General Physics II 用霍尔效应测量螺线管磁场

刘思昀 SLST 2022522011

Wednesday 3rd April, 2024

1 磁感应强度 B 与霍尔电势差 U_H 的关系,并校正霍尔传感器灵敏度

调节电压输出为 5.0V,此时数字电压表上显示 OUT-和 V-间的电压为 2.502V 将霍尔传感器置于 X=15cm 处,改变励磁电流,测量 $U-I_M$ 的关系

Im (A)	0.000001	0.0252427	0.0504327	0.1000429	0.1503752	0.1995528	0.249913	0.299047	0.351248	0.401298	0.425851	0.450055	0.474963	0.499774
U (V)	2.504	2.514	2.525	2.546	2.567	2.588	2.609	2.630	2.652	2.673	2.684	2.694	2.705	2.714

图 1: 磁感应强度 B 与霍尔电势差 U_H 的关系

绘制磁感应强度 B 与霍尔电势差 U_H 的曲线,并进行线性拟合 拟合结果:

图 2: 磁感应强度 B 与霍尔电势差 U_H 的曲线

$$y = 0.422x + 2.504$$

$$R^{2} = 1$$

$$Thus, \frac{\Delta U}{\Delta I_{M}} = 0.422$$

 μ_0 为真空磁导率, $\mu_0 = 4\pi \times 10^{-7} T \cdot m/A, N = 3000, L = 0.260m, D = 3.50cm$,由此可以计算螺线管中心磁场强度理论值:

$$\begin{split} B_{theory} &= \frac{\mu_0 N I_M}{\sqrt{L^2 + \bar{D}^2}} \\ &= \frac{3000}{\sqrt{0.260^2 + (3.5 \times)^2}} 4\pi \times 10^{-7} I_M \\ B_{theory} / I_M &= 1.437 \times 10^{-2} \\ K &= \frac{I_M}{B_{theory}} \cdot \frac{\Delta U}{\Delta I_M} \\ &= \frac{1}{1.437 \times 10^{-2}} \times 0.422 \\ &= 29.4 V / T = 2.94 m V / G \end{split}$$

2 测量通电螺线管内磁感应强度分布

励磁电流保持不变,为 $I_M = 0.249887A$

改变霍尔元件位置: 在 0-7cm, 25-30cm 范围内,每隔 0.2cm 记录一个数据; 在 7-9cm, 23-25cm 范围内,每隔 0.4cm 记录一个数据; 在 9-23cm 范围内,每隔 1.0cm 记录一个数据

利用已经计算出的灵敏度 K = 29.4V/T, 计算磁感应强度 B 的数值

$$\begin{split} K &= \frac{\sqrt{L^2 + D^2}}{\mu_0 N} \cdot \frac{\Delta U}{\Delta I_M} \\ &= \frac{I_M}{B} \cdot \frac{U'}{I_M} \\ &= \frac{U'}{B} \\ B &= \frac{U'}{K} = \frac{1000U'}{29.4} mT \end{split}$$

