

WWW.JAGRANJOSH.COM

UPSC NDA Exam 2009-II Mathematics Solved Paper

1. If

$$(1+3+5+\ldots+p)+(1+3+5+\ldots+q)$$

= $(1+3+5+\ldots+r)$

where each set of parentheses contains the sum of consecutive odd integers as shown, what is the smallest possible value of (p + q + r) where p > 6?

- (a) 12
- (b) 21
- (c) 45
- **2.** Let $A = \{x \mid x \le 9, x \in N\}$. Let $B = \{a, b, c\}$ be the subset of Awhere (a + b + c) is a multiple of 3. What is the largest possible number of subsets like B?
 - (a) 12
- (b) 21
- (c) 27 (d) 30
- 3. Let $A = \{-1, 2, 5, 8\}, B = \{0, 1, 3, 6, 7\}$ and R be the relation 'is one less than' from A to B, then how many elements will R contain?
 - (a) 2
- (b) 3
- (d) 9
- **4.** A mapping $f: R \to R$ which is defined as $f(x) = \cos x$; $x \in R$ is

(c) 5

- (a) One-one only
- (b) Onto only
- (c) One-one onto
- (d) Neither one-one nor onto
- 5. If α is a complex number such that $\alpha^{\,2}+\,\alpha\,+\,1=0,$ then what is α^{31} equal to ?
- (c) 0
- (d) 1
- **6.** If x^2 , y^2 , z^2 are in AP, then y + z, z + x, x + y are in
 - (a) AP
 - (b) HP
 - (c) GP
 - (d) None of the above
- 7. Natural numbers are divided into groups as (1), (2, 3), (4, 5, 6), (7, 8, 9, 10) and so on. What is the sum of the numbers in the 11th group?
 - (a) 605
- (b) 615
- (c) 671
- (d) 693
- **8.** If α , β are the roots of $ax^2 + bx + b = 0$, then what is

$$\frac{\sqrt{\alpha}}{\sqrt{\beta}} + \frac{\sqrt{\beta}}{\sqrt{\alpha}} + \frac{\sqrt{b}}{\sqrt{a}}$$
 equal to?

- (a) 0 (c) 2
- (b) 1 (d) 3
- . 9. If the roots of $ax^2 + bx + c = 0$ are $\sin \alpha$ and $\cos \alpha$ for some α , then which one of the following is correct ?
 - (a) $a^2 + b^2 = 2ac$
- (b) $b^2 c^2 = 2ab$
- (c) $b^2 a^2 = 2ac$
- (d) $b^2 + c^2 = 2ab$
- 10. What is the coefficient of x^4 in the expansion of $(1 + 2x + 3x^2 + 4x^3 + \dots)^{1/2}$?
 - (a) 1/4
- (c) 1
- (d) 1/128
- 11. If $x = 2 + 2^{1/3} + 2^{2/3}$, then what is the value of $x^3 - 6x^2 + 6x$?
 - (a) 1
- (b) 2
- (d) -2
- 12. What is the value of $\frac{(\log_{27} 9)(\log_{16} 64)}{2}$ $\log_4 \sqrt{2}$
 - (a) 1
- (b) 2
- (c) 4
- (d) 8

- 13. If X and Y are the matrices of order 2×2 each and and $3X + 2Y = \begin{bmatrix} 9 & 13 \\ 4 & 13 \end{bmatrix}$, then what $2X - 3Y = \begin{bmatrix} -7 & 0 \\ 7 & -13 \end{bmatrix}$
 - is Y equal to?
 - -2 1

- b, c are non-zero real numbers and 1

$$\begin{vmatrix} 1 & a+b & 1 \\ 1 & 1 & 1+c \end{vmatrix} = 0$$
, then what is the value of

$$\frac{1}{a} + \frac{1}{b} + \frac{1}{c}$$

- (a) 2 (c) -1
- (b) 1 (d) 0
- 15. If a matrix A is symmetric as well as anti-symmetric, then which one of the following is correct?
 - (a) A is a diagonal matrix
 - (b) A is a null matrix
 - (c) A is a unit matrix
 - (d) A is a triangular matrix

16. If
$$A = \begin{bmatrix} 1 & -2 & -3 \\ 2 & 1 & -2 \\ 3 & 2 & 1 \end{bmatrix}$$
, then which one of the following is

- correct?
- (a) A is symmetric matrix
- (b) A is anti-symmetric matrix
- (c) A is singular matrix
- (d) A is non-singular matrix

17.
$$A = \begin{vmatrix} 2a & 3r & x \\ 4b & 6s & 2y \\ -2c & -3t & -z \end{vmatrix} = \lambda \begin{vmatrix} a & r & x \\ b & s & y \\ c & t & z \end{vmatrix}$$
, then what is the value

- of λ ?
- (a) 12
- (c) 7
- (d) -7

18. What is the value of
$$\begin{vmatrix} 1-i & \omega^2 & \omega \\ \omega^2+i & \omega & -i \\ 1-2i-\omega^2 & \omega^2-\omega & i-\omega \end{vmatrix}$$
, where ω

