AI 中的数学

邓小铁 李翰禹

2024年10月3日

目录

第零章	引言	1
第一部	分 AI 的逻辑	2
第一章	合情推理	3
§1.1	命题逻辑的演绎推理	4
§1.2	合情推理的数学模型	12
	§1.2.1 合情推理的基本假设,似然	14
	§1.2.2 似然与概率	19
	§1.2.3 先验与基率谬误	21
§1.3	合情推理的归纳强论证	23
	§1.3.1 归纳强论证	23
	§1.3.2 有效论证和归纳强论证的比较	28
§1.4	先验模型的存在性	33
§1.5	章末注记	35
§1.6	习题	36

目录 iii

第二章	Markov 链与模型	37
§2.1	Markov 链	38
§2.2	Markov 奖励过程(MRP)	49
§2.3	Markov 决策过程(MDP)	55
	隐 Markov 模型(HMM)	64
	§2.4.1 评估问题	67
	§2.4.2 解释问题	69
§2.5	扩散模型	72
5=10	§2.5.1 采样逆向过程	77
	§2.5.2 训练逆向过程	78
82.6	章末注记	81
	习题	81
82.7		01
<i>~~</i> — ÷0		00
第二部	分 信息与数据	82
	分 信息与数据 熵与 Kullback-Leibler 散度	82
	熵与 Kullback-Leibler 散度	
第三章	熵与 Kullback-Leibler 散度 熵	83
第三章	熵与 Kullback-Leibler 散度 嫡	83 84
第三章 §3.1	熵与 Kullback-Leibler 散度 熵	83 84 84 89
第三章 §3.1	熵与 Kullback-Leibler 散度 熵 §3.1.1 概念的导出 §3.1.2 概念与性质 Kullback-Leibler 散度	83 84 84 89 98
第三章 §3.1	熵与 Kullback-Leibler 散度 熵 §3.1.1 概念的导出 §3.1.2 概念与性质 Kullback-Leibler 散度 §3.2.1 定义	83 84 84 89 98
第三章 §3.1 §3.2	熵与 Kullback-Leibler 散度 熵 §3.1.1 概念的导出 §3.1.2 概念与性质 Kullback-Leibler 散度 §3.2.1 定义 §3.2.2 两个关于信息的不等式	83 84 84 89 98 98
第三章 §3.1 §3.2	熵与 Kullback-Leibler 散度 熵 §3.1.1 概念的导出 §3.1.2 概念与性质 Kullback-Leibler 散度 §3.2.1 定义 §3.2.2 两个关于信息的不等式 编码理论	83 84 84 89 98 101 102
第三章 §3.1 §3.2	熵与 Kullback-Leibler 散度 熵 §3.1.1 概念的导出 §3.1.2 概念与性质 Kullback-Leibler 散度 §3.2.1 定义 §3.2.2 两个关于信息的不等式 编码理论 §3.3.1 熵与编码	83 84 84 89 98 101 102

目录 iv

§3.4	在机器学习中的应用:语言生成模型	108
§3 . 5	附录: Shannon 定理的证明	110
§3. 6	习题	113
§3 . 7	章末注记	115
公田辛	宣佈□ Folkmann Lindometrouse 引頭	117
界四早	高维几何,Johnson-Lindenstrauss 引理	11/
§4 . 1	高维几何	119
	§4.1.1 高维球体	119
	§4.1.2 Stein 悖论	123
	§4.1.3 为什么我们要正则化?远有潜龙,勿用	130
§4 . 2	集中不等式	131
§4. 3	J-L 引理的陈述与证明	138
§4.4	J-L 引理的应用	143
§4 . 5	习题	146
§4. 6	章末注记	147
第五章	差分隐私	148
§5 . 1	数据隐私问题	149
§5 . 2	差分隐私的定义与性质	153
§5. 3	差分隐私的应用	161
	§5.3.1 随机反应算法	161
	§5.3.2 全局灵敏度与 Laplace 机制	164
	§5.3.3 DP 版本 Llyod 算法	167
§5 . 4	习题	170
85.5	音末注记	170

目录 v

第三部	分 决策与优化	171
第六章	凸分析	172
§6 . 1	决策与优化的基本原理	173
	§6.1.1 统计决策理论 · · · · · · · · · · · · · · · · · · ·	173
	§6.1.2 优化问题	176
	§6.1.3 例子: 网格搜索算法	183
§6 . 2	凸函数	188
§6 . 3	凸集	196
	§6.3.1 基本定义和性质	196
	§6.3.2 分离超平面定理	201
§6 . 4	习题	204
§6.5	章末注记	204
第七章	对偶理论	205
§7 . 1	约束的几何意义	208
§7 . 2	条件极值与 Lagrange 乘子法	216
§7 . 3	Karush-Kuhn-Tucker 条件	219
§7 . 4	Lagrange 对偶	225
	§7.4.1 原始规划与对偶规划	225
	§7.4.2 对偶的几何意义	229
	§7.4.3 弱对偶定理	233
	§7.4.4 Slater 条件,强对偶定理	235
§7 . 5	应用: 支持向量机 (SVM)	241
§7 . 6	习题	244
§7.7	章末注记	244

目录 vi

第八章	不动点理论	244
§8 . 1	Banach 不动点定理	245
§8 . 2	Brouwer 不动点定理	256
§8.3	习题	263
§8.4	章末注记	263
第四部	分 博弈与逻辑 2	26 4
第九章	博弈与逻辑	265
§9 . 1	博弈的基本语言: 以井字棋为例	267
§9 . 2	输赢博弈	269
	§9.2.1 博弈的不同维度	269
	§9.2.2 Zermelo 定理与 AlphaGo Zero	271
§9. 3	正则形式博弈	278
	§9.3.1 定义	279
	§9.3.2 理性与均衡	281
	§9.3.3 生成对抗网络	284
	§9.3.4 混合策略	287
§9 . 4	随机博弈(Markov 博弈)	293
§9 . 5	习题	304
§9.6	章末注记	304
第五部	3分 认知与逻辑 3	305
第十章	共同知识,Bayes 博弈,Aumann 知识算子	306
§10.	1"泥泞的孩童"谜题	309

目录 vii

§10.2 不完全信息博弈(Bayes 博弈)	314
§10.3 电子邮件博弈	324
§10.4 Aumann 知识算子	329
§10.5 习题	338
§10.6 章末注记	338
第十一章 模态逻辑,知识的逻辑	339
§11.1 知识逻辑的形式语言	341
§11.2 Kripke 语义	346
§11.3 模态可定义性	353
§11.4 知识逻辑的基本模型与性质	356
§11.4.1 知识逻辑的 Kripke 模型与公理	356
§11.4.2 Kripke 模型与 Aumann 结构	364
§11.4.3 "泥泞的孩童"再回顾:形式化解法	365
§11.5 对不一致达成一致	368
§11.5.1 模型	368
§11.5.2 定理及其证明	372
§11.6 习题	374
§11.7 章末注记	374
<u>佐</u>	 -
第六部分 附录:预备知识	375
附录 A 线性代数基础	376
§A.1 线性空间	376
§A.2 线性映射	383
843 拓陸	389

目录 viii

§A.4	双线性型与二次型	398
§A.5	带内积的线性空间	404
§A.6	行列式	413
§A.7	算子范数与谱理论	417
附录B	微分学基础	425
§B.1	点集拓扑	425
	§B.1.1 度量空间, 范数	425
	§B.1.2 开集与闭集	430
	§B.1.3 紧致性,收敛性,完备性	434
	§B.1.4 连续映射	438
	§B.1.5 与实数序有关的性质	443
§B.2	一元函数的微分学	446
	§B.2.1 导数与微分的定义	447
	§B.2.2 微分学基本定理	452
§B.3	多元函数的微分学	454
	§B.3.1 微分、偏导数与导数的定义	454
	§B.3.2 微分学基本定理	464
	§B.3.3 隐函数定理	467
附录C	概率论基础	473
§C.1	从朴素概率论到公理化概率论	473
	§C.1.1 Kolmogorov 概率论	473
	§C.1.2 条件概率,独立性	479
§C.2	随机变量,分布函数	485
	§C.2.1 基本定义	485

§C.2.	2 离散型随机变量 49
§C.2.	3 连续型随机变量 49
§C.2.4	4 随机向量,条件分布,独立性 49
§C.2.	5 随机变量(向量)的函数 50
§C.3 随机图	变量的数字特征,条件数学期望50
§C.3.	1 数学期望,Lebesgue 积分 50
§C.3.2	2 数学期望的性质 51
§C.3.	3 随机变量的内积空间51
§C.3.4	4 特征函数
§C.3.	5 条件数学期望52
§C.4 多元	正态分布(Gauss 向量) 53
§C.5 大数分	定律53

第一部分

AI 的逻辑

第二部分

信息与数据

第三部分

决策与优化

第七章 对偶理论

在经济社会中,通常会有买家和卖家两种角色. 卖家要以尽可能高的售价卖出商品,而买家则希望以尽可能低的价格购买商品. 因此,卖家和买家之间构成了相互矛盾的利益关系. 下面我们来看一个具体的例子.

