rillite distributed tags
$y = \beta_1 + \sum_{i=0}^{q} \delta_i x_{t-i} + e_t \text{ (order } q).$
Impact multiplier: δ_0 , immediate change
in y from temp. one-unit increase in x .
Dynamic multiplier: δ_i , $i \ge 0$, gives Δy , i
periods after temp. one-unit increase x .
Long run multiplier/propensity: $\theta_0 =$
$\sum_{i=1}^{q} \delta_i$. This is long run Δy due to perm.
one-unit increase in x .
Reparametrise the model s.t. $\delta_0 = \theta_0 =$
$\delta_1 - \delta_2$, and we get $y = \beta_1 + \theta_0 x_t + \delta_1 (x_{t-1} - \theta_0)$
$(x_t) + \cdots + \delta_q(x_{t-q} - x_t)$. Then, obtain $\hat{\theta}_0$ and
$se(\hat{ heta}_0)$ by regression.
Lagged dependent variables
AR(1): $y_t = \beta_1 + \beta_2 y_{t-1} + u_t$. You lose an
observation for each lag.
When $ \beta_2 < 1$, equiv. to $y_t = \frac{\beta_1}{1 - \beta_2} + e_t + \frac{\beta_1}{1 - \beta_2} + \frac{\beta_2}{1 - \beta_2} + \frac{\beta_1}{1 - \beta$
$\beta_2 e_{t-1} + \dots = \frac{\beta_1}{1-\beta_2} + \sum_{i=0}^{T} \beta_2^i e_{t-i}.$
OLS estimator: $\hat{\beta} = (X^T X)^{-1} X^T y$.
OLS estimators are not unbiased w/ any
assumptions, we need large sample analy-
sis, which is harder w/ corr. across time. When $y = X\beta + e$ for $t \le T$, Gauss-Markov:
$rank(X) = k$, $E[e X] = 0$, $Var(e X) = \sigma^2 I_T$,
then OLS estimator is BLUE.
Assuming $E[e_t X] = 0 \ \forall t \text{ means } y_{t-1} \text{ can't}$
be a regressor and y_{t-1} cannot impact x_t .
If y_{t-1} affects x_t , then $Cov(x_t, e_{t-1}) \neq 0$.
If y_{t-1} is a reg, like in AR(1), $Cov(e_t, y_t) =$
$Cov(e_t, \frac{\beta_1}{1-\beta_2} + \sum_{i=0}^{T} \beta_2^i e_{t-i}) = \sigma^2 \neq 0.$
Assuming $Var(e X) = \sigma^2 I_T$ means
$Var(e_t X) = \sigma^2 \forall t \text{ (homo.)}, \text{ and}$
$Cov(e_t, e_s X) = 0 \ \forall t \neq s $ (no serial corr).
Homoskedasticity: $Var(e_t)$ indep. of X
and constant over time.
No serial corr.: reg. errors white noise. y_t, x_t can be serially corr.
$Var(\hat{\beta} X) = \sigma^2(X^TX)^{-1}$, and an estimate
of σ^2 is $\hat{\sigma}^2 = \frac{1}{T - k} \sum_{t=1}^{T} \hat{e}_t^2$.
$se(\hat{\beta}_j) = \frac{\hat{\sigma}}{\sqrt{SST_j(1-R_j^2)}} \text{ where } R_j^2 \text{ is the } R^2$
from reg of x_j on remaining regressors
and $SST = \sum_{i=1}^{T} (x_i - \overline{x}_i)^2$
and $SST_j = \sum_{t=1}^{T} (x_{jt} - \overline{x}_j)^2$. Above formulas don't apply w/ hetero.
and serial corr.
2 Time series analysis
Cov-stationary: $\{y_t\}$ is cov/weakly stationary if $E(y_t) = \mu$ is indep. of t , and $\gamma_{k,t} = Cov(y_t, y_{t-k}) = E[(y_t - \mu)(y_{t-k} - \mu)] = \gamma_k$.
nary if $E(y_t) = \mu$ is indep. of t , and $\gamma_{k,t} =$
$Cov(y_t, y_{t-k}) = E[(y_t - \mu)(y_{t-k} - \mu)] = \gamma_k.$
γ_k is autocov. function, $\rho_k = \frac{\gamma_k}{\gamma_0}$ is auto-
corr. function.

 $\frac{\gamma_k}{\gamma_0}$ is auto- const. $\frac{1}{1-\phi_1 L} = \sum_{i=0}^{\infty} \phi_1^j L^j$.

