NSR Search Results Page 1 of 5

Visit the <u>Isotope Explorer</u> home page!

27 reference(s) found:

Keynumber: 1999ZHZM

Reference: INDC(CPR)-049/L, p.76 (1999)

Authors: C.Zhou

Title: Prompt γ -Ray Data Evaluation of Thermal-Neutron Capture for A = 1 ϑ 25

Keyword abstract: NUCLEAR REACTIONS ¹, ²H, ⁶, ⁷Li, ⁹Be, ¹², ¹³C, ¹⁴N, ¹⁶, ¹⁷O, ¹⁹F, ²⁰, ²¹,

²²Ne, ²³Na, ²⁴, ²⁵Mg(n, γ),E=thermal; compiled, evaluated prompt γ -ray data.

Keynumber: 1997RO26

Reference: IEEE Trans.Instrum.Meas. 46, 560 (1997)

Authors: S.Rottger, A.Paul, U.Keyser

Title: Prompt (n,γ) -Spectrometry for the Isotopic Analysis of Silicon Crystals for the Avogadro Project **Keyword abstract:** NUCLEAR REACTIONS 1 H, 14 N, 28 , 29 Si, 56 Fe, 27 Al, 63 Cu (n,γ) ,E=thermal:

measured Eγ,Iγ.

Keyword abstract: ATOMIC MASSES ¹, ²H, ¹⁴, ¹⁵N, ²⁸, ²⁹, ³⁰, ³¹, ³²Si, ⁵⁶, ⁵⁷Fe; measured neutron-

induced \gamma spectra; deduced mass differences.

Keynumber: 1997JU02

Reference: Phys.Rev. C56, 118 (1997)

Authors: E.T.Jurney, J.W.Starner, J.E.Lynn, S.Raman

Title: Thermal-Neutron Capture by ¹⁴N

Keyword abstract: NUCLEAR REACTIONS $^{14}N(n,\gamma)$, E=thermal; measured E γ , I γ ; deduced capture σ

(E). ¹⁵N deduced resonances, width parameters. Other data input.

Kevnumber: 1993SE13

Reference: Nucl.Instrum.Methods Phys.Res. A336, 171 (1993)

Authors: R.Semmler, L.P.Geraldo

Title: A New Experimental Apparatus for Production and Utilization of Capture Gamma Rays

Keyword abstract: NUCLEAR REACTIONS ⁶⁰, ⁵⁸, ⁶²Ni, ¹⁴N(n,γ),E=reactor; measured capture γ-ray

flux density; deduced device low energy fission usage suitability.

Keynumber: 1992JUZZ

Reference: Bull.Am.Phys.Soc. 37, No.2, 902, C8 3 (1992) **Authors:** E.T.Jurney, J.W.Starner, J.E.Lynn, S.Raman

Title: Check of the Smith and Wapstra Mass Doublet Measurements

Keyword abstract: NUCLEAR REACTIONS ¹², ¹³C, ¹⁴N(n,γ),E=reactor; measured not given. ¹³, ¹⁴C,

¹⁵N deduced neutron separation energies. Capture γ-spectroscopy. Comparison with Wapstra

predictions.

T7 1 100011

Keynumber: 1990WA22

Reference: Nucl.Instrum.Methods Phys.Res. A292, 671 (1990)

Authors: A.H.Wapstra

Title: Energy Calibration for 2-13 MeV Gamma Rays

Keyword abstract: NUCLEAR REACTIONS $^{14}N(n,\gamma)$, E not given; analyzed γ -spectra data. ^{15}N

deduced calibration \(\gamma\)-energies.

NSR Search Results Page 2 of 5

Keyword abstract: NUCLEAR STRUCTURE ¹³C, ¹⁶O; analyzed data; deduced calibration γ-energies.

T7 1 1000T0

Keynumber: 1990IS05

Reference: Nucl.Instrum.Methods Phys.Res. A287, 460 (1990)

Authors: M.A.Islam, T.J.Kennett, W.V.Prestwich

 $\textbf{Title:} \ \text{Re-Estimation of the Thermal Neutron Capture Cross Section of} \ ^{14}N$

Keyword abstract: NUCLEAR REACTIONS 14 N(n, γ),E=thermal; measured E γ ,I γ ; deduced capture σ .