- is the cube root of unity?
- (a) -1(c) 2
- (b) 1 (d) 0
- 19. What is the length of arc of a circle of radius 5 cm subtending a central angle measuring 15°?
 - (a) $5\pi/12 \, \text{cm}$
- (b) $7\pi/12$ cm
- (c) $\pi/12 \, \text{cm}$
- (d) $\pi/5 \, cm$
- **20.** What is the maximum value of sin $\theta \cos \theta$?
 - (a) 1
- (b) 1/2
- (c) $1/\sqrt{2}$
- (d) $\sqrt{3}/2$
- 21. If $\sin x + \csc x = 2$, then what is the value of $\sin^4 x + \csc^4 x$?
 - (a) 2
- (c) 8
- (d) 16

- 22. What is the value of tan 15° + cot 15°? (b) 2√3
 - (c) 4
- (d) 2
- 23. If $A+B+C=\pi/2$, then what is the value of tan A tan B + tan B tan C + tan C tan A ?
 - (c) -1
- (b) 1
- (d) tan A tan B tan C 24. If angles of a triangle are in the ratio 1:2:3, then what is the ratio of its corresponding sides?
 - (a) 3:2:1 (c) 1:√3:2
- (b) 1:√2:√3 (d) 2:√3:4
- 25. If C(n, 12) = C(n, 8), then what is the value of C(22, n)?
 - (a) 131 (c) 256
- (b) 231 (d) 292
- 26. If $A = \begin{bmatrix} \omega & 0 \\ 0 & \omega \end{bmatrix}$, where ω is cube root of unity, then what is A^{100} equal to ?
 - (a) A
 - (c) Null matrix
- (d) Identity matrix
- 27. What is the modulus of $\frac{1+2i}{1-(1-i)^2}$ equal to ?
 - (c) 3
- (d) 1 28. What is the value of $(-\sqrt{-1})^{4n+3} + (i^{41} + i^{-257})^9$, where
 - $n \in N$?
- (c) i
- (d) ¬i
- 29. If $x = (1101)_2$ and $y = (110)_2$, then what is the value of $x^2 y^2$?
 - (a) (1000101)₂
- (b) (10000101)₂
- (c) (10001101)₂ (d) (10010101)2
- 30. If $(10 \times 010)_2 (11 y 1)_2 = (10 \times 11)_2$, then what are the possible values of the binary digits x, y, z respectively? (b) 0, 1, 0
 - (c) 1, 1, 0
- (d) 0, 0, 0
- 31. The roots of the equation $(x p)(x q) = r^2$, where p, q, rare real, are
 - (a) always complex
- (b) always real
- (c) always purely imaginary(d) None of these
- 32. If $(\sin x + \csc x)^2 + (\cos x + \sec x)^2$
 - = $k + \tan^2 x + \cot^2 x$, then what is the value of k?
 - (a) 8 (c) 4
- (b) 7 (d) 3
- 33. A matrix X has (a + b) rows and (a + 2) columns; and a matrix Y has (b+1) rows and (a+3) columns. If both XY and YX exist, then what are the values of a, brespectively?
 - (a) 3, 2 (c) 2,4
- (b) 2, 3 (d) 4, 3
- 34. In a football championship 153 matches were played. Every team played one match with each other team. How many teams participated in the championship?
 - (a) 21 (c) 17
- (b) 18
- 35. The equation
 - $x 2(x 1)^{-1} = 1 2(x 1)^{-1}$ has
 - (a) no roots
- (b) one root
- (c) two equal roots
- (d) infinite roots

- 36. The number 0.0011 in binary system represents
 - (a) rational number 3/8 in decimal system
 - (b) rational number 1/8 in decimal system
 - (c) rational number 3/16 in decimal system
 - (d) rational number 5/16 in decimal system
- 37. The function $y = \tan^{-1} x x$
 - (a) is always decreasing
 - (b) is always increasing
 - (c) first increases and then decreases
 - (d) first decreases and then increases
- 38. If n(A) = 115, n(B) = 326, n(A B) = 47, then what is $n(A \cup B)$ equal to ? (b) 165
 - (a) 373

 - (c) 370
- (d) 394 39. What does the equation x dy = y dx represent?
 - (a) A family of circles
 - (b) A family of parabolas
 - (c) A family of hyperbolas
 - (d) A family of straight lines
- 40. What is the value of k if the area bounded by the curve $y = \sin kx$, y = 0, $x = \pi / k$, $x = \pi / (3k)$ is 3 sq unit?
 - (a) 1/2
- (b) 1
- (c) 3/2
- (d) 2 41. What is the solution of the differential equation $x dy - y dx = xy^2 dx$?
 - (a) $y + x^{-2} = c$
- (c) $y + x^{-1} = c$
- (b) $y^2 + 2x^{-1} = c$ (d) $x^2 + 2xy^{-1} = c$

where c is a constant.

