1. Moment Generating Function

 $M_X(t) = E(e^{tx})$

continuous: $M_X(t) = \int_{-\infty}^{\infty} e^{tx} P_x(x) dx$

discrete:
$$M_X(t) = \sum_{t=0}^{\infty} e^{-t} Y_x(x) dx$$

$$\frac{dM_X(t)}{dt} = E(\frac{de^{tx}}{dt}) = E(xe^{tx}) \Rightarrow M_X^{(n)}(t) = E(x^n e^{tx})$$

Properties:

(a)
$$M_x(t) = (1 - p + pe^t)^n$$
 for binomial(n,p)

(b)
$$M_x(t) = E(\sum_{n=0}^{\infty} \frac{x^n t^n}{n!})$$
 according to Taylor Series $M_x'(t) = E(0 + x + x^2 t + \frac{x^3 t^2}{2!} + \dots) = E(\sum_{n=0}^{\infty} \frac{x^{n+1} t^n}{n!})$ $\Rightarrow M_x^{(k)}(t) = E(\sum_{n=0}^{\infty} \frac{x^{n+k} t^n}{n!})$

(c)
$$M_x^{(n)}(0) = E(X^n)$$

 $\Rightarrow VAR[x] = E[x^2] - E^2[x] = M_x''(0) - [M_x'(0)]^2$

(d)
$$M_x(t) = M_v(t) \Rightarrow XY$$
 has same distribution

(e)
$$M_r(0) = 1$$

(f)
$$M_{ax+b}(t) = M_x(at)e^{bt}$$
 Proof: $M_{ax+b}(t) = E(e^{t(ax+b)}) = E(e^{axt}e^{bt}) = E(e^{axt})e^{bt} = M_x(at)e^{bt}$

(g)
$$M_{X+Y}(bt) = M_X(t)M_Y(t)$$
 (X, Y independent)

2. Gama Function $\Gamma(n) = \int_0^\infty u^{n-1} e^{-u} du = (n-1)!$

1.
$$\int_0^\infty e^{-x} dx = -e^{-x} \Big|_0^\infty = 1$$

2.
$$\Gamma(n) = -\int_0^\infty x^{n-1} de^{-x}$$

$$= -(x^{n-1}e^{-x}|_0^{\infty} - \int_0^{\infty} e^{-x}(n-1)x^{n-1}dx)$$

$$= 0 + \int_0^\infty e^{-x} (n-1) x^{n-2} dx$$

= $(n-1) \int_0^\infty e^{-x} x^{n-2} dx$

$$=(n-1)\int_{0}^{\infty}e^{-x}x^{n-2}dx$$

 $=(n-1)\check{\Gamma}(n-1)$

Use Induction to prove the formula

3. Basic probability property

(a) Basic Properties

1.
$$P(E) = \frac{n(E)}{n(S)}, \in [0, 1]$$

2.
$$P(\phi) = 0$$

3.
$$A \subseteq B, P(A) \leq P(B)$$

4.
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

(b) Conditional Probability and Bayles Theorem

1.
$$P(A|B) = \frac{P(A \cup B)}{P(B)}$$

1.
$$P(A|B) = \frac{P(A \cup B)}{P(B)}$$

2. $P(A|B) = \frac{P(B|A)P(A)}{P(B)} = \frac{P(B|A)P(A)}{P(B|A)P(A) + P(B|A')P(A')}$

(c) PDF and CDF

PDF: probability distribution function $\Rightarrow P_X(x)$

CDF: cumulative distribution function $\Rightarrow F_X(x) =$ $\phi_X(x) = N_X(x) = P(X < x)$

(d) Expectation

1.
$$E(X) = \sum x P_X(x)$$
 or $\int_{-\infty}^{\infty} x P_X(x)$

2.
$$E(c) = c$$

3.
$$E(aX) = aE(X)$$

4.
$$E(X + Y) = E(X) + E(Y)$$

5.
$$E(X) = M'_{X}(0)$$

(e) Variance and Standard Deviation

1.
$$VAR(X) = E(X^2) - E^2(X) = \sum [(x - E(X))P_X(x)] = E[(x - \mu)^2] = \sigma^2$$

2.
$$VAR(c) = 0$$

2.
$$VAR(c) = 0$$

3.
$$VAR(aX) = a^2 VAR(x)$$

4.
$$VAR(X \pm Y) = VAR(X) + VAR(Y) \pm 2COV(x, y)$$
, $COV(x, y) = E(XY) - E(X)E(Y)$

(f) z-score

 $Z = \frac{x-\mu}{\sigma}$, measures the distance of x from expected value in standard units.

4. Discrete Distributions

(a) Binomial Distribution

DEF: n time Bernoulli trials combined. probability of success and fail is (p, 1-p). Probability of success remains the same through the trails. X is the r.v of success times.

Note as
$$X \sim B(n, p)$$

$$P_X(x) = \binom{n}{x} p^x (1-p)^{n-x}$$

$$M_X(t) = (1 - p + pe^t)^n$$

$$E(X) = np$$
, $VAR(X) = np(1-p)$

(b) Hyper Geometric Distribution

DEF: A sample of size n taken from a finite population of size N. The population has a subgroup of size $r \ge n$ that is of interest. x is the number of members of the subgroup taken.

