Theoretische Elektrodynamik

(Kompendium)

Herausgegeben von

Jeffrey Kelling Felix Lemke Stefan Majewsky

Stand: 23. Oktober 2008

Inhaltsverzeichnis

Elektrodynamik im Vakuum	3
Grundgrößen	
Maxwellgleichungen im Vakuum	
Ausgewählte Folgerungen	
Erhaltungssätze	
Elektromagnetische Potentiale, Mathematische Hilfsmittel	4
Elektromagnetische Potentiale	
Eichtransformationen	
Greensche Funktion	
Bestimmung von Vektorfeldern	
Elektrostatik	5
Punktladung	
Elektrischer Dipol	
Elektrischer Quadrupol	
Allgemeine ruhende Ladungsverteilung	
Magnetostatik	6
Stromfaden	
Magnetischer Dipol	
Allgemeine ruhende Stromverteilung	
Relativistische Elektrodynamik	7
Operatoren	
Grundgrößen und -gleichungen	
Relativistische Mechanik	
Transformation von Feldern	
Matrixdarstellungen	
Zeitabhängige elektromagnetische Felder	8
Retardierte Potentiale	
Multipolentwicklung eines Strahlungsfeldes	
Liénard-Wiechert-Potentiale	
Elektrodynamik in Materie	9
Materialgrößen	
Maxwellgleichungen in Materie	
Wichtige Folgerungen	
Grenzbedingungen	
Stromkreise	10
Bauteilparameter	
Sätze für Stromkreise	
Kanazität	

Im gesamten Kompendium wird das Gauss'sche Maßsystem verwendet.

Grundgrößen

- Ladungsdichte $\varrho(\vec{r},t)$ und Stromdichte $\vec{\jmath}(\vec{r},t) = \varrho \cdot \vec{v}$
- elektrisches und magnetisches Feld: $\vec{E}(\vec{r},t)$ und $\vec{B}(\vec{r},t)$
- Lorentz-Kraft: $\vec{K} = q \left(\vec{E} + \frac{1}{c} \cdot \vec{v} \times \vec{B} \right)$, Kraftdichte: $\vec{k} = \varrho \cdot \vec{E} + \frac{1}{c} \cdot \vec{j} \times \vec{B}$

Maxwellgleichungen im Vakuum

$$\begin{array}{|c|c|c|c|c|c|} \hline \text{rot } \vec{E} = -\frac{1}{c} \cdot \frac{\partial \vec{B}}{\partial t} & \text{Faradaysches Induktionsgesetz} \\ \hline \text{div } \vec{E} = 4\pi \cdot \varrho & \text{Gaußsches Durchflutungsgesetz} \\ \hline \text{rot } \vec{B} = \frac{1}{c} \cdot \frac{\partial \vec{E}}{\partial t} + \frac{4\pi}{c} \cdot \vec{\jmath} & \text{Durchflutungsgesetz von Oersted und Ampère} \\ \hline \text{div } \vec{B} = 0 & \text{Ausschluss magnetischer Monopole} \\ \hline \end{array}$$

Ausschluss magnetischer Monopole

Ausgewählte Folgerungen

- in einer Leiterschleife induzierte Spannung: $U_{\text{ind}} = -\frac{1}{c} \cdot \frac{d}{dt} \iint_S \vec{B} \, d\vec{f} = \oint_{C(S)} \left(\vec{E} + \frac{1}{c} \cdot \vec{v} \times \vec{B} \right) \, d\vec{r}$

Erhaltungssätze

- Energiebilanz: $\frac{\mathrm{d}}{\mathrm{d}t} \iiint_V w \, \mathrm{d}V + \iiint_V \vec{\mathbf{J}} \cdot \vec{E} \, \mathrm{d}V = \oiint_{S(V)} \vec{S} \, \mathrm{d}\vec{f}$
- Impulsbilanz: $\frac{\mathrm{d}}{\mathrm{d}t} \left(\vec{p}_{\mathrm{mech}} + \vec{p}_{\mathrm{elm}} \right) = \sum_{i,k} \vec{e}_i \cdot \iiint_V \frac{\partial}{\partial x_k} T_{ik} \, \mathrm{d}V = \sum_{i,k} \vec{e}_i \cdot \oiint_{S(V)} T_{ik} \cdot \left(\vec{e}_k \cdot \mathrm{d}\vec{f} \right) = \oiint_{S(V)} \vec{t} \, \mathrm{d}f$
- Drehimpulsbilanz: $\iiint_V \left(\vec{r} \times \vec{k} \right) \mathrm{d}V + \tfrac{\mathrm{d}}{\mathrm{d}t} \iiint_V \left(\vec{r} \times \tfrac{\vec{S}}{c^2} \right) \mathrm{d}V = \oiint_{S(V)} \left(\vec{r} \times \vec{t} \right) \mathrm{d}f$

Hierbei sind:

