LIMA, Elon Lages. Espaços Métricos. Ed. IMPA: Rio de Janeiro. 2007

Página 195+, ex. 33

Sejam I = [a,b]; $C = C^0(I,\Re) = \{f : I \mapsto \Re : f \in Lim \cap C^0 \text{ com a métrica * da conv. uniforme} \}$

 $\forall f: I \mapsto \Re; f \in C^0 \Rightarrow f \in Lim$

Teorema 1: $\{f \in C : f'(a) = b, \exists a \in I, b \in \Re\}$ é magro *.

Equivale a : Seja $F = \{ f \in C : \exists f'(a), \forall a \in I \} = \{ f \in C : \forall m \in R, \exists \varepsilon > 0 : \forall \delta > 0, |x - a| < \delta \land \left| \frac{f(a + h) - f(a)}{h} - m \right| \ge \varepsilon, \forall a \in I \}$

Então
$$F \supset \bigcap_{n \in N} A_n : \underbrace{\forall n \in N, A_n \text{ \'e aberto e denso * em } C}_{(i)}.$$

Logo, por Baire*, F é denso em C

Demo.: por definição, $\exists f(t+h) \Leftarrow t+h \in I$

$$\forall n \in N, \text{ seja } A_n = \left\{ f \in C; \forall t \in I, \exists h : \left| \frac{f(t+h) - f(t)}{h} \right| > n \right\}$$

Pela def. de derivada, $f \in A_n, \forall n \in N \Rightarrow f \in F$

Basta provar (i), pois C é espaço métrico completo*, $\log \bigcap_{N} A_n$ é denso em C

Lema 1: (i.1) Cada A_n é aberto em C

Demo.: Seja $f \in A_n$.

$$(ii) \forall t \in I, \exists h : \xi(t,h) = |f(t+h) - f(t)| - n|h| > 0$$

Lema 2:
$$\exists \delta > 0; \forall t \in I, \exists h : \xi(t,h) > \delta$$

Demo.: Caso contrário, $\forall k \in \mathbb{N}, \exists t_k \in I : \xi(t_k, h) \leq \frac{1}{k}, \forall h$

$$(x_n) \subset I \Rightarrow \exists (x_{n_k})_{k \in N} \in Conv.$$

Suponhamos, sem perda de generalidade, $t_k \rightarrow t_0 \in I$

$$\xi \in C^0 \Rightarrow \forall h, \xi(t_0, h) = \lim_{k \to \infty} \xi(t_k, h) \leq \lim_{k \to \infty} \frac{1}{k} = 0$$
, contradizendo (ii)

Seja
$$g \in C: ||g - f|| \le \frac{\delta}{2}$$

$$\forall t \in I, \exists h : n |h| + \delta < |f(t+h) - f(t)| \le |f(t+h) - g(t+h)| + |g(t+h) - g(t)| + |g(t) - f(t)| < \frac{\delta}{2} + |g(t+h) - g(t)| + \frac{\delta}{2}$$

Logo, $|g(t+h) - g(t)| > n|h| \Rightarrow g \in A_n \Rightarrow A_n \text{ \'e aberto em } C$

Lema 3: (i.2) Cada A, é denso em C

Demo.: $f: I \mapsto \Re$; $f \in C^0 \Rightarrow f \in Unif.Conv.$

$$\forall \varepsilon > 0, \forall f \in C, \exists g \in A_n : ||g - f|| \le \varepsilon$$

 \therefore Como $f \in Unif.Conv.$

$$\exists \delta > 0 : |x - y| < \delta \Rightarrow |f(x) - f(y)| < \varepsilon$$

Seja
$$I_j = [a_{j-1}, a_j]: |I_j| < \delta; I = \bigcup_{i=1}^n I_j$$

Construir $g: I \mapsto \Re; \|g - f\| \le \varepsilon; g \in A_n$.

Seja
$$g(a_i) = f(a_i)$$

Seja $g|_{\text{int }I_i}$ uma serra tal que |g'(t)| > n e Gráfico $(g) \subset$ qualquer retângulo de altura ε que contenha Gráfico $(f|_{I_i})$

M é espaço métrico completo se (p. 165)

$$M \supset (x_n)$$
é de Cauchy $\Rightarrow (x_n) \in Conv$

Métrica (p. 1, 12 e 14)

$$\operatorname{dist}: M^{2} \mapsto \Re \text{ \'e m\'etrica} \Leftarrow \forall x, y, z \in M, \begin{cases} \operatorname{dist}(x, x) = 0 \\ x \neq y \Rightarrow \operatorname{dist}(x, y) > 0 \\ \operatorname{dist}(x, y) = \operatorname{dist}(y, x) \\ \operatorname{dist}(x, z) \leq \operatorname{dist}(x, y) + \operatorname{dist}(y, z) \end{cases}$$

métrica da convergência uniforme : Sejam $f, g: X \mapsto M$. dist $(f, g) = \sup_{x \in X} |f(x) - g(x)|$

 $\operatorname{diam} X = \sup \{\operatorname{dist}(x, y) \colon x, y \in X\}$

Densos (p. 73 e 188)

$$X \subset M$$
. X é denso em $M \Leftarrow \overline{X} = M$

X é denso em $M \leftarrow \forall B \subset M : B$ é bola aberta, $B \cap X \neq \emptyset$