Carbon, Pb, Cl standards. 28 , 29 , 30 Si(n, γ), E not given; analyzed data; deduced capture σ . Nitrogen

standard.

Keynumber: 1986KE14

Reference: Nucl.Instrum.Methods Phys.Res. A249, 366 (1986)

Authors: T.J.Kennett, W.V.Prestwich, J.S.Tsai

Title: The $^{14}N(n,\gamma)^{15}N$ Reaction as both an Intensity and Energy Standard

Keyword abstract: NUCLEAR REACTIONS 14 N, 9 Be, 12 C(n,γ),E=reactor; measured γ-spectra following capture. 15 N levels deduced input,output Iγ,weighted difference. 10 Be levels deduced Iγ. Ge

detector surrounded by quadrisected NaI(Tl) annulus.

Keynumber: 1985LAZX

Reference: Phys.Can. 41, No.3, 34, p.E1 (1985)

Authors: J.R.C.Lafontaine, J.W.Jury, J.Beland, N.R.Roberson, D.R.Tilley, H.R.Weller, J.G.Woodworth

Title: Radiative Neutron Capture Reactions on ¹²C, ¹³C and ¹⁴N

Keyword abstract: NUCLEAR REACTIONS ¹², ¹³C, ¹⁴N(n, γ),E not given; measured $\sigma(\theta)$.

Keynumber: 1983KE11

Reference: Nucl.Instrum.Methods 215, 159 (1983)

Authors: T.J.Kennett, W.V.Prestwich, R.J.Tervo, J.S.Tsai

Title: Evaluation of a Method for the Determination of Accurate Transition Energies in the (n, γ)

Reaction

Keyword abstract: NUCLEAR REACTIONS ⁹Be, ¹⁴N, ²⁸, ²⁹Si(n,γ),E=0.5-11 MeV; measured Εγ,Ιγ. ¹⁰Be, ²⁹, ³⁰Si, ¹⁵N deduced neutron separation energy,level energies. High fidelity pulse height to energy transformation.

Keynumber: 1982WE01

Reference: Phys.Rev. C25, 89 (1982)

Authors: S.A. Wender, H.R. Weller, N.R. Roberson, D.R. Tilley, R.G. Seyler

Title: Neutron Capture in the Giant Resonance Region of ¹⁵N

Keyword abstract: NUCLEAR REACTIONS 14 N(n, γ),E=5.6-13 MeV; measured $\sigma(\theta,E)$, $\gamma(\theta)$. Direct

semi-direct model.

Keynumber: 1981IS07

Reference: Nucl.Instrum.Methods 188, 243 (1981) **Authors:** M.A.Islam, W.V.Prestwich, T.J.Kennett

Title: Determination of the Thermal Radiative Capture Cross Section of ¹⁴N

Keyword abstract: NUCLEAR REACTIONS $^{14}N(n,\gamma)$, E=thermal; measured E γ , I γ ; deduced σ .

Keynumber: 1980IS02

Reference: Can.J.Phys. 58, 168 (1980)

NSR Search Results Page 3 of 5

Authors: M.A.Islam, T.J.Kennett, S.A.Kerr, W.V.Prestwich **Title:** A Self-Consistent Set of Neutron Separation Energies

Keyword abstract: NUCLEAR REACTIONS ¹H, ⁹Be, ¹⁴N, ²⁴, ²⁵Mg, ²⁷Al, ²⁸, ²⁹Si, ³²S, ³⁵Cl, ⁴⁰, ⁴⁴Ca, ⁴⁷, ⁴⁸, ⁴⁹Ti, ⁵⁰, ⁵², ⁵³Cr, ⁵⁵Mn, ⁵⁴, ⁵⁶, ⁵⁷Fe(n,γ),E=thermal; measured Εγ,Ιγ. ²H, ¹⁰Be, ²⁵, ²⁶Mg, ²⁸Al, ²⁹, ³⁰Si, ³³S, ³⁶Cl, ⁴¹, ⁴⁵Ca, ⁴⁸, ⁴⁹, ⁵⁰Ti, ⁵¹, ⁵³, ⁵⁴Cr, ⁵⁶Mn, ⁵⁵, ⁵⁷, ⁵⁸Fe deduced Q,neutron binding energy.