甲用三种纸浆混合生产两种抽纸. 甲的目标是让总售价最大. 表 7.1 描述了公司甲用纸浆生产抽纸的信息表.

	纸浆1	纸浆 2	纸浆3	售价(万元/吨)
抽纸A	0.25	0.50	0.25	12
抽纸 B	0.50	0.50		15
库存 (吨)	120	150	50	

表 7.1: 抽纸和纸浆信息表, 其中, 数据的第一(二)行表示生产一吨抽纸 A(B)需要的纸浆吨数.

设抽纸 $A 和 B 分别生产 x_1 和 x_2 吨, 我们可以把甲的目标写成一$

个优化问题:

maximize
$$z = 12x_1 + 15x_2$$

s.t. $0.25x_1 + 0.50x_2 \le 120$, $0.50x_1 + 0.50x_2 \le 150$, $0.25x_1 \le 50$, $x_1 \ge 0$, $x_2 \ge 0$.

当然,甲也有一种选择,自己不生产销售纸巾,而是直接售卖纸浆, 此时,甲变成了卖家,现在有一个公司乙需要这三种纸浆,打算向甲购 买,问甲应该如何定价纸浆?

假设三种纸浆的定价分别为每吨 y_1, y_2, y_3 万元. 对于买家乙来说,它希望总价格尽量小,但不能低于甲用纸浆生产抽纸所产生的价值,因此,对于乙来说,优化问题为:

minimize
$$w = 120y_1 + 150y_2 + 50y_3$$

s.t. $0.25y_1 + 0.50y_2 + 0.25y_3 \ge 12$, $0.50y_1 + 0.50y_2 \ge 15$, $y_1 \ge 0$, $y_2 \ge 0$, $y_3 \ge 0$.

假设甲乙双方都知道表 7.1 的信息,如果甲对纸浆的定价高于上述 乙优化问题的最优解,那么乙会选择不购买纸浆.此时,这一市场的资 源配置发生了浪费:甲有多余的纸浆,乙没有得到所需的纸浆. 在上个世纪,苏联完全实行计划经济,一个东西的售价是多少,由国家计划决定,而不是由市场决定.我们上面的小例子就是计划经济的一个缩影:如果没有合理的定价,社会资源的配置就会出现问题,想买的买不到,想卖的卖不出去.

1959年,苏联经济学家 Kantorovich 出版了著作《经济资源的最佳利用》,第一次将上面线性规划的这种思路引入到资源配置中.对于一个资源配置高效的经济社会,每一个产品的定价都应该接近于它对应优化问题的最优解,这样的定价被称为影子价格.

1965 年,因 Kantorovich 因为这一工作而获列宁奖金. 1975 年,Kantorovich 因此获得了诺贝尔经济学奖,成为第一个获得这一奖项的前苏联经济学家.

在我们上面纸浆定价的例子中,我们其实看到了两个优化问题之间非同寻常的联系:一个的目标函数是另一个的约束条件.影子价格产生于两个最优解相等的情况,正是 Kantorovich 所观察到的核心现象.

这样的现象被称为对偶性,对偶性不仅仅是线性规划中的现象,它是优化问题中的一个普遍现象.在本章中,我们考虑带约束的优化问题.它的一般形式是

minimize
$$f(x)$$

s.t. $h(x) = 0$, $g(x) \le 0$, $x \in \Omega$. (7.1)

函数 $f: \mathbb{R}^n \to \mathbb{R}$ 是目标函数, $h: \mathbb{R}^n \to \mathbb{R}^m$ 和 $g: \mathbb{R}^n \to \mathbb{R}^p$ 分别是等式约束和不等式约束. 我们假设 h,g 都是连续的,且通常假设它们拥有连续的二阶导数.

一个满足所有函数约束的点 $x \in \Omega$ 被称作可行解,而使得 f 取得最小值的可行解叫做最优解. 有时候优化问题的目标可能是最大化 f,此时相应的最优解就是使得 f 取得最大值的可行解. 本章的任务是讨论各种情况下最优值的必要条件,这些必要条件最终推导出了对偶理论.

§7.1 约束的几何意义

我们首先指出,优化问题的函数约束其实有很强的几何意义,更偏微积分的讨论请参见附录 B. 我们先只关注 (7.1) 中的等式约束 h(x) = 0,考虑如下例子.

例 7.1 (二维空间中的约束) 考虑二维空间中的如下约束:

$$h_1(x) = x_1^2 + x_2^2 - 1 = 0,$$

 $h_2(x) = x_1 + x_2 - 1 = 0.$

第一个约束 $h_1(x) = 0$ 定义了一个圆环,它是一维曲面¹.第二个约束 $h_2(x) = 0$ 定义了一条直线,也是一维曲面.这两个约束的交集是两个点,即零维曲面.

例 7.2 (三维空间中的约束) 考虑三维空间中的如下约束:

$$h_1(x) = x_1^2 + x_2^2 + x_3^2 - 1 = 0,$$

 $h_2(x) = x_1 + x_2 + x_3 - 1 = 0.$

¹严格来说,一维空间应该叫曲线. 不过,为了和后面高维空间的术语保持一致,我们都称之为曲面.

第一个约束 $h_1(x) = 0$ 定义了一个球面,它是一个二维曲面. 第二个约束 $h_2(x) = 0$ 定义了一个平面,也是一个二维曲面. 这两个约束的交集是一个圆环,即一维曲面.

我们可以从另一个角度来理解这两个例子. 在例 7.1 中,原本 (x_1,x_2) 两个维度都是自由选择的,所以我们可以用两个互相独立的参数来描述这个点. 当加入约束 $h_1(x)=0$ 之后,给定一个 x_1 ,我们我们并不能自由选择 x_2 ,而是要满足约束 $h_1(x)=0$. 容易看出,我们只用一个参数 θ 就可以描述这个约束下的点:

$$(x_1, x_2) = (\cos \theta, \sin \theta), \quad \theta \in [0, 2\pi).$$

所以,约束 $h_1(x) = 0$ 将原本的二维空间约束到了一维空间.继续加入约束 $h_2(x) = 0$,我们已经不需要参数就可以描述这个约束下的点:

$$(x_1, x_2) \in \{(0, 1), (1, 0)\}.$$

因此,约束 $h_2(x) = 0$ 将原本的一维空间约束到了零维空间.

类似地,在例 7.2 中,原本 (x_1, x_2, x_3) 可以用三个互相独立的参数来描述,当加入约束 $h_1(x) = 0$ 之后,我们只能用两个独立的参数来描述,而加入约束 $h_2(x) = 0$ 之后,我们只需要一个参数就可以描述这个约束下的点. 这对应的就是三维空间被约束到了二维空间,再被约束到了一维空间.

更一般地,如果 $h: \mathbb{R}^n \to \mathbb{R}^m$,那么 h 的每一维都对 \mathbb{R}^n 增加了一个约束,最终 h(x)=0 定义了一个 n-m 维的曲面(在通常的情况下)

不过,这一性质并不是绝对的,请看下面的例子.

例 7.3 在三维空间中,考虑如下约束:

$$h_1(x) = x_1^2 + x_2^2 + x_3^2 - 1 = 0,$$

 $h_2(x) = x_1 = 1.$

容易看出,这一约束其实对应的是一个点 (1,0,0),即零维曲面,而不是我们预期的一维曲面.

