# **Machine Learning**

# **Ex: 03 Data Preprocessing**

Name: R.Athithraja

**Reg.no:** 2022503702

### 1. Handling Missing Values

#### Code:

```
import pandas as pd

df = pd.read_excel("Salary_Data_miss.xlsx")

print(df.isnull().sum())

df = df.fillna(df.median())

#df = df.dropna()

print("\nHandled Missing Values: \n")

print(df)
```

#### **Output:**

```
YearsExperience 0
Salary 2
dtype: int64

Handled Missing Values:

YearsExperience Salary 0
1 1.3 9343.0
1 1.3 46205.0
2 1.5 37731.0
3 2.0 43525.0
4 2.2 39891.0
5 2.9 56642.0
6 3.0 60150.0
7 3.2 54445.0
8 3.2 64445.0
9 3.7 57189.0
10 3.9 63218.0
11 4.0 555794.0
12 4.0 56057.0
13 4.1 65237.0
14 4.5 661111.0
15 4.9 67938.0
16 5.1 66029.0
17 5.3 83088.0
18 5.9 81363.0
19 6.0 93940.0
20 6.8 91738.0
21 7.1 65237.0
22 7.9 101302.0
23 8.2 113812.0
24 8.7 109431.0
25 9.0 105582.0
```

## 2. Five-Number Summary

## Code:

```
summary = df['Salary'].describe()
print(summary)
```

## **Output:**

| count | 30.000000              |
|-------|------------------------|
| mean  | 75173.666667           |
| std   | 27007.127135           |
| min   | 37731.000000           |
| 25%   | 56720.750000           |
| 50%   | 65237.000000           |
| 75%   | 99461.500000           |
| max   | 122391.000000          |
| Name: | Salary, dtype: float64 |
|       |                        |

## 3. Box Plot

#### Code:

```
import seaborn as sns
import matplotlib.pyplot as plt
sns.boxplot(x=df['Salary'])
plt.show()
```

## **Output:**



4. Correlation Matrix

#### Code:

```
corr_matrix = df.corr()
print(corr_matrix)
```

### output:

YearsExperience Salary
YearsExperience 1.000000 0.961987
Salary 0.961987 1.000000

5. Covariance Matrix

#### Code:

```
cov_matrix = df.cov()
print(cov_matrix)
```

## **Output:**

YearsExperience Salary
YearsExperience 8.053609 7.372974e+04
Salary 73729.742529 7.293849e+08