A REPORT ON INTELLIGENT HUMIDISTAT

Submitted as a design project for the course CS F241

Microprocessor Programming and Interfacing

By

BHOOMI SAWANT 2017A7PS0001P

BACHHAV PRATIK MANOHAR 2017A7PS0003P

SUBHAM KUMAR DASH 2017A7PS0004P

PIKLU PAUL 2017A7PS0006P

BIRLA INSTITUTE OF TECHNOLOGY & SCIENCE PILANI, RAJASTHAN

25 April, 2019

ACKNOWLEDGEMENT

The successful completion of this report required a lot of guidance and support that we received throughout this project. We would like to extend our deepest gratitude to the Instructor-in-Charge (IC) of this course, Prof. Nitin Chaturvedi for giving us this opportunity to work on such an interesting assignment. The lectures given by Prof. J P Mishra were also helpful in clearing our basics.

We would also like to thank our tutorial professors Dr. Vinay Chamola, Devesh Samaiya for their excellent guidance. Last but not the least we would like to extend our gratitude to all the lab instructors who have helped us to get command over assembly language programs.

We would also like to thank our seniors for guiding us all along till the completion of this report.

CONTENTS

Acknowledgement

- 1. Problem Statement
- 2. Hardware Devices
- 3. Assumptions
- 4. Memory Organisations
- 5. I/O Mapping
- 6. Flowchart
- 7. Limitations
- 8. Circuit Diagram
- 9. ALP

PROBLEM STATEMENT

A humidistat is supposed to be reset according to the outside temperature- as the outside temperature falls, the humidity level inside the house should be set lower. The purpose of this project is to develop a humidistat which senses the outside temperature and adjusts the humidity accordingly. Two sensors are required: outside temperature and inside humidity. Output is provided via a simple relay with the humidifier (presumably on the furnace) being on or off. Also readings from the humidity and temperature sensors must be displayed on an LCD display.

ASSUMPTIONS

- ALP is stored in the ROM in executable format.
- ➤ Outside temperature varies from -35 to +65 degree centigrade.
- ➤ Temperature and relative humidity (RH) are already stored in the DS and one degree change in temperature corresponds to one unit change in RH.
- ➤ When the humidifier is switched on, it decreases the humidity.

HARDWARE DEVICES

COMPONENT	NO.	CHIP	USE
	OF		
0004	CHIPS	3.6	
8086	1	Microprocessor	Central Processing Unit
6116	2	RAM-2K	Random access memory
			which contains DS, SS
2732	2	ROM-4K	Read only memory
			which contains entire code
			CS
74LS373	3	Octal Latch	To latch address bus
74LS245	4	8- bit buffer	To buffer data
			bus (bi-directional)
8255	2	PPI	Used for I/O
8253	1	Programmable	To generate the
		Interval Timer	clock signal for ADC
ADC 0808	1	Analog to Digital	Converts analog temperature
		Converter	From temperature
			sensor to digital form
LM020L	1	LCD Display	Use for displaying
			the temperature and humidity
74LS244	1	Unidirectional	Buffering the control
		buffer	Lines
LM35	1	Temperature	To detect the temperature of
		sensor	the atmosphere
DHT22	1	Humidity sensor	To detect the humidity of
			the atmosphere
74LS138	2	3:8 Decoder	Used for select signals
Logic gates	_	OR,NOR,NOT	Used for building decoding
			logic for memory
			interfacing and I/O
			interfacing

MEMORY ORGANIZATION

The system uses 8kb of ROM and 4kb of RAM. Both consist of 2 chips of 4kb and 2kb size respectively. They are organized into odd and even banks to facilitate both byte and word size data transfers.

Random Access Memory (6116):

• Starting Address: 08000H

• Ending Address: 08FFFH

Read Only Memory (2732):

Starting Address: 00000H

• Ending Address: 01FFFH

The code resides in the ROM and begins at address 00000H. The address loaded as soon as the system is switched on is FFFF0H.

I/O MAPPING

The input and output devices such as temperature & humidity sensor and LCD are connected using 8255.

8255 (A)

PORT TYPE	PORT ADDRESS	TYPE
A	00H	Output
В	02H	Output
C (LOWER)	04H	Output
C (UPPER)	04H	Output
Control Register	06H	

8255 (B)

PORT TYPE	PORT ADDRESS	TYPE
A	10H	Input
В	12H	Input
C (LOWER)	14H	Output
C (UPPER)	14H	Input
Control Register	16H	

Both 8255 are used in i/o mode.

Control Word for 8255 (1): 10000000b

- Port A is used for generating control signal of LCD
- Port B is used for giving input to the LCD
- PC7 is used to turn on the humidifier.

