THEORETICAL UNCERTAINTIES IN THE SUBGIANT–MASS AGE RELATION AND THE ABSOLUTE AGE OF ω Cen

BRIAN CHABOYER¹

Department of Physics and Astronomy, Dartmouth College 6127 Wilder Lab, Hanover, NH 03755 Brian.Chaboyer@Dartmouth.edu

AND

LAWRENCE M. KRAUSS

Departments of Physics and Astronomy, Case Western Reserve University, 10900 Euclid Ave. Cleveland OH 44106-7079 krauss@theory1.phys.cwru.edu

to appear in ApJ Letters

ABSTRACT

The theoretical uncertainties in the calibration of the relationship between the subgiant mass and age in metalpoor stars are investigated using a Monte Carlo approach. Assuming that the mass and iron abundance of a subgiant star are known exactly, uncertainties in the input physics used to construct stellar evolution models and isochrones lead to a Gaussian $1-\sigma$ uncertainty of $\pm 2.9\%$ in the derived ages. The theoretical error budget is dominated by the uncertainties in the calculated opacities.

Observations of detached double lined eclipsing binary OGLEGC-17 in the globular cluster ω Cen have found that the primary is on the subgiant branch with a mass of $M=0.809\pm0.012\,M_\odot$ and $[Fe/H]=-2.29\pm0.15$ (Kaluzny et al. 2001). Combining the theoretical uncertainties with the observational errors leads to an age for OGLEGC-17 of $11.10\pm0.67\,Gyr$. The one-sided, 95% lower limit to the age of OGLEGC-17 is 10.06 Gyr, while the one-sided, 95% upper limit is 12.27 Gyr.

Subject headings: stars: interiors – stars: evolution – stars: Population II – globular clusters: general – globular clusters: ω Cen – cosmology: theory

1. INTRODUCTION

Traditionally, absolute globular cluster (GC) ages have been determined using the absolute magnitude of the main sequence turn-off (TO), or subgiant branch (SGB), as this minimizes the theoretical uncertainties associated with stellar evolution models (e.g. Renzini 1991: Chabover et al. 1996b). This age determination method requires that the distance to the GC be known. There is considerable uncertainty regarding the distance scale to GCs, and this translates into a significant uncertainty in the absolute age estimates of GC (Krauss & Chaboyer 2001). To avoid this error Paczyński (1996) has advocated the use of detached eclipsing double line spectroscopic binaries to determine the age of GCs. In these binary systems, it is possible to determine the mass of the individual stars. These mass estimates are derived in a fundamental manner, and are likely to be free from systematic errors (Paczyński 1996). If one of the members of the binary is at the TO, or on the SGB then the age of the cluster may be determined from the TO/SGB mass-age relation.

In principle the relation between the TO/SGB mass and age is robust prediction of stellar evolution theory – it simply depends on the amount of hydrogen fuel available for nuclear burning in the core of the star and the luminosity of the star during its main sequence lifetime. Thus, the TO/SGB mass-age relation should be insensitive to the details of what occurs near the surface of stars and will not depend on the treatment of convection for the low mass stars in GCs (Paczyński 1996). For these reasons, one might expect that ages derived from the masses of TO/SGB stars will be relatively insensitive to various significant uncertainties that might otherwise be important in stellar structure calculations.

This paper will explore how the uncertainties in stellar struc-

ture and evolution calculations (§2) translate into errors in ages derived from SGB masses in GCs (§3). This work is motivated by the high precision mass estimate for the detached eclipsing double line spectroscopic binary OGLEGC-17 in ω Cen by Kaluzny et al. (2001). The primary in OGLEGC-17 is on SGB (Thompson et al. 2001). The age of this star is derived in §4, and this paper concludes with a general discussion of the implications of this age determination in §5.

