

Information Theory With Applications to Data Compression

Robert Bamler • Tutorial at IMPRS-IS Boot Camp 2024

While you're waiting:

If you brought a laptop (optional), please go to https://bamler-lab.github.io/bootcamp24 and test if you can run the linked Google Colab notebook. You can also find the slides at this link.

Let's Debate

Slides and code available at:

https://bamler-lab.github.io/bootcamp24

1. Which of the following two messages contains more information?

- (a) "The instructor of this tutorial knows how to solve a quadratic equation."
- (b) "The instructor of this tutorial likes roller coasters."

2. Which of the following two pairs of quantities are more strongly correlated:

(a) the volumes and radii of (spherical) glass marbles (of random sizes and colors)

(b) the volumes and masses of glass marbles (of random sizes and colors)

So, What is Information Theory?

Information theory provides tools to analyze:

- the quantity (i.e., amount) of information in some data;
- more precisely, the amount of novelty/surprisingness of a piece of information w.r.t.:
 - (a) prior beliefs (e.g., an ML researcher probably knows high-school math); or
 - (b) a different piece of information (when quantifying correlations).

Information theory is oblivious to:

- ▶ the *quality* of a piece of information (e.g., its utility, urgency, or even truthfulness).
- how a piece of information is represented in the data, e.g.,
 - the volume and radius of a sphere are different representations of the same piece information;
 - ▶ for a given neural network with known weights, its output cannot contain more information than its input.
- computational costs: compressed representations of the same information are sometimes easier but often *harder to process* than their uncompressed counterparts.

Where Are These Tools Useful?

Theoretical bounds for model performance

[Tim Xiao, RB, ICLR 2023]

Analyze abstract representation vectors

Metric	Dataset	Basel
	Assist12 Assist17 Junyi15	8.8 10. 13.
$\begin{array}{c} \text{Consistency}^{-1} \\ \mathbb{E}_{\ell_{\text{sub}}} \text{MI}(s^{\ell}; \ell_{\text{sub}}) \downarrow \end{array}$	Assist12 Assist17 Junyi15	12. 6. 4 7.7
Disentanglement $D_{\mathrm{KL}}(s\ \ell) \uparrow$	Assist12 Assist17 Junyi15	2.3 0.6 5.0

[Hanqi Zhou, RB, C. M. Wu, Á. Tejero-Cantero, ICLR 2024]

Data Compression ("Source Coding")

[Alexander Conzelmann, RB; coming soon]

My Promise for This Tutorial

What for?

Quantifying Information

[Shannon, A Mathematical Theory of Communication, 1948]

Def. "information content of a message":

The minimum number of bits that you would have to transmit over a noise-free channel in order to communicate the message, assuming an optimal encoder and decoder.

- ▶ What does "optimal" mean?
- You don't actually have to construct an optimal encoder & decoder to calculate this number.

Agenda

1

Theory of Communication

2

Applications to Machine Learning

Derive & interpret:

- ▶ information content
- ► (conditional) entropy
- ► KL divergence
- ► mutual information
- ► data processing ineq.

Brief code example of data compression with a deep-learning model (GPT-2).

When are information-theoretical metrics useful?

Limitations of information theory, and common pitfalls.

Data Compression: Precise Problem Setup

Assumptions:

- ▶ the bit string S is sent over a noise free channel (we won't cover channel coding);
- lossless compression: we require that X' = X;
- ▶ **S** may have a different length $|\mathbf{S}|$ for different messages: $\mathbf{S} \in \{0,1\}^* := \bigcup_{n=0}^{\infty} \{0,1\}^n$;
 - ▶ But: the encoder must *not* encode any information in the *length* of **S** alone (see next slide).
- ▶ Before the sender sees the message, sender and receiver can communicate arbitrarily much for free in order to agree on a code C: message space $\mathcal{X} \longrightarrow \{0,1\}^*$.
- ▶ **Goal:** find a valid code C that minimizes the expected bit rate $\mathbb{E}_{P_{\text{data source}}(X)}[|C(X)|]$.

