HE 18.5 .A34 no. DOT-TSC-NHTSA-79-22 c.2

RFORMANCE CHARACTERISTICS OF AUTOMOTIVE ENGINES IN THE UNITED STATES

Third Series - Report No. 11 1978 Oldsmobile Diesel, 350 CID (5.7 Liters), F.I.

> D.E. Koehler W.F. Marshall

U.S.DEPARTMENT OF ENERGY

BARTLESVILLE ENERGY TECHNOLOGY CENTER
P.O.Box 1398
Bartlesville OK 74003

STATE OF TRANSCOPPE

DEPARTMENT OF TRANSPORTATION JUN 7 1979

LIBBARY

APRIL 1979

INTERIM REPORT

DOCUMENT IS AVAILABLE TO THE PUBLIC THROUGH THE NATIONAL TECHNICAL INFORMATION SERVICE, SPRINGFIELD, VIRGINIA 22161

Prepared for

U.S. DEPARTMENT OF TRANSPORTATION

NATIONAL HIGHWAY TRAFFIC SAFETY ADMINISTRATION

Office of Research and Development

Washington DC 20590

NOTICE

This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof.

NOTICE

The United States Government does not endorse products or manufacturers. Trade or manufacturers' names appear herein solely because they are considered essential to the object of this report.

A34 NO DECTE NITE A	1-19-18 LIV		Toch	nical Report Doc	umentation Page
	Government Accessio	n Ne.	3. Rec	ipient's Cetelog No.	
DOT-HS-804 016					
			5. Rep	ort Dete	
PERFORMANCE CHARACTERIS	TICS OF AUTO	MOTIVE		11 1979	
ENGINES IN THE UNITED ST	TATES, Third	Series -	6. Per	forming Organization	Code
Report No. 11, 1978 Olds	smobile bies	er, 550	0.0	0	Papart No.
CID (5.7 Liters), F.I. 7. Author's)			BET	forming Organization C/OP-78/56	Kapari No.
D.E. Koehler and W.F. Ma	rshall		DOT	-TSC-NHTSA-7	9-22 ,
9. Performing Organization Name and Address			1	ork Unit No. (TRAIS)	
U.S. Department of Energy*				027/R9404	
Bartlesville Energy Technolo	ogy Center			ontract or Grant No. -77-07	
P.O. Box 1398 Bartlesville OK 74003				pe of Report and Pe	rind Covered
12. Sponsoring Agency Name and Address			٦,	Interim Rep	
II C Department of Transportation			1	January 197	
National Highway Traffic Safety A Office of Research and Developmen	dministration,				
Office of Passenger Vehicle Resea Technology Assessment Division	rch, Washington DC 2059	0	i	ensering Agency Co.	de
15. Supplementary Notes	U.S. Depar	tment of Tra	nsport	ation,	
	Research a	nd Special F	rogram	s Administra	tion
*Interagency agreement with	Transporta Kendall Sq	tion Systems uare, Cambri	dge MA	02142	
16. Abstract Experimental data were obtain					
Experimental data were obtain diesel engine to determine fu xide, oxides of nitrogen) at the program is to obtain engi economy for varied engine ser basic engine characteristic d volving ground transportation	steady-state e ne performance vice and duty. lata required a	data for es	timati	ng emissions e work is to	and fuel provide
				DEPARTMEN TRANSPORT	
				III IN I St	No.
				JUN 7 i	9/9
				LIBRARY	7
-					-
		30 Strathial - St	and and		
17. Key Words		18. Distribution S		S AVAILABLE 10	THE BURN IC
Fuel Economy Auto Emissions		THI	ROUGH TI	HE NATIONAL TEC ON SERVICE, SPRIN	HNICAL
19. Security Cleasif. (of this report)	20. Security Class	if. (of this page)		21. No. of Pages	22. Price
·		£1.1	\	38	
Unclassified	Unclassi	tied	\	20	

PREFACE

This report, prepared by the U.S. Department of Energy, Bartles-ville Energy Technology Center for the U.S. Department of Transportation, Transportation Systems Center, Energy Technology Branch, Cambridge, MA, presents results of experimental work to obtain information on performance characteristics of an engine used in automobiles sold in the United States. The Oldsmobile 350 CID diesel engine used in this work is one of a series of 15 engines to be tested in the current program. This is the eleventh of the reports to be published covering work with those engines. This project is funded by the National Highway Traffic Safety Administration, Office of Research and Development, Office of Passenger Vehicle Research, Technology Assessment Division.

James A. Kidd, Jr. of the U.S. Department of Transportation, Transportation Systems Center, is the technical monitor.

	į			9	9 4	T.	ē			,	'le"	k"	i				ĸ	•				8	u	ti-	ľ	, "	R					1				
c Mosseres	To Find			inches	feer	yerds	rhilos				square anches	Square yangs	ACTES OF THE PARTY				Ounces	poweds	short tone			fluid outcoss	profits	quants	gallens	Cubic feet	court Albus				- Constitution of the Cons		: 1	002 091	9	
rsions from Motri	Moltiply by	LENGTH		0.0		2	0.8		AREA		0.18		2.5		MASS (weight)		0.036	2.2	5	VALIENCE		0.03	2.1	1.06	92.0	25.	?		TEMPERATURE (oxoct)	9/5 (then	25 pps		900	60 120	20 00	32
Approximate Conversions from Motric Mossares	Whee Yes Keew	I		Contimeters	meters	meters	filometers.		,		Square centimeters	nouses kilometers	hectares (10,000 m²)		2		grame	kriograms	(64 0001) securos			melli litters	litters	Inters	litters	Cubic meters				Celsius	temperature		2	0	- 2-	
	Sympton		ı	Ē 8	E	€	e a			٦	5~6	"i	2				0	po po	-			Ē	-	-	-7	e Te				U			•	0+-	1 :	ů
33		z 0	re Hillin	61		ot liki		21	9	·	81		101	1411	E1	1				DT	i iii		•	:11	ر الالا		9		s			e .		: H	1	12
, ,		1111	"	11	.1.	' -	T	" "	η.		1"	T.	" "	11		'1		1.	 	' ''	'	' 'I		1'	111	'1	T'		1'	""	' '	"	""	'1'	inch	
																																ı	•			
	ympol				E	E	E	5			ر _{ال} م	~ E	'n.	5 2			8	ltg.	_			Ē	Ē	Ē.			_	ne '	È		٠	١	•			
Mesures	To Find Symbol				Continuous			hilometers hm			square centimeters cm ²		square meters m²					2	fames					milliliters mi	-	-			Cubic meters m²			Calgina .c				
aversions to Metric Measures			LENGTH		Continuo	Contimaters		hilometers	AREA			aquare meters	square meters		ASS (mainte	(Indiana) opera	sueus	kilograms		VOLUME		millititers		mullilitors .	0.67		liters		cubic meters	ERATURE (exact)	į					
Approximate Conversions to Motric Mossues	To Find		LENGTH		Continuo	30 centimaters	meters	1.6 hilometers	AREA		sa 6.5 square contimuters	0.09 square meters	square meters	0.4 hectares	MASS (maniphe)	THE LEASE OF THE PARTY OF THE P	28 grams	0.45 krilograms	tomes	VOLUME		5 millitors	milliters	30 millilitors	0.47	58.0	3.8 liters	cubic meters	0.76 Cubic maters	TEMPERATURE (oxact)		Calgius	(ZE			

INTRODUCTION

The objective of this program is to obtain engine performance data for estimating fuel economy and emissions for varied engine service and duty. The intent of the work done at the Bartlesville Energy Technology Center is to provide basic engine characteristic data required as input for engineering calculations of fuel consumption and emissions involving ground transportation.

