21-120: Differential and Integral Calculus Lecture #7 Outline

Read: Section 3.1 of the textbook

Objectives and Concepts:

• The slope of the line tangent to the curve y = f(x) at the point (a, f(a)) is given by the formula

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

and is called the derivative of f at a.

- A function *f* is differentiable on an interval if the derivative exists at every point in the interval.
- The line tangent to the curve y = f(x) at the point (a, f(a)) is given by

$$y = f(a) + f'(a)(x - a).$$

Suggested Textbook Exercises:

• 3.1: 11-29 odd, 39-43 odd.

Defining the Derivative

At the beginning of the semester, we briefly discussed the problem of finding the slope of the line tangent to a curve at a point. What we did was describe a process where we would take the slope of the secant line through the points (a, f(a)) and (a + h, f(a + h)).

Then, by making h smaller and smaller, we see how the secant line approaches a tangent line. We found that the slope of this tangent line was given by

$$m_{\tan} = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}.$$

Now that we have developed the necessary mathematical tool (limits) to deal with understanding expressions such as this, we can go about describing the instantaneous rate of change of a function f at a point (a, f(a)).

Definition: The **derivative of a function** f **at a number** a, denoted by f'(a), is the number

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

provided this limit exists. If f'(x) exists for each x in an open interval I, then f is said to be **differentiable over the interval** I.

The derivative of f at a is the slope of the line tangent to f at the point (a, f(a)).

If f'(a) exists, the **tangent line to the graph of** f **at** a is the line through the point (a, f(a)) with slope f'(a). The tangent line has equation

$$y = f(a) + f'(a)(x - a).$$

Example 1: Find f'(1) for $f(x) = 1 + \sqrt{x}$.

Example 2: For $f(x) = 1 + \sqrt{x}$, find the equation of the line tangent to f at x = 1.

Example 3: Find f'(a) for $f(x) = \frac{1}{2x+1}$.

Note: An equivalent definition of the derivative is given by $f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$.

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

Example 3: Use the above definition of f'(a) to find the equation of the line tangent to $f(x) = \frac{1-x}{2x}$ at a = -1.

Example 4: Use the graph of f(x) to determine which is larger. Explain your answer.

- (a) f(3) or f(4)?
- (b) f(3) f(2) or f(2) f(1)?
- (c) $\frac{f(2)-f(1)}{2-1}$ or $\frac{f(3)-f(1)}{3-1}$?
- (d) f'(1) or f'(4)?
- (e) f'(5) or f'(3)?

Example 5: Find the slope of the line tangent to $f(x) = x^3 - x^2 + 3$ at x = 2.

Example 6: Given that $f'(a) = 3a^2 + 2$ for the function $f(x) = x^3 + 2x + 1$, find:

- (a) The slope of the tangent line to f at the point corresponding to x = 2
- (b) The equation of the tangent line to f at the point corresponding to x = 2

Example 7: The quantity (in pounds) of a gourmet ground coffee that is sold by a coffee company at a price of p dollars per pound is Q = f(p) for some differentiable function f.

- (a) What is the meaning of the derivative f'(8)? What are its units?
- (b) If f'(8) is positive, what does that mean?
- (c) Suppose that there is a value of p, call it p^* , such that f'(p) is positive for $p < p^*$ but f'(p) is negative for $p > p^*$. Explain what is happening there.