PLAN du COURS

- Introduction
- Structure des Systèmes Informatiques
- Structure des Systèmes d'Exploitation
- Processus, Threads
- Ordonnancement des Processus
- Synchronisation des Processus, Interblocage
- Gestion de la Mémoire
- Mémoire Virtuelle
- Systèmes de Fichiers
- E/S
- Gestion des Disques

Introduction

- C'est quoi un OS?
- Grands Systèmes
- Systèmes Personnels
- Systèmes Multiprocesseurs
- Systèmes Distribués
- Systèmes à Cluster
- Systèmes Temps Réel
- Systèmes "à la main"
- Historique des OSs et des Concepts
- Environnements de Computation

C'est quoi un OS?

- Programme intermédiaire entre l'utilisateur d'un ordinateur et le matériel
- But d'un OS:
 - Exécuter les programmes des utilisateurs
 - Rendre l'ordinateur (système informatique) facile à utiliser
- Exploiter le système informatique d'une manière efficace

Composants d'un Système Informatique

- Matériel les ressources de base pour la computation (CPU, memoire, Périphériques d'E/S)
- 2. Système d'Exploitation (OS) controle et gère l'utilisation du matériel entre les programmes des utilisateurs
- 3. Programmes Applicatifs utilisent les ressources offertes par l'OS pour résoudre les problèmes des utilisateurs (compilateurs, bases de données, jeux vidéos, programmes de travail)
- 4. Utilisateurs (personnes, machines, ...) Tout ce qui peut lancer un programme

Vue Abstraite des Composants d'un Système

Vues Différentes d'un OS

- Allocateur de Ressources gère et alloue les ressources
- Programme de Contrôle contrôle l'exécution des programmes utilisateurs et les opérations des périphériques d'E/S
- Noyau le seul programme s'exécutant tout le temps (le reste étant des programmes applicatifs)

Grands Systèmes

- Réduire le temps de traîtement en groupant les programmes ayant des besoins similaires
- Automatisation du séquencement des exécutions transfert automatique du contrôle du système d'une tâche à l'autre. Premier OS rudimentaire
- Moniteur Résident
 - Au début, la main est donnée au moniteur
 - Contrôle transféré à une tâche
 - Quand la tâche se termine, le contrôle est transféré au moniteur

Schéma Mémoire d'un Système de Traîtement par lots

operating system

user program area

Systèmes Batch Multiprogrammés

Plusieurs tâches sont simultanément en mémoire, et le CPU est multiplexé entre elles; si une doit attendre une E/S, une autre tâche est choisie

Propriétés OS Requises pour la Multiprogrammation

- Services E/S fournis par l'OS les programmes à exécuter sont initialement sur disque
- Gestion de la mémoire allocation de la mémoire à plusieurs tâches
- Ordonnancement de la CPU l'OS doit choisir la tâche à exécuter parmi plusieurs tâches prêtes
- Allocation des périphériques à cause de l'exécution en concurrence des tâches

Systèmes à Temps Partagé

- La CPU est multipléxé entre les différentes tâches en mémoire et sur disque (la CPU est allouée à une tâche en mémoire)
- Une tâche est "swappée" entre la mémoire et le disque
- Communication en-ligne entre l'utilisateur et le système
 - A la fin de l'éxécution d'une tâche, l'OS attend l'ordre d'éxécution suivant à partir du clavier de l'utilisateur
- Un système de commandes en-ligne doit exister pour permettre aux utilisateurs d'accéder aux données et aux codes

Systèmes Personnels

- Ordinateurs Personnels Systèmes dédiés à un seul utilisateur
- Périphériques d'E/S clavier, souris, écrans, imprimante,
- Convivialité et interactivité avec l'utilisateur
- Utilisent et adaptent des technologies d'OS pour de plus grands systèmes
 - Utilisés souvent par une seule personne, ils n'ont pas besoin de techniques avancées de protection
- Peuvent tourner différents types d'OS (Windows, MacOS, UNIX, Linux)

Systèmes Parallèles

- Systèmes avec plusieurs CPUs en communication
 - Aussi connus comme systèmes multiprocesseurs
- Systèmes fortement couplés processeurs partagent la mémoire et l'horloge; communication a lieu via la mémoire partagée
- Avantages des systèmes parallèles:
 - Augmentation de la capacité de traitement
 - Economiques
 - Plus grande fiabilité (dans certains cas)
 - Dégradation par étapes
 - Tolérance aux pannes

Systèmes Parallèles (Cont.)

- Multiprocesseurs Asymétriques
 - Chaque processeur est chargé d'une tâche; un processeur maître ordonnance et alloue les tâches aux processeurs esclaves
 - Plus commun dans les grands systèmes
- Multiprocesseurs Symétriques (SMP)
 - Chaque processeur exécute une copie identique de l'OS
 - Plusieurs processus peuvent s'exécuter simultanément sans détérioration des performances
 - La plupart des OSs modernes supportent le SMP

Architecture Multiprocesseurs Symétriques

Systèmes Répartis

- Répartir la computation sur plusieurs processeurs physiques
- Systèmes faiblement couplés chaque processeur possède sa propre mémoire; les processeurs communiquent entre eux via des lignes de communication, tels des bus, des lignes de téléphone, des réseaux, etc ...
- Avantages des systèmes répartis
 - Partage des ressources
 - Puissance de computation plus grande Partage de charge
 - Tolérance aux pannes
 - Communications

Systèmes Répartis (cont)

- Requière une infrastructure réseau
- Réseaux Locaux (*LAN*) ou Réseaux Large Echelle (*WAN*)
- Peuvent être des systèmes *client-serveur* ou *peer-to-peer*

Structure Générale d'un Client-Serveur

Clusters

- Permet à 2 ou plusieurs systèmes de partager un espace de stockage
- Tolérants aux pannes
- Clusters asymétriques: un serveur exécute une ou plusieurs applications alors que les autres serveurs attendent
- Clusters symétriques: tous les N serveurs exécutent l'application ou les applications

Systèmes Temps Réel

- Souvent utilisés dans des environnements spécialisés, tels les expérimentations scientifiques, l'imagerie médicale, les systèmes de contrôle industriels, ...
- Contraintes de temps bien définies
- Systèmes temps réel souples ou rigides

Systèmes Temps Réel (Cont.)

Temps Réel Rigide

- Stockage secondaire limité ou absent, données dans des mémoire à court terme ou dans la mémoire morte (ROM)
- Conflits avec les systèmes à temps partagé, non pris en charge par les OSs généralistes
- Temps Réel Souple
 - Utilité limitée en contrôle industriel et en robotique
 - Intégrable avec le temps partagé
 - Utile dans les applications (multimedia, réalité virtuelle) ayant besoin de temps de réponses bornés

Systèmes "à la main"

- Personal Digital Assistants (PDAs)
- Téléphones Mobiles
- Contraintes:
 - Mémoire limitée
 - Processeurs lents
 - Ecrans d'affichage petits

Migration des Concepts des OSs et de leurs Propriétés

Environnements de Computation

- Traditionnels
 - PCs, Serveurs
- Web
 - Client-serveur et des services web, serveurs répartis
- Industriels
 - Micro-ondes, contrôleurs
 - Propriétés d'OS très limitées
 - Peu ou pas d'interface utilisateur, accès à distance