Regression

Pavel Krivitsky
based on notes by Dr. Pam Davy
with minor edits by Andrew Zammit Mangion
Week 9, Autumn 2018

Learn about...

- Evaluating quantitative predictors.
- Linear and logistic regression.
- Specifying linear models and selecting parameters.
- Interpreting parameters.
- Regression and model trees.

The Regression Problem

- ► Regression (or numeric prediction) is the task of learning a target function f which maps each attribute set x to a numeric output (response) variable y.
- Consider a data set of n observations:

$$\{(\mathbf{x}_i, y_i), i = 1, 2, \dots, n\}$$

Usually x_i consists of multiple attributes.

Let $\hat{y}_i = f(x_i)$ denote the predicted (fitted) value for observation i.

Performance Evaluation

Performance of a regression task can be evaluated by looking at the prediction error.

Mean Squared Error:
$$MSE = \frac{SSE}{n-p-1}$$
, where $SSE = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$

- Most common; easiest to work with.
- Very sensitive to outliers.
- ▶ Often reported as √MSE, the Root Mean Squared Error (RMSE) which is on the same scale as the data.
- ▶ Loosely, p is the number of explanatory variables in the model for \hat{y}_i , and n p 1 is the *error degrees of freedom*.

Mean Absolute Error:
$$MAE = \frac{1}{n-p-1} \sum_{i=1}^{n} |y_i - \hat{y}_i|$$

- More resistant to outliers.
- ▶ Not differentiable (harder to optimise).

Degrees of Freedom

(a model's) degrees of freedom (df) is a measure of its complexity.

- Loosely, every free parameter you estimate, you spend 1 degree of freedom.
- Some models can have fractional degrees of freedom.

error degrees of freedom is the number of degrees of freedom left over after fitting the model.

- ▶ Typically, n p 1 for a model with p covariates.
- Once that runs out, you can't add any more.

Relative Performance Measures

- MSE and MAE have no natural upper bound.
- ► For most situations, the "first approximation" one might use is the overall sample mean: $\hat{y}_i = \bar{y}$.
 - ▶ One can't do much worse than that.
 - ▶ The model has 1 df (the mean).
 - ▶ Let Sum of Squared Total SST = $\sum_{i=1}^{n} (y_i \bar{y})^2$.
- We can evaluate error relative to this baseline, i.e., $\frac{\text{SSE}}{\text{SST}} = \frac{\sum_{i=1}^{n} (y_i \hat{y}_i)^2}{\sum_{i=1}^{n} (y_i \bar{y})^2}.$
 - ► Similarly for MAE.

R^2 and Adjusted R^2

- ► High value of $R^2 = 1 \frac{\text{SSE}}{\text{SST}}$ means the model explains a high proportion of total variation.
- ▶ For a simple linear model, R^2 really is a squared correlation and therefore non-negative.
- ► For a non-linear model, "R²" can be negative!
- ▶ More complexity in a model almost always increases $R^2 \implies$ overfitting.

$$\implies$$
 Adjusted R^2

$$R_{\text{adj}}^2 = R^2 - (1 - R^2) \frac{p}{n - p - 1}$$

is more directly comparable across linear models of differing complexity: where p is number of explanatory variables.

▶ It's also a better estimator for out-of-sample prediction error.

Correlation

▶ Another commonly used performance measure of a numeric prediction model is the *correlation R* between observed and predicted response.

$$R = \frac{\sum_{i=1}^{n} (\hat{y}_i - \overline{\hat{y}})(y_i - \overline{y})}{\sqrt{\sum_{i=1}^{n} (\hat{y}_i - \overline{\hat{y}})^2 \sum_{i} (y_i - \overline{y})^2}}$$

- Ideally, plot of predicted versus actual response should almost straight with positive slope.
- ▶ So R close to 1 means good prediction.

Linear Regression

Linear regression fits a simple equation of the form

$$\hat{y}_i = \mathbf{x}_i \boldsymbol{\beta} \equiv \beta_0 + \beta_1 x_{i,1} + \dots + \beta_p x_{i,p}$$

where \hat{y}_i denotes the predicted target variable and $\mathbf{x}_i = [1, x_{i,1}, \dots, x_{i,p}]$ denote the explanatory attributes, with $\boldsymbol{\beta} = [\beta_0, \beta_1, \dots, \beta_p]^\top$.

