

TABLE OF CONTENTS

1. The Power of Monte Carlo

A little bit of history

P1: Complex card game — how often can I win?

P2: Manhattan Project, 1946, tracking neutron chains

The Beginning of the Monte Carlo Method, N.Metropolis, Los Alamos Science, Special Issues 1987

Game outcomes distribution — How probable it is to win X \$

Background: complex model defining the rules for events

Problem: how probable is each event? What

events can we observe?

Solution: perform model simulation N times — outcomes = samples

Checklist:

- Error of results $\sim \frac{1}{\sqrt{N}}$
- Random number generator

Monte Carlo methods

Definition: any numerical technique that uses (pseudo)random numbers for solving the problem **First Example:** Integral calculation, D dimensions: 1 sum instead of D sum

 $\textbf{Improve:} \ \text{sample from a similar distribution and accept with some ratio} - \textbf{Importance sampling}$

2. Conformational landscape

Problem: equilibrium states and their populations

According to Boltzmann distribution:

$$\langle E \rangle = \sum_{i} E_{i} e^{-\frac{E_{i}}{kT}} / \sum_{i} e^{-\frac{E_{i}}{kT}}$$

Simplified problem: Average energy

First idea: get N configurations by randomly generating 3N Cartesian coordinates

Effect: many of unphysical meaningless configurations with low weight

Other solution needed!

Ratio:

$$\frac{p_i}{p_j} = e^{-\frac{\Delta E}{kT}}$$

Proportional to
Boltzmann dsitribution

Checklist:

- Burn-in period
- Risk of getting trapped in a local min
- Initial configuration
- Time of convergence

Metropolis Algorithm

NVT Ensemble

Repeat 2 and 3

Balance between displacement and acceptence rate ~50%

Simulation

New configuration generation:

First part: Standard Metropolis

- Molecule translation
- Molecule rotation
- Bond angle perturbation
- Dihedral angle perturbation

Second part (not obligatory): Configuration Biased

Split the molecule according to the rotable parts bond, choose a new conformation for the part, join again

Reject or Accept

Other things to consider

Ensemble

Random number generator

Applications

Protein Folding — Trp-cage protein

Simulation features:

- Implicit solvent
- Force field from MD
- 200 mln MC steps, 10% burn-in
- 2 times faster than MD (~180 h)
- Move: rather grouped, mainly rotations
- Metropolis criterion

Other protein from this paper

Simulated Annealing and Docking

Simulated Annealing: Global min search, go from high to low T in Metropolis Algorithm **Application:** docking, computational drug screening

Pros and Cons and Summary

- + more capable of crossing energy barrier
- + more efficient
- + numerically stable
- + no need to calculate a derivative of energy

Hybrid MC-MD

- no information about the dynamics
- no explicit solvent treatment
- little software
- need of designing MC-specific force fields
- moves case-specific

