# Introduction au Machine learning M1MINT

Text mining: comment transformer un texte en un vecteur numérique ?

Agathe Guilloux

Hashing

# Hashing

ightharpoonup Idée: réduire le nombre de valeurs d'une variable nominale avec des valeurs dans un grand ensemble  $\mathcal D$ 

## Hashing

- ▶ Construction d'une fonction de hashage  $H: \mathcal{D} \to \{1, ..., V\}$  et on utilise les valeurs hashées au lieu des valeurs originales.
- La fonction de hashage doit être la *plus injective possible...*, du moins au sens probabiliste.

Construire une telle fonction est un art !



# Bag of Words

Comment transformer un texte en vecteur numérique de features ?

# La stratégie "Bag of Words strategy"

- Créer un dictionnaire de mots,
- Calculer un poids pour chaque mot.

#### Construction d'une liste

- ► Faire une liste de tous les mots avec le nombre d'occurrence
- Réunir les mots qui ont la même racine (stemming)
- Hash les racines avec une fonction de hashage (MurmurHash avec 32bits par exemple)
- ightharpoonup Calculer l'histogramme  $h_w(d)$

#### TD-IDF

## Calcul des poids

- ightharpoonup Calculer l'histogramme  $h_w(d)$
- ▶ Re-normaliser :
  - tf transformation (profil du mot):

$$tf_w(d) = \frac{h_w(d)}{\sum_w h_w(d)}$$

de telle sorte que  $tf_w(d)$  est la fréquence dans le document d.

tf-idf transformation (profil du mot re-pondéré par sa rareté):

$$\operatorname{tf}-\operatorname{idf}_w(\operatorname{\textit{d}})=\operatorname{idf}_w\times\operatorname{tf}_w(\operatorname{\textit{d}})$$

avec idf un poids dépendant du corpus

$$\mathrm{idf}_w = \log \frac{n}{\sum_{i=1}^n \mathbf{1}_{h_w(d_i) \neq 0}}$$

- ▶ Utiliser le vecteur tf(d) (or tf idf(d)) pour décrire un document.
- C'est le pré-processing le plus classique en textmining.

# Clustering de textes

## Probabilistic latent semantic analysis (PLSA)

Modèle:

$$\mathbb{P}\left(\mathrm{tf}\right) = \sum_{k=1}^{K} \mathbb{P}\left(k\right) \mathbb{P}\left(\mathrm{tf}|k\right)$$

avec k le thème caché,  $\mathbb{P}\left(k\right)$  la probabilité du thème et  $\mathbb{P}\left(\mathrm{tf}|k\right)$  une loi multinomiale pour le thème.

Clustering avec un modèle de mélange

$$\mathbb{P}\left(k|\mathrm{tf}\right) = \frac{\widehat{\mathbb{P}\left(k\right)}\widehat{\mathbb{P}\left(\mathrm{tf}|k\right)}}{\sum_{k'}\widehat{\mathbb{P}\left(k'\right)}\widehat{\mathbb{P}\left(\mathrm{tf}|k'\right)}}$$

- ▶ Modèle de mélange
- ▶ Il existe une variante bayésienne appelée Latent Dirichlet Allocation.



### Word Vectors

# Word Embedding

- ▶ On construit une représentation des mots dans  $\mathbb{R}^d$ .
- en espérant que la relation entre 2 vecteurs est liée à la relation entre les 2 mots dont ils sont issus.

#### Word And Context

#### Le mot et son contexte

- ▶ Idée: caractériser un mot w par son contexte c...
- Description probabiliste:
  - Loi jointe :  $f(w,c) = \mathbb{P}(w,c)$
  - Lois conditionnelles:  $f(w, c) = \mathbb{P}(w|c)$  or  $f(w, c) = \mathbb{P}(c|w)$ .
  - Information mutuelle :  $f(w, c) = \mathbb{P}(w, c) / (\mathbb{P}(w) \mathbb{P}(c))$
- Le mot w est caractérisé par le vecteur  $C_w = (f(w, c))_c$  ou  $C_w = (\log f(w, c))_c$ .
- ▶ En pratique, on estime *C* sur un large corpus
- ► Attention : c'est un modèle de très grande dimension !
- ► GloVe (Global Vectors) via les moindres carrés
- ► Word2vec via la régression logistique
- ► Singular value decomposition