BITCOIN PRICE PREDICTION

```
In [1]:
```

```
#import library
from IPython.display import Image
#load image from local storage
Image(filename = r'F:\IBM_prjkt\bitcoin.jpg', width=1000, height=300)
```

Out[1]:

• IMPORTING LIBRARIES

In [2]:

```
import pandas as pd
import numpy as np
#for visualization
import matplotlib.pyplot as plt
import seaborn as sns
#for data preprocessing and processing
from sklearn.preprocessing import StandardScaler
from sklearn.model selection import train test split
from sklearn.model selection import cross val score
from sklearn.metrics import mean squared error
#for modelling of data
from sklearn.linear model import LinearRegression
from sklearn.preprocessing import PolynomialFeatures
from sklearn.tree import DecisionTreeRegressor
import datetime as dt
from sklearn.preprocessing import MinMaxScaler
from sklearn import metrics
from sklearn.metrics import r2 score
```

. Loading the datasets

In [3]:

```
data_1 = pd.read_csv(r'F:\IBM_prjkt\bitstampUSD_1-min_data_2012-01-01_to_2019-08-12.csv')
data_2 = pd.read_csv(r'F:\IBM_prjkt\coinbaseUSD_1-min_data_2014-12-01_to_2019-01-09.csv')
```

In [4]:

```
data_1.head()
```

Out[4]:

	Timestamp	Open	High	Low	Close	Volume_(BTC)	Volume_(Currency)	Weighted_Price
0	1325317920	4.39	4.39	4.39	4.39	0.455581	2.0	4.39
1	1325317980	NaN	NaN	NaN	NaN	NaN	NaN	NaN
2	1325318040	NaN	NaN	NaN	NaN	NaN	NaN	NaN
3	1325318100	NaN	NaN	NaN	NaN	NaN	NaN	NaN
4	1325318160	NaN	NaN	NaN	NaN	NaN	NaN	NaN

In [5]:

```
data_2.head()
```

Out[5]:

	Timestamp	Open	High	Low	Close	Volume_(BTC)	Volume_(Currency)	Weighted_Price
0	1417411980	300.0	300.0	300.0	300.0	0.01	3.0	300.0
1	1417412040	NaN	NaN	NaN	NaN	NaN	NaN	NaN
2	1417412100	NaN	NaN	NaN	NaN	NaN	NaN	NaN
3	1417412160	NaN	NaN	NaN	NaN	NaN	NaN	NaN
4	1417412220	NaN	NaN	NaN	NaN	NaN	NaN	NaN

• Check if any NaN values are present

In [6]:

```
missing_val = data_1.isnull().sum() #Too many null values
missing_val.to_frame()
missing_val.sort_values(missing_val[0],inplace=True)
```

In [7]:

```
missing_val.plot.bar( rot=60)
plt.show()
```


Volume (Cure

In [8]:

```
data_2.isnull().sum() #Too many null values
```

Out[8]:

0 Timestamp 109069 Open 109069 High 109069 Low Close 109069 Volume (BTC) 109069 Volume (Currency) 109069 Weighted Price 109069 dtype: int64

In [9]:

```
missing_val = data_2.isnull().sum() #Too many null values
missing_val.to_frame()
missing_val.sort_values(missing_val[0],inplace=True)
```

In [10]:

```
missing_val.plot.bar( rot=60)
plt.show()
```


Shape of the datasets

In [11]:

```
print('The number of rows in dataset_1 are {} and columns are {}'.format(data_1.shape[0],
data_1.shape[1]))
print('The number of rows in dataset_2 are {} and columns are {}'.format(data_2.shape[0],
data_2.shape[1]))
```

The number of rows in dataset_1 are 3997697 and columns are 8 The number of rows in dataset 2 are 2099760 and columns are 8

Checking Datatypes

In [12]:

```
data_1.dtypes
```

Out[12]:

int64 Timestamp Open float64 High float64 Low float64 Close float64 Volume (BTC) float64 float64 Volume_(Currency) Weighted Price float64

dtype: object

In [13]:

data 2.dtypes

Out[13]:

int64 Timestamp float64 Open High float64 Low float64 Close float64 Volume (BTC) float64 Volume_(Currency) float64 Weighted Price float64 dtype: object

