Лекция 11. Раскраски графов. Раскраски вершин графов в два цвета. Критерий двудольности графа. Раскраски вершин планарных графов.

Лектор — Селезнева Светлана Николаевна selezn@cs.msu.ru

факультет ВМК МГУ имени М.В. Ломоносова

Лекции на сайте https://mk.cs.msu.ru

Раскраска вершин графа

Раскраска вершин графа G = (V, E) в k цветов — отображение

$$\rho: V \to \{1, 2, \dots, k\},\$$

в котором из $(v,w) \in E$ следует $\rho(v) \neq \rho(w)$.

Т. е. любые смежные вершины обязаны получить разные цвета.

Хроматическое число $\chi(G)$ графа G — наименьшее число цветов, в которое можно раскрасить его вершины.

Для любого графа G=(V,E) верно соотношение $\chi(G)\leqslant |V|.$

Раскраска вершин графа в два цвета

Теорема 11.1 (Кенига). Вершины графа G можно раскрасить в два цвета тогда и только тогда, когда в нем не найдется ни одного простого цикла нечетной длины.

Доказательство. 1. Если в графе G найдется простой цикл нечетной длины, то вершины этого цикла в два цвета не раскрасить.

Раскраска вершин графа в два цвета

Доказательство. 2. Пусть теперь в графе G отсутствуют простые циклы нечетной длины.

Можно считать, что G — связный граф, иначе проведем рассуждения для каждой его компоненты связности.

Построим в графе G его остовное дерево D.

Выберем произвольную вершину $v_0 \in V$. В дереве D для пары вершин v_0 , w, где $w \in V$, существует ровно одна простая (v_0,w) -цепь P_w .

Рассмотрим отображение $ho:V o\{1,2\}$:

ho(w)=1, если длина цепи P_w нечетна;

 $\rho(w) = 2$, если длина цепи P_w четна.

Покажем, что ρ является раскраской вершин, т. е. в графе G нет ребер, оба конца которых окрашены в один и тот же цвет.

Раскраска вершин графа в два цвета

Доказательство. Предположим обратное: пусть $(u,w) \in E$ и $\rho(u) = \rho(w)$.

Рассмотрим в графе G замкнутый путь $P = v_0 P_u u(u, w) w P_w v_0$.

Длина пути P нечетна, т. к. у длин цепей P_u, P_w в дереве D одинаковая четность.

Но из указанного замкнутого пути P можно выделить простой цикл нечетной длины — противоречие.

Значит, ho — раскраска вершин графа G в два цвета.

Двудольные графы

Граф называется **двудольным**, если его вершины можно так разбить на две непустые части (доли), что смежны только вершины из разных долей.

Полным двудольным графом $K_{m,n}$ называется двудольный граф с долями из m и n вершин, в котором смежны любые две вершины из разных долей.

Полный двудольный граф $K_{3,3}$

Критерий двудольности графа

Следствие. Граф G, в котором не менее двух вершин, является двудольным тогда и только тогда, когда он не содержит простых циклов нечетной длины.

Действительно, граф G не содержит простых циклов нечетной длины тогда и только тогда, когда его вершины можно раскрасить в два цвета.

- 1. Если граф G двудольный, то раскрасим вершины из одной доли в цвет 1, а вершины из другой доли в цвет 2. Получим раскраску вершин графа G в два цвета.
- 2. Обратно, если вершины графа G раскрашены в два цвета, то все вершины одного цвета не связаны ребрами, поэтому их можно объединить в одну долю.

Теорема 11.2 (о раскраске вершин планарного графа). Вершины любого планарного графа G можно раскрасить не более чем в пять цветов.

Доказательство проведем индукцией по числу p вершин в графе G.

Базис индукции: p = 1 верен.

Доказательство. *Индуктивный переход*: пусть вершины любого планарного графа менее чем с p вершинами можно раскрасить в 5 цветов.

Рассмотрим планарный граф G=(V,E), где |V|=p. Пусть задана его укладка на плоскости $\Phi(G)$.

