Криптография, Лекция № 12

1 декабря 2014 г.

1 Задача Безопасных Вычислений

Есть некоторое количество участников A_i и каждый из них что-то знает x_i , и что-то хочет узнать $f_i(x_1, \ldots, x_n)$. Задача: все стороны должны узнать $f_i(x_1, \ldots, x_n)$ но ничего сверх того.

Example 1.

A имеет x_1 рублей, B имеет x_2 рублей; u они хотят узнать у кого больше $f_1(x_1,x_2)=f_2(x_1,x_2)=I(x_1\geq x_2)$

Definition 1.

Протокол решения задачи - набор из n полиномиальных вероятностных интерактивных алгоритмов.

В идеальной модели есть независимая доверенная сторона, все ей отправляют x_i , она возвращает $f_i(x_1, \ldots, x_n)$.

Парадигма: в реальной модели не должно быть возможным ничего, что невозможно в идеальной.

Есть несколько видов поведения агентов:

- Честное поведение: Даже если агент узнал что-то не то, он сразу же "забывает"
- Полу-честное (Semi-honest):
 В идеальной модели агент может что-то вычислить на основе входа и выхода. В реальной модели агент действует по протоколу, но на базе промежуточной, входной и выходной информации может что-то вычислить.
- Нечестное (Malicious):

В идеальной модели агент может подменить ход, или вообще отказаться участвовать. В реальной модели агент может делать что угодно (действует не про протоколу, подменяет вход), только в условиях полиномиальной ограниченности.

Definition 2. (Надежность в полу-честной модели)

 Π - протокол, $VIEW_i^\Pi(x,y)$ - все сообщения, которые получает сторона i при выполнении протокола Π на входе (x,y).

 Π надёжен в полу-честной модели, если при любом i $in\{1,2\}$ существует полиномиальный алгоритм S_i такой, что

$$S_i(x_i,f_i(x1,x_2))$$
вычислительно не отличима от $VIEW_i^\Pi(x,y)$

Remark 1.

Аналогично записывается определение надежности для более чем двух сторон.

Definition 3. (Слепая предача (oblivious transfer), OT_1^k) Вход: $x = (\sigma_1, \dots, \sigma_k), \sigma_j \in \{0, 1\}$ $y = i \in \{1, \dots, k\}$. Выход: $f_1(x, y) = f(x, y) = \varepsilon$; $f_2(x, y) = g(x, y) = \sigma_i$

Example 2. (Применение OT_1^4)

Пусть f вычисляется арифметической схемой, работающей с битами, то есть схемой из функциональных элементов $\bigwedge u \oplus$. Агент A выбирает случайное r, запоминает его и посылает $r \odot x$. После этого A имеет r, B имеет r'; r, r' - случайные, но $r \oplus r' = x$. Далее B выбирает случайное s, запоминает его и передает $s \oplus y$.

Сложение:

А знает $a_1,b_1,\ a_1\oplus a_2=a$ В знает $a_2,b_2,\ b_1\oplus b_2=b$ Пусть $c_1=(a_1\oplus b_1),\ c_2=(a_2\oplus b_2),\ mor\partial a\ c_1\oplus c_2=(a_1\oplus b_1)\oplus (a_2\oplus b_2)=a\oplus b$

Умножение:

A знает $a_1, b_1, a_1 \oplus a_2 = a$ B знает $a_2, b_2, b_1 \oplus b_2 = b$

Нужно:

A получил c_1 В получил c_2 такие, что $c_1 \oplus c_2 = (a_1 \oplus b_1) \bigwedge (a_2 \oplus b_2)$

A выбирает c_1 случайно

Вычисляет $\sigma_1=c_1\oplus a_1\cdot b_1$ - для $a_2=0,b_2=0$ $\sigma_2=c_1\oplus a_1\cdot (b_1\oplus 1)$ - для $a_2=0,b_2=1$ $\sigma_3=c_1\oplus (a_1\oplus 1)\cdot b_1$ - для $a_2=1,b_2=1$ $\sigma_4=c_1\oplus (a_1\oplus 1)\cdot (b_1\oplus 1)$ - для $a_2=1,b_2=1$

Итого A знает 4 варианта, B знает, какой из них нужен, вот и получается задача OT_1^4 .

1.1 Протокол OT_1^k

S выбирает (α, τ) и посылает α . Где α - номер одностороней перестановки, τ - система для ее обращения.

R выбирает $x_1,\ldots,x_k\in D_\alpha$ - область определения перестановки f_α . И при $i\neq j\to y_j=x_j; i=j\to y_j=f_\alpha(x_i)$. Посылает y_1,\ldots,y_k .

S вычисляет $f_{\alpha}^{-1}(y_j),\ au_j=\sigma_j\oplus b_j(z_j),$ где b_{α} - трудный бит. Отправляет au_1,\dots, au_k .

Otbet: $\tau_i \oplus b(x_i)$