- 42. If $f(x) = a + bx + cx^2$, then what is $\int_0^1 f(x) dx$ equal to ?
 - (a) [f(0) + 4f(1/2) + f(1)]/6
 - (b) [f(0)+4f(1/2)+f(1)]/3
 - (c) [f(0) + 4f(1/2) + f(1)]
 - (d) [f(0) + 2f(1/2) + f(1)]/6
- 43. What is $\int \frac{a+b\sin x}{2} dx$ equal to ?
 - (a) $a \sec x + b \tan x + c$
 - (b) $a \tan x + b \sec x + c$
 - (c) a cot x + b cosec x + c
 - (d) $a \csc x + b \cot x + c$
 - where a, b, c are constants.
- 44. If $e^y + xy = c$, then what is the value of $\frac{d^2y}{dx^2}$ at x = 0? (a) e^{-1}
 - (c) e
- (d) 1
- 45. What is $\int \frac{\log x}{(1 + \log x)^2} dx$ equal to ?

- If P(A) denotes the power set of A and A is the void set, then what is number of elements in $P\{P\{P\{P(A)\}\}\}$?
- (b) 1
- 47. What is $\lim_{x \to \infty} \left(\frac{x}{3+x} \right)^{3x}$ equal to ?

- **48.** Consider the following function $f: R \to R$ such that f(x) = x if $x \ge 0$ and $f(x) = -x^2$ if x < 0. Then, which one of the following is correct?
 - (a) f(x) is continuous at every $x \in R$
 - (b) f(x) is continuous at x = 0 only
 - (c) f(x) is discontinuous at x = 0 only
 - (d) f(x) is discontinuous at every $x \in R$
- **49.** If $\sqrt{1-x^2} + \sqrt{1-y^2} = a$, then what is $\frac{dy}{dx}$ equal to? (a) $\sqrt{(1-x^2)(1-y^2)}$ (b) $\sqrt{\frac{1-y^2}{1-x^2}}$

- (d) None of these
- 50. If $x = \log t$ and $y = t^2 1$, then what is $\frac{d^2y}{dx^2}$ at t = 1 equal
 - (a) 2
- (c) -4
- **51.** Which one of the following functions $f: R \to R$ is injective?
 - (a) f(x) = |x| for all $x \in R$

(b) 3

- (b) $f(x) = x^2$ for all $x \in R$
- (c) f(x) = 11 for all $x \in R$
- (d) f(x) = -x for all $x \in R$
- **52.** What is the derivative of $\log_x 5$ with respect to $\log_5 x$?
 - (a) $-(\log_5 x)^{-2}$
- (b) $(\log_5 x)^{-2}$
- (c) $-(\log_x 5)^{-2}$
- (d) $(\log_x 5)^{-2}$
- **53.** The velocity ν of a particle at any instant t moving in a straight line is given by v = s + 1 where s metre is the distance travelled in t second. What is the time taken by the particle to cover a distance of 9 m?
 - (a) 1 s
- (b) (log 10) s
- (c) 2 (log 10) s
- (d) 10 s
- **54.** The curve $y^2 = -4ax(a > 0)$ lies in
 - (a) First and fourth quadrants
 - (b) First and second quadrants
 - (c) Second and third quadrants
 - (d) Third and fourth quadrants
- **55.** The circle $x^2 + y^2 + 4x 4y + 4 = 0$ touches
 - (a) Only the x-axis
- (b) Only the y-axis
- (c) Both the axes
- (d) Neither of the axes
- **56.** What is the value of n so that the angle between the lines having direction ratios (1, 1, 1) and (1, -1, n) is 60° ?
- (b) √6
- (c) 3
- (d) None of these
- 57. What is the product of the perpendiculars from the two points $(\pm \sqrt{b^2 - a^2}, 0)$ to the line $ax \cos \phi + by \sin \phi = ab$?
 - (a) a^2
- (b) b^2
- (c) ab
- (d) a/b
- 58. The middle point of the segment of the straight line joining the points (p, q) and (q, -p) is (r/2, s/2). What is the length of the segment?
 - (a) $[(s^2 + r^2)^{1/2}]/2$
- (b) $[(s^2 + r^2)^{1/2}]/4$
- (c) $(s^2 + r^2)^{1/2}$
- 59. The direction cosines of a line are proportional to (2, 1, 2) and the line intersects a plane perpendicularly at the point (1, -2, 4). What is the distance of the plane from the point (3, 2, 3)?
 - (a) $\sqrt{3}$
- (b) 2
- (c) $2\sqrt{2}$
- (d) 4

