Relazione di laboratorio - Pendolo semplice

Misura del periodo di un pendolo semplice

Federico Cesari

Indice

1	Scopo dell'esperienza	2
2	Premesse teoriche	2
3	Strumentazione	2
4	Scelta strumento di misura	2
5	Dipendenza dall'angolo	4
	5.1 Acquisizione dati	4
	5.2 Retta di best-fit	5
	5.2.1 Test del chi quadro	6
	5.2.2 Test Z	7
	5.3 Determinazione dell'accelerazione di gravità g	7
	5.3.1 Test Z	8
	5.4 Parabola di best-fit	9
	5.4.1 Test del chi quadro	10
	5.4.2 Test Z	10
6	Dipendenza dalla lunghezza	11
	6.1 Acquisizione dati	11
	6.2 Retta di best-fit	11
	6.2.1 Test del chi quadro	
	6.2.2 Test Z	12
7	Dipendenza dalla massa	14
R	Conclusioni	15

1 Scopo dell'esperienza

L'esperienza di laboratorio ha lo scopo di studiare il periodo di un pendolo semplice del quale conosciamo le espressioni del periodo teorico (in condizioni ideali e prive di attrito) al variare della sua lunghezza e dell'angolo di partenza. Verrà quindi misurato il periodo e se ne osserverà la variazione in funzione dell'angolo, della lunghezza e della massa appesa ad esso.

2 Premesse teoriche

aggiungi equazioni

3 Strumentazione

Strumento	Sensibilità
Cr. Analogico	0.2s
Cr. Digitale	0.01s
Fotocellula	0.001s
Goniometro	1°
Asta graduata	0.1cm
Calibro	0.01mm
Bilancia digitale	1g

4 Scelta strumento di misura

Al fine di stabilire il migliore strumento di misura per le succesive misurazioni, registro 8 misure del periodo del pendolo prima con un angolo di partenza $\theta=5^\circ$ e poi con $\theta=30^\circ$ utilizzando un cronometro analogico, uno digitale e una fotocellula. Lo strumento che mostrerà discrepanze significative tra il periodo calcolato con $\theta=5^\circ$ e $\theta=30^\circ$ sarà quello utilizzato per i testi successivi. Procedo quindi con le misurazioni dei periodi del pendolo a cui è stata agganciata una sfera di massa $m=(110\pm1)g$

sistema valori per C.Analogico e capire se aggiungere errori per T medi.

	C.Analogico	C. Digitale	Fotocellula		C.Analogico	C. Digitale	Fotocellula
	$T(s) \pm 0.2s$	$T(s) \pm 0.01s$	$T(s) \pm 0.001s$		$T(s) \pm 0.2s$	$T(s) \pm 0.01s$	$T(s) \pm 0.001s$
	1.6	1.63	1.702		1.8	1.65	1.733
$\theta = 5^{\circ}$	1.7	1.65	1.703	$\theta = 30^{\circ}$	1.7	1.67	1.733
	1.5	1.60	1.703		1.6	1.70	1.733
	1.7	1.71	1.703		1.7	1.62	1.733
	1.7	1.71	1.703		1.7	1.70	1.731
	1.7	1.65	1.702		1.8	1.72	1.733
	1.6	1.70	1.703		1.7	1.80	1.733
	1.7	1.70	1.703		1.6	1.69	1.732
$\bar{T}_5(s)$	1.65	1.67	1.703	$\bar{T}_{30}(s)$	1.70	1.69	1.715
σ_{T_5}	0.05	0.02	0.000	$\sigma_{T_{30}}$	0.08	0.03	0.0005

Da questi primi set di dati noto subito che la deviazione standard dei periodi misurati dal cronometro

digitale è più grande della sensibilità dello strumento, quindi dovrei scegliere la deviazione standard come errore sulla singola misura.

Invece per evidenziare quale dei tre strumenti fornisca periodi significativamente differenti per i due angoli di partenza sottopongo le coppie di periodi medi a un test Z:

Z	$\sigma_{ar{T}_5}$	$\sigma_{ ilde{T}_{30}}$
$z_{\rm an.}$	0.234	0.234
$z_{ m dig.}$	0.170	0.132
$z_{ m fot.}$	22.8	14.2

Il test mostra che i periodi misurati con i cronometri analogico e digitale con ancgoli di partenza $\vartheta=5^\circ$ e $\vartheta=30^\circ$, risultano essere compatibili con livelli di significatività maggiori dell'80% (specifica bene i valori). Per quanto riguarda i periodi registrati con la fotocellula questi risultano appartenere a popolazioni differenti e posso quindi affermare che lo strumento che fornisce periodi significativamente differenti per i due angoli di partenza sia proprio la fotocellula.

