```
#svm
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

df=pd.read_csv('/content/cats_vs_dogs.csv')
df.head()
```

→	U	nnamed: 0	state	n_households	percent_pet_households	n_pet_households	percent_dog_owners	n_dog_households	avg_dogs_per_househo
	0	1	Alabama	1828	59.5	1088	44.1	807	
	1	2	Arizona	2515	59.5	1497	40.1	1008	
	2	3	Arkansas	1148	62.4	716	47.9	550	
	3	4	California	12974	52.9	6865	32.8	4260	
	4	5	Colorado	1986	61.3	1217	42.5	845	
	4								•

df.columns

Define a threshold for high vs. low pet ownership
threshold = 55
df['high_pet_ownership'] = (df['percent_pet_households'] > threshold).astype(int)

df.head()

→		Unnamed: 0	state	n_households	percent_pet_households	n_pet_households	percent_dog_owners	n_dog_households	avg_dogs_per_househo
	0	1	Alabama	1828	59.5	1088	44.1	807	
	1	2	Arizona	2515	59.5	1497	40.1	1008	
	2	3	Arkansas	1148	62.4	716	47.9	550	
	3	4	California	12974	52.9	6865	32.8	4260	
	4	5	Colorado	1986	61.3	1217	42.5	845	
	4								

```
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.svm import SVC
from sklearn.metrics import classification_report
# Select features and target
features = df.drop(columns=['Unnamed: 0', 'state', 'high_pet_ownership'])
target = df['high_pet_ownership']
# Split the data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(features, target, test_size=0.2, random_state=42)
# Normalize the features
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)
# Train the SVM classifier
svm classifier = SVC(kernel='linear')
svm_classifier.fit(X_train_scaled, y_train)
```

```
⇒ sVC SVC(kernel='linear')
```

svm_classifier.score(X_train,y_train) #train score

//wsr/local/lib/python3.10/dist-packages/sklearn/base.py:458: UserWarning: X has feature names, but SVC was fitted without feature names
warnings.warn(
0.4358974358974359

svm_classifier.score(X_test,y_test) # test score

/usr/local/lib/python3.10/dist-packages/sklearn/base.py:458: UserWarning: X has feature names, but SVC was fitted without feature names warnings.warn(
0.5

Make predictions

y_pred = svm_classifier.predict(X_test)

//wsr/local/lib/python3.10/dist-packages/sklearn/base.py:458: UserWarning: X has feature names, but SVC was fitted without feature names
warnings.warn(

Evaluate the classifier
print(classification_report(y_test, y_pred))

_	precision	recall	f1-score	support
0	0.44	1.00	0.62	4
1	1.00	0.17	0.29	6
accuracy			0.50	10
macro avg	0.72	0.58	0.45	10
weighted avg	0.78	0.50	0.42	10

Start coding or generate with AI.