

Configuring ONTAP on the new controllers

ONTAP MetroCluster

NetApp May 31, 2021

Table of Contents

\Box	Configuring ONTAP on the new controllers	l
	Clearing the configuration on a controller module	1
	Assigning disk ownership in AFF systems	١
	Assigning disk ownership in non-AFF systems	
	Verifying the ha-config state of components	
	Booting the new controllers and joining them to the cluster	
	Configuring the clusters into a MetroCluster configuration	

Configuring ONTAP on the new controllers

You must set up ONTAP on each new controller in the MetroCluster configuration, and then re-create the MetroCluster relationship between the two sites.

Clearing the configuration on a controller module

Before using a new controller module in the MetroCluster configuration, you must clear the configuration.

- 1. If necessary, halt the node to display the LOADER prompt: halt
- 2. At the LOADER prompt, set the environmental variables to default values: set-defaults
- 3. Save the environment: saveenv ``bye
- 4. At the LOADER prompt, launch the boot menu: boot ontap menu
- 5. At the boot menu prompt, clear the configuration: wipeconfig

Respond yes to the confirmation prompt.

The node reboots and the boot menu is displayed again.

6. At the boot menu, select option 5 to boot the system into Maintenance mode.

Respond yes to the confirmation prompt.

Assigning disk ownership in AFF systems

If you are using AFF systems in a configuration with mirrored aggregates and the nodes do not have the disks (SSDs) correctly assigned, you should assign half the disks on each shelf to one local node and the other half of the disks to its HA partner node. You should create a configuration in which each node has the same number of disks in its local and remote disk pools.

The storage controllers must be in Maintenance mode.

This does not apply to configurations which have unmirrored aggregates, an active/passive configuration, or that have an unequal number of disks in local and remote pools.

This task is not required if disks were correctly assigned when received from the factory.

Pool 0 always contains the disks that are found at the same site as the storage system that owns them, while Pool 1 always contains the disks that are remote to the storage system that owns them.

Steps

- 1. If you have not done so, boot each system into Maintenance mode.
- 2. Assign the disks to the nodes located at the first site (site A):

You should assign an equal number of disks to each pool.

a. On the first node, systematically assign half the disks on each shelf to pool 0 and the other half to the HA partner's pool 0:

```
\verb"disk" assign" - \verb"disk" disk" - \verb"name" - \verb"p" pool" - \verb"n" number - of - disks"
```

If storage controller_A_1 has four shelves, each with 8 SSDs, you issue the following commands:

```
*> disk assign -shelf FC_switch_A_1:1-4.shelf1 -p 0 -n 4
*> disk assign -shelf FC_switch_A_1:1-4.shelf2 -p 0 -n 4

*> disk assign -shelf FC_switch_B_1:1-4.shelf1 -p 1 -n 4
*> disk assign -shelf FC_switch_B_1:1-4.shelf2 -p 1 -n 4
```

b. Repeat the process for the second node at the local site, systematically assigning half the disks on each shelf to pool 1 and the other half to the HA partner's pool 1:

```
disk assign -disk disk-name -p pool
```

If storage controller_A_1 has four shelves, each with 8 SSDs, you issue the following commands:

```
*> disk assign -shelf FC_switch_A_1:1-4.shelf3 -p 0 -n 4
*> disk assign -shelf FC_switch_B_1:1-4.shelf4 -p 1 -n 4

*> disk assign -shelf FC_switch_A_1:1-4.shelf3 -p 0 -n 4
*> disk assign -shelf FC_switch_B_1:1-4.shelf4 -p 1 -n 4
```

3. Assign the disks to the nodes located at the second site (site B):

You should assign an equal number of disks to each pool.

a. On the first node at the remote site, systematically assign half the disks on each shelf to pool 0 and the other half to the HA partner's pool 0:

```
disk assign -disk disk-name -p pool
```

If storage controller_B_1 has four shelves, each with 8 SSDs, you issue the following commands:

```
*> disk assign -shelf FC_switch_B_1:1-5.shelf1 -p 0 -n 4
*> disk assign -shelf FC_switch_B_1:1-5.shelf2 -p 0 -n 4

*> disk assign -shelf FC_switch_A_1:1-5.shelf1 -p 1 -n 4
*> disk assign -shelf FC_switch_A_1:1-5.shelf2 -p 1 -n 4
```

b. Repeat the process for the second node at the remote site, systematically assigning half the disks on each shelf to pool 1 and the other half to the HA partner's pool 1:

disk assign -disk disk-name -p pool

If storage controller Controller_B_2 has four shelves, each with 8 SSDs, you issue the following commands:

```
*> disk assign -shelf FC_switch_B_1:1-5.shelf3 -p 0 -n 4
*> disk assign -shelf FC_switch_B_1:1-5.shelf4 -p 0 -n 4

*> disk assign -shelf FC_switch_A_1:1-5.shelf3 -p 1 -n 4
*> disk assign -shelf FC_switch_A_1:1-5.shelf4 -p 1 -n 4
```

4. Confirm the disk assignments:

storage show disk

5. Exit Maintenance mode:

halt

6. Display the boot menu:

```
boot ontap menu
```

7. On each node, select option 4 to initialize all disks.

Assigning disk ownership in non-AFF systems

If the MetroCluster nodes do not have the disks correctly assigned, or if you are using DS460C disk shelves in your configuration, you must assign disks to each of the nodes in the MetroCluster configuration on a shelf-by-shelf basis. You will create a configuration in which each node has the same number of disks in its local and remote disk pools.

The storage controllers must be in Maintenance mode.

If your configuration does not include DS460C disk shelves, this task is not required if disks were correctly assigned when received from the factory.

Pool 0 always contains the disks that are found at the same site as the storage system that owns them.

Pool 1 always contains the disks that are remote to the storage system that owns them.

If your configuration includes DS460C disk shelves, you should manually assign the disks using the following guidelines for each 12-disk drawer:

Assign these disks in the drawer	To this node and pool	
0 - 2	Local node's pool 0	

Assign these disks in the drawer	To this node and pool
3 - 5	HA partner node's pool 0
6 - 8	DR partner of the local node's pool 1
9 - 11	DR partner of the HA partner's pool 1

This disk assignment pattern ensures that an aggregate is minimally affected in case a drawer goes offline.

Steps

- 1. If you have not done so, boot each system into Maintenance mode.
- 2. Assign the disk shelves to the nodes located at the first site (site A):

Disk shelves at the same site as the node are assigned to pool 0 and disk shelves located at the partner site are assigned to pool 1.

You should assign an equal number of shelves to each pool.

a. On the first node, systematically assign the local disk shelves to pool 0 and the remote disk shelves to pool 1:

```
disk assign -shelf local-switch-name:shelf-name.port -p pool
```

If storage controller Controller_A_1 has four shelves, you issue the following commands:

```
*> disk assign -shelf FC_switch_A_1:1-4.shelf1 -p 0
*> disk assign -shelf FC_switch_A_1:1-4.shelf2 -p 0

*> disk assign -shelf FC_switch_B_1:1-4.shelf1 -p 1
*> disk assign -shelf FC_switch_B_1:1-4.shelf2 -p 1
```

b. Repeat the process for the second node at the local site, systematically assigning the local disk shelves to pool 0 and the remote disk shelves to pool 1:

```
disk assign -shelf local-switch-name:shelf-name.port -p pool
```

If storage controller Controller A 2 has four shelves, you issue the following commands:

```
*> disk assign -shelf FC_switch_A_1:1-4.shelf3 -p 0
*> disk assign -shelf FC_switch_B_1:1-4.shelf4 -p 1

*> disk assign -shelf FC_switch_A_1:1-4.shelf3 -p 0
*> disk assign -shelf FC_switch_B_1:1-4.shelf4 -p 1
```

3. Assign the disk shelves to the nodes located at the second site (site B):

Disk shelves at the same site as the node are assigned to pool 0 and disk shelves located at the partner site are assigned to pool 1.

You should assign an equal number of shelves to each pool.

a. On the first node at the remote site, systematically assign its local disk shelves to pool 0 and its remote disk shelves to pool 1:

```
disk assign -shelf local-switch-nameshelf-name -p pool
```

If storage controller Controller_B_1 has four shelves, you issue the following commands:

```
*> disk assign -shelf FC_switch_B_1:1-5.shelf1 -p 0
*> disk assign -shelf FC_switch_B_1:1-5.shelf2 -p 0

*> disk assign -shelf FC_switch_A_1:1-5.shelf1 -p 1
*> disk assign -shelf FC_switch_A_1:1-5.shelf2 -p 1
```

b. Repeat the process for the second node at the remote site, systematically assigning its local disk shelves to pool 0 and its remote disk shelves to pool 1:

```
disk assign -shelf shelf-name -p pool
```

If storage controller Controller_B_2 has four shelves, you issue the following commands:

```
*> disk assign -shelf FC_switch_B_1:1-5.shelf3 -p 0
*> disk assign -shelf FC_switch_B_1:1-5.shelf4 -p 0

*> disk assign -shelf FC_switch_A_1:1-5.shelf3 -p 1
*> disk assign -shelf FC_switch_A_1:1-5.shelf4 -p 1
```

4. Confirm the shelf assignments:

```
storage show shelf
```

5. Exit Maintenance mode:

halt

6. Display the boot menu:

```
boot ontap menu
```

7. On each node, select option 4 to initialize all disks.

Verifying the ha-config state of components

In a MetroCluster configuration, the ha-config state of the controller module and chassis components must be set to **mcc** so they boot up properly.