Control Word for 8255 (2): 10011010b

- Port A is used to take the digital output from ADC
- PC0 PC3 are used to give control input to ADC
- PC5 is used to receive the signal of EOC.

LIMITATIONS

We have assumed that the relationship between temperature and humidity is linear, which may not be the case in real scenario. Hence, sometimes it may fail at high temperature.

CIRCUIT DIAGRAM

.ASM CODE

.MODEL TINY

.DATA

;8253 USED TO GENERATE CLOCK FOR ADC

CNT0 EQU 20H

CREG EQU 26H

;8255(1) INITIALISE

PORT1A EQU 00H ;CONTROLLING THE LCD

PORT1B EQU 02H ;INPUT TO LCD

PORT1C EQU 04H ;UPPER - ROW

;LOWER - COLUMN

CREG1 EQU 06H

;8255(2) USED FOR ADC

PORT2A EQU 10H ;INPUT TO DI DEVICE

PORT2B EQU 12H ;ADC

PORT2C EQU 14H ;PC1 - SOC OF ADC

; PC3 - ADDC OF ADC (USED FOR SELECTING THE ; FIRST & SECOND INPUT CHANNEL OF ADC)

;PC5 - EOC OF ADC

CREG2 EQU 16H

TEMP_RANGE DB -35,-34,-33,-32,-31,-30,-29,-28,-27,-26,-25,-24,-23,-22,-21,-20,-19,-18,-17,-16,-15,-14,-13,-12,-11

DB -10,-9,-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25

DB

26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,5 3,54,55,56,57,58,59

DB 60,61,62,63,64,65

HUMIDITY_RANGE DB

0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36

DB

37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,6 4,65,66,67,68,69,70

DB

71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,9 8,99,100

CURR_TEMP db?

CURR_HUMIDITY db?

TEMP db?

TABLE_K DB 0EEH,0EDH,0EBH,0E7H,0DEH,0DDH,0DBH,0D7H,0BEH,0BDH,0BBH,0B7 H,7EH,7DH,7BH,77H

DAT2 DB 3 DUP(" ");

T DB 30H,31H

.CODE

.STARTUP

;INITIALIZE DS,SS,ES TO START OF RAM

MOV AX,08000H

MOV DS,AX

MOV SS,AX

MOV ES,AX

MOV SP,08FFEH

;INITIALIZING 8253

MOV AL,00010110B

OUT CREG,AL

MOV AL,5

OUT CNT0,AL

;INITIALIZING 8255(1)

MOV AL,10000000B

OUT CREG1,AL

CALL DELAY_2MS

;INITIALIZING 8255(2)

MOV AL,10011010B

OUT CREG2,AL

CALL DELAY_2MS

X1:

CALL FETCH_TEMP

MOV AL, CURR_TEMP

CALL FUNC

LEA SI,TEMP_RANGE

DEC SI

MOV CX,100

CALL DELAY

CALL DELAY

CALL DELAY

AGAIN:

INC SI

CMP [SI],AL

LOOPNE AGAIN

SUB SI,OFFSET TEMP_RANGE

LEA DI, HUMIDITY_RANGE

ADD DI,SI

MOV BL,[DI]

CALL FETCH_HUMIDITY

MOV AL, CURR_HUMIDITY

CALL FUNC

CMP BL, CURR_HUMIDITY

JA X2

MOV AL,00001111B

OUT CREG1,AL ;SWITCHES ON THE HUMIDIFIER(LED)

LOOP1:

CALL DELAY_2MS

CALL FETCH_HUMIDITY

CMP BL, CURR_HUMIDITY

JL LOOP1

MOV AL,00001110B

OUT CREG1,AL ;SWITCHES ON THE HUMIDIFIER(LED)

X2:

CALL DELAY_2MS

JMP X1

.EXIT ;PROCEDURE TO FETCH CURRENT TEMPERATURE FETCH_TEMP PROC NEAR PUSH SI ;MOV AL,20H ;OUT PORT2A,AL MOV AL,06H ;GIVE ADC OUT CREG2,AL MOV AL,00H GIVE ALE OUT CREG2,AL MOV AL,02H ;GIVE SOC OUT CREG2,AL

MOV AL,01H ;SET ALE

OUT CREG2,AL

17

MOV AL,03H ;SET SOC

OUT CREG2,AL

MOV AL,02H ;GIVE SOC

OUT CREG2,AL

MOV AL,00H ;GIVE ALE

OUT CREG2,AL

LOOP2:

IN AL, PORT2C

CALL DELAY_2MS

AND AL,20H ;CHECK FOR EOC

CMP AL,20H

JNZ LOOP2

CALL DELAY_2MS

MOV AL,10011010B; INITIALIZING 8255(2)

OUT CREG2,AL

IN AL, PORT2A; AL HAS THE CURRENT TEMPERATURE

LEA SI, CURR_TEMP

MOV [SI],AL

POP SI

RET

FETCH_TEMP ENDP

......

