MIT OpenCourseWare http://ocw.mit.edu

HST.582J / 6.555J / 16.456J Biomedical Signal and Image Processing Spring 2007

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Medical Image Modalities

HST 582

6.555

Overview

- Survey of Common Medical Image Modalities
- Uses of Medical Images
- Application of Image Processing
- Medical Image Analysis

• S. Webb (1988). The Physics of Medical Imaging.

Common Modalities

- X-Ray
- CT
- Nuclear Medicine
- Ultrasound
- MRI
- More Exotic
 - Optical Coherence Tomography (OCT)
 - Diffuse Optical Imaging
 - Modern EEG

X-Ray

- Roentgen 1895
 - Low cost
 - Useful for fractures
 - Mammography
 - Chest films
 - Interventional guidance, needles, tubes, etc...
 - Some risk

Film (or detector array)

X-Ray Machines

The first ones...

Photo removed due to copyright restrictions.

Photo removed due to copyright restrictions.

... from Philips.

... from Japan...

Spring 2007

ttp://www.shimadzu.com/products/medical/oh80jt0000001x6x.html http://www.medical.philips.com/main/company/aboutus/history

6

X-Ray Machines

Nowadays...

Photo removed due to copyright restrictions.

Spring 2007

<u>http://www1.shimadzu.com/products/medical/history.html</u>
http://www.medical.philips.com/main/company/aboutus/history

X-Ray examples

The "first" acquisition

Fashionable image of the time...

Courtesy of Radiology Centennial, Inc.

Current medical applications:

X-Ray images removed due to copyright restrictions.

Skull - http://www.gehealthcare.com/usen/xr/radio/images/skull_1_1_640_528.jpg

Chest - http://www.gehealthcare.com/usen/xr/radio/images/ chest_1_4_1_640_612.jpg

Hand - http://www.gehealthcare.com/usen/xr/radio/images/ hand 1 2 1 1 297 640.jpg

X-Ray sensing equipment

- Film
- Fluorescent screen
 - Fluoroscope danger!!
- Image intensifier tube + video camera

Spring 2007

9

C-ARM X-Ray machine

Images removed due to copyright restrictions.

http://www.qdi.com.au

Other C-ARM models...

Images removed due to copyright restrictions.

Useful in the operating room

Spring 2007

http://www.qdi.com.au

X-ray risk...

Courtesy of Radiology Centennial, Inc.

http://www.uihealthcare.com/depts/medmuseum/galleryexhibits/trailoflight/03xraymartyrs.html.
1907 photo, courtesy of American College of Radiology

Spring 2007

12

Digital Subtraction Angiography (DSA)

- 1. Acquire digital X-ray
- 2. Inject contrast agent into blood (x-ray absorber)
- Acquire new digital x-ray
- 4. Subtract

- ⇒ vessels "stand out"
- ... often BI-PLANAR...

DSA example

The pelvis of a patient who has had a kidney transplant and a stent placement.

Courtesy of Walter F. Block. Used with permission.

Spring 2007 http://zoot.radiology.wisc.edu/~block/Med_Gallery/ia_dsa.html

Mammography

- Breast x-ray
- Cancer Screen
- Inexpensive
- Challenging to Read

pleomorphic calcifications, malignant

Spring 2007

Courtesy of DDSM: Digital Database for Screening Mammography

http://marathon.csee.usf.edu/Mammography/Database.html

16

Computed Tomography (CT) (1958)

detector array

- Auto Rib Cage Projection (DEMO)
- Fan Beam Systems

Figure removed due to copyright restrictions. See http://books.nap.edu/openbook.php?isbn=0309053870&page=25

Fan beam systems employ a multicellular detector system rotating about the patient together with the x-ray tube.

Ring detector based systems have a fixed detector ring, operate with a fan-shaped x-ray beam, and require only a rotational movement of the x-ray tube or the x-ray focal spot in the case of electron beam type x-ray generation.

Backprojection Algorithm

Spring 2007 20

Spring 2007 21

Spring 2007 22

Spring 2007 23

Backprojection...

- Backprojection (only) produces images that are blurred by 1/r kernel
- Solution: *de-blur* with filter that is inverse of 1/r (tricky to implement)
- Trick: de-blur filtering can be accomplished in space of projections before backprojection
 - Filtered Backprojection

CT...

- Get hi-res cross sections
- Stack slices into 3D volumetric data set
- Great for bone

CT example

Image removed due to copyright restrictions.

http://www.gemedicalsystems.com/education/gallery/index.html

CT scanners

Photo removed due to copyright restrictions. See http://imaginis.com/faq/history.asp.

