

1. נגדיר את הפונקציה

$$f(x) = \int_{-1}^{x} |t| dt$$

$x \in [-1, 1]$ בקטע

.א) בטאו את הפונקציה f(x) בצורה מפורשת

$$f(x) = \int_{-1}^{1} |t| dt + \int_{0}^{1} |t| dt$$

$$|x| = \int_{-1}^{1} |t| dt + \int_{0}^{1} |t| dt$$

$$|x| = \int_{-1}^{1} |t| dt + \int_{0}^{1} |t| dt$$

$$|x| = \int_{-1}^{1} |t| dt + \int_{0}^{1} |t| dt = \int_{0}^{1} |t| dt + \int_{0}^{1} |t| dt$$

$$|x| = \int_{0}^{1} |t| dt + \int_{0}^{1} |t|$$

$$f(x) = \begin{cases} \frac{x^2}{2} + \frac{1}{2}, & x \ge 0 \\ -\frac{x^2}{2} + \frac{1}{2}, & sign > 0 \end{cases}$$

(ב) מצאו את הנקודות בהן f רציפה. (ג) מצאו את הנקודות בהן f גזירה.

 $\frac{\partial G}{\partial G}$ הרשש הלטופי, $\frac{1}{2} = \frac{1}{2}$ אל נקופות הרציפות שלה, וכן יפא או בית אל בתא אל ול בתא אל אל בתא אל אל בתא אל בית אל בית אל בליתה נרציפה כל הקאא

2. חשבו את הגבולות הבאים:

(ス)

$$\lim_{n \to \infty} \sum_{k=1}^{n} \frac{k}{n^2} \sqrt[n]{e^k}$$

(0,1] (0,1

$$\sigma(P) = \sum_{k=1}^{N} \Delta x_k f(\frac{k}{n}) = \sum_{k=1}^{n} \frac{1}{n} \cdot \frac{k}{n} \cdot e^{\frac{k}{n}} = \sum_{k=1}^{n} \frac{k}{n^2} \sqrt[n]{e^k}$$

$$\int_{y_1 = y_2 = y_3 = y_3$$

 $\lim_{N \to \infty} \frac{1}{N^2} \frac{1}{\sqrt{e^R}} = \int_{0}^{\infty} xe^x dx = (x-1)e^x = (1-1)e^t - (0-1)e^t = 1$

$$\lim_{n \to \infty} \frac{1}{n^5} (1^4 + 2^4 + \dots + n^4)$$

$$P_{n} = \{0, \frac{1}{n}, \frac{2}{n}, \dots, \frac{1}{N}\} \text{ rise} \quad [0, 1] \quad \text{ord} \quad \text{fix} \quad [0, 1] \quad \text{ord} \quad \text{fix} \quad \text{$$

$$\lambda(\mathcal{P}_n) \rightarrow 0$$
 אפן

$$\lim_{N\to\infty} \frac{1}{n^5} \left(\frac{1}{1} + 2^{\frac{1}{2}} + \dots + n^{\frac{1}{2}} \right) = \lim_{N\to\infty} \frac{1}{n} \left(\frac{K}{N} \right)^{\frac{1}{2}} = \int_{0}^{\infty} \chi^{\frac{1}{2}} dx = \int_{0}^{\infty} \chi^{\frac{1}{2$$

$$= \frac{X^{5}}{5} = \frac{1}{5} = \frac{5}{5} = \frac{1}{5}$$

$$\lim_{n\to\infty} \frac{1}{n^2} \left(\sum_{i=1}^n i e^{\frac{i^2}{n^2}} \right)$$

$$\lim_{i=1}^{n} \frac{1}{i} = 1$$

$$\lim_{n \to \infty} \frac{1}{n^2} \sum_{i=1}^{2} e^{in^2} = \int_{0}^{1} x e^{ix} dx = \frac{1}{2} e^{ix} = \frac{1}{2} e^{ix} - \frac{1}{2} e^{ix} = \frac{1}{2} e^{ix}$$

3. הוכיחו את אי-השיוויון

$$0 < \int_0^{\frac{\pi}{4}} \frac{1 - \cos x}{x} dx < \frac{\pi^2}{64}$$

 $\int_{0}^{\frac{\pi}{4}} f(x) dx > 0 \quad (0, \frac{\pi}{4}) \quad & \text{for } f(x) = \frac{1 - \cos x}{x} \quad \text{for } \delta = \frac{1 - \cos x}{x} \quad \text{for$

$$\frac{1-\cos x}{x} = \frac{1-\left(1-\frac{x^2}{x}\right)}{x} = \frac{\frac{x^2}{x}}{x} = \frac{x}{2}$$

$$\int_{0}^{\frac{\pi}{4}} \frac{1-\cos 4x}{x} dx < \int_{0}^{\frac{\pi}{4}} \frac{x}{2} dx = \int_{0}^{\frac{\pi}{4}} \frac{x}{4} = \int_{0}^{\frac{\pi}{4}} \frac{x}{4} = \int_{0}^{2} \frac{\pi^{2}}{64}$$

$$0 < \int_{0}^{\frac{\pi}{4}} \frac{1 - \cos x}{x} dx < \frac{\pi^{2}}{64}$$

$$0 > \int_{0}^{\frac{\pi}{4}} \frac{1 - \cos x}{x} dx < \frac{\pi^{2}}{64}$$

4. תהי f פונקציה גזירה ברציפות n פעמים בקטע [a,b]. השתמשו במשפט ערך הביניים האינטגרלי כדי להראות שקיימת $c \in (a,b)$ שעבורה

$$\frac{f^{(n)}(c)}{n!}(b-a)^n = \frac{1}{(n-1)!} \int_a^b f^{(n)}(t)(b-t)^{n-1} dt$$

(כלומר שארית לגראנז' של פולינום טיילור נובעת משארית האינטגרלית).

67/1 (n-1)! P 710000 1993 ye sic

(CG3

$$\frac{f^{(n)}(c)}{n!}(b-a)^{n} = \frac{1}{(n-1)!} \int_{a}^{b} f^{(n)}(t)(b-t)^{n-1} dt$$