Algorithm

```
library(tidyverse)
library(haven)
library(palmerpenguins)
library(gtsummary)
library(caret)
library(finalfit)
library(ranger)
library(kernlab)
library(MLeval)
library(bangladesh)
library(viridisLite)
library(viridis)
```

Import dataset

```
#PR <- read_spss("BDPR7RFL.SAV")</pre>
hr <- read_sav("BDHR7RFL.SAV")</pre>
#PR_df <-PR |>
# select(HV226, HV206, HV208, HV243A, HV221, HV209, HV242, HV025, HV220, HV219, HV106,
# rename(fuel= HV226, Electricity = HV206,
          Television = HV208, Mobile.phone = HV243A, Landline = HV221,
       # Refrigerator = HV209, separate.kitchen = HV242, residence = HV025, age = HV220,
        # sex = HV219, education = HV106, marital.status = HV115, work.status = SH13,
         #mutate(Cooking.fuel = cut(fuel,
                                   breaks = c(1,5,10),
                                    labels = c("Clean Fuel", "Not Clean"),
                                   right = TRUE))
hr_df <- hr |>
  select(HV226, HV206, HV208, HV243A, HV221, HV209, HV242, HV241, HV025, HV220,
         HV219, `HV106$01`, HV024, `HV115$01`, `SH13$01`, HV270, HV009) |>
  ## Renaming Variable
  rename(fuel= HV226, Electricity = HV206, Television = HV208,
         Mobile.phone = HV243A, Landline = HV221, Refrigerator = HV209,
         separate.kitchen = HV242, Kitchen = HV241, residence = HV025,
```

```
sex = HV219, education = `HV106$01`, marital.status = `HV115$01`,
          work.status = `SH13$01`, Wealth.index = HV270, Fsize = HV009) |>
         mutate(cooking.fuel = case_when(fuel <= 5 ~ 1,</pre>
                                           ## Categories fuel into two categories
                                           fuel == 6 \sim 0,
                                           ## 1 = Clean, O = Unclean
                                           fuel == 7 \sim 0,
                                           fuel == 8 \sim 0,
                                           fuel == 9 \sim 0,
                                           fuel == 10 \sim 0,
                                           fuel == 11 \sim 0,
                                           TRUE ~ NA),
                sex = case\_when(sex == 2 \sim 0,
                                 sex == 1 ~ 1),
                residence = case_when(residence == 1 ~ 1,
                                       # 1 = Urban 0 = Rural
                                       residence ==2 \sim 0),
                marital.status = case_when(marital.status == 1 ~ 1,
                                             marital.status == 2 ~ 1,
                                             # 1 = Yes
                                             marital.status == 0 ~ 0,
                                             marital.status == 3 ~ 0,
                                             marital.status == 4 ~ 0,
                                             marital.status == 5 \sim 0),
                                             \# 0 = No
                separate.kitchen = if_else(separate.kitchen == 1, 1, 0, missing = 1),
                                             \# 0 = No 1 = Yes
                tele.communication = case_when(Landline == 1 | Mobile.phone == 1 ~ 1,
                                                 TRUE \sim 0),
                                             # 1 = Yes 0 = N0
                Family.size = case_when(Fsize < 3 ~ 0,</pre>
                                          TRUE ~ 1)
                                             # 1 = Large Family 0 = Small family
        )
table(hr_df$separate.kitchen)
  0
387 19070
table(hr_df$tele.communication)
```

age = HV220, Division = HV024,

```
0
          1
 1042 18415
  head(hr_df)
# A tibble: 6 x 20
  fuel
                       Electricity Television Mobile.phone Landline Refrigerator
  <dbl+1b1>
                       <dbl+lbl>
                                    <dbl+1bl> <dbl+1bl>
                                                            <dbl+lb> <dbl+lbl>
1 8 [Wood]
                       0 [No]
                                    0 [No]
                                               1 [Yes]
                                                            0 [No]
                                                                      0 [No]
2 8 [Wood]
                       O [No]
                                               1 [Yes]
                                                            O [No]
                                                                      0 [No]
                                    O [No]
3 11 [Animal dung]
                       0 [No]
                                    0 [No]
                                               1 [Yes]
                                                            0 [No]
                                                                      0 [No]
4 8 [Wood]
                       0 [No]
                                    0 [No]
                                               1 [Yes]
                                                            0 [No]
                                                                     0 [No]
5 8 [Wood]
                       0 [No]
                                   O [No]
                                               1 [Yes]
                                                            O [No]
                                                                     O [No]
6 10 [Agricultural cr~ 0 [No]
                                    0 [No]
                                               1 [Yes]
                                                                     0 [No]
                                                            0 [No]
# i 14 more variables: separate.kitchen <dbl>, Kitchen <dbl+lbl>,
    residence <dbl>, age <dbl+lbl>, sex <dbl>, education <dbl+lbl>,
   Division <dbl+lbl>, marital.status <dbl>, work.status <dbl+lbl>,
    Wealth.index <dbl+lbl>, Fsize <dbl>, cooking.fuel <dbl>,
    tele.communication <dbl>, Family.size <dbl>
```

Multidimentional Energy Poverty Index:

```
hr_ep <- hr_df |>
  select(cooking.fuel, Electricity, Television, tele.communication ,
         Refrigerator, separate.kitchen, residence, age, sex, education,
         marital.status, work.status, Wealth.index, Family.size, Division) |>
  mutate(cooking.fuel = case_when( cooking.fuel == 0 ~ 1,
                                    cooking.fuel == 1 ~ 0,
                                    # 1 = Do not use clean fuel
                                    TRUE ~ NA),
         Electricity = case_when( Electricity == 0 ~ 1,
                                   # 1 = Do not have Electricity
                                   Electricity == 1 \sim 0),
         Television = case_when( Television == 0 ~ 1,
                                  # 1 = Do not have Television
                                  Television == 1 \sim 0,
         tele.communication = case_when( tele.communication == 0 ~ 1,
                                  # 1 = Do not have a landline or mobile phone
                                          tele.communication == 1 \sim 0),
         Refrigerator = case_when( Refrigerator == 0 ~ 1,
                                    # 1 = Do not have Refrigerator
                                    Refrigerator == 1 \sim 0),
         separate.kitchen = case_when( separate.kitchen == 0 ~ 1,
```

```
# 1 = Do not have separate.kitchen
                                           separate.kitchen == 1 \sim 0),
            ) |>
    na.omit()
  head(hr_ep)
# A tibble: 6 x 15
  cooking.fuel Electricity Television tele.communication Refrigerator
         <dbl>
                     <dbl>
                                 <dbl>
                                                     <dbl>
                                                                   <dbl>
             1
1
                                                         0
2
                          1
                                     1
                                                         0
                                                                       1
3
             1
                          1
                                                         0
                                     1
                                                                       1
4
             1
                          1
                                     1
                                                         0
                                                                       1
5
             1
                          1
                                     1
                                                         0
                                                                       1
6
             1
                          1
                                     1
# i 10 more variables: separate.kitchen <dbl>, residence <dbl>, age <dbl+lbl>,
    sex <dbl>, education <dbl+lbl>, marital.status <dbl>,
    work.status <dbl+lbl>, Wealth.index <dbl+lbl>, Family.size <dbl>,
    Division <dbl+lbl>
  table(hr_ep$Family.size)
    0
          1
 2223 17194
  table(hr_ep$cooking.fuel)
          1
 3983 15434
  table(hr_df$cooking.fuel)
15435 3983
  table(hr_ep$Electricity)
    0
          1
15779 3638
```

```
table(hr_df$Electricity)
   0 1
 3643 15814
  table(hr_ep$Television)
9218 10199
  table(hr_df$Television)
   0 1
10223 9234
  table(hr_ep$tele.communication)
18379 1038
  table(hr_df$tele.communication)
 1042 18415
  table(hr_ep$Refrigerator)
   0 1
5734 13683
  table(hr_df$Refrigerator)
   0 1
13711 5746
  table(hr_ep$separate.kitchen)
19031
       386
```

```
table(hr_df$separate.kitchen)
    0
          1
  387 19070
  w \leftarrow c(0.2, 0.2, 0.15, 0.15, 0.15, 0.15)
  y1 = as.matrix(hr_ep$cooking.fuel)*(w[1])
  y2 = as.matrix(hr_ep$Electricity)*w[2]
  y3 = as.matrix(hr_ep$Television)*w[3]
  y4 = as.matrix(hr_ep$tele.communication)*w[4]
  y5 = as.matrix(hr_ep$Refrigerator)*w[5]
  y6 = as.matrix(hr_ep$separate.kitchen)*w[6]
  Y = as.matrix(cbind(y1, y2, y3, y4, y5, y6), ncol = 6)
  head(Y)
     [,1] [,2] [,3] [,4] [,5] [,6]
[1,] 0.2 0.2 0.15
                       0 0.15
[2,] 0.2 0.2 0.15
                       0 0.15
[3,] 0.2 0.2 0.15
                       0 0.15
[4,] 0.2 0.2 0.15
                       0 0.15
[5,] 0.2 0.2 0.15
                       0 0.15
                                 0
[6,] 0.2 0.2 0.15
                       0 0.15
                                 0
  \#C = Y * as.vector(w)
  C = Y
  Energy <- C %>% as_tibble() %>%
     mutate(deprivation_score = rowSums(across(where(is.numeric))),
            deprived = case_when( deprivation_score >= 0.35 ~ deprivation_score,
                                   deprivation_score < 0.35 ~ 0),</pre>
            energy_poor = case_when(deprived == 0 ~ 0,
                              TRUE ~ 1))
Warning: The `x` argument of `as_tibble.matrix()` must have unique column names if
`.name_repair` is omitted as of tibble 2.0.0.
i Using compatibility `.name_repair`.
  head(C)
```

```
[,1] [,2] [,3] [,4] [,5] [,6]
[1,]
     0.2 0.2 0.15
                       0 0.15
[2,]
     0.2 0.2 0.15
                       0 0.15
                                  0
[3,]
     0.2 0.2 0.15
                       0 0.15
                                  0
[4,]
     0.2 0.2 0.15
                       0 0.15
[5,]
     0.2 0.2 0.15
                       0 0.15
                                  0
[6,]
     0.2 0.2 0.15
                       0 0.15
  head(Y)
     [,1] [,2] [,3] [,4] [,5] [,6]
     0.2 0.2 0.15
[1,]
                       0 0.15
[2,]
     0.2 0.2 0.15
                       0 0.15
                                  0
                       0 0.15
[3,]
    0.2 0.2 0.15
[4,]
                       0 0.15
     0.2 0.2 0.15
[5,]
     0.2 0.2 0.15
                       0 0.15
                                  0
[6,]
     0.2 0.2 0.15
                       0 0.15
  head(Energy)
# A tibble: 6 x 9
     V1
           ٧2
                 VЗ
                       ۷4
                              ۷5
                                    V6 deprivation_score deprived energy_poor
  <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <
                                                    <dbl>
                                                             <dbl>
                                                                         <dbl>
    0.2
          0.2 0.15
                        0 0.15
                                                      0.7
                                                               0.7
                                                                             1
1
                                     0
2
    0.2
          0.2
              0.15
                        0 0.15
                                                      0.7
                                                               0.7
                                                                             1
                                     0
3
    0.2
          0.2 0.15
                                                               0.7
                        0 0.15
                                                      0.7
                                                                              1
    0.2
4
          0.2 0.15
                        0 0.15
                                                      0.7
                                                               0.7
                                     0
                                                                              1
5
    0.2
          0.2 0.15
                        0 0.15
                                     0
                                                     0.7
                                                               0.7
                                                                             1
    0.2
          0.2 0.15
                        0 0.15
                                     0
                                                      0.7
                                                               0.7
                                                                             1
  head.count = sum(Energy$energy_poor==1)/length(Energy$energy_poor)
  head.count
[1] 0.675336
  intensity = sum(Energy$deprived)/sum(Energy$energy_poor==1);intensity
[1] 0.5199115
  MEPI = head.count * intensity;MEPI
[1] 0.351115
```

```
table(Energy$energy_poor)

0   1
6304 13113
```

