中国科学技术大学

2016—2017学年第一学期试卷A卷

	考试科目	时间序列分	<u>}析</u>	得分		
	所在系	姓名		学号		
	考试时间	2016年12月5日	目上午9:50—	11:50; 使用简单计	算器	
— 情:	空题(每空2分,答题讠	害官在冠卷上	٠).			
	$\pm \mathbb{E}(\mathbb{Q} \pm 2\pi)$,晉歷 V 考虑 $\mathbb{E}(\mathbb{Q} + 2\pi)$,	$= X_{2k} k = 1$	2 序列7.是	什么模
_	型?		c_l , c_k	112κ , κ	=,···, /1 / 1 + k/C	
2	考虑季节模型					
		$X_t =$	$(1-\theta_1B)$	$(1-\theta_{12}B^{12})\epsilon_t,$		
	则 $ ho_{11}=$	$\rho_{12} =$		$\rho_{13} = $		
3	关于随机游走序列	$X_t = X_{t-1} +$	$\epsilon_t, \epsilon_t \sim W$	$N(0,\sigma^2)$. 则 μ_t =	$=EX_t=$;
	$Var(Y_t) = \underline{\hspace{1cm}}, \ \gamma_{s,t} = EX_sX_t = \underline{\hspace{1cm}}.$					
4	在下列表填上相对	应的指数平剂	骨法			
		线性趋势	季节效应	选择指数平滑	类型	
		无				
		有				
) III. wel	有	有 			
5	ARMA(p, 2) 模型					
	$X_t =$	$\phi_0 + \phi_1 X_{t-1}$	$1+\cdots+\phi_p$	$X_{t-p} + \epsilon_t + \theta_1 \epsilon_t$	$t_{-1} + \theta_2 \epsilon_{t-2}$	
	可逆域为					
6	Dicky-Fuller 检验的	的零假设是说	色被检验的印	付间序列		<u></u>
	随机误差项不存在					
	存在自相关时,用_		进行单位	位根检验.		
7	设AR(p)模型					
		$X_t = \phi_0$	$+\phi_1X_{t-1}+$	$-\cdots + \phi_p X_{t-p} +$	ϵ_t	
	的传递形式为 $X_t =$ 设 $\phi_0, \phi_1, \dots, \phi_p$ 已知		ϵ_{t-k} ,则 \sum_{k}°	$_{=0}^{\circ} \psi_k(\frac{1}{2})^k = \underline{\qquad}$		(假
8	对于满足MA(q)模	型				

 $X_t = \mu + \epsilon_t - \theta_1 \epsilon_{t-1} - \dots - \theta_q \epsilon_{t-q}$

的序列 $\{X_t, t = 0, \pm 1, \pm 2, \ldots\}$ 来说,已知 X_t, X_{t-1}, \ldots 时, X_{t+l} 的最佳线性预测 $\hat{X}_t(l)$ 为 $(0 < l \leq q)$ 的均方误差为______.

二. (20分) 设 $\{X_t, t = \pm 1, \pm 2, \ldots\}$ 是满足AR(2)模型

$$X_t = \phi_1 X_{t-1} - \frac{\phi_1^2}{4} X_{t-2} + \epsilon_t, \quad \epsilon_t \sim WN(0, \sigma^2), |\phi_1| < 2$$

的AR(2)序列. 求

- 1) 已知 X_t, X_{t-1}, \ldots 时, X_{t+l} 的最佳线性预测 $\hat{X}_t(l)$.
- 2) 试求1)中 $\hat{X}_t(l)$ 的均方误差 $E[e_t(l)^2]$, $l=1,2,\ldots$ (用 $\{X_t,t=\pm 1,\pm 2,\ldots\}$ 的自协方差函数表示.
- (3)试求极限 $\lim_{t\to\infty} E[e_t(l)^2]$.
- 三. (15分) 设 $\{X_t\}$ 和 $\{Y_t\}$ 为两个互不相关的时间序列,令Z(t) = X(t) + Y(t).
 - 1) 若 X_t 为可逆的ARIMA(0,0,1)序列, Y_t 为ARIMA(0,1,0)序列序列,请问 Z_t 为哪种序列?
 - 2) 若 X_t 为ARIMA(1,1,0)序列, Y_t 为ARIMA(0,1,1)序列, 请问 Z_t 为哪种序列?
- 四. (15分)考虑下面的时间序列

$$Y_t = 0.4Y_{t-1} + 0.45Y_{t-2} + \epsilon_t + \epsilon_{t-1} + 0.25\epsilon_{t-2}, \quad \epsilon_t \sim WN(0, \sigma^2).$$

- (1)写出该模型的简化形式:
- (2) 检验该模型是否满足平稳和可逆条件:
- (3)如果是平稳的写出传递形式。
- 五. (20分) 考虑如下平稳时间序列模型

$$X_t = \epsilon_t - 0.4\epsilon_{t-1} + 0.6\epsilon_{t-2}, \epsilon_t \sim WN(0,3)$$

我们关注的是 $U_t = X_t + X_{t+1}$, 基于t之前历史信息 $\{X_s, s \leq t\}$ 预测 U_{t+1} , 则最佳的线性预测是多少? (求出表达式) 预测的误差多少?