

Evaluation

Outline

- Why evaluating GANs is hard
- Two properties: fidelity and diversity

Classifier

GAN

Two Important Properties

Fidelity: quality of images

(Left) Available at: https://github.com/NVlabs/stylegan

Two Important Properties

Fidelity: quality of images

Diversity: variety of images

(Left) Available at: https://github.com/NVlabs/stylegan

Fidelity

Fidelity

7777

Fake

Fidelity

Diversity

Summary

- No ground-truth = challenging to evaluate
- Fidelity measures image quality and diversity measures variety
- Evaluation metrics try to quantify fidelity & diversity

Comparing Images

Outline

- Pixel distance
- Feature distance

Pixel Distance

Pixel Distance

Real

Fake

2 eyes, 2 droopy ears, 1 nose, ...

Fake

2 eyes, 1 droopy ear, 5 legs, 1 nose, ...

Summary

- Pixel distance is simple but unreliable
- Feature distance uses the higher level features of an image, making it more reliable

Feature Extraction

Outline

- Feature extraction using pre-trained classifiers
- ImageNet dataset

Classifier → Feature Extractor

Classifier → Feature Extractor

Extensively pre-trained classifiers available to use

ImageNet

© 2016 Stanford Vision Lab

ImageNet Attributes

- > 14 million images
- > 20,000 categories

Summary

- Classifiers can be used as feature extractors by cutting the network at earlier layers
- The last pooling layer is most commonly used for feature extraction
- Best to use classifiers that have been trained on large datasets—ImageNet

Inception-v3 and Embeddings

Outline

- Inception-v3 architecture
- Comparing extracted feature embeddings

Inception-v3 Architecture

Based on: https://medium.com/@sh.tsang/review-inception-v3-1st-runner-up-image-classification-in-ilsvrc-2015-17915421f77c

Embeddings

Embeddings

Comparing Embeddings

Fake

Comparing Embeddings

Fake

Real

Summary

- Commonly used feature extractor: Inception-v3 classifier, which is pre-trained on ImageNet, with the output layer cut off
- These features are called embeddings
- Compare embeddings to get the feature distance

Fréchet Inception Distance (FID)

Outline

- Fréchet distance
- Evaluation method: Fréchet Inception Distance (FID)
- FID shortcomings

Fréchet Distance

Fréchet Distance

Fréchet Distance Between Normal Distributions

Fréchet Distance Between Normal Distributions

$$\Sigma = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right)$$
 Covariance matrix

O's everywhere but the diagonal = all dimensions are *independent*

$$\Sigma = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
Covariance matrix

Non-0's not on the diagonal = dimensions covary

$$\Sigma = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}$$
 Covariance matrix

Univariate Normal Fréchet Distance =

$$(\mu_X - \mu_Y)^2 + (\sigma_X - \sigma_Y)^2$$

$$\|\mu_X - \mu_Y\|^2 + \operatorname{Tr}\left(\Sigma_X + \Sigma_Y - 2\sqrt{\Sigma_X \Sigma_Y}\right)$$

Univariate Normal Fréchet Distance =

$$(\mu_X - \mu_Y)^2 + (\sigma_X - \sigma_Y)^2$$

$$\|\mu_X - \mu_Y\|^2 + \operatorname{Tr}\left(\Sigma_X + \Sigma_Y - 2\sqrt{\Sigma_X \Sigma_Y}\right)$$

Univariate Normal Fréchet Distance =

$$(\sigma_X^2 + \sigma_Y^2 - 2\sigma_X\sigma_Y)$$

$$(\mu_X - \mu_Y)^2 + (\sigma_X - \sigma_Y)^2 -$$

$$\|\mu_X - \mu_Y\|^2 + \operatorname{Tr}\left(\Sigma_X + \Sigma_Y - 2\sqrt{\Sigma_X \Sigma_Y}\right)$$

Univariate Normal Fréchet Distance =

$$(\mu_X - \mu_Y)^2 + (\sigma_X^2 + \sigma_Y^2 - 2\sigma_X\sigma_Y)$$

$$\|\mu_X - \mu_Y\|^2 + \operatorname{Tr}\left(\Sigma_X + \Sigma_Y - 2\sqrt{\Sigma_X \Sigma_Y}\right)$$