- Note the "special" element for the intercept.
- ▶ Every β_k including β_0 consumes 1 df: the whole model uses up p+1 df.
- ► For notational convenience, **x**_is and y_is are often "stacked":

$$\mathbf{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} \text{ and } \hat{\mathbf{y}} = \begin{bmatrix} \hat{y}_1 \\ \vdots \\ \hat{y}_n \end{bmatrix}$$

$$\mathbf{x} = \begin{bmatrix} \mathbf{x}_1 \\ \vdots \\ \mathbf{x}_n \end{bmatrix} \text{ so } \mathbf{x}\boldsymbol{\beta} = \begin{bmatrix} \hat{\mathbf{x}}_1 \\ \vdots \\ \mathbf{x}_n \boldsymbol{\beta} \end{bmatrix}$$

$$\Rightarrow \hat{\mathbf{y}} = \mathbf{x}\boldsymbol{\beta}$$

Least Squares

Usually fit via Least Squares:

$$\hat{\boldsymbol{\beta}} = \arg\min_{\boldsymbol{\beta}} \frac{1}{2} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \arg\min_{\boldsymbol{\beta}} \frac{1}{2} \sum_{i=1}^{n} (y_i - \boldsymbol{x}_i \boldsymbol{\beta})^2$$

$$\frac{\partial}{\partial \boldsymbol{\beta}} \left\{ \frac{1}{2} \sum_{i=1}^{n} (y_i - \boldsymbol{x}_i \boldsymbol{\beta})^2 \right\} = -\sum_{i=1}^{n} (y_i - \boldsymbol{x}_i \boldsymbol{\beta}) \boldsymbol{x}_i$$

$$= \sum_{i=1}^{n} (\boldsymbol{x}_i \boldsymbol{\beta}) \boldsymbol{x}_i - \sum_{i=1}^{n} y_i \boldsymbol{x}_i \stackrel{\text{set}}{=} \mathbf{0}^{\top}$$

$$\mathbf{0}^{\top} = \sum_{i=1}^{n} (\mathbf{x}_{i} \hat{\boldsymbol{\beta}}) \mathbf{x}_{i} - \sum_{i=1}^{n} y_{i} \mathbf{x}_{i} = (\mathbf{x} \hat{\boldsymbol{\beta}})^{\top} \mathbf{x} - \mathbf{y}^{\top} \mathbf{x} = \hat{\boldsymbol{\beta}}^{\top} \mathbf{x}^{\top} \mathbf{x} - \mathbf{y}^{\top} \mathbf{x}$$
$$\hat{\boldsymbol{\beta}}^{\top} (\mathbf{x}^{\top} \mathbf{x}) = \mathbf{y}^{\top} \mathbf{x}$$

$$(\mathbf{x}^{\top}\mathbf{x})\hat{\boldsymbol{\beta}} = \mathbf{x}^{\top}\mathbf{y}$$

Least Squares (continued)

• $(x^{\top}x)^{-1}$ is the *matrix inverse* of $x^{\top}x$: a matrix such that

$$(\mathbf{x}^{ op}\mathbf{x})(\mathbf{x}^{ op}\mathbf{x})^{-1} = \mathbf{I}_{p+1} = \begin{bmatrix} 1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 1 \end{bmatrix}.$$

Such an inverse might not exist, if any columns of x are "redundant", in that they are a linear function of other columns. Then, regression can't be fit.

$$(\boldsymbol{x}^{\top}\boldsymbol{x})^{-1}(\boldsymbol{x}^{\top}\boldsymbol{x})\hat{\boldsymbol{\beta}} = (\boldsymbol{x}^{\top}\boldsymbol{x})^{-1}\boldsymbol{x}^{\top}\boldsymbol{y}$$

$$\hat{\boldsymbol{\beta}} = (\boldsymbol{x}^{\top}\boldsymbol{x})^{-1}\boldsymbol{x}^{\top}\boldsymbol{y}$$

In practice, this is very fast.

Advantages and Disadvantages

- + Very fast (compared to other methods); has a unique solution (if columns of **x** are not "redundant").
- + Interpretable: β_k is the predicted effect of a unit change in $x_{i,k}$ on the predicted value of Y_i .
 - ► Can test for individual effects.
- + Parsimonious: less overfitting
 - ▶ Measures of fit like adj. R² automatically account for the fact that we are evaluating in-sample.
- Not as flexible.
- Not as "automatic": you have to specify the full form of the model, not just the predictors.

In R

- ▶ lm() is the workhorse function for fitting Linear Models.
- Same formula interface as before.
- ▶ Less "automatism" means that we have to be specific in how predictors should predict the response.

Transforming x

▶ Suppose the effect of x on \hat{y} is believed to be nonlinear. Does it mean our model can't be linear?

No! \hat{y} only needs to be linear in the parameters β !

- $\hat{y}_i = \beta_0 + \beta_1 x_i + \beta_2 x_i^2$ is still an LM
 - We don't have to stop at quadratic effects, but too high a power can be overfitting and unstable.
 - ► Each power costs 1 df.
 - In Im(), powers need to be enclosed in I() (e.g., I(x²)), or R will process them differently.
 - ► We can also use poly(x,degree) to create orthogonal polynomial contrasts.
- Other nonlinear transformation of x also possible.
 - ▶ E.g., if x is right-skewed, taking $\sqrt{\ }$ or log can work better.

Polynomial regression

```
x <- seq(from = -4, to = 4, length.out = 10)
y <- cos(x) + rnorm(10, 0, 0.4)
lm(y ~ poly(x, d)) # for various d</pre>
```


Polynomial regression (summaries)

```
summary(lm(y ~ poly(x, 4)))
##
## Call:
## lm(formula = y \sim poly(x, 4))
##
## Residuals:
## 1 2 3 4 5 6 7
## -0.1046 0.2118 0.1474 -0.4230 -0.2076 0.5795 -0.0137 -0.2742 0.0630
##
      10
## 0.0215
##
## Coefficients:
             Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) -0.3412 0.1196 -2.85 0.0357 *
## poly(x, 4)1 -0.0796 0.3782 -0.21 0.8415
## poly(x, 4)2 -2.1295 0.3782 -5.63 0.0024 **
## poly(x, 4)3 0.6593 0.3782 1.74 0.1417
## poly(x, 4)4 1.3004 0.3782 3.44 0.0185 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.378 on 5 degrees of freedom
## Multiple R-squared: 0.903, Adjusted R-squared: 0.826
```

Categorical Predictors

- Categorical predictors are represented using dummy or inidcator variables.
 - 1. One category (level) is set as the baseline.
 - 2. For each of the rest its corresponding $x_{i,k}$ is set to 1 if i is in the category and 0 otherwise.
- \implies A factor with I levels needs I-1 β_k s, so uses up I-1 df.
 - R automatically does this for factor variables.
 - ▶ Beware categorical variables coded as numbers! "Process" them with factor() to let R know.
 - An ordinal factor can be identified using the function ordered().
 - You can create a dummy variable explicitly via I(var == "val") to add

$$x_{i,k} = \mathbb{I}\{\text{var}[i] \text{ is "val"}\} = egin{cases} 1 & \text{if value of var for } i \text{ is "val"} \\ 0 & \text{otherwise} \end{cases}$$

Interaction

- Interaction occurs when the effect of one predictor variable depends on the level of another.
 - ► Trivial example: age vs. height for children.
 - Slope for boys will be higher than slope for girls.
 - → Interaction between age and gender.
- Represented in LMs as a product between predictor variables (and indicators).
- This costs

```
nominal(c_1)×nominal(c_2): (c_1-1)(c_2-1) df quantitative×quantitative: 1 df nominal(c)×quantitative: (c-1) df
```

- ▶ In lm(), use x1:x2 to add $\beta_{12}x_{i,1}x_{i,2}$.
- ▶ Principle of marginality says that if you include $x_{i,1}x_{i,2}$ in the model, you should also include $x_{i,1}$ and $x_{i,2}$.
- \implies Use x1*x2 to add $\beta_1 x_{i,1} + \beta_2 x_{i,2} + \beta_{12} x_{i,1} x_{i,2}$.

Transforming y

- LMs work best when residuals are symmetric and don't have extreme outliers.
 - \blacktriangleright $\sqrt{}$ transformations are often used for y a count
 - log transformations often used for other strictly positive measurements
- ► Transforming *y* changes interpretation:
 - ▶ $\log(\hat{y}) = \beta_0 + \beta_1 x \implies \hat{y} = e^{\beta_0 + \beta_1 x} = e^{\beta_0} (e^{\beta_1})^x \implies a$ multiplicative effect
 - A unit increase in x will multiply the predicted y by e^{β_1} .
 - ▶ $\log(\hat{y}) = \beta_0 + \beta_1 \log x \implies \hat{y} = e^{\beta_0 + \beta_1 \log x} = e^{\beta_0} e^{(\log x)\beta_1} = e^{\beta_0} x^{\beta_1} \implies \text{a power effect}$

Example: Iris data

What if we wanted to predict petal length from species?

$$\hat{y}_i = \beta_0 + \beta_1 x_{i,1} + \beta_2 x_{i,2}$$

where

$$x_{i,1} = \begin{cases} 1 & \text{if species is versicolor} \\ 0 & \text{otherwise} \end{cases}, \ x_{i,2} = \begin{cases} 1 & \text{if species is virginica} \\ 0 & \text{otherwise} \end{cases}$$

- ► Then,
 - β_0 is the predicted mean for setosa
 - β_1 is how much higher the predicted mean for versicolor is than that for setosa
 - β_2 is how much higher the predicted mean for virginica is than that for setosa

Example: Iris data

```
data(iris)
summary(lm(Petal.Length ~ Species, data = iris))
```

```
## Call:
## lm(formula = Petal.Length ~ Species, data = iris)
## Residuals:
     Min 1Q Median 3Q Max
##
## -1.260 -0.258 0.038 0.240 1.348
## Coefficients:
##
                  Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.4620 0.0609 24.0 <2e-16 ***
## Speciesversicolor 2.7980 0.0861 32.5 <2e-16 ***
## Speciesvirginica 4.0900 0.0861 47.5 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.43 on 147 degrees of freedom
## Multiple R-squared: 0.941, Adjusted R-squared: 0.941
## F-statistic: 1.18e+03 on 2 and 147 DF, p-value: <2e-16
```

Regression Output

- ▶ The standard errors ('Std. Error') show how accurately the regression coefficients have been estimated given the sample size; larger values indicate less accuracy.
- The asterisks (*) indicate which attributes have a statistically significant effect upon the response, for fixed values of the other attributes in the equation.
- ▶ The 'Multiple R-squared' (R²) value shows the proportion of variation in the response which is collectively explained by the explanatory attributes.
- ▶ As R² continues to increase as more variables are included in a regression equation, 'Adjusted R-squared' involves a penalty for the number of predictors.

