编译原理实验报告-Lab4-附表

IR Type	IR Code	MIP32 Code	Comment
ASSIGN	x := y	lw \$t1, -offset_1(\$fp) move \$t0, \$t1 sw \$t0, -offset_2(\$fp)	$offset_1 = findOffset(y)$ $offset_2 = findOffset(x)$
	x := #k	li \$t0, k sw \$t0, -offset_1(\$fp)	$offset_1 = findOffset(x)$
	x := *y	addi \$t0, \$fp, -offset_1 sw \$t0, -offset_2(\$fp)	$offset_1 = findOffset(y)$ $offset_2 = findOffset(x)$
	*x := y	lw \$t1, -offset_1(\$fp) lw \$t0, -offset_2(\$fp) sw \$t1, 0(\$t0)	$offset_1 = findOffset(y)$ $offset_2 = findOffset(x)$
	*x := #k	li \$t1, k lw \$t0, -offset_1(\$fp) sw \$t1, 0(\$t0)	$offset_1 = findOffset(x)$
	*x = *y	lw \$t0, -offset_1(\$fp) lw \$t1, -offset_2(\$fp) lw \$t1, 0(\$t1) sw \$t1, 0(\$t0)	$offset_1 = findOffset(x)$ $offset_2 = findOffset(y)$
	x = y + z	lw \$t1, -offset_1(\$fp) lw \$t2, -offset_2(\$fp) add \$t0, \$t1, \$t2 sw \$t0, -offset_3(\$fp)	offset_1 = findOffset(y) offset_2 = findOffset(z) offset_3 = findOffset(x)
	x = &y + z	addi \$t1, \$fp, -offset_1 lw \$t2, -offset_2(\$fp) add \$t0, \$t0, \$t2 sw \$t0, -offset_3(\$fp)	offset_1 = findOffset(y) offset_2 = findOffset(z) offset_3 = findOffset(x)
	x = &y + #k	addi \$t0, \$fp, k sw \$t0, -offset_1(\$fp)	$offset_{-1} = findOffset(x)$
ADD	x = y + #k	lw \$t1, -offset_1(\$fp) addi \$t0, \$t1, k sw \$t0, -offset_2(\$fp)	$offset_1 = findOffset(y)$ $offset_2 = findOffset(x)$
	x = #k + z	li \$t1, k lw \$t2, -offset_1(\$fp) add \$t0, \$t1, \$t2 sw \$t0, -offset_2(\$fp)	$offset_1 = findOffset(z)$ $offset_2 = findOffset(x)$
	$x = \#k_1 + \#k_2$	li \$t1, k_1 addi \$t0, \$t1, k_2 sw \$t0, -offset_1(\$fp)	$offset_{-1} = findOffset(x)$
	x = y - z	lw \$t1, -offset_1(\$fp) lw \$t2, -offset_2(\$fp) sub \$t0, \$t1, \$t2 sw \$t0, -offset_3(\$fp)	offset_1 = findOffset(y) offset_2 = findOffset(z) offset_3 = findOffset(x)
SUB	x = y - #k	lw \$t1, -offset_1(\$fp) addi \$t0, \$t1, -k sw \$t0, -offset_2(\$fp)	$offset_1 = findOffset(y)$ $offset_2 = findOffset(x)$

Table 1 continued from previous page

IR Type	IR Code	MIP32 Code	Comment
V 1		li \$t1, k	
		lw \$t2, -offset_1(\$fp)	$offset_1 = findOffset(z)$
	x = #k - z	sub \$t0, \$t1, \$t2	$offset_2 = findOffset(x)$
		sw \$t0, -offset_2(\$fp)	
		li \$t1, k_1	
	$x = \#k_1 - \#k_2$	addi \$t0, \$t1, -k_2	$offset_1 = findOffset(x)$
	X — #K_1 - #K_2		$0 Set_1 - IndOlset(x)$
		sw \$t0, -offset_1(\$fp)	
		lw \$t1, -offset_1(\$fp)	$offset_1 = findOffset(y)$
	x = y * z	lw \$t2, -offset_2(\$fp)	$offset_2 = findOffset(z)$
		mul \$t0, \$t1, \$t2	offset_3 = findOffset(x)
		sw \$t0, -offset_3(\$fp)	
		lw \$t1, -offset_1(\$fp)	
MUL	* //1-	li \$t2, k	$offset_1 = findOffset(y)$
MICL	x = y * #k	mul \$t0, \$t1, \$t2	$offset_2 = findOffset(x)$
		sw $$t0$, -offset_2($$fp$)	
		li \$t1, k	
	//3 *	$lw $t2, -offset_1($fp)$	$offset_1 = findOffset(z)$
	x = #k * z	mul \$t0, \$t1, \$t2	$offset_2 = findOffset(x)$
		sw $$t0$, -offset_2($$fp$)	
		li \$t1, k_1	
		li \$t2, k_2	
	$x = \#k_{-1} * \#k_{-2}$	mul \$t0, \$t1, \$t2	$offset_1 = findOffset(x)$
		sw \$t0, -offset_1(\$fp)	
		lw \$t1, -offset_1(\$fp)	(f + 1
		lw \$t2, -offset_2(\$fp)	offset_1 = findOffset(y)
	x = y / z	div \$t1, \$t2	offset_2 = $findOffset(z)$
		mflo \$t0	$offset_3 = findOffset(x)$
		sw $$t0$, -offset_3($$fp$)	
	x = y / #k	$lw $t1, -offset_1($fp)$	
		li \$t2, k	$offset_1 = findOffset(y)$
DIV		div \$t1, \$t2	offset_2 = $findOffset(x)$
		mflo \$t0	onset_2 = inidonset(x)
		sw $t0$, -offset_3(p)	
		$lw $t1, -offset_1($fp)$	
	x = #k / z	$lw $t2, -offset_2($fp)$	
		div \$t1, \$t2	$offset_1 = findOffset(x)$
		mflo \$t0	
		sw $$t0$, -offset_3($$fp$)	
		lw \$t1, k_1	
		lw \$t2, k_2	$offset_1 = findOffset(y)$
	$x = \#k_1 / \#k_2$	div \$t1, \$t2	offset $2 = \text{findOffset}(z)$
	π π π τ / π κ - 2	mflo \$t0	offset $3 = \text{findOffset}(x)$
		$sw $t0, -offset_3($fp)$	
			stackSize = funcStackSpace
		func:	
FUNCTION	FUNCTION func	addi \$sp, \$sp, -4	(func->next)为避免函数名与MIP32
		sw \$fp, 0(\$sp)	指令名称冲突除main函数外所有函数
		move \$fp, \$sp	添加前
		addi \$sp, \$sp, stackSize	缀'func_'.

