МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Физтех-школа биологической и медицинской физики

Лабораторная работа по физической химии

Свойства электродов

Выполнила студентка группы Б06-103: Фитэль Алена

1 Введение

Цели и задачи работы:

- Знакомство с понятием лимитирующей стадии электрохимической реакции и двумя принципиально разными причинами изменения потенциала электрода в условиях протекания тока при быстрой и медленной электрохимической стадии
- Особые требования к элементам трехэлектродной схемы при исследовании вольт-амперных характеристик протекающих реакций
- Получение хлорсеребряного электрода и изучение его свойств.
- Исследование свойств платинового электрода в условиях его поляризуемости и обратимости. Оценка ключевых параметров диффузионной и кинетической стадий электрохимических реакций.

2 Теоретический материал

2.1 Поляризуемые и неполяризуемые электроды

<u>Ид</u>еально поляризуемым(необратимым) электродом называется тот, у которого сопротивление стадии переноса заряда велико, поэтому в интервале потенциалов, когда ток заряжения больше тока электрохимической реакции, электрод эквивалентен конденсатору. Всё вприкладываемое напряжение идёт на зпряжение ДЭС электрода.

Идеально неполяризуемый (обратимый) электрод - электрод с малым сопротивлением стадии переноса заряда, он находится в равновесии с продуктами электрохимической реакции. При подаче напряжения на электрод, возникает электрическое поле, которое вызывает ток, в свою очередь сбрасывающий "лишний" заряд.

2.2 Трёхэлектродная электрохимическая ячейка

Рисунок 1: Трёхэлектродная электрохимическая ячейка

Ячейка включает в себя рабочий электрод(РЭ) - исследуемый электрод. электрод сравнения(ЭС), который должен быть идеально неполяризуемым, его потенциал постоянен и определяется только концентрацией потенциалоопределяющих ионов. ЭС подключается в цепь с высокоточным милливольтметром с очень большим сопротивлением. Чтобы минимизировать омическое падение напряжения в растворе, ЭС располагают близко к РЭ. Для уменьшения диффузионного скачка потенциала и повышения точности работы ЭС его подключают к РЭ через тонкий капилляр и солевой мостик. Ещё один электрод ячейки - вспомогательный электрод(ВЭ),

он не должен лимитировать измеряемую величину, поэтому $S_{P9} \ll S_{B9}$. Так же ВЭ должен быть отделён пористой перегородкой от остального раствора, чтобы продукты реакции на этом электроде не попадали в рабочий раствор.

При протекании тока электрохимической реакции, между электродами возникает разность потенциалов:

$$U = E_0 + |\Delta E_{\mathrm{P}\Im}| + |\Delta E_{\mathrm{B}\Im}| + IR_{\mathrm{цепи}}$$

где E_0 - ЭДС источника, ΔE - электрохимические поляризации электродов, $IR_{\text{цепи}}$ - омическое падение напряжения в растворе.

Учитывая все указанные выше детали, трёхэлектродная электрохимическая ячейка позволяет измерять потенциал РЭ точностью до потенциала ЭС.

2.3 Многостадийность прохождения электрического тока

Поляризуемость или неполяризуемость электрода определяется величиной активационного барьера и скоростью кинетической стадии переноса заряда на электроде. Так же активационный барьер влияет на ВАХ при протекании тока. Электродная реакция, протекающая на границе раздела фаз, приводящая к возникновению тока, включает в себя несколько последовательных стадий:

Рисунок 2: Стадии прохождения электродной реакции на границе раздела фаз

Самая медленная стадия будет определять скорость всего процесса, в данном случае величину тока.

2.4 Диффузионно-лимитированный процесс и концентрационная поляризация

Рассмотрим неполяризуемый электрод, для которого кинетическая стадия реакции проходит быстро, тогда лимитирует процесс массоперенос реагентов из раствора. Подача реагентов обусловлена конвекцией, диффузией или миграцией. В глубине раствора за счёт конвекции и мешалок концентрация остаётся постоянной, однако вблизи электрода существует неперемешиваемый (диффузионнный) слой, в котором возникает градиент концентрации, этот слой находится непосредственно за дифуузной частью ДЭС, где восстанавливается электронейтральность раствора.

Из-за разности поверхностной (непосредственно за диффузной частью ДЭС) и объёмной (в глубине раствора) концентрации возникает явление, называемое концентрационной поляри-

зацией - это значит, что на электроде возникает потенциал, отклоняющийся от равновесного(при отсутствии градиента концентрации):

$$\eta = E - E_p = E^0 + \frac{RT}{nF} \ln c_i^s - \frac{RT}{nF} \ln c_i^b = \frac{RT}{nF} \ln \frac{c_i^s}{c_i^b}$$

где η - перенапряжение из-за градиента концентрации, E - потенциал электрода, E_p - равновесный потенциал электрода, c_i^s и c_i^b - концентрации на поверхности и в объёме соответственно.

