

### Asignatura

# Redes computacionales

Introducción a la Arquitectura de protocolos, el Modelo TCP/IP y OSI



Juan Ignacio Iturbe A.







# Resultado de aprendizaje de la Unidad 1

"Diferenciar los modelos de referencia OSI y TCP/IP utilizando simulaciones de software, liderando y colaborando en equipos"









# La necesidad de una arquitectura de protocolos

- Procedimientos para intercambiar datos entre dispositivos pueden ser complejos.
- Las redes son complejas, con muchas "piezas": hosts, routers, enlaces de varios medios, aplicaciones, protocolos, hardware, software.
- Se requiere un alto grado de cooperación entre sistemas que se están comunicando.

El problema se divide en subtareas







# Ejemplo: organización de un viaje en avión

| ticket (compra)  | servicio de tickets  | ticket (utilizar)   |
|------------------|----------------------|---------------------|
| equipaje (check) | servicio de equipaje | equipaje (reclamar) |
| puertas (carga)  | servicio de puertas  | puertas (descarga)  |
| despegue         | servicio de pista    | aterrizaje          |
| ruta de avión    | servicio de rutas    | ruta de avión       |

Capa o nivel: cada una implementa un servicio.

- a través de sus propias acciones al interior del nivel.
- dependen de los servicios proporcionados por la nivel inferior.





# Arquitectura de Protocolos por niveles

- Módulos se arreglan en un stack vertical
- Cada Nivel en el stack:
  - Realiza funciones relacionadas
  - Deja a los niveles inferiores las funciones más primitivas
  - Provee servicios a los niveles superiores
  - Comunica con su correspondiente nivel par del sistema usando un protocolo









## Características de un Protocolo

Conjunto de reglas o convenciones para intercambiar bloques de datos con formato que se caracterizan por su:

- Sintaxis: formato de datos
- Semántica: información de control (coordinación, manejo de errores)
- **Temporización:** sintonización de velocidades, secuenciamiento.







# Ejemplo: Transferencia de Archivos

- Requiere un camino para los datos entre dos computadores
- Tareas:
  - Activar camino de comunicación
  - 2. El sistema fuente determina que el destino está listo para recibir datos.
  - 3. La aplicación de transferencia debe asegurarse que el destino está preparado para aceptar y almacenar el archivo.
  - 4. Conversión del formato del archivo para que sea compatible



# Arquitectura simplificada de redes



¿Qué ocurre si se modifica el módulo de acceso a la red?



# Arquitecturas estandarizadas

- Modelo OSI
- Modelo TCP/IP

**Aplicación** Presentación Aplicación Sesión **Transporte Transporte** Red InterRed Enlace de datos Host a red **Física** 











## Arquitectura de Protocolos TCP/IP

- Desarrollada por US Defense Advanced Research Project Agency (DARPA)
- Para ARPANET red de conmutación de paquetes
- Usados por la red global Internet
- La suite de protocolos comprende una gran colección de protocolos





## Capas o niveles TCP/IP

- No hay un modelo oficial pero sí un modelo de trabajo
  - Nivel de Aplicación
  - Host-to-host, o Nivel de Transporte
  - Nivel de Interred o Internet
  - Nivel de Acceso de Red
  - Nivel Físico







## Nivel Físico

- Relacionado con la interfaz física entre computador y red
- se preocupa de:
  - Características del medio de transmisión
  - Niveles de señal
  - Tasas de datos
  - Otros temas relacionados











## Nivel de Acceso de Red

- Intercambio de datos entre un sistema final y la red a la que está conectado
- se preocupa de:
  - Suministrar dirección de destino
  - Invocar servicios específicos (ej: prioridad)
  - Acceder y enrutar datos a través de un enlace de red entre dos sistemas conectados
  - Permite a los niveles superiores ignorar detalles de los enlaces









# Nivel de Internet (IP)

- Funciones de enrutamiento a través de múltiples redes
- Para sistemas conectados a diferentes redes
- Usando el protocolo IP
- Implementado en sistemas finales y routers
- Routers conectados a redes y reenvían datos entre ellas