再考虑如下约束:

$$h_1(x) = x_1 + x_2 + x_3 = 1,$$

 $h_2(x) = x_1 + 2x_2 + 3x_3 = 1,$
 $h_3(x) = x_2 + 2x_3 = 0.$

这一约束对应的是一个直线,即一维曲面,而不是我们预期的零维曲面. □

上面的例子是很恼人的,因为我们无法通过直观的方式来判断曲面的维度. 所以,我们需要一些更强的方法来判断曲面的维度. 如果 h 是具有连续的一阶导数的函数,那么这个曲面是光滑²的. 我们只考虑光滑曲面,因为它们是最常见的情况.

例 7.3 的第一个约束为什么不符合预期? 在点 (1,0,0),球面 $h_1(x) = 0$ 的切平面恰好是 $x_1 = 1$,这意味着在这个点, $h_1(x) = 0$ 和 $h_2(x) = 0$ 其实只产生了一个有效的约束!这说明, "切平面"这样的概念对于维度有着至关重要的作用.

²在文献中,"光滑"这一词的含义有多种多样,例如无穷次可微、具有连续二阶导数等等.因此,这里用光滑仅仅只是方便起见,在阅读文献时,需要根据具体的上下文来理解这一词的含义.

在一般空间中,我们可以通过切空间的概念来描述曲面在某个点的维度.切空间其实是所有过该点的切线的集合.为了引入切线,我们先介绍曲线,

定义 7.1 (曲线和切向量) 考虑曲面 S,其上的一条曲线是一系列点的集合: $x(t) \in S$,它们以 $t \in [0,1]$ 为参数且在该区间上连续. 因为它只有一个参数,所以它是一维曲面.

如果曲线 x(t) 在点 $x^* = x(t^*)$ 处可微,那么它在该点的**导数**被定义为

$$\dot{x}(t) = \left. \frac{\mathrm{d}x(t)}{\mathrm{d}t} \right|_{t=t^*}.$$

如果曲线处处可微,我们称它是可微的.

考虑向量v,如果存在一个可微曲线x(t)和常数k>0,使得

$$\dot{x}(0) = kv, \quad x(0) = x^*,$$

那么我们称 v 是曲面 S 在点 x^* 处的切向量.

有了曲线和切向量的概念,我们可以引入切空间的概念.

定义 **7.2 (切空间)** 考虑曲面 S , 在点 $x^* \in S$ 处的切空间是所有在该点的切向量的集合,记作 $T_{x^*}(S)$.

下面我们看一个切空间的例子.

例 7.4 (三维球面的切空间) 考虑三维空间中的单位球面

$$S^2 = \{ x \in \mathbb{R}^3 : x_1^2 + x_2^2 + x_3^2 = 1 \}.$$

在点 $x^* = (1,0,0)$ 处,球面的切空间是什么?我们可以通过曲线来描述

切空间. 考虑过 x* 的圆弧:

$$x_{\theta}(t) = (\cos t, \sin t \cos \theta, \sin t \sin \theta), \quad t \in [0, \pi],$$

其中 θ 是一个固定的参数,它表示圆弧的方向.那么,

$$\dot{x}_{\theta}(0) = (0, -\sin\theta, \cos\theta),$$

所以, x* 处的切空间至少包含以下集合

$$\{(0, -k\sin\theta, k\cos\theta) : k \in \mathbb{R}, \theta \in [0, 2\pi)\} = \{(0, y, z) : y, z \in \mathbb{R}\}.$$

因为球面是一个二维曲面,所以切空间不可能是整个三维空间. 因此,过 x^* 的切空间就是

$$T_{x^*}(S^2) = \{(0, y, z) : y, z \in \mathbb{R}\}.$$

例 7.4 中的切空间是一个二维的线性空间. 直观上,任何切空间都是应该一个线性空间,这也是它名字的来源.

引理7.1 切空间是一个线性空间.

尽管引理 7.1 的直观是很明显的,但是这一性质的证明需要一定程度的微积分知识,所以我们这里略去. 我们也只需要这一性质的直观理解,而不需要深入的数学推导.

既然切空间是一个线性空间,我们的一个主要目标就是给出切空间的显式表达.这一部分需要一些基本的微积分和线性代数知识,请参阅附录 B 和附录 A.

考虑一条曲线 x(t), 如果它在 $h_i(x) = 0$ 形成的曲面上, 所以

$$\forall t, h_i(x(t)) = 0 \implies \forall t, \frac{\mathrm{d}}{\mathrm{d}t} h_i(x(t)) = 0.$$

那么,根据复合函数的求导法则,应该有

$$\frac{\mathrm{d}}{\mathrm{d}t}h_i(x(t)) = 0 \iff \nabla_x h_i(x(t))\dot{x}(t) = 0.$$

因此 x(t) 的切向量和该点处函数 $h_i(x(t))$ 的导数向量正交.

于是,如果 x(t) 在 h(x) = 0 形成的曲面上,那么 x(t) 处的导数 $\nabla h(x(t))$ 是切空间的法向量.这一数学推导的示意图见图 **7.1**.

图 7.1: 切空间的法向量示意

对于例 7.4, 我们可以看到,

$$\nabla h_1(x) = (2x_1, 2x_2, 2x_3) \implies \nabla h_1(x^*) = (2, 0, 0).$$

因此,切空间 $T_{x^*}(S^2)$ 的法向量是 (2,0,0),我们可以重新描述切空间为一个二维平面

$$T_{x^*}(S^2): 2x_1 + 0x_2 + 0x_3 = 0 \iff x_1 = 0.$$

这和例7.4的结果是一致的.

记

$$M = \left\{ \sum_i lpha_i
abla h_i(x^*)^{\mathsf{T}} : lpha_i \in \mathbb{R}
ight\}$$
 ,

即 $M \neq \nabla h_i(x^*)^\mathsf{T}$ 张成的空间. 它的正交补是

$$M^{\perp} = \{ y \in \mathbb{R}^n : \nabla h(x^*) y = 0 \},$$

这里, $\nabla h(x^*)$ 是 h 在 x^* 处的 Jacobi 矩阵,即对 h 的每一个分量求导得到的矩阵:

$$abla h(x^*) = egin{pmatrix}
abla h_1(x^*) \\
 \nabla h_2(x^*) \\
 \dots \\
 \nabla h_m(x^*) \end{pmatrix}.$$

我们已经证明 $T_{x^*}(S) \subseteq M^{\perp}$. 进一步,例 7.4 的结果表明, $T_{x^*}(S) = M^{\perp}$,即切空间和 M^{\perp} 是相等的. 然而,如果对于例 7.3 中的第一个 h,我们会发现切空间和 M^{\perp} 是不相等的:h(x) = 0 对应的是单个点,对于单个点的切空间自然是一个零维空间,然而,和 $\nabla h(x^*)$ 正交的空间是整个二维空间!

以上例子说明两件事,首先,切空间和 M^{\perp} 不一定相等;其次,切空间和 M^{\perp} 的关系和曲面的维度有关.为了说明这一点,我们引入正规

点的概念.

定义 7.3 (正规点) 考虑优化问题 (7.2),当一个点 $x^* \in \Omega$ 满足约束 $h(x^*) = 0$,且梯度向量 $\nabla h_1(x^*), \nabla h_2(x^*), \dots, \nabla h_m(x^*)$ 线性无关时,它被称作该约束的正规点.

直观上来说,正规点上每一条约束都起到了实际的作用,因此梯度向量 $\nabla h_i(x^*)^\mathsf{T}$ 形成了一个线性无关的集合,张成了空间 M. 此时,切空间恰好完全垂直于 M,即 $T_{x^*}(S) = M^\perp$. 这一几何直观见图 7.2,点 x^* 处的两个等式约束共同确定了该点的切空间.

图 7.2: 正规点示意图

定理 7.1 (正规点切空间刻画定理) 设曲面 $S \subseteq \mathbb{R}^n$ 由约束 h(x) = 0 定义, $x^* \in S$ 是正规点, 那么,

$$T_{x^*}(S) = M^{\perp} = \{y : \nabla h(x^*)y = 0\}.$$

该定理的证明需要隐函数定理,对微积分要求较高,我们这里略去.

如此,针对正规点,我们找到了表达切空间的一种方法.这一方法还揭示了曲面维度和约束的梯度向量的关系.

注. 实际上,梯度向量 $\nabla h_i(x^*)$ 张成空间 M 的维数定义了曲面 S 在点 x^* 的维数. 如果在点 $x^* \in S$ 一个邻域内维数都是 k,那么,我们可以用一个 k 维的参数来描述这个邻域内的点. 这一性质被称为秩定理.

