import pandas as pd

purchase = pd.read_csv('https://github.com/YBIFoundation/Dataset/raw/main/Customer%20Purchase
purchase.head()

	Customer ID	Age	Gender	Education	Review	Purchased
0	1021	30	Female	School	Average	No
1	1022	68	Female	UG	Poor	No
2	1023	70	Female	PG	Good	No
3	1024	72	Female	PG	Good	No
4	1025	16	Female	UG	Average	No

purchase.info()

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 50 entries, 0 to 49 Data columns (total 6 columns):

#	Column	Non-Null Count	Dtype
0	Customer ID	50 non-null	int64
1	Age	50 non-null	int64
2	Gender	50 non-null	object
3	Education	50 non-null	object
4	Review	50 non-null	object
5	Purchased	50 non-null	object

dtypes: int64(2), object(4)

memory usage: 2.5+ KB

purchase.describe()

Customer ID

Age


```
purchase.columns
```

```
Index(['Customer ID', 'Age', 'Gender', 'Education', 'Review', 'Purchased'],
dtype='object')
```

------ 4004 00000 4E 000000

y = purchase['Purchased']

X = purchase.drop(['Purchased','Customer ID'],axis=1)

75% 1057.75000 74.000000

X.replace({'Review':{'Poor':0,'Average':1,'Good':2}},inplace=True)

X.replace({'Education':{'School':0,'UG':1,'PG':2}},inplace=True)

X.replace({'Gender':{'Male': 0,'Female':1}},inplace=True)

X.head()

	Age	Gender	Education	Review
0	30	1	0	1
1	68	1	1	0
2	70	1	2	2
3	72	1	2	2
4	16	1	1	1

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X,y, train_size=0.8, random_state=2529)

X_train.shape, X_test.shape, y_train.shape, y_test.shape

from sklearn.ensemble import RandomForestClassifier
model = RandomForestClassifier()

model.fit(X train,y train)

 RandomForestClassifier RandomForestClassifier()

```
y_pred = model.predict(X_test)
```

y_pred

from sklearn.metrics import confusion_matrix, accuracy_score, classification_report

+ Code

+ Text

confusion_matrix(y_test,y_pred)

accuracy_score(y_test,y_pred)

0.6

print(classification_report(y_test,y_pred))

₽		precision	recall	f1-score	support
	No	0.40	0.67	0.50	3
	Yes	0.80	0.57	0.67	7
	accuracy			0.60	10
	macro avg	0.60	0.62	0.58	10
	weighted avg	0.68	0.60	0.62	10

✓ 0s completed at 6:18 PM

×