5 Dipendenza dall'angolo

La prima parte dell'esperienza consiste nel verificare la dipendenza di T, periodo del pendolo a cui è stata attaccata una sferetta di legno di massa $m = (10 \pm 1)g$, da θ , angolo di oscillazione. Per prima cosa si procede alla misurazoine della lunghezza del pendolo. Con l'asta graduata misuro prima la distanza da terra alla cima del pendolo (L_C) e poi la distanza da terra al centro della sfera appesa $(L_F)^1$.

Cima	Fondo
L_C (cm) ± 0.1 cm	$L_F(\text{cm}) \pm 0.1\text{cm}$
89.0	16.8

Ricavo quindi la lunghezza del pendolo:

$$l = L_C - L_F = (72.2 \pm 0.2) \text{cm.}^2$$

5.1 Acquisizione dati

A questo punto prendo tre misurazioni del periodo del pendolo per 6 angoli di partenza differenti. Con l'ausilio di un goniometro con sensibilità di 1°, partendo da un angolo di oscillazione di 5°, registro tre misure. Faccio lo stesso con $\theta = 10^{\circ}$, $\theta = 15^{\circ}$ fino ad arrivare a un angolo di 30° . Finita la presa dati ottengo i seguenti periodi:

	5 °	10°	15°	20°	25 °	30 °
	$T(s) \pm 0.001s$	$T(s) \pm 0.001 s$	$T(s) \pm 0.001s$	$T(s) \pm 0.001s$	$T(s) \pm 0.001s$	$T(s) \pm 0.001s$
	1.703	1.706	1.710	1.715	1.723	1.730
	1.702	1.706	1.710	1.715	1.723	1.731
	1.701	1.706	1.710	1.715	1.723	1.731
$\bar{\mathbf{T}}(\mathbf{s})$	1.702	1.706	1.710	1.715	1.723	1.731

capire se aggiungere errori per T medi.

Dall'espressione del periodo del pendolo sappiamo che il periodo è direttamente proporzionale a $\sin(\theta/2)^2$, più precisamente:

$$T = T_0 \left[1 + \frac{1}{4} \sin \left(\frac{\vartheta}{2} \right)^2 \right]$$

Se dovessi riportare su un grafico i periodi sperimentali in funzione di $y = \sin(\theta/2)^2$ mi aspetto quindi un andamento lineare e più precisamente una retta del tipo

$$T = T_0 + \frac{T_0}{4}y$$

Per verificare ciò mi avvalgo del metodo dei minimi quadrati... inserire qualche informazione a riguardo

 $^{^1}$ Avrei potuto misurare il diametro della sfera con il calibro e aggiungere il raggio della sfera successivamente invece che includerlo nelle misura di cima e fondo, tuttavia la sensibilità dell'asta e il fatto che questa non fosse perfettamente perpendicolare ha reso gli errori di L_C e L_F troppo grossolani rendendo così inutile la maggiore cura nella misura del raggio.

 $^{^2}$ Propago l'errore linearmente ((0.1+0.1) cm = 0.2cm) perché essendo solo due misure (per di più effettuate con un asta graduata imperfetta) rischio di sottostimare l'errore sommandolo in quadratura

5.2 Retta di best-fit

Appurato che T e sin $(\theta/2)^2$ siano *teoricamente* linearmente correlati, è di mio interesse trovare quale retta della forma T = a + by meglio interpola i dati sperimentali così da appurare se i valori misurati soddisfano la attesa teorica che y sia lineare in x.

Posso fare questo avvalendomi del metodo dei minimi quadrati che ha proprio lo scopo di determinare i parametri che legano due variabili legate da essi, nel mio caso due variabili x e y legati da due parametri A e B. Questo metodo necessita di alcune assunzioni importanti:

- 1. Le misure devono essere statisticamente indipendenti;
- 2. Una delle due variabili (sceglierò la x) deve avere errori trascurabili rispetto all'altra 3 .
- 3. Gli errori della variabile y devono essere distribuiti normalmente.

preso letteralmente dal Cannelli

Per rispettare la seconda assunzione confronto gli errori relativi delle mie due variabili (δ_x è l'errore assoluto, δ_x/x è l'errore relativo).

