# Enhancing Risk Aware Decision in Healthcare with Uncertainty Quantification

Rahul Vishwakarma, Jinha Hwang, Benyamin Ahmadnia California State University Long Beach



# Motivation: Unreliable point prediction



- Most of the Machine Learning model lacks calibration.
- No guarantee for uncertainty estimations for new data.

#### **Prior Work**

- Confidence intervals: Not be well-suited for complex data and model.
- Bayesian Inference: Require careful selection of prior distributions.
- Bootstrap: Computationally expensive.

# Method: Set valued prediction

- Idea: Instead of calibrating the probabilities for each individual outcome (e.g., Y = 1), apply calibrated probabilities to a set of potential outcomes (e.g., Y ∈ {1, 2, 3}).
- Goal: Forecast a limited collection of reasonable responses.
- Benefit: Model Agnostic.

#### **Conformal Prediction**



# **Proposed Solution**



# Experiment

Data: MTSamples Medical Transcription

Clinical Labels: {0} Cardiovascular/Pulmonary, {1} Consult History and Phy, {2} Gastroenterology, {3} General Medicine, {4} Neurology, {5} Obstetrics/ Gynecology, {6} Surgery, {7} Others

|          | N  | Multi | inomi | al N | aive | Baye     | es       |    |
|----------|----|-------|-------|------|------|----------|----------|----|
|          | 0  | 1     | 2     | 3    | 4    | <b>5</b> | <i>6</i> | 7  |
| 0        | 57 | 0     | 1     | 1    | 0    | 0        | 1        | 3  |
| 1        | 0  | 28    | 2     | 0    | 0    | 0        | 0        | 2  |
| 2        | 32 | 7     | 404   | 22   | 18   | 17       | 30       | 15 |
| 3        | 0  | 0     | 0     | 34   | 0    | 0        | 2        | 0  |
| 4        | 0  | 0     | 2     | 0    | 32   | 0        | 0        | 1  |
| <b>5</b> | 1  | 1     | 5     | 0    | 0    | 29       | 2        | 0  |
| <b>6</b> | 0  | 0     | 0     | 1    | 0    | 0        | 21       | 0  |
| 7        | 0  | 1     | 3     | 0    | 0    | 0        | 0        | 12 |

|          | U  | 1  | 2   | 3  | 4  | <b>5</b> | <b>6</b> | 7  |
|----------|----|----|-----|----|----|----------|----------|----|
| 0        | 8  | 2  | 34  | 5  | 4  | 1        | 4        | 5  |
| 1        | 3  | 2  | 20  | 0  | 1  | 5        | 0        | 1  |
| 2        | 68 | 34 | 290 | 39 | 27 | 33       | 17       | 37 |
| 3        | 4  | 4  | 17  | 3  | 1  | 3        | 1        | 3  |
| 4        | 2  | 5  | 19  | 4  | 1  | 1        | 1        | 2  |
| <b>5</b> | 5  | 0  | 23  | 3  | 0  | 3        | 0        | 4  |
| <b>6</b> | 2  | 2  | 10  | 2  | 0  | 0        | 3        | 3  |
| 7        | 2  | 0  | 11  | 1  | 1  | 0        | 0        | 1  |

Conformal Inference

# Inference: p-values

| $p	ext{-}values$ |       |       |               |            |        | y (sig = 0.20) |       |   |
|------------------|-------|-------|---------------|------------|--------|----------------|-------|---|
| p- $0$           | p-1   | p-2   | $p$ - $\beta$ | <i>p-4</i> | p- $5$ | <i>p-6</i>     | p-7   |   |
| 0.125            | 0.122 | 0.131 | 0.373         | 0.122      | 0.122  | 0.130          | 0.124 | 3 |
| False            | False | False | True          | False      | False  | False          | False |   |

#### **Performance Metrics**

| $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $ | $mean\_err$ | $avg\_c$ |
|------------------------------------------|-------------|----------|
| 0.5                                      | 0.506       | 0.604    |
| $\overline{0.7}$                         | 0.701       | 0.371    |
| 0.8                                      | 0.804       | 0.251    |
| 0.9                                      | 0.894       | 0.115    |

- Coverage: proportion of true target values that fall within the pred intervals.
- Efficiency: how tight the prediction intervals are.

# Reject Predictions: null set

| sig  | conf | prediction            |
|------|------|-----------------------|
| 0.5  | 0.61 | {NULL}                |
| 0.15 | 0.86 | $\{surgery\}$         |
| 0.10 | 0.87 | $\{surgery, others\}$ |

Algorithm agnostic method for "*reject*" – model cannot provide a confident prediction for this input.

based on the confidence score.

# Disease Severity Ranking



#### Conclusion

- Reject option (null set) for a more trustworthy model.
- NCM based on Lesk Score for conformal prediction.
- Refine classification decisions based on ranking.







