OVERVIEW

Explore, analyze and model a data set containing information on crime for various neighborhoods of major city. Each record has a response variable indicating whether or not the crime rate is above the median crime rate (1) or not (0).

OBJECTIVE

Objective is to build binary logistic regression model. Through this model, it is set to find out whether the neighborhood will be at risk for high crime levels.

DATA SET

There are two data sets given. They are:

05/10/2017 12:37 AM 2,542 crime-evaluation-data.csv 05/10/2017 12:37 AM 29,715 crime-training-data.csv

- zn: proportion of residential land zoned for large lots (over 25000 square feet) (predictor variable)
- indus: proportion of non-retail business acres per suburb (predictor variable)
- chas: a dummy var. for whether the suburb borders the Charles River (1) or not (0) (predictor variable)
- nox: nitrogen oxides concentration (parts per 10 million) (predictor variable)
- rm: average number of rooms per dwelling (predictor variable)
- age: proportion of owner-occupied units built prior to 1940 (predictor variable)
- dis: weighted mean of distances to five Boston employment centers (predictor variable)
- rad: index of accessibility to radial highways (predictor variable)
- tax: full-value property-tax rate per \$10,000 (predictor variable)
- ptratio: pupil-teacher ratio by town (predictor variable)
- black: 1000(Bk 0.63)2 where Bk is the proportion of blacks by town (predictor variable)
- Istat: lower status of the population (percent) (predictor variable)
- medv: median value of owner-occupied homes in \$1000s (predictor variable)

SAMPLE DATA LOADED IN EXCEL

	indu	cha					ra		ptrati			med	targe
zn	S	S	nox	rm	age	dis	d	tax	0	black	Istat	v	t
	19.5			7.92	96.	2.045		40					
0	8	0	0.605	9	2	9	5	3	14.7	369.3	3.7	50	1
	19.5			5.40		1.321		40			26.8		
0	8	1	0.871	3	100	6	5	3	14.7	396.9	2	13.4	1
				6.48		1.978		66		386.7	18.8		
0	18.1	0	0.74	5	100	4	24	6	20.2	3	5	15.4	1
				6.39		7.035		30		374.7			
30	4.93	0	0.428	3	7.8	5	6	0	16.6	1	5.19	23.7	0
				7.15	92.	2.700		19		394.1			
0	2.46	0	0.488	5	2	6	3	3	17.8	2	4.82	37.9	0
				6.78	71.	2.856		38		395.5			
0	8.56	0	0.52	1	3	1	5	4	20.9	8	7.67	26.5	0
				5.45		1.489		66			30.5		
0	18.1	0	0.693	3	100	6	24	6	20.2	396.9	9	5	1
				4.51		1.658		66			36.9		
0	18.1	0	0.693	9	100	2	24	6	20.2	88.27	8	7	1

DATA EXPLORATION

Various exploration of data set has been done through R Markdown and the program and the output has been attached

- a) Summary of Statistics
- b) Correlations of the data
- c) Number of Rows and Columns
- d) Structure of the data set
- e) List all the variables of my data set
- f) Statistical description of the data using additional packages install.packages("pastecs")

