# Sedmá přednáška

NAIL062 Výroková a predikátová logika

Jakub Bulín (KTIML MFF UK) Zimní semestr 2023

## Sedmá přednáška

#### **Program**

- podstruktury, expanze, redukty
- extenze teorií, extenze o definice
- definovatelnost a databázové dotazy
- vztah výrokové a predikátové logiky

### Materiály

Zápisky z přednášky, Sekce 6.6-6.9 z Kapitoly 6

## \_\_\_\_

6.6 Podstruktura, expanze, redukt

#### **Podstruktura**

- podstruktura zobecňuje podgrupu, podprostor vektorového prostoru, (indukovaný) podgraf: na podmnožině B univerza vytvoříme strukturu, která "zdědí" relace, funkce a konstanty
- B musí být uzavřená na všechny funkce (vč. konstant)

Struktura  $\mathcal{B} = \langle \mathcal{B}, \mathcal{R}^{\mathcal{B}}, \mathcal{F}^{\mathcal{B}} \rangle$  je (indukovaná) podstruktura struktury  $\mathcal{A} = \langle \mathcal{A}, \mathcal{R}^{\mathcal{A}}, \mathcal{F}^{\mathcal{A}} \rangle$  (v též signatuře  $\langle \mathcal{R}, \mathcal{F} \rangle$ ), značíme  $\mathcal{B} \subseteq \mathcal{A}$ , jestliže:

- ∅ ≠ B ⊆ A
- $R^{\mathcal{B}}=R^{\mathcal{A}}\cap B^{\operatorname{ar}(\mathrm{R})}$  pro každý relační symbol  $R\in\mathcal{R}$
- $f^{\mathcal{B}} = f^{\mathcal{A}} \cap (B^{\operatorname{ar}(f)} \times B)$  pro každý funkční symbol  $f \in \mathcal{F}$ , tj.  $f^{\mathcal{B}}$  je restrikce  $f^{\mathcal{A}}$  na množinu B, a výstupy jsou všechny z B

speciálně, pro konstantní symbol  $c \in \mathcal{F}$  máme  $c^{\mathcal{B}} = c^{\mathcal{A}} \in \mathcal{B}$ 

# Restrikce na podmnožinu, příklady

Množina  $C \subseteq A$  je uzavřená na funkci  $f: A^n \to A$ , pokud  $f(x_1, \ldots, x_n) \in C$  pro všechna  $x_i \in C$ .

**Pozorování:** Množina  $\emptyset \neq C \subseteq A$  je univerzem podstruktury, právě když je uzavřená na všechny funkce struktury  $\mathcal{A}$  (včetně konstant). V tom případě je to restrikce  $\mathcal{A}$  na množinu C, značíme  $\mathcal{A} \upharpoonright C$ .

- $\begin{array}{c} \blacksquare & \underline{\mathbb{N}} = \langle \mathbb{N}, +, \cdot, 0 \rangle \text{ je podstrukturou obou těchto struktur, platí:} \\ \underline{\mathbb{N}} = \underline{\mathbb{Q}} \upharpoonright \mathbb{N} = \underline{\mathbb{Z}} \upharpoonright \mathbb{N} \\ \end{array}$
- Množina  $\{k \in \mathbb{Z} \mid k \le 0\}$  není univerzem podstruktury  $\underline{\mathbb{Z}}$  ani  $\mathbb{Q}$ , není uzavřená na násobení.

# Platnost v podstruktuře (pro otevřené formule je zachována)

**Pozorování:** Je-li  $\mathcal{B}\subseteq\mathcal{A}$ ,  $\varphi$  otevřená formule, a  $e\colon \mathsf{Var}\to \mathcal{B}$ , potom platí:  $\mathcal{B}\models\varphi[e]$  právě když  $\mathcal{A}\models\varphi[e]$ .

