

Recap: regularized regression

—In LASSO regression we use

$$E_{\rm in}(\mathbf{w}) + \frac{\lambda}{N} |\mathbf{w}|$$

 LASSO regression can be used for variable selection

Source: https://www.quora.com/How-would-you-describe-the-difference-between-linear-regression-lasso-regression-and-ridge-regression

Machine Learning / Burkhardt Funk 06.11.2020

Agenda

- —Introduction
- —Learning problem & linear classification
- —Linear models: regression & logistic regression
- Non-linear transformation, overfitting & regularization
- —Support Vector Machines and kernel learning
- —Neural Networks: shallow [and deep]
- —Theoretical foundation of supervised learning
- —Unsupervised learning

Better linear separation

Linearly separable data

Different separating lines

What means best?

Two questions:

- Why is bigger margin better?
- Which w maximizes the margin?

Finding w with large margin

Let \mathbf{x}_n be the nearest data point to the plane $\mathbf{w}^{\mathsf{T}}\mathbf{x} = 0$. How far is it?

2 preliminary technicalities:

Normalize w:

$$|\mathbf{w}^{\mathsf{T}}x_n| = 1$$

- Pull out w_0 : $\mathbf{w} = (w_1, ..., w_d)$ as b
- The plane is now defined by $\mathbf{w}^{\mathsf{T}}\mathbf{x} + b = 0$ (no x_0)

Computing the distance

The distance between x_n and the plane $\mathbf{w}^{\mathsf{T}}\mathbf{x} + b = 0$ where $|\mathbf{w}^{\mathsf{T}}\mathbf{x}_n + b| = 1$

The vector \mathbf{w} is \perp to the plane in the \mathcal{X} space:

Take \mathbf{x}' and \mathbf{x}'' on the plane

$$\mathbf{w}^{\mathsf{T}}\mathbf{x}' + b = 0$$
 and $\mathbf{w}^{\mathsf{T}}\mathbf{x}'' + b = 0$

$$\Rightarrow \mathbf{w}^{\mathsf{T}}(\mathbf{x}' - \mathbf{x}'') = 0$$

and the distance is ...

Distance between x_n and the plane:

Take any point x on the plane

Projection $x_n - x$ on w

$$\widehat{\mathbf{w}} = \frac{\mathbf{w}}{\|\mathbf{w}\|} \implies \text{distance} = |\widehat{\mathbf{w}}^{\mathsf{T}}(\mathbf{x}_n - \mathbf{x})|$$

distance
$$=\frac{1}{\|\mathbf{w}\|}|\mathbf{w}^{\mathsf{T}}\mathbf{x}_n - \mathbf{w}^{\mathsf{T}}\mathbf{x}| = \frac{1}{\|\mathbf{w}\|}|\mathbf{w}^{\mathsf{T}}\mathbf{x}_n + b - \mathbf{w}^{\mathsf{T}}\mathbf{x} - b| = \frac{1}{\|\mathbf{w}\|}$$

The optimization problem

Maximize
$$\frac{1}{\|\mathbf{w}\|}$$

subject to
$$\min_{n} |\mathbf{w}^{\mathsf{T}} \mathbf{x}_{n} + b| = 1$$

Notice:
$$|\mathbf{w}^{\mathsf{T}}\mathbf{x}_n + b| = y_n(\mathbf{w}^{\mathsf{T}}\mathbf{x}_n + b)$$

Minimize
$$\frac{1}{2} \mathbf{w}^{\mathsf{T}} \mathbf{w}$$

subject to
$$y_n(\mathbf{w}^\mathsf{T}\mathbf{x}_n + b) \ge 1$$
 for $n = 1, 2, ..., N$

How can we solve this optimization problem?

Lagrange formulation (using Karush-Kuhn-Tucker)

Minimize
$$\mathcal{L}(\mathbf{w}, b, \alpha) = \frac{1}{2} \mathbf{w}^{\mathsf{T}} \mathbf{w} - \sum_{n=1}^{N} \alpha_n (y_n (\mathbf{w}^{\mathsf{T}} \mathbf{x}_n + b) - \mathbf{1})$$

w.r.t. w and b and maximize w.r.t. each $\alpha_n \geq 0$

$$\nabla_{\mathbf{w}} \mathcal{L} = \mathbf{w} - \sum_{n=1}^{N} \alpha_n y_n \mathbf{x}_n = \mathbf{0}$$

$$\frac{\partial \mathcal{L}}{\partial b} = -\sum_{n=1}^{N} \alpha_n y_n = 0$$

Substituting ...

