Informed Search

Tian-Li Yu

Taiwan Evolutionary Intelligence Laboratory (TEIL)

Department of Electrical Engineering

National Taiwan University

tianliyu@ntu.edu.tw

Readings: AIMA Sections 3.5~3.6

Outline

- Best-First Search
 - Greedy search
 - A* search
 - Optimality of A*
- Memory Bounded Search
 - Iterative deepening A*
 - Recursive best-first search
 - Simplified memory-bounded A*
- 3 Heuristic
 - Performance
 - Generating heuristics
- Unknown Environments
 - LRTA*

Best-First Search

- Informed search, a.k.a. heuristic search.
- Idea: Use an evaluation function for each node to estimate the desirability.
 - Expand the most desirable unexpanded node.
- The evaluation function is called heuristic, denoted as h(n).
 - It estimates of cost from node *n* to the closest goal.
- Special cases:
 - Greedy search, f(n) = h(n).
 - A* search, f(n) = g(n) + h(n).

Greedy Search

- $h_{SLD}(n) = \text{straight-line distance from } n \text{ to Bucharest.}$
- Greedy search expands the node that appears to be closest to goal.

Greedy Search on Romania Map

Tian-Li Yu (NTUEE)

Greedy Search on Romania Map

Properties of Greedy Search

- Completeness: No.
 - TREE-SEARCH may get stuck in loops and never reach any goal even in finite state spaces.
 - For example, from lasi to Fagaras, lasi \to Neamt \to lasi \to Neamt $\to \cdots$
 - GRAPH-SEARCH is complete in finite spaces, but not complete in infinite ones.
- Optimality: No.
- Time complexity: $O(b^m)$, but a good heuristic can give dramatic improvement.
- Space complexity: $O(b^m)$, since it keeps all nodes in memory.

Tian-Li Yu(NTUEE) Informed Search 7/-

A* Search

- Idea: Avoid expanding paths that are already expensive.
- Evaluation function: f(n) = g(n) + h(n)
 - g(n): cost so far to reach n.
 - h(n): estimated cost to goal from n.
 - f(n): estimated total cost from the starting node to goal through n.
- A* search combines the advantages of the uniform-cost search and the greedy search.

A* Search on Romania Map

A* Search on Romania Map

A* Search on Romania Map

11 / 41

Properties of A* Search

- Completeness: Yes. Unless infinite nodes with $f \leq f(goal)$.
- Optimality: Depends on whether h is

Admissible

- Never overestimates the actual cost.
- $\forall n, h(n) \leq h^*(n)$, where h^* is the actual cost.
- e.g., $h_{SLD}(n) < h^*(n)$.

Consistent

- A.k.a. monotonicity.
- \forall successor n' of any ngenerated by any action a, $h(n) \leq c(n, a, n') + h(n'),$ where c is the step cost.
- Time complexity: $O(b^{\epsilon d})$ for constant step costs, where $\epsilon = (h^* - h)/h^*$ (relative error) and d is the solution depth. Effective branch factor is b^{ϵ} .
- Space complexity: $O(b^d)$, since it keeps all nodes in memory.

Optimality of A*

- \bullet A* is optimal on trees if h is admissible.
- \bigcirc A* is optimal on graphs if h is admissible and consistent.

Proof of A*'s optimality on trees.

Suppose some suboptimal goal G' has been generated and is in the queue. Let n be an unexpanded node on a shortest path to an optimal goal G.

$$f(G') = g(G') + h(G')$$

= $g(G')$
> $g(G)$
= $g(n) + h^*(n)$
≥ $g(n) + h(n)$
= $f(n)$

Tian-Li Yu (NTUEE) Informed Search 13 / 41

Optimality of A* on Graphs

- Lemma: If h(n) is consistent, the values of f along any path in A^* are nondecreasing.
- Gradually adds *f*-contours of nodes.
- Contour i has all nodes with $f = f_i$, where $f_i < f_{i+1}$.

Tian-Li Yu(NTUEE) Informed Search 14 / 41

Optimality of A* on Graphs

Lemma: if h(n) is consistent, the values of f along any path are nondecreasing.

Consistent heuristic: $h(n) \le c(n, a, n') + h(n')$ Therefore,

$$f(n') = g(n') + h(n')$$

= $g(n) + c(n, a, n') + h(n')$
 $\geq g(n) + h(n)$
= $f(n)$

Now we see that consistency is actually triangle inequality.

Tian-Li Yu (NTUEE) Informed Search 15 / 41

Iterative Deepening A* (IDA*)

Time complexity is not A*'s biggest drawback.

