

NB-IoT 空闲态过程

华诺 王磊

小区选择和重选

NB-IoT与LTE的主要区别如下:

- 不支持系统间测量和重选;
- · 小区选择和空闲态测量采用S准则,但不支持Q_{rxlevminoffset};
- · 不支持基于优先级的重选策略,小区重选仅采用R准则,不支持S准则;
- · 不支持基于小区偏置的重选策略,即R 准则中不支持Q_{offsets.n};

5.2.4.6 Intra-frequency and equal priority inter-frequency Ce

The cell-ranking criterion $R_{\mbox{\tiny 8}}$ for serving cell and $R_{\mbox{\tiny 11}}$ for neighbouring cells is defined b

$$R_s$$
 = $Q_{meas,s}$ + Q_{Hyst} - $Q_{offset_{temp}}$
 R_n = $Q_{meas,n}$ - Q_{offset} - $Q_{offset_{temp}}$

5.2.3.2a Cell Selection Criterion for NB-IoT

The cell selection criterion S is fulfilled when:

Srxlev > 0 AND Squal > 0

where:

 $Srxlev = Q_{rxlevmess} - Q_{rxlevmin} - Pcompensation - Qoffset_{temp}$

 $Squal = Q_{qualmeas} - Q_{qualmin} - Qoffset_{temp}$

where:

Srxlev	Cell selection RX level value (dB)				
Squal	Cell selection quality value (dB)				
Qoffset _{temp}	Offset temporarily applied to a cell as specified in [3] (dB)				
Q _{rxlevmeas}	Measured cell RX level value (RSRP)				
Q _{qualmeas}	Measured cell quality value (RSRQ)				
Q _{rxlevmin}	Minimum required RX level in the cell (dBm)				
Q _{qualmin}	Minimum required quality level in the cell (dB)				
Pcompensation	If the UE supports the additionalPmax in the NS-PmaxList-NB, if present, in SIB1-NB, SIB3-NB and SIB5-NB:				
	$\begin{aligned} & \max(P_{\text{EMAX1}} - P_{\text{PowerClass}}, 0) - (\min(P_{\text{EMAX2}}, P_{\text{PowerClass}}) - \min(P_{\text{EMAX1}}, P_{\text{PowerClass}}))) \end{aligned}$				
	else: max(P _{EMAX1} –P _{PowerClass} , 0) (dB)				
P _{EMAX1} , P _{EMAX2}	Maximum TX power level an UE may use when transmitting on the uplink in the cell (dBm) defined as P _{EMAX} in TS 36.101 [33]. P _{EMAX1} and P _{EMAX2} are obtained from the <i>p-Max</i> and the <i>NS-PmaxList-NB</i> respectively in SIB1-NB, SIB3-NB and SIB5-NB as specified in TS 36.331 [3].				
P _{PowerClass}	Maximum RF output power of the UE (dBm) according to the UE power class as defined in TS 36.101 [33]				

where:

Q _{meas}	RSRP measurement quantity used in cell reselections.
Qoffset	For intra-frequency: Equals to Qoffset _{s,n} , if Qoffset _{s,n} is valid, otherwise this equals to zero. For inter-frequency: Equals to Qoffset _{s,n} plus Qoffset _{frequency} , if Qoffset _{s,n} is valid, otherwise and for NB-IoT this equals to Qoffset _{frequency} .
Qoffset _{temp}	Offset temporarily applied to a cell as specified in [3]

系统消息的调度: MIB-NB

- NB-IoT系统消息包含MIB-NB、SIB1-NB、SIB2-NB、SIB3-NB、SIB4-NB、SIB5-NB、SIB14-NB、SIB15-NB,除SIB1-NB外的SIB块组成SI message,通过NPDSCH信道承载
- · MIB-NB承载于NPBCH,传输周期为640ms,被分成8个编码子块(皆可自解码),每个编码子被重复传输8次,扩展到80ms的时间间隔上(即在80ms内的每个子帧#0对应一次传输),Payload大小为34bit,具体格式如下:

MasterInformationBlock-NB

```
指示系统帧号高4位(LTE中为高8位),低6位
-- ASN1START
                                                                 由MIB-NB编码和辅同步信道携带
MasterInformationBlock-NB ::= SEOUENCE {
   systemFrameNumber-MSB-r13
                              BIT STRING (SIZE (4))
   hyperSFN-LSB-r13
                              BIT STRING (SIZE (2)
   schedulingInfoSIB1-r13
                              INTEGER (0..15),
                                                                   指示超系统帧号低2位,由于SIB1-NB保持不变的
   systemInfoValueTag-r13
                              INTEGER (0..31),
                                                                周期为40.96s,因此低2位不适合放在SIB1-NB中
   ab-Enabled-r13
   operationModeInfo-r13
                              CHOICE {
      inband-SamePCI-r13
                              Inband-SamePOI-NB-r13,
                              Inband-Different PC
      inband-DifferentPCI-r13
                                                                   指示SIB1-NB的TBS和重复次数
      guardband-r13
                              Guardband-NB-r13
      standalone-r13
                              Standalone-NB-r13
                           BIT STRING (SIZE (11))
   spare
                                                                   指示系统消息是否发生更新
ChannelRasterOffset-NB-r13 ::= ENUMERATED {khz-7dot5, khz-2dot5, khz2dot5, khz7dot5}
                                                                   接入阻止使能开关,若为True,则需读取
Guardband-NB-r13 ::=
   rasterOffset-r13
                           ChannelRasterOffset-NB-r13.
                                                                SIB14-NB,决定能否发起RRC连接
   spare
                            BIT STRING (SIZE (3))
Inband-SamePCI-NB-r13 ::=
                        SEOUENCE {
   eutra-CRS-SequenceInfo-r13
                           INTEGER (0..31)
                                                                   操作模式,4种不同模式下携带参数不同
Inband-DifferentPCI-NB-r13 ::= SEOUENCE {
   eutra-NumCRS-Ports-r13
                           ENUMERATED {same, four},
   rasterOffset-r13
                           ChannelRasterOffset-NB-r13,
   spare
                           BIT STRING (SIZE (2))
Standalone-NB-r13 ::=
                        SEQUENCE {
   spare
                           BIT STRING (SIZE (5))
```


系统消息的调度:SIB1-NB

lateNonCriticalExtension

nonCriticalExtension

· SIB1-NB承载于NPDSCH,传输周期固定为2560ms,重复次数可配置为4、8、16,分别对应每64、32、16个无线帧重复发送一次,SIB1-NB一次重复传输被映射至16个连续无线帧中的8个无线帧的子帧4上完成

