1 Zahlensysteme

Umrechnen von Dezimalzahlen in andere Zahlensysteme

Die Dezimalzahl 338 wird ins 5er-System umgewandelt:

- 338 : 5 = 67 Rest 3
- 67:5=13 Rest 2
- 13:5=2 Rest 3
- 2:5=0 Rest 2
- Rückwärts gelesen: 2323

Umrechnen von anderen Zahlensystemen in Dezimalzahlen

Die Zahl 20022 (3er-System) wird ins Dezimalsystem umgewandelt:

- $2 * 3^0 = 2$
- $2 * 3^1 = 6$
- $0*3^2=0$
- $0 * 3^3 = 0$
- $2*3^4 = 162$
- 2 + 6 + 0 + 0 + 162 = 170

1.1 Negative Zahlen

1.1.1 Einerkomplement

- 1. Die Zahl –6 wird ins Dualsystem umgewandelt: 6 = 0110
- 2. Das Einerkomplement wird gebildet, indem alle Bits invertiert werden: 1001
- 3. Das Ergebnis ist –6 im Einerkomplement: 1001

1.1.2 Zweierkomplement

- 1. Subtraktion ist auch eine Addition mit einer negativen Zahl 2-6=2+(-6)=-4
- 2. Die Addition 2 + (-6) aufschreiben
- 3. Zahlen aus dem Dezimal- ins Dualsystem umschreiben. 2 = 0010;6 = 0110
- 4. Da wir mit einer negativen Zahl rechnen –6, müssen wir das Komplement (1001) bilden und mit 1 (0001) addieren, damit wir das sogenannte Zweierkomplement erhalten.

• 5. Addition vom Komplement und 1:

1001
+0001
1010

• 6. Addition mit der 2 und –6 2+(–6):

0010
1010
1100
=-4

Kurzgesagt: Um ein Zweierkomplement zu bilden muss man invertieren und mit1 (0001) addieren.

2 Digitaltechnik

2.1 Operatoren

- UND-Verknüpfung (AND): $A \cdot B$
- ODER-Verknüpfung (OR): A + B
- NICHT-Verknüpfung (NOT): \overline{A}
- Exklusiv-ODER-Verknüpfung (XOR): $A \oplus B$
- NAND-Verknüpfung: $\overline{A \cdot B}$
- NOR-Verknüpfung: $\overline{A+B}$

3 Informationstheorie

3.1 Typen von Datenquellen

3.1.1 Discrete Memoryless Source (DMS)

- Discrete heisst, dass die Quelle (zeitlich) einzelne Ereignisse liefert.
- Memoryless bedeutet, die Quelle erinnert sich beim Produzieren eines Ereignisses nicht an die Vorgeschichte. → Die Ereignisse sind (statistisch) unabhängig voneinander

3.1.2 Binary Memoryless Source (BMS)

- Bei dieser Quelle handelt es sich um eine DMS, die aber nur zwei verschiedene Ereignisse erzeugt.
- Ausgabe ist eine Folge von 0 und 1

3.2 Zweier-Logarithmus

$$x = log_2(K) = \frac{log_{10}(K)}{log_{10}(2)}$$

3.3 Gleiche Wahrscheinlichkeit

- Je mehr Fälle es gibt, desto seltener tritt ein bestimmtes Ereignis ein.
- Je seltener ein Ereignis ist, desto höher ist sein Informationsgehalt.
- N sei wieder die Anzahl der möglichen Ereignisse. Wenn alle Ereigniswerte x_n die Gleiche Auftretungswahrscheinlichkeit $P(x_n)$ haben, gilt:

$$P(x_n) = \frac{1}{N} \to N = \frac{1}{P(x_n)}$$

3.4 Informationsgehalt von Ereignissen

- Je seltener ein Ereignis eintritt, desto grösser ist der Informationsgehalt (Überraschungseffekt)
- Die folgende Formel gilt allgemein:

$$I(x_n) = log_2(\frac{1}{P(x_n)})$$

3.5 Entropie

Den mittleren Informationsgehalt von Quellen nennt man Entropie:

$$H(X) = \sum_{n=0}^{N-1} P(x_n) \cdot I(x_n) = \sum_{n=0}^{N-1} P(x_n) \cdot log_2(P(x_n))$$

Die Masseinheit der Entropie ist Bit/Symbol.

3.5.1 Entropie Binary Memoryless Source

Eine BMS kennt nur zwei Symbole. Ist p die Auftretungswahrscheinlichkeit des eines Symbols, folgt dass (1-p) jene des anderen Symbols ist.

$$H_b = p \cdot log_2(\frac{1}{p}) + (1-p) \cdot log_2(\frac{1}{1-p})$$

4 Quellencodierung

4.1 Redundanz

4.1.1 Codewortlänge

Symbol	Code	Codewortlänge
x_0	$c_0 = (10)$	$\ell_0 = 2Bit$
x_1	$c_1 = (110)$	$\ell_1 = 3Bit$
x_2	$c_2 = (1110)$	$\ell_2 = 4Bit$