The system must be in Maintenance mode.

This task must be performed on each new controller module.

Steps

1. In Maintenance mode, display the HA state of the controller module and chassis:

ha-config show

The HA state for all components should be mcc.

2. If the displayed system state of the controller is not correct, set the HA state for the controller module:

```
ha-config modify controller mcc
```

3. If the displayed system state of the chassis is not correct, set the HA state for the chassis:

```
ha-config modify chassis mcc
```

4. Repeat these steps on the other replacement node.

Booting the new controllers and joining them to the cluster

To join the new controllers to the cluster, you must boot each new controller module and use the ONTAP cluster setup wizard to identify the cluster will join.

You must have cabled the MetroCluster configuration.

You must not have configured the Service Processor prior to performing this task.

This task must be performed on each of the new controllers at both clusters in the MetroCluster configuration.

Steps

1. If you have not already done so, power up each node and let them boot completely.

If the system is in Maintenance mode, issue the halt command to exit Maintenance mode, and then issue the following command from the LOADER prompt:

boot_ontap

The controller module enters the node setup wizard.

The output should be similar to the following:

```
Welcome to node setup

You can enter the following commands at any time:

"help" or "?" - if you want to have a question clarified,

"back" - if you want to change previously answered questions, and

"exit" or "quit" - if you want to quit the setup wizard.

Any changes you made before quitting will be saved.

To accept a default or omit a question, do not enter a value.

.
.
```

- 2. Enable the AutoSupport tool by following the directions provided by the system.
- 3. Respond to the prompts to configure the node management interface.

The prompts are similar to the following:

```
Enter the node management interface port: [e0M]:
Enter the node management interface IP address: 10.228.160.229
Enter the node management interface netmask: 225.225.252.0
Enter the node management interface default gateway: 10.228.160.1
```

4. Confirm that nodes are configured in high-availability mode:

```
storage failover show -fields mode
```

If not, you must issue the following command on each node, and then reboot the node:

```
storage failover modify -mode ha -node localhost
```

This command configures high availability mode but does not enable storage failover. Storage failover is automatically enabled when you issue the metrocluster configure command later in the configuration process.

5. Confirm that you have four ports configured as cluster interconnects:

network port show

The following example shows output for two controllers in cluster_A. If it is a two-node MetroCluster configuration, the output shows only one node.

						Speed
(Mbps) Node	Port	IPspace	Broadcast Domain	Link I	MTU	Admin/Open
node_A_	_1					
	**e0a	Cluster	Cluster	up	150	00
auto/10	000					
	e0b	Cluster	Cluster	up	1500	
auto/10	000**					
	e0c	Default	Default	up	1500	auto/100
	e0d	Default	Default	up	1500	auto/100
	e0e	Default	Default	up	1500	auto/100
	eOf	Default	Default	up	1500	auto/100
	e0g	Default	Default	up	1500	auto/1000
node_A_	_2					
	**e0a	Cluster	Cluster	up	150	0 0
auto/10	000					
	e0b	Cluster	Cluster	up	1500	
auto/10	000**					
	e0c	Default	Default	up	1500	auto/100
	e0d	Default	Default	up	1500	auto/100
	e0e	Default	Default	up	1500	auto/100
	eOf	Default	Default	up	1500	auto/1000
	e0g	Default	Default	up	1500	auto/1000

6. Because you are using the CLI to set up the cluster, exit the Node Setup wizard:

exit

- 7. Log in to the admin account by using the admin user name.
- 8. Start the Cluster Setup wizard, and then join the existing cluster: cluster setup

```
::> cluster setup

Welcome to the cluster setup wizard.

You can enter the following commands at any time:
    "help" or "?" - if you want to have a question clarified,
    "back" - if you want to change previously answered questions, and
    "exit" or "quit" - if you want to quit the cluster setup wizard.
    Any changes you made before quitting will be saved.

You can return to cluster setup at any time by typing "cluster setup".
To accept a default or omit a question, do not enter a value.

Do you want to create a new cluster or join an existing cluster?
{create, join}:`join`
```

9. After you complete the **Cluster Setup** wizard and it exits, verify that the cluster is active and the node is healthy:

cluster show

The following example shows a cluster in which the first node (cluster1-01) is healthy and eligible to participate:

If it becomes necessary to change any of the settings you entered for the admin SVM or node SVM, you can access the **Cluster Setup** wizard by using the **cluster setup command**.

Configuring the clusters into a MetroCluster configuration

You must peer the clusters, mirror the root aggregates, create a mirrored data aggregate, and then issue the command to implement the MetroCluster operations.