Interpretation

$$\hat{y}_i = 1.4620 + 2.7980\mathbb{I}\{i \text{ is versicolor}\} + 4.0900\mathbb{I}\{i \text{ is virginica}\}$$

- *** all three β_k s are highly statistically significant:
- β_0 there is enough evidence to believe that population mean petal length for setosa is different (higher) from 0 (a trivial statement); it's about 1.4620
- β_1 there is enough evidence to believe that population mean petal length for versicolor is different (higher) from that of setosa (the baseline); it's about 4.2600
- β_2 there is enough evidence to believe that population mean petal length for virginica is different (higher) from that of setosa (the baseline); it's about 5.5520
- R^2 : The model explains about 0.9414 of the squared variation in the data, or 0.9406 for predicting out of sample.

Model selection

When there are many potential predictor variables and interaction terms, prediction performance for future data will often deteriorate if a very complex model is fitted.

Stepwise regression aims to select the most important terms for inclusion in the final model:

Forward selection: Start with the minimal model, and add one at a time. Stop when nothing can be added to improve the criterion.

Backwards elimination: Start with the maximal model, and remove one at a time. Stop when nothing can be removed to improve the criterion.

Bidirectional elimination: Start with some initial model, and try to add or remove one at a time. Stop when nothing can be changed to improve the criterion.

All-subsets regression: Try every single possible combination of terms. Takes a very long time!

Common criteria

$$R_{
m adj}^2$$
: $1-(1-R^2) imes(n-1)/(n-p-1)$ (bigger is better) Mallows C_P : SSE $/\hat{\sigma}_{
m max}^2-(n-2p-2)$, where $\hat{\sigma}_{
m max}^2={
m SSE}_{
m max}/(n-p_{
m max}-1)$ (smaller = better) Akaike Information Criterion (AIC): $-2l(\hat{m{\beta}})+2p+2$ (smaller is better) Bayesian Information Criterion (BIC): $-2l(\hat{m{\beta}})+(p+1)\log n$ (smaller is better)

▶ Here, $l(\hat{\beta})$ is the maximum log-likelihood of the model: the log of the observation density function $L(\beta)$ evaluated at the parameter $(\hat{\beta})$ that maximises it.

Example: Swiss Fertility data

```
library(datasets)
data(swiss)
```

Data about 47 French-speaking provinces of Switzerland around 1888.

```
Fertility standardised fertility measure
Agriculture % of males involved in agriculture as occupation
Examination % of draftees receiving highest mark on army
exam
Education % with education beyond primary school for
draftees
Catholic % Catholic (as opposed to Protestant)
Infant.Mortality % live births who lives less than a year
```

Scatterplot matrix

Regression Output

```
summary(swiss.fit <- lm(Fertility ~ ., data = swiss))</pre>
```

```
## Call:
## lm(formula = Fertility ~ ., data = swiss)
## Residuals:
     Min 1Q Median 3Q
##
                                 Max
## -15.274 -5.262 0.503 4.120 15.321
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 66.9152 10.7060 6.25 1.9e-07 ***
## Agriculture -0.1721 0.0703 -2.45 0.0187 *
## Examination -0.2580 0.2539 -1.02 0.3155
## Education -0.8709 0.1830 -4.76 2.4e-05 ***
## Catholic 0.1041 0.0353 2.95 0.0052 **
## Infant.Mortality 1.0770 0.3817 2.82 0.0073 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 7.17 on 41 degrees of freedom
## Multiple R-squared: 0.707, Adjusted R-squared: 0.671
## F-statistic: 19.8 on 5 and 41 DF, p-value: 5.59e-10
```

Regression Equation

The fitted regression equation is Fertility = 66.915 - 0.172 Agriculture

- 0.258 Examination 0.871 Education
- + 0.104 Catholic + 1.077 Infant.Mortality
 - ► E.g., for every additional percentage point of draftees with education beyond primary school, the predicted fertility measure decreases by 0.8709 units.

Stepwise regression

```
step(swiss.fit, data = swiss)
```

```
## Start: ATC=190.7
## Fertility ~ Agriculture + Examination + Education + Catholic +
      Infant.Mortality
##
                    Df Sum of Sq RSS AIC
## - Examination
                   1
                          53 2158 190
                               2105 191
## <none>
## - Agriculture 1
                       308 2413 195
## - Infant.Mortality 1 409 2514 197
## - Catholic 1
                       448 2553 198
## - Education 1
                           1163 3268 209
## Step: AIC=189.9
## Fertility ~ Agriculture + Education + Catholic + Infant.Mortality
##
                    Df Sum of Sq RSS AIC
                                2158 190
## <none>
## - Agriculture
                           264 2422 193
## - Infant.Mortality 1
                          410 2568 196
## - Catholic
                          957 3115 205
## - Education 1 2250 4408 221
## Call:
## lm(formula = Fertility ~ Agriculture + Education + Catholic +
      Infant.Mortality, data = swiss)
## Coefficients:
##
       (Intercept)
                      Agriculture
                                          Education
                                                           Catholic
##
           62 101
                          -0.155
                                            -0.980
                                                              0.125
## Infant.Mortality
            1.078
```

