R PACKAGE FOR NEURAL NETWORKS

OxWaSPneuralnets

Giuseppe Di Benedetto Ho Chung Law Kaspar Märtens Marcin Mider 4 December 2015

NEURAL NETWORKS

NEURAL NETWORK

- * initialise weights and biases
- * for (i in 1 : num_epochs) do:
 - * for ((x,y) in train_data) do:
 - * feedforward pass
 - * backpropagation
 - * update parameters

```
Input data: \{x_i\}_{i=1}^n
Layers: l = 1, ..., L
```

```
Input data: \{x_i\}_{i=1}^n

Layers: l=1,\ldots,L

W_{ij}^{(l)} - weight of connection between unit j in layer l and unit i in layer l+1.

b_i^{(l)} - bias of a unit i in layer l+1.
```

```
Input data: \{x_i\}_{i=1}^n

Layers: l=1,\ldots,L

W_{ij}^{(l)} - weight of connection between unit j in layer l and unit i in layer l+1.

b_i^{(l)} - bias of a unit i in layer l+1.

a_i^{(l)} - activation - output of unit i in layer l, a_i^{(1)}=x_i by convention.
```

```
Input data: \{x_i\}_{i=1}^n
Layers: l = 1, \dots, L
```

 $W_{ij}^{(l)}$ - weight of connection between unit j in layer l and unit i in layer l+1.

 $b_i^{(l)}$ - bias of a unit *i* in layer l+1.

 $a_i^{(l)}$ - activation - output of unit i in layer $l,\ a_i^{(1)}=x_i$ by convention.

Starting with the first hidden layer (l = 1 below) and proceeding recursively until the last hidden layer (l = L - 2 below):

Compute a score: $z_i^{(l+1)} = \sum_{j=1}^n \, W_{i,j}^{(l)} \, a_i^{(l)} + b_i^{(l)}$

```
Input data: \{x_i\}_{i=1}^n
Layers: l = 1, \dots, L
```

 $W_{ij}^{(l)}$ - weight of connection between unit j in layer l and unit i in layer l+1.

 $b_i^{(l)}$ - bias of a unit *i* in layer l+1.

 $a_i^{(l)}$ - activation - output of unit i in layer $l,\ a_i^{(1)}=x_i$ by convention.

Starting with the first hidden layer (l = 1 below) and proceeding recursively until the last hidden layer (l = L - 2 below):

Compute a score: $z_i^{(l+1)} = \sum_{j=1}^n W_{i,j}^{(l)} a_i^{(l)} + b_i^{(l)}$ Compute new activation: $a_i^{(l+1)} = \sigma(z_i^{(l+1)})$, where $\sigma(z) = \frac{1}{1 + exp(-z)}$

Input data: $\{x_i\}_{i=1}^n$

Layers: $l = 1, \dots, L$

 $W_{ij}^{(l)}$ - weight of connection between unit j in layer l and unit i in layer l+1.

 $b_i^{(l)}$ - bias of a unit *i* in layer l+1.

 $a_i^{(l)}$ - activation - output of unit i in layer $l,\ a_i^{(1)}=x_i$ by convention.

Starting with the first hidden layer (l=1 below) and proceeding recursively until the last hidden layer (l=L-2 below):

Compute a score: $z_i^{(l+1)} = \sum_{j=1}^n W_{i,j}^{(l)} a_i^{(l)} + b_i^{(l)}$ Compute new activation: $a_i^{(l+1)} = \sigma(z_i^{(l+1)})$, where $\sigma(z) = \frac{1}{1 + ern(-z)}$

For the last layer, compute a score as usual, but use $\sigma(z)_j = \frac{e^{z_j}}{\sum_{k=1}^K e^{z_k}}$ for the transformation.

