2. Задача оптимального управления. Принцип максимума.

Пусть имеется некоторая динамическая система, *состояние* которой в каждый момент времени t описывается вектор-функцией $x(t) \in \mathbb{R}^n$. На состояние системы можно воздействовать, изменяя управляемые параметры $u(t) \in \mathbf{U}_t \subseteq \mathbb{R}^r$. Будем рассматривать класс куусочно-непрерывных управлений u(t).

При заданном *управлении* u(t) состояние системы изменяется во времени согласно закону:

$$\dot{x}(t) = f(t, x(t), u(t)).$$
 (2.1)

Рассмотрим *задачу оптимального управления* данной системой: определить управление $u^*(t)$, доставляющее экстремум *критерию качества* вида:

$$J(x(\cdot), u(\cdot)) = \int_{t_0}^{t_1} F(t, x(t), u(t)) dt + \Phi_0(t_0, t_1, x(t_0), x(t_1)) \to \max.$$
 (2.2)

При этом первое слагаемое (*интегральная часть* критерия) характеризует качество функционирования системы на всем промежутке управления $[t_0, t_1]$, тогда как второе слагаемое (*терминальный член*) — только конечный результат воздействия управления, определяемый начальным $x(t_0)$ и конечным $x(t_1)$ состояниями и, возможно, моментами начала и окончания управления t_0 и t_1 . В зависимости от физического смысла задачи интегральная или терминальная часть критерия может быть равна нулю.

На процесс функционирования системы могут накладываться дополнительные ограничения в форме краевых условий:

$$\Phi_i(t_0, t_1, x(t_0), x(t_1)) = 0, \quad i = 1..m.$$
 (2.3)

задающие множества допустимых начальных и конечных состояний системы и моментов начала и окончания управления.

Важным частным случаем (2.3) являются условия вида:

$$x(t_0) - x_0 = 0; \quad x(t_1) - x_1 = 0,$$
 (2.4)

соответствующие закрепленному левому или правому концу фазовой траектории.

Моменты времени начала и окончания управления, t_0 и t_1 , могут полагаться как известными, тогда говорят о задаче с фиксированным

временем управления, или неизвестными (задача с *нефиксированным* моментом начала или окончания управления).

Необходимые условия оптимальности в данной задаче, точнее, необходимые условия сильного локального максимума даются принципом максимума Понтрягина.

Теорема. Пусть ($x^*(t)$, $u^*(t)$, t_0^* , t_1^*) — оптимальный процесс в задаче (2.1) — (2.3). Тогда найдутся одновременно не равные нулю множители λ и ψ : $\lambda = (\lambda_0, ..., \lambda_m) \in \mathbb{R}^{m+1}$, $\lambda_0 \ge 0$ и $\psi(t) = (\psi_1(t), ..., \psi_n(t)) \in \mathbb{R}^n$, такие, что выполнены следующие условия:

а). Функция Понтрягина задачи

$$H(t, x, u, \psi, \lambda_0) = \lambda_0 F(t, x, u) + (\psi, f(t, x, u))$$
 (2.5)

при каждом $t \in [t_0, t_1]$ достигает максимума по u в т. $u^*(t)$, когда $x = x^*(t)$, $\psi = \psi(t)$.

б). Вектор-функция $\psi(t)$ удовлетворяет *сопряженной системе* дифференциальных уравнений:

$$\dot{\psi}_{i}(t) = -\frac{\partial H(t, x * (t), u * (t), \psi(t), \lambda_{0})}{\partial x_{i}}; \quad i = 1, ..., n,$$
(2.6)

с краевыми условиями (условия трансверсальности)

$$\psi_{i}(t_{0}^{*}) = -\left(\lambda, \frac{\partial \Phi(t_{0}^{*}, t_{1}^{*}, x^{*}(t_{0}), x^{*}(t_{1}))}{\partial x_{i}(t_{0})}\right);$$

$$\psi_{i}(t_{1}^{*}) = \left(\lambda, \frac{\partial \Phi(t_{0}^{*}, t_{1}^{*}, x^{*}(t_{0}), x^{*}(t_{1}))}{\partial x_{i}(t_{1})}\right).$$
(2.7)

в). Выполнены условия на подвижные концы:

$$H(t, x^*(t), u^*(t), \psi(t), \lambda_0) \mid_{t=t_0} = (\lambda, \frac{\partial \Phi(t_0^*, t_1^*, x^*(t_0), x^*(t_1))}{\partial t_0});$$
(2.8)

$$H(t, x^*(t), u^*(t), \psi(t), \lambda_0) \mid_{t=t_1} = -(\lambda, \frac{\partial \Phi(t_0^*, t_1^*, x^*(t_0), x^*(t_1))}{\partial t_1}).$$
 (2.9)

Замечания.

1. Множитель Лагранжа λ_0 определяет чувствительность оптимального решения задачи к виду интегральной части функционала. В вырожденном случае совокупность ограничений задачи такова, что оптимальное управление $u^*(t)$ не зависит от вида интегранта F(t, x(t), u(t)). При этом из условий принципа максимума следует, что $\lambda_0 = 0$. В невырожденном случае $\lambda_0 > 0$, поэтому ее можно положить равной 1 (разделив функцию Н на λ_0). При этом условия принципа максимума не изменятся.

Как правило, из физического смысла задачи понятно, допускаются ли в ней вырожденные решения. При исследовании таких решений необходимо обращать внимание на выполнение условия теоремы о том, что множители λ и $\psi(t)$ не могут одновременно быть равными 0.

2. Для задачи с закрепленными концами (2.4) сопряженная функция $\psi(t)$ имеет свободные концы, т.е. соответствующие условия трансверсальности отсутствуют.

Обратно, для задачи со свободными концами, не содержащей ограничений (2.3), сопряженная функция имеет закрепленные концы, определяемые соотношениями:

$$\psi_{i}(t_{0}) = -\frac{\partial \Phi_{0}(t_{0}, t_{1}, x(t_{0}), x(t_{1}))}{\partial x_{i}(t_{0})}; \quad \psi_{i}(t_{1}) = \frac{\partial \Phi_{0}(t_{0}, t_{1}, x(t_{0}), x(t_{1}))}{\partial x_{i}(t_{1})}. \tag{2.7'}$$

Примеры

1. Найти оптимальное управление в задаче:

$$J(u, x) = \int_{0}^{4} (u^{2} + x) dt \rightarrow \min; \quad \dot{x} = u; \, x(0) = 0; \mid u \mid \le 1$$

Решение . Перепишем данную ее в виде задачи на максимум

$$-\int_{0}^{4} (u^2 + x)dt \to \max$$

и воспользуемся теоремой о необходимых условиях.

Функция Понтрягина (рис. 2.1):

$$H = -\lambda_0(u^2 + x) + \psi u;$$

Сопряженная система:

$$\dot{\psi} = -\frac{\partial H}{\partial x} = \lambda_0;$$

Условие трансверсальности:

$$\psi(4) = \frac{\partial \Phi_0}{\partial x(1)} = 0$$

(т.к. правый конец фазовой траектории свободен).

Исследуем вырожденный случай: положим $\lambda_0 = 0$.

Тогда $\dot{\psi} \equiv 0$, откуда следует, что ψ = const. Но из условия трансвер-

Puc. 2.1

сальности следует, что $\psi = 0$. Таким образом получили, что множители λ_0 и ψ одновременно равны 0, что противоречит условию теоремы. Следовательно, вырожденных решений задача не имеет.

Положим $\lambda_0 = 1$. Тогда:

$$H = \psi u - u^2 - x \rightarrow \max_{u} ;$$

$$\dot{\psi} = 1; \quad \psi(4) = 0.$$

H является квадратичной отрицательно определенной функцией u. Вершина параболы отыскивается из условия экстремума I порядка:

$$\frac{\partial H}{\partial u} = \psi - 2u = 0$$

Если она лежит внутри отрезка изменения управления [-1, 1], то она и является точкой максимума. В противном случае максимум H достигается на правой либо левой границе отрезка (см. рис. 2.1).

