

Notes

Elements of Statistics

Chapter 3:

Measures of central tendency and measures of variation

Ralf Münnich, Jan Pablo Burgard and Florian Ertz

University of Trier Faculty IV Economic and Social Statistics Department

Winter term 2021/22

© WiSoStat

The sides are provided as supplementary material by the Economic and Social Statistics Department (WiSoStat) of Faculty IV of the University of Tiref for the lecture "Elements of Statistics" in Wise 2021/22 and the participants are allowed to use them for preparation and reworking. The lecture materials are protected by intelectual property rights. They runs not be multiplied, distributed proposeded or made publicly accessible – neither fully, nor partially, the property of the propert

Ertz | Elements of Statistics

| WiSe 2021/22 1 / 57 @ WiSoStat

3. Measures of central tendency and measures of variation

Statistical measures

Statistical measures are calculated in order to characterise distributions by means of suitable parameters. In this context, the scaling of the variables of interest plays a major role, as it determines the suitability of different measures.

A distinction is made between

- measures of central tendency,
- measures of variation and
- ▶ further measures to describe a distribution.

Ertz | Elements of Statistics

| WiSe 2021/22 2 / 57 © WiSoStat

3. Measures of central tendency and measures of variation

Properties of measures of central tendency

Axiom of identity: If all values are identical, the measure of central tendency should adopt that same value.

Axiom of inclusion: The value of the measure of central tendency should be in the interval $[x_{\min}; x_{\max}]$.

Axiom of translation: If all values are shifted by a common value, the value of the measure of central tendency should be shifted by this common value as well.

Axiom of homogeneity: If the frequencies of all m different values are (multiplicatively) changed by a common value in such a way that the relative frequencies stay constant, the value of the measure of central tendency should not change (homogeneity of degree zero).

In certain circumstances, restrictions regarding the scaling, like non-negativity, have to be respected as well. (See Assenmacher, W. (2010): Deskriptive Statistik, 4th edition, Springer.)

Ertz | Elements of Statistics

| WiSe 2021/22 3 / 57 © WiSoStat

3. Measures of central tendency and measures of variation

The mode

Let a variable of an arbitrary scaling be given. The mode $x_{\mbox{\scriptsize M}}$ is the value which occurs most frequently.

For $i: x_i = x_M$ the following holds:

 $n_i \geq n_j \quad \forall j \neq i$.

Distributions which have exactly one mode are called unimodal. In this case $n_i > n_i$ holds for all $j \neq i$.

In the context of continuous variables, we may call the mode the densest value.

Notes	
Notes	
Notes	

The quantile

The value x_p is called p-quantile if the following holds:

$$x_p = F^{-1}(p) := \inf\{x | F_n(x) \ge p\}$$

Remarks:

- ▶ 0
- ▶ In this case, the quantile is defined by means of the inverse empirical distribution function.
- The definition may be broadened (symmetrical case; see Schaich and Münnich, 2001).
- ▶ The second *quartile* $x_{0.50}$ is called median (see below).
- $x_{0.25}$ is the first quartile and $x_{0.75}$ is the third quartile.

Ertz | Elements of Statistics

| WiSe 2021/22 5 / 57 © WiSoStat

3. Measures of central tendency and measures of variation

Example 3.1: Quantiles (1)

Given a sample of unsorted original values (n = 10): 5.7; 15.6; 12.6; 8.7; 11.9; 15.9; 1.6; 4.9; 19.8; 14.3

After reordering:

1.6; 4.9; 5.7; 8.7; 11.9; 12.6; 14.3; 15.6; 15.9; 19.8

Calculating the 0.2-quantile via the inverse distribution function:

$$x_{0.2} = x_{[2]} = 4.9$$
 .

Calculating the first quartile (0.25-quantile) via the inverse distribution function:

$$x_{0.25} = x_{[3]} = 5.7$$
.

Data input in R:

x3_1 <- c(5.7, 15.6, 12.6, 8.7, 11.9, 15.9, 1.6, 4.9, 19.8, 14.3)

Ertz | Elements of Statistics

| WiSe 2021/22 6 / 57 © WiSoStat

3. Measures of central tendency and measures of variation

Example 3.1: Quantiles (2) Graphical depiction of $x_{0,2}$:

col = "blue", lines(x = c(-1,4.9), y = c(0.2,0.2), col = "red") lines(x = c(4.9,4.9), y = c(0.2,-1), col = "red") Elements of Statistics | WiSe 2021/22 7 / 57

3. Measures of central tendency and measures of variation

Example 3.1: Quantiles (3)

Graphical depiction of $x_{0,25}$:

New plot like on the last slide lines(x = c(0,5.7), y = c(0.25,0.25), col = "red")
lines(x = c(5.7,5.7), y = c(0,0.3), col = "red")

Ertz | Elements of Statistics | WiSe 2021/22 8 / 57 © WiSoStat

Notes

Notes

Notes

Notes

Example 3.1: Quantiles (4)

Notes

Determination of $x_{0.2} = 4.9$ and $x_{0.25} = 5.7$ in R:

sort(x3_1)

[1] 1.6 4.9 5.7 8.7 11.9 12.6 14.3 15.6 15.9 19.8

quantile(x = $x3_1$, probs = c(0.2, 0.25), type = 1)

20% 25% 4.9 5.7

The determination of a quantile with the inverse distribution function is done in R with quantile(x, type = 1).

