Programación orientada a objetos

Ricardo Pérez López

IES Doñana, curso 2019/2020

Índice general

1.	Intro	oducción 2
	1.1.	Recapitulación
	1.2.	La metáfora del objeto
	1.3.	Perspectiva histórica
	1.4.	Lenguajes orientados a objetos
2.	Con	ceptos básicos 4
	2.1.	Clase
	2.2.	Objeto
		2.2.1. La antisimetría dato-objeto
	2.3.	Estado
		2.3.1. Atributos
	2.4.	Paso de mensajes
		2.4.1. Ejecución de métodos
		2.4.2. Invocación de métodos
		2.4.3. Métodos <i>mágicos</i>
	2.5.	Identidad
		2.5.1. Igualdad
		Encapsulación
	2.7.	Herencia
	2.8.	Polimorfismo
3.		básico de objetos 21
	3.1.	Instanciación
		3.1.1. new
		3.1.2. instanceof
	3.2.	Propiedades
		3.2.1. Acceso y modificación
		Referencias
	3.4.	Clonación de objetos
		Comparación de objetos
	3.6.	Destrucción de objetos
		3.6.1. Recolección de basura

	3.7. Métodos	
4.	Clases básicas	22
	4.1. Cadenas	22
	4.1.1. Inmutables	22
	4.1.2. Mutables	22
	4.1.3. Conversión a String	22
	4.2. Arrays	22
	4.3. Clases wrapper	22
	4.3.1. Conversiones de empaquetado/desempaquetado (boxing/unboxing)	22
5.	Lenguaje UML	22
	5.1. Diagramas de clases	23
	5.2. Diagramas de objetos	23
	5.3. Diagramas de secuencia	23

1. Introducción

1.1. Recapitulación

Recordemos lo que hemos aprendido hasta ahora:

- La abstracción de datos nos permite definir tipos de datos complejos llamados tipos abstractos de datos (TAD), que se representan únicamente mediante las operaciones que manipulan esos datos y con independencia de su implementación.
- Las funciones pueden tener **estado interno** usando funciones de orden superior y variables no locales.
- Una función puede representar un dato.
- Un dato puede tener estado interno usando el estado interno de la función que lo representa.

Además:

- El paso de mensajes agrupa las operaciones que actúan sobre ese dato dentro de una función que responde a diferentes mensajes despachando a otras funciones dependiendo del mensaje recibido.
- La función que representa al dato **encapsula su estado interno junto con las operaciones** que lo manipulan en *una sola unidad sintáctica* que oculta sus detalles de implementación.

En conclusión:

Una función, por tanto, puede implementar un tipo abstracto de datos.

1.2. La metáfora del objeto

Al principio, distinguíamos entre funciones y datos: las funciones realizan operaciones sobre los datos y éstos esperan pasivamente a que se opere con ellos.

Cuando empezamos a representar a los datos con funciones, vimos que los datos también pueden encapsular **comportamiento**.

Esos datos ahora representan información, pero también **se comportan** como las cosas que representan.

Por tanto, los datos ahora saben cómo reaccionar ante los mensajes que reciben cuando las demás partes del programa les envían mensajes.

Esta forma de ver a los datos como objetos activos que se relacionan entre sí y que son capaces de reaccionar y cambiar su estado interno en función de los mensajes que reciben, da lugar a todo un nuevo paradigma de programación llamado **orientación a objetos** o **programación orientada a objetos**.

Definición:

La **programación orientada a objetos** es un paradigma de programación en el que los programas son vistos como formados por entidades llamadas **objetos** que recuerdan su propio **estado interno** y que se comunican entre sí mediante el **paso de mensajes** que se intercambian con la finalidad de:

cambiar sus estados internos, compartir información y solicitar a otros objetos el procesamiento de dicha información.

La **programación orientada a objetos** (también llamada **OOP**, del inglés *Object-Oriented Programming*) es un método para organizar programas que reúne muchas de las ideas vistas hasta ahora.

Al igual que las funciones en la abstracción de datos, los objetos imponen barreras de abstracción entre el uso y la implementación de los datos.

Al igual que los diccionarios y funciones de despacho, los objetos responden a peticiones que otros objetos le hacen en forma de mensajes para que se comporte de determinada manera.

Los objetos tienen un estado interno local al que no se puede acceder directamente desde el entorno global, sino que debe hacerse por medio de las operaciones que proporciona el objeto.

A efectos prácticos, por tanto, los objetos son datos abstractos.

El sistema de objetos de Python proporciona una sintaxis cómoda para promover el uso de estas técnicas de organización de programas.

Gran parte de esta sintaxis se comparte entre otros lenguajes de programación orientados a objetos.

Ese sistema de objetos ofrece algo más que simple comodidad:

- Proporciona una nueva metáfora para diseñar programas en los que varios agentes independientes interactúan dentro del ordenador.
- Cada objeto agrupa el estado local y el comportamiento de una manera que abstrae la complejidad de ambos.

- Los objetos se comunican entre sí y se obtienen resultados útiles como consecuencia de su interacción.
- Los objetos no sólo transmiten mensajes, sino que también comparten el comportamiento entre otros objetos del mismo tipo y heredan características de otros tipos relacionados.

El paradigma de la programación orientada a objetos tiene su propio vocabulario que apoya la metáfora del objeto.

1.3. Perspectiva histórica

1.4. Lenguajes orientados a objetos

2. Conceptos básicos

2.1. Clase

Una clase es una construcción sintáctica que los lenguajes de programación orientados a objetos proporcionan como azúcar sintáctico para **implementar tipos abstractos de datos** de una forma cómoda y directa sin necesidad de usar funciones de orden superior, estado local o diccionarios de despacho.

En programación orientada a objetos:

Se habla siempre de **clases** y no de *tipos abstractos de datos*.

Una clase es la implementación de un tipo abstracto de datos.

Las clases definen tipos de datos de pleno derecho en el lenguaje de programación.

Recordemos el ejemplo del tema anterior en el que implementamos el tipo abstracto de datos **Depósito** mediante la siguiente **función**:

```
def deposito(fondos):
    def retirar(cantidad):
        nonlocal fondos
        if cantidad > fondos:
            return 'Fondos insuficientes'
        fondos -= cantidad
        return fondos
    def ingresar(cantidad):
        nonlocal fondos
        fondos += cantidad
        return fondos
    def saldo():
        return fondos
    def despacho(mensaje):
        if mensaje == 'retirar':
            return retirar
```

```
elif mensaje == 'ingresar':
        return ingresar
elif mensaje == 'saldo':
        return saldo
else:
        raise ValueError('Mensaje incorrecto')
return despacho
```

Ese mismo TAD se puede implementar como una clase de la siguiente forma:

```
class Deposito:
    def __init__(self, fondos):
        self.fondos = fondos

    def retirar(self, cantidad):
        if cantidad > self.fondos:
            return 'Fondos insuficientes'
        self.fondos -= cantidad
        return self.fondos

    def ingresar(self, cantidad):
        self.fondos += cantidad
        return self.fondos

    def saldo(self):
        return self.fondos
```

Más tarde estudiaremos los detalles técnicos que diferencian ambas implementaciones, pero ya apreciamos que por cada operación sigue habiendo una función (aquí llamada **método**), que desaparece la función despacho y que aparece una extraña función __init__.

La definición de una clase es una estructura sintáctica que crea su propio ámbito y que está formada por una secuencia de sentencias que se ejecutarán cuando la ejecución del programa alcance dicha definición:

Todas las definiciones que se hagan dentro de la clase serán **locales** a ella, al encontrarse dentro del ámbito de dicha clase.

Por ello, las funciones definidas dentro de una clase pertenecen a dicha clase.

Por ejemplo, las funciones __init__, retirar, ingresar y saldo son locales a la clase Deposito y sólo existen dentro de ella.

Las funciones definidas dentro de una clase se denominan métodos.

Si ejecutamos la anterior definición en el Pythontutor, observaremos que se crea en memoria una estructura similar al diccionario de despacho que creábamos antes a mano, y que asocia el nombre de cara operación con la función (el método) correspondiente.

Esa estructura se liga al nombre de la clase en el marco del ámbito donde se haya declarado dicha clase (normalmente será el marco global).

La clase Deposito en memoria

2.2. Objeto

Un **objeto** representa un **dato abstracto** de la misma manera que una *clase* representa un *tipo abstracto de datos*.

Es decir: un objeto es un caso particular de una clase, motivo por el que también se le denomina **instancia de una clase**.

Un objeto es un dato que pertenece al tipo definido por la clase de la que es instancia.

También se puede decir que «**el objeto** *pertenece* a la clase» aunque sea más correcto decir que «**es** *instancia* de la clase».

El proceso de crear un objeto a partir de una clase se denomina instanciar la clase o instanciación.

En un lenguaje orientado a objetos *puro*, todos los datos que manipula el programa son objetos y, por tanto, instancias de alguna clase.

Existen lenguajes orientados a objetos *impuros* o *híbridos* en los que coexisten objetos con otros datos que no son instancias de clases.

