Ministério da Educação

Centro Federal de Educação Tecnológica Celso Suckow da Fonseca UNED Nova Friburgo Curso Técnico em Informática Integrado ao Ensino Médio

Memória primária e secundária

Sistemas Operacionais

Prof. Bruno Policarpo Toledo Freitas 13 de maio de 2020

bruno.freitas@cefet-rj.br

Objetivos

- Entender o príncipio de funcionamento dos sistemas de arquivos
- Apresentar os principais sistemas de arquivos
- Entender as diferenças entre os sistemas de arquivos
- Configurar sistemas de arquivos e partições no GNU/Linux

Introdução

- A memória é dividida em 2 tipos: a primária e a secundária
 - Primária: RAM
 - Secundária: Armazenamento
- O sistema operacional junto com o hardware realiza diversas enxerga toda essa memória como se fosse uma só
 - Memória virtual

Hierarquia de memória

Memória primária ← → Memória secundária

- Nós não controlamos o uso da memória primária diretamente
 - Hardware + Sistema Operacional
- O que podemos controlar são alguns parâmetros
 - Se iremos utilizá-la ou não (usual: ligada)
 - Tamanho da área de swap
- Windows: Arquivo de paginação
- Linux: partição de swap

Estrutura física do discos magnético

Estrutura física de um arquivo

Arquivo

- O arquivo é uma entidade de armazenamento composta por:
 - Blocos: onde são armazenados os dados em si
 - Tamanho do bloco definido na formatação da partição
 - 512B, 1KB, 2KB, **4KB**, 8KB, 16KB, 64KB ...
 - Índices (i-nodes): Lista de blocos que compõem o arquivo
 - Metadados: Informações sobre o arquivos
 - Nome, permissões, dono e grupo, MAC times (Modificado-Acessado-Criado), ...

Partições

Layout geral de sistemas de arquivo

Partições & Tabela de partições

- O primeiro setor do disco (512B) é o setor de boot
- Normalmente ele contém o bootloader e uma tabela de partições
- A tabela de partições do tipo MBR (desuso) contém:
 - Até 4 partições primárias
 - Uma partição de boot
- Partições GPT permitem tem tamanho de sistemas de arquivos maiores

Editor de partições

- Aplicação GNU/Linux para editar partições, tabelas de partições, e informar sobre a geometria do disco
- Utilização:
 - [sudo] fdisk [disco]
- Usado para fins de restauração da tabela de partições do disco
 - Vocês podem potencialmente ferrar a tabela de partições se vocês a usarem de forma errada!

Sistemas de arquivos

Sistema de arquivo GNU/Linux ext2

- Extended Filesystem 2
- Performance superior ao ext e MINIX 1
- Tamanho total máximo do sistema de arquivos de 64 TB
- Estrutura do sistema de arquivos:

Sistemas de arquivos GNU/Linux ext3/ext4

Problema do ext2: confiabilidade

 Se der der pane no sistema durante uma operação de escrita, o sistema de arquivos pode ficar inconsistente

ext3: adição da jornalização

- Mantém um jornal das operações que serão escritas no disco
- Se houver crash, o sistema desfaz operações incompletas
- ext4: suporte a jornalização em arquivos e sistemas de arquivos maiores

Sistemas de arquivo Windows FAT16/32

- Usada no MS-DOS e Windows 1.0 até Me
- Utiliza uma tabela na memória pra organizar os blocos dos arquivos
- FAT32: Arquivos de 2TB
- Pouca complexidade
- Problema de escalabilidade

Sistemas de arquivo WindowsNTFS

- Introduzido no Windows XP
- Arquivos de até (teoricamente) 264 bytes
- Nome de arquivos e diretórios de 255 caracteres
- Case-insensitive
- Suporte a jornalização

Limites dos sistemas de arquivos

Tipo	Tamanho máximo dos nomes de arquivos	Tamanho máximo do arquivo	Tamanho máximo da partição
ext2 (bloco com 4KB)	255	2TB	16TB
ext3 (bloco com 4KB)	255	2TB	16TB
ext4	256	16TB	1EB
FAT32	255	4GB	2TB
NTFS	255	16EB	16EB

Gerência de Sistemas de Arquivos

Aplicações de gerência de sistema de arquivos

Windows 7 / Windows 10:

Painel de controle → Sistema e Segurança →
Ferramentas Administrativas → Gerenciamento
do computador

GNU/Linux:

- fdisk: gerenciador de tabelas de partição
- parted / gparted: gerenciador de sistemas de arquivos e partições