- $w = \frac{\vec{E}^2 + \vec{B}^2}{8\pi}$ die Energiedichte des elektrischen und magnetischen Feldes
- $\vec{S} = \frac{c}{4\pi} \cdot \vec{E} \times \vec{B}$ der Poynting-Vektor
- $\vec{p}_{\rm mech}$ mit $\frac{{\rm d}}{{\rm d}t}\vec{p}_{\rm mech}=\iiint_V \vec{k}~{\rm d}V$ der mechanische Impuls
- $\vec{p}_{\rm elm} = \frac{1}{c^2} \cdot \iiint_V \vec{S} \; {\rm d}V$ der elektromagnetische Impuls
- \overrightarrow{T} der Maxwellsche Spannungstensor mit den Komponenten $T_{ik} = \frac{1}{4\pi} \cdot \left(E_i E_k \frac{1}{2} \delta_{ik} \vec{E}^2 + B_i B_k \frac{1}{2} \delta_{ik} \vec{B}^2 \right)$
- $\vec{t} = \frac{1}{4\pi} \cdot \left[\vec{E} \cdot \left(\vec{E} \cdot \vec{e}_f \right) \frac{1}{2} \vec{E}^2 \cdot \vec{e}_f + \vec{B} \cdot \left(\vec{B} \cdot \vec{e}_f \right) \frac{1}{2} \vec{B}^2 \cdot \vec{e}_f \right]$ mit dem Flächennormalene
inheitsvektor \vec{e}_f

Elektromagnetische Potentiale

- Vektorpotential $\vec{A}(\vec{r},t)$ und skalares ("elektrostatisches") Potential $\varphi(\vec{r},t)$
- magnetisches Feld: $\vec{B} = \text{rot } \vec{A}$
- elektrisches Feld: $\vec{E} = -\operatorname{grad} \varphi \frac{1}{c} \cdot \frac{\partial \vec{A}}{\partial t}$

Eichtransformationen

- transformiertes Vektorpotential: $\vec{A}' = \vec{A} + \operatorname{grad} \Lambda(\vec{r}, t)$
- transformiertes Skalar
potential: $\varphi'=\varphi-\frac{1}{c}\cdot\frac{\partial}{\partial t}\Lambda(\vec{r},t)$

Die Potentiale müssen den folgenden Bedingungen genügen:

$$\begin{split} \Delta \vec{A} - \tfrac{1}{c^2} \cdot \tfrac{\partial^2 \vec{A}}{\partial t^2} - \operatorname{grad}\left(\operatorname{div} \vec{A} + \tfrac{1}{c} \cdot \tfrac{\partial \varphi}{\partial t}\right) &= -\tfrac{4\pi}{c} \cdot \vec{\jmath} \\ \Delta \varphi + \tfrac{1}{c} \cdot \tfrac{\partial}{\partial t} \operatorname{div} \vec{A} &= -4\pi\varrho \end{split}$$

- Lorenz-Eichung: \vec{A}', φ' mit Eichbedingung: div $\vec{A}' + \frac{1}{c} \cdot \frac{\partial}{\partial t} \varphi' = 0$
- Coulomb-Eichung: $\vec{A'}, \varphi'$ mit Eichbedingung: div $\vec{A'} = 0$

	Eichfunktion	Potentiale
Lorenz-Eichung	$\Delta \Lambda - \frac{1}{c^2} \cdot \frac{\partial^2}{\partial t^2} \Lambda = -\left(\operatorname{div} \vec{A} + \frac{1}{c} \cdot \frac{\partial}{\partial t} \varphi\right)$	$\Delta \vec{A}' - \frac{1}{c^2} \cdot \frac{\partial^2}{\partial t^2} \vec{A}' = -\frac{4\pi}{c} \cdot \vec{J}$ $\Delta \varphi' - \frac{1}{c^2} \cdot \frac{\partial^2}{\partial t^2} \varphi' = -4\pi \varrho$
Coulomb-Eichung	$\Delta \Lambda = -\operatorname{div} \vec{A}$	$\Delta \vec{A}' - \frac{1}{c^2} \cdot \frac{\partial^2}{\partial t^2} \vec{A}' - \frac{1}{c} \cdot \operatorname{grad} \frac{\partial}{\partial t} \varphi' = -\frac{4\pi}{c} \cdot \vec{J}$ $\Delta \varphi' = -4\pi \varrho$

Greensche Funktion

• Problem: Suche Ψ in $L(x_1,\ldots,x_n)\cdot \Psi(x_1,\ldots,x_n)=f(x_1,\ldots,x_n)$ mit dem Differentialoperator

$$L(x_1,\ldots,x_n) = a + \sum_{i=1}^n a_i \cdot \frac{\partial}{\partial (x_i - x_{q,i})} + \sum_{i,j=1}^n a_{ij} \cdot \frac{\partial^2}{\partial (x_i - x_{q,i})\partial (x_j - x_{q,j})} + \ldots$$

• Greensche Funktion:

$$G(x_1,\ldots,x_n) = G_0(x_1,\ldots,x_n) + \frac{1}{(2\pi)^n} \cdot \int_{-\infty}^{\infty} dk_1 \cdot \cdot \cdot \int_{-\infty}^{\infty} dk_n \cdot \frac{e^{i \cdot \sum_l k_l x_l}}{a + i \cdot \sum_l a_l \cdot k_l - \sum_{l,m} a_{lm} \cdot k_l k_m + \ldots}$$

Hierbei löst $G_0(x_1, \ldots, x_n)$ die Differentialgleichung $L \cdot G_0 = 0$.

• Lösung:

$$\Psi(x_1,\ldots,x_n) = \Psi_0(x_1,\ldots,x_n) + \int_{-\infty}^{\infty} \mathrm{d}x_1' \cdots \int_{-\infty}^{\infty} \mathrm{d}x_n' \cdot G(x_1 - x_1',\ldots,x_n - x_n') \cdot f(x_1',\ldots,x_n')$$

Hierbei löst $\Psi_0(x_1,\ldots,x_n)$ die Differentialgleichung $L\cdot\Psi_0=0$.

