

第五章旋涡星系和透镜星系

Review of Basic Components

- Disks:
 - Metal rich stars and ISM
 - Nearly circular orbits with little (~5%) random motion
 - Both thin and thick components
- Bulge:
 - Metal poor to super-rich stars
 - High stellar densities with steep profile
 - $V_{rot}/\sigma \sim 1$, so dispersion support important
- > Bar:
 - Flat, linear distribution of stars
 - Associated ringsand spiral pattern

Review of Basic Components

- Stellar Halo:
 - Very low SB; ~few % total light; little/no rotation
 - Metal poor stars; GCs, dwarfs; low-density hot gas
- Nucleus:
 - Central (< 10pc) region of very high density ($\sim 10^6 \text{Mpc}^{-3}$)
 - Dense ISM &/or starburst &/or star cluster
 - Massive black hole
- Dark Halo:
 - Dark matter

Spiral Galaxies are Complex Systems

- Wide range in morphological appearance:
 - classification bins : simple E0-7 compared with all the spiral types
 - not just smooth, considerable fine-scale details
- Wide range in stellar populations:
 - old, intermediate, young and currently forming
 - Ongoing chemical enrichment

Spiral Galaxies are Complex Systems

- Wide range in stellar dynamics:
 - "cold" rotationally supported disk stars
 - "hot" mainly dispersion supported bulge and halo stars
- Significant cold ISM:
 - influences dynamical evolution (e.g. helps spiral formation)
 - influences stellar density distribution (e.g. creates dense cores & black holes)

主要内容

5.1 星光分布: 盘内的恒星成分

5.2 观测气体: 气体成分与恒星关系

5.3 气体运动: 转动曲线和TF关系

5.4 盘星系序列: 星系的其他性质

5.5 旋臂和星系棒: 困难的课题

5.6 核球和中心: 与其他部分联系

5.1 星光分布

- 盘星系的恒星辐射:主要在能谱的近红外区
 - K型巨星等老年恒星辐射,大部分波长接近1mm
 - 年轻恒星光会被周围尘埃吸收,红外波段再辐射
 - 在可见光波段的辐射稍弱
 - 在紫外波段的辐射不重要

2021-2022学年 • 星系天文学

5.1 星光分布

➢ 研究方法:图像和光谱观测、分析

5.1.1盘星系的面源测光

- > 等照度线:即星系的等面亮度线。
 - 等照度线在星系核球区相当圆;在盘内区变为椭圆;外部因受到旋臂等影响, 变得参差不齐
- 》 假设盘是圆的(恒星类圆轨道运动)并且很薄,离开面向(face-on, i=0),以角度i看它时,显示为一个轴比为q=b/a=cosi的椭圆
- ▶ 倾角*i*时,半径为RD圆盘在天球上投影是椭圆
- ➢ 半长轴: a = RD
- \triangleright 半短轴: $b = RD \cos(i)$

倾斜角

- 倾斜角测量(假定盘的厚度为零)
 - 测量星系盘半长轴、半短轴
 - 倾斜角 i = cos 1(q) = cos 1(b/a)
 - M81 (NGC3031) 的i = 63度
- 倾斜角测量(盘的厚度不为零)
 - 假定盘为三轴椭球 (a: b: c)

$$\cos i = \sqrt{\frac{(b/a)^2 - q_0^2}{1 - q_0^2}}.$$

- 5000个S0星系视轴比分布: q=b/a 的峰值 ~ 0.7 ,真轴比 q_0 ~ 0.25 0.85之间均匀分布
- ◆ 13000个旋涡星系视轴比分布: q~0.3-1.0之间 均匀分布; 真轴比q₀小(旋涡星系很薄c≪a)

盘星系面亮度

- 河外星系是面光源,测量星系面亮度,研究其面亮度的变化规律
- ▶ 面亮度:每平方角秒的流量,表示为视星等。单位:星等/角秒²。NGC7331中心 I_I(0) =
 15mag arcsec⁻²
- ▶ 面亮度随径向分布无明显截断; 星系大小定义为 I(B) = 25 mag arcsec⁻²处半径, R₂₅ (NGC7331:R₂₅ = 315")
- ▶ 如果盘内吸收尘埃可忽略,面亮度要比从正向看 盘时亮1/cos i
- 盘星系面亮度径向分布:核球和盘部分亮度分解

2021-2022学年•星系天文学

面亮度径向分布——星系盘

星系盘: 当对旋臂之类的特征作平均后, 面亮度I(R)近似遵循指数形式.

$$I(R) = I(0) \exp(-R/h_R)$$

- \rightarrow h_R称为盘的标长, $I(h_R) = 1/e I(0)$
- ➤ 一般有h_R ~ 0.25R₂₅ ~ 1 10kpc
- R_{max}: 恒星盘指数部分终止处半径。
 R_{max} ~ 10 30 kpc ~ (3 5)h_R
- $h_R > R_e(R_e 有效半径; e.g. MW: h_R \sim 5 kpc, R_e \sim 2.7 kpc)$
- ightharpoonup 积分光度: $L_{tot}(disk) = 2\pi h_R^2 I(0)$

面亮度径向分布——核球

▶ 星系核球:来自星系中央核球的光,使得 星系的面亮度I(R)超过指数盘,可用R⁴律 描述.

$$I(R) = I(0) \exp \left(-7.67 (R/R_e)^{1/4}\right)$$

= $I(R_e) \exp \left(-7.67 \left[(R/R_e)^{1/4} - 1 \right] \right)$

- Arr R_e,有效半径,包含星系光度1/2的区域 大小; I(0) = I(R_e) * $e^{7.67}$ = 2140 I(R_e)
- ho $R_e \sim 0.5 4 \, \text{kpc}$ (早型盘星系的核球比晚型盘星系核球更大)

$$I(r) = I_e \exp\left[-b_n \left(\left(\frac{r}{r_e}\right)^{1/n_b} - 1\right)\right] + I_d \exp\left[\frac{r}{h}\right]$$

Bulge fraction B/T

▶ 盘星系总光度可分解为两部分:核球部分利用R¹ 律拟合,盘部分利用指数函数拟合

$$I(r) = I_e \exp\left[-b_n \left(\left(\frac{r}{r_e}\right)^{1/n_b} - 1\right)\right] + I_d \exp\left[\frac{r}{h}\right]$$

- ▶ 核球对星系总光度的贡献记作B/T
- ho 盘和核球的光度比记作 $\gamma = D/B = \left(\frac{B}{T}\right)^{-1} 1$
 - Bulge/disk ratio
 - ▶ **Sa** tightly wound, large b/d ratio, some gas, steeply rising rotation curves
 - ▶ **Sb** intermediate
 - Sc open spiral arms, lots of substructure, small bulge, lots of gas, slowly rising rotation curves, lots of HII regions
 - ▶ **Sd** no bulge, open arms, lots of HII regions
 - ▶ **Sm** lopsided (like LMC)

星等 magnitudes

如果知道星系的面亮度分布I(R),对面亮度积分(R from 0 to ∞), 即得星系总视星等

$$m_{\lambda} = \int I(R,\theta) dA$$
 $m_{\lambda} = 2\pi \int_{0}^{\infty} I(R) R dR$

- ▶ B_T: B波段观测总星等; B_T⁰: B波段总星等,校正了:
 - ◆ 银河系前景消光影响, Ag

NGC 7331: ◆ 星系内部消光影响, Ai $B_T^0 = 9.37$, $V_T^0 = 8.75$

◆ k-改正: 红移使得星系光谱更蓝波段的光进入B波段滤光 片, 与红移大小和星系谱形状有关

测量到某一半径处星系的星等: 孔径星等

面亮度垂向分布

- 》 侧向盘星系的光学像中,盘的中部有一条 薄的暗尘带: 尘埃处于星系盘中平面附近, 散射和吸收星光
- z为离星系中平面的距离,则在尘埃带的 上方和下方,为星系薄盘和厚盘

> 它们的面亮度分布,遵循指数形式:

$$I(R, z) = I(R) \exp(-|z|/h_z).$$

- $> h_z$ 称为盘的标高, $I(R, h_z) = I(R, 0)/e$
- ▶ 薄盘区域亮度下降快,标高h₂小
- ▶ 厚盘区域亮度下降慢,标高h₂大

Vertical structure of disks

- ▶ h_R/h_z(标长/标高)与星系形态、绝对光度、颜色和气体比例等有关:晚型、 颜色蓝、气体丰富的暗旋涡星系的盘更薄
- ho 盘星系的大部分星光来自星系盘,且有 h_z << h_R : Sc、Sd星系扁平;而在Sm和不规则星系中,盘相当厚而松散

盘星系序列

大熊座星系群中星系视星等m_K,和 B-K'颜色与星系形态关系

从Sa到Sd, 星系光度逐渐变暗, 颜色逐渐变蓝 (年轻恒星比例高)

大熊座星系群中星系的HI与星系的星等和中心面亮度关系

从Sa到Sd, 星系中心面亮度逐渐变暗; 星系中中性氢气体比例逐渐增加(气体丰富)

LSBG: 低表面亮度星系I₀(K) > 19.5 mag/arcsec² (空圆圈)

2021-2022学年 • 星系天文学

低面亮度星系

- ◆ Low Surface Brightness Galaxy (LSBG): 一般指中心面亮度暗于23 mag arcsec⁻² (B波段) 的星系
- ◆ Malin 1: 第一个被观测发现的 LSBG (1986)
 - ◆ 最大的LSBGs, 直径 D~200kpc (MW 50kpc)
 - ♦ $I_B(0) \approx 25 \text{ mag/arcsec}^2$, 盘星系平均值为22
- ◆ 多数LSBGs为矮星系。转动曲线显示LSBGs 的质光比M/L大,可能的解释有:
 - ◆ 恒星气体对星系质量贡献小, 暗物质比例大
 - ◆ 多为孤立星系:没有和其它星系进行并合和 相互作用,恒星形成活动没有被触发
 - ◆ 重子物质以气体为主,恒星少:面亮度较暗