Sample from the output is given below:

```
## 'data.frame':
                 466 obs. of 14 variables:
## $ zn : num 0 0 0 30 0 0 0 0 0 80 ...
   $ indus : num 19.58 19.58 18.1 4.93 2.46 ...
## $ chas : int 0 1 0 0 0 0 0 0 0 ...
## $ nox : num 0.605 0.871 0.74 0.428 0.488 0.52 0.693 0.693 0.515 0.392 ...
          : num 7.93 5.4 6.49 6.39 7.16 ...
   $ age
         : num 96.2 100 100 7.8 92.2 71.3 100 100 38.1 19.1 ...
## $ dis
           : num 2.05 1.32 1.98 7.04 2.7 ...
## $ rad
           : int 5 5 24 6 3 5 24 24 5 1 ...
         : int 403 403 666 300 193 384 666 666 224 315 ...
   $ tax
## $ ptratio: num 14.7 14.7 20.2 16.6 17.8 20.9 20.2 20.2 20.2 16.4 ...
## $ black : num 369 397 387 375 394 ...
## $ 1stat : num 3.7 26.82 18.85 5.19 4.82 ...
## $ medv : num 50 13.4 15.4 23.7 37.9 26.5 5 7 22.2 20.9 ...
## $ target : int 1 1 1 0 0 0 1 1 0 0 ...
names(trgData)
## [1] "zn"
                                          "rm"
                "indus"
                         "chas"
                                  "nox"
                                                   "age"
                                                             "dis"
## [8] "rad"
                "tax"
                         "ptratio" "black"
                                          "lstat"
                                                    "medv"
                                                             "target"
head(trgData)
## zn indus chas nox
                        rm
                            age
                                   dis rad tax ptratio black lstat medv
1 0.871 5.403 100.0 1.3216
                                        5 403
## 2 0 19.58
                                                14.7 396.90 26.82 13.4
## 3 0 18.10 0 0.740 6.485 100.0 1.9784 24 666 20.2 386.73 18.85 15.4
stat.desc(trgData)
```

```
##
                      zn
                                indus
                                            chas
## nbr.val
            466.000000 466.0000000 466.00000000 4.660000e+02
              339.000000 0.0000000 433.00000000 0.000000e+00
## nbr.null
               0.000000 0.0000000 0.00000000 0.000000e+00
## nbr.na
## min
               0.000000
                          0.4600000 0.00000000 3.890000e-01
## max
              100.000000 27.7400000 1.00000000 8.710000e-01
## range
              100.000000 27.2800000 1.00000000 4.820000e-01
              5395.000000 5174.9400000 33.00000000 2.583087e+02
## sum
## median
               0.000000
                           9.6900000 0.00000000 5.380000e-01
```

```
## [1] "Number of rows of Training Data Set->>>: 466"
print(pasteO("Number of columns of Training Data Set->>>: ", ncol(trgData)))
## [1] "Number of columns of Training Data Set->>>>: 14"
cor(trgData)
##
                            indus
                                        chas
                   zn
                                                     nox
                                                                 rm
## zn
           1.00000000 -0.53826643 -0.04016203 -0.51704518 0.31981410
## indus -0.53826643 1.00000000 0.06118317 0.75963008 -0.39271181
## chas -0.04016203 0.06118317 1.00000000 0.09745577 0.09050979
## nox
          -0.51704518  0.75963008  0.09745577  1.00000000  -0.29548972
          0.31981410 -0.39271181 0.09050979 -0.29548972 1.00000000
## rm
## age
         -0.57258054 0.63958182 0.07888366 0.73512782 -0.23281251
## dis
          0.66012434 -0.70361886 -0.09657711 -0.76888404 0.19901584
## rad
         -0.31548119  0.60062839  -0.01590037  0.59582984  -0.20844570
## tax
         -0.31928408 0.73222922 -0.04676476 0.65387804 -0.29693430
## ptratio -0.39103573 0.39468980 -0.12866058 0.17626871 -0.36034706
## black 0.17941504 -0.35813561 0.04444450 -0.38015487 0.13266756
## 1stat -0.43299252 0.60711023 -0.05142322 0.59624264 -0.63202445
## medv
          0.37671713 -0.49617432 0.16156528 -0.43012267 0.70533679
## target -0.43168176 0.60485074 0.08004187 0.72610622 -0.15255334
##
                              dis
                  age
                                         rad
                                                     tax
                                                            ptratio
## zn
          -0.57258054 0.66012434 -0.31548119 -0.31928408 -0.3910357
## indus 0.63958182 -0.70361886 0.60062839 0.73222922 0.3946898
## chas
          0.07888366 -0.09657711 -0.01590037 -0.04676476 -0.1286606
```

