CODE: 20BST105 SET-1

ADITYA INSTITUTE OF TECHNOLOGY AND MANAGEMENT, TEKKALI (AUTONOMOUS)

I B.Tech I Semester Regular/Supplementary Examinations, April, 2022

APPLIED PHYSICS (Common to FFF & FCF)

		(Common to EEE & ECE)	
Time: 3	Hou	rs Max Mark	s: 60
		Answer ONE Question from each Unit	
		All Questions Carry Equal Marks	
		All parts of the Question must be answered in one place	
		UNIT-I	
1.	a)	How Newtons rings are formed and why they are circular.	3M
	b)	Obtain the wavelength of monochromatic light by using the newtons ring	7M
		experiment method?	
2	`	(\mathbf{OR})	23.4
2.	a)	Give the difference between interference and diffraction.	3M
	b)	Explain about Fraunhofer diffraction due to a single slit.	7M
		<u>UNIT-II</u>	
3.	a)	Briefly explain the characteristics of lasers.	3M
	b)	Explain the construction and working procedure of ruby LASER.	7M
		(OR)	
4.	a)	Give the applications of LASER in the medical field.	3M
	b)	Derive Einsteans coefficients by following qualitative treatment.	7M
		<u>UNIT-III</u>	
5.	a)	Identify the construction of optical fibre	3 M
	b)	Differences between Step Index Fibers and Graded Index Fibers	7M
		(OR)	
6.	a)	Recognize the principle of optical fibre	3M
	b)	Summarize the applications of Optical Fibers in Communication.	7M
		UNIT-IV	
7.	a)	Explain the concept of de-Broglie hypothesis	3M
	b)	Produce the energy equation for a particle in a one dimensional Potential Box by	7M
		• • • • • • • • • • • • • • • • • • • •	
		applying Schrodinger time-independent wave equation.	
8.	o)	(OR) Recall the Heisenberg's Uncertainty Principle	3M
0.	a) b)	Discuss the physical significance of the wave function.	7M
	U)		/ 1/11
		<u>UNIT-V</u>	22.5
9.	a)	State Guass law of electro statics.	3M
	b)	Discuss any one of the applications of Gauss Law.	7M
10.	۵)	(OR) State the Biot- Savart Law	2М
10.	a) b)	Write Maxwell's Equations and their Applications	3M 7M
	U)	write Maxwell's Equations and their Applications	/ IVI
		<u>UNIT-VI</u>	
11.		Compare the drift and diffusion currents in semiconductors?	3M
	b)	Derive the expression for the conductivity of semiconductors	7M
10		(OR)	<i>73.5</i>
12.		Demonstrate the hall effect with the help of the figure.	5M
	b)	Derive the mobility of charge carriers in the Hall effect.	5M

CODE: 20BST106 SET-1

ADITYA INSTITUTE OF TECHNOLOGY AND MANAGEMENT, TEKKALI (AUTONOMOUS)

I B.Tech I Semester Regular/Supplementary Examinations, April, 2022

ENGINEERING PHYSICS

(Civil Engineering)

Time: 3 Hours Max Marks: 60

Answer ONE Question from each Unit All Questions Carry Equal Marks All parts of the Question must be answered at one place

UNIT-I

- 1. a) What is damped oscillation? Derive equation of motion for damped 8M Oscillation. Discuss condition for over damped motion.
 - b) The amplitude of an oscillator of frequency 200 per second falls to 2M 1/10 of its initial value after 2000 cycles. Calculate its relaxation time. (OR)
- 2. a) What is simple harmonic motion? Derive a relation for displacement, 8M time period, and acceleration of a particle executing simple harmonic motion.
 - b) A body executing SHM has its velocity 16cm/sc when passing through 2M its mean position. If it goes 1cm either side of mean position, calculate its time period.

