Testes Qui-Quadrado

Vimos nas aulas de estatística descritiva que podemos utilizar a estatística de Qui-quadrado $\chi^2 = \sum_{i=1}^r \sum_{j=1}^s \frac{(n_{ij} - n_{ij}^*)^2}{n_{ij}^*}$ para medir a associação entre variáveis qualitativas. Veremos como utilizar essa estatística para realizar testes de independência, aderências e de variâncias.

1 Teste de independência

A tabela abaixo contêm os resultados obtidos por estudantes em um exame com questões de física e matemática. Deseja-se testar se existe dependência entre as notas nas duas disciplinas.

$Fisica \setminus Matematica$	Alta	Média	Baixa	Total
Alta	56	71	12	139
Média	47	163	38	248
Baixa	14	42	85	141
Total	117	276	135	528

Queremos testar:

- H_0 As notas de física e matemática são independentes
- ullet H_A As notas de físcia e matemática são relacionadas

Considerando a hipótese de independência pode-se construir uma tabela de valores esperados. Lembrando que $n_{ij}^{\star} = \frac{n_{i.}n_{.j}}{n_{..}}$

$\overline{Fisica \setminus Matematica}$	Alta	Média	Baixa	Total
Alta	30,80	72,66	35,54	139
Média	54,95	129,64	$63,\!41$	248
Baixa	31,25	73,7	36,05	141
Total	117	276	135	528

Sob hipótese de independência a estatística $\chi^2 = \sum_{i=1}^r \sum_{j=1}^s \frac{(n_{ij} - n_{ij}^\star)^2}{n_{ij}^\star}$ tem distribuição Quiquadrado com (r-1)(s-1) graus de liberdade. Essa distribuição, representada por $\chi^2_{(k-1)}$, é para valores contínuos não negativos. Sua função de densidade tem expressão complexa de forma que as probabilidades serão obtidas em tabela. A utilização dessa distribuição é válida para grandes amostras e será melhor se todas as frequencias esperadas forem maiores ou iguais a 5, devendo-se combinar categorias caso necessário.

No exemplo acima vamos considerar $\alpha = 0,01$ e assim $\alpha = P(\chi^2 \ge \chi^2_{crit}|H_0verdadeiro) =$

 $P(\chi^2 \ge 13, 28) = 0,01$, definindo-se assim a região crítica ou região de rejeição. Na amostra observada temos: $\chi^2_{observado} = \frac{(56-30,8)^2}{30,8} + \frac{(71-72,66)^2}{72,66} \dots \frac{(85-36,05)^2}{36,05} = 145,78$, e como o valor observado na amostra está na região crítica, concluimos pela rejeição de H_0 , e portanto as notas de física e matemática não são independentes.

2 Teste de Aderência

Além dos testes para médias de V.As podemos não conhecer o comportamento da V.A e testar se um certo modelo proposto é adequado para aquela variável.

Exemplo: Deseja-se estudar a tolerância de um equipamento eletrônico ao número de impactos termo-elétricos. Representando por X o número de impactos anteriores à falha do equipamento, pretende-se verificar se o modelo Geométrico com p=0,4 é adequado para caracterizar essa V.A.

O teste será em relação a:

- $H_0: X \sim Geom(p=0,4)$
- H_A : X tem outra distribuição de probabilidades.

A decisão do teste será baseada na estatística de Qui-quadrado calculada com resultados amostrais e as frequencias esperadas sob a hipótese nula. Se uma variável tem distribuição geométrica com p=0,4 temos: $P(X=k)=p(1-p)^k=0,4(0,6^k)$ e assim as frequencias esperadas $n_k^{\star} = nP(X = k)$.

Considerando os valores observados em uma amostra com n = 80 observações

Impactos	0	1	2	3	4	Mais de 4
Observado	30	26	10	5	5	4
Esperado	32	19,2	11,5	6,9	4,1	6,3

Como a categoria 4 tem frequencia esperada menor do que 5, agregamos as duas últimas categorias obtendo-se:

Impactos	0	1	2	3	Mais de 3
Observado	30	26	10	5	9
Esperado	32	19,2	11,5	6,9	10,4

e calculamos a estatística de teste $\chi^2 = \sum_{i=1}^r \frac{(n_i - n_i^*)^2}{n_i^*} = \frac{(30 - 32)^2}{32} + \dots + \frac{(9 - 10, 4)^2}{10, 4} = 3,44$ Fixando $\alpha = 0,05$ e olhando na tabela $\chi^2_{(4)}$ temos: $P(\chi^2 \ge \chi_{crit}|H_0) = P(\chi^2 \ge 9,49) = 0,05$.

Como o valor observado na amostra não está na região crítica, não existem evidências contra o modelo geométrico com p=0,4 para descrever a variável aleatória considerada.

Exemplo com caso contínuo:

Verificar se os dados das distribuição das alturas de 100 estudantes do sexo feminino se aproxima de uma distribuição normal com $\alpha = .05$

Altura	Freq absoluta	Probabilidade	Freq esperada
150 156	4	0,026	2,6
156 162	12	0,123	12,3
162 -168	22	0,295	29,5
168 174	40	0,332	33,2
174 180	20	0,175	17,5
180 186	2	0,048	4,8
k=6	100	1	100

O objetivo é testar:

- \bullet H_0 : A distribuição das alturas é Normal
- \bullet H_A : As alturas tem outra distribuição

Como os parâmetros da distribuição normal não são conhecidos, eles precisam ser estimados. Usando os pontos méidos das classes temos:

$$\bar{x} = \sum_{i=1}^{k} \frac{x m_i f r e q_i}{n} = 168,96$$

$$S^{2} = \frac{\sum_{i=1}^{k} (xm_{i} - \bar{x})^{2} freq_{i}}{n-1} = 44,48$$

As frequencias esperadas são calculadas na forma: $n_i^{\star} = P(X \in x_i)100$ e assim é necessário calcular a probabilidade da variável aleatória Y pertencer a cada uma das classes na tabela.

Deve-se agrupar as duas primeiras e as duas últimas classes, e a partir da tabela calcula-se:

$$\chi^2 = \sum_{i=1}^4 \frac{(n_i - n_i^*)^2}{n_i^*} = \frac{(16 - 14, 9)^2}{14, 9} + \dots + \frac{(22 - 22, 3)^2}{22, 3} = 3,38$$

Para calcular a região crítica, o número de graus de liberdade da distribuição Qui-quadrado é: k-1-m=4-1-2, onde k=4 é o número de classes, e m=2 é o número de parâmetros (μ,σ^2) que precisaram ser estimados para o cálculo das probabilidades.

Com $\alpha=0,05$ obtêm-se $\alpha=P(\chi^2\geq\chi^2_{crit}|H_0verdadeiro)=P(\chi^2\geq3,84)=0,05$ como $\chi^2_{obs}=3,38\leq3,84=\chi^2_{crit}$ e a hipótese nula não é rejeitada.