DATA PREPARATION

1. In order to get the analysis, We have installed funModelling package for this. (viz. install.packages("funModeling")). This gives detailed report of about missing any data. — Please refer the output of RMARKDOWN file.

```
## funModeling v.1.6.2 :)
## Documentation at livebook.datascienceheroes.com
##
    variable q_zeros p_zeros q_na p_na q_inf p_inf
                                        type unique
## 1
             339 72.75
                           0
                                0 0 numeric
             0
## 2
      indus
                 0.00
                        0
                            0
                                0
                                     0 numeric
                                               73
## 3
             433 92.92 0
                          0
                                0
      chas
                                     0 integer
                               0 0 numeric
## 4
             0 0.00 0 0
      nox
                                              79
## 5
                 0.00 0 0
                                0 0 numeric 419
       rm
## 6
                 0.00 0 0
                               0 0 numeric 333
       age
              0
## 7
       dis
               0
                 0.00 0 0
                                0
                                  0 numeric 380
## 8
       rad
               0 0.00 0 0 0 integer
             0 0.00 0 0 0 0 integer
## 9
                                             63
       tax
                               0 0 numeric
## 10 ptratio
             0 0.00 0 0
                                            46
              0 0.00 0 0 0 numeric
## 11
                                              331
     black
             0 0.00 0 0 0 0 numeric 424
## 12
      lstat
## 13
      medv
             0 0.00 0
                                0 0 numeric
                                              218
## 14
             237 50.86 0
    target
                                     0 integer
    variable q_zeros p_zeros q_na p_na q_inf p_inf
##
                                        type unique
## 1
                  82.5
                            0
                                     0 integer
## 2
      indus
              0
                  0.0
                        0
                            0
                                0
                                     0 numeric
                                               22
                          0
## 3
                  95.0 0
                                0 0 integer
      chas
              38
                          0
## 4
      nox
              0
                 0.0
                                0 0 numeric
                                               28
## 5
             0
                  0.0 0 0
                               0 0 numeric
       rm
                                               40
                               0 0 numeric
## 6
             0 0.0 0 0
      age
                                               39
                 0.0 0 0
                               0 0 numeric
              0
## 7
       dis
                                               40
## 8
       rad
             0 0.0 0 0 0 0 integer
                                               9
## 9
              0 0.0 0 0 0 integer
       tax
                                               21
```

10 ptratio

black

lstat

medv

0

11

12

13

2. Checking for NULL or Infinite numbers. Please refer the output in RMarkdown file. Sample is given below

0 0.0 0 0 0 0 numeric

0 0.0 0 0 0 numeric

0 0 numeric

0 numeric

0.0 0 0

0.0

17

32

40

##	zn	indus	chas	nox	rm	age	dis	rad	tax
##	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
##	ptratio	black	lstat	medv	target				
##	FALSE	FALSE	FALSE	FALSE	FALSE				
##	zn	indus	chas	nox	rm	age	dis	rad	tax
##	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
##	ptratio	black	lstat	medv					
##	FALSE	FALSE	FALSE	FALSE					

3. Put the Data into buckets

DATA VISUALIZATION

Sample data visualization has been given in RMARKDOWN output.

BUILD MODEL & SELECT MODEL


```
## (Intercept)
                    nox
                                age
                                           rad
                                                   ptratio
## -1.412836094 1.956694224 0.003531713 0.017106647 0.012716341
##
         medv
## 0.008021190
##
## glm(formula = target - nox + age + rad + ptratio + medv, family = binomial,
##
     data = trgData)
##
## Deviance Residuals:
## Min 1Q
                                3Q
                    Median
                                         Max
## -1.96654 -0.29783 -0.03987 0.00769 2.80829
##
## Coefficients:
##
             Estimate Std. Error z value Pr(>|z|)
## (Intercept) -24.936540 3.683449 -6.770 1.29e-11 ***
        ## nox
## age
## rad
## ptratio
             0.085445 0.027979 3.054 0.00226 **
## medv
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Please see the output of the markdown file.

CONCLUSION

Rmarkdown file
Output pdf file
Data file
This word document converted to PDF file

Are all available in https://github.com/muthukumars/DATA-621/tree/master/Week8-Homework3

THANK YOU