PATENT ABSTRACTS OF JAPAN

(11) Publication number:

10-228620

(43) Date of publication of application: 25.08.1998

(51)Int.CI.

G11B 5/66 G11B 5/852

(21)Application number: 09-030523

(71)Applicant : NEC CORP

(22)Date of filing:

14.02.1997

(72)Inventor: TSUBOI SHINZO

NORIHASHI HIROTAKA

(54) PERPENDICULAR MAGNETIC RECORDING MEDIUM

(57) Abstract:

PROBLEM TO BE SOLVED: To improve noise characteristics and envelope characteristics in recording and reproducing and to improve recording and reproducing characteristics with high recording density. SOLUTION: This perpendicular magnetic recording medium 10 consists of a first soft magnetic film 12 having 1 to 100Oe coercive force, a second soft magnetic film 14 comprising a Sendust film and a perpendicular magnetization film 16 successively formed in this order on a substrate 18. By forming the soft magnetic film 12 having about 1 to 100Oe coercive force between the substrate 18 and the second soft magnetic film 14, magnetic domains in the soft magnetic film 14 hardly move, which improves noise characteristics. By forming oxide films 20, 22, on and under the soft magnetic film 14, fluctuation in the compsn. or distribution of the compsn. of FeSiAl can be suppressed.

LEGAL STATUS

[Date of request for examination]

14.02.1997

[Date of sending the examiner's decision of

03.08.1999

rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or

application converted registration]
[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

.

.

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平10-228620

(43)公開日 平成10年(1998) 8月25日

(51) Int.Cl.⁶

識別記号

FΙ

G11B 5/66

G11B 5/66

5/852

Α

審査請求 有 請求項の数6 OL (全 12 頁)

(21)出願番号

特願平9-30523

(71)出願人 000004237

日本電気株式会社

東京都港区芝五丁月7番1号

(22)出願日 平成9年(1997)2月14日

5/852

(72)発明者 坪井 眞三

東京都港区芝五丁目7番1号 日本電気株

式会社内

(72)発明者 法橋 宏高

東京都港区芝五丁目7番1号 日本電気株

式会社内

(74)代理人 弁理士 高橋 勇

(54) 【発明の名称】 垂直磁気記録媒体

(57)【要約】

【課題】 記録再生時のノイズ特性及びエンベロープ特性、並びに高記録密度での記録再生特性を向上させる。 【解決手段】 本発明の垂直磁気記録媒体10は、1~1000eの保磁力を有する第一の軟磁性膜12と、センダスト膜からなる第二の軟磁性膜14と、垂直磁化膜16とがこの順に基板18上に形成されたものである。 基板18と第二の軟磁性膜14との間に、保磁力が1~1000e程度の軟磁性膜14との間に、保磁力が1~1000e程度の軟磁性膜12を挟むことにより、軟磁性膜14の磁区が動きづらくなるので、ノイズ特性が向上する。また、軟磁性膜14の上下に酸化膜20,22を形成することにより、FeSiAIの組成変動又は組成分布を抑制することができる。

I. •

【特許請求の範囲】

【請求項1】 1~1000eの保磁力を有する第一の 軟磁性膜と、センダスト膜からなる第二の軟磁性膜と、 垂直磁化膜とがこの順に基板上に形成された、垂直磁気 記録媒体。

【請求項2】 前記基板がAl合金基板であり、前記第一の軟磁性膜が前記Al合金基板上に形成されたNiP膜である、請求項1記載の垂直磁気記録媒体。

【請求項3】 前記第一の軟磁性膜と前記第二の軟磁性膜との間にCr膜が介挿された、請求項1又は2記載の 10 垂直磁気記録媒体。

【請求項4】 前記第二の軟磁性膜の上下にそれぞれ酸 化膜が介揮された、請求項1,2又は3記載の垂直磁気 記録媒体

【請求項5】 前記垂直磁化膜の直下にColx Crx 膜 $(0.25 \le x \le 0.60)$ からなる垂直下地膜が介挿された、請求項1,2,3 又は4 記載の垂直磁気記録 媒体。