Bestimmung von Vektorfeldern

- Problem: Suche $\vec{F}(\vec{r})$ für gegebenes div $\vec{F}(\vec{r})$ und rot $\vec{F}(\vec{r})$.
- Lösung:

$$\vec{F}(\vec{r}) = \vec{F}_{\text{hom}}(\vec{r}) + \frac{1}{4\pi} \cdot \iiint d^3r' \cdot \frac{\operatorname{div} \vec{F}(\vec{r}') \cdot (\vec{r} - \vec{r}') + \operatorname{rot} \vec{F}(\vec{r}') \times (\vec{r} - \vec{r}')}{\left|\vec{r} - \vec{r}'\right|^3}$$

Hierbei berücksichtigt die homogene Lösung $\vec{F}_{\text{hom}}(\vec{r})$ mit div $\vec{F}_{\text{hom}}(\vec{r}) = 0$ und rot $\vec{F}_{\text{hom}}(\vec{r}) = 0$ eventuelle Rand- und Anfangsbedingungen.

Punktladung

Situation: einzelne Punktladung q am Ort \vec{r}_q

• Potential: $\varphi(\vec{r}) = \frac{q}{|\vec{r} - \vec{r}_q|}$

• elektrisches Feld: $\vec{E}(\vec{r}) = \frac{q \cdot (\vec{r} - \vec{r}_q)}{|\vec{r} - \vec{r}_q|^3}$

• mehrere Punktladungen \to Coulomb-Wechselwirkung: $W_w = \frac{1}{2} \cdot \sum_{\alpha \neq \beta} \frac{q_{\alpha} \cdot q_{\beta}}{|\vec{r}_{\alpha} - \vec{r}_{\beta}|}$

Elektrischer Dipol

Situation: Anordnung zweier entgegengesetzer gleichgroßer Punktladungen -q (am Ort \vec{r}_d) und +q (am Ort $\vec{r}_d + \vec{a}$); Übergang zu $q \to \infty$ und $|\vec{a}| \to 0$ derart, dass das Dipolmoment $\vec{p} = q \cdot \vec{a}$ konstant bleibt

- $\bullet \ \ \text{Ladungsverteilung:} \ \varrho(\vec{r}) = \lim_{q \to \infty, \, \vec{a} \to 0} q \cdot \left[\delta(\vec{r} (\vec{r}_d + \vec{a})) \delta(\vec{r} \vec{r}_d) \right] = -\vec{p} \cdot \operatorname{grad}_r \delta(\vec{r} \vec{r}_d)$
- Potential: $\varphi(\vec{r}) = -\vec{p} \cdot \operatorname{grad}_r \frac{1}{|\vec{r} \vec{r}_d|} = \frac{\vec{p} \cdot (\vec{r} \vec{r}_d)}{|\vec{r} \vec{r}_d|^3}$
- elektrisches Feld: $\vec{E}(\vec{r}) = 3 \cdot \frac{[\vec{p} \cdot (\vec{r} \vec{r}_d)] \cdot (\vec{r} \vec{r}_d)}{|\vec{r} \vec{r}_d|^5} \frac{\vec{p}}{|\vec{r} \vec{r}_d|^3}$
- mehrere Dipole \rightarrow Dipoldichte: $\vec{P}(\vec{r}) = \sum_{\alpha} \vec{p}_{\alpha} \cdot \delta(\vec{r} \vec{r}_{\alpha})$
- (Gesamt)Dipolmoment: $\vec{p} = \iiint \vec{P}(\vec{r}) dV = \iiint \varrho(\vec{r}) \cdot \vec{r} dV$

Elektrischer Quadrupol

Situation: Anordnung zweier entgegengesetzt ausgerichteter Dipole $-\vec{p}$ (am Ort \vec{r}_q) und \vec{p} (am Ort $\vec{r}_q + \vec{d}$); Übergang zu $|\vec{p}| \to \infty$ und $|\vec{d}| \to 0$ derart, dass die Komp. des Q.momentes $q_{ij} = d_i \cdot p_j$ konstant bleiben

- Quadrupolmoment: $q_{ij} = \frac{1}{2} \cdot \iiint \varrho(\vec{r}) \cdot x_i \cdot x_j \, dV$
- Quadrupoltensor: $Q_{ij} = 3 \cdot q_{ij} \delta_{ij} \cdot \sum_{l=1}^{3} q_{ll} = \frac{1}{2} \iiint \varrho(\vec{r}) \cdot \left[3x_i \cdot x_j |\vec{r} \vec{r}_q|^2 \cdot \delta_{ij} \right] dV$ Beachte: Quadrupolmoment und -tensor sind symmetrisch, Spur von \overrightarrow{Q} verschwindet

• Ladungsverteilung: $\varrho(\vec{r}) = -\vec{p} \cdot \left[\operatorname{grad}_r \delta(\vec{r} - (\vec{r}_q + \vec{d})) - \operatorname{grad}_r \delta(\vec{r} - \vec{r}_q) \right] = \sum_{i,j} q_{ij} \cdot \frac{\partial^2}{\partial x_i \partial x_j} \delta(\vec{r} - \vec{r}_q)$ • Potential: $\varphi(\vec{r}) = \sum_{i,j} q_{ij} \cdot \left[\frac{3(x_i - x_{q,i}) \cdot (x_j - x_{q,j})}{|\vec{r} - \vec{r}_q|^5} - \frac{\delta_{ij}}{|\vec{r} - \vec{r}_q|^3} \right] = \sum_{i,j} Q_{ij} \cdot \frac{(x_i - x_{q,i}) \cdot (x_j - x_{q,j})}{|\vec{r} - \vec{r}_q|^5}$