What's a "Valid Code"? (Unique Decodability)

Recall:

- ▶ The bit string $\mathbf{S} = C(X) \in \{0,1\}^*$ can have different lengths for different messages X.
- \blacktriangleright We want to interpret its length |S| as the amount of information in the message X.
 - ▶ Seems to make sense: if the sender sends, e.g., a bit string of length 3 to the receiver, then they can't communicate more than 3 bits of information ...
 - ightharpoonup ... unless the fact that |S| = 3 already communicates some information. We want to forbid this.
- ► Add additional requirement: C must be uniquely decodable:
 - ▶ Sender may concatenate the encodings of several messages: $\mathbf{S} := C(X_1) \parallel C(X_2) \parallel C(X_3) \parallel \dots$
 - ▶ Upon receiving **S**, the receiver must still be able to detect where each part ends.

Source Coding Theorem

Theorem (Shannon, 1949): Consider a data source P(X) over a discrete message space X.

▶ **The bad news:** in expectation, lossless compression can't beat the entropy:

$$\forall$$
 uniquely decodable codes C : $\mathbb{E}_P[|C(X)|] \geq \mathbb{E}_P[-\log_2 P(X)] =: H_P(X)$.

► The good news: but one can get quite close (and not just in expectation):

 \exists uniquely decodable code C:

$$\forall$$
 messages $x \in \mathcal{X}$: $|C(x)| < -\log_2 P(X=x) + 1$. $(\Longrightarrow \mathbb{E}_P[|C(X)|] < H_P(X) + 1)$

ightharpoonup Also, we can keep the total overhead < 1 bit even when encoding several messages.

 $\implies \begin{bmatrix} -\log_2 P(X=x) \text{ is the contribution of message } x \text{ to the bit rate of an optimal code} \\ \text{when we amortize over many messages. It is called "information content of } x".$

The Kraft-McMillan Theorem [Kraft, 1949; McMillan, 1956]

(a) \forall uniquely decodable codes $C: \mathcal{X} \to \{0,1\}^*$ over some message space \mathcal{X} :

$$\sum_{x \in \mathcal{X}} 2^{-|C(x)|} \le 1 \qquad \text{("Kraft inequality")}.$$

Interpretation: we have a finite budget of "shortness" for bit strings:

- ▶ Interpret $2^{-|C(x)|}$ as the "shortness" of bit string C(x).
- ▶ The sum of all "shortnesses" must not exceed 1.
 - ⇒ If we shorten one bit string then we may have to make another bit string longer so that we don't exceed our "shortness budget".
- (b) \forall functions $\ell: \mathcal{X} \to \mathbb{N}$ that satisfy the Kraft inequality (i.e., $\sum_{x \in \mathcal{X}} 2^{-\ell(x)} \leq 1$): \exists uniquely decodable code C_{ℓ} with $|C_{\ell}(x)| = \ell(x) \ \forall x \in \mathcal{X}$.
- Why is this theorem useful? \Longrightarrow min $\mathbb{E}_P[\text{bit rate}] = \min_{\substack{C: \text{uniq.} \\ \text{decodable}}} \mathbb{E}_P[|C(X)|] = \min_{\substack{C: \text{satisfies} \\ \text{Kraft ineq.}}} \mathbb{E}_P[|C(X)|]$

Preparations for Proof of KM Theorem

Definition: For a uniquely decodable code $C: \mathcal{X} \to \{0,1\}^*$, define

$$C^*: \mathcal{X}^* \to \{0,1\}^*, \quad C^*((x_1,x_2,\ldots,x_k)) := C(x_1) \parallel C(x_2) \parallel \ldots \parallel C(x_k).$$

(Thus: C is uniquely decodable $\iff C^*$ is injective)

Lemma:

let:
$$\begin{cases} C \text{ be a uniquely decodable code over } \mathcal{X}; \\ n \in \mathbb{N}_0; \\ Y_n := \big\{ \mathbf{x} \in \mathcal{X}^* \text{ with } |C^*(\mathbf{x})| = n \big\}. \end{cases}$$

▶ then: $|Y_n| \leq 2^n$.