Configuring intercluster LIFs

You must create intercluster LIFs on ports used for communication between the MetroCluster partner clusters. You can use dedicated ports or ports that also have data traffic.

Configuring intercluster LIFs on dedicated ports

You can configure intercluster LIFs on dedicated ports. Doing so typically increases the available bandwidth for replication traffic.

Steps

1. List the ports in the cluster:

network port show

For complete command syntax, see the man page.

The following example shows the network ports in cluster01:

cluste	r01::> net	work port show	√			
						Speed
(Mbps)						
Node	Port	IPspace	Broadcast Domain	Link	MTU	Admin/Oper
cluste	r01-01					
	e0a	Cluster	Cluster	up	1500	auto/1000
	e0b	Cluster	Cluster	up	1500	auto/1000
	e0c	Default	Default	up	1500	auto/1000
	e0d	Default	Default	up	1500	auto/1000
	e0e	Default	Default	up	1500	auto/1000
	eOf	Default	Default	up	1500	auto/1000
cluste	r01-02					
	e0a	Cluster	Cluster	up	1500	auto/1000
	e0b	Cluster	Cluster	up	1500	auto/1000
	e0c	Default	Default	up	1500	auto/1000
	e0d	Default	Default	up	1500	auto/1000
	e0e	Default	Default	up	1500	auto/1000
	eOf	Default	Default	up	1500	auto/1000

2. Determine which ports are available to dedicate to intercluster communication:

network interface show -fields home-port, curr-port

For complete command syntax, see the man page.

The following example shows that ports e0e and e0f have not been assigned LIFs:

```
cluster01::> network interface show -fields home-port, curr-port
vserver lif
                       home-port curr-port
-----
Cluster cluster01-01 clus1 e0a
                              e0a
Cluster cluster01-01 clus2 e0b
                              e0b
Cluster cluster01-02 clus1 e0a
                              e0a
Cluster cluster01-02 clus2 e0b
                              e0b
cluster01
      cluster mgmt e0c
                              e0c
cluster01
      cluster01-01 mgmt1 e0c
                               e0c
cluster01
      cluster01-02 mgmt1 e0c
                               e0c
```

3. Create a failover group for the dedicated ports:

```
network interface failover-groups create -vserver system_SVM -failover-group failover group -targets physical or logical ports
```

The following example assigns ports e0e and e0f to the failover group intercluster01 on the system SVMcluster01:

```
cluster01::> network interface failover-groups create -vserver cluster01
-failover-group
intercluster01 -targets
cluster01-01:e0e, cluster01-01:e0f, cluster01-02:e0e, cluster01-02:e0f
```

4. Verify that the failover group was created:

```
network interface failover-groups show
```

For complete command syntax, see the man page.

```
cluster01::> network interface failover-groups show
                                  Failover
                 Group
Vserver
                                  Targets
Cluster
                 Cluster
                                  cluster01-01:e0a, cluster01-01:e0b,
                                  cluster01-02:e0a, cluster01-02:e0b
cluster01
                 Default
                                  cluster01-01:e0c, cluster01-01:e0d,
                                   cluster01-02:e0c, cluster01-02:e0d,
                                   cluster01-01:e0e, cluster01-01:e0f
                                  cluster01-02:e0e, cluster01-02:e0f
                 intercluster01
                                  cluster01-01:e0e, cluster01-01:e0f
                                   cluster01-02:e0e, cluster01-02:e0f
```

5. Create intercluster LIFs on the system SVM and assign them to the failover group.

ONTAP version	Command
9.6 and later	network interface create -vserver system_SVM -lif LIF_name -service-policy default-intercluster -home-node node -home -port port -address port_IP -netmask netmask -failover -group failover_group
9.5 and earlier	network interface create -vserver system_SVM -lif LIF_name -role intercluster -home-node node -home-port port -address port_IP -netmask netmask -failover-group failover_group

For complete command syntax, see the man page.

The following example creates intercluster LIFs <code>cluster01_ic101</code> and <code>cluster01_ic102</code> in the failover group intercluster01:

```
cluster01::> network interface create -vserver cluster01 -lif
cluster01_icl01 -service-
policy default-intercluster -home-node cluster01-01 -home-port e0e
-address 192.168.1.201
-netmask 255.255.255.0 -failover-group intercluster01

cluster01::> network interface create -vserver cluster01 -lif
cluster01_icl02 -service-
policy default-intercluster -home-node cluster01-02 -home-port e0e
-address 192.168.1.202
-netmask 255.255.255.0 -failover-group intercluster01
```

6. Verify that the intercluster LIFs were created:

```
In ONTAP 9.6 and later:

network interface show -service-policy default-intercluster

In ONTAP 9.5 and earlier:

network interface show -role intercluster
```

For complete command syntax, see the man page.

