Матан Фурье

27 февраля 2020 г.

Для функции f(x), заданной на отрезке, построить три ряда Фурье: общий тригонометрический ряд, ряд Фурье по синусам и по косинусам. Для каждого полученного ряда построить (с помощью компьютера) графики нескольких частных сумм (например, S_5 , S_{10} , S_{50}) и график исходной функции. Убедиться (визуально), что частные суммы приближают исходную функцию. Знать, к чему сходятся построенные ряды Фурье в каждой точке.

$$f(x) = \begin{cases} \cos x, & x \in \left[0, \frac{\pi}{2}\right) \\ 0, & x \in \left[\frac{\pi}{2}, 2\pi\right] \end{cases}$$

Содержание

1	Общий тригонометрический ряд Фурье	2
2	Построить ряд Фурье по косинусам	3
3	Построить ряд Фурье по синусам	4

1 Общий тригонометрический ряд Фурье

Наша функция задана на интервале $\left[0,\frac{\pi}{2}\right)\cup\left[\frac{\pi}{2},2\pi\right]$, это значит, что длина интервала $L=2\pi$ Теперь мы можем посчитать коэффициенты Фурье по формулам:

$$a_0 = \frac{1}{L} \cdot \int_0^{2\pi} f(x)dx = \frac{1}{L} \int_0^{\frac{\pi}{2}} \cos(x)dx = \frac{1}{2\pi}$$

$$a_n = \frac{2}{L} \int_0^{2\pi} f(x) \cdot \cos\left(\frac{2n\pi x}{L}\right) dx = \frac{2}{L} \int_0^{\frac{\pi}{2}} \cos(x) \cdot \cos(nx) dx = -\frac{\cos\left(\frac{\pi n}{2}\right)}{\pi(n^2 - 1)}$$

$$b_n = \frac{2}{L} \int_0^{2\pi} f(x) \cdot \sin\left(\frac{2n\pi x}{L}\right) dx = \frac{2}{L} \int_0^{\frac{\pi}{2}} \cos(x) \cdot \sin(nx) dx = \frac{n - \sin\left(\frac{\pi n}{2}\right)}{\pi(n^2 - 1)}$$

Как мы видим, определенные интегралы при n=1 содержат части, при которых происходит деление на ноль, поэтому найдем значения при $n\to 1$:

•
$$L_1 = \frac{1}{4}\cos(x) - a_n$$
 при $n = 1$

•
$$L_2=\frac{1}{2\pi}\sin(x)-b_n$$
 при $n=1$

Итак, составим общий тригонометрический ряд Фурье по вычисленным коэффициентам по формуле:

$$a_0 + \sum_{n=1}^{\infty} \left(a_n \cdot \cos \left(\frac{2n\pi x}{L} \right) + b_n \cdot \sin \left(\frac{2n\pi x}{L} \right) \right) =$$

$$= \frac{1}{2\pi} + (L_1 + L_2) + \left(\sum_{n=2}^{\infty} (a_n \cdot \cos(nx) + b_n \cdot \sin(nx))\right)$$

Рисуночек

2 Построить ряд Фурье по косинусам

Посчитаем коэффициенты

$$a_0 = \frac{2}{L} \cdot \int_0^{2\pi} f(x) dx = \frac{2}{L} \int_0^{\frac{\pi}{2}} \cos(x) dx = \frac{1}{\pi}$$

$$a_n = \frac{2}{L} \int_0^{2\pi} f(x) \cdot \cos\left(\frac{n\pi x}{L}\right) dx = \frac{2}{L} \int_0^{\frac{\pi}{2}} \cos(x) \cdot \cos\left(\frac{nx}{2}\right) dx = -\frac{4\cos\left(\frac{\pi n}{4}\right)}{\pi(n^2 - 4)}$$

Составим ряд

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cdot \cos\left(\frac{n\pi x}{L}\right) = \frac{1}{2\pi} + \sum_{n=1}^{\infty} a_n \cdot \cos\left(\frac{nx}{2}\right)$$

Рисуночек

3 Построить ряд Фурье по синусам

Вычислим коэффициент

$$b_n = \frac{2}{L} \int_0^{2\pi} f(x) \cdot \sin\left(\frac{n\pi x}{L}\right) dx = \frac{2}{L} \int_0^{\frac{\pi}{2}} \cos(x) \cdot \sin\left(\frac{nx}{2}\right) dx = \frac{2\left(n - 2\sin\left(\frac{\pi n}{4}\right)\right)}{\pi(n^2 - 4)}$$

Составим ряд

$$\sum = \sum_{n=1}^{\infty} b_n \cdot \sin\left(\frac{nx}{2}\right)$$

Рисуночек