CS 188: Artificial Intelligence Reinforcement Learning II

Instructor: Stuart Russell and Dawn Song, University of California, Berkeley

Recap: Reinforcement Learning

- Still assume a Markov decision process (MDP):
 - \circ A set of states $s \in S$
 - A set of actions (per state) A
 - A model T(s,a,s')
 - A reward function R(s,a,s')
- Still looking for a policy $\pi(s)$

- New twist: don't know T or R
 - o I.e. we don't know which states are good or what the actions do
 - o Must actually try actions and states out to learn

Recap: Reinforcement Learning

- Passive reinforcement learning:
 - A passive learning agent has a fixed policy that determines its behavior
- Model-based learning:
 - o Learn an approximate MDP model based on experiences
- Model-free learning:
 - o Do not learn an explicit MDP model

Recap: Temporal Difference Learning

- Big idea: learn from every experience!
 - o Update V(s) each time we experience a transition (s, a, s', r)
 - o Likely outcomes s' will contribute updates more often

- o Policy still fixed, still doing evaluation!
- Move values toward value of whatever successor occurs: running average

Sample of V(s): $sample = R(s, \pi(s), s') + \gamma V^{\pi}(s')$

Update to V(s): $V^{\pi}(s) \leftarrow (1 - \alpha)V^{\pi}(s) + (\alpha)sample$

Same update: $V^{\pi}(s) \leftarrow V^{\pi}(s) + \alpha(sample - V^{\pi}(s))$

Recap: Problems with TD Value Learning

- TD value leaning is a model-free way to do policy evaluation, mimicking Bellman updates with running sample averages
- However, if we want to turn values into a (new) policy, we're sunk:

$$\pi(s) = \arg\max_{a} Q(s, a)$$

$$Q(s,a) = \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma V(s') \right]$$

- o Idea: learn Q-values, not values
- Makes action selection model-free too!

Detour: Q-Value Iteration

- Value iteration: find successive (depth-limited) values
 - Start with $V_0(s) = 0$, which we know is right
 - o Given $V_{k'}$ calculate the depth k+1 values for all states:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

- o But Q-values are more useful, so compute them instead
 - o Start with $Q_0(s,a) = 0$
 - o Given Q_k , calculate the depth k+1 q-values for all q-states:

$$Q_{k+1}(s, a) \leftarrow \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma \max_{a'} Q_k(s', a') \right]$$

Q-Learning

Q-Learning: sample-based Q-value iteration

$$Q_{k+1}(s, a) \leftarrow \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma \max_{a'} Q_k(s', a') \right]$$

- Learn Q(s,a) values as you go
 - o Receive a sample (s,a,s',r)
 - o Consider your old estimatQ(s, a)
 - o Consider your new sample estimate:

$$sample = R(s, a, s') + \gamma \max_{a'} Q(s', a')$$
 no longer policy evaluation!

o Incorporate the new estimate into a running average

$$Q(s, a) \leftarrow (1 - \alpha)Q(s, a) + (\alpha) [sample]$$

Video of Demo Q-Learning -- Gridworld

Video of Demo Q-Learning -- Crawler

Active Reinforcement Learning

- Passive reinforcement learning:
 - o A passive learning agent has a fixed policy that determines its behavior
- Active reinforcement learning:
 - o An active learning agent gets to decide what actions to take

Q-Learning: act according to current optimal (and also explore...)

- Full reinforcement learning: optimal policies (like value iteration)
 - You don't know the transitions T(s,a,s')
 - o You don't know the rewards R(s,a,s')
 - You choose the actions now
 - o Goal: learn the optimal policy / values

o In this case:

- o Learner makes choices!
- o Fundamental tradeoff: exploration vs. exploitation
- o This is NOT offline planning! You actually take actions in the world and find out what happens...

Q-Learning Properties

- Amazing result: Q-learning converges to optimal policy -even if you're acting suboptimally!
- This is called off-policy learning
- o Caveats:
 - o You have to explore enough
 - You have to eventually make the learning rate small enough
 - o ... but not decrease it too quickly
 - o Basically, in the limit, it doesn't matter how you select actions (!)

Active Reinforcement Learning

Model-Free Learning

- o act according to current optimal (based on Q-Values)
- but also explore...

Model-Based Learning

Input Policy π

act according to current optimal policy also explore!

Exploration vs. Exploitation

Video of Demo Q-learning – Manual Exploration – Bridge Grid

How to Explore?

- Several schemes for forcing exploration
 - ο Simplest: random actions (ε-greedy)
 - o Every time step, flip a coin
 - With (small) probability ε, act randomly
 - ο With (large) probability 1-ε, act on current policy
 - o Problems with random actions?
 - You do eventually explore the space, but keep thrashing around once learning is done
 - o One solution: lower ε over time
 - Another solution: exploration functions

Video of Demo Q-learning – Epsilon-Greedy – Crawler

Exploration Functions

• When to explore?

- o Random actions: explore a fixed amount
- Better idea: explore areas whose badness is not (yet) established, eventually stop exploring

Exploration function

o Takes a value estimate u and a visit count n, and returns an optimistic utility, e.g. f(u,n) = u + k/n is a predetermined constant

Regular Q-Update: $Q(s, a) \leftarrow_{\alpha} R(s, a, s') + \gamma \max_{a'} Q(s', a')$

Modified Q-Update: $Q(s, a) \leftarrow_{\alpha} R(s, a, s') + \gamma \max_{a'} f(Q(s', a'), N(s', a'))$

N (s,a): number of times q-state (s,a) has been visited

Note: this propagates the "bonus" back to states that lead to unknown states as well!

