# Progressive Self-Supervised Attention Learning for Aspect-Level Sentiment Analysis

Jialong Tang, Ziyao Lu, Jinsong Su, Yubin Ge, Linfeng Song, Le Sun, Jiebo Luo

> Present at "DL-NLP RG" by Azadeh Hashemi September 26, 2019

## Background: Sentiment Analysis

 Sentiment analysis is the automated process that allows machines to identify and extract opinions within text, such as tweets, emails, support tickets, product reviews, survey responses, etc.



https://monkeylearn.com/sentiment-analysis/

## Background: Sentiment Analysis (cont.)

- Usually, besides identifying the opinion, Sentiment Analysis systems extract attributes of the expression e.g.:
  - Polarity: if the speaker express a positive or negative opinion,
  - Subject: the thing that is being talked about,
  - Opinion holder: the person, or entity that expresses the opinion.



# Background: Aspect-Based Sentiment Analysis

- Instead of classifying the overall sentiment of a text into positive or negative, aspect-based analysis allows us to associate specific sentiments with different aspects of a product or service.
- Here's a breakdown of what aspect-based sentiment analysis can extract:
  - Sentiments: positive or negative opinions about a particular aspect.
  - Aspects: the thing or topic that is being talked about.

# Introduction: Aspect-level Sentiment Classification (ASC)

- Previous representative models are mostly discriminative classifiers based on manual feature engineering, such as Support Vector Machine.
- Recently, dominant ASC models have evolved into neural network (NN) models which are able to automatically learn the aspect-related semantic representation.

## NN-based models equipped with attention mechanism

Major drawback:
 It is prone to overly focus on a few frequent words with sentiment polarities and little attention is laid upon low-frequency ones.

| Type  | Sentence                                                      | Ans./Pred. |
|-------|---------------------------------------------------------------|------------|
| Train | The [place] is small and crowded but the service is quick.    | Neg/—      |
| Train | The [place] is a bit too small for live music .               | Neg/—      |
| Train | The service is decent even when this small [place] is packed. | Neg/—      |
| Test  | At lunch time, the [place] is crowded.                        | Neg / Pos  |
| Test  | A small area makes for quiet [place] to study alone.          | Pos / Neg  |

Table 1: The example of attention visualization for five sentences, where the first three are training instances and the last two are test ones. The bracketed bolded words are target aspects. Ans./Pred. = ground-truth/predicted sentiment label. Words are highlighted with different degrees according to attention weights.

### Contribution

- They propose a novel progressive self-supervised attention learning approach for neural ASC models.
- The method is able to automatically and incrementally mine attention supervision information from a training corpus, which can be exploited to guide the training of attention mechanisms in ASC models.

### Notations

- Input sentence:  $x = (x_1, x_2, ..., x_N)$
- Given target aspect:  $t = (t_1, t_2, ..., t_T)$
- Ground-truth sentiment: y
- Predicted sentiment:  $y_p \in \{\text{Positive, Negative, Neutral}\}$
- Aspect embedding matrix: v(t)

#### MN



Figure 1: The framework architecture of MN.

#### **TNet**



Figure 2: The framework architecture of TNet/TNet-ATT. Note that TNet-ATT is the variant of TNet replacing CNN with an attention mechanism.

## Training Objective

Negative log-likelihood of the gold-truth sentiment tags:

$$egin{aligned} J(D; heta) &= -\sum_{(x,t,y) \in D} J(x,t,y; heta) \ &= \sum_{(x,t,y) \in D} d(y) \cdot \log d(x,t; heta), \end{aligned}$$

**D** is the training corpus, d(y) is the one-hot vector of y,  $d(x,t;\theta)$  is the model-predicted sentiment distribution for the pair (x,t)

#### **Basic Intuition**

- Context word with the maximum attention weight ->
- Often the one with strong sentiment polarity ->
- Usually occurs frequently in the training corpus ->
- Thus tends to be overly considered during model training ->
- This simultaneously leads to the insufficient learning of other context words, especially low-frequency ones with sentiment polarities.

## Basic Intuition (cont.)

- The importance of each context word on the given aspect mainly depends on its attention weight.
- Thus, the context word with the maximum attention weight has the most important impact on the sentiment prediction of the input sentence.
- Therefore, for a training sentence, if the prediction of ASC model is correct, we believe that it is reasonable to continue focusing on this context word.
- Conversely, the attention weight of this context word should be decreased.

