		Created with OSdag®	
Company Name		Project Title	beam to column end plate connection
Group/Team Name		Subtitle	
Designer		Job Number	
Date	21 /01 /2025	Client	

1 Input Parameters

Main Module	Moment Connection
Module	Beam-to-Column End Plate Connection
Connectivity *	Column Flange-Beam Web
End Plate Type *	Extended One Way - Irreversible Moment
Bending Moment (kNm) *	23.0
Shear Force (kN) *	233.0
Axial Force (kN)	233.0

Column Section - Mechanical Properties

Column Section	Column Section - Mechanical Properties					
Column Section		HB 150				
Materia	1 *	E 16	65 (Fe 290)			
Ultimate Strength	n, Fu (MPa)		290			
Yield Strength,	Fy (MPa)		165			
Mass, m (kg/m)	27.06	$I_z \text{ (cm}^4)$	1450.0			
Area, $A \text{ (cm}^2)$	34.4	$I_y(\mathrm{cm}^4)$	431.0			
D (mm)	150.0	r_z (cm)	6.49			
B (mm)	150.0	r_y (cm)	3.53			
t (mm)	5.4	$Z_z \text{ (cm}^3)$	194.0			
T (mm)	9	$Z_y \text{ (cm}^3)$	57.5			
Flange Slope	94	Z_{pz} (cm ³)	215.0			
$R_1 \text{ (mm)}$	8.0	$Z_{py} (\mathrm{cm}^3)$	92.7			
$R_2 \text{ (mm)}$	4.0					

Beam Section - Mechanical Properties

		-		
Beam Section		UB 1016 x 305 x 349		
Material *		E 165 (Fe 290)		
Ultimate Strength, F_u (MPa)			290	
Yield Strength,	Yield Strength, F_y (MPa)		165	
Mass, m (kg/m)	349.4	$I_z \text{ (cm}^4)$	723131.0	
Area, $A \text{ (cm}^2)$	445.2	$I_y(\text{cm}^4)$	18446.0	
D (mm)	1008.1	r_z (cm)	40.3	
B (mm)	302.0	r_y (cm)	6.4	
t (mm)	21.1	$Z_z \text{ (cm}^3)$	14346.0	
T (mm)	40.0	$Z_y \text{ (cm}^3)$	1222.0	
Flange Slope	90	$Z_{pz} (\mathrm{cm}^3)$	16592.0	

		Created with Osdag®	
Company Name		Project Title	beam to column end plate connection
Group/Team Name		Subtitle	
Designer		Job Number	
Date	21 /01 /2025	Client	

	$R_1 \text{ (mm)}$	30.0	$Z_{py} \ (\mathrm{cm}^3)$	1941.0	
	$R_2 \text{ (mm)}$	0.0			
	Plate Details -	- Input and De	sign Preference		
Thickness	([8, 10, 12, 14, 16	6, 18, 20, 22, 25, 28, 32, 36, 40, 45,	
1 mckness	(mm)		50, 56, 6	50, 56, 63, 75, 80, 90, 100, 110, 120	
Materi	al *			E 165 (Fe 290)	
Ultimate Streng	th, Fu (MPa)			290	
Yield Strength	, Fy (MPa)			165	
	Bolt Details -	Input and De	sign Preference		
D:	′ \ \ +		[8, 10, 12, 14, 16	6, 18, 20, 22, 24, 27, 30, 33, 36, 39,	
Diameter	(mm) *		42,	45, 48, 52, 56, 60, 64]	
Property	Class *		[3.6, 4.6, 4.8,	5.6, 5.8, 6.8, 8.8, 9.8, 10.9, 12.9]	
Туре	*			Bearing Bolt	
Bolt Ter	Bolt Tension			Non pre-tensioned	
Hole T	Hole Type			Standard	
Slip Factor, (μ_f)			0.3		
	Weld Details -	- Input and De	sign Preference		
Type of Weld	Fabrication			Shop Weld	
Material Grade Over	rwrite, F_u (MPa)			290.0	
Beam Flange to	o End Plate		Groove Weld		
Beam Web to	End Plate			Fillet Weld	
Stiffer	ner			Fillet Weld	
Continuity	Continuity Plate		Fillet Weld		
	Detaili	ng - Design Pr	eference		
Edge Preparat	ion Method		Shea	ared or hand flame cut	
Gap Between Mo	embers (mm)			0.0	
Are the Members Exposed	to Corrosive Influ	iences?		False	

		Created with Osdag®	
Company Name		Project Title	beam to column end plate connection
Group/Team Name		Subtitle	
Designer		Job Number	
Date	21 /01 /2025	Client	

2 Design Checks

2.1 Beam to Column - Compatibility Check

Check	Required	Provided	Remarks
Beam Section Compatibility	$B_{\text{req}} = B_b + 25$ = 302.0 + 25 = 327.0	$B_{\text{available}} = B_c$ $= 150.0$	Not compatible

2.2 Member Capacity - Supported Section

Check	Required	Provided	Remarks
Shear Capacity (kN)		$V_{d_y} = \frac{A_v f_y}{\sqrt{3} \gamma_{m0}}$ $= \frac{0.6 \times 928.1 \times 21.1 \times 165}{\sqrt{3} \times 1.1 \times 1000}$ $= 1017.56$ [Ref. IS 800:2007, Cl.10.4.3]	Restricted to low shear
Plastic Moment Capacity (kNm)		$M_{dz} = \frac{\beta_b Z_{p_z} f y}{\gamma_{m0}}$ $= \frac{1.0 \times 16592000.0 \times 165}{1.1 \times 10^6}$ $= 2488.8$ [Ref. IS 800:2007, Cl.8.2.1.2]	V < 0.6 Vdy