§7.2 条件极值与 Lagrange 乘子法

有了切空间的准备,现在我们要对正规点推导带约束的优化问题的极值条件.我们首先考虑只有等式约束的情况:

minimize
$$f(x)$$

s.t. $h(x) = 0$, (7.2)
 $x \in \Omega$.

其中 f,h 都具有连续的一阶导数.

设 x^* 是一个约束 h(x) = 0 一个正规点,同时也是函数 f 的一个在可行域中的极值点. 这一部分的目标是得到条件极值的一阶必要条件:

定理 7.2 (条件极值的一阶必要条件) 令 x^* 是一个 f 的满足约束 h(x) = 0 的正规极值点. 那么存在一个 $\lambda \in \mathbb{R}^m$ 使得

$$\nabla f(x^*) + \lambda^{\mathsf{T}} \nabla h(x^*) = 0.$$

一阶必要条件 $\nabla f(x^*) + \lambda^{\mathsf{T}} \nabla h(x^*) = 0$ 以及约束 $h(x^*) = 0$ 给出

了 n + m 个等式以及包含 x^* , λ 在内的 n + m 个变量. 因此在非退化的情况下,他们给出了一个唯一解.

引入与这个约束问题对应的 Lagrange 函数:

$$l(x,\lambda) = f(x) + \lambda^{\mathsf{T}} h(x).$$

 λ 被称为 Lagrange 乘子. 必要条件可以被写作:

$$\nabla_x l(x,\lambda) = 0,$$

$$\nabla_{\lambda}l(x,\lambda)=0.$$

这一个求解条件极值的方法会在大部分微积分课程中给出,我们这里的更重要的任务是给出这一方法的几何解释. 注意,定理 7.2 本质上在说, $\nabla f(x^*)$ 是 $\nabla h_i(x^*)$ 的线性组合,所以我们的目标就是得到这一事实.

假设 h(x) = 0 形成的曲面是 S,考虑正规极值点 $x^* \in S$. 我们任选一条曲线 x(t) 过 $x^* = x(0.5)$,那么,f(x(t)) 在 t = 0.5 处取得了极小值. 根据微积分的极值定理,我们有

$$\frac{\mathrm{d}}{\mathrm{d}t}f(x(t))\bigg|_{t=0.5} = 0 \iff \nabla f(x^*)\dot{x}(0.5) = 0.$$

因此, $\nabla f(x^*)$ 和切向量 $\dot{x}(0.5)$ 正交,因为曲线 x(t) 是任意选取的,所以 $\nabla f(x^*)$ 也和切空间 $T_{x^*}(S)$ 正交.

现在,回忆定理 7.1,我们知道切空间 $T_{x*}(S) = M^{\perp}$,因此

$$\nabla f(x^*)^{\mathsf{T}} \in (M^{\perp})^{\perp} = M = \left\{ \sum_{i} \lambda_i \nabla h_i(x^*)^{\mathsf{T}} : \lambda_i \in \mathbb{R} \right\}.$$

换言之, $\nabla f(x^*)$ 是 $\nabla h_i(x^*)$ 的线性组合,这就证明了定理 **7.2.** 最后,作为应用,我们考虑一个例子.

例 7.5 (最大熵) 考虑一个离散的概率分布,其分布列为 $p_i = \Pr(X = x_i), i = 1, ..., n$. 该分布的熵为

$$\epsilon = -\sum_{i=1}^n p_i \log p_i.$$

该分布的均值为 $\sum_{i=1}^{n} x_i p_i$.

如果均值固定为m,求解使熵最大化的参数可以被转化成以下问题:

maximize
$$-\sum_{i=1}^{n} p_i \log p_i$$
s.t.
$$\sum_{i=1}^{n} p_i = 1,$$

$$\sum_{i=1}^{n} x_i p_i = m,$$

$$p_i > 0, \qquad i = 1, 2, \dots, n.$$

我们先忽略非负约束,假设这些约束不会被触发。引入两个 Lagrange 乘子, λ 和 μ ,则 Lagrange 函数为

$$l = \sum_{i=1}^{n} (-p_i \log p_i + \lambda p_i + \mu x_i p_i) - \lambda - \mu m.$$

由一阶必要条件, $-\log p_i - 1 + \lambda + \mu x_i = 0$,i = 1, 2, ..., n. 因此,

$$p_i = \exp((\lambda - 1) + \mu x_i), \quad i = 1, 2, ..., n.$$

注意 $p_i > 0$,所以非负约束确实没有被触发. Lagrange 乘子 λ 和 μ 是 两个用来保证等式约束被满足的参数.

§7.3 Karush-Kuhn-Tucker 条件

现在加入不等式约束,考虑以下形式的问题:

minimize
$$f(x)$$

s.t. $h(x) = 0$, $g(x) \le 0$, $x \in \Omega$. (7.3)

其中 f,h,g 具有连续的一阶导数.

我们将使用 Lagrange 乘子法来推导一阶必要条件. 现在,最主要的问题在于多了不等式约束,我们需要找到一种方法来处理这些约束.

假设 x^* 是一个极小值点,那么,我们可以将不等式约束 $g(x) \le 0$ 分为两部分:

- $g_i(x^*) < 0$. 根据 g_i 的连续性,在 x^* 的一个邻域内,恒有 $g_i(x) < 0$,因此这个约束在 x^* 附近一定不会违背. 我们称这样的约束为 非激活约束.
- $g_i(x^*) = 0$. 如果稍微偏离 x^* , 那么 $g_i(x)$ 可能会变成正数,因此,这个约束在 x^* 附近是起作用的. 我们称这样的约束为激活约束.

因此,在 x^* 的一个邻域U内,如果激活的约束下标集是J,那么

(7.3) 可以被写作:

minimize
$$f(x)$$

s.t. $h(x) = 0$, $g_i(x) = 0$, $i \in J$, $x \in U$. (7.4)

根据这一观察, 我们可以自然地推广正规点 x^* 的定义:

定义 **7.4** (正规点) 考虑优化问题 (7.3), 如果一个点 x^* 满足以下条件:

- 它是可行域中的点: $h(x^*) = 0$, $g(x^*) \le 0$, $x \in \Omega$,
- 令 J 为满足 $g_j(x^*) = 0$ 的下标 j 的集合(激活的约束). 那么,梯度向量 $\nabla h_i(x^*)$, $\nabla g_i(x^*)$, $1 \le i \le m$, $j \in J$ 是线性无关的,

那么, x^* 被称作该约束的正规点.

换言之,此时的正规点不仅考虑等式约束,还要考虑起作用的(被激活的)不等式约束,这些不等式约束相当于等式约束.类似 Lagrange 乘子法,此时的一阶必要条件为:

定理 7.3 (Karush-Kuhn-Tucker 条件) \diamondsuit x^* 为优化问题 (7.3) 的正规极小值点,那么,存在向量 $\lambda \in \mathbb{R}^m$ 和向量 $\mu \in \mathbb{R}^p$ 且 $\mu \geq 0$ 使得

$$\nabla f(x^*) + \lambda^\mathsf{T} \nabla h(x^*) + \mu^\mathsf{T} \nabla g(x^*) = 0, \tag{7.5}$$

$$\mu^{\mathsf{T}} g(x^*) = 0. \tag{7.6}$$

证明. 考虑 x^* 的邻域 U,在这个邻域内,我们可以将问题 (7.3) 写作 (7.4),即只考虑激活的约束. 由于 x^* 是一个极小值点,根据定理 7.2,存在 $\lambda \in \mathbb{R}^m, \mu \in \mathbb{R}^p$ 使得

$$\nabla f(x^*) + \lambda^\mathsf{T} \nabla h(x^*) + \mu_I^\mathsf{T} \nabla g_I(x^*) = 0.$$

这里, $\nabla g_I(x^*) = (\nabla g_i(x^*))_{i \in I}$, 即只考虑激活的约束.

对于非激活的下标 i,我们补充定义 $\mu_i=0$,于是,上式可以被写作

$$\nabla f(x^*) + \lambda^{\mathsf{T}} \nabla h(x^*) + \mu^{\mathsf{T}} \nabla g(x^*) = 0.$$

这就得到了 (7.5).

