☐ viiiiiiiiiii / Flatiron_Phase2_Final_Vi_Bui Public Phase 2 Project - Jupyter Notebook and Presentation ☆ 0 stars **양** 0 forks ☆ Star ● Unwatch ▼ Issues ?? Pull requests Actions Projects Wiki Security <> Code ሦ main ▾ viiiiiiiiii Update README.md ... **©** 20 3 minutes ago View code **README.md**

King County, WA, U.S.A.

Housing Guidance for King County, WA, U.S.A

Student name: Vi Bui

Student pace: Part-Time

• Scheduled project review date/time: 10/28/21

• Instructor name: Claude Fried

Blog post URL: https://datasciish.com/

Overview

Client: New WA state home buyers needing consultation on WA real estate market and expectations (price, size, location)

Data, Methodology, and Analysis: King County (WA, U.S.A.) housing data from 2014-2015

Results & Recommendations: After analyzing data and building models assessing relationships between price and square feet; price and bedrooms; and price to zip code, we've modeled the expectations for price range depending on square feet of living space, grade, condition, and renovation status

Data Exploration, Cleansing, Visualization, and Preparation

Data Exploration

Explore King County, WA, U.S.A. data from years 2014-2015

Data Cleansing

Check for duplicates (none); drop NaN values and unnecessary columns; continuously clean data as necessary

Data Visualization

Use visualizations to explore the data and determine how to further refine the dataset in order to prepare for modeling

Data Preparation

Data Exploration and Cleansing

Import data and all packages needed for data exploration and modeling

```
import pandas as pd
  import numpy as np
  import matplotlib.pyplot as plt
 %matplotlib inline
  import seaborn as sns
  import statsmodels.api as sm
  from statsmodels.stats.outliers_influence import variance_inflation_factor
  import scipy.stats as stats
 from sklearn.model_selection import train_test_split
  from sklearn.preprocessing import OneHotEncoder, StandardScaler
  from sklearn.tree import DecisionTreeClassifier
  from sklearn.metrics import accuracy_score
  from sklearn.metrics import mean_absolute_error, mean_squared_error
  import os
  import warnings
Explore: columns, shape, info
 df = pd.read_csv('data/kc_house_data.csv', index_col=0)
 df.head()
<style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; }
  .dataframe tbody tr th {
      vertical-align: top;
  }
  .dataframe thead th {
      text-align: right;
  }
```

	date	price	bedrooms	bathrooms	sqft_living
id					

	date	price	bedrooms	bathrooms	sqft_living
id					
7129300520	10/13/2014	221900.0	3	1.00	1180
6414100192	12/9/2014	538000.0	3	2.25	2570
5631500400	2/25/2015	180000.0	2	1.00	770
2487200875	12/9/2014	604000.0	4	3.00	1960
1954400510	2/18/2015	510000.0	3	2.00	1680
	_, _, _,	31320010	-		

Explore number of entries; which columns have missing data; and data types
df.info()

<class 'pandas.core.frame.DataFrame'>

Int64Index: 21597 entries, 7129300520 to 1523300157

Data columns (total 20 columns):

	Column		Dtype
#	Column	Non-Null Count	Dtype
		24507 11	
0	date	21597 non-null	-
1	price	21597 non-null	
2	bedrooms	21597 non-null	int64
3	bathrooms	21597 non-null	float64
4	sqft_living	21597 non-null	int64
5	sqft_lot	21597 non-null	int64
6	floors	21597 non-null	float64
7	waterfront	19221 non-null	float64
8	view	21534 non-null	float64
9	condition	21597 non-null	int64
10	grade	21597 non-null	int64
11	sqft_above	21597 non-null	int64
12	sqft_basement	21597 non-null	object
13	yr_built	21597 non-null	int64
14		17755 non-null	float64
15	zipcode	21597 non-null	int64
16	lat	21597 non-null	float64
17	long	21597 non-null	float64
18	sqft_living15	21597 non-null	int64
19	sqft_lot15	21597 non-null	int64
dtype	es: float64(8),	int64(10), obje	ct(2)

memory usage: 3.5+ MB

```
# Check for duplicates
df.duplicated(keep='first').sum()
0
# Check for NaN values
df.isna().sum()
# Columns and number of respective NaN values
# waterfront
                   2376
# view
                     63
# yr_renovated
                   3842
date
                    0
price
bedrooms
                     0
bathrooms
                     0
sqft_living
                     0
sqft lot
                     0
floors
waterfront
                 2376
view
                    63
condition
                     0
grade
                    0
sqft_above
                     0
sqft_basement
                     0
yr_built
yr_renovated
                 3842
zipcode
                     0
lat
                     0
long
                     0
sqft_living15
                     0
sqft_lot15
dtype: int64
# Explore columns
df.columns
Index(['date', 'price', 'bedrooms', 'bathrooms', 'sqft_living',
'sqft_lot',
```

Understand Column Names and Descriptions for King County's Data Set

- id unique identified for a house
- dateDate house was sold
- pricePrice is prediction target
- bedroomsNumber of Bedrooms/House
- bathroomsNumber of bathrooms/bedrooms
- sqft_livingsquare footage of the home
- **sqft_lotsquare** footage of the lot
- floorsTotal floors (levels) in house
- waterfront House which has a view to a waterfront
- view Has been viewed
- condition How good the condition is (Overall)
- grade overall grade given to the housing unit, based on King County grading system
- sqft_above square footage of house apart from basement
- sqft_basement square footage of the basement
- yr_built Built Year
- yr_renovated Year when house was renovated
- zipcode zip
- lat Latitude coordinate
- long Longitude coordinate
- sqft_living15 The square footage of interior housing living space for the nearest 15 neighbors
- sqft_lot15 The square footage of the land lots of the nearest 15 neighbors

```
# Calculate the percentage of NaN
df['waterfront'].value_counts()
```

```
# Ask colleagues how to do this "smarter": (19075/(19075+146))
# (2376+19075)/(2376+19075+146)

0.0 19075
1.0 146
Name: waterfront, dtype: int64
```

Observations after exploring waterfront data:

- 99.2% of houses (146 out of 19,221) do not have a waterfront view
- With 2376 entries with NaN values, imputing the NaN values to 0 makes no material difference
- Clean data: impute waterfront NaN values to 0 (represents no waterfront view)
- Resulting data: 99.3% of houses (21,451 out of 21,597) do not have a waterfront view

```
# Impute waterfront NaN values to 0
df['waterfront'] = df['waterfront'].fillna(0)
df['waterfront'].value_counts()
0.0
       21451
1.0
         146
Name: waterfront, dtype: int64
# Double check for NaN values left
df['waterfront'].isna().sum()
0
# Continue exploring other data that needs to be cleansed
df.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 21597 entries, 7129300520 to 1523300157
Data columns (total 20 columns):
```

```
Non-Null Count Dtype
    Column
0
    date
                   21597 non-null object
                   21597 non-null float64
 1
    price
 2
                   21597 non-null int64
    bedrooms
 3
    bathrooms
                   21597 non-null float64
 4
    sqft_living
                   21597 non-null int64
 5
    sqft_lot
                   21597 non-null int64
    floors
6
                   21597 non-null float64
7
    waterfront
                   21597 non-null float64
8
    view
                   21534 non-null float64
 9
    condition
                   21597 non-null int64
 10 grade
                   21597 non-null int64
    sqft_above
                   21597 non-null int64
 11
 12 sqft_basement 21597 non-null object
 13 yr_built
                   21597 non-null int64
 14 yr_renovated
                   17755 non-null float64
 15 zipcode
                   21597 non-null int64
    lat
 16
                   21597 non-null float64
 17 long
                   21597 non-null float64
18 sqft_living15 21597 non-null int64
 19 sqft_lot15
                   21597 non-null int64
dtypes: float64(8), int64(10), object(2)
memory usage: 3.5+ MB
```

df['yr_renovated'].value_counts()

```
0.0
           17011
2014.0
              73
2003.0
              31
2013.0
              31
2007.0
              30
1946.0
               1
1959.0
               1
1971.0
               1
1951.0
               1
1954.0
               1
```

Name: yr_renovated, Length: 70, dtype: int64

'yr_renovated' data needs to be cleansed. Observations about 'yr_renovated':

- 'yr_renovated' has 3842 NaN values
- About the data: if house has been renovated, the year is entered. If not, 0 has been entered
- 95.8% of current data set (17,011 of 17,755 houses) have not been renovated

- Imputing the 3842 NaN values to 0 (not renovated) does not make a substantial difference
- Resulting data: 96.6% of new data set (20,853 of 21,597 houses) have not been renovated

```
df['yr_renovated'] = df['yr_renovated'].fillna(0)
 df['yr_renovated'].value_counts()
 0.0
            20853
 2014.0
               73
               31
 2003.0
 2013.0
               31
 2007.0
               30
 1946.0
                1
  1959.0
                1
 1971.0
                1
  1951.0
                1
  1954.0
 Name: yr_renovated, Length: 70, dtype: int64
 # ask colleagues how you would get the sum of the value counts
 # df['yr_renovated'].value_counts('0')
 20853/21597
 0.9655507709404084
 df.head()
<style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; }
  .dataframe tbody tr th {
      vertical-align: top;
 }
  .dataframe thead th {
      text-align: right;
  }
</style>
```

	date	price	bedrooms	bathrooms	sqft_living
id					
7129300520	10/13/2014	221900.0	3	1.00	1180
6414100192	12/9/2014	538000.0	3	2.25	2570
5631500400	2/25/2015	180000.0	2	1.00	770
2487200875	12/9/2014	604000.0	4	3.00	1960
1954400510	2/18/2015	510000.0	3	2.00	1680

'sqft_basement' data needs to be cleansed. Observations about 'sqft_basement':

- Ran into an error with 'sqft_basement' data
- Found there are 454 entries with '?' symbols in the data
- 60.7% of current data set (12,826 of 21,143 houses) have 0 as entered for sqft_basement
- Imputing the 454 '?' entries to 0 does not make a substantial difference
- Resulting data: 61.5% of new data set (13,280 of 21,597 houses) have 0 sqft_basement

```
# Check how many entries for 'sqft_basement' are '?'
# Ask colleagues how to view the entire data set for sqft_basement
df['sqft_basement'].value_counts()
```

0.0	12826
?	454
600.0	217
500.0	209
700.0	208
2240.0	1
2240.0 2850.0	1
	_
2850.0	1

Name: sqft_basement, Length: 304, dtype: int64

```
# Impute 454 '?' entries to 0 values
# Transform data type from object to float

df['sqft_basement'] = df['sqft_basement'].apply(lambda x: 0 if x == '?' else
```

df.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 21597 entries, 7129300520 to 1523300157
Data columns (total 20 columns):

20.00	co camino (co ca c	20 00 00 10 11 15 / 1	
#	Column	Non-Null Count	Dtype
0	date	21597 non-null	object
1	price	21597 non-null	float64
2	bedrooms	21597 non-null	int64
3	bathrooms	21597 non-null	float64
4	sqft_living	21597 non-null	int64
5	sqft_lot	21597 non-null	int64
6	floors	21597 non-null	float64
7	waterfront	21597 non-null	float64
8	view	21534 non-null	float64
9	condition	21597 non-null	int64
10	grade	21597 non-null	int64
11	sqft_above	21597 non-null	int64
12	sqft_basement	21597 non-null	float64
13	yr_built	21597 non-null	int64
14	yr_renovated	21597 non-null	float64
15	zipcode	21597 non-null	int64
16	lat	21597 non-null	float64
17	long	21597 non-null	float64
18	sqft_living15	21597 non-null	int64
19	sqft_lot15	21597 non-null	int64
dtype	es: float64(9),	int64(10), obje	ct(1)
memoi	ry usage: 3.5+ N	ИB	

Continue cleaning data/transform data types:

- Transform data types
- Most importantly, convert zipcode from integer to string

```
# yr_renovated from float to integer (preference)
# zipcode from integer to string
```

```
df['yr_renovated'] = (df['yr_renovated'].astype(int))
df['zipcode'] = (df['zipcode'].astype(str))
df.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 21597 entries, 7129300520 to 1523300157
Data columns (total 20 columns):
    Column
                   Non-Null Count
                                   Dtype
0
    date
                    21597 non-null object
                    21597 non-null float64
 1
    price
 2
    bedrooms
                   21597 non-null int64
 3
    bathrooms
                    21597 non-null float64
    sqft_living
                   21597 non-null int64
 4
 5
    sqft_lot
                   21597 non-null int64
    floors
 6
                   21597 non-null float64
 7
    waterfront
                   21597 non-null float64
 8
    view
                   21534 non-null float64
    condition
                   21597 non-null int64
 9
 10
    grade
                   21597 non-null int64
 11
    sqft_above
                   21597 non-null int64
 12 sqft basement 21597 non-null float64
 13 yr_built
                   21597 non-null int64
 14 yr_renovated
                   21597 non-null int64
 15 zipcode
                   21597 non-null object
 16 lat
                   21597 non-null float64
 17
                   21597 non-null float64
    lona
 18 sqft_living15 21597 non-null int64
 19 sqft lot15
                   21597 non-null int64
dtypes: float64(8), int64(10), object(2)
```

memory usage: 3.5+ MB

Create New Features

- 1. Year Sold (from date column)
- 2. Renovated (make renovated a binary value: renovated = 1; not renovated = 0)
- 3. Basement Present (make basement a binary value: renovated = 1; not renovated = 0)
- 4. Actual Age of Property (year sold year built)
- 5. Bathrooms Per Bedroom (bathrooms/bedrooms)
- 6. Square Feet Living to Square Foot Lot (sqft_living/sqft_lot)

```
# Create new features

df['yr_sold'] = (df['date'].str[-4:].astype(int))

df['renovated'] = np.where(df['yr_renovated']!=0, 1,0)

df['basement_present'] = np.where(df['sqft_basement']!=0, 1,0)

df['actual_age_of_property'] = df['yr_sold']-df['yr_built']

df['bathrooms_per_bedroom'] = df['bathrooms']/df['bedrooms']

df['sqft_living_to_sqft_lot'] = df['sqft_living']/df['sqft_lot']

df.head()

<style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; }

.dataframe tbody tr th {
    vertical-align: top;
  }

.dataframe thead th {
    text-align: right;
  }
```

	date	price	bedrooms	bathrooms	sqft_living
id					
7129300520	10/13/2014	221900.0	3	1.00	1180
6414100192	12/9/2014	538000.0	3	2.25	2570
5631500400	2/25/2015	180000.0	2	1.00	770
2487200875	12/9/2014	604000.0	4	3.00	1960
1954400510	2/18/2015	510000.0	3	2.00	1680

