Introduction to Lab #3: Lab_CubeStats1

Karim Ali
CMPUT 229

University of Alberta

Requirements

- Follow all subroutine calling conventions
- Must use \$fp to access anything that is stored in the stack
 - Only can use \$sp in this assignment to change the size of the stack.

CubeStats

- Receives the following parameters:
 - corner: the address of the first element of a cube in an n-dimensional array.
 - edge: the size of the edge of the cube.
 - dimensions: the number of dimensions of the cube (and base array).
 - size: the size of the base array
 - Assume that the size of the base array is the same in all dimensions, i.e. the base array is itself a cube

A two-dimensional example

CubeStats Return Values

• \$v0: a signed integer representing the range of all elements in the specified cube.

 \$v1: a signed integer representing the floor of the average of all elements in the specified cube.

CubeStats Return Values --- more formally

$$v0 = \max(C) - \min(C)$$

$$\$v1 = \left| \frac{\sum_{x_i \in C} x_i}{|C|} \right|$$

CubeStats (cont.)

- Assume that the parameters are correct:
 - Parameters are positive
 - The Cube is contained within the base array

What is the address of element -1 (i=2)?

$$A + \times 4$$

One-dimensional matrix A.

Address	Value
0x10001024	
0x10001020	
0x1000101C	
0x10001018	15
0x10001014	-5
0x10001010	4
0x1000100C	1
0x10001008	-1
0x10001004	3
0x10001000	7
0x10000FFC	

What is the address of element w (i=1, j=2)?

Two-dimensional 3×3 matrix B.

0x10001024	
0x10001020	Z
0x1000101C	У
0x10001018	X
0x10001014	W
0x10001010	V
0x1000100C	u
0x10001008	t
0x10001004	S
0x10001000	r
0x10000FFC	

Value

Which elements belong to a Cube at position (1,1) with an edge = 2?

B[i][j]

Two-dimensional 3 × 3 matrix B.

Address	Value
0x10001024	
0x10001020	Z
0x1000101C	У
0x10001018	X
0x10001014	W
0x10001010	V
0x1000100C	u
0x10001008	t
0x10001004	S
0x10001000	r
0x10000FFC	

Which elements belong to a Cube at position (1,1) with an edge = 2?

B[i][j]

Two-dimensional 3 × 3 matrix B.

Address	Value
0x10001024	
0x10001020	Z
0x1000101C	у
0x10001018	X
0x10001014	W
0x10001010	V
0x1000100C	u
0x10001008	t
0x10001004	S
0x10001000	r
0x10000FFC	

What is the address of element h (i=1, j=1, k=1)?

$$C + ($$

Address	Value
0x10001024	
0x10001020	
0x1000101C	h
0x10001018	g
0x10001014	f
0x10001010	e
0x1000100C	d
0x10001008	С
0x10001004	b
0x10001000	а
0x10000FFC	

Organization of C in memory in row-major style.

Three-dimensional $2 \times 2 \times 2$ matrix C.

What is the address of element h (i=1, j=1, k=1)?

$$C + (((i \times 2) + j) \times 2 + k) \times 4$$

$$C + (i \times 2 \times 2 + j \times 2 + k) \times 4$$

Address	Value
0x10001024	
0x10001020	
0x1000101C	h
0x10001018	g
0x10001014	f
0x10001010	e
0x1000100C	d
0x10001008	С
0x10001004	b
0x10001000	а
0x10000FFC	

Organization of C in memory in row-major style.

Three-dimensional $2 \times 2 \times 2$ matrix C.

main program

- reads a k-dimensional Cube from a file
- places the values in the memory in row-major format
- for each specification of a cube in the file:
 - initializes three global variables to zero:
 - min, max, and total
 - calls your CubeStats subroutine
 - prints the value returned by CubeStats

File format

main

 Reading and understanding the main routine is part of the assignment.

Test Generator

- A test generator, written in Python, is provided to you as a convenience.
 - Have fun modifying/playing with it.
- Caution:
 - Large test cases overflow the arena provided
 - Increasing the arena is ok but will eventually run into the static space limit of SPIM.

What to hand in

- A single file named lab3. S containing your subroutine CubeStats written in MIPS assembly.
- Your subroutine must return to the caller using the instruction:

jr \$ra

Your file must not contain a main function.