Lecture 29: Rational functions on projective varieties Def: A projective variety is an irred alg subset of P" for some n. De Let XCP" be a projunciety. Want to define functions on X. Let FEK(Xo,-,Xn) homogen then $(F(a_0,-,a_n)=F(\lambda a_0,-,\lambda a_n))$ $(F(a_0,-,\lambda a_n))=[\lambda a_0,-,\lambda a_n]$ $f(a_0,-,a_n)=[\lambda a_0,-,\lambda a_n]$ $f(a_0,-,a_n)$ $f(a_$ i.e. F is const. Del": A sat'l function on P" is F/2 Ek(Xo,-, Xn) where F,G & K[xo,-, Xn] are homogen of the same where $F,G \in \mathbb{K}[n_0,-1]$ is will-defined degree. Note that $F(a_0,-,a_n) = \frac{F(a_0,-,a_n)}{G(a_0,-,a_n)}$ on $P^n \in G=0$ Let XCIP be a variety. Then a rath

func on X is a function defined on a von empty open subset Vol X given by

F.; X ---> k where F, Grare in k[Xo,-,Xn] Lornogen of same degree.

here $U = X \setminus \{G = 0\}$

Example: Let
$$y^2 = x(x-1)(x-2)$$
 be affine equation i.e.

Let $C = Z(y^2 - x(x-1)(x-2)) \subseteq A^2 y \subseteq R_{x_1 x_2 x_2}$
 $\begin{array}{c} x_0 = x \\ \overline{X_1} = \overline{X_2} \end{array}$
 $\begin{array}{c} x_0 = x \\ \overline{X_2} = \overline{Y_2} \end{array}$
 $\begin{array}{c} x_0 = x \\ \overline{X_2} = \overline{Y_2} \end{array}$
 $\begin{array}{c} x_0 = x \\ \overline{X_2} = \overline{Y_2} \end{array}$
 $\begin{array}{c} x_0 = x \\ \overline{X_2} = \overline{Y_2} \end{array}$
 $\begin{array}{c} x_0 = x \\ \overline{X_2} = \overline{Y_2} \end{array}$
 $\begin{array}{c} x_0 = x \\ \overline{X_2} = \overline{Y_2} \end{array}$
 $\begin{array}{c} x_0 = x \\ \overline{X_2} = \overline{Y_2} \end{array}$
 $\begin{array}{c} x_0 = x \\ \overline{X_2} = \overline{Y_2} \end{array}$
 $\begin{array}{c} x_0 = x \\ \overline{X_2} = \overline{Y_2} \end{array}$
 $\begin{array}{c} x_0 = x \\ \overline{X_2} = \overline{Y_2} \end{array}$
 $\begin{array}{c} x_0 = x \\ \overline{X_2} = \overline{Y_2} \end{array}$
 $\begin{array}{c} x_0 = x \\ \overline{X_2} = \overline{Y_2} \end{array}$
 $\begin{array}{c} x_0 = x \\ \overline{X_2} = \overline{Y_2} \end{array}$
 $\begin{array}{c} x_0 = x \\ \overline{X_2} = \overline{Y_2} \end{array}$
 $\begin{array}{c} x_0 = x \\ \overline{X_2} = \overline{Y_2} \end{array}$
 $\begin{array}{c} x_0 = x \\ \overline{X_2} = \overline{Y_2} \end{array}$
 $\begin{array}{c} x_0 = x \\ \overline{X_2} = \overline{Y_2} \end{array}$
 $\begin{array}{c} x_0 = x \\ \overline{X_2} = \overline{Y_2} \end{array}$
 $\begin{array}{c} x_0 = x \\ \overline{X_2} = \overline{Y_2} \end{array}$
 $\begin{array}{c} x_0 = x \\ \overline{X_2} = \overline{Y_2} \end{array}$
 $\begin{array}{c} x_0 = x \\ \overline{X_2} = \overline{Y_2} \end{array}$
 $\begin{array}{c} x_0 = x \\ \overline{X_2} = \overline{Y_2} \end{array}$
 $\begin{array}{c} x_0 = x \\ \overline{X_2} = \overline{Y_2} \end{array}$
 $\begin{array}{c} x_0 = x \\ \overline{X_2} = \overline{Y_2} \end{array}$
 $\begin{array}{c} x_0 = x \\ \overline{X_2} = \overline{Y_2} \end{array}$
 $\begin{array}{c} x_0 = x \\ \overline{X_2} = \overline{Y_2} \end{array}$
 $\begin{array}{c} x_0 = x \\ \overline{X_2} = \overline{Y_2} \end{array}$
