

N-Channel 60-V (D-S) MOSFET

PRODUCT SUMMARY								
Part Number	V _{(BR)DSS} Min (V)	$r_{DS(on)}$ Max (Ω)	$Max\left(\Omega\right) \qquad V_{GS(th)}\left(V\right) \qquad I_{D}$					
2N7000		5 @ V _{GS} = 10 V	0.8 to 3	0.2				
2N7002		7.5 @ V _{GS} = 10 V	1 to 2.5	0.115				
VQ1000J	60	5.5 @ V _{GS} = 10 V	0.8 to 2.5	0.225				
VQ1000P		5.5 @ V _{GS} = 10 V	0.8 to 2.5	0.225				
BS170		5 @ V _{GS} = 10 V	0.8 to 3	0.5				

FEATURES

Low On-Resistance: 2.5 Ω
Low Threshold: 2.1 V

Low Input Capacitance: 22 pFFast Switching Speed: 7 ns

Low Input and Output Leakage

BENEFITS

- Low Offset Voltage
- Low-Voltage Operation
- Easily Driven Without Buffer
- High-Speed Circuits
- Low Error Voltage

APPLICATIONS

- Direct Logic-Level Interface: TTL/CMOS
- Drivers: Relays, Solenoids, Lamps, Hammers, Displays, Memories, Transistors, etc.
- Battery Operated Systems
- Solid-State Relays

Top View

Plastic: VQ1000J
Sidebraze: VQ1000P

Marking Code: 72wll

72 = Part Number Code for 2N7002 w = Week Code l = Lot Traceability

TO-92-18RM (TO-18 Lead Form)

BS170

2N7000/2N7002, VQ1000J/P, BS170

Vishay Siliconix

			_	T	S OTHERWISE NOT Single		Total Quad	BS170	T
Parameter		Symbol	2N7000	2N7002	VQ1000J	VQ1000P	VQ1000J/P		Unit
Drain-Source Voltage		V_{DS}	60	60	60	60		60	
Gate-Source Voltage—Non-Repetitive		V_{GSM}	±40	±40	±30			±25	٧
Gate-Source Voltage—Continuous		V_{GS}	±20	±20	±20	±20		±20	1
Continuous Drain Current (T _J = 150°C)	T _A = 25°C	I _D	0.2	0.115	0.225	0.225		0.5	
	T _A = 100°C		0.13	0.073	0.14	0.14		0.175	Α
Pulsed Drain Current ^a		I _{DM}	0.5	0.8	1	1			1
D 01 1 11	T _A = 25°C		0.4	0.2	1.3	1.3	2	0.83	
Power Dissipation	T _A = 100°C	P _D	0.16	0.08	0.52	0.52	0.8		W
Thermal Resistance, Junction-to-Ambient		R _{thJA}	312.5	625	96	96	62.5	156	°C/W
Operating Junction and Storage Temperature Range		T _J , T _{stg}	-55 to 150						°C

					Lin	nits			
				2N7000		2N7002		1	
Parameter	Symbol	Test Conditions	Typ ^a	Min	Max	Min	Max	Unit	
Static			•						
Drain-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D = 10 \mu A$	70	60		60			
	.,	$V_{DS} = V_{GS}$, $I_D = 1 \text{ mA}$	2.1	0.8	3			V	
Gate-Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_D = 0.25 \text{ mA}$	2.0			1	2.5	1	
Gate-Body Leakage		$V_{DS} = 0 \text{ V}, V_{GS} = \pm 15 \text{ V}$			±10				
	I _{GSS}	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 20 \text{ V}$					±100	nA	
Zero Gate Voltage Drain Current		$V_{DS} = 48 \text{ V}, V_{GS} = 0 \text{ V}$			1				
	I _{DSS}	T _C = 125°C	;		1000			1 .	
		V _{DS} = 60 V, V _{GS} = 0 V					1	μΑ	
		T _C = 125°C	;				500	1	
0.00.00.00.00	I _{D(on)}	V _{DS} = 10 V, V _{GS} = 4.5 V	0.35	0.075					
On-State Drain Current ^b		$V_{DS} = 7.5 \text{ V}, V_{GS} = 10 \text{ V}$	1			0.5		A	
		$V_{GS} = 4.5 \text{ V}, I_D = 0.075 \text{ A}$	4.5		5.3				
		$V_{GS} = 5 \text{ V}, I_D = 0.05 \text{ A}$	3.2				7.5	1	
Drain-Source On-Resistance ^b	r _{DS(on)}	T _C = 125°C	5.8				13.5	Ω	
		$V_{GS} = 10 \text{ V}, I_D = 0.5 \text{ A}$	2.4		5		7.5	1	
		T _J = 125°C	4.4		9		13.5	1	
Forward Transconductance ^b	9 _{fs}	$V_{DS} = 10 \text{ V}, I_D = 0.2 \text{ A}$		100		80			
Common Source Output Conductance ^b	9 _{os}	$V_{DS} = 5 \text{ V}, I_D = 0.05 \text{ A}$	0.5					mS	
Dynamic			•						
Input Capacitance	C _{iss}		22		60		50		
Output Capacitance	Coss	$V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V}$ f = 1 MHz	11		25		25	pF	
Reverse Transfer Capacitance	C _{rss}	1 - 1 1911 12	2		5		5	1	

