EM for old faithful dataset

EM algorithm:

重複步驟直到參數收斂{

(E - step) For each i, set

$$Q(\theta | \theta^{(t)}) = E_y[\log p(x, y | \theta) | x, \theta^{(t)}]$$

(M - step) Set

$$\theta^{(\mathsf{t}+1)} = \arg\max_{\theta} Q(\theta|\theta^{(t)}) = \arg\max_{\theta} \sum_{i=1}^{n} \sum_{y_i=1}^{k} [\log\left(\alpha_{y_i} p(x_i|y_i,\theta)\right) p(y_i|x_i,\theta^{(t)})]$$

其中 (E-step) 為

}

$$Q(\theta|\theta^{(t)}) \equiv E_{y}[\log p(x, y|\theta) | x, \theta^{(t)}]$$

$$= E[\sum_{i} \log(p(y_{i}|\theta)p(x_{i}|y_{i}, \theta)) | x, \theta^{(t)}]$$

$$= \sum_{i=1}^{n} E_{y}[\log(\alpha_{y_{i}}p(x_{i}|y_{i}, \theta)) | x, \theta^{(t)}]$$

$$= \sum_{i=1}^{n} \sum_{y_{i}=1}^{k} \left[\log(\alpha_{y_{i}}p(x_{i}|y_{i}, \theta)) p(y_{i}|x_{i}, \theta^{(t)})\right]$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{k} \left[\log(\alpha_{j}\phi(x_{i}|\mu_{i}, \Sigma_{j})) p(y_{i} = j|x_{i}, \theta^{(t)})\right]$$

目的:找到使 Q 函數的最大值參數

Recall $\theta = \{\alpha_i, \mu_i, \Sigma_i; j = 1, ..., k\}$

(M-step)

我們從(E-step)得到概似函數,並將其最大概似函數的 MLE 計算出來,得到的結果如下

$$\alpha_{j}^{(t+1)} = \frac{\sum_{i=1}^{n} p(y_{i} = j | x_{i}, \theta^{(t)})}{n}$$

$$\mu_{j}^{(t+1)} = \frac{\sum_{i=1}^{n} x_{i} p(y_{i} = j | x_{i}, \theta^{(t)})}{\sum_{i=1}^{n} p(y_{i} = j | x_{i}, \theta^{(t)})}$$

$$\Sigma_{j}^{(t+1)} = \frac{\sum_{i=1}^{n} (x_{i} - \mu_{j}^{(t)}) (x_{i} - \mu_{j}^{(t)})^{T} p(y_{i} = j | x_{i}, \theta^{(t)})}{\sum_{i=1}^{n} p(y_{i} = j | x_{i}, \theta^{(t)})}$$

結論:

我們發現兩步驟相同的函數為 $p(y_i=j|x_i,\theta^{(t)})$,也就是說我們在撰寫 EM 演算法的時候,我們只要根據每次迭代得到新的參數,在給定原本的樣本下,把每一次隱藏變數的條件分配計算出來,並帶入我們(M-step)的結果算出新的參數,經過數次迭代後,就能找到收斂的參數。

Old Faithful dataset:

資料為美國黃石國家公園週期性噴發時間及等待時間資料(成對共 272 筆資料)

由上圖我們可以發生資料呈現為兩群的分佈,所以此題我們使用的分配為兩個混合的二元常態分配,並使用 EM 演算法來進行參數估計

$$(x_i, y_i) \sim a \ mix \ of \ N(\mu_j, \Sigma_j)$$
, $i = 1, ..., n$, $j = 1, 2$, $\mu_j = (\mu_{j1}, \mu_{j2})^T$

我們先計算樣本中的平均數與變異數

	Eruption(min)	Waiting(min)
Means	3.487783	70.89706
Covariance matrix	[1.302728 13.97781	13.97781 184.8233

根據上圖,我們選取下列數值作為起始值

	Dis.1	Dis.2
Weights α_i	$\alpha_1 = 0.5$	$\alpha_2 = 0.5$
Means μ_j	$\mu_1 = (2,60)$	$\mu_2 = (4.80)$
Covariance matrix Σ_j	$\left[\begin{array}{cc} 1 & 7 \\ 7 & 100 \end{array}\right]$	$\left[\begin{array}{cc} 2 & 20 \\ 20 & 200 \end{array}\right]$

經由 EM 演算法迭代 30 次後,兩分配的估計參數如下:

	Dis.1	Dis.2
Weights α_i	$\alpha_1 = 0.3558854$	$\alpha_2 = 0.6441146$
Means μ_j	$\mu_1 = (2.036421, 54.478880)$	$\mu_2 = (4.289688 , 79.968413)$
Covariance matrix Σ _j	[0.6991678 0.4400356] [0.4400356 34.0510792]	[0.1709121 0.9456217] 0.9456217 36.2489521]

接著我們根據迭代後得到的參數,將其二元常態機率密度投影在二維平面上

我們將混和常態分配一同繪製在原始的圖表上

以上為從 EM 演算法估計出參數所繪製的結果 30 次迭代過程的動態 gif 檔:網址