2. UNCERTAINTIES IN STELLAR EVOLUTION MODELS

The basic equations of stellar structure are simple – hydrostatic equilibrium, conservation of mass and energy, and an equation for energy transfer. However, the solution of these equations requires a considerable amount of additional information – composition of the star must be specified, one needs to know opacities, nuclear reaction rates, surface boundary conditions, etc. There are uncertainties associated with all of these, and these uncertainties in the input physics lead to uncertainties in the calculated structure and evolution of a star. Furthermore, there are uncertainties associated with the modeling of convection in stars, and indeed with the inclusion of additional physical processes such as diffusion. Given that the equations of structure must be solved numerically, it is easiest to evaluate the uncertainties associated with stellar structure and evolution calculations using a Monte Carlo (MC) procedure (Chaboyer et al. 1996a). Once the distribution of each input parameter is specified, one randomly selects a specific value for each of the input parameters and constructs stellar evolution models for a variety of masses. These stellar evolution models are then used to construct an isochrone which can be used to derive the age of a GC. This procedure is repeated numerous times and the result

¹ Visiting Scholar, Astronomy Unit, Queen Mary, University of London, Mile End Road, London E1 4NS, UK

is a set of isochrones which can be used to determine the error associated with stellar age estimates.

Full details on our choice of parameters are in our previous papers (Chaboyer et al. 1996a, 1998; Krauss & Chaboyer 2001). In brief, the following input parameter distributions were used: mixing length 1.85 ± 0.25 ; helium diffusion coefficients multiplied by 0.2 - 0.8 (flat distribution); high temperature $(T > 10^4 \,\mathrm{K})$ opacities multiplied by 1 ± 0.02 ; low temperature opacities multiplied by 0.7-1.3 (flat); α -capture abundances $[\alpha/\text{Fe}] = +0.2\text{ to} + 0.7$ (flat); surface boundary conditions were either gray or from Krishna-Swamy (1966); color table from Green et al. (1987) or Kurucz (1992); nuclear reaction rates mean values from Adelberger et al. (1998), with errors from Chaboyer et al. (1998). The primordial helium abundance is constrained to be in the narrow range $Y_p = 0.245$ to 0.25, motivated by recent advances in our ability to estimate this quantity. Observations of deuterium in high redshift QSO absorption systems, coupled with big bang nucleosynthesis (BBN) allow a reliable estimate of the cosmic baryon fraction, $\Omega_B h^2 = 0.020 \pm 0.001$, where h is the Hubble constant in units of 100 km/s/Mpc (Burles, Nollett, & Turner 2001). The value determined by cosmic microwave background experiments is $\Omega_b h^2 = 0.022 \pm 0.003$ (de Bernardis et al. 2001). The agreement between these two independent estimates is compelling and allows us to interpret the bound on the baryon fraction, using BBN, in terms of a new allowed range for Y_p . Measurements in extragalactic HII regions yield similar values of $Y_p = 0.245 \pm 0.004$ (Izotov, Chaffee, & Green 2001), although Peimbert, Peimbert & Luridiana (2001) find $Y_p = 0.238 \pm 0.003$. Using a value of $Y_p = 0.238$ results in SGB mass age which is 5% higher than that which is found using $Y_p = 0.245$. However, given the excellent agreement in determinations of $\Omega_b h^2$ from the deuterium and CMB observations, we believe that it is very unlikely that the true primordial helium abundance is as low as Y = 0.238.

The equation of state was not varied in the MC, as it is not thought to be a significant source of error in stellar models. To check this, the SGB mass age of a $M=0.809\,M_{\odot},$ [Fe/H]=-2.25 star was calculated using stellar models calculated with the OPAL equation of state (Rogers 1994), and a simple equation of state which uses the Debye-Hückel correction (Guenther et al. 1992). The two sets of isochrones yielded ages which agreed with each other to within 0.5%.