Proof:

Proof of Part (a) of KM Theorem

Lemma (reminder): $|Y_n| \leq 2^n$ where $Y_n := \{ \mathbf{x} \in \mathcal{X}^* \text{ with } |C^*(\mathbf{x})| = n \}$, C uniq. dec.

Claim (reminder): C is uniquely decodable $\implies \sum_{x \in \mathcal{X}} 2^{-|C(x)|} \le 1$.

(i) if \mathcal{X} is finite:

(ii) if \mathcal{X} is countably infinite:

Proof of Part (b) of KM Theorem

Claim (reminder):
$$\sum_{x \in \mathcal{X}} 2^{-\ell(x)} \le 1 \implies \exists \text{ uniq. dec. code } C_{\ell} \text{ with } |C_{\ell}(x)| = \ell(x) \ \forall x \in \mathcal{X}.$$

Algorithm 1: Construction of C_{ℓ} .

Initialize $\xi \leftarrow 1$;

for $x \in \mathcal{X}$ in order of nonincreasing $\ell(x)$ **do**

Update $\xi \leftarrow \xi - 2^{-\ell(x)}$;

Write $\xi \in [0, 1)$ in binary: $\xi = (0.???...)_2$;

Set $C_{\ell}(x)$ to the first $\ell(x)$ bits after the "0."

(pad with trailing zeros if necessary);

Claim: the resulting code C_{ℓ} is uniquely decodable.

- ▶ We even show: C_{ℓ} is *prefix free*: $\forall x \in \mathcal{X}$: $C_{\ell}(x)$ is not the beginning of any $C_{\ell}(x')$, $x' \neq x$.
- Formalization of this proof: see solutions to Problem 2.1 on this problem set: https://robamler.github.io/teaching/compress23/problem-set-02-solutions.zip

Example: Sum of Two Fair 3-Sided Dice

X	possible throws	P(X=x)	$\ell(x)$	$C_{\ell}(x)$
2	••	1/9	3	
3	•••, •••	2/9	2	
4		1/3	2	
5	••••	2/9	2	
6	•••	1/9	3	

- ▶ Check if ℓ satisfies Kraft inequality: $\sum_{x \in \mathcal{X}} 2^{-\ell(x)} =$
- **Question:** how should we choose $\ell: \mathcal{X} \to \mathbb{N}$ for a given model P of the data source?
 - ▶ **typical goal:** minimize the expected bit rate $\mathbb{E}_P[\ell(X)]$ (with the constraint $\sum_{x \in \mathcal{X}} 2^{-\ell(x)} \leq 1$).
 - **optimally:** by *Huffman coding* (comp. cost $\propto |\mathcal{X}| \log |\mathcal{X}|$, i.e., exponential in message length).
 - **near optimally:** via *information content*; \rightarrow bounds on optimal $\mathbb{E}_P[\ell(X)]$ (next slide).

Optimal Choice of Target Length $\ell: \mathcal{X} \to \mathbb{N}$

- Constrained optimization problem:
 - ► Minimize $\mathbb{E}_P[\ell(X)] = \sum_{x \in \mathcal{X}} P(X = x) \ell(x)$ over ℓ
 - with the constraints: (i) $\sum_{x \in \mathcal{X}} 2^{-\ell(x)} \le 1$

(ii)
$$\ell(x) \in \mathbb{N} \ \forall x \in \mathcal{X}$$

- ▶ **Idea:** relax constraint: (ii') $\ell(x) \in \mathbb{R}_{>0} \ \forall x \in \mathcal{X}$
 - \Rightarrow Minimization runs over more functions ℓ .
 - \Rightarrow lower bound: $\inf_{(i),(ii')} \mathbb{E}_P[\ell(X)] \leq \inf_{(i),(ii)} \mathbb{E}_P[\ell(X)]$
- **Observation:** solution satisfies: (i') $\sum_{x \in \mathcal{X}} 2^{-\ell(x)} = 1$
 - Enforce via Lagrange multiplier $\lambda \in \mathbb{R}$: find stationary point (w.r.t. both ℓ and λ) of $\mathcal{L}(\ell,\lambda) := \sum_{x \in \mathcal{X}} P(X=x) \, \ell(x) + \lambda \left(\sum_{x \in \mathcal{X}} 2^{-\ell(x)} 1 \right)$.