Ertz | Elements of Statistics

| WiSe 2021/22 9 / 57 © WiSoStat

3. Measures of central tendency and measures of variation

The median

Let a variable of at least ordinal scaling be given. Then the median

$$z := x_{0.5}$$

is the 0.5-quantile.

The median divides the smaller 50% from the larger 50% of values of a distribution.

Computation of the median:

- ► For uneven $n: x_{0.5} = x_{[(n+1)/2]}$
- For even $n: x_{0.5} = \frac{1}{2} \cdot (x_{[n/2]} + x_{[n/2+1]})$ (In a strict sense, metric scaling would be needed here.)

Ertz | Elements of Statistics

| WiSe 2021/22 10 / 57 © WiSoStat

3. Measures of central tendency and measures of variation

Exemplary median computations (1)

Example 3.2:

Original values (n = 9):

13.1; 12.5; 8.3; 6.4; 9.1; 10.5; 10.8; 17.9; 22.3

Ordered values:

6.4; 8.3; 9.1; 10.5; 10.8; 12.5; 13.1; 17.9; 22.3

$$x_{0,5} = x_{[5]} = 10,8$$

Calculation in R:

sort(x3_2)

[1] 6.4 8.3 9.1 10.5 10.8 12.5 13.1 17.9 22.3

median(x3_2)

[1] 10.8

Ertz | Elements of Statistics

| WiSe 2021/22 11 / 57 © WiSoStat

3. Measures of central tendency and measures of variation

Example 3.3:

(Ordered) original values (n = 10): 6; 17; 22; 22; 23; 31; 34; 80; 90; 200

$$x_{0.5} = \frac{1}{2} \cdot (x_{[5]} + x_{[6]}) = 27$$

Calculation in R:

x3_3 <- c(6, 17, 22, 22, 23, 31, 34, 80, 90, 200) sort(x3_3)

6 17 22 22 23 31 34 80 90 200

median(x3_3)

[1] 27 Ertz | Elements of Statistics

| WiSe 2021/22 12 / 57 © WiSoStat

N			
Notes			
Notes			

Notes				

Determination of quantiles using grouped frequencies

Wirtschafts- und Sozialstatistik Universität Trier

Given grouped frequency distributions, the p-quantile is approximatively determined by using the empirical distribution function:

- ▶ j is the class for which $F(x_{j-1}^o) \le p < F(x_j^o)$.
- ▶ Determination of quantile x_p by linear interpolation:

$$\frac{p - F(x_{j-1}^o)}{F(x_j^o) - F(x_{j-1}^o)} = \frac{x_p - x_{j-1}^o}{x_j^o - x_{j-1}^o}$$

 \Leftrightarrow

$$x_p = x_{j-1}^o + (x_j^o - x_{j-1}^o) \cdot \frac{p - F(x_{j-1}^o)}{F(x_j^o) - F(x_{j-1}^o)}$$

Remark:

Values within the classes are assumed to be uniformly distributed.

Ertz | Elements of Statistics

| WiSe 2021/22 13 / 57 © WiSoStat

3. Measures of central tendency and measures of variation |

Example 3.4: see Ex. 2.6 (1)

Remember:

For n=200 pupils, the time taken to solve a problem was recorded:

	class (min.)		j	nj	рj
2	up to, but less than	5	1	5	0.025
5	up to, but less than	10	2	8	0.040
10	up to, but less than	12	3	22	0.110
12	up to, but less than	14	4	30	0.150
14	up to, but less than	16	5	38	0.190
16	up to, but less than	18	6	35	0.175
18	up to, but less than	20	7	28	0.140
20	up to, but less than	25	8	16	0.080
25	up to, but less than	30	9	14	0.070
30	up to, but less than	40	10	4	0.020
	Σ			200	1.000

Which value will the median z have?

Ertz | Elements of Statistic

| WiSe 2021/22 14 / 57 © WiSoStat

3. Measures of central tendency and measures of variation

Ertz | Elements of Statistics

| WiSe 2021/22 15 / 57 © WiSoStat

3. Measures of central tendency and measures of variation

Example 3.4: see Ex. 2.6 (3)

The median falls into class j = 5.