The only differences between the input parameters distributions in this paper and in Krauss & Chaboyer (2001) are for the nuclear reaction rates and for the opacity. As we discuss in the next section, the uncertainty in the TO/SGB mass-age relation is dominated by the uncertainty in opacity, leading us to critically re-examine the possible error in modern opacity calculations. There have been two recent studies which have addressed the accuracy of opacity calculations for conditions appropriate in the Sun. Rose (2001) examined the uncertainty in calculating the opacity at the solar core (a temperature of $T = 1.6 \times 10^6 \,\mathrm{K}$) by comparing the results of 7 different opacity codes. Rose (2001) found a standard deviation of 5% about the average. Neuforge-Verheecke et al. (2001) performed a detailed comparison of the OPAL (Iglesias & Rogers 1996) and LED-COP² (Magee et al. 1995) opacities throughout the Sun. They found that the OPAL and LEDCOP opacities differ by $\sim 6\%$ at the base of the convection zone and by $\sim 3\%$ at the solar core.

Fig. 1.—Comparison between the OPAL and LEDCOP opacities. The fractional difference in opacity plotted on the *y*-axis is defined to be $\delta\kappa/\kappa = (\kappa_{\text{OPAL}} - \kappa_{\text{LEDCOP}})/\kappa_{\text{OPAL}}$. The differences in the opacities have been calculated for a variety of hydrogen mass fractions, X, and values of $\log R$ appropriate for the deep interior of a metal-poor $M=0.80\,\mathrm{M}_\odot$ star at the middle and end of it's main sequence lifetime. In the stellar model, the density/temperature parameter $\log R = \log(\rho/T_6^3)$ (where T_6 is the temperature in units of $10^6\,\mathrm{K}$) is in the range of -1.5 to -1.0 for the temperatures plotted.

The conditions in GCs stars differ from the Sun in that there are significantly fewer heavy elements. This simplifies the opacity calculations, and presumably the errors in low metallicity opacity calculations will be smaller than in the solar case. Figure 1 shows differences between the OPAL and LEDCOP opacities for conditions appropriate for a $M=0.80\,M_\odot$ metalpoor star at the middle and end of it's main sequence lifetime. The OPAL and LEDCOP opacity calculations differ by $\sim 4\%$ at $\log T=6.2$ and by $\sim 1\%$ around $\log T=7$.

An independent estimate of the opacity for the conditions appropriate for a the core of a main sequence, metal-poor star ($X = 0.35, Z = 0.0003, \log T = 7.2, \rho = 157 \, \mathrm{gm/cm^3}, \log R = -1.4$) was calculated using the CASSANDRA opacity code (Crowley & Harris 2001). For the same conditions, the CASSANDRA opacity was 0.5% higher than the OPAL opacities and 0.4% lower than the LEDCOP opacities. The OPAL and LEDCOP opacities for this data point were determined via a simple linear interpolation (in $\log T$ and $\log R$) in the public opacity tables. When the OPAL opacity was calculated using the interpolation routines provided by the OPAL group, the OPAL opacity was found to be 1.7% lower than the CASSANDRA opacity. This suggests that the interpolation routine introduce additional errors of order 1% into the opacities used in the stellar evolution code

It is impressive that three difference opacity codes yield opacities which agree to within 1% for the conditions appropriate for the core of a metal-poor star. As stressed by Neuforge-Verheecke et al. (2001), the true opacity could be different from the calculations, and Magee (private communication) estimates a maximum uncertainty for these conditions of 5%.

² http://www.t4.lanl.gov/

Fig. 2.—Dependence of the derived age of a SGB star on the high temperature $(T>10^4~{\rm K})$ opacities. The x-axis, $\delta\kappa$ is the coefficient which is multiplying the opacities for $T\geq 10^6~{\rm K}$. The solid line is the best fit to the median age and has the equation $t_9=-3.38+(14.50\pm0.37)\delta\kappa$, where t_9 is the age in Gyr. The dotted lines are fits to the median $\pm 1\,\sigma$ points with the equations $t_9=-2.62+13.60\delta\kappa$ $(-1\,\sigma)$ and $t_9=-3.77+15.04\delta\kappa$ $(+1\,\sigma)$.

