当样本容量很小时,样本均值抽样分布不应该采用正态分布,而应采用t分布。t分布与正态分布很相似,只是它有肥尾。

例如:7个患者在服用新药3个月后测量血压,血压上升分别为:1.5, 2.9, 0.9, 3.9, 3.2, 2.1, 1.9。为总体中所有病人的血压升高的期望值建立一个95%的置信区间。

这里存在某种总体分布。因为是生物过程,有理由相信它是正态的。这相当于将药品给到所有存在过的患者,会得到一个血压升高均值,然后还会得到一定的标准差。这是大量随机事件的和,而大量随机事件的和服从正态分布。而对于总体的分布,除了样本,我们一无所知:

般情况下,我们可以先求出样本的各种统计量:

$$\bar{X} = \frac{1.5 + 2.9 + 0.9 + 3.9 + 3.2 + 2.1 + 1.9}{7} = 2.34$$

$$S^{2} = \frac{(1.5 - 2.34)^{2} + (2.9 - 2.34)^{2} + (0.9 - 2.34)^{2} + (3.9 - 2.34)^{2} + (3.2 - 2.34)^{2} + (2.1 - 2.34)^{2} + (1.9 - 2.34)^{2}}{7 - 1}$$

$$= 1.086$$

$$S = 1.04$$

使用样本标准差来估计总体标准差:

 $\sigma pprox S pprox 1.04$ 因为,样本容量太少了,此时,这个估计值不能说很好。这里分布不能像原来那样认为是正态分布,可以认为它是t分布。

n小于30通常被认为是糟糕的估计。

t分布的标准差:

$$\hat{\sigma}_{\bar{X}} = \frac{\sigma}{\sqrt{7}} = \frac{S}{\sqrt{7}} = \frac{1.04}{\sqrt{7}} = 0.393$$

图形如下:

我们要求95%的置信空间,也就是求均值左右包含95%面积的区间。t分布有t表格(t-table)。

我们这里的分布关于中轴对称,所以求的是双侧。又因为我们的抽样采用的是7个采样点,所以自由度是6。查表:

One Sided Two Sided		0.22	70%	1000	DAGE.	-	District.	2.100	99.75% 99.5%	2000	10.0000
2	0.816	1.061	1.386	1.886	2.920	4.303	6.965	9.925	14.09	22.33	31.60
3	0.765	0.978	1.250	1.638	2.353	3.182	4.541	5.841	7.453	10.21	12.92
4	0.741	0.941	1.190	1.533	2.132	2.776	3.747	4.604	5.598	7.173	8.610
5	0.727	0.920	1.156	1.476	2.015	2.571	3.365	4.032	4.773	5.893	6.869
(6)	0.718	0.906	1.134	1.440	1.943	2.447	3.143	3.707	4.317	5.208	5.959
7	0.711	0.896	1.119	1.415	1.895	2.365	2.998	3.499	4.029	4.785	5.408
8	0.706	0.889	1.108	1.397	1.860	2.306	2.896	3.355	3.833	4.501	5.041
9	0.703	0.883	1.100	1.383	1.833	2.262	2.821	3.250	3.690	4.297	4.781

就是2.447个单位的标准差,即: $2.447 \times 0.393 = 0.96$

随机抽样的均值为2.34,表示有95%的概率: 2.34在总体均值周围0.96范围内。形成的置信区间为: 1.38~3.3。也就是90%的可能,实际均值在这个区间范围内。