**Důkaz:** Snadno indukcí dle struktury  $\varphi$ , pro atomickou zřejmé.  $\square$ 

**Důsledek:** Otevřená formule platí ve struktuře  $\mathcal{A}$ , právě když platí v každé podstruktuře  $\mathcal{B} \subseteq \mathcal{A}$ .

Teorie T je otevřená, jsou-li všechny její axiomy otevřené formule.

**Důsledek:** Modely otevřené teorie jsou uzavřené na podstruktury, tj. každá podstruktura modelu této teorie je také její model.

- Teorie grafů je otevřená. Podstruktura grafu je také graf: (indukovaný) podgraf. Stejně podgrupy, Booleovy podalgebry.
- Teorie těles není otevřená. Později ukážeme, že ani otevřeně axiomatizovatelná (kvantifikátoru v axiomu o existenci inverzního prvku se nezbavíme). Podstruktura tělesa ℚ na množině ℤ, ℚ ↑ ℤ, není těleso. (Je to tzv. okruh.)

# Generovaná podstruktura (zobecníme lineární obal vektorů)

Co když podmnožina univerza není uzavřená? Vezmeme její uzávěr.

Mějme  $\mathcal{A}=\langle A,\mathcal{R}^{\mathcal{A}},\mathcal{F}^{\mathcal{A}}\rangle$  a  $\emptyset\neq X\subseteq A$ . Buď  $B\subseteq A$  nejmenší podmnožina, která obsahuje X a je uzavřená na všechny funkce  $\mathcal{A}$  (tj. obsahuje i všechny konstanty). Potom podstruktura  $\mathcal{A}\upharpoonright B$  je generovaná X, značíme ji  $\mathcal{A}\langle X\rangle$ .

Např. pro 
$$\underline{\mathbb{Q}}=\langle\mathbb{Q},+,\cdot,0\rangle$$
 ,  $\underline{\mathbb{Z}}=\langle\mathbb{Z},+,\cdot,0\rangle$  ,  $\underline{\mathbb{N}}=\langle\mathbb{N},+,\cdot,0\rangle$  :

- $\bullet \quad \mathbb{Q}\langle\{1\}\rangle = \underline{\mathbb{N}}$
- $\bullet \quad \mathbb{Q}\langle\{-1\}\rangle = \underline{\mathbb{Z}}$
- $\underline{\mathbb{Q}}\langle\{2\}\rangle$  je podstruktura  $\underline{\mathbb{N}}$  na množině všech sudých čísel

Pokud  $\mathcal{A}$  nemá žádné funkce (ani konstanty), např. graf či uspořádání, potom není čím generovat, a  $\mathcal{A}\langle X\rangle=\mathcal{A}\upharpoonright X$ .

## Expanze a redukt

Mějme  $L \subseteq L'$ , L-strukturu  $\mathcal{A}$  a L'-strukturu  $\mathcal{A}'$  na stejné doméně. Je-li interpretace každého symbolu z L stejná v  $\mathcal{A}$  i v  $\mathcal{A}'$ , potom:

- $\mathcal{A}'$  je expanze  $\mathcal{A}$  do  $\mathcal{L}'$  ( $\mathcal{L}'$ -expanze struktury  $\mathcal{A}$ )
- A je redukt A' na L (L-redukt struktury A')

#### Například:

- Mějme grupu celých čísel  $\langle \mathbb{Z}, +, -, 0 \rangle$ . Potom:
  - struktura  $\langle \mathbb{Z}, + \rangle$  je její redukt
  - struktura  $\langle \mathbb{Z}, +, -, 0, \cdot, 1 \rangle$  (okruh celých čísel) je její expanze
- Mějme graf  $\mathcal{G} = \langle G, E^{\mathcal{G}} \rangle$ . Potom expanze  $\mathcal{G}$  o jména prvků (z množiny G) je struktura  $\langle G, E^G, c_v^{\mathcal{G}} \rangle_{v \in G}$  v jazyce  $\langle E, c_v \rangle_{v \in G}$ , kde  $c_v^{\mathcal{G}} = v$  pro všechny vrcholy  $v \in G$ .

