AMMM Project

Bertille Temple David Masek

Formalisation: optimisation problem with integers

For a given number n we want to find a set of different natural numbers such that **no two different pairs of numbers in the set are the same distance apart** and the difference between the maximum and minimum numbers in the set is minimized.

VARIABLES:

- x[i],
- d[i,j],

OBJECTIVE FUNCTION: min z

CONSTRAINTS: z is the maximum of the set, the set of x is ordered without repetitions, and the variables have the intending meaning

... how to implement the constraint "no two different pairs of numbers in the set are the same distance apart" in a linear way ?

Contents

OPL

Linear model

Not linear implementation

Meta-Heuristics

Greedy+Local Search

GRASP

Comparison

Linear model

VARIABLES: x[i], d[i,j]

- av[i,j], and binary variable e[i,j]. e[i,j] = 1 if d[i,j]-av[i,j] ≥ 0; e[i,j] = 0 if d[i,j]+av[i,j] ≤ 0
- b[i,j,k,l] is 1 when the distance between x[i] and x[j] is the same as the distance between x[k] and x[l], else 0

OBJECTIVE FUNCTION: min z

CONSTRAINTS: z is the maximum of the set, the set of x is ordered without repetitions, av[i,j] has the intended meaning:

```
-av[i,j] \le d[i,j] \le av[i,j] d[i,j] - av[i,j] \ge -2*11* (1-e[i,j]); -2*11 is a lower bound of d[i,j] - av[i,j] <math>d[i,j] + av[i,j] \le 2*11* e[i,j]; 2*11 is an upper bound of d[i,j] - av[i,j]
```

no two different pairs of numbers in the set are the same distance apart:

$$\sum_{k=1}^{N} \sum_{i=1}^{N} \sum_{l=1}^{N} b[i, j, k, l] = 2, 1 \le i \le n, i \ne k$$

Not linear implementation

$$\forall 1 \leq i, j, k, l \leq n : ((i, j) = (k, l)) \lor (i = j \land k = l) \iff |d_{i,j}| = |d_{k,l}|$$
$$((i, j) \neq (k, l)) \land (i \neq j \lor k \neq l) \iff |d_{i,j}| \neq |d_{k,l}|$$

We can see that:

$$i \neq j \land i \neq k \land k \neq l \land j \neq l \implies ((i,j) \neq (k,l)) \land (i \neq j \lor k \neq l)$$

Thus:

$$i \neq j \land i \neq k \land k \neq l \land j \neq l \implies |d_{i,j}| \neq |d_{k,l}|$$

translated into

opl constraint

Greedy algorithm

```
n = \dots \# input, target set size
   M = 1 # hyperparameter, size of the candidate set
   C = {} # candidate set
   X = \{\} # solution
   while |X| < n:
6
       # update C
       C = \{\}
       c = max(X) # 0 for empty set
9
       while |C| < M:
10
            if is_feasible( X ∪ {c}):
11
                C. insert ({c})
                c += 1
      # evaluation function
14
       q(c, X) = max(X \cup \{c\}) = c
15
       # selection function
16
       c_best = argmin ( q(c, X) for c in C )
17
       # update solution
       X = X \cup \{c\_best\}
18
   return q(X), X
```

Local search

- exchange K numbers
- first improving strategy

GRASP

Alpha tuning

Comparison of algorithms performance, computing time

Algorithm n	CPLEX	GRASP	Local Search
2	0.00	0.00	0.00
3	0.02	0.00	0.00
4	0.01	0.00	0.00
5	0.04	0.02	0.00
6	0.14	0.19	0.01
7	1.50	2.44	0.11
8	24.66	12.19	0.68
9	610.09	58.46	1.92

Table 3: Comparison of algorithms: time in seconds

Comparison of algorithms performance, solution quality

Algorithm n	CPLEX	GRASP	Local Search
2	1	1	1
3	3	3	3
4	6	6	6
5	11	11	11
6	17	17	17
7	25	25	26
8	34	35	35
9	44	45	49

Table 2: Comparison of algorithms: quality of the found solution

Recap/conlusion

