BLG 336E Homework 2 Report 150130032 – Baran Kaya

1)Master Theorem

- Master theorem is a method for solving complexity of algorithms. It has 3 cases and all of them requires different conditions.
- a -> number of divides $(\log(n))$, b -> number of parts for divide

2)Problem

- Divide full vector into 2 parts and calculate these parts distances. However for calculating these parts distance's divide these parts into 2 until there is less then 3 element vectors. Then calculate these small vector's point distance with brute force and return these result to the upper levels.

3)Algorithm

Pseudo-code

Read file and put values into the pointVector	
Call closestPair(pointVector) function	
Clarat Dair (main 47/2 at an)	
ClosestPair(pointVector)	0(1)
Px = sorted point Vector by x-coor.	O(nlogn)
Py = sorted pointVector by y-coor.	O(nlogn)
Return closestPairRec(Px, Py)	
ClosestPairRec(Px, Py)	
If (size of Px ≤ 3)	
Solve with brute force and return min dist. Point pair.	
(Size 2 and 3 have different solition in the code)	O(2) O(3)
Divide Px from middle, left part is Qx right part is Rx	
Call closestPairRec(Qx, Py)	T(n/2)
Call closestPairRec((x, Py)	T(n/2)
	,
Find min distance of Qx and Rx results and assign it to the delta	
Construct S vector which (Point's x coor – mid point's x coor < delta)	O(15logn)
Sort S vector by y-coor.	O(logn)
Check every point in S and compare it with next 15 points in S	(8)
If there is smaller distance Point pair in S	
Return this pair in S	
Else if Qx result < Rx result	
Return Qx result's pair	
Else	
Return Rx result's pair	Total: O(nlogn)

Complexity

$$T(n) = T(n/2) + T(n/2) + f(n)$$

 $F(n) = n \rightarrow Merging$

4)Results

-Number of calculations and run times does not change with respect to N. For example 1000 to 5000 it should be 5N but time and calculations increase with \sim 7N.

Data 1000:

- Distance: 16.9115 - Calculations: 37953

- Run times: 44017600 ns, 44030400 ns, 44016000 ns, 43530700 ns

Data 5000:

- Distance: 37.3631 - Calculations: 274457

- Run times: 547966700 ns, 550512100 ns, 550950100 ns, 550626600 ns

Data 10000:

- Distance: 30.2655 - Calculations: 613972

- Run times: 1804497800 ns, 1805189700 ns, 1789779300 ns, 1780081000 ns

Data 25000:

- Distance: 0 - Calculations: 434996

- Run times: 7275643400 ns, 7272807300 ns, 7244920900 ns, 7268265400 ns

Compiling on SSH: $g++-std=c++11\ 150130032.cpp$ -o B --> It needs C++11.

150130032 Baran KAYA