Python es considerado un lenguaje orientado a objetos **puro**, ya que en Python todos los datos son objetos.

Por ejemplo, en Python:

- El tipo int es una clase.
- El entero 5 es un objeto, instancia de la clase int.

Java es un lenguaje orientado a objetos **impuro**, ya que un programa Java manipula objetos pero también manipula otros datos llamados *primitivos*, que no son instancias de ninguna clase sino que pertenecen a un *tipo primitivo* del lenguaje.

Por ejemplo, en Java:

- El tipo String es una clase, por lo que la cadena "Hola" es un objeto, instancia de la clase String.
- El tipo int es un tipo primitivo del lenguaje, por lo que el número 5 no es ningún objeto, sino un dato primitivo.

Las clases, por tanto, son como *plantillas* para crear objetos con el mismo comportamiento y (posiblemente) la misma estructura interna.

En Python podemos instanciar una clase (creando así un nuevo objeto) llamando a la clase como si fuera una función, del mismo modo que hacíamos con la implementación funcional que hemos estado usando hasta ahora:

```
>>> dep = Deposito(100)
>>> dep
<__main__.Deposito object at 0x7fba5a16d978>
```

Para saber la clase a la que pertenece el objeto, se usa la función type (recordemos que en Python todos los tipos son clases):

```
>>> type(dep)
<class '__main__.Deposito'>
```

Se nos muestra que la clase del objeto dep es __main__.Deposito, que representa la clase Deposito definida en el módulo __main__.

Cuando se ejecuta el siguiente código:

```
>>> dep = Deposito(100)
```

lo que ocurre es lo siguiente:

- 1. Se crea en memoria una instancia de la clase Deposito.
- Se invoca el método __init__ sobre el objeto recién creado (ya hablaremos de ésto más adelante).
- 3. La expresión Deposito(100) devuelve una **referencia** al nuevo objeto, que representa, a grandes rasgos, la posición de memoria donde se encuentra almacenado el objeto.
- 4. Esa referencia es la que se almacena en la variable dep. Es decir: en la variable no se almacena el objeto como tal, sino una referencia al objeto.

En nuestro caso, 0x7fba5a16d978 es la dirección de memoria donde está almacenado el objeto al que hace referencia la variable dep:

```
>>> dep
<__main__.Deposito object at 0x7fba5a16d978>
```

Los objetos tienen existencia propia e independiente y existirán en la memoria siempre que haya al menos una variable que le haga referencia.

Si hacemos:

```
dep1 = Deposito(100)
dep2 = dep1
```

tendremos dos variables que contienen la misma referencia y, por tanto, **se refieren (o apuntan) al mismo objeto** (recordemos que las variables no contienen al objeto en sí mismo, sino una referencia a éste).

Hasta ahora hemos llamado **alias** a este fenómeno, es decir, hasta ahora hemos dicho que esas dos variables son alias una de la otra.

A partir de ahora diremos que esas dos variables contienen la misma referencia o que hacen referencia al mismo objeto.

Gráficamente, el caso anterior se puede representar de la siguiente forma:

Dos variables que apuntan al mismo objeto

En el momento en que un objeto se vuelva inaccesible (cosa que ocurrirá cuando no haya ninguna variable en el entorno que contenga una referencia a dicho objeto), el intérprete lo marcará como candidato para ser eliminado.

Cada cierto tiempo, el intérprete activará el **recolector de basura**, que es un componente que se encarga de liberar de la memoria a los objetos que están marcados como candidatos para ser eliminados.

Por tanto, el programador Python no tiene que preocuparse de gestionar manualmente la memoria ocupada por los objetos que componen su programa.

Por ejemplo:

2.2.1. La antisimetría dato-objeto

Se da una curiosa contra-analogía entre los conceptos de dato y objeto:

- Los objetos ocultan sus datos detrás de abstracciones y exponen las funciones que operan con esos datos.
- Las estructuras de datos exponen sus datos y no contienen funciones significativas.

Son definiciones virtualmente opuestas y complementarias.

2.3. Estado

Los objetos son datos abstractos que poseen su propio estado interno, el cual puede cambiar durante la ejecución del programa como consecuencia de los mensajes recibidos o enviados por los objetos.

Eso significa que los objetos son datos mutables.

Dos objetos distintos tendrán estados internos distintos.

2.3.1. Atributos

Las variables de estado que almacenan el estado interno del objeto se denominan, en terminología orientada a objetos, **atributos**, **campos** o **propiedades** del objeto.

Los atributos se implementan como variables locales al objeto.

