Starbucks Price Multiplier Analysis

Group 8:

Yuxing Cai

Tao Xiong

Daniel Xu

Chengjun Liu

Zijing Xu

Jingyi Zhu

Our Team

Problem Statement

Different Customer may have different sensitivity to price

1% price differential can increase profits by millions

Find the best price multiplier for each Starbucks store by zip code

Transactional Data

Zip Code	Time	Product	Quantity	Price	Sales	Redeem	Coupon
90010	08/01/2018	Latte	1	\$5	\$5	0	0

• Historical price changes for each menu item in a store (2 Years)

Data

Data on Past Promotion

- Coupon
- Starbuck Reward Redeem

-2 Year

Data on Competitors Inventory & Supply Data Geographical Location Data

- Demographic
- Psychographic

Assumptions & Constraints

Assumptions

- 1. All goods are normal goods
- 2. No extreme condition
- 3. Purchasing Basket for each zip code is relatively constant
- 4. Demand Curve is straight line

Constraints

- 1. Quantity less or equal to the capacity of the store
- 2. Non-zero and non-negative
- 3. Quantity is an Integer

Fill In the missing value with median value of the zip code if there are stores with insufficient data

Zip Code	Time	Product	Quantity	Price	Sales	Redeem	Coupon
90010	08/01/2018	Latte	1	\$5	\$5	0	0

Zip Code	Time	Product	Quantity	Price	Sales	Redeem	Coupon
90010	08/01/2018	Latte	1	\$5	\$5	0	0

Modeling

```
Quantity = f(WAP)

= \beta 0 + \beta 1 \times WAP + \beta 2 \times Average \ Competitor \ Price

+ \beta 3 \times Age + \beta 4 \times population \ density + \beta 5 \times Urban

+ \beta 6 \times Net \ Income + \beta 7 \times Advertisement \ Expense

+ \beta 8 \times Interest \ Rate + \beta 9 \times CPI + \beta 10 \times Education

+ \beta 11 \times Coupon \ Usage

+ \beta 12 \times Starbucks \ rewards \ redeem + ...
```

For each zip-code, we calculate:

 $Quantity = f(WAP) = \beta 1 x WAP + Constant *$

* For the same zip-code, the data for these additional variables do not change. This is a Quantity function for each zip code, the constant will vary base on zip code.

Revenue Function

Revenue = Weighted Average Price (WAP) x Quantity

Revenue

• Revenue = Weighted Average Price (WAP) x f(WAP)

Modeling

Profit Maximization

Zip Code	Average Price	Maximization Price
90010	15.6	16.6
90011	16.2	15.4
90012	15.3	16.7
90013	15.5	15.5
98008	16.0	16.3
98009	14.8	17.6

Waightad

 $Price\ Multiplier = rac{Revenue\ Maximization\ Price}{Weighted\ Average\ Price}$

List zip code with multiplier *

Solution

Zip Code	Multiplier
90010	1.01
90011	1.02
90012	0.98
90013	1
98008	1.03
98009	0.97

^{*} Multipliers are normalized so that the average multiplier is 1

More Factors

- 1. Drive Through
- 2. Traffic Condition

Data Collection Period

- 1. Weekly
- 2. Monthly

Future Work

Non-Linear Model

- 1. More Flexibility
- 2. Uncertainty about the shape

Experimentation

- 1. Starbucks Rewards
- 2. Coupon

Thank You

Slide Changes after Presentation

- Slide 4
 - Added description on what data that needs to be collected (historical price changes)
 - Added a graph representation on how we collected the data of price changes
- Slide 6: Clarified the need to fill in missing values with median
- Slide 7: Clarified the reason why all the additional variables can be shortened to a constant
- Slide 10: Added additional step of normalizing model calculated multipliers