Mathematical Analysis of Peripheral Visual Response Time and Associated Effects of Hypoxia

John L. Kobrick

US Army Research Institute of Environmental Medicine
Natick, Massachusetts 01760

In previous studies (Kobrick, 1965, 1971, 1972, 1974, 1975; Kobrick and Appleton, 1971; Kobrick and Dusek, 1970; Kobrick and Sutton, 1970), it was shown that response time (RT) to the occurrence of a visual flash stimulus increased in direct relation to the degree of its peripheral placement in the visual field. It was shown also that these increases in RT differed for various sectors of the visual field, such that the largest increases were associated with stimuli along the vertical meridian, and the smallest with those along the horizontal meridian. In addition, it was demonstrated that hypoxic exposure during the performance of this task resulted in further systematic RT increases for all stimulus positions in direct relation to the degree of hypoxia.

These studies all employed the same configuration of stimulus positions, consisting of 48 lights angularly displaced 12°, 38°, 64° and 90° from center on each of 12 radial meridians spaced at 30° angular intervals about the visual field (0°, 30°, 60°, 90°, 120°, 150°, 180°, 210°, 240°, 270°, 300°, 330°). (See Figure 1.)

MACCISEANN OF

BITE BRITE Section

BRAINSUSSESS

PRETERIATION

BITE BRAINSUSSESS

PRETERIATION

BITE AVAIL AND/W SPECIAL

Insert Figure 1 about here

DISTRIBUTION STATEMENT

Approved for public rollicated

Distribution Unlimited

These studies also involved the manipulation of other stimulus conditions, including contrast and relative brightness, frequency of stimulus occurrence, and length of task performance. Since these latter conditions by themselves were found to have little effect upon RT performance, it was concluded that peripheral stimulus location and hypoxic exposure were the principal variables producing the RT impairments observed. Since the treatment values of stimulus location and hypoxic exposure were the same in all of the studies, and the other stimulus conditions were ineffective, the data of these studies were combined to provide a more authoritative analysis of peripheral visual response and associated hypoxia exposure effects. This paper reports the results of a polynomial regression analysis of the combined performance data.

Method

The data of four studies (Kobrick, 1974, 1975; Kobrick and Dusek, 1970; Kobrick and Appleton, 1971) were selected for the present analysis because they comprised complete sets of RT's in all 48 cells of the data matrix described above for each of four hypoxia treatment levels (20.93% O₂: 0 ft altitude; 12.8% O₂: 13,000 ft altitude; 11.8% O₂: 15,000 ft altitude; 10.9% O₂: 17,000 ft altitude). The accumulated data represent the RT values for 43 individual subjects in each hypoxia condition.

In order to determine first that the main effects observed in the previous separate studies were also significant for the involved data when combined, three separate one-way analyses of variance were conducted: (1) for peripheral stimulus locations combined across all field meridians and

3

KOBRICK

hypoxia conditions; (2) for field meridians combined across all peripheral stimulus locations and hypoxia conditions; (3) for hypoxia conditions combined across all visual stimuli. All three main effects proved to be highly significant (P < .001) (F(1) = 67.54, df = 3, 188; F(2) = 2.55, df = 11, 180; F(3) = 7.72, df = 3, 188). Therefore, it was concluded that a more intensive anlays of the trends involved in the main effects was justified.

Group mean RTs were first calculated for each stimulus position across all meridians for each hypoxia condition, and a polynomial regression analysis was then performed separately for the group means of each hypoxia condition. The curves of best fit for each were obtained by the following third degree polynomial equations:

0 ft:
$$y = .0000097x^3 - .0009x^2 + .0284x + .4613$$
 (1)

13,000 ft:
$$y = .0000057x^3 - .00028x^2 + .0074x + .9593$$
 (2)

15,000 ft:
$$y = .0000088x^3 - .00077x^2 + .0261x + .8314$$
 (3)

17,000 ft:
$$y = .000009x^3 - .00059x^2 + .0034x + 2.0503$$
 (4)

Grand mean:
$$y = .0000084x^3 - .0063x^2 + .0162x + 1.0778$$
 (5)

The curves of best fit representing Equations 1-5 are shown in Figure 2, in which the group mean values for each hypoxia condition are plotted separately, along with a best-fit curve for the RT grand means for each peripheral stimulus position.

Insert Figure 2 about here

It is clear that the curves fit the empirical data points remarkably well;

KOBRICK

this is supported by associated coefficients of determination of 1.00 for each of the curves shown.

The same polynomial regression analysis was also performed separately for the peripheral stimulus locations averaged across all hypoxia conditions for each meridian. The equations of best fit (6-17) for the 12 meridians $(0^{\circ}-330^{\circ})$ are the following:

$$0^{\circ}$$
: $y = .0000001x^{3} + .000099x^{2} - .00613x + 1.18565$ (6)

30°:
$$y = .0000102x^3 - .001190x^2 + .04279x + .76392$$
 (7)

$$60^{\circ}: \qquad y = .0000013x^{3} + .000910x^{2} - .03725x + 1.45714$$
 (8)

90°:
$$y = -.0000045x^3 + .001480x^2 - .05705x + 1.76262$$
 (9)

120°:
$$y = .0000115x^3 - .000888x^2 + .02532x + .99046$$
 (10)

150°:
$$y = .0000077x^3 - .000577x^2 + .01340x + 1.14254$$
 (11)

180°:
$$y = .0000639x^3 - .000295x^2 + .00219x + 1.33345$$
 (12)

210°:
$$y = .0000117x^3 + .001843x^2 - .06389x + 1.62549$$
 (13)

240°:
$$y = .0000237x^3 - .002562x^2 + .07536x + .80722$$
 (14)

270°:
$$y = .0000262x^3 - .002564x^2 + .07565x + .52685$$
 (15)

300°:
$$y = .0000196x^3 - .002134x^2 + .06782x + .57841$$
 (16)

330°:
$$y = .0000094x^3 - .00130x^2 + .03674x + .91216$$
 (17)

The curves of best fit to the empirical data points are presented in Figures 3 and 4, in which the respective meridians are plotted in general spatial relationship to their positions in the visual field (Figure 3 - upper visual field; Figure 4 - lower visual field).

