

数学Ⅲ 演習プリント

「入試正解デジタル」のサービスに関する知的財産権その他一切の 権利は、(株)旺文社または各情報提供者に帰属します。

本サービスに掲載の全部または一部の無断複製、配布、転載、譲渡 等を禁止します。

本サービスの機能を利用して作成した出力コンテンツについては、 ユーザーが個人として自ら使用する範囲に限り利用することができ ます。

歯パスナビ

志望校の入試科目・配点や合格最低点を 「大学受験パスナビ」で調べよう! https://passnavi.obunsha.co.jp/

|複素数平面 | 1複素数の計算

10 皿 (複素数の極形式)

解答 (1) 方程式 g(x) = 0 の解を α とおくと $\alpha^2 + \alpha + 1 = 0$ が成り立つ.

$$\alpha^3 - 1 = (\alpha - 1)(\alpha^2 + \alpha + 1) = 0$$

 $(\alpha^2 + \alpha + 1 = 0 \ \sharp \ h)$

よって $\alpha^3 - 1 = 0$ が成り立つので、方程式 g(x) = 0 の解は $x^3 - 1 = 0$ を満たしている.

次に方程式 h(x) = 0 の解を β とおくと $\beta^2 - \beta + 1 = 0$ が成り立つ.

$$\beta^3 + 1 = (\beta + 1)(\beta^2 - \beta + 1) = 0$$

 $(\beta^2 - \beta + 1 = 0 \ \sharp \ h)$

よって $\beta^3 + 1 = 0$ が成り立つので、方程式 h(x) = 0 の解は $x^3 + 1 = 0$ を満たしている。

(2) r(x) = ax + b とおくと

 $x^{6n}+x^{3n}-2=(x^2+x+1)q(x)+ax+b$ この式に g(x)=0 の解,すなわち (1) での $x=\alpha$ を代入すると

$$\alpha^{6n} + \alpha^{3n} - 2 = (\alpha^2 + \alpha + 1)g(\alpha) + a\alpha + b$$

(左辺) = $(\alpha^3)^{2n} + (\alpha^3)^n - 2 = 1 + 1 - 2 = 0$
($\alpha^3 = 1$ より)

(右辺) =
$$0 \cdot g(\alpha) + a\alpha + b = a\alpha + b$$

よって $a\alpha + b = 0$

ここで $\alpha = \frac{-1 \pm \sqrt{3}i}{2}$, すなわち α は虚数で, a, b

は実数なので $a\alpha + b = 0$ となるのは a = 0 かつ b = 0 のとき.

よって r(x) = 0. つまり f(x) は g(x) で割り切たっ

(3) f(x) を h(x) で割ったときの商を s(x), 余りを t(x) = cx + d とおくと

 $x^{6n}+x^{3n}-2=(x^2-x+1)s(x)+cx+d$ この式に h(x)=0 の解,すなわち (1) での $x=\beta$ を代入すると

$$eta^{6n} + eta^{3n} - 2 = (eta^2 - eta + 1)s(eta) + ceta + d$$

(左辺) = $(eta^3)^{2n} + (eta^3)^n - 2 = (-1)^{2n} + (-1)^n - 2$
($eta^3 = -1$ より)

(右辺) =
$$0 \cdot s(\beta) + c\beta + d = c\beta + d$$

よって $(-1)^{2n} + (-1)^n - 2 = c\beta + d$
割り切れるのは $c\beta + d = 0$ のときなので
 $(-1)^{2n} + (-1)^n - 2 = 0$

$$1 + (-1)^n - 2 = 0$$

 $(-1)^n = 1$ となるのはn が偶数のとき.

したがって、f(x) が h(x) で割り切れるならば、n は 偶数である.

まず $x^3 = -2$ を解く. $x = r(\cos \theta + i \sin \theta)$ とおくと $r^3(\cos 3\theta + i \sin 3\theta) = 2(\cos \pi + i \sin \pi)$ $r^3 = 2$, $3\theta = \pi + 2k\pi$ (k = 0, 1, 2)

よって
$$r = \sqrt[3]{2}$$
, $\theta = \frac{\pi}{3} + \frac{2k}{3}\pi$

 $0 \le x < 2\pi$ の範囲で、x が虚数となるのは k = 0, 2 のときである.

