

Varroa Detection in Beehives

Fengyu Cai, Wanhao Zhuo, Yamin Sepehri

Under Supervision of Prof. J.P. Thiran Image Analysis and Pattern Recognition 2019

Goal

- Studying the different methods of detection in a real problem.
- Comparing classical image segmentation, sliding windowbased classification, and convolutional neural network.

Image segmentation

Image segmentation

Hyperparameter Tuning

Based on Train Set

- Lightness improvement
- Morphological operations
- Size Filter Criteria

•

Precision= 0.0 , Recall=XX, F1_score=XX

Precision= 0.548 , Recall=0.654, F1_score=0.596

True Positive

Image segmentation

Final Testing

Ground truth

Precision= 0.0, Recall=XX, F1 score=XX True Positive False Positivie Ground truth

Participant team	F1@0.1 \$	F1@0.2 \$	F1@0.3 \$	F1@0.4 \$	F1@0.5 \$	Total \$
Just_for_test (Segmentation(group_2))	0.30	0.29	0.29	0.28	0.26	0.28

Step 1: Preprocessing and generate training data

Define the window size and step size

Generate cropped images around the annotation

Use IOU threshold to label cropped images

Step 3: Feature extraction

Use PCA to generate for each channel

- Step 4: Train Classifier (Naïve Bayes, SVM, GBDT)
- Step 5: Validate and refine the training data

- Step 6: Test
 - Run the test and observe the detected windows
 - Global F1 score at around 0.23
 - Global Precision is still relatively low ~0.14

Sliding-window based Classifier: Results and analysis

- Pros
 - Easy to train
 - Intuitive
 - Clear results on "clean" data
- Cons

Sliding-window based Classifier: Results and analysis

Sliding-window based Classifier: Results and analysis

MLP and CNN Method

- Sliding-window based methods
 - Simple CNN
 - VGG-16

- Region propose methods
 - Mask R-CNN

MLP and CNN Method – Sliding-window based methods

Similar with the sliding-window based classifier:

- Slide on the image to generate positive and negative windows feed in the neural network framework
- Start from the basic 2-layer CNN
- Follow with fully connected layers and end with 2 unit
- Generate probability with Softmax

MLP and CNN Method - Sliding-window based methods

Architecture of 2-layer CNN and some results

MLP and CNN Method - Reflection about previous methods

- Potential reason I: the network is not complicated enough!
- Solution: VGG-16
- Result: Still poor, and training is slow

MLP and CNN Method - Reflection about previous methods

- Potential reason II: window size is fixed
- Solution: multiple choices of window size: 24px, 36px and 48px
- Another problem: block overlapping
- Solution: Non-maximum suppression
- Result: Still poor, no improvement from method 2

MLP and CNN Method - Region propose method

MLP and CNN Method – Procedure of R-CNN

- I. Extract Regions of Interest (RoI): selective search
- II. CNN feature extraction on each Rol
- III. SVM classifier
- IV. Bounding Box Regression

R-CNN: Regions with CNN features warped region person? yes. tvmonitor? no. 1. Input image proposals (~2k) CNN features aeroplane? no. tvmonitor? no. 4. Classify regions

MLP and CNN Method – Derivatives of R-CNN

- Fast R-CNN: Extract the feature of RoI from the feature map of the input image
- Faster R-CNN: Region Proposal Network (RPN) substitutes the previous selective search
- Mask R-CNN: the method we used

MLP and CNN Method – Mask R-CNN

Instance Segmentation Methods

Mask R-CNN

• Mask R-CNN = Faster R-CNN with FCN on Rols

MLP and CNN Method – Mask R-CNN: Generate the masks

MLP and CNN Method – Mask R-CNN: Generate the masks

MLP and CNN Method - Mask R-CNN: Train the model

Hardware:

- Tesla K80 15G provide by Google Colab
- Memory: 15G (Quite limited)
- Training:
 - Load pre-trained weight based on coco dataset
 - Load modules from the repo of Matterport Inc.
 - Resnet101(feature extraction) + head(classification)
 - 20 epochs on first 400 training images with 200 steps per epoch
 - 15 epochs on last 400 training images
 - The whole training took about 4-5 hours

MLP and CNN Method – Result: Sample I

Ground Truth

Our result

MLP and CNN Method – Result: Sample II

GroundTruth

Our result

Result

Report of the result on the test @IOU=0.3

- detection by segmentation: 0.29
- detection by sliding window and classifier: 0.23
- detection by Mask-RCNN: 0.71

Report of the result on the competition

Best F1 score: 0.734

Participant team \$	F1@0.1 \$	F1@0.2 \$	F1@0.3 \$	F1@0.4 \$	F1@0.5 \$	Total \$
Group2	0.74	0.74	0.74	0.73	0.71	0.73

Reference

- Image Segmentation with Watershed Algorithm, OpenCV 3.1 documentation
- Rich feature hierarchies for accurate object detection and semantic segmentation. Ross Girshick, Jeff Donahue, Trevor Darrell, Jitendra Malik, CVPR, 2014.
- Fast R-CNN. Ross Girshick, ICCV, 2015.
- Faster R-CNN:Towards Real-Time Object Detection with Region Proposal Networks. Shaoqing Ren, Kaiming He, Ross Girshick, Jian Sun, NIPS, 2015.
- Mask R-CNN, Kaiming He, Georgia Gkioxari, Piotr Dollar, Ross Girshick, Facebook Al Research (FAIR), 2018
- Mask R-CNN implementation, matterport Inc: https://github.com/matterport/Mask_RCNN