Multidimensional Energy Poverty Index by Division: Barisal

```
hr_barisal <- hr_ep |>
    select(-c(residence, age, sex, education,
           marital.status, work.status, Wealth.index, Family.size)) |>
    filter(Division == 1) |>
    select(-Division)
  w1 \leftarrow c(0.2, 0.2, 0.15, 0.15, 0.15, 0.15)
  z = as.matrix(hr_barisal)
  ## Using for loop for creating deprivation score matrix
  for (i in 1:nrow(z)) {
   Y_barisal = matrix(nrow = nrow(z), ncol = ncol(z))
  for (j in 1:length(w1)) {
    Y_{barisal}[,j] = z[,j] * w1[j]
  }
  }
  head(Y_barisal)
     [,1] [,2] [,3] [,4] [,5] [,6]
[1,] 0.2 0.2 0.15
                       0 0.15
[2,] 0.2 0.2 0.15
                       0 0.15
[3,] 0.2 0.2 0.15
                       0 0.15
                                 0
[4,] 0.2 0.2 0.15
                       0 0.15
                                 0
[5,] 0.2 0.2 0.15
                       0 0.15
                                 0
[6,] 0.2 0.2 0.15
                       0 0.15
  Energy_barisal <- Y_barisal %>% as_tibble() %>%
     mutate(deprivation_score = rowSums(across(where(is.numeric))),
            deprived = case_when(deprivation_score >= 0.35 ~ deprivation_score,
                                  deprivation_score < 0.35 ~ 0),
            energy_poor = case_when(deprived == 0 ~ 0,
```

```
TRUE ~ 1))
head.count.barisal = sum(Energy_barisal$energy_poor==1)/length(Energy_barisal$energy_poor)
head.count.barisal

[1] 0.7864838

intensity.barisal = sum(Energy_barisal$deprived)/sum(Energy_barisal$energy_poor==1)
intensity.barisal

[1] 0.5641034

MEPI.barisal = head.count.barisal * intensity.barisal
MEPI.barisal
```

Multidimensional Energy Poverty Index by Division: Chittagong

```
[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 0.2 0.2 0.15 0.15 0.15
[2,] 0.2 0.2 0.15 0.15 0.15
[3,] 0.2 0.2 0.15 0.00 0.15
                                0
[4,] 0.2 0.2 0.15 0.00 0.15
[5,] 0.0 0.0 0.00 0.00 0.00
[6,] 0.2 0.0 0.15 0.00 0.00
  Energy_Chittagong <- Y_Chittagong %>% as_tibble() %>%
     mutate(deprivation score = rowSums(across(where(is.numeric))),
            deprived = case_when(deprivation_score >= 0.35 ~ deprivation_score,
                                 deprivation score < 0.35 \sim 0,
            energy_poor = case_when(deprived == 0 ~ 0,
                                             TRUE ~ 1))
  hc.Chittagong = sum(Energy_Chittagong$energy_poor==1)/length(Energy_Chittagong$energy_poor)
  hc.Chittagong
[1] 0.5543355
  intensity.Chittagong = sum(Energy_Chittagong$deprived)/sum(Energy_Chittagong$energy_poor==1)
  intensity.Chittagong
[1] 0.5197404
  MEPI.Chittagong = hc.Chittagong * intensity.Chittagong
  MEPI.Chittagong
```

Multidimensional Energy Poverty Index by Division: Dhaka

[1] 0.2881106

```
## Using for loop for creating deprivation score matrix
  for (i in 1:nrow(z2)) {
   Y_Dhaka = matrix(nrow = nrow(z2), ncol = ncol(z2))
  for (j in 1:length(w3)) {
    Y_Dhaka[,j] = z2[,j] * w3[j]
  }
  }
  head(Y_Dhaka)
     [,1] [,2] [,3] [,4] [,5] [,6]
[1,] 0.2
            0 0.15
                            0 0.00
                       0
[2,] 0.0
            0 0.00
                       0
                            0 0.15
[3,] 0.2
            0 0.00
                       0
                            0 0.00
[4,] 0.2
          0 0.00
                         0 0.00
[5,] 0.2
            0 0.00
                            0 0.00
[6,] 0.2
            0 0.00
                            0 0.00
  Energy_Dhaka <- Y_Dhaka %>% as_tibble() %>%
     mutate(deprivation_score = rowSums(across(where(is.numeric))),
            deprived = case_when(deprivation_score >= 0.35 ~ deprivation_score,
                                  deprivation_score < 0.35 ~ 0),</pre>
            energy_poor = case_when(deprived == 0 ~ 0,
                                              TRUE ~ 1))
  hc.Dhaka = sum(Energy_Dhaka\energy_poor==1)/length(Energy_Dhaka\energy_poor)
  hc.Dhaka
[1] 0.3560606
  intensity.Dhaka = sum(Energy_Dhaka$deprived)/sum(Energy_Dhaka$energy_poor==1)
  intensity.Dhaka
[1] 0.4955996
  MEPI.Dhaka = hc.Dhaka * intensity.Dhaka
  MEPI.Dhaka
[1] 0.1764635
```

Multidimensional Energy Poverty Index by Division: Khulna

```
hr_Khulna <- hr_ep |>
    select(-c(residence, age, sex, education,
           marital.status, work.status, Wealth.index, Family.size)) |>
    filter(Division == 4) |>
    select(-Division)
  w4 \leftarrow c(0.2, 0.2, 0.15, 0.15, 0.15, 0.15)
  z3 = as.matrix(hr_Khulna)
  ## Using for loop for creating deprivation score matrix
  for (i in 1:nrow(z3)) {
   Y_Khulna = matrix(nrow = nrow(z3), ncol = ncol(z3))
  for (j in 1:length(w4)) {
    Y_{Khulna}[,j] = z3[,j] * w4[j]
  }
  }
  head(Y_Khulna)
     [,1] [,2] [,3] [,4] [,5] [,6]
[1,] 0.2
          0 0.00
                    0 0.15 0.00
[2,] 0.2
         0 0.00
                      0 0.15 0.00
                    0 0.15 0.00
[3,] 0.2 0 0.00
[4,] 0.0 0 0.00
                    0 0.00 0.15
[5,] 0.2 0 0.15
                      0 0.15 0.00
[6,] 0.2 0 0.00
                      0 0.15 0.00
  Energy_Khulna <- Y_Khulna %>% as_tibble() %>%
     mutate(deprivation_score = rowSums(across(where(is.numeric))),
            deprived = case_when(deprivation_score >= 0.35 ~ deprivation_score,
                                 deprivation_score < 0.35 ~ 0),</pre>
            energy_poor = case_when(deprived == 0 ~ 0,
                                             TRUE ~ 1))
  hc.Khulna = sum(Energy_Khulna$energy_poor==1)/length(Energy_Khulna$energy_poor)
  hc.Khulna
[1] 0.7399442
  intensity.Khulna = sum(Energy_Khulna$deprived)/sum(Energy_Khulna$energy_poor==1)
  intensity.Khulna
```

```
[1] 0.4823197

MEPI.Khulna = hc.Khulna * intensity.Khulna MEPI.Khulna
```

