Paul Lévy's Konstruktion der Brownschen Bewegung

Tim Jaschek

13.11.2015

1 Motivation und Definition der Brownschen Bewegung

2 Existenzbeweis nach Lévy

3 Grundlegenden Eigenschaften

Kurzer historischer Überblick

- 1827 Botaniker Robert Brown beobachtet unter dem Mikroskop, wie sich Pflanzenpollen in einem Wassertropfen unregelmäßig hin und herbewegen.
- 1880 Statistiker und Astronom Thorvald Nicolai Thiele beschreibt erstmals einen solchen Prozess.
- 1900 Mathematiker Louis Bachelier (Schüler von Henri Poincarés) versucht mit Thieles Idee die Kursbewegungen an der Pariser Börse zu analysieren.
- 1905 Albert Einstein definiert die Brownsche Bewegung in der heutigen Form.
- 1923 Norbert Wiener beweist die Existenz der Brownschen Bewegung. (Daher ebenfalls Bezeichnung als Wiener- Prozess)

Definition

Ein reell-wertiger stochastischer Prozess $\{B(t): t \geq 0\}$ wird eine (lineare) Brownsche Bewegung mit Start in $x \in \mathbb{R}$ genannt, falls die folgenden Eigenschaften erfüllt sind:

- i) B(0) = x
- ii) Der Prozess hat unabhängige Inkremente. Das bedeutet, dass für alle Zeitpunkte $t_0 \leq t_1 \leq \ldots \leq t_n$ die Zufallsvariablen $B(t_n) B(t_{n-1}), B(t_{n-1}) B(t_{n-2}), \ldots, B(t_1) B(t_0)$ unabhängig sind.
- iii) Für alle $t \ge 0$ and h > 0 sind die Inkremente B(t + h) B(t) normal verteilt mit Erwartungswert 0 und Varianz h.
- iv) Die Abbildung $t \mapsto B(t)$ ist fast sicher stetig.

Falls x=0, so heißt $\{B(t): t \ge 0\}$ eine **Standard- Brownsche Bewegung**.

Satz (Wiener 1923)

Es existiert eine Standard- Brownsche Bewegung.

Beweisstrategie:

- i) Es genügt die Existenz einer Standard- Brownsche Bewegung auf [0, 1] zu zeigen.
- ii) Konstruiere induktiv für Dyadische Punkte diskrete Brownsche Bewegung mit den richtigen endlichen Verteilungen.
- iii) Interpoliere zwischen den definierten Werten linear.
- iv) Zeige gleichmäßige Konvergenz.
- v) Weise Eigenschaften der Standard- Brownschen Bewegung für den stetigen Grenzwert nach.

Hilfslemma 1

Sei A eine orthogonale $d \times d$ - Matrix und X ein d-dimensionaler standard Gaußscher Vektor. Dann ist AX ebenfalls ein d-dimensionaler Standard- Gaußscher Vektor.

Beweis:

$$f_X(x) = \frac{1}{\sqrt{2\pi^d}} e^{\frac{-||x||^2}{2}}$$

 $f_{AX}(x) = f(A^{-1}x) | det(A^{-1}) | = f_X(x)$

Hilfslemma 2

Seien X und Y $\sim N(0,\sigma^2)$ und unabhängig. Dann sind X+Y und X-Y $\sim N(0,2\sigma^2)$ und unabhängig.

Beweis:

Es ist
$$(X/\sigma, Y/\sigma)^T \sim N(0, I_2)$$
 und $A = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix}$ orthogonal $\Rightarrow A(X/\sigma, Y/\sigma)^T = ((X+Y)/\sqrt{2\sigma^2}, (X-Y)/\sqrt{2\sigma^2}) \sim N(0, I_2)$

Tim Jaschek

Tim Jaschek

Tim Jaschek

Tim Jaschek

Tim Jaschek

4 (a) > 4 (b) > 4 (b) > 4

Lemma

Es sei $\{B(t): t \geq 0\}$ eine standard Brownsche Bewegung. Dann ist $\{X(t): t \geq 0\}$ mit X(t):=x+B(t) wobei $x \in \mathbb{R}$ eine Brownsche Bewegung mit Start in x.

Beweis:

i)
$$X(0) = x$$

ii)+iii)
$$X(t+h)-X(t)=B(t+h)+x-B(t)-x=B(t+h)-B(t)$$

 \Rightarrow Unabhängigkeit und korrekte Verteilungen

iv) klar.

Lemma

Es sei $\{B(t): t \geq 0\}$ eine Brownsche Bewegung. Dann gilt für $t \neq s$:

$$Cov[B(t), B(s)] = min(t, s)$$

Beweis: O.B.d.A. t < s. Dann gilt:

$$Cov [B(t), B(s)] = Cov [B(t), B(t) + (B(s) - B(t))]$$

$$= Cov [B(t), B(t)] +$$

$$Cov [B(t) - B(0), B(s) - B(t)]$$

$$= Var [B(t)] + 0$$

$$= Var [B(t) - B(0)]$$

$$= t$$