WHAT IS CLAIMED IS:

1. A compound of formula I having the structure

- 5 wherein
 - R¹, R², R³, R⁴, and R⁵ are each, independently, hydrogen, acyl of 2-7 carbon atoms, haloacyl of 2-7 carbon atoms, nitroacyl of 2-7 carbon atoms, cyanoacyl of 2-7 carbon atoms, trifluoromethylacyl of 3-8 carbon atoms, or benzoyl in which the phenyl moiety is substituted with R⁸;
- 10 R⁶ and R⁷ are each, independently, -OH, -OR⁹, O-tert-butyldimethylsilyl, O-trialkylsilyl of 1-6 carbon atoms per alkyl moiety, O-triphenylsilyl,

- 15 R⁸, R¹⁰, R¹¹, and R¹² are each, independently, hydrogen, -CN, -NO₂, halogen, CF₃, alkyl of 1-6 carbon atoms, acetyl, benzoyl, or alkoxy of 1-6 carbon atoms;
 - R⁹ is acyl of 2-7 carbon atoms, haloacyl of 2-7 carbon atoms, nitroacyl of 2-7 carbon atoms, cyanoacyl of 2-7 carbon atoms, trifluoromethylacyl of 3-8 carbon atoms, or benzoyl in which the phenyl moiety is substituted with R⁸;

Y is O, S, NH, NMe, or CH₂;

5

- W is halogen, -CN, CF₃, alkyl of 1-6 carbon atoms, haloalkyl of 1-6 carbon atoms, nitroalkyl of 1-6 carbon atoms, cyanoalkyl of 1-6 carbon atoms, alkoxyalkyl of 2-12 carbon atoms, alkoxy of 1-6 carbon atoms, or phenyl mono-, di-, or tri-substituted with R⁸;
- Z is -NO₂, -NH₂, -NHR¹³, or -NHCO-Het;
- R¹³ is acyl of 2-7 carbon atoms, haloacyl of 2-7 carbon atoms, nitroacyl of 2-7 carbon atoms, cyanoacyl of 2-7 carbon atoms, trifluoromethylacyl of 3-8 carbon atoms, benzoyl in which the phenyl moiety is substituted with R⁸, or
- 10 R¹³ is an α-amino acid in which the α carboxyl group forms an amide with the nitrogen of Z, wherein if said amino acid is glutamic acid or aspartic acid, the non-α carboxylic acid is an alkyl ester in which the alkyl moiety contains from 1-6 carbon atoms;
- Het is pyridyl substituted with R⁸, thienyl substituted with R⁸, furyl substituted with R⁸, oxazolyl substituted with R⁸, pyrazinyl substituted with R⁸, pyrimidinyl substituted with R⁸, or thiazolyl substituted with R⁸;

 R^{14} is R^8 , -NH₂, -CO₂H, or -NH-acyl of 2-7 carbon atoms; n = 0-3;

with the proviso that when Z is -NHR¹³ and Y is O, at least one of R¹, R², R³, R⁴, and R⁵ is hydrogen, or at least one of R⁶ and R⁷ is OH, or a pharmaceutically acceptable salt thereof.

- 2. The compound according to claim 1, wherein wherein
- 25 R¹, R², R³, R⁴, and R⁵ are each, independently, hydrogen or acyl of 2-7 carbon; R⁶ and R⁷ are each, independently, -OH, -OR⁹, O-tert-butyldimethylsilyl,

R⁹ is acyl of 2-7 carbon atoms, or benzoyl in which the phenyl moiety is substituted with R⁸;

5 Y is O or S; and

10

 R^{13} is acyl of 2-7 carbon atoms, or benzoyl in which the phenyl moiety is substituted with R^8 , or

R¹³ is an α-amino acid in which the α carboxyl group forms an amide with the nitrogen of Z, wherein if said amino acid is glutamic acid or aspartic acid, the non-α carboxylic acid is an alkyl ester in which the alkyl moiety contains from 1-6 carbon atoms.

