Machine Learning Dimensionality Reduction

Prof. Matthias Hein

Machine Learning Group
Department of Mathematics and Computer Science
Saarland University, Saarbrücken, Germany

Lecture 26, 05.02.2014

Dimensionality reduction

Dimensionality Reduction: Construction of a mapping $\phi: \mathcal{X} \to \mathbb{R}^m$, where the dimensionality m of the target space is usually much smaller than that of the input space \mathcal{X} . Generally, the mapping should preserve properties of the input space \mathcal{X} e.g. distances.

Why should we do dimensionality reduction?

- Manifold assumption: The internal degrees of freedom are much smaller than the number of measured features \iff data lies along a low-dimensional structure in feature space \iff we want to detect these "true parameters".
- Visualization: interpretation of data in high dimensions is difficult embeddings in two or three dimensions can provide insight.
- Data compression: compress the data but retain most of the information.

Dimensionality reduction

Manifold-Assumption

- digits vary smoothly (but discretization as pixels),
- internal degrees of freedom are small compared to the number of features (= number of pixels).

Dimensionality reduction

Supervised dimensionality reduction:

• Linear discriminant analysis (LDA),

Unsupervised dimensionality reduction:

- Principal Components Analysis (PCA), (also called: Karhunen-Loeve-Transformation),
- Kernel PCA,
- Laplacian Eigenmaps,
- Independent Component Analysis (ICA).

Except the last all are eigenvalue problems!

PCA

PCA - Two points of view

- the principal k-components span the k-dimensional affine subspace which yields the best approximation of the data (Euclidean norm),
- the subspace spanned by the first *k* principal components contains "most" of the variance in the data.

PCA - a simple coordinate transformation

- translation mean of data points becomes new origin,
- rotation change of the initial ONB into a new ONB which is defined by the data.

PCA - Approximation point of view

Given: $\{X_i\}_{i=1}^n$ in \mathbb{R}^d , Goal: find a *m*-dimensional affine subspace U_m , with

$$U_m = c + V_m := c + \Big\{ \sum_{j=1}^m \alpha_j u_j \mid \{u_j\}_{j=1}^m \text{ ONS }, c \in \mathbb{R}^d, \alpha_j \in \mathbb{R} \Big\},\,$$

which approximates the original data points optimally in the sense,

$$\underset{Z_{i} \in V_{m}, c \in \mathbb{R}^{d}}{\operatorname{arg \, min}} \quad \frac{1}{n} \sum_{i=1}^{n} \|Z_{i} + c - X_{i}\|_{2}^{2}.$$

Orthogonal projection P onto the subspace V_m : $P = \sum_{j=1}^m u_j u_j^T$.

Lemma

An orthogonal projection matrix $P: \mathbb{R}^d \to \mathbb{R}^d$ satisfies,

$$P = P^T$$
, and $P^2 = P$.

PCA - Approximation II

Optimal offset c

Affine subspace: $U_m = c + V_m$, (c can be seen as origin of U_m).

$$\nabla_{c}\left(\sum_{i=1}^{n}\|Z_{i}+c-X_{i}\|_{2}^{2}\right)=2\sum_{i=1}^{n}(Z_{i}-X_{i})+2nc\implies c=\frac{1}{n}\sum_{i=1}^{n}(X_{i}-Z_{i}).$$

- c depends on Z_i the origin of the subspace U_m can be changed without changing the approximation.
- fix degree of freedom by requiring that

$$\sum_{i=1}^{n} Z_i = 0 \quad \text{and thus} \quad c = \frac{1}{n} \sum_{i=1}^{n} X_i.$$

We center the original data points X_i : $\tilde{X}_i = X_i - \frac{1}{n} \sum_{j=1}^n X_j$.

New Objective:
$$\sum_{i=1}^{n} \|Z_i + c - X_i\|_2^2 = \sum_{i=1}^{n} \|Z_i - \tilde{X}_i\|_2^2.$$

PCA - Approximation III

$$\left\|Z_{i}-\tilde{X}_{i}\right\|_{2}^{2}=\left\|Z_{i}-P\tilde{X}_{i}\right\|_{2}^{2}+\left\|P\tilde{X}_{i}-\tilde{X}_{i}\right\|_{2}^{2},$$

for the orthogonal projection P onto $U_m \Longrightarrow$ choose $Z_i = P\tilde{X}_i$.