Таким образом, получаем:

$$u^*(t) = \begin{cases} \operatorname{sgn} \psi(t), & |\psi(t)| > 2 \\ \frac{\psi(t)}{2} & |\psi(t)| \leq 2 \end{cases}$$

Оптимальное управление зависит от величины $\psi(t)$. Решая сопряженную систему, получаем $\psi(t)=t-4$. Видно, что $-4 \le \psi(t) \le -2$ при $0 \le t \le 2$ и $-2 \le \psi(t) \le 0$ при $2 \le t \le 4$. Тогда

$$u^*(t) = \begin{cases} -1, & 0 \le t \le 2\\ \frac{t-4}{2} & 2 \le t \le 4 \end{cases}.$$

Определим теперь фазовую траекторию $x^*(t)$, соответствующую оптимальному управлению:

$$\dot{x} = u^*(t) = \begin{cases} -1, & 0 \le t \le 2\\ \frac{t-4}{2} & 2 \le t \le 4 \end{cases} \implies x^*(t) = \begin{cases} -t + c_1, & 0 \le t \le 2\\ \frac{t^2}{4} - 2t + c_2, & 2 \le t \le 4 \end{cases}.$$

Для участка траектории при $t \in [0, 2]$, постоянная интегрирования c_1 находится из начального условия $x(0) = 0 \Rightarrow c_1 = 0$. Для участка при $t \in [2, 4]$ воспользуемся условием непрерывности фазовой траектории x(t) в точке t = 2:

$$\lim_{t\to 2^-} x(t) = \lim_{t\to 2^+} x(t).$$

Из этого условия получаем $c_2 = 1$. Итак, окончательно:

$$u^*(t) = \begin{cases} -1, & 0 \le t \le 2\\ \frac{t-4}{2} & 2 \le t \le 4 \end{cases}, \qquad x^*(t) = \begin{cases} -t, & 0 \le t \le 2\\ \frac{t^2}{4} - 2t + 1, & 2 \le t \le 4 \end{cases}.$$

2. Найти траекторию x(t), доставляющую минимум функционалу:

$$J(u,x) = \int_{0}^{2} |\ddot{x}| dt,$$

при ограничениях:

$$\ddot{x} \le 2$$
, $x(0) = 0$, $x(2) = 1$, $\dot{x}(2) = 2$.

Решение. Введем обозначения $x(t) = x_1(t)$, $\dot{x}(t) = x_2(t)$, $\ddot{x}(t) = u(t)$. Тогда исходная задача запишется в следующем виде:

$$J(u, x) = \int_{0}^{2} |u| dt \to \min, \quad u(t) \le 2,$$

$$\dot{x}_{1} = x_{2}, \quad x_{1}(0) = 0, \quad x_{1}(2) = 1,$$

$$\dot{x}_{2} = u, \quad x_{2}(2) = 2,$$

Выпишем необходимые условия оптимальности для этой задачи:

$$H = -\lambda_0 |u| + \psi_1 x_2 + \psi_2 u \to \max;$$

$$\dot{\psi}_1 = -\frac{\partial H}{\partial x_1} = 0; \quad \dot{\psi}_2 = -\frac{\partial H}{\partial x_2} = -\psi_1; \quad \psi_2(0) = 0.$$
(2.10)

Рассмотрим вырожденный случай $\lambda_0 = 0$. Тогда $H = \psi_1 x_2 + \psi_2 u$ и максимум достигается, когда:

$$u(t) = \begin{cases} -\infty, & \psi_2(t) < 0 \\ (-\infty, 2], & \psi_2(t) = 0. \\ 2, & \psi_2(t) > 0 \end{cases}$$

Управление $u(t) = -\infty$ при $\psi_2(t) < 0$ нереализуемо. При $\psi_2(t) = 0$ получаем $\psi_1(t) = 0$, что противоречит условиям принципа максимума. При u(t) = 2 траектория движения имеет следующий вид:

$$\dot{x}_2 = 2 \implies x_2(t) = 2t + a,$$
 (2.11)
 $\dot{x}_1 = x_2 \implies x_1(t) = t^2 + at + b.$

Тогда из краевых условий получаем: a=-2, a=-3/2, b=0. Таким образом, для u(t)=2 при $\psi_2(t)>0$ допустимых экстремалей нет.

Рассмотрим теперь невырожденный случай $\lambda_0 = 1$. Условие оптимальности по u(t) принимает вид

$$H = -|u| + \psi_1 x_2 + \psi_2 u \rightarrow \max, u \le 2.$$

Решением этой задачи максимизации (2.10) в этом случае является управление

$$u^*(t) = \begin{cases} 0, & \psi_2(t) < 1 \\ 2, & \psi_2(t) \ge 1 \end{cases}$$

Из сопряженной системы получаем

$$\psi_1(t) = c_1; \quad \psi_2(t) = -c_1t + c_2.$$

Учитывая условие трансверсальности $\psi_2(0) = 0$, находим $c_2 = 0$, откуда $\psi_2(t) = -c_1 t$. Для такой функции $\psi_2(t)$ величина ($\psi_2(t) - 1$) может менять знак не более одного раза, поэтому оптимальное управление будет иметь вид:

$$u^*(t) = \begin{cases} 0, & 0 \le t \le \tau \\ 2, & \tau \le t \le 2 \end{cases}$$

Определим момент переключения управления τ . На отрезке $[0, \tau]$ траектория подчиняется системе уравнений:

$$\dot{x}_2 = 0 \implies x_2(t) = a,$$

 $\dot{x}_1 = x_2 \implies x_1(t) = at + b.$

Из начального условия $x_1(0) = 0$ находим b = 0, т.е. $x_1(t) = at$.

На отрезке [τ , 2] основная система уравнений имеет вид (2.11), при это из краевых условий получаем a=-2, b=1.

Из условия непрерывности фазовой траектории в точке τ получаем систему уравнений для определения параметров τ и a:

$$x_1(\tau^-) = at = \tau^2 - 2\tau + 1 = x_1(\tau^+); \quad x_2(\tau^-) = a = 2\tau - 2 = x_2(\tau^+).$$

Отсюда $\tau = 1$, a = 0.

Итак, оптимальный процесс в данной задаче имеет вид:

$$x^*(t) = x_1^*(t) = \begin{cases} 0, & 0 \le t \le 1 \\ t^2 - 2t + 1, & 1 \le t \le 2 \end{cases}$$

3. Простейшая задача оптимального управления для потребителя.

Рассматривается модель потребителя:

$$\max \int_{0}^{T} ce^{-\beta t} dt$$

$$\dot{W} = rW - c, \ t \in [0, T].$$

Граничные условия имеют вид: $W(0) = W_0$, $W(T) = W_T$ и ограничение на объем мгновенного потребления c: $0 \le c \le 1$. Здесь W - реальное богатство потребителя, которое прирастает с темпом r, это фазовая координата. Часть его потребитель тратит на потребление c - это управление, а другая часть идет на приращение богатства. Для определенности будем считать, что $\beta < r$, а также, что W_0 $e^{rt} > W_T$.

Функция Понтрягина Н и сопряженная система имеют вид:

$$H = \psi_0 c e^{-\beta t} + \psi_1 (rW - c),$$

$$\dot{\psi}_1 = -r \psi_1,$$

где $\psi_0 = const \ge 0$ и одновременно ψ_0 и ψ_1 не обращаются тождественно в ноль. Уравнение можно сразу проинтегрировать: $\psi_1(t) = \psi_1(0) \ e^{-rt}$. Условие максимума H по c дает соотношение:

$$(\psi_0 e^{-\beta t} - \psi_1(0) e^{-rt}) c \to \max \ \text{no } c: 0 \le c \le 1.$$

Отсюда заключаем, что если $\psi_1(0) \leq 0$, то получаем режим $c \equiv 1$, который будет оптимальным при некотором достаточно высоком $W(0)_{\text{max}}$. Если наше W_0 меньше, то отрицательное $\psi_1(0)$ не годится, значит $\psi_1(0) > 0$. В этом случае, если $\psi_0 = 0$, то реализуется режим $c \equiv 0$, который также будет оптимальным при некотором достаточно низком $W(0)_{\text{min}}$. Если наше W_0 выше, то нулевое ψ_0 не годится, значит $\psi_0 > 0$. В таком случае его можно считать равным 1, воспользовавшись тем, что сопряженный вектор $\psi = (\psi_0, \psi_1)$ определен с точностью до положительного множителя. Условие максимума H по c запишем в более удобном виде:

$$(1 - \psi_1(0) e^{-(r-\beta)t}) c \to \max \text{ no } c: 0 \le c \le 1.$$

Отсюда видно, что режимы, для которых $W(0)_{\min} < W(0) < W(0)_{\max}$ проходят с переключением: $\psi_1(0) > 1$, c(t) = 0 на начальном отрезке, затем в некоторый момент t наступает равенство: $\psi_1(0)e^{-(r-\beta)t} = 1$ и затем c(t) = 1 до конца интервала управления.

То, что описанные режимы действительно доставляют максимум функционалу, следует из вогнутости функции Понтрягина по совокупности фазовой координаты и управления, W и c, такая теорема будет доказана впереди. Картина фазовых траекторий представлена на рисунке.

Аналогичный анализ можно провести для случая, когда $\beta > r$. Тогда переключения будут с c = 1 на c = 0. Результаты приведены на рисунке 2.2.

Puc. 2.2.

4. Задача оптимального управления со свободным правым концом. Рассматривается модель потребителя:

$$\max \int_{0}^{T} ce^{-\beta t} dt + \Phi(W_{T})$$

$$\dot{W} = rW - c, \ t \in [0, T].$$

Граничные условия имеют вид: $W(0) = W_0$, W_T – свободно, ограничение на объем мгновенного потребления c: $0 \le c \le 1$. Функция Φ – определена и дифференцируема на R_+ , $\Phi' > 0$, $\Phi'' < 0$. Для определенности будем считать, что $\beta < r$.