		Created with OSdag®	
Company Name		Project Title	beam to column end plate connection
Group/Team Name		Subtitle	
Designer		Job Number	
Date	21 /01 /2025	Client	

2.3 Member Capacity - Supporting Section

Check	Required	Provided	Remarks
Plastic Moment Capacity (kNm)		$\begin{split} M_{dz} &= \frac{\beta_b Z_{p_z} f y}{\gamma_{m0}} \\ &= \frac{0.9 \times 215000.0 \times 165}{1.1 \times 10^6} \\ &= 29.1 \end{split}$ Note: The capacity of the section is not based on the beam-colum or column design. The actual capacity might vary. $[\text{Ref. IS } 800:2007, \text{Cl.8.2.1.2}]$	Semi- compact
Plastic Moment Capacity (kNm)		$\begin{split} M_{dy} &= \frac{\beta_b Z_{py} fy}{\gamma_{m0}} \\ &= \frac{0.62 \times 92700.0 \times 165}{1.1 \times 10^6} \\ &= 8.62 \end{split}$ Note: The capacity of the section is not based on the beam-colum or column design. The actual capacity might vary. $[\text{Ref. IS } 800:2007, \text{Cl.8.2.1.2}]$	Semi- compact

2.4 Load Consideration

Check	Required	Provided	Remarks
Axial Force (kN)		$P_x = 233.0$	OK

		Created with Osdag®	
Company Name		Project Title	beam to column end plate connection
Group/Team Name		Subtitle	
Designer		Job Number	
Date	21 /01 /2025	Client	

Check	Required	Provided	Remarks
Shear Force (kN) *	$V_y = 233.0$	$V_{y_{\min}} = \min(0.15V_{d_y}, 40.0)$ $= \min(0.15 \times 1017.56, 40.0)$ $= \min(152.63, 40.0)$ $= 40.0$ $V_u = \max(V_y, V_{y_{\min}})$ but, $\leq V_{dy}$ $= \max(233.0, 40.0)$ but, ≤ 1017.56 $= 233.0$ [Pof. IS 200.2007, Cl 10.7]	Pass
Bending Moment (major axis) (kNm)	$M_z = 23.0$	[Ref. IS 800:2007, Cl.10.7] $M_{z\min} = 0.5 M_{dz}$ $= 0.5 \times 2488.8$ $= 1244.4$ $M_u = \max(M_z, M_{z\min})$ but, $\leq M_{dz}$ of the column section $= \max(23.0, 1244.4)$ ≤ 29.1 $= 29.1$ [Ref. IS 800:2007, Cl.8.2.1.2]	Pass
Effective Bending Moment (major axis) (kNm)		$M_{ue} = M_u + P_x \times \left(\frac{D}{2} - \frac{T}{2}\right) \times 10^{-3}$ $= 29.1 + 233.0 \times \left(\frac{1008.1}{2} - \frac{40.0}{2}\right) \times 10^{-3}$ $= 141.88$	ОК

		Created with OSdag®	
Company Name		Project Title	beam to column end plate connection
Group/Team Name		Subtitle	
Designer		Job Number	
Date	21 /01 /2025	Client	

2.5 Bolt Optimization

Check	Required	Provided	Remarks
Diameter (mm)	Bolt Diameter Optimization	d=8	Fail
Property Class	Bolt Property Class Optimization	3.6	Fail
Hole Diameter (mm)		$d_0 = 8$	OK
No. of Bolt Columns		$n_c = 4$	Fail
No. of Bolt Rows		$n_r = 5$	Fail
Total No. of Bolts		$n = n_r X n_c = 20$	Fail

2.6 Detailing

Check	Required	Provided	Remarks
	$p_{\min} = 2.5d$		
	$=2.5\times8.0$		
Min. Pitch Distance (mm)	= 20.0	30	Pass
	[Ref. IS 800:2007, Cl.10.2.2]		
	$p_{\max} = \min(32t, 300)$		
	$= \min(32 \times 40.0, 300)$		
	$= \min(1280.0, 300)$		
Man Dital Distance (man)	= 300	20	D
Max. Pitch Distance (mm)		30	Pass
	Where, $t = \min(40.0, 40.0)$		
	[Ref. IS 800:2007, Cl.10.2.3]		
	$g_{\min} = 2.5d$		
	$= 2.5 \times 8.0$		
Min. Gauge Distance	= 20.0	30	Pass
(mm)			
	[Ref. IS 800:2007, Cl.10.2.2]		

		Created with OSdag®	
Company Name		Project Title	beam to column end plate connection
Group/Team Name		Subtitle	
Designer		Job Number	
Date	21 /01 /2025	Client	

Check	Required	Provided	Remarks
$g_{\text{max}} = \min(32t, 300)$ $= \min(32 \times 40.0, 300)$ $= \min(1280.0, 300)$ $= 300$ Where, $t = \min(40.0, 40.0)$ [Ref. IS 800:2007, Cl.10.2.3]		30	Pass
Min. End Distance (mm)	$e_{\min} = 1.7d_0$ = 1.7 × 8 = 13.6 [Ref. IS 800:2007, Cl.10.2.4.2]	15	Pass
Max. End Distance (mm)	$e_{\text{max}} = 12t\varepsilon; \ \varepsilon = \sqrt{\frac{250}{f_y}}$ $e_1 = 12 \times 40.0 \times \sqrt{\frac{250}{165}} = 590.84$ $e_2 = 12 \times 40.0 \times \sqrt{\frac{250}{165}} = 590.84$ $e_{\text{max}} = \min(e_1, \ e_2) = 590.84$ [Ref. IS 800:2007, Cl.10.2.4.3]	15	Pass
Min. Edge Distance (mm)	$e'_{\min} = 1.7d_0$ = 1.7 × 8 = 13.6 [Ref. IS 800:2007, Cl.10.2.4.2]	15	Pass

