Algorithms Homework- week 11

Massimo Hong Student id: 2020280082

December 2, 2021

Recursion tree

Level	# nodes	$\cos t$	
0	1	$^{\mathrm{cn}}$	Substitution method
1	4	$4\frac{cn}{2}$	
2	16	$16\frac{\tilde{c}n}{4}$	
••	••	••	
i	2^{2i}	$2^{2i} \frac{cn}{2^i}$	
••			
$\log n$	n^2	n^2d	
		$\sum_{i=0}^{logn-1}$	$2^{i}cn + n^{2}d = cn\frac{2^{0} - 2^{logn}}{1 - 2} + n^{2}d$

$$= -cn + cn^{2} + n^{2}d = n^{2}(c + d - \frac{c}{n}) = \Theta(n^{2})$$

Master theorem

$$T(n) = 4T(\frac{n}{2}) + cn, T(1) = d$$

$$a=4,\,b=2,\,f(n)=cn$$

$$n^{logba} = n^{log_2 4} = n^2$$

We have $f(n) = O(n^{2-\epsilon})$, with $\epsilon = 0.5$. For case 1 of the master theorem:

$$T(n) = \Theta(n^2)$$

4-1

b

$$T(n) = T(\frac{7n}{10}) + n$$

$$a = 1, b = \frac{10}{7}, f(n) = n.$$

$$n^{\log_b a} = n^0$$

 $f(n)=n^{0+\epsilon}$. With $\epsilon=1$ we have $f(n)=\Omega(n^{0+\epsilon})$. f(n) grows polinomially faster than n^0 .

For case 3 of the master theorem:

$$T(n) = \Theta(n)$$

 \mathbf{c}

$$T(n) = 16T(\frac{n}{4}) + n^2$$

 $a = 16, b = 4, f(n) = n^2.$

$$n^{\log_b a} = n^{\log_4 16} = n^2$$

We have $f(n) = n^{\log_b a}$, they grow at similar rates. For case 2 of the master theorem:

$$T(n) = \Theta(n^2 log n)$$

 \mathbf{d}

$$T(n) = 7T(\frac{n}{3}) + n^2$$

 $a = 7, b = 3, f(n) = n^2.$

$$n^{\log_b a} = n^{\log_3 7}$$

 $f(n) = n^{0+\epsilon}$. With $\epsilon = 2 - n^{\log_3 7}$ we have $f(n) = \Omega(n^{\log_3 7 + \epsilon})$. f(n) grows polinomially faster than $n^{\log_3 7}$.

For case 3 of the master theorem:

$$T(n) = \Theta(n^2)$$

4-2

b

1

$$T(n) = 2T(\frac{n}{2}) + cn$$

a = 2, b = 2, f(n) = cn.

$$n^{logba} = n$$

We have fn = cn, so for the second case of the master theorem:

$$T(n) = \Theta(nlogn)$$

 $\mathbf{2}$

We assume N = n.

$$T(n) = 2T(\frac{n}{2}) + cn + 2\Theta(n) = 4n + cn + 2c(\frac{n}{2}) + 4T(\frac{n}{4}) = 2c(\frac{n}{2}) + 4T(\frac{n}{4}) = 2c(\frac{n}{2}) + 2c(\frac{n}{4}) = 2c(\frac{n}{2}) + 2c(\frac{n}{4}) = 2c(\frac{n}{4}) + 2c(\frac{n}{4}) = 2c(\frac{n}{4})$$

We can apply the geometric series:

$$= \sum_{i=0}^{\log n-1} (cn + 2^{i}n) = cn\log n + n\frac{1 - 2^{\log n}}{1 - 2} = cn\log n + n^{2} - n =$$
$$= \Theta(n^{2})$$

3

$$T(n) = 2T(\frac{n}{2}) + cn + n = 2T(\frac{n}{2} + (c+1)n)$$

a = 2, b = 2, f(n) = (c+1)n.

$$n^{logba}=n$$

We have fn = (c+1)n, so for the second case of the master theorem:

$$T(n) = \Theta(nlogn)$$