Betriebssysteme und Netzwerke Vorlesung N08

Artur Andrzejak

Sicherungsschicht: Einführung

Sicherungsschicht: Begriffe

- Zur Vereinfachung behandeln wir Hosts und Router gleich und bezeichnen sie als Knoten (nodes)
- Die Kommunikationskanäle zwischen zwei (benachbarten) Knoten nennen wir Links (seltener als Leitungen)
- Ein Paket der Sicherungsschicht nennt man einen Rahmen (frame)
 - Rahmen kapseln Datagramme (= Pakete der Netzwerkschicht) ein

Sicherungsschicht (S-Schicht) ist dafür zuständig, ein Datagramm <u>nur</u> zwischen zwei <u>benachbarten</u> Knoten über ein Link zu übermitteln

Erinnerung: Internet-Protokollstapel

- Wie identifiziert man die Schicht?
 - Eine gutes Kriterium sind die Endpunkte der Kommunikation

Name	Endpunkte
Anwendungsschicht (application layer)	Mehrere <u>Programme</u> , jedes kann aus einem oder mehr Prozessen bestehen (z.B. Browser + Server)
Transportschicht (transport layer)	<u>Prozesse</u> (bzw. zugehörige Sockets – APIs des BS) auf einem oder mehreren Hosts
Netzwerkschicht (network layer)	Start- und End-Hosts (es wird <u>nicht</u> zwischen Prozessen auf einem Host unterschieden)
Sicherungsschicht (data link layer)	Zwei <u>direkt</u> verbundene Geräte (Host, Router, Switch) an den beiden Enden einer Teilstrecke
Bitübertragungss. (physical layer)	Elektronik der Leitungen oder Glasfaser an den Enden einer Teilstrecke

Dienste der Sicherungsschicht

- Erzeugen von Rahmen (framing)
 - Ein S-schichtprotokoll verkapselt alle Datagramme vor dem Transfer über einen Link in einem Rahmen
- Verlässliche Übertragung zwischen benachbarten Knoten (durch Wiederholungen der Übertragung)
 - Selten verwendet bei "fehlerfreien" Medien (Glasfaser, manche Kabel)
 - Wichtig bei Links mit hoher Fehlerrate, z.B. Mobilfunkverbindung
- Medienzugriff (link access)
 - ▶ Ein Medienzugriffsprotokoll (MAC-Protokoll, media access control protocol) legt die Regeln fest, mit denen ein Rahmen über einen physischen Link übertragen wird

Einschub: Typen von Links

- Punkt-zu-Punkt Links (point-to-point links)
 - D.h. 1 Sender, 1 Link, 1 Empfänger
 - MAC-Protokoll ist dann einfach, z.B. PPP für Einwahlmodems
- Broadcast-Übertragungskanal
 - Es können sich mehrere Knoten einen einzelnen Kanal teilen
 - => Mehrfachzugriff auf das Medium möglich
 - Ethernet
 - ▶ 802.11-Protokolle

Gem. Kabel (z.B. Kabel-Ethernet)

Radio als Medium (z.B. 802.11 WiFi)

Dienste der Sicherungsschicht /2

Flusskontrolle

Wichtig, da Knoten auf jeder Seite eines Links nur begrenzte Pufferkapazität für Rahmen haben

Fehlererkennung

 Ein sehr häufiger Dienst von S-Schichtprotokollen, da es sinnlos ist, fehlerhafte Pakete weiterzuleiten

Fehlerkorrektur

 Identifizieren und korrigieren von Bitfehler <u>ohne</u> wiederholte Übertragung

Halbduplex und Vollduplex Betrieb (Eigenschaft)

Bei einer Halbduplex-Übertragung kann ein Knoten nicht gleichzeitig senden und empfangen, bei Vollduplex schon

Wo ist die S-Schicht implementiert?

- In <u>jedem</u> Host, Router und Switch
- Hosts: Im Netzwerkadapter (network interface card, NIC)
 - Ethernet-Karte, PCMCI-Karte, 802.11-Karte (bzw. Chips auf dem Mainboard)
 - Implementiert S-Schicht und Bitübertragungsschicht
- Eine Kombination von Hardware, Software, Firmware

Kommunikation der Netzwerkadapter

Sender:

- Kapselt das Datagramm in dem Rahmen ein
- Fügt Daten der Fehlerkorrektur hinzu, führt Flusskontrolle aus, sorgt für verlässliche Übertragung usw.

