Estimating Missing Data in Temporal Data Streams Using Multi-directional Recurrent Neural Networks

고려대학교 산업경영공학과 DAHS 연구실 김홍범

CONTENTS

- 1. Introduction
- 2. Problem Formulation
- 3. Multi-directional Recurrent Neural Networks (M-RNN)
- 4. Results and Discussion
- 5. Q & A

01 Introduction

01. methods

Estimating missing value methods

- Interpolation within each stream
- Imputation across streams
- Matrix completion within and across streams(ignore temporal aspect)

01 Methods

02. Interpolation

Interpolation method

- Advantages: Reflects the amount of data changes over time
- Disadvantage: Unable to determine association between variables

01 Methods

03. Imputation

Imputation method

- Advantages: Easy and fast
- Disadvantage: It is impossible to identify the time series association.
 Sensitive to outlier

01 Introduction

04. M-RNN

M-RNN

• X = missing values, red lines = connections between observed values and missing values in each layer, blue lines = connections between interpolated values, dashed line = dropout

02 Problem Formulation

1. Notation

Datasets notations

Dataset consists of N patients with D Channels and length T

$$X_n = \begin{bmatrix} 2 & 4 & 8 & * \\ 5 & * & 9 & 10 \end{bmatrix}$$
 D = 2, T = 4

$$x_t^d = *$$
 missing value

Binary mask is defined to mask missing value (1 if data is observed, 0 if missing)

$$\mathbf{m} = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \end{bmatrix}$$

• Delta to be the actual amount of time that has elapse from $s_t(normalized)$, $\delta_1^d=0$, $s_1=0$

$$\delta = \begin{bmatrix} 0 & 1 & 1.2 & 1 \\ 0 & 1 & 3 & 14 \end{bmatrix}, \quad \delta_t^d = \begin{cases} s_t - s_{t-1} + \delta_{t-1}^d & \text{if } t > 1, m_{t-1}^d = 0. \\ s_t - s_{t-1} & \text{if } t > 1, m_{t-1}^d = 1 \end{cases}$$

02 Problem Formulation

2. Objective function

Objective function

- Also y_t represents vector of outcomes for this patients. Such as discharge, death etc. y_t =0, 1
- The entire dataset consists of all above the patients $D = \{(S(n), X(n), y(n))\}$
- (Time stamps = S, measurements = X, lables = Y)
- Objective function ($\hat{x}_t^d = f_t^d(S, X)$, $\mathcal{L}(\hat{x}_t^d, \hat{x}_t^d) = (\hat{x}_t^d x_t^d)^2$)

$$\min_{\mathbf{f}} \mathbb{E}_{\mathcal{F}} \left[\sum_{t=1}^{T} \sum_{d=1}^{D} (1 - m_t^d) \mathcal{L}(\hat{x}_t^d, x_t^d) \right]$$

$$= \min_{\mathbf{f}} \mathbb{E}_{\mathcal{F}} \Big[\sum_{t=1}^{T} \sum_{d=1}^{D} (1 - m_t^d) (f_t^d(\mathcal{S}, \mathcal{X}, \mathcal{Y}) - x_t^d)^2 \Big].$$

• We do not observe the true data, so we will minimize the empirical loss.

1. Error / loss

Error/Loss

• LOSS(total) = mean squared error (mse) =

$$\mathcal{L}(\{\hat{x}_t^d, x_t^d\}) = \sum_{n=1}^{N} \left[\frac{\sum_{t=1}^{T_n} \sum_{d=1}^{D} m_t^d(n) \times (\hat{x}_t^d(n) - x_t^d(n))^2}{\sum_{t=1}^{T_n} \sum_{d=1}^{D} m_t^d(n)} \right]$$

- If we have missing data in x_t , then we have two options.
 - 1. if x_t is missing, use x_{t-n} to compute \hat{x}_t .
 - 2. Use a simple Linear interpolation(backward or forward fill for first and last value) > authors use this implementation.
- Note: this is the empirical error, which is actually achievable.

2. M-RNN

2. M-RNN

M-RNN Interpolator

• This procedure ensure that the actual value x_t^d is automatically not used in the estimation \tilde{x}_t^d .

2. M-RNN

- Note : Always the same FCNN for each timestap, also we do not use x_t^d in every step.
- In this process, we use dropout process for multiple imputation.

