

Workbook v1.4

Brought to you by the Bootstrap team:

- Emmanuel Schanzer
- Emma Youndtsmith
- Jennifer Poole
- Kathi Fisler
- Shriram Krishnamurthi
- Joe Politz
- Ben Lerner
- Nancy Pfenning

Bootstrap is licensed under a Creative Commons 3.0 Unported License. Based on a work from www.BootstrapWorld.org. Permissions beyond the scope of this license may be available at schanzer@BootstrapWorld.org.

Unit 1

Intro to Computational Data Science

Many important questions ("What's the best restaurant in town?", "Is this law good for citizens?", etc.) are answered with data. Data Scientists try and answer these questions by writing programs that ask questions about data.

Data of all types can be organized into **Tables**

- Every Table has a header row, and some number of data rows
- Quantitative data is numeric, and measures quantity, such as a person's height, a score on test, a measure of distance, etc. A list of quantitative data can be ordered from smallest to largest.
- Categorical data is data that specifies categories, such as eye color, country of origin, etc. Categorical data is not subject to the laws of arithmetic for example, we cannot take the "average" of a list of colors.

Programming languages involve different *datatypes*, such as Numbers, Strings, Booleans and Images. Numbers are usually used for quantitative data, and other values are used as categorical data.

- Operators (like +, -, *, <, etc.) are written between values. For example: 4 + 2
- We can use **functions** (like triangle, star, string-repeat, etc.) by writing the function name first, followed by a list of **arguments** in parentheses. For example: star(50, "solid", "red")
- Functions have **contracts**, which specify the *Name*, *Domain and Range* of each function. The Domain tells us what type of data the function consumes, and the Range tells us what it produces.

The Animals Dataset

What do you NOTICE about this dataset?	What do you WONDER about this dataset?
 This dataset is <u>Animals from an animal shado</u> Some of the columns are: 	elter_, which contains31 data rows.
a)species, which cont	ains <u>categorical</u> data. Some ", "dog", and "rabbit"
b), which cont example values from this column are:	ains data. Some
c), which cont example values from this column are:	ains data. Some

Numbers and Strings

Make sure you've loaded the Animals Starter File, and clicked "Run".

- 1. Try typing 42 into the Interactions Area and hitting "Enter". What happens?
- 2. Try typing in other Numbers. What happens if you try a decimal like 0.5? A fraction like 1/3? Try really big Numbers, and really small ones.
- 3. String values are always in quotes. Try typing your name (in quotes!). What happens when you hit Enter?
- 4. Try typing your name with the opening quote, but without the closing quote. What happens? Now try typing it without any quotes.
- 5. Is 42 the same as "42"? Why or why not? Write your answer below:

Operators

- 6. Just like in math, Pyret has operators like +, -, * and /. Try typing in 4 + 2, and then 4+2 (without the spaces). What can you conclude from this? Write your answer below:
- 7. Type in the following expressions, one at a time: 4 + 2 + 6, 4 + 2 * 6, and 4 + (2 * 6). What do you notice? Write your answer below:
- 8. Try typing in 4 + "cat", and then "dog" + "cat". What can you conclude from this? Write your answer below:

Booleans

Boolean expressions are yes-or-no questions, and will always evaluate to either true ("yes") or false ("no"). What will each of the expressions below evaluate to? Write down the result in the blanks provided, and type them into Pyret if you're not sure.

3 <= 4	 "a" > "b"	
3 == 2	 "a" <> "b"	
2 <> 4	 "a" == "b"	
3 <> 3	 "a" <> "a"	

Boolean Operators

Pyret also has operators that work on *Booleans*. For each expression below, write down your guess about what it will evaluate to. Then type them in and see if you were right!

$$(3 \le 4)$$
 and $(3 == 2)$
 $("a" == "b")$ and $(3 <> 4)$
 $(3 <= 4)$ or $(3 == 2)$
 $("a" == "b")$ or $(3 <> 4)$

- How many different Number values are there in Pyret?

- 2. How many different String values are there in Pyret?
- 3. How many different Boolean values are there in Pyret? _____

Unit 2

Questions and Definitions

Answering Questions from Data can take many forms. Here are a few types of questions, each requiring a different kind of analysis:

- **Lookup Questions** can be answered just by finding the right row and column a table. (e.g. "How old is Toggle?")
- Compute Questions can be answered by computing over a single row or column. (e.g. – "What is the heaviest animal at the shelter?")
- **Relate Questions** require looking for trends across multiple rows or columns. (e.g. "Do cats tend to be adopted sooner than dogs?")

Methods are special functions that are attached to pieces of data. We use them to manipulate Tables. They are different from functions in several ways:

- Their names can't be used alone: they can only be used as part of data, separated by a dot. (For example, shapes.row-n(2))
- o Their contracts are different: they include the type of the data as part of their names. (eg, .row-n :: (index :: Number) → Row)
- o They have a "secret" argument, which is the data they are attached to.
- o In this course, the methods we'll be using are row-n, order-by, filter, and build-column.

We can define our own functions, using a technique called the Design Recipe.