- A* usually runs out of memory before it reaches goals.
- Iterative deepening A* (IDA*):
 - Use f(g+h) as cutoff instead of the depth.
 - Initial cutoff: $f(s_0) = h(s_0)$
 - Perform DFS on nodes where f(n) < cutoff.
 - ullet Reset cutoff to smallest f of non-expanded nodes.

IDA*(problem)

```
1  currentCutoff = f(s<sub>0</sub>)
2  repeat
3  result = f-LIMITED-SEARCH(problem, currentCutoff)
4  if result ≠ cutoff
5  return result
6  currentCutoff = smallest f-value of non-expanded nodes.
```

Tian-Li Yu(NTUEE) Informed Search 16 / 41

IDA* Traversal on Romania Map

• 1st iteration: currentCutoff = 366 (Arad) Arad \rightarrow Sibiu \rightarrow Timisoara \rightarrow Zerind

```
• 2<sup>nd</sup> iteration: currentCutoff = 393 (Sibiu)
```

 $\mathsf{Arad} \to \mathsf{Sibiu} \to \mathsf{Arad} \to \mathsf{Fagaras} \to \mathsf{Oradea} \to \mathsf{Rimnicu} \ \mathsf{Vilcea} \to$ Timisoara \rightarrow 7erind

- 3rd iteration: currentCutoff = 413 (Rimnicu Vilcea)
 - $\mathsf{Arad} \to \mathsf{Sibiu} \to \mathsf{Arad} \to \mathsf{Fagaras} \to \mathsf{Oradea} \to \mathsf{Rimnicu} \ \mathsf{Vilcea} \to \mathsf{Craiora}$ \rightarrow Pitesti \rightarrow Sibiu \rightarrow Timisoara \rightarrow Zerind
- 4th iteration: *currentCutoff* = 415 (Fagaras)
 - $\mathsf{Arad} \to \mathsf{Sibiu} \to \mathsf{Arad} \to \mathsf{Fagaras} \to \mathsf{Sibiu} \to \mathsf{Bucharest} \to \mathsf{Oradea} \to \mathsf{Arad} \to \mathsf{$ Rimnicu Vilcea \rightarrow Craiora \rightarrow Pitesti \rightarrow Sibiu \rightarrow Timisoara \rightarrow Zerind
- 5th iteration: currentCutoff = 417 (Pitesti)

Properties of IDA*

- Completeness and Optimality same as A*.
- Time complexity: $O(b^{\epsilon d})$.
- Space complexity: O(bd).
- Practical for problems with unit step costs.
- What happens if all f-values are different (real-values)?
 The number of iterations can equal the number of nodes whose f-value is less than the cost of an optimal path!

Recursive Best-First Search (RBFS)

- IDA* is problematic when g are real-valued.
- RBFS is a simple recursive algorithm that mimics standard best-first search using only linear space.

RECURSIVE-BEST-FIRST-SEARCH(problem)

return RBFS(problem, MAKE-NODE(problem.initial_state), ∞)

Recursive Best-First Search (RBFS)

- DFS where each node on the current path remembers the best f-value of any alternative path from its ancestors.
 - Maintains all nodes on current path plus all their siblings (ancestor(n)).
- When expanding node n
 - $\forall n' \in children(n)$, compute f(n').
 - if an ancestor n'' has a lower f-value than all n's children, then
 - Assign *f*-value of the cheapest child to *n*.
 - Backtrack to n".
 - Otherwise, proceed as normal.

Tian-Li Yu (NTUEE)

Recursive Best-First Search (RBFS)

$RBFS(problem, node, f_limit)$

```
if problem.GOAL-TEST(node.state) return SOLUTION(node)
    successors = \phi
 3
    for each action in problem. ACTIONS (node. state) repeat
         add CHILD-NODE(problem, node, action) into successors
 5
    if successors is empty return failure, \infty
    for each s in successors repeat
 6
         s.f = \max(s.g + s.h, node.f)
 8
    repeat
 9
         best = the lowest f-value node in successors
         if best.f > f_limit return failure, best.f
10
11
         alternative = the second-lowest f-value among successors
12
         result, best. f = RBFS(problem, best, min(f_limit, alternative))
13
         if result \neq failure return result
```

