IN THE CLAIMS:

Please amend the claims as follows:

1-9. (Canceled)

10. (New) A substituted azole compound of formula (I):

wherein

X₁ is CH:

X₂ is selected from O or S;

X₃ is NR₈:

A₁ is CR₉;

A2 is CR10;

A₃ is CR₁₁;

R₁ and R₂ may be the same or different, selected from H, C₁-C₁₂alkyl or C₁-C₁₂haloalkyl;

R₃ is selected from H, halo, C₁-C₁₂alkyl, C₁-C₁₂haloalkyl or C₁-C₁₂alkoxy;

 R_8 is selected from H, C_1 - C_{12} alkyl; C_1 - C_{12} haloalkyl; C_1 - C_{12} alkoxycarbonyl or C_1 - C_{12} alkoxycarbonyl C_1 - C_{12} alkyl;

 R_4 , R_5 , R_6 , R_9 , R_{10} and R_{11} may be the same or different, selected from H, halo, NO_2 , CN, $CONH_2$, CH_2CONH_2 , CH_2CN , C_1 - C_1 2alkyl, C_1 - C_1 2haloalkyl, C_1 - C_1 2alkoxy, C_1 - C_1 2alkylsulfonyl, C_1 - C_1 2alkylcarbonyl, C_1 - C_1 2alkoxy C_1 - C_1 2alkyl, C_1 - C_1 2alkoxycarbonyl, C_1 - C_1 2alkoxycarbonyl, C_1 - C_1 2alkoxycarbonyl, C_1 - C_1 2alkoxycarbonyl, C_1 - C_1 2alkyl, groups may be substituted by any other groups: amino C_1 - C_1 2alkyl, aryl, heteroaryl; aroxyl, aryl C_1 - C_1 2alkyl, aryl C_1 - C_1 2alkoxy, heteroaryl C_1 - C_1 2alkyl or heteroaryl C_1 - C_1 2alkoxy;

and stereoisomer.

11. (New) The substituted azole compound according to the claim 10, wherein R₁ and R₂ may be the same or different, selected from H, C₁-C₆alkyl or C₁-C₆haloalkyl; R₃ is selected from H, halo, C₁-C₆alkyl, C₁-C₆haloalkyl or C₁-C₆alkoxy; R₈ is selected from H, C₁-C₆alkyl; C₁-C₆haloalkyl; C₁-C₆alkoxycarbonyl or C₁-

R₈ is selected from H, C₁-C₆alkyl; C₁-C₆haloalkyl; C₁-C₆alkoxycarbonyl or C₁-C₆alkoxycarbonylC₁-C₆alkyl; and

 $R_4, R_5, R_6, R_9, R_{10} \ and \ R_{11} \ may be the same or different, selected from H, halo, NO_2, CN, CONH_2, CH_2CN, C_1-C_6alkyl, C_1-C_6haloalkyl, C_1-C_6alkoxy, C_1-C_6haloalkoxy, C_1-C_6alkylthio, C_1-C_6alkylsulfonyl, C_1-C_6alkylcarbonyl, C_1-C_6alkoxyC_1-C_6alkyl, C_1-C_6alkoxycarbonyl, C_1-C_6alkoxycarbonylC_1-C_6alkyl, C_1-C_6haloalkoxyC_1-C_6alkyl, groups may be substituted by any other groups: aminoC_1-C_6alkyl,aryl, heteroaryl; aroxyl, arylC_1-C_6alkyl, ar$

12. (New) The substituted azole compound according to the claim 11, wherein

C6alkoxy, heteroarylC1-C6alkyl or heteroarylC1-C6alkoxy.

X2 is O:

R₁ and R₂ are CH₃;

R₃ is selected from H or CH₃;

 R_8 is selected from H, C_1 - C_6 alkyl; C_1 - C_6 haloalkyl; C_1 - C_3 alkoxycarbonyl or C_1 - C_6 alkoxycarbonyl C_1 - C_3 alkyl; and

R₄, R₅, R₆, R₉, R₁₀ and R₁₁ may be the same or different, selected from H, halo, NO₂, CN, CONH₂, CH₂CONH₂, CH₂CN, C₁-C₆alkyl, C₁-C₆haloalkyl, C₁-C₆alkoxy, C₁-C₆haloalkoxy, C₁-C₆alkylthio, C₁-C₆alkylsulfonyl, C₁-C₆alkylcarbonyl, C₁-C₆alkoxyC₁-C₆alkyl, C₁-C₆alkoxyCarbonylC₁-C₆alkyl, C₁-C₆haloalkoxyC₁-C₆alkyl, groups may be substituted by any other groups: aminoC₁-C₃alkyl,phenyl, phenoxy, benzyl or benzyloxy.

