Theoretical task 3: logistic regression

Due Tuesday, January 27 (seminar).

- 1. Let $\sigma(z)$ define the logistic function: $\sigma(z) = \frac{1}{1+e^{-z}}$. Show that $\sigma'(z) = \sigma(z)(1-\sigma(z))$
- 2. Suppose $y_i \in \{0, 1\}$ is the class of *i*-th observation and the first feature is constant: $x_i^1 = 1 \,\forall i$. Logistic regression weight parameter w is found by minimization of negative log-likelihood:

$$NLL(w) = -\sum_{i=1}^{N} \ln[\sigma(w^{T}x_{i})^{\mathbb{I}[y_{i}=1]} \times (1 - \sigma(w^{T}x_{i}))^{\mathbb{I}[y_{i}=0]}] = -\sum_{i=1}^{N} [y_{i} \ln \sigma(w^{T}x_{i}) + (1 - y_{i}) \ln(1 - \sigma(w^{T}x_{i}))]$$

Please find the gradient $g = \frac{d}{dw} NLL(w)$ and the Hessian matrix $H = \frac{d}{dw} g(w)^T$. Prove that the Hessian matrix will be positive definite (assuming $X = [x_1, x_2, ... x_N] \in \mathbb{R}^{D \times N}$ is full rank).

- 3. Suppose we optimize L_2 regularized logistic regression with cost function: $J(w) = NLL(w) + \lambda ||w||_2^2$. Please write whether each of the following statements is true or not?
 - (a) J(w) has multiple locally optimum solutions.
 - (b) Let $\widehat{w} = \arg\min_{w} J(w|\text{training set})$ be the global minimum. Then \widehat{w} is sparse, meaning that it has many zero entries.
 - (c) Let training data be linearly separable. Then during optimization some weight w_j may become infinite when $\lambda = 0$.
 - (d) $NLL(\widehat{w})$ evaluated on training set will always increase with the increase of λ .
 - (e) $NLL(\hat{w})$ evaluated on testing set will always increase with the increase of λ .