Perceptron

Prof. Dr. Eduardo Noronha Inteligência Artificial Aplicada Instituto Federal de Goiás (IFG)

Topics Overview

AGENDA

- Review of Linear Regression Models
 - Weight
 - Linear Regression
 - Loss
 - Weight Space
 - Gradient Descent
 - Learning Rate
 - Weight Update (Perceptron Learning Rule)
 - Batch Gradient Descent
 - Stochastic Gradient Descent
 - Training Curve

ESCOLHENDO AS MELHORES HIPÓTESES

(LEAST SQUARES METHOD)

Casos Confirmados COVID-19 - São Paulo (SP)

Hipótese	w1	w0	Erro
I	20	100	201.410
II	30	-200	178.876
III	57,72	-467	86.264

OTIMIZANDO AS VARIÁVEIS DE DECISÃO

(LEAST SQUARES METHOD)

$$E = \frac{1}{n} \sum_{i=1}^{n} (y_i - h_i)^2$$

$$E = \frac{1}{n} \sum_{i=1}^{n} (y_i - (w1 * x_i + w0))^2$$

Para minimizar o Erro:

$$w1 = \frac{\partial E}{\partial w1} = \frac{\sum_{i=1}^{n} (x_i - \bar{x}) (y_i - \bar{y})}{\sum_{i=1}^{n} (x_i - \bar{x})^2} = 0$$

$$w_0 = \frac{\partial E}{\partial w_0} = \bar{y} - w_1 * \bar{x} = 0$$

1.2M

1M

0.8M

0.6M

0.4M

0.2M

VALIDAÇÃO DA HIPÓTESE

DATASET

HOLDOUT E K-FOLD CROSS VALIDATION

Fonte: https://medium.com

WEIGHT SPACE

OVERFITTING E UNDERFITTING

Fonte: https://www.educative.io

OVERFITTING E UNDERFITTING

Fonte: https://dev.to

O QUE VIMOS DE INTELIGÊNCIA ARTIFICIAL ATÉ AGORA?

REDES NEURAIS ARTIFICIAIS

- Baseada no cérebro humano
- Conexionismo
- Sistemas de Processamento Paralelo e Distribuído
 - Nodos (Sistemas de processamento)
 - Computam funções (geralmente não lineares)
- Não algorítmico
- Dispostas em uma ou mais camadas
- Interligadas por grande número de conexões

REDES NEURAIS ARTIFICIAIS

- Fase de Aprendizagem
 - Capacidade de aprendizagem por meio de exemplos
 - Exemplos são repassados e representação é automaticamente gerada
 - Mapeadores universais de funções multivariáveis
 - Capacidade de auto organização
 - Processamento temporal

MOTIVAÇÃO PARA AS RNA'S

- Cérebro humano: 10¹¹ nodos
- Milhares de conexões contínuas e paralelas entre eles
- Cérebro: emoção, pensamento, cognição (percepção, a atenção, associação, memória, raciocínio, juízo, imaginação, pensamento e linguagem)

NEURÔNIOS BIOLÓGICOS

- <u>Dendritos</u>: Recebem as informações, ou impulsos nervosos, oriundas de outros nodos, e conduzi-las até o corpo celular.
- Corpo da Célula: Processar e produzir novas informações/impulsos
- <u>Axônio</u>: Transmitir as informações/impulsos a outro neurônio.
- <u>Sinapse</u>: Ponto de encontro entre a terminação axônica de um neurônio e o dendrito de outro.

NEURÔNIO

COMUNICAÇÃO NO CÉREBRO

<u>Sinais Químicos</u>: Por meio das Sinapses

<u>Sinais Elétricos</u>: Dentro do neurônio

O corpo combina os sinais recebidos e, se o valor resultante for acima do limiar de excitação do neurônio, um impulso elétrico é produzido e propagado através do axônio para os nodos seguintes.

Existe uma diferença de potencial (em volts) entre o interior (concentração de potássio) e o exterior (concentração de sódio) do neurônio. Para que a sinapse ocorra é necessário haver um aumento do potencial elétrico de -70mv (potencial de repouso) para -50mv (potencial de ação).

COMUNICAÇÃO NO CÉREBRO

- Uma sinapse poderá ser
 <u>inibitória</u> ou <u>excitatória</u>. Isso
 vai depender do acúmulo das
 entradas inibitórias e
 excitatórias, medido pelo corpo
 em um intervalo de tempo.
- Depois de gerar um impulso, o neurônio entre em um período de refração (período em que não poderá ser novamente estimulado)

PERCEPTRON

Frank Rosenblatt, Perceptron (1957, 1962): Inspirado pela maneira como os neurônios trabalham juntos no cérebro. O perceptron é uma rede neural de camada única - um algoritmo que classifica a entrada em categorias possíveis. A rede neural faz uma previsão de, direita ou esquerda; ou cachorro ou gato, etc.