Table 1 continued from previous page

IR Type IR Code MIP32 Code Comment				
IR Type	In Code	MILE 97 Code		
	IF x == y GOTO z	lw \$t1, -offset_1(\$fp) lw \$t2, -offset_2(\$fp) beq \$t1, \$t2, z	offset_1 = findOffset(x) offset_2 = findOffset(y) 若 $x($ 或 $y)$ 为立即数 k ,那么对 $$t1$ (或 $$t2$)寄存器加载值的指令修改为 li $$t1$, k (li $$t2$, k)	
	IF x != y GOTO z	 bne \$t1, \$t2, z	省略部分同上	
IF	IF x >y GOTO z	 bgt \$t1, \$t2, z	省略部分同上	
	IF x <y goto="" td="" z<=""><td> blt \$t1, \$t2, z</td><td>省略部分同上</td></y>	 blt \$t1, \$t2, z	省略部分同上	
	IF $x \ge y$ GOTO z	 bne \$t1, \$t2, z	省略部分同上	
	IF x <= y GOTO z	 bne \$t1, \$t2, z	省略部分同上	
GOTO	GОТО x	jх		
PARAMETER	PARAM x	lw \$t0, offset_1(\$fp) sw \$t0, -offset_2(\$fp)	offset_1 = i * 4 offset_2 = findOffset(x) 其中, i为当前参数在该函数定义中 的序.这是因为在调用者方面参数是 按序压栈的.	
CALL	x := CALL func	addi \$sp, \$sp, -4 sw \$ra, 0(\$sp) jal func lw \$ra, 0(\$sp) addi \$sp, \$sp, 4 sw \$v0, -offset_1(\$fp) addi \$sp, \$sp, stackSize	保存\$ra旧值 跳转 恢复\$ra旧值 归还为保存\$ra申请的栈空间 取出返回值并赋值给x 归还为传参申请的栈空间。 offset_1 = findOffset(x) 根据假设6: stackSize = 4 * argc 其中, argc为函数func的参数个数.	
ARG	ARG x	addi \$sp, \$sp, -4 lw \$t0, -offset_1(\$fp) sw \$t0, 0(\$sp)	根据假设 6 ,每个参数在栈中分配 4 字节空间. offset_ 1 = findOffset(x) 如果 x 是常数 k , 那么 lw 指令修改为 li \$ $t0$, k	
READ	x := CALL READ	addi \$sp, \$sp, -4 sw \$ra, 0(\$sp) jal read lw \$ra, 0(\$sp) addi \$sp, \$sp, 4 sw \$v0, -offset_1(\$fp)	$offset_{-1} = findOffset(x)$	
WRITE	WRITE x	lw \$a0, -offset_1(\$fp) addi \$sp, \$sp, -4 sw \$ra, 0(\$sp) jal write lw \$ra, 0(\$sp) addi \$sp, \$sp, 4	offset_1 = findOffset(x) 如果x是常数k,那么lw指令修改为 li \$t0, k	

Table 1 continued from previous page

IR Type	IR Code	MIP32 Code	Comment
RETURN	RETURN x	lw \$v0, -offset_1(\$fp) addi \$sp, \$fp, 4 lw \$fp, 0(\$fp) jr \$ra	offset_1 = findOffset(x) 如果x是常数k, 那么lw指令修改为 li \$t0, k