Modified GUPs

A clean worksheet for Calc17. And extended for corrected compations in Calc18, until Aug 29. 2014.

This worksheet is documented in a german-english fashion:) It covers the complete discussion starting from the T00-Integral solving until temperature calculations. In the later parts, most computations are done (or at least supported) by numerical predictions. Much code is not so well documented, just ask me for details.

```
-- Sven Koeppel @ FIAS.
      (* Die neue Wahl *)
      V[q_{n}] = 1/(1 + q^{n}(n+2))
      (* Die alte Wahl *)
      (*V[q_, n_] = 1/(1 + q^2)*)
      vSide[q_n, n_n, side] := q^{(1+n)} * If[side > 0, V[q, n], (-1)^n V[-q, n]]
       v E f f [q_n, n_n] = v S i d e [q, n, +1] \ Heaviside Theta [q] + v S i d e [q, n, -1] \ Heaviside Theta [-q] 
\text{Out}\text{[3]=} \ \frac{\left(-1\right)^n \, q^{1+n} \, \text{HeavisideTheta}\left[-q\right]}{1 + \left(-q\right)^{2+n}} + \frac{q^{1+n} \, \text{HeavisideTheta}\left[q\right]}{1 + q^{2+n}}
In[4]:= Plot[Table[vEff[q, n], {n, 0, 7}] // Evaluate,
        \{q, -3, 3\},\
       PlotStyle → (Riffle[#, {Dashed, #} & /@Reverse[#]] & [ColorData[9, "ColorList"]]),
       PlotLegends \rightarrow LineLegend[Table[n, {n, 0, 7}], LegendLabel \rightarrow "n="],
       PlotRange \rightarrow \{-1, 1\},
        ImageSize → Medium]
                                    -0.5
                                                                            <del>---</del> 6
                                                                            --- 7
```

Polstellen extrahieren

Code zwar zusammenkopiert, aber drübergeschaut.

```
In[5]:= ReduceToSolutions[reduceResult_, extractVariable_] :=
     Cases[reduceResult, Equal[extractVariable, value_] → value, 100]
    polReduce[n_, side_] := Reduce[Denominator@vSide[q, n, side] == 0, q]
    polstellenSide[n_, side_] := polReduce[n, side] ~ ReduceToSolutions ~ q
    polstellen[n_] := Join@@ (Select[polstellenSide[n, #[[1]]], #[[2]]] &) /@ {
        +1 \rightarrow (Re[\#] \ge 0 \&),
        -1 \rightarrow (Re[#] \le 0 \&)
    mitgenommenePolstellen[n] := Select[polstellen[n], Im[#] \ge 0 \&]
```

```
In[10]:= (* Zeichne die Polstellen.
      Diese Funktion/Zelle ist aus Polstellen.nb kopiert und etwas modifiziert. *)
    Daten[n_] := {
      \{Re[\#], Im[\#]\} \& /@ (Solve[z^{2+n}) == 1, z] /. \{\{z \to a_\} \to a\}), (* in Blau *)
       {Re[#], Im[#]} & /@ polstellenSide[n, +1],
       {Re[#], Im[#]} & /@ polstellenSide[n, -1],
      {Re[#], Im[#]} & /@ polstellen[n] (* schwarz *),
      {Re[#], Im[#]} & /@ mitgenommenePolstellen[n]
     }
    MakePlot[n_,
        label_: "Left and right hand poles"
      ] := Show[ListPlot[
        Daten[n],
        AxesOrigin \rightarrow \{0, 0\},
         PlotRange \rightarrow \{\{-1.2, 1.2\}, \{-1.2, 1.2\}\},\
        AspectRatio \rightarrow 1,
         Frame → True,
         FrameLabel → {{Im, None}, {Re, label }},
         PlotMarkers → {
           {Graphics[{Lighter@Blue, Opacity[0.3], Disk[]}], 0.05},
            Graphics@{Darker@Yellow,
              Circle[],
              Disk[{0, 0}, 1, {-Pi/2, Pi/2}],
               Style["R", "Title", 15, Bold, Darker@Darker@Brown], {+0.5, Center}]},
            0.1},
            Graphics@{Lighter@Magenta,
              Circle[],
              Disk[{0, 0}, 1, {Pi/2, 3/2 * Pi}],
              Text[Style["L", "Title", 15, Bold, Darker[Magenta]], {-0.5, Center}]},
           {Graphics[{Black, Thickness[0.15], Circle[]}], 0.12},
           {Graphics[{Red, Thickness[0.15], Circle[]}], 0.18}
          },
         PlotRange → All,
         ImageSize → Medium],
        Graphics[{Opacity[0.2], Circle[{0, 0}, 1]}]
      ];
    Manipulate[Show[
      MakePlot[n],
      Graphics[
        Text[Style[StringForm["# Residuen=``",ResidueList[n]//Length],{Black, 20}],
          Offset[\{+30,-30\},\{0,0\}]]*)
      11
      , {n, 0, 15, 1}]
```


