1.7 Deviance

Deviance

One way of assessing the adequacy of a model is to compare it with a more general model with the maximum number of parameters that can be estimated. This is called the **saturated** model.

If there are N observations $Y_i, i = 1, ..., N$, then a saturated model can be specified with N parameters. Also called the **maximal** or **full model**. (In general, however, the maximum number m of parameters that can be estimated can be smaller than N, e.g., if observations are repeated.)

We write $m{ heta}_{\max}$ for the parameter vector of the saturated model and $\hat{m{ heta}}_{\max}$ for the maximum likelihood estimator of $m{ heta}_{\max}$.

The likelihood for the saturated model $L(\hat{\boldsymbol{\theta}}_{max}; \mathbf{y})$ will be *larger* than any other likelihood function for these observations, with the same assumed distribution and link function, because it provides the most complete description of the data.

Let $L(\hat{m{ heta}}; \mathbf{y})$ denote the maximum value of the likelihood function for the model of interest. Then the **likelihood ratio**

$$\lambda = rac{L(\hat{oldsymbol{ heta}}_{max}; \mathbf{y})}{L(\hat{oldsymbol{ heta}}; \mathbf{y})}$$

is a way of assessing the goodness of fit for the model. In practice

$$\log \lambda = \ell(\hat{oldsymbol{ heta}}_{max}; \mathbf{y}) - \ell(\hat{oldsymbol{ heta}}; \mathbf{y})$$

is used. Large values of $\log \lambda$ suggest that the model of interest is a poor description of the data relative to the saturated model.

The **Deviance** or **log likelihood ratio statistic** is defined as

$$D = 2[\ell(\hat{\boldsymbol{\theta}}_{max}; \mathbf{y}) - \ell(\hat{\boldsymbol{\theta}}; \mathbf{y})].$$

We know that

$$\ell(oldsymbol{ heta}; \mathbf{y}) - \ell(\hat{oldsymbol{ heta}}; \mathbf{y}) = -rac{1}{2} (oldsymbol{ heta} - \hat{oldsymbol{ heta}})^ op \mathcal{I}(\hat{oldsymbol{ heta}}) (oldsymbol{ heta} - \hat{oldsymbol{ heta}})$$

or, equivalently,

$$2[\ell(\hat{\boldsymbol{\theta}};\mathbf{y}) - \ell(\boldsymbol{\theta};\mathbf{y})] = (\boldsymbol{\theta} - \hat{\boldsymbol{\theta}})^{\top} \mathcal{I}(\hat{\boldsymbol{\theta}})(\boldsymbol{\theta} - \hat{\boldsymbol{\theta}})$$

and consequently the asymptotic distribution of this statistic is

$$2[\ell(\hat{oldsymbol{ heta}};\mathbf{y})-\ell(oldsymbol{ heta};\mathbf{y})] \stackrel{.}{\sim} \chi_p^2$$

We now have:

$$egin{aligned} D &= 2[\ell(\hat{oldsymbol{ heta}}_{max}; \mathbf{y}) - \ell(\hat{oldsymbol{ heta}}; \mathbf{y})] \ &= 2[\ell(\hat{oldsymbol{ heta}}_{max}; \mathbf{y}) \pm \ell(oldsymbol{ heta}_{max}; \mathbf{y}) \pm \ell(oldsymbol{ heta}; \mathbf{y}) - \ell(\hat{oldsymbol{ heta}}; \mathbf{y})] \ &= 2[\ell(\hat{oldsymbol{ heta}}_{max}; \mathbf{y}) - \ell(oldsymbol{ heta}_{max}; \mathbf{y})] - 2[\ell(\hat{oldsymbol{ heta}}; \mathbf{y}) - \ell(oldsymbol{ heta}; \mathbf{y})] \ &+ 2[\ell(oldsymbol{ heta}_{max}; \mathbf{y}) - \ell(oldsymbol{ heta}; \mathbf{y})] \end{aligned}$$

- The **first term** $2[\ell(\hat{\boldsymbol{\theta}}_{max};\mathbf{y}) \ell(\boldsymbol{\theta}_{max};\mathbf{y})]$ has distribution χ^2_{m} , where m is the number of parameters in the saturated model
- The **second term** $2[\ell(\hat{\theta}; \mathbf{y}) \ell(\theta; \mathbf{y})]$ has distribution χ_p^2 , where p is the number of parameters in the model of interest
- The **third term** $2[\ell(\boldsymbol{\theta}_{max}; \mathbf{y}) \ell(\boldsymbol{\theta}; \mathbf{y})]$ is a positive constant, which is zero if the model of interest has a fit which is as good as the saturated model; it can be considered a (usually negligible) non-centrality parameter

Therefore, the sampling distribution of the deviance is

$$D \sim \chi_{m-p}^2(\nu) \tag{1.7.1}$$

where $u = 2[\ell(m{ heta}_{\max}; \mathbf{y}) - \ell(m{ heta}; \mathbf{y})]$ is a non-centrality parameter.

