

Margin Maximization for Robust Classification Using Deep Learning

Matyasko Alexander, Lap-Pui Chau

School of Electrical and Electronic Engineering Nanyang Technological University Singapore

May 15, 2017

Overview

Adversarial examples

SVM and its robustness

Deep margin maximization

Adversarial Examples

Szegedy et al. 2013

Importance of model robustness:

- Lack of robustness is counter-intuitive and undesirable.
- Improve classifier generalization (Xu et al. 2011).
- Limits applications of deep neural networks in adversarial settings (Papernot et al. 2016).

Adversarial Examples

Szegedy et al. 2013

Importance of model robustness:

- Lack of robustness is counter-intuitive and undesirable.
- Improve classifier generalization (Xu et al. 2011).
- Limits applications of deep neural networks in adversarial settings (Papernot et al. 2016).

Related work

- Attacks:
 - Gradient-based attacks:
 - ► Fast Gradient Sign (Goodfellow et al. 2015).
 - DeepFool (Moosavi-Dezfooli et al. 2016).
 - Black-box attacks (Papernot et al. 2016).
- Defenses:
 - Data regularization:
 - Adversarial training (Goodfellow et al. 2015).
 - ▶ Virtual Adversarial training (Miyato et al. 2015).
 - Model-based regularization:
 - Layer-wise Contractive penalty (Gu et al. 2014).
 - Parseval networks (Moustapha et al. 2017).

Related work

- Attacks:
 - Gradient-based attacks:
 - ► Fast Gradient Sign (Goodfellow et al. 2015).
 - DeepFool (Moosavi-Dezfooli et al. 2016).
 - Black-box attacks (Papernot et al. 2016).
- Defenses:
 - Data regularization:
 - Adversarial training (Goodfellow et al. 2015).
 - Virtual Adversarial training (Miyato et al. 2015).
 - Model-based regularization:
 - Layer-wise Contractive penalty (Gu et al. 2014).
 - Parseval networks (Moustapha et al. 2017).

Limitations of data regularization

• Perturbation should be label non-changing:

• Model fails to anticipate changes in the adversary:

Limitations of data regularization

• Perturbation should be label non-changing:

Model fails to anticipate changes in the adversary:

Limitations of data regularization

• Perturbation should be label non-changing:

• Model fails to anticipate changes in the adversary:

SVM margin maximization

Theorem (Xu et al. 2009)

$$\min: \max_{(\mathbf{r}_1, \dots, \mathbf{r}_m) \in \mathcal{T}} \sum_{i=1}^m \left(1 - y_i \left(\mathbf{w}^T (\mathbf{x}_i - \mathbf{r}_i) + b \right) \right)_+$$
where $\mathcal{T} = \{ (\mathbf{r}_i, \dots, \mathbf{r}_m) \mid \sum_{i=1}^m \|\mathbf{r}_i\|^* \le C \}.$

SVM margin maximization

Theorem (Xu et al. 2009)

$$\min: \max_{(\mathbf{r}_1, \dots, \mathbf{r}_m) \in \mathcal{T}} \sum_{i=1}^m \left(1 - y_i \left(\mathbf{w}^T (\mathbf{x}_i - \mathbf{r}_i) + b \right) \right)_+$$
where $\mathcal{T} = \{ (\mathbf{r}_i, \dots, \mathbf{r}_m) \mid \sum_{i=1}^m \|\mathbf{r}_i\|^* \le C \}.$

SVM margin maximization

Theorem (Xu et al. 2009)

min:
$$\max_{(\mathbf{r}_1,\dots,\mathbf{r}_m)\in\mathcal{T}} \sum_{i=1}^m (1 - y_i (\mathbf{w}^T(\mathbf{x}_i - \mathbf{r}_i) + b))_+$$

where $\mathcal{T} = \{(\mathbf{r}_i, \dots, \mathbf{r}_m) \mid \sum_{i=1}^m ||\mathbf{r}_i||^* \leq C\}.$

Geometric margin:

$$\gamma = \min\{\|\mathbf{r}\|_2 \,|\, f(\mathbf{x} + \mathbf{r}) = 0\}$$

Using first-order approximation:

$$\hat{\gamma} = \frac{|f(\mathbf{x})|}{\|\nabla_{\mathbf{x}} f(\mathbf{x})\|_2}$$

Binary margin maximization

$$\min \sum_{i=1}^{m} (1 - y_i f(\mathbf{x}_i))_+ + C \|\nabla_{\mathbf{x}} f(\mathbf{x}_i)\|_2$$
 (1)

Geometric margin:

$$\gamma = \min\{\|\mathbf{r}\|_2 \mid f(\mathbf{x} + \mathbf{r}) = 0\}$$

Using first-order approximation:

$$\hat{\gamma} = \frac{|f(\mathbf{x})|}{\|\nabla_{\mathbf{x}} f(\mathbf{x})\|_2}$$

