数列极限与实数 Limits of Sequences & Real Numbers

数列极限的定义

对于数列 $\{x_n\}_{n=1}^{\infty}$,如果存在 $l \in \mathbb{R}$,使得对于任意 $\varepsilon > 0$,总能找到一个对应的 N,使得对于任意满足 n > N 的 x_n ,都有 $|x_n - l| < \varepsilon$,则称数列 $\{x_n\}_{n=1}^{\infty}$ 收敛(到 l),或者说数列 $\{x_n\}_{n=1}^{\infty}$ 趋于 l,或称 l 是数列 $\{x_n\}_{n=1}^{\infty}$ 的极限,记为

$$\lim_{n \to \infty} x_n = l \quad \vec{\boxtimes} \quad x_n \to l, \quad n \to \infty$$

对于数列而言,在研究极限时仅考虑 $n\to\infty$ 的情形,这一点和后面要讲到的函数的极限是不同的。因此我们可以更精简地记为 $\lim x_n=l$.

- 直白地说,上面的定义是在描述: 通过选择合适的 N,我们可以将 $|x_n-l|$ 控制到**任意小**. 即无论给定一个多么小的正数 ε ,总能找到若干合适的 N_ε ,从而将数列在超过 N_ε 的部分严格地控制在区间 $(l-\varepsilon,l+\varepsilon)$ 以内.
- 我们用 N_{ε} 而不是 $N(\varepsilon)$,来澄清 N 和 ε 并不是一个严格的映射(函数)关系。对于每一个 ε ,我们有不止一种选择 N 的方式。假如我们找到了一个合适的 N_{ε}^{\star} ,则显然 $N_{\varepsilon}^{\star}+1$ 、 $N_{\varepsilon}^{\star}+4$ 甚至 $N_{\varepsilon}^{\star}+10000$ 等也可以作为 N_{ε} 的选取方式。

对于数列 $\{x_n\}_{n=1}^{\infty}$,只要能找到符合上述定义的 $l \in \mathbb{R}$,则称其为**收敛** (convergent) 的,否则是**发散** (divergent) 的。

无穷小量和无穷大量

如果数列 $\{x_n\}_{n=1}^{\infty}$ 的极限是 0,则其又称为**无穷小量**,记作

$$x_n = o(1), \quad n \to \infty$$

因此,数列 $\{x_n\}_{n=1}^{\infty}$ 收敛至 l 这一命题**等价于**: $x_n - l$ 是无穷小量。