Independence

Gregory M. Shinault

Goal for this Lecture

Learn about the concept of independence. Topics covered will include

- 1. the definition of independence for two events,
- 2. the definition of independence for many events, and
- 3. the definition of independence for random variables.

The material of this lecture roughly corresponds to Section 2.3 of the textbook.

Independence of 2 Events

Big Idea

Independent is the term we use for when conditioning tells us nothing:

$$\mathbb{P}(A|B) = \mathbb{P}(A)$$

The Flaw: $\mathbb{P}(A|B)$ is not defined if $\mathbb{P}(B) = 0$.

Definition

We say the events *A* and *B* are *independent* if

$$\mathbb{P}(AB) = \mathbb{P}(A)\mathbb{P}(B).$$

Example

Prove the outcomes in a sample with replacement are always independent.

More rigorously, we have a bin with r red marbles and b blue marbles. We randomly select 1 marble and record its color, and place it back in the bin. Then we select another marble and record its color. Let R_1 be the event the first marble is red and B_2 be the event the second marble is blue. Determine if R_1 and B_2 are dependent for any choice of parameters r and b.

Examples

Is it ever possible for two distinct outcomes in a sample without replacement to be independent?

More rigorously, we have a bin with r red marbles and b blue marbles. We randomly select 1 marble and record its color. Then we select another marble and record its color. Let R_1 be the event the first marble is red and B_2 be the event the second marble is blue. Determine if R_1 and B_2 are independent for any choice of parameters rand b.

Useful Facts

The following are equivalent.

- 1. *A* and *B* are independent.
- 2. A and B^c are independent.
- 3. A^c and B^c are independent.

Exercise: Prove the three statements are equivalent.

Common Mistake

WARNING: Do not confuse *independent* and *disjoint*.

Independence of Many Events

Definition

We call the events A_1, A_2, \ldots, A_n (mutually) independent if and only if for any subcollection A_{j_1}, \ldots, A_{j_k} we have

$$\mathbb{P}(A_{j_1}\cdots A_{j_k})=\mathbb{P}(A_{j_1})\mathbb{P}(A_{j_2})\cdots\mathbb{P}(A_{j_k}).$$

Exercise: Calculate how many equations must be checked to determine if n events are independent.

WARNING:

 A_1, A_2, \ldots, A_n are pairwise independent $\Rightarrow A_1, A_2, \dots, A_n$ are independent

Equivalent Definition

Fact: The events A_1, A_2, \ldots, A_n are (mutually) independent if and only

$$\mathbb{P}(A_1^*A_2^*\cdots A_n^*) = \mathbb{P}(A_1^*)\mathbb{P}(A_2^*)\cdots\mathbb{P}(A_n^*).$$

where A_i^* is either A_i or A_i^c .

(So that is 2^n equations to check!)

Example

The perfect-use failure rate of the combined oral contraceptive pill is 0.3% That means for a woman that uses the pill exactly as prescribed there is a 0.003 probability that she will become pregnant in one year of use. Let A_i denote the event that the woman becomes pregnant in the *j*-th year of use, and assume A_1, \ldots, A_{10} are independent.

What is the probability (under these possibly flawed assumptions) a woman using the combined oral contraceptive pill experiences an unplanned pregnancy in the next 10 years?

Now update this probability for the typical-use failure rate of 9%.

Comments

I suspect the assumptions of the previous problem are flawed, but even if they are not these types of figures often lead our mind into the gambler's fallacy.

There is a good visualization of these numbers under the same assumptions in an old NYT article. https://www.nytimes.com/ interactive/2014/09/14/sunday-review/unplanned-pregnancies. $html?_r=0$

An astute blogger quickly pointed out the flaws in the probability calculations. https://andrewwhitby.com/2014/09/15/averages-deceive-birth-control-is-better-than-the-nyt-c

Independence of Random Variables

Definition

Let $X_1, X_2, ..., X_n$ be random variables on the same sample space. Then X_1, X_2, \ldots, X_n are independent if

$$\mathbb{P}(X_1 \in B_1, \dots, X_n \in B_n) = \prod_{k=1}^n \mathbb{P}(X_k \in B_k)$$

for all subsets B_1, B_2, \ldots, B_n of \mathbb{R} .

Discrete Case

Fact: The discrete RVs $X_1, X_2, ..., X_n$ are independent if

$$\mathbb{P}(X_1 = x_1, \dots, X_n = x_n) = \prod_{k=1}^n \mathbb{P}(X_k = x_k)$$

for all choices x_1, \ldots, x_n .

Example

Suppose we take a size k sample from the set $\{1, 2, ..., n\}$. Let $X_1, ..., X_k$ denote the outcomes. Determine if the random variables are independent for

- a sample with replacement and
- a sample without replacement.

The Wrap Up

Summary

- 1. Independent $\Leftrightarrow \mathbb{P}(AB) = \mathbb{P}(A)\mathbb{P}(B)$.
- 2. Do not confuse independence and mutual disjointness.
- 3. Increasing independence to multiple events is complicated, but you should still know the definitions.
- 4. Independence of discrete RVs requires only looking at the individual outcomes.
- 5. The outcomes of a sample
 - a. with replacement are independent,
 - b. without replacement are dependent.

Next step

We take what we know from independence and look at a few classes of random variables that occur frequently.