

Búsqueda informada 1

Alfons Juan Albert Sanchis Jorge Civera

Departamento de Sistemas Informáticos y Computación

¹Para una correcta visualización, se requiere Acrobat Reader v. 7.0 o superior

Índice

1	Introducción	2
2	Búsqueda en árbol y grafo	3
3	Heurística	4
4	Funciones de evaluación	5
5	Búsqueda voraz: $f(n) = h(n)$	6
6	Búsqueda A: $f(n) = g(n) + h(n)$	7
7	Propiedades	8

1. Introducción

Dado un problema de búsqueda representado con un grafo de estados G, una *heurística* es cualquier función h que estima, *eficientemente*, el coste mínimo h^* de llegar a una solución a partir de cualquier nodo.

Ejemplo: suma de distancias Manhattan en 8-puzle

2. Búsqueda en árbol y grafo

```
EnÁrbolGrafo(n_0, L)
                        // nodo inicial y límite de profundidad
OPEN = \{n_0\}
                                // inicialización de la frontera
CLOSED = \emptyset
                       // inicialización del conjunto explorado
bucle
 si OPEN = \emptyset devuelve NULL // solución no encontrada
 s = \arg \min f(n) // selecciona un nodo de mínima. f
     n \in OPEN
 si Objetivo(s) devuelve s
                           // ¡solución encontrada!
 OPEN = OPEN - \{s\}
                         // elimínalo de la frontera
 CLOSED = CLOSED \cup \{s\} // añade al conjunto explorado
 si Profundidad(s) < L para todo n \in Hijos(s):
  SÍ n \notin CLOSED
   SÍ n \notin OPEN: OPEN = OPEN \cup \{n\}
   \mathbf{si} no deja en OPEN el de menor f
  si no si tiene menor f que el de CLOSED:
        borra el de CLOSED e inserta n en OPEN
```


3. Heurística

h(n): coste estimado del camino óptimo desde n a una solución

4. Funciones de evaluación

 Voraz (primero el mejor): la frontera es una cola de prioridad (heap)

$$f(n) = h(n)$$

■ A: la frontera es una cola de prioridad (heap)

$$f(n) = g(n) + h(n)$$

5. Búsqueda voraz: f(n) = h(n)

6. Búsqueda A: f(n) = g(n) + h(n)

7. Propiedades

De la heurística:

- *Admisibilidad:* $h(n) \le h^*(n)$ para todo n
 - Algoritmo A*: búsqueda A con heurística admisible
- Consistencia: $h(n) \le c(n, a, n') + h(n')$ para todo n, a y n'
 - Consistencia implica admisibilidad
- *Dominancia:* $h_1(n)$ domina $h_2(n)$ si $h_1(n) \ge h_2(n)$ para todo n

Asumiendo acciones de coste positivo y $L=\infty$:

- Completitud: voraz con búsqueda en grafo y A*
- Optimalidad:
 - A*con búsqueda en árbol o grafo, y h(n) admisible.
 - A*con búsqueda en grafo sin re-expandir y h(n) consistente.
- *Complejidad:* $O(b^d)$ temporal; $O(b \cdot d)$ o $O(b^d)$ espacial.

