STAT 3690 Lecture 32

zhiyanggeezhou.github.io

Zhiyang Zhou (zhiyang.zhou@umanitoba.ca)

Apr 18, 2022

Misclassification/error rate

- Population: $Pr(Y \neq h(\mathbf{X}))$
 - $-h(\cdot)$: the classifier to be evaluated
- Apparent estimation:
 - Implementation
 - 1. Have a random split of dataset
 - 2. Apply the fitted classifier to each observation in the training data
 - 3. Estimate the error rate by the misclassification proportion
 - Training and testing with identical data points
 - Severe underestimation likely
- Parametric estimation
 - Implementation
 - 1. Express $Pr(Y \neq h(\mathbf{X}))$ in terms of unknown parameters
 - 2. Plug in estimates of unknown parameters
 - Underestimation likely
- Estimation via M-fold cross validation (CV)
 - Implementation
 - 1. The dataset is randomly partitioned into M chunks.
 - 2. Train one classifier upon each combination of M-1 chunks.
 - 3. Apply each classifier to the corresponding remaining chunk and compute the empirical error
 - 4. Estimate the population error rate by averaging these M empirical error rates.
 - Leave-one-out CV $\Leftrightarrow n$ -fold CV
- Estimation via $M \times L$ -fold CV
 - Implementation
 - 1. Repeat the four steps of M-fold CV L times.
 - 2. Average all the ML resulting empirical error rates.
 - $-M \times 1$ -fold CV $\Leftrightarrow M$ -fold CV