US Patent & Trademark Office Patent Public Search | Text View

United States Patent

Kind Code

B2

Date of Patent

Inventor(s)

12396054

August 19, 2025

Park; Kyungmin et al.

Parameters for small data transmission procedure identified with field

Abstract

A method may include receiving, by a base station distributed unit from a wireless device not in a radio resource control (RRC) connected state an RRC request message for a small data transmission (SDT) procedure and uplink data associated with the SDT procedure. The method may also include sending, to a base station central unit, the RRC request message for the SDT procedure. The method may further include receiving, from the base station central unit, a message that includes radio link control (RLC) configuration parameters for the SDT procedure and a field indicating that the RLC configuration parameters are for the SDT procedure. The method may additionally include sending the uplink data to the base station central unit in accordance with the field.

Inventors: Park; Kyungmin (Vienna, VA), Dinan; Esmael Hejazi (McLean, VA), Kim;

Taehun (Fairfax, VA), Jeon; Hyoungsuk (Centreville, VA), Ryu; Jinsook (Oakton,

VA), Talebi Fard; Peyman (Vienna, VA)

Applicant: Ofinno, LLC (Reston, VA)

Family ID: 1000008766859

Assignee: Ofinno, LLC (Reston, VA)

Appl. No.: 18/631833

Filed: April 10, 2024

Prior Publication Data

Document IdentifierUS 20240284548 A1

Publication Date
Aug. 22, 2024

Related U.S. Application Data

continuation parent-doc US 18113462 20230223 US 11979935 child-doc US 18631833 continuation parent-doc WO PCT/US2021/065736 20211230 PENDING child-doc US 18113462

Publication Classification

Int. Cl.: H04W76/27 (20180101); H04W72/21 (20230101); H04W76/30 (20180101)

U.S. Cl.:

CPC **H04W76/27** (20180201); **H04W72/21** (20230101); **H04W76/30** (20180201);

Field of Classification Search

CPC: H04W (76/27); H04W (72/21); H04W (76/30)

References Cited

U.S. PATENT DOCUMENTS

Patent No.	Issued Date	Patentee Name	U.S. Cl.	CPC
2020/0053791	12/2019	Ozturk et al.	N/A	N/A
2021/0105837	12/2020	Lee	N/A	H04W 8/26
2021/0243777	12/2020	Tsai et al.	N/A	N/A
2021/0337602	12/2020	Liu et al.	N/A	N/A
2021/0392617	12/2020	Laselva	N/A	H04W 48/08
2022/0132600	12/2021	Kim	N/A	H04W 76/30
2022/0303946	12/2021	Kim	N/A	H04W 88/085
2023/0083985	12/2022	Kim	370/329	H04W 76/30
2023/0189380	12/2022	Palat	370/329	H04W 76/11

FOREIGN PATENT DOCUMENTS

Patent No.	Application Date	Country	CPC
104956721	12/2014	CN	N/A
3 560 234	12/2021	EP	N/A
2020/076033	12/2019	WO	N/A
2020/087280	12/2019	WO	N/A
2020/088097	12/2019	WO	N/A
2020/166817	12/2019	WO	N/A
2021/045464	12/2020	WO	N/A

OTHER PUBLICATIONS

R2-2008959; 3GPP TSG-RAN WG2 Meeting #112-electronic; Online, Nov. 2-13, 2020; Source: vivo; Title: Discussion on RRC-controlled small data transmission; Agenda Item: 8.6.3; Document for: Discussion and Decision. cited by applicant

R2-2008993; 3GPP TSG-RAN WG2 Meeting #112-e; Electronic meeting, Nov. 2-13, 2020; Agenda item: 8.6.3; Source: Intel Corporation; Title: SDT control plane procedures and failure handling; Document for: Discussion and Decision. cited by applicant

R2-2009013; 3GPP TSG-RAN WG2 #112-e; E-meeting, Nov. 2020; Agenda Item: 8.6.3; Source: OPPO; Title: Control plane aspects on small data transmission; Document for: Discussion, Decision. cited by applicant

R2-2009055; 3GPP TSG-RAN WG2 #112-e; E-meeting, Nov. 2-13, 2020; Title: RRC-less SDT over CG; Source: Mediatek Inc., Apple; Agenda item: 8.6.3; Document for: Discussion and

```
Decision. cited by applicant R2-2009095; 3GPP TSG-RAN2 Meeting #112 Electronic; Nov. 2-Nov. 13, 2020; Agenda item:
```

8.6.3; Source: Samsung; Title: Control Plane Aspects of SDT; Document for: Discussion & Decision. cited by applicant

R2-2009131; 3GPP TSG-RAN WG2 Meeting #112-e; Online, Nov. 2-13, 2020; Agenda Item: 8.6.3 (Control plane aspects); Source: Fujitsu; Title: Open issue in [Post111-e][926]: TAT handling; Document for: Decision. cited by applicant

R2-2009132; Update of R2-2006865; 3GPP TSG-RAN WG2 Meeting #112-e; Online, Nov. 2-13, 2020; Agenda Item: 8.6.3 (Control plane aspects); Source: Fujitsu; Title: Identified issue in [Post111-e][926]: CA and PDCP CA duplication; Document for: Decision. cited by applicant R2-2009151; 3GPP TSG-RAN WG2 Meeting #112 electronic; Online, Nov. 2-13, 2020; Agenda item: 8.6.3; Source: Spreadtrum Communications; Title: Discussion on the general aspects for small data transmission; Document for: Discussion and Decision. cited by applicant R2-2009189; 3GPP TSG-RAN2 Meeting #112-e; e-Meeting, Nov. 2-13, 2020; Source: email discussion Rapporteur (ZTE Corporation); Title: Agreeable details of RRC-based solution for SDT (RACH and CG); Agenda item: 8.6.1; Document for: Discussion and Decision. cited by applicant R2-2009190; 3GPP TSG-RAN2#112e; Nov. 2-13, 2020; Source: ZTE Corporation, Sanechips; Title: Control plane aspects of SDT; Agenda item: 8.6.3; Document for: Discussion and Decision. cited by applicant

R2-2009316; 3GPP TSG-RAN WG2 Meeting #112 electronic; Online, Nov. 2-Nov. 13, 2020; Agenda item: 8.6.3; Source: SHARP; Title: Discussion on RRC procedure for small data transmission; Document for: Discussion and Decision. cited by applicant

R2-2009344; 3GPP TSG-RAN WG2 #112-e; Online meeting, Nov. 2-13, 2020; Title: Timer configuration for SDT failure detection; Source: ETRI; Agenda item: 8.6.3; Document for: Discussion. cited by applicant

R2-2009347; 3GPP TSG-RAN WG2#112e; online, Nov. 2-13, 2020; Agenda item: 8.6.3; Source: Potevio; Title: Differentiation and triggering of SDT procedure; Document for: Discussion & Decision. cited by applicant

R2-2009367; 3GPP TSG-RAN WG2 #112-e; Online, Nov. 2-13, 2020; Source: CATT; Title: Considerations on general aspects and subsequent SDT; Agenda Item: 8.6.3; Document for: Discussion and Decision. cited by applicant

R2-2009460; 3GPP TSG-RAN2#112-e; Online, Nov. 2-13, 2020; Agenda Item: 8.6.3 (NR_SmallData_INACTIVE-Core); Source: LG Electronics Inc.; Title: Anchor relocation for Small Data Transmission; Document for: Discussion and Decision. cited by applicant R2-2009491; 3GPP TSG-RAN WG2 Meeting #112-e; Online, Nov. 2 -13, 2020; Agenda Item: 8.6.3; Source: Apple; Title: Control plane aspects on the SDT procedure; Document for: Discussion and Decision. cited by applicant

R2-2009643; 3GPP TSG RAN WG2#112 electronic; Online, Nov. 2-13, 2020; Agenda Item: 8.6.3; Source: ITRI; Title: Discussion on how to handle cell reselection during T319 for the case of SDT; Document for: Discussion. cited by applicant

R2-2009656; 3GPP TSG-RAN WG2 #112 electronic; E-Meeting, Nov. 2-13, 2020; Source: NEC; Agenda item: 8.6.3; Title: Control plane issues for SDT; Document for: Discussion. cited by applicant

R2-2009675; 3GPP TSG-RAN WG2 Meeting #112 electronic; E-Meeting, Nov. 2-Nov. 13, 2020; Source: Beijing Xiaomi Mobile Software; Title: Discussion on the RRC-less SDT; Agenda Item: 8.6.3; Document for: Discussion and Decision. cited by applicant

R2-2009873; 3GPP TSG-RAN WG2 Meeting #112 electronic; E-meeting, Nov. 2-13, 2020; Agenda item: 8.6.3; Source: Lenovo, Motorola Mobility; Title: Analysis on RA selection and RNAU; Document for: Discussion and Decision. cited by applicant

R2-2009875; 3GPP TSG-RAN WG2 Meeting #112 electronic; Online, Nov. 2-13, 2020; Agenda

- item: 8.6.3; Source: Lenovo, Motorola Mobility; Title: Consideration on RRC-less SDT and subsequent data transmission; Document for: Discussion and Decision. cited by applicant R2-2009888; 3GPP TSG RAN WG2 Meeting #112-e; Online meeting, Nov. 2-13, 2020; Agenda item: 8.6.3; Source: Sony; Title: Discussion on context fetch, anchor relocation and subsequent SDT in NR; Document for: Discussion and decision. cited by applicant
- R2-2009919; 3GPP TSG-RAN WG2 Meeting #112 Electronic; Elbonia, Nov. 2-13, 2020; Agenda item: 8.6.3; Source: Nokia, Nokia Shanghai Bell; Title: SDT control plane aspects for RACH based schemes; WID/SID: NR_SmallData_INACTIVE—Release 17; Document for: Discussion and Decision. cited by applicant
- R2-2009930; 3GPP TSG-RAN WG2 #112-e; Online, Nov. 2-13, 2020; Agenda item: 8.6.3; Source: Huawei, HiSilicon; Title: SDT aspects common for RACH-based and CG-based SDT scheme; Document for: Discussion. cited by applicant
- R2-2009966; 3GPP TSG-RAN WG2 #112e; Electronic meeting, 112e Nov. 2-13, 2020; Agenda Item: 8.6.3; Source: Ericsson; Title: RRC aspects for SDT; Document for: Discussion, Decision. cited by applicant
- R2-2009967; 3GPP TSG-RAN WG2 Meeting #112-e; Electronic meeting, Nov. 2-13, 2020; Agenda Item 8.6.3; Source: Ericsson; Title: Summary of email discussion [Post111-e][926] [SmallData] Context Fetch; Document for: Discussion and Decision. cited by applicant R2-2009978; 3GPP TSG-RAN WG2 #112e; Electronic meeting, Nov. 2-13, 2020; Agenda item: 8.6.3 Control plane aspects; Source: NEC; Title: Support of RRC-less SDT; Document for: Discussion and Decision. cited by applicant
- R2-2010008; 3GPP TSG-RAN WG2 Meeting #112e; Online, Nov. 2-13, 2020; Agenda item: 8.6.3; Source: Qualcomm Incorporated; Title: Control plane aspects on NR small data transmission; WID/SID: NR_SmallData_INACTIVE-Core—Release 17; Document for: Discussion and Decision. cited by applicant
- R2-2010109; 3GPP RAN WG2 Meeting #112e; eMeeting Nov. 2-13, 2020; Agenda Item: 8.6.3; Source: InterDigital; Title: Small data transmission failure and cell reselection; Document for: Discussion, Decision. cited by applicant
- R2-2010388; 3GPP TSG-WG2 Meeting #112 electronic; Online, Nov. 2-13, 2020; Source: CMCC; Title: SDT type selection and switch procedure; Agenda item: 8.6.3; Document for: Discussion. cited by applicant
- R2-2010429; 3GPP TSG-RAN WG2 Meeting #112e; Electronic, Nov. 2-Nov. 13, 2020; Agenda Item: 8.6.3; Source: ASUSTek; Title: Discussion on subsequent small data transmission; Document for: Discussion and Decision. cited by applicant
- 3GPP TS 38.331 V17.2.0 (Sep. 2022); Technical Specification; 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; NR; Radio Resource Control (RRC) protocol specification; (Release 17). cited by applicant
- 3GPP TS 38.401 V17.2.0 (Sep. 2022); Technical Specification; 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; NG-RAN; Architecture description; (Release 17). cited by applicant
- 3GPP TS 38.473 V17.2.0 (Sep. 2022); Technical Specification; 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; NG-RAN; F1 application protocol (F1AP); (Release 17). cited by applicant
- R2-166118; 3GPP TSg-RAN WG2 Meeting #95bis; Kaohsiung, Oct. 10-14, 2016; Source: CATT; Title: Small data transmission in inactive state; Agenda Item: 9.2.2.1; Document for: Discussion and Decision. cited by applicant
- R2-2007447; 3GPP TSG-RAN2#111e; Aug. 17-28, 2020; Source: WI Rapporteur (ZTE); Title: Work plan for the INACTIVE small data WI; Agenda item: 8.6.1; Document for: Discussion and Decision. cited by applicant
- R2-2008994; 3GPP TSG-RAN WG2 Meeting #112-e; Electronic meeting, Nov. 2-13, 2020;

Agenda item: 8.6.4; Source: Intel Corporation; Title: RACH selection and User plane aspects with and without anchor relocation; Document for: Discussion and Decision. cited by applicant R2-2009368; 3GPP TSG-RAN WG2 Meeting #112 electronic; Online, Nov. 2-13, 2020; Source: CATT; Title: Analysis on SDT without context relocation; Agenda Item: 8.6.5; Document for: Discussion and Decision. cited by applicant

R2-2009799; 3GPP TSG-RAN WG2 Meeting #112 Electronic; Elbonia, Nov. 2-13, 2020; Agenda item: 8.6.4; Source: Nokia, Nokia Shanghai Bell; Title: Details on RACH specific schemes; WID/SID: NR_SmallData_INACTIVE—Release 17; Document for: Discussion and Decision. cited by applicant

R2-2010839; 3GPP TSG-RAN WG2 Meeting #112e; eMeeting, Nov. 2-13, 2020; Title: LS to RAN3 on small data transmission; Response to :-; Release: Release 17; Work Item: NR_SmallData_INACTIVE-Core; Source: TSG RAN WG2]; To: TSG RAN WG3. cited by applicant

R3-214844; 3GPP TSG-RAN WG3 #114-e; Nov. 1-11, 2021; Online; Source: WI Rapporteur (ZTE); Title: Work plan for the INACTIVE small data WI; Agenda item: 24.1; Document for: Information. cited by applicant

3GPP TSG RAN3 meeting #114bis-e; Jan. 17-26, 2022—Online; Agenda Item: 4; Source: ETSI MCC; Title: Report of 3GPP TSG RAN3 meeting #114-e; Online Meeting, Nov. 1-Nov. 11, 2021; Document for: Approval. cited by applicant

International Search Report and Written Opinion of the International Searching authority mailed Jul. 22, 2022, in International Application No. PCT/US2021/065736. cited by applicant R2-2006714; 3GPP TSG RAN WG2 Meeting #111-e; Electronic meeting, Aug. 17-28, 2020; Agenda item: 8.6.2; Source: Intel Corporation; Title: Radio bearer configuration for SOT considering UE context relocation and CU/DU split; Document for: Discussion and decision. cited by applicant

R3-210192; 3GPP TSG-RAN WG3 #111-e; Jan. 25-Feb. 4, 2021; Online; Title: Discussion on support of small data transmission in INACTIVE state; Source: Rapporteur (ZTE); Agenda item: 30; Document for: Discussion and Decision. cited by applicant Chinese Office Action, mailed Sep. 29, 2024, in CN Patent Application No. 2021800886970. cited

by applicant

Primary Examiner: Lin; Will W

Background/Summary

CROSS-REFERENCE TO RELATED APPLICATIONS (1) This application is a continuation of U.S. patent application Ser. No. 18/113,462, filed Feb. 23, 2023, which is a continuation of International Application No. PCT/US2021/065736, filed Dec. 30, 2021, which claims the benefit of U.S. Provisional Application No. 63/133,015, filed Dec. 31, 2020, all of which are hereby incorporated by reference in their entireties.

BRIEF DESCRIPTION OF THE DRAWINGS

- (1) Examples of several of the various embodiments of the present disclosure are described herein with reference to the drawings.
- (2) FIG. **1**A and FIG. **1**B illustrate example mobile communication networks in which embodiments of the present disclosure may be implemented.
- (3) FIG. 2A and FIG. 2B respectively illustrate a New Radio (NR) user plane and control plane protocol stack.

- (4) FIG. **3** illustrates an example of services provided between protocol layers of the NR user plane protocol stack of FIG. **2**A.
- (5) FIG. **4**A illustrates an example downlink data flow through the NR user plane protocol stack of FIG. **2**A.
- (6) FIG. 4B illustrates an example format of a MAC subheader in a MAC PDU.
- (7) FIG. **5**A and FIG. **5**B respectively illustrate a mapping between logical channels, transport channels, and physical channels for the downlink and uplink.
- (8) FIG. **6** is an example diagram showing RRC state transitions of a UE.
- (9) FIG. 7 illustrates an example configuration of an NR frame into which OFDM symbols are grouped.
- (10) FIG. **8** illustrates an example configuration of a slot in the time and frequency domain for an NR carrier.
- (11) FIG. **9** illustrates an example of bandwidth adaptation using three configured BWPs for an NR carrier.
- (12) FIG. **10**A illustrates three carrier aggregation configurations with two component carriers.
- (13) FIG. **10**B illustrates an example of how aggregated cells may be configured into one or more PUCCH groups.
- (14) FIG. **11**A illustrates an example of an SS/PBCH block structure and location.
- (15) FIG. **11**B illustrates an example of CSI-RSs that are mapped in the time and frequency domains.
- (16) FIG. **12**A and FIG. **12**B respectively illustrate examples of three downlink and uplink beam management procedures.
- (17) FIG. **13**A, FIG. **13**B, and FIG. **13**C respectively illustrate a four-step contention-based random access procedure, a two-step contention-free random access procedure, and another two-step random access procedure.
- (18) FIG. **14**A illustrates an example of CORESET configurations for a bandwidth part.
- (19) FIG. **14**B illustrates an example of a CCE-to-REG mapping for DCI transmission on a CORESET and PDCCH processing.
- (20) FIG. **15** illustrates an example of a wireless device in communication with a base station.
- (21) FIG. **16**A, FIG. **16**B, FIG. **16**C, and FIG. **16**D illustrate example structures for uplink and downlink transmission.
- (22) FIG. **17** is a diagram of an aspect of an example of the present disclosure.
- (23) FIG. **18** is a diagram of an aspect of an example of the present disclosure.
- (24) FIG. **19** is a diagram of an aspect of an example of the present disclosure.
- (25) FIG. **20** is a diagram of an aspect of an example of the present disclosure.
- (26) FIG. **21** is a diagram of an aspect of an example of the present disclosure. (27) FIG. **22** is a diagram of an aspect of an example of the present disclosure.
- (27) FIG. 22 is a diagram of an aspect of an example of the present disclosure.
- (28) FIG. 23 is a diagram of an aspect of an example of the present disclosure.
- (29) FIG. **24** is a diagram of an aspect of an example of the present disclosure.
- (30) FIG. **25** is a diagram of an aspect of an example of the present disclosure.
- (31) FIG. **26** is a diagram of an aspect of an example of the present disclosure.
- (32) FIG. **27** is a diagram of an aspect of an example of the present disclosure.
- (33) FIG. **28** is a diagram of an aspect of an example of the present disclosure.
- (34) FIG. **29** is a diagram of an aspect of an example of the present disclosure.
- (35) FIG. **30** is a diagram of an aspect of an example of the present disclosure.
- (36) FIG. **31** is a diagram of an aspect of an example of the present disclosure.
- (37) FIG. **32** is a diagram of an aspect of an example of the present disclosure.

DETAILED DESCRIPTION

- (1) In the present disclosure, various embodiments are presented as examples of how the disclosed techniques may be implemented and/or how the disclosed techniques may be practiced in environments and scenarios. It will be apparent to persons skilled in the relevant art that various changes in form and detail can be made therein without departing from the scope. In fact, after reading the description, it will be apparent to one skilled in the relevant art how to implement alternative embodiments. The present embodiments should not be limited by any of the described exemplary embodiments. The embodiments of the present disclosure will be described with reference to the accompanying drawings. Limitations, features, and/or elements from the disclosed example embodiments may be combined to create further embodiments within the scope of the disclosure. Any figures which highlight the functionality and advantages, are presented for example purposes only. The disclosed architecture is sufficiently flexible and configurable, such that it may be utilized in ways other than that shown. For example, the actions listed in any flowchart may be re-ordered or only optionally used in some embodiments.
- (2) Embodiments may be configured to operate as needed. The disclosed mechanism may be performed when certain criteria are met, for example, in a wireless device, a base station, a radio environment, a network, a combination of the above, and/or the like. Example criteria may be based, at least in part, on for example, wireless device or network node configurations, traffic load, initial system set up, packet sizes, traffic characteristics, a combination of the above, and/or the like. When the one or more criteria are met, various example embodiments may be applied. Therefore, it may be possible to implement example embodiments that selectively implement disclosed protocols.
- (3) A base station may communicate with a mix of wireless devices. Wireless devices and/or base stations may support multiple technologies, and/or multiple releases of the same technology. Wireless devices may have some specific capability(ies) depending on wireless device category and/or capability(ies). When this disclosure refers to a base station communicating with a plurality of wireless devices, this disclosure may refer to a subset of the total wireless devices in a coverage area. This disclosure may refer to, for example, a plurality of wireless devices of a given LTE or 5G release with a given capability and in a given sector of the base station. The plurality of wireless devices in this disclosure may refer to a selected plurality of wireless devices, and/or a subset of total wireless devices in a coverage area which perform according to disclosed methods, and/or the like. There may be a plurality of base stations or a plurality of wireless devices in a coverage area that may not comply with the disclosed methods, for example, those wireless devices or base stations may perform based on older releases of LTE or 5G technology.
- (4) In this disclosure, "a" and "an" and similar phrases are to be interpreted as "at least one" and "one or more." Similarly, any term that ends with the suffix "(s)" is to be interpreted as "at least one" and "one or more." In this disclosure, the term "may" is to be interpreted as "may, for example." In other words, the term "may" is indicative that the phrase following the term "may" is an example of one of a multitude of suitable possibilities that may, or may not, be employed by one or more of the various embodiments. The terms "comprises" and "consists of", as used herein, enumerate one or more components of the element being described. The term "comprises" is interchangeable with "includes" and does not exclude unenumerated components from being included in the element being described. By contrast, "consists of" provides a complete enumeration of the one or more components of the element being described. The term "based on", as used herein, should be interpreted as "based at least in part on" rather than, for example, "based solely on". The term "and/or" as used herein represents any possible combination of enumerated elements. For example, "A, B, and/or C" may represent A; B; C; A and B; A and C; B and C; or A, B, and C.
- (5) If A and B are sets and every element of A is an element of B, A is called a subset of B. In this

specification, only non-empty sets and subsets are considered. For example, possible subsets of B= {cell1, cell2} are: {cell1}, {cell2}, and {cell1, cell2}. The phrase "based on" (or equally "based at least on") is indicative that the phrase following the term "based on" is an example of one of a multitude of suitable possibilities that may, or may not, be employed to one or more of the various embodiments. The phrase "in response to" (or equally "in response at least to") is indicative that the phrase following the phrase "in response to" is an example of one of a multitude of suitable possibilities that may, or may not, be employed to one or more of the various embodiments. The phrase "depending on" (or equally "depending at least to") is indicative that the phrase following the phrase "depending on" is an example of one of a multitude of suitable possibilities that may, or may not, be employed to one or more of the various embodiments. The phrase "employing/using at least") is indicative that the phrase following the phrase "employing/using" is an example of one of a multitude of suitable possibilities that may, or may not, be employed to one or more of the various embodiments.

- (6) The term configured may relate to the capacity of a device whether the device is in an operational or non-operational state. Configured may refer to specific settings in a device that effect the operational characteristics of the device whether the device is in an operational or non-operational state. In other words, the hardware, software, firmware, registers, memory values, and/or the like may be "configured" within a device, whether the device is in an operational or nonoperational state, to provide the device with specific characteristics. Terms such as "a control message to cause in a device" may mean that a control message has parameters that may be used to configure specific characteristics or may be used to implement certain actions in the device, whether the device is in an operational or non-operational state.
- (7) In this disclosure, parameters (or equally called, fields, or Information elements: IEs) may comprise one or more information objects, and an information object may comprise one or more other objects. For example, if parameter (IE) N comprises parameter (IE) M, and parameter (IE) M comprises parameter (IE) K, and parameter (IE) K comprises parameter (information element) J. Then, for example, N comprises K, and N comprises J. In an example embodiment, when one or more messages comprise a plurality of parameters, it implies that a parameter in the plurality of parameters is in at least one of the one or more messages, but does not have to be in each of the one or more messages.
- (8) Many features presented are described as being optional through the use of "may" or the use of parentheses. For the sake of brevity and legibility, the present disclosure does not explicitly recite each and every permutation that may be obtained by choosing from the set of optional features. The present disclosure is to be interpreted as explicitly disclosing all such permutations. For example, a system described as having three optional features may be embodied in seven ways, namely with just one of the three possible features, with any two of the three possible features or with three of the three possible features.
- (9) Many of the elements described in the disclosed embodiments may be implemented as modules. A module is defined here as an element that performs a defined function and has a defined interface to other elements. The modules described in this disclosure may be implemented in hardware, software in combination with hardware, firmware, wetware (e.g. hardware with a biological element) or a combination thereof, which may be behaviorally equivalent. For example, modules may be implemented as a software routine written in a computer language configured to be executed by a hardware machine (such as C, C++, Fortran, Java, Basic, Matlab or the like) or a modeling/simulation program such as Simulink, Stateflow, GNU Octave, or LabVIEWMathScript. It may be possible to implement modules using physical hardware that incorporates discrete or programmable analog, digital and/or quantum hardware. Examples of programmable hardware comprise: computers, microcontrollers, microprocessors, application-specific integrated circuits (ASICs); field programmable gate arrays (FPGAs); and complex programmable logic devices (CPLDs). Computers, microcontrollers and microprocessors are programmed using languages such

- as assembly, C, C++ or the like. FPGAs, ASICs and CPLDs are often programmed using hardware description languages (HDL) such as VHSIC hardware description language (VHDL) or Verilog that configure connections between internal hardware modules with lesser functionality on a programmable device. The mentioned technologies are often used in combination to achieve the result of a functional module.
- (10) FIG. **1**A illustrates an example of a mobile communication network **100** in which embodiments of the present disclosure may be implemented. The mobile communication network **100** may be, for example, a public land mobile network (PLMN) run by a network operator. As illustrated in FIG. **1**A, the mobile communication network **100** includes a core network (CN) **102**, a radio access network (RAN) **104**, and a wireless device **106**.
- (11) The CN **102** may provide the wireless device **106** with an interface to one or more data networks (DNs), such as public DNs (e.g., the Internet), private DNs, and/or intra-operator DNs. As part of the interface functionality, the CN **102** may set up end-to-end connections between the wireless device **106** and the one or more DNs, authenticate the wireless device **106**, and provide charging functionality.
- (12) The RAN **104** may connect the CN **102** to the wireless device **106** through radio communications over an air interface. As part of the radio communications, the RAN **104** may provide scheduling, radio resource management, and retransmission protocols. The communication direction from the RAN **104** to the wireless device **106** over the air interface is known as the downlink and the communication direction from the wireless device **106** to the RAN **104** over the air interface is known as the uplink. Downlink transmissions may be separated from uplink transmissions using frequency division duplexing (FDD), time-division duplexing (TDD), and/or some combination of the two duplexing techniques.
- (13) The term wireless device may be used throughout this disclosure to refer to and encompass any mobile device or fixed (non-mobile) device for which wireless communication is needed or usable. For example, a wireless device may be a telephone, smart phone, tablet, computer, laptop, sensor, meter, wearable device, Internet of Things (IoT) device, vehicle roadside unit (RSU), relay node, automobile, and/or any combination thereof. The term wireless device encompasses other terminology, including user equipment (UE), user terminal (UT), access terminal (AT), mobile station, handset, wireless transmit and receive unit (WTRU), and/or wireless communication device.
- (14) The RAN **104** may include one or more base stations (not shown). The term base station may be used throughout this disclosure to refer to and encompass a Node B (associated with UMTS and/or 3G standards), an Evolved Node B (eNB, associated with E-UTRA and/or 4G standards), a remote radio head (RRH), a baseband processing unit coupled to one or more RRHs, a repeater node or relay node used to extend the coverage area of a donor node, a Next Generation Evolved Node B (ng-eNB), a Generation Node B (gNB, associated with NR and/or 5G standards), an access point (AP, associated with, for example, Wi-Fi or any other suitable wireless communication standard), and/or any combination thereof. A base station may comprise at least one gNB Central Unit (gNB-CU) and at least one a gNB Distributed Unit (gNB-DU).
- (15) A base station included in the RAN **104** may include one or more sets of antennas for communicating with the wireless device **106** over the air interface. For example, one or more of the base stations may include three sets of antennas to respectively control three cells (or sectors). The size of a cell may be determined by a range at which a receiver (e.g., a base station receiver) can successfully receive the transmissions from a transmitter (e.g., a wireless device transmitter) operating in the cell. Together, the cells of the base stations may provide radio coverage to the wireless device **106** over a wide geographic area to support wireless device mobility. (16) In addition to three-sector sites, other implementations of base stations are possible. For
- example, one or more of the base stations in the RAN **104** may be implemented as a sectored site with more or less than three sectors. One or more of the base stations in the RAN **104** may be

implemented as an access point, as a baseband processing unit coupled to several remote radio heads (RRHs), and/or as a repeater or relay node used to extend the coverage area of a donor node. A baseband processing unit coupled to RRHs may be part of a centralized or cloud RAN architecture, where the baseband processing unit may be either centralized in a pool of baseband processing units or virtualized. A repeater node may amplify and rebroadcast a radio signal received from a donor node. A relay node may perform the same/similar functions as a repeater node but may decode the radio signal received from the donor node to remove noise before amplifying and rebroadcasting the radio signal.