Allgemeine ruhende Ladungsverteilung

- Potential: $\varphi(\vec{r}) = \iiint d^3r' \cdot \frac{\varrho(\vec{r}')}{|\vec{r} \vec{r}'|} + \varphi_{\text{hom}}(\vec{r})$
- elektrisches Feld: $\vec{E}(\vec{r}) = \iiint_{\vec{r}_2} \mathrm{d}^3 r' \cdot \frac{\varrho(\vec{r}') \cdot (\vec{r} \vec{r}')}{|\vec{r} \vec{r}'|^3} + \vec{E}_{\mathrm{hom}}(\vec{r})$ Verschiebungsarbeit: $A = -\int_{\vec{r}_1} \vec{K} \cdot \mathrm{d}\vec{r} = q \cdot [\varphi(\vec{r}_2) \varphi(\vec{r}_1)]$ für eine Probeladung q von \vec{r}_1 nach \vec{r}_2
- Wechselwirkungsenergie im el. Feld: $W_{\rm el} = \frac{1}{2} \cdot \iiint_V \varrho(\vec{r}) \cdot \varphi(\vec{r}) \, dV$ (φ des Felderzeugers, ϱ der Probe)
- Kraft: $\vec{K} = \iiint \varrho(\vec{r}) \cdot \vec{E}(\vec{r}) d^3r$
- Drehmoment um Koordinatenursprung: $\vec{M} = \iiint \vec{r} \times \varrho(\vec{r}) \cdot \vec{E}(\vec{r}) \; \mathrm{d}^3 r$

Multipolentwicklung einer Ladungsverteilung um $\vec{r}=0$ für weit entfernten Betrachter

- Potential: $\varphi(\vec{r}) = \frac{q}{r} + \frac{\vec{p} \cdot \vec{r}}{r^3} + \sum_{i,j} \frac{Q_{ij} \cdot x_i x_j}{r^5}$ (bei Abbruch nach der $1/r^3$ -Ordnung)
- Kraft: $\vec{K} = q \cdot \vec{E}(\vec{r} = 0) + (\vec{p} \cdot \text{grad}_r) \vec{E}\Big|_{\vec{r} = 0} + \sum_{i,j} q_{ij} \cdot \frac{\partial^2}{\partial x_i \partial x_j} \vec{E}\Big|_{\vec{r} = 0} (\vec{E} \text{ ändere sich "über } \varrho \text{ nur langsam})$
- Drehmoment: $\vec{M} = p \times \vec{E}(\vec{r} = 0) + 2 \cdot \sum_{i,j} \vec{e}_i \cdot q_{ij} \cdot \frac{\partial}{\partial x_j} \times \vec{E}\Big|_{\vec{r} = 0}$
- Gesamtladung q wie üblich, Dipol- und Quadrupolmoment wie oben über Ladungsverteilung definiert

Stromfaden

Situation: Entlang eines geschlossenen Weges φ (umschließend die Fläche S) fließt ein Strom I, welcher in allen Querschnitten des Leiters tangential zur Bewegungsrichtung gleich ist.

- Potential: $\vec{A}(\vec{r}) = \frac{I}{c} \cdot \oint_{\varphi} \frac{d\vec{r}'}{|\vec{r} \vec{r}'|} = -\frac{I}{c} \cdot \iint_{S} d\vec{f}' \times \operatorname{grad}_{r} \frac{1}{|\vec{r} \vec{r}'|}$
- magnetisches Feld: $\vec{B}(\vec{r}) = \frac{I}{c} \cdot \oint_{\varphi} \frac{d\vec{r}' \times (\vec{r} \vec{r}')}{|\vec{r} \vec{r}'|^3}$
- magnetischer Fluss im Faden α durch Feld anderer Fäden: $\Phi_{\alpha} = c \cdot \sum_{\beta} I_{\beta} \cdot L_{\alpha\beta}$ mit $\beta \neq \alpha$
- Wechselwirkung mehrerer Stromfäden: $W_{\text{magn}} = \sum_{\alpha \neq \beta} \frac{I_{\alpha} \cdot I_{\beta}}{2} \cdot L_{\alpha\beta} = \frac{1}{2c} \cdot \sum_{\alpha} \Phi_{\alpha} \cdot I_{\alpha}$ Induktionskoeffizienten: $L_{\alpha\beta} = \frac{1}{c^2} \cdot \oint_{\varphi_{\alpha}} \oint_{\varphi_{\beta}} \frac{d\vec{r}_{\alpha} \cdot d\vec{r}_{\beta}}{|\vec{r}_{\alpha} \vec{r}_{\beta}|}$
- Kraft durch den Faden α auf β : $\vec{K}_{\beta \leftarrow \alpha} = \frac{I_{\alpha} \cdot I_{\beta}}{c^2} \cdot \oint_{\varphi_1} \oint_{\varphi_2} \frac{d\vec{r}_{\beta} \times [d\vec{r}_{\alpha} \times (\vec{r}_{\beta} \vec{r}_{\alpha})]}{|\vec{r}_{\beta} \vec{r}_{\alpha}|^3} = -\frac{I_{\alpha} \cdot I_{\beta}}{c^2} \cdot \oint_{\varphi_1} \oint_{\varphi_2} \frac{\vec{r}_{\beta} \vec{r}_{\alpha}}{|\vec{r}_{\beta} \vec{r}_{\alpha}|^3} d\vec{r}_{\alpha} d\vec{r}_{\beta}$

