$11a_{61} (K11a_{61})$

Ideals for irreducible components of X_{par}

$$I_1^u = \langle 8u^{56} - 9u^{55} + \dots + 4b - 7, \ 11u^{56} - 40u^{55} + \dots + 4a + 1, \ u^{57} - 4u^{56} + \dots + 7u - 1 \rangle$$

 $I_2^u = \langle -au + b, \ a^3 + a^2u + a^2 + 1, \ u^2 + u + 1 \rangle$

* 2 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 63 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$\begin{array}{c} \text{I. } I_1^u = \\ \langle 8u^{56} - 9u^{55} + \dots + 4b - 7, \ 11u^{56} - 40u^{55} + \dots + 4a + 1, \ u^{57} - 4u^{56} + \dots + 7u - 1 \rangle \end{array}$$

(i) Arc colorings

$$a_{1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{2} + 1 \\ -u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u \\ u^{3} + u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -\frac{14}{4}u^{56} + 10u^{55} + \dots + \frac{67}{4}u - \frac{1}{4} \\ -2u^{56} + \frac{9}{4}u^{55} + \dots - 11u + \frac{7}{4} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -\frac{9}{4}u^{56} + 16u^{55} + \dots + \frac{189}{4}u - \frac{23}{4} \\ -7u^{56} + \frac{55}{4}u^{55} + \dots - 10u + \frac{9}{4} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -\frac{1}{4}u^{56} + \frac{3}{4}u^{55} + \dots + \frac{13}{4}u + 2 \\ \frac{1}{4}u^{56} - u^{55} + \dots - \frac{11}{4}u + \frac{1}{4} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} \frac{11}{4}u^{56} - \frac{47}{4}u^{55} + \dots - \frac{121}{4}u + 4 \\ \frac{3}{4}u^{56} + \frac{1}{4}u^{55} + \dots + \frac{59}{4}u - \frac{5}{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -\frac{7}{4}u^{56} + \frac{63}{4}u^{55} + \dots + \frac{223}{4}u - 7 \\ -7u^{56} + \frac{57}{4}u^{55} + \dots - 12u + \frac{11}{4} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -\frac{7}{4}u^{56} + \frac{63}{4}u^{55} + \dots + \frac{223}{4}u - 7 \\ -7u^{56} + \frac{57}{4}u^{55} + \dots - 12u + \frac{11}{4} \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-8u^{56} + \frac{25}{2}u^{55} + \dots 20u 7$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_4	$u^{57} + 4u^{56} + \dots + 7u + 1$
c_2, c_5	$u^{57} + 18u^{56} + \dots + 23u - 1$
c_3, c_8	$u^{57} + u^{56} + \dots + 160u + 64$
c_6, c_7, c_{10}	$u^{57} - 3u^{56} + \dots - 6u + 1$
<i>c</i> 9	$u^{57} + 3u^{56} + \dots - 624u + 73$
c_{11}	$u^{57} - 11u^{56} + \dots - 2040u + 209$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_4	$y^{57} + 18y^{56} + \dots + 23y - 1$
c_2, c_5	$y^{57} + 46y^{56} + \dots + 1015y - 1$
c_{3}, c_{8}	$y^{57} + 35y^{56} + \dots - 39936y - 4096$
c_6, c_7, c_{10}	$y^{57} + 53y^{56} + \dots + 6y - 1$
c_9	$y^{57} + 9y^{56} + \dots - 41762y - 5329$
c_{11}	$y^{57} + 29y^{56} + \dots - 624082y - 43681$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.411000 + 0.945370I		
a = 0.758571 + 0.375458I	-0.43337 - 1.68301I	-2.91269 + 0.I
b = -0.159926 + 0.346294I		
u = -0.411000 - 0.945370I		
a = 0.758571 - 0.375458I	-0.43337 + 1.68301I	-2.91269 + 0.I
b = -0.159926 - 0.346294I		
u = -0.070350 + 0.957209I		
a = 0.843157 + 0.528242I	-0.22072 - 2.23623I	-9.39240 + 3.87464I