UNIT-II

- 3. a) Describe Fraunhofer diffraction due to a single slit and deduce the position of the maxima and minima.
 - b) Distinguish between Interference and Diffraction . 2M (OR)
- 4. a) In Newton's ring experiment show that the diameter of the dark ring directly proportional to the square root of the natural number.
 - b) In a Newton's ring experiment the diameter of 9th dark ring is 0.38cm **2M** when a light of wavelength 5469⁰A used normally. Find the diameter of 18th dark ring.

UNIT-III

- 5. a) With a neat diagram discuss construction, working and uses of He-Ne 8M Laser.
 - b) Calculate the wavelength of emission from GaAs semiconductor laser whose band gap energy is 1.44 ev (Plank's constant is 6.625×10^{-34} Js and charge of an electron is 1.6×10^{-19} C.)

(OR)

6.	a)	Define (i) Spontaneous emission (ii)Stimulated emission (iii)Pumping (iv) Population inversion	8M
	b)	The wavelength of a semiconductor laser is 1.55µm. Calculate its band gap in eV.	2M
		<u>UNIT-IV</u>	
7.	a)	Describe graded index optical fibre and explain the transmission of signal through it.	8M
	b)	Calculate the fractional index change for a given optical fibre if the refractive indices of core and cladding are 1.563 and 1.498 respectively.	2M
		(OR)	
8.	a) b)	With a neat diagram discuss principle and construction of optical fibre. An optical fibre has a core material of refractive index of 1.55 and cladding material of refractive index of 1.50. The light is lunched into in air. Calculate its numerical aperture	8M 2M
		<u>UNIT-V</u>	
9.	a)	Show that the FCC is the most closely packed of the three cubic structures by working out the packing factors.	8M
	b)	Determine lattice constant for FCC lead crystal of radius 1.746 Å. (OR)	2M
10.	a) b)	Discuss the seven crystal system with diagram. Iron crystallizes in BCC structure. Calculate the lattice constant, given that the atomic weight and densities of iron are 55.85 and 7860 kg/m³ respectively.	7M 3M
		<u>UNIT-VI</u>	
11.	a) b)	How materials are classified as dia or para or ferromagnetic? Explain. A paramagnetic material has a magnetic field intensity of 10 ⁴ A/M. If the susceptibility of the material at room temperature is 3.7 x 10 ⁻³ , calculate the magnetization and flux density in the material. (OR)	8M 2M
12.	a)	Define Meissner effect. Show that superconductors are perfectly diamagnetic substance.	6M
	b)	Discuss any two applications of superconductor	4M
		2 of 2	

CODE: 20BST107 SET-2

ADITYA INSTITUTE OF TECHNOLOGY AND MANAGEMENT, TEKKALI (AUTONOMOUS)

I B.Tech I Semester Regular/Supplementary Examinations, April, 2022

		CHEMISTRY (Common to MECH, CSE, AI&ML, IT)	
Time: 3	Answer ONE Question from each Unit All Questions Carry Equal Marks All parts of the Question must be answered at one place		:: 60
		<u>UNIT-I</u>	
1.	a) b)	State any four Disadvantages of Hardness of water What is permutit? Describe with neat sketch and chemical reactions the process of softening of water by Zeolite process	4M 6M
2.	a) b)	(OR) Explain how Chlorination is disinfecting the water Discuss the methods Sedimentation, Coagulation and filtration how they can remove Colloidal and suspended impurities?	4M 6M
		<u>UNIT-II</u>	
3.	a) b)	Illustrate different types of electronic transitions Illustrate different types of absorption and intensity shifts in UV-Visible spectroscopy	5M 5M
4.	a) b)	(OR) Discuss on bending and stretching vibrations with neat sketch Explain the role of coupling constant in NMR spectroscopy	5M 5M
		<u>UNIT-III</u>	
5.	a) b)	Differentiate Addition polymers from Condensation polymers Discuss on Compounding of plastics	4M 6M
6.	a) b)	(OR) Describe How thermosetting articles can be moulded Expand PVC? Explain the preparation and engineering applications of PVC	4M 6M
		<u>UNIT-IV</u>	
7.	a)	How peroxide will influence the HBr addition on Unsymmetrical Alkenes? Explain.	5M
	b)	Discuss Nucleophilic Substitution of Bimolecular reactions with mechanism (OR)	5M
8.	a) b)	Discuss about E ¹ and E ² reactions with mechanism Explain the Pinacol Pinacolone rearrangement with mechanism	5M 5M
		<u>UNIT-V</u>	
9.	a)	What is wet corrosion? Explain the theory of Electrochemical corrosion (OR)	10M
10.	a) b)	Discuss How Nature of Metal effecting Corrosion Justify Galvanization is a Sacrificial Anodic protection	6M 4M
		<u>UNIT-VI</u>	
11.	a)	Discuss the Alternative energy resources available in present to reduce the load on	10 M

