Dimension of a span of matrix powers

Let $A \in M_{n \times n}^C$ be a square matrix with a minimal polynomial of degree k. What would be $\dim(\operatorname{Span}\{I,A,A^2,A^3,\dots\})$? I think it's k but I'm not sure exactly how to prove it.

(linear-algebra)

edited Nov 5 '11 at 18:33

Bill Cook 8,405 6 23 asked Nov 5 '11 at 18:17

dan **36**

Wouldn't it be nice if the span you are interested in were isomorphic to $\mathbb{C}[X]/(minimal\ polynomial)$ Hmmm, let me see, how would we prove that... – Georges Elencwajg Nov 5 '11 at 18:27

feedback

2 Answers

Suppose that $c_0I_n+c_1A+c_2A^2+\cdots+c_{k-1}A^{k-1}=0$. Then if $f(x)=c_0+c_1x+c_2x^2+\cdots+c_{k-1}x^{k-1}$, we have f(A)=0. But the minimal polynomial has degree k>k-1. Therefore, f(x)=0 and so $c_0=\cdots=c_{k-1}=0$. This shows that the set $\{I_n,A,A^2,\cdots,A^{k-1}\}$ is linearly independent.

Now suppose A has minimal polynomial $g(x)=a_0+a_1x+\cdots+a_kx^k$. This means $A^k=a_k^{-1}(a_0\,I_n+\cdots+a_{k-1}A^{k-1})$ and in general $A^m=a_k^{-1}(a_0\,I_n+\cdots+a_{k-1}A^{k-1})A^{m-k}$ for all $m\geq k$. Thus powers of A bigger than A^{k-1} can always be replaced with lower powers. Thus $\{I_n,A,A^2,\cdots,A^{k-1}\}$ spans as well.

Therefore, the dimension of the span of powers of A is exactly the degree of its minimal polynomial.

Edit: To elaborate on the spanning arugment.

Suppose that $A^n = c_0 I_n + c_1 A + \cdots + c_\ell A^\ell$ with $c_\ell \neq 0$ and ℓ as small as possible. Then if $\ell \geq k$, we can write $A^\ell = a_k^{-1} (a_0 I_n + \cdots + a_{k-1} A^{k-1}) A^{\ell-k}$ and so $A^n = c_0 I_n + c_1 A + \cdots + c_{\ell-1} A^{\ell-1} + c_\ell a_k^{-1} (a_0 I_n + \cdots + a_{k-1} A^{k-1}) A^{\ell-k}$. We have expressed A^n using $I_n, A, \ldots, A^{\ell-1}$ so ℓ was not minimal (contradiction). Thus $\ell < k$.

edited Nov 5 '11 at 18:39

answered Nov 5 '11 at 18:32 Bill Cook

8,405 6 2

feedback

 $n \geq k$ as a linear combination of lower powers. On the other hand, it cannot be *less* than k because then there would be a non-trivial linear relation among $I, A, A^2, \ldots, A^{k-1}$, which would be a polynomial with p(A) = 0 of degree < k, contradicting the minimality of the minimal polynomial.

answered Nov 5 '11 at 18:28

Henning Makholm **47.6k** 3 59 123

feedback