readily accounted for. Another key observation is that the underestimated lesion stiffness ratio for stiff lesions that was seen in Fig. 5.22 correlates well with the results obtained experimentally.

5.4 Conclusions

The results given in Section 5.3 represent a numerical characterization of the use of the ultrasound elastography technique of shear wave speed quantification toward the detection and monitoring of early and progressive deep tissue injuries. This work presents arguably the most useful technology for monitoring deep tissue injury progression as it provides quantitative measures of lesion stiffnesses as opposed to the qualitative measures provided by quasistatic elastography and acoustic radiation force impulse imaging.

The results presented here show that shear wave speed quantification is a viable tool for both detecting and monitoring deep tissue injuries, provided the injuries are in general greater than 1 cm in diameter and are closer to the surface of the skin than 8 cm. In order to provide the most accurate results, ARFI focal points should be located approximately 1.25 cm – 2.50 cm away from the desired region of interest, allowing the shear waves to fully develop before they pass through the lesion for measurement. Blurring the lesions had no appreciable effect on the detection sensitivity whatsoever, however clusters of small lesions comprising a larger lesionous region did—reducing the area ratio of lesionous tissue to that of healthy tissue consistently resulted in lower detection sensitivities. To relate the findings from the simpler model geometries, a simulated lesion with MRI-acquired geometry was placed in a cross-sectional slice of human tissue with geometry obtained from the Visible Human project.

The results of the numerical characterizations were consistent with those found using a simpler, spherical model. Finally, the entire simulation pipeline was validated using a tissue mimicking phantom and an ultrasound machine capable of performing shear wave speed quantification where physical lesions presented similar results to their simulated counterparts.

With a firm understanding of the parameters that affect deep tissue injury detection using shear wave speed quantification, future work may entail investigating the use of shear wave speed quantification in both animal and human subjects who are either at an elevated risk of developing deep tissue injuries or are known to be suffering from such injuries. These steps will be necessary before the technique may be used in a clinical setting—an eventuality that will hopefully result from this work.

Chapter 6

Conclusion

Pressure ulcers and deep tissue injuries are an incredible problem facing the health of society today. They arise most often as complications in the elderly and those with spinal cord injuries and present an extremely significant burden on both the health care system and individual patients alike. Deep tissue injuries are somewhat more insidious than pressure ulcers due to how they form—deep tissue injuries begin at the bone-muscle interface deep within tissue and aren't readily noticeable on the surface of the skin until they have broken through as late-stage pressure ulcers. Although DTI prevention and mitigation strategies do exist, their efficacy is highly variable and the treatments are largely untargeted blanket programs which may not adequately treat the needs of patients with formative DTI and may waste money on those without issue. Without a proper clinical diagnostic capability, the incidence of pressure ulcers and DTI has remained largely unchanged for decades. Currently, the only tool capable of detecting formative deep tissue injuries in their early stages—before they tunnel to the surface—is T_2^* -weighted MRI which images oxygen content (or lack thereof) as a proxy for tissue health. While MRI may be effective in research settings, it is hardly suitable for large-scale clinical adoption due to the excessive monetary and temporal costs as well as it's lack of mobility and lack of ability to image people with critical medical implants such as pacemakers.

Ultrasound elastography is a relatively new imaging modality that has shown some promise toward the detection of early deep tissue injuries by imaging the stiffness changes that tissue undergoes beginning immediately after an injury has occurred—injured tissue shows 1.6-fold to 3.3-fold stiffening after the initial injury and after becoming necrotic shows stiffness below that of healthy tissue. There are three main technologies relating to ultrasound elastography: quasi-static elastography, acoustic radiation force impulse imaging, and shear wave speed quantification. Quasi-static ultrasound elastography is a technique whereby the deflection and deformation of acoustic scatterers embedded throughout soft tissue are tracked between externallyapplied pre- and post- compression states. Regions of tissue which deform less than their surroundings are mechanically stiffer than their surroundings and may represent a formative deep tissue injury. Acoustic radiation force impulse imaging operates on much the same principle as this, however the externally-induced tissue deformation is generated through the application of acoustic radiation forces stemming from specialized pulses emitted from the ultrasound transducer itself. By generating tissue deformation in this manner, the repeatability and inter-operator reliability of diagnostic scans may be improved due to the automatic and computer-controlled nature of the acoustic radiation forces. While quasi-static ultrasound elastography and acoustic radiation force impulse imaging provide only qualitative measures of tissue stiffness relative to it's surroundings, shear-wave speed quantification can provide quantitative measures of tissue elasticity through the direct computation of a region of tissue's shear modulus by it's measured velocity and an assumed tissue density. Shear-wave speed quantification tracks the velocity of shear waves generated using an acoustic radiation force as they pass through both diseased and healthy tissue using regular ultrasound tracking beams sampled at extremely high frequencies. Through these methods, it is expected that a clinical tool may be developed for not only detecting the early onset of deep tissue injuries but also for tracking their progress over time. The work completed here represents the first step in that goal and numerically characterized the use of all three techniques toward the detection of both early and late-stage deep tissue injuries.

6.1 Comparisons Between Methods

In the quest to understand the use of the various ultrasound elastography imaging modalities toward early detection of deep tissue injuries, the sensitivity of numerous parameters relating to each modality were studied. Amongst the studied parameters, a subset of studies are directly comparable between modalities—parameters such as lesion size, depth, blur radius, cluster density, and the use of "real-world" geometry were all examined at parametrically identical values. This allows the direct comparison between modalities and may lead to recommendations for future clinical use of ultrasound elastography.

Simulated Lesions

Across the range of simulated lesions using the quasi-static elastography, ARFI imaging, and shear wave speed quantification modalities, hard boundaried le-