ECON 469 Midterm Cheat Sheet

Tiffany Yong Page:1

Finite distributed lags

Background

 $\forall k \neq 0$, then $\{y_t\}$ is a white noise process. If indep. over time, then it is indep. white Strict stationarity: $\{y_t\}$ is strictly stationary if joint distribution $(y_t, y_{t-1}, ..., y_{t-k})$ indep. of $t \ \forall k$. Strict stnry implies covstnry., but opp. is not true, since higher Yule-Walker eqn: $\gamma_k = \phi_1 \gamma_{k-1}$. order moments can dep. on time. For Gaussian process, completely characterised by μ and cov matrix, so strict and weak stnry are equiv. Any transformation of strict stnry process is also strictly stnry. Weak dependence: we need $\gamma_k \to 0$ as $k \to \infty$. For LLN and CLT, $\gamma_k \to 0$ fast enough such that $\sum_{k=0}^{\infty} |\gamma_k| < \infty$. Under stnry and weak dep., we can show that $\operatorname{plim} \hat{\gamma}_k = \operatorname{plim} \frac{1}{T} \sum_{t=1+k}^T (y_t - y_t)$ \overline{y}) $(y_{t-k} - \overline{y}) = \gamma_k = Cov(y_t, y_{t-k}).$ MA and AR Models MA(1): $y_t = \mu + \varepsilon + \theta_1 \varepsilon_{t-1}$, where ε_t WN. We can show that $E(y_t) = \mu$, $\gamma_0 = (1 + \mu)$ $(\theta_1^2)\sigma^2$, $\gamma_1 = \theta_1\sigma^2$, $\gamma_k = 0 \ \forall k > 1$. So MA(1) stnry and weakly dep $\forall \mu, \theta$. ρ_1 attains max (0.5) at $\theta_1 = 1$ and min (-0.5) at $\theta_1 = -1$ by FOC. For all ρ_1 between max and min, there are 2 values of θ_1 that produced it, θ_1 and $1/\theta_1$.

For a stationary process, $\gamma_k = \gamma_{-k}$

E[XY] - E[X]E[Y]

When E[X] = E[Y] = 0, Cov(X,Y) =

White Noise (WN): $\mu = 0$ and $\gamma_k = 0$

MA(q): $y_t = \mu + \varepsilon_t + \theta_1 \varepsilon_{t-1} + \cdots + \theta_q \varepsilon_{t-q}$ tible if MA coeffs restricted. ε_t WN. $\gamma_k = 0$ for k > q and stnry. Causal: Can express y_t as a fn of ε_t and $y_t = \varepsilon_t + \sum_{i=1}^{\infty} \theta^i y_{t-i}$, an $AR(\infty)$. past ε 's. MA(q) causal w/ no restrictions. $MA(\infty)$: $y_t = \mu + \sum_{j=0}^{\infty} \psi_j \varepsilon_{t-j}$, ε_t WN and $\{\psi_i\}$ sequence s.t. $\psi_0 = 1$. If $\sum_{i=0}^{\infty} |\psi_i| < \infty$, y_t cov-stnry and weak dep. For weak dep., $\Rightarrow \sum_{k} |\gamma_{k}| < \infty$. For cov-stnry, $E(y_{t}) = \mu$ and $\gamma_k = \sigma^2 \sum_{j=0}^{\infty} \psi_j \psi_{j+k}$ for $k \ge 0$. AR(1): $y_t = c + \phi_1 y_{t-1} + \varepsilon_t$, ε_t WN. Impulse response fn (IRF) at $h: \frac{\partial y_{t+h}}{\partial \varepsilon_t} = \phi_1^h$. Stnry condition: $|\phi_1| < 1$, since we can write y_t as $MA(\infty)$. When $|\phi_1| \ge 1$, no causal stnry soln. When $\phi_1 = 1$ and c = 0, random walk where $y_t = y_{t-1} + \varepsilon_t = y_0 +$ $\varepsilon_1 + \cdots + \varepsilon_t$, not strry since $Var(y_t) = t\sigma^2$. When $|\phi_1| < 1$, $y_t = \frac{c(1-\phi_1^m)}{1-\phi_1} + \phi_1^m y_{t-m} +$ $\sum_{i=0}^{m-1} \phi_1^i \varepsilon_{t-i}$. As $m \to \infty$, we get $y_t =$ $\frac{c}{1-\phi_1} + \sum_{i=0}^{\infty} \phi_1^i \varepsilon_{t-i}$, an $MA(\infty)$. $|\phi_1| < \infty$ ensures IRF dies out.