Proof of Source Coding Theorem

- Solution of the relaxed optimization problem: $\ell(x) = \underbrace{-\log_2 P(X=x)}_{\text{"information content"}} \in \mathbb{R}_{\geq 0}$.
- ▶ Let's now constrain $\ell(x)$ again to integer values $\forall x \in \mathcal{X}$.
 - ⇒ **lower bound** on expected bit rate ("the bad news"):

$$\mathbb{E}_{P}[|C(X)|] \geq \underbrace{\mathbb{E}_{P}[-\log_{2}P(X=x)]}_{H_{P}(X)} \quad \forall \text{ uniquely decodable } C.$$

- ▶ **Upper bound** on the *optimal* expected bit rate ("the good news"):
 - ▶ Shannon Code: set $\ell(x) := \left[-\log_2 P(X=x) \right] \in \mathbb{N}$.
 - Satisfies Kraft inequality: $\sum_{x \in \mathcal{X}} 2^{-\lceil -\log_2 P(X=x) \rceil} \leq \sum_{x \in \mathcal{X}} 2^{\log_2 P(X=x)} = 1$. $\Rightarrow \exists$ uniquely decodable code C_ℓ with:

$$|C_{\ell}(x)| = \ell(x) < -\log_2 P(X=x) + 1 \qquad \forall x \in \mathcal{X}.$$

algorithms and discrete math

Ende

Quantifying Uncertainty in Bits (for Discrete Data)

- ▶ **Information content:** $-\log_2 P(X=x)$: The (amortized) bit rate for encoding the given message x with a code that is optimal (in expectation) for the data source P.
- ▶ Entropy: $H_P(X) \equiv H[P(X)] \equiv H[P] = \mathbb{E}_P[-\log_2 P(X)]$: The expected bit rate for encoding a (random) message from data source P with a code that is optimal for P.
 - = How many bits does receiver need (in expectation) to reconstruct X?
 - = How many bits does receiver need (in expectation) to resolve any uncertainty about X?
- ▶ Cross entropy: $H[P,Q] = \mathbb{E}_P[-\log_2 Q(X)] \ge H[P]$: The expected bit rate when encoding a message from data source P with a code that is optimal for a model Q of the data source (\Longrightarrow practically achievable expected bit rate). \rightarrow We'd want to minimize this over the model $Q. \rightarrow$ Maximum likelihood estimation.
- ► Kullback-Leibler divergence: $D_{\mathsf{KL}}(P \parallel Q) = H[P, Q] H[P] = \mathbb{E}_P \left| -\log_2 \frac{Q(X)}{P(X)} \right| \ge 0$: Overhead (in expected bit rate) due to a mismatch between the true data source P and its model Q (also called "relative entropy").

Agenda

1

Theory of Communication

2

Applications to Machine Learning

Derive & interpret:

- ▶ information content
- ► (conditional) entropy
- ► KL divergence
- ► mutual information
- ► data processing ineq.

Brief code example of data compression with a deep-learning model (GPT-2).

When are information-theoretical metrics useful?

Limitations of information theory, and common pitfalls.

Example 1: Text Compression With GPT-2

Autoregressive language model:

- ▶ Message **x** is a sequence of tokens: $\mathbf{x} = (x_1, x_2, \dots, x_n)$.
- $P(\mathbf{X}) = P(X_1) P(X_2 \mid X_1) P(X_3 \mid X_1, X_2) P(X_4 \mid X_1, X_2, X_3) \dots P(X_n \mid X_1, X_2, \dots X_{n-1}).$

Compression strategy:

- 1. Encode x_1 with an optimal code for $P(X_1)$. $\rightarrow \mathbb{E}_P[\# \text{bits}] < H[P(X_1)] + 1$
- 2. Encode x_2 with an optimal code for $P(X_2 | X_1 = x_1)$. $\to \mathbb{E}_P[\# \text{bits}] < H[P(X_2 | X_1 = x_1)] + 1$
- 3. And so forth ...

