TABLE 1 Quantifiers.		
Statement	When True?	When False?
$\forall x P(x) \\ \exists x P(x)$	P(x) is true for every x . There is an x for which $P(x)$ is true.	There is an x for which $P(x)$ is false. P(x) is false for every x .

TABLE 2 D	TABLE 2 De Morgan's Laws for Quantifiers.				
Negation	Equivalent Statement	When Is Negation True?	When False?		
$\neg \exists x P(x)$	$\forall x \neg P(x)$	For every x , $P(x)$ is false.	There is an x for which $P(x)$ is true.		
$\neg \forall x P(x)$	$\exists x \neg P(x)$	There is an x for which $P(x)$ is false.	P(x) is true for every x .		

TABLE 1 Quantifications of Two Variables.		
Statement	When True?	When False?
$\forall x \forall y P(x, y) \forall y \forall x P(x, y)$	P(x, y) is true for every pair x, y .	There is a pair x , y for which $P(x, y)$ is false.
$\forall x \exists y P(x, y)$	For every x there is a y for which $P(x, y)$ is true.	There is an x such that $P(x, y)$ is false for every y .
$\exists x \forall y P(x, y)$	There is an x for which $P(x, y)$ is true for every y .	For every x there is a y for which $P(x, y)$ is false.
$\exists x \exists y P(x, y)$ $\exists y \exists x P(x, y)$	There is a pair x , y for which $P(x, y)$ is true.	P(x, y) is false for every pair x, y .

Proposition - declarative statement that is either true or false Tautology - compound proposition that is always true

Contradiction - compound proposition that is always false

Satisfiable/Consistent - some assignment of truth values that make the compound proposition true

Proofs

To prove a true for-all statement:

- Let x be an **arbitrary** integer
- (Prove that x has the named property)

To prove a true there-exists statement:

- Name a specific integer:
- "Consider x = 2..."
- (Prove that this x has the named property)

To disprove a false for-all statement:

- Name a **specific** integer
- "Consider x = -1..."
- (Prove that x does not have the named property)

To disprove a false there exists statement:

- Let x be an arbitrary integer
- (Prove that x does not have the named property)

Natural deduction rules

Always announce your proof style

Original statement: "If [prop 1], then [prop 2]"

Contrapositive: "If [not prop 2], then [not prop 1]"

Contradiction: Assume negation and prove false
Common Mistake: Negation of "p implies q" is
"p and not q" (you can use logical equivalences to
prove it! See table 7 on slide 7)

Cases: Split into **cases**, where you assume various things about **x**.

Make sure at least one of our cases is true for

Prove the proposition in every possible case.

And always have a closing statement concluding the proof

Creates a new variable

Uses an existing domain element

q p

Standard Numerical Sets

- $N = \{0,1,2,3,...\}$ natural numbers
- $\mathbf{Z} = \{..., -2, -1, 0, 1, 2, 3, ...\}$ integers
- $Z^+ = \{1,2,3,...\}$ positive integers
- $\mathbf{Q} = \{x \mid \exists a \in \mathbf{Z} \exists b \in \mathbf{Z}^+ \ x = a/b\}$ rationals
 - R reals
- R+ positive reals
- Intervals: [a,b], (a,b], [a,b), (a,b)

• e.g.
$$[a,b) = \{x \in R \mid a \le x < b\}$$

"The set of "such that" "x is at least a and less than b"

Recall: $\mathbf{a} \equiv \mathbf{b} \pmod{\mathbf{m}}$ means $\mathbf{a} = \mathbf{b} + \mathbf{km}$ for some integer k (and assuming m is a positive integer)

Suppose $\mathbf{a} \equiv \mathbf{b} \pmod{\mathbf{m}}$ and $\mathbf{c} \equiv \mathbf{d} \pmod{\mathbf{m}}$.

Claim: $a+c \equiv b+d \pmod{m}$ (Addition works!) Claim: $a-c \equiv b-d \pmod{m}$ (Subtraction works!)

Claim: $ac \equiv bd \pmod{m}$ (Multiplication works!)

Some proofs. Let a = b + km and c = d + jm. So $a+c = b+km+d+jm = (b+d) + (k+j)m = b+d \pmod{m}$

So ac = $(b+km)(d+jm) = bd + (bj+dk+kjm)m \equiv bd \pmod{m}$

If p is prime, then for any positive int a<p, there exists a unique positive a⁻¹aa^{-1} \equiv 1 \pmod{p}

TABLE 1 Set Identities.		
Identity	Name	
$A \cap U = A$ $A \cup \emptyset = A$	Identity laws	
$A \cup U = U$ $A \cap \emptyset = \emptyset$	Domination laws	
$A \cup A = A$ $A \cap A = A$	Idempotent laws	
$\overline{(\overline{A})} = A$	Complementation law	
$A \cup B = B \cup A$ $A \cap B = B \cap A$	Commutative laws	
$A \cup (B \cup C) = (A \cup B) \cup C$ $A \cap (B \cap C) = (A \cap B) \cap C$	Associative laws	
$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$	Distributive laws	
$\overline{\frac{A \cap B}{A \cup B}} = \overline{A} \cup \overline{B}$ $\overline{A \cup B} = \overline{A} \cap \overline{B}$	De Morgan's laws	
$A \cup (A \cap B) = A$ $A \cap (A \cup B) = A$	Absorption laws	
$A \cup \overline{A} = U$ $A \cap \overline{A} = \emptyset$	Complement laws	

Prove that $A \subseteq B$

- a. assume an arbitrary element x in A
- b. show that this element must also be in B

Compound Proposition	Expression in English	
¬p	"It is not the case that p"	
p∧q	"Both p and q"	
p∨q	"p or q (or both)"	
p⊕q	"p or q (but not both)"	
p→q	"if p then q" "p implies q"	
p↔q	"p if and only if q"	

р	q	pΛq	pVq	p⊕q	p→q	p↔q
Т	Т	Т	Т	F	Т	Т
Т	F	F	Т	Т	F	F
F	Т	F	Т	Т	Т	F
F	F	F	F	F	Т	Т

"if p ,	then	q"
-----------	------	----

"if p, q"

"p is sufficient for q"

"q if p"

"q when p"

"a necessary condition for p is q"

"q unless $\neg p$ "

"p implies q"

"p only if q"

"a sufficient condition for q is p"

"q whenever p"

"q is necessary for p"

"q follows from p"

TABLE 6 Logical Equivalences.

TABLE 6 Logical Equivalences.		
Equivalence	Name	
$p \wedge \mathbf{T} \equiv p$ $p \vee \mathbf{F} \equiv p$	Identity laws	
$p \lor \mathbf{T} \equiv \mathbf{T}$ $p \land \mathbf{F} \equiv \mathbf{F}$	Domination laws	
$p \lor p \equiv p$ $p \land p \equiv p$	Idempotent laws	
$\neg(\neg p) \equiv p$	Double negation law	
$p \lor q \equiv q \lor p$ $p \land q \equiv q \land p$	Commutative laws	
$(p \lor q) \lor r \equiv p \lor (q \lor r)$ $(p \land q) \land r \equiv p \land (q \land r)$	Associative laws	
$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$ $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$	Distributive laws	
$\neg (p \land q) \equiv \neg p \lor \neg q$ $\neg (p \lor q) \equiv \neg p \land \neg q$	De Morgan's laws	
$p \lor (p \land q) \equiv p$ $p \land (p \lor q) \equiv p$	Absorption laws	
$p \lor \neg p \equiv \mathbf{T}$ $p \land \neg p \equiv \mathbf{F}$	Negation laws	

TABLE 5 The Truth Table for the Conditional Statement $p \rightarrow q$.

p	q	$p \rightarrow q$
T	T	T
T	F	F
F	T	T
F	F	T

TABLE 7 Logical Equivalences **Involving Conditional Statements.**

$$p \to q \equiv \neg p \lor q$$

$$p \to q \equiv \neg q \to \neg p$$

$$p \lor q \equiv \neg p \to q$$

$$p \land q \equiv \neg (p \to \neg q)$$

$$\neg (p \to q) \equiv p \land \neg q$$

$$(p \to q) \land (p \to r) \equiv p \to (q \land r)$$

$$(p \to r) \land (q \to r) \equiv (p \lor q) \to r$$

$$(p \to q) \lor (p \to r) \equiv p \to (q \lor r)$$

$(p \to r) \lor (q \to r) \equiv (p \land q) \to r$

TABLE 8 Logical **Equivalences Involving Biconditional Statements.**

$$p \leftrightarrow q \equiv (p \to q) \land (q \to p)$$

$$p \leftrightarrow q \equiv \neg p \leftrightarrow \neg q$$

$$p \leftrightarrow q \equiv (p \land q) \lor (\neg p \land \neg q)$$

$$\neg (p \leftrightarrow q) \equiv p \leftrightarrow \neg q$$