Primeira Prova de Feriomerios Eletromagneticos – BC0209 2012.2 – Prova A - Forma 1/4		
Nome Completo:	Nota:	
Identificação de Usuário no TIDIA:		

Questão 1 (25 pontos): Três partículas de carga $q_1 = q_2 = q_3 = q$ estão separadas entre si por uma distância fixa, formando um triângulo equilátero de lado ℓ . Quer se introduzir uma quarta partícula ao conjunto de tal modo que todas as partículas sintam força resultante nula. Determine:

- a) a posição da nova partícula, explicando o porquê da escolha dessa posição;
- b) a carga q_4 da nova partícula.

Primeira Prova de Fenômenos Eletromagnéticos - BC0209 2012.2 - Prova A - Folha 2/4

Nome Completo:	 Nota:
Identificação de Usuário no TIDIA:	

Questão 2 (25 pontos): Considere uma placa condutora retangular plana muito grande, de espessura desprezível, com uma densidade superficial de carga σ positiva e uniforme, como na figura abaixo.

- a) Desenhe os vetores do campo elétrico em ambos os lados da placa (vista de perfil na figura) e construa uma superfície gaussiana apropriada.
- b) Calcule o fluxo do campo elétrico através de cada uma das superfícies que compõe a superfície gaussiana e determine a magnitude do campo elétrico através da lei de Gauss.

Uma segunda placa, idêntica a primeira, porém com uma densidade superficial de carga $-\sigma$ negativa, é disposta paralelamente à primeira, a uma pequena distância d, como na figura ao lado.

c) Sabendo que o campo elétrico é uniforme na região entre as placas, determine o campo elétrico e a diferença de potencial entre as duas placas.

Primeira Prova de Fenômenos Eletromagnéticos - BC0209 2012.2 - Prova A - Folha 3/4

Nome Completo:	Nota:	
Identificação de Usuário no TIDIA:		

Questão 3 (25 pontos): Quando os faróis de um automóvel são acesos, um amperímetro em série com os faróis indica 10,0 A e um voltímetro em paralelo com os faróis indica 12,0 V (veja figura ao lado). Quando o motor de arranque é acionado, a leitura do amperímetro cai para 8,00 A e a luz dos faróis fica mais fraca. A resistência interna da bateria é 0,0500 Ω e o amperímetro e o voltímetro são ideais. Determine:

- a) a força eletromotriz da bateria;
- b) a corrente no motor de arranque quando os faróis estão acesos;
- c) as potências fornecida pela bateria e dissipadas nos faróis e no motor de arrangue.

Primeira Prova de Fenômenos Eletromagnéticos – BC0209 2012.2 – Prova A - Folha 4/4		
Nome Completo:	Nota:	
Identificação de Usuário no TIDIA:		

Questão 4 (25 pontos): Considere um capacitor de placas paralelas, cujas dimensões são muito maiores que a distância d que as separa. Uma das placas do capacitor é ligada à terra e a outra conectada à cúpula de um gerador de Van de Graff. Ao ligarmos o gerador observamos faíscas entre as placas do capacitor para distâncias de separação inferiores a d_{max} . Para distâncias de separação acima de d_{max} não se observa faíscas entre as placas. Foram efetuadas várias medidas de d_{max} listadas na tabela abaixo.

- (a) Determine o valor médio de d_{max} , bem como sua incerteza.
- (b) Sabendo que a rigidez dielétrica do ar é de E_{max} = 30,00 KV/cm, determine o potencial da cúpula, bem como sua incerteza. Dica: Despreze a incerteza em E_{max} e considere $\sqrt{2} \approx 1,4$.

Medida	d _{max} (mm)
1	40,20
2	40,00
3	40,10
4	39,90
5	40,30