Magnetischer Dipol

Situation: Stromfaden wie oben am Ort \vec{r}_m ; Übergang zu $S \to 0$ und $I \to \infty$ derart, dass das magnetische Moment $\vec{m} = \frac{I}{c} \cdot \iint_S d\vec{f}$ konstant bleibt

- Potential: $\vec{A}(\vec{r}) = -\vec{m} \times \operatorname{grad}_r \frac{1}{|\vec{r} \vec{r}_m|} = \vec{m} \times \frac{\vec{r} \vec{r}_m}{|\vec{r} \vec{r}_m|^3}$
- magnetisches Feld: $\vec{B}(\vec{r}) = 3 \cdot \frac{[(\vec{r} \vec{r}_m) \cdot \vec{m}] \cdot (\vec{r} \vec{r}_m)}{|\vec{r} \vec{r}_m|^5} \frac{\vec{m}}{|\vec{r} \vec{r}_m|^3}$
- mehrere Dipole \to Dipoldichte: $\vec{M}(\vec{r}) = \sum \vec{m}_\alpha \cdot \delta(\vec{r} \vec{r}_\alpha)$
- Gesamt dipolmoment: $\vec{m} = \iiint \mathrm{d}^3 r \cdot \vec{M}(\vec{r}) = \sum_{\alpha} \vec{m}_{\alpha}$
- Potential einer Dipolverteilung: $\vec{A}(\vec{r}) = -\iiint \mathrm{d}^3r' \cdot \vec{M}(\vec{r}') \times \mathrm{grad}_r \frac{1}{\vec{r} \vec{r}'}$
- Stromdichte einer Dipolverteilung: $\vec{j}(\vec{r}) = c \cdot \text{rot} \, \vec{M}(\vec{r}) = c \cdot \sum_{\alpha} \vec{m}_{\alpha} \times \text{grad} \, \delta(\vec{r} \vec{r}_{\alpha})$
- Wechselw.energie einer Dipolv.: $W_m = \frac{1}{2} \cdot \sum_{\alpha \neq \beta} \vec{m}_{\alpha} \cdot \vec{B}_{\beta}(\vec{r}_{\alpha}) = \sum_{\alpha \neq \beta} \frac{1}{2 \cdot r_{\alpha\beta}^3} \cdot \left[3 \cdot \frac{(\vec{r}_{\alpha\beta} \cdot \vec{m}_{\alpha}) \cdot (\vec{r}_{\alpha\beta} \cdot \vec{m}_{\beta})}{r_{\alpha\beta}^2} \vec{m}_{\alpha} \cdot \vec{m}_{\beta} \right]$

Allgemeine ruhende Stromverteilung

- Potential: $\vec{A}(\vec{r}) = \frac{1}{c} \cdot \iiint \mathrm{d}^3 r' \cdot \frac{\vec{\jmath}(\vec{r}')}{|\vec{r} \vec{r}'|} + \vec{A}_{\mathrm{hom}}(\vec{r})$
- magnetisches Feld: $\vec{B}(\vec{r}) = \frac{1}{c} \cdot \iiint d^3r' \cdot \frac{\vec{\jmath}(\vec{r}') \times (\vec{r} \vec{r}')}{|\vec{r} \vec{r}'|^3} + \vec{B}_{\text{hom}}(\vec{r})$
- Wechselwirkungsenergie im magn. Feld: $W_{\text{magn}} = \frac{1}{2c} \cdot \iiint_V \vec{J}(\vec{r}) \cdot \vec{A}(\vec{r}) \, dV \, (\vec{A} \text{ des Felderzeugers, } \vec{J} \text{ der Probe})$
- Kraft: $\vec{K} = \iiint \vec{J}(\vec{r}) \times \vec{B}(\vec{r}) d^3r$
- Drehmoment um Koordinatenursprung: $\vec{M} = \iiint \vec{r} \times \left[\vec{j}(\vec{r}) \times \vec{B}(\vec{r}) \right] d^3r$

Multipolentwicklung einer Stromverteilung um $\vec{r}=0$ für weit entfernten Betrachter

- Dipol
moment der Stromverteilung: $\vec{m} = \frac{1}{2c} \cdot \iiint_V \mathrm{d}^3r' \cdot \left[\vec{r}' \times \vec{\jmath}(\vec{r}')\right]$
- Potential: $\vec{A}(\vec{r}) = \vec{m} \times \frac{\vec{r}}{r^3}$ (bei Abbruch nach der $1/r^3$ -Ordnung)
- magnetisches Feld: $\vec{B}(\vec{r})=3\cdot\frac{(\vec{r}\cdot\vec{m})\cdot\vec{r}}{r^5}-\frac{\vec{m}}{r^3}$
- Kraft: $\vec{K} = \text{grad} \left[\vec{B}(\vec{r}) \cdot \vec{m} \right]_{\vec{r}=0}$
- Drehmoment um Koordinatenursprung: $\vec{M} = \vec{m} \times \vec{B}(\vec{r} = 0)$

Operatoren

• Viererdivergenz-Operator: $\partial_\mu=\frac{\mathrm{d}}{\mathrm{d}x^\mu}$ und $\partial^\mu=\frac{\mathrm{d}}{\mathrm{d}x_\mu}$

