APYTHONPROGRAMTOIMPLEMENTADABOOSTING

Ex.No.:8 Date of Submission:11/10/2024

AIM:-

To implement a python program for Ada Boosting.

ALGORITHM:-

Step1: Import the necessary libraries(pandas as pd, numpy as np and plot_decision_regions from mlxtend.plotting)

Step2: Create a dataframe and fill values and labels in the data frame and display it. Step3: Import seaborn as sns and plot a scatter plot with the data frame components as the parameters.

Step4: Add a new component to the data frame called "weights" which equals the inverse of the cumulative dimensions of the data frame and display it.

Step5: Import "DecisionTreeClassifier" from sklearn.tree and create an object.

Step6: Assign the variables "x" and "y" the range of values from the data frame.

Step7: Fit the first tree and then plot the tree using "plot tree" imported from sklearn.tree.

Step8: Plot the decision regions using the above trained tree as the classifier.

Step9: Introduce a new component in the dataframe called "y_pred" to store the values predicted by the above use decision tree and display the decision tree.

Step10: Create a function which returns half the values of log of (1-error)/(error) and calculate the weight of the decision tree.

Step11: Create a function to update the weights of the instances such that the weight is multiplied by exp(-alpha) if correctly classified and multiplied by exp(alpha) if misclassified. Step12: Create a new component of the data frame called "updated_weights" and apply the created function on the columns in the data frame and store the resulting values in the new component and display the data frame.

Step13: Add all the values in the "updated_weights" component and add a new component called "normalized_weights" which equals the division of each individual instance value by the sum of values of all instances and display the updated data frame.

Step14: Calculate the sum of the values of the "normalized values" component and display it.

Step15: Add a new component called "cumsum_upper" the cumulative sum of the

"normalized weights" values.

Step16: Add another component called "cumsum_lower" which is the difference between the "cumsum upper" and "normalized weights" and display all the components of the data frame.

Step17: Follow the above 16 steps two more times for 2 new data frames and 2 new decision trees(second_df,third_df,dt2and dt3 respectively)

Step18: Compare the predicted values of all the decision trees.

Step19: Multiply alpha1, alpha2 and alpha3 by 1 and add all the values.

Step20: Find the sign of the resulting values from the previous step.

Step21: Multiply alpha1 by1, alpha2 and alpha3 by -1 and add the values and find the sign of the resulting value.

IMPLEMENTATION:-

import pandas as pd

import numpy as np

from mlxtend.plotting import plot_decision_regions

df = pd.DataFrame()

df['X1']=[1,2,3,4,5,6,6,7,9,9] df['X2']=[5,3,6,8,1,9,5,8,9,2] df['label']=[1,1,0,1,0,1,0,1,0,0] df

	X1	X2	label
0	1	5	1
1	2	3	1
2	3	6	0
3	4	8	1
4	5	1	0
5	6	9	1
6	6	5	0
7	7	8	1
8	9	9	0
9	9	2	0

 $import\ seaborn\ as\ sns. scatterplot(x=df['X1'],y=df['X2'],hue=df['label'])$

<AxesSubplot:xlabel='X1', ylabel='X2'>

df['weights']=1/df.shape[0] df

	X1	X2	label	weights
0	1.	5	1	0.1
1	2	3	1	0.1
2	3	6	0	0.1
3	4	8	1	0.1
4	5	1	0	0.1
5	6	9	1	0.1
6	6	5	0	0.1
7	7	8	1	0.1
8	9	9	0	0.1
9	9	2	0	0.1

from sklearn.tree import DecisionTreeClassifier

dt1 =

DecisionTreeClassifier(max_depth=1) x =

df.iloc[:,0:2].values y = df.iloc[:,2].values

Step 2 - Train 1st Model

dt1.fit(x,y)

DecisionTreeClassifier(max_depth=1)

from sklearn.tree import plot_tree plot_tree(dt1)

```
[Text(0.5, 0.75, 'X[1] <= 2.5 \cdot 1 = 0.5 \cdot 1
```

$$X[1] <= 2.5$$
 $gini = 0.5$
 $samples = 10$
 $value = [5, 5]$
 y
 $gini = 0.0$
 $samples = 2$
 $value = [2, 0]$
 $gini = 0.469$
 $samples = 8$
 $value = [3, 5]$

