### Principal Component Analysis

#### Agenda

#### Feature Engineering

(Our motivation)

#### Introduction to Principal Component Analysis

(And some statistical concepts)

#### Agile Analytics and PCA

(Helping visualization...)

### Feature Engineering

Given a classification problem...

How do we choose the right features?



# Intuition fails in high dimensions

Building a classifier in two or three dimensions is relatively easy...



It's usually possible to find a reasonable frontier between examples of different classes just by visual inspection.

# Feature engineering

Intuitively, one might think that gathering more features never hurts, right?

At worst they provide no new information about the domain...

### The curse of dimensionality



Many algorithms that work fine in low dimensions become intractable when the input is high-dimensional.

Bellman, 1961

## How do we solve it?

Feature Selection

Feature Extraction

## Feature extraction

"In most applications examples are not spread uniformly throughout the examples space, but are concentrated on or near a lower-dimensional subspace."

# Introduction to PCA



### Objective of PCA

To perform dimensionality reduction while preserving as much of the randomness in the high-dimensional space as possible

#### Principal Component Analysis

It takes your cloud of data points, and rotates it such that the maximum variability is visible.

PCA is mainly concerned with identifying correlations in the data.

#### Measuring Correlation

Degree and type of relationship between any two or more quantities (variables) in which they vary together over a period

Correlation can vary from +1 to -1.

Values close to +1 indicate a highdegree of positive correlation, and values close to -1 indicate a high degree of negative correlation.

Values close to zero indicate poor correlation of either kind, and 0 indicates no correlation at all

#### Measuring Correlation



#### Beware:

## Correlation does not imply causation



### Correlation matrix

It shows at a glance how variables correlate with each other

|    | Q1    | Q2    | Q3    | Q4    | Q5    |
|----|-------|-------|-------|-------|-------|
| Q1 | 1.00  | 0.77  | 0.95  | -0.81 | -0.65 |
| Q2 | 0.77  | 1.00  | 0.89  | -0.29 | -0.84 |
| Q3 | 0.95  | 0.89  | 1.00  | -0.97 | 0.13  |
| Q4 | -0.81 | -0.29 | -0.97 | 1.00  | 0.35  |
| Q5 | -0.65 | -0.84 | 0.13  | 0.35  | 1.00  |

#### Eingenvalues and eingevectors



$$\left(\begin{array}{cc} 2 & 3 \\ 2 & 1 \end{array}\right) \times \left(\begin{array}{c} 1 \\ 3 \end{array}\right) = \left(\begin{array}{c} 11 \\ 5 \end{array}\right)$$

$$\left(\begin{array}{cc} 2 & 3 \\ 2 & 1 \end{array}\right) \times \left(\begin{array}{c} 3 \\ 2 \end{array}\right) = \left(\begin{array}{c} 12 \\ 8 \end{array}\right) = 4 \times \left(\begin{array}{c} 3 \\ 2 \end{array}\right)$$

#### Steps for PCA

- 1. Standardize the data
- 2. Calculate the covariance matrix
- 3. Find the eigenvalues and eingenvectors of the covariance matrix





# Agile analytics and PCA

### Agile Analytics

Machine learning and data mining tools and techniques



Knowledge of the domain at hand



Short feedback cycles

### Agile Analytics

We could use PCA as a tool to quickly identify correlation between features, helping feature extraction and selection.

PCA or other similar technique can help us achieve better and quicker results.