New transformed objective:

$$\sum_{i=1}^{n} \left\| Z_i - \tilde{X}_i \right\|_2^2 = \sum_{i=1}^{n} \left\| (P - 1)\tilde{X}_i \right\|_2^2$$

$$= \sum_{i=1}^{n} \tilde{X}_i^T (1 - P)\tilde{X}_i$$

$$= \sum_{i=1}^{n} \tilde{X}_i^T \tilde{X}_i - \sum_{i=1}^{n} \tilde{X}_i^T P \tilde{X}_i$$

$$= \sum_{i=1}^{n} \tilde{X}_i^T \tilde{X}_i - \sum_{i=1}^{n} u_j^T \left(\sum_{i=1}^{n} \tilde{X}_i \tilde{X}_i^T \right) u_j$$

PCA - Approximation IV

Final objective:

$$\sum_{i=1}^n \left\| Z_i - \tilde{X}_i \right\|^2 = \sum_{i=1}^n \tilde{X}_i^T \tilde{X}_i - \sum_{j=1}^m u_j^T \left(\sum_{i=1}^n \tilde{X}_i \tilde{X}_i^T \right) u_j.$$

Define the symmetric, positive semi-definite matrix $C \in \mathbb{R}^{d \times d}$ as,

$$C = \sum_{i=1}^{n} \tilde{X}_{i} \tilde{X}_{i}^{T},$$

- objective is minimized by using the projection P onto the the m largest eigenvectors of C
- These eigenvectors are called the **principal components** of the data.

PCA - Illustration

- red directions: principal directions in the data
- length of red line: $4\sqrt{\lambda}$, where λ is the eigenvalue of C.

PCA - Variance I

Subspace containing most of the variance of a probability measure One-dimensional subspace U_1 spanned by $u \Rightarrow$ variance of the data projected onto u is given as

$$\mathrm{var}(u) = \mathbb{E}_X[\langle u, X - \mathbb{E} X \rangle^2] = \mathbb{E}_X\Big[\big(\langle u, X \rangle - \langle u, \mathbb{E}_X \rangle\big)^2\Big].$$

Rewrite var(u) as

$$\operatorname{var}(u) = \mathbb{E}_X[u^T(X - \mathbb{E}X)(X - \mathbb{E}X)^Tu] = \langle u, Cu \rangle,$$

where

$$C = \mathbb{E}_X(X - \mathbb{E}X)(X - \mathbb{E}X)^T,$$

is the **covariance of** P_X .

Subject to $||u||^2 = 1 \Rightarrow$ using Rayleigh-Ritz principle, var(u) is maximized by the eigenvector of C corresponding to the largest eigenvalue.

PCA - Variance II

Best *m*-dimensional subspace: *m* "largest" eigenvectors.

• the ev, $\{u_i\}_{i=1}^d$, of C determine an uncorrelated ONB,

$$\langle u_i, Cu_j \rangle = \lambda_i \delta_{ij}, \quad i, j = 1, \ldots, d.$$

• For Gaussian data: $p(x) = \frac{1}{(2\pi)^{\frac{d}{2}} |\det C|^{\frac{1}{2}}} e^{-\frac{1}{2}(x-\mu)^T C^{-1}(x-\mu)}$, we get in new coordinates z defined as,

$$z = C^{-\frac{1}{2}}(x - \mu) = \sum_{i=1}^{d} \frac{1}{\sqrt{\lambda_i}} u_i u_i^T (x - \mu),$$

components z_i which are **independent** and equally distributed,

$$p(z) = \frac{1}{(2\pi)^{\frac{d}{2}}} e^{-\frac{\|z\|^2}{2}} = \prod_{j=1}^d \frac{1}{\sqrt{2\pi}} e^{-\frac{z_j^2}{2}}.$$

This process is called whitening.

PCA - Whitening

Whitening: PCA + rescaling.

$$z = C^{-\frac{1}{2}}(x - \mu).$$

Whitening are three concatenated operations:

- centering equivalent to a translation in \mathbb{R}^d ,
- projection onto (all) principal components equivalent to a change from the initial basis to the basis spanned by the eigenvectors of C
 - \implies rotation,
- rescaling one rescales each axis by the square-root of the corresponding eigenvalue - thus one has unit variance in each direction.

In practice:

- pre-processing of data ⇒ resulting features are uncorrelated,
- Whitening "spheres" the data eliminates differences in scaling.

PCA - In practice

Probability measure unknown only given i.i.d. sample $\{X_i\}_{i=1}^n$ \implies use **empirical covariance matrix**,

$$C = \frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})(X_i - \overline{X})^T, \quad \text{ with } \quad \overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

and use its eigenvalues and eigenvectors as principal components.