【請求項6】 前記垂直磁化膜の直下に85 a t %以上のCoCrを含む垂直下地膜が介挿された、請求項5記 20 載の垂直磁気記録媒体。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、磁気テープや磁気 ディスク等として用いられる垂直磁気記録媒体に関す る。

[0002]

【従来の技術】近年、パーソナルコンピュータやワークステーションの進歩に伴うハードディスクドライブの大容量化及び小型化により、磁気ディスクは更なる高面密度化が望まれている。しかし、現在広く普及している長手記録方式で高密度化を実現しようとすると、記録ビットの微細化に伴う記録磁化の熱揺らぎの問題や、記録へッドの記録能力を超えかねない高保磁力化の問題が発生する。そこで、これらの問題を解決しつつ面記録密度を大幅に向上できる手段として、垂直記録方式が検討されている。これを実現する垂直磁気記録媒体の一つとして、高透磁率の軟磁性膜と高い垂直異方性の垂直磁化膜とからなる垂直2層媒体がある。

【0003】図21は、このような垂直磁気記録媒体の 40 従来例を示す概略断面図である。

【0004】この垂直磁気記録媒体50は、軟磁性膜 (裏打ち層)52及び垂直磁化膜54がこの順に基板5 6上に形成されたものである。例えば、軟磁性膜52と してはNiFe膜、垂直磁化膜54としてはCoCr系 合金膜が用いられる(日本応用磁気学会誌、Vol. 8, Nol, 1984, pl7)。

【0005】しかし、NiFeからなる軟磁性膜52とCoCrからなる垂直磁化膜54とを形成したときに、垂直磁化膜54の結晶配向度の低下が発生する。そこ

で、これを防ぐために、軟磁性膜52としてセンダスト膜(FeSiAl合金)を用いたものが報告されている (特開昭57-36435号公報)。

[0006]

【発明が解決しようとする課題】 しかしながら、このようなセンダスト膜を用いた場合は、新たに以下の問題が 生ずる。

【0007】第1の問題は、記録再生の際のノイズ特性が悪い点である。その理由は、センダスト軟磁性膜の磁区ができやすく、かつ、その磁区が動きやすいためである。

【0008】第2の問題は、記録再生の際のエンベロープ特性が悪い点である。その理由は、センダスト膜の組成変動又は組成分布が大きいため、円周方向での磁気特性のバラツキが非常に大きくなるためである。

【0009】第3の問題は、高記録密度での記録再生特性が悪い点である。その理由は、センダスト膜の軟磁気特性は十分とはいえない上に、センダスト膜上に成膜した垂直磁化膜は配向性が悪いためである。

[0010]

【発明の目的】本発明の目的は、記録再生時のノイズ特性及びエンベロープ特性、並びに高記録密度での記録再生特性を向上させた、垂直磁気記録媒体を提供することにある。

[0011]

【課題を解決するための手段】請求項1記載の垂直磁気記録媒体は、1~1000eの保磁力を有する第一の軟磁性膜と、センダスト膜(FeSiAI膜)からなる第二の軟磁性膜と、垂直磁化膜とがこの順に基板上に形成されたものである。この第一の軟磁性膜により、第二の軟磁性膜の磁区が動きにくくなる。

【0012】請求項2記載の垂直磁気記録媒体は、請求項1記載の垂直磁気記録媒体において、前記基板がAI (アルミニウム)合金基板であり、前記第一の軟磁性膜が前記AI合金基板上に形成されたNiP(ニッケル・リン)膜であるものである。以下、これを「NiP/AI合金基板」と示す。このNiP/AI合金基板を加熱処理し帯磁させることにより、NiP膜に1~1000eの保磁力を付与できる。

