Exploratory Data Analysis (EDA) Report Summary

Title: Body Composition and Workout Routines Analysis for Gym Members to Optimize Physical Fitness

1. Introduction

- Objective:
 - o Assess the gym members' body composition and workout routines.
 - Explore the relationships between key factors such as workout frequency, session duration, calories burned, and body fat percentage.
 - Provide actionable insights to develop personalized workout routines for optimizing members' fitness levels.

2. Data Overview

- Dataset 1: gym_members_exercise_tracking
 - o Records: 973
 - Features: 15 (e.g., Age, Gender, BMI, Fat Percentage, Workout Frequency, Calories Burned)
 - Source: [Gym Members Exercise Dataset on Kaggle](https://www.kaggle.com/datasets/valakhorasani/gymmembers-exercise-dataset)
- Dataset 2: com_corp_mta
 - o Records: 278
 - Features: 8 (e.g., Time, BMI, Fat Percentage, Weight, Muscle Mass, Bone Mass)
 - Source: [Own registers via Garmin Index S2 scale](https://connect.garmin.com/modern/weight)

3. Data Cleaning and Feature Engineering

- Missing Values: No missing values detected.
- Outlier Detection:
 - o Removed records based on specific criteria:
 - Unusual Fat Percentage: <3% or >50%
 - Extreme Weights: <30 kg or >200 kg
 - Unusual Heights: <1.2 m or >2.5 m

- Feature Engineering:
 - Created new columns for BMI Status and Fat Status based on standard health guidelines.
 - Estimated Muscle Mass Percentage and Basal Metabolic Rate (BMR) using calculated values.

Sources:

- National Health and Nutrition Examination Survey (NHANES)
 - **Website**: [NHANES
 Data](https://www.cdc.gov/nchs/nhanes/index.htm)
 - **Description**: NHANES provides detailed health and nutritional data, including body composition metrics for a diverse sample of the U.S. population. This dataset includes body fat percentage, lean body mass, and other anthropometric measurements.
- Revised Harris-Benedict Equations (1990)
 - **Reference**: Mifflin, M. D., St Jeor, S. T., Hill, L. A., Scott, B. J., Daugherty, S. A., & Koh, Y. O. (1990). *A new predictive equation for resting energy expenditure in healthy individuals*. The American Journal of Clinical Nutrition.
 - **Description**: This study provides updated coefficients for the Harris-Benedict equation, improving its accuracy. It is often referenced as the revised Harris-Benedict equation and is commonly used in modern BMR calculations.

4. Analysis and Key Metrics

Body Mass Index (BMI)

• Categories:

Underweight: BMI < 18.5

Normal Weight: 18.5–24.9

Overweight: 25–29.9

o Obesity: BMI ≥ 30

Source: **World Health Organization (WHO)**: WHO offers standardized guidelines for BMI categories, which are used globally for assessing underweight, normal weight, overweight, and obesity in both men and women.

Body Fat Percentage:

- Healthy ranges differ by gender and age:
 - Typical Muscle Mass Percentage for Men by Age:

Ages 20-39**: 33-39%

Ages 40-59**: 30-36%

Ages 60-79**: 27-34%

- o Typical Muscle Mass Percentage for Women by Age:
 - Ages 20-39**: 24-30%
 - Ages 40-59**: 22-28%
 - Ages 60-79**: 19-25%

Source:**American Council on Exercise (ACE)**: ACE provides ranges for body fat percentage according to age and fitness levels for both men and women, widely referenced in health and fitness.

- Calculated using a formula based on gender, age, and experience level.
- Factors in lean body mass and adjusts for age.

5. Exploratory Analysis Results

- Descriptive Statistics:
 - o Summarized key features (e.g., mean, median BMI and Fat Percentage).
- Correlation Analysis:
 - Examined relationships using a heatmap for a comprehensive overview.
 - Key insights:
 - Positive correlations:
 - BMI Weight
 - Experience_Level
 - Workout_Frequency
 - Session Duration
 - Calories Burned
 - Negative correlations:
 - Fat_Percentage
 - Workout_Frequency
 - Session_Duration
 - Calories_Burned
 - Experience_Level

Visualizations:

- Histograms for Age, BMI, and Fat Percentage distributions.
- Scatter plots for relationships like session duration vs. calories burned.
- Bar charts showing the frequency of different workout types.

6. Key Findings

- BMI Analysis: Higher BMI often linked to lower workout frequency.
- Fat Percentage: High fat percentage associated with lower workout frequency and intensity.
- Session Duration: Longer sessions generally resulted in higher calories burned.

7. Limitations

- Sample Size: The relatively small sample may limit generalizability.
- Missing Health Metrics: Important data like blood pressure and muscle mass are absent.
- Potential Bias: Data may be skewed towards experienced gym members who track their workouts diligently.

8. Recommendations

- For High Fat Percentage Members:
 - Increase workout frequency to 4-5 days/week.
 - Consider higher intensity sessions if calories burned are consistently low.
- Data Collection: Include additional health metrics (e.g., waist measurements, muscle mass) for a more holistic analysis.
- Personalized Plans: Use insights to tailor workout plans based on body composition analysis.

9. Conclusion

- Summary: The EDA provided valuable insights into the relationship between workout routines and body composition, highlighting areas for potential improvement.
- Here we have a graph categorizing the body composition and recommendation on the training routine of all the members of the gym as a summary of the entire study.

Next Steps:

- o Collect more comprehensive health data for better analysis.
- Tailor workout recommendations to optimize fitness outcomes for gym members.

Appendix

- Code Snippets: Python code used for data cleaning, feature engineering, and visualizations.
- Additional Visualizations: Supplementary charts supporting the analysis.

All inside the eda_mta.jpynb

Tools Used

Data Analysis: Pandas, NumPy

Visualizations: Matplotlib, Seaborn

Documentation: Jupyter Notebook

Note: This summarized report aims to provide a clear and actionable overview of the EDA findings, focusing on optimizing body composition and workout routines based on the data available.