#### Věta o konstantách

- splnit formuli s volnou proměnnou x je totéž, co splnit formuli, ve které je x nahrazena novým konstantním symbolem c
- proč: nový symbol lze v modelu interpretovat každým prvkem
- podobný trik využijeme v tablo metodě

**Věta (O konstantách):** Mějme L-formuli  $\varphi$  s volnými proměnnými  $x_1, \ldots, x_n$ . Označme jako L' rozšíření L o nové konstantní symboly  $c_1, \ldots, c_n$  a buď T' stejná teorie jako T, ale v jazyce L'. Potom:

$$T \models \varphi$$
 právě když  $T' \models \varphi(x_1/c_1, \dots, x_n/c_n)$ 

Důkaz: stačí ukázat pro jednu volnou proměnnou, rozšířit indukcí

⇒ **Víme:**  $\varphi$  platí v každém modelu T. **Chceme:**  $\varphi(x/c)$  platí v každém modelu T'. Mějme model  $\mathcal{A}' \models T'$  a ohodnocení e: Var  $\to \mathcal{A}'$  a ukažme, že  $\mathcal{A}' \models \varphi(x/c)[e]$ .

#### Pokračování důkazu

Buď  $\mathcal{A}$  redukt  $\mathcal{A}'$  na L ('zapomeneme' konstantu  $c^{\mathcal{A}'}$ ). Všimněte si, že  $\mathcal{A}$  je model T (axiomy T=T' neobsahují nový symbol c). Dle předpokladu  $\mathcal{A}\models\varphi$ , tj.  $\mathcal{A}\models\varphi[e']$  pro libovolné ohodnocení e', speciálně pro  $e(x/c^{\mathcal{A}'})$  kde x ohodnotíme interpretací c v  $\mathcal{A}'$ .

Máme  $\mathcal{A} \models \varphi[e(x/c^{\mathcal{A}'})]$ , což ale znamená  $\mathcal{A}' \models \varphi(x/c)[e]$ .

 $\leftarrow$  Víme:  $\varphi(x/c)$  platí v každém modelu T'. Chceme:  $\varphi$  platí v každém modelu T. Zvolme  $A \models T$  a ohodnocení  $e \colon Var \to A$  a ukažme, že  $A \models \varphi[e]$ .

Buď  $\mathcal{A}'$  expanze  $\mathcal{A}$  do L', kde c interpretujeme jako  $c^{\mathcal{A}'}=e(x)$ . Dle předpokladu platí  $\mathcal{A}'\models\varphi(x/c)[e']$  pro všechna ohodnocení e'. Tedy  $\mathcal{A}'\models\varphi(x/c)[e]$ , což znamená  $\mathcal{A}'\models\varphi[e]$  (  $e=e(x/c^{\mathcal{A}'})$ , z toho plyne  $\mathcal{A}'\models\varphi(x/c)[e]\Leftrightarrow \mathcal{A}'\models\varphi[e(x/c^{\mathcal{A}'})]\Leftrightarrow \mathcal{A}'\models\varphi[e]$ ).

Formule  $\varphi$  neobsahuje c (je nový), máme tedy i  $\mathcal{A} \models \varphi[e]$ .

# 6.7 Extenze teorií

#### Extenze teorie

Stejně jako ve výrokové logice, je-li T teorie v jazyce L:

- extenze: T' v jazyce  $L' \supseteq L$  splňující  $Csq_L(T) \subseteq Csq_{L'}(T')$
- jednoduchá: L' = L
- konzervativní:  $Csq_L(T) = Csq_L(T') = Csq_{L'}(T') \cap Fm_L$
- ekvivalentní: T' extenzí T a T extenzí T' (obě v témž jazyce)

Jsou-li T, T' ve stejném jazyce L:

- T' je extenze T, právě když  $M_L(T') \subseteq M_L(T)$
- T' je ekvivalentní s T, právě když  $M_L(T') = M_L(T)$

#### Zvětšíme-li jazyk:

- ve výrokové logice: přidáváme/zapomínáme hodnoty pro nové prvovýroky
- v predikátové logice: expandujeme/redukujeme modely (přidáváme/zapomínáme nové relace, funkce, konstanty)

# Extenze teorie: sémantický popis

Mějme jazyky  $L \subseteq L'$ , L-teorii T a L'-teorii T':

- (i) T' je extenzí  $T \Leftrightarrow L$ -redukt každého modelu T' je model T
- (ii) T' je konzervativní extenzí  $T \Leftrightarrow T'$  je extenzí T, a každý model T lze expandovat do L' na nějaký model T'

**Poznámka:** Důkaz (ii)  $\leftarrow$  vynecháme (technický problém: model, který nelze expandovat  $\leadsto$  L-sentence platná v T ale ne v T')

**Důkaz:** (i)  $\Rightarrow$  Buď  $\mathcal{A}'$  model T',  $\mathcal{A}$  jeho L-redukt. Protože T' je extenzí, platí v ní, tedy i v  $\mathcal{A}'$ , každý axiom  $\varphi \in \mathcal{T}$ . Ten ale obsahuje jen symboly z L, tedy platí i v  $\mathcal{A}$ .

- (i)  $\leftarrow$  **Mějme:** L-sentenci  $\varphi$ ,  $T \models \varphi$ . **Chceme:**  $T' \models \varphi$ . Pro lib. model  $A' \in M_{L'}(T')$  víme, že jeho L-redukt A je modelem T, tedy  $A \models \varphi$ . Z toho plyne i  $A' \models \varphi$  (opět  $\varphi$  je v L).
- (ii)  $\leftarrow$  **Mějme:** L-sentenci  $\varphi$ ,  $T' \models \varphi$ . **Chceme:**  $T \models \varphi$ . Každý  $\mathcal{A} \in \mathsf{M}_L(T)$  lze expandovat na nějaký  $\mathcal{A}' \in \mathsf{M}_{L'}(T')$ . Víme, že  $\mathcal{A}' \models \varphi$ , takže i  $\mathcal{A} \models \varphi$ . Tím jsme dokázali  $T \models \varphi$ .

# Extenze o definice (neformálně)

- přidáme nový symbol, jehož význam je jednoznačně daný definující formulí (jako procedura/funkce v programování)
- pro relační symboly jednoduché, pro funkční symboly musíme navíc zaručit existenci a jednoznačnost funkční hodnoty

#### Ukážeme:

- je to konzervativní extenze, dokonce každý model původní teorie lze jednoznačně expandovat na model nové teorie
- každou formuli používající nové symboly lze přepsat na formuli v původním jazyce (tak, že jsou v extenzi ekvivalentní)

## Definice relačního symbolu

nový n-ární relační symbol R lze definovat lib. formulí  $\psi(x_1,\ldots,x_n)$ 

- teorii v jazyce s rovností lze rozšířit o symbol  $\neq$  definovaný formulí  $\neg x_1 = x_2$ ; tj. požadujeme, aby:  $x_1 \neq x_2 \leftrightarrow \neg x_1 = x_2$
- teorii uspořádání lze rozšířit o < definovaný formulí</li>
   x₁ ≤ x₂ ∧ ¬x₁ = x₂; tj. platí: x₁ < x₂ ↔ x₁ ≤ x₂ ∧ ¬x₁ = x₂</li>
- v aritmetice | ze zavést  $\leq$  takto:  $x_1 \leq x_2 \leftrightarrow (\exists y)(x_1 + y = x_2)$
- v uspořádaném stromu lze zavést unární predikát  $\operatorname{Leaf}(x)$ :  $\operatorname{Leaf}(x) \leftrightarrow \neg(\exists y)(x <_T y)$

