# Задача 3.3.4 Эффект Холла в полупроводниках

Лось Денис (группа 611) 19 октября 2017

**Цель работы:** измерение подвижности и концентрации носителей заряда в полупроводниках.

**В работе используются:** электромагнит с источником питания, цифровой вольтметр, батарейка 1.5 В, реостат, миллиамперметр, образцы легированного германия, измеритель магнитной индукции.

## Экспериментальная установка

Электрическая схема установки для измерения ЭДС Холла представлена на рис.1



Рис. 1: Схема установки для исследования эффекта Холла в полупроводниках

В зазоре электромагнита создаётся постоянное магнитное поле, величину которого можно менять с помощью регуляторов источника питания электромагнита. Ток питания электромагнита измеряется амперметром источника питания  $A_1$ . Разъём  $K_1$  позволяет менять направление тока в обмотках электромагнита.

Образец из легированного германия, смонтированный в специальном держателе, подключается к батарее. При замыкании ключа  $K_2$  вдоль длинной стороны образца

течёт ток, величина которого регулируется реостатом R и измеряется миллиамперметром  $A_2$ . В образце с током, помещённом в зазор электромагнита, между контактами 3 и 4 возникает разность потенциалом  $U_{34}$ , которая измеряется с помощью цифрового вольтметра.

Контакты 3 и 4 вследствие неточности подпайки не всегда лежат на одной эквипотенциали, и тогда напряжение между ними связано не только с эффектом Холла, но и с омическим падением напряжения, вызванным протеканием основного тока через образец. Измеряемая разность потенциалов при одном направлении магнитного поля равна сумме ЭДС Холла и омического падения напряжения, а при другом их разности. В этом случае ЭДС Холла  $\mathbb{E}_x$  может быть определено как половина алгебраической разности показаний вольтметра, полученных для двух противоположных направлений магнитного поля в зазоре.

Однако можно исключить влияние омического падения напряжения иначе, если при каждом токе через образец измерять напряжение между точками 3 и 4 в отсутствие магнитного поля. Тогда величина ЭДС Холла  $\mathcal{E}_X = U_{34} + U_0$ . При таком способе измерения нет необходимости проводить повторные измерения с противоложным направлением магнитного поля.

Измерив ток I и напряжение  $U_{35}$  между контактами 3 и 5 в отсутствие магнитного поля, можно, зная параметры образца, рассчитать проводимость материала образца:

$$\sigma = \frac{L_{35}}{a \cdot l} \frac{I}{U_{35}},$$

где  $L_{35}$  — расстояние между контактами 3 и 5, a — толщина образца, l — его ширина.

# Ход работы

#### Параметры установки

В данной экспериментальной установке:

$$a=2.2\,\mathrm{mm}$$
  $L_{35}=3.0\,\mathrm{mm}$   $l=2.5\,\mathrm{mm}$ 

#### Градуировка электромагнита

Проведём измерения магнитной индукции B в зависимости от значения тока через электромагнит  $I_m$  и построим график зависимости  $B = f(I_m)$ .

| В, мТл | 887  | 840  | 784  | 712  | 629  | 537  | 441  | 340  | 253  | 143  |
|--------|------|------|------|------|------|------|------|------|------|------|
| I, A   | 1.05 | 0.95 | 0.85 | 0.75 | 0.65 | 0.54 | 0.44 | 0.34 | 0.25 | 0.15 |



Рис. 2: График зависимости  $B = f(I_m)$ 

Определив коэффициент наклона графика, получим, что:

$$B = 915 \cdot I \quad (\sigma_B = 2\%)$$
,

где I измеряется в амперах, а значение B получается в миллитеслах.

#### Измерение ЭДС Холла

1. Проведём измерения ЭДС Холла при различных значениях тока через образец. Для этого вставим образец в зазор выключенного электромагнита и будем определять напряжение  $U_0$  между холловскими контактами 3 и 4 для каждого значения тока через образец. Включив электромагнит, снимем зависимость напряжения  $U_{34}$  от тока  $I_m$  через обмотки магнита для каждого фиксированного тока через образец.

| $\mathscr{E}_x$ , MK | B   -4 | 14 | -41  | -38 | -35 | -31 | -28 | -22 | -16  |
|----------------------|--------|----|------|-----|-----|-----|-----|-----|------|
| I, A                 | 1.1    | 19 | 1.00 | 0.9 | 0.8 | 0.7 | 0.6 | 0.5 | 0.35 |

Таблица 1: Таблица измерения  $U_{34}=f(I_m)$  при  $I=0.25~\mathrm{mA}$  и  $U_0=-10~\mathrm{mkB}$ 

| $\mathscr{E}_x$ , мкВ | -71  | -65  | -59 | -50  | -41 | -35 | -23  |
|-----------------------|------|------|-----|------|-----|-----|------|
| I, A                  | 1.25 | 1.05 | 0.9 | 0.75 | 0.6 | 0.5 | 0.35 |

Таблица 2: Таблица измерения  $U_{34}=f(I_m)$  при I=0.4 мА и  $U_0=-15$  мкВ

| $\mathscr{E}_x$ , мкВ | -89  | -82  | -74 | -63  | -52 | -43 | -29  |
|-----------------------|------|------|-----|------|-----|-----|------|
| I, A                  | 1.25 | 1.05 | 0.9 | 0.75 | 0.6 | 0.5 | 0.35 |

