

What is Claimed:

- 1 1. An apparatus for use in a cephalostat comprising:
 - 2 a collimator for defining the shape of an X-ray beam;
 - 3 a soft tissue filter screen for attenuating a portion of the X-ray beam,
 - 4 wherein the soft tissue filter screen comprises:
 - 5 a) an anterior facial portion having a leading edge, wherein
6 the leading edge is located at the most posterior position of the anterior facial
7 portion, and
 - 8 b) a submental-neck portion coupled to the anterior facial
9 portion and having a leading edge at a position posterior relative to the leading edge
10 of the anterior facial portion,
 - 11 wherein the soft tissue filter screen is independently adjustable relative
12 to the collimator.
- 1 2. An apparatus according to claim 1, wherein the soft tissue filter
2 screen is L-shaped having a first leg and a second leg disposed perpendicular to one
3 another, wherein the anterior facial portion is the first leg and the submental-neck
4 portion is the second leg.

1 3. An apparatus according to claim 1, wherein the soft tissue filter
2 screen is adjustable relative to the collimator in the anterior/posterior direction.

1 4. An apparatus according to claim 1, wherein the soft tissue filter
2 screen is adjustable relative to the collimator in the superior/inferior direction.

1 5. An apparatus according to claim 1, wherein the anterior facial
2 portion and the submental-neck portion comprise a unitary component.

1 6. An apparatus according to claim 1, wherein the leading edge of the
2 anterior facial portion and the leading edge of the submental-neck portion are
3 beveled.

1 7. An apparatus according to claim 1, wherein the anterior facial
2 portion and the submental-neck portion are modular.

1 8. An apparatus according to claim 7, wherein the submental-neck
2 portion is adjustable relative to the anterior facial portion in the anterior/posterior
3 direction.

1 9. An apparatus according to claim 7, wherein the anterior facial
2 portion and the submental-neck portion are connected to one another along mated
3 beveled edges.

1 10. An apparatus according to claim 1, wherein the submental-neck
2 portion is adapted to enhance radiograph images of the neck contour of a patient.

1 11. An apparatus according to claim 1, wherein the soft tissue filter
2 screen is copper.

1 12. An apparatus according to claim 1, wherein the collimator
2 comprises four plates defining an opening to define the X-ray beam, wherein the
3 plates are independently adjustable relative to one another towards and away from
4 the center of the opening.

1 13. An apparatus according to claim 1, wherein the collimator
2 comprises a single frame defining an opening to define the X-ray beam.

1 14. A cephalometric radiology apparatus comprising
2 a support structure;
3 an X-ray source supported by the support structure for emitting X-
4 rays;

5 a collimator supported by the support structure and positioned along
6 the path of the X-rays for defining an X-ray beam emitted from the X-ray source;

7 a soft tissue filter screen for attenuating a portion of the X-ray beam
8 and mounted independently of the collimator, wherein the soft tissue filter screen
9 comprises:

10 a) an anterior facial portion having a leading edge, wherein
11 the leading edge is located at the most posterior position of the anterior facial
12 portion, and

13 b) a submental-neck portion coupled to the anterior facial
14 portion and having a leading edge at a position posterior relative to the leading edge
15 of the anterior facial portion,

16 wherein the soft tissue filter screen is independently adjustable relative
17 to the collimator; and

18 an X-ray detector to collect X-rays emitted from the X-ray source.

1 15. An apparatus according to claim 14 further comprising at least
2 one positioning light to identify an optimum position of the soft tissue filter relative
3 to the head of the patient, wherein said positioning light emits a signal
4 representative of the optimum position, and a controller responsive to the signal for
5 moving the soft tissue filter screen to the optimum position.

1 16. An apparatus according to claim 15, wherein the anterior facial
2 portion and the submental-neck portion are modular and adjustable relative to one
3 another, and the signal identifies a first data point corresponding to the optimum
4 position for the leading edge of the anterior facial portion, a second data point
5 corresponding to the optimum position for the leading edge of the submental-neck
6 portion, and a third data point corresponding to the optimum position for intersection
7 of the anterior facial portion and the submental-neck portion.

1 17. An apparatus according to claim 15, wherein the at least one
2 positioning light positions the soft tissue filter screen in at least one of the
3 anterior/posterior direction and the superior/inferior direction.

