variable Spring 1

Schema de principe

Grubler

Sonde:

 x_F

 y_1

 z_1

 rx_1

 ry_1

 rz_1

1 glissière (1)

$$\sum d_i = 1$$

$$b = boucle = 0$$

n= segment = 2

k= articulation = 1

$$b = k - n + 1$$

$$\sum d_i - 6b = 1$$

$$M = \sum_{i=1}^k d_i - 6b$$

DOF = 1

DOH = DOF - M = 0

boucle = nombre d'articulation sans segment

Base mobile dessort k1:

 x_1

 y_F

 z_1

 rx_1

 ry_1

 rz_1

1 glissière (1)

$$\sum d_i = 1$$

b = boucle = 0

n= segment = 2

k= articulation = 1

$$b = k - n + 1$$

$$\sum d_i - 6b = 1$$

$$M = \sum_{i=1}^k d_i - 6b$$

DOF = 1

DOH = DOF - M = 0

boucle = nombre d'articulation sans segment

Relation force-Déformation

Nous allons modéliser la relation qui donne la Force sur la pointe de la sonde en fonction des paramètre du mécanisme.

$$\sum ec{F} = 0$$

$$ec{F}_1 + ec{F}_2 + ec{F} = 0$$

on écris la force appliqué par chaque ressort

$$F_2 = K_2 * x$$

$$F_1 = K_1(l'-l_1-x_p)*sin(lpha)$$

avec K_1 et K_2 les constantes des ressort,

 l^\prime est la longeur du ressort 1 (pythagore avec la la variation x de la sonde et la variation de longeur du a la précontrainte du ressort 1)

 l_1 et l_2 sont les longeurs au repos des ressort 1 et 2

 x_p est le déplacement qui sers a preécontraindre le ressort k_1

 α est l'angle entre l'horizontal et la force F1 du au déplacement en x de la sonde

$$l'=\sqrt{(l_1-x_p)^2+x^2}$$

$$sin(\alpha) = \frac{x}{l'}$$

de la on peut remplacer dans F 1:

$$F_1 = K_1(\sqrt{(l_1-x_p)^2+x^2}-l_1-x_p)*rac{x}{\sqrt{(l_1-x_p)^2+x^2}}$$

en simplifiant:

$$F_1 = K_1(x - rac{x(l_1 + x_p)}{\sqrt{(l_1 - x_p)^2 + x^2}})$$

$$F_1 = K_1 * x (1 - rac{(l_1 + x_p)}{\sqrt{(l_1 - x_p)^2 + x^2}})$$

donc somme des forces :

$$F = x*(K_2 + K_1*(1 - rac{(l_1 + x_p)}{\sqrt{(l_1 - x_p)^2 + x^2}}))$$

avec en rouge la déformation x, vert la précontrainte x_p et bleu la force appliqué

si on zoom, on vois que la région d'intéret est casi linéaire

