Esbozo de las soluciones del segundo parcial 2020

1. Ejercicio 1

Ver material teórico Teorema de Lagrange (3.8.1 pag. 55 y 56).

2. Ejercicio 2

La clave en común k es 11^{31} ($m\acute{o}d103$). Para calcularla se usa el método de exponenciación rápida y se llega a k=96.

3. Ejercicio 3

Sea $p \in N$, $p \ge 2$. Probar que p es primo si y solo si $\forall a \in \{1, 2,, p-1\}$ existe $x \in N$ tal que $ax \equiv 1 \pmod{p}$.

- (Directo) Sea p primo. Si $a \in \{1, 2,, p-1\}$ se cumple que $a \neq p$ son coprimos, entonces por Bezout se sabe que existen x, y enteros tales que ax + py = 1. Por lo tanto $ax \equiv 1 \pmod{p}$. Sea \hat{x} el resto de dividir x entre p. Entonces $\hat{x} \in \{0, 1, 2,, p-1\}, \hat{x} \neq 0$ (pues p no divide a x) y $a\hat{x} \equiv 1 \pmod{p}$.
- (Recíproco) Supongamos que p no es primo, entonces existen $a, b \in \{1, 2,, p-1\}$ tal que p=ab. Por hipótesis existe $x \in N$ tal que $ax \equiv 1 \pmod{p}$. Luego, $bax \equiv b \pmod{p}$ pero $ba = p \sim 0 \pmod{p}$. Llegamos a un absurdo ya que $0x \equiv b \pmod{p}$.

4. Ejercicio 4

Para hallar un número natural x < 81 tal que $50x \equiv 1 \pmod{81}$, debemos resolver la ecuación diofántica 50x - 81y = 1. Como 50 y 81 son coprimos se sabe que existe solución y es única $m \acute{o} d 81$. Se aplica el algoritmo de Euclides extendido y se llega a que x = -34, y = -21 verifican la ecuación. La solución del ejercicio es x = -34 + 81 = 47.