Insert Figures 3 and 4 about here

The data points for each meridian were fitted virtually exactly by third-degree polynomial equations, with associated coefficients of determination of 1.00 in all cases.

Thus, it appears from the foregoing analysis that visual response to the occurrence of a flash stimulus becomes progressively impaired in a simple power-function relationship to peripheral excursion of the stimulus. The impairment for all visual field meridians is also expressible by the same third-degree polynomial relationship, but the magnitude of impairment varies for different zones as expressed by the equation coefficients. The greatest impairments occur around the superior and inferior vertical meridians, and the least impairments are found around the horizontal meridians. It is important to remember the simple nature of the stimulus involved, which nevertheless resulted in sizable peripheral impairments; more complex stimulus configurations should, thus, be expected to produce even larger impairments.

The effect of hypoxia appears to be an increase in impairment in direct relation to severity, but almost completely isomorphic to the performance seen under normoxic conditions. Thus, hypoxic stress does not seem to change the functional relationships between central and peripheral response, but only to shift the entire function in proportion to the magnitude of stress involved.

References

- Kobrick, J.L. Effects of physical location of visual stimuli on intentional response time. <u>Journal of Engineering Psychology</u>, 1965, 1, 1-8.
- Kobrick, J.L. Effects of hypoxia on response time to peripheral visual signals. In J.G. Holmes (Ed.), The perception and application of flashing lights. London: Hilger, 1971. Pp. 323-335.
- Kobrick, J.L. Effects of hypoxia on voluntary response time to peripheral stimuli during central target monitoring. Ergonomics, 1972, 15, 147-156.
- Kobrick, J.L. Effects of hypoxia on peripheral visual response to rapid sustained stimulation. <u>Journal of Applied Physiology</u>, 1974, 37, 75-79.
- Kobrick, J.L. Effects of hypoxia on peripheral visual response to dim stimuli. Perceptual and Motor Skills, 1975, 41, 467-474.
- Kobrick, J.L., and Appleton, B. Effects of extended hypoxia on visual performance and retinal vascular state. <u>Journal of Applied Physiology</u>, 1971, 31, 357-362.
- Kobrick, J.L., and Dusek, E.R. Effects of hypoxia on voluntary response time to peripherally located visual stimuli. <u>Journal of Applied Physiology</u>, 1970, 29, 444-448.
- Kobrick, J.L., and Sutton, W.R. Device for measuring voluntary response time to peripherally placed stimuli. Perceptual and Motor Skills, 1970, 30, 255-258.

Figure Captions

- Figure 1. Diagram of the stimutus configuration.
- Figure 2. Curves of best fit for mean response time by peripheral stimulus location for each hypoxia condition.
- Figure 3. Curves of best fit for mean response time by peripheral stimulus location for the upper visual field meridians.
- Figure 4. Curves of best fit for mean response time by peripheral stimulus location for the lower visual field meridians.

KOBRICK. FIGURE 1.

Koberck- Figure 中

Abstract

A polynomial regression analysis was performed on the combined data of four previous studies (43 subjects) on the effects of four levels of hypoxia (O₂ concentrations of 20.93%, 12.8%, 11.8%, and 10.9%, respectively) on response time (RT) to visual flash stimuli distributed in 48 locations about the visual field. The relationship of RT to peripheral stimulus location could be described in all instances by third-degree polynomial power functions, which differed only with respect to meridional location of the stimuli in the visual field. The main effect of hypoxia exposure was elevation of the RT impairment in direct relation to severity, but without changing the functional relationships involved from those observed for normoxic performance.