SystemInformationBlockType1-NB message

OCTET STRING

SEQUENCE { }

```
-- ASN1START
                                                                        指示超系统帧号高8位
SystemInformationBlockType1-NB ::=
   hyperSFN-MSB-r13
                                   BIT STRING (SIZE (8)),
   cellAccessRelatedInfo-r13
                                   SEQUENCE {
                                                                      · 指示下行传输的有效子帧 , 所有有效子帧
       plmn-IdentityList-r13
                                       PLMN-IdentityList-NB-r13,
       trackingAreaCode-r13
                                       TrackingAreaCode,
                                                                      为S1 message和PDSCH等可使用的子帧
       cellIdentity-r13
                                       CellIdentity,
                                                                      如不配置,则除NPSS、NSSS、NPBCH和
       cellBarred-r13
                                       ENUMERATED {barred, notBarred},
                                       ENUMERATED {allowed, notAllowed}
       intraFreqReselection-r13
                                                                      SIB1-NB外的所有下行子帧都是有效子帧
   cellSelectionInfo-r13
                                   SEQUENCE {
       q-RxLevMin-r13
                                       Q-RxLevMin,
                                                                      · in-band模式下,LTE控制区域大小
       q-QualMin-r13
                                       O-OualMin-r9
   p-Max-r13
                                                         OPTIONAL.
                                                                    -- Need OP
                                   P-Max
   freqBandIndicator-r13
                                   FreqBandIndicator-NB-r13,
   fregBandInfo-r13
                                   NS-PmaxList-NB-r13
                                                                           -- Need OR
                                                                OPTIONAL,
   multiBandInfoList-r13
                                   MultiBandInfoList-NB-r13
                                                                OPTIONAL,
                                                                           -- Need OR
   downlinkBitmap-r13
                                   DL-Bitmap-NB-r13
                                                                OPTIONAL.
                                                                           -- Need OP.
   eutraControlRegionSize-r13
                                   ENUMERATED {n1, n2, n3}
                                                                           -- Cond inband
   nrs-CRS-PowerOffset-r13
                                   ENUMERATED {dB-6,
                                                        dB-4dot77, dB-3,
                                                                          • Inband-SamePCI模式下, NB-IoT NRS
                                              dB-1dot77, dB0.
                                                                  dB1,
                                              dB1dot23, dB2,
                                                                  dB3,
                                                                          功率与LTE CRS功率比值
                                                        dB4dot23. dB5.
                                              dB4.
                                              dB6.
                                                        dB7,
                                                                  dB8.
                                              dB91
                                                         OPTIONAL,
                                                                    -- Cond inband-SamePCI
   schedulingInfoList-r13
                                   SchedulingInfoList-NB-r13,
                                                                            ・ SI-Window偏置 , 用于减小相邻小区
   si-WindowLength-r13
                                   ENUMERATED {ms160, ms320, ms480, ms640,
                                              ms960, ms1280, ms1600, spare1},
                                                                             发送SI-message的时域资源的相互干扰
                                                                -- Need OP
   si-RadioFrameOffset-r13
                                   INTEGER (1..15)
                                                     OPTIONAL,
   systemInfoValueTagList-r13
                                                                           -- Need OR
                                   SystemInfoValueTagList-NB-r13
                                                                OPTIONAL,
```

OPTIONAL,

OPTIONAL

指示每个SI是否发生更新

系统消息的调度:SIB1-NB

· 为避免相邻小区SIB1-NB干扰 ,在2560ms调度周期中 ,SIB1-NB无线帧具体位置 ,与重复次数和PCI有关

系统消息的调度:SI message

- · NB-IoT中多个相同周期性的SIB-NB可组成一个SI message , 以SI message为单位进行调度
- · 每个SI message都配置SI-Window,不同SI message的SI-Window互不重叠
- · 在配置的SI-Window内, SI message 重复模式被定义为每2、4、8、16个无线帧的第一个有效子帧开始发送, 连续占用2或8个有效的无线子帧,直至发送一次完整的重复
- · SI message的SI-Window的起始位置计算如下:

 $(H-SFN * 1024 + SFN) \mod T = FLOOR((n-1)*w/10) + Offset$

-- ASN1START

其中:

SystemInformationBlockType1-NB message

T= si-Periodicity
Offset= si-RadioFrameOffset
w= si-WindowLength
n=SI message的排列顺序

Table 16.4.1.5.1-1: Transport block size (TBS) table.

$I_{\mathtt{TBS}}$	$I_{\mathtt{SF}}$							
- 185	0	1	2	3	4	5	6	7
0	16	32	56	88	120	152	208	256
1	24	56	88	144	176	208	256	344
2	32	72	144	176	208	256	328	424
3	40	104	176	208	256	328	440	568
4	56	120	208	256	328	408	552	680
5	72	144	224	328	424	504	680	
6	88	176	256	392	504	600		
7	104	224	328	472	584	680		
8	120	256	392	536	680			
9	136	296	456	616				
10	144	328	504	680				
11	176	376	584					
12	208	440	680					