# Nivel de Transporte(TCP)

- Nivel común compartido por todas las aplicaciones
- Provee entrega fiable de datos
- En el mismo orden en que se envían cuando se usa TCP







# TCP y UDP

- TCP:
  - Orientado a conexión
  - Entrega de segmentos fiable y en orden
- UDP:
  - sin conexiones (datagrama)
  - Entrega de segmentos no fiable
  - Segmentos pueden llegar en cualquier orden o duplicados







# Nivel de Aplicación

- Provee soporte para las aplicaciones
- Necesita un módulo separado para cada tipo de aplicación









## Lectura: OSI vs TCP/IP

- Leer y analizar "Crítica al modelo OSI y los protocolos " y "Crítica del modelo de referencia TCP/IP" (Redes de computadoras, Tanenbaum).
- Además lea el capítulo "0.3 Estándares" del libro. Identifique las principales organizaciones que estandarizan el funcionamiento de las redes de datos e Internet.
- Responder las siguientes preguntas en el foro asociado:
  - ¿Cuáles son las diferencias entre OSI y TCP/IP?
  - ¿Cuáles son las ventajas y desventajas?
  - ¿Por qué en la actualidad utilizamos TCP/IP?
  - ¿Por qué es importante la estandarización?
  - ¿Quienes son los encargados de definir los estándares de internet?
  - ¿Quiénes regulan los estándares relacionados a las capas físicas y de acceso a la red?
  - ¿Cómo se coordinan estas organizaciones? (investigue)
- Estas lecturas entran en la PEP 1.







### Actividad formativa

Configure una red de área local en packet tracer.

- Añadir un servidor DHCP
  - Puerta enlace: 192.168.0.1 (Por convención debería ser la interfaz del router en la LAN).
  - Pool de IPs: 100
  - IPs: 192.168.0.X y Máscara de subred 255.255.255.0
- Añadir 5 equipos y configurarlos para obtener IP automática.
- Revise la conectividad entre los equipos (utilice el icono de carta).
- Realice seguimiento de una de las PDU generadas e identifique en el simulador:
  - ¿Cuántos niveles se utilizan?
  - ¿Donde pude observar la división en niveles?
  - ¿Cuáles son los protocolos que pude observar?
  - ¿Cuál es el objetivo de cada protocolo?

Suba un documento en PDF (máximo 3 páginas) al entorno virtual.







## Hasta el momento...

- Se explicó la necesidad de una arquitectura de protocolos.
- Se definieron las características de un protocolo.
- Se ejemplifico una arquitectura de protocolo simplificada.
- A través de la lectura se comprenderá cómo evolucionaron en paralelo el modelo TCP/IP y arquitectura OSI.
- Se reconocieron y analizaron los niveles del modelo TCP/IP.

Ahora revisaremos otro modelo...







# Modelo de referencia OSI

- Open Systems Interconnection (Sistemas abiertos de interconexión
- Desarrollado por la Organización Internacional de Estándares (ISO, International Organization for Standarization)
- ISO/IEC 7498-1 (1984)
- Como un modelo para una arquitectura de protocolos y como un marco de referencia para desarrollar estándares de protocolos.
- Tiene siete niveles
- TCP/IP es un estándar de facto (norma aceptada y utilizada ampliamente)

### Aplicación

Servicios de red a aplicaciones

### Presentación

Representación de los datos

#### Sesión

Comunicación entre dispositivos de red

### Transporte Conexión punto a punto y

fiabilidad de los datos

#### Red

Determinación de la ruta e IP

### Enlace de datos

Direccion amiento físico

#### Física

Señal y transmición binaria









# Principios aplicados para la creación del modelo OSI



### ¿Cómo se definió cada capa?

### Crear una nueva capa











Funciones bien definidas para cada capa.

### Estandarización internacional

Elegir funciones de acuerdo a la definición de protocolos estandarizados.





### Minimizar el flujo de información

Establecer límites de capa para reducir el flujo de información.