5 rows × 26 columns

```
# Check: data types
# Check: all value counts match

df.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 21597 entries, 7129300520 to 1523300157
Data columns (total 26 columns):
```

```
Column
                              Non-Null Count Dtype
 0
     date
                              21597 non-null
                                             object
 1
     price
                              21597 non-null
                                             float64
 2
                                             int64
     bedrooms
                              21597 non-null
 3
     bathrooms
                              21597 non-null
                                             float64
 4
     sqft_living
                              21597 non-null
                                              int64
 5
     saft lot
                              21597 non-null int64
 6
     floors
                              21597 non-null
                                             float64
 7
     waterfront
                              21597 non-null
                                             float64
 8
     view
                              21534 non-null float64
 9
     condition
                              21597 non-null
                                              int64
 10 grade
                              21597 non-null
                                              int64
 11 sqft_above
                              21597 non-null
                                              int64
 12 sqft_basement
                              21597 non-null
                                              float64
 13 yr_built
                              21597 non-null
                                             int64
 14 yr_renovated
                              21597 non-null int64
 15 zipcode
                              21597 non-null
                                              object
 16 lat
                              21597 non-null
                                             float64
 17
                              21597 non-null
                                              float64
    long
 18 sqft_living15
                              21597 non-null
                                              int64
 19 sqft_lot15
                              21597 non-null
                                              int64
 20 yr_sold
                              21597 non-null
                                              int64
 21 renovated
                              21597 non-null
                                             int64
 22 basement present
                              21597 non-null int64
 23 actual age of property
                             21597 non-null int64
 24 bathrooms per bedroom
                              21597 non-null float64
 25 sqft_living_to_sqft_lot 21597 non-null float64
dtypes: float64(10), int64(14), object(2)
memory usage: 4.4+ MB
df.columns
Index(['date', 'price', 'bedrooms', 'bathrooms', 'sqft_living',
'sqft lot',
       'floors', 'waterfront', 'view', 'condition', 'grade', 'sqft_above',
       'sqft_basement', 'yr_built', 'yr_renovated', 'zipcode', 'lat',
'long',
       'saft living15', 'saft_lot15', 'yr_sold', 'renovated',
       'basement_present', 'actual_age_of_property',
'bathrooms per bedroom',
       'sqft_living_to_sqft_lot'],
      dtype='object')
# Explore correlation for numerical values with .corr()
df.corr()
```

<style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; }
 .dataframe tbody tr th {
 vertical-align: top;
 }
 .dataframe thead th {
 text-align: right;

| | price | bedrooms | bathrooms | sqft_living |
|---------------|----------|-----------|-----------|-------------|
| price | 1.000000 | 0.308787 | 0.525906 | 0.701917 |
| bedrooms | 0.308787 | 1.000000 | 0.514508 | 0.578212 |
| bathrooms | 0.525906 | 0.514508 | 1.000000 | 0.755758 |
| sqft_living | 0.701917 | 0.578212 | 0.755758 | 1.000000 |
| sqft_lot | 0.089876 | 0.032471 | 0.088373 | 0.173453 |
| floors | 0.256804 | 0.177944 | 0.502582 | 0.353953 |
| waterfront | 0.264306 | -0.002127 | 0.063629 | 0.104637 |
| view | 0.395734 | 0.078523 | 0.186451 | 0.282532 |
| condition | 0.036056 | 0.026496 | -0.126479 | -0.059445 |
| grade | 0.667951 | 0.356563 | 0.665838 | 0.762779 |
| sqft_above | 0.605368 | 0.479386 | 0.686668 | 0.876448 |
| sqft_basement | 0.321108 | 0.297229 | 0.278485 | 0.428660 |
| yr_built | 0.053953 | 0.155670 | 0.507173 | 0.318152 |
| yr_renovated | 0.117855 | 0.017900 | 0.047177 | 0.051060 |
| lat | 0.306692 | -0.009951 | 0.024280 | 0.052155 |
| long | 0.022036 | 0.132054 | 0.224903 | 0.241214 |
| sqft_living15 | 0.585241 | 0.393406 | 0.569884 | 0.756402 |
| sqft_lot15 | 0.082845 | 0.030690 | 0.088303 | 0.184342 |

| price | bedrooms | bathrooms | sqft_living |
|-----------|---|---|--|
| 0.003727 | -0.009949 | -0.026577 | -0.029014 |
| 0.117543 | 0.017635 | 0.046742 | 0.050829 |
| 0.178264 | 0.158412 | 0.159863 | 0.201198 |
| -0.053890 | -0.155817 | -0.507561 | -0.318592 |
| 0.281227 | -0.236129 | 0.652668 | 0.310690 |
| 0.123063 | 0.026798 | 0.287015 | 0.076988 |
| | 0.003727
0.117543
0.178264
-0.053890
0.281227 | 0.003727 -0.009949 0.117543 0.017635 0.178264 0.158412 -0.053890 -0.155817 0.281227 -0.236129 | 0.003727 -0.009949 -0.026577 0.117543 0.017635 0.046742 0.178264 0.158412 0.159863 -0.053890 -0.155817 -0.507561 0.281227 -0.236129 0.652668 |

- Explore descriptive statistics with .describe()
- Summarizes central tendency (mean), dispersion and shape of a dataset's distribution, excluding NaN values

```
# Explore descriptive statistics with .describe()
# Summarizes central tendency (mean), dispersion and shape of a dataset's dis
df.describe()
```

```
<style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; }
```

```
.dataframe tbody tr th {
    vertical-align: top;
}
.dataframe thead th {
    text-align: right;
}
```

| | price | bedrooms | bathrooms | sqft_living | |
|-------|--------------|--------------|--------------|--------------|-----|
| count | 2.159700e+04 | 21597.000000 | 21597.000000 | 21597.000000 | 2.1 |
| mean | 5.402966e+05 | 3.373200 | 2.115826 | 2080.321850 | 1.5 |
| std | 3.673681e+05 | 0.926299 | 0.768984 | 918.106125 | 4.1 |
| min | 7.800000e+04 | 1.000000 | 0.500000 | 370.000000 | 5.2 |

| | price | bedrooms | bathrooms | sqft_living | |
|-----|--------------|-----------|-----------|--------------|-----|
| 25% | 3.220000e+05 | 3.000000 | 1.750000 | 1430.000000 | 5.0 |
| 50% | 4.500000e+05 | 3.000000 | 2.250000 | 1910.000000 | 7.6 |
| 75% | 6.450000e+05 | 4.000000 | 2.500000 | 2550.000000 | 1.0 |
| max | 7.700000e+06 | 33.000000 | 8.000000 | 13540.000000 | 1.6 |
| | | | | | |

```
# Explore distribution (value_counts) of bedroom data
df['bedrooms'].value_counts()
3
      9824
4
      6882
2
      2760
5
      1601
6
       272
1
       196
7
        38
8
        13
          6
          3
10
11
         1
33
          1
```

Data Visualization

Name: bedrooms, dtype: int64

```
plt.figure(figsize=(12,8))
sns.displot(df['price'],bins=1000)
plt.title('Price')
plt.show();

<Figure size 864x576 with 0 Axes>
```



```
fig, ax = plt.subplots(figsize=(12,8))
  sns.boxplot(x='price', data=df, ax=ax)
  <AxesSubplot:xlabel='price'>
png
  plt.figure(figsize=(12,8))
  sns.displot(df['price'],bins=25)
  plt.title('Price')
  plt.show();
  <Figure size 864x576 with 0 Axes>
png
  df.describe()
<style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; }
  .dataframe tbody tr th {
      vertical-align: top;
  }
  .dataframe thead th {
      text-align: right;
  }
```

| | price | bedrooms | bathrooms | sqft_living | |
|-------|--------------|--------------|--------------|--------------|-----|
| count | 2.159700e+04 | 21597.000000 | 21597.000000 | 21597.000000 | 2.1 |
| mean | 5.402966e+05 | 3.373200 | 2.115826 | 2080.321850 | 1.5 |
| std | 3.673681e+05 | 0.926299 | 0.768984 | 918.106125 | 4.1 |
| min | 7.800000e+04 | 1.000000 | 0.500000 | 370.000000 | 5.2 |
| 25% | 3.220000e+05 | 3.000000 | 1.750000 | 1430.000000 | 5.0 |
| 50% | 4.500000e+05 | 3.000000 | 2.250000 | 1910.000000 | 7.6 |

| | price | bedrooms | bathrooms | sqft_living | |
|-----|--------------|-----------|-----------|--------------|-----|
| 75% | 6.450000e+05 | 4.000000 | 2.500000 | 2550.000000 | 1.0 |
| max | 7.700000e+06 | 33.000000 | 8.000000 | 13540.000000 | 1.6 |
| | | | | | |

Narrow price range to \\$175,000-\\$650,000

```
# Ask colleagues how to find where the "majority" of prices fall

df = df[df['price'].between(175_000,650_000)]

df.info()
```

<class 'pandas.core.frame.DataFrame'>
Int64Index: 15993 entries, 7129300520 to 1523300157
Data columns (total 26 columns):

| # | Column | Non-Null Count | Dtype |
|----|------------------------|----------------|---------|
| 0 | date | 15993 non-null | object |
| 1 | price | 15993 non-null | _ |
| 2 | bedrooms | 15993 non-null | int64 |
| 3 | bathrooms | 15993 non-null | float64 |
| 4 | sqft_living | 15993 non-null | int64 |
| 5 | sqft_lot | 15993 non-null | int64 |
| 6 | floors | 15993 non-null | float64 |
| 7 | waterfront | 15993 non-null | float64 |
| 8 | view | 15949 non-null | float64 |
| 9 | condition | 15993 non-null | int64 |
| 10 | grade | 15993 non-null | int64 |
| 11 | sqft_above | 15993 non-null | int64 |
| 12 | sqft_basement | 15993 non-null | float64 |
| 13 | yr_built | 15993 non-null | int64 |
| 14 | yr_renovated | 15993 non-null | int64 |
| 15 | zipcode | 15993 non-null | object |
| 16 | lat | 15993 non-null | float64 |
| 17 | long | 15993 non-null | float64 |
| 18 | sqft_living15 | 15993 non-null | int64 |
| 19 | sqft_lot15 | 15993 non-null | int64 |
| 20 | yr_sold | 15993 non-null | int64 |
| 21 | renovated | 15993 non-null | int64 |
| 22 | basement_present | 15993 non-null | int64 |
| 23 | actual_age_of_property | 15993 non-null | int64 |

```
24 bathrooms_per_bedroom
                                15993 non-null float64
   25 sqft_living_to_sqft_lot 15993 non-null float64
  dtypes: float64(10), int64(14), object(2)
  memory usage: 3.3+ MB
  # Percentage of data that will be used
  15_993/21_597
  0.7405195165995277
  plt.figure(figsize=(12,8))
  sns.displot(df['price'],bins=25)
  plt.title('Price')
  plt.show();
  <Figure size 864x576 with 0 Axes>
png
  # Explore the data - specifically bedrooms, bathrooms, and sqft_living
  df.describe()
<style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; }
  .dataframe tbody tr th {
      vertical-align: top;
  }
  .dataframe thead th {
      text-align: right;
  }
```

| | price | bedrooms | bathrooms | sqft_living |
|-------|---------------|--------------|--------------|--------------|
| count | 15993.000000 | 15993.000000 | 15993.000000 | 15993.000000 |
| mean | 400987.591009 | 3.244982 | 1.953667 | 1800.124742 |

| | price | bedrooms | bathrooms | sqft_living |
|-------|---------------|-----------|-----------|-------------|
| std | 123893.841894 | 0.886582 | 0.660056 | 631.746037 |
| min | 175000.000000 | 1.000000 | 0.500000 | 370.000000 |
| 25% | 299950.000000 | 3.000000 | 1.500000 | 1330.000000 |
| 50% | 392000.000000 | 3.000000 | 2.000000 | 1720.000000 |
| 75% | 499990.000000 | 4.000000 | 2.500000 | 2180.000000 |
| max | 650000.000000 | 33.000000 | 7.500000 | 5461.000000 |
| IIIdx | 030000.000000 | 33.00000 | 7.30000 | 3401.000000 |

```
# Explore correlation after narrowing data set

df.corr()

<style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; }

.dataframe tbody tr th {
    vertical-align: top;
}

.dataframe thead th {
    text-align: right;
}
```

| ~/3ty10> | | | | |
|-------------|----------|-----------|-----------|-------------|
| | price | bedrooms | bathrooms | sqft_living |
| price | 1.000000 | 0.176433 | 0.315515 | 0.417273 |
| bedrooms | 0.176433 | 1.000000 | 0.456624 | 0.589010 |
| bathrooms | 0.315515 | 0.456624 | 1.000000 | 0.666310 |
| sqft_living | 0.417273 | 0.589010 | 0.666310 | 1.000000 |
| sqft_lot | 0.071915 | 0.020603 | 0.023810 | 0.132353 |
| floors | 0.200133 | 0.102590 | 0.492458 | 0.268110 |
| waterfront | 0.022750 | -0.038404 | -0.029209 | -0.011641 |
| | | | | |