Further practical issues:

- never cut the spectrum where two eigenvalues are close,
- several people use the first k-principal components to define new coordinates for supervised problems e.g. classification. This is problematic since the class structure need not have anything to do with the principal components.

Supervised case: use LDA or other supervised extensions of PCA.

Kernel PCA

Non-linear extension of PCA:

- given: positive definite kernel $k: \mathcal{X} \to \mathcal{X} \to \mathbb{R}$,
- map data into the corresponding feature space (RKHS) \mathcal{H}_k ,

$$\phi: \mathcal{X} \to \mathcal{H}_k, \qquad x \to \phi(x).$$

- do PCA in \mathcal{H}_k (resp. subspace spanned by the data).
- ullet principal components correspond to functions ${\cal X}.$

Questions:

- how to define eigenvectors in \mathcal{H}_k ?
- how many principal components are there ?
- what is a principal component in \mathcal{H}_k ?

PCA - Kernel PCA

Standard-PCA:

$$Cv = \lambda v, \implies \frac{1}{n} \sum_{i=1}^{n} \langle X_i, v \rangle X_i = \lambda v.$$

⇒ all eigenvectors lie in the span of the data points.

Kernel-PCA: map $\phi: \mathcal{X} \to \mathcal{H}_k$

$$C = \frac{1}{n} \sum_{j=1}^{n} \phi(X_j) \phi(X_j)^{T}.$$

If dim $\mathcal{H}_k = \infty$ then C is a linear operator in \mathcal{H}_k . As in PCA we want to find the eigenvectors of C,

$$Cv = \lambda v \implies \frac{1}{n} \sum_{i=1}^{n} \langle \phi(X_i), v \rangle_{\mathcal{H}_k} \phi(X_i) = \lambda v.$$

⇒ all eigenvectors lie in the span of the **mapped** data points.

Kernel PCA - the essential

Kernel-PCA:
$$Cv = \lambda v \implies \frac{1}{n} \sum_{i=1}^{n} \langle \phi(X_i), v \rangle_{\mathcal{H}_k} \phi(X_i) = \lambda v.$$

Equivalently, solve for all j = 1, ..., n,

$$\frac{1}{n}\sum_{i=1}^{n}\left\langle \phi(X_{i}),v\right\rangle _{\mathcal{H}_{k}}\left\langle \phi(X_{i}),\phi(X_{j})\right\rangle _{\mathcal{H}_{k}}=\lambda\left\langle v,\phi(X_{j})\right\rangle _{\mathcal{H}_{k}}.$$

Moreover, from the above derivation we know: $v = \sum_{r=1}^{n} \alpha_r \, \phi(X_r)$,

$$\frac{1}{n}\sum_{i,r=1}^{n}\alpha_{r}\left\langle \phi(X_{i}),\phi(X_{r})\right\rangle _{\mathcal{H}_{k}}\left\langle \phi(X_{i}),\phi(X_{j})\right\rangle _{\mathcal{H}_{k}}=\lambda\sum_{r=1}^{n}\alpha_{r}\left\langle \phi(X_{r}),\phi(X_{j})\right\rangle _{\mathcal{H}_{k}}.$$

This can be summarized using $k(X_i, X_j) = \langle \phi(X_i) \phi(X_j) \rangle_{\mathcal{H}_k}$ as,

$$K^T K \alpha = n \lambda K^T \alpha.$$

This is (almost) equivalent to: $K\alpha = n \lambda \alpha$.

What is the difference of the two equations?

Kernel PCA - Interpretation

Kernel-PCA: solve eigen-problem: $K\alpha = n \lambda \alpha$.

• normalize eigenvectors $v^{(s)}$, s = 1, ..., n,

$$\left\langle v^{(s)}, v^{(s)} \right\rangle_{\mathcal{H}_k} = \sum_{i,j=1}^n \alpha_i^{(s)} \alpha_j^{(s)} K_{ij} = \lambda^{(s)} \sum_{i=1}^n \alpha_i^{(s)} \alpha_i^{(s)}.$$

• What are the principal components (functions)? Compute projection of mapped test point x on $v^{(s)}$,

$$\left\langle v^{(s)}, \phi(x) \right\rangle_{\mathcal{H}_k} = \sum_{i=1}^n \alpha_i^{(s)} \left\langle \phi(X_i), \phi(x) \right\rangle_{\mathcal{H}_k} = \sum_{i=1}^n \alpha_i^{(s)} k(X_i, x).$$

Standard PCA components are linear functions! Variation into the direction of the principal component.

