

Bac Maths Classe:

Série: révision synthese2

Nom du Prof: Mohamed Hedi

Ghomriani

O Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba / Jendouba / Sidi Bouzid / Siliana / Béja / Zaghouan

Exercice 1

(S) 25 min

5 pts

L'espace est rapporté à un repère orthonormé direct (O,i,j,k). On considère les points

$$A(0,0,1)$$
; $B(1,0,1)$, $C(2,1,-1)$ et $I(-2,1,2)$

- 1/ a- Déterminer AB ∧ AC
 - b- En déduire que A, B et C déterminent un plan P dont on déterminera une équation cartésienne
 - c- Calculer l'aire du triangle BCA
 - d- Déterminer la distance du point C au droite (AB).

2/

- a- Montrer que IABC est un tétraèdre
- b- Déterminer le volume V du tétraèdre IABC.
- c- En déduire de ce qui précède la distance de I à P.

3/ Soit S la sphère de centre I et passant par A . Montrer que S et P sont sécants suivants un cercle (C) que l'on caractérisera.

- 4/ On désigne par h l'homothétie de centre I et de rapport $k = \frac{1}{5}$
 - a- Déterminer l'expression analytique de h .
 - b- Déterminer S'=h(S)
 - c- Déterminer A'= h(A) puis en déduire P'=h(P).
 - d-Montrer que S'∩P' est un cercle (C') dont on précisera le centre et le rayon

Exercice 2

5 pts

- 1) Soit a un entier tel que $a \equiv 1 \pmod{2^4}$ et $a \equiv 1 \pmod{5^4}$. Montrer que : $a \equiv 1 \pmod{10^4}$
- 2) Soit $b = (9217)^4$. Montrer que : $b \equiv 1 \pmod{5}$ et $b \equiv 1 \pmod{2^4}$.
- 3) Pour tout entier naturel n, on pose : $b_n = b^{5^n} 1$.
 - a) Montrer que pour tout entier, naturel n, $b_{n+1} = (b_n + 1)^5 1$.
 - b) En déduire que pour tout entier naturel n, $b_{n+1} = b_n^5 + 5b_n^4 + 10b_n^3 + 10b_3^2 + 5b_n$.

4)

- a) Montrer que si 5^{n+1} divise b_n alors 5^{n+2} divise b_n^5 .
- b) Montrer par récurrence, que pour tout entier nature n, $b_n = 0 \pmod{5^{n+1}}$.

5)

- a) Montrer que $(9217)^{500} \equiv 1 \pmod{625}$
- b) Montrer que $(9217)^{500} \equiv 1 \pmod{10000}$

c) Trouver un entier dont le cube est congru a 9217 modulo 10000.

Exercice 3

(5) 40 min

7 pts

Soit f la fonction définie sur $[0,+\infty[$ par $f(x) = \sqrt{e^x - 1}$.

On note (C_f) sa courbe représentative dans un repère orthonormé (O,\vec{l},\vec{j}) .

1°) Déterminer $\lim_{x\to +\infty}f(x)$ et $\lim_{x\to +\infty}\frac{f(x)}{x}$. Interpréter graphiquement.

2°) a) Montrer que $\lim_{x\to 0^+} \frac{f(x)}{x} = +\infty$. Interpréter graphiquement.

b) Montrer que pour tout $x \in]0,+\infty[$, $f'(x) = \frac{e^x}{2\sqrt{e^x - 1}}$.

c) Dresser le tableau de variation de f.

d) En déduire que $e^x - 1 \le \sqrt{e^x - 1}$, si et seulement si, $0 \le x \le ln2$.

3°) Montrer que le point $\mathbf{B}(\ln 2, 1)$ est un point d'inflexion de (\mathcal{C}_f) .

4°) Dans la figure ci-dessous, on a tracé dans le repère $(0,\vec{i},\vec{j})$ la courbe Γ de la fonction $\mathbf{x} \mapsto \mathbf{e}^{\mathbf{x}} - \mathbf{1}$.

a) Etudier la position relative de (C_f) par rapport à Γ .

b) Tracer la courbe (C_f) .

- **5°)** Soit g la fonction définie sur $\left|0, \frac{\pi}{2}\right|$ par $\mathbf{g}(\mathbf{x}) = \tan \mathbf{x}$.
 - **a)** Montrer que g réalise une bijection de $\left[0, \frac{\pi}{2}\right[$ sur $\left[0, +\infty\right[$. On note \mathbf{g}^{-1} sa fonction réciproque.
 - b) $(g^{-1})(0)$ et $(g^{-1})(1)$.
 - c) Montrer que g^{-1} est dérivable sur $\left[0,+\infty\right[$ et que $\left(g^{-1}\right)^{1}\left(x\right)=\frac{1}{1+x^{2}}$.
 - **d)** Montrer que $\lim_{x\to 0^+} \frac{g^{-1}(x)}{x} = 1$.
- 6°) On pose pour tout $x \in [0, +\infty[$, $F(x) = \int_0^x f(t) dt$ et $G(x) = 2(f(x) (g^{-1} \circ f)(x))$.
 - a) Montrer que pour tout $x \in]0,+\infty[$, F'(x) = G'(x).
 - **b)** En déduire que pour tout $x \in]0,+\infty[$ F(x) = G(x).
 - c) Soit $m{A}$ l'aire de la partie du plan limitée par la courbe (C_f) , La courbe Γ et les droites d'équations

$$x = 0$$
 et $x = \ln 2$. Montrer que $A = 1 + \ln 2 - \frac{\pi}{2}$.

7°) Soit n un entier tel que $n \ge 2$.

On désigne par \mathbf{f}_n la fonction définie sur $\left[\ln(n), +\infty\right[$ par $\mathbf{f}_n(\mathbf{x}) = \sqrt{e^{\mathbf{x}} - \mathbf{n}}$.

On note (C_n) sa courbe représentative dans le repère $(O_i \vec{l}_i \vec{j})$.

- a) Soit G_n la fonction définie sur $\left[\ln(n), +\infty\right[$ par $G_n(x) = 2\left(f_n(x) \sqrt{n}g^{-1}\left(\frac{f_n(x)}{\sqrt{n}}\right)\right)$. Montrer que pour tout $X \in \left[\ln(n), +\infty\right[$, $G_n(x) = \int_{\ln(n)}^x f_n(t) dt$.
- b) Vérifier que pour tout $x \ge ln(n)$, $\sqrt{e^x n} < \sqrt{e^x 1}$.

En déduire que pour tout $x \ge \ln(n)$, $f_n(x) \le e^x - 1$.

c) Soit ${\bf A}_n$ l'aire de la partie du plan limitée par la courbe $({\cal C}_n)$, la courbe Γ et les droites d'équations

$$x = ln \Big(n \Big) \text{ et } x = ln \Big(n+1 \Big). \text{ Montrer que } \boldsymbol{\mathcal{A}}_n = 2\sqrt{n} \, g^{-1} \Bigg(\frac{1}{\sqrt{n}} \Bigg) + ln \Bigg(\frac{n}{n+1} \Bigg) - 1.$$

d) Déterminer $\lim_{n\to +\infty} \mathbf{A}_n$