对于被激活的下标 i,我们有 $g_i(x^*)=0$,因此, $\mu_i g_i(x^*)=0$;对于非激活的下标 i,我们有 $\mu_i=0$,因此, $\mu_i g_i(x^*)=0$. 于是,(7.6) 得证.

最后,我们还需要证明 $\mu \ge 0$. 因为 x^* 是可行域内的极小值,所以,假设 x^* 沿着方向 y 使得恰好有一个 g_k 从激活变为非激活,因为此时还在可行域,f 应该不变小.

下面我们来选取这样的 y. 考虑如下曲面:

$$S = \{x \in \mathbb{R}^n : h(x) = 0, g_j(x) = 0, j \in J \setminus \{k\}\}.$$

也就是除了k之外所有的等式约束形成的曲面. 我们从切空间 $T_{x*}(S)$ 中选取一个y,使得 $\nabla g_k(x^*)y < 0$,这样, g_k 会从激活变为非激活,而其他约束依然得到满足. 这一选择的几何示意如图 7.3 所示.

下面我们说明为什么这样的 y 存在. 因为 x^* 是正规点,所以根据

图 7.3: 选择 y 的几何示意

定理 **7.1**, $T_{x^*}(S) = M^{\perp}$, 其中

$$M = \left\{ \sum_{i} \alpha_{i} \nabla h_{i}(x^{*})^{\mathsf{T}} + \sum_{j \in J \setminus \{k\}} \beta_{j} \nabla g_{j}(x^{*})^{\mathsf{T}} : \alpha_{i}, \beta_{j} \in \mathbb{R} \right\}.$$

根据正规点的定义, $\nabla g_k(x^*)^\mathsf{T}$ 不在 M 中,所以, $\nabla g_k(x^*)^\mathsf{T}$ 在 M^\perp 中的分量非零,于是,我们可以选择一个 $y \in M^\perp$ 使得 $\nabla g_k(x^*)y < 0$.

将 y 右乘 (7.5), 我们有

$$\nabla f(x^*)y + \lambda^{\mathsf{T}} \nabla h(x^*)y + \mu^{\mathsf{T}} \nabla g(x^*)y = 0.$$

这等价于

$$\nabla f(x^*)y + \mu_k \nabla g_k(x^*)y = 0.$$

令 x(t) 为一条在 S 内且经过 x^* (此处 t=0) 的曲线,且有 $\dot{x}(0)=y$.

根据极小值的定义

$$0 \le \frac{\mathrm{d}f(x(t))}{\mathrm{d}t} \bigg|_{t=0} = \nabla f(x^*) y = -\mu_k \underbrace{\nabla g_k(x^*) y}_{<0}.$$

$$\iff \mu_k \ge 0.$$

这一证明对所有激活约束的k都成立,所以这就完成了证明.

条件 (7.5) 对应的就是 Lagrange 乘子,而 (7.6) 则是互补松弛条件: **命题 7.1 (互补松弛条件)** 对于一个优化问题 (7.3),考虑一个正规极小值点 x^* 和对应的 Lagrange 乘子 λ , μ . 我们有以下结论:

- $\mu \ge 0$;
- 如果 $g_i(x^*) < 0$,那么 $\mu_i = 0$;
- 如果 $\mu_i > 0$, 那么 $g_i(x^*) = 0$.

下面我们来看一个运用 KKT 条件的例子:

例 7.6 考虑问题

minimize
$$2x_1^2 + 2x_1x_2 + x_2^2 - 10x_1 - 10x_2$$

s.t. $x_1^2 + x_2^2 \le 5$,
 $3x_1 + x_2 \le 6$.

KKT 条件为

$$4x_1 + 2x_2 - 10 + 2\mu_1 x_1 + 3\mu_2 = 0,$$

$$2x_1 + 2x_2 - 10 + 2\mu_1 x_2 + \mu_2 = 0,$$

$$\mu_1(x_1^2 + x_2^2 - 5) = 0,$$

$$\mu_2(3x_1 + x_2 - 6) = 0,$$

$$\mu_i \ge 0, \quad i = 1, 2.$$

为了求解此类问题,我们假设一些约束被激活,然后检查所得出的 Lagrange 乘子的符号正负.在这个问题中,我们可以尝试假设有 0, 1, 2 个约束被激活.

假设第一个约束被激活, 第二个约束没有被激活, 得出等式

$$4x_1 + 2x_2 - 10 + 2\mu_1 x_1 = 0,$$

$$2x_1 + 2x_2 - 10 + 2\mu_1 x_2 = 0,$$

$$x_1^2 + x_2^2 = 5.$$

可得解 $x_1 = 1$, $x_2 = 2$, $\mu_1 = 1$.

由于 $3x_1+x_2=5$,因此第二个约束也被满足了.因此,因为 $\mu_1>0$,我们得出结论,这个解满足一阶必要条件.

§7.4 Lagrange 对偶

§7.4.1 原始规划与对偶规划

我们在推导 KKT 条件(定理 7.3)的时候,最终得到了如下的 Lagrange 函数:

$$L(x, \lambda, \mu) = f(x) + \lambda^{\mathsf{T}} h(x) + \mu^{\mathsf{T}} g(x).$$

而 KKT 条件的第一条可以被写作

$$\nabla_x L(x, \lambda, \mu) = \nabla f(x) + \lambda^\mathsf{T} \nabla h(x) + \mu^\mathsf{T} \nabla g(x) = 0.$$

换言之,这是给定 λ,μ 之后L对x的一阶条件.

现在,我们不再假设 (7.3) 中的 f,h,g 具有一阶导数,只假定他们连续,此外,为简便起见,我们假设 $\Omega=\mathbb{R}^n$,即不考虑集合约束. 我们的目标是求解

minimize
$$f(x)$$

s.t. $h(x) = 0$, $g(x) \le 0$, $x \in \mathbb{R}^n$. (7.7)

我们先说明,求解这一问题可以用 Lagrange 函数重写.

命题 7.2 优化问题 (7.7) 可以被写作

$$\underset{x}{\text{minimize}} \quad \sup_{\lambda,\mu \geq 0} L(x,\lambda,\mu).$$

假设它的最优值为 p*, 那么我们有:

- 当 (7.7) 无可行解时, $p^* = +\infty$;
- 当 (7.7) 有可行解时, p^* 是 (7.7) 的最优值,对应的 x^* 是 (7.7) 的最优解.

证明. 我们只需要证明

$$\sup_{\lambda,\mu\geq 0}L(x,\lambda,\mu)=\begin{cases} f(x), &\text{如果 }x 满足约束,\\ +\infty, &\text{其他情况}. \end{cases}$$

当满足约束的时候,

$$h(x) = 0 \implies \lambda^{\mathsf{T}} h(x) = 0,$$

$$g(x) \le 0 \implies \mu^{\mathsf{T}} g(x) \le 0,$$

因此,

$$\sup_{\lambda,\mu>0} L(x,\lambda,\mu) = L(x,\lambda,0) = f(x).$$

当不满足约束的时候,我们有两种情况:

• 有某个 $h_i(x) \neq 0$,所以可以取 λ_i 使得 $\lambda_i h_i(x)$ 任意大,于是

$$\sup_{\lambda,\mu\geq 0}L(x,\lambda,\mu)=+\infty.$$

• 有某个 $g_i(x) > 0$,所以可以取 $\mu_i > 0$ 使得 $\mu_i g_i(x)$ 任意大,于是

$$\sup_{\lambda,\mu\geq 0}L(x,\lambda,\mu)=+\infty.$$

这样,我们就完成了证明.

利用 Lagrange 函数,我们其实将一个有约束的问题变成了无约束的问题.特别地,我们将优化问题转变为了原始规划的形式:

定义 7.5 (原始规划和原始函数) 优化问题 (7.7) 的原始规划是

$$\underset{x}{\text{minimize}} \quad \sup_{\lambda,\mu \geq 0} L(x,\lambda,\mu).$$

其中,

$$\omega(x) = \sup_{\lambda, \mu \ge 0} L(x, \lambda, \mu)$$

被称为原始函数. 原始规划的最优值记为 p^* .

一个很自然的想法是,我们可以把 min 和 max 的顺序交换,这样我们就得到了对偶规划.