From Figure 1 it is clear that there is a systematic difference between the OPAL and LEDCOP opacities, and that this difference is a function of temperature. At lower temperatures, the OPAL opacities are always higher than the LEDCOP opacities. To take into account the systematic differences between the two opacity calculations, the OPAL opacities (which are used in the stellar evolution code) are multiplied by 0.98 for $T \le 10^6\,\mathrm{K}$ and used at their tabulated values for $T \ge 10^7\,\mathrm{K}$. Between $10^6\,\mathrm{K}$ and $10^7\,\mathrm{K}$, the multiplicative factor changes linearly. From the opacity comparisons discussed previously, it is clear that the uncertainty in the opacity calculations increases with decreasing temperatures. As a result, we have taken the uncertainty in the opacities to be Gaussian, with $\sigma = 4\%$ for $T \le 10^6\,\mathrm{K}$, and $\sigma = 2\%$ for $T \ge 10^7\,\mathrm{K}$. In between these two temperatures, the Gaussian σ changes linearly with temperature.

3. MONTE CARLO RESULTS

In total 1500 different sets of input parameters were generated and used to construct isochrones. For each set of input parameters in the MC, two isochrones were calculated with differing metallicities, [Fe/H] = -2.5 and [Fe/H] = -2.0. The set of 1500 MC isochrones was used to determine the age of a SGB star, chosen to have properties similar to OGLEGC-17, $M = 0.809 \, M_{\odot}$, [Fe/H] = -2.25. Furthermore, we fix the SGB star to be located 0.05 mag (in B-V) from the TO. The resulting distribution of ages has a narrow range with a Gaussian 1- σ uncertainty of $\pm 2.9\%$. This confirms expectations that the SGB mass-age relation can be a robust prediction of theoretical stellar evolution models Paczyński (1996).

The set of theoretical MC ages was analyzed to determine which input parameters had a significant effect on the derived age. The dominant source of error in deriving the age of a star of fixed mass on the SGB using its mass are the high temperature ($T > 10^4$ K) opacities. The relationship between the

Table 1 Sensitivity of Age to Parameter Variations

Parameter	δ Parameter	δ Age (%)
High Temperature Opacities	2% at 10 ⁷ K	+2.6
Helium Mass Fraction	0.003	-1.4
$[\alpha/\text{Fe}]$	0.2 dex	+1.0
Helium Diffusion Coefficient	30%	-1.0

derived age and the opacity is shown in Figure 2. The solid line is the best fit to the median age as a function of the opacity, and its slope implies that for every 1% increase in the opacities at $10^7\,\rm K$, the age will increase by 0.14 Gyr, or 1.3%. Given that the SGB age at a given mass is essentially the main sequence lifetime of a given stellar model, the relationship between age and opacity can be easily understood given the equation of radiative transfer for a star which implies $L \propto 1/\kappa$, where L is the luminosity. Hence, an higher opacity leads to a decrease in the luminosity which in turn results in an increase in the main sequence lifetime of a star of a given mass.

The other input parameters in the MC had much smaller effects on the derived age. This can be readily seen in Figure 2, where the width of the age distribution at a given value of $\delta \kappa$ gives an indication of the total uncertainty associated with all of the other input parameters. This width is about a factor of two smaller than the range of ages in Figure 2. If the error in the opacity were zero, then from the $\pm 1\,\sigma$ fits shown in Figure 2 the total theoretical uncertainty in the derived ages would have a Gaussian $\sigma = 1.3\%$. This is somewhat more than a factor of two smaller than the uncertainty found when including the uncertainty in the opacities. Besides opacity, the only parameters which lead to a significant change in the derived age were the helium mass fraction (Y), the abundance of α -capture elements, and the coefficient of helium diffusion. The effect that increasing each of these parameters has on the age is summarized in Table 1.