[1] 0.3568897

Multidimensional Energy Poverty Index by Division: Mymensingh

```
hr_Mym <- hr_ep |>
    select(-c(residence, age, sex, education,
           marital.status, work.status, Wealth.index, Family.size)) |>
    filter(Division == 5) |>
    select(-Division)
  w5 \leftarrow c(0.2, 0.2, 0.15, 0.15, 0.15, 0.15)
  z4 = as.matrix(hr Mym)
  ## Using for loop for creating deprivation score matrix
  for (i in 1:nrow(z4)) {
   Y_Mym = matrix(nrow = nrow(z4), ncol = ncol(z4))
  for (j in 1:length(w5)) {
    Y_Mym[,j] = z4[,j] * w5[j]
  }
  }
  head(Y_Mym)
     [,1] [,2] [,3] [,4] [,5] [,6]
[1,] 0.2 0.2 0.15 0.00 0.15
[2,] 0.2 0.2 0.15 0.00 0.15
[3,] 0.2 0.2 0.15 0.00 0.15
[4,] 0.2 0.2 0.15 0.15 0.15
[5,] 0.2 0.2 0.15 0.00 0.15
                                 0
[6,] 0.2 0.2 0.15 0.00 0.15
  Energy_Mym <- Y_Mym %>% as_tibble() %>%
     mutate(deprivation_score = rowSums(across(where(is.numeric))),
            deprived = case_when(deprivation_score >= 0.35 ~ deprivation_score,
```

Multidimensional Energy Poverty Index by Division: Rajshahi

```
head(Y_Rajshahi)
    [,1] [,2] [,3] [,4] [,5] [,6]
[1,] 0.2
            0
                 0 0.00 0.00 0.00
[2,] 0.2
            0
                 0 0.15 0.15 0.00
[3,] 0.2
            0
                 0 0.00 0.15 0.00
[4,] 0.2
            0 0.00 0.15 0.00
[5,] 0.2
            0 0.00 0.15 0.00
[6,] 0.0
            0 0.00 0.15 0.15
  Energy_Rajshahi <- Y_Rajshahi %>% as_tibble() %>%
     mutate(deprivation_score = rowSums(across(where(is.numeric))),
            deprived = case_when(deprivation_score >= 0.35 ~ deprivation_score,
                                 deprivation_score < 0.35 ~ 0),</pre>
            energy_poor = case_when(deprived == 0 ~ 0,
                                            TRUE ~ 1))
  hc.Rajshahi = sum(Energy_Rajshahi$energy_poor==1)/length(Energy_Rajshahi$energy_poor)
  hc.Rajshahi
[1] 0.7329168
  intensity.Rajshahi = sum(Energy_Rajshahi$deprived)/sum(Energy_Rajshahi$energy_poor==1)
  intensity.Rajshahi
[1] 0.4838039
  MEPI.Rajshahi = hc.Rajshahi * intensity.Rajshahi
  MEPI.Rajshahi
```

Multidimensional Energy Poverty Index by Division: Rangpur

[1] 0.3545881

```
z6 = as.matrix(hr_Rangpur)
  ## Using for loop for creating deprivation score matrix
  for (i in 1:nrow(z6)) {
   Y_Rangpur = matrix(nrow = nrow(z6), ncol = ncol(z6))
  for (j in 1:length(w7)) {
    Y_{Rangpur}[,j] = z6[,j] * w7[j]
  }
  }
  head(Y_Rangpur)
     [,1] [,2] [,3] [,4] [,5] [,6]
[1,] 0.2 0.2 0.15
                      0 0.15
[2,] 0.2 0.2 0.15
                      0 0.15
[3,] 0.2 0.2 0.15
                      0 0.15
                      0 0.15
[4,] 0.2 0.2 0.15
                                 0
[5,] 0.2 0.2 0.15
                      0 0.15
                                 0
[6,] 0.2 0.2 0.15
                       0 0.15
                                 0
  Energy_Rangpur <- Y_Rangpur %>% as_tibble() %>%
     mutate(deprivation_score = rowSums(across(where(is.numeric))),
            deprived = case_when(deprivation_score >= 0.35 ~ deprivation_score,
                                 deprivation_score < 0.35 ~ 0),
            energy_poor = case_when(deprived == 0 ~ 0,
                                             TRUE ~ 1))
  hc.Rangpur = sum(Energy_Rangpur$energy_poor==1)/length(Energy_Rangpur$energy_poor)
  hc.Rangpur
[1] 0.8505887
  intensity.Rangpur = sum(Energy_Rangpur$deprived)/sum(Energy_Rangpur$energy_poor==1)
  intensity.Rangpur
[1] 0.5452745
  MEPI.Rangpur = hc.Rangpur * intensity.Rangpur
  MEPI.Rangpur
[1] 0.4638043
```

Multidimensional Energy Poverty Index by Division: Sylhet

```
hr_Sylhet <- hr_ep |>
    select(-c(residence, age, sex, education,
          marital.status, work.status, Wealth.index, Family.size)) |>
    filter(Division == 8) |>
    select(-Division)
  w8 \leftarrow c(0.2, 0.2, 0.15, 0.15, 0.15, 0.15)
  z7 = as.matrix(hr_Sylhet)
  ## Using for loop for creating deprivation score matrix
  for (i in 1:nrow(z7)) {
   Y_Sylhet = matrix(nrow = nrow(z7), ncol = ncol(z7))
  for (j in 1:length(w8)) {
    Y_Sylhet[,j] = z7[,j] * w8[j]
  }
  }
  head(Y_Sylhet)
    [,1] [,2] [,3] [,4] [,5] [,6]
[1,] 0.2 0 0.00
                   0 0.00
[2,] 0.2 0 0.15
                      0 0.00
                               0
[3,] 0.2 0 0.00 0 0.00
                             0
[4,] 0.2 0 0.00 0 0.15
                             0
[5,] 0.2 0 0.15 0 0.15
                             0
[6,] 0.2 0 0.15 0 0.15
  Energy_Sylhet <- Y_Sylhet %>% as_tibble() %>%
     mutate(deprivation_score = rowSums(across(where(is.numeric))),
            deprived = case_when(deprivation_score >= 0.35 ~ deprivation_score,
                                deprivation_score < 0.35 ~ 0),
            energy_poor = case_when(deprived == 0 ~ 0,
                                            TRUE ~ 1))
  hc.Sylhet = sum(Energy_Sylhet\energy_poor==1)/length(Energy_Sylhet\energy_poor)
  hc.Sylhet
```

17

[1] 0.6965915

```
intensity.Sylhet = sum(Energy_Sylhet$deprived)/sum(Energy_Sylhet$energy_poor==1)
  intensity.Sylhet
[1] 0.5348036
  MEPI.Sylhet = hc.Sylhet * intensity.Sylhet
  MEPI.Sylhet
[1] 0.3725396
MEPI by Division
  MEPI. Value <- c(MEPI. barisal, MEPI. Chittagong, MEPI. Dhaka,
                               MEPI.Khulna, MEPI.Mym, MEPI.Rajshahi,
                               MEPI.Rangpur, MEPI.Sylhet)
  Division <- c("Barisal", "Chittagong", "Dhaka", "Khulna", "Mymensingh",
                 "Rajshahi", "Rangpur", "Sylhet")
  MEPI.Division <- data.frame(Division, MEPI.Value = round(MEPI.Value,2))</pre>
  MEPI.Division <- as_tibble(MEPI.Division)</pre>
  MEPI.Division
# A tibble: 8 x 2
  Division MEPI. Value
  <chr>
                 <dbl>
1 Barisal
                  0.44
                  0.29
2 Chittagong
3 Dhaka
                   0.18
4 Khulna
                   0.36
5 Mymensingh
                  0.41
6 Rajshahi
                  0.35
7 Rangpur
                   0.46
8 Sylhet
                   0.37
  ## For loop Experiment
  a \leftarrow matrix(rbinom(42,1,.5), ncol = 6)
  b \leftarrow c(0.2, 0.2, 0.15, 0.15, 0.15, 0.15)
  for (i in 1:nrow(a)) {
   c = matrix(nrow = nrow(a), ncol = ncol(a))
  for (j in 1:length(b)) {
```

```
c[,j] = a[,j] * b[j]
  }
  }
  С
    [,1] [,2] [,3] [,4] [,5] [,6]
    0.0 0.0 0.00 0.15 0.00 0.15
[1,]
    0.2 0.0 0.15 0.00 0.15 0.15
[3,] 0.2 0.2 0.15 0.15 0.15 0.15
[4,] 0.2 0.0 0.15 0.15 0.15 0.00
[5,] 0.0 0.2 0.00 0.15 0.00 0.00
[6,] 0.2 0.0 0.00 0.00 0.15 0.15
[7,] 0.0 0.2 0.15 0.00 0.15 0.00
  nrow(a)
[1] 7
  class(b)
[1] "numeric"
```

Graphical Representation

1

0

5 42

```
hr_ml <-hr_ep |>
    select(age, Family.size, residence, sex, education, marital.status, work.status, Wealth.index, Div
    na.omit()
  hr_ml$poverty <- cbind(Energy$energy_poor)</pre>
  head(hr_ml)
# A tibble: 6 x 10
            Family.size residence
                                                     marital.status work.status
                                     sex education
  <dbl+lbl>
                 <dbl>
                             <dbl> <dbl> <dbl+lbl>
                                                               <dbl> <dbl+lbl>
                                                                   1 1 [Yes]
1 45
                      1
                                 0
                                       1 1 [Primary]
2 65
                                 0
                                       1 1 [Primary]
                                                                   1 1 [Yes]
3 65
                      1
                                 0
                                       1 1 [Primary]
                                                                   1 1 [Yes]
4 68
                                 0
                                       1 1 [Primary]
                                                                   1 1 [Yes]
                      1
```

1 1 [Yes]

