Chapter 3 Homework

3.1 From $S \rightarrow abSc \mid A$ $A \rightarrow cAd \mid cd$, derive string ababccddcc

Derivation	Rule
$S \Rightarrow abSc$	$S \rightarrow abSc$
<i>⇒ ababScc</i>	$S \rightarrow abSc$
<i>⇒ ababAcc</i>	$S \rightarrow A$
<i>⇒ ababcAdcc</i>	$A \rightarrow cAd$
<i>⇒ ababccddcc</i>	$A \rightarrow cd$

$$L(G) = \{(ab)^m c^n d^n c^m | m, n, > 0\}$$

3.2 From $S \rightarrow ASB \mid \lambda$ $A \rightarrow aAb \mid \lambda$ $B \rightarrow bBa \mid ba, leftmost$ derive string **aabbba**

Derivation	Rule
$S \Rightarrow ASB$	$S \rightarrow ASB$
$\Rightarrow aAbSB$	$A \rightarrow aAb$
<i>⇒ aaAbbSB</i>	$A \rightarrow aAb$
<i>⇒ aabbSB</i>	$A \rightarrow \lambda$
<i>⇒ aabbB</i>	$S \rightarrow \lambda$
<i>⇒ aabbba</i>	$B \rightarrow ba$

rightmost derive abaabbbabbaa

Derivation	Rule
$S \Rightarrow ASB$	$S \rightarrow ASB$
<i>⇒ ASbBa</i>	<i>B</i> > bBa
<i>⇒ ASbbaa</i>	<i>B</i> → ba
<i>⇒ AASBbbaa</i>	$S \rightarrow ASB$
<i>⇒ AASbabbaa</i>	<i>B</i> → ba
<i>⇒ AAbabbaa</i>	$S \rightarrow \lambda$
<i>⇒ AaaAbbbabbaa</i>	<i>A</i> → <i>aAb</i>
<i>⇒ Aaabbbabbaa</i>	$A \rightarrow \lambda$
<i>⇒ aAbaabbbabbaa</i>	<i>A</i> → <i>aAb</i>
<i>⇒ abaabbbabbaa</i>	$A \rightarrow \lambda$

hint:
$$S \Rightarrow ASB \Rightarrow AASBB \Rightarrow AAASBBB$$

 $L(G) = \{(ab)^m i (ba)^m j \mid 0 \le i, j \le n, m_j \ge 0, m_j \ge 1\}$

3.4 a,b) From $S \rightarrow AB \mid \lambda$ $A \rightarrow aA \mid a$ $B \rightarrow AB \mid B \mid b \mid \lambda$, leftmost/rightmost derive string **aaab**

Derivation	Rule
$S \Rightarrow AB$	$S \rightarrow AB$
$\Rightarrow aAB$	A> aA
<i>⇒ aaB</i>	$B \rightarrow AB$
<i>⇒ aaAB</i>	$A \rightarrow a$
<i>⇒ aaaB</i>	<i>B</i> > <i>b</i>
<i>⇒ aaaa</i>	$S \rightarrow \lambda$

Derivation	Rule
$S \Rightarrow AB$	$S \rightarrow AB$
$\Rightarrow AAB$	$B \rightarrow AB$
$\Rightarrow AAb$	<i>B</i> → <i>b</i>
<i>⇒ Aab</i>	$A \rightarrow a$
<i>⇒ Aaab</i>	A> Aa
<i>⇒ aaab</i>	$A \rightarrow a$

3.6 a.)
$$S \rightarrow aaSB \mid \lambda$$

 $B \rightarrow abB \mid \lambda$

hint:
$$S \Rightarrow aaSB \Rightarrow aaaaSBB$$

 $L(G) = \{(aa)^m b^{m+n} \mid m, n \ge 0\}$

b.)
$$S \rightarrow aSbbb \mid A$$

 $A \rightarrow cA \mid c$
hint: $S \Rightarrow aSbbb \Rightarrow aaSbbbbbbb \Rightarrow aacASbbbbbbb$
 $L(G) = \{(a)^m c^n (bb)^m \mid m, n \ge 1\}$

c.)
$$S \rightarrow abSdc \mid A$$

 $A \rightarrow cdAba \mid \lambda$

hint:
$$S \Rightarrow abSdc \Rightarrow ababSdcdc \Rightarrow ababAdcdc$$

 $\Rightarrow ababcdAbadcdc$
 $L(G) = \{(ab)^m(cd)^n(ba)^n(dc)^m \mid m, n \geq 1\}$

