Dynamic Programming, Longest Common Subsequence

Dynamic programming

Design technique, like divide-and-conquer.

Example: Longest Common Subsequence (LCS)

• Given two sequences x[1 ...m] and y[1 ...n], find a longest subsequence common to them both.

"a" not "the"

functional notation, but not a function

Brute-force LCS algorithm

Check every subsequence of x[1 ...m] to see if it is also a subsequence of y[1 ...m].

Analysis

- Checking = O(n) time per subsequence.
- 2^m subsequences of x (each bit-vector of length m determines a distinct subsequence of x).

```
Worst-case running time = O(n2^m)
= exponential time.
```

Towards a better algorithm

Simplification:

- 1. Look at the *length* of a longest-common subsequence.
- 2. Extend the algorithm to find the LCS itself.

Notation: Denote the length of a sequence s by |s|.

Strategy: Consider *prefixes* of *x* and *y*.

- Define c[i, j] = |LCS(x[1 ... i], y[1 ... j])|.
- Then, c[m, n] = |LCS(x, y)|.

Recursive formulation

Theorem.

$$c[i,j] = \begin{cases} c[i-1,j-1] + 1 & \text{if } x[i] = y[j], \\ \max\{c[i-1,j], c[i,j-1]\} & \text{otherwise.} \end{cases}$$

Proof. Case x[i] = y[j]:

Let z[1 ... k] = LCS(x[1 ... i], y[1 ... j]), where c[i, j] = k. Then, z[k] = x[i], or else z could be extended. Thus, z[i ... k-1] is CS of x[1 ... i-1] and y[1 ... j-1].

Proof (continued)

Claim: z[1 ... k-1] = LCS(x[1 ... i-1], y[1 ... j-1]). Suppose w is a longer CS of x[1 ... i-1] and y[1 ... j-1], that is, |w| > k-1. Then, cut and paste: $w \parallel z[k]$ (w concatenated with z[k]) is a common subsequence of x and y with |w| |z[k]| > k. Contradiction, proving claim.

Thus, c[i-1, j-1] = k-1, which implies that c[i, j] = c[i-1, j-1] + 1.

Other cases are similar.

Dynamic-programming hallmark #1

Optimal substructure

An optimal solution to a problem (instance) contains optimal solutions to subproblems.

If z = LCS(x, y), then any prefix of z is an LCS of a prefix of x and a prefix of y.

Recursive algorithm for LCS

```
\begin{aligned} \operatorname{LCS}(x, y, i, j) \\ & \text{if } x[i] = y[j] \\ & \text{then } c[i, j] \leftarrow \operatorname{LCS}(x, y, i-1, j-1) + 1 \\ & \text{else } c[i, j] \leftarrow \max \big\{ \operatorname{LCS}(x, y, i-1, j), \\ & \operatorname{LCS}(x, y, i, j-1) \big\} \end{aligned}
```

Worst-case: $x[i] \neq y[j]$, in which case the algorithm evaluates two subproblems, each with only one parameter decremented.

Recursion tree

Height = $m + n \Rightarrow$ work potentially exponential, but we're solving subproblems already solved!

Dynamic-programming hallmark #2

Overlapping subproblems

A recursive solution contains a "small" number of distinct subproblems repeated many times.

The number of distinct LCS subproblems for two strings of lengths m and n is only mn.

Memoization algorithm

Memoization: After computing a solution to a subproblem, store it in a table. Subsequent calls check the table to avoid redoing work.

```
 \begin{aligned} & \operatorname{LCS}(x,y,i,j) \\ & \operatorname{if} \ c[i,j] = \operatorname{NIL} \\ & \operatorname{then} \ if \ x[i] = y[j] \\ & \operatorname{then} \ c[i,j] \leftarrow \operatorname{LCS}(x,y,i-1,j-1) + 1 \\ & \operatorname{else} \ c[i,j] \leftarrow \max \big\{ \operatorname{LCS}(x,y,i-1,j), \\ & \operatorname{LCS}(x,y,i,j-1) \big\} \end{aligned}
```

Time = $\Theta(mn)$ = constant work per table entry. Space = $\Theta(mn)$.

	j	0	1	2	3	4	5
i		Yj	В	D	C	Α	В
0	Xi						
1	A						
2	В						
3	C						
4	В						

$$X = ABCB$$
; $m = |X| = 4$
 $Y = BDCAB$; $n = |Y| = 5$
Allocate array c[5,4]

	j	0	1	2	3	4	5
i		Yj	В	D	C	Α	В
0	Xi	0	0	0	0	0	0
1	Α	0					
2	В	0					
3	С	0					
4	В	0					

for
$$i = 1$$
 to m $c[i,0] = 0$
for $j = 1$ to n $c[0,j] = 0$

if (
$$X_i == Y_j$$
)
 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j],c[i,j-1])$

	j	0	1	2	3	4	5
i		Yj	В	D	С	A	В
0	Xi	0	0	0	0	0	0
1	Α	0	0	0	0		
2	В	0					
3	С	0					
4	В	0					

if
$$(X_i == Y_j)$$

 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j],c[i,j-1])$

if (
$$X_i == Y_j$$
)
 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j],c[i,j-1])$

	j	0	1	2	3	4	5
i		Yj	В	D	С	Α	(B)
0	Xi	0	0	0	0	0	0
1	A	0	0	0	0	1 _	1
2	В	0					
3	С	0					
4	В	0					

if
$$(X_i == Y_j)$$

 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j],c[i,j-1])$

if (
$$X_i == Y_j$$
)
 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j],c[i,j-1])$

if (
$$X_i == Y_j$$
)
 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j],c[i,j-1])$

	j	0	1	2	3	4	5
i		Yj	В	D	С	Α	В
0	Xi	0	0	0	0	0	0
1	Α	0	0	0	0	1	1
2	В	0	1	1	1	1	2
3	С	0					
4	В	0					

if (
$$X_i == Y_j$$
)
 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j],c[i,j-1])$

	j	0	1	2	3	4	5
i		Yj	В	D	С	Α	В
0	Xi	0	0	0	0	0	0
1	A	0	0	0	0	1	1
2	В	0	1	1	1	1	2
3	C	0	1 -	1			
4	В	0					

if
$$(X_i == Y_j)$$

 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j],c[i,j-1])$

i	j	0	1	2	3	4	5
1		Y_j	В	D	(c)	A	В
0	X _i	0	0	0	0	0	0
1	Α	0	0	0	0	1	1
2	В	0	1	1	1	1	2
3	C	0	1	1	2		
4	В	0					

if
$$(X_i == Y_j)$$

 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j],c[i,j-1])$

	j	0	1	2	3	4	5	
i		Yj	В	D	С	A	В)
0	Xi	0	0	0	0	0	0	
1	Α	0	0	0	0	1	1	
2	В	0	1	1	1	1	2	
3	C	0	1	1	2 -	2 -	2	
4	В	0						

if (
$$X_i == Y_j$$
)
 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j],c[i,j-1])$

	j	0	1	2	3	4	5
i		Yj	В	D	C	Α	В
0	Xi	0	0	0	0	0	0
1	Α	0	0	0	0	1	1
2	В	0	1	1	1	1	2
3	С	0	1	1	2	2	2
4	В	0	1				

if (
$$X_i == Y_j$$
)
 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j],c[i,j-1])$

	j	0	1	2	3	4	5
i		Yj	В	D	С	A) B
0	Xi	0	0	0	0	0	0
1	Α	0	0	0	0	1	1
2	В	0	1	1	1	1	2
3	С	0	1	1	2	2	2
4	B	0	1 -	→ 1	2 -	2	

if
$$(X_i == Y_j)$$

 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j],c[i,j-1])$

	j	0	1	2	3	4	5
i		Yj	В	D	С	A	B
0	Xi	0	0	0	0	0	0
1	A	0	0	0	0	1	1
2	В	0	1	1	1	1	2
3	С	0	1	1	2	2	2
4	В	0	1	1	2	2	3

if (
$$X_i == Y_j$$
)
 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j],c[i,j-1])$

Algorithm design

How to find actual LCS

- So far, we have just found the *length* of LCS, but not LCS itself.
- We want to modify this algorithm to make it output LCS of X and Y

Each c[i,j] depends on c[i-1,j] and c[i,j-1] or c[i-1,j-1].

For each c[i,j] we can say how it was acquired:

For example, here
$$c[i,j] = c[i-1,j-1] + 1 = 2+1=3$$

Algorithm design

Remember that

$$c[i,j] = \begin{cases} c[i-1,j-1] + 1, & if \ x[i] = y[j] \\ \max(c[i-1,j],c[i,j-1]), & other \ wise \end{cases}$$

So we can start from c[m,n] and go backwards

Whenever c[i,j] = c[i-1,j-1] + 1, record x[i]

When i=0 or j=0 (i.e. we reached the beginning), output recorded letters in reverse order

Finding LCS

To construct LCS, start in the bottom right corner and follow the arrows. Sindicates a matching character

Finding LCS

LCS (reversed order): B C B

LCS (straight order): B C B

Dynamic-programming algorithm

IDEA:

Compute the table bottom-up.

Time = $\Theta(mn)$.

	A	В	C	В	D	A	В
0	0	0	0	0	0	0	0
0	0	1	1	1	1	1	1
0	0	1.	1	1	2	2	2
0	0	1	2	2	2	2	2
0	1,	1	2	2	2	3	3
0	1	2	2	3	3	3	4
0	1	2	2	3	3	4	4

Dynamic-programming algorithm

B

B

IDEA:

Compute the table bottom-up.

Time = $\Theta(mn)$.

Reconstruct LCS by tracing backwards.

Space = $\Theta(mn)$.

Exercise:

 $O(\min\{m, n\}).$

	A	B	C	В	D	A	B
0	0	0	0	0	0	0	0
0	0	1	1	1	1	1	1
0	0	1,	1	1	2	2	2
0	0	1	2	2	2	2	2
0	1.	1	2	2	2	3.	3
0	1	2	2	3	3	3	4
0	1	2	2	3	3	4	4