Table of Contents

Implementační úkoly

Co potřebujete udělat:

Teoretické úkoly (do zprávy)

(DÚ4) Optimální proložení bodů kružnicí

Winter 2018 / 2019

Summer 2017 / 2018

Older

(DÚ4) Optimální proložení bodů kružnicí

kruznice

Mějme m bodů v rovině, $\mathbf{a}_1,\ldots,\mathbf{a}_m\in\mathbb{R}^2$. Chceme najít kružnici se středem $\mathbf{c}\in\mathbb{R}^2$ a poloměrem $r \geq 0$ takovou, že součet čtverců vzdáleností bodů od kružnice je nejmenší.

Označme jako $\mathbf{x}=(\mathbf{c},r)\in\mathbb{R}^3$ vektor parametrů kružnice. Nechť $\mathrm{dist}(\mathbf{x},\mathbf{a})$ je orientovaná vzdálenost bodu \mathbf{a} od kružnice s parametry \mathbf{x} . Tedy $|\operatorname{dist}(\mathbf{x}, \mathbf{a})|$ je Eukleidovská vzdálenost bodu **a** od kružnice, přičemž pro **a** vně kružnice je $\operatorname{dist}(\mathbf{x}, \mathbf{a}) > 0$ a pro **a** uvnitř kružnice je $dist(\mathbf{x}, \mathbf{a}) < 0$. Chceme minimalizovat funkci

$$f(\mathbf{x}) = \sum_{i=1}^m \operatorname{dist}(\mathbf{x}, \mathbf{a}_i)^2$$

Implementační úkoly

- 1. Implementujte funkci d = dist(x, A), kde x je vektor 3×1 , A je matice $2 \times m$ obsahující body $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_m$, d je vektor $N \times 1$.
- 2. Implementujte funkci [x_new] = make_GN_iter(x, A), která provede jednu iteraci čisté (tedy s jednotkovou délkou kroku) Gauss-Newtonovy metody.
- 3. Implementujte funkci [x_new, success] = make_LM_iter(x, A, mu), která provede jednu iteraci Levenberg-Marquardtovy metody (bližší popis funkcí je v jejich šablonách.)

Poznámky:

- Pro práci na úloze máte k dispozici skript main.m a funkci fit_circle.m .
- Udělejte si v matlabu jednoduchý skript, který vám dovolí naklikat body \mathbf{a}_i a uložit si je do MAT souboru (pro naklikání se bude hodit funkce ginput .) Takto si připravte několik zajímavých konfigurací bodů, mezi kterými pak můžete snadno přepínat a zkoušet na nich svoje implementace algoritmů.

Teoretické úkoly (do zprávy)

- 1. Mějme několik bodů $\mathbf{a}_1, \dots, \mathbf{a}_m$ v obecné konfiguraci. Je funkce f všude diferencovatelná? Má jedno nebo více lokálních minim? Odpovědi zdůvodněte. Navrhujeme (ale nemusíte to dělat), abyste při vyšetřování funkce $f(\mathbf{x})=f(\mathbf{c},r)$ uvažovali funkci $h(\mathbf{c})=f(\mathbf{c},r)$ pro nějaká konstantní r, tedy řez funkce f podle r. Grafy takových řezů lze snadno vizualizovat.
- 2. Diskutujte, jaký algoritmus je vhodný na minimalizaci funkce $f(\mathbf{x})$ a proč. Čím více myšlenek a argumentů uvedete, tím lépe. Je možné, aby Gaussův-Newtonův algoritmus na naší úloze divergoval?
- 3. Může se zdát, že algoritmy na nelineární nejmenší čtverce bez omezení nejde použít, protože máme omezení $r \geq 0$. Vadí to? Co se stane, budeme-li toto omezení ignorovat? Můžou algoritmy konvergovat k řešení se záporným r? Své odpovědi odůvodněte.
- 4. Najděte nějakou množinu $m \geq 3$ bodů $\{{f a}_1,{f a}_2,\ldots,{f a}_m\}$ a takovou dvojici počátečních parametrů kružnice ${f x}_0^{(1)}$ a ${f x}_0^{(2)}$, aby algoritmus inicializovaný těmito parametry skončil v různých lokálních minimech. Do zprávy udělejte následující tabulku s obrázky (všechny elementy tabulky jsou obrázky exportované z matlabu, např. pomocí funkce print):

body a kružnice $\mathbf{x}_0^{(1)}$	body a stav dokonvergovaný z $\mathbf{x}_0^{(1)}$	graf f_history (kritérium v závislosti na indexu iterace) pro $\mathbf{x}_0^{(1)}$
body a kružnice $\mathbf{x}_0^{(2)}$	body a stav dokonvergovaný z $\mathbf{x}_0^{(2)}$	graf f_history (kritérium v závislosti na indexu iterace) pro $\mathbf{x}_0^{(2)}$

Co potřebujete udělat:

- Z igitlabu si stáhněte šablony pro funkce k implementaci a pomocné funkce a skripty.
- Implementujte funkce popsané výše.
- Napište PDF zprávu a pojmenujte ji report.pdf
- Zabalte všechny implementované funkce (plus jakékoli vaše pomocné funkce, které výše čtyři zmíněné používají) a PDF zprávu do ZIP souboru a nahrajte je do upload systému. Udělejte ZIP soubor tak, aby se vaše soubory rozbalily rovnou do aktuálního adresáře, ne do nějakého podadresáře (jinak to nebude fungovat.)