Функция Понтрягина Н и сопряженная система имеют вид:

$$H = \psi_0 c e^{-\beta t} + \psi_1 (rW - c),$$

$$\dot{\psi}_1 = -r \psi_1,$$

с граничным условием (условием трансверсальности)

$$\psi_1(T) = \psi_0 \Phi'(W_T),$$

где $\psi_0 = const \ge 0$ и одновременно ψ_0 и ψ_1 не обращаются тождественно в ноль. Отсюда следует, что $\psi_0 > 0$, $\psi_1 > 0$. Положим $\psi_0 = 1$. Сопряженное уравнение можно проинтегрировать: $\psi_1(t) = \psi_1(0) e^{-rt}$.Тогда условие трансверсальности принимает вид:

Условие максимума H по c дает соотношение:

$$(1 - \psi_1(0) e^{-(r-\beta)t}) c \to \max \text{ no } c: 0 \le c \le 1.$$

Возможны следующие режимы:

$$\psi_1(0) e^{-(r-\beta)t} > 1 \Rightarrow c = 0,$$

$$\psi_1(0) e^{-(r-\beta)t} < 1 \Rightarrow c = 1.$$

При этом возможно не более одного переключения с режима c=0 на режим c=1. В частности, при t=T, учитывая условие трансверсальности, можно разбить терминальное множество $\{(t,W): t=T, W\geq 0\}$ на плоскости (t,W) на две части:

$$\Phi'(W_T) e^{\beta T} > 1$$
, где $c = 0$ и $\Phi'(W_T) e^{\beta T} < 1$, где $c = 1$.

Точка $W_T^*: \Phi'(W_T^*) e^{\beta T} = 1$ разграничивает эти области. Из условия максимума H по c видно, что если $W(T) = W_T^*$, то при всех t < T c(t) = 0. Этому режиму соответствует траектория $W(t) = W_0^* e^{rt}$. В силу вогнутости Φ неравенство $\Phi'(W_T) e^{\beta T} > 1$ сохранится для всех начальных условий $W_0 < W_0^*$. Таким образом для всех $W_0 < W_0^*$ получаем экстремали $W(t) = W_0 e^{rt}$ с управлением $c \equiv 0$.

При $W_0 > W_0^*$ возможно переключение. Построим кривую переключения в координатах (t, W). На оси t = T кривая начинается в т. W_T^* . Чтобы определить ее при t < T заметим, что момент переключения t находится из условия:

$$\psi_1(0) e^{-(r-\beta)t} = 1.$$

Выразим $\psi_1(0)$ из условия трансверсальности и подставим в последнее уравнение. Получим:

$$\Phi'(W_T) e^{rT} e^{-(r-\beta)t} = 1$$
 или
$$\ln \Phi'(W_T) + r(T-t) + \beta t = 0.$$
 (2.12)

Зная, что при $W_T > W_T^*$ на последнем участке траектории c=1 проинтегрируем уравнение $\dot{W} = rW - 1$ в пределах от t до T, считая, что $W(T) = W_T$, а в момент t имеем X:

$$W(T) e^{-rT} - X e^{-rt} = (e^{-rT} - e^{-rt})/r$$
, или $W(T) = e^{rT} (X e^{-rt} + (e^{-rT} - e^{-rt})/r)$.

Подставим это выражение для W(T) в уравнение (2.12):

$$\ln \Phi'(r^{-1} - (r^{-1} - X)e^{r(T-t)}) + rT - (r - \beta)t = 0.$$
 (2.13)

Неявная функция X(t) из соотношения (2.13) описывает кривую переключения. Легко проверить, что кривая X(t) убывает (с темпом, большим, чем r) с ростом t от t=0 до t=T. Любая траектория, начинающаяся

с $W_0 < X(0)$ переключается с c = 0 на c = 1 на кривой $X(\cdot)$. На этом задача синтеза оптимального управления завершена.

Полученные результаты проиллюстрированы на рисунке 2.3.

5. Задача на быстродействие. Имеется динамическая система, характеризуемая координатой x и скоростью v. Параметром управления является ускорение системы, выбираемое из отрезка [-1, 1]. Требуется за минимальное время T перевести систему из начального состояния (x_0, v_0) в состояние (0, 0). Фиксируем время начала процесса. Время окончания, очевидно, свободное.

Решение. Запишем условие задачи в формальном виде:

$$T \rightarrow \min;$$

 $\dot{x} = v; \quad x(0) = x_0; \quad x(T) = 0;$
 $\dot{v} = u; \quad v(0) = v_0; \quad v(T) = 0;$
 $|u| \le 1.$

Функционал задачи может быть преобразован к интегральному виду:

$$-\int_{0}^{T}1dt \to \max.$$

І. Выпишем условия принципа максимума:

$$H = -\lambda_0 + \psi_1 v + \psi_2 u \to \max_{u};$$

$$\dot{\psi}_1 = -\frac{\partial H}{\partial x} = 0; \quad \dot{\psi}_2 = -\frac{\partial H}{\partial v} = -\psi_1; \quad H(t_1) = 0.$$

Так как и правый и левый конец фазовой траектории – закрепленные, то условия трансверсальности на сопряженные функции отсутствуют.

Так как функция Понтрягина линейна по u, то максимум H может достигаться только на концах отрезка изменения управления (за исключением случая, когда $\psi_2 = 0$). Таким образом оптимальное управление имеет вид

$$u^*(t) = \begin{cases} \operatorname{sgn} \psi_2(t), & \psi_2(t) \neq 0 \\ [-1, 1], & \psi_2(t) = 0 \end{cases}$$

где запись [-1, 1] означает, что u(t) в этом случае не определяется из условий принципа максимума.

Из сопряженной системы могут быть найдены $\psi_1(t)$ и $\psi_2(t)$:

$$\psi_1(t) = c; \quad \psi_2(t) = ct + d.$$

Кроме того, $\lambda_0 = \psi_2 u \mid_{t=T}$. Видно, что в зависимости от значений постоянных интегрирования c и d может иметь место несколько различных типов поведения $\psi_2(t)$:

- а). $c \equiv 0$. В этом случае $\psi_2(t) = d$. Тогда $u^*(t) = \operatorname{sgn} d \operatorname{постоянна}$ на [0, T].
- б). c < 0. Тогда $\psi_2(t)$ убывающая линейная функция. При этом знак $\psi_2(t)$ может изменяться не более одного раза, причем только с '+' на '-'. Таким образом:

$$u^*(t) = \begin{cases} 1, & t \in [0, \tau) \\ -1, & t \in (\tau, T] \end{cases}$$
 (2.14)

где $\tau \in [0, T]$ — момент переключения управления. $u(\tau)$ может быть определено произвольным образом, так как переопределение функции в одной точке не повлияет на значение интегрального функционала.

в). c > 0. Рассуждая аналогично предыдущему случаю, получим, что оптимальное управление может иметь вид:

$$u^*(t) = \begin{cases} -1, & t \in [0, \tau) \\ 1, & t \in (\tau, T] \end{cases}$$
 (2.15)

Вырожденный случай возможен только при $\psi_2(T) = 0$. Это происходит, когда начальные состояния (x(0), v(0)) переводятся в точку (0, 0) управлением $u^* = +1$ или $u^* = -1$.

Таким образом, выделены все возможные типы управлений при различных значениях сопряженных функций. Рассмотрим теперь поведение системы для этих управлений.

а). u(t) = 1. Тогда основная система имеет вид:

$$\dot{x} = v; \quad \dot{v} = 1,$$

откуда получаем:

$$v(t) = t + c_1; \quad x(t) = \frac{t^2}{2} + c_1 t + c_2.$$

Построим фазовую диаграмму поведения системы. Для этого выразим x(t) через v(t):

$$x(t) = \frac{t^2}{2} + c_1 t + c_2 = \left(\frac{t^2}{2} + c_1 t + c_1^2\right) - c_1^2 + c_2 = \frac{1}{2}v(t)^2 + d_1$$

Таким образом возможные фазовые траектории системы в этом случае представляют собой семейство квадратичных парабол, ориентированных вправо (см. рис. 2.4).

Движение системы вдоль этих траекторий будет происходить снизу вверх (т.к. v - возрастающая функция от <math>t).

Видно, что достижение конечной точки (0, 0) при помощи управления $u(t) \equiv 1$ возможно только для некоторых начальных условий, а именно, точек, лежащих на нижней ветви параболы $x_0 = \frac{1}{2} v_0^2$ (выделена жирным на рис. 2.4).

б). u(t) = -1. В этом случае:

$$\dot{x} = v;$$
 $\dot{v} = -1,$
 $v(t) = -t + c_3;$ $x(t) = -\frac{t^2}{2} + c_3t + c_4.$

Puc. 2.5

Выражая x(t) через v(t) аналогично предыдущему случаю, получаем:

$$x(t) = -\frac{t^2}{2} + c_3t + c_4 = -\left(\frac{t^2}{2} - c_3t + c_3^2\right) + c_3^2 + c_4 = -\frac{1}{2}v(t)^2 + d_2$$

Фазовые траектории системы при u(t) = -1 представляют семейство квадратичных парабол, ориентированных влево, движение вдоль траекторий происходит сверху вниз. Достижение конечной точки при $u(t) \equiv -1$ возможно только для точек, лежащих на верхней ветви параболы $x_0 = -\frac{1}{2} \, v_0^{\ 2}$.