Mathematical Analysis of Peripheral Visual Response Time and Associated Effects of Hypoxia 5. Performing org. Report number 6. Performing org. Report number 6. Performing org. Report number 7. Distribution of this document is unlimited 5. Type of Report a Period Covered 5. Performing org. Report number 6. Performing org. Report number 7. Program flement, Project, Task Area & WCAK Unit Numbers 8. Contract or Grant number 8. Contract or Grant number 8. Contract or Grant number 10. Program flement, Project, Task Area & WCAK Unit Numbers 11. Report date 12. 16 Aug. 13. Report date 14. Monitoring office name and address(II different from Controlling Office) 15. Security (15.5, Contraction) 15. Dect. Assification/ Downgrading 15. Dect. Assification/ Downgrading 15. Dect. Assification/ Downgrading 15. Distribution of this document is unlimited	THE WAR DE LINES	
NATIONAL PROPERTY NUMBER 1. ARYON PERFORMING ORGANIZATION NAME AND ADDRESS US Army Research Institute of Environmental Nedicine, Natick, MA 01760 11. CONTROLLING OFFICE NAME AND ADDRESS US Army Medical Research and Development Command NASH DC 2014 12. DECLARMING AGENCY NAME & ADDRESS(II different from Controlling Office) Same 13. SECONTROLLING OFFICE NAME AND ADDRESS US Army Medical Research and Development Command NASH DC 2014 14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office) Same 15. DECLARMING ATTOM FORMAGADING SCHOOL STATEMENT (of the abstract entered in Block 20, It different from Report) NA 16. NEY WORDS (Continue on reverse side II necessary and Identify by block number) anoxia; hypoxia; curve fitting; peripheral vision; visual fields; mathematical analogs; altitude stress; visual perception 18. ABSTRACT (Continue on reverse side II necessary and Identify by block number) A P Olynomial regressional analysis was performed on the combined data of four previous studies (43 subjects) on the effects of four levels of hypoxia previous studies (43 subjects) on the effects of four levels of hypoxia previous studies (43 subjects) on the effects of four levels of hypoxia previous studies (43 subjects) on the effects of four levels of hypoxia previous studies (43 subjects) on the effects of four levels of hypoxia previous studies (43 subjects) on the effects of four levels of hypoxia previous studies (43 subjects) on the effects of four levels of hypoxia previous studies (47 previous and previous studies (48 previous previous previous studies (48 previous previous previous studies (48 previous previous previous studies (4	REPORT DOCK , ENTATION PAGE	READ INSTRUCTIONS BAFORE COMPLETING FORM
Nathematical Analysis of Pertipheral Visual Response Time and Associated Effect: of Hypoxia Authority	1. REPORT NUMBER	
Nathematical Manalysis of Pertpheral Visual Response Time and Associated Effect; of Hypoxia Distribution of Action Name and Address US ATUY Research Institute of Environmental Nation Courtecting office name and Address US ATUY Research Institute of Environmental Nation Courtecting office name and Address US ATUY Research Institute of Environmental Nation Courtecting office name and Address US ATUY Research and Development Command NATH DC 20314 13. REPORT DATE 16. Aug. 76 18. Namerical College 17. Institution of this Address of the Controlling Office) 18. SECURITY COLST. (A. L.	MZ/7T (14/USARIEM-M-T/DT	
Response Time and Associated Effect: of Hypoxia ADTHORY John L./Kobrick S. PERFORMING ORGANIZATION NAME AND ADDRESS US Army Research Institute of Environmental Medicine, Natick, MA 01760 10. CONTROLLING OFFICE NAME AND ADDRESS US Army Medical Research and Development Command MASH DC 20314 14. MONITORING AGENCY NAME & ADDRESS(Hiddlessed from Controlling Office) Same 16. DISTRIBUTION STATEMENT (of this Report) Distribution of this document is unlimited 17. DISTRIBUTION STATEMENT (of this abstract entered in Block 20, Hiddlessed from Report) NA 18. SUPPLEMENTARY NOTES NA 19. KEY WORDS (Continue on reverse side Hinessessay and identify by block number) Anoxia; hypoxia; curve fitting; peripheral vision; visual fields; mathematical analogs; altitude stress; visual perception 10. ABSTRACT (Continue on reverse side Hinessessay and identify by block number) 10. ABSTRACT (Continue on reverse side Hinessessay and identify by block number) 10. ABSTRACT (Continue on reverse side Hinessessay and identify by block number) 10. ABSTRACT (Continue on reverse side Hinessessay and identify by block number) 10. ABSTRACT (Continue on reverse side Hinessessay and identify by block number) 10. ABSTRACT (Continue on reverse side Hinessessay and identify by block number) 10. ABSTRACT (Continue on reverse side Hinessessay and identify by block number) 10. ABSTRACT (Continue on reverse side Hinessessay and identify by block number) 10. ABSTRACT (Continue on reverse side Hinessessay and identify by block number) 10. ABSTRACT (Continue on reverse side Hinessessay and identify by block number) 10. ABSTRACT (Continue on reverse side Hinessessay and identify by block number) 10. ABSTRACT (Continue on reverse side Hinessessay and identify by block number) 10. ABSTRACT (Continue on reverse side Hinessessay and identify by block number) 10. ABSTRACT (Continue on reverse side Hinessessay and identify by block number) 10. ABSTRACT (Continue on reverse side Hinessessay and identify by block number) 10. ABSTRACT (Con	The state of the s	5. TYPE OF REPORT & PERIOD COVERED
A PERFORMING ORGANIZATION NAME AND ADDRESS Do PERFORMING ORGANIZATION NAME AND ADDRESS S. PERFORMING ORGANIZATION NAME AND ADDRESS US ATUF Research Institute of Environmental Medicine, Natick, MA 01760 11. CONTROLLING OFFICE NAME AND ADDRESS US ATUF Medical Research and Development Command MASH DC 20314 12. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office) Same 13. MUNITORING AGENCY NAME & ADDRESS(II different from Controlling Office) 14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office) 15. SECURITY (ASS., Only 1974) 16. DISTRIBUTION STATEMENT (of this Report) Distribution of this document is unlimited 17. DISTRIBUTION STATEMENT (of this abstract anissed in Block 20, II different from Report) NA 18. SUPPLEMENTARY NOTES NA 19. KEY WORDS (Continue on reverse side II necessary and identity by block number) A polynomial regressional analysis was performed on the combined data of four previous studies (43 subjects) on the effects of four levels of hypoxia (0) concentrations of 20,93%, 12,8%, 11,8%, and 10,9%, respectively) on response time (RT) to visual flash stimuli distributed in 48 locations about the visual field. The relationship of RT to peripheral stimulus location could be described in all instances by third-degree polynomial power functions, which differed only with respect to meridional location of the Stimuli in the visual field. The main effect of hypoxia exposure was elevation of the RT impairment		