Cada vez que se crea un objeto, se le asocia una zona de memoria que almacena los atributos del mismo de forma similar a un *marco*.

Pero es importante entender que **los objetos no son marcos**. Entre otras cosas, los marcos se almacenan en la pila, mientras que los objetos residen en el *montículo*.

Objeto dep y su atributo fondos

Con Pythontutor podemos observar las estructuras que se forman al declarar la clase y al instanciar dicha clase en un nuevo objeto:

```
class Deposito:
    def __init__(self, fondos):
        self.fondos = fondos

    def retirar(self, cantidad):
        if cantidad > self.fondos:
            return 'Fondos insuficientes'
        self.fondos -= cantidad
        return self.fondos

    def ingresar(self, cantidad):
        self.fondos += cantidad
        return self.fondos

    def saldo(self):
        return self.fondos

dep = Deposito(100)
```


La clase Deposito y el objeto dep en memoria

En Python es posible acceder directamente al estado interno de un objeto (o, lo que es lo mismo, al valor de sus atributos), cosa que, en principio, podría considerarse una violación del principio de ocultación de información y del concepto mismo de abstracción de datos.

Incluso es posible cambiar directamente el valor de un atributo desde fuera del objeto, o crear atributos nuevos dinámicamente.

Todo esto puede resultar chocante para un programador de otros lenguajes, pero en la práctica resulta útil al programador por la naturaleza dinámica del lenguaje Python y por el estilo de programación que promueve.

En Python, la única forma de acceder a un atributo de un objeto es usando la *notación punto*: objeto . atributo

Por ejemplo, para acceder al atributo fondos de un objeto dep de la clase Deposito, se usaría la expresión dep.fondos:

```
>>> dep = Deposito(100)
>>> dep.fondos
100
```

Y podemos cambiar el valor del atributo mediante asignación (cosa que, en general, no resultaría aconsejable):

```
>>> dep.fondos = 400
>>> dep.fondos
400
```

Por supuesto, dos objetos distintos pueden tener valores distintos en sus atributos:

```
>>> dep1 = Deposito(100)
>>> dep2 = Deposito(400)
>>> dep1.fondos  # el atributo fondos del objeto dep1 vale 100
100
>>> dep2.fondos  # el mismo atributo en el objeto dep2 vale 400
400
```


La clase Deposito y los objetos dep1 y dep2 en memoria

Como cualquier variable en Python, un atributo empieza a existir en el momento en el que se le asigna un valor:

```
>>> dep.otro
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AttributeError: 'Deposito' object has no attribute 'otro'
>>> dep.otro = 'hola'
>>> dep.otro
'hola
```

Por tanto, en Python los atributos de un objeto se crean en tiempo de ejecución mediante una simple asignación.

Este comportamiento contrasta con el de otros lenguajes de programación, como por ejemplo en Java, donde los atributos de un objeto vienen determinados de antemano por la clase a la que pertenece y siempre son los mismos.

Es decir: en Java, dos objetos de la misma clase siempre tendrán los mismos atributos (aunque el mismo atributo puede tener valores distintos en ambos objetos, naturalmente).

El comportamiento dinámico de Python a la hora de crear atributos permite resultados interesantes imposibles de conseguir en Java, como que dos objetos distintos de la misma clase puedan poseer distintos atributos:

```
>>> dep1 = Deposito(100)
>>> dep2 = Deposito(400)
>>> dep1.uno = 'hola'  # el atributo uno sólo existe en dep1
>>> dep2.otro = 'adiós'  # el atributo otro sólo existe en dep2
>>> dep1.uno
'hola'
>>> dep2.uno
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AttributeError: 'Deposito' object has no attribute 'uno'
>>> dep2.otro
'adiós'
>>> dep1.otro
>>> dep1.otro
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AttributeError: 'Deposito' object has no attribute 'otro'
```

Con Pythontutor podemos observar lo que ocurre al instanciar dos objetos y crear atributos distintos en cada objeto:

```
class Deposito:
    def __init__(self, fondos):
        self.fondos = fondos

    def retirar(self, cantidad):
        if cantidad > self.fondos:
            return 'Fondos insuficientes'
        self.fondos -= cantidad
        return self.fondos

    def ingresar(self, cantidad):
        self.fondos += cantidad
        return self.fondos

    def saldo(self):
```

```
return self.fondos

dep1 = Deposito(100)
dep2 = Deposito(400)
dep1.uno = 'hola'
dep2.otro = 'adiós'
```


La clase Deposito y los objetos dep1 y dep2 con distintos atributos

Otro ejemplo: si tenemos el número complejo 4 + 3 j, podemos preguntar cuál es su parte real y su parte imaginaria (que son atributos del objeto):

```
>>> c = 4 + 3j
>>> c
(4+3j)
>>> c.real
4.0
>>> c.imag
3.0
```

Pero esos atributos no se pueden modificar directamente, ya que son de sólo lectura:

```
>>> c.real = 9.0
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AttributeError: readonly attribute
```

2.4. Paso de mensajes

Como las clases implementan las operaciones como métodos, el paso de mensajes se realiza ahora invocando sobre el objeto el método correspondiente a la operación asociada al mensaje que se enviaría al objeto.