· Info about datasets

In [14]:

data 1.describe()

Out[14]:

	Timestamp	Open	High	Low	Close	Volume_(BTC)	Volume_(Currency)	Weighted_F
count	3.997697e+06	2.765819e+06	2.765819e+06	2.765819e+06	2.765819e+06	2.765819e+06	2.765819e+06	2.765819€
mean	1.445483e+09	3.059659e+03	3.062027e+03	3.057022e+03	3.059638e+03	1.042232e+01	2.686812e+04	3.059499€
std	6.940318e+07	3.741168e+03	3.744835e+03	3.736985e+03	3.741134e+03	3.375010e+01	9.620425e+04	3.740910€
min	1.325318e+09	3.800000e+00	3.800000e+00	1.500000e+00	1.500000e+00	0.000000e+00	0.000000e+00	3.800000€
25%	1.385283e+09	3.742700e+02	3.745200e+02	3.740000e+02	3.742500e+02	4.530000e-01	2.865515e+02	3.742434€
50%	1.445637e+09	7.794500e+02	7.799100e+02	7.790100e+02	7.794900e+02	2.100451e+00	2.209966e+03	7.794137€
75%	1.505603e+09	5.635745e+03	5.639500e+03	5.631100e+03	5.635355e+03	8.179424e+00	1.554689e+04	5.635118€
max	1.565568e+09	1.966576e+04	1.966600e+04	1.964996e+04	1.966575e+04	5.853852e+03	7.569437e+06	1.966330€
4)

In [15]:

data_1.describe()

Out[15]:

	Timestamp	Open	High	Low	Close	Volume_(BTC)	Volume_(Currency)	Weighted_F
count	3.997697e+06	2.765819e+06	2.765819e+06	2.765819e+06	2.765819e+06	2.765819e+06	2.765819e+06	2.765819€
mean	1.445483e+09	3.059659e+03	3.062027e+03	3.057022e+03	3.059638e+03	1.042232e+01	2.686812e+04	3.059499€
std	6.940318e+07	3.741168e+03	3.744835e+03	3.736985e+03	3.741134e+03	3.375010e+01	9.620425e+04	3.740910€
min	1.325318e+09	3.800000e+00	3.800000e+00	1.500000e+00	1.500000e+00	0.000000e+00	0.00000e+00	3.800000€
25%	1.385283e+09	3.742700e+02	3.745200e+02	3.740000e+02	3.742500e+02	4.530000e-01	2.865515e+02	3.742434€
50%	1.445637e+09	7.794500e+02	7.799100e+02	7.790100e+02	7.794900e+02	2.100451e+00	2.209966e+03	7.794137€

Converting the datatype of Timestamp column into DateTime

```
In [16]:
data 1['Timestamp'] = pd.to datetime(data 1['Timestamp'], unit="s")
data 2['Timestamp'] = pd.to datetime(data 2['Timestamp'], unit="s")
In [17]:
data 1['Timestamp'].head()
Out[17]:
    2011-12-31 07:52:00
1
    2011-12-31 07:53:00
2
    2011-12-31 07:54:00
3
    2011-12-31 07:55:00
    2011-12-31 07:56:00
Name: Timestamp, dtype: datetime64[ns]
In [18]:
data 2['Timestamp'].head()
Out[18]:
```

Data Preprocessing

2014-12-01 05:33:00 2014-12-01 05:34:00

2014-12-01 05:35:00

2014-12-01 05:36:00

2014-12-01 05:37:00

Name: Timestamp, dtype: datetime64[ns]

Treating NaN's first

```
In [19]:
```

1

2

3

4

```
plt.figure(figsize=(20,6))
plt.subplot(121)
bar = sns.heatmap(data_1.isnull())  #NaN presence plot using heatmap
bar.set_title('NaN in Data_1')
bar.set_xlabel('Columns')
bar.set_ylabel('NaN values')
plt.subplot(122)
bar = sns.heatmap(data_2.isnull())  #NaN presence plot using heatmap
bar.set_title('NaN in Data_2')
plt.show()
```