Binary margin maximization

$$\min \sum_{i=1}^{m} (1 - y_i f(\mathbf{x}_i))_+ + C \|\nabla_{\mathbf{x}} f(\mathbf{x}_i)\|_2$$
 (1)

Geometric margin:

$$\gamma = \min\{\|\mathbf{r}\|_2 \mid f(\mathbf{x} + \mathbf{r}) = 0\}$$

Using first-order approximation:

$$\hat{\gamma} = \frac{|f(\mathbf{x})|}{\|\nabla_{\mathbf{x}} f(\mathbf{x})\|_2}$$

Binary margin maximization

$$\min \sum_{i=1}^{m} (1 - y_i f(\mathbf{x}_i))_+ + C \|\nabla_{\mathbf{x}} f(\mathbf{x}_i)\|_2$$
 (1)

Geometric margin:

$$\gamma = \min\{\|\mathbf{r}\|_2 \mid f(\mathbf{x} + \mathbf{r}) = 0\}$$

Using first-order approximation:

$$\hat{\gamma} = \frac{|f(\mathbf{x})|}{\|\nabla_{\mathbf{x}} f(\mathbf{x})\|_2}$$

Binary margin maximization

$$\min \sum_{i=1}^{m} \left[(1 - y_i f(\mathbf{x}_i))_+ + C \|\nabla_{\mathbf{x}} f(\mathbf{x}_i)\|_2 \right]$$
 (1)

Geometric margin:

$$\gamma = \min\{\|\mathbf{r}\|_2 \mid f(\mathbf{x} + \mathbf{r}) = 0\}$$

Using first-order approximation:

$$\hat{\gamma} = \frac{|f(\mathbf{x})|}{\|\nabla_{\mathbf{x}} f(\mathbf{x})\|_2}$$

Binary margin maximization

min
$$\sum_{i=1}^{m} (1 - y_i f(\mathbf{x}_i))_+ + C \|\nabla_{\mathbf{x}} f(\mathbf{x}_i)\|_2$$
 (1)

Geometric margin:

$f(\mathbf{x}) > 0$

Theorem (See paper for details)

Let $\mathcal{T}_i = \{\mathbf{r}_i \mid ||\mathbf{r}_i||^* \leq C\}$ be an uncertainty set where \mathbf{r}_i is the perturbation for \mathbf{x}_i . Then, the optimization problem in eq. (1) approximately minimizes the following robust optimization problem:

$$\min: \sum_{i=1}^{m} \max_{\mathbf{r}_i \in \mathcal{T}_i} (1 - y_i f(\mathbf{x}_i - \mathbf{r}_i))_+$$

Binary margin maximization

$$\min \sum_{i=1}^{m} (1 - y_i f(\mathbf{x}_i))_+ + C \|\nabla_{\mathbf{x}} f(\mathbf{x}_i)\|_2$$
 (1)

Margin between class i and j:

$$\gamma_{i,j} = \frac{|f_i(\mathbf{x}) - f_j(\mathbf{x})|}{\|\nabla_{\mathbf{x}} f_i(\mathbf{x}) - \nabla_{\mathbf{x}} f_j(\mathbf{x})\|}$$

Datapoint margin:

$$\hat{\gamma} = \min_{j \neq y} \frac{|f_y(\mathbf{x}) - f_j(\mathbf{x})|}{\|\nabla_{\mathbf{x}} f_y(\mathbf{x}) - \nabla_{\mathbf{x}} f_j(\mathbf{x})\|}$$

$$\min \sum_{i=1}^{m} \max_{j \neq y_i} (1 + f_{y_i}(\mathbf{x}_i) - f_j(\mathbf{x}_i))_+ + C \max_{j \neq i} \|\nabla_{\mathbf{x}} f_i(\mathbf{x}) - \nabla_{\mathbf{x}} f_j(\mathbf{x})\|$$

Margin between class i and j:

$$\gamma_{i,j} = \frac{|f_i(\mathbf{x}) - f_j(\mathbf{x})|}{\|\nabla_{\mathbf{x}} f_i(\mathbf{x}) - \nabla_{\mathbf{x}} f_j(\mathbf{x})\|}$$

Datapoint margin:

$$\hat{\gamma} = \min_{j \neq y} \frac{|f_y(\mathbf{x}) - f_j(\mathbf{x})|}{\|\nabla_{\mathbf{x}} f_y(\mathbf{x}) - \nabla_{\mathbf{x}} f_j(\mathbf{x})\|}$$

$$\min \sum_{i=1}^{m} \max_{j \neq y_i} (1 + f_{y_i}(\mathbf{x}_i) - f_j(\mathbf{x}_i))_+ + C \max_{j \neq i} \|\nabla_{\mathbf{x}} f_i(\mathbf{x}) - \nabla_{\mathbf{x}} f_j(\mathbf{x})\|$$

