Lecture 32: Nov. 28

Last time

• Presentations

• Multiple Random Variables (Chapter 4)

Today

• Course evaluations

• Conditional Distributions

Example 2

$$F_{X,Y}(x,y) = x - x \log \frac{x}{y} \qquad 0 < x \le y \le 1$$

$$f_{X,Y}(x,y) = \frac{\partial^2 F_{X,Y}(x,y)}{\partial x \partial y} =$$

$$f_{X}(x) =$$

$$f_{Y}(y) =$$

Note: Once we have $f_X(x)$ and $f_Y(y)$, we can obtain $F_X(x)$ and $F_Y(y)$ directly. Double check: $F_X(x) = F_{X,Y}(x, \infty)$.

Conditional Distributions

Conditional Distributions - Discrete Recall if A and B are two events, the probability of A conditional on B is:

$$\Pr(A|B) = \frac{\Pr(A,B)}{\Pr(B)}$$

Defining the events $A = \{Y = y\}$ and $B = \{X = x\}$, it follows that

$$\Pr\{Y = y | X = x\} = \frac{\Pr(X = x, Y = y)}{\Pr(X = x)}$$
$$= \frac{f_{X,Y}(x, y)}{f_X(x)}$$
$$= f_{Y|X}(y|x)$$

This is called the *conditional probability mass function* of Y given X.

Example: Discrete Back to the fair coin example. From the joint pmf of X and Y, we can derive all the conditional pmfs:

1

Conditional Distribution - Continuous If F(x,y) is absolutely continuous, we define the conditional density of Y given X as:

$$f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y)}{f_Y(y)}$$
, if $f_Y(y) > 0$

Example 1

$$F_{XY}(x,y) = xy \qquad 0 < x < 1, \quad 0 < y < 1$$

$$f_{XY}(x,y) = 1 \qquad 0 < x < 1, \quad 0 < y < 1$$

$$f_{X}(x) = 1 \qquad 0 < x < 1$$

$$f_{Y}(y) = 1 \qquad 0 < y < 1$$

$$f_{X|Y}(x|y) = \frac{f_{XY}(x,y)}{f_{Y}(y)} = 1 \quad 0 < x < 1 \quad (0 < y < 1)$$

$$f_{Y|X}(y|x) = \frac{f_{XY}(x,y)}{f_{X}(x)} = 1 \quad 0 < y < 1 \quad (0 < x < 1)$$

Note: Here we get that the conditional densities are the same as the marginals. This means X and Y are independent.

Example 2

$$F_{XY}(x,y) = x - x \log \frac{x}{y} \qquad 0 < x \le y \le 1$$

$$f_{XY}(x,y) = 1/y \qquad 0 < x \le y \le 1$$

$$f_{X}(x) = -\log x \qquad 0 < x \le 1$$

$$f_{Y}(y) = 1 \qquad 0 < y \le 1$$

$$f_{X|Y}(x|y) = \frac{f_{XY}(x,y)}{f_{Y}(y)} = 1/y \qquad 0 < x \le y \qquad (0 < y \le 1)$$

$$f_{Y|X}(y|x) = \frac{f_{XY}(x,y)}{f_{X}(x)} = -\frac{1}{y \log x} \quad x \le y \le 1 \qquad (0 < x \le 1)$$

- Y is marginally uniform, but not conditionally uniform.
- X is conditionally uniform, but not marginally uniform.

Independent Random Variables

Independence The random variable X and Y are said to be *independent* if for any two Borel sets A and B,

$$\Pr(X \in A, Y \in B) = \Pr(X \in A) \Pr(Y \in B)$$

All events defined in terms of X are independent of all events defined in terms of Y.

Using the Kolmogorov axioms of probability, it can be shown that X and Y are independent if and only if $\forall (x, y)$ (except possibly for sets of probability 0)

$$F_{X,Y}(x,y) = F_X(x)F_Y(y)$$

or in terms of pmfs (discrete) and pdfs (continuous)

$$f_{X,Y}(x,y) = f_X(x)f_Y(y)$$

Checking independence

- A necessary condition for independence of X and Y is that their joint pdf/pmf has positive probability on a rectangular domain.
- If the domain is rectangular, one can try to write the joint pdf/pmf as a product of functions of x and y only.

Example Two points are selected randomly on a line of length a so as to be on opposite sides of the mid-point of the line. Find the probability that the distance between them is less than a/3.

Solution:

Let X be the coordinate of a point selected randomly in [0, a/2] and Y be the coordinate of a point selected randomly in [a/2, a]. Assume X and Y are independent and uniform over its interval. The joint density is

$$f_{X,Y}(x,y) = 4/a^2$$
, $0 \le x \le a/2, a/2 \le y \le a$

Therefore, the solution is

$$Pr(Y - X < a/3) =$$

Example: Buffon's Needle A table is ruled with lines distance 1 unit apart. A needle of length $L \leq 1$ is thrown randomly on the table. What is the probability that the needle intersects a line?

Solution:

Define two random variables:

- X: distance from low end of the needle to the nearest line above
- θ : angle from the vertical to the needle.

By "random", we assume X and θ are independent, and

$$X \sim U(0,1)$$
 and $\theta \sim U[-\pi/2,\pi/2]$.

This means that

$$f_{X,\theta}(x,\theta) = 1/\pi, \quad 0 \leqslant x \leqslant 1, -\pi/2 \leqslant \theta \leqslant \pi/2$$

For the needle to intersect a line, we need $X < L\cos(\theta)$.

Expectations of Independent RVs (Theorem 4.2.10) Let X and Y be independent rvs.

• For any $A \subset \mathbb{R}$ and $B \subset \mathbb{R}$,

$$\Pr(X \in A, Y \in B) = \Pr(X \in A) \Pr(Y \in B)$$

i.e. the events $\{X \in A\}$ and $\{Y \in B\}$ are independent.

• Let g(x) be a function only of x and h(y) be a function only of y. Then

$$E[g(X)h(Y)] = [Eg(X)][Eh(Y)]$$

Proof:

$$E[g(X)h(Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x)h(y)f_{XY}(x,y)dxdy$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x)h(y)f_{X}(x)f_{Y}(y)dxdy$$

$$= \left(\int_{-\infty}^{\infty} g(x)f_{X}(x)dx\right) \left(\int_{-\infty}^{\infty} h(y)f_{Y}(y)dy\right)$$

$$= [Eg(X)][Eh(Y)]$$

Example X, Y are independent

$$E(X^2Y^3) = (EX^2)(EY^3)$$

 $E(Y^2Y^3) \neq (EY^2)(EY^3)$

Bivariate Transformation

Functions of random variables Let (X, Y) be a bivariate rv with known distributions. Define (U, V) by

$$U = g_1(X, Y), \quad V = g_2(X, Y)$$

Probability mapping For any Borel set $B \subset \mathbb{R}^2$,

$$\Pr[(U, V) \in B] = \Pr[(X, Y) \in A]$$

where A is the inverse mapping of B, i.e.

$$A = \{(x, y) \in \mathbb{R}^2 : (q_1(x, y), q_2(x, y)) \in B\}$$

The inverse is well defined even if the mapping is not bijective.

Example Let
$$g_1(x, y) = x, g_2(x, y) = x^2 + y^2$$
.

Discrete RVs Suppose that (X, Y) is a discrete rv, i.e. the pmf is positive on a countable set A. Then (U, V) is also discrete and takes values on a countable set B. Define

$$A_{u,v} = \{(x,y) \in \mathcal{A} : g_1(x,y) = u, g_2(x,y) = v\}$$

Then

$$f_{UV}(u, v) = \Pr(U = u, V = v) = \sum_{(x,y) \in A_{u,v}} f_{XY}(x,y)$$

Sum of two independent Poissons Let $X \sim Poisson(\lambda_1)$, $Y \sim Poisson(\lambda_2)$, independent, and define

$$U = X + Y, \quad V = Y$$

- (X,Y) takes values in $\mathcal{A} = \{0,1,2,\dots\}^2$
- (U, V) takes values on $\mathcal{B} = \{(u, v) : v = 0, 1, 2, \dots, u = v, v + 1, v + 2, \dots\}.$
- For a particular (u, v), $A_{uv} = \{(x, y) \in \mathcal{A} : x + y = u, y = v\} = (u v, u)$.