Columns

Filling the NaN using Mean

```
In [20]:
data 1['Open'].fillna(np.mean(data 1['Open']),inplace=True)
data 2['Open'].fillna(np.mean(data 1['Open']),inplace=True)
data 1['High'].fillna(np.mean(data 1['High']),inplace=True)
data_2['High'].fillna(np.mean(data_1['High']),inplace=True)
data_1['Low'].fillna(np.mean(data_1['Low']),inplace=True)
data_2['Low'].fillna(np.mean(data_1['Low']),inplace=True)
data_1['Close'].fillna(np.mean(data_1['Close']),inplace=True)
data 2['Close'].fillna(np.mean(data 1['Close']),inplace=True)
data_1['Volume_(BTC)'].fillna(np.mean(data_1['Volume_(BTC)']),inplace=True)
data_2['Volume_(BTC)'].fillna(np.mean(data_1['Volume_(BTC)']),inplace=True)
data_1['Volume_(Currency)'].fillna(np.mean(data_1['Volume_(Currency)']),inplace=True)
data_2['Volume_(Currency)'].fillna(np.mean(data_1['Volume_(Currency)']),inplace=True)
data_1['Weighted_Price'].fillna(np.mean(data_1['Weighted_Price']),inplace=True)
data 2['Weighted Price'].fillna(np.mean(data 1['Weighted Price']),inplace=True)
In [21]:
data 1.isnull().sum().to frame()
Out [21]:
               0
      Timestamp 0
          Open 0
          High 0
          Low 0
         Close 0
   Volume_(BTC) 0
Volume_(Currency) 0
  Weighted_Price 0
In [22]:
data 2.isnull().sum().to frame()
Out [22]:
               0
     Timestamp 0
          Open 0
          High 0
          Low 0
         Close 0
   Volume_(BTC) 0
Volume_(Currency) 0
   Weighted_Price 0
```

Resampling the datatime: Instead of using all the datetime values we are taking the average over a month

In [23]:

```
dataframe1=data_1
dataframe2=data_2
dataframe1.index = dataframe1.Timestamp
dataframe2.index = dataframe2.Timestamp
dataframe1 = dataframe1.resample('m').mean()
dataframe2 = dataframe2.resample('m').mean()
print('The number of rows in dataset_1 are {} and columns are {}'.format(dataframe1.shape [0],data_1.shape[1]))
print('The number of rows in dataset_2 are {} and columns are {}'.format(dataframe2.shape [0],data_2.shape[1]))
```

The number of rows in dataset_1 are 93 and columns are 8 The number of rows in dataset 2 are 50 and columns are 8

Data Exploration

In [24]:

```
plt.figure(figsize=(20,6))
plt.subplot(121)
sns.lineplot(x=dataframe1.index,y=dataframe1.Weighted_Price, color="coral", label="line")
plt.title('Variation in Weighted price over the years (data_1)')
plt.xlabel('Timestamp',fontsize=14)
plt.ylabel('Weighted_Price',fontsize=14)
plt.subplot(122)
sns.lineplot(x=dataframe2.index,y=dataframe2.Weighted_Price, color="brown", label="line")
plt.xlabel('Timestamp',fontsize=14)
plt.ylabel('Weighted_Price',fontsize=14)
plt.title('Variation in Weighted price over the years (data_2)')
plt.show()
```


As we can see there are significant changes between 2018 and 2019 we will have a look at the closing vales of the corresponding years

In [25]:

```
plt.figure(figsize=(20,6))
data2018 = dataframe1['2018']
data2019 = dataframe1['2019']
plt.subplot(121)
bar = sns.barplot(x=data2018.index,y=data2018.Close,palette = 'deep')
plt.ylabel('Closse values',fontsize=14)
plt.title('Variation in closing prices in 2018',fontsize=14)
bar.set_xticklabels(bar.get_xticklabels(), fontsize=14, rotation=70)
plt.subplot(122)
bar = sns.barplot(x=data2019.index,y=data2019.Close,palette = 'deep')
plt.ylabel('Closse values',fontsize=14)
plt.title('Variation in closing prices in 2019',fontsize=14)
bar.set_xticklabels(bar.get_xticklabels(), fontsize=14, rotation=70)
```


Now we will look at the attributes Volume (BTC) and Volume(Currency) and how they are related. We will use scatter plot for this.