$$\mathbf{w} = \sum_{n=1}^{N} \alpha_n y_n \mathbf{x}_n$$
 and $\sum_{n=1}^{N} \alpha_n y_n = 0$

in the Lagrangian
$$\mathcal{L}(\mathbf{w}, b, \alpha) = \frac{1}{2} \mathbf{w}^\mathsf{T} \mathbf{w} - \sum_{n=1}^N \alpha_n (y_n(\mathbf{w}^\mathsf{T} \mathbf{x}_n + b) - \mathbf{1})$$

we get
$$\mathcal{L}(\alpha) = \sum_{n=1}^{N} \alpha_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} y_n y_m \alpha_n \alpha_m \mathbf{x}_n^{\mathsf{T}} \mathbf{x}_m$$

Maximize w.r.t. to α subject to $\alpha_n \ge 0$ for n = 1, ..., N and $\sum_{n=1}^N \alpha_n y_n = 0$

The solution – quadratic programming

$$\min_{\alpha} \ \frac{1}{2} \alpha^{\mathsf{T}} \begin{bmatrix} y_1 y_1 \mathbf{x}_1^{\mathsf{T}} \mathbf{x}_1 & y_1 y_2 \mathbf{x}_1^{\mathsf{T}} \mathbf{x}_2 & \cdots & y_1 y_N \mathbf{x}_1^{\mathsf{T}} \mathbf{x}_N \\ y_2 y_1 \mathbf{x}_2^{\mathsf{T}} \mathbf{x}_1 & y_2 y_2 \mathbf{x}_2^{\mathsf{T}} \mathbf{x}_2 & \cdots & y_2 y_N \mathbf{x}_2^{\mathsf{T}} \mathbf{x}_N \\ \vdots & \vdots & \ddots & \vdots \\ y_N y_1 \mathbf{x}_N^{\mathsf{T}} \mathbf{x}_1 & y_N y_2 \mathbf{x}_N^{\mathsf{T}} \mathbf{x}_2 & \cdots & y_N y_N \mathbf{x}_N^{\mathsf{T}} \mathbf{x}_N \end{bmatrix} \alpha + (-1^{\mathsf{T}}) \alpha$$
quadratic coefficients

subject to
$$y^{T}\alpha = 0$$
linear constraint

$$0 \le \alpha \le \infty$$
lower bounds upper bounds

Quadratic Programming finds the α 's

Solution: $\alpha = \alpha_1, ..., \alpha_N$

$$\Rightarrow$$
 $\mathbf{w} = \sum_{n=1}^{N} \alpha_n y_n \mathbf{x}_n$

KKT condition: For n = 1, ..., N

$$\alpha_n(\mathbf{y}_n(\mathbf{w}^\mathsf{T}\mathbf{x}_n+b)-\mathbf{1})=\mathbf{0}$$

That leads to the conclusion

$$\alpha_n > 0 \Rightarrow \mathbf{x}_n$$
 is a support vector

Support vectors

Closest x_n 's to the plane: achieve the margin

$$\Rightarrow y_n (\mathbf{w}^\mathsf{T} \mathbf{x}_n + b) = 1$$

$$\mathbf{w} = \sum_{\mathbf{x}_n \text{ is SV}} \alpha_n y_n \mathbf{x}_n$$

Solve for *b* using any SV:

$$y_n(\mathbf{w}^{\mathsf{T}}\mathbf{x}_n + b) = 1$$

An interesting insight

—If we can express w in terms of a linear combinations of x_n :

$$\mathbf{w} = \sum_{\mathbf{x}_n \text{ is SV}} \alpha_n y_n \mathbf{x}_n$$

— ... then we can express the decision function as

$$h(\mathbf{x}) = \operatorname{sign}\left(\sum_{\mathbf{x}_n \text{ is SV}} \boldsymbol{\alpha}_n y_n \mathbf{x}_n^T \mathbf{x} + b\right)$$

... so it also depends on the linear combination

What, if data is not linearly seperable?

slightly:

seriously:

Accepting margin violations

Margin violation: $y_n(w^{\mathsf{T}}x_n + b) \ge 1$ fails

Require:
$$y_n(w^{\mathsf{T}}x_n + b) \ge 1 - \xi_n$$
 with $\xi_n \ge 0$

Total violation $=\sum_{n=1}^{N} \xi_n$

The new optimization

Minimize
$$\frac{1}{2}\mathbf{w}^{\mathsf{T}}\mathbf{w} + \mathcal{C}\sum_{n=1}^{N} \xi_{n}$$