Mějme teorii T a formuli  $\psi(x_1, \ldots, x_n)$  v jazyce L. Označme jako L' rozšíření jazyka L o nový n-ární relační symbol R. Extenze teorie T o definici R formulí  $\psi$  je L'-teorie:

$$T' = T \cup \{R(x_1, \ldots, x_n) \leftrightarrow \psi(x_1, \ldots, x_n)\}\$$

# Definice relačního symbolu: vlastnosti

#### Tvrzení:

- (i) T' je konzervativní extenze T.
- (ii) Pro každou L'-formuli  $\varphi'$  existuje L-formule  $\varphi$  taková, že  $T' \models \varphi' \leftrightarrow \varphi$ .

**Důkaz:** (i) ihned ze sémantického popisu extenzí, neboť zřejmě každý model T lze jednoznačně expandovat na model T'

(ii) atomickou podformuli s novým symbolem R, tj. tvaru  $R(t_1, \ldots, t_n)$ , nahradíme formulí

$$\psi'(x_1/t_1,\ldots,x_n/t_n)$$

kde  $\psi'$  je varianta  $\psi$  zaručující substituovatelnost všech termů (např. přejmenujeme všechny vázané proměnné  $\psi$  na zcela nové)  $\square$ 

# Definice funkčního symbolu: příklady

vztah  $f(x_1,...,x_n) = y$  definujeme formulí  $\psi(x_1,...,x_n)$ ; pro každý vstup  $(x_1,...,x_n)$  musí existovat jednoznačný výstup y

1. Teorie grup: binární funkční symbol -b pomocí +a unárního -b

$$x_1 -_b x_2 = y \leftrightarrow x_1 + (-x_2) = y$$

- zřejmě pro každá x, y existuje jednoznačné z splňující definici
- 2. Teorie lineárních uspořádání: binární funkční symbol min

$$\min(x_1, x_2) = y \leftrightarrow y \le x_1 \land y \le x_2 \land (\forall z)(z \le x_1 \land z \le x_2 \rightarrow z \le y)$$

- existence a jednoznačnost platí díky linearitě  $(x \le y \lor y \le x)$
- pouze v teorii uspořádání by nešlo o dobrou definici:  $\min^{\mathcal{A}}(a_1, a_2)$  nemusí existovat

# Definice funkčního symbolu: definice

Mějme teorii T a formuli  $\psi(x_1,\ldots,x_n,y)$  v jazyce L. Označme L' rozšíření L o nový n-ární funkční symbol f. Nechť platí:

- $T \models (\exists y)\psi(x_1,\ldots,x_n,y)$  (existence)
- $T \models \psi(x_1, \dots, x_n, y) \land \psi(x_1, \dots, x_n, z) \rightarrow y = z$  (jednoznačnost)

Potom extenze teorie T o definici f formulí  $\psi$  je L'-teorie:

$$T' = T \cup \{f(x_1, \ldots, x_n) = y \leftrightarrow \psi(x_1, \ldots, x_n, y)\}\$$

- $\psi$  definuje v modelu (n+1)-ární relaci, ta musí být funkcí
- je-li  $\psi$  tvaru  $t(x_1, \dots, x_n) = y$  pro term t, vždy to platí

#### Tvrzení:

- (i) T' je konzervativní extenze T.
- (ii) Pro každou L'-formuli  $\varphi'$  existuje L-formule  $\varphi$  taková, že  $T' \models \varphi' \leftrightarrow \varphi$ .

