

IN THE CLAIMS:

Please amend the claims as follows:

1. (Original) A method for depositing a low dielectric constant film, comprising:
delivering a gas mixture comprising:
a cyclic organosiloxane; and
two or more oxidizing gases comprising N₂O and O₂ to a substrate in a chamber, wherein a ratio of a flow rate of the N₂O to a total flow rate of the two or more oxidizing gases into the chamber is between about 0.1 and about 0.5; and
applying RF power to the gas mixture at conditions sufficient to deposit a low dielectric constant film on a surface of the substrate.
2. (Original) The method of claim 1, wherein the two or more oxidizing gases consist of N₂O and O₂.
3. (Original) The method of claim 1, wherein the cyclic organosiloxane is octamethylcyclotetrasiloxane (OMCTS).
4. (Original) The method of claim 1, wherein cyclic organosiloxane is selected from the group consisting of 1,3,5-trimethylcyclotrisiloxane, hexamethylcyclotrisiloxane, 1,3,5,7-tetramethylcyclotetrasiloxane (TMCTS), octamethylcyclotetrasiloxane (OMCTS), 1,3,5,7,9-pentamethylcyclopentasiloxane, and decamethylcyclopentasiloxane.
5. (Original) The method of claim 4, wherein the gas mixture further comprises an inert gas selected from the group consisting of helium, argon, and combinations thereof.
6. (Original) The method of claim 1, further comprising post-treating the low dielectric constant film with an electron beam.

7. (Currently Amended) A method for depositing a low dielectric constant film, comprising:

delivering a gas mixture consisting essentially of comprising:

a cyclic organosiloxane; and

an oxidizing gas comprising N₂O to a substrate in a chamber, wherein the N₂O is delivered into the chamber at a flow rate between about 0.71 sccm/cm² and about 1.42 sccm/cm² of substrate surface; and

applying RF power to the gas mixture at conditions sufficient to deposit a low dielectric constant film on a surface of the substrate.

8. (Original) The method of claim 7, wherein the oxidizing gas consists of N₂O.

9. (Original) The method of claim 7, wherein the gas mixture further comprises a linear hydrocarbon.

10. (Original) The method of claim 9, wherein the linear hydrocarbon is ethylene.

11. (Original) The method of claim 7, wherein the cyclic organosiloxane is octamethylcyclotetrasiloxane (OMCTS).

12. (Original) The method of claim 7, wherein the cyclic organosiloxane is selected from the group consisting of 1,3,5-trimethylcyclotrisiloxane, hexamethylcyclotrisiloxane, 1,3,5,7-tetramethylcyclotetrasiloxane (TMCTS), octamethylcyclotetrasiloxane (OMCTS), 1,3,5,7,9-pentamethylcyclopentasiloxane, and decamethylcyclopentasiloxane.

13. (Original) The method of claim 7, wherein the gas mixture further comprises an inert gas selected from the group consisting of helium, argon, and combinations thereof.

RESPONSE TO OFFICE ACTION
Serial No. 10/812,717
Page 4 of 8

14. (Original) The method of claim 7, further comprising post-treating the low dielectric constant film with an electron beam.

15-20. (Cancelled)