Rank-4 over GF(2)

January 15, 2021

The equation

The equation of the surface is:

$$X_0^2 X_1 = 0$$

General information

Number of lines	13
Number of points	11
Number of singular points	7
Number of Eckardt points	8
Number of double points	0
Number of single points	0
Number of points off lines	0
Number of Hesse planes	0
Number of axes	0
Type of points on lines	3^{13}
Type of lines on points	$5^3, 3^8$

Singular Points

The surface has 7 singular points:

```
0: P_1 = \mathbf{P}(0, 1, 0, 0) = \mathbf{P}(0, 1, 0, 0) 
1: P_2 = \mathbf{P}(0, 0, 1, 0) = \mathbf{P}(0, 0, 1, 0) 
2: P_3 = \mathbf{P}(0, 0, 0, 1) = \mathbf{P}(0, 0, 0, 1) 
3: P_7 = \mathbf{P}(0, 1, 1, 0) = \mathbf{P}(0, 1, 1, 0) 
4: P_{10} = \mathbf{P}(0, 1, 0, 1) = \mathbf{P}(0, 1, 0, 1) 
5: P_{12} = \mathbf{P}(0, 0, 1, 1) = \mathbf{P}(0, 0, 1, 1) 
6: P_{14} = \mathbf{P}(0, 1, 1, 1) = \mathbf{P}(0, 1, 1, 1)
```

The 13 Lines

The lines and their Pluecker coordinates are:

$$\ell_0 = \left[\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array} \right]_4 = \left[\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array} \right]_4 = \mathbf{Pl}(0,0,1,0,0,0)_2$$

$$\ell_{1} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{28} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{28} = \mathbf{PI}(0,0,0,0,0,1)_{19}$$

$$\ell_{2} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{6} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{6} = \mathbf{PI}(0,0,0,0,1,0)_{9}$$

$$\ell_{3} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{5} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{5} = \mathbf{PI}(0,0,1,0,1,0)_{12}$$

$$\ell_{4} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{30} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{30} = \mathbf{PI}(0,0,0,1,0,0)_{5}$$

$$\ell_{5} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{29} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{29} = \mathbf{PI}(0,0,0,1,0,1)_{25}$$

$$\ell_{6} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{34} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{34} = \mathbf{PI}(0,1,0,0,0,0)_{1}$$

$$\ell_{7} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{18} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{18} = \mathbf{PI}(0,1,0,0,0,1)_{21}$$

$$\ell_{9} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{31} = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{31} = \mathbf{PI}(0,1,0,0,1,0)_{11}$$

$$\ell_{10} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{19} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{19} = \mathbf{PI}(0,1,0,0,1,0)_{14}$$

$$\ell_{11} = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{33} = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{33} = \mathbf{PI}(0,1,0,1,0,0)_{7}$$

$$\ell_{12} = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{32} = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{32} = \mathbf{PI}(0,1,0,1,0,0)_{7}$$

Rank of lines: (4, 28, 6, 5, 30, 29, 34, 18, 31, 20, 19, 33, 32) Rank of points on Klein quadric: (2, 19, 9, 12, 5, 25, 1, 4, 21, 11, 14, 7, 27)

Eckardt Points

The surface has 8 Eckardt points:

0: $P_0 = \mathbf{P}(1, 0, 0, 0) = \mathbf{P}(1, 0, 0, 0), T = 6$ 1: $P_1 = \mathbf{P}(0, 1, 0, 0) = \mathbf{P}(0, 1, 0, 0), T = -1$

 $2: P_6 = \mathbf{P}(1, 0, 1, 0) = \mathbf{P}(1, 0, 1, 0), T = 6$

 $3: P_7 = \mathbf{P}(0, 1, 1, 0) = \mathbf{P}(0, 1, 1, 0), T = -1$

 $4: P_9 = \mathbf{P}(1,0,0,1) = \mathbf{P}(1,0,0,1), T = 6$

5: $P_{10} = \mathbf{P}(0, 1, 0, 1) = \mathbf{P}(0, 1, 0, 1), T = -1$ 6: $P_{13} = \mathbf{P}(1, 0, 1, 1) = \mathbf{P}(1, 0, 1, 1), T = 6$

7: $P_{14} = \mathbf{P}(0, 1, 1, 1) = \mathbf{P}(1, 0, 1, 1), T = 0$

 $T: P_{14} = \mathbf{P}(0, 1, 1, 1) = \mathbf{P}(0, 1, 1, 1). T = -1$

Double Points

The surface has 0 Double points:

The double points on the surface are:

Single Points

The surface has 0 single points: The single points on the surface are:

The single points on the surface are:

Points on surface but on no line

The surface has 0 points not on any line: The points on the surface but not on lines are:

Line Intersection Graph

	01234	567	89	10	11	12
0	01110	011	11	1	0	0
1	10001	111	10	0	1	1
2	10011	011	01	1	1	0
3	10100	111	01	1	0	1
4	01100	110	11	0	1	1
5	01011	010	10	1	1	1
6	11111	101	11	1	1	1
7	11110	010	11	1	0	0
8	11001	111	0 0	0	1	1
9	10111	011	0 0	1	1	0
10	10110	111	01	0	0	1
11	01101	110	11	0	0	1
12	01011	110	10	1	1	0