The data acquired from tests of a 1978 Oldsmobile 350 CID diesel engine are presented in this report. Oldsmobile uses the 350 CID diesel engine in the Delta 88 and in the Custom Cruiser wagon with inertia weights of 4,500 lb and 5,000 lb, respectively. The engine as equipped is intended for use in a forty-nine state (Federal) vehicle with automatic transmission. The test results are sufficient to establish steady-state maps for fuel consumption and emissions (carbon monoxide, hydrocarbons, and oxides of nitrogen) over the entire operating range of the engine.

2. FNGINE TEST REPORT

The engine test setup included a complete mean-tolerance engine (SAE definition) coupled to an eddy current dynamometer. A cooling tower was used in place of the fan and radiator. The alternator was included but was not wired into the engine's electrical system. The emission control systems included positive crankcase ventilation. The manufacturer's engine specifications are listed in Table 1.

Prior to testing, engine break-in consisted of 40 hours of operation at various speed/load modes representative of normal engine operation. Table 2 contains details of the break-in schedule. A single batch of No. 2 diesel fuel was used throughout the break-in and test; a detailed fuel analysis is given in Table 3. Engine testing began on August 11, 1978, and ended on September 26, 1978.

During steady-state tests the engine was operated at the following speed/load modes:

Speeds: 1,000; 1,300; 1,600; 2,000; 2,500; 3,000; 3,600 rpm

Loads: 0, 10, 25, 40, 60, 75, 90, 100 pct of full load (0, 10, 25 and 40 pct points were repeated at

all engine speeds)

Idle speed/load modes: 750 rpm -- 0 lb-ft

600 rpm -- 0 1b-ft

Over speed mode: 3,850 rpm -- 161 lb-ft (full rack)

The following data were recorded for each test point:

Test number
Date
Data source code
Barometric pressure, mm Hg
Wet bulb temperature, °F
Dry bulb temperature, °F
Speed, rpm
Torque, lb-ft -- BLH strain gauge; Daytronic indicator
Fuel rate, lb/hr -- Fluidyne positive displacement fuel flow meter
Rack position (throttle angle), degrees
CO, pct -- Beckman NDIR

CO $_2$, pct -- Beckman NDIR O $_2$, pct -- Beckman polarographic detector HC, ppmC -- Custom built heated flame ionization detector NO $_X$, ppm -- Thermo-Electron chemiluminescent detector Oil temperature, °F Oil pressure, psi Coolant temperature, °F Exhaust temperature, °F Exhaust temperature, °F Exhaust pressure, in. H $_2$ O Smoke, pct opacity -- Celesco smoke meter Particulate, mg/m 3 -- Ikor air quality monitor, Model 206

The computed data include absolute humidity, power, and emission rates of carbon monoxide (CO), hydrocarbons (HC), and oxides of nitrogen (NO χ) in grams per hour. The following equations were applied in the computations:

 Partial pressure of water vapor in intake air (millimeters of mercury):

$$P_{V} = \exp \left[18.717 - \frac{7308.1}{393 + T_{W}} \right] + \frac{P_{b}}{2784.2} \left[1 + \frac{T_{W}}{1533.2} \right] \left[T_{W} - T_{D} \right]$$

$$T_{W} = \text{Wet bulb temperature, °F}$$

$$T_{D} = \text{Dry bulb temperatue, °F}$$

$$P_{b} = \text{Barometric pressure, mm Hg}$$

2. Humidity (grains moisture per pound dry air):

$$H = \frac{(4347.3) (P_{V})}{P_{b} - P_{V}}$$

3. Corrected brake horsepower:

$$HP_{c} = \begin{bmatrix} \frac{T}{5252.11} \end{bmatrix} \begin{bmatrix} \frac{T_{D} + 460}{545} \\ \frac{P_{b} - P_{v}}{736.6} \end{bmatrix}$$

T = Brake torque (lb-ft) N = Engine speed (rpm) 4. Fuel mass flow rate (lb/hr):

Convert hydrocarbon concentration measurements from wet basis to dry basis:

$$\begin{aligned} \text{HC}_{D} &= \text{HC}_{W} \quad \left[1 + \frac{\text{X}}{200} \quad \left(\frac{3\text{CO}_{2}[\text{CO} + \text{CO}_{2}]}{\text{CO} + 3\text{CO}_{2}} \right) \right] \\ &+ \text{HC}_{W} &= \text{Hydrocarbon concentration on wet basis (pct)} \\ &\times^{W} &= \text{Fuel hydrogen/carbon atomic ratio} \\ &\text{CO}_{2} &= \text{Carbon dioxide concentration on dry basis (pct)} \\ &\text{CO} &= \text{Carbon monoxide concentration on dry basis (pct)} \end{aligned}$$

6. Carbon monoxide mass emission rate (grams/hour):

.
$${\rm m_{CO}} = \frac{{\rm (453.59)~(m_F)}}{{\rm (M_F)~(CO + CO_2 + HC_D)}} ~{\rm (CO)} \left({\rm M_{CO}} \right)$$

$${\rm M_{CO}} = {\rm Molecular~weight~of~CO} \\ {\rm M_F} = {\rm Fuel~molecular~weight~per~carbon~atom}$$

7. Hydrocarbon mass emission rate (grams/hour):

.
$${\rm ^{M}_{HC}} = \frac{{\rm (453.59)~(m_F)}}{{\rm (M_F)~(CO~+~CO_2~+~HC_D)}} \quad {\rm (HC_D)~(M_{HC})}$$

$${\rm ^{M}_{HC}} = \underset{\rm equal~to~M_F)}{{\rm Molecular~weight~of~HC~per~carbon~atom~(assumed~equal~to~M_F)}}$$

Oxides of nitrogen mass emission rate (grams/hour) (corrected for humidity):

$$\frac{1}{M_{NO\chi}} = \frac{(453.59) (M_F)}{(M_F) (C0 + CO_2 + HC_D)} (NO\chi) (M_{NO^2})$$

$$\frac{1}{(1 - 0.0025 (H - 75))}$$

$$M_{NO_2} = Molecular weight of NO_2$$

 $NO\chi$ = Oxides of nitrogen concentration on dry basis (pct)

DISCUSSION OF TEST RESULTS

Maximum corrected brake horsepower, maximum corrected torque, and brake specific fuel consumption (bsfc) are plotted as functions of engine speed at full rack position in Figure 1. The maximum power output and torque of the engine were produced at the specified speeds and were similar to the values quoted in Table 1. The minimum befc was produced at 1,000 rpm for the speeds tested. The fuel rates were found to be nearly a linear function of power for all engine speeds and were repeatable for all speeds duplicated (Figure 2).