Empfänger

- Überprüft auf Fehler; führt Flusskontrolle aus, sorgt für verlässliche Übertragung usw.
- Extrahiert Datagramm, gibt an die höhere Schicht weiter

Video: CCNA 1 DATA LINK LAYER Fundamentals CHAPTER SEVEN

MAC-Adressierung und ARP - Sicherungsschicht -

MicroNugget: What are IP and MAC Addresses? https://www.youtube.com/watch?v=V2SpN-OePzc

Erinnerung: Internet-Protokollstapel

- Wie identifiziert man die Schicht?
 - Eine gutes Kriterium sind die Endpunkte der Kommunikation

Name	Endpunkte
Anwendungsschicht (application layer)	Mehrere <u>Programme</u> , jedes kann aus einem oder mehr Prozessen bestehen (z.B. Browser + Server)
Transportschicht (transport layer)	<u>Prozesse</u> (bzw. zugehörige Sockets – APIs des BS) auf einem oder mehreren Hosts
Netzwerkschicht (network layer)	Start- und End-Hosts (es wird <u>nicht</u> zwischen Prozessen auf einem Host unterschieden)
Sicherungsschicht (data link layer)	Zwei <u>direkt</u> verbundene Geräte (Host, Router, Switch) an den beiden Enden einer Teilstrecke
Bitübertragungss. (physical layer)	Elektronik der Leitungen oder Glasfaser an den Enden einer Teilstrecke

MAC-Adressen

- Wir betrachten nun <u>Adressen, die eine physische</u> <u>Einheit</u> (NIC oder Port eines Routers) <u>identifizieren</u>
- Das sind MAC (Media Access Control)-Adressen
 - Andere Namen: LAN- oder physische- oder Ethernet-Adr.
- Funktion: Übermittlung des Rahmens von einem NIC zu einem NIC auf dem gleichen Link
 - Länge: 48 Bit (6 Bytes)
 - Festgelegt im ROM der NIC, oft kann sie auch via Software verändert werden

NIC = network interface card, d.h. Netzwerkkarte, Adapter

Bei einem *falschen MAC* wird die

MAC-Adresse immer
noch korrekt sein!

MAC-Adressen /2

Jeder NIC hat eine einmalige MAC-Adresse

- Jeder Adapter (NIC)
 überprüft, ob die im
 Rahmen befindliche
 MAC-Adresse des
 Ziels seiner eigenen
 entspricht
- Bei Übereinstimmung extrahiert der Adapter das beigefügte Datagramm und reicht es an die höheren Schichten im Protokollstapel weiter
- Sonst löscht der Adapter das Paket

MAC-Adressen /3

- Zuordnung von MAC-Adressen wird von <u>IEEE</u> (Institute of Electrical and Electronics Engineers) vorgenommen
 - Hersteller kaufen (für eine symbolische Summe) eine 24-Bit "große" Menge an MAC-Adressen

Analogie:

- MAC-Adressen: wie Social Security Number (<u>Link</u>), in D. wie Rentenversicherungsnummer (orts<u>un</u>abhängig)
- IP-Adressen: wie Postadressen, identifizieren den "Ort" (Subnetz), aber nicht die "Bewohner"
- MAC-Adressen haben eine flache Hierarchie => portabel
 - Eine NIC und ihre MAC-Adresse kann sofort in allen Subnetzen eingesetzt werden
- IP-Adressen sind hierarchisch und nicht portabel
 - Adresse hängt von dem Subnetz ab

ARP: Address Resolution Protocol

Wie bestimmt man die MAC-Adresse eines Hosts aus seiner IP-Adresse?

- ARP ist ein Protokoll, das bei IPv4-Adressierung auf Ethernet benutzt wird
 - IPv6: Neighbor Discovery Protocol (NDP)
- Jeder Knoten (Host, Router) hat eine ARP-Tabelle
- ARP-Tabelle: IP-zu-MAC Adressenzuordnung für (einige) Knoten, genauer:

<IP address; MAC address; TTL>

- TTL (Time To Live): Zeit, nach der die Zuordnung verfällt
 - ~20 Minuten

ARP: Gleiches Subnetz

- A möchte B ein Paket schicken, und die MAC-Adresse von B ist nicht in der Tabelle von A
- A macht einen Broadcast der Nachricht via "ARP Query" ...
 - Die die IP-Adresse von B enthält
 - Und Ziel-MAC-Adresse = FF-FF-FF-FF-FF (Broadcast)