b = 1.012250 + 0.111658I		
u = -0.070350 - 0.957209I		
a = 0.843157 - 0.528242I	-0.22072 + 2.23623I	-9.39240 - 3.87464I
b = 1.012250 - 0.111658I		
u = -0.294254 + 0.900156I		
a = 0.889838 + 0.254291I	-0.43103 - 1.63888I	-4.79988 + 2.71199I
b = 0.192184 + 0.303495I		
u = -0.294254 - 0.900156I		
a = 0.889838 - 0.254291I	-0.43103 + 1.63888I	-4.79988 - 2.71199I
b = 0.192184 - 0.303495I		
u = 0.716145 + 0.819187I		
a = -0.945498 + 0.434435I	4.56397 - 1.17086I	0
b = 1.40998 + 0.63877I		
u = 0.716145 - 0.819187I		
a = -0.945498 - 0.434435I	4.56397 + 1.17086I	0
b = 1.40998 - 0.63877I		
u = -0.722279 + 0.830660I		
a = 1.00866 - 1.56975I	1.73223 - 1.00864I	-7.00000 + 0.I
b = -0.112045 + 0.922007I		
u = -0.722279 - 0.830660I		
a = 1.00866 + 1.56975I	1.73223 + 1.00864I	-7.00000 + 0.I
b = -0.112045 - 0.922007I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.221111 + 1.079490I		
a = -0.821842 - 0.181447I	-1.42166 - 4.84212I	-7.00000 + 7.62059I
b = -0.613293 - 1.011210I		
u = -0.221111 - 1.079490I		
a = -0.821842 + 0.181447I	-1.42166 + 4.84212I	-7.00000 - 7.62059I
b = -0.613293 + 1.011210I		
u = 0.864422 + 0.721606I		
a = 0.74235 + 1.40599I	5.87637 - 4.55093I	0
b = -0.62330 - 1.47673I		
u = 0.864422 - 0.721606I		
a = 0.74235 - 1.40599I	5.87637 + 4.55093I	0
b = -0.62330 + 1.47673I		
u = 0.710335 + 0.874003I		
a = 0.541401 - 0.977846I	0.69484 + 2.72065I	0
b = -1.50306 - 0.11683I		
u = 0.710335 - 0.874003I		
a = 0.541401 + 0.977846I	0.69484 - 2.72065I	0
b = -1.50306 + 0.11683I		
u = -0.782668 + 0.823558I		
a = -1.38003 + 1.86072I	7.55130 + 1.74072I	0
b = 0.318434 - 1.211320I		
u = -0.782668 - 0.823558I		
a = -1.38003 - 1.86072I	7.55130 - 1.74072I	0
b = 0.318434 + 1.211320I		
u = 0.846418 + 0.761999I		
a = -0.471724 - 1.032250I	6.72836 - 0.26468I	0
b = 0.571036 + 1.197990I		
u = 0.846418 - 0.761999I		
a = -0.471724 + 1.032250I	6.72836 + 0.26468I	0
b = 0.571036 - 1.197990I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.892838 + 0.709779I		
a = -0.72817 - 1.72293I	11.7431 - 8.1696I	0
b = 0.54713 + 1.65321I		
u = 0.892838 - 0.709779I		
a = -0.72817 + 1.72293I	11.7431 + 8.1696I	0
b = 0.54713 - 1.65321I		
u = -0.579065 + 0.988208I		
a = -0.527800 - 1.214050I	2.70688 - 3.25300I	0
b = 0.733184 + 0.166462I		
u = -0.579065 - 0.988208I		
a = -0.527800 + 1.214050I	2.70688 + 3.25300I	0
b = 0.733184 - 0.166462I		
u = 0.046272 + 0.846532I		
a = -1.18927 - 0.76890I	-2.85410 + 0.74308I	-13.57323 - 1.00600I
b = -0.905005 + 0.577259I		
u = 0.046272 - 0.846532I		
a = -1.18927 + 0.76890I	-2.85410 - 0.74308I	-13.57323 + 1.00600I
b = -0.905005 - 0.577259I		
u = -0.234257 + 1.130480I		
a = 0.840745 + 0.057014I	4.07584 - 8.10637I	0
b = 0.59116 + 1.34495I		
u = -0.234257 - 1.130480I		
a = 0.840745 - 0.057014I	4.07584 + 8.10637I	0
b = 0.59116 - 1.34495I		
u = -0.386185 + 1.092590I		
a = -1.129960 - 0.354062I	5.00981 + 0.63384I	0
b = 0.360548 - 1.019790I		
u = -0.386185 - 1.092590I		
a = -1.129960 + 0.354062I	5.00981 - 0.63384I	0
b = 0.360548 + 1.019790I		
	1	

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.718160 + 0.909667I		
a = -0.49430 + 1.92093I	1.48928 - 4.49756I	0
b = -0.337710 - 1.036600I		
u = -0.718160 - 0.909667I		
a = -0.49430 - 1.92093I	1.48928 + 4.49756I	0
b = -0.337710 + 1.036600I		
u = 0.711635 + 0.923729I		
a = -0.071999 + 1.393300I	4.23779 + 6.64103I	0
b = 1.46379 - 0.43402I		
u = 0.711635 - 0.923729I		
a = -0.071999 - 1.393300I	4.23779 - 6.64103I	0
b = 1.46379 + 0.43402I		
u = 0.145913 + 0.817129I		
a = 1.44787 + 1.01076I	1.92041 + 4.01720I	-8.21820 - 1.67425I
b = 0.884513 - 1.043560I		
u = 0.145913 - 0.817129I		
a = 1.44787 - 1.01076I	1.92041 - 4.01720I	-8.21820 + 1.67425I
b = 0.884513 + 1.043560I		
u = -0.610136 + 0.543922I		
a = -1.393620 + 0.207735I	3.98401 - 1.43384I	-1.02074 + 3.18853I
b = 0.544710 + 0.046272I		
u = -0.610136 - 0.543922I		
a = -1.393620 - 0.207735I	3.98401 + 1.43384I	-1.02074 - 3.18853I
b = 0.544710 - 0.046272I		
u = 0.880016 + 0.800315I		
a = -0.098223 + 1.121400I	13.50000 + 2.10845I	0
b = -0.203921 - 1.080730I		
u = 0.880016 - 0.800315I		
a = -0.098223 - 1.121400I	13.50000 - 2.10845I	0
b = -0.203921 + 1.080730I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.800227 + 0.097770I		
a = -0.55703 - 1.38837I	8.22007 - 4.72575I	1.80987 + 3.60964I
b = 0.340559 + 1.293110I		
u = -0.800227 - 0.097770I		
a = -0.55703 + 1.38837I	8.22007 + 4.72575I	1.80987 - 3.60964I
b = 0.340559 - 1.293110I		
u = -0.755939 + 0.930694I		
a = 0.52607 - 2.29910I	7.22101 - 7.54444I	0
b = 0.425194 + 1.323000I		
u = -0.755939 - 0.930694I		
a = 0.52607 + 2.29910I	7.22101 + 7.54444I	0
b = 0.425194 - 1.323000I		
u = 0.766562 + 0.991374I		
a = 0.96808 + 1.47841I	6.01697 + 6.28313I	0
b = 0.729701 - 1.117910I		
u = 0.766562 - 0.991374I		
a = 0.96808 - 1.47841I	6.01697 - 6.28313I	0
b = 0.729701 + 1.117910I		
u = 0.759691 + 1.020250I		
a = -1.13322 - 1.78580I	4.95411 + 10.59560I	0
b = -0.76006 + 1.47046I		
u = 0.759691 - 1.020250I		 -
a = -1.13322 + 1.78580I	4.95411 - 10.59560I	0
b = -0.76006 - 1.47046I		
u = 0.806919 + 0.984385I		
a = -1.27465 - 1.07750I	12.92480 + 4.14012I	0
b = -0.272115 + 0.948431I		
u = 0.806919 - 0.984385I		
a = -1.27465 + 1.07750I	12.92480 - 4.14012I	0
b = -0.272115 - 0.948431I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.708895 + 0.073284I		
a = 0.351150 + 0.941533I	2.36739 - 1.80456I	-1.57677 + 4.11913I
b = -0.192151 - 1.042080I		
u = -0.708895 - 0.073284I		
a = 0.351150 - 0.941533I	2.36739 + 1.80456I	-1.57677 - 4.11913I
b = -0.192151 + 1.042080I		
u = 0.767113 + 1.038140I		
a = 1.33064 + 1.89314I	10.7235 + 14.3183I	0
b = 0.64323 - 1.67431I		
u = 0.767113 - 1.038140I		
a = 1.33064 - 1.89314I	10.7235 - 14.3183I	0
b = 0.64323 + 1.67431I		
u = 0.293144 + 0.279322I		
a = -2.67050 - 0.08527I	3.36777 - 2.26311I	-4.02051 + 3.80459I
b = 0.668951 + 0.608073I		
u = 0.293144 - 0.279322I		
a = -2.67050 + 0.08527I	3.36777 + 2.26311I	-4.02051 - 3.80459I
b = 0.668951 - 0.608073I		
u = 0.174207		
a = 3.27862	-0.822844	-12.1160
b = -0.507940		

