Alliance Treaty Design and the Arms-Alliances Tradeoff

Joshua Alley

May 3, 2018

Texas A&M University

Compared to alliances with no specific promises, unconditional alliance treaties decrease military spending.

"Nations apparently willing and eager for American taxpayers to assume the growing security burden left by reductions in European defense budgets." *Robert Gates*

Paper	Finding
Conybeare 1992	_
Morrow 1993	_

Paper	Finding
Conybeare 1992	_
Morrow 1993	-
Diehl 1994	+
Morgan and Palmer 2006	+

Paper	Finding
Conybeare 1992	_
Morrow 1993	_
Diehl 1994	+
Morgan and Palmer 2006	+
Quiroz-Flores 2011	+
Plümper and Neumayer 2015	_

Paper	Finding
Conybeare 1992	_
Morrow 1993	_
Diehl 1994	+
Morgan and Palmer 2006	+
Quiroz-Flores 2011	+
Plümper and Neumayer 2015	_
DiGiuseppe and Poast 2016	_
Horowitz et al 2017	+

Outline

I argue that unconditional treaties are more likely to lead to substitution in two ways:

Outline

I argue that unconditional treaties are more likely to lead to substitution in two ways:

1. Theory

Outline

I argue that unconditional treaties are more likely to lead to substitution in two ways:

- 1. Theory
- 2. Statistical Analysis

Theory

Arms and alliances are imperfect substitutes:

Arms and alliances are imperfect substitutes:

1. Arms are a reliable source of capability, but develop slowly.

Arms and alliances are imperfect substitutes:

- 1. Arms are a reliable source of capability, but develop slowly.
- 2. Alliances are less reliable than arms, but offer immediate capability gains.

Arms and alliances are imperfect substitutes:

- 1. Arms are a reliable source of capability, but develop slowly.
- 2. Alliances are less reliable than arms, but offer immediate capability gains.

More reliable alliances are a better substitute for domestic arms.

Alliance Capability Gains = Pr(Support) * Value of Support:

Alliance Capability Gains = Pr(Support) * Value of Support:

1. Fewer conditions for intervention ↑ Pr(Support)

Alliance Capability Gains = Pr(Support) * Value of Support:

- 1. Fewer conditions for intervention ↑ Pr(Support)
- 2. Promises to fight ↑ Value

Benson (2012) provides a typology of alliances:

Benson (2012) provides a typology of alliances:

• *Unconditional Alliances* promise military support regardless of how a conflict began.

Benson (2012) provides a typology of alliances:

- Unconditional Alliances promise military support regardless of how a conflict began.
- Conditional Alliances promise military support if particular conditions are met.

Benson (2012) provides a typology of alliances:

- Unconditional Alliances promise military support regardless of how a conflict began.
- Conditional Alliances promise military support if particular conditions are met.
- Probabilistic Deterrent Alliances do not guarantee military support or intervention.

Prediction

Prediction

Hypothesis: Unconditional alliances will be associated with decreases in defense spending by member states.

Empirical Analysis

Political Science Examples: Steenbergen and Jones 2002, Gelman and Hill 2007, Hee Park and Jensen 2007, Rainey 2015

Political Science Examples: Steenbergen and Jones 2002, Gelman and Hill 2007, Hee Park and Jensen 2007, Rainey 2015

Advantages:

• Direct test of theory

Political Science Examples: Steenbergen and Jones 2002, Gelman and Hill 2007, Hee Park and Jensen 2007, Rainey 2015

Advantages:

- Direct test of theory
- Retain alliance-level variation

Political Science Examples: Steenbergen and Jones 2002, Gelman and Hill 2007, Hee Park and Jensen 2007, Rainey 2015

Advantages:

- Direct test of theory
- Retain alliance-level variation
- Partial pooling for alliance comparisons