Таким образом, для точек, лежащих на линии переключения

$$x_0 = \begin{cases} \frac{1}{2}v_0^2, & v_0 \le 0\\ -\frac{1}{2}v_0^2, & v_0 > 0 \end{cases}$$

оптимальное управление будет постоянным на всем отрезке [0, T]: $u^*(t) = \operatorname{sgn} x_0$. Здесь мы имеем вырожденный случай $\lambda_0 = 0$.

Для точек, лежащих над данной кривой, оптимальное управление будет иметь вид (2.15). Действительно, в противном случае система будет перемещаться под действием управления u(t) = 1 вправо вверх, и никогда не достигнет начала координат.

Аналогично, для точек, лежащих ниже линии переключения управление будет иметь вид (2.14).

Определим момент переключения управления τ . Пусть начальное состояние (x_0, v_0) находилось над линией переключения (см. рис. 2.5). Тогда траектория движения системы на отрезке времени $[0, \tau]$ описывается уравнениями:

$$v(t) = v_0 - t$$
; $x(t) = -\frac{t^2}{2} + v_0 t + x_0$.

С другой стороны, на отрезке $[\tau, T]$ система движется под действием управления u(t) = 1 и конечное ее состояние равно (0, 0). Тогда:

$$v(t) = t - T; \quad x(t) = \frac{t^2 + T^2}{2} - Tt.$$

Тогда из условий непрерывности фазовой траектории в момент времени au

$$v_0 - \tau = \tau - T; \quad -\frac{\tau^2}{2} + v_0 \tau + x_0 = \frac{\tau^2 + T^2}{2} - T\tau.$$

Решая эту систему относительно переменных τ и T, получаем:

$$\tau = v_0 + \sqrt{\frac{v_0^2}{2} + x_0}$$
; $T = v_0 + 2\sqrt{\frac{v_0^2}{2} + x_0}$.

Моменты переключения и окончания управления для начальных условий, лежащих ниже линии переключения, определяются аналогичным образом.

II. Приведем также решение, использующее функцию Лагранжа. Е рассматриваемой задаче она имеет следующий вид

$$\mathcal{L} = \int_{0}^{T} \psi_{1}(t)(v - \dot{x}) + \psi_{2}(t)(u - \dot{v})dt - \lambda_{0}T + \lambda_{1}(x(0) - x_{0}) + \lambda_{2}(v(0) - v_{0}) + \lambda_{3}x(T) + \lambda_{4}v(T).$$

Необходимые условия оптимальности состоят в том, что $\exists \lambda_0, \lambda_0, ..., \lambda_4, \psi_1(t), \psi_1(t)$, такие, что выполнено:

а). Уравнение Эйлера для лагранжиана $L = \psi_1(t)(v - \dot{x}) + \psi_2(t)(u - \dot{v})$:

$$-\frac{d}{dt}L_{\dot{x}} + L_{x} = 0; \quad -\frac{d}{dt}L_{\dot{y}} + L_{v} = 0,$$

что приводит к сопряженной системе:

$$\dot{\psi}_1 = 0; \quad \dot{\psi}_2 + \psi_1 = 0.$$

Условия трансверсальности по х для терминанта

$$\Phi(x(0), x(T), v(0), v(T), T) = -\lambda_0 T + \lambda_1 (x(0) - x_0) + \lambda_2 (v(0) - v_0) + \lambda_3 x(T) + \lambda_4 v(T) :$$

$$\psi_1(0) = -\lambda_1 \Phi'_{x(0)} = -\lambda_1; \quad \psi_1(T) = -\lambda_3 \Phi'_{x(T)} = -\lambda_3;$$

$$\psi_2(0) = -\lambda_2 \Phi'_{v(0)} = -\lambda_2; \quad \psi_2(T) = -\lambda_4 \Phi'_{v(T)} = -\lambda_4;$$

b). Оптимальность лагнажиана L по u (выписаны только слагаемые, зависящие от u):

$$\max_{u \in [-1,1]} \{ \psi_2(t)u \} \qquad \Rightarrow \qquad u * (t) = \begin{cases} \operatorname{sgn} \psi_2(t), & \psi_2(t) \neq 0 \\ [-1,1], & \psi_2(t) = 0 \end{cases}.$$

с). Стационарность функции Лагранжа по Т:

$$\mathcal{L}'_T = 0 \implies -\lambda_0 T + \lambda_3 \dot{x}(T) + \lambda_4 \dot{v}(T) = 0.$$

Видно, что условия (a) и (b) соответствуют условиям принципа максимума и приводят к аналогичным решениям. Условие (c) возникает для задач с нефиксированным временем окончания процесса и представляет собой дополнительное уравнение для определения оптимального T.

6. Еще одна модель поведения потребителя. Рассматривается динамическая модель потребителя, максимизирующего дисконтированную полезность от потребления U(c) на фиксированном отрезке времени [0,T]:

$$\max \int_{0}^{T} U(c)e^{-\beta t} dt. \tag{2.16}$$

Выбор потребления c подчиняется бюджетному ограничению

$$\dot{k} + \dot{b} + c = f(k) + rb, \quad t \in [0, T],$$
 (2.17)

при граничных условиях $k_0 + b_0 = W_0$, и условии на правом конце

$$k(T) + b(T) \ge W_T, \tag{2.18}$$

где T, r и β –фиксированные положительные числа.

Дифференциальное ограничение (2.17), записанное в реальных переменных, означает, что в каждый момент времени потребитель выбирает, куда вкладывать выпуск производства f(k), которым он владеет: инвестировать в капитал \dot{k} , инвестировать в актив \dot{b} , приносящий поток процентного дохода rb, или пустить в потребление c. В начале планового периода реальное богатство потребителя $(k_0 + b_0)$ составляет W_0 , а в конце потребитель хочет, чтобы его реальное богатство (k(T) + b(T)) было не меньше определенной величины W_T . Предполагается, что функции U и f определены на R_+ , дифференцируемы, причем $U'(0) = f'(0) = \infty$, вогнуты и монотонно возрастают.

Решение. Проанализируем эту задачу, как задачу оптимального управления, с помощью принципа максимума. Для этого приведем ограничение (2.17) к нормальной форме, введя новую переменную $u = \dot{k}$.

Тогда дифференциальные связи будут иметь вид:

$$\dot{k} = u,$$

 $\dot{b} = f(k) + rb - c - u.$

Как фазовые координаты k и b (запас капитала и актива), так и управления c и u, являются неизвестными функциями времени.

Рассмотрим случай, когда на изменение c и u не накладывается никаких ограничений. По смыслу задачи c не может быть отрицательным, т.к. в этом случае не определена полезность потребителя U. Отрицательное u допустимо, и соответствует проеданию капитала. Предположим, что решение задачи в этом случае существует.

Запишем функцию Понтрягина:

$$H = \psi_0 U(c) e^{-\beta t} + \psi_1 u + \psi_2 (f(k) + rb - c - u).$$

Тогда сопряженная система имеет вид:

$$\dot{\psi}_1 = -\psi_2 f'(k), \quad \dot{\psi}_2 = -\psi_2 r.$$

Максимизируя H по c и u получаем уравнения

$$\psi_0 U'(c) e^{-\beta t} = \psi_2, \quad \psi_1 = \psi_2$$
 (2.19)

(здесь мы воспользовались существованием решения).

Отсюда следует, что $\psi_0 \neq 0$ (обратное приводит к обнулению вектора $\psi = (\psi_0, \psi_1, \psi_2)$, что противоречит предположению о существовании решения и принципу максимума). Так как вектор ψ определен в условиях оптимальности с точностью до положительного множителя, то можно положить $\psi_0 = 1$. Кроме того, так как U' > 0, заключаем, что $\psi_1 = \psi_2 > 0$. Из сопряженной системы получаем, что

$$f'(k(t)) = r \quad \forall \ t \in [0, T], \tag{2.20}$$

откуда находим $k(t) \equiv k^*$.

Сопряженная система сводится к одному уравнению

$$\dot{\psi}_1 = -\psi_1 r$$
,

которое имеет решение $\psi_1(t) = \psi_2(t) = \psi_1(0) \; e^{-rt}$. Тогда

$$U_c' = \psi_1(0) e^{(\beta - r)t},$$

откуда можно выразить $c = C(t, \psi_1(0))$.

Заметим, что из вогнутости функции U следует, что c убывает, если $\beta > r$, и возрастает, если $\beta < r$.

Ограничения на левом и правом концах дают нам условия трансверсальности:

$$\psi_1(0) = \psi_2(0)$$
 и $\psi_1(T) = \psi_2(T)$,

указывающие, что вектор ($\psi_1(T)$, $\psi_2(T)$) должен быть коллинеарен градиенту ограничения $k(T) + b(T) \ge W_T$. Это равенство уже обеспечено условиями (2.19).

