- 9. For the function f graphed in the accompanying figure, find
  - (a)  $\lim_{x \to -2} f(x)$ (c)  $\lim_{x \to -2} f(x)$

- (b)  $\lim_{x \to 0^{-}} f(x)$ (d)  $\lim_{x \to 2^{-}} f(x)$
- (e)  $\lim_{x \to a} f(x)$
- (f) the vertical asymptotes of the graph of f.



**▼Figure Ex-9** 

- 10. For the function f graphed in the accompanying figure, find
  - (a)  $\lim_{x \to -2^-} f(x)$
- (b)  $\lim_{x \to -2^+} f(x)$  (c)  $\lim_{x \to 0^-} f(x)$

- (d)  $\lim_{x \to 0^+} f(x)$
- (e)  $\lim_{x \to 2^{-}} f(x)$  (f)  $\lim_{x \to 2^{+}} f(x)$
- (g) the vertical asymptotes of the graph of f.



**▼**Figure Ex-10

Find the limits.

5. 
$$\lim_{x \to 3} \frac{x^2 - 2x}{x + 1}$$

7. 
$$\lim_{x \to 1^+} \frac{x^4 - 1}{x - 1}$$

9. 
$$\lim_{x \to -1} \frac{x^2 + 6x + 5}{x^2 - 3x - 4}$$

5. 
$$\lim_{x \to 3} \frac{x^2 - 2x}{x + 1}$$
 7.  $\lim_{x \to 1^+} \frac{x^4 - 1}{x - 1}$  9.  $\lim_{x \to -1} \frac{x^2 + 6x + 5}{x^2 - 3x - 4}$  13.  $\lim_{t \to 2} \frac{t^3 + 3t^2 - 12t + 4}{t^3 - 4t}$ 

15. 
$$\lim_{x \to 3^+} \frac{x}{x-3}$$

16. 
$$\lim_{x \to 3^{-}} \frac{x}{x-3}$$

17. 
$$\lim_{x \to 3} \frac{x}{x-3}$$

20. 
$$\lim_{x \to 2} \frac{x}{x^2 - 4}$$

15. 
$$\lim_{x \to 3^{+}} \frac{x}{x - 3}$$
 16.  $\lim_{x \to 3^{-}} \frac{x}{x - 3}$  17.  $\lim_{x \to 3} \frac{x}{x - 3}$  20.  $\lim_{x \to 2} \frac{x}{x^{2} - 4}$  25.  $\lim_{x \to 4^{-}} \frac{3 - x}{x^{2} - 2x - 8}$  27.  $\lim_{x \to 2^{+}} \frac{1}{|2 - x|}$  29.  $\lim_{x \to 9} \frac{x - 9}{\sqrt{x} - 3}$ 

27. 
$$\lim_{x\to 2^+} \frac{1}{|2-x|}$$

29. 
$$\lim_{x \to 9} \frac{x-9}{\sqrt{x}-3}$$

31. Let 
$$f(x) = \begin{cases} x - 1, & x \le 3 \\ 3x - 7, & x > 3 \end{cases}$$
, find  $\lim_{x \to 3} f(x)$ . JUSTIFY

31. Let  $f(x) = \begin{cases} x-1, & x \leq 3 \\ 3x-7, & x > 3 \end{cases}$ , find  $\lim_{x \to 3} f(x)$ . JUSTIFY. EXAMPLE: Since  $\lim_{x \to a^-} f(x) = b$  and  $\lim_{x \to a^+} f(x) = b$ , then  $\lim_{x \to a} f(x) = b$ .

- 35. **TRUE/FALSE:** If  $\lim_{x \to a} f(x)$  and  $\lim_{x \to a} g(x)$  both exist and are equal, then  $\lim_{x \to a} \frac{f(x)}{g(x)} = 1$ . Justify.
- 37. Rationalize the numerator and then find the limit of  $\lim_{x\to 0} \frac{\sqrt{x+4-2}}{x}$ .
- 4. For the function G graphed in the accompanying figure,

(a) 
$$\lim_{x \to -\infty} G(x)$$

(b) 
$$\lim_{x \to +\infty} G(x)$$
.



**▼Figure Ex-4** 

5. Given that:

$$\lim_{x \to +\infty} f(x) = 3, \lim_{x \to +\infty} g(x) = -5, \text{ and } \lim_{x \to +\infty} h(x) = 0$$

Find the limits that exist. If the limit does not exist, explain.

- (a)  $\lim_{x \to +\infty} [f(x) + 3g(x)]$ (b)  $\lim_{x \to +\infty} [h(x) 4g(x) + 1]$ (c)  $\lim_{x \to +\infty} [f(x)g(x)]$ (d)  $\lim_{x \to +\infty} [g(x)]^2$

Find the limits.

11. 
$$\lim_{x \to +\infty} \sqrt{x}$$

13. 
$$\lim_{x \to +\infty} \frac{3x+1}{2x-5}$$

$$15. \lim_{y \to -\infty} \frac{3}{y+4}$$

11. 
$$\lim_{x \to +\infty} \sqrt{x}$$
 13.  $\lim_{x \to +\infty} \frac{3x+1}{2x-5}$  15.  $\lim_{y \to -\infty} \frac{3}{y+4}$  20.  $\lim_{t \to -\infty} \frac{5-2t^3}{t^2+1}$ 

23. 
$$\lim_{x \to +\infty} \sqrt[3]{\frac{2+3x-5x^2}{1+8x^2}}$$
 25.  $\lim_{x \to -\infty} \frac{\sqrt{5x^2-2}}{x+3}$  31\*.  $\lim_{x \to +\infty} \sqrt{x^2+3} - x$  35.  $\lim_{x \to +\infty} \frac{e^x + e^{-x}}{e^x - e^{-x}}$ 

25. 
$$\lim_{x \to -\infty} \frac{\sqrt{5x^2 - 2}}{x + 3}$$

31\*. 
$$\lim_{x \to +\infty} \sqrt{x^2 + 3} - x$$

35. 
$$\lim_{x \to +\infty} \frac{e^x + e^{-x}}{e^x - e^{-x}}$$

Evaluate the limit using an appropriate substitution.

59. 
$$\lim_{x \to +\infty} \frac{\ln(2x)}{\ln(3x)}$$
 (Hint: t=lnx)

62. 
$$\lim_{x \to +\infty} \left(1 + \frac{2}{x}\right)^x$$
 (Hint: t=x/2)

66. The population p of the United States (in millions) in year t can be modeled by

$$p(t) = \frac{525}{1 + 1.1e^{-0.0222(t - 1990)}}$$

- (a) Based on this model, what was the US population in 1990?
- (b) Plot p versus t for the 200-year period from 1950 to 2150.
- (c) By evaluating an appropriate limit, show that the graph of p versus t has a horizontal asymptote p=c for an appropriate c.
- (d) What is the significance of the constant c in part (c) for the population predicted by this model?