Notas Técnicas sobre Projeto de Circuitos Eletrônicos

v. 0.0.1

18 de agosto de 2022

Em um primeiro momento, estas notas técnicas visam reunir alguns conceitos e orientações de ordem prática a serem considerados durante o projeto de circuitos eletrônicos.

Material disponibilizado segundo a licença CC-BY-SA 4.0.

Sumário

1	Res	istores		3
	1.1	Resist	ores SMD	3
		1.1.1	Tamanhos e Potências	4
		1.1.2	Padrão de Ilha de Solda	5
		1.1.3	Resistores MELF	6
		1.1.4	Referências	6
	1.2	Resist	ores de $Pull$ - Up e $Pull$ - $Down$	6
		1.2.1	Valores Típicos Sugeridos para Circuitos TTL Padrão .	7
		1.2.2	Valores Típicos Sugeridos para Circuitos CMOS	7
		1.2.3	Estudo sobre Valores para Resistores de $Pull-Up$ e	
			Pull-Down	7
		1.2.4	Referência Complementar	10
2	Cap	acitor	es	11
	2.1	Capac	itores de Desacoplamento/ $Bypass$	11
		2.1.1	Valores Típicos	11
		2.1.2	Referências	12
	2.2	Faixas	s de Valores Comerciais de Capacitores	12
3	LEI	Os		13
	3.1	LEDs	Convencionais	13
4	Pro	to boar	d	14
5	Pla	ca de (Circuito Impresso	15

Resistores

1.1 Resistores SMD

1.1.1 Tamanhos e Potências

Code		Length (I)		Width (w)		Height (h)		Power
Imperial	Metric	inch	mm	inch	mm	inch	mm	Watt
0201	0603	0.024	0.6	0.012	0.3	0.01	0.25	1/20 (0.05)
0402	1005	0.04	1.0	0.02	0.5	0.014	0.35	1/16 (0.062)
0603	1608	0.06	1.55	0.03	0.85	0.018	0.45	1/10 (0.10)
0805	2012	0.08	2.0	0.05	1.2	0.018	0.45	1/8 (0.125)
1206	3216	0.12	3.2	0.06	1.6	0.022	0.55	1/4 (0.25)
1210	3225	0.12	3.2	0.10	2.5	0.022	0.55	1/2 (0.50)
1812	3246	0.12	3.2	0.18	4.6	0.022	0.55	1
2010	5025	0.20	5.0	0.10	2.5	0.024	0.6	3/4 (0.75)
2512	6332	0.25	6.3	0.12	3.2	0.024	0.6	1

1.1.2 Padrão de Ilha de Solda

Code		Pad leng	gth (a)	Pad wid	ith (b)	Gap (c)	
Imperial	Metric	inch	mm	inch	mm	inch	mm
0201	0603	0.012	0.3	0.012	0.3	0.012	0.3
0402	1005	0.024	0.6	0.020	0.5	0.020	0.5
0603	1608	0.035	0.9	0.024	0.6	0.035	0.9
0805	2012	0.051	1.3	0.028	0.7	0.047	1.2
1206	3216	0.063	1.6	0.035	0.9	0.079	2.0
1812	3246	0.19	4.8	0.035	0.9	0.079	2.0
2010	5025	0.11	2.8	0.059	0.9	0.15	3.8
2512	6332	0.14	3.5	0.063	1.6	0.15	3.8

1.1.3 Resistores MELF

Name	Abbr.	Code	Length	Diameter	Power
			mm	mm	Watt
MicroMELF	MMU	0102	2.2	1.1	0.2 - 0.3
MiniMELF	MMA	0204	3.6	1.4	0.25 - 0.4
MELF	MMB	0207	5.8	2.2	0.4 - 1.0

1.1.4 Referências

https://eepower.com/resistor-guide/resistor-standards-and-codes/resistor-sizes-and-packages

1.2 Resistores de Pull-Up e Pull-Down

Seguem valores típicos para resistores de *pull-up* e *pull-down*. Todavia, conforme a aplicação, poderá haver necessidade da escolha de valores mais adequados.

Em especial, ao se alimentar entradas TTL, deve-se considerar o consumo de corrente na entrada do circuito lógico, quando for aplicado nível lógico alto, e a corrente drenada do circuito lógico, quando aplicado nível lógico baixo. Estes valores irão provocar uma queda de tensão sobre o resistor de pull-up, na aplicação de nível lógico alto, ou sobre o resistor de pull-down, na aplicação de nível lógico baixo. Como consequência, deve-se atentar para que a tensão não caia abaixo do valor mínimo de nível alto e nem fique acima do valor máximo de nível baixo, respectivamente.

Para entradas de circuitos CMOS, como a corrente consumida ou drenada é muito baixa, estes efeitos são praticamente imperceptíveis.

É também importante considerar a quantidade de entradas alimentadas simultaneamente por um único circuito *pull-up* ou *pull-down*, pois a somatória das correntes provocarão quedas maiores no correspondente resistor.

Ainda, em uma situação como a das portas lógicas, que possuem duas ou mais entradas, nota-se que a entrada de nível lógico alto possui uma queda de tensão ligeiramente menor no resistor de pull-up quando as entradas não utilizadas são ligadas ao V_{CC} ao invés de serem ligadas à outra entrada ("Configuração B" em Estudo sobre Valores para Resistores de Pull-Up e Pull-Down).

Consulte também as seções abaixo – Estudo sobre Valores para Resistores de Pull-Up e Pull-Down e Referência Complementar.

1.2.1 Valores Típicos Sugeridos para Circuitos TTL Padrão

Resistor de Pull-Up: $10 \text{ k}\Omega$ (de $10 \text{ k}\Omega$ a $47 \text{ k}\Omega$)

Resistor de $Pull-Down: 1 k\Omega$

1.2.2

Valores Típicos Sugeridos para Circuitos CMOS

Sugerem-se resistores a partir de $10 \,\mathrm{k}\Omega$; em CMOS, até valores mais altos podem ser viáveis, como $100 \,\mathrm{k}\Omega$. Todavia, valores muito altos podem ficar mais susceptíveis à indução de ruídos, em especial no modo pull-down.

Resistor de *Pull-Up*: $47 \,\mathrm{k}\Omega$

Resistor de *Pull-Down*: $47 \,\mathrm{k}\Omega$

1.2.3 Estudo sobre Valores para Resistores de Pull-Up e Pull-Down

VCC

VCC

(c) Modo Pull-Down na configuração A. (d) Modo Pull-Down na configuração B.

Figura 1.1: Circuitos utilizados no estudo para definição de valores típicos de resistores de *pull-up* e *pull-down*. Os CIs utilizados foram o **DM7400N**, para TTL, e o **CD74HC00E**, para CMOS.

Modo	R1	Config.	\mathbf{E}	V_I (V)	I_I (mA)	Comport.
		A	0	0,00	-1,04	Correto
	$47\mathrm{k}\Omega$		1	4,35	0,009	Correto
	41 K27	В	0	0,00	-1,04	Correto
Pull-Up		D	1	4,47	0,006	Correto
		A	0	0,00	-1,044	Correto
	$10\mathrm{k}\Omega$	11	1	4,84	0,009	Correto
	10 10 10	В	0	0,00	-1,044	Correto
		D	1	4,87	0,006	Correto
	$47\mathrm{k}\Omega$	A	0	1,66	-0,035	Incorreto
			1	4,99	0,009	Correto
		В	0	1,66	-0,035	Incorreto
			1	4,99	0,006	Correto
	$10\mathrm{k}\Omega$	A	0	1,61	-0,161	Incorreto
Pull-Down			1	4,96	0,009	Correto
		В	0	1,61	-0,161	Incorreto
			1	4,99	0,006	Correto
	$1\mathrm{k}\Omega$	A	0	0,83	-0,828	Correto
			1	4,96	0,009	Correto
		В	0	0,83	-0,828	Correto
			1	4,99	0,006	Correto

Tabela 1.1: Resultados dos estudos de resistores de pull-up e pull-down para um CI TTL padrão (DM7400N). "E" refere-se ao nível lógico aplicado na entrada da porta. $V_{CC}=5\,\mathrm{V}$.