1 18. An apparatus according to claim 14, wherein the soft tissue filter
2 screen is mounted between the collimator and the X-ray source.

1 19. An apparatus according to claim 14, wherein the collimator is
2 mounted between the soft tissue filter screen and the X-ray detector.

1 20. A method for imaging soft tissue and hard tissue congruently on
2 the same radiograph comprising the steps of:

3 emitting X-rays from an X-ray source;

4 positioning a collimator across the X-rays to define an X-ray beam;

5 positioning a soft tissue filter screen across the X-ray beam
6 independently of the step of positioning the collimator, to attenuate the X-rays
7 passing through a portion of the forehead, nose, lips, chin and neck of a patient,
8 wherein the soft tissue filter screen comprises:

9 a) an anterior facial portion having a leading edge, wherein
10 the leading edge is located at the most posterior position of the anterior facial
11 portion, and

12 b) a submental-neck portion coupled to the anterior facial
13 portion and having a leading edge at a position posterior relative to the leading edge
14 of the anterior facial portion; and

15 collecting the X-rays on a radiograph.

1 21. A modular soft tissue filter screen system for use with a
2 cephalostat having a collimator for defining an X-ray beam, which system comprises:

3 a soft tissue filter screen for attenuating a portion of the X-ray beam,
4 wherein the soft tissue filter screen comprises:

5 a) an anterior facial portion having a leading edge, wherein
6 the leading edge is located at the most posterior position of the anterior facial
7 portion, and

8 b) a submental-neck portion coupled to the anterior facial
9 portion and having a leading edge at a position posterior relative to the leading edge
10 of the anterior facial portion, and

11 a mounting component supporting the soft tissue filter screen and
12 adapted to be attached to the cephalostat at a position such that the soft tissue filter
13 screen is aligned within the X-ray beam.

1 22. A system according to claim 21, wherein the soft tissue filter
2 screen is L-shaped having a first leg and a second leg disposed perpendicular to one

3 another, wherein the anterior facial portion is the first leg and the submental-neck
4 portion is the second leg.

1 23. A system according to claim 21, wherein the soft tissue filter
2 screen is adjustable in the anterior/posterior direction relative to the collimator.

1 24. A system according to claim 21, wherein the anterior facial portion
2 and the submental-neck portion are modular.

1 25. A system according to claim 24, wherein the submental-neck
2 portion is adjustable relative to the anterior facial portion in the anterior/posterior
3 direction.

1 26. A system according to claim 24, wherein the anterior facial portion
2 and the submental-neck portion are connected to one another along mated beveled
3 edges.

1 27. A system according to claim 21, wherein the anterior facial portion
2 and the submental-neck portion comprise a unitary component.

1 28. A system according to claim 21, wherein the leading edge of the
2 anterior facial portion and the leading edge of the submental-neck portion are
3 beveled.

1 29. A system according to claim 21, wherein the soft tissue filter
2 screen is adjustable relative to the collimator in a inferior/superior direction.

1 30. A system according to claim 21, wherein the submental-neck
2 portion is adapted to enhance radiographic images of the facial soft tissue inferior to
3 the mandible and the neck contour of a patient

1 31. A system according to claim 21, wherein the soft tissue filter
2 screen is copper.

1 32. A method according to claim 20 further comprising:

2 identifying an optimum position of the soft tissue filter screen; and
3 generating a signal representative the optimum position,

4 wherein the step of positioning the soft tissue filter screen comprises
5 receiving the signal and moving the soft tissue filter screen to the optimum position
6 by adjusting the soft tissue filter screen in at least one of the anterior/posterior
7 direction and the superior/inferior direction.

1 33. A method according to claim 32, wherein the anterior facial
2 portion and the submental-neck portion are modular and adjustable relative to one
3 another, and the signal identifies a first data point corresponding to the optimum
4 position for the leading edge of the anterior facial portion, a second data point
5 corresponding to the optimum position for the leading edge of the submental-neck
6 portion, and a third data point corresponding to the optimum position for intersection
7 of the anterior facial portion and the submental-neck portion.

- 1 34. A modular soft tissue filter screen system according to claim 21
- 2 further comprising a housing for the collimator, wherein the mounting component for
- 3 the soft tissue filter screen is adapted to be attached to the housing of the collimator.