【0013】請求項3記載の垂直磁気記録媒体は、請求項1又は2記載の垂直磁気記録媒体において、前記第一の軟磁性膜と前記第二の軟磁性膜との間にCr(クロム)膜が介挿されたものである。このCr膜により、第一の軟磁性膜と第二の軟磁性膜との付着力が増す。

【0014】請求項4記載の垂直磁気記録媒体は、請求項1,2又は3記載の垂直磁気記録媒体において、前記第二の軟磁性膜の上下にそれぞれ酸化膜が介挿されたものである。この酸化膜により、第二の軟磁性膜の組成変動又は組成分布が抑制される。

【0015】請求項5記載の垂直磁気記録媒体は、請求

3

【0016】請求項6記載の垂直磁気記録媒体は、請求項1,2,3又は4記載の垂直磁気記録媒体において、前記垂直磁化膜の直下に85at%以上のCoCrを含む垂直下地膜が介揮されたものである。この垂直下地膜により、垂直磁化膜の垂直配向性が向上する。

[0017]

【発明の実施の形態】図1は、本発明に係る垂直磁気記録媒体の一実施形態を示す概略断面図である。

【0018】本実施形態に係る垂直磁気記録媒体10は、1~1000eの保磁力を有する第一の軟磁性膜12と、センダスト膜からなる第二の軟磁性膜14と、垂直磁化膜16とがこの順に基板18上に形成されたものである。基板18と第二の軟磁性膜14との間に、保磁力が1~1000e程度の軟磁性膜12を挟むことにより、軟磁性膜14の磁区が動きづらくなるので、ノイズ 20特性が向上する。

【0019】また、軟磁性膜14の上下に酸化膜20, 22を形成することにより、FeSiAlの組成変動又 は組成分布を抑制することができる。

【0020】更に、垂直磁化膜 16の直下に、高C r 濃度のC o i x と C x 膜 (0. $25 \le x \le 0$. 60) からなる垂直下地膜 24 を形成することにより、垂直磁化膜 16 の垂直配向性を著しく向上させることができる。

【0021】以下に、本発明の実施例を示す。以下、垂 直磁気記録媒体を単に「媒体」、本発明に係る垂直磁気 30 記録媒体を「本発明媒体」、従来の垂直磁気記録媒体を 「従来媒体」と呼ぶことにする。

[0022]

【実施例1】2. 5インチのガラス基板上に保磁力20 OeのNiP軟磁性膜をメッキ法により5μm作製した。次に、スパッタ法により、6インチφのFe83Si II.6 Λ 15.4 (a t %) ターゲットを用いて、センダス ト膜を0. 1~5. 0μm成膜した。成膜条件は、初期 真空度5×10-7mTorrにおいて、投入電力0. 5 kW、アルゴンガス圧4mTorr、成膜速度3nm/ secとした。続いて、この媒体を400℃で1時間アニールした。

【0023】アニール後のセンダスト膜の保磁力のセンダスト膜厚依存性を図2に示す。比較のために、2.5インチのガラス基板上にセンダスト膜を直接形成し、アニールした従来媒体についても合わせて示す。これより、センダスト膜の下層にあるNiP軟磁性膜の影響により、本発明媒体は従来媒体よりも軟磁気特性が優れていることがわかる。

【0024】また、保磁力200eのNiPとセングス 50 が小さく、ノイズ特性が非常に優れていることがわか

【0026】図3に媒体ノイズの記録密度依存性を示す。従来媒体Bに比べて、本発明媒体Aの媒体ノイズが小さく、ノイズ特性が非常に優れていることがわかる。つまり、保磁力200eのNiP軟磁性層の存在により、センダスト膜の磁区の不安定性が抑制され、低ノイズ化された。