- (17) The RAN **104** may be deployed as a homogenous network of macrocell base stations that have similar antenna patterns and similar high-level transmit powers. The RAN **104** may be deployed as a heterogeneous network. In heterogeneous networks, small cell base stations may be used to provide small coverage areas, for example, coverage areas that overlap with the comparatively larger coverage areas provided by macrocell base stations. The small coverage areas may be provided in areas with high data traffic (or so-called "hotspots") or in areas with weak macrocell coverage. Examples of small cell base stations include, in order of decreasing coverage area, microcell base stations, picocell base stations, and femtocell base stations or home base stations. (18) The Third-Generation Partnership Project (3GPP) was formed in **1998** to provide global standardization of specifications for mobile communication networks similar to the mobile communication network **100** in FIG. **1**A. To date, 3GPP has produced specifications for three generations of mobile networks: a third generation (3G) network known as Universal Mobile Telecommunications System (UMTS), a fourth generation (4G) network known as Long-Term Evolution (LTE), and a fifth generation (5G) network known as 5G System (5GS). Embodiments of the present disclosure are described with reference to the RAN of a 3GPP 5G network, referred to as next-generation RAN (NG-RAN). Embodiments may be applicable to RANs of other mobile communication networks, such as the RAN 104 in FIG. 1A, the RANs of earlier 3G and 4G networks, and those of future networks yet to be specified (e.g., a 3GPP 6G network). NG-RAN implements 5G radio access technology known as New Radio (NR) and may be provisioned to implement 4G radio access technology or other radio access technologies, including non-3GPP radio access technologies.
- (19) FIG. 1B illustrates another example mobile communication network 150 in which embodiments of the present disclosure may be implemented. Mobile communication network 150 may be, for example, a PLMN run by a network operator. As illustrated in FIG. 1B, mobile communication network **150** includes a 5G core network (5G-CN) **152**, an NG-RAN **154**, and UEs **156**A and **156**B (collectively UEs **156**). These components may be implemented and operate in the same or similar manner as corresponding components described with respect to FIG. **1**A. (20) The 5G-CN **152** provides the UEs **156** with an interface to one or more DNs, such as public DNs (e.g., the Internet), private DNs, and/or intra-operator DNs. As part of the interface functionality, the 5G-CN 152 may set up end-to-end connections between the UEs 156 and the one or more DNs, authenticate the UEs 156, and provide charging functionality. Compared to the CN of a 3GPP 4G network, the basis of the 5G-CN **152** may be a service-based architecture. This means that the architecture of the nodes making up the 5G-CN **152** may be defined as network functions that offer services via interfaces to other network functions. The network functions of the 5G-CN **152** may be implemented in several ways, including as network elements on dedicated or shared hardware, as software instances running on dedicated or shared hardware, or as virtualized functions instantiated on a platform (e.g., a cloud-based platform).
- (21) As illustrated in FIG. **1**B, the 5G-CN **152** includes an Access and Mobility Management Function (AMF) **158**A and a User Plane Function (UPF) **158**B, which are shown as one component AMF/UPF **158** in FIG. **1**B for ease of illustration. The UPF **158**B may serve as a gateway between the NG-RAN **154** and the one or more DNs. The UPF **158**B may perform functions such as packet routing and forwarding, packet inspection and user plane policy rule enforcement, traffic usage

reporting, uplink classification to support routing of traffic flows to the one or more DNs, quality of service (QoS) handling for the user plane (e.g., packet filtering, gating, uplink/downlink rate enforcement, and uplink traffic verification), downlink packet buffering, and downlink data notification triggering. The UPF **158**B may serve as an anchor point for intra-/inter-Radio Access Technology (RAT) mobility, an external protocol (or packet) data unit (PDU) session point of interconnect to the one or more DNs, and/or a branching point to support a multi-homed PDU session. The UEs **156** may be configured to receive services through a PDU session, which is a logical connection between a UE and a DN.

- (22) The AMF **158**A may perform functions such as Non-Access Stratum (NAS) signaling termination, NAS signaling security, Access Stratum (AS) security control, inter-CN node signaling for mobility between 3GPP access networks, idle mode UE reachability (e.g., control and execution of paging retransmission), registration area management, intra-system and inter-system mobility support, access authentication, access authorization including checking of roaming rights, mobility management control (subscription and policies), network slicing support, and/or session management function (SMF) selection. NAS may refer to the functionality operating between a CN and a UE, and AS may refer to the functionality operating between the UE and a RAN. (23) The 5G-CN **152** may include one or more additional network functions that are not shown in FIG. **1B** for the sake of clarity. For example, the 5G-CN **152** may include one or more of a Session Management Function (SMF), an NR Repository Function (NRF), a Policy Control Function (PCF), a Network Exposure Function (NEF), a Unified Data Management (UDM), an Application Function (AF), and/or an Authentication Server Function (AUSF).
- (24) The NG-RAN **154** may connect the 5G-CN **152** to the UEs **156** through radio communications over the air interface. The NG-RAN **154** may include one or more gNBs, illustrated as gNB **160**A and gNB **160**B (collectively gNBs **160**) and/or one or more ng-eNBs, illustrated as ng-eNB **162**A and ng-eNB **162**B (collectively ng-eNBs **162**). The gNBs **160** and ng-eNBs **162** may be more generically referred to as base stations. The gNBs **160** and ng-eNBs **162** may include one or more sets of antennas for communicating with the UEs **156** over an air interface. For example, one or more of the gNBs **160** and/or one or more of the ng-eNBs **162** may include three sets of antennas to respectively control three cells (or sectors). Together, the cells of the gNBs **160** and the ng-eNBs **162** may provide radio coverage to the UEs **156** over a wide geographic area to support UE mobility.
- (25) As shown in FIG. 1B, the gNBs 160 and/or the ng-eNBs 162 may be connected to the 5G-CN 152 by means of an NG interface and to other base stations by an Xn interface. The NG and Xn interfaces may be established using direct physical connections and/or indirect connections over an underlying transport network, such as an internet protocol (IP) transport network. The gNBs 160 and/or the ng-eNBs 162 may be connected to the UEs 156 by means of a Uu interface. For example, as illustrated in FIG. 1B, gNB 160A may be connected to the UE 156A by means of a Uu interface. The NG, Xn, and Uu interfaces are associated with a protocol stack. The protocol stacks associated with the interfaces may be used by the network elements in FIG. 1B to exchange data and signaling messages and may include two planes: a user plane and a control plane. The user plane may handle data of interest to a user. The control plane may handle signaling messages of interest to the network elements.
- (26) The gNBs **160** and/or the ng-eNBs **162** may be connected to one or more AMF/UPF functions of the 5G-CN **152**, such as the AMF/UPF **158**, by means of one or more NG interfaces. For example, the gNB **160**A may be connected to the UPF **158**B of the AMF/UPF **158** by means of an NG-User plane (NG-U) interface. The NG-U interface may provide delivery (e.g., non-guaranteed delivery) of user plane PDUs between the gNB **160**A and the UPF **158**B. The gNB **160**A may be connected to the AMF **158**A by means of an NG-Control plane (NG-C) interface. The NG-C interface may provide, for example, NG interface management, UE context management, UE mobility management, transport of NAS messages, paging, PDU session management, and

- configuration transfer and/or warning message transmission.
- (27) The gNBs **160** may provide NR user plane and control plane protocol terminations towards the UEs **156** over the Uu interface. For example, the gNB **160**A may provide NR user plane and control plane protocol terminations toward the UE **156**A over a Uu interface associated with a first protocol stack. The ng-eNBs **162** may provide Evolved UMTS Terrestrial Radio Access (E-UTRA) user plane and control plane protocol terminations towards the UEs **156** over a Uu interface, where E-UTRA refers to the 3GPP 4G radio-access technology. For example, the ng-eNB **162**B may provide E-UTRA user plane and control plane protocol terminations towards the UE **156**B over a Uu interface associated with a second protocol stack.
- (28) The 5G-CN **152** was described as being configured to handle NR and 4G radio accesses. It will be appreciated by one of ordinary skill in the art that it may be possible for NR to connect to a 4G core network in a mode known as "non-standalone operation." In non-standalone operation, a 4G core network is used to provide (or at least support) control-plane functionality (e.g., initial access, mobility, and paging). Although only one AMF/UPF **158** is shown in FIG. **1B**, one gNB or ng-eNB may be connected to multiple AMF/UPF nodes to provide redundancy and/or to load share across the multiple AMF/UPF nodes.
- (29) As discussed, an interface (e.g., Uu, Xn, and NG interfaces) between the network elements in FIG. **1**B may be associated with a protocol stack that the network elements use to exchange data and signaling messages. A protocol stack may include two planes: a user plane and a control plane. The user plane may handle data of interest to a user, and the control plane may handle signaling messages of interest to the network elements.
- (30) FIG. 2A and FIG. 2B respectively illustrate examples of NR user plane and NR control plane protocol stacks for the Uu interface that lies between a UE **210** and a gNB **220**. The protocol stacks illustrated in FIG. **2**A and FIG. **2**B may be the same or similar to those used for the Uu interface between, for example, the UE **156**A and the gNB **160**A shown in FIG. **1**B.
- (31) FIG. 2A illustrates a NR user plane protocol stack comprising five layers implemented in the UE 210 and the gNB 220. At the bottom of the protocol stack, physical layers (PHYs) 211 and 221 may provide transport services to the higher layers of the protocol stack and may correspond to layer 1 of the Open Systems Interconnection (OSI) model. The next four protocols above PHYs 211 and 221 comprise media access control layers (MACs) 212 and 222, radio link control layers (RLCs) 213 and 223, packet data convergence protocol layers (PDCPs) 214 and 224, and service data application protocol layers (SDAPs) 215 and 225. Together, these four protocols may make up layer 2, or the data link layer, of the OSI model.
- (32) FIG. 3 illustrates an example of services provided between protocol layers of the NR user plane protocol stack. Starting from the top of FIG. 2A and FIG. 3, the SDAPs 215 and 225 may perform QoS flow handling. The UE 210 may receive services through a PDU session, which may be a logical connection between the UE 210 and a DN. The PDU session may have one or more QoS flows. A UPF of a CN (e.g., the UPF 158B) may map IP packets to the one or more QoS flows of the PDU session based on QoS requirements (e.g., in terms of delay, data rate, and/or error rate). The SDAPs 215 and 225 may perform mapping/de-mapping between the one or more QoS flows and one or more data radio bearers. The mapping/de-mapping between the QoS flows and the data radio bearers may be determined by the SDAP 225 at the gNB 220. The SDAP 215 at the UE 210 may be informed of the mapping between the QoS flows and the data radio bearers through reflective mapping or control signaling received from the gNB 220. For reflective mapping, the SDAP 225 at the gNB 220 may mark the downlink packets with a QoS flow indicator (QFI), which may be observed by the SDAP 215 at the UE 210 to determine the mapping/de-mapping between the QoS flows and the data radio bearers.
- (33) The PDCPs **214** and **224** may perform header compression/decompression to reduce the amount of data that needs to be transmitted over the air interface, ciphering/deciphering to prevent unauthorized decoding of data transmitted over the air interface, and integrity protection (to ensure

- control messages originate from intended sources. The PDCPs **214** and **224** may perform retransmissions of undelivered packets, in-sequence delivery and reordering of packets, and removal of packets received in duplicate due to, for example, an intra-gNB handover. The PDCPs **214** and **224** may perform packet duplication to improve the likelihood of the packet being received and, at the receiver, remove any duplicate packets. Packet duplication may be useful for services that require high reliability.
- (34) Although not shown in FIG. **3**, PDCPs **214** and **224** may perform mapping/de-mapping between a split radio bearer and RLC channels in a dual connectivity scenario. Dual connectivity is a technique that allows a UE to connect to two cells or, more generally, two cell groups: a master cell group (MCG) and a secondary cell group (SCG). A split bearer is when a single radio bearer, such as one of the radio bearers provided by the PDCPs **214** and **224** as a service to the SDAPs **215** and **225**, is handled by cell groups in dual connectivity. The PDCPs **214** and **224** may map/de-map the split radio bearer between RLC channels belonging to cell groups.
- (35) The RLCs **213** and **223** may perform segmentation, retransmission through Automatic Repeat Request (ARQ), and removal of duplicate data units received from MACs **212** and **222**, respectively. The RLCs **213** and **223** may support three transmission modes: transparent mode (TM); unacknowledged mode (UM); and acknowledged mode (AM). Based on the transmission mode an RLC is operating, the RLC may perform one or more of the noted functions. The RLC configuration may be per logical channel with no dependency on numerologies and/or Transmission Time Interval (TTI) durations. As shown in FIG. **3**, the RLCs **213** and **223** may provide RLC channels as a service to PDCPs **214** and **224**, respectively.
- (36) The MACs 212 and 222 may perform multiplexing/demultiplexing of logical channels and/or mapping between logical channels and transport channels. The multiplexing/demultiplexing may include multiplexing/demultiplexing of data units, belonging to the one or more logical channels, into/from Transport Blocks (TBs) delivered to/from the PHYs 211 and 221. The MAC 222 may be configured to perform scheduling, scheduling information reporting, and priority handling between UEs by means of dynamic scheduling. Scheduling may be performed in the gNB 220 (at the MAC 222) for downlink and uplink. The MACs 212 and 222 may be configured to perform error correction through Hybrid Automatic Repeat Request (HARQ) (e.g., one HARQ entity per carrier in case of Carrier Aggregation (CA)), priority handling between logical channels of the UE 210 by means of logical channel prioritization, and/or padding. The MACs 212 and 222 may support one or more numerologies and/or transmission timings. In an example, mapping restrictions in a logical channel prioritization may control which numerology and/or transmission timing a logical channel may use. As shown in FIG. 3, the MACs 212 and 222 may provide logical channels as a service to the RLCs 213 and 223.
- (37) The PHYs **211** and **221** may perform mapping of transport channels to physical channels and digital and analog signal processing functions for sending and receiving information over the air interface. These digital and analog signal processing functions may include, for example, coding/decoding and modulation/demodulation. The PHYs **211** and **221** may perform multi-antenna mapping. As shown in FIG. **3**, the PHYs **211** and **221** may provide one or more transport channels as a service to the MACs **212** and **222**.
- (38) FIG. **4**A illustrates an example downlink data flow through the NR user plane protocol stack. FIG. **4**A illustrates a downlink data flow of three IP packets (n, n+1, and m) through the NR user plane protocol stack to generate two TBs at the gNB **220**. An uplink data flow through the NR user plane protocol stack may be similar to the downlink data flow depicted in FIG. **4**A.
- (39) The downlink data flow of FIG. **4**A begins when SDAP **225** receives the three IP packets from one or more QoS flows and maps the three packets to radio bearers. In FIG. **4**A, the SDAP **225** maps IP packets n and n+1 to a first radio bearer **402** and maps IP packet m to a second radio bearer **404**. An SDAP header (labeled with an "H" in FIG. **4**A) is added to an IP packet. The data unit from/to a higher protocol layer is referred to as a service data unit (SDU) of the lower protocol

layer and the data unit to/from a lower protocol layer is referred to as a protocol data unit (PDU) of the higher protocol layer. As shown in FIG. **4**A, the data unit from the SDAP **225** is an SDU of lower protocol layer PDCP **224** and is a PDU of the SDAP **225**.

- (40) The remaining protocol layers in FIG. **4**A may perform their associated functionality (e.g., with respect to FIG. 3), add corresponding headers, and forward their respective outputs to the next lower layer. For example, the PDCP 224 may perform IP-header compression and ciphering and forward its output to the RLC 223. The RLC 223 may optionally perform segmentation (e.g., as shown for IP packet m in FIG. 4A) and forward its output to the MAC 222. The MAC 222 may multiplex a number of RLC PDUs and may attach a MAC subheader to an RLC PDU to form a transport block. In NR, the MAC subheaders may be distributed across the MAC PDU, as illustrated in FIG. 4A. In LTE, the MAC subheaders may be entirely located at the beginning of the MAC PDU. The NR MAC PDU structure may reduce processing time and associated latency because the MAC PDU subheaders may be computed before the full MAC PDU is assembled. (41) FIG. **4**B illustrates an example format of a MAC subheader in a MAC PDU. The MAC subheader includes: an SDU length field for indicating the length (e.g., in bytes) of the MAC SDU to which the MAC subheader corresponds; a logical channel identifier (LCID) field for identifying the logical channel from which the MAC SDU originated to aid in the demultiplexing process; a flag (F) for indicating the size of the SDU length field; and a reserved bit (R) field for future use. (42) FIG. 4B further illustrates MAC control elements (CEs) inserted into the MAC PDU by a MAC, such as MAC 223 or MAC 222. For example, FIG. 4B illustrates two MAC CEs inserted into the MAC PDU. MAC CEs may be inserted at the beginning of a MAC PDU for downlink transmissions (as shown in FIG. 4B) and at the end of a MAC PDU for uplink transmissions. MAC CEs may be used for in-band control signaling. Example MAC CEs include: scheduling-related MAC CEs, such as buffer status reports and power headroom reports; activation/deactivation MAC CEs, such as those for activation/deactivation of PDCP duplication detection, channel state information (CSI) reporting, sounding reference signal (SRS) transmission, and prior configured components; discontinuous reception (DRX) related MAC CEs; timing advance MAC CEs; and random access related MAC CEs. A MAC CE may be preceded by a MAC subheader with a similar format as described for MAC SDUs and may be identified with a reserved value in the LCID field that indicates the type of control information included in the MAC CE. (43) Before describing the NR control plane protocol stack, logical channels, transport channels, and physical channels are first described as well as a mapping between the channel types. One or more of the channels may be used to carry out functions associated with the NR control plane
- protocol stack described later below. (44) FIG. 5A and FIG. 5B illustrate, for downlink and uplink respectively, a mapping between
- logical channels, transport channels, and physical channels. Information is passed through channels between the RLC, the MAC, and the PHY of the NR protocol stack. A logical channel may be used between the RLC and the MAC and may be classified as a control channel that carries control and configuration information in the NR control plane or as a traffic channel that carries data in the NR user plane. A logical channel may be classified as a dedicated logical channel that is dedicated to a specific UE or as a common logical channel that may be used by more than one UE. A logical channel may also be defined by the type of information it carries. The set of logical channels defined by NR include, for example: a paging control channel (PCCH) for carrying paging messages used to page a UE whose location is not known to the network on a cell level; a broadcast control channel (BCCH) for carrying system information messages in the form of a master information block (MIB) and several system information blocks (SIBs), wherein the system information messages may be used by the UEs to obtain information about how a cell is configured and how to operate within the cell; a common control channel (CCCH) for carrying control messages together with random access; a dedicated control channel (DCCH) for carrying control messages to/from a specific the UE to configure the UE; and a dedicated traffic channel (DTCH)

for carrying user data to/from a specific the UE.

- (45) Transport channels are used between the MAC and PHY layers and may be defined by how the information they carry is transmitted over the air interface. The set of transport channels defined by NR include, for example: a paging channel (PCH) for carrying paging messages that originated from the PCCH; a broadcast channel (BCH) for carrying the MIB from the BCCH; a downlink shared channel (DL-SCH) for carrying downlink data and signaling messages, including the SIBs from the BCCH; an uplink shared channel (UL-SCH) for carrying uplink data and signaling messages; and a random access channel (RACH) for allowing a UE to contact the network without any prior scheduling.
- (46) The PHY may use physical channels to pass information between processing levels of the PHY. A physical channel may have an associated set of time-frequency resources for carrying the information of one or more transport channels. The PHY may generate control information to support the low-level operation of the PHY and provide the control information to the lower levels of the PHY via physical control channels, known as L1/L2 control channels. The set of physical channels and physical control channels defined by NR include, for example: a physical broadcast channel (PBCH) for carrying the MIB from the BCH; a physical downlink shared channel (PDSCH) for carrying downlink data and signaling messages from the DL-SCH, as well as paging messages from the PCH; a physical downlink control channel (PDCCH) for carrying downlink control information (DCI), which may include downlink scheduling commands, uplink scheduling grants, and uplink power control commands; a physical uplink shared channel (PUSCH) for carrying uplink data and signaling messages from the UL-SCH and in some instances uplink control information (UCI) as described below; a physical uplink control channel (PUCCH) for carrying UCI, which may include HARQ acknowledgments, channel quality indicators (CQI), precoding matrix indicators (PMI), rank indicators (RI), and scheduling requests (SR); and a physical random access channel (PRACH) for random access.
- (47) Similar to the physical control channels, the physical layer generates physical signals to support the low-level operation of the physical layer. As shown in FIG. 5A and FIG. 5B, the physical layer signals defined by NR include: primary synchronization signals (PSS), secondary synchronization signals (SSS), channel state information reference signals (CSI-RS), demodulation reference signals (DMRS), sounding reference signals (SRS), and phase-tracking reference signals (PT-RS). These physical layer signals will be described in greater detail below.
- (48) FIG. 2B illustrates an example NR control plane protocol stack. As shown in FIG. 2B, the NR control plane protocol stack may use the same/similar first four protocol layers as the example NR user plane protocol stack. These four protocol layers include the PHYs 211 and 221, the MACs 212 and 222, the RLCs 213 and 223, and the PDCPs 214 and 224. Instead of having the SDAPs 215 and 225 at the top of the stack as in the NR user plane protocol stack, the NR control plane stack has radio resource controls (RRCs) 216 and 226 and NAS protocols 217 and 237 at the top of the NR control plane protocol stack.
- (49) The NAS protocols **217** and **237** may provide control plane functionality between the UE **210** and the AMF **230** (e.g., the AMF **158**A) or, more generally, between the UE **210** and the CN. The NAS protocols **217** and **237** may provide control plane functionality between the UE **210** and the AMF **230** via signaling messages, referred to as NAS messages. There is no direct path between the UE **210** and the AMF **230** through which the NAS messages can be transported. The NAS messages may be transported using the AS of the Uu and NG interfaces. NAS protocols **217** and **237** may provide control plane functionality such as authentication, security, connection setup, mobility management, and session management.
- (50) The RRCs **216** and **226** may provide control plane functionality between the UE **210** and the gNB **220** or, more generally, between the UE **210** and the RAN. The RRCs **216** and **226** may provide control plane functionality between the UE **210** and the gNB **220** via signaling messages, referred to as RRC messages. RRC messages may be transmitted between the UE **210** and the RAN

using signaling radio bearers and the same/similar PDCP, RLC, MAC, and PHY protocol layers. The MAC may multiplex control-plane and user-plane data into the same transport block (TB). The RRCs **216** and **226** may provide control plane functionality such as: broadcast of system information related to AS and NAS; paging initiated by the CN or the RAN; establishment, maintenance and release of an RRC connection between the UE **210** and the RAN; security functions including key management; establishment, configuration, maintenance and release of signaling radio bearers and data radio bearers; mobility functions; QoS management functions; the UE measurement reporting and control of the reporting; detection of and recovery from radio link failure (RLF); and/or NAS message transfer. As part of establishing an RRC connection, RRCs **216** and **226** may establish an RRC context, which may involve configuring parameters for communication between the UE **210** and the RAN.

- (51) FIG. **6** is an example diagram showing RRC state transitions of a UE. The UE may be the same or similar to the wireless device **106** depicted in FIG. **1**A, the UE **210** depicted in FIG. **2**A and FIG. **2**B, or any other wireless device described in the present disclosure. As illustrated in FIG. **6**, a UE may be in at least one of three RRC states: RRC connected **602** (e.g., RRC_CONNECTED), RRC idle **604** (e.g., RRC_IDLE), and RRC inactive **606** (e.g., RRC_INACTIVE).
- (52) In RRC connected **602**, the UE has an established RRC context and may have at least one RRC connection with a base station. The base station may be similar to one of the one or more base stations included in the RAN **104** depicted in FIG. **1**A, one of the gNBs **160** or ng-eNBs **162** depicted in FIG. 1B, the gNB 220 depicted in FIG. 2A and FIG. 2B, or any other base station described in the present disclosure. The base station with which the UE is connected may have the RRC context for the UE. The RRC context, referred to as the UE context, may comprise parameters for communication between the UE and the base station. These parameters may include, for example: one or more AS contexts; one or more radio link configuration parameters; bearer configuration information (e.g., relating to a data radio bearer, signaling radio bearer, logical channel, QoS flow, and/or PDU session); security information; and/or PHY, MAC, RLC, PDCP, and/or SDAP layer configuration information. While in RRC connected 602, mobility of the UE may be managed by the RAN (e.g., the RAN 104 or the NG-RAN 154). The UE may measure the signal levels (e.g., reference signal levels) from a serving cell and neighboring cells and report these measurements to the base station currently serving the UE. The UE's serving base station may request a handover to a cell of one of the neighboring base stations based on the reported measurements. The RRC state may transition from RRC connected 602 to RRC idle 604 through a connection release procedure **608** or to RRC inactive **606** through a connection inactivation procedure **610**.
- (53) In RRC idle **604**, an RRC context may not be established for the UE. In RRC idle **604**, the UE may not have an RRC connection with the base station. While in RRC idle **604**, the UE may be in a sleep state for the majority of the time (e.g., to conserve battery power). The UE may wake up periodically (e.g., once in every discontinuous reception cycle) to monitor for paging messages from the RAN. Mobility of the UE may be managed by the UE through a procedure known as cell reselection. The RRC state may transition from RRC idle **604** to RRC connected **602** through a connection establishment procedure **612**, which may involve a random access procedure as discussed in greater detail below.
- (54) In RRC inactive **606**, the RRC context previously established is maintained in the UE and the base station. This allows for a fast transition to RRC connected **602** with reduced signaling overhead as compared to the transition from RRC idle **604** to RRC connected **602**. While in RRC inactive **606**, the UE may be in a sleep state and mobility of the UE may be managed by the UE through cell reselection. The RRC state may transition from RRC inactive **606** to RRC connected **602** through a connection resume procedure **614** or to RRC idle **604** though a connection release procedure **616** that may be the same as or similar to connection release procedure **608**.

