

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A

HEADQUARTERS

OGDEN AIR LOGISTICS CENTER
UNITED STATES AIR FORCE
HILL AIR FORCE BASE, UTAH 84056

PROPELLANT
SURVEILLANCE REPORT
LGM-30 F&G STAGE 1
PHASE G, SERIES I
TP-H1011

PROPELLANT ANALYSIS LABORATORY

MANPA REPORT

476(82)

November 1982

APPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED

PROPELIANT SURVEILLANCE REPORT LGM-30F & G STAGE I (TP-H1011)

AUTHOR

JOHN A. THOMPSON, Chemist Component & Combustion Test Unit

Engineering & Statistical Review By

JOHN K. SCAMBIA, Project Engineer
Service Engineering

EDWARD J. ERICKSON, Math/Stat Data Analysis Unit

Recommended Approval By

LEONIDAS A. BROWN, Chief Component & Combustion Test Unit

ANTHONY J. INVERSO, Chief Propellant Analysis Laboratory

NOVEMBER 1982

Industrial Products and Landing Gear Division
Directorate of Maintenance
Ogden Air Logistics Center
United States Air Force
Hill Air Force Base, Utah 84056

ABSTRACT

This report contains propellant test results from cartons of TP-H1011 bulk propellant representing LGM-30F and G First Stage Minuteman Motors.

This report uses a statistical approach to analyze the bulk carton propellant data. Testing was accomplished in accordance with MMWRBA Project M34929C.

The data from this test period are combined with data from previous testing and entered into the GO85 Computer for storage, analysis, and regression analysis. From the statistical analysis of all data tested to date (sixteen years for F & G), significant degradation of the propellant does not appear likely for at least two years past the oldest data point.

Each point on the regression plot represents the mean of all samples at that particular age. The number of samples at each point is indicated on the sample size summary sheet on the page accompanying each regression plot or group of regression plots. The data range at any age can be found by suitable inquiry of the GO85 System.

TABLE OF CONTENTS

	Page
Abstract	11
List of Figures	ív
List of References	vi11
Glossary of Terms and Abbreviations	xiii
Introduction	1
Table 1 - Test Program	2
Statistical Approach	3
Test Results	5
Conclusions	9
Table 2 - Regression Summary	10
Distribution List	118
DD1473	119

LIST OF FIGURES

Figure Nr	Regression Plot, Very Low Rate Tensile, CHS 0.002 in/min	Page
1	Strain at Maximum Stress	15
2	Maximum Stress	16
3	Strain at Rupture	17
4	Stress at Rupture	18
5	Modulus	19
	Regression Plot, Low Rate Biaxial Tensile, CHS 0.2 in/min	1
6	Maximum Stress	22
7	Strain at Rupture	23
8	Stress at Rupture	24
9	Modulus	25
	Regression Plot, Low Rate Tensile, CHS 2.0 in/min	
10	Strain at Maximum Stress	28
11	Maximum Stress	29
12	Strain at Rupture	30
13	Stress at Rupture	31
14	Modulus	32
	Regression Plot, High Rate Triaxial Tensile, 1750 in/min	
15	Strain at Maximum Stress	35
16	Maximum Stress	36
17	Strain at Rupture	37
18	Modulus	38
	Regression Plot, High Rate Hydrostatic Tensile, 1750 in/	iin
19	Strain at Maximum Stress	41
20	Maximum Stress	42
21	Strain at Rupture	43
22	Stress at Rupture	44

LIST OF FIGURES (cont)

Figure Nr		Page
23	Modulus	45
	Regression Plot, Stress Relaxation, .5% Strain, -65°F	
24	Modulus at 10 sec	48
25	Modulus at 50 sec	49
26	Modulus at 100 sec	50
27	Modulus at 1000 sec	51
	Regression Plot, Stress Relaxation, .5% Strain, -40°F	
28	Modulus at 10 sec	54
29	Modulus at 50 sec	55
30	Modulus at 100 sec	56
31	Modulus at 1000 sec	57
	Regression Plot, Stress Relaxation, 3% Strain, 20°F	
32	Modulus at 10 sec	60
33	Modulus at 50 sec	61
34	Modulus at 100 sec	62
35	Modulus at 1000 sec	63
	Regression Plot, Stress Relaxation, 3% Strain, 77°F	
36	Modulus at 10 sec	66
37	Modulus at 50 sec	67
38	Modulus at 100 sec	68
39	Modulus at 1000 sec	69
	Regression Plot, Stress Relaxation, 3% Strain, 100°F	
40	Modulus at 10 sec	72
41	Modulus at 50 sec	73
42	Modulus at 100 sec	74
4.2	Wadulus at 1000 ass	76

3 4	LIST OF FIGURES (cont)	_
Figure Nr		Page
	Regression Plot, Stress Relaxation, 3% Strain, 140°F	
44	Modulus at 10 sec	78
45	Modulus at 50 sec	79
46	Modulus at 100 sec	80
47	Modulus at 1000 sec	81
	Regression Plot, Stress Relaxation, 3% Strain, 180°F	
48	Modulus at 10 sec	84
49	Modulus at 50 sec	85
50	Modulus at 100 sec	86
51	Modulus at 1000 sec	87
	Regression Plot, Sol Gel	
52	Gel Swell Ratio	89
53	Crosslink Density	90
54	Regression Plot, Constant Strain	93
55	Regression Plot, Hardness, Shore A	96
	Regression Plot, TCLE	
56	TCLE Above Tg	99
57	TCLE Below Tg	100
	Regression Plot, TGA	
58	Ignition Temperature, 9°C rise/min	102
59	% Wt. Loss at Ignition, 9°C rise/min	103
	Regression Plot, DTA, 12°C rise/min	
60	Endotherm 1	106
61	Exotherm 1	107
62	Exotherm 2	110
63	Exotherm 3	112

LIST OF FIGURES (cont)

Figure Nr	·	<u>Page</u>
64	Ignition Temperature	115
65	Regression Plot, Burning Rate	117

LIST OF REFERENCES

Report Nr	<u>Title</u>	Report Date
	LGM-30 First Stage, Wing I Test Reports	
29A	Test Report (Missile in silo)	13 Jan 64
29B	Zero Time Test Results	29 Jan 64
29C	Zero Time Test Results (Supplement 1)	30 Mar 64
29 D	Zero Time Test Results (Aft Closure)	9 Jun 64
29E	Zero Time (Aft Closure Supplement 1)	24 Jun 64
29F	ATP Phase I Test Results	30 Mar 65
29G	ATP Phase I Test Results	19 Aug 65
29Н	ATP Phase I Test Results	10 Sep 65
32A	Zero Time, Wings II-V Test Results	17 Mar 65
328	Zero Time, Wings II-V Test Results (Aft Closure)	18 Mar 65
32C	ATP Phase I, Wings II-V Test Results	3 Nov 65
49	ATP Phase I, Wings II-V (First Group)	18 Mar 66
53	ATP Phase I, Wings II-V (Second Group)	22 Apr 66
55	ATP Phase I, Wings II-V (Third Group)	29 Apr 66
58	ATP Phase I, Wings II-V (Fourth Group)	6 May 66
61	ATP Phase I, Wings II-V (Fifth Group)	10 Jun 66
66	ATP Phase I, Wings II-V (Sixth Group)	22 Jul 66
76	ATP Phase II, Wing I Test Results	24 Jan 67
78	Zero Time, Wing VI Test Results	3 Feb 67
104	ATP Phase I, Wing VI (First Group	12 Oct 67
118	ATP Phase II, Wings II-V (First Group)	5 Mar 68

Report Nr	<u>Title</u>	Report Date
126	ATP Phase II, Wings II-V (Second Group)	11 Apr 68
130	ATP Phase II, Wings II-V (Third Group)	3 May 68
162	ATP Phase I, Wing VI (Second Group)	30 Sep 69
176	ATP Phase II, Wing VI (First Group)	15 Apr 70
181	ATP Phase III, Wing I	7 May 70
185	ATP Phase I, Wing VI (Third Group)	22 Jun 70
195	ATP Phase III, Wings II-V (Retest)	29 Oct 70
223	Surveillance Report LGM-30 Stage I (TP-H1011)	Sep 71
239	Surveillance Report LGM-30 Stage I (TP-H1011 and TP-H1043)	Apr 72
258	Surveillance Report LGM-30 A & B Stage I (TP-H1011)	Nov 72
268	Surveillance Report LGM-30 A & B Stage I (TP-H1011)	May 73
271	Surveillance Report LGM-30 F & G Stage I Phase A Series II, (TP-H1011)	Jul 73
277	Surveillance Report LGM-30 F & G Stage I Phase A Series III, (TP-H1011)	Oct 73
280	Surveillance Report LGM-30 A & B Stage I (TP-H1011)	Nov 73
288	Propellant Surveillance Report LGM-30 A & B, Stage I, TP-H1043	Mar 74
290	Propellant Surveillance Report LGM-30 F & G, Stage I, Phase B, Series I TP-H1011	Mar 74
300	Minuteman Stage I Motor Reliability Improvement Program Surveillance	May 74

Report Nr	<u>Title</u>	Report	<u>Date</u>
302	Propellant Surveillance Report LGM-30 A & B Stage 1, TP-H1011	Nov	74
313	Stage 1 Propellant Surveillance Report, Propellant Containing Glacial Acrylic Acid	Oct	74
315	Propellant Surveillance Report LGM-3(F & G Stage 1, TP-H1011	Jan	75
316	Propellant Surveillance Report LGM-3(A & B Stage 1, TP-H1011	Feb	75
319	Propellant Surveillance Report LGM-30 Dissected Motors, Phase VI, TP-H1011	Apr	75
321	Propellant Surveillance Report LGM-30 F & G Stage 1, Phase B, Series II, TP-H1011	Apr	75
325	Propellant Surveillance Report LGM-30 A & B Stage 1, TP-H1011	Jun	75
328	Propellant Surveillance Report LGM-30 A & B Stage 1, TP-H1011	Sep	75
330	Propellant Surveillance Report LGM-30 F & G Stage 1, TP-H1011	Oct	75
335	Stage 1 Motor Reliability Improvement Program	Dec	75
337	Propellant Surveillance Report LGM-30 A & B, Stage 1, TP-H1043	Feb	76
339	Stage 1, New MAPO & ERL-510 Qualification	Mar	76
341	Propellant Surveillance Report LGM-30	Mar	76

Report Nr	<u>Title</u>	Report Date
343	Propellant Surveillance Report LGM-30 A & B, Stage 1, TP-H1011	Jun 76
345	Propellant Surveillance Report LGM-30 F & G, Stage 1 Phase B, Series III, TP-H1011	Jun 76
350	Qualification of a New MAPO Source and ERL-510 Curing Agent for Minuteman, Stage 1, UF-2121 Liner	Sep 76
351	Propellant Surveillance Report LGM-30 A & B, Stage 1, TP-H1011	Sep 76
354	Minuteman Stage 1 Motor Reliability Improvement Program Surveillance	Sep 76
358	Propellant Surveillance Report LGM-30 Dissected Motors, Phase VIII, TP-H1011	Oct 76
360	Propellant Surveillance Report LGM-30 F & G, Stage 1 Phase E, Series III, TP-H1011	Nov 76
367	Propellant Surveillance R port LGM-30 A & B, Stage 1, TP-H1011	Apr 77
370	Propellant Surveillance Report LGM-30 F & G, Stage 1, Phase E, Series II, TP-H1011	Apr 77
377	Qualification of a New MAPO Source and ERL-510 Curing Agent for Minuteman Stage 1, UF-2121 Liner	Oct 77
379	Final RIP Report, Minuteman Stage 1 Motor Reliability Improvement Program Surveillance	Oct 77
385	Propellant Surveillance Report LGM-30 A, B, F, & G, Stage 1, TP-H1043	Dec 77
388	Propellant Surveillance Report LGM-30 A & B Stage 1, TP-H1011	Jan 78
390	Propellant Surveillance Report LGM-30 F & G Stage 1, Phase E, Series IV, TP-H1011	Feb 78
392	Propellant Surveillance Report LGM-30 Dissected Motors, Phase IX, TP-H1011	Mar 78
393	Propellant Surveillance Report LGM-30 A & B	May 78

