1

ASSIGNMENT-2

EE24BTECH11043 - Murra Rajesh Kumar Reddy

1)	A is	targe	eting B	, <i>B</i> and	d <i>C</i> aı	e tar	geting	g to A	4. P	robabili	ity o	of hitt	ing th	e tar	get by	IA	B a	and C	are
	$\frac{2}{3}, \frac{1}{2}$	and $\frac{1}{3}$	l respe	ctively.	If A	is hit	then	find	the	probab	ility	that	B hits	the	target	and	\boldsymbol{C}	does	not.
	(200)	3 - 2	Marks)															

- 2) A and B are two independent events. C is event in which exactly one of A or B occurs. Prove that $\Pr(C) \ge \Pr(A \cup B) \Pr(\overline{A} \cap \overline{B})$ (2004-2 Marks)
- 3) A box contains 12 red and 6 white balls. Balls are drawn from the box one at a time without replacement. If in 6 draws there are at least 4 white balls, find the probability that exactly one white drawn in the next two draws. (binomial coefficients can be left as such) (2004-4 Marks)
- 4) A person goes to office either by car, scooter, bus or train the probability of which being $\frac{1}{7}$, $\frac{3}{7}$, $\frac{3}{7}$, $\frac{2}{7}$, and $\frac{1}{7}$ respectively. Probability that he reachs office late, ife takes car, scooter, bus or train is $\frac{2}{9}$, $\frac{1}{9}$, $\frac{4}{9}$ and $\frac{1}{9}$ respectively. Goven that he reached office in time, then what is the probability that he travelled by (2005-2 Marks) a car.

G Comprehension Based Questions

PASSAGE-1

There are n urns, each of these contain n+1 balls. The i^{th} urn contains i white balls and (n+1-i) red balls. Let u_1 be the event of selecting i^{th} urn, $i = 1, 2, 3 \dots, n$ and w the event of getting a white ball.

1) If $Pr(u_i) \propto i$, where i = 1, 2, 3, ..., n, then $\lim_{n \to \infty} Pr(w) =$ (2006-5M,-2)b) $\frac{2}{3}$ d) $\frac{1}{4}$ a) 1

2) If $Pr(u_i) = c$, (a constant) then $Pr(\frac{u_n}{w}) =$ (2006-5M,-2)

- a) $\frac{2}{n+1}$ b) $\frac{1}{n+1}$ c) $\frac{n}{n+1}$ d) $\frac{1}{2}$

3) Let $Pr(u_i) = gn$, if n is even and E denotes the event of choosing even numbered urn, then the value of $Pr\left(\frac{w}{E}\right)$ is (2006-5M,-2)

- a) $\frac{n+2}{2n+1}$ b) $\frac{n+2}{2(n+1)}$

PASSAGE-2

A fair die is tossed repeatedly until a six is obtained. Let X denote the number of tosses required. (2009)

- 4) The probability that X = 3 equals
 - a)
 - b)
- 5) The probability that $X \ge 3$ equals

a)	125				
a)	216				

b)
$$\frac{25}{216}$$

c)
$$\frac{5}{36}$$

d)
$$\frac{25}{36}$$

- 6) The conditional probability that $X \ge 6$ given X > 3 equals

 - a) $\frac{125}{216}$ b) $\frac{25}{216}$ c) $\frac{5}{36}$ d) $\frac{25}{36}$

PASSAGE-3

Let U_1 and U_2 be two urns such that U_1 contains 3 white and 2 red balls, and U_2 contains only 1 white ball. A fair coin is tossed. If head appears then 1 ball is drawn at random from U_1 and put into U_2 . However, if tail appears then 2 balls are drawn at random from U_1 and put into U_2 . Now 1 ball is drawn at random from U_2 . (2011)

- 7) The probability of the drawn ball from U_2 being white is
 - a)
 - b)
 - c)
 - $\begin{array}{r} \frac{13}{30} \\ \frac{23}{30} \\ \frac{19}{30} \\ \frac{11}{30} \end{array}$ d)
- 8) Given that the drawn ball from U_2 is white, the probability that head appeared on the coin is

 - a) $\frac{17}{23}$ b) $\frac{11}{23}$ c) $\frac{15}{23}$ d) $\frac{12}{23}$