(OR)

Construct a Alkaline battery and explain the working with chemical reactions

6M

4M

Conventional energy sources in detail

12. a)

b)

Explain how photo voltaic cell works and give its uses

CODE: 18BST107 SET-2

ADITYA INSTITUTE OF TECHNOLOGY AND MANAGEMENT, TEKKALI (AUTONOMOUS)

I B.Tech I Semester Supplementary Examinations, April-2022

ENGINEERING PHYSICS (Common to CE & ME Branches)

Time: 3 Hours Max Marks: 60

> Answer ONE Question from each Unit All Questions Carry Equal Marks All parts of the Question must be answered at one place

		<u>UNIT-I</u>	
1.	a)	What are Damped oscillations? Derive and solve differential equation of damped harmonic oscillator?	8 M
	b)	What are the characteristics of Simple Harmonic Oscillator? (OR)	4 M
2.	a)	What are forced oscillations? Obtain an expression for the amplitude of forced oscillator and give the condition for amplitude resonance.	8 M
	b)	Explain resonance and quality factor.	4 M
		<u>UNIT-II</u>	
3.	a)	Describe and explain the phenomenon of interference of light by young's double slit experiment.	8 M
	b)	Explain the principle of superposition of waves. (OR)	4 M
4.	a)	Discuss the Fraunhofer diffraction at a single slit. Obtain the condition for principal maximum and minimum	8 M
	b)	How is diffraction different from interference?	4 M
		<u>UNIT-III</u>	
5.	a)	How will you differentiate laser light with ordinary light?	4 M
	b)	Describe the construction and working of Nd:YAG laser. (OR)	8 M
6.	a)	Derive the relation between the probabilities of spontaneous emission and stimulated emission in terms of Einstein coefficients.	8 M
	b)	What are the necessary conditions for lasing action?	4 M
		<u>UNIT-IV</u>	
7.	a)	Write the advantages of optical fibers.	4 M
	b)	Draw the block diagram of fiber optics communication system and explain the function of each block	8 M
0	`	(OR)	436
8.	a)	Calculate the numerical Aperture and Acceptance angle for an optical fiber with core and cladding refractive indices being 1.48 and 1.45 respectively.	4 M
	b)	Derive an expression for the numerical aperture and the fractional index change of an optical fiber.	8 M
0	۵)	<u>UNIT-V</u> Explain the phenomenon of superconductivity and write the properties of	6 M
9.	a)	Explain the phenomenon of superconductivity and write the properties of superconductors	
	b)	Explain the critical parameters and their significance in superconductors. (OR)	6 M
10.	a)	What is Meissner effect? Explain.	4 M
	b)	How are superconductors classified? Mention some of the applications of superconductors.	8 M

CODE: 18BST108 SET-2

ADITYA INSTITUTE OF TECHNOLOGY AND MANAGEMENT, TEKKALI (AUTONOMOUS)