**Důkaz:** (i) modely T lze jednoznačně expandovat na modely T'

#### Pokračování důkazu

- (ii) stačí pro jediný výskyt symbolu f, jinak induktivně (je-li více vnořených výskytů  $f(\ldots f(\ldots))$ , potom od vnitřních k vnějším)
  - 1. nahradíme term  $f(t_1,\ldots,t_n)$  novou proměnnou z: výsledek  $\varphi^*$
  - 2.  $\varphi$  zkonstruujeme takto:  $(\exists z)(\varphi^* \wedge \psi'(x_1/t_1, \dots, x_n/t_n, y/z))$  (kde  $\psi'$  je varianta  $\psi$  zaručující substituovatelnost)

Ukážeme, že pro libovolný model  $\mathcal{A} \models \mathcal{T}'$  a ohodnocení e platí:

$$\mathcal{A} \models \varphi'[e]$$
 právě když  $\mathcal{A} \models \varphi[e]$ 

Označme  $a = (f(t_1, ..., t_n))^{\mathcal{A}}[e]$ . Díky existenci a jednoznačnosti:

$$\mathcal{A} \models \psi'(x_1/t_1, \dots, x_n/t_n, y/z)[e]$$
 právě když  $e(z) = a$ 

Máme tedy: 
$$\mathcal{A} \models \varphi'[e] \Leftrightarrow \mathcal{A} \models \varphi^*[e(z/a)] \Leftrightarrow \mathcal{A} \models \varphi[e]$$

## Definice konstantního symbolu

- speciální případ: funkční symbol arity 0
- extenze o definici konstantního symbolu c formulí  $\psi(y)$ :

$$T' = T \cup \{c = y \leftrightarrow \psi(y)\}\$$

- musí platit  $T \models (\exists y)\psi(y)$  a  $T \models \psi(y) \land \psi(z) \rightarrow y = z$
- platí stejná tvrzení
- 1. teorie v jazyce aritmetiky, rozšíříme o definici symbolu 1 formulí  $\psi(y)$  tvaru y = S(0), přidáme tedy axiom  $1 = y \leftrightarrow y = S(0)$
- 2. teorie těles, nový symbol  $\frac{1}{2}$ , definice formulí  $y \cdot (1+1) = 1$ , tj. přidáním  $\frac{1}{2} = y \leftrightarrow y \cdot (1+1) = 1$ ?
  - není extenze o definici! neplatí existence: v tělese
     charakteristiky 2, např. Z<sub>2</sub>, nemá rovnice y · (1+1) = 1 řešení
  - ale v teorii těles charakteristiky různé od 2, tj. přidáme-li axiom  $\neg (1+1=0)$ , už ano; např. v  $\mathbb{Z}_3$  máme  $\frac{1}{2}^{\mathbb{Z}_3}=2$

#### Extenze o definice

L'-teorie T' je extenzí L-teorie T o definice, pokud vznikla postupnou extenzí o definice relačních a funkčních (vč. konstantních) symbolů.

Tvrzení: (snadno indukcí)

- Každý model T lze jednoznačně expandovat na model T'.
- T' je konzervativní extenze T.
- Pro L'-formuli  $\varphi'$  existuje L-formule  $\varphi$ , že  $T' \models \varphi' \leftrightarrow \varphi$ .

Příklad: 
$$T = \{(\exists y)(x + y = 0), (x + y = 0) \land (x + z = 0) \rightarrow y = z\}$$
  
 $L = \langle +, 0, \leq \rangle$  s rovností, zavedeme < a unární — přidáním axiomů:

$$T' = T \cup \{-x = y \leftrightarrow x + y = 0, \\ x < y \leftrightarrow x \le y \land \neg(x = y)\}$$

Formule -x < y v jazyce  $L' = \langle +, -, 0, \leq, < \rangle$  s rovností je v T' ekvivalentní formuli:  $(\exists z)((z \leq y \land \neg (z = y)) \land x + z = 0)$ 

#### \_\_\_\_

6.8 Definovatelnost ve struktuře

# Definovatelné množiny

- formule  $\varphi$  s jednou volnou proměnnou x ... "vlastnost" prvků
- ve struktuře definuje množinu prvků, které vlastnost splňují (tj. prvků a takových, že  $\varphi$  platí při ohodnocení kde e(x) = a)
- $\varphi(x,y)$  definuje binární relaci, atp.

