WHAT IS CLAIMED IS:

1	1. An electrosurgical probe for treating a target tissue at a				
2	surgical site, comprising:				
3	a shaft having a shaft distal end and a shaft proximal end; and				
4	an electrode assembly disposed on the shaft, wherein the electrode				
5	assembly includes an electrically insulating electrode support and at least one active				
6	electrode terminal arranged on the electrode support, each of the at least one active				
7	electrode terminal having an electrode lumen therethrough, wherein the electrode				
8	lumen is adapted for removing unwanted materials from the surgical site.				
9					
1	2. The probe of claim 1, wherein the electrode lumen is in				
2	communication with a vacuum source.				
3					
1	3. The probe of claim 1, wherein the electrode lumen forms part				
2	of an aspiration unit.				
3					
1	4. The probe of claim 1, wherein the at least one active electrode				
2	terminal includes a working end, and the electrode lumen terminates in an electrode				
3	port at the working end.				
4					
1	5. The probe of claim 4, wherein the electrode support includes a				
2	suction cavity.				
3					
1	6. The probe of claim 5, wherein the at least one active electrode				
2	terminal includes a suction opening, the suction opening in communication with the				
3	suction cavity of the electrode support.				
4					
1	7. The probe of claim 6, wherein the suction opening comprises				
2	a slit.				
3					
1	8. The probe of claim 7, wherein the at least one active electrode				
2	terminal comprises a body having a wall, and the slit is arranged longitudinally in				
2	the wall				

	CB-12			
4				
1	9. The probe of claim 7, wherein the slit is continuous with the.			
2	electrode port.			
3				
1	10. The probe of claim 7, wherein the suction opening further			
2	comprises a window.			
3				
1	11. The probe of claim 6, wherein the suction opening extends			
2	from the working end of the at least one active electrode terminal to the suction			
3	cavity of the electrode support.			
4				
1	12. The probe of claim 6, wherein the suction opening causes			
2	preferential flow of an aspiration stream at a first region of the working end.			
3				
1	13. The probe of claim 12, wherein the suction opening defines			
2	the first region and a second region, wherein the first region is characterized by a			
3	higher flow rate of the aspiration stream than the second region.			
4				
1	14. The probe of claim 13, wherein the first region lies at or			
2	adjacent to the suction opening, and the second region lies substantially opposite the			
3	suction opening.			
4				
1	15. The probe of claim 13, wherein the second region is a			
2	shielded region which promotes the generation and maintenance of a plasma at the			
3	working end of the at least one active electrode terminal.			
4				
1	16. The probe of claim 13, wherein the preferential flow of the			
2	aspiration stream in the first region promotes the generation and maintenance of a			
3	plasma at the second region.			
4				
1	17. The probe of claim 4, further comprising an aspiration unit			
2	including an aspiration lumen.			

1	18. The probe	of claim 17, wherein the aspiration lumen lies		
2	within the shaft.			
3	3			
1	19. The probe	of claim 17, wherein the aspiration lumen is		
2	coupled at its proximal end to an aspiration tube.			
3	3			
1	20. A method	of treating a target tissue at a surgical site,		
2	comprising:			
3	a) providing an electrosurgical probe having an active electrode			
4	assembly and a return electrode, the active electrode assembly comprising at least			
5	one active electrode terminal, the at least one active electrode terminal including a			
6	body, the body having a wall de	body, the body having a wall defining an electrode lumen, and the wall having a		
7	suction opening therein;	suction opening therein;		
8	b) positioning the active electrode assembly in at least close proximit			
9	to the target tissue; and			
10	c) applying a high frequency voltage between the at least one active			
11	electrode terminal and the return electrode, wherein at least a portion of the target			
12	tissue is ablated or modified.			