1			I	I		
	n	# unique poles	# poles	Unique Poles		
	0	2	4	{-i, i}		
	1	4	4	$\{-(-1)^{1/3}, (-1)^{1/3}, -(-1)^{2/3}, (-1)^{2/3}\}$		
	2	4	4	$\{-(-1)^{1/4}, (-1)^{1/4}, -(-1)^{3/4}, (-1)^{3/4}\}$		
	3	4	4	$\{-(-1)^{1/5}, (-1)^{1/5}, -(-1)^{4/5}, (-1)^{4/5}\}$		
Out[13]=	4	6	8	$\left\{-1, 1, -(-1)^{1/6}, (-1)^{1/6}, -(-1)^{5/6}, (-1)^{5/6}\right\}$		
	5	8	8	$\left\{-\left(-1\right)^{1/7},\;\left(-1\right)^{1/7},\;-\left(-1\right)^{3/7},\;\left(-1\right)^{3/7},\right.$		
				$-(-1)^{4/7}$, $(-1)^{4/7}$, $-(-1)^{6/7}$, $(-1)^{6/7}$		
	6	8	8	$\{-(-1)^{1/8}, (-1)^{1/8}, -(-1)^{3/8}, (-1)^{3/8},$		
				$-(-1)^{5/8}$, $(-1)^{5/8}$, $-(-1)^{7/8}$, $(-1)^{7/8}$ }		
	7	8	8	$\{-(-1)^{1/9}, (-1)^{1/9}, -(-1)^{1/3}, (-1)^{1/3}, $		
				$-(-1)^{2/3}, (-1)^{2/3}, -(-1)^{8/9}, (-1)^{8/9}$		

```
In[14]:= Grid Join @@ { {Style[#, {Blue, Bold, 12}] & /@
            {"n", "interesting poles"}},
         Table [n,
            Length@Select[Arg@mitgenommenePolstellen[n], \# \leq \frac{\pi}{2} \&],
            Select \left[ \text{Arg@mitgenommenePolstellen[n], } \# \leq \frac{\pi}{2} \& \right]
           , \{n, 0, 7\} 
       Frame → All, Alignment → {Left, Left}
```

_		
n	interesting poles	
0	2	$\left\{\frac{\pi}{2}, \frac{\pi}{2}\right\}$
1	1	$\left\{\frac{\pi}{3}\right\}$
2	1	$\left\{\frac{\pi}{4}\right\}$
3	1	$\left\{\frac{\pi}{5}\right\}$
4	3	$\left\{\frac{\pi}{2}, \frac{\pi}{6}, \frac{\pi}{2}\right\}$
5	2	$\{\frac{\pi}{2}, \frac{3\pi}{2}\}$

Out[14]=

In[15]:=

Integralberechnung

Achtung wegen der Vorfaktoren:

- * Die Integralresiduenliste beinhaltet die kompletten Residuen, also auch den res $f_{\pm} = \frac{1}{2+n}$ -Fakt.
- * AValue beinhaltet den $\frac{1}{-2iz}$ -Faktor und damit einen Teil von f_0 . Grund: AValue[0] wird so sehr einfach.

```
In[16]:= IntegralResidueList[n_] :=
      (2 Pi I) * (+1) * Residue[vSide[q, n, Sign@Re@#] * Exp[+Iqz], {q, #}] & /@
      mitgenommenePolstellen[n]
    IntegralValue[n_] := Total@IntegralResidueList[n]
    AValue[n] := -I/(2z) * IntegralValue[n]
```

