PROJET El : Séparation de signaux dans des ECG

LEWY Nathan - SAINCTAVIT Pierre

PREMIERE APPROCHE: MATCHING PURSUIT

DEUXIEME APPROCHE: ICA

Dernière approche:
PCA

MATCHING PURSUIT

Idée: projette sur des atomes en peigne parfaits (amplitude, largeur et frequence fixes)

MATCHING PURSUIT

Problème: des pics parasites apparaissent dans le résidu

Dû au fait que **MHR/FHR** suivent une distribution **gaussienne** dans la database

L'idée de garder les **2 premières composantes**, mère et foetus idéalement ne fonctionne pas

L'orthogonal matching pursuit n'améliore pas les résultats

PREMIERE APPROCHE: MATCHING PURSUIT

DEUXIEME APPROCHE: ICA

Dernière approche : PCA

ICA: Principe

Dans le papier :

the number of available abdominal channels. Best average results using eight channels were BSS_{pca} (97.40%), BSS_{ica} with FAST-ICA (97.22%—both deflationary and symmetric) and

Observations: $\underline{x} = (x_1, x_2, \dots, x_p)$

Signal: $\underline{s} = (s_1, s_2, \dots, s_n)$

On suppose : $\underline{x} = A\underline{s}$

Objectif: Trouver W telle que:

$$\mathbf{S} \leftarrow \mathbf{W}^{\mathbf{T}} \mathbf{X}$$

ICA: Algorithme théorique

- → On utilise l'algorithme Fast-ICA
- → Principe simple : on cherche à trouver des composantes de **S** indépendantes
- --> On sait que la moyenne de la somme de variables indépendantes tend vers une gaussienne

$$\boldsymbol{S} \leftarrow \boldsymbol{W^T}\boldsymbol{X}$$

- 1. Randomize the initial weight vector w
- 2. Let $\mathbf{w}^+ \leftarrow E\left\{\mathbf{X}g(\mathbf{w}^T\mathbf{X})^T\right\} E\left\{g'(\mathbf{w}^T\mathbf{X})\right\}\mathbf{w}$, where $E\left\{\dots\right\}$ means averaging over all column-vectors of matrix \mathbf{X}
- 3. Let $\mathbf{w} \leftarrow \mathbf{w}^+ / \|\mathbf{w}^+\|$
- 4. If not converged, go back to 2
 - ightarrow $O\grave{\mathsf{U}}$: $g(u) = \tanh(u)$, and $g'(u) = 1 \tanh^2(u)$, servent à mesurer la non-gaussiannité

Fast ICA: en pratique

Sources: signal ECG du foetus, signal ECG de la mère, c'est le vecteur S

Observations : 5 minutes du signal de la mère échantilloné à 250 Hertz.

→ On prend la moyenne sur les électrodes : [1,6], [8,14], [16,23],
 [23,32]. Cela fait 4 observations dans un vecteur X

Fast ICA: en pratique

- → Deux signaux séparés, composantes du vecteur s.
- → On trouve les maximums avec "find_peaks"

```
peaks1, = find_peaks(abs(S_[0]), height=abs(S_[0]).max()/3 ,width = [1,10],distance = 40)
peaks2, = find_peaks(abs(S_[1]), height=abs(S_[1]).max()/3,width = [1,10],distance = 40)
```

Détection des marqueurs

--> On détecte les marqueurs sur le signal

Résultats

--> On test pour différents cas:

60 BPM, 110 BPM

--> Plus les fréquences se confondent moins l'ICA est précise

Résultats

70, 130

--> Plus les fréquences se confondent moins l'ICA est précise

--> Plus les fréquences se confondent moins l'ICA est précise

06

--> Sensible à l'augmentation du bruit

Résultats:

09

--> Sensible à l'augmentation du bruit

Résumé

--> Problèmes

- --> Sensibilité au bruit,
- --> Du mal à différencier des fréquences similaires (même si les amplitudes sont très différentes)

--> Avantages

- --> Facile à implémenter
- --> Bons résultats
- --> L'ICA permet de bien automatiser, mais pas de trouver des signaux un peu "cachés"

PREMIERE APPROCHE: MATCHING PURSUIT

DEUXIEME APPROCHE: ICA

Dernière approche : PCA

Separated Signals using PCA Separated Signal 0 Separated Signal 1 Separated Signal 2 Separated Signal 2 1100 1200 1300 1400 1500 1600 1700 1800 indice de la mesure

Fonctionnement de la PCA:

$$X \in \mathbb{R}^{n imes T}$$

n signaux de durée T centrés

$$\Sigma = rac{1}{T} X_c X_c^T \quad \in \mathbb{R}^{n imes n}$$

Vk la matrice des k premieres valeurs propres

$$X_{
m PCA} = X_c V_k$$

Premier pic détecté de l'estimation de l'autocorrélation au dessus d'une certaine prominence

indice de la mesure

Force la détéction de pics des PC à

Mêmes métriques que le papier de recherche: fenêtres de **150 ms** pour la mère et **50 ms** pour le foetus

500 iterations, 30s windows, randomized through synthetic database	c0 Baseline	c1 Foetal movement	c2 MHR/FHR variations	c3 Uterine contraction	c4 Ectopic beats	c5 twin pregnancy
Mother sensitivity	0.99	0.99	0.99	0.91	0.99	0.99
Mother ppv	1	1	1	0.63	1	1
Mother f1-score	0.99	0.99	0.98	0.88	0.99	0.99
Foetus sensitivity	0.88	0.9	0.93	0.61	0.88	0.68
Foetus ppv	1	1	1	0.17	1	0.68
Foetus f1-score	0.89	0.92	0.95	0.62	0.90	0.69

Références bibliographiques

Bacharakis, E., Nandi, A. K., & Zarzoso, V. (s.d.). **Foetal ECG extraction using blind source separation methods.** Signal Processing Division, Department of Electronic and Electrical Engineering, University of Strathclyde.

Andreotti, F., et al. (2016). **An open-source framework for stress-testing non-invasive foetal ECG extraction algorithms**. Physiological Measurement, 37(6), 627.