Lecture Notes for **Machine Learning in Python**

Professor Eric Larson **Dimensionality Reduction**

Class Logistics and Agenda

- · Logistics:
 - First flipped module in one week!
 - Grading of lab one started...
- · Agenda:
 - Dimensionality Reduction
 - PCA (and intro to Randomized PCA)
 - Images Representation with PCA

Class Overview, by topic

Last time: visualization

Kyle 🚀 📆 🔪 🦜 @KyleMorgens... · 1d · · · eigenvalues are just the TLDR for a matrix

1,602 ♥ 6,046 1,1

Self Test: Table Data and Dimensions

How many dimensions does this table data have?

- A. Two, each point has two features
- B. Two, p1 and p2 can be plotted versus one another
- C. Six, each column can be plotted in six dimensional space
- D. Six, each row is a point in six dimensions

	A ₁	A ₂
P_1	-2.96	-4.82
P_2	9.03	9.18
P_3	19.33	15.88
P_4	-14.46	-13.82
P_5	-1.96	-0.02
P_6	-8.96	-6.42

Curse of Dimensionality

Integers from 1-10

- When dimensionality increases, data becomes increasingly sparse in the space that it occupies
- Definitions of density and distance between points, which is critical for clustering and outlier detection, become less meaningful

$$\mathbb{R}^N \leftrightarrow 10^N$$
 (or more) values

Purpose:

- Avoid curse of dimensionality
- Select subsets of independent features
- Reduce amount of time and memory required by data mining algorithms
- Allow data to be more easily visualized
- May help to eliminate irrelevant features or reduce noise

Techniques

- · Principle Component Analysis
- Non-linear PCA
- Stochastic Neighbor Embedding (tSNE)
- Uniform Manifold Approximation (UMAP)

I invented PCA... and Social Darwinism

Aside: Eigen Vectors are your friend!

(Grant Sanderson) Three Blue One Brown:

https://www.youtube.com/watch?v=PFDu9oVAE-g

Goal is to find a projection that captures the largest amount of variation in data

- Find the **eigenvectors** of the **covariance** matrix
- keep the "k" eigenvectors with largest eigenvalues

optional: unit std

attribute₂

Transform data using dot product between point and principle component (eigenvector)

Reconstruction error:

attribute₁

difference between projection and original point in 2D space

This projection is called a **Transform** known as the **Karhunen-Loève Transform (KLT)**

Shown here for two dimensions, but could be anything smaller than original space

$$\mathbb{R}^N \to \mathbb{R}^M$$
, $M < N$

Explained Variance (scree plot)

- Each principle component explains a certain amount of variation in the data.
- This explained variation is **encoded** in the **eigenvalues** of each **eigenvector**

 $r_q = \frac{\sum_{j=1}^q \lambda_j}{\sum_{\forall i} \lambda_i}$ sum of all eigenvalues

Genetic profiles distilled to 2 components

Dimension Reduction

04. Dimension Reduction and Images. ipynb

PCA biplots

Other Tutorials:

http://scikit-learn.org/stable/auto_examples/decomposition/plot_pca_vs_lda.html#example-decomposition-plot-pca-vs-lda-py

http://nbviewer.ipython.org/github/ogrisel/notebooks/blob/master/Labeled%20Faces%20in%20the%20Wild%20recognition.ipynb

Self Test ML2b.1

Principal Components Analysis works well for categorical data by design.

A. True

B. False

C. It doesn't but people do it anyway

Better option: Mutual Correspondence Analysis

	Eye Color	Hair Color		Eye Color Ha		Eye Color		air olor		
1	Blue	Blon.		1	1	0	0	1	0	
2	Brown	Brown	OHE	2	0	1	0	0	1	PCA
3	Blue	Blon.		3	1	0	0	1	0	
4	Hazel	Brown		4	0	0	1	0	1	
5	Brown	Brown		5	0	1	0	0	1	
6	Brown	Blon.		6	0	1	0	1	0	

	A1	A2
1	0.79	-0.30
2	-0.60	-0.13
3	0.79	-0.30
4	0.24	0.99
5	-0.60	-0.13
6	-0.1	-0.25

Dimensionality Reduction: Randomized PCA

- Problem: PCA on all that data can take a while to compute
 - What if the number of instances is gigantic?
 - What if the number of dimensions is gigantic?
- Can we approximate covariance with a lower rank matrix?
 - By transforming our table data, A, with another orthogonal matrix, Q, we can approximate the covariance matrix, but with lower rank
 - Gives a matrix with typically good enough precision of actual eigenvectors, like using SVD. QQ^TA is surrogate

Example Objective
$$\|\mathbf{A} - \mathbf{Q} \cdot \mathbf{Q}^T \mathbf{A}\| < (1 + 11\sqrt{k + p} \cdot \min(m, n)) \cdot \sigma_{k+1}$$
properties of \mathbf{A} and \mathbf{Q}

Halko, et al., (2009) Finding structure with randomness: Stochastic algorithms for constructing approximate matrix decompositions. https://arxiv.org/pdf/0909.4061.pdf

Image Representation

Our first @ResearchMark meme

Images as data

- an image can be represented in many ways
- most common format is a matrix of pixels
 - each "pixel" is BGR(A)

Image Representation

need a compact representation

grayscale

0.3*R+0.59*G+0.11*B, "luminance"

gray

1	4	2	5	6	9
1	4	2	5	5	9
1	4	2	8	8	7
3	4	3	9	9	8
1	0	2	7	7	9
1	4	3	9	8	6
2	4	2	8	7	9

Numpy Matrix image[rows, cols]

	_	1 1					
	G[1	4	2	5	6	9
\mathbb{B}	1	4	2	5	6	9	9
1	4	2	5	6	9	9	7
1	4	2	5	5	9	7	8
1	4	2	8	8	7	8	9
3	4	3	9	9	8	9	6
1	0	2	7	7	9	6	9
1	4	3	9	8	6	9	Т
2	4	2	8	7	9		_

Numpy Matrix image[rows, cols, channels]

Image Representation, Features

Problem: need to represent image as table data

need a compact representation

1	4	2	5	6	9
1	4	2	5	5	9
1	4	2	8	8	7
3	4	3	9	9	8
1	0	2	7	7	9
1	4	3	9	8	6
2	4	2	8	7	9

Image Representation, Features

Problem: need to represent image as table data

need a compact representation

Solution: row concatenation (vectorizing)

. . .

Self test: 3a-1

- When vectorizing images into table data, each "feature column" corresponds to:
 - a. the value (color) of a pixel
 - b. the spatial location of a pixel in the image
 - c. the size of the image
 - d. the spatial location and color channel of a pixel in an image

Dimension Reduction with Images

Demo

Images Representation in PCA and Randomized PCA

04. Dimension Reduction and Images. ipynb

For Next Lecture

- Next Lecture:
 - Finish Dimension Reduction Demo
 - Crash-course Image Feature Extraction