Approximate data deletion and replication with the Bayesian influence function

Ryan Giordano (rgiordano@berkeley.edu, UC Berkeley), Tamara Broderick (MIT)

Theory and Foundations of Statistics in the Era of Big Data — Honoring Basu and Bahadur (April 2024)

Economist 2016 Election Model [Gelman and Heidemanns, 2020]

A time series model to predict the 2016 US presidential election outcome from polling data.

Model:

- $X = x_1, ..., x_N =$ Polling data (N = 361).
- + $\theta = \text{Lots of random effects (day, pollster, etc.)}$
- $f(\theta) = \mbox{Democratic }\%$ of vote on election day

Typically, we compute Markov chain Monte Carlo (MCMC) draws from the posterior $p(\theta|X)$.

We want to know $\underset{p(\theta|X)}{\mathbb{E}}[f(\theta)].$

Economist 2016 Election Model [Gelman and Heidemanns, 2020]

A time series model to predict the 2016 US presidential election outcome from polling data.

Model:

- $X = x_1, ..., x_N =$ Polling data (N = 361).
- $\theta = \text{Lots of random effects (day, pollster, etc.)}$
- $f(\theta) = \text{Democratic } \% \text{ of vote on election day }$

Typically, we compute Markov chain Monte Carlo (MCMC) draws from the posterior $p(\theta|X)$.

We want to know $\underset{p(\theta|X)}{\mathbb{E}}[f(\theta)].$

The people who responded to the polls were randomly selected.

If we had selected a different random sample, how much would our estimate have changed?

Idea: Re-fit with bootstrap samples of data [Huggins and Miller, 2023]

Economist 2016 Election Model [Gelman and Heidemanns, 2020]

A time series model to predict the 2016 US presidential election outcome from polling data.

Model:

- $X=x_1,\ldots,x_N=$ Polling data (N=361).
- $\theta = \text{Lots of random effects (day, pollster, etc.)}$
- $f(\theta) = \text{Democratic } \% \text{ of vote on election day }$

Typically, we compute Markov chain Monte Carlo (MCMC) draws from the posterior $p(\theta|X)$.

We want to know $\underset{p(\theta|X)}{\mathbb{E}}[f(\theta)]$.

The people who responded to the polls were randomly selected.

If we had selected a different random sample, how much would our estimate have changed?

Idea: Re-fit with bootstrap samples of data [Huggins and Miller, 2023]

Problem: Each MCMC run takes about 10 hours (Stan, six cores).

Results

Proposal: Use full–data posterior draws to form a linear approximation to *data reweightings*.

Results

Proposal: Use full–data posterior draws to form a linear approximation to *data reweightings*.

Results

Proposal: Use full—data posterior draws to form a linear approximation to *data reweightings*.

Compute time for 100 bootstraps: 51 days

Compute time for the linear approximation: Seconds (But note the approximation has some error)

.

- · Data reweighting
 - Write the change in the posterior expectation as linear component + error
 - The linear component can be computed from a single run of $\ensuremath{\mathsf{MCMC}}$

- · Data reweighting
 - Write the change in the posterior expectation as linear component + error
 - The linear component can be computed from a single run of MCMC
- · Finite-dimensional problems with posteriors which concentrate asymptotically
 - As $N \to \infty$, the linear component provides an arbitrarily good approximation

- · Data reweighting
 - Write the change in the posterior expectation as linear component + error
 - The linear component can be computed from a single run of MCMC
- Finite-dimensional problems with posteriors which concentrate asymptotically
 - As $N \to \infty$, the linear component provides an arbitrarily good approximation
- · High-dimensional problems
 - · The linear component is the same order as the error
 - Even for parameters which concentrate, even as $N \to \infty$

- · Data reweighting
 - ullet Write the change in the posterior expectation as linear component + error
 - The linear component can be computed from a single run of MCMC
- Finite-dimensional problems with posteriors which concentrate asymptotically
 - As $N \to \infty$, the linear component provides an arbitrarily good approximation
- · High-dimensional problems
 - The linear component is the same order as the error
 - Even for parameters which concentrate, even as $N \to \infty$
- · What should the exchangeable unit be?