【0.027】図4に再生出力信号の記録密度依存性を示す。本発明媒体Aと従来媒体Bは同等の特性を示す。

【0028】図5に媒体S/Nの記録密度依存性を示す。これより、本発明媒体は、従来媒体に比較して全記録密度において媒体S/Nが2~3dB良好であり、高密度対応の磁気ディスク媒体として優れていることがわかる。したがって、本発明媒体を用いることにより、高記録密度の実現が容易となる。

【0029】なお、図2に示したセンダスト膜厚0.1~ 3μ mの媒体についても、上記のセンダスト膜厚 5μ mの場合と同様の結果が得られた。つまり、本発明媒体によれば、従来媒体に比べての媒体ノイズが小さく、媒体S/Nが優れているので、高密度記録の実現が容易となった。

[0030]

【0031】図6に媒体ノイズの記録密度依存性を示す。本発明媒体Cは、従来媒体Dに比べて、媒体ノイズが小さく ノイズ特性が非常に優れていることがわか

る。つまり、保磁力 I O O O e の N i P 軟酸性層の存在 により、センダスト膜の酸区の不安定性が抑制され、低 ノイズ化されたことがわかる。

【0032】なお、両媒体の出力の記録密度依存性は、 実施例1と同様に全く差がなかった。このことから、保 磁力1000cのNiP軟磁性膜を有する本発明媒体 は、再生出力を維持したままで媒体ノイズを抑制できる 働きを持ち、高密度対応の磁気ディスクとして非常に優 れていることがわかった。

[0033]

【実施例3】3.5インチのNiP/Al合金基板を350℃でアニールして帯磁させたところ、保磁力は40Oeとなった。この基板上に、実施例2と全く同様にしてセンダスト膜及び垂直磁化膜を成膜した。このようにして得られた本発明媒体を媒体Eとする。比較例として、3.5インチのNiP/Al合金基板上に、媒体Eを作製したのと同じ条件で、センダスト膜、垂直磁化膜を順次成膜した。このようにして得られた従来媒体を媒体Fとする。

【0034】媒体E及び媒体Fを実施例1と同様にして、記録再生特性を評価した。図7に媒体ノイズの記録密度依存性を示す。記録密度100kFRPI以上で従来の媒体Fの媒体ノイズが急激に大きくなる。これに対し、本発明の媒体Eの媒体ノイズは、媒体Fに比べて低減されていることがわかる。

【0035】本実施例ではNiP/Al合金基板を35 0℃でアニールして保磁力400eの軟磁性膜として利 用したが、250~500℃の間でアニール温度を変化 させても同様の結果が得られた。

[0036]

【0037】本発明媒体G及び従来媒体Hの付着力を測定した。その結果、媒体Gの付着力は110MPaであ 40 り、媒体Hの付着力は40MPaであった。つまり、Cr密着層により、付着力が極めて向上していることがわかる。したがって、本発明媒体のセンダスト膜と軟磁性膜(この場合、Fe膜)との間に、Cr密着層を設ける構造により、垂直磁気記録媒体の機械的耐久性が大きく向上した。

【0038】また、これらの媒体を実施例1と同様にして、記録再生特性を測定した結果を図8に示す。本発明 媒体Gの媒体ノイズは、全記録密度において、従来媒体 Hに比べて小さくなっていることがわかる。したがっ て、本発明媒体は機械的耐久性が上がるとともに優れた 記録再生特性を示した。

[0039]

【実施例5】3.5インチのNiP/Al合金基板上に、保磁力700eのFeCo軟磁性膜をスパッタ法により 1μ m作製した。このNi軟磁性膜上に、Cr膜を0.2 μ m成膜した後、センダスト膜 1μ mを実施例1と同様に作製した。このようにして作製した本発明媒体を媒体Iとした。また、比較用として、Cr膜をつけずに、NiP/Al合金基板上に直接センダスト膜 1μ mを成膜した後、同様にして従来媒体Jを作製した。

