Exercise 11 (D_term and assembly of PID) (HW3 prob 5):

The derivative of a function can be approximated by:
$$\frac{dF(t)}{dt} = \frac{f(t) - f(t - \Delta t)}{\Delta t}$$

We only need something proportional to the derivative so the divide by Δt is unnecessary. Consider the following circuit:

Testbench should be self-checking...so you will have to do some calculations on the side. **Submit: Dterm.sv**, **Dterm_tb.sv**, and proof it ran.

Exercise 11 (assembly of PID) (HW3 prob 5):

 $- |err_sat| < 10'd30$

Now that you have P,I,&D assemble the PID unit actl_hdng 12 SE to 10-bit mult term 15-bits sat err sat 12'h000 dsrd_hdng ► lft_spd SE to err_sat[9:0] div8 15-bits I term SE to err_sat[9:0] D_term 15-bits moving SE to frwrd_spd

at hdng

• **NOTE:** The blocks *P_term*, *I_term*, & *D_term* are shown outlined in dotted lines because you may not want to instantiate them, but rather copy their implementation in flat into **PID.sv.**

rght_spd

12'h000

Exercise 11 (assembly of PID) (HW3 prob 5):

Signal:	Dir:	Description:
clk, rst_n	in	50MHz clock and asynch active low reset
moving	in	High if turning or moving forward (from navigate block)
dsrd_hdng[11:0]	In	Signed desired heading (from cmd_proc)
actl_hdng[11:0]	in	Signed actual heading (from inert_intf)
hdng_vld	In	High for 1 clock every new valid gyro reading
frwrd_spd[10:0]	In	Unsigned forward speed (from navigate block)
at_hdng	out	Asserted if error is small
lft_spd[11:0]	out	Signed left motor speed (goes to MtrDrv)
Rght_spd[11:0]	out	Signed right motor speed

- Produce PID.sv
- A basic self-checking testbench is provided (**PID_tb.sv**).
- Submit your code and an image of the transcript window showing is passes the provided testbench