| | price | bedrooms | bathrooms | sqft_living |
|-------------------------|-----------|-----------|-----------|-------------|
| view | 0.126625 | 0.008418 | 0.038959 | 0.109977 |
| condition | -0.003818 | 0.020562 | -0.161222 | -0.076913 |
| grade | 0.451436 | 0.256539 | 0.557766 | 0.586257 |
| sqft_above | 0.318006 | 0.449544 | 0.589683 | 0.811530 |
| sqft_basement | 0.196807 | 0.276462 | 0.188410 | 0.397274 |
| yr_built | 0.040321 | 0.162717 | 0.593987 | 0.353469 |
| yr_renovated | 0.027449 | -0.008372 | -0.012700 | -0.001082 |
| lat | 0.479098 | -0.107569 | -0.112134 | -0.143029 |
| long | 0.054300 | 0.132547 | 0.232980 | 0.256092 |
| sqft_living15 | 0.382913 | 0.342631 | 0.478078 | 0.682108 |
| sqft_lot15 | 0.067769 | 0.015451 | 0.024263 | 0.143713 |
| yr_sold | 0.007087 | -0.009127 | -0.027191 | -0.024446 |
| renovated | 0.027333 | -0.008531 | -0.013034 | -0.001096 |
| basement_present | 0.174533 | 0.138967 | 0.121556 | 0.200849 |
| actual_age_of_property | -0.040202 | -0.162862 | -0.594414 | -0.353860 |
| bathrooms_per_bedroom | 0.184907 | -0.306894 | 0.638663 | 0.181322 |
| sqft_living_to_sqft_lot | 0.188304 | -0.024121 | 0.328013 | 0.050878 |

```
df['bedrooms'].value_counts().plot(kind='bar')
sns.despine;
```


df['bathrooms'].value_counts().plot(kind='bar')
sns.despine;


```
df['sqft_living'].value_counts().plot(kind='bar')
  sns.despine;
png
  sns.scatterplot(data=df, x='bedrooms', y='price')
  <AxesSubplot:xlabel='bedrooms', ylabel='price'>
png
  sns.scatterplot(data=df, x='bathrooms', y='price')
  <AxesSubplot:xlabel='bathrooms', ylabel='price'>
png
  sns.scatterplot(data=df, x='sqft_living', y='price')
  <AxesSubplot:xlabel='sqft_living', ylabel='price'>
png
After seeing outliers in the data, refine data set to:
1. Bedrooms to 6 or less
2. sqft_living to 4000 or less
  df.describe()
<style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; }
  .dataframe tbody tr th {
      vertical-align: top;
  }
  .dataframe thead th {
      text-align: right;
```

| | price | bedrooms | bathrooms | sqft_living |
|-------|---------------|--------------|--------------|--------------|
| count | 15993.000000 | 15993.000000 | 15993.000000 | 15993.000000 |
| mean | 400987.591009 | 3.244982 | 1.953667 | 1800.124742 |
| std | 123893.841894 | 0.886582 | 0.660056 | 631.746037 |
| min | 175000.000000 | 1.000000 | 0.500000 | 370.000000 |
| 25% | 299950.000000 | 3.000000 | 1.500000 | 1330.000000 |
| 50% | 392000.000000 | 3.000000 | 2.000000 | 1720.000000 |
| 75% | 499990.000000 | 4.000000 | 2.500000 | 2180.000000 |
| max | 650000.000000 | 33.000000 | 7.500000 | 5461.000000 |

8 rows × 24 columns

```
df = df[df['bedrooms'] <= 6]
df.describe()

<style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; }
   .dataframe tbody tr th {
       vertical-align: top;
   }
   .dataframe thead th {
       text-align: right;
   }
```

| | price | bedrooms | bathrooms | sqft_living | |
|-------|---------------|--------------|--------------|--------------|---|
| count | 15965.000000 | 15965.000000 | 15965.000000 | 15965.000000 | |
| mean | 400835.351519 | 3.235766 | 1.951425 | 1797.901973 | |
| std | 123867.266044 | 0.835528 | 0.656015 | 629.416330 | ; |
| min | 175000.000000 | 1.000000 | 0.500000 | 370.000000 | į |

| | price | bedrooms | bathrooms | sqft_living | |
|-----|---------------|----------|-----------|-------------|---|
| 25% | 299900.000000 | 3.000000 | 1.500000 | 1330.000000 | Ę |
| 50% | 392000.000000 | 3.000000 | 2.000000 | 1720.000000 | 7 |
| 75% | 499950.000000 | 4.000000 | 2.500000 | 2180.000000 | Ś |
| max | 650000.000000 | 6.000000 | 5.250000 | 5461.000000 | 1 |
| | | | | | |

```
df = df[df['sqft_living'] <= 4000]
df.describe()

<style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; }
   .dataframe tbody tr th {
       vertical-align: top;
   }
   .dataframe thead th {
       text-align: right;
   }
```

</style>

price	bedrooms	bathrooms	sqft_living	
15916.000000	15916.000000	15916.000000	15916.000000	1
400358.968145	3.232093	1.947427	1789.922971	1
123707.148968	0.833128	0.652116	613.395670	3
175000.000000	1.000000	0.500000	370.000000	5
299725.000000	3.000000	1.500000	1330.000000	5
390000.000000	3.000000	2.000000	1720.000000	7.
499900.000000	4.000000	2.500000	2180.000000	9
650000.000000	6.000000	5.250000	4000.000000	1.
	15916.000000 400358.968145 123707.148968 175000.000000 299725.000000 390000.000000 499900.000000	15916.000000 15916.000000 400358.968145 3.232093 123707.148968 0.833128 175000.000000 1.000000 299725.000000 3.000000 390000.000000 4.000000	15916.000000 15916.000000 15916.000000 400358.968145 3.232093 1.947427 123707.148968 0.833128 0.652116 175000.000000 1.000000 0.500000 299725.000000 3.000000 1.500000 390000.000000 3.000000 2.000000 499900.000000 4.000000 2.500000	15916.000000 15916.000000 15916.000000 15916.000000 400358.968145 3.232093 1.947427 1789.922971 123707.148968 0.833128 0.652116 613.395670 175000.000000 1.000000 0.500000 370.000000 299725.000000 3.000000 1.500000 1720.000000 390000.000000 4.000000 2.500000 2180.000000

8 rows × 24 columns

```
df['bedrooms'].value_counts().plot(kind='bar')
  sns.despine;
png
 df['bathrooms'].value_counts().plot(kind='bar')
  sns.despine;
png
 df['sqft_living'].value_counts().plot(kind='bar')
  sns.despine;
png
  df['zipcode'].value_counts().plot(kind='bar')
  sns.despine;
png
 #pd.set_option("display.max_rows", None, "display.max_columns", None)
 df['zipcode'].value_counts(ascending=True)
 98040
            19
  98004
            23
 98109
            35
  98102
            40
  98005
            47
          . . .
  98023
           466
 98034
           469
 98133
           475
  98042
           516
           559
  98038
 Name: zipcode, Length: 69, dtype: int64
 # For Future Work: explore correlation between these zip codes and price
 # least_houses_zip = df[df['zipcode' == '98004', '98109', '98112', '98102', '
```

```
# most_houses_zips = 98023, 98034, 98133, 98042, 98038
```

```
# For future work on zipcodes
 plt.figure(figsize=(12,12))
 sns.jointplot(x=df['lat'], y=df['long'], size=12)
 plt.xlabel('Latitude', fontsize=11)
 plt.ylabel('Longitude', fontsize=11)
 plt.show()
 sns.despine;
 /Users/v/opt/anaconda3/envs/learn-env/lib/python3.8/site-
 packages/seaborn/axisgrid.py:2015: UserWarning: The `size` parameter has
 been renamed to `height`; please update your code.
   warnings.warn(msg, UserWarning)
 <Figure size 864x864 with 0 Axes>
png
 # Boxplot for price
 fig, ax = plt.subplots(figsize=(12,8))
 sns.boxplot(x='price', data=df, ax=ax)
 <AxesSubplot:xlabel='price'>
 # Boxplot for bedrooms
 fig, ax = plt.subplots(figsize=(12,8))
 sns.boxplot(x='bedrooms', data=df, ax=ax)
 <AxesSubplot:xlabel='bedrooms'>
 # Scatterplot for sqft_living and price
 sns.scatterplot(data=df, x='sqft_living', y='price')
```

```
<AxesSubplot:xlabel='sqft_living', ylabel='price'>

# Scatterplot for bedrooms and price
sns.scatterplot(data=df, x='bedrooms', y='price')

<AxesSubplot:xlabel='bedrooms', ylabel='price'>

png

# Scatterplot for bathrooms and price
sns.scatterplot(data=df, x='bathrooms', y='price')

<AxesSubplot:xlabel='bathrooms', ylabel='price'>

png
```

Data Preparation

Start dropping columns that will not be used

```
1. 'view'
2. 'date'

# Will not use 'view' (# of times the house has been viewed) for analysis

if 'view' in df.columns:
    df.drop('view', axis=1, inplace=True)

# Drop date

if 'date' in df.columns:
    df.drop('date', axis=1, inplace=True)
```

Create Target and Explore Data with More Visualizations

TARGET is price

```
# Target is price
# X values is everything else
TARGET = 'price'
X_VALS = [c for c in df.columns if c != TARGET]
TARGET in X_VALS
False
for col in df.columns:
    plt.figure(figsize=(12,8))
    sns.displot(df[col],bins=20)
    plt.title(col)
    plt.show();
for col in df.columns:
    plt.scatter(df[col], df[TARGET])
    plt.title(col)
    plt.show()
for col in df.columns:
    plt.hist(df[col])
    plt.title(col)
    plt.show()
for col in df.select_dtypes('number').columns:
    plt.boxplot(df[col], vert=False)
    plt.title(col)
    plt.show()
corr = df.corr().abs()
# Generate a mask for the upper triangle
mask = np.triu(np.ones like(corr, dtype=bool))
# Set up the matplotlib figure
f, ax = plt.subplots(figsize=(11, 9))
# Generate a custom diverging colormap
```

```
viiiiiiiii/Flatiron_Phase2_Final_Vi_Bui: Phase 2 Project - Jupyter Notebook and Presentation
  cmap = sns.diverging_palette(230, 20, as_cmap=True)
  # Draw the heatmap with the mask and correct aspect ratio
  # GnBu is your color preference
  sns.heatmap(corr, mask=mask, cmap="GnBu", vmin=0, vmax=1.0, center=0,
               square=True, linewidths=.5, cbar_kws={"shrink": .75})
  <AxesSubplot:>
png
  # Create a correlation heatmap grid with data
  plt.figure(figsize=(14, 14))
  corr_matrix = df.corr().abs().round(2)
  sns.heatmap(data=corr_matrix,cmap="GnBu",annot=True)
  <AxesSubplot:>
png
  df.head()
<style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; }
  .dataframe tbody tr th {
      vertical-align: top;
  }
  .dataframe thead th {
      text-align: right;
  }
```

price	bedrooms	bathrooms	sqft_living	sqft_lot
221900.0	3	1.00	1180	5650
538000.0	3	2.25	2570	7242

	price	bedrooms	bathrooms	sqft_living	sqft_lot
id					
5631500400	180000.0	2	1.00	770	10000
2487200875	604000.0	4	3.00	1960	5000
1954400510	510000.0	3	2.00	1680	8080

Clean Data Before Modeling

- drop sqft_basement, sqft_basement15, sqft_lot, sqft_lot15, yr_renovated
- drop longitude, latitude,

```
if 'sqft_basement' in df.columns:
    df.drop('sqft_basement', axis=1, inplace=True)
if 'sqft_basement15' in df.columns:
    df.drop('sqft_basement15', axis=1, inplace=True)
if 'sqft_lot' in df.columns:
    df.drop('sqft_lot', axis=1, inplace=True)
if 'sqft_lot15' in df.columns:
    df.drop('sqft_lot15', axis=1, inplace=True)
if 'sqft_living15' in df.columns:
    df.drop('sqft_living15', axis=1, inplace=True)
if 'yr renovated' in df.columns:
    df.drop('yr_renovated', axis=1, inplace=True)
if 'lat' in df.columns:
    df.drop('lat', axis=1, inplace=True)
```

```
if 'long' in df.columns:
    df.drop('long', axis=1, inplace=True)
```

