

Pandas 4 - Data Visualization

Data analysis process

Data Understanding

Descriptive statistics

• Types of data (numerical/categorical)

Data Preprocessing

Basic operations

Subset selection and data consolidation

Missing data handling

Calculation (Modeling)

Basic calculation

Data aggregation

Data Visualization

- Univariate chart
- Bivariate chart
- Multivariate chart

Outline

- Reshape DataFrame for visualization
- X-axis with categorical data
 - (Line chart)
 - Bar chart
 - Area chart
 - Pie chart
- Numerical data
 - Histogram
 - Scatter plot
 - Hexagon plot

Wide-form and Long-form

Target: ID

- Long-form: Each row is one time point per target. The data of a target can have multiple rows.
- Wide-form: A target's repeated responses will be in a single row, and each response is in a separate column.

Exam Score S01 Exam-1 Exam Exam-1 Exam-2 1 S02 Exam-1 75 pivot() ID 2 S03 Exam-1 pivot_table() unstack() 85 S01 3 S04 Exam-1 S02 70 75 Exam-1 S01 Exam-2 S03 70 90 melt() S02 Exam-2 70 S04 55 S03 Exam-2 S05 85 60 8 S04 Exam-2 9 S05 Exam-2

Long-form

- Pivot table: https://pandas.pydata.org/docs/reference/api/pandas.pivot_table.html
- Pivot: https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.pivot.html
- Melt: https://pandas.pydata.org/docs/reference/api/pandas.melt.html

Wide-form

Pivot_table

• Use pivot_table() to reshaped a DataFrame by passing arguments: index, columns and values. (By default, aggfunc = mean.)

	ID	Exam	Score	
0	S01	Exam-1	95	
1	S02	Exam-1	75	
2	S03	Exam-1	70	
3	S04	Exam-1	65	
4	S05	Exam-1	85	
5	S01	Exam-2	85	
6	S02	Exam-2	70	
7	S03	Exam-2	90	
8	S04	Exam-2	55	
9	S05	Exam-2	60	
			Lon	g-for

Pivot_table

Change the target.

	ID	Exam	Score
0	S01	Exam-1	95
1	S02	Exam-1	75
2	S03	Exam-1	70
3	S04	Exam-1	65
4	S05	Exam-1	85
5	S01	Exam-2	85
6	S02	Exam-2	70
7	S03	Exam-2	90
8	S04	Exam-2	55
9	S05	Exam-2	60

score_df.pivot_table(index =	"ID",	columns =	"Exam",	values	= "Score")	
------------------------------	-------	-----------	---------	--------	------------	--

Exam	Exam-1	Exam-2
ID		
S01	95	85
S02	75	70
S 03	70	90
S04	65	55
S 05	85	60


```
score_df.pivot_table(index = "Exam", columns = "ID", values = "Score")
```

ID	S01	S02	S 03	S 04	S 05
Exam					
Exam-1	95	75	70	65	85
Exam-2	85	70	90	55	60

Unstack

- Use unstack() to reshape a dataframe derived from groupby object.
- By default, unstack() converts the inner-most row level to column level.

	Product	Quarter	Month	Sales
0	А	Q1	Jan	67
1	Α	Q1	Feb	57
2	Α	Q1	Mar	87
3	Α	Q2	Apr	50
4	Α	Q2	May	97
5	Α	Q2	Jun	68
6	В	Q1	Jan	78
7	В	Q1	Feb	102
8	В	Q1	Mar	113
9	В	Q2	Apr	98
10	В	Q2	May	80
11	В	Q2	Jun	84

Outline

- Reshape DataFrame for visualization
- X-axis with categorical data
 - (Line chart)
 - Bar chart
 - Area chart
 - Pie chart
- Numerical data
 - Histogram
 - Scatter plot
 - Hexagon plot

Line chart - Series

- Both Series and DataFrame have a plot() method to make some basic plot types. By default, plot() makes line charts.
- Line chart is usually used to visualize the trend of data over a period of time.

Line chart - DataFrame

• Use the arguments x and y to specify the columns used for plotting.

	month	sales_A	sales_B
0	Jan	67	78
1	Feb	57	102
2	Mar	87	113
3	Apr	50	98
4	May	97	80
5	Jun	68	84

If "x" is not specified, the index of the DataFrame is used.

Line chart - DataFrame

Pass a list of column names to the argument "y" to plot multiple lines.

	month	sales_A	sales_B
0	Jan	67	78
1	Feb	57	102
2	Mar	87	113
3	Apr	50	98
4	May	97	80
5	Jun	68	84

Line chart - Custom style

Use some arguments to change the style.

	month	sales_A	sales_B
0	Jan	67	78
1	Feb	57	102
2	Mar	87	113
3	Apr	50	98
4	May	97	80
5	Jun	68	84

<AxesSubplot:xlabel='month'>

- Marker: https://matplotlib.org/stable/api/markers_api.html#module-matplotlib.markers
- Color: https://matplotlib.org/stable/gallery/color/named_colors.html
- Linestyle: https://matplotlib.org/stable/gallery/lines_bars_and_markers/linestyles.html
- Others: https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.plot.html

Exercise

(A.1) Given the dataframe expense_df . Convert the dataframe to the following format (wide-form) and store the result in a new variable named expense_df_wide .