Keynumber: 1980GR12

Reference: Nucl.Instrum.Methods 175, 515 (1980)

Authors: R.C.Greenwood, R.E.Chrien

Title: Precise γ -ray Energies from the $^{14}N(n,\gamma)^{15}N$ and $^{23}Na(n,\gamma)^{24}Na$ Reactions

Keyword abstract: NUCLEAR REACTIONS ¹⁴N, ²³Na(n,γ),E=thermal; measured Eγ. ²⁴Na deduced

neutron binding energy. Ge semiconductor detectors.

Keynumber: 1979WEZX

Coden: JOUR BAPSA 24 646,GK1,Wender

Keyword abstract: NUCLEAR REACTIONS $^{14}N(n,\gamma)$, E=6-13 MeV; measured $\sigma(E\gamma)$, $\gamma(\theta)$. ^{15}N

deduced E1 distribution, GDR. Compared with 14 C(p, γ). Direct-semidirect calculation.

Keynumber: 1978GRZM

Coden: CONF BNL(Neutron Capt γ-Ray Spectr), Contrib, No 29, Greenwood

Keyword abstract: NUCLEAR REACTIONS $^{14}N(n,\gamma)$,E=th; measured E γ , γ -energy differences for

known cascade-crossover transitions; deduced new energy calibration standards.

Keynumber: 1975YOZW

Coden: REPT LA-UR-75-317,mf

Keyword abstract: NUCLEAR REACTIONS ¹⁴N, ²⁷Al, ⁵⁶Fe,Mo, ⁹³Nb, ¹⁸¹Ta,W, ²³⁸U

 (n,γ) , E=thermal, 14 MeV; calculated σ .

Keynumber: 1975SM02

Reference: Phys.Rev. C11, 1392 (1975) **Authors:** L.G.Smith, A.H.Wapstra

Title: Masses of Isotopes of H, He, C, N, O, and F

Keyword abstract: ATOMIC MASSES ³H, ³He, ¹³, ¹⁴C, ¹⁴, ¹⁵N, ¹⁶O, ¹⁹F; measured atomic mass. **Keyword abstract:** NUCLEAR REACTIONS ²H, ³He, ¹², ¹³C, ¹⁴N(n,γ); calculated quadrupole

moment.

Keynumber: 1974TH06

Reference: Nucl.Instrum.Methods 121, 65 (1974)

Authors: G.E.Thomas, R.H.Pehl

Title: Characteristics of a High-Purity Germanium Detector

Keyword abstract: NUCLEAR REACTIONS 14 N(n, γ); measured E γ ,I γ . 15 N deduced transitions.

Keynumber: 1974IS06

Reference: Nucl.Instrum.Methods 121, 193 (1974)

Authors: A.F.M.Ishaq, A.M.Khan, M.Anwar-Ul-Islam, M.R.Najam

Title: Precise Energies of Gamma Rays from Thermal Neutron Capture in Nitrogen

Keyword abstract: NUCLEAR REACTIONS 14 N(n, γ),E=thermal; measured E γ . 15 N deduced

NSR Search Results Page 4 of 5

transitions, neutron binding energy.

Keynumber: 1974GR37

Reference: Nucl.Instrum.Methods 121, 385 (1974)

Authors: R.C.Greenwood, R.G.Helmer

Title: Gamma-Ray Energies from 14 N(n, γ) 15 N and 23 Na(n, γ) 24 Na Reactions: A Re-Evaluation

Keyword abstract: NUCLEAR REACTIONS ¹⁴N, ²³Na(n,γ); analyzed data. ¹⁵N, ²⁴Na deduced levels.

¹⁵N deduced neutron binding energy.

Keynumber: 1972LO26

Reference: Nucl.Instrum.Methods 105, 453 (1972)

Authors: G.D.Loper, G.E.Thomas

Title: Gamma-Ray Intensity Standards: the Reactions 14 N(n, γ) 15 N, 35 Cl(n, γ) 36 Cl and 53 Cr(n, γ) 54 Cr **Keyword abstract:** NUCLEAR REACTIONS 35 Cl, 50 , 52 , 53 Cr, 14 N, 207 Pb(n, γ);E=thermal; 36 Cl, 51 ,

⁵³, ⁵⁴Cr measured Εγ,Ιγ.

