

CS4650 Final Presentation Interpret, visualize BERT

Xueren Ge

Haibei Zhu

Goal

- Understand BERT
- whether BERT create reasonable embeddings
- explore each layer's necessity
- Find out possible improvement to solve "anistropy" problem

Method

- Remove Layer 12 in BERT
- Biased Dataset Analysis
- Contrastive Learning

Data

- Stanford Natural Language Inference (SNLI) Corpus
 - https://nlp.stanford.edu/projects/snli/

Text	Judgments	Hypothesis
A man inspects the uniform of a figure in some East Asian country	contradiction CCCCC	The man is sleeping
An older and younger man smiling.	neutral N N E N N	Two men are smiling and laughing at the cats playing on the floor.
A black race car starts up in front of a crowd of people.	contradiction C C C C C	A man is driving down a lonely road.
A soccer game with multiple males playing.	entailment E E E E E	Some men are playing a sport.
A smiling costumed woman is holding an umbrella.	neutral N N E C N	A happy woman in a fairy costume holds an umbrella.

Anisotropy

We randomly select 2 words and calculate the cosine similarity, and find that as layer goes deeper, any words cosine similarity grows □ Any 2 random words have similar representation, which means, the whole vector space tend to be a cone instead of ball.

- How to adjust for it?
 - Use anisotropy baseline

$$Baseline(f_{\ell}) = \mathbb{E}_{x,y \sim U(\mathcal{O})} \left[\cos(f_{\ell}(x), f_{\ell}(y)) \right]$$

 $SelfSim_{\ell}^{*}(w) = SelfSim_{\ell}(w) - Baseline(f_{\ell})$

Contrastive Learning

Loss Function

$$\mathcal{L} = -\sum_{i,j=1}^b t_{i,j} \log p_{i,j} = -\sum_{i,j=1}^b t_{i,j} \log rac{e^{s_{i,j}}}{\sum_j e^{s_{i,j}}} = -\sum_{i,j=1}^b t_{i,j} s_{i,j}$$

b is batch size, t_i,j is the label,- one hot matrix. s_i,j is the similarity score between sample i and j

Use cross entropy loss of negative samples with in a batch.

Make the feature of x more similar to the positive sample and less similar to the feature of the negative sample

Results

Contrastive Learning

As the layer goes deeper, contrastive-learning BERT model's any words cosine similarity grows slower than the original BERT. Anisotropy issue alleviate

Experiment 1:

Use SNLI to do classification:

length of train loader: 17168 length of val loader: 308

whether premise can infer hypothesis, if so, label is entailment. if not, label is contradiction. If not sure, label is neutral.

Premise: A man inspects the uniform of a figure in some East Asian country.

Hypothesis: The man is sleeping.

Original BERT

Label: *contradiction*

BERT w/o Layer12

```
(11): BertLayer(
                                                                                           (10): BertLayer(
        (attention): BertAttention(
                                                                                             (attention): BertAttention(
          (self): BertSelfAttention(
                                                                                               (self): BertSelfAttention(
            (query): Linear(in_features=768, out_features=768, bias=True)
                                                                                                (query): Linear(in_features=768, out_features=768, bias=True)
                                                                                                (key): Linear(in features=768, out features=768, bias=True)
            (key): Linear(in_features=768, out_features=768, bias=True)
                                                                                                 (value): Linear(in features=768, out features=768, bias=True)
            (value): Linear(in_features=768, out_features=768, bias=True)
                                                                                                (dropout): Dropout(p=0.1, inplace=False)
            (dropout): Dropout(p=0.1, inplace=False)
                                                                                               (output): BertSelfOutput(
          (output): BertSelfOutput(
                                                                                                (dense): Linear(in features=768, out features=768, bias=True)
            (dense): Linear(in_features=768, out_features=768, bias=True)
                                                                                                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
            (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True
                                                                                                (dropout): Dropout(p=0.1, inplace=False)
            (dropout): Dropout(p=0.1, inplace=False)
                                                                                             (intermediate): BertIntermediate(
                                                                                               (dense): Linear(in_features=768, out_features=3072, bias=True)
        (intermediate): BertIntermediate(
          (dense): Linear(in features=768, out features=3072, bias=True)
                                                                                             (output): BertOutput(
                                                                                               (dense): Linear(in_features=3072, out_features=768, bias=True)
        (output): BertOutput(
                                                                                              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
          (dense): Linear(in features=3072, out features=768, bias=True)
                                                                                               (dropout): Dropout(p=0.1, inplace=False)
          (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise affine=True)
          (dropout): Dropout(p=0.1, inplace=False)
                                                                                       (pooler): BertPooler(
                                                                                         (dense): Linear(in_features=768, out_features=768, bias=True)
                                                                                         (activation): Tanh()
  (pooler): BertPooler(
    (dense): Linear(in features=768, out features=768, bias=True)
    (activation): Tanh()
                                                                                     (classifier): Sequential(
                                                                                       (0): Linear(in_features=768, out_features=50, bias=True)
                                                                                       (1): ReLU()
                                                                                       (2): Linear(in features=50, out features=3, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
(classifier): Linear(in_features=768, out_features=3, bias=True)
```


During fine-tuning, I set all parameters as the same epochs = 2 optimizer = AdamW(model.parameters(), Ir=5e-5, eps=1e-8) loss_fn = nn.CrossEntropyLoss()

Original BERT

Accuracy on test dataset: 90.45195439739413

total time: 6140.41s

Accuracy on test dataset: 90.32980456026058

total time: 5623.56s

Experiment 2:

Use MedWeb to do classification:

length of train loader: 7021 length of val loader: 1505

(10): BertLayer(

Reviews to predict satisfaction level (1,2,3,4,5,6) for drugs

1	Age	Condition	Date	Drug	Drugld	EaseofUse	Effectivene	Reviews	S	tisfaction	Sex	Sides	UsefulCount
2	75 or over	Stuffy Nose	########	25dph-7.5p	146724	5	5	'm a retir	d (5	Male	Drowsiness	0

Original BERT

BERT w/o Layer12

```
(11): BertLayer(
        (attention): BertAttention(
          (self): BertSelfAttention(
            (query): Linear(in_features=768, out_features=768, bias=True)
            (key): Linear(in_features=768, out_features=768, bias=True)
            (value): Linear(in_features=768, out_features=768, bias=True)
            (dropout): Dropout(p=0.1, inplace=False)
          (output): BertSelfOutput(
            (dense): Linear(in_features=768, out_features=768, bias=True)
            (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True
            (dropout): Dropout(p=0.1, inplace=False)
        (intermediate): BertIntermediate(
          (dense): Linear(in features=768, out features=3072, bias=True)
        (output): BertOutput(
          (dense): Linear(in features=3072, out features=768, bias=True)
          (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise affine=True)
          (dropout): Dropout(p=0.1, inplace=False)
  (pooler): BertPooler(
    (dense): Linear(in features=768, out features=768, bias=True)
    (activation): Tanh()
(dropout): Dropout(p=0.1, inplace=False)
(classifier): Linear(in_features=768, out_features=3, bias=True)
```

```
(attention): BertAttention(
          (self): BertSelfAttention(
            (query): Linear(in_features=768, out_features=768, bias=True)
            (key): Linear(in features=768, out features=768, bias=True)
            (value): Linear(in features=768, out features=768, bias=True)
            (dropout): Dropout(p=0.1, inplace=False)
          (output): BertSelfOutput(
            (dense): Linear(in features=768, out features=768, bias=True)
            (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
            (dropout): Dropout(p=0.1, inplace=False)
        (intermediate): BertIntermediate(
          (dense): Linear(in_features=768, out_features=3072, bias=True)
        (output): BertOutput(
          (dense): Linear(in_features=3072, out_features=768, bias=True)
          (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
          (dropout): Dropout(p=0.1, inplace=False)
  (pooler): BertPooler(
   (dense): Linear(in_features=768, out_features=768, bias=True)
    (activation): Tanh()
(classifier): Sequential(
  (0): Linear(in_features=768, out_features=50, bias=True)
  (1): ReLU()
  (2): Linear(in features=50, out features=3, bias=True)
```


During fine-tuning, I set all parameters as the same epochs = 2optimizer = AdamW(model.parameters(), Ir=5e-5, eps=1e-8) loss_fn = nn.CrossEntropyLoss()

Accuracy on test dataset: 58.90691741813004

Accuracy on test dataset: 58.66961319411485

total time: 2652.56s

total time: 2447.34s

Biased Dataset Experiment

Experiment:

Use **SNLI** to do **classification**:

we remove sentences which contains words related to "female" in training dataset but keep original validation and test dataset.

forbidden_words = ['women', 'woman', 'girl', 'girls', 'mother', 'wife', 'female']

Biased SNLI

length of train loader: 13197

length of val loader: 308

Accuracy on test dataset: 59.46661237785016

Original SNLI

length of train loader: 17168

length of val loader: 308

Accuracy on test dataset: 90.45195439739413

Conclusion:

BERT may not perform well in biased dataset, we should make sure dataset is unbiased.

Conclusion

- Data-biased
 - BERT may not perform well in biased dataset, we should make sure dataset is unbiased.
- Structure
 - We used Hugging Face to freeze layer 12 and found out there is no much difference compare to the original BERT but the process is much faster
- Anisotropy
 - Contrastive learning could alleviate anisotropy by make feature more similar to it's positive sample and less similar to it's negative sample