Technicalities:

 ${\tt https://bamler-lab.github.io/bootcamp24} \ \to \textit{Text Compression}$

- \blacktriangleright Up to 1 bit of overhead *per token*? \rightarrow Use a *stream code:* amortizes over tokens.
- ▶ The model expects that $x_1 = \langle beginning \ of \ sequence \rangle$. \rightarrow Redundant, don't encode.
- ▶ How does the *decoder* know when to stop? \rightarrow Use an \langle end of sequence \rangle token.

Takeaways From Our Code Example

- Near-optimal compression performance is achievable in practice.
 - \implies Information content accurately estimates #bits needed in practice (even if it's fractional).
- Data compression is intimately tied to probabilistic generative modeling.
 - ► "Don't transmit what you can predict." ⇒ generative modeling
 - ▶ But still allow communicating things we wouldn't have predicted. ⇒ probabilistic modeling
- ▶ Decoding \approx generation (= sampling from a probabilistic generative model P):
 - ▶ To sample a token x_i , one injects randomness into $P(X_i | \mathbf{X}_{1:i-1} = \mathbf{x}_{1:i-1})$.
 - ▶ To decode a token x_i , one injects compressed bits into (a code for) $P(X_i | \mathbf{X}_{1:i-1} = \mathbf{x}_{1:i-1})$.
 - Decoding from a random bit string would be exactly equivalent to sampling from P.
- Data compression is highly sensitive to tiny model changes (e.g., inconsistent rounding).
 - ► Compression codes *C* are "very non-continuous" (because they *remove redundancies* by design).
 - ⇒ True data compression usually makes it *harder* to process information.

Example 2: Compression With of Neural Networks

- **Method:** quantize network weights (\approx round to a discrete grid), then compress losslessly.
- **Observation:** information content remains meaningful *even in the regime* $\ll 1$ bit.

Agenda

1

Theory of Communication

2

Applications to Machine Learning

Derive & interpret:

- ▶ information content
- ► (conditional) entropy
- ► KL divergence
- ► mutual information
- ► data processing ineq.

Brief code example of data compression with a deep-learning model (GPT-2).

When are information-theoretical metrics useful?

Limitations of information theory, and common pitfalls.

Joint, Marginal, and Conditional Entropy

Consider a data source P(X, Y) that generates pairs $(x, y) \sim P$:

$$P(X, Y) = P(X) P(Y | X) = P(Y) P(X | Y).$$

- ▶ **Joint information content**, i.e., information content of the entire message (x, y): $-\log_2 P(X=x, Y=y) = -\log_2 P(X=x) \log_2 P(Y=y \mid X=x)$.
- Joint entropy:

$$H_{P}((X,Y)) = \mathbb{E}_{P(X,Y)}[-\log_{2}P(X,Y)] = \mathbb{E}_{P(X)P(Y|X)}[-\log_{2}P(X) - \log_{2}P(Y|X)]$$

$$= \mathbb{E}_{P(X)}[-\log_{2}P(X)] + \mathbb{E}_{x \sim P(X)}[\mathbb{E}_{P(Y|X=x)}[-\log_{2}P(Y|X=x)]];$$
(marginal) entropy $H_{P}(X)$

$$=: H_{P}(Y|X=x) = \text{entropy of the conditional distribution } P(Y|X=x)$$

=: conditional entropy $H_P(Y|X)$

Mutual Information

Reminder:
$$H_P(Y \mid X) := \mathbb{E}_P[-\log_2 P(Y \mid X)] = \mathbb{E}_{X \sim P(X)} \left[\underbrace{\mathbb{E}_{P(Y \mid X = x)}[-\log_2 P(Y \mid X = x)]}_{= H_P(Y \mid X = x)} \right];$$

$$H_P((X, Y)) = H_P(X) + H_P(Y \mid X).$$

$$= H_P(Y \mid X = x) = \text{entropy of the conditional distribution } P(Y \mid X = x)$$

Let's encode a given message (x, y):

- (a) encode x with optimal code for P(X); then enocde y with optimal code for P(Y | X = x);
- (b) encode (x, y) using an optimal code for the data source P(X, Y);
- (c) encode x with optimal code for P(X | Y = y); then enocde y with optimal code for P(Y).
- (d) encode x with optimal code for P(X); then enocde y with optimal code for P(Y);

