The Poisson matrix and Kronecker Products

Tom Lyche

University of Oslo Norway

Plan for the day

- Numerical solution of the Poisson problem
 - The finite difference scheme
 - Formulation as a matrix equation
 - Formulation in standard form Ax = b.
 - The Poisson matrix A is block tridiagonal
- ightharpoonup LU factorization of a block tridiagonal matrix
- Solving the Poisson problem, complexity
- Kronecker product
 - Relation to Poisson problem
 - Basic properties
 - Eigenvalues and eigenvectors
- Eigenpairs for the Poisson matrix

Numerical solution of the Poisson Problem

$$m \in \mathbb{N}, \ h = 1/(m+1), \quad v_{j,k} \approx u(jh,kh)$$

Discrete Equation

$$g''(t) \approx \frac{g(t-h) - 2g(t) + g(t+h)}{h^2}$$

From differential equation for j, k = 1, 2, ..., m

$$(-v_{j-1,k} + 2v_{j,k} - v_{j+1,k}) + (-v_{j,k-1} + 2v_{j,k} - v_{j,k+1}) = h^2 f_{j,k}$$
 (1)

From boundary conditions

$$v_{j,k} = 0 \text{ if } j = 0, m+1 \text{ or } k = 0, m+1$$
 (2)

Matrix Equation $TV + VT = h^2 F$

$$\begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} v_{11} & v_{12} \\ v_{21} & v_{22} \end{bmatrix} + \begin{bmatrix} v_{11} & v_{12} \\ v_{21} & v_{22} \end{bmatrix} \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} = \frac{1}{9} \begin{bmatrix} f_{11} & f_{12} \\ f_{21} & f_{22} \end{bmatrix}$$

$$T := T_m = \operatorname{tridiag}_m(-1, 2, -1) \in \mathbb{R}^{m, m}$$

$$oldsymbol{V} := egin{bmatrix} v_{11} & \cdots & v_{1m} \ dots & dots \ v_{m1} & \cdots & v_{mm} \end{bmatrix} \in \mathbb{R}^{m,m} \quad oldsymbol{F} := egin{bmatrix} f_{11} & \cdots & f_{1m} \ dots & dots \ f_{m1} & \cdots & f_{mm} \end{bmatrix} \in \mathbb{R}^{m,m}$$

(1), (2)
$$\Leftrightarrow TV + VT = h^2 F$$

$$\left(m{T}m{V}+m{V}m{T}
ight)_{jk}=\sum_{i=1}^{m}m{T}_{ji}v_{ik}+\sum_{i=1}^{m}v_{ji}m{T}_{ik}= ext{ l.h.s in (1)}=h^2(m{F})_{jk}$$

Convert $TV + VT = h^2F$ to Ax = b

$$4x_i - x_{i-1} - x_{i+1} - x_{i-m} - x_{i+m} = b_i$$

Linear system Ax = b

For m=3 or n=9 we have the following linear system:

$4x_1$	$-x_2$		$-x_4$					$= h^2 f_{11}$
$-x_1$	$4x_2$	$-x_3$		$-x_5$				$= h^2 f_{21}$
	$-x_2$	$4x_3$			$-x_6$			$= h^2 f_{31}$
$-x_1$			$4x_4$	$-x_5$		$-x_7$		$= h^2 f_{12}$
	$-x_2$		$-x_4$	$4x_5$	$-x_6$		$-x_8$	$=h^2f_{22}$
		$-x_3$		$-x_5$	$4x_6$			$-x_9 = h^2 f_{32}$
			$-x_4$			$4x_7$	$-x_8$	$= h^2 f_{13}$
				$-x_5$		$-x_7$	$4x_8$	$-x_9 = h^2 f_{23}$
					$-x_6$		$-x_8$	$4x_9 = h^2 f_{33}$

