Classification	- Predicting discrete and nominal categorical class labels								
	- Training set and class labels are used to classify data attributes (constructs a model), which can then be used to classify new data								
	Model								
	Construction	Assumption Ea	Assumption Each tuple belongs to a predefined class, determined by class label attribute						
		Model	- Classification rules						
		Representation	- Decision tree						
			- Mathematical formula						
	Model Usage	For classifying unkno							
		Estimation Accuracy	Known label of test samples con	npared v	vith model's classifi	ed results			
			Test set			of training set, otherwise over-fitting			
			Accuracy Rate		will occur				
					Accuracy rate = % of test set samples correctly				
					classified				
	Supervision	Supervised Learning	, , ,						
		(Classificatio	- New data classified based on training set - Class labels of training data unknown						
		Unsupervised							
		Learning (Clustering)	•						
	Issues	Data Preparation	Cleaning		educe noise and handle missing values				
			Relevance Analysis		ve irrelevant or redu				
			Data transformation		alise or normalise d				
		Evaluating	Accuracy		Classifier Accuracy	Predicting class labels			
		Classification			Predictor Accuracy	Guessing value of predicted			
		Methods				attributes			
			Speed		Training Time				
					Model construction time				
			Classification/Prediction Time		Time to use model				
			Robustness		Handles noise and missing values				
			Scalability		Efficiency on disk-resident databases				
			Interpretability	ι	Jnderstanding provi	ded by model			

Decision Trees		student? yes credit rating? no yes excellent fair no yes no yes
	Benefits	 relatively fast learning speeds convertible to simple classification rules can use SQL comparable classification accuracy
	Greedy Algorithm	Top-down recursive drive-and-conquer method 1) All training examples are at the root 2) Attributes categorical (continuous-valued are discretised in advance) 3) Examples partitioned recursively based on selected attributes 4) Test attributes selected based on heuristic of statistical measure (information gain) 5) Stop when either: - all samples on given node belong to same class - no more remaining attributes for further partitioning - no samples are left
	Basic Information Theory	Describing a situation using probabilities introduces uncertainty Entropy Measure of uncertainty Shannon Entropy Mathematical entity, U[X], takes a probability distribution as input and outputs a measure of uncertainty as a quantity. Let X be random variable; The probability distribution of X is, X = {Pr(1), Pr(2),, Pr(N)} $U[X] = -\sum_{x \in X} \Pr(x) \log_2(\Pr(x))$

		Properties of U	[X] - must be maximised by a uniform distribution (which			
		. roperties or of	corresponds to complete uncertainty)			
			- U[X] should be a continuous function of probabilities			
Attribute/	Information Gain	Biased towards multivalued attributes				
Selection	(ID3)					
Measures		1) Select attribute with highest information gain				
		2) Let p _i be probability that an arbitrary tuple in D , belongs to C _i , estimated by:				
		$ C_{i,D} $				
		Expected	Needed to classify a tuple D:			
		Information	$\sum_{i=1}^{m} x_i$			
		(Entropy)	$Info(D) = -\sum p_i \log_2(p_i)$			
		Information	$\frac{i=1}{i}$ After using A to split D into v partitions, needed to classify D:			
		IIIIOIIIIatioii				
			$Info_A(D) = \sum_{j=1}^{v} \frac{ D_j }{ D } \times I(D_j)$			
			$\sum_{i=1}^{n} D $			
		Information	By branching on attribute A			
		Gained	$Gain(A) = Info(D) - Info_A(D)$			

Example	Class P: buys_computer = $Info_{age}(D) = \frac{5}{14}I(2,3) + \frac{4}{14}I(4,0)$
·	"yes" $\frac{1}{14}I(2,3) + \frac{1}{14}I(4,0)$
	Class N buys_computer =
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	 Let class P be those who buy computers and class N be those who don't
	2) Decide to categorise/divide laptop sales in terms of age of customer3) Tally the total number of people who do and don't buy laptops within each age category
	4) Calculate the information (Entropy) of the initial, uncategorised data set using
	$Info(D) = -\sum_{i=1}^{m} p_i \log_2(p_i)$
	Which becomes, for this example: $Info(D) = -p_n \log_2(p_n) - p_n \log_2(p_n)$
	$p_{p} \log_{2}(p_{p}) = p_{p} \log_{2}(p_{p}) = p_{n} \log_{2}(p_{n})$
	Where p_p is the probability of a randomly selected record being one where a computer was purchased and p_n being the probability that it
	was a record where a computer was not purchased.

	5) Calculate the new information (Entropy) of each category. For example, the age bracket <= 30 has 2 purchases and 3 non-pure thus: $Info(D) = -p_p \log_2(p_p) - p_n \log_2(p_n)$	chases			
	F == - F ==				
	$Info(D) = -p_p \log_2(p_p) - p_n \log_2(p_n)$ $Info(D) = I(2,3) = -\frac{2}{3} \log_2\left(\frac{2}{3}\right) - \frac{1}{3} \log_2\left(\frac{1}{3}\right) = 0.971$				
	Similarly, for age bracket 3140 I(4,0) = 0 and for >40 I(3,2) = 0.971 6) Calculate the new total entropy using a weighted sum of the individual entropies of each category, based on the relative size of that category: $Info_A(D) = \sum_{j=1}^{\nu} \frac{ D_j }{ D } \times I(D_j)$ $Info_{age}(D) = \frac{5}{14}I(2,3) + \frac{4}{14}I(4,0) + \frac{5}{14}I(3,2) = 0.698$				
	$Info_{age}(D) = \frac{1}{14}I(2,3) + \frac{1}{14}I(4,0) + \frac{1}{14}I(3,2) = 0.69$	70			
	7) Calculate the information gain:				
	$Gain(age) = Info(D) - Info_{age}(D) = 0.246$				
	Split Points Determining the best split point for a continuous-value attribute	ed			
	1) Sort into increasing order - each midpoint between	ı			
	adjacent values is possible split point 2) Point with minimum expected information required for A is selected as the split-point	ment			
Gain Ratio (C4.5) Tends	s to prefer unbalanced splits where one partition is much smaller than the others				

	- C4.5 (successor of ID3) uses gain ratio (normalisation to information gain)
	- attribute with max gain ratio is selected as splitting attribute
	$SplitInfo_A(D) = -\sum_{i=1}^{v} \frac{ D_i }{ D } \times \log_2(\frac{ D_j }{ D })$
	$\sum_{j=1}^{L} D $
	$Gain \ Ratio(A) = \frac{Gain(A)}{SplitInfo(A)}$
Gini Index	- Biased to multivalued attributes
	- Has difficulty with large number of classes
	- (Favours tests that result in equal sized partitions) and purity in both partitions
	n
	$gini(D) = 1 - \sum_{i=1}^{N} p_j^2$
	$gim(D) = 1$ $\sum_{i=1}^{p_j} p_j$
	Where:
	- D is data set
	- n is number of classes that exist
	- p _j relative frequency of class j in D
	If D is split on attribute A, into two subsets D ₁ and D ₂ then:
	$gini_A(D) = \frac{ D_1 }{ D }gini(D_1) + \frac{ D_2 }{ D }gini(D_2)$
	$ D ^{gun(z_1)}$ $ D ^{gun(z_2)}$
	Reduction in impurity: $\Delta gini(A) = gini(D) - gini_{A}(D)$
	$\Delta gim(A) = gim(D) - gim_A(D)$
	Attribute that provides smallest gini _{split} (D) (or largest reduction in impurity) is chosen
	- need to enumerate all possible splitting points for each attribute
	Example Let there be 9 tuples in buys computers = "yes" and 5 in "no"
	, and an
	1) Calculate gini index:
	, ,

			$gini(D) = 1 - \sum_{i=1}^{n} p_j^2$
			j=1
			$gini(D) = 1 - \left(\frac{9}{14}\right)^2 - \left(\frac{5}{14}\right)^2 = 0.459$
			2) Suppose the income attribute divides C into 10 in D ₁ and 4 in D ₂ : {low, medium}.
			$gini_{income(low,medium)}(D) = \left(\frac{10}{14}\right)gini(D_1) + \left(\frac{4}{14}\right)gini(D_2) = 0.45$
			Similarly, gini _(medium,high) is 0.30 and is thus the best division
			NB:
			- Attributes are assumed continuous-valued
			 Other tools may be required to get possible split values (clustering, etc.) Can be modified for categorical attributes
	Others	-	CHAID: a popular decision tree algorithm, measure based on χ 2 test for independence C-SEP: performs better than info. gain and gini index in certain cases G-statistics: has a close approximation to χ 2 distribution MDL (Minimal Description Length) principle (i.e., the simplest solution is preferred):
		-	The best tree as the one that requires the fewest # of bits to both (1) encode the tree, and (2) encode the exceptions to the tree
		_	Multivariate splits (partition based on multiple variable combinations)
		-	CART: finds multivariate splits based on a linear comb. of attrs.
Overfitting		•	ining data and create too many branches where some reflect anomalies due to noise or with poor accuracy for unseen samples
	Avoiding	Prepruning	Halt tree execution early and stop from splitting a node if it would result in the goodness
	overfitting		measure falling below threshold
		Postpruning	Remove branches from fully realised tree to get sequence of progressively pruned trees
			and use set of data on each to identify optimally pruned tree.
Enhancements	Allow for co	ntinuous-	Dynamically define new discrete-valued attributes to partition into discrete set of

		valued attribu	ıtos	intervals		
		Handle missin		Assign most common value, or a probability to each possible value		
		Attribute cons		Create new attributes based on existing ones sparsely represented, to reduce		
		711111111111111111111111111111111111111	J	fragmentation, repetition and replication		
	Large Databases	Classification	studied by statisticians and machine learning researchers			
		Scalability				
		Bootstrappe d Optimistic	- Tre	es bootstrapping to create small samples (subsets) that each fit in memory e created from each subset		
		(BOAT)		w tree, T' constructed from several smaller trees, which is very close to tree that would have en generated with whole data set		
				quires only 2 scan of DB remental algorithm		
Bayesian	Characteristics	Statistical Classifier		Predicts class membership probabilities		
Classification		Foundati	ion	Based on Bayes' Theorem		
	Perform		ance	Simple Bayesian classifier has comparable performance with decision tree & selected		
				neural network classifiers		
	Increme		ntal	Each training example can incrementally increase/decrease probability hypothesis is		
				correct (prior knowledge combined with observed data)		
	Stand		I	Provide standard of optimal decision making to measure other methods against		
	Definition		•	where class label is unknown		
		Let H be	hypothesis that X belongs to C			
	P(X) probability san			n (eg. X will by computer regardless of age, income, etc.) le data is observed (eg. a record with age, income, etc is between range or category) pability, probability of observing sample X, given hypothesis holds.		
				$P(H X) = \frac{P(X H)P(H)}{P(X)}$		

	Requires initial knowledge of many probabilities, which comes at computational cost
Naive Bayesian	Let D be training set of tuples as associate class labels; each tuple represented by n-D attribute vector $X = (x_1, x_2, x_3, x_4, x_5, x_4, x_5, x_5, x_5, x_5, x_5, x_5, x_5, x_5$
Classifier	, x _n)
	Suppose there are m classes C_1 , C_2 ,, C_m . Classification is to derive max posteriori, $P(C_i X)$.
	Derived from Bayes' theorem:
	$P(C_i X) = \frac{P(X C_i)P(C_i)}{P(X)}$
	P(X) is const. for all classes:
	$P(C_i X) = P(X C_i)P(C_i)$ Needs to be maximised.
	Simplifying assumption: attributes are conditionally independent
	$P(X C_i) = \prod_{k=1}^m P(x_k C_i)$
	Reduced computational cost because only counts class distribution.
	If A_k is categorical, $P(x_k C_i)$ is number of tuples in C_i having value x_k for A_k divided by $ C_{i,D} $. if A_k is continuous-values, $P(x_k C_i)$ usually computed based on Gaussian distribution with mean μ and standard dev. Σ
	$g(x,\mu,\sigma) = \frac{1}{\sqrt{2\pi\sigma}} e^{\frac{(x-\mu)^2}{2\sigma^2}}$
	$P(X C_i) = g(x_k, \mu_{C_i}, \sigma_{C_i})$
	Advantages - Easy to implement - Good results from most cases
	Disadvantages - Assumption class conditional independence results in loss of accuracy

Exan	age income student rating com
	Class: C1:buys_computer = 'yes' C2:buys_computer = 'no Data sample X = (age <=30, Income = medium, Student = yes Credit_rating = Fair) Cass Cass
	Using Naive Bayesian Classifiers, find out which category (buys computer, doesn't buy), X = (age <= 30, income = medium, student = yes, credit_rating = fair) belongs to: 1) Trying to find which category has the greatest probability of containing X. Or, to maximise
	$P(C_i X) = P(X C_i)P(C_i)$
	2) Calculate P(C _i), for each category: P(buys_computer = "yes") = 9/14 = 0.643 P(buys_computer = "no") = 5/14 = 0.357
	3) Calculate P(X C _i) for each class: P(age = "<=30" buys_computer = "yes") = 2/9 = 0.222 P(age = "<=30" buys_computer = "no") = 3/5 = 0.6 P(income = "medium" buys_computer = "yes") = 4/9 = 0.444 P(income = "medium" buys_computer = "no") = 2/5 = 0.4 P(student = "yes" buys_computer = "yes") = 6/9 = 0.667 P(student = "yes" buys_computer = "no") = 1/5 = 0.2
	P(credit_rating = "fair" buys_computer = "yes") = 6/9 = 0.667 P(credit_rating = "fair" buys_computer = "non") = 2/5 = 0.4