4. The absolute age of ω Cen

Thompson et al. (2001) identified a number of detached eclipsing double line spectroscopic binaries in the GC ω Cen and found that the primary in OGLEGC-17 was on the SGB, ideally situated for an age determination. Kaluzny et al. (2001) report improved observations of OGLEGC-17 which yield a primary mass of $M = 0.809 \pm 0.012 M_{\odot}$ and a metallicity of $[Fe/H] = -2.29 \pm 0.15$. It order to determine an accurate age for this star, one must determine is location relative to the metalpoor TO of ω Cen. An inspection of the color-magnitude diagram presented by Thompson et al. (2001) leads us to conclude that OGLEGC-17 is located between 0.03 and 0.07 mag redward (in B-V) of the metal-poor TO. To determine the uncertainty in the age of OGLEGC-17, the following procedure was performed: (1) randomly pick an isochrone (out of our set of 1500 MC isochrones); (2) randomly pick a mass from the distribution $M = 0.809 \pm 0.012 M_{\odot}$; (3) randomly pick a metallicity using the distribution $[Fe/H] = -2.29 \pm 0.15$; (4) randomly pick a location on the SGB by using a flat distribution which varied from 0.03 to 0.07 mag redward of the TO point and (5) determine the age of OGLEGC-17 for this particular isochrone, mass, [Fe/H] and location on the SGB. This procedure was repeated 10,000 times. The results are shown in Figure 3.

Fig. 3.—Histogram of the derived age of the metal-poor SGB in OGLEGC-17 in ω Cen whose mass and metallicity were determined by Kaluzny et al. (2001). This histogram incorporates all known theoretical and observational errors, and reflects the total uncertainty in the age of OGLEGC-17.

The age of OGLEGC-17 determined in this way is $11.10 \pm$ 0.67 Gyr; ie. the total uncertainty in the age of this star is $\pm 6\%$. The one-sided, 95% lower limit to the age of OGLEGC-17 is 10.06 Gyr, while the one-sided, 95% upper limit is 12.27 Gyr. The derived uncertainty is dominated by the uncertainty of the mass determination. In the mass were known exactly, then the 1σ uncertainty in the derived age would be reduced to $\pm 3\%$. Our derived age is fairly similar to that determined by Kaluzny et al. (2001) who found $t = 11.8 \pm 0.6$ Gyr, assuming no error in the isochrones of Girardi et al. (2000).

5. DISCUSSION

The age of OGLEGC-17 may be compared to our estimate of the mean age of 17 metal-poor GCs which used the luminosity

of the TO as an age indicator (Krauss & Chaboyer 2001). For the same set of input parameters, we found a median age of 12.5 Gyr, and one sided 95% confidence level ages of 10.2 Gyr and 15.9 Gyr. The non-Gaussian distribution has a lower 1σ age of 11.0 Gyr, implying that age of OGLEGC-17 and the mean age of 17 metal-poor GCs agree at the 1 σ level. The one-sided 95% confidence level lower limits to the two age determinations are quite similar (10.1 and 10.2 Gyr). This supports our conclusion that the ages of the oldest stars and recent measurements of the Hubble constant require that the cosmic equation of state has $w \equiv \text{pressure/density} < -0.3 \text{ (Krauss & Chaboyer 2001)}.$

The age of OGLEGC-17 was determined assuming that the error in the mass determination was Gaussian. As discussion of the error in the mass determination of OGLEGC-17 has not been published it is not clear if this assumption is valid. If it is, then age of OGLEGC-17 is known much more accurately than the mean age of the metal-poor GCs determined from their TO luminosity. The upper limit on the mean age (12.3 Gyr) is much smaller than that determined in the GC study (15.9 Gyr). The upper limit to the age of OGLEGC-17 may be compared to the age of the universe determined from the cosmic microwave background of 14.0 ± 0.5 Gyr (Knox, Christensen, & Skordis 2001). Their 2σ lower limit of 13.0 Gyr is 0.7 Gyr older than our upper limit, implying at least 0.7 Gyr of galaxy evolution before OGLEGC-17 formed. This corresponds to a redshift of globular cluster formation of $z \le 7$ (cf. equation 1 in Krauss & Chaboyer (2001)). It is worth remarking that when more old GC ages are constrained in this way, a comparison strict upper limits one might derive on their ages with the Hubble age may provide the strongest constraints on cosmological models with exotic forms of dark energy such that w = < -1.

