

PROCESSING BIG DATA

with Azure Data Lake Analytics

Sean Forgatch
Business Intelligence Consultant
Sean.Forgatch@talavant.com

About Me

Sean Forgatch

- Milwaukee, WI
- Business Intelligence Consultant
 - Healthcare, Insurance, SaaS
 - Integration and Analytics
 - Microsoft Big Data Certified
- PASS
 - Industry Speaker
 - FoxPASS President
- Running, Craft Beers, Reading

About Talavant

There is a better way to make data work for companies. Better resources, strategy, sustainability, inclusion of the organization as a whole, understanding of client needs, tools, outcomes, better ROI.

VALUE WE PROVIDE

- Accelerated planning, implementation and results
- Sustainable
- Increased

HOW WE DO IT

By providing a holistic approach inclusive of a client's people, processes and technologies - built on investment in our own employees and company growth.

1. Big Data Overview

- 2. Data Lake Concepts
- 3. Azure Data Lake Store
- 4. Azure Data Lake Analytics
- 5. U-SQL

GDELT Analysis in PowerBl

Big Data Primer

Big Data Primer: Azure Tools

A Big Data Trends

"Variety, not volume or velocity, drives big-data investments"

A Big Data Trends

Variety, not volume or velocity, drives big-data investments"

"Big data grows up: Hadoop adds to enterprise standards"

A Big Data Trends

"Variety, not volume or velocity, drives big-data investments"

"Big data grows up: Hadoop adds to enterprise standards"

"Rise of metadata catalogs helps people find analysis-worthy big data."

-TDWI: Top Ten Big Data Trends for 2017

- 1. Big Data Overview
- 2. Data Lake Concepts
- 3. Azure Data Lake Store
- 4. Azure Data Lake Analytics
- 5. U-SQL

Data Lake Concepts

Azure Data Lake Store

Data Lake Organization

Data Lake Security

RAW (1)	STAGE (2)	CURATED (3)	EXPLORATION (0)
Data Experts/Engineers	Data Experts/Engineers	ETL and BI Engineers / SME's / Analysts	Data Scientist / Analysts

TOOLS

Data Lake Tagging

RAW (1)	STAGE (2)	CURATED (3)	EXPLORATION (0)
Data Experts/Engineers	Data Experts/Engineers	ETL and BI Engineers / SME's / Analysts	Data Scientist / Analysts
AUTOMATED		SME	N/A

TOOLS

Data Lake Processing

RAW (1)	STAGE (2)	CURATED (3)	EXPLORATION (0)
Data Experts/Engineers	Data Experts/Engineers	ETL and BI Engineers / SME's / Analysts	Data Scientist / Analysts
AUTOMATED		SME	N/A
INGESTION	CLEANSING	DISTRIBUTION	

TOOLS

Conceptual Architecture

Data Lake Questions

- 1. Big Data Overview
- 2. Data Lake Concepts
- 3. Azure Data Lake Store
- 4. Azure Data Lake Analytics
- 5. U-SQL

Azure Data Lake Store

- Place To the state of the state
 - Built on Apache YARN
- Process and store size files
- Enterprise through Azure Active Directory
- No storage limit

Data Lake Store

Data Lake Store

Data Lake Store

Data Lake Ingestion

- Visual Studio
- Azure Portal (Limit)
- SSIS Data Lake Destination and SSIS Data Lake Task
- Azure Data Factory
- Powershell
- ADLCopy
- Squap (HDInsight)
- Other Apache tools

- 1. Big Data Overview
- 2. Data Lake Concepts
- 3. Azure Data Lake Store
- 4. Azure Data Lake Analytics
- 5. U-SQL

Azure Data Lake Analytics

- Big Data Queries as a Service
- Analytics Federation
- Develop in U-SQL, NET, R, and Python
- Cognitive Services
- Scale Instantly
- Pay Per Job

- 1. Big Data Overview
- 2. Data Lake Concepts
- 3. Azure Data Lake Store
- 4. Azure Data Lake Analytics
- 5. U-SQL

Intro to U-SQL

KEY FEATURES

- Combines 501 and 6#
- Patterned File Processing
- Extensions: Python, R, Cognitive
- Query Data where it Lives (Federaled Querying)
- Partition and Distribution of Data for Massive Parallelism
- Manage Structure and Shared Programming through
- U-SQL Procedures

U-SQL: Extract Query

U-SQL

```
@MyExtract =
Field1 string,
Field2 int,
Field 3 int?

"/datalake/01_RAW/{*}.csv"
Extractors.Csv();
```

T-SQL

```
CREATE TABLE myTable
  Field1 VARCHAR(100),
  Field2 INT,
  Field3 INT NOT NULL
  );
MSERT INTO myTable
(Field1, Field2, Field3)
 CAST(Field1 as varchar(100) as Field1,
 CAST(Field2 AS INT) as Field2,
 CONVERT(INT, Field3) as Field 3
FROM myTable
```


U-SQL: Extract Query

U-SQL

```
@MyExtract =
EXTRACT

Field1 string,
Field2 int,
Field 3 int?

WCM "/datalake/01_RAW/{*}.csv"
Extractors.Csv();
```

```
2 @MyAgg =

SELECT

Field1,

MAX(Field2) A

Filloll @MyExtract

CROUP BY Field1;
```

T-SQL

```
CREATE TABLE myTable
  Field1 VARCHAR(100),
  Field2 INT,
  Field3 INT NOT NULL
  );
INSE<mark>RT INTO</mark> myTable
(Field1, Field2, Field3)
 CAST(Field1 as varchar(100) as Field1,
 CAST(Field2 AS INT) as Field2,
 CONVERT(INT, Field3) as Field 3
myTable
```