 $\begin{array}{c} x_0 = x \\ \overline{X_2} = \overline{Y_2} \end{array}$
 $\begin{array}{c} x_0 = x \\ \overline{X_2} = \overline{Y_2} \end{array}$
 $\begin{array}{c} x_0 = x \\ \overline{X_2} = \overline{Y_2} \end{array}$
 $\begin{array}{c} x_0 = x \\ \overline{X_2} = \overline{Y_2} \end{array}$
 $\begin{array}{c} x_0 = x \\ \overline{X_2} = \overline{Y_2} \end{array}$
 $\begin{array}{c} x_0 = x \\ \overline{X_2} = \overline{Y_2} \end{array}$
 $\begin{array}{c} x_0 = x \\ \overline{X_2} = \overline{Y_2} \end{array}$
 $\begin{array}{c} x_0 = x \\ \overline{X_2} = \overline{Y_2} \end{array}$
 $\begin{array}{c} x_0 = x \\ \overline{X_2} = x \end{array}$
 $\begin{array}{c} x_0 = x \\ \overline{X_2} = x \end{array}$
 $\begin{array}{c} x_0 = x \\ \overline{X_2} = x \end{array}$
 $\begin{array}{c} x_0 = x \\ \overline{X_2} = x \end{array}$
 $\begin{array}{c} x_0 = x \\ \overline{X_2} = x \end{array}$
 $\begin{array}{c} x_0 = x \\ \overline{X_2} = x \end{array}$
 $\begin{array}{c} x_0 = x \\ \overline{X_2} = x \end{array}$
 $\begin{array}{c} x_0 = x \\ \overline{X_2} = x \end{array}$
 $\begin{array}{c} x_0 = x \\ \overline{X_2} = x \end{array}$
 $\begin{array}{c} x_0 = x \\ \overline{X_2} = x \end{array}$
 $\begin{array}{c} x_0 = x \\ \overline{X_2} = x \end{array}$
 $\begin{array}{c} x_0 = x \\ \overline{X_2} = x \end{array}$
 $\begin{array}{c} x_0 = x \\ \overline{X_2} = x \end{array}$
 $\begin{array}{c} x_0 = x \\ \overline{X_2} = x \end{array}$
 $\begin{array}{c} x_0 = x \\ \overline{X_2} = x \end{array}$
 $\begin{array}{c} x_0 = x \\ \overline{X_2} = x \end{array}$
 $\begin{array}{c} x_0 = x \\ \overline{X_2} = x \end{array}$
 $\begin{array}{c} x_0 = x \\ \overline{X_2} = x \end{array}$
 $\begin{array}{c} x_0 = x \\ \overline{X_2} = x \end{array}$
 $\begin{array}{c} x_0 = x \\ \overline{X_2} = x \end{array}$
 $\begin{array}{c} x_0 = x$

Dy' Let $X \subseteq \mathbb{P}^n$ be a projective variety and g(X) be ideal of definition of X then the ring $k(X_0, -, X_n)/g(X)$ is called the homogeneous coordinate ring of X. Note that G(X) is a prime ideal and hence the homogen coord ring is an integral domain. Det f: X--->k be a ratil function on a projective variety. If $X \subseteq \mathbb{P}^n$ then $\exists F, G \in \mathbb{K}[X_0, -jX_n]$ homoger with deg F-deg G and $G \notin \mathcal{J}(X)$ s.t. $\forall P = [a_0, ..., a_n] \in X$, $G(a_0, ..., a_n) \neq 0$ $f(P) = \frac{F(a_0, ..., a_n)}{G(a_0, ..., a_n)}$. Also if $F = F' \mod \mathcal{J}(X)$. $G = G' \mod \mathcal{J}(X)$ G = G' mod $\mathcal{J}(X)$ $\deg F' = \deg G'$ then $f(P) = \frac{F'(a_{6},-,a_{n})}{G'(a_{6},-,a_{n})}$ Moreover f is said to be <u>regular</u> at P if we can find F, Gr as above with Gr(P) + O. Prop: The set of rath functions on a projective variety XCP is a field denoted k(x). In fact, $k(X) = \begin{cases} \frac{1}{9} | F, G \in k[X_0, -, X_n] \text{ homogen of the same degree,} \end{cases}$ $G \notin \mathcal{J}(X) \text{ if } F(\text{mod } \mathcal{J}(X)) & \text{if } F(\text{mod } \mathcal{J}($ frac (k[xo/-, xn]/g(x))