- 60. The foot of the perpendicular drawn from the origin to a plane is the point (1, -3, 1). What is the intercept cut on the x-axis by the plane?
 - (a) 1 (c) $\sqrt{11}$
- (b) 3 (d) 11
- **61.** A line makes the same angle α with each of the x and y axes. If the angle θ , which it makes with the z-axis, is such that $\sin^2 \theta = 2 \sin^2 \alpha$, then what is the value of α ?
 - (a) $\pi/4$
- (b) $\pi/6$ (d) $\pi/2$
- (c) $\pi/3$
- 62. What is the locus of a point which is equidistant from the point (m + n, n - m) and the point (m - n, n + m)? (b) nx = -my
 - (a) mx = ny(c) nx = my
- (d) mx = -ny
- 63. What is the equation of the sphere which has its centre at (6, -1, 2) and touches the plane 2x - y + 2z - 2 = 0?
 - (a) $x^2 + y^2 + z^2 + 12x 2y + 4z + 16 = 0$
 - (b) $x^2 + y^2 + z^2 + 12x 2y + 4z 16 = 0$
 - (c) $x^2 + y^2 + z^2 12x + 2y 4z + 16 = 0$
 - (d) $x^2 + y^2 + z^2 12x + 2y 4z + 25 = 0$
- 64. What are the direction ratios of the line determined by the planes x - y + 2z = 1 and x + y - z = 3?
 - (a) (-1, 3, 2)
- (b) (-1, -3, 2)
- (c) (2, 1, 3)
- (d) (2, 3, 2)
- **65.** The ellipse $\frac{x^2}{169} + \frac{y^2}{25} = 1$ has the same eccentricity as the
 - ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$. What is the ratio of a to b?
 - (a) 5/13 (c) 7/8
- (b) 13/5 (d) 8/7

- 66. If \hat{a} and \hat{b} are the unit vectors along \vec{a} and \vec{b} respectively, then what is the projection of \vec{b} on \vec{a} ?
 - (a) \overrightarrow{a} \overrightarrow{b}
- (b) $\hat{\mathbf{a}} \cdot \hat{\mathbf{b}}$
- (c) $\hat{\mathbf{a}} \cdot \vec{\mathbf{b}}$
- (d) $|\vec{a} \times \vec{b}|$
- 67. What are the unit vectors parallel to xy-plane and perpendicular to the vector $4\hat{i} - 3\hat{j} + \hat{k}$?

 - (a) $\pm (3\hat{i} + 4\hat{j})/5$ (b) $\pm (4\hat{i} + 3\hat{j})/5$

 - (c) $\pm (3\hat{i} 4\hat{j})/5$ (d) $\pm (4\hat{i} 3\hat{j})/5$
- 68. What is the vector in the xy-plane through origin and perpendicular to the vector $\vec{\mathbf{r}} = a \hat{\mathbf{i}} + b \hat{\mathbf{j}}$ and of the same length?
 - (a) $-a\hat{i}-b\hat{j}$
- (b) $a\hat{i} b\hat{j}$
- (c) $-a\hat{i} + b\hat{j}$
- (d) $b\hat{i} a\hat{j}$
- **69.** Given $\overrightarrow{a} = 2\hat{i} 3\hat{j} + 4\hat{k}$ and \hat{b} is a unit vector co-directional with \hat{a} . If m is a scalar such that $\hat{b} = m \vec{a}$, then what is the value of m?
 - (a) 1/5 (c) 1/29
- (b) $1/\sqrt{5}$ (d) $1/\sqrt{29}$
- 70. The magnitude of the vectors \vec{a} and \vec{b} are equal and the angle between them is 60°. If the vectors $\lambda \vec{a} + \vec{b}$ and

- $\vec{a} \lambda \vec{b}$ are perpendicular to each other, then what is the value of λ ?
- (a) 1

- (d) 4
- 71. If $|\overrightarrow{a}| = 3$, $|\overrightarrow{b}| = 4$ and $|\overrightarrow{a} \overrightarrow{b}| = 7$, then what is the value of $|\vec{a} + \vec{b}|$?
 - (a) 3
- (b) 2 (d) 0
- (c) 1
- 72. Consider the diagonals of a quadrilateral formed by the vectors $3\hat{i} + 6\hat{j} - 2\hat{k}$ and $4\hat{i} - \hat{j} + 3\hat{k}$. The quadrilateral must be a
 - (a) Square
- (b) Rhombus
- (c) Rectangle
- (d) None of these
- 73. If $p = \sin (989^{\circ}) \cos (991^{\circ})$, then which one of the following is correct?
 - (a) p is finite and positive
 - (b) p is finite and negative
 - (c) p = 0
 - (d) p is undefined
- 74. If $A = \frac{41\pi}{12}$, then what is the value of $\frac{1 3 \tan^2 A}{3 \tan A \tan^3 A}$ $3 \tan A - \tan^3 A$
 - (a) -1(c) 1/3
- (b) 1
- (d) 3
- 75. If ω is the cube root of unity, then what is the conjugate of $2\omega^2 + 3i$?
 - (a) $2\omega 3i$
- (b) $3\omega + 2i$
- (c) $2\omega + 3i$
- (d) $3\omega 2i$
- 76. Consider the following statements
 - I. If $\theta = 1200^{\circ}$, then (sec $\theta + \tan \theta$)⁻¹ is positive.
 - II. If $\theta = 1200^{\circ}$, then (cosec $\theta \cot \theta$) is negative.