	T	
T(s)	$\delta_T(s)$	δ_T/T
1.702	0.001	0.000339
1.706	0.001	0.000338
1.710	0.001	0.000337
1.715	0.001	0.000336
1.723	0.001	0.000335
1.731	0.001	0.000333

y	2	
y	δ_y/y	
0.0019	0.00075	0.398
0.0076	0.0015	0.198
0.017	0.0023	0.132
0.030	0.0030	0.099
0.047	0.0037	0.078
0.067	0.0044	0.065

4

Come si può leggere nelle tabelle l'errore associato alle misure dei periodi è perfettamente trascurabile rispetto a quello associato al seno, quindi scelgo di portare le misure del periodo sull'asse x e quelle del seno sull'asse y.

La funzione da linearizzare non è più

$$T = a + by$$

ma bensì

$$y = \mathbf{A} + \mathbf{B}T$$

³Giudico un errore come trascurabile rispetto all'altro quando si trovano in rapporto 1 a 3,4,5.

 $^{^4} Lascio\ 3\ cifre\ significative\ negli\ errori\ relativi\ del\ periodo\ per\ evidenziarne\ le\ piccole\ discrepanze.$

l'errore sulla x è da scrivere?

$T(s) \pm \delta_T$	$\sin(\theta/2)^2 \pm \delta_y$
1.702	0.0019
1.706	0.0076
1.710	0.0170
1.715	0.0302
1.723	0.0468
1.731	0.0669

$$A = -3.68$$
 $\sigma_A = 0.18$

$$B = 2.16$$
 $\sigma_B = 0.10$

La retta di "best-fit" può fornire altre importanti informazioni: per esempio nella retta

$$T = T_0 + \frac{T_0}{4} \sin{(\vartheta/2)^2}$$

il termine noto della retta è T_0 che rappresenta il periodo delle piccole oscillazioni. Nel mio caso invece (ho il seno in funzione di T) la retta è espressa come

$$\sin\left(\theta/2\right)^2 = 4\frac{T}{T_0} - 4$$

nella quale T_0 compare a denominatore del coefficiente angolare della retta. Posso allora ricavarlo imponendo

$$B = 4\frac{1}{T_0} \qquad T_0 = \frac{4}{B}$$

a cosa mi dovrebbe servire trovare il periodo delle piccole oscillazioni?

Ho quindi trovato anche il valore sperimentale del periodo delle piccole oscillazioni del mio pendolo:

$$T_0 = (1.85 \pm 0.09)s$$

5

5.2.1 Test del chi quadro

Visti i risultati ottenuti assumo che la retta trovata di parametri $\bf A$ e $\bf B$ si adatti bene all'andamento dei miei dati. Per assicurarmene effettuo un test del χ^2

⁵L'errore di
$$T_0$$
 è $\sigma_{T_0} = \sqrt{\left(\frac{\partial T_0}{\partial B}\sigma_B\right)^2} = \left|\frac{\partial T_0}{\partial B}\sigma_B\right| = \frac{4}{B^2}\sigma_B$

Ipotesi nulla La retta y = A + Bx descrive bene l'andamento dei dati osservati sperimentalmente.

Livello di significatività $lpha$	0.05
Valore di χ^2	4.29
Numero di gradi di libertà	(6-2)=4
Valore di χ^2 critico	9.49

Conclusione test Il valore del χ^2 ottenuto risulta essere minore del valore critico, posso quindi accettare l'ipotesi nulla e affermare che nei livelli di significatività scelti la retta y = A + Bx descrive in modo accettabile l'andamento dei miei dati.

5.2.2 Test Z

Infine, appurato che la retta y = A + Bx è una buona rappresentazione dell'andamento dei miei dati, mi interessa capire se l'andamento teorico lo è. Voglio quindi capire se l'equazione

$$\sin\left(\theta/2\right)^2 = 4\frac{T}{T_0} - 4$$

che ha come parametri teorici

$$A_{\text{teo}} = -4$$
 $B_{\text{teo}} = \frac{4}{T_0}$

si adatta bene ai miei dati. Scelgo quindi un livello di significa $\alpha = 0.05$ con $z_{\text{critico}} = 1.96$ ed eseguo il test.

Ipotesi nulla I valori A_{teo} , **A** e B_{teo} , **B** sono a due a due compatibili.

