Homework 4: Tension Test Analysis

Junesh Gautam

February 24, 2025

Problem 3.22(a): Engineering Stress-Strain Properties

Calculations

• Elastic Modulus (E): Calculated using the slope of the linear elastic region (first three data points):

 $E = \frac{\Delta \sigma}{\Delta \varepsilon} = \frac{257 \text{ MPa} - 0}{0.0012 - 0} = \boxed{214 \text{ GPa}}$

• Yield Strength (σ_y): Determined using the 0.2% offset method (Fig. 2):

333 MPa

• Ultimate Tensile Strength (σ_u): Maximum engineering stress observed in the dataset:

576 MPa

• Percent Reduction in Area: Initial area $A_0 = \frac{\pi}{4}(6.32)^2 = 31.4 \text{ mm}^2$, Fracture area $A_f = \frac{\pi}{4}(3.50)^2 = 9.62 \text{ mm}^2$:

 $\text{Reduction} = \left(1 - \frac{A_f}{A_0}\right) \times 100\% = \boxed{69.3\%}$

Graphs

Figure 1: Engineering stress-strain curve for Man-Ten steel. The elastic modulus (slope of the linear region) and ultimate tensile strength are highlighted.

Figure 2: 0.2% offset method to determine yield strength (σ_y). The intersection of the offset line (parallel to the elastic modulus) with the curve gives $\sigma_y = 333$ MPa.

Problem 3.22(b): True Stress-Strain Analysis

Key Steps

- 1. True Stress-Strain Calculations:
 - Before Necking: Use engineering data:

$$\sigma_{\rm true} = \sigma_{\rm engr} (1 + \varepsilon_{\rm engr}), \quad \varepsilon_{\rm true} = \ln(1 + \varepsilon_{\rm engr})$$

• After Necking: Use measured diameter d:

$$\sigma_{\rm true, \; corrected} = \frac{\sigma_{\rm engr} \cdot A_0}{A}, \quad \varepsilon_{\rm true} = \ln \left(\frac{A_0}{A}\right), \quad A = \frac{\pi}{4} d^2$$

2. Fracture Point:

$$\sigma_{\text{fracture}} = \frac{379 \text{ MPa} \cdot 31.4 \text{ mm}^2}{\frac{\pi}{4}(3.50)^2} = \boxed{1315 \text{ MPa}}, \quad \varepsilon_{\text{fracture}} = \ln\left(\frac{31.4}{9.62}\right) = \boxed{1.105}$$

Graphs

Problem 3.22(c): Strain Hardening Parameters H and n

Methodology

1. True Plastic Strain: For data beyond yielding, subtract elastic strain:

$$\varepsilon_p = \varepsilon_{\rm true} - \frac{\sigma_{\rm true}}{E}$$

2. Fit Eq. 3.27 ($\sigma = H\varepsilon_p^n$): Use Excel Solver to minimize MSE between model and corrected true stress data. Final parameters:

$$H = 920 \text{ MPa}, \quad n = 0.21$$

Figure 3: True stress-strain curve for Man-Ten steel. Raw values (blue) use $\sigma_{\rm true} = \sigma_{\rm engr}(1 + \varepsilon_{\rm engr})$. Corrected values (red) use measured necking diameters.

Figure 4: Log-log plot of corrected true stress vs. true plastic strain. The fitted curve (red line) validates H and n.

Graph

Problem 3.23: Strain Hardening Exponent and Ultimate Strength

(a) Derivation: $n \approx \varepsilon_u$

Assuming plastic strain dominates ($\varepsilon_p \approx \varepsilon$), the power-law hardening equation becomes:

$$\hat{\sigma} = H\varepsilon^n$$

True stress and strain relate to engineering values as:

$$\sigma_{\rm true} = \sigma_{\rm engr}(1+\varepsilon), \quad \varepsilon_{\rm true} = \ln(1+\varepsilon)$$

