Contents

1 Combinatorics	2
1.1 Binomial Theorem	3
2 Probability Theory	4
2.1 Discrete Probability Spaces	5
3 Ramsey Theory	6
Bibliography	7

1.1 Binomial Theorem

Theorem (Binomial theorem)

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}.$$

Proof (Inductive) Homework.

Proof (*Combinatorial*) Consider the product $(x_1 + y_1)(x_2 + y_2) \cdots (x_n + y_n)$.

First, note that the expansion consists of 2^n terms, each being a product of n factors. Secondly, each product contains either x_j xor y_j for each $j \in [n]$.

For example,
$$(x_1 + y_1)(x_2 + y_2) = x_1x_2 + x_1y_2 + y_1x_2 + y_1y_2$$
.

Now, we can we choose k of the x_j s and n - k of the y_j s in $\binom{n}{k}$ ways, so there are precisely those many terms with mk x_j s and n - k y_j s in the expansion.

Finally, letting $x_j = x$ and $y_j = y$ for each $j \in [n]$, we get the result.

Remark This can be generalized to a finite number of experiments.

2.1 DISCRETE PROBABILITY SPACES

Notations

Term	Description	Symbol	Coin toss Eg
sample space	set of outcomes	Ω	$\{H,T\}$
outcome	arbitrary outcome	$\omega \in \Omega$	H
event	subset of sample space	E	\emptyset , $\{H\}$, $\{T\}$, $\{H,T\}$
prob mass fn	weightage of each outcome	$p: \Omega \to [0,1]$, with	$p(H) = \frac{1}{3}, p(T) = \frac{2}{3}$
		$\sum_{\omega} p(\omega) = 1$	
probability	(of an event)	$\mathbb{P}(E) = \sum_{\omega \in \Omega} p(\omega)$	$\mathbb{P}(\emptyset) = 0, \mathbb{P}(\{H, T\}) = 1$

Proposition (Basic principle of counting) Suppose two independent experiments are performed, and there are m possible outcomes of the first experiment and n possible outcomes of the second experiment. Then the total possible outcomes of of the two experiments combined is mn.

Proof Let (i,j) denote the case when the first experiment gives the ith outcome and the second experiment gives the jth outcome. Enumerating, we get

$$(1,1)$$
 $(1,2)$... $(1,n)$ $(2,1)$ $(2,2)$... $(2,n)$ \vdots \vdots \ddots \vdots $(m,1)$ $(m,2)$... (m,n)

Since there are m rows and n columns, we have total mn entries.

Remark This can be generalized to a finite number of experiments.

BIBLIOGRAPHY