Введём понятие предельного диффузионного тока - максимальный диффузионный ток, достигаемый при $c_i^s = 0$:

$$i_d = -nFD\frac{c_i^b}{\delta}$$

где D - коэффициент диффузии, δ - толщина неперемешиваемого слоя.

Это выражение получено в предположении, что диффузия стационарна, поэтому концентрация в диффузионном слое меняется линейно.

Получим, что $\frac{c_i^s}{c_b^b}=1-\frac{i}{i_d}$, тогда получим ВАХ для ситуации, когда только катодные процессы лимитируются диффузией:

$$i = i_d[1 - exp(\frac{nF\eta}{RT})]$$

Рисунок 3: Зависимость тока от концентрационной поляризации при разряде ионов металла на одноимённом металле

Из графика видно, что катодный процесс лимитирован диффузией и этот ток стремится к своему предельному значению, анодный процесс в данном случае не затруднён диффузией, поэтому ток растёт неограничено.

Из графика видно, что катодный процесс лимитирован диффузией и этот ток стремится к своему предельному значению, анодный процесс в данном случае не затруднён диффузией, поэтому ток растёт неограничено.

Так выглядит зависимость перенепряжения от тока, когда и окислитель и восстановитель требуют диффузии из раствора:

$$E - E_p = \frac{RT}{nF} \ln \left(1 - \frac{i}{i_d^{(O)}}\right) - \frac{RT}{nF} \ln \left(1 - \frac{i}{i_d^{(R)}}\right)$$

где $i_d^{(O)}$ и $i_d^{(R)}$ - предельные диффузионные токи окисленной и восстановленной форм где 2 и 3 - ток восстановленной и окисленной формы соответсвенно, а 1 - суммарный ток

Рисунок 4: ВАХ процесса, в котором и окисление и восстановление лимитированны диффузией

2.5 Кинетические закономерности стадии переноса электрона

Рассмотрим границу области поляризуемости идеально поляризуемого электрода, для которого кинетическая стадия переноса заряда является лимитирующей.

Любую электрохимическую реакцию можно представить в виде:

$$Ox + ne = Red$$

Или иначе на языке зарядов:

$$Z_O - n = Z_R$$

Заметим, что:

$$E = E_p \Rightarrow i^{\rightarrow} = i^{\leftarrow} = i_0$$

где i_0 - ток обмена

$$E > E_p \Rightarrow i_A = i^{\leftarrow} - i^{\rightarrow}$$

$$E < E_p \Rightarrow i_K = i^{\rightarrow} - i^{\leftarrow}$$

Пусть все электроны в реакции переносятся в одну стадию, а энергия активации катодного и анодного процесса линейно связаны с потенциалом электрода: $E_a(Red) = \alpha E, E_a(Ox) = \beta E; \alpha + \beta = 1$, тогда вблизи электрода из уравнения Аррениуса для преимущественно превращения Red в Ох и при $i = i^{\leftarrow} - i^{\rightarrow}$ получим [уравнение Батлера-Фольмера]:

$$i = i_0 \left[exp\left(\frac{nF\alpha\eta}{RT}\right) - exp\left(-\frac{nF(1-\alpha)\eta}{RT}\right)\right]$$

при $\eta \gg \frac{RT}{nF} \simeq 25$ мВ $\Rightarrow i \simeq i_0 exp(\frac{nF\alpha\eta}{RT})$, тогда пусть $a = -\frac{RT}{nF\alpha} \ln i_0$, $b = 2, 3\frac{RT}{nF\alpha} \ln i_K$, получаем [формулу Тафеля]:

$$\eta = a + b \lg i$$

при $\eta \ll \frac{RT}{nF} \simeq 25$ мВ $\Rightarrow E \to E_p; \ \eta \simeq \frac{RT}{nF} \frac{i}{i_0} = \Theta i,$ где Θ - сопротивление стадии переноса заряда.

