Explainable Machine Learning

ORIE 4371 November 2, 2021

Why should we care about interpreting machine learning

models?

Socially Sensitive Machine Learning

Two Approaches

Un-interpretable

Interpretable

[(Priors \geq 3) and (Age \leq 45) and (Score Factor = TRUE)] OR [(Priors \geq 20) and (Age \geq 45)]

COMPAS

Legal Issues + Procedural Fairness

What are some strategies we've seen

to interpret a model before?

Simple Models

Linear Regression

Logistic Regression

Decision Tree

[(Priors \geq 3) and (Age \leq 45) and (Score Factor = TRUE)] OR [(Priors \geq 20) and (Age \geq 45)]

Rule Sets and Scorecards

PREDICT PATIENT HAS OBSTRUCTIVE SLEEP APNEA IF SCORE > 1

1.	$Age \geq 60$	4 points		
2.	Hypertension	4 points	+	
3.	$BMI \geq 30$	2 points	+	
4.	$BMI \ge 40$	2 points	+	
5.	Female	-6 points	+	
	ADD POINTS FROM ROWS 1 - 5	SCORE	=	

Sparse Linear Models

Feature Importance

Hierarchy of Interpretability

Best

Simple Interpretable Model

Complex Interpretable Model

Explain Black Box

Worst

Complete Black Box

Why not always use simple models?

^{*}Learning Certifiably Optimal Rule Sets. Angelino et al. (2016)

Revisiting Simple Models

Researchers are working on using modern optimization approaches to find better simple models for practical datasets!

Learning Optimal and Fair Decision Trees for Non-Discriminative Decision-Making

Learning Certifiably Optimal Rule Lists for Categorical Data

Sina Aghaei, Mohammad Javad Azizi, Ph

CAIS Center for Artificial Intelligence in S University of Couthern Colifornia I as Angeles

Elaine Angelino

ELAINE@EECS.BERKELEY.EDU

Journal of Machine Learning Research 20 (2019) 1-10

Submitted 9/18; Revised 4/19; Published 6/19

BERK@SEAS.HARVARD.EDU

CYNTHIA@CS.DUKE.EDU

rical Engineering and Computer Sciences mia, Berkeley, Berkeley, CA 94720

NLARUSSTONE@ALUMNI.HARVARD.EDU ALABID@G.HARVARD.EDU

MARGO@EECS.HARVARD.EDU

Berk Ustun

Center for Research in Computation and Society

Harvard University

Learning Optimized Risk Scores

Cvnthia Rudin Department of Computer Science

Department of Electrical and Computer Engineering Department of Statistical Science Duke University

ig and Applied Sciences

Stone

Cambridge, MA 02138

CYNTHIA@CS.DUKE.EDU

puter Science and Department of Electrical and Computer Engineering ırham, NC 27708

*Come chat with Connor if you're interested about this!

Hierarchy of Interpretability

Local Interpretable Model-Agnostic Explanations

*"Why Should I Trust You?" Explaining output of any classifier. Ribeiro et al. 2016

LIME

High-Level Idea: Pick point to explain, sample points around it, and construct a linear

classifier.

LIME

High-Level Idea: Pick point to explain, sample points around it, and construct a linear

classifier.

LIME

High-Level Idea: Pick point to explain, sample points around it, and **construct a linear classifier**.

LIME 'Formally'

What could be a pick for our

'complexity' loss if G is linear models?

LIME Algorithm

Algorithm 1 Sparse Linear Explanations using LIME **Require:** Classifier f, Number of samples N**Require:** Instance x, and its interpretable version x'**Require:** Similarity kernel π_x , Length of explanation K $\mathcal{Z} \leftarrow \{\}$ for $i \in \{1, 2, 3, ..., N\}$ do $z_i' \leftarrow sample_around(x')$ $\mathcal{Z} \leftarrow \mathcal{Z} \cup \langle z_i', f(z_i), \pi_x(z_i) \rangle$ end for $w \leftarrow \text{K-Lasso}(\mathcal{Z}, K) \triangleright \text{with } z_i' \text{ as features, } f(z) \text{ as target}$ return w

Image Classification Example

(d) Explaining Labrador

Figure 4: Explaining an image classification prediction made by Google's Inception neural network. The top 3 classes predicted are "Electric Guitar" (p = 0.32), "Acoustic guitar" (p = 0.24) and "Labrador" (p = 0.21)

SHapley **A**dditive ex**P**lanation

Shapely values are a tool from game theory to **distribute payout from a collaborative game 'fairly'.** In our context, the **'payout' is going to be our final prediction.**

Payout for player i

$$\phi_i = \sum_{S \subseteq F \setminus \{i\}} \frac{|S|!(|F|-|S|-1)!}{|F|!} \left[f_{S \cup \{i\}}(x_{S \cup \{i\}}) - f_S(x_S) \right]$$

All possible subsets of players Value for including 'player' i

ʻplayer' i

What's a good pick for our function f?

SHapley **A**dditive ex**P**lanation

We'll use the conditional expectation! Note that the order of features we consider matters when our classifier is non-linear, so we 'average' the phi for each ordering.

Permutation Importance

A final simple tool, we can use is just shuffle a column and see how it impacts performance.

Height at age 20 (cm)	Height at age 10 (cm)		Socks owned at age 10
182	155		20
175	147		10
	(A		
156	142	•••	8
153	130		24

Permutation Importance

Positive numbers mean shuffling a column decreased performance (i.e. is important), small or negative numbers mean less.

147	
Weight	Feature
0.1750 ± 0.0848	Goal Scored
0.0500 ± 0.0637	Distance Covered (Kms)
0.0437 ± 0.0637	Yellow Card
0.0187 ± 0.0500	Off-Target
0.0187 ± 0.0637	Free Kicks
0.0187 ± 0.0637	Fouls Committed
0.0125 ± 0.0637	Pass Accuracy %
0.0125 ± 0.0306	Blocked
0.0063 ± 0.0612	Saves
0.0063 ± 0.0250	Ball Possession %
0 ± 0.0000	Red
0 ± 0.0000	Yellow & Red
0.0000 ± 0.0559	On-Target
-0.0063 ± 0.0729	Offsides
-0.0063 ± 0.0919	Corners
-0.0063 ± 0.0250	Goals in PSO
-0.0187 ± 0.0306	Attempts
-0.0500 ± 0.0637	Passes