Head-only CT scanner from 1974

Courtesy of NIH.

Current model

CT ...

- Soft tissue contrast not great
- Injected contrast agents can help
 - Tumors (disrupted circulation)
 - wash-out studies
 - Vascular imaging
- Moderate cost... ~\$300
- First screen for brain tumor?

CT ...

- Useful for interventional guidance
- Reasonable access
 - needle placement
- Some risk (X-Rays...)

Nuclear Medicine

- PET 1953
- SPECT 1967

Inject Radiopharmaceutical

Positron-Emission Tomography (PET)

- Positron emitted
- Does not get far; annihilates with electron
- Producing pair of gamma rays
- Detected as coincidence in two detectors

Positron Emission Tomography

Figure by MIT OpenCourseWare.

The fluor atom in the FDG (fluorodeoxyglucose) molecule undergoes radioactive decay, emitting a positron -- a form of electron with a positive electrical charge, so it's anti-matter.

The positron collides with an electron, and the resulting matter/anti-matter annihilation emits two gamma rays in opposite directions. The PET scanner registers these gamma rays and assembles the image.

Positron Emission Tomography

electron

Nuclear disintegration

Positron Emission Tomography

Image removed due to copyright restrictions.

PET scanners

An early model ...

PET III, ca. 1977 Courtesy of Brookhaven National Laboratory.

Current machines...

Courtesy of NIH.

Particle Accelerator needed for making Radiopharmeceuticals

Image removed due to copyright restrictions.

http://www.crump.ucla.edu/lpp/radioisotopes/radioisoprod.html

PET history

Image removed due to copyright restrictions.

See http://www.cerebromente.org.br/n01/pet/pet hist.htm

Evolution of image quality from the first PET scanner, available in 1975, to the latest and most sophisticated model, ECAT Exact HR+. Improvement has been achieved with a larger number and better radiation sensors, better computer programs and the possibility of getting several slices at the same time (using many rings of sensors).

39

- Tracers show functional information
 - glucose metabolism
 - perfusion
 - **—** ...
- Find tumors
- Show strokes
- Heart assessment
- Functional neuroscience
 - Ethical problems ...
- Some risk (radioactive stuff)

PET images

http://www.biomed.org/pet.html

Images removed due to copyright restrictions. See http://www.cerebromente.org.br/n01/pet/pet.htm

Single Photon Emission Computed Tomography

Nuclear Disintegration

Gamma Camera

Image removed due to copyright restrictions. Schematic of gamma camera.

Construction of a simple gamma camera (from Webb, *Physics of Medical Imaging*)

SPECT scanner

Image removed due to copyright restrictions.

SPECT image

Image removed due to copyright restrictions.

• PET

- Expensive
- Need nearby particle accelerator to make the tracers

• SPECT

- Moderate \$
- Do not need to be right by accelerator

Ultrasound 1950's

- Low cost
- Safe
- Noisy images
 - Specularities

Ultrasound...

in a hand-held probe?

Ultrasound...

- Boundary contrast
- Breast exams
- Useful for biopsies
- Some use in neurosurgery
 - For tumors with sharp margins
- Recent research
 - Amy Gieffers, HP Andover
 - Heart assessment
 - Blood contrast agent

Ultrasound images

Images removed due to copyright restrictions.

<u>Ultrasound movies</u>

3D Ultrasound image (1)

Images removed due to copyright restrictions. See http://www.cs.uwa.edu.au/~bernard/us3d/people.html

3D Ultrasound images (2)

Images removed due to copyright restrictions.

http://tanya.ucsd.edu/

Image removed due to copyright restrictions.

http://www.cs.uwa.edu.au/~bernard/us3d/people.html

Spring 2007

Nuclear Magnetic Resonance Imaging

- 1978 first commercial
- Excellent soft tissue contrast
 - Tumors
 - White matter/ gray matter
 - MS lesions
 - Cartilage
 - Knees
 - Discs (spine)
 - Expensive ~\$1000

MRI example

Image of humam brain removed due to copyright restrictions.

http://www.gemedicalsystems.com/rad/mri/images/med/3t/

NMR

- Hydrogen nuclei precess around an applied magnetic field
- 1.5 Tesla ~ 60 MHz Larmour frequency

Spring 2007

Cite as: William (Sandy) Wells. Course materials for HST.582J / 6.555J / 16.456J, Biomedical Signal and Image Processing, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

How to image?

- = Nobel Prize
- Later lecture

• For now... what does the equipment look like? ...

General Electric 3 Tesla Imager

Photo removed due to copyright restrictions.

