Q1

(a) We need to show both directions:

 \implies :

Case 1. If $b \ge 0$, then $|b| \le a \implies b \le a$ by the definition of absolute value.

Case 2. If b < 0, then

$$|b| \le a \implies -b \le a$$
 by the defintion of $|b|$
 $\implies -a \le -(-b)$ by theorem 3.2(i)
 $\implies -a \le b$

Thus combining both cases, we have $-a \le b \le a$.

 \iff :

- Case 1. If $b \ge 0$, then b = |b| by the definition of absolute value and $a \ge b \ge 0$. From the assumption $b \le a$, we have $|b| \le a$.
- Case 2. If b < 0, then -b = |b| by the definition of absolute value. From the assumption $-a \le b$, we have $-b \le -(-a) = a$ by 3.2(i). Thus $|b| \le a$. Thus combining both cases, we have $|b| \le a$.
- (b) From part (a), we only need to show that $-|a-b| \le |a|-|b| \le |a-b|$. Observe that $|a|=|a-b+b| \le |a-b|+|b| \Longrightarrow |a|-|b| \le |a-b|+|b|-|b|=|a-b|$. The second inequality comes from Triangle Inequality 3.7. The implication comes from properties A4&O4.

Also observe that $|b| = |b - a + a| \le |b - a| + |a|$ by Triangle Inequality. This implies

$$|b| - |a| \le |b - a| \implies -|b - a| \le -(|b| - |a|)$$

$$\implies -|-(a - b)| \le -|b| + |a|$$

$$\implies -|a - b| \le |a| - |b|$$

Thus we have $-|a-b| \le |a| - |b| \le |a-b|$ which implies $||a| - |b|| \le |a-b|$.

 $\mathbf{Q2}$

(a) We have

$$2(\sqrt{n+1} - \sqrt{n}) = 2(\sqrt{n+1} - \sqrt{n}) \cdot \frac{\sqrt{n+1} + \sqrt{n}}{\sqrt{n+1} + \sqrt{n}}$$
$$= \frac{2}{\sqrt{n+1} + \sqrt{n}}$$
$$< \frac{2}{\sqrt{n} + \sqrt{n}} \quad \text{by } \sqrt{n+1} > \sqrt{n}$$
$$= \frac{1}{\sqrt{n}}$$

Thus we prove the first inequality. Again we have

$$2(\sqrt{n} - \sqrt{n-1}) = 2(\sqrt{n} - \sqrt{n-1}) \cdot \frac{\sqrt{n} + \sqrt{n-1}}{\sqrt{n} + \sqrt{n-1}}$$
$$= \frac{2}{\sqrt{n} + \sqrt{n-1}}$$
$$> \frac{2}{\sqrt{n} + \sqrt{n}} \quad \text{by } \sqrt{n-1} < \sqrt{n}$$
$$= \frac{1}{\sqrt{n}}$$

Thus we prove the second inequality, completing the proof.

(b) We have

$$\sum_{k=1}^{n} \frac{1}{\sqrt{k}} > \sum_{k=1}^{n} 2(\sqrt{k+1} - \sqrt{k}) \text{ by assertion (a)}$$

$$= 2(\sqrt{2} + \sqrt{3} + \dots + \sqrt{n+1} - 1 - \sqrt{2} - \sqrt{3} - \dots - \sqrt{n})$$

$$= 2(\sqrt{n+1} - 1)$$

$$> 2(\sqrt{n} - 1)$$

$$= 2\sqrt{n} - 2$$

Thus $\sum_{k=1}^{n} \frac{1}{\sqrt{k}} > 2\sqrt{n} - 2$, completing the proof.

(c) • Induction Hypothesis: For all integer $n \ge 2$, $\sum_{k=1}^{n} \frac{1}{\sqrt{k}} < 2\sqrt{n} - 1$.

• Base Case n=2: $\sum_{k=1}^{2} \frac{1}{\sqrt{k}} = 1 + \frac{1}{\sqrt{2}} < 2\sqrt{2} - 1$.

• Induction Step n + 1:

$$\sum_{k=1}^{n+1} \frac{1}{\sqrt{k}} = \sum_{k=1}^{n} \frac{1}{\sqrt{k}} + \frac{1}{\sqrt{n+1}}$$

$$< 2\sqrt{n} - 1 + \frac{1}{\sqrt{n+1}} \text{ by the hypothesis}$$

$$< 2\sqrt{n} - 1 + 2(\sqrt{n+1} - \sqrt{n}) \text{ by (a)}$$

$$= 2\sqrt{n+1} - 1$$

Thus we have $\sum_{k=1}^{n+1} \frac{1}{\sqrt{k}} < 2\sqrt{n+1} - 1$, completing the induction step and the proof.

$\mathbf{Q3}$

The question can be reformulated to: show that for each $\epsilon > 0$, let $b_1 = b + \epsilon > b$ with $a, b \in \mathbb{R}$, if $a \leq b_1 = b + \epsilon$, then $a \leq b$. Suppose the implication does not hold which is $\exists a \in \mathbb{R}$, $(a \leq b_1 = b + \epsilon) \land (a > b)$. Then let $\epsilon = \frac{a-b}{2}$, and we will have

$$a \le b + \epsilon \implies a \le b + \frac{a - b}{2}$$

$$\implies \frac{a}{2} \le \frac{b}{2}$$

$$\implies a < b$$

The last implication contradicts to the assumption that a > b. Thus the implication does hold.

$\mathbf{Q4}$

We will use proof by contradiction. Suppose $\sup S > \inf T$. Then by the definition of $\sup S$, $\exists s \in S$ such that $s > \inf T$. Otherwise, $\inf T$ is an upper bound of S smaller than $\sup S$. This implies that there exists $s \in S$ such that $\forall t \in T, \ s > \inf T \ge t \implies s > t$. This contradicts to the condition that $s \le t$ for all $s \in S$ and $t \in T$. Thus $\sup S \le \inf T$, completing the proof.

Q5

- (a) A does not have a minimum or maximum; $\inf(A) = 0$ and $\sup(A) = \infty$.
- (b) B does not have a minimum, but max(B) = 2; inf(B) = 0 and sup(B) = 2.
- (c) $\min(C) = -1$, but C does not have a maximum; $\inf(C) = -1$ and $\sup(C) = \infty$.
- (d) $\min(D) = 0$ and $\max(D) = 3$; $\inf(D) = 0$ and $\sup(D) = 3$.
- (e) $\min(E) = 2$ but E does not have a maximum; $\inf(E) = 2$ and $\sup(E) = \infty$.
- (f) Essentially $F = \{1\}$, so the minimum, maximum, infimum, and supremum of F are all 1.