```
In [99]: # DSBDA Practical A-10:
           # Download the Iris flower dataset or any other dataset into a DataFrame.
           # Scan the dataset and give the inference as:
           # 1. List down the features and their types (e.g., numeric, nominal) available in the dataset.
           # 2. Create a histogram for each feature in the dataset to illustrate the feature distributions.
           # 3. Create a boxplot for each feature in the dataset.
           # 4. Compare distributions and identify outliers.
In [100]: # https://www.kaggle.com/datasets/uciml/iris?resource=download
In [101]: df=pd.read csv('Iris.csv')
In [102]: df
Out[102]:
                  Id SepalLengthCm SepalWidthCm PetalLengthCm PetalWidthCm
                                                                               Species
              0
                  1
                               5.1
                                             3.5
                                                                              Iris-setosa
                                                           1.4
                                                                         0.2
              1
                  2
                               4.9
                                             3.0
                                                                         0.2
                                                           1.4
                                                                              Iris-setosa
              2
                  3
                               47
                                             3.2
                                                           1.3
                                                                         0.2
                                                                              Iris-setosa
                  4
              3
                               4.6
                                             3.1
                                                           1.5
                                                                         0.2
                                                                              Iris-setosa
              4
                  5
                               5.0
                                             3.6
                                                           1.4
                                                                         0.2
                                                                              Iris-setosa
                                             3.0
                                                           5.2
            145 146
                               6.7
                                                                         2.3
                                                                            Iris-virginica
                                             2.5
            146 147
                               6.3
                                                           5.0
                                                                             Iris-virginica
                                                                         1.9
                                             3.0
                                                           5.2
            147 148
                               6.5
                                                                         2.0
                                                                            Iris-virginica
            148
                149
                               6.2
                                             3.4
                                                           5.4
                                                                         2.3
                                                                            Iris-virginica
            149 150
                               5.9
                                             3.0
                                                           5.1
                                                                         1.8 Iris-virginica
           150 rows × 6 columns
In [103]: df.info()
           <class 'pandas.core.frame.DataFrame'>
           RangeIndex: 150 entries, 0 to 149
           Data columns (total 6 columns):
                                Non-Null Count Dtype
                Column
            #
                -----
            0
                Ιd
                                150 non-null
                                                  int64
                SepalLengthCm 150 non-null
                                                  float64
            1
                                                  float64
                SepalWidthCm
                                150 non-null
                PetalLengthCm 150 non-null
                                                  float64
            4
                PetalWidthCm
                                150 non-null
                                                  float64
                Species
                                 150 non-null
                                                  object
           dtypes: float64(4), int64(1), object(1)
           memory usage: 7.2+ KB
In [104]: df.dtypes
Out[104]: Id
                                int64
                              float64
           SepalLengthCm
           SepalWidthCm
                              float64
           PetalLengthCm
                              float64
           PetalWidthCm
                              float64
           Species
                               object
           dtype: object
```

In [105]: df.describe()

Out[105]:

	Id	SepailengthCm	SepaiwidthCm	PetalLengthCm	PetalWidthCm
count	150.000000	150.000000	150.000000	150.000000	150.000000
mean	75.500000	5.843333	3.054000	3.758667	1.198667
std	43.445368	0.828066	0.433594	1.764420	0.763161
min	1.000000	4.300000	2.000000	1.000000	0.100000
25%	38.250000	5.100000	2.800000	1.600000	0.300000
50%	75.500000	5.800000	3.000000	4.350000	1.300000
75%	112.750000	6.400000	3.300000	5.100000	1.800000
max	150.000000	7.900000	4.400000	6.900000	2.500000

```
In [106]: # Draw Histograms for each feature in dataset to illustrate the feature distributions import matplotlib.pyplot as plt
```

```
In [107]: plt.hist(df['SepalLengthCm'], bins=20) # Adjust the number of bins as needed
plt.title(f'Histogram of SepalLengthCm')
plt.xlabel('SepalLengthCm')
plt.ylabel('Frequency')
```

Out[107]: Text(0, 0.5, 'Frequency')


```
In [108]: plt.hist(df['SepalWidthCm'], bins=10) # Adjust the number of bins as needed
plt.title(f'Histogram of SepalWidthCm')
plt.xlabel('SepalWidthCm')
plt.ylabel('Frequency')
```