Margin between class i and j:

$$\gamma_{i,j} = \frac{|f_i(\mathbf{x}) - f_j(\mathbf{x})|}{\|\nabla_{\mathbf{x}} f_i(\mathbf{x}) - \nabla_{\mathbf{x}} f_j(\mathbf{x})\|}$$

Datapoint margin:

$$\hat{\gamma} = \min_{j \neq y} \frac{|f_y(\mathbf{x}) - f_j(\mathbf{x})|}{\|\nabla_{\mathbf{x}} f_y(\mathbf{x}) - \nabla_{\mathbf{x}} f_j(\mathbf{x})\|}$$

$$\min \sum_{i=1}^{m} \max_{j \neq y_i} (1 + f_{y_i}(\mathbf{x}_i) - f_j(\mathbf{x}_i))_+ + C \max_{j \neq i} \|\nabla_{\mathbf{x}} f_i(\mathbf{x}) - \nabla_{\mathbf{x}} f_j(\mathbf{x})\|$$

Margin between class i and j:

$$\gamma_{i,j} = \frac{|f_i(\mathbf{x}) - f_j(\mathbf{x})|}{\|\nabla_{\mathbf{x}} f_i(\mathbf{x}) - \nabla_{\mathbf{x}} f_j(\mathbf{x})\|}$$

Datapoint margin:

$$\hat{\gamma} = \min_{j \neq y} \frac{|f_y(\mathbf{x}) - f_j(\mathbf{x})|}{\|\nabla_{\mathbf{x}} f_y(\mathbf{x}) - \nabla_{\mathbf{x}} f_j(\mathbf{x})\|}$$

$$\min \sum_{i=1}^{m} \max_{j \neq y_i} (1 + f_{y_i}(\mathbf{x}_i) - f_j(\mathbf{x}_i))_+ + C \max_{j \neq i} \|\nabla_{\mathbf{x}} f_i(\mathbf{x}) - \nabla_{\mathbf{x}} f_j(\mathbf{x})\|$$

Margin between class i and j:

$$\gamma_{i,j} = \frac{|f_i(\mathbf{x}) - f_j(\mathbf{x})|}{\|\nabla_{\mathbf{x}} f_i(\mathbf{x}) - \nabla_{\mathbf{x}} f_j(\mathbf{x})\|}$$

Datapoint margin:

$$\hat{\gamma} = \min_{j \neq y} \frac{|f_y(\mathbf{x}) - f_j(\mathbf{x})|}{\|\nabla_{\mathbf{x}} f_y(\mathbf{x}) - \nabla_{\mathbf{x}} f_j(\mathbf{x})\|}$$

Multiclass deep margin maximization (Theorem IV.2)

$$\min \sum_{i=1}^{m} \left(\max_{j \neq y_i} \left(1 + f_{y_i}(\mathbf{x}_i) - f_j(\mathbf{x}_i) \right)_{+} \right) + C \max_{j \neq i} \| \nabla_{\mathbf{x}} f_i(\mathbf{x}) - \nabla_{\mathbf{x}} f_j(\mathbf{x}) \|$$

See Crammer et al. (2002).

Margin between class i and j:

$$\gamma_{i,j} = \frac{|f_i(\mathbf{x}) - f_j(\mathbf{x})|}{\|\nabla_{\mathbf{x}} f_i(\mathbf{x}) - \nabla_{\mathbf{x}} f_j(\mathbf{x})\|}$$

Datapoint margin:

$$\hat{\gamma} = \min_{j \neq y} \frac{|f_y(\mathbf{x}) - f_j(\mathbf{x})|}{\|\nabla_{\mathbf{x}} f_y(\mathbf{x}) - \nabla_{\mathbf{x}} f_j(\mathbf{x})\|}$$

$$\min \sum_{i=1}^{m} \max_{j \neq y_i} (1 + f_{y_i}(\mathbf{x}_i) - f_j(\mathbf{x}_i))_+ + C \max_{j \neq i} \|\nabla_{\mathbf{x}} f_i(\mathbf{x}) - \nabla_{\mathbf{x}} f_j(\mathbf{x})\|$$

Experiments: MNIST

Network architectures:

- Fully-connected network (784-1000-1000-1000-10)
- Lenet-5 convolutional network

Average robustness:

$$\rho_{\mathsf{adv}}(f) = \frac{1}{|\mathcal{D}|} \sum_{\mathbf{x} \in \mathcal{D}} \frac{\|\mathbf{r}(\mathbf{x})\|_2}{\|\mathbf{x}\|_2}$$

Algorithms:

- Baseline
- Dropout (Srivastava et al. 2014)
- AT (Goodfellow et al. 2015)
- VAT (Miyato et al. 2015)
- ullet Our l_1 -margin maximization
- ullet Our l_2 -margin maximization

Experiments: MNIST

Network architectures:

- Fully-connected network (784-1000-1000-1000-10)
- Lenet-5 convolutional network

Average robustness:

$$\rho_{\mathsf{adv}}(f) = \frac{1}{|\mathcal{D}|} \sum_{\mathbf{x} \in \mathcal{D}} \frac{\|\mathbf{r}(\mathbf{x})\|_2}{\|\mathbf{x}\|_2}$$

Algorithms:

- Baseline
- Dropout (Srivastava et al. 2014)
- AT (Goodfellow et al. 2015)
- VAT (Miyato et al. 2015)
- ullet Our l_1 -margin maximization
- ullet Our l_2 -margin maximization

Network	Error %	$ ho_{ m adv} imes 10^{-1}$
Baseline	1.42 ± 0.08	1.14 ± 0.01
Dropout	1.34 ± 0.05	1.20 ± 0.01
AT	1.19 ± 0.06	1.60 ± 0.05
VAT	$\boldsymbol{0.87 \pm 0.04}$	$\boldsymbol{2.69 \pm 0.02}$
Our l_1	$\boldsymbol{0.84 \pm 0.03}$	$\boldsymbol{2.73 \pm 0.08}$
Our $\it l_{ m 2}$	0.86 ± 0.04	2.59 ± 0.05

Experiments: MNIST

Network architectures:

- Fully-connected network (784-1000-1000-1000-10)
- Lenet-5 convolutional network

Average robustness:

$$\rho_{\mathsf{adv}}(f) = \frac{1}{|\mathcal{D}|} \sum_{\mathbf{x} \in \mathcal{D}} \frac{\|\mathbf{r}(\mathbf{x})\|_2}{\|\mathbf{x}\|_2}$$

Algorithms:

- Baseline
- Dropout (Srivastava et al. 2014)
- AT (Goodfellow et al. 2015)
- VAT (Miyato et al. 2015)
- ullet Our l_1 -margin maximization
- ullet Our l_2 -margin maximization

Network	Error %	$ ho_{ m adv} imes 10^{-1}$
Baseline	0.72 ± 0.06	1.54 ± 0.04
Dropout	$\boldsymbol{0.58 \pm 0.03}$	1.70 ± 0.05
AT	0.73 ± 0.05	2.00 ± 0.03
Our l_1	0.64 ± 0.02	2.22 ± 0.05
Our $\it l_{ m 2}$	0.62 ± 0.04	2.17 ± 0.06

Qualitative comparison

Proposition

Qualitative comparison

Proposition

Qualitative comparison

Proposition

Qualitative comparison

Proposition

Qualitative comparison

Proposition

- We extended margin maximization to deep neural networks.
 We theoretically showed that the proposed objective is equivalent to the robust optimization problem.
- The proposed objective improves network robustness both quantitatively and qualitatively.

- Extensions to other problems.
- Address scalability issues.
- Comparison of algorithms based on how humans perceive visually confusing images.

- We extended margin maximization to deep neural networks.
 We theoretically showed that the proposed objective is equivalent to the robust optimization problem.
- The proposed objective improves network robustness both quantitatively and qualitatively.

- Extensions to other problems.
- Address scalability issues.
- Comparison of algorithms based on how humans perceive visually confusing images.

- We extended margin maximization to deep neural networks.
 We theoretically showed that the proposed objective is equivalent to the robust optimization problem.
- The proposed objective improves network robustness both quantitatively and qualitatively.

- Extensions to other problems.
- Address scalability issues.
- Comparison of algorithms based on how humans perceive visually confusing images.

- We extended margin maximization to deep neural networks.
 We theoretically showed that the proposed objective is equivalent to the robust optimization problem.
- The proposed objective improves network robustness both quantitatively and qualitatively.

- Extensions to other problems.
- Address scalability issues.
- Comparison of algorithms based on how humans perceive visually confusing images.

- We extended margin maximization to deep neural networks.
 We theoretically showed that the proposed objective is equivalent to the robust optimization problem.
- The proposed objective improves network robustness both quantitatively and qualitatively.

- Extensions to other problems.
- Address scalability issues.
- Comparison of algorithms based on how humans perceive visually confusing images.

Thank you for your attention! Any questions?

Contributions

- We proposed novel margin maximization framework for deep neural networks.
- We theoretically showed that the proposed objective is equivalent to the robust optimization problem.
- The proposed objective improves network robustness both quantitatively and qualitatively.

- Extensions to other problems.
- Address scalability issues.
- Comparison based on how humans perceive visually confusing images.