Expected bit rate:

$$H_P(X)$$
 $H_P(Y|X)$

$$H_P((X,Y))$$

$$H_P(X|Y)$$
 $H_P(Y)$

 $H_P(X)$ $H_P(Y)$

Interpretations of the Mutual Information $I_P(X; Y)$

The following expressions for $I_P(X; Y)$ are equivalent:

①
$$I_P(X; Y) = H_P(X) + H_P(Y) - H_P((X, Y))$$

= $D_{KL}(P(X, Y) \parallel P(X) P(Y)) \ge 0$

Interpretation: how much would ignoring correlations between X, Y hurt expected compression performance?

②
$$I_P(X; Y) = H_P(Y) - H_P(Y|X)$$

Interpretation: how many bits of information does knowledge of X tell us about Y (in expectation)? (reduction of uncertainty, "expected information gain")

(3)	$I_P(X;Y) = H_P(X) - H_P(X Y)$
	Interpretation: how many bits of information does
	knowledge of Y tell us about X (in expectation)?

$H_P((X,Y))$			$I_P^{(1)}$
	$H_P(X)$	$H_P(Y)$	
	$H_P(X)$	$H_P(Y X)$	$I_P^{(2)}$
I_P^{3}	$H_P(X Y)$	$H_P(Y)$	

Note: "in expectation" is an important qualifier here. Conditioning on a *specific* x can *increase* the entropy of Y: $H_P(Y \mid X) \leq H_P(Y)$ (always), **but:** $H_P(Y \mid X = x) > H_P(Y)$ is possible for some (atypical) x.

Continuous Data (Pedestrian Approach)

Recall: optimal lossless code C_{opt} for a data source $P: \left| H_P(X) \leq \mathbb{E}_P[|C_{\text{opt}}(X)|] < H_P(X) + 1 \right|$

Lossless compression is only possible on a *discrete* (i.e., countable) message space \mathcal{X} . (Because $\mathcal{X} \xrightarrow{\text{lossless code } \mathcal{C} \text{ (injective)}} \{0,1\}^* \xrightarrow{\text{injective}} \mathbb{N}$.)

Simple *lossy* compression of a message $X \in \mathbb{R}^n$: (an "act of desperation" — M.P.)

- ▶ Require that reconstruction X' satisfies $|X'_i X_i| < \frac{\delta}{2} \ \forall i \in \{1, ..., n\}$ for some $\delta > 0$.
- ▶ Let $\hat{X} := \delta \times \text{round}(\frac{1}{\delta}X)$. $\Longrightarrow |\hat{X}_i X_i| \leq \frac{\delta}{2} \ \forall i$.
- ▶ Compress $\hat{X} \in \delta \mathbb{Z}^n$ losslessly using induced model $P(\hat{X})$. \Longrightarrow Reconstruction $X' = \hat{X}$.

$$P(\hat{X} = \hat{x}) = P\left(X \in \underset{i=1}{\overset{n}{\times}} \left[\hat{x}_i - \frac{\delta}{2}, \hat{x}_i + \frac{\delta}{2}\right)\right) = \int_{\underset{i=1}{\overset{n}{\times}} \left[\hat{x}_i - \frac{\delta}{2}, \hat{x}_i + \frac{\delta}{2}\right)} p(x) d^n x \approx \delta^n p(\hat{x}) + o(\delta^n)$$

$$H_P(\hat{X}) \approx -\sum_{\hat{x} \in \delta \mathbb{Z}^n} \delta^n p(\hat{x}) \log_2(\delta^n p(\hat{x}))$$

$$\approx -\int p(x) \left(\log_2 p(x) + n \log_2 \delta \right) d^n x = \mathbb{E}_P[-\log_2 p(X)] + n \log_2(1/\delta)$$

How Does Discretization Relate to IMPRS-IS?

Easter egg for attendees of the tutorial.

(Not on handouts, sorry. You should have been there ©.)

