Introduction à la théorie analytique et probabiliste des nombres

Guorui Xu

July 8, 2022

It's a brief note about the lesson given by Xianchang Meng and obviously, it hasn't been finished yet. And perhaps it's too much to collect them all. If you need hand-write file, email me.

Contents

1	Basic analytic number theory		
	1.1	Some number-theory function	4
	1.2	Coprime convolution	4
	1.3	Dirichlet convolution	5
	1.4	Multiplication of function	6
	1.5	Summation by parts	6
	1.6	Riemann zeta function (1)	8
	1.7	Estimate the Euler function	8
	1.8	Estimate the Mobius function	10
	1.9	Lambda function and its application	12
	1.10	Mellin Transform	14
	1.11	Perron's formula	14
	1.12	Riemann zeta function (2) \dots	15
	1.13	Prime Number Theory	16
2	Che	ebychev's bias(h)	17
3	Basic graph theory		21
4	L-fu	unction	21
5	5 Dirichlet character		21
6	Probabilistic tools		
7	Evn	onential moment method	91

8	Jason's inequality	21
9	Markov chains	21

1 Basic analytic number theory

1.1 Some number-theory function

Mobius Function

$$\mu(n) = \begin{cases} (-1)^k &, n = p_1 p_2 ... p_k \\ 0 &, \text{else} \end{cases}$$

and we have Mobius identity:

$$\sum_{d|n} \mu(d) = \left[\frac{1}{n}\right] = \begin{cases} 1 & , & n = 1 \\ 0 & , & \text{else} \end{cases}$$

Euler function

$$\phi(n) = \sum_{\substack{m \le n \\ (m,n)=1}} 1$$

Liouville's function

$$\lambda(n) = (-1)^{a_1 + \dots + a_k}, \qquad n = p_1^{a_1} \dots p_k^{a_k}$$

1.2 Coprime convolution

$$\sum_{\substack{n \ (n,k)=1}}^{n} f(n) = \sum_{n} f(n) \sum_{d|(n,k)} \mu(d) = \sum_{d|k} \mu(d) \sum_{n} f(n) = \sum_{d|k} \mu(d) \sum_{m} f(dm)$$
 (1)

Apply: Calculate Euler function with mobius function

$$\phi(n) = \sum_{\substack{m \le n \\ (m,n)=1}} 1 = \sum_{m \le n} \sum_{d \mid (n,m)} \mu(d) = \sum_{d \mid n} \mu(d) \sum_{\substack{m \le n \\ d \mid m}} 1 = \sum_{d \mid n} \mu(d) \left[\frac{n}{d} \right]$$

1.3 Dirichlet convolution

$$f * g(n) = \sum_{d|n} f(d)g(\frac{n}{d}) = \sum_{d|n} f(\frac{n}{d})g(d) = \sum_{ab=n} f(a)g(b)$$
 (2)

And if we let

$$F(s) = \sum_{n=1}^{\infty} \frac{f(n)}{n^s}, G(s) = \sum_{n=1}^{\infty} \frac{g(n)}{n^s}$$

Then

$$F(s) \cdot G(s) = \sum_{n=1}^{\infty} \frac{A(n)}{n^s}$$

where

$$A(n) = f * g(n)$$

Apply: Represent with zeta function

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \prod_{p} (\sum_{n=1}^{\infty} \frac{1}{p^{sn}}) = \prod_{p} (1 - \frac{1}{p^s})^{-1}$$

If

$$F(s) = \sum_{n=1}^{\infty} \frac{\mu(s)}{n^s}$$

And considering the mobius identity:

$$\mu(s) * 1 = \sum_{d|s} \mu(d) = 0$$

for $s \neq 1$. Which means

$$F(s)\zeta(s) = 1$$

and the conclusion is:

$$\sum_{n=1}^{\infty} \frac{\mu(s)}{n^s} = \prod_{p} (1 - \frac{1}{p^s}) = \frac{1}{\zeta(s)}$$
 (3)

1.4 Multiplication of function

If f(n) is multiplicative, we have:

$$F(s) = \sum_{n=1}^{\infty} \frac{f(s)}{n^s} = \prod_{p} \left(1 + \frac{f(p)}{p^s} + \frac{f(p^2)}{p^{2s}} + \dots\right)$$

