Introduction to Computer Graphics

Fall 2018

Seungyong Lee

POSTECH

(Some slides from textbook materials)

Computer Graphics

- What is computer graphics?
 - creation, storage, and manipulation of models to generate images (pictures) and animations

Three Main Topics in Graphics

- Modeling
- Rendering
- Animation

Modeling

- How to represent things?
- How to build those representations?

Shape Representation

• Geometric information

- 3D positions
- vertices
- edges
- faces

```
v1=(0, 0, 0), v2=(100, 0, 0), ...
e1=(v1, v2), e2=(v1, v3), ...
f1=(v1, v2, v3), f2=(v1, v2, v5), ...
```


Shape Construction

- Modeling software
- 3D scanning

Rendering

- How to simulate image-forming process?
- How to generate realistic (impressive) images from a 3D model?

Rendering Process

Realistic image synthesis

v1=(0, 0, 0), v2=(100, 0, 0), ... e1=(v1, v2), e2=(v1, v3), ... f1=(v1, v2, v3), f2=(v1, v2, v5), ...

Pixel array RGB values

Rendering Process (2)

Approaches

- virtual camera model
- light source and material property
- photo-realistic image

v1=(0, 0, 0), v2=(100, 0, 0), ...

Rendering Process (3)

• Projection, lighting, and texturing

3D Models

v1=(0, 0, 0), v2=(100, 0, 0), ... e1=(v1, v2), e2=(v1, v3), ...f1=(v1, v2, v3), f2=(v1, v2, v5), ...

Rendering Example

Animation

• How to represent and control the way things move?

Motion Representation

- Simple motion of a particle
 - position as a function of time
- Hierarchical model
 - skeleton
 - joint angles

Motion Control

- Key frame animation
 - key frames
 - interpolation
- Motion capture
 - realistic motion

Why Computer Graphics?

- Advantages of (interactive) graphics
 - most important means of producing pictures since the invention of photography and television
 - pictures of not only of concrete, real-world objects, but also of abstract, synthetic objects and of data
 - extensive, high-bandwidth user-computer interaction
 - helps to understand data, to perceive trends, and to visualize real or imaginary objects
- We can draw whatever we can imagine!!!

Why Computer Graphics?

Applications

- entertainment (games, animations)
- visualization (medicine, scientific visualization)
- education and training
- computer-aided design

Related Areas

• Computer vision & Image processing

	input	output	objective
computer graphics	model descriptions	images	realistic images
computer vision	images	model descriptions	accurate descriptions
image processing	images	images	more useful images

Virtual reality

- real-time graphics + user interaction
- speed is more important than quality

Graphics System

- Computer graphics deals with all aspects of creating images with a computer
 - Hardware
 - Software
 - Applications

Example

• Where did this image come from?

• What hardware/software are needed to produce it?

A Simple Answer

- Application: Program to model and render the object with the desired appearance
- Graphics library: OpenGL providing basic graphics functions for modeling and rendering
- Hardware: PC with graphics card for modeling and rendering

The Programmer's Interface

• Programmer sees the graphics system through a software interface: the Application Programmer Interface (API)

API Contents

- Functions that specify what we need to form an image
 - Objects
 - Transformations
 - Viewer
 - Light source(s)
 - Materials
- Other information
 - Input from devices such as mouse and keyboard

Graphics Hardware

Image formed in frame buffer

Course Objectives

- Understanding a graphics system
 - design and structure of a graphics system
 - internal implementation of a graphic system
- Learning how to use a graphics system
 - developing 2D and 3D graphics applications with a graphics system
- OpenGL as the choice of the graphics system
 - concepts and implementations are well matched
 - first legacy OpenGL
 - finally programmable shaders

Summary

- Introduction to graphics
 - modeling, rendering, animation
 - We can generate an image or animation of whatever we can imagine!!!
- Graphics system
- Course objectives
- Angel: Chapter 1 → Reading assignment!!

Supplementary Slides

Brief History of Computer Graphics

- Plotters \rightarrow CRT (1950's) \rightarrow Sketchpad (1963)
- CAD/CAM: DAC (1964), Itek Digitex (1960's)
- Interactive graphics at few organizations (1970's)
- PCs with graphics displays (1980's)
 - inexpensive graphics-based user interfaces
 - bitmap graphics, pixels
 - desktop, windows, mouse
 - direct manipulation (pointing and clicking)

Brief History of Computer Graphics (2)

- 1990's advances
 - Silicon Graphics for 3D graphics
 - animation packages
 - advances in PC graphics
 - graphics effects in commercials and movies
 - Toy Story
- 2000's advances
 - high performance PC graphics card
 - game consoles with high quality graphics
 - full 3D games, on-line games
 - standard graphics toolkits and engines

Brief History of Computer Graphics (3)

- What is the future?
 - graphics is everywhere!
 - animation movies
 - virtual environments
 - 3D display device
 - mobile graphics
 - synthetic actors
 - new graphics paradigm

— ...

Software Portability and Graphics Standards

- Why graphics standards?
 - similar to high-level programming languages
- Official standards
 - Core by ACM SIGGRAPH (1977)
 - GKS by ANSI and ISO (1985)
 - GKS-3D (1988)
 - PHIGS (1988)
 - PHIGS+ (1988), PHIGS PLUS (1992)

Software Portability and Graphics Standards

- Industry standards
 - X Lib, PEX
 - PostScript (Adobe)
 - OpenGL (Silicon Graphics)
 - DirectX (Microsoft)
 - Java3D (Sun)
- Mobile graphics
 - OpenGL ES
 - JSR-184

Comparison of Display Systems

- Raster display system
 - developed in early seventies
 - frame buffer
 - scan conversion
 - aliasing
- Vector display system
 - until mid-eighties
 - display buffer
 - random scan
 - refresh cycle

(a) Ideal line drawing

(c) Raster scan with outline primitives

(b) Random scan

(d) Raster scan with filled primitives

Comparison of Display Systems (2)

• Raster display vs. Vector display

Research Goal of Graphics

• Design and implementation of graphics techniques and systems, which can help to produce interesting images and animations

