# Midterm 2 Study Guide

**Note:** Before I begin there is material/examples that I do not cover in here much because I have previously uploaded PDF's onto Icon that focus on those things. So before going over this study guide I would also suggest printing out those PDF's to supplement this study guide

#### Convert Between Degrees and Radians:

$$\pi \text{ radians} = 180^{\circ}$$

#### **Examples:**

1. Degrees to Radians:

$$135^{\circ} \cdot \frac{\pi}{180} = \frac{3\pi}{4}$$
 radians

2. Radians to Degrees:

$$\frac{5\pi}{6}$$
 radians  $\cdot \frac{180}{\pi} = 150^{\circ}$ 

Length of a Circular Arc: ( $\theta$  in radians)

$$L = r \cdot \theta$$

Area of a Circular Sector: ( $\theta$  in radians)

$$A = \frac{1}{2} \cdot r^2 \cdot \theta$$

# Trig Functions Defined via Right Triangle:



Table of Common Values - Trig Functions:

| Degrees | 0 | 30                   | 45                   | 60                   | 90              |
|---------|---|----------------------|----------------------|----------------------|-----------------|
| Radians | 0 | $\frac{\pi}{6}$      | $\frac{\pi}{4}$      | $\frac{\pi}{3}$      | $\frac{\pi}{2}$ |
| Sine    | 0 | $\frac{1}{2}$        | $\frac{\sqrt{2}}{2}$ | $\frac{\sqrt{3}}{2}$ | 1               |
| Cosine  | 1 | $\frac{\sqrt{3}}{2}$ | $\frac{\sqrt{2}}{2}$ | $\frac{1}{2}$        | 0               |





Signs of Trig Functions in Quadrants:



## Even and Odd:

- 1. Cos(x) is an **EVEN** function: cos(-x) = cos(x)Graphically, cos(x) is symmetric about the y-axis
- 2. **Sin(x)** is an **ODD** function: sin(-x) = -sin(x)Graphically, sin(x) is symmetric about the origin

Reference Number - for an real number t, the reference number r associated with t is the shortest distance along the unit circle from t to the x-axis. For any t, the reference number r is in  $\left[0, \frac{\pi}{2}\right]$ 

**Example:** Determine the value of  $\sin(t)$  and  $\cos(t)$  for a)  $t = \frac{29\pi}{6}$  and b)  $t = \frac{41\pi}{4}$ 

a) First we find the reference number by finding the closest number to 29 that evenly divides by 6. We can use 30. Then

$$\frac{29\pi}{6} = \frac{30\pi}{6} - \frac{\pi}{6}$$

So the reference number  $r = \frac{\pi}{6}$ . This helps us determine the value of  $\sin(t)$  and  $\cos(t)$ . We know  $\sin\left(\frac{\pi}{6}\right) = \frac{1}{2}$  and  $\cos\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2}$ . We now just need to find what quadrant we are in to determine the correct sign.

So what quadrant are we in?  $\frac{30\pi}{6} = 5\pi$  which places us at (-1,0) on the unit circle. We then must move BACK (clockwise)  $\frac{\pi}{6}$  radians which places us in the second quadrant where  $\sin(t)$  is positive and  $\cos(t)$  is negative.

So 
$$\sin\left(\frac{29\pi}{6}\right) = \frac{1}{2}$$
 and  $\cos\left(\frac{29\pi}{6}\right) = \frac{-\sqrt{3}}{2}$ 

b) First we find the reference number by finding the closest number to 41 that evenly divides by 4. We can use 40. Then

$$\frac{41\pi}{4} = \frac{40\pi}{4} + \frac{\pi}{4}$$

So the reference number  $r = \frac{\pi}{4}$ . We know  $\sin\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}$  and  $\cos\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}$ 

Now what quadrant are we in?  $\frac{40\pi}{4} = 10\pi$  which places us at (1,0) on the unit circle. We then must move FORWARD (counterclockwise)  $\frac{\pi}{4}$  radians which places us in the first quadrant where  $\sin(t)$  is positive and  $\cos(t)$  is positive.

So 
$$\sin\left(\frac{41\pi}{4}\right) = \frac{\sqrt{2}}{2}$$
 and  $\cos\left(\frac{41\pi}{4}\right) = \frac{\sqrt{2}}{2}$ 

#### Graph of Sine:



#### Graph of Cosine:



Graphs of y = Asin(Bx + C) + D and y = Acos(Bx + C) + D

- Amplitude: |A|
- Period:  $\frac{2\pi}{B}$
- Phase Shift:  $\frac{|C|}{B}$

$$\frac{C}{B} < 0 \implies \text{shift right}$$

$$\frac{C}{B} > 0 \implies \text{shift left}$$

- Interval:  $\frac{2\pi}{4B}$
- Vertical Shift: |D|

$$D < 0 \implies \text{shift down}$$

$$D > 0 \implies \text{shift up}$$

**Note:** When graphing sine/cosine **phase shift** tells you how far left/right to move the first critical point. Then the **interval** tells you how far along the x-axis you go until the next critical point occurs. The **amplitude** tells you how far up/down you go for the maximum/minimum of the graphs. See notes on graphing sine and cosine uploaded onto Icon.

The Other Trig Functions:

1. 
$$\tan(x) = \frac{\sin(x)}{\cos(x)}$$

$$2. \csc(x) = \frac{1}{\sin(x)}$$

$$3. \sec(x) = \frac{1}{\cos(x)}$$

4. 
$$\cot(x) = \frac{\cos(x)}{\sin(x)}$$

Graph of Tangent:



**Inverse Trig Functions:** 

1.  $\arcsin(x)$ 

(a) 
$$\sin\left(\arcsin(x)\right)$$

i. 
$$x \text{ in } [-1, 1] \implies \sin \left(\arcsin(x)\right) = x$$

ii. 
$$x$$
 not in  $[-1,1] \implies$  no solution

(b) 
$$\arcsin\left(\sin(x)\right)$$

i. 
$$x \text{ in } \left[\frac{-\pi}{2}, \frac{\pi}{2}\right] \implies \arcsin\left(\sin(x)\right) = x$$

ii. 
$$x$$
 not in  $\left[\frac{-\pi}{2}, \frac{\pi}{2}\right] \implies$  find the corresponding radian measure that is inside  $\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$ 

 $2. \arccos(x)$ 

(a) 
$$\cos\left(\arccos(x)\right)$$

i. 
$$x \text{ in } [-1, 1] \implies \cos \left( \arccos(x) \right) = x$$

ii. 
$$x$$
 not in  $[-1,1] \implies$  no solution

(b) 
$$\arccos\left(\cos(x)\right)$$

i. 
$$x \text{ in } [0, \pi] \implies \arccos(\cos(x)) = x$$

ii. x not in  $[0,\pi] \implies$  find the corresponding radian measure that is inside  $[0,\pi]$ 

3.  $\arctan(x)$ 

(a) 
$$\tan \left(\arctan(x)\right)$$

i. 
$$tan \left( arctan(x) \right) = x ALWAYS$$

(b) 
$$\arctan\left(\tan(x)\right)$$

i. 
$$x \text{ in } \left(\frac{-\pi}{2}, \frac{\pi}{2}\right) \implies \arctan\left(\tan(x)\right) = x$$

ii. 
$$x$$
 not in  $\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$   $\Longrightarrow$  find the corresponding radian measure that is inside  $\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$ 

Law of Cosines:

$$a^2 = b^2 + c^2 - 2bc \cdot \cos(\alpha)$$

Law of Sines:

$$\frac{\sin(\alpha)}{a} = \frac{\sin(\beta)}{b} = \frac{\sin(\gamma)}{c}$$

**Note:** Remember when working with Law of Sines/Law of Cosines, the side opposite  $\alpha$  is a, the side opposite  $\beta$  is b and the side opposite  $\gamma$  is c.

 $a \to \alpha$ 

 $b \to \beta$ 

 $c \to \gamma$ 

Heron's Formula:

$$A = \sqrt{s(s-a)(s-b)(s-c)}$$

where 
$$s = \frac{Perimeter}{2}$$

### **Exponential Function**



We say a is the **base** of the exponential function.

There is a special kind of exponential function that we single out because of its significance and we call it the **Natural Exponential Function**. It is the function

$$f(x) = e^x$$

#### Logarithm Function



Again, we call a the **base** of the logarithm function.

There is a special kind of logarithm function that we single out becaue of its significance. It is the **Natural Log Function**. It is the function

$$f(x) = \ln(x)$$

The Natural Log Function is the logarithm function with base  $e(f(x) = \log_e(x))$  and it is the **inverse** of the natural exponential function  $f(x) = e^x$ 

**Note:** If you see something like  $f(x) = \log(x)$  with no base, then we assume it is **log base 10**, or written out, we assume  $f(x) = \log_{10}(x)$ 

## **Evaluating Logarithms:**

Evaluate the following expressions:

1. 
$$\log_2(8)$$

- $2. \log_{32}(2)$
- 3.  $\log_7(-3)$
- 4.  $6^{\log_6(8)}$
- (1) We ask ourselves the following question: When does  $2^y = 8$ ? Well we know  $2^3 = 8$  so our answer is  $\log_2(8) = 3$
- (2) We ask ourselves the following question: When does  $32^y = 2$ ? Well we know  $32^{\frac{1}{5}} = 2$  so our answer is  $\log_{32}(2) = \frac{1}{5}$
- (3) We ask ourselves the following question: When does  $7^y = -3$ ? If we think about it we should realize this can never happen so there is no solution
- (4) There is a property in the book that says that  $a^{\log_a(x)} = x$  so our answer is  $6^{\log_6(8)} = 8$

## Important Properties of Logs:

- 1.  $\log(x \cdot y) = \log(x) + \log(y)$
- 2.  $\log\left(\frac{x}{y}\right) = \log(x) \log(y)$
- 3.  $\log(x^p) = p \cdot \log(x)$

# **Graph Translations:**

Vertical Shifts: Let c > 0

- 1. y = f(x) + c shifts f(x) c units up
- 2. y = f(x) c shifts f(x) c units down

Horizontal Shifts: Let c > 0

- 1. y = f(x+c) shifts f(x) c units left
- 2. y = f(x c) shifts f(x) c units right

#### **Reflections:**

1. y = -f(x) reflects f(x) about the x-axis

2. y = f(-x) reflects f(x) about the y-axis

#### Vertical Stretch & Shrink:

Let c > 0. We consider y = cf(x)

1. c > 1  $\rightarrow$  stretch f(x) vertically by a factor of c

2.  $0 < c < 1 \rightarrow \text{shrink } f(x) \text{ vertically by a factor of c}$ 

#### Horizontal Stretch & Shrink:

Let c > 0. We consider y = f(cx)

1. c > 1  $\rightarrow$  shrink f(x) horizontally by a factor of c

2.  $0 < c < 1 \rightarrow \text{stretch } f(x)$  horizontally by a factor of c

## Compount Interest Formulas:

• Non-Continuous Compounding

$$A = A_0 \left( 1 + \frac{r}{n} \right)^{nt}$$

• Continuous Compounding

$$A = A_0 e^{rt}$$

A = Amount

 $A_0 = Principal$ 

r =Interest rate

n = Number of times compounded per year

t = Time