John L./Kobrick 9. PERFORMING ORGANIZATION NAME AND ADDRESS US ATMY Research Institute of Environmental Medicine, Natick, MA 01760 10. CONTROLLING OFFICE NAME AND ADDRESS US ATMY Medical Research and Development Command WASH DC 20314 11. MONITORING AGENCY NAME a ADDRESS/II different from Controlling Office) Same 12. Same 13. SECURITY CISE, (A) No. O.	Response Time and Associated Effect; of Hypoxia	6. 0505000000000000000000000000000000000
John L. Kobrick 3. PERFORMING ORGANIZATION NAME AND ADDRESS US ALTWY Research Institute of Environmental Medicine, Natick, MA 01760 11. CONTROLLING OFFICE NAME AND ADDRESS US ALTWY Medical Research and Development Command WASH DC 20314 14. MONITORING AGENCY NAME A ADDRESS(II dillerent from Controlling Office) Same 16. DISTRIBUTION STATEMENT (of the abstract entered in Black 20, II dillerent from Report) Distribution of this document is unlimited 17. DISTRIBUTION STATEMENT (of the abstract entered in Black 20, II dillerent from Report) NA 18. KEY WORDS (Continue on reverse side II necessary and identify by black number) anoxia; hypoxia; curve fitting; peripheral vision; visual fields; mathematical analogs; altitude stress; visual perception 18. (ABSTRACT (Continue on reverse side II necessary and identify by black number) A polynomial regressional analysis was performed on the combined data of four previous studies (43 subjects) on the effects of four levels of hypoxia (0) concentrations of 20.93%, 12.8%, 11.8%, and 10.9%, respectively) on response time (RT) to visual flash stimuli distributed in 48 locations about the visual field. The relationship of RT to peripheral stimulus location could be described in all instances by third-degree polynomial power functions, which differed only with respect to meridional location of the stimuli in the visual field. The main effect of hypoxia exposure was elevation of the RT impairment	and a series extraordinate and the series and the series and the series of the series.	6. PERFORMING ORG. REPORT NUMBER
B. PERFORMING ORGANIZATION NAME AND ADDRESS US ALTBY Research Institute of Environmental Medicine, Natick, MA 01760 II. CONTROLLING OFFICE NAME AND ADDRESS US ALTBY Medical Research and Development Command WASH DC 20314 II. MONITORING AGENCY NAME A ADDRESS(II diliterant from Controlling Office) Same US ALTBY Medical Research and Development Command III. MONITORING AGENCY NAME A ADDRESS(II diliterant from Controlling Office) Same US ALTBY CASE (AND ADDRESS(II diliterant from Controlling Office) III. MONITORING AGENCY NAME A ADDRESS(II diliterant from Controlling Office) III. DISTRIBUTION STATEMENT (of this Report) Distribution of this document is unlimited III. DISTRIBUTION STATEMENT (of this abstract outered in Block 20, II diliterant from Report) NA III. Supplementary NOTES NA III. Supp	(AUTHOR(s)	8. CONTRACT OR GRANT NUMBER(*)
US Army Research Institute of Environmental Medicine, Natick, MA 01760 11. CONTROLLING OFFICE NAME AND ADDRESS US Army Medical Research and Development Command WASH DC 20314 12. NAME OF 20314 13. REPORT DATE US Army Medical Research and Development Command WASH DC 20314 14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office) Same 15. SECURITY CLASS, Coldensed Unclassified 15. SECURITY CLASS, Coldensed 15. SECURITY CLASS, Coldensed 16. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, II different from Report) NA 16. Supplementary NOTES NA 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, II different from Report) NA 18. Supplementary NOTES NA 19. KEY WORDS (Continue on reverse side II necessary and identity by block number) 20. ABSTRACT (Continue on reverse side II necessary and identity by block number) 21. A polynomial regressional analysis was performed on the combined data of four previous studies (43 subjects) on the effects of four levels of hypoxia (02. concentrations of 20,93%, 12,8%, 11,8%, and 10.9%, respectively) on response time (RT) to visual flash stimuli distributed in 48 locations about the visual field. The relationship of RT to peripheral stimulus location could be described in all instances by third-degree polynomial power functions, which differed only with respect to meridional location of the RT impairment	John L./Kobrick /	
US Army Research Institute of Environmental Medicine, Natick, MA 01760 11. CONTROLLING OFFICE NAME AND ADDRESS US Army Medical Research and Development Command WASH DC 20314 12. ALLEGATION OFFICE NAME AND ADDRESS US Army Medical Research and Development Command WASH DC 20314 13. REPORT DATE WASH DC 20314 14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office) 15. SECURITY CLASS, (a) 1.	Mandado Mariago . In a V 1999 bermadany	
US Army Research Institute of Environmental Medicine, Natick, MA 01760 11. CONTROLLING OFFICE NAME AND ADDRESS US Army Medical Research and Development Command WASH DC 20314 12. ALLEGATION OFFICE NAME AND ADDRESS US Army Medical Research and Development Command WASH DC 20314 13. REPORT DATE WASH DC 20314 14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office) 15. SECURITY CLASS, (a) 1.	9. PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM FLEMENT PROJECT TASK
Medicine, Natick, MA 01760 II. CONTROLLING OFFICE NAME AND ADDRESS III. REPORT DATE III. REPORT DATE III. ALIGN TO III. A	· · · · · · · · · · · · · · · · · · ·	AREA & WORK UNIT NUMBERS
