Projeto de Algoritmos e Modelação Computacional

Campos de Markov Aleatórios – Árvores

 $MEBiom - 2^{\underline{o}} Semestre \ 2020/2021$

Augusto Marques, n.º 89789 Beatriz Filipe, n.º 92799 Miguel Fernandes, n.º 92836

I. INTRODUÇÃO

O principal objetivo do projeto da cadeira de Algoritmos e Modelação Computacional consistiu em implementar um algoritmo de aprendizagem baseado em *Campos de Markov Aleatórios (Markov Random Fields)*. Este algoritmo faz uso do algoritmo de *Chow-Liu* para aprender MRFs que otimizam o processo de classificação. Todo o projeto foi desenvolvido em JAVA, uma linguagem de programação imperativa universal e fortemente tipada.

Como referido, este projeto insere-se na área de *Machine-Learning*, cujas aplicações têm elevada importância no contexto clínico e hospitalar, nomeadamente, como ferramentas de apoio à decisão médica, sendo, por isso, extremamente relevante para a Engenharia Biomédica.

II. CLASSES E MÉTODOS

Para proceder à implementação do algoritmo de aprendizagem e se conseguir, por fim, classificar um dado conjunto de dados, foram criadas várias classes e, para cada uma, vários métodos, necessários para a sua total definição. De seguida, explicita-se as classes criadas, abordando os métodos e as implementações construídas, ao mesmo tempo que se justificam escolhas tomadas durante a implementação de cada classe.

A. Dataset

A classe Dataset é construída a partir de um conjunto de dados, T, sendo implementado como ArrayList, estrutura dinâmica com métodos próprios, já implementados e otimizados na linguagem JAVA. Esta classe vai ser essencial ao longo do projeto, já que serve de base para a construção da implementação de outras classes e métodos. Tem como atributos: data (protected) - ArrayList que guarda os dados que vão sendo integrados no Dataset; n (private) - número (inteiro) de variáveis aleatórias; D (private) - vetor com os valores máximos (inteiros) das variáveis aleatórias do conjunto inicial de dados (define o domínio associado a cada variável, D_i); e Freqlist (protected) - ArrayList de inteiros com valores das frequên-

cias de cada classe do Dataset.

Esta classe tem como principais métodos:

- Dataset(int n) método construtor da classe que recebe o número inteiro, n, de variáveis aleatórias e inicializa um novo objeto desta classe, definindo o estado inicial do objeto, quanto aos seus atributos.
- Add(int[] v) recebe um vetor e adiciona-o ao dataset se verificar as dimensões apropriadas. Esta adição é feita de modo a que a ArrayList do Dataset esteja ordenada, implementação que irá melhorar a eficiência e rapidez da contagem de elementos no Dataset e, ainda, a acessibilidade destes elementos, nomeadamente na construção das fibras. A ordenação é feita de acordo com a classe atribuída a cada vetor introduzido, recorrendo à Freqlist. Esta vai sendo atualizada a cada adição (através do método privado AtualizaFreqList(int[] v)), bem como o atributo D (atualizado pelo método privado D_max(int[] v, int[] D)).
- Count(int[] vars, int[] val) recebe uma lista de variáveis (vars) e valores destas (val) e retorna o número de vezes que estas variáveis tomam simultaneamente esses valores no Dataset. De referir que não é necessário confirmar se os valores pertencem ao domínio de cada variável, D_i, pois este método pressupõe que tal já tenha sido verificado previamente na classe Classifier (poupamos algum trabalho computacional).
- Fiber(int c) método que, dado um valor da classe, c, retorna a fibra (Dataset) associada a esse valor da classe. Este método público tem associado um outro método privado fiberAdd(int[] v) que permite a adição dos vetores do Dataset original, T, à ArrayList data da fibra e que tem em conta a ordenação de T.

B. Weighted Graph

A classe Weighted Graph é uma das classes pedidas no enunciado do projeto. Tem como atributos o inteiro $\dim(private)$ – número de variáveis aleatórias de T – e a

matriz ma (private) – matriz de adjacência, cujas entradas ma_{ij} e respetivos valores representam as arestas pesadas que unem as variáveis i e j.

Tem como métodos:

- WeightedGraph(int dim) método construtor do objeto da classe WeightedGraph, que recebe um inteiro dim, e cria uma matriz de adjacência de dimensões dim \times dim, em que $ma_{ij} = -\infty$, $\forall i, j$. Define também o estado inicial do objeto, quanto aos seus atributos.
- MST()— um subgrafo do Weighted Graph que é uma árvore (com todos os nós), cuja soma dos pesos das arestas é maximal entre todos os subgrafos que formam o Weighted Graph. Este método foi implementado adaptando o algoritmo de Prim (estudado nas aulas para obter a árvore de extensão mínima), trocando o sinal de todas as entradas da matriz de adjacência para obter a árvore de extensão máxima, de acordo com o *Introduction to Algorithms* do Cormen.
- Add(int i, int j, double w) recebe dois nós, i e j, e um peso, w, e adiciona uma aresta entre os nós i e j com o peso w, em que w $\in \mathbb{R}$.

