Goldbach Conjecture

Partitions

Definition 0.1. We have the following definitions:

- 1. A **partition** is an ordered tuble $\lambda = (\lambda_1, \dots, \lambda_k)$ where each $\lambda_i \in \mathbb{N}_{\geq 1}$ $\lambda_j \geq \lambda_i$ for all $1 \leq i \leq j \leq k$. In this case, we call k the **length** of the partition λ , and we sometimes denote this by $|\lambda|$.
- 2. Let λ and μ be two partitions. We say they are **disjoint** from each other, denoted $\lambda \perp \mu$, if $\lambda_i \neq \mu_j$ for all $1 \leq i \leq |\lambda|$ and $1 \leq j \leq |\mu|$.
- 3. Let N be a natural number. A **partition** of N is a partition $\lambda = (\lambda_1, ..., \lambda_k)$ such that $\sum_{i=1}^k \lambda_i = N$. We denote by $\lambda \vdash N$ to means λ is a partition of N. The collection of all partitions of N will be denoted by \mathcal{P}_N . The partition (1, ..., 1) of N will be denoted by 1_N .

Partition Homomorphism

Proposition 0.1. Let $\varphi: \mathbb{Q}[\{x_n\}] \to \mathbb{Q}(e)$ be the ring homomorphism given by

$$\varphi(x_n) = e^n$$

for all $n \in \mathbb{N}$. Then as a \mathbb{Q} -vector space, we have

$$\ker \varphi = \operatorname{Span}_{\mathbb{O}}\{\underline{x}^{\lambda} - \underline{x}^{\mu} \mid N \in \mathbb{N} \text{ and } \lambda, \mu \vdash N\}.$$

As a $\mathbb{Q}[\{x_n\}]$ -ideal, we have

$$\ker \varphi = \langle \{\underline{x}^{\lambda} - \underline{x}^{\mu} \mid N \in \mathbb{N} \text{ and } \lambda, \mu \vdash N \text{ and } \lambda \perp \mu \} \rangle$$

Proof. Suppose $a_1\underline{x}^{\lambda_1} + \cdots + a_k\underline{x}^{\lambda_k} \in \ker \varphi$. Since e is transcendental over \mathbb{Q} , we may assume that $\lambda_1, \ldots, \lambda_n \vdash N$ for some $N \in \mathbb{N}$. Then observe that

$$0 = \varphi(a_1 \underline{x}^{\lambda_1} + \dots + a_k \underline{x}^{\lambda_k})$$

= $(a_1 + \dots + a_k)e^N$

implies $a_1 + \cdots + a_k = 0$. Therefore, we have

$$a_{1}\underline{x}^{\lambda_{1}} + \dots + a_{k}\underline{x}^{\lambda_{k}} = a_{1}(\underline{x}^{\lambda_{1}} - \underline{x}^{\lambda_{2}}) + (a_{1} + a_{2})(\underline{x}^{\lambda_{2}} - \underline{x}^{\lambda_{3}}) + \dots + (a_{1} + \dots + a_{k-1})(\underline{x}^{\lambda_{k-1}} - \underline{x}^{\lambda_{k}}) + (a_{1} + \dots + a_{k})(\underline{x}^{\lambda_{k}})$$

$$= a_{1}(\underline{x}^{\lambda_{1}} - \underline{x}^{\lambda_{2}}) + (a_{1} + a_{2})(\underline{x}^{\lambda_{2}} - \underline{x}^{\lambda_{3}}) + \dots + (a_{1} + \dots + a_{k-1})(\underline{x}^{\lambda_{k-1}} - \underline{x}^{\lambda_{k}})$$

$$\in \langle \{\underline{x}^{\lambda} - \underline{x}^{\mu}\} \mid N \in \mathbb{N} \text{ and } \lambda, \mu \vdash N \} \rangle.$$

Partition Ideal

Definition o.2. Let $\mathbb{Q}[\{x_n\}]$ be the polynomial ring over \mathbb{Q} whose indeterminates are indexed over the natural numbers. For each $N \in \mathbb{N}$, we define the Nth **partition** ideal

$$I_N = \langle \{\underline{x}^{1_N} - \underline{x}^{\lambda}\} \mid \lambda \vdash N \rangle.$$