US Army Medical Research and Development Command WASH DC 20314 12 13. MUNDER DE LAGES 12 13. MUNDER DE LAGES 14 15. SECURITY CLASS (of Morrows) 16. DISTRIBUTION STATEMENT (of this Report) Distribution of this document is unlimited 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, il different from Report) NA 18. SUPPLEMENTARY NOTES NA 19. KEY WORDS (Continue on reverse side if necessary and identify by block number) anoxia; hypoxia; curve fitting; peripheral vision; visual fields; mathematical analogs; altitude stress; visual perception 10. ABSTRACT (Continue on reverse side if necessary and identify by block number) TA polynomial regressional analysis was performed on the combined data of four previous studies (43 subjects) on the effects of four levels of hypoxia (02 concentrations of 20.93%, 12.8%, 11.8%, and 10.9%, respectively) on response time (RT) to visual fields the relationship of RT to peripheral stimulus location could be described in all instances by third-degree polynomial power functions, which differed only with respect to meridional location of the RT impairment		
US Army Medical Research and Development Command WASH DC 20314 12. 13. MUNICIPAL CAGES 14. NONITORING AGENCY NAME & ADDRESS/II different from Controlling Office) Same 15. SECURITY CLAS. (A) Mercent Unclassified 15. DESCLASSIFICATION/DOWNGRADING SCHEOULE 15. DESCLASSIFICATION/DOWNGRADING SCHEOULE 15. DESCLASSIFICATION/DOWNGRADING SCHEOULE 16. DISTRIBUTION STATEMENT (of this abstract outered in Block 20, II different from Report) NA 16. SUPPLEMENTARY NOTES NA 16. SUPPLEMENTARY NOTES NA 16. NEY WORDS (Continue on reverse side II necessary and identify by block number) anoxia; hypoxia; curve fitting; peripheral vision; visual fields; mathematical analogs; altitude stress; visual perception 16. ABSTRACT (Continue on reverse side II necessary and identify by block number) 17. A polynomial regressional analysis was performed on the combined data of four previous studies (43 subjects) on the effects of four levels of hypoxia (05. concentrations of 20.93%, 12.8%, 11.8%, and 10.9%, respectively) on response time (RT) to visual flash stimuli distributed in 48 locations about the visual field. The relationship of RT to peripheral stimulus location could be described in all instances by third-degree polynomial power functions, which differed only with respect to meridional location of the RT impairment		-
Same 12 13 13 15 15 15 15 15 15	() (
Same Security CASS (of the Security Continue on reverse side if necessary and identity by block number) Supplementary notes Supplementary notes	US Army Medical Research and Development Command— WASH DC 20314	16 August 76
Unclassified 140 Is. DECLASSIFICATION/DOWNGRADING IS. DECLASSIFICATION/D	111111 DO 70714	12
Unclassified 15.a. DECLASSIFICATION/DOWNGRADING 15.b. DECLASSIFICATION/DOWNGRADING 16. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, it different from Report) NA 16. SUPPLEMENTARY NOTES NA 19. KEY WORDS (Continue on reverse side if necessary and identity by block number) anoxia; hypoxia; curve fitting; peripheral vision; visual fields; mathematical analogs; altitude stress; visual perception 10. ABSTRACT (Continue on reverse side if necessary and identity by block number) A polynomial regressional analysis was performed on the combined data of four previous studies (43 subjects) on the effects of four levels of hypoxia (02 concentrations of 20.93%, 12.8%, 11.8%, and 10.9%, respectively) on response time (RT) to visual flash stimuli distributed in 48 locations about the visual field. The relationship of RT to peripheral stimulus location could be described in all instances by third-degree polynomial power functions, which differed only with respect to meridional location of the stimuli in the visual field. The main effect of hypoxia exposure was elevation of the RT impairment	14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office)	15. SECURITY CHASS, (o) the coperty
Distribution of this document is unlimited 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, it different from Report) NA 18. SUPPLEMENTARY NOTES NA 19. KEY WORDS (Continue on reverse eide if necessary and identify by block number) anoxia; hypoxia; curve fitting; peripheral vision; visual fields; mathematical analogs; altitude stress; visual perception 20. ABSTRACT (Continue on reverse eide if necessary and identify by block number) A polynomial regressional analysis was performed on the combined data of four previous studies (43 subjects) on the erfects of four levels of hypoxia (02 concentrations of 20.93%, 12.8%, 11.8%, and 10.9%, respectively) on response time (RT) to visual flash stimuli distributed in 48 locations about the visual field. The relationship of RT to peripheral stimulus location could be described in all instances by third-degree polynomial power functions, which differed only with respect to meridional location of the stimuli in the visual field. The main effect of hypoxia exposure was elevation of the RT impairment	Same	Inclass 174p
Distribution of this document is unlimited 17. DISTRIBUTION STATEMENT (of the ebetract entered in Block 20, it different from Report) NA 18. SUPPLEMENTARY NOTES NA 19. KEY WORDS (Continue on reverse eide if necessary and identify by block number) anoxia; hypoxia; curve fitting; peripheral vision; visual fields; mathematical analogs; altitude stress; visual perception 20. ABSTRACT (Continue on reverse eide if necessary and identify by block number) A polynomial regressional analysis was performed on the combined data of four previous studies (43 subjects) on the effects of four levels of hypoxia (02 concentrations of 20.93%, 12.8%, 11.8%, and 10.9%, respectively) on response time (RT) to visual flash stimuli distributed in 48 locations about the visual field. The relationship of RT to peripheral stimulus location could be described in all instances by third-degree polynomial power functions, which differed only with respect to meridional location of the stimuli in the visual field. The main effect of hypoxia exposure was elevation of the RT impairment		
Distribution of this document is unlimited 17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if different from Report) NA 18. SUPPLEMENTARY NOTES NA 19. KEY WORDS (Continue on reverse side if necessary and identity by block number) anoxia; hypoxia; curve fitting; peripheral vision; visual fields; mathematical analogs; altitude stress; visual perception 10. ABSTRACT (Continue on reverse side if necessary and identity by block number) A polynomial regressional analysis was performed on the combined data of four previous studies (43 subjects) on the effects of four levels of hypoxia (02 concentrations of 20.93%, 12.8%, 11.8%, and 10.9%, respectively) on response time (RT) to visual flash stimuli distributed in 48 locations about the visual field. The relationship of RT to peripheral stimulus location could be described in all instances by third-degree polynomial power functions, which differed only with respect to meridional location of the stimuli in the visual field. The main effect of hypoxia exposure was elevation of the RT impairment		SCHEDULE