- B erhält das ARP-Query-Paket und antwortet A mit eigener MAC-Adresse
 - Rahmen wird <u>nur</u> an die MAC-Adresse von A geschickt (unicast)
- A speichert die IP-zu-MAC
 Zuordnung in der eigenen ARP
 -Tabelle, bis diese Information ungültig wird

ARP-Nachrichtenformat

Bit 0-7	Bit 8–15	Bit 16–23	Bit 24–31		
Hardwareadresstyp (1)		Protokolladresstyp (0x0800)			
Hardwareadressgröße (6)	Protokolladressgröße (4)	Operation			
Quell-MAC-Adresse					
Quell-MAC-Adresse		Quell-IP-Adresse			
Quell-IP-Adresse		Ziel-MAC-Adresse			
Ziel-MAC-Adresse					
Ziel-IP-Adresse					

ARP: Routing in ein anderes Subnetz

Übertragung eines Pakets von A nach B via R

<u>Annahme</u>: A kennt die IP-Adresse von B

Es gibt <u>zwei</u> ARP-Tabellen in diesen Router, je eine pro NIC zu einem Subnetz

Routing in ein anderes Subnetz /2

- ▶ 111.111.111 erstellt ein IP-Datagramm mit dem Ziel 222.222.222.222
- ▶ 111.111.111 schlägt in seiner IP-Weiterleitungstabelle nach und stellt fest, dass dieses Paket über R (111.111.110) weitergeleitet werden muss
- 111.111.111.111 verwendet ARP, um die MAC-Adresse von 111.111.111.110 zu bestimmen
- ▶ 111.111.111 erstellt einen Rahmen der Sicherungsschicht mit E6-E9-00-17-2B-4B als Zieladresse
 - Dieser Rahmen enthält das IP-Datagramm von 111.111.111 an 222.222.222.222
- Die Netzwerkkarte von 111.111.111 sendet den Rahmen
- Die Netzwerkkarte von 111.111.111.110 empfängt den Ramen
- R packt das IP-Datagramm aus und stellt fest, dass es für 222.222.222 bestimmt ist
- Uber die IP-Weiterleitungstabelle stellt R fest, dass er das Datagramm direkt an 222.222.222 ausliefern kann
- R verwendet ARP, um die MAC-Adresse von 222.222.222 zu erfahren
- R erstellt einen Rahmen, der das Datagramm von 111.111.111.111 an 222.222.222.222 enthält, und sendet es an die so ermittelte MAC-Adresse

Hubs und Switches

Hubs: Einfache "Mehrfachsteckdosen"

- Bits, die bei einem Port ankommen, werden mit gleicher Geschwindigkeit an alle anderen weitergeleitet
- Alle Knoten am Hub können miteinander kollidieren
- Keine Pufferung, kein Kollisionserkennung am Hub

Switches: Paketverteiler in einem Subnetz

Switches: Eigenschaften

- Jeder Host hat einen dedizierten Link zum Switch
 - Links an einem Switch können unterschiedlichen Typ und Geschwindigkeit haben
- Switches puffern die Pakete: Hilfe bei Überlast
- Switches sind "Plug-and-Play"
 - keine Eingriffe nötig
 - Die Weiterleitung erfolgt anhand der MAC-Adressen
- Keine Kollisionen: wenn A an C schickt, bekommt nur C das Paket, sonst keiner
- Wie geht das?

Switch mit 6 Interfaces (1,2,3,4,5,6)

Switch-Tabelle

- Woher weiß dieser Switch, dass A über Link 1 erreichbar ist und z.B. C über Link 3?
- Jeder S. hat eine Switch-Tabelle mit Einträgen:
 - (MAC-Adresse des Hosts, Interface/Link-Nummer zum Host, Zeit des Eintrags)
- Wenn A zum C ein Paket schickt, erkennt S. anhand der Ziel-MAC-Adresse, dass das Paket nur an Interface 3 gehen soll
- Was passiert, wenn keine passende MAC-Adresse gefunden wird?