0 1 [Primary]

```
1 1 [Primary]
                                                                  1 1 [Yes]
# i 3 more variables: Wealth.index <dbl+lbl>, Division <dbl+lbl>,
   poverty <dbl[,1]>
  table(hr_ml$poverty)
    0
          1
 6304 13113
  hrml1 <- hr_ml |>
    mutate_at(factor, .vars = vars(Family.size:poverty)) |>
    mutate(poverty = factor(case_when(poverty == 1 ~ "Yes",
                               TRUE ~ "No")))
  hrml1 |>
    pivot_longer(poverty) |>
    mutate(Ep = case_when( value == 1 ~ "Energy Poor",
                         TRUE ~ "Energy non Poor"),
           Division = case_when(Division == 1 ~ "Barisal",
                                Division == 2 ~ "Chittagong",
                                Division == 3 ~ "Dhaka",
                                Division == 4 ~ "Khulna",
                                Division == 5 ~ "Mymensingh",
                                Division == 6 ~ "Rajshahi",
                                Division == 7 ~ "Rangpur",
                                Division == 8 ~ "Sylhet"
                                 )) |>
    group_by(Division)|>
    count(Division, value, Ep) |>
    mutate(prop = prop.table(n),
           label=scales::percent(prop,accuracy = 0.1)) |>
    ungroup()|>
    ggplot(aes(x = as.factor(Ep), y = prop, label = label)) +
    geom_col(aes(fill= as.factor(Ep)),alpha = 0.8, show.legend = F, col="black") +
    facet_wrap(~ Division, scales = "free") +
    geom_text(nudge_y = 0.09) +
    scale_y_continuous(labels = scales::percent_format()) +
    labs(title = "Percentage Distribution of Energy Poverty by Division",
         x = "Energy Poverty", y = "Percentage(%)") +
    theme_minimal()
```

6 42

Percentage Distribution of Energy Poverty by Division

library(tmap)

Breaking News: tmap 3.x is retiring. Please test v4, e.g. with

remotes::install_github('r-tmap/tmap')

MEPI.Division

```
# A tibble: 8 x 2
             MEPI. Value
  Division
  <chr>
                   <dbl>
1 Barisal
                    0.44
                    0.29
2 Chittagong
3 Dhaka
                    0.18
4 Khulna
                    0.36
5 Mymensingh
                    0.41
6 Rajshahi
                    0.35
7 Rangpur
                    0.46
8 Sylhet
                    0.37
```

```
division <- get_map("division")
division_centroids <- bangladesh::get_coordinates(level = "division")
knitr::kable(division_centroids, format = "html")</pre>
```

Division	lat	lon
Barisal	22.41889	90.34684
Chittagong	22.70692	91.73546
Dhaka	23.83870	90.24064
Khulna	22.91367	89.29437
Mymensingh	24.84675	90.38088
Rajshahi	24.58846	89.04540
Rangpur	25.77920	89.05685
Sylhet	24.71515	91.66400

Bangladesh Map

Multidimentional Energy Poverty Index on Division Level

Data Source: BDHS: 2017-18

```
hrml1 |>
  tbl_summary(by = poverty) |>
  add_p()
```

Characteristic	$No, N = 6{,}304$	Yes, N = 13,113	p-value
Age of head of household	44 (35, 55)	45 (35, 56)	0.001
Family.size			0.001
0	655 (10%)	$1,568 \ (12\%)$	
1	5,649 (90%)	$11,545 \ (88\%)$	
residence			< 0.001
0	2,154 (34%)	$10,179 \ (78\%)$	
1	4,150 (66%)	2,934~(22%)	
sex			0.5
0	986 (16%)	$1,997 \ (15\%)$	
1	5,318 (84%)	11,116 (85%)	
education		, , ,	< 0.001
0	858 (14%)	4,550 (35%)	
1	1,461 (23%)	4,842 (37%)	
2	2,064 (33%)	$2,932\ (22\%)$	
3	1,915 (30%)	779 (5.9%)	
8	6 (<0.1%)	10 (<0.1%)	
marital.status	,	,	< 0.001
0	492~(7.8%)	1,325 (10%)	
1	5,812 (92%)	11,788 (90%)	
work.status	, , ,	, , ,	< 0.001
0	1,181 (19%)	1,633~(12%)	
1	5,123 (81%)	11,480 (88%)	
Wealth.index	, (, , , ,	, , , ,	< 0.001
1	0 (0%)	4,072 (31%)	
2	$16 \ (0.3\%)$	3,817 (29%)	
3	582 (9.2%)	3,046 (23%)	
4	1,930 (31%)	1,859 (14%)	
5	3,776 (60%)	319 (2.4%)	
Division	- / (0)		< 0.001
1	436 (6.9%)	1,606 (12%)	
2	1,177 (19%)	1,464 (11%)	
3	1,870 (30%)	1,034 (7.9%)	
4	653 (10%)	1,858 (14%)	
5	484 (7.7%)	1,728 (13%)	
6	684 (11%)	1,877 (14%)	
7	368 (5.8%)	2,095 (16%)	
8	632 (10%)	1,451 (11%)	
	002 (10/0)	1,101 (11/0)	

```
names(hrml1)
```

[1] "age" "Family.size" "residence" "sex"

```
"marital.status" "work.status"
[9] "Division"
                     "poverty"
 dependent = names(hrml1)[10]
 explanatory = names(hrml1)[-c(10)]
 T <-hrml1 |>
   finalfit(dependent,explanatory, metrics = FALSE,p = TRUE,estimate_name = "Odds ratio",digits = c()
 knitr::kable(T,
              caption = "Logistic regression results predicting likelihood of Energy Poverty")
```

"Wealth.index"

[5] "education"

Table 3: Logistic regression results predicting likelihood of Energy Poverty

	Dependent: poverty		No	Yes	Odds ratio (univariable)	Odds ratio (multivariable)
1	Age of head of	Mean	45.1	46.0	1.004 (1.002 to 1.006,	1.008 (1.004 to 1.011,
	household	(SD)	(13.7)	(14.6)	TRUE=0.0001)	TRUE=0.0002)
15	Family.size	$\hat{0}$	655	1568	-	-
	·		(29.5)	(70.5)		
16		1	5649	11545	0.854 (0.775 to 0.940,	0.883 (0.747 to 1.044,
			(32.9)	(67.1)	TRUE=0.0013)	TRUE=0.1462)
19	residence	0	2154	10179	-	-
			(17.5)	(82.5)		
20		1	4150	2934	0.150 (0.140 to 0.160,	0.558 (0.503 to 0.620,
			(58.6)	(41.4)	TRUE<0.0001)	TRUE<0.0001)
21	sex	0	986	1997	-	-
			(33.1)	(66.9)		
22		1	5318	11116	1.032 (0.950 to 1.121,	1.125 (0.942 to 1.344,
			(32.4)	(67.6)	TRUE=0.4563)	TRUE=0.1922)
10	education	0	858	4550	-	-
			(15.9)	(84.1)		
11		1	1461	4842	0.625 (0.569 to 0.686,	0.901 (0.778 to 1.044,
			(23.2)	(76.8)	TRUE<0.0001)	TRUE=0.1657)
12		2	2064	2932	0.268 (0.244 to 0.294,	0.806 (0.693 to 0.936,
			(41.3)	(58.7)	TRUE<0.0001)	TRUE=0.0047)
13		3	1915	779	0.077 (0.069 to 0.086,	0.577 (0.482 to 0.691,
			(71.1)	(28.9)	TRUE<0.0001)	TRUE<0.0001)
14		8	6 (37.5)	10 (62.5)	0.314 (0.116 to 0.926,	0.593 (0.038 to 3.944,
			,	,	TRUE=0.0254)	TRUE=0.6373)
17	marital.status	0	492	1325	-	-
			(27.1)	(72.9)		
18		1	5812	11788	0.753 (0.675 to 0.839,	0.764 (0.626 to 0.931,
			(33.0)	(67.0)	TRUE<0.0001)	TRUE=0.0078)
28	work.status	0	1181	1633	-	-
			(42.0)	(58.0)		

	Dependent:					
	poverty		No	Yes	Odds ratio (univariable)	Odds ratio (multivariable)
29		1	5123	11480	1.621 (1.493 to 1.759,	1.159 (0.988 to 1.359,
			(30.9)	(69.1)	TRUE<0.0001)	TRUE=0.0695)
23	Wealth.index	1	0(0.0)	4072	-	-
				(100.0)		
24		2	16(0.4)	3817	0.000 (0.000 to 0.000,	0.000 (0.000 to 0.000,
				(99.6)	TRUE=0.9334)	TRUE = 0.9321)
25		3	582	3046	0.000 (0.000 to 0.000,	0.000 (0.000 to 0.000,
			(16.0)	(84.0)	TRUE = 0.9154)	TRUE=0.9141)
26		4	1930	1859	0.000 (0.000 to 0.000,	0.000 (0.000 to 0.000,
			(50.9)	(49.1)	TRUE = 0.9074)	TRUE = 0.9065)
27		5	3776	319 (7.8)	0.000 (0.000 to 0.000,	0.000 (0.000 to 0.000,
			(92.2)		TRUE = 0.8960)	TRUE = 0.8952)
2	Division	1	436	1606	-	-
			(21.4)	(78.6)		
3		2	1177	1464	0.338 (0.296 to 0.385,	0.537 (0.437 to 0.658,
			(44.6)	(55.4)	TRUE < 0.0001)	TRUE < 0.0001)
4		3	1870	1034	0.150 (0.132 to 0.171,	0.282 (0.230 to 0.346,
			(64.4)	(35.6)	TRUE < 0.0001)	TRUE < 0.0001)
5		4	653	1858	0.772 (0.672 to 0.887,	2.124 (1.718 to 2.625,
			(26.0)	(74.0)	TRUE = 0.0003)	TRUE < 0.0001)
6		5	484	1728	0.969 (0.837 to 1.122,	0.790 (0.629 to 0.991,
			(21.9)	(78.1)	TRUE = 0.6754)	TRUE = 0.0420)
7		6	684	1877	0.745 (0.649 to 0.854,	0.967 (0.783 to 1.193,
			(26.7)	(73.3)	TRUE < 0.0001)	TRUE = 0.7549)
8		7	368	2095	1.546 (1.326 to 1.802,	2.307 (1.812 to 2.940,
			(14.9)	(85.1)	TRUE<0.0001)	TRUE<0.0001)
9		8	632	1451	0.623 (0.541 to 0.718,	1.297 (1.036 to 1.623,
			(30.3)	(69.7)	TRUE < 0.0001)	TRUE = 0.0232)