- We use the Design Recipe to help us define functions **and think through problems clearly.**
- The first step is to write a Contract and Purpose Statement for the function, which specify the Name, Domain and Range of the function and give a summary of what it does.
- The second step is to **write at least two examples**, which show how the function should work for specific inputs. These examples help us see patterns, and we express those patterns by **circling and labeling** what changes.
- The final step is to **define the function**, which generalizes our examples.

Lookup Questions

The table below represents four pets at an animal shelter:

animals-table

name	gender	age	pounds
"Toggle"	"female"	3	48
"Fritz"	"male"	4	92
"Nori"	"female"	6	35.3
"Maple"	"female"	3	51.6

 Match each Lookup Question (left) to the code 	e that will give the answer (right).
"How much does Maple weigh?"	animals-table.row-n(3)
"Which is the last row in the table?	<pre>animals-table.row-n(2)["name"]</pre>
"What is Fritz's gender?"	<pre>animals-table.row-n(1)["gender"]</pre>
"What's the third animal's name?"	<pre>animals-table.row-n(3)["age"]</pre>
"How much does Nori weigh?"	<pre>animals-table.row-n(3)["pounds"]</pre>
"How old is Maple?"	animals-table.row-n(0)
"What is Toggle's gender?"	animals-table.row-n(2)["pounds"]
"What is the first row in the table?"	<pre>animals-table.row-n(0)["gender"]</pre>

2. Fill in the blanks (left) with code that will produce	the value (right).
animals-table.row-n(3)["name"]	"Maple"
	"male"
	4
	48
	"Nori"

More Practice with Lookups

Consider the table below, and the four value definitions that follow:

shapes-table

name	corners	is-round
"triangle"	3	false
"square"	4	false
"rectangle"	4	false
"circle"	0	true

shapeA = shapes-table.row-n(0)
shapeB = shapes-table.row-n(1)
shapeC = shapes-table.row-n(2)
shapeD = shapes-table.row-n(3)

1. Match each Pyret expression (left) to the description of what it looks up (right).

shapeD Evaluates to 4

shapeA Evaluates to the last row in the table

shapeB["corners"] Evaluates to "square"

shapeC["is-round"]
Evaluates to true

shapeB["name"] Evaluates to false

shapeA["corners"] Evaluates to 3

shapeD["name"] == "circle" Evaluates to the first row in the table

2. Fill in the blanks (left) with the Pyret lookup code that will produce the value (right).

a. "rectangle"

b. "triangle"

4

d. 0

true

The Design Recipe

For the word problems below, assume you have animalA and animalB defined in your code.

Define a function called is-fixed, which looks up whether or not an animal is fixed.

is-fixed	::	(r :: Row)	>	Boolean
name		domain		range
Consumes an a	nimal, and looks	up the value in the fix	ed column	
xamples:				
	() is		
	() is		
nd	(
	,	\ -		
un	():		
nd				
efine a function	called gender	which consumes a R	ow of the anir	nals table and
		which consumes a R	ow of the anir	nals table and
			ow of the anir	nals table and
			ow of the anir	nals table and
oks up the gend			ow of the anir	nals table and
oks up the gend	der of that anim			nals table and
oks up the gend	der of that anim	al.		
name	der of that anim	al.		
name	der of that anim	al.		
name	der of that anim	domain		
name	der of that anim	domain		
ooks up the geno	der of that anim	domain		
name xamples:	der of that anim	domain		
name xamples:	der of that anim	domain		
name examples:	der of that anim	domain) is) is		
name xamples:	der of that anim	domain		

The Design Recipe

For the word problems below, assume you have animalA and animalB defined in your code.

Define a function called is-cat, which consumes a Row of the animals table and computes whether the animal is a cat.

#	is-cat	::	(r :: Row)	\rightarrow	Boolean
	name		domain		range
# Col	nsumes an anin	nal, looks up the s	species column, and co	emputes if s	species is "cat"
exam	ples:				
	is-cat	(<u>animalA</u>	_) is		
		1) is		
end		(_) 15		
fun		():		
end					
J					
0 u					
Define			which consumes a Ro	ow of the a	nimals table and
Define		alled is-young, vit is less than four		ow of the a	nimals table and
Define				ow of the a	nimals table and
Define comp			years old.	ow of the a	nimals table and
Define comp		t is less than four			nimals table and
Define comp	<u>utes</u> whether i	t is less than four	years old.		
Define compo	utes whether i	t is less than four	years old.		
Define compo	<u>utes</u> whether i	t is less than four	years old.		
Define compo	utes whether i	t is less than four	years old.		
Define compo	utes whether i	t is less than four	domain		
Define compo	utes whether i	t is less than four	domain	_	
# exam	utes whether i	t is less than four	domain	_	
Define composite # exam	utes whether i	t is less than four	domain	_	
# exam	utes whether i	t is less than four	domain	_	

Unit 3

Exploring Datasets

Computer Scientists may take **samples** that are subsets of a data set. If their sample is well chosen, they can use it to test if their code does what it's supposed to do. However, choosing a good sample can be tricky!

Samples from the Animals Dataset

How can we define subsets? For a given row r, what function body will identify if that row is in the subset? We've given you the solution for the first subset, to get you started.

