I prodotti semidiretti e i gruppi complementari

Francesca Erdas Relatore: Andrea Loi

Università degli studi di Cagliari-Corso di studi Matematica

24 Febbraio 2023

Obiettivi

- Classificare i gruppi di ordine pq, con p,q primi e $q \equiv 1 \mod p$, utilizzando i prodotti semidiretti di gruppi.
- Dare delle condizioni equivalenti all'esistenza di sottogruppi complementari ad un sottogruppo normale di un gruppo dato.

Indice

- 1. Prodotti semidiretti
- 2. Alcuni teoremi sui prodotti semidiretti
- 3. Gruppi di ordine pq con p,q primi e $q \equiv 1 \mod p$
- 4. Gruppi complementari

Prodotti semidiretti

Definizione

Dati due gruppi H e K e un omomorfismo $\varphi: K \to Aut(H)$, il corrispondente prodotto semidiretto $H \times_{\varphi} K$ è l'insieme:

$$H \times K = \{(h,k) : h \in H, k \in K\},\$$

con il prodotto:

$$(h,k)(h',k')=(h\varphi_k(h'),kk').$$

Osservazione

Si verifica, usando la definizione di prodotto semidiretto, che $H \times_{\varphi} K$ è un gruppo.

Alcuni teoremi sui prodotti semidiretti

Teorema 1

Sia G un gruppo, H, K < G tali che:

- (1) G = HK
- (2) $H \cap K = \{1\}$
- (3) $H \triangleleft G$
- e sia $\varphi: K \to Aut(H)$ definita come segue: $\varphi_k(h) = khk^{-1}$, $k \in K$, $h \in H$.

Allora φ è un omomorfismo e l'applicazione $f: H \times_{\varphi} K \to G$ definita come f(h,k) = hk è un isomorfismo.

Alcuni teoremi sui prodotti semidiretti

Teorema 2

Siano $f: H_1 \to H_2$ e $f': K_1 \to K_2$ isomorfismi di gruppi. Per ogni omomorfismo $\varphi: K_1 \to Aut(H_1)$ esiste un omomorfismo $\varphi': K_2 \to Aut(H_2)$ tale che:

$$H_1 \times_{\varphi} K_1 \cong H_2 \times_{\varphi'} K_2$$
.

Alcuni teoremi sui prodotti semidiretti

Lemma

Siano H e K due gruppi e $\varphi: K \to Aut(H)$ un omomorfismo. Allora per ogni automorfismo $f: K \to K$ vale:

$$H \times_{\varphi \circ f} K \cong H \times_{\varphi} K$$
.

Gruppi di ordine pq con p,q primi e $q\equiv 1$ mod p

Teorema 3

Se i primi p < q soddisfano $q \equiv 1 \mod p$ allora, a meno di isomorfismi, ci sono due gruppi di cardinalità pq: uno è ciclico e uno è non abeliano.

Gruppi di ordine pq con p,q primi e $q \equiv 1 \mod p$

Dimostrazione

Per ipotesi |G|=pq e p,q sono primi, perciò, per il teorema di Cauchy, esistono P e Q sottogruppi di G rispettivamente con cardinalità p,q. Siano n_p e n_q il numero di p-sottogruppi di Sylow e q-sottogruppi di Sylow di G. Dall'ipotesi che p,q sono primi segue che:

- ullet $n_q=1$, quindi $Q \triangleleft G$ (secondo e terzo teorema di Sylow);
- ullet $n_p=1$ oppure $n_p=q$ (secondo e terzo teorema di Sylow);
- $P \cap Q = \{1\}$.

Caso $n_p=1$

Si dimostra che se $x \in P$ e $y \in Q$ con $x, y \neq 1$ allora xy = yx, da cui segue che: o(xy) = pq, quindi $G = \langle xy \rangle$. Perciò G è ciclico.

Gruppi di ordine pq con p,q primi e $q \equiv 1 \mod p$

Dimostrazione

Caso $n_p = q$

Si dimostra che vale la seguente implicazione: $Q \triangleleft G \Rightarrow G = PQ$. Perciò dal teorema 1 segue che: $G \cong Q \times_{\varphi} P$, dove $\varphi : P \to Aut(Q)$ è definita come $\varphi_k(h) = khk^{-1}, \ k \in P, h \in Q$.

Dal teorema 2 segue che: esiste $\varphi': \mathbb{Z}_p \to Aut(\mathbb{Z}_q)$ omomorfismo tale che $Q \times_{\varphi} P \cong \mathbb{Z}_q \times_{\varphi'} \mathbb{Z}_p$. Quindi $G \cong \mathbb{Z}_q \times_{\varphi'} \mathbb{Z}_p$.