Which of the statements given above is/are correct?

- (a) I only
- (b) II only
- (c) Both I and II
- (d) Neither I nor II
- 77. If $\cot \theta = 2 \cos \theta$, where $(\pi/2) < \theta < \pi$, then what is the value of θ ?
 - (a) $5\pi/6$
- (b) $2\pi/3$
- (c) $3\pi/4$
- (d) $11\pi/12$
- **78.** If cot θ = 5/12 and θ lies in the third quadrant, then what is $(2 \sin \theta + 3 \cos \theta)$ equal to?
 - (a) -4
 - (b) $-p^2$ for some odd prime p
- (c) (-q/p) where p is an odd prime and q a positive integer with (q/p) not an integer
 - (d) -p for some odd prime p
- 79. What is the value of

$$\cos(\pi/9) + \cos(\pi/3) + \cos(5\pi/9) + \cos(7\pi/9)$$
?

- (a) 1
- (b) -1
- (c) -1/2
- (d) 1/2
- **80.** If in a \triangle ABC, $\cos B = (\sin A)/(2 \sin C)$, then the triangle is
 - (a) Isosceles triangle
- (b) Equilateral triangle
- (c) Right angled triangle
- (d) Scalene triangle
- 81. During a certain plane period a state out of a total budget of Rs 1400 crores had spent 28% of the total amount on Agriculture, 35% on Industry, 12% on Energy and 8% on Social Welfare, 105 crores on Education and the balance amount on Transport. What is the amount spent on Transport in crores of rupees?

- (a) 123
- (b) 145
- (c) 165 (d) 133
- 82. A class consists of 3 sections A, B and C with 35, 35 and 30 students respectively. The arithmetic means of the marks secured by students of sections A and B, who appeared for a test of 100 marks are 74 and 70 respectively. The arithmetic mean of the marks secured by students of section C, who appeared for a test in the same subject which carried 75 marks is 51. What is the average percentage of marks secured by all the 100 student of the three sections?
 - (a) 70.0
- (b) 70.8
- (c) 65.0
- (d) 67.5
- 83. In a town 35.4% of the people are not literates, 27% have education up to primary school, 18.6% have education up to middle school. The people with education up to high school are twice the number of people with education up to Pre-University. Of the remaining, 660 are graduates. If the population of the town is 15000, then what is the number of people with education up to high school?
 - (a) 3120
- (b) 1560
- (c) 1460
- (d) None of these
- 84. Three letters are randomly selected from the 26 capital letters of the English Alphabet. What is the probability that the letter 'A' will not be included in the choice?
 - (a) 1/2
- (b) 23/26 (d) 25/26
- (c) 12/13
- 85. A coin is tossed 10 times. The number of heads minus the number of tails in 10 tosses is considered as the outcome of the experiment. What is the number of points in the sample space?
 - (a) 10 (c) 21
- (b) 11
- (d) 99
- **86.** In a study on the relationship between investment (X) and profit (Y), the following two regression equations were obtained based on the data on X and Y

$$3X + Y - 12 = 0$$

$$X + 2Y - 14 = 0.$$

What is the mean \bar{X} ?

- (a) 6 (c) 4
- (b) 5 (d) 2
- 87. Following table gives the mean and variance of monthly demand for four products A, B, C and D in a supermarket

Product	A	В	С	D
Mean demand	60	90	80	120
Variance	12	25	36	16

For which product the demand is consistent?

- (a) Product A
- (b) Product B
- (c) Product C
- (d) Product D
- 88. What is the least value of the standard deviation of 5 integers, no two of which are equal?
 - (a) √5
 - (b) 2
- (d) No such least value can be computed
- 89. Two numbers are successively drawn from the set {1, 2, 3, 4, 5, 6, 7} without replacement and the outcomes recorded in that order. What is the number of elementary events in the random experiment?
 - (a) 49
- (b) 42
- (c) 21
- (d) 14