(A.2) Use the dataframe expense_df_wide obtained in (A.1). Draw a multiple line chart to show the monthly groceries and transportation expenses.

(A.4) Import dataset fashion.csv . Show the first five rows.

(A.4) Show the sales trends of Tiger_of_Sweden with a line chart.

(A.5) Show the sales trends of Eton, Levi_s, and Tiger_of_Sweden with a multiple line chart. Settings: Use marker = "D", figsize = (12,4).

Bar chart - Series

- Use kind = "bar" to plot vertical bar chart.
- Use kind = "barh" to plot horizontal bar chart.

Jan 67
Feb 57
Mar 87
Apr 50
May 97
Jun 68
dtype: int64

Bar chart - DataFrame

- Use the arguments x and y to specify the columns used for plotting.
- Pass a list of column names to the argument y to plot multiple lines.

	month	sales_A	sales_B
0	Jan	67	78
1	Feb	57	102
2	Mar	87	113
3	Apr	50	98
4	May	97	80
5	Jun	68	84

Bar chart - Stacked bar chart

Stacked bar chart

- Each bar is stacked by multiple data series.
- Stacked bar charts can be used to break down and compare parts of the whole.

	month	sales_A	sales_B
0	Jan	67	78
1	Feb	57	102
2	Mar	87	113
3	Apr	50	98
4	May	97	80
5	Jun	68	84

Area chart

- An area chart is similar to a line chart, except that the area between the drawn line and the x-axis is shaded with color.
- Use kind = "area" to plot area chart. By default, stacked = True.

<AxesSubplot:xlabel='Month'>

<AxesSubplot:xlabel='month'>

Pie chart

• The pieces of the pie chart are proportional to the fraction of the whole in each category.

	Jan	Feb	Mar
transportation	1050	1750	1150
dining out	250	850	450
entertainment	850	1050	950
grocery	3750	3050	3250

Pie chart

• Use subplots=True to plot a pie chart for each numerical column.

	Jan	Feb	Mar
transportation	1050	1750	1150
dining out	250	850	450
entertainment	850	1050	950
grocery	3750	3050	3250

Exercise

(B.1) Import dataset parks.csv . Show the first five rows.

(B.2) Select the national parks in the following five states and keep columns Park Name, State, and Acres. Use this subset to answer the following questions.

State: CA, CO, UT, AK, WA

(B.3) Count the number of national parks in each state. Display the result using a bar graph.

Hint: (1) Group data using column "State". (2) The x-axis shows each state, and each bar is the number of national parks in each state.

(B.4) Calculate the total area of national parks in each state. Display the result using a pie chart.

Outline

- Reshape DataFrame for visualization
- X-axis with categorical data
 - (Line chart)
 - Bar chart
 - Area chart
 - Pie chart
- Numerical data
 - Histogram
 - Scatter plot
 - Hexagon plot

Histogram

- A histogram is an approximate representation of the distribution of numerical data
 - Step1: Divide the entire range of values into a series of intervals.
 - Step2: Count how many values fall into each interval.

	<u></u>					
	Pregnancies	Glucose	BloodPressure	SkinThickness		
0	6	148	72	35		
1	1	85	66	29		
2	8	183	64	0		
3	1	89	66	23		
4	0	137	40	35		
763	10	101	76	48		
764	2	122	70	27		
765	5	121	72	23		
766	1	126	60	0		
767	1	93	70	31		
	`					

By default, the number of bins is 10.

width of bins = (max - min)/number of bins = (122-24)/10 = 9.8

Histogram - custom bins

- Use the arugument "bins" to customize the number of bins.
 - Integer: bins = 15.
 - A sequence of bin edges: bins = [0,5,10,..,130]

<AxesSubplot:ylabel='Frequency'>

<AxesSubplot:ylabel='Frequency'>

Scatter plot

- Scatter plots are used to observe the relationship between two variables.
 - Each dot indicates an individual data point (observation).

Positive correlation

Negative correlation

Scatter plot

Color points based on the third variable.

Hexagon plot

- A hexagon plot combines nearby data points into a hexagon, and then displays the density (the number of data points) in color.
- Hexagon plots can solve the problem that many points begin to overlap.

Exercise

(C.1) Import dataset wine.csv and set the first column as the index. Display the first 5 rows.				
(C.2) Use the following criteria to select a subset.				
 Select wines (rows) from Spain, Italy or France (use column country). Select wines (rows) with a price of less than 200(use column price). 				
(C.3) Use a histogram to show the cost distribution of French wines. Hint: Use column price.				
(C.4) Use a scatter plot to show the relationship between wine cost and the number of points recieved in the review. Hint: Use column price and points.				
(C.5) Use a hexagon plot to show the relationship between wine cost and the number of points recieved in the review. Hint: Use gridsize = 20.				

Summary

Bivariate chart

Multivariate chart

