TinyLogic UHS D-Type, Flip-Flop with Preset and Clear

Description

The NC7SZ74 is a single, D–type, CMOS flip–flop with preset and clear from ON Semiconductor ultra high–speed series of TinyLogic. The device is fabricated with advanced CMOS technology to achieve ultra high speed with high output drive, while maintaining low static power dissipation over a very broad V_{CC} operating range of 1.65 V to 5.5 V V_{CC} . The inputs and outputs are high impedance when V_{CC} is 0 V. Inputs tolerate voltages up to 5.5 V, independent of V_{CC} operating voltage.

The signal level applied to the D input is transferred to the Q output during the positive—going transition of the CLK pulse.

Features

- Ultra-High Speed: t_{PD} 2.6 ns (Typical) into 50 pF at 5 V V_{CC}
- High Output Drive: ±24 mA at 3 V V_{CC}
- Broad V_{CC} Operating Range: 1.65 V to 5.5 V
- Power Down High-Impedance Inputs/Outputs
- Over-Voltage Tolerance Inputs Facilitate 5 V to 3 V Translation
- Proprietary Noise/EMI Reduction Circuitry

ON

ON Semiconductor®

www.onsemi.com

US8 CASE 846AN UQFN8 1.6x1.6, 0.5P CASE 523AY

CONNECTION DIAGRAMS

Figure 1. Logic Symbol

ORDERING INFORMATION

See detailed ordering and shipping information on page 2 of this data sheet.

Pin Configurations

Figure 2. USB (Top View)

Figure 3. MicorPak™ (Top Through View)

PIN DEFINITIONS

Pin # US8	Pin # MicroPak	Name	Description
1	7	CK	Clock Pulse Input
2	6	D	Data Input
3	5	Q	Flip-Flop Output
4	4	GND	Ground
5	3	Q	Flip-Flop Output
6	2	CLR	Direct Clear Input
7	1	PR	Direct Preset Input
8	8	Vcc	Supply Voltage

ORDERING INFORMATION

Part Number	Top Mark	Package	Packing Method [†]
NC7SZ74K8X	SZ74	8-Lead US8, JEDEC MO-187, Variation CA 3.1mm Wide	3000 Units on Tape & Reel
NC7SZ74L8X	N9	8-Lead MicroPak, 1.6 mm Wide	5000 Units on Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D

FUNCTION TABLE

	Inp	uts		Out		
/CLR	/PR	D	СК	Q	/Q	Function
L	Н	Х	X	L	Н	Clear
Н	L	Х	Х	Н	L	Preset
L	L	Х	Х	Н	Н	
Н	Н	L	↑	L	Н	
Н	Н	Н	↑	Н	L	
Н	Н	X	\	Q _n	/Q _n	No Change

H = HIGH Logic Level

Qn = No change in data

X = Immaterial

↓= Falling Edge

L = LOW Logic Level

Z = High Impedance

↑ = Rising Edge

ABSOLUTE MAXIMUM RATINGS

Symbol	Р	Min.	Max.	Unit	
Vcc	Supply Voltage		-0.5	6.5	V
Vin	DC Input Voltage		-0.5	6.5	V
Vouт	DC Output Voltage		-0.5	6.5	V
lıĸ	DC Input Diode Current	V _{IN} < 0V		-50	mA
Іок	DC Output Diode Current	V _{OUT} < 0V		-50	mA
Іоит	DC Output Source/Sink Current			±50	mA
Icc or Ignd	DC V _{CC} or Ground Current			±50	mA
Tstg	Storage Temperature Range		-65	+150	°C
TJ	Junction Temperature Under Bias			+150	°C
TL	Junction Lead Temperature (Solde	ering, 10 Seconds)		+260	°C
P _D	Power Dissipation at +85@C			250	mW
ESD	Human Body Model, JEDEC:JESE	D22-A114		5000	V
	Charge Device Model: JEDEC:JES	SD22-C101		2000	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Conditions	Min.	Max.	Unit
Vcc	Supply Voltage Operating		1.65	5.50	V
	Supply Voltage Data Retention		1.50	5.50	
VIN	Input Voltage		0	5.5	V
Vout	Output Voltage	Active State	0	Vcc	V
		3-State	0	5.5	

RECOMMENDED OPERATING CONDITIONS (continued)

Symbol	Parameter	Conditions	Min.	Max.	Unit
t _r , t _f	Input Rise and Fall Times	V_{CC} = 1.8 V, 2.5 V ± 0.2 V	0	20	ns/V
		V _{CC} = 3.3 V ± 0.3 V	0	10	
		$V_{CC} = 5.0 \text{ V} \pm 0.5 \text{ V}$	0	5	
T_A	Operating Temperature		-40	+85	°C
0	Thermal Resistance	US8		250	°C/W
θ_{JA}		MicroPak™ –8		280	

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

NOTE: Unused inputs must be held HIGH or LOW. They may not float.