II.
$$I_2^u = \langle -au + b, \ a^3 + a^2u + a^2 + 1, \ u^2 + u + 1 \rangle$$

(i) Arc colorings

$$a_{1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ u+1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u \\ u+1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u \\ u+1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} a \\ au \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -a^{2}u+1 \\ a^{2}u+a^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -2a^{2}u-a^{2}+a-u-2 \\ a^{2}u+a^{2}+au+1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -au+a \\ au \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -au+a \\ au \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $a^2u + 5au + a + 5u 6$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_2, c_5	$(u^2+u+1)^3$
c_3,c_8	u^6
C4	$(u^2 - u + 1)^3$
c_6, c_7	$(u^3 - u^2 + 2u - 1)^2$
c_9, c_{11}	$(u^3 - u^2 + 1)^2$
c_{10}	$(u^3 + u^2 + 2u + 1)^2$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4 c_5	$(y^2 + y + 1)^3$
c_3, c_8	y^6
c_6, c_7, c_{10}	$(y^3 + 3y^2 + 2y - 1)^2$
c_{9}, c_{11}	$(y^3 - y^2 + 2y - 1)^2$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.500000 + 0.866025I		
a = -1.083790 - 0.387453I	3.02413 + 0.79824I	-6.43615 + 0.68567I
b = 0.877439 - 0.744862I		
u = -0.500000 + 0.866025I		
a = 0.206350 - 1.132320I	3.02413 - 4.85801I	-2.88198 + 6.08229I
b = 0.877439 + 0.744862I		
u = -0.500000 + 0.866025I		
a = 0.377439 + 0.653743I	-1.11345 - 2.02988I	-12.18187 + 4.49037I
b = -0.754878		
u = -0.500000 - 0.866025I		
a = -1.083790 + 0.387453I	3.02413 - 0.79824I	-6.43615 - 0.68567I
b = 0.877439 + 0.744862I		
u = -0.500000 - 0.866025I		
a = 0.206350 + 1.132320I	3.02413 + 4.85801I	-2.88198 - 6.08229I
b = 0.877439 - 0.744862I		
u = -0.500000 - 0.866025I		
a = 0.377439 - 0.653743I	-1.11345 + 2.02988I	-12.18187 - 4.49037I
b = -0.754878		

III. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u^2 + u + 1)^3)(u^{57} + 4u^{56} + \dots + 7u + 1)$
c_2, c_5	$((u^2 + u + 1)^3)(u^{57} + 18u^{56} + \dots + 23u - 1)$
c_3, c_8	$u^6(u^{57} + u^{56} + \dots + 160u + 64)$
c_4	$((u^2 - u + 1)^3)(u^{57} + 4u^{56} + \dots + 7u + 1)$
c_6, c_7	$((u^3 - u^2 + 2u - 1)^2)(u^{57} - 3u^{56} + \dots - 6u + 1)$
<i>c</i> ₉	$((u^3 - u^2 + 1)^2)(u^{57} + 3u^{56} + \dots - 624u + 73)$
c_{10}	$((u^3 + u^2 + 2u + 1)^2)(u^{57} - 3u^{56} + \dots - 6u + 1)$
c_{11}	$((u^3 - u^2 + 1)^2)(u^{57} - 11u^{56} + \dots - 2040u + 209)$

IV. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_4	$((y^2+y+1)^3)(y^{57}+18y^{56}+\cdots+23y-1)$
c_2,c_5	$((y^2 + y + 1)^3)(y^{57} + 46y^{56} + \dots + 1015y - 1)$
c_3, c_8	$y^6(y^{57} + 35y^{56} + \dots - 39936y - 4096)$
c_6, c_7, c_{10}	$((y^3 + 3y^2 + 2y - 1)^2)(y^{57} + 53y^{56} + \dots + 6y - 1)$
c_9	$((y^3 - y^2 + 2y - 1)^2)(y^{57} + 9y^{56} + \dots - 41762y - 5329)$
c_{11}	$((y^3 - y^2 + 2y - 1)^2)(y^{57} + 29y^{56} + \dots - 624082y - 43681)$