Out[108]: Text(0, 0.5, 'Frequency')


```
In [109]: plt.hist(df['PetalLengthCm'], bins=10) # Adjust the number of bins as needed
    plt.title(f'Histogram of PetalLengthCm')
    plt.xlabel('PetalLengthCm')
    plt.ylabel('Frequency')
```

Out[109]: Text(0, 0.5, 'Frequency')


```
In [110]: plt.hist(df['PetalWidthCm'], bins=10) # Adjust the number of bins as needed
plt.title(f'Histogram of PetalWidthCm')
plt.xlabel('PetalWidthCm')
plt.ylabel('Frequency')
```

Out[110]: Text(0, 0.5, 'Frequency')


```
In [111]: # Create boxplots for SepalLengthCm, SepalWidthCm, PetalLengthCm, PetalWidthCm
plt.figure(figsize=(10, 6))
df.boxplot(column=['SepalLengthCm', 'SepalWidthCm', 'PetalLengthCm', 'PetalWidthCm'])
plt.title('Boxplots of Iris Features')
plt.ylabel('Cm')
plt.show()
```


outliers = df[(df['SepalWidthCm'] < lower_bound) | (df['SepalWidthCm'] > upper_bound)]

In [117]: # Identify outliers

In [118]: # Print or further process the outliers
print("Outliers in SepalWidthCm:")
outliers

Outliers in SepalWidthCm:

Out[118]:

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
15	16	5.7	4.4	1.5	0.4	Iris-setosa
32	33	5.2	4.1	1.5	0.1	Iris-setosa
33	34	5.5	4.2	1.4	0.2	Iris-setosa
60	61	5.0	2.0	3.5	1.0	lris-versicolor

In [119]: # Printing the Row Indexes of Outliers
 outlier_indices = outliers.index
 print("Outliers RowIndex:")
 outlier_indices

Outliers RowIndex:

Out[119]: Int64Index([15, 32, 33, 60], dtype='int64')

#With above commands, the practical problem statements are
#finished. But to study the the Iris Flower in the
#perspective of Biologists, the morphological (structural) differences between the species are to be st
#Below is the extended code (not for exam)

In [121]: # Lets do a comparitive analysis of all species on PetalWidthCm
 import seaborn as sns
 sns.boxplot(x='Species', y='PetalWidthCm', data=df)
 plt.title('Species-wise Boxplot of PetalWidthCm')
 # Draw Specieswise Boxplot for PetalWidthCm
 plt.show()

Species-wise Boxplot of PetalWidthCm

2.5 -2.0 -W 1.5 -0.5 -

Iris-versicolor

Species

Iris-virginica

Iris-setosa

0.0

No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.


```
In [123]: # Calculate IQR and identify outliers for each species for PetalWidthCm
def find_outliers_iqr(data):
    Q1 = data.quantile(0.25)
    Q3 = data.quantile(0.75)
    IQR = Q3 - Q1
    lower_bound = Q1 - 1.5 * IQR
    upper_bound = Q3 + 1.5 * IQR
    outliers = data[(data < lower_bound) | (data > upper_bound)]
    return outliers
```

```
In [124]: upper_bound
Out[124]: 4.05
```

```
In [125]: lower_bound
```

Out[125]: 2.05

```
In [126]: print("Printing Outlier for each species for PetalWidthCm")
          for species in df['Species'].unique():
              species_data = df[df['Species'] == species]['PetalWidthCm']
              outliers = find_outliers_iqr(species_data)
              print(f"Outliers for {species}: {outliers.values}")
          Printing Outlier for each species for PetalWidthCm
          Outliers for Iris-setosa: [0.5 0.6]
          Outliers for Iris-versicolor: []
          Outliers for Iris-virginica: []
In [128]: # Return row indices for outliers for Iris-setosa
          def find_outlier_indices(df, species_name, column_name):
              species_data = df[df['Species'] == species_name][column_name]
              outliers = find_outliers_iqr(species_data)
              outlier_indices = outliers.index
In [131]: outlier_indices
Out[131]: Int64Index([15, 32, 33, 60], dtype='int64')
In [133]: setosa_outlier_indices = find_outlier_indices(df, 'Iris-setosa', 'PetalWidthCm')
          print(f"\nRow indices of outliers for Iris-setosa in 'PetalWidthCm': {setosa_outlier_indices.tolist()}'
```

Row indices of outliers for Iris-setosa in 'PetalWidthCm': [23, 43]