	I	Ī					
		4) Calculate $P(C_i X) = P(X C_i)P(C_i)$ for each category:					
		$P(X C_i) = \prod_{k=1}^m P(x_k C_i)$					
		$P(X C_{buys-}P(X C_{buys-}))$	$C_{buys-computer=no}$ = 0.222 × 0.	$444 \times 0.667 \times 0.667 = 0.044$ $0.4 \times 0.2 \times 0.4 = 0.019$			
			$P(C_i X) = P(X C_i X)$	$C_i)P(C_i)$			
		P($044 \times 0.643 = 0.028$ $019 \times 0.357 = 0.007$				
	X belongs to buys_computer=yes because 0.028 > 0.007						
	Avoiding 0- Problem	Naïve Bayesian prediction probability will be zero.	on requires each conditional p	equires each conditional probability be non-zero, else predicted			
		•	When there is a case where t case to get close estimates of	here is 0 members of a class, add 1 to each factual probabilities			
Bayesian Belief	- Allows a	subset of variables cond	itionally independent				
Networks			nships that represents depen	dency among variables			
	•	ecification of joint probal					
	-	andom variables	,,				
		ependencies					
- No loops or circles							
	Conditional Shows conditional probability for each possible combination of parents						
	Probability	Shows conditional probability for each possible combination of parents					
	Table (CPT)						
	Training	Network Structure Kno	w Variables Observable	Algorithms			
		1121110111011101010101010					

			Yes	All	Learn only CPTs		
			Yes	Some Hidden	Gradient descent (greedy hill-climbing) method, analogous to neural network learning		
			No	All	search through model space to reconstruct network topology		
			No	Hidden	No good algorithms known for this		
	E	Family History LungCand PositiveX		table (CPT) LungCancer: LC 0. ~LC 0. CPT shows to for each posparents Derivation coparticular coof X, from C	8 0.5 0.7 0.1 2 0.5 0.3 0.9 the conditional probability ssible combination of its of the probability of a combination of values		
Rule-based	IF ago – youth AND stu	 ident = yes THEN buys_com	anutor – voc		i =1		
Classification		IF age = youth AND stud					
	Consequent	buys_computer = yes	iputer = yes				
	Coverage	tuples covered by R/ siz					
	Accuracy	tuples correctly classifie					
	Conflict Resolution	Size Ordering	Assign highest prio gattribute tests)	rity to triggering rule	es with toughest requirements (most		
		Class-based Ordering		prevalent or misclass	sification cost per class		
		Rule-based ordering	Rules organised into priority list				

	(Decision List)					
Training	1) Rules learned one-at-a-time					
	2) Each time a rule is learned, tuples covered by rules are removed					
	3) Repeats until termination condition reached (no more tuples or user threshold)					
Data divided by a li	every point on one side of the line is in the same category.					
Advantages	- (prediction accuracy generally high (compared to Bayesian methods)					
	- robust (works when training examples contain errors)					
	- fast evaluation of learned target function					
Disadvantages	- Long training time					
	- Difficult to understand learned function (weights)					
	- Difficult to incorporate domain knowledge					
A neural network	learning algorithm started by psychologists and neurobiologists to develop and test computational analogues of					
neurons.						
Neural Network	Set of connected input/output units where each connection is weighted					
(Connectionist	During learning phase, network learns by adjusting weightings to be able to predict correct class label					
Learning)						
Advantages	- High tolerance to noisy data					
	- Ability to classify untrained patterns					
	- Well-suited for continuous-valued inputs and outputs					
	- Successful on a wide array of real-world data					
- Algorithms are inherently parallel						
	- Techniques have recently been developed for extraction of rules from trained neural networks					
Disadvantages	- (Long training time)					
	- Requires number of parameters best determined empirically (network topology, etc.)					
- Difficult to interpret symbolic meaning behind learned weights and of hidden units						
	Advantages Disadvantages Aneural network neurons. Neural Network (Connectionist Learning) Advantages					