【0040】本発明媒体「及び従来媒体」の付着力を測定した。その結果、媒体「の付着力は105MPaであり、媒体」の付着力は25MPaであった。つまり、Cr密着層により、付着力が大きく向上していることがわかる。したがって、本発明のセンダスト膜と軟磁性膜(この場合、FeCo膜)の間に、Cr密着層をもうける構造により、媒体の機械的耐久性が大きく向上することが明らかになった。

【0041】また、これらの媒体を実施例1と同様にして、記録再生特性を測定した結果を図9に示す。本発明媒体Iの媒体ノイズは、全記録密度において、従来媒体」に比べて小さくなっていることがわかる。したがって、本発明媒体は、機械的耐久性が上がるとともに優れた記録再生特性を示す。

【0042】本実施例では1μmのFeCo軟磁性膜を 用いた結果を示したが、Cr密着層を用いれば、NiP 軟磁性膜等やアニールしたNiP基板でも同様に、密着 力が向上するとともに記録再生特性が向上する。

30 [0043]

【実施例6】3.5インチのNiP/Al合金基板上に、保磁力1OeのFeSi軟磁性膜をスパッタ法により0.5 μ m作製した。このFeSi軟磁性膜上に、Cr膜を0.1 μ m、Al2O3膜を0.2 μ m、センダスト膜を0.5 μ m、Al2O3膜を0.2 μ mを順次成膜して作製した本発明媒体を媒体Kとした。比較用として、同じ条件で基板上に直接センダスト膜を0.5 μ m成膜した従来媒体を媒体Lとした。なお、媒体K及び媒体Lはセンダスト膜の軟磁気特性を出すために、400℃で1時間アニールした。さらに、同様にして300℃、1時間アニールして本発明媒体M及び従来媒体Nを作製した。

【0044】得られた媒体のセンダスト膜の組成分析を行った結果を図10及び図11に示す。本発明媒体の媒体K及び媒体Mはターゲット組成からのずれが小さいのに対し、従来媒体の媒体L及び媒体Nはターゲット組成からのずれが非常に大きい。これは、酸化膜(この場合Al2O3膜)がないと、アニール中に原子の移動が活発になり、基板側へ又は基板側から移動することにより、組成が変わっていくためと考えられる。本発明媒体

7

では、センダスト膜の上下に安定な酸化膜があるので、 組成変動がほとんど起こらない。したがって、センダス ト膜の上下に酸化膜を成膜した後、垂直磁化膜を積層し た本発明媒体は安定した記録再生特性を示す。

[0045]

【0046】得られた媒体のセンダスト膜の組成分析の 分布を測定した。図12は本発明媒体〇の円周方向、図 13は従来媒体Pの円周方向、図14は本発明媒体Oの 半径方向、図15は従来媒体Pの半径方向における組成 分布を示す。円周方向は90度おきに4点、半径方向に 4点測定した結果である。本発明媒体の媒体Oは組成分 20 布が小さいのに対し、従来媒体Pは組成分布が非常に大 きい。これは酸化膜(この場合SiOz膜)がないと、 アニール中に原子の移動が活発になり、基板側に又は基 板側から原子が移動するためと考えられる。(センダス ト膜上に垂直磁化膜がある場合は垂直磁化膜の方向にも 移動する。) また、その移動もランダムであるため部分 的な組成変動が大きい。これに対して、センダスト膜の 上下に安定な酸化膜がある本発明媒体では組成変動がほ とんど起こらない。したがって、センダスト膜の上下に 酸化膜を成膜した後、垂直磁化膜を積層した本発明媒体 30 は安定した記録再生特性を示す。

【0047】本実施例ではCr密着層がある場合の結果を示したが、Cr密着層がなくても同様の効果が得られる。

[0048]

【実施例8】2.5インチのガラス基板上に、保磁力15OeのFeCo軟磁性膜をスパッタ法により0.5 μm作製した。このFeCo軟磁性膜上に、Al2O3膜を0.2 μm、センダスト膜を0.5 μm、Al2O3膜を0.2 μmを順次成膜して作製した本発明媒体を媒体Qとした。比較用として、同じ条件で基板上に直接センダスト膜を0.5 μm成膜した従来媒体を媒体Rとした。なお、媒体Q及び媒体Rは450℃で15時間アニールした後、実施例1と同様にして垂直磁化膜を100nm成膜した。