Blockstructure of A

$$\mathbf{A} = \begin{bmatrix}
4 & -1 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\
-1 & 4 & -1 & 0 & -1 & 0 & 0 & 0 & 0 \\
0 & -1 & 4 & 0 & 0 & -1 & 0 & 0 & 0 \\
-1 & 0 & 0 & 4 & -1 & 0 & -1 & 0 & 0 \\
0 & -1 & 0 & -1 & 4 & -1 & 0 & -1 & 0 \\
0 & 0 & -1 & 0 & -1 & 4 & 0 & 0 & -1 \\
\hline
0 & 0 & 0 & -1 & 0 & 0 & 4 & -1 & 0 \\
0 & 0 & 0 & 0 & -1 & 0 & -1 & 4 & -1 \\
0 & 0 & 0 & 0 & 0 & -1 & 0 & -1 & 4
\end{bmatrix}$$

$$\mathbf{A} = \begin{bmatrix} \mathbf{T} + 2\mathbf{I} & -\mathbf{I} & 0 \\ -\mathbf{I} & \mathbf{T} + 2\mathbf{I} & -\mathbf{I} \\ 0 & -\mathbf{I} & \mathbf{T} + 2\mathbf{I} \end{bmatrix}$$

LU-factorization of a tridiagonal matri

$$\begin{bmatrix} d_1 & c_1 & & & & & \\ a_2 & d_2 & c_2 & & & \\ & \ddots & \ddots & \ddots & \\ & & a_{n-1} & d_{n-1} & c_{n-1} \\ & & & a_n & d_n \end{bmatrix} = \begin{bmatrix} 1 & & & & \\ l_2 & 1 & & & \\ & \ddots & \ddots & & \\ & & l_n & 1 \end{bmatrix} \begin{bmatrix} u_1 & c_1 & & & \\ & \ddots & \ddots & & \\ & & u_{n-1} & c_{n-1} \\ & & & u_n \end{bmatrix}.$$

$$(3)$$

Note that L has ones on the diagonal, and that A and U have the same super-diagonal.

By equating entries in (3) we find

$$d_1 = u_1, \quad a_k = l_k u_{k-1}, \quad d_k = l_k c_{k-1} + u_k, \quad k = 2, 3, \dots, n.$$

The Algorithm

- A = LU (LU-factorization)
- Ly = b (forward substitution)
- Ux = y (backward substituion)

$$u_1 = d_1, \quad l_k = \frac{a_k}{u_{k-1}}, \quad u_k = d_k - l_k c_{k-1}, \quad k = 2, 3, \dots, n.$$

$$y_1 = b_1, y_k = b_k - l_k y_{k-1}, k = 2, 3, \dots, n,$$

$$x_n = y_n/d_n$$
, $x_k = (y_k - c_k x_{k+1})/u_k$, $k = n - 1, \dots, 2, 1$.

- This process is well defined if A is strictly diagonally dominant.
- The number of arithmetic operations (flops) is O(n).

LU of Block Tridiagonal Matrix

$$egin{bmatrix} D_1 & C_1 \ A_2 & D_2 & C_2 \ & \ddots & \ddots & & \ & A_{m-1} & D_{m-1} & C_{m-1} \ A_m & D_m \end{bmatrix} = egin{bmatrix} 1 \ L_2 & 1 \ & \ddots & & \ & L_m & 1 \end{bmatrix} egin{bmatrix} U_1 & C_1 \ & \ddots & & \ & U_{m-1} & C_{m-1} \ & U_m \end{bmatrix}.$$

$$U_1 = D_1, \quad L_k = A_k U_{k-1}^{-1}, \quad U_k = D_k - L_k C_{k-1}, \quad k = 2, 3, \dots, m.$$
 (4)

To solve the system Ax = b we partition b conformally with A in the form $b^T = [b_1^T, \dots, b_m^T]$. The formulas for solving Ly = b and Ux = y are as follows:

The solution is then $\boldsymbol{x}^T = [\boldsymbol{x}_1^T, \dots, \boldsymbol{x}_m^T]$.

Poisson Problem

- The discrete Poisson problem can be solved writing it as a block tridiagonal matrix.
- We can also use Cholesky factorization of a band matrix.
- The matrix has bandwidth $d = \sqrt{n}$.
- Cholesky requires $O(2nd^2) = O(2n^2)$ flops.
- The work using block tridiagonal solver is also $O(n^2)$.
- Need better methods (next time).

Kronecker Product

Definition 1. For any positive integers p,q,r,s we define the Kronecker product of two matrices $A \in \mathbb{R}^{p,q}$ and $B \in \mathbb{R}^{r,s}$ as a matrix $C \in \mathbb{R}^{pr,qs}$ given in block form as

$$oldsymbol{C} = \left[egin{array}{ccccc} oldsymbol{A}b_{1,1} & oldsymbol{A}b_{1,2} & \cdots & oldsymbol{A}b_{1,s} \ oldsymbol{A}b_{2,1} & oldsymbol{A}b_{2,2} & \cdots & oldsymbol{A}b_{2,s} \ dots & dots & dots \ oldsymbol{A}b_{r,1} & oldsymbol{A}b_{r,2} & \cdots & oldsymbol{A}b_{r,s} \end{array}
ight].$$

We denote the Kronecker product of $oldsymbol{A}$ and $oldsymbol{B}$ by $oldsymbol{C} = oldsymbol{A} \otimes oldsymbol{B}$.

- Defined for rectangular matrices of any dimension
- \blacksquare # of rows(columns) = product of # of rows(columns) in A and B

Kronecker Product Example

$$m{T} = egin{bmatrix} 2 & -1 \ -1 & 2 \end{bmatrix}, \quad m{I} = egin{bmatrix} 1 & 0 \ 0 & 1 \end{bmatrix}$$

$$m{T} \otimes m{I} = egin{bmatrix} m{T} & 0 \ 0 & m{T} \end{bmatrix} = egin{bmatrix} 2 & -1 & 0 & 0 \ -1 & 2 & 0 & 0 \ \hline 0 & 0 & 2 & -1 \ 0 & 0 & -1 & 2 \end{bmatrix}$$

$$m{I} \otimes m{T} = egin{bmatrix} 2 m{I} & -m{I} \ -m{I} & 2m{I} \end{bmatrix} = egin{bmatrix} 2 & 0 & -1 & 0 \ 0 & 2 & 0 & -1 \ -1 & 0 & 2 & 0 \ 0 & -1 & 0 & 2 \ \end{bmatrix}$$

Poisson Matrix = $T \otimes I + I \otimes T$

$$egin{aligned} oldsymbol{A} = egin{bmatrix} oldsymbol{T} & oldsymbol{T} & oldsymbol{T} \\ oldsymbol{T} & oldsymbol{T} \end{bmatrix} + egin{bmatrix} 2oldsymbol{I} & -oldsymbol{I} & 2oldsymbol{I} & -oldsymbol{I} \\ 0 & -oldsymbol{I} & 2oldsymbol{I} \end{bmatrix} = oldsymbol{T} \otimes oldsymbol{I} + oldsymbol{I} \otimes oldsymbol{T} \end{aligned}$$

Definition 2. Let for positive integers r,s,k, $A\in\mathbb{R}^{r,r}$, $B\in\mathbb{R}^{s,s}$ and I_k be the identity matrix of order k. The sum $A\otimes I_s+I_r\otimes B$ is known as the Kronecker sum of A and B.

The Poisson matrix is the Kronecker sum of T with itself.

Matrix equation ← **Kronecker**

Given $A \in \mathbb{R}^{r,r}$, $B \in \mathbb{R}^{s,s}$, $F \in \mathbb{R}^{r,s}$. Find $V \in \mathbb{R}^{r,s}$ such that

$$AVB^T = F$$

For $B \in \mathbb{R}^{m,n}$ define

$$\mathsf{vec}(m{B}) := egin{bmatrix} m{b}_1 \ m{b}_2 \ dots \ m{b}_n \end{bmatrix} \in \mathbb{R}^{mn}, \quad m{b}_j = egin{bmatrix} b_{1j} \ b_{2j} \ dots \ b_{mj} \end{bmatrix} \quad j \mathsf{th} \; \mathsf{column}$$

Lemma 1.

$$\mathbf{A}\mathbf{V}\mathbf{B}^T = \mathbf{F} \Leftrightarrow (\mathbf{A} \otimes \mathbf{B}) \operatorname{vec}(\mathbf{V}) = \operatorname{vec}(\mathbf{F})$$
 (6)

$$AV + VB^T = F \Leftrightarrow (A \otimes I_s + I_r \otimes B) \operatorname{vec}(V) = \operatorname{vec}(F).$$
 (7)