Neuron	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					
Multi-Layer Feed- Forward Neural Network	Output vector $Err_j = O_j (1 - O_j) \sum_k Err_k w_{jk}$					
	$\theta_j = \theta_j + (l)Err_j$ $w_{ij} = w_{ij} + (l)Err_jO_i$ $Err_j = O_j(1 - O_j)(T_j - O_j)$					
	Input layer $W_{ij} \qquad O_j = \frac{1}{1 + e^{-I_j}}$ $I_j = \sum_i w_{ij} O_i + \theta_j$					
	Input vector: X					
	 Inputs to network are attributes measured for each training tuple and are simultaneously fed into input layer. 					
	- Then weighted and fed simultaneously into hidden layer (number of which is arbitrary, although usually one)					
	 Weighted outputs of hidden layer are fed to output layer and network predictions are made. Network is feed-forward, i.e. none of the weights are cycled back into input or output of previous layer 					
	 Networks perform nonlinear regression With enough training samples & time, can closely approximate any function 					
	Defining 1) Decide number of:					
	Network o units in input layer					
	Topology o hidden layers					
	o units in output layer					

	1								
		2) Normalise input values for each attribute measured in training tuples to [0.0 - 1.0]							
		3) Assign 1 input unit per domain value, initialised to 0							
		4) Assign 1 output unit per class (for classification with more than 2 classes)							
		5) Train network and achieve acceptable accuracy.							
		6) Repeat training with different network topology or set of initial weights							
	Backpropagation	- Iteratively process training tuples and compare network's predictions with actual known target value							
		- For each training tuple, weights modified to achieve minimum mean squared error between network's							
		prediction and actual target value							
		 Modifications made backwards: from outer layer, though each hidden layer down to first hidden layer. 							
	1) Initialise weights and bias (small random numbers) in the network								
		2) Propagate inputs forwards (apply activation function)							
	3) Backpropagate the error by updating weights and biases								
		4) Terminate when error becomes small							
	Efficiency	Each epoch (single iteration through training set) take O(D *w), with D tuples and w weights.							
	- number of epochs can be exponential to n, number of inputs (in worst case)								
	Rule Extraction	2) Perform link, unit or activation value clustering							
		3) Set of input and activation values studied to derive rules for relationship between input and hidden unit							
		layers							
	Sensitivity	Assessment of impact given each variable has on network output. Knowledge gained represented in rules.							
	Analysis								
Support Vector	- Classificat	tion method for linear and non-linear data							
Machines - Uses nonlinear mapping to transform original training data into higher dimension									
- With new dimension, searches for linear optimal separating hyperplane (decision boundary)									
	- Using appropriate nonlinear mapping to sufficiently high dimension, data from two classes can always be separated by								
	hyperplane, which SVM finds using support vectors ("essential" training tuples) and margins (defined by support vectors)								
	Advantages - High accuracy to ability to model complex nonlinear decision boundaries (margin maximisation)								
		- Useful for classification and prediction							
	Disadvantages	- Training can be slow							
	Applications	- Handwritten digit recognition							
	1	- Object recognition							
		- Object recognition							

Hyperplane can be written a

$$\mathbf{w} \circ \mathbf{x} + \mathbf{b} = \mathbf{0}$$

Where $w = \{w_1, w_2, ..., w_n\}$ is weight vector and b is scalar (bias)

For 2-D, can be simplified as:

$$w_0 + w_1 x_1 + w_2 w_2 = 0$$

With hyperplane defining sides of margin:

$$H_1: w_0 + w_1 x_1 + w_2 x_2 \ge 1 \text{ for } y_i = +1$$

 $H_2: w_0 + w_1 x_1 + w_2 x_2 \le -1 \text{ for } y_i - 1$

Becomes a constrained (convex) quadratic optimisation problem.

- Quadratic objective function & linear constraints \rightarrow Quadratic Programming (QP) \rightarrow Lagrangian Multipliers

	, , , , , , , , , , , , , , , , , , , ,
Support Vectors	Any training tuples that fall on hyperplane H ₁ or H ₂ (sides of the defining margin)
High	- Trained classifier complexity characterised by number of support vectors, not
Dimensional	dimensionality of data

