

EGEC 180 – Digital Logic and Computer Structures

Spring 2024

Lecture 11: Bistable Memory Devices (3.1 - 3.2.1)

Rakesh Mahto, Ph.D.

Office: E 314, California State University, Fullerton

Office Hour: Monday and Wednesday 2:00 - 3:30 pm

Or by appointment

Office Hour Zoom Meeting ID: 891 2907 5346

Email: ramahto@fullerton.edu **Phone No**: 657-278-7274

Sequential Circuits and Bistable Memory Devices

Two Types of Logic Circuits: Combinational

1. Combinational – outputs determined directly from present combination of inputs. Previous inputs do not matter

Sequential – outputs determined directly from present AND previous inputs inputs. Previous inputs does matter

Sequential Circuits

Sequential Circuits are specified by:

- Inputs
- Outputs
- Internal states (past output values)

Two types of sequential circuits:

1)Asynchronous: output can be affected at any point in time by changes in input variables.

Ex. storage element = time delay device Flip-Flop

2)Synchronous: outputs are changed only at discrete instants of time.

Ex. storage element = clocked Flip-Flop

Concept of Feedback

Example feedback circuit with no stable states. Oscillator or Clock signal.

Bistable Feedback

Bistable means that there are two stable states, allowing these devices to store, save, or capture the value for a logic 1 or logic 0.

Memory Storage Devices

Logic Storage Devices

		S	R	Q(t+1)	Operation
	S — Q	0	0	Q(t)	Hold
$\begin{vmatrix} - s & \alpha - \\ - c \end{vmatrix}$		0	1	0	Reset
— Ro	R Q'	1	0	1	Set
		1	1	?	Undefined
	D — S O)	Q(t+1)	Operation
	- \$ -\$c	0		0	Reset
>cb	R		L	1	Set
		J	К	Q(t+1)	Operation
		0	0	Q(t)	Hold
- 	J D D Q +	0	1	0	Reset
—Kb	K->>-}c → c	1	0	1	Set
		1	1	Q(t)	Toggle
Τ. Ο	T Q C	1	Γ	Q(t+1)	Operation
\rightarrow C		()	Q(t)	No Change
	رٽ٢	-	l	Q(t)	Toggle

Register is a digital component that can temporarily store single or multiple bits.

Circuit Analysis of S-R **NOR Latch**

Different Techniques for Analysis

- 1. Circuit delay model.
- 2. Characteristic table.
- 3. Characteristic equation.
- 4. PS/NS (present-state/next-state) table.
- 5. Timing diagram.

Five Different Conditions for a Light Switch

A light switch and a two cross-coupled NOR gates, which is a digital circuit called S-R NOR Latch have similar characteristics.

Signal Propagation in a SR-Latch

Signal Propagation in a SR-Latch

Analyzing an S-R NOR Latch

Latch is the simplest circuit form of a single-bit register.

Circuit Delay Model for S-R NOR Latch

$$t_p=0$$

$$SR = 10$$

$$Q = 1$$

$$Q' = 0$$
 Set

$$t_p=1$$

$$SR = 00$$

$$Q = 1$$

$$Q' = 0$$
 Hold

$$t_p=2$$

$$SR = 01$$

$$Q = 0$$

$$Q' = 1$$

Reset

 $t_p=3$

$$Q = ?$$

$$Q' = ?$$

Forbidden

NOR Function

X	Υ	F
0	0	1
0	1	0
1	0	0
1	1	0

NOTE: Any time one of the inputs X or Y is a 1 the output F is a 0.

Characteristic Table for an S-R NOR Latch

CHARACTERISTIC TABLE

NOR FOR S-R LATCH

S	R	Q(t+1)	Next State	
0	0	Q(t)	Present State (High or Low)	HOLD
0	1	0	Low	RESET
1	0	1	High	SET
1	1	?	Reset dominant (normally not used)	FORBIDDEN

NAND FOR S-R LATCH

S	R	Q(t+1)	Next State	
0	0	?	Reset dominant (normally not used)	FORBIDDEN
0	1	1	High	SET
1	0	0	Low	RESET
1	1	Q(t)	Present State (High or Low)	HOLD

PS/NS Table for an S-R NOR Latch

State Transition Table S-R NOR Latch

S	R	Q(t+1)
0	0	Q(t)
0	1	0
1	0	1
1	1	5

	R'Q' 00	R'Q 01	RQ 11	RQ' 10
S' 0	0	1	0	0
S 1	1	1	?	5

	S	R	Q	Q⁺
				Q = 0, Hold
	0	0	1	Q = 1, Hold
	0	1	0	0, Reset
	0	1	1	0, Reset
,	1	0	0	1, Set
	1	0	1	1, Set
,	1	1	0	?, Invalid
•	1	1	1	? , Invalid

CHARACTERISTIC EQUATION FOR S-R NOR LATCH

Characteristic Equation: S and R cannot be both 1

$$Q^+ = S + R'Q$$
 with don't cares

$$Q^{+} = \overline{S} + \overline{Q} + R$$

$$= \overline{S} \overline{Q} + R$$

$$= (\overline{S} \overline{Q})\overline{R}$$

$$= (\overline{S} + \overline{Q})\overline{R}$$

$$= (S + Q)\overline{R}$$

$$= S\overline{R} + Q\overline{R}$$

State Transition Table S-R NAND Latch

S	R	Q(t+1)
1	1	Q(t)
1	0	0
0	1	1
0	0	

	R'Q' 00	R'Q 01	RQ 11	RQ' 10
S' 0		?	1	1
S 1	0	0	0	1

	S	R	Q	Q ⁺
	1	1	1	Q = 0, Hold
	1	1	0	Q = 1, Hold
	1	0	1	0, Reset
	1	0	0	0, Reset
	0	1	1	1, Set
	0	1	0	1, Set
	0	0	1	?, Invalid
•	0	0	0	? , Invalid
_	0	0	0	? , Invalid

CHARACTERISTIC EQUATION FOR S-R NOR LATCH

Characteristic Equation: S and R cannot be both 1

Q⁺ = S'R + RQ' without don't cares

$$Q^+ = S' + RQ'$$
 with don't cares

Timing Diagrams

S	IR	Q(t+1)
1	1	Q(t)
1	0	0
0	1	1
0	0	?

S	R	Q(t+1)
0	0	Q(t)
0	1	0
1	0	1
1	1	?

Asynchronous Events
Time between events is not the same

Multiple Inputs S-R NAND Latch

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

We use bubbled input OR gates to represent the NAND gates because these equivalent gate forms help remind us that the inputs to an S-R NAND Latch are active low inputs.

This type of Latch is also referred as and S'-R' NAND Latch.

Q&A