Subset	A single row r is in the subset if
Kittens (<2 years old)	(r["age"] < 2) and (r["species"] == "cat")
Puppies (<2 years old)	
Fixed Cats	
Fixed Kittens	
Heavy Dogs (>50 pounds)	
Heavy Fixed Dogs	
Cats with "s" in their name	

My Dataset

What do you NOTICE?	What do you WONDER?	Question Type
		Lookup
		Compute
		Relate
		Lookup
		Compute
		Relate
		Lookup
		Compute
		Relate
		Lookup
		Compute
		Relate
		Lookup
		Compute
		Relate
		Lookup
		Compute
		Relate
This dataset is Some of the columns are:	, which contains	_ data rows.
1 whic	h contains da	ta, and is of type
	ues from this column are:	
2, whic	h contains da	ta, and is of type
	ues from this column are:	
3, whic	h contains da	ta, and is of type
Some example valu	ues from this column are:	

Samples from My Dataset

How can we define subsets? For a given row r, what function body will identify if that row is in the subset? We've given you the solution for the first subset, to get you started.

Subset	A single row r is in the subset if

Design Recipes – Filtering Rows

Write filter functions for your dataset, which you can use to define subsets.

Define a function called			, which consumes a Row of the	
table and				
#	::	(r :: Row)		Boolean
name #		domain		range
examples:	() is		
	() is		
	() :		
end				
Define a function		e and		
Define a function		e and (r :: Row)		
Define a function	tabl	e and		
Define a function #name	tabl	e and (r :: Row)		Boolean

Design Recipes – Filtering Rows

Write your own word problems below, and solve them using the Design Recipe.

Define a function called			$_$, which consumes a Row of the	
table and				
	::			Boolean
name #		domain		range
<pre>#</pre> examples:				
	() is		
	,			
end	() is		
fun	() :		
end				
Dofino a functio	an called		which cons	umos a Row of the
	tabi	e and		
	tabl	e and		
		(, , 0 ,)		
#	tabl	(r :: Row)		Boolean
#name		(, , 0 ,)		
#name		(r :: Row)		Boolean
#name	::	(r :: Row)	>	<i>Boolean</i> range
#name	::	(r::Row) domain) is	>	<i>Boolean</i> range
<pre># name # examples:</pre>	::	(r::Row) domain	>	<i>Boolean</i> range
#name # examples:	(((r::Row) domain) is) is	>	<i>Boolean</i> range
#name #examples:end	::	(r::Row) domain) is) is	>	<i>Boolean</i> range

Unit 4

Visualizing the "Shape" of Data

Bar charts show the number of rows belonging to a given category. The more rows in each category, the longer the bar.

- Bar charts provide a visual representation of the frequency of values in a **categorical** column.
- There's no strict numerical way to order these bars, but sometimes there's an
 order that makes sense. For example, bars for the number of orders for
 different t-Shirt sizes might be presented in order of smallest to largest shirt.

Histograms show the number of rows that fall within certain intervals, or "bins" on a horizontal axis. The more rows that that fall within a particular "bin", the taller the bar.

- Histograms provide a visual representation of the frequencies of values in a **quantitative** column.
- Quantitative data can always be ordered, so the bars of a histogram always progress from smallest (on the left) to largest (on the right).
- When dealing with histograms, it's important to select a good **bin size**. If the bins are too small or too large, it is difficult to see the shape of the dataset.

Design Recipe

For the word problems below, assume you have animalA and animalB defined in your code.

Define a function called kilos, which consumes a Row of the animals table and divides the pounds column by 2.2 to <u>compute</u> the animal's weight in kilograms.

#		::	(r :: Row)	\rightarrow	
	name		domain		range
#					
exan	mples:				
		() is		
		1) is		
end					
fun		():		
end					
ena					
			, which consumes a I ne animal's name in b		
<u>comp</u>	outes an image	that shows th	ne animal's name in b		i.
<u>comp</u>		that shows th	ne animal's name in b		
<u>comp</u> #	nametag	that shows th	ne animal's name in b	oig, red letters	Image range
# # <u></u>	nametag names an anima	that shows th	ne animal's name in b	oig, red letters	Image range
# # <u></u>	nametag	that shows th	ne animal's name in b	oig, red letters	Image range
# # <u></u>	nametag names an anima	that shows th	ne animal's name in b	oig, red letters	Image range
# # <u></u>	nametag name name nsumes an anima	that shows th	domain	oig, red letters	Image range
# # <u>Cor</u> exam	nametag name name nsumes an anima	that shows th	domain	oig, red letters	Image range
# # <u></u>	nametag name name nsumes an anima	that shows th	domain res an image of their n	oig, red letters	Image range
# # <u>Cor</u> exam	nametag name name nsumes an anima	that shows th	domain res an image of their n	oig, red letters	Image range
# # <u>Cor</u> exam	nametag name name nsumes an anima	that shows th	domain res an image of their n	oig, red letters	Image range

Summarizing Columns

name	species	age	pounds
"Sasha"	"cat"	1	6.5
"Boo-boo"	"dog"	11	123
"Felix"	"cat"	16	9.2
"Nori"	"dog"	6	35.3
"Wade"	"cat"	1	3.2
"Nibblet"	"rabbit"	6	4.3
"Maple"	"dog"	3	51.6

- 1. How many cats are there in the table above?
- 2. How many dogs are there?
- 3. How many animals weigh between 0-20 pounds?
- 4. How many animals weigh between 20-40 pounds?
- 5. Are there more animals weighing 40-60 than 60-140 pounds?