 $\frac{1}{5} e^{(-1)^{7/10} z}$ $\frac{1}{5} e^{-(-1)^{3/10} z}$ $(-1)^{\frac{1}{5}}$ $(-1)^{4/5}$ Out[19]= $\frac{1}{6} e^{-(-1)^{1/3} z}$ $\frac{1}{6} e^{(-1)^{2/3} z}$ $(-1)^{5/6}$ $(-1)^{1/6}$ $\frac{1}{7} e^{(-1)^{9/14} z}$ $\frac{1}{7} e^{(-1)^{13/14} z}$ $\frac{1}{z} e^{-(-1)^{5/14}} z$ $(-1)^{1/7}$ $(-1)^{6/7}$ $-1)^{3/7}$ $(-1)^{4/7}$ $(-1)^{\frac{1}{8}}$ 6 $(-1)^{3/8}$ $(-1)^{5/8}$ $(-1)^{7/8}$ 1 e (-1) 11/18 z $\frac{1}{9} e^{(-1)^{5/6} z}$ $(-1)^{\frac{1}{9}}$ $\frac{1}{9} e^{-(-1)^{1/6} z}$ $(-1)^{1/3}$ $(-1)^{\frac{2}{3}}$ $(-1)^{\frac{1}{8/9}}$

	n	# poles	Wert für A(p)			
	0	2	<u>e⁻² π</u> z	<u>e⁻² π</u> z		
	1	2	$-\frac{i\left(\frac{2}{3} i e^{-(-1)^{1/6} z} \pi + \frac{2}{3} i e^{(-1)^{5/6} z} \pi\right)}{2 z}$	$\frac{2e^{-\frac{\sqrt{3}z}{2}}\pi\cos\left[\frac{z}{2}\right]}{3z}$		
	2	2	$-\frac{\mathrm{i} \left(\frac{1}{2} \mathrm{i} \mathrm{e}^{-(-1)^{1/4} \mathrm{z}} \pi + \frac{1}{2} \mathrm{i} \mathrm{e}^{(-1)^{3/4} \mathrm{z}} \pi\right)}{2 \mathrm{z}}$	$\frac{e^{-\frac{z}{\sqrt{2}}} \pi \cos\left[\frac{z}{\sqrt{2}}\right]}{2 z}$		
	3	2	$-\frac{i\left(\frac{2}{5} i e^{-(-1)^{3/10} z} \pi + \frac{2}{5} i e^{(-1)^{7/10} z} \pi\right)}{2 z}$	$\frac{e^{-\sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}}} \pi \cos\left[\frac{1}{4}\left(-1 - \sqrt{5}\right)z\right]}{5z} +$		
				$\frac{e^{-\sqrt{\frac{5}{8}-\frac{\sqrt{5}}{8}}} z \pi \cos\left[\frac{1}{4}\left(1+\sqrt{5}\right)z\right]}{5z} +$		
				$ \frac{1}{1} \left(\frac{e^{-\sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}}} z \pi \sin\left[\frac{1}{4}\left(-1 - \sqrt{5}\right)z\right]}{5z} + \right) $		
Out[20]=				$\frac{e^{-\sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}}} z \pi \operatorname{Sin}\left[\frac{1}{4}\left(1 + \sqrt{5}\right) z\right]}{5 z}$		
			(2 1	[2/3		
	4	4	$-\frac{\mathrm{i}\left(\frac{2}{3}\mathrm{i}\mathrm{e}^{-\mathrm{z}}\pi+\frac{1}{3}\mathrm{i}\mathrm{e}^{-(-1)^{1/3}\mathrm{z}}\pi+\frac{1}{3}\mathrm{i}\mathrm{e}^{(-1)^{2/3}\mathrm{z}}\pi\right)}{2\mathrm{z}}$	$\frac{e^{-z} \pi}{3 z} + \frac{e^{-z/2} \pi \cos \left[\frac{\sqrt{3} z}{2}\right]}{3 z}$		