Graphical depiction in R:

lines(x = c(-5,15.8421), y = c(0.5,0.5), col = "red")

Notes			
Notes			
Notes			

Notes

Ertz | Elements of Statistics | WiSe 2021/22 16 / 57 © WiSoStat

Example 3.4: see Ex. 2.6 (4)

Notes

Finally, we reach

$$z = 14 + (16 - 14) \cdot \frac{0.5 - 0.325}{0.515 - 0.325} = 15.8421.$$

Graphical depiction in R:

```
lines(x = c(15.8421,15.8421), y = c(0.5,-5), col = "red")

Ertz | Elements of Statistics | W/Se 2021/22 17/57 @ W/SoStat
```

3. Measures of central tendency and measures of variation

Example 3.4: see Ex. 2.6 (5)

Calculation of z = 15.8421 in R:

x _ c

[1] 2 5 10 12 14 16 18 20 25 30 40

length(x_o)

[1] 11

F_j

[1] 0.025 0.065 0.175 0.325 0.515 0.690 0.830 0.910 0.980 1.000

length(F_j)

[1] 10

[1] 15.8421

Ertz | Elements of Statistics

| WiSe 2021/22 18 / 57 © WiSoStat

3. Measures of central tendency and measures of variation

The arithmetic mean

Let a variable of metric scaling with n original values be given. Then

$$\overline{x} = \frac{1}{n} \cdot \sum_{i=1}^{n} x_i$$

is the arithmetic mean.

Example 3.5: see Ex. 3.2

$$\overline{x} = \frac{1}{9} \cdot (13.1 + 12.5 + \dots + 22.3) = \frac{1}{9} \cdot 110.9 \approx 12.32$$

Calculation in R:

mean(x3_2)

[1] 12.32222

Ertz | Elements of Statistics

| WiSe 2021/22 19 / 57 © WiSoStat

3. Measures of central tendency and measures of variation

The arithmetic mean for grouped data

The arithmetic mean can also be computed as a weighted mean of the means in the different classes:

$$\overline{x} = \frac{1}{n} \cdot \sum_{j=1}^{m} n_j \cdot \overline{x}_j = \sum_{j=1}^{m} p_j \cdot \overline{x}_j$$

It holds that

Ertz | Elements of Statistics

$$\overline{x} = \frac{1}{n} \cdot \sum_{j=1}^{m} n_j \cdot \underbrace{\left(\frac{1}{n_j} \sum_{\nu=1}^{n_j} x_{\nu j}\right)}_{\overline{x}_i} = \frac{1}{n} \cdot \sum_{j=1}^{m} \sum_{\nu=1}^{n_j} x_{\nu j}$$
Overall sum of values

If no information on class means $(\overline{x_j})$ is available, the arithmetic mean may still be determined by using the approximations $\overline{x_j} \approx x_i'$ and

$$\overline{x}' = \sum_{i=1}^m p_j \cdot x_j'$$

| WiSe 2021/22 20 / 57 © WiSoStat

-			
Notes			
Notes			
-			
-			
Notes			

Example 3.6: see Ex. 2.5 (1)

For the following classification we get:

class	from	up to, but less than	nj	\overline{x}_j	x'_{i}	
1	0	1500	5	1000.00	750	
2	1500	3000	7	2000.00	2250	
3	3000	4500	3	3266.67	3750	
4	4500	6000	5	5040.00	5250	

The arithmetic mean of the original values is $\bar{x} = 2700$.

Calculation in R:

Ertz | Elements of Statistics

| WiSe 2021/22 21 / 57 © WiSoStat

3. Measures of central tendency and measures of variation

Example 3.6: see Ex. 2.5 (2)

The same value results when using the grouped data

$$\overline{x} = \frac{5}{20} \cdot 1000 + \frac{7}{20} \cdot 2000 + \frac{3}{20} \cdot 3266.67 + \frac{5}{20} \cdot 5040 = 2700 \quad .$$

Calculation in R:

```
x_o <- c(0,1500,3000,4500,6000)
x2_5_kl <- cut(x2_5, x_o, right = FALSE)
n_j <- table(x2_5_kl)

x_mean_j <- tapply(X = x2_5, INDEX = x2_5_kl, FUN = mean)
x_mean_kl <- sum(n_j/sum(n_j) * x_mean_j)
x_mean_kl</pre>
```

[1] 2700

Ertz | Elements of Statistics

| WiSe 2021/22 22 / 57 © WiSoStat

3. Measures of central tendency and measures of variation

Wirtschafts- und Sozialstatistik Universität Trier

Example 3.6: see Ex. 2.5 (3)

If the arithmetic means of the classes were not available we would get

$$\overline{x}' = \frac{5}{20} \cdot 750 + \frac{7}{20} \cdot 2250 + \frac{3}{20} \cdot 3750 + \frac{5}{20} \cdot 5250 = 2850 \quad .$$

Calculation in R:

What happens if we approximate and have over .. up to classes?