Visão geral

- O hardware de armazenamento aparece na /dev:
 - /dev/sdaX : discos magnéticos e flash
 - /dev/cdrom: discos ópticos
- Para disponibilizar os sistemas de arquivos no Linux é necessário:
 - Saber o tipo do sistema de arquivos
 - Montá-los no diretório raiz

mount

- Monta o sistema de arquivos em uma determinada pasta
- Utilização padrão:
 - [sudo] mount dispositivo [-t tipo] [-o opções] pasta
 - Opções são separadas por vírgulas
- Parâmetros:
 - mount -l : lista os sistemas de arquivos montados
 - mount -a : monta todos os sistemas do arquivo /etc/fstab

mount Tabela de opções genéricas

Opção	Descrição	
auto	Monta automaticamente com o mount -a	
async/sync	Escritas assíncronas/síncronas no disco (nunca usar)	
defaults	Monta com opções padrão: rw, suid, dev, exec, auto, nouser, async	
dev/nodev	Interpreta arquivos especiais	
exec/noexec	Permite a execução de programas pelo sistema de arquivos	
group	Permite que um usuário monte o sistema de arquivos se ele pertencer ao mesmo grupo do dispositivo	
rw, ro	Monta o sistema de arquivos escrita/leitura ou somente leitura	
suid/nosuid	Bits de u/g/o possuem/não possuem efeito	
user/nouser	Sistema de arquivos pode/não pode ser montado por usuários (sem sudo)	

umount

- Desmonta um sistema de arquivos previamente montado
- Utilização:
 - [sudo] umount [pasta ou dispositivo]

gparted

- Aplicação gráfica para editar partições do disco
- [sudo] apt-get install gparted
- Sem ela, é necessário usar o mkfs junto com o fdisk

/etc/fstab

 Arquivo que descreve os sistemas de arquivos <u>estáticos</u> do Linux.

```
bruno@bruno-VirtualBox:~$ cat /etc/fstab
# /etc/fstab: static file system information.
# Use 'blkid' to print the universally unique identifier for a
# device; this may be used with UUID= as a more robust way to name devices
# that works even if disks are added and removed. See fstab(5).
# <file system> <mount point>
                                <type> <options>
                                                        <dump>
                                                                <pass>
# / was on /dev/sdal during installation
UUID=884b182e-aac9-4cfa-ad18-55d42f4813b7 /
                                                          ext4
                                                                  errors=remount-ro 0
# /home was on /dev/sdb1 during installation
UUID=950fedf6-7a6f-4f9b-9b37-7b0f1b97e40d /home
                                                                  defaults
                                                          ext4
# /var was on /dev/sdcl during installation
UUID=449de7c2-acaa-47dc-af71-9772f341d2b3 /var
                                                                  defaults
                                                          ext4
/swapfile
                                                          swap
                                                                   SW
                                          none
# Dropbox folder
Dropbox /home/bruno/Dropbox
                                vboxsf defaults
                                                                       2
```

mkfs

- Cria sistemas de arquivos em uma partição.
- Cada sistema de arquivos possui uma versão do mkfs para si

mkfs.ext4, mkfs.ntfs, mkfs.ext2 ...

Utilização:

[sudo] mkfs.[tipo] [partição]

 Qual é o tamanho de um disco com 256 setores por trilha, 25 trilhas, com 4 cabeçotes, e 512 bytes por setor?

Utilizando o fdisk, descubra:

- a) Quantos blocos o disco possui
- b) O tamanho do bloco do disco

Agora, multiplique o tamanho do bloco pela quantidade de blocos do disco. O tamanho é igual ao informado pelo sistema? Se não, explique o porquê.

Utilizando o *gparted***, crie uma partição de 1GB tomando os seguintes passos:**

- a)Utilizando o *gparted*, desmonte alguma partição e diminua seu tamanho em 1GB
- b)Utilizando o *gparted*, crie a partição espaço de 1GB com o espaço liberado pelo item anterior
- c)Crie um sistema de arquivos *ext4* na partição criada
- d)Teste a nova partição: monte e desmonte a partição criada em alguma pasta na *home* do usuário
- e)Edite o arquivo /etc/fstab a fim de que a nova partição seja montada no sistema de arquivos raiz sempre que o computador iniciar

Instale uma distribuição GNU/Linux novamente, porém utilizando o criador avançado de partições com as seguintes partições:

```
/home : 100GB
/var: 5GB
/ : O restante do espaço
```

Agora, verifique o arquivo /etc/fstab.

Desafio!

Repita o exercício 2, mas utilizando o <u>fdisk</u> junto com o aplicativo <u>mkfs</u> (ou seja, sem interface gráfica). Tome os seguintes passos:

- Crie um ponto de restauração da máquina virtual (você vai precisar)
- Diminua o tamanho de alguma partição do sistema usando mkfs
- Altere os blocos de início e fim das partições usando o fdisk
- Crie um sistema de arquivos no espaço livre utilizado usando o mkfs
- Monte o novo sistema de arquivos utilizando o mount.

Referências

- FILHO, João Eriberto Mota. Descobrindo o Linux: entenda o sistema operacional GNU/Linux. 3ª. ed. São Paulo: Novatec Editora, 2012.
 - Cap 5.: seções 5.1, 5.2, 5.5, 5.8, 5.9, 5.17