		Created with OSdag®	
Company Name		Project Title	beam to column end plate connection
Group/Team Name		Subtitle	
Designer		Job Number	
Date	21 /01 /2025	Client	

Check	Required	Provided	Remarks
	$e'_{\max} = 12t\varepsilon; \ \varepsilon = \sqrt{\frac{250}{f_y}}$		
	$e_1 = 12 \times 40.0 \times \sqrt{\frac{250}{165}} = 590.84$		
Max. Edge Distance (mm)	$e_2 = 12 \times 40.0 \times \sqrt{\frac{250}{165}} = 590.84$	15	Pass
	$e'_{\text{max}} = min(e_1, e_2) = 590.84$		
	[Ref. IS 800:2007, Cl.10.2.4.3]		
Cross-centre Gauge Dis-		82	Pass
tance (mm)			

2.7 Critical Bolt Design

Check	Required	Provided	Remarks
Shear Capacity (kN)		$V_{\text{dsb}} = \frac{f_{ub}n_n A_{nb}}{\sqrt{3}\gamma_{mb}}$ $= \frac{330.0 \times 1 \times 36.6}{1000 \times \sqrt{3} \times 1.25}$ $= 5.58$ [Ref. IS 800:2007, Cl.10.3.3]	OK
Кь		$k_b = \min\left(\frac{e}{3d_0}, \frac{p}{3d_0} - 0.25, \frac{f_{ub}}{f_u}, 1.0\right)$ $= \min\left(\frac{15}{3 \times 8}, \frac{30}{3 \times 8} - 0.25, \frac{330.0}{290}, 1.0\right)$ $= \min(0.62, 1.0, 1.14, 1.0)$ $= 0.62$ [Ref. IS 800:2007, Cl.10.3.4]	OK

		Created with OSdag®	
Company Name		Project Title	beam to column end plate connection
Group/Team Name		Subtitle	
Designer		Job Number	
Date	21 /01 /2025	Client	

Check	Required	Provided	Remarks
Bearing Capacity (kN)		$V_{\text{dpb}} = \frac{2.5k_b dt f_u}{\gamma_{mb}}$ $= \frac{2.5 \times 0.62 \times 8.0 \times 40.0 \times 290}{1000 \times 1.25}$ $= 115.07$	OK
Bolt Capacity (kN)		[Ref. IS 800:2007, Cl.10.3.4] $V_{\rm db} = \min (V_{\rm dsb}, V_{\rm dpb})$ $= \min (5.58, 115.07)$ $= 5.58$ [Ref. IS 800:2007, Cl.10.3.2]	
Large Grip Length Reduction Factor		$l_g = \sum (t_p + t_{\text{member}})$ $= \sum (40.0 + 9)$ $= 49.0 \text{ mm}$ $5d = 5 \times 8.0 = 40.0$ $8d = 8 \times 8.0 = 64.0$ Since, $5d < l_g \le 8d$ $\beta l_g = 8/(3 + l_g/d)$ $= \frac{8}{3 + 49.0/8.0}$ $= 0.88$ $[Ref. IS 800 : 2007, Cl. 10.3.3.2]$	Pass
Bolt Capacity (post reduction factor) (kN)		$V_{\rm db} = V_{\rm db} \beta_{lg}$ $= 5.58 \times 0.88$ $= 4.91$ [Ref. IS 800 : 2007, Cl. 10.3.3.2]	ОК

		Created with OSCIAG®	
Company Name		Project Title	beam to column end plate connection
Group/Team Name		Subtitle	
Designer		Job Number	
Date	21 /01 /2025	Client	

Check	Required	Provided	Remarks
Shear Demand (per bolt) (kN)	$V_{sb} = \frac{V_u}{n}$ $= \frac{233.0}{20}$ $= 11.65$	$V_{db} = 4.91$	Fail
Lever Arm (mm)	 r = [968.1, 968.1, 35.0, 334.37, 633.73] Note: r₁is the first row outside tension/top flange, r₂ is the first row inside tension/top flange, r₃ is the first row inside compression/bottom flange r₄ is the second row inside tension/top flange, r₅ is the second row outside tension/top flange, row(s) r₆ and beyond are rows inside the flange. Note: The lever arm is computed by considering the N.A at the centre of the bottom flange. Rows with identical lever arm values mean they are considered acting as bolt group near the tension or compression flange. 		Fail
Tension Due to Moment (kN)	$T_1 = \frac{M_{ue}}{4 \times n_c \times \left(r_1 + \sum_{i=3}^{n_r = 3} \frac{r_i^2}{r_1}\right)}$ $= \frac{141.88 \times 10^3}{4 \times 4 \times \left(968.1 + \sum_{i=3}^{n_r = 3} \frac{r_i^2}{968.1}\right)}$ $= 11.83$ Note: T_1 is the tension in the critical bolt. The critical bolt is the bolt nearest to the tension flange.		OK

		Created with OSCIAG®	
Company Name		Project Title	beam to column end plate connection
Group/Team Name		Subtitle	
Designer		Job Number	
Date	21 /01 /2025	Client	

Check	Required	Provided	Remarks
Prying Force (kN)	Required $Q = \frac{l_v}{2l_e} \left[T_e - \frac{\beta \eta f_o b_e t^4}{27 l_e l_v^2} \right]$ $l_v = e - \frac{R_1}{2}$ $= 15 - \frac{30.0}{2} = 0.0 \text{ mm}$ $f_o = 0.7 f_{ub}$ $= 0.7 \times 330.0$ $= 231.0 \text{ N/mm}^2$ $l_e = \min\left(e, 1.1t \sqrt{\frac{\beta f_o}{f_y}} \right)$ $= \min\left(15, 1.1 \times 40 \times \sqrt{\frac{2 \times 231.0}{165}} \right)$ $= \min(15, 73.63) = 15 \text{ mm}$ $\beta = 2 \text{ (non pre-tensioned bolt)}$ $\eta = 1.5$ $b_e = \frac{B}{n_c}$ $= \frac{302.0}{4} = 75.5 \text{ mm}$ $Q = \frac{0.0}{2 \times 15} \times$ $\left[11.83 - \left(\frac{2 \times 1.5 \times 231.0 \times 75.5 \times 40^4}{27 \times 15 \times 0.0^2} \right) \times 10^{-3} \right]$ $Q = nan$	Provided	Fail

		Created with OSCIAG®	
Company Name		Project Title	beam to column end plate connection
Group/Team Name		Subtitle	
Designer		Job Number	
Date	21 /01 /2025	Client	

Check	Required	Provided	Remarks
Tension Demand (kN)	$T_b = T_1 + Q$ $= 11.83 + nan$ $= nan$	$T_{\text{db}} = 0.90 f_{ub} A_n / \gamma_{mb}$ $< f_{yb} A_{sb} (\gamma_{mb} / \gamma_{m0})$ $= \min \left(0.90 \times 330.0 \times 36.6 / 1.25, \right.$ $190.0 \times 50 \times (1.25/1.1) \right)$ $= \min(8.7, 10.8)$ $= 8.64$ [Ref. IS 800:2007, Cl.10.3.5]	Fail
Combined Capacity (I.R.)	≤ 1	$\left(\frac{V_{sb}}{V_{db}}\right)^{2} + \left(\frac{T_{b}}{T_{db}}\right)^{2} \le 1.0$ $\left(\frac{11.65}{4.91}\right)^{2} + \left(\frac{nan}{8.64}\right)^{2} = nan$ [Ref. IS 800:2007, Cl.10.3.6]	Fail

2.8 Compression Flange Check

Check	Required	Provided	Remarks
Tension in Bolt Rows (kN)		T = [11.83, 11.83, 0.86, 15.48, 15.48]	OK
Reaction at Compression Flange (kN)	$R_c = n_c \sum_{n_r=1}^{n_r} T_{n_r}$ $= 4 \times \sum_{n_r=1}^{5} T_{n_r}$ $= 4 \times 55.48$ $= 221.92$	$F_c = A_g f_y / \gamma_{m0}$ $= \frac{BT f_y}{\gamma_{m0}}$ $= \frac{302.0 \times 40.0 \times 165}{1.1 \times 1000}$ $= 1812.0$	Pass

		Cre	ated with Osdag®
Company Name		Project Title	beam to column end plate connection
Group/Team Name		Subtitle	
Designer		Job Number	
Date	21 /01 /2025	Client	

2.9 End Plate Checks

Check	Required	Provided	Remarks
		$H_p = D + 12.5 + (2 \times e) + p$	
Height (mm)		$= 1008.1 + 12.5 + (2 \times 15) + 30$	Pass
		= 1080.6	
		$B_p = B + 25$	
Width (mm)		=302.0+25	Pass
		= 327.0	
		$M_{cr} = T_1 \ l_v - Q \ l_e$	
		$= (11.83 \times 0.0 - nan \times 15) \times 10^{-3}$	
Moment at Critical Section		= nan	OK
(kNm)			UK
		Note: The critical section is at the toe of the weld or	
		the edge of the flange from bolt center-line	
	$t_p = \sqrt{\frac{4M_{cr}}{b_e(f_y/\gamma_{m0})}}$		
Plate Thickness (mm)	$t_p = \sqrt{\frac{4M_{cr}}{b_e(f_y/\gamma_{m0})}}$ $= \sqrt{\frac{4 \times nan \times 10^6}{75 \times (165/1.1)}}$	40	Fail
	= nan		
		$M_p = \left(\frac{b_e t_p^2}{4}\right) \times \frac{f_y}{\gamma_{m0}}$	
Moment Capacity (kNm)	nan	$= \frac{75 \times 40^2}{4} \times \frac{165}{1.1} \times 10^{-6}$	Fail
		=4.53	

2.10 Stiffener Design

Check	Required	Provided	Remarks	
		$H_{\rm st} = H_p - D - 12.5$		
Height (mm)		= 1080.6 - 1008.1 - 12.5	59.99999999999	9988
		= 59.9999999999886		
		$L_{ m st} = rac{H_{ m st}}{ an 30^{ m o}}$		
Length (mm)		= 59.9999999999886	Pass	
		tan 30°		
		= 104		

		Cre	ated with Osdag®
Company Name		Project Title	beam to column end plate connection
Group/Team Name		Subtitle	
Designer		Job Number	
Date	21 /01 /2025	Client	

Check	Required	Provided	Remarks
Thickness (mm)	t = 21.1	$t_{st} = 22$	Pass
Weld Size (mm)	10	$t_w = 10$	Pass

