50001 - Algorithm Analysis and Design - Lecture $2\,$

Oliver Killane

12/11/21

Lecture Recording

Lecture recording is available here

Evaluation & Cost Models

```
1 minimum :: [Int] -> Int
minimum = head . isort
```

When analysing the cost of minimum we must consider how the function is evaluated.

For example we could shortcut the once **isort** has determined the first element (the minimum) of the list.

Cost Model

A model to determine the time taken to execute a program.

The model assigns cost to different operations (e.g comparisons, calls, memory read-s/writes)

A very generalised cost model assigns cost based on the number of **reductions** required to evaluate a program.

Small While Language

We can define a small language of expressions as follows:

$$e ::= x \mid k \mid f \ e_1 \dots e_n \mid \text{if } e \text{ then } e_1 \text{ else } e_2$$

where k means constant and x is the variable form.

Infix functions such as $+, -, \times$ are written normally, and are expressions also as they can be used in the form (+) e_1 e_2 .

There are also several primitive constants: True, False, 0, 1, 2, ...List constants and operations are also primitive: [], (:), null, head, tail

Evaluation Order

• Applicative Order Strict evaluation The leftmost, innermost reducible expression is evaluated first. e.g for $fst(3 \times 2, 1 + 2)$

```
fst(3 \times 2, 1 + 2)

\leadsto { Definition of \times }

fst(6, 1 + 2)

\leadsto { Definition of + }

fst(6, 3)

\leadsto { Definition of fst }
```

• Normal Order Lazy evaluation

The leftmost outer reducible is evaluated first. Efectively evaluating the function beforte its arguments.

```
e.g for fst(0, 1+2)

fst(3 \times 2, 1+2)

\leadsto \{ Definition of fst \}

3 \times 2

\leadsto \{ Definition of \times \}

6
```

For a given program, if **applicative** and **normal** terminate, then they produce the same value in normal form.

However there are some programs where **normal** evaluation terminates, but **applicative** will not.

Applicative	Normal
fst(0, crazy nonesense)	fst(0, crazy nonesense)
→ { By lack of definition for crazy nonesense }	$\rightsquigarrow \{ \text{ Definition of } fst \}$
CRASH!	0

The program may by syntactically correct, but have an error such as zero-division which will not be evaluated and hence not result in improper termination under **normal** order.

Applicative Terminates \Rightarrow Normal Terminates

Cost Model for Small While

We can evaluate a cost model for the small while language by creating a function T to assign cost to expressions.

Type	Function	Explanation
non-primitive function	$f a_1 \dots a_n = e$ $T(f) a_1 \dots a_n = T(e) + 1$	Given we have already computed all argument, the cost of the function is the cost of the expression it produces, and a single call.
primitive function	$T(f) x \dots x_n = 0$	Primitive functions are assumed to be
		free.
Variable	T(x) = 0	accessing variables is free.
Application	$T(f e_1 \dots e_n) = T(f) e_1 \dots e_n +$	When applying a function we must con-
	$T(e_1) + \cdots + T(e_n)$	sider both its cost, and the cost of all
		argument expressions.
Conditional	$T(\text{if } p \text{ then } e_1 \text{ else } e_2) = T(p) +$	Cost of condition and of the resulting
	if p then $T(e_1)$ else $T(e_2)$	expression.

Cost Model Example

Given the function:

 $mul\ m\ n=$ if m=0 then 0 else n+mul(m-1)n

Evaluate $T(mul\ 3100)$

UNFINISHED!!!

(1)	mul~3~100	()
(2)	T(if 3 = 0 then 0 else 100 + mul(3-1) 100) + 1	(By Rule for non-primitive functions)
(3)	T(3=0) + T(100 + mul (3-1) 100) + 1	(By rule for conditionals)
(3)	0 + T(100 + mul (3 - 1) 100) + 1	(By primitive functions)
(3)	$T(+)(100 \ mul \ (3-1) \ 100) + T(100) + T(mul \ (3-1) \ 100) + 1$	(By application rule)
(3)	$0 + T(100) + T(mul\ (3-1)\ 100) + 1$	(By rule for primitive functions)
(3)	$T(mul\ (3-1)\ 100) + 1$	(By rule for constants)
(3)	T(mul) (3-1) 100 + T(3-1) + T(100) + 1	(By application rule)
(3)	T(mul) (3-1) 100 + T(-)3 1 + T(100) + 1	(By application rule)
(3)	T(mul) (2) 100 + 1	(By application rule)