7. Verify that the intercluster LIFs are redundant:

In ONTAP 9.6 and later:		

```
network interface show -service-policy default-intercluster -failover

In ONTAP 9.5 and earlier:

network interface show -role intercluster -failover
```

For complete command syntax, see the man page.

The following example shows that the intercluster LIFs <code>cluster01_icl01</code> and <code>cluster01_icl02</code> on the SVMe0e port will fail over to the e0f port.

```
cluster01::> network interface show -service-policy default-intercluster
-failover
                                          Failover
       Logical Home
                                                        Failover
Vserver Interface
                     Node:Port
                                          Policy
                                                        Group
cluster01
        cluster01 icl01 cluster01-01:e0e local-only
intercluster01
                         Failover Targets: cluster01-01:e0e,
                                           cluster01-01:e0f
        cluster01 icl02 cluster01-02:e0e local-only
intercluster01
                         Failover Targets: cluster01-02:e0e,
                                           cluster01-02:e0f
```

Configuring intercluster LIFs on shared data ports

You can configure intercluster LIFs on ports shared with the data network. Doing so reduces the number of ports you need for intercluster networking.

Steps

1. List the ports in the cluster:

```
network port show
```

For complete command syntax, see the man page.

The following example shows the network ports in cluster01:

cluster01::> network port show						
						Speed
(Mbps)						
Node	Port	IPspace	Broadcast Domain	Link	MTU	Admin/Oper
cluste	er01-01					
	e0a	Cluster	Cluster	up	1500	auto/1000
	e0b	Cluster	Cluster	up	1500	auto/1000
	e0c	Default	Default	up	1500	auto/1000
	e0d	Default	Default	up	1500	auto/1000
cluste	er01-02					
	e0a	Cluster	Cluster	up	1500	auto/1000
	e0b	Cluster	Cluster	up	1500	auto/1000
	e0c	Default	Default	up	1500	auto/1000
	e0d	Default	Default	up	1500	auto/1000

2. Create intercluster LIFs on the system SVM:

In ONTAP 9.6 and later: network interface create -vserver system_SVM -lif LIF_name -service-policy default-intercluster -home-node node -home-port port -address port_IP -netmask netmask In ONTAP 9.5 and earlier: network interface create -vserver system_SVM -lif LIF_name -role intercluster -home-node node -home-port port -address port_IP -netmask *netmask

For complete command syntax, see the man page.

The following example creates intercluster LIFs cluster01 icl01 and cluster01 icl02:

```
cluster01::> network interface create -vserver cluster01 -lif
cluster01_icl01 -service-
policy default-intercluster -home-node cluster01-01 -home-port e0c
-address 192.168.1.201
-netmask 255.255.255.0

cluster01::> network interface create -vserver cluster01 -lif
cluster01_icl02 -service-
policy default-intercluster -home-node cluster01-02 -home-port e0c
-address 192.168.1.202
-netmask 255.255.255.0
```

3. Verify that the intercluster LIFs were created:

```
In ONTAP 9.6 and later:

network interface show -service-policy default-intercluster

In ONTAP 9.5 and earlier:

network interface show -role intercluster
```

For complete command syntax, see the man page.

4. Verify that the intercluster LIFs are redundant:

```
In ONTAP 9.6 and later:

network interface show -service-policy default-intercluster -failover
```

```
In ONTAP 9.6 and later:

In ONTAP 9.5 and earlier:

network interface show -role intercluster -failover
```

For complete command syntax, see the man page.

The following example shows that the intercluster LIFs <code>cluster01_icl01</code> and <code>cluster01_icl02</code> on the <code>e0c</code> port will fail over to the <code>e0d</code> port.

```
cluster01::> network interface show -service-policy default-intercluster
-failover
       Logical
                     Home
                                         Failover
                                                       Failover
Vserver Interface
                     Node:Port
                                         Policy
                                                       Group
cluster01
        cluster01 icl01 cluster01-01:e0c local-only
192.168.1.201/24
                        Failover Targets: cluster01-01:e0c,
                                        cluster01-01:e0d
        cluster01 icl02 cluster01-02:e0c local-only
192.168.1.201/24
                        Failover Targets: cluster01-02:e0c,
                                        cluster01-02:e0d
```

Mirroring the root aggregates

You must mirror the root aggregates to provide data protection.

By default, the root aggregate is created as RAID-DP type aggregate. You can change the root aggregate from RAID-DP to RAID4 type aggregate. The following command modifies the root aggregate for RAID4 type aggregate:

```
storage aggregate modify -aggregate aggr_name -raidtype raid4
```


On non-ADP systems, the RAID type of the aggregate can be modified from the default RAID-DP to RAID4 before or after the aggregate is mirrored.