Notes a. Pulse width limited by maximum junction temperature. b. $t_p \leq 50~\mu s.$

2N7000/2N7002, VQ1000J/P, BS170

Vishay Siliconix

SPECIFICATIONS—2N7000 AND 2N7002 (T _A = 25°C UNLESS OTHERWISE NOTED)											
				Limits							
				2N7000 2N7002							
Parameter	Symbol	Test Conditions	Typa	Min	Max	Min	Max	Unit			
Switching ^d											
Turn-On Time	t _{ON}	$V_{DD} = 15 \text{ V}, R_{L} = 25 \Omega$	7		10						
Turn-Off Time	t _{OFF}	$I_D \approx 0.5 \text{ A}, V_{GEN} = 10 \text{ V}, R_G = 25 \Omega$	7		10			ns			
Turn-On Time	t _{ON}	$V_{DD} = 30 \text{ V}, R_{L} = 150 \Omega$	7				20	115			
Turn-Off Time	t _{OFF}	$I_D \cong 0.2 \text{ A}, V_{GEN} = 10 \text{ V}, R_G = 25 \Omega$	11				20				

					Lin	nits			
				VQ1000J/P		BS170		1	
Parameter	Symbol	Test Conditions	Typa	Min	Max	Min	Max	Unit	
Static	•		•	•		•			
Drain-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D = 100 \mu\text{A}$	70	60		60		Ι.,	
Gate-Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}$, $I_D = 1$ mA	2.1	8.0	2.5	0.8	3	V	
		$V_{DS} = 0 \text{ V}, V_{GS} = \pm 10 \text{ V}$			±100				
Gate-Body Leakage	I _{GSS}	T _J = 125°C			±500			nA	
•	T	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 15 \text{ V}$					±10	1	
Zero Gate Voltage Drain Current		V _{DS} = 25 V, V _{GS} = 0 V					0.5	μА	
	I _{DSS}	V _{DS} = 48 V, V _{GS} = 0 V, T _J = 125°C			500				
		V _{DS} = 60 V, V _{GS} = 0 V			10				
On-State Drain Current ^b	I _{D(on)}	$V_{DS} = 10 \ V, V_{GS} = 10 \ V$	1	0.5				Α	
Drain-Source On-Resistance ^b	r _{DS(on)}	$V_{GS} = 5 \text{ V}, I_D = 0.2 \text{ A}$	4		7.5				
		$V_{GS} = 10 \text{ V}, I_D = 0.2 \text{ A}$	2.3				5	1	
		$V_{GS} = 10 \text{ V}, I_D = 0.3 \text{ A}$	2.3		5.5			Ω	
		T _J = 125°C	4.2		7.6			1	
Forward Transconductance ^b	9fs -	$V_{DS} = 10 \text{ V}, I_D = 0.2 \text{ A}$				100			
Forward Transconductance		$V_{DS} = 10 \ V, I_{D} = 0.5 \ A$		100				mS	
Common Source Output Conductance ^b	9 _{os}	$V_{DS} = 5 \text{ V}, I_D = 0.05 \text{ A}$	0.5					1	
Dynamic				-					
Input Capacitance	C _{iss}		22		60		60		
Output Capacitance	C _{oss}	V _{DS} =25 V, V _{GS} = 0 V f = 1 MHz	11		25			pF	
Reverse Transfer Capacitance	C _{rss}	1 - 1 1911 12			5				
Switching ^d	•		•	•		•			
Turn-On Time	t _{ON}	$V_{DD} = 15 \text{ V, R}_{I} = 23 \Omega$	7		10				
Turn-Off Time	t _{OFF}	$I_D \approx 0.6 \text{ A}, V_{GEN} = 10 \text{ V}, R_G = 25 \Omega$	7		10			1	
Turn-On Time	t _{ON}	$V_{DD} = 25 \text{ V}, R_{L} = 125 \Omega$	7				10	ns	
Turn-Off Time	toff	$I_D \cong 0.2 \text{ A}, V_{GEN} = 10 \text{ V}, R_G = 25 \Omega$					10	1	

VNBF06

Notes a. For DESIGN AID ONLY, not subject to production testing. b. Pulse test: PW $\leq 80~\mu s$ duty cycle $\leq 1\%$. c. This parameter not registered with JEDEC. d. Switching time is essentially independent of operating temperature.

Vishay Siliconix

TYPICAL CHARACTERISTICS (TA = 25°C UNLESS OTHERWISE NOTED)

V_{DS} - Drain-to-Source Voltage (V)

I_D - Drain Current (A)

V_{GS} - Gate-to-Source Voltage (V)

Vishay Siliconix

TYPICAL CHARACTERISTICS (TA = 25°C UNLESS OTHERWISE NOTED)

Legal Disclaimer Notice

Vishay

Notice

Specifications of the products displayed herein are subject to change without notice. Vishay Intertechnology, Inc., or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Vishay's terms and conditions of sale for such products, Vishay assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of Vishay products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Vishay for any damages resulting from such improper use or sale.

Document Number: 91000 www.vishay.com Revision: 08-Apr-05