The joint pmf of U and V is

$$f_{UV}(u,v) = f_{XY}(u-v,v) = \frac{e^{-\lambda_1}\lambda_1^{u-v}}{(u-v)!} \frac{e^{-\lambda_2}\lambda_2^v}{(v)!}$$

The distribution of U = X + Y is the marginal

$$f + U(u) = \sum_{v=0}^{u} \frac{e^{-\lambda_1} \lambda_1^{u-v}}{(u-v)!} \frac{e^{-\lambda_2} \lambda_2^v}{(v)!}$$
$$= \frac{e^{-(\lambda_1 + \lambda_2)}}{u!} \sum_{v=0}^{u} {u \choose v} \lambda_1^{u-v} \lambda_2^v$$
$$= \frac{e^{-(\lambda_1 + \lambda_2)}}{u!} (\lambda_1 + \lambda_2)^u$$

We obtain that U is Poisson with parameter $\lambda = \lambda_1 + \lambda_2$.

Bivariate Transformations of Continuous RVs Suppose (X, Y) is continuous and the joint transformation

$$u = g_1(x, y), \quad v = g_2(x, y)$$

is one-to-one and differentiable. Define the inverse mapping

$$x = h_1(u, v), \quad y = h_2(u, v)$$

Then

$$f_{UV}(u, v) = f_{XY}(h_1(u, v), h_2(u, v)) |J(u, v)|$$

where J(u,v) is the Jacobian of the transformation $(x,y) \to (u,v)$ given by

$$J(u,v) = \frac{\partial(x,y)}{\partial(u,v)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix}$$

Example: Rotation of a bivariate normal vector Let $X \sim N(0,1)$, $Y \sim N(0,1)$, independent. Define the rotation

$$U = X\cos\theta - Y\sin\theta$$

$$V = X\sin\theta + Y\cos\theta$$

for fixed θ . Then $U \sim N(0,1), V \sim N(0,1)$, independent.

Proof:

The range of (X,Y) is \mathbb{R}^2 . The range of (U,V) is \mathbb{R}^2 . Need the inverse transformation

$$X = U \cos \theta + V \sin \theta$$
$$Y = -U \sin \theta + V \cos \theta$$

with Jacobian

$$J(u,v) = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix} = \begin{vmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{vmatrix} = 1$$

The joint pdf of (X,Y) is

$$f_{XY}(x,y) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2} \cdot \frac{1}{\sqrt{2\pi}} e^{-y^2/2} = \frac{1}{2\pi} e^{-(x^2+y^2)/2}$$

The joint pdf of (U, V) is

$$f_{UV}(u,v) = \frac{1}{2\pi} e^{-\left[(u\cos\theta + v\sin\theta)^2 + (-u\sin\theta + v\cos\theta)^2\right]/2} \cdot |1|$$
$$= \frac{1}{2\pi} e^{-(u^2 + v^2)/2} = \frac{1}{\sqrt{2\pi}} e^{-u^2/2} \cdot \frac{1}{\sqrt{2\pi}} e^{-v^2/2}$$

so $U \sim N(0,1)$, $V \sim N(0,1)$, and U and V are independent.

Functions of independent random variables (Theorem 4.3.5) Let X and Y be independent rvs. Let $g: \mathbb{R} \to \mathbb{R}$ and $h: \mathbb{R} \to \mathbb{R}$ be functions. Then the random variables U = g(X) and V = h(Y) are independent.

Sum of two independent rvs Suppose X and Y are independent. What is the distribution of Z = X + Y? In general:

$$F_Z(z) = \Pr(X + Y \leqslant z) = \Pr(\{(x, y) \text{ such that } x + y \leqslant z\})$$

Various approaches:

- bivariate transformation method (continuous and discrete)
- Discrete convolution

$$f_Z(z) = \sum_{x+y=z} f_X(x) f_Y(y) = \sum_x f_X(x) f_Y(z-x)$$

- Continuous convolution (Section 5.2)
- MGF method (continuous and discrete)

Example (Sum of two independent Poissons) Define X, Y to be two independent random variables having Poisson distributions with parameters λ_i , i = 1, 2. Then:

$$f_{X,Y}(x,y) = \frac{e^{-\lambda_1} \lambda_1^x}{x!} \frac{e^{-\lambda_2} \lambda_2^y}{y!}, x, y = 0, 1, 2, \dots$$

The distribution of S = X + Y is

$$f_S(s) = \sum_{x=0}^s \frac{e^{-\lambda_1} \lambda_1^x}{x!} \frac{e^{-\lambda_2} \lambda_2^{s-x}}{(s-x)!}$$
$$= \frac{e^{-(\lambda_1 + \lambda_2)}}{s!} \sum_{x=0}^s {s \choose x} \lambda_1^x \lambda_2^{s-x}$$
$$= \frac{e^{-(\lambda_1 + \lambda_2)}}{s!} (\lambda_1 + \lambda_2)^s$$

Again, S is Poisson with parameter $\lambda = \lambda_1 + \lambda_2$.

Moment generating function (Theorem 4.2.12) Let X and Y be independent rvs with mgfs $M_X(\cdot)$ and $M_Y(\cdot)$, respectively. Then the mgf of Z = X + Y is

$$M_Z(t) = M_X(t)M_Y(t)$$

Proof:

$$M_Z(t) = E \exp(Zt) = E\{\exp[(X+Y)t]\}$$

= $E[\exp(Xt)\exp(Yt)] = E[\exp(Xt)] \cdot E[\exp(Yt)]$
= $M_X(t)M_Y(t)$

Corollary: If X and Y are independent and Z = X - Y,

$$M_Z(t) = M_X(t)M_Y(-t)$$

Example (sum of two independent Poissons) Suppose $X \sim Poisson(\lambda_X)$ and $Y \sim Poisson(\lambda_Y)$ and put Z = X + Y. Then, $Z \sim Poisson(\lambda_X + \lambda_Y)$. Proof:

$$M_Z(t) = \exp \left[\lambda_X(e^t - 1)\right] \exp \left[\lambda_Y(e^t - 1)\right]$$
$$= \exp \left[(\lambda_X + \lambda_Y)(e^t - 1)\right]$$

Example (sum of two independent normals) Suppose $X \sim N(\mu_x, \sigma_x^2)$ and $Y \sim N(\mu_y, \sigma_y^2)$ and X and Y are independent and Z = X + Y. Then

$$Z \sim N(\mu_x + \mu_y, \sigma_x^2 + \sigma_y^2)$$

Proof:

$$M_Z(t) = \exp\left(\mu_x t + \frac{1}{2}\sigma_x^2 t^2\right) \exp\left(\mu_y t + \frac{1}{2}\sigma_y^2 t^2\right)$$
$$= \exp\left[(\mu_x + \mu_y)t + \frac{1}{2}(\sigma_x^2 + \sigma_y^2)t^2\right]$$

Example (sum of two independent gammas) Suppose $X \sim \Gamma(\alpha_x, \beta)$ and independently $Y \sim \Gamma(\alpha_y, \beta)$. Let Z = X + Y. Then $Z \sim \Gamma((\alpha_x + \alpha_y), \beta)$. *Proof:*

$$M_Z(t) = \left(\frac{1}{1 - \beta t}\right)^{\alpha_x} \left(\frac{1}{1 - \beta t}\right)^{\alpha_y}$$
$$= \left(\frac{1}{1 - \beta t}\right)^{\alpha_x + \alpha_y}$$

Remember that

- If $\alpha = 1$ we have an exponential with parameter β .
- If $\alpha = n/2$ and $\beta = 2$, we have a $\chi^2(n)$ (with n d.f.). The above result states that $\chi^2(n_1) + \chi^2(n_2) = \chi^2(n_1 + n_2)$.