- 3. The compound of claim 1 which is:
- a) 4-Chloro-3-nitro-benzyl- β-D-maltoside heptaacetate or a pharmaceutically acceptable salt thereof;
- b) N-{5-[(Hepta-O-acetyl-β-D-maltosyloxy)-methyl]-2-chloro-phenyl}-L-aspartamide-γ-tert- butyl ester or a pharmaceutically acceptable salt thereof;

	c)	N-{2-Chloro-5-[(2,2',3,3',4',6,6')-hepta-O-acetyl-β-D-
		maltosyl-oxymethyl]-phenyl}- (9H-fluoren-9-ylmethoxycarbonyl)-L-alaninamide or a pharmaceutically acceptable salt thereof;
5	d)	4-Benzoyl- <i>N</i> -{2-chloro-5-[(2,2',3,3',4',6,6'-hepta- <i>O</i> -acetyl-β-D-maltosyl)-oxy-methyl]- phenyl}-benzamide or a pharmaceutically acceptable salt thereof;
10	e)	(4-Chloro-3-nitro-benzyl) -hepta-O-acetyl-1-thio-β-D-maltoside or a pharmaceutically acceptable salt thereof;
	f)	(3-Amino-4-chloro-benzyl) hepta-O-acetyl-1-thio-β-D-maltoside or a pharmaceutically acceptable salt thereof;
15	g)	N -{2-chloro-5-[hepta- O -acetyl- β -D-maltosyl-1-thio)-methyl]-phenyl}-acetamide or a pharmaceutically acceptable salt thereof;
20	h)	5-[(Hepta-O-acetyl-β-D-maltosyl)-oxy-methyl]-2-cyano-1-nitrobenzene or a pharmaceutically acceptable salt thereof.
20	i)	N -[2-Chloro-5-(β -D-maltosyl-oxymethyl)-phenyl]-acetamide or a pharmaceutically acceptable salt thereof;
25	j)	N -{5-[6,6'-Di- O -(tert-butyl-dimethyl-silyl)- β -D-maltosyloxy-methyl]-2-methyl-phenyl}- acetamide or a pharmaceutically acceptable salt thereof;
30	k)	N -{2-Chloro-5-[6,6'-di- O -(tert-butyl-dimethyl-silyl)- β -D-maltosyloxy-methyl]-phenyl}- acetamide or a pharmaceutically acceptable salt thereof;

	1)	N -{2-Chloro-5-[([6,6'-di- O -benzoyl- β -D-
		maltosyl]oxy)methyl]phenyl}-acetamide or a pharmaceutically
		acceptable salt thereof;
5	m)	N-{2-Chloro-5-[([6,6'-di-O-benzoyl-2,2',3,3',4'-penta-acetyl-
		β -D-maltosyl]oxy)- methyl]phenyl}-acetamide or a pharmaceutically
		acceptable salt thereof;
	n)	(4-Chloro-3-nitrophenyl)methyl-4-O-[6-O-(3-
10		pyridinylcarbonyl)- α -D-glucopyranosyl]- β -D- glucopyranoside- 6 -(3-
		pyridinecarboxylate) or a pharmaceutically acceptable salt thereof;
	0)	(4-Chloro-3-nitrophenyl)methyl-4-O-[6-O-(3-
		pyridinylcarbonyl)- α -D-glucopyranosyl]- β -D- glucopyranoside or a
15		pharmaceutically acceptable salt thereof;
	p)	N-[2-Chloro-5-[[(4- O -α-D-glucopyranosyl-β-D-
		glucopyranosyl)oxy]methyl] phenyl]-3- pyridinecarboxamide or a
20		pharmaceutically acceptable salt thereof;
20	q)	Benzoic acid 6-{4-chloro-3-[(pyridine-3-carbonyl)-amino]-
		benzyloxy}-4,5-dihydoxy-3- (3,4,5-trihydroxy-6-hydroxymethyl-
		tetrahydro-pyran-2-yloxy)-tetrahydro-pyran-2- ylmethyl ester or a
		pharmaceutically acceptable salt thereof;
25	r)	(4-Chloro-3-nitro-benzyl)-1-deoxy-1-thio-β-D-maltoside or a
	-,	pharmaceutically acceptable salt thereof;
	s)	N-{2-chloro-5-[β-D-maltosyl-1-thio)-methyl]-phenyl}-
30	-,	acetamide or a pharmaceutically acceptable salt thereof;