Remarks:

- The distribution is exact if the response variable is normally distributed
- ullet For some other distributions, D can be calculated and used directly as a goodness of fit statistic

Example: Binomial distribution

If the response variables Y_1,\dots,Y_N are independent and $Y_i\sim \text{Bin}(n_i,p_i)$, then the log-likelihood is

$$\ell(\mathbf{p}; \mathbf{y}) = \sum_{i=1}^N \left[Y_i \log p_i - Y_i \log (1-p_i) + n_i \log (1-p_i) + \log inom{n_i}{Y_i}
ight]$$

For a **saturated** model, the p_i 's are all different.

The MLE are $\hat{p}_i = rac{\mathrm{Y}_i}{n_i}$ and

$$\ell(\hat{\boldsymbol{p}}_{max};\mathbf{y}) = \sum_{i=1}^{N} \left[Y_i \log \left(\frac{Y_i}{n_i} \right) - Y_i \log \left(\frac{n_i - Y_i}{n_i} \right) + n_i \log \left(\frac{n_i - Y_i}{n_i} \right) + \log \left(\frac{n_i}{Y_i} \right) \right]$$

For any other model, the dimension of the parameter is p < N; let's call \hat{p}_i^* the MLE for a non-saturated model and $\hat{Y}_i = n_i \hat{p}_i^*$ the fitted values; then

$$\ell(\hat{oldsymbol{p}}^*; \mathbf{y}) = \sum \left[\mathrm{Y}_i \log \left(rac{\mathrm{\hat{Y}}_i}{n_i}
ight) - \mathrm{Y}_i \log \left(rac{n_i - \mathrm{\hat{Y}}_i}{n_i}
ight) + n_i \log \left(rac{n_i - \mathrm{\hat{Y}}_i}{n_i}
ight) + \log \left(rac{n_i}{\mathrm{Y}_i}
ight)
ight]$$

And the deviance is

$$D = 2\sum_{i=1}^{N} \left[\mathrm{Y}_i \log \left(rac{\mathrm{Y}_i}{\hat{\mathrm{Y}}_i}
ight) + (n_i - \mathrm{Y}_i) \log \left(rac{n_i - \mathrm{Y}_i}{n_i - \hat{\mathrm{Y}}_i}
ight)
ight].$$

Nested model

We say that model M_0 is nested in model M_1 if M_0 results as a special case of M_1 .

For instance, if we partition $oldsymbol{ heta}$ as

$$oldsymbol{ heta}^ op = \left(oldsymbol{ heta}^{(1)^ op}, oldsymbol{ heta}^{(2)^ op}
ight)$$

where $oldsymbol{ heta}$ has length p and $oldsymbol{ heta}^{(1)}$ has length q,

Then model M_1 could assume unrestricted $m{ heta}$, whereas M_0 restricts, e.g, $m{ heta}^{(2)}=m{0}$.

The **scaled deviance** can be used for model comparison.

For two nested linear models, the difference ΔD between the two deviance statistics generally follows a χ^2 distribution.

The degrees of freedom equal the difference in the dimensions of the two models, that is:

$$\Delta D = D_0 - D_1 = 2[\ell(\hat{oldsymbol{ heta}}_{ ext{max}}; \mathbf{y}) - \ell(\hat{oldsymbol{ heta}}_0; \mathbf{y})] - 2[\ell(\hat{oldsymbol{ heta}}_{ ext{max}}; \mathbf{y}) - \ell(\hat{oldsymbol{ heta}}_1; \mathbf{y})] = 2[\ell(\hat{oldsymbol{ heta}}_1; \mathbf{y}) - \ell(\hat{oldsymbol{ heta}}_0; \mathbf{y})]$$

Then $D_0 \sim \chi^2(N-q)$ and $D_1 \sim \chi^2(N-p)$, then

$$\Delta D \sim \chi^2(p-q)$$

when N is large.

If the values of ΔD is in the critical region, then we would reject H_0 in favour of H_1 on the grounds that model M_1 provides a significantly better description of the data.

Check your understanding

This is a non-assessed self-practice. Attempt the question below and press submit to be able to see the solution.

Question

[Dobson and Barnett (2018, Exercise 5.1)]

Consider the single response variable Y with $Y \sim Bin(n,\pi)$.

- 1. Find the Wald statistic $(\hat{\pi} \pi)^{\top} \mathcal{I}(\hat{\pi} \pi)$, where $\hat{\pi}$ is the maximum likelihood estimator of π and \mathcal{I} the information.
- 2. Verify that the Wald statistic is the same as the score statistics $U^\top \mathcal{I}^{-1} U.$
- 3. Find the deviance $2(\ell(\hat{\pi};y)-\ell(\pi;y))$. Note that this is an adaptation of the deviance for the case where there is only one predictor and therefore no saturated/non-saturated models.
- 4. For large sample. both the Wald/score statistic and the deviance approximately have the χ_1^2 distribution. For n=10 and y=3, use both statistics to assess the adequacy of the models:
 - $\circ \ \pi = 0.1;$
 - \circ $\pi=0.3$;
 - \circ $\pi=0.5$.

Do the two statistics lead to the same conclusions?

No response