Subject to
$$y_n(\mathbf{w}^{\mathsf{T}}\mathbf{x}_n + b) \ge 1 - \xi_n$$
 for $n = 1, ..., N$

and
$$\xi_n \ge 0$$
 for $n = 1, ..., N$

$$\mathbf{w} \in \mathbb{R}^d$$
, $b \in \mathbb{R}$, $\xi \in \mathbb{R}^N$

Using non-linear transformations

$$\mathcal{L}(\alpha) = \sum_{n=1}^{N} \alpha_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} y_n y_m \alpha_n \alpha_m \mathbf{z}_n^{\mathsf{T}} \mathbf{z}_m$$

What do we need from the Z space

$$\mathcal{L}(\alpha) = \sum_{n=1}^{N} \alpha_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} y_n y_m \alpha_n \alpha_m \mathbf{z}_n^{\mathsf{T}} \mathbf{z}_m$$

Constraints: $\alpha_n \geq 0$ for n = 1, ..., N and $\sum_{n=1}^N \alpha_n y_n = 0$

$$g(\mathbf{x}) = sign(\mathbf{w}^{\mathsf{T}}\mathbf{z} + b) \quad \text{need } \mathbf{z}_{n}^{\mathsf{T}}\mathbf{z}$$

where
$$\mathbf{w} = \sum_{\mathbf{z}_n i_S \ SV} \alpha_n y_n \mathbf{z}_n$$

and
$$b: \mathbf{y_m}(\mathbf{w}^\mathsf{T}\mathbf{z_m} + b) = \mathbf{1} \text{ need } \mathbf{z_n}^\mathsf{T}\mathbf{z_m}$$

Generalized inner product

Given two points \mathbf{x} and $\mathbf{x'} \in \mathcal{X}$, we need $\mathbf{z}^{\mathsf{T}}\mathbf{z'}$

Let $\mathbf{z}^{\mathsf{T}}\mathbf{z}' = K(\mathbf{x}, \mathbf{x}')$ (the kernel) "inner product" of \mathbf{x} and \mathbf{x}'

Example:
$$\mathbf{x} = (x_1, x_2) \rightarrow 2^{\text{nd}}$$
-order Φ

$$\mathbf{z} = \Phi(\mathbf{x}) = (1, x_1, x_2, x_1^2, x_2^2, x_1 x_2)$$

$$K(\mathbf{x}, \mathbf{x}') = \mathbf{z}^{\mathsf{T}} \mathbf{z}' = 1 + x_1 x_1' + x_2 x_2' + x_1 x_1' x_2' + x_2' x_1' + x_2' x_2' + x_1 x_1' x_2 x_2'$$

The final hypothesis

Express $g(\mathbf{x}) = \text{sign}(\mathbf{w}^{\mathsf{T}}\mathbf{z} + b)$ in terms of K(-, -)

$$w = \sum_{\mathbf{z}_n i \in SV} \alpha_n y_n \mathbf{z}_n \quad \Longrightarrow \quad g(\mathbf{x}) = \operatorname{sign}(\sum_{\alpha_n > 0} \alpha_n y_n K(\mathbf{x}_n, \mathbf{x}) + b)$$

where
$$b = y_m - \sum_{\alpha_n > 0} \alpha_n y_n K(\mathbf{x_n}, \mathbf{x_m})$$

for any support vector $(\alpha_m > 0)$

Design your own kernel

 $K(\mathbf{x}, \mathbf{x}')$ is a valid kernel iff

1. It is symmetric and 2. The matrix
$$\begin{bmatrix} K(\mathbf{x}_1,\mathbf{x}_1) & K(\mathbf{x}_1,\mathbf{x}_2) & \cdots & K(\mathbf{x}_1,\mathbf{x}_N) \\ K(\mathbf{x}_2,\mathbf{x}_1) & K(\mathbf{x}_2,\mathbf{x}_2) & \cdots & K(\mathbf{x}_2,\mathbf{x}_N) \\ \vdots & \vdots & \ddots & \vdots \\ K(\mathbf{x}_N,\mathbf{x}_1) & K(\mathbf{x}_N,\mathbf{x}_2) & \cdots & K(\mathbf{x}_N,\mathbf{x}_N) \end{bmatrix}$$

is positive semi-definite

for any $x_1, ..., x_N$ (Mercer's condition)

Backup

Machine Learning / Burkhardt Funk 19.11.2020 25

Lagrange formulation

$$\mathcal{L}(\mathbf{w}, b, \boldsymbol{\xi}, \alpha, \beta) = \frac{1}{2} \mathbf{w}^{\mathsf{T}} \mathbf{w} + \mathcal{C} \sum_{n=1}^{N} \boldsymbol{\xi}_{n} - \sum_{n=1}^{N} \alpha_{n} (y_{n}(\mathbf{w}^{\mathsf{T}} \mathbf{x}_{n} + b) - \mathbf{1} + \boldsymbol{\xi}_{n}) - \sum_{n=1}^{N} \beta_{n} \boldsymbol{\xi}_{n}$$