# 1. Nivel físico (1/2)

"De todas formas, todo termina siendo señales eléctricas"

- Proporciona facilidades para la transmisión de bits entre entidades de enlace sobre el medio físico.
- Parámetros:
  - C (capacidad) 9600 bps
  - PE (tasa de error) 10^-7
  - T (retardo de propagación) 270 ms (satélites)
- Interfaces mecánicas y eléctricas
- Tipos de error (desvanecimientos, ráfagas, etc.)
- Protocolos asociados:
  - X.21, EIA/TIA-232, EIA/TIA-449, HSSI (High-Speed Serial Interface)













# 1. Nivel físico (2/2)

"De todas formas, todo termina siendo señales eléctricas"

- Preguntas típicas del nivel:
  - ¿Cuántos voltios se deben emplear para representar un 1 y cuantos para un 0?
  - ¿Cuántos nanosegundos dura un bit?
  - ¿La transmisión se debe llevar a cabo en ambas direcciones o al mismo tiempo?
  - ¿Cómo se establece la conexión inicial y cómo se finaliza?
  - ¿Cuántos pines tiene un conector de red y para qué se utiliza cada uno?











# 2. Nivel de enlace (1/2)

"Sin intermediarios"

- Ofrece un servicio de transferencia de datos en el ámbito de un enlace entre dos sistemas conectados directamente (sin intermediarios).
- Funciones
  - Establecimiento y liberación de conexiones de enlace
  - Delimitación y sincronización
  - Secuenciamiento
  - Detección y corrección de errores
  - Control de flujo
- Protocolos asociados:
  - LLC (IEEE 802.2), MAC (Ethernet 802.3, WLAN 802.11, 802.16, 802.5, etc)
  - SLIP, PPP, RARP, L2F, L2TP, FDDI, ISDN, etc.









# 2. Nivel de enlace (2/2)

"Sin intermediarios"

- La tarea principal de este nivel es transformar un medio de transmisión puro en una línea de comunicación que al llegar a la capa de red, aparezca libre de errores de transmisión.
- Para hacer esto:
  - el emisor fragmenta los datos de entrada en tramas de datos (algunos cientos o miles de bytes).
  - Transmite las tramas de manera secuencial.
  - El receptor confirma la trama de datos devolviendo una trama de confirmación de recepción
- En esta capa se define el direccionamiento físico, que permite a los hosts identificar las tramas destinadas a ellos.









# 3. Nivel de red (1/2)

"Todos los caminos llevan a Roma"

- Proporciona un servicio de transferencia de datos a través de algún tipo de red de comunicación.
- Oculta a los niveles superiores las diferencias tecnológicas de las subredes empleadas.
- Direccionamiento lógico.
- Funciones
  - Encaminamiento ( y almacenamiento y reenvío)
  - Establecimiento y liberación de conexiones de red
  - Secuenciamiento
  - Detección y corrección de errores
  - Control de flujo (evitar congestión)
- Protocolos asociados: IP, ICMP, OSPF, RIP, BGP, IGMP, NAT, entre otros.











# 3. Nivel de red (2/2)

"Todos los caminos llevan a Roma"

- ¿Cómo se encaminan (enrutan) los paquetes desde su origen a su destino?
  - Las rutas pueden estar basadas en tablas estáticas (determinada por el administrador de la red)
  - Las rutas también pueden determinarse cuando los enrutadores intercambian información de enrutamiento (enrutamiento dinámico).
    - No hay intervención del administrador de la red.
    - Las rutas pueden cambiar para reflejar la topología o el estado de la red.











# 4. Nivel de transporte (1/2)

"¿Cómo sé si he perdido una pieza del mensaje? R: La capa de transporte se encarga"

- Proporciona un servicio de transferencia de datos entre sistemas finales, transparente, fiable y efectivo en costo. Mantiene calidad de servicio.
- La función básica de esta capa es:
  - aceptar los datos provenientes de las capas superiores y (si es necesario) dividirlos en unidades más pequeñas, pasar estas a la capa de red
  - asegurarse de que todas las piezas lleguen correctamente al otro extremo.