2.11 $\,$ Weld Design - Beam Web to End Plate Connection

Check	Required	Provided	Remarks
Weld Strength (N/mm2)	$f_{u_w} = \min(f_w, f_u)$ $= \min(290.0, 290)$ [Ref. IS 800:2007, Cl.10.5.7.1.1]	$f_{u_w} = 290.0$	Pass
Total Weld Length (mm)		$L_w = 2 \times \left[D - (2 \times T) - (2 \times R1) - 20 \right]$ $= 2 \times \left[1008.1 - (2 \times 40.0) - (2 \times 30.0) - 20 \right]$ $= 1675.1$ Note: Weld is provided on both sides of the web	OK
Weld Size (mm)	$t_w = \frac{V_u}{f_{uw}kL_w} \times \sqrt{3} \ \gamma_{mw}$ $= \frac{233.0 \times 10^3}{290.0 \times 0.7 \times 1675.1} \times \sqrt{3} \times 1.25$ $= 1.48$ [Ref. IS 800:2007, Cl.10.5.7]	10	Pass

		Cre	eated with Osdag®
Company Name		Project Title	beam to column end plate connection
Group/Team Name		Subtitle	
Designer		Job Number	
Date	21 /01 /2025	Client	

Check	Required	Provided	Remarks
	1) $t_{w_{\min}}$ based on thickness of the thicker part $t_{\text{thicker}} = \max(40.0, 21.1)$ $= 40.0$		
Min. Weld Size (mm)	$t_{w \min} = 10$ 2) $t_{w \min}$ based on thickness of the thinner part	$t_w = \max(t_w, t_{w_{\min}})$ = \text{max}(1.48, 10) = 10	Pass
	$t_{\text{thinner}} = \min(40.0, 21.1)$ = 21.1 $t_{w \min} \leq \min(10, 21.1)$		
	[Ref. IS 800:2007, Table 21, Cl	10.5.2.3]	
Max. Weld Size (mm)	$t_{w\mathrm{max}}$ based on thickness of the thinner part $t_{\mathrm{thinner}} = \min(40.0,\ 21.1)$	$t_w \le t_{w \max}$	Pass
	$= 21.1$ $t_{w_{\max}} = 21.1$ [Ref. IS 800:2007, Cl.10.5.3.1]	$10 \le 21.1$	
Normal Stress (N/mm2)		$f_a = \frac{H}{0.7t_w L_w}$ $= \frac{233.0 \times 10^3}{0.7 \times 10 \times 1675.1}$ $= 19.87$ [Ref. IS 800:2007, Cl.10.5.9]	

		Created with OSdag®	
Company Name		Project Title	beam to column end plate connection
Group/Team Name		Subtitle	
Designer		Job Number	
Date	21 /01 /2025	Client	

Check	Required	Provided	Remarks
Shear Stress (N/mm2)		$q = \frac{V}{0.7t_w L_w}$ $= \frac{233.0 \times 10^3}{0.7 \times 10 \times 1675.1}$ $= 19.87$ [Ref. IS 800:2007, Cl.10.5.9]	
Equivalent Stress (N/mm2)	$f_e = \sqrt{f_a^2 + 3q^2}$ $= \sqrt{19.87^2 + (3 \times 19.87^2)}$ $= 34.7$ [Ref. IS 800:2007, Cl.10.5.10.1.1]	$f_w = \frac{f_u}{\sqrt{3}\gamma_{mw}}$ $= \frac{290.0}{\sqrt{3} \times 1.25}$ $= 133.95$ [Ref. IS 800:2007, Cl.10.5.7.1.1]	Pass

${\bf 2.12}\quad {\bf Continuity\ Plate\ Check\ -\ Compression\ Flange}$

Check	Required	Provided	Remarks
		$P_{cw_1} = \frac{f_{wc} (5k + T_b)}{\gamma_{m0}}$ $k = T_c + R_{1c}$ $= 9 + 8.0$ $= 17.0$	
Local Web Yielding Capacity (kN)		$f_{wc} = f_{yc}t_c$ $= 165.0 \times 5.4$ $= 891.0$	OK
		$P_{cw_1} = \frac{891.0 \times ((5 \times 17.0) + 40.0)}{1.1 \times 1000}$ $= 101.25$	
		Note: subscript c denotes column section, and, subscript b denotes beam section	

		Cre	ated with Osdag®
Company Name		Project Title	beam to column end plate connection
Group/Team Name		Subtitle	
Designer		Job Number	
Date	21 /01 /2025	Client	

Check	Required	Provided	Remarks
Web Compression Buckling Capacity (kN)		$P_{cw_2} = 10710 \left(\frac{t_c^3}{h_c}\right) \sqrt{\frac{f_{yc}}{\gamma_{m0}}}$ $h_c = D_c - (2k)$ $= 150.0 - (2 \times 17.0)$ $= 116.0$ $P_{cw_2} = 10710 \times \frac{5.4^3}{116.0} \times \sqrt{\frac{165.0}{1.1}} \times 10^{-3}$ $= 178.06$	OK
Web Crippling Capacity (kN)		$P_{cw_3} = \left(\frac{300t_c^2}{\gamma_{m1}}\right) \left[1 + 3\left(T_b/D_c\right)\left(t_c/T_c\right)^{1.5}\right] \sqrt{f_{yc}\left(T_c/t_c\right)}$ $= \left(\frac{300 \times 5.4^2}{1.25}\right) \times \left[1 + 3 \times \left(40.0/150.0\right) \times \left(5.4/9\right)^{1.5}\right] \times \sqrt{165.0 \times \left(9/5.4\right)} \times 10^{-3}$ $= 159.21$	OK
Compression Strength (kN)		$P_{cw} = \min(P_{cw_1}, P_{cw_2}, P_{cw_3})$ = $\min(101.25, 178.06, 159.21)$ = 101.25	OK
Continuity Plate Required?	$R_c = 221.92$	$P_{cw} = 101.25$	Yes

