KaCUDA

Pioneering Tomorrow's Energy Grids with AI-Powered Electricity and Settlement Detection

By Team SAT-D

Stephen Kakuda, Daniel Lan, Teresa Liang, and Aileen Mi

Meet the Team

Stephen Kakuda

Daniel Lan

Teresa Liang

Aileen Mi

The Problem

- Electricity is a fundamental requirement for improving living standards and fostering economic growth
- Nearly 600 million people in South
 Africa do not have access to electricity

Why Is the Problem Significant?

- The South African population is increasing but electricity development is stagnating
 - Access to electricity decreased by 0.7% in 2023
- Land developers can prioritize human settlements with the largest populations and strong potential for rapid development

Access to electricity in South Africa from 2004 - 2023

Our Approach: Transfer Learning

If we can leverage computer vision to create a machine learning model to detect human settlements that do not have access to electricity, then we can enable future grid planning and renewable energy solutions.

Transfer Learning Model for Semantic Segmentation

We take a pre-trained neural network (ResNet 101) and fine-tune it on our dataset to produce labels for individual regions in satellite images

Our Approach: Explainable AI

If we can interpret the layers in our machine learning model and generate visual explanations of its decisions, then we can better comprehend and trust its results.

Layer Gradient-weighted Class Activation Mapping

This XAI technique calculates the gradients of the target we want to explain flowing into a convolutional layer to produce a heatmap highlighting the important regions in the image with respect to that target

Layer GradCAM Visualization

ML Pipeline

Model Demo

Baseline Models

Model	Validation Accuracy
Segmentation CNN	31.26%

FNCResnet Transfer 36.61%

U-Net 42.58%

Deep Learning Model

Model Validation Accuracy

Transfer Learning w/ Captum 59.97%

Our Results

more important for prediction

So What?

- Advanced Model Architectures
- PyTorch Lightning and Automated Hyperparameter Tuning
- Comprehensive Evaluation Metrics (XAI)
- Remote Sensing Data Focus

Our Impact

Enhances Living Standards and Economic Opportunities

- Efficiently identifies unelectrified areas
- Guides targeted electrification planning efforts
- Provides data-driven development policies

Acknowledgements

- Dataset 2021 IEEE GRSS Data Fusion Contest: Track DSE, Detection of Settlements without Electricity
- Software Tools Pytorch, Captum
- People
 - > Thanks to Professor Nadia Ahmed for your guidance throughout this project.
 - Grateful for the assistance and support from teaching assistants: Junyao Wang, Zixiao Zong, and Edgar Robles
 - Appreciation for the collaborative environment fostered by the CS 175 / SAT-D team, aiding in the project's completion.