

# EE2029: Introduction to Electrical Energy System AC Fundamentals

Lecturer: Dr. Sangit Sasidhar (elesang)

Department of Electrical and Computer Engineering

#### Why AC and not DC???

 Transformers allow easy transformation of voltage



 Break-even distance for high voltage direct current (HVDC)



#### Why a Sinusoidal Alternating Voltage?

- Easily generated using the synchronous generator
- Basic operations: +, -, x, division, differentiation, integration
  - These operations will result in another sinusoid of same frequency and shape
  - Any signal can be represented by a linear combination of sinusoidal waveforms (remember Fourier Series!!!)





#### Choice of Supply Frequency

- 50 Hz and 60 Hz
- Today :
  - 60 Hz in North America, Brazil and Japan (which also uses 50 Hz!!) etc
  - 50 Hz in other countries
- Exceptions:
  - 25 Hz Railways (Amtrak)
  - $16\frac{2}{3}$  Hz Railways
  - 400 Hz Oil rigs, ships and airplanes

- A too low frequency like 10 Hz or 20 Hz causes flicker
- A too high frequency
  - Increases cable and line impedance
  - Increases the hysteresis losses
  - Increases eddy current losses



#### Plot the following curves

• 20 cos(ωt-45°)

• 35 sin(ωt-135°)

• 141.2  $\cos(\omega t + 45^{\circ})$ 

• 12  $\sin(\omega t + 135^{\circ})$ 

# How do we represent AC Signals? SINUSOID - NOSINGLE VALUE

- It is desirable to have same form of equation for power in both a.c. and <u>d.c.</u> circuits mainly because of
  - Convenience
  - Consistence
- For a DC Circuit with a resistance R and voltage source V

$$T_{dc} = \frac{V_{dc}}{R} - T$$

$$P_{dc} = V_{dc} \cdot T_{dc} \Rightarrow P_{dc} = \frac{(V_{dc})^2}{R} - 2$$

## How do we represent AC Signals?





$$Vac = Vm Sinwt$$

$$\Rightarrow i(t) = Vm Sinwt$$

$$= (Vm) Sinwt - (3)$$

$$Pac = Vac \cdot i(t) = Vm Sinwt - (4)$$



Pavg = 
$$\left(\frac{Vm^2 + 0}{R} + 0\right)/2 = \frac{Vm^2}{2R}$$
  
Pavg =  $\frac{Vm}{\sqrt{2}}$ .  $\frac{Vm}{\sqrt{2}} = \frac{Vm}{\sqrt{2}}$ .  $\frac{Im}{\sqrt{2}}$ 

ROOT MEAN SQUARE OF A SINUSOID

#### RMS values in AC circuits

 The use of the RMS value gives us the DC equivalent AC power equation i.e.

- An AC voltage source's value is the RMS value by default
  - In Singapore, the voltage supply at households is mentioned as 230V/50Hz

$$V_{rms} = 230V$$
 $V_{rms} = J_{2}V_{rms} = J_{2}.230$ 
 $= 325V$ 

#### A Typical AC circuit Analysis



COMMON PARAMETER - FREQUENCY

PHASE AND AMPLITUDE CHANGE

#### Phasor Representation of a Sinusoid

- Time Function:  $v_1(t) = V_m \cos(\omega t + \theta_1)$
- Phasor:  $V_1 = V_1 \perp \theta_1$ , here  $V_1$  is the RMS value of the voltage





- Rotating Vector with
  - Length representing the rms value of the waveform
  - Angle representing the phase of the waveform
- The phasor for a sinusoid is a snapshot of the corresponding rotating vector at t=0 with its rms values
- Time domain signal is expressed as cosine function

#### Find and draw the phasors of the following curves

• 20 cos(ωt-45°)

• 35 sin(ωt-135°)

• 141.2  $\cos(\omega t + 45^{\circ})$ 

• 12  $\sin(\omega t + 135^{\circ})$ 

#### Phase Relationships between Sinusoids





Find and draw the time domain and the phasor of the 141.2  $\cos(\omega t-90^\circ)$ , 70.7  $\sin(\omega t-30^\circ)$  &100  $\cos(\omega t+30^\circ)$  curves on the same axis!!!

Time domain

Phasors!!!



#### Impedance - Complex Resistance

• DC: Resistance (R) = 
$$\frac{Voltage(V)}{Current(I)}$$

• AC: Impedance (Z) = 
$$\frac{Voltage\ Phasor(V)}{Current\ Phasor(I)}$$

## Time Phasor







| Element | Voltage | Current | Impedance |
|---------|---------|---------|-----------|
| R       |         |         |           |
| L       |         |         |           |









|   | i = C(dv) | /( <i>dt</i> ) |
|---|-----------|----------------|
| V | +         | c              |



### Complex Impedance

RL Load



RC Load



#### Series RLC Circuit

• Find the impedance of the following circuit. Draw the impedance diagram. What is the current if  $Z_L = Z_C$ ?



#### Series RLC Circuit



#### Voltage Phasors and KVL