Multilevel & Multiple Membership Model

$$y_{it} \sim \mathit{student}_t(
u, \mu, \sigma)$$
 $\mu_{it} = lpha + lpha^{\mathit{st}} + lpha^{\mathit{yr}} + \eta y_{it-1} + W_{it} \gamma + Z_{it} \lambda$ $\lambda_k \sim \mathit{N}(\theta_k, \sigma^{\mathit{all}})$ $\theta = X \beta$

$$y_{it} \sim student_t(\nu, \mu, \sigma)$$

$$\mu_{it} = \alpha + \alpha^{st} + \alpha^{yt} + \eta y_{it-1} + W_{it}\gamma + Z_{it}\lambda \lambda^{yt}$$

Example years

- Argentina 1955 = Overall mear
- + Argentine Intercept + 1955 Intercept
- + 1954 Spending + Argentine Characteristics
- $+\lambda_{OAS}*$ OAS Expenditure $+\lambda_{Rio}*$ Rio Pact Expenditure

$$y_{it} \sim student_t(\nu, \mu, \sigma)$$

$$\mu_{it} = \alpha + \alpha^{st} + \alpha^{yr} + \eta y_{it-1} + W_{it}\gamma + Z_{it}\lambda$$

Example year:

Argentina 1955 = Overall mean

- + Argentine Intercept + 1955 Intercept
- + 1954 Spending + Argentine Characteristics
- $+\lambda_{OAS}*$ OAS Expenditure $+\lambda_{Rio}*$ Rio Pact Expenditure

$$y_{it} \sim student_t(\nu, \mu, \sigma)$$

$$\mu_{it} = \alpha + \alpha^{st} + \alpha^{yr} + \eta y_{it-1} + W_{it}\gamma + Z_{it}\lambda$$

Example year:

Argentina 1955 = Overall mean

- + Argentine Intercept + 1955 Intercept
- + 1954 Spending + Argentine Characteristics
- $+\lambda_{OAS}*$ OAS Expenditure $+\lambda_{Rio}*$ Rio Pact Expenditure

$$y_{it} \sim student_t(\nu, \mu, \sigma)$$

$$\mu_{it} = \alpha + \alpha^{st} + \alpha^{yr} + \eta y_{it-1} + W_{it}\gamma + Z_{it}\lambda$$

Example year:

Argentina 1955 = Overall mean

+ Argentine Intercept + 1955 Intercept

+ 1954 Spending + Argentine Characteristics

 $+\lambda_{OAS}*$ OAS Expenditure $+\lambda_{Rio}*$ Rio Pact Expenditure

$$y_{it} \sim student_t(\nu, \mu, \sigma)$$

$$\mu_{it} = \alpha + \alpha^{st} + \alpha^{yr} + \eta y_{it-1} + W_{it}\gamma + Z_{it}\lambda$$

Example year:

Argentina 1955 = Overall mean

+ Argentine Intercept + 1955 Intercept

+ 1954 Spending + Argentine Characteristics

 $+\lambda_{OAS}*$ OAS Expenditure $+\lambda_{Rio}*$ Rio Pact Expenditure

$$y_{it} \sim student_t(\nu, \mu, \sigma)$$

$$\mu_{it} = \alpha + \alpha^{st} + \alpha^{yr} + \eta y_{it-1} + W_{it} \gamma + Z_{it} \lambda$$

Example year:

Argentina 1955 = Overall mean

- + Argentine Intercept + 1955 Intercept
- + 1954 Spending + Argentine Characteristics
- $+\lambda_{OAS}*$ OAS Expenditure $+\lambda_{Rio}*$ Rio Pact Expenditure

$$y_{it} \sim student_t(\nu, \mu, \sigma)$$

$$\mu_{it} = \alpha + \alpha^{st} + \alpha^{yr} + \eta y_{it-1} + W_{it}\gamma + Z_{it}\lambda$$

Example year:

Argentina 1955 = Overall mean

- + Argentine Intercept + 1955 Intercept
- + 1954 Spending + Argentine Characteristics
- $+\lambda_{\textit{OAS}}*\mathsf{OAS}$ Expenditure $+\lambda_{\textit{Rio}}*\mathsf{Rio}$ Pact Expenditure