I B.Tech I Semester Supplementary Examinations, April-2022

CHEMISTRY

		CHEMISTRY	
		(Common to EEE, CSE & IT Branches)	
Time: 3	Time: 3 Hours		Max Marks: 60
	Answer ONE Question from each Unit		
		All Questions Carry Equal Marks	
		All parts of the Question must be answered at one place	
		XINITO X	
		<u>UNIT-I</u>	
1.	a)	List out the postulates of molecular orbital theory.	8M
	b)	Outline the sp ² hybridization with an example	4M
		(OR)	
2.	a)	Postulate the VSEPR theory along with its limitations.	8M
	b)	Draw the MO energy level diagram for CO molecule	4M
		<u>UNIT-II</u>	
3.	a)	Outline the principle of NMR Spectroscopy.	8M
3.	b)	Define the following with an example a) Chromophore b) Auxochrome	4M
	U)	(OR)	4111
4.	a)	Outline the principle of IR Spectroscopy.	8M
'•	b)	Define a) Finger print region b) Chemical splitting	4M
	0)	Define a) I mger print region b) Chemical Spritting	1171
		<u>UNIT-III</u>	
5.	a)	Discuss the factors that affect the rate of corrosion.	8M
	b)	What is electrochemical series? Give its importance	4M
		(OR)	
6.	a)	Explain the construction and working of a) Standard hydrogen electrode	b) 8M
		Calomel electrode.	
	b)	What is corrosion? How does the proper design can control the corrosion	n 4M
		<u>UNIT-IV</u>	
7.	a)	What is Diels – Alders reaction? Describe the mechanism of Diels – Ald	lers 8M
7.	a)	reaction with an example.	icis oivi
	b)	Explain Cis – Trans isomerism with an example.	4M
	U)	(OR)	-111
8.	a)	Explain the mechanism of SN ¹ reaction with an example.	8M
0.	b)	Write the differences between addition polymerization and condensation	
	0)	polymerization	
		<u>UNIT-V</u>	
_			07 -
9.	a)	Illustrate the working of a PV cell. Write its disadvantages	8M
	b)	Define a) Battery b) Super capacitor	4M
		(\mathbf{OR})	.

1 of 1

8M

4M

Explain the working of lead acid battery with a neat labelled diagram.

List out any four principles of green chemistry

10. a)

b)

CODE: 16BS1003 SET-1

ADITYA INSTITUTE OF TECHNOLOGY AND MANAGEMENT, TEKKALI (AUTONOMOUS)

I B.Tech I Semester Supplementary Examinations, April, 2022

ENGINEERING PHYSICS

(Common to ECE, CSE & IT Branches)

Max Marks: 70

6M

Time: 3 Hours

Answer ONE Question from each Unit
All Questions Carry Equal Marks

All parts of the Question must be answered at one place.

		<u>UNIT-I</u>	
1.	a) b)	Explain the principle of superposition of waves. What are the conditions to obtain the maximum and minimum intensities in the reflected light due to a thin film.	4M 10 M
2.	a) b)	(OR) Describe the Fraunhofer diffraction pattern obtained with single slit. A single slit in Farunhofer diffraction is illuminated by white light. The first minimum for red light wavelength 6500 Å falls at an angle 30°. Find the slit width.	10M 4M
		<u>UNIT-II</u>	
3.	a) b)	Explain different characteristics of Lasers essential for lasing action. With the neat sketch of energy level diagrams explain the principle, construction and working of a Helium-Neon Laser.	4M 10M
4.	a)	(OR) What is an Optical Fiber? Elaborate the concepts of Single Mode Fibers and Multimode	10 M
		Fibers.	
	b)	Describe various applications of optical fibers in communication system.	4M
		<u>UNIT-III</u>	
5.	a) b)	Explain in detail the concepts of Wave Particle Duality and De-Broglie Hypothesis Using the concept of Heisenberg's Uncertainty Principle, explain the existence of Protons and Neutrons in Nucleus and radiation of Light from an excited atom. (OR)	8M 6M
6.	a) b)	Derive Time independent Schrödinger wave equation. What do you understand by the concepts of Fermi Dirac and Bose Einstein Statistics for the moment of an electron.	8M 6M
		<u>UNIT-IV</u>	
7.	a) b)	Deduce the relation between B, H & I for a magnetic material placed in a magnetic field. Derive an expression for the Bohr magnetron from the concept of Origin of magnetic moment.	6M 8 M
8.	٥)	(OR) Explain the hysteresis loop in ferromagnetic materials.	6M
0.	a) b)	What do you understand by the phenomenon Magnetostriction? Mention any four applications of magnetic materials.	8M
		<u>UNIT-V</u>	
9.	a) b)	Obtain an expression for Ionic polarization. Explain the concepts of Frequency Dependence of Polarizability and Dielectric Loss of a dielectric slab kept in an electric field.	6M 8M
10.	a)	(OR) Explain the concept of ferroelectricity with an example of formation of Spontaneous Polarization in Barium Titanate.	8M

