

Predictive Analytics

Geo Analytics - Part II

Prof. Dr. Volker Herbort

Contents

- Introduction
- Geospatial Data
- Mapping Data
- Points
- Geo Analytics ML

Mapping Data

- Data maps
 - Abstraction from the purely geographical map
 - Representing numerical values within a spatial context

- Mapping data
 - A geographical approach to statistical visualization
 - The spread of data is considered in its geographical dimension

Modifiable Areal Unit Problem

- Scale and delineation mismatch between:
 - Underlying process (e.g. individuals, firms, shops)
 - Unit of measurement (e.g. neighborhoods, regions, etc.)

Volker Herbort, Hochschule Ulm Predictive Analytics

Hochschule Ulm

MAUP Example

Source: [8]

Always keep MAUP in mind when exploring aggregated data!!!

Choropleths

- Thematic map in which values of a variable are encoded using a color gradient of some sort
 - Counterpart of the histogram
 - Values are classified into specific colors
 - Colors --> in alignment with the goal of the map
 - Bins --> How many?
 - Algorithms:
 - Unique values
 - Equal interval
 - Qua/Quintiles (equal count)
 - Fisher-Jenks
 - Information loss as a trade off for simplicity

PET PEEVE #208: GEOGRAPHIC PROFILE MAPS WHICH ARE BASICALLY JUST POPULATION MAPS

Source: [5]

Unique values

- Categorical data
 - No gradient
 - Highlight differences but no distance
 - Use of appropriate color scheme!!!
 - Examples
 - Religion
 - Country of origin
 - Gender

. . . .

Source: [2]

Equal interval

- Numerical Data
 - Split the value span of the data equally
 - Splitting based on the numerical value in question
 - Attention: Gives more weight to outliers if the distribution is skewed

Equal Interval ctd.

Source: [6]

Volker Herbort, Hochschule Ulm Predictive Analytics 35

Quantiles

- Split the distribution keeping the same amount of values in each bin
 - Regardless of numerical values
 - Splitting based on the rank of the value
- Attention: If distribution is skewed, it can put very different values in the same bin

Advice

- Different classification schemes can produce widely different maps as a result of:
 - The distribution of the values
 - The inherent simplification that a choropleth implies
- Explore different ones and combine choropleths with other graphical devices like histograms or density plots => Extensive data profiling

Hochschule Ulm

- Data maps where the variable is encoded, not by a color gradient, but by distorting the shape/size of the geographical objects
 - Useful in cases where the natural size/shape induces to wrong interpretation or obscures the intended representation.
 - If not done carefully, it can distort the message in unintended ways

Cartograms ctd.

Shape size and value missmatch

Source: [2]

Volker Herbort, Hochschule Ulm Predictive Analytics 39

Visual Data Design

- Design principles for good maps
 - Always display legends
 - Remove elements without meaning
 - Avoid radiant colors
 - Remove irrelvant lines and frames

Layering

- Use of colours for layers
 - Same colour scheme as background hides objects

Saturation of colours

Different colours

Source: [8]

Colours

- Colours come with associations
 - Feelings

- Conditions
- Marketing
- Religion

Colours ctd.

- Colours have different contrast values
 - Visual disability access
 - Appealing colours can cause problems
 - Certain combination should be avoided

Source: [8]

Colours ctd.

- Use different colour palettes for different data
 - Categorical
 - No order in values
 - Colours used to distinguish

- Ordinal
 - Colours should indicate distance in value
 - sequential palette
 - diverging palette

Contents

- Introduction
- Geospatial Data
- Mapping Data
- Points
- Geo Analytics ML

Points

- Points like polygons
 - Points can represent "fixed" entities
 - Points are qualitatively similar to polygons/lines
 - The goal here is, taking location fixed, to model other aspects of the data
 - Examples
 - Cities (in most cases)
 - Buildings
 - Polygons represented as their centroid

Points

- Points unlike polygons
 - Points can also represent a fundamentally different way to approach spatial analysis
 - Rather than exhausting the entire space, points can be events subject to occur anywhere
 - The location of the event is part of what we are trying to understand/model
 - The interest focuses on characterizing the pattern that the points follow over space

Hochschule Ulm

Example: Geo-tagged tweets

Source: [2]

Points Patterns

- Distribution of points over a portion of space
 - Assumption is a point can happen anywhere on that space, but only happens in specific locations
 - Unmarked: locations only
 - Marked: values attached to each point
 - Point Pattern Analysis
 - Describe, characterize and explain point patterns, focusing on their generating process
 - Visual exploration
 - Clustering properties
 - Statistical modeling of the underlying processes

Points meet polygons

- Use polygon boundaries and count points per area
 - Create choropleth mapping (Beware of MAUP)
 - Polygons need to "make sense"
 - => delineation relates to the point generating process

Source: [2]

- Estimate the continous observed distribution of a variable
 - Probability of finding an observation at a given point
 - "Continuous histogram"
 - Solves (much of) the MAUP problem, but not the underlying population issue

Volker Herbort, Hochschule Ulm Predictive Analytics 51

Bivariate (spatial) KDE

- Probability of finding observations at a given point in space
 - Bivariate version: distribution of pairs of values
 - In space: values are coordinates (XY), locations
 - Continuous "version" of a choropleth

Source: [2]

Source: [2]