Chapter 19

What is the frist law of Thermodynamics?

To sum it up the frist law of Thermodynamic is energy transfering into/out of the system as work/heat

$$\Delta E_{\rm th} = W + Q \tag{1}$$

where:

- $\Delta E_{\rm th}$ = Change in thermal energy (J)
- W = Work done on the system (J)
- Q = Heat added to the system (J)

19.2 Work in Ideal-Gas Processes

$$W = -\int_{V_i}^{V_f} P \, dV \tag{2}$$

Isochoric Process

$$W = 0 (3)$$

Isochoric process is a process in which the volume of the system is constant and the work done is zero.

Isobaric Process

$$W = -P\Delta V \tag{4}$$

Isobaric process is a process in which the pressure of the system is constant and the work done is $-P\Delta V$. where:

- W = Work done on the system (J)
- P = Pressure of the gas (Pa)
- ΔV = Change in volume of the gas (m³)

isothermal Process

$$W = -nRT \ln \left(\frac{V_f}{V_i} \right) = -p_i V_i \ln \left(\frac{V_f}{V_i} \right) = -p_f V_f \ln \left(\frac{V_f}{V_i} \right) \tag{5}$$

where:

- n = Number of moles of the gas (mol)
- $R = \text{Ideal gas constant } (8.31 \text{ J/mol} \cdot \text{K})$
- T = Temperature of the gas (K)
- V_i = Initial volume of the gas (m³)
- V_f = Final volume of the gas (m³)
- p_i = Initial pressure of the gas (Pa)
- p_f = Final pressure of the gas (Pa)

$$\Delta E_{\rm th} = 0 \tag{6}$$

Adiabatic Process

Def: An adiabatic process is a process in which no heat is added to or removed from the system.

Heat

to be continue

19.3.2 Units of Heat

$$1 \text{ cal} = 4.186 \text{ J}$$
 (7)

19.5.1 Specific Heat and molar specifc heats of solids and liquids

Substance	c (J/kg K)	C (J/mol K)
Solids		
Aluminum	900	24.3
Copper	385	24.4
Iron	449	25.1
Gold	129	25.4
Lead	128	26.5
Ice	2090	37.6
Liquids		
Ethyl alcohol	2400	110.4
Mercury	140	28.1
Water	4190	75.4

$$Q = mc\Delta T \tag{8}$$

where:

- Q = Heat added to the system (J)
- m = Mass of the substance (kg)
- c = Specific heat of the substance (J/kg K)
- ΔT = Change in temperature of the substance (K)

$$Q = nC\Delta T \tag{9}$$

where:

- Q = Heat added to the system (J)
- n = Number of moles of the substance (mol)
- C = Molar specific heat of the substance (J/mol K)
- ΔT = Change in temperature of the substance (K)

19.5.2 Phase Changes and Heat of Transformation

Phase changes are changes in the state of a substance, such as from solid to liquid or from liquid to gas.

$$Q = mL$$
 (phase change) (10)

$$Q = \begin{cases} \pm ML_f & \text{melt/freeze} \\ \pm ML_v & \text{boil/condense} \end{cases}$$
 (11)

Table 1: Melting/boiling temperatures and heats of transformation

Substance	T_m (°C)	L_f (J/kg)	T_b (°C)	L_v (J/kg)
Nitrogen (N_2)	-210	0.26×10^5	-196	1.99×10^{5}
Ethyl alcohol	-114	1.09×10^{5}	78	8.79×10^{5}
Mercury	-39	0.11×10^{5}	357	2.96×10^{5}
Water	0	3.33×10^{5}	100	22.6×10^{5}
Lead	328	0.25×10^5	1750	8.58×10^5

19.6 Caloriemtery

calorimetery:

19.7 The Specific Heats of Gases

$$Q = nC_V \Delta T$$
 (temperature change at constand Volume) (12)

$$Q = nC_P \Delta T$$
 (temperature change at constant Pressure) (13)

where:

- Q = Heat added to the system (J)
- n = Number of moles of the gas (mol)
- $C_V = \text{Molar specific heat of the gas at constant volume (J/mol K)}$

- C_P = Molar specific heat of the gas at constant pressure (J/mol K)
- ΔT = Change in temperature of the gas (K)

Gas	C_P	C_V	$C_P - C_V$			
Monatomic Gases						
He	20.8	12.5	8.3			
Ne	20.8	12.5	8.3			
Ar	20.8	12.5	8.3			
Diatomic Gases						
H_2	28.7	20.4	8.3			
N_2	29.1	20.8	8.3			
O_2	29.2	20.9	8.3			

Table 2: Molar specific heats of gases (J/mol K) at T = 0°C

$$C_P - C_V = R$$
 or $C_P = C_V + R$ (14)

$$\Delta E_{\rm th} = nC_V \Delta T$$
 (any ideal-gas process) (15)

19.7.3 Adiabatic Processes

FIGURE 19.19 The relationship of three important processes to the first law of thermodynamics.

$$W = nC_V \Delta T$$
 (adiabatic process) (16)

0.1 Specific Hear Ratio γ

$$\gamma = \frac{C_P}{C_V} \tag{17}$$

An adiabatic process is one in which

$$pV^{\gamma} = \text{constant} \quad \text{or} \quad p_i V_i^{\gamma} = p_f V_f^{\gamma}$$
 (18)

Addtional Notes

when you want to find M (molar mass) you can use the following formula:

$$M = \frac{m}{n} \tag{19}$$

Find the number from the periodic table and divide it by the number of moles of the gas to find the molar mass of the gas.

- where:
- M = Molar mass (kg/mol)
- m = Mass of the gas (kg) usally given in grams
- n = Number of moles of the gas (mol)

Finding the number of moles of the gas

$$n = \frac{\text{mass of the gas}}{\text{molar mass of the gas}} \tag{20}$$

Celsius scale to Kelvin scale conversion

$$T_K = T_C + 273$$
 (21)

Find mass with given Volume

Usally these probelms give you Volume and wonder how do we get mass. We have to take a look at the period table and find density. After that we can now use the following formula to find mass:

$$m = \rho V \tag{22}$$