10.3.21

EE25BTECH11020 - Darsh Pankaj Gajare

October 12, 2025

Question:

Find the point at which the line y = x + 1 is a tangent to the curve $y^2 = 4x$.

Solution: The given conic can be expressed as

$$\mathbf{x}^{\top}\mathbf{V}\mathbf{x} + 2\mathbf{u}^{\top}\mathbf{x} + f = 0 \tag{0.1}$$

where

$$V = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \quad \mathbf{u} = \begin{pmatrix} -2 \\ 0 \end{pmatrix}, \quad f = 0$$
 (0.2)

The given line is

$$\mathbf{n}^{\top}\mathbf{x} = C \tag{0.3}$$

where

$$\mathbf{n} = \begin{pmatrix} -1\\1 \end{pmatrix}, C = 1 \tag{0.4}$$

The eigenvector corresponding to the zero eigenvalue is

$$\mathbf{p_1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \tag{0.5}$$

$$\begin{pmatrix} (\mathbf{u} + \kappa \mathbf{n})^{\top} \\ \mathbf{V} \end{pmatrix} \mathbf{q} = \begin{pmatrix} -f \\ \kappa \mathbf{n} - \mathbf{u} \end{pmatrix}$$

$$\kappa = \frac{\mathbf{p_1}^{\mathsf{T}} \mathbf{u}}{\mathbf{p_1}^{\mathsf{T}} \mathbf{n}} = \frac{\begin{pmatrix} 1 & 0 \end{pmatrix} \begin{pmatrix} -2 \\ 0 \end{pmatrix}}{\begin{pmatrix} 1 & 0 \end{pmatrix} \begin{pmatrix} -1 \\ 1 \end{pmatrix}} = 2$$

$$\begin{pmatrix} \left(\begin{pmatrix} -2 \\ 0 \end{pmatrix} + 2 \begin{pmatrix} -1 \\ 1 \end{pmatrix} \right)^{\mathsf{T}} \\ \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \mathbf{q} = \begin{pmatrix} 0 \\ 2 \begin{pmatrix} -1 \\ 1 \end{pmatrix} - \begin{pmatrix} -2 \\ 0 \end{pmatrix} \end{pmatrix}$$

(0.6)

(0.7)

$$\begin{pmatrix} -4 & 2\\ 0 & 0\\ 0 & 1 \end{pmatrix} \mathbf{q} = \begin{pmatrix} 0\\ 0\\ 2 \end{pmatrix}$$

(0.12)

Using augmented matrix,

$$\begin{pmatrix} -4 & 2 & 0 \\ 0 & 1 & 2 \end{pmatrix}$$

(0.10)

(0.9)

$$R_1 = \frac{R_1 - 2R_2}{-4}$$

$$\begin{pmatrix} 1 & 0 & | & 1 \\ 0 & 1 & | & 2 \end{pmatrix}$$

(0.11)

$$\mathbf{q} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

Plot using C libraries:

Plot using Python: