Xiaoyan Cong

Providence, RI | xiaoyan_cong@brown.edu | website: Oliver-Cong02.github.io/ | +1 (401) 500-3107

Education

Brown University, Ph.D. Student of Computer Science

September 2024 – Present

• Advisor: Professor Srinath Sridhar

Zhejiang University, B.Eng. in Robotics Engineering, Chu Kochen Honor College

September 2020 - June 2024

- GPA: 3.99/4.0
- Advisors: Professor Qixing Huang

Hong Kong University of Science and Technology, Exchange Student

January 2023 – June 2023

- Dean's List
- Advisors: Professor Qifeng Chen & Professor Chenyang Lei

Publications

OscillationInversion: Understand the structure of Large Flow Model through the Lens of Inversion Method

October 2024

Anonymous

Under Review

Automatic Controllable Colorization by Imagination

June 2024

Xiaoyan Cong, Yue Wu, Qifeng Chen, Chenyang Lei

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2024 [arxiv: 2404.05661]

4DRecons: 4D Neural Implicit Deformable Objects Reconstruction from a single RGB-D Camera with Geometrical and Topological Regularizations

2024

Xiaoyan Cong, Haitao Yang, Liyan Chen, Kaifeng Zhang, Li Yi, Chandrajit Bajaj, Qixing Huang *Under Review* [arxiv: 2406.10167]

Research Experience

Research Intern, University of Texas at Austin

Jun. 2023 - Nov. 2023

- Advisors: Prof. Qixing Huang & Prof. Li Yi
- 4D Neural Implicit Deformable Objects Reconstruction
 - Introduced a novel approach 4DRecons that takes a monocular RGB-D sequence of dynamic objects as input and outputs a complete textured deforming reconstruction.
 - Proposed an optimization procedure that enforces the deformation among adjacent frames is as-rigid-as-possible (ARAP) and ensures the topology remains fixed over time.
 - Demonstrated that 4DRecons can handle large deformations and complex inter-part interactions, outperforming state-of-the-art approaches considerably.

Research Intern, Hong Kong University of Science and Technology

Jan. 2023 - Nov. 2023

- Advisors: Prof. Qifeng Chen & Prof. Chenyang Lei
- Automatic Controllable Colorization by Imagination
 - Introduced a novel framework for automatic and controllable colorization, enabling iterative editing and modifications.
 - Proposed an Imagination Module that utilizes Diffusion Models (ControlNet) to generate multiple reference candidates with similar semantics and structures to a black-and-white input. The optimal reference is composed from all reference candidates by selecting each segment with the most similar DINO feature.
 - Devised a Colorization Module that colorizes the black-and-white input under the guidance of the optimal reference.

- Demonstrated our framework's superiority over state-of-the-art methods, achieving controllable and editable colorization, which is non-trivial in the automatic colorization community.

Selected Awards and Honors

Excellence Scholarship, by Chu Kochen Honors College, Zhejiang University, Top 1%	2022
Chinese National Scholarship, by Ministry of Education of the People's Republic of China, Top 0.2%	2021
Chunhui Scholarship, by College of Control Science and Engineering, Zhejiang University, Top 1%	2023
Zhejiang Provincial Government Scholarship, Top 2%	2020 - 2022
First-prize Scholarship of Zhejiang University, Top 2%	2020 - 2022

Computer and Language Skills

Programming Languages: Proficient in C/C++, Python (Pytorch), MATLAB.

Technical Skills: Linux/Windows, MeshLab, Blender, SolidWorks, CoppeliaSim, Multisim.

Language: Mandarin (native), English (fluent).