## Basic Intuition (cont.)

- One intuitive and feasible method :
  - First shield the influence of this most important context word before reinvestigating effects of remaining context words of the training instance.
  - In that case, other low-frequency context words with sentiment polarities can be discovered according to their attention weights.

# **Algorithm 1**: Neural ASC Model Training with Automatically Mined Attention Supervision Information.

**Input:** D: the initial training corpus;

 $\theta^{init}$ : the initial model parameters;

 $\epsilon_{\alpha}$ : the entropy threshold of attention weight distribution;

K: the maximum number of training iterations;

# **Algorithm 1**: Neural ASC Model Training with Automatically Mined Attention Supervision Information.

```
Input: D: the initial training corpus;
\theta^{init}: the initial model parameters;
\epsilon_{\alpha}: the entropy threshold of attention weight distribution;
K: the maximum number of training iterations;
1: \ \theta^{(0)} \leftarrow Train(D; \theta^{init})
```

# **Algorithm 1**: Neural ASC Model Training with Automatically Mined Attention Supervision Information.

```
Input: D: the initial training corpus;
\theta^{init}: the initial model parameters;
\epsilon_{\alpha}: the entropy threshold of attention weight distribution;
K: the maximum number of training iterations;
1: \ \theta^{(0)} \leftarrow \textbf{Train}(D; \ \theta^{init})
2: \ \textbf{for} \ (x, t, y) \in D \ \textbf{do}
3: \ s_{a}(x) \leftarrow \emptyset
```

4:  $s_m(x) \leftarrow \emptyset$ 

5: end for

Algorithm 1: Neural ASC Model Training with Automatically Mined Attention Supervision Information.

```
Input: D: the initial training corpus; \theta^{init}: the initial model parameters; \epsilon_{\alpha}: the entropy threshold of attention weight distribution; K: the maximum number of training iterations; 1: \theta^{(0)} \leftarrow Train(D; \theta^{init}) 2: for (x, t, y) \in D do 3: s_a(x) \leftarrow \emptyset 4: s_m(x) \leftarrow \emptyset
```

5: end for

Automatically Mined Attention Supervision Information.

**Input:** *D*: the initial training corpus;

 $\theta^{init}$ : the initial model parameters;

 $\theta^{init}$ : the initial model parameters;  $\epsilon_{\alpha}$ : the entropy threshold of attention weight distribution;

K: the maximum number of training iterations;

1:  $\theta^{(0)} \leftarrow Train(D; \theta^{init})$ 

2: **for**  $(x, t, y) \in D$  **do** 

 $s_a(x) \leftarrow \emptyset$ 

 $s_m(x) \leftarrow \emptyset$ 

5: end for

Algorithm 1: Neural ASC Model Training with 6: for k=1,2...,K do

 $D^{(k)} \leftarrow \emptyset$ 

for  $(x, t, y) \in D$  do

#### Algorithm 1: Neural ASC Model Training with 6: for k=1,2...,K do Automatically Mined Attention Supervision Information. **Input:** *D*: the initial training corpus; $\theta^{init}$ : the initial model parameters; $\epsilon_{\alpha}$ : the entropy threshold of attention weight distribution; K: the maximum number of training iterations; 1: $\theta^{(0)} \leftarrow Train(D; \theta^{init})$ 2: **for** $(x, t, y) \in D$ **do** $s_a(x) \leftarrow \emptyset$ $s_m(x) \leftarrow \emptyset$ 5: end for

9:

$$\begin{aligned} & \textbf{for } k = 1, 2..., K \, \textbf{do} \\ & D^{(k)} \leftarrow \emptyset \\ & \textbf{for } (x, t, y) \in D \, \textbf{do} \\ & v(t) \leftarrow \textit{GenAspectRep}(t, \theta^{(k-1)}) \end{aligned}$$

