compared their AICs.

Table 4: SLR vs. smooth $R_{ m adj}^2$				
Predictor	SLR	Smooth		
width	0.931	0.943		
length	0.929	0.942		
carat	0.856	0.941		
depth	0.87	0.935		

· Note: R_{adi}^2 for smoothing spline was higher for all quantitative predictors.

GAM: choosing the best model

Table 5: Comparison of AIC between GAM models

Model	AIC
color + clarity + s(length) + s(width) + s(depth) + s(carat)	-649.94
color + clarity + length + width + s(depth) + s(carat)	-612.54
color + clarity + depth + carat + s(width)	-596.29
color + clarity + depth + carat + width + length	-545.24
color + clarity + depth + carat + s(width) + s(length)	-652.97

• The model with predictors clarity + color + depth + carat + s(width) + s(length) had the lowest AIC (-652).

GAM: plotting chosen model

Note: red = smoother; gold = GAM

GAM: explaining the roles of carat and width in the model

Examining residuals: all attempted models

Assessing model fit: cross-validation

Table 6: Results from cross-validation

Regular approach			Cross-va	lidation approach		
	R^2	$R_{\rm adj}^2$	$L1_{\text{prop}}$	R^2	R_{adj}^2	$L1_{\rm prop}$
OLS	0.9833	0.9827	0.8842	0.9816	0.9809	0.8789
JHM	0.9832	0.9826	0.8852	0.9817	0.981	0.8796
GAM	0.9828	0.9822	0.8817	0.9847	0.9838	0.8892

- GAM outperforms the other models (look at cross-validation)
- \cdot R^2 values: OLS fails to explain 1.84% of the variability, while GAM fails to explain 1.53% of the variability
- · Using the GAM model results in a 16% decrease in unexplained variability (relative to OLS).

Limitations

- · Multicollinearity between carat, length, width, and depth.
- We don't know what year this dataset is from
 - If we did, we could use our model to predict diamond price and adjust for inflation.

Conclusions

- Recall: How can we predict diamond price?
- · Best model: utilizes a GAM
 - Predictors: clarity + color + depth + carat + s(width) + s(length)