Ertz | Elements of Statistics

| WiSe 2021/22 23 / 57 © WiSoStat

3. Measures of central tendency and measures of variation

The geometric mean

Let a variable with strictly positive values and exhibiting a ratio scale be given $(x_i>0; i=1,\dots,n)$. Then

$$g = \sqrt[n]{\prod_{i=1}^{n} x_i} = \left(\prod_{i=1}^{n} x_i\right)^{\frac{1}{n}}$$

is the geometric mean.

Notes

lotes	
iotes	
lotes	
lotes	

Example 3.7: GDP growth

The growth of EU-25 GDP (in %) for the years from 1996 through 2011 is given in the New Cronos database as follows:

1.8; 2.8; 3.0; 3.0; 3.9; 2.1; 1.3; 1.4; 2.5; 2.1; 3.3; 3.2; 0.3; -4.3; 2.1; 1,5.

By transitioning to growth factors, the mean growth is calculated as

$$g = \sqrt[16]{1.018 \cdot 1.028 \cdot \dots \cdot 1.015} = \sqrt[16]{1.342574} = 1.018582$$
.

wa <- x3_7/100 + 1 x_geom <- prod(wa)^(1/length(wa)) x_geom

[1] 1.018582

The use of the arithmetic mean would have yielded $\overline{x} = 1.01875$.

After 16 years an overall growth of 34.2574% would have to be reported instead of 34.6114%.

Ertz | Elements of Statistics

| WiSe 2021/22 25 / 57 © WiSoStat

3. Measures of central tendency and measures of variation

Example 3.8: German population (1)

Population figures for the FRG (in thousands) and the years from 1995 through 2005 are available in the New Cronos database as well:

81,538.6; 81,817.5; 82,012.2; 82,057.4; 82,037.0; 82,163.5; 82,259.5; 82,440.3; 82,536.7; 82.531.7; 82,500.8.

Official DESTATIS figures for 2006 – 2011: 82,314.9; 82,217.8; 82,002.4; 81,802.3; 81,751.6; 81,843.7.

Find the mean of the yearly population growth rate for the FRG in the time span from 1995 until 2005.

Data input in R:

x3_8 <- c(81538.6, 81817.5, 82012.2, 82057.4, 82037,82163.5, 82259.5, 82440.3, 82536.7, 82531.7, 82500.8)

Ertz | Elements of Statistics

| WiSe 2021/22 26 / 57 © WiSoStat

3. Measures of central tendency and measures of variation

Example 3.8: German population (2)

First, the 10 growth factors x_t/x_{t-1} have to be determined.

wa <- x3_8[-1] / x3_8[-length(x3_8)]

The corresponding geometric mean is

$$g = \sqrt[10]{\frac{81,817.5}{81,538.6} \cdot \frac{82,012.2}{81,817.5} \cdot \cdots \cdot \frac{82,500.8}{82,531.7}} = \sqrt[10]{1.011801} = 1.001174 \quad .$$

x_geom <- prod(wa)^(1/length(wa))
x_geom</pre>

[1] 1.001174

It follows that $81,538,600 \cdot g^{10} = 82,500,800$.

This matches the actual population in 2005.

Using the arithmetic mean, we would get

 $81,538,600 \cdot 1.001175^{10} = 82,501,380$ after 10 years, thus 580 more than actually existing.

Ertz | Elements of Statistics

| WiSe 2021/22 27 / 57 © WiSoStat

3. Measures of central tendency and measures of variation

The harmonic mean

Let a variable with strictly positive values and exhibiting a ratio scale be given $(x_i>0;i=1,\dots,n).$ Then

$$h = \frac{1}{\frac{1}{n} \cdot \sum_{i=1}^{n} \frac{1}{x_i}} = \frac{n}{\sum_{i=1}^{n} \frac{1}{x_i}}$$

is the harmonic mean.

Notes	
Notes	
Notes	
Notes	
Notes	
TVCC5	

Example 3.9: New tires (1)

Wirtschafts- und Sozialstatistik

It takes a master mechanic 8 minutes to mount a new set of tires to a car. His apprentice completes this task in 12 minutes. How long does it take the two of them *together* to mount 100 sets of tires?

$$h = \frac{1}{\frac{1}{2} \cdot \left(\frac{1}{8} + \frac{1}{12}\right)} = \frac{48}{5} \ \left[\frac{\min}{\text{set}}\right]$$

Calculation in R:

```
x3_9 <- c(8,12)
n <- length(x3_9)
x_harm <- n / sum(1 / x3_9)
x_harm
```

[1] 9.6

Ertz | Elements of Statistics

| WiSe 2021/22 29 / 57 © WiSoStat

3. Measures of central tendency and measures of variation |

Example 3.9: New tires (2)

Hence, it takes each mechanic on average 48 minutes to mount 5 sets of tires. To mount 100 sets, both of them together need

$$100 \; [\text{sets}] \cdot \frac{24}{5} \; \left\lceil \frac{\text{min}}{\text{set}} \right\rceil = 480 \; [\text{min}] \quad ,$$

filling 8 hours.