低面亮度星系的光度低,内部HI气体比例高: LSBGs 与矮不规则星系类似,将气体转变为恒星的效率较低

盘星系不同波段面亮度分布

左:星系M100的K波段图像和等 照度线,存在一中央棒

右: 年轻大质量星周围的Ha发射

,叠加K波段等照度线

- 近红外:旋臂较平滑、不突 出,年老恒星辐射为主
- 可见光:辐射来自较年轻的 恒星,受尘埃影响严重

SBb型棒旋星系M95

左:紫外图像,看不见棒;恒 星形成→旋臂显示不连续

右: 可见光波段, 强的中央棒

被环和光滑的旋臂围绕着

2021-2022学年 • 星系天文学

5.2观测气体

旋涡星系的气体主要位于星系盘上:冷的原子氢和分子氢,是制造恒星的原料

- ▶ 盘中气体运动,可以利用HI的21cm谱线 多普勒移动,测量气体运动的径向速度
- 如冷气体被热星的紫外辐射或激波电离,可在光学波段看到发射线,例如Ha
- 中性氢在星系中分布,比恒星盘更延展

HI as an Interaction Tracer

(Yun, Ho, & Lo 1993, Nature, 372, 530)

5.2.1 射电望远镜阵

- ◆ 望远镜分辨率:是指望远镜所能分辨的最小的视角。"分辨"的标准为瑞利判据.
- ◆ 瑞利判据: 当一个艾里斑的边缘与另一个 艾里斑的中心正好重合时,此时对应的两 个物点刚好能被人眼或光学仪器所分辨
- 光学系统分辨率 θ = 1.22 λ/D (衍射极限)
 - ◆ θ的单位是弧度; λ是波长, 单位m;
 - ◆ D是望远镜口径,单位也是m.
 - 望远镜的分辨率与观测的波长λ (频率)和
 望远镜口径D相关
 - ◆ 人眼 D = 3mm = 0.003m, $\lambda = 6000\text{Å} = 6 \times 10^{-7} \text{ m}$, $\theta = 2.44 \times 10^{-3}$ 弧度 ~ 1 角分
 - 地面10 cm米光学望远镜 θ=1 arcsec
 - HST (D = 2.4m) : $\theta = 0.05$ arcsec
 - 射电 $\lambda = 20$ cm; $\theta = 1$ arcsec \rightarrow D = 40 km

	瑞利判据
Telescop	e Resolution
For any type of telescope, the n	naximum resolution is approximately:
Resolution $-\frac{\lambda}{D}$	(radians)
	D = diameter of aperture
Human eye (~ 3 mm aperture):	
$\frac{\lambda}{D} \sim 60 \text{ arcsec} = 1.0 \text{ a}$	reminute (Sun -30 areminutes)
4-inch Optical Telescope:	
$\frac{\lambda}{D} \sim 1.0 \text{ arcsec}$	(-2 km on Moon)
10-meter diameter Optical Tel	escope:
$\frac{\lambda}{D} \sim 0.01 \text{ arcsec}$	(but limited to -0.2 arcsec by atmos)
Hubble Telescope (2.4 meter d	iameter):
$\frac{\lambda}{\it D} = 0.05 \ arcsec$ 37-meter (120 feet) diameter R	kadio Telescope at λ=3-mm:
$\frac{\lambda}{D} \sim 18 \text{ arcsec}$	(Jupiter ~ 40 arcsec)
35 km VLA at λ=1.3-cm:	
$\frac{\lambda}{D} \sim 0.1 \text{ arcsec}$	(2 meters in San Francisco;
	150 meters on Moon)
10,000 km VLBI at λ =3-mm:	
$\frac{\lambda}{D}$ - 0.00006 arcsec	(1.5 mm in San Fran; 12 cm on Moon!
70,000 km orbiting-VLBI at λ	=1-cm:
$\frac{\lambda}{D} \sim 0.00003$ arcsec	(0.7 mm in San Fran; 6 cm on Moon!)

综合孔径技术

- ◆ 射电波长大约是光学波长的10⁵倍,要达到 较高空间分辨率,需要增大望远镜直径
- 最大单面可移动射电望远镜(GBT, 8500吨 , 140米高) D~100m; 多数D~n×10m: 单口径射电望远镜分辨率低
- ◆ 综合孔径技术:将多个射电望远镜用电缆连接起来,观测相同的天区,再利用计算机合成,产生天区合成的图像(综合)
- 综合孔径射电望远镜:具有高空间分辨率、 高灵敏度、能够成像、适合于探测强度不变 的射电源。

2021-2022学年 • 星系天文学