Graphs

Shusen Wang

What is graph?

Definitions

Set of vertices:

$$\mathcal{V} = \{v_1, v_2, \cdots, v_7\}.$$

• Set of edges:

$$\mathcal{E} = \{e_{1,2}, e_{1,3}, e_{1,4}, e_{2,4}, \cdots, e_{6,7}\}.$$

• Graph: $G = (V, \mathcal{E})$.

What is graph?

Definitions

Set of vertices:

$$\mathcal{V} = \{v_1, v_2, \cdots, v_7\}.$$

• Set of edges:

$$\mathcal{E} = \{e_{1,2}, e_{1,3}, e_{1,4}, e_{2,4}, \cdots, e_{6,7}\}.$$

• Graph: $G = (V, \mathcal{E})$.

What is graph?

Definitions

Set of vertices:

$$\mathcal{V} = \{v_1, v_2, \cdots, v_7\}.$$

• Set of edges:

$$\mathcal{E} = \{e_{1,2}, e_{1,3}, e_{1,4}, e_{2,4}, \cdots, e_{6,7}\}.$$

• Graph: G = (V, E).

Undirected vs Directed

Undirected Graph

Undirected vs Directed

Undirected Graph

Undirected vs Directed

Undirected Graph

Directed Graph

Unweighted vs Weighted

Unweighted Graph

Unweighted vs Weighted

Unweighted Graph

Weighted Graph

Physical Meanings of Weights

• Examples 1:

- Weights are distances between towns.
- No edge means not road.
- Weight of nonexistent edge is infinity.

Weighted Graph

Physical Meanings of Weights

• Examples 1:

- Weights are distances between towns.
- No edge means not road.
- Weight of nonexistent edge is infinity.

• Example 2:

- Weights are widths (capacity) of roads.
- No edge means not road.
- Weight of nonexistent edge is zero.

Weighted Graph

Vertex	Neighbors
1	2, 3, 4
2	1, 4
3	1, 4, 6
4	1, 2, 3
5	empty
6	3, 7
7	6

Vertex	Neighbors
1	2, 3, 4
2	1, 4
3	1, 4, 6
4	1, 2, 3
5	empty
6	3, 7
7	6

Vertex	Neighbors
1	2, 3, 4
2	1, 4
3	1, 4, 6
4	1, 2, 3
5	empty
6	3, 7
7	6

	v_1	v_2	v_3	v_4	v_5	v_6	v_7	-
v_1	0	1	1	1	0	0	0	
v_2	1	0	0	1	0	0	0	
v_3	1	0	0	1	0	1	0	
v_4	1	1	1	0	0	0	0	
v_5	0	0	0	0	0	0	0	
v_6	0	0	1	0	0	0	1	
v_7	0	0	0	0	0	1	0	
·								_

	v_1	v_2	v_3	v_4	v_5	v_6	v_7
v_1	0	1	1	1	0	0	0
v_2	1	0	0	1	0	0	0
v_3	1	0	0	1	0	1	0
v_4	1	1	1	0	0	0	0
v_5	0	0	0	0	0	0	0
v_6	0	0	1	0	0	0	1
v_7	0	0	0	0	0	1	0

	v_1	v_2	v_3	v_4	v_5	v_6	v_7
v_1	0	1	1	1	0	0	0
v_2	1	0	0	1	0	0	0
v_3	1	0	0	1	0	1	0
v_4	1	1	1	0	0	0	0
v_5	0	0	0	0	0	0	0
v_6	0	0	1	0	0	0	1
v_7	0	0	0	0	0	1	0

From	То
1	2, 4
2	4, 5
3	1, 6
4	5
5	empty
6	7
7	6

To							
From	v_1	v_2	v_3	v_4	v_5	v_6	v_7
v_1	0	1	0	1	0	0	0
v_2	0	0	0	1	1	0	0
v_3	1	0	0	0	0	1	0
v_4	0	0	0	0	1	0	0
v_5	0	0	0	0	0	0	0
v_6	0	0	0	0	0	0	1
v_7	0	0	0	0	0	1	0