Tian-Li Yu (NTUEE) Informed Search

21/41

RBFS on Romania Map

RBFS on Romania Map

RBFS Traversal on Romania Map

- $f_limit = \infty$, expanding Arad Arad \rightarrow Sibiu \rightarrow Timisoara \rightarrow Zerind
- $f_limit = 447$ (Timisoara), expanding Sibiu Arad \rightarrow Fagaras \rightarrow Oradea \rightarrow Rimnica Vilcea
- f_limit = 415 (Fagaras), expanding Rimnica Vilcea
 Craiova → Pitesti → Sibiu
- Cutoff occurs. Record f(RimnicaVilcea) as 417. f_limit = 417 (Rimnicu Vilcea), expanding Fagaras
 Sibiu → Bucharest
- Cutoff occurs. Record f(Fagaras) as 450. $f_limit = 447$ (Timisoara), expanding Rimnicu Vilcea (again)
 - $\mathsf{Craiova} \to \mathsf{Pitesti} \to \mathsf{Sibiu}$
- $f_limit = 447$ (Timisoara), expanding Pitesti Bucharest \rightarrow Craiova \rightarrow Rimnicu Vilcea
- . . .

Properties of RBFS

- Completeness and optimality same as A*.
- Time complexity: Depends on accuracy of h and on how often best
- Space complexity: O(bd)
 Each time RBFS changes is mind corresponds to one iteration of IDA*.
- RBFS may need to re-expand forgotten nodes to re-create best-path.

Memory-Bounded Search

- In a sense, both IDA* and RBFS use too little memory.
 - Between iterations, IDA* maintains only one number, the current f-limit (currentCutoff).
 - RBFS maintains more, but uses only linear space: if more space were available, it would not benefit from it.
- It seems reasonable to use all the memory available the more, the better.
- We'd like a memory-bounded version of A*.

Simplified Memory-Bounded A* (SMA*)

- Idea: Run A* as normal until memory is full. Then replace something in memory with newly generated nodes.
- SMA*:
 - When memory is full, drop the worst leaf node with highest f-value.
 - Like RBFS, SMA* backs up *f*-value of this forgotten node to it's parent, so we know when to go back to it.
 - If all descends of a node n are forgotten, we don't know which way to go from n, but we know if it's worth re-exploring n.

Tian-Li Yu (NTUEE) Informed Search 27 / 41

Simplified Memory-Bounded A* (SMA*)

- Problem: What if many nodes have the same f-value?
- Solution: delete the oldest and expand the newest.
- SMA* works as long as there is enough memory for the complete optimal path.
- If not, SMA* needs to switch continuously between candidate paths.
- Causes a similar problem to thrashing in disk paging systems.

Tian-Li Yu (NTUEE)

Admissible Heuristics for 8-Puzzle

- h_1 = the number of misplaced tiles.
- h₂ = the sum of Manhattan distances of the tiles from their goal positions.

Start State

Goal State

- $h_1(s_0) = 8$.
- $h_2(s_0) = 3 + 1 + 2 + 2 + 2 + 3 + 3 + 2 = 18$.

Performance of Heuristic

Definition

For two admissible heuristics h_1 and h_2 , h_2 dominates h_1 iff $\forall n, h_2(n) \ge h_1(n)$.

Theorem: A* using h_2 never expands more dides than using h_1 .

- Every node with $f(n) < C^*$ is expanded.
- Every node with $h(n) < C^* g(n)$ is expanded.
- A^* using h_2 expands $n \Rightarrow h_2(n) < C^* g(n) \Rightarrow h_1(n) \le h_2(n) < C^* g(n) \Rightarrow A^*$ using h_1 also expands n.
- $|\{n \mid h_2(n) < C^* g(n)\}| \le |\{n \mid h_1(n) < C^* g(n)\}|$

• Given any admissible heuristics h_a and h_b , $h = \max(h_a, h_b)$ is also admissible and dominates h_a and h_b .

4□ > 4□ > 4 Ē > 4

Effective Branching Factor

- One way to characterize the quality of a heuristic is effective branching factor b*.
 - Total number of nodes generated by A*: N
 - Solution depth: d

$$N+1=1+b^*+(b^*)^2+\cdots+(b^*)^d.$$

A well-designed heuristic would have a value of b* close to 1.

Depth	Nodes generated			Effective branching factor		
d	IDS	$A^*(h_1)$	$A^*(h_2)$	IDS	$A^*(h_1)$	A*(h ₂)
2	10	6	6	2.45	1.79	1.79
4	112	13	12	2.87	1.48	1.45
6	680	20	18	2.73	1.34	1.30
8	6384	39	25	2.80	1.33	1.24
10	47127	93	39	2.79	1.38	1.22
12	3644035	227	73	2.78	1.42	1.24

Tian-Li Yu(NTUEE) Informed Search 31 / 41

Generating Heuristic from Relaxed Problems

- Admissible heuristics can be derived from exact solution cost to a relaxed version of the problem.
- In 8-puzzle, h_1 is derived from that a tile can move to anywhere in one step.
- In 8-puzzle, h_2 is derived from that a tile can move to any adjacent square in one step.
- Key: The optimal solution cost of a relaxed problem is no greater than the optimal solution cost of the original problem.

