Feuille de TD 6 : Développements limités (suite)

Exercice 1. Calcul de DL

Donner le développement limité en 0 des fonctions suivantes :

- 1. $x \mapsto \ln(\cos(x))$ (à l'ordre 6).
- 2. $x \mapsto \tan x$ (à l'ordre 7).
- 3. $x \mapsto \sin(\tan x)$ (à l'ordre 7).
- 4. $x \mapsto \ln(1+x^2)^2$ (à l'ordre 4).

Exercice 2. DL et graphe

Etudier la position du graphe de l'application $x \mapsto \ln(1+x+x^2)$ par rapport à sa tangente en 0 et 1.

Exercice 3. Intégration des DL

- 1. Retrouver le développement limité en 0 à l'ordre n de la fonction $x \mapsto \ln(1+x)$ à partir de celui de la fonction $x \mapsto \frac{1}{1+x}$.
- 2. Donner le développement limité en 0 à l'ordre 10 de la fonction : $x \mapsto \int_0^x \cos(t^2) dt$
- 3. Donner le développement limité en 0 à l'ordre 10 de la fonction : $x \mapsto \int_x^{x^2} \frac{1}{\sqrt{1+t^4}} dt$

Exercice 4. Dérivation des DL

La fonction $x \mapsto x + x^3 \sin(\frac{1}{x^2})$ (prolongée en 0 par la valeur 0) possède-t-elle un développement limité en 0 ? A quel ordre ? Sa dérivée admet-elle un développement limité en 0 ?

Exercice 5. Caractère local des développements limités

Soit $f: \mathbb{R} \to \mathbb{R}$ la fonction définie par f(x) = 0 si $x \leq 0$ et $f(x) = e^{-1/x}$ sinon. Calculer le développement limité de f a tout ordre.