Algorithm 1: Neural ASC Model Training with 6: for k=1,2...,K do Automatically Mined Attention Supervision Infor- $D^{(k)} \leftarrow \emptyset$ mation. **Input:** *D*: the initial training corpus;  $\theta^{init}$ : the initial model parameters; for  $(x, t, y) \in D$  do  $\epsilon_{\alpha}$ : the entropy threshold of attention weight distribution; K: the maximum number of training iterations;  $v(t) \leftarrow \textit{GenAspectRep}(t, \theta^{(k-1)})$ 1:  $\theta^{(0)} \leftarrow Train(D; \theta^{init})$ 2: **for**  $(x, t, y) \in D$  **do**  $x' \leftarrow \textit{MaskWord}(x, s_a(x), s_m(x))$ 10:  $s_a(x) \leftarrow \emptyset$  $s_m(x) \leftarrow \emptyset$ 

5: end for

Algorithm 1: Neural ASC Model Training with 6: for k=1,2...,K do Automatically Mined Attention Supervision Infor- $D^{(k)} \leftarrow \emptyset$ mation. **Input:** *D*: the initial training corpus;  $\theta^{init}$ : the initial model parameters; for  $(x, t, y) \in D$  do  $\epsilon_{\alpha}$ : the entropy threshold of attention weight distribution; K: the maximum number of training iterations;  $v(t) \leftarrow \textit{GenAspectRep}(t, \theta^{(k-1)})$ 1:  $\theta^{(0)} \leftarrow Train(D; \theta^{init})$ 2: **for**  $(x, t, y) \in D$  **do**  $x' \leftarrow \textit{MaskWord}(x, s_a(x), s_m(x))$ 10:  $s_a(x) \leftarrow \emptyset$  $s_m(x) \leftarrow \emptyset$  $h(x') \leftarrow GenWordRep(x', v(t), \theta^{(k-1)})$ 5: end for 11:

$$h(x') = \{h(x_i')\}_{i=1}^N$$

Algorithm 1: Neural ASC Model Training with 6: for k=1,2...,K do Automatically Mined Attention Supervision Infor- $D^{(k)} \leftarrow \emptyset$ mation. **Input:** *D*: the initial training corpus;  $\theta^{init}$ : the initial model parameters; for  $(x, t, y) \in D$  do  $\epsilon_{\alpha}$ : the entropy threshold of attention weight distribution; K: the maximum number of training iterations;  $v(t) \leftarrow \textit{GenAspectRep}(t, \theta^{(k-1)})$ 1:  $\theta^{(0)} \leftarrow Train(D; \theta^{init})$ 2: **for**  $(x, t, y) \in D$  **do**  $x' \leftarrow MaskWord(x, s_a(x), s_m(x))$ 10:  $s_a(x) \leftarrow \emptyset$  $s_m(x) \leftarrow \emptyset$  $h(x') \leftarrow \textbf{GenWordRep}(x', v(t), \theta^{(k-1)})$ 5: end for 11:  $y_p, \alpha(x') \leftarrow \textbf{SentiPred}(h(x'), v(t), \theta^{(k-1)})$ 12:

(**Line 12**), where the word-level attention weight distribution  $\alpha(x') = \{\alpha(x_1'), \alpha(x_2'), ..., \alpha(x_N')\}$  subjecting to  $\sum_{i=1}^{N} \alpha(x_i') = 1$  is induced.

Algorithm 1: Neural ASC Model Training with 6: for k=1,2...,K do Automatically Mined Attention Supervision Infor- $D^{(k)} \leftarrow \emptyset$ mation. **Input:** *D*: the initial training corpus;  $\theta^{init}$ : the initial model parameters; for  $(x, t, y) \in D$  do  $\epsilon_{\alpha}$ : the entropy threshold of attention weight distribution; K: the maximum number of training iterations;  $v(t) \leftarrow \textit{GenAspectRep}(t, \theta^{(k-1)})$ 1:  $\theta^{(0)} \leftarrow Train(D; \theta^{init})$ 2: **for**  $(x, t, y) \in D$  **do**  $x' \leftarrow \textit{MaskWord}(x, s_a(x), s_m(x))$ 10:  $s_a(x) \leftarrow \emptyset$  $s_m(x) \leftarrow \emptyset$  $h(x') \leftarrow \textbf{GenWordRep}(x', v(t), \theta^{(k-1)})$ 5: end for 11:  $y_p, \alpha(x') \leftarrow SentiPred(h(x'), v(t), \theta^{(k-1)})$ 12:  $E(\alpha(x')) \leftarrow CalcEntropy(\alpha(x'))$ 13:

$$E(\alpha(x')) = -\sum_{i=1}^{N} \alpha(x_i') \log(\alpha(x_i'))$$

| Algorithm 1: Neural ASC Model Training with Automatically Mined Attention Supervision Infor-                                                                                   | , ,                                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| mation. Input: D: the initial training corpus;                                                                                                                                 | $D^{(k)} \leftarrow \emptyset$                                                 |
| $\theta^{init}$ : the initial model parameters; $\epsilon_{\alpha}$ : the entropy threshold of attention weight distribution; $K$ : the maximum number of training iterations; |                                                                                |
| 1: $\theta^{(0)} \leftarrow Train(D; \theta^{init})$                                                                                                                           | $v(t) \leftarrow \textbf{GenAspectRep}(t, \theta^{(k-1)})$                     |
| 2: for $(x, t, y) \in D$ do<br>3: $s_a(x) \leftarrow \emptyset$<br>4: $s_m(x) \leftarrow \emptyset$                                                                            | $x' \leftarrow MaskWord(x, s_a(x), s_m(x))$                                    |
| 5: end for 11:                                                                                                                                                                 | $h(x') \leftarrow \textbf{GenWordRep}(x', v(t), \theta^{(k-1)})$               |
| 12:                                                                                                                                                                            | $y_{p}, \alpha(x') \leftarrow \textbf{SentiPred}(h(x'), v(t), \theta^{(k-1)})$ |
| 13:                                                                                                                                                                            | $E(\alpha(x')) \leftarrow CalcEntropy(\alpha(x'))$                             |
| 14:                                                                                                                                                                            | if $E(\alpha(x')) < \epsilon_{\alpha}$ then                                    |
| 15:                                                                                                                                                                            | $m \leftarrow argmax_{1 \leq i \leq N} \ \alpha(x_i')$                         |
| 16:                                                                                                                                                                            | if $y_p == y$ then                                                             |
| 17:                                                                                                                                                                            | $s_a(x) \leftarrow s_a(x) \cup \{x_m'\}$                                       |
| 18:                                                                                                                                                                            | else                                                                           |
| 19:                                                                                                                                                                            | $s_m(x) \leftarrow s_m(x) \cup \{x_m'\}$                                       |
| 20:                                                                                                                                                                            | end if                                                                         |
| 21:                                                                                                                                                                            | end if                                                                         |

| Algorithm 1 : Neural ASC Model Training with                                                                                  | 6.        | for $k=1.2$ $K do$                                                           |
|-------------------------------------------------------------------------------------------------------------------------------|-----------|------------------------------------------------------------------------------|
| Automatically Mined Attention Supervision Infor-                                                                              | <b>U.</b> |                                                                              |
| mation.                                                                                                                       | 7:        | $D^{(k)} \leftarrow \emptyset$                                               |
| Input: D: the initial training corpus;                                                                                        | ٠.        |                                                                              |
| $\theta^{init}$ : the initial model parameters; $\epsilon_{\alpha}$ : the entropy threshold of attention weight distribution; | 8:        | for $(x, t, y) \in D$ do                                                     |
| K: the maximum number of training iterations;                                                                                 |           | ( ) ( ) ( )                                                                  |
|                                                                                                                               | 9:        | $v(t) \leftarrow GenAspectRep(t, \theta^{(k-1)})$                            |
| 2: for $(x, t, y) \in D$ do<br>3: $s_a(x) \leftarrow \emptyset$                                                               | Λ.        | $x' \leftarrow MaskWord(x, s_a(x), s_m(x))$                                  |
| 4: $s_m(x) \leftarrow \emptyset$                                                                                              | 0:        |                                                                              |
| 5: end for                                                                                                                    | 1:        | $h(x') \leftarrow \textbf{GenWordRep}(x', v(t), \theta^{(k-1)})$             |
|                                                                                                                               | _         | _ ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '                                      |
| 1                                                                                                                             | 2:        | $y_p, \alpha(x') \leftarrow \textbf{SentiPred}(h(x'), v(t), \theta^{(k-1)})$ |
| 1                                                                                                                             | 3:        | $E(\alpha(x')) \leftarrow CalcEntropy(\alpha(x'))$                           |
| 1                                                                                                                             | 4:        | if $E(\alpha(x')) < \epsilon_{\alpha}$ then                                  |
|                                                                                                                               | _         |                                                                              |
| <b>1</b>                                                                                                                      | 5:        | $m \leftarrow argmax_{1 \leq i \leq N} \ \alpha(x_i')$                       |
| 1                                                                                                                             | 6:        | if $y_p == y$ then                                                           |
| 1                                                                                                                             | 7:        | $s_a(x) \leftarrow s_a(x) \cup \{x_m'\}$                                     |
| 1                                                                                                                             | 8:        | else                                                                         |
| 1                                                                                                                             | 9:        | $s_m(x) \leftarrow s_m(x) \cup \{x_m'\}$                                     |
| 2                                                                                                                             | 20:       | end if                                                                       |
| 2                                                                                                                             | 21:       | end if                                                                       |
|                                                                                                                               |           | =(k)                                                                         |
| 2                                                                                                                             | 22:       | $D^{(k)} \leftarrow D^{(k)} \cup (x', t, y)$                                 |
| 2                                                                                                                             | 23:       | end for                                                                      |
| 2                                                                                                                             | 24:       | $\theta^{(k)} \leftarrow \textit{Train}(D^{(k)}; \theta^{(k-1)})$            |
| 2                                                                                                                             | 25:       | end for                                                                      |