- t) 5-{[6,6'-Bis-O-(4-toluenesulfonyl)- β -maltosyl]-oxy-methyl}-2-methyl-1-nitrobenzene
- u) or a pharmaceutically acceptable salt thereof;
- 5 v) 5-{[2,2',3,3',4'-Penta-O-acetyl-6,6'-bis-O-(4-toluenesulfonyl)-β-maltosyl]-oxy-methyl}- 2-methyl-1-nitrobenzene or a pharmaceutically acceptable salt thereof;
- w) 5-{[6,6'-Dideoxy-6,6'-bis(4-nitro-imidazol-1-yl)- β-maltosyl] 10 oxy-methyl}-2-methyl-1- nitrobenzene or a pharmaceutically acceptable salt thereof; or
- x) 5-{[2,2',3,3',4'-Penta-*O*-acetyl-6,6'-dideoxy-6,6'-bis(4-nitro-imidazol-1-yl)- β-maltosyl]- oxy-methyl}-2-methyl-1-nitrobenzene or a pharmaceutically acceptable salt thereof.
- A method of treating or inhibiting hyperproliferative vascular disorders in a mammal in need thereof, which comprises administering to said mammal an effective
 amount of a compound of formula I having the structure

wherein

R¹, R², R³, R⁴, and R⁵ are each, independently, hydrogen, acyl of 2-7 carbon atoms, haloacyl of 2-7 carbon atoms, nitroacyl of 2-7 carbon atoms, cyanoacyl of 2-7 carbon atoms, trifluoromethylacyl of 3-8 carbon atoms, or benzoyl in which the phenyl moiety is substituted with R⁸;

R⁶ and R⁷ are each, independently, -OH, -OR⁹, O-tert-butyldimethylsilyl, O-trialkylsilyl of 1-6 carbon atoms per alkyl moiety, O-triphenylsilyl,

5

10

15

 R^8 , R^{10} , R^{11} , and R^{12} are each, independently, hydrogen, -CN, -NO₂, halogen, CF₃, alkyl of 1-6 carbon atoms, acetyl, benzoyl, or alkoxy of 1-6 carbon atoms;

R⁹ is acyl of 2-7 carbon atoms, haloacyl of 2-7 carbon atoms, nitroacyl of 2-7 carbon atoms, cyanoacyl of 2-7 carbon atoms, trifluoromethylacyl of 3-8 carbon atoms, or benzoyl in which the phenyl moiety is substituted with R⁸:

Y is O, S, NH, NMe, or CH₂;

W is halogen, -CN, CF₃, alkyl of 1-6 carbon atoms, haloalkyl of 1-6 carbon atoms, nitroalkyl of 1-6 carbon atoms, cyanoalkyl of 1-6 carbon atoms, alkoxyalkyl of 2-12 carbon atoms, alkoxy of 1-6 carbon atoms, or phenyl mono-, di-, or tri-substituted with R⁸;

Z is -NO $_2$, -NH $_2$, -NHR 13 , or -NHCO-Het;

R¹³ is acyl of 2-7 carbon atoms, haloacyl of 2-7 carbon atoms, nitroacyl of 2-7 carbon atoms, cyanoacyl of 2-7 carbon atoms, trifluoromethylacyl of 3-8 carbon atoms, benzoyl in which the phenyl moiety is substituted with R⁸, or

20 R¹³ is an α-amino acid in which the α carboxyl group forms an amide with the nitrogen of Z, wherein if said amino acid is glutamic acid or aspartic acid, the

non- α carboxylic acid is an alkyl ester in which the alkyl moiety contains from 1-6 carbon atoms;

Het is pyridyl substituted with R⁸, thienyl substituted with R⁸, furyl substituted with R⁸, oxazolyl substituted with R⁸, pyrazinyl substituted with R⁸, pyrimidinyl substituted with R⁸, or thiazolyl substituted with R⁸;

 R^{14} is R^8 , -NH₂, -CO₂H, or -NH-acyl of 2-7 carbon atoms; n = 0-3;

with the proviso that when Z is -NHR¹³ and Y is O, at least one of R¹, R², R³, R⁴, and R⁵ is hydrogen, or at least one of R⁶ and R⁷ is OH, or a pharmaceutically acceptable salt thereof.

5. A method of treating or inhibiting restenosis in a mammal in need thereof, which comprises administering to said mammal an effective amount of a compound of formula I having the structure

15

20

10

5

wherein

R¹, R², R³, R⁴, and R⁵ are each, independently, hydrogen, acyl of 2-7 carbon atoms, haloacyl of 2-7 carbon atoms, nitroacyl of 2-7 carbon atoms, cyanoacyl of 2-7 carbon atoms, trifluoromethylacyl of 3-8 carbon atoms, or benzoyl in which the phenyl moiety is substituted with R⁸;

R⁶ and R⁷ are each, independently, -OH, -OR⁹, O-tert-butyldimethylsilyl, O-trialkylsilyl of 1-6 carbon atoms per alkyl moiety, O-triphenylsilyl,

