WHAT IS CLAIMED IS:

1. A method of forming a power semiconductor device comprising the steps of:

- A. providing a substrate of a first or second conductivity type;
- B. forming a voltage sustaining region on said substrate by:
- 1. depositing an epitaxial layer on the substrate, said epitaxial layer having a first conductivity type;
- 2. etching at least one trench in the epitaxial layer with an etchant gas having a dopant species of the second conductivity type to form a doped surface layer in a portion of the epitaxial layer defining the trench walls:
- 3. diffusing further into the epitaxial layer the dopant species located in said doped surface layer to form a doped epitaxial region adjacent to the trench and in the epitaxial layer;
- 4. depositing a filler material in said trench to substantially fill said trench; and
- C. forming over said voltage sustaining region at least one region of said second conductivity type to define a junction therebetween.
- 2. The method of claim 1 wherein the step of depositing the filler material is performed before the step of diffusing the dopant species.
- 3. The method of claim 1 wherein the step of depositing the filler material is performed after the step of diffusing the dopant species.
 - 4. The method of claim 1 wherein step (C) further includes the steps of: forming a gate conductor above a gate dielectric region;

forming first and second body regions in the epitaxial layer to define a drift region therebetween, said body regions having a second conductivity type;

forming first and second source regions of the first conductivity type in the first and second body regions, respectively.

- 5. The method of claim 1 wherein said material filling the trench is undoped polysilicon.
- 6. The method of claim 1 wherein said material filling the trench is a dielectric material.
 - 7. The method of claim 6 wherein said dielectric material is silicon dioxide.
 - 8. The method of claim 6 wherein said dielectric material is silicon nitride.
 - 9. The method of claim 1 wherein said dopant species is boron.
 - 10. The method of claim 9 wherein said etchant gas is BCl₃.
 - 11. The method of claim 1 wherein said dopant species is phosphorus.
 - 12. The method of claim 11 wherein said etchant gas is PH₃.
- 13. The method of claim 4 wherein said body regions include deep body regions.
- 14. The method of claim 1, wherein said trench is formed by providing a masking layer defining at least one trench, and etching the trench defined by the masking layer.
- 15. The method of claim 1 wherein the etching step is performed by reactive ion etching.
- 16. The method of claim 4, wherein said body region is formed by implanting and diffusing a dopant into the substrate.

- 17. The method of claim 1 wherein said power semiconductor device is selected from the group consisting of a vertical DMOS, V-groove DMOS, and a trench DMOS MOSFET, an IGBT, and a bipolar transistor.
- 18. A power semiconductor device made in accordance with the method of claim 1.
- 19. A power semiconductor device made in accordance with the method of claim 4.
- 20. A power semiconductor device made in accordance with the method of claim 17.
- 21. A power semiconductor device comprising:

 a substrate of a first or second conductivity type;

 a voltage sustaining region disposed on said substrate, said voltage sustaining region including:

an epitaxial layer having a first conductivity type;
at least one trench located in said epitaxial layer;
at least one doped column having a dopant of a second
conductivity type, said column being formed from a dopant introduced into
surfaces of the trench by an etchant gas used to form the trench and which is
diffused into the epitaxial layer;

a filler material substantially filling said trench; and at least one region of said second conductivity disposed over said voltage sustaining region to define a junction therebetween.

22. The device of claim 21 wherein said at least one region further includes:
a gate dielectric and a gate conductor disposed above said gate dielectric;
first and second body regions located in the epitaxial layer to define a drift
region therebetween, said body regions having a second conductivity type; and

first and second source regions of the first conductivity type located in the first and second body regions, respectively.

- 23. The device of claim 21 wherein said material filling the trench is undoped polysilicon.
- 24. The device of claim 21 wherein said material filling the trench is a dielectric material.
 - 25. The device of claim 24 wherein said dielectric material is silicon dioxide.
 - 26. The device of claim 24 wherein said dielectric material is silicon nitride.
 - 27. The device of claim 21 wherein said dopant is boron.
 - 28. The device of claim 27 wherein said etchant gas is BCl3.
 - 29. The device of claim 21 wherein said dopant is phosphorus.
 - 30. The device of claim29 wherein said etchant gas is PH3.
- 31. The device of claim 22 wherein said body regions include deep body regions.
- 32. The device of claim 21 wherein said power semiconductor device is selected from the group consisting of a vertical DMOS, V-groove DMOS, and a trench DMOS MOSFET, an IGBT, and a bipolar transistor.