We would like to thank Basil Crowley, Norman Magee and Forest Rogers for their comments on the accuracy of opacity calculations, Bohdan Paczyński for pointing out the ω Cen results to us, and Basil Crowley for supplying us with the CAS-SANDRA opacity for a metal-poor mixture.

Research supported in part by a NSF CAREER grant 0094231 to BC and a DOE grant to LMK. BC is a Cottrell Scholar of the Research Corporation.

REFERENCES

Adelberger, E.G. et al. 1998, Reviews of Modern Physics, 70, 1265 Burles, S., Nollett, K. M., & Turner, M. S. 2001, ApJ, 552, L1 Chaboyer, B., Demarque, P., Kernan, P. J., & Krauss, L. M. 1996a, Science, Chaboyer, B., Demarque, P., Kernan, P. J., & Krauss, L. M. 1998, ApJ, 494, 96 Chaboyer, B., Demarque, P., Kernan, P. J., Krauss, L. M. & Sarajedini, A. 1996b, MNRAS, 283, 683 Crowley, B.J.B. & Harris, J.W. 2001, JQSRT, 71, 257 de Bernardis, P. et al. 2001, ApJ, 564, 559

Girardi, L., Bressan, A., Bertelli, G., & Chiosi, C. 2000, A&AS, 141, 371 Green, E.M., Demarque, P. & King, C.R. 1987, The Revised Yale Isochrones & Luminosity Functions (New Haven: Yale Univ. Obs.)

Guenther, D.B., Demarque, P., Kim, Y.-C., & Pinsonneault, M.H. 1992, ApJ, 387, 372

Iglesias, C.A. & Rogers, F.J. 1996, ApJ, 464, 943

Kaluzny, J., Thompson, I., Krzeminski, W., Olech, A., Pych, W. & Mochejska, B. 2001, astro-ph/0111089

Knox, L., Christensen, N., & Skordis, C. 2001, ApJ, 563, L95

Krauss, L.M. & Chaboyer, B. 2001, submitted to Science, astro-ph/0111597

Krishna-Swamy, K.S. 1966, ApJ, 145, 176

Kurucz, R.L. 1992, in IAU Symp. 149, The Stellar Populations of Galaxies, ed. B. Barbuy, A. Renzini, (Dordrecht: Kluwer), 225

Magee, Jr. N. H., et al. (1995), Astronomical Society of the Pacific Conference Series, Astrophysical Applications of Powerful New Databases, ed. S.J. Adelman and W.L. Wiese (San Fransico: ASP), 78, 51

Neuforge-Verheecke, C., Guzik, J. A., Keady, J. J., Magee, N. H., Bradley, P. A., & Noels, A. 2001, ApJ, 561, 450

Paczyński, B. 1996, in Space Telescope Science Institute Series, The Extragalactic Distance Scale, ed. M. Livio (Cambridge: Cambridge Univ. Press), 273

Peimbert, A., Peimbert, M. & Luridiana, V. 2001, to appear in ApJ (astroph/0107189)

Renzini, A. 1991, in Observational Tests of Cosmological Inflation, eds. T. Shanks, et al., (Dordrecht: Kluwer), 131

Rogers, F.J. 1994, in The Equation of State in Astropyhsics, IAU Coll. 147, ed. G. Chabrier and E. Schatzman (Cambridge: Cambridge University Press), 16 Rosek, S.G. 2001, JQSRT, 635, 638

Thompson, I.B., et al. 2001, AJ, 121, 3089

Thoul, A. A., Bahcall, J. N., & Loeb, A. 1994, ApJ, 421, 828