Por ejemplo, si tenemos el objeto dep (una instancia de la clase Deposito) y queremos enviarle el mensaje saldo para saber cuál es el saldo actual de ese depósito, invocaríamos el método saldo sobre el objeto dep de esta forma:

```
>>> dep.saldo()
100
```

Si la operación requiere de argumentos, se le pasarán al método también:

```
>>> dep.retirar(25)
75
```

2.4.1. Ejecución de métodos

En Python, la ejecución de un método m con argumentos a_1, a_2, \ldots, a_n sobre un objeto o que es instancia de la clase C tiene esta forma:

$$o.m(a_1, a_2, ..., a_n)$$

Y el intérprete lo traduce por una llamada a función con esta forma:

$$C.m(o,a_1,a_2,\ldots,a_n)$$

Es decir: el intérprete llama a la función *m* definida en la clase *C* y le pasa el objeto *o* como primer argumento (el resto de los argumentos originales irían a continuación).

Por ejemplo, cuando hacemos:

```
>>> dep.retirar(25)
```

equivale a hacer:

```
>>> Despacho.retirar(dep, 25)
```

De hecho, el intérprete traduce el primer código al segundo automáticamente.

Esto facilita la implementación del intérprete, ya que todo se convierte en llamadas a funciones.

2.4.2. Invocación de métodos

Esa es la razón por la que los métodos se definen siempre con un parámetro extra que representa el objeto sobre el que se invoca el método (o, dicho de otra forma, el objeto que recibe el mensaje).

Ese parámetro extra (por regla de estilo) se llama siempre self, si bien ese nombre no es ninguna palabra clave y se podría usar cualquier otro.

Por tanto, siempre que definamos un método, lo haremos como una función que tendrá siempre un parámetro extra que será siempre el primero de sus parámetros y que se llamará self.

Por ejemplo, en la clase Deposito, obsérvese que todos los métodos tienen self como primer parámetro:

```
class Deposito:
    def __init__(self, fondos):
        self.fondos = fondos

    def retirar(self, cantidad):
        if cantidad > self.fondos:
            return 'Fondos insuficientes'
        self.fondos -= cantidad
        return self.fondos

    def ingresar(self, cantidad):
        self.fondos += cantidad
        return self.fondos

    def saldo(self):
        return self.fondos
```

El método saldo de la clase Deposito recibe un argumento self que, durante la llamada al método, contendrá el objeto sobre el que se ha invocado dicho método:

```
def saldo(self):
    return self.fondos
```

En este caso, contendrá el objeto del que se desea conocer los fondos que posee.

Por tanto, dentro de saldo, accedemos a los fondos del objeto usando la expresión self. fondos, y ese es el valor que retorna el método.

Dentro del programa, la expresión dep.saldo() se traducirá como Deposito.saldo(dep).

Es importante recordar que **el parámetro self se pasa automáticamente** durante la llamada al método y, por tanto, **no debemos pasarlo nosotros** o se producirá un error por intentar pasar más parámetros de los requeridos por el método.

El método ingresar tiene otro argumento además del self, que es la cantidad a ingresar:

```
def ingresar(self, cantidad):
    self.fondos += cantidad
    return self.fondos
```

En este caso, self contendrá el objeto en el que se desea ingresar la cantidad deseada.

Dentro del método ingresar, la expresión self. fondos representa el valor del atributo fondos del objeto self.

Por tanto, lo que hace el método es incrementar el valor de dicho atributo en el objeto self, sumándole la cantidad indicada en el parámetro.

Por ejemplo, la expresión dep.ingresar(35) se traducirá como Deposito.ingresar(dep, 35). Por tanto, en la llamada al método, self valdrá dep y cantidad valdrá 35.

2.4.3. Métodos mágicos

En Python, los métodos cuyo nombre empieza y termina por __ se denominan **métodos mágicos** y tienen un comportamiento especial.

En concreto, el método __init__ se invoca automáticamente cada vez que se instancia un nuevo objeto a partir de una clase.