At ultimate tensile strength (σ_u) , the engineering stress is maximized. Substitute $\sigma_{\text{true}} = H\varepsilon^n$ into σ_{engr} :

$$\sigma_{\rm engr} = \frac{H\varepsilon^n}{1+\varepsilon}$$

Maximize $\sigma_{\rm engr}$ by differentiating with respect to ε and setting to zero:

$$\frac{d}{d\varepsilon} \left(\frac{H\varepsilon^n}{1+\varepsilon} \right) = 0 \implies n(1+\varepsilon) - \varepsilon = 0 \implies \boxed{n \approx \varepsilon_u}$$

(b) Validation for AISI 1020 Steel

From Table E3.1:

- \bullet True plastic strain at ultimate strength: $\tilde{\varepsilon}_p = 0.2078$
- Strain hardening exponent from Fig. 3.23: n = 0.2117

Error =
$$\frac{|0.2117 - 0.2078|}{0.2078} \times 100\% = 1.9\%$$
 (Excellent agreement)

Conclusion: $n \approx \varepsilon_u$ holds well for AISI 1020 steel.

(c) Equation for Ultimate Tensile Strength

From the derivation in (a), substitute $\varepsilon_u = n$ into σ_u :

$$\sigma_u = \frac{Hn^n}{1+n}$$

For AISI 1020 steel (H = 920 MPa, n = 0.21):

$$\sigma_u = \frac{920 \times 0.21^{0.21}}{1 + 0.21} \approx \boxed{515 \text{ MPa}}$$

Note: Actual $\sigma_u = 395$ MPa. The discrepancy arises from neglecting elastic strains and approximations in the power-law model.

Problem 3.24: Cantilever Beam Material Selection

(a) Minimize Mass

The deflection constraint is given by:

$$v_{\text{max}} = \frac{PL^3}{3EI}$$
 where $I = \frac{\pi r^4}{4}$.

Rearranging for radius r:

$$r = \left(\frac{4PL^3}{3E\pi v_{\text{max}}}\right)^{1/4}.$$

Mass of the beam:

$$Mass = \rho \cdot \pi r^2 L \propto \frac{\rho}{E^{1/2}}.$$

From Table 3.8, the material with the lowest $\frac{\rho}{E^{1/2}}$ is:

$$\boxed{ \text{Wood (Loblolly Pine)} } \quad \text{(Mass Rank} = 1).$$

(b) Minimize Cost

Using the cost-effectiveness metric $\frac{C_m\rho}{\sigma_c^{2/3}}$ from Table 3.8:

Wood (Loblolly Pine) (Cost Rank
$$= 1$$
).

(c) Balanced Choice

A reasonable compromise considering both mass and cost:

Graphical Support

	Modulus	Strength	Density	Relative	Mass	Mass	Cost	Cost	
					Minimizing		Minimizing		
Material	E. GPa	MPa	p, g/cm3	Cost, Cm	function	Rank	Function	Rank	
Mild steel									
(AISI 1020)	203	260	7.9	1	0.5545	7	0.5545	2	
Low-alloy steel									
(AISI 4340)	207	1103	7.9	3	0.5491	6	1.6473	3	
Aluminum alloy									
(7075-T6)	71	469	2.7	6	0.3204	3	1.9226	4	
Titanium alloy									
(Ti_6A1_4V)	117	1185	4.5	45	0.4160	4	18.7211	7	
_									
Engineering									
PolymerPolycarbonate (PC)	2.4	62	1.2	5	0.7746	8	3.8730	Ę	
wood									
(Loblolly pine)	12.3	88	0.51	1.5	0.1454	1	0.2181	1	
Composite									
(Glass cloth in epoxy)	21	380	2	10	0.4364	5	4.3644	6	
Composite laminate									
(Graphite fibers in epoxy)	76	930	1.6	200	0.1835	2	36.7065	8	

Figure 5: Material selection chart for mass minimization. Wood (loblolly pine)e offers the lowest mass.