After checking for overfitting in models, drop additional features

```
# after checking for overfitting in models, drop additional features
#'const': 49.808021804391046,
#'bedrooms': 8.124041148684404,
#'bathrooms': 13.373648045281776,
#'sqft_living': 10.9560606782623,
#'floors': 3.316672951320918,
#'waterfront': 1.078179446917037,
#'condition': 1.2848095397229615,
#'grade': 2.273801501092483,
#'sqft_above': 11.76560610464051,
#'vr built': inf,
#'yr_sold': inf,
#'renovated': 1.0815968469358994,
#'basement_present': 3.8066176363082005,
#'actual_age_of_property': inf,
#'bathrooms_per_bedroom': 10.77082956774539,
#'sqft_living_to_sqft_lot': 3.1142842893817773,
if 'sqft_above' in df.columns:
    df.drop('sqft above', axis=1, inplace=True)
if 'bathrooms per bedroom' in df.columns:
    df.drop('bathrooms_per_bedroom', axis=1, inplace=True)
if 'sqft_living_to_sqft_lot' in df.columns:
    df.drop('sqft_living_to_sqft_lot', axis=1, inplace=True)
if 'yr built' in df.columns:
    df.drop('yr_built', axis=1, inplace=True)
if 'yr_sold' in df.columns:
    df.drop('yr sold', axis=1, inplace=True)
if 'actual_age_of_property' in df.columns:
    df.drop('actual age of property', axis=1, inplace=True)
```

```
df.head()

<style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; }

.dataframe tbody tr th {
    vertical-align: top;
}

.dataframe thead th {
    text-align: right;
}
```

	price	bedrooms	bathrooms	sqft_living	floors	W
id						
7129300520	221900.0	3	1.00	1180	1.0	0
6414100192	538000.0	3	2.25	2570	2.0	0
5631500400	180000.0	2	1.00	770	1.0	0
2487200875	604000.0	4	3.00	1960	1.0	0
1954400510	510000.0	3	2.00	1680	1.0	0

```
<AxesSubplot:>
png
 # Create a correlation heatmap grid with data
 plt.figure(figsize=(14, 14))
  corr_matrix = df.corr().abs().round(2)
  sns.heatmap(data=corr_matrix,cmap="GnBu",annot=True)
 <AxesSubplot:>
png
 # Check data one more time
 for col in df.columns:
      plt.scatter(df[col], df[TARGET])
      plt.title(col)
      plt.show()
  for col in df.columns:
      plt.hist(df[col])
      plt.title(col)
      plt.show()
```

Start Building Model

- Create dependent (y) and independent (x) variables
- Create Train and Test data subsets

Create TARGET and Independent Variables for Model

```
# Dependent variable(y) is price as previously defined as TARGET
# Independent variables(X) are all variables that are not price

y = df[TARGET]
X = df.drop(columns=[TARGET])
X
```

<style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; }

```
.dataframe tbody tr th {
    vertical-align: top;
}
.dataframe thead th {
    text-align: right;
}
```

</style>

	bedrooms	bathrooms	sqft_living	floors	waterfront
id					
7129300520	3	1.00	1180	1.0	0.0
6414100192	3	2.25	2570	2.0	0.0
5631500400	2	1.00	770	1.0	0.0
2487200875	4	3.00	1960	1.0	0.0
1954400510	3	2.00	1680	1.0	0.0
•••				•••	
263000018	3	2.50	1530	3.0	0.0
6600060120	4	2.50	2310	2.0	0.0
1523300141	2	0.75	1020	2.0	0.0
291310100	3	2.50	1600	2.0	0.0
1523300157	2	0.75	1020	2.0	0.0

15916 rows × 10 columns

y.describe()

count 15916.000000 mean 400358.968145 std 123707.148968 min 175000.000000

```
25% 299725.000000
50% 390000.000000
75% 499900.000000
max 650000.000000
Name: price, dtype: float64
```

Create Train and Test Data Subsets

```
# Create Train and Test data subsets using train_test_split
 # Check shape of each data set
 X_train, X_test, y_train, y_test = train_test_split(
     X, y, random_state=100)
 X_train.shape, X_test.shape, y_train.shape, y_test.shape
  ((11937, 10), (3979, 10), (11937,), (3979,))
 # Check percentage of data that is Train data
 # Train data is 75% of data; Test data is 25% of data
 11_937/(11_937+3979)
 0.75
 # Reset index on Train and Test data
 X_train.reset_index(drop=True, inplace=True)
 X test.reset index(drop=True, inplace=True)
 y train.reset index(drop=True, inplace=True)
 y_test.reset_index(drop=True, inplace=True)
Create Number and Category Column Variables
 # Create variable for "Number" columns (integers, floats)
 # Create variable for "Category" columns (objects, strings)
 # Check Category Columns
 NUMBER_COLS = X_train.select_dtypes('number').columns
 CATEGORY COLS = X train.select dtypes('object').columns
 CATEGORY_COLS
```

```
Index(['zipcode'], dtype='object')
```

One Hot Encode Category Columns (zipcode)

```
# ONE HOT ENCODE
# zipcode is the only category column
# One Hot Encode zipcodes so you can use the data in model

ohe = OneHotEncoder(drop='first', sparse=False)
X_train_ohe = ohe.fit_transform(X_train[CATEGORY_COLS])
X_test_ohe = ohe.transform(X_test[CATEGORY_COLS])

X_train_ohe = pd.DataFrame(X_train_ohe, columns=ohe.get_feature_names(CATEGORY_COLS_I))

X_test_ohe = pd.DataFrame(X_test_ohe, columns=ohe.get_feature_names(CATEGORY_COLS_I))

X_train_ohe.columns = [c.lower() for c in X_train_ohe]
X_test_ohe.columns = [c.lower() for c in X_test_ohe]
```

```
# Check one hot encoding of zipcodes

X_train_ohe.head()

<style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; }

.dataframe tbody tr th {
    vertical-align: top;
}

.dataframe thead th {
    text-align: right;
```

</style>

	zipcode_98002	zipcode_98003	zipcode_98004	zipcode_98005
0	0.0	0.0	0.0	0.0
1	0.0	0.0	0.0	0.0
2	0.0	0.0	0.0	0.0

	zipcode_98002	zipcode_98003	zipcode_98004	zipcode_98005
3	0.0	0.0	0.0	0.0
4	0.0	0.0	0.0	0.0

5 rows × 68 columns

Scale the Data

X_test_scaled = pd.concat([X_test_scaled,

```
X_test_ohe],
axis=1)
```

```
# Check X_train_scaled

X_train_scaled

<style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; }

.dataframe tbody tr th {
    vertical-align: top;
}

.dataframe thead th {
    text-align: right;
}
```

</style>

	bedrooms	bathrooms	sqft_living	floors	waterfront	cc
0	-1.484449	-1.457646	-1.647388	-0.796457	-0.034267	-0.
1	0.914667	0.465379	1.044130	1.066624	-0.034267	-0.
2	0.914667	0.849984	0.489515	-0.796457	-0.034267	2.5
3	0.914667	-1.457646	-1.272207	-0.796457	-0.034267	9.0
4	-1.484449	-1.457646	-0.652342	-0.796457	-0.034267	-0.
•••		•••	•••			•••
11932	2.114224	1.234589	2.185987	-0.796457	-0.034267	9.0
11933	2.114224	0.849984	2.626417	-0.796457	-0.034267	9.0
11934	-0.284891	0.465379	-0.211911	-0.796457	-0.034267	0.9
11935	-0.284891	0.465379	-0.521844	1.066624	-0.034267	-0.
11936	-0.284891	-0.303831	-0.472907	-0.796457	-0.034267	-0.

11937 rows × 77 columns

Add an Intercept

```
# Add an intercept with sm.add_constant()
# The b in y = mx + b

X_train_scaled = sm.add_constant(X_train_scaled)
X_test_scaled = sm.add_constant(X_test_scaled)

X_train_scaled = sm.add_constant(X_train_scaled)
X_test_scaled = sm.add_constant(X_test_scaled)
```

MODELS

Model 1: Everything

• Used for exploration

```
model1 = sm.OLS(y_train, X_train_scaled).fit()
model1.summary()
```

Dep. Variable:	price	R-squared:	0.742
Model:	OLS	Adj. R-squared:	0.740
Method:	Least Squares	F-statistic:	442.0
Date:	Sun, 07 Nov 2021	Prob (F-statistic):	0.00
Time:	12:32:59	Log-Likelihood:	-1.4886e+05
No. Observations:	11937	AIC:	2.979e+05
Df Residuals:	11859	BIC:	2.985e+05
Df Model:	77		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025
const	2.735e+05	4044.287	67.617	0.000	2.66e+05
bedrooms	-3777.9235	766.377	-4.930	0.000	-5280.148

05 1 1/1	viiiiiiiii/i latifoii_i nase2	_1 mai_ vi_bai. I mase 2	Troject supyter i	totebook and 11	Contation
bathrooms	4006.3214	919.168	4.359	0.000	2204.602
sqft_living	5.751e+04	1008.240	57.044	0.000	5.55e+04
floors	-7602.7410	836.628	-9.087	0.000	-9242.669
waterfront	5088.3292	600.906	8.468	0.000	3910.454
condition	9541.0686	629.450	15.158	0.000	8307.244
grade	2.607e+04	818.004	31.876	0.000	2.45e+04
renovated	1469.4406	585.502	2.510	0.012	321.761
basement_present	-5546.0095	721.806	-7.684	0.000	-6960.868
zipcode_98002	-1.29e+04	6672.443	-1.933	0.053	-2.6e+04
zipcode_98003	1740.5176	6073.043	0.287	0.774	-1.02e+04
zipcode_98004	3.714e+05	1.63e+04	22.743	0.000	3.39e+05
zipcode_98005	2.74e+05	1.1e+04	24.807	0.000	2.52e+05
zipcode_98006	2.052e+05	6840.113	30.006	0.000	1.92e+05
zipcode_98007	2.173e+05	8409.334	25.836	0.000	2.01e+05
zipcode_98008	2.181e+05	6419.708	33.974	0.000	2.06e+05
zipcode_98010	8.115e+04	8837.877	9.182	0.000	6.38e+04
zipcode_98011	1.529e+05	6972.915	21.932	0.000	1.39e+05
zipcode_98014	1.097e+05	8779.574	12.491	0.000	9.25e+04
zipcode_98019	1.098e+05	6680.290	16.431	0.000	9.67e+04
zipcode_98022	2.712e+04	6326.221	4.288	0.000	1.47e+04
zipcode_98023	-1.575e+04	5246.049	-3.002	0.003	-2.6e+04
zipcode_98024	1.462e+05	1.03e+04	14.240	0.000	1.26e+05
zipcode_98027	1.763e+05	5977.162	29.489	0.000	1.65e+05
zipcode_98028	1.363e+05	6044.350	22.553	0.000	1.24e+05
zipcode_98029	2.123e+05	6367.167	33.347	0.000	2e+05
zipcode_98030	7039.3493	6236.424	1.129	0.259	-5185.064

JJ PIVI	VIIIIIIIII/Flatifoii_Phase	Z_Finai_vi_bui: Phase Z	z Project - Jupyter i	Notebook and Pi	esentation
zipcode_98031	8528.6375	5947.097	1.434	0.152	-3128.648
zipcode_98032	-1.223e+04	8048.185	-1.519	0.129	-2.8e+04
zipcode_98033	2.437e+05	6552.817	37.187	0.000	2.31e+05
zipcode_98034	1.645e+05	5296.904	31.057	0.000	1.54e+05
zipcode_98038	4.63e+04	5160.252	8.973	0.000	3.62e+04
zipcode_98040	3.26e+05	1.59e+04	20.537	0.000	2.95e+05
zipcode_98042	1.271e+04	5169.826	2.458	0.014	2571.503
zipcode_98045	9.882e+04	6641.193	14.880	0.000	8.58e+04
zipcode_98052	2.154e+05	5726.400	37.616	0.000	2.04e+05
zipcode_98053	2.064e+05	6463.692	31.929	0.000	1.94e+05
zipcode_98055	3.959e+04	6104.436	6.485	0.000	2.76e+04
zipcode_98056	8.944e+04	5560.338	16.086	0.000	7.85e+04
zipcode_98058	4.089e+04	5385.866	7.593	0.000	3.03e+04
zipcode_98059	9.496e+04	5502.125	17.258	0.000	8.42e+04
zipcode_98065	1.48e+05	6142.417	24.090	0.000	1.36e+05
zipcode_98070	1.408e+05	8714.996	16.152	0.000	1.24e+05
zipcode_98072	1.642e+05	6510.426	25.221	0.000	1.51e+05
zipcode_98074	2.013e+05	6243.559	32.239	0.000	1.89e+05
zipcode_98075	2.343e+05	8190.912	28.608	0.000	2.18e+05
zipcode_98077	1.627e+05	8442.365	19.277	0.000	1.46e+05
zipcode_98092	1469.8656	5764.394	0.255	0.799	-9829.292
zipcode_98102	2.971e+05	1.17e+04	25.400	0.000	2.74e+05
zipcode_98103	2.441e+05	5508.917	44.306	0.000	2.33e+05
zipcode_98105	3.051e+05	8436.754	36.162	0.000	2.89e+05
zipcode_98106	9.325e+04	5853.373	15.931	0.000	8.18e+04
zipcode_98107	2.819e+05	6487.600	43.455	0.000	2.69e+05

zipcode_98108	1.028e+05	6800.267	15.124	0.000	8.95e+04
zipcode_98109	3.119e+05	1.29e+04	24.230	0.000	2.87e+05
zipcode_98112	3.033e+05	9963.820	30.437	0.000	2.84e+05
zipcode_98115	2.569e+05	5559.862	46.199	0.000	2.46e+05
zipcode_98116	2.537e+05	6430.978	39.453	0.000	2.41e+05
zipcode_98117	2.582e+05	5454.138	47.348	0.000	2.48e+05
zipcode_98118	1.346e+05	5496.994	24.481	0.000	1.24e+05
zipcode_98119	2.984e+05	9594.954	31.095	0.000	2.8e+05
zipcode_98122	2.415e+05	6810.371	35.462	0.000	2.28e+05
zipcode_98125	1.686e+05	5663.514	29.765	0.000	1.57e+05
zipcode_98126	1.61e+05	5796.992	27.777	0.000	1.5e+05
zipcode_98133	1.264e+05	5269.619	23.988	0.000	1.16e+05
zipcode_98136	2.102e+05	6579.194	31.956	0.000	1.97e+05
zipcode_98144	1.814e+05	6201.612	29.254	0.000	1.69e+05
zipcode_98146	8.473e+04	6252.114	13.552	0.000	7.25e+04
zipcode_98148	3.585e+04	1.09e+04	3.286	0.001	1.45e+04
zipcode_98155	1.244e+05	5408.652	23.005	0.000	1.14e+05
zipcode_98166	1.012e+05	6410.773	15.789	0.000	8.87e+04
zipcode_98168	2.8e+04	6444.679	4.345	0.000	1.54e+04
zipcode_98177	1.859e+05	7048.310	26.374	0.000	1.72e+05
zipcode_98178	4.12e+04	6272.872	6.569	0.000	2.89e+04
zipcode_98188	2.428e+04	7679.720	3.161	0.002	9223.028
zipcode_98198	3.161e+04	6226.177	5.077	0.000	1.94e+04
zipcode_98199	2.673e+05	7404.979	36.100	0.000	2.53e+05

Omnibus:	561.223	Durbin-Watson:	2.024
Prob(Omnibus):	0.000	Jarque-Bera (JB):	1486.527

Skew:	0.243	Prob(JB):	0.00
Kurtosis:	4.659	Cond. No.	100.