Lag operator: $L^{j}x_{t} = x_{t-j}$ and $L^{j}a = a$ if aFor AR(1), $(1 - \phi_1 L)y_t = c + \varepsilon_t$.

$$\begin{array}{ll} \forall \text{WN and} \\ 0 \mid \psi_j \mid < \infty, \\ \text{weak dep.,} \\ E(y_t) = \mu \\ \geq 0. \\ \text{N. Impul-} \\ = \phi_1^h. \\ \text{e we can} \\ \mid \geq 1, \text{ no and } c = 0, \\ +\varepsilon_t = y_0 + \\ (y_t) = t\sigma^2. \\ \phi_1^m y_{t-m} + \\ \text{get } y_t = a \\ \text{if } a \\ \text{if } a \\ \text{if } a \\ \text{o}(L)^{-1} = \sum_{i=0}^\infty (-\theta L)^i, \text{ so invert. cond.} \\ \text{is } \theta(L)^{-1} = \sum_{i=1}^\infty \theta_i z^i = 0 \text{ root s.t. } |z| > 1. \\ \text{We get } \theta(L)^{-1} y_t = (1 - \theta L + \theta^2 L^2 - \dots) y_t = \\ \sum_{j=0}^\infty (-\theta)^j y_{t-j} = \varepsilon_t. \varepsilon_t \text{ causal fn of } y_t. \\ \text{AR mdls easily estimated by OLS, so turning MA into AR helps us estimate } \theta. \\ \textbf{Probability} \\ \text{e we can} \\ |\geq 1, \text{ no and } c = 0, \\ +\varepsilon_t = y_0 + \\ (y_t) = t\sigma^2. \\ \phi_1^m y_{t-m} + \text{ plim} (1/n \sum_{i=1}^n X_i) = E(X_i) = \mu. \\ \text{Continuous mapping theorem: } \forall g \in C^1, \\ \text{plimg} (\hat{\theta}_n) = g(\text{plim} \hat{\theta}_n). \\ \text{plimg} (\hat{\theta}_n) = g(\text{plim} \hat{\theta}_n). \\ \text{plimg} (\hat{\theta}_n) = g(\text{plim} \hat{\theta}_n). \\ \text{plimg} (1/n \sum_{i=1}^n (X_i - \overline{X})^2 = Var(X_i), \\ \text{and plim} (1/n \sum_{i=1}^n (X_i - \overline{X}) (Y_i - \overline{Y}) = Cov(X_i, Y_i). \text{ Since LLN holds for strry and weak dep. data, plim} \hat{\gamma}_k = \\ plim \frac{1}{T} \sum_{t=1+k}^T (y_t - \overline{y})(y_{t-k} - \overline{y}) = \gamma_k. \\ \text{MSE-convergence: } \lim E[(y_n - y)^2] = 0 \Rightarrow \\ \text{convergence in prob. So } E(\overline{y}) = \mu \text{ and} \\ Var(\overline{y}) \rightarrow 0 \text{ implies plim} \hat{\gamma}_k = \gamma_k. \end{array}$$

and
$$\rho_k = \phi_k^k$$
, where $\sigma^2 = Var(\varepsilon_t)$. Mean deriv: $E(y_t) = c + \phi_1 E(y_{t-1}) + Z$ if $\lim F_n(x) = F(x) \, \forall x$ where $F(x)$ cont. $E(\varepsilon_t) \Rightarrow (1 - \phi_1) E(y_t) = c$. Yule-Walker eqn: $\gamma_k = \phi_1 \gamma_{k-1}$. So $\sum_{k=1}^{\infty} |\gamma_k| = \gamma_0 \sum_{k=0}^{\infty} |\phi_1|^k = \gamma_0/(1 - |\phi_1|) < \infty$, and process is weak. depndt. AR(p): $y_t = c + \sum_{i=1}^p \phi_i y_{t-i} + \varepsilon_t$, or in lag op. terms, $(1 - \sum_{i=1}^p \phi_i Z^i) = 0$ outside unit circle ($|z| > 1$). Under stability, $AR(2)$ can be represented as $MA(\infty)$, where $y_t = \frac{c}{1 - \phi_1 - \phi_2} + \sum_{i=0}^{\infty} \psi_i \varepsilon_{t-i}$, so it is causal and stationary. ψ_i 's are a function of ϕ_1 and ϕ_2 s.t. $\psi_0 = 1$ and $\sum_{i=0}^{\infty} |\psi_i| < \infty$. To get MA coeffs, $\phi(L)y_t = \varepsilon_t$ and so $y_t = \phi(L)^{-1} \varepsilon_t$. So $\psi(L) = \phi(L)^{-1}$. Solve $\phi(L)\psi(L) = 1$ to get $\psi(L)$ terms. W/MA representation, $E(y_t) = \frac{c}{1 - \phi_1 - \phi_2}$. Invertible: ε_t depends on y_t, y_{t-1}, \dots (can invertible: ε_t depends on v_t and v_t is a case of v

