1 | Deriving Rotational KE and Inertia

Given m_i , mass, $\vec{r_i}'$, location of the center of mass, l_i , ω , the angular velocity, figure a $KE_{tot,rot}$.

Because of the fact that the value ω is in units $\frac{d\theta}{dt}$, the rate of radians change, and we know of a radius of the spin l_i , we could figure the velocity at which it is moving by simply scaling the change in radians up to a circle of radius l_i , that is:

$$V_i' = l_i \omega \tag{1}$$

(note that, to understand this, radians $\frac{arclength}{radius}$)

And so, substituting into the statement of $\sum_{i=1}^{N} \frac{1}{2} m_i \vec{v_i}'^2$

$$KE_{rot} = \sum_{i=1}^{N} \frac{1}{2} m_i \vec{v_i}^{2}$$
 (2)

$$=\sum_{i=1}^{N} \frac{1}{2} m_i (l_i \omega)^2$$
 (3)

$$=\sum_{i=1}^{N} \frac{1}{2} m_i l_i^2 \omega^2 \tag{4}$$

$$= \frac{1}{2}\omega^2 \sum_{i=1}^{N} (m_i l_i^2) \tag{5}$$

1.1 | Rotational Inertia

The right sum — the mass times the distance away from maxis of rotation $(\sum_{i=1}^{N} (m_i l_i^2))$ — is defined as the rotational (moment) of inertia (spinny mass). That is,

$$I = \sum_{i=1}^{N} (m_i l_i^2)$$
 (6)

Replacing that value in the prior statement, the statement of KE_{rot} is defined as:

$$KE_{rot} = \frac{1}{2}\omega^2 I \tag{7}$$

1.2 | Rotational Inertia for a Ring

For a ring (that's perfectly circular) rotating on an axis perpendicular to the plane of the ring, the l_i — distance from axis of rotation — is the same value: namely, the radius R as the radius of a circle is the same for all positions. Meaning,

$$l_i = R \tag{8}$$

regardless of which value i.

Hence, the value of KE_{rot} would be evaluated as...

$$KE_{rot} = \sum_{i=1}^{N} (m_i l_i^2)$$
 (9)

$$=\sum_{i=1}^{N}(m_{i}R^{2})$$
(10)

$$=R^2 \sum_{i=1}^{N} m_i$$
 (11)

(12)

Substituting M as the sum of all masses in the ring ($M = \sum_{i=1}^{N} m_i$), the statement is therefore:

$$KE_{rot} = MR^2 (13)$$

1.3 | Rotational Inertia of a Solid Sphere

I believe that the rotational inertia of I_{sphere} to be less than I_{disk} . This is because, as the dimension of the object increases, it would be easier to change its velocity (a disk is easier to spin than a ring, etc.). Hence, my intuition states that I_{sphere} would be lower than I_{disk} .

Mathematically, as M is staying at the same value, in the disk case has more mass closer to the axis of rotation — meaning that the m_iR^2 term would be smaller in more of the point masses than that of an object at a lower dimension. Hence, the sphere would have more points with lower m_iR^2 terms than that of disk; hence, I_{sphere} would be less than I_{disk} .

2 | Kinematics Equations

Given $a = a_0$, initial velocity v_0 , and position y_0 , we derive the kinematics equations.

$$a(t) = a_0 \tag{14}$$

$$\int a(t)dt = \int a_0 dt \tag{15}$$

$$v(t) = a_0 t + C \tag{16}$$

We are given that $v(0) = v_0$. $v(0) = C = v_0$, hence, $C = v_0$. The velocity statement is therefore,

$$v(t) = a_0 t + v_0 (17)$$

Continuing with integration:

$$v(t) = a_0 t + v_0 (18)$$

$$\int v(t) = \int a_0 t + v_0 dt \tag{19}$$

$$y(t) = \frac{1}{2}a_0t^2 + v_0t + C \tag{20}$$

(21)

Again, substituting $C=y_0$ by the same logic above — $y(0)=C=y_0$, we derive the statement for the position equation.

$$y(t) = \frac{1}{2}a_0t^2 + v_0t + y_0 \tag{22}$$

2.1 | Proving $v^2(t) = v_0^2 + 2a_0(y(t) - y_0)$

We start at the statement for v(t), squaring it, and substituting the necessary statements.

$$v(t) = a_0 t + v_0 (23)$$

$$\Rightarrow v^2(t) = a_0^2 t^2 + 2a_0 v_0 t + v_0^2 \tag{24}$$

$$v^{2}(t) = v_{0}^{2} + 2a_{0}(\frac{1}{2}a_{0}t^{2} + v_{0}t)$$
(25)

$$v^{2}(t) = v_{0}^{2} + 2a_{0}(\frac{1}{2}a_{0}t^{2} + v_{0}t + y_{0} - y_{0})$$
(26)

$$v^{2}(t) = v_{0}^{2} + 2a_{0}(y(t) - y_{0})$$
(27)

It is therefore shown that:

$$v^{2}(t) = v_{0}^{2} + 2a_{0}(y(t) - y_{0})$$
(28)

2.2 | Proving $\Delta y = \frac{v(t_1) + v(t_2)}{2} \Delta t$

Showing $\Delta y = \frac{v(t_1) + v(t_2)}{2} \Delta t$, defining $\Delta y = y(t_2) - y(t_1)$ and $\Delta t = t_2 - t_1$. Substituting the appropriate values for v(t), Δy , Δt and solving...

$$\Delta y = \frac{v(t_1) + v(t_2)}{2} \Delta t \tag{29}$$

$$y(t_2) - y(t_1) = \frac{v(t_1) + v(t_2)}{2}t_2 - t_1$$
(30)

$$y(t_2) - y(t_1) = \frac{((a_0t_1 + v_0) + (a_0t_2 + v_0))}{2}t_2 - t_1$$
(31)

$$y(t_2) - y(t_1) = \frac{((a_0t_1t_2 + v_0t_2) - (a_0t_1^2 + v_0t_1) + (a_0t_2^2 + v_0t_2) - (a_0t_1t_2 + v_0t_1))}{2}$$
(32)

$$y(t_2) - y(t_1) = \frac{(a_0 t_2^2 + 2v_0 t_2) - (a_0 t_1^2 + 2v_0 t_1)}{2}$$
(33)

$$y(t_2) - y(t_1) = \frac{(a_0 t_2^2 + 2v_0 t_2 + 2y_0) - (a_0 t_1^2 + 2v_0 t_1 + 2y_0)}{2}$$
(34)

$$y(t_2) - y(t_1) = \frac{1}{2}a_0t_2^2 + v_0t_2 + y_0 - \frac{1}{2}a_0t_1^2 + v_0t_1 + y_0$$
(35)

$$y(t_2) - y(t_1) = y(t_2) - y(t_1)$$
(36)
(37)

Hence, it is demonstrated that:

$$\Delta y = \frac{v(t_1) + v(t_2)}{2} \Delta t \tag{38}$$

3 | Question regarding signage of the equations demonstrated above.