Modo	R1	Config.	\mathbf{E}	V_I (V)	I_I (mA)	Comport.
		A	0	0,00	0,000	Correto
	$47\mathrm{k}\Omega$		1	4,77	0,000	Correto
	41 177	В	0	0,00	0,000	Correto
Pull-Up			1	4,77	0,000	Correto
	10 kΩ	A	0	0,00	0,000	Correto
			1	4,94	0,000	Correto
		В	0	0,00	0,000	Correto
			1	4,94	0,000	Correto
	$47\mathrm{k}\Omega$ -	A	0	0,028	0,000	Correto
Pull-Down			1	4,99	0,000	Correto
		В	0	0,036	0,000	Correto
			1	4,99	0,000	Correto

Tabela 1.2: Resultados dos estudos de resistores de pull-up e pull-down para um CI CMOS (CD74HC00E). "E" refere-se ao nível lógico aplicado na entrada da porta. $V_{CC} = 5 \,\mathrm{V}$.

1.2.4 Referência Complementar

Implications of Slow or Floating CMOS Inputs, Texas Instrumets

Nesta referência, são tratados os efeitos de entradas de circuitos CMOS com variação lenta de tensão e entradas flutuantes. Para contornar os problemas, apresentam-se três técnicas:

- Controle de barramento (bus control)
- Resistores de pull-up e pull-down
- Circuitos de persistência de barramento (bus-hold circuits)

Capacitores

2.1 Capacitores de Desacoplamento/Bypass

Em geral, os CIs devem possuir um capacitor de desacoplamento/bypass bem próximo aos seus terminais de alimentação. Este capacitor tem dois propósitos:

- Eliminar ruídos provenientes da fonte de alimentação.
- Fornecer corrente para o CI durante seus chaveamentos, evitando assim a injeção de ruídos nas linhas de alimentação, o que poderia provocar mau funcionamento próprio ou de outros componentes (em especial, de outros CIs).

Tal capacitor atua de maneira a evitar interferências por altas frequências.

Em adição, é também conveniente adicionar um capacitor na entrada de alimentação de cada PCI para melhor estabilidade das linhas de alimentação, evitando interferências por baixas frequências.

2.1.1 Valores Típicos

Nota: os datasheets podem apresentar outros valores; portanto, é recomendado consultá-los.

Próximo aos CIs: 100 nF (10 nF a 100 nF), cerâmico

Na entrada de alimentação: 1 μF a 100 μF, eletrolítico ou de tântalo

Recomendação padrão: $100\,\mathrm{nF}$ (próximo a cada CI) em paralelo com $1\,\mu\mathrm{F}$

2.1.2 Referências

https://en.wikipedia.org/wiki/Decoupling_capacitor
https://components101.com/articles/decoupling-capacitor-vsbypass-capacitors-working-and-applications

2.2 Faixas de Valores Comerciais de Capacitores

Tipo	Capacitância	Tensão	Custo relativo	
Cerâmico	${\rm de}\ 2.2{\rm pF}\ {\rm a}\ 100{\rm nF}$	50 V	baixo	
Poliéster	$\mathrm{de}\ 1{,}0\mathrm{nF}\ \mathrm{a}\ 680\mathrm{nF}$	de~63V~a~2000V	médio/alto	
Eletrolítico	de $0.22\mu\mathrm{F}$ a $4700\mu\mathrm{F}$	de $6.3\mathrm{V}$ a $400\mathrm{V}$	baixo/médio	
Tântalo	de 0,1 μF a 100 μF	$\mathrm{de}\; 16\mathrm{V}\;\mathrm{a}\; 35\mathrm{V}$	alto	
Trimmer	${\rm de}\ 3{,}0{\rm pF}\ {\rm a}\ 120{\rm pF}$	200 V	alto	

O custo depende do material, da capacitância e da tensão.

LEDs

3.1 LEDs Convencionais

Para os LEDs convencionais, um bom brilho pode ser obtido com uma corrente entre $10\,\mathrm{mA}$ e $20\,\mathrm{mA}$. O valor inferior pode ser mais interessante sob o ponto de vista de economia de energia.

A queda de tensão varia um pouco de acordo com a cor, mas o valor de $1.8\,\mathrm{V}$ pode ser adotado em geral.

Chapter 4

Protoboard

Para melhorar a estabilidade do funcionamento dos circuitos em proto-board, logo na entrada da alimentação pode-se colocar dois capacitores em paralelo, sendo um eletrolítico de $10\,\mu\text{F}$ e outro cerâmico de $10\,\text{nF}$. Se necessário, esta configuração também pode ser replicada para as outras linhas de distribuição de alimentação.

Placa de Circuito Impresso