Livello di significatività $lpha$	0.05	Livello di significatività $lpha$	0.05
B sperimentale	2.16 ± 0.10	A sperimentale	-3.68 ± 0.18
B teorico	$4/T_0$	A teorico	-4
z_B osservato	1.78	z_A osservato	1.79
Valore di Z critico	1.96	Valore di Z critico	1.96

Conclusione test Poiché sia per **A** sia per **B** risulta che $z_{oss} < z_{critico}$ posso affermare che entrambi sono compatibili con i rispettivi valori teorici nei livelli di significaticità scelti e che quindi l'equazione teorica della retta è una buona rappresentazione dell'andamento dei miei dati.

5.3 Determinazione dell'accelerazione di gravità g

Sappiamo le piccole oscillazioni del pendolo hanno periodo descritto da

$$T_0 = 2\pi \sqrt{\frac{l}{g}}$$

dove l è la distanza dalla cima del pendolo al centro di massa della sfera appesa ad esso, nel mio caso l = (72.2±0.2)cm. Dall'equazione precedente (e ricordando che T_0 = 4/B) troviamo l'espressione dell'accelerazione di gravità:

$$g = \frac{\pi^2 b^2 l}{4}$$

con errore associato

$$\sigma_g = \sqrt{\left(\frac{\partial g}{\partial l}\right)^2 \sigma_l^2 + \left(\frac{\partial g}{\partial B}\right)^2 \sigma_B^2} \quad = \quad \sqrt{\left(\frac{B^2 \pi^2}{4}\right)^2 \sigma_l^2 + \left(\frac{lB \pi^2}{2}\right)^2 \sigma_B^2}$$

Posso quindi conlcudere e scrivere il valore sperimentale di g determinato dalle mie misurazioni:

$$\mathbf{g} = (830 \pm 81) \text{cm} \cdot \text{s}^{-2}$$

Sapendo che il valore dell'accelerazione di gravità terrestre vale circa 9.81 ms^{-2} si nota subito la differenza con il g determinato sperimentalmente che risulta essere sottostimato del 15%. Tale sottostima è da imputare alla misura della lunghezza del pendolo l e al valore di B. (inserire il fatto che B sia il rapporto sin l ?) Per capire chi influenza maggiormente la bontà del risultato ottenuto calcolo l'errore associato a g "più grossolanamente" così da evidenziare in modo più facile il "colpevole":

$$\begin{split} \frac{\sigma_g}{g} &= \frac{\sigma_l}{l} + 2\frac{\sigma_b}{b} \\ \approx &\quad 0.28\% + 9.72\% \quad \approx \quad 10\% \end{split}$$

trovando quindi che l'errore su B è quello che più influisce sull'accuratezza del valore di g calcolato.

5.3.1 Test Z

Infine è bene verificare l'accordo tra g da me calcolato e $G = 9.81 ms^{-2}$. In linea teorica infatti mi aspetto che i due siano uguali e che eventuali discrepanze siano dovute unicamente al caso. Applico allora un Test T:

Ipotesi nulla Il valore g da me calcolato è compatibile con il valore vero G accelerazione di gravità terrestre

Livello di significatività $lpha$	0.05
Valore di $z_{ m oss}$	1.86
Valore di z _{critico}	1.96

Poiché $z_{\rm oss} < z_{\rm critico}$ posso concludere che con un livello di significatività del 5% g risulta essere compatibile con G.

5.4 Parabola di best-fit

Poiché nel processo di determinazione della retta di best-fit è risultato opportuno studiare la funzione T(y) con $y = \sin(\theta/2)^2$ per poter studiare la funzione in forma parabolica basta prendere $y = \sin(\theta/2)$.

Come ho fatto per il fit lineare, controllo quale delle due variabili, T e $\sin(\vartheta/2)$, ha errore relativo trascurabile rispetto a quello dell'altra.

	T	
T(s)	$\delta_T(s)$	δ_T/T
1.702	0.001	0.000339
1.706	0.001	0.000338
1.710	0.001	0.000337
1.715	0.001	0.000336
1.723	0.001	0.000335
1.731	0.001	0.000333

$y = \sin(\vartheta/2)$			
у	δ_y	δ_y/y	
0.044	0.00869	0.199	
0.087	0.00867	0.099	
0.131	0.00863	0.066	
0.174	0.00857	0.049	
0.216	0.00849	0.039	
0.259	0.00840	0.032	

Se per il fit lineare ho potuto invertire le variabili con l'intento di mettere sull'asse x la variabile con errore trascurabile, per il fit parabolico non posso farlo; andrei infatti a graficare l'equazione di una radice quadrata perdendo di fatto le informazioni che mi interessa trovare: i parametri A, B e C della parabola che meglio interpola i dati sperimentali.

