Module: 5SENG002C Algorithm Theory Design Pattern and Implementation

UOW: w1583002 Tutorial Group: E

IIT: 2014191

Name: Musadique Hassen Mohamed Murshid

Empirical study

The Empirical study is to find the path between any given point in Square-grid of Size (**NxN**) [Boolean matrix]. which has blocked and unblock obstacles in it.[0 false unblocked][1 true blocked]. For Calculation of Distance metrics being used as [Manhattan,Euclidean,Chebyshev] for movement of paths.

Analysis and Pattern

Approaching to the problem, As observing the from fundamental of the grid. Grid is a simple multiplication of type nodes{One big Grid simply itself} and has traveling directions in either x or y direction. This is simply a growing graph. why cause directions manipulations are of type gra[h. Graph given here is a directed graph cause it uses metrics to travel through the a given direction plus the points are generated randomly(by user).

it is of type adjacency Matrix[boolean matrix]. which has the order of growth Big O(V^2) [Vertex x Vertex] of type of graph calculations Matrix. These type of graph are easy to represent the type of data we gather, but has a disadvantage of growing in size. From the grid its easy if we can find the path MST (Clue Minimum Spanning Tree) (Correct true in the boolean array [1 in matrix] path). Using the modern day data-structures **Priority Queue** we can optimize search while calculation for storing or gathering data. Initial Search can be done as of type BFS-Approach to find the exact need. Search algorithm can be Optimized using todays Gaming algorithm like A* star for better performance. (Doubling and linear) Increment of Data is the best hypothesis is best to analyzed the data set given

Probability of Obstacles increase 0.0-0.9 [0.9 means higher Obstacles]

Grid Size	Probability of Obstacle	Time Taken	Cost of Travel	Log base 2 of Input	Log base 2 of Time
10	0.6	39.324	24	3.321928	5.297338
20	0.2	33.268	100	4.321928	5.056063
30	0.2	65.502	216	4.906891	6.033467
40	0.2	29.982	420	5.321928	4.906025
50	0.2	29.982	532	5.643856	4.522432
60	0.2	22.982	640	5.906891	4.522432
70	0.2	14.762	830	6.129283	3.883816
80	0.2	20.543	1100	6.321928	4.360575
90	0.2	16.166	1778	6.491853	4.014891
100	0.2	14.289	2130	6.643856	3.836833
150	0.2	33.066	3240	7.22881	5.047277

Growth Complexity: Growth of Complexity of the Search Algorithm is analyzed, with the given data is Big O (N) but Since the Loops consider here is 2 For Loops using the exact Growth is Big O(NxN)

Appendix Screen-Shots

Grid of Size 20x20

Grid of Size 60x60

Grid of Size 100x 100

Grid of Size 150x 150