 $\frac{1}{1-\phi_1}$, $E(y_t) = \frac{c}{1-\phi_1}$, $\gamma_k = \phi_1^k \frac{\sigma^2}{1-\phi^2} \ \forall k \ge 0$,

be written as $AR(\infty)$). AR processes al- Time series case: $\sqrt{T}(\hat{\beta}_2 - \beta_2)$ = $\frac{1/\sqrt{T}\sum_{t=1}^{T}(x_{t}-\overline{x})e_{t}}{1/T\sum_{t=1}^{T}(x_{t}-\overline{x})^{2}} \cdot 1/T\sum_{t=1}^{T}(x_{t}-\overline{x})^{2} \xrightarrow{P}$ ways invertible, MA processes only inver-For MA(1), $y_t = \varepsilon_t + \theta \varepsilon_{t-1}$. If $|\theta| < 1$, $A = (Var(x_t)), \text{ const. } 1/\sqrt{T} \sum_{t=1}^{T} (x_t)$ $y_t = \varepsilon_t + \theta \varepsilon_{t-1}^{t-1} = \theta(L)\varepsilon_t$, where $\theta(L) = 1 + \overline{x})e_t \xrightarrow{d} N(0,B)$. So, $Var(\sqrt{T}\hat{\beta}_2) = 0$ $\theta L. \ \theta(L)^{-1} = \sum_{i=0}^{\infty} (-\theta L)^i$, so invert. cond. $A^{-1}BA^{-1}. \ \hat{A} = 1/T \sum_{t=1}^{T} (x_t - \overline{x})^2$. is $\theta(z) = 1 - \sum_{i=1}^{q} \theta_i z^i = 0$ root s.t. |z| > 1. Long run var: $B = Var(1/\sqrt{T} \sum_{t=1}^{T} z_t)$, We get $\theta(L)^{-1}y_t = (1-\theta L + \theta^2 L^2 - \dots)y_t =$ where $z_t = (x_t - \mu)e_t$. For iid data, B = $Var((x_t - \mu)e_t)$, where $\mu = E(x_t)$, can esti- $\sum_{i=0}^{\infty} (-\theta)^{i} y_{t-i} = \varepsilon_{t}. \ \varepsilon_{t} \text{ causal fn of } y_{t}.$ mate w/ White var est.

Stability condition is $|\phi_1| < 1$, which is Weak exogeneity: $E(x_t e_t) = 0 \ \forall 1 \le t \le 1$

equivalent to $\phi(z) = 1 - \phi_1 z = 0$ when T. Implies $Cov(x_{it}, e_t) = 0 \ \forall j, t$, not

For stable AR(1), IRF at h is ϕ_1^h , LRM = Consistent: plim $\hat{\beta} = \beta$. OLS $\hat{\beta}$ is consis-

 $Cov(x_{t+1}, e_t) = 0.$

tent w/ $Cov(x_t, e_t) = 0$, by weak exog.

Conv. in distribution: Let Z_n , Z rvs,

AR mdls easily estimated by OLS, so tur-Parametric: If we know cov. struct of z_t , ning MA into AR helps us estimate θ . we can estimate z_t w/ this. Nonparametric: use HAC estimator $\operatorname{plim} \hat{\theta}_n = \theta \colon \forall \varepsilon > 0, \operatorname{lim} P(|\hat{\theta}_n - \theta| < \varepsilon) = 1. \quad \overline{z} = 1/T \sum_{t=1}^T z_t, \quad \text{w/} \quad E(z_t) = 0.$ $\{X_i\}$ rand. samp where $\mu = E(X_i)$. $Var(\overline{z}) = E((1/T\sum_{t=1}^{T} z_t)^2)$ $1/T^2E(\sum_{t=1}^T \sum_{s=1}^T z_t z_s). \sum_{t=1}^T \sum_{s=1}^T z_t z_s =$ Continuous mapping theorem: $\forall g \in C^1$ $\sum_{t=1}^{T} z_t^2 + 2\sum_{k=1}^{T-1} \sum_{t=1+k}^{T} z_t z_{t-k}$. So, $TVar(\overline{z}) = Var(\sqrt{T}\overline{z}) = 1/T\sum_{t=1}^{T} E(z_t^2) +$ $\operatorname{plim} 1/n \sum_{i=1}^{n} (X_i - \overline{X})^2 = Var(X_i),$ $2\sum_{k=1}^{T-1} 1/T \sum_{t=1+k}^{T} E(z_t z_{t-k})$. Under stnrand $p\lim_{i=1}^{n}(X_i - \overline{X})(Y_i - \overline{Y}) =$ $Cov(X_i, Y_i)$. Since LLN holds for stn- ty, $Var(\sqrt{Tz}) = \gamma_0 + 2\sum_{k=1}^{T-1} (1 - k/T)\gamma_k$. ry and weak dep. data, $p\lim \hat{\gamma}_k =$ So, $B = \lim Var(\sqrt{T}\overline{z}) = \gamma_0 + 2\sum_{k=1}^{\infty} \gamma_k$. $\operatorname{plim} \frac{1}{T} \sum_{t=1+k}^{T} (y_t - \overline{y})(y_{t-k} - \overline{y}) = \gamma_k.$