Кроме того, так как $\psi_i > 0$, то из условия дополняющей нежесткости на правом конце следует, что концевое ограничение выполняется со знаком равенства:

$$k(T) + b(T) = k^* + b(T) = W_T$$
.

Тогда значения актива b(t) на концах:

$$b(0) = W_0 - k^*, \quad b(T) = W_T - k^*.$$

Полученные значения b(0) и b(T) позволяют найти $\psi_1(0)$. Для этого рассмотрим исходное ограничение задачи

$$\dot{b} = rb + [f(k_0) - C(t, \psi_1(0))], \ b(0) = W_0 - k^*. \tag{2.21}$$

Проинтегрируем его от 0 до t:

$$b(t) = e^{rt} (W_0 - k^* + \int_0^t [f(k_0) - C(\tau, \psi_1(0))] d\tau.$$

При t = T получаем соотношение для нахождения $\psi_1(0)$

$$\int_{0}^{T} [f(k_0) - C(t, \psi_1(0))] e^{-rt} d\tau = (W_T - k^*) e^{-rt} - (W_0 - k^*).$$
 (2.22)

Затем находим $c(t) = C(t, \psi_1(0))$ и b(t) по формуле (2.21).

Мы установили, что c(t) ведет себя монотонно. Осталось исследовать поведение функции b(t). Обозначим $A(t) = f(k_0) - c(t)$.

Предположим, что функция b(t) имеет стационарную точку t^* : $\dot{b}(t^*) = 0$. Выясним характер экстремума в точке t^* . Вычислим ее первую и вторую производные:

$$\dot{b}(t^*) = r e^{rt^*} [b_0 + \int_0^{t^*} A(t) e^{-rt} dt] + A(t^*) = 0,$$

$$\ddot{b}(t^*) = r^2 e^{rt^*} [b_0 + \int_0^{t^*} A(t) e^{-rt} dt] + \dot{A}(t^*) + r A(t^*) =$$

$$= -r A(t^*) + A(t^*) + r A(t^*) = \dot{A}(t^*).$$

Таким образом, если $\beta > r$, то c(t) убывает, а A(t) возрастает, следовательно, $\ddot{b}(t^*) > 0$, то есть, t^* — точка минимума b(t) и, очевидно, единственная. Если же $\beta < r$, то t^* — единственная точка максимума b(t). Если внутри нет стационарной точки, то b(t) изменяется монотонно.

Поведение b(t) изображено на рисунках 2.6 и 2.7.

Выписанные выше условия принципа максимума являются необходимыми.

Предположим, что уравнения (2.20) и (2.22) имеют решения, по которым определяются переменные k^* , $b^*(t)$, $c^*(t)$ и $u^*(t)$. Мы утверждаем, что это и есть решение исходной задачи. Это следует из того, что функция Понтрягина

Рис. 2.6. Случай β> r

Puc. 2.7. Случай β < *r*

вогнута по совокупности переменных k, b, c, u (вспомним, что ψ_1 и ψ_2 положительны). Это свойство является достаточным условием того, что найденная из принципа максимума экстремаль является решением задачи.

Рассмотрим теперь более сложный случай.

7. Модель поведения потребителя с ограничениями на управление. Рассматривается та же модель, что и в примере 4:

$$\max \int_{0}^{T} U(c)e^{-\beta t} dt,$$

$$\dot{k} = u,$$

$$\dot{b} = f(k) + rb - c - u, \quad t \in [0, T].$$

Граничные условия теперь имеют вид:

$$k(0) = k_0, b(0) = b_0, k(T) + b(T) \ge W_T$$

где $k_0 > 0$, $b_0 > 0$, $W_T > k_0 + b_0$.

Задано ограничение на управление u: $|u| \le 1$, означающее, что рост капитала, как и его преобразование в потребительский продукт, не может быть мгновенным. Для определенности будем считать, что $\beta > r$.

Функция Понтрягина H и сопряженная система имеют тот же вид, что и в предыдущем случае:

$$H = \psi_0 U(c) e^{-\beta t} + \psi_1 u + \psi_2 (f(k) + rb - c - u) .$$

$$\dot{\psi}_1 = -\psi_2 f'(k)$$

$$\dot{\psi}_2 = -\psi_2 r$$

Условие максимума H по c и u дает соотношения

$$\psi_0 U'(c) e^{-\beta t} = \psi_2,$$

$$(\psi_1 - \psi_2)u \to \max_{u:|u| \le 1}.$$

Отсюда заключаем, что ψ_0 можно считать равным 1,

$$\psi_2(t) = \psi_2(0) e^{-rt}, \quad c = C(t, \psi_2(0)),$$

и, кроме того,

$$u = \operatorname{sgn}(\psi_1 - \psi_2),$$

где при $\psi_1 = \psi_2$ значение $u \in [-1, 1]$.

Условие трансверсальности на правом конце дает: $\psi_1(T) = \psi_2(T) \ge 0$, причем, очевидно, неравенство выполняется строго.

Рассмотрим закон изменения разности ($\psi_1(t) - \psi_2(t)$):

$$(\psi_1 - \psi_2) = \psi_2(0) e^{(\beta - r)t} (r - f'(k(t))). \tag{2.23}$$

Пусть k^* – такое, что $r = f'(k^*)$. Покажем, что:

- при $k_0 < k^*$ применяется управление u = 1, пока $k(t) < k^*$,
- при $k_0 > k^*$ применяется управление u = -1, пока $k(t) > k^*$,
- при $k_0 = k^*$ применяется управление u = 0, пока $k(t) = k^*$.

Пусть $k_0 < k^*$. Утверждаем, что тогда $\psi_1(0) > \psi_2(0)$. Допустим обратное, т.е. $\psi_1(0) \le \psi_2(0)$. Так как $f'(k_0) > f'(k^*) = r$, а фазовая переменная k(t) непрерывна, то в окрестности точки t = 0 разность $(\psi_1(t) - \psi_2(t))$ убывает в силу (2.23), а u = -1. Уменьшение капитала приведет только к дальнейшему уменьшению отрицательной разности $(\psi_1(t) - \psi_2(t))$ и сохранению управления u = -1. Такая траектория $(\psi_1(t), \psi_2(t))$, будучи продолженной до t = T, не удовлетворяет условию трансверсальности на правом конце: $\psi_1(T) = \psi_2(T)$. Поэтому, если оптимальная траектория существует, а мы это предполагаем, то $\psi_1(0) > \psi_2(0)$.

Управление u = 1 применяется до тех пор, пока $(\psi_1(t) - \psi_2(t)) > 0$, при этом $(\psi_1(t) - \psi_2(t))$ убывает. Представляются две возможности, согласующиеся с условием трансверсальности: разность достигает нуля либо в момент t = T, либо при некотором $t = t^* < T$.

В первом случае получаем экстремаль:

$$k(t) = k_0 + t$$
, $b(t) = e^{rt} (b_0 + \int_0^t [f(k_0 + \tau) - C(\tau, \psi_2(0))] d\tau$,

где $\psi_2(0)$ находится из условия $b(T) = W_T - (k_0 + T)$.

При этом $k(T) = k_0 + T \le k^*$. Действительно, если $k(t') = k^*$ при t' < T, то на отрезке [t', T] разность $(\psi_1(t) - \psi_2(t))$ будет возрастать и условие трансверсальности не будет выполнено.

Во втором случае $\psi_1(t^*) = \psi_2(t^*)$, $t^* < T$. Мы утверждаем, что в этот момент и капитал достигает значения $k(t^*) = k_0 + t^* = k^*$. Действительно, это не могло произойти раньше, так как тогда бы изменился на положительный

знак скорости $(\psi_1 - \psi_2)$ и равенство $\psi_1(t^*) = \psi_2(t^*)$ было бы невозможно. Также не могло это произойти позже (или вовсе не произойти), так как тогда в момент t^* изменится знак разности $(\psi_1(t) - \psi_2(t))$, капитал начнет убывать, увеличивая по абсолютной величине разность и, тем самым, исключая выполнение равенств k(t') = k' при $t' > t^*$ или $\psi_1(T) = \psi_2(T)$.

Как только достигаются равенства $k_0+t^*=k^*$, $\psi_1(t^*)=\psi_2(t^*)$, при $t>t^*$ они должны сохраняться. Действительно, если, например, на каком-то интервале, ближайшем к точке t^* разность $(\psi_1(t)-\psi_2(t))>0$, то k вырастет по сравнению с k^* и, значит, $(\psi_1-\psi_2)>0$ на этом интервале. Возрастание разности будет поддерживать управление u=1, что приведет к еще большему возрастанию разности. В результате будет нарушено условие трансверсальности.

Во втором случае получаем экстремаль, состоящую из двух участков:

$$k(t) = k_0 + t$$
, $b(t) = e^{rt} (b_0 + \int_0^t [f(k_0 + \tau) - C(\tau, \psi_2(0))] d\tau$ при $t \in [0, t^*]$, $k(t) \equiv k^*$, $b(t) = e^{rt} (b(t^*) + \int_{t^*}^t [f(k^*) - C(\tau, \psi_2(0))] d\tau$ при $t \in [t^*, T]$.

Неизвестные $\psi_2(0)$ и t^* находятся из условий $k_0 + t^* = k^*$ и $b(T) = b_T$. Неизвестное $\psi_1(0)$ находится из условия $\psi_1(T) = \psi_2(T)$ путем интегрирования уравнения (2.23).

Легко определить, какой из двух случаев реализуется: если $k_0+T \le k^*$, то имеем экстремаль первого типа, если $k_0+T > k^*$, то имеем экстремаль второго типа, причем точкой переключения управления с u=1 на u=0 является $t^*=k^*-k_0$.

Аналогичный анализ можно провести для случая $k_0 > k^*$.

Результирующие фазовые траектории (b(t), k(t)) приведены на рисунке 2.8.

8. Синтез оптимальных управлений. Рассмотрим задачу:

$$\max \int_{0}^{t_{1}} (ux + u^{2}/2) dt$$

$$\dot{x} = -\frac{x}{4} + u, \quad t \in [0, t_{1}], \quad t_{1} = 4 \ln 2,$$

$$u: |u| \leq 1, \quad x(0) = x_{0}, \quad x(t_{1}) - \text{свободно}.$$

Функция Понтрягина Н и сопряженная система имеют вид:

$$H = \psi_0 (ux + u^2/2) + \psi_1 (-\frac{x}{4} + u),$$

$$\dot{\psi}_1 = -\psi_0 u + \psi_1/4, \quad \psi_1(t_1) = 0,$$

где $\psi_0 = const \le 0$.

Исследуем вырожденный случай. Если $\psi_0 = 0$, то из сопряженной системы получаем $\psi_1(t) \equiv 0$, что невозможно. Поэтому $\psi_0 < 0$.

Положим далее $\psi_0 = -1$. Условие максимума функции H по u дает соотношение (опустим индекс 1 у ψ_1):

$$-ux - u^2/2 + \psi u \rightarrow \max$$
.

Получаем, что

$$u = 1$$
, если $\psi - x \ge 1$,
 $u = -1$, если $\psi - x \le -1$,
 $u = \psi - x$, если $-1 < \psi - x < 1$.

В частности, при $t = t_1$ условие трансверсальности позволяет разбить терминальное множество $\{(t, x): t = t_1, x \in R\}$ на три части:

$$A = \{x: x \le -1\}, u(t_1) = +1,$$

$$B = \{x: x \ge 1\}, u(t_1) = -1,$$

$$C = \{x: -1 < x < 1\}, u(t_1) = -x(t_1).$$

Переключение с одного режима на другой происходит на линиях

$$X_{+}$$
: $\psi - x = 1$ и X_{-} : $\psi - x = -1$.

Чтобы выписать эти условия и построить линии X_+ и X_- положим $u = \psi - x$ и проинтегрируем систему :

$$\dot{\psi} = 5 \psi/4 - x, \qquad (2.24)$$

$$\dot{x} = \psi - 5x/4$$

с граничными значениями $x(t_1) = x_1 \in C$, $\psi(t_1) = 0$.

Собственные числа и собственные векторы матрицы системы равны:

$$\lambda_1 = 3/4$$
, $h_1 = (2, 1)$; $\lambda_2 = -3/4$; $h_2 = (1, 2)$.

Тогда общее решение системы имеет вид

$$\psi(t) = 2C_1 e^{3t/4} + C_2 e^{-3t/4},$$

$$x(t) = C_1 e^{3t/4} + 2C_2 e^{-3t/4},$$

откуда, с учетом условия трансверсальности получаем

$$\psi(t) = 2C_1 e^{\frac{3}{4}t} (1 - e^{\frac{6}{4}(t_1 - t)}),$$

$$x(t) = C_1 e^{\frac{3}{4}t} (1 - 4e^{\frac{6}{4}(t_1 - t)}).$$

Из условия $x(t_1) = x_1$ находим C_1 : $C_1 = -x_1 e^{-\frac{3}{4}t_1}/3$.

Разность (ψ – x) при этом равна:

$$\psi - x = C_1 e^{3t/4} + 2C_1 e^{3t/4} e^{\frac{6}{4}(t_1 - t)} = -x_1 e^{-\frac{3}{4}(t_1 - t)} (1 + 2e^{\frac{6}{4}(t_1 - t)})/3.$$
 (2.25)

Обозначим для простоты $z=e^{-\frac{3}{4}(t_1-t)}$ — "новое время". Тогда z=1 при $t=t_1$ и $z=e^{-3\ln 2}=2^{-3}$ при t=0.

Решение для x(t) и для разности $\psi - x$ при этом можно записать в виде:

$$X = -x_1(z - 4z^{-1})/3,$$

 $\psi - x = -x_1(z + 2z^{-1})/3.$

Выразим из первого соотношения x_1 и подставим во второе, затем приравнивая его +1 и -1, получим линии переключения:

Puc. 2.9.

$$X_{+} = (z^{2} - 4)/(z^{2} + 2), X_{-} = (-z^{2} + 4)/(z^{2} + 2).$$

Как видим, $X_{-} = -X_{+}$.

Теперь может быть построена картина фазовых траекторий (рис. 2.9).

1. Если $x_1 = 0$, то из системы (2.24) с граничными значениями

$$x(t_1) = 0, \ \psi(t_1) = 0$$

получаем решение $\psi(t) \equiv 0$, $x(t) \equiv 0$, $u(t) \equiv 0$.

2. В зоне C при малых $|x_1|$ малы будут и значения |X|, поэтому траектории x(t), выходящие (попятным движением) из точки x_1 , не достигают линий переключения X_- и X_+ ; управление будет определяться из (2.25) как

$$u(t) = -x_1(z + 2z^{-1})/3.$$

3. Если значения x_1 лежат в зоне C, но $|x_1|$ достаточно велико, точка пересечения траектории $x(t) = -x_1(z - 4z^{-1})/3$ и линии переключения X_+ , например (при $x_1 < 0$), находится из равенства:

$$-x_1(z^2-4)/3z = (z^2-4)/(z^2+2),$$

откуда $z^2 + 3z/x_1 + 2 = 0$. Корни этого уравнения

$$z_{1,2} = -\frac{3}{2x_1} \pm \sqrt{\frac{9}{4x_1^2} - 2}$$
.

Выбор конкретной точки переключения определяется краевым условием. Например, при $x_1 = -1$ допустимой является только z = 1. При $x_1 = -0.9$ годится корень $z \sim 0.8$. Знак x_1 определяет знак точки переключения X, а момент z не зависит от знака x_1 .

- 4. Выше и ниже оси z картина симметричная. Переключения имеют только траектории выходящие из зоны C.
- 5. Ниже линии X_+ имеем $\psi x > 1$, откуда u = +1. При этом траектории x(t) идут согласно уравнению $\dot{x} = -\frac{x}{4} + 1$ до момента переключения или до конца.

Выше линии $X_ \psi-x < -1$ и там $u \equiv -1$. Траектории идут согласно уравнению $\dot{x} = -\frac{x}{4} - 1$ до момента переключения или до конца.

6. Наконец, заметим, что переключение возможно не более одного раза, так как величина ($\psi - x$) монотонна, причем ее производная по времени имеет такой же знак, как и x_1 . Например, если $x_1 < 0$ в зоне C и $\psi - x = +1$, то точка находится на линии X_+ . Но в силу монотонности ($\psi - x$) становится далее меньше 1, то есть, траектория x(t) остается в области, порождаемой множеством C.

Упражнения

1. Найти оптимальное управление в задачах:

a).
$$\int_{0}^{1} (\dot{x}^{2} - x) dt + x^{2}(1) \rightarrow \min$$
.

б).
$$\int_{0}^{T} u^{2} dt + T \rightarrow \min;$$
 $\dot{x} = u; x(0) = 1; x(T) = 0;$ $T - \text{не фиксировано.}$

в).
$$\int_{0}^{T} (1-u)xdt \to \max; \quad \dot{x} = (u-\beta)x; \ x(0) = a; \ 0 \le u \le 1; \ \beta \le 1; \quad T$$
 – фиксировано.

$$\Gamma$$
). $\int_{0}^{T} (u^{2} + x^{2}) dt + \frac{x^{2}(T)}{2} \rightarrow \min; \quad \dot{x} = u - x; x(0) = 0; \quad T -$ фиксировано.

д).
$$\int_{0}^{T} (u-x)^{2} dt \rightarrow \min; \quad \dot{x} = \rho(u-x); \ x(0) = x_{0}; \ x(T) = x_{1}; \quad T -$$
фиксировано.

e).
$$\int_{0}^{2\pi} u dt + x_2(2\pi) \rightarrow \min; -1 \le u \le 2; \quad \dot{x}_1 = -x_2; \quad \dot{x}_2 = x_1 + u; \quad x_1(0) = -2; \quad x_2(0) = -1.$$

2. В задаче

$$\int_{0}^{2} (2x - 3u - au^{2})dt \rightarrow \max; \quad \dot{x} = x + u; \, x(0) = 5; \, 0 \le u \le 2;$$

исследовать оптимальный процесс при различных значениях параметра $a \in [0, 1]$.