Fréchet Inception Distance (FID)

FID =
$$\|\mu_X - \mu_Y\|^2 + \text{Tr}\left(\Sigma_X + \Sigma_Y - 2\sqrt{\Sigma_X \Sigma_Y}\right)$$

Real and fake embeddings are two multivariate normal distributions

Fréchet Inception Distance (FID)

<u>Lower</u> FID = <u>closer</u> distributions

$$\mathrm{FID} =$$

$$\|\mu_X - \mu_Y\|^2 + \operatorname{Tr}\left(\Sigma_X + \Sigma_Y - 2\sqrt{\Sigma_X \Sigma_Y}\right)$$

Real and fake embeddings are two multivariate normal distributions

Fréchet Inception Distance (FID)

FID =

<u>Lower</u> FID = <u>closer</u> distributions

$$\|\mu_X - \mu_Y\|^2 + \operatorname{Tr}\left(\Sigma_X + \Sigma_Y - 2\sqrt{\Sigma_X \Sigma_Y}\right)$$

Real and fake embeddings are two multivariate normal distributions

Use large sample size to reduce noise

• Uses pre-trained Inception model, which may not capture all features

- Uses pre-trained Inception model, which may not capture all features
- Needs a large sample size

© 2016 Stanford Vision Lab

- Uses pre-trained Inception model, which may not capture all features
- Needs a large sample size
- Slow to run

- Uses pre-trained Inception model, which may not capture all features
- Needs a large sample size
- Slow to run
- Limited statistics used: only mean and covariance

Summary

- FID calculates the difference between reals and fakes
- FID uses the Inception model and multivariate normal Fréchet distance
- Sample size needs to be large for FID to work well

deeplearning.ai

Inception Score

Outline

- Another evaluation metric: Inception Score (IS)
 - Intuition, notation, shortcomings

Inception Model Classification

KL Divergence

Inception Score (IS)

$$ext{IS} = \exp(\mathbb{E}_{x \sim p_arepsilon} D_{KL}(p(y \mid x) \| p(y)))$$

Shortcomings of IS

- Can be exploited or gamed
 - Generate one realistic image of each class

Shortcomings of IS

- Can be exploited or gamed
 - Generate one realistic image of each class
- Only looks at fake images
 - No comparison to real images

$$p(y|x)$$
 $p(y)$

Shortcomings of IS

- Can be exploited or gamed
 - Generate one realistic image of each class
- Only looks at fake images
 - No comparison to real images
- Can miss useful features
 - ImageNet isn't everything

Summary

- Inception Score tries to capture fidelity & diversity
- Inception Score has many shortcomings
 - Can be gamed too easily
 - Only looks at fake images, not reals
 - ImageNet doesn't teach a model all features
- Worse than Fréchet Inception Distance

Sampling and Truncation

Outline

- Sampling reals vs. fakes
- The truncation trick
- HYPE!

Sampling Fakes

Truncation Trick

Truncation Trick

HYPE and Human Evaluation

- Crowdsourced evaluation from Amazon Mechanical Turk
- HYPE_{time} measures time-limited perceptual thresholds
- HYPE∞ measures error rate on a percentage of images
- Ultimately, evaluation depends on the type of downstream task

Available from: https://arxiv.org/abs/1904.01121

Summary

- Fakes are sampled using the training or prior distribution of z
- Truncate more for higher fidelity, lower diversity
- Human evaluation is still necessary for sampling

Precision and Recall

Outline

- Precision and recall in GANs evaluation
- Relating precision and recall to fidelity and diversity

Precision and Recall

Available at: https://arxiv.org/abs/1904.06991

Precision

- Relates to fidelity
- Looks at overlap between reals and fakes, over how much extra gunk the generator produces (non-overlap red)

Diagram available at: https://arxiv.org/abs/1904.06991; Tennis dog available at: https://arxiv.org/abs/1809.11096

Recall

- Relates to diversity
 - Looks at overlap between reals and fakes, over all the reals that the generator cannot model (non-overlap blue)

Diagram available at: https://arxiv.org/abs/1904.06991

Summary

- Precision is to fidelity as to recall is to diversity
- Models tend to be better at recall
- Use truncation trick to improve precision

