ACTIVITY 1A

x86 Machine Language Programming (I)

An x86 machine language program consists of a sequence of bytes, where each byte is a sequence of 8 bits.

All microprocessors have *registers*, which hold one or more bytes of data and store intermediate values during computations. The Intel x86 processors have a register called AL, which holds a single byte. The contents of AL when a program begins executing are unspecified.

The table below shows four x86 machine language instructions. The first instruction is one byte long; the others are two bytes.

Instruction	Meaning
10010000	Does nothing.
10110000 value	Places a constant value in the AL register. The second byte of the instruction determines the value (see the table to the right).
00000100 value	Adds a constant value to the value currently stored in AL. The sum is placed in AL.
00101100 value	Subtracts a constant value from the value currently stored in AL. The difference is placed in AL.

Binary Representations		
0	00000000	
1	00000001	
2	00000010	
3	00000011	
4	00000100	
5	00000101	
6	00000110	
7	00000111	
8	00001000	
9	00001001	
10	00001010	
11	00001011	
12	00001100	
13	00001101	
14	00001110	
15	00001111	
16	00010000	
17	00010001	
18	00010010	
19	00010011	
20	00010100	

1. What does the following program do? What value is in AL when execution completes?

2. Write a machine language program that computes

$$17 + 12 - 7$$

and places the result in the AL register.

ACTIVITY 1B

x86 Machine Language Programming (II)

Here are the four x86 machine language instructions again, this time represented in hexadecimal rather than binary.

Instruction	Meaning
90h	Does nothing.
B0h value	Places a constant value in the AL register. The second byte of the instruction determines the value (see the table to the right).
04h value	Adds a constant value to the value currently stored in AL. The sum is placed in AL.
2Ch value	Subtracts a constant value from the value currently stored in AL. The difference is placed in AL.

(The *h* suffix is used to emphasize that the numbers are hexadecimal rather than decimal.)

- 3. What does the following program do? 90h B0h 14h 04h 0Dh
- 4. Write a machine language program that computes

14 - 3

and places the difference in the AL register.

Hexadecimal Representations		
0	00h	
1	01h	
2	02h	
3	03h	
4	04h	
5	05h	
6	06h	
7	07h	
8	08h	
9	09h	
10	0Ah	
11	0Bh	
12	0Ch	
13	0Dh	
14	0Eh	
15	0Fh	
16	10h	
17	11h	
18	12h	
19	13h	
20	14h	

ACTIVITY 1C

x86 Machine Language Programming (III)

Here are the four x86 machine language instructions again, along with their equivalent assembly language instructions.

In assembly language, values can be represented in several different ways.

- Decimal numbers are written as-is. 20 represents the value 20.
- Hexadecimal numbers are written with an h suffix. 0Eh represents the value 14.
- Binary numbers are written with a b suffix. 00001101b represents the value 13.

Machine Language Instruction	Assembly Language Representation
90h	nop
B0h value	mov al, value
04h value	add al, <i>value</i>
2Ch value	sub al, <i>value</i>

5. What does the following program do?

6. Disassemble the following machine language program (i.e., translate it into assembly language).

90h B0h 14h 04h 0Dh

7. Write an assembly language program that computes

$$10 + 4 - 3$$

and places the result in the AL register. (Keep the program as simple as possible; use decimal representations of all numbers.)

8. Assemble your program from #7 (i.e., translate it into machine language). You can write the machine language code in either binary or hexadecimal.