Keynumber: 1971BE34

Reference: Atomkernenergie 17, 145 (1971)

Authors: D.Bellman

Title: Strahlungsubergange vom Stickstoff und naturlichen Neon nach Einfang thermischer Neutronen **Keyword abstract:** NUCLEAR REACTIONS ¹⁴N, ²⁰, ²¹, ²²Ne(n,γ),E=thermal; measured Εγ,Ιγ;

deduced Q. ¹⁵N, ²¹, ²², ²³Ne deduced transitions.

Keynumber: 1970SP02

Reference: Nucl.Phys. A145, 449 (1970)

Authors: A.M.J.Spits, A.M.F. Op den Kamp, H.Gruppelaar

Title: Gamma Rays from Thermal-Neutron Capture in Natural and ²⁸Si Enriched Silicon

Keyword abstract: NUCLEAR REACTIONS 28 , 29 , 30 Si, 6 Li, 14 N, 19 F, 27 Al, 54 , 56 Fe, 207 Pb(n,γ), E=thermal; 28 Si(n,n'γ), E=fast; measured Eγ, Iγ; deduced Q. 29 , 30 , 31 Si deduced levels, γ-branching.

Natural, ²⁸Si enriched targets, Ge(Li) detector.

Keynumber: 1969WE07

Reference: Phys.Rev. 181, 1465 (1969)

Authors: K.J.Wetzel

Title: Recoil Broadening of Secondary Transitions in Neutron-Capture Gamma-Ray Cascades

Keyword abstract: NUCLEAR REACTIONS ^{10}B , $^{14}N(n,\gamma)$, E= thermal; measured $E\gamma$, Doppler shift

attenuation. 11 B, 15 N levels deduced $T_{1/2}$.

Keynumber: 1968GRZY

Reference: Proc.Conf.Slow-Neutron-Capture Gamma-Ray Spectr., Argonne, Ill. (1966), F.E.Throw,

Ed., ANL-7282, p.303 (1968) **Authors:** R.C.Greenwood

Title: Precise Measurements of Primary Capture Gamma-Ray Energies Using a 'Bootstrap' Method

Keyword abstract: NUCLEAR REACTIONS ⁹Be, ¹⁴N, ²³Na(n,γ), E = thermal; measured Eγ, deduced

Q. Ge(Li) detector.

Keynumber: 1967RA24

NSR Search Results Page 5 of 5

Reference: Proc.Intern.Conf.Atomic Masses, 3rd, Winnipeg, Canada, R.C.Barber, Ed., Univ.Manitoba

Press, p.278(1967)

Authors: N.C.Rasmussen, V.J.Orphan, Y.Hukai

Title: Determination of (n,γ) Reaction Q Values from Capture γ -Ray Spectra

Keyword abstract: NUCLEAR REACTIONS ⁶Li, ⁷Li, ⁹Be, ¹⁰B, ¹²C, ¹⁴N, ¹⁹F, ²³Na, ²⁴Mg, ²⁵Mg, ²⁶Mg, ²⁷Al, ²⁸Si, ³¹P, ³²S, ³⁵Cl, ⁴⁰Ca, ⁴⁵Sc, ⁴⁸Ti, ⁵¹V, ⁵⁵Mn, ⁵⁴Fe, ⁵⁶Fe, ⁵⁹Co, ⁵⁸Ni, ⁶⁰Ni, ⁶³Cu, ⁶⁵Cu, ⁶⁶Zn, ⁶⁷Zn, ⁷³Ge, ⁷⁶Se, ⁸⁵Rb, ⁸⁷Rb, ⁸⁹Y, ⁹³Nb, ¹⁰³Rh, ¹¹³Cd, ¹²³Te, ¹³³Cs, ¹³⁹La, ¹⁴¹Pr, ¹⁴⁹Sm, ¹⁵³Eu, ¹⁵⁷Gd, ¹⁵⁹Tb, ¹⁶⁵Ho, ¹⁶⁷Er, ¹⁶⁹Tm, ¹⁸¹Ta, ¹⁸²W, ¹⁹⁵Pt, ¹⁹⁷Au, ¹⁹⁹Hg, ²⁰³Tl, ²⁰⁷Pb(n,γ), E = thermal; measured Eγ; deduced Q. Natural targets.
