International Rectifier

IRLML6401PbF

HEXFET® Power MOSFET

- Ultra Low On-Resistance
- P-Channel MOSFET
- SOT-23 Footprint
- Low Profile (<1.1mm)
- Available in Tape and Reel
- Fast Switching
- 1.8V Gate Rated
- Lead-Free
- Halogen-Free

$V_{DSS} = -12V$ $R_{DS(on)} = 0.05\Omega$

Description

These P-Channel MOSFETs from International Rectifier utilize advanced processing techniques to achieve extremely low onresistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET® power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in battery and load management.

A thermally enhanced large pad leadframe has been incorporated into the standard SOT-23 package to produce a HEXFET Power MOSFET with the industry's smallest footprint. This package, dubbed the Micro3™, is ideal for applications where printed circuit board space is at a premium. The low profile (<1.1mm) of the Micro3 allows it to fit easily into extremely thin application environments such as portable electronics and PCMCIA cards. The thermal resistance and power dissipation are the best available.

Absolute Maximum Ratings

	Parameter	Max.	Units
V _{DS}	Drain- Source Voltage	-12	V
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ -4.5V	-4.3	
I _D @ T _A = 70°C	Drain- Source Voltage 25°C Continuous Drain Current, V _{GS} @ -4.5V -4.3 70°C Continuous Drain Current, V _{GS} @ -4.5V -3.4 Pulsed Drain Current ① 25°C Power Dissipation 1.3 70°C Power Dissipation Linear Derating Factor Single Pulse Avalanche Energy ④ 33 Gate-to-Source Voltage	-3.4	A
I _{DM}	Pulsed Drain Current ①	-34	
P _D @T _A = 25°C	Power Dissipation	1.3	W
P _D @T _A = 70°C Power Dissipation		0.8	vv
	Linear Derating Factor	0.01	W/°C
E _{AS}	Single Pulse Avalanche Energy⊕	33	mJ
V _{GS}	Gate-to-Source Voltage	± 8.0	V
T _{J.} T _{STG}	Junction and Storage Temperature Range	-55 to + 150	°C

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JA}$	Maximum Junction-to-Ambient®	75	100	°C/W

Electrical Characteristics @ $T_J = 25$ °C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	-12			V	$V_{GS} = 0V, I_D = -250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		-0.007		V/°C	Reference to 25°C, I _D = -1mA
				0.050	Ω	V _{GS} = -4.5V, I _D = -4.3A ②
R _{DS(on)}	Static Drain-to-Source On-Resistance			0.085	52	V _{GS} = -2.5V, I _D = -2.5A ②
				0.125		V _{GS} = -1.8V, I _D = -2.0A ②
V _{GS(th)}	Gate Threshold Voltage	-0.40	-0.55	-0.95	V	$V_{DS} = V_{GS}, I_{D} = -250 \mu A$
9 fs	Forward Transconductance	8.6			S	$V_{DS} = -10V, I_{D} = -4.3A$
lane	Drain-to-Source Leakage Current			-1.0	μА	$V_{DS} = -12V, V_{GS} = 0V$
I _{DSS}				-25		$V_{DS} = -9.6V, V_{GS} = 0V, T_{J} = 55^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage			-100	n 1	V _{GS} = -8.0V
IGSS	Gate-to-Source Reverse Leakage			100	nA	$V_{GS} = 8.0V$
Qg	Total Gate Charge		10	15		I _D = -4.3A
Q _{gs}	Gate-to-Source Charge		1.4	2.1	nC	$V_{DS} = -10V$
Q _{gd}	Gate-to-Drain ("Miller") Charge		2.6	3.9		V _{GS} = -5.0V ②
t _{d(on)}	Turn-On Delay Time		11		ns	V _{DD} = -6.0V
t _r	Rise Time		32		115	$I_D = -1.0A$
t _{d(off)}	Turn-Off Delay Time		250			$R_D = 6.0\Omega$
t _f	Fall Time		210			$R_G = 89\Omega$ ②
C _{iss}	Input Capacitance		830			V _{GS} = 0V
Coss	Output Capacitance		180		pF	$V_{DS} = -10V$
C _{rss}	Reverse Transfer Capacitance		125			f = 1.0MHz