 $X \text{ \'e denso em } M \Leftarrow \forall A \subset M : A \neq \emptyset, A \cap X \neq \emptyset$

$$\operatorname{int} X = \emptyset \Leftrightarrow M - X \text{ \'e denso em } M$$

$$\overline{F} = F \subset M$$
, int $F = \emptyset \Leftrightarrow M - X \supset A$ aberto e denso \Leftrightarrow int $(M - X)$ é denso

Magros (p. 187)

Seja $X \subset M$, que é espaço métrico.

$$X \notin \text{magro} \Leftarrow X = \bigcup X_n : \forall n \in N, \text{int } \overline{X}_n = \emptyset$$

$$X \notin \text{magro em } M \iff X = \bigcup_{n \in \mathbb{N}} F_n : \forall n \in \mathbb{N}, \overline{F_n} = F_n \subset M, \text{int } F_n = \emptyset$$

 $X \subset Y$, que é magro $\Rightarrow X$ é magro

$$\forall n \in N, X_n \text{ \'e magro} \Rightarrow \bigcup_{n \in N} X_n \text{ \'e magro}$$

 $M \supset X$ é enumerável. X é magro \Leftrightarrow nenhum $x \in X$ é isolado

Teorema de Baire (p. 189+)

$$\text{Teorema 2:} M \text{ \'e completo} \Leftrightarrow \begin{cases} \forall F_n \subset M : F_1 \supset F_2 \supset \ldots \supset F_n \supset \ldots; \overline{F_n} = F_n \neq \varnothing; \text{lim diam } B_n = 0 \\ \exists a \in M : \bigcap_{n \in \mathbb{N}} F_n = \{a\} \end{cases}$$

Demo.(\Rightarrow): Suponhamos M completo e F_n como acima.

$$\forall n \in \mathbb{N}$$
, escolha $x_n \in F_n$

$$(x_n)\subset M$$

$$m, n > n_0 \Rightarrow x_m, x_n \in F_{n_0}$$

$$\forall \varepsilon > 0, \exists n_0 : \text{diam } F_{n_0} < \varepsilon$$

$$m, n > n_0 \Rightarrow \operatorname{dist}(x_m, x_n) < \varepsilon \Rightarrow (x_n) \text{\'e de Cauchy}$$

Seja
$$\lim x_n = a \in M$$

$$\forall p \in N, x_n \in F_p, \forall n \ge p \Rightarrow a = \lim x_n \in F_p, \forall p \in N$$

$$a \in \bigcap_{N} F_{n}$$

$$\bigcap_{n \in N} F_n = \{a, b\} \Longrightarrow \operatorname{dist}(a, b) \le \operatorname{diam} F_n, \forall n : \bigcap_{n \in N} F_n = \{a\}$$

Demo.(
$$\Leftarrow$$
): Seja $M \supset (x_n)$ seq. de Cauchy

$$\forall n \in \mathbb{N}$$
, seja $X_n = \{x_n, x_{n+1}, \ldots\}$

$$X_1\supset X_2\supset\ldots\supset X_n\supset\ldots; \overline{X}_n=X_n\neq\varnothing$$

 $0 = \lim_{n \to \infty} \operatorname{diam} X_n = \lim_{n \to \infty} \operatorname{diam} \overline{X}_n$

$$\exists a \in M : \bigcap \overline{X}_n = \{a\}$$

 $a \in \overline{X}_n, \forall n \in \mathbb{N} \Rightarrow \forall B : B \text{ \'e bola aberta de centro } a, \exists n_0 \in \mathbb{N} : x_n \in B, \forall n \geq n_0$ $a = \lim x_{n_n}$

 (x_n) é de Cauchy : $a = \lim x_n$

Teorema de Baire : Sejam $X \subset M$ espaço métrico completo. X é magro \Rightarrow int $X = \emptyset$

 $Baire \Leftrightarrow X = \bigcap_{n \in \mathbb{N}} A_n : \forall n \in \mathbb{N}, A_n \text{ \'e aberto e denso} \Rightarrow X \text{ \'e denso em } M$

Sejam $M \supset A_n$ abertos e densos. Mostrar que $M \supset A = \bigcap_{n \in N} A_n$ é denso

 \Leftrightarrow Sejam M $\supset B_n$ bolas abertas. $\forall B_1, B_1 \cap A \neq \emptyset$

Demo.: A_1 é aberto e denso $\Rightarrow \emptyset \neq B_1 \cap A_1 = X_1$ é aberto $\Rightarrow X_1 \supset B_2$

Suponhamos que raio $(B_2) \le \frac{1}{2}$ e que $\overline{B}_2 \subset B_1 \cap A_1$.

 A_2 é aberto e denso $\Rightarrow \emptyset \neq B_2 \cap A_2 = X_2$ é aberto $\Rightarrow X_2 \supset B_3$; raio $(B_3) \leq \frac{1}{3}$; $\overline{B}_3 \subset B_2 \cap A_2$

$$\overline{B}_1 \supset \overline{B}_2 \supset ... \supset \overline{B}_n \supset ...; \operatorname{diam} B_n \to 0$$

$$\overline{B}_{n+1} \subset B_n \cap A_n$$
 (i)

$$T2 \Rightarrow \exists a \in M : a = \bigcap \overline{B}_n$$

$$(i) \Rightarrow a \in \bigcap A_n \Rightarrow a \in A \cap B_1$$