Periodo in funzione di ϑ (parabolico)

$T(s) \pm \delta_T$	$\sin(\theta/2) \pm \delta_y$
1.702	0.044
1.706	0.087
1.710	0.130
1.715	0.174
1.723	0.216
1.731	0.259

$$A = 1.70$$
 $\sigma_A = 0.0018$

$$\mathbf{B} = 0.0252$$
 $\sigma_{\mathbf{B}} = 0.0273$

$$C = 0.357$$
 $\sigma_C = 0.088$

5.4.1 Test del chi quadro

Assumendo che la parabola trovata $x = A + By + Cy^2$ si adatti bene all'andamento dei dati scelgo un livello di significatività $\alpha = 0.05$ ed eseguo il test.

Ipotesi nulla La parabola con parametri A,B e C si adatta bene all'andamento dei miei dati.

Livello di significatività $lpha$	0.05
Valore di χ^2	0.96
Numero di gradi di libertà	(6-3)=3
Valore di χ^2 sospetto	0.35
Valore di χ^2 critico	7.8

Conclusione test Il valore del chi quadro calcolato risulta essere compreso tra il valore sospetto e quello critico: $\chi^2_{\text{sospetto}} < \chi^2 < \chi^2_{\text{critico}}$ posso quindi affermare che, con livello di significatività del 5%, la parabola descritta dai parametri **A,B** e **C** si adatta bene all'andamento dei miei dati.

5.4.2 Test Z

Per constatare se la parabola descrive bene l'andamento dei miei dati (graficamente sembrerebbe farlo) vado a confrontare i parametri ottenuti con quelli teorici. La parabola teorica

$$T = T_0 + \frac{T_0}{4}\sin\left(\theta/2\right)^2$$

ha come parametri teorici

$$A_{\text{teo}} = T_0$$
 $B_{\text{teo}} = 0$ $C_{\text{teo}} = \frac{T_0}{4}$

Procedo quindi con un Test Z per verificare la compatibilità tra i valori:

Ipotesi nulla I parametri della parabola sperimentale sono compatibili con i parametri della parabola teorica.

Livello di significatività α	0.05	Livello di significatività $lpha$	0.05
A sperimentale	1.700 ± 0.0018	B sperimentale	0.0252 ± 0.0273
A teorico	1.704	B teorico	0
z_A osservato	1.78	z_B osservato	1.78
Valore di Z critico	1.96	Valore di Z critico	1.96

Livello di significatività $lpha$	0.05
C sperimentale	0.357 ± 0.088
C teorico	0.426
z_C osservato	1.79
Valore di Z critico	1.96

Conclusione test Poiché ogni z_{oss} risulta minore dello $z_{critico}$, concludo che con un livello di significatività del 5%, tutti i parametri risultano essere compatibili con le aspettative teoriche.

6 Dipendenza dalla lunghezza

6.1 Acquisizione dati

Per prima cosa procedo con le misurazioni di 5 pendoli di 5 diverse lunghezze. Con l'ausilio dell'asta graduata, come fatto in precedenza, misuro prima la distanza da terra alla cima del pendolo (L_C) e poi la distanza da terra al centro della sfera appesa (L_F). Come errore su l associo 2 volte la sensibilità dell'asta.

$$l_i = L_C - L_{F_i}$$
 $i = 1, \ldots, 5$

l_1	$\mathbf{l_2}$	l_3	$\mathbf{l_4}$	l ₅
$l_1(\text{cm}) \pm 0.2\text{cm}$	$l_2(\mathrm{cm}) \pm 0.2\mathrm{cm}$	$l_3(\mathrm{cm}) \pm 0.2\mathrm{cm}$	$l_4(\mathrm{cm}) \pm 0.2\mathrm{cm}$	$l_5(\mathrm{cm}) \pm 0.2\mathrm{cm}$
60.2	26.7	14.5	63.0	54.8

Come per lo studio del periodo in funzione dell'angolo di oscillazione, anche in questo caso registro tre misure del periodo per ogni sua lunghezza lunghezza scelta per un totale di 5 lunghezze differenti.