All-Subsets regression: regsubsets() in leaps

Gives best model for each predictor number.

```
library(leaps)
regsub <- regsubsets(Fertility ~ ., data = swiss)</pre>
summary(regsub)
## Subset selection object
## Call: regsubsets.formula(Fertility ~ ., data = swiss)
## 5 Variables (and intercept)
                     Forced in Forced out
##
## Agriculture
                          FALSE
                                      FALSE
## Examination
                        FALSE
                                     FALSE
## Education
                         FALSE
                                     FALSE
## Catholic
                      FALSE
                                     FALSE
## Infant.Mortality FALSE
                                     FALSE
## 1 subsets of each size up to 5
## Selection Algorithm: exhaustive
             Agriculture Examination Education Catholic Infant.Mortality
##
                                       11 * 11
                                                  11 11
## 1
                                       11 14 11
                                                  11 11
## 2 (1
                                                            11 11
## 3 (1
                                       11 * 11
                                                  11 * 11
                                                            11 * 11
                          11 11
                                       11 🛖 11
                                                  11 11
                                                            11 1/2 11
## 4
## 5 (1)
             11 11
                          11 14 11
                                       11 14 11
                                                  11 11
                                                            11 1/2 11
```

Selecting predictor number

```
summary(regsub)$cp # Mallow's cp
   [1] 35.205 18.486 8.178 5.033 6.000
with(summary(regsub), which[which.min(cp), ])
        (Intercept) Agriculture
                                          Examination
                                                              Education
##
               TRUE.
                                TRUE.
                                                 FALSE.
                                                                   TRUE.
##
##
           Catholic Infant.Mortality
##
               TRUE
                                TRUE
```

▶ I.e., best Mallows *C_P* measure is for 4 predictors, which are Agriculture, Education, Catholicism, and Infant Mortality.

Interactions

```
summary(swiss.fit <- lm(Fertility ~ (Agriculture +</pre>
    Examination + Education + Catholic + Infant.Mortality)^2.
   data = swiss))
## Call:
## lm(formula = Fertility ~ (Agriculture + Examination + Education +
      Catholic + Infant.Mortality)^2, data = swiss)
## Residuals:
     Min
             10 Median
                           30
                                 Max
  -8.76 -3.89 -0.68 3.14 14.10
## Coefficients:
##
                                Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                               253.97615
                                         67.99721
                                                     3.74 0.00076 ***
## Agriculture
                               -2.10867
                                         0.70163
                                                     -3.01 0.00522 **
## Examination
                                           2.75010
                                                     -2.03 0.05109 .
                                -5.58074
## Education
                                -3.47089 2.68377
                                                     -1.29 0.20547
## Catholic
                                -0.17693 0.40653
                                                     -0.44 0.66642
## Infant.Mortality
                                -5.95748
                                           3.08963
                                                     -1.93 0.06303 .
## Agriculture: Examination
                                 0.02137
                                           0.01377
                                                     1.55 0.13091
## Agriculture: Education
                                           0.01523
                                                     1.25 0.22009
                                 0.01906
## Agriculture:Catholic
                                 0.00263
                                           0.00285
                                                      0.92 0.36387
## Agriculture: Infant. Mortality
                                 0.06370
                                           0.02981
                                                      2.14 0.04060 *
## Examination: Education
                                 0.07517
                                           0.03634
                                                      2.07 0.04703 *
## Examination:Catholic
                                -0.00153
                                           0.01079
                                                     -0.14 0.88791
## Examination:Infant.Mortality
                                0.17101
                                           0.12907
                                                     1.33 0.19485
## Education:Catholic
                                -0.00713
                                           0.01018
                                                     -0.70 0.48865
                                0.03359
                                           0.12420
                                                      0.27 0.78863
## Education:Infant.Mortality
## Catholic:Infant.Mortality
                                 0.00992
                                           0.01617
                                                      0.61 0.54409
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 6.47 on 31 degrees of freedom
## Multiple R-squared: 0.819, Adjusted R-squared: 0.731
```

Stepwise selection of interactions

```
## Start: ATC=188
## Fertility ~ (Agriculture + Examination + Education + Catholic +
       Infant.Mortality)^2
                                     Df Sum of Sq RSS AIC
##
## - Examination: Catholic
                                      1 0.8 1300 186
## - Education:Infant.Mortality 1 3.1 1302 186
## - Catholic:Infant.Mortality 1 15.8 1315 187
## - Education:Catholic 1 20.6 1320 187
## - Agriculture:Catholic 1 35.6 1335 187
## <none>
                                                  1299 188
                              1 65.6 1365 188
## - Agriculture: Education
## - Examination: Education
                              1 179.3 1478 192
## - Agriculture: Infant. Mortality 1 191.4 1491 192
```

Note that removal of Examination: Catholic affects RSS the least (removed from model).