- (55) An RRC state may be associated with a mobility management mechanism. In RRC idle **604** and RRC inactive **606**, mobility is managed by the UE through cell reselection. The purpose of mobility management in RRC idle **604** and RRC inactive **606** is to allow the network to be able to notify the UE of an event via a paging message without having to broadcast the paging message over the entire mobile communications network. The mobility management mechanism used in RRC idle **604** and RRC inactive **606** may allow the network to track the UE on a cell-group level so that the paging message may be broadcast over the cells of the cell group that the UE currently resides within instead of the entire mobile communication network. The mobility management mechanisms for RRC idle **604** and RRC inactive **606** track the UE on a cell-group level. They may do so using different granularities of grouping. For example, there may be three levels of cell-grouping granularity: individual cells; cells within a RAN area identified by a RAN area identifier (RAI); and cells within a group of RAN areas, referred to as a tracking area and identified by a tracking area identifier (TAI).
- (56) Tracking areas may be used to track the UE at the CN level. The CN (e.g., the CN **102** or the 5G-CN **152**) may provide the UE with a list of TAIs associated with a UE registration area. If the UE moves, through cell reselection, to a cell associated with a TAI not included in the list of TAIs associated with the UE registration area, the UE may perform a registration update with the CN to allow the CN to update the UE's location and provide the UE with a new the UE registration area. (57) RAN areas may be used to track the UE at the RAN level. For a UE in RRC inactive **606** state, the UE may be assigned a RAN notification area. A RAN notification area may comprise one or more cell identities, a list of RAIs, or a list of TAIs. In an example, a base station may belong to one or more RAN notification areas. In an example, a cell may belong to one or more RAN notification areas. If the UE moves, through cell reselection, to a cell not included in the RAN notification area assigned to the UE, the UE may perform a notification area update with the RAN to update the UE's RAN notification area.
- (58) A base station storing an RRC context for a UE or a last serving base station of the UE may be referred to as an anchor base station. An anchor base station may maintain an RRC context for the UE at least during a period of time that the UE stays in a RAN notification area of the anchor base station and/or during a period of time that the UE stays in RRC inactive **606**.
- (59) A gNB, such as gNBs **160** in FIG. **1**B, may be split in two parts: a central unit (gNB-CU), and one or more distributed units (gNB-DU). A gNB-CU may be coupled to one or more gNB-DUs using an F1 interface. The gNB-CU may comprise the RRC, the PDCP, and the SDAP. A gNB-DU may comprise the RLC, the MAC, and the PHY.
- (60) In NR, the physical signals and physical channels (discussed with respect to FIG. 5A and FIG. 5B) may be mapped onto orthogonal frequency divisional multiplexing (OFDM) symbols. OFDM is a multicarrier communication scheme that transmits data over F orthogonal subcarriers (or tones). Before transmission, the data may be mapped to a series of complex symbols (e.g., Mquadrature amplitude modulation (M-QAM) or M-phase shift keying (M-PSK) symbols), referred to as source symbols, and divided into F parallel symbol streams. The F parallel symbol streams may be treated as though they are in the frequency domain and used as inputs to an Inverse Fast Fourier Transform (IFFT) block that transforms them into the time domain. The IFFT block may take in F source symbols at a time, one from each of the F parallel symbol streams, and use each source symbol to modulate the amplitude and phase of one of F sinusoidal basis functions that correspond to the F orthogonal subcarriers. The output of the IFFT block may be F time-domain samples that represent the summation of the F orthogonal subcarriers. The F time-domain samples may form a single OFDM symbol. After some processing (e.g., addition of a cyclic prefix) and upconversion, an OFDM symbol provided by the IFFT block may be transmitted over the air interface on a carrier frequency. The F parallel symbol streams may be mixed using an FFT block before being processed by the IFFT block. This operation produces Discrete Fourier Transform (DFT)precoded OFDM symbols and may be used by UEs in the uplink to reduce the peak to average

- power ratio (PAPR). Inverse processing may be performed on the OFDM symbol at a receiver using an FFT block to recover the data mapped to the source symbols.
- (61) FIG. 7 illustrates an example configuration of an NR frame into which OFDM symbols are grouped. An NR frame may be identified by a system frame number (SFN). The SFN may repeat with a period of 1024 frames. As illustrated, one NR frame may be 10 milliseconds (ms) in duration and may include 10 subframes that are 1 ms in duration. A subframe may be divided into slots that include, for example, 14 OFDM symbols per slot.
- (62) The duration of a slot may depend on the numerology used for the OFDM symbols of the slot. In NR, a flexible numerology is supported to accommodate different cell deployments (e.g., cells with carrier frequencies below 1 GHz up to cells with carrier frequencies in the mm-wave range). A numerology may be defined in terms of subcarrier spacing and cyclic prefix duration. For a numerology in NR, subcarrier spacings may be scaled up by powers of two from a baseline subcarrier spacing of 15 kHz, and cyclic prefix durations may be scaled down by powers of two from a baseline cyclic prefix duration of 4.7 μ s. For example, NR defines numerologies with the following subcarrier spacing/cyclic prefix duration combinations: 15 kHz/4.7 μ s; 30 kHz/2.3 μ s; 60 kHz/1.2 μ s; 120 kHz/0.59 μ s; and 240 kHz/0.29 μ s.
- (63) A slot may have a fixed number of OFDM symbols (e.g., 14 OFDM symbols). A numerology with a higher subcarrier spacing has a shorter slot duration and, correspondingly, more slots per subframe. FIG. 7 illustrates this numerology-dependent slot duration and slots-per-subframe transmission structure (the numerology with a subcarrier spacing of 240 kHz is not shown in FIG. 7 for ease of illustration). A subframe in NR may be used as a numerology-independent time reference, while a slot may be used as the unit upon which uplink and downlink transmissions are scheduled. To support low latency, scheduling in NR may be decoupled from the slot duration and start at any OFDM symbol and last for as many symbols as needed for a transmission. These partial slot transmissions may be referred to as mini-slot or subslot transmissions.
- (64) FIG. **8** illustrates an example configuration of a slot in the time and frequency domain for an NR carrier. The slot includes resource elements (REs) and resource blocks (RBs). An RE is the smallest physical resource in NR. An RE spans one OFDM symbol in the time domain by one subcarrier in the frequency domain as shown in FIG. **8**. An RB spans twelve consecutive REs in the frequency domain as shown in FIG. **8**. An NR carrier may be limited to a width of 275 RBs or 275×12=3300 subcarriers. Such a limitation, if used, may limit the NR carrier to 50, 100, 200, and 400 MHz for subcarrier spacings of 15, 30, 60, and 120 kHz, respectively, where the 400 MHz bandwidth may be set based on a 400 MHz per carrier bandwidth limit.
- (65) FIG. **8** illustrates a single numerology being used across the entire bandwidth of the NR carrier. In other example configurations, multiple numerologies may be supported on the same carrier.
- (66) NR may support wide carrier bandwidths (e.g., up to 400 MHz for a subcarrier spacing of 120 kHz). Not all UEs may be able to receive the full carrier bandwidth (e.g., due to hardware limitations). Also, receiving the full carrier bandwidth may be prohibitive in terms of UE power consumption. In an example, to reduce power consumption and/or for other purposes, a UE may adapt the size of the UE's receive bandwidth based on the amount of traffic the UE is scheduled to receive. This is referred to as bandwidth adaptation.
- (67) NR defines bandwidth parts (BWPs) to support UEs not capable of receiving the full carrier bandwidth and to support bandwidth adaptation. In an example, a BWP may be defined by a subset of contiguous RBs on a carrier. A UE may be configured (e.g., via RRC layer) with one or more downlink BWPs and one or more uplink BWPs per serving cell (e.g., up to four downlink BWPs and up to four uplink BWPs per serving cell). At a given time, one or more of the configured BWPs for a serving cell may be active. These one or more BWPs may be referred to as active BWPs of the serving cell. When a serving cell is configured with a secondary uplink carrier, the serving cell may have one or more first active BWPs in the uplink carrier and one or more second active BWPs

- in the secondary uplink carrier.
- (68) For unpaired spectra, a downlink BWP from a set of configured downlink BWPs may be linked with an uplink BWP from a set of configured uplink BWPs if a downlink BWP index of the downlink BWP and an uplink BWP index of the uplink BWP are the same. For unpaired spectra, a UE may expect that a center frequency for a downlink BWP is the same as a center frequency for an uplink BWP.
- (69) For a downlink BWP in a set of configured downlink BWPs on a primary cell (PCell), a base station may configure a UE with one or more control resource sets (CORESETs) for at least one search space. A search space is a set of locations in the time and frequency domains where the UE may find control information. The search space may be a UE-specific search space or a common search space (potentially usable by a plurality of UEs). For example, a base station may configure a UE with a common search space, on a PCell or on a primary secondary cell (PSCell), in an active downlink BWP.
- (70) For an uplink BWP in a set of configured uplink BWPs, a BS may configure a UE with one or more resource sets for one or more PUCCH transmissions. A UE may receive downlink receptions (e.g., PDCCH or PDSCH) in a downlink BWP according to a configured numerology (e.g., subcarrier spacing and cyclic prefix duration) for the downlink BWP. The UE may transmit uplink transmissions (e.g., PUCCH or PUSCH) in an uplink BWP according to a configured numerology (e.g., subcarrier spacing and cyclic prefix length for the uplink BWP).
- (71) One or more BWP indicator fields may be provided in Downlink Control Information (DCI). A value of a BWP indicator field may indicate which BWP in a set of configured BWPs is an active downlink BWP for one or more downlink receptions. The value of the one or more BWP indicator fields may indicate an active uplink BWP for one or more uplink transmissions.
- (72) A base station may semi-statically configure a UE with a default downlink BWP within a set of configured downlink BWPs associated with a PCell. If the base station does not provide the default downlink BWP to the UE, the default downlink BWP may be an initial active downlink BWP. The UE may determine which BWP is the initial active downlink BWP based on a CORESET configuration obtained using the PBCH.
- (73) A base station may configure a UE with a BWP inactivity timer value for a PCell. The UE may start or restart a BWP inactivity timer at any appropriate time. For example, the UE may start or restart the BWP inactivity timer (a) when the UE detects a DCI indicating an active downlink BWP other than a default downlink BWP for a paired spectra operation; or (b) when a UE detects a DCI indicating an active downlink BWP or active uplink BWP other than a default downlink BWP or uplink BWP for an unpaired spectra operation. If the UE does not detect DCI during an interval of time (e.g., 1 ms or 0.5 ms), the UE may run the BWP inactivity timer toward expiration (for example, increment from zero to the BWP inactivity timer value, or decrement from the BWP inactivity timer value to zero). When the BWP inactivity timer expires, the UE may switch from the active downlink BWP to the default downlink BWP.
- (74) In an example, a base station may semi-statically configure a UE with one or more BWPs. A UE may switch an active BWP from a first BWP to a second BWP in response to receiving a DCI indicating the second BWP as an active BWP and/or in response to an expiry of the BWP inactivity timer (e.g., if the second BWP is the default BWP).
- (75) Downlink and uplink BWP switching (where BWP switching refers to switching from a currently active BWP to a not currently active BWP) may be performed independently in paired spectra. In unpaired spectra, downlink and uplink BWP switching may be performed simultaneously. Switching between configured BWPs may occur based on RRC signaling, DCI, expiration of a BWP inactivity timer, and/or an initiation of random access.
- (76) FIG. **9** illustrates an example of bandwidth adaptation using three configured BWPs for an NR carrier. A UE configured with the three BWPs may switch from one BWP to another BWP at a switching point. In the example illustrated in FIG. **9**, the BWPs include: a BWP **902** with a

bandwidth of 40 MHz and a subcarrier spacing of 15 kHz; a BWP **904** with a bandwidth of 10 MHz and a subcarrier spacing of 15 kHz; and a BWP **906** with a bandwidth of 20 MHz and a subcarrier spacing of 60 kHz. The BWP **902** may be an initial active BWP, and the BWP **904** may be a default BWP. The UE may switch between BWPs at switching points. In the example of FIG. **9**, the UE may switch from the BWP **902** to the BWP **904** at a switching point **908**. The switching at the switching point **908** may occur for any suitable reason, for example, in response to an expiry of a BWP inactivity timer (indicating switching to the default BWP) and/or in response to receiving a DCI indicating BWP **904** as the active BWP. The UE may switch at a switching point **910** from active BWP **904** to BWP **906** in response receiving a DCI indicating BWP **904** in response to an expiry of a BWP inactivity timer and/or in response receiving a DCI indicating BWP **904** as the active BWP. The UE may switch at a switching point **914** from active BWP **904** to BWP **902** in response receiving a DCI indicating BWP **903** as the active BWP **904** in DCI indicating BWP **905** as the active BWP **907** as the active BWP **908** and DCI indicating BWP **909** and DCI indicating BWP **909** as the active BWP **909** as the active BWP **909** as the active BWP **909** and DCI indicating BWP **909** and DCI indicating BWP **909** as the active BWP **909** and DCI indicating BWP

- (77) If a UE is configured for a secondary cell with a default downlink BWP in a set of configured downlink BWPs and a timer value, UE procedures for switching BWPs on a secondary cell may be the same/similar as those on a primary cell. For example, the UE may use the timer value and the default downlink BWP for the secondary cell in the same/similar manner as the UE would use these values for a primary cell.
- (78) To provide for greater data rates, two or more carriers can be aggregated and simultaneously transmitted to/from the same UE using carrier aggregation (CA). The aggregated carriers in CA may be referred to as component carriers (CCs). When CA is used, there are a number of serving cells for the UE, one for a CC. The CCs may have three configurations in the frequency domain. (79) FIG. **10**A illustrates the three CA configurations with two CCs. In the intraband, contiguous configuration **1002**, the two CCs are aggregated in the same frequency band (frequency band A) and are located directly adjacent to each other within the frequency band. In the intraband, noncontiguous configuration **1004**, the two CCs are aggregated in the same frequency band (frequency band A) and are separated in the frequency band by a gap. In the interband configuration **1006**, the two CCs are located in frequency bands (frequency band A and frequency band B).
- (80) In an example, up to 32 CCs may be aggregated. The aggregated CCs may have the same or different bandwidths, subcarrier spacing, and/or duplexing schemes (TDD or FDD). A serving cell for a UE using CA may have a downlink CC. For FDD, one or more uplink CCs may be optionally configured for a serving cell. The ability to aggregate more downlink carriers than uplink carriers may be useful, for example, when the UE has more data traffic in the downlink than in the uplink. (81) When CA is used, one of the aggregated cells for a UE may be referred to as a primary cell (PCell). The PCell may be the serving cell that the UE initially connects to at RRC connection

establishment, reestablishment, and/or handover. The PCell may provide the UE with NAS

(UL SCC).

- mobility information and the security input. UEs may have different PCells. In the downlink, the carrier corresponding to the PCell may be referred to as the downlink primary CC (DL PCC). In the uplink, the carrier corresponding to the PCell may be referred to as the uplink primary CC (UL PCC). The other aggregated cells for the UE may be referred to as secondary cells (SCells). In an example, the SCells may be configured after the PCell is configured for the UE. For example, an SCell may be configured through an RRC Connection Reconfiguration procedure. In the downlink, the carrier corresponding to an SCell may be referred to as a downlink secondary CC (DL SCC). In the uplink, the carrier corresponding to the SCell may be referred to as the uplink secondary CC
- (82) Configured SCells for a UE may be activated and deactivated based on, for example, traffic and channel conditions. Deactivation of an SCell may mean that PDCCH and PDSCH reception on the SCell is stopped and PUSCH, SRS, and CQI transmissions on the SCell are stopped. Configured SCells may be activated and deactivated using a MAC CE with respect to FIG. **4**B. For example, a MAC CE may use a bitmap (e.g., one bit per SCell) to indicate which SCells (e.g., in a

- subset of configured SCells) for the UE are activated or deactivated. Configured SCells may be deactivated in response to an expiration of an SCell deactivation timer (e.g., one SCell deactivation timer per SCell).
- (83) Downlink control information, such as scheduling assignments and scheduling grants, for a cell may be transmitted on the cell corresponding to the assignments and grants, which is known as self-scheduling. The DCI for the cell may be transmitted on another cell, which is known as cross-carrier scheduling. Uplink control information (e.g., HARQ acknowledgments and channel state feedback, such as CQI, PMI, and/or RI) for aggregated cells may be transmitted on the PUCCH of the PCell. For a larger number of aggregated downlink CCs, the PUCCH of the PCell may become overloaded. Cells may be divided into multiple PUCCH groups.
- (84) FIG. **10**B illustrates an example of how aggregated cells may be configured into one or more PUCCH groups. A PUCCH group **1010** and a PUCCH group **1050** may include one or more downlink CCs, respectively. In the example of FIG. **10**B, the PUCCH group **1010** includes three downlink CCs: a PCell **1011**, an SCell **1012**, and an SCell **1013**. The PUCCH group **1050** includes three downlink CCs in the present example: a PCell **1051**, an SCell **1052**, and an SCell **1053**. One or more uplink CCs may be configured as a PCell **1021**, an SCell **1022**, and an SCell **1062**, and an SCell **1063**. Uplink control information (UCI) related to the downlink CCs of the PUCCH group **1010**, shown as UCI **1031**, UCI **1032**, and UCI **1033**, may be transmitted in the uplink of the PCell **1021**. Uplink control information (UCI) related to the downlink CCs of the PUCCH group **1050**, shown as UCI **1071**, UCI **1072**, and UCI **1073**, may be transmitted in the uplink of the PSCell **1061**. In an example, if the aggregated cells depicted in FIG. **10**B were not divided into the PUCCH group **1050** as single uplink PCell to transmit UCI relating to the downlink CCs, and the PCell may become overloaded. By dividing transmissions of UCI between the PCell **1021** and the PSCell **1061**, overloading may be prevented.
- (85) A cell, comprising a downlink carrier and optionally an uplink carrier, may be assigned with a physical cell ID and a cell index. The physical cell ID or the cell index may identify a downlink carrier and/or an uplink carrier of the cell, for example, depending on the context in which the physical cell ID is used. A physical cell ID may be determined using a synchronization signal transmitted on a downlink component carrier. A cell index may be determined using RRC messages. In the disclosure, a physical cell ID may be referred to as a carrier ID, and a cell index may be referred to as a carrier index. For example, when the disclosure refers to a first physical cell ID for a first downlink carrier, the disclosure may mean the first physical cell ID is for a cell comprising the first downlink carrier. The same/similar concept may apply to, for example, a carrier activation. When the disclosure indicates that a first carrier is activated, the specification may mean that a cell comprising the first carrier is activated.
- (86) In CA, a multi-carrier nature of a PHY may be exposed to a MAC. In an example, a HARQ entity may operate on a serving cell. A transport block may be generated per assignment/grant per serving cell. A transport block and potential HARQ retransmissions of the transport block may be mapped to a serving cell.
- (87) In the downlink, a base station may transmit (e.g., unicast, multicast, and/or broadcast) one or more Reference Signals (RSs) to a UE (e.g., PSS, SSS, CSI-RS, DMRS, and/or PT-RS, as shown in FIG. 5A). In the uplink, the UE may transmit one or more RSs to the base station (e.g., DMRS, PT-RS, and/or SRS, as shown in FIG. 5B). The PSS and the SSS may be transmitted by the base station and used by the UE to synchronize the UE to the base station. The PSS and the SSS may be provided in a synchronization signal (SS)/physical broadcast channel (PBCH) block that includes the PSS, the SSS, and the PBCH. The base station may periodically transmit a burst of SS/PBCH blocks.
- (88) FIG. **11**A illustrates an example of an SS/PBCH block's structure and location. A burst of SS/PBCH blocks may include one or more SS/PBCH blocks (e.g., 4 SS/PBCH blocks, as shown in

- FIG. **11**A). Bursts may be transmitted periodically (e.g., every 2 frames or 20 ms). A burst may be restricted to a half-frame (e.g., a first half-frame having a duration of 5 ms). It will be understood that FIG. **11**A is an example, and that these parameters (number of SS/PBCH blocks per burst, periodicity of bursts, position of burst within the frame) may be configured based on, for example: a carrier frequency of a cell in which the SS/PBCH block is transmitted; a numerology or subcarrier spacing of the cell; a configuration by the network (e.g., using RRC signaling); or any other suitable factor. In an example, the UE may assume a subcarrier spacing for the SS/PBCH block based on the carrier frequency being monitored, unless the radio network configured the UE to assume a different subcarrier spacing.
- (89) The SS/PBCH block may span one or more OFDM symbols in the time domain (e.g., 4 OFDM symbols, as shown in the example of FIG. **11**A) and may span one or more subcarriers in the frequency domain (e.g., 240 contiguous subcarriers). The PSS, the SSS, and the PBCH may have a common center frequency. The PSS may be transmitted first and may span, for example, 1 OFDM symbol and 127 subcarriers. The SSS may be transmitted after the PSS (e.g., two symbols later) and may span 1 OFDM symbol and 127 subcarriers. The PBCH may be transmitted after the PSS (e.g., across the next 3 OFDM symbols) and may span 240 subcarriers.
- (90) The location of the SS/PBCH block in the time and frequency domains may not be known to the UE (e.g., if the UE is searching for the cell). To find and select the cell, the UE may monitor a carrier for the PSS. For example, the UE may monitor a frequency location within the carrier. If the PSS is not found after a certain duration (e.g., 20 ms), the UE may search for the PSS at a different frequency location within the carrier, as indicated by a synchronization raster. If the PSS is found at a location in the time and frequency domains, the UE may determine, based on a known structure of the SS/PBCH block, the locations of the SSS and the PBCH, respectively. The SS/PBCH block may be a cell-defining SS block (CD-SSB). In an example, a primary cell may be associated with a CD-SSB. The CD-SSB may be located on a synchronization raster. In an example, a cell selection/search and/or reselection may be based on the CD-SSB.
- (91) The SS/PBCH block may be used by the UE to determine one or more parameters of the cell. For example, the UE may determine a physical cell identifier (PCI) of the cell based on the sequences of the PSS and the SSS, respectively. The UE may determine a location of a frame boundary of the cell based on the location of the SS/PBCH block. For example, the SS/PBCH block may indicate that it has been transmitted in accordance with a transmission pattern, wherein a SS/PBCH block in the transmission pattern is a known distance from the frame boundary. (92) The PBCH may use a QPSK modulation and may use forward error correction (FEC). The FEC may use polar coding. One or more symbols spanned by the PBCH may carry one or more DMRSs for demodulation of the PBCH. The PBCH may include an indication of a current system frame number (SFN) of the cell and/or a SS/PBCH block timing index. These parameters may facilitate time synchronization of the UE to the base station. The PBCH may include a master information block (MIB) used to provide the UE with one or more parameters. The MIB may be used by the UE to locate remaining minimum system information (RMSI) associated with the cell. The RMSI may include a System Information Block Type 1 (SIB1). The SIB1 may contain information needed by the UE to access the cell. The UE may use one or more parameters of the MIB to monitor PDCCH, which may be used to schedule PDSCH. The PDSCH may include the SIB1. The SIB1 may be decoded using parameters provided in the MIB. The PBCH may indicate an absence of SIB1. Based on the PBCH indicating the absence of SIB1, the UE may be pointed to a frequency. The UE may search for an SS/PBCH block at the frequency to which the UE is pointed.
- (93) The UE may assume that one or more SS/PBCH blocks transmitted with a same SS/PBCH block index are quasi co-located (QCLed) (e.g., having the same/similar Doppler spread, Doppler shift, average gain, average delay, and/or spatial Rx parameters). The UE may not assume QCL for SS/PBCH block transmissions having different SS/PBCH block indices.

- (94) SS/PBCH blocks (e.g., those within a half-frame) may be transmitted in spatial directions (e.g., using different beams that span a coverage area of the cell). In an example, a first SS/PBCH block may be transmitted in a first spatial direction using a first beam, and a second SS/PBCH block may be transmitted in a second spatial direction using a second beam.
- (95) In an example, within a frequency span of a carrier, a base station may transmit a plurality of SS/PBCH blocks. In an example, a first PCI of a first SS/PBCH block of the plurality of SS/PBCH blocks may be different from a second PCI of a second SS/PBCH block of the plurality of SS/PBCH blocks. The PCIs of SS/PBCH blocks transmitted in different frequency locations may be different or the same.
- (96) The CSI-RS may be transmitted by the base station and used by the UE to acquire channel state information (CSI). The base station may configure the UE with one or more CSI-RSs for channel estimation or any other suitable purpose. The base station may configure a UE with one or more of the same/similar CSI-RSs. The UE may measure the one or more CSI-RSs. The UE may estimate a downlink channel state and/or generate a CSI report based on the measuring of the one or more downlink CSI-RSs. The UE may provide the CSI report to the base station. The base station may use feedback provided by the UE (e.g., the estimated downlink channel state) to perform link adaptation.
- (97) The base station may semi-statically configure the UE with one or more CSI-RS resource sets. A CSI-RS resource may be associated with a location in the time and frequency domains and a periodicity. The base station may selectively activate and/or deactivate a CSI-RS resource. The base station may indicate to the UE that a CSI-RS resource in the CSI-RS resource set is activated and/or deactivated.
- (98) The base station may configure the UE to report CSI measurements. The base station may configure the UE to provide CSI reports periodically, aperiodically, or semi-persistently. For periodic CSI reporting, the UE may be configured with a timing and/or periodicity of a plurality of CSI reports. For aperiodic CSI reporting, the base station may request a CSI report. For example, the base station may command the UE to measure a configured CSI-RS resource and provide a CSI report relating to the measurements. For semi-persistent CSI reporting, the base station may configure the UE to transmit periodically, and selectively activate or deactivate the periodic reporting. The base station may configure the UE with a CSI-RS resource set and CSI reports using RRC signaling.
- (99) The CSI-RS configuration may comprise one or more parameters indicating, for example, up to 32 antenna ports. The UE may be configured to employ the same OFDM symbols for a downlink CSI-RS and a control resource set (CORESET) when the downlink CSI-RS and CORESET are spatially QCLed and resource elements associated with the downlink CSI-RS are outside of the physical resource blocks (PRBs) configured for the CORESET. The UE may be configured to employ the same OFDM symbols for downlink CSI-RS and SS/PBCH blocks when the downlink CSI-RS and SS/PBCH blocks are spatially QCLed and resource elements associated with the downlink CSI-RS are outside of PRBs configured for the SS/PBCH blocks.
- (100) Downlink DMRSs may be transmitted by a base station and used by a UE for channel estimation. For example, the downlink DMRS may be used for coherent demodulation of one or more downlink physical channels (e.g., PDSCH). An NR network may support one or more variable and/or configurable DMRS patterns for data demodulation. At least one downlink DMRS configuration may support a front-loaded DMRS pattern. A front-loaded DMRS may be mapped over one or more OFDM symbols (e.g., one or two adjacent OFDM symbols). A base station may semi-statically configure the UE with a number (e.g. a maximum number) of front-loaded DMRS symbols for PDSCH. A DMRS configuration may support one or more DMRS ports. For example, for single user-MIMO, a DMRS configuration may support up to eight orthogonal downlink DMRS ports per UE. For multiuser-MIMO, a DMRS configuration may support up to 4 orthogonal downlink DMRS ports per UE. A radio network may support (e.g., at least for CP-OFDM) a

common DMRS structure for downlink and uplink, wherein a DMRS location, a DMRS pattern, and/or a scrambling sequence may be the same or different. The base station may transmit a downlink DMRS and a corresponding PDSCH using the same precoding matrix. The UE may use the one or more downlink DMRSs for coherent demodulation/channel estimation of the PDSCH. (101) In an example, a transmitter (e.g., a base station) may use a precoder matrices for a part of a transmission bandwidth. For example, the transmitter may use a first precoder matrix for a first bandwidth and a second precoder matrix for a second bandwidth. The first precoder matrix and the second precoder matrix may be different based on the first bandwidth being different from the second bandwidth. The UE may assume that a same precoding matrix is used across a set of PRBs. The set of PRBs may be denoted as a precoding resource block group (PRG).

- (102) A PDSCH may comprise one or more layers. The UE may assume that at least one symbol with DMRS is present on a layer of the one or more layers of the PDSCH. A higher layer may configure up to 3 DMRSs for the PDSCH.
- (103) Downlink PT-RS may be transmitted by a base station and used by a UE for phase-noise compensation. Whether a downlink PT-RS is present or not may depend on an RRC configuration. The presence and/or pattern of the downlink PT-RS may be configured on a UE-specific basis using a combination of RRC signaling and/or an association with one or more parameters employed for other purposes (e.g., modulation and coding scheme (MCS)), which may be indicated by DCI. When configured, a dynamic presence of a downlink PT-RS may be associated with one or more DCI parameters comprising at least MCS. An NR network may support a plurality of PT-RS densities defined in the time and/or frequency domains. When present, a frequency domain density may be associated with at least one configuration of a scheduled bandwidth. The UE may assume a same precoding for a DMRS port and a PT-RS port. A number of PT-RS ports may be fewer than a number of DMRS ports in a scheduled resource. Downlink PT-RS may be confined in the scheduled time/frequency duration for the UE. Downlink PT-RS may be transmitted on symbols to facilitate phase tracking at the receiver.
- (104) The UE may transmit an uplink DMRS to a base station for channel estimation. For example, the base station may use the uplink DMRS for coherent demodulation of one or more uplink physical channels. For example, the UE may transmit an uplink DMRS with a PUSCH and/or a PUCCH. The uplink DM-RS may span a range of frequencies that is similar to a range of frequencies associated with the corresponding physical channel. The base station may configure the UE with one or more uplink DMRS configurations. At least one DMRS configuration may support a front-loaded DMRS pattern. The front-loaded DMRS may be mapped over one or more OFDM symbols (e.g., one or two adjacent OFDM symbols). One or more uplink DMRSs may be configured to transmit at one or more symbols of a PUSCH and/or a PUCCH. The base station may semi-statically configure the UE with a number (e.g. maximum number) of front-loaded DMRS symbols for the PUSCH and/or the PUCCH, which the UE may use to schedule a single-symbol DMRS and/or a double-symbol DMRS. An NR network may support (e.g., for cyclic prefix orthogonal frequency division multiplexing (CP-OFDM)) a common DMRS structure for downlink and uplink, wherein a DMRS location, a DMRS pattern, and/or a scrambling sequence for the DMRS may be the same or different.
- (105) A PUSCH may comprise one or more layers, and the UE may transmit at least one symbol with DMRS present on a layer of the one or more layers of the PUSCH. In an example, a higher layer may configure up to three DMRSs for the PUSCH.
- (106) Uplink PT-RS (which may be used by a base station for phase tracking and/or phase-noise compensation) may or may not be present depending on an RRC configuration of the UE. The presence and/or pattern of uplink PT-RS may be configured on a UE-specific basis by a combination of RRC signaling and/or one or more parameters employed for other purposes (e.g., Modulation and Coding Scheme (MCS)), which may be indicated by DCI. When configured, a dynamic presence of uplink PT-RS may be associated with one or more DCI parameters

comprising at least MCS. A radio network may support a plurality of uplink PT-RS densities defined in time/frequency domain. When present, a frequency domain density may be associated with at least one configuration of a scheduled bandwidth. The UE may assume a same precoding for a DMRS port and a PT-RS port. A number of PT-RS ports may be fewer than a number of DMRS ports in a scheduled resource. For example, uplink PT-RS may be confined in the scheduled time/frequency duration for the UE.

