

MULTIMEDIA

UNIVERSITY

STUDENT ID NO

--	--	--	--	--	--	--	--	--	--	--	--	--	--

MULTIMEDIA UNIVERSITY

FINAL EXAMINATION

TRIMESTER 1, 2017/2018

EME1016 – APPLIED STATICS
(ME)

23 OCTOBER 2017
09.00a.m. – 11.00 a.m.
(2 Hours)

INSTRUCTIONS TO STUDENTS

1. This Question paper consists of 6 pages with 4 Questions.
2. Attempt **ALL** questions. All questions carry equal marks and the distribution of the marks for each question is given.
3. Please write all your answers in the Answer Booklet provided.

Question 1 (25 marks)**Figure 1**

Figure 1 shows a wooden peg which has been driven into the ground. The peg has an eye-bolt ring. Two tight cables have been secured to the ring.

- Find the x , y and z components of F_1 . [4 marks]
- Find the x , y and z components of F_2 . [3 marks]
- Find the components of the resultant force on the ring. [3 marks]
- Find the components of the bending moment which is acting on O . (Hint: use the answers for (c).) [3 marks]
- The peg is to be designed to bear a maximum horizontal load of N. Show that the horizontal component of the resultant force has not exceeded this design limit. [4 marks]
- Explain the practical purpose of the peg and the cables. [4 marks]
- Describe a situation in real life where this structure is useful. [4 marks]

Continued ...

Question 2 (25 marks)

Figure 2 shows a truss which is used to support two loads. A is a hinge, whereas D is a rocker support (which does not provide a horizontal reaction).

- Find the vertical reaction of the support at A in terms of P . [4 marks]
- Find the vertical reaction of the support at D in terms of P . [4 marks]
- Find the internal force within the member AB in terms of P . State whether it is compressive or tensile. [4 marks]
- Find the internal force within the member AE in terms of P . State whether it is compressive or tensile. [4 marks]
- The member AB can bear a maximum force of 1750 N. The member AE can bear a maximum force of 1300 N.
Find the maximum magnitude of P , without going over either maximum. [5 marks]
- Describe a situation in real life where such a truss would be useful. [4 marks]

(Hint: Due to the different load forces on B and C , this structure does not have symmetrical loading.)

Figure 2

Continued ...

Question 3 (25 marks)

a) In Figure Q3 shows an extruded channel beam cross section with given dimension in millimeters (mm).

- Tabulate the section into segmented components [8 marks]
- Find the centroid \bar{x} and \bar{y} of the cross sectional area. [4 marks]

b) Using the cross section in Figure Q3, Find mass moment of inertia for I_x and I_y . [13 marks]

Figure Q3

Continued ...

Question 4 (25 marks)

a) In Figure 4(a) show an object A with weight, W , is about to slide down the ramp.

- i) Draw the free body diagram for the system. [4 marks]
- ii) Find μ_s in term of gradient for the system shown [6 marks]

Figure 4(a)

b) A uniform weight 100N ladder is leaned against the smooth wall at point A shown in Figure 4(b). Given that the horizon force $F = 8N$, located at center gravity of the ladder, has cause the ladder to move to the left.

- i) Draw the free body diagram of the ladder. [3 marks]
- ii) Find the static friction of coefficient, μ_s , between the ladder and the floor at point B [12 marks]

Figure 4(b)

Continued ...

Appendix: Equations

Equilibrium

Particle

$$\Sigma F_x = 0, \Sigma F_y = 0, \Sigma F_z = 0$$

Rigid Body-Two Dimensions

$$\Sigma F_x = 0, \Sigma F_y = 0, \Sigma M_O = 0$$

Rigid Body-Three Dimensions

$$\Sigma F_x = 0, \Sigma F_y = 0, \Sigma F_z = 0$$

$$\Sigma M_{x'} = 0, \Sigma M_{y'} = 0, \Sigma M_{z'} = 0$$

Friction

$$\text{Static (maximum)} \quad F_s = \mu_s N$$

$$\text{Kinetic} \quad F_k = \mu_k N$$

Center of Gravity

Particles or Discrete Parts

$$\bar{r} = \frac{\sum \tilde{r} W}{\sum W}$$

Body

$$\bar{r} = \frac{\int \tilde{r} dW}{\int dW}$$

Area and Mass Moments of Inertia

$$I = \int r^2 dA \quad I = \int r^2 dm$$

Parallel-Axis Theorem

$$I = \bar{I} + Ad^2 \quad I = \bar{I} + md^2$$

Radius of Gyration

$$k = \sqrt{\frac{I}{A}} \quad k = \sqrt{\frac{I}{m}}$$

Tangent of a Pythagorean triangle with sides y and x $\tan \theta = \frac{y}{x}$

Continued ...

Appendix: Geometric properties of line and area elements

Centroid Location	Centroid Location	Area Moment of Inertia
 Circular arc segment	 Circular sector area	$I_x = \frac{1}{4} r^4 (\theta - \frac{1}{2} \sin 2\theta)$ $I_y = \frac{1}{4} r^4 (\theta + \frac{1}{2} \sin 2\theta)$
 Quarter and semicircle arcs	 Quarter circle area	$I_x = \frac{1}{16} \pi r^4$ $I_y = \frac{1}{16} \pi r^4$
 Trapezoidal area	 Semicircular area	$I_x = \frac{1}{8} \pi r^4$ $I_y = \frac{1}{8} \pi r^4$
 Semiparabolic area	 Circular area	$I_x = \frac{1}{4} \pi r^4$ $I_y = \frac{1}{4} \pi r^4$
 Exparabolic area	 Rectangular area	$I_x = \frac{1}{12} b h^3$ $I_y = \frac{1}{12} b^3 h$
 Parabolic area	 Triangular area	$I_x = \frac{1}{36} b h^3$

End of Paper.