Switch mit 6 Interfaces (1,2,3,4,5,6)

Switch-Tabelle ist Selbstlernend

- Switch lernt, welche NICs (bzw. MAC-Adressen) an welchen Links erreichbar sind!
 - Wenn ein Rahmen über Link x ankommt, extrahiert der Switch die MAC-Adresse der Quelle
 - Falls es diese noch nicht in der Switch-Tabelle gibt, wird sie eingetragen / erneuert

Quelle: A

Ziel: A'

MAC-Adr	Interface	TTL
A	1	60

Switch: Filterung und Weiterleitung

Neuen Rahmen erhalten:

- 1. Aktualisiere die Switch-Tabelle (wie oben beschrieben)
- 2. Finde in der Switch-Tabelle den Eintrag X mit der Ziel-MAC-Adresse
- 3. if gefunden? then {
 if Ziel liegt auf dem Link, über den das Paket ankam?
 then ignoriere den Rahmen
 else leite den Rahmen an den Link weiter, der von
 dem Eintrag X angegeben wurde
 }
 else "Fluten"

schickt das Paket an alle Interfaces abgesehen von dem, an dem das Paket ankam

Switches vs. Router

- Router sind komplizierter und etwas langsamer
 - Sie manipulieren das Paket: TTL + Prüfsumme ändern, MAC-Adresse ändern....
- Switches lernen selbständig ohne Sys-Admins
 - Aber: Sie können <u>nur</u> innerhalb eines Subnets arbeiten
- Beide puffern und leiten weiter
 - Router: überprüfen Header der Netzwerkschicht (IP-Datagramme)
 - Switches schauen sich nur die Header der Sicherungsschicht an

Ethernet

Ethernet (Sicherungsschicht)

- Dominante Technologie für leitungsgebundene LANs
- Unter \$20 für eine NIC
- Erste umfassend eingesetzte Hochgeschwindigkeits-LAN-Technologie
- Einfacher und billiger als Alternativen
 - Token Ring, FDDI, ATM
- Geschwindigkeit gestiegen mit der Zeit: 10 Mbps 10 Gbps

Ursprünglicher Ethernet-Entwurf (1973) von Robert Metcalfe

Urheber und Gründer von 3Com (in 1979)

3Com: verkauft 2010 an HP

Topologien

- Bus-Topologie wurde bis zu 2000er Jahre eingesetzt
 - Die Nachrichten aller Knoten können miteinander kollidieren
 - Ggf. war der "Bus" ein Stern mit einem Hub in der Mitte
- Heutzutage: Switch-basierte Stern-Topologie
 - ▶ Ein aktiver Switch verhindert Kollisionen der Pakete, da nur diese nur an die tatsächlichen Ziele geschickt werden

Ethernet - Rahmenstruktur

- Die sendende NIC kapselt ein IP-Datagramm in einen Ethernet-Rahmen ein
- Präambel (Preamble):
 - 7 Bytes mit Muster 10101010 gefolgt von einem Byte mit Muster 10101011
 - Benutzt, um die Taktgeber des Sender und Empfängers zu synchronisieren & Beginn des Paketes zu erkennen
- Typ: Typ des nächsthöheren Protokolls (meistens IP, aber andere möglich: z.B. Novell IPX, AppleTalk)
- CRC (Prüfsumme): Wird beim Empfänger überprüft, bei Fehler wird der Rahmen verworfen

Ethernet – Rahmenstruktur /2

Adressen sind 6 Bytes lang

- Der Adapter überprüft, ob die im Rahmen befindliche MAC-Adresse des Ziels seiner eigenen entspricht
- Bei einer Übereinstimmung extrahiert der Adapter das beigefügte Datagramm und reicht es an die höheren Schichten im Protokollstapel weiter
- Gibt es keine Übereinstimmung, löscht der Adapter den Rahmen

Ethernet: Eigenschaften

- Ethernet ist verbindungslos und <u>un</u>zuverlässig
 - Der Empfänger schickt keine ACKs zu dem Sender
 - Verlässliche Übertragung wird durch höhere Schichten sichergestellt
- Der CSMA/CD-Algorithmus regelt den Zugriff der Systeme auf das gemeinsame Medium (<u>Link</u>)
 - Carrier Sense Multiple Access with Collision Detection
 - Eine Weiterentwicklung des <u>ALOHAnet</u> aus den 1960er-Jahren
- CSMA/CD funktioniert wie eine Party, auf der alle Gäste über ein gemeinsames Medium (die Luft) kommunizieren
 - Bevor sie zu sprechen beginnen, warten sie höflich darauf, dass der andere Gast zu reden aufgehört hat
 - Wenn zwei Gäste zur gleichen Zeit zu sprechen beginnen, stoppen beide und warten für eine kurze, zufällige Zeitspanne, bevor sie einen neuen Anlauf wagen