1. Results

Imputation Accuracy on the Given Datasets

Table 2: Performance comparison for missing data estimation

Category	Algorithm	Mean RMSE (% Gain of M-RNN (Multiple Imputations))				
		MIMIC-III	Deterioration	UNOS-Heart	UNOS-Lung	Biobank
M-RNN	M-RNN (MI) M-RNN (SI)	0.0141 (-) 0.0144 (-)	0.0105 (-) 0.0108 (-)	0.0479 (-) 0.0477 (-)	0.0606 (-) 0.0609 (-)	0.0637 (-) 0.0629 (-)
RNN-based	[23] [24] [25]	0.0337 (58.2%) 0.0295 (52.2%) 0.0292 (51.7%)	0.0258 (59.3%) 0.0241 (56.4%) 0.0233 (54.9%)	0.1352 (64.6%) 0.1179 (59.4%) 0.1057 (54.7%)	0.1343 (54.9%) 0.1264 (52.1%) 0.1172 (48.3%)	0.0812 (21.6%) 0.0801 (20.5%) 0.0778 (18.1%)
Interpolation	Spline Cubic	0.0735 (80.8%) 0.0279 (49.5%)	0.0215 (51.2%) 0.0223 (52.9%)	0.1102 (56.5%) 0.1072 (55.3%)	0.1199 (49.5%) 0.1177 (48.5%)	0.0845 (24.6%) 0.0887 (28.2%)
Imputation	MICE MissForest EM	0.0611 (76.9%) 0.0293 (51.9%) 0.0467 (69.8%)	0.0319 (67.1%) 0.0264 (60.2%) 0.0355 (70.4%)	0.1147 (58.2%) 0.0489 (2.0%)	0.1151 (47.4%) 0.0652 (7.1%)	0.0915 (30.4%) 0.0892 (28.6%) 0.0978 (34.9%)
Others	Matrix Completion Auto-encoder MCMC	0.0311 (54.7%) 0.0412 (66.0%) 0.0437 (67.7%)	0.0264 (60.2%) 0.0309 (65.0%) 0.0364 (71.2%)	0.0974 (50.8%) 0.0589 (18.7%) 0.1091 (56.1%)	0.0942 (35.7%) 0.0712 (14.9%) 0.1124 (46.1%)	0.0886 (28.1%) 0.0805 (20.9%) 0.0936 (31.9%)

1. Results

Combining models of interpolation and imputation

• The purpose of conducting multiple imputation is to reduce uncertainty/shrink confidence intervals(rather than to improve performance)

2. Additional Experiments

2. Additional Experiments

2. Additional Experiments

Congeniality of the model

Table 6: Congeniality of imputation models

Algorithm	$\begin{tabular}{ll} \textbf{Mean Bias} \\ (\mathbf{w} - \hat{\mathbf{w}} _1) \end{tabular}$	Root Mean Square Error $(\mathbf{w} - \hat{\mathbf{w}} _2)$				
M-RNN (MI)	0.0814 ± 0.0098	0.1229 ± 0.0151				
[25]	0.1097 ± 0.0104	0.1649 ± 0.0212				
Cubic Interpolation	0.1169 ± 0.01075	0.1816 ± 0.0201				
MissForest	0.0842 ± 0.0103	0.1312 ± 0.0139				
Matrix Completion	0.1001 ± 0.0125	0.1551 ± 0.0230				

- Congeniality of an imputation model can be evaluated by specified metric.(mean bias, RMSE)
- For comparison, we delete 20% of the data.
- Result shows our methods is mor congenial than the benchmarks.

O4 Results and Discussions 3. FIRM DATA

FIRM DATASET

- Percentage of missing value 20%
- Dataset (132 rows, 14 feature)

PROMs(patients report outcome measurements :

FAC(보행/이동성), KOVAL(이동성), EQ5D(삶의 질), IADL(일상생활수행능력), FRAIL(노쇠 지수)

PBOMS(performance based outcome measurements):

FIM(보행), MRMI(운동성), MBI(일상생활수행능력), BBS(낙상위험도), GDS(정동), MMSE(인지기능), HGS_R, HGS_L (악력)

O4 Results and Discussions 3. FIRM DATA

FIRM DATASET

Congeniality of the FIRM data

- 1. 23 patients with no missing values were randomly generated (20%)
- 2. Checked the difference between the generated data and the actual value through the model M-RNN
- 3. After that, we checked the performance of 132 people.

Q4 Results and Discussions 3. FIRM DATA

Additional study

Increase data accuracy by adding patient clinical characteristics (During Imputation Procedure)

Clinical Characteristics

NAME	age	height	•••	edu	Blood test
DATA TYPE	Contin	Contin		Nomin al	Contin
Ex)	80, 79	143, 160		1,2,3, 4,	1.12, 1.13

Imputation (across streams)

04 References

3. References

- https://ieeexplore.ieee.org/abstract/document/8485748
- https://www.kaggle.com/code/markwallbang/m-rnn-estimate-missing-values-in-time-series/notebook
- https://github.com/jsyoon0823/MRNN

Q&A

감사합니다