系统消息的调度:有效性与更新通知

- · NB-IoT系统消息的有效时间为24h(LTE为3h)
- · NB-IoT系统消息只能在其修改周期的边界发生变更 当网络更新了系统消息,首先通过PAGING或DCI Format N2通知UE系统消息的更新
- · 与LTE不同,由于NB-IoT引入eDRX,eDRX周期可能大于修改周期,因此更新机制略有不同
- 当eDRX周期小于修改周期,收到
 systemInfoModification的UE,在"(H-SFN * 1024 + SFN)
 mod m=0" (m为修改周期,即*modificationPeriodCoeff** defaultPagingCycle) 处开始接收更新的系统消息
- 当eDRX周期大于或等于修改周期,收到 systemInfoModification-eDRX的UE,在"H-SFN mod 1024 = 0"处开始接收更新的系统消息

Figure 5.2.1.3-1: Change of system Information

Paging-NB message -- ASN1START Paging-NB ::= SEQUENCE { pagingRecordList-r13 PagingRecordList-NB-r13 OPTIONAL, -- Need ON -- Need ON systemInfoModification-r13 ENUMERATED {true} OPTIONAL, systemInfoModification-eDRX-r13 ENUMERATED {true} OPTIONAL, -- Need ON nonCriticalExtension SEQUENCE {} OPTIONAL PagingRecordList-NB-r13 ::= SEQUENCE (SIZE (1..maxPageRec)) OF PagingRecord-NB-r13 PagingRecord-NB-r13 ::= SEQUENCE { ue-Identity-r13 PagingUE-Identity,

systemInfoModification

-- ASN1STOP

If present: indication of a BCCH modification other than for SystemInformationBlockType14-NB (SIB14-NB) and SystemInformationBlockType16-NB (SIB16-NB). This indication does not apply to UEs using eDRX cycle longer than the BCCH modification period.

Paging-NB field descriptions

systemInfoModification-eDRX

If present: indication of a BCCH modification other than for SystemInformationBlockType14-NB (SIB14-NB) and SystemInformationBlockType16-NB (SIB16-NB). This indication applies only to UEs using eDRX cycle longer than the BCCH modification period.

6.7.5 Direct Indication Information

Direct Indication information is transmitted on NPDCCH using P-RNTI but without associated *Paging-NB* message. Table 6.7.5-1 defines the Direct Indication information, see TS 36.212 [22, 6.4.3.3].

When bit n is set to 1, the UE shall behave as if the corresponding field is set in the *Paging-NB* message, see 5.3.2.3. Bit 1 is the least significant bit.

Table 6.7.5-1: Direct Indication information

	Bit	Field in Direct Indication information					
П	1	systemInfoModification					
	2	systemInfoModification-eDRX					
	3, 4, 5,	Not used, and shall be ignored by UE if received					
	6, 7, 8						

PAGING/DRX/eDRX

NB-IoT寻呼机制与LTE不同:

- ① 用户面优化方案中,UE CONTEXT SUSPEND REQUEST(ENB->MME)会携带推荐小区及基站信息、小区识别及覆盖增强等级信息,用于后续的寻呼优化处理
- ② 默认DRX IE用于指示**小区级**默认DRX周期 参数传递:
- 1、SystemInformationBlockType2-NB (ENB->UE);
- 2、S1 SETUP REQUEST (ENB->MME);
- 3、ENB CONFIGURATION UPDATE (ENB->MME);
- ① eDRX IE用于指示用户级eDRX寻呼周期和寻呼传输窗, DRX周期扩展至将近3小时,详细机制见36.304-7.1、23.401-5.13a节,本文不赘述参数传递:
- 1、ATTACH/TAU REQUEST (UE->MME)
- 2、ATTACH/TAU ACCEPT (MME->UE)
- 3. PAGING (MME->ENB);

9.2.1.105 Information on Recommended Cells and eNBs for Paging

This IE provides information on recommended cells and eNBs for paging.