The charts below are both based on this table. What is similar about them? What is different?

Similarities	Differences

Reading Histograms

Students watched 5 videos, and rated them on a scale of 1 to 10. While the **average score** for every video is the same (5.5), the **shapes** of the ratings distributions were very different! Match the summary description (left) with the histogram of student ratings (right). For each histogram, the x-axis is the score, and the y-axis is the number of students who gave it that score.

Making Histograms

Suppose we have a data set for number of teeth in a group of 50 adults:

Number of teeth	Count
0	1
22	1
26	1
27	1
28	4
29	3
30	3
31	3
32	33

Draw a histogram for the table in the space below. For each row, find which interval (or "bin") on the x-axis represents the right number of teeth. Then fill in the box so that the height of the box is equal to the <u>sum of the counts</u> that fit into that interval. One of the intervals has been completed for you.

The Shape of the Animals Dataset

Describe two of the histograms you made from your dataset.

1)	I made a histogram, showing the distribu	ution of	pounds column in your dataset	_ for
	animals at the shelter		column in your dataset	
	your subset (for example, "fixed	dogs at	the shelter")	
2)	I made a histogram, showing the distribu	ution of		_ for
			column in your dataset	
	your subset (for example, "fixed of	dogs at t	the shelter")	•
	he table below, describe the histograms wness and/or low outliers? Right skewne		• •	show left
W	nat do you NOTICE about these displays?	What d	o you WONDER about these	displays?

The Shape of My Dataset

De	scribe two of the histograms you made f	rom your dataset.	
3)	I made a histogram, showing the distrib	Ution ofcolumn in your dataset	_ for
	your subset (for example, "fixed	dogs at the shelter")	·
4)	I made a histogram, showing the distribu	column in your dataset	for
	your subset (for example, "fixed	dogs at the shelter")	·
	he table below, describe the histograms wness and/or low outliers? Right skewne		show left
WI	nat do you NOTICE about these displays?	What do you WONDER about these	displays?

Unit 5

Center and Spread

- There are three ways to measure the "center" of a dataset, to summarize a whole column of data using just one number:
 - The mean of a dataset is the average of all the numbers.
 - o The **median** of a dataset is a value that is smaller than half the dataset, and larger than the other half.
 - o The **mode(s)** of a dataset is the value (or values) that occurs most often.
- The **shape** of a data set tells us which values are more or less common. In a symmetric data set, values are just as likely to occur a certain distance above or below the mean. A data set with left skewness and/or low outliers has a few values that are unusually low, which may pull the mean below the median. Right skewness and/or high outliers may mean here are a few values that are unusually high, pulling the mean above the median.
- Data Scientists can also measure the spread of a dataset using a five-number summary:
 - o The **minimum** the smallest value in the dataset
 - o The **first**, **or "lower" quartile (Q1)** the middle of the smaller half of values which separates the smallest quarter from the next smallest quarter.
 - o The **second quartile (Q2)** the median value which separates the entire dataset into "top" and "bottom" halves.
 - o The **third**, **or "upper" quartile (Q3)** the middle of the larger half of values which separates the second largest quarter from the largest quarter.
 - o The **maximum** the largest value in the dataset.
- The five-number summary can be used to draw a box-and-whisker plot.

Summarizing Columns in Animals

1) The column I choose to measure ispounds						
Measures of Center The three measures for this column are:						
Mean (Ave	rage)	Median		Mode(s)		
	[higher/low	•				
be outliers or s	kewness due to	values that are unu		 n / low]		
			[11191	1 / 10w]		
		Measures of Sprea				
Minimum	Q1	Q2 (Median)	Q3	Maximum		
A box plot can be	A box plot can be drawn from this summary on the number line below:					
From this summary and box-plot, I conclude:						
	y ana box-pioi,	r conclude.				
	y ana box-pioi,	r conclude.				
	y ana box-pioi,	r conclude.				
	y ana box-pioi,	T COTICIOGO.				

Interpreting Spread

Consider the following dataset, representing the annual income of ten people:

\$65k, \$12k, \$14k, \$280k, \$15k, \$22k, \$45k, \$34k, \$45k, \$175k

1. In the space below, rewrite this dataset in **sorted order**.

2. In the table below, compute the **measures of center** for this dataset.

Mean (Average)	Median	Mode(s)

3. In the table below, compute the **five number summary** of this dataset.

Minimum	Q1	Q2 (Median)	Q3	Maximum

4. On the number line below, draw a **box plot** for this dataset.

←

5. The following statements are correct...but misleading. Write down the reason why.

Statement Why it's misleading

"They're rich! The average person makes more than \$70k dollars!"

"It's a middle-income list: the most common salary is \$45k/yr!"

"This group is really diverse, with people making as little as 12k and as much as \$280k!"

