MEC070 – MÁQUINAS DE FLUXO

PROVA: SIMULAÇÃO NUMÉRICA

Data de entrega: 10/10/2022 - 1ª Prova: Fluxograma e pesquisa bibliográfica.
 21/11/2022 - 2ª Prova: Avanço do programa de computador.
 09/01/2023 - 3ª Prova: Finalização do programa de computador.

Entregue: Versão eletrônica, script (arquivo fonte), relatório incluindo introdução, metodologia, resultados e discussão, conclusões e bibliografia.

Grupos: A distribuição dos grupos é similar ao do projeto para o relatório audiovisual.

 Considere água escoando com uma vazão Q (gpm), fluindo do ponto 1 ao ponto 2 em um tubo vertical de comprimento L (ft) e diâmetro D (in). A queda de pressão entre 2 diferentes níveis de referência pode ser calculada através da equação de Fanning como mostrado na equação (1).

$$(p_i - p_j) = \frac{1}{2} f \rho \bar{V}^2 \left(\frac{L}{D}\right) + \rho g(z_j - z_i) \tag{1}$$

Começando da equação anterior e assumindo o fator de atrito de Moody f como uma função da rugosidade do tubo ϵ (in) e o número de Reynolds,

$$Re = D\rho \bar{V}/12\mu \tag{2}$$

onde, µ é a viscosidade dinâmica do fluido em lb_m/(ft·s). Para um Re ≤ 2000,

$$f = 64/Re \tag{3}$$

enquanto para um Re > 2000, o fator de atrito de Moody f é dado pela solução da equação de Colebrook,

$$\frac{1}{\sqrt{f}} = -2\log_{10}\left(\frac{\epsilon}{3.7D} + \frac{2.51}{Re\sqrt{f}}\right) \tag{4}$$

A equação (5) pode ser considerada válida para escoamento turbulento em tubos de rugosidade média.

$$(z_2 - z_1) + 2.31(p_2 - p_1) + 8.69 \times 10^{-4} \left(\frac{LQ^2}{D^5}\right) = 0$$
 (5)

onde, p é a pressão em psig e z é a cota em ft.

Além disso, uma curva típica de altura de carga para uma bomba centrífuga pode ser representada pela equação (6).

$$\Delta p = \alpha - \beta Q^2 \tag{6}$$

onde, Δp é o aumento de pressão em psig através da bomba, Q é a vazão volumétrica em gpm, α e β são constantes dependentes da bomba usada.

Considere o sistema de bombeamento mostrado na Figura 1. As pressões p_1 e p_5 são essencialmente atmosféricas (0 psig). Há um aumento da elevação entre os pontos 4 e 5, mas os tubos C, D e G são horizontais. Com base no acima exposto, as equações governantes são:

$$Q_E = Q_C + Q_D + Q_G \tag{7}$$

$$p_2 = \alpha_A - \beta_A Q_C^2 \tag{8}$$

$$p_3 = \alpha_B - \beta_B Q_D^2 \tag{9}$$

$$p_6 = \alpha_F - \beta_F Q_G^2 \tag{10}$$

$$2,31(p_4 - p_2) + 8,69 \times 10^{-4} (L_C Q_C^2 / D_C^5) = 0$$
(11)

$$2,31(p_4 - p_3) + 8,69 \times 10^{-4} (L_D Q_D^2 / D_D^5) = 0$$
(12)

$$2,31(p_4 - p_6) + 8,69 \times 10^{-4} (L_G Q_G^2 / D_G^5) = 0$$
(13)

$$(z_5 - z_4) + 2.31(0 - p_4) + 8.69 \times 10^{-4} (L_E Q_E^2 / D_E^5) = 0$$
(14)

$$Q = A\bar{V} \tag{15}$$

Figura 1. Sistema de bombeamento.

Escreva um programa de computador (Python, Fortran, C++, Matlab, etc.) que aceitará valores para ρ , μ , ϵ_C , ϵ_D , ϵ_E , ϵ_G , (z_5-z_4) , D_C , L_C , D_D , L_D , D_G , L_G , D_E e L_E e que resolva as equações acima para as incógnitas α_A , β_A , α_B , β_B , α_F , β_F , f_C , f_D , f_G , f_E , Re_C , Re_D , Re_G , Re_E , Q_C , Q_D , Q_G , Q_E , p_2 , p_3 , p_4 e p_6 . Um conjunto sugerido de dados de teste é:

- a) Diferença de cotas (z₅ z₄):
 - i. Grupo 1: 110 ft;
 - ii. Grupo 2: 130 ft;
 - iii. Grupo 3: 140 ft;
 - iv. Grupo 4: 160 ft.

b) Bombas:

Bomba	α	β
Бонра	[psi]	[psi/(gpm) ²]
Α	O programa deve calcular o parâmetro a	O programa deve calcular o parâmetro a
	partir do sistema de equações gerado para	partir do sistema de equações gerado para
	a curva H vs Q para o rotor D2 da Figura 2	a curva H vs Q para o rotor D2 da Figura 2
В	O programa deve calcular o parâmetro a	O programa deve calcular o parâmetro a
	partir do sistema de equações gerado para	partir do sistema de equações gerado para
	a curva H vs Q para o rotor D3 da Figura 2	a curva H vs Q para o rotor D3 da Figura 2
F	O programa deve calcular o parâmetro a	O programa deve calcular o parâmetro a
	partir do sistema de equações gerado para	partir do sistema de equações gerado para
	a curva H vs Q para o rotor D4 da Figura 2	a curva H vs Q para o rotor D4 da Figura 2

Performance curve for Peerless 8AE20G pump at 1770 rpm.

Figura 2. Curvas de Desempenho.

c) Tubulações:

	D [in]					
Tubo	Grupo	Grupo	Grupo	Grupo	L [ft]	ε [ft]
	1	2	3	4		
С	2,00	2,50	2,75	3,25	140	0,0025
D	2,25	2,75	3,00	3,50	140	0,0020
Е	3,25	3,50	3,75	4,25	190	0,0035
G	2,50	2,25	3,25	3,75	150	0,0030

d) Fluido de trabalho em bombas e tubulações:

Fluido em bomba	ρ [lb _m /ft³]	μ [lb _m /(ft·s)]
Α	62,15	0,0005796
В	62,15	0,0005796
F	62,15	0,0005796

- e) Considere que os comprimentos dos tubos acima já incluíram os comprimentos equivalentes de todas as conexões e válvulas;
- f) A distribuição dos grupos corresponde ao do projeto para o relatório audiovisual.