定义 7.6 (对偶规划和对偶函数) 优化问题 (7.7) 的对偶规划是

$$\underset{\lambda,\mu\geq 0}{\text{maximize}} \quad \inf_{x} L(x,\lambda,\mu).$$

其中,

$$\phi(\lambda,\mu) = \inf_{x} L(x,\lambda,\mu)$$

被称为对偶函数. 对偶规划的最优值记为 d^* .

对偶函数并不是随手写出来的一个数学游戏,它有着很重要的意义.我们回到本章开头的买家卖家小问题,对于乙(即买家),我们可以把最小化买入价这个问题抽象为

minimize
$$c^{\mathsf{T}}y$$

s.t. $Ay \ge b$, (7.8)
 $y \ge 0$.

它的 Lagrange 函数为

$$L(y, \mu) = c^{\mathsf{T}}y - \mu_1^{\mathsf{T}}(Ay - b) - \mu_2^{\mathsf{T}}y,$$

它的对偶函数为

$$\phi(\mu) = \inf_{y} L(y, \mu) = \inf_{y} c^{\mathsf{T}} y - \mu_{1}^{\mathsf{T}} (Ay - b) - \mu_{2}^{\mathsf{T}} y.$$

满足这一条件的 y 应该满足一阶条件:

$$\nabla_y L(y, \mu) = c - A^{\mathsf{T}} \mu_1 - \mu_2 = 0,$$

只要确定了 μ_1 就能确定 μ_2 ,所以可以将 μ_2 消掉. 将上式的 μ_2 代入 $\phi(\mu)$,我们有

$$\phi(\mu) = \inf_{y} c^{\mathsf{T}} y - \mu_{1}^{\mathsf{T}} (Ay - b) - \mu_{2}^{\mathsf{T}} y$$
$$= c^{\mathsf{T}} y - \mu_{1}^{\mathsf{T}} (Ay - b) - \mu_{2}^{\mathsf{T}} y$$
$$= c^{\mathsf{T}} y - \mu_{1}^{\mathsf{T}} (Ay - b) - (c - A^{\mathsf{T}} \mu_{1})^{\mathsf{T}} y$$

$$= \mu_1^{\mathsf{T}} b.$$

此外,注意到 $\mu_2 \geq 0$,因此

$$0 \le \mu_2 = c - A^\mathsf{T} \mu_1 \implies A^\mathsf{T} \mu_1 \le c.$$

因此,对偶规划为

maximize
$$b^{\mathsf{T}}\mu_1$$

s.t. $A^{\mathsf{T}}\mu_1 \leq c$, (7.9)
 $\mu_1 \geq 0$.

这正是我们在抽纸问题中甲的最大化自己纸浆售价的优化问题!

因此,我们可以想象,原始规划和对偶规划其实是买家和卖家的博弈,一个人希望最小化 L,另一个人希望最大化 L,这就是对偶性的一个体现. 关于这一思路的详细讨论,请参阅第九章.

注. 以上过程实际上给出了一个通用的方法,求一个线性规划的对偶规划.

§7.4.2 对偶的几何意义

除了从博弈角度理解对偶,类似前面几节的讨论,我们也可以从几何角度理解对偶,这一理解将最后给我们带来弱对偶定理和强对偶定理.

考虑方程

$$L(x, \lambda, \mu) = b \iff f(x) + \lambda^{\mathsf{T}} h(x) + \mu^{\mathsf{T}} g(x) = b.$$

我们暂且省略 x, 于是, 上面的式子可以被写作

$$\ell: f + \lambda^{\mathsf{T}} h + \mu^{\mathsf{T}} g = b.$$

如果我们固定 λ 和 μ ,那么 ℓ 定义了一个点 $(f,h^\mathsf{T},g^\mathsf{T})^\mathsf{T}$ 形成的超平面,这个超平面的法向量是 $(1,\lambda^\mathsf{T},\mu^\mathsf{T})^\mathsf{T}$. 反之,如果我们固定 $(f,h,g)^\mathsf{T}$,那么 ℓ 定义了一个点 $(1,\lambda^\mathsf{T},\mu^\mathsf{T})^\mathsf{T}$ 形成的超平面,这个超平面的法向量是 $(f,h^\mathsf{T},g^\mathsf{T})^\mathsf{T}$.

因此,对于 L 特定的取值,我们有一个点-超平面对应关系: 我们可以把点重新看成超平面,超平面重新看成点. 这就是对偶性的几何意义.

注. 实际上,这样的想法构成了射影几何的核心. 在射影几何中,我们把无穷远处的点加入到几何空间中,然后研究这种几何的性质. 射影几何中,对偶性体现如下: 任何命题,将点和线在命题中的位置互换,该命题仍然成立.

接下来,我们要阐述这一几何性质如何与优化问题联系起来.定义集合

$$\mathcal{G} = \{ (f(x), h(x)^\mathsf{T}, g(x)^\mathsf{T})^\mathsf{T} : x \in \mathbb{R}^n \},$$

这是所有可能的 $(f,h^{\mathsf{T}},g^{\mathsf{T}})^{\mathsf{T}}$ 形成的集合. 我们可以在一个坐标系中画出这个集合,如图 7.4 所示,为简化起见,我们总是忽略 h(x) 的影响.

考虑 $(t, u^{\mathsf{T}}, v^{\mathsf{T}})^{\mathsf{T}}$ 形成的超平面

$$\alpha: t + \lambda^{\mathsf{T}} u + \mu^{\mathsf{T}} v = L(x, \lambda, \mu).$$

那么,这个超平面过点 $(f(x),h(x)^{\mathsf{T}},g(x)^{\mathsf{T}})^{\mathsf{T}}$,并且法向量是 $(1,\lambda^{\mathsf{T}},\mu^{\mathsf{T}})^{\mathsf{T}}$.

图 7.4: 集合 G 的示意图

令 u=v=0,我们有 $t=L(x,\lambda,\mu)$,这是 α 在 t 轴上的截距. 因此,所有和 L 值相关的讨论都转变为了和 α 的截距相关的讨论.

回忆原始函数的定义:

$$\omega(x) = \sup_{\lambda, \mu \ge 0} L(x, \lambda, \mu) = \sup_{\lambda, \mu \ge 0} f(x) + \lambda^{\mathsf{T}} h(x) + \mu^{\mathsf{T}} g(x).$$

因此,计算原始函数的过程其实就是,给定一个点 $(t,u^{\mathsf{T}},v^{\mathsf{T}})^{\mathsf{T}} \in \mathcal{G}$,找到"斜率非负"的超平面,使得截距尽可能大.

当 h(x) = 0 且 $g(x) \le 0$ 的时候,这一截距一定在 $\mu = 0$ 的地方取到,因此,原始函数就是 \mathcal{G} 往 t 轴投影的值. 相应地,原始规划的最优值 p^* 就是 \mathcal{G} 左半区域的最低点的投影,如图 7.5 所示.

根据最低点的性质,我们也可以把原始规划的最优值 p^* 看成是 G

图 7.5: 原始规划的最优值 p*

左半区域最低点切平面的截距.

那么,对偶规划是什么呢?回忆对偶函数的定义:

$$g(\lambda, \mu) = \inf_{x} L(x, \lambda, \mu) = \inf_{(t, u, v) \in \mathcal{G}} t + \lambda^{\mathsf{T}} u + \mu^{\mathsf{T}} v.$$

所以,这就是固定法向量 $(1,\lambda^\mathsf{T},\mu^\mathsf{T})^\mathsf{T}$,找到过 $\mathcal G$ 且截距最小的超平面,几何上看,这一超平面是在 $\mathcal G$ 最低边缘的切平面(也就是只有切点而不会"穿过" $\mathcal G$).相应地,对偶规划的最优值 d^* 就是这些切平面中最高的那个,如图 7.6 所示.

图 7.6: 对偶规划的最优值 d*

§7.4.3 弱对偶定理

有了上述几何直观,我们可以阐述并证明弱对偶定理.

定理 7.4 (弱对偶定理) 对于任意优化问题 (7.7), 我们有

$$d^* < p^*$$
.

证明. 直观上, p^* 对应的是左半区域的最低点的切平面截距,它有可能会"穿过"G 的右半区域。为了让这一现象不发生,我们可以把 p^* 对应的切平面进行旋转和下移,直到它只和 G 下边缘切点接触。这样,我们就得到了一个新的切平面,它的截距一定不会比 p^* 更大,因此, $d^* \leq p^*$. 这一过程见图 7.7.

