Содержание

1	Введение	2
2	Аменабельность	2
3	Lamplighter group L_2	3
4	Спектральный анализ операторов и динамических систем на графах	4

Литература:

• Гринлиф, «инвариантные средние в топологических группах»

1 Введение

Одни из объектов изучения: групповые графы.

Определение 1. Граф Кэли $Cayley(G,S)=(G,\{x\mapsto sx\}),$ где $S\subset G$ (ориентированный граф).

Определение 2. Граф Шрейра $(G/H, \{xH \mapsto sxH\})$, где $S \subset G$ (ориентированный мультиграф).

В качестве простой конструкции нетривиальной группы рассмотрим так называемые автоматные группы. Пусть \mathbb{A} — алфавит ($\{0,1\}$). Рассматриваются конечные преобразователи на двух состояниях a,b. На каждый входной символ выдается один выходной. Мы хотим рассматривать только обратимые преобразования, поэтому можно показать, что вершины можно разметить на два класса: 1 — в вершине выдается тот же символ, что и на входе, ε — выдается противоположный. Естественным образом у такого автомата есть два преобразования: преобразовать слово, начав в вершине a или b. Автоматная группа образована этими самыми преобразованиями $G = \langle A_a, A_b \rangle$.

Можно рассматривать эти преобразования как автоморфизмы двоичного дерева. Тут удобен формализм преобразования вершины вида $\varepsilon^k(\xi,\eta)$, где $k\in\{0,1\}$, а (ξ,η) — это преобразования двух дочерних поддеревьев. Заметим также, что $\varepsilon(\xi,\eta)=(\eta,\xi)\varepsilon$. Тогда в примере автомата, прибавляющего единицу (adding machine): $a=\varepsilon(a,b),b=(b,b)$, откуда b=Id, а $\langle a\rangle=\mathbb{Z}$.

Возможные автоматные группы: $\mathbb{Z}, \mathbb{Z}_2, \mathbb{Z}_2 \times \mathbb{Z}_2, D_{\infty}$ — простые примеры. Нетривиальный пример: lamplighter group.

2 Аменабельность

Пусть G — топологическая группа.

Определение 3. Левая мера Хаара — это такая мера μ , что $\forall B$ — борелевского $\forall g \in G\mu(gB) = \mu(B)$.

Аналогчино определим правую меру Хаара. Будем называть меру просто мерой Хаара, если она одновременно левая и правая.

Очевидно, что мера Хаара существует для некоторых видов групп:

- Абелевы
- Конечные

• Счётные дискретные группы

Мы хотим дать определение аменабельной группе. Неформально можно сказать, что аменабельность — это про существование эффективного усреднения по группе. Рассмотрим несколько подходов к этому определению:

Определение 4. Пусть $\xi: B(G) \to \mathbb{C}$ — усредняющий функционал, линейный (конечноаддитивный), притом $\xi(1) = 1$. Если он существует, то группа называется аменабельной.

Определение 5. Пусть $m: 2^X \to \mathbb{R}_+$ — конечно-аддитивная мера. Если она существует, то группа называется аменабельной.

Определение 6. Пусть есть последовательность F_n компактных множеств, тогда если $\forall g \in G \max_{g \in G} \frac{\mu(gF_n \oplus F_n)}{\mu(F_n)} \to 0$ то эти множества называются Фёльнеровскими.

Аменабельная группа G — такая группа, в которой есть последовательность Фёльнеровских множеств.

Определение 7. Пусть $T: G \to G$, тогда оператор Купмана $\hat{T}: f(x) \mapsto f(T(x))$, где f работает на гильбертовом пространстве $\mathcal{H} = L^2(G, \mu)$.

Лемма 1. \hat{T} — унитарный, если T(x) = ax

Доказательство.
$$\left\langle \hat{T}f,\hat{T}g\right\rangle =\int\limits_{G}f(ax)\overline{g(ax)}d\mu =\int\limits_{G}f(y)\overline{g(y)}d\mu =\left\langle f,g\right\rangle$$
. Также $\exists\hat{T}^{-1}$.

3 Lamplighter group L_2

В классическом варианте преобразования $A_a: x_0x_1x_2... \mapsto (x_0+1)(x_1+x_0)...$ и $A_b: x_0x_1x_2... \mapsto (x_0+0)(x_1+x_0)...$

Рассмотрим действие на производящих функциях на \mathbb{Z}_2 . $\hat{a}:f(t)\mapsto (t+1)f(t),\,\hat{b}:f(t)\mapsto (t+1)f(t)+1.$ Хотим сделать такую замену t+1=z, но в записи $x_0+x_1(z-1)+x_2(z-1)^2+\dots$ бесконечное количество слагаемых при 1. Поэтому будем рассматривать действие только на финитных последовательностях.

