EXPLORE DIGITAL SKILLS

Data Mining with CINDY

Data mining with CINDY

- Introduction to the CINDY framework for optimal visualisations;
- Use the CINDY framework for data visualisation;
- Represent and perform visualisation of different data types in the CINDY framework.

Meet CINDY!

CINDY is a framework that comes with a checklist for understanding the relationship between data.

	Summary Statistics		Relationships between 2 variables				
	Description	Visualise	С	1	N	D	ΧY
C Categorical	String <=25 uniques	Ordered bar chart 80/20	Heatmap Chi2	Stacked bar chart	Boxplot	Time Series	Categorised Heatmap
Identifier	String >25 uniques	Rank order SSST		Heatmap Chi2	Rank Order (mean)	Fan (Percentile) Chart	Categorised Heatmap
N Numerical	Integers, Float, Decimal	Histogram Mean, Stdev			Scatter Plot Correlation	Time Series (mean)	Graduated Heatmap
D Dates	Timestamp	Time series Stationarity				Histogram Mean diff	Time-lapse Heatmap
X Geo-spatial	x, y Lat, lon	Polygons Points					

CINDY Checklist

CINDY comes with a checklist for understanding the relationships between data.

Categorical Variables – Bar Chart

Things to look out for in bar charts:

- Count **unique values**.
- Check for nulls.
- Apply 80/20 principle on categorical variables-Use this to focus analysis on the most important categories.
- Look for groupings/lookups combine categorical variables into more interpretable combinations and results.
- Categorical variables provide a good way to link data between datasets.

Numerical Variables – Histogram

Histogram for Numerical Variables

Histogram of dam level capacity

Things to look out for in histograms:

- Check for **nulls.**
- Summary statistics are very helpful to understand numerical variables:
 - Mean and standard deviation.
 - Percentiles (especially the **median**).
- Identify the closest distribution function.
- Outliers identification.

Numerical Variables by Category - Box Plot

Things to look out for in a box plot:

- Box plots provide information about the5 number summary of a dataset:
 - minimum value
 - first quartile (Q1)
 - median
 - third quartile (Q3)
 - maximum value
- Often used for descriptive analyses or during the preliminary investigation of a large data set.
- Box plots are used to indicate whether the distribution in a dataset is skewed or used for the identification of outliers in the dataset.

Relationships between Numerical Variables - Scatter Plot

Things to look out for in scatterplots:

 A line of best fit is used to assess the relationship of variables in the dataset. The line of best fit (linear regression) equation is given as:

$$y = \alpha + \beta x$$

- β impact of independent variable (x) on the dependent variable (y); this will indicate the slope of the line of best fit.
- α indicates the y intercept (when x=0).
- R² the **coefficient of determination**. This indicates the percentage of variation explained by the other variable
- Outliers directly impact results of linear regression.

Relationships between Numerical Variables - Contingency Table with a Heatmap

Things to look out for in contingency tables:

- Contingency table tabulates the state of a combination of 2 or more categorical variables.
- Chi² test (test for independence) helps determine if the distribution of one categorical variable matches another or differs from another and is calculated using the equation:

$$chi^2 = \sum \frac{(Observed - expected)^2}{expected}$$

 Heatmap - cells are shaded according to the difference in the observation vs expectation counts.

In the example to the left, **Red cells** represent combinations based on a higher probability of occurrence.

Conclusion

In this train you have learned how to:

- Use the CINDY framework to represent and analyse your data.
- Integrate the use of the CINDY framework to aid in selection of the best method for visualisation and representation of data.

Appendix

Additional sources:

- Data mining
- <u>Descriptive statistics</u>
- <u>Linear Regression</u>