 $df['y_pred'] = dt1.predict(x)$ df

	X1	X2	label	weights	y_pred
0	1	5	1	0.1	1
1	2	3	1	0.1	1
2	3	6	0	0.1	1
3	4	8	1	0.1	1
4	5	1	0	0.1	0
5	6	9	1	0.1	1
6	6	5	0	0.1	1
7	7	8	1	0.1	1
8	9	9	0	0.1	1
9	9	2	0	0.1	0

```
return 0.5*np.log((1-error)/(error))

# Step - 3 Calculate model weight alpha1

= calculate_model_weight(0.3) alpha1

0.42364893019360184
```

def calculate_model_weight(error):

```
# Step -4 Update weights def
update_row_weights(row,alpha=0.423): if
row['label'] == row['y_pred']:
    return row['weights']* np.exp(-alpha)
    else: return row['weights']*
        np.exp(alpha)
df['updated_weights'] = df.apply(update_row_weights,axis=1) df
```

	X1	X2	label	weights	y_pred	updated_weights
0	1	5	1	0.1	1	0.065508
1	2	3	1	0.1	1	0.065508
2	3	6	0	0.1	1	0.152653
3	4	8	1	0.1	1	0.065508
4	5	1	0	0.1	0	0.065508
5	6	9	1	0.1	1	0.065508
6	6	5	0	0.1	1	0.152653
7	7	8	1	0.1	1	0.065508
8	9	9	0	0.1	1	0.152653
9	9	2	0	0.1	0	0.065508

df['updated_weights'].sum()

0.9165153319682015

 $df['normalized_weights'] = df['updated_weights']/df['updated_weights'].sum()$

df

	X1	X2	label	weights	y_pred	updated_weights	normalized_weights
0	1	5	1	0.1	1	0.065508	0.071475
1	2	3	81.	0.1	1	0.065508	0.071475
2	3	6	0	0.1	1	0.152653	0.166559
3	4	8	1	0.1	1	0.065508	0.071475
4	5	1	0	0.1	0	0.065508	0.071475
5	6	9	1	0.1	1	0.065508	0.071475
6	6	5	0	0.1	1	0.152653	0.166559
7	7	8	1	0.1	1	0.065508	0.071475
8	9	9	0	0.1	1	0.152653	0.166559
9	9	2	0	0.1	0	0.065508	0.071475

 $df \hbox{['normalized_weights'].sum()}$

1.0

 $df['cumsum_upper'] = np.cumsum(df['normalized_weights'])$

 $df['cumsum_lower'] = df['cumsum_upper'] - df['normalized_weights']$

 $df[['X1','X2','label','weights','y_pred','updated_weights','cumsum_lower','cumsum_upper']]$

	X1	X2	label	weights	y_pred	updated_weights	cumsum_lower	cumsum_upper
0	1	5	1	0.1	1	0.065508	0.000000	0.071475
1	2	3	1	0.1	1	0.065508	0.071475	0.142950
2	3	6	0	0.1	1	0.152653	0.142950	0.309508
3	4	8	1	0.1	1	0.065508	0.309508	0.380983
4	5	1	0	0.1	0	0.065508	0.380983	0.452458
5	6	9	1	0.1	1	0.065508	0.452458	0.523933
6	6	5	0	0.1	1	0.152653	0.523933	0.690492
7	7	8	1	0.1	1	0.065508	0.690492	0.761967
8	9	9	0	0.1	1	0.152653	0.761967	0.928525
9	9	2	0	0.1	0	0.065508	0.928525	1.000000

```
def create_new_dataset(df): indices=
  [] for i in range(df.shape[0]): a =
  np.random.random() for
  index,row in df.iterrows():
     if row['cumsum_upper']>a and a>row['cumsum_lower']:
        indices.append(index)
  return indices

index_values = create_new_dataset(df) index_values

[6, 6, 0, 6, 7, 5, 1, 8, 4, 6]
```

second_df = df.iloc[index_values,[0,1,2,3]]

second_df

	X1	X2	label	weights
6	6	5	0	0.1
6	6	5	0	0.1
0	1	5	1	0.1
6	6	5	0	0.1
7	7	8	1	0.1
5	6	9	1	0.1
1	2	3	1	0.1
8	9	9	0	0.1
4	5	1	0	0.1
6	6	5	0	0.1

```
dt2 =

DecisionTreeClassifier(max_depth=1) x =

second_df.iloc[:,0:2].values y =

second_df.iloc[:,2].values

dt2.fit(x,y)

DecisionTreeClassifier(max_depth=1)

plot_tree(dt2)

[Text(0.5, 0.75, 'X[0] <= 3.5\ngini = 0.48\nsamples = 10\nvalue = [6, 4]'),
    Text(0.25, 0.25, 'gini = 0.0375\nsamples = 2\nvalue = [6, 2]')]

X[0] <= 3.5
    gini = 0.48
    samples = 10
    value = [6, 4]

gini = 0.48
    samples = 2
    value = [0, 2]

gini = 0.375
    samples = 8
    value = [6, 4]
```

