Determine the value of the variables that will obtain constrained local minima of the following functions using the appropriate penalty functions using the analytical method

1.
$$f(x_1, x_2) = 4x_1^2 + 3x_2^2 - 5x_1x_2 - 8x_1$$

Subject to $x_1 + x_2 = 4$

2.
$$f(x_1, x_2) = 9x_1^2 + 18x_1x_2 + 13x_2^2 - 4$$

Subject to $x_1^2 + x_2^2 + 2x_1 = 16$

3.
$$f(x_1, x_2) = (x_1 - 1)^2 + (x_2 - 1)^2$$

Subject to $x_1 + x_2 - 4 = 0$

4.
$$f(x_1, x_2) = 2x_1 + 3x_2 - x_1^3 - 2x_2^2$$

Subject to
$$x_1 + 3x_2 \le 6$$

$$5x_1 + 2x_2 \le 10$$

5.
$$f(x_1, x_2) = 4x_1^2 + 3x_2^2 - 5x_1x_2 - 8x_1$$

Subject to $x_1 + x_2 \le 4$

6.
$$f(x_1, x_2) = x_1^2 + x_2^2 - 4x_1 - 2x_2 + 6$$

Subject $4 - x_1 - x_2 \le 0$

$$7 f(x_1, x_2) = 2x_1^2 - 6x_1x_2 + 9x_2^2 - 18x_1 + 9x_2$$
Subject
$$\frac{x_1 + 2x_2 \le 10}{4x_1 - 3x_2 \le 20}$$

8
$$f(x_1, x_2) = 9x_1^2 - 18x_1x_2 + 13x_2^2 - 4$$

Subject to $16 - x_1^2 - x_2^2 - 2x_1 \le 0$

9
$$f(x_1, x_2) = (x_1 - 3)^2 + (x_2 - 3)^2$$

Subject to $\begin{cases} x_1 + x_2 \le 4 \\ x_1 - 3x_2 = 1 \end{cases}$

10
$$f(x_1, x_2) = x_1^3 - 16x_1 + 2x_2 - 3x_2^2$$

Subject to $x_1 + x_2 \le 3$