#### Algorithm 1: Neural ASC Model Training with Automatically Mined Attention Supervision Information. **Input:** *D*: the initial training corpus; $\theta^{init}$ : the initial model parameters; $\epsilon_{\alpha}$ : the entropy threshold of attention weight distribution; K: the maximum number of training iterations; 1: $\theta^{(0)} \leftarrow Train(D; \theta^{init})$ 2: **for** $(x, t, y) \in D$ **do** $s_a(x) \leftarrow \emptyset$ 3: $s_m(x) \leftarrow \emptyset$ 5: end for <sup>5</sup> 6: **for** k = 1, 2..., K **do** $D^{(k)} \leftarrow \emptyset$ - 7: for $(x, t, y) \in D$ do 8: $v(t) \leftarrow \textit{GenAspectRep}(t, \theta^{(k-1)})$ 9: $x' \leftarrow \textit{MaskWord}(x, s_a(x), s_m(x))$ 10: $h(x') \leftarrow \textbf{GenWordRep}(x', v(t), \theta^{(k-1)})$ 11: $y_p, \alpha(x') \leftarrow \textbf{SentiPred}(h(x'), v(t), \theta^{(k-1)})$ 12: $E(\alpha(x')) \leftarrow CalcEntropy(\alpha(x'))$ 13: if $E(\alpha(x')) < \epsilon_{\alpha}$ then 14: 15: $m \leftarrow argmax_{1 \leq i \leq N} \alpha(x_i')$ if $y_p == y$ then 16: $s_a(x) \leftarrow s_a(x) \cup \{x'_m\}$ 17: 18: else $s_m(x) \leftarrow s_m(x) \cup \{x'_m\}$ 19: 20: end if 21: end if $D^{(k)} \leftarrow D^{(k)} \cup (x', t, y)$ 22: 23: end for $\theta^{(k)} \leftarrow \textit{Train}(D^{(k)}; \theta^{(k-1)})$ 24: **25: end for**

```
Algorithm 1: Neural ASC Model Training with
 Automatically Mined Attention Supervision Infor-
 mation.
 Input: D: the initial training corpus;
      \theta^{init}: the initial model parameters;
      \epsilon_{\alpha}: the entropy threshold of attention weight distribution;
      K: the maximum number of training iterations;
 1: \theta^{(0)} \leftarrow Train(D; \theta^{init})
 2: for (x, t, y) \in D do
         s_a(x) \leftarrow \emptyset
  3:
         s_m(x) \leftarrow \emptyset
 5: end for
<sup>5</sup> 6: for k = 1, 2..., K do
          D^{(k)} \leftarrow \emptyset
- 7:
8:
          for (x, t, y) \in D do
               v(t) \leftarrow \textit{GenAspectRep}(t, \theta^{(k-1)})
 9:
               x' \leftarrow \textit{MaskWord}(x, s_a(x), s_m(x))
10:
               h(x') \leftarrow \textbf{GenWordRep}(x', v(t), \theta^{(k-1)})
11:
               y_p, \alpha(x') \leftarrow SentiPred(h(x'), v(t), \theta^{(k-1)})
12:
13:
               E(\alpha(x')) \leftarrow CalcEntropy(\alpha(x'))
               if E(\alpha(x')) < \epsilon_{\alpha} then
14:
15:
                     m \leftarrow argmax_{1 \leq i \leq N} \alpha(x_i')
                     if y_p == y then
16:
                         s_a(x) \leftarrow s_a(x) \cup \{x_m'\}
17:
18:
                     else
                                                                           27: for (x, t, y) \in D do
                         s_m(x) \leftarrow s_m(x) \cup \{x'_m\}
19:
                                                                            28:
                                                                                            D_s \leftarrow D_s \cup (x, t, y, s_a(x), s_m(x))
20:
                     end if
21:
               end if
                                                                            29: end for
               D^{(k)} \leftarrow D^{(k)} \cup (x', t, y)
22:
                                                                            30: \theta \leftarrow Train(D_s)
23:
          end for
           \theta^{(k)} \leftarrow Train(D^{(k)}; \theta^{(k-1)})
24:
                                                                            Return:
25: end for
```