13. (New) The substituted azole compound according to the claim 12, wherein R_1 is H_1 :

R₈ is selected from H, C₁-C₃alkyl; C₁-C₃haloalkyl; C₁-C₃alkoxycarbonyl or C₁-

C3alkoxycarbonylC1-C3alkyl; and

 R_4 , R_5 , R_6 , R_9 , R_{10} and R_{11} may be the same or different, selected from H, Cl, Br, F, NO₂, CN, CH₂CN, C₁-C₆alkyl, C₁-C₆alkyl, C₁-C₆alkoxy, C₁-C₆alkoxy, C₁-C₆alkylthio, C₁-C₆alkylsulfonyl, C₁-C₆alkylcarbonyl, C₁-C₆alkoxycarbonyl, C₁-C₆alkoxycarbonylC₁-C₆alkyl, C₁-C₆alkoxyC₁-C₃alkyl, C₁-C₆alkoxyC₁-C₃alkyl, C₁-C₆alkoxyC₁-C₃alkyl, C₁-C₆alkoxyC₁-C₃alkyl, phenyl or substituted phenyl, phenoxy or substituted phenoxy.

14. (New) The substituted azole compound according to the claim 13, wherein

Rs is selected from H, or C1-C3alkyl; and

 $R_4, R_5, R_6, R_9, R_{10} \ and \ R_{11} \ may be the same or different, selected from H, Cl, Br, F, NO_2, CN, C_1-C_6alkyl, Phenolyl, Phen$

15. (New) A composition having as an active ingredient, a substituted azole compound of formula (I)

wherein

X1 is CH;

X2 is selected from O or S;

X₃ is NR₈;

A1 is CR9;

A2 is CR10;

A3 is CR11;

 R_1 and R_2 may be the same or different, selected from H, C_1 - C_{12} alkyl or C_1 - C_{12} haloalkyl; R_3 is selected from H, halo, C_1 - C_{12} alkyl, C_1 - C_{12} haloalkyl or C_1 - C_{12} alkoxy; R_8 is selected from H, C_1 - C_{12} alkyl; C_1 - C_{12} haloalkyl; C_1 - C_{12} alkoxycarbonyl or C_1 - C_{12} alkoxycarbonyl C_1 - C_{12} alkyl;

 $R_4,R_5,R_6,R_9,R_{10} \ and \ R_{11} \ may be the same or different, selected from H, halo, NO_2, CN, CONH_2, CH_2CONH_2, CH_2CN, C_1-C_{12}alkyl, C_1-C_{12}haloalkyl, C_1-C_{12}alkoxy, C_1-C_{12}haloalkoxy, C_1-C_{12}alkyl, C_1-C_{12}alkyl, C_1-C_{12}alkyl, C_1-C_{12}alkyl, C_1-C_{12}alkyl, C_1-C_{12}alkyl, C_1-C_{12}alkoxycarbonyl, C_1-C_{12}alkoxycarbonyl, C_1-C_{12}alkoxycarbonyl, C_1-C_{12}alkyl, groups may be substituted by any other groups: aminoC_1-C_{12}alkyl, aryl, heteroaryl; aroxyl, arylC_1-C_{12}alkyl, arylC_1-C_{12}alkoxy, heteroarylC_1-C_{12}alkyl or heteroarylC_1-C_{12}alkoxy;$

and stereoisomer:

wherein the weight percentage of the active ingredient in the composition is from 0.1% to 99%.

- 16. (New) A method for controlling fungi and insects in a plant which comprises administering the substituted azole compound of claim 10 to the plant.
- 17. (New) The method according to claim 18, wherein the substituted azole compound is administered in the form of a composition.
- 18. (Withdrawn, New) The preparation of substitute azole compounds according to claim 10, which comprises reacting an azole compound containing hydroxyl group having general formula (III) with a halomethylbenzene having general formula (IV) in the presence of a base:

wherein: R is leaving group, such as Cl or Br.