Report Nr	<u>Title</u>	Report Date
396	Propellant Surveillance Report LGM-30 F & G Stage I, TP-H1011	Jun 78
405	Propellant Surveillance Report LGM-30 F & G Stage I, TP-H1011	Oct 78
406	Propellant Surveillance Report LGM-30 Dissected Motors, Phase X, TP-H1011	Nov 78
416	Propellant Surveillance Report LGM-30 F and Stage I, TP-H1011	G Apr 79
423	Propellant Surveillance Report LGM-30 F and Stage I, TP-H1011	G Oct 79
4 24	Propellant Surveillance Report LGM-30 Stage I, TP-H1043	Nov 79
425	Propellant Surveillance Report LGM-30 A and Stage I, TP-H1011	B Nov 79
427	Propellant Surveillance Report LGM-30 Dissected Motors, Phase XI, TP-H1011	Nov 79
438	Propellant Surveillance Report LGM-30 F and Stage I, TP-H1011	G Apr 80
445	Propellant Surveillance Report LGM-30 F and Stage I, TP-H1011	G Sep 80
448	Propellant Surveillance Report LGM-30 A and Stage I, TP-H1011	B Nov 80
452	Propellant Surveillance Report LGM-30 Dissected Motors, Phase XII, TP-H1011	Jan 81
458	Propellant Surveillance Report LGM-30 F and Stage I, TP-H1011	G May 81
462	Propellant Surveillance Report LGM-30 Stage I, TP-H1043	Oct 81
465	Propellant Surveillance Report LGM-30 F and Stage I, TP-H1011	G Feb 82
470	Propellant Surveillance Report LGM-30 Dissected Motors, Phase XIII, TP-H1011	May 82

GLOSSARY OF TERMS AND ABBREVIATIONS

Aging Trend A change in properties or performance resulting

from aging of material or component

CSA Cross Sectional Area

DB Dogbone

Degradation Gradual deterioration of properties or performance

E Modulus (psi), defined as stress divided by strain

along the initial linear portion of the curve.

EB End Bonded

EGL Effective Gage Length

Strain at maximum stress

er Strain at rupture

"F" ratio The ratio of the variance accounted for by the

regression function to the random unexplained variance. The regression function having the most significant "F" ratio is used for plotting data. The ratio is also used in detecting signi-

ficant changes in random variation between

succeeding time points

JANNAF Joint Army, Navy, NASA, Air Force Committee

MANPA Propellant Lab Section at Ogden Air Logistics Center

Ogden ALC Ogden Air Logistics Center, Air Force Logistics

Command

r or R The Correlation Coefficient is a measure of the

degree of closeness of the linear relationship

between two variables

Linear The general form of the linear regression equation

Regression is Y = a + bx

Equation

Line

Regression

Line representing mean test values with respect

to time

S_b Standard error of estimate of the regression

coefficient

GLOSSARY OF TERMS AND ABBREVIATIONS (cont)

 S_e or $S_{Y,X}$ Standard deviation of the data about the

regression line

Sm Maximum Stress

Sr Stress at rupture

Standard Square root of variance Deviation (S_{∇})

Strain Rate Crosshead speed divided by the EGL

"t" test

A statistical test used to detect significant differences between a measured parameter and an expected value of the parameter (determines if regression slope differs from zero at the 95%

confidence level)

Variance The sum of squares of deviations of the test results from the mean of the series after division by one less than the total number of test

results

3 Sigma Band The area between the upper and lower 3 sigma

limit. It can be expected that 99.73% of the inventory represented by the test samples would fall within this range assuming that the popu-

lation is normally distributed.

90-90 Band It can be stated with 90% confidence that 90% of

the inventory represented by the test samples would fall within this range assuming that the

population is normally distributed

Significant As used in the statistical sense, means a

difference unlikely to have been the result of random sampling from some specified population.

INTRODUCTION

A. PURPOSE:

Laboratory testing has been performed for sixteen years on First Stage LGM-30F and G Minuteman Motor Propellant blocks to evaluate the effects of aging on TP-H1011 propellant. This report contains those tests conducted on propellant as instructed in MMWRBA Test Directive GTD-1C, Amendment 2, LGM-30 First Stage Operational Propellant Laboratory testing.

Statistical analysis of the data from tests performed will provide early warning if serious degradation trends develop. Annual evaluation of the propellant provides data for input into engineering reliability analysis for service life predictions.

B. BACKGROUND:

LGM-30F and G testing was started in 1966 with phase testing at 24 month intervals (Report Numbers 78 - Zero time; 104, 162, 185 - Phasel; 176, 239, 257 - Phase II; 271 - Phase III). Report number 257 was the first time that LGM-30F and G data were statistically analyzed separately from LGM-30 A and B data. The present report is a continuation of testing and statistical analysis.

Zero time testing for LGM-30 A, B, F and G was started as soon as possible after receipt of the propellant by MANPA. Data from these tests were used to establish a baseline for each test parameter.

The LGM-30F and G propellant test matrix (Table 1) is used to determine the number of specimens to be taken from each propellant loaf and the specific test or tests to which these specimens are to be subjected. Very low rate and low rate tensile specimens are taken on all LGM-30F and G blocks.

Specimens for other physical and combustion tests are taken from every third LGM-30F and G block.

TABLE 1

SAMPLE PLAN

The Procedure for determining tests to be performed on propellant batch samples of IGM-30 F & G First Stage Motors are as follows:

- 1. Divide the USAF motor serial numbers into three groups by dividing the last three digits of each serial number by three to determine the remainder integer, e.g., 15μ ; 3 = 51 with a remainder integer of 1.
- 2. Use the remainder integer to enter the following matrix to determine the group of tests to be performed on the forward, middle, and aft batch samples associated with a particular motor serial number.

	_		- -	-
	GROUP III	0	2	- 1
	GROUP II	2		0
GROUP MATRIX	GROUP I		0	2
	TP-H1011 PROPELLANT BATCH SAMPLE	Forward	Middle	Aft

Each group will receive the following tests:

	_	•	τ-	_	_		_
	GROUP III	High Rate Hydrostatic	Sol Gel	DSC	TGA	DTA	Impact
TEST MATRIX	GROUP II	Dynamic Response	Stress Relaxation	Burning Rate	Heat of Explosion	Pressure Time	
	GROUP I	High Rate Triaxial	Creep	Biaxial Low Rate	TCLE	Hardness	Ignitability
1	لــا				Щ		_

NOTE: Low Rate and Very Low Rate Tensile tests are performed on all blocks.

STATISTICAL APPROACH

In order to determine aging trends for shelf/service life predictions, as directed by Service Engineering, First Stage LGM-30 F and G Minuteman TP-H1011 propellant blocks have been undergoing testing since 1966, statistically analyzed and reported on a regular test cycle by this laboratory.

The primary reason for performing statistical analysis on test data is for the detection of propellant changes due to aging that would affect motor reliability. Regression analysis was the method used to examine data and to aid in drawing conclusions about dependency relationships that may exist i.e., relationship between age versus test results.

In selecting the best fit model for the regression equation, the linear model Y = a + bX was found to be the best fit model for the regression plots.

Individual data points from different time periods were used to establish a least squares trend line for the data. The variance about the regression line, obtained using individual values of the dependent variable, was used to compute a tolerance interval such that at the 90% confidence level 90% of the sample distribution falls within this interval. This tolerance interval was extrapolated to a maximum of 24 months into the future from age of the oldest motor tested. The 't' value and the significance of this statistic, which are reported for each regression model, give an indication of the "statistical significance" of the slope of the trend line as compared to a line of zero slope. When a regression slope is indicated to be significant, it should be noted that the slope of the regression line is significant from a statistical standpoint and it is an indication that a change over time is occurring, but does not necessarily mean that the indicated change in the

value obtained during testing is significant in regards to motor operational performance. In a few cases, this small change has become the apparent trend in data variance and regression line trends. However, the changes are gradual and no operational problems are expected at this time.

The data were plotted by computer. The 'y' axis is computed so that the values at one inch intervals are peculiar to the data spread of the parameter tested. Plotted data points represent means at the particular ages at which testing occurred. The number of specimens at each age point is indicated on the sample size summary sheet accompanying the regression plot. Variance at each test age can be determined by consulting the GO85 data storage system.

A regression summary of all test parameters is included in Table 2.

The direction of the regression trend lines are also indicated in Table 2.

The slopes that are "statistically" not significant from a line of zero slope are labeled as such and are not included in this report.

TEST RESULTS

VERY LOW RATE TENSILE:

Very low rate regressions show a statistically significant decrease for strain at maximum stress and strain at rupture. The stresses and modulus show a statistically significant increase (Figures 1 thru 5). The trends are gradual for the respective regressions and no operational problems from the propellant are expected for at least two years beyond the last test date.

LOW RATE BLAXIAL TENSILE:

The strain at maximum stress regression shows no significant trend direction with the strain at rupture showing a statistically significant decrease. The stresses and modulus show a statistically significant increase (Figures 6 thru 9).

LOW RATE TENSILE:

Low rate tensile regressions show a statistically significant gradual decrease for strains and a statistically significant increase for stresses and modulus (Figures 10 thru 14).

HIGH RATE TRIAXIAL TENSILE:

The strain at maximum stress, strain at rupture and modulus regressions show a statistically significant decrease. Maximum stress shows a statistically significant increase. Stress at rupture shows no significant trend direction (Figures 15 thru 18).

HIGH RATE HYDROSTATIC TENSILE:

The strains show a statistically significant decrease. The stresses and modulus show a statistically significant increase (Figures 19 thru 23).

TEAR ENERGY:

The cohesive energy tested at 180°F and a CHS of 0.002 in/min shows a non significant trend direction.

TENSILE SUMMARY:

The test data regressions show that the strain is gradually decreasing and the stress and modulus are gradually increasing.

Based on the analysis of test data regressions, it does not appear that meaningful degradation is occurring at this time and no operational problems are expected in the propellant for at least two years beyond the last data point.

STRESS RELAXATION MODULUS:

For the 0.5% strain at -65°F, the regressions for data at 10, 50, 100, and 1000 seconds show a statistically significant increase (Figures 24 thru 27).

At -40°F, the 10, 50, and 100 second regressions show a statistically significant increase. The 1000 second regression shows a statistically significant decrease (Figures 28 thru 31).

The 3% strain regressions at 20°F, 77°F, 100°F, 140°F, and 180°F all show a statistically significant increase (Figures 32 thru 51).

SOL GEL:

The Z extractables and density slopes are not significant when compared with a line of zero slope. The gel swell ratio and crosslink density regressios show a statistically significant increase (Figures 52 and 53).

CONSTANT STRAIN:

A statistically significant decreasing trend is shown (Figure 54).

HARDNESS:

Shore A 10 second hardness shows a statistically significant increasing trend (figure 55).

SUMMARY OF SOL GEL, TENSILE, AND HARDNESS DATA:

The crosslink density, constant strain, and hardness data regressions correlate well with the tensile data. As the polymer continues to crosslink, the strains decrease and the stresses increase.

TCLE (Thermal Coefficient of Linear Expansion):

The TCLE for both above and below the glass transition point (Tg) shows a statistically significant increasing trend (Figures 56 and 57).

TGA (Thermal Gravimetric Analysis):

A statistically significant increase is shown for the ignition temperature (9°C rise/min), and weight loss at ignition. No significant trend direction was observed for weight loss at 250°C hold (12°C rise/min to hold), (Figures 58 and 59).

DTA (Differential Thermal Analysis):

The endotherm and first and second exotherms show a statistically significant decreasing trend direction. The third exotherm and ignition temperature shows a statistically significant increasing trend direction (Figures 60 thru 64).

BURNING RATE:

The burning rate shows a statistically significant increasing trend (Figure 65).

THERMAL AND COMBUSTION SUMMARY:

From the analyses of the regressions, no combustion problems are expected for at least two years beyond the oldest data point.

CONCLUSIONS

Sixteen years of aging at ambient temperature (77°F) has not greatly changed the properties of the propellant. Some test parameters indicate slight aging trends, but nothing that would adversely affect the operational characteristics of the rocket motor propellant.

From the statistical analysis, it does not appear that significant propellant degradation is occurring. Based on sixteen years of accumulated data, there is no reason to suspect that properties will show much change for at least two years past the last data point. Therefore, propellant reliability should not change appreciably over that time period. Since failure limits are not available for the parameters tested, this statement is based on the fact that the slope of the regression curves where statistically significant are, with few exceptions, relatively flat or close to a line of zero slope and have not changed appreciably from the last test period.

TABLE 2

Regression Summary

Test Parameter	Slope
Very Low Rate Tensile	
Strain at Maximum Stress	-
Maximum Stress	+
Strain at Rupture	-
Stress at Rupture	+
Modulus	+
Low Rate Biaxial Tensile	
Strain at Maximum Stress	ns
Maximum Stress	+
Strain at Rupture	-
Stress at Rupture	+
Modulus	+
Low Rate Tensile	
Strain at Maximum Stress	-
Maximum Stress	+
Strain at Rupture	-
Stress at Rupture	+
Modulus	+
High Rate Triaxial Tensile	
Strain at Maximum Stress	6 53
Maximum Stress	+
Strain at Rupture	
Stress at Rupture	ns
Modulus	-
High Rate Hydrostatic Tensile	•
Strain at Maximum Stress	
Maximum Stress	+
Strain at Rupture	-
Stress at Rupture	+
Modulus	+
Tear Energy	
Stress Relaxation	
-65°, 10 sec -65°, 50 sec -65°, 100 sec -65°, 1000 sec	+
-65, 50 sec	+
-65°, 100 sec	+
-65°, 1000 sec	+
-40°, 10 sec	+
-40°, 50 sec -40°, 100 sec -40°, 1000 sec	+
-40°, 100 sec	+
-40°, 1000 sec	-

TABLE 2 (cont)

Regression Summary

Regression Summary	Slope
Test Parameter	310be
+20°, 10 sec	+
+20°, 50 sec	+
+20°, 100 sec	+
+20°, 10 sec +20°, 50 sec +20°, 100 sec +20°, 1000 sec	+
+77°, 10 sec +77°, 50 sec +77°, 100 sec	+
+77°, 50 sec	+
+77°, 100 sec	+
+77°, 1000 sec	+
+100°, 10 sec +100°, 50 sec +100°, 100 sec +100°, 1000 sec	+
+100°, 50 sec	+
+100°, 100 sec	+
+100°, 1000 sec	+
+140°, 10 sec +140°, 50 sec +140°, 100 sec +140°, 1000 sec	+
+140°, 50 sec	+
+140°, 100 sec	+
+140°, 1000 sec	+
+180°. 10 sec	+
+180°, 50 sec	+
+180°, 100 sec	+
+180°, 10 sec +180°, 50 sec +180°, 100 sec +180°, 1000 sec	+
Sol Gel	
% Extractables	NS
Density	NS
Gel Swell Ratio	. +
Crosslink Density	+
Constant Strain	-
Compense of regin	
Hardness, Shore A, 10 sec	+
Pressure Time	
Not tested due to equipment problems	
TCLE	
Above Tg	+ :
Below Tg	+
TCA	
Ignition Temperature	+
% Weight Loss at 250°	ns
% 'eight Loss at Ignition	+

TABLE 2 (cont)

Regression Summary

Test	Parameter	<u>Slope</u>
DTA		
	Endotherm 1	-
	Exotherm 1	_
	Exotherm 2	-
	Exotherm 3	+
	Ignition Temperature	+
Burn	Rate, 1000 psi	+

NS = Not Significant
- = Negative Slope
+ = Positive Slope

*** SAMPLE SIZE SUMMARY ***

AGE	α Z	AG E	æ	AGE	Q Z	AGE	ď	AGE	æ	AGE	Ž
(SOM)	SAMP	(WUS)	SAMP	(MUS)	SA NP	(MO S)	SAMP	(MCS)	SAMP	(SOH)	SAMP
Œ	Pr-	E.F.	152	ις: αυ	352	F) 60	80	108	63	133	£
σ	61	34	154	59	317	9.4	26	1 09	1 29	134	126
9	11	35	113	9	418	9.6	16	1 10	72	135	69
11	15	36	22.6	61	062	86	92	111	42	136	15
12	30	37	147	62	337	87	122	112	144	1.37	66
13	48	œ m	126	63	243	A	139	113	309	138	259
14	2. P.S	39	115	64	1 60	89	177	114	167	1 39	163
15	38	40	122	65	111	06	156	115	133	140	81
9	46	14	156	99	8 5	16	101	116	327	141	0
17	53	4	123	67	3 5	60	10	117	250	142	48
18	28	43	142	£	179	P)	126	118	149	143	206
61	6	4	106	69	246	9 6	66	119	133	144	103
50	24	4 5	136	70	289	W)	141	120	2 19	145	12
21	56	4	122	7.1	145	96	203	121	1 26	146	24
2.5	27	47	166	72	1 30	44	170	1 22	41	147	30
23	29	49	177	73	110	96	185	123	₽4	148	04
24	55	64	661	4,	1 55	66	221	124	4	149	12
25	6ع	50	198	75	1 58	100	178	125	84	150	27
24	47	15	ሮን ሄ. ሮን	42	1 56	101	175	126	53	151	9
27	ر 0	S.	32.0	7.7	167	102	.	127	110	152	0
28	ያሉ የ	F)	29 P	7.8	16	103	5.B	128	90	153	60
53	40	₽ •	247	4	117	104	4	1 20	2	154	27
0 E.	73	55	490	6	113	105	Pî Fî	0£ 1	1.84	155	21
31	88	56		81	155	106	*	131	215	156	23
6 2	153	57	39.2	82	1 7A	101	31	1 32	1 56	157	12

WING 6.V.L.R.TFNSILE.STRAIN AT MAX STRESS, CHS=0.002 IN/MIN TP-HIOLL

This sample size summary is applicable to figures 1 thru 5.

r

Œ	SAMP			23	37	vo	o	13																		
AGE	(WU S)	Œ	0	161	192	Eol	196	101																		
Œ	SAMP	21	2. 8.	o	33	18	84	m	1.8	8 -	20	8 1	m		1.9		13			1.9				O :		25
A GE		158	1 E9	160	191	1 62	163	164	165	166	167	169	171	172	17E	178	179	1 80	181	182	183	184	185	196	187	80

- 17 -

Figure 4

*** SAMPLE SIZE SUMMARY ***

ď	SAMP	18	•	17	90	38	2	Œ	•	56	43	9	Œ	•	~	•	¢	.	ĸ:	•	~	•	12	٠.	8	•
AGE	(SCM)	135	136	137	138	139	140	141	142	143	7 + 2	145	146	147	148	140	150	151	152	154	155	156	151	158	1 59	160
K.	SAMP	1.4	22	27	10	10	19	68	12	20	6 3	d Mi	32	45	32	10	N	12	01	ĸ	Œ	24	80	56	12	25
A GE	(MUS)	108	60 1	1 10	111	112	113	114	115	1 16	117	118	611	1 20	121	1 22	1 23	125	127	128	129	1 30	131	1 32	1 33	134
¥	SAMP	16	01	9	7	Œ	10	æ	9	2	12	17	36	36	4 B	53	72	56	40	31	a u	ריו	1.	v	ç	N
AGE	(MD S)	P) CC	8	85	PE	87	96	98	00	16	6	6	♥ 0	9	96	4	96	56	100	101	102	103	104	101	901	101
<u>د</u> 2	SAMP	0	31	4 5:	r Fi	57	40	42	£ _	53	36	36	35	S.	12	28	32	9	6	81	19	25	50	11	50	24
AGE	(NOS)	58	6 5	90	19	62	63	64	65	99	47	68	49	70	11	72	73	74	75	42	7.7	78	79	80	18	82
Ž	SANF	22	26	26	46	1.4		28	16	+ 1	Œ	~	ų)	•	10	91	24			eu F					S. B.	
AGE	(MOS)					37					% ◆		4		46	47	4	4	50	15	52	53	54	55	56	57
αz	SAMP		8	4	¢	14	22	4	16	12	+1	16		16			13									
AGE	(MOS)	-	80	0	11	12	E 1	+1	15	16	17	18	61	20	21	22	23	24	25.57	56	2.7	8.	٥. د	30	31	32

WING 6.L.R.BIAXIAL TENSILF, MAXIMUM STRESS, (HS=0.2 IN/MIN TPH-1011

This sample size summary is applicable to figures 6 thru 9.

C

WING 6.L.R.BIAXIAL TENSILE, MAX IMUM STRESS, CHS=0.2 IN/MIN TPH-1011

Figure

U

00

40

PARAMETER

Figure

ISd

MODULUS

00.06

00.011

MERSURE 70.00

00.021

,OI×

130.00

*** SAMPLE SIZE SUMMARY ***

C.

AGE	æ	AGF	N N	AGE	αZ	AGE	Υ Σ	AGE	N.	AGE	ž
(SDM)	SAMP	(MUS)	SAMP	(WOS)	SA MP	(MO S)	SAMP	(MCS)	SAND	(MOS)	SAMP
O.	₩;	28		53	1 00	7.8	177	103	63	128	*2
•	57	54		54	ይ	5.2	125	8	3	129	19
ĸ	151	30		55	1 52	90	132	1 05	18	1 30	264
•	161	31	52	56	E: #	83	179	106	33	131	150
~	171	32		57	172	82	4 5	101	27	132	55
Œ	143	13 13 13 13 13 13 13 13 13 13 13 13 13 1		58	1 5A	F) C.	106	1 0A	111	133	69
Φ	161	3.4	7.8	59	4 5 2	8	6	1 09	118	134	111
01	189	3.5	* *	60	1 50	88	F)	110	6.8	135	20
=	261	36	154	61	1.89	86	63	181	33	136	* 5
12	220	37	E)	62	218	87	156	112	108	137	102
13	213	38	33	63	2.83	88	1.43	113	132	138	270
4	223	34	E? 6	64	1 34	6	156	114	62	139	165
15	223	0	6 .6	65	78	06	117	115	77	140	43
٦	212	41	3	99	29	1 3	100	1 16	262	141	4
17	184	4	59	29	1 10	92	104	117	264	142	87
19	56	e A	7.5	6.8	1 10	r) G	301	118	191	143	232
61	09	4	2.1	69	1 66	•	146	1 19	117	144	36
20	18	4 5	5.0	20	151	u: O	160	1 20	259	145	24
21	78	46	58	7.1	114	96	257	121	127	146	42
22	E ¢	47	106	72	1 63	16	206	1 22	C F)	147	21
23	30	4.8	96	73	165	9 6	301	123	46	148	18
4	77	4 9		74	202	66	180	1 24	4	149	23
52	51	50		7.5	259	0	83	125	9	150	38
5 6	36	15	181	92	167	101	150	126	7.8	151	35
27	59	25		7.7	1 54	102	22	127	68	152	1.5

WING 6 .L . P. TENSILE STRAIN AT MAX STRESS, CHS= 2.0 IN/MIN TP-HIDII

This sample size summary is applicable to figures 10 thru 14.

WING 6.L. -R. TENSILE STRAIN AT MAX STRESS, CHS= 2.0 IN/MIN TP-H1011

- 30 -

(

*** SAMPLF SIZE SUMMARY ***

C

SAMP	81	15	9	10	27	13	•	•	01	•	4	27	Œ	·c	≈	•	6 0	=	•	~	•	•	◀	12	~
AGE (MOS)	134	135	136	137	138	1 39	140	141	142	143	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158
SA AR	Œ	21	34	Œ	Œ	24	64	55	Ç.	45	23	12	41	Œ	13	11	ĸ	Œ	Œ	Œ	∢	19	19	47	30
AGE (MOS)	1 08	1 09	1 10	111	112	1 13	114	115	116	1117	1 18	119	1 20	121	122	123	124	125	127	128	1 29	1 30	121	1 32	1 33
S AMP	10	7 7	16	10	01	16	23	19	2.7	18	26	36	53	S. B.	50	25	₹9	42	33	0 7	9	1.1	w =	10	CV:
AGE (MOS)	e, C	Œ	96	86	87	9.6	83	0 0	16	20	6.0	4 6	9	96	4	G Q	56	100	101	102	103	104	3 01	106	101
SAMP	O.S.	27	22	36	æ	41	42	8	56	32	33	56	71	42	31	4	3.8	36	56	£ 1	14	27	* 1	51	22
AGE (MOS)	8	20	0 0	14	62	63	\$ 9	65	99	19	£.9	69	70	12	72	73	74	75	76	7.7	78	44	80	81	63 63
SAME				2¢		11	9. P.		a U	9	()	•	α	w	1 9	v	34	36	27						
AGE (MOS)	E.	46	ic M	36	37	3.8	36	0	1.4	42	₩ 4	4	4	46	47	₩	49	ۍ 0	51	S 25	53	54	ນ	56	5.7
SAMP	N	N	*	*	+1	17	¢	ø	œ	•	14	11	20	4	10	¢	Œ	23	F 1	11	17	1.		16	
AGE (MUS)	-	Œ	o	11	12	13	+1	15	91	17	18	19	0 2	21	22	23	24	25	26	27	28	50	30	31	32

WING 6,H.P. TPIAXIAL TENSILE.STRAIN AT MAX STRESS.CHS=1750 IN/MIN.ROO PSI

This sample size summary is applicable to figures 15 thru 18.

ď	SAMF	æ	7	~	w	12	~	4	tv	8	C.	'n														
AGE	(50M)		186	187		189	061	192	193	194	195	198														
α Z	SAMP	•	•	01	α:	•	α	P)	4	^	8	ស	2	ç	4	4	4	Œ	ıc	Ç	•	æ	ĸ	v	₹	œ
AGE	(MOS)		160	191	162	163	1 65	166	167	1 68	169	170	171	172	1 73	174	175	176	177	178	179	180	I v I	182	183	184

L

- 37 -

*** SAMPLE SIZE SUMMARY ***

Ž	SAMP	E 1	12	6 %	51	47	10	*	12	œ	23	=	40	000	~	6	Œ	•	•	•	•	^	•	ĸ	0 1	~
AGF	(MOS)	135	136	137	138	139	140	141	142	143	144	145	146	147	148	149	150	151	152	151	154	155	156	157	158	159
T.	SAND	40	17	1.2	AS	57	31	34	122	31	45	0	27	v	21	14	r.	16	28	28	12	23	6) F)	34	11	36.
A GE	(MCS)	1 10	111	112	113	114	115	116	117	1 18	1 19	1 20	121	1 22	123	124	125	1 26	127	1 28	129	1 30	121	1 32	1 33	134
č	SAMP	1.5	11	1.0	23	46	ů.	30	10	36	\$ 5	37	69	19	7.5	51	۲. ۲.	45	v	~	24	மு	-	12	2 1	E &
AGE	(MU 8)	R	8 8 8	41	α. α.	R S	06	10	(V ()	M. C	\$ 0	u. C	96	4	a o	50	001	101	201	F: 01	104	105	10 F	107	106	601
Ľ	SAMD	34	4.5	6.8	120	43	41	11	56	55	47	د ن	54	4.8	85	î,	51	31	51	32	۳	Ç.	17	4%	r.	Œ
AGE	(SOW)	60	19	62	6.3	64	S. S.	99	47	6.8	69	7.0	7.1	72	73	74	75	42	7.7	78	70	AO.	.	82	p 3	8
S.	SAMP	•	2.e		2.4			21	~	_	12	u.	ω	3.0	4		2.6									
AGE	(MUS)	u' Fi	36	37	3.8	62	4	4 1		4 3		45	46	47	4	4	ر 10	51	52	e B	r.	r.	56	57	ድ የ	ON UC
œ Z	SAND	c.	12	c 1	1 8	4	1.2	Œ	12	41	.4	4	4%	4	α:	16	54	. 2	31	20	£.	28	600	4	4.	1,
AGE	(WCS)	σ.	11	٦٥	1.3	14	y;	16	17	18	19	50 20	21	25	E C	*	?: ::	26	27	£.	50	Or.	31	۲,	33	4

WING 6.44. R. PYCRCSTATIC. STRAIN AT MAX STRESS, 1750 IN/MIN. 800 PSI

This sample size summary is applicable to figures 19 thru 23.

•

ďŽ	SAMP	1 0	-	12	10	a ·	(V	(1)	~	-	(\)															
AGE	(MUS)	186	187	188	189	190	192	193	194	501	198															
22	SAMP	4	10	4	•	V.	*	4	Œ	9	4	ĸ	¢	۸'	۷,	¢	c I	4	¢	c:	01	v	Œ	¢	vc	4
AGF	(MCS)	160	161	162	163	165	166	167	168	169	170	171	1 72	173	174	175	1 76	177	178	179	1 e o	191	192	183	V 0 1	4

MING 6.H.R.HYDDRSIATIC.STEAIN AT MAX STRESS.1750IN/MIN.800 PSI

Figure 19

NIAATS

.,0 MERSURE 0,32

=

0. S# E

PARAMETE

91

Oħ O

TA

95.0

8ħ '0

XHM

SSBHIS

("

=

- 43 -

C

WING 6.H.R.HYDROSTATIC,STARIN AT RUPTURE,1750IN/MIN,800 PSI

- 44 -

Ffaure 22

*** SAMPLE SIZE SUMMARY ***

r

ď	SAMP	21	7	12	•	¢	12	m	12	m	25	0	32	•	6	0	6	E	c	•	18	M	E)	m	m	¢	
AGE	(SOM)	142	143	141	145	146	147	148	149	150	151	152	153	154	155	156	151	158	159	160	191	162	163	164	165	166	
Œ	SAMP	27	21	61	4	21	ø	Φ	27	20	21	18	23	N	Ř	45	Œ	21	31	21	٥i	12	37	€	σ	15	
AGE	(MOS)	117	118	1 19	1 20	121	122	123	124	125	1 26	127	128	1 29	1 30	181	1 32	133	♦E 1	1 35	136	137	138	66 1	140	141	
α×	SAMP	v	25	92	98	15	54	R) R)		F) &	27	11	3 8	12	ው	v	12	91	1	12	ý	20	51	E.	34	4 2	
AGE	(SOM)	0	P) O	7 6	Q. Ri	96	44	E U C	O.	100	101	10 2	103	104	10€	10€	101	101	105	110	111	211	211	114	115	116	
ď	SAMP	o	σ	50	30	7	30	30	0. F.	35	17	04	8.0	S	17	F. 0	35	12	17	1.8	σ	33	19	12	30	4	
AGE	(SUM)	47	68	69	70	7.1	72	73	2	75	76	7.7	78	79	80	18	82	93	4	85	86	R7	88	G.	05	16	
<u>x</u>	SAMP	w	12	P)	œ	m	w	v	~	2 ¢	\$	* 6	8 8	2.7	27	21	24	50	σ	Ç		9 🕈			S	8	
AGE	(S OM)	42	₽	*	₽	9 🕈	47	₩	6♥	20	51	52	53	5. •	5	56	77	5.8	er.	٠ 0	61	6 2	63	* &	55		
<u>x</u>	SAMP	8	۳	-	m	•	m	•	ľ	c	ø	o	m	I ∿	m	m	9	Ç	m	¢	19	c	v	¢	Œ	¢	
AGE	(SOM)	12	13	K.	91	17	61	21	25	24	23	5 6	27	56	0 E	31	Q. Pi	33	34	35	36	37	38	36	0	7	

WING 6,STRESS RFLAXATION MODULUS,0.5% STRAIN,10 SEC,-65 DEC F.TPF-1011

This sample size summary is applicable to figures 24 thru 27.

C

į

ţŢ

*** SAMPLF SIZE SUMMARY ***

d Z	JE S	15	BB	0	12	Ç	m	12	m	12	ľ	15	0,	Ç	Φ	•	0	•	ç	9	•	18	m	m	m	m
AGE	C SOM C	141	142	143	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160	191	1 62	163	164	165
e Z	T X	64	21	21	15	35	21	ç	11	36	36	10	20	20	900	F. F.	15	0	15	A 3	18	PC	18	4	4	O.
A GE	(MLS)	1 16	117	118	1 19	1 20	121	122	123	124	1 25	126	121	128	1 29	1 30	121	1.32	1 33	1 34	135	1 36	137	1 38	6£ 1	1 40
2 Z	X X	1.8	24	1.8	22	21	57	68	♥	42	21	24	0	21	₩)	ው	J	12	8	u) ==	12	w	54	53	37	60
AGE		16	92	r) G	40	Q.	90	44	U	g. G	100	101	102	103	104	10.5	106	107	108	109	110	111	112	P)	114	115
2 2 3	NA NE	c	c	C' ==	21	30	44	36	G S	34	24	56	36	il.	15	61	24	33	σ	24	21	15	30	23	28	50
AGE	(SOM)	99	47	68	69	70	1.2	72	73	74	75	76	7.7	78	62	90 0	81	8	83	84	85	86	87	88	ڻ ڪ	0 6
S S	SAME	~		σ	m	w	IT)	U	P)	vc	27	S.	47	b 1	30	Oi 🕶	12	2.7	19	σ	2 1	20	Œ,	24	4%	o
AGE	(WU S)	41	42	4 3	4	4	4	47	48	4 5	20	15	52	53	40	ខា	56	57	5.8	ن	60	61	25	63	4	65
a 2	SAMP	₩.	FF.	m	ľΌ	^	IT:	m	ø	m	N	¢	1	ય	Œ	~	v	m	v	¢	Æ	18	c	r.	ç	1.2
	(MCS)	12	13	15	16	17	81	20	12	23	24	25	26	27	0%	00	31	32	33	34	SC PT	36	37	38	ð.	40

WING 6.STRESS RELAXATION MODULUS, 0.5% STPAIN. 10 SEC. - 40 DFG F. TPH-1011

This sample size summary is applicable to figures 28 thru 31.

•

ш	SAMP		24																							
	SAMP (MD	6 193			σ	6	ç	m	12	M;	Φ	ç	15	9	15	6	Φ	15	σ			11			ç	
AGE	US)	166	167	168	1 70	171	172	173	174	175	176	177	1 78	521	1 90	181	1 A2	183	184	185	1 86	191	188	1 49	051	

WING 6.STRESS RELAXATION MODULUS.0.5% STRAIN.10 SEC.-40 DFG F.TPH-1011

 $\overline{\mathbf{O}}$

- 54 -

- 55 -

O

T

1gure 30

- 57 -

*** SAMPLE SIZE SUMMARY ***

J

SAMP	M	26	12	•	•	15	, IFT	12	13	•	•	•	0	• •	0	•	•	•	8	, F 7	M	le)	, PT	•	12
AGE (MDS)	142	143	144	145	146	147	148	149	121	152	153	154	155	156	157	158	159	160	191	, re	163	164	165	166	191
SAMP	S	21	21	7.2	33	21	σ	12	8	18	20	17	24	m	F.	54	1.5	0	۸	18	18	50	64	21	12
AGF (MCS)	116	117	118	119	120	121	1 22	123	124	125	1 26	127	1 28	129	0; 1	131	1.32	133	1 34	135	137	33	62.1	1 40	1 + 1
S A R	21	2.2	21	21	32	57	57	₽	42	21	70	11	21	v	σ	ø	÷ 1	18	7	12	v	38	es Es	41	₩
AGE (MOS)	16	92	r; 0	₹6	96	96	26	ei 0	66	100	101	102	103	104	105	106	101	108	105	110	111	112	113	114	¥;
SAR	σ	01	σ	50	24	<u>پ</u>	č	24	39	æ	25	37	36	6 1	24	36	27	۳.	27	12	21	5 6	24	24	36
AGE (MUS)	د ح	29	S. S.	69	70	7.1	72	73	74	75	76	7.7	7.8	70	80	8	8	9 33	4	E.	æ	87	A A	36	0 0
NR S AM D	نما	ig '	v	PC	w	¢	U	m	•		58	4	u) 				30		w	2.2				27	
AGE (MOS)	#	42	€ ∀	4	4 5	46	47	48	4	20	15	52	53	₽.	ม	56	57	53. P	59	ۍ 0	61	52	63	4 4	ራን የ
NRS	m	ĸ	9	7	F	•	σ	c	¢	œ	c	vo	¢	m	σ	F°	o	r.	12	ç	6	\$	C	12	œ
AGE (MOS)	12	£1	15	17	88	6 7	21	22	23	5	25	56	27	28	50	30	31	35 15	33	4	35	36	37	39	0

WING 6.STRESS RELAXATION MODULUS.3.0% STRAIN.10 SEC. 20 DEG F.TPH-1011

This sample size summary is applicable to figures 32 thru 35.

the state of the s

T

140.00

×10,

120.00

MODITINE

Figure 34

1 I NU 00 . 040

9D

PARAMETER

ISd

RELAXATION

______ 00.08

ep.00 ep.00

100.00

71 0000

*** SAMPLE SIZE SUMMARY ***

C

ď	SAMP	1.8	5	€	45	4 5	4	15	39	15	8 1	45	48		12	27	33	æ	9	¢	12	E.	L	•	15	m
AGE	(MDS)	127	128	129	130	131	132	EE 1	134	135	137	138	130	140	141	142	143	141	145	146	147	148	149	150	151	152
œ	SAMP	15	5 6	12	•	IT;	10	24	o	Φ	O.	0 6	62	44	30	11	18	21	21	36	1.5	σ	2	24	81	22
¥ GE	(WOS)	1 02	103	104	105	106	1 07	1 08	109	1 10	111	112	113	114	115	116	117	118	1 19	1 20	121	1 22	123	124	125	126
œ	SAMP	33	39	2.1	21	4	24	24	33	18	24	36	24	33	45	F) (V	4 1	37	39	7.2	126	111	126	7.5	4 4	19
AGE	(WU S)	11	16	62	90	81	82	E,	8	8) 8)	86	87	A G	99	0 6	16	20	66	•	0 15	96	9.1	96	56	100	101
αZ	SAMP	75	33	19	25	36	51	4	30	74	99	A2	63	51	8	45	4	51	93	1 05	68	69	51	22	\$	E.
AGE	(SOM)	52	53	54	55	56	57	58	59	9	19	62	63	\$	65	99	67	69	69	20	7.1	72	73	74	75	76
2	SANP	24		4		30				36					1.6		1.2	6	σ	w			36		36	6 .
AGE	(MUS)	27	2.8	56	30	31	32	33	4 E	35	36	37	38	6 E	04	41	42	4	*	45	46	47	€ •	64	0£	51
œ	SAMD	r)	v	8 1	22	21	35	30	4	38	37	85	51	46	57	36	46	13	0 1	4	27	g.	9	34	7.2	30
AGE	(MOS)	N	m	*	ĸ	o	^	œ	0	01	11	12	13	*	51	16	17	18	61	20	21	25	23	24	25	ري د د

WING 6.STRESS RELAXATION MODULUS .3.0% STRAIN.10 SEC. 77 DEG F.TPH-1011

This sample size summary is applicable to figures 36 thru 39.

2	SAME							1.9		12	w	1	ĸ	v	p)												
AGF	(MUS)									189				194													
ŭ	SAMP	12	n	0	0	12	m	9	E 1	m	m	m	m	œ	12	m	IF:	0	ø	12	۱۳۰	PC	¢	15	12	15	
AGE	(SOM)	154	155	156	151	158	159	1 60	191	162	163	164	165	166	167	168	1 70	171	172		175			1 78	179	1 A0	

WING 6.STRESS RELAXATION MODULUS.3.0% STRAIN,10 SEC. 77 DEG F. TPH-1011

*** SAMPLE SIZE SUMMARY ***

3 4AB CMDS SAMP CMD	AGE	αX	AGE	<u>a</u>	A GE	œ	AGE	ď	A GE	u Z	AGE	αZ
3 43 9 69 24 94 21 118 21 15 44 3 69 24 94 21 119 21 15 45 9 27 120 36 121 119 21 15 46 6 72 47 96 60 121 18 3 48 3 72 42 96 60 122 9 9 49 6 74 42 97 60 122 9 6 50 27 74 42 97 36 122 15 6 52 45 77 34 101 24 126 27 14 9 54 26 101 27 107 4 21 27 14 9 54 27 44 105 21 129 3 124	MUSI	SAMP	(SUM)	SAME	(WUS)	SAMP	(SOW)	¥	(MUS)	SAMP	(MUS)	SAMP
3 44 3 60 24 94 21 119 21 6 45 6 70 27 95 27 120 36 15 45 6 72 42 97 57 120 36 3 48 3 72 42 97 57 122 9 9 49 6 74 42 97 122 9 9 49 6 74 42 97 122 9 9 49 7 74 42 97 124 12 9 52 45 77 34 102 9 127 17 9 53 12 78 36 103 21 127 17 9 54 28 79 18 105 9 120 21 120 9 57 31 48 1	12	IL.	₽3	v	8	7	r; 0	12	118	21	143	30
6 45 6 71 48 96 27 120 36 15 46 6 71 48 96 60 121 18 3 48 3 72 42 96 60 122 9 9 49 6 74 42 96 60 123 15 9 49 6 74 42 96 50 122 9 6 50 27 75 36 100 21 125 15 9 51 77 34 102 2 12 24 162 24 162 24 165 24 16 24 16 17 17 17 34 102 2 16 12 17 17 17 102 2 12 17 17 10 2 10 12 12 12 12 12 12	13	~	44	lu;	69	46	4 0	21	119	21	141	12
15 46 6 71 48 96 60 121 18 6 47 9 72 42 97 57 122 9 9 48 3 73 24 96 60 123 15 9 49 6 74 42 97 57 123 15 9 49 51 76 29 101 24 126 21 9 52 45 77 34 102 2 127 17 9 52 45 77 34 102 2 127 17 9 54 28 78 103 2 127 17 9 56 27 80 24 105 3 130 48 9 57 31 82 106 3 130 48 10 50 12 84	15	¢	4	v	20	27	96	27	1 20	36	145	Ç
6 47 9 72 42 97 57 122 9 3 48 3 73 24 96 60 123 15 9 49 6 74 42 96 60 123 15 9 50 27 75 34 100 21 124 21 9 52 45 77 34 102 9 126 24 9 53 12 78 36 103 21 17 17 9 54 28 79 18 104 9 120 3 120 3 3 9 55 27 80 24 105 9 130 48 21 48 9 57 31 106 3 130 48 3 48 48 10 50 12 107 8 11 <t< td=""><td>17</td><td>51</td><td>94</td><td>œ</td><td>7.1</td><td>43</td><td>96</td><td>60</td><td>121</td><td>8.</td><td>146</td><td>¢</td></t<>	17	51	94	œ	7.1	43	96	60	121	8.	146	¢
3 48 3 73 24 96 60 123 15 9 49 6 74 42 99 39 124 21 9 49 6 74 42 99 39 124 21 1 51 77 34 100 21 126 24 9 52 45 77 34 102 6 127 17 9 53 12 78 36 103 21 17 17 9 54 27 80 24 105 3 130 48 9 56 27 81 39 106 3 131 48 9 57 31 82 16 107 8 134 39 9 57 31 84 21 107 8 134 15 10 6 12	61	vo	47	σ	72	42	4	57	1 22	σ	147	12
9 49 6 74 42 99 35 124 21 5 50 27 75 36 100 21 125 15 6 52 45 77 34 102 24 125 15 9 52 45 77 34 102 21 127 17 9 54 27 78 34 102 21 127 17 9 54 27 80 24 80 130 3 130 48 9 57 31 42 27 107 8 130 48 9 57 31 42 27 107 8 132 9 9 57 31 42 21 108 32 15 14 10 50 12 84 21 108 21 33 15 10	20	m	48	FT?	73	24	96	60	123	15	148	m
6 50 27 75 36 100 21 125 15 3 51 57 76 29 101 24 126 24 9 52 45 77 34 102 9 127 17 9 54 28 79 18 104 6 129 3 9 55 27 80 24 105 3 120 48 9 56 27 106 3 130 48 2 9 57 31 42 105 3 131 48 9 57 31 42 106 4 133 15 15 60 15 84 21 106 5 134 39 15 61 12 18 11 5 136 15 15 15 64 13 21 14	12	6	0 4	¢	74	₩ *	60	36	124	21	149	σ
3 51 57 76 29 101 24 126 24 6 52 45 77 34 102 5 127 17 9 53 12 78 36 103 21 12 79 9 54 28 79 18 104 6 120 3 9 56 27 80 24 105 9 130 48 9 56 27 81 106 3 131 48 9 57 31 82 27 107 8 132 9 9 57 31 83 18 106 5 134 35 9 59 15 110 5 134 35 12 18 61 27 18 11 6 136 6 18 61 27 18 11	22	ø	20		75	36	100	2.1	1 25	15	150	9
6 52 45 77 34 102 6 127 17 9 54 12 78 36 12 12 21 128 21 9 54 28 79 18 104 9 120 3 9 56 27 81 39 106 3 131 48 9 57 31 82 27 107 8 132 9 9 57 31 82 27 107 8 132 9 9 57 12 84 21 106 21 134 39 9 59 15 10 5 136 15 13 15 61 20 86 16 11 9 13 6 15 61 21 18 11 44 139 51 16 63 21 <	23	F	15		92	53	101	8 6	1 26	24	151	15
9 554 12 78 36 103 21 129 3 9 54 28 79 18 104 9 129 3 9 55 27 80 24 105 9 120 42 9 56 27 107 8 131 48 9 57 31 82 10 8 132 9 9 57 12 84 21 107 8 133 15 9 59 12 84 21 106 5 134 39 10 60 15 86 12 110 5 134 39 10 61 20 86 12 111 5 136 6 24 63 21 89 14 113 51 14 18 12 64 33 89 14	24	•	525		7.7	33	102	v	127	17	152	ç
9 54 28 79 18 104 9 129 3 9 56 27 81 39 130 42 9 57 27 107 8 131 48 9 57 31 82 27 107 8 132 9 9 57 31 82 27 107 8 132 9 9 59 12 18 106 51 134 39 15 15 61 20 86 12 110 5 134 39 12 15 61 20 86 18 111 5 136 6 6 136 6 6 14 113 51 14 14 19 14 19 14 18 11 4 11 14 14 11 14 14 11 14 14 14	25	σ	E)		7.8	36	103	2 1	1 2A	21	154	12
3 55 27 80 24 105 9 130 42 9 56 27 81 39 106 3 131 48 9 57 31 82 27 107 8 132 9 9 57 12 83 18 106 21 133 15 9 59 12 84 21 105 5 134 39 15 61 15 18 111 5 136 6 6 24 62 48 87 18 112 33 135 6 5 63 21 87 18 113 51 136 51 9 65 9 90 30 115 30 140 18 12 9 12 24 116 36 141 18	56	σ	54		79	8	104	U	129	r;	155	M
9 56 27 81 39 106 3 131 48 9 57 31 82 27 107 8 132 9 9 58 12 84 21 108 51 133 15 9 59 12 84 21 106 5 134 39 15 61 20 86 12 111 5 135 12 24 62 48 87 18 112 33 136 6 5 63 21 89 14 113 51 136 51 9 66 12 91 24 116 36 141 18	28	m	r. L		80	4.	105	σ	02	42	156	•
9 57 31 A2 27 107 8 132 9 3 58 24 83 18 108 21 133 15 9 59 12 84 21 106 5 134 39 15 61 20 85 12 110 5 135 12 24 62 63 87 18 112 33 137 51 9 64 33 89 19 114 44 139 51 9 65 12 91 24 116 36 141 18	53	6	95		81	O E;	106	m	131	48	157	12
3 58 24 83 18 108 21 133 15 9 59 12 84 21 109 9 134 39 9 60 15 85 12 110 9 135 12 15 61 20 87 18 111 9 135 6 6 63 21 89 14 113 51 139 51 9 65 12 90 30 116 30 140 21 12 66 12 91 24 116 36 141 18	30	o	57		8.2	27	101	Œ	132	G.	158	0.
9 59 12 84 21 105 5 134 39 9 60 15 85 12 110 5 135 12 24 61 20 87 18 111 9 135 6 5 63 21 89 14 113 51 136 51 9 64 33 89 14 114 44 139 51 12 65 12 91 24 116 36 141 18	31	m	f.		83	18	108	2.1	133	15	159	E)
q 60 15 85 12 110 9 135 12 24 61 20 86 18 111 9 136 6 24 62 63 21 18 111 9 137 21 9 64 33 89 19 114 44 139 51 9 65 9 90 30 116 36 140 21 12 91 24 116 36 141 18	32	o	S.		84	21	105	U	134	39	160	0
15 61 20 86 18 111 9 136 6 24 62 48 87 18 112 33 137 21 6 63 21 18 113 51 138 51 9 64 33 89 14 114 44 139 51 19 65 9 90 30 115 30 140 21 12 66 12 91 24 116 36 141 18	33	σ	60		RS	2	110	Մ	135	12	191	8
24 62 49 87 112 33 113 113 113 21 5 63 21 88 14 113 51 138 51 9 64 33 89 19 114 44 139 51 9 65 9 90 30 115 30 140 21 12 66 12 91 24 116 36 141 18	35		61		PA	18	111	U	1 36	¢	162	m
6 63 21 88 14 113 51 138 51 9 64 33 89 19 114 44 139 51 9 65 9 90 30 116 30 140 21 12 66 12 91 24 116 36 141 18	36		رن ح		87	1	112	(1) (2)	► (2)	21	163	E
9 65 9 90 19 115 30 140 21 12 66 12 91 24 116 36 141 18	38	9	6.3		88	14	113	51	138	w;	164	E.D
9 65 9 90 30 115 30 140 21 12 66 12 91 24 116 36 141 18	36	o	A.		89	6	114	4	1 39	51	165	m
12 66 12 91 24 116 36 141 18	0	6	65	6	00	30	E: T	30	140	21	166	•
	14	12	99	~	16	24	116	36	141	18	167	12
6 67 € 92 24 117 21 142 27	42	¢	44	w	25	24	117	12	1 42	27	168	m

WING 6,STRESS RELAXATION MODULUS,3.0% STRAIN,10 SEC,100 DEC F.TPH-1011

This sample size summary is applicable to figures 40 thru 43.

WING 6.STRESS RELAXATION MODULUS.3.0% STPAIN, 10 SEC. 100 DEG F. TPH-1011

O

Figure 41

Figure 42

6, STRESS RELAXATION MODULUS, 3.0% STRAIN, 100 SEC, 100 DEG F, TPH-1011

MING

*** SAMPLF SIZF SUMMARY ***

111 112 113 114 115 115 116 117 119 120 121 120 121 122 123 124 125 125 126 127 128 129 129 129 129 120 120 120 120 120 120 120 120 120 120		E		#! #! 4 00				
110 111 112 1113 1114 1115 1116 1117 1118 1120 1120 1121 1121 1121 1122 1123 1124 1125 1126 1127 1129 1129 1120 1130 1130 1130 1131 1131 1131 1131		15			42 84	7 59 42 84	4 57 59 42 84	4 57 59 42 84
		-			E)	65 86	5 36 60 65 85	5 36 60 65 85
		1		86	75 86	1 61 75 RE	6 51 61 75 RE	36 51 61 75 86
	ж ቀ ∢ ര എ ത ത ത ഉ	Ñ		A 7	72 A7	1 K2 72 R7	21 K2 72 A7	37 21 62 72 A7
	<i>ବ ସ ଦେଖା ରା</i> ପରେ ଚ	=		æ	A0 88	8 63 60 88	в 18 63 60 яв	38 18 63 60 88
	୫୯ ୩୯୯୯୦	~:		85	58 25	8 64 57 89	9 48 64 57 89	39 48 64 57 85
	៤ភា ថ្ល សិទ	N		06	36 90	96 39	06 98 99 91 0	06 98 99 91 0
	# W W W G	ניו		16	51 91	1 66 51 91	16 21 99 12 1	41 21 66 51 91
	ଜାର ହେବ ଜାନ	-		6	36 92	£ 67 36 92	2 15 67 36 92	42 15 67 36 92
	4 0 0 N 20 C			66	4R 93	6.8 4.8 93	.3 9 6.8 4.R 9.3	43 9 68 4A 93
	6.5 0.0			96	96 94	69 of 94	9 6	46 90 69 5 44
	120			S) O	36 06	70 90 95	5 3 70 90 95	45 3 70 90 95
) i	-		90	75 96	2 71 75 96	6 12 71 75 96	46 12 71 75 96
	95		46		69	0 72 69	7 30 72 69	47 30 72 69
	132		98		4 :3	73 45	39 73 45	48 39 73 45
	69		66		2	5 74 74	74 74 5£ 6	72 74 5£ 6 7
	♦		100		₩	2 75 48	0 42 75 4B	50 42 75 48
	53 4		101		36	76 39	1 72 76 39	51 72 76 39
	©		102		¥	2 77 36	2 72 77 36	52 72 77 36
	21		103		36	2 78 36	3 42 78 36	53 42 78 36
	v		104		17	2 70 17	4 42 70 17	54 42 79 17
	σ		101		23	6 80 23	5 36 80 23	55 36 80 23
	m		106		33	2 P1 33	6 42 P1 33	56 42 P1 33
	ø		101		JE	82 30	7 51 82 30	57 51 82 30
	24		106		27	7 R3 27	57 R3 27	58 57 R3 27

WING 6.STRESS RELAXATION MODULUS,3.0% STRAIN.10 SEC.140 DEG F.TPH-1011

This sample size summary is applicable to figures 44 thru 47.

α 2	SANF	24	18		12	w	c	¢	w	P1																	
AGE	(MUS)		Œ	Œ	189	Q	O.		0	0																	
Œ	SAND	ĸ	¢	22	r:	ĸ	ĸ	MT.	9	12	m	F.	O,	9	2.1	le.	FC	¢	1.5	¢	5.	O	0	18	•	18	
AGE	(MOS)	\$ 59	160	161	162	163	164	165	166	167	168	170	171	172	174	175	176	177	178	179	1 80	181	2 H	Ed #	184	185	
													_	77													

WING 6.STPESS RFLAXATION MODULUS, 3.0% STRAIN, 10 SEC. 140 DEC F. TPH-1011

- 80 -

J

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A

*** SAMPLE SIZE SUMMARY ***

ď	SAMP	27	12	¢	21	90	20	12	15	26	36	12	M	¢	o	ĸ	12	¢	15	¢	M	¢	¢	12	•	0
AGE	(MUS)	134	135	136	137	138	139	140	141	142	143	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158
Œ	SAMP	•	σ	c	36	5. 4.0	7	% **	39	21	20	13	35	12	6	<u>.</u>	21	15	24	17	 	9	30	4	23	C
AGE	(MOS)	1 09	1 10	111	112	113	1 14	115	116	117	1 18	119	120	121	122	123	124	125	126	127	1 28	1 23	1 30	161	1 32	[.
ď	SAMP	36	12	24	27	33	33	39	36	36	42	14	99	132	66	138	72	*	S.	ڻ ٽ	21	ø	12	ED.	v	27
AGE	(MUS)	8	60 (C)	86	R 7	88	85	06	16	25	9	46	Q.	90	16	96	66	100	101	102	103	104	105	106	107	9 0
œ	SAND	«	63	69	73	99	15	36	51	36	19	06	Ci Ci	21	78	20	20	19	45	27	₹	E	24	36	30	27
AGE	(SOM)	20	9	61	62	63	49	65	66	67	6A	69	70	17	72	73	74	7.5	76	77	78	62	80	81	82	6
œ	SAMP	5	(F)	15	21	62	4			U		v	œ	œ	30	4.2	4		63	7.1	4	4	36	*	5.4	6.7
AGE	(S UM)	4		36				0		4	4	4	A 55	\$	47	€	Ø. ◆	000	15	ر. در	K)	, vc	ນ	r.	7.5	e u
ď	SAMP	F ⁻	σ	· c	. 42	42	12	24		, FC	£		•	8 4	•	0	30	90	24	24	56	200	4	. ILI	1C:	
AGE	(SUM)	Œ	: 0	0	. ~		4	5	91	17	« -	. 0	50	2	25	23	2	25	90	27	00	6	30	F	35	· f

WING 6, STRFSE RELAXATION MODULUS .3.0% STRAIN.10 SEC.180 DEC F.TPH-1011

This sample size summary is applicable to figures 48 thru 51.

The second secon

WING 6.STRESS RELAXATION MODULUS.3.0% STRAIN:10 SEC:180 DEG F.TPH-1011

*** SAMPLE SIZE SUMMARY ***

Ž	SAMP	36	48	0	61	38	126	34	Œ	16	12	15	15	^	◀	20	7.	16	5	12	% %	•	<u>-</u>	•	12	_	119 8 7	J.w	∞4	4 1	15	16	∞
AGE	(MOS)	134	135	136	137	138	1.39	140	141	142	143	144	145	146	147	148	149	150	151	152	154	155	156	151	158	159	160 161 162	164 164	165 166 166	167	170	172	174
Z Z	SAMP	*	₹.	Ç	40	31	90	e. E	ç	0	124	۲ ٥٧	108	75	ď	27	12	4	11	2.8	20	52	8.6	2	132	PF			œ	4	4		
A GF	(MCS)	109	1 10	111	112	113	114	115	116	117	1 18	119	1 20	121	1 22	123	124	1 25	1 26	127	1 28	1 29	1 30	131	132	(C) (E)		L RATIO	175	177	178		
a Z	SAMF	16	F:	16	16	2 G		4	4	8.	F) &	36	O FC	M 4	48	47	126	110	96	T	0 4	15	4	8 %	0 %	28		GFL, GEL SNELL		and 53.			
AGF	(SOM)	8	8.5	A C	87	86	86	0 °	16	c C	63	* 5	u : 0	96	4	Œ.	56	001	101	201	103	104	301	106	101	901		יטוי פנוי					
œ Z	SA MP	4	Ľ.	1 50	74	74	A)	00	O Fi	C.	72	75	HO	\$	104	ÇĄ	126	A.2.	70	۴.9	6,2	AE.	G.	39	20	4		TP-H1011.		mary is applicable to figures 52			
AGE	(MUS)	Ŗ: 0	9	19	25	63	49	ę.	99	29	68	69	70	72	72	73	74	7.5	76	7.7	7.8	46	80	8	82	83		MING 6. T		ry is appl			
Q. Z	SAMP	€	64	47	56	47	36	4	96	9 2	20	4	1.2	5 1	Y E.	36	4	24	o V	114	12.0	4	50	7.0	47			STAGE 1.		8n			
AGE	(SUM)	e T	10	36	3.7	E	96	V		42	4 L·	4	4	4	47	4	64	50	51	52	53	ر: 4	r.	36	5.7	κ. Ε		v .		This sample size			
C Z	SAMP	P°;	4	24	21		36	20	20	£.	32	52	12	32	6. 8.	24	æ	o +	56	3.2	44	4 3	4	72	54	52				Ħ			
AGE	MOS	-	Œ	01		13	4	15	۲	17	4	10	92	21	25	23	24	ري د:	9.	27	28	50	ŰŁ.	31	35	33							

*** SAMPLE SIZE SUMMARY ***

<u>Q</u>	SAMP	15	0	9	102	21	24	œ E	4 .	12	30	18	63	53	21	% 4 .	75	•	E	18	c	•	17	m	O	σ
AGE	(MOS)	128	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143	144	145	146	147	148	149	150	151	152
Œ	SAMP	2	15	¢	15	15	0	39	36	18	86	114	EG.	7.3	21	110	76	6	P	51	12	0	rs	o	r;	r;
AGE	(SOM)	103	104	105	1 06	101	1 08	1 09	1 10	111	112	113	114	115	116	117	118	119	1 20	121	1 22	123	124	125	126	127
œ	SAMP	75	20	54	21	25	44	04	36	30	42	32	19	57	\$ 4	יא נא	64	19	69	7.7	125	105	7.4	46	57	20
AGE AGE	(MO S)	3.6	40	A 0	81	8	F) C,	A 4	R	B	87	æ	8	06	16	26	66	94	C C	96	76	96	÷6	100	101	10%
Z Z	SAMP	78	51	46	90	84	٧0	9	53	72	Ç	\$ 5	25	40	6 3	68	82	7.1	6	ņ	4	ጸ	7R	74	73	46
AGE	(NOS)	53	96	53	56	25	58	59	<u>د</u> د	19	62	63	44	65	99	29	6 8	69	70	11	72	73	74	75	92	7.7
ž	SAND					1 0																	7 4	17	6. 8.	_
AGFI	(SUM)	2.2	28	56	30	31	32	33	& E:	35	96	37	38	39	0+	11	₹	43	*	46					15	
ĩ	SAM	₩.	1.5			23	18	4	24	90	5.	9	51	52	52	63	15	S.S.	2.8	<i>ک</i> ۲	17	c:	11	19	40	25
AGE	(MOS)	N	P)	4	ĸ.	¢	7	Œ	σ	10	11	12	13	41	15	16	17	41	16	20	21	22	6. E	24	2	5.Y

This sample size summary is applicable to figure 54.

CONSTANT STRAIN

TP-H 1011

S SNIM

STAGE 1

CCNSTANT STRAIN

MING &

で
ጠ ~ ගැ බ් ආ ගැ බ් ආ ක කි ආ ආ ආ ආ ආ

*** SAMPLE SIZE SUMMARY ***

SAMP

AGF (POS)

foure 54

*** SAMPLE SIZE SUMMARY ***

T

SAMP		33	21	27	36	81	67	48	30	18	12	o	21	œ	5.	PT.	Ç	0	15	•	œ	12	m	12	12	•
AGE (MUS)	. !	133	134	135	136	137	138	139	140	141	142	143	144	145	146	147	148	140	150	151	152	154	155	156	157	158
SAFP	ſ	۳,	O:	24	15	30	Æ:	27	o	e G	g. Fi	σ	12	33	σ	¢	21	1 ?	27	21	30	36	7.0	4	44	12
AGE (MCS)		£0 1	1 09	1 10	111	112	113	1 14	115	1 16	117	118	1 19	120	121	122	123	124	125	126	127	1 28	1 29	1 30	121	132
SARE	•	Ľ	0 M	27	12	2.7	36	42	51	E.	15	84	4	£.	36	123	111	84	75	5 E	u.	12	a –	m	u:	8 1
AGE (MDS)	ŗ	τ,	¥	36	35	F 3	er er	٥ ه	06	16	₹ 6	E G	40	95	96	26	e, C	0	100	101	102	103	104	105	10¢	101
SA RD	i	ę Ĉ	33	21	57	5.2	81	40	22	4 ¢	45	£0	96	1 OA	.	57	A.	54	48	S.E.	74	27	12	15	4	٤ 1
AGE (MOS)	Ç	r C	59	40	61	62	63	54	65	99	44	63	69	20	7.1	72.	7.3	74	75	76	7.7	7.9	70	8	8 1	82
NR SAMP		7	رن 4	27		4	1.8		_	1 5	71	ల	vc	_G	12	ŗ	51	₽	15	ን የ	7.8	3.3	F 57	15	99	r v
AGF (MDS)	ſ	\ B	.3 3	♦	3.5	36	37	3.8	39	0 4	41	A 2.	43	4	46	47	48	₽	50	15	52	E E	54	ស ស	56	47
CHY S 4MP	,	^		۳	~	12	c	1.3	15	¢	30	18	51	5	¢	c.	S 1	r:	7.0	12	39	1.3	7.	45	21	39
AGF. (MNS)	•	-	¢	7	5 C	œ	0 1	25	13	41	15	16	1.1	18	0.	50	21	% %	5.4	r S	K Q	12	ر 3	58	30	.39

This sample size summary is applicable to figure 55,

HARDNESS

SHEEF A. 10 SECOND

TP-H 1011

STAGE 1 WING 6

ï

α. V.	SAMP	σ		ig:		12	S	v	mj	ניו	m	P														
AGE	(40 5)	185	Œ	181	Œ	189	1 40	¢	192	C	S6 1	Q.														
Ç	SAMP	¢	2 2	~	ĸ	m	ļr-	m	c	ю	15	¢	۳	¢	c	£	12	9	1.5	v	F C	21	۳	œ	12	6
AGF	(SOH)	159	160	191	162	163	164	165	166	167	1 £ R	691	170	17.1	1.72	E 2 3	921	1 76	177	178	179		181		183	1 84

STAGE I WING 6 TP-H 1011 SHEPF A. 10 SECOND

HARDNESS

- 96 -

Figure 5

*** SAMPLE SIZE SJMMARY ***

SAMP	37			11				9	30		•	•	•	4	80	œ	9	4	•	*	•	~	•	7	8	
AGE (MOS)	134	135	136	137	138	139	140	4	4	4	4	4	4	148	4	S	S	S	5	S	5	5	S	S	9	
SAR		24		15		22											31	6	31	5 8	01	41	96	20	14	
AGE (MDS)	0	_	~	112	_		-	_	_	_	-	2	2	~	~	~	~	\sim	2	~	~	3	3	3		
NR	35	19	17	12	12	25	21	59	21	42	57	19	84	82	140	93	64	43	14	13	e	13	17	80	10	
AGE (MOS)	8	85	98	87	88	83	06	16	36	93	46	95	96	4	66	66								107		
N S S M P				4.5																						
AGE (408)				29																						
SARP				53									m			42										
AGE (MOS)	34	35	36	37	38	39	40	41	42	43	77	45	4 9	4.4	48	64	20	51	25	53	54	55	26	. 57	58	
N3 SAMP	6	10		22										5.6												
A3E (MDS)	m	•		12																						

STASE 1. WING 5, TP-41011, THERMAL COEFFICIENT OF LINEAR EXPANSION ABOVE TS

This sample size summary is applicable to figures 56 and 57.

SEMP	
AGE (MOS)	189 190 193 194 197
SAMP	N4NN4499m4040ma00maNNm20m
A3E (M3S)	

STAGE 1, WING 5, TP-HID11, THERMAL COEFFICIENT OF LINEAR EXPANSION ABOVE TO

99 -

*** SAMPLF SIZF SUMMARY ***

ď	SAMP	Œ	æ	Œ	*	10	C	8	*	&	9	·C	•	S	•	9	-	8	8	•	¢	•	~	•	•	9.9	7
AGE	(MOS)	146	147	149	150	151	152	153	154	155	156	151	158	159	160	191	162	163	165	166	167	168	169	170	171	172 175	192
Z Z	SANP	Œ	16	16	Œ	a	~	Q.	•	ď	•	12	Œ	•	Œ	c	•	•	•	¢	c	Q	1	•	¢	N	
A GE	(MCS)	2	121	1 22	123	124	125	126	127	1 28	130	131	132	133	134	1 35	136	137	1 38	139	1 40	1+1	1 42	143	144	145	
α Z	SAMP	•	U	20	80	26	6 1	æ	•	7	10	11	ĸ	12	•	4	•	4	4	Œj	ď	w	•	4	•	∾	
AGE	(MO S)	0	Q U	9	70	9.0	66	100	101	102	103	101	105	106	10 P	501	110	111	112	E) []	114	v: 11	116	117	116	119	
α Z	SAMP	+	23	34	20	91	31	01	+=	0 2	14	14	~	c	Œ	c	۸	4	Œ	۳.	¢	הי	4	ır	¢	۸	
AGE	(MUS)	63	66	67	89	69	7.0	7	7.2	73	7.4	75	76	79	18	ري م	4	RS	86	A7	88	90	0	16	92	r. 0	
ŭ.	SAMP	13	₹	7	u,	17	ĸ	<i>(</i> / ₀	~	٣	m	-	•	P:	r:	r,	r.	rs	S	•	r;	16			د		
ACR.	(MUS)	3.7	38	30	40	14	₹	₽4	4 4	4	4	47	4	64	S	21	r: G	56	57	œ v:	G.	0 y	19	ć	F. C	÷	
<u>a</u> Ž	SAMP	IO.	-	-		-	-	•	N	•	*	20	•	•	c	14	ત્ય	•	4	12	10	e:	¢	10	σ	c.	
AGE	(MOS)	-	10	11	13	15	15	18	10	9	21	22	23	24	ر. د	9.	27	26	000	30	Į,	32	EE	∢ P;	35	9 F:	

STAGE I WING 6

TGA IGNITION TEMPERATURE, 9 DEGREE C RISE/MINUTE

*** SAMOLE SIZE SUMMARY ***

A GF	æ	AGF	œ Z	AGE	α 2	AGF	Ç.	AGE	Z K	AGE	ď
(SUM)	SAMD	(SOM)	SAR	(MUS)	SAMP	(WC) W)	SAMP	(MCS)	SANP	(SOW)	SAMP
ĸ	•	10	52	55	28	0	34	1 05	œ	1 30	25
¢	7.7	16	2.8	ĸ.	32	4	⊌; ₱)	1 06	-	121	3.9
_	11		23	7.8	27	A 22	30	101	¢	132	24
Œ.	*1	33	51	53	41	93	30	1 08	*1	133	91
σ	12		33	50	60	8	18	601	<u>.</u>	134	¢
01	r.	R.	* %	O _V	44	e S	20	1 10	•	135	12
=	ĸ		63 63	41	7	86	91	111	Ç	136	Œ
-	**	37	2	62	35	B 7	51	112	=	137	Œ
13	1.5	E M	v	۲	47	AE	20	113	37	1 38	01
*-	8	¢ E	¢.	• •	25	8.5	Ci Fi	114	53	139	9
15	o	0	2.1	6	30	00	32	115	35	140	10
9	8	7	ſſ	99	Ci Fi	Ιö	15	116	11	141	Œ
17	*1	0! 4	11	67	\$ 6	0.	22	117	25	142	9.0
18	30	4 3	12	63	35	E O	56	1 18	4	143	40
61	01	*	w	69	4	4 0	36	119	લ	747	16
2		4	6	70	8	u: O	(J)	1 20	<u>.</u>	146	12
21	4 61	46	a.	77	51	96	56	121	12	147	9
25	91	47	47	72	86	40	62	122	13	148	(\
23	E1	€	14	73	34	80	70	123	rc,	149	16
24	0	49	3.6	74	36	55	53	1 24	60	150	N
(C)	27	0		75	7	100	63	125	17	121	ø
96	0.2			76	6 =	101	6 0	126	17	152	•
27	12		9 19	77	*	102	36	121	ĸ	154	N
28	2.5	53	5 E	7.8	ر د	E 01	B)	128	23	155	N;
0	30		51	52	26	104	12	129	11	156	4

12 DEGREE CENTIONADE RISEZMIN STAGE I WING 6. TO-H 1011. DIA. FNDCTHFPW 1.

This sample size summary is applicable to figures 60 and 61.

ž	SAM	v	F)	•	*	77	7																			
AGE	(MOS)	190	161	193	104	105	198																			
ũ	SAMP	ß	*	*	*	*	N	ď	•	ď	N	•	6!	¢	•	•	۸.	2.1	9	Œ	•	vc	16	T	æ	14
AGE	(MOS)	157	159	1 60	191	162	163	165	166	167	1 70	1 71	173	174	175	177	178	1 40	141	E & T	1 64	# K =	186	1 67	IAA	561

12 DEGREE CENTIGRADE RISE/MIN

ENCOTHERM 1.

DT A.

TE-H 1011.

STAGE I WING 6.

Figure 50

EXOTHERM

PARAMETER

=

SAMPI F SIZE SUMMARY

Z	SAMP	ĸ	10	Œ	~	•	¢	0 1	^	16	35	1.	11	ĸ	α:	15	-	•	•	N	N	•	•	•	P?	•
AGE	(SOM)	134	135	136	137	138	6E T	140	141	142	143	144	146	147	148	149	1 50	151	152	154	155	156	157	159	1 60	161
ď	SAMP	15	4	v	11	35	57	38	o	24	7	<i>ه</i>	12	12	13	r,	σ	17	16	ហ	0	10	0,	37	25	*
AGF	(MOS)	109	110	111	112	113	114	115	116	117	118	119	1 20	121	1 22	123	124	125	126	121	1 28	129	1 30	131	1 32	1 33
ď	SAMP	91	16	15	17	1 e	(\) (*)	31	v:	19	C.	8 E	31	ۍ 0.	53	41	56	58	51	۲۲) ۲۳)	33	11	~	15	•	22
AG F	(S OM)	4	3.6	В€	A7	CC ar	۳ ۵۰	90	0 1	۵ ۵	r; 0	4 C	0 S	5	26	9.6	50	100	101	102	103	104	101	106	101	108
ũ	SA MP	66	42	34	80	9,	16	€	, ,	53	F)	31	67	0 Y.	Æ	er Ci	33	<u>ر</u> ۳	16	۲	21	24	34	L)	30	٧,
AGF	(MUS)	R) Q	90	F1	62	63	4:5	Ĉ	99	47	6.8	69	70	7.1	72	73	74	75	76	77	78	79	80	81	A2	83
Ş	SAMP	3.6	21	5 6	61	^	9 T	13	u;	11	0 #	4	v	σ	4	- F.	30	17	1 5	ν; ιr	30	16	2.7	۵۲	K:	۲.
AGF.	(SUM)	34		36		38	٥٤	4 O	4 1	42		4 4	45	9*	47	4	0 4	20	15	50	ر در	40.	r r	35	57	n. e.
ž	SAND	m	ıc.	r:	17	01	c	ľ	c.	14	18	4	11	6.0	F.1	10	σ	2.0	91	c: 1	10	81	6. 6.	21	23	11
A GE	(SUM)	Œ	o.	10	12	13	4 1	15	16	17	18	01	00	2	رن در	23	40	ر ائ	56	27	8	8	30	31	C.E.	33

12 DEGREE CENTIGRADE RISE/MIN FXOT LFRM 2. DT A. TP-H 1011. STAGE I WING 6.

This sample size summary is applicable to figure 62.

