MATEMATIKA

1. letnik – splošna gimnazija

Jan Kastelic

Gimnazija Antona Aškerca, Šolski center Ljubljana

16. september 2024

Vsebina

- Osnove logike in teorije množice
- 2 Naravna in cela števila, izrazi, enačbe in neenačbe
- 3 Deljivost, izjave, množice
- Racionalna števila
- Realna števila, statistika
- o Pravokotni koordinatni sistem, linearna funkcija

◆ロト ◆個ト ◆差ト ◆差ト を つくで

2/103

Section 1

Osnove logike in teorije množice

Jan Kastelic (GAA) MATEMATIKA 1

3/103

- Osnove logike in teorije množice
 - Osnove logike
 - Teorija množic
- 2 Naravna in cela števila, izrazi, enačbe in neenačbe
- Oeljivost, izjave, množice
- Racionalna števila
- Realna števila, statistika
- Pravokotni koordinatni sistem, linearna funkcija

Matematična izjava

Matematična izjava

Matematična izjava je vsaka smiselna poved, za katero lahko določimo resničnost oziroma pravilnost.

5 / 103

Matematična izjava

Matematična izjava je vsaka smiselna poved, za katero lahko določimo resničnost oziroma pravilnost.

Logična vrednost matematične izjave

5 / 103

Matematična izjava

Matematična izjava je vsaka smiselna poved, za katero lahko določimo resničnost oziroma pravilnost.

Logična vrednost matematične izjave

Matematična izjava lahko zavzame dve logični vrednosti:

5 / 103

Matematična izjava

Matematična izjava je vsaka smiselna poved, za katero lahko določimo resničnost oziroma pravilnost.

Logična vrednost matematične izjave

Matematična izjava lahko zavzame dve logični vrednosti:

• izjava je **resnična/pravilna**, oznaka R/P/1/T;

5/103

Matematična izjava

Matematična izjava je vsaka smiselna poved, za katero lahko določimo resničnost oziroma pravilnost.

Logična vrednost matematične izjave

Matematična izjava lahko zavzame dve logični vrednosti:

- izjava je **resnična/pravilna**, oznaka R/P/1/T;
- izjava je **neresnična/nepravilna**, oznaka $N/0/\bot$.

5/103

Matematična izjava

Matematična izjava je vsaka smiselna poved, za katero lahko določimo resničnost oziroma pravilnost.

Logična vrednost matematične izjave

Matematična izjava lahko zavzame dve logični vrednosti:

- izjava je **resnična/pravilna**, oznaka R/P/1/T;
- izjava je **neresnična/nepravilna**, oznaka $N/0/\bot$.

Izjave označujemo z velikimi tiskanimi črkami (A, B, C ...).

5/103

Ali so naslednje povedi izjave?

Ali so naslednje povedi izjave?

- Danes sije sonce.
- Koliko je ura?
- Piramida je geometrijski lik.
- Daj mi jabolko.
- Število 12 deli število 3.
- Število 3 deli število 10.
- Ali si pisal matematični test odlično?
- Matematični test si pisal odlično.
- Ali je 10 *dl* isto kot 1 *l*?
- Število 41 je praštevilo.

7/103

Spodnjim izjavam določite logične vrednosti.

7/103

Spodnjim izjavam določite logične vrednosti.

- A: Najvišja gora v Evropi je Mont Blanc.
- B: Število je deljivo s 4 natanko takrat, ko je vsota števk deljiva s 4.
- C: Ostanek pri deljenju s 4 je lahko 1, 2 ali 3.
- D: Mesec februar ima vedno vsaj 28 dni.
- E: Vsa praštevila so liha števila.
- F: Število 1 je naravno število.
- G: Praštevil je neskončno mnogo.

7/103

Enostavne in sestavjene izjave

Izjave delimo med:

- elementarne/enostavne izjave ne moremo jih razstaviti na bolj enostavne;
- **sestavljene izjave** sestavljene iz elementarnih izjav, ki jih med seboj povezujejo **logične operacije** (imenovane tudi izjavne povezave oziroma logična vezja).

Vrednost sestavljene izjave izračunamo glede na vrednosti elementarnih izjav in izjavnih povezav med njimi.

Pravilnost sestavljenih izjav nazorno prikazujejo **resničnostne/pravilnostne tabele**.

8 / 103

Logične operacije

Negacija

Negacija izjave A je izjava, ki **trdi nasprotno** kot izjava A. Oznaka: $\neg A$.

¬**A Ni res**, da velja izjava A.

Če je izjava A pravilna, je $\neg A$ nepravilna in obratno: če je $\neg A$ pravilna, je A nepravilna.

Α	$\neg A$
P	Ν
N	Р

Negacija negacije izjave je potrditev izjave.

$$\neg(\neg A) = A$$

9/103

Izjavam določite logično vrednost, potem jih zanikajte in določite logično vrednost negacij.

- $A: 5 \cdot 8 = 30$
- B: Število 3 je praštevilo.
- C: Največje dvomestno število je 99.
- D: Število 62 je večratnik števila 4.
- E: Praštevil je neskončno mnogo.
- *F*: 7 ≤ 5
- G: Naša pisava je cirilica.

Konjunkcija

Konjunkcija izjav A in B nastane tako, da povežemo izjavi A in B z in hkrati.

A ∧ **B** Velja izjava A **in (hkrati)** izjava B.

Če sta izjavi A in B pravilni, je pravilna tudi njuna konjunkcija, če je pa ena od izjav nepravilna, je nepravilna tudi njuna konjunkcija.

A	В	$A \wedge B$
Р	Р	Р
Р	Ν	N
Ν	Р	N
Ν	Ν	N

11 / 103

Določite logično vrednost konjunkcijam.

- Število 28 je večratnik števila 3 in večkratnik števila 8.
- Število 7 je praštevilo in je deljivo s številom 1.
- Vsakemu celemu številu lahko pripišemo nasprotno število in obratno število.
- Ostanki pri deljenju števila s 3 so lahko 0, 1 ali 2, pri deljenju s 5 pa 0, 1, 2, 3 ali 4.
- Število je deljivo s 3, če je vosta števk deljiva s 3, in je deljivo z 9, če je vsota števk deljiva z 9.

12 / 103

Disjunkcija

Disjunkcija izjav A in B nastane s povezavo **ali**.

A ∨ **B** Velja izjava A **ali** izjava B (lahko tudi obe hkrati).

Disjunkcija je nepravilna, če sta nepravilni obe izjavi, ki jo sestavljata, v preostalih treh primerih je pravilna.

Α	В	$A \vee B$
Р	Р	Р
Р	Ν	Р
Ν	Р	Р
Ν	Ν	Ν

13 / 103

Določite logično vrednost disjunkcijam.

- Število 24 je večratnik števila 3 ali 8.
- Število 35 ni večratnik števila 7 ali 6.
- Število 5 deli število 16 ali 18.
- Ploščina kvadrata s stranico a je a^2 ali obseg kvadrata je 4a.
- Ni res, da je vsota notranjih kotov trikotnika 160°, ali ni res, da Pitagorov izrek velja v poljubnem trikotniku.

14 / 103

Komutativnost konjunkcije in disjunkcije

$$A \wedge B = B \wedge A$$

$$A \lor B = B \lor A$$

Asociativnost konjunkcije in disjunkcije

$$(A \wedge B) \wedge C = A \wedge (b \wedge C)$$

$$(A \lor B) \lor C = A \lor (B \lor C)$$

Distributivnost zakona za konjunkcijo in disjunkcijo

$$(A \lor B) \land C = (A \land C) \lor (B \land C)$$

$$(A \wedge B) \vee C = (A \vee C) \wedge (B \vee C)$$

De Morganova zakona

- negacija konjunkcije je disjunkcija negacij: $\neg(A \land B) = \neg A \lor \neg B$
- negacija disjunkcije je konjunkcija negacij: $\neg(A \lor B) = \neg A \land \neg B$

4□ > 4□ > 4□ > 4□ > 4□ > 9

15 / 103

Katere od spodnjih izjav so pravilne in katere nepravilne?

