

UNIDADE 1: INTRODUÇÃO

Engenharia de Software

Sumário:

- → Componentes de um Sistema Computacional
- → Definição de Sistema Operacional
- → Visão Abstrata do S.O.
- → Objetivos de S.O.
- → Contexto Histórico
- → Sistemas em Lote (Batch)
- → Sistemas Batch Multiprogramados
- → Multiprogramação
- → Sistemas de Tempo Compartilhado
- → Sistemas de Computadores Pessoais
- → Sistemas Paralelos e Distribuídos

Sistemas Computacionais

INTRODUÇÃO

Hardware: provê recursos básicos de computação

(CPU; memória, dispositivos de I/O)

Sistema Operacional: controla e coordena o uso de Hardware entre as diversas aplicações dos usuários.

Programas Aplicativos: definem a forma com a qual os recursos são usados para resolverem os problemas dos usuários. (Compiladores, bancos de dados, editores etc.)

Usuários (pessoas, dispositivos e outros computadores.

Sistemas Computacionais

Abstração de Sistema Computacional

Sistemas Computacionais

Arquitetura de Sistema Computacional

Banking system	Airline reservation	Web browser
Compilers	Editors	Command interpreter
Operating system		
Machine language		
Microprogramming		
Physical devices		

Application programs

System programs

Hardware

O que é um Sistema Operacional?

Podemos visualizar um S.O. realizando duas funções básicas não relacionadas: estender a maquina e gerenciar recursos.

Sendo assim é um programa que age como intermediário entre usuário e o hardware, facilitando o uso dos recursos.

Capaz de alocar e gerenciar os recursos de forma eficiente: (CPU, Memória e Dispositivos de I/O) coordenando a execução dos programas e operações de entrada e saída.

Kernel: programa executando ininterruptamente (núcleo do SO).

O que é um Sistema Operacional?

Definições na Literatura:

"É um programa de controle do computador. O S.O. é responsável por alocar recursos de hardware e escalonar tarefas. Ele também deve prover uma interface para usuário – ele fornece ao usuário uma maneira de acesso aos recursos do computador " (**SOBELL**)

"Um Sistema Operacional pode ser definido como um gerenciador dos recursos que compõem o computador (processador, memória, I/O, arquivos etc). Os problemas centrais que o S.O. deve resolver são o compartilhamento ordenado, a proteção dos recursos a serem usados pelas aplicações do usuário e o interfaceamento entre estes e a máquina" (**STEMMER**)

Conceito Sistema Operacional?

Definições na Literatura:

"Desta forma podemos dizer que o SO se apresenta como uma **Máquina Estendida** menos complexa que o hardware subjacente, capaz de monitorar e gerenciar todos os recursos de hardware e Software de forma coordenada" (**TANENBAUM, 2000**).

Sistema Operacional (SO) é um Software de Sistema, que através de um conjunto de programas gerencia os recursos do sistema computacional, de maneira a prover interação desde as camadas mais baixas de Hardware, passando pelos periféricos e adjacentes até os usuários.

Objetivos de um Sistema Operacional?

Na Visão de uma maquina estendida

Tornar mais conveniente a utilização de um computador

- → "Esconder" detalles internos do funcionamento
- → Padronizar a interface para dispositivos semelhantes
- → Visão *Top-down*

Exemplo: Fornecer uma visão dos discos como uma coleção hierárquicas de arquivos, identificados por nomes e manipuláveis por funções básicas (abrir/fechar; leitura/escrita), escondendo os detalhes de acionamento do cabeçote nas trilhas bem com o tamanho dos setores do HD.

Objetivos de um Sistema Operacional?

Na Visão de um Gerenciador de Recursos

Tornar mais eficiente a utilização de um computador

- → Gerenciamento "justo" dos recursos do sistema
- → Facilitar a evolução do Sistema (desenvolvimento, testes etc)
- → Visão *Botton-up*

Estabelecer critérios de uso dos recursos e ordem de acesso aos mesmos, impedindo violação de espaço de memória de processos concorrentes e tentativas de acesso simultâneo a um mesmo recurso.