2.13 Continuity Plate Design - Compression Flange

Check	Required	Provided	Remarks
Area Required (mm2)	$A_{cp} = \frac{R_c - P_{cw}}{f_{y_{cp}}\gamma_{m0}}$ $= \frac{(221.92 - 101.25) \times 10^3}{165 \times 1.1}$		ОК
	= 664.85		

		Cre	ated with Osdag®
Company Name		Project Title	beam to column end plate connection
Group/Team Name		Subtitle	
Designer		Job Number	
Date	21 /01 /2025	Client	

Check	Required	Provided	Remarks
Notch Size (mm)		n = 12	OK
		$l_{cp1} = \text{Outer length}$	
		$l_{cp1} = D_c - 2T_c$	
		$= 150.0 - (2 \times 9)$	
		= 132.0	
Length (mm)			OK
		$l_{cp2} = \text{Inner length}$	
		$l_{cp2} = D_c - 2(T_c + n)$	
		$= 150.0 - [2 \times (9+12)]$	
		= 108.0	
		$w_{cp} = \frac{B_c - T_c - 2n}{2}$	
Width (mm)		$\begin{array}{ c c c c c c } & 2 & \\ & 150.0 - 5.4 - 2 \times 12 & \end{array}$	OK
		$=\frac{150.0-5.4-2\times12}{2}$	
		= 60.0	

		Created with Osdag®	
Company Name		Project Title	beam to column end plate connection
Group/Team Name		Subtitle	
Designer		Job Number	
Date	21 /01 /2025	Client	

Check	Required	Provided	Remarks
	$t_{cp1}=$ Minimum area criteria $t_{cp1}=\frac{A_{cp}/2}{w_{cp}}$ $=\frac{664.85/2}{60.0}$ $=5.54$		
	$t_{cp2}=$ Limiting b/t ratio criteria $t_{cp2}=\frac{l_{cp1}}{29.3~\epsilon_{cp}}$		
Thickness (mm)	$\epsilon_{cp} = \sqrt{\frac{250}{f_{y_{cp}}}}$ $= \sqrt{\frac{250}{165}}$ $= 1.23$	40	Pass
	$= \frac{132.0}{29.3 \times 1.23}$ $= 3.66$		
	$t_{cp3} =$ Minimum thickness criteria $t_{cp3} = T_{\rm b}$ $= 40.0$		
	$t_{cp} = \max(t_{cp1}, t_{cp2}, t_{cp3})$ $= \max(5.54, 3.66, 40.0)$ $= 40.0$		

		Created with OSCIAG®	
Company Name		Project Title	beam to column end plate connection
Group/Team Name		Subtitle	
Designer		Job Number	
Date	21 /01 /2025	Client	

2.14 Continuity Plate Check - Tension Flange

Check	Required	Provided	Remarks
Continuity Plate Required?	$= 0.4\sqrt{\frac{B_b T_b}{\gamma_{m0}}}$ $= 0.4\sqrt{\frac{302.0 \times 40.0}{1.1}}$ $= 41.92$	$T_c = 9$	Yes

2.15 Continuity Plate Design - Tension Flange

Check	Required	Provided	Remarks
Notch Size (mm)		n = 12	OK
		$l_{cp1} = \text{Outer length}$	
		$l_{cp1} = D_c - 2T_c$	
		$= 150.0 - (2 \times 9)$	
		= 132.0	
Length (mm)			OK
		$l_{cp2} = \text{Inner length}$	
		$l_{cp2} = D_c - 2(T_c + n)$	
		$= 150.0 - [2 \times (9 + 12)]$	
		= 108.0	
		$w_{cp} = \frac{B_c - T_c - 2n}{2}$	
Width (mm)		$= \frac{150.0 - 5.4 - 2 \times 12}{}$	OK
······································		=	
		= 60.0	

		Created with OSdag®	
Company Name		Project Title	beam to column end plate connection
Group/Team Name		Subtitle	
Designer		Job Number	
Date	21 /01 /2025	Client	

Check	Required	Provided	Remarks
Thickness (mm)	$t_{st1} = \text{Minimum area criteria}$ $t_{st1} = \frac{A_{cp}/2}{w_{cp}}$ $= \frac{664.85/2}{60.0}$ $= 5.54$ $t_{st2} = \text{Minimum thickness criteria}$ $t_{st2} = T_{b}$ $= 40.0$ $t_{st} = \max(t_{st1}, t_{st2})$ $= \max(5.54, 40.0)$ $= 40.0$	40	Pass

2.16 Weld Design - Continuity Plate

Check	Required	Provided	Remarks
Weld Strength (N/mm2)	$f_{uw} = \min(f_w, f_{u_{CP}})$ $= \min(290.0, 290)$ $[Ref. IS 800 : 2007, Cl. 10.5.7.1.1]$	$f_{u_w} = 290.0$	Pass
Total (effective) Weld Length (mm)		$L_{wcp}=205.2$ Note: Provide weld on both the sides of the continuity plate	OK
Weld Size (mm)	$t_{wcp} = \frac{V_{cp}/2}{f_{uw}kL_{wcp}} \times \sqrt{3}\gamma_{mw}$ $= \frac{R_c - P_{cw}}{2 \times f_{uw}kL_{wcp}} \times \sqrt{3}\gamma_{mw}$ $= \frac{(221.92 - 101.25) \times 10^3}{2 \times 290.0 \times 0.7 \times 205.2} \times \sqrt{3} \times 1.25$ $= 3.14$ [Ref. IS 800 : 2007, Cl. 10.5.7]	5.4	Pass