C. Tree

A classe Tree é uma implementação simples de uma árvore. Nesta implementação, toda a informação relativa à árvore é armazenada num vetor de inteiros pais, onde cada entrada de índice i corresponde ao pai do nó i. Esta classe servirá de suporte para a criação da Árvore de Extensão de Peso Maximal (MST), gerada pelo método da classe Weighted Graph.

Assim, esta classe tem os métodos:

- Tree(int dim) método construtor que recebe a dimensão da árvore (número de variáveis aleatórias) e inicializa o vetor pais como um vetor de dimensão dim e com todas as entradas com o valor -1.
- addEdge(int i, int pai) cria uma nova aresta na árvore, sendo que o nó i passa a ser filho do nó pai.
- EdgeQ(int i, int j) verifica se existe uma aresta entre os nós i e j.
- pai(int i) devolve o pai do nó i.

D. Weighted Tree

A classe WeightedTree foi criada para ser usada na implementação do atributo markovtree da classe MRFTree. Para além disso, a WeightedTree implementa Serializable de forma a podermos guardar um objeto desta classe como um ficheiro de acordo com o que foi explicado nas aulas práticas.

Esta classe possui apenas dois atributos: uma constante inteira, dim, que corresponde à dimensão da árvore; e int[][][] ma, que pode ser vista como uma matriz cuja entrada ma_{ij} , representa a aresta entre os nós $i \in j$, que contém uma matriz que representa a função $\phi_{ij}(x_i, x_j)$.

A classe tem como **métodos**:

- WeightedTree(int dim) método construtor da classe que recebe a dimensão da matriz ma e define o estado inicial dos atributos.
- Add(int i, int j, double[][] phi) recebe dois nós, i e j, e a matriz de *doubles* phi, e adiciona essa matriz à aresta que liga os nós i e j. Caso um dos nós recebidos não exista no grafo, lança um erro do tipo AssertionError.
- getWeight(int i, int j) recebe dois nós (i e
 j) e retorna a matriz phi da entrada maij, caso
 ambos os nós existam no grafo. Caso um dos nós
 recebidos não exista no grafo, lança um erro do tipo
 AssertionError.

E. MRFTree (Markov Random Field Tree)

A classe MRFTree é equivalente à classe MRFT referida no projeto.

Esta classe possui diversos atributos, como as constantes inteiras (privadas) mc – dimensão da fibra da classe c do Dataset T; ((m - tamanho do Dataset T)); n - número de medições (variáveis aleatórias); e a constante D - um vetor de inteiros que contém o domínio de cada variável do Dataset T (sabemos que as concretizações das variáveis aleatórias são inteiros maiores ou iguais a zero, pelo que, neste vetor de inteiros D, guardamos o valor máximo que cada variável toma no Dataset T (de origem). Possui ainda tfiber, um objeto da classe Dataset, que corresponde a uma fibra de T. Além destes atributos, a class MRFTree possui também atributos que lhe são únicos: e (private) – um vetor de inteiros de dimensão 2, no qual é armazenada a aresta especial (valores armazenados correspondem aos dois nós que a formam); delta (private) – um double que indica o valor de pseudo-contagem; e E (private) – uma ArrayList de vetores de inteiros, nos quais são armazenadas as arestas.

A MRFTree tem como principais **métodos**:

• MRFTree(Tree arvore, Dataset tfiber) – método construtor, que recebe um objeto da classe Tree (arvore) e um Dataset do tipo fibra (tfiber), referente a uma classe, c, e coloca os $\phi_{ij}(x_i,x_j)$ em cada aresta da MRFTree. Além disso, define o estado inicial do objeto, quanto aos seus

atributos. Para construir a MRFTree, fixa-se o primeiro nó como raiz, sendo um dos nós da aresta especial, o que induz a direção das arestas.

- phi(int i, int j) método que recebe dois inteiros correspondentes aos nós i e j, e retorna a matriz de doubles $\phi_{ij}(x_i, x_j)$ da aresta que liga o nó i ao nó j da árvore.
- prob (int[] v) recebe um vetor de inteiros $(x_1, ..., x_n)$, e retorna a probabilidade destes dados no dataset ou seja, P_{Mc} . Caso um dos valores x_i presentes no vetor não pertença ao domínio da variável aleatória correspondente, D_i , lança-se um AssertionError.

