Detectores Resistivos de Temperatura - RTD

Atividade prática de ININD II

Detalhes da construção de um RTD de platina em uma bainha de aço inoxidável.

Temp	0	1	2	3	4	5	6	7	8	9
0	100.000	100.391	100.781	101.172	101.562	101.953	102.343	102.733	103.123	103.513
10	103.903	104.292	104.682	105.071	105.460	105.849	106.238	106.627	107.016	107.405
20	107.794	108.182	108.570	108.959	109.347	109.735	110.123	110.510	110.898	111.286
30	111.673	112.060	112.447	112.835	113.221	113.608	113.995	114.382	114.768	115.155
40	115.541	115.927	116.313	116.699	117.085	117.470	117.856	118.241	118.627	119.012
50	119.397	119.782	120.167	120.552	120.936	121.321	121.705	122.090	122.474	122.858
60	123 242	123 626	124 009	124 393	124 777	125 160	125 543	125 926	126 309	126 692
70	127.075	127.458	127.840	128.223	128.605	128.987	129.370	129.752	130.133	130.515
80	130.897	131.278	131.660	132.041	132.422	132.803	133.184	133.565	133.946	134.326
90	134.707	135.087	135.468	135.848	136.228	136.608	136.987	137.367	137.747	138.126
100	138.505	138.885	139.264	139.643	140.022	140.400	140.779	141.158	141.536	141.914
110	142.293	142.671	143.049	143.426	143.804	144.182	144.559	144.937	145.314	145.691
120	146.068	146.445	146.822	147.198	147.575	147.951	148.328	148.704	149.080	149.456
130	149.832	150.208	150.583	150.959	151.334	151.710	152.085	152.460	152.835	153.210
140	153.584	153.959	154.333	154.708	155.082	155.456	155.830	156.204	156.578	156.952
150	157.325	157.699	158.072	158.445	158.818	159.191	159.564	159.937	160.309	160.682
160	161.054	161.427	161.799	162.171	162.543	162.915	163.286	163.658	164.030	164.401
170	164.772	165.143	165.514	165.885	166.256	166.627	166.997	167.368	167.738	168.108
180	168.478	168.848	169.218	169.588	169.958	170.327	170.696	171.066	171.435	171.804
190	172.173	172.542	172.910	173.279	173.648	174.016	174.384	174.752	175.120	175.488
200	175.856	176.224	176.591	176.959	177.326	177.693	178.060	178.427	178.794	179.161
210	179.528	179.894	180.260	180.627	180.993	181.359	181.725	182.091	182.456	182.822
220	183.188	183.553	183.918	184.283	184.648	185.013	185.378	185.743	186.107	186.472
230	186.836	187.200	187.564	187.928	188.292	188.656	189.019	189.383	189.746	190.110
240	190.473	190.836	191.199	191.562	191.924	192.287	192.649	193.012	193.374	193.736
250	194.098	194.460	194.822	195.183	195.545	195.906	196.268	196.629	196.990	197.351
260	197.712	198.073	198.433	198.794	199.154	199.514	199.875	200.235	200.595	200.954
270	201.314	201.674	202.033	202.393	202.752	203.111	203.470	203.829	204.188	204.546
280	204.905	205.263	205.622	205.980	206.338	206.696	207.054	207.411	207.769	208.127

Fonte de corrente excitando um RTD.

Montagem a dois fios.

Montagem a três fios.

Montagem a quatro fios.

Para um RTD temos:

$$R_F = R_I(1 + \alpha(T_F - T_I))$$

Considerando um PT100 temos:

Onde:

$$R_I = 100\Omega$$

$$T_I = 0 \, {}^{\circ}C$$

$$\alpha = 0.00385$$

$$R_F = 100(1 + 0.00385.T_F)$$

Ou

$$T_F = \frac{(R_F - 100)}{0.385}$$

