Noções Básicas <u>de</u> Física Estatística

Objetivo:

combinar considerações estatísticas com as leis da mecânica (clássica ou quântica) aplicáveis aos constituintes de um sistema microscópico.

> A teoria resultante é denominada de **Física Estatística**

Ingrientes Essenciais

i) Específicação do estado do sistema

Especificar os possíveis resultados de um experimento ou evento

panca informação Descrição estatestica Probabilidades

ii) Ensemble Estatístico

Conhecer a distribuição de Probabilidade

- medidas experimentais
- Teoricamente

Mas como?
POSTULADOS

iii) Postulados Estatísticos (distribuição uniforme)

Validade dos postulados ==== > Verificação experi/al das previsões

iv) Cálculo das Probabilidades e dos Valores Médios

Parâmetros Macroscópicos (observáveis)

Microestados e Macroestados
Explo: Sistema contavilde niusestado (descreto)
Sistema => 6 bolinhas identicas para colocar em uma caisca devi dida ao meio.
colocar en una caisca acon B
Muo-
N° de Macroestados
#######################################
Dolenhas Bolenhas 37 posicais para se
bolentias [::] 37 posições para se coloçar o devisor
La La Constitution Constitution

Vonvaul aleatorie

x={1-Lado A
0-Lado B

Exertem 7 ma croestados.

Gada -> Burvoulli -> Todas as -> Buronial.

1º bola => {Lado A ou possibilidades Lado B 2º bola => { Lado A ou => 2 possibilidades } 2=64 6: bola => { Lado A } 2 possibilidades | $S_7 = 64$ | Exciste un total de 64 microestados.

No de microestados en cada Macroestado

Jum total 6 | Maneiras

de se assumar as bolimhas

mas como elas sos i denticas nos e possível

destruguir uma da outra de cada lado. Entos

destruguir uma da cada lado: R (N,N,N) = N!

N, IN!

Macroestado	A	3/	re de microentades	Prob	5 3	ē 6
I	6	0	6!0! =1	1/64	0	1
I	5	1	<u>6!</u> = 6 <u>5</u> <u>1!</u>	3/32	2,47	5/6
III	4	2	<u>6!</u> =15	15/64	3,74	2/3
IV	3	3	3! 3!	5/16	4,13	1/2
T	2	4	2! 4!	5 15	3,74	2/3
VI	1	5	1! 5! - 6	3/32	2,42	5/6
VII	O	6	0:6!	64	0	1
	-	1		n M	aion	No

1 Ma croestado TV e o com maior no de nucroestado, 20, e, ptt o maisprovavel de se encontrar o sistema.

Sistema de 2N bolenhais

- nº de macroestados = 2N+1

- N° total de microestados, six = 22N

- Nº de nicroestados para cada macroestado com NA solinhas do lado A e NB do lado B

S(EN; NA, NB) = (2N)! NA! NB!

=>> SLado A > NA = N+m Lado B => NB = N-M

 $\mathcal{R}(2N:m) = (2N)!$ (N+m)!(N-m)!

NMX 9d M=0=) Smix 3 (2N,0)

Shair = (2N)! N!N!

nº de macroestados 2N = 8 Explo-1 RT = 28 = 256 III I II VII VIII 70 56 28 28 56 6-2 5-3 4-4 3-5 2-6 1-7 0-8 P8,4 = 70 = 27,34% Nº de manoestados => 21 Explo-2 2N=20 nº total de nicoestados - = 20 Ry = 1.048.576 Shar = Sl (20, 10) = 20! = 184,256 10/ 10/ P = 184.256 = 17,62% 1.048,576

Mecânica Classica

Suiteme de N particular en 1-Dem

Estado de uma particula => (917)

Microestado descrito pelos estados das N

particulas: (911-,9n; p1,--.,pn)

(Considerendo que Neo ha viáriendo)

Estaço de Fase (2-den) de uma particu

Espaço de Fase (2-dem) de uma particula em 1-dem espaço P1 - Estado da pour: Euro

Sestema de N particulas en 3-dins. seja t o nº de grans de liberdade

Microentador => 921-1941 PI... Pt

> un ponto no espaço de tase 2t-dem.

n'de nicroestados en un de le volume d'un (en dr)
de sipaço de fere. 3 grs ogg de 1° = densidade de ruicisestados Mecànica Quantica (consuvativo) Microestado - autoestado de H f nº quantios 14) = \ \mu_1 m21 ... mt> Ĥ 14->= E 14-> -> 29 14->= 4 (91+) Descrição complete do sistema

Leva um tempo finito

Flutuações microscópicas do sistema

Muito rápidas

O sistema passa por muitos estados microscópicos
Pontos diferentes do espaço de fase (MC)
Transições contínuas de um estado quântico para outro (MQ)

Assume -se que essa média temporal é equivalente a uma média sobre um ensemble hipotético de infinitamente muitas cópias do sistema, as quais pertencem a diferentes estados microscópicos do sistema consistentes com valores especificados de um pequeno número de variáveis macroscópicas

Então, durante uma medida

Conseguencia

O valor de uma medida macroscópica é, na verdade, uma média no tempo das flutuações, i. e., dos Estados microscópicos pelos quais passou o sistema durante a medida da grandeza macroscópica

Requerimento que a distribuição de probabilidade seja estacionária

Peso estatístico de cada microestado

Sistema em equilíbrio

Estado de equilíbrio

As grandezas macroscópicas alcançam valores constantes

É preciso especificar probabilidades a priori para superar a incompleteza na especificação dos estados mecânicos do sistema

Sistema Isolado

Hipótese fundamental

==》 todos os microestados são igualmente prováveis

Quanto maior o número de microestados de um macroestado, mais tempo o sistema permanece naquele macroestado, que é então o mais provável

$$\Rightarrow 2N = 100 \Rightarrow \Re(100, 50) = \frac{100!}{50!50!} = 101.10^{29}$$

$$\mathcal{N}(100,0) = \frac{100!}{100!0!} = 1$$

Se o sistema pumanecisse apenos 10⁻²⁰s en cada microestado, entos ele demonaria 10⁻²⁰ x 10²⁹ = 10⁹ s possondo nos microestados daquele macroestado. 10⁹ s \approx 32 anos e 2 ma.

Ensemble Microcanônico

Energia

Volume Num. partículas

Fixos

Iguais probabilidades

Ha sempre uma incenteza: E-> E+SE

Ω(E,x)= Nº de nucrocitados do sistema com energía E < H ∠ E+SE

X = parâmetros

R(E,X,) - R(E,V,N)

Entropia Estatística

$$S_{int}(E,X_i) := K_B ln[R(E,X_i)]$$

$$N \to \infty \implies S_{ext} = S_{Termo}$$

Postulado fundamental

Um sistema isolado em equilíbrio encontra-se com igual probabilidade em qualquer um dos seus microestados acessíveis

Postulado

Se um sistema isolado não é encontrado com igual probabilidade em cada um de seus microestados acessíveis, ele não está em equilíbrio. O sistema tende, então, a evoluir no tempo até atingir por fim a situação de equilíbrio.

Processos reversíveis e irreversíveis

Satisfaz certas condições == » Vínculos

Especificação de valores de parâmetros 💥 macroscópicos

Vínculos

reduz

Número de microestados acessíveis $\mathcal{N} = \mathcal{N}(\gamma)$

Seja número de microestados acessíveis após a eliminação de um vinculo e na antes da eliminação. Então,

Se $\int_{\Gamma} > \Omega$, a situação inicial não pode ser atingida com apenas a reintrodução do vinculo, i. e., o sistema deve interagir com a vizinhança. Contudo, o sistema permanece isolado.

Se ocorrer uma tal flutuação que, em um particular instante, a situação original é restaurada, então, nesse instante se introduz o vinculo == Sistema original.

A probabilidade de tal flutuação ocorrer é $\frac{Y_i}{S_i} = \frac{S_i}{S_i}$

Contudo, em geral $\Omega_1 >>> \Omega_1 \Rightarrow 0$ Assim, para um sistema isolado, PROCESSO IRREVERSÍVEL ==> $\Omega_1 > \Omega_1$

Ensemble Canônico (21)

Sistema em contato com um banho térmico (reservatório de calor).

Volume Num. partículas

Sistems ToTAL => Recuratorio + sistema

Sistema ToTAL ISOLAdo > SI, i máximo No equilibrio ET = ER + E = CTE

Fronteira do sistema > diaternica, fixea e Jechada (impunicavel)

Note que a energia total é constante, mas a energia do sistema NOV.

$$\mathcal{N}_{\tau}(E) = \mathcal{N}(E)\mathcal{N}_{\text{res}}(E_{\tau} - E)$$

S Nº de estados do sietema total tal que o certema tenha en uga E.

R_T (E_t) = N° total de estados acescilios do sistema ToTal.

Mequilibres térmico DIN[SI(E)] = = LE) = DLN [Sig (ER)]

DER

F(T, V, N) = - KBTLN[Z(T, V, N)]