Artificial Intelligence

Clustering

Extended from Kyuseok Shim's slides and

인공지능학과 Department of

Department of Artificial Intelligence

정 우 환 (whjung@hanyang.ac.kr) Fall 2021

What is Cluster Analysis?

- Cluster: A collection of data objects
 - similar (or related) to one another within the same group
 - dissimilar (or unrelated) to the objects in other groups
- Cluster analysis (or clustering, data segmentation, ...)
 - Finding similarities between data according to the characteristics found in the data and grouping similar data objects into clusters
- Unsupervised learning: no predefined classes (i.e., learning by observations vs. learning by examples: supervised)
- Typical applications
 - As a stand-alone tool to get insight into data distribution
 - As a preprocessing step for other algorithms

Clustering

- Given:
 - Data points and number of desired clusters K
- Group the data points into K clusters
 - Data points within clusters are more similar than across clusters

Data Clustering

Click log database

User	News ₁	News ₂	News ₃	News ₄	News ₅	News ₆
\mathbf{u}_2	✓	✓	✓			
\mathbf{u}_5		abla	☑			
\mathbf{u}_6	✓	✓	☑		✓	
u ₁				✓	☑	☑
\mathbf{u}_3				✓		☑
\mathbf{u}_4	✓			Ø	☑	Ø

Cluster₁
News₁, News₂,
News₃

Cluster₂
News₄, News₅,
News₆

Data Clustering

Cluster₁

News₁, News₂, News₃

Cluster₂

News₄, News₅, News₆

Recommend News₅ for this new user

A new user He clicked News₄ and News₆

Even for K (# of desirable clusters) =2, there are too many possible partition of data!

(1, 1) (1, 2) (2, 1) (5, 5) (5, 6) (6, 5) (7, 7)

Another possible partition of 2 clusters

(1, 1) (1, 2)

Cluster B

$$(5, 5)$$
 $(5, 6)$

$$(6, 5)$$
 $(7, 7)$

(1, 1) (1, 2) (2, 1) (5, 5) (5, 6) (6, 5) (7, 7)

Another possible partition of 2 clusters

(1, 1)

(1, 2) (2, 1)

Cluster B

(5, 5) (5, 6)

(6, 5) (7, 7)

(1, 1) (1, 2) (2, 1) (5, 5) (5, 6) (6, 5) (7, 7)

Another possible partition of 2 clusters

Cluster A

(1, 1) (1, 2)

(2, 1) (5, 5)

Cluster B

(5, 6)

(6, 5) (7, 7)

$$(1, 1)$$
 $(1, 2)$ $(2, 1)$ $(5, 5)$ $(5, 6)$ $(6, 5)$ $(7, 7)$

How many all possible partitions of 2 clusters?

$$= 2^7$$
 (# of subsets)

$$(1, 1)$$
 $(1, 2)$ $(2, 1)$ $(5, 5)$ $(5, 6)$ $(6, 5)$ $(7, 7)$

Popular goodness measure of clustering?

minimal sum of squared distances

$$\sum_{m=1}^{k} \sum_{t_{mi} \in Km} (C_m - t_{mi})^2$$

Cluster center

Cluster A

(1, 1) (1, 2) (7, 7)

Cluster B

(2, 1) (5, 5) (5, 6) (6, 5)

Cluster A

(1, 1) (1, 2) (7, 7)

Cluster B

(2, 1) (5, 5) (5, 6) (6, 5)

Center: (9/3, 10/3) Center: (18/4, 17/4)

Cluster A

(1, 1) (1, 2) (7, 7)

Cluster B

(2, 1) (5, 5) (5, 6) (6, 5)

Center: (9/3, 10/3) Center: (18/4, 17/4)

 $(10/4)^2 + (13/4)^2 + (2/4)^2 + (3/4)^2 + (2/4)^2 + (7/4)^2 + (6/4)^2 + (3/4)^2 = 23.75$

 $(6/3)^2+(7/3)^2+(6/3)^2+(4/3)^2+(12/3)^2+(11/3)^2=44.67$

$$\sum_{m=1}^{k} \sum_{t_{mi} \in Km} (C_m - t_{mi})^2 = 68.42$$

Cluster A

(1, 1) (1, 2) (2, 1)

Cluster B

(5, 5) (5, 6) (6, 5) (7, 7)

Another possible partition

Cluster A

(1, 1) (1, 2) (2, 1)

Cluster B

(5, 5) (5, 6) (6, 5) (7, 7)

