CS350 Homework 2

Russell Miller

January 26, 2011

1. Prove that $\sum_{i=0}^{n} r^i = \frac{r^{n+1}-1}{r-1}$, where r is a constant.

Assume the given statement, for n.

Rewriting in . . . form. $r^0+r^1+\ldots+r^n=\frac{r^{n+1}-1}{r-1}$

Going to prove for n+1.

$$r^0 + r^1 + \ldots + r^n + r^{n+1} = \frac{r^{n+2} - 1}{r - 1}$$

The given statement can be substituted here, resulting in: $\frac{r^{n+1}-1}{r-1}+r^{n+1}=\frac{r^{n+2}-1}{r-1}$

$$\frac{r^{n+1}-1}{r-1} + r^{n+1} = \frac{r^{n+2}-1}{r-1}$$

Then multiply both sides by
$$(r-1)$$
.

$$\frac{(r-1)(r^{n+1})}{(r-1)} - \frac{(r-1)}{(r-1)} + (r-1)(r^{n+1}) = \frac{(r-1)(r^{n+2})}{(r-1)} - \frac{(r-1)}{(r-1)}$$
Resulting in:

$$r^{n+1}$$
 – $A + (r-1)(r^{n+1}) = r^{n+2}$ – A

Which is the same as:

$$(r^{n+1}) + r^{n+2} - (r^{n+1}) = r^{n+2}$$

$$r^{n+2} = r^{n+2}$$

This proves the case for n inductively.

2. Use mathematical induction to show that when n is an exact power of 2, the solution of the

Tecurrence:
$$T(n) = \begin{cases} 2 & \text{if } n = 2, \\ 2T(n/2) + n & \text{if } n = 2^k, \text{for } k > 1 \end{cases}$$
 is $T(n) = n \lg n$.

Suppose $n=2^p$, where p>1

$$T(n) = T(2^p)$$

Which by the recurrence,

$$T(n) = 2T(2^{p-1}) + 2^p$$

And substituting
$$T(n)$$
 for itself,
$$T(n) = 4T(2^{p-2}) + 2(2^{p-1}) + 2^p$$

And this continues until the leading coefficient is 2^p .

The rest of the terms are just 2^p . Note that $2(2^{p-1})$ is just like 2^{p-1+1} .

There are a total of p terms. So this can be rewritten as:

$$T(n) = p2^p$$

Since $n=2^p$, $p=\lg\,n$.

Thus $T(n) = lg \ n2^{lg \ n}$.

Or just $T(n) = n \lg n$.

3. Write a recurrence for the running time of a recursive insertion sort.

$$T(n) = \left\{ \begin{array}{ll} \Theta(1) & if \ n \leq 1 \\ T(n-1) + \Theta(n) & if \ n > 1 \end{array} \right.$$

4. Write pseudocode for binary search of the structure: $A = \langle a_1, a_2, ..., a_n \rangle$. v = A[i] or NIL.

```
BINARYSEARCH(A,lo,hi,value)
1 \ x \leftarrow lo + (hi - lo)/2
2 \ if \ lo = hi \ and \ value \neq A[x]
3 \ return \ False
4 \ if \ value = A[x]
5 \ return \ True
6 \ else \ if \ value < A[x]
7 \ return \ BINARYSEARCH(A,lo,x-1,value)
8 \ else
9 \ return \ BINARYSEARCH(A,x+1,hi,value)
```

In step 1, the value x is calculated to be half of the current array values. The recursive calls to BINARYSEARCH use x to only search half of the array. This means that $T(n) = \Theta(1)$ (for each pass through the function doing the comparisons) +T(n/2) (for the recursive calls that are searching only half of the elements). Much like the proof for Question 2, this will result in a logarithmic total, but will not be $T(n) = n \lg n$ because the comparisons are not $\Theta(n)$.

Because of the $\Theta(1)$ comparisons, rather, $T(n) = \lg n$.

5. Describe a $\Theta(n \ lg \ n)$ -time algorithm that, given a set S of n integers and another integer x, determines whether or not there exist two elements in S whose sum is exactly x.

```
\begin{array}{l} \mathsf{SUM}(\mathsf{S},\mathsf{start},\mathsf{size},\mathsf{value}) \\ 1 \ if size - 1 = start \\ 2 \ return \ False \\ 3 \ fi \\ 4 \ for \ i \leftarrow start + 1 \ to \ n \\ 5 \ if \ S[start] + S[i] = value \\ 6 \ return \ True \\ 7 \ fi \\ 8 \ return \ \mathsf{SUM}(\mathsf{S},\mathsf{start}+1,\mathsf{size},\mathsf{value}) \end{array}
```

6. Use the master method to show that the solution to the binary-search recurrence $T(n) = T(n/2) + \Theta(1)$ is $T(n) = \Theta(\lg n)$.

```
To set up the master method, a=1, b=2, and f(n)=\Theta(1). n^{log_ba}=n^{log_21}=n^0=1 Since f(n)=\Theta(1), which is \Theta(n^0)=\Theta(1), T(n)=\Theta(n^{log_ba}lg\;n)=\Theta(lg\;n).
```

7. Can the master method be applied to the recurrence $T(n) = 4T(n/2) + n^2 \lg n$? Why or why not? Give an asymptotic upper bound for this recurrence.

```
No.
Here a = 4, b = 2, and f(n) = n^2 lg n.
n^{\log_b a} = n^{\log_2 4} = n^2
f(n) = n^2 lg \ n is asymptotically larger than n^{log_b a} = n^2, but it is not polynomially larger. The ratio
\frac{f(n)}{n^{\log_b a}} = \frac{n^2 \lg n}{n^2} = \lg n is asymptotically less than n^{\epsilon} for any positive constant \epsilon. So the recurrence falls between case 2 and 3.
Guessing that T(n) = O(n^3)
Going to prove that T(n) \le cn^3, where c > 0.
Assuming this holds for T(n/2), thus T(n/2) \le c^{n/3}_2.
Substituting into the recurrence,
T(n) \le 4(c(\frac{n}{2})^3) + n^2 lg \ n
 \le (c/2)n^3 + n^2 lg \ n
```

 $\leq (c/2)n^3$, when $c \geq 2$. Going to show that this holds for the boundary conditions.