Gradient subsystem

X Gradient Coil

Y Gradient Coil

Z Gradient Coil

http://www.cis.rit.edu/htbooks/mri/inside.htm

Spring 2007

60

Transmitter

200 W 60MHz RF Transmitter

RF Receiving equipment

Image removed due to copyright restrictions.

Hornak, J. P. The Basics of MRI. http://www.cis.rit.edu/htbooks/mri/inside.htm

MRI equipment

Image removed due to copyright restrictions.

Spring 2007

Hornak, J. P. The Basics of MRI. http://www.cis.rit.edu/htbooks/mri/inside.htm

MRI...

- Provides cross-sectional images on volumetric data
- What does it see?
- ~ juiciness
- Proton density
- Relaxation time constants
 - T1: return to low energy state
 - T2: lose bulk transverse magnetization

Spring 2007

T1, T2 for Brain Tissues

Tissue	T1	T2	(ms)
WM	871	87	
GM	515	74	
CSF	1900	250	

MRI Imaging Protocols

- Proton Density
- T2-weighted
- T1-weighted
- ... many others

• "spectroscopy"

Image removed due to copyright restrictions.

Hornak, J. P. *The Basics of MRI*. http://www.cis.rit.edu/htbooks/mri/inside.htm

Spinal MRI acquisition

Image removed due to copyright restrictions.

Hornak, J. P. The Basics of MRI. http://www.cis.rit.edu/htbooks/mri/inside.htm

- Additional flexibility
 - Injectable (magnetic) contrast agent
 - MR angiography (safe)

MR Angiography

Image removed due to copyright restrictions.

Hornak, J. P. *The Basics of MRI*. http://www.cis.rit.edu/htbooks/mri/inside.htm

Functional MRI (fMRI)

- MGH >> 1
- Very fast acquisition
 - Do something different
- Another quick acquisition
 - \Rightarrow subtract, etc,
- Subtle intensity changes due to vascular responses ⇒ (fuzzy) activation images (SAFE!)

fMRI Setup

Image removed due to copyright restrictions.

See: http://www.arts.uwaterloo.ca/~jdancker/fMRI/Week%202%20-%20The%20Basic%20Story.ppt

Activation Statistics

Functional images

Region of interest (ROI)

Interventional MRI

- BWH >> 1
- Ferenc Jolesz
- GE Medical Sys., Milwaukee
- Open MRI, MRT

MRT (interventional MR)

- •Integrate MRI with Operating Room
- •Non-magnetic patient monitor machine
- •Non-Ferrous Anestesia Machine

Signa SP (GE Medical Systems)

Photos by Sam Ogden removed due to copryight restrictions.

Preoperative Image

Photo removed due to copyright restrictions.

Intraoperative Image (end of procedure)

Photo removed due to copyright restrictions.

MRT usage

- First: biopsies
- Now:
 - Craniotomies
 - Prostate Brachytherapy
 - Liver Tumor Ablation

Uses of Medical Images

- Diagnosis
 - Fracture, tumor, stroke
 - Eyeball + tape recorder
- Interventional guidance
 - Exploit spatial information "targeting"
- Scientific Research

Interventional Applications

- Needle placement; catheterizations
- Image-guided "conventional" surgery
- Radiation therapy planning
 - Dosimetry
 - Portal imaging
- stereotaxy

"Neuro Navigation"

- Mike Leventon, Eric Grimson, AI Lab...
- There are some commercial systems....
 - Brain Lab A.G. (German product)
 - GE NAV (General Electric)

Science

- Neurological Diseases
 - -MS
 - Drug trials
 - Quantify lesion burden
 - Schizophrenia
 - Temporal lobe anatomy
 - Measure volumes
 - Functional Neuroscience
 - Psychology experiments

Medical Image Analysis

- Emerging field
- Elsevier journal
- Older technologies
 - Image reconstruction: CT, MRI (pretty mature)
 - SPECT still active
- Core technologies
 - Segmentation
 - Registration
- Applications
 - Visualization (surgery)
 - Anatomical studies

Segmentation

current: more or less elaborate statistical
 classifiers + morphological operations

Registration

- Time series
- Fuse modalities (surgery?)
- Fuse anatomical reference (MRI) with activation (fMRI)

Medical Image Analysis Current Research Areas

- Non-rigid registration
 - Computer simulation of tissue deformation + intra-op images
- computational anatomy
- ATLASES --what are atlases?
 - Statistical characterization of shape in population
 - "warping" across people
- ⇒ integration of functional neuroscience experiments across subjects

the end