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
# Results sorted by coefficients descending

results1_as_html = model1.summary().tables[1].as_html()
results1 = pd.read_html(results1_as_html, header=0, index_col=0)[0]
results1.sort_values('coef', ascending=False)#.set_option('display.max_rows',
```

```
<style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; }
   .dataframe tbody tr th {
       vertical-align: top;
   }
   .dataframe thead th {
       text-align: right;
   }
```

</style>

ooof	otd orr	+	D> I+I	[0.025
coei	sta err	ι .	P> t	[0.025
371400.0000	16300.000	22.743	0.000	339000.0
326000.0000	15900.000	20.537	0.000	295000.0
311900.0000	12900.000	24.230	0.000	287000.0
305100.0000	8436.754	36.162	0.000	289000.0
303300.0000	9963.820	30.437	0.000	284000.0
	•••	•••	•••	
-5546.0095	721.806	-7.684	0.000	-6960.86
-7602.7410	836.628	-9.087	0.000	-9242.669
-12230.0000	8048.185	-1.519	0.129	-28000.00
	326000.0000 311900.0000 305100.0000 303300.0000 -5546.0095 -7602.7410	371400.0000 16300.000 326000.0000 15900.000 311900.0000 12900.000 305100.0000 8436.754 303300.0000 9963.820 -5546.0095 721.806 -7602.7410 836.628	371400.0000 16300.000 22.743 326000.0000 15900.000 20.537 311900.0000 12900.000 24.230 305100.0000 8436.754 36.162 303300.0000 9963.820 30.437 -5546.0095 721.806 -7.684 -7602.7410 836.628 -9.087	371400.0000 16300.000 22.743 0.000 326000.0000 15900.000 20.537 0.000 311900.0000 12900.000 24.230 0.000 305100.0000 8436.754 36.162 0.000 303300.0000 9963.820 30.437 0.000 -5546.0095 721.806 -7.684 0.000 -7602.7410 836.628 -9.087 0.000

zipcode_98002 -12900.0000 6672.4			
	143 -1.933	3 0.053	-26000.00
zipcode_98023 -15750.0000 5246.0	-3.00	2 0.003	-26000.00

78 rows × 6 columns

Check Linear Model Assumptions

1. Linearity

2. Residual Normality

sm.graphics.qqplot(model.resid, dist=stats.norm, line='45', fit=True)
Omnibus Value

3. Homoskedasticity

Durbin-Watson: range of 1.5 to 2.5 is relatively normal

4. Multicollinearity

VIF (variance_inflation_factor())

Also check p-value

A p-value less than 0.05 (typically \leq 0.05) is statistically significant. It indicates strong evidence against the null hypothesis, as there is less than a 5% probability the null is correct (and the results are random).

Check for overfitting

- Mean Absolute Error (MAE)
- Mean Sqaured Error (MSE)
- Root Mean Sqaured Error (RMSE)

```
# Check linearity and residual normality
sm.graphics.qqplot(model1.resid, dist=stats.norm, line='45', fit=True);
```



```
# Check for Multicollinearity

def create_vif_dct(dataframe, const_col_name='const'):
```

```
if const col name not in dataframe.columns:
    dataframe = sm.add_constant(dataframe)
# Dummy-checking
df = dataframe.select_dtypes('number')
if df.shape != dataframe.shape:
    warnings.warn('\n\nThere are non-numerical columns trying to be passe
if df.isna().sum().any():
    raise ValueError('There may not be any missing values in the datafram
# Creating VIF Dictionary
vif_dct = {}
# Loop through each row and set the variable name to the VIF
for i in range(len(df.columns)):
    vif = variance_inflation_factor(df.values, i)
    v = df.columns[i]
    vif_dct[v] = vif
return vif_dct
```

```
# Check for multicolinearity - anything over 10 is not good!
create_vif_dct(X_train_scaled)
{'const': 48.804888593432594,
 'bedrooms': 1.7525266115446538,
 'bathrooms': 2.520977861021298,
 'sqft_living': 3.0332438247636637,
 'floors': 2.0885480888237606,
 'waterfront': 1.0774400957148569,
 'condition': 1.1822282938705688,
 'grade': 1.996598740009202,
 'renovated': 1.0229074802205151,
 'basement present': 1.554607741508546,
 'zipcode_98002': 1.572374400097395,
 'zipcode_98003': 1.7683916273984623,
 'zipcode_98004': 1.065100539678895,
 'zipcode_98005': 1.1552525010993069,
 'zipcode 98006': 1.5495760787475503,
 'zipcode_98007': 1.2999857058283855,
 'zipcode_98008': 1.6562704322361503,
 'zipcode 98010': 1.2621828886369568,
 'zipcode_98011': 1.4914193011733052,
 'zipcode 98014': 1.264640922782956,
 'zipcode_98019': 1.5651862005750914,
 'zipcode_98022': 1.6764572920324579,
```

```
'zipcode 98023': 2.401885345658481,
'zipcode_98024': 1.1811733768623345,
'zipcode_98027': 1.8251705776763347,
'zipcode_98028': 1.7782165922916775,
'zipcode_98029': 1.688382860504492,
'zipcode_98030': 1.695277852470107,
'zipcode_98031': 1.8239180673146302,
'zipcode_98032': 1.3345289185972118,
'zipcode_98033': 1.6002524120784773,
'zipcode_98034': 2.336472752494877,
'zipcode_98038': 2.529762947645856,
'zipcode_98040': 1.0695100160422801,
'zipcode_98042': 2.48919498398572,
'zipcode_98045': 1.5684405390947247,
'zipcode_98052': 1.9670133379258323,
'zipcode_98053': 1.6383968948327174,
'zipcode_98055': 1.7506671291350397,
'zipcode_98056': 2.08370547501707,
'zipcode_98058': 2.230646819307026,
'zipcode_98059': 2.1268217530668387,
'zipcode_98065': 1.772519797918147,
'zipcode_98070': 1.3587003781601552,
'zipcode_98072': 1.610588276152504,
'zipcode_98074': 1.7180666400873077,
'zipcode 98075': 1.316109939412652,
'zipcode 98077': 1.2926215328810982,
'zipcode_98092': 1.9374125918788754,
'zipcode 98102': 1.1593679933535124,
'zipcode_98103': 2.3265534775693357,
'zipcode_98105': 1.3084770106186392,
'zipcode 98106': 1.9318565444070566,
'zipcode 98107': 1.7119511051672336,
'zipcode_98108': 1.5428738521577468,
'zipcode_98109': 1.1155508114641512,
'zipcode 98112': 1.2110043603791862,
'zipcode 98115': 2.164337059909012,
'zipcode_98116': 1.6821988102483125,
'zipcode 98117': 2.280513896798148,
'zipcode_98118': 2.1946814064237246,
'zipcode_98119': 1.2370712597262954,
'zipcode_98122': 1.5701214411554572,
'zipcode 98125': 2.0238874056833405,
'zipcode_98126': 1.9755145425871357,
'zipcode_98133': 2.4169932736595734,
'zipcode 98136': 1.6342507660544252,
'zipcode_98144': 1.7882327681733308,
'zipcode_98146': 1.713299220605527,
'zipcode 98148': 1.1564530569895037,
'zipcode_98155': 2.228779395730326,
'zipcode_98166': 1.651663330462584,
'zipcode_98168': 1.6590811305558477,
```

```
'zipcode_98177': 1.487356216897902,
 'zipcode_98178': 1.7056064002303757,
 'zipcode_98188': 1.3748946030663856,
 'zipcode_98198': 1.7179126771024968,
 'zipcode_98199': 1.4534675049413095}
# Predictions on the training set
y_train_pred = model1.predict(X_train_scaled)
y_test_pred = model1.predict(X_test_scaled)
# Regression metrics for Train data
# Mean Absolute Error (MAE)
# Mean Sqaured Error (MSE)
# Root Mean Sqaured Error (RMSE)
# Is this only done once?
train_mae = mean_absolute_error(y_train, y_train_pred)
train_mse = mean_squared_error(y_train, y_train_pred)
train_rmse = np.sqrt(train_mse)
print('Train MAE:', train_mae)
print('Train MSE:', train mse)
print('Train RMSE:', train_rmse)
Train MAE: 47495.546251964
Train MSE: 3974372692.5231338
Train RMSE: 63042.62599640924
# Regression metrics for Test data
test_mae = mean_absolute_error(y_test, y_test_pred)
test_mse = mean_squared_error(y_test, y_test_pred)
test_rmse = np.sqrt(test_mse)
print('Test MAE:', test_mae)
print('Test MSE:', test mse)
print('Test RMSE:', test_rmse)
Test MAE: 48683.51726441247
Test MSE: 4208824782.898014
Test RMSE: 64875.45593595481
```

Model 2: All Features Excluding Zipcode

```
# Model without zipcodes
[c for c in X_train_scaled.columns if not c.startswith('zipcode')]

['const',
   'bedrooms',
   'bathrooms',
   'sqft_living',
   'floors',
   'waterfront',
   'condition',
   'grade',
   'renovated',
   'basement_present']
```

model2 = sm.OLS(y_train, X_train_scaled[[c for c in X_train_scaled.columns if model2.summary2()

Model:	OLS	Adj. R-squared:	0.274
Dependent Variable:	price	AIC:	310058.2259
Date:	2021-11-07 12:33	BIC:	310132.0999
No. Observations:	11937	Log-Likelihood:	-1.5502e+05
Df Model:	9	F-statistic:	502.4
Df Residuals:	11927	Prob (F-statistic):	0.00
R-squared:	0.275	Scale:	1.1163e+10

	Coef.	Std.Err.	t	P> t	[0.0
const	399995.9067	967.0205	413.6375	0.0000	398100
bedrooms	-9259.6531	1252.8124	-7.3911	0.0000	-11715.
bathrooms	-7685.7973	1492.9577	-5.1480	0.0000	-10612
sqft_living	32467.9265	1589.2035	20.4303	0.0000	29352

floors	13156.1308	1279.6647	10.2809	0.0000	10647.
waterfront	3319.7723	968.5369	3.4276	0.0006	1421.28
condition	10388.1898	1020.9067	10.1755	0.0000	8387.0
grade	40496.1086	1306.6716	30.9918	0.0000	37934
renovated	4306.2156	970.8841	4.4354	0.0000	2403.1
basement_present	20118.1663	1080.4635	18.6199	0.0000	18000.

Omnibus:	560.278	Durbin-Watson:	2.020
Prob(Omnibus):	0.000	Jarque-Bera (JB):	331.293
Skew:	0.266	Prob(JB):	0.000
Kurtosis:	2.381	Condition No.:	3

```
# Check linearity and residual normality
sm.graphics.qqplot(model2.resid, dist=stats.norm, line='45', fit=True);
```



```
create_vif_dct(X_train_scaled[[c for c in X_train_scaled.columns if not c.sta
```

```
{'const': 1.0,
  'bedrooms': 1.6784204890659655,
  'bathrooms': 2.3835466342659077,
  'sqft_living': 2.7007704622217075,
  'floors': 1.7511405980093482,
  'waterfront': 1.003138717164317,
  'condition': 1.114553090585022,
  'grade': 1.8258350881548409,
  'renovated': 1.0080067669410961,
  'basement_present': 1.2483858731730055}
```

MODEL VI - Combining Features Into One Model

Dep. Variable:	price	R-squared:	0.329
Model:	OLS	Adj. R-squared:	0.329
Method:	Least Squares	F-statistic:	585.8
Date:	Sun, 07 Nov 2021	Prob (F-statistic):	0.00
Time:	12:33:02	Log-Likelihood:	-1.5455e+05
No. Observations:	11937	AIC:	3.091e+05
Df Residuals:	11926	BIC:	3.092e+05
Df Model:	10		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	
const	4.107e+05	1011.622	405.947	0.000	4.09e+05	4
sqft_living	3.192e+04	1151.958	27.707	0.000	2.97e+04	3
floors	3804.4366	1063.923	3.576	0.000	1718.975	5
waterfront	4354.0289	930.851	4.677	0.000	2529.409	6
condition	9896.3054	980.274	10.095	0.000	7974.809	1
grade	4.113e+04	1228.119	33.488	0.000	3.87e+04	4
zipcode_98023	-1.487e+05	5477.516	-27.149	0.000	-1.59e+05	_
zipcode_98034	3.045e+04	5589.444	5.447	0.000	1.95e+04	4
zipcode_98133	-1.6e+04	5469.389	-2.925	0.003	-2.67e+04	_
zipcode_98042	-1.179e+05	5291.954	-22.277	0.000	-1.28e+05	_
zipcode_98038	-8.43e+04	5273.910	-15.985	0.000	-9.46e+04	_

Omnibus:	253.525	Durbin-Watson:	2.020
Prob(Omnibus):	0.000	Jarque-Bera (JB):	194.004
Skew:	0.225	Prob(JB):	7.46e-43
Kurtosis:	2.567	Cond. No.	8.78

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
model_vii = sm.OLS(y_train, X_train_scaled[
```

```
['const', 'bedrooms', 'bathrooms'
'condition','grade','renovated',
'zipcode_98038', 'zipcode_98042'
'zipcode_98023', 'zipcode_98118'
'zipcode_98155', 'zipcode_98117'
'zipcode_98125', 'zipcode_98092'
'zipcode_98059', 'zipcode_98106'
'zipcode_98031', 'zipcode_98003'
'zipcode_98065', 'zipcode_98030'
'zipcode_98074', 'zipcode_98030'
'zipcode_98022', 'zipcode_98029'
'zipcode_98053', 'zipcode_98008'
]]).fit()
```

model_vii.summary()

CEG REGRESSION RESUM			
Dep. Variable:	price	R-squared:	0.596
Model:	OLS	Adj. R-squared:	0.594
Method:	Least Squares	F-statistic:	364.7
Date:	Sun, 07 Nov 2021	Prob (F-statistic):	0.00
Time:	12:33:02	Log-Likelihood:	-1.5153e+05
No. Observations:	11937	AIC:	3.032e+05
Df Residuals:	11888	BIC:	3.035e+05
Df Model:	48		
Covariance Type:	nonrobust		

	_		3 13		
	coef	std err	t	P> t	[0.025
const	4.241e+05	1512.474	280.394	0.000	4.21e+05
bedrooms	-5652.4156	949.744	-5.952	0.000	-7514.070
bathrooms	673.0833	1143.095	0.589	0.556	-1567.569
sqft_living	4.784e+04	1232.513	38.813	0.000	4.54e+04
floors	-2145.8828	1023.023	-2.098	0.036	-4151.175
waterfront	4766.5831	727.412	6.553	0.000	3340.736
condition	9873.3829	778.366	12.685	0.000	8347.658
grade	3.4e+04	1007.305	33.757	0.000	3.2e+04
renovated	2936.9211	729.642	4.025	0.000	1506.704
basement_present	4027.3021	869.001	4.634	0.000	2323.919
zipcode_98038	-9.724e+04	4338.657	-22.411	0.000	-1.06e+05
zipcode_98042	-1.32e+05	4338.533	-30.418	0.000	-1.4e+05
zipcode_98133	-2.739e+04	4455.160	-6.148	0.000	-3.61e+04
zipcode_98034	1.609e+04	4546.334	3.538	0.000	7173.768
zipcode_98023	-1.649e+05	4453.855	-37.019	0.000	-1.74e+05
zipcode_98118	-1.931e+04	4858.360	-3.975	0.000	-2.88e+04
zipcode_98058	-1.062e+05	4717.466	-22.505	0.000	-1.15e+05
zipcode_98103	8.163e+04	4841.251	16.862	0.000	7.21e+04
zipcode_98155	-2.489e+04	4733.689	-5.259	0.000	-3.42e+04
zipcode_98117	9.952e+04	4753.278	20.937	0.000	9.02e+04
zipcode_98115	9.841e+04	4945.940	19.898	0.000	8.87e+04
zipcode_98056	-5.582e+04	5024.579	-11.109	0.000	-6.57e+04
zipcode_98125	1.505e+04	5160.293	2.917	0.004	4938.072
zipcode_98092	-1.441e+05	5387.935	-26.737	0.000	-1.55e+05
zipcode_98126	4884.4199	5362.752	0.911	0.362	-5627.452

JJ F IVI	viiiiiiiii/i/iatii/oii_Fiiase2	_1 mai_ v1_bu1. 1 mase 2	. 1 Toject - Jupyter 140	nebook and i ies	Ciltation
zipcode_98052	6.416e+04	5288.481	12.133	0.000	5.38e+04
zipcode_98059	-4.759e+04	4948.292	-9.617	0.000	-5.73e+04
zipcode_98106	-6.254e+04	5466.575	-11.440	0.000	-7.33e+04
zipcode_98027	2.428e+04	5701.700	4.258	0.000	1.31e+04
zipcode_98028	-1.144e+04	5831.027	-1.962	0.050	-2.29e+04
zipcode_98031	-1.381e+05	5675.108	-24.343	0.000	-1.49e+05
zipcode_98003	-1.477e+05	5868.998	-25.158	0.000	-1.59e+05
zipcode_98055	-1.076e+05	5924.361	-18.156	0.000	-1.19e+05
zipcode_98144	2.038e+04	6010.006	3.391	0.001	8598.944
zipcode_98065	7408.9745	6024.633	1.230	0.219	-4400.292
zipcode_98030	-1.382e+05	6153.042	-22.459	0.000	-1.5e+05
zipcode_98198	-1.162e+05	6105.088	-19.035	0.000	-1.28e+05
zipcode_98146	-6.421e+04	6142.551	-10.453	0.000	-7.62e+04
zipcode_98074	4.896e+04	6139.049	7.975	0.000	3.69e+04
zipcode_98178	-1.067e+05	6180.882	-17.258	0.000	-1.19e+05
zipcode_98116	9.309e+04	6374.520	14.604	0.000	8.06e+04
zipcode_98168	-1.21e+05	6444.202	-18.776	0.000	-1.34e+05
zipcode_98022	-1.17e+05	6283.692	-18.626	0.000	-1.29e+05
zipcode_98029	5.868e+04	6335.627	9.262	0.000	4.63e+04
zipcode_98107	1.172e+05	6450.715	18.164	0.000	1.05e+05
zipcode_98166	-4.721e+04	6394.965	-7.382	0.000	-5.97e+04
zipcode_98053	6.066e+04	6506.307	9.324	0.000	4.79e+04
zipcode_98008	7.098e+04	6420.251	11.056	0.000	5.84e+04
zipcode_98072	1.54e+04	6564.236	2.345	0.019	2528.185

Omnibus:	270.308	Durbin-Watson:	2.016
Prob(Omnibus):	0.000	Jarque-Bera (JB):	488.488

Skew:	0.178	Prob(JB):	8.44e-107
Kurtosis:	3.925	Cond. No.	25.7

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Dep. Variable:	price	R-squared:	0.594
Model:	OLS	Adj. R-squared:	0.593
Method:	Least Squares	F-statistic:	378.6
Date:	Sun, 07 Nov 2021	Prob (F-statistic):	0.00
Time:	12:33:02	Log-Likelihood:	-1.5155e+05
No. Observations:	11937	AIC:	3.032e+05
Df Residuals:	11890	BIC:	3.035e+05
Df Model:	46		
Covariance Type:	nonrobust		

coef	std err	t	P> t	[0.025

05 1 111	viiiiiiii/i iatiioii_i i	14302_1 11141_ V1_D41. 1 1	mac 2 i roject supy	ici i totebook ain	a i rescitation	
const	4.243e+05	1514.371	280.169	0.000	4.21e+05	4
bedrooms	-5846.3693	950.573	-6.150	0.000	-7709.647	
bathrooms	1885.2190	1116.215	1.689	0.091	-302.745	,
sqft_living	4.915e+04	1208.369	40.673	0.000	4.68e+04	į
floors	-4210.8972	931.176	-4.522	0.000	-6036.154	
waterfront	4848.5357	728.354	6.657	0.000	3420.842	(
condition	9661.6760	777.909	12.420	0.000	8136.847	,
grade	3.363e+04	1006.737	33.409	0.000	3.17e+04	;
zipcode_98038	-9.973e+04	4317.858	-23.098	0.000	-1.08e+05	
zipcode_98042	-1.34e+05	4323.998	-30.987	0.000	-1.42e+05	
zipcode_98133	-2.647e+04	4458.504	-5.936	0.000	-3.52e+04	
zipcode_98034	1.513e+04	4550.279	3.325	0.001	6211.093	:
zipcode_98023	-1.658e+05	4457.706	-37.198	0.000	-1.75e+05	
zipcode_98118	-1.777e+04	4852.669	-3.662	0.000	-2.73e+04	
zipcode_98058	-1.073e+05	4717.716	-22.753	0.000	-1.17e+05	
zipcode_98103	8.382e+04	4826.380	17.366	0.000	7.44e+04	!
zipcode_98155	-2.506e+04	4740.521	-5.286	0.000	-3.44e+04	
zipcode_98117	1.018e+05	4736.929	21.492	0.000	9.25e+04	,
zipcode_98115	1.007e+05	4929.541	20.436	0.000	9.11e+04	,
zipcode_98056	-5.739e+04	5024.052	-11.424	0.000	-6.72e+04	
zipcode_98125	1.575e+04	5165.362	3.048	0.002	5621.331	
zipcode_98092	-1.464e+05	5375.938	-27.234	0.000	-1.57e+05	
zipcode_98126	6264.9652	5358.860	1.169	0.242	-4239.276	,
zipcode_98052	6.385e+04	5295.982	12.056	0.000	5.35e+04	
zipcode_98059	-4.989e+04	4933.774	-10.112	0.000	-5.96e+04	
zipcode_98106	-6.055e+04	5457.551	-11.095	0.000	-7.13e+04	

3 PM	viiiiiiiii/1 latiioii_1 l	nasez_Finai_vi_Bui: Pi	lase 2 i foject - Jupy	ici ivoicook and	i i ieschiation
zipcode_98027	2.441e+04	5708.051	4.276	0.000	1.32e+04
zipcode_98028	-1.237e+04	5837.607	-2.119	0.034	-2.38e+04
zipcode_98031	-1.398e+05	5676.382	-24.631	0.000	-1.51e+05
zipcode_98003	-1.488e+05	5874.459	-25.332	0.000	-1.6e+05
zipcode_98055	-1.087e+05	5930.030	-18.325	0.000	-1.2e+05
zipcode_98144	2.343e+04	5980.197	3.918	0.000	1.17e+04
zipcode_98065	4519.2460	6009.425	0.752	0.452	-7260.210
zipcode_98030	-1.404e+05	6149.610	-22.837	0.000	-1.52e+05
zipcode_98198	-1.168e+05	6112.938	-19.110	0.000	-1.29e+05
zipcode_98146	-6.337e+04	6146.651	-10.309	0.000	-7.54e+04
zipcode_98074	4.809e+04	6145.960	7.824	0.000	3.6e+04
zipcode_98178	-1.06e+05	6188.362	-17.136	0.000	-1.18e+05
zipcode_98116	9.647e+04	6356.201	15.177	0.000	8.4e+04
zipcode_98168	-1.206e+05	6451.844	-18.687	0.000	-1.33e+05
zipcode_98022	-1.19e+05	6270.925	-18.980	0.000	-1.31e+05
zipcode_98029	5.718e+04	6339.675	9.019	0.000	4.47e+04
zipcode_98107	1.202e+05	6428.753	18.698	0.000	1.08e+05
zipcode_98166	-4.647e+04	6401.602	-7.260	0.000	-5.9e+04
zipcode_98053	5.755e+04	6488.655	8.870	0.000	4.48e+04
zipcode_98008	6.966e+04	6425.601	10.841	0.000	5.71e+04
zipcode_98072	1.44e+04	6571.852	2.191	0.028	1519.519

Omnibus:	274.230	Durbin-Watson:	2.017
Prob(Omnibus):	0.000	Jarque-Bera (JB):	495.916
Skew:	0.181	Prob(JB):	2.06e-108
Kurtosis:	3.930	Cond. No.	25.7

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
{'const': 4.369725983879623,
 'bedrooms': 1.7217107677678187,
 'bathrooms': 2.3740262731332087,
 'sqft living': 2.7822034535701605,
 'floors': 1.6521639283198817,
 'waterfront': 1.0108229358922625,
 'condition': 1.1530477044209724,
 'grade': 1.9311768338639281,
 'zipcode 98038': 1.1310582307350479,
 'zipcode_98042': 1.1119573653335004,
 'zipcode_98133': 1.1048559490438092,
 'zipcode_98034': 1.1010391596644689,
 'zipcode 98023': 1.1074410168301358,
 'zipcode_98118': 1.0921759799392237,
 'zipcode_98058': 1.0929327058184868,
 'zipcode 98103': 1.1403385012782687,
 'zipcode_98155': 1.0933301221801928,
 'zipcode_98117': 1.0984603918015572,
 'zipcode_98115': 1.0864756529302824,
 'zipcode_98056': 1.0863067171350993,
 'zipcode_98125': 1.0750438394752115,
 'zipcode_98092': 1.076052729999994,
 'zipcode 98126': 1.0780274053189864,
 'zipcode_98052': 1.0743536168784191,
 'zipcode_98059': 1.0920411077296286,
 'zipcode 98106': 1.0724286270863268,
 'zipcode_98027': 1.062916758805177,
 'zipcode 98028': 1.059169145684753,
 'zipcode_98031': 1.0610813451510335,
 'zipcode_98003': 1.0566026776285689,
```

```
'zipcode_98055': 1.0549609390062185,
 'zipcode_98144': 1.061832605422847,
 'zipcode_98065': 1.083399255936633,
 'zipcode_98030': 1.0526281865251654,
 'zipcode_98198': 1.0574706129067932,
 'zipcode_98146': 1.0574667844366896,
 'zipcode_98074': 1.0630781153416873,
 'zipcode_98178': 1.0600041905229836,
 'zipcode_98116': 1.049370290096881,
 'zipcode_98168': 1.0618004887674302,
 'zipcode_98022': 1.051906702404663,
 'zipcode_98029': 1.0688645161908064,
 'zipcode_98107': 1.0734626251617383,
 'zipcode_98166': 1.051691153998909,
 'zipcode_98053': 1.0543317642868377,
 'zipcode_98008': 1.059591481845864,
 'zipcode_98072': 1.047976247703205}
# Check linearity and residual normality
sm.graphics.gqplot(model_viii.resid, dist=stats.norm, line='45', fit=True);
```

FINAL MODEL

- ** Final Model includes:
 - 1. Bedrooms
 - 2. Bathrooms
 - 3. Square Feet Living
 - 4. Floors
 - 5. Waterfront
 - 6. Condition
 - 7. Grade
 - 8. Renovation Status
 - 9. Basement Present
- 10. All Zipcodes

Excluding zipcodes, Square Feet Living, Grade, and Condition are the strongest determinants of price

0.740	Adj. R-squared:	OLS	Model:
297876.8343	AIC:	price	Dependent Variable:
298453.0513	BIC:	2021-11-07 12:33	Date:
-1.4886e+05	Log-Likelihood:	11937	No. Observations:
442.0	F-statistic:	77	Df Model:
0.00	Prob (F-statistic):	11859	Df Residuals:
4.0005e+09	Scale:	0.742	R-squared:

	Coef.	Std.Err.	t	P> t	[0.025	0.975]
const	273461.5916	4044.2866	67.6168	0.0000	265534.1265	281389.0568
bedrooms	-3777.9235	766.3772	-4.9296	0.0000	-5280.1485	-2275.6984
bathrooms	4006.3214	919.1677	4.3586	0.0000	2204.6018	5808.0409
sqft_living	57514.2433	1008.2400	57.0442	0.0000	55537.9275	59490.5591
floors	-7602.7410	836.6282	-9.0874	0.0000	-9242.6695	-5962.8125
waterfront	5088.3292	600.9064	8.4678	0.0000	3910.4541	6266.2043
condition	9541.0686	629.4496	15.1578	0.0000	8307.2442	10774.8930
grade	26074.4898	818.0044	31.8757	0.0000	24471.0669	27677.9126
renovated	1469.4406	585.5021	2.5097	0.0121	321.7605	2617.1207

model_final = sm.OLS(y_train, X_train_scaled).fit()
model_final.summary2()

Model:	OLS	Adj. R-squared:	0.740
Dependent Variable:	price	AIC:	297876.8343
Date:	2021-11-07 12:33	BIC:	298453.0513
No. Observations:	11937	Log-Likelihood:	-1.4886e+05
Df Model:	77	F-statistic:	442.0
Df Residuals:	11859	Prob (F-statistic):	0.00
R-squared:	0.742	Scale:	4.0005e+09

Coef.	Std.Err.	t	P> t	[0.

03 1 11	viiiiiiiii/i latifoli_i liase2_i	mai_ vi_Dui. I mase 2 i roje	ct supplet Holeboo.	k and i resentation	
const	273461.5916	4044.2866	67.6168	0.0000	26553
bedrooms	-3777.9235	766.3772	-4.9296	0.0000	-5280
bathrooms	4006.3214	919.1677	4.3586	0.0000	2204.6
sqft_living	57514.2433	1008.2400	57.0442	0.0000	55537
floors	-7602.7410	836.6282	-9.0874	0.0000	-9242
waterfront	5088.3292	600.9064	8.4678	0.0000	3910.4
condition	9541.0686	629.4496	15.1578	0.0000	8307.2
grade	26074.4898	818.0044	31.8757	0.0000	24471
renovated	1469.4406	585.5021	2.5097	0.0121	321.76
basement_present	-5546.0095	721.8063	-7.6835	0.0000	-6960
zipcode_98002	-12900.2509	6672.4427	-1.9334	0.0532	-2597
zipcode_98003	1740.5176	6073.0427	0.2866	0.7744	-10163
zipcode_98004	371396.6894	16329.9337	22.7433	0.0000	33938
zipcode_98005	274013.6629	11045.7926	24.8071	0.0000	25236
zipcode_98006	205246.6476	6840.1134	30.0063	0.0000	19183
zipcode_98007	217263.7113	8409.3343	25.8360	0.0000	20078
zipcode_98008	218106.1136	6419.7078	33.9745	0.0000	20552
zipcode_98010	81149.0139	8837.8775	9.1820	0.0000	63825
zipcode_98011	152927.1362	6972.9153	21.9316	0.0000	13925
zipcode_98014	109662.0470	8779.5741	12.4906	0.0000	92452
zipcode_98019	109764.3159	6680.2900	16.4311	0.0000	96669
zipcode_98022	27124.5154	6326.2211	4.2876	0.0000	14724
zipcode_98023	-15749.6244	5246.0488	-3.0022	0.0027	-2603
zipcode_98024	146195.0964	10266.6456	14.2398	0.0000	12607
zipcode_98027	176260.9931	5977.1620	29.4891	0.0000	16454
zipcode_98028	136320.8952	6044.3505	22.5534	0.0000	12447

OS PIVI	viiiiiiiii/Fiatifoii_Piiase2_F	mai_vi_bui: Phase 2 Proje	ct - Jupyter Noteboor	k and Presentation	
zipcode_98029	212325.4807	6367.1670	33.3469	0.0000	19984
zipcode_98030	7039.3493	6236.4236	1.1287	0.2590	-5185.
zipcode_98031	8528.6375	5947.0968	1.4341	0.1516	-3128.
zipcode_98032	-12228.0316	8048.1848	-1.5194	0.1287	-2800
zipcode_98033	243677.5076	6552.8165	37.1867	0.0000	23083
zipcode_98034	164507.8973	5296.9041	31.0574	0.0000	15412!
zipcode_98038	46302.0157	5160.2523	8.9728	0.0000	36187.
zipcode_98040	326034.5377	15875.7881	20.5366	0.0000	29491
zipcode_98042	12705.2104	5169.8264	2.4576	0.0140	2571.5
zipcode_98045	98823.0902	6641.1928	14.8803	0.0000	85805
zipcode_98052	215402.6310	5726.3997	37.6157	0.0000	20417
zipcode_98053	206380.7334	6463.6923	31.9292	0.0000	19371(
zipcode_98055	39586.2889	6104.4362	6.4848	0.0000	27620
zipcode_98056	89444.2979	5560.3379	16.0861	0.0000	78545
zipcode_98058	40893.6048	5385.8663	7.5928	0.0000	30336
zipcode_98059	94956.6570	5502.1248	17.2582	0.0000	84171.
zipcode_98065	147969.0730	6142.4173	24.0897	0.0000	13592
zipcode_98070	140768.2153	8714.9958	16.1524	0.0000	12368
zipcode_98072	164199.6052	6510.4262	25.2210	0.0000	15143
zipcode_98074	201284.7308	6243.5589	32.2388	0.0000	18904
zipcode_98075	234327.9686	8190.9122	28.6083	0.0000	21827
zipcode_98077	162743.2665	8442.3655	19.2770	0.0000	14619
zipcode_98092	1469.8656	5764.3941	0.2550	0.7987	-9829
zipcode_98102	297088.5562	11696.2982	25.4002	0.0000	27416 ⁻
zipcode_98103	244078.3724	5508.9174	44.3061	0.0000	23327
zipcode_98105	305088.9218	8436.7538	36.1619	0.0000	28855

03 1 141	viiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	mai_ v i_bui. I mase 2 i roje	ct supyter received	k and i resemation	
zipcode_98106	93248.0402	5853.3725	15.9307	0.0000	81774.
zipcode_98107	281918.8926	6487.5995	43.4550	0.0000	26920
zipcode_98108	102847.1230	6800.2672	15.1240	0.0000	89517.
zipcode_98109	311859.4786	12871.0024	24.2296	0.0000	28663
zipcode_98112	303265.9515	9963.8199	30.4367	0.0000	28373
zipcode_98115	256862.6724	5559.8617	46.1995	0.0000	24596
zipcode_98116	253719.7551	6430.9779	39.4527	0.0000	241113
zipcode_98117	258242.1319	5454.1378	47.3479	0.0000	24755
zipcode_98118	134570.4171	5496.9936	24.4807	0.0000	12379
zipcode_98119	298357.7687	9594.9537	31.0953	0.0000	27955
zipcode_98122	241509.4396	6810.3713	35.4620	0.0000	22815
zipcode_98125	168574.7553	5663.5136	29.7650	0.0000	15747:
zipcode_98126	161024.4470	5796.9920	27.7772	0.0000	14966
zipcode_98133	126406.2882	5269.6185	23.9877	0.0000	116076
zipcode_98136	210242.1271	6579.1944	31.9556	0.0000	19734
zipcode_98144	181420.9715	6201.6122	29.2538	0.0000	16926
zipcode_98146	84728.6154	6252.1137	13.5520	0.0000	72473
zipcode_98148	35848.0297	10909.3826	3.2860	0.0010	14463
zipcode_98155	124424.9608	5408.6518	23.0048	0.0000	11382
zipcode_98166	101217.5922	6410.7730	15.7887	0.0000	88651
zipcode_98168	27999.3152	6444.6792	4.3446	0.0000	15366
zipcode_98177	185891.7024	7048.3104	26.3739	0.0000	17207!
zipcode_98178	41204.4668	6272.8717	6.5687	0.0000	28908
zipcode_98188	24276.5388	7679.7197	3.1611	0.0016	9223.(
zipcode_98198	31612.4188	6226.1773	5.0773	0.0000	19408
zipcode_98199	267319.0664	7404.9794	36.0999	0.0000	25280

Omnibus:	561.223	Durbin-Watson:	2.024
Prob(Omnibus):	0.000	Jarque-Bera (JB):	1486.527
Skew:	0.243	Prob(JB):	0.000
Kurtosis:	4.659	Condition No.:	100

```
# Results sorted by coefficients descending

results_as_html = model_final.summary().tables[1].as_html()
results = pd.read_html(results1_as_html, header=0, index_col=0)[0]
results.sort_values('coef', ascending=False)

<style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; }
    .dataframe tbody tr th {
        vertical-align: top;
    }

    .dataframe thead th {
        text-align: right;
    }
```

</style>

· ·					
	coef	std err	t	P> t	[0.025
zipcode_98004	371400.0000	16300.000	22.743	0.000	339000.00
zipcode_98040	326000.0000	15900.000	20.537	0.000	295000.00
zipcode_98109	311900.0000	12900.000	24.230	0.000	287000.00
zipcode_98105	305100.0000	8436.754	36.162	0.000	289000.00
zipcode_98112	303300.0000	9963.820	30.437	0.000	284000.0
•••	•••	•••		•••	•••
basement_present	-5546.0095	721.806	-7.684	0.000	-6960.868
floors	-7602.7410	836.628	-9.087	0.000	-9242.669
zipcode_98032	-12230.0000	8048.185	-1.519	0.129	-28000.00
zipcode_98002	-12900.0000	6672.443	-1.933	0.053	-26000.00

	coef	std err	t	P> t	[0.025
zipcode_98023	-15750.0000	5246.049	-3.002	0.003	-26000.00

78 rows × 6 columns

Check Linear Model Assumptions

1. Linearity

sm.graphics.qqplot(model.resid, dist=stats.norm, line='45', fit=True)

2. Residual Normality

- sm.graphics.qqplot(model.resid, dist=stats.norm, line='45', fit=True)
- Omnibus Value

3. Homoskedasticity

Durbin-Watson: range of 1.5 to 2.5 is relatively normal

4. Multicollinearity

- VIF (variance_inflation_factor())
- Anything above 10 needs to be removed

Also check p-value

 A p-value less than 0.05 (typically ≤ 0.05) is statistically significant. It indicates strong evidence against the null hypothesis, as there is less than a 5% probability the null is correct (and the results are random).

Check for overfitting

- Test vs. Train Data, compare:
- 1. Mean Absolute Error (MAE)
- 2. Mean Sqaured Error (MSE)
- 3. Root Mean Sqaured Error (RMSE)

Check for Linearity and Residual Normality using Q-Q Plot

There are some tails but overall residuals appear normal

```
# Check Linearity and Residual Normality
sm.graphics.qqplot(model_final.resid, dist=stats.norm, line='45', fit=True);
```


Check for Multicolinearity using VIF (Variance Inflation Factor)

- Removed all variance inflation factors above 10
- All remaining are below 10

```
# Check for multicolinearity - anything over 10 is not good!
create_vif_dct(X_train_scaled)
```

```
{'const': 48.804888593432594,
  'bedrooms': 1.7525266115446538,
  'bathrooms': 2.520977861021298,
  'sqft_living': 3.0332438247636637,
  'floors': 2.0885480888237606,
  'waterfront': 1.0774400957148569,
  'condition': 1.1822282938705688,
  'grade': 1.996598740009202,
  'renovated': 1.0229074802205151,
  'basement_present': 1.554607741508546,
  'zipcode_98002': 1.572374400097395,
  'zipcode_98003': 1.7683916273984623,
  'zipcode_98004': 1.065100539678895,
  'zipcode_98005': 1.1552525010993069,
  'zipcode_98006': 1.5495760787475503,
```