Emissions of CO, HC, and NO χ are plotted as functions of power for all engine speeds (Figures 3 thru 5). Emissions of CO remained at fairly constant levels during moderate load operation for each speed. At the light load and heavy load conditions, emissions of CO tended to increase significantly for most engine speeds. Emissions of HC tended to decrease with increasing power for most engine speeds. At particular speed/load modes, some scatter in the data was observed. Additional testing at these particular speed/load modes was conducted to verify the data. Emissions of NO χ tended to increase with increasing power up to 60 to 90 percent of full load for each engine speed.

Emissions of smoke from the engine remained below 8 percent opacity for all light and moderate load operations (Figure 6). During operation at and near full rack position, the emissions of smoke increased up to 30 percent opacity. Emissions of particulate from the engine remained at low levels (below 180 mg/m³) up to 75 percent of full load where significant increases were observed near full rack position (Figure 7). Particulate measurements were not conducted at all operating modes. This is indicated by a zero entered where the particulate measurement would be.

4. CONCLUSIONS

The experimental work to obtain performance data for the Oldsmobile 350 CID diesel engine has been completed; these data are presented in the tables accompanying this report.

TABLE 1. MANUFACTURER'S ENGINE SPECIFICATIONS

Displacement, cubic inches	
Maximum horsepower, bhp @ 3,600 rpm	
Maximum torque, 1b-ft @ 1,600 rpm	
Bore and stroke, inches	
Configuration	V-8
Compression ratio	22.5 to 1
Firing order	1-8-4-3-6-5-7-2
Block material	Cast iron
Head material	
Number of crankshaft main bearings	5
Number of compression rings/piston	2
Number of oil rings/piston	1
Cam drive type	Chain
Valve lift:	
Intake, inches	0.375
Exhaust, inches	
Valve timing:	
Intake opens, °BTC	16
Intake closes, OABC	38
Exhaust opens, °BBC	64
Exhaust closes, OATC	17
Engine weight, pounds	670
Crankcase emissions control:	
Control method	Positive crankcase ventilation
Point of discharge	Intake manifold
Carburetor type	
Injection pump type	
Combustion chamber type	
Governor type	
Injection timing:	
°BTDC @ 600 rpm	4.5
°BTDC @ 3,600 rpm	
	,

TABLE 2. ENGINE BREAK-IN SCHEDULE

Simulated vehicle speed, mph	Engine speed, rpm	Torque, lb-ft	Fraction of time in mode
Idle	575	0	1/10
20	650	43	п
30	900	49	п
40	1,250	56	п
50	1,550	67	n n
60	1,850	81	u
25	800	45	п
35	1,100	51	п
45	1,400	61	п
55	1,700	74	п

Mileage per cycle = 90 miles.
Total mileage accumulated over 40 hours break-in period = 1,440 miles.

TABLE 3. FUEL SPECIFICATIONS

Fuel No. (No. 2 diesel)	7828
10 pct	429
50 pct	510
95 pct	618
End point	638
API gravity	33.2
Specific gravity	0.859
FIA analysis, pct:	
Aromatics	
Olefins	3
Paraffins	62
Sulfur, pct	0.27
Hydrogen to carbon ratio	1.9

FIGURE 1. Brake Specific Fuel Consumption, Torque and Brake Horsepower versus Engine rpm at Full Rack Position--Oldsmobile 350 CID (Diesel) Engine.

FIGURE 2. Fuel Rate versus Power at Various Speed and Load Conditions--Oldsmobile 350 CID (Diesel) Engine.

FIGURE 3. Carbon Monoxide Emissions versus Power at Various Speed and Load Conditions--Oldsmobile 350 CID (Diesel) Engine.

FIGURE 4. Hydrocarbon Emissions versus Power at Various Speed and Load Conditions--Oldsmobile 350 CID (Diesel) Engine.

FIGURE 5. Oxides of Nitrogen Emissions versus
Power at Various Speed and Load
Conditions--Oldsmobile 350 CID
(Diesel) Engine.

FIGURE 6. Smoke versus Power at Various Speed and Load Conditions-- Oldsmobile 330 CID (Diesel) Engine.

FIGURE 7. Particulate versus Power at Various Speed and Load Conditions--Oldsmobile 350 CID (Diesel) Engine.

6.01	-	8/25/78	745.5	7.5	80	1000	120.0	22.7	10.6	5.3		.0230	6.30	12.75	180	150		35.2	13.7	37.8	215	20	184	10.0	543	0.4	157 0
5.01	-	8/11/78	741.0	74	95	1000	150.0	28.6	11.8	5.3		.0254	7.27	10.75	267	150		37.5	19.6	36.3	379	20	187	17.0	717	7.1	137 0
4.01	1	8/25/78	745.5	75	98	1000	180.0	34.1	16.4	11.7		.0375	9.77	7.75	273	177		56.9	20.6	44.2	215	20	187	12.0	203	15.0	7000
3.01		8/24/78	744.0	2.2	93	1000	200.0	38.3	18.1	52.6		.0653	11.13	5.25	122	120		96.3	6.8	29.3	227	16	183	15.0	888	25.9	× 100
2.01	1	8/11/78	741.0	74	82	009	•	•	2.2	•		.0375	2.94	17.50	411	34		25.3	13.8	3.8	186	15	177	2.0	223	۳. ا	
1.01	-	8/11/78	741.0	24	8 1	750	٥.	٥.	2.7	٠.		0375	2.67	18.00	472	2.2		33.7	21.1	* . •	190	24	176	3.0	228	0.9	- L
FUEL CODE: 7828 TEST NUMBER	DATA SOURCE CODE	TEST DATE	BAROMETER, MMHG	HUMIDITY, GRAINS/LB	TEMPERATURE, F	ENGINE SPEED, RPM	TORQUE, FT-LB	POWER, BHP*	FUEL RATE, LB/HR	THROTTLE ANGLE, DEG	CONCENTRATIONS, DRY BASIS		C02, %	02, %	HC, PPMC	NOX, PPM	EMISSION RATES, GZHR	00	HC	NOX+	OIL TEMPERATURE, F	OIL PRESSURE, PSI	COOLANT TEMPERATURE, F	EXHAUST PRESSURE, IN. H20	TEMPERATURE, F		1 1 2 1 0 2 1 L L C L L C C L C C C C C C C C C C C