In [26]:

```
plt.figure(figsize=(20,6))
plt.subplot(121)
sns.scatterplot(x='Volume_(BTC)',y='Volume_(Currency)',data = dataframe1 ,color='orange')
plt.title('Bitcoin volume vs currency(data_1)',fontsize=14)
plt.xlabel('Volume_(BTC)',fontsize=14)
plt.ylabel('Volume_(Currency)',fontsize=14)
plt.subplot(122)
sns.scatterplot(x='Volume_(BTC)',y='Volume_(Currency)',data = dataframe2 ,color='brown')
plt.title('Bitcoin volume vs currency(data_2)',fontsize=14)
plt.xlabel('Volume_(BTC)',fontsize=14)
plt.ylabel('Volume_(Currency)',fontsize=14)
plt.show()
```


In [27]:

dataframe1['Volume_(BTC)'].corr(dataframe1['Volume_(Currency)']) #as we can see there is
no much relation between them

Out[27]:

-0.045749917010774944

In [28]:

```
high df1 = dataframe1.sort values(by=['High'], ascending =False).head(10)
high df2 = dataframe2.sort values(by=['High'],ascending =False).head(10)
plt.figure(figsize=(20,6))
plt.subplot(121)
bar = sns.pointplot(x=high df1.index,y=high df1['High'],color='brown')
bar.set xticklabels(bar.get xticklabels(),rotation = 70)
bar.set title('Highest Bitcoin values in data 1',fontsize=14)
                                          #can use matplotlib func or seaborn while label
bar.set xlabel('Timestamp', fontsize=14)
ling the plots
bar.set ylabel('Highest values', fontsize=14)
plt.subplot(122)
bar = sns.pointplot(x=high df2.index,y=high df2['High'],color='orange')
bar.set xticklabels(bar.get xticklabels(),rotation = 70)
bar.set title('Highest Bitcoin values in data 2', fontsize=14)
                                          #can use matplotlib func or seaborn while label
bar.set xlabel('Timestamp', fontsize=14)
ling the plots
bar.set ylabel('Highest values', fontsize=14)
plt.show()
```


In [29]:

```
low_df1 = dataframe1.sort_values(by=['Low'], ascending =True).head(10)
low df2 = dataframe2.sort values(by=['Low'], ascending =True).head(10)
plt.figure(figsize=(20,6))
plt.subplot(121)
bar = sns.pointplot(x=low df1.index,y=low df1['Low'],color='brown')
bar.set xticklabels(bar.get xticklabels(),rotation = 70)
bar.set title('Lowest Bitcoin values in data 1', fontsize=14)
bar.set xlabel('Timestamp', fontsize=14)
                                          #can use matplotlib func or seaborn while label
ling the plots
bar.set ylabel('Lowest values', fontsize=14)
plt.subplot(122)
bar = sns.pointplot(x=low_df2.index,y=low_df2['Low'],color='orange')
bar.set xticklabels(bar.get xticklabels(),rotation = 70)
bar.set title('Lowest Bitcoin values in data 2', fontsize=14)
bar.set xlabel('Timestamp', fontsize=14)
                                         #can use matplotlib func or seaborn while label
ling the plots
bar.set ylabel('Lowest values', fontsize=14)
plt.show()
```


In [30]:

low_df1

Out[30]:

	Open	High	Low	Close	Volume_(BTC)	Volume_(Currency)	Weighted_Price
Timestamp							
2013-05-31	595.540093	595.985019	594.991351	595.485126	8.394732	5130.413328	595.480136
2013-11-30	650.960689	651.829047	649.908069	650.892962	22.847183	12708.130418	650.847858
2015-01-31	734.904346	735.545550	734.205633	734.902035	22.428407	9515.159038	734.865889
2013-10-31	848.303774	848.946374	847.589318	848.295275	16.527848	8618.776222	848.258885
2014-10-31	856.199559	856.872644	855.462466	856.193813	15.290324	9649.265426	856.154953
2013-04-30	886.129584	886.911555	885.241365	886.112685	12.873303	8147.476408	886.073221
2015-11-30	892.117427	892.853430	891.297788	892.106554	22.630831	12854.031742	892.065309
2015-04-30	944.315089	944.968796	943.591291	944.308324	8.549585	8135.641395	944.270112
2013-12-31	946.336284	947.977986	944.592386	946.322056	22.030653	17936.437702	946.204577
2014-02-28	947.918598	948.924389	946.869142	947.945274	21.742440	15871.602989	947.871318