• D'Alembert-Operator: $\Box = \partial^{\nu}\partial_{\nu} = \frac{1}{c^2}\cdot\frac{d^2}{dt^2} - \Delta$

Grundgrößen und -gleichungen

	Kontravariante Größe	Kovariante Größe
Vierervektor der Stromdichte	$J^{\mu} = (c \cdot \varrho, \vec{\jmath})$	$J_{\mu} = (c \cdot \varrho, -\vec{\mathbf{j}})$
Viererpotential	$\Phi^{\mu}=(\varphi,\vec{A})$	$\Phi_{\mu} = (\varphi, -\vec{A})$
Feldstärketensor	$F^{\nu\mu} = \partial^{\mu}\Phi^{\nu} - \partial^{\nu}\Phi^{\mu}$	$F_{\nu\mu} = \partial_{\mu}\Phi_{\nu} - \partial_{\nu}\Phi_{\mu}$

• Bestimmungsgleichung für das Potential: $\Box \Phi^{\mu} = \frac{4\pi}{c} J^{\mu}$

• homogene Maxwellgleichungen: $\partial_\lambda F_{\nu\mu}+\partial_\nu F_{\mu\lambda}+\partial_\mu F_{\lambda\nu}=0$

• inhomogene Maxwellgleichungen: $\partial_{\mu}F^{\nu\mu} = \frac{4\pi}{c}J^{\nu}$

Relativistische Mechanik

	Kontravariante Größe	Kovariante Größe
Viererkraftdichte	$f^{\mu}=\left(rac{ec{v}}{c}\cdotec{k},ec{k} ight)$	$f_{\mu} = \left(\frac{\vec{v}}{c} \cdot \vec{k}, -\vec{k}\right)$
Viererkraft	$F^{\mu} = \gamma \cdot \left(\frac{\vec{v}}{c} \cdot \vec{K}, \vec{K}\right)$	$F^{\mu} = \gamma \cdot \left(\frac{\vec{v}}{c} \cdot \vec{K}, -\vec{K}\right)$
Energie-Impuls-Tensor	$T^{\nu\mu} = \frac{1}{4\pi} \cdot \left(g_{\lambda\sigma} \cdot F^{\sigma\nu} \cdot F^{\lambda\mu} - \frac{1}{4} \cdot g^{\mu\nu} \cdot F_{\lambda\sigma} \cdot F^{\lambda\sigma} \right)$	

• Bewegungsgleichung: $m_0 \cdot \frac{\mathrm{d}u^{\mu}}{\mathrm{d}\tau} = F^{\mu}$ mit Eigenzeit $\mathrm{d}\tau = \frac{\mathrm{d}t}{\gamma}$ und Vierergeschwindigkeit $u^{\mu} = \gamma \cdot (c, \vec{v})$

• Viererkraftdichte: $f^{\nu}=\frac{1}{c}\cdot J_{\mu}\cdot F^{\mu\nu}=\partial_{\mu}T^{\nu\mu}$ (liefert Energiebilanz für $\nu=0$)

Transformation von Feldern

Das Bezugssystem Σ' bewege sich gegen das Bezugssystem Σ mit $\vec{v}.$

• Transformation von Feldkomponenten parallel zu \vec{v} : $\vec{E}'_{\parallel}=\vec{E}_{\parallel}$ und $\vec{B}'_{\parallel}=\vec{B}_{\parallel}$

• Transformation von Feldkomponenten senkrecht zu \vec{v} : $\vec{E}'_{\perp} = \gamma \cdot \left(\vec{E}_{\perp} + \frac{\vec{v}}{c} \times \vec{B}\right)$ und $\vec{B}'_{\perp} = \gamma \cdot \left(\vec{B}_{\perp} - \frac{\vec{v}}{c} \times \vec{E}\right)$

Matrixdarstellungen

$$F^{\mu\nu} = \begin{pmatrix} 0 & E_x & E_y & E_z \\ -E_x & 0 & B_z & -B_y \\ -E_y & -B_z & 0 & B_x \\ -E_z & B_y & -B_x & 0 \end{pmatrix} \qquad T^{\mu\nu} = \begin{pmatrix} -w & -\frac{1}{c} \cdot S_x & -\frac{1}{c} \cdot S_y & -\frac{1}{c} \cdot S_z \\ -\frac{1}{c} \cdot S_x & T_{xx} & T_{xy} & T_{xz} \\ -\frac{1}{c} \cdot S_y & T_{yx} & T_{yy} & T_{yz} \\ -\frac{1}{c} \cdot S_z & T_{zx} & T_{zy} & T_{zz} \end{pmatrix}$$

$$F_{\mu\nu} = \begin{pmatrix} 0 & -E_x & -E_y & -E_z \\ E_x & 0 & B_z & -B_y \\ E_y & -B_z & 0 & B_x \\ E_z & B_y & -B_x & 0 \end{pmatrix} \qquad T_{\mu\nu} = \begin{pmatrix} -w & \frac{1}{c} \cdot S_x & \frac{1}{c} \cdot S_y & \frac{1}{c} \cdot S_z \\ \frac{1}{c} \cdot S_x & T_{xx} & T_{xy} & T_{xz} \\ \frac{1}{c} \cdot S_y & T_{yx} & T_{yy} & T_{yz} \\ \frac{1}{c} \cdot S_z & T_{zx} & T_{zy} & T_{zz} \end{pmatrix}$$

Die Größen in den Matrizen sind alle wie auf den vorhergehenden Seiten.

