3.3.4

Эффект Холла в полупроводниках

Егор Берсенев

1 Цель работы

Измерить концентрацию и подвижность носителей заряда в полупроводнике.

2 Оборудование

Электромагнит с источником питания, миллиамперметр, милливеберметр, реостат, цифровой вольтметр, источник питания, образец легированного германия.

3 Теоретическая часть

Одновременное исследование эффекта Холла и проводимости позволяет находить плотность носителей заряда и их подвижность. Суть эффекта Холла состоит в следующем. Пусть через однородную пластину металла вдоль оси x течет ток I. Если эту пластину поместить в магнитное поле, направленно по оси y, то между гранями появится раность потенциалов. На электрон, движущийся со скоростью \mathbf{b} в электромагнитном поле, действует сила Лоренца.

$$\mathbf{F}_{\pi} = -e\mathbf{E} - e\mathbf{v} \times \mathbf{B} \tag{1}$$

В нашем случае сила, обусловленная вторым слагаемым, направлена вдоль оси z.

$$F_B = e |v_x| B \tag{2}$$

Под действием этой силы электроны отклоняются к грани Б, заряжая ее отрицательно. При этом на грани А накапливаются нескомпенсированные положительные заряды, что приводит к возникновению электрического поля E_z , направленного от А к Б, которое действует на электроныс силой $F_E = eE_z$, направленной против силы F_B . В стационарном режиме F_E уравновешивает F_B , и накопление зарядов на боковых гранях прекращается. Из условия равновесия найдем:

$$E_z = |v_x| B \tag{3}$$

С полем E_z связана разность потенциалов $U_{\rm AB}$ между гранями A и Б.

$$U_{AB} = -E_z l = -|v_x| Bl \tag{4}$$

Заметим, что сила тока

$$I = ne |v_x| l \cdot a, \tag{5}$$

отсюда найдем ЭДС Холла:

$$\varepsilon_x = U_{AB} = -\frac{IB}{nea} = -R_x \cdot \frac{IB}{a} \tag{6}$$

4 Ход работы

4.1 Калибровка электромагнита

Проведем калибровку электромагнита:

I, A	Φ_0 , мВб	Φ_1 , мВб
0.9	6.9	1.1
0.8	6.4	1.1
0.7	5.9	1.1
0.6	5.2	1.1
0.5	4.6	1.1
0.4	3.9	1.1
0.3	3.25	1.1
0.2	2.6	1.1
0.15	5.2	4.2
0	4.35	4.2

Построим таблицу измерений:

I, A	0.3	0.4	0.5	0.6	0.7	0.8	0.9
U_0, mV	-0.004	-0.007	-0.01	-0.013	-0.014	-0.017	-0.019
0.1	0.005	0.008	0.007	0.007	0.008	0.09	0.01
0.2	0.015	0.02	0.024	0.025	0.034	0.039	0.043
0.3	0.027	0.035	0.043	0.051	0.06	0.068	0.076
0.4	0.038	0.05	0.062	0.075	0.088	0.098	0.111
0.5	0.049	0.075	0.08	0.097	0.112	0.131	0.147
0.6	0.06	0.079	0.099	0.120	0.140	0.158	0.176
0.7	0.07	0.093	0.115	0.120	0.163	0.184	0.210
0.8	0.083	0.107	0.132	0.160	0.186	0.210	0.240
0.9	0.09	0.0119	0.147	0.179	0.207	0.237	0.265

Построим графики:

Рассчитаем константу Холла:

$$\varepsilon_x = -R_x \frac{IB}{a} \implies R_x = -ka = -4.2 \cdot 10^{-4} \cdot 1.5 \cdot 10^{-3} = (63 \pm 0.56) \cdot 10^{-6} \text{B}$$
 (7)
$$\sigma = \frac{IL_{35}}{U_{35}al} = \frac{0.003}{1.673 \cdot 0.0015 \cdot 0.0017} = 703.21 \pm 14.06 \frac{1}{\text{OM} \cdot \text{M}}$$
 (8)

$$\sigma = \frac{IL_{35}}{U_{35}al} = \frac{0.003}{1.673 \cdot 0.0015 \cdot 0.0017} = 703.21 \pm 14.06 \frac{1}{\text{OM} \cdot \text{M}}$$
(8)

$$b = \sigma R_x = 443.02 \pm 9.69 \,\frac{\text{cm}^2}{\text{B} \cdot \text{c}} \tag{9}$$

5 Вывод

К сожалению, в измерениях что-то пошло не так, и с табличными данными ничего не сошлось. Но в принципе, в полупроводниках можно наблюдать эффект Холла. Этот эффект применим в датчиках магнитного поля.