Interface entre usuário/computador

Os principais marcos históricos:

Cinco marcos históricos antes do o surgimento da primeira geração dos computadores compreendida como:

- (1) ábaco (~5000 ac),
- (2) régua de cálculo (1638),
- (3) máquina de Pascoal (1642)
- (4) Babbage máquina de diferença(1822) e máquina analítica (1837)

2)

3

4) máquina de diferença

Evolução dos Sistemas Operacionais

No ano de 1837, Babbage (1792-1871) desenvolve uma máquina chamada de **Máquina Analítica** que armazenava dados em **cartões perfurados**. Essa tecnologia era utilizada para programar as máquinas.

A máquina de Charles Babbage recebeu o **primeiro algoritmo** da história, escrito por **Ada Lovelace**, considerada a primeira programadora da história.

Este primeiro algoritmo permitiria que a maquina calculasse os números da <u>Sequencia Bernoulli</u>.

Alguns acontecimentos importantes:

- 1847 George Boole Sistema lógica Boleana para representação da informação
- 1890 Herman Hollerith Cria máquina para acelerar o processo de leitura das respostas do senso demográfico através de cartões que revolucionou a maneira de coleta de informações
- 1896 Hollerith cria a Tabulation Machine Company
- 1916 com falecimento de Hollerith e depois de fusões entre empresas a TMC muda seu nome para IBM (Internetional Busines Machine)
- 1931 Vannevar Bush implementa um computador com lógica binária, pois até então era utilizado a lógica Decimal, o que era difícil de se manter através de manipulação de voltagem de forma mais complexa que foi simplificada com a lógica binária.

Evolução dos Sistemas Operacionais

A primeira geração (1945-1955): VALVULAS E PANÉIS DE PROGRAMAÇÃO

- → Calculadoras com relés mecânicos lentos, posteriormente substituídos por válvulas;
- → Programação através de chaves
- → Inexistência de linguagens ou S.O.
- → Atividade totalmente sequencial
- → Surgimento do cartão perfurado na década de 50

Evolução dos Sistemas Operacionais

A segunda geração (1955-1965):

TRANSISTORES E SISTEMAS EM LOTE (BATCH)

- → Computadores de grande porte (Mainframe) IBM 1401 e 709po4
- → Separação entre programação e operação
- → Execução sequencial de programas
- → FORTRAN e ASSEMBLY
- → Desperdício de tempo na 1º geração → solução: Sistemas Batch

Evolução dos Sistemas Operacionais

A terceira geração (1965-1980): CIRCUITOS INTEGRADOS (CIs) e MULTIPROGRAMAÇÃO

→ Série de equipamentos compatíveis com um S.O. o OS/360

IBM/360 e seus sucessores (370, 4300, 3080 e 3090)

→ Multiprogramação: divisão
de memória entre jobs
Enquanto uma tarefa aguardava E/S,
outra utilizava a CPU.

operating system
job 1
job 2
job 3
job 4

Evolução dos Sistemas Operacionais

A terceira geração (1965-1980):

- → **SPOOL** (Simultaneous Peripheral Operation On Line) Capacidade de alimentar uma fila de entrada e uma de saída de forma coordenada;
- → **Time-sharing**, uma variante da multiprogramação onde cada usuário se conecta a partir de um terminal *on-line* interagindo com seu *job*.

Primeiro: CTSS (Compatible time sharing system) do MIT.

Depois: **MULTICS** (MULTIplexed Information and Computing Service).