Z.	SAMP	æ	tv																							
AGE	(BUB)	195	198																							
Ž	S AMP	r	~	Q.	α:	-	۸	4	æ	ic.	•	•	N	11	¢	œ	*	*	14	Œ	Œ	1.4	9	F.	۴.	*
AGF	(MUS)	162	163	165	166	167	170	171	173	174	175	111	178	1 40	181	193	1 64	#) #	186	187	8 ÷ 3	1 H0	1 40	101	£5 T	1 04

OTA. EXCTHERM 2. 12 DEGREE CENTIGRAPE RISEZMIN

STAGE I WING 6. TP-H 1011.

** SAMPLE SIZE SIMMARY **

AGE	<u>.</u> Ž	AGF	ď	AGE	a Z	AGE	ĸ	AGE	Q.
(SUM)	SAMP	(%C)%)	SAME	(SOM)	SAVO	(MUS)	SANP	(MOS)	SAMP
Œ	M	36	•	4	•	10	·	1 35	IF)
•	•	3.7	r	65	•	0	r:	1 40	**
11	٣	016	ev	y Y	4	E)	m	142	N
12	•	4	r	٨7	11	40	~	143	4
F. -	r	C *	m	68	x	o R	¢.	1 44	-
-	m	*	(V	6.5	•	96	v	146	
	-	4	-	70	•	6 .	v :	140	-
۳	<	9*	u·	11	¢.	€0	-	1 60	-
11	ဟ	47	•	72	ĸ	Ů.	-	1 66	-
0	r	€	Œ	73	4	100	-	1 69	
61	ŗ	5 🕈	•	7.4	¢	102	4		
21	α'	0	W	75	o	101	PT:		
25	•	15	C'	11	r;	104	-		
6		5.2	•	78	ŗ	104	ΙĊ		
2	-	M K	¢	79	6	105	•		
23	-	*	F	P.0	12	110	-		
36	۲۰'	53	u ·	91	10	113	11		
2.7	•	36	ריו	8 8	ď	114	7 %		
28	FT.	57	^	A3	Œ	y 1 1	^		
50	ĸ	58	a.	84	^	116	N		
0 r	٥	20	~	ያ ት	-	117	m		
16	*	9	•	87	σ.	118	m		
33	•	61	~	88	Œ	126	N		
4	ĸ	0°	9	C &	14	130	v		
35	*	e)	u :	00	12	121	4		

12 CEGREE CENTIONADE RISEZMIN TF-H 1011. DTA. EXOTHERM 3. STAGE I WING 6.

This sample size summary is applicable to figure 63.

*** SANPLE SIZE SUMMARY ***

2	SAMP	33	*	<u>~</u>	ć	10	•	Œ	2	•	~	•	91	86	91		•	~	16	N	•	•	N	~	•	v.
AGE	(MOS)	131	132	133	134	135	136	137	138	139	140	141	142	143	**1	146	147	E 4 1	149	150	151	152	154	155	156	151
ď	SAMP	22	¢	11	11	m	c	~	20	37	6	2	23	6 ,	≈	2	12	13	m	10	17	11	ıc.	21	11	R:
AGE	(MUS)	1 06	1 07	1 08	100	01 1	111	112	113	114	115	116	117	118	ō1 1	1 20	121	1 22	1 23	124	125	126	127	128	23	1 30
œ	SAMP	α:	₩ ₩	22	E 1	0.0	15	P)	F: =	16	E.C.	11	51	23	2 E	e E	\$	50	44	52	62	58	4 F.	11.	10	u,
AGE	(SUM)	1 6	æ	P) Œ	A 6	K.	A É	A 7	æ	S S	0 c	16	<i>2</i>	r. O	0	6	4	44	E C	50	001	101	102	E 01	104	10
ŭ.	SAMP	8	2	36	26	30	E.	27	4	20	۲,	29	ŝ	26	G. C.	7.2	C 4	G.	2.8	31	P°.	1.8	11	01	c	۴۵
AGE	(SUM)	56	23	5.9	C.	ος Ο	61	42	63	40	5.5	99	47	9	3	70	Z	7.2	73	74	75	76	7.2	78	7.9	90
¥	SAMP			4 :					(J	0.	16	(y	Œ	1.1	u ·	•	10	0 🕈	31	36	E &	7.2	14	46	16	23
AGE	(80W)	31	32	m, m,	≠ Fi	3.5	46	715	3.8	39	04	41	4	43	4	♦	4	47	48	4 9	S.	51	ر د	53	S.	ย
<u>د</u> ۲	SAMP	•	Lċ	1.1	11	G	E.	0%	01	17	~	23	10	15 13	¢	ď	61	7	12	œ	56	61	18	22	51	30
AGE	(sua)	ĸ	¢	•	Œ	Ç.	01	~ ~	13	41	5	91	11	18	61	50	10	25	23	24	25	3.E	10	28	ر د د	30

STAGE I WING 6. TP-H 1011, DIA, IGNITION TENPERATURE, 12 DEGREE CENT. RISE/MIN

This sample size summary is applicable to figure 64.

AGF	œ	AGE	œ
(MUS)	SAMP	(MCIS)	SAME
159	•	101	F)
160	•	103	•
141	*	104	4
142	*	y 61	0
163	N	198	(1)
165	٨		
941	•		
167	C .'		
170	Q,		
171	•		
173	α;		
174	v		
175	4		
177	•		
178	v.		
1 A0	12		
181	¢		
1 83	Œ		
184	4		
5 1	9		
	16		
167	æ		
	Œ		
1.49	13		
1 90	ĸ		

STAGE 1 WING 6. TF-H 1011. DIA. IGNITION TEMPERATURE, 12 DEGREE CENT. RISE/MIN

T

Figure 64

*** SAMPLF SIZE SUMMARY ***

ž	SAMP	33	4	12	m	2	•	•	12	¢	•	•	F :	12	7.	¢	¢	12	=	•	m	•	c	¢	0	•	9	m	•	e	9	m	•							
AGE	(MOS)	145	146	147	148	149	150	121	152	153	154	155	156	157	158	159	160	161	162	164	166	167	168	170	171	172	190	191	192	193	195	197								
œ Z	SA MP	70	30	50	G.	11	¢	12	25	15	O F,	57	68	30	17	E	7.2	18	•	18	ۍ. ک	*	G.	21	15	yr.	12	6	18	15	12	σ.	12	•	18	Φ	8 2 ;	a :	æ :	12
AGF	(MOS)	120	121	122	1 23	124	125	126	127	128			131	132	133	1 34	135	1 36	137	1 38	139	140	1+1	142	143	‡	174	175		PSI 179	180	181	182	183	184	185	186	18/	80 6	189
2	SAMP	14	7.2	54	95	91	ភភ	47	¢5	12	12	2 7	m	w	E	Œ	P)	F 7	90	•	63		% S:2	30	2.8	27				AT 1000										
AGE	(M() &)	0 ()	96	26	96	6 0	100	101	102	10 3	104	# 0 T	106	101	104	105	110	111	211	113	114	11 =	116	117	F 1 1	119				ING FATE										
œ	SAMP	4	L E1	72	57	36	6 7	51	27	œ	C E	.	♥ P	54	15	σ	13	12	¢	<u>د</u>	15	2. R.	ζ	Č Pi	13	٠,				1 BURNENG		figure 65								
AGF	(SOM)	02	7.1	72	7.3	74	75	74	7.7	7.8	62	80	91	95	F 60	84	A:S	36	87	RA	90	06	10	95	63	\$ 0				TP-H1011		pplicable to								
œ.	SANP	la. L.)	ĸ	5 1	m	σ	12	21	ני	i.	ÿ.	32	F 7	7.2	U 1 ♥	4.2		* *	54	66	56	46	1 1	E1	30	36				SUL		1s a								
AGF	S (SOW)	0 4	4.1	€	4 5	47	50	51	25	53	λ: 4	አን	56	5.	ď	59	ς 0	19	ر د د	63	4	6.5	6 6	29	e e	69				STAGE		size summary								
盗		c i	~	σ	15	12	12	1.9	ri)	I	m	P.	æ	5 4 2	7.2	46	1 8	6.	16	43	600	43	53	5.4	10	21						This sample								
	S (SOW)	-	C.	16	17	8 1	10	20	21	25	24	25	56	27	86	56	30	31	32	E E	#	35	36	37	3.8	Ď.						E C								

Figure 65

- 117 -

DISTRIBUTION

	COPIES
OOALC MMWRBM MMWRAM	1
DDC (TISIR) Cameron Station, Alexandria, VA 22314	2
SAMSO, Norton AFB, CA 92409 Attn: Mr. Sanford Collins, Bldg 562, Room 613	1
AFPRO, Thiokol Chemical Corporation Wasatch Division P.O. Box 524 Brigham City, UT 84302 (Cy to Larry Hales)	2
AFRPL (MKPB) Edwards AFB, CA 93523	1
SAC (LGRM) Offutt AFB, NB 68113	1
U. S. Naval Ordnance Station, Indian Head, MD 20460 M. E. Loman, Code 3012A4 Air Launched Weapons Branch Weapons Quality Engineering Center	1
CPIA, Johns Hopkins University Applied Physics Lab John Hopkins Road, Laurel, MD 20810 Attn: Mr. Ronald D. Brown	1

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM								
MANPA Report Nr. 476(82) 2. GOVT ACCESSION NO. A 12 A 12 3 15	3. RECIPIENT'S CATALOG NUMBER								
4. TITLE (and Subtitle)	5. TYPE OF REPORT & PERIOD COVERED								
Propellant Surveillance Report LGM-30 F & G Stage I, Phase G Series 1	Test Results - Semi Annual								
TP-H1011									
7. AUTHOR(s)	8. CONTRACT OR GRANT NUMBER(s)								
JOHN A. THOMPSON									
9. PERFORMING ORGANIZATION NAME AND ADDRESS Propellant Analysis Laboratory	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS								
Directorate of Maintenance	MMWRBA Project M34929C								
OOALC Hill AFB, UT 84056									
11 CONTROLLING OFFICE NAME AND ADDRESS Service Engineering Division	12. REPORT DATE November 1982								
Directorate of Materiel Management	13. NUMBER OF PAGES								
OOALC Hill AFB, UT 84056	137								
14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office)	15. SECURITY CLASS. (of this report)								
	Unclassified								
	15a. DECLASSIFICATION/DOWNGRADING SCHEDULE								
16. DISTRIBUTION STATEMENT (of this Report)									
Approved for Public Release, Distribution Unlimited									
17. DISTRIBUTION STATEMENT (of the ebstrect entered in Block 20, if different from Report)									
18. SUPPLEMENTARY NOTES									
19. KEY WORDS (Continue on reverse side if necessary and identify by block number)									
Solid Propellant									
Minuteman									
\									
20. ASTRACT (Continue on reverse side if necessary and identify by block number)									
This report contains propellant test results fr	com cartons of TP-H1011 bulk								
propellant representing LGM-30F & G First Stage Minu	iteman Motors. This report								
uses a statistical approach to analyze the bulk cart was accomplished in accordance with MMWRBA Project N	on propellant data. Testing								
The data from this test period are combined with data from previous testing and entered into the GO85 Computer for storage, analysis, and regression analysis.									

From the statistical analysis of all data tested to date (sixteen years for F and

G), significant degradation of the propellant does not appear likely for at least two years past the oldest data point.

Each point on the regression plot represents the mean of all samples at that particular age. The number of samples at each point is indicated on the sample size summary sheet on the page accompanying each regression plot or group of regression plots. The data range at any age can be found by suitable inquiry of the GO85 System.

FILMED

2-83

DTIC