## Example

| Iter |     | Sentence |    |                        |       |                        |       |       |         |      |                       |     | Ans./Pred. | E(lpha(x')) | $x_m'$ |         |
|------|-----|----------|----|------------------------|-------|------------------------|-------|-------|---------|------|-----------------------|-----|------------|-------------|--------|---------|
| 1    | The | [place]  | is | small a                | nd cr | owded 1                | out t | he so | ervice  | is ( | quick                 |     |            | Neg / Neg   | 2.38   | small   |
| 2    | The | [place]  | is | $\langle mask \rangle$ | and   | crowded                | d but | the   | servic  | e i  | s qui                 | ick |            | Neg / Neg   | 2.59   | crowded |
| 3    | The | [place]  | is | $\langle mask \rangle$ | and   | $\langle mask \rangle$ | but   | the   | servic  | e is | s qui                 | ck  |            | Neg / Pos   | 2.66   | quick   |
| 4    | The | [place]  | is | $\langle mask \rangle$ | and   | $\langle mask \rangle$ | but   | the   | service | e is | s $\langle m \rangle$ | ask | ;> .       | Neg / Neg   | 3.07   | _       |

Table 2: The example of mining influential context words from the first training sentence in Table 1.  $E(\alpha(x'))$  denotes the entropy of the attention weight distribution  $\alpha(x')$ ,  $\epsilon_{\alpha}$  is entropy threshold set as 3.0, and  $x'_m$  indicates the context word with the maximum attention weight. Note that all extracted words are replaced with " $\langle mask \rangle$ "

# Model training with attention supervision information

Soft attention Regularizer:

$$\triangle(\alpha(s_a(x)\cup s_m(x)), \hat{\alpha}(s_a(x)\cup s_m(x)); \theta)$$

- ullet lpha(\*) : the model-induced
- $\hat{lpha}(*)$  : the expected attention weight distributions of words in  $s_a(x) \cup s_m(x)$
- $\Delta(\alpha(*),\hat{\alpha}(*);\theta)$  : Euclidean Distance style loss that penalize the disagreement

## Objective Function

$$egin{aligned} J(D; heta) &= -\sum_{(x,t,y)\in D} J(x,t,y; heta) \ &= \sum_{(x,t,y)\in D} d(y) \cdot \log d(x,t; heta), \end{aligned}$$

$$J_s(D_s; \theta) = -\sum_{(x,t,y)\in D_s} \{J(x,t,y;\theta) + \\ \gamma \triangle (\alpha(s_a(x) \cup s_m(x)), \hat{\alpha}(s_a(x) \cup s_m(x)); \theta)\},$$

#### Datasets

| Domain    | Dataset | #Pos | #Neg | #Neu |
|-----------|---------|------|------|------|
| LAPTOP    | Train   | 980  | 858  | 454  |
| LAPTOP    | Test    | 340  | 128  | 171  |
| REST      | Train   | 2159 | 800  | 632  |
| KESI      | Test    | 730  | 195  | 196  |
| TWITTER   | Train   | 1567 | 1563 | 3127 |
| 1 WII ILK | Test    | 174  | 174  | 346  |

Table 3: Datasets in our experiments. **#Pos**, **#Neg** and **#Neu** denotes the number of instances with Positive, Negative and Neutral sentiment, respectively.