Center: (4/3, 4/3) Center: (23/4, 23/4)

Another possible partition

Cluster A

(1, 1) (1, 2) (2, 1)

Cluster B

(5, 5) (5, 6) (6, 5) (7, 7)

Center: (4/3, 4/3) Center: (23/4, 23/4)

$$(3/4)^2 + (3/4)^2 + (3/4)^2 + (1/4)^2 + (1/4)^2 + (3/4)^2 + (5/4)^2 + (5/4)^2 = 5.5$$

 $(1/3)^2+(1/3)^2+(1/3)^2+(2/3)^2+(2/3)^2+(1/3)^2=1.33$

$$\sum_{m=1}^{k} \sum_{t_{mi} \in Km} (C_m - t_{mi})^2 = 6.83$$

This partition is better than previous one!

Considerations for Cluster Analysis

- Partitioning criteria
 - Single level vs. hierarchical partitioning (often, multi-level hierarchical partitioning is desirable)
- Separation of clusters
 - Exclusive (e.g., one customer belongs to only one region) vs. non-exclusive (e.g., one document may belong to more than one class)
- Similarity measure
 - Distance-based (e.g., Euclidian, road network, vector) vs. connectivity-based (e.g., density or contiguity)
- Clustering space
 - Full space (often when low dimensional) vs. subspaces (often in high-dimensional clustering)

Requirements and Challenges

- Scalability
 - Clustering all the data instead of only on samples
- Ability to deal with different types of attributes
 - Numerical, binary, categorical, ordinal, linked, and mixture of these
- Constraint-based clustering
 - User may give inputs on constraints
 - Use domain knowledge to determine input parameters
- Interpretability and usability
- Others
 - Discovery of clusters with arbitrary shape
 - Ability to deal with noisy data
 - Incremental clustering and insensitivity to input order
 - High dimensionality

Major Clustering Approaches (I)

Partitioning approach:

- Construct various partitions and then evaluate them by some criterion, e.g., minimizing the sum of square errors
- Typical methods: k-means, k-medoids, CLARANS
- Hierarchical approach:
 - Create a hierarchical decomposition of the set of data (or objects) using some criterion
 - Typical methods: Diana, Agnes, BIRCH, CAMELEON
- Density-based approach:
 - Based on connectivity and density functions
 - Typical methods: DBSACN, OPTICS, DenClue
- Grid-based approach:
 - based on a multiple-level granularity structure
 - Typical methods: STING, WaveCluster, CLIQUE

Major Clustering Approaches (II)

Model-based:

- A model is hypothesized for each of the clusters and tries to find the best fit of that model to each other
- Typical methods: EM, SOM, COBWEB
- Frequent pattern-based:
 - Based on the analysis of frequent patterns
 - Typical methods: p-Cluster
- <u>User-guided or constraint-based</u>:
 - Clustering by considering user-specified or application-specific constraints
 - Typical methods: COD (obstacles), constrained clustering
- <u>Link-based clustering</u>:
 - Objects are often linked together in various ways
 - Massive links can be used to cluster objects: SimRank, LinkClus

PARTITIONAL CLUSTERING ALGORITHMS

Partitioning Algorithms: Basic Concept

Partitioning method: Partitioning a database D of n objects into a set of k clusters, such that the sum of squared distances is minimized (where c_i is the centroid or medoid of cluster C_i)

$$E = \sum_{i=1}^{k} \sum_{p \in C_i} (p - c_i)^2$$

- Given k, find a partition of k clusters that optimizes the chosen partitioning criterion
 - Global optimal: exhaustively enumerate all partitions
 - Heuristic methods: k-means and k-medoids algorithms
 - <u>k-means</u> (MacQueen'67, Lloyd'57/'82): Each cluster is represented by the center of the cluster
 - <u>k-medoids</u> or PAM (Partition around medoids) (Kaufman & Rousseeuw'87): Each cluster is represented by one of the objects in the cluster

The K-Means Clustering Method

- Given k, the k-means algorithm is implemented in four steps:
 - Partition objects into k nonempty subsets
 - Compute seed points as the centroids of the clusters of the current partitioning (the centroid is the center, i.e., mean point, of the cluster)
 - Assign each object to the cluster with the nearest seed point
 - Go back to Step 2, stop when the assignment does not change

An Example for *K-Means* Clustering Method

Assume we randomly partitioned the objects into 2 nonempty subsets as above!

Update the cluster means

What is the Problem of the K-Means Method?

- The k-means algorithm is sensitive to outliers!
 - Since an object with an extremely large value may substantially distort the distribution of the data.
- K-Medoids: Instead of taking the mean value of the object in a cluster as a reference point, medoids can be used

$$x_{ ext{medoid}} = rg\min_{y \in \mathcal{X}} \sum_{i=1}^n d(y, x_i).$$

- K-Means has problems when clusters are of differing
 - Sizes
 - Densities
 - Non-spherical shapes
- Problems with outliers

Original Points

K-means (3 Clusters)

Original Points

K-means (2 Clusters)

- K-Means has problems when clusters are of differing
 - Sizes
 - Densities
 - Non-spherical shapes
- Problems with outliers

An Example of *K-Means* Clustering

Update the cluster centroids

The initial data set

- Partition objects into *k* nonempty subsets
- Repeat
 - Compute centroid (i.e., mean point) for each partition
 - Assign each object to the cluster of its nearest centroid

Until no change

Python – K-Means Clustering

Packages

- Scikit-learn (https://scikit-learn.org/)
 - Machine learning tool
- Pandas (https://pandas.pydata.org/)
 - Data analysis and manipulation tool
- Matplotlib (https://matplotlib.org/)

Matplotlib: Visualization with Python

Matplotlib is a comprehensive library for creating static, animated, and interactive visualizations in Python.

$pa_{y_i t = \beta}$	nc	da	S
$y_i t = \beta$	$'x_{it}$ +	$-\mu_i$ +	ϵ_{it}

	BandName	WavelengthMax	WavelengthMin
0	CoastalAerosol	450	430
1	Blue	510	450
2	Green	590	530
3	Red	670	640
4	NearInfrared	880	850
5	ShortWaveInfrared_1	1650	1570
6	ShortWaveInfrared_2	2290	2110
7	Cirrus	1380	1360

Download the Dataset

- Download <u>cluster2.csv</u> from
- https://hyu-my.sharepoint.com/:f:/g/personal/whjung_hanyang_ac_kr/Ev34n7L_Z0BErxWCad88rsAB6IdZCa0cUn7_Rd0ryYYYWQ?e=bqVe6k
- PWD: ai202102
- Save the csv file in the same directory as the source file (.ipynb)

Import Libraries

A *magic command* to make figures are visible in the *jupyter notebook*

Provides a MATLAB-like plotting framework

Import the Dataset

Import the dataset from the csv file

The value is printed in "{}"

The printed result:

2-dimensional 1300 data points

```
Dimensions of the data = (1300, 2)
```

Import the Dataset

df[:5]

XY01.0704871.32814711.0727771.19124920.3280291.26171330.6009261.25446540.7592811.284541

Import the Dataset

Convert df to array

```
X = df.values
X[:5]
array([[1.07048688, 1.3281469],
       [1.07277723, 1.19124898],
       [0.3280287, 1.26171275],
       [0.60092577, 1.2544653],
       [0.75928098, 1.28454059]]
```

Plotting the Dataset

```
# Set the size of the figure
plt.figure(figsize=(5, 5))

# Plot the data points
plt.scatter(X[:, 0], X[:, 1], s=4)

plt.show() # Print the figure
```

Plotting the Dataset

```
# Set the size of the figure
plt.figure(figsize=(5, 5))
                               width, height in inches
# Plot the data points
plt.scatter(X[:, 0], X[:, 1],
plt.show() # Print the figure
                   x and y coordinates
                                The size of each points
  Performs a scatter plot
                                    in the figure
```

The Plotted Data

Choosing Colormaps

```
cmap = "tab10"
```

- Store the name of colormap in global variable cmap
 - For mapping cluster indices to colors

K-Means Clustering

- Create an object 'k_means' for K-means clustering
 - n_clusters: the number of clusters
 - random_state: the random seed for centroid initialization
 - max_iter: maximum number of iterations

Predicted Cluster Indices

 Perform clustering and output the cluster index for each data point

```
y_pred = k_means.fit_predict(X)
print(y_pred[:10])

[0 0 3 3 0 3 3 0 3 0]
```

The cluster index of the first 10 points

Cluster Centers

```
print(k_means.cluster_centers_)

[[1.01379946 1.15444051]
  [1.03377029 0.43895496]
  [0.37933677 0.43852558]
  [0.34274065 1.2515179 ]]
```

Plotting Clustering Results

The color of each point is determined by the cluster index

Set the colormap

The Clustering Result