Рисунок 5: Поляризационная кривая стадии переноса заряда при $\alpha=0,5$

Рисунок 6: Поляризационная кривая в Тафелевских координатах

3 Ход работы и обработка результатов

3.1 Получение и проверка работы хлорсеребрянных элетродов

В данной части работы используется следующая трехэлетродная схема (ячейка заполнена $0.1 \mathrm{M} \ \mathrm{KCl}$):

- Рабочий элетрод Ад
- Противоэлектрод Pt
- Электрод сравнения хлорсеребрянный, заполненный 3.5М КСІ

Проведем очистку хлорсеребрянного элетрода с помощью катодной поляризации в режиме линейной развертки потенциала от 0 до -1500мB со скоростью 10 mB/c

Рисунок 7: ВАХ очистки элетрода

Рассмотрим первый проход. При малых отклонениях потенциала от равновесного на рабочем электроде идет следующая реакция восстановления:

$$AgCl + e^- \rightarrow Ag + Cl^-$$

Далее ток снова становится равным 0. Это происходит из-за того, что весь AgCl уже восстановился, электрод стал серебрянным. При дальнейшем отклонении потенциала от равновесного происходит уже другая реакция, при которой наблюдается выделение газа:

$$e^- + H_2O \rightarrow 1/2H_2 + OH^- \uparrow$$

График при этом быстро становится прямой, значит реация лимитирована диффузионно (потому что в этом случае малое фарадеевское сопротивление, и схема Эшлера - Рендлса примерно эквивалентна последовательно соединенным резисторам)

При втором проходе аналогичной первому проходу "ямы"не наблюдается. Это произошло потому, что при первом проходе весь AgCl "счистили"с электрода, а новому "нарасти"на дали (т.к. для этого надо провести анодную поляризацию)

Проведем анодную поляризацию очищенной серебрянной проволоки. При этом на рабочем электроде будет идти реакция окисления:

$$Ag + Cl^- - e^- \rightarrow AgCl$$

При проведении опыта действительно наблюдается "побурение" серебрянной проволоки.

3.2 Поляризуемые и неполяризуемые электроды

В данной части работы использовалась следующая трехэлектродная схема:

- Рабочий электрод Ag|AgCl и Pt
- Противоэлектрод Pt
- Электрод сравнения хлорсеребрянный

Измерим циклические ВАХ для рабочих электродов при скорости развертки $100~{\rm mB/c}$ и скорости регистрации - $13~{\rm tovek/c}$ по $5~{\rm циклов}$:

- 1. Ag|AgCl электрода (от -150 до 150 мВ) в растворе 1М КСl.
- 2. Pt электрода (от -900 до 1150 мВ) в растворе 1M KCl.

Как видно из полученных графиков, хлорсеребряный электрод - неполяризуемый, а платиновый - поляризуемый.

Процессы, происходящие на рабочих электродах

• Хлорсеберянный электрод

$$I_{anode} > 0: Ag + Cl^- - e \rightarrow AgCl$$

$$I_{anode} < 0 : AgCl + e \rightarrow Ag + Cl^-$$

• Платиновый электрод

$$I_{anode} > 0: Pt + H_2O \to Pt - O_{ads} + 2e(Pt) + 2H^+$$

 $I_{anode} < 0: H_3O^+ + e(Pt) \to Pt - H_{ads} + H_2O$

Видно, что Pt электрод является идеально поляризуемым в диапазоне [0, 750mV] относительно хлорсеребрянного электрода.

Рисунок 8: ЦВАХ Ag|AgCl электрода

Рисунок 9: ЦВАХ Р
t электрода

Рисунок 10: Сравнение ЦВАХ Ag
|AgCl и Pt электродов

3.3 Стационарые кривые поляризации для Ox-Red электрода

В данной части работы были получены кривые поляризации рабочего Pt электрода (3х электродная схема) при различных концентрациях $K_3[Fe(CN)_6]$ и одинаковой скорости перемешивания. Исходные концентрации $C(K_4[Fe(CN)_6]) = C(K_4[Fe(CN)_6]) = 1.923M$

V_{K4} , мл	V_{K3} , мл	$V_{ m oбщ}$, мл	C_{K4} , mM	C_{K3} , MM
1	1	52	1.923	1.923
1	3	54	1.852	5.556
1	5	56	1.786	8.929
1	7	58	1.724	12.069
1	9	60	1.667	15.000
1	11	62	1.613	17.742

Таблица 1: Концентрация $K_3[Fe(CN)_6], K_4[Fe(CN)_6]$

Рисунок 11: Кривые поляризации Pt электрода при различной концентрации $C(K_4[Fe(CN)_6])$

Процессы, идущие на рабочем электроде:

$$I_{anode} < 0 : [Fe(CN)_6]^{3-} + e^- \to [Fe(CN)_6]^{4-}$$

$$I_{anode} > 0 : [Fe(CN)_6]^{4-} - e^- \to [Fe(CN)_6]^{3-}$$

Поскольку ток ограничен для обоих процессов, делаем вывод, что диффузия лимитирует как окисление, так и восстановление. Предельный диффузионный ток восстановленной формы остается постоянным в отличие от тока окисленной формы $(K_3[Fe(CN)_6])$.

