Algebraische Strukturen

Halbgruppe

 (S, \cdot) erfüllt

— Assoziativität

Kann leer sein.

Beispiel: $\emptyset \neq H$ eine Menge mit Verknüpfung $x \cdot y := y$. Assoziativität ist leicht zu sehen:

$$x \cdot (y \cdot z) = x \cdot z = z = y \cdot z = (x \cdot y) \cdot z$$

Hier ist jedes Element linksneutral, aber keines rechtsneutral (außer H enthält nur ein Element).

Monoid

 (M, \cdot) erfüllt

- Assoziativität
- Neutrales Element (beidseitig)

Gibt es ein rechtsneutrales und ein linksneutrales Element, so stimmen diese überein:

Sei e_1 linksneutral und e_2 rechtneutral, so ist

$$e_1 = e_1 e_2 = e_2.$$

Gruppe

 (G,\cdot) erfüllt

- Assoziativität
- Neutrales Element (beidseitig)
- Inverses Element (beidseitig)

Es genügt Vorauszusetzen, daß G ein linksneutrales Element hat, und das jedes Element ein linksinverses hat (oder daß G ein rechtsinverses Element hat und jedes Element ein rechtsinverses hat):

Sei $x \in G$ und $x' \in G$ linksinvers zu x, also x'x = e. Das Element xx' ist in G, hat also ein linksinverses z. Dann ist

$$x = (z(xx'))x = z(x(x'x)) = zxe$$

Wir multiplizieren von rechts mit x', und erhalten

$$xx' = (zxe)x' = z(xx') = e.$$

Also ist x' auch rechtsinverses von x.

Wir zeigen, daß e auch rechtsneutrales Element ist:

Für jedes $x \in G$, mit inversem x' ist

$$xe = x(x'x) = (xx')x = ex.$$

Abelsche Gruppe

 (G,\cdot) erfüllt

- Assoziativität
- Neutrales Element (beidseitig)
- Inverses Element (beidseitig)
- Kommutativität

Man schreibt dann oft (G, +).

Halbring

- $(R, +, \cdot)$ erfüllt
 - (G, +) ist eine kommutative Halbgruppe
 - (G, \cdot) ist eine Halbgruppe
 - Distributivgesetze

Nicht notwendig eine Null oder Eins.

Hemiring

- $(R, +, \cdot)$ erfüllt
 - (G, +) ist ein kommutatives Monoid
 - (G, \cdot) ist eine Halbgruppe
 - Distributivgesetze

Bewertungshalbring

- $(R, +, \cdot)$ erfüllt
 - (G, +) ist ein kommutatives Monoid
 - (G,\cdot) ist ein Monoid
 - Distributivgesetze

Ring

- $(R, +, \cdot)$ erfüllt
 - (G, +) ist eine kommutative Gruppe
 - (G, \cdot) ist eine Halbgruppe
 - Distributivgesetze

Dies wird auch manchmal als Pseudoring oder nicht-unitärer Ring bezeichnet.

Ring mit Eins/ unitärer Ring

- $(R, +, \cdot)$ erfüllt
 - (G, +) ist eine kommutative Gruppe
 - (G, \cdot) ist ein Monoid
 - Distributivgesetze

Oft wird dies als Ring bezeichnet, oder als nicht-kommutativer Ring.

Kommutativer Ring mit Eins

- $(R,+,\cdot)$ erfüllt
 - (G, +) ist eine kommutative Gruppe
 - (G, \cdot) ist ein kommutatives Monoid
 - Distributivgesetz

Oft sagt man auch nur kommutativer Ring.

Schiefkörper

- $(K, +, \cdot)$ erfüllt
 - -(K,+) ist eine kommutative Gruppe
 - $(K \setminus \{0\}, \cdot)$ ist eine Gruppe
 - Distributivgesetze

Im Französischen ist dies ein Körper.

Körper

 $(K,+,\cdot)$ erfüllt

- (K,+) ist eine kommutative Gruppe
- $-(K \setminus \{0\}, \cdot)$ ist eine abelsche Gruppe Distributivgesetz