Steps

1. Mirror the root aggregate:

```
storage aggregate mirror aggr name
```

The following command mirrors the root aggregate for controller A 1:

```
controller_A_1::> storage aggregate mirror aggr0_controller_A_1
```

This mirrors the aggregate, so it consists of a local plex and a remote plex located at the remote MetroCluster site.

2. Repeat the previous step for each node in the MetroCluster configuration.

Implementing the MetroCluster configuration

You must run the metrocluster configure -refresh true command to start data protection on the nodes that you have added to a MetroCluster configuration.

You issue the metrocluster configure -refresh true command once, on one of the newly added nodes, to refresh the MetroCluster configuration. You do not need to issue the command on each of the sites or nodes.

The metrocluster configure -refresh true command automatically pairs the two nodes with the lowest system IDs in each of the two clusters as disaster recovery (DR) partners. In a four-node MetroCluster configuration, there are two DR partner pairs. The second DR pair is created from the two nodes with higher system IDs.

Steps

- 1. Refresh the MetroCluster configuration:
 - a. Enter advanced privilege mode:set -privilege advanced
 - $\ensuremath{\text{b.}}$ Refresh the MetroCluster configuration on one of the new nodes:

```
metrocluster configure -refresh true
```

The following example shows the MetroCluster configuration refreshed on both DR groups:

```
controller_A_2::*> metrocluster configure -refresh true
[Job 726] Job succeeded: Configure is successful.
```

```
controller_A_4::*> metrocluster configure -refresh true
[Job 740] Job succeeded: Configure is successful.
```

c. Return to admin privilege mode:

```
set -privilege admin
```

Verify the networking status on site A:

```
network port show
```

The following example shows the network port usage on a four-node MetroCluster configuration:

Node	Port	IPspace	Broadcast Doma:	in Link	MTU	Speed (Mbps) Admin/Oper
 contro	 oller A 1					
	 e0a	Cluster	Cluster	up	9000	auto/1000
	e0b	Cluster	Cluster	up	9000	auto/1000
	e0c	Default	Default	up	1500	auto/1000
	e0d	Default	Default	up	1500	auto/1000
	e0e	Default	Default	up	1500	auto/1000
	eOf	Default	Default	up	1500	auto/1000
	e0g	Default	Default	up	1500	auto/1000
contro	oller_A_2					
	e0a	Cluster	Cluster	up	9000	auto/1000
	e0b	Cluster	Cluster	up	9000	auto/1000
	e0c	Default	Default	up	1500	auto/1000
	e0d	Default	Default	up	1500	auto/1000
	e0e	Default	Default	up	1500	auto/1000
	eOf	Default	Default	up	1500	auto/1000
	e0g	Default	Default	up	1500	auto/1000

- 3. Verify the MetroCluster configuration from both sites in the MetroCluster configuration:
 - a. Verify the configuration from site A:

metrocluster show

b. Verify the configuration from site B:

metrocluster show

```
Cluster_B::> metrocluster show

Configuration: IP fabric

Cluster Entry Name State

Local: cluster_B Configuration state configured normal

Remote: cluster_A Configuration state configured normal
```

Creating a mirrored data aggregate on each node

You must create a mirrored data aggregate on each node in the DR group.

- You should know what drives will be used in the new aggregate.
- If you have multiple drive types in your system (heterogeneous storage), you should understand how you can ensure that the correct drive type is selected.
- Drives are owned by a specific node; when you create an aggregate, all drives in that aggregate must be owned by the same node, which becomes the home node for that aggregate.

In systems using ADP, aggregates are created using partitions in which each drive is partitioned in to P1, P2 and P3 partitions.

 Aggregate names should conform to the naming scheme you determined when you planned your MetroCluster configuration.

Disk and aggregate management

1. Display a list of available spares:

```
storage disk show -spare -owner node_name
```

2. Create the aggregate by using the storage aggregate create -mirror true command.

If you are logged in to the cluster on the cluster management interface, you can create an aggregate on any node in the cluster. To ensure that the aggregate is created on a specific node, use the -node parameter or specify drives that are owned by that node.

You can specify the following options:

- Aggregate's home node (that is, the node that owns the aggregate in normal operation)
- List of specific drives that are to be added to the aggregate
- Number of drives to include

In the minimum supported configuration, in which a limited number of drives are available, you must use the force-small-aggregate option to allow the creation of a three disk RAID-DP aggregate.

- Checksum style to use for the aggregate
- Type of drives to use
- Size of drives to use
- Drive speed to use
- RAID type for RAID groups on the aggregate
- Maximum number of drives that can be included in a RAID group
- Whether drives with different RPM are allowed For more information about these options, see the storage aggregate create man page.

The following command creates a mirrored aggregate with 10 disks:

+

```
cluster_A::> storage aggregate create aggr1_node_A_1 -diskcount 10 -node
node_A_1 -mirror true
[Job 15] Job is queued: Create aggr1_node_A_1.
[Job 15] The job is starting.
[Job 15] Job succeeded: DONE
```

1. Verify the RAID group and drives of your new aggregate:

storage aggregate show-status -aggregate aggregate-name

Configuring FC-to-SAS bridges for health monitoring

- Third-party SNMP monitoring tools are not supported for FibreBridge bridges.
- Starting with ONTAP 9.8, FC-to-SAS bridges are monitored via in-band connections by default, and additional configuration is not required.

Starting with ONTAP 9.8, the storage bridge command is replaced with system bridge. The following steps show the storage bridge command, but if you are running ONTAP 9.8 or later, the system bridge command is preferred.

Steps

- 1. From the ONTAP cluster prompt, add the bridge to health monitoring:
 - a. Add the bridge, using the command for your version of ONTAP:

ONTAP version	Command
9.5 and later	storage bridge add -address 0.0.0.0 -managed-by in-band -name bridge-name
9.4 and earlier	storage bridge add -address bridge- ip-address -name bridge-name

b. Verify that the bridge has been added and is properly configured:

```
storage bridge show
```

It might take as long as 15 minutes to reflect all data because of the polling interval. The ONTAP health monitor can contact and monitor the bridge if the value in the **Status** column is **ok**, and other information, such as the worldwide name (WWN), is displayed.

The following example shows that the FC-to-SAS bridges are configured:

```
controller A 1::> storage bridge show
Bridge
                Symbolic Name Is Monitored Monitor Status
Vendor Model
                      Bridge WWN
ATTO 10.10.20.10 atto01 true
                                    ok
                                                  Atto
FibreBridge 7500N 20000010867038c0
ATTO 10.10.20.11 atto02 true
                                    ok
                                                 Atto
FibreBridge 7500N 20000010867033c0
ATTO_10.10.20.12 atto03 true
                                                 Atto
                                    ok
FibreBridge 7500N 20000010867030c0
ATTO 10.10.20.13 atto04 true
                                            Atto
                                     ok
FibreBridge 7500N 2000001086703b80
4 entries were displayed
controller A 1::>
```

Moving a metadata volume in MetroCluster configurations

You can move a metadata volume from one aggregate to another aggregate in a MetroCluster configuration. You might want to move a metadata volume when the source aggregate is decommissioned or unmirrored, or for other reasons that make the aggregate ineligible.

- You must have cluster administrator privileges to perform this task.
- The target aggregate must be mirrored and should not be in the degraded state.
- The available space in the target aggregate must be larger than the metadata volume that you are moving.

Steps

1. Set the privilege level to advanced:

```
set -privilege advanced
```

2. Identify the metadata volume that should be moved:

```
volume show MDV_CRS*
```

```
Cluster A::*> volume show MDV CRS*
Vserver Volume Aggregate State Type Size
Available Used%
______ ____
Cluster A
        MDV CRS 14c00d4ac9f311e7922800a0984395f1 A
                    Node A 1 aggr1
                              online RW
                                                 10GB
9.50GB
       5%
Cluster A
        MDV CRS 14c00d4ac9f311e7922800a0984395f1 B
                    Node A 2 aggr1
                               online
                                       RW
                                                 10GB
9.50GB
        5%
Cluster A
        MDV CRS 15035e66c9f311e7902700a098439625 A
                    Node_B_1_aggr1
                                        RW
Cluster A
        MDV CRS 15035e66c9f311e7902700a098439625 B
                   Node B 2 aggr1
                                        RW
4 entries were displayed.
Cluster A::>
```

3. Identify an eligible target aggregate:

metrocluster check config-replication show-aggregate-eligibility

The following command identifies the aggregates in cluster. A that are eligible to host metadata volumes:

```
Cluster_A::*> metrocluster check config-replication show-aggregate-eligibility

Aggregate Hosted Config Replication Vols Host Addl Vols Comments
------

Node_A 1_aggr0 - false Root Aggregate

Node_A 2_aggr0 - false Root Aggregate

Node_A 1_aggr1 MDV_CRS_1bc7134a5ddf11e3b63f123478563412_A true -

Node_A 2_aggr1 MDV_CRS_1bc7134a5ddf11e3b63f123478563412_B true -

Node_A 1_aggr2 - true

Node_A 2_aggr2 - true

Node_A 2_aggr3 - false Unable to determine available space of aggregate

Node_A 1_aggr5 - false Unable to determine mirror configuration

Node_A 2_aggr6 - false Mirror configuration does not match requirement

Node_B 1_aggr4 - false NonLocal Aggregate
```


In the previous example, Node_A_1_aggr2 and Node_A_2_aggr2 are eligible.