	5	4	$-\frac{1}{2z}i\left(\frac{2}{7}ie^{-(-1)^{1/14}z}\pi + \frac{2}{7}ie^{-(-1)^{5/14}z}\pi + $	$\frac{2 e^{-z \sin\left[\frac{\pi}{\gamma}\right]} \pi \cos\left[z \cos\left[\frac{\pi}{\gamma}\right]\right]}{7 z} +$		
			$\frac{2}{7}\dot{\mathbb{1}}e^{(-1)^{9/14}z}\pi+\frac{2}{7}\dot{\mathbb{1}}e^{(-1)^{13/14}z}\pi\Big)$	$\frac{2 e^{-z \cos\left[\frac{\pi}{14}\right]} \pi \cos\left[z \sin\left[\frac{\pi}{14}\right]\right]}{7 z}$		
	6	4	$-\frac{1}{2z} \dot{\mathbb{1}} \left(\frac{1}{4} \dot{\mathbb{1}} e^{-(-1)^{1/8} z} \pi + \frac{1}{4} \dot{\mathbb{1}} e^{-(-1)^{3/8} z} \pi + \frac{1}{4} \dot{\mathbb{1}} e^{-(-1)^{3/8} z} \pi + \frac{1}{4} \dot{\mathbb{1}} e^{(-1)^{7/8} z} \pi \right)$	$\frac{e^{-z \sin\left[\frac{\pi}{8}\right]} \pi \cos\left[z \cos\left[\frac{\pi}{8}\right]\right]}{4 z} + \frac{e^{-z \cos\left[\frac{\pi}{8}\right]} \pi \cos\left[z \sin\left[\frac{\pi}{8}\right]\right]}{4 z}$		
	7	4	$-\frac{1}{2z} \mathbb{i} \left(\frac{2}{9} \mathbb{i} e^{-(-1)^{1/6}z} \pi + \frac{2}{9} \mathbb{i} e^{-(-1)^{7/18}z} \pi + \frac{2}{9} \mathbb{i} e^{(-1)^{5/6}z} \pi + \frac{2}{9} \mathbb{i} e^{(-1)^{5/6}z} \pi \right)$	$\frac{2e^{-\frac{\sqrt{3}z}{2}\pi\cos\left[\frac{z}{2}\right]}}{9z} + \frac{2e^{-z\sin\left[\frac{\pi}{9}\right]}\pi\cos\left[z\cos\left[\frac{\pi}{9}\right]\right]}{9z}$		
	8	6	$-\frac{1}{2z} \mathbb{i} \left(\frac{2}{5} \mathbb{i} e^{-z} \pi + \frac{1}{5} \mathbb{i} e^{-(-1)^{1/5}z} \pi + \frac{1}{5} \mathbb{i} e^{-(-1)^{2/5}z} \pi$	$\frac{e^{-z} \pi}{5 z} + \frac{e^{\frac{1}{4} \left(-1 - \sqrt{5}\right) z} \pi \cos \left[\sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}} z\right]}{5 z} + \frac{1}{5 z}$		
			$\frac{1}{5} i e^{(-1)^{3/5} z} \pi + \frac{1}{5} i e^{(-1)^{4/5} z} \pi$	$\frac{e^{\frac{1}{4}\left(1-\sqrt{5}\right)z}\pi\cos\left[\sqrt{\frac{5}{8}+\frac{\sqrt{5}}{8}}z\right]}{5z}$		