Množina definovaná  $\varphi(x_1, \ldots, x_n)$  ve struktuře  $\mathcal{A}$  (v témž jazyce):

$$\varphi^{\mathcal{A}}(\mathsf{x}_1,\ldots,\mathsf{x}_n)=\{(\mathsf{a}_1,\ldots,\mathsf{a}_n)\in A^n\mid \mathcal{A}\models \varphi[e(\mathsf{x}_1/\mathsf{a}_1,\ldots,\mathsf{x}_n/\mathsf{a}_n)]\}$$

Zkráceně píšeme:  $\varphi^{\mathcal{A}}(\bar{x}) = \{\bar{a} \in A^n \mid \mathcal{A} \models \varphi[e(\bar{x}/\bar{a})]\}$ 

- formule  $\neg(\exists y)E(x,y)$  definuje v daném grafu množinu všech izolovaných vrcholů
- $(\exists y)(y \cdot y = x) \land \neg(x = 0)$  definuje v tělese  $\mathbb{R}$  množinu všech kladných reálných čísel
- $x \le y \land \neg(x = y)$  definuje v uspořádané množině  $\langle S, \le^S \rangle$  relaci ostrého uspořádání  $<^S$

## Definovatelnost s parametry

- vlastnosti prvků relativně k jiným prvkům? nelze čistě syntakticky, ale můžeme dosadit prvky jako parametry
- zápis  $\varphi(\bar{x},\bar{y})$ : volné proměnné  $x_1,\ldots,x_n,y_1,\ldots,y_k$

Mějme  $\varphi(\bar{x}, \bar{y})$  (kde  $|\bar{x}| = n$ ,  $|\bar{y}| = k$ ), strukturu  $\mathcal{A}$  (v témž jazyce),  $\bar{b} \in A^k$ . Množina definovaná  $\varphi(\bar{x}, \bar{y})$  s parametry  $\bar{b}$  ve struktuře  $\mathcal{A}$ :

$$\varphi^{\mathcal{A},\bar{b}}(\bar{x},\bar{y}) = \{\bar{a} \in A^n \mid \mathcal{A} \models \varphi[e(\bar{x}/\bar{a},\bar{y}/\bar{b})]\}$$

Pro  $B \subseteq A$  označíme  $\mathrm{Df}^n(\mathcal{A},B)$  množinu všech množin definovatelných v  $\mathcal{A}$  s parametry pocházejícími z B.

**Pozorování:**  $\mathrm{Df}^n(\mathcal{A}, B)$  je uzavřená na doplněk, průnik, sjednocení, a obsahuje  $\emptyset$  a  $A^n$ : je to podalgebra potenční algebry  $\mathcal{P}(A^n)$ .

Např. pro  $\varphi(x,y) = E(x,y)$  a vrchol  $v \in V(\mathcal{G})$  je  $\varphi^{\mathcal{G},v}(x,y)$  množina všech sousedů vrcholu v.

## Aplikace: databázové dotazy

- relační databáze: jedna nebo více tabulek, také relace
- řádky tabulky jsou záznamy (records), také tice (tuples)
- struktura v čistě relačním jazyce

#### Movies

| title          | director    | actor     |
|----------------|-------------|-----------|
| Forrest Gump   | R. Zemeckis | T. Hanks  |
| Philadelphia   | J. Demme    | T. Hanks  |
| Batman Returns | T. Burton   | M. Keaton |
| •              | :           | :         |
| :              | :           | :         |

#### **Program**

| cinema  | title        | time  |
|---------|--------------|-------|
| Atlas   | Forrest Gump | 20:00 |
| Lucerna | Forrest Gump | 21:00 |
| Lucerna | Philadelphia | 18:30 |
| :       | :            | :     |

#### Příklad SQL dotazu

- SQL dotaz v nejjednodušší formě je formule (pomineme např. agregační funkce)
- výsledek je množina definovaná touto formulí (s parametry)