Nonpara: If $\{z_t\}$ stnry with $\sum_{k=1}^{\infty} \gamma_k < \infty$ (weak dep), $B = \lim Var(\sqrt{T}\overline{z}) = \gamma_0 +$ $2\sum_{k=1}^{\infty} \gamma_k$, where $\gamma_k = E(z_t z_{t-k})$ if $E(z_t) =$ 0. For $k \le T - 1$, $\hat{\gamma_k} = 1/T \sum_{t=1+k}^T z_t z_{t-k}$. Naive approach, truncate: $\hat{B}_{trunc} = \hat{\gamma}_0 +$ $2\sum_{k=1}^{M} \hat{\gamma}_k$ for M < T. M is bandwidth/lag truncation param. If $\gamma_k = 0 \ \forall |k| > M$ then consistent. Otherwise, $M \to \infty$ to avoid bias since $Bias(\hat{B}) \approx 1/M$. But if M $1/\sqrt{n}\sum_{i=1}^{n}(x_i-\mu)+(\mu-\overline{x})1/\sqrt{n}\sum_{i=1}^{n}e_i \xrightarrow{P}$ grows too fast, $Var(\hat{B}) \propto M/T$ blows up. Suppose M = 1, then $\hat{B}_{trunc} = \hat{\gamma}_0 + 2\hat{\gamma}_1$, $1/\sqrt{n}\sum_{i=1}^{n}(x_i-\mu)\xrightarrow{d}N(0,Var((x_i-\mu)e_i))$ and $\hat{B}_{trunc} < 0$ if $\hat{\gamma}_1 < -1/2\hat{\gamma}_0$. One soln $\hat{\beta}_2 \xrightarrow{d} N(0, V)$, where $V = \frac{Var((x_i - \mu)e_i)}{(Var(x_i))^2}$. is introduce weights $k_T(j)$ s.t. estimator

1.96 for $\alpha = 0.05$.

Variance Estimation

HAC estimator: $\hat{B} = \hat{\gamma}_0 + 2\sum_{i=1}^{T-1} k(\frac{1}{M})\hat{\gamma}_i$, where k(x) is kernel fn, M is bandwith param, and $\hat{\gamma}_j = 1/T \sum_{t=1+j}^T (z_t - \overline{z})(z_{t-j} - \overline{z})$. Trunc. kernel: $k(x) = \begin{cases} 1 & \text{if } |x| \le 1 \\ 0 & \text{if } |x| > 1. \end{cases}$

is +ve, leading to HAC kernel estimators.

V with \hat{V} where $\hat{V} \stackrel{P}{\longrightarrow} V$, then t =

 $\sqrt{T}\,\hat{\beta}_2/\sqrt{\hat{V}} \xrightarrow{d} N(0,1)$, since $\sqrt{V}/\sqrt{\hat{V}} \xrightarrow{P} 1$.

 α is $P(\text{reject } H_0 | H_0 \text{true})$. Reject if |t| >

B for AR(1): $z_t = \rho z_{t-1} + u_t$, $u_t \sim$

 $WN(0, \sigma^2)$, $|\rho| < 1$. $\gamma_0 = \sigma^2/(1 - \rho^2)$, $\gamma_k =$

 $\rho^k \gamma_0$. $B = \frac{\sigma^2}{1-\rho} + 2\sum_{k=1}^{\infty} \rho^k \frac{\sigma^2}{1-\rho^2} = \frac{\sigma^2}{(1-\rho)^2}$.

 $\hat{B}_{AR(1)} = \frac{\hat{\sigma}^2}{(1-\hat{\sigma})^2}$, parametric estimator.

Bartlett (NW) ker k(x) =Both ker s.t. when |j/M| > 1, k(j/M) = 0, Quadratic spectral ker: k(x) =

so M also called truncation lag. $\frac{25}{12\pi^2 x^2} \left(\frac{\sin(6\pi x/5)}{6\pi x/5} - \cos(6\pi x/5) \right).$ Quad and Bartlett ker guarantee +ve var.