State-Year	Rio Pact	Warsaw Pact	
Argentina 1954	.347	0	
Argentina 1955	.418	0	
:	:	:	

Predicting Alliance Weights λ

$$\lambda_k \sim N(\theta_k, \sigma^{all})$$

$$\theta = X\beta$$

Example

$$\lambda_{Rio} = \beta_1 + \beta_2 \text{Unconditional} + \beta_3 \text{Conditional} + \beta_4 \text{Prob. Det.} + \text{Controls}$$

Predicting Alliance Weights λ

$$\lambda_k \sim N(\theta_k, \sigma^{all})$$

$$\theta = X\beta$$

Example

$$\lambda_{Rio} = \beta_1 + \beta_2 \text{Unconditional} + \beta_3 \text{Conditional} + \beta_4 \text{Prob. Det.} + \text{Controls}$$

Predicting Alliance Weights λ

$$\lambda_k \sim N(\theta_k, \sigma^{all})$$

$$\theta = X\beta$$

Example:

$$\lambda_{Rio} = \beta_1 + \beta_2 \text{Unconditional} + \beta_3 \text{Conditional} + \beta_4 \text{Prob. Det.} + \text{Controls}$$

• Sample: 159 non-major powers and 314 alliances, 1950-2001.

• Sample: 159 non-major powers and 314 alliances, 1950-2001.

• **DV**: Ln(Military Spending)

- Sample: 159 non-major powers and 314 alliances, 1950-2001.
- **DV**: Ln(Military Spending)
- Key Alliance Variables: Binary indicators of Unconditional, Conditional, and Probabilistic Deterrent conditions.

- Sample: 159 non-major powers and 314 alliances, 1950-2001.
- **DV**: Ln(Military Spending)
- Key Alliance Variables: Binary indicators of Unconditional, Conditional, and Probabilistic Deterrent conditions.
- Base Category: Consultation/Non-aggression Pacts (179 alliances)

- Sample: 159 non-major powers and 314 alliances, 1950-2001.
- **DV**: Ln(Military Spending)
- Key Alliance Variables: Binary indicators of Unconditional, Conditional, and Probabilistic Deterrent conditions.
- Base Category: Consultation/Non-aggression Pacts (179 alliances)
- Alliance Controls: Institutionalization, Compellent Aims, Military Aid, Proportion of Democratic Members, Wartime, US member, Russia Member

- Sample: 159 non-major powers and 314 alliances, 1950-2001.
- **DV**: Ln(Military Spending)
- Key Alliance Variables: Binary indicators of Unconditional, Conditional, and Probabilistic Deterrent conditions.
- Base Category: Consultation/Non-aggression Pacts (179 alliances)
- Alliance Controls: Institutionalization, Compellent Aims, Military Aid, Proportion of Democratic Members, Wartime, US member, Russia Member
- State-level Controls: Interstate war, Civil War, GDP, POLITY, Cold War, Rival military expenditures

Results

Posterior of Unconditional Coefficient

Run

Long

Variable	Posterior Mean	Pr(X < 0)
Unconditional	-0.75	.934

Multiplier

Run

Long

Multiplier

Variable	Posterior Mean	Pr(X < 0)
Unconditional	-0.75	.934
POLITY	-0.68	.99

Violin Plot of Weight Parameters

Discussion and Conclusion

Limitations:

Limitations:

1. My theory does not address cases where arms and allies are complements.

Limitations:

- 1. My theory does not address cases where arms and allies are complements.
- 2. Strategic Alliance Design: addressed through controls

Limitations:

- 1. My theory does not address cases where arms and allies are complements.
- 2. Strategic Alliance Design: addressed through controls
- 3. No time-varying alliance characteristics

Compared to alliances with no specific promises, unconditional alliance treaties decrease military spending.

Compared to alliances with no specific promises, unconditional alliance treaties decrease military spending.

Implications and Extensions:

Compared to alliances with no specific promises, unconditional alliance treaties decrease military spending.