3. Найти оптимальное управление в задаче на быстродействие

$$T \rightarrow \min$$
; $x(0) = x_{01}$; $\dot{x}(0) = x_{02}$; $x(T) = 0$; $\dot{x}(T) = 0$; $|u| \le 1$,

если изменение состояния системы происходит согласно закону:

- a). $\ddot{x} + 2\dot{x} + x = u$;
- 6). $\ddot{x} + \pi^2 x = \pi u$;
- B). $\ddot{x} = x + u$;
- 4. Найти оптимальное потребление c(t) в модели Рамсея в непрерывном времени:

$$\int_{0}^{T} e^{-\beta t} U(c) dt \to \max; \quad \dot{s} = \rho s - c; \, s(0) = s_0 > 0; \, s(T) = 0;$$

 $0 \le c \le s; \ \beta < \rho; \ \rho > 1; \ T$ – фиксировано, если:

- a). $U(c) = \ln c$;
- б). $U(c) = c^{1-\mu}$; $\mu < 1$.

3. Фазовые ограничения в задаче оптимального управления.

В рассмотренной нами выше постановке задачи оптимального управления область фазовой предполагалось, ЧТО изменения координаты неограничена и совпадает со всем пространством R^n . Однако на практике часто встречаются задачи, в которых имеются ограничения на множество допустимых состояний системы. Особенно это актуально в экономических задачах, где часто накладываются ограничения на неотрицательность фазовых переменных (например, объема выпуска, величины производственной мощности и т.д.). Поэтому рассмотрим далее постановку задачи оптимального управления, учитывающую наличие фазовых ограничений. Моменты t_0 , t_1 , а также начальное состояние x_0 будем считать фиксированными.

Пусть требуется найти максимум функционала:

$$J(x(\cdot), u(\cdot)) = \int_{t_0}^{t_1} F(t, x(t), u(t)) dt + \Phi_0(x(t_1)) \to \max,$$
 (3.1)

если закон изменения состояния системы имеет вид:

$$\dot{x}(t) = f(t, x(t), u(t)),$$
 (3.2)

и дополнительно наложены фазовые ограничения:

$$g(t, x(t)) \ge 0; t \in [t_0, t_1],$$
 (3.3)

где $g: \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^s$ – непрерывно-дифференцируема по совокупности аргументов.

Рассмотрим лагранжиан данной задачи:

$$L(t, x(t), u(t), \psi(t), \mu(t), \lambda_0) = H(t, x(t), u(t), \psi(t), \lambda_0) + (\mu(t), g(t, x(t)))$$
(3.4)

где $H(t, x(t), u(t), \psi(t), \lambda_0)$ — функция Понтрягина; $\mu(t) = (\mu_1(t), \dots, \mu_s(t)) \in \mathbb{R}^n$ — множитель Лагранжа, соответствующий ограничению (3.3) .

Тогда для данной задачи справедлива следующая теорема.

Теорема. Пусть $(x^*(t), u^*(t))$ – оптимальный процесс в задаче (3.1) – (3.3). Тогда найдутся не равные одновременно нулю множитель $\lambda_0 \ge 0$ и вектор-функции $\psi(t) = (\psi_1(t), \ldots, \psi_n(t)) \in \mathbb{R}^n$ и $\mu(t) = (\mu_1(t), \ldots, \mu_s(t)) \in \mathbb{R}^s$ такие, что:

а). всюду на $[t_0, t_1]$ выполнено условие принципа максимума:

$$u^*(t) \in \text{Arg max } (H(t, x^*(t), u(t), \psi(t), \lambda_0));$$
 (3.5)

б). сопряженная функция $\psi(t)$ удовлетворяет системе дифференциальных уравнений:

$$\dot{\psi}_i(t) = -\frac{\partial L}{\partial x_i(t)}; \quad i = 1, ..., n , \qquad (3.6)$$

(где L – лагранжиан задачи) и условия трансверсальности на правом конце (2.7), в данной постановке имеющие вид:

$$\psi_i(t_l) = \lambda_0 \frac{\partial \Phi_0(x^*(t_1))}{\partial x_i(t_1)};$$

в). выполнены условия дополняющей нежесткости и неотрицательности множителя Лагранжа $\mu(t)$:

$$\mu_i(t) g_i(t, x(t)) = 0; \quad \mu_i(t) \ge 0; \quad i = 1, ..., s.$$
 (3.7)

Примеры

1. Найти оптимальное управление в задаче [1]:

$$J(u, x) = \frac{1}{2} \int_{0}^{1} (u^{2} + x^{2}) dt \rightarrow \min;$$

$$\dot{x} = u; \quad x(0) = 1; \quad u \in \mathbb{R};$$

$$x(t) \ge c \quad \forall t \in [0, 1].$$

Решение. При отсутствии фазового ограничения оптимальное управление в данной задаче можно найти, используя принцип максимума для задачи со свободным правым концом, описанный в предыдущем разделе. Оптимальным решением задачи будет являться:

$$x^*(t) = \frac{e^t + e^{2-t}}{e^2 + 1}; \qquad u^*(t) = \dot{x}^*(t). \tag{3.8}$$

Функция $x^*(t)$ монотонно убывает и достигает минимального значения при t=1:

$$x*(1) = \frac{2e}{e^2 + 1}$$
.

Очевидно, что при $c \le \frac{2e}{e^2+1}$, решение задачи с фазовым ограничением будет совпадать с (3.8). Предположим, что $c > \frac{2e}{e^2+1}$. Применим необходимые условия экстремума. Функция Понтрягина будет иметь вид:

$$H = -\lambda_0 \frac{u^2 + x^2}{2} + \psi u$$

а лагранжиан задачи запишется как

$$L = H + \mu(x - c) = -\lambda_0 \frac{u^2 + x^2}{2} + \psi u + \mu(x - c).$$

Видно, что в вырожденном случае ($\lambda_0 = 0$) функция H является линейной по u, поэтому ее максимум достигается на конечных u только при $\psi(t) \equiv 0$. Но тогда и $\mu \equiv 0$ (в силу (3.6)), что противоречит условиям теоремы. Поэтому далее можно положить $\lambda_0 = 1$.

Из условия (а) теоремы вытекает, что

$$u^*(t) = \psi(t)$$
.

Сопряженная функция $\psi(t)$ является решением следующего уравнения:

$$\dot{\psi} = x - \mu, \quad \mu \ge 0, \quad \mu(x - c) = 0.$$

Подставляя данные выражения в основную систему, получим, что x(t) удовлетворяет следующему дифференциальному уравнению:

$$\ddot{x} = x - \mu$$
, $x(0) = 1$.

Из условия дополняющей нежесткости, при x(t) > c $\mu(t) = 0$, и x(t) удовлетворяет уравнению

$$\ddot{x} = x$$
, $x(0) = 1$,

общим решением которого является

$$x(t) = Ae^t + Be^{-t}.$$

Далее, в силу непрерывности сопряженной функции $\psi(t)$, в первой точке контакта траектории x(t) с фазовым ограничением τ выполнено условие:

$$\psi(\tau^{-}) = \psi(\tau^{+}) \implies \dot{x}(\tau^{-}) = \dot{x}(\tau^{+}) \text{ (Tak kak } u^{*}(t) = \psi(t)),$$

откуда следует, что $\dot{x}(\tau) = 0$.

Таким образом, начальное условие, условие выхода на фазовое ограничение и условие непрерывности сопряженной функции дают систему уравнений для определения параметров A, B и τ .

$$x(0) = A + B = 1$$

$$x(\tau) = Ae^{\tau} + Be^{-\tau} = c$$

$$\dot{x}(\tau) = Ae^{\tau} - Be^{-\tau} = 0.$$

Решая данную систему, получаем:

$$A = \frac{1 \pm \sqrt{1 - c^2}}{2}$$
; $B = \frac{1 \mp \sqrt{1 - c^2}}{2}$; $\tau = \ln \frac{c}{1 \pm \sqrt{1 - c^2}}$.

Далее необходимо показать, что коснувшись ограничения x(t) = c траектория останется на нем.

Заметим, что $\ddot{x} \ge 0$ при всех t. Поэтому траектория x(t) выпукла вниз. Допустим, что она сошла с ограничения. Тогда далее до конца x(t) > c, причем правый конец свободен. Следовательно, $\psi(t_l) = 0$. Получаем, что $\psi(\tau) = \psi(t_l) = 0$, тогда как $\psi(t)$ строго возрастает вне ограничения. Противоречие показывает, что допущение неверно.

