Caminhos Simétricos Ótimos

Por Rujia Liu China
Timelimit: 1

Você tem uma grade de n linhas e n colunas. Cada quadrado da grade contém um dígito, diferente de zero. Você deve ir do quadrado mais acima e mais à esquerda para o quadrado mais abaixo e mais à direita da grade. A cada passo, você pode se mover para o quadrado adjacente que está à esquerda, à direita, acima ou abaixo (você não pode se mover pelas diagonais). Além disso, você não pode passar por um quadrado mais de uma vez. Há ainda uma outra regra: seu caminho deve ser simétrico em relação à linha que conecta o quadrado mais abaixo e mais à esquerda ao quadrado mais acima e mais à direita da grade. A figura abaixo exemplifica um caminho simétrico em uma grade 6 x 6.

Sua tarefa é descobrir, dentre todos os caminhos válidos, quantos deles têm a soma mínima de dígitos nos quadrados percorridos.

Entrada

Haverá no máximo 25 casos de teste. Cada caso de teste começa com um inteiro \mathbf{n} ($2 \le \mathbf{n} \le 100$). As próximas \mathbf{n} linhas contém \mathbf{n} dígitos cada, diferentes de zero (isto é, um número em 1, 2, 3, ..., 9). Esses \mathbf{n}^2 inteiros são os dígitos na grade.

A entrada termina com um caso de teste onde $\mathbf{n} = 0$, que não deve ser processado.

Saída

Para cada caso de teste, imprima o número de caminhos simétricos ótimos. Imprima o resto da divisão do resultado por 1.000.000.009.

Exemplo de Entrada	Exemplo de Saída
2	2
1 1	3
1 1	
3	
1 1 1	
1 1 1	
2 1 1	
0	

The Seventh Hunan Collegiate Programming Contest. Special Thanks: Yiming Li & Jane Alam Jan. I/O by UOJ.