- $(3 \cdot 4 = 12) \wedge (12 : 4 = 3)$
- $(a^3 \cdot a^5 = a^{15}) \vee (a^3 \cdot a^5 = a^8)$
- (3|30) ∧ (3|26)
- (3|30) ∨ (3|26)
- $(2^3 = 9) \lor (3^2 = 9)$
- $((-2)^2 = 4) \land \neg (-2^2 = 4)$

16 / 103

Jan Kastelic (GAA) MATEMATIKA

Implikacija

Implikacija izjav A in B je sestavljena izjava, ki jo lahko beremo na različne načine.

 $\mathbf{A} \Rightarrow \mathbf{B}$ Če velja izjava A, potem velja izjava B. / Iz A sledi B.

Izjava A je **pogoj** ali **privzetek**, izjava B pa (logična) posledica izjave A.

Implikacija je nepravilna, ko je izjava A pravilna, izjava B pa nepravilna, v preostalih treh primerih je pravilna.

Α	В	$A \Rightarrow B$
Р	Р	Р
Р	N	Ν
Ν	Р	Р
Ν	N	Р

17 / 103

Določite, ali so izjave pravilne.

- Če je število deljivo s 100, je deljivo tudi s 4.
- Če je štirikotnik pravokotnik, se diagonali razpolavljata.
- Če je štirikotnik kvadrat, se diagonali sekata pod pravim kotom.
- Če sta števili 2 in 3 lihi števili, potem je produk teh dveh števil sodo število.
- Če je število 18 deljivo z 9, potem je deljivo s 3.
- Če je 7 večkratnik števila 7, potem 7 deli število 43.
- Če je število deljivo s 4, potem je deljivo z 2.

18 / 103

Ekvivalenca

Ekvivalenca izjavi A in B poveže s če in samo če oziroma natanko tedaj, ko.

A ⇔ B Izjava A velja, če in samo če velja izjava B./Izjava A velja natanko tedaj, ko velja izjava B.

Ekvivalenca dveh izjav je pravilna, če imata obe izjavi enako vrednost (ali sta obe pravilni ali obe nepravilni), in nepravilna, če imata izjavi različno vrednost.

Ekvivalentni/enakovredni izjavi pomenita eno in isto, lahko ju nadomestimo drugo z drugo.

Α	В	$A \Leftrightarrow B$
Р	Р	Р
Р	Ν	Ν
Ν	Р	Ν
Ν	N	Р

Določite, ali so naslednje izjave pravilne.

- Število je deljivo z 12 natanko takrat, ko je deljivo s 3 in 4 hkrati.
- Število je deljivo s 24 natanko takrat, ko je deljivo s 4 in 6 hkrati.
- Število je praštevilo natanko takrat, ko ima natanko dva delitelja.
- Štirikotnik je kvadrat natanko tedaj, ko se diagonali sekata pod pravim kotom.
- Število je sodo natanko tedaj, ko je deljivo z 2.

20 / 103

Vrstni red operacij

Kadar so izjave povezane z več izjavnimi povezavami, pri določanju logične vrednosti upoštevamo oklepaje in naslednji **vrstni red** oziroma **prioriteto izjavnih povezav**:

- negacija,
- konjunkcija,
- disjunkcija,
- implikacija,
- ekvivalenca.

Če moramo zapored izvesti več enakih izjavnih povezav, velja pravilo združevanja od leve proti desni.

21 / 103

V sestavljeni izjavi zapišite oklepaje, ki bodo predstavljali vrstni red operacij. Nato tvorite pravilnostno tabelo za sestavljeno izjavo glede na različne logične vrednosti elementarnih izjav.

- $A \lor B \Leftrightarrow \neg A \Rightarrow \neg B$
- $A \lor \neg A \Rightarrow \neg B \land (\neg A \Rightarrow B)$
- $A \Rightarrow B \Leftrightarrow \neg B \Rightarrow \neg A$
- $A \land \neg B \Leftrightarrow A \Rightarrow B$
- $C \Rightarrow A \lor \neg B \Leftrightarrow \neg A \land C$
- $\neg A \lor \neg B \Leftrightarrow B \land (C \Leftrightarrow \neg A)$

22 / 103

Tavtologija

Tavtologija ali **logično pravilna izjava** je sestavljena izjava, ki je pri vseh naborih vrednosti elementarnih izjav, iz katerih je sestavjena, pravilna.

Protislovje

Protislovje je sestavljena izjava, ki ni nikoli pravilna.

Kvantifikatorja

- ∀ (beri 'vsak') izjava velja za vsak element dane množice
- ullet (beri 'obstaja' ali 'eksistira') izjava je pravilna za vsaj en element dane množice

23 / 103

Pomen izjav v matematiki

Aksiomi so najpreprostejše izjave, ki so očitno pravilne in zato njihove pravilnosti ni treba dokazovati.

Izreki ali **teoremi** so izjave, ki so pravilne, vendar pa njihova pravilnost ni očitna. Pravilnost izreka (teorema) moramo potrditi z dokazom, ki temelji na aksiomih in na preprostejših že prej dokazanih izrekih.

Definicije so izjave, s katerimi uvajamo nove pojme. Najpreprostejših pojmov v matematiki ne opisujemo z definicijami (to so pojmi kot npr.: število, premica ipd.); vsak nadaljnji pojem pa moramo definirati, zato da se nedvoumno ve, o čem govorimo.

24 / 103

Množice

Množica

Množica je skupek elementov, ki imajo neko skupno lastnost.

Množice označujemo z velikimi črkami (A, B, C... ali A, B, C...). Njeni elementi so zapisani v zavitem oklepaju (npr. $A = \{2, 5, 7\}$).

Element množice

Element množice je objekt v množici.

Označujemo jih z malimi črkami $(a, b, c \dots)$. Element množici lahko pripada $(a \in A)$ ali pa ne $(a \notin A)$.

16. september 2024

Moč množice

Število elementov v množici predstavlja **moč množice**. Oznaka: $\mathbf{m}(A)$ ali |A|.

26 / 103

Section 2

Naravna in cela števila, izrazi, enačbe in neenačbe

27 / 103

- 1) Osnove logike in teorije množice
- 💿 Naravna in cela števila, izrazi, enačbe in neenačbe
 - Naravna in cela števila
 - Računanje z naravnimi in celimi števili
 - Izraz, enačba, neenačba
 - Računanje s potencami z naravnimi eksponenti
 - Razčlenjevanje izrazov
 - ullet Razstavljanje izrazov v množici $\mathbb Z$
 - Reševanje linearnih in razcepnih enačb v množici $\mathbb Z$
 - Reševanje linearnih neenačb v množici Z
- Deljivost, izjave, množice

Jan Kastelic (GAA) MATEMATIKA 16. september 2024 28 / 103

Naravna števila

Množica naravnih števil:

$$\mathbb{N} = \{1, 2, 3, 4, \ldots\}$$

Naravna števila so števila s katerimi štejemo.

Naravna števila lahko predstavimo s točko na številski premici.

29 / 103

Množico naravnih števil definirajo Peanovi aksiomi:

- Vsako naravno število (n) ima svojega naslednika (n+1).
- Število 1 ni naslednik nobenega naravnega števila.
- Različni naravni števili imata različna naslednika: $(n+1 \neq m+1; n \neq m)$.
- Če neka trditev velja za vsako naravno število in tudi za njegovega naslednika, velja za vsa naravna števila princip popolne indukcije.

V množici $\mathbb N$ sta definirani notranji operaciji: **seštevanje** in **množenje**.

30 / 103

Seštevanje

Poljubnima naravnima številoma a in b priredimo **vsoto** a + b.

Vsota naravnih števil je naravno število: $a, b \in \mathbb{N} \Rightarrow a + b \in \mathbb{N}$.

Lastnosti:

- **komutativnost** členov/zakon o zamenjavi členov: a + b = b + a.
- asociativnost členov/zakon o združevanju členov: (a + b) + c = a + (b + c).

31 / 103

Množenje

Poljubnima naravnima številoma a in b priredimo **produkt** $a \cdot b$.

Produkt naravnih števil je naravno število: $a, b \in \mathbb{N} \Rightarrow a \cdot b \in \mathbb{N}$.

Lastnosti:

- **komutativnost** faktorjev/zakon o zamenjavi faktorjev: $a \cdot b = b \cdot a$.
- asociativnost faktorjev/zakon o združevanju faktorjev: $(a \cdot b) \cdot c = a \cdot (b \cdot c)$.
- **distributivnost**/zakon o razčlenjevanju: $a \cdot (b + c) = a \cdot b + a \cdot c$.
- zakon o nevtralnem elementu: $a \cdot 1 = a$.

32 / 103

Cela števila

Množica celih števil:

$$\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, 3, \ldots\}$$

Množica celih števil je definirana kot unija treh množic:

$$\mathbb{Z} = \mathbb{Z}^- \cup \{0\} \cup \mathbb{Z}^+$$

- množica **pozitivnih celih števil** (\mathbb{Z}^+) naravna števila;
- število 0;
- množica **negativnih celih števil** (\mathbb{Z}^-) nasprotna števila vseh naravnih števil.

Nasprotno število število a je -a.

Jan Kastelic (GAA) MATEMATIKA 16. september 2024 33 / 103

Poleg seštevanja in množenja je kot notranja operacija množice celih števil definirano še **odštevanje**.

Odštevanje

Poljubnima naravnima številoma a in b priredimo razliko a - b.

Odštevanje definiramo kot prištevanje nasprotne vrednosti: a-b=a+(-b)

Za odštevanje velja zakon **distributivnosti**: $a \cdot (b - c) = a \cdot b - a \cdot c$.

34 / 103

Računski zakoni

Komutativnostni zakon:

$$a + b = b + a$$
 in $a \cdot b = b \cdot a$

Asociativnostni zakon:

$$a + (b + c) = (a + b) + c$$
 in $a \cdot (b \cdot c) = (a \cdot b) \cdot c$

Zakon o nevtralnem elementu:

$$a+0=a$$
 in $a\cdot 1=a$

• Zakon o inverznem/nasprotnem elementu:

$$a + (-a) = 0$$

Distributivnostni zakon:

$$a \cdot (b \pm c) = a \cdot b \pm a \cdot c$$

(D) (D) (D) (D) (D) (D)

Pravila za računanje s celimi števili

•
$$-(-a) = a$$

- $0 \cdot a = 0$
- \bullet $-1 \cdot a = -a$
- (-a) + (-b) = -(a+b)
- $\bullet (-a) \cdot b = -(a \cdot b) = a \cdot (-b)$
- $\bullet (-a) \cdot (-b) = a \cdot b$

36 / 103

Računanje z naravnimi in celimi števili

38 / 103

Izraz, enačba, neenačba

39 / 103

Računanje s potencami z naravnimi eksponenti

Potenca $\mathbf{a}^{\mathbf{n}}$, pri čemer je $n \in \mathbb{N}$, je produkt n faktorjev enakih a.

Pravila za računanje s potencami:

- $\mathbf{a^n} \cdot \mathbf{b^n} = (\mathbf{ab})^\mathbf{n}$ potenci z enakima eksponentoma zmnožimo tako, da zmnožimo osnovi in prepišemo eksponent
- $oldsymbol{a^m}\cdot oldsymbol{a^n}=oldsymbol{a^{m+n}}$ potenci z enako osnovo zmnožimo tako, da osnovo prepišemo in seštejemo eksponenta
- $(a^n)^m = a^{nm}$ potenco potenciramo tako, da osnovo prepišemo in zmnožimo eksponenta

 Jan Kastelic (GAA)
 MATEMATIKA
 16. september 2024
 40 / 103

Razčlenjevanje izrazov

41 / 103

Razstavljanje izrazov v množici $\mathbb Z$

42 / 103

Reševanje linearnih in razcepnih enačb v množici Z

43 / 103

Reševanje linearnih neenačb v množici $\mathbb Z$

44 / 103

Section 3

Deljivost, izjave, množice

45 / 103

Jan Kastelic (GAA) MATEMATIKA

- 1 Osnove logike in teorije množice
- 2 Naravna in cela števila, izrazi, enačbe in neenačbe
- Oeljivost, izjave, množice
 - Relacija deljivosti
 - Pravila za deljivost
 - Praštevila in sestavljena števila
 - Največji skupni delitelj in najmanjši skupni večkratnik
 - Osnovni izrek o deljenju
 - Evklidov algoritem in zveza Dv = ab
 - Številski sestavi
 - Izjave
 - Množice

16. september 2024

Relacija deljivosti

Jan Kastelic (GAA) MATEMATIKA

Pravila za deljivost

Jan Kastelic (GAA) MATEMATIKA

Praštevila in sestavljena števila

◆ロト ◆問 ト ◆ 豆 ト ◆ 豆 ・ 夕 Q Q

49 / 103

Največji skupni delitelj in najmanjši skupni večkratnik

50 / 103

Osnovni izrek o deljenju

51 / 103

Evklidov algoritem in zveza Dv = ab

52 / 103

Številski sestavi

53 / 103

Izjave

4□ > 4□ > 4 = > 4 = > = 9 < 0</p>

Množice

55 / 103

Section 4

Racionalna števila

- 1) Osnove logike in teorije množice
- 2 Naravna in cela števila, izrazi, enačbe in neenačbe
- 3 Deljivost, izjave, množice
- 💶 Racionalna števila
 - Številski ulomki
 - Racionalna števila
 - Urejenost racionalnih števil
 - Algebrski ulomki
 - Računanje z ulomki
 - Potence s celimi eksponenti
 - Pravila za računanje s potencami s celimi eksponenti

16. september 2024

Jan Kastelic (GAA)

Številski ulomki

Jan Kastelic (GAA) MATEMATIKA

Racionalna števila

Jan Kastelic (GAA)

Racionalna števila

Jan Kastelic (GAA)

Racionalna števila

16. september 2024

Glede na predznak razdelimo racionalna števila v tri množice:

$$\mathbb{Q} =$$

Glede na predznak razdelimo racionalna števila v tri množice:

• množico negativnih racionalnih števil Q-,

$$\mathbb{Q} = \mathbb{Q}^-$$

16. september 2024

Glede na predznak razdelimo racionalna števila v tri množice:

- množico negativnih racionalnih števil Q⁻,
- množico z elementom nič: $\{\mathbf{0}\}$ in

$$\mathbb{Q} = \mathbb{Q}^- \cup \{0\}$$

60 / 103

Glede na predznak razdelimo racionalna števila v tri množice:

- množico negativnih racionalnih števil Q⁻,
- množico z elementom nič: $\{\mathbf{0}\}$ in
- množico pozitivnih racionalnih števil: Q⁺.

$$\mathbb{Q} = \mathbb{Q}^- \cup \{0\} \cup \mathbb{Q}^+$$

16. september 2024

61 / 103

Množica racionalnih števil je **linearno urejena** z relacijo *biti manjši* (<) oziroma *biti večji* (>). Za ulomka $\frac{a}{b}$ in $\frac{c}{d}$ ($b,d \in \mathbb{N}$) velja natanko ena izmed treh možnosti:

61 / 103

Množica racionalnih števil je **linearno urejena** z relacijo *biti manjši* (<) oziroma *biti večji* (>). Za ulomka $\frac{a}{b}$ in $\frac{c}{d}$ ($b,d \in \mathbb{N}$) velja natanko ena izmed treh možnosti:

• prvi ulomek je večji od drugega $\frac{a}{b} > \frac{c}{d}$ natanko tedaj, ko je ad > bc;

61 / 103

Množica racionalnih števil je **linearno urejena** z relacijo *biti manjši* (<) oziroma *biti večji* (>). Za ulomka $\frac{a}{b}$ in $\frac{c}{d}$ ($b,d \in \mathbb{N}$) velja natanko ena izmed treh možnosti:

- prvi ulomek je večji od drugega $\frac{a}{b} > \frac{c}{d}$ natanko tedaj, ko je ad > bc;
- ② drugi ulomek je večji od prvega $\frac{a}{b} < \frac{c}{d}$ natanko tedaj, ko je ad < bc;

61 / 103

Množica racionalnih števil je **linearno urejena** z relacijo *biti manjši* (<) oziroma *biti* $ve\check{c}ji$ (>). Za ulomka $\frac{a}{b}$ in $\frac{c}{d}$ ($b,d\in\mathbb{N}$) velja natanko ena izmed treh možnosti:

- prvi ulomek je večji od drugega $\frac{a}{b} > \frac{c}{d}$ natanko tedaj, ko je ad > bc;
- ② drugi ulomek je večji od prvega $\frac{a}{b} < \frac{c}{d}$ natanko tedaj, ko je ad < bc;
- o ulomka sta enaka $\frac{a}{b} = \frac{c}{d}$ natanko tedaj, ko je ad = bc.