Coloquialmente, se le suele llamar el **constructor** de la clase, y es el responsable de *inicializar* el objeto de forma que tenga un estado inicial adecuado desde el momento de su creación.

Entre otras cosas, el constructor se encarga de asignarle los valores iniciales adecuados a los atributos del objeto.

Ese método recibe como argumentos (además del self) los argumentos indicados en la llamada a la clase que se usó para instanciar el objeto.

Por ejemplo: en la clase Deposito, tenemos:

```
class Deposito:
    def __init__(self, fondos):
        self.fondos = fondos
# ...
```

Ese método __init__ se encarga de crear el atributo fondos del objeto que se acaba de crear (y que recibe a través del parámetro self), asignándole el valor del parámetro fondos.

Cuidado: no confudir la expresión self.fondos con fondos. La primera se refiere al atributo fondos del objeto self, mientras que la segunda se refiere al parámetro fondos.

Cuando se crea un nuevo objeto de la clase Deposito, llamando a la clase como si fuera una función, se debe indicar entre paréntesis (como argumento) el valor del parámetro que luego va a recibir el método __init__ (en este caso, los fondos iniciales):

```
dep = Deposito(100)
```

La ejecución de este código produce el siguiente efecto:

- 1. Se crea en memoria una instancia de la clase Deposito.
- 2. Se invoca el método __init__ sobre el objeto recién creado, de forma que el parámetro self recibe una referencia a dicho objeto y el parámetro fondos toma el valor 100, que es el valor del argumento en la llamada a Deposito(100).

En la práctica, esto equivale a decir que la expresión Deposito(100) se traduce a $r_{init}(100)$, donde r es una referencia al objeto recién creado.

- 3. La expresión Deposito(100) devuelve la referencia al objeto.
- 4. Esa referencia es la que se almacena en la variable dep.

Comprobar el funcionamiento del constructor en Pythontutor.

En resumen: la expresión $C(a_1, a_2, ..., a_n)$ usada para crear una instancia de la clase C lleva a cabo las siguientes acciones:

1. Crea en memoria una instancia de la clase C y guarda en una variable temporal (llamémosla r, por ejemplo) una referencia al objeto recién creado.

- 2. Invoca a r_{-1} init__ $(a_1, a_2, ..., a_n)$
- 3. Devuelve r.

En consecuencia, los argumentos que se indican al instanciar una clase se enviarán al método __init__ de la clase, lo que significa que tendremos que indicar tantos argumentos (y del tipo apropiado) como espere el método __init__.

En caso contrario, tendremos un error:

```
>>> dep = Deposito() # no indicamos ningún argumento cuando se espera uno
Traceback (most recent call last):
   File "<stdin>", line 1, in <module>
TypeError: __init__() missing 1 required positional argument: 'fondos'
>>> dep = Deposito(1, 2) # mandamos dos argumentos cuando se espera sólo uno
Traceback (most recent call last):
   File "<stdin>", line 1, in <module>
TypeError: __init__() takes 2 positional arguments but 3 were given
```

Es importante tener en cuenta, además, que **el constructor __init__ no debe devolver ningún valor** (o, lo que es lo mismo, debe devolver None), o de lo contrario provocará un error de ejecución.

2.5. Identidad

Ya hemos dicho que los objetos tienen existencia propia e independiente.

La identidad describe la propiedad que tienen los objetos de distinguirse de los demás objetos.

Dos objetos del mismo tipo son **idénticos** si un cambio en cualquiera de los objetos provoca también el mismo cambio en el otro objeto.

O dicho de otra forma: dos objetos son idénticos si son intercambiables en el código fuente del programa sin que se vea afectado el comportamiento de éste.

Es evidente que dos objetos de distinto tipo no pueden ser idénticos.

En el momento en que introducimos la mutabilidad en nuestro modelo computacional, muchos conceptos que antes eran sencillos se vuelven problemáticos.

Por ejemplo, consideremos el problema de determinar si dos cosas son «la misma cosa».

Supongamos que hacemos:

```
def restador(cantidad):
    def aux(otro):
        return otro - cantidad
    return aux
res1 = restador(25)
res2 = restador(25)
```

¿Son res1 y res2 la misma cosa? Una respuesta aceptable podría ser que sí, ya que tanto res1 como res2 se comportan de la misma forma (los dos son funciones que restan 25 a su argumento). De hecho, res1 puede sustituirse por res2 en cualquier lugar de un programa sin que cambie el resultado.