NA 19. KEY WORDS (Continue on reverse side if necessary and identify by block number) anoxia; hypoxia; curve fitting; peripheral vision; visual fields; mathematical analogs; altitude stress; visual perception 20. ABSTRACT (Continue on reverse side if necessary and identify by block number) A polynomial regressional analysis was performed on the combined data of four previous studies (43 subjects) on the effects of four levels of hypoxia (02 concentrations of 20.93%, 12.8%, 11.8%, and 10.9%, respectively) on response time (RT) to visual flash stimuli distributed in 48 locations about the visual field. The relationship of RT to peripheral stimulus location could be described in all instances by third-degree polynomial power functions, which differed only with respect to meridional location of the Stimuli in the visual field. The main effect of hypoxia exposure was elevation of the RT impairment	IG. DISTRIBUTION STATEMENT (of this Report)	
NA 19. KEY WORDS (Continue on reverse side if necessary and identify by block number) anoxia; hypoxia; curve fitting; peripheral vision; visual fields; mathematical analogs; altitude stress; visual perception 20. ABSTRACT (Continue on reverse side if necessary and identify by block number) A polynomial regressional analysis was performed on the combined data of four previous studies (43 subjects) on the effects of four levels of hypoxia (02 concentrations of 20.93%, 12.8%, 11.8%, and 10.9%, respectively) on response time (RT) to visual flash stimuli distributed in 48 locations about the visual field. The relationship of RT to peripheral stimulus location could be described in all instances by third-degree polynomial power functions, which differed only with respect to meridional location of the stimuli in the visual field. The main effect of hypoxia exposure was elevation of the RT impairment	Diotribution of this downers to with the	
NA 18. SUPPLEMENTARY NOTES NA 19. KEY WORDS (Continue on reverse side if necessary and identity by block number) anoxia; hypoxia; curve fitting; peripheral vision; visual fields; mathematical analogs; altitude stress; visual perception 20. ABSTRACT (Continue on reverse side if necessary and identity by block number) TA polynomial regressional analysis was performed on the combined data of four previous studies (43 subjects) on the erfects of four levels of hypoxia (02 concentrations of 20.93%, 12.8%, 11.8%, and 10.9%, respectively) on response time (RT) to visual flash stimuli distributed in 48 locations about the visual field. The relationship of RT to peripheral stimulus location could be described in all instances by third-degree polynomial power functions, which differed only with respect to meridional location of the stimuli in the visual field. The main effect of hypoxia exposure was elevation of the RT impairment	Distribution of this document is unlimited	j
NA 18. SUPPLEMENTARY NOTES NA 19. KEY WORDS (Continue on reverse side if necessary and identity by block number) anoxia; hypoxia; curve fitting; peripheral vision; visual fields; mathematical analogs; altitude stress; visual perception 20. ABSTRACT (Continue on reverse side if necessary and identity by block number) TA polynomial regressional analysis was performed on the combined data of four previous studies (43 subjects) on the erfects of four levels of hypoxia (02 concentrations of 20.93%, 12.8%, 11.8%, and 10.9%, respectively) on response time (RT) to visual flash stimuli distributed in 48 locations about the visual field. The relationship of RT to peripheral stimulus location could be described in all instances by third-degree polynomial power functions, which differed only with respect to meridional location of the stimuli in the visual field. The main effect of hypoxia exposure was elevation of the RT impairment		1
NA 18. SUPPLEMENTARY NOTES NA 19. KEY WORDS (Continue on reverse side if necessary and identity by block number) anoxia; hypoxia; curve fitting; peripheral vision; visual fields; mathematical analogs; altitude stress; visual perception 20. ABSTRACT (Continue on reverse side if necessary and identity by block number) TA polynomial regressional analysis was performed on the combined data of four previous studies (43 subjects) on the erfects of four levels of hypoxia (02 concentrations of 20.93%, 12.8%, 11.8%, and 10.9%, respectively) on response time (RT) to visual flash stimuli distributed in 48 locations about the visual field. The relationship of RT to peripheral stimulus location could be described in all instances by third-degree polynomial power functions, which differed only with respect to meridional location of the stimuli in the visual field. The main effect of hypoxia exposure was elevation of the RT impairment		
NA 19. KEY WORDS (Continue on reverse side if necessary and identity by block number) anoxia; hypoxia; curve fitting; peripheral vision; visual fields; mathematical analogs; altitude stress; visual perception 20. ABSTRACT (Continue on reverse side if necessary and identity by block number) A polynomial regressional analysis was performed on the combined data of four previous studies (43 subjects) on the effects of four levels of hypoxia (02 concentrations of 20.93%, 12.8%, 11.8%, and 10.9%, respectively) on response time (RT) to visual flash stimuli distributed in 48 locations about the visual field. The relationship of RT to peripheral stimulus location could be described in all instances by third-degree polynomial power functions, which differed only with respect to meridional location of the stimuli in the visual field. The main effect of hypoxia exposure was elevation of the RT impairment	17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different fro	om Report)
