

Netzwerke

7. Quellenverschiebung

Vadim Issakov Sommersemester 2024

Quellenverschiebung

Spannungs- und Stromquellenverschiebung

Anwendungsmöglichkeiten der Quellenverschiebung:

- Einfachere Berechnung von Spannungen oder Strömen eines Netzwerks
- Beim Knotenpotentialverfahren: Verschiebung von idealen Spannungsquellen
- Beim Maschenimpedanzverfahren: Verschiebung von idealen Stromquellen

- V₀ wird vom Zweig 0 in alle anderen Zweige des Knotens K₃ verschoben (hier: Zweig 2 und 4).
- In Zweig 2 und 4: umgekehrte Orientierung von V₀
 Vorher: V₀ zeigt zum Knoten K₃ hin
 Nachher: V₀ zeigt in Zweig 2 und 4 weg von K₃
- K₁ und K₃ fallen zusammen.
- Neue Zweigspannungen U₂' und U₄'.
 I₂, I₄ weiterhin Zweigströme.
- I₀ nicht mehr im transformierten Netzwerk
- Feste Quelle immer verschiebbar.

Ursprüngliches Netzwerk

Transformiertes Netzwerk

 U_2' , U_4' : Zweigspannungen nach Spannungsquellenverschiebung

(1)
$$U_2' = U_2 - V_0 \Rightarrow U_2 = U_2' + V_0$$

(2)
$$U_4' = U_4 + V_0 \Rightarrow U_4 = U_4' - V_0$$

Zurückgewinnung von I_0 mit: $I_0 = I_2 - I_4$ (3)

Zurückgewinnung der Zweiggleichung des Zweiges 0: $U_{V0} = -V_0$ (4)

Ursprüngliches Netzwerk

Z_3 U_3 Z_5 U_5 U_4 U_4 U_1 U_1 U_2 U_4 U_4 U_4 U_1 U_2 U_4 U_4 U_5 U_5 U_5 U_5 U_5 U_7 U_8 U_8 U_8 U_8 U_8 U_8 U_8 U_8 U_8 U_9 U_9

Transformiertes Netzwerk

Spannungsquellenverschiebung

Graph

BaumzweigVerbindungszweig

Die folgenden drei Folien zeigen am Beispiel der Spannungsquellenverschiebung, dass gilt

Transformiertes Netzwerk:

- Zweiggleichungen
- linear unabhängiger Satz von Maschen- und Knotengleichungen
- Transformationsbeziehungen

Ursprüngliches Netzwerk:

- Zweiggleichungen
- linear unabhängiger Satz von Maschen- und Knotengleichungen

Ursprüngliches Netzwerk	Transformiertes Netzwerk
$p=k-1=3\Rightarrow 3$ linear unabhängige Knotengleichungen	$p=k-1=2\Rightarrow 2$ linear unabhängige Knotengleichungen
$K_1: -I_1 - I_0 + I_3 = 0$	$K_{1,3}$: $-I_1 - I_2 + I_4 + I_3 = 0$
$K_3: I_0 - I_2 + I_4 = 0$	Gleichung (3) (Rückgewinnungsgleichung für I_0)
$K_4: -I_3 - I_4 + I_5 = 0$	$K_4: -I_3 - I_4 + I_5 = 0$

Die Knotengleichungen können zurückgewonnen werden.

Ursprüngliches Netzwerk	Transformiertes Netzwerk
$m=z-k+1=3\Rightarrow 3$ linear unabhängige Maschengleichungen	$p=z-k+1=2\Rightarrow 3$ linear unabhängige Maschengleichungen
$FM_1: U_3 + U_5 + U_2 - V_0 = 0$	$FM_1: U_3 + U_5 + U_2' = 0$ mit (1) folgt $U_3 + U_5 + U_2 - V_0 = 0$
$FM_2: U_1 + V_0 - U_2 = 0$	FM_2 : $U_1 - U_2' = 0$ mit (1) folgt $U_1 + V_0 - U_2 = 0$
$FM_3: U_4 + U_5 + U_2 = 0$	FM_3 : $U_4' + U_5 + U_2' = 0$ mit (1) und (2) folgt $U_4 + V_0 + U_5 + U_2 - V_0 = 0$

Die Maschengleichungen können zurückgewonnen werden.

Ursprüngliches Netzwerk	Transformiertes Netzwerk
$z = 6 \Rightarrow 6$ Zweiggleichungen	$z = 5 \Rightarrow 5$ Zweiggleichungen
$U_1 = Z_1 I_1$	$U_1 = Z_1 I_1$
$U_2 = Z_2 I_2$	$U_2' = Z_2 I_2 - V_0 \text{ mit (1)} \Rightarrow U_2 = Z_2 I_2$
$U_3 = Z_3 I_3$	$U_3 = Z_3 I_3$
$U_4 = Z_4 I_4$	$U_4' = Z_4 I_4 + V_0 \text{ mit (2)} \Rightarrow U_4 = Z_4 I_4$
$U_5 = Z_5 I_5$	$U_5 = Z_5 I_5$
$U_{V0} = -V_0$	Gleichung (4) (Rückgewinnungsgleichung für Zweiggleichung)

Die Zweiggleichungen können zurückgewonnen werden.

Spannungsquellenverschiebung (intuitive Erklärung):

Beispiel: Bestimmung von i mit Quellenverschiebung

Netzwerk vor der Quellenverschiebung

Netzwerk nach der Quellenverschiebung

- Verwende Masche mit Zweig 0 (M_0) und verschiebe I_0 entlang M_0 .
- I₀ wird in alle anderen Zweige von M₀ verschoben
- In diesen Zweigen erhält sie die um-gekehrte Orientierung wie im Zweig 0.
- Zweig 0 → Leerlauf
- Neue Zweigströme I'₁ und I'₂.
 U₁ und U₂ weiterhin Zweigspannungen
- U_0 nicht mehr im transformierten Netzwerk
- Feste Quelle immer verschiebbar.

Ursprüngliches Netzwerk

Zweig 1 U_3 U_3 U_4 U_5 U_5 U_4 U_4 U_1 U_5 U_5 U_4 U_4 U_5 U_5 U_5 U_5 U_4 U_5 $U_$

Transformiertes Netzwerk

 K_4

 I_0 $\overline{I_0}$

I'_1, I'_2 : Zweigströme nach Stromquellenverschiebung

$$I'_1 = I_1 + I_0 \implies I_1 = I'_1 - I_0$$

 $I'_2 = I_2 - I_0 \implies I_2 = I'_2 + I_0$

Zurückgewinnung von U_0 mit: $U_0 = U_1 - U_2$

Ursprüngliches Netzwerk

Stromquellenverschiebung

Transformiertes Netzwerk

Graph

BaumzweigVerbindungszweig

Stromquellenverschiebung (intuitive Erklärung)

Beispiel: Bestimmung von i mit Quellenverschiebung

Ursprüngliches Netzwerk

Transformiertes Netzwerk

Quellenverschiebung vs. Quellenumwandlung

Quellenumwandlung

Zweig in Ersatzspannungsquellendarstellung

$$U_1 = Z_1 I_1 + V_0$$

Ein Zweig

- zwei Zweipole
- Zweigspannung U₁
- Zweigstrom I₁

Zweig in Ersatzstromquellendarstellung

$$I_1 = \frac{1}{Z_1} U_1 - \frac{1}{Z_1} V_0$$

Ein Zweig

- zwei Zweipole
- Zweigspannung U₁
- Zweigstrom I₁

Quellenverschiebung vs. Quellenumwandlung

Spannungsquellenverschiebung (analog bei Stromquellenverschiebung)

$$U_1 = Z_1 I_1$$

$$U_{V0} = V_0$$

$$I_{V0}=I_1$$

Zwei Zweige;