2. [3] Найти оптимальное потребление c(t) в модели Рамсея:

$$J(c, s) = \int_{0}^{T} U(c)e^{-\alpha t} dt \to \max; \quad T - \text{фиксировано};$$

$$U' > 0; \quad U'' < 0; \quad U(0) = 0;$$

$$\dot{s} = \rho s - c; \quad s(0) = s_0; \quad s(T) = s_T; \quad c \ge 0;$$

при ограничении на величину сбережений s(t):

$$s(t) \ge a > 0$$
; $\forall t \in [t_0, t_1]$

Решение. Наряду с функцией Понтрягина задачи, имеющей вид

$$H = \lambda_0 U(c) e^{-\alpha t} + \psi(\rho s - c),$$

выпишем лагранжиан:

$$L = H + \mu(s - a).$$

Функция Понтрягина достигает максимума при конечных значениях c(t) только при $\psi(t) > 0$. Нетрудно видеть, что в этом случае она является вогнутой по c(t) (рис. 3.1), и условие максимума дает следующий вид

Puc. 3.1

оптимального управления

$$c^*(t) = \begin{cases} 0, & \text{при } U'(0) \le \psi(t)e^{\alpha t} \\ (U')^{-1}(\psi(t)e^{\alpha t}), & \text{при } U'(0) > \psi(t)e^{\alpha t} \end{cases}$$

Уравнение для сопряженной переменной имеет вид:

$$\dot{\psi} = -\rho\psi - \mu$$
, $\mu(s-a) = 0$, $\mu \ge 0$.

Так как концы фазовой траектории s(t) закреплены, то граничные условия для $\psi(t)$ неопределены.

Рассмотрим два случая:

1. Пусть $\alpha < \rho$. Покажем, что в этом случае $s^*(t) > a \ \forall \ t \in [0, T]$.

Предположим, что $s^*(\tau) = a$ для некоторого $\tau \in [0, T]$. Так как $c^*(t)$ непрерывна в точке τ и

$$\dot{s}^* = \rho s^* - c^*$$

то $s^*(t)$ — непрерывно-дифференцируема в точке τ . Кроме того, в силу фазового ограничения τ — точка минимума траектории $s^*(t)$ на [0, T], поэтому $\dot{s}^*(\tau) = 0$. Вычислим $\ddot{s}^*(\tau)$:

$$\ddot{s} * (\tau) = \rho \dot{s} * (\tau) - \dot{c} * (\tau) = - \dot{c} * (\tau),$$

где $\dot{c}^*(\tau)$ может быть найдено из соотношения $U'(c(t)) = \psi(t)e^{\alpha t}$ как

$$\dot{c}^{*}(\tau) = \frac{-\dot{\psi}(t)e^{\alpha t} - \alpha\psi(t)e^{\alpha t}}{U''(c(t))} = -\frac{\psi(t)(\rho - \alpha)e^{\alpha t} + \mu(t)e^{\alpha t}}{U''(c(t))}.$$
 (3.9)

Так как $\alpha < \rho$ и U'' < 0, то $\dot{c}^*(\tau) > 0$, откуда следует, что $\ddot{s}^*(\tau) < 0$. Это противоречит тому, что τ – внутренняя точка минимума траектории $s^*(t)$.

Таким образом, при $\alpha < \rho$ траектория $s^*(t)$ не имеет внутренних минимумов, а следовательно, не выходит на фазовое ограничение s(t) = a (рис. 3.2).

2. Рассмотрим теперь случай $\alpha > \rho$. Из (3.9) следует, что в этом случае над ограничением s(t) = a нет внутренних максимумов. Это означает, что $\mu(\tau) = 0$, $\dot{c}*(\tau) < 0$ и $\ddot{s}*(\tau) > 0$ в любой точке $\tau \in [0, T]$, такой, что $\dot{s}*(\tau) = 0$ и s(t) > a.

Траектории s(t) в этом случае могут выходить на фазовое ограничение или все время оставаться выше его, описывая выпуклую кривую, в зависимости от начальных условий и T (рис. 3.3).

На отрезке $[t_1, t_2]$ имеем $\dot{s} * (\tau) = 0$ и $s(t) \equiv a$. Тогда $c(t) \equiv \rho \alpha > 0$.

Из условия максимума H по c(t):

откуда

$$\psi(t) = U'(\rho\alpha)e^{-\alpha t}$$
.

 $U'(\rho\alpha)=\psi(t)e^{\alpha t},$

Тогда

$$\dot{\psi} = -\alpha U'(\rho \alpha)e^{-\alpha t}$$
.

С другой стороны, из сопряженной системы:

$$\dot{\psi} = -\rho \psi - \mu = -\rho U'(\rho \alpha) e^{-\alpha t} - \mu.$$

Из последних двух равенств получаем выражение для множителя Лагранжа μ :

$$\mu(t) = (\alpha - \rho) U'(\rho \alpha) e^{-\alpha t} > 0.$$

Определим моменты выхода и схода с фазового ограничения t_1 и t_2 .

Из условий непрерывности фазовой переменной s(t) и сопряженной переменной $\psi(t)$ в точке t_1 имеем:

$$s(t_1^-) = s(t_1^+), \quad \psi(t_1^-) = \psi(t_1^+), \tag{3.10}$$
 где $s(t_1^-) = e^{\rho t_1}(s_0 - \int_0^{t_1} e^{-\rho \tau} c(\tau) d\tau) = e^{\rho t_1}(s_0 - \int_0^{t_1} e^{-\rho \tau} (U')^{-1} (\psi_0 e^{(\alpha - \rho)\tau}) d\tau); s(t_1^+) = a;$
$$\psi(t_1^-) = \psi_0 e^{-\rho t_1}; \ \psi(t_1^+) = U'(\rho \alpha) e^{-\alpha t_1}.$$

Для определения момента t_2 воспользуемся краевым условием:

$$s(T) = e^{\rho(T - t_2)} \left(a - \int_{t_2}^{T} e^{-\rho \tau} (U')^{-1} (\psi(t_2) e^{(\alpha - \rho)\tau}) d\tau \right) = s_T$$
 (3.11)

где $\psi(t_2) = U'(\rho\alpha)e^{-\alpha t_2}$

Таким образом, соотношения (3.10) и (3.11) позволяют определить все параметры оптимальной траектории $s^*(t)$.

Заметим, что специфика этой простой задачи позволила в явном виде выписать вид сопряженной функции $\psi(t)$ на границе s(t)=a, а затем независимо определить параметры ψ_0 , t_1 и t_2 . Неразрешимость соотношений (3.10) и (3.11) относительно t_1 и t_2 говорит о том, что оптимальная траектория $s^*(t)$, если она существует, не выходит на фазовое ограничение s(t)=a (т.е. соответствует случаю $s^1(t)$ на рис. 3.3). В этом случае параметры фазовой траектории отыскиваются аналогично задаче без фазовых ограничений.

Краевое условие будет иметь вид

$$s(T) = e^{\rho(T - t_2)} \left(s_0 - \int_0^T e^{-\rho \tau} (U')^{-1} (\psi_0 e^{(\alpha - \rho)\tau}) d\tau \right) = s_T$$

откуда может быть получена константа ψ_0 .

Подставив ее в выражения для $c^*(t)$ и $s^*(t)$:

$$c^*(t) = (U')^{-1}(\psi_0 e^{(\alpha - \rho)t});$$

$$s^*(t) = e^{\rho t}(s_0 - \int_0^T e^{-\rho \tau} c^*(\tau) d\tau).$$

получим явный вид оптимального процесса.

Если задача нахождения ψ_0 в случае данном также неразрешима, TO исходная задача является неразрешимой, например, если отсутствуют допустимые траектории, переводящие систему ИЗ состояния S_0 в S_T .

Построим фазовый портрет движения системы в осях (s, c). Для этого воспользуемся выражением (3.9) для $\dot{c}(t)$. Подставив в него

$$\psi(t) = U'(c(t))e^{-\alpha t},$$

получим:

Puc. 3.4

$$\dot{c}(t) = \frac{(\alpha - \rho)U'(c(t)) - \mu(t)e^{ct}}{U''(c(t))}; \quad \dot{s}(t) = \rho s(t) - c(t).$$

На рис. 3.4 приведены соответствующие данной системе фазовые траектории.

Упражнения

1. Определить минимум функционала

$$J(u, x) = \int_{0}^{3} 2x_{1}dt,$$

$$\dot{x}_{1} = x_{2}, \quad \dot{x}_{2} = u, \quad x_{1}(0) = 2, \quad x_{2}(0) = 0, \quad |u| \le 2,$$

при фазовом ограничении

$$x_1(t) \ge \alpha$$
, $\alpha \le 0$.

2. Найти максимум функционала

$$J(u, x) = -\int_{0}^{3} x dt,$$

 $\dot{x} = u, \quad x(0) = 1, \quad x(3) = 1, \quad |u| \le 1,$

при фазовом ограничении

$$x(t) \ge 0$$
.

3. Проанализировать с помощью принципа максимума с фазовыми ограничениями, а также построить и прокомментировать фазовые диаграммы в координатах (s, c) для следующей задачи оптимального управления:

$$J(c, s) = \int_{0}^{T} \ln(1+c)e^{-\beta t} dt \to \max, \quad T - \text{фиксировано},$$

$$\dot{s} = \rho s - c, \quad s(0) = s_0, \quad s(T) = s_T, \quad c \ge 0, \quad s \ge a > 0.$$

Рассмотреть случаи $\beta > \rho$ и $\rho > \beta$.