	events A and B are given as What is the minimum value of
$P(A \cap B)$?	43.04
(a) 0	(b) 0.1
(c) 0.5	(d) 1
91. Two numbers X and Y are	simultaneously drawn from the
set {1, 2, 3, 4, 5, 6, 7, 8, 9	9, 10}. What is the conditional
probability of exactly one	of the two numbers X and Y
being even, given $(X + Y)$:	= 15 ?
(a) 1	(b) 3/4
(c) 1/2	(d) 1/4
92 If $x = 2x + 2 = 3x + 3$ are the	e first three terms of a GP, then
what is its fourth term?	,
(a) -27/2	(b) 27/2
(a) $-27/2$ (c) $-33/2$	(d) 33/2
93. Correlation between two v	anable is said to be perfect if
(a) one variable increases	, the other also increases
(b) one variable increases	, the other decreases
(c) one variable increas	es, the other also increases
proportionally	
(d) one variable incre	ases, the other decreases
proportionally	•
94. Consider the following sta	tements
I. The data, which are	e collected from the unit or
individual responden	ts directly for the purpose of
cortain study or info	rmation are known as primary
data.	intaction are lare
	a census study are primary data.
II. The data obtained in a	conto is /ore correct?
Which of the above staten	dents is/are correct:
(a) I only	(b) II only
(c) Both I and II	(d) Neither I nor II
95. Given that $P(A) = 1/3$, $P(A) = 1/3$	$(B) = 3/4 \text{ and } P(A \cup B) = 11/12,$
then what is $P(B/A)$?	
(a) 1/6	(b) 4/9
(c) 1/2	(d) 1/3
96. If a, b and c are real number	ers then the roots of the equation (x-c)+(x-c)(x-a)=0 are
	(x-c) + (x-c)(x-a) = 0 are
always	4.2. ii
(a) real	
(c) positive	(b) imaginary
(c) positive	(d) negative
97. If (log x)(log 2x)(log 2x)	(d) negative
97. If $(\log_x x)(\log_3 2x)(\log_2 x)$	
97. If $(\log_x x)(\log_3 2x)(\log_2 x)$ value of y ?	(d) negative $(x, y) = \log_x x^2$, then what is the
97. If $(\log_x x)(\log_3 2x)(\log_2 x)$ value of y? (a) 9/2	(d) negative $(x, y) = \log_x x^2$, then what is the (b) 9
97. If $(\log_x x)(\log_3 2x)(\log_2 x)$ value of y? (a) 9/2 (c) 18	(d) negative $(x, y) = \log_x x^2$, then what is the (b) 9 (d) 27
97. If $(\log_x x)(\log_3 2x)(\log_2 x)$ value of y? (a) 9/2	(d) negative $(x, y) = \log_x x^2$, then what is the (b) 9 (d) 27 what is x equal to ?
 97. If (log_x x)(log₃ 2x)(log₂; value of y? (a) 9/2 (c) 18 98. If log_k x log₅ k = 3, then 	(d) negative $(x, y) = \log_x x^2$, then what is the (b) 9 (d) 27 what is x equal to ?
97. If $(\log_x x)(\log_3 2x)(\log_2 x)$ value of y ? (a) 9/2 (c) 18 98. If $\log_k x \log_5 k = 3$, then (a) k^5	(d) negative $(x, y) = \log_x x^2$, then what is the (b) 9 (d) 27 what is x equal to ? (b) $5k^3$
97. If $(\log_x x)(\log_3 2x)(\log_2 x)$ value of y ? (a) 9/2 (b) 18 98. If $\log_k x \log_5 k = 3$, then (a) k^5 (b) 243	(d) negative (y) = $\log_x x^2$, then what is the (b) 9 (d) 27 what is x equal to ? (b) $5k^3$ (d) 125
97. If $(\log_x x)(\log_3 2x)(\log_2 x)$ value of y ? (a) 9/2 (b) 18 98. If $\log_k x \log_5 k = 3$, then (a) k^5 (b) 243	(d) negative (y) = $\log_x x^2$, then what is the (b) 9 (d) 27 what is x equal to ? (b) $5k^3$ (d) 125
 97. If (log_x x)(log₃ 2x)(log₂; value of y? (a) 9/2 (c) 18 98. If log_k x log₅ k = 3, then (a) k⁵ (c) 243 99. Which term of the sequence 	(d) negative $(x, y) = \log_x x^2$, then what is the (b) 9 (d) 27 what is x equal to ? (b) $5k^3$
97. If $(\log_x x)(\log_3 2x)(\log_2 x)$ value of y ? (a) 9/2 (b) 18 98. If $\log_k x \log_5 k = 3$, then (a) k^5 (b) 243	(d) negative (b) 9 (d) 27 what is x equal to? (b) $5k^3$ (d) 125 ce $20, 19\frac{1}{4}, 18\frac{1}{2}, 17\frac{3}{4}, \dots$ is the
 97. If (log_x x)(log₃ 2x)(log₂; value of y? (a) 9/2 (c) 18 98. If log_k x log₅ k = 3, then (a) k⁵ (c) 243 99. Which term of the sequence 	(d) negative (b) 9 (d) 27 what is x equal to? (b) $5k^3$ (d) 125 ce $20, 19\frac{1}{4}, 18\frac{1}{2}, 17\frac{3}{4}, \dots$ is the (b) 28th
 97. If (log_x x)(log₃ 2x)(log₂; value of y? (a) 9/2 (c) 18 98. If log_k x log₅ k = 3, then (a) k⁵ (c) 243 99. Which term of the sequentirst negative term? 	(d) negative (b) 9 (d) 27 what is x equal to? (b) $5k^3$ (d) 125 ce $20, 19\frac{1}{4}, 18\frac{1}{2}, 17\frac{3}{4}, \dots$ is the
 97. If (log_x x)(log₃ 2x)(log₂; value of y? (a) 9/2 (c) 18 98. If log_k x log₅ k = 3, then (a) k⁵ (c) 243 99. Which term of the sequentists negative term? (a) 27th (c) 29th 	(d) negative (y) = $\log_x x^2$, then what is the (b) 9 (d) 27 what is x equal to ? (b) $5k^3$ (d) 125 ce $20, 19\frac{1}{4}, 18\frac{1}{2}, 17\frac{3}{4}, \dots$ is the (b) $28th$ (d) No such term exists
 97. If (log_x x)(log₃ 2x)(log₂; value of y? (a) 9/2 (c) 18 98. If log_k x log₅ k = 3, then (a) k⁵ (c) 243 99. Which term of the sequentirst negative term? (a) 27th (c) 29th 100. If sin⁻¹ x + cot⁻¹ (1/2) = 	(d) negative (b) 9 (d) 27 what is x equal to? (b) $5k^3$ (d) 125 ce $20, 19\frac{1}{4}, 18\frac{1}{2}, 17\frac{3}{4}, \dots$ is the (b) $28th$ (d) No such term exists $\pi/2$, then what is the value of x?
 97. If (log_x x)(log₃ 2x)(log₂; value of y? (a) 9/2 (c) 18 98. If log_k x log₅ k = 3, then (a) k⁵ (c) 243 99. Which term of the sequentists negative term? (a) 27th (c) 29th 100. If sin⁻¹ x + cot⁻¹ (1/2) = (a) 0 	(d) negative (b) $y = \log_x x^2$, then what is the (b) $y = (d) 27$ (d) $y = (d) 27$ (e) $y = (d) 27$ (f) $y = (d) 27$ (h) $y = (d) 27$ (h) $y = (d) 28$ (h) $y = (d) 28$ (h) $y = (d) 28$ (l) $y = (d) 2$
97. If $(\log_x x)(\log_3 2x)(\log_2 x)$ value of y ? (a) $9/2$ (c) 18 98. If $\log_k x \log_5 k = 3$, then (a) k^5 (c) 243 99. Which term of the sequentists negative term? (a) 27 th (b) 29 th 100. If $\sin^{-1} x + \cot^{-1} (1/2) = 0$ (c) $2/\sqrt{5}$	(d) negative (b) 9 (d) 27 what is x equal to? (b) $5k^3$ (d) 125 ce $20, 19\frac{1}{4}, 18\frac{1}{2}, 17\frac{3}{4}, \dots$ is the (b) $28th$ (d) No such term exists $\pi/2$, then what is the value of x? (b) $1/\sqrt{5}$ (d) $\sqrt{3}/2$
 97. If (log_x x)(log₃ 2x)(log₂; value of y? (a) 9/2 (c) 18 98. If log_k x log₅ k = 3, then (a) k⁵ (c) 243 99. Which term of the sequentists negative term? (a) 27th (c) 29th 100. If sin⁻¹ x + cot⁻¹ (1/2) = (a) 0 	(d) negative (b) 9 (d) 27 what is x equal to? (b) $5k^3$ (d) 125 ce $20, 19\frac{1}{4}, 18\frac{1}{2}, 17\frac{3}{4}, \dots$ is the (b) $28th$ (d) No such term exists $\pi/2$, then what is the value of x? (b) $1/\sqrt{5}$ (d) $\sqrt{3}/2$

which these equations have at least one common root ? (a) -2 only (b) 1 only

(c) -2 and 1

(d) -2 and -1

102. Looking from the top of a 20 elevation of the top of a to depression of its bottom is 3 tower?	wer is 60° and the angle of		
(a) 50 m (c) 70 m	(b) 60 m (d) 80 m		
	c 20° – sec 20° ? (b) 3 (d) 1		
104. Match List-I with List-II and s the code given below the list	elect the correct answer using		
List-I	List-II		
A. tan 15°	1. $-2-\sqrt{3}$		
B. tan 75°	2. $2+\sqrt{3}$		
C. tan 105°	$\begin{vmatrix} 3 & -2 + \sqrt{3} \end{vmatrix}$		
G. Lun 100	4. $2-\sqrt{3}$		
Code :			
Code : A B C			
(a) 4 1 2			
(b) 4 2 1 (c) 3 2 1			
(c) 3 2 1 (d) 2 1 4			
105. In a $\triangle ABC$, $a + b = 3(1 + \sqrt{3})$	cm and $a - b = 3(1 - \sqrt{3})$ cm.		
If angle A is 30°, then what i	is the angle B?		
(a) 120°	(b) 90° (d) 60°		
(c) 75° 106. If $N_a = \{ax \mid x \in N\}$, then wh			
106. If $N_a = \{ax \mid x \in N\}$, then when N_{12}	(b) N ₂₀		
(c) N_{24}	(d) N ₄₈		
107. If $X = \{(4^n - 3n - 1) n \in \mathbb{N}\}$			
then what is $X \cup Y$ equal to	?		
(a) X	(b) Y		
(c) <i>N</i> 108. Sets <i>A</i> and <i>B</i> have <i>n</i> eleme	(d) A null set		
elements will $(A \times B)$ and $(B \times B)$	$\times A$) have in common?		
(a) 0	(b) 1		
(c) n	(d) n^2		
109. If z is a complex number suc	h that $z + z^{-1} = 1$, then what is		
the value of $z^{99} + z^{-99}$?			
(a) 1	(b) -1 (d) -2		
(c) 2			
110. In an AP, the m th term $1/n$ and n th term is $1/m$. What is its (mn) th term?			
(a) $1/(mn)$	(b) m/n		
(c) n/m	(d) 1		
111. How many times does the dintegers from 1 to 1000?	igit 3 appear writie writing the		
(a) 269	(b) 271		
(c) 300	(d) None of these		
112. Consider the following state I. The coefficient of the m	iddle term in the expansion of		
	middle term of $\left(x + \frac{1}{x}\right)^8$.		
$(1+x)^8$ is less than the	aiddle term in the expansion of coefficient of the fifth term in		
the expansion of $(1 + x)^7$.			
Which of the above stateme	ents is/are correct ?		
(a) I only (c) Both I and II	(b) II only (d) Neither I nor II		
(c) Dom I mid II			

