

Live #10

Os principais erros em Análise de Dados e como evitá-los

Parte 1

Antes de mais nada, já se inscreveu em nosso canal para ter acesso aos materiais e avisos das lives?

https://t.me/preditiva

Erros acontecem...

A definição formal

Risco operacional

Probabilidade de ocorrência de perdas resultantes de eventos externos ou de falha, deficiência ou inadequação de processos internos, pessoas ou sistemas.

Erros acontecem...

A definição que eu gosto é...

Risco operacional

=

Probabilidade de você fazer uma CAGADA!

Jornada dos dados

Existem muitas chances de erros na jornada dos dados

Dados

brutos

Processo de Transformação dos Dados

Dados precisam ser organizados, limpos, padronizados para serem armazenados no repositório

Decisões são tomadas

Desenvolvimento de análises

Lake (repositório)

Analytics e Dashboards

Produção/Deploy

Valor Tangível que os dados podem entregar

Decisões automáticas são tomadas

Desenvolvimento de modelos estatísticos e de Machine Learning/AI

Produtização da decisão

Construção de códigos que asseguram uma eficiente implantação dos produtos de dados anteriores

Metodologia de Projetos de Dados e Data Storytelling

Jornada dos dados

Existem muitas chances de erros na jornada dos dados

Desenvolvimento de análises exploratórias e Dashboards interativos

Dashboards

Live - Parte 1

Dados brutos

(repositório)

e Al

Produção/Deploy

Valor Tangível que os dados podem entregar

Processo de Transformação dos Dados

Dados precisam ser organizados, limpos, padronizados para serem armazenados no repositório

Decisões automáticas são tomadas

Desenvolvimento de modelos estatísticos e de Machine Learning/AI

Produtização da decisão

Construção de códigos que asseguram uma eficiente implantação dos produtos de dados anteriores

Live - Parte 2

Metodologia de Projetos de Dados e Data Storytelling

O mapa da CAGADA em Dados!

Medidas e Gráficos

Parte 1

Projeções

Amostragem

Medidas estatísticas

Frequências imprecisas

Viés de seleção

Unidades da base

Probabilidade e Possibilidade

Erros de Coleta

Medidas vs Gráficos

Tamanho de Amostra

Correlações

Causalidade

O mapa da CAGADA em Dados!

Parte 1

Medidas e Gráficos

Projeções

Amostragem

Medidas estatísticas

Frequências imprecisas

Viés de seleção

Unidades da base

Probabilidade e

Erros de Coleta

Medidas vs Gráficos

Tamanho de Amostra

Correlações

Causalidade

Medidas e Gráficos Exemplo 1

O que você faria na seguinte situação?

Você é convidado para trabalhar em uma startup com 15 funcionários e, segundo o RH o salário **médio** dos funcionários é R\$4.200,00.

Você atualmente ganha R\$1.000,00.

Funcionário	Salário
1	1.000,00
2	1.000,00
3	1.000,00
4	1.000,00
5	1.000,00
6	1.000,00
7	1.000,00
8	1.000,00
9	1.000,00
10	1.000,00
11	1.000,00
12	1.000,00
13	1.000,00
14	10.000,00
1 5	40.000,00
Média	4.200,00

ID	Salário
1	5.130,00
2	4.193,00
3	3.468,00
4	3.068,00
5	2.670,00
6	2.693,00
7	9.526,00
8	3.068,00
9	5.237,00
10	9.980,00
11	2.426,00
12	2.911,00

A **Média** é uma **medida de tendência central**. Isto é, ela tenta nos dar uma noção de onde o valor <u>central</u> dos dados deve aparecer. Veja:

Média =
$$\frac{54.370,00}{12}$$
 = 4.530,83

Porém, muitas vezes **ela não é a medida resumo mais indicada**. Veremos isso mais adiante.

Medidas Resumo: Medidas de Posição - Mediana

ID	Salário	
11	2.426,00	
5	2.670,00	
6	2.693,00	
12	2.911,00	
4	3.068,00	ng!
8	3.068,00	Mediana
3	3.468,00	3.268,00
2	4.193,00	
1	5.130,00	
9	5.237,00	
7	9.526,00	
10	9.980,00	

A Mediana, assim como a média, também é uma medida de tendência central. Porém, no seu caso, ela realmente representa o centro do seu conjunto de dados.

Ou seja, 50% dos valores são inferiores à Mediana e 50% dos valores são superiores à Mediana.

Obs: Quando o número de observações é par (no exemplo, temos 12 salários), a Mediana é a média entre os 2 valores centrais. Se fosse ímpar, seria o próprio valor central.

Medidas Resumo: Medidas de Posição

O que você faria na seguinte situação?

Você está doente e só existe um remédio que pode te ajudar. Segundo a bula, o tempo de sobrevida **mediano** é de 8 semanas. Todos que tomam o remédio tem severos efeitos colaterais. Vale a pena tomar o remédio?