Video of Demo Q-learning – Exploration Function – Crawler

Regret

- Even if you learn the optimal policy, you still make mistakes along the way!
- Regret is a measure of your total mistake cost: the difference between your (expected) rewards, including youthful suboptimality, and optimal (expected) rewards
- Minimizing regret goes beyond learning to be optimal – it requires optimally learning to be optimal
- Example: random exploration and exploration functions both end up optimal, but random exploration has higher regret

Approximate Q-Learning

Generalizing Across States

- Basic Q-Learning keeps a table of all q-values
- In realistic situations, we cannot possibly learn about every single state!
 - o Too many states to visit them all in training
 - o Too many states to hold the q-tables in memory
- Instead, we want to generalize:
 - Learn about some small number of training states from experience
 - o Generalize that experience to new, similar situations
 - o This is a fundamental idea in machine learning, and we'll see it over and over again

Example: Pacman

Let's say we discover through experience that this state is bad: In naïve q-learning, we know nothing about this state:

Or even this one!

Video of Demo Q-Learning Pacman – Tiny – Watch All

Video of Demo Q-Learning Pacman – Tiny – Silent Train

Video of Demo Q-Learning Pacman – Tricky – Watch All

Feature-Based Representations

- Solution: describe a state using a vector of features (properties)
 - o Features are functions from states to real numbers (often 0/1) that capture important properties of the state
 - o Example features:
 - Distance to closest ghost
 - Distance to closest dot
 - Number of ghosts
 - \circ 1 / (dist to dot)²
 - \circ Is Pacman in a tunnel? (0/1)
 - o etc.
 - o Is it the exact state on this slide?
 - o Can also describe a q-state (s, a) with features (e.g. action moves closer to food)

Linear Value Functions

 Using a feature representation, we can write a q function (or value function) for any state using a few weights:

$$V(s) = w_1 f_1(s) + w_2 f_2(s) + \dots + w_n f_n(s)$$
$$Q(s, a) = w_1 f_1(s, a) + w_2 f_2(s, a) + \dots + w_n f_n(s, a)$$

- Advantage: our experience is summed up in a few powerful numbers
- Disadvantage: states may share features but actually be very different in value!

Approximate Q-Learning

$$Q(s,a) = w_1 f_1(s,a) + w_2 f_2(s,a) + \dots + w_n f_n(s,a)$$

Q-learning with linear Q-functions:

transition
$$= (s, a, r, s')$$

difference $= \left[r + \gamma \max_{a'} Q(s', a') \right] - Q(s, a)$
 $Q(s, a) \leftarrow Q(s, a) + \alpha$ [difference] Exact Q's

 $w_i \leftarrow w_i + \alpha$ [difference] $f_i(s, a)$ Approximate Q's

- Intuitive interpretation:
 - o Adjust weights of active features
 - E.g., if something unexpectedly bad happens, blame the features that were on: disprefer all states with that state's features
- Formal justification: online least squares

Example: Q-Pacman

$$Q(s, a) = 4.0 f_{DOT}(s, a) - 1.0 f_{GST}(s, a)$$

 $f_{DOT}(s, NORTH) = 0.5$

 $f_{GST}(s, NORTH) = 1.0$

$$Q(s, \text{NORTH}) = +1$$

$$r + \gamma \max_{s} Q(s', a') = -500 + 0$$

difference =
$$-501$$
 $w_{DOT} \leftarrow 4.0 + \alpha [-501] 0.5$ $w_{GST} \leftarrow -1.0 + \alpha [-501] 1.0$

$$Q(s, a) = 3.0 f_{DOT}(s, a) - 3.0 f_{GST}(s, a)$$

Video of Demo Approximate Q-Learning -- Pacman

Q-Learning and Least Squares

Linear Approximation: Regression

Prediction:

$$\hat{y} = w_0 + w_1 f_1(x)$$

Prediction:

$$\hat{y}_i = w_0 + w_1 f_1(x) + w_2 f_2(x)$$

Optimization: Least Squares

total error =
$$\sum_{i} (y_i - \hat{y}_i)^2 = \sum_{i} \left(y_i - \sum_{k} w_k f_k(x_i) \right)^2$$

Minimizing Error

Imagine we had only one point x, with features f(x), target value y, and weights w:

$$\operatorname{error}(w) = \frac{1}{2} \left(y - \sum_{k} w_{k} f_{k}(x) \right)^{2}$$

$$\frac{\partial \operatorname{error}(w)}{\partial w_{m}} = -\left(y - \sum_{k} w_{k} f_{k}(x) \right) f_{m}(x)$$

$$w_{m} \leftarrow w_{m} + \alpha \left(y - \sum_{k} w_{k} f_{k}(x) \right) f_{m}(x)$$

Approximate q update explained:

$$w_m \leftarrow w_m + \alpha \left[r + \gamma \max_a Q(s', a') - Q(s, a) \right] f_m(s, a)$$
"target" "prediction"

Summary: MDPs and RL

Known MDP: Offline Solution

Goal Technique

Compute V^* , Q^* , π^* Value / policy iteration

Evaluate a fixed policy π Policy evaluation

Unknown MDP: Model-Based

*use features

Goal to genteralique

Compute V^* , Q^* , Π^* VI/PI on approx. MDP

Evaluate a fixed policy π PE on approx. MDP

Unknown MDP: Model-Free

*use features

Goal to gene Textenique

Compute V^* , Q^* , Π^* Q-learning

Evaluate a fixed policy π Value Learning

RL and dopamine

(Fiorillo et al 2003)

Voorn et al 2004

Next Section: Advanced Topics

- Advanced topic I: Adversarial machine learning
- Advanced topic II: Fairness in machine learning
- Advanced topic III: CLIP
- Final lecture: AI safety (Stuart)