【0049】これらの媒体を実施例1と同様にして、記録再生特性の評価を行った。図16に、媒体Q及び媒体Rのエンベロープ特性を示す。従来媒体Rのエンベロープ特性が悪いのに対し、本発明媒体Qはエンベロープ特性が非常によいことがわかる。従来媒体Rはセンダスト 50

膜の組成変動及び組成分布が大きいため、エンベロープ 特性が悪いのに対し、本発明媒体Qは酸化膜(この場合 はA 12 O3 膜)の存在により、センダスト膜の組成変 動及び組成分布が抑制されるため、エンベロープ特性が 大きく向上した。

[0050]

【実施例9】 2. 5 インチのガラス基板上に、保磁力3 O e の F e C o 軟磁性膜をスパッタ法により 0. 5 μ m 作製した。この F e C o 軟磁性膜上に、A 1 $_2$ O 3 膜を 1 μ m、センダスト膜を 0. 1 μ m、A 1 $_2$ O 3 膜を 1 μ mを順次成膜して作製した本発明媒体を媒体S とした。比較用として、同じ条件で基板上に直接センダスト膜を 1 μ m成膜した従来媒体を媒体Tとした。なお、媒体S及び媒体Tは軟磁気特性を向上させるために、35 0 ∞ で 1 時間アニールした。同様にして、450 ∞ 1 時間のアニールをすることにより、本発明媒体U及び従来媒体Vを作製した。

【0051】これらの媒体の円周方向の磁気特性の変化をディスク半径25mm位置で、円周方向に1度ずつ変化させながら測定した。図17に、本発明媒体S及び従来媒体Tについて円周方向の保磁力の変化を示す。図18に、本発明媒体U及び従来媒体Vについて円周方向の保磁力の変化を示す。

【0052】従来媒体T及び媒体Vは組成変動及び組成分布が大きいため、円周方向の保磁力の変化が非常に激しいのに対し、本発明媒体S及び媒体Uは組成変動及び組成分布が抑制されるために、円周方向の保磁力の変化が非常に小さくなっている。つまり、磁気特性のばらつきの少ないセンダスト膜を用いて本発明媒体を作製することにより、再生出力や媒体ノイズなどの特性ばらつきを低減することができる。

[0053]

【実施例10】3. 54ンチのNiP/Al合金基板をランプ加熱することにより、NiPを保磁力35Оeに 帯磁させた。この基板上にSiO₂ 膜 2μ m、センダスト膜 0.5μ m、SiО₂ 膜 2μ m、Со65 С 735 (at%)50nm、Со76 С 719 Т a5 (at%)100nmを順次成膜した。このようにして作製した本発明媒体を媒体Wとした。比較のために、3.5 インチのNiP/Al合金基板上にセンダスト膜を 0.5μ m、Со76 С 719 Т a5 (at%)100nmを順次成膜した。このようにして作製した従来媒体を媒体Xとした。

【0054】これらの媒体の結晶配向性を調べるために、X線回折を用いて、hcp(002)ピークのロッキングカーブの半値幅($\Delta\theta$ 50)を求めた。その結果、従来媒体Xは7度であるのに対し、本発明媒体は2度であり、結晶配向性が優れていることがわかった。

【0055】従来媒体では、センダスト膜に接している Con Cris Tas 膜が完全な垂直磁化膜でなく、膜形 成の初期段階における10nmから20nm程度の初期 層が存在する。一方、本発明媒体では、Coss Crss 膜の結晶構造とCons Crs Tas 膜の結晶構造が非常に近いために、垂直磁化膜が膜形成の初期段階から垂直異方性の強い結晶配向性に優れた構造が形成される。

