Problem Set 1

2024/9/18

徐靖 2200012917

1

(a)

Answer:

There are n bidders, N=[n]. Every bidder bids a price $b_i\geq 0$. Thus the strategy is $S_i=[0,+\infty)$ Then the payoff is

$$v_i(b_i,b_{-i}) = egin{cases} rac{v_i-b_i}{|\{j|b_i=b_j\}|}, & orall j, \ b_i \geq b_j \ 0, & o.w. \end{cases}$$

(b)

For the second price auction, we have,

$$v_i(b_i,b_{-i}) = egin{cases} rac{v_i - \max_{j < i} b_j}{|\{j|b_i = b_i\}|}, & orall j, \ b_i \geq b_j \ 0, & o.w. \end{cases}$$

2. ST Exercise 4.5

Answer:

In the first round, U for player 1 is strictly dominated by M. In the first round, C for player 2 is strictly dominated by H. Hence $\{M,D\} \times \{L,R\}$ survives.

1\2	L	С	R
U	6,8	2.6	8,2
М	8,2	4,4	9,5
D	8,10	4,6	6,7

3. ST Exercise 4.6

Answer:

(a)

For i, when $t_j \geq 10$, his best reponse is $t_i = 0$. When $t_j < 10$, the first order condition is $10 - t_j - 2t_i = 0$. Then we find,

$$t_i=\max\{\frac{10-t_i}{2},0\}$$

(b)

- ullet $orall t_i \in [0,5]$ is not strictly dominated because it is a best response to $t_j = 10-2t_i$.
- For $t_i > 5$, assume $k = t_i 5 > 0$,then we have

$$egin{aligned} v_i(5+k,t_j) &= (10-t_j)(5+k) - (5+k)^2 = 25-5t_i - k^2 - t_j k \ &< 25-5t_j = v_i(5,t_j) \end{aligned}$$

It means strategy $t_i > 5$ is strictly dominated by $t_i = 5$.

 $\bullet \ \ {\rm We \ have} \ S^1_1=S^2_2=[0,5]$

(c)

- Define f(x) = 5 x/2.
- Assume $S_1^* = S_2^* \subset [l,u]$
 - \circ First, $S_1^* = S_2^* \subset [0,5]$
 - \circ Second we find, $[f(u),f(l)]\subset [l,u], orall l,u>0, l+u\leq 5$
 - \circ Similar to (b), we can find $t_i \in [f(u),f(l)]$ is not strictly dominated
 - \circ For $t_i < f(u)$, assume $k = f(u) t_i > 0$,similarly,

$$v(f(u),t_j)-v(f(u)-k,t_j)=k(10-t_j-2f(u)+k) \ \geq k(10-5-2f(5)+k)>0$$

Thus t_i is strictly dominated by $t_i = f(u)$.

- \circ For $t_i > f(l)$, similarly, is strictly dominated by $t_i = f(l)$.
- By induction, we can get closed interval $T_n \subset T_{n-1} \subset \dots \subset T_1 = [0,5]$, s.t.

$$T_i = [l_i, u_i] \Rightarrow T_{i+1} = [f(u_i), f(l_i)], i \in \mathbb{N}^+$$

and

$$S_1^* = S_2^* \subset T_n$$

ullet Given that the measure $|f(u)-f(l)|=ar{|u-l|/2}$, we can get

$$\lim_{n o +\infty}|u_n-l_n|=0$$

By the closed interval theorem, $T_{+\infty}=\{c\}$. And from the method of generating T_n , we can know f(c)=c, which means c=10/3.