次に $x^3 = 1$ のときも同様にして

$$r=1,\ \theta=rac{2l}{3}\pi$$

 $0 \le \theta < 2\pi$ の範囲で、x が虚数となるのは l = 1, 2 の ときである.

以上により

$$x = \sqrt[3]{2} \left\{ \cos \left(\frac{\pi}{3} + \frac{2k}{3} \pi \right) + i \sin \left(\frac{\pi}{3} + \frac{2k}{3} \pi \right) \right\}$$

$$(k = 0, 2)$$

$$x = \cos \frac{2l}{3}\pi + i \sin \frac{2l}{3}\pi$$
 (l = 1, 2)

解答 (1) 2回の試行で作られる文字列は

AA, AB, BA, BB

であり、AA となる確率が p_2 、BA となる確率が q_2 、AB となる確率が r_2 だから

$$p_{2} = \frac{2}{3} \cdot \frac{2}{3} = \frac{4}{9}$$

$$q_{2} = \frac{1}{3} \cdot \frac{2}{3} = \frac{2}{9}$$

$$r_{2} = \frac{2}{3} \cdot \frac{1}{3} = \frac{2}{9}$$

n+1 文字の文字列が可でかつ右端の 2 文字が AA となるのは、n 文字の文字列が可でかつ右端の 2 文字が BA となっているところに文字 A を付け加える場合だから

$$p_{n+1} = \frac{2}{3}q_n$$

n+1 文字の文字列が可でかつ右端の 2 文字が BA と なるのは、n 文字の文字列が可でかつ右端の文字が B となっているところに文字 A を付け加える場合だから

$$q_{n+1} = \frac{2}{3}r_n$$
 ·····②

n+1 文字の文字列が可でかつ右端の 2 文字が AB と なるのは、n 文字の文字列が可でかつ右端の 2 文字が AA または BA となっているところに文字 B を付け加える場合だから

$$r_{n+1} = \frac{1}{3}(p_n + q_n) \qquad \cdots \cdot 3$$

(2) ①, ②, ③から

$$p_{n+1} + 2q_{n+1} + 2r_{n+1}$$

$$= \frac{2}{3}q_n + 2 \cdot \frac{2}{3}r_n + 2 \cdot \frac{1}{3}(p_n + q_n)$$

$$= \frac{2}{3}(p_n + 2q_n + 2r_n)$$

とできるので、2以上の整数nに対して

$$p_n + 2q_n + 2r_n = (p_2 + 2q_2 + 2r_2) \left(\frac{2}{3}\right)^{n-2}$$

$$= 2 \cdot \left(\frac{2}{3}\right)^{n-1}$$

(3) ①, ②, ③ から
$$p_{n+1} + iq_{n+1} - (1+i)r_{n+1}$$
$$= \frac{2}{3}q_n + i \cdot \frac{2}{3}r_n - (1+i) \cdot \frac{1}{3}(p_n + q_n)$$
$$= -\frac{1+i}{3} \{p_n + iq_n - (1+i)r_n\}$$

とできるので、2以上の整数<math>nに対して

$$p_n + iq_n - (1+i)r_n$$

$$= \left\{ p_2 + iq_2 - (1+i)r_2 \right\} \left(-\frac{1+i}{3} \right)^{n-2}$$

$$= \frac{2}{9} \cdot \left(-\frac{1+i}{3} \right)^{n-2}$$

(4) (3) の結果とド・モアブルの定理より

$$(p_n - r_n) + (q_n - r_n)i$$

$$= \left(-\frac{\sqrt{2}}{3}\right)^n \left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right)^{n-2}$$

$$= \left(-\frac{\sqrt{2}}{3}\right)^n \left\{\cos\frac{(n-2)\pi}{4} + i\sin\frac{(n-2)\pi}{4}\right\}$$

とできる。ここで、 p_n 、 q_n 、 r_n は実数だから

$$p_n - r_n = \left(-\frac{\sqrt{2}}{3}\right)^n \cos\frac{(n-2)\pi}{4}$$

したがって、 $p_n = r_n$ を満たすための必要十分条件は

$$\cos\frac{(n-2)\pi}{4} = 0$$

が成り立つこと、すなわち

$$\frac{(n-2)\pi}{4} = \frac{\pi}{2} + k\pi$$

となる整数 k が存在すること. これより

$$n-2=2+4k$$
 ∴ $n=4+4k$
とできるので、求める必要十分条件は

n が 4 の倍数であること

である.

IV 微分法とその応用 10 関数の極限と連続

76 Ⅲ (複素数の図形への応用)

解答 C_t : |3z+it|=|(t+2i)z-1|(*) より、

$$3 \left|z + \frac{t}{3}i\right| = |t + 2i| \left|z - \frac{1}{t + 2i}\right|$$

よって、 C_t が円でないのは、|t+2i|=3 のときで

このとき、
$$t^2 + 4 = 3^2$$
 より $t^2 = 5$
 $t^2 \pm 5$ のとき (*) より

$$(3z+it)(3\overline{z}-it)=\{(t+2i)z-1\}\{(t-2i)\overline{z}-1\}$$

$$(5 - t^2)z\overline{z} + \{t + (2 - 3t)i\}z + \{t - (2 - 3t)i\}\overline{z} + t^2 - 1 = 0$$

$$\therefore \left(z + \frac{t + (3t - 2)i}{5 - t^2}\right) \left(\overline{z} + \frac{t - (3t - 2)i}{5 - t^2}\right)$$
$$= \frac{t^2 + (3t - 2)^2}{(5 - t^2)^2} - \frac{t^2 - 1}{5 - t^2}$$

$$\frac{t^4 + 4t^2 - 12t + 9}{(5 - t^2)^2} = \frac{t^4 + (2t - 3)^2}{(5 - t^2)^2} > 0$$

であるから C_t は円であり、この中心 w は

$$w = \frac{t + (3t - 2)i}{t^2 - 5}$$

w の虚部が 0 となるのは $t = \frac{2}{3}$ のときであり、このと きの w の実部は

$$\frac{\frac{2}{3}}{\left(\frac{2}{3}\right)^2 - 5} = -\frac{6}{41}$$

 $\tan \theta = \frac{3t-2}{t}$ であるから

$$\lim_{t\to\infty}\tan\theta=\lim_{t\to\infty}\frac{3t-2}{t}=\mathbf{3}$$

また,
$$|w| = \frac{\sqrt{t^2 + (3t-2)^2}}{|t^2 - 5|}$$
 であるから

$$\begin{split} \lim_{t\to\infty} t|w| &= \lim_{t\to\infty} \frac{t^2\sqrt{1+\left(3-\frac{2}{t}\right)^2}}{|t^2-5|} \\ &= \lim_{t\to\infty} \frac{t^2}{t^2-5}\sqrt{1+\left(3-\frac{2}{t}\right)^2} \\ &= \sqrt{10} \end{split}$$

12接線・法線

85 (1) Ⅲ (複素数平面)

解答 |z|=2であるから,

$$\left|\frac{1}{z}\right| = \frac{1}{|z|} = \frac{1}{2}$$

である. また.

$$iz = -1 + \sqrt{3}i = 2\left(\cos\frac{2}{3}\pi + i\sin\frac{2}{3}\pi\right)$$
 であるから、

$$\theta = \frac{2}{3}\pi$$
 である.

(2) Ⅲ (楕円)

解答 楕円 $\frac{x^2}{4} + (y-1)^2 = 1$ の点 $\left(\sqrt{3}, \frac{3}{2}\right)$ に おける接線の方程式は

$$\frac{\sqrt{3}x}{4} + \left(\frac{3}{2} - 1\right)(y - 1) = 1$$
$$\frac{\sqrt{3}}{2}x + (y - 1) = 2$$
$$\therefore \quad y = -\frac{\sqrt{3}}{2}x + 3$$

したがって、
$$a=-rac{\sqrt{3}}{2}$$
、 $b=3$

(3) Ⅲ (定積分)

解答
$$\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \sin^2 \theta \, d\theta = \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{1 - \cos 2\theta}{2} \, d\theta$$
$$= \frac{1}{2} \left[\theta - \frac{1}{2} \sin 2\theta \right]_{\frac{\pi}{6}}^{\frac{\pi}{3}}$$

192の解答は 現在見つかっていません

V 積分法とその応用

| 198| (体積,曲線の媒介変数表示,関数の増減と

$$\frac{dy}{dt} = \sin t + \sin 2t = \sin t (1 + 2\cos t)$$

であるから、 $0 \le t \le \pi$ での y の増減は次の通り.

t	0		$\frac{2\pi}{3}$		π
$\frac{dy}{dt}$	(0)	+	0	-	(0)
y		×		`*	

$$t=0$$
 のとき $y=-2$, $t=\frac{2\pi}{3}$ のとき $y=\frac{1}{4}$, $t=\pi$ のとき $y=0$ であることに注意して, y の最大値は $\frac{1}{4}$, 最小値は -2 とわかる.

(2) (1) の通り、
$$\frac{dy}{dt} < 0$$
 となる t の値の範囲は $\frac{2}{3}\pi < t < \pi$ である.一方、

$$\frac{dx}{dt} = \cos t + \cos 2t = (\cos t + 1)(2\cos t - 1)$$

であるから、 $0 \le t \le \pi$ でのx の増減は次の通り、

x	0		$\frac{\pi}{3}$		π
$\frac{dx}{dt}$		+	0	-	(0)
x		×		`*	

$$t=0,\; \frac{\pi}{3},\; \frac{2\pi}{3},\; \pi$$
 のときの $(x,\;y)$ がそれぞれ

$$(0, -2), \left(\frac{3\sqrt{3}}{4}, -\frac{3}{4}\right), \left(\frac{\sqrt{3}}{4}, \frac{1}{4}\right), (0, 0)$$

であることと合わせ、 C の概形は次の通り.

3) y軸に垂直な断面の面積を考えて、計算を進めて

$$V = \int_0^{\frac{2\pi}{3}} \pi x^2 \frac{dy}{dt} dt - \int_{\pi}^{\frac{2\pi}{3}} \pi x^2 \frac{dy}{dt} dt$$

$$= \int_0^{\pi} \pi x^2 \frac{dy}{dt} dt$$

$$= \int_0^{\pi} \pi \left(\sin t + \frac{1}{2}\sin 2t\right)^2 \cdot \sin t (1 + 2\cos t) dt$$

$$= \int_0^{\pi} \pi \sin^2 t (1 + \cos t)^2 \sin t (1 + 2\cos t) dt$$

$$= \int_0^{\pi} \pi (1 - \cos^2 t) (1 + \cos t)^2 (1 + 2\cos t) \cdot \sin t dt$$

26 体積

を得る. ここで変数変換 $u = \cos t$ を行うと, $\frac{du}{dt} =$ sintにも注意して

$$V = \int_{1}^{-1} \pi (1 - u^{2})(1 + u)^{2}(1 + 2u) \cdot (-1) du$$

$$= \int_{-1}^{1} \pi (1 - u^{2})(1 + u)^{2}(1 + 2u) du$$

$$= \pi \int_{-1}^{1} (1 + 4u + 4u^{2} - 2u^{3} - 5u^{4} - 2u^{5}) du$$

$$= 2\pi \int_{0}^{1} (1 + 4u^{2} - 5u^{4}) du$$

$$= 2\pi \left[u + \frac{4}{3}u^{3} - u^{5} \right]_{0}^{1}$$

$$= \frac{8\pi}{3}$$
を得る。