UPSC NDA Exam 2009-II Mathematics Solved Paper

- 113. When a and b are eliminated from the equation $xy = ae^x + be^{-x}$, the resulting differential equation is of
 - (a) first order and first degree
 - (b) first order and second degree
 - (c) second order and first degree
 - (d) second order and second degree
- 114. If $y = (1 + x^{1/4})(1 + x^{1/2})(1 x^{1/4})$, then what is $\frac{dy}{dx}$ equal to?
 - (a) 1
- (b) -1
- (c) 0
- (d) -2x
- 115. The velocity of telegraphic communication is given by $v = x^2 \log (1/x)$, where x is the displacement. For maximum velocity, x equals to?
 - (a) $e^{1/2}$
- (h) $e^{-1/2}$
- (c) $(2e)^{-1}$
- (d) $2e^{-1/2}$
- 116. What is the area bounded by the curve $y = 4x x^2 3$ and the x-axis?

- (a) 2/3 sq unit
- (b) 4/3 sq unit
- (c) 5/3 sq unit
- (d) 4/5 sq unit
- 117. A function f is such that $f'(x) = 6 4 \sin 2x$ and f(0) = 3. What is f(x) equal to?
 - (a) $6x + 2\cos 2x$
- (b) $6x 2\cos 2x$
- (c) $6x 2\cos 2x + 1$
- (d) $6x + 2\cos 2x + 1$
- 118. If $f(x) = e^x$ and $g(x) = \log x$, then what is the value of $(g \circ f)'(x)$?
 - (a) 0
- (b) 1
- (c) e
- (d) None of these
- 119. Let $g(x) = x^3 4x + 6$. If f'(x) = g'(x) and f(1) = 2, then what is f(x) equal to ?
 - (a) $x^3 4x + 3$
- (b) $x^3 4x + 6$
- (c) $x^3 4x + 1$
- (d) $x^3 4x + 5$
- 120. Let $f: R \to R$ be defined by f(x) = |x| / x, $x \ne 0$, f(0) = 2. What is range of f?
 - (a) {1, 2}
- (b) {1, -1}
- (c) {-1, 1, 2}
- (d) {1}

Answers: Mathematics

1	(b)	51	(d)
2	(d)	52	(a)
3	(b)	53	(b)
4	(d)	54	(c)
5	(a)	55	(c)
6	(b)	56	(b)
7	(c)	57	(a)
8	(a)	58	(c)
9	(c)	59	(b)
10	(c)	60	(d)
11	(b)	61	(a)
12	(c)	62	(c)
13	(c)	63	(c)
14	(c)	64	(a)
15	(b)	65	(b)
16	(d)	66	(a)
17	(b)	67	(a)
18	(d)	68	(d)
19	(a)	69	(d)
20	(b)	70	(a)
21	(a)	71	(c)
22	(c)	72	(b)
23	(b)	73	(b)
24	(c)	74	(b)
25	(b)	75	(a)
26	(a)	76	(d)
27	(d)	77	(a)
28	(c)	78	(d)
29	(b)	79	(d)
30	(b)	80	(a)
31	(b)	81	(d)
32	(b)	82	(b)
33	(b)	83	(c)
34	(b)	84	(b)
35	(a)	85	(b)
36	(c)	86	(d)
37	(a)	87	(d)
38	(a)	88	(c)

101	(c)
102	(d)
103	(a)
104	(b)
105	(d)
106	(c)
107	(b)
108	(d)
109	(d)
110	(d)
111	(b)
112	(a)
113	(c)
114	(b)
115	(b)
116	(b)
117	(d)
118	(b)
119	(d)
120	(c)

39	(d)	89	(b)
40	(a)	90	(c)
41	(d)	91	(a)
42	(a)	92	(a)
43	(b)	93	(c)
44	(b)	94	(c)
45	(c)	95	(c)
46	(d)	96	(a)
47	(c)	97	(b)
48	(a)	98	(d)
49	(d)	99	(b)
50	(d)	100	(b)