Sorbonne Université Cryptologie, cryptographie algébrique 4M035 - 2021/22 - Enseignement à distance Alain Kraus

Second devoir

À rendre pour le vendredi 15 avril

Soit E la courbe projective définie sur \mathbb{F}_7 d'équation

$$y^2z = x^3 + xz^2 + z^3.$$

- 1) Montrer que E est une courbe elliptique sur \mathbb{F}_7 .
- 2) Décrire l'ensemble $E(\mathbb{F}_7)$ des points de E rationnels sur \mathbb{F}_7 .
- 3) Quel est le polynôme caractéristique de l'endomorphisme de Frobenius de E? Notons \mathbb{F}_{7^n} le corps de cardinal 7^n dans une clôture algébrique de \mathbb{F}_7 .
- 4) Quel est l'ordre du groupe $E(\mathbb{F}_{7^2})$?
- 5) En déduire la classe d'isomorphisme du groupe $E(\mathbb{F}_{7^2})$.
- 6) Quel est l'ordre du groupe $E(\mathbb{F}_{7^3})$? Soit E[2] le groupe des points de 2-torsion de E.
- 7) Montrer que le polynôme $X^3 + X + 1$ est irréductible dans $\mathbb{F}_7[X]$.
- 8) En déduire que E[2] est contenu dans $E(\mathbb{F}_{7^3})$.
- 9) En déduire la classe d'isomorphisme du groupe $E(\mathbb{F}_{7^3})$.
- 10) Déterminer une base de E[2] sur $\mathbb{Z}/2\mathbb{Z}$. Expliciter dans cette base la matrice de l'endomorphisme de Frobenius de E restreint à E[2].
 - Soit E[3] le groupe des points de 3-torsion de E. Notons $G \in \mathbb{F}_7[X]$ le polynôme de dont les racines sont les abscisses des points non nuls de E[3].
- 11) Expliciter G (voir le lemme 4.6 du cours).
- 12) Montrer que 5G est le produit de deux polynômes irréductibles unitaires de degré 2 de $\mathbb{F}_7[X]$.
- 13) En déduire avec la question 4 le plus petit entier $n \geq 1$ tel que $\mathbb{F}_7(E[3]) = \mathbb{F}_{7^n}$ (voir le lemme 4.7).
- 14) Quel est l'ordre de $E(\mathbb{F}_{7^4})$?
- 15) Admettons qu'il existe un élément de \mathbb{F}_{7^2} , qui n'est pas dans \mathbb{F}_7 et qui soit l'abscisse d'un point de 5-torsion de E. En déduire la classe d'isomorphisme du groupe $E(\mathbb{F}_{7^4})$.