Matching Box-Plots to Histograms

Students watched 5 videos, and rated them on a scale of 1 to 10. For each video, their ratings were used to generate box-plots and histograms. **Match the box-plot to the histogram that displays the same data.**

Shape of My Dataset

I) The column I c	choose to measur	e is			
		Neasures of Cent measures for this c			
Mean (Average)		Median	^	Mode(s)	
2) Since the mean is than the median, this suggests that there may be outliers or skewness due to values that are unusually [high / low]					
Measures of Spread My five-number summary is:					
Minimum	Q1	Q2 (Median)	Q3	Maximum	
A box plot can be	e drawn from this	summary on the r	number line belov	v:	
From this summar	y and box-plot, I	conclude:			

Unit 6

Advanced Analysis

Method chaining allows us to apply multiple method with less code:

For example, we can use method-chaining to write this:

```
table.build-column("labels", nametag).filter(is-dog).order-by("age", true")
```

Instead of using multiple definitions, like this:

```
with-labels = table.build-column("labels", nametag)
dogs = with-labels.filter(is-dog)
dogs.order-by("age", true)
```

Order Matters! The methods are applied in the order they appear. For example, trying to order a table by a column that hasn't been built will result in an error.

Data Scientists have to know whether or not they can trust their tools. Fortunately, then can use Data Science to verify that their tools do what they're supposed to!

Chaining Methods

You have the following functions defined below (read them carefully!):

```
fun is-fixed(animal): animal["fixed"] end
fun is-young(animal): animal["age"] < 4 end
fun nametag(animal): text(animal["name"], 20, "red") end</pre>
```

The table **t** below represents four animals at the shelter:

name	gender	age	fixed	pounds
"Toggle"	"female"	3	true	48
"Fritz"	"male"	4	true	92
"Nori"	"female"	6	true	35.3
"Maple"	"female"	3	true	51.6

Match each Pyret expression (left) to the description of what it does (right).

t.order-by("age", true)	Produces a table containing only Toggle and Maple
t.filter(is-fixed)	Produces a table of only young, fixed animals
t.build-column("sticker", nametag)	Produces a table, sorted youngest-to- oldest
t.filter(is-young)	Produces a table with an extra column, named "sticker"
<pre>t.filter(is-young) .filter(is-fixed)</pre>	Produces a table containing Maple and Toggle, in that order
<pre>t.filter(is-young) .order-by("pounds", false)</pre>	Produces a table containing the same four animals
<pre>t.build-column("label", nametag) .order-by("age", true)</pre>	Won't run: will produce an error
t.order-by("gendr", false)	Produces a table with an extra "label" column, sorted youngest-to-oldest

Chaining Methods 2: Order Matters!

You have the following functions defined below (read them carefully!):

```
fun is-female(animal): animal["gender"] == "female" end
fun kilograms(animal): animal["pounds"] / 2.2 end
fun is-heavy(animal): animal["kilograms"] > 25 end
```

The table **t** below represents four animals at the shelter:

name	gender	age	fixed	pounds
"Toggle"	"female"	3	true	48
"Fritz"	"male"	4	true	92
"Nori"	"female"	6	true	35.3
"Maple"	"female"	3	true	51.6

Match each Pyret expression (left) to the description of what it does (right). **Note: one description might match multiple expressions!**

```
t.order-by("kilos", true) -
                                                       Produces a table containing Toggle,
                                                       Nori and Maple, with an extra column
                                                       showing their weight in kilograms
t.filter(is-female)
   .build-column("kilos", kilograms)
t.build-column("kilos", kilograms)
                                                       Produces a table containing only Fritz.
   .filter(is-heavy)
t.filter(is-heavy)
                                                     Won't run: will produce an error
   .build-column("kilos", kilograms)
t.build-column("kilos", kilograms)
                                                       Produces a table containing only Fritz,
   .filter(is-heavy)
                                                       with two extra columns.
   .order-by("gender", true)
t.build-column("female", is-female)
                                                       Produces a table containing Maple
 .build-column("kilos", kilograms)
                                                       and Fritz
 .filter(is-heavy)
t.order-by("name", false)
                                                       Produces a table containing Maple,
 .build-column("kilos", kilograms)
                                                       Nori and Toggle (in that order)
 .filter(is-female)
```

"Trust, but verify..."

Α	"helpful"	' Data	Scientist	gives	you	access	to the	follov	wing	function:	s:

- # fixed-cats :: (animals :: Table) → Table
- # consumes a table of animals, and produces a table containing only
- # cats that have been fixed, sorted from youngest-to-oldest

You can use the function, but you can't see the code for it! How do you know if you can trust their code?

HINT:

- 1. You could make a <u>verification subset</u> that contains one of every species, and make sure that the function filters out everything but cats
- 2. You could make sure this subset that has multiple cats *not* in order of youngest-to-oldest, and make sure the function puts them in the right order

1.	 What other qualities would this subset need to have? 				

2. Create your verification subset! In the space below, list the name of each animal in your subset. (Remember: the first data row is always index zero!)

Name			

"Trust, but verify..."

A "helpful" Data Scientist gives you access to the following functions:

- # old-dogs-nametags:: (animals :: Table) → Table
- # consumes a table of animals, and produces a table containing only
- # dogs 10 years or older, with an extra column showing their name in red

You can use the function, but you can't see the code for it! How do you know if you can trust their code?

1.	. What qualities would a verification subset need to have?				