And F(s) converges absolutely iff

$$\sum_{p,m} \left| \frac{f(p^{ms})}{p^{ms}} \right| < \infty$$

And if f(n) is completely multiplicative, then

$$F(s) = \sum_{n=1}^{\infty} \frac{f(n)}{n^s} = \prod_{p} (\sum_{n=0}^{\infty}) \frac{f^n(p)}{p^{sn}} = \prod_{p} (1 - \frac{f(p)}{p^s})^{-1}$$

Apply: Dirichlet series of λ function

$$\sum_{n=1}^{\infty} \frac{\lambda(n)}{n^s} = \prod_{n} (1 + \frac{1}{p^s})^{-1} = \frac{\zeta(2s)}{\zeta(s)}$$
(4)

1.5 Summation by parts

a(n) is a complex sequence, and f has continuous derivative. Let

$$A(t) := \sum_{n \le t} a_n, \quad t > 0$$

Then, we have:

$$\sum_{n \le x} a(n)f(n) = A(x)f(x) - \int_1^x A(t)f(t)dt \tag{5}$$

Proof:

$$I = \int_{1}^{x} A(t)f'(t)dt$$

$$= \int_{1}^{x} (\sum_{n \le t})f'(t)dt$$

$$= \int_{1}^{x} \sum_{n \le x} a(n) \cdot 1_{t \ge n} f'(t)dt$$

$$= \sum_{n \le x} a(n) \int_{1}^{x} 1_{t \ge n} f'(t)dt$$

$$= \sum_{n \le x} a(n) \int_{n}^{x} f'(t)dt = A(x)[f(x) - f(n)]$$

Apply: Calculate the order of $\sum_{n=1}^{\infty} \frac{1}{n}$

Let $a(n) = 1, f(x) = \frac{1}{x}$ then

$$A(x) = \sum_{n \le x} 1 = [x] = x - \{x\}$$

$$\sum_{n=1}^{\infty} \frac{1}{n} = A(x)f(x) - \int_{1}^{x} A(t)f'(t)dt$$

$$= (x - \{x\})\frac{1}{x} - \int_{1}^{x} (t - \{t\})(-\frac{1}{t^{2}})dt$$

$$= 1 - \frac{\{x\}}{x} + \int_{1}^{x} \frac{1}{t}dt - \int_{1}^{x} \frac{\{t\}}{t^{2}}dt$$

$$= \log x + 1 - \int_{1}^{\infty} \frac{\{t\}}{t^{2}}dt + \int_{x}^{\infty} \frac{\{t\}}{t^{2}}dt + O(\frac{1}{x})$$

$$= \log x + \gamma + O(\frac{1}{x})$$

where the Euler constant:

$$\gamma = 1 - \int_{1}^{\infty} \frac{\{t\}}{t^2} dt \to 0.5772...$$

Conclusion:

$$\sum_{n=1}^{\infty} \frac{1}{n} = \log x + \gamma + O(\frac{1}{x}) \tag{6}$$

1.6 Riemann zeta function (1)

Fix s, Re(s) > 0, let

$$s(x) = \sum_{n < x} \frac{1}{n^s}$$

Use the summation by parts:

$$a(n) = 1, f(x) = \frac{1}{x^s}$$

$$s(x) = [x] \frac{1}{x^s} - \int_1^x [t] f'(t) dt$$

$$= x^{1-s} - \frac{\{x\}}{x^s} - \int_1^x t f'(t) dt + \int_1^x \{t\} f'(t) dt$$

$$= x^{1-s} - \frac{x}{x^s} - t f(t)|_1^x + \int_1^x f(t) dt + \int_1^x \{t\} f'(t) dt$$

$$= x^{1-s} - \frac{\{x\}}{x^s} + f(1) + \frac{1}{1-s} t^{1-s}|_1^x - s \int_1^x \{t\} t^{-s-1} dt$$

$$= 1 + \frac{1}{s-1} - \frac{\{x\}}{x^s} + \frac{x^{1-s}}{1-s} - s \int_1^x \{t\} t^{-s-t} dt$$

Then, if we let the x limit to infinity, we get an important conclusion

$$\zeta(s) = \frac{s}{s-1} - s \int_{1}^{\infty} \frac{\{t\}}{t^{s+1}} dt \tag{7}$$

and the last term absolutely convergent for Re(s) > 0.