Si può ora dimostrare che, se $n_p=q$, a meno di isomorfismi, esiste un unico gruppo G non abeliano, con |G|=pq e $q\equiv 1$ mod p. La prova si basa sui seguenti punti:

- Se $\varphi': \mathbb{Z}_p \to Aut(\mathbb{Z}_q)$ omomorfismo non banale, allora $\varphi'_1(1)$ soddisfa le condizioni: $z^p \equiv 1 \mod q$, $z \neq 1$;
- $\{z \in (\mathbb{Z}_q)^x : z^p \equiv 1 \mod q\}$ è un sottogruppo di $(\mathbb{Z}_q)^x$ di ordine p;

Gruppi di ordine pq con p,q primi e $q\equiv 1$ mod p

Dimostrazione

- Dati due omomorfismi non banali $\varphi', \psi' : \mathbb{Z}_p \to Aut(\mathbb{Z}_q)$, esiste $f : \mathbb{Z}_p \to \mathbb{Z}_p$ automorfismo tale che $\psi' = \varphi' \circ f$. Perciò dal lemma segue che: $\mathbb{Z}_q \times_{\varphi'} \mathbb{Z}_p \cong \mathbb{Z}_q \times_{\psi'} \mathbb{Z}_p$;
- Se $\varphi': \mathbb{Z}_p \to Aut(\mathbb{Z}_q)$ omomorfismo non banale, allora $\mathbb{Z}_q \times_{\varphi'} \mathbb{Z}_p$ è non abeliano \square

Definizione

Sia G un gruppo e H,K due suoi sottogruppi tali che:

- \bullet G = HK
- $H \cap K = \{1\}$

allora H e K sono chiamati sottogruppi complementari.

Osservazioni

- Dato un sottogruppo $H \triangleleft G$ non è detto esista un sottogruppo complementare: Sia G un gruppo ciclico con $|G| = p^{\alpha}$, p primo, $\alpha \geq 2$, $\alpha \in \mathbb{N}$ e $H \triangleleft G$, 1 < |H| < |G|. Supponiamo che G = HK, con K < G. Per il teorema di Cauchy H e K hanno sottogruppi di ordine p. Poichè G è ciclico, ha un
 - solo sottogruppo di ordine p, perciò H e K hanno lo stesso sottogruppo di ordine p. Quindi $H \cap K \neq \{1\}$, di conseguenza H non ha sottogruppi complementari.
- 2) Dal teorema 1 sappiamo che: se $H \triangleleft G$ e $\exists K$ t.c. H.K siano sottogruppi complementari $\Rightarrow \exists \varphi$ omomorfismo t.c. $G \cong H \times_{\varphi} K$.

Quindi è utile studiare l'esitenza di sottogruppi complementari ad un sottogruppo dato $H \triangleleft G$.

13 / 17

Teorema 4

Sia $H \triangleleft G$, allora le seguenti condizioni sono equivalenti:

- (1) esiste un sottogruppo K complementare ad H in G;
- (2) per ogni classe laterale di G/H si può scegliere un rappresentante in modo che l'insieme dei rappresentanti scelti formi un sottogruppo di G;
- (3) esiste una sezione della proiezione canonica $\pi: G o G/H$.

Definizione

Siano G_1 e G_2 due gruppi e $\varphi:G_1\to G_2$ un omomorfismo suriettivo, una sezione di φ è un omomorfismo $\psi:G_2\to G_1$ tale che $\varphi(\psi(y))=y,\,\forall y\in G_2$.

Dimostrazione

$(1) \Rightarrow (2)$

Per ipotesi G = HK, perciò, dato $g \in G$ $\exists h \in H, k \in K$ tali che g = hk e poichè $hk \equiv k \mod H$, allora $\forall g \in G$ esiste $k \in K$ che è rappresentante della classe di g in G/H.

Dall'ipotesi $H \cap K = \{1\}$ segue che $\forall k_1, k_2 \in K$ tali che $k_1 \equiv k_2 \mod H$ si ha $k_1 = k_2$. Quindi per ogni classe esiste un unico rappresentante $k \in K$. Perciò l'insieme K è un sottogruppo che rispetta la condizione (2).

$(2) \Rightarrow (1)$

Sia K un sottogruppo che rispetta la condizione (2). Segue che G = HK e $H \cap K = \{1\}$. Perciò H e K sono sottogruppi complementari.

Dimostrazione

$$(1) \Rightarrow (3)$$

Per ipotesi $G = HK \Rightarrow \forall g \in G, \exists h \in H, k \in K \text{ tali che } g = hk \Rightarrow \bar{g} = \bar{k}.$ Definiamo $s: G/H \to G \text{ come: } s(\bar{g}) = k.$ Segue che:

- s è ben definita:
 - \bullet $\pi(s(\bar{g})) = \bar{g}, \forall g \in G;$
 - s è un omomorfismo di gruppi.

Perciò s è una sezione.

Dimostrazione

$$(3) \Rightarrow (1)$$

Per ipotesi esiste $s: G/H \to G$ omomorfismo tale che $\pi(s(\bar{g})) = \bar{g}, \, \forall \bar{g} \in G/H$ e definiamo K = s(G/H). Segue che:

- K è sottogruppo di G;
- \bullet G = HK;
- $H \cap K = \{1\}$.

Pertanto H, K sono sottogruppi complementari in G_{\square}