Contrôle: transmission d'information dans les arbres binomiaux

Question 1. Si $\mathcal{T} = (r, (\mathcal{T}_{n-1}, \dots, \mathcal{T}_1, \mathcal{T}_0))$ est un arbre, sa profondeur vérifie : $\operatorname{prof}(\mathcal{T}) = 1 + \max_k (\operatorname{prof}(\mathcal{T}_k))$.

Partie I. Arbres binomiaux

Question 2. Je choisis de numéroter les nœuds d'un arbre binomial suivant l'ordre préfixe. Ceci conduit aux arbres suivants :

Question 3. Notons a_k le nombre de nœuds de \mathcal{B}_k . On dispose des relations : $a_0 = 1$ et $a_k = 1 + \sum_{i=0}^{k-1} a_i$ qui permettent de prouver par récurrence que $a_k = 2^k$.

Notons b_k le nombre de nœuds externes de \mathcal{B}_k . On dispose des relations $b_0 = 1$ et $b_k = \sum_{i=0}^{k-1} b_i$ qui permettent de prouver par récurrence que pour $k \ge 1$ on a $b_k = 2^{k-1}$.

Question 4. Il est aussi possible de définir les arbres binomiaux de la façon suivante :

- un arbre binomial d'ordre 0 se réduit à sa racine;
- si k > 0, un arbre binomial d'ordre k est de la forme $(r_k, (\mathcal{T}_{k-1}, ..., \mathcal{T}_1, \mathcal{T}_0))$ où \mathcal{T}_{k-1} et $(r_k, (\mathcal{T}_{k-2}, ..., \mathcal{T}_1, \mathcal{T}_0))$ sont des arbres binomiaux d'ordre k 1.

Question 5. Montrons par récurrence sur $k \ge 1$ que tout arbre binomial d'ordre k à qui on a ôté les nœuds terminaux est un arbre binomial d'ordre k - 1.

- C'est bien évident pour k = 1;
- Si $k \ge 2$ et si le résultat est vrai jusqu'au rang k-1, considérons un arbre binomial \mathcal{B}_k d'ordre k de la forme $(r, (\mathcal{T}_{k-1}, ..., \mathcal{T}_1, \mathcal{T}_0))$. Ôter les nœuds terminaux de \mathcal{B}_k revient à ôter ceux des arbres \mathcal{T}_i . Ainsi, \mathcal{T}_0 disparait, et par hypothèse de récurrence, pour $i \ge 1$ \mathcal{T}_i est transformé en un arbre binomial \mathcal{T}_i d'ordre i-1. On obtient donc l'arbre $(r, (\mathcal{T}'_{k-1}, ..., \mathcal{T}'_1))$, qui est binomial d'ordre k-1.

Question 6. On définit la fonction copie de la façon suivante :

```
let rec copie n = function
Noeud (i, lst) -> Noeud (i+n, map (copie n) lst) ;;
```

Question 7. La difficulté de cette question est de garantir que chaque nœud ait une numérotation différente. Nous allons utiliser la définition des arbres binomiaux établie à la question 4, en posant $\mathcal{B}_{k-1} = (r, (\mathcal{T}_{k-2}, ..., \mathcal{T}_1, \mathcal{T}_0))$ et $\mathcal{B}_k = (r, (\mathcal{T}_{k-1}, \mathcal{T}_{k-2}, ..., \mathcal{T}_0))$, où \mathcal{T}_{k-1} est une copie de \mathcal{B}_{k-1} dans laquelle les nœuds ont été augmentés de 2^{k-1} . Le calcul des puissances de 2 se fait en même temps que le calcul de \mathcal{B}_k dans une fonction auxiliaire :

Question 8. Notons c_k la profondeur de \mathcal{B}_k . On dispose des relations $c_0 = 0$ et $c_k = 1 + \max(c_0, c_1, \dots, c_{k-1})$ qui permettent de prouver par récurrence que $c_k = k$.

Considérons maintenant un entier $k \ge 2$. Pour déterminer la longueur maximale d'un chemin entre deux nœuds de $\mathcal{B}_k = (r_k, (\mathcal{T}_{k-1}, \dots, \mathcal{T}_1, \mathcal{T}_0))$, il suffit de considérer les nœuds terminaux. Il existe un nœud de \mathcal{T}_{k-1} dont la profondeur dans \mathcal{B}_k est égale à (k-1)+1, et un nœud de \mathcal{T}_{k-2} dont la profondeur dans \mathcal{B}_k est égale à (k-2)+1. La longueur du chemin qui les relie est égale à 2k-1.

S'il existait deux nœuds terminaux à une distance supérieure ou égale à 2k+1, il posséderaient un ancêtre commun dont l'un au moins serait à une distance supérieure ou égale à k+1, ce qui ne se peut (la profondeur de \mathcal{B}_k est égale à k). Il reste à examiner le cas de deux nœuds terminaux dont la distance serait égale à 2k. Nécessairement, leur unique ancêtre commun est la racine de \mathcal{B}_k , et tous deux sont à une profondeur k. Or il est facile de prouver par récurrence qu'un seul nœud de \mathcal{B}_k se trouve à la profondeur k. Cette situation est donc elle aussi impossible.

De ceci il résulte que la longueur maximale d'un chemin entre deux nœuds est égale à 2k-1.

Question 9. Notons $f(k,\ell)$ le nombre de nœuds de \mathcal{B}_k qui sont à la profondeur ℓ . La caractérisation des arbres binomiaux obtenue à la question 3 permet d'établir la relation : $\forall k \ge 1$, $\forall \ell \ge 1$, $f(k,\ell) = f(k-1,\ell-1) + f(k-1,\ell)$. On reconnait la formule de Pascal des coefficients binomiaux ; sachant que f(k,0) = f(k,k) = 1 on prouve par induction que $f(k,\ell) = \binom{k}{\ell}$.

Partie II. Diffusion dans les arbres

Diffusion dans un arbre binomial

Question 10. Observons sur \mathcal{B}_4 la diffusion suivant la numérotation naturelle :

et notons a_k la durée de la diffusion naturelle dans \mathcal{B}_k . Alors $a_0 = 0$ et $a_k = \max(1 + a_0, 2 + a_1, ..., k + a_{k-1})$ pour $k \ge 1$, relations qui permettent de prouver sans peine que $a_k = \frac{k(k+1)}{2}$.

Question 11. Observons sur \mathcal{B}_4 la diffusion suivant la numérotation renversée :

et notons b_k la durée de la diffusion naturelle dans \mathcal{B}_k . Alors $b_0 = 0$ et $b_k = \max(1 + b_{k-1}, 2 + b_{k-2}, \dots, k + b_0)$ pour $k \ge 1$, relations qui permettent de prouver sans peine que $b_k = k$.

Question 12. À l'évidence, la durée d'une diffusion est supérieure ou égale à la profondeur d'un arbre. Celle d'un arbre binaire d'ordre k étant égale à k, la question précédente prouve que la durée d'une diffusion optimale dans \mathcal{B}_k est égale à k, durée obtenue pour la numérotation renversée.

Diffusion dans un arbre quelconque

Question 13. Des deux exemples précédents se dégage l'idée qu'un père doit diffuser l'information dans l'ordre décroissant de la durée de diffusion de chacun de ses fils. Notons $t_{\text{opt}}(\mathcal{T})$ la durée d'une diffusion optimale. Si \mathcal{T} se réduit à sa racine, alors $t_{\text{opt}}(\mathcal{T}) = 0$.

Si $\mathcal{T} = (r, (\mathcal{T}_1, ..., \mathcal{T}_k))$, on commence par calculer récursivement la valeur de chacun des $t_i = t_{\text{opt}}(\mathcal{T}_i)$, puis on classe ces valeurs : $t_{\sigma(1)} \ge t_{\sigma(2)} \ge \cdots \ge t_{\sigma(k)}$. La racine r diffuse alors l'information en suivant la numérotation $f_r(i) = \sigma^{-1}(i)$, ce qui conduit à la relation :

$$t_{\text{opt}}(\mathcal{T}) = \max_{i} (t_{\sigma(i)} + i).$$

Question 14. À chaque étape de la diffusion, il y a au moins un nouveau nœud qui reçoit le message, donc la durée de la diffusion ne peut excéder n-1, où n est le nombre de nœuds de l'arbre. Cette situation se rencontre par exemple dans le cas d'un arbre dont la racine possède n-1 fils, ou encore d'un arbre dans lequel tout père a un unique fils.

Question 15. Dans le meilleur des cas, à chaque étape tous les nœuds ayant déjà reçu le message le transmettent à un nouveau nœud, de sorte que le nombre de nœuds ayant reçu le message double à chaque étape. Ceci garantit que le temps de diffusion est au mieux égal à $\lceil \log_2 n \rceil$. Cette situation se rencontre dans le cas des arbres binomiaux (dans lesquels on a éventuellement ôtés quelques nœuds terminaux pour obtenir exactement n nœuds).