Zadania z ćwiczeń dot. drugiej części PAA

Emilian Zawrotny

Zadanie 1

Dany jest graf kubiczny G. Ustal w jakim czasie można stwierdzić podaną własność. Każdy wiersz jest oceniany z osobna, pod warunkiem, a punkty przyznane jeśli nie ma w nim błędnych odpowiedzi.

Twierdzenie	Złożoność	Twierdzenie	Złożoność	Punkty (max 4)
$\chi(G) \le 1$		$\chi(G) \ge 1$		
$\chi(G) \le 2$		$\chi(G) \ge 2$		
$\chi(G) \le 3$		$\chi(G) \ge 3$		
$\chi(G) \le 4$		$\chi(G) \ge 4$		

Rozwiązanie

Twierdzenie Brooks'a mówi nam, że $\chi(G) \leq \Delta$, chyba że G jest grafem pełnym (kliką) bądź nieparzystym cyklem, wówczas $\chi(G) = \Delta + 1$. A dla naszego grafu G: $\Delta = 3$.

Rozważmy specjalne przypadki grafów kubicznych: - Graf kuratowskiego $(K_{3,3})$ - $\chi(K_{3,3})$ = 2 - Graf K_4 - $\chi(K_4)$ = 4

Rozwiązanie każdego z twierdzeń

- $\chi(G) \leq 1$ Trywialne, dla żadnego grafu kubicznego nie zachodzi taka własność stąd O(1)
- $\chi(G) \geq 1$ Trywialne, zachodzi dla każdego grafu kubicznego O(1)
- $\chi(G) \geq 2$ Wystarczy sprawdzić, G jest grafem dwudzielnym, możemy to zrobić w czasie O(n)
- $\chi(G) \geq 2$ Trywialne, zachodzi dla każdego grafu kubicznego
- $\chi(G) \leq 3$ Wystarczy sprawdzić, czy G nie jest kliką K_4 (sprawdzając czy n < 4) O(1)
- $\chi(G) \geq 3$ Wystarczy sprawdzić, czy graf nie jest dwudzielny O(n)
- $\chi(G) \leq 4$ Trywialne, zawsze prawda (na mocy twierdzenia Brooksa)
- $\chi(G) \geq 4$ Prawda tylko i wyłącznie, gdy G jest kliką K_4 O(1)

Twierdzenie	Złożoność	Twierdzenie	Złożoność
$\overline{\chi(G) \le 1}$	O(1)	$\chi(G) \ge 1$	O(1)
$\chi(G) \le 2$	O(n)	$\chi(G) \ge 2$	O(1)
$\chi(G) \le 3$	O(1)	$\chi(G) \ge 3$	O(n)
$\chi(G) \le 4$	O(1)	$\chi(G) \ge 4$	O(1)

Zadanie 2

Dla pewnego problemu teoriografowego istnieje algorytm o złożoności obliczeniowej $O(n\Delta 2^{\Delta})$. Dla jakich grafów algorytm ten będzie wykładniczy? A dla jakich wielomianowy?

Rozwiązanie

Przykładowe grafy dla których algorytm jest wielomianowy:

- Ścieżki P_n i cykle C_n (Bo $\Delta=2=O(1)\Longrightarrow n\Delta 2^\Delta=O(n)$) Grafy kubiczne (Bo $\Delta=3=O(1)\Longrightarrow n\Delta 2^\Delta=O(n)$)

Przykładowe grafy, dla ktorych algorytm jest wykładniczy:

- Gwiazdy S_k (Bo $\Delta=k \implies n\Delta 2^\Delta=O(kn\cdot 2^k)$ Kliki K_n (Bo $\Delta=n-1 \implies n\Delta 2^\Delta=O(n^2\cdot 2^n)$

Notatka do zadania

Moim zdaniem to zadanie tylko sformułowane w inny sposób może pojawić się na kolokwium (w kontekście przypisywania klasy złożoności do problemu).