# **Practical No. 10**

### Name: Prathamesh Pawar | Roll No: B-23

#### **Data Visualization III**

Download the Iris flower dataset or any other dataset into a DataFrame. (e.g., <a href="https://archive.ics.uci.edu/ml/datasets/Iris">https://archive.ics.uci.edu/ml/datasets/Iris</a> (https://archive.ics.uci.edu/ml/datasets/Iris) ). Scan the dataset and give the inference as:

- 1. List down the features and their types (e.g., numeric, nominal) available in the dataset.
- 2. Create a histogram for each feature in the dataset to illustrate the feature distributions.
- 3. Create a boxplot for each feature in the dataset.
- 4. Compare distributions and identify outliers.

```
In [1]: import numpy as np
          import matplotlib.pyplot as plt
          import pandas as pd
          import seaborn as sns
          import warnings
          warnings.filterwarnings('ignore')
          df = pd.read_csv('iris.csv')
          df.head()
 Out[1]:
             ld SepalLengthCm SepalWidthCm PetalLengthCm PetalWidthCm
           0
                                        3.5
                                                                    0.2 Iris-setosa
             2
                           4.9
                                        3.0
                                                       1.4
                                                                   0.2 Iris-setosa
             3
                           4.7
                                        3.2
                                                      NaN
                                                                   0.2 Iris-setosa
                           4.6
                                        3.1
                                                       1.5
                                                                   0.2 Iris-setosa
                           5.0
                                        3.6
                                                       1.4
                                                                   0.2 Iris-setosa
In [14]: df.isnull().sum()
Out[14]: Id
          SepalLengthCm
                            0
          SepalWidthCm
                            0
          PetalLengthCm
                            1
          PetalWidthCm
                            0
          Species
                            0
          dtype: int64
In [15]: df['PetalLengthCm']=df['PetalLengthCm'].fillna(np.mean(df['PetalLengthCm']))
In [16]: df.isnull().sum()
Out[16]: Id
          SepalLengthCm
                            0
          SepalWidthCm
                            0
          PetalLengthCm
                            0
          {\tt PetalWidthCm}
                            0
          Species
          dtype: int64
```

1. List down the features and their types (e.g., numeric, nominal) available in the dataset.

```
In [17]: df.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 150 entries, 0 to 149
         Data columns (total 6 columns):
         #
             Column
                            Non-Null Count Dtype
         0
                            150 non-null
                                             int64
             Ιd
              SepalLengthCm 150 non-null
          1
                                             float64
              SepalWidthCm
                            150 non-null
                                             float64
             PetalLengthCm 150 non-null
                                             float64
              PetalWidthCm 150 non-null
                                             float64
                            150 non-null
             Species
                                            object
         dtypes: float64(4), int64(1), object(1)
         memory usage: 7.2+ KB
```

#### Hence the dataset contains 4 numerical columns and 1 object column

```
In [18]: np.unique(df["Species"])
Out[18]: array(['Iris-setosa', 'Iris-versicolor', 'Iris-virginica'], dtype=object)
In [19]: df.describe()
Out[19]:
```

|       | ld         | SepalLengthCm | SepalWidthCm | PetalLengthCm | PetalWidthCm |
|-------|------------|---------------|--------------|---------------|--------------|
| count | 150.000000 | 150.000000    | 150.000000   | 150.000000    | 150.000000   |
| mean  | 75.500000  | 5.843333      | 3.054000     | 3.775168      | 1.198667     |
| std   | 43.445368  | 0.828066      | 0.433594     | 1.752808      | 0.763161     |
| min   | 1.000000   | 4.300000      | 2.000000     | 1.000000      | 0.100000     |
| 25%   | 38.250000  | 5.100000      | 2.800000     | 1.600000      | 0.300000     |
| 50%   | 75.500000  | 5.800000      | 3.000000     | 4.350000      | 1.300000     |
| 75%   | 112.750000 | 6.400000      | 3.300000     | 5.100000      | 1.800000     |
| max   | 150.000000 | 7.900000      | 4.400000     | 6.900000      | 2.500000     |

#### 2. Create a histogram for each feature in the dataset to illustrate the feature distributions.

```
In [20]: fig, axes = plt.subplots(2, 2, figsize=(12, 6), constrained_layout = True)
    for i in range(4):
        x, y = i // 2, i % 2
        axes[x, y].hist(df[df.columns[i + 1]])
        axes[x, y].set_title(f"Distribution of {df.columns[i + 1][:-2]}")
```



#### 3. Create a boxplot for each feature in the dataset.

```
In [21]: data_to_plot = [df[x] for x in df.columns[1:-1]]
fig, axes = plt.subplots(1, figsize=(12,8))
bp = axes.boxplot(data_to_plot)
```



## 4. Compare distributions and identify outliers.

If we observe closely for the box 2, interquartile distance is roughly around 0.75 hence the values lying beyond this range of (third quartile + interquartile distance) i.e. roughly around 4.05 will be considered as outliers. Similarly outliers with other boxplots can be found.