Homework 3

Exercise 1 (Multigrid)

For this problem, you may use the code from the multigrid notebook. Modify the V-cycle code above to answer the following questions. Try to explain your results.

- (a) How does the accuracy change as we change the number of Jacobi iterations performed at each step?
- (b) Is it better to use a finer grid, or more Jacobi iterations if we want to improve the solution accuracy?
- (c) What happens if we don't perform any Jacobi iterations in the "up" part of the V-cycle?
- (d) What happens if we don't recurse all the way down to the 1-point grid?
- (e) What happens if we use the original Jacobi method, or some other value of ω ?

Exercise 2 (Lipschitz constant for an ODE)

Let
$$f(u) = \log(u)$$
.

- (a) Determine the best possible Lipschitz constant for this function over $2 \le u < \infty$.
- (b) Is f(u) Lipschitz continuous over $0 < u < \infty$?
- (c) Consider the initial value problem

$$u'(t) = \log(u(t)),$$

$$u(0) = 2.$$

Explain why we know that this problem has a unique solution for all $t \geq 0$ based on the existence and uniqueness theory described in Section 5.2.1. (Hint: Argue that f is Lipschitz continuous in a domain that the solution never leaves, though the domain is not symmetric about $\eta = 2$ as assumed in the theorem quoted in the book.)

Exercise 3 (Lipschitz constant for a system of ODEs)

Consider the system of ODEs

$$u_1' = 3u_1 + 4u_2,$$

$$u_2' = 5u_1 - 6u_2.$$

Determine the Lipschitz constant for this system in the max-norm $\|\cdot\|_{\infty}$ and the 1-norm $\|\cdot\|_{1}$. (See Appendix A.3.)

Exercise 4 (matrix exponential form of solution)

The initial value problem

$$v''(t) = -4v(t),$$
 $v(0) = v_0,$ $v'(0) = v'_0$

has the solution $v(t) = v_0 \cos(2t) + \frac{1}{2}v_0' \sin(2t)$. Determine this solution by rewriting the ODE as a first order system u' = Au so that $u(t) = e^{At}u(0)$ and then computing the matrix exponential using (D.30) in Appendix D.