图 7.7: 弱对偶定理证明图示

下面我们来严格叙述这一点. 对 $\mu \ge 0$ 和 λ , 我们有

$$p^* = \inf_{x} \sup_{\lambda,\mu \ge 0} L(x,\lambda,\mu)$$
$$\ge \inf_{x} L(x,\lambda,\mu)$$
$$= \phi(\lambda,\mu).$$

这里,第二个不等式就是在旋转切平面至法向量为 $(1,\lambda^\mathsf{T},\mu^\mathsf{T})^\mathsf{T}$,然后 使得它只和 $\mathcal G$ 下边缘切点接触.

因此, $p^* \ge \phi(\lambda, \mu)$ 对所有 λ, μ 都成立,于是也有 $p^* \ge d^*$.

§7.4.4 Slater 条件, 强对偶定理

设原始规划对应的最低点为

$$K = (f(x^*), h(x^*)^\mathsf{T}, g(x^*)^\mathsf{T})^\mathsf{T} = (p^*, u^*, v^*)^\mathsf{T},$$

从图 7.7 看,如果 G 完全位于过 K 的(水平)切平面上方并且 G 在 t 轴 左侧不为空,那么 p^* 和 d^* 一定是相等的,此时我们称之为强对偶定理。我们可以把这一条件形式化为凸规划和 Slater 条件。

定义 7.7 (凸规划) 对于优化问题 (7.7),如果 f, g_i (i = 1, ..., p) 是凸函数,h(x) 形如 Ax + b,那么这个问题被称为凸规划. 这里,A 是一个 $m \times n$ 的矩阵, $b \in \mathbb{R}^m$.

定义 7.8 (Slater 条件) 对于优化问题 (7.7), 如果存在一个 x 使得 g(x) < 0 且 h(x) = 0,那么这个问题满足 **Slater 条件**.

容易看出,Slater 条件意味着 G 在 t 轴左侧不为空. 接下来,我们要说明,满足 Slater 条件的凸规划,G 完全位于过 K 的(水平)切平面上方. 为此,我们定义如下集合:

$$G^* = \{(t, u^\mathsf{T}, v^\mathsf{T})^\mathsf{T} : \exists x \in \mathbb{R}^n, f(x) \le t, h(x) = u, g(x) \le v\}.$$

如图 7.8 所示, G^* 是 G 往右往上包络之后的集合.

我们只要说明,包络之后的集合 G^* 也完全位于该切平面上方,就能说明 G 完全位于过 K 的该切平面上方. 下面,我们来证明这一点,从而证明强对偶定理.

首先我们证明 G^* 是凸集.

图 7.8: 集合 \mathcal{G}^* 的示意图

引理 7.2 如果 (7.7) 是凸规划,那么 G^* 是凸集.

证明. 这一证明非常类似定理 6.7 的证明. 考虑 $(t_1, u_1^\mathsf{T}, v_1^\mathsf{T})^\mathsf{T}, (t_2, u_2^\mathsf{T}, v_2^\mathsf{T})^\mathsf{T} \in \mathcal{G}^*$ 和 $\theta \in [0,1]$,我们要证明

$$\theta(t_1, u_1^\mathsf{T}, v_1^\mathsf{T})^\mathsf{T} + (1 - \theta)(t_2, u_2^\mathsf{T}, v_2^\mathsf{T})^\mathsf{T} \in \mathcal{G}^*.$$
 (7.10)

根据定义,存在 x_1,x_2 使得

$$f(x_1) \le t_1, h(x_1) = u_1, g(x_1) \le v_1,$$

$$f(x_2) \le t_2, h(x_2) = u_2, g(x_2) \le v_2.$$

$$f(x) \le \theta f(x_1) + (1 - \theta) f(x_2) \le \theta t_1 + (1 - \theta) t_2$$

$$g_i(x) \le \theta g_i(x_1) + (1 - \theta)g_i(x_2) \le \theta v_{1,i} + (1 - \theta)v_{2,i}.$$

根据 h 的定义,即 h(x) = Ax + b,我们有

$$h(x) = \theta h(x_1) + (1 - \theta)h(x_2) = \theta u_1 + (1 - \theta)u_2.$$

这样,我们就得到了(7.10).因此, \mathcal{G}^* 是凸集.

接下来,我们说明 G^* 完全位于过 K 的(水平)切平面上方,从而证明强对偶定理.

定理 7.5 (强对偶定理) 如果 (7.7) 是凸规划并且满足 Slater 条件,那么

$$d^* = p^*.$$

此外,如果 p^* 有限,那么存在 $x^* \in \mathbb{R}^n$, $\lambda^* \in \mathbb{R}^m$ 和 $\mu^* \in \mathbb{R}^p$ ($\mu^* \ge 0$) 使得

$$L(x^*, \lambda^*, \mu^*) = p^* = \sup_{\lambda, \mu \ge 0} L(x^*, \lambda, \mu) = \inf_{x} L(x, \lambda^*, \mu^*) = d^*. \quad (7.11)$$

证明. 如果 $p^* = -\infty$,根据弱对偶定理,我们有 $d^* \le p^* = -\infty$,所 以 $d^* = -\infty = p^*$.

注意, $p^* = +\infty$ 的情况是不可能的,因为 Slater 条件保证了至少有一个可行解.

现在假设 p^* 有限,此时,我们上面所描述的几何直观是有效的.取 x^* 为原始规划的最优解,并记

$$K = (f(x^*), h(x^*)^\mathsf{T}, g(x^*)^\mathsf{T})^\mathsf{T} = (p^*, u^*, v^*)^\mathsf{T}.$$

设 h(x) = Ax + b,我们不妨设 A 是满秩矩阵,否则约束 h(x) = 0 要么无法满足,要么有冗余的约束.

根据引理 7.2, G^* 是凸集. 我们需要选出来从 K 作出的切平面. 一个自然的选择是使用分离超平面定理(定理 6.9). 定义另一个凸集为

$$C = \{(t, 0, 0)^{\mathsf{T}} : t < p^*\}.$$

也就是一根恰好位于最低点下方的一个"杆",见图7.9.

图 7.9: 分离超平面的图示

 $K \in \mathcal{G}^*$,因而不为空, \mathcal{C} 也不为空.现在我们说明, \mathcal{G}^* 和 \mathcal{C} 是不相

交的. 假设 $(t, u^{\mathsf{T}}, v^{\mathsf{T}})^{\mathsf{T}} \in \mathcal{G}^* \cap \mathcal{C}$,那么存在 x 使得

$$f(x) \le t < p^*, h(x) = u = 0, g(x) \le v = 0,$$

这意味着 x 是一个可行解,但是它的目标值小于 p^* ,这与 p^* 的定义矛盾. 所以,没有这样的交点.

因此,我们可以用分离超平面定理(定理 6.9)找到一个非零 $\alpha = (\alpha_t, \alpha_u^\mathsf{T}, \alpha_v^\mathsf{T})^\mathsf{T}$ 和 β 使得

$$(t, u^{\mathsf{T}}, v^{\mathsf{T}})^{\mathsf{T}} \in \mathcal{G}^* \implies \alpha_t t + \alpha_u^{\mathsf{T}} u + \alpha_v^{\mathsf{T}} v \ge \beta,$$

 $(t, 0, 0)^{\mathsf{T}} \in \mathcal{C} \implies \alpha_t t \le \beta.$

从几何上看,这一超平面就是过K作的切平面.

现在我们说明 $\alpha_t \ge 0$ 并且 $\alpha_v \ge 0$. 如不然, $\alpha_t < 0$ (或者 $\alpha_v < 0$)的话,我们可以取一个足够大的 t(或者 v)使得 $\alpha_t t + \alpha_u^\mathsf{T} u + \alpha_v^\mathsf{T} v$ 任意小,这与第一个不等式矛盾.

接下来,我们希望将这一分离超平面的系数与 Lagrange 函数对应起来,从而和前面对偶的几何意义联系起来. 换言之,我们希望取 $\alpha_t=1$. 注意, α_t 是否为零决定了这一取法是否可行.

• $\alpha_t > 0$, 此时,同时除以 α_t ,即可不妨设 $\alpha_t = 1$.根据 \mathcal{G}^* 的定义,

$$(p^*,0,0)^\mathsf{T} \in \mathcal{G}^* \implies p^* \ge \beta.$$

另一方面,第二个分离不等式直接得出

$$p^* \leq \beta$$
.