【0056】これらの媒体を実施例1と同様にして記録 再生特性の評価を行った。図19にこれらの媒体の媒体 S/Nの記録密度依存性を示す。本発明媒体Wは、全記 録密度において、従来媒体Xに比べて媒体S/Nが優れ ている。この傾向は記録密度が高くなるとより強くな る。

【0057】400KFRPIという高い記録密度においても、従来媒体Xに比べて本発明媒体Wは約8dB特性がよい。したがって、本発明媒体を用いることにより、高密度記録を実現することが容易となることがわかった。

[0058]

【0059】これらの媒体の結晶配向性を調べるために、実施例10と同様にしてhcp(002)ピークの 30 ロッキングカーブの半値幅($\Delta\theta$ 50)を求めた。その結果を図20に示す。図20には、これらの媒体を実施例1と同様にして記録再生特性の評価を行い、得られた記録密度250kFRPIでの媒体S/Nの結果も合わせて示した。

[0061]

【発明の効果】請求項1乃至6記載の垂直磁気記録媒体によれば、1~1000eの保磁力を有する第一の軟磁性膜と、センダスト膜からなる第二の軟磁性膜と、垂直磁化膜とがこの順に基板上に形成されたものとしたので、第二の軟磁性膜の磁区の不安定性を第一の軟磁性膜によって改善できる。したがって、高記録密度におけるノイズ特性を向上できる。

【0062】請求項2記載の垂直磁気記録媒体によれば、基板がAl合金基板であり、第一の軟磁性膜がAl合金基板上に形成されたNiP膜であることにより、加熱処理し帯磁させる方法で、NiP膜に1~1000eの保磁力を簡単に付与できる。

【0063】請求項3記載の垂直磁気記録媒体によれば、第一の軟磁性膜と第二の軟磁性膜との間にCr膜が介揮されたものとしたので、第一の軟磁性膜と第二の軟磁性膜との付着力をCr膜によって増大できる。したがって、機械的耐久性を向上できる。

【0064】請求項4記載の垂直磁気記録媒体によれば、第二の軟磁性膜の上下にそれぞれ酸化膜が介挿されたものとしたので、第二の軟磁性膜の組成変動又は組成分布を酸化膜により抑制できる。したがって、高記録密度におけるノイズ特性をより向上できるとともに、エンベロープ特性を向上できる。

【0065】請求項5又は6記載の垂直磁気記録媒体によれば、垂直磁化膜の直下にCoCrを含む垂直下地膜が介挿されていることにより、垂直磁化膜の垂直配向性が向上するので、高記録密度におけるノイズ特性をより向上できる。