根据轴线上各点的磁感应强度,绘制螺线管轴线上磁场的分布曲线

可以观察到,在通电螺线管中间位置,磁感应强度较大且均匀,在两端会有磁感应强度的减小

X (cm)	U' (V)	B (mT)	X (cm)	U' (V)	B (mT)	X (cm)	U' (V)	B (mT)
0.00	2.516	85.6	6.00	2.606	88.6	25.20	2.605	88.6
0.20	2.517	85.6	6.20	2.606	88.6	25.40	2.605	88.6
0.40	2.518	85.6	6.40	2.607	88.7	25.60	2.604	88.6
0.60	2.519	85.7	6.60	2.607	88.7	25.80	2.603	88.5
0.80	2.521	85.7	6.80	2.607	88.7	26.00	2.602	88.5
1.00	2.523	85.8	7.00	2.608	88.7	26.20	2.601	88.5
1.20	2.526	85.9	7.40	2.608	88.7	26.40	2.600	88.4
1.40	2.529	86.0	7.80	2.608	88.7	26.60	2.598	88.4
1.60	2.533	86.2	8.20	2.609	88.7	26.80	2.596	88.3
1.80	2.536	86.3	8.60	2.609	88.7	27.00	2.594	88.2
2.00	2.541	86.4	9.00	2.609	88.7	27.20	2.592	88.2
2.20	2.547	86.6	10.00	2.610	88.8	27.40	2.589	88.1
2.40	2.553	86.8	11.00	2.610	88.8	27.60	2.583	87.9
2.60	2.559	87.0	12.00	2.610	88.8	27.80	2.580	87.8
2.80	2.564	87.2	13.00	2.610	88.8	28.00	2.576	87.6
3.00	2.570	87.4	14.00	2.610	88.8	28.20	2.572	87.5
3.20	2.575	87.6	15.00	2.610	88.8	28.40	2.567	87.3
3.40	2.580	87.8	16.00	2.610	88.8	28.60	2.557	87.0
3.60	2.583	87.9	17.00	2.610	88.8	28.80	2.548	86.7
3.80	2.587	88.0	18.00	2.610	88.8	29.00	2.543	86.5
4.00	2.591	88.1	19.00	2.610	88.8	29.20	2.540	86.4
4.20	2.594	88.2	20.00	2.610	88.8	29.40	2.537	86.3
4.40	2.595	88.3	21.00	2.610	88.8	29.60	2.533	86.2
4.60	2.597	88.3	22.00	2.610	88.8	29.80	2.530	86.1
4.80	2.599	88.4	23.00	2.610	88.8	30.00	2.527	86.0
5.00	2.600	88.4	23.40	2.609	88.7			
5.20	2.601	88.5	23.80	2.609	88.7			
5.40	2.603	88.5	24.20	2.608	88.7			
5.60	2.604	88.6	24.60	2.607	88.7			
5.80	2.605	88.6	25.00	2.606	88.6			

图 3: 各点的磁感应强度

图 4: 通电螺线管轴线上磁场分布曲线

3 思考题

3.1 $I_M = 0$ 时,由于地磁场的存在, U_H 不一定为 0,怎样消除地磁场的影响?

可以采用电压补偿法。通过设置一个剩余电压补偿器,可以调整电路以消除或补偿地 磁场引起的霍尔电压,使得在没有磁场作用(包括地磁场)的情况下,霍尔传感器的输出电压调整为一个标准值,从而确保测量的准确性。

3.2 自行设计实验,测量地磁场,计算当地的磁倾角。

将霍尔传感器安装在三脚架或稳固支架上,并确保它可以绕一个水平轴旋转。霍尔传感器的敏感面应该能够从水平位置旋转到垂直位置。在没有外部磁场的情况下,调整霍尔传感器输出电压至标准值,以校准仪器并消除剩余电压的影响。

将霍尔传感器的敏感面调整至水平方向,测量并记录此时的霍尔电压,通过已知的霍尔传感器灵敏度转换成磁场强度,这可以反映地磁场水平分量的大小。将霍尔传感器的敏感面调整至垂直方向,测量并记录此时的霍尔电压,并转换成磁场强度,这可以反映地磁场垂直分量的大小。

地磁场的总强度:

$$B_{total} = \sqrt{B_{vertical}^2 + B_{horizontal}^2}$$

磁偏角:

$$\theta = \arctan\left(\frac{B_{vertical}}{B_{horizontal}}\right)$$

3.3 改变磁场方向,讨论对补偿电压有什么影响。

霍尔效应描述了当一个带电粒子流在一个磁场中流动时,它们会受洛伦兹力的作用。这个力会导致电荷在材料的一侧积累,从而在垂直于电流和磁场的方向上产生电压差,即霍尔电压。补偿电压是用来抵消由于磁场引起的这个电压差的。

霍尔电压 $U_H = \frac{B \cdot I \cdot R_H}{d}$ 从这个公式可以看出,霍尔电压与磁场强度成正比,并且方向也有关。

改变磁场方向的影响:

- 霍尔电压的大小取决于磁场分量,该分量垂直于电流方向和材料的厚度方向。如果磁场方向完全平行于电流流动的方向,那么理论上不会产生霍尔电压,因为洛伦兹力为零。
- 改变磁场方向会改变洛伦兹力的方向,从而改变电荷在材料中的分布方向,这直接影响到霍尔电压的极性。如果磁场方向逆转,霍尔电压的极性也会逆转。
- 为了抵消霍尔电压并使输出电压维持在一个恒定值,补偿电压的大小和方向都需要随着磁场方向的改变而调整。如果磁场方向改变导致了霍尔电压极性的逆转,补偿电压也必须逆转其极性来保持输出电压稳定。

0

4 分析与讨论

• 若在通电螺线管中间位置,电压表示数仍有大量波动,可能是霍尔传感器仪器本身存在问题