Für das korrekte Ergebnis $\mathcal{T}_0 = f_0 \, A_{\text{value}}$ beinhaltet das f_0 in diesem Worksheet die restlichen Faktoren im Vergleich zum Paper

```
ln[72]:= \Omega[d_] := \frac{2 Pi^{\frac{d+1}{2}}}{Gamma\left[\frac{d+1}{2}\right]}
      f0[n_] := \frac{\Omega[n+2]}{(2\pi)^{2+n}}(* Echte Vorfaktoren,
      oben in AValue schon was Teile mitgenommen *)
       Plot[Evaluate@Table[f0@nAValue@n, {n, 0, 2}], {z, 0.1, 1},
        PlotStyle → (Riffle[#, {Dashed, #} & /@Reverse[#]] & [ColorData[9, "ColorList"]]),
        PlotLegends → Placed[LineLegend[Table[n, {n, 0, 7}],
            LegendLabel → "n=", LegendLayout → {"Row", 3}], {Right, Bottom}],
        FrameLabel \rightarrow \{ "r / L_* ", "T_0^0 / M" \},
        PlotLabel \rightarrow "Energy Density T_0^0 of modified GUP",
        Frame → True(*,
        PlotRange \rightarrow \{-1,1\}*)
                          Energy Density of modified GUP
          2.5
          2.0
Out[74]=
          1.0
          0.5
          0.0
                                          0.6
                                       r / L*
```

Zur Berechnung von g_{00} nutzen wir generische Lösung der Rizzo-DGL. Dabei wird an dieser Stelle hier das M reingemogelt, was dem physikalischen M/M^{n+2} entspricht.

$$\begin{split} & & \text{In[330]:= } & \text{g00[n_, r_] } := 1 - \frac{M}{r^{1+n}} \, \frac{2}{(n+2)} \, \text{Integrate} \big[z^{n+2} \, \text{f0[n] AValue[n], } \{z,\,0,\,r\} \big] \\ & & \text{g00s = Table[g00[n,\,r], } \{n,\,0,\,7\} \big]; \end{split}$$

Looking for the extremal radius

```
In[291]:= (* Prepare Export and metric units *)
     SetDirectory[NotebookDirectory[]];
     cm = 72 / 2.54;
```

```
IN[598]:= (* Epic Epilog-Labels coming here, modified for the current problem:
           Featuring scaling and correct Inset (no rectangle nonrotated box).
           ASSUMING data be a list of X as variable, ideal for g00s. *)
     ClearAll[EpiLabels]
     EpiLabels[xpoint_, data_, labels_, axisratio_: 1] :=
       With[{xpoints = If[Head@xpoint === List, xpoint, xpoint & /@ labels]},
        (* erlaube Liste von xpoints *)
        Inset[Rotate[Text[labels[[#]], Background → White],
             ArcTan@Re@N[(D[data[#]], X] /. \{X \rightarrow xpoints[#]]\})] / axisratio],
            {xpoints[#], 0 + (data /. X \rightarrow xpoints[#])[#]}
          ] & /@ Range@Length@data] (* 1: any value to introspect list*)
     point[color_, coord_, size_: 0.37] := Inset[
        Graphics@{Opacity[0.9], color, Disk[]},
        (* {x,y}, {xOrig,yOrig}, scaling --> see Inset doku *)
        coord, {0, 0}, size
     miniToSol[res_] := res /. \{y_{, \{\_ \rightarrow x_{, \}}\} \rightarrow \{x, y\}
      (* for FindMinimum → Coordinate *)
     rootToSol[res_] := res /. \{\_ \rightarrow x\_\} \rightarrow x (* for first FindRoot \rightarrow value *)
  Find r_C and M_* numerically
In[504]:= (* find extremal r<sub>0</sub> Values. The test Masses are "experimental" *)
     r0s = First@Transpose@Table[miniToSol@FindMinimum[
              Re@g00s[n+1]] /. M \rightarrow 10 (n+1)^6, {r, 1}
               ], {n, 0, Length@g00s-1}];
      (* fi3d extremal Mass values *)
     Ms = Table[rootToSol@FindRoot[Re@g00s[n+1]] /.r \rightarrow r0s[n+1]], \{M, 10^n\}],
         {n, 0, Length@g00s-1};
     Grid[{
        {"n"}~Join~Range[0, Length@g00s-1],
        {"r_0"} \sim Join \sim r0s,
        {"M_*"} \sim Join \sim Ms
       \}, Frame \rightarrow All]
     FindMinimum::sdprec:
       Line search unable to find a sufficient decrease in the function value with MachinePrecision digit precision. >>
```

