Nota:	
-------	--

MA 141 Geometria Analítica e Vetores

Primeiro Semestre de 2012

EXAME

10 de Julho de 2012

Nome:	RA:

$Quest\~oes$	Pontos
Questão 1	
Questão 2	
Questão 3	
Questão 4	
Total	

Boa Prova!

Questão 1. (2.5 Pontos)

Considere o sistema linear AX = Y, onde

$$A = \begin{bmatrix} 1 & 2 & -3 \\ 3 & -1 & 5 \\ 1 & 1 & a^2 - 17 \end{bmatrix} \quad \text{e} \quad Y = \begin{bmatrix} -4 \\ 2 \\ a + 2 \end{bmatrix}$$

- (a) Determine os valores de $\,a\,$ para que o sistema linear tenha solução única.
- (b) Existem valores de a para os quais o sistema linear tem infinitas soluções?
- (c) Existem valores de a para os quais o sistema linear não tem solução?

Questão 2. (2.0 Pontos)

Escreva o vetor $\vec{w}=(1,-1,2)$, de modo único, como $\vec{w}=\vec{u}+\vec{v}$, onde os vetores \vec{u} e \vec{v} satisfazem simultaneamente as seguintes condições:

- \bullet os vetores \vec{u} , $\vec{r}=(1,1,1)$ e $\vec{s}=(1,0,1)$ são linearmente dependentes
- \bullet o vetor \vec{v} é ortogonal aos vetores \vec{r} e \vec{s}

determinando explicitamente os vetores \vec{u} e \vec{v} . Faça uma interpretação geométrica.

Questão 3. (3.0 Pontos)

Considere o plano $\,\pi\,$ dada pela equação vetorial

$$\pi: X = (1,1,1) + \alpha(0,1,1) + \beta(-1,2,1) , \alpha, \beta \in \mathbb{R},$$

a reta r dada pela equação vetorial

$$r: X = (1,1,2) + \lambda(-3,2,-1) , \lambda \in \mathbb{R},$$

e o ponto $P = (1, 2, 1) \notin \pi$.

- (a) Estude a posição relativa da reta r e do plano π .
- (b) Determine a distância entre a reta r e o plano π .
- (c) Determine o ponto $Q \in \pi$ de modo que $d(P,Q) = d(P,\pi)$.
- (d) Determine o ponto P' que seja simétrico ao ponto P em relação ao plano π .

Questão 4. (2.5 Pontos)

Seja $\gamma = \{\vec{u}, \vec{v}, \vec{w}\}$ uma base ordenada de $I\!\!R^3$.

- (a) Mostre que $\beta = \{ \vec{u} + \vec{v} + \vec{w}, \vec{u} 2\vec{w}, \vec{u} \vec{v} + \vec{w} \}$ também é uma base de $I\!\!R^3$.
- (b) Considere que o vetor $\vec{r} \in I\!\!R^3$ tem por matriz de coordenadas na base $\,\beta\,$

$$[\vec{r}]_{\beta} = \begin{bmatrix} 2 \\ -1 \\ 3 \end{bmatrix}.$$

Determine a matriz de coordenadas do vetor \vec{r} com relação à base ordenada γ .