	Linearly Inseparable	'		 Support vectors are essential or critical training examples (would produce same hyperplane if all other training data was removed) Number of support vectors found can be used to compute upper bound on expected error rate of SVM classifier SVM with few support vectors can have good generalisation even with high dimensional data n original input data into higher dimensional space a linear separating hyperplane in new space A 3D input vector X = (x₁, x₂, x₃) is mapped into a 6D space Z using mappingsΦ₁(X) = x₁, Φ₂(X) = x₂, Φ₃(X) = x₃, Φ₄(X) = (x₁)², Φ₅(X) = x₁x₂, Φ₆(X) = x₁x₃. A decision hyperplane in the new space is d(Z) = WZ + b where W and Z are vectors. This is linear. Solve for W and b and then substitute back so can see that linear decision hyperplane in new (Z) space corresponds to nonlinear second order polynomial in original 3-D space. 				
			$d(Z) = w_1 x_1 + w_2 x_2 + w_3 x_3 + w_4 (x_1)^2 + w_5 x_1 x_2 + w_6 x_1 x_3 + b$ = $w_1 z_1 + w_2 z_2 + w_3 z_3 + w_4 z_4 + w_5 z_5 + w_6 z_6 + b$					
	Scaling SVM by Hierarchical	- SVM not scalable to number of data objects in terms of training tiem and memory usage						
	Micro- Clustering	Clustering- Based SVM (CB- SVM)		- Optimise SVM accuracy and training speed with limited system resources - Use micro-clustering to reduce number of points to be considered - Derive support vectors by de-clustering micro-clusters near candidate vector for high classification accuracy				
	Comparison with Neural Networks	Property			SVM	Neural Network		
		Age		. ,	Relatively new	Relatively old		
		Algorithm			Deterministic	Nondeterministic		
		Generalisation			Nice generalisation properties	Generalises well, but doesn't have strong mathematical foundation		
		Learning	Learning		Hard to learn – learned in batch mode using quadratic programming	Can easily be learned in incremental fashion - To learn complex functions, use multilayer perceptron		
Associative Classification	Search for strong	ong associations between frequent patterns (conjunctions of attribute-value pairs) and class labels						

Lazy Learning (Instance-based learning)	Classification based on evaluating set of rules in form of P ₁ ^ p ₂ ^ p _I > "A _{class} = C"(conf,sup) Explores highly confident associations among multiple attributes and may overcome some constraints introduced by decision-tree induction, which considers one attribute at a time Stores training data (or with little processing) and waits until given test tuple - less time spent training, but more time predicting - Uses richer hypothesis space because uses many local linear functions to form implicit global approximations to target function Approaches K-nearest Neighbour Approach - Instances represented as points in Euclidean n-D space							
	Approaches	K-nearest Neighbour Approach	- Nearest neighb	our is one with sn	nallest $dist(X_1, X_2)$			
			- Target function can be discrete or real-valued					
			Inputs		Output			
			Discrete Va	alued	most common value among k training examples nearest X _q			
			Real-valued		Prediction for a given unknown tuple returns the mean values of the k nearest neighbours			
			Voronoi diagram	The decision su training exampl	rface induced by 1-NN for a typical set of es.			
			Distance Weighted Nearest Neighbour Algorithm	Gives greater weight to closer neighbours				
			Curse of Dimensionality	irrelevant attrib	en neighbours could be dominated by outes me it by stretching aces or elimination of levant attributes			

	Locally Weighted Regression	Constructs Local Approximation Uses database of problem solutions to solve new one				
	Case-Based Reasoning					
		- Stores sy	mbolic description (tuples or cases) instead of points in Euclidean			
		space				
		Applications	Customer-service (product-related diagnosis)legal ruling			
		Methodology	1) Instances represented by rich symbolic descriptions (e.g. graph functions)			
			2) Search for similar cases ; can combine multiple retrieved cases			
			3) Tight coupling between case retrieval, knowledge-based reasoning and problem solving			
		Disadvantages	- Difficult to find good similarity metric			
Genetic Algorithms (GA)	 Offspring generated by crossover and mu Continues until population P evolves who Slow, but easily parallised 	generated rules, ea as represented by a utation en each rule in P sat	rule's classification accuracy on a set of training examples isfies threshold			
Rough Set Approach	described as not belonging to C) - Find minimal subset (reducts) of attribut	Rough set for given class C approximated by lower approximation (certain to be in C) and upper approximation (cannot be described as not belonging to C) Find minimal subset (reducts) of attributes for feature reduction is NP-hard but a discernibility matrix (stores difference between attribute values for each pair of data tuples) reduces computational intensity C upper approximation of C lower approximation of C				
Fuzzy Set Approaches	- Fuzzy logic uses truth values between 0.0 - Attribute values converted to fuzzy value	•	nt degree of membership (such as fuzzy membership graph)			