2. Create your verification subset! In the space below, list the name and index of each animal in your subset. (Remember: the first data row is always index zero!)

Name		

Unit 7

Visualizing Relationships

- **Scatter Plots** can be used to show a relationship between two quantitative columns. Each row in the dataset is represented by a point, with one column providing the x-value and the other providing the y-value. The resulting "point cloud" makes it possible to look for a relationship between those two columns.
- If the points in a scatter plot appear to follow a straight line, it is possible that a linear relationship exists between those two columns. A number called a **correlation** can be used to summarize this relationship.
- The correlation is positive if the point cloud slopes up as it goes farther to the
 right. It is negative if it slopes down as it goes farther to the right. If the points are
 tightly clustered around a line, it is a strong correlation. If they are loosely
 scattered, it is a weak correlation.
- Points that are far above or below the cloud of points in a scatter plot are called outliers.
- We graphically summarize this relationship by drawing a straight line through the
 data cloud, so that the vertical distance between the line and each of the
 points is as small as possible. This line is called the line of best fit and allows us to
 predict y-values based on x-values.

(Dis)Proving a Claim

"Smaller animals get adopted faster."

Do you agree? If so, why?
I hypothesize
What would you look for in the dataset to see if you are right?

Creating a Scatter Plot

name	species	age	weeks
"Sasha"	"cat"	1	3
"Boo-boo"	"dog"	11	5
"Felix"	"cat"	16	4
"Buddy"	"lizard"	2	24
"Nori"	"dog"	6	9
"Wade"	"cat"	1	2
"Nibblet"	"rabbit"	6	12
"Maple"	"dog"	3	2

- 1. For each row in the Sample Table on the left, add a point to the scatter plot on the right. The first 3 rows have been completed for you. Use the values from the age column for the x-axis, and values from the weeks column for the y-axis.
- 2. Do you see a pattern? Do the points seem to shift up or down as age increases? **Draw a line on the scatter plot to show this pattern**.
- 3. Does the line slope upwards or downwards?
- 4. Are the points clustered around the line? Loosely scattered? ______

Drawing Predictors

For each of the scatter plots below, draw a predictor line that seems like the best fit.

Correlations in My Dataset

1)	There may be a co	rrelation betwe	en	and
			column	
		I think it is a $_$,positive / negative
	column		strong / weak	positive / negative
cor	relation, because			
	·			
			. It m	ight be stronger if I looked
			·	
at				
		a subset o	or extension of my d	ata ·
2)	There may be a co	rrelation hetwe	en	and
-)	There may be a co	ircianori berwe	column	and
		I think it is a		
	column	1 11 111 11K 11 13 G	strong / weak	, positive / negative
COr	relation, because			
COII				
			. It m	ight be stronger if I looked
at				
U		a subset or e	extension of my data	·
3)	There may be a co	rrelation hetwe	en	and
٥,	There may be a co	ircianori berwe	column	dild
		I think it is a		
	column	1 1111111K 11 13 G	strong / weak	, positive / negative
COr	relation, because			
COI	TCIGNOTI, DCCG03C			
			lt m	ight be stronger if I looked
			II III	
at_				
		a subset or	extension of my dat	a

Unit 8

Computing Relationships

- Linear Regression is a way of computing the line of best fit, which minimizes the sum of squared vertical distances of all scatter plot points from the line.
 Calculating the slope and intercept of this line is a task best left to computing or statistical software.
 - Slope provides us with the easiest summary to grasp: it's how much we predict the y-variable to increase or decrease, for each unit that the xvariable increases
 - o **r** is the name of the correlation statistic, which is also computed by linear regression. The r-value will always fall between -1 and +1. The sign tells us whether the correlation is positive or negative, and distance from 0 tells us the strength of the correlation (-1 or +1 is really strong, 0 means no correlation)
- <u>Correlation is not causation!</u> Correlation only suggests that two column variables are *related*, but does not tell us if one causes the other. For example, hot days are *correlated* with people running their air conditioners, air conditioners do not cause hot days!
- **Sample size matters!** The number of data values is also relevant. We'd be more convinced of a positive relationship in general between cat age and time to adoption if a correlation of +0.57 were based on 50 cats instead of 5.

Grading Predictors

Below are the scatter plots for data sets A-D, with two different predictor lines drawn on top. For plots A-D:

- 1. Circle the plot with the line that fits better
- 2. Give the circled plot your best guess for what r is closest to: -1, -0.5, +0.5, or +1.

Reading Regression Lines & r-Values

Match the summary description (left) with the line of best fit and r-value (right).

The correlation between weeks-of-school-missed and SAT score is moderate and negative. For every week a student misses, we predict a more than a 5-point drop in their SAT score.

1

A y = -3.19x + 12

r = -0.05

There is a weak, positive correlation between the number of streaming video services someone has, and how much they weigh. For each service, we expect them to be roughly 1.6 pounds heavier.

2

B y = 2.5x - 2.8

r = 0.89

Foot size and height are strongly, positively correlated. If person A is one size bigger than person B, we predict that they will be roughly two and a half inches taller than person B as well.

For every additional Marvel

is extremely weak.