Implications and Extensions:

Arms and allies as complements

Compared to alliances with no specific promises, unconditional alliance treaties decrease military spending.

Implications and Extensions:

- Arms and allies as complements
- Domestic arms development and substitution

Compared to alliances with no specific promises, unconditional alliance treaties decrease military spending.

Implications and Extensions:

- Arms and allies as complements
- Domestic arms development and substitution
- Political economy of international security

Trace Plots for β

Posterior Predictive Check

Priors

$$\begin{split} & p(\alpha) \sim \textit{N}(0,3) \\ & p(\sigma) \sim \text{half-}\textit{N}(0,1) \\ & p(\alpha^{\textit{yr}}) \sim \textit{N}(0,\sigma^{\textit{yr}}) \\ & p(\sigma^{\textit{yr}}) \sim \textit{N}(0,1) \\ & p(\alpha^{\textit{st}}) \sim \textit{N}(0,\sigma^{\textit{st}}) \\ & p(\sigma^{\textit{st}}) \sim \text{half-}\textit{N}(0,1) \\ & p(\sigma^{\textit{all}}) \sim \text{half-}\textit{N}(0,1) \\ & p(\eta) \sim \text{half-}\textit{N}(0,1) \\ & p(\beta) \sim \textit{N}(0,1) \\ & p(\gamma) \sim \textit{N}(0,1) \\ & p(\gamma) \sim \textit{gamma}(2,0.1) \end{split}$$

Positive Posterior Probability of all Coefficients

90% Credible Intervals for Alliance Covariates

	mean	sd	5%	95%	n_eff
Constant	0.008	0.010	-0.009	0.025	2503.930
Prob. Det.	-0.013	0.023	-0.051	0.023	4000.000
Conditional	-0.007	0.011	-0.025	0.011	2278.851
Uncond. Det.	-0.023	0.015	-0.048	0.002	3009.267
Compellent	-0.054	0.050	-0.137	0.031	4000.000
Num. Members	0.000	0.002	-0.003	0.003	4000.000
Dem. Share	-0.018	0.012	-0.037	0.003	2618.817
Wartime	0.038	0.030	-0.011	0.087	4000.000
Institutionalization	0.006	0.005	-0.002	0.015	4000.000
Military aid	-0.008	0.024	-0.046	0.033	4000.000
US Member	-0.020	0.025	-0.062	0.021	3091.589
Russia Member	-0.013	0.022	-0.050	0.024	4000.000

90% Credible Intervals for State Covariates

mean	sd	5%	95%	n_eff
0.97	0.00	0.96	0.98	747.65
0.07	0.01	0.04	0.09	4000.00
0.04	0.01	0.02	0.06	4000.00
-0.01	0.01	-0.02	0.00	4000.00
0.11	0.02	0.09	0.14	830.46
-0.02	0.01	-0.03	-0.01	4000.00
0.04	0.01	0.02	0.06	1292.56
0.02	0.01	0.01	0.03	486.70
0.20	0.03	0.14	0.26	789.97
	0.97 0.07 0.04 -0.01 0.11 -0.02 0.04 0.02	0.97 0.00 0.07 0.01 0.04 0.01 -0.01 0.01 0.11 0.02 -0.02 0.01 0.04 0.01 0.02 0.01	0.97 0.00 0.96 0.07 0.01 0.04 0.04 0.01 0.02 -0.01 0.01 -0.02 0.11 0.02 0.09 -0.02 0.01 -0.03 0.04 0.01 0.02 0.02 0.01 0.01	0.97 0.00 0.96 0.98 0.07 0.01 0.04 0.09 0.04 0.01 0.02 0.06 -0.01 0.01 -0.02 0.00 0.11 0.02 0.09 0.14 -0.02 0.01 -0.03 -0.01 0.04 0.01 0.02 0.06 0.02 0.01 0.01 0.03

Posterior of Probabilistic Deterrent Coefficient

Non-zero alliances

Violin Plot of Mean λ for all alliances