4. Start the volume move operation:

volume move start -vserver svm_name -volume metadata_volume_name -destination
-aggregate destination aggregate name

The following command moves metadata volume MDV_CRS_14c00d4ac9f311e7922800a0984395f1 from aggregate Node_A_1_aggr1 to aggregate Node_A_1_aggr2:

5. Verify the state of the volume move operation:

```
volume move show -volume vol constituent name
```

6. Return to the admin privilege level:

```
set -privilege admin
```

Checking the MetroCluster configuration

You can check that the components and relationships in the MetroCluster configuration are working correctly. You should do a check after initial configuration and after making any changes to the MetroCluster configuration. You should also do a check before a negotiated (planned) switchover or a switchback operation.

If the metrocluster check run command is issued twice within a short time on either or both clusters, a conflict can occur and the command might not collect all data. Subsequent metrocluster check show commands do not show the expected output.

Steps

1. Check the configuration:

```
metrocluster check run
```

The command runs as a background job and might not be completed immediately.

```
cluster_A::> metrocluster check run

The operation has been started and is running in the background. Wait

for

it to complete and run "metrocluster check show" to view the results. To

check the status of the running metrocluster check operation, use the

command,

"metrocluster operation history show -job-id 2245"
```

```
cluster_A::> metrocluster check show
Last Checked On: 9/13/2018 20:41:37

Component Result

nodes ok
lifs ok
config-replication ok
aggregates ok
clusters ok
connections ok
6 entries were displayed.
```

2. Display more detailed results from the most recent metrocluster check run command:

```
metrocluster check aggregate show

metrocluster check cluster show

metrocluster check config-replication show

metrocluster check lif show

metrocluster check node show
```

The metrocluster check show commands show the results of the most recent metrocluster check run command. You should always run the metrocluster check run command prior to using the metrocluster check show commands so that the information displayed is current.

The following example shows the metrocluster check aggregate show command output for a healthy four-node MetroCluster configuration:

cluster_A::> metro	cluster check aggregate show	
Last Checked On: 8	/5/2014 00:42:58	
Node Result	Aggregate	Check
	controller_A_1_aggr0	mirroring-status
ok ok		disk-pool-allocation
ok		ownership-state
OK.	controller_A_1_aggr1	mirroring-status
ok		disk-pool-allocation
ok		ownership-state
ok	controller_A_1_aggr2	
ok		mirroring-status
ok		disk-pool-allocation
ok		ownership-state

controller_A_2	controller_A_2_aggr0	mi maning status
ok		mirroring-status
ok		disk-pool-allocation
		ownership-state
ok	controller A 2 aggr1	
ok		mirroring-status
OK		disk-pool-allocation
ok		ownership-state
ok		
	controller_A_2_aggr2	mirroring-status
ok		diak-nool-allogation
ok		disk-pool-allocation
ok		ownership-state
18 entries were disp	played.	

The following example shows the metrocluster check cluster show command output for a healthy four-node MetroCluster configuration. It indicates that the clusters are ready to perform a negotiated switchover if necessary.

Last Checked On: 9/13/2017 20:47:04		
Cluster	Check	Result
 mccint-fas9000-01	02	
	negotiated-switchover-ready	not-applicable
	switchback-ready	not-applicable
	job-schedules	ok
	licenses	ok
	periodic-check-enabled	ok
nccint-fas9000-03	04	
	negotiated-switchover-ready	not-applicable
	switchback-ready	not-applicable
	job-schedules	ok
	licenses	ok
	periodic-check-enabled	ok

Copyright Information

Copyright © 2021 NetApp, Inc. All rights reserved. Printed in the U.S. No part of this document covered by copyright may be reproduced in any form or by any means-graphic, electronic, or mechanical, including photocopying, recording, taping, or storage in an electronic retrieval system- without prior written permission of the copyright owner.

Software derived from copyrighted NetApp material is subject to the following license and disclaimer:

THIS SOFTWARE IS PROVIDED BY NETAPP "AS IS" AND WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL NETAPP BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

NetApp reserves the right to change any products described herein at any time, and without notice. NetApp assumes no responsibility or liability arising from the use of products described herein, except as expressly agreed to in writing by NetApp. The use or purchase of this product does not convey a license under any patent rights, trademark rights, or any other intellectual property rights of NetApp.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or pending applications.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.277-7103 (October 1988) and FAR 52-227-19 (June 1987).

Trademark Information

NETAPP, the NETAPP logo, and the marks listed at http://www.netapp.com/TM are trademarks of NetApp, Inc. Other company and product names may be trademarks of their respective owners.