	Modulus	Strength	Density	Relative	Mass	Mass	Cost	Cost
Material					Minimizing		Minimizing	
	E. GPa	MPa	p, g/cm3	Cost, Cm	function	Rank	Function	Rank
Mild steel								
(AISI 1020)	203	260	7.9	1	0.5545	7	0.5545	2
Low-alloy steel								
(AISI 4340)	207	1103	7.9	3	0.5491	6	1.6473	3
Aluminum alloy								
(7075-T6)	71	469	2.7	6	0.3204	. 3	1.9226	4
Titanium alloy								
(Ti_6A1_4V)	117	1185	4.5	45	0.4160	4	18.7211	7
Engineering								
PolymerPolycarbonate (PC)	2.4	62	1.2	5	0.7746	8	3.8730	5
wood								
(Loblolly pine)	12.3	88	0.51	1.5	0.1454	1	0.2181	1
Composite								
(Glass cloth in epoxy)	21	380	2	10	0.4364	. 5	4.3644	6
Composite laminate								
(Graphite fibers in epoxy)	76	930	1.6	200	0.1835	2	36.7065	8

Figure 6: Cost-effectiveness comparison. Wood (loblolly pine) is the most economical.

Problem 3.25: Tension Member Material Selection

(a) Strength Requirement

The cross-sectional dimension h must satisfy:

$$\sigma = \frac{P}{h^2} \le \frac{\sigma_c}{X} \implies h \ge \sqrt{\frac{PX}{\sigma_c}}.$$

 $Mass \propto \rho h^2 L = \rho \frac{PX}{\sigma_c} L \propto \frac{\rho}{\sigma_c}.$

(b) Deflection Requirement

The elongation ΔL must satisfy:

$$\Delta L = \frac{PL}{Eh^2} \le \Delta L_{\max} \implies h \ge \sqrt{\frac{PL}{E\Delta L_{\max}}}.$$

 ${\it Mass} \propto \rho h^2 L = \rho {PL \over E\Delta L_{\rm max}} L \propto {\rho \over E}.$

(c) Compromise Material Choice

From Table 3.8, evaluate materials based on $\frac{\rho}{\sigma_c}$ (strength) and $\frac{\rho}{E}$ (stiffness):

- Best for Strength: Composite Laminate (Graphite fibers in epoxy) $\left(\frac{\rho}{\sigma_c^2/3} = 0.0168\right)$.
- Best for Stiffness: Wood (Loblolly Pine) $(\frac{\rho}{E} = 0.0258)$.
- Balanced Choice: Aluminum Alloy 7075-T6

Justification: - Lightweight ($\rho = 2.7 \text{ g/cm}^3$) with moderate strength ($\sigma_c = 469 \text{ MPa}$). - Cost-effective compared to composites/titanium (Cost Rank = 4). - Widely used in aerospace for its strength-to-weight ratio and manufacturability.

Graphical Support

		(a) Materials Data						(b) Calculated Values		
			Density	Relative				Cm p		
		Strength			Mass minimizing function by		Mass Minimizing function by	Mass	Cost Minimizing	Cost
Material	E. GPa	MPa	p, g/cm3	Cost, Cm	strength	Rank	deflection	Rank	Function	Rank
Mild steel										
(AISI 1020)	203	260	7.9	1	0.1939	8	0.5545	7	0.5545	2
Low-alloy steel										
(AISI 4340)	207	1103	7.9	3	0.0740	6	0.5491	6	1.6473	3
Aluminum alloy										
(7075-T6)	71	469	2.7	6	0.0447	5	0.3204	3	1.9226	4
Titanium alloy										
(Ti_6A1_4V)	117	1185	4.5	45	0.0402	4	0.4160	4	18.7211	7
Engineering										
PolymerPolycarbonate (PC)	2.4	62	1.2	5	0.0766	7	0.7746	8	3.8730	
wood										
(Loblolly pine)	12.3	88	0.51	1.5	0.0258	2	0.1454	1	0.2181	1
Composite										
(Glass cloth in epoxy)	21	380	2	10	0.0381	3	0.4364	5	4.3644	
Composite laminate										
(Graphite fibers in epoxy)	76	930	1.6	200	0.0168	1	0.1835	2	36.7065	8

Figure 7: Material trade-off chart for tension member design. Aluminum alloy balances weight, strength, and cost.