CLASSIFICADOR PERCEPTRON

REDE PERCEPTRON

EXEMPLO:

Dado um conjunto de vetores de entrada $\{x^1,..., x^P\}$, e um conjunto de rótulos (labels) desejáveis $\{d^1,..., d^P\}$, nós queremos encontrar um algoritmo que, começando de algum **vetor de peso** \underline{w} inicial, ele irá modificá-lo baseado nos exemplos fornecidos produzindo o conjunto de pesos w que **classifica corretamente todos os exemplos**.

Os exemplos são apresentados um por um em cada passo, e uma **regra de atualização de peso** é aplicada. Uma vez que todos os exemplos são apresentados, o algoritmo percorre novamente todos os exemplos, até a convergência.

Evento	x ₁	x ₂	d
1	1	1	1
2	2	2	1
3	-3	1	0
4	2	-2	0

PARÂMETROS E ENTRADAS

$$egin{cases} w_0.1+w_1.\,x1+w_2.\,x2>0 & ullet \ Classificador
ightarrow x_1+0.5x_2>0 \ Classificador
ightarrow x_2>-2x_1 \ \end{cases}$$

$$\begin{cases} w_0.1+w_1.\,x1+w_2.\,x2\leq 0 &ullet \ ext{Classificador} o x_1+0.5x_2\leq 0 \ ext{Classificador} o x_2\leq -2x_1 \end{cases}$$

VERIFICAÇÃO DAS CLASSIFICAÇÕES

Verificando ponto P(-3,1)

$$\left[egin{array}{c} 0 \ 1 \ 0.5 \end{array}
ight] \left[egin{array}{c} 1,-3,1 \ 0-3+0.5=-2.5 \leq 0 \end{array}
ight]$$
 y=0

Verificando ponto P(2,-2)

$$\begin{bmatrix} 0 \\ 1 \\ 0.5 \end{bmatrix} \begin{bmatrix} 1,2,-2 \end{bmatrix} \qquad 0+2-1=1 \geq 0 \qquad \qquad \textbf{y=1}$$

Prof. Dr. Eduardo Noronha (http://docentes.ifg.edu.br/noronha)

ATUALIZAÇÃO DOS PESOS - STOCHASTIC GRADIENT DESCENT (SGD)

Atualizar os pesos para o ponto (2, -2)

$$egin{bmatrix} 0 \ 1 \ 0.5 \end{bmatrix} egin{bmatrix} 1,2,-2 \end{bmatrix} & egin{bmatrix} w^T.\,x \geq 0 (y=1) & ldot \ w^T.\,x < 0 (y=0) \end{pmatrix}$$

$$w_i = w_i + \Delta w_i$$
 Learning rate $\Delta w_i = lpha. (d-y).x_i$

$$\Delta w_0 = 0, 2.(0-1).1 = -0, 2$$

$$\Delta w_1 = 0, 2.(0-1).2 = -0, 4$$

$$\Delta w_2 = 0, 2.(0-1). -2 = 0, 4$$

$$egin{aligned} w_0 &= w_0 + \Delta w_0 = 0 - 0, 2 = -0, 2 \ w_1 &= w_1 + \Delta w_1 = 1 - 0, 4 = 0, 6 \end{aligned}$$

$$w_{2}=w_{2}+\Delta w_{2}=0,5+0,4=0,9$$

Novo Classificador

$$\left[egin{array}{c} -0,2\ 0,6\ 0,9 \end{array}
ight] \left[egin{array}{c} 1,x_1,x_2 \end{array}
ight]$$

$$x_2=-0,67x_1+0,22$$

INSTITUTO FEDERAL

ATUALIZAÇÃO DOS PESOS - STOCHASTIC GRADIENT DESCENT (SGD)

Atualizar os pesos passando por todos os pontos (Época).

Evento	x ₁	x ₂	d
1	1	1	1
2	2	2	1
3	-3	1	0
4	2	-2	0

$$\left[egin{array}{c} -0,2\ 0,6\ 0,9 \end{array}
ight] \left[egin{array}{c} 1,x_1,x_2 \end{array}
ight] \qquad x_2 = -0,67x_1+0,22 \ & (0,0.22)\ (4,-2.46) \end{array}$$

VERIFICAÇÃO DAS CLASSIFICAÇÕES

Verificando ponto P(-3,1)

Verificando ponto P(2,-2)

$$\begin{bmatrix} -0,2\\0,6\\0,9 \end{bmatrix}\begin{bmatrix} 1,2,-2 \end{bmatrix}\\ (-0,2\cdot 1) + (0,6\cdot 2) + (0,9\cdot -2) = -0,8 < 0 \quad \text{y=0}$$

Verificando ponto P(1,1)

$$\begin{bmatrix} -0,2\\0,6\\0,9 \end{bmatrix} \begin{bmatrix} 1,1,1\\ (-0,2\cdot 1)+(0,6\cdot 1)+(0,9\cdot 1)=1,3>0 \quad \text{y=1} \qquad \%$$