1 of 1

Discuss various applications of dielectric materials.

b)

Code: 13BS1004 SET-2 ADITYA INSTITUTE OF TECHNOLOGY AND MANAGEMENT, TEKKALI (AUTONOMOUS)

IB.Tech I Semester Supplementary Examinations, April-2022 **ENGINEERING PHYSICS** (Common to CIVIL, MECH, CSE, IT)

Time: 3 Hours Max Marks: 70

PART-A

ANSWER ALL QUESTIONS

[10 X 1M = 10]

M

- Write Cosine law due to interference of light in thin parallel film by reflected light. 1. a)
 - What is meant by diffraction of light. **b**)
 - What is the principle of laser. c)
 - Define numerical aperture of optical fiber. d)
 - What is unit cell. e)
 - Write the condition for Bragg's law. f)
 - Define magnetic flux density. g)
 - What is polarization vector h)
 - Define drift velocity of electrons. i)
 - Write one dimensional time dependent Schrodinger's wave equation. <u>i</u>)

PART-B

Answer one question from each unit

[5 X 12M = 60M]

UNIT-I

- 2. a) Discuss the theory of Newton's rings with relevant diagrams by reflected light and 8M obtain the expressions for the diameters of bright and dark rings.
 - In Newton's rings experiment, the diameter of the 5th ring is 0.30 cm and diameter b) of the 15th ring is 0.62cm. Find the diameter of the 25th ring. 4M

- Obtain the conditions for principle maxima and minima in Fraunhofer diffraction 3. a) 8M of light due to a single slit.
 - Mention any four differences between Fresnel and Fraunhofer diffraction of 4Mb) light.

UNIT-II

- Derive the relation between the probabilities of spontaneous emission and 4. a) 8M stimulated emission in terms of Einstein coefficients.
 - Explain the basic components in laser system. 4M b)

(OR)

- Derive the expressions for numerical aperture and the fractional change in 5. 6M refractive index of optical fiber.
 - Explain advantages of Fiber optic communication system. 6M b)

UNIT-III

- 6. a) Explain Structure and packing factor of Face centered cubic crystal 8M
 - Define the following. i) Lattice parameters ii) Coordination number iii) Primitive 4Mb) cell and iv) Non primitive cell.

(OR)

1 of 2

7.	a)	Derive an expression for inter planar separation between successive $(h \ k \ l)$	8M
	b)	parallel planes for cubic crystal system. State and explain Bragg's law for X-ray diffraction.	4M
		<u>UNIT-IV</u>	
8.	a)	Explain the Domain theory of ferromagnetism.	8M
	b)	Define the following. i) Magnetic flux density ii) Magnetic field iii) Intensity of magnetization and iv) Relative permeability. (OR)	4M
9.	a)	What is orientation polarization and derive the expression for its polarizability.	8M
	b)	Derive relation between electric susceptibility and dielectric constant.	4M
		<u>UNIT-V</u>	
10.	a)	Derive an expression for electrical conductivity of metal based on classical free electron theory.	8M
	b)	Discuss various draw backs of classical free electron theory.	4M
		(OR)	
11.	a)	Obtain the expressions for energy and wave function of an electron confined to move in a one -dimensional potential box.	8M
	b)	Calculate the de Broglie wavelength of an electron which has been accelerated	4M
		from rest on application of potential of 400 volts.	