01 始对象和终对象

LATEX Definitions are here.

泛性质

范畴由对象及其间箭头构成。本文重点 分析**余积闭范畴** C。首先给出如下定义:

1 为终对象当且仅当对任意 C 中对象
 c 都有且仅有唯一的箭头 _{:c}!: c → 1:

0 为始对象当且仅当对任意 C 中对象 c 都有且仅有唯一的箭头 :c;: 0 → c:

i Note

•
$$\overset{\mathsf{C}}{\overset{\mathsf{C}}{\overset{\mathsf{C}}{\overset{\mathsf{At}}{\overset{\mathsf{C}}{\overset{\mathsf{At}}{\overset{\mathsf{C}}{\overset{\mathsf{C}}{\overset{\mathsf{At}}{\overset{\mathsf{C}}{\overset{\mathsf{C}}{\overset{\mathsf{At}}{\overset{\mathsf{C}}{\overset{\mathsf{C}}{\overset{\mathsf{At}}{\overset{\mathsf{C}}{\overset{\mathsf{C}}{\overset{\mathsf{C}}{\overset{\mathsf{At}}{\overset{\mathsf{C}}{\overset{\mathsf{C}}{\overset{\mathsf{At}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}{\overset{\mathsf{C}}{\overset{\mathsf{C}}{\overset{\mathsf{C}}{\overset{\mathsf{C}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}{\overset{\mathsf{C}}{\overset{\mathsf{C}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}{\overset{C}}}{\overset{C}}}{\overset{\mathsf{C}}}{\overset{C}}}{\overset{\mathsf{C}}}{\overset{C}}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}$$

① 为仅含单个函子的范畴,1为其中的对象;仅含有单个对象的范畴可以被等价地视作为①。

若范畴 C 中真的含有 0 和 1 分别作为 始对象和终对象 则根据上述信息可知

- 形如 $1 \stackrel{\mathsf{C}}{\to} 1$ 的箭头 只有一个 , 即 $_{:1}\mathrm{id}$;
- 形如 0 ^c→ 0 的箭头 只有一个,即 :₀id;

元素与全局元素

对任意对象 $c_1, c_1', \text{etc}, c_2, c_2', \text{etc}, c_3$ 及任意的映射 i 我们进行如下的规定:

- i为 c_2 的元素当且仅当 $i \text{ tar} = c_2$;
- i为 c_1 的**全局元素**当且仅当 i $tar = c_1$ 且i src = 1
- i 不存在仅当 $i \tan = 0$ 。

(i) Note

其他范畴中刚才的断言未必成立。

02 范畴里面的箭头

LATEX Definitions are here.

我们进行下述规定:

• $c_1 \stackrel{c}{\rightarrow} c_2 =$ 所有从 c_1 射向 c_2 的箭头构成的集 。

i Note

上述断言仅对于**局部小范畴**成立, 其他范畴里 $\mathbf{c}_1 \overset{\mathsf{c}}{\to} \mathbf{c}_2$ 未必构成集。

范畴 C 中特定的箭头可以进行复合运算:

$$\begin{array}{c} \bullet \quad \stackrel{\mathsf{C}}{\circ} : (\mathsf{c}_1 \stackrel{\mathsf{C}}{\rightarrow} \mathsf{c}_2) \stackrel{\mathsf{Set}}{\times} (\mathsf{c}_2 \stackrel{\mathsf{C}}{\rightarrow} \mathsf{c}_3) \stackrel{\mathsf{Set}}{\longrightarrow} (\mathsf{c}_1 \stackrel{\mathsf{C}}{\rightarrow} \mathsf{c}_3) \\ (\quad i_1 \quad . \quad \quad i_2 \quad) \longmapsto i_1 \stackrel{\mathsf{C}}{\circ} i_2 \\ \end{array}$$

如果我们还知道箭头 f_1 , i , f_2 分别属于 $c_1' \overset{c}{\to} c_1$, $c_1 \overset{c}{\to} c_2$, $c_2 \overset{c}{\to} c_3$ 那么便可知

• $(f_1 \stackrel{\mathsf{c}}{\circ} i) \stackrel{\mathsf{c}}{\circ} f_2 = f_1 \stackrel{\mathsf{c}}{\circ} (i \stackrel{\mathsf{c}}{\circ} f_2)$, 即箭头复合运算具有**结合律**。

另外固定住一侧实参便可获得新的函数:

$$\bullet \quad (f_1 \overset{\mathsf{C}}{\circ} _) : (\mathsf{c}_1 \overset{\mathsf{C}}{\to} _) \overset{\mathsf{C} \overset{\mathsf{C}}{\to} \mathsf{Set}}{\longmapsto} (\mathsf{c}_1' \overset{\mathsf{C}}{\xrightarrow[\mathsf{C}]} _) \\ i \quad \longmapsto \quad (f_1 \circ i)$$

称作前复合。下图有助于形象理解:

称作后复合。 下图有助于形象理解:

根据上面的定义不难得出下述结论:

- $(f_1 \circ _)^{\stackrel{\mathsf{C}}{\overset{\mathsf{Cat}}{\longrightarrow}}\mathsf{Set}} \circ (_ \circ f_2) = (_ \circ f_2)^{\stackrel{\mathsf{C}}{\overset{\mathsf{C}}{\longrightarrow}}\mathsf{Set}} \circ (f_1 \circ _)$ 复合运算具有**结合律**,即后面提到的**自然性**:
- 复合运算具有**结合律**,即后面提到的**自然性**;
 $(_ \circ i)^{\overset{\mathsf{C}}{\circ}} \circ (_ \circ f_2) = (_ \circ (i \circ f_2))$ 前复合与复合运算的关系
- $(i\stackrel{\mathsf{C}}{\circ}_)^{\stackrel{\mathsf{Cat}}{\longrightarrow}\mathsf{Set}}(f_1\stackrel{\mathsf{C}}{\circ}_)=((f_1\stackrel{\mathsf{C}}{\circ}i)\stackrel{\mathsf{C}}{\circ}_)$ 后复合与复合运算的关系

箭头对实参的应用

范畴论里函数的应用亦可视作复合。 假如 a_1 为 c_1 的全局元素则可规定

$$\bullet \quad c_1 i = c_1 \overset{\mathsf{c}}{\circ} i$$