Problème: (8 points) (Problème):

Partie A : On considère la fonction g définie sur \mathbb{R} par : $g(x) = x^3 + 3x + 2$

- 1. Étudier les limites de g, aux bornes de D_q .
- 2. Calculer l'expression de sa dérivée g'(x), puis dresser le tableau de variations de la fonction g.
- 3. Montrer que l'équation g(x) = 0 admet une unique solution α dans l'intervalle [-1; 0]
- 4. Donner une valeur approchée de α à 10^{-1} près, en utilisant la méthode de dichotomie.
- 5. Déduire des questions précédentes le signe de la fonction q suivant les valeurs de x.

Partie B : On considère la fonction f définie sur \mathbb{R} par :

$$f(x) = \frac{x^3 - 1}{x^2 + 1}$$

On note aussi (C_f) sa représentation graphique dans le plan muni d'un repère orthogonal (O, \vec{i}, \vec{j})

- 1./ Étudier les limites de f, aux bornes de D_f .
- 2./ Montrer que, pour tout $x \in \mathbb{R}$,

$$f'(x) = \frac{xg(x)}{(x^2+1)^2}$$

- 3./ En déduire le tableau de variations de la fonction f. (On précisera la valeur de $f(\alpha)$)
- 4./ Déterminer l'équation de la tangente (T) à (\mathcal{C}_f) au point d'abscisse $x_0 = 0$
- 5.a) Montrer que (C_f) admet une asymptote oblique (A.O) (on précisera son équation) en $\pm \infty$.
 - b) Tracer (T), $(\mathcal{A}.\mathcal{O})$ et (\mathcal{C}_f) . (unités graphiques conseillées : $1\|\vec{i}\| = 2$ cm, $1\|\vec{j}\| = 4$ cm)
- 6./ Construire dans le même repère la courbe de h définie par :

$$h(x) = |f(x)|$$