- → Surgimento dos minicomputadores , iniciados com DEC PDP-1 em 1961 culminando no PDP-11;
- → Surge o UNICS, renomeado UNIX monousuário, baseado no MULTICS.
- → Baseado no UNIX surgem o System V (AT&T) e o BSD (Berkeley)
- → IEEE desenvolve o padrão Unix **POSIX** (Portable Operating System-IX)
- → Surgiram as implementações comerciais do Unix para servidores: Sun OS da Sun, rebatizado para Solaris, Xenix (da Microsoft), HP/UX (HP) e AIX (IBM)

Evolução dos Sistemas Operacionais

A quarta geração (1980-presente): COMPUTADORES PESSOAIS

- → Circuitos integrados em larga escala
- → CP/M (*Control Program for Microcomputer*) primeiro SO para micro que dominou o mercado durante 5 anos.
- → 1980 a IBM projetou o IBM PC (Bill Gates entra na jogada)
- → Desenvolvimento do DOS (Disk Operation System)
- → Criada a Microsoft e o DOS é renomeado para MS-DOS
- → 1988 surge o conceito de *user-friendly* da Apple e MS Windows 3.x
- → Surge o Windows 95 e 98 independentes do MS-DOS
- → Unix também se desenvolve com uma interface chamada X Windows
- → 1991 é lançado o Linux e junta ao projeto GNU, formando GNU/Linux
- → Surgem então SOs para redes com Windows NT, Linux e Unix.
- → Surgimento de SOs Distribuídos.

Evolução dos Sistemas Operacionais

Recomendação:

Dica de filme: Piratas do Vale do Silício: Histórico do surgimento dos computadores pessoais, e o papel das empresas Microsoft e Apple nesse contexto.

Tipos de Sistemas Operacionais

Figura: Tipos de Sistemas Operacionais

Tipos de Sistemas Operacionais

SISTEMAS MONOPROGRAMÁVEIS/MONOTAREFA

- → Os primeiros SOs voltados para execução de um único programa
- → recursos do sistema computacional exclusivos para um programa
- → Tipicamente ligados aos primeiros
- computadores década de 60
- → Subutilização de recursos
- a espera de ação de usuário

Tipo de Sistemas Operacionais

SISTEMAS MULTIPROGRAMÁVEIS/MULTITAREFA

- → Uma evolução dos sistemas monoprogramáveis
- → Recursos compartilhados entre os diversos usuários e aplicações
- → São mais eficientes, no entanto são mais complexos para serem implementados.

Classificação de SO

Classificação de Sistemas Operacionais

- → Os Sistemas Operacionais Multiprogramáveis/multitarefa podem ser classificados de acordo com a forma com que suas aplicações são gerenciadas, podendo serem divididas em:
- Batch Tempo compartilhado tempo real

Depois surgiram outras classificações:

- Computadores Pessoais - Sistemas Paralelos - Sistemas Distribuídos

Sistemas em Lote (Batch)

Classificação de Sistemas Operacionais

- → Operador comanda a submissão de tarefas (jobs)
- → Usuário ≠ operador
- → tarefas na forma de cartões perfurados
- → Tempo de configuração era reduzido, reunindo-se tarefas similares
- → Sequenciamento automático, controle transferindo automaticamente de um job para outro SO rudimentar.

operating system

user program area

Layout de memória

Sistemas em Batch

Classificação de Sistemas Operacionais

- → Problemas: baixo desempenho, operações de CPU e I/O não podiam ser sobrepostas. A CPU ficava ociosa. A leitora de cartões era muito lenta.
- → Solução: operação off-line carregados de unidades de fita para a memória. A leitura de cartões e tarefas de impressão eram feitas off-line
- → Spooling: Permite a sobreposição da computação de um *job* com o I/O de outro. Enquanto executa um *job*, SO.:
 - Lê o próximo job da leitora para o disco (fila de jobs).
 - Imprime a saída do *job* anterior, do disco para a impressora.
- → Job pool: estrutura de dados que permite selecionar qual job será executado a seguir, para aumentar o uso da CPU.

Sistemas em Batch Multiprogramados

Classificação de Sistemas Operacionais

→ Vários *jobs* são mantidos na memória principal ao mesmo tempo e a CPU é multiplexada.