F. Classifier

Esta classe tem como objetivo classificar uma amostra, $(x_1,...,x_n)$, de ${\bf n}$ variáveis aleatórias, $(X_1,...,X_n)$, para uma dada doença, retornando o valor da classe, c, mais provável associada a essa amostra (diagnóstico), com base no modelo aprendido com esse tipo de dados, através do dataset T. Tem como atributos: uma ArrayList de objetos da classe MRFTree, a MRFTList e uma ArrayList com as frequências de cada classe, c, no dataset T, a FreqList. Além disso, implementa Serializable de forma a podermos guardar um objeto desta classe como um ficheiro de acordo com o que foi explicado nas aulas práticas.

Tem como **métodos**:

- Classifier(ArrayList<MRFTree>MRFTList, ArrayList<Integer> FreqList) – método construtor que recebe um array de MRFT's, um para cada valor da classe, c, e uma ArrayList com as frequências das classes no dataset T.
- classify(int[] amostra) dados valores $(x_1, ..., x_n)$ das variáveis retorna o valor da classe c mais provável.

III. RESULTADOS E ANÁLISE

Vários datasets já tratados no formato .csv foram cedidos pelo docente na página da disciplina. Estes dados públicos foram retirados do *UCI Machine Learning Repository*, que contém dados referentes a diversas patologias:

- bcancer.csv Cancro da mama
- diabetes.csv Diabetes
- hepatitis.csv Hepatite
- thyroid.csv Tiróide

Para testar o modelo, retirou-se uma linha do dataset escolhido e treinou-se o modelo com o dataset resultante dessa alteração. Posteriormente, utilizou-se como amostra os dados da linha que retiramos, excluindo a classificação, e submeteu-se a amostra ao classificador. Por fim, procurou-se verificar se a classificação atribuída após a aprendizagem corresponde à classificação original, presente na linha que removemos do dataset. Repetiu-se este procedimento para todas as linhas de todos os datasets, tendo obtido os seguintes resultados:

Dataset	${\rm certos/total}$	exatidão
bcancer.csv	556/683	81.41%
${\it diabetes.csv}$	590/768	76.82%
hepatitis.csv	73/80	91.25%
thyroid.csv	2558/2643	96.78%
*	73/80 $2558/2643$	

Consideramos que os resultados são bastante satisfatórios. Em baixo, é mostrado um exemplo ilustrativo de um grafo completo para n=10 variáveis e respetiva MST.

Figura 1 - Exemplo ilustrativo de um grafo completo para n=10 variáveis aleatórias. Neste caso, para a fibra de classe 0 do dataset b<acherometric beaucer.csv

Figura 2 - Exemplo ilustrativo de uma árvore de extensão maximal, obtida a partir do grafo da figura 1.

IV. MANUAL DO UTILIZADOR

Nesta secção explica-se sucintamente como usar o software desenvolvido neste projeto.

A. Aprendizagem

Numa primeira etapa, é necessário criar um modelo da patologia em estudo a partir de um dataset. Este deve incluir dados já tratados e estar no formato .csv.

- Clicar na caixa de texto do Dataset path e escolher o diretório do ficheiro .csv a ler.
- Clicar na caixa de texto do Save path for the model e escolher o directório onde guardar o ficheiro do modelo treinado.
- 3. Clicar no botão *Learn*.

B. Classificação

Com o modelo da patologia criado, é possível classificar um dado paciente (sample) com base nos dados guardados neste modelo. O resultado (Result) retorna o valor da classe (inteiro) referente a um diagnóstico.

- Clicar na caixa de texto do Model e escolher o ficheiro com o modelo.
- 2. Clicar no botão Load para carregar o modelo.
- 3. Clicar na caixa de texto da Sample e introduzir a amostra.
- 4. Clicar no botão Classify.

V. CONCLUSÕES

Classify

Result: 0

Neste projeto, foi desenvolvido um algoritmo que classifica pacientes, para uma dada patologia, com base em dados obtidos, à priori, sobre a mesma. Este foi implementado através do algoritmo de Chow liu — um método gráfico probabilístico, de segunda ordem, que evita o sobreajuste de dados (overfitting), calculando probabilidades entre variáveis com o auxílio de certos tipos de objetos, designadamente grafos e árvores. Este revelou-se importante e eficiente, sendo uma possível contribuição para o futuro da tecnologia em medicina.

Por fim, esta temática, estando intimamente relacionada com a nossa área (engenharia biomédica), foi também um fator de motivação para a boa implementação e funcionamento do algoritmo, permitindo, também, desenvolver as nossas competências e habilidades na linguagem de programação JAVA, nomeadamente na criação eficiente de algoritmos.

VI. REFERÊNCIAS

- Santos Ribeiro, Rodrigo. (2018). Algoritmos para Estimação de Modelos Gráficos. Universidade de São Paulo, Instituto de Matemática e Estatística. Acedido dem https://linux.ime.usp.br/ ~rodrigorsdc/mac0499/monografia.pdf.
- Introduction to Algorithms, T. Cormen, C. Leiserson, R. Rivest e C. Stein, 2001, McGraw Hill e MIT Press, 3^a edição.