+ Text

Step-1 Impoerts Labirary

- 1 import numpy as np
- 2 import pandas as pd
- import seaborn as sns
- 4 import matplotlib.pyplot as plt

▼ Step-2

- 1 df=sns.load_dataset("iris")
- 2 df.head()

	sepal_length	sepal_width	petal_length	petal_width	species
0	5.1	3.5	1.4	0.2	setosa
1	4.9	3.0	1.4	0.2	setosa
2	4.7	3.2	1.3	0.2	setosa
3	4.6	3.1	1.5	0.2	setosa
4	5.0	3.6	1.4	0.2	setosa

Selecting input and output

```
1 X=df.iloc[:,:-1]
2 y=df.iloc[:,-1:]
3
```

▼ Step-4 Model Creation

```
1 from sklearn.naive_bayes import GaussianNB
2 model=GaussianNB().fit(X,y)
3 model

/usr/local/lib/python3.10/dist-packages/sklearn/utils/validation.py:1143: DataConversionWarning: A column y = column_or_1d(y, warn=True)

v GaussianNB
GaussianNB()
```

▼ Training Test split

- 1 # train test split and checking accuracy
- 2 from sklearn.model_selection import train_test_split
- 3 X_train,X_test,y_train,y_test=train_test_split(X,y, test_size=0.3,random_state=0)

▼ making Predecation on base of testing data

- 1 #training the model on training data
 2 from sklearn.naive_bayes import GaussianNB
- 3 model=GaussianNB().fit(X_train,y_train)
- 4 mode

```
1 #making prediction on testing data
2 y_pred=model.predict(X_test)
```

3 y_pred

- 1 from sklearn.metrics import accuracy_score
- 2 score=accuracy_score(y_test,y_pred)
- 3 print("Naive bayes model accuracy is",score*100)

Naive bayes model accuracy is 100.0

- 1 from sklearn.metrics import confusion_matrix
- 2 cm=confusion_matrix(y_test,y_pred)
- 3 sns.heatmap(cm,annot=True)