NA 19. KEY WORDS (Continue on reverse side if necessary and identity by block number) anoxia; hypoxia; curve fitting; peripheral vision; visual fields; mathematical analogs; altitude stress; visual perception 20. ABSTRACT (Continue on reverse side if necessary and identity by block number) A polynomial regressional analysis was performed on the combined data of four previous studies (43 subjects) on the erfects of four levels of hypoxia (02 concentrations of 20.93%, 12.8%, 11.8%, and 10.9%, respectively) on response time (RT) to visual flash stimuli distributed in 48 locations about the visual field. The relationship of RT to peripheral stimulus location could be described in all instances by third-degree polynomial power functions, which differed only with respect to meridional location of the stimuli in the visual field. The main effect of hypoxia exposure was elevation of the RT impairment	NΔ	
anoxia; hypoxia; curve fitting; peripheral vision; visual fields; mathematical analogs; altitude stress; visual perception 20. ABSTRACT (Continue on reverse side if necessary and identify by block number) A polynomial regressional analysis was performed on the combined data of four previous studies (43 subjects) on the erfects of four levels of hypoxia (02 concentrations of 20.93%, 12.8%, 11.8%, and 10.9%, respectively) on response time (RT) to visual flash stimuli distributed in 48 locations about the visual field. The relationship of RT to peripheral stimulus location could be described in all instances by third-degree polynomial power functions, which differed only with respect to meridional location of the stimuli in the visual field. The main effect of hypoxia exposure was elevation of the RT impairment	MA	
anoxia; hypoxia; curve fitting; peripheral vision; visual fields; mathematical analogs; altitude stress; visual perception 20. ABSTRACT (Continue on reverse side if necessary and identity by block number) A polynomial regressional analysis was performed on the combined data of four previous studies (43 subjects) on the erfects of four levels of hypoxia (02 concentrations of 20.93%, 12.8%, 11.8%, and 10.9%, respectively) on response time (RT) to visual flash stimuli distributed in 48 locations about the visual field. The relationship of RT to peripheral stimulus location could be described in all instances by third-degree polynomial power functions, which differed only with respect to meridional location of the stimuli in the visual field. The main effect of hypoxia exposure was elevation of the RT impairment		
anoxia; hypoxia; curve fitting; peripheral vision; visual fields; mathematical analogs; altitude stress; visual perception 20. ABSTRACT (Continue on reverse side if necessary and identify by block number) A polynomial regressional analysis was performed on the combined data of four previous studies (43 subjects) on the erfects of four levels of hypoxia (0½ concentrations of 20.93%, 12.8%, 11.8%, and 10.9%, respectively) on response time (RT) to visual flash stimuli distributed in 48 locations about the visual field. The relationship of RT to peripheral stimulus location could be described in all instances by third-degree polynomial power functions, which differed only with respect to meridional location of the stimuli in the visual field. The main effect of hypoxia exposure was elevation of the RT impairment	18. SUPPLEMENTARY NOTES	
anoxia; hypoxia; curve fitting; peripheral vision; visual fields; mathematical analogs; altitude stress; visual perception 20. ABSTRACT (Continue on reverse side if necessary and identify by block number) A polynomial regressional analysis was performed on the combined data of four previous studies (43 subjects) on the erfects of four levels of hypoxia (0½ concentrations of 20.93%, 12.8%, 11.8%, and 10.9%, respectively) on response time (RT) to visual flash stimuli distributed in 48 locations about the visual field. The relationship of RT to peripheral stimulus location could be described in all instances by third-degree polynomial power functions, which differed only with respect to meridional location of the stimuli in the visual field. The main effect of hypoxia exposure was elevation of the RT impairment		
anoxia; hypoxia; curve fitting; peripheral vision; visual fields; mathematical analogs; altitude stress; visual perception 20. ABSTRACT (Continue on reverse side if necessary and identity by block number) A polynomial regressional analysis was performed on the combined data of four previous studies (43 subjects) on the erfects of four levels of hypoxia (0½ concentrations of 20.93%, 12.8%, 11.8%, and 10.9%, respectively) on response time (RT) to visual flash stimuli distributed in 48 locations about the visual field. The relationship of RT to peripheral stimulus location could be described in all instances by third-degree polynomial power functions, which differed only with respect to meridional location of the stimuli in the visual field. The main effect of hypoxia exposure was elevation of the RT impairment	NΔ	
anoxia; hypoxia; curve fitting; peripheral vision; visual fields; mathematical analogs; altitude stress; visual perception 20. ABSTRACT (Continue on reverse side if necessary and identify by block number) A polynomial regressional analysis was performed on the combined data of four previous studies (43 subjects) on the erfects of four levels of hypoxia (02 concentrations of 20.93%, 12.8%, 11.8%, and 10.9%, respectively) on response time (RT) to visual flash stimuli distributed in 48 locations about the visual field. The relationship of RT to peripheral stimulus location could be described in all instances by third-degree polynomial power functions, which differed only with respect to meridional location of the stimuli in the visual field. The main effect of hypoxia exposure was elevation of the RT impairment	2162	
anoxia; hypoxia; curve fitting; peripheral vision; visual fields; mathematical analogs; altitude stress; visual perception 20. ABSTRACT (Continue on reverse side if necessary and identify by block number) A polynomial regressional analysis was performed on the combined data of four previous studies (43 subjects) on the erfects of four levels of hypoxia (02 concentrations of 20.93%, 12.8%, 11.8%, and 10.9%, respectively) on response time (RT) to visual flash stimuli distributed in 48 locations about the visual field. The relationship of RT to peripheral stimulus location could be described in all instances by third-degree polynomial power functions, which differed only with respect to meridional location of the stimuli in the visual field. The main effect of hypoxia exposure was elevation of the RT impairment	19. KEY WORDS (Continue on reverse side if necessary and identify by block number	