Phi Let Ph & Pr be two sattle functions on X. Then I F_{i},G_{i} , $F_{z},G_{z} \in k[x_{0},-,X_{n}]$ s.f. $P_{i}(P) = \frac{F_{i}(P)}{G_{i}(P)}$ $P_{i}(P) = \frac{F_{i}(P)}{G_{i}(P)$ if $\overline{F_1} = \overline{F_2}$ ther $\rho(P) = \overline{F_1(P)} = \overline{F_2(P)} = \rho(P)$ then $\rho(P) = \overline{G_1(P)} = \overline{G_2(P)} = \rho(P)$ open subset $\rho(P) = \overline{G_1(P)} = \overline{G_2(P)} = \rho(P)$ $G_{2}F_{1}-F_{2}G_{1} \stackrel{\text{ef}(X)}{=} G_{2}(P)F_{1}(P)-F_{2}(P)G_{1}(P)=0 + P \in X$ Hence P = P. Conversely, let $\overline{F_L}$, $\overline{F_L} \in k(X)$ s.t. F(P) = F(P) + P in an nonempty open subset of X =) (G₂F₁ - F₂G₁) (P) = 0 + P in a nonempty open subst of Hence $G_{1}F_{1}-F_{2}G_{1}=0$ in the homogen coord sing of X (nonempty open subset of X)
is dense in X as X is
irred. $=) \quad \overline{F_1} = \overline{F_2} \quad \text{in } k(x).$ Hence elements of k(x) are in bijection with rath functions on X. thence elements of k(X) is a subfield of frac (k(X0,-)Xn) (
Check that k(X) is a subfield of frac (k(X0,-)Xn) HW (Remark: Let $U_i \subseteq \mathbb{P}^n$ be given by $\{X_i \neq 0\}$. If $U_i \cap X$ is nonempty then $k(X) = k(U_i \cap X)$, i.e. k(X) is the fraction field of the coordinate ring of $U_i \cap X$. Prop: Let PEXSP" be a point of a proj von X. Then $O_{X,P} = \{ f \in k(X) | f \text{ is singular at P} \} \text{ is a local signiff}$ maximal ideal $M = \{ \{ \in O_{X,P} \mid f(P) = 0 \}$ Pf: f,g&Ox,p then f+g & f.g are Ox, P('; f=\frac{F}{F_2}; F_1), F_2 \in k[x_0,-,\times_n] \ of same degree Then $f = \frac{G_1}{G_2}$ Grand Legree

Then $f + Q = \frac{G_1F_1 + G_1F_2}{F_2G_2}$ Note $f = \frac{G_2}{G_2}$ Leg $G_2F_1 + G_1F_2$ $G_2 = \frac{G_2F_1 + G_1F_2}{F_2G_2}$ Leg $G_2F_1 + G_1F_2$ $G_2 = \frac{G_2F_1 + G_1F_2}{F_2G_2}$ Leg $G_2F_1 + G_1F_2$ Also fig is a rath function)

= deg (FzGrz) m is an ideal. Also if & M then f= \(\int \text{with } F(P) \neq D, G(P) \neq 0 F, G E KEXO, -, Xn] homogen of same degree then GEOX,P $\mathcal{L} = \mathcal{L}$

(20) Let ple a ratil func on XCP a troj var s.t. f is regular at all points of X. Then f is const, First assume X = P" Then $f = \frac{F}{G}$ where F, G are homo poly in $k(x_0, -), x_n = 0$ in $k(x_0, -), x_n = 0$.

If G is not const. in k(x0,-) Xn of then let PEZ(G). Then f is not regular at P. Suppose f = F' s.t. G'(P) # 0 / F' 6' homogen of same degree G/F = FG \Rightarrow $F \mid F'G$ $\Rightarrow F | F' (\cdot; (F,G)=1)$ \Rightarrow $G' = \frac{F'}{F}G$ =) G/G' contradicting G(P)=0. Complete the troof for the variety.