U-SQL: Extract Query

```
U-SQL
                                       @MyAgg
@MyExtract =
                                    datalake/02_STAGE/MyOutput.csv"
                              USING Outputters.Csv();
 Field1 string,
 Field2 int,
 Field 3 int?
"/datalake/01_RAW/{*}.csv"
USING Extractors. Csv();
@MyAgg =
 Field1,
 MAX(Field2) AS Field2
MyExtract
GROUP BY Field1;
```

T-SQL

```
CREATE TABLE myTable
  Field1 VARCHAR(100),
  Field2 INT,
  Field3 INT NOT NULL
  );
INSERT INTO myTable
(Field1, Field2, Field3)
 CAST(Field1 as varchar(100) as Field1,
 CAST(Field2 AS INT) as Field2,
 CONVERT(INT, Field3) as Field 3
myTable
```


U-SQL: Extractors and Outputters

CURRENT EXTRACTORS

- Csv()
- Tsv()
- Txt()

CURRENT OUTPUTTERS

- Csv()
- Tsv()
- Txt()

U-SQL: Extractor and Outputter Parameters

```
EXTRACT
```

• • •

```
"/datalake/01_RAW/{*}.CSV

Extractors.Csv(silent: true, delimiter: ",")
```

(); PARAMETERS

- Delimiter
- Encoding
- escapeCharecter
- nullEscape
- Quoting
- rowDelimiter
- Silent
- skipFirstNRows
- charFormat

U-SQL: Extractors and Outputters

CURRENT EXTRACTORS

- Csv()
- Tsv()
- Txt()

CUSTOM EXTRACTORS and OUTPUTTERS

- FlexExtractor()
- XML()
- JSON()
- Avro()

CURRENT OUTPUTTERS

- Csv()
- Tsv()
- Txt()

U-SQL: Virtual Columns

```
="/datalake/01_stage/2017/06/{FileName}.csv
@MyExtract =
 Field1 string
 Field2 int,
 Field 3 int?,
 FileName
EROW @IN
USING Extractors.Csv()
WHERE FileName == "MyRedditFile_20170602";
```

File Names:

MyRedditFile_20170601.csv MyRedditFile_20170602.csv etc...

U-SQL: Job Execution

U-SQL: Job Execution

GUIDELINES

- 1. Must Have Clustered Index
- 2. Utilize When Improving Performance with Distribution/Partitioning
- 3. You have Multiple Large Files
- 4. Don't Use when:
 - No Filtering, Joining, Grouping


```
DROP TABLE IF EXISTS <adla>.<database>.<schema>.tableName;
CREATE TABLE <adla>.<database>.<schema>.tableName
(
Field1 int,
Field2 string,
Field3 int?

INDEX idx_1 CLUSTERED(Field1)
DISTRIBUTED BY HASH(Field2)
);
```



```
DROP TABLE IF EXISTS
<adla>.<database>.<schema>.tableName;
CREATE TABLE <adla>.<database>.<schema>.tableName
Field1 int,
Field2 string,
Field3 int?
INDEX idx_1 CLUSTERED(Field1)
DISTRIBUTED BY HASH(Field2)
AS SELECT ...
```



```
DROP TABLE IF EXISTS
<adla>.<database>.<schema>.tableName;
CREATE TABLE <adla>.<database>.<schema>.tableName
Field1 int,
Field2 string,
Field3 int?
INDEX idx_1 CLUSTERED(Field1)
DISTRIBUTED BY HASH(Field2)
AS EXTRACT ...
```



```
DROP TABLE IF EXISTS
<adla>.<database>.<schema>.tableName;
CREATE TABLE <adla>.<database>.<schema>.tableName
Field1 int,
Field2 string,
Field3 int?
INDEX idx_1 CLUSTERED(Field1)
DISTRIBUTED BY HASH(Field2)
AS TVF ...
```


MANAGED

- Own Their Data
- No Heaps
- INSERT only

- Stored Metadata
- Use VIEW or TVF over EXTRACT
- Data Lives on Source
 - Azure SQL DB
 - Azure SQL DW
 - Azure SQL VM

U-SQL: Data Federation

U-SQL: Operators

COMPARISON OPERATORS	LOGICAL OPERATORS
IS NULL	AND
==	BETWEEN
>	IN, NOT IN
>=	LIKE, NOT LIKE
!=	NOT
	OR

U-SQL: Functions

REPORTING FUNCTIONS

- COUNT
- SUM
- MIN
- MAX
- AVG
- STDEV
- VAR

RANKING FUNCTIONS

- RANK
- DENSE_RANK
- NTILE
- ROW_NUMBER

ANALYTIC FUNCTIONS

- CUME_DIST
- PERCENT_RANK
- PERCENTILE_CONT
- PERCENTILE_DISC

U-SQL: C# Functions

MATH METHODS

- Abs
- BigMul
- Floor
- Max/Min
- Round
- Sqrt
- ..plus many more!

STRING METHODS

- Compare
- Concat
- Contains
- Equals
- Replace
- Split
- ToUpper
- Trim
- ..plus many more!

Advice

- Identify Value of Data LakeApproach
- Data Lake: Invest Time and Strategy into Data Lake Design
- U-SQL: Utilize U-SQL Constructs before C#
- U-SQL: Understand and Control Data through Partitioning

Learn U-SQL!

- Michael Rys LinkedIn Slide Share's
- •GitHub U-SQL Repository
- SQL Server Central Stairway to U-SQL
- •Azure Built in Example

Let's Connect!

https://www.linkedin.com/in/seanforgatch/

Sean.Forgatch@Talavant.com

@4gatchSQL