Augment the problem with data weights w_1, \ldots, w_N . We can write $\underset{p(\theta|X,w)}{\mathbb{E}}[f(\theta)]$.

$$\ell_n(\theta) := \log p(x_n | \theta)$$
 $\log p(X | \theta, w) = \sum_{n=1}^{N} w_n \ell_n(\theta)$

Original weights:

Augment the problem with data weights w_1,\ldots,w_N . We can write $\underset{p(\theta|X,w)}{\mathbb{E}}[f(\theta)]$.

$$\ell_n(\theta) := \log p(x_n|\theta)$$
 $\log p(X|\theta, w) = \sum_{n=1}^{N} w_n \ell_n(\theta)$

Original weights:

Leave-one-out weights:

Augment the problem with data weights w_1, \ldots, w_N . We can write $\mathbb{E}_{p(\theta|X,w)}[f(\theta)]$.

$$\ell_n(\theta) := \log p(x_n|\theta)$$
 $\log p(X|\theta, w) = \sum_{n=1}^{N} w_n \ell_n(\theta)$

Original weights:

Leave-one-out weights:

Bootstrap weights:

Augment the problem with data weights w_1, \ldots, w_N . We can write $\mathbb{E}_{p(\theta|X,w)}[f(\theta)]$.

$$\ell_n(\theta) := \log p(x_n|\theta)$$

$$\log p(X|\theta, w) = \sum_{n=1}^{N} w_n \ell_n(\theta)$$

Original weights:

Leave-one-out weights:

Bootstrap weights:

Augment the problem with data weights w_1, \ldots, w_N . We can write $\mathbb{E}_{p(\theta|X,w)}[f(\theta)]$.

$$\ell_n(\theta) := \log p(x_n|\theta)$$

$$\log p(X|\theta, w) = \sum_{n=1}^{N} w_n \ell_n(\theta)$$

Original weights:

Leave-one-out weights:

Bootstrap weights:

Augment the problem with data weights w_1, \ldots, w_N . We can write $\mathbb{E}_{p(\theta|X,w)}[f(\theta)]$.

$$\ell_n(\theta) := \log p(x_n|\theta)$$

$$\log p(X|\theta, w) = \sum_{n=1}^{N} w_n \ell_n(\theta)$$

Original weights:

Leave-one-out weights:

Bootstrap weights:

Augment the problem with data weights w_1, \ldots, w_N . We can write $\mathbb{E}_{p(\theta|X,w)}[f(\theta)]$.

$$\ell_n(\theta) := \log p(x_n|\theta)$$

$$\log p(X|\theta, w) = \sum_{n=1}^{N} w_n \ell_n(\theta)$$

Original weights:

Leave-one-out weights:

Bootstrap weights:

Augment the problem with data weights w_1, \ldots, w_N . We can write $\mathbb{E}_{p(\theta|X,w)}[f(\theta)]$.

$$\ell_n(\theta) := \log p(x_n|\theta)$$

$$\log p(X|\theta, w) = \sum_{n=1}^{N} w_n \ell_n(\theta)$$

Original weights:

Leave-one-out weights:

Bootstrap weights:

Augment the problem with data weights w_1, \ldots, w_N . We can write $\mathbb{E}_{p(\theta|X,w)}[f(\theta)]$.

$$\ell_n(\theta) := \log p(x_n|\theta)$$

$$\log p(X|\theta, w) = \sum_{n=1}^{N} w_n \ell_n(\theta)$$

Original weights:

Leave-one-out weights:

Bootstrap weights:

Augment the problem with data weights w_1, \ldots, w_N . We can write $\mathbb{E}_{p(\theta|X,w)}[f(\theta)]$.

$$\ell_n(\theta) := \log p(x_n|\theta) \qquad \qquad \log p(X|\theta, w) = \sum_{n=1}^N w_n \ell_n(\theta)$$

Original weights:

Leave-one-out weights:

Bootstrap weights:

The re-scaled slope $N\psi_n$ is known as the "influence function" at data point x_n .

$$\underset{p(\theta|X,w)}{\mathbb{E}}\left[f(\theta)\right] - \underset{p(\theta|X)}{\mathbb{E}}\left[f(\theta)\right] = \underset{n=1}{\overset{N}{\sum}} \psi_n(w_n - 1) + \frac{\mathcal{E}(w)}{}$$

How to compute the slopes ψ_n ? How large is the error $\mathcal{E}(w)$?

For simplicity, for the remainder of the presentation, we will consider a single weight.

$$\underset{p(\theta|X,w_n)}{\mathbb{E}}\left[f(\theta)\right] - \underset{p(\theta|X)}{\mathbb{E}}\left[f(\theta)\right] = \psi_n(w_n-1) + \frac{\mathcal{E}(w_n)}{}$$

How to compute the slopes ψ_n ? How large is the error $\mathcal{E}(w)$?

For simplicity, for the remainder of the presentation, we will consider a single weight.

$$\underset{p(\theta|X,w_n)}{\mathbb{E}}[f(\theta)] - \underset{p(\theta|X)}{\mathbb{E}}[f(\theta)] = \psi_n(w_n - 1) + \mathcal{E}(w_n)$$

Let an overbar denote "posterior–mean zero." For example, $\bar{f}(\theta) := f(\theta) - \underset{p(\theta|X)}{\mathbb{E}} [f(\theta)].$

By dominated convergence and the mean value theorem, for some $\tilde{w}_n \in [0, w_n]$:

$$\psi_n = \underbrace{\mathbb{E}_{p(\theta|X)}\left[\bar{f}(\theta)\bar{\ell}_n(\theta)\right]}_{\text{Estimatable with MCMC!}} \qquad \mathcal{E}(w_n) = \frac{1}{2}\underbrace{\mathbb{E}_{p(\theta|X,\bar{w}_n)}\left[\bar{f}(\theta)\bar{\ell}_n(\theta)\bar{\ell}_n(\theta)\right](w_n-1)^2}_{\text{Cannot compute directly (don't know }\bar{w})}$$

How to compute the slopes ψ_n ? How large is the error $\mathcal{E}(w)$?

For simplicity, for the remainder of the presentation, we will consider a single weight.

$$\underset{p(\theta|X,w_n)}{\mathbb{E}}[f(\theta)] - \underset{p(\theta|X)}{\mathbb{E}}[f(\theta)] = \psi_n(w_n - 1) + \mathcal{E}(w_n)$$

Let an overbar denote "posterior–mean zero." For example, $\bar{f}(\theta) := f(\theta) - \underset{p(\theta|X)}{\mathbb{E}}[f(\theta)].$

By dominated convergence and the mean value theorem, for some $\tilde{w}_n \in [0, w_n]$:

$$\psi_n = \underbrace{\mathbb{E}_{p(\theta|X)}\left[\bar{f}(\theta)\bar{\ell}_n(\theta)\right]}_{\text{Estimatable with MCMC!}} \mathcal{E}(w_n) = \frac{1}{2}\underbrace{\mathbb{E}_{p(\theta|X,\bar{w}_n)}\left[\bar{f}(\theta)\bar{\ell}_n(\theta)\bar{\ell}_n(\theta)\right]}_{\text{Cannot compute directly (don't know }\bar{w})} (w_n - 1)^2$$

$$= O_p(N^{-1}) \text{ under posterior concentration}$$

$$= O_p(N^{-2}) \text{ under posterior concentration}$$

How to compute the slopes ψ_n ? How large is the error $\mathcal{E}(w)$?

For simplicity, for the remainder of the presentation, we will consider a single weight.

$$\underset{p(\theta|X,w_n)}{\mathbb{E}}\left[f(\theta)\right] - \underset{p(\theta|X)}{\mathbb{E}}\left[f(\theta)\right] = \psi_n(w_n - 1) + \mathcal{E}(w_n)$$

Let an overbar denote "posterior–mean zero." For example, $\bar{f}(\theta) := f(\theta) - \underset{p(\theta|X)}{\mathbb{E}}[f(\theta)].$

By dominated convergence and the mean value theorem, for some $\tilde{w}_n \in [0, w_n]$:

$$\psi_n = \underbrace{\mathbb{E}_{p(\theta|X)}\left[\bar{f}(\theta)\bar{\ell}_n(\theta)\right]}_{\text{Estimatable with MCMC!}} \mathcal{E}(w_n) = \frac{1}{2}\underbrace{\mathbb{E}_{p(\theta|X,\bar{w}_n)}\left[\bar{f}(\theta)\bar{\ell}_n(\theta)\bar{\ell}_n(\theta)\right]}_{\text{Cannot compute directly (don't know }\bar{w})} (w_n-1)^2$$

$$= O_p(N^{-1}) \text{ under posterior concentration}$$

$$= O_p(N^{-2}) \text{ under posterior concentration}$$

Theorem [Giordano and Broderick, 2023] (paraphrase):

If the posterior $p(\theta|X)$ "concentrates" (e.g. as in the Bernstein–von Mises theorem), a then

$$w_n \mapsto N\left(\underset{p(\theta|X,w_n)}{\mathbb{E}} [f(\theta)] - \underset{p(\theta|X)}{\mathbb{E}} [f(\theta)]\right)$$

becomes linear as $N \to \infty$, with slope $\lim_{N \to \infty} \psi_n$.

^aExisting results are sufficient for a *particular weight* [Kass et al., 1990]. Giordano and Broderick [2023] proves that the result holds when averaged over all weights, as needed for variance estimation.

High dimensional problems

What about when parts of the posterior don't concentrate?

Example: Genearlized linear model with random effects (REs) λ and fixed effect γ .

Marginally, $p(\lambda|X)$ does not concentrate. \quad Marginally, $p(\gamma|X)$ concentrates.

High dimensional problems

What about when parts of the posterior don't concentrate?

Example: Genearlized linear model with random effects (REs) λ and fixed effect γ .

Marginally, $p(\lambda|X)$ does not concentrate. Marginally, $p(\gamma|X)$ concentrates.

Does
$$w_n \mapsto \underset{p(\gamma|X,w_n)}{\mathbb{E}} [f(\gamma)] - \underset{p(\gamma|X)}{\mathbb{E}} [f(\gamma)]$$
 become linear as N grows? (Note $p(\gamma|X)$ does concentrate.)

High dimensional problems

What about when parts of the posterior don't concentrate?

Example: Genearlized linear model with random effects (REs) λ and fixed effect γ .

Marginally, $p(\lambda|X)$ does not concentrate. Marginally, $p(\gamma|X)$ concentrates.

Does
$$w_n\mapsto \underset{p(\gamma|X,w_n)}{\mathbb{E}}[f(\gamma)]-\underset{p(\gamma|X)}{\mathbb{E}}[f(\gamma)]$$
 become linear as N grows? (Note $p(\gamma|X)$ does concentrate.)

Theorem 5 of Giordano and Broderick [2023] (paraphrase): In general, no!

Specifically, if $p(\lambda|X,\gamma)$ does not concentrate, then

— even if $p(\gamma|X)$ concentrates marginally —

both the slope ψ_n and the error $\mathcal{E}(w_n)$ are $O_p(N^{-1})$, and so

Nowever,
$$\mathcal{E}(w_n) \to 0$$
 as $\sum_{p(\gamma|X,w_n)}^{\infty} [f(\gamma)] = \sum_{p(\gamma|X,w_n)}^{\infty} [f(\gamma)] = N\psi_n(w_n-1) + N\mathcal{E}(w_n)$ is nonlinear.

However,
$$\mathcal{E}(w_n) o 0$$
 as $\mathop{\mathrm{Cov}}_{p(\lambda|X,\gamma)}(\lambda) o 0$

Observations and consequences

Observations and consequences

- We use often use models of the form $p(\gamma, \lambda | X)$.
- Even if the error $\mathcal{E}(w)$ does not vanish, it can still be small enough in practice.
 - \dots Especially given the linear approximation's huge computational advantage.

Preprint: Giordano and Broderick [2023] (arXiv:2305.06466) (The preprint focuses on variance estimation, the present results are found in the proofs.)

- A. Gelman and M. Heidemanns. The Economist: Forecasting the US elections., 2020. URL https://projects.economist.com/us-2020-forecast/president. Data and model accessed Oct., 2020.
- R. Giordano and T. Broderick. The Bayesian infinitesimal jackknife for variance. arXiv preprint arXiv:2305.06466, 2023.
- J. Huggins and J. Miller. Reproducible model selection using bagged posteriors. Bayesian Analysis, 18(1):79-104, 2023.
- R. Kass, L. Tierney, and J. Kadane. The validity of posterior expansions based on Laplace's method. Bayesian and Likelihood Methods in Statistics and Econometrics. 1990.