Choose M to minimise MSE of \hat{B} , so $\min E((\hat{B} - B)^2) = Bias(\hat{B})^2 + Var(\hat{B}).$ For NW ker, $Bias(\hat{B}) = c_1(1/M)$, so

 $Bias(\hat{B})^2 = c_1^2(1/M^2)$. $Var(\hat{B}) = c_2(M/T)$.

So $MSE(\hat{B}) = c_1^2(1/M^2) + c_2(M/T)$. W/

FOC, we get $M = d(T^{1/3})$, d const dependent on serial corr struct of z_t . Can estimate d based on AR(1) mdl for z_t w/ coeff ρ . Rule of thumb for NW ker:

 $d = 0.75T^{1/3}$ when $\rho = 0.5$. HAC var estim: $\widehat{Var}(\sqrt{T}\hat{\beta}_2) =$

 $\hat{A}^{-1}\hat{B}\hat{A}^{-1}$, \hat{A} is samp. var of x_t , Hypo test: $H_0: \beta_2 = 0$ vs $H_1: \beta_2 \neq \hat{B} = \hat{\gamma}_0 + 2\sum_{j=1}^{T-1} k(j/M)\hat{\gamma}_j$, where 0. $\sqrt{T}(\hat{\beta}_2 - \beta_2) \xrightarrow{d} N(0, A^{-1}BA^{-1})$. Un- $\gamma_j = 1/T \sum_{t=1+j}^T (x_t - \overline{x})(x_{t-j} - \overline{x})\hat{e}_t\hat{e}_{t-j}$.

der H_0 , $\sqrt{T}\hat{\beta}_2/\sqrt{V} \xrightarrow{d} N(0,1)$. Replace Special case: White var estimator, $\hat{B} = \hat{\gamma}_0$.

ECON 469 Midterm Cheat Sheet Tiffany Yong Page:2

Martingales

No serial corr, but not indep over time. Martingales: z_t vector and x_t element of z_t . Then, $\{x_t\}$ martingale w.r.t. $\{z_t\}$ if $E(x_t|z_{t-1},z_{t-2},...) = x_{t-1} \ \forall t.$ Here, info set at t - 1 is $\{z_{t-1}, z_{t-2}, ...\}$. When $z_t = x_t$, x_t martingale w.r.t. past (martingale), so $E(x_t|x_{t-1},...) = x_{t-1} \ \forall t$. Extended LIE: \mathcal{G} , \mathcal{H} info sets, then $E(Y|\mathcal{H}) = E(E(Y|\mathcal{G})|\mathcal{H}).$ If $x_t \in z_t$, then $E(x_t|z_{t-1},...) = x_{t-1} \Rightarrow$ $E(x_t|x_{t-1},...) = x_{t-1}$ by extended LIE. Random Walk (RW): $z_t = z_{t-1} + \varepsilon_t$, $\varepsilon_t \sim iid(0, \sigma^2)$ and z_0 constant. Then, $z_t = z_0 + \varepsilon_1 + \cdots + \varepsilon_t$. So, $E(z_t|z_{t-1},...,z_0) = E(z_{t-1}|z_{t-1},...,z_0) +$ $E(\varepsilon_t|z_{t-1},...,z_0) = z_{t-1}$. Note that $E(\varepsilon_t|z_{t-1},\ldots,z_0) = E(\varepsilon_t|\varepsilon_{t-1},\ldots,z_0) = 0,$ since ε_t iid. So $E(z_t) = z_0$, $Var(z_t) =$ $Var(\varepsilon_1 + \cdots + \varepsilon_t) = t\sigma^2$.

Martingale difference sequence (m.d.s.): $\{z_t\}$ s.t. $E(z_t) = 0$ is a m.d.s. if $E(z_t | \mathcal{F}^{t-1}) =$ $0 \ \forall t$. Ex: innov of random walk, since $E(z_t|\mathcal{F}^{t-1}) = z_{t-1} \Rightarrow E(z_t - z_{t-1}|\mathcal{F}^{t-1}) = 0.$ M.d.s. have no serial corr, so $Cov(z_t, z_{t-k}) = E(z_t z_{t-k}) = 0 \quad \forall k.$ $E(z_t z_{t-k}) = E(E(z_t z_{t-k} | z_{t-k}))$ $E(z_{t-k}E(z_t|z_{t-k})) = 0$ since $E(z_t|z_{t-k}) =$ $E(E(z_t|\mathcal{F}^{t-1})|z_{t-k}) = 0$ by LIE. $z_t \sim iid(0,\sigma^2) \Rightarrow z_t \text{ m.d.s. } E(z_t|\mathcal{F}^{t-1}) =$ $\int z_t f(z_t | \mathcal{F}^{t-1}) dz_t = \int z_t f(z_t) = E(z_t) = 0.$

 z_t m.d.s. \Rightarrow $E(z_t) = 0$. $E(z_t) =$ $E(E(z_t|\mathcal{F}^{t-1})) = E(0) = 0.$ Autoregressive conditional heterskedastic process (ARCH): $\{z_t\}$ is ARCH(1) if $z_t = \sqrt{h_t} \varepsilon_t$, $\varepsilon_t \sim iid(0,1)$, $h_t = \alpha_0 + \alpha_1 z_{t-1}^2$, $\alpha_0, \alpha_1 \geq 0$ so $h_t \geq 0$. ARCH(1) is a mds, so uncorr, but not in-

dependent since $z_t^2 \sim AR(1)$.

