4. Modificações na Análise de Sistemas

- É necessário estar ciente das técnicas atuais e das modificações ocorridas com o passar do tempo.
- Há basicamente três motivos para conhecer a evolução da análise de sistemas:
 - Ajuda a perceber a evolução de uma empresa
 - ✓ Mudar de emprego
 - ✓ Sugerir a evolução
 - ✓ Ocupar cargos de liderança para alavancar as mudanças
 - É importante conhecer a abordagem anteriormente adotada pela organização e se há algum tipo de transição em andamento
 - A noção de transição é importante pois a análise de sistemas é dinâmica:
 - ✓ Novas ferramentas
 - ✓ Modificações em ciclos de vida

4.1. A passagem para a Análise Estruturada

- Até o final da década de 70, os requisitos dos usuários eram documentados através de uma narrativa no idioma adequado.
- Os primeiros autores sobre Análise Estruturada mostraram que essa forma de especificação padecia de grandes problemas.
 - Monolíticos: Era necessário ler todo o documento para entender. Isso dificultava a compreensão se fosse necessário estudar apenas uma parte.
 - Redundantes: A dificuldade de atualizar e revisar o documento conduz à inconsistência.
 - Ambíguos: usuários, analistas, projetistas e programadores têm interpretações diferentes do documento.
 - Manutenção impossível: A especificação estava obsoleta antes mesmo do final do projeto.
- Como consequência, não se tem idéia do que muitos sistemas desenvolvidos nas décadas de 60 e 70 fazem porque os analistas e programadores que os desenvolveram não estão mais presentes.
- Apesar das técnicas de Programação Estruturada e Projeto Estruturado terem sido adotadas, era necessário que houvesse uma evolução na forma de especificar os Requisitos do Usuário.
 - "Poderia se chegar a um desastre com mais rapidez do que nunca".
 - A especificação dos requisitos deveria ser:
 - Gráfica
 - Particionada
 - Sem redundância

4.2. Modificações na Análise Estruturada

- Alguns anos de experiência prática indicaram que eram necessárias algumas alterações, cujas principais são:
 - Evitar a construção de modelos "físicos" e "lógicos" do sistema atual.
 - o Politicamente perigosa (muito tempo gasto com algo que vai ser descontinuado)
 - A distinção vaga entre os modelos lógico e físico (dependente da tecnologia)
 - Modelo lógico => Modelo essencial (essência do sistema)
 - Modelo físico => Modelo de implementação (considera aspectos tecnológicos)
 - Carência de ferramentas de modelagem para construir sistemas de tempo-real
 - o Introdução dos Diagramas de Transição de Estado (DTE)
 - Necessidade de modelar as estruturas de dados do sistemas
 - o Introdução dos Diagramas de Entidades-Relacionamentos
 - Melhor integração entre as ferramentas (DFD, DER, DTE e DD)
 - Utilização da subdivisão (particionamento) por eventos no lugar do Diagrama de Contexto

4.3. Surgimento das Ferramentas Automatizadas de Análise

- Trabalho artístico de criar os diagramas
- O grande problema é dar manutenção nos diagramas
 - o Muitas modificações durante a análise
 - o Grande quantidade de diagramas
- Dificultou a aceitação da Análise Estruturada Trabalho artístico de criar os diagramas
 - o Analista preferia deixar o diagrama desatualizado
 - Analista n\u00e3o subdividia o modelo do sistema em modelos de n\u00edvel mais baixo
 - o Os Projetistas e Programadores não mantinham os diagramas atualizados durante a implementação
- Não havia verificação automática de consistência nos diagramas (era necessário fazer inspeções visuais)
 - Custo elevado das ferramentas e dos terminais gráficos

4.4. Uso da Prototipação

- Surgimento de ferramentas de Prototipação
- A Análise Estruturada levava muito tempo:
 - o Modelagem do sistema novo só começa após a do sistema atual

Disciplina de Análise e Projeto de Sistemas Cleber V. Filippin, Msc.