CSMA/CD-Algorithmus

- Entdeckt der Sender eine Kollision, sendet er zunächst ein 48-Bit langes Jam-Signal
- Danach legt er eine Pause ein, deren Länge mit exponentiellen Backoff-Verfahren bestimmt wird:
 - Wähle ein zufälliges K aus {0,1,2,...,2^m-1}, dabei ist m = Anzahl der Kollisionen (aufeinanderfolgenden)
 - Warte K*512
 Bitübertragungszeiten

CSMA/CD-Algorithmus /2

Exponential Backoff:

- Ziel: Passe die Länge der Pause an die gegenwärtige Buslast (load) an
 - Hohe Last: Zufälliges Warten soll länger sein

Jam-Signal:

Stellt sicher, dass alle anderen Sender die Kollision bemerken

Bitübertragungszeit

 0.1 Mikrosec. für 10 Mbps Ethernet; => bei K=1023 beträgt die Wartezeit ca. 50 Millisekunden

Siehe Java-Applet: Link

(http://media.pearsoncmg.com/aw/aw_kurose _network__2/applets/csmacd/csmacd.html)

802.3 Ethernet-Standards

- Es gibt viele verschiedene Ethernet-Standards
 - Gemeinsames MAC-Protokoll und Rahmenformat
 - Verschiedene Geschwindigkeiten: 2 Mbps, 10 Mbps, 100Mbps, 1Gbps, 10G bps
 - Verschiedene Medien der Bitübertragungss.: Draht, Glasfaser
- Braucht man in den modernen Switch-basierten Ethernet noch ein Medienzugriffsprotokoll (wie CSMA/CD)?

Nein, eigentlich nicht; was nur gleich geblieben ist, ist das Rahmenformat

35

Tag der offenen Tür ... bei Ihrem Webbrowser!

A day in the life of a web request

Synthesis: a day in the life of a web request

- journey down protocol stack complete!
 - application, transport, network, link
- putting-it-all-together: synthesis!
 - goal: identify, review, understand protocols (at all layers) involved in seemingly simple scenario: requesting www page
 - scenario: student attaches laptop to campus network, requests & receives web page http://www.helene-fischer.de/

A day in the life: scenario

A day in the life... connecting to the Internet

- connecting laptop needs to get its own IP address, addr of first-hop router, addr of DNS server: use DHCP
- DHCP request encapsulated in UDP, encapsulated in IP, encapsulated in 802.1
 Ethernet
- Ethernet frame broadcast (destination FFFFFFFFFFF) on LAN, received at router running DHCP server
- Ethernet demux'ed to IP demux'ed, UDP demux'ed to DHCP

A day in the life... connecting to the Internet

- DHCP server formulates DHCP ACK containing client's IP address, IP address of first-hop router for client, name & IP address of DNS server
- encapsulation at DHCP server, frame forwarded (switch learning) through LAN, demultiplexing at client
- DHCP client receivesDHCP ACK reply

Client now has IP address, knows name & addr of DNS server, IP address of its first-hop router

A day in the life... ARP (before DNS, before HTTP)

- before sending HTTP request, need IP address of http://www.helene-fischer.de/: DNS
- DNS query created, encapsulated in UDP, encapsulated in IP, encapsulated in Eth. In order to send frame to router, need MAC address of router interface: ARP
- ARP query broadcast, received by router, which replies with ARP reply giving MAC address of router interface
- client now knows MAC address of first hop router, so can now send frame containing DNS query

 IP datagram containing DNS query forwarded via LAN switch from client to 1st hop router

- IP datagram forwarded from campus network into comcast network, routed (tables created by RIP, OSPF, IS-IS and/or BGP routing protocols) to DNS server
- demux'ed to DNS server
- DNS server replies to client with IP address of http://www.helene-fischer.de/

A day in the life... TCP connection carrying HTTP

A day in the life... HTTP request/reply

Helene's page finally (!!!) displayed

- HTTP request sent into TCP socket
- IP datagram containing HTTP request routed to http://www.helene-fischer.de/
- web server responds with HTTP reply (containing web page)
- IP datagram containing HTTP reply routed back to client

Zusammenfassung

Sicherungsschicht

- MAC-Adressierung und ARP
- Switches
- Ethernet

Quellen:

Kurose / Ross Kapitel 5, Abschnitte 5.1, 5.4, 5.5, 5.6

Alle Schichten –

A day in the life of a web request

Quellen:

- Kurose / Ross Kapitel 4, Abschnitte 4.5-4.6
- Wikipedia

Danke.