En cambio, supongamos que hacemos dos llamadas a Deposito (100):

```
dep1 = Deposito(100)
dep2 = Deposito(100)
```

¿Son dep1 y dep2 la misma cosa? Evidentemente no, ya que al enviarles mensajes a uno y otro podemos obtener resultados distintos ante los mismos mensajes:

```
>>> dep1.retirar(20)
80
>>> dep1.saldo()
80
>>> dep2.saldo()
100
```

Incluso aunque podamos pensar que dep1 y dep2 son «iguales» en el sentido de que ambos han sido creados evaluando la misma expresión (Deposito(100)), no es verdad que podamos sustituir dep1 por dep2 en cualquier expresión sin cambiar el resultado de evaluar dicha expresión.

Es otra forma de decir que con los objetos no hay transparencia referencial, ya que se pierde en el momento en que incorporamos estado y mutabilidad en nuestro modelo computacional.

Pero al perder la transparencia referencial, la noción de lo que significa que dos objetos sean «el mismo objeto» se vuelve difícil de capturar de una manera formal. De hecho, el significado de «el mismo» en el mundo real que estamos modelando con nuetro programa es ya difícil de entender.

En general, sólo podemos determinar si dos objetos aparentemente idénticos son realmente «el mismo objeto» modificando uno de ellos y observando a continuación si el otro se ha cambiado de la misma forma.

Pero, ¿cómo podemos decir si un objeto ha «cambiado» si no es observando el «mismo» objeto dos veces y comprobando si ha cambiado alguna propiedad del objeto de la primera observación a la siguiente?

Por tanto, no podemos decir que ha habido un «cambio» sin alguna noción previa de «igualdad», y no podemos determinar la igualdad sin observar los efectos del cambio.

Un ejemplo de cómo puede afectar este problema en programación, sería considerar el caso en que Pedro y Pablo tienen un depósito con 100 € cada uno. Hay una enorme diferencia entre definirlo así:

```
dep_Pedro = Deposito(100)
dep_Pablo = Deposito(100)
```

v definirlo así:

```
dep_Pedro = Deposito(100)
dep_Pablo = dep_Pedro
```

En el primer caso, los dos depósitos son distintos. Las operaciones realizadas por Pedro no afectarán a la cuenta de Pablo, y viceversa.

En el segundo caso, en cambio, hemos definido a dep_Pablo para que sea exactamente la misma cosa que dep_Pedro.

Por tanto, ahora Pedro y Pablo son cotitulares de un depósito compartido, y si Pedro hace una retirada de efectivo a través de dep_Pedro, Pablo observará que hay menos dinero en dep_Pablo.

Estas dos situaciones, similares pero distintas, pueden provocar confusión al crear modelos computacionales. Concretamente, con el depósito compartido puede ser especialmente confuso el hecho de que haya un objeto (el depósito) con dos nombres distintos (dep_Pedro y dep_Pablo). Si estamos buscando todos los sitios de nuestro programa donde pueda cambiarse el depósito de dep_Pedro, tendremos que recordar buscar también los sitios donde se cambie a dep_Pablo.

Con respecto a los anteriores comentarios sobre «igualdad» y «cambio», obsérvese que si Pedro y Pablo sólo pudieran comprobar sus saldos y no pudieran realizar operaciones que cambiaran los fondos del depósito, entonces no existiría el problema de comprobar si los dos depósitos son distintos.

En general, siempre que no se puedan modificar los objetos, podemos suponer que un objeto compuesto se corresponde con la totalidad de sus partes.

Por ejemplo, un número racional está determinado por su numerador y su denominador. Pero este punto de vista deja de ser válido cuando incorporamos mutabilidad, donde un objeto compuesto tiene una «identidad» que es algo distinto de las partes que lo componen.

Un depósito sigue siendo «el mismo» depósito aunque cambiemos sus fondos haciendo una retirada de efectivo. Igualmente, podemos tener dos depósitos distintos con el mismo estado interno.

Esta complicación es consecuencia, no de nuestro lenguaje de programación, sino de nuestra percepción del depósito bancario como un objeto. Por ejemplo, no tendría sentido para nosotros considerar que un número racional es un objeto mutable con identidad puesto que al cambiar su numerador ya no tenemos «el mismo» número racional.

Como usamos **referencias** para referirnos a un determinado objeto y acceder al mismo, resulta fácil comprobar si dos objetos son *idénticos* (es decir, si son el mismo objeto) comparando referencias. Si las referencias son iguales, es que estamos ante un único objeto.

Esto es así ya que, por lo general, las referencias se corresponden con direcciones de memoria. Es decir: una referencia a un objeto normalmente representa la dirección de memoria donde se empieza a almacenar dicho objeto.