IE/Group Name	Presence	Range	IE type and reference	Semantics description
Recommended Cells for Paging	М		9.2.1.106	
Recommended eNBs for Paging	М		9.2.1.107	

9.2.1.109 Cell Identifier and Coverage Enhancement Level

This IE provides information for paging CE capable UEs.

IE/Group Name	Presence	Range	IE type and reference	Semantics description
Global Cell ID	М		E-UTRAN CGI 9.2.1.38	
Coverage Enhancement Level	М		OCTET STRING	Includes either the UEPagingCoverageInformation message as defined in 10.2.2 of TS 36.331 [16], or the UEPagingCoverageInformation- NB message as defined in 10.6.2 of TS 36.331 [16].

9.2.1.114 NB-IoT Default Paging DRX

This IE indicates the NB-IoT Default Paging DRX as defined in TS 36.304 [20].

IE/Group Name	Presence	Range	IE type and reference	Semantics description
NB-IoT Default Paging DRX	М		ENUMERATED(128, 256, 512, 1024,)	Unit: [number of radioframes]

9.2.1.115 NB-IoT Paging eDRX Information

This IE indicates the NB-IoT Paging eDRX parameters as defined in TS 36.304 [20].

IE/Group Name	Presence	Range	IE type and reference	Semantics description
NB-IoT Paging eDRX Cycle	М		ENUMERATED (hf2, hf4, hf6, hf8, hf10, hf12, hf14, hf16, hf32, hf64, hf128, hf256, hf512, hf1024,)	T _{eDRX} defined in TS 36.304 [20]. Unit: [number of hyperframes].
NB-IoT Paging Time Window	0		ENUMERATED (s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11, s12, s13, s14, s15, s16,)	Unit: [2.56 seconds]

PSM (Power Saving Mode)

- 终端应用PSM功能满足其节电需求,该模式近似于关 机,但保留注册状态,因此不需要触发重附着或PDN重 建立流程,机制如下:
 - UE和MME通过ATTACH/TAU流程实现T3324和T3412同步
- T3324 value: 终端在ATTACH/TAU ACCEPT消息中收到该定时 器时, T3324启动,正常监听寻呼信道; T3324超时,进入PSM状态, 但T3412仍处于活动中,取值范围2秒~32小时
- T3412 extended value: T3412超时,终端发起周期性TAU流程, 取值范围10分钟~约427天

T3324 value

Table 10.5.172/3GPP TS 24.008: GPRS Timer information element

Timer value (octet 2)

Bits 5 to 1 represent the binary coded timer value.

Bits 6 to 8 defines the timer value unit for the GPRS timer as follows: Bits

876

- 0 0 0 value is incremented in multiples of 2 seconds
- 0 0 1 value is incremented in multiples of 1 minute
- 0 1 0 value is incremented in multiples of decihours
- 1.1.1 value indicates that the timer is deactivated.

Other values shall be interpreted as multiples of 1 minute in this version of the protocol.

T3412 extended value

Table 10.5.163a/3GPP TS 24.008: GPRS Timer 3 information element

GPRS Timer 3 value (octet 3)

Bits 5 to 1 represent the binary coded timer value.

Bits 6 to 8 defines the timer value unit for the GPRS timer as follows: Bits

876

- 0 0 0 value is incremented in multiples of 10 minutes
- 0 0 1 value is incremented in multiples of 1 hour
- 0 1 0 value is incremented in multiples of 10 hours
- 0 1 1 value is incremented in multiples of 2 seconds
- 1 0 0 value is incremented in multiples of 30 seconds
- 1 0 1 value is incremented in multiples of 1 minute
- 1 1 0 value is incremented in multiples of 320 hours (NOTE)
- 1.1.1 value indicates that the timer is deactivated.

NOTE: This timer value unit is only applicable to the T3312 extended value IE and T3412 extended value IE (see 3GPP TS 24.301 [120]). If it is

received in an integrity protected message, value shall be interpreted as multiples of 320 hours. Otherwise value shall be interpreted as multiples

of 1 hour.