Anfängerpraktikum der Fakultät für Physik, Universität Göttingen

Die spezifische Wärme

Praktikant: Felix Kurtz

Michael Lohmann

E-Mail: felix.kurtz@stud.uni-goettingen.de

m.lohmann@stud.uni-goettingen.de

Betreuer: Phillip Bastian

Versuchsdatum: 13.03.2015

Testat:		

Inhaltsverzeichnis

Inhaltsverzeichnis

1	Einleitung	
2	Theorie2.1 Debye-Modell2.2 Wärmekapazität	3 3
3	Durchführung	3
4	Auswertung4.1 Temperaturverläufe4.2 Widerstand4.3 Leistung4.4 molare Wärmekapazität	5 5
5	Diskussion	7
6	Anhang	7
Lit	teratur	7

1 Einleitung

Die spezifische Wärmespeicherkapazität ist eine wichtige Materialkonstante, da sie für viele alltäglichen Dinge essentiell ist. Als Beispiel ist hier die Isolation zu nennen, die die Heizkosten moderat halten. Hierfür ist es wichtig, Stoffe zu finden, die gut für diese Aufgabe geeignet sind. Ein Versuch um Materialien zu charakterisieren wurde hier durchgeführt.

2 Theorie

2.1 Debye-Modell

$$c_m = 9R \left(\frac{T}{\theta_D}\right)^3 \cdot \int_0^{\frac{\theta_D}{T}} \frac{x^4 e^x}{(e^x - 1)^2} dx \tag{1}$$

2.2 Wärmekapazität

$$c_M = \frac{M}{m} \cdot \frac{P}{\frac{dT}{dt}|_{\text{erw}} + \frac{dT}{dt}|_{\text{abk}}}$$
 (2)

3 Durchführung

4 Auswertung

4.1 Temperaturverläufe

Das Thermoelement gibt eine Spannung in Millivolt zurück. Diese kann man mit der folgenden Formel und ihrer Fehlerformel in eine Temperatur umrechnen:

$$T[^{\circ}C] = 0.219 + 20.456 \cdot U - 0.302 \cdot U^2 + 0.009 \cdot U^3,$$
 (3)

$$\sigma_T = (20.456 - 0.604 \cdot U + 0.027 \cdot U^2) \cdot \sigma_U. \tag{4}$$

Dabei nehmen wir eine Ungenauigkeit von $\sigma_U=0.02\,\mathrm{mV}$ an. In Abbildung 1 und 2 ist die Temperatur der beiden Materialien Aluminium und Beryllium gegen die Zeit aufgetragen – zuerst für Raumtemperatur, dann für Stickstofftemperatur. Man kann gut erkennen, wann geheizt wurde und wann sich der Körper wieder abkühlt. Für die Stickstofftemperatur-Messung von Beryllium wurde der Referenzkontakt nicht in Eiswasser getaucht. Deshalb ist die Referenztemperatur nicht 0°C, sondern Raumtemperatur T(0.88)=18°C.

Abbildung 1: Raumtemperatur: Erhitzen und Abkühlen von Aluminium und Beryllium

Abbildung 2: Stickstofftemperatur: Erhitzen und Abkühlen von Aluminium und Beryllium

4.2 Widerstand

Den Widerstand des Kupferdrahtes kann man leicht berechnen, indem man die Heizspannung U durch die Stromstärke I, die konstant bei $0.5\,\mathrm{A}$ liegt, teilt:

$$R = \frac{U}{I},\tag{5}$$

$$\sigma_R = \frac{\sigma_U}{I} \,. \tag{6}$$

Wir nehmen einen Fehler der Heizspannung von $\sigma_U = 0.4\,\mathrm{V}$ an, da sich die Spannung während 30 Sekunden stark ändern konnte. Wenn die Spannung mit dem Schalter verdreifacht wurde, verdreifacht sich der Fehler auch auf $\sigma_U = 1.2\,\mathrm{V}$. In Abb.3 ist der Widerstand des Drahtes während der vier Heizvorgänge gegen die Temperatur aufgetragen.

Abbildung 3: Widerstand des Cu-Drahtes

4.3 Leistung

Die Heizleistung kann man mit der Folgenden Formel und ihrer Fehlerformel berechnet werden:

$$P = UI, (7)$$

$$\sigma_P = I \cdot \sigma_U \,. \tag{8}$$

Es wird der gleiche Fehler σ_U wie zuvor auch verwendet. Nun kann die elektrische Leistung während des Heizvorgangs gegen die Temperatur aufgetragen werden (vgl. Abb.4).