In [31]:

low_df2

Out[31]:

	Open	High	Low	Close	Volume_(BTC)	Volume_(Currency)	Weighted_Price
Timestamp							
2015-03-31	445.969924	446.241305	445.684931	445.980249	8.188753	3725.861710	445.966384
2015-11-30	481.857342	482.127375	481.533107	481.842495	9.182913	4490.045355	481.825793
2015-04-30	503.042899	503.334015	502.728595	503.046190	6.386673	3812.222331	503.032524
2015-08-31	504.862600	505.133449	504.569840	504.861968	5.956152	3643.602651	504.851095
2015-07-31	528.116538	528.389859	527.821109	528.117717	5.764401	3757.892567	528.105204
2015-02-28	565.849208	566.259147	565.423618	565.856275	7.889051	4727.078095	565.845248
2015-09-30	570.678425	570.988728	570.338361	570.676803	5.675641	4236.772250	570.661269
2016-05-31	572.934922	573.132819	572.714726	572.941484	4.645056	3100.855145	572.925403
2015-06-30	575.844856	576.168404	575.491124	575.843838	5.702604	4283.028054	575.828358
2016-02-29	581.370759	581.590429	581.117058	581.366213	5.644032	3795.341206	581.351103

Finding correlation between different attributes.

In [32]:

```
plt.figure(figsize=(20,6))
plt.subplot(121)
sns.heatmap(dataframe1.corr(),annot=True)
plt.title('Correlation b/w attributes in data_1')
#plt.xlabel('Attributes',fontsize=14)
#plt.ylabel('Attributes',fontsize=14)
plt.subplot(122)
plt.subplot(122)
sns.heatmap(dataframe2.corr(),annot=True)
plt.title('Correlation b/w attributes in data_2')
#plt.xlabel('Attributes',fontsize=14)
#plt.ylabel('Attributes',fontsize=14)
plt.show()
```

C:\Users\Venkatesh M\anaconda3\lib\site-packages\ipykernel_launcher.py:8: MatplotlibDepre cationWarning: Adding an axes using the same arguments as a previous axes currently reuse s the earlier instance. In a future version, a new instance will always be created and r eturned. Meanwhile, this warning can be suppressed, and the future behavior ensured, by passing a unique label to each axes instance.

Now we look at the outliers in each attribute. We don't know whether these outliers will have a positive or negative effect so after finding the accuracy if it's less then we deal with outliers.

In [33]:

```
plt.figure(figsize=(20,15))
plt.subplot(221)
sns.boxplot(dataframe1['Open'],orient='v')
plt.title('Outliers in Open')
plt.subplot(222)
sns.boxplot(dataframe1['Volume_(BTC)'],orient='v')
plt.title('Outliers in Volume_(BTC)')
plt.subplot(223)
sns.boxplot(dataframe1['Volume_(Currency)'],orient='v')
plt.title('Outliers in Volume_(Currency)')
plt.subplot(224)
sns.boxplot(dataframe1['Weighted_Price'],orient='v')
plt.title('Outliers in Weighted_Price')
plt.show()
```


Data Processing

```
In [34]:
```

```
data = data_1
data['Timestamp']=data['Timestamp'].map(dt.datetime.toordinal)
x=data['Timestamp'].values
pd.DataFrame(x).head()
```

Out[34]:

0

- 0 734502
- 1 734502
- 2 734502
- 3 734502
- 4 734502

In [35]:

```
x=x.reshape(-1,1) #changing into column form [x_values_count,1]
y=data['Weighted_Price']
pd.DataFrame(x).head()
```

Out[35]:

0

- 0 734502
- 1 734502
- 2 734502
- 3 734502
- 4 734502
- Taking Timestamp as individual variable and doing the prediction

In [36]:

```
#StandardISINg the data
scaler=MinMaxScaler()
x=scaler.fit_transform(x)
```

In [37]:

```
#splitting the data into training set and testing set
xtrain, xtest, ytrain, ytest = train_test_split(x, y, test_size=0.3, random_state=10)
scaler=MinMaxScaler()
```

In [38]:

```
#linear regression
linear_reg = LinearRegression()
linear_reg.fit(xtrain,ytrain)
y_pred = linear_reg.predict(xtest)
linear_accuracy = linear_reg.score(xtest,ytest)
print('r squared value is ',linear_accuracy)
```

r squared value is 0.2788524008010894

In [39]:

```
plt.figure(figsize=(16,6))
plt.scatter(xtest,ytest,marker='*',linewidth=0,color='lightblue',alpha=0.3)
plt.plot(xtest,y_pred,color='orange',linewidth=2)
plt.title('Linear regression curve fitting',fontsize=14)
plt.show()
```


In [40]:

```
df = pd.DataFrame({'Actual': ytest, 'Predicted': y_pred})
df.head(10)
```

Out[40]:

Timestamp		
2015-06-09 17:45:00	230.338734	2784.856144
2013-03-18 19:03:00	3059.499288	1119.899698
2012-06-18 20:36:00	6.100000	560.818382
2014-07-05 11:15:00	630.860000	2090.612312
2018-06-17 16:38:00	6509.227500	5045.756410
2015-06-05 21:09:00	224.821167	2776.664476
2016-01-04 20:50:00	434.140000	3212.870778
2014-03-05 11:25:00	666.182404	1840.766449
0040 07 40 40 04 00	7447 040440	E444 0007E4

Actual

Predicted

```
In [41]:
```

```
df['error'] = (df.Predicted - df.Actual)
result_sam = df.head(10)
result_sam.plot(kind='bar', figsize=(16,6), color={'blue', 'green', 'red'})
plt.grid(which='major', linestyle='-', linewidth='0.5', color='green')
plt.grid(which='minor', linestyle=':', linewidth='0.5', color='black')
plt.show()
```


In [42]:

```
#polynomial regression
from sklearn.preprocessing import PolynomialFeatures
ploy_reg = PolynomialFeatures(degree=2)
x_poly=ploy_reg.fit_transform(x)
lin_reg = LinearRegression()
lin_reg.fit(x_poly,y)
poly_ac = lin_reg.score(x_poly,y)
print('r squared value is :',poly_ac)
```

r squared value is : 0.49712704912554634

In [43]:

```
#Decission tree
tree_reg = DecisionTreeRegressor(random_state=0)
tree_reg.fit(xtrain,ytrain)
y_pred = tree_reg.predict(xtest)
tree_ac=tree_reg.score(xtest,ytest)
print('r squared value is :',tree_ac)
```

r squared value is : 0.91400384899948

In [44]:

```
#comparision of models
Models=['Linear regression','Polynomial regression','Decision tree']
score = [linear_accuracy,poly_ac,tree_ac]
accuracy=[]
for i in score:
    accuracy.append(round(i*100))
accuracy
```

Out[44]:

```
[28.0, 50.0, 91.0]
```

In [45]:

```
Accuracy_of_models = pd.DataFrame({'Model':Models,'Accuracy':accuracy}).sort_values(by='
Accuracy',ascending = False)
Accuracy_of_models
```

Out[45]:

	Model	Accuracy
2	Decision tree	91.0
1	Polynomial regression	50.0
0	Linear regression	28.0

As we can see the accuracy levels are low. So, using the attributes Open, Low, High, Close and Volume_(Currency) to predict the Weighted_Price as their correlation values are higher

In [46]:

```
plt.figure(figsize=(14,6))
sns.heatmap(data=dataframe1.corr(),cbar=False,annot=True,linewidth=1,cmap='Blues')
```

Out[46]:

<matplotlib.axes. subplots.AxesSubplot at 0x19085f32548>

In [47]:

```
x=dataframe1[['Open','High','Low','Close','Volume_(Currency)']]
pd.DataFrame(x).head()
y=dataframe1['Weighted_Price']
pd.DataFrame(x).head()
```