DC ELECTRICAL CHARACTERISTICS

	Parameter			T,	₄ = +25°	°C	$T_A = -40$	to +85°C	
Symbol		Vcc	Conditions	Min.	Тур.	Max.	Min.	Max.	Units
VIH	HIGH Level Control	1.65 to 1.95		0.65 V _{CC}			0.65 V _{CC}		V
	Input Voltage	2.30 to 5.50		0.70 V _{CC}			0.70 V _{CC}		
VIL	LOW Level Control	1.65 to 1.95				0.35 V _{CC}		0.35 V _{CC}	V
	Input Voltage	2.30 to 5.50				0.30 V _{CC}		0.30 V _{CC}	
Vон		1.65	$V_{IN} = V_{IH}, I_{OH} = -100 \mu A$	1.55	1.65		1.55		V
	Voltage	2.30		2.20	2.30		2.20		
		3.00		2.90	3.00		2.90		
		4.50		4.40	4.50		4.40		
		1.65	$I_{OH} = -4 \text{ mA}$	1.29	1.52		1.29		
		2.30	$I_{OH} = -8 \text{ mA}$	1.90	2.15		1.90		
		3.00	I _{OH} = -16 mA	2.40	2.80		2.40		
		3.00	I _{OH} = -24 mA	2.30	2.68		2.30		
		4.50	$I_{OH} = -32 \text{ mA}$	3.80	4.20		3.80		
	LOW Level Control Output Voltage	1.65	$V_{IN} = V_{IH}, I_{OL} = 100 \mu A$			0.10		0.10	V
	Output voltage	2.30				0.10		0.10	
		3.00				0.10		0.10	
		4.50				0.10		0.10	
		1.65	I _{OL} = 4 mA		0.10	0.24		0.24	
		2.30	I _{OL} = 8 mA		0.10	0.30		0.30	
		3.00	I _{OL} = 16 mA		0.15	0.40		0.40	
		3.00	I _{OL} = 24 mA		0.22	0.55		0.55	
		4.50	I _{OL} = 32 mA		0.22	0.55		0.55	
lin	Input Leakage Current	1.65 to 5.5	$0 \le V_{IN} \le 5.5 \text{ V}$			±0.1		±1.0	μΑ
loff	Power Off Leakage Current	0	V _{IN} or V _{OUT} = 5.5 V			1		10	μΑ
Icc	Quiescent Supply Current	1.65 to 5.50	V _{IN} = 5.5 V, GND			1		10	μΑ

AC ELECTRICAL CHARACTERISTICS

				T	A = +25°	С	$T_A = -40$	to +85°C]	
Symbol	Parameter	V _{CC}	Conditions	Min.	Тур.	Max.	Min.	Max.	Units	Figure
fмах	Maximum Clock	1.80 ± 0.15	C _L = 15 pF	75			75		ns	Figure 4
	Frequency	2.50 ± 0.20	$R_D = 1 M\Omega$ $S_1 = Open$	150			150			Figure 8
		3.30 ± 0.30	· ·	200			200			
		5.00 ± 0.50		250			250			
		3.30 ± 0.50	C _L = 50 pF	175			175			
		5.00 ± 0.50	$R_D = 500 \Omega$, $S_1 = Open$	200			200			
tplh, tphl	Propagation Delay CK to Q, /Q	1.80 ± 0.15	C _L = 15pF,		6.5	12.5		13.0	ns	Figure 4
	10 Q, /Q	2.50 ± 0.20	$R_D = 1 M\Omega$ $S_1 = Open$		3.8	7.5		8.0		Figure 6
		3.30 ± 0.30			2.8	6.5		7.0		
		5.00 ± 0.50			2.2	4.5		5.0		
		3.30 ± 0.30	C _L = 50 pF		3.4	7.0		7.5		
		5.00 ± 0.50	$R_D = 500 \Omega$, $S_1 = Open$		2.6	5.0		5.5		
tplh, tphl	Propagation Delay	1.80 ± 0.15	C _L = 15 pF,		6.5	14.0		14.5	ns	Figure 4
	/CLR, /PR to Q, /Q	2.50 ± 0.20	$R_L = 1 M\Omega$ $S_1 = Open$		3.8	9.0		9.5		Figure 6
		3.30 ± 0.30	1		2.8	6.5		7.0		
		5.00 ± 0.50			2.2	5.0		5.5		
		3.30 ± 0.30	C _L = 50 pF,		3.4	7.0		7.5		
		5.00 ± 0.50	$R_D = 500 \Omega$		2.6	5.0		5.5		
t _S	Setup Time CK to D	1.80 ± 0.15	C _L = 15 pF,	6.5			6.5		ns	Figure 4
		2.50 ± 0.20	$R_L = 1 M\Omega$ $S_1 = Open$	3.5			3.5			Figure 7
		3.30 ± 0.30		2.0			2.0			
		5.00 ± 0.50		1.5			1.5			
		3.30 ± 0.30	C _L = 50 pF,	2.0			2.0			
		5.00 ± 0.50	$R_D = 500 \Omega$, $S_1 = Open$	1.5			1.5			
t _H	Hold Time, CK to D	1.80 ± 0.15	C _L = 15 pF,	0.5			0.5		ns	Figure 4
		2.50 ± 0.20	$R_L = 1 M\Omega$ $S_1 = Open$	0.5			0.5			Figure 7
		3.30 ± 0.30		0.5			0.5			
		5.00 ± 0.50		0.5			0.5			
		3.30 ± 0.30	C _L = 50 pF,	0.5			0.5			
		5.00 ± 0.50	$R_D = 500 \Omega$, $S_1 = Open$	0.5			0.5			
t _W	Pulse Width, CK,	1.80 ± 0.15	C _L = 15 pF,	6.0			6.0		ns	Figure 4
	/PR, /CLR	2.50 ± 0.20	$R_L = 1 M\Omega$ $S_1 = Open$	4.0			4.0			Figure 8
		3.30 ± 0.30	1	3.0			3.0			
		5.00 ± 0.50	1	2.0			2.0			
		3.30 ± 0.30	C _L =50pF,	3.0			3.0			
	I	5.00 ± 0.50	$R_D = 500\Omega$,		1	1		İ	1	1