Таблица 3: Таблица измерения  $U_{34}=f(I_m)$  при I=0.5 мА и  $U_0=-19$  мкВ

| $\mathscr{E}_x$ , мкВ | -106 | -97  | -87 | -75  | -61 | -51 | -35  |
|-----------------------|------|------|-----|------|-----|-----|------|
| I, A                  | 1.25 | 1.05 | 0.9 | 0.75 | 0.6 | 0.5 | 0.35 |

Таблица 4: Таблица измерения  $U_{34}=f(I_m)$  при I=0.6 мА и  $U_0=-22$  мкВ

| $\mathscr{E}_x$ , мкВ | -124 | -113 | -103 | -88  | -71 | -59 | -42  |
|-----------------------|------|------|------|------|-----|-----|------|
| I, A                  | 1.25 | 1.05 | 0.9  | 0.75 | 0.6 | 0.5 | 0.35 |

Таблица 5: Таблица измерения  $U_{34}=f(I_m)$  при I=0.7 мА и  $U_0=-26$  мкВ

|   | $\mathscr{E}_x$ , мкВ | -142 | -129 | -117 | -101 | -82 | -69 | -48  |
|---|-----------------------|------|------|------|------|-----|-----|------|
| ľ | I, A                  | 1.25 | 1.05 | 0.9  | 0.75 | 0.6 | 0.5 | 0.35 |

Таблица 6: Таблица измерения  $U_{34}=f(I_m)$  при I=0.8 мА и  $U_0=-30$  мкВ

| $\mathscr{E}_x$ , мк $\mathrm{B}$ | -163 | -146 | -132 | -114 | -92 | -77 | -53  |
|-----------------------------------|------|------|------|------|-----|-----|------|
| I, A                              | 1.25 | 1.05 | 0.9  | 0.75 | 0.6 | 0.5 | 0.35 |

Таблица 7: Таблица измерения  $U_{34}=f(I_m)$  при I=0.9 мА и  $U_0=-33$  мкВ

| $\mathscr{E}_x$ , мкВ | -178 | -163 | -147 | -127 | -103 | -87 | -59  |
|-----------------------|------|------|------|------|------|-----|------|
| I, A                  | 1.25 | 1.05 | 0.9  | 0.75 | 0.6  | 0.5 | 0.35 |

Таблица 8: Таблица измерения  $U_{34}=f(I_m)$  при I=1.0 мА и  $U_0=-37$  мкВ

Проведём измерения  $U_{34}=f(I_m)$  при другом направлении магнитного поля (повернув образец на  $180^\circ$  вокруг горизонтальной оси, проходящей вдоль ручки держателя).

| $\mathscr{E}_x$ , мк $\mathrm{B}$ | -178 | -163 | -147 | -126 | -104 | -86 | -61  |
|-----------------------------------|------|------|------|------|------|-----|------|
| I, A                              | 1.25 | 1.05 | 0.9  | 0.75 | 0.6  | 0.5 | 0.35 |

Таблица 9: Таблица измерения  $U_{34}=f(I_m)$  при I=1.0 мА и  $U_0=-44$  мкВ

2. Построим семейство характеристик  $\mathscr{E}_x = f(B)$  при разных значениях тока I через образец. Определим угловые коэффициенты  $k(I) = \Delta \mathscr{E}_x/\Delta B$  полученных прямых.



Рис. 3: График зависимости  $\mathscr{E}_x = f(B)$  при разных значениях тока I

| k(I), мВ / Тл | <i>I</i> , мА | $\Delta_k$ |
|---------------|---------------|------------|
| -0.0452       | 0.25          | 0.0013     |
| -0.068        | 0.4           | 0.002      |
| -0.086        | 0.5           | 0.003      |
| -0.102        | 0.6           | 0.003      |
| -0.119        | 0.7           | 0.003      |
| -0.136        | 0.8           | 0.004      |
| -0.154        | 0.9           | 0.004      |
| -0.171        | 1.0           | 0.005      |

3. Построим график k=f(I) и найдём коэффициент его наклона. Определим величину постоянной Холла  $R_x$  как

$$R_x = -\frac{\Delta k(I)}{\Delta I} \cdot a$$

Далее рассчитаем концетрацию n носителей тока в образце по формуле:

$$n = \frac{1}{e \cdot R_x}$$



Рис. 4: График зависимости k = f(I)

С помощью метода наименьших квадратов получим, что

$$\frac{\Delta k(I)}{\Delta I} = -(170.8 \pm 0.5) \cdot 10^{-3} \frac{\mathrm{B}}{\mathrm{T}_{\mathrm{J}} \cdot \mathrm{A}}$$

Следовательно,

$$R_x = (357.6 \pm 1.2) \cdot 10^{-6} \frac{\text{M}^3}{\text{K}_{\text{TI}}}$$

Тогда концентрация носителей тока в образце

$$n = (1.748 \pm 0.006) \cdot 10^{22} \, \frac{1}{\text{m}^3}$$

## Определение характера проводимости

В данном случае проводимость дырочная. Иллюстрации приведены в приложении к отчёту.

#### Определение удельной проводимости

При токе через образец I=1 мА измерим падение напряжения  $U_{35}$ . Получим, что  $U_{35}=1.765$  мВ. Проводимость материала

$$\sigma = (309.0 \pm 0.2) \frac{1}{\text{OM} \cdot \text{M}}.$$

Следовательно, подвижность носителей тока

$$b = \frac{\sigma}{en} = (1104 \pm 3) \frac{\text{cm}^2}{\text{B} \cdot \text{c}}$$