Física Quântica II

Soluções

Exercício 5: Coeficientes de Clebsch-Gordan

As regras de adição de dois momentos angulares determinam que para $\hat{J} = \hat{L} + \hat{S}$, os valores possíveis de j estão quantizados e compreendidos entre $|l - s| \le j \le l + s$. Como s = 1/2, existem apenas dois valores possíveis de j = l - 1/2, l + 1/2 (a não ser que l = 0, mas nesse caso, o exercício está resolvido a priori).

É pedido que se expressem os autoestados de $\hat{\boldsymbol{J}}^2$, \hat{J}_z , $\hat{\boldsymbol{L}}^2$ e $\hat{\boldsymbol{S}}^2$, $\mid j m_j, l s \rangle$ em termos dos autoestados de $\hat{\boldsymbol{L}}^2$, \hat{L}_z , $\hat{\boldsymbol{S}}^2$ e \hat{S}_z , $\mid l m_l s m_s \rangle$, em que $m_s = \pm 1/2$, $|m_l| \leq l$.

a) No multipleto j=l+1/2, consideramos o estado com m_j máximo, ou seja, $m_j=l+1/2$. É fácil ver que existe apenas um estado de $\hat{\boldsymbol{L}}^2$, $\hat{\boldsymbol{S}}^2$, \hat{L}_z e \hat{S}_z com $m_j=m_l+m_s=l+1/2$, ou seja, o estado com $m_l=l$, $m_s=1/2$. Portanto, tem-se

$$|j = l + 1/2 m_j = l + 1/2, ls\rangle = |lm_l = lsm_s = 1/2\rangle.$$

b) A fórmula que provamos na última folha de problemas é a seguinte

$$|lm\rangle = \hbar^{m-l} \sqrt{\frac{(l+m)!}{(2l)!(l-m)!}} \hat{L}_{-}^{l-m} |ll\rangle.$$
 (32)

Esta fórmula é válida para momentos angulares inteiros ou semi-inteiros, dado que l-m e l+m são sempre números inteiros, tal como 2l. Substituindo $l \to j$, $m \to m_j$, com j=l+1/2 e m_j semi-inteiros e $\hat{L}_- \to \hat{J}_- = \hat{L}_- + \hat{S}_-$, obtemos

$$|j = l + 1/2 m_j, ls\rangle = \hbar^{m_j - l - 1/2} \sqrt{\frac{(l + 1/2 + m_j)!}{(2l + 1)!(l + 1/2 - m_j)!}} \times \hat{J}_{-}^{l + 1/2 - m_j} |j = l + 1/2 m_j = l + 1/2, ls\rangle,$$

No entanto, como $\hat{S}_{-}^2=0$, temos $\hat{J}_{-}^{l+1/2-m_j}=(\hat{L}_{-}+\hat{S}_{-})^{l+1/2-m_j}=(\hat{L}_{-}+(l+1/2-m_j)\hat{S}_{-})\hat{L}_{-}^{l-1/2-m_j}$, ou seja, a expansão binomial reduz-se a dois termos (para aqueles que estão preocupados com a possibilidade de se expandirem funções polinomiais de operadores, manipulando os seus argumentos como se de números se tratassem, recordo que \hat{L}_{-} e \hat{S}_{-} comutam entre si). Aplicando este resultado à equação acima, obtemos

$$|j = l + 1/2 m_j, l s\rangle = \hbar^{m_j - l - 1/2} \sqrt{\frac{(l + 1/2 + m_j)!}{(2l + 1)!(l + 1/2 - m_j)!}} \times (33)$$

$$(\hat{L}_- + (l + 1/2 - m_j)\hat{S}_-) \hat{L}_-^{l - 1/2 - m_j} | l m_l = l s m_s = 1/2 \rangle.$$

c) Utilizando de novo a relação (32) (com $m = m_j + 1/2$), obtemos

$$\hat{L}_{-}^{l-1/2-m_j} \mid l \, m_l = l \, s \, m_s = 1/2 \, \rangle = \hbar^{l-1/2-m_j} \sqrt{\frac{(2l)!(l-1/2-m_j)!}{(l+1/2+m_j)!}} \times \mid l \, m_l = m_j + 1/2 \, , s \, m_s = 1/2 \, \rangle.$$

Substituindo este resultado na equação (34), obtemos após alguns cancelamentos entre o numerador e o denominador

$$|j = l + 1/2, m_j = l + 1/2\rangle = \frac{1}{\hbar\sqrt{(2l+1)(l+1/2 - m_j)}}(\hat{L}_- + (l+1/2 - m_j)\hat{S}_-)$$

 $|l m_l = m_j + 1/2 s m_s = 1/2\rangle.$

Finalmente só temos que reparar que

$$\begin{split} \hat{L}_{-} \mid l \, m_l = m_j + 1/2 \, s \, m_s = 1/2 \, \rangle &= \hbar \sqrt{(l + 1/2 + m_j)(l + 1/2 - m_j)} \\ & \times \mid l \, m_l = m_j - 1/2 \, s \, m_s = 1/2 \, \rangle \, , \\ \hat{S}_{-} \mid l \, m_l = m_j + 1/2 \, s \, m_s = 1/2 \, \rangle &= \hbar \mid l \, m_l = m_j + 1/2 \, s \, m_s = -1/2 \, \rangle \, . \end{split}$$

Substituindo estes resultados acima, obtemos

$$|j = l + 1/2 \, m_j, \, l \, s \rangle = \frac{1}{\sqrt{2l+1}} \left\{ \sqrt{l+1/2 + m_j} \, |l \, m_l = m_j - 1/2 \, s \, m_s = 1/2 \right\} + \sqrt{l+1/2 - m_j} \, |l \, m_l = m_j + 1/2 \, s \, m_s = -1/2 \rangle \right\},$$

que é o resultado desejado.

d) Já que, como no exercício acima e dado m_j , existem apenas duas maneiras de escolher m_l e m_s tal que $m_j = m_l + m_s$, ou seja, $m_l = m_j - 1/2$ e $m_s = 1/2$ ou $m_l = m_j + 1/2$ e $m_s = -1/2$, o estado $|j = l - 1/2 \; m_j, \; l \; s \rangle$, pertencente ao multipleto j = l - 1/2, quando expresso em termos dos autoestados de $\hat{\boldsymbol{L}}^2$, $\hat{\boldsymbol{S}}^2$, \hat{L}_z e \hat{S}_z , tem que se escrever como

$$|j = l - 1/2 m_j, l s\rangle = \alpha |l m_l = m_j - 1/2 s m_s = 1/2\rangle + \beta |l m_l = m_j + 1/2 s m_s = -1/2\rangle.$$
 (34)

No entanto, este estado tem que ser ortogonal a $|j = l + 1/2 m_j, ls\rangle$, i.e.

$$\langle j = l + 1/2 \, m_j, \, l \, s \mid j = l - 1/2 \, m_j, \, l \, s \rangle = 0.$$

Desta condição e da condição de normalização do estado, segue que $\alpha=\sqrt{\frac{l+1/2-m_j}{2l+1}},$ $\beta=-\sqrt{\frac{l+1/2+m_j}{2l+1}},$ i.e.

$$|j = l - 1/2 \ m_j, \ l \ s \rangle = \frac{1}{\sqrt{2l+1}} \left\{ \sqrt{l+1/2 - m_j} \ |l \ m_l = m_j - 1/2 \ s \ m_s = 1/2 \right\} - \sqrt{l+1/2 + m_j} \ |l \ m_l = m_j + 1/2 \ s \ m_s = -1/2 \right\},$$

o que conclui o exercício.

Note-se que outra forma possível de resolver este exercício seria executar a diagonalização de $\hat{\boldsymbol{J}}^2 = \hat{\boldsymbol{L}}^2 + \hat{\boldsymbol{S}}^2 + 2\hat{L}_z\hat{S}_z + \hat{L}_+\hat{S}_- + \hat{L}_-\hat{S}_+ = \hbar^2[l(l+1) + \frac{3}{4}]\hat{\mathbb{1}} + 2\hat{L}_z\hat{S}_z + \hat{L}_+\hat{S}_- + \hat{L}_-\hat{S}_+, \text{no subespaço gerado pelos vectores } |l\ m_l = m_j - 1/2\ s\ m_s = 1/2\rangle \text{ e } |l\ m_l = m_j + 1/2\ s\ m_s = -1/2\rangle.$

Exercício 6: Matrizes de Spin de Pauli: Representação bidimensional da álgebra $\mathfrak{su}(2)$ (revisão)

a) É trivial mostrar, por multiplicação direta das matrizes, que

$$\begin{split} \hat{\sigma}_x^2 &= \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \\ \hat{\sigma}_y^2 &= \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \\ \hat{\sigma}_z^2 &= \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \end{split}$$

o que mostra que $\hat{\sigma}_x^2 = \hat{\sigma}_y^2 = \hat{\sigma}_z^2 = \hat{\mathbb{1}}$.

b) Para i=j, a fórmula produz $2\hat{\sigma}_i^2=2\hat{\mathbb{1}}$, para i=x,y,z, que é exatamente o que mostramos acima. Tudo o que resta mostrar é que $\hat{\sigma}_i\hat{\sigma}_j=-\hat{\sigma}_j\hat{\sigma}_i$ para $i\neq j$. Temos

$$\begin{split} \hat{\sigma}_x \hat{\sigma}_y &= \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix} = i \hat{\sigma}_z \\ &= -\begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = -\hat{\sigma}_y \hat{\sigma}_x \\ \hat{\sigma}_y \hat{\sigma}_z &= \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix} = i \hat{\sigma}_x \\ &= -\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \cdot \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} = -\hat{\sigma}_z \hat{\sigma}_y \,, \\ \hat{\sigma}_z \hat{\sigma}_x &= \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \cdot \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} = i \hat{\sigma}_y \\ &= -\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = -\hat{\sigma}_x \hat{\sigma}_z \,, \end{split}$$

o que mostra que as matrizes Pauli anticomutam para $i \neq j$.

c) No exercício anterior, verificamos a relação $\hat{\sigma}_i\hat{\sigma}_j=i\varepsilon_{ijk}\hat{\sigma}_k$, onde ε_{ijk} é o símbolo de permutação e $i\neq j\neq k$. Definindo $\hat{\boldsymbol{S}}=\frac{\hbar}{2}\hat{\boldsymbol{\sigma}}$, obtém-se

$$\begin{aligned} [\hat{S}_i, \hat{S}_j] &= \frac{\hbar^2}{4} (\hat{\sigma}_i \hat{\sigma}_j - \hat{\sigma}_j \hat{\sigma}_i) = \frac{\hbar^2}{2} \hat{\sigma}_i \hat{\sigma}_j = i\hbar \varepsilon_{ijk} \frac{\hbar}{2} \hat{\sigma}_k \\ &= i\hbar \varepsilon_{ijk} \hat{S}_k \,, \end{aligned}$$

onde usamos o fato de que as matrizes de Pauli anticomutam. Este resultado mostra que as componentes de \hat{S} obedecem às relações de comutação do momento angular. Como $\hat{\sigma}_i^2 = \hat{\mathbb{1}}$, para i = x, y, z, obtemos $\hat{S}^2 = \frac{\hbar^2}{4}(\hat{\sigma}_x^2 + \hat{\sigma}_y^2 + \hat{\sigma}_z^2) = \frac{3}{4}\hbar^2\hat{\mathbb{1}}$, logo s = 1/2.

d) Como $\hat{\boldsymbol{n}} \cdot \hat{\boldsymbol{\sigma}} = \hat{n}_x \hat{\sigma}_x + \hat{n}_y \hat{\sigma}_y + \hat{n}_z \hat{\sigma}_z$, segue que

$$\hat{\boldsymbol{n}} \cdot \hat{\boldsymbol{\sigma}} = \begin{pmatrix} \hat{n}_z & \hat{n}_x - i\hat{n}_y \\ \hat{n}_x + i\hat{n}_y & -\hat{n}_z \end{pmatrix},$$

e logo que

$$(\hat{\boldsymbol{n}} \cdot \hat{\boldsymbol{\sigma}})^2 = \begin{pmatrix} \hat{n}_z & \hat{n}_x - i\hat{n}_y \\ \hat{n}_x + i\hat{n}_y & -\hat{n}_z \end{pmatrix} \cdot \begin{pmatrix} \hat{n}_z & \hat{n}_x - i\hat{n}_y \\ \hat{n}_x + i\hat{n}_y & -\hat{n}_z \end{pmatrix}$$

$$= \begin{pmatrix} \hat{n}_x^2 + \hat{n}_y^2 + \hat{n}_z^2 & 0 \\ 0 & \hat{n}_x^2 + \hat{n}_y^2 + \hat{n}_z^2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \hat{1},$$

que mostra a primeira identidade. Deve-se notar que $\hat{n} \cdot \hat{\sigma}$ é apenas a componente de $\hat{\sigma}$ ao longo do eixo \hat{n} e assim que esta identidade é equivalente às identidades provadas em a), o que simplesmente reflete a isotropia do espaço, ou seja, que qualquer sistema de eixos ortogonais é equivalente.

Expandindo a função de um operador, $\exp(i\varphi\,\hat{\boldsymbol{n}}\cdot\hat{\boldsymbol{\sigma}})$, numa série de potências, obtém-se

$$\exp(i\varphi\,\hat{\boldsymbol{n}}\cdot\hat{\boldsymbol{\sigma}}) = \sum_{n=0}^{\infty} \frac{(i\varphi)^n}{n!} (\hat{\boldsymbol{n}}\cdot\hat{\boldsymbol{\sigma}})^n$$

$$= \sum_{n=0}^{\infty} \frac{(i\varphi)^{2n}}{(2n)!} (\hat{\boldsymbol{n}}\cdot\hat{\boldsymbol{\sigma}})^{2n} + \sum_{n=0}^{\infty} \frac{(i\varphi)^{2n+1}}{(2n+1)!} (\hat{\boldsymbol{n}}\cdot\hat{\boldsymbol{\sigma}})^{2n+1}$$

$$= \hat{\mathbb{I}} \sum_{n=0}^{\infty} \frac{(-1)^n \varphi^{2n}}{(2n)!} + i\hat{\boldsymbol{n}}\cdot\hat{\boldsymbol{\sigma}} \sum_{n=0}^{\infty} \frac{(-1)^n \varphi^{2n+1}}{(2n+1)!}$$

$$= \hat{\mathbb{I}} \cos\varphi + i\hat{\boldsymbol{n}}\cdot\hat{\boldsymbol{\sigma}} \sin\varphi,$$

onde usamos a representação de Taylor de $\cos \varphi$ e de $\sin \varphi$ e as identidades $(\hat{\boldsymbol{n}} \cdot \hat{\boldsymbol{\sigma}})^{2n} = ((\hat{\boldsymbol{n}} \cdot \hat{\boldsymbol{\sigma}})^2)^n = \hat{\mathbb{1}}, (\hat{\boldsymbol{n}} \cdot \hat{\boldsymbol{\sigma}})^{2n+1} = \hat{\boldsymbol{n}} \cdot \hat{\boldsymbol{\sigma}} (\hat{\boldsymbol{n}} \cdot \hat{\boldsymbol{\sigma}})^{2n} = \hat{\boldsymbol{n}} \cdot \hat{\boldsymbol{\sigma}}$. Isto conclui a resolução do exercício.

e) Tem-se das igualdades demonstradas no exercício anterior (com $\hat{m}_x = \cos \vartheta$, $\hat{m}_y = \sin \vartheta$), que

$$\exp(i\varphi/2\,\hat{\boldsymbol{n}}\cdot\hat{\boldsymbol{\sigma}}) = \hat{\mathbb{I}}\cos\frac{\varphi}{2} + i\hat{\boldsymbol{n}}\cdot\hat{\boldsymbol{\sigma}}\sin\frac{\varphi}{2}$$

$$= \begin{pmatrix} e^{i\frac{\varphi}{2}} & 0\\ 0 & e^{-i\frac{\varphi}{2}} \end{pmatrix},$$

$$\hat{\boldsymbol{m}}\cdot\hat{\boldsymbol{\sigma}} = \begin{pmatrix} 0 & \hat{m}_x - i\hat{m}_y\\ \hat{m}_x + i\hat{m}_y & 0 \end{pmatrix} = \begin{pmatrix} 0 & e^{-i\vartheta}\\ e^{i\vartheta} & 0 \end{pmatrix},$$

$$\exp(-i\varphi/2\,\hat{\boldsymbol{n}}\cdot\hat{\boldsymbol{\sigma}}) = \hat{\mathbb{I}}\cos\frac{\varphi}{2} - i\hat{\boldsymbol{n}}\cdot\hat{\boldsymbol{\sigma}}\sin\frac{\varphi}{2}$$

$$= \begin{pmatrix} e^{-i\frac{\varphi}{2}} & 0\\ 0 & e^{i\frac{\varphi}{2}} \end{pmatrix},$$

e essas igualdades implicam que

$$e^{i\frac{\varphi}{2}\hat{\boldsymbol{n}}\cdot\hat{\boldsymbol{\sigma}}}(\hat{\boldsymbol{m}}\cdot\hat{\boldsymbol{\sigma}})e^{-i\frac{\varphi}{2}\hat{\boldsymbol{n}}\cdot\hat{\boldsymbol{\sigma}}} = \begin{pmatrix} e^{i\frac{\varphi}{2}} & 0\\ 0 & e^{-i\frac{\varphi}{2}} \end{pmatrix} \cdot \begin{pmatrix} 0 & e^{-i\vartheta}\\ e^{i\vartheta} & 0 \end{pmatrix} \cdot \begin{pmatrix} e^{-i\frac{\varphi}{2}} & 0\\ 0 & e^{i\frac{\varphi}{2}} \end{pmatrix}$$
$$= \begin{pmatrix} 0 & e^{-i(\vartheta-\varphi)}\\ e^{i(\vartheta-\varphi)} & 0 \end{pmatrix} = \hat{\boldsymbol{m}}'\cdot\hat{\boldsymbol{\sigma}},$$

com $\hat{m}_x' = \cos(\vartheta - \varphi)$; $\hat{m}_y' = \sin(\vartheta - \varphi)$. Esses resultados implicam que, sob tal transformação, o vetor \hat{m} foi rodado por um ângulo $-\varphi$ em torno do eixo z.

Exercício 7: Valores expectáveis no estado de singleto

a) Temos

$$\begin{split} \langle \, \Psi \, | \, \, \hat{S}_i \, | \, \Psi \, \rangle &= \, \frac{\hbar}{2} \left(\, \langle \, \Psi \, | \, \, \hat{\sigma}_i^1 \, | \, \Psi \, \rangle + \langle \, \Psi \, | \, \, \hat{\sigma}_i^2 \, | \, \Psi \, \rangle \, \right) \\ &= \, \frac{\hbar}{2} \left(\, \langle \, \Psi \, | \, \, \hat{\sigma}_i^1 \, | \, \Psi \, \rangle + \langle \, \Psi \, | \, \, \hat{P}_{12} \, \hat{\sigma}_i^1 \, \hat{P}_{12} \, | \, \Psi \, \rangle \, \right) \\ &= \, \hbar \, \langle \, \Psi \, | \, \, \hat{\sigma}_i^1 \, | \, \Psi \, \rangle = 0 \,, \end{split}$$

e o resultado segue (a demonstração para $\hat{\sigma}_i^2$ é idêntica).

b) Temos

$$\begin{split} \left\langle \Psi \mid \hat{S}_{i} \, \hat{S}_{j} \mid \Psi \right\rangle &= \frac{\hbar^{2}}{4} \left\langle \Psi \mid \left(\hat{\sigma^{1}}_{i} + \hat{\sigma^{2}}_{i} \right) \left(\hat{\sigma^{1}}_{j} + \hat{\sigma^{2}}_{j} \right) \mid \Psi \right\rangle \\ &= \frac{\hbar^{2}}{4} \left(\left\langle \Psi \mid \hat{\sigma^{1}}_{i} \, \hat{\sigma^{1}}_{j} \mid \Psi \right\rangle + \left\langle \Psi \mid \hat{\sigma^{1}}_{i} \, \hat{\sigma^{2}}_{j} \mid \Psi \right\rangle \\ &+ \left\langle \Psi \mid \hat{\sigma^{2}}_{i} \, \hat{\sigma^{1}}_{j} \mid \Psi \right\rangle + \left\langle \Psi \mid \hat{\sigma^{2}}_{i} \, \hat{\sigma^{2}}_{j} \mid \Psi \right\rangle) \\ &= \frac{\hbar^{2}}{4} \left(\left\langle \Psi \mid \hat{\sigma^{1}}_{i} \, \hat{\sigma^{1}}_{j} \mid \Psi \right\rangle + \left\langle \Psi \mid \hat{\sigma^{1}}_{i} \, \hat{\sigma^{2}}_{j} \mid \Psi \right\rangle \\ &+ \left\langle \Psi \mid \hat{P}_{12} \, \hat{\sigma^{1}}_{i} \, \hat{\sigma^{2}}_{j} \, \hat{P}_{12} \mid \Psi \right\rangle + \left\langle \Psi \mid \hat{P}_{12} \, \hat{\sigma^{1}}_{i} \, \hat{\sigma^{1}}_{j} \, \hat{P}_{12} \mid \Psi \right\rangle) \\ &= \frac{\hbar^{2}}{2} \left(\left\langle \Psi \mid \hat{\sigma^{1}}_{i} \, \sigma^{1}_{j} \mid \Psi \right\rangle + \left\langle \Psi \mid \hat{\sigma^{1}}_{i} \, \hat{\sigma^{2}}_{j} \mid \Psi \right\rangle \right) = 0 \,. \end{split}$$

Utilizamos agora a regra de composição das matrizes de Pauli, $\hat{\sigma}_i^1 \, \hat{\sigma}_j^1 = \delta_{ij} \, \hat{\mathbb{1}} + i \varepsilon_{ijk} \hat{\sigma}_k^1$. Obtemos $\langle \Psi \mid \hat{\sigma}_i^1 \, \hat{\sigma}_j^1 \mid \Psi \rangle = \delta_{ij} + i \varepsilon_{ijk} \, \langle \Psi \mid \hat{\sigma}_k^1 \mid \Psi \rangle = \delta_{ij}$. Substituindo esta identidade acima, obtemos $\langle \Psi \mid \hat{\sigma}_i^1 \, \hat{\sigma}_j^2 \mid \Psi \rangle = -\delta_{ij}$, que é o resultado desejado.

c) É uma simples consequência da alínea anterior. Temos

$$\langle \Psi | (\hat{\boldsymbol{\sigma}}^{1} \cdot \hat{\mathbf{n}}^{1}) (\hat{\boldsymbol{\sigma}}^{2} \cdot \hat{\mathbf{n}}^{2}) | \Psi \rangle = \sum_{ij} \hat{n}_{i}^{1} \hat{n}_{j}^{2} \langle \Psi | \hat{\sigma}_{i}^{1} \hat{\sigma}_{j}^{2} | \Psi \rangle$$

$$= -\sum_{ij} \hat{n}_{i}^{1} \hat{n}_{j}^{2} \delta_{ij}$$

$$= -\sum_{i} \hat{n}_{i}^{1} \hat{n}_{i}^{2} = -\hat{\mathbf{n}}^{1} \cdot \hat{\mathbf{n}}^{2}, \qquad (35)$$

da definição de produto escalar no espaço cartesiano. Pode mostrar-se que para certas orientações relativas dos dois vetores $\hat{\mathbf{n}}^1$ e $\hat{\mathbf{n}}^2$, este resultado não pode ser reproduzido por nenhuma teoria local e realista que pretenda destronar a mecânica quântica¹.

Responsável: Jaime Santos, DFUM e CFUM **E-Mail:** jaime.santos@fisica.uminho.pt

¹Para ser mais preciso, é necessário tomar uma combinação linear particular destes valores expectáveis, medidos ao longo dos eixos (\hat{n}^1, \hat{n}^2) , (\hat{n}'^1, \hat{n}^2) , (\hat{n}^1, \hat{n}'^2) e (\hat{n}'^1, \hat{n}'^2) , ou seja, escolhemos duas orientações possíveis para cada membro do par e adicionamos o resultado com coeficientes particulares. Em mecânica quântica (e no mundo real, já que a prova experimental mostra que a MQ produz previsões corretas àcerca do comportamento deste último) e para uma escolha judiciosa destas quatro orientações, o resultado viola a designada designadade CHSH, uma das designadades ditas de Bell. O C desta designadade refere-se a John Clauser, Prémio Nobel da Física de 2022.