SECTION -A (20 M)

Choose the correct answer from the given options for each question given below and each carries 2 marks.

1. The equation of the tangent to the curve y(x+1)=4 at the point $\left(2,\frac{4}{3}\right)$ is

A.
$$27x - 12y - 38 = 0$$

B.
$$4x - 9y - 20 = 0$$

C.
$$4x + 9y - 20 = 0$$

D.
$$9x - 4y + 20 = 0$$

2. The slope of the normal to the curve $x = a(\theta - \sin\theta)$, $y = a(1 - \cos\theta)$ at $\theta = \frac{\pi}{2}$ is

B.
$$\frac{1}{\sqrt{2}}$$

D. -1

3. If θ is the angle between the curves xy=2 and $x^2+4y=0$ then $tan\theta=$

A.
$$-1$$

B. 1

D₁ 3

4. The length of the sub tangent of the curve $x^2 + xy + y^2 = 7$ at (1, -3) is

B. 5

C.
$$\frac{3}{5}$$

D. $\frac{1}{5}$

 \checkmark 5. The value of c which satisfies the conclusions of Rolle's Theorem for the

function
$$f(x) = 2x^3 + x^2 - 4x - 2, x \in [-\sqrt{2}, \sqrt{2}]$$
 is

A. 0

B. 1

C.
$$\frac{1}{2}$$

D. $\frac{2}{3}$

6 The value of c which satisfies the conclusions of Lagrange's Mean Value

Theorem for the function $f(x) = 2sinx + sin2x, x \in [0, \pi]$ is

A.
$$\frac{\pi}{6}$$

B.
$$\frac{\pi}{4}$$

C.
$$\frac{\pi}{3}$$

D. $\frac{\pi}{2}$

7. If $f(x) = a sin x + \frac{1}{3} sin 3x$ has an extremum at $x = \frac{\pi}{3}$ then a =

$$D. -1$$

8. The function
$$f(x) = \frac{x}{1+x^2}$$
 decreases in

A.
$$(-1,1)$$

B.
$$(-\infty, -1) \cup (1, \infty)$$

9. The maximum value of the function

$$f(x) = 2x^3 - 21x^2 + 36x + 20$$
, $x \in [0,2]$ is

10. The sum of two numbers is 8 so that the sum of their cubes is minimum then the numbers are

Section B $(2 \times 5 = 10 M)$

Answer any TWO of the following questions

- 11. Find the equation of the locus of P, if the ratio of the distance from P to A(5,-4) and B(7,6) is 2: 3.
- 12. Find the equation of the locus of a point P, then sum of whose distance from (0,2) and (0,-2) is 6.
- 13. Show that the equation of the tangent at $P(x_1, y_1)$ to the curve $\sqrt{x} + \sqrt{y} = \sqrt{a}$ is $\frac{y}{\sqrt{y_1}} + \frac{x}{\sqrt{x_1}} = \sqrt{a}$.
- 14. A wire of length l is cut into two parts which are bent in the form of a square and a circle respectively. What are the lengths of the pieces of the wire so the sum of the areas is the least.