

Crafting Catalysts from NMR Features

Karolina Biniek¹, Magdalena Lederbauer¹, Samuel Stricker¹, Yingnan Wang¹, Tiago Würthner¹
¹Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1-5, 8093 Zurich

1 Introduction

Heterogeneous W and Mo catalysts drive olefin metathesis, an indispensable industrial process^[1]

- **Problem:** Catalyst activation **mechanism** unknown^[1]
- **Solution:** Spectroscopic tools (**NMR**) elucidate structure-reactivity relationships → Chemical shift tensors (**CSTs**) link to frontier molecular orbitals^[2]

· Challenges: Limited data, unknown catalyst structure

2 Methods

Previous work: Predicting NMR shifts from descriptors (i.e. properties)

This work: Predicting ligands from NMR shifts

 Data: 19'169 in-silico generated octahedral complexes and their DFT-computed CSTs

M = Mo, WE = O, S, Se, NR

 X_i = CI, Br, OtBu, O'Bu₃F, O'Bu₆F, O'Bu₉F, OCF₃, OSiF₃, OSi(O'Bu)₃, OSiPh₃, OPh, OC₆F₅, O(2,6-Ph)Ph, SPh, Me, Et. 'Bu, neopentyl

L = THF, OEt₂, pyridine

- Representation: NMR CSTs as numerical features, ligands as categorical features
- Model Selection: Classifiers²

Gradient Boosting	Extra Trees	
Logistic Regression	Random Forest	
Support Vector	Dummy	

²hyperparameter tuning using the package hyperopt^[3]

• Evaluation: Held-out test dataset using bootstrapping

3 Results and Discussion

 How well can a classifier predict the metal and single ligands from the NMR CSTs?

 Do the predictions improve when predicting multiple targets,
 i.e. the metal and a ligand instead of the metal or ligand separately?

Does the predictive performance improve when incorporating other ligands as an additional input to the CSTs?

Target	With Ligands: Accuracy / %	Without Ligands: Accuracy / %
metal	91.4 ± 0.3	88.0 ± 0.5
E_ligand	43.5 ± 0.5	34.3 ± 0.8
X3_ligand	54.3 ± 1.1	57.3 ± 1.1

4 Conclusion

- First application of classifying ligands from NMR chemical shifts of a metal and a coordinating ligand atom (E), outperforming baselines
- More complex models (Neural Networks), data augmentation for X-ligands

References

- [1] D. F. Nater, C. J. Kaul, L. Lätsch, H. Tsurugi, K. Mashima, C. Copéret, Chemistry A European J. 28 (2022).
- [2] Z. J. Berkson, L. Lätsch, J. Hillenbrand, A. Fürstner, C. Copéret, J. Am. Chem. Soc. 144, 15020–15025 (2022).
- [3] J. Bergstra, D. Yamins, D. Cox, in *Proceedings of the 30th International Conference on Machine Learning* (PMLR, 2013; https://proceedings.mlr.press/v28/bergstra13.html), pp. 115–123.