BACKWARD PASS

Training set: $\{(x^{(i)}, y^{(i)})\}_{i=1...m}$

$$\min_{\mathbf{W}, \mathbf{b}} J(\mathbf{W}, \mathbf{b}) = \frac{1}{m} \sum_{i=1}^{m} J(\mathbf{W}, \mathbf{b}; x^{(i)}, y^{(i)}) + \frac{\lambda}{2} ||\mathbf{W}||_{l^{2}}^{2}$$

 λ : weight decay parameter

BACKWARD PASS

Training set: $\{(x^{(i)}, y^{(i)})\}_{i=1...m}$

$$\min_{\mathbf{W}, \mathbf{b}} J(\mathbf{W}, \mathbf{b}) = \frac{1}{m} \sum_{i=1}^{m} J(\mathbf{W}, \mathbf{b}; x^{(i)}, y^{(i)}) + \frac{\lambda}{2} ||\mathbf{W}||_{l^{2}}^{2}$$

 λ : weight decay parameter

$$\begin{split} b_{ij}^{(l)}, W_{ij}^{(l)} &\sim \mathcal{N}(0, \epsilon^2) \\ \delta^{(n_l)} &= -(\mathbf{y} - \mathbf{a}^{(l)}) \bullet f'(\mathbf{z}^{(n_l)}), \qquad \delta^{(l)} &= \left(t(\mathbf{W}^{(l)}) \cdot \delta^{(l+1)}\right) \bullet f'(\mathbf{z}^{(l)}) \\ \nabla_{\mathbf{W}^{(l)}} J(\mathbf{W}, \mathbf{b}, ; x, y) &= \delta^{(l+1)} \cdot t(\mathbf{a}^{(l)}), \qquad \nabla_{\mathbf{b}^{(l)}} J(\mathbf{W}, \mathbf{b}, ; x, y) &= \delta^{(l+1)} \end{split}$$

4

UPDATING THE PARAMETERS

Gradient descent:

$$\mathbf{W}^{t+1} = \mathbf{W}^t - \varepsilon \nabla_{\mathbf{W}} J$$

where ε is the learning rate

UPDATING THE PARAMETERS

Gradient descent:

$$\mathbf{W}^{t+1} = \mathbf{W}^t - \varepsilon \nabla_{\mathbf{W}} J$$

where ε is the learning rate

The momentum method:

a technique for accelerating gradient descent, introduces velocity ${f V}$

$$\mathbf{V}^{t+1} = \mu \mathbf{V}^t - \varepsilon \nabla_{\mathbf{W}} J$$

$$\mathbf{W}^{t+1} = \mathbf{W}^t + \mathbf{V}^{t+1}$$

where ε is the learning rate and $\mu \in [0, 1]$ is the momentum coefficient.

Need to control the Neural Network from overfitting. $\,$

Need to control the Neural Network from overfitting. Use a regularised loss function with parameter λ . i.e. Loss = Cross Entropy + λ ×weight decay term

Need to control the Neural Network from overfitting. Use a regularised loss function with parameter λ . i.e. Loss = Cross Entropy + λ ×weight decay term

Need to control the Neural Network from overfitting. Use a regularised loss function with parameter λ .

i.e. Loss = Cross Entropy + $\lambda \times$ weight decay term

The weight decay term is just the sum of all the weights squared.

Need to control the Neural Network from overfitting. Use a regularised loss function with parameter λ .
i.e. Loss = Cross Entropy + λ ×weight decay term
The weight decay term is just the sum of all the weights squared. Use K-fold cross validation to choose the value of λ .

CROSS VALIDATION IN PICTURES

CROSS VALIDATION IN PICTURES

CLASSIFICATION OF HAND-WRITTEN DIGITS

CLASSIFICATION OF HAND-WRITTEN DIGITS

OUR IMPLEMENTATION

OUR PACKAGE OXWASPNEURALNETS

To use our package, install it as follows

```
devtools::install_github("mmider/OxWaSPneuralnets")
```

Load the package

```
library(OxWaSPneuralnets)
```

and see the help files ?fit_neural_network or ?CV_neural_network.

