B2 白玉2個と赤玉1個が入っている袋に対して、次のような【操作】を行う。

【操作】袋から無作為に玉を1個取り出し

D

- (i) 取り出した玉が白玉なら、取り出した白玉の代わりに赤玉1個を袋の中に入れる。
- (ii) 取り出した玉が赤玉なら、取り出した赤玉の代わりに白玉1個を袋の中に入れる。 この袋に対して、袋の中に白玉も赤玉も両方ある場合は【操作】を繰り返し行い、袋の中が すべて白玉、またはすべて赤玉となった場合はそれ以上【操作】は行わず、終了する。
- (1) 1回の【操作】で終了する確率を求めよ。また、ちょうど2回の【操作】で終了する確率を求めよ。
- (2) ちょうど3回の【操作】で終了する確率を求めよ。
- (3) 3回以内の【操作】で終了したとき、終了時に袋の中がすべて白玉である条件付き確率を求めよ。 (配点 20)
- **B3** 四角形 ABCD があり、AB = BC = CD = 2、 \angle ABC = 60°、 \cos \angle BCD = $-\frac{1}{4}$ である。 辺 BC 上に点 E を DE $/\!\!/$ AB となるようにとる。また、辺 BC の中点を M とし、辺 AB 上に点 F を FM \bot DM となるようにとる。
 - (1) 線分 DM の長さを求めよ。
 - (2) 線分 DE の長さを求めよ。また、sin ∠BMF の値を求めよ。
- (3) 線分 FM の長さを求めよ。また、△EFM の面積を求めよ。 (配点 20)

【選択問題】 数学B受験者は,次のB4 \sim B8 のうちから2題を選んで解答せよ。

- $\mathbf{B4}$ a, b は実数の定数とする。整式 $P(x)=x^3+(a+3)x^2+bx-3a$ があり, P(1)=4 を満たしている。
 - (1) $b \in a$ を用いて表せ。また、このとき P(-3) の値を求めよ。
 - (2) P(x) を因数分解せよ。
- (3) 方程式 P(x) = 0 が虚数解をもち、かつ、その虚数解の実部が整数であるとき、a の値と虚数解をそれぞれ求めよ。 (配点 20)

- ${f B5}$ 〇を原点とする座標平面上に円 C がある。円 C は、中心の座標が (2,1) で、x 軸に接している。また、直線 $\ell:y=ax$ (a は 0 でない定数)は円 C に接している。
 - (1) 円 C の方程式を求めよ。
 - (2) aの値を求めよ。
 - (3) 直線 ℓ 上に点 A, x 軸上に点 B をとり, 直角三角形 OAB をつくる。円 C が 3 辺 OA,OB, AB と接するとき, 直線 AB の方程式を求めよ。(配点 20)
- **B6** 関数 $y = 2\cos^2 2\theta + 4\cos^2 \theta + a$ (a は定数) があり, $\theta = \frac{\pi}{6}$ のとき $y = \frac{3}{2}$ である。
 - (1) aの値を求めよ。
 - (2) $t = \cos^2\theta$ とおく。 $\cos 2\theta$ を t を用いて表せ。また、y を t を用いて表せ。
 - (3) $0 \le \theta \le \pi$ における y の最大値、最小値とそのときの θ の値をそれぞれ求めよ。

(配点 20)

- ${f B7}$ 公差が2の等差数列 $\{a_n\}$ があり、数列 $\{a_n\}$ の初項から第n項までの和を S_n とする。
- (1) $a_1 = -12$ とする。数列 $\{a_n\}$ の一般項 a_n を n を用いて表せ。
 - (2) $a_1 = -12$ とする。 S_n を n を用いて表せ。また、 S_n を最小にする n の値とそのときの S_n の値を求めよ。
 - (3) kを自然数とする。 $a_1 = -2k$ のとき、 S_n の最小値をkを用いて表せ。また、この最小値を b_k とするとき、 $\sum_{k=1}^{20} b_k$ の値を求めよ。 (配点 20)
- $oxed{B8}$ $\triangle OAB$ があり, $\overrightarrow{OA} = \overrightarrow{a}$, $\overrightarrow{OB} = \overrightarrow{b}$ とする。辺 AB を 2:1 に内分する点を C,線分 OC を 3:2 に内分する点を D とする。また, $\triangle OAB$ の重心を G とする。
 - (1) \overrightarrow{OG} を \overrightarrow{a} , \overrightarrow{b} を用いて表せ。
 - (2) \overrightarrow{OD} を \overrightarrow{a} , \overrightarrow{b} を用いて表せ。また, $\overrightarrow{BE} = \frac{1}{4}\overrightarrow{AB}$ を満たす点 \overrightarrow{E} をとるとき, \overrightarrow{OE} を \overrightarrow{a} , \overrightarrow{b} を用いて表せ。
 - (3) (2)において、2 直線 OE、GD の交点を P とする。 \overrightarrow{OP} を \overrightarrow{a} 、 \overrightarrow{b} を用いて表せ。また、 $OA = \sqrt{5}$ 、OB = 1、 $OA \perp OB$ のとき、線分 OP の長さを求めよ。 (配点 20)