EXERCICES — CHAPITRE 10

Probabilités

Exercice 1 – Soient p un réel appartenant à l'intervalle]0,1[et $(X_n)_{n\in\mathbb{N}^*}$ une suite de variables aléatoires indépendantes qui suivent toutes une loi de Bernoulli de paramètre p.

On pose pour tout $n \in \mathbb{N}^*$, $S_n = \sum_{k=1}^n X_k$. Justifier que pour tout $n \in \mathbb{N}^*$,

$$\forall \varepsilon > 0, \quad P\left(\left|\frac{S_n}{n} - p\right| \geqslant \varepsilon\right) \leqslant \frac{p(1-p)}{n\varepsilon^2}.$$

Exercice 2 – On considère une suite de lancers indépendants d'une même pièce équilibrée. Pour tout $n \in \mathbb{N}^*$, on note X_n la variable aléatoire égale à 1 si l'évènement "obtenir PILE" est réalisé au n-ième lancer et 0 sinon. Pour tout $n \in \mathbb{N}^*$, on pose $\overline{X_n} = \frac{X_1 + X_2 + \cdots + X_n}{n}$.

- 1. Que représente $\overline{X_n}$?
- 2. Justifier que, pour tout réel strictement positif ε ,

$$\lim_{n\to+\infty} P\left(\left|\overline{X_n} - \frac{1}{2}\right| < \varepsilon\right) = 1.$$

3. Le résultat précédent est-il conforme à l'intuition?

Exercice 3 (extrait de BSB 2018) – Dans tout l'exercice, *a* est un réel strictement positif.

1. Montrer que les intégrales

$$I = \int_{a}^{+\infty} \frac{1}{t^2} dt, \qquad J = \int_{a}^{+\infty} \frac{1}{t^3} dt \quad \text{et} \quad K = \int_{a}^{+\infty} \frac{1}{t^4} dt$$

sont convergentes et vérifier que $I = \frac{1}{a}$, $J = \frac{1}{2a^2}$ et $K = \frac{1}{3a^3}$.

On considère la fonction f définie sur $\mathbb R$ par

$$f(t) = \begin{cases} \frac{3a^3}{t^4} & \text{si } t \geqslant a, \\ 0 & \text{si } t < a. \end{cases}$$

2. Montrer en utilisant un des calculs de la question 1. que *f* peut être considérée comme une densité de probabilité.

On considère X une variable aléatoire de densité f.

3. Montrer en utilisant certains calculs de la question **1.** que *X* admet une espérance et une variance et vérifier que

$$E(X) = \frac{3a}{2}$$
 et $V(X) = \frac{3a^2}{4}$.

- 4. On note *F* la fonction de répartition de *X*.
 - (a) Calculer F(x) pour x < a.
 - (b) Justifier que lorsque $x \ge a$,

$$F(x) = 1 - \left(\frac{a}{x}\right)^3.$$

(c) Vérifier que

$$P(2a \le X \le 4a) = \frac{7}{64}$$
 et $P(X \ge 2a) = \frac{1}{8}$.

Calculer $P_{[X \ge 2a]}(X \le 4a)$.

5. On considère maintenant n variables aléatoires indépendantes $X_1, ..., X_n$ suivant la même loi que X. On pose

$$M_n = \frac{2}{3n} \sum_{k=1}^n X_k.$$

- (a) Calculer $E(M_n)$ et $V(M_n)$.
- (b) Soit ε un réel strictement positif. Montrer en utilisant l'inégalité de Bienaymé-Tchebychev que

$$P(|M_n-a|>\varepsilon)\leqslant \frac{a^2}{3n\varepsilon^2}.$$

Exercice 4 (**extrait de ESCP 2017**) – Soient a un réel vérifiant $-\frac{1}{2} \le a \le \frac{1}{2}$ et f la fonction définie sur \mathbb{R} par

$$f(x) = \begin{cases} \frac{1-a}{2} & \text{si } -1 \leqslant x \leqslant 0, \\ \frac{1+a}{2} & \text{si } 0 < x \leqslant 1, \\ 0 & \text{sinon.} \end{cases}$$

1. Vérifier que f est une densité de probabilité.

Dans la suite de l'exercice, on note X une variable aléatoire admettant f comme densité et on suppose que le paramètre a est inconnu.

2. Calculer E(X) et montrer que $V(X) = \frac{4-3a^2}{12}$.

- 3. Déterminer la fonction de répartition F_X de la variable aléatoire X.
- 4. Pour un entier $n \in \mathbb{N}^*$, on considère n variables aléatoires $X_1, X_2, ..., X_n$ indépendantes et suivant toutes la même loi que X. Pour tout $n \ge 1$, on pose

$$\overline{X_n} = \frac{1}{n} \sum_{k=1}^n X_k.$$

- (a) On pose $Y_n = 2\overline{X_n}$. Montrer que $E(Y_n) = a$.
- (b) Montrer que $V(Y_n) = \frac{4-3a^2}{3n}$.
- (c) Soit ε un réel strictement positif. En appliquant l'inégalité de Bienaymé-Tchebychev à Y_n , établir l'inégalité

$$P(|Y_n-a| \leqslant \varepsilon) \geqslant 1-\frac{4}{3n\varepsilon^2}.$$

Estimation

Exercice 5 – Soit R un réel strictement positif. On considère la fonction f définie sur \mathbb{R} par

$$f(t) = \begin{cases} 0 & \text{si } t < 0, \\ \frac{2t}{R^2} & \text{si } 0 \le t \le R, \\ 0 & \text{si } t > R. \end{cases}$$

1. Vérifier que *f* est bien une densité de probabilité.

Soit T une variable aléatoire de densité f.

- 2. Déterminer la fonction de répartition F_T de T.
- 3. Justifier que *T* admet une espérance et une variance et les déterminer.
- 4. Soient $n \ge 2$ un entier et $(T_1, ..., T_n)$ un échantillon de T. On définit la variable aléatoire $Y_n = \frac{1}{n} \sum_{k=1}^n T_k$.
 - (a) Calculer $E(Y_n)$ et $V(Y_n)$.
 - (b) En déduire que $Z_n = \frac{3}{2} Y_n$ est un estimateur sans biais de R.
 - (c) Déterminer le risque quadratique de Z_n .
- 5. On suppose qu'en simulant *T*, on a obtenu les valeurs suivantes :

En déduire une estimation de R.

Exercice 6 – Soit θ un réel strictement positif. On considère la fonction f définie sur \mathbb{R} par

$$f(t) = \begin{cases} 0 & \text{si } t < \theta, \\ e^{-(t-\theta)} & \text{si } t \geqslant \theta, \end{cases}$$

1. Vérifier que f est une densité de probabilité.

Soit T une variable aléatoire de densité f.

- 2. Déterminer la fonction de répartition F_T de T.
- 3. On introduit la variable aléatoire W définie par $W = T \theta$.
 - (a) Expliciter la fonction de répartition F_W de W puis reconnaître la loi de W.
 - (b) En déduire l'espérance et la variance de *W* puis l'espérance et la variance de *T*.
- 4. Soient $n \ge 2$ un entier et $(T_1, ..., T_n)$ un échantillon de T. On définit la variable aléatoire $Y_n = \frac{1}{n} \sum_{k=1}^n T_k$.
 - (a) Calculer $E(Y_n)$ et $V(Y_n)$.
 - (b) En déduire que $Z_n = Y_n 1$ est un estimateur sans biais de θ .
 - (c) Déterminer le risque quadratique de Z_n .
- 5. On suppose qu'en simulant *T*, on a obtenu les valeurs suivantes :

5.66, 5.1, 5.07, 5.60, 5.88, 6.52, 10.07, 6.38, 7.52, 5.58, 5.34, 5.31, 5.59, 7.91, 6.13

En déduire une estimation de θ .

Exercice 7 – Soient X une variable aléatoire qui suit la loi de Bernoulli de paramètre $p \in]0,1[$ et (X_1,\ldots,X_n) un échantillon de la loi de X. On pose $\overline{X_n} = \frac{1}{n}\sum_{k=1}^n X_k$ et $\alpha \in]0,1[$.

- 1. Calculer l'espérance et la variance de $\overline{X_n}$.
- 2. En utilisant l'inégalité de Bienaymé-Tchebychev, montrer que pour tout $\varepsilon > 0$,

$$P(|\overline{X_n}-p|\leqslant \varepsilon)\geqslant 1-\frac{p(1-p)}{n\varepsilon^2}.$$

3. En appliquant l'inégalité précédente à un ε bien choisi, en déduire que

$$P\left(p \in \left[\overline{X_n} - \frac{\sqrt{p(1-p)}}{\sqrt{\alpha} \cdot \sqrt{n}}, \overline{X_n} + \frac{\sqrt{p(1-p)}}{\sqrt{\alpha} \cdot \sqrt{n}}\right]\right) \geqslant 1 - \alpha.$$

- 4. Établir le tableau de variation sur [0,1] de la fonction f définie par f(x)=x(1-x). En déduire que $p(1-p) \leqslant \frac{1}{4}$.
- 5. En déduire un intervalle de confiance de p au niveau de confiance $1-\alpha$.