• In conclusion , $S_1^*=S_2^*=\bigcap_{n=1}^{+\infty}T_n=T_{+\infty}=\{10/3\}$. The unique pair of strategies that survive IESDS for this game are $t_1=t_2=10/3$

4. ST Exercise 4.7

Answer:

(a)

The set of the player is $\{1,2\}$. The strategy spaces are $S_1=S_2=\{P,B,N\}$. The payoffs to player 1 are:

$$egin{aligned} v_1(P,P) &= 0.5, & v_1(P,B) &= 0, & v_1(P,N) &= 0.3, \ v_1(B,P) &= 1, & v_1(B,B) &= 0.5, & v_1(B,N) &= 0.4, \ v_1(N,P) &= 0.7, & v_1(N,B) &= 0.6, & v_1(N,N) &= 0.5 \end{aligned}$$

And,
$$\forall s \in \{P,B,N\} \times \{P,B,N\}, v_2(s) = 1-v_1(s).$$

(b)

The matrix is following.

		Player 2		
		Р	В	N
Player 1	Р	0.5, 0.5	0, 1	0.3, 0.7
	В	1, 0	0.5, 0.5	0.4, 0.6

(c)

In the first round, P for both players is strictly dominated by B. In the second round, B for both players is strictly dominated by N. Thus $\{N\} \times \{N\}$ survives, which leads to a clear prediction.

5. ST Exercise 4.8

Answer:

(a)

The average is less than 20 regardless of the number of players, and 3/4 of the average is less than 15, This means 18 also makes i the only winner.

(b)

- ullet x=20 is not one of the best responses because there will be many winners.
- ullet For x < 20, the average is $rac{20(n-1)+x}{n}$, thus player i is the only winner \Leftrightarrow

$$|20 - \frac{20(n-1) + x}{n}| > |\frac{20(n-1) + x}{n}|$$

When x < 20, it is equivalent to $x > 10 - \frac{30}{2n-3}$

• Therefore the set of best responses is

$$\left\{ x \in \mathbb{Z} \left| 10 - \frac{30}{2n-3} < x < 20 \right\}, n \ge 2, \right.$$

which depends on the number of players .

6.

Answer:

(a)

$$v_i(x_i, x_j) = \arctan x_i < \arctan(x_i + 1) = v_i(x_i + 1, x_j)$$

Thus x_i is strictly dominated.

(b)

$$orall x_i>0,\ v_i(0,1)=2>rctan x_i=v_i(x_i,1)$$

Thus 0 for player i is a best response to $x_j = 1$, which is not strictly dominated.

(c)

$$v_i(0,0) = \arctan 0 < \arctan 1 = v_i(1,0)$$

They are obviously not mutual best responses.

7.

Answer:

(a)

n firms, N=[n]. $S_i=\mathbb{R}_+$. The payoff is:

$$v_i(q_1,q_2,\dots,q_n) = (\max\{0,100 - \sum_{j \in N} q_j\} - 10)q_i$$

(b)

Maximize the above payoff function, we get,

$$q_i = \max\left\{0, rac{90 - \sum_{j
eq i} q_j}{2}
ight\}$$

• Given that $q_j>0$, when $90-\sum_{j\neq i}q_j=c>0$, $q_i=c$ is the best response , which traverses [0,45] when $n\geq 3$

- \circ On the contrary, when $n\geq 3$, we can always construct a q_{-1} such that $90-\sum_{j\neq i}q_j$ can traverse [0,45], that means [0,45] survives IESDS.
- for $q_i > 45$,

$$\circ \ \ ext{if } 90 - \sum_{j
eq i} q_j \geq q_i,$$

$$v_i(0, q_{-i}) - v_i(q_i, q_{-i}) = 0 - (-10q_i) > 0$$

$$\circ$$
 if $90 - \sum_{j
eq i} q_j < q_i$,

$$v_i(45,q_{-i})-v_i(q_i,q_{-i})=(q_i-45)(q_i-45+\sum_{j
eq i}q_j)>0$$

- ullet That means $(45,+\infty)$ is strictly dominated. And [0,45] survives IESDS when $n\geq 3$
- When n=2, similar to 4.6(c) , $S_1^*=S_2^*=\{{
 m Fixed\ point\ of\ function\ }f(x)=45-x/2\}=\{30\}$
- In conclusion,

$$S_i^* = egin{cases} \{30\}, & n=2, \ [0,45], & n\geq 3 \end{cases}$$