Neighbor sets in the line intersection graph:

$_{ m Line~0~intersect}$	\mathbf{S}
--------------------------	--------------

Line	ℓ_1	ℓ_2	ℓ_3	ℓ_6	ℓ_7	ℓ_8	ℓ_9	ℓ_{10}
in point	P_2	P_0	P_0	P_2	P_2	P_2	P_6	P_6

Line 1 intersects

Line	ℓ_0	ℓ_4	ℓ_5	ℓ_6	ℓ_7	ℓ_8	ℓ_{11}	ℓ_{12}
in point	P_2	P_1	P_1	P_2	P_2	P_2	P_7	P_7

Line 2 intersects

Line	ℓ_0	ℓ_3	ℓ_4	ℓ_6	ℓ_7	ℓ_9	ℓ_{10}	ℓ_{11}
in point	P_0	P_0	P_3	P_3	P_9	P_3	P_9	P_3

Line 3 intersects

Line	ℓ_0	ℓ_2	ℓ_5	ℓ_6	ℓ_7	ℓ_9	ℓ_{10}	ℓ_{12}
in point	P_0	P_0	P_{12}	P_{12}	P_{13}	P_{13}	P_{12}	P_{12}

Line 4 intersects

Line	ℓ_1	ℓ_2	ℓ_5	ℓ_6	ℓ_8	ℓ_9	ℓ_{11}	ℓ_{12}
in point	P_1	P_3	P_1	P_3	P_{10}	P_3	P_3	P_{10}

Line 5 intersects

Line	ℓ_1	ℓ_3	ℓ_4	ℓ_6	ℓ_8	ℓ_{10}	ℓ_{11}	ℓ_{12}
in point	P_1	P_{12}	P_1	P_{12}	P_{14}	P_{12}	P_{14}	P_{12}

Line 6 intersects

Line	ℓ_0	ℓ_1	ℓ_2	ℓ_3	ℓ_4	ℓ_5	ℓ_7	ℓ_8	ℓ_9	ℓ_{10}	ℓ_{11}	ℓ_{12}
in point	P_2	P_2	P_3	P_{12}	P_3	P_{12}	P_2	P_2	P_3	P_{12}	P_3	P_{12}

Line 7 intersects

Line	ℓ_0	ℓ_1	ℓ_2	ℓ_3	ℓ_6	ℓ_8	ℓ_9	ℓ_{10}
in point	P_2	P_2	P_9	P_{13}	P_2	P_2	P_{13}	P_9

Line 8 intersects

Line	ℓ_0	ℓ_1	ℓ_4	ℓ_5	ℓ_6	ℓ_7	ℓ_{11}	ℓ_{12}
in point	P_2	P_2	P_{10}	P_{14}	P_2	P_2	P_{14}	P_{10}

Line 9 intersects $\frac{1}{2}$

Line	ℓ_0	ℓ_2	ℓ_3	ℓ_4	ℓ_6	ℓ_7	ℓ_{10}	ℓ_{11}
in point	P_6	P_3	P_{13}	P_3	P_3	P_{13}	P_6	P_3

Line 10 intersects

Line	ℓ_0	ℓ_2	ℓ_3	ℓ_5	ℓ_6	ℓ_7	ℓ_9	ℓ_{12}
in point	P_6	P_9	P_{12}	P_{12}	P_{12}	P_9	P_6	P_{12}

Line 11 intersects

Line	ℓ_1	ℓ_2	ℓ_4	ℓ_5	ℓ_6	ℓ_8	ℓ_9	ℓ_{12}
in point	P_7	P_3	P_3	P_{14}	P_3	P_{14}	P_3	P_7

Line 12 intersects

Line	ℓ_1	ℓ_3	ℓ_4	ℓ_5	ℓ_6	ℓ_8	ℓ_{10}	ℓ_{11}
in point	P_7	P_{12}	P_{10}	P_{12}	P_{12}	P_{10}	P_{12}	P_7

The surface has 11 points:

The points on the surface are:

$$0: P_0 = (1, 0, 0, 0)$$

$$1: P_1 = (0, 1, 0, 0)$$

$$2: P_2 = (0, 0, 1, 0)$$

$$3: P_3 = (0, 0, 0, 1)$$

$$4: P_6 = (1,0,1,0)$$

$$8: P_{12} = (0, 0, 1, 1) 9: P_{13} = (1, 0, 1, 1) 10: P_{14} = (0, 1, 1, 1)$$

$$1 \cdot P_1 = (0 \ 1 \ 0 \ 0)$$

$$5: P_7 = (0, 1, 1, 0)$$

$$9 \cdot P_{12} = (1 \ 0 \ 1 \ 1)$$

$$2: P_2 = (0, 0, 1, 0)$$

$$6: P_0 = (1, 0, 0, 1)$$

$$0: P_{14} = (0, 1, 1, 1)$$

$$3: P_3 = (0, 0, 0, 1)$$

$$6: P_9 = (1, 0, 0, 1) 7: P_{10} = (0, 1, 0, 1)$$