(Out[506]]=

	n	0	1	2	3	4	5	6	7
= [r_0	1.79328	1.27534	1.07714	0.993701	1.01592	0.981144	0.953649	0.932502
	M*	3.35092	53.0073	621.491	6536.7	35182.9	359680.	3.69058×10^6	3.8323×10^7

In[507]:= % // TeXForm

```
Out[507]//TeXForm=
```

```
\begin{array} {cccccccc}
\text{n} & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
r_0 & 1.79328 & 1.27534 & 1.07714 & 0.993701 & 1.01592 & 0.981144 & 0.953649 & 0.93
M_* & 3.35092 & 53.0073 & 621.491 & 6536.7 & 35182.9 & 359680. & 3.69058\times 10^{
  3.8323\times 10^7 \\
\end{array}
```

Interactive Plot fuer variierende M, n.

```
In[545]:= getM[n_] := Ms[n + 1]
        Manipulate
           \text{Plot}\Big[\text{Evaluate@Re@}\left(\left\{g00s[n+1],\ 1-\frac{2\,M}{(n+2)\,\Omega[n]}\,\frac{1}{r^{1+n}}\right\}\,/\,.\,\,\left\{M\to\,m\right\}\right), 
            {r, 0.03, 10},
            PlotRangePadding \rightarrow 0,
            PlotStyle → {Red, Blue},
            Frame → True,
            FrameLabel \rightarrow {"r / L", "g<sub>00</sub>"},
            PlotRange \rightarrow {-1, 1.7},
            \texttt{GridLines} \rightarrow \{\{\texttt{r0s}[n+1]]\}, \{1\}\},\
            ImageSize → Medium,
             \texttt{Epilog} \rightarrow \{\texttt{point}[\texttt{Red}, \{\texttt{r0s}[\texttt{n}+1]], \texttt{g00s}[\texttt{n}+1]] \ /. \ \{\texttt{r} \rightarrow \texttt{r0s}[\texttt{n}+1]], \ \texttt{M} \rightarrow \texttt{m}\} \ \}] \}, 
            PlotLabel \rightarrow "Metric g_{00} of modified GUP in n=" <> ToString@n <>
                " LXDs\n r<sub>0</sub>=" <> ToString@r0s[n + 1] <> ", g00(r<sub>0</sub>) = " <> ToString@Ms[n + 1]
                <> ", M=" <> ToString@m |,
          {{m, 1}, 0.4, 2 getM[n]}, {n, 0, Length@g00s - 1, 1}
```



```
In[496]:= (* @Re@: Cut off small imaginary parts *)
       fig = Module[n = 2, chosenM],
          chosenM = \{250, Ms[n+1], 1000\};
         pointSize = 0.15;
          labels = "M=" <> ToString@# <> "M*" & /@ chosenM;
          labelsSMM = "STM, " <> # & /@labels;
          SMM = 1 - \frac{2 M}{(n+2)} \frac{1}{r^{1+n}}
          Plot[Evaluate@Re@Flatten@Table[
                 \{g00s[n+1], SMM\} /. \{M \rightarrow M\}, \{M, chosenM\}], \{r, 0, 10\},
           PlotRangePadding \rightarrow 0,
           PlotStyle →
            Flatten[{#, {Dashed, Lighter@#}} & /@ {Darker@Green, Red, Blue}, 1],
           Frame → True,
           FrameLabel \rightarrow {"r / L", "g<sub>00</sub>"},
           PlotRange \rightarrow {-0.7, 1.7},
           Epilog → {
              EpiLabels[6, g00s[n+1]] /. \{M \rightarrow \#, r \rightarrow X\} \& /@ \text{ chosenM}, labels, 5 / 10],
              EpiLabels[8.5, SMM /. \{M \rightarrow \#, r \rightarrow X\} \& / @ \text{ chosenM}, labelsSMM}, 4.1 / 10],
              point[Red, \{r0s[n+1], 0\}, pointSize],
              point[Blue, {rootToSol@
                  FindRoot[Re@g00s[n+1]] /. M \rightarrow Last@chosenM, \{r, 1\}], 0\}, pointSize],
              point[Blue, {rootToSol@FindRoot[Re@g00s[n+1]] /. M \rightarrow Last@chosenM, {r, 2}],
                 0}, pointSize]
            },
           GridLines \rightarrow \{\{r0s[n+1]\}, \{1\}\},\
           ImageSize \rightarrow 15 cm,
           AspectRatio → 0.6
           (* wird in Latex gemacht: *)
           (*lotLabel→ "Metric component goo of modified GUP in n=2 LXDs"]*)
          ]
                                                M \approx 1000 M_{\ast}
           1.5
                                                M≈621.491M<sub>*</sub>
                                                 M=250M
           1.0
        800
          0.5
Out[496]=
           0.0
           -0.5
                                            r/L
```