Note as $X \sim H(N, n, r)$

$$P_X(x) = \frac{\binom{r}{x}\binom{N-r}{n-x}}{\binom{N}{n}}$$

$$E(X) = n\frac{r}{N}$$

$$E(X) = n \frac{r}{N}$$

$$VAR(X) = n \frac{r}{N} (1 - \frac{r}{N}) (\frac{N-n}{N-1})$$

 $VAR(X) = n \frac{r}{N} (1 - \frac{r}{N}) (\frac{N-n}{N-1})$ When $x \to \infty$, $H(N,n,r) \to B(n,\frac{r}{N})$. H samples without replacement while B samples with replacement.

(c) Poisson Process

DEF: model the number of random occurance of some phenomenon in specific unit of space or time.

$$P_X(x) = \frac{e^{-\lambda} \lambda^x}{x!}$$

 λ : average arrival in given time or space

$$E(X) = \lambda$$
, $VAR(X) = \lambda$

Poisson simulates Binomial when n is large. usually when $\lambda = np < 10$, we use poisson as an approximation of Binomial.

(d) Geometric Distribution

DEF: number of trials to get the first success in a sequence of Bernoulli trials where p is the success probability.

i. X is the r.v of number of total trials (x includes the first success)

$$P_X(x) = (1-p)^{x-1}p, x = 1, 2, 3...$$

$$E(X) = 1/p, VAR(X) = \frac{1-p}{p^2}$$

ii. X is the r.v of number of failed trials (x excludes the first success)

$$\begin{split} P_X(x) &= (1-p)^x p, x = 0, 1, 2, \dots \\ M_X(t) &= \frac{p}{1-e^t(1-p)} \\ E(X) &= \frac{1-p}{p}, VAR(X) = \frac{1-p}{p^2} \end{split}$$

$$M_X(t) = \frac{1}{1 - e^t(1 - t)}$$

$$E(X) = \frac{1-p}{p}, VAR(X) = \frac{1-p}{p^2}$$

(e) Negative Binomial Distribution

DEF: X is the r.v of number of trials need to observe the r^{th} success in a sequence of Bernoulli trails where p is the success probability.

$$P_X(x) = {x-1 \choose r-1} p^r (1-p)^{x-r}, x = r, r+1, r+2...$$

$$M_X(t) = (\frac{p}{1-e^t(1-p)})^r$$

$$M_X(t) = (\frac{p}{1 - e^t(1 - p)})$$

$$E(X) = \frac{r}{p}, VAR(X) = \frac{r(1-p)}{p^2}$$

Alternatively, X is the r.v of failures before the r^{th}

$$P_X(x) = {x+r-1 \choose r-1} p^r (1-p)^x, x = 0, 1, 2 \dots$$

$$M_X(t) = (\frac{1-p}{1-pe^t})^r$$

$$E(X) = \frac{r(1-p)}{p}, VAR(X) = \frac{r(1-p)}{p^2}$$

5. Chebychev's Theorem

$$P(\mu - k\sigma \le x \le \mu + k\sigma) \ge 1 - \frac{1}{k^2}$$

6. Continuous Random Variable

(a) Basic Properties

1.
$$pdf : f_X(x) \ge 0$$

1.
$$pdf: f_X(x) \ge 0$$

2. $cdf: F_X(x) = \int_{-\infty}^{\infty} f_X(x) dx$

3.
$$\int_{-\infty}^{\infty} f_X(x) dx = 1$$

4.
$$f_X(x) = \frac{d}{dx} F_X(x)$$

(b) Mean, Medium and Variance

mean:
$$\mu = E(x) = \int_{-\infty}^{\infty} x f_X(x) dx$$

mean: $\mu = E(x) = \int_{-\infty}^{\infty} x f_X(x) dx$ medium m: solve function $\int_{-\infty}^{m} f_X(x) dx = \frac{1}{2}$

$$VAR(X) = E(X^{2}) - E^{2}(X) = \int_{-\infty}^{\infty} [x - E(X)] f_{X}(x) dx$$

7. Continuous Distributions

(a) Uniform(rectangle) Distribution

$$f_X(x) = \frac{1}{b-a}, a \le x \le b$$

$$F_X(x) = \frac{x-a}{b-a}, a \le x \le b$$

$$F_X(x) = \frac{x-a}{b-a}, a \le x \le b$$

$$E(X) = \frac{a+b}{2}, VAR(X) = \frac{(b-a)^2}{12}$$

(b) Exponential Distribution

$$f_X(x) = \frac{1}{\theta} e^{-\frac{x}{\theta}}, x \ge 0$$

$$F_X(x) = 1 - e^{-\frac{x}{\theta}}, x \ge 0$$

$$M_X(t) = \frac{1}{1-\theta t}$$

$$E(X) = \theta, VAR(X) = \theta^2$$

Note as $X \sim exp(\theta)$

(c) Gamma Distribution

$$f_X(x) = \frac{1}{\Gamma(n)\theta^n} x^{n-1} e^{-\frac{x}{\theta}}, x \ge 0$$

$$M_X(t) = \frac{1}{(1-\theta t)^n}$$

$$E(X) = n\theta$$
, $VAR(X) = n\theta^2$

Note as
$$X \sim \Gamma(n, \theta)$$

Exponential dist. is a special case of Gamma dist where n = 1. Gamma Distribution can be viewed as a sum of Exponential dists.

$$X \sim \Gamma(n, \theta) \Leftrightarrow X = \sum_{i=1}^{n} X_i, X_i \sim exp(\theta)$$