Tian-Li Yu (NTUEE)

Problem Relaxation Example: TSP

- Traveling salesman problem (TSP).
- Known to be \mathcal{NP} -hard.

- Can be relaxed to minimum spanning tree (MST).
- MST cost is never greater than the shortest tour (why? in what condition?).
- Cost can be computed in $O(n^2)$.

33 / 41

Tian-Li Yu (NTUEE) Informed Search

Generating Heuristic from Sub-problems

Start State

Goal State

- Admissible heuristic can also be derived from a subproblem.
- Pattern databases store exact solution costs for every possible subproblem instances.
 - For example, every possible position of 1-2-3-4 and the blank.
- Can we use the costs of 1-2-3-4 and 5-6-7-8?
 - Simple addition breaks the admissibility.
 - How about count only those moves involving 1-2-3-4?
 - Then the addition is still admissible.
 - This is the idea behind disjoint pattern databases.

Generating Heuristic from Experience

- Convert a state into the feature domain.
- Feature $f_1(n)$: "number of misplaced tiles".
- Feature $f_2(n)$: "number of pairs of adjacent tiles that are not adjacent in the goal state".
- Both $f_1(goal) = 0$ and $f_2(goal) = 0$.
- $h(n) = c_1 f_1(n) + c_2 f_2(n)$ with $c_1 > 0, c_2 > 0$ (why?).
- We could take randomly generated 8-puzzle and gather statistics to decide constants.
- No guarantee to be admissible or consistent.

Online Search with Unknown Environments

- Competitive ratio = $\frac{\text{actual cost}}{\text{minimum cost}}$. We'd like to minimize this.
- If all actions are reversible, online-DFS visits every states exactly twice in the worst case with enough memory.
- If some actions are irreversible, a small (or even finite!) competitive ration can be difficult to achieve.

Search with Limited Memory

- Only one or a few states are stored.
- Single-point hill-climbing gets stuck at a local optimum, causing the competitive ratio to be infinite.
- We may add some random walk (like simulated annealing), but still can be inefficient (exponential in the below example).
- Random walk is complete for finite state spaces.

Learning Real-Time A* (LRTA*)

- H[s]: a table of cost estimates indexed by state, initially empty.
- result[s, a]: a table indexed by state and action, initially empty.

```
LRTA^*-AGENT(s')
```

```
1 if GOAL-TEST(s')
2 return stop
3 if s' is a new state (not in H)
4 H[s'] = h(s')
5 if s \neq \text{NULL}
6 result[s, a] = s'
7 H[s] = \min_{b \in \text{ACTIONS}(s)} \text{LRTA*-COST}(s, b, result[s, b], H)
8 a = \text{an action } b \text{ in ACTIONS}(s') \text{ that minimizes}
\text{LRTA*-COST}(s', b, result[s', b], H)
9 s = s'
10 return a
```

Tian-Li Yu(NTUEE) Informed Search 38 / 41

Learning Real-Time A* (LRTA*)

- LRTA* keeps updating H[s].
- LRTA* always chooses the apparently best action.
- Optimism under uncertainty: If an action has never tried in a state, LRTA* assumes the least possible cost h(s). This encourages exploration.

LRTA*-Cost(s, a, s', H)

- 1 **if** s' is undefined **return** h(s)
- 2 else return c(s, a, s') + H[s']

Learning Real-Time A* (LRTA*)

- Unlike A*, LRTA* is NOT complete for infinite state spaces.
- With n states, LRTA* guarantees to find optimum within $O(n^2)$ steps, but usually much faster.
- Shaded: agent's location, circle: H[s] updated.

4□▶ 4□▶ 4 Ē▶ 4 Ē▶ Ē 90

Tian-Li Yu (NTUEE) Informed Search 40 / 41

Summary

- Heuristic functions estimate costs of shortest paths.
- Good heuristics can dramatically reduce search cost.
- Greedy best-first search expands lowest h.
 - In general not complete nor optimal.
- A* search expands lowest g + h.
 - Optimal when *h* is admissible (and consistent).
- Memory limitation is an important issue to heuristic search. Search with forgetting and re-expanding are the keys, but still suffers from different conditions.
- A more efficient heuristic can be generated from several admissible heuristics.
- Admissible heuristics can be derived from relaxed problems, subproblems, and experience.
- On-line search with limited memory can easily fail; LRTA* works well
 if memory is enough.