In[497]:= Export["../../Master-Calc18/figures/g00-n2.pdf", fig]

Out[497]= ../../Master-Calc18/figures/g00-n2.pdf

```
fig = Module [n = 5, chosenM],
          {\tt chosenM} = \{0.5\,{\tt Ms}[\![n+1]\!]\,,\,\,{\tt Ms}[\![n+1]\!]\,,\,\,1.5\,{\tt Ms}[\![n+1]\!]\,\};
         pointSize = 0.15;
          labels = {"M=0.5 M_*", "M=M_*", "M=1.5 M_*"};
          SMM = 1 - \frac{2 M}{(n+2)} \frac{1}{r^{1+n}};
          Plot[Evaluate@Re@Flatten@Table[
                 \{g00s[n+1], SMM\} /. \{M \rightarrow M\}, \{M, chosenM\}], \{r, 0, 10\},
           PlotRangePadding \rightarrow 0,
           PlotStyle →
            Flatten[{#, {Dashed, Lighter@#}} & /@ {Darker@Green, Red, Blue}, 1],
           Frame → True,
           FrameLabel \rightarrow {"r / L", "g<sub>00</sub>"},
           PlotRange \rightarrow {-0.7, 1.7},
           Epilog → {
              EpiLabels[{4.5, 5.0, 5.5},
               g00s[n+1] /. \{M \rightarrow \#, r \rightarrow X\} \& /@ chosenM, labels, 6 / 10],
              point[Red, \{r0s[n+1], 0\}, pointSize],
              point[Blue, {rootToSol@
                  FindRoot[Re@g00s[n+1]] /. M \rightarrow Last@chosenM, {r, 0.5}], 0}, pointSize],
              point[Blue, \{rootToSol@FindRoot[Re@g00s[n+1]]/. M \rightarrow Last@chosenM, \{r, 2\}],
                 0}, pointSize]
            },
           \texttt{GridLines} \rightarrow \{\{\texttt{r0s}[n+1]]\}, \{1\}\},\
           Exclusions → Range[0, 0.1], (* hat quasi keinen Effekt...
              sollte bloss senkrechte Striche bei r=0 unterbinden *)
           ImageSize → 15 cm,
           AspectRatio → 0.6
           (* Wird in Latex gemacht *)
           (*PlotLabel→
              "Metric component g00 of modified GUP in n="<>ToString@n<>" LXDs"]*)
          ]
           1.5
           1.0
       800
          0.5
Out[502]=
           0.0
          -0.5
                                            r/L
```

```
In[503]:= Export["../../Master-Calc18/figures/g00-n5.pdf", fig]
Out[503]= ../../Master-Calc18/figures/g00-n5.pdf
```

