Nirma University

Institute of Technology

Semester End Examination (RPR), May 2022

M. Tech. in Computer Science and Engineering/

M. Tech. in Computer Science and Engineering (Information and Network Security)/
M. Tech. in Computer Science and Engineering (Data Science),

Semester-I 3CS1109 COMPLEXITY THEORY AND ALGORITHMS

Roll / Exam No.		ervisor's initial n date			
Time: 3 H	Hours		Max. Mark	ks:100	
Instruction	 Figures to right indicate full marks Use section-wise separate answer Draw neat sketches wherever neces Assume suitable data wherever res 	book. essary. quired and speci	fy them clearly.		
Q-1.	Do as directed.	- I		[16]	
~				12	
A					
CO1	i. $T(n) = 36T(n/6) + \sqrt{n}$				
BL3	ii. $T(n) = T(\sqrt{n}) + 1$				
	iii. $T(n) = 3T(n/3) + n$	a and Dunam	ic Programming	4	
B CO2 BL2	Compare and contrast: Backtracking	g and Dynam	ic riogramming.		
Q-2.	Answer the following.			[16]	
A CO3 BL3	Find a longest common subsequence in given two strings A and B using dynamic programming approach (complete trace expected), where A=abcdacd and B=dcadcabb.			8	
B CO2 BL6	Develop a recursive algorithm for selection sort (iterations not to be used at all) and trace it on a suitable example with seven numbers.				
Q-3.	Answer the following.			[18]	
A CO2 BL6	Develop an algorithm for Breadth with a trace on a suitable example.	First Search	(BFS) in a graph	8	
BLO B CO1 BL5	Write loop(s) that has/have running	time of Θ (n ⁴).	6	
DIO	OR				
B CO1 BL5	Write loop(s) that has/have running	time of O(2 ⁿ)	• • •	6	
С	Differentiate between least cost bra	anch and bo	und (LC-B&B) and	4	

CO2 FIFO branch and bound (FIFO-B&B) techniques with a suitable example.

SECTION - II

Q-4.	Answer the following.	[16]	
A CO1 BL1	Formally define various complexity classes viz. P, NP, NP-COMPLETE and NP-HARD and discuss importance of these classes in context of algorithmic complexity theory.		
B CO2 BL6	Develop an algorithm for quick sort. Present recurrence relation for quick sort and discuss its best case and worst-case scenarios with timing analysis.		
Q-5.	Answer the following.	[16]	
A CO3 BL3	Find the optimal order of multiplying following matrices using dynamic programming approach (complete trace expected). $A_{Total}=A_1A_2A_3A_4A_5$ where $A_1:15x5$, $A_2:5x25$, $A_3:25x12$, $A_4:12x70$, $A_5:70x7$	10	
	OR		
A CO3 BL5	Use Backtracking Technique and write an algorithm to solve 8- queen puzzle problem. Also evaluate its time complexity.		
B CO2	For an efficient implementation of Kruskal's Algorithm (for minimum spanning tree), which is the most suitable data structure		
	to detect cycle. Justify your answer with a suitable example and		
BL4 Q-6.	give proper complexity analysis. Answer the following.	[18]	
A CO3 BL6	Develop an algorithm to solve fractional Knapsack problem using <i>Greedy Strategy</i> . Trace your algorithm on following data for knapsack capacity=18, to maximise the value in knapsack.	10	

Item	Weight	Value
1	4	5
2	6	9
3	7	10
4	8	11
5	9	13
6	10	16

В	Let $f(n) = n^2 + 7n + 6$ and $g(n) = n^3$. Is $f(n) \in O(g(n))$? Justify your	4
CO1	answer.	
BL5		
C	"Dynamic programming always gives an optimal solution." State	4
CO1	true or false with a justification. Also, provide an example to	
BL5	support your answer.	