		Created with OSCIAG®	
Company Name		Project Title	beam to column end plate connection
Group/Team Name		Subtitle	
Designer		Job Number	
Date	21 /01 /2025	Client	

Check	Required	Provided	Remarks
	1) $t_{w_{\min}}$ - based on thickness of the		
	thicker part		
	$t_{\rm thicker} = \max(40, 5.4)$		
	= 40		
	$t_{w\min} = 5.4$		
		$t_w = \max(t_w, \ t_{w \min})$	
Min. Weld Size (mm)	2) $t_{w \min}$ – based on thickness of the	$= \max(3.14, 5.4)$	Pass
	thinner part	= 5.4	
	$t_{\rm thinner} = \min(40, 5.4)$		
	= 5.4		
	$t_{w \min} \leq \min(5.4, 5.4)$		
	[Ref. IS 800:2007, Table 21, Cl 10.5.2.] 3]	
	$t_{w\mathrm{max}}$ based on thickness of the		
	thinner part		
Max. Weld Size (mm)	$t_{\rm thinner} = \min(40, 5.4)$	$t_w \le t_{w \max}$	D
	= 5.4	$5.4 \le 5$	Pass
	$t_{w_{\max}} = 5$		
	[Ref. IS 800:2007, Cl.10.5.3.1]		

2.17 Column Web Shear Check

Check		Required	Provided	Remarks
Web Sti	ffener Plate Re-	$t_{wc} = \frac{1.9M_{ue}}{D_c D_b f_{yc}}$ $= \frac{1.9 \times 141.88}{150.0 \times 1008.1 \times 165.0}$ $= 10.8$	$t_c = 5.4$	Yes

		Created with OSCIAG®	
Company Name		Project Title	beam to column end plate connection
Group/Team Name		Subtitle	
Designer		Job Number	
Date	21 /01 /2025	Client	

2.18 Column Web Stiffener Plate Design

Check	Required	Provided	Remarks
Depth (mm)		$D_{st} = D_b - (2T_b) - (2R_{1b}) - 20$ $= 1008.1 - (2 \times 40.0) - (2 \times 30.0) - 20$ $= 848$	ОК
Width (mm)		$W_{st} = D_c - (2T_c) - (2R_{1c}) - 20$ $= 150.0 - (2 \times 9) - (2 \times 8.0) - 20$ $= 96$	OK
Thickness (mm)	$t_{\text{st}} = \frac{t_{wc} - t_c}{2}$ $= \frac{10.8 - 5.4}{2}$ $= 2.7$	8	Pass
Weld Size (mm)	3	4	Pass

		Created with OSdag®	
Company Name		Project Title	beam to column end plate connection
Group/Team Name		Subtitle	
Designer		Job Number	
Date	21 /01 /2025	Client	

3 3D Views

C:3-env-packages.png	C:3-env-packages.png		
(a) 3D View	(b) Top View		
C:3-env-packages.png	C:3-env-packages.png		
(c) Side View	(d) Front View		

4 Design Log

 $2025\text{-}01\text{-}21\ 20\text{:}10\text{:}49$ - Osdag - ERROR - : The selected supporting column HB 150 cannot accommodate the selected supported beam UB 1016 x 305 x 349

2025-01-21 20:10:49 - Osdag - WARNING - : Width of the supported beam by considering the maximum end plate width (B + 25 mm), is more than the width available at the supporting column

 $2025\text{-}01\text{-}21\ 20\text{:}10\text{:}49\text{-} Osdag\text{-} WARNING\text{-}: Width of the supported beam should be less than or equal to }150.0\ mm$

2025-01-21 20:10:49 - Osdag - INFO - : Define a beam or a column of suitable compatibility and re-design

2025-01-21 20:10:49 - Osdag - WARNING - The Load(s) defined is/are less than the minimum recommended value [Ref. IS 800:2007, Cl. 10.7].

2025-01-21 20:10:49 - Osdag - WARNING - [Minimum Factored Load] The external factored bending moment (23.0 kNm) is less than 0.5 times the plastic moment capacity of the beam (2488.8 kNm)

2025-01-21 20:10:49 - Osdag - INFO - The minimum factored bending moment should be at least 0.5 times the plastic moment capacity of the beam to qualify the connection as rigid connection (Annex. F-4.3.1, IS 800:2007)

2025-01-21 20:10:49 - Osdag - INFO - The value of load(s) is/are set at minimum recommended value as per Cl.10.7 and Annex. F, IS 800:2007

2025-01-21 20:10:49 - Osdag - INFO - Designing the connection for a factored moment of $1244.4~\mathrm{kNm}$

		Created with OSdag®	
Company Name		Project Title	beam to column end plate connection
Group/Team Name		Subtitle	
Designer		Job Number	
Date	21 /01 /2025	Client	

2025-01-21 20:10:49 - Osdag - WARNING - [Beam-Column Compatibility] The design factored bending moment (1244.4 kNm) being transferred from the beam to the column exceeds the maximum capacity of the column section (29.1 kNm) (acting along the major (z-z) axis)

2025-01-21 20:10:49 - Osdag - INFO - Note: The maximum moment check is based on full capacity of the column section classified as Semi-compact, as per Table 2 of IS 800:2007

2025-01-21 20:10:49 - Osdag - INFO - The value of design bending moment is set to be equal to the maximum capacity of the column, i.e. 29.1 kNm

2025-01-21 20:10:49 - Osdag - WARNING - [End Plate] The end plate of 8.0 mm is thinner than the thickest of the elements being connected

2025-01-21 20:10:49 - Osdag - INFO - Selecting a plate of higher thickness which is at least 40 mm thick

