Mineração de Dados Aula 4 – parte 1

Especialização em Ciência de Dados e suas Aplicações

Regras de associação

Dado um conjunto de transações, encontre regras para a predição da ocorrência de itens baseado na ocorrência de outros itens na transação

Transações de supermercado

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Exemplo de regras de associação

```
{Diaper} \rightarrow {Beer},
{Milk, Bread} \rightarrow {Eggs,Coke},
{Beer, Bread} \rightarrow {Milk},
```

Implicação significa coocorrência, e não causalidade!

Itemset Frequente

Itemset

- Coleção de um ou mais itens
 - ◆ Ex: {Milk, Bread, Diaper}
- k-itemset
 - Itemset que contem k itens
- Frequência de itemset (σ)
 - E.g. $\sigma(\{Milk, Bread, Diaper\}) = 2$
- Suporte
 - Fração de transações que contem um itemset
 - E.g. $s(\{Milk, Bread, Diaper\}) = 2/5$
- Itemset frequente
 - Itemset cujo suporte é maior ou igual a um limite minsup

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Regra de Associação

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

<u>número de clientes que compraram A,B,C,D</u> Total de clientes

Confiança (c) de A,B, C → D

número de clientes que compraram A,B,C,D número de clientes que compraram A,B,C

Regra de Associação

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Exemplo

 $\{Milk, Diaper\} \Rightarrow \{Beer\}$

Suporte = $\{Milk, Diaper, Beer\}/Total = 2/5 = 0,4$

Confiança = {Milk, Diaper, Beer}/Frequência{Milk, Diaper} = 2/3 = 0,67

Tarefa de mineração

Dado um conjunto de transações T, o objetivo da mineração de regras de associação é encontrar todas as regras com

Suporte ≥ minsup Confiança ≥ minconf

Força bruta:

- Listar todas as regras de associação possíveis
- Computar o suporte e confiança para cada uma
- Podar as regras que n\u00e3o atingirem minsup e minconf
- → Computacionalmente inviável!

Reduzindo número de candidatos

Princípio do Apriori:

Se um itemset é frequente

Todo subitemset é frequente!!

TID	Items
1	Bread, Milk
2	Beer, Bread, Diaper, Eggs
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Bread, Coke, Diaper, Milk

Itens (1-itemsets) - C₁

Item	Count
Bread	4
Coke	2
Milk	4
Beer	3
Diaper	4
Eggs	1

Suporte mínimo = 3

Se todo subconjunto é considerado:

$$C_1 + C_2 + C_3$$

$$6 + 15 + 20 = 41$$

$$6 + 6 + 4 = 16$$

TID	Items
1	Bread, Milk
2	Beer, Bread, Diaper, Eggs
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Bread, Coke, Diaper, Milk

Itens (1-itemsets) - C₁

Item	Count
Bread	4
Coke	2
Milk	4
Beer	3
Diaper	4
Eggs	1

Suporte mínimo = 3

Se todo subconjunto é considerado:

$$C_1 + C_2 + C_3$$

6 + 15 + 20 = 41

$$6 + 6 + 4 = 16$$

Item	Count
Bread	4
Coke	2
Milk	4
Beer	3
Diaper	4
Eggs	1

Itens (1-itemsets) - C₁

Itemset
{Bread,Milk}
{Bread, Beer }
{Bread,Diaper}
{Beer, Milk}
{Diaper, Milk}
{Beer,Diaper}

Pares (2-itemsets) - C₂

(Não é necessário gerar candidatos com coke ou eggs)

Suporte mínimo = 3

Se todo subconjunto é considerado:

$$C_1 + C_2 + C_3$$

6 + 15 + 20 = 41

$$6 + 6 + 4 = 16$$

Item	Count
Bread	4
Coke	2
Milk	4
Beer	3
Diaper	4
Eggs	1

Itens (1-itemsets) - C₁

Itemset	Count
{Bread,Milk}	3
{Beer, Bread}	2
{Bread,Diaper}	3
{Beer,Milk}	2
{Diaper,Milk}	3
{Beer,Diaper}	3

Pares (2-itemsets) - C₂

(Não é necessário gerar candidatos com coke ou eggs)

Suporte mínimo = 3

Se todo subconjunto é considerado:

$$C_1 + C_2 + C_3$$

$$6 + 15 + 20 = 41$$

$$6 + 6 + 4 = 16$$

Item	Count
Bread	4
Coke	2
Milk	4
Beer	3
Diaper	4
Eggs	1

Itens (1-itemsets) - C₁

Itemset	Count
{Bread,Milk}	3
{Bread,Beer}	2
{Bread,Diaper}	3
{Milk,Beer}	2
{Milk,Diaper}	3
{Beer,Diaper}	3