Получается другое представление нашей группы: рассматриваем \hat{a} и \hat{b} на кольце Лорановых многочленов (ограниченная положительная или отрицательная степень, притом коэффициенты, конечно, по модулю 2):

$$\hat{b}: f \mapsto zf, \hat{a}: f \mapsto zf + 1.$$

Классическая интерпретация такого действия: фонарщик на бесконечном ряду фонарей. Его два возможных действия: перейти вправо или перейти вправо и зажечь лампу. Можно записать с точки зрения этого фонарщика следующие преобразования:

$$\hat{b}:(c_i)\mapsto(c_{i+1}), \hat{a}:(c_i)\mapsto(c_{i+1})+\delta_0, \hat{c}:(c_i)=(c_i)+\delta_0.$$

В базисе, b и $c=b^{-1}a$ группа записывается проще всего, но в терминах исходных автоматов выходит нетривиально.

Группа довольно большая, у её графа Кэли рост экспоненциальный, но тем не менее, она явялется аменабельной.

4 Спектральный анализ операторов и динамических систем на графах

Пусть (X, \mathcal{A}, μ) — измеримое пространство с мерой μ . Пусть $T: X \to X, \mu(TA) = \mu(T^{-1}A) = \mu(A) \forall A \in \mathcal{A}.$ $U = \hat{T}: f(x) \mapsto f(Tx), \ \hat{T}$ — унитарный, $\hat{T}^{-1} = \hat{T}^*$.

Упражнение 1. Пусть $k_j \to +\infty$ — последовательность натуральных чисел. Найти все матрицы A, такие что $A^{k_j} \to \frac{A+E}{2}$.

Теорема 1 (Спектральная теорема). Пусть $U: H \to H -$ унитарный оператор, $U^* = U^{-1}$.

Пусть $\exists h_0: Z(h_0) = Span(U^k h_0: k \in \mathbb{Z}) = H.$

Тогда объекты, указанные на диаграмме существуют и она коммутирует:

$$\begin{array}{ccc} H & \xrightarrow{U} & H \\ \downarrow^{\psi} & & \downarrow^{\psi} \\ L^{2}(S_{1},\sigma) & \xrightarrow{M_{z}:\varphi(\lambda)\mapsto\lambda\varphi(\lambda)} & L^{2}(S^{1},\sigma) \end{array}$$

Притом $R_f(k) = \langle U^k h_0, h_0 \rangle = \int\limits_{S^1} z^k d\sigma$, то есть мера σ есть преоразование Фурье корреляционной последовательности $R_f(k)$.

Теорема 2. Пусть $L_2 = \langle t, s \mid s^2 = 1, [s^{t^i}, s^{t^j}] = 1 \rangle$. Тогда $Sp(\Delta) = \{ \pm \cos \pi \frac{p}{q} : \frac{p}{q} \in \mathbb{Q} \}$.

Рассматрим графы де Брёйна: $B_n = (\{x = x_{n-1} \dots x_0, x_i \in \{0, 1\}\}, x_{n-1} \dots x_0 \rightarrow \{x_{n-2} \dots x_0 0, x_{n-2} \dots x_0 1\})$. У них есть несколько естественных раскрасок (рёберных):

- $x = x_{n-1} \dots x_0 \mapsto f(t) = x_{n-1}t^{n-1} + \dots + tx_1 + x_0$. Тогда два действия (дописывания 0 или 1) выражаются как $\tilde{a}: f \mapsto tf$ и $\tilde{b}: f \mapsto tf + 1$ (действие в факторкольце $\mathbb{Z}_2[t]/\langle t^n \rangle$, необратимое)
- Рассмотрим отдельно первый бит и обозначим $a(0x) = x_{n-2} \dots x_0 0, a(1x) = x_{n-2} \dots x_0 1,$ а b все то же самое, но с флипом последнего бита. То есть действие такое же $(\tilde{a}: f \mapsto tf \text{ in } \tilde{b}: f \mapsto tf + 1)$, но $f \in \mathbb{Z}_2/\langle t^n 1 \rangle$.

Можно заметить, что это на самом деле граф Шрейра группы L_2 .