ME 7112: FINITE ELEMENT METHOD - Fall 2023

Assignment 1 (Due by 11:59 pm on 2023/09/25 Mon.)

Problem 1

A flat bar of rectangular cross section, length L, and constant thickness t is subjected to tension by forces P (see figure). The width of the bar varies linearly from b_1 at the smaller end to b_2 at the fixed end. Assume that the angle of taper is small.

1. Derive the following formula for the elongation of the bar:

$$\delta = \frac{PL}{Et(b_2 - b_1)} \ln \frac{\mathbf{b}_2}{\mathbf{b}_1}$$

- 2. Solve the elongation by your FEM code, assuming L=5 ft, t=1.0 in., P=25 k, $b_1=4.0$ in., $b_2=6.0$ in., and $E=30\times10^6$ psi.
- 3. Please check your finite element results by comparing the calculation in 2. with the analytical solution in 1.
- 4. Make some comments.

Problem 2

The fixed-end bar ABCD consists of three prismatic segments, as shown in the figure. The end segments have cross-sectional area $A_1=840~{\rm mm}^2$ and length $L_1=200~{\rm mm}$. The middle segment has cross-sectional area $A_2=1260~{\rm mm}^2$ and length $L_2=250~{\rm mm}$. Loads P_B and P_C are equal to 25.5 kN and 17.0 kN, respectively.

- 1. Determine the reactions R_A and R_D at the fixed supports by hand.
- 2. Determine the compressive axial force F_{BC} in the middle segment of the bar by hand.
- 3. Solve 1. by your FEM code.
- 4. Solve 2. by your FEM code.
- 5. Please check your finite element results by comparing the calculation in 3. and 4. with the analytical solution in 1. and 2. correspondingly.
- 6. Make some comments.

Problem 3

A flat bar with a circular hole shown in the figure is subjected to tensile forces P=2.5 kN. The bar has thickness t=5.0 mm.

- 1. Determine the maximum stress for hole diameters d=12 mm if the width b=60 mm by hand along with the stress-concentration factor K chart below.
- 2. Solve 1. by your FEM code.
- 3. Please check your finite element results by comparing the calculation in 2. and with the analytical solution in 1.
- 4. Make some comments.

Problem 4

A flat bar with shoulder fillets shown in the figure is subjected to tensile forces P=2.5 kN. The bar has thickness t=5.0 mm.

1. Determine the maximum stress for fillet radii R=6 mm if the bar widths are b=60 mm and c=40 mm by hand along with the stress-concentration factor K chart below.

- 2. Solve 1. by your FEM code.
- 3. Please check your finite element results by comparing the calculation in 2. and with the analytical solution in 1.
- 4. Make some comments.

