1 Lineare Algebra

1.1 Kern, Bild und Rang

Ein **Kern** (Ker(A)) existiert, wenn $\det(A) = 0$. Der Kern einer Matrix A ist die Lösungsmenge von $A \cdot \vec{v} = \vec{0}$ \rightarrow LGS=0 durch elem. Zeilenoperationen lösen.

Das **Bild** (Im(A)) einer Matrix gibt an, welche Menge an Vektoren als Lösungen auftreten können (vgl. Wertebereich bei Funktionen).

Das Bild einer Matrix A ist die Lösungsmenge von $A \cdot \vec{v} = \vec{b}$

Der Rang (rank(A)) einer Matrix A ist die Anzahl der linear unabhängigen Zeilen- bzw. Spaltenvektoren.

Der Rang = Anzahl der Nichtnullzeilen der Matrix in Zeilenstufenform.

 \rightarrow A durch elem. Zeilenoperationen umformen.

1.2 Determinante

$$\det \begin{pmatrix} a & b \\ c & d \end{pmatrix} = ad - bc \tag{1}$$

2x2 Matrix

$$\det \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} = aei + bfg + cdh - gec - hfa - ibd \tag{2}$$

3x3 Matrix

Ergänzung: Laplace'scher Entwicklungssatz bei höherrangigen Matrizen

Siehe: https://www.mathebibel.de/laplace-entwicklungssatz

1.3 Eigenwerte, Eigenvektoren und Eigenraum

Eine Zahl λ heißt Eigenwert der Matrix A, wenn es einen Vektor \vec{v} gibt, der nicht der Nullvektor ist, so dass gilt:

$$Av = \lambda v$$

$$Av - \lambda v = 0$$

$$(A - \lambda I)v = 0$$
(3)

1.3.1 Charakteristisches Polynom berechnen

Anstatt o.g. Gleichungzu lösen: Bestimmung der Nullstellen des charakteristischen Polynoms $p_A(\lambda)$ der Matrix A.

$$p_{A}(\lambda) = \det(A - \lambda E)$$

$$= \begin{vmatrix} a_{11} - \lambda & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} - \lambda \end{vmatrix} \stackrel{!}{=} 0$$

$$(4)$$

Ergebnis: die Eigenwerte $\lambda_1, \lambda_2, \dots, \lambda_n$ von A.

1.3.2 Eigenvektoren berechnen

Der zu einem Eigenwert λ_i gehörende Eigenvektor $\vec{v_i}$ ist die Lösung der Gleichung:

$$(A - \lambda_i I) \cdot \vec{x_i} = \vec{0} \tag{5}$$

Rechenweg:

- 1. λ_i für λ in die Matrix $(A \lambda E)$ einsetzen (siehe charakterisches Polynom)
- 2. Das folgende LGS durch elementare Zeilenoperationen lösen:

$$\begin{pmatrix}
a_{11} - \lambda & \cdots & a_{1n} & 0 \\
\vdots & \ddots & \vdots & 0 \\
a_{n1} & \cdots & a_{nn} - \lambda & 0
\end{pmatrix}$$

3. Für Nullzeilen ergeben sich beliebige Lösungen, die gleich 1 gesetzt werden können.

1.3.3 Eigenraum berechnen

Der Eigenraum $E_A(\lambda_i)$ einer Matrix A zu einem Eigenwert λ_i ist die Menge aller Eigenvektoren $\vec{v_i}$ zu λ_i .

Lösung: Vielfaches der Eigenvektoren in Mengenschreibweise festhalten:

$$E_A(\lambda_i) = \{k \cdot \vec{v_i} | k \in \mathbb{R}\}$$

1.3.4 algebraische vs. geometrische Vielfachheit

1.4 Orthogonale Matrizen

Zwei Vektoren sind orthogonal, wenn ihr Skalarprodukt

$$\langle a, b \rangle = a_1 b_1 + \ldots + a_i b_i = 0$$

Äquivalente Aussagen:

- Matrix B ist orthogonal
- $B^TB = I$, d.h. B ist invertierbar mit $B^{-1} = B^T$.
- \bullet Die Spaltenvektoren von B
 definieren eine Orthonomalbasis von \mathbb{R}^n

1.4.1 Orthogonalen Vektor mit dem Kreuzprodukt finden

Für $\vec{a} \perp \vec{b}$ ergibt sich \vec{c} mit $\vec{c} \perp \vec{a}$, $\vec{c} \perp \vec{b}$ aus:

$$\vec{c} = \vec{a} \times \vec{b} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \times \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = \begin{pmatrix} a_2b_3 - a_3b_2 \\ a_3b_1 - a_1b_3 \\ a_1b_2 - a_2b_1 \end{pmatrix}$$
(6)

1.4.2 Gram-Schmidt-Verfahren

Ziel: Orthonormalbasis (ONB) zu einem Vektorraum $B = \{b_1, b_2, \dots b_n\}$ finden.

- 1. Ersten Basisvektor normieren: $\vec{q_1} = \frac{\vec{q_1}}{||\vec{q_1}||}$
- 2. Fälle das Lot von b_2 auf die von q_1 erzeugte Gerade: $l_2 = b_2 \langle b_2, q_1 \rangle q_1$
- 3. Normiere das Lot: $\vec{q_2} = \frac{\vec{l_2}}{||\vec{l_2}||}$
- 4. Wiederhole Schritte 2 und 3 für alle Basisvektoren: $l_i = b_i \langle b_i, q_1 \rangle q_1 \langle b_i, q_2 \rangle q_2 \ldots \langle b_i, q_{i-1} \rangle q_{i-1}$ und $\vec{q_i} = \frac{\vec{l_i}}{||\vec{l_i}||}$

1.5 Diagonalisierbarkeit

1.6 Singulärwertzerlegung

1.7 Pseudo-Inverse