Total No. of Questions: 6

Total No. of Printed Pages:3

Enrollment No

Faculty of Engineering End Sem (Odd) Examination Dec-2018 CA5CO15 Data Warehousing and Mining

Branch/Specialisation: Computer Programme: MCA

Application

Duration: 3 Hrs. Maximum Marks: 60

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of

Q.1 (M	ICQs)	should be written in full inste	ead of only a, b, c or d.				
Q.1	i.	The KDD is abbreviation for			1		
		(a) Knowledge Database Do	efinition				
		(b) Knowledge Discovery is					
		(c) Knowledge Discovery Γ					
		(d) Knowledge Data Defini					
	ii.	Data can be updated in	environment.		1		
		(a) Data warehouse	(b) Data mining				
		(c) Operational	(d) Informational				
	iii.	The second phase of A Priori algorithm is					
	(a) Candidate generation		(b) Item set generation				
		(c) Pruning	(d) Partitioning				
	iv.	data are noisy & have many missing attribute values					
		(a) Pre-processed	(b) Cleaned				
		(c) Real-World	(d) Transformed				
	v.	is a clustering	procedure characterized	by the	1		
		development of a tree-like s	structure.				
		(a) Non-hierarchical clustering					
		(b) Hierarchical clustering					
		(c) Divisive clustering					
		(d) Agglomerative clusterin	ıg				
	vi.	Decision Tree induction is a	_		1		
		(a) Classification	(b) Association				
		(c) Clustering	(d) Prediction				
		(1) 21431211118	(5) 11001011011	рти	\circ		

P.T.O.

	vii.	Snow flake schema has table(s).	1	
		(a) Sub division (b) Sub-dimension		
		(c) Index (d) None of these		
	viii.	Data is loaded, accessed and Scanned in	1	
		(a) OLTP (b) OLAP (c) SMTP (d) FTP	_	
	ix.	GA stands for	1	
		(a) Genetic algorithm (b) Gene algorithm.		
		(c) General algorithm. (d) Geo algorithm	_	
	х.	mining is concerned with discovering the model	1	
		underlying the link structures of the web.		
		(a) Data structure (b) Web structure		
		(c) Text structure (d) Image structure		
0.2	:	What is data mining?	•	
Q.2	i.	What is data mining?	2	
ΟD	ii. :::	Explain KDD process with the help of a diagram.	8	
OR	iii.	Describe various data mining functionalities in detail.		
Q.3	i.	Describe the strategies for data reduction.	3	
V	ii.	ε		
		Use the two methods below to normalize the following group of data:		
		200, 300, 400, 600, 1000		
		(a) Min-max Normalization (b) Z-score Normalization		
OR	iii.	A database has five transactions. Let minimum support=60% and	7	
		minimum confidence=80%.		
		TID ITEMS_BOUGHT		
		T100 $\{M, O, N, K, E, Y\}$		
		T200 $\{D, O, N, K, E, Y\}$		
		$T300 \{M, A, K, E\}$		
		T400 $\{M, U, C, K, Y\}$		
		T500 $\{C, O, R, K, I, E\}$		
		Find all frequent itemsets using Apriori algorithm.		
Q.4	i.	Differentiate between Classification and Clustering.	3	
`	ii.	The following table represents the training database that gives	7	
		information of whether or not to play golf, given a set of climatic		

condition. Induct a decision tree and write the decision rules using information gain attribute selection measure:

Outlook	Temp	Humidity	Windy	Class:Play?
Sunny	Hot	High	False	N
Sunny	Hot	High	True	N
Overcast	Hot	High	False	P
Rain	Mild	High	False	P
Rain	Cool	Normal	False	P
Rain	Cool	Normal	True	N
Overcast	Cool	Normal	True	P
Sunny	Mild	High	False	N
Sunny	Cool	Normal	False	P
Rain	Mild	Normal	False	P
Sunny	Mild	Normal	True	P
Overcast	Mild	High	True	P
Overcast	Hot	Normal	False	P
Rain	Mild	High	True	N

OR iii. Write and explain k-Means clustering algorithm. Write strengths and weakness of k-Means clustering method.

Q.5 i. What is Data Warehouse?
ii. Explain snow flake schema with diagram. What is the difference
7

between star and snow flake schema.

OR iii. Describe typical OLAP operations with diagram. 7

Q.6 Attempt any two:

i. Write short note on: 5

(a) Mining WWW (b) Spatial Mining

ii. Discuss social impact of data mining. 5

iii. What are the applications of Data mining? Discuss any two 5 applications.

Marking Scheme CA5CO15 Data Warehousing and Mining

Q.1	i.	The KDD is abbreviation for		1	
		(b) Knowledge Discovery in Databases			
	ii.	Data can be updated inenvironment.		1	
		(c) Operational			
	iii.	The second phase of A Priori algorithm is	_·	1	
		(c) Pruning			
	iv.	data are noisy & have many missing attribute values			
		(c) Real-World			
	v.	is a clustering procedure characterized by the development of a			
		tree-like structure.			
		(b) Hierarchical clustering			
	vi.	Decision Tree induction is an example of		1	
		(a) Classification			
	vii.	Snow flake schema has table(s).		1	
		(b) Sub-dimension			
	viii.	Data is loaded, accessed and scanned in		1	
		(b) OLAP			
	ix.	GA stands for		1	
		(a) Genetic algorithm			
	х.	mining is concerned with discovering the model underlying			
		the link structures of the web.			
		(b) Web structure			
Q.2	i.	Data mining definition		2	
	ii.	Diagram.KDD process	3 marks	8	
		Explanation 1 mark for each step (1 mark *5)	5 marks		
OR	iii.	Data mining functionalities		8	
		2 Mark for each functionality	(2 marks * 4)		
		·			
Q.3	i.	Strategies for data reduction.		3	
		1 Mark for each strategy	(1 mark * 3)		
	ii.	(a) Min-max Normalization	3.5 marks	7	
		(b) Z-score Normalization	3.5 marks		
OR	iii.	Item generation	4 marks	7	

Q.4	i.	Difference between Classification and Clustering.		3
		0.75 Mark for each difference	(0.75 mark * 4)	
	ii.	Calculations of Information Gain	4 marks	7
		Tree Construction	3 marks	
OR	iii.	Algorithm	4 marks	7
		Strength and weakness	3 marks	
Q.5	i.	Data Warehouse definition		3
		0.75 for each part of definition	(0.75 mark * 4)	
	ii.	Diagram and explanation of Snowflake	5 marks	7
		Difference	2 marks	
OR	iii.	Typical OLAP operations with diagram.		7
		Explanation	4 marks	
		Diagram	3 marks	
Q.6		Attempt any two:		
	i.	Write short note: 2.5 Marks for each note	(2.5 marks * 2)	5
		(a) Mining WWW		
		(b) Spatial Mining		
	ii.	Social impact of data mining.		5
		1 Mark for each impact	(1 mark * 5)	
	iii.	Applications of Data mining	2.5 Marks	5
		Applications	2.5 Marks	

Pruning

3 marks