61 / 103

Množica racionalnih števil je **linearno urejena** z relacijo *biti manjši* (<) oziroma *biti večji* (>). Za ulomka $\frac{a}{b}$ in $\frac{c}{d}$ ($b,d \in \mathbb{N}$) velja natanko ena izmed treh možnosti:

- prvi ulomek je večji od drugega $\frac{a}{b} > \frac{c}{d}$ natanko tedaj, ko je ad > bc;
- ② drugi ulomek je večji od prvega $\frac{a}{b} < \frac{c}{d}$ natanko tedaj, ko je ad < bc;
- **1** ulomka sta enaka $\frac{a}{b} = \frac{c}{d}$ natanko tedaj, ko je ad = bc.

Enaka ulomka predstavljata isto racionalno število.

61 / 103

62 / 103

62 / 103

Slike pozitivnih racionalnih števil ležijo desno, slike negativnih racionalnih števil pa levo od koordinatnega izhodišča.

Jan Kastelic (GAA) MATEMATIKA

Slike pozitivnih racionalnih števil ležijo desno, slike negativnih racionalnih števil pa levo od koordinatnega izhodišča.

Slike pozitivnih racionalnih števil ležijo desno, slike negativnih racionalnih števil pa levo od koordinatnega izhodišča.

V množici ulomkov velja, da je vsak negativen ulomek manjši od vsakega pozitivnega ulomka.

63 / 103

Jan Kastelic (GAA) MATEMATIKA 16. s

Monotonost vsote

16. september 2024

Monotonost vsote

Če na obeh straneh neenakosti prištejemo isto število, se neenakost ohrani.

63 / 103

Monotonost vsote

Če na obeh straneh neenakosti prištejemo isto število, se neenakost ohrani.

$$\frac{a}{b} < \frac{c}{d} \quad \Rightarrow \quad \frac{a}{b} + \frac{e}{f} < \frac{c}{d} + \frac{e}{f}$$

63 / 103

Monotonost vsote

Če na obeh straneh neenakosti prištejemo isto število, se neenakost ohrani.

$$\frac{a}{b} < \frac{c}{d} \quad \Rightarrow \quad \frac{a}{b} + \frac{e}{f} < \frac{c}{d} + \frac{e}{f}$$

63 / 103

Monotonost vsote

Če na obeh straneh neenakosti prištejemo isto število, se neenakost ohrani.

$$\frac{a}{b} < \frac{c}{d} \quad \Rightarrow \quad \frac{a}{b} + \frac{e}{f} < \frac{c}{d} + \frac{e}{f}$$

Tranzitivnost

63 / 103

Monotonost vsote

Če na obeh straneh neenakosti prištejemo isto število, se neenakost ohrani.

$$\frac{a}{b} < \frac{c}{d} \quad \Rightarrow \quad \frac{a}{b} + \frac{e}{f} < \frac{c}{d} + \frac{e}{f}$$

Tranzitivnost

$$\frac{a}{b} < \frac{c}{d} \quad \wedge \quad \frac{c}{d} < \frac{e}{f} \quad \Rightarrow \quad \frac{a}{b} < \frac{e}{f}$$

63 / 103

16. september 2024

$$\frac{a}{b} < \frac{c}{d} \quad \wedge \quad \frac{e}{f} > 0 \quad \Rightarrow \quad \frac{a}{b} \cdot \frac{e}{f} < \frac{c}{d} \cdot \frac{e}{f}$$

16. september 2024

$$\frac{a}{b} < \frac{c}{d} \quad \wedge \quad \frac{e}{f} > 0 \quad \Rightarrow \quad \frac{a}{b} \cdot \frac{e}{f} < \frac{c}{d} \cdot \frac{e}{f}$$

16. september 2024

$$\frac{a}{b} < \frac{c}{d} \quad \wedge \quad \frac{e}{f} > 0 \quad \Rightarrow \quad \frac{a}{b} \cdot \frac{e}{f} < \frac{c}{d} \cdot \frac{e}{f}$$

Pri množenju neenakosti s negativnim številom se znak neenakosti obrne.

$$\frac{a}{b} < \frac{c}{d} \quad \wedge \quad \frac{e}{f} > 0 \quad \Rightarrow \quad \frac{a}{b} \cdot \frac{e}{f} < \frac{c}{d} \cdot \frac{e}{f}$$

Pri množenju neenakosti s negativnim številom se znak neenakosti obrne.

$$\frac{a}{b} < \frac{c}{d} \quad \wedge \quad \frac{e}{f} < 0 \quad \Rightarrow \quad \frac{a}{b} \cdot \frac{e}{f} > \frac{c}{d} \cdot \frac{e}{f}$$

16. september 2024

$$\frac{a}{b} < \frac{c}{d} \quad \wedge \quad \frac{e}{f} > 0 \quad \Rightarrow \quad \frac{a}{b} \cdot \frac{e}{f} < \frac{c}{d} \cdot \frac{e}{f}$$

Pri množenju neenakosti s negativnim številom se znak neenakosti obrne.

$$\frac{a}{b} < \frac{c}{d} \quad \wedge \quad \frac{e}{f} < 0 \quad \Rightarrow \quad \frac{a}{b} \cdot \frac{e}{f} > \frac{c}{d} \cdot \frac{e}{f}$$

16. september 2024

$$\frac{a}{b} < \frac{c}{d} \quad \wedge \quad \frac{e}{f} > 0 \quad \Rightarrow \quad \frac{a}{b} \cdot \frac{e}{f} < \frac{c}{d} \cdot \frac{e}{f}$$

Pri množenju neenakosti s negativnim številom se znak neenakosti obrne.

$$\frac{a}{b} < \frac{c}{d} \quad \wedge \quad \frac{e}{f} < 0 \quad \Rightarrow \quad \frac{a}{b} \cdot \frac{e}{f} > \frac{c}{d} \cdot \frac{e}{f}$$

Pri prehodu na nasprotno vrednost se neenačaj obrne:

$$\frac{a}{b} < \frac{c}{d} \quad \wedge \quad \frac{e}{f} > 0 \quad \Rightarrow \quad \frac{a}{b} \cdot \frac{e}{f} < \frac{c}{d} \cdot \frac{e}{f}$$

Pri množenju neenakosti s negativnim številom se znak neenakosti obrne.

$$\frac{a}{b} < \frac{c}{d} \quad \wedge \quad \frac{e}{f} < 0 \quad \Rightarrow \quad \frac{a}{b} \cdot \frac{e}{f} > \frac{c}{d} \cdot \frac{e}{f}$$

Pri prehodu na nasprotno vrednost se neenačaj obrne:

$$\frac{a}{b} < \frac{c}{d} \quad \Rightarrow \quad -\frac{a}{b} > -\frac{c}{d}$$

Množica racionalnih števil pa je tudi **delno urejena**, in sicer z relacijo *biti manjši ali* enak (\leq) oziroma *biti večji ali enak* (\geq). Za ulomka $\frac{a}{b}$ in $\frac{c}{d}$ ($b,d\in\mathbb{N}$) velja vsaj ena izmed možnosti:

4 ロ ト 4 回 ト 4 直 ト 4 直 ・ り 9 0 0

65 / 103

Množica racionalnih števil pa je tudi **delno urejena**, in sicer z relacijo *biti manjši ali enak* (\leq) oziroma *biti večji ali enak* (\geq). Za ulomka $\frac{a}{b}$ in $\frac{c}{d}$ ($b,d\in\mathbb{N}$) velja vsaj ena izmed možnosti:

• prvi ulomek je večji ali enak od drugega $\frac{a}{b} \geq \frac{c}{d}$ natanko tedaj, ko je $ad \geq bc$;

16. september 2024

Množica racionalnih števil pa je tudi **delno urejena**, in sicer z relacijo *biti manjši ali enak* (\leq) oziroma *biti večji ali enak* (\geq). Za ulomka $\frac{a}{b}$ in $\frac{c}{d}$ ($b,d\in\mathbb{N}$) velja vsaj ena izmed možnosti:

- prvi ulomek je večji ali enak od drugega $\frac{a}{b} \ge \frac{c}{d}$ natanko tedaj, ko je $ad \ge bc$;
- ② drugi ulomek je večji ali enak od prvega $\frac{a}{b} \geq \frac{c}{d}$ natanko tedaj, ko je $ad \leq bc$;

65 / 103

Množica racionalnih števil pa je tudi **delno urejena**, in sicer z relacijo *biti manjši ali enak* (\leq) oziroma *biti večji ali enak* (\geq). Za ulomka $\frac{a}{b}$ in $\frac{c}{d}$ ($b,d\in\mathbb{N}$) velja vsaj ena izmed možnosti:

- prvi ulomek je večji ali enak od drugega $\frac{a}{b} \ge \frac{c}{d}$ natanko tedaj, ko je $ad \ge bc$;
- ② drugi ulomek je večji ali enak od prvega $\frac{a}{b} \ge \frac{c}{d}$ natanko tedaj, ko je $ad \le bc$;

Za (zgornjo) relacijo delne urejenosti veljajo naslednje lastnosti:

65 / 103

Množica racionalnih števil pa je tudi **delno urejena**, in sicer z relacijo *biti manjši ali enak* (\leq) oziroma *biti večji ali enak* (\geq). Za ulomka $\frac{a}{b}$ in $\frac{c}{d}$ ($b,d\in\mathbb{N}$) velja vsaj ena izmed možnosti:

- prvi ulomek je večji ali enak od drugega $\frac{a}{b} \ge \frac{c}{d}$ natanko tedaj, ko je $ad \ge bc$;
- ② drugi ulomek je večji ali enak od prvega $\frac{a}{b} \ge \frac{c}{d}$ natanko tedaj, ko je $ad \le bc$;

Za (zgornjo) relacijo delne urejenosti veljajo naslednje lastnosti:

• $\frac{a}{b} \leq \frac{a}{b}$ - refleksivnost;

65 / 103

Množica racionalnih števil pa je tudi **delno urejena**, in sicer z relacijo *biti manjši ali enak* (\leq) oziroma *biti večji ali enak* (\geq). Za ulomka $\frac{a}{b}$ in $\frac{c}{d}$ ($b,d\in\mathbb{N}$) velja vsaj ena izmed možnosti:

Ureienost racionalnih števil

- prvi ulomek je večji ali enak od drugega $\frac{a}{b} \ge \frac{c}{d}$ natanko tedaj, ko je $ad \ge bc$;
- ② drugi ulomek je večji ali enak od prvega $\frac{a}{b} \geq \frac{c}{d}$ natanko tedaj, ko je $ad \leq bc$;

Za (zgornjo) relacijo delne urejenosti veljajo naslednje lastnosti:

- $\frac{a}{b} \leq \frac{a}{b}$ refleksivnost;
- $\frac{a}{b} \le \frac{c}{d} \land \frac{c}{d} \le \frac{a}{b} \Rightarrow \frac{a}{b} = \frac{c}{d}$ antisimetričnost in

65 / 103

Ureienost racionalnih števil

Množica racionalnih števil pa je tudi **delno urejena**, in sicer z relacijo *biti manjši ali enak* (\leq) oziroma *biti večji ali enak* (\geq). Za ulomka $\frac{a}{b}$ in $\frac{c}{d}$ ($b,d\in\mathbb{N}$) velja vsaj ena izmed možnosti:

- prvi ulomek je večji ali enak od drugega $\frac{a}{b} \ge \frac{c}{d}$ natanko tedaj, ko je $ad \ge bc$;
- ② drugi ulomek je večji ali enak od prvega $\frac{a}{b} \ge \frac{c}{d}$ natanko tedaj, ko je $ad \le bc$;

Za (zgornjo) relacijo delne urejenosti veljajo naslednje lastnosti:

- $\frac{a}{b} \leq \frac{a}{b}$ refleksivnost;
- $\frac{a}{b} \le \frac{c}{d} \land \frac{c}{d} \le \frac{a}{b} \Rightarrow \frac{a}{b} = \frac{c}{d}$ antisimetričnost in
- $\frac{a}{b} \le \frac{c}{d} \land \frac{c}{d} \le \frac{e}{f} \Rightarrow \frac{a}{b} \le \frac{e}{f}$ tranzitivnost.

Algebrski ulomki

Jan Kastelic (GAA)

Računanje z ulomki

Potence s celimi eksponenti

68 / 103

Pravila za računanje s celimi eksponenti

69 / 103

Premo in obratno sorazmerje

70 / 103

Odstotki

Jan Kastelic (GAA)

Section 5

Realna števila, statistika

72 / 103

- Osnove logike in teorije množice
- 2 Naravna in cela števila, izrazi, enačbe in neenačbe
- 3 Deljivost, izjave, množice
- Racionalna števila
- 듌 Realna števila, statistika
 - Realna števila
 - Kvadratni in kubični koren
 - Intervali
 - Absolutna vrednost
 - Sistem linearnih enačb

16. september 2024

Realna števila

Jan Kastelic (GAA)

Kvadratni in kubični koren

75 / 103

(b)
$$4\sqrt{8} - (2\sqrt{5} + 3\sqrt{8})\sqrt{10}$$

(b)
$$4\sqrt{8} - (2\sqrt{5} + 3\sqrt{8})\sqrt{10}$$

$$\left(\check{c}\right)\;\left(5\sqrt{3}+2\sqrt{27}\right)\left(\sqrt{75}-4\sqrt{12}+\sqrt{147}\right)$$

(b)
$$4\sqrt{8} - (2\sqrt{5} + 3\sqrt{8})\sqrt{10}$$

$$\left(\breve{c}\right)\;\left(5\sqrt{3}+2\sqrt{27}\right)\left(\sqrt{75}-4\sqrt{12}+\sqrt{147}\right)$$

$$\left(g\right)\ 8\sqrt{3}\left(\sqrt{2}-1\right)-\left(\sqrt{5}+2\sqrt{6}\right)\left(4-2\sqrt{2}\right)$$

(b)
$$4\sqrt{8} - (2\sqrt{5} + 3\sqrt{8})\sqrt{10}$$

$$\left(\breve{c}\right)\ \left(5\sqrt{3}+2\sqrt{27}\right)\left(\sqrt{75}-4\sqrt{12}+\sqrt{147}\right)$$

$$\text{(g) }8\sqrt{3}\left(\sqrt{2}-1\right)-\left(\sqrt{5}+2\sqrt{6}\right)\left(4-2\sqrt{2}\right)$$

(j)
$$(2-4\sqrt{3}) \cdot 3\sqrt{2} - (2\sqrt{2}-3\sqrt{3})^2$$

(b)
$$4\sqrt{8} - (2\sqrt{5} + 3\sqrt{8})\sqrt{10}$$

$$\left(\breve{c}\right)\ \left(5\sqrt{3}+2\sqrt{27}\right)\left(\sqrt{75}-4\sqrt{12}+\sqrt{147}\right)$$

$$\text{(g) }8\sqrt{3}\left(\sqrt{2}-1\right)-\left(\sqrt{5}+2\sqrt{6}\right)\left(4-2\sqrt{2}\right)$$

(j)
$$(2-4\sqrt{3})\cdot 3\sqrt{2}-(2\sqrt{2}-3\sqrt{3})^2$$

(I)
$$(3-2\sqrt{2})^3 - (\sqrt{8}-5\sqrt{2})(-3\sqrt{2})$$

(b)
$$4\sqrt{8} - (2\sqrt{5} + 3\sqrt{8})\sqrt{10}$$

$$\left(\breve{c}\right)\ \left(5\sqrt{3}+2\sqrt{27}\right)\left(\sqrt{75}-4\sqrt{12}+\sqrt{147}\right)$$

$$\text{(g) }8\sqrt{3}\left(\sqrt{2}-1\right)-\left(\sqrt{5}+2\sqrt{6}\right)\left(4-2\sqrt{2}\right)$$

(j)
$$(2-4\sqrt{3})\cdot 3\sqrt{2}-(2\sqrt{2}-3\sqrt{3})^2$$

(I)
$$(3-2\sqrt{2})^3 - (\sqrt{8}-5\sqrt{2})(-3\sqrt{2})$$

(o)
$$\sqrt{300} - \sqrt{5 - 2\sqrt{6}} \cdot \sqrt{5 + 2\sqrt{6}} + \sqrt{5^4}$$

(b)
$$4\sqrt{8} - (2\sqrt{5} + 3\sqrt{8})\sqrt{10}$$

$$\left(\breve{c}\right)\ \left(5\sqrt{3}+2\sqrt{27}\right)\left(\sqrt{75}-4\sqrt{12}+\sqrt{147}\right)$$

$$\text{(g) }8\sqrt{3}\left(\sqrt{2}-1\right)-\left(\sqrt{5}+2\sqrt{6}\right)\left(4-2\sqrt{2}\right)$$

(j)
$$(2-4\sqrt{3})\cdot 3\sqrt{2}-(2\sqrt{2}-3\sqrt{3})^2$$

(I)
$$(3-2\sqrt{2})^3 - (\sqrt{8}-5\sqrt{2})(-3\sqrt{2})$$

(o)
$$\sqrt{300} - \sqrt{5 - 2\sqrt{6}} \cdot \sqrt{5 + 2\sqrt{6}} + \sqrt{5^4}$$

(r)
$$\sqrt{5\sqrt{3}-5} \cdot \sqrt{2\sqrt{3}+2} - (\sqrt{5})^3$$

(b)
$$4\sqrt{8} - (2\sqrt{5} + 3\sqrt{8})\sqrt{10}$$

(č)
$$\left(5\sqrt{3} + 2\sqrt{27}\right)\left(\sqrt{75} - 4\sqrt{12} + \sqrt{147}\right)$$

(g)
$$8\sqrt{3}\left(\sqrt{2}-1\right)-\left(\sqrt{5}+2\sqrt{6}\right)\left(4-2\sqrt{2}\right)$$

(j)
$$(2-4\sqrt{3}) \cdot 3\sqrt{2} - (2\sqrt{2}-3\sqrt{3})^2$$

(I)
$$(3-2\sqrt{2})^3 - (\sqrt{8}-5\sqrt{2})(-3\sqrt{2})$$

(o)
$$\sqrt{300} - \sqrt{5 - 2\sqrt{6}} \cdot \sqrt{5 + 2\sqrt{6}} + \sqrt{5^4}$$

(r)
$$\sqrt{5\sqrt{3}-5} \cdot \sqrt{2\sqrt{3}+2} - (\sqrt{5})^3$$

(u)
$$(\sqrt{17}-3)\sqrt{26+6\sqrt{17}}-\sqrt{2}(\sqrt{2}+\sqrt{6})$$

77 / 103

Interval je množica vseh realnih števil, ki ležijo med dvema danima številoma a in b, a < b.

Števili *a* in *b* imenujemo **krajišči intervala**.

77 / 103

Interval je množica vseh realnih števil, ki ležijo med dvema danima številoma a in b, a < b.

Števili a in b imenujemo **krajišči intervala**.

Vključenost krajišč

77 / 103

Interval je množica vseh realnih števil, ki ležijo med dvema danima številoma a in b, a < b.

Števili a in b imenujemo krajišči intervala.

Vključenost krajišč

• Simbola "[" in "]" označujeta krajišče, ki spada k intervalu.

77 / 103

Interval je množica vseh realnih števil, ki ležijo med dvema danima številoma a in b, a < b.

Števili a in b imenujemo krajišči intervala.

Vključenost krajišč

- Simbola "[" in "]" označujeta krajišče, ki spada k intervalu.
- Simbola "(" in ")" označujeta krajišče, ki ne spada k intervalu.

77 / 103

Interval je množica vseh realnih števil, ki ležijo med dvema danima številoma a in b, a < b.

Števili a in b imenujemo **krajišči intervala**.

Vključenost krajišč

- Simbola "[" in "]" označujeta krajišče, ki spada k intervalu.
- Simbola "(" in ")" označujeta krajišče, ki ne spada k intervalu.

Pri zapisu intervalov moramo biti pozorni na zapis vrstnega reda števil, ki določata krajišči.

$$[a,b] \neq [b,a]$$

77 / 103

16. september 2024

Jan Kastelic (GAA)

Zaprti interval

16. september 2024

Zaprti interval

$$[\mathbf{a},\mathbf{b}] = \{\mathbf{x} \in \mathbb{R}; \mathbf{a} \leq \mathbf{x} \leq \mathbf{b}\}$$

Vsebuje vsa realna števila med a in b, vključno s krajiščema a in b.

78 / 103

Zaprti interval

$$[\mathbf{a},\mathbf{b}] = \{\mathbf{x} \in \mathbb{R}; \mathbf{a} \le \mathbf{x} \le \mathbf{b}\}$$

Vsebuje vsa realna števila med a in b, vključno s krajiščema a in b.

Odprti interval

Zaprti interval

$$[\mathbf{a},\mathbf{b}] = \{\mathbf{x} \in \mathbb{R}; \mathbf{a} \leq \mathbf{x} \leq \mathbf{b}\}$$

Vsebuje vsa realna števila med a in b, vključno s krajiščema a in b.

Odprti interval

$$(\mathbf{a},\mathbf{b}) = \{\mathbf{x} \in \mathbb{R}; \mathbf{a} < \mathbf{x} < \mathbf{b}\}$$

Vsebuje vsa realna števila med a in b, vendar ne vsebuje krajišč a in b.

16. september 2024

Polodprti/polzaprti interval

Jan Kastelic (GAA)

Polodprti/polzaprti interval

$$[\mathbf{a},\mathbf{b}) = \{\mathbf{x} \in \mathbb{R}; \mathbf{a} \leq \mathbf{x} < \mathbf{b}\}$$

Vsebuje vsa realna števila med a in b, vključno s krajiščem a, vendar ne vsebuje krajišča b.

79 / 103

Polodprti/polzaprti interval

Vsebuje vsa realna števila med a in b, vključno s krajiščem a, vendar ne vsebuje krajišča b.

Vsebuje vsa realna števila med a in b, vključno s krajiščem b, vendar ne vsebuje krajišča a.

79 / 103

80 / 103

$$\bullet \ [\mathbf{a}, \infty) = \{\mathbf{x} \in \mathbb{R}; \mathbf{x} \geq \mathbf{a}\}$$

- ullet $[\mathbf{a},\infty)=\{\mathbf{x}\in\mathbb{R};\mathbf{x}\geq\mathbf{a}\}$
- $\bullet \ (\mathsf{a},\infty) = \{\mathsf{x} \in \mathbb{R}; \mathsf{x} > \mathsf{a}\}$

- $\bullet \ [\mathbf{a}, \infty) = \{\mathbf{x} \in \mathbb{R}; \mathbf{x} \geq \mathbf{a}\}$
- $\bullet \ (\mathsf{a},\infty) = \{\mathsf{x} \in \mathbb{R}; \frac{\mathsf{x} > \mathsf{a}\}}{\mathsf{a}}$
- $\bullet \ (-\infty, \mathbf{b}] = \{ \mathbf{x} \in \mathbb{R}; \mathbf{x} \le \mathbf{b} \}$

16. september 2024

80 / 103

$$\bullet \ [\mathbf{a}, \infty) = \{\mathbf{x} \in \mathbb{R}; \mathbf{x} \geq \mathbf{a}\}$$

$$\bullet \ (\mathsf{a},\infty) = \{\mathsf{x} \in \mathbb{R}; \frac{\mathsf{x} > \mathsf{a}\}}{\mathsf{a}}$$

$$\bullet \ (-\infty, \mathbf{b}] = \{ \mathbf{x} \in \mathbb{R}; \mathbf{x} \le \mathbf{b} \}$$

b

$$\bullet \ (-\infty, \mathbf{b}) = \{ \mathbf{x} \in \mathbb{R}; \mathbf{x} < \mathbf{b} \}$$

$$\bullet \ [\mathbf{a}, \infty) = \{\mathbf{x} \in \mathbb{R}; \mathbf{x} \geq \mathbf{a}\}$$

$$\bullet \ (\mathsf{a},\infty) = \{\mathsf{x} \in \mathbb{R}; \mathsf{x} > \mathsf{a}\}$$

$$\bullet \ (-\infty, \mathbf{b}] = \{ \mathbf{x} \in \mathbb{R}; \mathbf{x} \le \mathbf{b} \}$$

$$ullet \; (-\infty, \mathbf{b}) = \{ \mathbf{x} \in \mathbb{R}; \mathbf{x} < \mathbf{b} \}$$

$$ullet$$
 $(-\infty,\infty)=\{\mathbf{x};\mathbf{x}\in\mathbb{R}\}=\mathbb{R}$

b

Zapišite množico vseh neengativnih realnih števil, ki so manjša od 6, ter iskano množico predstavite na številski premici.

81 / 103

Zapišite množico vseh neengativnih realnih števil, ki so manjša od 6, ter iskano množico predstavite na številski premici.

Naloga 585

Dana sta intervala I = [-2, 5) in J = (3, 6).

81 / 103

Zapišite množico vseh neengativnih realnih števil, ki so manjša od 6, ter iskano množico predstavite na številski premici.

Naloga 585

Dana sta intervala I = [-2, 5) in J = (3, 6).

• Zapiši $I \cap J$ in $I \cup J$.

81 / 103

Zapišite množico vseh neengativnih realnih števil, ki so manjša od 6, ter iskano množico predstavite na številski premici.

Naloga 585

Dana sta intervala I = [-2, 5) in J = (3, 6).

- Zapiši $I \cap J$ in $I \cup J$.
- ullet Izračunaj vsoto največjega celega števila iz I in najmanjšega celega števila iz J.

81 / 103

Zapišite množico vseh neengativnih realnih števil, ki so manjša od 6, ter iskano množico predstavite na številski premici.

Naloga 585

Dana sta intervala I = [-2, 5) in J = (3, 6).

- Zapiši $I \cap J$ in $I \cup J$.
- ullet Izračunaj vsoto največjega celega števila iz I in najmanjšega celega števila iz J.

Naloga 583

Zapiši unijo in presek danih intervalov.

Zapišite množico vseh neengativnih realnih števil, ki so manjša od 6, ter iskano množico predstavite na številski premici.

Naloga 585

Dana sta intervala I = [-2, 5) in J = (3, 6).

- Zapiši $I \cap J$ in $I \cup J$.
- ullet Izračunaj vsoto največjega celega števila iz I in najmanjšega celega števila iz J.

Naloga 583

Zapiši unijo in presek danih intervalov.

Jan Kastelic (GAA) MATEMATIKA 16. september 2024 81 / 103

Zapišite množico vseh neengativnih realnih števil, ki so manjša od 6, ter iskano množico predstavite na številski premici.

Naloga 585

Dana sta intervala I = [-2, 5) in J = (3, 6).

- Zapiši $I \cap J$ in $I \cup J$.
- ullet Izračunaj vsoto največjega celega števila iz I in najmanjšega celega števila iz J.

Naloga 583

Zapiši unijo in presek danih intervalov.

- (c) [4,8] in (3,5]
- (f) [-2,4] in $(2,\infty)$

 Jan Kastelic (GAA)
 MATEMATIKA
 16. september 2024
 81 / 103

Zapišite množico vseh neengativnih realnih števil, ki so manjša od 6, ter iskano množico predstavite na številski premici.

Naloga 585

Dana sta intervala I = [-2, 5) in J = (3, 6).

- Zapiši $I \cap J$ in $I \cup J$.
- ullet Izračunaj vsoto največjega celega števila iz I in najmanjšega celega števila iz J.

Naloga 583

Zapiši unijo in presek danih intervalov.

- (c) [4,8] in (3,5]
- (f) [-2,4] in $(2,\infty)$
- (g) $(-\infty, 3]$ in (-1, 5]

Jan Kastelic (GAA)

Linearna neenačba ima v splošnem obliko: $\mathbf{ax} + \mathbf{b} < \mathbf{cx} + \mathbf{d}$; $a, b, c, d \in \mathbb{R}$.

82 / 103

Linearna neenačba ima v splošnem obliko: $\mathbf{ax} + \mathbf{b} < \mathbf{cx} + \mathbf{d}$; $a, b, c, d \in \mathbb{R}$.

Reševanje linearne neenačbe

Neenačbo rešimo tako, da ji po korakih prirejamo enostavnejšo ekvivalentno neenačbo, dokler ne pridemo do rešitve. Množica rešitve linearne neenačbe je interval, množica intervalov, točka, množica točk ali pa nima rešitve.

82 / 103

Linearna neenačba ima v splošnem obliko: $\mathbf{ax} + \mathbf{b} < \mathbf{cx} + \mathbf{d}$; $a, b, c, d \in \mathbb{R}$.

Reševanje linearne neenačbe

Neenačbo rešimo tako, da ji po korakih prirejamo enostavnejšo ekvivalentno neenačbo, dokler ne pridemo do rešitve. Množica rešitev linearne neenačbe je interval, množica intervalov, točka, množica točk ali pa nima rešitve.

Pravila preoblikovanja

Linearna neenačba ima v splošnem obliko: $\mathbf{ax} + \mathbf{b} < \mathbf{cx} + \mathbf{d}$; $a, b, c, d \in \mathbb{R}$.

Reševanje linearne neenačbe

Neenačbo rešimo tako, da ji po korakih prirejamo enostavnejšo ekvivalentno neenačbo, dokler ne pridemo do rešitve. Množica rešitev linearne neenačbe je interval, množica intervalov, točka, množica točk ali pa nima rešitve.

Pravila preoblikovanja

• na levi in desni strani neenačbe lahko prištejemo (ali odštejemo) isto število;

Jan Kastelic (GAA) MATEMATIKA 16. september 2024 82 / 103

Linearna neenačba ima v splošnem obliko: $\mathbf{ax} + \mathbf{b} < \mathbf{cx} + \mathbf{d}$; $a, b, c, d \in \mathbb{R}$.

Reševanje linearne neenačbe

Neenačbo rešimo tako, da ji po korakih prirejamo enostavnejšo ekvivalentno neenačbo, dokler ne pridemo do rešitve. Množica rešitev linearne neenačbe je interval, množica intervalov, točka, množica točk ali pa nima rešitve.

Pravila preoblikovanja

- na levi in desni strani neenačbe lahko prištejemo (ali odštejemo) isto število;
- levo in desno stran neenačbe lahko pomnožimo z istim (pozitivnim) številom;

Jan Kastelic (GAA)MATEMATIKA16. september 202482 / 103

Linearna neenačba ima v splošnem obliko: $\mathbf{ax} + \mathbf{b} < \mathbf{cx} + \mathbf{d}$; $a, b, c, d \in \mathbb{R}$.

Reševanje linearne neenačbe

Neenačbo rešimo tako, da ji po korakih prirejamo enostavnejšo ekvivalentno neenačbo, dokler ne pridemo do rešitve. Množica rešitev linearne neenačbe je interval, množica intervalov, točka, množica točk ali pa nima rešitve.

Pravila preoblikovanja

- na levi in desni strani neenačbe lahko prištejemo (ali odštejemo) isto število;
- levo in desno stran neenačbe lahko pomnožimo z istim (pozitivnim) številom;
- če levo in desno stran neenačbe pomnožimo z negativnim številom, se znak neenakosti obrne.

Jan Kastelic (GAA) MATEMATIKA 16. september 2024 82 / 103

Intervali

Reši neenačbo in rešitev zapiši z intervalom.

Jan Kastelic (GAA)

MATEMATIKA

Naloga 582

Reši neenačbo in rešitev zapiši z intervalom.

(f)
$$3 - (2 - 2x)^2 > 4x(1 - x)$$

83 / 103

Jan Kastelic (GAA)

Reši neenačbo in rešitev zapiši z intervalom.

(f)
$$3 - (2 - 2x)^2 > 4x(1 - x)$$

(I)
$$\frac{x+3}{8} \ge \frac{2x-9}{4}$$

83 / 103

Reši neenačbo in rešitev zapiši z intervalom.

(f)
$$3 - (2 - 2x)^2 > 4x(1 - x)$$

(I)
$$\frac{x+3}{8} \ge \frac{2x-9}{4}$$

(p)
$$\frac{x+3}{6} - \frac{2x-1}{12} \le (3+4)^0 + \frac{3x-2}{8}$$

83 / 103

Reši neenačbo in rešitev zapiši z intervalom.

(f)
$$3 - (2 - 2x)^2 > 4x(1 - x)$$

(I)
$$\frac{x+3}{8} \ge \frac{2x-9}{4}$$

(p)
$$\frac{x+3}{6} - \frac{2x-1}{12} \le (3+4)^0 + \frac{3x-2}{8}$$

Naloga 584

Reši sistem neenačb in rešitev zapiši z intervalom.

83 / 103

Reši neenačbo in rešitev zapiši z intervalom.

(f)
$$3 - (2 - 2x)^2 > 4x(1 - x)$$

(I)
$$\frac{x+3}{8} \ge \frac{2x-9}{4}$$

(p)
$$\frac{x+3}{6} - \frac{2x-1}{12} \le (3+4)^0 + \frac{3x-2}{8}$$

Naloga 584

Reši sistem neenačb in rešitev zapiši z intervalom.

(č)
$$x + 4 \le 8$$
; $5 - x < 8$

83 / 103

Reši neenačbo in rešitev zapiši z intervalom.

(f)
$$3 - (2 - 2x)^2 > 4x(1 - x)$$

(I)
$$\frac{x+3}{8} \ge \frac{2x-9}{4}$$

(p)
$$\frac{x+3}{6} - \frac{2x-1}{12} \le (3+4)^0 + \frac{3x-2}{8}$$

Naloga 584

Reši sistem neenačb in rešitev zapiši z intervalom.

(č)
$$x + 4 \le 8$$
; $5 - x < 8$

(h)
$$3 - (2 + 4x) < x^2 - (2 - x)^2$$
; $2 - (2 - x)(x + 2) \ge x^2$

83 / 103

Reši neenačbo in rešitev zapiši z intervalom.

(f)
$$3 - (2 - 2x)^2 > 4x(1 - x)$$

(I)
$$\frac{x+3}{8} \ge \frac{2x-9}{4}$$

(p)
$$\frac{x+3}{6} - \frac{2x-1}{12} \le (3+4)^0 + \frac{3x-2}{8}$$

Naloga 584

Reši sistem neenačb in rešitev zapiši z intervalom.

(č)
$$x + 4 \le 8$$
; $5 - x < 8$

(h)
$$3 - (2 + 4x) < x^2 - (2 - x)^2$$
; $2 - (2 - x)(x + 2) \ge x^2$

(e)
$$5x - 3 \ge 4$$
; $11 - 10x \ge -3$

83 / 103

Jan Kastelic (GAA) MATEMATIKA

Intervali

Reši neenačbo $4 - (2x+3)^3 \ge -101 - 4(x+1)(2x^2+7x)$ v množici:

- realnih števil in rešitev ponazori na številski premici,
- naravnih števil in rešitev ponazori na številski premici,
- celih števil in rešitev ponazori na številski premici.

84 / 103

Reši neenačbo $4 - (2x + 3)^3 \ge -101 - 4(x + 1)(2x^2 + 7x)$ v množici:

- o realnih števil in rešitev ponazori na številski premici,
- naravnih števil in rešitev ponazori na številski premici,
- celih števil in rešitev ponazori na številski premici.

Naloga 588

Dana sta izraza
$$A = 3 - (2x - 1)^2 + 4x(x + 2)$$
 in $B = 2 - \frac{x+1}{3}$. Za katere x je:

84 / 103

Reši neenačbo $4 - (2x + 3)^3 \ge -101 - 4(x + 1)(2x^2 + 7x)$ v množici:

- realnih števil in rešitev ponazori na številski premici,
- naravnih števil in rešitev ponazori na številski premici,
- celih števil in rešitev ponazori na številski premici.

Naloga 588

Dana sta izraza $A = 3 - (2x - 1)^2 + 4x(x + 2)$ in $B = 2 - \frac{x+1}{3}$. Za katere x je:

vrednost izraza A negativna,

84 / 103

Reši neenačbo $4 - (2x + 3)^3 \ge -101 - 4(x + 1)(2x^2 + 7x)$ v množici:

- realnih števil in rešitev ponazori na številski premici,
- naravnih števil in rešitev ponazori na številski premici,
- celih števil in rešitev ponazori na številski premici.

Naloga 588

Dana sta izraza $A = 3 - (2x - 1)^2 + 4x(x + 2)$ in $B = 2 - \frac{x+1}{3}$. Za katere x je:

- vrednost izraza A negativna,
- vrednost izraza B vsaj -88,

84 / 103

Reši neenačbo $4 - (2x + 3)^3 \ge -101 - 4(x + 1)(2x^2 + 7x)$ v množici:

- realnih števil in rešitev ponazori na številski premici,
- naravnih števil in rešitev ponazori na številski premici,
- celih števil in rešitev ponazori na številski premici.

Naloga 588

Dana sta izraza $A=3-(2x-1)^2+4x(x+2)$ in $B=2-\frac{x+1}{3}$. Za katere x je:

- vrednost izraza A negativna,
- vrednost izraza B vsaj -88,
- vrednost izraza B za 20 manjša od vrednosti izraza A?

84 / 103

16. september 2024

Jan Kastelic (GAA) MATEMATIKA

Absolutna vrednost

Jan Kastelic (GAA)

Sistem linearnih enačb

Jan Kastelic (GAA) MATEMATIKA

Obravnavanje linearnih enačb, neenačb, sistemov

87 / 103

Absolutna in relativna napaka

88 / 103

Sredine

89 / 103

MATEMATIKA

Razpršenost podatkov

Jan Kastelic (GAA)

Prikazi

Jan Kastelic (GAA)

Section 6

Pravokotni koordinatni sistem, linearna funkcija

92 / 103

- Osnove logike in teorije množice
- 2 Naravna in cela števila, izrazi, enačbe in neenačbe
- 3 Deljivost, izjave, množice
- Racionalna števila
- Realna števila, statistika
- 📵 Pravokotni koordinatni sistem, linearna funkcija
 - Pravokotni koordinatni sistem
 - Razdalja med točkama in razpolovišče daljice
 - Ploščina trikotnika
 Jan Kastelic (GAA)

16. september 2024

Pravokotni koordinatni sistem

94 / 103

Razdalja med točkama in razpolovišče daljice

95 / 103

Ploščina trikotnika

Osnovno o funkcijah

97 / 103

Linearna funkcija in premica

98 / 103

Oblike enačbe premice

99 / 103

Presešišče premic

Sistem linearnih neenačb

 Jan Kastelic (GAA)
 MATEMATIKA
 16. september 2024
 101 / 103

Modeliranje z linearno funkcijo

◆ロ → ← 荷 → ← き → ← ● ・ り へ ○

 Jan Kastelic (GAA)
 MATEMATIKA
 16. september 2024
 102 / 103

(i) Linearno programiranje

 Jan Kastelic (GAA)
 MATEMATIKA
 16. september 2024
 103 / 103