Architectures for Embedded Systems

Masters on Computers and Telematics

2021/22

2nd Semester

Arnaldo Oliveira

arnaldo.oliveira@ua.pt

Gab. @ IT2

Objective

- Become familiar with the state-of-the-art architectures and tools for embedded systems development
 - Processor architeture and implementation
 - Interfaces and peripherals
 - Languages, tools and development flow

Basic Concepts

- What are embedded systems?
 - Definition
 - Comparison with general purpose systems
 - Resource, cost, size and power consumption contraints
 - Development flow
- What are...
 - General Purpose Processors (CPUs)?
 - Digital Signal Processors (DSPs)?
 - Microcontrollers?
 - Graphics Processing Units (GPUs)?
 - Field Programmable Gate Arrays (FPGAs)?
 - Systems-on-Chip (SoCs)?
 - Programmable System-on-Chip (PSoCs)?

ESPRESSIF ESP32-DEVKITC

Raspberry Pi 4 B

PCEngines APU4d4

Nvidia Jetson Nano

Digilent Zybo Z7 (Xilinx Zynq 7000 PSoC)

Organization of the Classes

14 weeks

- 1 week for ASE course introduction
- 1 week for short presentations about highlights and high-level comparison of a subset of the architectures to be considered (including Xilinx PSoC)
 - Each group prepares a brief presentation with 2...3 slides per architecture
 + 1 slide for comparison to be presented in a 15 minutes time slot
- 12 classes/weeks
 - 3 classes devoted to each architecture (except Xilinx PSoC)
 - 2 classes for presentation and discussion of the concepts
 - 1 class to implement a micro-project

Organization of the Classes

- Students are divided into 8 groups of 2 elements
- 8 presentations every week on specific topics of the selected architectures (total of 90 minutes, random selection known at the beginning of the class/lesson)
 - First one: 40 min.
 - Second one: 20 min.
 - Third one: 10 min.
 - Fourth one: 4 min.
 - Fifth one: 4 min.
 - Sixth one: 4 min.
 - Seventh one: 4 min.
 - Eighth one: 4 min.
- 75 min. for discussion, wrap-up and demonstration

Topics to be Studied and Presented

- First week for each architecture (ESPRESSIF ESP32, Raspberry Pi 4, PCEngines APU4d4, Nvidia Jetson Nano)
 - Architecture of the main processing device, including preferred applications and main blocks/functional units/peripherals
 - Structure of the development kit, including external interfaces, memory devices, power supplies and other features
- Second week for each architecture
 - Languages and development tools for both baremetal and operating systembased applications
 - Power management features
 - Deployment of applications in the real-world, including support for remote access and upgrades

Assessement

- Presentations in classes, supported by slides, written documents (2...3 pages long, each week) and a short demo: 45%
 - First one: 10%
 - Second one: 10%
 - Third one: 5%
 - Fourth one: 4%
 - Fifth one: 4%
 - Sixth one: 4%
 - Seventh one: 4%
 - Eighth one: 4%
- Micro-projects: 30% (7,5%, one for each architecture / board type, except Xilinx PSoC)
- Final exam: 25%

Next Assignments

- Answers to "Basic Concepts"
 - Each group fills the quiz available in e-learning.ua.pt (ASE course webpage) until March 9th, 23:59 (quiz already available)
- Each group prepares a brief presentation with highlights and highlevel comparison of three architectures and respective kits
 - 2...3 slides per architecture + 1 slide for overall comparison to be presented in a 15 minutes time slot
 - Group 1 and 5: ESPRESSIF ESP32, Raspberry Pi 4, Xilinx Zynq 7000
 - Group 2 and 6: Raspberry Pi 4, PCEngines APU4d4, Xilinx Zynq 7000
 - Group 3 and 7: Raspberry Pi 4, Nvidia Jetson Nano, Xilinx Zynq 7000
 - Group 4 and 8: PCEngines APU4d4, Nvidia Jetson Nano, Xilinx Zynq 7000