- 1. Dynamometer readings register values of 457 lb for cutting
- force (F_c) and 163 lb for the feed force (F_f) . The cutting tool is found to have a rake angle of 10.8°. From this information, determine:
 - a) The resultant force
 - b) The angle θ at which the resultant force acts.

Physics

- c) The friction force (F).
- d) The normal force (N).
- e) The coefficient of friction (μ) .

	9 (F _C) ² + (F _f) ¹ $= \sqrt{457^2 + 113^2}$
Fc	$= \sqrt{457^2 + 163^2}$ $= 485.198$
457	= 465,1016
	1 1 1 + and = F = 100
	$F_f = 163$ By $+ an \theta = F_f = 163$
	F _c 457
	= 0.35 bb
	0.30.00
	tan-10.3566 = 21.6 X
	c) 21.8 + 9. + 10.6 = 90
	21:9+10.9-90= 9
	574 = 0 X
	57.4 = g
	$F = \cos \hat{q} \implies F = 485.198 \cos 57.4$ $R = 300 \times$
	R F = 300 /X
	$N = \sin \alpha \rightarrow N = 485.198 \sin 57.4$

N = 380.56 $E = \frac{300}{380.56}$ $E = \frac{300}{380.56}$ $E = \frac{300}{380.56}$