Proof

We partition $m{V}$, $m{F}$, and $m{B}^T$ by columns as $m{V}=(m{v}_1,\ldots,m{v}_s)$, $m{F}=(m{f}_1,\ldots,m{f}_s)$ and $m{B}^T=(m{b}_1,\ldots,m{b}_s)$. Then we have

$$(\boldsymbol{A} \otimes \boldsymbol{B}) \operatorname{vec}(\boldsymbol{V}) = \operatorname{vec}(\boldsymbol{F})$$

$$\Leftrightarrow egin{bmatrix} oldsymbol{A}b_{11} & \cdots & oldsymbol{A}b_{1s} \ dots & dots & dots \ oldsymbol{A}b_{s1} & \cdots & oldsymbol{A}b_{ss} \end{bmatrix} egin{bmatrix} v_1 \ dots \ \end{bmatrix} = egin{bmatrix} f_1 \ dots \ \end{bmatrix}$$

$$\Leftrightarrow \mathbf{A}\sum_{j}b_{ij}v_{j}=f_{i},\ i=1,\ldots,m$$

$$\Leftrightarrow \quad [oldsymbol{AVb}_1,\ldots,oldsymbol{AVb}_s] = oldsymbol{F} \quad \Leftrightarrow \quad oldsymbol{AVB}^T = oldsymbol{F}.$$

This proves (6)

Proof Continued

$$(\mathbf{A} \otimes \mathbf{I}_s + \mathbf{I}_r \otimes \mathbf{B}) \operatorname{vec}(\mathbf{V}) = \operatorname{vec}(\mathbf{F})$$

 $\Leftrightarrow (\mathbf{A}\mathbf{V}\mathbf{I}_s^T + \mathbf{I}_r\mathbf{V}\mathbf{B}^T) = \mathbf{F} \Leftrightarrow \mathbf{A}\mathbf{V} + \mathbf{V}\mathbf{B}^T = \mathbf{F}.$

This gives a slick way to derive the Poisson matrix. Recall

$$AV + VB^T = F \Leftrightarrow (A \otimes I_s + I_r \otimes B) \operatorname{vec}(V) = \operatorname{vec}(F)$$

Therefore,

$$TV + VT = h^2 F \Leftrightarrow (T \otimes I + I \otimes T) \operatorname{vec}(V) = h^2 \operatorname{vec}(F)$$

Mixed Product Rule

$$(A \otimes B)(C \otimes D) = (AC) \otimes (BD)$$

Proof If $B \in \mathbb{R}^{r,t}$ and $D \in \mathbb{R}^{t,s}$ for some integers r,t then

$$\left[egin{array}{ccccc} oldsymbol{A}b_{1,1} & \cdots & oldsymbol{A}b_{1,t} \ drampsymbol{drampsymbol{drampsymbol{b}}} & oldsymbol{drampsymbol{b}} & oldsymbol{arepsilon} & oldsymbol{C}d_{1,1} & \cdots & oldsymbol{C}d_{1,s} \ drampsymbol{drampsymbol{b}} & oldsymbol{drampsymbol{b}} & oldsymbol{arepsilon} & oldsymbol{E}_{1,1} & \cdots & oldsymbol{E}_{1,s} \ drampsymbol{drampsymbol{b}} & oldsymbol{drampsymbol{b}} & oldsymbol{drampsymbol{b}} & oldsymbol{drampsymbol{b}} & oldsymbol{drampsymbol{b}} & oldsymbol{E}_{1,1} & \cdots & oldsymbol{E}_{1,s} \ oldsymbol{drampsymbol{B}} & oldsymbol{drampsymbol{b}} & oldsymbol{drampsymbol{b}} & oldsymbol{drampsymbol{E}} & oldsymbol{drampsymbol{E}} & oldsymbol{drampsymbol{B}} & oldsymbol{arepsilon} & oldsy$$

where for all i, j

$$m{E}_{i,j} = \sum_{k=1}^t b_{i,k} d_{k,j} m{A} m{C} = (m{A} m{C}) (m{B} m{D})_{i,j} = ((m{A} m{C}) \otimes (m{B} m{D}))_{i,j}.$$

where in the last formula i, j refers to the ij-block in the Kronecker product.

Properties of Kronecker Products

The usual arithmetic rules hold. Note however that

- $(A \otimes B)^{-1} = A^{-1} \otimes B^{-1}$ if A and B are nonsingular
- $lacksquare A \otimes B
 eq B \otimes A$
- $(A \otimes B)(C \otimes D) = (AC) \otimes (BD)$ (mixed product rule)

The mixed product rule is valid for any matrices as long as the products AC and BD are defined.

Eigenvalues and Eigenvectors

The Kronecker product of two vectors $\boldsymbol{u} \in \mathbb{R}^p$ and $\boldsymbol{v} \in \mathbb{R}^r$ is a vector $\boldsymbol{u} \otimes \boldsymbol{v} \in \mathbb{R}^{pr}$ given by $\boldsymbol{u} \otimes \boldsymbol{v} = \begin{bmatrix} \boldsymbol{u}^T v_1, \dots, \boldsymbol{u}^T v_r \end{bmatrix}^T$ Suppose now $\boldsymbol{A} \in \mathbb{R}^{r,r}$ and $\boldsymbol{B} \in \mathbb{R}^{s,s}$ and

$$Au_i = \lambda_i u_i, \quad i = 1, \dots, r, \quad Bv_j = \mu_j v_j, \quad j = 1, \dots, s,$$

then for $i = 1, \ldots, r, \quad j = 1, \ldots, s$

$$(\boldsymbol{A} \otimes \boldsymbol{B})(\boldsymbol{u}_i \otimes \boldsymbol{v}_j) = \lambda_i \mu_j (\boldsymbol{u}_i \otimes \boldsymbol{v}_j),$$
 (8)

$$(\boldsymbol{A} \otimes \boldsymbol{I}_s + \boldsymbol{I}_r \otimes \boldsymbol{B})(\boldsymbol{u}_i \otimes \boldsymbol{v}_j) = (\lambda_i + \mu_j)(\boldsymbol{u}_i \otimes \boldsymbol{v}_j). \tag{9}$$

Thus the eigenvalues of a Kronecker product(sum) are the products (sums) of the eigenvalues of the factors. The eigenvectors of a Kronecker product(sum) are the products of the eigenvectors of the factors.

Proof of Eigen-formulae

This follows directly from the mixed product rule. For (8)

$$(\boldsymbol{A} \otimes \boldsymbol{B})(\boldsymbol{u}_i \otimes \boldsymbol{v}_j) = (\boldsymbol{A}\boldsymbol{u}_i) \otimes (\boldsymbol{B}\boldsymbol{v}_j) = (\lambda_i \boldsymbol{u}_i) \otimes (\mu_j \boldsymbol{v}_j) = (\lambda_i \mu_j)(\boldsymbol{u}_i \otimes \boldsymbol{v}_j).$$

From (8)

$$(\boldsymbol{A} \otimes \boldsymbol{I}_s)(\boldsymbol{u}_i \otimes \boldsymbol{v}_j) = \lambda_i(\boldsymbol{u}_i \otimes \boldsymbol{v}_j), \text{ and } (\boldsymbol{I}_r \otimes \boldsymbol{B})(\boldsymbol{u}_i \otimes \boldsymbol{v}_j) = \mu_j(\boldsymbol{u}_i \otimes \boldsymbol{v}_j)$$

The result now follows by summing these relations.

The Poisson Matrix $oldsymbol{A} = oldsymbol{T} \otimes oldsymbol{I} + oldsymbol{I} \otimes oldsymbol{T}$

Recall eigenvalues and eigenvectors of the T matrix. Let h = 1/(m+1).

1. We know that $Ts_j = \lambda_j s_j$ for j = 1, ..., m, where

$$\mathbf{s}_j = (\sin(j\pi h), \sin(2j\pi h), \dots, \sin(mj\pi h))^T, \tag{10}$$

$$\lambda_j = 2 - 2\cos(j\pi h) = 4\sin^2(\frac{j\pi h}{2}).$$
 (11)

2. The eigenvalues are distinct and the eigenvectors are orthogonal

$$\boldsymbol{s}_{j}^{T}\boldsymbol{s}_{k} = \frac{1}{2h}\delta_{j,k}, \quad j, k = 1, \dots, m.$$
(12)

