ماژول اول آمار و احتمال بخش اول - منطق

المپياد هوش مصنوعي

🕥 تركيب گزارهها

😙 سور

- 🚺 گزاره
- تركيب گزارهها
 - 🕝 سور

990 E 4E>4E>4D>4D>

تعریف گزاره

- گزاره جملهای خبری است که میتواند **درست** یا **نادرست** باشد، اما نه هر دو.
 - جملات سوالی، امری و تعجبی گزاره محسوب نمی شوند.

نمادها

• گزارهها معمولاً با حروف p,q,r,\dots نمایش داده می شوند.

- ake Y (eq است. (درست)
- خورشید از غرب طلوع میکند. (نادرست)

ارزش و نقیض گزاره

ارزش گزاره (Truth Value)

- هر گزاره میتواند دارای یکی از دو ارزش منطقی زیر باشد:
 - (T) cرست •
 - (F) نادرست
- ارزش گزاره نشاندهنده میزان درستی یا نادرستی آن است.

نقيض گزاره

- نقیض یک گزاره به معنای وارونه کردن ارزش منطقی آن است.
- اگر گزاره p درست باشد، نقیض آن $(\sim p)$ نادرست است و بالعکس.
 - $\sim p$:نماد نقیض

آمار و ا<u>حتمال</u>

ارزش و نقیض گزاره

نمودار ون گزاره

 $\neg p$ گزاره Venn : کشکل شکل

p گزاره Venn : ۱ شکل

ارزش و نقیض گزاره

جدول ارزش گزاره و نقیض آن

p	$\sim p$	
T	F	
F	T	

 $\sim p$ و p جدول ارزش و د $\sim p$

- گزاره: عدد ۲ زوج است. (T) نقیض: عدد ۲ زوج نیست.
- ullet گزاره: خورشید از غرب طلوع می کند. (F) نقیض: خورشید از غرب طلوع نمی کند.

تعداد سطرهای جدول ارزش

فرمول كلي

• تعداد سطوهای جدول ارزش برای n متغیر به صورت زیر محاسبه می شود:

تعداد سط ها $=2^n$

(p,q,r,...) تعداد متغیرهای منطقی:n

- p:T,F اگر اn=1، جدول ۲ سطر دارد:
- p,q:TT,TF,FT,FF اگر n=2، جدول ۴ سطر دارد:
 - اگر n=3، جدول ۸ سطر دارد:
- p,q,r:TTT,TTF,TFT,TFF,FTT,FTF,FFT,FFF

تعداد سطرهای جدول ارزش

$n=\overline{3}$ جدول نمونه برای

n=3 جدول ارزش برای ۲: جدول

تعريف گزارهنما

- گزارهنما جملهای خبری است که شامل یک یا چند متغیر باشد.
- با جایگذاری مقادیر مشخص برای متغیرها، گزارهنما به یک گزاره (درست یا نادرست) تبدیل می شود.

دامنه متغير و مجموعه جواب

- دامنه متغیر: مجموعهای از مقادیر ممکن که متغیر میتواند به خود بگیرد. نماد: D
- s مجموعه جواب: زیرمجموعه ای از دامنه که گزاره نما را به یک گزاره درست تبدیل میکند. نماد: s

$$S \subseteq D$$

گزارهنما

مثالها

- (P(x)) عددی زوج است. $x \bullet$ دامنه: مجموعه اعداد صحیح ($D=\mathbb{Z}$)
- $(S = \{..., -4, -2, 0, 2, 4, ...\})$ مجموعه جواب: اعداد زوج
- (Q(x,y)) . x + y = 5 و y اعدادی هستند که $x \bullet$ $(D=\mathbb{R} imes\mathbb{R})$ دامنه: اعداد حقیقی $S = \{(x,y)|x+y=5\}$ مجموعه جواب: $S = \{(x,y)|x+y=5\}$ به عنوان مثال:

نمادها و دستهبندی

- نماد گزارهنما: معمولاً با حروفي مانند Q، Q نمايش داده مي شود.
 - P(x) :مکمتغیره
 - Q(x,y) :دومتغیره
 - R(x,y,z): چندمتغیره

- 🕦 گزاره
- 🕜 تركيب گزارهها
 - ۳ 🔐

تعریف ترکیب گزارهها

تعريف

- ترکیب گزاره ها فرآیندی است که با استفاده از عملگرهای منطقی، گزاره های جدیدی از دو یا چند گزاره ساخته می شود.
 - عملگرهای اصلی:
 - عطف (۸): به معنای و
 - **فصل** (۷): به معنای یا
 - شرطی (⇒): به معنای اگر...، آنگاه...
 - **دوشرطی** (👄): به معناًی اگر و تنها اگر

تركيب عطفي و فصلي

عطف (٨)

- گزاره $p \wedge q$ زمانی درست است که هر دو گزاره $p \wedge q$ و کرست باشند.
 - مثال:
 - (T) عددی زوج است. $p \bullet$
 - (T) عددی اول است. $q \cdot q$
 - (T) عددی زوج است و ۵ عددی اول است. $p \wedge q$

فصل (٧)

- اشند. $p \lor q$ زمانی نادرست است که هر دو گزاره $p \lor q$ و نادرست باشند.
 - مثال:
 - (F) عددی اول است. (F)
 - (F) عددی اول نیست. (F)