Pares (2-itemsets) - C₂

(Não é necessário gerar candidatos com coke ou eggs)

Suporte mínimo = 3

Trios (3-itemsets) - C_3

Se todo subconjunto é considerado:

$$C_1 + C_2 + C_3$$

6 + 15 + 20 = 41

$$6 + 6 + 4 = 16$$

Item	Count
Bread	4
Coke	2
Milk	4
Beer	3
Diaper	4
Eggs	1

Itens (1-itemsets) - C₁

Itemset	Count
{Bread,Milk}	3
{Bread,Beer}	2
{Bread,Diaper}	3
{Milk,Beer}	2
{Milk,Diaper}	3
{Beer,Diaper}	3

Pares (2-itemsets) - C₂

(Não é necessário gerar candidatos com coke ou eggs)

Suporte mínimo = 3

Trios (3-itemsets) - C_3

Se todo subconjunto é considerado:	
$C_1 + C_2 + C_3$	
6 + 15 + 20 = 41	
Com poda baseada no suporte:	
6 + 6 + 4 = 16	

Itemset	Count
{ Beer, Diaper, Milk}	2
{ Beer,Bread, Diaper}	2
{Bread, Diaper, Milk}	2
{Beer, Bread, Milk}	1

Algoritmo Apriori


```
C_1 = Itemsets de tamanho 1

F_1 = Itemsets frequentes de C_1

k = 1

Enquanto F_k não for vazio

C_{k+1} = Gerar(F_k)

C_{k+1} = Podar(C_k, F_k)

F_{k+1} = Validar(BD, C_{k+1})
```

k=k+1

Exemplo completo


```
□ Cálculo de F(1)
                            T1 = { Pao, Leite, Manteiga }
                            T2 = { Pao, Leite, Acucar }
                            T3 = \{Pao\}
                            T4 = { Pao, Leite }
                            T5 = { Pao, Leite, Manteiga, Acucar }
                            minsup = 2 / 5
         F(1)
                      Leite
              Pao
                                       Manteiga
                              Acucar
                                          2/5
                       4/5
                                2/5
                            5/5
```

Geração de C(2)

- □ Combinação dos elementos de F(1)
- □ Poda dos elementos de C(2) nenhuma neste nível

Suporte de C(2)

Acuc, Mant

1/5

```
☐ Cálculo de F(2)
Numa varrida dos dados
```

F(2)

```
T1 = { Pao, Leite, Mant }
T2 = { Pao, Leite, Acuc }
T3 = { Pao }
T4 = { Pao, Leite }
T5 = { Pao, Leite, Mant, Acuc }
minsup = 2 / 5
```


Geração de C(3)

Combinar somente os itemsets cujos primeiros elementos são idênticos

Poda de C(3)

Geração de C(4)

□ Combinação dos elementos de F(3)

Poda de C(4)

Regras interessantes

- \square Para todo k-itemset **X** frequente (com k > 1) e Y \subseteq X
 - Calcular a confiança da regra de associação
 X Y ⇒ Y
 - Se é superior ou igual a minconf, então a regra gerada é interessante

Exemplo


```
Minconf = 3 / 4
```

 $X = \{ Pao, Leite, Mant \}$ é frequente: **suporte(X) = 2/5**

- □ Pao, Leite \Rightarrow Mant **não interessante** sup (Pao, Leite) = 4/5 , Conf = (2/5) / (4/5) = 2/4
- □ Pao, Mant ⇒ Leite interessante pois Conf = 2 / 2
- □ Leite, Mant \Rightarrow Pain interessante pois Conf = 2 / 2
- □ Pao ⇒ Lait, Mant não interessante pois Conf = 2 / 5
- □ Leite ⇒ Pao , Mant não interessante pois Conf = 2 / 4
- □ Mant \Rightarrow Pao , Leite **não interessante** pois Conf = 2 / 4

Lift

Parte "direita" da regra

Regra com **lift=1**: a probabilidade de ocorrer o antecessor e o consequente é independente um do outro

Regra não interessante

Se A -> leite

Confiança = 90%

Suporte de leite = 90% (aparece 90% das transações)

Lift = 1: não interessante. A probabilidade de A e leite são independentes. Isto significa que leite pode ser comprado muito frequentemente, independente de A

Lift

Regra com lift>1

Se C -> D Confiança = 70% Suporte de D = 10%

Lift = 7

Exemplo em R

Criar regras de associação com os personagens do filme Titanic.

Instalar o pacote: arules

Carregar os dados: "titanic.raw.rdata"

Executar o script em R fornecido.

Agradecimentos

Parte deste material é derivado do livro: Introduction to Data Mining - Tan, Steinbach, Kumar