Using the arithmetic mean, the mounting of one set would have taken 10 minutes per mechanic, resulting in 8 hours and 20 minutes.

Ertz | Elements of Statistics

| WiSe 2021/22 30 / 57 © WiSoStat

3. Measures of central tendency and measures of variation

Comparison of arithmetic and harmonic mean

Find the respective average speeds for the following two cases $(v_1 \text{ and } v_2)$:

 A car drives at 100 km/h for one hour and at 120 km/h for three hours.

We use the weighted arithmetic mean:

$$v_1 = \frac{1}{4} \cdot 100 + \frac{3}{4} \cdot 120 = 115$$
 [km/h]

► A car drives at 100 km/h for 115 km and at 120 km/h for 345 km. We use the weighted harmonic mean:

$$v_2 = \frac{1}{\frac{115}{460} \cdot \frac{1}{100} + \frac{345}{460} \cdot \frac{1}{120}} = 114.2857 \qquad [km/h]$$

The second car will take 90 seconds longer.

Ertz | Elements of Statistics

| WiSe 2021/22 31 / 57 © WiSoStat

3. Measures of central tendency and measures of variation

Influence of changes in the unit of measurement

The observations x_i (i = 1, ..., n) are transformed linearly:

$$y_i = a \cdot x_i + b$$
 , $a \neq 0, b \in \mathbb{R}$.

It follows that:

$$y_{\mathsf{M}} = a \cdot x_{\mathsf{M}} + b$$
$$z_{\mathsf{y}} = a \cdot z_{\mathsf{x}} + b$$

$$\overline{y} = a \cdot \overline{x} + b$$

g and h only satisfy this transformation for b=0. Therefore, the axiom of translation does not hold. For b=0 it follows that:

$$g_y = a \cdot g_X$$
$$h_y = a \cdot h_X$$

Notes			
Notes			
Notes			

The range w is defined by

$$w = \max_{i=1,\dots,n} x_i - \min_{i=1,\dots,n} x_i = x_{[n]} - x_{[1]} .$$

 $x_{[1]}$ $(x_{[n]})$ is the first (n-th) element of the ordered list of values.

Interquartile range

The interquartile range $\ensuremath{\mathsf{IQR}}$ is

$$IQR = x_{0.75} - x_{0.25}$$

and therefore equal to the difference of the third and first quartile.

Mean linear deviation

The mean linear deviation / is given by

$$I = \frac{1}{n} \sum_{i=1}^{n} |x_i - z| \quad .$$

The median minimises the mean linear deviation as a measure of distance:

$$\arg\min_{t\in\mathbb{R}}I(t)=\arg\min_{t\in\mathbb{R}}rac{1}{n}\sum_{i=1}^{n}|x_i-t|=z$$
 .

| WiSe 2021/22 37 / 57 © WiSoStat

3. Measures of central tendency and measures of variation

Variance

The variance s^{*2} is defined as

$$s^{*2} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2$$
.

The arithmetic mean \overline{x} minimises the variance as a *measure of distance*:

$$\arg\min_{t\in\mathbb{R}}\frac{1}{n}\sum_{i=1}^{n}(x_{i}-t)^{2}=\overline{x}$$

Proof using derivative...

Ertz | Elements of Statistics

| WiSe 2021/22 38 / 57 © WiSoStat

3. Measures of central tendency and measures of variation

Variance and displacement law -Der Verschiebungssatz

We have

$$s^{*2} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2 = \frac{1}{n} \sum_{i=1}^{n} x_i^2 - \overline{x}^2 .$$

Furthermore, we use the inferential variance:

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2} = \frac{n}{n-1} \cdot s^{*2}$$
$$= \frac{1}{n-1} \sum_{i=1}^{n} x_{i}^{2} - \frac{n}{n-1} \cdot \overline{x}^{2} .$$

The variance s^{*2} is often called the *empirical variance*.

