Competitive Math Notes

Sidharth Baskaran

September 4, 2021

Table of Contents

1		adratics and Polynomials
	1.1	Basic factoring
	1.2	Quadratic Formula
	1.3	Expansions
	1.4	Factoring
	1.5	Vieta's Formulas
	v	quences
4		actions and Polynomials
		Floor function
	4.2	Change of base formula
	4.3	Polynomial division
	4.4	Inverse functions

1 Quadratics and Polynomials

1.1 Basic factoring

Given some $ax^2 + bx + c$, try and find the factorization (sx + u)(tx + v) by expanding this template expression.

Remark. If one root is 0, the product of roots is 0 so the equation is of form $ax^2 + bx = 0$.

Remark. Difference of squares are of the form $x^2 - a^2 = 0 \implies (x - a)(x + a) = 0$.

Remark. A perfect square is of the form $(x+a)^2 = x^2 + 2ax + a^2$. This is a case of a "double root."

1.2 Quadratic Formula

By manipulating $ax^2 + bx + c = 0$ by completing the square, the quadratic formula can be found.

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \tag{1}$$

1.3 Expansions

$$(a+b)^2 = a^2 + 2ab + b^2 (2)$$

$$(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$$
(3)

1.4 Factoring

Definition 1.1 (Difference of squares).

$$a^{2} - b^{2} = (a+b)(a-b)$$
(4)

Definition 1.2 (Sum of squares).

$$a^{2} + b^{2} = (a+b)^{2} - 2ab (5)$$

Definition 1.3 (Sum of cubes).

$$a^{3} + b^{3} = (a+b)(a^{2} - ab + b^{2})$$
(6)

Definition 1.4 (Difference of cubes).

$$a^{3} - b^{3} = (a - b)(a^{2} + ab + b^{2})$$
(7)

Definition 1.5 (Some cube identity).

$$a^{3} + b^{3} + c^{3} - 3abc = (a+b+c)(a^{2} + b^{2} + c^{2} - ab - ac - bc)$$
(8)

Definition 1.6 (Simon factoring trick). Used to factor in a diophantine equation. If ab+ka+nb=c, then (a+n)(b+k)=c+nk.

1.5 Vieta's Formulas

$$x^{2} + ax + b = (x - p)(x - q)$$
(9)

$$x^{2} + ax + b = x^{2} - (p+q)x + pq$$
(10)

Thus, a = p + q and b = pq. Generally,

$$s_{1} = r_{1} + r_{2} + r_{3} + \dots + r_{n} = -\frac{a_{n-1}}{a_{n}}$$

$$s_{2} = r_{1}r_{2} + r_{1}r_{3} + r_{1}r_{4} + \dots + r_{n-2}r_{n-1} = \frac{a_{n-2}}{a_{n}}$$

$$s_{3} = r_{1}r_{2}r_{3} + r_{1}r_{2}r_{4} + \dots + r_{n-2}r_{n-1}r_{n} = -\frac{a_{n-3}}{a_{n}}$$

$$\vdots$$

$$s_{n} = r_{1}r_{2}r_{3} \cdots r_{n} = (-1)^{n} \frac{a_{0}}{a_{n}}.$$

Definition 1.7 (AM-GM Inequality).

$$\frac{a_1 + \ldots + a_n}{n} \ge \sqrt[n]{a_1 a_2 \ldots a_n} \tag{11}$$

2 Systems

Definition 2.1 (Useful fraction property). If there exists some $k \in \mathbb{R}$ such that $k = \frac{a}{b} = \frac{c}{d}$, then $\frac{a+c}{b+d} = k$ as well. Can be extended to n equal fractions of this form.

3 Sequences

Sum for finite arithmetic series with starting value a:

$$\frac{2a + (n-1)d}{2} \cdot n \tag{12}$$

Sum for infinite geometric series:

$$\frac{a}{1-r} \tag{13}$$

Sum for finite geometric series:

$$\frac{a(1-r^n)}{1-r}\tag{14}$$

4 Functions and Polynomials

4.1 Floor function

The floor function $\lfloor x \rfloor$ yields greatest integer leq to argument. For positive values, equivalent to rounding down (truncating decimals). For negative values, equivalent to next lowest negative integer.

Example 1.

$$|-3.2| = -4$$

A useful simplification is

$$\lfloor x \rfloor = \lfloor y + k \rfloor \tag{15}$$

where y is an integer and $0 \le k < 1$. An alternate definition is

$$|x| = x - \{x\} \tag{16}$$

where $\{x\}$ is the fractional component of x.

4.2 Change of base formula

Express a logarithm in base b using logarithms of base d. Let $d, a, b \in \mathbb{R}$ s.t $d, b \neq 1$.

$$\log_b a = \frac{\log_d a}{\log_d b} \tag{17}$$

4.3 Polynomial division

Definition 4.1 (Polynomial remainder theorem). Upon dividing any polynomial P(x) by linear polynomial x - a, the remainder is P(a).

We can express P(x) as the following

$$P(x) = (x - a)Q(x) + R(x)$$

$$\tag{18}$$

where x - a is the dividend, Q(x) is the quotient and R(x) is the remainder. Also, $\deg(x - a)$, hence $R(x) \in \mathbb{R}$.

The general approach is $P(x) = D(x)Q(x) - R(x) \implies R(x) = D(x)Q(x) - P(x)$. Find zeros of D(x) to eliminate Q(x) and thus find R(x) through substitution into -P(x).

4.4 Inverse functions

Definition 4.2 (Inverse of a function). Let $f(x): A \to B$ with range C. The inverse is $f^{-1}(x): C \to A$ iff f is injective (i.e. a distinct one-to-one mapping from every value in A to C). Can verify via horizontal line test.

The properties are $f(f^{-1}(x)) = x$ and $f^{-1}(f(x)) = x$