Question 18.

Conjugué de
$$z = (3+i)/(1-i)$$
 ?

On a

$$z = \frac{3+i}{1-i} = \frac{3+i}{1-i} \frac{1+i}{1+i} = \frac{3+3i+i-1}{1-i^2} = \frac{2+4i}{2} = 1+2i$$

Le conjugué d'un nombre complexe sous forme algébrique a + ib est a - ib, donc

$$\bar{z} = 1 - 2i.$$

Question 32.

$$-6 = 8$$

On a :
$$e^{i\pi} = -1$$
 donc $-6 = -1 \times 6 = e^{i\pi} \times 6 = 6 e^{i\pi}$.

Question 40.

$$Sur [0, 2\pi]$$
, $\sin x$ est du signe de?

On a $\sin x$ est positif sur $[0, \pi]$ et négatif sur $[\pi, 2\pi]$.

- 1. Non car $1 + \cos x \ge 0$, pour tout $x \in [0, 2\pi]$.
- 2. Non car $1 \cos^2 x = \sin^2 x \ge 0$ pour tout $x \in [0, 2\pi]$.
- 3. Non car $\cos(\pi/2) 1 = -1 < 0$ qui est du signe opposé à $\sin(\pi/2) = 1 > 0$.
- 4. Oui car $\sin x + \sin^2 x = \sin x (1 + \sin x)$ et $1 + \sin x \ge 0$ pour tout $x \in [0, 2\pi]$ donc $\sin x$ est su signe de $\sin x + \sin^2 x$.

Question 61.

Exprimer $\arg z$ en fonction de $\arg \bar{z}$?

On a :
$$\arg \bar{z} = -\arg z \ [2\pi]$$
. Donc si $\theta = \arg z \ [2\pi]$ alors

$$\arg \bar{z} = -\theta \ [2\pi].$$