【図面の簡単な説明】

【図1】本発明に係る垂直磁気記録媒体の一実施形態を示す概略断面図である。

【図2】本発明の実施例1における、センダスト膜の保 磁力のセンダスト膜厚依存性を示す図表である。

【図3】本発明の実施例1における、媒体ノイズの記録 密度依存性を示すグラフである。

【図4】本発明の実施例1における、再生出力信号の記録密度依存性を示すグラフである。

【図5】本発明の実施例1における、媒体S/Nの記録 密度依存性を示すグラフである。

【図 6 】本発明の実施例 2 における、媒体ノイズの記録 密度依存性を示すグラフである。

【図7】本発明の実施例3における、媒体ノイズの記録 密度依存性を示すグラフである。

【図8】本発明の実施例4における、媒体ノイズの記録 密度依存性を示すグラフである。

【図9】本発明の実施例5における、媒体ノイズの記録 密度依存性を示すグラフである。

【図10】本発明の実施例6における、センダスト膜の 組成分布を示す図表である。

【図11】本発明の実施例6における、センダスト膜の 組成分布を示す図表である。

【図12】本発明の実施例7における、センダスト膜の 円周方向の組成分布を示す図表である。

【図13】本発明の実施例7における、センダスト膜の 円周方向の組成分布を示す図表である。

【図14】本発明の実施例7における、センダスト膜の 半径方向の組成分布を示す図表である。

【図15】本発明の実施例7における、センダスト膜の 半径方向の組成分布を示す図表である。

【図16】本発明の実施例8における、エンベロープ特 性を示すグラフである。

【図17】本発明の実施例9における、保磁力の円周方 向での変化を示すグラフである。

【図18】本発明の実施例9における、保磁力の円周方

向での変化を示すグラフである。

【図19】本発明の実施例10における、媒体S/Nの 記録密度依存性を示すグラフである。

【図20】本発明の実施例11における、結晶配向性を 示す図表である。

【図21】従来の垂直磁気記録媒体を示す概略断面図で ある。

【符号の説明】

- 10 垂直磁気記録媒体
- 12 第一の軟磁性膜
- 14, 第二の軟磁性膜
 - 16 垂直磁化膜
 - 18 基板
 - 20,22 酸化膜
 - 24 垂直下地膜

【図1】

本発明媒体及び従来媒体のセンダスト膜の 16(垂直磁化膜) 24(垂直下地膜) (垂直磁気記録媒体) 22(酸化膜) 14(第二の)軟磁性膜) 20(酸化理) 12(第一の軟強性膜) 18(基板)

[図2]

peda/JC とフラス T-Be/S V/Belst								
センダスト 展厚 (µm)	0.1	0.2	0.5	1.0	3.0	5.0		
本発明媒体	4	4	3	2	1	0.5		
従来媒体	5	4	4	3	2	2		

·【図10】

能成一覧表

		(B	3]		
	30	◆ 本発明媒体A ▲ 従来媒体B		A	
媒体ノイズ(任意目盛)	20 -	honder de la	A' A		
任意目的	10 -	A STATE OF THE STA	A.		
	٥١	50 100	150	200	250
	U	50 100 238		200	250

	Fe	Si	Al
ターゲット組成	83.0	11.6	5.4
本発明媒体 K	83.2	11.5	5.5
從来媒体 L	84.5	12.1	3.4

【図11】

組成一覧表

	Fe	Si	Al
ターゲット組成	83.0	11.6	5.4
本発用媒体 M	83.0	11.6	5.4
従来媒体パ	84.1	11.9	4.0

【図4】

【図12】

発明媒	ለተ ርጎስ	C. 图 A	rài0	組織	444
70 7178	~~~	1 121/	, -,-,-,-	ALL KA	. / 1 1 1

測定位置(度)	Fe	Si	Al
0	83.1	11.5	5.4
90	83.2	11.5	5.5
180	83.1	11.5	5.5
270	83.0	11.6	5.4

【図5】

【図13】

[図14]

従来媒体Pの円貫方向の組成分布

本発明媒体〇の半径方向の組成分布

		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·				
港定位置(度)	Fe	Si	Al	測定位置(度)	Fe	Si	Al
0	84.5	12.1	3.4	20	83.1	11.5	5.4
90	83.2	11.5	5.5	25	83.1	11.6	5.3
180	82.1	11.9	6.0	30	83.2	11.5	5.3
270	83.5	11.3	5.2	35	83.1	11.5	5.4

【図6】

【図15】

従来媒体Pの半程方向の組成分布

測定位置(度)	Fe	Ö	AJ
20	85.5	10,5	4.0
25	84.2	11.3	4.5
30	82.3	11.8	5.9
35	83.5	11.3	5.2

【図20】

・従来媒体及び本発明媒体のA 950と媒体S/Nの関係

	24.111.12	本発明媒体					
	従来媒体 Z	媒体Y1	媒体Y2	媒体Y3	媒体Y4	媒体Y5	媒体Y6
Δ 6 sc (度)	В	8	4	2	3	5	9
媒体S/N (dB)	20	20	24	30	28	24	19

【図21】

【図17】

【図19】

