Building Generalized Linear Models Using Estimators

Vitthal Srinivasan
CO-FOUNDER, LOONYCORN
www.loonycorn.com

Overview

Estimators are cookie-cutter TensorFlow APIs for many standard problems

These high-level APIs reside in tf.learn and tf.contrib.learn

Estimators can be extended by plugging custom models into a base class

That extension relies on composition rather than inheritance

Complex Neural Networks

Corpus of Images

Operations (nodes) on data (edges)

Complex Neural Networks

Corpus of Images Neurons in a neural network can be connected in very complex ways...

Complex Neural Networks

Corpus of Images

All those interconnections represent intermediate feature vector data!

All those interconnections represent intermediate feature vector data!

Linear Regression in TensorFlow

Baseline

Non-TensorFlow implementation

Regular python code

Cost Function

Mean Square Error (MSE)

Quantifying goodness-of-fit

Training

Invoke optimizer in epochs

Batch size for each epoch

Computation Graph

Neural network of 1 neuron

Affine transformation suffices

Optimizer

Gradient Descent optimizers

Improving goodness-of-fit

Converged Model

Values of W and b

Compare to baseline

Logistic Regression in TensorFlow

Baseline

Non-TensorFlow implementation

Regular python code

Cost Function

Cross Entropy

Similarity of distribution

Training

Invoke optimizer in epochs

Batch size for each epoch

Computation Graph

Neural network of 1 neuron

Softmax activation required

Optimizer

Gradient Descent optimizers

Improving goodness-of-fit

Converged Model

Values of W and b

Compare to baseline

Linear Regression with an Estimator

Baseline

Non-TensorFlow implementation

Regular python code

Input Function

tf.contrib.learn.io.numpy_input_fn

Set up X, Y, batch_size, num_epochs

Evaluate

Use trained model

Predict new points (test data)

Instantiate Estimator

tf.contrib.learn.LinearRegressor

Abstracts cost and optimizer choices

Fit

Returns trained model

Can re-specify number of training steps

Course Outline

Learning using Neurons

Linear Regression in TensorFlow

Logistic Regression in TensorFlow

Estimators

"Representation" ML-based systems figure out by themselves what features to pay attention to

$$y = Wx + b$$

"Learning" Regression

Regression can be reverse-engineered by a single neuron

Regression: The Simplest Neural Network


```
def XOR(x1,x2):
    if (x1 == x2):
        return 0
    return 1
```

"Learning" XOR

The XOR function can be reverse-engineered using 3 neurons arranged in 2 layers

XOR: 3 Neurons, 2 Layers


```
def doSomethingReallyComplicated(x1,x2...):
    ...
    ...
    return complicatedResult
```

"Learning" Arbitrarily Complex Functions

Adding layers to a neural network can "learn" (reverse-engineer) pretty much anything

Arbitrarily Complex Function

Corpus of Images

Operations (nodes) on data (edges)

Linear Regression in TensorFlow

Baseline

Non-TensorFlow implementation

Regular python code

Cost Function

Mean Square Error (MSE)

Quantifying goodness-of-fit

Training

Invoke optimizer in epochs

Batch size for each epoch

Computation Graph

Neural network of 1 neuron

Affine transformation suffices

Optimizer

Gradient Descent optimizers

Improving goodness-of-fit

Converged Model

Values of W and b

Compare to baseline

Logistic Regression in TensorFlow

Baseline

Non-TensorFlow implementation

Regular python code

Cost Function

Cross Entropy

Similarity of distribution

Training

Invoke optimizer in epochs

Batch size for each epoch

Computation Graph

Neural network of 1 neuron

Softmax activation required

Optimizer

Gradient Descent optimizers

Improving goodness-of-fit

Converged Model

Values of W and b

Compare to baseline

Logistic Regression Using Estimators