Universe movie released each year,

the average person is predicted to

consume more than three pounds

less sugar! However, this correlation

3

y = 0.012x + 7.8 r = 0.01

y = -5.35x - 16

r = -0.65

There is virtually no relationship found between the number of Uber drivers in a city and the number of babies born each year.

5

4

y = 1.6x + 160r = 0.12

Regression Analysis in the animals Dataset

l perfor	med a linear regression o					, and
found	a moderate (r=0.566		lataset or s		corrol	ation botwoon
	a moderate (r=0.566 a weak/strong/m	oderate (R=),	positive/ne	egative	_ cone	alion between
	of the cats (in weeks)					
ago	[x-axis]	and	[y-ax	xis]	· '	woold picaler irial
a 1	year	increase in	age	is associated	with a	0.23 week
٠ . <u></u>	year [x-axis units]		[x-axis]	15 4550 61410 6		[slope, y-units]
į	increase rease/decrease]	in adoption t	ime			
[inc	rease/decrease]	[y-axis]				
l perfor	med a linear regression o	n				, and
			dataset	t or subset		
found_	a weak/strong/m				_ correl	ation between
	a weak/strong/m	oderate (R=),	positive/ne	egative		
		and			I	would predict that
	[x-axis]		[y-ax	kis]		
a 1	[x-axis units]	increase in		is associated	with a	
						[slope, y-units]
		in	•			
[inc	crease/decrease]	[y-axis]				
l perfor	med a linear regression o	n				, and
found_			dataset	t or subset	_ correl	ation between
	a weak/strong/mo	derate (R=),]	positive/ne	gative		
		and			I	would predict that
	[x-axis]		[y-axis	5]		
a 1	[x-axis units]	increase in		is associated	with a	
	[x-axis units]	I	[x-axis]			[slope, y-units]
		in [y-axis]	•			
[inc	rease/decrease]	[y-axis]				

Regression Analysis in My Dataset

found	a weak/strong	and	ositive/n	egative	_ correlation between
	[x-axis]	and			
			[y-az		I would predict that
a I[x	r-axis units]				
				is associated	d with a [slope, y-units]
[increa	se/decrease]	in [y-axis]	•		
l performed	d a linear regressior	ı on	datago	t or subset	, and
found	a weak/strong	/moderate (R=), p	ositive/n	egative	_ correlation between
		and			I would predict that
	[x-axis]			xis]	
a 1	x-axis units]	increase in	x-axisl	is associated	d with a[slope, y-units]
					[STOPE, A MILES]
[increa	se/decrease]	in [y-axis]	•		
l performed	d a linear regressior	ı on			, and
			datase	t or subset	
found	a weak/strong	/moderate (R=), p	ositive/n	egative	_ correlation between
		and			I would predict that
	[x-axis]		[y-az		
a 1	x-axis units]	increase in	v-aviel	is associated	d with a[slope, y-units]
		in in	_		[STOPE, y units]
[increa	se/decrease]	[y-axis]			

Unit 9

Threats to Validity

Threats to Validity can undermine a conclusion, even if the analysis was done correctly. Some examples of threats are:

- **Selection bias** identifying the favorite food of the rabbits won't tell us anything reliable about what all the animals eat.
- **Sample size** averaging the age of only three animals won't tell us anything reliable about the age of animals at the shelter!
- Sample error surveying dogs when they are puppies won't tell us anything reliable about overall dog behavior, since their behavior changes as they age.
- **Confounding variables** shelter workers might steer people towards newer animals, because they've become attached to the animals that have been there for a while, making it *appear* that "staying at the shelter longer" means "less likely to be adopted".

Threats to Validity

Some volunteers from the animal shelter surveyed a group of pet owners at a local dog park. They found that almost all of the owners were there with their dogs, and from this survey, they concluded that dogs are the most popular pet in the region.

What are some possible threats to the validity of this conclusion?
The animal shelter noticed a large increase in pet adoptions between Christmas and Valentine's Day. They conclude that at the current rate, there will be a huge demand
for pets this spring. What are some possible threats to the validity of this conclusion?
what are some possible infeats to the validity of this conclusion?

Threats to Validity

The animal shelter wanted to find out what kind of food to buy for their animals. They took a random sample of two animals and the food they eat, and they found that spider and rabbit food was by far the most popular cuisine!

What are some possible threats to the validity of this conclusion?
A volunteer opens the shelter in the morning and walks all the dogs. At mid-day, another volunteer feeds all the dogs and walks them again. In the evening, a third volunteer walks the dogs a final time and closes the shelter. The volunteers report that the dogs are much friendlier and more active at mid-day, so the shelter staff assume the second volunteer must be better with animals then the others. What are some possible threats to the validity of this conclusion?

Fake News!

Every claim below is wrong! Your job is to figure out why by looking at the data.