- Como os Diagramas não geravam código, suspeitava-se que o tempo gasto na implementação seria igual
- Os primeiros projetos levavam mais tempo pois os Analistas não estavam acostumados com as técnicas
- o muito de programação seria o mesmo se não fosse feita análise
- A prototipação se concentra na definição da interface homemmáquina
 - Evita os detalhes que são capturados através da Análise e do Projeto

4.5. Diagrama de Fluxo de Dados

- Principal ferramenta de modelagem funcional
- Modela o sistema como uma rede de processos funcionais, interligados por dutos e tanques de armazenamento
- Pode ser usado para descrever processos computadorizados e não computadorizados
- Também chamado de DFD (abreviatura), Diagrama de Bolhas, Modelo de Processo, Diagrama de Fluxo de Trabalho e Modelo Funcional
- Um DFD é composto de Processos, Fluxos de Dados, Depósitos de Dados e Entidades Externas

4.5.1. Componentes de um DFD

Processos

- Também conhecido como bolha, função ou transformação
- \bullet Representam transformações de fluxo(s) de dados de entrada em fluxo(s) de dados de saída
 - O nome do processo deve descrever o que ele faz
 - Geralmente provoca mudanças de estrutura, conteúdo ou estado
 - Representações gráficas possíveis:

Fluxos de Dados

- Representam caminhos por onde passam os dados
- São representados através de setas que indicam o destino do dado
- Têm nomes que devem constar no dicionário de dados

- Um mesmo fragmento de dados pode ter significados diferentes em pontos distintos de um DFD (CPF-Válido e CPF-Inválido)
 - Um fluxo apenas não modifica os dados durante o transporte
 - Transportam dados entre os elementos do DFD
 - o Processo ⇔ Processo
 - o Entidade Externa ⇔ Processo
 - o Depósito de Dados ⇔ Processo
 - Tipos de fluxos
 - o Fluxo externo: entre Entidade Externa e Processo
 - o Fluxo interno: entre dois Processos
 - o Fluxo de acesso à memória: entre Processo e Depósito
 - o Fluxo de erro ou rejeição: para fora de um Processo
 - Nomenclatura:
 - o Cada fluxo deve ter um único nome
 - o O nome deve identificar os dados transportados pelo fluxo
 - o Exemplos: Dados-Fatura, Recibo-Pagamento, Dados-Cliente

Depósitos de Dados

- Representa uma coleção de pacotes de dados em repouso
- Nem sempre um depósito de dados é um arquivo ou SGBD. Pode representar microfilmes, pastas de arquivos em papel e diversas outras formas não computadorizadas
 - Representações gráficas de um depósito de dados:

Dl	Clientes	Clientes	Clientes	\supset
			~ <u></u>	

- Quando um pacote de dados é recuperado (ou inserido) por completo do depósito de dados, pode-se omitir o rótulo do fluxo
 - Nomenclatura:
 - o Deve estar no plural
 - o Pode receber o nome do fluxo de dados (no plural)

Entidades Externas

- Também chamados de Terminadores
- São as fontes/destinatários das informações que entram/saem do sistema
- Os procedimentos executados pelas entidades externas não são especificados no modelo por não fazerem parte do sistema
- Normalmente é uma pessoa, um grupo de pessoas, uma organização externa, um setor dentro de uma empresa
 - Pode representar um outro sistema
 - Representação gráfica de uma Entidade Externa:

Alunos

- Nomenclatura:
 - o No plural quando se referir a um grupo de pessoas (Clientes)
 - Deve conter o nome do setor ou organização externa (Diretoria de Negócios)
 - o Deve ser incluída a palavra sistema quando se tratar de um sistema (Sistema de Contabilidade)

4.5.2. Diretrizes para elaboração de DFD

- Existem algumas diretrizes que auxiliam a criar DFD's com sucesso, ou seja, evitam a criação de:
 - o DFD's incorretos (incompletos ou logicamente inconsistentes)
 - o DFD's agradáveis (facilmente examinados pelo usuário)

Escolher Nomes Significativos

• Evitar nomes para processos como: Fazer serviço, Manipular entrada, Cuidar dos clientes e Processar dados

Deve-se numerar Processos

- A numeração basicamente duas utilidades:
 - o Permitir localizar os processos no diagrama facilmente
 - o Facilita a identificação, a partir dos digramas mais detalhados, do processo foi explodido

- Não importa a maneira desde que seja consistente
- A numeração não indica sequência pois o DFD é uma rede de processos assíncronos que se intercomunicam

Evitar DFD Complexos

- Evitar colocar elementos demais no digrama
- Deve caber facilmente em uma página
- O DFD deve modelar corretamente as funções que um sistema deve executar e as interações entre elas.
 - Deve ser lido e entendido facilmente pelos usuários

Refazer tantas vezes quantas forem necessárias

- Um DFD deve ser refeito até que:
 - o Esteja tecnicamente correto
 - o Aceitável pelo usuário
 - O Analista não tenha vergonha de apresentá-lo à diretoria.

Criar diagramas esteticamente agradáveis

- Manter consistentes o tamanho e a forma das bolhas
- Fluxo de dados cursos versus retos (questão de gosto)
- Diagramas desenhados à mão versus gerados por máquina
 - Os desenhados à mão passam a sensação de que ainda podem ser modificados
 - o Os gerados por máquina são mais limpos

Certificar-se de que o DFD seja logicamente consistente

- Evitar "poços sem fundo" (processos que só recebem entradas)
- Evitar processos com geração espontânea (processos que não recebem entrada mas produzem saídas)
 - Cuidado com fluxos e processos sem rótulos
 - Cuidado com depósitos que tenham somente leitura ou escrita

Posição dos elementos

- O processo origem deve ficar à esquerda ou acima do processo destino
 - As entidades externas devem ser desenhadas nas bordas do desenho:
 - o As de entrada, à esquerda ou acima
 - o As de saída, à direita ou abaixo
- Os depósitos de dados devem ser distribuídos no meio do desenho, entre os processos

Duplicação de elementos

- Pode-se duplicar Entidades e Depósitos para evitar cruzamento de fluxos e melhorar a organização do diagrama
- Um mesmo fluxo de dados pode aparecer mais de uma vez no mesmo DFD
 - Não faz sentido duplicar processos

4.5.3. DFD com Níveis

- O DFD de sistemas não triviais é muito complexo
- Para evitar que tudo seja definido em um único diagrama (difícil de ser entendido e mantido), criam-se DFD's que detalham um processo de um nível mais alto

Diagrama de Contexto

- É o DFD de nível mais alto
- Dá a visão das principais funções do sistema
- Contém um processo (representa o sistema), os fluxos externos e as entidades externas

Diagrama Nível 0

- É o primeiro detalhamento do diagrama de contexto
- Contém as macro-funções do sistema

Diagrama de Níveis Intermediários

- São os diagramas que mostram a decomposição (detalhamento ou explosão) de cada processo de nível mais alto
- A quantidade de níveis depende de fatores como complexidade e porte do sistema
- Em geral, a decomposição deve terminar quando for possível especificar processo em uma página

4.6. Dicionário de Dados

- É necessário descrever a composição dos dados de alguma forma.
 - o A forma narrativa é longa e sujeita a erros
 - o É necessário usar uma notação compacta e concisa
- Elementos de dados são dados que não necessitam de decomposição
- Estrutura de dados são composições de elementos de dados e/ou de outras estruturas de dados
 - A definição no DD é feita de forma *Top Down*
 - O dicionário de dados define os elementos de dados descrevendo:
 - o O significado de fluxos e depósitos
 - A <u>composição</u> de pacotes agregados de dados que se movimentam pelos **fluxos** (Ex: Endereço pode ser divido em itens elementares como cidade, estado etc.)
 - o A composição dos pacotes de dados nos depósitos
 - o Os <u>valores</u> e <u>unidades</u> relevantes de partes elementares de informações dos **fluxos** e **depósitos**
 - Os detalhes dos **relacionamentos** entre os **depósitos** realçados em um DER