Ertz | Elements of Statistics

| WiSe 2021/22 39 / 57 © WiSoStat

Standard deviation and coefficient of variation wirtschafts- and Sozialistatistic

The standard deviation is the square root of the variance:

$$s^* = \sqrt{\frac{1}{n}\sum_{i=1}^n(x_i-\overline{x})^2} \qquad \text{or} \qquad s = \sqrt{\frac{1}{n-1}\sum_{i=1}^n(x_i-\overline{x})^2} \quad .$$

The standard deviation has the same unit of measurement as the

As a unit-independent measure of variation, we may use the coefficient of variation

$$v = \frac{s^*}{\overline{x}} \cdot 100\% \quad .$$

It requires a ratio scale.

Ertz | Elements of Statistics

Notes

Notes			
ivotes			
Notes			
Notes			

Example 3.10: Screws (1)

Notes

Quality control yielded the following actual (and squared actual) lengths of two sets of 10 screws which were supposed to be 10 mm and 80 mm long:

i	$x_{1,i}$	$x_{1,i}^2$	$x_{2,i}$	$x_{2,i}^2$
1	10.40	108.16	81.00	6561.00
2	9.90	98.01	80.30	6448.09
3	10.30	106.09	80.00	6400.00
4	9.80	96.04	79.90	6384.01
5	9.90	98.01	79.80	6368.04
6	10.30	106.09	80.60	6496.36
7	10.40	108.16	80.30	6448.09
8	10.10	102.01	80.20	6432.04
9	10.20	104.04	80.30	6448.09
10	9.70	94.09	80.60	6496.36
Σ	101.00	1020.70	803.00	64482.08

Ertz | Elements of Statistics

| WiSe 2021/22 41 / 57 © WiSoStat

3. Measures of central tendency and measures of variation

Example 3.10: Screws (2)

Data input in R:

First, we calculate:

$$\overline{x}_1 = \frac{1}{10} \cdot (10.4 + \dots + 9.7) = 10.1$$
 $\overline{x}_2 = \frac{1}{10} \cdot (81.0 + \dots + 80.6) = 80.3$

 $mean(x_1)$ [1] 10.1

 $mean(x_2)$

[1] 80.3

Ertz | Elements of Statistics

| WiSe 2021/22 42 / 57 © WiSoStat

3. Measures of central tendency and measures of variation

Wirtschafts- und Sozialstatistil

Example 3.10: Screws (3)

We calculate further:

$$\begin{split} s_1^{*2} &= \frac{1}{10} \cdot (10.4^2 + \ldots + 9.7^2) - 10.1^2 = 0.06 \\ s_2^{*2} &= \frac{1}{10} \cdot (81.0^2 + \ldots + 80.6^2) - 80.3^2 = 0.118 \end{split}$$

Calculation in R:

$$x_1_var \leftarrow (length(x_1) - 1) / length(x_1) * var(x_1)$$

 $x_2_var \leftarrow (length(x_2) - 1) / length(x_2) * var(x_2)$

x_1_var

[1] 0.06

 x_2_var [1] 0.118

Ertz | Elements of Statistics

| WiSe 2021/22 43 / 57 © WiSoStat

3. Measures of central tendency and measures of variation

Example 3.10: Screws (4)

sqrt(x_1_var) [1] 0.244949 sqrt(x_2_var)

The relative dispersion are $v_1=2.425237\%$ and $v_2=0.4277849\%$

From this, we get $s_1^* = 0.244949$ and $s_2^* = 0.3435113$.

Calculation in R:

[1] 0.3435113

x_2_var_koeff

[1] 0.4277849

Notes Notes

Votes			

Variance decomposition

If a population is divided into m subpopulations, the variance can be decomposed as follows:

$$s^{*2} = s_b^{*2} + s_w^{*2}$$

(b: between; w: within) with

$$s_b^{*2} = \sum_{j=1}^m \rho_j \cdot (\overline{x}_j - \overline{x})^2$$

$$s_w^{*2} = \sum_{j=1}^m p_j \cdot s_j^{*2}$$

The two parts are the external and internal variance, where

$$s_j^{*2} = \frac{1}{n_j} \sum_{\nu=1}^{n_j} (x_{\nu j} - \overline{x}_j)^2$$
 , $\overline{x} = \sum_{j=1}^m p_j \cdot \overline{x}_j$

| WiSe 2021/22 45 / 57 @ WiSoStat

3. Measures of central tendency and measures of variation

Variance and grouped data

- ▶ If class means and class variances are known: Variance decomposition
- If class means and class variances are unknown:

$$s^{*2} = \sum_{j=1}^m p_j \cdot (\underbrace{\overline{x}_j - \overline{x}}_{x_j' - \overline{x}'})^2 + \underbrace{\sum_{j=1}^m p_j \cdot s_j^{*2}}_{\approx 0} \quad \text{with} \quad \overline{x}' = \sum_{j=1}^m p_j \cdot x_j'.$$

Therefore, we have:

$$s'^{*2} = \sum_{i=1}^{m} p_j \cdot (x'_j - \overline{x}')^2 = \sum_{i=1}^{m} p_j \cdot x'_j^2 - \overline{x}'^2.$$

Ertz | Elements of Statistics

| WiSe 2021/22 46 / 57 © WiSoStat

3. Measures of central tendency and measures of variation |

Example 3.11: Income classes (1)

Let the following n = 10 income values be given:

3500; 3200; 2100; 500; 1800; 2100; 5600; 8500; 1400; 1200 Furthermore,

let the class boundaries be:

$$x_0^o = 0$$
; $x_1^o = 2500$; $x_2^o = 5000$; $x_3^o = 7500$; $x_4^o = 10000$.