(107) SRS may be transmitted by a UE to a base station for channel state estimation to support uplink channel dependent scheduling and/or link adaptation. SRS transmitted by the UE may allow a base station to estimate an uplink channel state at one or more frequencies. A scheduler at the base station may employ the estimated uplink channel state to assign one or more resource blocks for an uplink PUSCH transmission from the UE. The base station may semi-statically configure the UE with one or more SRS resource sets. For an SRS resource set, the base station may configure the UE with one or more SRS resources. An SRS resource set applicability may be configured by a higher layer (e.g., RRC) parameter. For example, when a higher layer parameter indicates beam management, an SRS resource in a SRS resource set of the one or more SRS resource sets (e.g., with the same/similar time domain behavior, periodic, aperiodic, and/or the like) may be transmitted at a time instant (e.g., simultaneously). The UE may transmit one or more SRS resources in SRS resource sets. An NR network may support aperiodic, periodic and/or semipersistent SRS transmissions. The UE may transmit SRS resources based on one or more trigger types, wherein the one or more trigger types may comprise higher layer signaling (e.g., RRC) and/or one or more DCI formats. In an example, at least one DCI format may be employed for the UE to select at least one of one or more configured SRS resource sets. An SRS trigger type 0 may refer to an SRS triggered based on a higher layer signaling. An SRS trigger type 1 may refer to an SRS triggered based on one or more DCI formats. In an example, when PUSCH and SRS are transmitted in a same slot, the UE may be configured to transmit SRS after a transmission of a PUSCH and a corresponding uplink DMRS.

(108) The base station may semi-statically configure the UE with one or more SRS configuration parameters indicating at least one of following: a SRS resource configuration identifier; a number of SRS ports; time domain behavior of an SRS resource configuration (e.g., an indication of periodic, semi-persistent, or aperiodic SRS); slot, mini-slot, and/or subframe level periodicity; offset for a periodic and/or an aperiodic SRS resource; a number of OFDM symbols in an SRS resource; a starting OFDM symbol of an SRS resource; an SRS bandwidth; a frequency hopping bandwidth; a cyclic shift; and/or an SRS sequence ID.

(109) An antenna port is defined such that the channel over which a symbol on the antenna port is conveyed can be inferred from the channel over which another symbol on the same antenna port is conveyed. If a first symbol and a second symbol are transmitted on the same antenna port, the receiver may infer the channel (e.g., fading gain, multipath delay, and/or the like) for conveying the second symbol on the antenna port, from the channel for conveying the first symbol on the antenna port. A first antenna port and a second antenna port may be referred to as quasi co-located (QCLed) if one or more large-scale properties of the channel over which a first symbol on the first antenna port is conveyed may be inferred from the channel over which a second symbol on a second antenna port is conveyed. The one or more large-scale properties may comprise at least one of: a delay spread; a Doppler spread; a Doppler shift; an average gain; an average delay; and/or spatial Receiving (Rx) parameters.

(110) Channels that use beamforming require beam management. Beam management may comprise beam measurement, beam selection, and beam indication. A beam may be associated with one or more reference signals. For example, a beam may be identified by one or more beamformed reference signals. The UE may perform downlink beam measurement based on downlink reference signals (e.g., a channel state information reference signal (CSI-RS)) and generate a beam measurement report. The UE may perform the downlink beam measurement procedure after an

RRC connection is set up with a base station.

(111) FIG. 11B illustrates an example of channel state information reference signals (CSI-RSs) that are mapped in the time and frequency domains. A square shown in FIG. 11B may span a resource block (RB) within a bandwidth of a cell. A base station may transmit one or more RRC messages comprising CSI-RS resource configuration parameters indicating one or more CSI-RSs. One or more of the following parameters may be configured by higher layer signaling (e.g., RRC and/or MAC signaling) for a CSI-RS resource configuration: a CSI-RS resource configuration identity, a number of CSI-RS ports, a CSI-RS configuration (e.g., symbol and resource element (RE) locations in a subframe), a CSI-RS subframe configuration (e.g., subframe location, offset, and periodicity in a radio frame), a CSI-RS power parameter, a CSI-RS sequence parameter, a code division multiplexing (CDM) type parameter, a frequency density, a transmission comb, quasi colocation (QCL) parameters (e.g., QCL-scramblingidentity, crs-portscount, mbsfn-subframeconfiglist, csi-rs-configZPid, qcl-csi-rs-configNZPid), and/or other radio resource parameters.

(112) The three beams illustrated in FIG. 11B may be configured for a UE in a UE-specific configuration. Three beams are illustrated in FIG. 11B (beam #1, beam #2, and beam #3), more or fewer beams may be configured. Beam #1 may be allocated with CSI-RS 1101 that may be transmitted in one or more subcarriers in an RB of a first symbol. Beam #2 may be allocated with CSI-RS 1102 that may be transmitted in one or more subcarriers in an RB of a second symbol. Beam #3 may be allocated with CSI-RS 1103 that may be transmitted in one or more subcarriers in an RB of a third symbol. By using frequency division multiplexing (FDM), a base station may use other subcarriers in a same RB (for example, those that are not used to transmit CSI-RS 1101) to transmit another CSI-RS associated with a beam for another UE. By using time domain multiplexing (TDM), beams used for the UE may be configured such that beams for the UE use symbols from beams of other UEs.

(113) CSI-RSs such as those illustrated in FIG. 11B (e.g., CSI-RS 1101, 1102, 1103) may be transmitted by the base station and used by the UE for one or more measurements. For example, the UE may measure a reference signal received power (RSRP) of configured CSI-RS resources. The base station may configure the UE with a reporting configuration and the UE may report the RSRP measurements to a network (for example, via one or more base stations) based on the reporting configuration. In an example, the base station may determine, based on the reported measurement results, one or more transmission configuration indication (TCI) states comprising a number of reference signals. In an example, the base station may indicate one or more TCI states to the UE (e.g., via RRC signaling, a MAC CE, and/or a DCI). The UE may receive a downlink transmission with a receive (Rx) beam determined based on the one or more TCI states. In an example, the UE may or may not have a capability of beam correspondence. If the UE has the capability of beam correspondence, the UE may determine a spatial domain filter of a transmit (Tx) beam based on a spatial domain filter of the corresponding Rx beam. If the UE does not have the capability of beam correspondence, the UE may perform an uplink beam selection procedure to determine the spatial domain filter of the Tx beam. The UE may perform the uplink beam selection procedure based on one or more sounding reference signal (SRS) resources configured to the UE by the base station. The base station may select and indicate uplink beams for the UE based on measurements of the one or more SRS resources transmitted by the UE.

(114) In a beam management procedure, a UE may assess (e.g., measure) a channel quality of one or more beam pair links, a beam pair link comprising a transmitting beam transmitted by a base station and a receiving beam received by the UE. Based on the assessment, the UE may transmit a beam measurement report indicating one or more beam pair quality parameters comprising, e.g., one or more beam identifications (e.g., a beam index, a reference signal index, or the like), RSRP, a precoding matrix indicator (PMI), a channel quality indicator (CQI), and/or a rank indicator (RI). (115) FIG. 12A illustrates examples of three downlink beam management procedures: P1, P2, and

P3. Procedure P1 may enable a UE measurement on transmit (Tx) beams of a transmission reception point (TRP) (or multiple TRPs), e.g., to support a selection of one or more base station Tx beams and/or UE Rx beams (shown as ovals in the top row and bottom row, respectively, of P1). Beamforming at a TRP may comprise a Tx beam sweep for a set of beams (shown, in the top rows of P1 and P2, as ovals rotated in a counter-clockwise direction indicated by the dashed arrow). Beamforming at a UE may comprise an Rx beam sweep for a set of beams (shown, in the bottom rows of P1 and P3, as ovals rotated in a clockwise direction indicated by the dashed arrow). Procedure P2 may be used to enable a UE measurement on Tx beams of a TRP (shown, in the top row of P2, as ovals rotated in a counter-clockwise direction indicated by the dashed arrow). The UE and/or the base station may perform procedure P2 using a smaller set of beams than is used in procedure P1, or using narrower beams than the beams used in procedure P1. This may be referred to as beam refinement. The UE may perform procedure P3 for Rx beam determination by using the same Tx beam at the base station and sweeping an Rx beam at the UE.

(116) FIG. 12B illustrates examples of three uplink beam management procedures: U1, U2, and U3. Procedure U1 may be used to enable a base station to perform a measurement on Tx beams of a UE, e.g., to support a selection of one or more UE Tx beams and/or base station Rx beams (shown as ovals in the top row and bottom row, respectively, of U1). Beamforming at the UE may include, e.g., a Tx beam sweep from a set of beams (shown in the bottom rows of U1 and U3 as ovals rotated in a clockwise direction indicated by the dashed arrow). Beamforming at the base station may include, e.g., an Rx beam sweep from a set of beams (shown, in the top rows of U1 and U2, as ovals rotated in a counter-clockwise direction indicated by the dashed arrow). Procedure U2 may be used to enable the base station to adjust its Rx beam when the UE uses a fixed Tx beam. The UE and/or the base station may perform procedure U2 using a smaller set of beams than is used in procedure P1, or using narrower beams than the beams used in procedure P1. This may be referred to as beam refinement The UE may perform procedure U3 to adjust its Tx beam when the base station uses a fixed Rx beam.

(117) A UE may initiate a beam failure recovery (BFR) procedure based on detecting a beam failure. The UE may transmit a BFR request (e.g., a preamble, a UCI, an SR, a MAC CE, and/or the like) based on the initiating of the BFR procedure. The UE may detect the beam failure based on a determination that a quality of beam pair link(s) of an associated control channel is unsatisfactory (e.g., having an error rate higher than an error rate threshold, a received signal power lower than a received signal power threshold, an expiration of a timer, and/or the like). (118) The UE may measure a quality of a beam pair link using one or more reference signals (RSs) comprising one or more SS/PBCH blocks, one or more CSI-RS resources, and/or one or more demodulation reference signals (DMRSs). A quality of the beam pair link may be based on one or more of a block error rate (BLER), an RSRP value, a signal to interference plus noise ratio (SINR) value, a reference signal received quality (RSRQ) value, and/or a CSI value measured on RS resources. The base station may indicate that an RS resource is quasi co-located (QCLed) with one or more DM-RSs of a channel (e.g., a control channel, a shared data channel, and/or the like). The RS resource and the one or more DMRSs of the channel may be QCLed when the channel characteristics (e.g., Doppler shift, Doppler spread, average delay, delay spread, spatial Rx parameter, fading, and/or the like) from a transmission via the RS resource to the UE are similar or the same as the channel characteristics from a transmission via the channel to the UE. (119) A network (e.g., a gNB and/or an ng-eNB of a network) and/or the UE may initiate a random access procedure. A UE in an RRC_IDLE state and/or an RRC_INACTIVE state may initiate the random access procedure to request a connection setup to a network. The UE may initiate the random access procedure from an RRC_CONNECTED state. The UE may initiate the random access procedure to request uplink resources (e.g., for uplink transmission of an SR when there is no PUCCH resource available) and/or acquire uplink timing (e.g., when uplink synchronization status is non-synchronized). The UE may initiate the random access procedure to request one or

- more system information blocks (SIBs) (e.g., other system information such as SIB2, SIB3, and/or the like). The UE may initiate the random access procedure for a beam failure recovery request. A network may initiate a random access procedure for a handover and/or for establishing time alignment for an SCell addition.
- (120) FIG. **13**A illustrates a four-step contention-based random access procedure. Prior to initiation of the procedure, a base station may transmit a configuration message **1310** to the UE. The procedure illustrated in FIG. **13**A comprises transmission of four messages: a Msg **1 1311**, a Msg **2 1312**, a Msg **3 1313**, and a Msg **4 1314**. The Msg **1 1311** may include and/or be referred to as a preamble (or a random access preamble). The Msg **2 1312** may include and/or be referred to as a random access response (RAR).
- (121) The configuration message **1310** may be transmitted, for example, using one or more RRC messages. The one or more RRC messages may indicate one or more random access channel (RACH) parameters to the UE. The one or more RACH parameters may comprise at least one of following: general parameters for one or more random access procedures (e.g., RACHconfigGeneral); cell-specific parameters (e.g., RACH-ConfigCommon); and/or dedicated parameters (e.g., RACH-configDedicated). The base station may broadcast or multicast the one or more RRC messages to one or more UEs. The one or more RRC messages may be UE-specific (e.g., dedicated RRC messages transmitted to a UE in an RRC CONNECTED state and/or in an RRC_INACTIVE state). The UE may determine, based on the one or more RACH parameters, a time-frequency resource and/or an uplink transmit power for transmission of the Msg 1 1311 and/or the Msg **3 1313**. Based on the one or more RACH parameters, the UE may determine a reception timing and a downlink channel for receiving the Msg 2 1312 and the Msg 4 1314. (122) The one or more RACH parameters provided in the configuration message 1310 may indicate one or more Physical RACH (PRACH) occasions available for transmission of the Msg 1 1311. The one or more PRACH occasions may be predefined. The one or more RACH parameters may indicate one or more available sets of one or more PRACH occasions (e.g., prach-ConfigIndex). The one or more RACH parameters may indicate an association between (a) one or more PRACH occasions and (b) one or more reference signals. The one or more RACH parameters may indicate an association between (a) one or more preambles and (b) one or more reference signals. The one
- and/or a number of preambles mapped to a SS/PBCH blocks. (123) The one or more RACH parameters provided in the configuration message **1310** may be used to determine an uplink transmit power of Msg **1 1311** and/or Msg **3 1313**. For example, the one or more RACH parameters may indicate a reference power for a preamble transmission (e.g., a received target power and/or an initial power of the preamble transmission). There may be one or more power offsets indicated by the one or more RACH parameters. For example, the one or more RACH parameters may indicate: a power ramping step; a power offset between SSB and CSI-RS; a power offset between transmissions of the Msg **1 1311** and the Msg **3 1313**; and/or a power offset value between preamble groups. The one or more RACH parameters may indicate one or more thresholds based on which the UE may determine at least one reference signal (e.g., an SSB and/or CSI-RS) and/or an uplink carrier (e.g., a normal uplink (NUL) carrier and/or a supplemental uplink (SUL) carrier).

or more reference signals may be SS/PBCH blocks and/or CSI-RSs. For example, the one or more

RACH parameters may indicate a number of SS/PBCH blocks mapped to a PRACH occasion

(124) The Msg **1 1311** may include one or more preamble transmissions (e.g., a preamble transmission and one or more preamble retransmissions). An RRC message may be used to configure one or more preamble groups (e.g., group A and/or group B). A preamble group may comprise one or more preambles. The UE may determine the preamble group based on a pathloss measurement and/or a size of the Msg **3 1313**. The UE may measure an RSRP of one or more reference signals (e.g., SSBs and/or CSI-RSs) and determine at least one reference signal having an RSRP above an RSRP threshold (e.g., rsrp-ThresholdSSB and/or rsrp-ThresholdCSI-RS). The UE

may select at least one preamble associated with the one or more reference signals and/or a selected preamble group, for example, if the association between the one or more preambles and the at least one reference signal is configured by an RRC message.

(125) The UE may determine the preamble based on the one or more RACH parameters provided in the configuration message **1310**. For example, the UE may determine the preamble based on a pathloss measurement, an RSRP measurement, and/or a size of the Msg **3 1313**. As another example, the one or more RACH parameters may indicate: a preamble format; a maximum number of preamble transmissions; and/or one or more thresholds for determining one or more preamble groups (e.g., group A and group B). A base station may use the one or more RACH parameters to configure the UE with an association between one or more preambles and one or more reference signals (e.g., SSBs and/or CSI-RSs). If the association is configured, the UE may determine the preamble to include in Msg **1 1311** based on the association. The Msg **1 1311** may be transmitted to the base station via one or more PRACH occasions. The UE may use one or more reference signals (e.g., SSBs and/or CSI-RSs) for selection of the preamble and for determining of the PRACH occasion. One or more RACH parameters (e.g., ra-ssb-OccasionMskIndex and/or ra-OccasionList) may indicate an association between the PRACH occasions and the one or more reference signals. (126) The UE may perform a preamble retransmission if no response is received following a preamble transmission. The UE may increase an uplink transmit power for the preamble retransmission. The UE may select an initial preamble transmit power based on a pathloss measurement and/or a target received preamble power configured by the network. The UE may determine to retransmit a preamble and may ramp up the uplink transmit power. The UE may receive one or more RACH parameters (e.g., PREAMBLE_POWER_RAMPING_STEP) indicating a ramping step for the preamble retransmission. The ramping step may be an amount of incremental increase in uplink transmit power for a retransmission. The UE may ramp up the uplink transmit power if the UE determines a reference signal (e.g., SSB and/or CSI-RS) that is the same as a previous preamble transmission. The UE may count a number of preamble transmissions and/or retransmissions (e.g., PREAMBLE_TRANSMISSION_COUNTER). The UE may determine that a random access procedure completed unsuccessfully, for example, if the number of preamble transmissions exceeds a threshold configured by the one or more RACH parameters (e.g., preambleTransMax).

(127) The Msg 2 1312 received by the UE may include an RAR. In some scenarios, the Msg 2 **1312** may include multiple RARs corresponding to multiple UEs. The Msg **2 1312** may be received after or in response to the transmitting of the Msg 1 1311. The Msg 2 1312 may be scheduled on the DL-SCH and indicated on a PDCCH using a random access RNTI (RA-RNTI). The Msg 2 **1312** may indicate that the Msg **1 1311** was received by the base station. The Msg **2 1312** may include a time-alignment command that may be used by the UE to adjust the UE's transmission timing, a scheduling grant for transmission of the Msg 3 1313, and/or a Temporary Cell RNTI (TC-RNTI). After transmitting a preamble, the UE may start a time window (e.g., ra-ResponseWindow) to monitor a PDCCH for the Msg 2 1312. The UE may determine when to start the time window based on a PRACH occasion that the UE uses to transmit the preamble. For example, the UE may start the time window one or more symbols after a last symbol of the preamble (e.g., at a first PDCCH occasion from an end of a preamble transmission). The one or more symbols may be determined based on a numerology. The PDCCH may be in a common search space (e.g., a Type1-PDCCH common search space) configured by an RRC message. The UE may identify the RAR based on a Radio Network Temporary Identifier (RNTI). RNTIs may be used depending on one or more events initiating the random access procedure. The UE may use random access RNTI (RA-RNTI). The RA-RNTI may be associated with PRACH occasions in which the UE transmits a preamble. For example, the UE may determine the RA-RNTI based on: an OFDM symbol index; a slot index; a frequency domain index; and/or a UL carrier indicator of the PRACH occasions. An example of RA-RNTI may be as follows:

- RA-RNTI=1+s_id+14×t_id+14×80×f_id+14×80×8×t_ul_carrier_id where s_id may be an index of a first OFDM symbol of the PRACH occasion (e.g., 0≤t_id<14), t_id may be an index of a first slot of the PRACH occasion in a system frame (e.g., 0≤t_id<80), f_id may be an index of the PRACH occasion in the frequency domain (e.g., 0≤t_id<8), and ul_carrier_id may be a UL carrier used for a preamble transmission (e.g., 0 for an NUL carrier, and 1 for an SUL carrier).
- (128) The UE may transmit the Msg 3 1313 in response to a successful reception of the Msg 2 1312 (e.g., using resources identified in the Msg 2 1312). The Msg 3 1313 may be used for contention resolution in, for example, the contention-based random access procedure illustrated in FIG. 13A. In some scenarios, a plurality of UEs may transmit a same preamble to a base station and the base station may provide an RAR that corresponds to a UE. Collisions may occur if the plurality of UEs interpret the RAR as corresponding to themselves. Contention resolution (e.g., using the Msg 3 1313 and the Msg 4 1314) may be used to increase the likelihood that the UE does not incorrectly use an identity of another the UE. To perform contention resolution, the UE may include a device identifier in the Msg 3 1313 (e.g., a C-RNTI if assigned, a TC-RNTI included in the Msg 2 1312, and/or any other suitable identifier).
- (129) The Msg **4 1314** may be received after or in response to the transmitting of the Msg **3 1313**. If a C-RNTI was included in the Msg **3 1313**, the base station will address the UE on the PDCCH using the C-RNTI. If the UE's unique C-RNTI is detected on the PDCCH, the random access procedure is determined to be successfully completed. If a TC-RNTI is included in the Msg **3 1313** (e.g., if the UE is in an RRC_IDLE state or not otherwise connected to the base station), Msg **4 1314** will be received using a DL-SCH associated with the TC-RNTI. If a MAC PDU is successfully decoded and a MAC PDU comprises the UE contention resolution identity MAC CE that matches or otherwise corresponds with the CCCH SDU sent (e.g., transmitted) in Msg **3 1313**, the UE may determine that the contention resolution is successful and/or the UE may determine that the random access procedure is successfully completed.
- (130) The UE may be configured with a supplementary uplink (SUL) carrier and a normal uplink (NUL) carrier. An initial access (e.g., random access procedure) may be supported in an uplink carrier. For example, a base station may configure the UE with two separate RACH configurations: one for an SUL carrier and the other for an NUL carrier. For random access in a cell configured with an SUL carrier, the network may indicate which carrier to use (NUL or SUL). The UE may determine the SUL carrier, for example, if a measured quality of one or more reference signals is lower than a broadcast threshold. Uplink transmissions of the random access procedure (e.g., the Msg 1 1311 and/or the Msg 3 1313) may remain on the selected carrier. The UE may switch an uplink carrier during the random access procedure (e.g., between the Msg 1 1311 and the Msg 3 1313) in one or more cases. For example, the UE may determine and/or switch an uplink carrier for the Msg 1 1311 and/or the Msg 3 1313 based on a channel clear assessment (e.g., a listen-before-talk).
- (131) FIG. 13B illustrates a two-step contention-free random access procedure. Similar to the four-step contention-based random access procedure illustrated in FIG. 13A, a base station may, prior to initiation of the procedure, transmit a configuration message 1320 to the UE. The configuration message 1320 may be analogous in some respects to the configuration message 1310. The procedure illustrated in FIG. 13B comprises transmission of two messages: a Msg 1 1321 and a Msg 2 1322. The Msg 1 1321 and the Msg 2 1322 may be analogous in some respects to the Msg 1 1311 and a Msg 2 1312 illustrated in FIG. 13A, respectively. As will be understood from FIGS. 13A and 13B, the contention-free random access procedure may not include messages analogous to the Msg 3 1313 and/or the Msg 4 1314.
- (132) The contention-free random access procedure illustrated in FIG. **13**B may be initiated for a beam failure recovery, other SI request, SCell addition, and/or handover. For example, a base station may indicate or assign to the UE the preamble to be used for the Msg **1 1321**. The UE may receive, from the base station via PDCCH and/or RRC, an indication of a preamble (e.g., ra-

PreambleIndex).

- (133) After transmitting a preamble, the UE may start a time window (e.g., ra-ResponseWindow) to monitor a PDCCH for the RAR. In the event of a beam failure recovery request, the base station may configure the UE with a separate time window and/or a separate PDCCH in a search space indicated by an RRC message (e.g., recoverySearchSpaceId). The UE may monitor for a PDCCH transmission addressed to a Cell RNTI (C-RNTI) on the search space. In the contention-free random access procedure illustrated in FIG. 13B, the UE may determine that a random access procedure successfully completes after or in response to transmission of Msg 1 1321 and reception of a corresponding Msg 2 1322. The UE may determine that a random access procedure successfully completes, for example, if a PDCCH transmission is addressed to a C-RNTI. The UE may determine that a random access procedure successfully completes, for example, if the UE receives an RAR comprising a preamble identifier corresponding to a preamble transmitted by the UE and/or the RAR comprises a MAC sub-PDU with the preamble identifier. The UE may determine the response as an indication of an acknowledgement for an SI request. (134) FIG. **13**C illustrates another two-step random access procedure. Similar to the random access procedures illustrated in FIGS. 13A and 13B, a base station may, prior to initiation of the procedure, transmit a configuration message **1330** to the UE. The configuration message **1330** may be analogous in some respects to the configuration message **1310** and/or the configuration message **1320**. The procedure illustrated in FIG. **13**C comprises transmission of two messages: a Msg A **1331** and a Msg B **1332**.
- (135) Msg A **1331** may be transmitted in an uplink transmission by the UE. Msg A **1331** may comprise one or more transmissions of a preamble **1341** and/or one or more transmissions of a transport block **1342**. The transport block **1342** may comprise contents that are similar and/or equivalent to the contents of the Msg **3 1313** illustrated in FIG. **13**A. The transport block **1342** may comprise UCI (e.g., an SR, a HARQ ACK/NACK, and/or the like). The UE may receive the Msg B **1332** after or in response to transmitting the Msg A **1331**. The Msg B **1332** may comprise contents that are similar and/or equivalent to the contents of the Msg **2 1312** (e.g., an RAR) illustrated in FIGS. **13**A and **13**B and/or the Msg **4 1314** illustrated in FIG. **13**A.
- (136) The UE may initiate the two-step random access procedure in FIG. **13**C for licensed spectrum and/or unlicensed spectrum. The UE may determine, based on one or more factors, whether to initiate the two-step random access procedure. The one or more factors may be: a radio access technology in use (e.g., LTE, NR, and/or the like); whether the UE has valid TA or not; a cell size; the UE's RRC state; a type of spectrum (e.g., licensed vs. unlicensed); and/or any other suitable factors.
- (137) The UE may determine, based on two-step RACH parameters included in the configuration message **1330**, a radio resource and/or an uplink transmit power for the preamble **1341** and/or the transport block **1342** included in the Msg A **1331**. The RACH parameters may indicate a modulation and coding schemes (MCS), a time-frequency resource, and/or a power control for the preamble **1341** and/or the transport block **1342**. A time-frequency resource for transmission of the preamble **1341** (e.g., a PRACH) and a time-frequency resource for transmission of the transport block **1342** (e.g., a PUSCH) may be multiplexed using FDM, TDM, and/or CDM. The RACH parameters may enable the UE to determine a reception timing and a downlink channel for monitoring for and/or receiving Msg B **1332**.
- (138) The transport block **1342** may comprise data (e.g., delay-sensitive data), an identifier of the UE, security information, and/or device information (e.g., an International Mobile Subscriber Identity (IMSI)). The base station may transmit the Msg B **1332** as a response to the Msg A **1331**. The Msg B **1332** may comprise at least one of following: a preamble identifier; a timing advance command; a power control command; an uplink grant (e.g., a radio resource assignment and/or an MCS); a UE identifier for contention resolution; and/or an RNTI (e.g., a C-RNTI or a TC-RNTI). The UE may determine that the two-step random access procedure is successfully completed if: a