Катодная поляризация: $[Fe(CN)_6]^{3-} + e^- \rightarrow [Fe(CN)_6]^{4-}$

 $E < E_{\rm p}$, процесс лимитирован диффузией окисленной формы, концентрация которой значительно меняется в ходе эксперимента

Анодная поляризация: $[Fe(CN)_6]^{4-} - e^- \rightarrow [Fe(CN)_6]^{3-}$

 $E>E_{\rm p},$ процесс лимитирован диффузией восстановленной формы, концентрация которой меняется в ходе эксперимента незначительно.

Рисунок 12: Кривые поляризации Pt электрода при быстроми медленном перемешивании

V_{K4} , мл	V_{K3} , мл	$V_{ m oбm}$, мл	C_{K4} , mM	C_{K3} , MM
1	1	62	1.61	1.61
1	3	64	1.56	4.69
1	5	66	1.52	7.58
1	7	68	1.47	10.29
1	9	70	1.43	12.86

Таблица 2: Концентрация $K_3[Fe(CN)_6]$

Придерживаясь IUPAC:

$$i^{Ox} = -nFD \frac{(c^b - c^s)}{\delta},$$
$$i_d^{Ox} = -nFD \frac{c^b}{\delta},$$

 i_d^{Ox} - предельный диффузионный ток на единицу площади окисленной формы, D - коэффициент диффузии, c^s - поверхностная концентрация ионов при катодном токе, δ - толщина диффузионного слоя

Оценим толщину диффузионного слоя по значениям предельного катодного тока при разных концентрациях $K_3[Fe(CN)_6]$. Для этого построим график $i_d(C)$. По коэффициенту наклона графика найдем δ (S - площадь поверхности электрода):

$$k = -nFDS/\delta$$

$$k = -4,3695 * 10^{-6} Am^3/mol$$

$$D = 8,96 * 10^{-10} m^2/c$$

Площадь поверхности электрода (длина электрода l = 1мм, радиус r = 0.5мм):

$$S = 2\pi rh + \pi r^2 = 4 \cdot 10^{-6}m^2$$

$$\delta = \frac{FDS}{k} = 79,14 \text{ MKM}$$

C_{K3} , \mathbf{MM}	$i_d(C)$
1.923	-1.05
5.556	-2.72
8.929	-4.14
12.069	-5.5
15.000	-6.66
17.742	-8.08

Таблица 3: Предельный катодный ток при разных концентрациях $K_3[Fe(CN)_6]$

Рисунок 13: Зависимость предельного диффузионного тока от концентрации

Оценим количество электронов, задействованных в реакции.

Стационартный потенциал электрода - при i=0. Тогда равны концентрации c^b соли в объеме вещества и c^s на внутренней границе диффузионного слоя (т.к. $i\sim C^s-C^b$). Тогда из уравнения Нернста:

$$E_p = E_0 + \frac{RT}{nF} \ln \frac{C^s [Fe(CN)_6]^{3-}}{C^s ([Fe(CN)_6]^{4-})} = E_0 + \frac{RT}{nF} \ln \frac{C^b [Fe(CN)_6]^{3-}}{C^b ([Fe(CN)_6]^{4-})}$$

C_{K3}	C_{K3}	$\ln(C_{4-})/C_{3-})$	E_p , м B
1.923	1.923	0.000	264.15
1.852	5.556	-1.099	-294.67
1.786	8.929	-1.609	312.91
1.724	12.069	-1.946	320.87
1.667	15.000	-2.197	324.22
1.613	17.742	-2.398	325.57

Таблица 4: Зависимость Ер от логарифма отношения концентраций

Значит, k = 26.827. Тогда число электронов:

$$k = \frac{RT}{nF} \Rightarrow n = \frac{RT}{kF} = \frac{8.31 \cdot 298}{26.827 \cdot 10^{-3} \cdot 96485} = 1.01 \approx 1$$

Рисунок 14: Зависимость стационарного потенциала электрода от логарифма отношения концентраций солей

Таким образом, в одной реации задействован примерно один электрон (что подтверждает исходное уравнение реакции).

4 Выводы

- Хлорсеребряный электрод является идеально неполяризуемым в пределах [-150, 150mV]
- Платиновый электрод можно считать идельно поляризуемым в диапазоне [-700, 800mV]
- Толщина неперемешиваемого слоя Pt электрода в присутствии ферроцианида и феррицианида калия $\delta = 79, 14$ мкм. Она уменьшается при усиленном перемешивании.
- На один ион феррицианида приходится один электрон.