Missing Value Imputation

Random Forest 應用

- 1. 創造擁有50%缺失值的數據集
 - Code

```
#創造擁有50%數據缺失的數據集
rng = np.random.RandomState(0)
missing_rate = 0.5
n_missing_samples = int(np.floor(n_samples*n_features*missing_rate))
#每個缺失數據具備一個列和行索引
#randint(下限,上限,n) 請在下限~上限中取出n個整數
missing_features = rng.randint(0,n_features,n_missing_samples)
missing_samples = rng.randint(0,n_samples,n_missing_samples)

#將創造出來的缺失數據補到原本的數據集中
x_missing = x_full.copy()
y_missing = y_full.copy()
x_missing[missing_samples,missing_features] = np.nan #缺失值設為nan
x_missing = pd.DataFrame(x_missing) #設成表格
x_missing
```

Result

	0	1	2	3	4	5	6	7	8	9	10	11	12
0	NaN	18.0	NaN	NaN	0.538	NaN	65.2	4.0900	1.0	296.0	NaN	NaN	4.98
1	0.02731	0.0	NaN	0.0	0.469	NaN	78.9	4.9671	2.0	NaN	NaN	396.90	9.14
2	0.02729	NaN	7.07	0.0	NaN	7.185	61.1	NaN	2.0	242.0	NaN	NaN	NaN
3	NaN	NaN	NaN	0.0	0.458	NaN	45.8	NaN	NaN	222.0	18.7	NaN	NaN
4	NaN	0.0	2.18	0.0	NaN	7.147	NaN	NaN	NaN	NaN	18.7	NaN	5.33
501	NaN	NaN	NaN	0.0	0.573	NaN	69.1	NaN	1.0	NaN	21.0	NaN	9.67
502	0.04527	0.0	11.93	0.0	0.573	6.120	76.7	2.2875	1.0	273.0	NaN	396.90	9.08
503	NaN	NaN	11.93	NaN	0.573	6.976	91.0	NaN	NaN	NaN	21.0	NaN	5.64
504	0.10959	0.0	11.93	NaN	0.573	NaN	89.3	NaN	1.0	NaN	21.0	393.45	6.48
505	0.04741	0.0	11.93	0.0	0.573	6.030	NaN	NaN	1.0	NaN	NaN	396.90	7.88

2. Random Forest 思路

```
#使用隨機森林填補缺失值
#地區 & 環境 => 預測房價
#地區 & 房價 => 預測環境(缺失值)
#填缺失值的順序類似數獨,從缺失最少的開始填
x_missing_reg = x_missing.copy()
#缺失值排序 argsort 會返回對應之索引
sortindex = np.argsort(x_missing_reg.isnull().sum(axis=0)).values
for i in sortindex:
   #構建新的特徵矩陣和新標籤
   df = x_missing_reg
   fillc = df.iloc[:,i]
                         #取出要補缺失值的那列
   #pd.concat([要合併的所有data],axis = 1 (用行進行匹配,即補在最左邊))
   df = pd.concat([df.iloc[:,df.columns != i],pd.DataFrame(y_full)],axis=1)
   #新特徵矩陣對所有缺失值的列補0
   df_0 = SimpleImputer(missing_values=np.nan,strategy='constant',fill_value=0).fit_transform(df)
   #找訓練集和測試集
   #X為已知的列
   #Y為要補缺失的列
   Ytrain = fillc[fillc.notnull()]
   Ytest = fillc[fillc.isnull()]
   Xtrain = df_0[Ytrain.index,:]
   Xtest = df_0[Ytest.index,:]
   #用隨機森林回歸填補缺失值
   rfc = RandomForestRegressor(n_estimators=100)
   rfc = rfc.fit(Xtrain, Ytrain)
   Ypredict = rfc.predict(Xtest)
   #將預測值填入該列
   x_missing_reg.loc[x_missing_reg.iloc[:,i].isnull(),i] = Ypredict
```

3. 比較各項方法

• x_full:原始數據對照組

• x_missing_mean:使用均值填補缺失值

• x_missing_0:使用 0 填補缺失值

• x_missing_reg:使用隨機森林填補缺失值

