#### Lab 3

### Ex.No.3.Program to demonstrate decision making and looping operation.

#### 3.1 Introduction:

The purpose of this experiment is to learn about the general purpose registers, instruction sets, addressing modes and logical operators of 8086 by sorting the sequence of numbers from the array stored in a memory location into ascending and descending series.

#### 3.2 Hardware Requirement:

The 8086 Microprocessor kit, Power Supply.

#### 3.3 Program Logic:

To arrange the given numbers in ascending and descending order, the bubble sorting method is used. Initially the first number of the series is compared with the second one. If the first number is greater than second, exchange their positions in the series otherwise leave the position unchanged. Then compare the second number in the recent form of the series with third and repeat the exchange part that you are carried out for the first and second number, and for all the remaining number of the series. Repeat this procedure for complete series (n-1) times. After n-1 iterations you will get the largest number at the end of the series. Again, start from the first number of the series. Repeat the same procedure right from the first element to the last element. After n-2 iteration you will get the second highest number at the last but one place in the series. Repeat this till the complete series is arranged in ascending order.

#### 3.4 Program:

Introduction of general-purpose registers, logical operators, indirect addressing, and loop instructions, compare instruction, exchange instruction, increment & decrement instruction:

Ascending order:

| ADDRESS | LABEL       | MNEMONICS     | OPCODE     | COMMENTS                            |
|---------|-------------|---------------|------------|-------------------------------------|
| 1000    |             | MOV SI, 1200H | C7 Choo 12 | Transfer Date from EDOOH to SI magi |
| 1004    | A Republica | MOV CL, [SI]  | 84 OC      | Transport Date from Kanott to SIMG  |
| 1006    |             | DEC CL        | FE C9      | Dalamed Cl                          |
| 1008    | LOOP3       | MOV SI, 1200H | C1 C6 0012 | Data Transfer from 1200H to<br>SI   |
| 100C    |             | MOV CH, [SI]  | 3A 2C      | Die Though from [53] to CH          |
| IDOE    |             | DEC CH        | FECD       | Declement CH                        |
| 1010    |             | INC SI        | 46         | Trainer SI                          |
| 1011    | LOOP2       | MOV AL, [SI]  | 8A 04      | Data these for given theo[SI] to    |
| 10 13   |             | INC SI        | 46         | Troppen 6J                          |
| 1014    |             | CMP AL, [SI]  | 3404       | Compare Data in [5] and AL          |
| 1016    |             | JC LOOP1      | 72 FF      | Junh to 1610.                       |



|       |       | Largue AL [SI] | 8604  | Exchange Dete Grom SI |
|-------|-------|----------------|-------|-----------------------|
| 1018  |       | XCHG AL, [SI]  |       | Exchange Data         |
| AIOI  |       | ACITO          | FECD  | Decement CH           |
| 101 D | LOOP1 | DEC CH         | 250   | Jump 15 1002          |
| IDIF  |       | JNZ LOOP2      | FE C9 | Dociomant CL          |
| 1021  |       | DEC CL         | FECT  | Timb 10 1000          |
| (023  |       | JNZ LOOP3      | 716   | Terminale Te Rogton   |
| OLE   |       | HLT            | 1-9   | CHILITINE A           |

| escending ord | TADEL | MNEMONICS       | OPCODE        | A A March 1 March 1 March 1 July 1 |
|---------------|-------|-----------------|---------------|------------------------------------|
| ADDRESS       | LABEL | MOV SI, 1200H   | C11 60012     | Date Theogle from LSE ) to a       |
| 1000          |       | MOV CL, [SI]    | SAOC          | Data Heaght provides               |
| 1004          |       | DEC CL          | FIC9          | Operanent OL                       |
| 1006          |       | MOV SI,1200H    | C1Cbao12      | Data tosen 1200 + to               |
| Imt           | LOOP3 | MOV 31,120011   | CICV          | SJ. (17) 30                        |
| 1008          |       | MON CH [SI]     | FA2C          | Date theafar (nom [SI] to C        |
| 100C          |       | MOV CH, [SI]    | FECD          | Degement Cit                       |
| 100 t         |       | DEC CH          | 46            | CT                                 |
| 1010          |       | INC SI          |               | Data truster from [S]              |
|               | LOOP2 | MOV AL, [SI]    | 8A 04         | t AL                               |
| 1011          |       |                 | 46            | Trap man ST                        |
| 1013          |       | INC SI          |               | Company Al 40 Cos                  |
| 1014          |       | CMP AL, [SI]    | 3A04<br>13 05 | Time 15 1010                       |
| 1016          |       | JNC LOOP1       | 8604          | Exchange DAG in [SIJonIAL          |
| 1018          |       | XCHG AL, [SI]   |               | Escourse Det                       |
| 101A          |       | XCHG [SI-1], AL | 86 44 FF      | Decke ment CH                      |
| 1012          | LOOP1 | DEC CH          | FECD          | Jump to 1010                       |
| 1010          |       | JNZ LOOP2       | 77F6 C        | Jump 18 CL                         |
| JOIF          |       | DEC CL          | FEC9          | Decrement I was                    |
| 1021          |       | JNZ LOOP3       | 7563          | Jump to 1000                       |
| 1023<br>102 E |       | HLT             | F4            | Terminate the Rogican.             |

### 3.5 Pre-Lab Questions:

- What are the flags modified while executing XCHG instruction? 1.
- List the addressing modes used in this program. 2.
- What is the purpose of AAA instruction? 3.
- List the type of jump instruction that are used in this program. 4.

### 3.6 Post-Lab Questions:

- 1. Write an ALP to sort the given array of 16-bit numbers in ascending and descending order using 8086 microprocessor.
- 2. Simulate the programs using emulator 8086.

Verified program to temportrate tecision making ont looping operation Result:



Pre- hob

Soln

What are the glags motified while executing XCHC instruction? In general, each time the processor executs on instruction the Orago one albed to reflect the result but while executing XCHG intraction, no plan is modified

2 List the addressing motes used in this program?

Soln

The authorsis modes used in this program is register indirect mode (NOV Ax, CSJ]), indexed makes [DFG 5], and register modes.

What is the of AAA instruction?

Isla.

AAA instruction is only useful when it bollows on AAA instructions B? Whoer somes a gik result at the register that add 2

Soln.

hist the type of jump instruction that are used in this program. Those are 3 type of jump instructors used in the program

O JC - Jump carry

- (2) JAC Jump Ne Carry
- (3) JNZ Jump No Zero.

Post - Lat

1. Write on ALP to got the given array of 16 tot now assends and descends order while using 2016 Micro process.

Seln.

## Ascending. MOV SI, 1200H MOV CL, [SI] DEC CL Rooks MOV SI, 1200H NOV CH, [SI] DEC CH INC SI MOV AX, [S]; Lop 2 INC SI INC SI CMP AX, [S] Il left 1 XCHG AX, [SI] XC46 [SJ-2], AX log 1 DEC CH INZ Rop 2 DEC CL INZ Sop 3. HLT.

# Descending MON SJ, 1200 H MOV CL, [53] DEC CL toop 3; MOV SJ , 1200H. MOY CH, [S] DEC CH INC SI MOV AX, CSIJ; gop2 INC SJ JING SJ. CMP AX , CS3). INC Soop 1 XCHG AX, [SJ] loop 1; DEC CIV INZ Roops DEC CL INZ ROOK 3 HLT.