3.7
$$L(G) = \{a^m b^{2m} c^n \mid m, n \ge 0\}$$

hint:
$$S \Rightarrow Sc \Rightarrow Scc \Rightarrow Sccc \Rightarrow Accc \Rightarrow aAbbccc$$

$$S \to Sc \mid A \mid \lambda$$
$$A \to aAbb \mid \lambda$$

3.14 a.)
$$S \rightarrow aA \mid \lambda$$

 $A \rightarrow aA \mid bA \mid b$

hint: begins with **a** from **S**then $A \rightarrow aA \mid bA \mid b$ alternates **a's** and **b's** then terminates with **b** $L(G) = (a \cup b)^*b$

b.)
$$S \rightarrow aA$$

 $A \rightarrow aA \mid bB$
 $B \rightarrow bB \mid \lambda$
hint: $S \Rightarrow aA \Rightarrow aaA \Rightarrow aabB \Rightarrow aabbB \Rightarrow aabbb$
 $L(G) = a^+b^+$

3.15
$$S \rightarrow aA \mid \lambda$$

 $A \rightarrow aA \mid B \mid \lambda$
 $B \rightarrow bB \mid C \mid \lambda$
 $C \rightarrow cC \mid \lambda$
 $L(G) = a*b*c*$

3.16 $(a \cup b)^*aa(a \cup b)^*bb(a \cup b)^* \cup (a \cup b)^*bb(a \cup b)^*aa(a \cup b)^*$

$$G_{1} = \{V_{1}, \sum_{1}, P_{1}, S_{1}\}$$

$$S_{1} \rightarrow aS_{1} \mid bS_{1} \mid aA$$

$$A \rightarrow aB$$

$$B \rightarrow aB \mid bB \mid bC$$

$$C \rightarrow bD$$

$$C \rightarrow aD \mid bD \mid \lambda$$

$$L(G_{1}) = \{V_{2}, \sum_{2}, P_{2}, S_{2}\}$$

$$S_{2} \rightarrow aS_{2} \mid bS_{2} \mid bE$$

$$E \rightarrow aF$$

$$F \rightarrow aF \mid bF \mid aD$$

$$D \rightarrow aE$$

$$E \rightarrow aE \mid bE \mid \lambda$$

$$L(G_{2}) = \{a \cup b\} * bb(a \cup b) * aa(a \cup b) * bb(a \cup b) * aa(a \cup b) *$$

$$L(G_{2}) = \{v_{1} \cup v_{2} \cup S, \sum_{1}, P_{1} \cup P_{1} \cup S \rightarrow S_{1} \mid S_{2}, S\}$$

$$S \rightarrow S_{1} \mid S_{2}$$

$$L(G_{1}) = L(G_{1}) \cup L(G_{2})$$

3.20 Strings begin with **a** or any number of **b's**; thereafter, any number of **b's** are separated by one or two **a's**

$$S \rightarrow aA \mid bB \mid \lambda$$
 permutations of **aba**, **ab**, **ba**, **b** - $(aba \cup ab \cup b)^*$
 $A \rightarrow bB$ $(aba \cup ba \cup ab \cup b)^* = ((a \cup \lambda)ba \cup (a \cup \lambda)b)^* =$
 $B \rightarrow aS \mid bS \mid bB \mid \lambda$ $((a \cup \lambda)b(a \cup \lambda))^*$
 $L(G) = ((a \cup \lambda)b(a \cup \lambda))$

3.33 a) $S \rightarrow aaS \mid aaaaaS \mid \lambda$

aaS produces even length strings, aaaaaS adds 5 a's to the string permissible string in the language are a's of length 2, 4, 5, 6, 7, ...
5 aaS or 2 aaaaaS produce 10 a's therefore ambiguous (two distinct leftmost derivations)

$$S \rightarrow aa \mid aaaA$$

 $S \rightarrow aA \mid a$

is an unambiguous grammar

b)
$$S \rightarrow aSA \mid \lambda$$

 $S \rightarrow bA \mid \lambda$

$S \rightarrow aAb \mid \mid \lambda$
$A \rightarrow aAb \mid \lambda$
L(G) = a*b*

Derivation	Rule
$S \Rightarrow aSA$	$S \rightarrow aSA$
<i>⇒ aaSAA</i>	$S \rightarrow aSA$
⇒ aaλAA	$S \rightarrow \lambda$
<i>⇒ aabAA</i>	$A \rightarrow bA$
<i>⇒ aabλA</i>	$A \rightarrow \lambda$
<i>⇒ aabA</i>	$A \rightarrow \lambda$
<i>⇒ aabλ</i>	
<i>⇒ aab</i>	

Derivation	Rule
$S \Rightarrow aSA$	$S \rightarrow aSA$
<i>⇒ aaSAA</i>	$S \rightarrow aSA$
⇒ aaλAA	$S \rightarrow \lambda$
<i>⇒ aaAA</i>	$A \rightarrow \lambda$
⇒ ааλА	
<i>⇒ aabA</i>	$A \rightarrow bA$
<i>⇒ aabλ</i>	$A \rightarrow \lambda$
<i>⇒ aab</i>	

is an unambiguous grammar