0	
O	operating system
	job 1
	job 2
	job 3
512K	job 4

Sistemas de Tempo Compartilhado

Classificação de Sistemas Operacionais

- → Tipo de multiprogramação
- → A CPU é multiplexada entre diversos *jobs* mantidos em memória e em disco (a CPU é alocada a um *job* apenas se este estiver na memória)
- → O usuário tem a impressão que a CPU está dedicada
- → Um job é transferido do disco para a memória e da memória para o disco (SWAP)
- → Divisão de tempo de processamento entre usuários
- → São a base dos S.Os modernos

Sistemas de Tempo Real

Classificação de Sistemas Operacionais

Tempo Real: Utilizado para controle de máquinas de linhas de produção, instrumentos de cunho científico. Normalmente sem interface de usuário com propósito bem específico em um dado momento de tempo.

Sistemas de Computadores Pessoais

Classificação de Sistemas Operacionais

- → PC: Sistema de Computação dedicado a um único usuário
- → Dispositivos de I/O teclado, mouse, vídeo, impressoras.
- → Praticidade e tempo de resposta.
- → Foram capazes de adotar tecnologia desenvolvida para sistemas de grande porte. O uso pessoal não exige sofisticação no gerenciamento da CPU nem em aspectos de proteção.
- → A utilização de PCs por vários usuários e acesso à rede trazem novas necessidades de proteção e segurança.

Evolução para as estações de trabalho.

Multiprogramação

Classificação de Sistemas Operacionais

- → Rotinas de I/O provisionadas pelo sistema
- → Gerência de memória: o sistema deve alocar memória para vários jobs
- → Escalonamento de CPU: o sistema deve escolher dentre os diversos jobs prontos para serem executados.
- → Alocação d dispositivos

Sistemas Paralelos

Classificação de Sistemas Operacionais

- → Sistemas de multiprocessadores com mais de uma CPU em comunicação ativa, compartilhando barramento, clock e possivelmente memória e dispositivos.
- → Sistemas fortemente acoplados processadores compartilham memória e clock. A comunicação é feita através de memória compartilhada.

Vantagens:

- Maior produção (throughput) Economia de recursos
- Disponibilidade e Confiabilidade
 - degradação normal a falha de um
 - processador não interrompe o processo
 - sistemas tolerantes a falhas duplicação de hardware e software

Sistemas Paralelos

Classificação de Sistemas Operacionais

→ Multiprocessamento Simétrico (SMP)

- Cada processador executa uma cópia idêntica do S.O.
- Vários processos podem ser executados simultaneamente sem queda de desempenho.

→ Multiprocessamento assimétrico

- Cada processador é alocado a uma tarefa específica. Processadores-Mestres escalonam e alocam tarefas aos demais processadoresescravos
- Mais comuns em grandes sistemas.

Sistemas Distribuídos

Classificação de Sistemas Operacionais

- → Distribuem a computação entre vários processadores físicos.
- → Sistemas fracamente acoplados, cada processador tem sua própria memória local. Processadores se comunicam através de linhas telefônicas e redes de alta velocidade

Vantagens:

- Compartilhamento
- Velocidade de computação
- Balanceamento de carga
- Confiabilidade
- Intercomunicação

Sistemas Distribuídos

Classificação de Sistemas Operacionais

- → Sistemas Distribuídos
 - Proporcionam compartilhamento de arquivos
 - Gerenciam a comunicação
 - Executam de forma independente de outros computadores da rede
 - Dão a impressão que só existe um S.O. controlando a rede.

Referências

Sistemas Operacionais

Tanenbaum A. S; Woodhull A. S. **Sistemas Operacionais**: projeto e implementação. 2 Ed, Porto Alegre:Bookman, 2000.

Picolo L. **laboratório de Sistemas Operacionais**. IFMG, 2012. Disponível em:http://pt.slideshare.net/luizpicolo/slide-sistemas-operacionais-paraservidores. Acesso em: 31 Julho 2016.

Guedes D. O. **Sistemas Operacionais**. Belo Horizonte:DCC UFMG. Disponível em:http://homepages.dcc.ufmg.br/~dorgival/slides/so/01-introducao-6pp.pdf Acesso em: 31 Julho 2016.

SOBELL, MARK G. Guia Pratico Linux De Comandos, Editores, e Programação de Shell. Ed., São Paulo, 2009