plot_decision_regions(x, y, clf=dt2, legend=2) <AxesSubplot:>

 $second_df['y_pred'] = dt2.predict(x)$

$second_df$

	X1	X2	label	weights	y_pred
6	6	5	0	0.1	0
6	6	5	0	0.1	0
0	1	5	1	0.1	1
6	6	5	0	0.1	0
7	7	8	1	0.1	0
5	6	9	1	0.1	0
1	2	3	1	0.1	1
8	9	9	0	0.1	0
4	5	1	0	0.1	0
6	6	5	0	0.1	0

 $alpha2 = calculate_model_weight(0.1) alpha2$

1.0986122886681098

```
# Step 4 - Update weights def
update_row_weights(row,alpha=1.09): if
row['label'] == row['y_pred']: return
row['weights'] * np.exp(-alpha)
  else: return row['weights'] *
    np.exp(alpha)

second_df['updated_weights'] = second_df.apply(update_row_weights,axis=1)
```

 $second_df$

	X1	X2	label	weights	y_pred	updated_weights
6	6	5	0	0.1	0	0.033622
6	6	5	0	0.1	0	0.033622
0	1	5	1	0.1	1	0.033622
6	6	5	0	0.1	0	0.033622
7	7	8	1	0.1	0	0.297427
5	6	9	1	0.1	0	0.297427
1	2	3	1	0.1	1	0.033622
8	9	9	0	0.1	0	0.033622
4	5	1	0	0.1	0	0.033622
6	6	5	0	0.1	0	0.033622

second_df['nomalized_weights'].sum()

0.999999999999999

 $second_df['cumsum_upper'] = np.cumsum(second_df['nomalized_weights'])$ $second_df['cumsum_lower'] = second_df['cumsum_upper'] - second_df['nomalized_weights']$ $second_df[['X1','X2','label','weights','y_pred','nomalized_weights','cumsum_lower','cumsum_upper']]$

	X1	X2	label	weights	y_pred	nomalized_weights	cumsum_lower	cumsum_upper
6	6	5	0	0.1	0	0.038922	0.000000	0.038922
6	6	5	0	0.1	0	0.038922	0.038922	0.077843
0	1	5	1	0.1	1	0.038922	0.077843	0.116765
6	6	5	0	0.1	0	0.038922	0.116765	0.155687
7	7	8	1	0.1	0	0.344313	0.155687	0.500000
5	6	9	1	0.1	0	0.344313	0.500000	0.844313
1	2	3	1	0.1	1	0.038922	0.844313	0.883235
8	9	9	0	0.1	0	0.038922	0.883235	0.922157
4	5	1	0	0.1	0	0.038922	0.922157	0.961078
6	6	5	0	0.1	0	0.038922	0.961078	1.000000

index_values = create_new_dataset(second_df) third_df
= second_df.iloc[index_values,[0,1,2,3]] third_df

	X1	X2	label	weights
1	2	3	1	0.1
6	6	5	0	0.1
5	6	9	1	0.1
1	2	3	1	0.1
5	6	9	1	0.1
8	9	9	0	0.1
8	9	9	0	0.1
8	9	9	0	0.1
5	6	9	1	0.1
8	9	9	0	0.1

dt3 = DecisionTreeClassifier(max_depth=1)

X = second_df.iloc[:,0:2].values y
= second_df.iloc[:,2].values
dt3.fit(X,y)

DecisionTreeClassifier(max_depth=1)

third_df['y_pred] = dt3.predict(X)

third_df

alpha3 = calculate_model_weight(0.7) alpha3

-0.4236489301936017

print(alpha1,alpha2,alpha3)

```
query = np.array([1,5]).reshape(1,2)
dt1.predict(query)
 array([1])
dt2.predict(query)
 array([1])
dt3.predict(query)
  array([1])
alpha1*1 + alpha2*(1) + alpha3*(1)
1.09861228866811
np.sign(1.09)
    1.0
query = np.array([9,9]).reshape(1,2)
dt1.predict(query)
  array([1])
dt2.predict(query)
  array([0])
dt3.predict(query)
  array([0])
alpha1*(1) + alpha2*(-1) + alpha3*(-1)
 -0.2513144282809062
```

```
np.sign(\text{-}0.25)
```

.

-1.0

RESULT:-

Thus the python program to implement Adaboosting has been executed successfully and the results have been verified and analyzed.