- Je Zweig ein Zweipol
- Zweigspannungen U₁, U_{V0}
- Zweigströme I_1 , I_{V0}

 $1/Z_1$

 V_0/Z_1

Quellenverschiebung

$$U_1' = U_1 + V_0$$

Ersatzspannungsquellendarstellung

$$U_1' = Z_1 I_1 + V_0$$

Ein Zweig

- zwei Zweipole
- Zweigspannung U'₁
- Zweigstrom I₁

$$I_1 = \frac{1}{Z_1} U_1' - \frac{1}{Z_1} V_0$$

Ein Zweig

- zwei Zweipole
- Zweigspannung U₁'
- Zweigstrom I₁

Selbststeuerung

Selbststeuerung

- kann bei der Verschiebung gesteuerter Quellen auftreten
- Nach Verschiebung einer spannungsgesteuerten Quelle: Die steuernden Spannung ist gleichzeitig die Zweigspannung des Zweiges, in den die gesteuerte Quelle verschoben wurde.
- Nach Verschiebung einer stromgesteuerten Quelle: Der steuernde Strom ist gleichzeitig der Zweigstrom des Zweiges, in den die gesteuerte Quelle verschoben wurde.
- Die Selbststeuerung muss beseitigt werden.
- "Der Zweig steuert sich selbst."

Verschiebung von stromgesteuerter Spannungsquelle

Beseitigung der Selbststeuerung:

$$U_1' = Z_1 I_1 - r I_1 = (Z_1 - r) I_1$$

Verschiebung von spannungsgesteuerter Spannungsquelle - I

Quellenverschiebung

$$U_1' = U_1 - \mu U_1 = (1 - \mu)U_1 \implies U_1 = \frac{1}{1 - \mu}U_1'$$

$$U_2' = U_2 - \mu U_1 \implies U_2 = U_2' + \mu U_1$$

Quellenverschiebung nur möglich für $\mu \neq 1$

*U*₁ keine Zweigspannung des transformierten Netzwerks!

Ersetze U_1 durch $\frac{1}{1-u}U_1'$

Verschiebung von spannungsgesteuerter Spannungsquelle - II

Beseitigung der Selbststeuerung:

$$U_{1}' = Z_{1}I_{1} - \frac{\mu}{1 - \mu}U_{1}'$$

$$\Rightarrow \frac{1}{1 - \mu}U_{1}' = Z_{1}I_{1}$$

$$\Rightarrow U_{1}' = Z_{1}(1 - \mu)I_{1}$$

Verschiebung von spannungsgesteuerter Stromquelle

Quellenverschiebung

$$I'_1 = I_1 - gU_1 \implies I_1 = I'_1 + gU_1$$

 $I'_2 = I_2 - gU_1 \implies I_2 = I'_2 + gU_1$

Beseitigung der Selbststeuerung:

$$I_1' = \frac{1}{Z_1}U_1 - gU_1 = \left(\frac{1}{Z_1} - g\right)U_1$$

Verschiebung von stromgesteuerter Stromquelle - I

Quellenverschiebung

$$I'_1 = I_1 - \alpha I_1 = (1 - \alpha)I_1 \implies I_1 = \frac{1}{1 - \alpha}I'_1$$

 $I'_2 = I_2 - \alpha I_1 \implies I_2 = I'_2 + \alpha I_1$

Quellenverschiebung nur möglich für $\alpha \neq 1$

I₁ kein Zweigstrom des transformierten Netzwerks!

Ersetze I_1 durch $\frac{1}{1-\alpha}I_1'$

Verschiebung von stromgesteuerter Stromquelle - II

Selbststeuerung

Beseitigung der Selbststeuerung:

$$I_{1}' = \frac{1}{Z_{1}}U_{1} - \frac{\alpha}{1 - \alpha}I_{1}'$$

$$\Rightarrow \frac{1}{1 - \alpha}I_{1}' = \frac{1}{Z_{1}}U_{1}$$

$$\Rightarrow I_1' = \frac{1 - \alpha}{Z_1} U$$