 What requirement of PCA did we not integrate into the derivation of Kernel PCA?

Kernel PCA - Interpretation

Illustration: PCA versus Kernel-PCA

Kernel PCA - Interpretation II

Balanced clusters: Higher principal components of Kernel-PCA

Kernel PCA - Interpretation III

Disbalanced clusters: Higher principal components of Kernel-PCA

Kernel PCA - Denoising

Kernel-PCA for denoising of data

- PCA allows for reconstruction of the original image (just a basis transformation),
- for Kernel PCA this is not directly possible need to find a pre-image for $\sum_{i=1}^{n} \alpha_i \phi(x_i) \in \mathcal{H}_k$ in the original space \mathcal{X} .

Laplacian eigenmaps

The continuous Laplacian

$$\mathbb{R}^d$$
, $\Delta = \sum_{i=1}^d \frac{\partial^2}{\partial x_i^2}$.

Why is it interesting?

- Laplacian is symmetric (self-adjoint),
- eigenfunctions, $\Delta f = \lambda f$, define an ONB of $L_2(\mathbb{R}^d)$.
- these eigenfunctions have nice properties
 - ▶ \mathbb{R} : Fourierbasis $\phi_{2k}(x) = \cos(x)$, $\phi_{2k+1}(x) = \sin(x)$,
 - ▶ sphere *S*²: spherical harmonics.
 - ⇒ multi-scale decomposition of the data,
- Fourier-transform is the corresponding basis transformation.

Can we do the same for discrete data?

The data manifold

- we would like to find the parameters underlying the data-generating process ⇒ parameterization of the data-manifold.
- Idea: build graph use graph Laplacian as surrogate of the continuous Laplacian.
 - \implies eigenvectors generate multi-scale decomposition of the data.

Use the graph Laplacian

Three types of graph Laplacians:

unnormalized:
$$(\Delta^{(u)}f)(i) = d(i)f(i) - \sum_{j=1}^{n} w_{ij}f(j),$$

$$(\Delta^{(u)}f) = (D - W)f,$$
 random walk:
$$(\Delta^{(rw)}f)(i) = f(i) - \frac{1}{d(i)} \sum_{j=1}^{n} w_{ij}f(j),$$

$$(\Delta^{(rw)}f) = (\mathbb{1} - D^{-1}W)f,$$
 normalized:
$$(\Delta^{(n)}f)(i) = f(i) - \sum_{j=1}^{n} \frac{w_{ij}}{\sqrt{d_i d_j}}f(j),$$

$$(\Delta^{(n)}f) = (\mathbb{1} - D^{-1/2}WD^{-1/2})f.$$

Laplacian eigenmaps

Laplacian Eigenmaps

Chooose the graph Laplacian: unnormalized, random walk and normalized.

- compute the graph Laplacian $n \times n$ -matrix for n points,
- compute the first k eigenvectors $\{u_i\}_{i=1}^k$ (each eigenvector is normalized, $||u_i|| = 1$, $i = 1, \ldots, k$),
- Embedding $\phi: V \to \mathbb{R}^k$, of the *n* vertices into \mathbb{R}^k by $i \to z_i = (u_1(i), \dots, u_k(i))$,

The embedding: $\phi: V \to \mathbb{R}^k$, $i \to \phi(i) = (u_1(i), \dots, u_k(i))$ is the **Laplacian eigenmap**.

Relation to Kernel-PCA:

One can see Laplacian eigenmaps as Kernel PCA with a special data-dependent kernel (pseudo-inverse of the graph Laplacian).

Laplacian Eigenmaps - Computer graphics

- compute eigenvectors of the Laplacian on the mesh,
- can be used for denoising of meshes, varying of meshes etc.

Laplacian Eigenmaps - Illustration

- **Right:** artificial datasets of ones two variations: line thickness and style variation (bottom line) digits are of size $28 \times 28 784$ pixels,
- **Left:** sampling is done uniformly in the parameterization.

Laplacian Eigenmaps - Illustration

• the original parameter set is equivalent to $[0,1]^2$ and the examples A,B,C,D are the corners of $[0,1]^2 \Longrightarrow \mathsf{Laplacian}$ eigenmap finds the parameterization.