因此, $p^* = \beta$. 所以 p^* 就是纵截距.

根据 G^* 的定义,对任意 x,

$$(f(x), h(x)^\mathsf{T}, g(x)^\mathsf{T})^\mathsf{T} \in \mathcal{G}^* \implies f(x) + \alpha_u^\mathsf{T} h(x) + \alpha_v^\mathsf{T} g(x) \ge p^*$$

 $\iff L(x, \alpha_u, \alpha_v) \ge p^*.$

因此,

$$\varphi(\alpha_u, \alpha_v) = \inf_x L(x, \alpha_u, \alpha_v) \ge p^*.$$

取 $\lambda^* = \alpha_u$ 和 $\mu^* = \alpha_v$,

$$d^* = \sup_{\lambda, \mu \ge 0} \varphi(\lambda, \mu) \ge \varphi(\lambda^*, \mu^*) \ge p^*.$$

根据弱对偶定理, $d^* \leq p^*$, 所以 $d^* = p^*$.

考虑 x*, 因为它是原始规划的最优解, 所以

$$p^* = \sup_{\lambda, \mu \ge 0} L(x^*, \lambda, \mu) \ge L(x^*, \lambda^*, \mu^*) \ge \inf_{x} L(x, \lambda^*, \mu^*) \ge p^*.$$

结合 $d^* = p^*$, 我们就得到了 (7.11).

• $\alpha_t = 0$. 直观上,此时超平面平行于 t 轴,这意味着 G 没有位于 t 轴左侧的点,也就是 Slater 条件不成立,这与我们的假设矛盾. 现在我们来严格说明这一点.

此时,对任意x,

$$\alpha_{v}^{\mathsf{T}}h(x) + \alpha_{v}^{\mathsf{T}}g(x) \geq \beta \geq 0 \cdot t = 0,$$

选择满足 Slater 条件的 \tilde{x} , 我们有

$$\alpha_v^{\mathsf{T}} g_i(\tilde{x}) \geq 0$$
,

因为对所有 i, $g_i(\tilde{x}) < 0$, 同时又有 $\alpha_v \ge 0$, 所以 $\alpha_v = 0$. 因为 $\alpha \ne 0$, 所以 $\alpha_u \ne 0$. 于是, 对任意 $x \in \mathbb{R}^n$,

$$\alpha_u^{\mathsf{T}} h(x) = \alpha_u^{\mathsf{T}} (Ax + b) \ge 0. \tag{7.12}$$

$$\alpha_u^{\mathsf{T}}(A\tilde{x}+b)=0,$$

结合 A 是满秩矩阵,存在 $x' \in \mathbb{R}^n$ 使得 $\alpha_u^T A x' < 0$,于是

$$\alpha_u^{\mathsf{T}}(A(x'+\tilde{x})+b)<0,$$

这与 (7.12) 矛盾. 因此,这种情况实际上是不可能的. □

§7.5 应用: 支持向量机 (SVM)

作为前面极值必要条件的一个具体应用,我们考虑一个经典的机器学习分类器:支持向量机(SVM).

考虑二分类问题,输入 $x \in \mathbb{R}^n$,函数 f 输出一个 $\{-1,1\}$ 中的值. 二分类问题的学习问题指的是给定训练集 $\{(x_i,y_i)\}_{i=1}^N$,找到 f 使得 $f(x_i) = y_i$. 假设训练集是线性可分的,例如,存在某个 $w \in \mathbb{R}^n$ 和

 $b \in \mathbb{R}$ 使得

$$f(x) = \begin{cases} 1, & w^{\mathsf{T}}x + b > 0, \\ -1, & w^{\mathsf{T}}x + b < 0. \end{cases}$$

学习问题的首要目标是找到正确的以及最优的 w 和 b. 本质上说,这就是一个找分离超平面的过程. 那么,什么才叫最优呢? 从几何视角来看,一个自然的想法是最大化分离距离,即训练集中所有点到分离超平面的距离和的最小值,见图 7.10.

图 7.10: 分离距离示意图.

采样点 xi 到分离超平面的归一化距离为

$$\gamma_i = y_i \left(\left(\frac{w}{\|w\|_2} \right)^\mathsf{T} x + \frac{b}{\|w\|_2} \right).$$

 $\gamma = \min_i \gamma_i$ 是最小的归一化距离. 于是我们的任务变成了最大化 γ . 等

价地,我们求解如下优化问题

$$\label{eq:starting} \begin{aligned} \underset{w,b}{\text{maximize}} \quad \gamma \\ \text{s.t.} \quad \gamma \leq \gamma_i, \quad i = 1, 2, \dots, N. \end{aligned}$$

 $\gamma \leq \gamma_i$ 等价于

$$y_i\left(\left(\frac{w}{\gamma \|w\|_2}\right)^{\mathsf{T}} x + \frac{b}{\gamma \|w\|_2}\right) \ge 1.$$

简洁起见,把 w 替换成 $\frac{w}{\gamma||w||_2}$,把 b 替换成 $\frac{b}{\gamma||w||_2}$,我们有

$$y_i(w^\mathsf{T} x + b) \ge 1.$$

那么最大化 $\gamma = \frac{1}{\|w\|_2}$ 等价于最小化 $\|w\|_2^2$.

我们得到以下凸规划问题:

$$\min_{w,b} \quad \frac{1}{2} ||w||_2^2$$
s.t. $y_i(w^{\mathsf{T}} x_i + b) \ge 1, \quad i = 1, 2, \dots, N.$

如何解决这个问题?利用上面的对偶理论,我们有如下步骤:

- 写出 Lagrange 乘子和对偶规划(max-min).
- · 验证 Slater 条件,于是只需要求解对偶规划.
- 利用 KKT 条件手动把对偶中的 min 消掉,得到一个二次规划.
- 用序列最小优化(SMO)等优化算法求解这个二次规划.

\$7.6 习题 244

§7.6 习题

[lhy: TODO]

§7.7 章末注记

[lhy: TODO]

第四部分

博弈与逻辑

第五部分

认知与逻辑

第六部分

附录: 预备知识

参考文献

- [Bre57] Leo Breiman. The Individual Ergodic Theorem of Information Theory. *The Annals of Mathematical Statistics*, 28(3):809–811, 1957.
- [CT12] Thomas M. Cover and Joy A. Thomas. *Elements of Information Theory*. John Wiley & Sons, 2012.
- [Huf52] David A. Huffman. A Method for the Construction of Minimum-Redundancy Codes. *Proceedings of the IRE*, 40(9):1098–1101, September 1952.
- [Inf] Information | Etymology, origin and meaning of information by etymonline. https://www.etymonline.com/ word/information. (accessed 2023-07-10).
- [Jay02] Edwin T. Jaynes. *Probability Theory: The Logic of Science*. Cambridge University Press, 2002.

参考文献 537

[KL51] S. Kullback and R. A. Leibler. On Information and Sufficiency. *The Annals of Mathematical Statistics*, 22(1):79–86, 1951.

- [LLG⁺19] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov, and Luke Zettlemoyer. BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension, October 2019.
- [McM53] Brockway McMillan. The Basic Theorems of Information Theory. *The Annals of Mathematical Statistics*, 24(2):196–219, June 1953.
- [RHW86] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal representations by error propagation. In *Parallel Distributed Processing: Explorations in the Microstructure of Cognition, Vol. 1: Foundations*, pages 318–362. MIT Press, Cambridge, MA, USA, January 1986.
- [Rob49] Robert M. Fano. *The Transmission of Information*. March 1949.
- [Sha48] C. E. Shannon. A mathematical theory of communication. *The Bell System Technical Journal*, 27(3):379–423, July 1948.
- [Shi96] A. N. Shiryaev. *Probability*, volume 95 of *Graduate Texts in Mathematics*. Springer, New York, NY, 1996.

*参*考文献 538

[Uff22] Jos Uffink. Boltzmann's Work in Statistical Physics. In Edward N. Zalta, editor, *The Stanford Encyclopedia of Philoso-phy*. Metaphysics Research Lab, Stanford University, summer 2022 edition, 2022.

[李10] 李贤平. 概率论基础. 高等教育出版社, 2010.