\mathbb{R}^2 is isomorphic to

$$U = \left\{ \begin{pmatrix} a \\ a+b \\ b \end{pmatrix} \in \mathbb{R}^3 : a,b \in \mathbb{R}
ight\}.$$

 \mathbb{R}^2 is isomorphic to

$$U = \left\{ \begin{pmatrix} a \\ a+b \\ b \end{pmatrix} \in \mathbb{R}^3 : a, b \in \mathbb{R} \right\}.$$

Follow-up. If you think \mathbb{R}^2 and U are isomorphic, find an isomorphism $f: \mathbb{R}^2 \to U$ and then find its inverse.

The function $f: \mathbb{R} \to \mathbb{R}$ given by f(x) = 2x - 1 is linear.

The map $f: \mathbb{R} \to \mathbb{R}$ given by $f(x) = x^3$ is an isomorphism.

The map $f: \mathbb{R}^2 \to \mathbb{R}^3$ given by

$$\begin{pmatrix} a \\ b \end{pmatrix} \mapsto \begin{pmatrix} a \\ a+b \\ 2a-b \end{pmatrix}$$

is an isomorphism.

The map $f: \mathbb{R}^2 \to \mathbb{R}^3$ given by

$$\begin{pmatrix} a \\ b \end{pmatrix} \mapsto \begin{pmatrix} a \\ a+b \\ 2a-b \end{pmatrix}$$

is an isomorphism.

Follow-up. Is it injective? Is it surjective?

The map $f: \mathcal{P}_2 \to \mathcal{P}_2$ given by

$$f(ax^2 + bx + c) = bx^2 - (a + c)x + a$$

is an isomorphism.

The map $f: \mathcal{P}_2 \to \mathcal{P}_2$ given by

$$f(ax^2 + bx + c) = bx^2 - (a + c)x + a$$

is an isomorphism.

Follow-up. If you think it is an isomorphism, what is the inverse of *f*?