Python 数据科学 速查表

SciPy - 线性代数

SciPv

SciPy 是基于 NumPy 创建的 Python 科学计算核心库, 提供了众多数学算法与函数。

与NumPy交互

```
>>> import numpy as np
>>> a = np.array([1,2,3])
>>> b = np.array([(1+5j,2j,3j), (4j,5j,6j)])
>>> c = np.array([[(1.5,2,3), (4,5,6)], [(3,2,1), (4,5,6)]])
```

索引技巧

```
创建稠密栅格
>>> np.mgrid[0:5,0:5]
>>> np.ogrid[0:2,0:2]
                             创建开放栅格
>>> np.r [[3,[0]*5,-1:1:10j]
                             按行纵向堆叠数组按
>>> np.c_[b,c]
                             列横向堆叠数组
```

操控形状

>>>	np.transpose(b)	转置矩阵
>>>	b.flatten()	拉平数组
>>>	np.hstack((b,c))	按列横向堆叠数组
		按行纵向堆叠数组
>>>	np.hsplit(c,2)	在索引2横向分割数组
>>>	np.vpslit(d,2)	在索引2纵向分割数组

多项式

>>> p = poly1d([3,4,5])	创建多项式对象
矢量函数	

>>> def myfunc(a): if a < 0: return a*2 else:

>>> from numpy import poly1d

return a/2 >>> np.vectorize(myfunc) 矢量函数

类型控制

```
>>> np.real(c)
                         返回数组元素的实部
>>> np.imag(c)
                         返回数组元素的虚部
>>> np.real_if_close(c,tol=1000) 如果复数接近0,返回实部将
>>> np.cast['f'](np.pi)
                        对象转化为数据类型
```

常用函数

```
>>> np.angle(b,deg=True)
                          返回复数的角度
>>> g = np.linspace(0,np.pi,num=5)
                          创建等差数组 (样本数)
>>> g [3:] += np.pi
>>> np.unwrap(g)
                          创建等差数组 (对数刻度)
>>> np.logspace(0,10,3)
                          根据条件返回数组列表的值
>>> np.select([c<4],[c*2])
>>> misc.factorial(a)
>>> misc.comb(10,3,exact=True) 取K次N项的组合,已改为scipy.special.comb
>>> misc.central diff weights (3)
                          NP点中心导数的权重
>>> misc.derivative(myfunc, 1.0)
                          查找函数在某点的第n个导数
```

线性代数

使用 linalg 和 sparse 模块。注意 scipy.linalg 包含了 numpy.linalg,并扩展了其功能。

矩阵排名

```
>>> from scipy import linalg, sparse
```

【创建矩阵

```
>>> A = np.matrix(np.random.random((2,2)))
>>> B = np.asmatrix(b)
>>> C = np.mat(np.random.random((10,5)))
>>> D = np.mat([[3,4], [5,6]])
```

基础矩阵例程

逆矩阵 >> A.I >> linalg.inv(A) >> A.T >> A.H >> np.trace(A)	求逆矩阵 求逆矩阵 矩阵转置 共轭转置 计算对角线元素的和

>>> linala norm(A)

>>> linalg.norm(A)	Frobenius 范数
>>> linalg.norm(A,1)	L1 范数 (最大列汇总)
>>> linalg.norm(A,np.inf)	L 范数 (最大列汇总)
LIL 4	

排名 >>> np.linalg.matrix rank(C)

行列				
	2 7	-1 1-	(7s)	

求解线性问题

ı	>>>	linalg.solve(A,b)
ı	>>>	E = np.mat(a).T
		linalg.lstsq(D,E)

广义逆 >>> linalq.pinv(C)

>>> linalg.pinv2(C)

行列式 求解稠密矩阵 求解稠密矩阵 用最小二乘法求解线性代数方程 计算矩阵的伪逆 (最小二乘法求解器)

计算矩阵的伪逆(SVD)

创建稀疏矩阵

>>> F = np.eye(3, k=1) >>> G = np.mat(np.identity(2)) >>> C[C > 0.5] = 0	创建2X2单位矩阵 创建2X2单位矩阵
>>> t(> 0.3] - 0 >>> H = sparse.csr_matrix(C) >>> I = sparse.csc_matrix(D) >>> J = sparse.dok_matrix(A) >>> E.todense() >>> sparse.isspmatrix_csc(A)	压缩稀疏行矩阵 压缩稀疏列矩阵 DOK矩阵 将稀疏矩阵转为全矩阵 单位稀疏矩阵

経磁矩阵例程

「中のルバニーナレン・ニー		
逆矩阵		
>>> sparse.linalg.inv(I)	求逆矩阵	
范数	 范数	
>>> sparse.linalg.norm(I) 解决线性问题	地数	
	稀求解疏矩阵	
3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,		

【稀疏矩阵函数

>>	sparse.linalg.expm(I)	稀疏矩阵指数

【矩阵函数

加法	
>>> np.add(A,D)	加法
减法	
>>> np.subtract(A,D)	减法
除法	
>>> np.divide(A,D)	除法
乘法 >>> np.multiply(D,A) >>> np.dot(A,D) >>> np.vdot(A,D) >>> np.inner(A,D) >>> np.outer(A,D) >>> np.outer(A,D) >>> np.tensordot(A,D) >>> np.kron(A,D)	乘法 点积 内积 内积 外积 张量点积 Kronecker 积
指数函数 >>> linalg.expm(A) >>> linalg.expm2(A) >>> linalg.expm3(D) 对数函数 >>> linalg.logm(A) 三角函数 >>> linalg.sinm(D) >>> linalg.cosm(D) >>> linalg.tanm(A)	矩阵指数 矩阵指数 (泰勒级数) 矩阵指数 (特征值分解) 矩阵对数 矩阵正弦 矩阵余弦 矩阵切线
スカー IInalg.tanm(A) 双曲三角函数 >>> linalg.sinhm(D)	双曲矩阵正弦

>>> linalg.tanhm(A)

矩阵符号函数	
>>> np.sigm(A)	

矩阵平方根 >>> linalg.sqrtm(A)

>>> linalg.coshm(D)

任意函数

>>> linalg.funm(A, lambda x: x*x)

矩阵分解

特征值与特征向量 >>> la, v = linalg.eig(A)	求解方阵的普通或广义特征值问题	
>>> 11, 12 = la >>> v[:,0] >>> v[:,1] >>> linalg.eigvals(A)	解包特征值 第一个特征值 第二个特征值 解包特征值	
奇异值分解 >>> U,s,Vh = linalg.svd(B) >>> M,N = B.shape	新已付证值 奇异值分解(SVD)	

>>> Sig = linalg.diagsvd(s,M,N) 在 SVD 中构建 Sigma 矩阵

LU 分解

双曲矩阵余弦

双曲矩阵切线

矩阵符号函数

评估矩阵函数

矩阵平方根

解构稀疏矩阵

>>> P,L,U = linalg.lu(C)

LU 分解

,	>>>	<pre>la, v = sparse.linalg.eigs(F,1)</pre>	特征值与特征向量
	>>>	sparse.linalg.svds(H, 2)	奇异值分解(SVD)

>>> help(scipy.linalg.diagsvd) >>> np.info(np.matrix)