AC ELECTRICAL CHARACTERISTICS (continued)

				T	A = +25°	С	$T_A = -40$	to +85°C		
Symbol	Parameter	V _{CC}	Conditions	Min.	Тур.	Max.	Min.	Max.	Units	Figure
trec	Recover Time /CLR,	1.80 ± 0.15	$C_L = 15 \text{ pF},$ $R_L = 1 \text{ M}\Omega$	8.0			8.0		ns	Figure 7
	/PR to CK	2.50 ± 0.20	$S_1 = Open$	4.5			4.5			
		3.30 ± 0.30		3.0			3.0			
		5.00 ± 0.50		3.0			3.0			
		3.30 ± 0.30	$C_L = 50 \text{ pF},$	3.0			3.0			
		5.00 ± 0.50	$R_D = 500 \Omega$, $S_1 = Open$	3.0			3.0			
Cin	Input Capacitance	0			3				pF	
Соит	Output Capacitance	0			4				pF	
СРД	Power Dissipation	3.30			10				pF	
	Capacitance (Note 1)	5.00			12					

^{1.} C_{PD} is defined as the value of the internal equivalent capacitance which is derived from dynamic operating current consumption (I_{CCD}) at no output loading and operating at 50% duty cycle. C_{PD} is related to I_{CCD} dynamic operating current by the expression: $I_{CCD} = (C_{PD})(V_{CC})(f_{IN}) + (I_{CC}static).$

2. C_L includes load and stray capacitance. Input PRR = $1.0 \text{ MHz t}_{\text{W}} = 500 \text{ ns}.$

Figure 4. AC Test Circuit

Figure 6. AC Waveforms

- $\begin{array}{ll} \text{3.} & \text{CP input} = \text{AC Waveforms} \ t_r = t_f = 2.5 \ \text{ns.} \\ \text{4.} & \text{CP input PRR} = 10 \ \text{MHz; Duty Cycle} = 50\%. \\ \text{5.} & \text{D input PRR} = 5 \ \text{MHz; Duty Cycle} = 50\%. \\ \end{array}$

Figure 5. AC Test Circuit

Figure 7. AC Waveforms

Figure 8. AC Waveforms

UQFN8 1.6X1.6, 0.5P CASE 523AY ISSUE O

DATE 31 AUG 2016

RECOMMENDED LAND PATTERN

NOTES:

- A. PACKAGE CONFORMS TO JEDEC MO-255 VARIATION UAAD.
- B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 2009.
- D. LAND PATTERN RECOMMENDATION IS EXISTING INDUSTRY LAND PATTERN.

DOCUMENT NUMBER:	98AON13591G	Electronic versions are uncontrolled except when accessed directly from the Document Repos Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.				
DESCRIPTION:	UQFN8 1.6X1.6, 0.5P		PAGE 1 OF 1			

ON Semiconductor and a retrademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

US8 CASE 846AN ISSUE O

DATE 31 DEC 2016

RECOMMENDED LAND PATTERN

NOTES:

- A. CONFORMS TO JEDEC REGISTRATION MO-187
- **B. DIMENSIONS ARE IN MILLIMETERS.**
- C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS.
- D. DIMENSIONS AND TOLERANCES PER ANSI Y14.5M, 1994.

SIDE VIEW

DOCUMENT NUMBER:	98AON13778G	Electronic versions are uncontrolle			
STATUS:	ON SEMICONDUCTOR STANDARD	accessed directly from the Document Repository. Preversions are uncontrolled except when stamped "CONTROLLED CORV" in red			
NEW STANDARD:		"CONTROLLED COPY" in red.			
DESCRIPTION:	US8		PAGE 1 OF 2		

1	1

DOCUMENT	NUMBER:
98AON13778	3G

PAGE 2 OF 2

ISSUE	REVISION	DATE
0	RELEASED FOR PRODUCTION FROM FAIRCHILD MKT-MAB08A TO ON SEMI-CONDUCTOR. REQ. BY I. HYLAND.	31 DEC 2016

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ON Semiconductor and the are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and see no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

ON Semiconductor Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative