بسمه تعالى

پروژه درس ارتعاشات (مدل سیستم تعلیق نیم خودرو)

استاد درس : افشین تقوایی پور

تدریس یار : محمدجواد کمالی

دانشجو : محمدرضا حیدری ۹۹۲۶۰۵۳

روند حل پروژه

- ۱) تحلیل نیرویی سیستم با استفاده معادلات نیوتن–اویلر
 - ۲)نوشتن معادلات سیستم به صورت ماتریسی
- ۳) حل سوال یکم : یافتن بردار های ویژه و فرکانس های طبیعی سیستم و ترسیم شکل مود ها
 - ۴) حل سوال دوم : در نظر گرفتن سرعتی دلخواه و یافتن پاسخ سیستم تحت اثر پایه متحرک
 - ۵)حل سوال سوم : شبیه سازی حرکت خودرو از روی دست انداز
 - ۶) تحلیل اثر پارامتر ها بر روی حرکت خودرو از روی دست انداز

	^
	سعادلات مترورو را بنوسد
	Z 1 2 1 2 1 2 1 2 1 2 1 2 1 1 2 1 1 2 1 1 2 1
	وعنى من عد درما درحالت لسس واراردة
	C3, \$ 15, C3, \$ 165,
	2. 1 [n.] 12,
	العندن سعادلات در تفر ترفته نده المراه المراع المراه المراع المراه المر
	2
0	m = Cs(2'-2)+ Ks(2'-2)- Kt(7-29)
(2)	72 - Csr (2" - 2) + Ksr (2" - 2) - Ktr (2r - 29r)
0	m2'=-(s,(2'-2,)-Ks,(2'-2)-6s,(2"-2)-Ks(2"-2)
	+ Ksr (2-2) + Csr (2,-2)
(g).	
0	DJ Z = (-Kg(Z"-Z)-Cs,(Z"-Z)) / Cs0
	+ (Ks, (2,-2,) + Cs, (2,-2,)) l, cos6
	- (Ks, (Z, Z,) + Cs, (Z, Z,)) / Cose
(3)	Miz = - Ks (2 2) - Ge (7 - 7)
9	1/2 = - 1/3 m (2 - 24) - C5m (2 - 24)
	42 0 c : 4 2 0 c : 4 " - 0
	in lister it is a line of the transfer of the
	2 - 1 0 Cost = 7 2 - Locost Z
	and controls
The second second co	

همانطور که مشاهده می شود معادلات نیرویی به صورت بالا می شود البته برای ساده تر نوشتن معادلات سه درجه آزادی به صورت کمکی اضافه شده است و نهایتا این سه درجه کمی بر حسب z3, z4 محاسبه شده و در معادلات جایگذاری می شوند.

برای سیستم پنج درجه آزادی پنج معادله بالا حاصل می شود. حال معادلات بالا را به صورت ماتریسی می نویسیم:

$$M = \begin{bmatrix} m_1 & 0 & 0 & 0 & 0 \\ 0 & m_2 & 0 & 0 & 0 \\ 0 & 0 & m_3 & 0 & 0 \\ 0 & 0 & 0 & jxx & 0 \\ 0 & 0 & 0 & 0 & m_4 \end{bmatrix}$$

$$k = \begin{bmatrix} Kt1 + Ks1 & 0 & -Ks1 & Ks1l1 & 0 \\ 0 & Ks2 + Kt2 & -Ks2 & -Ks2l2 & 0 \\ -Ks1 & -Ks2 & Ks1 + Ks2 + Ks3 & -Ks1l1 + Ks2l2 - Ks3l3 & -Ks3 \\ Ks1l1 & -Ks2l2 & -Ks1l1 + Ks2l2 - Ks3l3 & -k_{s_1}l_1^2 + k_{s_2}l_2^2 - k_{s_3}l_3^2 & Ks3l3 \\ 0 & 0 & -Ks3 & Ks3l3 & Ks3 \end{bmatrix}$$

$$C = \begin{bmatrix} Cs1 & 0 & -Cs1 & Cs1l1 & 0 \\ 0 & Cs2 & -Cs2 & -Cs2l2 & 0 \\ -Cs1 & -Cs2 & Cs1 + Cs2 + Cs3 & -Cs1l1 + Cs2l2 - Cs3l3 & -Cs3 \\ Cs1l1 & -Cs2l2 & -Cs1l1 + Cs2l2 - Cs3l3 & c_{s_1}l_1^2 + c_{s_2}l_2^2 + c_{s_3}l_3^2 & Cs3l3 \\ 0 & 0 & -Cs3 & Cs3l3 & Cs3 \end{bmatrix}$$

نهایتا معادله ارتعاشات سیستم به صورت ما زیر شرح داده می شود:

$$M\ddot{X} + C\dot{X} + KX = 0$$

برای محاسبه بردار های ویژه از تغییر متغیر زیر استفاده میکنیم:

$$x = M^{-0.5}q$$

نهایتا بعد از تغییر متغیر و ضرب معادله از چپ در $M^{-0.5}$ داریم:

$$\ddot{q} + \tilde{C}\dot{q} + \tilde{K}q = 0$$

حال برای محاسبه بردارهای ویژه و فرکانس های طبیعی از کد زیر استفاده می کنیم:

[P LANDA]=eig(K_hat)

معرف توان دو فرکانس های طبیعی است و P معرف بردار های ویژه LANDA

W =

74.4060 + 0.0000i	0.0000 + 0.0000i	0.0000 + 0.0000i	0.0000 + 0.0000i	0.0000 + 0.0000i
0.0000 + 0.0000i	69.4819 + 0.0000i	0.0000 + 0.0000i	0.0000 + 0.0000i	0.0000 + 0.0000i
0.0000 + 0.0000i	0.0000 + 0.0000i	9.1643 + 0.0000i	0.0000 + 0.0000i	0.0000 + 0.0000i
0.0000 + 0.0000i	0.0000 + 0.0000i	0.0000 + 0.0000i	0.0000 + 1.3581i	0.0000 + 0.0000i
$0.0000 \pm 0.0000i$	0.0000 + 0.0000i	0.0000 + 0.0000i	0.0000 + 0.0000i	6.4417 + 0.0000i

P =

0.9995	-0.0021	0.0196	-0.0171	0.0175
0.0018	0.9996	0.0146	0.0181	0.0168
-0.0261	-0.0223	0.7022	0.0088	0.7111
0.0174	-0.0180	-0.0669	0.9960	0.0538
0.0001	0.0001	-0.7084	-0.0854	0.7006

شکل زیر بیانگر شکل مود های حاصل شده است

تحليل سوال دوم:

در سوال دوم سیستم ما تحت اثر پایه متحرک هارمونیک قرار گرفته است.سرعت فرضی ما در این مسئله ه ۹کیلومتر بر ساعت در نظر گرفته شده است.

$$x = Vt$$

$$z_g = .01\sin(100\pi x)$$

$$z_g = .01\sin(100V\pi x)$$

با توجه به داشتن ماتریس دمپینگ و دیکوپل نشدن آن از حل عددی ode45 بهره برده شده است.

برای این منظور تابعی در متلب تعریف شده و چون متلب فقط معادلات مرتبه اول پشتیبانی میکند از تغییر متغیر های زیر استفاده شده است:

در کد متلب کلیه توابع از تغییر متغیر های بالا بهره برده اند.

نهایتا نتایج حاصله به شرح زیر است:

سرعت و جابه جایی مسافر

نمودار های سرعت–زمان همه درجات آزادی

نمودار های سرعت–زمان همه درجات آزادی

سوال سوم به شرح زیر تحلیل می شود:

جهت فرضی حرکت به سمت چپ می باشد با سرعت هشتاد کیلومتر بر ساعت

مسئله در سه فاز بررسی میکنیم:

فاز اول : چرخ جلو در حال رد شدن از دست انداز است :

در این فاز تحریک برای چرخ جلو تابعی هارمونیک است که بر حسب مقادیر مسئله برابر زیر می شود:

$$z_q = .3\sin(44.4\pi x)$$

لازم به ذکر است اکنون تحریک چرخ عقب برابر صفر است.

فاز دوم : در این فاز هیچ تحریک پایه ای بر روی سیستم اثر نمی گذارد.

فاز سوم : چرخ عقب در حال رد شدن از دست انداز است :

در این فاز تحریک برای چرخ عقب تابعی هارمونیک است که بر حسب مقادیر مسئله برابر زیر می شود:

$$z_g = .3\sin(44.4\pi x)$$

لازم به ذکر است اکنون تحریک چرخ جلو برابر صفر است.

نتایج به شرح زیر است:

نمودار های سرعت و مکان مسافر بر حسب زمان

نمودار مکان بر حسب زمان همه ی درجات آزادی

نمودار سرعت بر حسب زمان همه ی درجات آز ادی

تحلیل اثر پارامتر های عرض دست انداز و سرعت خودرو

الف) تحلیل اثر سرعت خودرو بر روی مسافر

ب) تحلیل عرض دست انداز بر روی مسافر

کتاب ار تعاشات ر ائو

كتاب ارتعاشات ايمن

Model Analysis of Car Five Degree of Freedom Vibration System Based on Energy Decoupling Method XU Bo1,a, BAO Jiading2,3,b,*, WU Jianwei4,c, WANG Hanchao

Modeling and Analysis of Active Full Vehicle Suspension Model Optimized Using the Advanced Fuzzy Logic Controller Shailendra Kumar and Amit Medhavi Mechanical Engineering Department, Kamla Nehru Institute of Technology, Sultanpur, Uttar Pradesh—228118,

از فیلم های یوتیوب جهت ساده ساز مسائل و تحلیل و سهولت در نوشتن برنامه استفاده شده است.

```
%Matlab 5-DOF Vehicle Vibration created by MohammadReza Heydari 9926053
clc
clear
disp(['This code will solve the questions of the vibration project' ...
      (five degrees of freedom suspension system) for you.']);
disp('The first question');
disp('Calculate the natural frequencies and draw the mode shapes.');
disp('The second question');
disp(['Assume that the velocity of vehicle is 80 km/h and constant.' ...
     It passes over a speed bump with the height and width of 30 cm and 50 cm,' ...
    'respectively. Please model this bump. Solve the dynamic model of the vehicle and
draw the displacement, ' ...
    'velocity and acceleration curves of the passenger for a certain time' \dots
    'that covers after the rear wheels pass the bump as well']);
disp('The third question');
disp('Assume that the vehicle is passing over a wavy road with the following
equation: y=.1sin(100pi*x)');
disp('Hypothetically, we have considered the speed of the car as ninety kilometers
per hour');
while(1)
    edame = input('for countinue type 1 and for stop type 0:');
    if edame == 0
        break
    end
    N q = input('Which question should I solve?: ');
switch N q
    case 1
%In this case, the question data is entered and the mode
%shapes are plotted and the natural frequencies are calculated.
m1 = 40.5;
m2 = 45.4;
m3 = 700;
m4 = 80;
jxx = 2400;
M=[m1 0 0 0 0;
  0 m2 0 0 0;
   0 0 m3 0 0;
```

```
0 0 0 jxx 0;
   0 0 0 0 m4];
kt1 = 200*1000;
kt2 = 200*1000;
ks1 = 24*1000;
ks2 = 19*1000;
ks3 = 5*1000;
11 = 1.25;
12 = 1.51;
13 = .5;
I = [1 0 0 0 0;
    0 1 0 0 0;
    0 0 1 0 0;
    00010;
    00001];
K = [ks1 + kt1 \ 0 - ks1 \ ks1 * l1 \ 0;
    0 kt1+ks2 -ks2 -ks2*12 0;
    -ks1 -ks2 ks1+ks2+ks3 -ks1*l1+ks2*l2-ks3*l3 -ks3;
    ks1*11 -ks2*12 -ks1*11+ks2*12-ks3*13 -ks1*11*11+ks2*12*12-ks3*13*13 ks3*13;
    0 0 -ks3 ks3*13 ks3];
K_hat = M^{(-.5)}*K*M^{(-.5)};
[P,LANDA] = eig(K_hat);
landa1 = LANDA(1,1);
landa2 = LANDA(2,2);
landa3 = LANDA(3,3);
landa4 = LANDA(4,4);
landa5 = LANDA(5,5);
modeshape1= transpose(P(:,1));
modeshape2= transpose(P(:,2));
modeshape3= transpose(P(:,3));
modeshape4= transpose(P(:,4));
modeshape5= transpose(P(:,5));
%drawing modshapes
mod = [1,2,3,4,5];
 figure
 subplot(2,3,1);
 plot(mod, modeshape1);
 title(subplot(2,3,1), 'modeshape1')
 subplot(2,3,2);
 plot(mod, modeshape2);
 title(subplot(2,3,2), 'modeshape2');
 subplot(2,3,3);
 plot(mod, modeshape3);
  title(subplot(2,3,3), 'modeshape3');
 subplot(2,3,4);
 plot(mod, modeshape4);
  title(subplot(2,3,4), 'modeshape4');
 subplot(2,3,5);
 plot(mod, modeshape5);
  title(subplot(2,3,5), 'modeshape5');
  %calculate w
 W = LANDA^{.5};
 disp(W);
    case 2
```

```
%In this case, the movement of the car over the bump is analyzed.
V = 80/3.6; % m/s
L= 50e-2;
11 = 1.25;
12 = 1.51;
1 = 11+12;
TPB1=50e-2/V; %Time to pass the bump wheel 1
y0=[0;0;0;0;0;0;0;0;0;0];
tspan = [0:.0001:TPB1];
[t1,y1] = ode45('bazeh1',tspan,y0);
TPB2 = TPB1+1/V; %The time the car passes over the bump
tspan = [TPB1:.0001:TPB2];
a = size(y1);
%In each step, the last answer is considered as the initial condition of the next
step.
y0=y1(a(1,1),:);
[t2,y2] = ode45('bazeh2',tspan,y0);
TPB3 = TPB2+TPB1; %Time to pass the bump wheel 2
tspan = [TPB2:.0001:TPB3];
a = size(y2);
y0=y2(a(1,1),:);
 [t3,y3] = ode45('bazeh3',tspan,y0);
tspan = [TPB3:.0001:3];
 a = size(y3);
y0=y3(a(1,1),:);
 [t4,y4] = ode45('bazeh2',tspan,y0);
 figure
 %Drawing a diagram X-time for Passenger
 subplot(1,2,1);
 plot(t1,y1(:,9),t2,y2(:,9),t3,y3(:,9),t4,y4(:,9));
 title(subplot(1,2,1), 'X Passenger');
ylabel(subplot(1,2,1),'X');
xlabel(subplot(1,2,1), 'time');
 %Drawing a diagram V-time for Passenger
 subplot(1,2,2);
 plot(t1,y1(:,10),t2,y2(:,10),t3,y3(:,10),t4,y4(:,10));
 title(subplot(1,2,2),'V Passenger');
 ylabel(subplot(1,2,2),'V');
 xlabel(subplot(1,2,2), 'time');
 disp('Would you like to see the location and speed of the remaining degrees of
freedom?')
 N q1 = input('Enter 1 if you wish: ');
 if N q1 == 1
    %Drawing diagrams X-time for all degrees of freedom
    figure
    subplot(2,3,1);
    plot(t1,y1(:,1),t2,y2(:,1),t3,y3(:,1),t4,y4(:,1));
    subplot(2,3,2);
    plot(t1,y1(:,3),t2,y2(:,3),t3,y3(:,3),t4,y4(:,3));
    subplot(2,3,3);
    plot(t1,y1(:,5),t2,y2(:,5),t3,y3(:,5),t4,y4(:,5));
    subplot(2,3,4);
    plot(t1,y1(:,7),t2,y2(:,7),t3,y3(:,7),t4,y4(:,7));
    subplot(2,3,5);
    plot(t1,y1(:,9),t2,y2(:,9),t3,y3(:,9),t4,y4(:,9));
```

```
figure
    %Drawing diagrams V-time for all degrees of freedom
     subplot(2,3,1);
    plot(t1,y1(:,2),t2,y2(:,2),t3,y3(:,2),t4,y4(:,2));
    subplot(2,3,2);
    plot(t1,y1(:,4),t2,y2(:,4),t3,y3(:,4),t4,y4(:,4));
    subplot(2,3,3);
    plot(t1,y1(:,6),t2,y2(:,6),t3,y3(:,6),t4,y4(:,6));
    subplot(2,3,4);
    plot(t1,y1(:,8),t2,y2(:,8),t3,y3(:,8),t4,y4(:,8));
    subplot(2,3,5);
    plot(t1,y1(:,10),t2,y2(:,10),t3,y3(:,10),t4,y4(:,10));
 end
    case 3
y0=[0;0;0;0;0;0;0;0;0;0];
tspan = [0:.01:5];
[t1,y1] = ode45('halc',tspan,y0);
figure
%Drawing diagrams X-time for all degrees of freedom
    subplot(2,3,1);
    plot(t1,y1(:,1));
   ylabel(subplot(2,3,1), 'X m1');
   xlabel(subplot(2,3,1), 'time');
    subplot(2,3,2);
    plot(t1,y1(:,3));
    ylabel(subplot(2,3,2),'X m2');
   xlabel(subplot(2,3,2),'time');
    subplot(2,3,3);
    plot(t1,y1(:,5));
    ylabel(subplot(2,3,3),'X m3');
   xlabel(subplot(2,3,3),'time');
    subplot(2,3,4);
    plot(t1,y1(:,7));
    ylabel(subplot(2,3,4), 'Rad theta');
   xlabel(subplot(2,3,4), 'time');
    subplot(2,3,5);
    plot(t1,y1(:,9));
    ylabel(subplot(2,3,5),'X m4(Passenger)');
   xlabel(subplot(2,3,5),'time');
    figure
     %Drawing diagrams V-time for all degrees of freedom
    subplot(2,3,1);
    plot(t1,y1(:,2));
    ylabel(subplot(2,3,1),'V m1');
    xlabel(subplot(2,3,1), 'time');
    subplot(2,3,2);
    plot(t1,y1(:,4));
    ylabel(subplot(2,3,2),'V m2');
    xlabel(subplot(2,3,2),'time');
    subplot(2,3,3);
    plot(t1,y1(:,6));
    vlabel(subplot(2,3,3),'V m3');
    xlabel(subplot(2,3,3),'time');
    subplot(2,3,4);
    plot(t1,y1(:,8));
```

```
ylabel(subplot(2,3,4), 'Rad/s theta');
    xlabel(subplot(2,3,4),'time');
    subplot(2,3,5);
    plot(t1,y1(:,10));
    ylabel(subplot(2,3,5),'V m4(Passenger)');
    xlabel(subplot(2,3,5),'time');
    figure
    subplot(1,2,1);
    plot(t1,y1(:,9));
    ylabel(subplot(1,2,1), 'X m4(Passenger)');
    xlabel(subplot(1,2,1), 'time');
   subplot(1,2,2);
    plot(t1,y1(:,10));
    ylabel(subplot(1,2,2), 'X m4(Passenger)');
    xlabel(subplot(1,2,2),'time');
    case 4
        clc;
        clear;
        disp('Which parameter to change? Speed(V) or bump width(BW)');
        Parameter = input('Enter 3 FOR V or 4 FOR BW : ' );
        switch Parameter
            case 3
for V = 5:20:65
sorat = V;
L= 50e-2;
11 = 1.25;
12 = 1.51;
1 = 11+12;
switch sorat
    case 5
        rang = 'red';
    case 25
        rang = 'blue';
    case 45
        rang = 'green';
    case 65
        rang = 'black';
end
TPB1=50e-2/V; %Time to pass the bump wheel 1
y0=[0;0;0;0;0;0;0;0;0;0];
tspan = [0:.0001:TPB1];
[t1,y1] = ode45('bazeh1solutione',tspan,y0);
TPB2 = TPB1+1/V ;%The time the car passes over the bump
tspan = [TPB1:.0001:TPB2];
a = size(y1);
%In each step, the last answer is considered as the initial condition of the next
step.
y0=y1(a(1,1),:);
[t2,y2] = ode45('bazeh2solutione',tspan,y0);
TPB3 = TPB2+TPB1; %Time to pass the bump wheel 2
tspan = [TPB2:.0001:TPB3];
a = size(y2);
y0=y2(a(1,1),:);
[t3,y3] = ode45('bazeh3solutione',tspan,y0);
tspan = [TPB3:.0001:3];
```

```
a = size(y3);
 y0=y3(a(1,1),:);
 [t4,y4] = ode45('bazeh2solutione',tspan,y0);
 plot(t1,y1(:,9),t2,y2(:,9),t3,y3(:,9),t4,y4(:,9),'color',rang);
title(subplot(1,1,1), 'X Passenger');
ylabel(subplot(1,1,1),'X');
xlabel(subplot(1,1,1),'time');
hold on
end
case 4
for BW = .4:.2:1
Length = BW;
11 = 1.25;
12 = 1.51;
1 = 11+12;
V = 20;
switch BW
    case .4
        rang = 'red';
    case .6
        rang = 'blue';
    case .8
        rang = 'green';
    case 1
        rang = 'black';
TPB1=BW/V; %Time to pass the bump wheel 1
y0=[0;0;0;0;0;0;0;0;0;0];
tspan = [0:.0001:TPB1];
[t1,y1] = ode45('bazeh1solutione',tspan,y0);
TPB2 = TPB1+1/V; %The time the car passes over the bump
tspan = [TPB1:.0001:TPB2];
a = size(v1);
%In each step, the last answer is considered as the initial condition of the next