- preamble identifier in the Msg B **1332** is matched to a preamble transmitted by the UE; and/or the identifier of the UE in Msg B **1332** is matched to the identifier of the UE in the Msg A **1331** (e.g., the transport block **1342**).
- (139) A UE and a base station may exchange control signaling. The control signaling may be referred to as L1/L2 control signaling and may originate from the PHY layer (e.g., layer 1) and/or the MAC layer (e.g., layer 2). The control signaling may comprise downlink control signaling transmitted from the base station to the UE and/or uplink control signaling transmitted from the UE to the base station.
- (140) The downlink control signaling may comprise: a downlink scheduling assignment; an uplink scheduling grant indicating uplink radio resources and/or a transport format; a slot format information; a preemption indication; a power control command; and/or any other suitable signaling. The UE may receive the downlink control signaling in a payload transmitted by the base station on a physical downlink control channel (PDCCH). The payload transmitted on the PDCCH may be referred to as downlink control information (DCI). In some scenarios, the PDCCH may be a group common PDCCH (GC-PDCCH) that is common to a group of UEs.
- (141) A base station may attach one or more cyclic redundancy check (CRC) parity bits to a DCI in order to facilitate detection of transmission errors. When the DCI is intended for a UE (or a group of the UEs), the base station may scramble the CRC parity bits with an identifier of the UE (or an identifier of the group of the UEs). Scrambling the CRC parity bits with the identifier may comprise Modulo-2 addition (or an exclusive OR operation) of the identifier value and the CRC parity bits. The identifier may comprise a 16-bit value of a radio network temporary identifier (RNTI).
- (142) DCIs may be used for different purposes. A purpose may be indicated by the type of RNTI used to scramble the CRC parity bits. For example, a DCI having CRC parity bits scrambled with a paging RNTI (P-RNTI) may indicate paging information and/or a system information change notification. The P-RNTI may be predefined as "FFFE" in hexadecimal. A DCI having CRC parity bits scrambled with a system information RNTI (SI-RNTI) may indicate a broadcast transmission of the system information. The SI-RNTI may be predefined as "FFFF" in hexadecimal. A DCI having CRC parity bits scrambled with a random access RNTI (RA-RNTI) may indicate a random access response (RAR). A DCI having CRC parity bits scrambled with a cell RNTI (C-RNTI) may indicate a dynamically scheduled unicast transmission and/or a triggering of PDCCH-ordered random access. A DCI having CRC parity bits scrambled with a temporary cell RNTI (TC-RNTI) may indicate a contention resolution (e.g., a Msg 3 analogous to the Msg 3 1313 illustrated in FIG. **13**A). Other RNTIs configured to the UE by a base station may comprise a Configured Scheduling RNTI (CS-RNTI), a Transmit Power Control-PUCCH RNTI (TPC-PUCCH-RNTI), a Transmit Power Control-PUSCH RNTI (TPC-PUSCH-RNTI), a Transmit Power Control-SRS RNTI (TPC-SRS-RNTI), an Interruption RNTI (INT-RNTI), a Slot Format Indication RNTI (SFI-RNTI), a Semi-Persistent CSI RNTI (SP-CSI-RNTI), a Modulation and Coding Scheme Cell RNTI (MCS-C-RNTI), and/or the like.
- (143) Depending on the purpose and/or content of a DCI, the base station may transmit the DCIs with one or more DCI formats. For example, DCI format 0_0 may be used for scheduling of PUSCH in a cell. DCI format 0_0 may be a fallback DCI format (e.g., with compact DCI payloads). DCI format 0_1 may be used for scheduling of PUSCH in a cell (e.g., with more DCI payloads than DCI format 0_0). DCI format 1_0 may be used for scheduling of PDSCH in a cell. DCI format 1_0 may be a fallback DCI format (e.g., with compact DCI payloads). DCI format 1_1 may be used for scheduling of PDSCH in a cell (e.g., with more DCI payloads than DCI format 1_0). DCI format 2_0 may be used for providing a slot format indication to a group of UEs. DCI format 2_1 may be used for notifying a group of UEs of a physical resource block and/or OFDM symbol where the UE may assume no transmission is intended to the UE. DCI format 2_2 may be used for transmission of a transmit power control (TPC) command for PUCCH or PUSCH. DCI

- format 2_3 may be used for transmission of a group of TPC commands for SRS transmissions by one or more UEs. DCI format(s) for new functions may be defined in future releases. DCI formats may have different DCI sizes, or may share the same DCI size.
- (144) After scrambling a DCI with a RNTI, the base station may process the DCI with channel coding (e.g., polar coding), rate matching, scrambling and/or QPSK modulation. A base station may map the coded and modulated DCI on resource elements used and/or configured for a PDCCH. Based on a payload size of the DCI and/or a coverage of the base station, the base station may transmit the DCI via a PDCCH occupying a number of contiguous control channel elements (CCEs). The number of the contiguous CCEs (referred to as aggregation level) may be 1, 2, 4, 8, 16, and/or any other suitable number. A CCE may comprise a number (e.g., 6) of resource-element groups (REGs). A REG may comprise a resource block in an OFDM symbol. The mapping of the coded and modulated DCI on the resource elements may be based on mapping of CCEs and REGs (e.g., CCE-to-REG mapping).
- (145) FIG. **14**A illustrates an example of CORESET configurations for a bandwidth part. The base station may transmit a DCI via a PDCCH on one or more control resource sets (CORESETs). A CORESET may comprise a time-frequency resource in which the UE tries to decode a DCI using one or more search spaces. The base station may configure a CORESET in the time-frequency domain. In the example of FIG. **14**A, a first CORESET **1401** and a second CORESET **1402** occur at the first symbol in a slot. The first CORESET **1401** overlaps with the second CORESET **1402** in the frequency domain. A third CORESET **1403** occurs at a third symbol in the slot. A fourth CORESET **1404** occurs at the seventh symbol in the slot. CORESETs may have a different number of resource blocks in frequency domain.
- (146) FIG. **14**B illustrates an example of a CCE-to-REG mapping for DCI transmission on a CORESET and PDCCH processing. The CCE-to-REG mapping may be an interleaved mapping (e.g., for the purpose of providing frequency diversity) or a non-interleaved mapping (e.g., for the purposes of facilitating interference coordination and/or frequency-selective transmission of control channels). The base station may perform different or same CCE-to-REG mapping on different CORESETs. A CORESET may be associated with a CCE-to-REG mapping by RRC configuration. A CORESET may be configured with an antenna port quasi co-location (QCL) parameter. The antenna port QCL parameter may indicate QCL information of a demodulation reference signal (DMRS) for PDCCH reception in the CORESET.
- (147) The base station may transmit, to the UE, RRC messages comprising configuration parameters of one or more CORESETs and one or more search space sets. The configuration parameters may indicate an association between a search space set and a CORESET. A search space set may comprise a set of PDCCH candidates formed by CCEs at a given aggregation level. The configuration parameters may indicate: a number of PDCCH candidates to be monitored per aggregation level; a PDCCH monitoring periodicity and a PDCCH monitoring pattern; one or more DCI formats to be monitored by the UE; and/or whether a search space set is a common search space set or a UE-specific search space set. A set of CCEs in the common search space set may be predefined and known to the UE. A set of CCEs in the UE-specific search space set may be configured based on the UE's identity (e.g., C-RNTI).
- (148) As shown in FIG. **14**B, the UE may determine a time-frequency resource for a CORESET based on RRC messages. The UE may determine a CCE-to-REG mapping (e.g., interleaved or non-interleaved, and/or mapping parameters) for the CORESET based on configuration parameters of the CORESET. The UE may determine a number (e.g., at most 10) of search space sets configured on the CORESET based on the RRC messages. The UE may monitor a set of PDCCH candidates according to configuration parameters of a search space set. The UE may monitor a set of PDCCH candidates in one or more CORESETs for detecting one or more DCIs. Monitoring may comprise decoding one or more PDCCH candidates of the set of the PDCCH candidates according to the monitored DCI formats. Monitoring may comprise decoding a DCI content of one or more PDCCH

candidates with possible (or configured) PDCCH locations, possible (or configured) PDCCH formats (e.g., number of CCEs, number of PDCCH candidates in common search spaces, and/or number of PDCCH candidates in the UE-specific search spaces) and possible (or configured) DCI formats. The decoding may be referred to as blind decoding. The UE may determine a DCI as valid for the UE, in response to CRC checking (e.g., scrambled bits for CRC parity bits of the DCI matching a RNTI value). The UE may process information contained in the DCI (e.g., a scheduling assignment, an uplink grant, power control, a slot format indication, a downlink preemption, and/or the like).

(149) The UE may transmit uplink control signaling (e.g., uplink control information (UCI)) to a base station. The uplink control signaling may comprise hybrid automatic repeat request (HARQ) acknowledgements for received DL-SCH transport blocks. The UE may transmit the HARQ acknowledgements after receiving a DL-SCH transport block. Uplink control signaling may comprise channel state information (CSI) indicating channel quality of a physical downlink channel. The UE may transmit the CSI to the base station. The base station, based on the received CSI, may determine transmission format parameters (e.g., comprising multi-antenna and beamforming schemes) for a downlink transmission. Uplink control signaling may comprise scheduling requests (SR). The UE may transmit an SR indicating that uplink data is available for transmission to the base station. The UE may transmit a UCI (e.g., HARQ acknowledgements (HARQ-ACK), CSI report, SR, and the like) via a physical uplink control channel (PUCCH) or a physical uplink shared channel (PUSCH). The UE may transmit the uplink control signaling via a PUCCH using one of several PUCCH formats.

(150) There may be five PUCCH formats and the UE may determine a PUCCH format based on a size of the UCI (e.g., a number of uplink symbols of UCI transmission and a number of UCI bits). PUCCH format 0 may have a length of one or two OFDM symbols and may include two or fewer bits. The UE may transmit UCI in a PUCCH resource using PUCCH format 0 if the transmission is over one or two symbols and the number of HARQ-ACK information bits with positive or negative SR (HARQ-ACK/SR bits) is one or two. PUCCH format 1 may occupy a number between four and fourteen OFDM symbols and may include two or fewer bits. The UE may use PUCCH format 1 if the transmission is four or more symbols and the number of HARQ-ACK/SR bits is one or two. PUCCH format 2 may occupy one or two OFDM symbols and may include more than two bits. The UE may use PUCCH format 2 if the transmission is over one or two symbols and the number of UCI bits is two or more. PUCCH format 3 may occupy a number between four and fourteen OFDM symbols and may include more than two bits. The UE may use PUCCH format 3 if the transmission is four or more symbols, the number of UCI bits is two or more and PUCCH resource does not include an orthogonal cover code. PUCCH format 4 may occupy a number between four and fourteen OFDM symbols and may include more than two bits. The UE may use PUCCH format 4 if the transmission is four or more symbols, the number of UCI bits is two or more and the PUCCH resource includes an orthogonal cover code.

(151) The base station may transmit configuration parameters to the UE for a plurality of PUCCH resource sets using, for example, an RRC message. The plurality of PUCCH resource sets (e.g., up to four sets) may be configured on an uplink BWP of a cell. A PUCCH resource set may be configured with a PUCCH resource set index, a plurality of PUCCH resources with a PUCCH resource being identified by a PUCCH resource identifier (e.g., pucch-Resourceid), and/or a number (e.g. a maximum number) of UCI information bits the UE may transmit using one of the plurality of PUCCH resources in the PUCCH resource set. When configured with a plurality of PUCCH resource sets, the UE may select one of the plurality of PUCCH resource sets based on a total bit length of the UCI information bits (e.g., HARQ-ACK, SR, and/or CSI). If the total bit length of UCI information bits is two or fewer, the UE may select a first PUCCH resource set having a PUCCH resource set index equal to "0". If the total bit length of UCI information bits is greater than two and less than or equal to a first configured value, the UE may select a second

PUCCH resource set having a PUCCH resource set index equal to "1". If the total bit length of UCI information bits is greater than the first configured value and less than or equal to a second configured value, the UE may select a third PUCCH resource set having a PUCCH resource set index equal to "2". If the total bit length of UCI information bits is greater than the second configured value and less than or equal to a third value (e.g., 1406), the UE may select a fourth PUCCH resource set having a PUCCH resource set index equal to "3".

- (152) After determining a PUCCH resource set from a plurality of PUCCH resource sets, the UE may determine a PUCCH resource from the PUCCH resource set for UCI (HARQ-ACK, CSI, and/or SR) transmission. The UE may determine the PUCCH resource based on a PUCCH resource indicator in a DCI (e.g., with a DCI format 1_0 or DCI for 1_1) received on a PDCCH. A three-bit PUCCH resource indicator in the DCI may indicate one of eight PUCCH resources in the PUCCH resource set. Based on the PUCCH resource indicator, the UE may transmit the UCI (HARQ-ACK, CSI and/or SR) using a PUCCH resource indicated by the PUCCH resource indicator in the DCI. (153) FIG. 15 illustrates an example of a wireless device 1502 in communication with a base station 1504 in accordance with embodiments of the present disclosure. The wireless device 1502 and base station 1504 may be part of a mobile communication network, such as the mobile communication network 100 illustrated in FIG. 1A, the mobile communication network 150 illustrated in FIG. 1B, or any other communication network. Only one wireless device 1502 and one base station 1504 are illustrated in FIG. 15, but it will be understood that a mobile communication network may include more than one UE and/or more than one base station, with the same or similar configuration as those shown in FIG. 15.
- (154) The base station **1504** may connect the wireless device **1502** to a core network (not shown) through radio communications over the air interface (or radio interface) **1506**. The communication direction from the base station **1504** to the wireless device **1502** over the air interface **1506** is known as the downlink, and the communication direction from the wireless device **1502** to the base station **1504** over the air interface is known as the uplink. Downlink transmissions may be separated from uplink transmissions using FDD, TDD, and/or some combination of the two duplexing techniques.
- (155) In the downlink, data to be sent to the wireless device **1502** from the base station **1504** may be provided to the processing system **1508** by, for example, a core network. In the uplink, data to be sent to the base station **1504** from the wireless device **1502** may be provided to the processing system **1518** of the wireless device **1502**. The processing system **1508** and the processing system **1518** may implement layer 3 and layer 2 OSI functionality to process the data for transmission. Layer 2 may include an SDAP layer, a PDCP layer, an RLC layer, and a MAC layer, for example, with respect to FIG. **2A**, FIG. **2B**, FIG. **3**, and FIG. **4A**. Layer 3 may include an RRC layer as with respect to FIG. **2B**.
- (156) After being processed by processing system **1508**, the data to be sent to the wireless device **1502** may be provided to a transmission processing system **1510** of base station **1504**. Similarly, after being processed by the processing system **1518**, the data to be sent to base station **1504** may be provided to a transmission processing system **1520** of the wireless device **1502**. The transmission processing system **1510** and the transmission processing system **1520** may implement layer 1 OSI functionality. Layer 1 may include a PHY layer with respect to FIG. **2**A, FIG. **2**B, FIG. **3**, and FIG. **4**A. For transmit processing, the PHY layer may perform, for example, forward error correction coding of transport channels, interleaving, rate matching, mapping of transport channels to physical channels, modulation of physical channel, multiple-input multiple-output (MIMO) or multi-antenna processing, and/or the like.
- (157) At the base station **1504**, a reception processing system **1512** may receive the uplink transmission from the wireless device **1502**. At the wireless device **1502**, a reception processing system **1522** may receive the downlink transmission from base station **1504**. The reception

processing system **1512** and the reception processing system **1522** may implement layer 1 OSI functionality. Layer 1 may include a PHY layer with respect to FIG. **2**A, FIG. **2**B, FIG. **3**, and FIG. **4**A. For receive processing, the PHY layer may perform, for example, error detection, forward error correction decoding, deinterleaving, demapping of transport channels to physical channels, demodulation of physical channels, MIMO or multi-antenna processing, and/or the like. (158) As shown in FIG. **15**, a wireless device **1502** and the base station **1504** may include multiple antennas. The multiple antennas may be used to perform one or more MIMO or multi-antenna techniques, such as spatial multiplexing (e.g., single-user MIMO or multi-user MIMO), transmit/receive diversity, and/or beamforming. In other examples, the wireless device **1502** and/or the base station **1504** may have a single antenna.

(159) The processing system **1508** and the processing system **1518** may be associated with a memory **1514** and a memory **1524**, respectively. Memory **1514** and memory **1524** (e.g., one or more non-transitory computer readable mediums) may store computer program instructions or code that may be executed by the processing system **1508** and/or the processing system **1518** to carry out one or more of the functionalities discussed in the present application. Although not shown in FIG. **15**, the transmission processing system **1510**, the transmission processing system **1520**, the reception processing system **1512**, and/or the reception processing system **1522** may be coupled to a memory (e.g., one or more non-transitory computer readable mediums) storing computer program instructions or code that may be executed to carry out one or more of their respective functionalities.

(160) The processing system **1508** and/or the processing system **1518** may comprise one or more controllers and/or one or more processors. The one or more controllers and/or one or more processors may comprise, for example, a general-purpose processor, a digital signal processor (DSP), a microcontroller, an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) and/or other programmable logic device, discrete gate and/or transistor logic, discrete hardware components, an on-board unit, or any combination thereof. The processing system **1508** and/or the processing system **1518** may perform at least one of signal coding/processing, data processing, power control, input/output processing, and/or any other functionality that may enable the wireless device **1502** and the base station **1504** to operate in a wireless environment.

(161) The processing system **1508** and/or the processing system **1518** may be connected to one or more peripherals **1516** and one or more peripherals **1526**, respectively. The one or more peripherals **1516** and the one or more peripherals **1526** may include software and/or hardware that provide features and/or functionalities, for example, a speaker, a microphone, a keypad, a display, a touchpad, a power source, a satellite transceiver, a universal serial bus (USB) port, a hands-free headset, a frequency modulated (FM) radio unit, a media player, an Internet browser, an electronic control unit (e.g., for a motor vehicle), and/or one or more sensors (e.g., an accelerometer, a gyroscope, a temperature sensor, a radar sensor, a lidar sensor, an ultrasonic sensor, a light sensor, a camera, and/or the like). The processing system **1508** and/or the processing system **1518** may receive user input data from and/or provide user output data to the one or more peripherals **1516** and/or the one or more peripherals **1526**. The processing system **1518** in the wireless device **1502** may receive power from a power source and/or may be configured to distribute the power to the other components in the wireless device **1502**. The power source may comprise one or more sources of power, for example, a battery, a solar cell, a fuel cell, or any combination thereof. The processing system **1508** and/or the processing system **1518** may be connected to a GPS chipset **1517** and a GPS chipset **1527**, respectively. The GPS chipset **1517** and the GPS chipset **1527** may be configured to provide geographic location information of the wireless device **1502** and the base station **1504**, respectively.

(162) FIG. **16**A illustrates an example structure for uplink transmission. A baseband signal representing a physical uplink shared channel may perform one or more functions. The one or more

functions may comprise at least one of: scrambling; modulation of scrambled bits to generate complex-valued symbols; mapping of the complex-valued modulation symbols onto one or several transmission layers; transform precoding to generate complex-valued symbols; precoding of the complex-valued symbols; mapping of precoded complex-valued symbols to resource elements; generation of complex-valued time-domain Single Carrier-Frequency Division Multiple Access (SC-FDMA) or CP-OFDM signal for an antenna port; and/or the like. In an example, when transform precoding is enabled, a SC-FDMA signal for uplink transmission may be generated. In an example, when transform precoding is not enabled, an CP-OFDM signal for uplink transmission may be generated by FIG. **16**A. These functions are illustrated as examples and it is anticipated that other mechanisms may be implemented in various embodiments.

- (163) FIG. **16**B illustrates an example structure for modulation and up-conversion of a baseband signal to a carrier frequency. The baseband signal may be a complex-valued SC-FDMA or CP-OFDM baseband signal for an antenna port and/or a complex-valued Physical Random Access Channel (PRACH) baseband signal. Filtering may be employed prior to transmission. (164) FIG. **16**C illustrates an example structure for downlink transmissions. A baseband signal representing a physical downlink channel may perform one or more functions. The one or more functions may comprise: scrambling of coded bits in a codeword to be transmitted on a physical channel; modulation of scrambled bits to generate complex-valued modulation symbols; mapping of the complex-valued modulation symbols onto one or several transmission layers; precoding of the complex-valued modulation symbols on a layer for transmission on the antenna ports; mapping of complex-valued modulation symbols for an antenna port to resource elements; generation of complex-valued time-domain OFDM signal for an antenna port; and/or the like. These functions are illustrated as examples and it is anticipated that other mechanisms may be implemented in various embodiments.
- (165) FIG. **16**D illustrates another example structure for modulation and up-conversion of a baseband signal to a carrier frequency. The baseband signal may be a complex-valued OFDM baseband signal for an antenna port. Filtering may be employed prior to transmission. (166) A wireless device may receive from a base station one or more messages (e.g. RRC messages) comprising configuration parameters of a plurality of cells (e.g. primary cell, secondary cell). The wireless device may communicate with at least one base station (e.g. two or more base stations in dual-connectivity) via the plurality of cells. The one or more messages (e.g. as a part of the configuration parameters) may comprise parameters of physical, MAC, RLC, PCDP, SDAP, RRC layers for configuring the wireless device. For example, the configuration parameters may comprise parameters for configuring physical and MAC layer channels, bearers, etc. For example, the configuration parameters may comprise parameters indicating values of timers for physical, MAC, RLC, PCDP, SDAP, RRC layers, and/or communication channels.
- (167) A timer may begin running once it is started and continue running until it is stopped or until it expires. A timer may be started if it is not running or restarted if it is running. A timer may be associated with a value (e.g. the timer may be started or restarted from a value or may be started from zero and expire once it reaches the value). The duration of a timer may not be updated until the timer is stopped or expires (e.g., due to BWP switching). A timer may be used to measure a time period/window for a process. When the specification refers to an implementation and procedure related to one or more timers, it will be understood that there are multiple ways to implement the one or more timers. For example, it will be understood that one or more of the multiple ways to implement a timer may be used to measure a time period/window for the procedure. For example, a random access response window timer may be used for measuring a window of time for receiving a random access response. In an example, instead of starting and expiry of a random access response window timer, the time difference between two time stamps may be used. When a timer is restarted, a process for measurement of time window may be restarted. Other example implementations may be provided to restart a measurement of a time

window.

(168) In an example, a small data transmission (SDT) in a wireless network (e.g., LTE, 5G, new radio, NR, etc.) may be interpreted as an early data transmission (EDT). The term, SDT, and the term, EDT, may be interchangeable to each other. The early data transmission performed initially for uplink data transmission may be called a mobile originating early data transmission (MO-EDT), an uplink EDT, an uplink SDT, a mobile originating SDT (MO-SDT), and/or the like. The early data transmission performed initially for downlink data transmission (e.g., initiated based on a paging procedure) may be called as a mobile terminating early data transmission (MT-EDT), a downlink EDT, a downlink SDT, a mobile terminating SDT (MT-SDT), and/or the like. (169) In an example, MO-EDT may allow one uplink data transmission optionally followed by at least one downlink data transmission during and/or after a random access procedure. MO-EDT may be triggered when upper layers requests establishment or resumption of an RRC connection for mobile originating data (e.g., may be not signaling or SMS) and/or uplink data size may be less than or equal to a transport block (TB) size indicated in system information. MO-EDT may not be used for data over a control plane when using user plane cellular Internet of things (CIoT) EPS/5GS optimizations. MO-EDT may be applicable to bandwidth reduced low complexity (BL) UEs, UEs in enhanced coverage (e.g., coverage enhancement UE, CE UE), narrowband IoT (NB-IoT) UEs, and/or reduced capability (RedCap) UEs.

- (170) In an example, MO-EDT for Control Plane CIoT EPS optimization and/or Control Plane CIoT 5GS Optimization may be characterized as follows. Uplink user data may be transmitted in a NAS message concatenated in UL RRCEarlyDataRequest message on CCCH. Downlink user data may be optionally transmitted in a NAS message concatenated in DL RRCEarlyDataComplete message on CCCH. UE may not transition to RRC CONNECTED.
- (171) FIG. 17 shows an example of an MO-EDT procedure for Control Plane CIoT EPS optimization and/or Control Plane CIoT 5GS Optimization. Upon connection establishment request for Mobile originating (MO) data from upper layers, a UE may initiate an MO-EDT procedure and/or may select a random access preamble configured for EDT. UE may perform a random access procedure by sending the selected random access preamble. UE may send an RRC Early Data Request message concatenating user data on CCCH. For EPS or 5GS if enabled in a cell a UE may indicate AS Release Assistance Information (RAI). For EPS, an eNB or a gNB may initiate an S1-AP Initial UE message procedure to forward a NAS message and/or establish an S1 connection. For 5GS, an ng-eNB or a gNB may initiate an NG-AP Initial UE message procedure to forward a NAS message. An (ng-)eNB or a gNB may indicate that the connection is triggered for EDT (and/or SDT).
- (172) For EPS, an MME may request an S-GW to re-activate EPS bearers for a UE. For 5GS, an AMF may determine a PDU session contained/indicated in a NAS message from a UE. For EPS, an MME may send uplink data to an S-GW. For 5GS, an AMF may send a PDU Session ID and/or uplink data to an SMF and/or the SMF may forward the uplink data to a UPF. For EPS, if downlink data are available, an S-GW may send the downlink data to an MME. For 5GS, if downlink data are available, a UPF may forward the downlink data to an SMF and/or the SMF may forward the downlink data to an AMF. If downlink data are received from an S-GW and/or SMF, an MME or an AMF may forward the downlink data to an eNB/ng-eNB or a gNB via DL NAS Transport procedure and/or may indicate whether further data are expected. In an example, an MME or an AMF may trigger a Connection Establishment Indication procedure and/or may indicate whether further data are expected, an (ng-)eNB or a gNB may send an RRCEarlyDataComplete message on CCCH to keep a UE in RRC_IDLE or RRC_INACTIVE. If downlink data were received, the downlink data may be concatenated in the RRCEarlyDataComplete message.
- (173) For EPS, an S1 connection may be released and/or EPS bearers may be deactivated. For 5GS, an AN release procedure is started. If an MME/AMF or an (ng-)eNB or gNB decides to move a UE

in RRC_CONNECTED state, an RRCConnectionSetup message or an RRCResume message may be sent to fall back to an RRC Connection establishment/setup/resume procedure. An (ng-)eNB or gNB may discard a zero-length NAS PDU received in RRCConnectionSetupComplete message. If neither RRCEarlyDataComplete nor, in case of fallback, RRCConnectionSetup/establishment/resume is received in response to RRCEarlyDataRequest, a UE may consider an UL data transmission is not successful. (174) In an example, MO-EDT for User Plane CIoT EPS optimization and/or User Plane CIoT 5GS Optimization may be characterized as followings. A UE may be provided with a NextHopChainingCount (NCC) in an RRCConnectionRelease message and/or an RRC release message with suspend indication. Uplink user data may be transmitted on DTCH multiplexed with an UL RRCConnectionResumeRequest message or an RRC resume request message on CCCH. Downlink user data may be optionally transmitted on DTCH multiplexed with a DL RRCConnectionRelease message and/or an RRC release message on DCCH. A short resume MAC-I (shortResumeMAC-I) may be reused as an authentication token for RRCConnectionResumeRequest message and/or RRC resume request message. A short resume MAC-I may be calculated using an integrity key from a previous connection. User data in uplink and/or downlink may be ciphered. The keys may be derived using a NextHopChainingCount (NCC) provided in an RRCConnectionRelease message and/or RRC release message of a previous RRC connection. An RRCConnectionRelease message and/or an RRC release message may be integrity protected and/or ciphered using newly derived keys. There may be no transition to RRC CONNECTED from an RRC idle state and/or an RRC inactive state. (175) FIG. **18** shows an example of an MO-EDT procedure for User Plane CIoT EPS optimization and/or User Plane CIoT 5GS Optimization. Upon connection resumption request for Mobile originating data from upper layers, a UE may initiate an MO-EDT procedure and/or may select a random access preamble configured for EDT. A UE may send an RRCConnectionResumeRequest to an eNB and/or a gNB, comprising a Resume ID, an establishment cause, and/or an authentication token. A UE may resume all SRBs and/or DRBs. A UE may resume some of SRBs and/or DRBs configured in a previous RRC connection. A UE may derive new security keys using a NextHopChainingCount provided in an RRCConnectionRelease message of a previous RRC connection and/or may re-establish an AS security. User data may be ciphered and/or transmitted via DTCH multiplexed with an RRCConnectionResumeRequest message on CCCH. If enabled in a cell, a UE may indicate AS Release Assistance Information (RAI). An eNB may initiate an S1-AP Context Resume procedure to resume an S1 connection and/or re-activate S1-U bearers. An MME may request an S-GW to re-activate S1-U bearers for a UE. An MME may confirm a UE context resumption to an eNB. Uplink data may be delivered to an S-GW. If downlink data are available, an S-GW may send the downlink data to an eNB. If no further data are expected, an eNB may

RRC_IDLE state and/or RRC inactive state. An RRCConnectionRelease message and/or an RRC release message may comprise a releaseCause set to rrc-Suspend, a resumeID, a NextHopChainingCount (NCC), and/or drb-ContinueROHC that may be stored by a UE. If downlink data is received, the downlink data may be sent ciphered via DTCH multiplexed with an RRCConnectionRelease message and/or an RRC release message via DCCH. (176) As shown in FIG. 18, upon connection resumption request for Mobile originating data from the upper layers, a UE may initiate an MO-EDT procedure and/or may select a random access preamble configured for EDT. A UE may send an RRCConnectionResumeRequest and/or an RRC resume request message to an ng-eNB and/or a gNB, comprising an I-RNTI, a resume cause, and/or an authentication token. A UE may resume all SRBs and DRBs. A UE may resume some of SRBs and/or DRBs configured in a previous RRC connection. A UE may derive new security keys using a NextHopChainingCount (NCC) provided in an RRCConnectionRelease message and/or an

initiate suspension of an S1 connection and/or deactivation of S1-U bearers for a UE. An eNB may

send an RRCConnectionRelease message and/or an RRC release message to keep a UE in

RRC release message of a previous connection and/or may re-establish an AS security. User data may be ciphered and/or transmitted via DTCH multiplexed with an RRCConnectionResumeRequest message and/or an RRC resume message on CCCH. A UE may indicate AS Release Assistance Information (RAI). Uplink data may be delivered to an UPF. An ng-eNB and/or a gNB may send a NG-AP Context Resume Request message to an AMF to resume a connection. If a UE included AS Release Assistance information indicating No further UL/DL higher layer PDU, an ng-eNB and/or a gNB may request for immediate transition to RRC IDLE with Suspend and/or an RRC inactive state. If an AMF does not receive a request for immediate transition to RRC IDLE with Suspend and/or an RRC inactive state or the AMF is aware of downlink data or signaling pending, the AMF may request an SMF to resume a PDU session. An AMF may send an NG-AP Context Resume Response to a ng-eNB and/or a gNB. If an AMF receives a request for immediate transition to RRC IDLE with Suspend and/or an RRC inactive state and/or if there is no downlink data or signaling pending, the AMF may include a Suspend indication. An AMF may keep a UE in CM-IDLE with Suspend. If an AMF includes Suspend indication, an ng-eNB and/or a gNB may proceed with an RRC release procedure with suspend. If an AMF does not include Suspend indication and/or if a UE included AS Release Assistance information indicating a single Downlink Data transmission subsequent to an Uplink transmission, an ng-eNB and/or a gNB may wait for downlink data to arrive. An ng-eNB and/or a gNB may initiate an NG-AP UE Context Suspend procedure to inform an AMF that an RRC connection may be suspended. An AMF may request an SMF to suspend a PDU session. An SMF may request a UPF to release tunnel information for a UE. an eNB/ng-eNB and/or a gNB may send an RRCConnectionRelease message and/or an RRC release message to keep a UE in RRC_IDLE and/or an RRC inactive state. An RRCConnectionRelease message and/or an RRC release message may comprise a releaseCause that may be set to rrc-Suspend, an I-RNTI, a NextHopChainingCount (NCC), and/or drb-ContinueROHC that may be stored by a UE. If downlink data (e.g., subsequent downlink data) are received, the downlink data may be sent ciphered via DTCH multiplexed with an RRCConnectionRelease message and/or an RRC release message on DCCH. (177) In an example, if an MME/AMF or (ng-)eNB/gNB decides a UE to move in RRC_CONNECTED state, RRCConnectionResume message and/or RRC resume/setup message may be sent to fall back to an RRC Connection resume procedure. An RRCConnectionResume message and/or an RRC resume/setup message may be integrity protected and/or ciphered with keys derived. A UE may ignore a NextHopChainingCount (NCC) included in an

message and/or an RRC resume/setup message may be integrity protected and/or ciphered with keys derived. A UE may ignore a NextHopChainingCount (NCC) included in an RRCConnectionResume message and/or an RRC resume message. Downlink data may be transmitted via DTCH multiplexed with an RRCConnectionResume message and/or an RRC resume/setup message. An RRCConnectionSetup and/or an RRC setup message may be sent to fall back to an RRC Connection establishment/setup procedure. In an example, if neither RRCConnectionRelease message (RRC release message) nor RRCConnectionResume message (RRC resume/setup message) is received in response to an RRCConnectionResumeRequest message and/or an RRC resume request message for MO-EDT, a UE may consider uplink data transmission not successful.