2025-01-21 20:10:49 - Osdag - WARNING - [End Plate] The end plate of 10.0 mm is thinner than the thickest of the elements being connected

2025-01-21 20:10:49 - Osdag - INFO - Selecting a plate of higher thickness which is at least 40 mm thick

2025-01-21 20:10:49 - Osdag - WARNING - [End Plate] The end plate of 12.0 mm is thinner than the thickest of the elements being connected

2025-01-21 20:10:49 - Osdag - INFO - Selecting a plate of higher thickness which is at least 40 mm thick

2025-01-21 20:10:49 - Osdag - WARNING - [End Plate] The end plate of 14.0 mm is thinner than the thickest of the elements being connected

2025-01-21 20:10:49 - Osdag - INFO - Selecting a plate of higher thickness which is at least 40 mm thick

2025-01-21 20:10:49 - Osdag - WARNING - [End Plate] The end plate of 16.0 mm is thinner than the thickest of the elements being connected

2025-01-21 20:10:49 - Osdag - INFO - Selecting a plate of higher thickness which is at least 40 mm thick

2025-01-21 20:10:49 - Osdag - WARNING - [End Plate] The end plate of 18.0 mm is thinner than the thickest of the elements being connected

2025-01-21 20:10:49 - Osdag - INFO - Selecting a plate of higher thickness which is at least 40 mm thick

2025-01-21 20:10:49 - Osdag - WARNING - [End Plate] The end plate of 20.0 mm is thinner than the thickest of the elements being connected

 $2025-01-21\ 20:10:49 - Osdag - INFO - Selecting\ a\ plate\ of\ higher\ thickness\ which\ is\ at\ least\ 40\ mm\ thickness\ which\ which\$

2025-01-21 20:10:49 - Osdag - WARNING - [End Plate] The end plate of 22.0 mm is thinner than the thickest of the elements being connected

2025-01-21 20:10:49 - Osdag - INFO - Selecting a plate of higher thickness which is at least 40 mm thick

2025-01-21 20:10:49 - Osdag - WARNING - [End Plate] The end plate of 25.0 mm is thinner than the thickest of the elements being connected

2025-01-21 20:10:49 - Osdag - INFO - Selecting a plate of higher thickness which is at least 40 mm thickness that the selection of the se

2025-01-21 20:10:49 - Osdag - WARNING - [End Plate] The end plate of 28.0 mm is thinner than the thickest of the elements being connected

2025-01-21 20:10:49 - Osdag - INFO - Selecting a plate of higher thickness which is at least 40 mm thick

2025-01-21 20:10:49 - Osdag - WARNING - [End Plate] The end plate of 32.0 mm is thinner than the thickest of the elements being connected

2025-01-21 20:10:49 - Osdag - INFO - Selecting a plate of higher thickness which is at least 40 mm thick

2025-01-21 20:10:49 - Osdag - WARNING - [End Plate] The end plate of 36.0 mm is thinner than the thickest of the elements being connected

		Created with OSdag®	
Company Name		Project Title	beam to column end plate connection
Group/Team Name		Subtitle	
Designer		Job Number	
Date	21 /01 /2025	Client	

2025-01-21 20:10:49 - Osdag - INFO - Selecting a plate of higher thickness which is at least 40 mm thickness which 40 mm thickness

2025-01-21 20:10:49 - Osdag - INFO - [Bolt Design] Bolt diameter and grade combination ready to perform bolt design

2025-01-21 20:10:49 - Osdag - INFO - The solver has selected 210.0 combinations of bolt diameter and grade to perform optimum bolt design in an iterative manner

2025-01-21 20:10:49 - Osdag - WARNING - [Column Web] The web of the column is susceptible to shear bucking due to the reaction transferred by the beam to the column

2025-01-21 20:10:49 - Osdag - INFO - The minimum required thickness of the web is $10.8~\mathrm{mm}$

2025-01-21 20:10:49 - Osdag - INFO - Providing stiffening to the column web

2025-01-21 20:10:49 - Osdag - INFO - [Optimisation] Performing the design by optimising the plate thickness, using the most optimum plate and a suitable bolt diameter approach

2025-01-21 20:10:49 - Osdag - INFO - If you wish to optimise the bolt diameter-grade combination, pass a higher value of plate thickness using the Input Dock

2025-01-21 20:10:49 - Osdag - INFO - [Flange Strength] The reaction at the compression flange of the beam 221.92 kN is less than the flange capacity 1812.0 kN. The flange strength requirement is satisfied.

2025-01-21 20:10:49 - Osdag - INFO - [End Plate] The end plate of 40.0 mm passes the moment capacity check. The end plate is checked for yielding due tension caused by bending moment and prying force

2025-01-21 20:10:49 - Osdag - INFO - [Bolt Design] The bolt of 8.0 mm diameter and 3.6 grade passes the tension check

2025-01-21 20:10:49 - Osdag - INFO - Total tension demand on bolt (due to direct tension + prying action) is nan kN and the bolt tension capacity is (8.64 kN)

2025-01-21 20:10:49 - Osdag - INFO - [Bolt Design] The bolt of 8.0 mm diameter and 3.6 grade passes the combined shear + tension check

2025-01-21 20:10:49 - Osdag - INFO - The Interaction Ratio (IR) of the critical bolt is nan

2025-01-21 20:10:49 - Osdag - INFO - : ======= Design Status =========

2025-01-21 20:10:49 - Osdag - INFO - : Overall beam to column end plate connection design is UNSAFE

2025-01-21 20:10:49 - Osdag - INFO -: ======== End Of Design =========