ARQUITECTURA DE REDES

Parte 2 - FUNDAMENTOS DE LA CAPA 2 - arquitectura vs modelo y otros contenidos de interés

Objetivo

■ Ahora que ya tenemos una concepción sobre TCP/IP y OSI vamos a aclarar algunos asuntos que conviene conocer.

Índice

- Arquitectura vs Modelo de Referencia.
- Arquitecturas de capas.
- Servicios, interfaces, y protocolos de comunicaciones.

ARQUITECTURA VS MODELO DE REFERENCIA

¿Arquitectura de red = Modelo de referencia?

- NO SON LO MISMO. Pero podemos escucharlos como sinónimos a menudo.
- Arquitectura de red. Define las CAPAS y los PROTOCOLOS en los que se organiza una red física.
 - Importante: LA RED EXISTE.
 - Se fabrican productos para esa red basándose en los protocolos establecidos por la arquitectura de esa red.
- Modelo de referencia. Solo especifica capas y sus funciones, pero NO PROTOCOLOS.
 - Es una definición teórica.

¿Entonces qué pasa con OSI?

- Teniendo en cuenta lo comentado en la diapositiva anterior:
 - Cuando se le hace referencia a OSI, es a su modelo, no a su arquitectura.
 - La arquitectura OSI existe, pero no se utiliza.
- ES DECIR, HABLAMOS DE MODELO OSI (O MODELO DE REFERENCIA OSI).
- IMPORTANTE:
 - OSI ≠ ISO
 - OSI = OPEN SYSTEMS INTERCONNECTION
 - ISO = INTERNATIONAL STANDARD ORGANIZATION
 - La ISO desarrolló OSI, y a veces podemos verlo como Modelo ISO/OSI

¿Y con TCP/IP?

- Con TCP/IP ocurre al contrario que con OSI.
- Su modelo en sí no se utiliza.
 - Ya comentamos que con OSI, el modelo TCP/IP evolucionó y distinguió la capa de enlace de la física.
- Pero se utiliza la arquitectura basada en TCP/IP y sus protocolos.
 - La influencia de OSI es muy importante.

Recordad que el modelo TCP/IP original no distingue entre capa física y capa de enlace como sí hace el OSI. Tenedlo en cuenta.

"La capa física no la define TCP/IP no sabes nada de redes"

ARQUITECTURAS DE CAPAS

ARQUITECTURA DE RED

- Hemos mencionado que una arquitectura es un conjunto estructurado de:
 - Protocolos.
 - Capas.
- La arquitectura debe tener en cuenta:
 - La **TOPOLOGÍA** (recordar Tema 1 parte 2)
 - Que ya sabemos que es cómo se organiza la red a nivel lógico y de interconexión.
 - El **método de acceso a la red** (recordar símplex, half dúplex, full duplex).
 - Los **protocolos de comunicaciones** (recordar ejemplo llamada teléfono).
 - Que sabemos que son las reglas y procedimientos para realizar la comunicación.

MODALIDADES DE ARQUITECTURAS EN RED

- Comentamos los modelos basados en capas (OSI y TCP/IP).
 - Que tienen arquitecturas basadas en modelos de capas.
- Pero existen dos clasificaciones generales de arquitecturas:
 - Arquitecturas monolíticas.
 - Arquitecturas estructuradas.
 - La arquitectura por capas es estructurada (estructurada en capas).

Arquitectura monolítica

- Todo el software de la red está constituido por un único programa.
 - Gran complejidad.
 - Muy costoso de construir.
 - Más grande → Más costoso de hacer.
 - Muy costoso de mantener.
 - Cuesta más modificar un programa de 9000 líneas que uno de 900.
 - Cada modificación obliga a sustituir todo el programa por una nueva versión.

Arquitectura estructurada

- Programas independientes cada uno de los cuales proporciona subconjuntos de funcionalidades de red diferentes.
 - Es posible modificar uno sin tener que reescribir el resto.
 - Más fácil de construir.
 - Más fácil de mantener.
- Se estructura en capas.
- Arquitectura por capas. Las funciones de red se dividen en capas, existiendo entre estas una jerarquía: cada capa recibe servicios de la que tiene debajo.

Arquitectura estructurada en capas

- Resumiendo los principios de la parte 1 y lo mencionado en la diapositiva anterior:
 - La capa N ofrece **servicios** a la capa N+1 (la superior).
 - La capa N+1 usa los servicios de la capa N.
 - La comunicación entre capas se realiza mediante una interfaz.
 - Cada capa se comunica con la capa equivalente en el otro sistema utilizando un protocolo característico de esa capa (protocolo de la capa N).
 - Ejemplo: La capa 3 de un equipo con la capa 3 de otro.
 - Al conjunto de protocolos que interoperan en todos los niveles de una arquitectura se le conoce como PILA DE PROTOCOLOS (protocol stack).
 - Ejemplo: Pila de protocolos TCP/IP

SERVICIOS, INTERFACES Y PROTOCOLOS DE COMUNICACIONES

SERVICIOS

- La misión de cada capa es realizar servicios (un trabajo) a petición de la capa del nivel superior. Y devolverle a esta los resultados cuando el servicio haya concluido.
- Podemos encontrar los siguientes tipos de servicios:
 - Servicios con conexión. Necesitan que haya una conexión previa.
 - Ej: El teléfono.
 - Servicios sin conexión. Pueden realizarse sin conexión previa.
 - Solo es necesario solicitar el servicio indicando la dirección.
 - Ej: El correo.
 - Servicios fiables. El receptor notifica la recepción del mensaje.
 - El emisor siempre sabrá si el servicio se ha realizado con éxito o no.
 - Servicios no fiables. No hay notificación de recepción.
 - El emisor nunca sabrá si el servicio se ha realizado con éxito, pero no sobrecargamos la red.
 - Los diferentes tipos de servicios pueden combinarse entre si (con conexión + fiables, con conexión + no fiables...).

INTERFAZ

- Cada capa dialoga con la capa inmediatamente inferior para pedirle servicios y con la inmediatamente superior para devolver resultados de los servicios.
- Las reglas que rigen la comunicación entre dos capas N y N-1 se denominan INTERFACE ENTRE N/N-1
- Proporcionan independencia entre las capas permitiendo alterar una capa sin que afecte a las vecinas.

Protocolo de comunicaciones

- Conjunto de reglas convenidas entre los participantes de la comunicación con el fin de regular todos los aspectos de la misma.
- Un equipo utiliza protocolos para comunicarse con la CAPA PAR del otro equipo.
 - "Cada capa utiliza protocolos para comunicarse con las capas pares del otro equipo". TRUE

ACLARACIÓN:

Las interfaces permiten la comunicación entre dos capas adyacentes de la MISMA MÁQUINA. Los protocolos permiten la comunicación entre capas del mismo nivel de MÁQUINAS DISTINTAS.

¿Preguntas?

ARQUITECTURA DE REDES

Parte 2 - FUNDAMENTOS DE LA CAPA 2 - arquitectura vs modelo y otros contenidos de interés