step.
y0=y1(a(1,1),:);
[t2,y2] = ode45('bazeh2solutione',tspan,y0);
TPB3 = TPB2+TPB1; %Time to pass the bump wheel 2
tspan = [TPB2:.0001:TPB3];
a = size(y2);
y0=y2(a(1,1),:);
[t3,y3] = ode45('bazeh3solutione',tspan,y0);
tspan = [TPB3:.0001:3];
 a = size(y3);
y0=y3(a(1,1),:);
 [t4,y4] = ode45('bazeh2solutione',tspan,y0);
%rang = 'red';
 plot(t1,y1(:,9),t2,y2(:,9),t3,y3(:,9),t4,y4(:,9),'color',rang);
 title(subplot(1,1,1), 'X Passenger');
ylabel(subplot(1,1,1),'X');
xlabel(subplot(1,1,1), 'time');
 hold on
end
end
```

```
end
end
function f = bazeh1(t,y)
%The speed direction is assumed to the left.
%In this function, the movement of the front wheel over the bump is analyzed.
%As a result, zg2 is zero
zg1 = 0;
zg2 = 0;
m1 = 40.5;
m2 = 45.4;
m3 = 700;
m4 = 80;
jxx = 2400;
kt1 = 200*1000;
kt2 = 200*1000;
ks1 = 24*1000;
ks2 = 19*1000;
ks3 = 5*1000;
11 = 1.25;
12 = 1.51;
13 = .5;
cs1 = 1.6*1000;
cs2 = 1.8*1000;
cs3 = .72*1000;
x = .3*sin(100*pi*t);
zg2 = 0;
zg1 = x;
%Numerical solution of the equations of motion
f = zeros(10,1);
f(1) = y(2);
f(2) = (-cs1*y(2) + cs1*(y(6)-11*y(8))-ks1*y(1) - kt1*y(1) + ks1*y(5) -
ks1*11*y(7))/m1+zg1*kt2;
f(3) = y(4);
f(4) = (-cs2*y(4)+cs2*(y(6)+12*y(8))-ks2*y(3)-
kt2*y(3)+ks1*(y(5)+l2*y(7)))/m2+zg2*kt2;
f(5) = y(6);
ks3*(y(5)+12*y(7)-y(3))+ks3*(y(9)-y(5)+13*y(7))+cs3*(y(10)-y(6)+13*y(8)))/m3;
f(7) = y(8);
y(1)+cs1*11*(y(6)-11*y(8)-y(2))-ks3*13*(y(9)-y(5)+13*y(7))-cs3*13*(y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-11*y(10)-
y(6)+13*y(8)))/jxx;
f(9) = y(10);
f(10) = (-cs3*(y(10)-y(6)+13*y(8))-ks3*(y(9)-y(5)+13*y(7)))/m4;
function f = bazeh2(t,y)
%In this function, the movement is when none of the wheels are on the bump
zg1 = 0;
zg2 = 0;
m1 = 40.5;
m2 = 45.4;
m3 = 700;
m4 = 80;
jxx = 2400;
kt1 = 200*1000;
```

```
kt2 = 200*1000;
ks1 = 24*1000;
ks2 = 19*1000;
ks3 = 5*1000;
11 = 1.25;
12 = 1.51;
13 = .5;
cs1 = 1.6*1000;
cs2 = 1.8*1000;
cs3 = .72*1000;
x = .3*sin(100*pi*t);
zg1=0;
zg2=0;
%Numerical solution of the equations of motion
f = zeros(10,1);
f(1) = y(2);
f(2) = (-cs1*y(2) + cs1*(y(6)-11*y(8))-ks1*y(1) - kt1*y(1) + ks1*y(5) -
ks1*11*y(7))/m1+zg1*kt2;
f(3) = y(4);
f(4) = (-cs2*y(4)+cs2*(y(6)+12*y(8))-ks2*y(3)-
kt2*y(3)+ks1*(y(5)+l2*y(7)))/m2+zg2*kt2;
f(5) = y(6);
ks3*(y(5)+12*y(7)-y(3))+ks3*(y(9)-y(5)+13*y(7))+cs3*(y(10)-y(6)+13*y(8)))/m3;
f(7) = y(8);
f(8) = (-ks2*12*(y(5)+12*y(7)-y(3))-cs2*12*(y(6)+12*y(8)-y(4))+ks1*11*(y(5)-11*y(7)-x(6)+12*y(8)-y(6)+12*y(8)-y(6)+12*y(8)-y(6)+12*y(8)-y(6)+12*y(8)-y(6)+12*y(8)-y(6)+12*y(8)-y(6)+12*y(8)-y(6)+12*y(8)-y(6)+12*y(8)-y(6)+12*y(8)-y(6)+12*y(8)-y(6)+12*y(8)-y(6)+12*y(8)-y(6)+12*y(8)-y(6)+12*y(8)-y(6)+12*y(8)-y(6)+12*y(8)-y(6)+12*y(8)-y(6)+12*y(8)-y(6)+12*y(8)-y(6)+12*y(8)-y(6)+12*y(8)-y(6)+12*y(8)-y(6)+12*y(8)-y(6)+12*y(8)-y(6)+12*y(8)-y(6)+12*y(8)-y(6)+12*y(8)-y(6)+12*y(8)-y(6)+12*y(8)-y(6)+12*y(8)-y(6)+12*y(8)-y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6
y(1)+cs1*11*(y(6)-11*y(8)-y(2))-ks3*13*(y(9)-y(5)+13*y(7))-cs3*13*(y(10)-
y(6)+13*y(8)))/jxx;
f(9) = y(10);
f(10) = (-cs3*(y(10)-y(6)+13*y(8))-ks3*(y(9)-y(5)+13*y(7)))/m4;
end
function f = bazeh3(t,v)
%In this function, the movement of the Back wheel over the bump is analyzed.
zg1 = 0;
zg2 = 0;
m1 = 40.5;
m2 = 45.4;
m3 = 700;
m4 = 80:
jxx = 2400;
kt1 = 200*1000;
kt2 = 200*1000;
ks1 = 24*1000;
ks2 = 19*1000;
ks3 = 5*1000;
11 = 1.25;
12 = 1.51;
13 = .5;
cs1 = 1.6*1000;
cs2 = 1.8*1000;
cs3 = .72*1000;
x = .3*sin(100*pi*t);
zg1=0;
```

```
zg2=x;
f = zeros(10,1);
%Numerical solution of the equations of motion
f(1) = y(2);
f(2) = (-cs1*y(2) + cs1*(y(6)-11*y(8))-ks1*y(1) - kt1*y(1) + ks1*y(5) -
ks1*l1*y(7))/m1+zg1*kt2;
f(3) = y(4);
f(4) = (-cs2*y(4)+cs2*(y(6)+12*y(8))-ks2*y(3)-
kt2*y(3)+ks1*(y(5)+l2*y(7)))/m2+zg2*kt2;
f(5) = y(6);
ks3*(y(5)+l2*y(7)-y(3))+ks3*(y(9)-y(5)+l3*y(7))+cs3*(y(10)-y(6)+l3*y(8)))/m3;
f(7) = y(8);
f(8) = (-ks2*12*(y(5)+12*y(7)-y(3))-cs2*12*(y(6)+12*y(8)-y(4))+ks1*11*(y(5)-11*y(7)-y(6)+12*y(8)-y(6))+ks1*11*(y(5)-11*y(7)-y(6)+12*y(8)-y(6)+12*y(8)-y(6)+12*y(8)-y(6)+12*y(8)-y(6)+12*y(8)-y(6)+12*y(8)-y(6)+12*y(8)-y(6)+12*y(8)-y(6)+12*y(8)-y(6)+12*y(8)-y(6)+12*y(8)-y(6)+12*y(8)-y(6)+12*y(8)-y(6)+12*y(8)-y(6)+12*y(8)-y(6)+12*y(8)-y(6)+12*y(8)-y(6)+12*y(8)-y(6)+12*y(8)-y(6)+12*y(8)-y(6)+12*y(8)-y(6)+12*y(8)-y(6)+12*y(8)-y(6)+12*y(8)-y(6)+12*y(8)-y(6)+12*y(8)-y(6)+12*y(8)-y(6)+12*y(8)-y(6)+12*y(8)-y(6)+12*y(8)-y(6)+12*y(8)-y(6)+12*y(8)-y(6)+12*y(8)-y(6)+12*y(8)-y(6)+12*y(8)-y(6)+12*y(8)-y(6)+12*y(8)-y(6)+12*y(8)-y(6)+12*y(8)-y(6)+12*y(8)-y(6)+12*y(8)-y(6)+12*y(8)-y(6)+12*y(8)-y(6)+12*y(8)-y(6)+12*y(8)-y(6)+12*y(8)-y(6)+12*y(8)-y(6)+12*y(8)-y(6)+12*y(8)-y(6)+12*y(8)-y(6)+12*y(8)-y(6)+12*y(8)-y(6)+12*y(8)-y(6)+12*y(8)-y(6)+12*y(8)-y(6)+12*y(8)-y(6)+12*y(8)-y(6)+12*y(8)-y(6)+12*y(8)-y(6)+12*y(8)-y(6)+12*y(8)-y(6)+12*y(8)-y(6)+12*y(8)-y(6)+12*y(8)-y(6)+12*y(8)-y(6)+12*y(8)-y(6)+12*y(8)-y(6)+12*y(8)-y(6)+12*y(8)-y(6)+12*y(8)-y(6)+12*y(8)-y(6)+12*y(8)-y(6)+12*y(8)-y(6)+12*y(8)-y(6)+12*y(8)-y(6)+12*y(8)-y(6)+12*y(8)-y(6)+12*y(8)-y(6)+12*y(8)-y(6)+12*y(8)-y(6)+12*y(8)-y(6)+12*y(8)-y(6)+12*y(8)-y(6)+12*y(8)-y(6)+12*y(8)-y(6)+12*y(8)-y(6)+12*y(8)-y(6)+12*y(8)-y(6)+12*y(8)-y(6)+12*y(8)-y(6)+12*y(8)-y(6)+12*y(8)-y(6)+12*y(8)-y(6)+12*y(8)-y(6)+12*y(8)-y(6)+12*y(8)-y(6)+12*y(8)-y(6)+12*y(8)-y(6)+12*y(8)-y(6)+12*y(8)-y(6)+12*y(8)-y(6)+12*y(8)-y(6)+12*y(8)-y(6)+12*y(8)-y(6)+12*y(8)-y(6)+12*y(8)-y(6)+12*y(8)-y(6)+12*y(8)-y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)+12*y(6)
y(1))+cs1*11*(y(6)-11*y(8)-y(2))-ks3*13*(y(9)-y(5)+13*y(7))-cs3*13*(y(10)-
y(6)+13*y(8)))/jxx;
f(9) = y(10);
f(10) = (-cs3*(y(10)-y(6)+13*y(8))-ks3*(y(9)-y(5)+13*y(7)))/m4;
```

end