Data input in R:

 $x3_11 \leftarrow c(3500,3200,2100,500,1800,2100,5600,8500,1400,1200)$ $x_0 \leftarrow c(0,2500,5000,7500,10000)$

 $x3_11_k1 \leftarrow cut(x3_11, x_0, right = FALSE)$

j	pj	\overline{X}_j	$s_j^{*^2}$	$p_j(\overline{x}_j - \overline{x})^2$	$p_j s_j^{*2}$	x'_j	$p_j x_j'$	$p_j(x'_j-\overline{x}')^2$
1	0.6	1516.67	318056	1302427	190833	1250	750	1837500
2	0.2	3350,00	22500	25920	4500	3750	750	112500
3	0,1	5600.00	0	681210	0	6250	625	1056250
4	0.1	8500.00	0	3036010	0	8750	875	3306250
Σ				5045567	195333		3000	6312500

Ertz | Elements of Statistics

0.6

0.2

3 0,1 | WiSe 2021/22 47 / 57 © WiSoStat

3. Measures of central tendency and measures of variation

Example 3.11: Income classes (2)

Wirtschafts- und Sozialstatist Universität Trier							
x'_{j}	$p_j x_j'$	$p_j(x'_j-\overline{x}')^2$					
1250	750	1837500					
3750	750	112500					
6250	625	1056250					

Calculation of p_i and n_i in R:

1516.67

3350.00

5600.00

318056

22500

Calculation of \overline{x}_i in R:

1302427

25920

681210

4500

0

Calculation of s_i^{*2} in R:

Ertz | Elements of Statistics

$$x_var_j \leftarrow (n_j - 1)/n_j *$$

 $tapply(X = x3_11, INDEX = x3_11_kl, FUN = var)$

 $\hbox{\tt [0,2.5e+03)} \hbox{\tt [2.5e+03,5e+03)} \hbox{\tt [5e+03,7.5e+03)} \hbox{\tt [7.5e+03,1e+04)}$ 318055.6

Notes			
-			
Notes			
Notes			
Notes			

Example 3.11: Income classes (3)

	The same of	
-		
Wirts	chafts- und S Universität	

					`			Wirts	chafts- und Sozialstatisti Universität Trier
	j	pj	\overline{x}_j	s_j^{*2}	$p_j(\overline{x}_j - \overline{x})^2$	$p_j s_j^{*2}$	x'_j	$p_j x_j'$	$p_j(x'_j-\overline{x}')^2$
	1	0.6	1516.67	318056	1302427	190833	1250	750	1837500
- 1	2	0.2	3350,00	22500	25920	4500	3750	750	112500
	3	0,1	5600.00	0	681210	0	6250	625	1056250
İ	4	0.1	8500.00	0	3036010	0	8750	875	3306250
	Σ				5045567	195333		3000	6312500

$$s^{*^2} = s_b^{*^2} + s_w^{*^2} = 5045567 + 195333 = 5240900$$

Calculation of s^{*2} in R:

x_var_between	x_var_within	x_var_kl
[1] 5045567	[1] 195333.3	[1] 5240900
Ertz Elements of Statistics	1	WiSe 2021/22 49 / 57 © WiSoStat

3. Measures of central tendency and measures of variation $\;\;|\;\;$

Example 3.11: Income classes (4)

j	pj	\overline{x}_j	$s_j^{*^2}$	$p_j(\overline{x}_j-\overline{x})^2$	$p_j s_j^{*2}$	x'_j	$p_j x_j'$	$p_j(x'_j-\overline{x}')^2$
1	0.6	1516.67	318056	1302427	190833	1250	750	1837500
2	0.2	3350,00	22500	25920	4500	3750	750	112500
3	0,1	5600.00	0	681210	0	6250	625	1056250
4	0.1	8500.00	0	3036010	0	8750	875	3306250
Σ				5045567	195333		3000	6312500

$$s'^{*2} = 6312500$$

Calculation of x'_i and \overline{x}' in R:

Calculation of s'^{*2} in R:

[1] 6312500

Ertz | Elements of Statistics

| WiSe 2021/22 50 / 57 © WiSoStat

3. Measures of central tendency and measures of variation

Example 3.12: see Ex. 3.11

An alternative grouping according to

$$s'^{*2} = 4,800,000$$
.

$$x_0^o = 0$$
; $x_1^o = 2000$; $x_2^o = 5000$; $x_3^o = 10000$ would lead to

$$s'^{*2} = 5,660,000$$
.

In both cases we have

$$s_b^{*2} = 4,570,900$$
 and $s_w^{*2} = 670,000$.

Calculation in R with use uf the R code from Ex. 3.11.

For this, the vector $\mathbf{x}_{-}\mathbf{o}$ from Ex. 3.11 must be changed.

E.g. for the first case above of alternative grouping of the data:

x_o <- c(0,2000,4000,10000)

Ertz | Elements of Statistics

| WiSe 2021/22 51 / 57 © WiSoStat

3. Measures of central tendency and measures of variation

Influence of changes in the unit of measurement

If the n original values x_i are linearly transformed $(y_i = a_0 + a_1 \cdot x_i)$, we have

$$\overline{y} = a_0 + a_1 \cdot \overline{x}$$
 , $s_y^{*2} = a_1^2 \cdot s_x^{*2}$, $s_y^* = |a_1| \cdot s_x^*$

 $\quad \text{and} \quad$

$$v_y = \frac{|a_1| \cdot s_x^*}{a_0 + a_1 \cdot \overline{x}}$$

For the standard transformation

$$y_i = \frac{x_i - \overline{x}}{s^*}$$

we specifically have $\overline{y} = 0$ and $s_v^{*2} = 1$.

Notes			
Votes			
votes			
Votes			
Votes			

Entropy

The *spread* of values of variables on a nominal or an ordinal scale can be measured by entropy, which is:

$$E = -\sum_{j=1}^{m} p_j \cdot \ln p_j = \ln n - \frac{1}{n} \sum_{j=1}^{m} n_j \cdot \ln n_j$$

Entropy reaches its maximum when frequencies are identical. As relative entropy

$$E_r = \frac{E}{\ln m}$$

is used. Then we have $0 \le E_r \le 1$.

Notice that measures of variation are usually based on metric scales!

Ertz | Elements of Statistics

| WiSe 2021/22 53 / 57 © WiSoStat

3. Measures of central tendency and measures of variation

Skewness and kurtosis

▶ The skewness of a distribution is measured by

$$m_3 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^3$$
 or $\frac{m_3}{s^{*3}}$

▶ The kurtosis of a distribution is measured by

$$m_4 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^4$$
 or $\frac{m_4}{s^{*4}}$

The normal distribution exhibits a kurtosis of 3. (see *Comparison of distributions (1)* and (2))(slide 33)

Ertz | Elements of Statistics

| WiSe 2021/22 54 / 57 © WiSoStat

3. Measures of central tendency and measures of variation

Stem-and-leaf plot

As a stem, the first digit is used $(0,\ldots,5)$. Then, the leafs (next digit) will be attached on the stem in increasing order. The number of stems can be variated corresponding to the size of the data.

Example 3.13: see Ex. 2.5 resp. 3.6

sort(x2_5)

- [1] 500 800 1100 1200 1400 1500 1500 1800 2100 2100 2200 2800 3100 3200
- [15] 3500 4500 4500 5200 5400 5600

 $stem(x = x2_5, scale = 2)$

The decimal point is 3 digit(s) to the right of the |

- 0 | 58
- 1 | 124558
- 2 | 1128
- 3 | 125 4 | 55
- 5 | 246

Ertz | Elements of Statistics

3. Measures of central tendency and measures of variation

The boxplot

A boxplot (or box-whisker-plot) describes a distribution by means of five chosen parameters: minimum, $x_{0.25}$, z, $x_{0.75}$ and maximum. The box consists of $x_{0.25}$, z and $x_{0.75}$, the length of the box being equal to the interquartile range IQR:= $x_{0.75} - x_{0.25}$. The *whiskers* reach from the ends of the box to the minimum and maximum, respectively. On a modified boxplot the whiskers may be bounded by the values $x_{0.25} - 1.5 \cdot \text{IQR}$ and $x_{0.75} + 1.5 \cdot \text{IQR}$, respectively. Each observation

outside of those boundaries is plotted as an individual value.

Notes Notes Notes Notes

Working hours by qualification

Box-Plots in R:

boxplot(Hours ~ Qualification, data = AZ, range = 0)
boxplot(Hours ~ Qualification, data = AZ, range = 1.5)

Ertz | Elements of Statistics

| WiSe 2021/22 57 / 57 © WiSoStat

N-+			
Notes			
Notes			
Notes			
Notes			