1.7 Estimate the Euler function

Considering that:

$$\phi(n) = \sum_{d|n} 1 = \sum_{ab=n} 1 = 1 * 1$$

Then

$$\sum_{n=1}^{\infty} \frac{\phi(n)}{n^s} = \zeta(s) \cdot \zeta(s) \tag{8}$$

Actually, we can calculate directly:

$$\sum_{n=1}^{\infty} \frac{\phi(n)}{n^s} = \prod_{p} (1 + \frac{\phi(p)}{p^s} + \frac{\phi(p^2)}{p^{2s}} + \dots)$$

$$= \prod_{p} (1 + \frac{2}{p^s} + \frac{3}{p^s} + \dots)$$

$$= \prod_{p} (1 + \frac{1}{p^s} + \dots)^2$$

And

$$\sum_{n \le x} \phi(n) = \sum_{\substack{n \le x \\ ab = n}} 1 = (\sum_{\substack{a \le \sqrt{x} \\ b \le \frac{x}{a}}} + \sum_{\substack{a \le \sqrt{x} \\ a \le \frac{x}{a}}} - \sum_{\substack{b \le \sqrt{x} \\ a \le \sqrt{x}}})1 = I_1 + I_2 - I_3$$

where

$$I_1 = I_2 = \sum_{a \le \sqrt{x}} (\frac{x}{a} - \{\frac{x}{a}\})$$

And

$$I_1 = x \sum_{a \le \sqrt{x}} \frac{1}{a} + O(\sum_{a \le \sqrt{x}} O(1))$$
$$= x(\log \sqrt{x} + \gamma + O(\frac{1}{\sqrt{x}})) + O(\sqrt{x})$$
$$= \frac{1}{2} x \log x + \gamma x + O(\sqrt{x})$$

$$I_3 = ([\sqrt{x}])^2 = (\sqrt{x} + O(1))^2 = x + (\sqrt{x})$$

Conclusion:

$$\sum_{n \le x} \phi(n) = x \log x + (2\gamma - 1)x + O(\sqrt{x}) \tag{9}$$

1.8 Estimate the Mobius function

$$\left|\sum_{n \le x} \frac{\mu(n)}{x}\right| \le 1\tag{10}$$

Proof:

Denote:

$$e(n) = \sum_{d|n} \mu(d)$$

Then

$$\begin{split} S(N) &= \sum_{n \leq N} e(n) \\ &= \sum_{n \leq N} \sum_{d \mid n} \mu(d) \\ &= \sum_{d \leq N} \mu(d) (\sum_{\substack{d \mid n \\ n \leq N}} 1) \\ &= \sum_{d \leq N} \mu(d) [\frac{N}{d}] \\ &= N \sum_{d \leq N} \frac{\mu(d)}{d} - \sum_{d \leq N} \mu(d) \{\frac{N}{d}\} \end{split}$$

So

$$|N\sum_{d\leq N} \frac{\mu(d)}{d}| \leq S(N) + |\sum_{d\leq N-1} 1|$$

$$= 1 + N - 1 = N$$

$$\Rightarrow |\sum_{n\leq x} \frac{\mu(n)}{n}| \leq 1$$

Now the question is: What's true order of $\sum_{n \leq x} \mu(n)$?

The Merten's conjecture

$$|\sum_{n \le x} \mu(n)| \le \sqrt{x}$$

But it's false. There are infinitely many x s.t.

$$|\sum_{n \le x} \mu(n)| \ge 1.06\sqrt{x}$$

And the RH(suppose it's true) tell us:

$$\sum_{n \le x} \mu(n) \le Cx^{\frac{1}{2} + \epsilon} \tag{11}$$

The elementary method can also estimate that:

$$\sum_{n=1}^{\infty} \frac{u^2(n)}{n^s} = \prod_{n} (1 + \frac{1}{p^s}) = \frac{\zeta(s)}{\zeta(2s)} = (\sum_{n=1}^{\infty} \frac{1}{n^s}) (\sum_{n=1}^{\infty} \frac{\mu(n)}{n^{2s}})$$
(12)

If we consider that:

$$\mu^2(n) = \sum_{ab^2=n} 1 \cdot \mu(b)$$

$$\sum_{n \le x} \mu^2(n) = \sum_{n \le x} \sum_{ab^2 = n} 1 \cdot \mu(b)$$

$$= \sum_{b^2 \le x} \mu(b) \left(\sum_{a \le \frac{x}{b^2}} 1\right)$$

$$= \sum_{b \le \sqrt{x}} \mu(b) \left(\frac{x}{b^2} + O(1)\right)$$

$$= x \sum_{b \le \sqrt{x}} \frac{\mu(b)}{b^2} + \left(\sum_{b \le \sqrt{x}} 1\right)$$

$$= x \sum_{b = 1}^{\infty} \frac{\mu(b)}{b^2} - x \sum_{b > \sqrt{x}} \frac{\mu(b)}{b^2} + O(\sqrt{x})$$

$$= \frac{x}{\zeta(2)} + O(\sqrt{x})$$

Conclusion:

$$\sum_{n \le x} \mu^2(n) = \frac{6}{\pi^2} x + O(\sqrt{x}) \tag{13}$$

1.9 Lambda function and its application

$$\Lambda(n) = \begin{cases} \log p, & n = p^k \\ 0, & \text{else} \end{cases}$$

And it's easy to verify that:

$$\sum_{d|n} \Lambda(d) = \log n$$

Suppose that

$$\sum_{n \le x} \Lambda(n) = O(x)$$

Then

$$\sum_{n \le x} \sum_{d|n} \Lambda(d) = \sum_{n \le x} \log n = x \log x + O(x)$$

Also

$$= \sum_{d \le n} \Lambda(d) \left(\sum_{d' \le \frac{x}{d}} 1 \right)$$

$$= \sum_{d \le x} \lambda(d) \left(\frac{x}{d} - \left\{ \frac{x}{d} \right\} \right)$$

$$= x \sum_{d \le x} \frac{\Lambda(d)}{d} + O\left(\sum_{d \le x} \Lambda(d) \right)$$

$$= x \sum_{d \le x} \frac{\Lambda(d)}{d} + O(x)$$

Which means

$$\sum_{d \le x} \frac{\Lambda(d)}{d} = \log x + O(1) \tag{14}$$

For the logarithmic function of prime, we can use the property of gamma function:

$$\sum_{p \le x} \frac{\log p}{p} = \sum_{n \le x} \frac{\Lambda(n)}{n} + O(1) = \sum_{p} (\frac{\log p}{p} + \dots) = \log x + O(1)$$
 (15)

Also, for the inverse of prime number, we can combine the partial summation:

$$\sum_{p \le x} \frac{1}{p} = \sum_{p \le x} \frac{\log p}{p} \frac{1}{\log p}$$

If we let:

$$f(x) = \frac{1}{\log x}$$

$$a_n = \begin{cases} \frac{\log p}{p}, & n = p\\ 0, & \text{else} \end{cases}$$

and the sum of the sequence:

$$A(t) = \log t + O(1)$$

(denote O(1) := R(t))

$$\sum_{n \le x} a_n f(n) = \left(\sum_{p \le x} \frac{\log p}{p}\right) \frac{1}{\log x} + \int_2^x A(t) \left(\frac{dt}{t \log^2 t}\right)$$

$$= 1 + \frac{R(x)}{\log x} + \int_2^x \frac{dt}{t \log t} + \int_2^x \frac{R(t)}{t \log^2 t} dt$$

$$= \log \log x - \log \log 2 + 1 + O\left(\frac{1}{\log x}\right) + \int_2^\infty \frac{R(t)}{t \log^2 t} dt - \int_x^\infty \frac{R(t)}{t \log^2 t} dt$$

Hence:

$$\sum_{p \le x} \frac{1}{p} = \log\log x + A + O(\frac{1}{\log x}) \tag{16}$$

1.10 Mellin Transform

Given that:

$$F(s) = \sum_{n=1}^{\infty} \frac{f(n)}{n^s}, \quad M(x) = \sum_{n \le x} f(n)$$

Then suppose F(s) converges for some s with Re(s) > 0, the Mellin transform has:

$$F(s) = s \int_{1}^{\infty} \frac{M(x)}{x^{s+1}} dx \tag{17}$$

Let's use mellin transform to see some proposition of the order of mobius function. As we say before:

$$M(x) = \sum_{n \le x} \mu(n)$$

$$\sum_{n=1}^{\infty} \frac{\mu(n)}{n^s} = \frac{1}{\zeta(s)}$$

Suppose $M(x) = O(x^{\theta})$, and the integral $\int_{1}^{\infty} \frac{M(s)}{x^{s+1}} dx$ convergent for $Re(s) > \theta$, so if $\theta < \frac{1}{2}$, $\frac{1}{\zeta(s)}$ is absolutely convergent for $Re(s) \ge \frac{1}{2}$. But $\zeta(s)$ has zeros on $Re(s) = \frac{1}{2}$, which is impossible.

1.11 Perron's formula

$$F(s) = \sum_{n} \frac{f(n)}{n^s}$$

absolutely convergent for $Re(s) > \delta_a$. Then for any $c > \max\{0, \delta_a\}$, we have

$$M(x) = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} F(s) \frac{x^s}{s} ds$$
 (18)

Proof: Given T > 0,

$$M(x) = \frac{1}{2\pi i} \int_{C-iT}^{C+iT} F(s) \frac{x^s}{s} ds + R(T)$$

What we will do first is to calculate the remainder term R(T). And we claim that:

$$|R(T)| \le \frac{x^c}{T} \sum_{n=1}^{\infty} \frac{|f(n)|}{n^c |\log \frac{x}{n}|}$$

And the other equation's proof is complex, wait when I'm free.

1.12 Riemann zeta function (2)

As we get in before:

$$\zeta(s) = \frac{s}{s-1} - s \int_{1}^{\infty} \frac{\{x\}}{x^{s+1}} dt$$

and we let:

$$\Gamma(s) = \int_0^\infty e^{-t} t^{s-1} dt \tag{19}$$

Then consider the Dirichlet series of gamma function:

$$\frac{\Gamma(s)}{n^s} = \int_0^\infty e^{-t} (\frac{t}{n})^{s-1} d(\frac{t}{n}) = \int_0^\infty e^{-nt} t^{s-1} dt$$

Thus, summation equals

$$\Gamma(s)\zeta(s) = \sum_{n \ge 1} \int_0^\infty e^{-nt} s^{s-1} dt = \int_0^\infty (\sum_{n \ge 1} e^{-nt}) t^{s-1} dt = \int_0^\infty \frac{t^{s-1}}{e^t - 1} dt$$

So, naturally, let's consider a complex-plane function

$$I(s) = \int_{\partial l_p} \frac{z^{s-1}}{e^z - 1} dz$$

and the integral path is a contour (I don't have ability to draw it with Latex) composed with a circle whose radius are ρ lack a little and two lines from the gap, of which one right forward to infinity but the others inverse, and the function is an entire function of s. Let's calculate it:

First, on
$$|z| = \rho \le \pi$$

$$|\int_{|z|=\rho} \frac{z^{s-1}}{e^z-1} dz| \le \int_{|z|=\rho} \frac{|z|^{Re(s)-1}}{e^{|z|}-1} |dz| \le \int_0^{2\pi} \rho^{Re(s)-2} \rho d\theta \le 2\pi \rho^{Re(s)-1} \to 0$$

as $\rho \to 0$, for Re(s) > 1. Which means, under the condition above, the function of I(s) is dependent only on the real function $\Gamma(s)\zeta(s)$. Consider the direction of the path, we have:

$$I(s) = (e^{2\pi is} - 1)\Gamma(s)\zeta(s)$$
(20)

and for the gamma function we have reflection formula:

$$\Gamma(s)\Gamma(1-s) = \frac{\pi}{\sin(\pi s)} \tag{21}$$

so we can combine these to reflect function:

$$\zeta(s) = \frac{e^{-i\pi s}}{2\pi i} \Gamma(1-s)I(s) \tag{22}$$

which is valid for $Re(s) \leq 0$.