Stepwise selection of interactions (continued)

```
## Step: AIC=186
## Fertility ~ Agriculture + Examination + Education + Catholic +
       Infant.Mortality + Agriculture: Examination + Agriculture: Education +
       Agriculture: Catholic + Agriculture: Infant. Mortality + Examination: Educa
## tion +
##
       Examination: Infant. Mortality + Education: Catholic + Education: Infant. Mo
## rtality +
##
       Catholic: Infant. Mortality
                                 Df Sum of Sq RSS AIC
##
## - Education: Infant. Mortality
                                          3.9 1304 184
## - Catholic:Infant.Mortality 1 17.3 1317 185
## - Agriculture: Catholic
                                       37.1 1337 185
## <none>
                                               1300 186
## - Education:Catholic
                                     56.8 1357 186
## - Agriculture: Education
                                  1 69.5 1369 186
## - Examination:Infant.Mortality 1 86.0 1386 187
## - Agriculture: Examination
                                  1 114.3 1414 188
## - Examination:Education
                                       178.4 1478 190
## - Agriculture: Infant. Mortality 1
                                       205.3 1505 191
```

Note that removal of Education: Infant. Mortality affects RSS the least (removed from model).

Stepwise selection of interactions (continued 2)

```
## Step: AIC=184.2
## Fertility ~ Agriculture + Examination + Education + Catholic +
      Infant.Mortality + Agriculture:Examination + Agriculture:Education +
      Agriculture: Catholic + Agriculture: Infant. Mortality + Examination: Educa
## tion +
      Examination: Infant. Mortality + Education: Catholic + Catholic: Infant. Mor
## tality
##
                                Df Sum of Sq RSS AIC
## - Catholic: Infant. Mortality 1 25.8 1330 183
                        1 36.4 1340 184
## - Agriculture:Catholic
## <none>
                                             1304 184
## - Agriculture: Education
                                 1 79.2 1383 185
## - Education:Catholic
                                 1 79.3 1383 185
## - Agriculture: Examination
                                 1 116.3 1420 186
## - Examination: Education
                                     185.9 1490 188
## - Agriculture:Infant.Mortality 1 219.8 1524 190
## - Examination:Infant.Mortality 1 230.5 1534 190
```

Note that removal of Catholic:Infant.Mortality affects RSS the least (removed from model).

Stepwise selection of interactions (continued 3)

```
## Step: AIC=183.1
## Fertility ~ Agriculture + Examination + Education + Catholic +
       Infant.Mortality + Agriculture: Examination + Agriculture: Education +
##
##
       Agriculture: Catholic + Agriculture: Infant . Mortality + Examination: Educa
## tion +
       Examination: Infant. Mortality + Education: Catholic
                                 Df Sum of Sq RSS AIC
##
## - Agriculture:Catholic
                                         26.7 1356 182
## <none>
                                               1330 183
## - Education:Catholic
                                  1 91.7 1421 184
## - Agriculture:Education
                                  1 92.2 1422 184
## - Agriculture:Examination
                                  1 121.2 1451 185
## - Examination: Education
                             1 197.2 1527 188
## - Examination:Infant.Mortality 1 210.7 1540 188
## - Agriculture: Infant. Mortality 1 220.4 1550 188
## Step: AIC=182
## Fertility ~ Agriculture + Examination + Education + Catholic +
##
       Infant.Mortality + Agriculture: Examination + Agriculture: Education +
       Agriculture: Infant. Mortality + Examination: Education + Examination: Infa
## nt.Mortality +
      Education:Catholic
##
##
                                 Df Sum of Sq RSS AIC
                                              1356 182
## <none>
## - Agriculture: Education
                                 1 75.0 1431 183
## - Agriculture: Examination 1 99.7 1456 183
## - Examination:Education
                               1 174.6 1531 186
## - Education:Catholic
                                      216.6 1573 187
## - Agriculture:Infant.Mortality 1 271.1 1627 189
## - Examination:Infant.Mortality 1 272.9 1629 189
```

Stepwise selection of interactions (continued 4)

```
## Call:
## lm(formula = Fertility ~ Agriculture + Examination + Education +
       Catholic + Infant.Mortality + Agriculture:Examination + Agriculture:Edu
## cation +
##
       Agriculture: Infant. Mortality + Examination: Education + Examination: Infa
## nt.Mortality +
       Education: Catholic, data = swiss)
  Coefficients:
##
                     (Intercept)
                                                     Agriculture
##
                        225.9101
                                                         -1.9067
                     Examination
                                                       Education
                         -5.1202
                                                         -2.4735
##
                        Catholic
                                               Infant.Mortality
##
                          0.2112
                                                         -5.2693
##
##
        Agriculture: Examination
                                          Agriculture: Education
##
                          0.0149
                                                          0.0191
## Agriculture: Infant. Mortality
                                          Examination: Education
##
                          0.0635
                                                          0.0639
   Examination: Infant. Mortality
                                             Education: Catholic
##
                          0.1722
                                                         -0.0124
```