Model Building

```
set.seed(123)
split <- createDataPartition(hrml1$poverty, p=3/4, list = FALSE)
training <- hrml1[split,]
testing <- hrml1[-split,]

set.seed(12345)
model <- train(poverty ~ ., data =training,
method = "svmLinear",
na.action = na.omit,
preProcess = c("scale","center"),
trControl = trainControl(method = "none"),
tune_grid = data.frame(degree=1, scale = 1, C=1))</pre>
```

```
model.cv <- train(poverty ~ ., data = training,</pre>
method = "svmLinear",
na.action = na.omit,
preProcess = c("scale", "center"),
trControl = trainControl(method = "cv", number = 10),
tune_Grid = data.frame(degree=1, scale = 1, C=1))
model.Rf <- train(poverty ~ ., data = training,</pre>
method = 'ranger',
na.action = na.omit,
preProcess = c("scale", "center"),
trControl = trainControl(method = "cv", number = 10))
model.knn <- train(poverty ~ ., data = training,</pre>
method = "knn",
na.action = na.omit,
preProcess = c("scale", "center"),
trControl = trainControl(method = "cv", number = 10))
model.glm <- train(poverty ~ ., data = training,</pre>
method = "glm",
na.action = na.omit,
preProcess = c("scale", "center"),
family = "binomial",
trControl = trainControl(method = "cv", number = 10))
```

ROC Curve

```
preProcess = c("scale", "center"),
  trControl = crlt,
  metric = "ROC")
  model.svm <- train(poverty ~ ., data = training,</pre>
  method = "svmLinear",
  na.action = na.omit,
  preProcess = c("scale", "center"),
  trControl = crlt,
  metric = "ROC")
  model.rf <- train(poverty ~ ., data = training,</pre>
  method = 'rf',
  na.action = na.omit,
  preProcess = c("scale", "center"),
  trControl = crlt,
  metric = "ROC")
  model.knn1
k-Nearest Neighbors
14563 samples
    9 predictor
    2 classes: 'No', 'Yes'
Pre-processing: scaled (21), centered (21)
Resampling: Cross-Validated (10 fold)
Summary of sample sizes: 13106, 13107, 13106, 13107, 13107, 13106, ...
Resampling results across tuning parameters:
  k ROC
                Sens
                            Spec
  5 0.9239941 0.7779191 0.9130659
  7 0.9319485 0.7789762 0.9168283
  9 0.9356713 0.7768629 0.9190658
ROC was used to select the optimal model using the largest value.
The final value used for the model was k = 9.
  model.glm1
Generalized Linear Model
14563 samples
    9 predictor
```

2 classes: 'No', 'Yes' Pre-processing: scaled (21), centered (21) Resampling: Cross-Validated (10 fold) Summary of sample sizes: 13108, 13106, 13107, 13106, 13107, 13106, ... Resampling results: ROC Sens Spec 0.9534742 0.80034 0.9272998 res <- evalm(list(model.knn1,model.glm1, model.svm, model.rf),gnames=c('Knn','Glm', "SVM", "RF"), plots = "r", title = "ROC Curve For Different model") ***MLeval: Machine Learning Model Evaluation*** Input: caret train function object Not averaging probs. Group 1 type: cv Group 2 type: cv Group 3 type: cv Group 4 type: cv Observations: 58252 Number of groups: 4 Observations per group: 14563 Positive: Yes Negative: No Group: Knn Positive: 9835

Negative: 4728

Group: Glm

Positive: 9835

Negative: 4728

Group: SVM

Positive: 9835

Negative: 4728

Group: RF

Positive: 9835

Negative: 4728

Performance Metrics

Knn Optimal Informedness = 0.718271079409237

 $Glm\ Optimal\ Informedness = 0.754733646624465$

SVM Optimal Informedness = 0.737658914388596

RF Optimal Informedness = 0.727632974536708

Knn AUC-ROC = 0.94

 $Glm\ AUC-ROC = 0.95$

SVM AUC-ROC = 0.91

RF AUC-ROC = 0.94

varImp(model.glm1)

glm variable importance

only 20 most important variables shown (out of 21)

	Overall
Division3	100.0000
residence1	79.6727
Division2	51.0364
education3	48.1491
Division7	46.0223
Division4	42.8228
age	30.9640
Division5	23.6128
education2	20.4930
marital.status1	18.8543
work.status1	14.2524
Division8	12.4403
education1	10.1480
sex1	7.7414
Family.size1	7.6139
Division6	7.0356
education8	2.6784
Wealth.index5	0.3599
Wealth.index4	0.2550
Wealth.index3	0.1838

Apply model for prediction

```
model.train <- predict(model, training)
model.test <- predict(model, testing)
model.cross <- predict(model.cv,training)
model.cross.test <- predict(model.cv, testing)
model.random.forest <- predict(model.Rf,training)
model.random.forest.test <- predict(model.Rf, testing)
model.kNN <- predict(model.knn,training)
model.kNN.test <- predict(model.knn, testing)
model.lr <- predict(model.glm,training)
model.lr.test <- predict(model.glm, testing)</pre>
```

Display confusion matrix

```
model.train.confusion <- confusionMatrix(model.train, training$poverty)
print(model.train.confusion)</pre>
```

Confusion Matrix and Statistics

Reference
Prediction No Yes
No 3836 771
Yes 892 9064

Accuracy : 0.8858

95% CI: (0.8805, 0.8909)

No Information Rate : 0.6753 P-Value [Acc > NIR] : < 2.2e-16

Kappa: 0.7378

Mcnemar's Test P-Value: 0.003254

Sensitivity: 0.8113
Specificity: 0.9216
Pos Pred Value: 0.8326
Neg Pred Value: 0.9104
Prevalence: 0.3247
Detection Rate: 0.2634
Detection Prevalence: 0.3163

'Positive' Class : No

Balanced Accuracy: 0.8665

```
model.test.confusion <- confusionMatrix(model.test, testing$poverty)
print(model.test.confusion)</pre>
```

Confusion Matrix and Statistics

Reference

Prediction No Yes No 1255 235 Yes 321 3043

Accuracy : 0.8855

95% CI: (0.8762, 0.8943)

No Information Rate : 0.6753 P-Value [Acc > NIR] : < 2.2e-16

Kappa: 0.735

Mcnemar's Test P-Value: 0.0003124

Sensitivity: 0.7963
Specificity: 0.9283
Pos Pred Value: 0.8423
Neg Pred Value: 0.9046
Prevalence: 0.3247
Detection Rate: 0.2585
Detection Prevalence: 0.3070

Balanced Accuracy: 0.8623

'Positive' Class : No

model.cv.confusion <- confusionMatrix(model.cross, training\$poverty)
model.cv.confusion1 <- confusionMatrix(model.cross.test, testing\$poverty)
print(model.cv.confusion)</pre>

Confusion Matrix and Statistics

Reference

Prediction No Yes No 3836 771 Yes 892 9064

Accuracy : 0.8858

95% CI: (0.8805, 0.8909)

No Information Rate : 0.6753 P-Value [Acc > NIR] : < 2.2e-16 Kappa : 0.7378

Mcnemar's Test P-Value: 0.003254

Sensitivity : 0.8113 Specificity : 0.9216 Pos Pred Value : 0.8326 Neg Pred Value : 0.9104 Prevalence : 0.3247 Detection Rate : 0.2634

Detection Prevalence: 0.3163
Balanced Accuracy: 0.8665

'Positive' Class : No

print(model.cv.confusion1)

Confusion Matrix and Statistics

Reference

Prediction No Yes No 1255 235 Yes 321 3043

Accuracy : 0.8855

95% CI: (0.8762, 0.8943)

No Information Rate : 0.6753 P-Value [Acc > NIR] : < 2.2e-16

Kappa: 0.735

Mcnemar's Test P-Value: 0.0003124

Sensitivity: 0.7963
Specificity: 0.9283
Pos Pred Value: 0.8423
Neg Pred Value: 0.9046
Prevalence: 0.3247
Detection Rate: 0.2585

Detection Prevalence: 0.3070
Balanced Accuracy: 0.8623

'Positive' Class : No

```
model.rf.confusion <- confusionMatrix(model.random.forest,training$poverty)
model.rf.confusion1 <- confusionMatrix(model.random.forest.test, testing$poverty)
print(model.rf.confusion)</pre>
```

Confusion Matrix and Statistics

Reference

Prediction No Yes No 3433 401 Yes 1295 9434

Accuracy : 0.8835

95% CI: (0.8782, 0.8887)

No Information Rate : 0.6753 P-Value [Acc > NIR] : < 2.2e-16

Kappa: 0.7207

Mcnemar's Test P-Value : < 2.2e-16

Sensitivity: 0.7261 Specificity: 0.9592 Pos Pred Value: 0.8954 Neg Pred Value: 0.8793 Prevalence: 0.3247 Detection Rate: 0.2357

Detection Rate : 0.2637
Detection Prevalence : 0.2633
Balanced Accuracy : 0.8427

'Positive' Class : No

print(model.rf.confusion1)

Confusion Matrix and Statistics

Reference

Prediction No Yes No 1148 139 Yes 428 3139

Accuracy : 0.8832

95% CI: (0.8738, 0.8921)

No Information Rate : 0.6753 P-Value [Acc > NIR] : < 2.2e-16

Kappa: 0.7203

Mcnemar's Test P-Value : < 2.2e-16

Sensitivity: 0.7284 Specificity: 0.9576 Pos Pred Value: 0.8920 Neg Pred Value: 0.8800 Prevalence: 0.3247

Detection Rate : 0.2365 Detection Prevalence : 0.2651 Balanced Accuracy : 0.8430

'Positive' Class : No

model.knn.confusion <- confusionMatrix(model.kNN, training\$poverty)
model.knn.confusion1 <- confusionMatrix(model.kNN.test, testing\$poverty)
print(model.knn.confusion)</pre>

Confusion Matrix and Statistics

Reference
Prediction No Yes
No 3828 660
Yes 900 9175

Accuracy : 0.8929

95% CI: (0.8877, 0.8979)

No Information Rate : 0.6753 P-Value [Acc > NIR] : < 2.2e-16

Kappa: 0.7525

Mcnemar's Test P-Value: 1.438e-09

Sensitivity: 0.8096 Specificity: 0.9329 Pos Pred Value: 0.8529 Neg Pred Value: 0.9107 Prevalence: 0.3247 Detection Rate: 0.2629

Detection Prevalence: 0.3082 Balanced Accuracy: 0.8713

'Positive' Class : No

print(model.knn.confusion1)

Confusion Matrix and Statistics

Reference
Prediction No Yes
No 1205 253
Yes 371 3025

Accuracy : 0.8714

95% CI: (0.8617, 0.8807)

No Information Rate : 0.6753 P-Value [Acc > NIR] : < 2.2e-16

Kappa : 0.701

Mcnemar's Test P-Value : 2.817e-06

Sensitivity: 0.7646
Specificity: 0.9228
Pos Pred Value: 0.8265
Neg Pred Value: 0.8908
Prevalence: 0.3247
Detection Rate: 0.2482

Detection Prevalence: 0.3004 Balanced Accuracy: 0.8437

'Positive' Class : No

model.glm.confusion <- confusionMatrix(model.lr,training\$poverty)
model.glm.confusion1 <- confusionMatrix(model.lr.test,testing\$poverty)
print(model.glm.confusion)</pre>

Confusion Matrix and Statistics

Reference

Prediction No Yes No 3789 716 Yes 939 9119

Accuracy : 0.8864

95% CI: (0.8811, 0.8915)

No Information Rate : 0.6753 P-Value [Acc > NIR] : < 2.2e-16

Kappa: 0.7376

Mcnemar's Test P-Value : 4.842e-08

Sensitivity: 0.8014 Specificity: 0.9272 Pos Pred Value: 0.8411 Neg Pred Value: 0.9066 Prevalence: 0.3247

Detection Rate : 0.2602 Detection Prevalence : 0.3093 Balanced Accuracy : 0.8643

'Positive' Class : No

print(model.glm.confusion1)

Confusion Matrix and Statistics

Reference
Prediction No Yes
No 1236 232
Yes 340 3046

Accuracy : 0.8822

95% CI: (0.8728, 0.8911)

No Information Rate : 0.6753 P-Value [Acc > NIR] : < 2.2e-16

Kappa: 0.7264

Mcnemar's Test P-Value: 7.681e-06

Sensitivity: 0.7843
Specificity: 0.9292
Pos Pred Value: 0.8420
Neg Pred Value: 0.8996
Prevalence: 0.3247
Detection Rate: 0.2546

Detection Prevalence: 0.3024
Balanced Accuracy: 0.8567

'Positive' Class : No

library(caret)

data(Sonar)

```
ctrl <- trainControl(method="cv",</pre>
    classProbs=TRUE, savePredictions = "all")
  rfFit <- train(Class ~ ., data=Sonar,</pre>
    method="rf", preProc=c("center", "scale"),
    trControl=ctrl,
    importance=TRUE)
  library(randomForest)
randomForest 4.7-1.1
Type rfNews() to see new features/changes/bug fixes.
Attaching package: 'randomForest'
The following object is masked from 'package:ranger':
    importance
The following object is masked from 'package:dplyr':
    combine
The following object is masked from 'package:ggplot2':
    margin
  rfo <- randomForest(factor(poverty) ~. , data = training, importance = TRUE)</pre>
  library(vip)
Attaching package: 'vip'
The following object is masked from 'package:utils':
    vi
  vip(rfo,aesthetics = list(alpha = 0.8, fill = "midnightblue"))
```


varImp(rfFit)

rf variable importance

only 20 most important variables shown (out of 60)

	Importance
V11	100.00
V12	88.50
V 9	78.58
V10	68.16
V49	65.71
V48	61.04
V36	57.18
V13	56.53
V45	55.33
V21	54.54
V37	52.90
V28	51.24
V44	49.61
V20	48.08
V46	47.10
V47	43.73
V16	42.60
V1	40.16
V 5	40.10
V4	39.59

rfFit\$variable.importance

NULL

rfFit

```
Random Forest
208 samples
 60 predictor
  2 classes: 'M', 'R'
Pre-processing: centered (60), scaled (60)
Resampling: Cross-Validated (10 fold)
Summary of sample sizes: 188, 188, 187, 187, 187, 187, ...
Resampling results across tuning parameters:
       Accuracy
  mtry
                   Kappa
   2
        0.8557143
                   0.7057720
  31
        0.8126190 0.6199729
  60
        0.8126190 0.6204268
```

Accuracy was used to select the optimal model using the largest value. The final value used for the model was mtry = 2.

str(Sonar)

```
'data.frame':
               208 obs. of 61 variables:
$ V1
              0.02 0.0453 0.0262 0.01 0.0762 0.0286 0.0317 0.0519 0.0223 0.0164 ...
       : num
              0.0371 0.0523 0.0582 0.0171 0.0666 0.0453 0.0956 0.0548 0.0375 0.0173 ...
$ V2
       : num
$ V3
              0.0428 0.0843 0.1099 0.0623 0.0481 ...
       : num
$ V4
              0.0207 0.0689 0.1083 0.0205 0.0394 ...
       : num
$ V5
       : num 0.0954 0.1183 0.0974 0.0205 0.059 ...
$ V6
       : num
              0.0986 0.2583 0.228 0.0368 0.0649 ...
$ V7
       : num
              0.154 0.216 0.243 0.11 0.121 ...
$ V8
              0.16 0.348 0.377 0.128 0.247 ...
       : num
       : num 0.3109 0.3337 0.5598 0.0598 0.3564 ...
$ V9
$ V10 : num
              0.211 0.287 0.619 0.126 0.446 ...
$ V11
       : num
              0.1609 0.4918 0.6333 0.0881 0.4152 ...
              0.158 0.655 0.706 0.199 0.395 ...
$ V12
       : num
              0.2238 0.6919 0.5544 0.0184 0.4256 ...
$ V13
       : num
$ V14
       : num
              0.0645 0.7797 0.532 0.2261 0.4135 ...
$ V15
       : num
              0.066 0.746 0.648 0.173 0.453 ...
$ V16
       : num
              0.227 0.944 0.693 0.213 0.533 ...
$ V17
       : num 0.31 1 0.6759 0.0693 0.7306 ...
```

```
$ V18 : num
             0.3 0.887 0.755 0.228 0.619 ...
$ V19
      : num
              0.508 0.802 0.893 0.406 0.203 ...
$ V20
      : num
              0.48 0.782 0.862 0.397 0.464 ...
$ V21
      : num
              0.578 0.521 0.797 0.274 0.415 ...
$ V22
      : num
              0.507 0.405 0.674 0.369 0.429 ...
$ V23
              0.433 0.396 0.429 0.556 0.573 ...
      : num
$ V24
      : num
              0.555 0.391 0.365 0.485 0.54 ...
$ V25
              0.671 0.325 0.533 0.314 0.316 ...
      : num
$ V26
              0.641 0.32 0.241 0.533 0.229 ...
      : num
$ V27
              0.71 0.327 0.507 0.526 0.7 ...
      : num
$ V28
              0.808 0.277 0.853 0.252 1 ...
      : num
$ V29
      : num
              0.679 0.442 0.604 0.209 0.726 ...
$ V30
              0.386 0.203 0.851 0.356 0.472 ...
      : num
$ V31
      : num
              0.131 0.379 0.851 0.626 0.51 ...
$ V32 : num
              0.26 0.295 0.504 0.734 0.546 ...
$ V33
              0.512 0.198 0.186 0.612 0.288 ...
      : num
$ V34
              0.7547 0.2341 0.2709 0.3497 0.0981 ...
      : num
$ V35
      : num
              0.854 0.131 0.423 0.395 0.195 ...
$ V36
              0.851 0.418 0.304 0.301 0.418 ...
      : num
$ V37
              0.669 0.384 0.612 0.541 0.46 ...
      : num
$ V38
              0.61 0.106 0.676 0.881 0.322 ...
      : num
$ V39
      : num
              0.494 0.184 0.537 0.986 0.283 ...
$ V40
      : num
              0.274 0.197 0.472 0.917 0.243 ...
$ V41
              0.051 0.167 0.465 0.612 0.198 ...
      : num
$ V42
      : num
              0.2834 0.0583 0.2587 0.5006 0.2444 ...
$ V43
              0.282 0.14 0.213 0.321 0.185 ...
      : num
$ V44
      : num
              0.4256 0.1628 0.2222 0.3202 0.0841 ...
$ V45
      : num
              0.2641 0.0621 0.2111 0.4295 0.0692 ...
$ V46
      : num
              0.1386 0.0203 0.0176 0.3654 0.0528 ...
$ V47
      : num
              0.1051 0.053 0.1348 0.2655 0.0357 ...
$ V48
             0.1343 0.0742 0.0744 0.1576 0.0085 ...
      : num
$ V49 : num
              0.0383 0.0409 0.013 0.0681 0.023 0.0264 0.0507 0.0285 0.0777 0.0092 ...
$ V50
      : num
              0.0324 0.0061 0.0106 0.0294 0.0046 0.0081 0.0159 0.0178 0.0439 0.0198 ...
              0.0232\ 0.0125\ 0.0033\ 0.0241\ 0.0156\ 0.0104\ 0.0195\ 0.0052\ 0.0061\ 0.0118\ \dots
$ V51
      : num
              0.0027 0.0084 0.0232 0.0121 0.0031 0.0045 0.0201 0.0081 0.0145 0.009 ...
$ V52
      : num
$ V53
              0.0065\ 0.0089\ 0.0166\ 0.0036\ 0.0054\ 0.0014\ 0.0248\ 0.012\ 0.0128\ 0.0223\ \dots
      : num
$ V54
              0.0159\ 0.0048\ 0.0095\ 0.015\ 0.0105\ 0.0038\ 0.0131\ 0.0045\ 0.0145\ 0.0179\ \dots
      : num
$ V55
      : num
              0.0072\ 0.0094\ 0.018\ 0.0085\ 0.011\ 0.0013\ 0.007\ 0.0121\ 0.0058\ 0.0084\ \dots
$ V56
      : num
              0.0167 0.0191 0.0244 0.0073 0.0015 0.0089 0.0138 0.0097 0.0049 0.0068 ...
$ V57
              0.018 0.014 0.0316 0.005 0.0072 0.0057 0.0092 0.0085 0.0065 0.0032 ...
      : num
$ V58
      : num
              0.0084 0.0049 0.0164 0.0044 0.0048 0.0027 0.0143 0.0047 0.0093 0.0035 ...
$ V59
             0.009 0.0052 0.0095 0.004 0.0107 0.0051 0.0036 0.0048 0.0059 0.0056 ...
      : num 0.0032 0.0044 0.0078 0.0117 0.0094 0.0062 0.0103 0.0053 0.0022 0.004 ...
$ Class: Factor w/ 2 levels "M", "R": 2 2 2 2 2 2 2 2 2 2 ...
 classprobs <- predict(rfFit, newdata = Sonar, type = "prob")</pre>
 res <- evalm(rfFit)
```

MLeval: Machine Learning Model Evaluation

Input: caret train function object

Not averaging probs.