OUR PACKAGE OXWASPNEURALNETS

Fit the neural network

Description

Fit the neural network

Usage

fit neural_network(train_X, train_y, test_X, test_y, n_hidden_layers = 1, hidden_layer_sizes = c(20), n_iterations = 100, step_size = 0.01, lambda = 0.001, n_cores = 8)

Arguments

train_X	Matrix of training data (data points in rows, features in columns)
train_y	Vector of labels for training data (these have to be integers from 0 to n_classes - 1)
test_X	Matrix of test data
test_y	Vector of labels for test data
n_hidden_layers	Number of hidden layers in the neural network
hidden_layer_sizes Vector containing the number of neurons in each hidden layer	
n_iterations	The number of iterations for fitting the neural network
step_size	The step size for updating parameters at each iteration
lambda	The regularisation parameter
n_cores	The number of parallel cores

Оитрит

```
Console ~/oxwasp/module4/0xWaSPneuralnets/ &
                                                             -0
> data(mnist)
> # Pick only first 1000 data points (for speed)
> res = fit_neural_network(train$x[1:1000, ], train$y[1:1000]
, test$x[1:500, ], test$y[1:500], n_iterations = 1000, step_s
ize = 0.00005)
```

Оитрит

Оитрит

IT IS POSSIBLE TO PARALLELISE

IT IS POSSIBLE TO PARALLELISE

```
* initialise weights and biases
* for ( i in 1 : num_epochs ) do:
    * for ((x,y) in train_data) do:
        * feedforward pass
        * backpropagation
        * update parameters
```

WE MEASURED PERFORMANCE...

PERFORMANCE

PERFORMANCE

PERFORMANCE

CPU BOUND

IMPROVING PERFORMANCE FURTHER

We carried out experiments to improve performance by

- 1) using keyword restrict
- 2) using ISPC to take advantage of vector units

IMPROVING PERFORMANCE: RESTRICT

IMPROVING PERFORMANCE: ISPC

IMPROVING PERFORMANCE: ISPC

Performance: Cross Validation on Digits Data set

Cross Validation is completed in C with instructions in the R package.

PERFORMANCE: CROSS VALIDATION ON DIGITS DATA SET

Cross Validation is completed in C with instructions in the R package.

3750 observations with 784 features.

3000 observations for training the Neural Network.

Performance: Cross Validation on Digits Data set

Cross Validation is completed in C with instructions in the R package.

3750 observations with 784 features.

3000 observations for training the Neural Network.

750 observations for testing.

$$\lambda = 0.001 \quad 0.01 \quad 0.1 \quad 1 \quad 10$$

Performance: Cross Validation on Digits Data set

Cross Validation is completed in C with instructions in the R package.

3750 observations with 784 features.

3000 observations for training the Neural Network.

750 observations for testing.

 $\lambda = 0.001 \quad 0.01 \quad 0.1 \quad 1 \quad 10$

Fold Size = 10, i.e. validation set is 300 observations

One hidden layer with 20 hidden features.

Parallelisation is done with openMP across folds and λ .

Parallelisation: 8 cores

Problems with Neural Networks with Cross Validation parallelisation at the same time.

All 8 cores were used.

Comparison between speed in serial cross validation with parallel Neural Networks and the reverse:

Table: Parallelisation: 8 cores on Desktop

Parallelisation	User Time	System Time	Elapsed Time
On Cross Validation	2517.2s	2.4s	340.9s
On Neural Networks	2681.7s	2.0s	350.2s

PARALLELISATION: GREYWAGTAIL SERVER

Table: Comparison between parallelisation: greywagtail server

Parallelisation	User Time	System Time	Elapsed Time
On Cross Validation	3683.1s	31.1s	105.5s
On Neural Networks	4890.35s	18.65s	168.1s

Around 30-40 cores were used

Some variation due to demand of servers

Neural Networks parallelisation: Have to wait for other batches

MPI over the servers is a possibility: Work in progress....

Some Results from Cross Validation

Table: Cross Validation Result on Digit Data set

λ	Prediction Success
0.001	0.867
0.01	0.851
0.1	0.863
1	0.865
10	0.854
0.001*	0.868

CONCLUSION....

CONCLUSION....