Retardierte Potentiale

- skalares Potential: $\varphi(\vec{r},t)=\iiint \mathrm{d}^3r'\; \frac{\varrho\left(\vec{r}',t-\frac{|\vec{r}-\vec{r}'|}{c}\right)}{|\vec{r}-\vec{r}'|}$
- Vektor potential: $\vec{A}(\vec{r},t)=\iiint \mathrm{d}^3r'\;\frac{\vec{\mathbb{J}}\left(\vec{r}',t-\frac{|\vec{r}-\vec{r}'|}{c}\right)}{|\vec{r}-\vec{r}'|}$

Multipolentwicklung eines Strahlungsfeldes

Gegeben sei eine lokalisierte Strom- und Ladungsverteilung um $\vec{r} = 0$ mit weit entferntem Beobachter.

- Skalar potential: $\varphi(\vec{r},t) = -\operatorname{div}\left[\frac{1}{r}\cdot\left(\vec{p}(t') + \vec{m}(t') \times \vec{e_r} + \frac{1}{c}\cdot\stackrel{\leftrightarrow}{q}(t') \cdot \vec{e_r}\right)\right] + \operatorname{const.}(\vec{r})$
- Vektorpotential: $\vec{A}(\vec{r},t) = \frac{1}{cr} \cdot \left(\dot{\vec{p}}(t') + \dot{\vec{m}}(t') \times \vec{e_r} + \frac{1}{c} \cdot \ddot{\vec{q}}(t') \cdot \vec{e_r} \right)$ mit $t' = t \frac{r}{c}$
- magnetisches Feld: $\vec{B}(\vec{r},t) = \frac{1}{c^2r} \cdot \left[\left(\ddot{\vec{p}}(t') \times \vec{e_r} \right) \times \vec{e_r} + \vec{e_r} \times \ddot{\vec{m}}(t') + \frac{1}{3c} \cdot \left(\dddot{\vec{Q}}(t') \cdot \vec{e_r} \times \vec{e_r} \right) \times \vec{e_r} \right]$
- elektrisches Feld: $\vec{E}(\vec{r},t) = \frac{1}{c^2r} \cdot \left[\ddot{\vec{p}}(t') \times \vec{e_r} + \left(\ddot{\vec{m}}(t') \times \vec{e_r} \right) \times \vec{e_r} + \frac{1}{3c} \cdot \left(\dddot{\vec{Q}}(t') \cdot \vec{e_r} \times \vec{e_r} \right) \right]$
- Zusammenhang zwischen den Feldern: $\vec{E}=\vec{e}_r \times \vec{B}$ und $\vec{B}=\vec{E} \times \vec{e}_r$

Liénard-Wiechert-Potentiale

Eine Punktladung q bewege sich auf der Bahnkurve $\vec{r}_q(t)$ mit der Geschwindigkeit $\vec{v}_q(t) = \frac{\mathrm{d}}{\mathrm{d}t}\vec{r}_q(t)$. Es werden die Abkürzungen $\vec{R}(t) = \vec{r} - \vec{r}_q(t)$ und $t' = t - \frac{|\vec{R}(t')|}{c}$ verwendet.

- Potentiale: $\varphi(\vec{r},t) = \frac{q}{|\vec{R}(t')| \frac{1}{c} \cdot \vec{R}(t') \cdot \vec{v}_q(t')}$ und $\vec{A}(\vec{r},t) = \frac{q \cdot \vec{v}_q(t')}{c \cdot |\vec{R}(t')| \vec{R}(t') \cdot \vec{v}_q(t')}$
- Felder: $\vec{B}(\vec{r},t) = \frac{\vec{R}(t')}{|\vec{R}(t')|} \times \vec{E}(\vec{r},t)$ und $\vec{E}(\vec{r},t) = q \cdot \left[\left| \vec{R}(t') \right| \frac{\vec{v}_q(t')}{c} \cdot \vec{R}(t') \right]^{-3} \cdot \left[\left(1 \frac{\vec{v}_q(t')^2}{c^2} \right) \cdot \left(\vec{R}(t') \frac{\vec{v}_q(t') \cdot |\vec{R}(t')|}{c} \right) + \frac{1}{c^2} \cdot \vec{R}(t') \times \left[\left(\vec{R}(t') \frac{\vec{v}_q(t') \cdot |\vec{R}(t')|}{c} \right) \times \dot{\vec{v}}_q(t') \right] \right]$

Materialgrößen

- Polarisation: $\vec{P}=\stackrel{\leftrightarrow}{\chi}_e\cdot\vec{E}$ mit elektrischer Suszeptibilität $\stackrel{\leftrightarrow}{\chi}_e$
- dielektrische Verschiebung: $\vec{D} = \vec{E} + 4\pi \cdot \vec{P} = \stackrel{\leftrightarrow}{\varepsilon} \cdot \vec{E}$ mit Dielektrizitätskonstante $\stackrel{\leftrightarrow}{\varepsilon} = \stackrel{\leftrightarrow}{1} + 4\pi \cdot \stackrel{\leftrightarrow}{\chi}_e$
- Magnetisierung: $\vec{M}=\stackrel{\leftrightarrow}{\chi}_m\cdot\vec{H}$ mit magnetischer Suszeptibilität $\stackrel{\leftrightarrow}{\chi}_m$
- Magnetfeld: \vec{H} mit $\vec{B} = \vec{H} + 4\pi \cdot \vec{M} = \overset{\leftrightarrow}{\mu} \cdot \vec{H}$ mit Permeabilität $\overset{\leftrightarrow}{\mu} = \overset{\leftrightarrow}{1} + 4\pi \cdot \overset{\leftrightarrow}{\chi}_m$
- Leitfähigkeit: $\overset{\leftrightarrow}{\sigma}$ mit $\vec{j} = \overset{\leftrightarrow}{\sigma} \cdot \vec{E}$ (nicht für Supraleiter)

