Bayesian approaches for variable selection and shrinkage

Yogasudha Veturi

High dimensional data

- p > > n; curse of dimensionality!
- Microarray data, deep sequencing, biomedical imaging, high-frequency data in finance
- OLS performs poorly in both prediction and interpretation
- Variable selection and/or shrinkage estimation procedure needed

Variable selection and shrinkage procedures

- Penalized
 - LASSO, ridge regression, elastic net
- Bayesian
 - BayesA, BayesB, BayesC, Bayesian LASSO
- Semi-/nonparametric
 - Neural Networks, random forests, support vector regression, reproducing kernel Hilbert spaces

Variable selection and shrinkage procedures

- Penalized
 - LASSO, ridge regression, elastic net
- Bayesian
 - BayesA, BayesB, BayesC, Bayesian LASSO
- Semi-parametric approaches
 - Neural Networks, random forests, support vector regression, reproducing kernel Hilbert spaces

Bias-variance trade-off

- $MSE(\hat{\theta}) = Var(\hat{\theta}) + [Bias(\hat{\theta})]^2$
- Using OLS, for fixed n, as p increases, variance of estimates increases -> high MSE
- If estimates are shrunk towards zero, variance of estimator is reduced, although bias may increase
- E.g. Consider $\tilde{\theta} = \alpha(\hat{\theta}) + (1 \alpha)0 \ \alpha \in [0,1]$
- $E(\tilde{\theta}) = \alpha \theta$; $Var(\tilde{\theta}) = \alpha^2 Var(\hat{\theta})$

Penalty/prior

- Different penalties / priors -> different solutions
- Choice of penalty/prior is based on:
 - Model comparison
 - model interpretation
 - model parsimony
 - Accuracy of predictions on future data
 - Parameter estimation
- Bayesian setting is more useful for parameter estimation

Penalized methods

$$(\hat{\mu}, \hat{\beta})_{argmin} \left\{ \sum_{i} (y_i - \mu - \sum_{j=1}^{p} x_{ij} \beta_j)^2 + \lambda J(\beta) \right\}$$

- $J(\beta)$ = penalty function
- λ = regularization parameter (controls tradeoffs between lack of fit and model complexity)
- Choice of penalty determines extent of shrinkage and/or variable selection

Penalized Estimators

 $J(\beta)$

Bridge Regression

LASSO

Ridge Regression

Subset selection

Elastic Net

$$\sum_{j=1}^{p} |\beta_j|^{\gamma}$$

$$(\gamma = 1) \sum_{j=1}^{p} |\beta_j|$$

$$(\gamma = 2) \sum_{j=1}^{p} \beta_j^2$$

$$(\gamma \to 0) \sum_{j=1}^{p} I(\beta_j \neq 0)$$

$$\alpha \sum_{j=1}^{p} |\beta_j| + (1-\alpha) \sum_{j=1}^{p} {\beta_j}^2$$

LASSO

 Does both shrinkage and variable selection simultaneously

...however...

- Only selects n variables before it saturates
- Constraints on bound of the L1-norm
- Does not work well with correlated predictors does not reveal grouping information
- Might result in low prediction power when p >> n

Ridge regression

Better bias-variance trade-off than LASSO

...however...

 Keeps all variables in the model (no variable selection); model parsimony is not achieved

Subset selection

- Produces a sparse model
- Penalizes non-zero effects regardless of magnitude ...however...
- Only selects n variables before it saturates (like the LASSO)

Elastic Net

- Simultaneously does variable selection and shrinkage
- Can select groups of correlated variables; retains the "big fish"
- Algorithm "LARS-EN" can create the entire elastic net path with the computational efforts of a single OLS fit
- Also a good classifier; e.g. with microarray data, can do automatic gene selection (unlike other popular classifiers like LASSO, SVM, penalized logistic regression, nearest shrunken centroid)

...however...

Doesn't select related variables when the within-group correlations are non-extreme ($\rho \approx 0.85$)

Bayesian methods

$$p(\mu, \beta, \sigma^{2} | y, \omega) \propto p(y | \mu, \beta, \sigma^{2}) p(\mu, \beta, \sigma^{2} | \omega)$$

$$\propto \prod_{i=1}^{n} N(y_{i} | \mu + \sum_{j=1}^{p} x_{ij} \beta_{j}, \sigma^{2}) \prod_{j=1}^{p} p(\beta_{j} | \omega) p(\sigma^{2})$$
Likelihood function

Prior distribution

Distribution of the unknowns given the data and hyper-parameters

Bayesian Estimators

$p(\beta_j|\omega)$

Spike Slab models

$$\pi N \left(\beta_j \left| 0, \sigma_{\beta_1}^2 \right. \right) + (1-\pi) N \left(\beta_j \left| 0, \sigma_{\beta_2}^2 \right. \right)$$

Bayes B

 $\pi t_{df,S} + (1 - \pi)I(\beta_j = 0)$

Bayes A

 $(\pi = 1) t_{df,S}$

Bayes C

$$(df \to \infty) \quad \pi_N(\beta_j | 0, \sigma_\beta^2) + (1 - \pi)I(\beta_j = 0)$$

Bayesian Ridge Regression

$$(\pi = 1, df \rightarrow \infty) N(\beta_j | 0, \sigma_\beta^2)$$

Bayesian LASSO

Double-exponential

Gaussian prior (Bayesian Ridge Regression)

- Multivariate normal with posterior mean same as the RR with $\lambda = \frac{\sigma^2}{\sigma^2 \beta}$.
- Homogeneous shrinkage across markers
- May not be useful when correlation patterns vary across the dataset

Thick tailed priors (Bayes A and Bayesian LASSO)

- Higher mass at zero and thicker tails
 - Bayesian LASSO has posterior mean same as LASSO
- Induces less shrinkage of large effect estimates than BRR
- Commonly represented as infinite mixtures of scaled normal densities
- Scaled t (2 parameters) has more flexibility than
 DE to control the thickness of the tails

Spike slab priors

- Mixture of two densities; one with small variance (spike) and the other with large variance (slab)
- Combines variable selection and shrinkage
- Can mix Gaussian or non-Gaussian (e.g. scaled-t and double exponential) components

16

Point of mass and slab priors (Bayes B and Bayes C)

Obtained from spike-slab models when

$$(\sigma_{\beta_1}^2 \to 0)$$

Again, induce a combination of variable selection and shrinkage

Comparison of priors