- R⁸, R¹⁰, R¹¹, and R¹² are each, independently, hydrogen, -CN, -NO₂, halogen, CF₃, alkyl of 1-6 carbon atoms, acetyl, benzoyl, or alkoxy of 1-6 carbon atoms;
- 5 R⁹ is acyl of 2-7 carbon atoms, haloacyl of 2-7 carbon atoms, nitroacyl of 2-7 carbon atoms, cyanoacyl of 2-7 carbon atoms, trifluoromethylacyl of 3-8 carbon atoms, or benzoyl in which the phenyl moiety is substituted with R⁸;

Y is O, S, NH, NMe, or CH₂;

15

20

W is halogen, -CN, CF₃, alkyl of 1-6 carbon atoms, haloalkyl of 1-6 carbon atoms, nitroalkyl of 1-6 carbon atoms, cyanoalkyl of 1-6 carbon atoms, alkoxyalkyl of 2-12 carbon atoms, alkoxy of 1-6 carbon atoms, or phenyl mono-, di-, or tri-substituted with R⁸;

Z is $-NO_2$, $-NH_2$, $-NHR^{13}$, or -NHCO-Het;

- R¹³ is acyl of 2-7 carbon atoms, haloacyl of 2-7 carbon atoms, nitroacyl of 2-7 carbon atoms, cyanoacyl of 2-7 carbon atoms, trifluoromethylacyl of 3-8 carbon atoms, benzoyl in which the phenyl moiety is substituted with R⁸, or
- R^{13} is an α -amino acid in which the α carboxyl group forms an amide with the nitrogen of Z, wherein if said amino acid is glutamic acid or aspartic acid, the non- α carboxylic acid is an alkyl ester in which the alkyl moiety contains from 1-6 carbon atoms;

Het is pyridyl substituted with R^8 , thienyl substituted with R^8 , furyl substituted with R^8 , oxazolyl substituted with R^8 , pyrazinyl substituted with R^8 , pyrimidinyl substituted with R^8 , or thiazolyl substituted with R^8 ;

R¹⁴ is R⁸, -NH₂, -CO₂H, or -NH-acyl of 2-7 carbon atoms;

5 n = 0-3;

with the proviso that when Z is -NHR¹³ and Y is O, at least one of R^1 , R^2 , R^3 , R^4 , and R^5 is hydrogen, or at least one of R^6 and R^7 is OH, or a pharmaceutically acceptable salt thereof.

- 10 6. The method according to claim 5, wherein the restenosis results from a vascular angioplasty procedure, vascular reconstructive surgery, or organ or tissue transplantation.
- 7. A method of inhibiting angiogenesis in a malignant tumor, sarcoma, or neoplastic tissue in a mammal in need thereof, which comprises administering to said mammal an effective amount of a compound of formula I having the structure

$$R^{1}O$$
 $R^{2}O$
 $R^{3}O$
 $R^{4}O$
 $R^{5}O$
 $R^{5}O$
 $R^{5}O$

wherein

- 20 R¹, R², R³, R⁴, and R⁵ are each, independently, hydrogen, acyl of 2-7 carbon atoms, haloacyl of 2-7 carbon atoms, nitroacyl of 2-7 carbon atoms, cyanoacyl of 2-7 carbon atoms, trifluoromethylacyl of 3-8 carbon atoms, or benzoyl in which the phenyl moiety is substituted with R⁸;
- R⁶ and R⁷ are each, independently, -OH, -OR⁹, O-tert-butyldimethylsilyl, O-trialkylsilyl of 1-6 carbon atoms per alkyl moiety, O-triphenylsilyl,

R⁸, R¹⁰, R¹¹, and R¹² are each, independently, hydrogen, -CN, -NO₂, halogen, CF₃, alkyl of 1-6 carbon atoms, acetyl, benzoyl, or alkoxy of 1-6 carbon atoms;

5 R⁹ is acyl of 2-7 carbon atoms, haloacyl of 2-7 carbon atoms, nitroacyl of 2-7 carbon atoms, cyanoacyl of 2-7 carbon atoms, trifluoromethylacyl of 3-8 carbon atoms, or benzoyl in which the phenyl moiety is substituted with R⁸;

Y is O, S, NH, NMe, or CH_2 ;

20

W is halogen, -CN, CF₃, alkyl of 1-6 carbon atoms, haloalkyl of 1-6 carbon atoms, nitroalkyl of 1-6 carbon atoms, cyanoalkyl of 1-6 carbon atoms, alkoxyalkýl of 2-12 carbon atoms, alkoxy of 1-6 carbon atoms, or phenyl mono-, di-, or tri-substituted with R⁸;

