PATENT ABSTRACTS OF JAPAN

(12) Publication number: 62-185307

(43) Date of publication of application: Aug. 13, 1987

(51) Int. Cl⁴.

H 01 G 9/02

(21) Application number: S61-26952

(71) Applicant: SHOWA DENKO K. K.

(22) Date of filing; Feb. 12, 1986

(72) Inventors: NAITO, Kazumi

IKEZAKI, Takashi

(1) Title of Invention:

Solid Electrolytic Capacitor

(2) Claims:

A solid electrolytic capacitor in which a conductive layer made of lead dioxide is formed on a dielectric film layer, and the aforementioned lead dioxide is formed by being precipitated from electrolytic solution containing lead ion of 0.2 mol/litter to saturation solubility by electrolytic oxidation.

⑩日本国特許庁(JP)

⑩ 公 開 特 許 公 報 (A) 昭62 - 185307

 $\mathfrak{g}Int_{Cl_{1}}$

識別記号

庁内整理番号

④公開 昭和62年(1987)8月13日

H 01 G 9/02

C-7924-5E

客香請求 未請求 発明の数 1 (全3頁)

②特 願 昭61-26952

22出 願 昭61(1986)2月12日

⑫発 明 者 内 藤 一 美

東京都大田区多摩川2-24-25 昭和電工株式会社総合技

術研究所内

⁶⁷ 発 明 者 池 崎 隆

東京都大田区多摩川2-24-25 昭和電工株式会社総合技

術研究所内

⑪出 願 人 昭和電工株式会社

東京都港区芝大門1丁目13番9号

②代 理 人 弁理士 菊地 精一

明 細 書

1. 発明の名称

固体 電解 コンデンサ

2. 特許請求の範囲

誘電体皮膜層上に二酸化鉛の導電体層が形成された固体電解コンデンサにおいて、前記二酸化鉛が 0.2 モル/ & から飽和溶解度までの鉛イオンを含む電解液から電解酸化により析出、形成されたものであることを特徴とする固体電解コンデンサ。3.発明の詳細な説明

産業上の利用分野

本発明は、誘電体皮膜層上に高濃度の鉛イオンを含んだ電解液から電解酸化により二酸化鉛の導電体層が形成された性能の良好な固体電解コンデンサに関する。

従来の技術

例えば特開昭 5 4 - 1 2 4 4 7 号公報 κ 記載されるよう κ 、まず、硝酸マンガンを熱分解して誘電体皮膜層上 κ 二酸 κ 0.1 モル κ 0.0 の鉛イオン

を含んだ液につけ、電解酸化によって二酸化マン ガン層の上に二酸化鉛層を設ける方法が知られて いる。

発明が解決しようとする問題点

しかしながら、前記方法は、二酸化マンガン層を形成させる際に熱反応を行なりために、誘電体皮膜の熱的龟裂および発生ガスによる化学的損傷は避け難い。

また、前記方法において、二酸化マンガン層を 有しない誘電体皮膜層上に低濃度の鉛イオンを含 んだ電解液から電解酸化して二酸化鉛のみの導電 体層を直接形成させて固体電解コンデンサを作製 すべく試みても、二酸化鉛の導電体層が誘電体皮 膜層上に充分付着せず、極めて容量が低く、損失 係数の大きいコンデンサしか得られない。

従って、本発明の目的は、誘電体皮膜と二酸化 鉛の導電体層との付着性が良好であり、容量が極 めて大きく、損失係数の小さい固体電解コンデン サを提供することにある。

問題点を解決するための手段

本発明者等は、前記従来技術の欠点を解決する ために鋭意検討した結果、電解液中の鉛イオン濃 度をある範囲内に特定することにより、誘電体皮 膜層上への二酸化鉛の導電体層の付着が良好にな り、前記目的が極めて有効に達せられることを見 い出し、本発明を完成するに至った。

即ち、本発明に従えば、誘電体皮膜層上に二酸化鉛の導電体層が形成された固体電解コンデンサ において、前記二酸化鉛が 0.2 モル/ ℓ から飽和 容解度までの鉛イオンを含む電解液から電解酸化により析出・形成されたものであることを特徴とする固体電解コンデンサが提供される。

