2. Метод Эйлера с пересчетом

При данном подходе рекуррентное соотношение (14) видоизменяется, а именно, вместо $f(x_i, y_i)$ берут среднее арифметическое между $f(x_i, y_i)$ и $f(x_{i+1}, y_{i+1})$.

Тогда

$$y_{i+1} = y_i + \frac{h}{2} [f(x_i, y_i) + f(x_{i+1}, y_{i+1})], i = 0,1,...(15)$$

Это неявная схема. Она реализуется в две итерации: сначала находится первое приближение по (14), считая у_іначальной

$$\tilde{y}_{i+1} = y_i + hf(x_i, y_i),$$
 (16)

затем (16) подставляется в правую часть (15) вместо y_{j+1}

$$y_{i+1} = y_i + \frac{h}{2} [f(x_i, y_i) + f(x_{i+1}, \widetilde{y}_{i+1})], \quad i = 0,1,...(17)$$

Геометрическая интерпретация метода:

На основании этого можно выбирать шаг. Если величина $|\tilde{y}_{i+1} - y_{i+1}|$ сравнима с заданной точностью □, то шаг можно увеличивать, если

С помощью метода Эйлера с пересчетом можно производить контроль точности, сравнивая y_{i+1} и \tilde{y}_{i+1} .

где $y(x_i)$ – точное решение в точке $x=x_i$, а y_i и y_i^* приближенные значения, полученные с шагомhиh/2 соответственно

больше, то уменьшать, т.е. имеет место схема двойного просчета с оценкой погрешности по величине $\frac{1}{2} \| v^* - v \|_{2} \| v^* - v \|_{2} \| v^* - v \|_{2} \| v \|_{2}$

 $\frac{1}{3} |y_i^* - y_i| \square |y_i^* - y(x_i)|,$