Independent Component Analysis (ICA)

Motivation: cocktail party problem - blind source separation

• k different speakers (sources),

$$s_1(t),\ldots,s_k(t).$$

d microphones (sensors),

$$x_1(t),\ldots,x_d(t).$$

Assumption: measured signal is linear superposition of sources.

Goal: having only the signal of the microphones, find the sources - determine *A*, where

$$x(t) = A s(t).$$

• A is called the mixing matrix.

Independent Component Analysis (ICA)

Application scenarios

- sound (speech, music,...) signals,
- EEG signals,
- natural images (patches),
- financial data,
- ...

ICA - EEG Data

ICA for EEG analysis

ICA - Natural Images

ICA for natural images - 16 \times 16 - patches

- ullet ICA components for 16 imes 16-patches of natural images,
- sign one observes that independent components look like edge detectors.

ICA II

Motivation for ICA

• speakers (sources) are independent of each other.

$$s_1(t),\ldots,s_k(t),$$

in the stochastic sense (source signals are independent random variables),

$$p_s\Big(s_1(t),\ldots,s_k(t)\Big) = \prod_{i=1}^k p_{s_i}\big(s_i(t)\big).$$

Find new representation such that components are maximally independent!

- ⇒ how can one optimize for independent components ?
- \implies for simplicity we assume d = k (nr. sensors = nr. sources).

ICA III

What kind of independent components can we hope for ?

• non-Gaussian sources: suppose that $s(t) \in \mathbb{R}^k$ is Gaussian distributed $\Longrightarrow x = As$ is again Gaussian distributed,

$$\mathbb{E}[\mathbf{x}\mathbf{x}^T] = \mathbb{E}[\mathbf{A}\,\mathbf{s}\mathbf{s}^T\mathbf{A}^T] = \mathbf{A}\mathbb{E}[\mathbf{s}\,\mathbf{s}^T]\mathbf{A}^T = \mathbf{A}\mathbb{1}_k\mathbf{A}^T = \mathbf{A}\mathbf{A}^T.$$

Whitening yields independent components - but not necessarily s(t).

Sources can be identified only up to rescaling:

$$x(t) = A s(t) = (A D^{-1}) (D s(t)),$$

where D is a diagonal matrix - Ds(t) is also independent. W.l.o.g.,

$$\mathbb{E}[s(t)\,s(t)^T]=\mathbb{1}_k.$$

• Sources cannot be ordered: Let P be a permutation matrix, then Ps(t) is independent, $x(t) = As(t) = (AP^{-1})(Ps(t))$.

ICA IV

Whitening as a pre-processing step for ICA

Whitening transforms the signal x(t),

$$y(t) = W x(t) = W A s(t),$$

such it becomes uncorrelated,

$$\mathbb{1}_k = \mathbb{E}[y(t)\,y(t)^T] = \mathbb{E}[W\,x(t)x(t)^T\,W^T] = W\,A\,\mathbb{E}[s\,s^t]A^T\,W^T = W\,A\,A^T\,W^T$$

 \implies whitening simplifies the problem since the mixing matrix WA for y(t) is orthogonal.

New problem: find the **orthogonal mixing matrix** B = W A

$$y(t)=B\,s(t),$$

resp. B^T such that $B^Ty(t) = B^TBs(t) = s(t)$ is maximally independent.

ICA - Steps

Steps for ICA:

- apply whitening to the data: y(t) = W x(t).
- find orthogonal de-mixing matrix B s.th. B y(t) is maximally independent.

Different criteria:

- ightharpoonup maximize non-gaussianity of By(t),
- ▶ minimize mutual information $I(\{By(t)\}_{i=1}^k By(t))$ mutual information is zero if and only if joint density of By(t) factorizes into the product of the marginal densities $\Longrightarrow By(t)$ is independent.

Problems:

- joint density of By(t) hard to estimate \rightarrow problems with mutual inf.
- instead: minimize higher order correlations e.g. kurtosis

$$\operatorname{kurt}(y) = \mathbb{E}[y^4] - 3(\mathbb{E}[y^2])^2.$$

ICA - Illustration for signals

Illustration of ICA for signal data

ICA - Illustration of ICA

- **Left:** Original sources individual features are independent $p(x_1, x_2) = p(x_1)p(x_2)$.
- Middle: Measured signal directions of PCA (eigenvectors of covariance matrix) and directions of ICA (columns of estimated mixing matrix) are shown - note that the directions of ICA are not orthogonal,
- **Right:** Source signal estimated by ICA coincides up to rescaling with the original signal.

Cocktail party demo.