Verificando ponto P(2,2)

$$\begin{bmatrix} -0,2\\0,6\\0,9 \end{bmatrix} \begin{bmatrix} 1,2,2\\ (-0,2\cdot 1)+(0,6\cdot 2)+(0,9\cdot 2)=2,8>0 \qquad \text{y=1}$$

INSTITUTO FEDERAL

ALGORITMO PERCEPTRON

$$W_j \leftarrow W_j + \alpha \times I_j \times Err$$

Perceptron learning rule:

- 1. Start with random weights, $\mathbf{w} = (\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_n)$.
- 2. Select a training example $(x,y) \in S$.
- 3. Run the perceptron with input x and weights w to obtain g
- 4. Let α be the training rate (a user-set parameter).

$$\forall w_i, w_i \leftarrow w_i + \Delta w_i,$$

where
 $\Delta w_i = \alpha (y - g(in))g'(in)x_i$

5. Go to 2.

 $w_i = w_i + \Delta w_i \ \Delta w_i = lpha.\,(d-y).\,x_i$

Epochs are repeated until some stopping criterion is reached—typically, that the weight changes have become very small.

The stochastic gradient method selects examples randomly from the training set rather than cycling through them.

Epoch → cycle through the examples

APRENDENDO COM PERCEPTRON

Load and return the digits dataset (classification).

Each datapoint is a 8x8 image of a digit.

Classes	10
Samples per class	~180
Samples total	1797
Dimensionality	64
Features	integers 0-16

0000	000	000	000	000	00000
1111	11	111	111	111	1/1/1
2221	22:	222	222	222	22322
3333	33	3 3 3	333	333	33333
4444	441	144	444	444	44444
5555	55	55	555	555	55555
6666	66	666	666	666	66666
7777	77-	77	777	777	77777
8888	88	888	8 8 8	888	88884
9999	19	199	999	999	99999

PARÂMETROS

sklearn.linear_model.Perceptron

class sklearn.linear_model.Perceptron(*, penalty=None, alpha=0.0001, l1_ratio=0.15, fit_intercept=True, max_iter=1000, tol=0.001, shuffle=True, verbose=0, eta0=1.0, n_jobs=None, random_state=0, early_stopping=False, validation_fraction=0.1, n_iter_no_change=5, class_weight=None, warm_start=False) [source]

```
from sklearn.datasets import load_digits
from sklearn.linear_model import Perceptron
X, y = load_digits(return_X_y=True)
clf = Perceptron(tol=1e-3, random_state=0)
clf.fit(X, y)
clf.score(X, y)
0.9393433500278241
```

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Perceptron.html

EXERCÍCIOS

- Implementar o perceptron e testar para os problemas do <u>AND</u> e <u>OR</u>
- Testar bibliotecas do Perceptron para o Dataset (load Digits)
 - https://scikit-learn.org/stable/modules/generated/sklearn.linear mode
 l.Perceptron.html

_

PLAYGROUND - TENSORFLOW

REGULARIZATION

$$Cost(h) = EmpLoss(h) + \lambda Complexity(h)$$

 $\hat{h}^* = \underset{h \in \mathcal{H}}{\operatorname{argmin}} Cost(h)$.

TIPOS DE ERROS

1. Mean Absolute Error (MAE) is the mean of the absolute value of the errors. It is calculated as:

$$\frac{1}{n}\sum_{i=1}^{n}|Actual - Predicted|$$

2. Mean Squared Error (MSE) is the mean of the squared errors and is calculated as:

$$\frac{1}{n}\sum_{i=1}^{n}|Actual - Predicted|^{2}$$

3. Root Mean Squared Error (RMSE) is the square root of the mean of the squared errors:

$$\sqrt{\frac{1}{n}\sum_{i=1}^{n}|Actual-Predicted|^2}$$

E O XOR?

XOR

INSERÇÃO DA NÃO LINEARIDADE

Activation Functions

$$\hat{y} = g (w_0 + X^T W)$$

· Example: sigmoid function

$$g(z) = \sigma(z) = \frac{1}{1 + e^{-z}}$$

Fonte: https://introtodeeplearning.com/

Z

IMPORTÂNCIA DA FUNÇÃO DE ATIVAÇÃO

Fonte: https://introtodeeplearning.com/

FUNÇÕES DE ATIVAÇÃO

Sigmoid Function

$$1 + e^{-z}$$

$$g'(z) = g(z)(1 - g(z))$$

Hyperbolic Tangent

Rectified Linear Unit (ReLU)

$$g(z) = \max(0, z)$$

$$g'(z) = \begin{cases} 1, & z > 0 \\ 0, & \text{otherwise} \end{cases}$$

Fonte: https://introtodeeplearning.com/

VAMOS PARA UM EXEMPLO PRÁTICO EM PYTHON!

DESAFIO DA SEMANA

- Leitura do Capítulo 18 (Artificial Intelligence)
- Pesquisa Aplicada: prever o preço do Bitcoin com base na variação do preço de outras criptomoedas (Escolher pelo menos 3 - https://coinmarketcap.com/)

-