По доказанному свойству в графе G найдется такая вершина $v_0 \in V$, что $d_G(v_0) \leqslant 5$.

Пусть $v_1, \ldots, v_m \in V$ — все смежные с v_0 вершины в графе G, $m \leqslant 5$, и пусть в укладке $\Phi(G)$ ребра $(v_0, v_1), \ldots, (v_0, v_m)$ расположены по часовой стрелке в этом порядке.

Укладка графа G на плоскости

Доказательство. Рассмотрим планарный граф $G' = G - v_0$. Для него верно предположение индукции, поэтому найдется раскраска ρ его вершин в 5 цветов.

Перенесем эту раскраску ρ на вершины графа G, при этом вершина v_0 останется неокрашенной.

Покажем, что вершину v_0 можно покрасить, не добавляя новый цвет.

Доказательство. 1. Если $m \leqslant 4$ или m = 5, но среди цветов вершин v_1, \ldots, v_m не встречается какой-то цвет, то припишем вершине v_0 цвет, отсутствующий в вершинах v_1, \ldots, v_m .

Доказательство. 2. Пусть теперь m=5 и среди цветов вершин v_1, \ldots, v_5 встречаются все 5 цветов, причем вершина v_i окрашена в цвет $i, i=1,\ldots,5$.

Пусть $A_{1,3}(v_1)$ — множество всех тех вершин графа G, в которые найдутся пути из вершины v_1 по вершинам только цветов 1 и 3.

2.1. Если $v_3 \notin A_{1,3}(v_1)$, то все вершины из $A_{1,3}(v_1)$ перекрасим: если вершина окрашена в цвет 1, то ее покрасим в цвет 3; если вершина окрашена в цвет 3, то ее покрасим в цвет 1.

Тогда вершина v_1 приобретет цвет 3. А значит, вершине v_0 можно приписать цвет 1.

Доказательство. 2.2. Пусть $v_3 \in A_{1,3}(v_1)$. Это означает, что в графе G найдется цикл C, содержащий вершину v_0 , и все другие вершины цикла C окрашены только в цвета 1 или 3, причем вершины v_2 и v_4 лежат по разные стороны от этого цикла.

Пусть $A_{2,4}(v_2)$ — множество всех тех вершин графа G, в которые найдутся пути из вершины v_2 по вершинам только цветов 2 и 4.

Теперь $v_4 \notin A_{2,4}(v_2)$, и все вершины из $A_{2,4}(v_2)$ перекрасим: если вершина окрашена в цвет 2, то ее покрасим в цвет 4; если вершина окрашена в цвет 4, то ее покрасим в цвет 2.

Тогда вершина v_2 приобретет цвет 4. А значит, вершине v_0 можно приписать цвет 2.

Раскраска ребер графа

Раскраска ребер графа G = (V, E) в k цветов — отображение

$$\rho: E \to \{1, 2, \ldots, k\},\$$

в котором из $e_1=(v,w)\in E$, $e_2=(v,u)\in E$ следует $ho(e_1)
eq
ho(e_2).$

T. е. любые ребра с общей вершиной обязаны получить разные цвета.

Хроматический индекс $\chi'(G)$ графа G — наименьшее число цветов, в которое можно раскрасить его ребра.

Для любого графа G верно соотношение $\chi'(G) \geqslant \Delta(G)$.

Задачи для самостоятельного решения

- 1. Найдите хроматическое число и хроматический индекс полного графа K_n для каждого $n \geqslant 1$.
- 2. Найдите хроматическое число и хроматический индекс полного двудольного графа $K_{m,n}$ для каждых $m\geqslant 1,\ n\geqslant 1.$

Литература к лекции

- 1. Алексеев В.Б. Лекции по дискретной математике. М.: Инфра-М, 2012.
- 2. Емеличев В. А., Мельников О. И., Сарванов В. И., Тышкевич Р. И. Лекции по теории графов. М.: Либроком, 2009.