Human Performance Modeling - 3

Xiaojun Bi
Stony Brook University
{xiaojun}@cs.stonybrook.edu

Explanation of R²

$$R^2 \equiv 1 - rac{SS_{
m res}}{SS_{
m tot}}$$

$$SS_{ ext{res}} = \sum_i (y_i - f_i)^2 = \sum_i e_i^2$$

$$SS_{ ext{tot}} = \sum_i (y_i - \bar{y})^2,$$

- 1. Choose your research topic
- 2. Literature review.
- 3. Planning.
- 4. Execution.
- 5. Evaluation.
- 6. Write report.

Choosing Research Topic

1. Novelty.

The research should be novel, and advance the status quo.

2. Usefulness.

The expected outcome should be better than the status quo at least in some scenarios.

3. Appropriate Scope

- Make sure your team is able to finish it in one semester.
- Have enough time to write up the report, and prepare the final presentation.

- 1. Choose your research topic
- 2. Literature review.
- 3. Planning.
- 4. Execution.
- 5. Evaluation.
- 6. Write report.

Literature Review

- Search in ACM Digital library to see if your idea has been explored
- Think about the potential contributions of your research in light of the exiting work
- Write down some notes. You may use them in the "Related Work" section of your final report.

- 1. Choose your research topic
- 2. Literature review.
- 3. Planning.
- 4. Execution.
- 5. Evaluation.
- 6. Write report.

Planning

Have some self-imposed internal deadlines

Remember to allocate enough time for writing report

• Be flexible

Plans are worthless, but planning is everything

Dwight D. Eisenhower

- 1. Choose your research topic
- 2. Literature review.
- 3. Planning.
- 4. Execution.
- 5. Evaluation.
- 6. Write report.

- 1. Choose your research topic
- 2. Literature review.
- 3. Planning.
- 4. Execution.
- 5. Evaluation.
- 6. Write report.

- 1. Choose your research topic
- 2. Literature review.
- 3. Planning.
- 4. Execution.
- 5. Evaluation.
- 6. Write report.

Points breakdown (35%):

execution (15%) + final report (15%) + presentation (5%)

Example Project Ideas

Idea #1. Mobile Learning Game

ToneWars: Connecting Language Learners and Native Speakers through Collaborative Mobile Games

By Andrew Head, Yi Xu, Jingtao Wang

Fitts' Law

$$MT = a + b \log_2 \left(\frac{D}{W} + 1 \right)$$

Movement Time Index of Difficulty (ID [bits])

Fitts' Law

Extending Fitts' law to Two-Dimensional Tasks

• Experiment Result

Empirically, this is the best

	ID Rar	nge (bits)		Regression Coefficients				
Model for				$SE^{\mathbf{b}}$	Intercept,	Slope, b	IP	
Target Width	Low	High	<u>r</u> a	(ms)	a (ms)	(ms/bit)	(bits/s)	
SMALLER-OF	1.58	5.04	.9501	64	23 0	166	6.0	
W^{i}	1.00	5.04	.9333	74	337	160	6.3	
W+H	0.74	3.54	.8755	99	402 ↑	218	4.6	
$W \times H$	0.32	4.09	.8446	110	481	173	5.8	
STATUS QUO	1.00	5.04	.8097	121	409	135	7.4	

 $a_n = 78, p < .001$

Theoretically, this is similar to Fitts' Law

Figure 6. Correlations and regression coefficients for five models for target width.

bstandard error of estimate

Refining Fitts' law models for bivariate pointing

Conclusion

$$T = a + b \log_2 \left(\sqrt{\left(\frac{D}{W}\right)^2 + \eta \left(\frac{D}{H}\right)^2} + 1 \right)$$

η: [1/7, 1/3]

Agenda

- Application of Fitts' law
- Crossing Law
 - More than dotting the i's Foundations for crossing-based interfaces
- Steering Law
 - Beyond Fitts' Law: Models for Trajectory-Based HCI Tasks

Application of Fitts' Law in UI Design

Keyboard Layout Optimization

Qwerty Layout

Q	W	Е	R	Т	Υ	U	I	0	Р
Α	S	D	F	G	Н	J	K	L	
	Z	X	С	V	В	N	М		

Qwerty is inefficient for one finger typing.

Optimization Objective Function

• Fitts' Law (Fitts 1954):

$$MT_{ij} = a + b \log_2 \left(\frac{D_{ij}}{W} + 1\right)$$

 MT_{ij} : Movement Time from Key *i* to Key *j*

 D_{ij} : Distance from Key i to Key j

W: Key Width

Optimization Objective Function

• Fitts' Law (Fitts 1954):

$$MT_{ij} = a + b \log_2 \left(\frac{D_{ij}}{W} + 1\right)$$

 MT_{ij} : Movement Time from Key *i* to Key *j*

 D_{ij} : Distance from Key *i* to Key *j*

W: Key Width

Average time of typing a letter:

$$t = a + b \sum_{i}^{26} \sum_{j}^{26} P_{ij} \log_2 \left(\frac{D_{ij}}{W} + 1 \right)$$

 P_{ij} : Frequency of an ordered letter pair i, j

Layout Optimized for English

K-English

Z	J	D	G	K	
Υ	L	Z	I	С	
F	0	А	Т	Ι	W
В	U	R	Е	S	
Q	Р	М	V	X	

Average Finger Travel Distance

[**Bi,** Smith, Zhai. *Multilingual Touchscreen Keyboard Design and Optimization* Human-Computer Interaction 2012]

Typing Speed

[**Bi,** Smith, Zhai. *Multilingual Touchscreen Keyboard Design and Optimization* Human-Computer Interaction 2012]

Quasi-Qwerty Layout

Q	W	D	R	Т	U	Υ	L	K	Р
Z	Α	S	Е	Н	Ν	I	0	М	
	X	F	V	С	G	В	J		

Quasi-Qwerty Layout

Q	W	D	R	Т	U	Υ	L	K	Р
Z	Α	S	Е	Н	Ν	I	0	M	
	X	F	V	С	G	В	つ		

Qwerty

Q	W	Ш	R	T	Υ	כ		0	Р
Α	S	D	F	G	Н	J	K	L	
	Z	X	С	V	В	N	М		

Expert Typing Speed

[Bi, Smith, Zhai. Quasi-Qwerty Soft Keyboard Optimization. ACM CHI2010]

Expert Typing Speed

Initial Text Entry Time

[Bi, Smith, Zhai. Quasi-Qwerty Soft Keyboard Optimization. ACM CHI2010]

Choice Reaction Time

Hick's Law

The time it takes for a person to make a decision as a result of the possible choices he or she has: increasing the number of choices will increase the decision time logarithmically.

 $T = b \cdot \log_2(n+1)$

At the onset of one of *n* lights, arranged in a row, the subject is to press the key located Below the light (After Welford, 1968, p62)

Hick's Law

Uncertainty Principle. Decision time T increases with uncertainty about the judgment or decision to be made:

$$T = I_C H_i$$

where H is the information-theoretic entropy of the decision and I_C = 150 [0–157] ms/bit. For n equally probable alternatives (called Hick's Law),

$$H = \log_2{(n+1)}.$$

For n alternatives with different probabilities p_i of occurrence,

$$H = \sum_{i} p_{i} \log_{2} (1/p_{i} + 1).$$

Crossing Law

Not just pointing, how about crossing a boundary?

Johnny Accot and Shumin Zhai. 2002. More than dotting the i's --- foundations for crossing-based interfaces. CHI '02. ACM, New York, NY, USA, 73-80.

- Pointing
 - may be time-consuming if the object to be pointed is small, or
 - widgets might occupy more spaces
- Use crossing as interface

- (a) To trigger an action: on the left we push the button; on the right we cross the goal.
- (b) Unlike a traditional check box, a goal can "store" two visual states depending on the crossing direction.

- Possible actions
 - Orthogonal / collinear
 - Discrete / continue

- Compare with pointing, Accot and Zhai propose 6 test conditions
 - 2 pointing tasks
 - 4 crossing tasks

(a) **CP** — Pointing with collinear variability constraint

(b) **OP** — Pointing with orthogonal variability constraint

(c) **D/CC** — Discrete collinear goal-crossing

(e) **C/CC** — Continuous collinear goal-crossing

(d) **D/OC** — Discrete orthogonal goal-crossing task

(f) **C/OC** — Continuous orthogonal goal-crossing

Figure 4: The six tested conditions. All tasks were reciprocal.

• Experiment result

CP:
$$T = 103 + 172 \times ID$$
 $r^2 = 0.998$ (4)

OP:
$$T = 145 + 146 \times ID$$
 $r^2 = 0.986$ (5)

$$D/CC$$
: $T = 155 + 165 \times ID$ $r^2 = 0.994$ (6)

D/OC:
$$T = 342 + 133 \times ID$$
 $r^2 = 0.975$ (7)

C/CC:
$$T = -41 + 242 \times ID$$
 $r^2 = 0.995$ (8)

C/OC:
$$T = -196 + 235 \times ID$$
 $r^2 = 0.984$ (9)

Conclusion:

Pointing tasks can be modeled by Fitts' Law

Application in crossing interface

		SHUIIIII ZHAI	0770072001	02.04 AIVI	4
		Shumin Zhai	07/06/2001	06:44 AM	3
'		Bryan Striemer	07/03/2001	11:01 AM	27
~	FYI	Shumin Zhai	07/02/2001	12:30 AM	11
✓		Shumin Zhai	07/02/2001	12:30 AM	1
~		Thomas Zimmerman	06/27/2001	03:48 PM	4
V 🔨		Barton A Smith	06/26/2001	04:55 PM	37
N		Barton A Smith	06/26/2001	04:54 PM	4

Figure 13: Selection of multiple messages by a continuous goal-crossing action in Lotus Notes

Figure 16: Crossing multiple city names to get their detailed weather forecast

Steering Law (a.k.a Accot-Zhai Law)

Johnny Accot and Shumin Zhai. 1997. Beyond Fitts' law: models for trajectory-based HCI tasks. In CHI '97. ACM, New York, NY, USA, 295-302.

Beyond Pointing: Trajectory-based Tasks

From Targets to Tunnels...

• 1 goal to pass through:

$$ID = \log_2(\frac{D}{W} + 1)$$

2 goals to pass through:

$$ID = 2\log_2(\frac{D}{2W} + 1)$$

N goals to pass through:

$$ID = N \log_2(\frac{D}{NW} + 1)$$

 \bullet ∞ goals to pass through:

$$ID_{\infty} = \frac{D}{W \ln 2}$$

Steering Law (Accot and Zhai, 1997)

"Beyond Fitts' Law: Models for trajectory based HCI tasks." Proceedings of ACM CHI 1997 Conference

fixed width tunnel:

$$ID = \frac{D}{W}, MT = a + b\frac{D}{W}$$

narrowing tunnel:

$$ID = \int_0^D \frac{dx}{W(x)}$$

general Steering Law:

$$ID = \int_{c} \frac{ds}{W(s)}$$

Some Results (from Accot, 1997)