; PROCEDURE TO GET THE CURRENT HUMIDITY

FETCH_HUMIDITY PROC NEAR

PUSH SI

MOV AL,07H ;GIVE ADC

OUT CREG2,AL

MOV AL,00H ;GIVE ALE

OUT CREG2,AL

MOV AL,02H ;GIVE SOC

OUT CREG2,AL

MOV AL,01H ;SET ALE

OUT CREG2,AL

MOV AL,03H ;SET SOC

OUT CREG2,AL

MOV AL,02H ;GIVE SOC

OUT CREG2,AL

MOV AL,00H ;GIVE ALE

OUT CREG2,AL

LOOP2:

IN AL, PORT2C

CALL DELAY_2MS

AND AL,20H ;CHECK FOR EOC

CMP AL,20H

JNZ LOOP2

CALL DELAY_2MS

MOV AL,10011010B ;INITIALIZING 8255(2)

OUT CREG2,AL

IN AL, PORT2A; AL HAS THE CURRENT HUMIDITY

LEA SI, CURR_HUMIDITY

MOV [SI],AL

POP SI

RET

FETCH_HUMIDITY ENDP

......

FUNC PROC NEAR

PUSH AX

MOV AL,38H

CALL COMNDWRT

CALL DELAY

CALL DELAY

CALL DELAY

MOV AL,0EH

CALL COMNDWRT

MOV AL, 01 ;CLEAR LCD

CALL COMNDWRT

CALL DELAY

CALL DELAY

POP AX

PUSH AX

LEA DI,DAT2

MOV BX,100D

MOV DX,0

DIV BX

ADD AL,30H

CALL DATWRIT ;ISSUE IT TO LCD

CALL DELAY			
CALL DELAY			
MOV AX,DX			
MOV BX,10D			
MOV DX,0			
DIV BX			
ADD AL,30H			
CALL DATWRIT			
CALL DELAY			
CALL DELAY			
MOV AX,DX			
MOV DX,0			
ADD AL,30H			
CALL DATWRIT			
CALL DELAY			
CALL DELAY			
POP AX			
RET			
FUNC ENDP			
COMNDWRT PROC ;THIS PROCEDURE WRITES COMMANDS TO LCD			
OUT PORT1B, AL ;SEND THE CODE TO PORT B			

MOV AL, 00000100B ;RS=0,R/W=0,E=1 FOR H-TO-L PULSE		
OUT PORT1A, AL		
NOP		
NOP		
MOV AL, 00000000B ;RS=0,R/W=0,E=0 FOR H-TO-L PULSE		
OUT PORT1A, AL		
RET		
COMNDWRT ENDP		
DATWRIT PROC NEAR		
PUSH DX ;SAVE DX		
MOV DX,PORT1B ;DX=PORT B ADDRESS		
OUT DX, AL ;ISSUE THE CHAR TO LCD		
MOV AL, 00000101B ;RS=1, R/W=0, E=1 FOR H-TO-L PULSE		
MOV DX, PORT1A ;PORT A ADDRESS		
OUT DX, AL ;MAKE ENABLE HIGH		
MOV AL, 00000001B ;RS=1,R/W=0 AND E=0 FOR H-TO-L PULSE		
OUT DX, AL		
POP DX		
RET		
DATWRIT ENDP ;WRITING ON THE LCD ENDS		

DELAY_2MS PROC NEAR MOV CX,100 HER: NOP LOOP HER **RET** DELAY_2MS ENDP ;DELAY IN THE CIRCUIT HERE THE DELAY OF 20 MILLISECOND IS **PRODUCED DELAY PROC** MOV CX, 1325 ;1325*15.085 USEC = 20 MSEC W1: NOP NOP NOP NOP NOP LOOP W1 **RET DELAY ENDP** DELAY_2S PROC MOV CX, 33125D

W2: NOP NOP NOP NOP NOP LOOP W2 MOV CX, 33125D W3: NOP NOP NOP NOP NOP LOOP W3 MOV CX, 33125D W4: NOP NOP NOP NOP NOP LOOP W4 MOV CX, 33125D W5:

NOP

NOP

NOP

NOP

NOP

LOOP W5

RET

DELAY_2S ENDP

END