analogs; altitude stress; visual perception 20. ABSTRACT (Continue on reverse side if necessary and identify by block number) A polynomial regressional analysis was performed on the combined data of four previous studies (43 subjects) on the erfects of four levels of hypoxia (02 concentrations of 20.93%, 12.8%, 11.8%, and 10.9%, respectively) on response time (RT) to visual flash stimuli distributed in 48 locations about the visual field. The relationship of RT to peripheral stimulus location could be described in all instances by third-degree polynomial power functions, which differed only with respect to meridional location of the stimuli in the visual field. The main effect of hypoxia exposure was elevation of the RT impairment	, , ,	
A polynomial regressional analysis was performed on the combined data of four previous studies (43 subjects) on the effects of four levels of hypoxia (02 concentrations of 20.93%, 12.8%, 11.8%, and 10.9%, respectively) on response time (RT) to visual flash stimuli distributed in 48 locations about the visual field. The relationship of RT to peripheral stimulus location could be described in all instances by third-degree polynomial power functions, which differed only with respect to meridional location of the stimuli in the visual field. The main effect of hypoxia exposure was elevation of the RT impairment	analogs; altitude stress: visual nercention	visual fields; mathematical
A polynomial regressional analysis was performed on the combined data of four previous studies (43 subjects) on the erfects of four levels of hypoxia (02 concentrations of 20.93%, 12.8%, 11.8%, and 10.9%, respectively) on response time (RT) to visual flash stimuli distributed in 48 locations about the visual field. The relationship of RT to peripheral stimulus location could be described in all instances by third-degree polynomial power functions, which differed only with respect to meridional location of the stimuli in the visual field. The main effect of hypoxia exposure was elevation of the RT impairment	/ value of a second of the sec	
A polynomial regressional analysis was performed on the combined data of four previous studies (43 subjects) on the erfects of four levels of hypoxia (02 concentrations of 20.93%, 12.8%, 11.8%, and 10.9%, respectively) on response time (RT) to visual flash stimuli distributed in 48 locations about the visual field. The relationship of RT to peripheral stimulus location could be described in all instances by third-degree polynomial power functions, which differed only with respect to meridional location of the stimuli in the visual field. The main effect of hypoxia exposure was elevation of the RT impairment	/	
A polynomial regressional analysis was performed on the combined data of four previous studies (43 subjects) on the erfects of four levels of hypoxia (02 concentrations of 20.93%, 12.8%, 11.8%, and 10.9%, respectively) on response time (RT) to visual flash stimuli distributed in 48 locations about the visual field. The relationship of RT to peripheral stimulus location could be described in all instances by third-degree polynomial power functions, which differed only with respect to meridional location of the stimuli in the visual field. The main effect of hypoxia exposure was elevation of the RT impairment	20. ABSTRACT (Continue on reverse side if necessary and identify by block number)	
four previous studies (43 subjects) on the effects of four levels of hypoxia (02 concentrations of 20.93%, 12.8%, 11.8%, and 10.9%, respectively) on response time (RT) to visual flash stimuli distributed in 48 locations about the visual field. The relationship of RT to peripheral stimulus location could be described in all instances by third-degree polynomial power functions, which differed only with respect to meridional location of the stimuli in the visual field. The main effect of hypoxia exposure was elevation of the RT impairment	A polynomial regressional analysis was perfor	med on the combined data of
sponse time (RT) to visual flash stimuli distributed in 48 locations about the visual field. The relationship of RT to peripheral stimulus location could be described in all instances by third-degree polynomial power functions, which differed only with respect to meridional location of the stimuli in the visual field. The main effect of hypoxia exposure was elevation of the RT impairment	four previous studies (43 subjects) on the effects	of four levels of hypoxia
visual field. The relationship of RT to peripheral stimulus location could be described in all instances by third-degree polynomial power functions, which differed only with respect to meridional location of the stimuli in the visual field. The main effect of hypoxia exposure was elevation of the RT impairment	(0^{C}_{2}) concentrations of 20.93%, 12.8%, 11.8%, and 10	.9%, respectively) on re-
described in all instances by third-degree polynomial power functions, which differed only with respect to meridional location of the stimuli in the visual field. The main effect of hypoxia exposure was elevation of the RT impairment	sponse time (RT) to visual flash stimuli distribut	ed in 48 locations about the
differed only with respect to meridional location of the stimuli in the visual field. The main effect of hypoxia exposure was elevation of the RT impairment	visual field. The relationship of RT to periphera	at stimutus tocation could be
field. The main effect of hypoxia exposure was elevation of the RT impairment	described in all instances by third-degree polynom	of the stimuli in the visual
	field. The main effect of hypoxia exposure was el	evation of the RT impairment
Unclassified 040 X)		
And the control of th	1 JAN /3 1710 N	Unclassified 040 X)

in direct relation to severity, but without cl ships involved from those observed for normox	changing the functional relation ic performance.	r on–
ships involved from those observed for normox	cic performance.	- -
		~
		7
	• , , •	
:		
•		
	6,7	
	•	
	•	
,		