Recall

(G, *) - group iff

1) Associative & on G

2) Unique identity e in G

3) \(\forall \) \(\text{G} \) have unique inverse

\(\text{Pefinition} \)

Definition

let (6, *) be a group let $S \leq G$

Then 5 is a subgreap of G 5 ≤ G iff

5 has group structure under 7
induced from G

If SCG, then S is a proper subgroup of G

S<G

 $(Z_1+) < (Q_1+) < (R_1+) < (C_1+)$

Fact nontrivial

Every group has at least 2 relogioups

1) toinial / identity subgroup (2e3)

2) improper subgroups are called the

nontrivial subgroups of G

46, 2e3 ≤ G, G ≤ G

trivial improper

15 161=n nEZt, then
6 is a finite group

If G is denomerable (that is, IGI = No) or uncountable, then G is an infinite group

Recall

Up to order 3, there is only

one group structure $|G| = | \Rightarrow G = {\text{Ze}}{3}$ $|G| = 2 \Rightarrow G = {\text{Z}}{2}$

161=3 => 6 \(\mathbb{Z}_3\)

consider set 5= {e,a,b,c} with X

*	<u>ر</u>	abc	_				6 c
<u> </u>	و	a b c		e	و	a	bc
	1	e c 5		a	4	Ь	ر ڪ
6	5	cea		b	5	C	C 0
C	C	b a C		C	C	<u>e</u>	a b

There are 2 group structures (abelian) of order 4, namely Subgroup diagram illustrater sub struct. for simite groups \mathbb{Z}_{4} $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ $\{0\}$ $\{0\}$ $\{(0,0),(1,1)\}$ $\{(0,0),(0,1)\}$ $\{(0,0)\}$ 20,23 => Z4 \$ Z2 × Z2 Note: for finite group order n, any possible subgroup har to have an order that is a divisor on n

let (Gt) be a group

let 5 = 6

Then 5 = 6 under * iff

1) < is closed under * induced from 6

Vs, 52 ES => associativity

2) Identity of G wit * is in S

3) All clems of S have inverses in S

Vs ES = 5'* = 5

2)
$$I_n = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \in S$$
 bes det $I_n = 1$

3)
$$\forall A \in S$$
, $A^{-1} \in S$ by $1 = \lambda + T_n = \lambda + A \cdot \lambda + A^{-1} = \lambda + A^{-1} = \lambda + A^{-1} = \lambda + A^{-1}$

$$(T = \{f: A \ni R \mid A \subseteq R\}, +)$$
 -group (abelian)

2) The zero f-n
$$(\forall x \in A, f(x) = 0)$$
 is in (bcs it is constant

consider
$$D = \{f \in F \mid f - differentiable\} \subset C$$

Then $D < C < F$

+	O	1	Z	3
\bigcirc	0)	2	3
1	\\\	2	3	6
2	١		6)
	3 \ 3	Q	l	2

$$\frac{+2}{(0,0)} \frac{(0,0)}{(0,0)} \frac{(0,0)}{(0,1)} \frac{(1,0)}{(1,0)} \frac{(1,1)}{(1,0)} \frac{(1,1)}{(1,0)} \frac{(1,1)}{(1,0)} \frac{(1,1)}{(1,0)} \frac{(1,1)}{(1,1)} \frac{(1,0)}{(1,1)} \frac{(1,0)}{(1,1)} \frac{(1,0)}{(1,1)} \frac{(1,0)}{(1,1)} \frac{(1,0)}{(1,1)} \frac{(1,0)}{(1,1)} \frac{(0,0)}{(1,1)} \frac{(0,0)}{(1,1)}$$