To							
From	v_1	v_2	v_3	v_4	v_5	v_6	v_7
v_1	0	1	0	1	0	0	0
v_2	0	0	0	1	1	0	0
v_3	1	0	0	0	0	1	0
v_4	0	0	0	0	1	0	0
v_5	0	0	0	0	0	0	0
v_6	0	0	0	0	0	0	1
v_7	0	0	0	0	0	1	0

To							
From	v_1	v_2	v_3	v_4	v_5	v_6	v_7
v_1	0	1	0	1	0	0	0
v_2	0	0	0	1	1	0	0
v_3	1	0	0	0	0	1	0
v_4	0	0	0	0	1	0	0
v_5	0	0	0	0	0	0	0
v_6	0	0	0	0	0	0	1
v_7	0	0	0	0	0	1	0

Weighted Graphs

	v_1	v_2	v_3	v_4	v_5	v_6	v_7
v_1	0	2	4	1	0	0	0
v_2	2	0	0	3	0	0	0
v_3	4	0	0	2	0	5	0
v_4	1	3	2	0	0	0	0
v_5	0	0	0	0	0	0	0
v_6	0	0	5	0	0	0	1
v_7	0	0	0	0	0	1	0

	v_1	v_2	v_3	v_4	v_5	v_6	v_7
v_1	0	2	4	1	0	0	0
v_2	2	0	0	3	0	0	0
v_3	4	0	0	2	0	5	0
v_4	1	3	2	0	0	0	0
v_5	0	0	0	0	0	0	0
v_6	0	0	5	0	0	0	1
v_7	0	0	0	0	0	1	0

	v_1	v_2	v_3	v_4	v_5	v_6	v_7
v_1	00	2	4	1	8	8	00
v_2	2	00	00	3	00	00	00
v_3	4	00	00	2	00	5	00
v_4	1	3	2	00	00	00	00
v_5	∞	∞	00	00	00	00	00
v_6	∞	00	5	00	00	00	1
v_7	00	00	00	00	00	1	00

To							
From	v_1	v_2	v_3	v_4	v_5	v_6	v_7
v_1	0	2	0	1	0	0	0
v_2	0	0	0	3	10	0	0
v_3	4	0	0	0	0	5	0
v_4	0	0	0	0	2	0	0
v_5	0	0	0	0	0	0	0
v_6	0	0	0	0	0	0	2
v_7	0	0	0	0	0	1	0

To							
From	v_1	v_2	v_3	v_4	v_5	v_6	v_7
v_1	∞	2	∞	1	00	∞	00
v_2	00	00	00	3	10	∞	00
v_3	4	00	∞	00	00	5	00
v_4	00	00	∞	00	2	00	00
v_5	00	∞	∞	00	00	00	00
v_6	00	00	∞	00	00	00	2
v_7	∞	∞	∞	∞	∞	1	00

Questions

Question 1: Fill in the adjacency list

Unweighted graph:

Vertex	Neighbors
1	
2	
3	
4	
5	
6	
7	

Question 2: Fill in the adjacency matrix

Unweighted graph:

Thank You!

Implementation

```
#include <set>
struct Graph {
    int V;
    set<int>* adjList;
};
Graph* createGraph(int n) { // n is # of vertices
    Graph* graph = new Graph;
    graph->n = n;
    graph->adjList = new set<int>[n];
    return graph;
```

```
void addEdge(Graph* graph, int src, int dest) {
    graph->adjList[src].insert(dest);
    graph->adjList[dest].insert(src);
}
```

```
void printGraph(Graph* graph) {
     for (int i = 0; i < graph->V; ++i) {
          set<int> lst = graph->adjList[i];
          cout << endl << "Adjacency list of vertex "</pre>
                << i << endl;
          for (auto itr = lst.begin();
                     itr != lst.end(); ++itr) {
                cout << *itr << " " << endl;</pre>
```