Group 1 type: cv

Observations: 208

Number of groups: 1

Observations per group: 208

Positive: R

Negative: M

Group: Group 1

Positive: 97

Negative: 111

Performance Metrics

Group 1 Optimal Informedness = 0.812018203770781

Group 1 AUC-ROC = 0.95

res\$roc


```
model.Rf <- train(poverty ~ ., data = training,
method = 'rf',
na.action = na.omit,
preProcess = c("scale","center"),
trControl = trainControl(method = "cv",number = 10))</pre>
```

```
v <- varImp(model.Rf,scale = TRUE)[["importance"]]
plot(v)</pre>
```



```
R <- varImp(model.Rf)
plot(R, top = 10)</pre>
```


v |> arrange(desc(Overall))

	Overall
Wealth.index5	100.0000000
residence1	33.7681623
Wealth.index2	21.3855939
education3	20.4741640
Wealth.index4	17.7339306
Division3	17.3363117
Wealth.index3	8.3820476
age	3.7401379
Division7	3.6729697
education2	3.2900103
Division2	2.8746793
education1	2.7000639
work.status1	1.5504481
Division4	1.2873140
Division5	1.0047847
Division6	0.7825403
sex1	0.6911694
marital.status1	0.6699631
Family.size1	0.6447404
Division8	0.5378978
education8	0.0000000

plot(varImp(model.Rf),top=5)

mtcars.rf


```
# this part just creates the data.frame for the plot part
library(dplyr)
imp <- as.data.frame(imp)
imp$varnames <- rownames(imp) # row names to column
rownames(imp) <- NULL
imp$var_categ <- rep(1:2, 5) # random var category

# this is the plot part, be sure to use reorder with the correct measure name
library(ggplot2)
ggplot(imp, aes(x=reorder(varnames, IncNodePurity), weight=IncNodePurity, fill=as.factor(var_categ))
geom_bar() +
scale_fill_discrete(name="Variable Group") +
ylab("IncNodePurity") +
xlab("Variable Name")</pre>
```


library(pROC)

Type 'citation("pROC")' for a citation.

```
Attaching package: 'pROC'

The following objects are masked from 'package:stats':

cov, smooth, var

library(plotROC)

Attaching package: 'plotROC'

The following object is masked from 'package:pROC':

ggroc

selectedIndices <- rfFit$pred$mtry == 2

g <- ggplot(rfFit$pred[selectedIndices, ], aes(m=M, d=factor(obs, levels = c("R", "M")))) +

geom_roc(n.cuts=0) +

coord_equal() +

style_roc()
```

```
g + annotate("text", x=0.75, y=0.25, label=paste("AUC =", round((calc_auc(g))$AUC, 4)))
```

Warning in verify_d(data\$d): D not labeled 0/1, assuming M = 0 and R = 1! Warning in verify_d(data\$d): D not labeled 0/1, assuming M = 0 and R = 1!


```
ggplot(rfFit$pred[selectedIndices, ],
    aes(m = R, d = factor(obs, levels = c("R", "M")))) +
geom_roc(hjust = -0.4, vjust = 1.5) + coord_equal()
```

Warning in verify_d(data\$d): D not labeled 0/1, assuming M = 0 and R = 1!


```
country <- get_map("country")
division <- get_map("division")
district <- get_map("district")
upazila <- get_map("upazila")
union <- get_map("union")

bd_plot("country")</pre>
```

tmap mode set to plotting


```
bd_plot("division")
```

tmap mode set to plotting

bd_plot("district")

tmap mode set to plotting


```
library(tmap)
population <- bangladesh::pop_division_2011[, c("division", "population")]
district <- get_map("district")
division <- get_map("division")
map_data <- dplyr::left_join(division, population, by = c("Division" = "division"))

ggplot(data = map_data) +
   geom_sf(aes(fill = population))+
   theme_void() +
   viridis::scale_fill_viridis(trans = "log", name="Population", labels = scales::unit_format(unit = labs(
        title = "Bangladesh Population Map",
        subtitle = "Population & Housing Census 2011",
        caption = "Data Source: BBS"
)</pre>
```

Bangladesh Population Map Population & Housing Census 2011

Data Source: BBS

```
division_map <- get_map("division")
division_centroids <- bangladesh::get_coordinates(level = "division")
knitr::kable(division_centroids, format = "html")</pre>
```

Division	lat	lon
Barisal	22.41889	90.34684
Chittagong	22.70692	91.73546
Dhaka	23.83870	90.24064
Khulna	22.91367	89.29437
Mymensingh	24.84675	90.38088
Rajshahi	24.58846	89.04540

Division	lat	lon
Rangpur	25.77920	89.05685
Sylhet	24.71515	91.66400

```
ggplot(data = division_map) +
    geom_sf() +
    theme_void()+
    geom_sf_label(aes(label = Division))+
    geom_point(data = division_centroids, x = division_centroids$lon, y = division_centroids$lat, col
    xlab("")+ ylab("")+
    theme_minimal()
```

Warning in $st_point_on_surface.sfc(sf::st_zm(x))$: $st_point_on_surface may not give correct results for longitude/latitude data$


```
sylhet_chittagong_dhaka <- get_divisions(divisions = c("Sylhet", "Chittagong", "Dhaka"),level = "up
ggplot(data = sylhet_chittagong_dhaka) +
    geom_sf() +
    xlab("")+ ylab("")+
    theme_minimal()</pre>
```


amtali <- bd_search("amtali", level = "union", as.is = TRUE, coordinates = TRUE)
knitr::kable(amtali, format = "html")</pre>

Division	District	Upazila	Union	lat	lon
Barisal	Barguna	Amtali	Amtali	22.07556	90.24699
Chittagong	Rangamati	Baghai Chhari	Amtali	23.10559	92.18832
Dhaka	Gopalganj	Kotali Para	Amtali	22.98264	90.03070
Chittagong	Khagrachhari	Matiranga	Amtali	23.11701	91.88545

```
ggplot(bangladesh::map_union) +
  geom_sf() +
  geom_point(data = amtali, x = amtali$lon, y = amtali$lat, col = "red", size = 3)
```


Univariate Analysis

select(-c(n_missing,complete_rate)) %>%

filter(skim_variable != "poverty")

```
hr_a <- hr_df |>
    select(cooking.fuel,Electricity, Television, Mobile.phone, Landline, Refrigerator, separate.kitche
    mutate_all(as.numeric, as.factor) |>
    mutate(across(1:7,as.factor)) |>
    tbl_summary()

skimr::skim(hrml1) %>%
```

Table 6: Data summary

Name	hrml1
Number of rows	19417
Number of columns	10
Column type frequency:	-
factor	8
numeric	1
Group variables	None

Variable type: factor

skim_variable	ordered	n_unique	top_counts
Family.size	FALSE	2	1: 17194, 0: 2223
residence	FALSE	2	0: 12333, 1: 7084
sex	FALSE	2	1: 16434, 0: 2983
education	FALSE	5	1: 6303, 0: 5408, 2: 4996, 3: 2694
marital.status	FALSE	2	1: 17600, 0: 1817
work.status	FALSE	2	1: 16603, 0: 2814
Wealth.index	FALSE	5	5: 4095, 1: 4072, 2: 3833, 4: 3789
Division	FALSE	8	3: 2904, 2: 2641, 6: 2561, 4: 2511

Variable type: numeric

skim_variable	mean	sd	p0	p25	p50	p75	p100	hist
age	45.72	14.33	15	35	45	55	95	

Generate data from Normal Distribution

```
x <- rnorm(1000,2,5)
hist(x)
```



```
penguins |>
  ggplot(aes(x= bill_length_mm, fill = species))+
  geom_histogram(bins = 50, alpha=0.8)
```

Warning: Removed 2 rows containing non-finite outside the scale range (`stat_bin()`).