Temperature

```
In[589]:= (* wg Simplify ca 10sec Laufzeit *)
      Ts = 1/(4\pi M) D[g00s, r] * Table[\Omega[n+1], {n, 0, Length@g00s-1}];
In[590]:= Off[FindMaximum::1sto1]
      TsMaxima = miniToSol@FindMaximum[Re@#, {r, 2}] & /@Ts
Out[591]= \{ \{3.38363, 0.0202156 \}, \{2.51257, 0.00655127 \}, \}
        \{2.26118, 0.00166479\}, \{2.18714, 0.000309357\}, \{2.19159, 0.0000558368\},
        \{2.17113, 6.97503 \times 10^{-6}\}, \{2.1577, 7.76522 \times 10^{-7}\}, \{2.14889, 7.74554 \times 10^{-8}\}\}
```

```
In[676]:= fig = Module[{chosenN},
          chosenN = \{0, 1, 2\};
          colors = {Darker@Green, Darker@Yellow, Red};
          labels = "n=" <> ToString@# & /@ chosenN;
          \label{eq:total_total_total} \texttt{TData} = \texttt{Table}[\texttt{Ts}[\![n+1]\!] \ /. \ \{r \rightarrow \ r \ * \ r0s[\![n+1]\!]\}, \ \{n, \, \texttt{chosenN}\}];
          TSSM = Table[D[1-2/(r^{1+n}), r] /. \{r \rightarrow rr0s[n+1]\}, \{n, chosenN\}];
          Plot[Evaluate@Join@{Re@TData, TSSM},
           {r, 0, 10},
           PlotStyle → Join[colors, {Dashed, Lighter@#} & /@colors],
           PlotRangePadding → None,
           FrameLabel \rightarrow {"r<sub>H</sub> / r<sub>0</sub>", "T/L<sub>P</sub>"},
           Frame → True,
           Epilog → Join[
              {EpiLabels[3.4, TData /. r \rightarrow X, labels, 0.02/3]},
              \{\text{EpiLabels}[\{6, 5, 4.5\}, \text{TSSM}/. r \rightarrow X, \text{labels}, 0.02/2.5]\},
              Inset[
                   Graphics@{Opacity[0.9], #[2], Disk[]},
                   (* {x,y}, {xOrig,yOrig}, scaling --> see Inset doku *)
                   \{\#[1, 1], \#[3], \#[1, 2]\}, \{0, 0\}, 0.17
                 [] & /@ Transpose@{TsMaxima[chosenN + 1]], colors, r0s[chosenN + 1]]}
             ],
           PlotRange →
             {-0.1 Max@Last@Transpose@TsMaxima, 1.1 Max@Last@Transpose@TsMaxima},
           GridLines \rightarrow {{}, {0}},
           AspectRatio \rightarrow 0.5,
           ImageSize → 15 cm
          ]
          0.020
          0.015
       0.010
Out[676]=
          0.005
          0.000
                                            r_H / r_0
```

In[677]:= Export["../../Master-Calc18/figures/Temp.pdf", fig] Out[677]= ../../Master-Calc18/figures/Temp.pdf

```
In[697]:= fig = Module[{chosenN},
          chosenN = {7};
           colors = {Darker@Green};
           labels = "n=" <> ToString@# & /@ chosenN;
           \label{eq:total_total_total} \begin{split} \text{TData} &= \text{Table}[\text{Ts}[\![n+1]\!] \ /. \ \{r \rightarrow \ r \ * \ r0s[\![n+1]\!]\}, \ \{n, \, \text{chosenN}\}]; \end{split}
          TSSM = Table \left[ D \left[ 1 - 2 / \left( r^{1+n} \right), r \right] /. \left\{ r \rightarrow rros [n+1] \right\}, \left\{ n, chosenN \right\} \right];
           Plot[Evaluate@Join@{Re@TData, TSSM},
             {r, 0.4, 15},
            PlotStyle → Join[colors, {Dashed, Lighter@#} & /@colors],
            PlotRangePadding → None,
            FrameLabel \rightarrow {"r<sub>H</sub> / r<sub>0</sub>", "T/L<sub>P</sub>"},
            Frame → True,
            PlotRange → {-1.1 Max@Last@Transpose@TsMaxima[chosenN + 1],
                1.1 Max@Last@Transpose@TsMaxima[chosenN + 1]]},
            GridLines \rightarrow {{}, {0}},
            AspectRatio \rightarrow 0.3,
            Exclusions \rightarrow Range[0, 0.1],
             ImageSize → 15 cm
           ]
            5. \times 10^{-8}
           -5. \times 10^{-8}
                                                                                       14
                                                     r_H / r_0
```

In[693]:= Export["../../Master-Calc18/figures/Temp-n7.pdf", fig] Out[693]= ../../Master-Calc18/figures/Temp-n7.pdf