Bipartite graphs: matchings, Hall's Theorem

A graph G = (V, E) is bipartite if its vertex set V can be partitioned into two disjoint subsets L and R, such that every edge has one endpoint in L, and the other – in R.

Bipartite graph notation: G=(L,R,E)

Are these graphs bipartite?

The graph G_1 is *bipartite*, because we can partition its vertex set into $L = \{1, 2, 4, 6\}$ and $R = \{3, 5, 7\}$, and then each edge will have one endpoint in L and the other endpoint in R.

The graph G_2 is *not bipartite*. Consider vertices 1, 3 and 4. No matter how we partition the vertices of this graph into two sets L and R, two of the three vertices 1, 3 and 4 will have to belong to the same set. But these vertices are connected by an edge, so we would have an edge inside L or inside R, which contradicts the definition of bipartite graphs.

Theorem: A graph G is bipartite if and only if it does not contain any cycle of odd length.

Proof:

 (\Rightarrow) Suppose G = (L, R, E) is bipartite, let's show that G does not contain any cycle of odd length.

Let $v_0, v_1, ..., v_{k-1}, v_k = v_0$ be a cycle in G. Suppose $v_0 \in L$. Then $v_1 \in R$, since $\{v_0, v_1\} \in E$. Then $v_2 \in L$, since $\{v_1, v_2\}$ $\in E$. Continuing this way, we see that if i is odd, then $v_i \in R$, and if i is even then $v_i \in L$. Thus, since $v_k = v_0 \in L$, this implies that k is even, and thus the cycle is of even length.

Required EC

Proof (cont.):

(⇐) Suppose G does not contain any cycle of odd length, let's prove that G is bipartite.

Pick any vertex u_0 . For every vertex $v \in V$, let p_v be any path from u_0 to v, and let d_v be its length. Set $L = \{v \in V \mid d_v \text{ is even}\}$ and let $R = \{v \in V \mid d_v \text{ is odd}\}$. Clearly $V = L \cup R$ is a partition of V. We now show that (L, R, E) is bipartite.

Proof (cont.):

If (L, R, E) is not bipartite, then there is some edge $\{u, v\} \in E$ such that both $u, v \in L$ or both $u, v \in R$. In either case, there is a closed walk in G given by $p_u, \{u, v\}, p_v$ (from u_0 to u, then u to v, then v to u_0), whose total length is $d_u + 1 + d_v$, which is odd. Since G has a closed walk of odd length, then G also has a cycle of odd length. This is a contradiction.

Thus G = (L, R, E) is bipartite.

(**Note**) Closed walk - sequence of vertices and edges where the first vertex is also the last

Cycle - closed walk where all vertices are different (except for first/last)

Example: L - set of boys, R - set of girls, each edge (x, y) represents a pair x, y that like each other.

If G has a perfect matching, this means that we can marry all boys and girls happily, with everyone getting a partner they actually like.

G = (L, R, E), where |L| = |R|

A *perfect matching* in such a graph is a set M of edges such that no two edges in M share an endpoint and every vertex has an edge that belongs to M.

Does this graph have a perfect matching?

This graph has a perfect matching. $M=\{(1,b), (2,c), (3,e), (4,a), (5,d)\}$

Does this graph has a perfect matching?

This graph does not have a perfect matching.

Explain why

Hall's Theorem:

A bipartite graph G = (L, R, E) with |L| = |R| has a perfect matching if and only if each set $X \subseteq L$ satisfies $|N(X)| \ge |X|$, where N(X) is the set of neighbors of X.

Philip Hall was an English mathematician (11 April 1904 – 30 December 1982).

Tell whether the following graph has a perfect matching. Justify your answer

Perfect matching (a,j) (d,f) (b,g) (c,h) (e,i)

Tell whether the following graph has a perfect matching. Justify your answer

No perfect matching.

$$X=\{b,c,e\} \ge N(X)=\{g,i\}$$

 $|X|=3, |N(X)|=2$
 $2=|N(X)| |X|=3$

Example

Determine, if the graph below is bipartite, and if yes, whether it has a perfect matching.

Example

Determine, if the graph below is bipartite, and if yes, whether it has a perfect matching.

This graph is bipartite

$$L = \{a, c, h, j, g, I\}; R = \{b, d, f, e, i, k\}$$

Example

Determine, if the graph below is bipartite, and if yes, whether it has a perfect matching.

No perfect matching.

Let $X = \{a, c, j, h\}$. Then $N(X) = \{b, d, f\}$. So |N(X)| < |X|.