Z is -NO2, -NH2, -NHR $^{13}, \, \text{or} \, \,$ -NHCO-Het;

R¹³ is acyl of 2-7 carbon atoms, haloacyl of 2-7 carbon atoms, nitroacyl of 2-7 carbon atoms, cyanoacyl of 2-7 carbon atoms, trifluoromethylacyl of 3-8 carbon atoms, benzoyl in which the phenyl moiety is substituted with R⁸, or

R¹³ is an α-amino acid in which the α carboxyl group forms an amide with the nitrogen of Z, wherein if said amino acid is glutamic acid or aspartic acid, the non-α carboxylic acid is an alkyl ester in which the alkyl moiety contains from 1-6 carbon atoms;

Het is pyridyl substituted with R⁸, thienyl substituted with R⁸, furyl substituted with R⁸, oxazolyl substituted with R⁸, pyrazinyl substituted with R⁸, pyrimidinyl substituted with R⁸, or thiazolyl substituted with R⁸;

R¹⁴ is R⁸, -NH₂, -CO₂H, or -NH-acyl of 2-7 carbon atoms;

5 n = 0-3;

with the proviso that when Z is -NHR¹³ and Y is O, at least one of R^1 , R^2 , R^3 , R^4 , and R^5 is hydrogen, or at least one of R^6 and R^7 is OH, or a pharmaceutically acceptable salt thereof.

10 8. A pharmaceutical composition which comprises a compound of formula I having the structure

wherein

- 15 R¹, R², R³, R⁴, and R⁵ are each, independently, hydrogen, acyl of 2-7 carbon atoms, haloacyl of 2-7 carbon atoms, nitroacyl of 2-7 carbon atoms, cyanoacyl of 2-7 carbon atoms, trifluoromethylacyl of 3-8 carbon atoms, or benzoyl in which the phenyl moiety is substituted with R⁸;
- R⁶ and R⁷ are each, independently, -OH, -OR⁹, O-tert-butyldimethylsilyl, O-trialkylsilyl of 1-6 carbon atoms per alkyl moiety, O-triphenylsilyl,

- R⁸, R¹⁰, R¹¹, and R¹² are each, independently, hydrogen, -CN, -NO₂, halogen, CF₃, alkyl of 1-6 carbon atoms, acetyl, benzoyl, or alkoxy of 1-6 carbon atoms;
- 5 R⁹ is acyl of 2-7 carbon atoms, haloacyl of 2-7 carbon atoms, nitroacyl of 2-7 carbon atoms, cyanoacyl of 2-7 carbon atoms, trifluoromethylacyl of 3-8 carbon atoms, or benzoyl in which the phenyl moiety is substituted with R⁸;

Y is O, S, NH, NMe, or CH₂;

20

W is halogen, -CN, CF₃, alkyl of 1-6 carbon atoms, haloalkyl of 1-6 carbon atoms, nitroalkyl of 1-6 carbon atoms, cyanoalkyl of 1-6 carbon atoms, alkoxyalkyl of 2-12 carbon atoms, alkoxy of 1-6 carbon atoms, or phenyl mono-, di-, or tri-substituted with R⁸;

Z is -NO₂, -NH₂, -NHR¹³, or -NHCO-Het;

- R¹³ is acyl of 2-7 carbon atoms, haloacyl of 2-7 carbon atoms, nitroacyl of 2-7 carbon atoms, cyanoacyl of 2-7 carbon atoms, trifluoromethylacyl of 3-8 carbon atoms, benzoyl in which the phenyl moiety is substituted with R⁸, or
 - R¹³ is an α-amino acid in which the α carboxyl group forms an amide with the nitrogen of Z, wherein if said amino acid is glutamic acid or aspartic acid, the non-α carboxylic acid is an alkyl ester in which the alkyl moiety contains from 1-6 carbon atoms;

Het is pyridyl substituted with R⁸, thienyl substituted with R⁸, furyl substituted with R⁸, oxazolyl substituted with R⁸, pyrazinyl substituted with R⁸, pyrimidinyl substituted with R⁸, or thiazolyl substituted with R⁸;

 R^{14} is R^8 , -NH₂, -CO₂H, or -NH-acyl of 2-7 carbon atoms;

5 n = 0-3;

with the proviso that when Z is -NHR¹³ and Y is O, at least one of R^1 , R^2 , R^3 , R^4 , and R^5 is hydrogen, or at least one of R^6 and R^7 is OH, or a pharmaceutically acceptable salt thereof, and a pharmaceutical carrier.