Final fit with interactions

```
summary(swiss.fit2.steps)
##
## Call:
## lm(formula = Fertility ~ Agriculture + Examination + Education +
##
      Catholic + Infant.Mortality + Agriculture: Examination + Agriculture: Education +
      Agriculture: Infant. Mortality + Examination: Education + Examination: Infant. Mortality +
##
      Education: Catholic, data = swiss)
##
##
## Residuals:
     Min
             10 Median
##
                           30
                                 Max
## -9.608 -3.665 -0.564 2.922 13.736
##
## Coefficients:
                                Estimate Std. Error t value Pr(>|t|)
##
## (Intercept)
                                                       4.31 0.00013 ***
                               225 91005
                                           52 45757
## Agriculture
                                -1.90665
                                          0.56282
                                                      -3.39 0.00176 **
## Examination
                                -5.12020
                                          1.57831
                                                      -3.24 0.00259 **
                                -2.47350
## Education
                                           1.20277
                                                     -2.06 0.04725 *
## Catholic
                                 0.21116
                                           0.05418 3.90 0.00042 ***
## Infant.Mortality
                                -5.26935
                                            2.28727
                                                     -2.30 0.02729 *
## Agriculture: Examination
                                           0.00928 1.60 0.11771
                                 0.01488
## Agriculture: Education
                                 0.01908
                                            0.01372
                                                     1.39 0.17301
## Agriculture:Infant.Mortality
                                 0.06353
                                            0.02402
                                                     2.64 0.01216 *
## Examination: Education
                                 0.06389
                                            0.03010 2.12 0.04092 *
## Examination:Infant.Mortality
                                 0.17219
                                            0.06489
                                                       2.65 0.01189 *
## Education:Catholic
                                -0.01238
                                            0.00524
                                                      -2.36 0.02374 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 6.23 on 35 degrees of freedom
## Multiple R-squared: 0.811, Adjusted R-squared: 0.752
```

Linear Regression for Big Data

- Computational issues arise for "big" data sets, either in the sense of many rows (instances) or many columns (attributes).
 - For many rows, the data may need to be read in chunks, and stored economically.
 - ► For many columns, solution may be slow and numerically unstable despite being non-iterative.
 - ► For many columns, attribute selection is particularly important but backwards stepwise regression may be infeasible.

Linear Regression for Big Data

- ▶ The R biglm package implements regression using p^2 memory for p explanatory variables.
- The biglm function extends the capabilities of lm for linear regression.
- Data can be read in chunks, and fitted models can be updated with additional data by the update function.
- The bigglm function extends the capabilities of glm for generalised linear models.

Linear Regression for Big Data

- Linear regression involves solving a potentially large system of simultaneous equations, or equivalently inverting a potentially large $(p+1) \times (p+1)$ matrix where p = number of predictors.
 - If necessary, the basic R solve function used to invert a matrix can be replaced by qr.solve (QR decomposition) or chol2inv (Cholesky decomposition, suitable for inverting symmetric matrices).

Non-linear Regression

$$\hat{y}_i = f(\boldsymbol{x}_i; \boldsymbol{\beta})$$

- ▶ Non-linear regression fits more complicated relationships, but the form of *f* must be specified.
- ▶ Non-linear least squares can be used. (R function: nls().)
 - A unique solution is not guaranteed.
- Neural networks can be regarded as a form of non-linear regression with many parameters, e.g.

$$y = \operatorname{squash} \left(v_0 + \sum_{j=1}^m v_j \operatorname{squash} \left(w_{0j} + \sum_{i=1}^k w_{ij} x_i \right) \right)$$

where

$$\mathsf{squash}(x) = \frac{1}{1 + \mathsf{exp}(-x)}$$

Logistic and tanh Functions

Logistic Regression

- Designed when you have binary response.
- Logistic regression involves fitting an equation of the form

$$\Pr(Y_i = 1) = \operatorname{squash}(\beta_0 + \beta_1 x_{i,1} + \dots + \beta_i x_{i,p})$$

where
$$squash(x) = 1/(1 + e^{-x})$$

Statisticians call it the *logistic* function:

$$\mathsf{logit}\{\mathsf{Pr}(Y_i=1)\} = \beta_0 + \beta_1 x_{i,1} + \dots + \beta_i x_{i,p},$$

where $logit(q) = log \frac{q}{1-q}$, the log of the odds associated with probability q.

► The technique can be extended to more than 3 categories, either nominal (unordered) or ordinal (ordered categories).

Generalised Linear Models

- Generalised linear models extend linear regression in a number of ways, and include logistic regression as a particular case.
- ► The fitted linear equation is linked to the mean response by a link function (not necessarily the identity).
- The underlying probability model for the response may differ from Normal.
- ▶ Implemented in R by glm.
 - ► To fit logistic regression, specify family = binomial("logit")

Example: Iris Data

Recall the scenario from the SVM lecture.

```
iris2 <- transform(subset(iris, Species != "setosa",</pre>
    c("Species", "Sepal.Length", "Sepal.Width")),
    Species = factor(Species))
                         5.0
                               6.0
                                      7.0
                                            80
        Species
                          Sepal.Length
                                                 Sepal.Width
              1.6
                 1.8
                     2.0
                                              2.0
                                                   2.5
                                                         3.0
                                                              3.5
```

Logistic Regression

```
summary(glm(I(Species == "virginica") ~ ., data = iris2,
    family = binomial("logit")))
```

```
## Call:
## glm(formula = I(Species == "virginica") ~ ., family = binomial("logit"),
      data = iris2)
##
## Deviance Residuals:
     Min 10 Median 30 Max
##
## -1.874 -0.895 -0.055 0.961 2.357
## Coefficients:
       Estimate Std. Error z value Pr(>|z|)
##
## (Intercept) -13.046 3.097 -4.21 2.5e-05 ***
## Sepal.Length 1.902 0.517 3.68 0.00023 ***
## Sepal.Width 0.405 0.863 0.47 0.63908
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 138.63 on 99 degrees of freedom
## Residual deviance: 110.33 on 97 degrees of freedom
## AIC: 116.3
## Number of Fisher Scoring iterations: 4
```

Interpretation

- Only sepal length is significant.
- ▶ In the presence of sepal length, sepal width is not.
- For every unit increase in sepal length, the predicted odds of it being a virginica are multiplied by $e^{1.9024} = 6.7018$.
- Standard functions (like predict()) are available. However, you must specify the type:
 - ▶ By default, predicts logit{ $\widehat{Pr}(Y_{new} = 1)$ }.
 - ▶ Specify type="response" to predict $\widehat{Pr}(Y_{new} = 1)$.

Regression Trees

- A regression tree is similar to a decision tree, except that the predicted value at a terminal leaf is given by the mean or median response variable of instances allocated to that leaf.
 - Branching is performed to reduce variation (as measured by standard deviation or mean absolute deviation) within the daughter nodes.
 - A model tree is a variation involving the fitting of linear regression models at each terminal leaf.
 - Quinlan's M5 algorithm fits both variants, implemented in Weka and the R cubist package.

As a linear model

▶ A regression tree can be expressed as a linear regression model by the use of indicator variables, *e.g.*

$$\hat{y} = \beta_0 + \beta_1 \mathbb{I}_1(\mathsf{age}) + \beta_2 \mathbb{I}_1(\mathsf{age}) \mathbb{I}_2(\mathsf{gender})$$

where

$$\mathbb{I}_1(\mathsf{age}) = egin{cases} 0 & \mathsf{if} \ \mathsf{age} \leq 29 \ 1 & \mathsf{otherwise} \end{cases}$$

and

$$\mathbb{I}_2(\mathsf{gender}) = egin{cases} 0 & \mathsf{if} \; \mathsf{gender} = \mathsf{`female'} \ 1 & \mathsf{otherwise} \end{cases}$$

► This is not very helpful unless the tree structure, branching attributes and split points are known in advance.

Example: Swiss fertility data

▶ When given a quantitative response variable, **rpart** and others automatically change to regression tree mode:

```
library(rpart)
(swiss.tree <- rpart(Fertility ~ ., data = swiss))</pre>
## n = 47
##
## node), split, n, deviance, yval
         * denotes terminal node
##
##
##
    1) root 47 7178.0 70.14
##
      2) Education>=17 7 628.3 50.74 *
##
      3) Education< 17 40 3454.0 73.54
        6) Catholic< 28.98 23 827.5 68.13
##
##
         12) Infant.Mortality< 18.8 7 167.3 62.54 *
##
         13) Infant.Mortality>=18.8 16 346.6 70.57 *
##
        7) Catholic>=28.98 17 1042.0 80.86 *
```

Visualisation of regression trees

Example: Swiss fertility data with ctree

```
library(party)
(swiss.tree2 <- ctree(Fertility ~ ., data = swiss))</pre>
##
##
     Conditional inference tree with 4 terminal nodes
##
## Response: Fertility
## Inputs: Agriculture, Examination, Education, Catholic, Infant.Mortality
## Number of observations: 47
##
## 1) Education <= 15; criterion = 1, statistic = 20.268
     2) Catholic <= 24.2: criterion = 1, statistic = 15.218
##
##
       3) Infant.Mortality <= 18.7; criterion = 0.973, statistic = 7.723
       4)* weights = 7
##
       3) Infant.Mortality > 18.7
##
         5)* weights = 16
##
     2) Catholic > 24.2
##
       6)* weights = 17
##
## 1) Education > 15
##
    7)* weights = 7
```

Visualisation

plot(swiss.tree2)

Smoothing

- Regression tree software involves extensive searching.
 - Drawback with regression trees: abrupt discontinuities (jumps) at boundaries between sibling nodes.
 - This happens for model trees as well as for simple regression trees.
- To reduce size of jumps at boundaries, raw predictions can be smoothed via

$$\frac{n_p \hat{y}_p + k \hat{y}_q}{n_p + k}$$

at each step along path from terminal leaf back to top of tree (root node).

- \hat{y}_p = partially-smoothed prediction passed from lower in tree,
- \hat{y}_q = raw prediction at the current node,
- n_p = number of instances in lower node, k = smoothing parameter.