# 4. Nivel de transporte (2/2)



"¿Cómo sé si he perdido una pieza del mensaje? R: La capa de transporte se encarga"

- Funciones:
  - Correspondencia entre direcciones de transporte y direcciones de red
  - Establecimiento y liberación de conexiones de transporte
  - Secuenciamiento extremo a extremo
  - Detección y corrección de errores
  - Control de flujo
- Protocolos asociados
  - TCP, UDP
  - Sequenced Packet Exchange (SPX)
  - Secure Socket Layer/Transport Layer Security (SSL/TLS) \*









# 5. Nivel de sesión (1/2)

"No quiero hablar con un computador. Yo quiero hablar con una aplicación"

- Ofrece mecanismos para que la aplicación pueda gestionar su diálogo, sincronizar y re-sincronizar el flujo de datos.
- Funciones:
  - Establecimiento y liberación de conexiones de sesión
  - Correspondencia entre direcciones de sesión y direcciones de transporte
  - Gestión de testigos (que impide que las dos partes traten de realizar la misma operación crítica al mismo tiempo)
  - Puntos de sincronización (en caso de caídas de la comunicación, permitir continuar desde donde se encontraban).









# 5. Nivel de sesión (2/2)

"No quiero hablar con un computador. Yo quiero hablar con una aplicación"

### Permite tres modos de comunicación:

- Simplex
- Half-Duplex
- Full-Duplex

### Protocolos asociados:

- Network File System (NFS)
- Structured Query Language (SQL)
- Remote Procedure Call (RPC)







# 6. Nivel de presentación

"Vas a ser transformado en algo que cualquiera pueda entender"

- Independiza a la aplicación de los problemas relativos a la representación de los datos (sintaxis de transferencia) las aplicaciones han de entenderse en términos abstractos.
- Funciones:
  - Negociación de sintaxis de transferencia
  - Transformación de sintaxis de transferencia
  - Funciones de encriptación y compresión
- Ejemplos
  - Transformación de caracteres (Unicode, Utf-8, ASCII)
  - Transformación de números (Little indian a Big indian)
  - Tagged Image File Format (TIFF)
  - Graphic Interchange Format (GIF)









# 7. Nivel de aplicación

"Dame la información. Yo me encargaré desde aguí"

- Proporciona medios para que un proceso de aplicación acceda al entorno OSI.
- Esta capa no incluye la aplicación en sí, sino que los protocolos que soportan las aplicaciones.
- Las funciones encomendadas a este nivel dependen del objetivo perseguido (correo electrónico, transferencia electrónica de fondos, World Wide Web etc.)









# 7. Nivel de aplicación



"Dame tú información. Yo me encargaré desde aquí"

- Es el único nivel que conoce la semántica asociada a la transferencia de información.
- Objetivo del usuario es tener muchas aplicaciones, normalizadas las más comunes y con una cierta calidad de servicio.
- Protocolos relacionados:
  - Simple Mail transfer Protocol (SMTP)
  - Hypertext transfer Protocol (HTTP)
  - File Transfer Protocol (FTP)
  - SSH, LDAP, SMB, NTP, DHCP, etc.









## 8. ¿Capa 8?



¿Sería una persona la capa 8?











## OSI vs TCP/IP

| OSI          | TCP/IP                                |  |
|--------------|---------------------------------------|--|
| Application  | Application  Transport (host-to-host) |  |
| Presentation |                                       |  |
| Session      |                                       |  |
| Transport    |                                       |  |
| Network      | Internet                              |  |
| Network      | Network<br>Access                     |  |
| Data Link    |                                       |  |
| Physical     | Physical                              |  |





## Revisión de lo visto

- Se explicaron los principios utilizados para la creación de cada nivel del modelo OSI.
- Reconocieron y analizaron los diferentes niveles del modelo OSI.
- Asociaron a cada nivel del modelo OSI dispositivos y protocolos de red usados en la actualidad.



# Actividad formativa: Arquitectura de protocolos

 Resuelva las actividades asociadas que se encuentran en cvirtual.usach.cl