To see ARCH(1) is mds, note $\mathcal{F}^{t-1} = \{z_{t-1}, \dots, z_1\} = \{\varepsilon_{t-1}, \dots, \varepsilon_2, z_1\}.$ Then, $E(z_t|\mathcal{F}^{t-1}) = E(\sqrt{h_t}\varepsilon_t|\mathcal{F}^{t-1}) =$ $\sqrt{h_t}E(\varepsilon_t|\mathcal{F}^{t-1}) = E(\varepsilon_t) = 0$ since ε_t iid and $E(\varepsilon_t) = 0$. $z_t = f(z_1, \varepsilon_2, ..., \varepsilon_t)$ for some f, so

 z_t is mds $\Rightarrow z_t$ is WN (serially uncorr). $Var(z_t|\mathcal{F}^{t-1}) = E(z_t^2|\mathcal{F}^{t-1}) =$ $E(h_t \varepsilon_t^2 | \mathcal{F}^{t-1}) = h_t E(\varepsilon_t^2 | \mathcal{F}^{t-1}) = h_t$, since $E(\varepsilon_t^2|\mathcal{F}^{t-1}) = E(\varepsilon_t^2) = 1$. So h_t is conditional var of z_t , time dependent.

We get $z_t^2 = \alpha_0 + \alpha_1 z_{t-1}^2 + \eta_t$, where $\eta_t =$ $z_t^2 - h_t = z_t^2 - E(z_t^2 | \mathcal{F}^{t-1})$ is a mds, so WN. $z_t^2 \sim AR(1)$, so ARCH(1) stnry and weak dep. if $|\alpha_1| < 1$ $(\gamma_k = 0, \forall k \neq 0)$.

and $Var(z_t) = E(z_t^2) = E(h_t) = \frac{\alpha_0}{1 - \alpha_1}$. ARCH(p): $z_t = \mu + \sqrt{h_t} \varepsilon_t$, $h_t = \alpha_0 + \alpha_1 z_{t-1}^2 + \alpha_t z_{t-1}^2$

 $\cdots + \alpha_p z_{t-n}^2$, so $z_t^2 \sim AR(P)$. Generalised cond. hetero. mdl of order vant. 1,1 (GARCH(1,1)): Generalise ARCH(1) s.t. $h_t = \alpha_0 + \alpha_1 z_{t-1}^2 + \beta_1 h_{t-1}, \alpha_0, \alpha_1, \beta_1 \ge$ 0 so h_t non-negative.

 $h_t = z_t^2 + (h_t - z_t^2) = z_t^2 - \eta_t$, where $\eta_t =$ $z_t^2 - h_t$ is serially uncorr. innov. $z_t^2 = \alpha_0 + (\alpha_1 + \beta_1)z_{t-1}^t + \eta_t - \beta_1\eta_{t-1}$, so $z_t^2 \sim ARMA(1,1)$.

 z_t indep WN $\Rightarrow z_t$ stnry mds $\Rightarrow z_t$ WN. (G)ARCH stnry mds, but not indep WN, since z_t^2 are ARMA (dependence exists). If z_t mds, $E(z_t|\mathcal{F}^{t-1}) = 0$. If z_t WN, only $Cov(z_t, z_{t-k}) = 0$, so z_t can be corr w/ non-linear fns of past values.

Unit root process: $\phi(z) = 1 - z$ has unit root. RW model $(y_t = y_{t-1} + \varepsilon_t, \varepsilon_t \sim$ $iid(0,\sigma^2)$) is a special case of unit root. Highly persistent time series (shocks have permanent effects), not stnry or weakly dep, as seen from autocorr and impulse response. $Var(y_t) = t\sigma^2$, so $Corr(y_t, y_{t+h}) = \sqrt{\frac{t}{t+h}}$, if $Var(y_0) = 0$. Sin-

ce corr depends on t, the process is not stationary. Corr. can also be made arbitrarily close to 1 for large t, given h.

 $y_{t+h} = y_0 + \varepsilon_1 + \dots + \varepsilon_{t+h}$, so $\frac{\partial y_{t+h}}{\partial \varepsilon_t} = 1 \ \forall t, h$.

Temp. unit shock at t creates perm. icnrease in v, so IRF is always 1. For stationary AR(1), $\frac{\partial y_{t+h}}{\partial \varepsilon_t} = \phi_1^h \to 0$ as $h \to \infty$ since $|\phi_1| < 1$.

Forecasting

Optimal MSE forecast of y given x is E(y|x). $\forall g$ fn of x, MSE(g(x)) = E[(y - y)] $g(x)^2 \ge MSE(E(y|x)) = E[(y - E(y|x))^2].$ $MSE(g(x)) = E[(y-g(x))^{2}] = E[(y-E(y|x)+$ $E(y|x) - g(x)^2 = E[(y - E(y|x))^2] + 2E[(y - E(y|x))^2]$ $E(y|x)(E(y|x)-g(x))]+E[(E(y|x)-g(x))^2].$ $MSE(E(y|x)) = E[(y - E(y|x))^{2}], 2E[(y -$ E(y|x)(E(y|x)-g(x)) = 0 by LIE cond. on $x, E[(E(y|x) - g(x))^2] \ge 0.$ Optimal MSE forecast of y_{t+h} given \mathcal{F}^t is

diff for stnry or non-stnry AR(1) mdls. Stnry AR(1): $y_t = \phi_1 y_{t-1} + \varepsilon_t$, $|\phi_1| < 1$, ε_t iid $(0, \sigma^2)$ (or mds). Then, $\hat{y}_{t+1|t} = E(y_{t+1}|\mathcal{F}^t) = E(\phi_1 y_t + \varepsilon_{t+1}|\mathcal{F}^t) =$ $\phi_1 E(y_t | \mathcal{F}^t) + E(\varepsilon_{t+1} | \mathcal{F}^t) = \phi_1 y_t$. So one-step ahead forecast (h = 1) is $\hat{y}_{t+1|t} = \phi_1 y_t$.

Under stnrty, $E(z_t^2) = E(E(z_t^2|\mathcal{F}^{t-1})) = h = 2$ forecast: $y_{t+2} = \phi_1 y_{t+1} + \varepsilon_{t+2}$. $E(h_t) = E(h_{t-1})$. So $E(h_t) = \alpha_0 + \alpha_1 E(h_{t-1})$, $\hat{y}_{t+2|t} = E(y_{t+2}|\mathcal{F}^t) = \phi_1 E(y_{t+1}|\mathcal{F}^t) + \phi_2 E(y_{t+1}|\mathcal{F}^t)$ $E(\varepsilon_{t+2}|\mathcal{F}^t) = \phi_1 \hat{y}_{t+1|t} = \phi_1^2 y_t.$ Then, $\forall h \geq 1$, $\hat{y}_{t+h|t} = \phi_1^h y_t$. As $h \to \infty$,

> $\hat{y}_{t+h|t} \rightarrow 0 = E(y_{t+h})$ so y_t becomes irrele-RW: $y_t = y_{t-1} + \varepsilon_t$, $\varepsilon_t \sim iid(0, \sigma^2)$, y_0 const.

> $E(y_{t+h}|\mathcal{F}^t) = y_t \ \forall h \geq 1$, since $y_{t+h} = y_t + y_t$ $\varepsilon_{t+1} + \dots + \varepsilon_{t+h}$ and $E(\varepsilon_{t+j}|\mathcal{F}^t) = 0 \ \forall j \geq 1$. So as $h \to \infty$, best forecast of y_{t+h} given \mathcal{F}^t is v_t , which is a sign of high persis-

Forecast error is $y_{t+h} - \hat{y}_{t+h|t} = \varepsilon_{t+1} + \cdots + \varepsilon_{t+1}$ $\varepsilon_{t+h} \sim MA(h-1)$.

RW w/ drift: $y_t = \alpha + y_{t-1} + \varepsilon_t$. Then, $y_t = t\alpha + y_0 + \varepsilon_1 + \cdots + \varepsilon_t$, and $E(y_t) = \alpha t$ assuming $E(y_0) = 0$ (linear trend). $\hat{y}_{t+h|t} = E(y_{t+h}|\mathcal{F}^t) = h\alpha + y_t$

AR(1) w/ drift: $y_{t+1} = \alpha + \phi_1 y_t + \varepsilon_{t+1}$.

 $\hat{y}_{t+h|t} = \alpha(1 + \phi_1 + \dots + \phi_1^{h-1}) = \phi_1^t y_t$. So as $h \to \infty$, this converges to $E(y_t) = \frac{\alpha}{1-\phi_t}$.