	$\mathbf{l_1}$	$\mathbf{l_2}$	l_3	$\mathbf{l_4}$	l_5
	$T(s) \pm 0.001s$				
	1.504	0.964	0.663	1.556	1.437
	1.504	0.962	0.662	1.558	1.437
	1.502	0.962	0.663	1.555	1.436
$\bar{\mathbf{T}}(\mathbf{s})$	1.503	0.9627	0.6627	1.556	1.437

capire se aggiungere errori per T medi.

6.2 Retta di best-fit

Ricordando l'espressione teorica del periodo del pendolo è possibile evidenziare la relazione lineare tra T^2 (il periodo al quadrato) e l (lunghezza del pendolo):

$$T = 2\pi \sqrt{\frac{l}{g}} \left(1 + \frac{1}{4} \sin(\theta/2)^2 \right) \qquad T^2 = 4\pi^2 \frac{l}{g} \left(1 + \frac{1}{4} \sin(\theta/2)^2 \right)^2$$
$$T^2 = C_3 l$$

con
$$C_3 = \frac{4\pi^2}{g} \left(1 + \frac{1}{4} \sin(\theta/2)^2 \right)^2$$

Per applicare al meglio il metodo dei minimi quadrati controllo sempre quale delle due variabili ha errore relativo più piccolo.

	T^2			l	
$T^2(s)$	$\delta_{T^2}(s)$	δ_{T^2}/T^2	1	δ_l	δ_l/l
2.26	0.00301	0.00133	60.20	0.2	0.00332
0.926	0.00193	0.00208	26.70	0.2	0.00749
0.439	0.00133	0.00302	14.50	0.2	0.0138
2.422	0.00311	0.00129	63.00	0.2	0.00317
2.064	0.00287	0.00139	54.80	0.2	0.00364
_					

L'errore associato a l risulta essere significativamente più grande di quello su T^2 quindi decido di invertire la relazione per poter mettere sull'asse x il periodo al quadrato:

$$l = \frac{1}{C_3} T^2$$

$$A = 3.745$$
 $\sigma_A = 0.204$

$$\mathbf{B} = 24.713$$
 $\sigma_{\mathbf{B}} = 0.113$

Analisi dei Nuovi Dati

6.2.1 Test del chi quadro

Visti i risultati ottenuti assumo che la retta trovata di parametri $\bf A$ e $\bf B$ si adatti bene all'andamento dei miei dati. Per assicurarmene effettuo un test del χ^2

Ipotesi nulla La retta y = A + Bx descrive bene l'andamento dei dati osservati sperimentalmente.

Livello di significatività $lpha$	0.05
Valore di χ^2	4.29
Numero di gradi di libertà	(6-2)=4
Valore di χ^2 critico	9.49

Conclusione test Il valore del χ^2 ottenuto risulta essere minore del valore critico, posso quindi accettare l'ipotesi nulla e affermare che nei livelli di significatività scelti la retta y = A + Bx descrive in modo accettabile l'andamento dei miei dati.

6.2.2 Test Z

Infine, appurato che la retta y = A + Bx è una buona rappresentazione dell'andamento dei miei dati, mi interessa capire se l'andamento teorico lo è. Voglio quindi capire se l'equazione

$$\sin\left(\theta/2\right)^2 = 4\frac{T}{T_0} - 4$$

che ha come parametri teorici

$$A_{\text{teo}} = -4$$
 $B_{\text{teo}} = \frac{4}{T_0}$

si adatta bene ai miei dati. Scelgo quindi un livello di significa $\alpha = 0.05$ con $z_{\text{critico}} = 1.96$ ed eseguo il test.

 $\textbf{Ipotesi nulla} \quad \text{I valori A_{teo}, \textbf{A} e B_{teo}, \textbf{B} sono a due a due compatibili.}$

	Sperimentali	Teorici	$z_{ m oss}$	
A	-3.68 ± 0.18	-4	1.79	
В	2.16 ± 0.10	$4/T_{0}$	1.78	

Conclusione test Poiché sia per **B** risulta che $z_{oss} < z_{critico}$ posso affermare che entrambi sono compatibili con i rispettivi valori teorici nei livelli di significaticità scelti e che quindi l'equazione teorica della retta è una buona rappresentazione dell'andamento dei miei dati.

7 Dipendenza dalla massa

Come si può osservare dall'equazione del periodo, questo non è teoricamente influenzato dalla massa appesa ad esso. Tuttavia, sperimentalmente, la massa potrebbe portare a delle più o meno lievi variazioni

8 Conclusioni