```
'zipcode 98007': 1.2999857058283855,
'zipcode_98008': 1.6562704322361503,
'zipcode_98010': 1.2621828886369568,
'zipcode_98011': 1.4914193011733052,
'zipcode_98014': 1.264640922782956,
'zipcode_98019': 1.5651862005750914,
'zipcode_98022': 1.6764572920324579,
'zipcode_98023': 2.401885345658481,
'zipcode_98024': 1.1811733768623345,
'zipcode_98027': 1.8251705776763347,
'zipcode_98028': 1.7782165922916775,
'zipcode_98029': 1.688382860504492,
'zipcode_98030': 1.695277852470107,
'zipcode_98031': 1.8239180673146302,
'zipcode_98032': 1.3345289185972118,
'zipcode_98033': 1.6002524120784773,
'zipcode_98034': 2.336472752494877,
'zipcode_98038': 2.529762947645856,
'zipcode_98040': 1.0695100160422801,
'zipcode_98042': 2.48919498398572,
'zipcode_98045': 1.5684405390947247,
'zipcode_98052': 1.9670133379258323,
'zipcode_98053': 1.6383968948327174,
'zipcode_98055': 1.7506671291350397,
'zipcode 98056': 2.08370547501707,
'zipcode 98058': 2.230646819307026,
'zipcode_98059': 2.1268217530668387,
'zipcode_98065': 1.772519797918147,
'zipcode_98070': 1.3587003781601552,
'zipcode_98072': 1.610588276152504,
'zipcode 98074': 1.7180666400873077,
'zipcode_98075': 1.316109939412652,
'zipcode_98077': 1.2926215328810982,
'zipcode_98092': 1.9374125918788754,
'zipcode_98102': 1.1593679933535124,
'zipcode 98103': 2.3265534775693357,
'zipcode_98105': 1.3084770106186392,
'zipcode 98106': 1.9318565444070566,
'zipcode_98107': 1.7119511051672336,
'zipcode_98108': 1.5428738521577468,
'zipcode_98109': 1.1155508114641512,
'zipcode 98112': 1.2110043603791862,
'zipcode_98115': 2.164337059909012,
'zipcode_98116': 1.6821988102483125,
'zipcode 98117': 2.280513896798148,
'zipcode_98118': 2.1946814064237246,
'zipcode_98119': 1.2370712597262954,
'zipcode 98122': 1.5701214411554572,
'zipcode_98125': 2.0238874056833405,
'zipcode_98126': 1.9755145425871357,
'zipcode_98133': 2.4169932736595734,
```

```
'zipcode_98136': 1.6342507660544252,
'zipcode_98144': 1.7882327681733308,
'zipcode_98146': 1.713299220605527,
'zipcode_98148': 1.1564530569895037,
'zipcode_98155': 2.228779395730326,
'zipcode_98166': 1.651663330462584,
'zipcode_98168': 1.6590811305558477,
'zipcode_98177': 1.487356216897902,
'zipcode_98178': 1.7056064002303757,
'zipcode_98188': 1.3748946030663856,
'zipcode_98198': 1.7179126771024968,
'zipcode_98199': 1.4534675049413095}
```

Check for Homoskedasticity

- Durbin-Watson: range of 1.5 to 2.5 is relatively normal
- Model's Durbin-Watson is 2.024

Check for Over-fitting

- Check expected vs. predicted errors of Train Test sets
- Train and Test data are within range of each other
- The average expected error (mean absolute error) of the Train data is \\$47,496 while the aveage expected error of the Test data is \\$48,684

```
# Predictions on the training set

y_train_pred = model1.predict(X_train_scaled)

y_test_pred = model1.predict(X_test_scaled)

# Regression metrics for Train data

train_mae = mean_absolute_error(y_train, y_train_pred)

train_mse = mean_squared_error(y_train, y_train_pred)

train_rmse = np.sqrt(train_mse)

# Regression metrics for Test data

test_mae = mean_absolute_error(y_test, y_test_pred)

test_mse = mean_squared_error(y_test, y_test_pred)

test_mse = np.sqrt(test_mse)

print('Train MAE:', train_mae)

print('Train MAE:', test_mae)
```

```
print('Train MSE:', train_mse)
print('Test MSE:', test_mse)

print('Train RMSE:', train_rmse)
print('Test RMSE:', test_rmse)
```

Train MAE: 47495.546251964
Test MAE: 48683.51726441247
Train MSE: 3974372692.5231338
Test MSE: 4208824782.898014
Train RMSE: 63042.62599640924
Test RMSE: 64875.45593595481

Look at Unscaled/Raw Data for Price Expectations for Each Feature

```
X_train_raw = sm.add_constant(X_train_raw)
X_test_raw = sm.add_constant(X_test_raw)

model_unscaled = sm.OLS(y_train, X_train_raw).fit()
model_unscaled.summary2()
```

Model:	OLS	Adj. R-squared:	0.740
Dependent Variable:	price	AIC:	297876.8343
Date:	2021-11-07 12:33	BIC:	298453.0513
No. Observations:	11937	Log-Likelihood:	-1.4886e+05
Df Model:	77	F-statistic:	442.0
Df Residuals:	11859	Prob (F-statistic):	0.00
R-squared:	0.742	Scale:	4.0005e+09

	Coef.	Std.Err.	t	P> t	[0
const	-149137.4013	8569.2272	-17.4038	0.0000	-1659
bedrooms	-4531.8375	919.3137	-4.9296	0.0000	-6333
bathrooms	6163.4048	1414.0660	4.3586	0.0000	3391.6

			17		
sqft_living	93.8186	1.6447	57.0442	0.0000	90.59
floors	-14164.5223	1558.7061	-9.0874	0.0000	-17219
waterfront	148666.6664	17556.7947	8.4678	0.0000	11425
condition	15007.3150	990.0723	15.1578	0.0000	13066
grade	31571.1934	990.4461	31.8757	0.0000	29629
renovated	9812.2096	3909.6980	2.5097	0.0121	2148.5
basement_present	-11543.8567	1502.4188	-7.6835	0.0000	-1448
zipcode_98002	-12900.2509	6672.4427	-1.9334	0.0532	-2597
zipcode_98003	1740.5176	6073.0427	0.2866	0.7744	-1016:
zipcode_98004	371396.6894	16329.9337	22.7433	0.0000	33938
zipcode_98005	274013.6629	11045.7926	24.8071	0.0000	25236
zipcode_98006	205246.6476	6840.1134	30.0063	0.0000	19183
zipcode_98007	217263.7113	8409.3343	25.8360	0.0000	20078
zipcode_98008	218106.1136	6419.7078	33.9745	0.0000	20552
zipcode_98010	81149.0139	8837.8775	9.1820	0.0000	63825
zipcode_98011	152927.1362	6972.9153	21.9316	0.0000	13925
zipcode_98014	109662.0470	8779.5741	12.4906	0.0000	92452
zipcode_98019	109764.3159	6680.2900	16.4311	0.0000	96669
zipcode_98022	27124.5154	6326.2211	4.2876	0.0000	14724
zipcode_98023	-15749.6244	5246.0488	-3.0022	0.0027	-2603
zipcode_98024	146195.0964	10266.6456	14.2398	0.0000	12607
zipcode_98027	176260.9931	5977.1620	29.4891	0.0000	16454
zipcode_98028	136320.8952	6044.3505	22.5534	0.0000	12447
zipcode_98029	212325.4807	6367.1670	33.3469	0.0000	19984
zipcode_98030	7039.3493	6236.4236	1.1287	0.2590	-5185
zipcode_98031	8528.6375	5947.0968	1.4341	0.1516	-3128

05 1 111	viiiiiiiii/i latifoii_i liase2_i	mai_ vi_Dui. I mase 2 i roje	et supyter recessor	and resemation	
zipcode_98032	-12228.0316	8048.1848	-1.5194	0.1287	-2800
zipcode_98033	243677.5076	6552.8165	37.1867	0.0000	23083
zipcode_98034	164507.8973	5296.9041	31.0574	0.0000	15412
zipcode_98038	46302.0157	5160.2523	8.9728	0.0000	36187
zipcode_98040	326034.5377	15875.7881	20.5366	0.0000	29491
zipcode_98042	12705.2104	5169.8264	2.4576	0.0140	2571.5
zipcode_98045	98823.0902	6641.1928	14.8803	0.0000	85805
zipcode_98052	215402.6310	5726.3997	37.6157	0.0000	20417
zipcode_98053	206380.7334	6463.6923	31.9292	0.0000	19371
zipcode_98055	39586.2889	6104.4362	6.4848	0.0000	27620
zipcode_98056	89444.2979	5560.3379	16.0861	0.0000	78545
zipcode_98058	40893.6048	5385.8663	7.5928	0.0000	30336
zipcode_98059	94956.6570	5502.1248	17.2582	0.0000	84171
zipcode_98065	147969.0730	6142.4173	24.0897	0.0000	13592
zipcode_98070	140768.2153	8714.9958	16.1524	0.0000	12368
zipcode_98072	164199.6052	6510.4262	25.2210	0.0000	15143
zipcode_98074	201284.7308	6243.5589	32.2388	0.0000	18904
zipcode_98075	234327.9686	8190.9122	28.6083	0.0000	21827
zipcode_98077	162743.2665	8442.3655	19.2770	0.0000	14619
zipcode_98092	1469.8656	5764.3941	0.2550	0.7987	-9829
zipcode_98102	297088.5562	11696.2982	25.4002	0.0000	27416
zipcode_98103	244078.3724	5508.9174	44.3061	0.0000	23327
zipcode_98105	305088.9218	8436.7538	36.1619	0.0000	28855
zipcode_98106	93248.0402	5853.3725	15.9307	0.0000	81774
zipcode_98107	281918.8926	6487.5995	43.4550	0.0000	26920
zipcode_98108	102847.1230	6800.2672	15.1240	0.0000	89517

)	VIIIIIIII/1 IatifOii_1 Hasc2_1	mai_vi_bui. I mase 2 i roje	ct - Jupyter Notebook	and i resemation	
zipcode_98109	311859.4786	12871.0024	24.2296	0.0000	28663
zipcode_98112	303265.9515	9963.8199	30.4367	0.0000	28373
zipcode_98115	256862.6724	5559.8617	46.1995	0.0000	24596
zipcode_98116	253719.7551	6430.9779	39.4527	0.0000	241113
zipcode_98117	258242.1319	5454.1378	47.3479	0.0000	24755
zipcode_98118	134570.4171	5496.9936	24.4807	0.0000	12379
zipcode_98119	298357.7687	9594.9537	31.0953	0.0000	27955
zipcode_98122	241509.4396	6810.3713	35.4620	0.0000	22815
zipcode_98125	168574.7553	5663.5136	29.7650	0.0000	15747
zipcode_98126	161024.4470	5796.9920	27.7772	0.0000	14966
zipcode_98133	126406.2882	5269.6185	23.9877	0.0000	11607
zipcode_98136	210242.1271	6579.1944	31.9556	0.0000	19734
zipcode_98144	181420.9715	6201.6122	29.2538	0.0000	16926
zipcode_98146	84728.6154	6252.1137	13.5520	0.0000	72473
zipcode_98148	35848.0297	10909.3826	3.2860	0.0010	14463
zipcode_98155	124424.9608	5408.6518	23.0048	0.0000	11382
zipcode_98166	101217.5922	6410.7730	15.7887	0.0000	88651
zipcode_98168	27999.3152	6444.6792	4.3446	0.0000	15366
zipcode_98177	185891.7024	7048.3104	26.3739	0.0000	17207
zipcode_98178	41204.4668	6272.8717	6.5687	0.0000	28908
zipcode_98188	24276.5388	7679.7197	3.1611	0.0016	9223.0
zipcode_98198	31612.4188	6226.1773	5.0773	0.0000	19408
zipcode_98199	267319.0664	7404.9794	36.0999	0.0000	25280

Omnibus:	561.223	Durbin-Watson:	2.024
Prob(Omnibus):	0.000	Jarque-Bera (JB):	1486.527

Skew:	0.243	Prob(JB):	0.000
Kurtosis:	4.659	Condition No.:	111890

Evaluation and Conclusions

After building models to evaluate the relationship between price and several factors, we can offer guidance to new home buyers in WA State about the expectation of price relative to square feet of living, waterfront views, condition, and grade.

**** Important note: the results are best suited for home buyers seeking homes with a maximum of 6 bedrooms, 4000 square feet, and a budget ranging from \\$175,000 to \\$650,000

Conclusions

- The most important factors in our model, besides zipcode, are: Square Feet Living, Grade, and Condition
- The average price for a home in King County, WA is approximately \\$400,358
- Every additional square feet of space costs approximately \\$94. Note: other models showed this cost could be up to \$200 per square feet in the densest zipcodes
- The grade of a home (1-13) is a strong determinant of price. **Every grade increase** costs approximately \\$31,571
- The condition (1-5) is also a strong determinant; Every condition level increase costs approximately \\$15,007
- If the home has been renovated, the price is expected to be approximately \\$9812 more

Condition: Relative to Age and Grade

1= Poor Many repairs needed. Showing serious deterioration.

2= Fair Some repairs needed immediately. Much deferred maintenance.

3= Average Depending upon age of improvement; normal amount of upkeep for the age

of the home.

4= Good Condition above the norm for the age of the home. Indicates extra attention

and care has been taken to maintain.

5= Very Good Excellent maintenance and updating on home. Not a total renovation.

Residential Building Grades

Grades 1 - 3	Falls short of minimum building standards. Normally cabin or inferior structure.
Grade 4	Generally older low quality construction. Does not meet code.
Grade 5	Lower construction costs and workmanship. Small, simple design.
Grade 6	Lowest grade currently meeting building codes. Low quality materials, simple designs.
Grade 7	Average grade of construction and design. Commonly seen in plats and older subdivisions.
Grade 8	Just above average in construction and design. Usually better materials in both the exterior and interior finishes.
Grade 9	Better architectural design, with extra exterior and interior design and quality.
Grade 10	Homes of this quality generally have high quality features. Finish work is better, and more design quality is seen in the floor plans and larger square footage.
Grade 11	Custom design and higher quality finish work, with added amenities of solid woods, bathroom fixtures and more luxurious options.
Grade 12	Custom design and excellent builders. All materials are of the highest quality

Generally custom designed and built. Approaching the Mansion level. Large amount of highest quality cabinet work, wood trim and marble; large entries.

Future Work

Future work:

Grade 13

- Refine existing models and expand dataset for different types of home buyers
- Explore relationship of price to zip code
- Build models for Suburbs (Medina, WA) vs. City (Seattle, WA)

and all conveniences are present.

 Build more comprehensive models considering other factors such as location, renovations, waterfront view

Releases

Create a new release

Packages

No packages published Publish your first package

Languages

Jupyter Notebook 100.0%