"Kdy a kde můžeme vidět film s Tomem Hanksem?"

```
select Program.cinema, Program.time from Program, Movies where
Program.title = Movies.title and Movies.actor = 'T. Hanks'
```

- výsledek je množina  $\varphi^{\text{Database, 'T. Hanks'}}(x_{\text{cinema}}, x_{\text{time}}, y_{\text{actor}})$
- definovaná ve struktuře  $Database = \langle D, Program, Movies \rangle$
- jejíž doména je  $D = \{ \text{`Atlas'}, \text{`Lucerna'}, \dots, \text{`M. Keaton'} \}$
- s parametrem 'T. Hanks',
- definující formule  $\varphi(x_{\text{cinema}}, x_{\text{time}}, y_{\text{actor}})$ :

```
(\exists y_{\text{title}})(\exists y_{\text{director}})(\operatorname{Program}(x_{\text{cinema}}, y_{\text{title}}, x_{\text{time}}) \land \\ \operatorname{Movies}(y_{\text{title}}, y_{\text{director}}, y_{\text{actor}}))
```

6.9 Vztah výrokové a predikátové

logiky

■ asociativita ∧ a ∨:

$$x \wedge (y \wedge z) = (x \wedge y) \wedge z$$
  
 $x \vee (y \vee z) = (x \vee y) \vee z$ 

■ komutativita ∧ a ∨:

$$x \wedge y = y \wedge x$$
$$x \vee y = y \vee x$$

■ distributivita ∧ vůči ∨, ∨ vůči ∧:

$$x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z)$$
$$x \vee (y \wedge z) = (x \vee y) \wedge (x \vee z)$$

absorpce:

$$x \wedge (x \vee y) = x$$
  
 $x \vee (x \wedge y) = x$ 

komplementace:

$$x \wedge (-x) = \bot$$
  
 $x \vee (-x) = \top$ 

netrivialita:

$$\neg(\bot=\top)$$

- dualita: záměnou  $\land$  s  $\lor$  a  $\bot$  s  $\top$  získáme tytéž axiomy
- nejmenší model: 2-prvková B. algebra  $\langle \{0,1\}, f_{\neg}, f_{\wedge}, f_{\vee}, 0, 1 \rangle$
- konečné modely, až na izomorfismus ( $f^n$  je f po složkách):

$$\langle \{0,1\}^n, f_{\neg}^n, f_{\wedge}^n, f_{\vee}^n, (0,\ldots,0), (1,\ldots,1) \rangle$$

• jsou izomorfní potenčním algebrám  $\mathcal{P}(\{1,\ldots,n\})$  pomocí bijekce mezi podmnožinami a charakteristickými vektory

## Vztah výrokové a predikátové logiky

- výrokovou logiku lze 'simulovat' v predikátové logice v teorii
   Booleových algeber
- výroky jsou Booleovské termy, konstanty ⊥, ⊤ představují pravdu a lež
- pravdivostní hodnota výroku (při daném pravdivostním ohodnocení) je hodnota termu v 2-prvkové Booleově algebře
- kromě toho, algebra výroků daného výrokového jazyka nebo teorie je Booleovou algebrou (i pro nekonečné jazyky)

#### Na druhou stranu...

- máme-li otevřenou formuli  $\varphi$  (bez rovnosti), můžeme reprezentovat atomické výroky pomocí prvovýroků, a získat tak výrok, který platí, právě když platí  $\varphi$
- viz Kapitola 8: Rezoluce v predikátové logice, kde se nejprve zbavíme kvantifikátorů pomocí tzv. Skolemizace
- výrokovou logiku lze také zavést jako fragment logiky predikátové, pokud povolíme nulární relace
- $A^0=\{\emptyset\}$ , tedy na libovolné množině jsou právě dvě nulární relace  $R^A\subseteq A^0\colon R^A=\emptyset=0$  a  $R^A=\{\emptyset\}=\{0\}=1$