GPU vs. CPU

CPU

GPU

What will be done on the CPU

```
vector<thread> sync;
sync.reserve(thread::hardware concurrency());
const unsigned int chunk = ceil(zvalues.size() / thread::hardware_concurrency());
for (size t i = 0; i < thread::hardware concurrency(); i++)</pre>
    sync.emplace back([=, &zvalues]() {
        auto beg = begin(zvalues) + (i*chunk);
        auto ed = end(zvalues);
        if (((i + 1)*chunk) < zvalues.size())
            ed = beg + chunk;
        for each(beg, ed, [&](double & value) {
            value = floor((value - min) / stepsize);
        });
    });
for (auto &t : sync)
```

What will be done on the GPU

```
void AcceleratedAlgo::LongLatToMap16(vector<double>& zvalues, const double & min, const double & max,
   int width, int height, unsigned int bits )
   const double stepsize = (max - min) / (std::pow(2, bits) - 1);
   concurrency::extent<2> image extent(width, height);
   pick accelerator();
    array view<double, 2> texture src(image extent, zvalues);
    parallel for each(image extent, [=](index<2> idx) restrict(amp) {
        texture src[idx] = precise math::floor((texture src[idx] - min) / stepsize);
    });
   texture src.synchronize();
```

File Size (Data Size)	Desktop		Laptop		Laptop (Battery)	
	GPU (GTX970)	CPU (i7 4790k)	GPU (GTX1050)	CPU (i7 7700HQ)	GPU (GTX1050)	CPU (i7 7700HQ)
2MB (342 KB)	81 ms	1 ms	942 ms	1 ms	1133 ms	1 ms
2 GB (343 MB Data)	311 ms	43 ms	1130 ms	29 ms	1379 ms	29 ms
6 GB (1 GB data)	618 ms	127 ms	1448 ms	85 ms	1772 ms	85 ms
12 GB (2GB)	1206 ms	243 ms	1900 ms	164 ms	2722 ms	168 ms

What I've learn

- Always benchmark
- GPU is not a magic solution when you have a lot of data
- A good use case for the GPU is a lot of data + complex operations
- Laptop and desktop grade components have different behaviours
- on Laptop it's not always clear which GPU is used, Intel integrated or GTX1050 (driver pick one depending on the task and conditions)
- For optimal performance a calibration test should be made for the software
- Do other GPU tech have the same results?