Out[47]:

	Open	High	Low	Close	Volume_(Currency)
Timestamp					
2011-12-31	3047.034727	3049.392910	3044.408085	3047.013352	26757.534105
2012-01-31	3025.391793	3027.733153	3022.783806	3025.370506	26566.858391
2012-02-29	3017.456296	3019.791494	3014.855154	3017.435034	26497.465486
2012-03-31	3019.081055	3021.417511	3016.478512	3019.059783	26512.218919
2012-04-30	3005.920033	3008.246293	3003.328868	3005.898874	26397.343962

```
#splitting the data into training set and testing set
xtrain, xtest, ytrain, ytest = train test split(x, y, test size=0.3, random state=10)
In [49]:
#linear regression
linear reg = LinearRegression()
linear_reg.fit(xtrain,ytrain)
y pred = linear reg.predict(xtest)
linear_accuracy_high_corr = linear_reg.score(xtest,ytest)
print('r squared value is ',linear accuracy high corr)
r squared value is 0.999999991613893
In [50]:
df = pd.DataFrame({'Actual': ytest, 'Predicted': y pred})
df.head(10)
Out[50]:
              Actual
                      Predicted
Timestamp
2014-10-31
          856.154953
                    856.150741
2019-06-30 9342.968139 9342.757709
2012-03-31 3018.922959 3018.920409
2014-11-30 972.497645 972.494219
2013-07-31 1203.505948 1203.501759
2017-06-30 2635.124906 2635.178708
2017-03-31 1415.386659 1415.363735
2015-05-31 1187.788475 1187.789097
2015-08-31 1208.690856 1208.688836
2017-11-30 7716.694698 7716.942776

    As we can see that both the predicted and original values almost same. The accuracy is also excellent.

In [51]:
#polynomial regression
from sklearn.preprocessing import PolynomialFeatures
ploy reg = PolynomialFeatures(degree=2)
x_poly=ploy_reg.fit_transform(x)
lin reg = LinearRegression()
lin_reg.fit(x_poly,y)
poly ac high corr = lin reg.score(x poly,y)
print('r squared value is :',poly ac high corr)
r squared value is : 0.999999999874449
In [52]:
#Decission tree
tree reg = DecisionTreeRegressor(random state=0)
tree reg.fit(xtrain,ytrain)
y pred = tree reg.predict(xtest)
tree ac high corr=tree reg.score(xtest,ytest)
print('r squared value is :', tree_ac_high_corr)
r squared value is : 0.9982756355966461
```

______.

In [53]:

```
#comparision of models
Models=['Linear regression','Polynomial regression','Decision tree']
score = [linear_accuracy_high_corr,poly_ac_high_corr,tree_ac_high_corr]
accuracy=[]
for i in score:
    accuracy.append(round(i*100))
accuracy
```

Out[53]:

[100.0, 100.0, 100.0]

In [54]:

```
df['error'] = (df.Predicted - df.Actual)
result_sam = df.head(10)
result_sam.plot(kind='bar', figsize=(16,6), color={'blue', 'green', 'red'})
#.set_xticklabels(bar.get_xticklabels(), fontsize=14, rotation=70)
plt.grid(which='major', linestyle='-', linewidth='0.5', color='green')
plt.grid(which='minor', linestyle=':', linewidth='0.5', color='black')
plt.show()
```


In [55]:

Accuracy_of_models = pd.DataFrame({'Model':Models,'Accuracy':accuracy}).sort_values(by='Accuracy',ascending = False) #changing into dataframe.

Accuracy_of_models

Out[55]:

Model Accuracy

0	Linear regression	100.0
1	Polynomial regression	100.0
2	Decision tree	100.0

R2 shows how well terms (data points) fit a curve or line

In [56]:

```
r2_score(ytest,y_pred)
```

Out[56]:

0.998275635596646

We can see that the prediction models are very accurate and predicts the weighted_price with minute or no error.

THE END

 Kondareddy Thanigundala kondareddyt@am.students.amrita.edu Ph no : 9100154155

In []: