More neural networks and support vector machines (SVMs)

Announcements

- A3 released (due on December 2nd), fill out the teams form by the end of the day (everyone should fill out the form)
- Five classes left! And some work:
 - Assignment 4
 - Final exam

Backpropagation Algorithm

- Werbos, Rumelhart, Hinton, Williams (1974)
- Until convergence:
 - Present a training pattern to network
 - Calculate the error of the output nodes
 - Calculate the error of the hidden nodes, based on the output node error which is propagated back
 - Continue back-propagating error until the input layer
 - Update all weights in the network

```
function BACK-PROP-LEARNING(examples, network) returns a neural network
inputs: examples, a set of examples, each with input vector x and output vector y
          network, a multilayer network with L layers, weights w_{i,j}, activation function g
local variables: \Delta, a vector of errors, indexed by network node
repeat
    for each weight w_{i,j} in network do
         w_{i,j} \leftarrow a small random number
     for each example (x, y) in examples do
         /* Propagate the inputs forward to compute the outputs */
         for each node i in the input layer do
             a_i \leftarrow x_i
         for \ell = 2 to L do
             for each node j in layer \ell do
                 in_i \leftarrow \sum_i w_{i,j} a_i
                 a_i \leftarrow q(in_i)
         /* Propagate deltas backward from output layer to input layer */
         for each node j in the output layer do
             \Delta[j] \leftarrow g'(in_j) \times (y_j - a_j)
         for \ell = L - 1 to 1 do
             for each node i in layer \ell do
                 \Delta[i] \leftarrow g'(in_i) \sum_j w_{i,j} \Delta[j]
         /* Update every weight in network using deltas */
         for each weight w_{i,j} in network do
            w_{i,j} \leftarrow w_{i,j} + \alpha \times a_i \times \Delta[j]
until some stopping criterion is satisfied
return network
```

Figure 18.24 The back-propagation algorithm for learning in multilayer networks.

- Minimize $E(\theta)$
- Gradient Descent...

- Minimize $E(\theta)$
- Gradient Descent...

- Minimize $E(\theta)$
- Gradient Descent...

Stochastic Gradient Descent

- Classic backprop computes weight changes after scanning through the entire training set
 - Theoretically justified
 - But this is very slow
- Stochastic gradient descent randomizes the input data, then takes a step after each training exemplar

- Example of Stochastic Gradient Descent
- Decompose $E(\theta) = e_1(q) + e_2(q) + ... + e_N(q)$ - Here $e_k = (g(\mathbf{x}^{(k)}, \theta) - y^{(k)})^2$
- On each iteration take a step to reduce e_k

- Example of Stochastic Gradient Descent
- Decompose $E(\theta) = e_1(q) + e_2(q) + ... + e_N(q)$
 - Here $e_k = (g(\mathbf{x}^{(k)}, \theta) y^{(k)})^2$
- On each iteration take a step to reduce e_k

- Example of Stochastic Gradient Descent
- Decompose $E(\theta) = e_1(q) + e_2(q) + ... + e_N(q)$
 - Here $e_k = (g(\mathbf{x}^{(k)}, \theta) y^{(k)})^2$
- On each iteration take a step to reduce e_k

11

- Example of Stochastic Gradient Descent
- Decompose $E(\theta) = e_1(q) + e_2(q) + ... + e_N(q)$
 - Here $e_k = (g(\mathbf{x}^{(k)}, \theta) y^{(k)})^2$
- On each iteration take a step to reduce e_k

- Example of Stochastic Gradient Descent
- Decompose $E(\theta) = e_1(q) + e_2(q) + ... + e_N(q)$
 - Here $e_k = (g(\mathbf{x}^{(k)}, \theta) y^{(k)})^2$
- On each iteration take a step to reduce e_k

- Example of Stochastic Gradient Descent
- Decompose $E(\theta) = e_1(q) + e_2(q) + ... + e_N(q)$ - Here $e_k = (g(\mathbf{x}^{(k)}, \theta) - y^{(k)})^2$
- On each iteration take a step to reduce e_k

Stochastic Gradient Descent

- Objective function values (measured over all examples) over time settle into local minimum
- Step size must be reduced over time, e.g., O(1/t)

Caveats

• Choosing a convergent "learning rate" α can be hard in practice

Neural networks

- Neural networks are universal function approximators
 - Given any function, and a complicated enough network, they can accurately model that function

- How to choose the size and structure of networks?
 - If network is too large, risk of over-fitting (data caching)
 - If network is too small, representation may not be rich enough

Pros and cons of different classifiers

Nearest neighbors

 Can model any data, very prone to overfitting, requires distance function, fast learning, slow classification

Neural networks

 Models any function, requires structure, can suffer from local minima, slow learning, fast classification, difficult to interpret.

Bayes nets

 Requires setting network structure, fast learning, fast classification, intuitive interpretation of parameters.

Decision trees

 Limited modeling power, mostly automatic, moderate learning speed, fast classification, intuitive interpretation of parameters.

Perceptrons

 Very limited modeling power, fast training, fast classification, intuitive interpretation of parameters.

Neural Nets: 1960s-1990s

- Failure to deliver perceptron promises during during 1960s-1970s led to "Al winter"
- In 1980s, multi-layer networks and the backpropagation algorithm led to new excitement, new era of neural network research

Success story: handwritten digit recognition (LeCun, 1989)

40004 7536 14189-2087 25505 96205 (4310 4415) 05453

1416119134857468U322 86635972029929972251 01308441459101061540 3[106411103047526200 6684120¥67\$855713142 60601775018711299308 84010970759733197201 551075518255[8281435 63178754165546655460

Network structure

Use backprop to train

Worked better than other techniques (LeCun 1989)

More complex architectures...

0 1 2 3 4 5 6 7 8 9

OUTPUT LAYER

6

INPUT (20x20 Pixels)

Convolutional Neural Networks

- Neural network with specialized connectivity structure
- Stack multiple stages of feature extractors
- Higher stages compute more global, more invariant features
- Classification layer at the end

Slide credit: Rob Fergus

But other techniques catching up (LeCun 1998)

Late 1990s-2010: Another decline

- Neural networks failed to work equally well on more complicated problems
 - E.g. recognition in real images, real audio streams, etc.

- Mix of practical and theoretical problems
 - How to decide network structure and many learning parameters (e.g. step sizes)?
 - Required too much computation
 - Required too much data
 - Very difficult to "debug" failures

2000's: Return to the simple

- Return to simpler techniques, like linear classifiers
 - But in high dimensions
 - Simpler learning algorithms, easier to justify theoretically

- Learn classifiers on manually-created features
 - E.g. not images themselves, but statistical features like color histograms, edge distributions, etc.

Support Vector Machines (SVM)

- Perceptron Convergence Theorem: If a classification problem is linearly separable, a perceptron will reach a solution in a finite number of iterations
- The solution weight vector is <u>not</u> unique. There are infinite possible solutions and decision boundaries.
 - Perceptrons find any separating hyperplane
 - The hyperplane depends on initialization and ordering of training points

- Perceptron Convergence Theorem: If a classification problem is linearly separable, a perceptron will reach a solution in a finite number of iterations
- The solution weight vector is <u>not</u> unique. There are infinite possible solutions and decision boundaries.
 - Perceptrons find any separating hyperplane
 - The hyperplane depends on initialization and ordering of training points
- If done differently

- Perceptron Convergence Theorem: If a classification problem is linearly separable, a perceptron will reach a solution in a finite number of iterations
- The solution weight vector is <u>not</u> unique. There are infinite possible solutions and decision boundaries.
 - Perceptrons find any separating hyperplane
 - The hyperplane depends on initialization and ordering of training points
- If done differently....Again

- Perceptron Convergence Theorem: If a classification problem is linearly separable, a perceptron will reach a solution in a finite number of iterations
- The solution weight vector is <u>not</u> unique. There are infinite possible solutions and decision boundaries.
 - Perceptrons find any separating hyperplane
 - The hyperplane depends on initialization and ordering of training points
- If done differently....Again...And Again

Motivation

- For a linearly separable classification task, there are generally infinitely many separating hyperplanes
 - Perceptron learning, however, stops as soon as one of them is reached
 - Some hyperplanes may be better than others

- To improve generalization, we want to place a decision boundary as far away from training classes as possible.
 - In other words, place the boundary at equal distances from class boundaries

Optimal Hyperplane

 Given a training sample, the support vector machine constructs a hyperplane as the decision surface in such a way that the margin of separation between positive and negative examples is maximized.

Next class

More about SVM and neural networks