Source-Drain Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current			-1.3		MOSFET symbol
	(Body Diode)			-1.3	A	showing the
I _{SM}	Pulsed Source Current			0.4	^	integral reverse
	(Body Diode) ①			-34		p-n junction diode.
V _{SD}	Diode Forward Voltage			-1.2	V	$T_J = 25^{\circ}C$, $I_S = -1.3A$, $V_{GS} = 0V$ ②
t _{rr}	Reverse Recovery Time		22	33	ns	$T_J = 25^{\circ}C, I_F = -1.3A$
Q _{rr}	Reverse RecoveryCharge		8.0	12	nC	di/dt = -100A/µs ②

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature.
- ③ Surface mounted on 1" square single layer 1oz. copper FR4 board, steady state.

International TOR Rectifier

IRLML6401PbF

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 8. Maximum Safe Operating Area

International TOR Rectifier

IRLML6401PbF

 I_D E_{AS} , Single Pulse Avalanche Energy (mJ) TOP -1.9A -3.4A воттом -4.3A 60 40 0 25 50 75 100 150 Starting T_J, Junction Temperature (°C)

Fig 9. Maximum Drain Current Vs. Case Temperature

Fig 10. Maximum Avalanche Energy Vs. Drain Current

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient

International

TOR Rectifier

Fig 12. Typical On-Resistance Vs. Gate Voltage

Fig 13. Typical On-Resistance Vs.
Drain Current

Fig 14. Typical Threshold Voltage Vs. Junction Temperature

Micro3 (SOT-23) Package Outline

Dimensions are shown in millimeters (inches)

DIMENSIONS						
SYMBOL	MILLIM	ETERS	INCHES			
STIVIBOL	MIN	MAX	MIN	MAX		
Α	0.89	1.12	0.035	0.044		
A1	0.01	0.10	0.0004	0.004		
A2	0.88	1.02	0.035	0.040		
b	0.30	0.50	0.012	0.020		
С	0.08	0.20	0.003	0.008		
D	2.80	3.04	0.110	0.120		
E	2.10	2.64	0.083	0.104		
E1	1.20	1.40	0.047	0.055		
е	0.95	BSC	0.037	BSC		
e1	1.90	BSC	0.075	BSC		
L	0.40	0.60	0.016	0.024		
L1	0.54	REF	0.021	REF		
L2	0.25	BSC	0.010	BSC		
0	0	8	0	8		

- NOT INCLUDE MOLD PROTRUSIONS OR INTERLEAD FLASH, MOLD PROTRUSIONS OR INTERLEAD FLASH SHALL NOT EXCEED 0.25 MM (0.010 INCH) PER SIDE.

 DIMENSION L IS THE LEAD LENGTH FOR SOLDERING TO A SUBSTRATE.

 8. OUTLINE CONFORMS TO JEDEC OUTLINE TO -236 AB.

Micro3 (SOT-23/TO-236AB) Part Marking Information

Notes: This part marking information applies to devices produced after 02/26/2001

A = IRLML2402

- $\mathsf{B} = \mathsf{IRLML2803}$ C = IRLML6302
- $\mathsf{D} = \mathsf{IRLML5103}$
- E = IRLML6402 $\mathsf{F} = \mathsf{IRLM}\,\mathsf{L6401}$
- G = IRLML2502
- H = IRLML5203I = IRLML0030
- J = IRI MI 2030 K = IRLML0100 L = IRLML0060
- M = IRLML0040 N = IRLML2060 P = IRLML9301R = IRLML9303

- YEAR 2001 2002 2003 02 03 2006 2007 2009
- W = (27-52) IF PRECEDED BY A LETTER

YEAR	Υ	WORK WEEK	W	
2001	Α	27	Α	
2002	В	28	В	
2003	С	29	С	
2004	D	30	D	
2005	E			
2006	F			
2007	G			
2008	Н	1	- 1	
2009	J	7	7	
2010	K	50	Y	

Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/ www.irf.com

8

International

TOR Rectifier

Micro3™ Tape & Reel Information

Dimensions are shown in millimeters (inches)

Data and specifications subject to change without notice.

This product has been designed and qualified for the consumer market.

Qualification Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105

TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information.05/2010