ESC201T : Introduction to Electronics

Lecture 37: Sequential circuit design-1

B. Mazhari Dept. of EE, IIT Kanpur

Digital Circuits

Combinational Circuits

Output is determined by current values of inputs only.

Sequential Circuits

Output is determined in general by current values of inputs and past values of inputs/outputs as well.

NOR SR Latch

$$Q = 1; \overline{Q} = 0$$
 Set State

$$Q = 0; \overline{Q} = 1 \quad \text{Re set State}$$

S	R	Q	Q	State
1	0	1	0	SET

NOR SR Latch

$$Q=1; \overline{Q}=0$$
 Set State

$$Q = 0; \overline{Q} = 1$$
 Re set State

S	R	Q	Q	State
1	0	1	0	SET
0	1	0	1	RESET

HOLD State

S	R	Q	Q	State
1	0	1	0	SET
0	1	0	1	RESET
0	0	Q	Q	HOLD
1	1	0	0	INVALID

Both the outputs are well defined and 0. the first problem is that we do not get complementary output.

A more serious problem occurs when we switch the latch to the hold state by changing RS from 11 \rightarrow 00 . Suppose the inputs do not change simultaneously and we get the situation 11 \rightarrow 01* \rightarrow 00

Q = 1

Suppose the inputs change as RS = $11 \rightarrow 10^* \rightarrow 00$

So although output is well defined when we apply RS = 11, it becomes unpredictable once we switch the latch to hold state by applying RS = 00. That is why RS = 11 is not used as an input combination.

The error can occur also due to unequal gate delays.

Suppose gate-1 is faster

On the other hand suppose that gate-2 is faster.

Q = 0

Again the output is unpredictable in general

NAND Latch

 3	R	Q	Q	State
0	1	1	0	SET
1	0	0	1	RESET
1	1	Q	Q	HOLD
0	0	1	1	INVALID

RS NAND Latch with Enable

Hold State

Enable	S R	QQ	State
0	хх	Q Q	Hold
1	1 0	1 0	Set
1	0 1	0 1	Reset
1	0 0	QQ	Hold
1	1 1	0 0	Invalid

D latch

Enable	S	R	Q	Q	State
0	Х	Х	Q	р	Hold
1	1	0	1	0	Set
1	0	1	0	1	Reset
1	0	0	Q	Q	Hold
1	1	1	0	0	Invalid

If EN = 1 then Q = D otherwise the latch is in Hold state

Synchronous Sequential Circuits

Example

Example

Problem with Latch

Circuits are designed with the idea there would be single change in output or memory state in single clock cycle.

Edge Triggered Latch or Flip-flop

Positive edge triggered flipflop

Negative Edge Triggered Latch or Flip-flop

Master-Slave D Flip-flop

Positive edge triggered Flip-flop

Positive edge triggered Flip-flop

A change in input has no effect if it occurs after the clock edge

Positive edge Triggered Flip-flop with Asynchronous Reset

Characteristic table

Given a input and the present state of the flip-flop, what is the next state of the flip-flop

Inputs (D)	Q(t+1)
0	0
1	1

$$Q(t+1) = D$$

JK Flip-flop

Inputs J	K	Q(t+1)
0	0	Q(t)
0	1	0
1	0	1
1	1	Q(t)

$$Q(t+1) = \overline{Q(t)}.J + Q(t).\overline{K}$$

→Characteristic equation

Toggle or T Flip-flop

Inputs (T)	Q(t+1)
0	Q(t)
1	Q(t)

$$Q(t+1) = \overline{Q(t)}.T + Q(t).\overline{T}$$

Excitation Table What inputs are required to effect a particular state change

		Inputs
Q(t)	Q(t+1)	Т
0	0	0
0	1	1
1	0	1
1	1	0

Excitation Table

J	K	Q(t+1)
0	0	Q(t)
0	1	0
1	0	1
1	1	Q(t)

		Inputs
Q(t)	Q(t+1)	J K
0	0	0 X
0	1	1 X
1	0	X 1
1	1	X 0

D	Q(t+1)
0	0
1	1

	Inputs		
Q(t)	Q(t+1)	D	
0	0	0	
0	1	1	
1	0	0	
1	1	1	

Convert a D FF to JK FF

J	K	Q(t+1)	D
0	0	Q(t)	Q(t)
0	1	0	0
1	0	1	1
1	1	Q(t)	Q(t)

