Санкт-Петербургский государственный университет Математико-механический факультет

Литвинов Степан Сергеевич

Метод Якоби поиска собственных чисел

Практическая работа

Оглавление

1.	Постановка задачи	3
2.	Теорминимум	4
	2.1. Итерационный процесс метода Якоби	4
	2.2. Теорема Гершгорина	5
3.	Тесты	6
4.	Код	8

1. Постановка задачи

Реализовать метод Якоби поиска всех собственных чисел. Использовать две какие-либостратегии выбора обнуляемого элемента. По теореме Гершгорина определить область, в которую должны попадать с.ч.матрицы. Проверить, действительно ли найденные значения в область попали

2. Теорминимум

2.1. Итерационный процесс метода Якоби

Формулой

$$A^{(k+1)} = (H^{(k)})^{\mathrm{T}} A^{(k)} H^{(k)},$$

где матрица $H^{(k)}$ называется матрицей вращения Якоби.

На k-й итерации выбирается максимальный по модулю недиагональный элемент $a_{ij}^{(k)}$, для которого определяется матрица $H^{(k)}$, приводящая элемент $a_{ij}^{(k+1)}$ матрицы $A^{(k+1)}$ к нулю.

Угол $\phi^{(k)}$ определяется по формуле

$$\phi^{(k)} = \frac{1}{2} \arctan \frac{2a_{ij}^{(k)}}{a_{ii}^{(k)} - a_{jj}^{(k)}}.$$

Итерационный процесс идет до тех пор, пока максимальный по модулю недиагональный элемент $a_{ij}^{(k)}$ больше заданной точности ε .

В итоге собственные числа матрицы A лежат на диагонали матрицы $A^{(k)}$.

2.2. Теорема Гершгорина

Пусть A комплексная квадратная матрица с элементами a_{ij} . Для $i\in\{1,\dots,n\}$ пусть $R_i=\sum_{j\neq i}|a_{ij}|.$

Пусть $D(a_{ii}, R_i) \subseteq C$ будет замкнутым диском с центром в a_{ii} с радиусом R_i . Такой диск называется диском Гершгорина.

Теорема:

Каждое собственное значение из A лежит в пределах хотя бы одного из Дисков Гершгорина $D(a_{ii}, R_i)$.

3. Тесты

	1	2	3	4	5
1	1.00000000	0.50000000	0.33333333	0.25000000	0.20000000
2	0.50000000	0.33333333	0.25000000	0.20000000	0.16666667
3	0.33333333	0.25000000	0.20000000	0.16666667	0.14285714
4	0.25000000	0.20000000	0.16666667	0.14285714	0.12500000
5	0.20000000	0.16666667	0.14285714	0.12500000	0.11111111

Приближение n_iter Гершорина 0.01 9		n_iter max наддиагональный	np_eig - gers_eig	np_eig - maxabs_eig
		11	0.010716877008945656	0.01071954538455553
0.001	9	17	0.010716877008945656	0.0159667609888987
0.0001	9	18	0.010716877008945656	0.015918121692733208
1e-05	9	24	0.010716877008945656	0.015918316979646945

Рис. 1: Сравнение методов для матрицы Гильберта 4го порядка

	1	2	3	4	5	6
1	1.00000000	0.50000000	0.33333333	0.25000000	0.20000000	0.16666667
2	0.50000000	0.33333333	0.25000000	0.20000000	0.16666667	0.14285714
3	0.33333333	0.25000000	0.20000000	0.16666667	0.14285714	0.12500000
4	0.25000000	0.20000000	0.16666667	0.14285714	0.12500000	0.11111111
5	0.20000000	0.16666667	0.14285714	0.12500000	0.11111111	0.10000000
6	0.16666667	0.14285714	0.12500000	0.11111111	0.10000000	0.09090909

Приближение n_iter Гершорина n_iter тах наддиаго 0.01 11 14		n_iter max наддиагональный	np_eig - gers_eig	np_eig - maxabs_eig
		14	0.01588876515479488	0.015832569910341814
0.001	11	22	0.01588876515479488	0.02281258317850855
0.0001	11	28	0.01588876515479488	0.02265837042984893
1e-05	11	33	0.01588876515479488	0.02265900059134012

Рис. 2: Сравнение методов для матрицы Гильберта 6го порядка

	1	2	3	4	5	6	7	8	9	10
1	1.00000000	0.50000000	0.33333333	0.25000000	0.20000000	0.16666667	0.14285714	0.12500000	0.11111111	0.10000000
2	0.50000000	0.33333333	0.25000000	0.20000000	0.16666667	0.14285714	0.12500000	0.11111111	0.10000000	0.09090909
3	0.33333333	0.25000000	0.20000000	0.16666667	0.14285714	0.12500000	0.11111111	0.10000000	0.09090909	0.08333333
4	0.25000000	0.20000000	0.16666667	0.14285714	0.12500000	0.11111111	0.10000000	0.09090909	0.08333333	0.07692308
5	0.20000000	0.16666667	0.14285714	0.12500000	0.11111111	0.10000000	0.09090909	0.08333333	0.07692308	0.07142857
6	0.16666667	0.14285714	0.12500000	0.11111111	0.10000000	0.09090909	0.08333333	0.07692308	0.07142857	0.06666667
7	0.14285714	0.12500000	0.11111111	0.10000000	0.09090909	0.08333333	0.07692308	0.07142857	0.06666667	0.06250000
8	0.12500000	0.11111111	0.10000000	0.09090909	0.08333333	0.07692308	0.07142857	0.06666667	0.06250000	0.05882353
9	0.11111111	0.10000000	0.09090909	0.08333333	0.07692308	0.07142857	0.06666667	0.06250000	0.05882353	0.0555556
10	0.10000000	0.09090909	0.08333333	0.07692308	0.07142857	0.06666667	0.06250000	0.05882353	0.0555556	0.05263158

Приближение	n_iter Гершорина	n_iter Гершорина n_iter max наддиагональный		np_eig - maxabs_eig
0.01	22 24		0.03589168301808101	0.03559755016570404
0.001	35	45	0.0500346820546895	0.04992124045981649
0.0001	35	64	0.0500346820546895	0.048854632311810184
1e-05	35	76	0.0500346820546895	0.04885532342310928

Рис. 3: Сравнение методов для матрицы Гильберта 10го порядка

4. Код

Можно посмотреть здесь