МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «ВГУ»)

Факультет прикладной математики, информатики и механики

Отчет

на тему:

«Критерий t Стьюдента для зависимых выборок»

Выполнил: студент 3 к. 7 гр. ПМИ

Ноздрин Станислав Сергеевич

Проверил: преподаватель

Титова Ирина Александровна

Критерий Стьюдента t относится к одному из наиболее давно разработанных и широко используемых методов статистики. Чаще всего он применяется для проверки нулевой гипотезы о равенстве средних значений двух совокупностей, хотя существует также и одновыборочная модификация этого метода.

Начать, пожалуй, стоит с математических допущений, на которых основан критерий Стьюдента. Основных таких допущений, как известно, два:

- Сравниваемые выборки должны происходить из нормально распределенных совокупностей;
- Дисперсии сравниваемых генеральных совокупностей должны быть равны(для независимых выборок, хотя в принципе существует вариант теста в случае неравных дисперсий)

Зачастую требования о «нормальности» являются слишком сильными для выборочных данных (особенно если речь идет о «больших» данных), что приводит к многочисленным спорам о применимости критерия Стъюдента в той или иной ситуации.

На практике возможным компромиссом стало использование данного критерия не сколько в случае безоговорочности «нормальности» выборок, а столько в случае несущественных отклонений от нормальности, к ним относятся:

- Отсутствие выбросов в данных
- Отсутствие явной асимметрии гистограммы
- Отсутствие «смеси» распределений (например, бимодальности гистограммы)

Отметим, что если существуют серьезные отклонения от нормальности и исследователь не может позволить себе воспользоваться критерием Стьюдента, то стоит прибегнуть к непараметрической статистике: к тесту МакНемара, или к тесту Знаков, или же к тесту Вилкоксона(все – для случая парных выборок).

Зависимыми, или парными, являются две выборки, содержащие результаты измерений какого-либо количественного признака, выполненных на одних и тех же объектах. Во многих исследованиях какой-то определенный отклик измеряется у одних и тех же объектов до и после экспериментального воздействия. При такой схеме эксперимента исследователь более точно оценивает эффект воздействия именно потому, что прослеживает его у одних и тех же объектов.

t-критерий для двух зависимых (парных) выборок применяется, например, для оценки состояния больного до и после лечения. Нулевая гипотеза также гласит об отсутствии различий (среднее значение разности наблюдений в двух группах равно нулю).

Интерпретация результатов теста будет следующей: допустив, что нулевая гипотеза верна, мы можем рассчитать, насколько велика *вероятность* получить *t*-критерий, равный или превышающий то реальное значение, которое мы рассчитали по имеющимся выборочным данным. Если эта вероятность оказывается меньше, чем заранее принятый уровень значимости (например, P<0.05), мы вправе отклонить проверяемую нулевую гипотезу.

Разберем как работать с данным критерием на конкретном примере.

Работать будем в пакете Statistica 12.

Итак, рассмотрим таблицу:

	1	2	3
	Номер участника	До изменения цвета	После изменения цвета
1	1	39,64	37,53
2	2	44,26	42,02
3	3	33,84	31,99
4	4	53,88	39,48
5	5	38,94	43,09
6	6	48,77	36
7	7	31,56	47,98
8	8	35,24	46,95
9	9	47,77	36,11
10	10	41,75	40,97
11	11	39,37	44
12	12	46,2	45,48
13	13	47,05	47,36
14	14	43,13	41
15	15	44,61	37,57
16	16	38,7	36,27
17	17	37,47	48,12
18	18	44,66	40,5
19	19	40,83	42,92
20	20	54,3	38,24
21	21	54,33	38,72
22	22	51,37	38,97
. 02	22	51,37	24.22

Смысл: перед нами данные исследования, проводившегося в 1935 году, в котором изучалась скорость чтения названия цветов в зависимости от того, шрифт какого цвета используется(то, как влияет фон на наше восприятие).

В ходе каждого теста суммировалось время, которое было затрачено на чтение слов(названия цветов).

Вопрос: смогли ли участники абстрагироваться от цвета букв? В первом случае цвет в каждом слове менялся(2 столбец), в другом – всегда черный(3 столбец). Это пример парной выборки.

Выясним, существенны ли различия.

Прежде чем применить t-тест Стьюдента, убедимся, что наши выборки не имеют существенных отклонений от нормальности, посмотрим на гистограммы:

Заметим, что данные выдерживают наши требования, значит, мы можем применить критерий Стьюдента.

Зайдем в Basic Statistics, выберем t-test для зависимых (парных) выборок.

Затем выберем те столбцы, которые и являются объектом нашего исследования.

Посмотрим результат:

	11-test for Dependent Samples (Spreadsheet f.sta)										
	Marked differences are significant at p < ,05000										
	Mean	Std.Dv.	N	Diff.	Std.Dv.	t	df	р	Confidence	Confidence	
Variable					Diff.				-95,000%	+95,000%	
До изменения цвета	43,30014	6,149710									
После изменения цвета	41,00014	4,840233	70	2,300000	7,810196	2,463854	69	0,016242	0,437725	4,162275	

Заметим, что уровень значимости(p-value) меньше чем 0.05, и мы не принимаем основную гипотезу о том, что средние наших выборок не отличаются.

Однако если мы в качестве порога для уровня значимости возьмем 0.01, то в таком случае основная гипотеза будет не отвергнута.

Вопрос лишь в том, насколько сильно мы боимся ошибки 1 рода.

Больше моих работ об анализе данных, машинном обучении здесь:

