Enseignant es: Blanche Buet, Dominique Hulin et Thomas Letendre.

Feuille 8 – Mesure superficielle... de la sphère...

Exercice 1 (Tout hyperplan est un graphe). Soit (e_1, \ldots, e_d) la base canonique de \mathbb{R}^d , pour tout $j \in [\![1,d]\!]$ on note $H_j = \text{Vect}\{e_i \mid i \neq j\}$. Soit $H \subset \mathbb{R}^d$ un hyperplan, montrer qu'il existe $j \in [\![1,d]\!]$ et $L: H_j \to \mathbb{R}$ linéaire telle que H soit le graphe de L.

Exercice 2 (Changement de variable sphérique). Dans cet exercice, on fait le lien entre la mesure de Lebesgue λ de \mathbb{R}^d et la mesure superficielle σ sur la sphère unité euclidienne \mathbb{S}^{d-1} .

- 1. Justifier rapidement que $\mathbb{S}^{d-1} = \{x \in \mathbb{R}^d \mid ||x|| = 1\}$ est une hypersurface lisse de \mathbb{R}^d .
- 2. Notons $\mathbb{B} = \{y \in \mathbb{R}^{d-1} \mid \|y\| < 1\}$ et $\mathbb{S}_+^{d-1} = \{(x_1, \dots, x_d) \in \mathbb{S}^{d-1} \mid x_d > 0\}$, on peut décrire $\mathbb{S}_+^{d-1} \subset \mathbb{R}^{d-1} \times \mathbb{R}_+^*$ comme le graphe de $h: y \mapsto \sqrt{1 \|y\|^2}$ de \mathbb{B} dans \mathbb{R}_+^* . Soit $f: \mathbb{S}_+^{d-1} \to \mathbb{C}$ que l'on suppose mesurable et positive, ou intégrable. En utilisant la description précédente de \mathbb{S}_+^{d-1} , exprimer $\int_{\mathbb{S}_+^{d-1}} f(\theta) \, \mathrm{d}\sigma(\theta)$, comme l'intégrale sur \mathbb{B} d'une certaine fonction mesurable.
- 3. Soit $\Phi: \mathbb{R}_+^* \times \mathbb{B} \to \mathbb{R}^{d-1} \times \mathbb{R}_+^*$ défini par $\Phi: (R, y) \mapsto R(y, h(y))$. Calculer le jacobien de Φ en tout point et montrer que Φ est un \mathcal{C}^{∞} -difféomorphisme.
- 4. Soit $F: \mathbb{R}^{d-1} \times \mathbb{R}_+^* \to \mathbb{C}$ une fonction mesurable et positive, ou intégrable. Montrer que

$$\int_{\mathbb{R}^{d-1} \times \mathbb{R}_+^*} F(x) \, \mathrm{d}x = \int_{R=0}^{+\infty} \int_{\theta \in \mathbb{S}_+^{d-1}} F(R\theta) R^{d-1} \, \mathrm{d}\sigma(\theta) \, \mathrm{d}R.$$

- 5. On note $U_i^+ = \{(x_1, \dots, x_d) \in \mathbb{R}^d \mid x_i > 0\}$ (resp. $U_i^- = \{(x_1, \dots, x_d) \in \mathbb{R}^d \mid x_i < 0\}$) pour tout $i \in [\![1, d]\!]$. Montrer l'existence de fonctions continues $(\varphi_i^+)_{1 \leqslant i \leqslant d}$ et $(\varphi_i^-)_{1 \leqslant i \leqslant d}$ de $\mathbb{R}^d \setminus \{0\}$ dans [0, 1] telles que φ_i^+ (resp. φ_i^-) est nulle hors de U_i^+ (resp. U_i^-) et $\sum_{i=1}^d \varphi_i^+ + \varphi_i^- = 1$.
- 6. Soit $F:\mathbb{R}^d\setminus\{0\}\to\mathbb{C}$ une fonction mesurable et positive, ou intégrable. Montrer que

$$\int_{\mathbb{R}^d \setminus \{0\}} F(x) \, \mathrm{d}x = \int_{R=0}^{+\infty} \int_{\theta \in \mathbb{S}^{d-1}} F(R\theta) R^{d-1} \, \mathrm{d}\sigma(\theta) \, \mathrm{d}R. \tag{1}$$

7. Montrer que \mathbb{S}^{d-1} est de mesure nulle pour la mesure de Lebesgue λ sur \mathbb{R}^d .

Exercice 3 (Mesure superficielle et dilatations). Pour tout r > 0, on note σ_r la mesure superficielle de la sphère euclidienne $r\mathbb{S}^{d-1}$ de centre 0 et de rayon r dans \mathbb{R}^d . Soit $f: r\mathbb{S}^{d-1} \to \mathbb{C}$ une fonction mesurable et positive, ou intégrable. Montrer que

$$\int_{r \mathbb{S}^{d-1}} f(\alpha) \, d\sigma_r(\alpha) = \int_{\mathbb{S}^{d-1}} f(r\theta) r^{d-1} \, d\sigma_1(\theta). \tag{2}$$

Indication. Commencer par le cas où f est nulle en dehors de $r\mathbb{S}^{d-1}_+ = \{x \in \mathbb{R}^d \mid ||x|| = r \text{ et } x_d > 0\}$, puis passer au cas général comme dans l'exercice 2.

Exercice 4 (Encore une convergence dans \mathcal{D}'). Pour tout $\varepsilon \in]0,1[$, on définit la couronne sphérique $C_{\varepsilon} = \{x \in \mathbb{R}^d \mid 1 - \varepsilon < ||x|| < 1 + \varepsilon\}$ et $f_{\varepsilon} = \frac{1}{2\varepsilon} \mathbf{1}_{C_{\varepsilon}}$. Montrer que f_{ε} converge dans $\mathcal{D}'(\mathbb{R}^d)$ lorsque $\varepsilon \to 0$, vers une distribution mystère que l'on déterminera.

Notations. Rappelons quelques notations déjà utilisées dans la feuille de TD 3.

- γ est la restriction à $\mathbb{R}^d \setminus \{0\}$ de la gaussienne standard, qui admet la densité $x \mapsto \frac{1}{\sqrt{2\pi}^d} e^{-\frac{\|x\|^2}{2}}$ par rapport à la mesure de Lebesgue.
- $\pi: x \mapsto \frac{x}{\|x\|}$ est la projection radiale de $\mathbb{R}^d \setminus \{0\}$ sur \mathbb{S}^{d-1} .
- $\mu = \pi_* \gamma$ est la mesure image de γ par π .

Dans l'exercice 4 de la feuille 3, nous avons prouvé que, s'il existe une mesure σ sur \mathbb{S}^{d-1} telle que la formule de changement de variable sphérique (1) soit valable pour tout $F: \mathbb{R}^d \to \mathbb{C}$ mesurable positive ou intégrable, alors $\sigma = \frac{2\pi^{\frac{d}{2}}}{\Gamma(\frac{d}{2})}\mu$. La mesure superficielle σ de \mathbb{S}^{d-1} est donc égale à $\frac{2\pi^{\frac{d}{2}}}{\Gamma(\frac{d}{2})}\mu$.

Exercice 5 (Invariance par rotation). On dit qu'une mesure ν sur $\mathbb{R}^d \setminus \{0\}$ (resp. \mathbb{S}^{d-1}) est invariante par rotation si, pour tout $O \in O_d(\mathbb{R})$, $O_*\nu = \nu$.

- 1. Montrer que pour tout $O \in O_d(\mathbb{R})$, on a $\pi \circ O = O \circ \pi$ sur $\mathbb{R}^d \setminus \{0\}$.
- 2. Montrer que γ est invariante par rotation.
- 3. En déduire que μ et σ sont invariantes par rotation.
- 4. Soient i et $j \in [1, d]$, calculer $\int_{\mathbb{S}^{d-1}} x_i d\sigma(x)$ et $\int_{\mathbb{S}^{d-1}} x_i x_j d\sigma(x)$.