Eigenvalues/-vectors $oldsymbol{A} = oldsymbol{T} \otimes oldsymbol{I} + oldsymbol{I} \otimes oldsymbol{T}$

1. We have $Ax_{j,k} = \lambda_{j,k}x_{j,k}$ for j, k = 1, ..., m, where

$$\boldsymbol{x}_{j,k} = \boldsymbol{s}_j \otimes \boldsymbol{s}_k, \tag{13}$$

$$\mathbf{s}_j = (\sin(j\pi h), \sin(2j\pi h), \dots, \sin(mj\pi h))^T, \tag{14}$$

$$\lambda_{j,k} = 4\sin^2\left(\frac{j\pi h}{2}\right) + 4\sin^2\left(\frac{k\pi h}{2}\right).$$
 (15)

2. The eigenvectors are orthogonal

$$\mathbf{x}_{j,k}^{T} \mathbf{x}_{p,q} = \frac{1}{4h^2} \delta_{j,p} \delta_{k,q}, \quad j, k, p, q = 1, \dots, m.$$
 (16)

- 3. A is symmetric $A^T = (T \otimes I + I \otimes T)^T = T^T \otimes I^T + I^T \otimes T^T = A$
- 4. *A* is positive definite (positive eigenvalues)

$\boldsymbol{A} = \boldsymbol{T} \otimes \boldsymbol{I} + \boldsymbol{I} \otimes \boldsymbol{T} \text{ for } m = 2$

$$s_{1} = \begin{bmatrix} \sin(\frac{\pi}{3}) \\ \sin(\frac{2\pi}{3}) \end{bmatrix} = \frac{\sqrt{3}}{2} \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \quad s_{2} = \begin{bmatrix} \sin(\frac{2\pi}{3}) \\ \sin(\frac{4\pi}{3}) \end{bmatrix} = \frac{\sqrt{3}}{2} \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

$$\lambda_{1} = 4\sin^{2}(\frac{\pi}{6}) = 1, \quad \lambda_{2} = 4\sin^{2}(\frac{2\pi}{6}) = 3$$

$$Ax_{ij} = \mu_{ij}x_{ij}, \quad \mu_{ij} = \lambda_{i} + \lambda_{j}, \quad x_{ij} = s_{i} \otimes s_{j} \quad i, j = 1, 2$$

$$\mu_{11} = 2, \quad \mu_{12} = \mu_{21} = 4, \quad \mu_{22} = 6.$$

$$s_{1} \otimes s_{1} = \frac{3}{4}[1, 1, 1, 1]^{T}, \qquad s_{1} \otimes s_{2} = \frac{3}{4}[1, 1, -1, -1]^{T},$$

$$s_{2} \otimes s_{1} = \frac{3}{4}[1, -1, 1, -1]^{T}, \quad s_{2} \otimes s_{2} = \frac{3}{4}[1, -1, -1, 1]^{T}$$

$$x_{j,k}^{T}x_{p,q} = \frac{9}{4}\delta_{j,p}\delta_{k,q}, \quad j, k, p, q = 1, 2.$$

Check

$$oldsymbol{A} = egin{bmatrix} 2 & -1 \ -1 & 2 \end{bmatrix} \otimes egin{bmatrix} 1 & 0 \ 0 & 1 \end{bmatrix} + egin{bmatrix} 1 & 0 \ 0 & 1 \end{bmatrix} \otimes egin{bmatrix} 2 & -1 \ -1 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 4 & -1 & -1 & 0 \\ -1 & 4 & 0 & -1 \\ -1 & 0 & 4 & -1 \\ 0 & -1 & -1 & 4 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} = 2 \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix},$$

$$\begin{bmatrix} 4 & -1 & -1 & 0 \\ -1 & 4 & 0 & -1 \\ -1 & 0 & 4 & -1 \\ 0 & -1 & -1 & 4 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ -1 \\ -1 \end{bmatrix} = 4 \begin{bmatrix} 1 \\ 1 \\ -1 \\ -1 \end{bmatrix}$$

etc.

Summary

- Studied the Poisson matrix A
- Shown that A can be written as a Kronecker sum
- studied properties of general Kronecker products and Kronecker sums
- used this to derive properties of A