Tempo de Sobrevida (em semanas)	% Relativa
2	15%
4	15%
8	20%
16	5%
32	5%
64	5%
128	5%
256	10%
512	20%

Exemplo 1 - Resumo

O erro:

Usar apenas uma medida para resumir os dados.

Como evitá-lo?

Quanto mais medidas resumo usar, melhor conseguirá entender os dados analisados. Exemplos de medidas:

- Média
- Mediana
- Quartis
- Mínimo e Máximo
- Desvio Padrão

Medidas e Gráficos Exemplo 2

Você pede para alguém um relatório de vendas anual. O analista entrega isso...

Conclusões mais comuns:

- Fevereiro foi um mês atípico de vendas.
- De março a setembro ficamos estáveis em cerca de 200 vendas por mês.

Exemplo 2

Para tentar entender melhor, você pede a soma de vendas por mês. O analista te entrega isso...

Sua conclusão mudou de alguma forma?

Será que conseguimos realmente entender nossas vendas com esse resumo?

E se tivéssemos acesso aos dados brutos para um *Double Check*?

Exemplo 2 - Resumo

O erro:

Assumir a unidade da base utilizada sem perguntar para o analista gerador da análise.

Como evitá-lo?

Deixar claro qual unidade da base deve ser trabalhada (tanto se você for o cliente do trabalho quanto você for o criador da análise).

Pergunte também:

- Filtro de tempo usado (Diário, Semanal, Mensal ?)
- Se existem outros tipos de filtros ocultos (ex: produto, segmentos, regiões etc)

Exemplo 3

Qual linha tem a maior média?

Idade dos alunos em um escola

Preditiva.ai

Exemplo 4 - O que esses quatro conjuntos têm em comum?

Propriedade	Valor
Média em <i>x</i>	9
Variância em x	11
Média em <i>y</i>	7.50
Variância em <i>y</i>	4.125
Correlação entre x e y	0.816
Regressão linear	y = 3.00 + 0.500x
R^2	0.67

Quarteto de Ascombe

Exemplo 3 e 4 - Resumo

O erro:

As vezes nem muitas medidas resumo são suficientes para entender seus dados.

Como evitá-lo?

Sempre que possível plotar os dados em um gráfico analítico e comparar com as medidas resumo.

Gráficos mais indicados:

- Histogramas
- Boxplots
- Gráficos de Dispersão (Scatter Plots)

Medidas e Gráficos Exemplo 5

Paradoxo de Simpson

Exemplo 5 - Resumo

O erro:

A correlação entre seus dados pode mudar ao agrupá-los de formas diferentes.

Como evitá-lo?

Sempre plote o gráfico para cada grupo mais importante de sua base de dados.

Agrupamentos possíveis:

- Por tempo
- Por produto
- Por região
- Por dados demográficos

Medidas e Gráficos Exemplo 6

Você pede para um analista um relatório de vendas de um determinado produto. A ideia é saber se o gênero explica a compra desse produto. O analista te entrega isso:

Gênero	Unidades Vendidas	Frequência de Compra (%)
Masculino	400	20%
Feminino	1600	80%

2000

Conclusões mais comuns:

Produto claramente voltado para o público feminino.

Medidas e Gráficos Exemplo 6

Essa análise simples não considera o fator contrafactual, ou seja, não considera as compras **não** realizadas por cada um dos gêneros. Teria a mesma proporção? Vejamos:

Gênero	Unidades enviadas para o carrinho de compras	Frequência de Compra (%)	Frequência de Não Compra (%)	Diferença
Masculino	3600	20%	19%	1%
Feminino	7200	80%	81%	-1%

6000

E agora? A conclusão muda?

Demonstração desse erro

Exemplo 7 – Correlação de Pearson não é a única forma de medir

Demonstração desse erro

Exemplo 8 - Causalidade

É fundamental dominarmos a **diferença entre esses 2 conceitos** para não cairmos em algumas **armadilhas** de Analytics.

Vejamos a definição destes 2 termos:

- Correlação: relação de dependência ou associação entre duas variáveis.
- Causalidade: relação entre um evento A e um evento B, sendo que o evento B é consequência do evento A.

Ou seja, Correlação está relacionada com a dependência ou associação e a Causalidade relacionada a consequência.

Exemplo 8 - Causalidade

Vamos avaliar a Correlação entre Venda de Sorvetes e Incêndio nas Florestas:

Fonte: https://www.decisionskills.com/blog/how-ice-cream-kills-understanding-cause-and-effect

Você acha que a **venda de sorvetes** pode **causar incêndios nas florestas**?

Neste caso há uma 3º variável não avaliada e que faz mais sentido ser a causadora do aumento no consumo de sorvete e dos incêndios nas florestas: o clima quente!

Exemplo 8 - Causalidade

Vamos avaliar a Correlação entre Venda de Sorvetes e Incêndio nas Florestas:

Fonte: https://www.decisionskills.com/blog/how-ice-cream-kills-understanding-cause-and-effect

A Correlação entre Venda de Sorvetes e Incêndio nas Florestas é conhecida como Correlação Espúria.

As **Correlações Espúrias** podem ser uma armadilha para **falsas conclusões**.

Vejamos alguns outros exemplos.

Exemplo 8 - Causalidade

Exemplo 1: Gasto em Pesquisa no EUA vs. Suicídios

US spending on science, space, and technology

correlates with

Suicides by hanging, strangulation and suffocation

Fonte: https://www.tylervigen.com/spurious-correlations

Exemplo 8 - Causalidade

Exemplo 2: Divórcios em Maine vs. Consumo de margarina

Divorce rate in Maine

correlates with

Per capita consumption of margarine

Fonte: https://www.tylervigen.com/spurious-correlations

Exemplo 8 - Causalidade

Exemplo 8 - Causalidade

Número de reclamações na Amazon para uma vela aromática (sem cheiro)

Exemplo 8 - Causalidade

Fonte: https://twitter.com/zornsllama/status/1473575508784955394

Estatística Descritiva

Análise Bidimensional: Correlação vs. Causalidade

Medidas e Gráficos Exemplo 8 - Causalidade

Conclusões:

- Se 2 variáveis estão correlacionadas, pode ou não haver causalidade
- Se houver correlação e não houver causalidade entre essas 2 variáveis, possivelmente há uma 3º
 variável que não foi observada
- Mantenha-se cético: busque fortes evidências para assumir a causalidade
- Antes de assumir a causalidade responda as seguintes perguntas:
 - Por que a variável A causa a variável B?
 - Como a variável A causa a variável B?

O mapa da CAGADA em Dados!

Parte 1

Medidas e Gráficos

Medidas estatísticas

Unidades da base

Medidas vs Gráficos

Correlações

Causalidade

Projeções

Frequências imprecisas

Probabilidade e Possibilidade Amostragem

Viés de seleção

Erros de Coleta

Tamanho de Amostra

Essas cagadas ficam para a parte 2 ... rs

Resumindo os erros da live (Parte 1)

Guarda esse check-list

	Cagada 💩	Como evitar?
1	Usar apenas uma medida para resumir os dados.	Quanto mais medidas resumo usar, melhor conseguirá entender os dados analisados.
2	Assumir a unidade da base utilizada sem perguntar para o analista gerador da análise.	Deixar claro qual unidade da base deve ser trabalhada (tanto se você for o cliente do trabalho quanto você for o criador da análise).
3	As vezes nem muitas medidas resumo são suficientes para entender seus dados.	Sempre que possível plotar os dados em um gráfico analítico e comparar com as medidas resumo.
4	A correlação entre seus dados pode mudar ao agrupá-los de formas diferentes. (Paradoxo de Simpson)	Sempre plote o gráfico para cada grupo mais importante de sua base de dados.
5	Assumir que uma variável causa a outra só porque as variáveis estão correlacionadas. Correlação não significa causalidade.	Mantenha-se cético: busque fortes evidências para assumir a causalidade. Se não estiver confiante da causalidade, evite usar essa correlação.

Você quer acelerar seu desenvolvimento e se sentir ainda mais confiante para resolver problemas como mostrei aqui?

Como **complemento** à nossa formação principal "**Gerando Valor com Dados**", criamos o programa:

Evolua 6 meses de experiência em Dados em apenas 1 mês

Como funciona?

ACELERA

Evolua 6 meses de experiência em dados em apenas 1 mês

O Acelera é um **programa ao vivo** onde você vai:

- Resolver problemas reais utilizando as técnicas, ferramentas e metodologias aprendidas na Plataforma Preditiva com o apoio de mentores experientes.
- Treinar seu **Data Storytelling apresentando suas análises** para os
 gestores de diversas áreas e
 obtendo feedback em tempo real.

- Ter a experiência de trabalhar em um projeto de dados colaborativo, com colegas que têm o mesmo objetivo que você e o apoio de mentores experientes.
- Aprender em apenas 1 mês, de forma 100% prática a extrair insights dos dados, e estar pronto para buscar sua transição de carreira.

ACELERA

Evolua 6 meses de experiência em dados em apenas 1 mês

Carga Horária: 15h
Serão 5 encontros ao vivo das 19h30
às 22h30 (3h cada encontro)

Certificado

Participando de **pelo menos 4 encontros**, você conquistará **seu certificado em Projetos de Dados**

Calendário

- **Dia 1**: 03-Abr-23: Onboarding, Team Building e Início do projeto
- Dia 2: 10-Abr-23: Desenvolvimento das Análises Parte 1
- **Dia 3**: 17-Abr-23: Desenvolvimento das Análises Parte 2
- **Dia 4**: 24-Abr-23: Avaliação dos Resultados e Preparação da Apresentação
- **Dia 5**: 08-Mai-23: Apresentação Final

Inscreva-se agora

Inscrições até 28/02