Maxwellgleichungen in Materie

$$\begin{array}{ll} \operatorname{rot} \vec{E} = -\frac{1}{c} \cdot \frac{\partial \vec{B}}{\partial t} & \operatorname{Faradaysches\ Induktionsgesetz} \\ \operatorname{div} \vec{D} = 4\pi \cdot \varrho & \operatorname{Gaußsches\ Durchflutungsgesetz} \\ \operatorname{rot} \vec{H} = \frac{1}{c} \cdot \frac{\partial \vec{D}}{\partial t} + \frac{4\pi}{c} \cdot \vec{\jmath} & \operatorname{Durchflutungsgesetz\ von\ Oersted\ und\ Ampère} \\ \operatorname{div} \vec{B} = 0 & \operatorname{Ausschluss\ magnetischer\ Monopole} \end{array}$$

Wichtige Folgerungen

- Dispersions relation für Wellen: $\omega = \frac{c}{\sqrt{\varepsilon \cdot \mu}} \cdot |\vec{k}|$
- Feld eines Permanentmagneten: $\vec{H} = -\operatorname{grad} \phi \operatorname{mit} \phi = -\int_{-\infty}^{\infty} \mathrm{d}^3 r' \frac{\operatorname{div} \vec{M}(\vec{r}')}{|\vec{r} \vec{r}'|} = \oiint_{S(V)} \mathrm{d}\vec{f}' \cdot \frac{\vec{M}(\vec{r}')}{|\vec{r} \vec{r}'|} \int_V \mathrm{d}^3 r' \frac{\operatorname{div} \vec{M}(\vec{r}')}{|\vec{r} \vec{r}'|}$
- Energie
bilanz: div $\vec{S} + \frac{\partial}{\partial t} \left(w_{\rm el} + w_{\rm magn} \right) = -\sigma \cdot \vec{E}^2$ Hierbei sind
- $\vec{S} = \frac{c}{4\pi} \cdot \vec{E} \times \vec{H}$ der Poynting-Vektor
- $w_{\mathrm{el}} = \frac{\varepsilon}{8\pi} \cdot \vec{E}^2$ die elektrische Feldenergie
- $w_{\mathrm{magn}} = \frac{\mu}{8\pi} \cdot \vec{H}^2$ die magnetische Feldenergie

Grenzbedingungen

An der Grenzfläche (Flächennormale \vec{n} , beliebige Tangente \vec{t}) zwischen zwei Materialien gilt:

- $\vec{n} \cdot (\vec{D}_2 \vec{D}_1) = 4\pi \cdot \varrho_F$ Die Normalkomponenten des \vec{D} -Feldes sind unstetig.
- $\vec{t} \cdot \left(\vec{E}_2 \vec{E}_1 \right) = 0$ Die Tangentialkomponenten des \vec{E} -Feldes sind stetig.
- $\vec{n} \cdot (\vec{B}_2 \vec{B}_1) = 0$ Die Normalkomponenten des \vec{B} -Feldes sind stetig.
- $\vec{t} \cdot (\vec{H}_2 \vec{H}_1) = \frac{4\pi}{c} \cdot \vec{j}_F \cdot \vec{t}$ Die Tangentialkomponenten des \vec{H} -Feldes sind unstetig.

Hierbei sind ϱ_F und $\vec{\jmath}_F$ die Flächenladungs- bzw. Flächenstromdichte auf der Oberfläche.

Bauteilparameter

- Widerstand eines Leiters: $R = \frac{l}{\sigma \cdot A}$ (Länge l, Querschnitt A)
- elektromotorische Kraft einer Stromquelle: $\varepsilon = \int_{-}^{+} \vec{E}^{(e)} d\vec{r}$ (Integral der eingeprägten Kraft der Quelle)
- \bullet Ohmsches Gesetz bei Anwesenheit von Stromquellen: $\vec{\mathtt{\jmath}}=\stackrel{\leftrightarrow}{\sigma}\cdot\left(\vec{E}+\vec{E}^{(e)}\right)$

Sätze für Stromkreise

Ein Stromkreisnetzwerk enthalte nur Stromquellen und Widerstände.

- Knotensatz: $\sum I = 0$
- Maschensatz: $\sum R \cdot I = \sum \varepsilon$
- Energiesatz: $\sum R \cdot I^2 = \sum \varepsilon \cdot I$

Kapazität

- Kapazität eines Leiters: $C=\frac{Q}{\varphi_0}$ (φ_0 auf der Leiteroberfläche)
- Kapazitätskoeffizienten eines Systems von Leitern: $Q_{\alpha} = \sum_{\beta} C_{\alpha\beta} \cdot \varphi_{\beta}$
- Kapazität eines Kondensators: $C = \frac{Q}{\varphi_1 \varphi_2}$ (Q auf einem der beiden Leiter, φ_i auf den Leiteroberflächen)
- elektrische Energie: $W_{\rm el}=\frac{1}{2}\cdot\sum_{\alpha,\beta}C_{\alpha\beta}\cdot\varphi_{\alpha}\cdot\varphi_{\beta}$