## Training Details

- Used pre-trained GloVe vectors to initialize the word embeddings with vector dimension 300
- OOV words: randomly sampled embeddings from uniform distribution [-0.25, 0.25]
- Initialized the other model parameters uniformly between [-0.01, 0.01]
- Overfitting: **Dropout** strategy
- Optimizer: Adam with learning rate 0.001
- Empirically set K to 5, γ as 0.1 on LAPTOP data set, 0.5 on REST data set and 0.1 on TWITTER data set, respectively.

## Experiments



Figure 3: Effects of  $\epsilon_{\alpha}$  on the validation sets using MN(+AS).



Figure 4: Effects of  $\epsilon_{\alpha}$  on the validation sets using TNet-ATT(+AS).

#### **Overall Results**

| Model                  | LAP      | TOP      | RE       | ST             | TWITTER  |                |  |  |
|------------------------|----------|----------|----------|----------------|----------|----------------|--|--|
|                        | Macro-F1 | Accuracy | Macro-F1 | Accuracy       | Macro-F1 | Accuracy       |  |  |
| MN (Wang et al., 2018) | 62.89    | 68.90    | 64.34    | 75.30          | _        | _              |  |  |
| MN                     | 63.28    | 68.97    | 65.88    | 77.32          | 66.17    | 67.71          |  |  |
| MN(+KT)                | 63.31    | 68.95    | 65.86    | 77.33          | 66.18    | 67.78          |  |  |
| $MN(+AS_m)$            | 64.37    | 69.69    | 68.40    | 78.13          | 67.20    | 68.90          |  |  |
| $MN(+AS_a)$            | 64.61    | 69.95    | 68.59    | 78.23          | 67.47    | 69.17          |  |  |
| MN(+AS)                | 65.24**  | 70.53**  | 69.15**  | <b>78.75</b> * | 67.88**  | 69.64**        |  |  |
| TNet (Li et al., 2018) | 71.75    | 76.54    | 71.27    | 80.69          | 73.60    | 74.97          |  |  |
| TNet                   | 71.82    | 76.12    | 71.70    | 80.35          | 76.82    | 77.60          |  |  |
| TNet(+KT)              | 71.74    | 76.44    | 71.36    | 80.59          | 76.78    | 77.54          |  |  |
| TNet-ATT               | 71.21    | 76.06    | 71.15    | 80.32          | 76.53    | 77.46          |  |  |
| TNet-ATT(+KT)          | 71.44    | 76.06    | 71.01    | 80.50          | 76.58    | 77.46          |  |  |
| TNet-ATT( $+AS_m$ )    | 72.39    | 76.89    | 72.04    | 80.96          | 77.42    | 78.08          |  |  |
| $TNet-ATT(+AS_a)$      | 73.30    | 77.34    | 72.67    | 81.33          | 77.63    | 78.47          |  |  |
| TNet-ATT(+AS)          | 73.84**  | 77.62**  | 72.90**  | 81.53*         | 77.72**  | <b>78.61</b> * |  |  |

Table 4: Experimental results on various datasets. We directly cited the best experimental results of MN and TNet reported in (Wang et al., 2018; Li et al., 2018). \*\* and \* means significant at p < 0.01 and p < 0.05 over the baselines (MN, TNet) on each test set, respectively. Here we conducted 1,000 bootstrap tests (Koehn, 2004) to measure the significance in metric score differences.

## Case Study

| Model         |     | Sentence |       |      |       |        |    |       |    |      |        |      |      |  | Ans./Pred. |
|---------------|-----|----------|-------|------|-------|--------|----|-------|----|------|--------|------|------|--|------------|
| TNet-ATT      | The | [folding | chai  | r] i | was   | seated | at | was   | un | comf | ortabl | е.   |      |  | Neg / Neu  |
| TNet-ATT(+AS) | The | [folding | chai  | r] i | was   | seated | at | was   | un | comf | ortabl | е.   |      |  | Neg / Neg  |
| TNet-ATT      | The | [food] d | id ta | ke   | a few | extra  | mi | nutes |    | the  | cute   | wait | ters |  | Neu / Pos  |
| TNet-ATT(+AS) | The | [food] d | id ta | ke   | a few | extra  | mi | nutes |    | the  | cute   | wait | ters |  | Neu / Neu  |

Table 5: Two test cases predicted by TNet-ATT and TNet-ATT(+AS).