4.6.1. Notação

• Há vários esquemas de notação. Porém, o mais comum é o seguinte:

=	É composto de
+	E (concatenação)
()	Opcional
{ }	Iteração
[]	Escolha de uma das opções alternativas
*	Delimitador de comentário
@	Identificador (campo chave) de um depósito
	Separa opções alternativas na construção []

isciplina de Análise e Projeto de Sistema Cleber V. Filippin, Msc.

Exemplo: definição de um nome (estrutura de dados)

```
* Nome completo do cliente *
         nome =
                               título-cortesia
                                               +
                                                    primeiro-nome +
                                                                        (nome-
                      intermediário) + último-nome
         título-
                              [Sr.|Srta.|Sra.|Sras.|Dr.|Professor]
cortesia =
                               {caractere-válido}
        primeiro-
nome =
        nome-
                               {caractere-válido}
intermediário =
        último-nome
                               {caractere-válido}
                               [A-Z|a-z|0-9|'|]
        caractere-
válido =
```

4.6.2. Definições

- Uma definição de um item de dados é apresentada com o símbolo "=", que deve ser lido como "é definido como", ou "é composto de", ou simplesmente "significa"
 - A notação A = B + C, significa A é composto de B e C
- O **significado** do dado no contexto da aplicação deve ser colocado na forma de **comentário**

4.6.3. Elementos opcionais

• Um elemento de dados é opcional quando sua presença no elemento de dados composto não é obrigatória

Exemplo: um cliente deve ter um endereço e pode informar um endereço de remessa

```
C Endereço + (Endereço-Remessa)
```

4.6.4. Iteração

• Usado para indicar a ocorrência repetida de um componente de um elemento de dados

Exemplo 1: um pedido que é composto de um nome do cliente, um endereço de remessa e zero ou mais itens

```
Pedido = Nome-do-Cliente + Endereço-Remessa + {Item}
```

Exemplo 2: um pedido que é composto de um nome do cliente, um endereço de remessa e de 1 a 10 itens

Pedido = Nome-do-Cliente + Endereço-Remessa + 1{Item}10

Exemplo 3: um pedido que é composto de um nome do cliente, um endereço de remessa e pelo menos um item

Pedido= Nome-do-Cliente + Endereço-Remessa + 1{Item}

Exemplo 4: um pedido que é composto de um nome do cliente, um endereço de remessa e no máximo 10 itens

Pedido = Nome-do-Cliente + Endereço-Remessa + {Item}10

4.6.5. Seleção

Indica que deve ser selecionada uma das opções apresentadas

Exemplo: definindo o estado civil

Estado-Civil = [Solteiro | Casado | Divorciado | Separado | Outro]

4.6.6. Sinônimo

• É necessário quando os usuários usam termos diferentes para um mesmo dado

Exemplo:

```
Número-do-Item = 1{Digito}5

Número-da-Peça = * Sinônimo de Número do Item * Digito = \begin{bmatrix} 0 & 1 & 2 & 3 \end{bmatrix}
```

4.6.7. Definição de Depósitos

- A definição deve vir entre {} para indicar a existência de 0 a n ocorrências
- Coloca-se o caractere @ antes do item de dado que identifica uma ocorrência(instância) do depósito

Exemplo: definindo depósitos de Clientes e Funcionários

11.08.2004

Nome Assinatura E-Mail			11.00.2004
	Nome	A ssinatura	E-Mail
			+