Dos objetos pueden ser **iguales** y, en cambio, no ser *idénticos*.

La forma de comprobar en Python si dos objetos son *idénticos* es usar el operador is que ya conocemos:

```
La expresión o is p devolverá True si tanto o como p son referencias al mismo objeto.
```

Por ejemplo:

```
>>> dep1 = Deposito(100)
>>> dep2 = dep1
>>> dep1 is dep2
True
```

En cambio:

```
>>> dep1 = Deposito(100)
>>> dep2 = Deposito(100)
>>> dep1 is dep2
False
```

2.5.1. Igualdad

En el código anterior:

```
dep1 = Deposito(100)
dep2 = Deposito(100)
```

es evidente que dep1 y dep2 hacen referencia a objetos separados y, por tanto, **no son idénticos**, ya que no se refieren *al mismo* objeto.

En cambio, sí podemos decir que **son iguales** ya que pertenecen a la misma clase, poseen el mismo estado interno y se comportan de la misma forma ante la recepción de la mismos mensajes en el mismo orden:

```
>>> dep1 = Deposito(100)
>>> dep2 = Deposito(100)
>>> dep1.ingresar(30)
130
>>> dep1.retirar(45)
85
>>> dep2.ingresar(30)
130
>>> dep2.retirar(45)
85
```

Sin embargo, si preguntamos al intérprete si son iguales, nos dice que no:

```
>>> dep1 == dep2
False
```

Esto se debe a que, en ausencia de otra definición de igualdad y mientras no se diga lo contrario, dos objetos de clases definidas por el programador son iguales si son idénticos.

Es decir: por defecto, x == y equivale a x is y.

Para cambiar ese comportamiento predeterminado, tendremos que indicar qué significa que dos instancias de nuestra clase son iguales.

Por ejemplo: ¿cuándo podemos decir que dos objetos de la clase Deposito son iguales?

En este caso es fácil: dos instancias de Deposito son iguales cuando tienen el mismo estado interno. O lo que es lo mismo: dos depósitos son iguales cuando tienen los mismos fondos.

Para implementar nuestra propia lógica de igualdad en nuestra clase, debemos definir en ella el método mágico __eq__.

Este método se invocará automáticamente cuando se hace una comparación con el operador == y el primer operando es una instancia de nuestra clase. El segundo operando se enviará como argumento en la llamda al método.

Dicho de otra forma:

- dep1 == dep2 equivale a dep1.__eq__(dep2), siempre que la clase de dep1 tenga definido el método __eq__.
- En caso contrario, seguirá valiendo lo mismo que dep1 is dep2, como acabamos de ver.

No es necesario preocuparse por el operador ! =, ya que Python 3 lo define automáticamente a partir del ==.

Una posible implementación del método __eq__ podría ser:

```
def __eq__(self, otro):
    if type(self) != type(otro):
        return NotImplemented # no tiene sentido comparar objetos de distinto tipo
    return self.fondos == otro.fondos # son iguales si tienen los mismos fondos
```

Se devuelve el valor especial NotImplemented cuando no tiene sentido comparar un objeto de la clase Deposito con un objeto de otro tipo.

Si introducimos este método dentro de la definición de la clase Deposito, tendremos el resultado deseado:

```
>>> dep1 = Deposito(100)
>>> dep2 = Deposito(100)
>>> dep1 == dep2
True

>>> dep1.retirar(30)
70
>>> dep1 == dep2
False
>>> dep2.retirar(30)
70
>>> dep1 == dep2
True
```

2.6. Encapsulación

2.7. Herencia

2.8. Polimorfismo

3. Uso básico de objetos

3.1. Instanciación

- 3.1.1. new
- 3.1.2. instanceof
- 3.2. Propiedades
- 3.2.1. Acceso y modificación

3.3. Referencias

- 3.4. Clonación de objetos
- 3.5. Comparación de objetos
- 3.6. Destrucción de objetos
- 3.6.1. Recolección de basura
- 3.7. Métodos
- 3.8. Constantes
- 4. Clases básicas
- 4.1. Cadenas
- 4.1.1. Inmutables
- 4.1.1.1. String
- 4.1.2. Mutables
- 4.1.2.1. StringBuffer
- 4.1.2.2. StringBuilder
- 4.1.2.3. StringTokenizer
- 4.1.3. Conversión a String
- 4.2. Arrays
- 4.3. Clases wrapper
- 4.3.1. Conversiones de empaquetado/desempaquetado (boxing/unboxing)
- 5. Lenguaje UML

- 5.1. Diagramas de clases
- 5.2. Diagramas de objetos
- 5.3. Diagramas de secuencia