sandipan_dey 🗸

<u>Course</u> <u>Progress</u> <u>Dates</u> <u>Discussion</u> <u>MO Index</u>

★ Course / 3 Finger Exercises (FE) / 3.3 Finger Exercises 2 (FE2)

< F	^{>} re	vio	us		· ~		· ~		~		~		· ~		٠,	/ [* •	/		Nex	κt	>	
			nge			cis	e: \	Wre	ak	cinç	j H	IV	AC	wi	th	m	atı	rice	es				
ДВ	ook	mar	k this	page																			

Trilevel

Finger Exercises 2 due Aug 10, 2023 05:00 IST Completed

MO2.8

Unilevel

Apply the building heating analysis, considering the following three configurations of a three room house:

The temperatures in rooms 0, 1, and 2 are denoted u_0 , u_1 , and u_2 , respectively. Each room has six sides: left, right, front, back, top, and bottom. Note that the front and back sides are not shown in the figure, a

Bilevel

bottom. Note that the front and back sides are not shown in the figure, and that these walls are always to the exterior air $(u_{\rm out})$. Heat transfer occurs through all six sides of each room. In some cases, the heat transfer is between the rooms. In other cases, the heat transfer is between a room and the exterior air (with temperature $u_{\rm out}$) or between a room and the ground (with temperature $u_{\rm ground}$).

Assuming that the properties of the rooms ($m_{
m room}$ and c_c) and the sides ($h_{
m side}$ and $A_{
m side}$) are all the same, then the governing equations for the time rate of change of a room's temperature due to the heat transfer through each side of the room can be written,

$$\frac{\mathrm{d}u_{\mathrm{room}}}{\mathrm{d}t} = k\Delta u_{\mathrm{left}} + k\Delta u_{\mathrm{right}} + k\Delta u_{\mathrm{front}} + k\Delta u_{\mathrm{back}} + k\Delta u_{\mathrm{top}} + k\Delta u_{\mathrm{bot}}$$
(3.10)

where k is a positive constant equal to $h_{\rm side}A_{\rm side}/\left(m_{\rm room}c_c\right)$, and the Δu 's are the temperature differences across the six sides of the room relative to the room temperature. Specifically:

$$\Delta u_{\mathrm{left}} = u_{\mathrm{left}} - u_{\mathrm{room}}$$
 (3.11)

$$\Delta u_{\text{right}} = u_{\text{right}} - u_{\text{room}} \tag{3.12}$$

$$\Delta u_{\text{front}} = u_{\text{front}} - u_{\text{room}} \tag{3.13}$$

$$\Delta u_{\text{back}} = u_{\text{back}} - u_{\text{room}} \tag{3.14}$$

$$\Delta u_{\text{top}} = u_{\text{top}} - u_{\text{room}} \tag{3.15}$$

$$\Delta u_{\text{bot}} = u_{\text{bot}} - u_{\text{room}} \tag{3.16}$$

Here are some examples,

• Consider the time rate of change for the temperature of room 1 for a configuration in which the exterior air was outside the left wall of room 1, then $u_{
m room}=u_1$, $u_{
m left}=u_{
m out}$ and $\Delta u_{
m left}=u_{
m out}-u_1$.

Discussions

All posts sorted by recent activity

☆

Problem Explanation I'm hav bennettbashir100

- Consider the time rate of change for the temperature of room 0 for a configuration in which room 2 was above room 0, then $u_{
 m room}=u_0$, $u_{
 m top}=u_2$ and $\Delta u_{
 m top}=u_2-u_0$.
- ullet Since the front and back always are exterior walls to the outside air, then $u_{
 m front}=u_{
 m out}$ and $u_{
 m back}=u_{
 m out}.$

Applying these assumptions to the house configurations above will result in a model system of equations of the following form:

$$\frac{\mathrm{d}\underline{u}}{\mathrm{d}t} = k\underline{A}\underline{u} + \underline{b} \tag{3.17}$$

In the questions below, use the following notation for the elements of the $oldsymbol{A}$ matrix:

$$A = \begin{bmatrix} A_{00} & A_{01} & A_{02} \\ A_{10} & A_{11} & A_{12} \\ A_{20} & A_{21} & A_{22} \end{bmatrix}$$
(3.18)

Problem: Unilevel home

2.0/2.0 points (graded) For the unilevel home:

What is the value of A_{00} ?

What is the value of A_{01} ?

What is the value of A_{02} ?

What is the value of A_{10} ?

What is the value of A_{11} ?

What is the value of A_{12} ?

1 Answer: 1

edX

About

Affiliates

edX for Business

Open edX

Careers

News

Legal

Terms of Service & Honor Code

Privacy Policy

Accessibility Policy

<u>Trademark Policy</u>

<u>Sitemap</u>

Cookie Policy

Your Privacy Choices

Connect

<u>Idea Hub</u>

Contact Us

Help Center

<u>Security</u>

Media Kit

© 2023 edX LLC. All rights reserved.

深圳市恒宇博科技有限公司 <u>粤ICP备17044299号-2</u>

What is the value of A_{11} ?

-6

What is the value of A_{12} ?

O

What is the value of A_{20} ?

1	✓ Answer: 1
What is the value of A_{21} ?	
0	✓ Answer: 0
What is the value of $m{A_{22}}$?	
-6	✓ Answer: -6
Submit	
Answers are displayed with	nin the problem
Problem: Trilevel home	
2.0/2.0 points (graded) For the trilevel home:	
What is the value of A_{00} ?	
-6	✓ Answer: -6
What is the value of A_{01} ?	
1	✓ Answer: 1
What is the value of A_{02} ?	
0	✓ Answer: 0
What is the value of A_{10} ?	
1	✓ Answer: 1
What is the value of A_{11} ?	
-6	✓ Answer: -6
What is the value of A_{12} ?	
1	✓ Answer: 1
What is the value of A_{20} ?	
0	✓ Answer: 0