本発明における誘電体皮膜とは、当業界で周知 であるアルミニウム、タンタル、ニオブ等の弁金 属の箔または焼結体の酸化皮膜を意味し、公知の 方法で得ることができる。

誘電体皮膜上に二酸化鉛を電解酸化によって形成させるための電解液は、鉛イオンを含んだ水溶液または有機溶媒溶液である。この電解液は、電

ら飽和溶解度までである。鉛イオンの濃度が飽和溶解度を与える濃度を超える場合は、増量添加によるメリットが認められず、また、鉛イオンの濃度が 0.2 モル/ 8 より低い場合には、電解液中の鉛イオンの濃度が薄すぎるため、電解酸化で生じた二酸化鉛の導電体層が誘電体皮膜上に充分付着せず、極めて容量が低く、損失係数の大きい固体電解コンデンサしか得られないという難点がある。

本発明における電解酸化は、従来公知の方法、例えば定電流法・定電圧法、あるいは定電流法と定電圧法を交互に利用して行なわれる。また、電解用装置、その操作方法については、従来公知の装置および操作方法が採用される。電解酸化の時間および温度については、使用する誘電体皮膜を有する弁金属の種類、誘電体皮膜の実質面積、使用する鉛イオン種の種類、電解酸化の条件等により変化するので一概に規定できず、予かじめ行なう予備実験により決定される。

発明の効果

本発明の固体電解コンデンサは、低濃度の鉛ィ

解液のイオン電導性を向上させるために公知の電 解質を含んでいてもよい。

鉛イオン種には特に制限はなく、電解液中で鉛イオン種を与える化合物であればいずれでもよく、例えばクエン酸鉛、酢酸鉛、塩基性酢酸鉛、ホウフッ化鉛、酢酸鉛水和物、硝酸鉛、テトラエチル鉛、テトラフェニル鉛、鉛アセチルアセトン、鉛オキンン等があげられる。これらの鉛イオン種を与える化合物は、二種以上混合して使用してもよい。

有機溶媒としては、上記鉛イオン種を与える化合物を溶解するものであればいずれでもよく、例えばエチルアルコール、グリセリン、ベンゼン、 ジオキサン、クロロホルム等があげられる。

これらの有機溶媒は二種以上混合して使用して もよく、また水と相容性を有する有機溶媒なら水 と混合して使用してもよい。

電解液中の鉛イオン濃度は、 $0.2 モル/\ell$ から 飽和溶解度まで、好ましくは $0.5 モル/\ell$ から飽 和溶解度まで、さらに好ましくは $0.9 モル/\ell$ か

オンを含む電解液から電解酸化により、誘電体皮膜層上に二酸化鉛の導電体層を析出,形成させた固体電解コンデンサに比較して以下のようを利点を有している。

- ① 同一の誘電体皮膜を有する弁金属箔を利用すれば、極めて高容量の固体電解コンデンサを作製できる。
- ② 誘電体皮膜層と二酸化鉛の導電体層との付着性が良好であるため、損失係数が小さい。

実 施 例

以下、実施例および比較例をあげて本発明をさらに詳細に説明する。なお、各例の固体電解コンデンサの特性値を表に示した。

実施例

酢酸鉛三水和物の濃度が 1.9 モル/ ℓ の酢酸鉛三水和物水溶液に、高圧用エッチングアルミ化成箔(エチレングリコール・アジピン酸アンモニウム系の電解液を使用した場合の容量、約10μF/10cm²) を端子部分を除いて浸漬した。陰極としてカーボンを用いて1 mA/cm² の電流密度で 3 0 分

通電し、誘電体皮膜を有する上記エッチングアルミ化成箔上に二酸化鉛層を形成した。化成箔を電解液から取り出して水で充分洗浄した後、100℃で1時間減圧乾燥した。次いで、二酸化鉛層の上に銀ペーストを塗布し、乾燥させた後、ハンダ付けによって陰極を取り出し、樹脂封口して固体電解コンデンサを作製した。

比較例

実施例で酢酸鉛三水和物の濃度が 0.1 モル/ℓ の酢酸鉛三水和物の水溶液を使用した以外は、実 施例と同様にして固体電解コンデンサを作製した。

表

	容 量 (µF)	tan δ* (%)
実 施 例	4	0.9
比較例	0.8	8. 5

* 120 Hz での値