

本科实验报告

喇叭天线的幅射特性测量及 CST 仿真

课程名称: 电磁场与电磁波

姓 名: 姚桂涛

学院: 信息与电子工程学院

专业: 信息工程

学 号: 3190105597

指导老师: 王子立

2021年6月24日

浙江大学实验报告

专业:信息工程姓名:姚桂涛学号:3190105597日期:2021 年 6 月 24 日地点:东 4-221

矩形波导馈电的角锥喇叭天线 CST 仿真

一、 实验目的

- (1) 了解并掌握波导喇叭天线的常用参数指标和分析方法.
- (2) 了解熟悉 CST 软件的基本使用方法, 学会运用其进行建模、仿真。

二、 实验任务

用 CST 软件对特定的巨型波导喇叭天线进行建模、仿真,分析其辐射特性,并与喇叭天线辐射特性测量实验进行比较。

三、 实验过程与结果

1. 模型建立

1.1 建立工程

图 1

图 2

1.2 参数设置

Parameter List					×
$\ensuremath{\mathbb{V}}$ Name	Expression	Value	Description	Туре	
a	= 22.86	22.86		None	~
t	= 1	1		None	~
b	= 10.16	10.16		None	~
Lambda	= 29.1	29.1		None	~
DH	= 80	80		None	~
DE	= 38	38		None	~
L	= 80	80		None	~

图 3

1.3 创建矩形

图 4

图 5

1.4 建立喇叭模型

建立喇叭口径面

图 6

图 7

图 8

设置喇叭口径面的空间位置

图 9

图 10

创建喇叭侧壁

图 11

图 12

掏空

图 13

图 14

2. 仿真分析

2.1 仿真条件设置 仿真频率

图 15

仿真边界条件

图 16

图 17

端口设置

图 18

设置监视器

图 19

图 20

图 21

2.2 模式分析

图 22

图 23

由于仿真最高频率为 12.4GHz, 所以在这种结构的喇叭天线中只传输 1 种模式的波,设置的吸收的模式数只要大于 1 就可以了。

2.3 仿真设置

图 24

3. 仿真结果

3.1 S₁₁ 曲线

图 25

3.2 驻波曲线

图 26

3.3 方向图

图 27

图 28

3.4 增益图

图 29

图 30

3.5 E-field, H-field, surface current 图

图 31 e-field

图 32 h-field

图 33 surface current

4. 分析结论

从仿真结果来看,该矩形波导馈电的角锥喇叭天线的主瓣方向为主瓣宽度为,主瓣的最大增益为20.8dB,最大增益的仿真值与理论估计值相近。同时,该天线输入端口的反射系数在工作频段内均在20dB以下,能够较好的工作。当然仿真结果与实际天线的测量结果还是有一定的偏差的,这里我们主要是要通过仿真,了解矩形波导馈电的角锥喇叭天线的结构,以及其方向性。

四、 实验收获与体会