Data Cleaning

head(mtcars)

```
mpg cyl disp hp drat
                                            wt qsec vs am gear carb
Mazda RX4
                  21.0
                            160 110 3.90 2.620 16.46
Mazda RX4 Wag
                  21.0
                            160 110 3.90 2.875 17.02
                                                                    4
Datsun 710
                  22.8
                            108 93 3.85 2.320 18.61
                                                                    1
Hornet 4 Drive
                  21.4
                            258 110 3.08 3.215 19.44
                                                               3
                                                                    1
                            360 175 3.15 3.440 17.02
Hornet Sportabout 18.7
                                                               3
                                                                    2
Valiant
                  18.1
                            225 105 2.76 3.460 20.22
                                                                    1
```

```
ggplot(mtcars,aes(x= disp,y=hp,col=as.factor(cyl)))+
  geom_point(alpha=0.7,size=3)+
  theme_minimal()
```



```
library(tidyverse)
ikea <- read_csv("https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2020/202
```

```
New names:
Rows: 3694 Columns: 14
-- Column specification
                               ----- Delimiter: "," chr
(7): name, category, old_price, link, other_colors, short_description, d... dbl
(6): ...1, item_id, price, depth, height, width lgl (1): sellable_online
i Use `spec()` to retrieve the full column specification for this data. i
Specify the column types or set `show_col_types = FALSE` to quiet this message.
* `` -> `...1`
  ikea <- rename(ikea, id = ...1)</pre>
  ikea %>%
    select(id, price, depth:width) %>%
    pivot_longer(depth:width, names_to = "dim") %>%
    ggplot(aes(value, price, color = dim)) +
    geom_point(alpha = 0.4, show.legend = FALSE) +
    scale_y_log10() +
    facet_wrap(~dim, scales = "free_x") +
    labs(x = NULL) +
    theme minimal()
```



```
ikea_df <- ikea %>%
  select(price, name, category, depth, height, width) %>%
  mutate(price = log10(price)) %>%
  mutate_if(is.character, factor)

ikea_df
```

```
# A tibble: 3,694 \times 6
```

	price	name		category		height	width
	<dbl></dbl>	<fct></fct>		<fct></fct>		<dbl></dbl>	<dbl></dbl>
1	2.42	FREKVENS	Bar	${\tt furniture}$	NA	99	51
2	3.00	NORDVIKEN	Bar	${\tt furniture}$	NA	105	80
3	3.32	NORDVIKEN / NORDVIKEN	Bar	furniture	NA	NA	NA
4	1.84	STIG	Bar	furniture	50	100	60
5	2.35	NORBERG	Bar	furniture	60	43	74
6	2.54	INGOLF	Bar	furniture	45	91	40
7	2.11	FRANKLIN	Bar	furniture	44	95	50
8	2.29	DALFRED	Bar	furniture	50	NA	50
9	2.11	FRANKLIN	Bar	furniture	44	95	50
10	3.34	EKEDALEN / EKEDALEN	Bar	furniture	NA	NA	NA
# i	3,684	l more rows					

#Building Model

```
## Build Model
```

library(tidymodels)

```
-- Attaching packages ----- tidymodels 1.1.1 --
v broom
              1.0.5
                      v rsample
                                     1.2.0
v dials
              1.2.0
                      v tune
                                      1.1.2
v infer
             1.0.5
                      v workflows 1.1.3
v modeldata
              1.2.0
                       v workflowsets 1.0.1
v parsnip
             1.1.1
                       v yardstick 1.2.0
v recipes
              1.0.8
-- Conflicts ----- tidymodels_conflicts() --
x recipes::all_double()
                          masks gtsummary::all_double()
x recipes::all_factor()
                          masks gtsummary::all_factor()
x recipes::all_integer()
                          masks gtsummary::all_integer()
x recipes::all_logical()
                          masks gtsummary::all_logical()
x recipes::all_numeric()
                          masks gtsummary::all_numeric()
x scales::alpha()
                          masks kernlab::alpha(), ggplot2::alpha()
x randomForest::combine() masks dplyr::combine()
x kernlab::cross()
                          masks purrr::cross()
x scales::discard()
                          masks purrr::discard()
x dplyr::filter()
                          masks stats::filter()
x recipes::fixed()
                          masks stringr::fixed()
x dplyr::lag()
                          masks stats::lag()
x caret::lift()
                          masks purrr::lift()
x randomForest::margin()
                          masks ggplot2::margin()
x yardstick::precision()
                          masks caret::precision()
x yardstick::recall()
                          masks caret::recall()
x yardstick::sensitivity() masks caret::sensitivity()
x yardstick::spec()
                          masks readr::spec()
x yardstick::specificity() masks caret::specificity()
x recipes::step()
                          masks stats::step()
* Search for functions across packages at https://www.tidymodels.org/find/
  set.seed(123)
  ikea_split <- initial_split(ikea_df, strata = price)</pre>
  ikea_train <- training(ikea_split)</pre>
  ikea_test <- testing(ikea_split)</pre>
  set.seed(234)
  ikea_folds <- bootstraps(ikea_train, strata = price)</pre>
  ikea_folds
# Bootstrap sampling using stratification
# A tibble: 25 x 2
   splits
                      id
   t>
                      <chr>
 1 <split [2770/994] > Bootstrap01
 2 <split [2770/1003] > Bootstrap02
```

```
3 <split [2770/1037] > Bootstrap03
 4 <split [2770/1010] > Bootstrap04
 5 <split [2770/1014] > Bootstrap05
 6 <split [2770/1007] > Bootstrap06
 7 <split [2770/1036] > Bootstrap07
 8 <split [2770/1016] > Bootstrap08
 9 <split [2770/1021] > Bootstrap09
10 <split [2770/1043] > Bootstrap10
# i 15 more rows
  library(usemodels)
  use_ranger(price ~ ., data = ikea_train)
ranger_recipe <-
  recipe(formula = price ~ ., data = ikea_train)
ranger_spec <-
  rand_forest(mtry = tune(), min_n = tune(), trees = 1000) %>%
  set_mode("classification") %>%
  set_engine("ranger")
ranger_workflow <-
  workflow() %>%
  add_recipe(ranger_recipe) %>%
  add_model(ranger_spec)
set.seed(67013)
ranger_tune <-
  tune_grid(ranger_workflow, resamples = stop("add your rsample object"), grid = stop("add number of o
  ## lots of options, like use_xgboost, use_glmnet, etc
  library(textrecipes)
  ranger_recipe <-
    recipe(formula = price ~ ., data = ikea_train) %>%
    step_other(name, category, threshold = 0.01) %>%
    step_clean_levels(name, category) %>%
    step_impute_knn(depth, height, width)
  ranger_spec <-
    rand_forest(mtry = tune(), min_n = tune(), trees = 1000) %>%
    set_mode("regression") %>%
    set_engine("ranger")
  ranger_workflow <-
    workflow() %>%
```

```
add_recipe(ranger_recipe) %>%
    add_model(ranger_spec)
  set.seed(8577)
  doParallel::registerDoParallel()
  ranger_tune <-
    tune_grid(ranger_workflow,
      resamples = ikea_folds,
      grid = 11
    )
i Creating pre-processing data to finalize unknown parameter: mtry
  show_best(ranger_tune, metric = "rmse")
# A tibble: 5 x 8
  mtry min_n .metric .estimator mean
                                          n std_err .config
 <int> <int> <chr>
                    <chr> <dbl> <int>
                                              <dbl> <chr>
1
     2
          4 rmse
                     standard 0.340
                                         25 0.00203 Preprocessor1_Model10
2
     4
          10 rmse
                     standard 0.348
                                         25 0.00226 Preprocessor1_Model05
3
     5
                                         25 0.00235 Preprocessor1_Model06
          6 rmse
                    standard 0.349
     3
4
          18 rmse
                     standard
                               0.350
                                         25 0.00218 Preprocessor1_Model01
5
                               0.352
                                         25 0.00200 Preprocessor1_Model08
          21 rmse
                     standard
  show_best(ranger_tune, metric = "rsq")
# A tibble: 5 x 8
  mtry min_n .metric .estimator mean
                                          n std_err .config
 <int> <int> <chr>
                     <chr>
                                <dbl> <int>
                                              <dbl> <chr>
1
     2
          4 rsq
                     standard 0.726
                                         25 0.00332 Preprocessor1_Model10
2
     4
                                0.713
                                         25 0.00372 Preprocessor1_Model05
          10 rsq
                     standard
3
     5
                                         25 0.00385 Preprocessor1_Model06
          6 rsq
                     standard
                                0.711
4
     3
                                0.709
                                         25 0.00368 Preprocessor1_Model01
        18 rsq
                     standard
5
     2
                                         25 0.00347 Preprocessor1_Model08
          21 rsq
                     standard
                                0.707
  autoplot(ranger_tune)
```



```
final_rf <- ranger_workflow %>%
  finalize_workflow(select_best(ranger_tune))
```

Warning: No value of `metric` was given; metric 'rmse' will be used.

```
final_rf
```

Computational engine: ranger

```
ikea_fit <- last_fit(final_rf, ikea_split)</pre>
  ikea_fit
# Resampling results
# Manual resampling
# A tibble: 1 x 6
 splits
                     id
                                      .metrics .notes
                                                        .predictions .workflow
                                                        t>
  t>
                     <chr>
                                      <list>
                                              <list>
                                                                      t>
1 <split [2770/924]> train/test split <tibble> <tibble> <tibble>
                                                                      <workflow>
  collect_metrics(ikea_fit)
# A tibble: 2 x 4
  .metric .estimator .estimate .config
  <chr>
                         <dbl> <chr>
         <chr>>
1 rmse
                         0.318 Preprocessor1_Model1
          standard
                         0.753 Preprocessor1_Model1
2 rsq
          standard
  collect_predictions(ikea_fit) %>%
```

```
collect_predictions(ikea_fit) %>%
  ggplot(aes(price, .pred)) +
  geom_abline(lty = 2, color = "gray50") +
  geom_point(alpha = 0.5, color = "midnightblue") +
  coord_fixed()
```



```
predict(ikea_fit$.workflow[[1]], ikea_test[15, ])
```

```
# A tibble: 1 x 1
   .pred
   <dbl>
1   2.42

library(vip)

imp_spec <- ranger_spec %>%
    finalize_model(select_best(ranger_tune)) %>%
    set_engine("ranger", importance = "permutation")
```

Warning: No value of `metric` was given; metric 'rmse' will be used.

```
workflow() %>%
  add_recipe(ranger_recipe) %>%
  add_model(imp_spec) %>%
  fit(ikea_train) %>%
  pull_workflow_fit() %>%
  vip(aesthetics = list(alpha = 0.8, fill = "midnightblue"))
```

Warning: `pull_workflow_fit()` was deprecated in workflows 0.2.3. i Please use `extract_fit_parsnip()` instead.