Abbildung 4: Beim Heizen hineingesteckte Leistung

4.4 molare Wärmekapazität

Für das Erwärmen wird ein linearer Zusammenhang zwischen Temperatur und Zeit erwartet: $T(t) = a \cdot t + b$. Dann ist $\frac{dT}{dt}|_{\text{erw}} = a$. Für das Abkühlen kann man einen exponentiellen Abfall der Temperatur mit der Zeit annehmen. Zudem wird sich die Temperatur dem thermischen Gleichgewicht angleichen: $T(t) = T_0 + (T_1 - T_0) \cdot e^{-\lambda t}$. Somit ist $\frac{dT}{dt}|_{\text{abk}} = -\lambda \cdot (T - T_0)$. Dabei ist T_0 die Temperatur des thermischen Gleichgewichtes. Setzt man dies für die molare Wärmekapazität nach (2) ein, ergibt sich

$$c_m = \frac{M}{m} \frac{P}{a + \lambda (T - T_0)} \tag{9}$$

$$\sigma c_m = \frac{M}{m} \sqrt{\frac{\sigma_P^2}{(a + \lambda (T - T_0))^2} + \frac{P^2}{(a + \lambda (T - T_0))^4} \cdot (\sigma_a^2 + (T - T_0)^2 \sigma_\lambda^2 + \lambda^2 \sigma_T^2)}.$$
(10)

Die molare Masse von Aluminium beträgt $M=26.982\,\mathrm{g\,mol^{-1}}$, von Beryllium $M=9.012\,\mathrm{g\,mol^{-1}}$. Die Masse des Aluminium-Körpers ist $m=52.5\,\mathrm{g}$, die des Beryllium-Körpers ist $m=43.0\,\mathrm{g}$.

Um die Temperatur T_0 zu ermitteln, werden die Werte vor dem Erhitzen verwendet. Diese waren bei Zimmertemperatur erwartungsgemäß konstant. Somit liegt die Zimmertemperatur bei $T_0(0.88\,\mathrm{mV}) = 18^\circ\mathrm{C}$. Bei dem zweiten Versuchsteil wurde vor dem Erhitzen noch nicht das thermische Gleichgewicht erreicht. Man nimmt wieder an, dass sich die Temperatur exponentiell abfallend an die Gleichgewichtstemperatur nähert. Mit einem χ^2 -Fit ergibt sich für die Versuchsreihe mit Aluminium $T_0 = 110^\circ\mathrm{C}$, für die mit Beryllium $T_0 = 106^\circ\mathrm{C}$. So kann man jetzt λ bestimmen, indem man die Temperatur-differenz zu T_0 während des Abkühlvorgangs logarithmisch gegen die Zeit aufträgt. Es ergibt sich eine Gerade, deren Steigung mit einer linearen Regression bestimmt werden kann. Die Werte für a und λ der 4 Versuchsreihen befinden sich in Tabelle 1. Mit diesen

	$a [10^{-3} \cdot \mathrm{K s^{-1}}]$	$\lambda \ [10^{-5} \cdot \mathrm{s}^{-1}]$
Al RT	303 ± 2	87.8 ± 0.6
Be RT	188.5 ± 1.2	51.4 ± 0.6
Al Stickstoff	74.85 ± 0.23	158.8 ± 0.4
Be Stickstoff	109 ± 4	171 ± 5

Tabelle 1: Temperaturverläufe: gefittete Parameter

und Formel (9) sowie (10) kann man nun die molare Wärme berechnen und gegen die Temperatur auftragen (vgl. Abb.5). Nach Dulong-Petit sollte sich der konstante Wert 3R ergeben, nach dem Debye-Modell erwartet man einen Verlauf nach (1). Dabei liegt die Debye-Temperatur nach [Sch14, S.226] für Aluminium bei $\theta_D=428\,\mathrm{K}$, für Beryllium bei $\theta_D=1440\,\mathrm{K}$.

5 Diskussion

6 Anhang

Literatur

[Sch14] Schaaf, Jörn Große Knetter Peter: Das Physikalische Praktikum, Handbuch 2014 für Studentinnen und Studenten der Physik. Universitätsdrucke Göttigen, 2014, ISBN 978-3-86395-157-3.

Abbildung 5: molare Wärmekapazität bei verschiedenen Temperaturen für Aluminium und Beryllium sowie Vergleich mit dem Dulong-Petit-Wert und den Verläufen nach Debye