Lista de Fixação - Integrais de Superfícies (Escalares)

Calcule as integrais de superfície a seguir. Em todos os casos, utilize a fórmula para integração escalar sobre uma superfície explícita do tipo z = f(x, y):

Considere que todas as superfícies são regulares e os domínios D estão bem definidos conforme descrito.

- 1. Calcule $\iint z \, dS$ onde S é a superfície z = x + y, sobre o retângulo $0 \le x \le 1$, $0 \le y \le 2$.
- 2. Calcule $\iint (x^2 + y^2) dS$ donde S é a superfície $z = x^2 + y^2$, sobre o disco $x^2 + y^2 \le 1$.
- 3. Calcule $\iint xz \, dS$ sobre a superfície z = 2 x y, para $0 \le x \le 1$, $0 \le y \le 1$.
- 4. Calcule $\iint \sin(x + y) dS$ onde S é a superfície z = x + y, sobre o triângulo com vértices (0,0), (1,0), (0,1).
- 5. Calcule $\int \int \sqrt{x^2 + y^2 + 1} \, dS$ onde S é a superfície z = $\ln(x^2 + y^2 + 1)$, sobre o disco $x^2 + y^2 \le 1$.
- 6. Calcule $\iint e^z dS$ onde S é a superfície $z = x^2 + y^2$, sobre o quadrado $0 \le x \le 1$, $0 \le y \le 1$.
- 7. Calcule $\iint (x + y + z) dS$ sobre a superfície z = x + y, com $x, y \in [0, 1]$.
- 8. Calcule $\iint \cos(z) dS$ onde S é a superfície $z = \sin(x) + \cos(y)$, para $x, y \in [0, \pi/2]$.
- 9. Calcule $\iint z^2 dS$ onde S é a superfície $z = 9 x^2 y^2$, sobre o disco $x^2 + y^2 \le 3$.
- 10. Calcule \iint 1 dS onde S é a superfície z = x sin(y), para $0 \le x \le 1$, $0 \le y \le \pi$.