Theorem: functional equation

for $s \neq 1$,

$$\zeta(s) = 2^s \pi^{s-1} \sin(\frac{\pi s}{2}) \Gamma(1-s) \zeta(1-s)$$
(23)

(denote $\Phi(s) = \pi^{-\frac{s}{2}}\Gamma(\frac{s}{2})\zeta(s)$, then the theorem is: $\Phi(s) = \Phi(1-s)$)

Proof:

1.13 Prime Number Theory

Under RH, $\zeta(s)$ has no zero in the stripe $\frac{1}{2} < Re(s) < 1$. And we will present some conclusion. Denote $s = \sigma + it$ for $Re(s) > \frac{1}{2}$

$$\zeta(s) = O(t^{\epsilon})$$

$$\frac{1}{\zeta(s)} = O(t^{\epsilon})$$

Let

$$F(s) = \sum_{p} \frac{1}{p^s}$$

and

$$\zeta(s) = \prod_{p} (1 - \frac{1}{p^s})^{-1}$$

then

$$\log \zeta(s) = -\sum_{p} \log(1 - \frac{1}{p^s}) = \sum_{p} (\frac{1}{p^s} + \frac{1}{2p^{2s}} + \frac{1}{3p^{3s}} + \dots)$$

So we can find that

$$F(s) = \log \zeta(s) - \frac{1}{2} \log \zeta(2s) + G(s)$$

where, G(s) is absolutely convergent for $Re(s) \geq 0.34$. And we treat the $\pi(x)$ with Perron's formula:

$$\pi(x) = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} F(s) \frac{x^s}{s} ds$$

Choose $c = 1 + \frac{1}{\log x}$

2 Chebychev's bias(h)

It's just a slight glance at the chebychev's bias about primes module 3 as the homework of course "probabilistic number theory and its applications".

Define that

$$\chi_0(n) = 1, n \neq 3$$

$$\chi_1(n) = \begin{cases}
1, & n \equiv 1 \pmod{3} \\
-1, & n \equiv 2 \pmod{3}
\end{cases}$$

Obviously, the function we defined are both completely multiplitive. Then we can define the corresponding Dirichlet series:

$$L(s,\chi_0) = \sum_{n=1}^{\infty} \frac{\chi_0(n)}{n^s} = \prod_{p \neq 3} (1 + \frac{1}{p^s} + \frac{1}{p^{2s}} + \dots) = \prod_{p \neq 3} (1 - \frac{1}{p^s})^{-1} = \zeta(s)(1 - \frac{1}{3^s})$$

$$L(s,\chi_1) = \sum_{n=1}^{\infty} \frac{\chi_1(n)}{n^s} = \prod_{p \equiv 1 \pmod{3}} (1 + \frac{1}{p^s} + \frac{1}{p^{2s}} + \dots) \prod_{p \equiv 2 \pmod{3}} (1 - \frac{1}{p^s} + \frac{1}{p^{2s}} + \dots) = \prod_{p \neq 3} (1 - \frac{\chi(p)}{p^s})^{-1}$$

The former is similarly to the zeta function and have a pole at s=1. But the $L(s,\chi_1)$ convergent at that point. Don't be worry, we both have the similar zero-free region as zeta function:

$$\sigma \ge 1 - \frac{c}{\log(|t| + 1)}$$

for some c if $s = \sigma + it$.

To detect the prime number we need to define these two function too:

$$F(s, \chi_0) = \sum_{p} \frac{\chi_0(p)}{p^s} = (\sum_{p \neq 3} \frac{1}{p^s})$$
$$F(s, \chi_1) = \sum_{p} \frac{\chi_1(p)}{p^s}$$

The main tool we will use is Perron's formula, and we can easily get:

$$\pi(x;3;1) = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} \frac{1}{2} (F(s,\chi_0) + F(s,\chi_1)) \frac{x^s}{s} ds$$

Calculate separately, for the $F(s, \chi_0)$:

$$\frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} F(s,\chi_0) \frac{x^s}{s} ds = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} (\sum_p \frac{1}{p^s} - \frac{1}{3^s}) \frac{x^s}{s} ds = \sum_{p \neq 3} 1 = \pi(x) - 1 \sim \frac{x}{\log x}$$

For the another, considering that:

$$\log L(s, \chi_1)(s) = -\sum_p \log(1 - \frac{\chi_1(p)}{p^s}) = \sum_p \frac{\chi_1(p)}{p^s} - \frac{1}{2} \sum_p \frac{\chi_1^2(p)}{p^{2s}} + \dots$$

$$\Rightarrow F(s, \chi_1) = \log L(s, \chi_1) + G(s)$$

where G(s) is absolutely convergent for $Re(s) > \frac{1}{2}$. And on this region, the function $L(s, \chi_1)$ is entire for the changes between plus and minus. Hence, this term will not contribute to the main term.

In conclusion:

$$\pi(x;3,1) = \frac{1}{2} \frac{x}{\log x} + \text{error term}$$
$$\pi(x;3,2) = \frac{1}{2} \frac{x}{\log x} + \text{error term}$$

The question now is how large of the error term and the chebychev's bias for them?

What we want to detect is:

$$\Delta(x; 3, 2, 1) := \pi(x; 3, 2) - \pi(x; 3, 1)$$

Actually, it equals to:

$$\Delta(x;3,2,1) = -\frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} F(x,\chi) \frac{x^s}{s} ds$$

And the idea come from that, what we neglect before are the therms that have non-pole in the region that $\sigma \geq \frac{1}{2}$, and how about we add some terms which consider a larger non-zero region and that indicate the main term of bias?

$$F(s, \chi_1) = \log L(s, \chi_1) - \frac{1}{2} \log L(2s, \chi_1^2) + G'(s)$$

where G'(s) absolutely convergent for $\sigma > \frac{1}{3}$.

$$\Delta(x; 3, 2, 1) = -\frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} (\log L(s, \chi_1) - \frac{1}{2} \log L(2s, \chi_1^2)) \frac{x^s}{s} ds + \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} G'(s) \frac{x^s}{s} ds$$

The latter are the error term and the size are about $O(x^{\frac{1}{2}+\epsilon})$. And we can observe that:

$$\log L(2s, \chi_1^2) = \log L(2s, \chi_0) = \log \zeta(2s) + \log(1 - \frac{1}{3^{2s}})$$
$$= \sum_{n} \frac{1}{p^{2s}} + G''(s)$$

where G(s) absolutely convergent in $\sigma > \frac{1}{4}$. These are all the error terms.

Hence,

$$\frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} \frac{1}{2} \log L(2s, \chi_1^2) \frac{x^s}{s} ds = \frac{\sqrt{x}}{\log x} + \text{error}$$

But the question is when cross the line $\sigma = \frac{1}{2}$, there will exist poles in the first term.

And at each pole, we can calculate roughly:

if
$$\rho = \frac{1}{2} + i\gamma$$

$$-\frac{1}{2\pi i} \int_{H_o} \log(s, \chi_1) \frac{x^s}{s} ds = \frac{\sqrt{x}}{\log x} \frac{x^{i\gamma}}{\frac{1}{2} + i\gamma} + \text{error}$$

where H_{ρ} is a path to cross the point of pole to calculate the line x=c by Cauchy's integral theorem. Hence, we can obtain:

$$\Delta(x; 3, 2, 1) = \frac{\sqrt{x}}{\log x} \left(1 + \sum_{|\gamma| \le T} \frac{x^{i\gamma}}{\frac{1}{2} + i\gamma}\right) + \text{error}$$

Hence, in most time, the prime number of the form 3p+2 is much more than 3p+1.

- 3 Basic graph theory
- 4 L-function
- 5 Dirichlet character
- 6 Probabilistic tools
- 7 Exponential moment method
- 8 Jason's inequality
- 9 Markov chains