ترکیب عطفی و فصلی

نمودار ون گزارههای عطفی و فصلی

p q q

 $p \lor q$ گزاره Venn :۴ شکل

 $p \wedge q$ گزاره Venn : شکل ۳

جددول ارزش ترکیب عطفی و فصلی

• در ترکیب عطفی و فصلی ترتیب اهمیت ندارد به عبارتی گزاره $p \lor q$ هم ارز(دارای ارزش یکسان) با گزاره $p \lor q$ است و گزاره $p \land q$ هم ارز با گزاره $p \lor q$ است.

p	q	$p \wedge q$	$p \lor q$
T	T	T	T
T	\overline{F}	F	T
F	T	F	T
\overline{F}	\overline{F}	F	F

جدول ٣: جدول ارزش تركيب عطفي و فصلي

شرطي (⇒)

- گزاره $p \Rightarrow q$ زمانی نادرست است که p درست و q نادرست باشد.
- گزاره $p\Rightarrow q$ همانطور که گفته شد تنها زمانی که مقدم(p) درست و تالی (p) نادرست باشد، نادرست است چراکه ما هرگز از یک گزاره درست نمی توانیم به یک نتیجه نادرست برسیم.
 - مثال:
 - (T) عدد Y زوج است. p
 - (F) عدد ۵ زوج است. q
 - (F) . اگر \mathbf{r} زوج باشد، آنگاه ۵ زوج است. $p\Rightarrow q$

 $p \Rightarrow q$ گزارهٔ شرطی Venn :۵ شکل

جدول ارزش تركيب شرطي

• گزاره $p\Rightarrow q$ هم ارز(دارای ارزش یکسان) با گزاره $p\lor q$ است این هم ارزی را میتوان با جدول درستی اثبات کرد.

p	$\sim p$	q	$p \Rightarrow q$	$\sim p \vee q$
T	F	T	T	T
T	F	F	F	F
F	T	T	T	T
\overline{F}	T	\overline{F}	T	T

جدول ۴: جدول ارزش ترکیب شرطی

تركيب دوشرطي

دوشرطي (👄)

- گزاره $p\iff p$ زمانی درست است که هر دو گزاره p و p دارای ارزش یکسان باشند.
 - مثال:
 - (T) عددی زوج است. (T)
 - (T) عددی زوج است. (T)
 - (T) . اگر و تنها اگر ۲ زوج باشد، آنگاه ۴ زوج است. $p \iff q$

تركيب دوشرطي

 $p \iff q$ نمودار ون ترکیب دوشرطی ۶: نمودار ون ترکیب

جدول ارزش ترکیب دو شرطی

• گزاره $q \iff q \land (q \Rightarrow p)$ است این هم ارز (دارای ارزش یکسان) با گزاره $p \iff q \land (q \Rightarrow p)$ است این هم ارزی را میتوان با جدول درستی اثبات کرد.

p	q	$p \Rightarrow q$	$q \Rightarrow p$	$(p \Rightarrow q) \land (q \Rightarrow p)$	$p \iff q$
T	T	T	T	T	T
T	F	F	T	F	F
F	T	T	F	F	F
\overline{F}	\overline{F}	T	T	T	T

جدول ۵: جدول ارزش ترکیب دوشرطی

- 🕦 گزاره
- 🕥 تركيب گزارهها
 - 🕜 سور

تعريف

- سورها عباراتی هستند که میزان کلی یا جزئی بودن یک گزارهنما را مشخص می کنند.
 - دو نوع سور اصلی وجود دارد:
 - سور عمومی (Universal Quantifier): به معنای برای همه یا به ازای هر.
- سور وجودي (Existential Quantifier): به معنای وجود دارد یا برای برخی.

سور 000000

$\forall \nabla$ سور عمومی (\forall)

تعریف

- سور عمومی (∀) بیان میکند که یک گزارهنما برای تمام مقادیر ممکن درست است.
 - $\forall x$:
 - x خواندن: برای هر x یا برای تمام x

- (برای هر عدد حقیقی، مربع آن غیرمنفی است.) $\forall x \in \mathbb{R}, \, x^2 \geq 0$
- ست.) $\forall x \in \mathbb{Z}, \, x+0=x$ (برای هر عدد صحیح، جمع آن با صفر برابر خودش است.)

سور وجو**د**ی (∃)

تعريف

- سور وجودی (∃) بیان میکند که حداقل یک مقدار برای متغیر وجود دارد که گزارهنما را درست میکند.
 - $\exists x$:نماد:
 - x خواندن: وجود دارد x یا برای برخی x

- (یک عدد طبیعی وجود دارد که مربع آن برابر ۴ است.) $\exists x \in \mathbb{N}, \, x^2 = 4$
- (یک عدد صحیح وجود دارد که کوچکتر از صفر است.) $\exists x \in \mathbb{Z}, \, x < 0$

نقيض سورها

(\forall) نقیض سور عمومی

- $\exists x, \neg P(x)$ نقیض $\forall x, P(x)$ برابر است با
- یعنی: برای هر x، P(x) نادرست است اگر حداقل یک x وجود داشته باشد که P(x) درست نباشد.

ِ نقیض سور وجودی (∃)

- $\forall x, \neg P(x)$ نقیض $\exists x, P(x)$ برابر است با
- یعنی: وجود دارد x که P(x) نادرست است اگر هیچ x وجود نداشته باشد که P(x) درست باشد.

مثالها

نکته:

یعنی هم ارز منطقی، یعنی دو گزاره همیشه ارزش درستی یکسان دارند.

- $\neg(\forall x \in \mathbb{N}, \, x > 0) \equiv \exists x \in \mathbb{N}, \, x \le 0 \bullet$
- $\neg(\exists x \in \mathbb{Z}, x < 0) \equiv \forall x \in \mathbb{Z}, x \geq 0$