SIMBOLIČKO PREDSTAVLJANJE STANJA BDD-ovima

- 1. Predstavljanje Booleaovih fja.
- rješenje eksplozije stanja, simbolički postupci na temelju logičkih Booleovih fja.
- manipuliranje skupovima stanja umjesto pojedinačnim, kodiramo ih log. fjama.
 - kodiramo elemente skupova odnosno relacija
 - m elemenata kodiramo s n bitova, n = [log2(n)]
- proces: 1. nalazimo karakteristične fje. skupova, 2. naći kar. fju. relacije
- prikaz Booleovih fja sve ovo neefikasno
 - tablica istinitost kanonski prikaz s prostornom exp. složenošću
 - suma minterma/produkt maksterma laka ekvival provjera, nije min. oblik
 - suma produkata ili prdukt suma kompaktan, nije kanonski niti nužno min, spor
 - nestandardni (višerazinski opis) kompaktan, nije kanonski, duga pretvorba
 - Booleova kocka i k-tablice
 - geometrijski lik koji predstavlja funkciju
 - pokrivanje skup Booleovih kocki koji predstavljaju funkciju
- analiza dosezljivosti je li skup stanja dostupan iz početnog i u koliko koraka 17.
- FSM kodiramo tako da kodiramo skupove stanja 18.

2. Binarni dijagrami odlučivanja

- tražimo kanonski prikaz, efikasan zapis i operacije
- Shannonov pozitivni/negativni kofaktor po x: varijabla x je fiksirana na 1/0
 - Shannonov teorem ekspanzije svaka log. fja. može se ekspandirati oko varijable x u SOP oblik f(x) = x*f(x)+x'*f(x), x je **varijabla cijepanja**
 - cijepanje po varijabli x prikazuje se grafom (binarnim stablom)
- BDD = usmjereni aciklički graf G(V,E) mogućnosti varijable x
 - nezavršni čvor log. fja. koja se cijepa po var. x(i)
 - f = x*f(x) + x'*f(x')
- ROBDD
 - smanjeni BDD ne postoji čvor s jednakom djecom, izomorfni podgrafovi su svedeni na 1 podgraf, crtaju se <u>samo 2</u> završna čvora 1 i 0
 - učinkoviti za skup svih mogućih rješenja
 - izgradnja:
 - 1. nacrtaj BDD
 - 2. nacrtaj samo 2 završna čvora 1 i 0, preusmjeri veze u njih
 - 3. od zadnje razine ukloni sve čvorove koje imaju then(var)=else(var)
 - kanonski oblik
 - => dvije fje. ekvival. ako su im ROBDD izomorfni uz uvjet jednake uređenosti varijabli
 - uređenost varijabli redoslijed cijepanja
 - značajno utječe na složenost grafa
 - linearan broj čvorova za eksponencijalni broj puteva, za skup svih mogućih rj.

3. Algoritam ITE i implementacija BDD-ova

- operator ITE = if-then-else = ako je 1, inače ako je 0
- ite(f, g, h) = f*g + f*h

- ako je f(v) = v fja. jedne var. tada je ite(v, 1, 0) = f(v)
- izgradnja ROBDD-a ITE-om 19.-24.
- ROBDD
 - jedinstvena tablica pohranjuje potpunu strukturu čvora, svaki čvor samo jednom
 - koristi hash kolizijski lanac ako čvorovi padaju u isti pretinac
 - traži postoji li jedninstveni čvor
 - izračunska tabluca cache, priručna
 - traži je li jedinstveni čvor izračunat nedavno, nema kolizijski lanac nego briše starije
- ITE razrješuje ekvivalencije t.d. prvi argument = ranija varijabla u redoslijedu uređenosti
- složenost ITE(f,g,h)
 - bez izračunske tablice = eksponencijalno po br. varijabli
 - sa itračunskom tablicom
 - neograničena mem. O(|f|*|g|*|h), ograničena blizu toga, najgore exp.
 - za izgrađeniITE (anti)tautologija konstantno vrijeme, ekvival. ROBDD-a linearno
- ROBDD proširenje oznakama komplementa
 - uvodi se komplementarni luk koji invertira rezultat i miče se završni čvor 0
 - odabire se onaj oblik za koji kompl. luk **nije na THEN strani**
 - algoritam:
 - 1. nacrta se uobičajeni ROBDD
 - 2. zadrži se čvor 1, prijelazi do 0 se komplementiraju i prebace na 1
 - 3. iterativno od zadnjih se rarješuje ekvival. t.d. kompl. luk nije na THEN
 - 4. u korijenu se može dodati komplement za f'
 - paran broj kompl. lukova do kraja => 1, neparan => 0

4. Primjena BDD-ova

- simbolička analiza dosezljivosti ROBDD-ovi implementirani ITE algom.
 - skupovi su dani karakterističnim fjama. koje se kodiraju u ROBDD
 - primjeri slajd 38.
- simbolička provjera modela ROBDD-om
 - specifikacija zadana CTL formulom + teorija fiksne točke
- koraci:
 - 1. izračun formule EX p
 - 2. izračun CTL formule EG p
 - 3. izračun CTL formule E(pUq) = (p EU q)
- može se dinamički preurediti redoslijed varijabli u NuSMV-u