* CORRECTED SAE J816B + CORRECTED FOR HUMIDITY

TEST NUMBER	8.01	9.01	11.01	12.01	13.01	18.01
DATA SOURCE CODE	-	-	-	-		-
	8/25/78	8/25/78	8/24/78	8/24/78	8/24/78	8/18/78
BENDERIER, METER	745.0	743.5	744.5	744.5	746.4	739.1
HUMIDITY, GRAINS/LB	09	75	83	81	72	78
TEMPERATURE, F	8	88	96	92	98	8
ENGINE SPEED, RPM	1000	1000	1300	1300	1300	1300
TORQUE, FT-LB	50.0	20.0	200.0	180.0	150.0	2.8
POSETRY, WITH P.	9.6	3.8	49.9	44.7	36.9	. 2
FUEL RATE, LB/HR	0.9	4.2	24.6	20.2	16.7	4.5
THROTTLE ANGLE, DEG	10.	60 .	54.0	10.4	89.33	•
CONCENTRATIONS, DRY BASIS	v					
	0218	.0229	9090	.0279	.0230	.0470
C02, %	3.41	2.44	11.49	9.15	7.54	1.82
2 . 20	16.52	17.84	4.75	8.00	10.60	18.40
OWAG . OH	258	292	122	294	268	590
XON	86	8	140	148	160	32
EMISSION RATES, G/HR						
03	34.6	34.3	117.8	55.8	46.3	101.1
3	20.4	22.1	11.8	29.5	26.8	63.1
+X0N	24.8	20.3	45.6	49.4	52.5	11.4
O 1 L TEMPERATURE, F	206	193	237	228	203	200
OTI PRESSURE, PSI	24	23	25	21	25	30
COOLANT TEMPERATURE, F	183	180	185	189	186	180
EXHAUST PRESSURE, IN. H20	2.0	2.0	25.0	22.0	20.0	14.0
EXHAUST TEMPERATURE, F	346	259	950	784	652	250
SMOKE % OPACITY	W.	4.2	20.0	9.6	4.9	3.5
POSTITITION CHC/H3)	122.0	128.0	482.0	251.0	155.0	139.0

* CORRECTED SAE J8168
+ CORRECTED FOR HUMIDITY

ENGINE: 1978 OLDSMOBILE 350-CID DIESEL Fuel Code: 7828

27.01		8/28/78	743.0	7.2	92	2000	210.0	9.62	38.1	53.0		.0443	12.19	4.74	29	240		125.9	9.5	111.3	256	56	192	57.0	1077	10.0	348.0
25.01		8/29/78	745.0	99	69	1600	21.5	6.3	7.1	٠.		9020	2.48	16.54	379	80		78.1	48.1	23.7	214	34	183	22.0	313	3.3	124.0
24 01		8/29/78	744.5	99	83	1600	53.9	16.2	10.1	5.6		.0266	3.58	15.51	331	113		67.0	41.5	45.8	216	56	188	24.0	388	2.4	112.0
22 01		8/29/78	744.5	99	98	1600	129.0	38.9	19.7	8.9		.0236	6.70	10.91	213	198		63.1	28.2	84.8	230	23	189	30.0	625	3.5	120.0
21 01	-	8/29/78	744.0	99	87	1600	161.0	48.5	22.2	6.8		.0230	8.32	9.03	221	217		55.7	26.6	84.5	232	23	189	33.0	748	4.4	165.0
20 01		8/29/78	745.0	99	06	1600	193.0	58.1	29.3	16.0		.0353	11.61	4.60	189	228		80.8	21.5	83.8	242	25	190	41.0	934	11.6	309.0
FUEL CUDE: 7828 TEST NIMBER		TEST DATE	BAROMETER, MMHG	HUMIDITY, GRAINS/LB	TEMPERATURE, F	ENGINE SPEED, RPM	TORQUE, FT-LB	POWER, BHP*	FUEL RATE, LB/HR	THROTTLE ANGLE, DEG	CONCENTRATIONS. DRY BOSTS		C02, %	02, %	HC, PPMC	NOX, PPM	EMISSION RATES, G/HR	00	HC	M0 X+	OIL TEMPERATURE, F	OIL PRESSURE, PSI	COOLANT TEMPERATURE, F	EXHAUST PRESSURE, IN. H20	EXHAUST TEMPERATURE, F	SMOKE, 2 OPACITY	PARTICULATE (MG/M3)

* CORRECTED SAE J8168 + CORRECTED FOR HUMIDITY

	28 01	1 29 01	30 01	31.01	1 32.01	1 33.01
	, c	· · · · · · · · · · · · · · · · · · ·		· -	-	2
	8/28/78	8/28/78	8/28/78	8/29/78	8/29/78	8/29/78
	743.5	743.5	742.5	744.5	744.5	745.0
	72	72	72	20	20	70
	92	88	96	8 1	8 3	83
	2000	2000	2000	2000	2000	2000
	189.0	157.5	126.0	84.0	52.5	21.0
	71.6	59.6	47.8	31.7	19.8	7.9
	33.1	27.1	22.3	16.5	12.7	9.1
	13.5	10.0	8.8	ري . ه	3.5	
84515					,	
	.0282	.0216	.0266	. 0271	. 0295	. 0334
	10.18	8.25	6.72	4.82	3.61	2.57
	6.83	9.72	11.85	14.49	15.87	16.83
	165	162	287	332	352	359
	241	223	192	143	101	85 85
	83.2	64.5	29.8	83.5	93.2	104.6
	24.2	24.0	42.9	51.2	55.2	55.9
	116.4	108.6	93.9	71.7	52.0	30.1
	251	244	242	228	226	225
	28	28	31	25	28	27
	189	190	188	186	186	185
H20	53.0	48.0	45.0	42.0	38.0	34.0
	955	274	009	497	420	352
	10	3.5	2.0	1.8	1.6	1.8