Minimize w.r.t. w, b and ξ and maximize w.r.t. each $\alpha_n \geq 0$ and $\beta_n \geq 0$

$$\nabla_{\mathbf{w}} \mathcal{L} = \mathbf{w} - \sum_{n=1}^{N} \alpha_n y_n \mathbf{x}_n = \mathbf{0}$$

$$\frac{\partial \mathcal{L}}{\partial b} = -\sum_{n=1}^{N} \alpha_n y_n = 0$$

$$\frac{\partial \mathcal{L}}{\partial \xi_n} = \mathcal{C} - \alpha_n - \beta_n = 0$$

and the solution is ...

Maximize
$$\mathcal{L}(\alpha) = \sum_{n=1}^N \alpha_n - \frac{1}{2} \sum_{n=1}^N \sum_{m=1}^N y_n y_m \alpha_n \alpha_m \mathbf{x}_n^{\mathsf{T}} \mathbf{x}_m$$
 w.r.t. to α

subject to
$$0 \le \alpha_n \le \mathcal{C}$$
 for $n = 1, ..., N$ and $\sum_{n=1}^N \alpha_n y_n = 0$

$$\Rightarrow$$
 $\mathbf{w} = \sum_{n=1}^{N} \alpha_n y_n \mathbf{x}_n$

minimizes
$$\frac{1}{2}\mathbf{w}^{\mathsf{T}}\mathbf{w} + \mathcal{C}\sum_{n=1}^{N}\xi_{n}$$

Types of support vectors

margin support vectors $(0 < \alpha_n < C)$

$$y_n(\mathbf{w}^{\mathsf{T}}\mathbf{x}_n + b) = 1 \qquad (\boldsymbol{\xi}_n = 0)$$

non-margin support vectors $(\alpha_n = C)$

$$y_n(\mathbf{w}^{\mathsf{T}}\mathbf{x}_n + b) < 1 \quad (\boldsymbol{\xi}_n > 0)$$

The Kernel trick

Can we compute $K(\mathbf{x}, \mathbf{x}')$ without transforming \mathbf{x} and \mathbf{x} ?

Example: Consider
$$K(\mathbf{x}, \mathbf{x}') = (1 + \mathbf{x}^{\mathsf{T}} \mathbf{x}')^2 = (1 + x_1 x_1' + x_2 x_2')^2$$

= $1 + x_1^2 x_1'^2 + x_2^2 x_2'^2 + 2x_1 x_1' + 2x_2 x_2' + 2x_1 x_1' x_2 x_2'$

This is an inner product!

$$(1, x_1^2, x_2^2, \sqrt{2}x_1, \sqrt{2}x_2, \sqrt{2}x_1x_2)$$

$$(1, x_1^2, x_2^2, \sqrt{2}x_1^2, \sqrt{2}x_2^2, \sqrt{2}x_1^2)$$

We only need Z to exist!

If $K(\mathbf{x}, \mathbf{x}')$ is an inner product in <u>some</u> space \mathcal{Z} , we are good.

Example:
$$K(\mathbf{x}, \mathbf{x}') = \exp(-\gamma ||\mathbf{x} - \mathbf{x}'||^2)$$

Infinite-dimensional \mathcal{Z} : take simple case

$$K(x,x') = \exp(-(x - x')^{2})$$

$$= \exp(-x^{2}) \exp(-x'^{2}) \sum_{k=0}^{\infty} \frac{2^{k}(x)^{k}(x')^{k}}{k!}$$

$$= \exp(2xx')$$

Kernel formulation of SVM

Remember quadratic programming? The only difference is now:

$$\begin{bmatrix} y_1y_1K(\mathbf{x}_1,\mathbf{x}_1) & y_1y_2K(\mathbf{x}_1,\mathbf{x}_2) & \cdots & y_1y_NK(\mathbf{x}_1,\mathbf{x}_N) \\ y_2y_1K(\mathbf{x}_2,\mathbf{x}_1) & y_2y_2K(\mathbf{x}_2,\mathbf{x}_2) & \dots & y_2y_NK(\mathbf{x}_2,\mathbf{x}_N) \\ \vdots & \vdots & \ddots & \vdots \\ y_Ny_1K(\mathbf{x}_N,\mathbf{x}_1) & y_Ny_2K(\mathbf{x}_N,\mathbf{x}_2) & \cdots & y_Ny_NK(\mathbf{x}_N,\mathbf{x}_N) \end{bmatrix}$$
 quadratic coefficients

Everything else is the same.