	Data	Claim	Why it's wrong
1	The average player on a basketball team is 6'1".	"Most of the players on the team are taller than 6'."	
2	After performing linear regression on census data, a positive correlation (r=0.18) was found between people's height and salary.	"Taller people get paid more."	
3	y=12.234x + -17.089; r-sq: 0.636	"According to the predictor function indicated here, the value on the x-axis is will predict the value on the y-axis 63.6% of the time."	
4	10 Sasha Felix Wade Boo-boo Maple Nori Bar Chart of Pet Ages	"According to this bar chart, Felix makes up a little more than 15% of the total ages of all the animals in the dataset."	
5	2 1 2 2 1 0 20 40 60 80 100 120 140 160 180 Weight (pounds)	"According to this histogram, most animals weigh between 40 and 60 pounds."	
6	After performing linear regression, a negative correlation (r= -0.91) was found between the number of hairs on a person's head and their likelihood of owning a wig.	"Owning wigs causes people to go bald."	

Lies, Darned Lies, and Statistics...

- 1. Using real data and displays from your dataset, come up with a misleading claim.
- 2. Trade papers with someone and figure out why their claims are wrong!

	Data	Claim	Why it's wrong
1			
2			
3			
4			

Blank Recipes and References

Design Recipes

#	name	_::	domain	→	range
# exam	ples:				
		() is		
end		(_) is		
fun		(_):		
end					

#		::		→		
	name		domain		range	
#						
exam	ples:					
-		() is			
_	· · · · · · · · · · · · · · · · · · ·	() is			
end						
fun		():			
end						

Design Recipes

#		::		\rightarrow	
#	name		domain		range
exam	ples:				
		() is		
end		() is		
fun		():		· · · · · · · · · · · · · · · · · · ·
end					

#		::		>	
	name		domain		range
#					
exam	ples:				
		() is		
		() is		
end		······	, 25		
fun		():		
end					

Design Recipes

#		::		\rightarrow	
#	name		domain		range
exam	ples:				
		() is		
end		() is		
fun		():		· · · · · · · · · · · · · · · · · · ·
end					

#		::		_	
	name		domain		range
#					
exam	ples:				
_		() is		
_		() is		
end					
fun		_ ():		
end					

Contracts

Contracts tell us how to use a function. For example: num-sqr:: (n:: Number) \rightarrow Number tells us that the name of the function is num-sqr, that it takes one input (a Number), and that it evaluates to a number. From the contract, we know num-sqr (4) will evaluate to a Number.

Name	Domain		Range
triangle	:: (side-length :: Number, style :: String, color :: String)	\rightarrow	Image
circle	:: (radius :: Number, style :: String, color :: String)	\rightarrow	Image
star	:: (radius :: Number, style :: String, color :: String)	\rightarrow	Image
rectangle	:: (width :: Num, height :: Num, style :: Str, color :: Str)	\rightarrow	Image
ellipse	:: (width :: Num, height :: Num, style :: Str, color :: Str)	\rightarrow	Image
square	:: (size-length :: Number, style :: String, color :: String)	\rightarrow	Image
text	:: (str :: String, size :: Number, color :: String)	\rightarrow	Image
overlay	:: (img1 :: Image, img2 :: Image)	\rightarrow	Image
rotate	:: (degree :: Number, img :: Image)	\rightarrow	Image
scale	:: (factor :: Number, img :: Image)	\rightarrow	Image
string-repeat	:: (text :: String, repeat :: Number)	\rightarrow	String
string-contains	:: (text :: String, search-for :: String)	\rightarrow	Boolean
num-sqr	:: (n :: Number)	\rightarrow	Number
num-sqrt	:: (n :: Number)	\rightarrow	Number
num-min	:: (a :: Number, b:: Number)	\rightarrow	Number
num-max	:: (a :: Number, b:: Number)	\rightarrow	Number

Contracts

Contracts tell us how to use methods. For example: <Table>.filter:: (test:: (Row > Boolean)) > Table tells us that the name of the function is .filter and that it is a Table method. The domain says it has one input (a function that consumes Rows and produces Booleans), and that the method evaluates to a Table.

Name	Domain		Range
count	:: (t :: Table, col :: String)	\rightarrow	Table
random-rows	:: (t :: Table, num-rows :: Number)	\rightarrow	Table
<table>.row-n</table>	:: (n :: Number)	\rightarrow	Row
<table>.order-by</table>	:: (col :: String, increasing :: Boolean)	\rightarrow	Table
<table>.filter</table>	:: (test :: (Row → Boolean))	\rightarrow	Table
<table>.build-column</table>	:: (col :: String, builder :: (Row → Value))	\rightarrow	Table
mean	:: (<u>t</u> :: Table, col :: String)	\rightarrow	Number
median	:: (<u>t</u> :: Table, col :: String)	\rightarrow	Number
modes	:: (t :: Table, col :: String)	\rightarrow	List <number></number>
bar-chart	:: (t :: Table, col :: String)	\rightarrow	Image
pie-chart	:: (t :: Table, col :: String)	\rightarrow	Image
bar-chart-raw	:: (t :: Table, labels :: String, values :: String)	\rightarrow	Image
pie-chart-raw	:: (t :: Table, labels :: String, values :: String)	\rightarrow	Image
box-plot	:: (t :: Table, col:: String)	\rightarrow	Image
histogram	:: (t :: Table, values :: String, bin-width :: Number)	\rightarrow	Image
scatter-plot	:: (t :: Table, labels :: String, xs :: String, ys :: String)	\rightarrow	Image
lr-plot	:: (t :: Table, labels :: String, xs :: String, ys :: String)	\rightarrow	Image