* CORRECTED SAE J8168 + CORRECTED FOR HUMIDITY

40.01	-	8/30/18		9	98	2500	20.0	٠.	16.5	4.2		. 0218	3.77	14.84	269	105			52.6	66.1	239	32	187	59.0	481	1.6	78.0
39.01	-	8/30/78	747.5	29	82	2500	80.0	37.5	21.0	T.		. 0224	4.95	13.72	257	145		8 8 8 9	48.9	89.3	247	30	189	65.0	589	1.6	φ φ
38.01	-	8/30/78	747.5	9	82	2500	120.0	56.3	27.7	9.2		.0221	6.62	11.76	186	190		83.	35.1	115.7	249	29	189	74.0	724	2.0	0 2 0
37.01	-	8/30/78	747.5	65	06	2500	150.0	70.3	33.5	11.9		. 0225	8.18	9.70	135	224		83.7	24.9	134.0	255	27	190	83.0	856	2.7	1200
36.01		8/30/78	747.5	65	06	2500	180.0	84.4	40.2	15.0		.0240	88.6	7.30	82	246		89.0	15.1	146.5	259	27	192	91.0	1000	4.0	170
35.01	-	8/30/78	747.5	65	00	2500	200.0	93.8	45.9	52.6		.0372	11.52	5.24	61	252		134.8	11.0	146.6	2 4 2	22	189	0.96	1050	9.2	000
TEST NUMBER	DATA SOURCE CODE	DATE	BARDHETER, MMHG	HUMIDITY, GRAINS/LB	TEMPERATURE, F	ENGINE SPEED, RPM	TORQUE FT-LB	*GHG AUDO	FUEL PATE, L8/H2	THROTTLE ANGLE, DEG	CONCENTRATIONS, DRY 8ASIS		C02, %	02, %	HC. PPRC	NOX, PPM	EMISSION RATES, G/HR	00	- X	NOX+	DIL TEMPERATURE, F		COOLANT TEMPERATURE, F	EXHAUST PRESSURE, IN. H20	_	SMOKE, % OPACITY	V T T V T V T V T V T V T V T V T V T V

* CORRECTED SAE J8168 + CORRECTED FOR HUMIDITY

	47.01 48.01	1	8/31/78 8/31/78	748.5 748.5	64 64	85 86	3000 3000	77.0 48.0	_	27.1 21.6	7.3 5.3	•		_	5.23 4.27	14	325 276	145 116		_	106.9 121.0	75.6 62.4	108.3 84.3	252			-	654 572		8
	46.01 4	-	8/30/78 8/3	746.5 74	61	06	3000		_		8.6			. 0228	96.9	_	149	203			101.3	33.0	143.0 10	26.1	30	190				
	45.01	1	8/30/78	746.5	65	93	3000	145.0	81.7	41.2	12.8			.0183	8.57	8 68	82	236			80.2	18.8	165.8	25.7	9 00	0.61	114.0	940	8	103.0
	44.01		8/30/78	746.5	38	8 2	3000	174.0	97.7	0 69	-			. 0256	10.34	6.50	99	256	9		110.4	14.1	174.1	6	2 2 2	961	0 201	1052	- 00	137.0
350-CID DIESEL	43.01	-	8/30/78	747.0	29	96	3000	0 %67	109 0	7.57.7	52.0			0425	11.94	4 00	15.	276	9		180.3	9 6	179.7	7	200	A 0	125.0	100.0	2 4	22.00
78 OLDSMOBILE	TORE CODE: CAS		2016	ひとのこれには、 文文工の	CENTOTIAN COOLS		EGG CUUCH COLUMN	TODOTO PIETO			TAPOTTIE ANGLE, DEG		CONCENTRATIONS, DRY BASIS	× 00	* 000	* * * * * * * * * * * * * * * * * * * *		200	NOX, YES	AHAN SELEN SOLOSIES		2	+ × 00: 20		OIL TEEPERATURE, T	OIL PRESSURE, FUL	DOLOGIST AND THE	THE STREET OF THE STREET OF THE STREET	PARKON TOPOCITO	STORES A CHROLICA

* CORRECTED SAE J8168 + CORRECTED FOR HUMIDITY

ENGINE: 1978 OLDSMOBILE 350-CID DIESEL

56.01	-	82/9 /6	743.9	64	95	3600	42.8	29.0	27.6	2.6	.0290	4.66	14.08	202	127		155.2	53.6	108.2	258	27	192	117.0	663	1.3	81.0
54.01	-	82/9 /6	743.9	64	93	3600	104.3	20.8	42.0	12.1	.0263	7.50	10.88	125	208		133.4	31.5	169.5	232	26	193	141.0	880	1.5	0.76
53.01	-	82/9 /6	743.9	64	102	3600	130.4	9.88	49.6	15.4	.0234	9.12	8.66	28	242		115.6	19.2	191.3	280	28	194	154.0	1030	1.3	0.82
52.01		82/9 /6	743.4	6.4	105	3600	156.8	106.5	58.6	20.7	.0261	10.98	6.18	49	264		126.6	11.8	205.2	285	26	194	169.0	1192	1.7	127.0
51.01	-	8//9/6	743 9	99	66	3600	174.0	118.2	65.3	52.0	. 0448	12.59	4.26	4.3	270		211.2	10.2	203.5	287	26	195	184.0	1303	3.2	195.0
49.01	-	8/31/78	746.5	29	68	3000	19.0	10.7	16.7	3.6	0345	3.28	16.26	328	62		156.7	74.1	28.0	248	27	189	82.0	483	1.3	94.0
TEST NUMBER		CATE	BAROMETER, MMHG	HUMIDITY, GRAINS/LB	TEMPERATURE, F	ENGINE SPEED, RPM	TORQUE, FT-LB	POWER, BRP*	FUEL RATE, LB/HR	THROTTLE ANGLE, DEG		002, %	02, %	HC, PPHC	NOX, PPM	EMISSION RATES, G/HR	00	HC.	**************************************	OIL TEMPERATURE, F		COOLANT TEMPERATURE, F			SMOKE, 2 OPACITY	PARTICULATE (MG/M3)

* CORRECTED SAE J816B + CORRECTED FOR MUMIDITY

	64.01		82/2 /6	742.9	79	8 2	1000	2.0	*	3.5	°.		.0313	1.68	18.93	307	32		52.3	25.5	80.	187	24	181	7.0	226	8.4	106.0
	63.01		97 7778	743.9	75	85	1000	20.0	3.8	4.1	۰.		.0247	2.29	18.01	228	22		39.6	18.2	14.5	189	23	181	2.0	265	50.00	127.0
	61.01	-	82/2 /6	744.4	75	82	1000	80.0	15.2	7.8	2.5		. 0272	4.59	14.31	244	119		41.7	18.6	30.0	191	23	186	9.6	402	3.8	136.0
	60.01	-	97 7778	744.4	29	8 4	575	2.0	۲.	2.3	1.0		.0371	2.35	17.39	274	32		31.8	11.7	4.5	176	11	178	5.0	229	7.1	192.0
	59.01	-	9/ 7/78	744.4	29	82	750	2.0	m.	5.6	1.0		0338	2.03	18.45	199	29		38.2	11.2	5. S	180	17	179	4.0	223	7.3	177.0
350-CID DIESEL	57.01	-	82/9 /6	741.9	64	26	3600	17.6	12.0	23.1	4.6		.0407	3.82	15.36	395	83		220.4	106.4	72.0	255	32	189	112.0	598	1.3	85.0
ENGINE: 1978 OLDSMOBILE 350-0 FUEL CODE: 7828	TEST NUMBER	DATA SOURCE CODE		BAROMETER, MMHG	HUMIDITY, GRAINS/LB	TEMPERATURE, F	ENGINE SPEED, RPM	TORQUE, FT-LB	POWER, BHP*	FUEL RATE, LB/HR	THROTTLE ANGLE, DEG	CONCENTRATIONS, DRY BASIS	2, 20	C02, %	02, %	HC, PPMC	NOX, PPM	EMISSION RATES, G/HR	00	MC	NOX+	DIL TEMPERATURE, F	OIL PRESSURE, PSI	COOLANT TEMPERATURE, F	EXHAUST PRESSURE, IN. H20	EXHAUST TEMPERATURE, F	SMOKE, % OPACITY	PARTICULATE (MG/M3)

24

CORRECTED SAE J8168 CORRECTED FOR HUMIDITY

78.01	_	9/11/78	738.9	71	98	2500	20.0	23.7	16.3	4.4		.0246	3.86	15.76	314	100		93.3	59.3	61.6	232	32	188	59.0	496	6.	-
10.77	-	9/11/78	738.9	71	80	2500	80.0	38.0	20.9	6.2		.0230	5.03	14.24	359	141		86.3	67.0	86.5	232	32	189	65.0	586	1.0	•
76.01	-	9/11/78	738.9	7.1	85	2000	3.0	1.1	7.3	0		.0374	1.99	18.40	445	93		119.8	20.9	18.2	212	32	188	31.0	309	1.9	<
75.01	-	9/11/78	738.9	7.1	81	2000	21.0	8.0	9.1	1.5		.0304	2.60	17.72	394	80		94.5	6.09	29.5	211	32	187	34.0	344	1.7	
74.01		87/8 /6	742.4	75	88	2000	53.0	20.2	12.5	м М		.0319	3.64	15.59	313	66		98.1	48.0	50.3	219	32	187	37.0	433	1.7	
73.01		97 8778	741.9	72	88	2000	84.0	32.0	16.2	9.0		0290	4.80	14.22	274	141		88.1	41.4	6.69	222	3.1	188	41.0	523	1.00	
FUEL CODE: 7828 TEST HUMBER	DATA SOURCE CODE	DATE	BARDMETER, MMHG	HUMIDITY, GRAINS/LB	TEMPERATURE, F	ENGINE SPEED, RPM	TORQUE, FT-LB	POWER, BHP*	FUEL RATE, LB/HR	THROTTLE ANGLE, DEG	SING CO		C02, %	02, %	HC, PPMC	NOX, PPM	EMISSION RATES, G/HR	00	HC	NO X+	OIL TEMPERATURE, F		COOLANT TEMPERATURE, F	EXHAUST PRESSURE, IN. M20	TEMPERATURE,	SMOKE, % OPACITY	

* CORRECTED SAE J8168 + CORRECTED FOR HUMIDITY

ENGINE: 1978 OLDSMOBILE 350-CID DIESEL FUEL CODE: 7828 FIST HUMBER DATA SUURE CODE FIST HUMBER DATA SUURE CODE FIST HUMBER BARONETER, MAHG FIST HUMBER FIST HUMBER DATA SUURE CODE FIST HUMBER BARONETER, MAHG FIST HUMBER FIS		86.01	-	9/12/78	736.4	7 1	06	3600	43.4	29.9	28.3	6.2		0	0350	5.04	14.26	319	130		1	165.5	80.3	106.6	25.2		3.1	190	119.0	685	1.0	°.	
ENGINE: 1978 OLDSMOBILE 350-CID DIESEL FUEL CODE: 7828 FUEL CODE: 7828 FEST WARE FEST WARE BARONETER, MANG FENT WARE FUEL RATE, LB/MR FUEL RATE, LB/MR CONCENTRATIONS, DRY BASIS COLORY FATE FUEL RATESSURE, F HC, PRHC COLORNT TEMPERATURE, F FUEL RATESSURE, F HC, PRHC COLORNT TEMPERATURE, F FUEL RATESSURE, F FUEL RATESS		85.01	-	9/11/78	736.9	80	93	3600	20.0	48.1	34.3	8.5	ŝ	-	. 0243	9 . 08	12.62	262	168		1	123.9	9.99	142.6	036		31	192	134.0	787	6.	۰.	
ENGINE: 1978 OLDSMOBILE 350-CID DIESEL FUEL CODE: 7828 TEST NUMBER BAROMETER, MHHG HUMIDITY, GRAINS/LB FEMPERATURE, F FUEL RATE, LB/HR CONCENTRATIONS, DRY BASIS CONCENTRATIONS		83.01	-	9/11/78	737.9	92	82	3000	19.0	10.9	16.7	M. 55			030	3.31	16.36	378	73			138.1	84.6	54.2	222	2	23	189	81.0	490	6.	°.	
ENGINE: 1978 OLDSMOBILE 350-CID DIESEL FUEL CODE: 7828 FATS SOURCE CODE TEST NUMBER CODE TEST NUMBER CODE BAROMETER, MHHG HUMIDITY, GRAINS/LB FUGNE SPEED, RPH FUGNE SPEED, RPH FUGNE, BHP* FUEL RATE, LB/HR FUEL RATE, LB/HR THROTTLE ANGLE, DEG COO, 2 COO, 2 COO, 2 COO, 3 COO, 3 COO, 3 COO, 3 COO, 3 COO, 3 COO, 4 COO,		82.01	-	9/11/78	737.9	92	87	3000	48.0	27.4	21.4	J. 51		1	0222	4.34	15.06	275	114	•		112.9	60.7	83.6		147	33	189	87.0	574	2	•	
ENGINE: CODE CODE BAROMETEST UNMS TEST CATE BAROMETER TO ENGINE: BAROMETER THROTILE		80.01		9/11/78	738.4	7.1	80	2500	4 4		10.2	1.5			0374	2.34	18.04	341	4.2	d r		144.0	65.2	26.2		022	33	188	51.0	361	8	•	
ENGINE: CODE CODE BAROMETEST UNMS TEST CATE BAROMETER TO ENGINE: BAROMETER THROTILE	CID DIESEL	79.01		9/11/78	738.9	2.1	00	2500	000	. 6	200	4.			0343	2.82	17.15	369		> 0		131.4	70.3	37.4		622	32	188	54.0	405	4	•	
	ENGINE: 1978 OLDSMOBILE 350-(30000	2000	CIRI DILLING OF COLUMN	DESCRIPTION OF THE PROPERTY OF		MOO COLOR LINE	INCIDE OFFICE AT I	UKRUE, FILE		TERRIT DESCRIPTIONS			C0, %	7, 000				Z X X X	EMISSION RATES, G/HR		2	* × ×			DI DOCCHOE DOI	u	ODECCHOS IN	TOROGOOTING F	PATRON FED FAN CAR .	BODITUE DIE CECAES	

CORRECTED SAE J816B

100.01	-	9/15/78	743.5	107	80	1300	2.0	10.	4.51	•		.0489	1.82	17.56	580	35		103.2	60.09	13.3	218	26	182	12.0	273	4.2	٥.
99.01	-	9/15/78	743.0	82	83	1000	2.0	*.	ю М	•		.0293	1.76	18.39	309	4 00		48.0	25.2	12.4	183	24	182	7.0	226	4.2	0.
94.01	-	9/14/78	741.0	8	06	2500	20.0	9.6	12.1	2.3		. 0335	2.77	16.88	361	10 10		130.3	6.69	34.5	224	29	188	48.0	403	2.0	88.0
92.01	1	9/14/78	741.0	83	8 2	1300	80.0	19.9	10.1	3.2		.0257	4.47	14.64	296	127		52.1	29.9	43.2	206	24	185	16.0	439	2.3	94.0
88.01		9/12/78	736.4	7.1	9.1	3600	3.9	2.7	20.7	3.6		.0574	3.53	16.03	902	64		297.0	181.6	53.7	249	31	189	112.0	569	60	-
87.01	weight.	9/12/78	736.4	7.1	86	3600	17.1	11.8	23.4	4.3		.0414	4.05	15.43	478	98		213.8	122.6	72.6	252	31	189	115.0	615	60	0.
FUEL CODE: 7828 TEST NUMBER	DATA SOURCE CODE	TEST DATE	BAROMETER, MMHG	HUMIDITY, GRAINS/LB	TEMPERATURE, F	ENGINE SPEED, RPM	TORQUE, FT-LB	POWER, BHP*	FUEL RATE, LB/HR	THROTTLE ANGLE, DEG	CONCENTRATIONS, DRY BASIS	200	C02, x	02, %	HC, PPMC	NOX, PPM	EMISSION RATES, G/HR	00	HC	NOX+	OIL TEMPERATURE, F	OIL PRESSURE, PSI	COOLANT TEMPERATURE, F	EXHAUST PRESSURE, IN. H20	EXHAUST TEMPERATURE, F	SMOKE, % OPACITY	PARTICULATE (MG/M3)

* CORRECTED SAE J8168 + CORRECTED FOR HUMIDITY

TEST NUMBER TEST NUMBER TEST DATE BAROMETER, MNHG HUMIDITY, GRAINS/LB ENGINE SPEED, RPM TORQUE, FT-LB FUEL RATE, LB/HR FUEL RATE, LB/HR THROTTLE ANGLE, DEG CONCENTRATIONS, DRY BASIS		2	25 / 2 / 2 / 2 / 2 / 2 / 2 / 2 / 2 / 2 /	9/15/78			
CE CODE GRAINS/LB RE, F EED, RPM T-LB Y-LB/HR ANGLE, DEG RATIONS, DRY BASI	1	9/15/78 742/78 84 2000 2000 3.5	9/15/2 742/2 742/3 2000/2 4000/2 1.900/2	9/15/78	1	7	
CRAINS/LB CRAINS/LB RE, F EED, RPM T-LB P. LB/HR ANGLE, DEG RATIONS, DRY BASI	00 00 00 00 00 00 00 00 00 00 00 00 00	2 / 18 / 2 / 2 / 2 / 2 / 2 / 2 / 2 / 2 / 2 /	2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2	741.5			
CRAINS/LB CRAINS/LB EED, RPM T-LB P* LB/HR ANGLE, DEG	2 4 4 4 8 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8	2.5 2.0 2.0 3.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	2	741.5	2/12//8	2/18//8	
RY BASI		0 0 1 1 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	88 80 4 11 12 12 12 12 12 12 12 12 12 12 12 12		741.0	739.0	
RY BASI	au n	20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	25 0 0	98	98	2.9	
2- 80 81 81 81 81	00 N N 00 N 00 N 00 N 00 N 00 N 00 N 0	2000	2500	92	9.0	98	
7- 8 8 8 8 1 8 8 1 8 1 8 1 8 1 8 1 8 1 8 1	M R) 4	W - V	0.0	3000	3600	1000	
RY BASI	N R)) - N	6.1	5. 4	5.0	80.0	
RY BASI	n .	200	7 . 7	3 6	7	15.4	
RY BASI	u .	0.0.	•			0 0	
RY BASI	•	°.	0.07	7 . 5			
DRY BASI			°.	P.		٥٠٧	
D E E E E E E E E E E E E E E E E E E E							
7		0408	0360	0353	.0465	.0272	
		0 6	0 1 0	2.74	3.40	4.79	
5 707	20.		17 70	14 45	20.00	14	
02, %	18.02	17.82	10.52	200	2	200	
MC, PPMC	440	453	433		1 / 9	282	
NOX, PPM	32	36	4 2	09	99	132	
EMISSION RATES, G/HR							
	106.9	131.4	145.0	161.3	246.9	40.2	
5	56.7	72.6	9.98	95.9	177.0	20.6	
+X0X	14.0	19.3	28.3	46.4	59.0	32.5	
	197	202	213	23	239	192	
OIL TERFERICKE, T	36	200	30	33	31	53	_
CIL TREGOGRES TOI	0 00	1 00	187	189	189	186	_
	0	280	45.0	0.69	9.0	9.6	-
TEMPEDATION.	266	295	349	439	529	405	
7 DESCITY	1 17	2.5	2.4	1.6	1.1	4.0	
PARTICULATE (HG/H3)	•	•	•	•	°.	149.0	
CORRECTED							

350-CID DIESEL	
1978 OLDSMOBILE	: 7828
ENGINE:	FUEL CODE

112.01	-	9715/78	738.5	28	82	1600	21.5	9.9	6.9	ω.		.0331	2.42	17.41	357	60		83.8	45.0	24.9	204	25	185	20.0	313	3.4	122.0
111.01		9/15/78	738.0	81	88	1600	53.9	16.6	8.6	2.7		.0270	3.52	15.97	339	110		67.3	42.0	46.0	208	24	187	21.0	391	2.2	0.46
110.01	1	9/18/78	738.5	81	8	1600	86.0	26.5	13.0	4 .0		.0256	4.76	14.30	366	145		63.0	44.8	29.6	182	31	177	23.0	447	2.0	116.0
109.01	1	9/18/78	738.5	92	98	1300	20.0	5.0	5.2	2.		. 0355	2.40	17.51	429	28		74.6	44.8	20.2	198	30	184	12.0	293	3.4	129.0
108.01		9/18/78	738.5	89	87	1300	20.0	12.5	7.8	1.7		. 0323	3.42	16.23	382	66		66.2	39.2	34.2	198	30	186	14.0	360	2.3	119.0
107.01	1	9/18/78	738.5	8	98	1000	20.0	9.6	0.9	IO.		0243	3.54	16.17	275	104		36.9	20.8	26.3	191	24	184	0.8	334	89.	114.0
FUEL CODE: 7828 TEST NUMBER		DATE	BARONETER, MMHG	MUMIDITY, GRAINS/LB	TEMPERATURE, F	ENGINE SPEED, RPM	TORQUE, FT-LB	POWER, BHP*	FUEL RATE, LB/HR	THROTTLE ANGLE, DEG	STORES OF STREET		C02, %	02, %	MC, PPMC	NOX, PPM	EMISSION RATES, G/HR	00	HC	NOX+	OIL TEMPERATURE, F	OIL PRESSURE, PSI	COOLANT TEMPERATURE, F			SMOKE, % OPACITY	PARTICULATE (MG/M3)

* CORRECTED SAE J816B + CORRECTED FOR HUMIDITY

119.01	-	9/26/78	745.5	99	89	1300	120.0	29.3	13.8	5.6		. 0273	6.36	12.51	306	177		53.3	29.7	55.5	194	24	186	16.0	526	2.6	°.
118.01	-	9/26/78	745.5	99	82	1300	20.0	12.2	0.8	1.7		. 0322	3.56	16.16	392	101		64.3	39.0	32.5	195	25	184	13.0	364	2.4	°.
117.01	-	9/26/78	746.0	99	82	1300	80.0	19.5	10.4	m . m		. 0299	4.66	14.76	402	141		29.8	39.9	45.2	189	23	186	13.0	424	2.3	°.
116.01	-	9/21/78	750.5	62	68	1600	220.0	65.6	31.1	54.0		.0581	12.20	4.51	181	222		134.4	20.8	81.7	225	28	191	35.0	1018	12.7	356.0
115.01	-	9/19/78	744.5	80	96	3600	9.69	47.5	33.7	89 . 31		.0187	5.91	13.00	283	165		96.3	72.5	142.1	261	29	191	122.0	260	80.	20.0
114.01	-	9/19/78	745.0	80	96	3600	104.0	71.0	42.4	12.0		.0165	7.41	10.80	218	209		83.4	56.2	180.8	265	22	192	138.0	904	1.0	76.0
FUEL CODE: 7828 TEST NUMBER		DATE	STATE OF THE STATE	HIMIDITY, GRAINS/LB	TEADTON TO THE PERSON THE PERSON TO THE PERS		TOROUR FILE	DOURS BED	FIEL PATE, LB/HR	THROTTLE ANGLE, DEG	CONCENTRATIONS, DRY BASIS		2 . 200		SWEE SWEE	NOX, PPM	EMISSION RATES, G/HR	CO	38	* 0 N	200 C C C C C C C C C C C C C C C C C C	OIL BORCCHOF, DOI	CALL TREPERSTERS. F	EXHAUST PRESSURE, IN. H20		SMOKE, 2 OPACITY	/ 作事への事へ ししく こうじゅうくの

* CORRECTED SAE J8168 + CORRECTED FOR HUMIDITY

ENGINE: 1978 OLDSMOBILE 350-CID DIESEL FUEL CODE: 7828

125.01	_	9/26/78	745 5	4	0 00	3000	220		26.6	7.4		0264	000	13.46	320	157		11.5	69.5	109.4	23.8	30	189	84.0	645	•
124.01	-	9/26/78	745 5	6.4	9	3000	6		14.2	2.6		0329	2.87	16.93	391	26		157.4	85.2	39.3	228	30	188	71.0	436	-
123.01	-	9/26/78	745.5	99	00	1600	54.0	16.2	. 6	2.6		. 0325	3.62	15.88	417	107		79.4	50.6	42.0	203	28	185	20.0	391	-
122.01		9/26/78	745.5	20	60	1600	86.0	52.0	12.8	4.1		0300	4.79	14.44	371	145		72.4	44.5	56.9	200	28	186	22.0	457	00
121.01	-	9/26/78	745.5	99	8	1600	2	0	5.2	•		.0446	2.01	18.07	495	32		111.1	61.3	12.7	192	31	182	22.0	277	3.7
120.01		9/26/78	745.5	99	82	1300	20.0	6.4	80.	8		0380	2.52	17.43	420	53		77.3	42.5	17.5	192	26	182	11.0	292	3.7
HUMBER	DATA SOURCE CODE	TEST DATE	BAROMETER, MMMG	HUMIDITY, GRAINS/LB	TEMPERATURE, F	ENGINE SPEED, RPM	TORQUE, FT-LB	POWER, BHP*	FUEL RATE, LB/HR	THROTTLE ANGLE, DEG	CONCENTRATIONS, DRY BASIS	° '00	C02, %	02, %	HC, PPMC	NOX, PPM	EMISSION RATES, G/HR	00	HC.	*×0×	OIL TEMPERATURE, F	OIL PRESSURE, PSI	TEMPERATURE, F	EXHAUST PRESSURE, IN. M20	EXHAUST TEMPERATURE, F	SHOKE, 2 OPACITY

* CORRECTED SAE J816B + CORRECTED FOR HUMIDITY

27.01 128.0	26/78 10/	745.5 751.	+	 E	600 385	4.0 161.	.5 115.	2.1 68	2.0		254 .031	7.58 11.84	.64 4.8	16 13	16 28		. 9 166	4.1 36.	3.7 233.	28	2	19	137.0 193.0	130	,
126.01 1	78 97	745.5	64	60	3600	3.0	3.4	20.2	0.4		42	3.49	0	9			217.3	20	ın.	243	_	_	•	~	•
TEST NUMBER	. CO	MMHC	68	IPERATURE, F	SINE SPEED, RPM	7	WER, BMP*	-	ROTTLE ANGLE, DEG	CONCENTRATIONS, DRY BASIS	CO, %	C02, %		Had	NOX, PPR	EMISSION RATES, G/NR	00	2	WOX+	L TEMPERATURE, F	L PRESSURE, PSI	OLANT TEMPERATURE, F	F PRESSURE,	TEMPERATURE,	

* CORRECTED SAE J8168 + CORRECTED FOR HUMIDITY

HE 18.5
NHTSA
United S
Transpa
Report r
22

OFFICIAL BUSINESS
PENALTY FOR PRIVATE USE, 1300

POSTAGE AND FEES PAID
U.S. DEPARTMENT OF TRANSPORTATION
613