Assuming a boundary condition T(1) = 1 for n = 1,

 $T(n) \le (c/2)n^3$ yields $T(1) \le (c/2)(1^3)$, or $T(1) \le c/2$.

This holds for $c \ge 2$, which satisfies the above hypothesis that $T(n) = O(n^3)$.

- 8. Give asymptotic upper and lower bounds for T(n) in each of the following recurrences. Assume that T(n) is a constant for $n \leq 2$. Make your bounds as tight as possible, and justify your answers.
- **a.** $T(n) = 2T(n/2) + n^3$ Using the master theorem, a=2, b=2, $f(n)=n^3$. $n^{\log_b a} = n^{\log_2 2} = n^1.$ $f(n) = \Omega(n^{\log_2 2 + \epsilon})$, where $\epsilon = 2$. This means case 3 applies. $af(n/b) \le cf(n)$ $(1/4)n^3 \le cn^3$, and let c=1/4. So $T(n)=\Theta(n^3)$.
- **b.** T(n) = T(9n/10) + nUsing the master theorem, a = 1, b = 10/9, f(n) = n. $n^{\log_b a} = n^{\log_{10/9} 1} = n^0.$ $f(n) = \Omega(n^{\log_{10/9} + \epsilon})$, where $\epsilon = 1$. This means case 3 applies. $af(n/b) \le cf(n)$ $9n/10 \le cn$, and let c = 9/10. So $T(n) = \Theta(n)$.
- **c.** $T(n) = 16T(n/4) + n^2$ Using the master theorem, a = 16, b = 4, $f(n) = n^2$. $n^{\log_b a} = n^{\log_4 16} = n^2$. $f(n) = \Theta(n^{\log_4 16}) = \Theta(n^2)$ This means case 2 applies. So $T(n) = \Theta(n^2 \lg n)$.

d.
$$T(n) = 7T(n/3) + n^2$$

Using the master theorem, a=7, b=3, $f(n)=n^2$.

 $n^{\log_b a} = n^{\log_3 7} = n^{1.77}$.

 $f(n) = \Omega(n^{\log_3 7 + \epsilon})$, where $\epsilon \approx .33$.

This means case 3 applies.

 $af(n/b) \le cf(n)$

 $(7/9)n^2 \le cn^2$, and let c = 7/9.

So $T(n) = \Theta(n^2)$.

e.
$$T(n) = 7T(n/2) + n^2$$

Using the master theorem, a=7, b=2, $f(n)=n^2$.

 $n^{\log_b a} = n^{\log_2 7} = n^{2.81}$.

 $f(n) = O(n^{\log_2 7 - \epsilon})$, where $\epsilon \approx .81$.

This means case 1 applies.

So $T(n) = \Theta(n^{\log_2 7})$.

f.
$$T(n) = 2T(n/4) + n^{1/2}$$

Using the master theorem, a=2, b=4, $f(n)=n^{1/2}$.

 $n^{\log_b a} = n^{\log_4 2} = n^{1/2}.$

 $f(n) = \Theta(n^{\log_b a}) = \Theta(n^{1/2}).$

This means case 2 applies.

So $T(n) = \Theta(n^{1/2} lg \ n)$.

g.
$$T(n) = T(n-1) + n$$

This is a sum from 1 to n.

The formula for that kind of sum is $\frac{n^2+n}{2}$.

Thus, $T(n) = \Theta(n^2)$.

h.
$$T(n) = T(sqrt(n)) + 1$$

Let $m = lg \ n$.

 $2^m = 2^{\lg n} = n$

Substitute 2^m for n in T(n):

$$T(2^m) = T(2^{m/2}) + 1$$

New function:

$$S(m) = S(m/2) + 1$$

Use the master method, a = 1, b = 2, f(m) = 1.

 $m^{\log_b a} = m^0 = 1$

$$f(m) = \Theta(m^{\log_2 1} = \Theta(1))$$

This fits case 2, thus $S(m) = \Theta(\lg m)$.

Substituting $lg \ n$ back in for m,

 $T(n) = \Theta(\lg(\lg n)).$

i.
$$T(n) = 3T(n/2) + nlg n$$

Using the master method, a=3, b=2, $f(n)=nlg\ n.$

 $n^{log_ba} = n^{log_23} \approx n^{1.585}$

This fits case 1, thus $f(n) = O(n^{log_2 3 - \epsilon})$, where $\epsilon \approx .085$.

Since n^{log_ba} is not polynomially larger than f(n), going to prove the above statement.

 $nlg \ n \le cn^{1.5}$ Divide by n.

 $lg \ n \le c\sqrt{n}$

Since lg grows slower than $\sqrt{\ }$, the above always holds.

Thus $T(n) = \Theta(n^{\log_2 3})$.

j.
$$T(n) = T(n-1) + 1$$

This is a sum of 1, n times.

This is exactly the same as T(n) = n, which is $\Theta(n)$.