Hall's Theorem: A bipartite graph G = (L, R, E) with |L| = |R| has a perfect matching if and only if each set $X \subseteq L$ satisfies $|N(X)| \ge |X|$, where N(X) is the set of neighbors of X.

Proof: (\Rightarrow) Suppose that G has a perfect matching M and pick any set X \subseteq L. Denote by M(X) the set of vertices matched to those in X via the edges in M. Recall that we match only neighbors, so $|N(X)| \ge |M(X)| = |X|$, and $|N(X)| \ge |X|$.

(\Leftarrow) Suppose that G = (L, R, E) is a bipartite graph with |L| = |R| such that each set X ⊆ L satisfies |N(X)| \geq |X| (*). Then prove that G has a perfect matching.

Prove by induction on n = |L| = |R|.

Base case: n = 1 - then L and R have each just one vertex and $N(L) \ge |L| = 1$, so these vertices must be connected by an edge. Thus this graph has a perfect matching, consisting of just this one edge.

Inductive step: fix some n > 1 and suppose that (*) holds for all bipartite graphs with fewer than n vertices in each partition (so (*) holds for all bipartite graphs with fewer than n vertices both in L and V).

Consider any graph G = (L, R, E) with |L| = |R| = n that satisfies $|N(X)| \ge |X|$ for each $X \subseteq L$. Using the inductive assumption, we want to show that there is a perfect matching in G.

Case 1: $|N(X)| \ge |X| + 1$ for all $X \subset L$.

Chose an arbitrary edge $(x, y) \in E$. Let G' = (L', R', E') be obtained from G by removing x and y. Then, for any $X \subseteq L'$, we have

$$|N_{G'}(X)| \ge |N_G(X)| - 1 \ge (|X| + 1) - 1 = |X|,$$

Since L' has fewer than n vertices and $|N_{G'}(X)| \ge |X|$, the inductive assumption implies that G' has a perfect matching.

Let's call this matching M'. By adding (x, y) to M' we obtain a perfect matching in M, completing the proof for this case.

Case 2: |N(X)| = |X| for some $X \subset L$. Introduce the following notations:

$$Y = N_G(X)$$
 $H = (X, Y, F)$
 $X' = L - X$
 $Y' = R - Y$
 $H' = (X', Y', F')$

where F is the set of edges between X and Y and F' is the set of edges between X' and Y'.

Note that graphs H and H' have equal size partitions, namely |X| = |Y| and |X'| = |Y'|.

We will argue that each of them must have a perfect matching and then we will combine these matchings into one.

Case 2(cont.): Let's start with H. The key property of H is that it inherits all edges of G that have an endpoint in X, because of the way Y is defined.

For any $Z \subseteq X$, by the definition of H we have

$$N_H(Z) = N_G(Z)$$
, so $|N_H(Z)| = |N_G(Z)| \ge |Z|$.

So H has fewer vertices than G and $|N_H(Z)| \ge |Z|$, so from the inductive assumption we obtain that H has a perfect matching. Let's call this matching Q.

What about H'?

Let $Z \subseteq X'$. We consider the set $Z \cup X$. We have that $|N_G(Z \cup X)| \ge |Z \cup X|$.

Further, $N_G(Z \cup X) = Y \cup N_H$, (Z), and these two sets are actually disjoint. Putting this together, we get

$$|Y| + |N_{H'}(Z)| = |N_G(Z \cup X)| \ge |Z \cup X| = |Z| + |X|.$$

 $|Y| + |N_{H},(Z)| \ge |Z| + |X|.$ Since we have |Y| = |X|, this gives us $|N_{H},(Z)| \ge |Z|.$

So we showed that $|N_H,(Z)| \ge |Z|$ holds for all $Z \subseteq X'$, which, using the inductive assumption implies that H' has a perfect matching, say Q'. Joining these two matchings together, that is letting $M = Q \cup Q'$, we obtain that M is a perfect matching in G, proving the inductive claim.

Prove or disprove: "If a bipartite graph G has a Hamiltonian cycle, then it has a perfect matching."

Prove or disprove: "If a bipartite graph G has a Hamiltonian cycle, then it has a perfect matching."

Proof: Let $H = v_1 v_2 ... v_n v_1$ be a Hamiltonian cycle. Consider the set of edges M, that consists of every second edge from H: $\{v_1, v_2, v_3, v_4, ..., v_{n-1}, v_n\}$. Every vertex of G is covered by M, and no two edges of M share an endpoint.

