Atividade Semanal - 2

Disciplina: Computação Evolucionária

Prof. Gabriela Nunes Lopes

Alunos: Augusto Pena Araujo Leticia Maia Silva Araujo Stéfani Bemfica Soares

Turma: TTTTA

1 – Faça uma modelagem de um ciclo de algoritmo evolucionário para maximizar os valores de x3 para inteiros no intervalo de 0 a 50 sem utilizar um software. Obedeça a todas as regras do exemplo visto em sala de aula. Crie a população inicial, o ponto de crossover e os genes que sofrerão mutação de maneira aleatória (pode usar um software para gerar números aleatórios). Ao fim, compare o resultado da geração 0 com a geração 1.

Lembre- se de:

• Usar a seguinte função de probabilidade para seleção de pais.

$$p_i = f(i) / \sum_{j \in P} f(j)$$

- Para seleção de sobreviventes, substitua toda população criada pelos descendentes;
- Para representação, use a codificação binária.

	Atividade Semanal: Max de x^3 com x [0,50]																	
	Quem reproduz							Reprodução						Mutação				
n°	Т	Valor	Gene	x^3	x^3/Fitness	(x^3/Fitness)*5	Escolha de pais	Pais	Gene	Cross	Filhos	Solução	Fitness	Filhos	Gene	Mutação	Valor	Fitness
	1	39	100111	59319	0,5807560137	2,903780069	3	39	100111	4	1001 00	36	46656	36	1001 00	100100	36	46656
	2	21	010101	9261	0,09066878139	0,453343907	0	32	100000	1	1 00111	39	59319	39	1 00111	100101	37	50653
	3	32	100000	32768	0,3208114273	1,604057137	2	39	100111	3	100 000	32	32768	32	100 000	100100	36	46656
	4	4	000100	64	0,000626584819	0,003132924095	0	32	100000	3	100 111	39	59319	39	100 111	100111	39	59319
	5	9	001001	729	0,007137192704	0,03568596352	0	39	100111	1	1 00111	39	59319	39	1 00111	100111	39	59319
			Fitness	102141								Fitness	257381				Soma	262603

Fitness da primeira geração: 102141

Fitness da segunda geração sem mutação: 257381 Fitness da segunda geração com mutação: 262603

Houve uma melhora significativa dos indivíduos da primeira geração para a segunda. A mutação conseguiu melhorar ainda mais os indivíduos, mas não tanto quanto a mudança de geração. Além de que, como explicado em sala de aula, a mutação poderia piorar o fitness da segunda geração, o que seria permitido para que fosse possível encontrar um ótimo global.

2 – Explique o que são algoritmos genéticos.

Algoritmos genéticos são algoritmos utilizados para resolução de problemas (principalmente de otimização) que se baseiam na biologia evolutiva de Darwin sobre evolução, reprodução e sobrevivência. Assim, algoritmos genéticos utilizam conceitos como seleção de indivíduos para se tornarem pais, combinação de pais para gerarem filhos, mutação de genes,

incluindo aleatoriedade e classificação dos indivíduos de acordo com o objetivo do problema.

3 – Faça um código analítico para encontrar a melhor solução (sem considerar algoritmos genéticos), usando if-else em qualquer linguagem de programação, considerando os itens da figura abaixo. Considere que o viajante pode levar apenas 3 itens dos itens abaixo, e que podem somar no máximo 3 kg. Tente encontrar a melhor solução (encontrar os itens que ele deve levar para a viagem, somando o máximo de querer (o quanto ele quer levar), sem passar do limite de peso.

```
% Problema da mochila
objetos = {'fone',
                      0.160, 150; ...
          'notebook', 2.200, 500; ...
          'caneca', 0.350, 60; ...
          'notepad', 0.333, 40; ...
          'garrafa' 0.192, 30};
querer = 0;
for i = 1 : 5
   for j = (i+1) : 5
       for k = (j+1) : 5
           if (((objetos\{i,2\} + objetos\{j,2\} + objetos\{k,2\}) < 3) &&
((objetos\{i,3\} + objetos\{j,3\} + objetos\{k,3\}) > querer))
               querer = objetos{i,3} + objetos{j,3} + objetos{k,3};
               itens_escolhidos = {objetos{i,1}, objetos{j,1},
objetos{k,1}};
           end
       end
   end
end
disp(itens escolhidos);
```

Resultado:

```
{'fone'} {'notebook'} {'caneca'}
```