(178) In an example, as shown in FIG. **19**, for MO-EDT for User Plane CIoT EPS Optimization and/or User Plane CIoT 5GS Optimization, an RRC connection may be resumed in an (ng-)eNB (e.g., new (ng-)eNB) and/or a gNB (e.g., new gNB) different from a base station where an RRC connection was suspended (old (ng-)eNB and/or old gNB). Inter (ng-)eNB or inter gNB connection resumption may be handled using context fetching. A new (ng-)eNB or a new gNB may retrieve UE contexts from an old (ng-)eNB and/or an old gNB over an X2 (Xn) interface. A new (ng-)eNB or new gNB may provide a Resume ID for EPS or I-RNTI for 5GS that may be used by an old (ng-)eNB or an old gNB to identify UE contexts of a UE.

(179) FIG. **19** shows an example of an MO-EDT procedure for User Plane CIoT EPS optimization and/or User Plane CIoT 5GS Optimization in a different eNB/ng-eNB and/or a different gNB (e.g.,

base station relocation case). A new (ng-)eNB or a new gNB may locate/determine an old (ng-)eNB using a Resume ID (e.g., for EPS) or I-RNTI (e.g., for 5GS) and/or may retrieve UE contexts by performing a Retrieve UE Context procedure via an X2-AP (for EPS) or an Xn-AP (for 5GS). An old (ng-)eNB may respond with UE contexts associated with a Resume ID (e.g., for EPS) or I-RNTI (e.g., for 5GS). For EPS, a new eNB or a new gNB may initiate an S1-AP Path Switch procedure to establish an S1 UE associated signaling connection to a serving MME and/or to request the MME to resume UE contexts. For 5GS, a new ng-eNB or a new gNB may initiate an NG-AP Path Switch procedure to establish a NG UE associated signaling connection to a serving AMF and/or to request the AMF to resume UE contexts. For EPS, an MME may request an S-GW to activate S1-U bearers for a UE and/or may update a downlink path. For 5GS, an AMF may request an SMF to resume a PDU session. An SMF may request a UPF to create tunnel information for a UE and/or update a downlink path. For EPS, after an S1-AP Path Switch procedure a new eNB and/or a new gNB may trigger release of UE contexts at an old eNB or an old gNB by performing a UE Context Release procedure via an X2-AP. For 5GS, after an NG-AP Path Switch procedure a new ng-eNB and/or a new gNB may trigger release of UE contexts at an old ng-eNB and/or an old gNB by performing UE Context Release procedure via an Xn-AP. Uplink data may be delivered to an S-GW and/or a UPF.

- (180) In an example, MT-EDT may be for a single downlink data transmission during a random access procedure. MT-EDT may be initiated by an MME, an AMF/SMF, or a gNB if a UE and/or a network supports MT-EDT and/or if there is a single DL data transmission for the UE. MT-EDT for Control Plane CIoT EPS/5GS Optimization and/or for User Plane CIoT EPS/5GS Optimization may be characterized as followings. Support for MT-EDT for Control Plane CIoT EPS/5GS Optimization and/or for User Plane CIoT EPS/5GS Optimization may be reported by UE via NAS level signaling (e.g., via NAS message). Downlink data size may be included/indicated in an S1-AP or NG-AP Paging message for a UE. MT-EDT indication may be included in a Paging message for a UE over a Uu interface. For User Plane CIoT EPS/5GS Optimization, a UE may be provided with a NextHopChainingCount (NCC) in an RRCConnectionRelease message and/or an RRC release message with suspend indication. In response to a Paging message including/comprising MT-EDT indication, a UE may trigger an MO-EDT procedure for Control Plane CIoT EPS/5GS Optimization or for User Plane CIoT EPS/5GS Optimization if upper layers request establishment or resumption of an RRC Connection for Mobile Terminated Call. UE performing an MT-EDT may not transition to an RRC CONNECTED state. MT-EDT may be applicable to BL UEs, UEs in enhanced coverage (e.g., CE UE), and/or NB-IoT UEs.
- (181) In an example, a small data transmission may comprise communication of uplink/downlink data between a wireless device and a network (e.g., a base station, a core network, a data network, etc.) without establishing/resuming an RRC connection of the wireless device and/or without transitioning the wireless device to an RRC connected state.
- (182) In an example, transmission using preconfigured uplink resource (PUR) may allow at least one uplink transmission from RRC_IDLE (RRC idle state) and/or RRC_INACTIVE (RRC inactive state) using a PUR without performing the random access procedure. Transmission using PUR may be enabled by an (ng-)eNB and/or a gNB if the UE and/or the (ng-)eNB support.
- (183) In an example, a UE may request to be configured with a PUR and/or to have a PUR configuration released while in RRC_CONNECTED mode/state. The (ng-)eNB/gNB may decide to configure a PUR that may be based on UE's request, UE's subscription information, and/or local policy. The PUR may be valid in the cell where the configuration was received.
- (184) Transmission using PUR may be triggered when upper layers of UE request establishment or resumption of an RRC Connection. Transmission using PUR may be triggered when a UE has data to transmit. Transmission using PUR may be triggered when a UE has a valid PUR for transmission and/or meets a TA validation criteria. Transmission using PUR may be applicable to BL UEs, UEs in enhanced coverage, and/or NB-IoT UEs. FIG. **23** shows an example of transmission using PUR.

(185) In an example, as shown in FIG. 20, a procedure for PUR configuration request and/or PUR configuration may be used for a Control Plane CIoT EPS/5GS optimizations and/or a User Plane CIoT EPS/5GS optimizations. A UE may send PUR configuration request to a base station (e.g., gNB, eNB). The base station may send an RRC connection release indication and PUR configuration parameters to the UE. The PUR configuration parameters may be based on the PUR configuration request. In an example, as shown in FIG. 20, a UE may be in RRC_CONNECTED and a PUR may be enabled in a cell. The UE may indicate to a (ng-)eNB or gNB that the UE is interested in being configured with PUR by sending PUR Configuration Request message providing information about the requested resource (e.g., number of occurrences, periodicity, time offset, TBS, RRC Ack, etc.). The UE may indicate to the (ng-) eNB or gNB in the PURConfigurationRequest message that the UE is interested in the configured PUR to be released. When the (ng-)eNB or gNB moves the UE to RRC_IDLE or RRC_INACTIVE (e.g., based on a precedent UE PUR configuration request, subscription information, and/or local policies) the (ng-)eNB or gNB may decide to provide a PUR resource to the UE or to release an existing PUR resource. The (ng-)eNB or gNB may include parameters of the PUR configuration or a PUR release indication in the RRC Connection Release message. For UEs using the Control Plane CIoT EPS/5GS optimizations, the (ng-)eNB or gNB may provide a PUR configuration ID with the PUR configuration. If available, the UE may include the PUR configuration ID in RRC Connection Setup/Resume Complete message when establishing/resuming RRC connection(s) not using the PUR resource.

(186) In an example, the PUR configuration may be released at the UE and/or (ng-) eNB/gNB, when the UE accesses in another cell, when PUR is no longer enabled in the cell, and/or when the PUR resource has not been used for a configured number of consecutive occasions. In an example, a UE and PUR configuration may be linked according to configured PUR resources. (187) In an example, FIG. **21** shows an example of transmission using PUR for Control Plane CIoT EPS Optimization and/or for Control Plane CIoT 5GS Optimization. Uplink user data may be transmitted using the PUR resource in a NAS message concatenated in RRC Early Data Request message on CCCH. If there is no downlink data, the (ng-)eNB or gNB may terminate the procedure by sending a layer 1 acknowledgement optionally containing a Time Advance Command, a MAC Time advance Command, and/or RRC Early Data Complete with no user data. Downlink user data may be transmitted in a NAS message concatenated in RRC Early Data Complete message on CCCH. A UE may not transition to RRC CONNECTED.

(188) In FIG. 21, a UE may determine that the PUR resource can be used (e.g., PUR enabled in the cell, valid Time Alignment, etc.). The UE may transmit over the PUR resource. If the uplink data are too large to be included in RRC Early Data Request, the UE may use the PUR resource to transmit RRC Connection Request. The procedure may fall back to an RRC Connection establishment procedure and/or a new C-RNTI may be assigned. The (ng-)eNB or gNB may request the UE to abort the transmission using PUR by sending a Layer 1 fallback indication. In an example, for EPS, the eNB or gNB may initiate the S1-AP or N2/3 Initial UE message procedure to forward the NAS message and/or may establish the S1 or N2/N3 connection. For 5GS, the ng-eNB or gNB may initiate the NG-AP Initial UE message procedure to forward the NAS message. The (ng-)eNB or gNB may indicate that this connection is triggered for EDT. In an example, for EPS, the MME may requests the S-GW to re-activate the EPS bearers for the UE. For 5GS, the AMF may determine the PDU session contained in the NAS message. For EPS, the MME may send the uplink data to the S-GW. For 5GS, the AMF may send the PDU Session ID and/or the uplink data to the SMF. The SMF may forward the uplink data to the UPF. In an example, for EPS, if downlink data are available, the S-GW may send the downlink data to the MME. For 5GS, if downlink data are available, the UPF may forward the downlink data to SMF. The SMF may forward the downlink data to AMF. If downlink data are received from the S-GW or SMF, the MME or AMF may forward the data to the eNB/ng-eNB or gNB via DL NAS Transport procedure and/or may

indicate whether further data are expected. In an example, the MME or AMF may trigger Connection Establishment Indication procedure and/or may indicate whether further data are expected. If the (ng-)eNB or gNB is aware that there is no further data or signaling, the (ng-)eNB or gNB may send a Time Advance Command to update the TA and/or terminate the procedure. In an example, if no further data are expected, the (ng-)eNB or gNB may send the RRC Early Data Complete message on CCCH to keep the UE in RRC_IDLE or RRC_INACTIVE. If downlink data were received, the downlink data may be concatenated in RRC Early Data Complete message. In an example, If the MME/AMF or the (ng-)eNB/gNB decides to move the UE to RRC CONNECTED mode, RRC Connection Setup message may be sent to fall back to the RRC Connection establishment procedure and/or a new C-RNTI may be assigned. The (ng-)eNB or gNB may discard a zero-length NAS PDU received in RRC Connection Setup Complete message. In an example, if none of Layer 1 Ack, MAC Time advance Command, RRC Early Data Complete, and/or, in case of fallback, RRC Connection Setup is received in response to RRC Early Data Request, the UE may consider the UL data transmission not successful. (189) In an example, as shown in FIG. **22**, a UE may transmit data using PUR for User Plane CIoT EPS Optimization and/or for User Plane CIoT 5GS Optimization. The UE may be in RRC_IDLE or RRC INACTIVE and/or has a valid PUR resource. The UE may be provided with a Next Hop Chaining Count in the RRC Connection Release message with suspend indication. Uplink user data may be transmitted on DTCH multiplexed with RRC Connection Resume Request message on CCCH. Downlink user data may be optionally transmitted on DTCH multiplexed with RRC Connection Release message on DCCH. The user data in uplink and downlink may be ciphered. The keys may be derived using the Next Hop Chaining Count provided in the RRC Connection Release message of the previous RRC connection. The RRC Connection Release message may be integrity protected and/or ciphered using the newly derived keys. The UE may not transition to RRC CONNECTED. In an example, the UE may transmit data using PUR for the User Plane CIoT EPS optimization and for the User Plane CIoT 5GS optimization. (190) In FIG. 22, the UE may validate the PUR resource according to the configured criteria (e.g., TA validation, RSRP validation, etc.). In an example, the UE may transmit over the PUR resource instead of a resource allocated in the random access response. The UE may send an RRC Connection Resume Request to the eNB or gNB, including its Resume ID, the establishment cause, and/or an authentication token. The UE may resume SRBs and DRBs. The UE may derive new security keys using the NextHopChainingCount provided in the RRC Connection Release message of the previous RRC connection and/or may re-establish the AS security. The user data may be ciphered and/or transmitted on DTCH multiplexed with the RRC Connection Resume Request message on CCCH. If enabled in the cell, the UE may indicate AS Release Assistance Information. The UE may send an RRCConnectionResumeRequest to the ng-eNB or gNB, including its I-RNTI, the resume cause, and/or an authentication token. The UE may resume SRBs and DRBs. The UE may derive new security keys using the Next Hop Chaining Count provided in the RRC Connection Release message of the previous connection and re-establishes the AS security. The user data may be ciphered and transmitted on DTCH multiplexed with the RRC Connection Resume Request message on CCCH. The UE may indicate AS Release Assistance Information. If the user data are too large to be included in the transmission using PUR, the UE may use PUR to transmit RRC Connection Resume Request and a segment of the user data. The procedure may be fall back to the RRC Connection Resume procedure. A new C-RNTI may be assigned. The (ng-)eNB or gNB may request the UE to abort the transmission using PUR by sending a Layer 1 fallback indication.

(191) In an example, the eNB or gNB may initiate the S1-AP Context Resume procedure to resume the S1 connection and re-activate the S1-U bearers. The MME may request the S-GW to re-activate the S1-U bearers for the UE. The MME may confirm the UE context resumption to the eNB or gNB. The uplink data may be delivered to the S-GW. If downlink data are available, the S-GW may

send the downlink data to the eNB or gNB. If no further data are expected, the eNB or gNB may initiate the suspension of the S1 connection and/or the deactivation of the S1-U bearers. (192) In an example, the uplink data may be delivered to the UPF. The ng-eNB or gNB may send a NG-AP Context Resume Request message to the AMF to resume the connection. If the UE included AS Release Assistance information indicating No further UL/DL higher layer PDU, ngeNB or gNB may request for immediate transition to RRC_IDLE with Suspend and/or RRC_INACTIVE. In an example, If the AMF does not receive a request for immediate transition to RRC IDLE with Suspend or the AMF is aware of downlink data or signaling pending, the AMF may request the SMF to resume the PDU session. The AMF may send a NG-AP Context Resume Response to the ng-eNB or gNB. If the AMF receives a request for immediate transition to RRC IDLE with Suspend and/or there is no downlink data or signaling pending, the AMF may include a Suspend indication and/or may keep the UE in CM-IDLE with Suspend. In an example, if the AMF does not include Suspend indication and/or the UE included AS Release Assistance information indicating Only a single Downlink Data transmission subsequent to the Uplink transmission, the ng-eNB or gNB may wait for the DL data to arrive. The ng-eNB or gNB may initiate the NG-AP UE Context Suspend procedure to inform the AMF that the RRC connection is being suspended. The AMF may request the SMF to suspend the PDU session. The SMF may request the UPF to release the tunnel information for the UE.

- (193) The eNB or gNB may send the RRCConnectionRelease message to keep the UE in RRC_IDLE. The message includes the releaseCause set to rrc-Suspend, the resumeID, the I-RNTI, the NextHopChainingCount and drb-ContinueROHC which are stored by the UE. If downlink data were received, the downlink data may be sent ciphered on DTCH multiplexed with the RRCConnectionRelease message on DCCH. In an example, the RRC connection release message may include the Time Advance Command.
- (194) In an example, if the MME/AMF or the (ng-)eNB/gNB decides to move the UE to RRC_CONNECTED mode, RRC Connection Resume message may be sent to fall back to the RRC Connection resume procedure. The RRC Connection Resume message may be integrity protected and/or ciphered with the keys. The UE may ignore the Next Hop Chaining Count included in the RRC Connection Resume message. A new C-RNTI may be assigned. Downlink data may be transmitted on DTCH multiplexed with the RRC Connection Resume message. An RRC Connection Setup may also be sent to fall back to the RRC Connection establishment procedure. If neither RRC Connection Release nor, in case of fallback, RRC Connection Resume is received in response to RRC Connection Resume Request using PUR, the UE may consider the UL data transmission not successful.
- (195) In an example, transmission using PUR may be initiated by the RRC layer. When transmission using PUR is initiated, RRC layer may provide MAC with at least one of: PUR-RNTI, duration of PUR response window pur-ResponseWindowSize, and/or UL grant information. In an example, If the MAC entity has a PUR-RNTI, for TTI for which RRC layer provided uplink grant for transmission using PUR, the MAC entity may deliver the uplink grant and/or the associated HARQ information to the HARQ entity for this TTI. After transmission using PUR, the MAC entity may monitor PDCCH identified by PUR-RNTI in the PUR response window using timer pur-ResponseWindowTimer. The PUR response window may start at the subframe/slot/symbol that contains the end of the corresponding PUSCH transmission plus 4 subframes/slot/symbol. The PUR response window may have the length pur-ResponseWindowSize. While pur-ResponseWindowTimer is running, the MAC entity may restart pur-ResponseWindowTimer at the last subframe/slot/symbol of a PUSCH transmission corresponding to the retransmission indicated by the UL grant plus 4 subframes/slots/symbols if the PDCCH transmission is addressed to the PUR-RNTI and contains an UL grant for a retransmission. If L1 ACK for transmission using PUR is received from lower layers and/or if PDCCH transmission is addressed to the PUR-RNTI and the MAC PDU is successfully decoded, the MAC entity may stop pur-ResponseWindowTimer. If L1

ACK for transmission using PUR is received from lower layers and/or the MAC PDU contains only Timing Advance Command MAC control element, the MAC entity may indicate to upper layers the transmission using PUR was successful and/or may discard the PUR-RNTI. If repetition adjustment for transmission using PUR is received from lower layers, the MAC entity may indicate the value of the repetition adjustment to upper layers. In an example, if fallback indication for PUR is received from lower layers, the MAC entity may stop pur-ResponseWindowTimer and/or may indicate to upper layers that PUR fallback indication is received and/or may discard the PUR-RNTI. If repetition adjustment for transmission using PUR is received from lower layers, the MAC entity may indicate the value of the repetition adjustment to upper layers. If the pur-ResponseWindowTimer expires, the MAC entity may indicate to upper layers the transmission using PUR has failed and/or discard the PUR-RNTI.

(196) In an example, the MAC entity may maintain timer pur-TimeAlignmentTimer by upper layers (e.g., RRC layer). In an example, the MAC entity may start pur-TimeAlignmentTimer when pur-TimeAlignmentTimer configuration is received from upper layers. In an example, the MAC entity may stop the pur-TimeAlignmentTimer when pur-TimeAlignmentTimer is released by upper layers. In an example, the MAC entity may apply the Timing Advance Command or the timing advance adjustment and/or may start/restart the pur-TimeAlignmentTimer when a Timing Advance Command MAC control element is received or PDCCH indicates timing advance adjustment. In an example, upon request from upper layers, MAC entity may indicate whether pur-TimeAlignmentTimer is running.

(197) In an example, a UE may consider the timing alignment value for transmission using PUR to be valid when pur-TimeAlignmentTimer is running as confirmed by lower layers if pur-TimeAlignmentTimer is configured. In an example, a UE may consider the timing alignment value for transmission using PUR to be valid when, since the last TA validation, the serving cell RSRP has not increased by more than increaseThresh and/or the serving cell RSRP has not decreased by more than decreaseThresh if pur-RSRP-ChangeThreshold (pur-NRSRP-ChangeThreshold in NB-IoT) is configured.

(198) In an example, a UE configured with pur-Config may consider that the first PUR occasion occurs at the H-SFN/SFN/subframe given by H-SFN and/or SFN and subframe indicated by startSFN and startSubframe. H-SFN may be determined based on (H-SFNRef+offset) mod 1024 occurring after FLOOR (offset/1024) H-SFN cycles. The offset may be given by periodicityAndOffset. H-SFNRef may correspond to the last subframe of the first transmission of RRC Connection Release message containing pur-Config, taking into account hsfn-LSB-Info. H-SFN cycle may correspond to a duration of 1024 H-SFNs.

(199) In an example, in case that a pur-NumOccasions is set to one, for the first PUR occasion, if transmission using PUR is not initiated or if transmission using PUR has been initiated, after the completion of the transmission using PUR the UE may release pur-Config, may discard previously stored pur-Config, and/or may indicate to lower layers that pur-TimeAlignmentTimer is released (e.g., if pur-TimeAlignmentTimer is configured).

(200) In an example, in case that a pur-NumOccasions is not set to one (e.g., periodic PUR configured) as shown in FIG. **23**, a UE may consider that subsequent PUR occasions occur periodically after an occurrence of the first PUR occasion at the SFN/subframe indicated by startSubframe and startSFN and periodicity given by periodicityAndOffset. In case that a pur-ImplicitReleaseAfter is configured, for a PUR occasion occurring while the UE is in RRC_IDLE or RRC_INACTIVE, if transmission using PUR is not initiated or if PUR failure indication is received from lower layers, the UE may consider the PUR occasion as skipped. If pur-ImplicitReleaseAfter number of consecutive PUR occasions have been skipped, the UE may release pur-Config, may discard previously stored pur-Config, and/or may indicate to lower layers that pur-TimeAlignmentTimer is released if pur-TimeAlignmentTimer is configured. (201) In existing technologies, a base station (e.g., gNB, eNB) may receive, from a wireless device,

an RRC request message with uplink data for a small data transmission. The base station may retrieve contexts of the wireless device and process the uplink data using the contexts. In a base station functional split architecture, a base station distributed unit (DU) may release contexts (e.g., RLC configuration, uplink tunnel information, etc.) of a wireless device that is in an RRC inactive state or an RRC idle state. If a base station DU receives uplink data for a small data transmission from a wireless device in an RRC inactive state or an RRC idle state, the base station DU may need to receive contexts of the wireless device from a base station central unit (CU). Depending on network status, the base station CU may perform the small data transmission for the wireless device by initiating an RRC release procedure for the wireless device or may transition the wireless device to an RRC connected state. In an example, as shown in FIG. 26, when the base station DU receives contexts of the wireless device and the base station CU intends to perform an RRC release procedure for the wireless device, the base station DU may misunderstand and may configure configuration parameters for an RRC connection of the wireless device. Reserving configurations and resources for the wireless device that performs an RRC release procedure may increase waste of resources and signaling complexity. In an example, when the base station DU receives contexts of the wireless device and the base station CU intends to transition the wireless device to an RRC connected state, the base station DU may misunderstand and may not configure configuration parameters for an RRC connection of the wireless device. The base station CU may need to perform another configuration procedure with the base station DU for the RRC connection of the wireless device. Performing multiple configuration procedures for the wireless device (see, for example, FIG. 27) may increase signaling complexity and configuration latency. Existing protocols may increase inefficiency of configuration signaling for a wireless device. (202) Example embodiments may support that a base station CU sends, to a base station DU, a message comprising contexts of a wireless device with a first indication that the message is for a small data transmission or for an RRC connection of the wireless device and/or a second indication that the contexts are for uplink data associated with a small data transmission. The first indication

(202) Example embodiments may support that a base station CU sends, to a base station DU, a message comprising contexts of a wireless device with a first indication that the message is for a small data transmission or for an RRC connection of the wireless device and/or a second indication that the contexts are for uplink data associated with a small data transmission. The first indication may be a field indicating a small data transmission or an RRC connection. The first indication may be a message per se (e.g., small data transmission request/response/configuration message or UE context setup/modification message) for a small data transmission or an RRC connection. Based on a first indication that a message is for a small data transmission or for an RRC connection of a wireless device, a base station DU may or may not configure configuration parameters for an RRC connection of the wireless device. The second indication may indicate separate configuration parameters for uplink data associated with a small data transmission. For example, the message may comprise first configuration parameters comprising contexts (e.g., old contexts of a wireless device) for uplink data and second configuration parameters for an RRC connection of a wireless device. Based on a second indication that contexts are for uplink data associated with a small data transmission and/or based on separate configurations for uplink data and an RRC connection, a base station DU may be configured for uplink data and an RRC connection by a signal configuration procedure. Example embodiments may increase signaling efficiency and reduce configuration latency.

(203) Example embodiment may support that a base station CU sends, to a base station DU, a UE context release message comprising contexts of a wireless device for a small data transmission and an RRC release message for the wireless device. The base station DU may send, to the base station CU and based on the contexts, uplink data associated with the small data transmission and transmit the RRC release message to the wireless device. A UE context release message comprising contexts of a wireless device for a small data transmission and an RRC release message may reduce signaling for configurations of a small data transmission. Example embodiments may increase signaling efficiency and reduce configuration latency.

(204) In an example, as shown in FIG. **25**, a wireless device (UE) may communicate with a base station (gNB) comprising a base station CU (gNB-CU) and/or one or more base station DUs. The

one or more base station DUs may comprise a base station DU (gNB-DU). The base station CU may comprise a base station CU-CP (gNB-CU-CP) and a base station CU-UP (gNB-CU-UP). The wireless device may directly communicate with the base station DU via wireless channels of one or more cells comprising a cell (Cell1). The wireless device may communicate with the base station CU (e.g., the base station CU-CP and/or the base station CU-UP) via the one or more base station DUs comprising the base station DU.

(205) In an example, the base station DU and the base station CU may be connected to each other via at least one F1 interface comprising an F1 control plane interface (F1-C) and/or an F1 user plane interface (F1-U). The base station DU may communicate with the base station CU-CP via the F1 control plane interface (F1-C). The base station DU may communicate with the base station CU-UP via the F1 user plane interface (F1-U). The base station CU-CP may communicate with the base station CU-UP via an E1 interface. In an example, the base station may comprise a plurality of base station DUs comprising the base station DU and/or a second base station DU. The base station CU may communicate with the plurality of base station DUs via a plurality of F1 interfaces. The wireless device may communicate with the plurality of base station DUs. The wireless device may communicate with the base station CU via one or more of the plurality of base station DUs. In an example, the base station DU or the second base station DU may provide a primary cell and/or a master cell group for the wireless device. In an example, the base station (e.g., the base station CU, the base station CU-CP, and/or the base station CU-UP) may be connected to a core network node/device (e.g., core network control plane: access and mobility management function (AMF), session management function (SMF), mobility management entity (MME); and/or core network user plane: user plane function (UPF), serving gateway (S-GW)). In an example, the base station (e.g., the base station CU, the base station CU-CP, and/or the base station CU-UP) may be connected to at least one neighboring base station comprising a second base station (gNB2), for example, via an Xn interface or an X2 interface.

(206) In an example, the FIG. **24** shows a flow diagram of an example procedure of the small data transmission (e.g., the early data transmission) of the wireless device when the base station comprises the base station DU and the base station CU that may comprise the base station CU-CP and the base station CU-UP. A small data transmission (SDT) may be interpreted as at least one of an EDT, an MT-EDT, an MO-EDT, an uplink SDT, a downlink SDT, and/or the like. (207) In an example, as shown in FIG. 28, the base station DU may receive, from the wireless device, an RRC request message for a small data transmission (SDT) and uplink data associated with the small data transmission. The base station DU may send, to the base station CU, the RRC request message. Based on the RRC request message, the base station CU may retrieve first contexts of the wireless device. Based on the RRC request message, the base station CU may determine to perform the small data transmission for the wireless device. The base station DU may receive, from the base station CU, a configuration message comprising the first contexts of the wireless device and a first field indicating the small data transmission. The base station DU may process/decode, based on the first field, the uplink data using the first contexts of the wireless device. The base station DU may send, to the base station CU (e.g., the base station CU-UP), the processed uplink data. The base station DU may send, to the base station CU (e.g., the base station CU-CP), a configuration response message responding to the configuration message. The base station DU may receive, from the base station CU, an RRC response message (e.g., an RRC release message, an RRC early data complete message, etc.) for the wireless device to be in an RRC inactive state or an RRC idle state. The RRC response message may indicate that the wireless device transitions to the RRC inactive state or the RRC idle state. The base station DU may send/forward/transmit the RRC response message. In an example, the base station DU may receive, from the base station CU, downlink data associated with the small data transmission. The base station DU may process the downlink data using the first contexts of the wireless device. The base station DU may send, to the wireless device, the processed downlink data.

(208) In an example, as shown in FIG. 29, based on receiving the RRC request message, the base station CU may determine to transition the wireless device to an RRC connected state and/or may determine to resume/setup an RRC connection of the wireless device. For the RRC connection of the wireless device, the base station CU may send, to the base station DU, a configuration message comprising first contexts of the wireless device for the uplink data and second contexts for the RRC connection of the wireless device. The base station DU may process the uplink data using the first contexts. The base station DU may send, to the base station CU (e.g., the base station CU-UP), the uplink data (e.g., the processed uplink data) using the first contexts. The base station DU may determine configuration parameters for the RRC connection of the wireless device based on the second contexts. The base station DU may send, to the base station CU (e.g., the base station CU-CP), a configuration response message comprising the configuration parameters determined based on the second contexts. The base station DU may receive, from the base station CU, an RRC message (e.g., an RRC resume message, an RRC setup message, etc.) for the RRC connection. The RRC message may comprise the configuration parameters. The base station DU may send, to the wireless device, the RRC message. Based on the RRC message, the wireless device may transition to the RRC connected state. The base station DU may communicate with the wireless device based on the configuration parameters.

(209) In an example, the base station DU (e.g., gNB-DU) may receive, from the wireless device, an RRC request message for a small data transmission (SDT) (e.g., early data transmission) and uplink data associated with the small data transmission.

(210) In an example, the RRC request message may comprise at least one of an RRC early data request message, an RRC resume request message, an RRC setup request message, and/or the like. In an example, the receiving the RRC request message by the base station DU from the wireless device may comprise at least one of: receiving the RRC request message based on a random access process of the wireless device; receiving the RRC request message via at least one preconfigured uplink resource (PUR); and/or the like. In an example, the base station DU may receive, from the wireless device, at least one random access preamble for the random access process. The base station DU may send, to the wireless device, at least one random access response for the at least one random access preamble. The RRC request message may be based on the at least one random access response. The at least one random access preamble may be configured for the small data transmission. In an example, the base station DU may receive, from the wireless device, the RRC request message with at least one random access preamble (e.g., for 2-step random access process). (211) In an example, the base station DU may receive, from the wireless device, the RRC request message, the uplink data, and/or at least one assistance parameter (e.g., release assistance information, RAI) indicating whether at least one subsequent data transmission is expected, and/or the like. The wireless device may send, to the base station and/or the base station DU of the base station, the RRC request message. The uplink data and/or the at least one assistance parameter may be multiplexed and/or concatenated with the RRC request message. In an example, the wireless device may receive, from the base station DU, a paging message indicating a mobile terminating early data transmission (MT-EDT; e.g., mobile terminating small data transmission). The wireless device may send the RRC request message for the small data transmission based on the paging message, for example, to receive downlink data associated with the MT-EDT. (212) In an example, the RRC request message may comprise at least one of: an RRC early data

transmission request message, an RRC resume request message, an RRC setup request message, and/or the like. In an example, the RRC request message may comprise at least one of a resume identifier (e.g., resumeIdentity, I-RNTI, shortI-RNTI), a resume MAC-I (e.g., resumeMAC-I, shortResumeMAC-I), a resume cause, an S-TMSI (e.g., UE identifier, NG-5G-S-TMSI), an establishment cause, a NAS layer information (e.g., NAS PDU, DedicatedInfoNAS), and/or the like. In an example, the resume identifier may comprise a UE identity to facilitate UE context retrieval of the wireless device at a base station. In an example, the resume MAC-I may comprise

an authentication token to facilitate authentication of the wireless device at a base station (e.g., 16 least significant bits of MAC-I may be calculated based on AS security configuration). In an example, the resume cause may comprise at least one of emergency, high priority access, mobile terminating access (mt-Access), mobile originating signaling (mo-Signaling), mobile originating data (mo-Data), delay tolerant access, mobile originating voice call (mo-VoiceCall), mobile terminating early data transmission (mt-EDT, MT SDT), mobile originating early data transmission (mo-EDT, MO SDT), RAN notification area update (rna-Update), and/or the like. The resume cause may provide cause of an RRC resume request as provided by upper layers or RRC layer. A network may not reject an RRCResumeRequest due to unknown cause value being used by the wireless device. In an example, the establishment cause may comprise at least one of mobile originating data (mo-Data), delay tolerant access, mobile terminating access (mt-Access), and/or the like. The establishment cause may provide cause for an RRC early data request as provided by upper layers. A network may not reject a RRCEarlyDataRequest due to unknown cause value being used by the wireless device.

(213) In an example, the small data transmission may comprise data communication between the wireless device and the base station (e.g., and/or the core network, a data network, etc.) without transitioning the wireless device to an RRC connected state. In an example, the small data transmission may comprise transmission of at least one of: an initial uplink data (e.g., the uplink data), an initial downlink data (e.g., the downlink data associated with the MT-EDT), at least one subsequent data of the at least one subsequent data transmission indicated in the at least one assistance parameter, at least one subsequent uplink data, at least one subsequent downlink data, and/or the like. In an example, the at least one subsequent data transmission may be associated with the small data transmission. The at least one subsequent data transmission may comprise at least one of at least one subsequent uplink data transmission, at least one subsequent downlink data transmission, and/or the like.

(214) In an example, the receiving by the base station DU the RRC request message may comprise receiving the RRC request message based on the random access process of the wireless device. In an example, the base station DU may receive, from the wireless device, at least one random access preamble for the random access process. The base station DU may transmit, to the wireless device, at least one random access response responding to the at least one random access preamble. The RRC request message may be based on the at least one random access response. The wireless device may transmit the RRC request message based on the at least one random access response. (215) In an example, the at least one random access preamble for the random access process associated with reception of the RRC request message may be configured for the small data transmission. In an example, the base station DU may receive, from the base station CU (e.g., the base station CU-CP), a configuration message comprising at least one RA parameter indicating the at least one random access preamble for the small data transmission. The base station DU may transmit/broadcast, to a plurality of wireless devices comprising the wireless device via the cell of the base station DU, a system information block indicating the at least one random access preamble for the small data transmission. The system information block may comprise the at least one RA parameter indicating the at least one random access preamble for the small data transmission. The receiving by the base station DU the at least one random access preamble may be based on the system information block. The wireless device may receive the at least one information block and/or may transmit the at least one random access preamble based on the system information block. In an example, the wireless device may receive the at least one RA parameter indicating the at least one random access preamble via an RRC release message that the wireless device received when releasing/suspending a previous RRC connection. The wireless device may receive the RRC release message comprising the at least one RA parameter from the base station and/or the base station DU of the base station.

(216) In an example, the receiving by the base station DU the RRC request message may comprise

receiving the RRC request message via at least one preconfigured uplink resource (PUR). The wireless device may receive PUR configuration parameters for the at least one PUR via a system information block and/or a downlink RRC message (e.g., RRC release message) from the base station and/or the base station DU of the base station. The wireless device may transmit the RRC request message, the uplink data, and/or the at least one assistance parameter via the at least one PUR during a time that the wireless device is in an RRC idle state or an RRC inactive state. The at least one PUR may comprise one or more periodic radio resources and/or a single time resource. (217) In an example, the receiving the at least one assistance parameter may comprise receiving the at least one assistance parameter via at least one of: at least one medium access control control element (MAC CE), a physical uplink channel (e.g., PUSCH, PUCCH, uplink control information, UCI), at least one radio link control (RLC) packet header, and/or the like. In an example, the wireless device may transmit, to the base station DU, the at least one assistance parameter via the at least one MAC CE multiplexed and/or concatenated with the RRC message and/or the uplink data. (218) In an example, the at least one assistance parameter may comprise at least one of: a parameter indicating no release assistance information (e.g., no RAI); a parameter indicating no subsequent downlink data transmission is expected; a parameter indicating no subsequent uplink data transmission is expected; a parameter indicating a single subsequent downlink data transmission is expected; a parameter indicating a single subsequent uplink data transmission is expected; a first number of subsequent downlink data transmission that is expected; a second number of subsequent uplink data transmission that is expected; and/or the like. (219) In an example, the at least one assistance parameter may comprise a buffer status report of the wireless device. The buffer status report may indicate size of data to transmit. The buffer status report may indicate size of data associated with the small data transmission, the data that may be buffered in at least one queue of the wireless device (e.g., MAC layer). The buffer status report may comprise at least one logical channel identifier (LCID) of at least one logical channel and/or at least one logical channel group identifier (LCG ID) of at least one logical channel group. The at least one logical channel and/or the at least one logical channel group may be configured for data of the small data transmission. In an example, the at least one assistance parameter may comprise at least one of: a bearer identifier of a bearer, a logical channel identifier of a logical channel, a logical channel group identifier of a logical channel group, a QoS flow identifier of a QoS flow, a session identifier of a PDU session, and/or the like. The bearer, the logical channel, the logical channel group, the QoS flow, the PDU session may be configured for data associated with the small data transmission.

(220) In an example, the base station DU may construct/determine, based on the at least one assistance parameter, at least one first information element (IE) of the assistance information. The at least one first information element may indicate whether at least one subsequent data transmission is expected by the wireless device. The at least one first information element may be an information element of an F1 message. The at least one first information element may be at least one parameter of a GTP protocol layer. In an example, the at least one first information element may comprise at least one of: a parameter indicating no release assistance information, a parameter indicating no subsequent downlink data transmission is expected, a parameter indicating a single subsequent downlink data transmission is expected, a parameter indicating a single subsequent uplink data transmission is expected; a first number of subsequent downlink data transmission expected, a second number of subsequent uplink data transmission expected, and/or the like.

(221) In an example, the base station DU may determine, based on the at least one assistance parameter, whether to initiate/request the RRC release procedure for the wireless device (e.g., to the base station CU). The base station DU may determine at least one second information element

of the assistance information. The at least one second information element may indicate/request (e.g., to the base station CU) whether to initiate the RRC release procedure for the wireless device.

(222) In an example, the base station DU may determine the at least one second information element based on the at least one assistance parameter received from the wireless device. In an example, if the at least one assistance parameter indicates one or more of no release assistance information, no subsequent downlink data transmission, no subsequent uplink data transmission, single subsequent downlink data transmission, single subsequent uplink data transmission, and/or the like, the base station DU may determine to request/initiate the RRC release procedure for the wireless device and/or the at least one second information element may indicate/request to perform the RRC release procedure for the wireless device. In an example, if the first number of subsequent downlink data transmission and/or the second number of subsequent uplink data transmission in the at least one assistance parameter is equal to or smaller than at least one threshold value, the base station DU may determine to request/initiate the RRC release procedure for the wireless device and/or the at least one second information element may indicate/request to perform the RRC release procedure for the wireless device. In an example, the buffer status report in the at least one assistance parameter indicates a data size that is equal to or smaller than a threshold size value, the base station DU may determine to request/initiate the RRC release procedure for the wireless device and/or the at least one second information element may indicate/request to perform the RRC release procedure for the wireless device.

(223) In an example, the base station DU may determine the at least one second information element based on the at least one assistance parameter received from the wireless device. In an example, if the at least one assistance parameter indicates one or more of no release assistance information, single subsequent downlink data transmission, single subsequent uplink data transmission, and/or the like, the base station DU may determine to request/initiate transition of the wireless device to the RRC connected state (e.g., not initiate the RRC release procedure for the wireless device) and/or the at least one second information element may indicate/request to transition the wireless device to the RRC connected state (e.g., to not initiate the RRC release procedure for the wireless device). In an example, if the first number of subsequent downlink data transmission and/or the second number of subsequent uplink data transmission in the at least one assistance parameter is equal to or larger than at least one threshold value, the base station DU may determine to request/initiate transition of the wireless device to the RRC connected state (e.g., not initiate the RRC release procedure for the wireless device) and/or the at least one second information element may indicate/request to transition the wireless device to the RRC connected state (e.g., to not initiate the RRC release procedure for the wireless device). In an example, the buffer status report in the at least one assistance parameter indicates a data size that is equal to or larger than a threshold size value, the base station DU may determine to request/initiate transition of the wireless device to the RRC connected state (e.g., not initiate the RRC release procedure for the wireless device) and/or the at least one second information element may indicate/request to transition the wireless device to the RRC connected state (e.g., to not initiate the RRC release procedure for the wireless device).

(224) In an example, the base station DU may determine the at least one second information element further based on resource status of the base station DU and/or the cell of the base station DU. In an example, if the resource status (e.g., radio resource block usage ratio, radio resource overload status, hardware overload status, etc.) of the base station DU and/or the cell is equal to or larger than a resource threshold value, the base station DU may determine to request/initiate the RRC release procedure for the wireless device and/or the at least one second information element may indicate/request to perform the RRC release procedure for the wireless device. (225) In an example, if the resource status (e.g., radio resource block usage ratio, radio resource

overload status, hardware overload status, etc.) of the base station DU and/or the cell is equal to or smaller than a resource threshold value, the base station DU may determine to recommend/initiate transition of the wireless device to the RRC connected state (e.g., not initiate the RRC release procedure for the wireless device) and/or the at least one second information element may

indicate/recommend to transition the wireless device to the RRC connected state (e.g., to not initiate the RRC release procedure for the wireless device) or may indicate availability indication of transition the wireless device to the RRC connected state.

(226) In an example, the base station DU may send, to the base station CU (gNB-CU), the RRC request message. In an example, the sending the RRC request message by the base station DU to the base station CU may comprise sending the RRC request message to the base station CU-CP. In an example, the base station DU may send, to the base station CU, at least one message comprising the RRC request message for the small data transmission and/or assistance information for initiation of the RRC release procedure for the wireless device. The base station CU may receive, from the base station DU, the at least one message comprising the RRC request message from the wireless device for the small data transmission and/or the assistance information. The assistance information may be based on the at least one assistance parameter. The assistance information may comprise the at least one subsequent data transmission is expected. The assistance information may comprise the at least one second information element indicating/requesting/recommending whether to initiate the RRC release procedure for the wireless device (e.g., or whether to transition the wireless device to the RRC connected state).

(227) In an example, the receiving by the base station CU the at least one message from the base station DU may comprise receiving the at least one message via the F1 interface. The at least one message may comprise at least one of: an initial UL RRC message transfer message, an UL RRC message transfer message, a UE context modification/setup required message, a UE context setup/modification message, a notify message, an access success message, and/or the like. (228) In an example, the at least one message may comprise at least one of: a wireless device identifier (e.g., gNB-DU UE F1AP ID, gNB-CU UE F1AP ID, TMSI, S-TMSI, C-RNTI, PUR-RNTI, IMSI, etc.) of the wireless device, a cell identifier (e.g., NR CGI, cell global identifier, physical cell identifier, etc.) of the cell that the wireless device accesses for the small data transmission, an RRC container comprising the RRC request message, a DU to CU RRC container comprising cell configuration parameters and/or SRB/DRB configuration parameters configured for the wireless device, a supplementary uplink (SUL) access indication indicating whether the wireless device uses a supplementary uplink or a normal uplink to access the cell, a transaction identifier (e.g., transaction ID), a RAN UE ID, a second RRC container (e.g., RRC-Container-RRCSetupComplete, RRC-Container-RRCResumeComplete, RRC-Container-RRCRelease) comprising an RRC setup/resume complete message and/or an RRC release message, an SRB identifier of an SRB (e.g., SRB1/2/3), a PLMN identifier (e.g., selected PLMN identifier), and/or the like.

(229) In an example, the assistance information of the at least one message may comprise the buffer status report from the wireless device. The buffer status report may indicate size of data to transmit. The assistance information of the at least one message may comprise an information element (e.g., SDT indication, EDT indication) indicating the small data transmission (e.g., MO-SDT, MO-EDT, MT-SDT, MT-EDT, etc.). The assistance information of the at least one message may comprise the bearer identifier of the bearer (e.g., logical channel, QoS flow, PDU session) associated with the small data transmission. In an example, the assistance information of the at least one message may comprise at least one of: the bearer identifier of the bearer, the logical channel group, the QoS flow identifier of the QoS flow, the session identifier of the PDU session, and/or the like. The bearer, the logical channel, the logical channel group, the QoS flow, the PDU session may be configured for data associated with the small data transmission.

(230) In an example, based on the RRC request message, the base station CU may retrieve first contexts of the wireless device. The base station CU may retrieve the first contexts of the wireless device based on at least one identifier (e.g., in the RRC request message) comprising at least one of

the resume identifier (e.g., resumeIdentity, I-RNTI, shortI-RNTI), the resume MAC-I (e.g., resumeMAC-I, shortResumeMAC-I), the S-TMSI (e.g., UE identifier, NG-5G-S-TMSI), and/or the like. In an example, the base station CU may determine/identify an old base station (e.g., an anchor base station; a base station that the wires device was connected to previously) of the wireless device. The base station CU may send, to the old base station, a retrieve UE context request message comprising at least one identifier (e.g., the resume identifier, the resume MAC-I, the S-TMSI, etc.). The old base station may retrieve the first contexts of the wireless device based on the retrieve UE context request message. The base station CU may receive, from the old base station, a retrieve UE context response message (e.g., or retrieve UE context failure message) comprising the first contexts of the wireless device. In an example, based on the bearer identifier (e.g., and/or the logical channel identifier, the logical channel group identifier, the QoS flow identifier, the session identifier) of the assistance information, the base station CU (e.g., and/or the old base station) may resume/establish/setup the bearer for the wireless device (e.g., only the bearer among a plurality of suspended bearers of the wireless device; only the logical channel/the logical channel group/the QoS flow/the PDU session among a plurality of logical channels, logical channel groups, QoS flows, and/or PDU sessions of the wireless device).

(231) In an example, based on the RRC request message, the base station CU may determine to perform the small data transmission for the wireless device. Determining to perform the small data transmission for the wireless device may be interpreted as determining to perform data reception and/or transmission with the wireless device without transitioning the wireless device to an RRC connected state. Determining to perform the small data transmission for the wireless device may be interpreted as determining to perform an RRC release procedure for the wireless device that sent the RRC request message.

(232) In an example, the base station CU may determine, based on the at least one message (e.g., the RRC request message), whether to initiate the RRC release procedure for the wireless device (e.g., and/or whether to perform the small data transmission without transitioning the wireless device to an RRC connected state). In an example, based on the reception/transmission of the uplink data, the at least one subsequent uplink data, and/or the at least one subsequent downlink data, the base station CU may determine whether to initiate the RRC release procedure for the wireless device. In an example, the determining whether to initiate the RRC release procedure for the wireless device (e.g., whether to transition the wireless device to an RRC connected state; whether to proceed an RRC connection resume/setup procedure) may comprise determining based on completion of the small data transmission (e.g., based on completion of transmission/reception of the uplink data, the at least one subsequent uplink data, and/or the at least one subsequent downlink data). In an example, the determining whether to initiate the RRC release procedure for the wireless device may comprise at least one of determining whether to transition the wireless device to the RRC connected state and/or determining whether to proceed an RRC connection resume/setup procedure for the wireless device. In an example, determining to initiate the RRC release procedure for the wireless device may comprise determining to transition the wireless device to an RRC inactive state or an RRC idle state. In an example, determining to not initiate the RRC release procedure for the wireless device may comprise determining to transition the wireless device to the RRC connected state and/or determining to proceed an RRC connection resume/setup procedure for the wireless device (e.g., by sending/transmitting an RRC resume message and/or an RRC setup message to the wireless device).

(233) In an example, the determining whether to initiate the RRC release procedure for the wireless device may comprise at least one of: determining to initiate/perform the RRC release procedure, based on the assistance information indicating that no subsequent downlink or uplink data transmission is expected; determining to initiate the RRC release procedure, based on the assistance information indicating that a single subsequent downlink or uplink data transmission is expected; determining to transition the wireless device to the RRC connected state, based on the assistance

information indicating that one or more subsequent downlink or uplink data transmissions are expected; and/or the like.

(234) In an example, the base station CU may determine whether to initiate/perform the RRC release procedure (e.g., and/or whether to perform the small data transmission without transitioning the wireless device to an RRC connected state) for the wireless device based on the assistance information (e.g., the at least one first information element, the at least one second information element, the buffer status report, etc.) received from the base station DU. In an example, if the at least one first information element indicates one or more of no release assistance information, no subsequent downlink data transmission, no subsequent uplink data transmission, single subsequent downlink data transmission, single subsequent uplink data transmission, and/or the like, the base station CU may determine to initiate/perform the RRC release procedure for the wireless device and/or to send/transmit the RRC release message to the wireless device for the RRC release procedure. In an example, if the first number of subsequent downlink data transmission and/or the second number of subsequent uplink data transmission in the at least one first information element is equal to or smaller than at least one threshold value, the base station CU may determine to initiate/perform the RRC release procedure for the wireless device and/or to send/transmit the RRC release message to the wireless device for the RRC release procedure. In an example, the buffer status report in the assistance information indicates a data size that is equal to or smaller than a threshold size value, the base station CU may determine to initiate/perform the RRC release procedure for the wireless device and/or to send/transmit the RRC release message to the wireless device for the RRC release procedure. In an example, if the at least one second information element indicates/requests to perform the RRC release procedure for the wireless device (e.g., and/or not transition the wireless device to an RRC connected state), the base station CU may determine to initiate/perform the RRC release procedure for the wireless device and/or to send/transmit the RRC release message to the wireless device for the RRC release procedure. In an example, the at least one second information element indicates that transitioning the wireless device to the RRC connected state is unavailable, the base station CU may determine to initiate/perform the RRC release procedure for the wireless device and/or to send/transmit the RRC release message to the wireless device for the RRC release procedure.

(235) In an example, the base station CU may determine whether to initiate the RRC release procedure (e.g., and/or whether to perform the small data transmission without transitioning the wireless device to an RRC connected state) for the wireless device based on the assistance information (e.g., the at least one first information element, the at least one second information element, the buffer status report, etc.) received from the base station DU. In an example, if the at least one first information element indicates one or more of no release assistance information, single subsequent downlink data transmission, single subsequent uplink data transmission, and/or the like, the base station CU may determine to transition the wireless device to the RRC connected state (e.g., not initiate the RRC release procedure for the wireless device) and/or to send/transmit the RRC resume/setup message to the wireless device for transition of the wireless device to the RRC connected state. In an example, if the first number of subsequent downlink data transmission and/or the second number of subsequent uplink data transmission in the at least one first information element is equal to or larger than at least one threshold value, the base station CU may determine to transition the wireless device to the RRC connected state (e.g., not initiate the RRC release procedure for the wireless device) and/or to send/transmit the RRC resume/setup message to the wireless device for transition of the wireless device to the RRC connected state. In an example, the buffer status report in the assistance information indicates a data size that is equal to or larger than a threshold size value, the base station CU may determine to transition the wireless device to the RRC connected state (e.g., not initiate the RRC release procedure for the wireless device) and/or to send/transmit the RRC resume/setup message to the wireless device for transition of the wireless device to the RRC connected state. In an example, if the at least one second

information element indicates/requests to not perform the RRC release procedure for the wireless device (e.g., and/or to transition the wireless device to an RRC connected state), the base station CU may determine to transition the wireless device to the RRC connected state (e.g., not initiate the RRC release procedure for the wireless device) and/or to send/transmit the RRC resume/setup message to the wireless device for transition of the wireless device to the RRC connected state. In an example, the at least one second information element indicates that transitioning the wireless device to the RRC connected state is available, the base station CU may determine to transition the wireless device to the RRC connected state (e.g., not initiate the RRC release procedure for the wireless device) and/or to send/transmit the RRC resume/setup message to the wireless device for transition of the wireless device to the RRC connected state.

- (236) In an example, the base station CU may determine whether to initiate the RRC release procedure (e.g., and/or whether to perform the small data transmission without transitioning the wireless device to an RRC connected state) for the wireless device further based on resource status of the base station CU, the base station DU, and/or the cell of the base station associated with the base station CU. In an example, if the resource status (e.g., radio resource block usage ratio, radio resource overload status, hardware overload status, etc.) of the base station CU, the base station DU, and/or the cell of the base station associated with the base station CU is equal to or larger than a resource threshold value, the base station CU may determine to initiate/perform the RRC release procedure for the wireless device and/or to send/transmit the RRC release message to the wireless device for the RRC release procedure.
- (237) In an example, if the resource status (e.g., radio resource block usage ratio, radio resource overload status, hardware overload status, etc.) of the base station CU, the base station DU, and/or the cell of the base station associated with the base station CU is equal to or smaller than a resource threshold value, the base station CU may determine to transition the wireless device to the RRC connected state (e.g., not initiate the RRC release procedure for the wireless device) and/or to send/transmit the RRC resume/setup message to the wireless device for transition of the wireless device to the RRC connected state.
- (238) In an example, the base station CU may send, to the base station DU, a configuration message comprising the first contexts of the wireless device and a first field indicating the small data transmission. The base station DU may receive, from the base station CU, the configuration message. The base station CU may send, to the base station DU, the configuration message comprising the first contexts of the wireless device and the first field indicating the small data transmission, based on determining to perform the small data transmission for the wireless device (e.g., without transitioning the wireless device to an RRC connected state) and/or based on determining to perform the RRC release procedure for the wireless device.
- (239) In an example, for resuming/establishing the bearer (e.g., the logical channel, the logical channel group, the QoS flow, the PDU session), the base station CU may perform a UE context setup/modification procedure for the wireless device with the base station DU. For the UE context setup/modification procedure, the base station CU may send, to the base station DU, a context setup/modification request message comprising the bearer identifier of the bearer (e.g., and/or the logical channel identifier, the logical channel group identifier, the QoS flow identifier, the session identifier). In an example, the bearer and/or the logical channel associated with the bearer may be configured for the small data transmission. The uplink data (e.g., data of the small data transmission, the subsequent uplink/downlink data) may be data of the bearer and/or the logical channel. In an example, the configuration message may comprise the context setup/modification request message.
- (240) In an example, the configuration message (e.g., the context setup/modification request message) may comprise at least one of: a wireless device identifier (e.g., gNB-DU UE F1AP ID, gNB-CU UE F1AP ID, TMSI, S-TMSI, C-RNTI, PUR-RNTI, IMSI, etc.) of the wireless device, a cause parameter, an RRC container, a CU to DU RRC container comprising cell configuration

parameters and/or SRB/DRB configuration parameters (e.g., QoS parameters, QoS flow identifier, S-NSSAI, network slice information, tunnel information, bearer identifier, etc.) configured for the wireless device, a transaction identifier (e.g., transaction ID), a RAN UE ID, an SRB identifier of an SRB (e.g., SRB1/2/3), a PLMN identifier (e.g., selected PLMN identifier), a candidate cell list to be cancelled for the wireless device, an SpCell identifier of an SpCell for the wireless device, a serving cell identifier of a serving cell for the wireless device, DRX cycle information, a secondary cell identifier of a secondary cell for the wireless device, and/or the like.

(241) In an example, the first field of the configuration message may indicate that the configuration message (e.g., the context configuration/setup/modification procedure between the base station DU and the base station CU for the wireless device) is for the small data transmission. The first field may indicate that the wireless device does not transition to an RRC connected state. The first field may indicate that the wireless device may perform the RRC release procedure. The base station DU may determine, based on the first field, that the small data transmission is allowed/performed for the wireless device. The base station DU may determine, based on the first field, that the wireless device performs an RRC release procedure. Based on the first field indicating the small data transmission, the base station DU may not configure configuration parameters for an RRC connection of the wireless device. Based on the first field, the base station DU may use the first contexts of the wireless device to process the uplink data.

(242) In an example, the configuration message may comprise a second field indicating at least one of: that the first contexts are for the uplink data (e.g., the small data transmission, the subsequent uplink/downlink data of the small data transmission); that the first contexts are old contexts of the wireless device; and/or the like. The old contexts of the wireless device may be contexts that the wireless device and/or a network (e.g., old base station) used in previous communications to each other (e.g., when the wireless device is in a previous RRC connected state and/or when the wireless device performed a previous small data transmission, etc.). Based on the second field, the base station DU may use the first contexts of the wireless device, to process the uplink data (e.g., and/or the subsequent uplink/downlink data associated with the small data transmission), without modification.

(243) In an example, the first contexts of the wireless device may comprise at least one of: RLC layer configuration parameters, uplink user plane transport layer information, and/or the like. The uplink user plane transport layer information may comprise at least one of: a transport layer address (e.g., an IP address of the base station CU and/or the base station CU-UP), an uplink general packet radio service (GPRS) tunneling protocol (GTP) tunnel identifier, and/or the like. The uplink user plane transport layer information may be configured for the bearer and/or the logical channel associated with the small data transmission (e.g., the uplink data and/or the subsequent uplink/downlink data). The RLC configuration parameters may comprise a parameter for at least one of RLC modes comprising at least one of a transparent mode (TM) for uplink or downlink, an unacknowledged mode (UM) for uplink or downlink, an acknowledge mode (AM) for uplink or downlink, and/or the like. The RLC configuration parameters may comprise a sequence number configuration parameter. The RLC configuration parameters may be configured for the bearer and/or the logical channel associated with the small data transmission (e.g., the uplink data and/or the subsequent uplink/downlink data). In an example, the sending the processed uplink data to the base station CU (e.g., the base station CU-UP) may comprise sending the processed uplink data to the transport layer address.

(244) In an example, the base station DU may process/decode, based on the first field (e.g., and/or the second field), the uplink data (e.g., and/or the subsequent uplink/downlink data) using the first contexts of the wireless device. The processing/decoding the uplink and/or the subsequent uplink/downlink data may comprise decoding the uplink data and/or the subsequent uplink/downlink data using the RLC configuration parameters. The processing/decoding the uplink and/or the subsequent uplink/downlink data may comprise decoding/transitioning at least one RLC

PDU (e.g., MAC SDU) of the uplink data and/or the subsequent uplink/downlink data to at least one RLC SDU (e.g., PDCP PDU) of the uplink data. The processing/decoding the uplink and/or the subsequent uplink/downlink data may comprise performing combining (e.g., de-segmenting and/or reversing packet segmentations) packets of the uplink data and/or the subsequent uplink/downlink data to make/generate at least one PDCP PDU, using the RLC configuration parameters. (245) In an example, the base station DU may send, to the base station CU (e.g., the base station CU-UP), the processed uplink data (e.g., the processed subsequent uplink data). The sending the processed uplink data by the base station DU to the base station CU may comprise sending the processed uplink data to the base station CU-UP. In an example, the base station DU may send, to the wireless device, processed subsequent downlink data. The sending the processed subsequent downlink data by the base station DU to the wireless device may comprise sending the processed subsequent downlink data using the small data transmission. The base station DU may receive the subsequent downlink data from the base station CU and/or the base station CU-UP. The subsequent downlink data may be in response to sending the uplink data by the wireless device. (246) In an example, the base station CU may receive and/or forward the uplink data (e.g., the processed uplink data) and/or the subsequent uplink or downlink data (e.g., the processed subsequent uplink data). In an example, the base station CU may receive, from the wireless device and via the base station DU, the uplink data (e.g., the processed uplink data) associated with the small data transmission. The base station CU may transmit the uplink data to a core network node (e.g., UPF, S-GW; if the base station CU is a central unit of an anchor base station and/or an old base station of the wireless device) or a second base station (e.g., an anchor base station and/or an old base station of the wireless device).

(247) In an example, the base station CU may receive the subsequent downlink data associated with the small data transmission from the core network node or the second base station. The base station CU may transmit the subsequent downlink data to the wireless device via the base station DU. In an example, the subsequent downlink data may be response data (e.g., from a device communicating with the wireless device) for the uplink data. In an example, the base station CU may receive, from the wireless device and via the base station DU, the subsequent uplink data (e.g., the processed subsequent uplink data) associated with the small data transmission. The base station CU may transmit the subsequent uplink data to the core network node or the second base station. In an example, the subsequent uplink data may be response data (e.g., from a device communicating with the wireless device) to the subsequent downlink data

(248) In an example, the base station CU may receive/transmit the uplink data, the subsequent uplink data, and/or the subsequent downlink data from/to the base station DU via at least one tunnel (e.g., based on uplink/downlink tunnel identifier) between the base station CU and the base station DU. The base station CU may receive/transmit the uplink data, the subsequent uplink data, and/or the subsequent downlink data from/to the core network node and/or the second base station via at least one tunnel (e.g., based on uplink/downlink tunnel identifier) between the base station CU and the core network node and/or between the base station CU and the second base station. (249) In an example, the base station DU may send, to the base station CU (e.g., the base station CU-CP), a configuration response message responding to the configuration message. The sending the processed uplink data to the base station CU (e.g., the base station CU-CP) may comprise sending the configuration response message comprising the processed uplink data via the F1 interface between the base station DU and the base station CU (e.g., the F1-C interface between the base station DU and the base station CU-CP). The configuration response message may comprise the processed uplink data. The base station CU-CP may forward/send the processed uplink data to the base station CU-UP via one or more messages of the E1 interface between the base station CU-CP and the base station CU-UP. In an example, the base station CU (e.g., the base station CU-CP) may receive, from the base station DU and in response to the context setup/modification request message, an acknowledge message indicating completion of resuming/establishing the bearer (e.g.,

the logical channel, the logical channel group, the QoS flow, the PDU session). The configuration response message responding to the configuration may comprise the acknowledge message. (250) In an example, the base station DU may determine/update suspend configuration parameters for the wireless device based on the first field of the configuration message indicating the small data transmission. The suspend configuration parameters may be for the wireless device to use in an RRC inactive state or an RRC idle state. In an example, the configuration response message may comprise the suspend configuration parameters. The suspend configuration parameters may comprise at least one of: parameters for preconfigured uplink resources (PURs), random access parameters for a small data transmission, and/or the like. The PURs may be interpreted as configured grants (CGs) that are used by the wireless device in an RRC inactive state and/or an RRC idle state. The PURs (e.g., the CGs) may be configured for the bearer and/or the logical channel associated with the small data transmission (e.g., allowed to use the small data transmission). The suspend configuration parameters may comprise one or more cell identifiers of one or more cells that are configured with the PURs (e.g., the CGs). The parameters for the PURs may comprise at least one of: a periodicity, a timing offset, a size, and/or the like. The random access parameters may comprise at least one of: a parameter indicating a preamble, resource parameters for transmission of the preamble, and/or the like.

(251) In an example, the base station CU may construct an RRC response message (e.g., an RRC release message, an RRC early data complete message, etc.) for the wireless device. The RRC response message may be for the RRC release procedure of the wireless device. The RRC response message may indicate that the wireless device stays in the RRC inactive state or the RRC idle state. The RRC response message may indicate that the wireless device transitions to the RRC inactive state or the RRC idle state. The RRC response message may comprise the suspend configuration parameters.

(252) In an example, the base station DU may receive, from the base station CU, the RRC response message for the wireless device to be in an RRC inactive state or an RRC idle state. In an example, based on the determining to initiate the RRC release procedure, the base station CU may send, to the wireless device, the RRC response message (e.g., the RRC release message for the RRC release procedure and/or the RRC early data complete message for completion of the small data transmission). The base station CU may send/transmit, to the base station DU, a context message comprising the RRC response message for the wireless device to be in an RRC inactive state and/or the RRC idle state. The base station DU may receive, from the base station CU, the context message comprising the RRC response message for the wireless device. In an example, if the base station CU determines to initiate the RRC release procedure (e.g., to not transition the wireless device to the RRC connected state), the base station CU may transmit/send the RRC release message to the wireless device via the context message and/or via the base station DU. (253) In an example, the sending/transmitting by the base station CU the context message to the base station DU may comprise sending/transmitting the context message via the F1 interface. In an example, the context message may comprise at least one of: a UE context release command message, an DL RRC message transfer message, a UE context modification/setup request message, a UE context setup/modification complete message, a notify message, an access success message, and/or the like.

(254) In an example, the context message may comprise at least one of: a wireless device identifier (e.g., gNB-DU UE F1AP ID, gNB-CU UE F1AP ID, TMSI, S-TMSI, C-RNTI, PUR-RNTI, IMSI, etc.) of the wireless device, a cause parameter (e.g., cause of performing the RRC release procedure), an RRC container comprising the RRC response message (e.g., the RRC release message for the RRC release procedure and/or the RRC early data complete message for completion of the small data transmission), a CU to DU RRC container comprising cell configuration parameters and/or SRB/DRB configuration parameters (e.g., QoS parameters, QoS flow identifier, S-NSSAI, network slice information, tunnel information, bearer identifier, etc.)

configured for the wireless device, a transaction identifier (e.g., transaction ID), a RAN UE ID, a second RRC container (e.g., RRC-Container-RRCSetupComplete, RRC-Container-

RRCResumeComplete, RRC-Container-RRCRelease) comprising an RRC setup/resume complete message and/or an RRC release message, an SRB identifier of an SRB (e.g., SRB1/2/3), a PLMN identifier (e.g., selected PLMN identifier), a candidate cell list to be cancelled for the wireless device, an SpCell identifier of an SpCell for the wireless device, a serving cell identifier of a serving cell for the wireless device, DRX cycle information, a secondary cell identifier of a secondary cell for the wireless device, and/or the like. In an example, if the context message comprises the RRC response message for the RRC release procedure of the wireless device, the context message may be a UE context release command message.

- (255) In an example, the RRC release message may comprise a list of at least one bearer (e.g., SRB, DRB) that may be allowed to use procedure of the small data transmission (e.g., the early data transmission). Based on the list of the at least one bearer, the wireless device may perform the small data transmission if the wireless device has data associated with the at least one bearer when the wireless device is in the RRC inactive state or the RRC idle state.
- (256) In an example, the base station DU may send/forward/transmit, to the wireless device, the RRC response message. In an example, the wireless device may be in the RRC idle state or the RRC inactive state based on receiving the RRC release message from the base station DU and/or the base station CU.
- (257) In an example, the base station DU may transmit/send, to the wireless device, the initial downlink data and/or the at least one subsequent downlink data by multiplexing and/or concatenating the initial downlink data and/or the at least one subsequent downlink data with the RRC release message or the RRC message.
- (258) In an example, the base station DU may receive, from the base station CU, downlink data associated with the small data transmission. The base station DU may process the downlink data using the first contexts of the wireless device. The base station DU may send, to the wireless device, the processed downlink data.
- (259) In an example, based on receiving the RRC request message, the base station CU may determine to transition the wireless device to an RRC connected state and/or may determine to resume/setup an RRC connection of the wireless device. The base station CU may determine to transition the wireless device to the RRC connected state based on the assistance information and/or one or more cause. The one or more cause may comprise at least one of: reconfiguring the wireless device (e.g., NAS layer reconfigurations, RRC layer reconfigurations, security reconfigurations, etc.); the size of the uplink data and/or the at least one subsequent data being larger than a threshold size value; resources of the base station not being congested; remaining battery of the wireless device being larger than a threshold value (e.g., the RRC request message may comprise an indication field indicating the remaining battery, for example, low/medium/high and/or full); and/or the like. The base station CU may determine to transition the wireless device to the RRC connected state based on not determining to not perform/initiate the RRC release procedure for the wireless device.
- (260) In an example, for the RRC connection of the wireless device, the base station CU may send, to the base station DU, a second configuration message comprising the first contexts of the wireless device for the uplink data and second contexts for the RRC connection of the wireless device. The base station DU may receive the second configuration message comprising the first contexts and the second contexts.
- (261) In an example, the second configuration message may comprise a field indicating at least one of: that the small data transmission is not performed; that the wireless device transitions to an RRC connected state; and/or the like. In an example, the second configuration message may comprise the second field indicating at least one of: that the first contexts are for the uplink data; that the first contexts are old contexts of the wireless device; and/or the like. The field indicating that the

wireless device transitions to an RRC connected state may be the first field indicating the small data transmission (e.g., the first field with value "0" may indicate that the wireless device transitions to an RRC connected state; the first field with value "0" may indicate the small data transmission). The second configuration message may be the configuration message that may be used to indicate the small data transmission of the wireless device.

(262) In an example, the first contexts of the wireless device may comprise at least one of: the RLC layer configuration parameters, the uplink user plane transport layer information, and/or the like. The RLC configuration parameters may comprise a parameter for at least one of RLC modes comprising at least one of a transparent mode (TM) for uplink or downlink, an unacknowledged mode (UM) for uplink or downlink, an acknowledge mode (AM) for uplink or downlink, and/or the like. The RLC configuration parameters may comprise a sequence number configuration parameter. The uplink user plane transport layer information may comprise at least one of: a transport layer address, an uplink GTP tunnel identifier, and/or the like.

(263) In an example, the second contexts for the RRC connection of the wireless device may comprise updated configuration parameters of the first contexts of the wireless device. The base station DU may use the second contexts to communicate with the wireless device being in the RRC connected state (e.g., after the wireless device transitions to the RRC connected state). (264) In an example, the base station DU may process the uplink data (e.g., and/or the at least one subsequent data, at least one subsequent uplink data, etc.) using the first contexts. In an example, the base station DU may send, to the base station CU (e.g., the base station CU-UP), the uplink data (e.g., the processed uplink data) using the first contexts. The sending the uplink data by the base station DU to the base station CU may comprise sending the processed uplink data. In an example, the sending the uplink data by the base station DU to the base station CU may comprise sending the uplink data to the transport layer address (e.g., the uplink user plane transport layer information in the first contexts of the configuration message). The base station DU may send, to the wireless device, the least one subsequent data (e.g., at least one downlink data) received from the base station CU (e.g., the base station CU-UP), using the first context. The base station DU may process the at least one subsequent data (e.g., the at least one downlink data) base on the first contexts. The sending the at least one subsequent data by the base station DU to the wireless device may comprise sending the processed at least one subsequent data.

(265) In an example, the base station DU may determine configuration parameters for the RRC connection of the wireless device based on the second contexts. The wireless device may use the configuration parameters after transitioning to the RRC connected state. In an example, the base station DU may send, to the base station CU (e.g., the base station CU-CP), a configuration response message comprising the configuration parameters determined based on the second contexts.

(266) In an example, the base station DU may receive, from the base station CU, an RRC message (e.g., an RRC resume message, an RRC setup message, etc.) for the RRC connection of the wireless device. The base station CU may construct the RRC message based on the configuration parameters in the configuration response message. The RRC message may comprise the configuration parameters. In an example, if the base station CU determines to not initiate the RRC release procedure (e.g., to transition the wireless device to the RRC connected state), the base station CU may transmit/send the RRC message (e.g., the RRC resume message, the RRC setup message, etc.) to the wireless device via a context message and/or via the base station DU. (267) In an example, the base station DU may send, to the wireless device, the RRC message. In an example, based on the RRC message, the wireless device may transition to the RRC connected state. In an example, the wireless device may send/transmit an RRC complete message in response to receiving the RRC message from the base station DU and/or the base station CU. The wireless device may transition to the RRC connected state (e.g., establish/resume/setup the RRC connection with the base station) based on the RRC message from the base station DU and/or the base station

- CU. The RRC complete message may comprise at least one of an RRC setup complete message, an RRC resume complete message, and/or the like.
- (268) In an example, the base station DU may communicate with the wireless device based on the configuration parameters. The base station DU may transmit, based the configuration parameters, transport blocks to the wireless device in the RRC connected state. The base station DU may receive, based the configuration parameters, transport blocks from the wireless device in the RRC connected state.
- (269) In an example, as shown in FIG. **30**, the base station DU may receive, from the wireless device, the RRC request message for the small data transmission and the uplink data associated with the small data transmission. The base station DU may send, to the base station CU, the RRC request message. The base station DU may receive, from the base station CU, a message comprising the RRC response message for the wireless device and the first contexts of the wireless device. The base station DU may send, to the uplink data based on the first contexts of the wireless device. The base station DU may send, to the wireless device, the RRC response message. In an example, the message comprising the RRC response message and the first context may comprise the configuration message from the base station CU to the base station DU via the F1 interface.
- (270) In an example, the RRC response message may comprise at least one of: the RRC release message, the RRC early data complete message, and/or the like. The RRC response message may indicate that the wireless device transitions to the RRC inactive state or the RRC idle state. The RRC response message may indicate that the wireless device stays/maintains the RRC inactive state or the RRC idle state. In an example, the base station DU may communicate, with the wireless device and/or the base station CU, subsequent uplink or downlink data associated with the small data transmission based on the first contexts of the wireless device.
- (271) In an example, the first contexts of the wireless device may comprise at least one of: the RLC layer configuration parameters, the uplink user plane transport layer information, and/or the like. The RLC configuration parameters may comprise a parameter for at least one of RLC modes comprising at least one of a transparent mode (TM) for uplink or downlink, an unacknowledged mode (UM) for uplink or downlink, an acknowledge mode (AM) for uplink or downlink, and/or the like. The RLC configuration parameters may comprise a sequence number configuration parameter. The uplink user plane transport layer information may comprise at least one of: a transport layer address, an uplink GTP tunnel identifier, and/or the like.
- (272) In an example, as shown in FIG. **28**, FIG. **31**, and/or FIG. **32**, the base station DU may receive, from the wireless device, an RRC request message for a small data transmission (SDT) and uplink data associated with the small data transmission. The base station DU may send, to the base station CU, the RRC request message. The base station DU may receive, from the base station CU, a configuration message comprising first contexts of the wireless device and a first field indicating the small data transmission. The base station DU may process/decode, based on the first field, the uplink data using the first contexts of the wireless device. The base station DU may send, to the base station CU, the processed uplink data.
- (273) In an example, the first field may indicate that the configuration message is for the small data transmission. The first field may indicate that the wireless device does not transition to an RRC connected state. The base station DU may determine, based on the first field, that the small data transmission is allowed/performed for the wireless device. The base station DU may determine, based on the first field, that the wireless device performs an RRC release procedure. Based on the first field indicating the small data transmission, the base station DU may not configure configuration parameters for an RRC connection of the wireless device.
- (274) In an example, the configuration message may comprise a second field indicating at least one of: that the first contexts are for the uplink data; that the first contexts are old contexts of the wireless device. Based on the second field, the base station DU may use the first contexts of the

wireless device, to process the uplink data, without modification.

(275) In an example, the base station DU may send, to the base station CU, a configuration response message responding to the configuration message. The sending the processed uplink data to the base station CU may comprise sending the configuration response message comprising the processed uplink data. In an example, the configuration response message may comprise suspend configuration parameters based on the first field. The suspend configuration parameters may be for the wireless device to use in an RRC inactive state or an RRC idle state. The suspend configuration parameters may comprise at least one of: parameters for preconfigured uplink resources (PURs), random access parameters for a small data transmission, and/or the like. The parameters for the PURs may comprise at least one of: a periodicity, a timing offset, a size, and/or the like. The random access parameters may comprise at least one of: a parameter indicating a preamble, resource parameters for transmission of the preamble, and/or the like.

(276) In an example, the first contexts of the wireless device may comprise at least one of: radio link control (RLC) layer configuration parameters, uplink user plane transport layer information, and/or the like. The uplink user plane transport layer information may comprise at least one of: a transport layer address (e.g., an IP address of the base station CU and/or the base station CU-UP), an uplink general packet radio service (GPRS) tunneling protocol (GTP) tunnel identifier, and/or the like. The RLC configuration parameters may comprise a parameter for at least one of RLC modes comprising at least one of a transparent mode (TM) for uplink or downlink, an unacknowledged mode (UM) for uplink or downlink, an acknowledge mode (AM) for uplink or downlink, and/or the like. The RLC configuration parameters may comprise a sequence number configuration parameter. In an example, the sending the processed uplink data to the base station CU may comprise sending the processed uplink data to the transport layer address.

(277) In an example, the base station DU may receive, from the base station CU, an RRC response message for the wireless device to be in an RRC inactive state or an RRC idle state. The RRC response message may indicate that the wireless device transitions to the RRC inactive state or the RRC idle state. The base station DU may send/forward/transmit the RRC response message. The RRC response message may comprise the suspend configuration parameters that the wireless device uses in the RRC inactive state or the RRC idle state. The RRC response message may comprises at least one of an RRC release message, an RRC early data complete message, and/or the like.

(278) In an example, the base station DU may receive, from the base station CU, downlink data associated with the small data transmission. The base station DU may process the downlink data using the first contexts of the wireless device. The base station DU may send, to the wireless device, the processed downlink data.

(279) In an example, the RRC request message may comprise at least one of an RRC early data request message, an RRC resume request message, an RRC setup request message, and/or the like. In an example, the receiving the RRC request message by the base station DU from the wireless device may comprise at least one of: receiving the RRC request message based on a random access process of the wireless device; receiving the RRC request message via at least one preconfigured uplink resource (PUR); and/or the like. In an example, the base station DU may receive, from the wireless device, at least one random access preamble for the random access process. The base station DU may send, to the wireless device, at least one random access response for the at least one random access preamble. The RRC request message may be based on the at least one random access response. The at least one random access preamble may be configured for the small data transmission. In an example, the base station DU may receive, from the wireless device, the RRC request message with at least one random access preamble (e.g., for 2-step random access process). (280) In an example, the sending the RRC request message by the base station DU to the base station CU may comprise sending the RRC request message to the base station CU-CP. The sending the processed uplink data by the base station DU to the base station CU may comprise

sending the processed uplink data to the base station CU-UP. The base station CU may comprise the base station CU-CP and the base station CU-UP. The base station may comprise the base station DU and the base station CU. In an example, the small data transmission may comprise data communication between the wireless device and the base station (e.g., and/or the core network, a data network, etc.) without transitioning the wireless device to an RRC connected state. (281) In an example, as shown in FIG. 29, FIG. 31, and/or FIG. 32, the base station DU may receive, from the wireless device, an RRC request message for a small data transmission and uplink data associated with the small data transmission. The base station DU may send, to the base station CU, the RRC request message. The base station DU may receive, from the base station CU, a configuration message comprising first contexts of the wireless device for the uplink data and second contexts for an RRC connection of the wireless device. The base station DU may send, to the base station CU, the uplink data using the first contexts and may send, to the base station CU, a configuration response message comprising configuration parameters determined based on the second contexts.

- (282) In an example, the base station DU may process the uplink data using the first contexts. The sending the uplink data by the base station DU to the base station CU may comprise sending the processed uplink data. The base station DU may determine the configuration parameters based on the second contexts.
- (283) In an example, the base station DU may receive, from the base station CU, an RRC response message for the RRC connection. The RRC response message may comprise the configuration parameters. The base station DU may send, to the wireless device, the RRC response message. The RRC response message may comprise at least one of an RRC resume message, an RRC setup message, and/or the like.
- (284) In an example, the configuration message may comprise a first field indicating at least one of: that the small data transmission is not performed; that the wireless device transitions to an RRC connected state; and/or the like. In an example, the configuration message may comprise a second field indicating at least one of: that the first contexts are for the uplink data; that the first contexts are old contexts of the wireless device; and/or the like.
- (285) In an example, the first contexts of the wireless device may comprise at least one of: RLC layer configuration parameters, uplink user plane transport layer information, and/or the like. The RLC configuration parameters may comprise a parameter for at least one of RLC modes comprising at least one of a transparent mode (TM) for uplink or downlink, an unacknowledged mode (UM) for uplink or downlink, an acknowledge mode (AM) for uplink or downlink, and/or the like. The RLC configuration parameters may comprise a sequence number configuration parameter. The uplink user plane transport layer information may comprise at least one of: a transport layer address, an uplink GTP tunnel identifier, and/or the like.
- (286) In an example, the sending the uplink data by the base station DU to the base station CU may comprise sending the uplink data to the transport layer address.
- (287) In an example, as shown in FIG. **30**, the base station DU may receive, from the wireless device, an RRC request message for a small data transmission and uplink data associated with the small data transmission. The base station DU may send, to the base station CU, the RRC request message. The base station DU may receive, from the base station CU, a message comprising an RRC response message for the wireless device and first contexts of the wireless device. The base station DU may send, to the base station CU, the uplink data based on the first contexts of the wireless device. The base station DU may send, to the wireless device, the RRC response message. (288) In an example, the first contexts of the wireless device may comprise at least one of: RLC layer configuration parameters, uplink user plane transport layer information, and/or the like. The RLC configuration parameters may comprise a parameter for at least one of RLC modes comprising at least one of a transparent mode (TM) for uplink or downlink, an unacknowledged

mode (UM) for uplink or downlink, an acknowledge mode (AM) for uplink or downlink, and/or the

like. The RLC configuration parameters may comprise a sequence number configuration parameter. The uplink user plane transport layer information may comprise at least one of: a transport layer address, an uplink GTP tunnel identifier, and/or the like.

(289) In an example, the RRC response message may comprise at least one of: an RRC release message, an RRC early data complete message, and/or the like. The RRC response message may indicate that the wireless device transitions to the RRC inactive state or the RRC idle state. In an example, the base station DU may communicate, with the wireless device and/or the base station CU, subsequent uplink or downlink data associated with the small data transmission based on the first contexts of the wireless device.

Claims

- 1. A method, comprising: receiving, by a base station distributed unit from a wireless device not in a radio resource control (RRC) connected state: an RRC request message for a small data transmission (SDT) procedure; and uplink data associated with the SDT procedure; sending, to a base station central unit, the RRC request message for the SDT procedure; receiving, from the base station central unit, a message comprising: radio link control (RLC) configuration parameters for the SDT procedure; and a field indicating that the RLC configuration parameters are for the SDT procedure; and sending the uplink data to the base station central unit in accordance with the field.

 2. The method of claim 1, wherein the sending the RRC request message to the base station central
- 3. The method of claim 1, wherein the sending the RRC request message is via an uplink F1 message comprising an initial uplink RRC message transfer message or a wireless device context modification required message.

unit is based on the receiving the RRC request message from the wireless device.

- 4. The method of claim 1, wherein the field indicates that: the wireless device does not transition to the RRC connected state; the SDT procedure is allowed for the wireless device; and the wireless device performs an RRC release procedure.
- 5. The method of claim 1, further comprising: determining, based on the field indicating the SDT procedure, to use the SDT procedure to send the uplink data.
- 6. The method of claim 1, wherein the SDT procedure comprises data communication with the wireless device without transitioning the wireless device to the RRC connected state.
- 7. The method of claim 1, further comprising: sending, by the base station distributed unit to the wireless device, an RRC response message indicating the wireless device to not be in the RRC connected state.
- 8. The method of claim 7, wherein the RRC response message comprises suspend configuration parameters that the wireless device, uses not in the RRC connected state, uses.
- 9. The method of claim 7, wherein the RRC response message comprises an RRC release message or an RRC early data complete message.
- 10. The method of claim 1, wherein the message comprising the field indicating the SDT procedure further comprises a context of the wireless device.
- 11. A method, comprising: receiving, by a base station central unit from a base station distributed unit, a radio resource control (RRC) request message for a small data transmission (SDT) procedure; sending, by the base station central unit to the base station distributed unit, a message comprising: radio link control (RLC) configuration parameters for the SDT procedure; and a field indicating that the RLC configuration parameters are for the SDT procedure; and receiving, by the base station central unit from the base station distributed unit, uplink data associated with the SDT procedure.
- 12. The method of claim 11, wherein the receiving the RRC request message is before the sending, by the base station central unit, the message indicating the SDT procedure.
- 13. The method of claim 11, wherein the receiving the RRC request message is via an uplink F1

message comprising an initial uplink RRC message transfer message or a wireless device context modification required message.

- 14. The method of claim 11, wherein the field indicates that: a wireless device does not transition to an RRC connected state; the SDT procedure is allowed for the wireless device; and the wireless device performs an RRC release procedure.
- 15. The method of claim 11, further comprising: determining, based on the field indicating the SDT procedure, to use the SDT procedure to send the uplink data.
- 16. The method of claim 11, wherein the SDT procedure comprises data communication with a wireless device without transitioning the wireless device to an RRC connected state.
- 17. The method of claim 11, wherein the SDT procedure is an SDT procedure of a wireless device.
- 18. The method of claim 11, wherein the message comprises a context of a wireless device.
- 19. The method of claim 11, wherein the field indicates that the SDT procedure is allowed for a wireless device.
- 20. A non-transitory computer-readable medium comprising instructions that, when executed by one or more processors, cause the one or more processors of a base station central unit to perform operations comprising: receiving, from a base station distributed unit, a radio resource control (RRC) request message for a small data transmission (SDT) procedure; sending, to the base station distributed unit, a message comprising: radio link control (RLC) configuration parameters for the SDT procedure; and a field indicating that the RLC configuration parameters are for the SDT procedure; and receiving, from the base station distributed unit, uplink data associated with the SDT procedure.