Examples of Differential Entropies

- ▶ Uniform distribution: P(X) = U(X)
 - ▶ **Density:** $p(x) = \frac{1}{\text{Vol}(\mathcal{X})} \quad \forall x \in \mathcal{X}$
 - ▶ Differential entropy: $h_P(X) = \mathbb{E}_P \left[-\log_2 p(X) \right] = \mathbb{E}_P \left[-\log_2 \frac{1}{\text{Vol}(\mathcal{X})} \right] = \log_2(\text{Vol}(\mathcal{X}))$
 - ▶ **Note:** if Vol(X) < 1 then $h_P(X) < 0$.
 - \rightarrow Nothing to see here, h_P is only meaningful up to an infinite additive constant.
- ▶ Normal distribution: $P(X) = \mathcal{N}(\mu, \Sigma)$ (with $X, \mu \in \mathbb{R}^n$ and $\Sigma \in \mathbb{R}^{n \times n}$)
 - ▶ **Density:** $p(x) = \mathcal{N}(x; \mu, \Sigma) = \frac{1}{\sqrt{\det(2\pi \Sigma)}} \exp\left[-\frac{1}{2}(x \mu)^{\top} \Sigma^{-1}(x \mu)\right]$
 - ▶ Differential entropy: $h_P(X) = \mathbb{E}_P[-\log_2 p(X)] = \frac{1}{2}\log_2(\det \Sigma) + \underbrace{\frac{n}{2}\log_2(2\pi e)}_{\text{const.}}$

KL-Divergence Between Continuous Distributions

- ▶ **Differential entropy** (reminder): $h_P(X) = \mathbb{E}_P[-\log_2 p(X)]$
 - o Relation with entropy of discretization \hat{X} : $H_P(\hat{X}) \approx h_P(X) + n \log_2(1/\delta) \xrightarrow{\delta \to 0} \infty$
- ▶ **Differential cross entropy** (less common): $h[P(X), Q(X)] = \mathbb{E}_P[-\log_2 q(X)]$
 - ightarrow Relation with discretization: $Hig[P(\hat{X}),Q(\hat{X})ig]pprox hig[P(X),Q(X)ig]+n\log_2(1/\delta)\stackrel{\delta o 0}{\longrightarrow}\infty$
- ▶ Kullback-Leibler divergence between discretized distributions $P(\hat{X})$ and $Q(\hat{X})$:

$$D_{\mathsf{KL}}(P(\hat{X}) \parallel Q(\hat{X})) = H[P(\hat{X}), Q(\hat{X})] - H_{P}(\hat{X})$$

$$\approx h[P(X), Q(X)] + n \log_{2}(1/\delta) - \left(h_{P}(X) + n \log_{2}(1/\delta)\right)$$

$$= \mathbb{E}_{P}\left[-\log_{2}\frac{q(X)}{p(X)}\right] =: D_{\mathsf{KL}}(P(X) \parallel Q(X)) \stackrel{(\mathsf{possibly})}{<} \infty$$

- \implies Interpretation: $D_{KL}(P \parallel Q) =$ modeling overhead, in the limit of infinitely fine quantization.
 - ► Generalization (density-free): $D_{KL}(P \parallel Q) = -\int \log_2\left(\frac{dQ}{dP}\right) dP$

(Variational) Information Bottleneck

Example: β -variational autoencoder (similar for supervised models (Alemi et al., ICLR 2017))

▶ Loss function:
$$\mathbb{E}_{X \sim \text{data}} \Big[\mathbb{E}_{Q(Z|X=x)} \big[-\log P(X=x \mid Z) \big] + \beta D_{\text{KL}} \big(Q(Z \mid X=x) \parallel P(Z) \big) \Big]$$

►
$$D_{\text{KL}}(...\|...) = \begin{bmatrix} \text{information in } z \sim Q(Z \mid X = x) \\ \text{for someone who doesn't know } x \\ (\text{i.e., they only know } P(Z)) \end{bmatrix} - \begin{bmatrix} \text{information in } z \sim Q(Z \mid X = x) \\ \text{for someone who knows } x \\ (\text{i.e., they know } Q(Z \mid X = x)) \end{bmatrix}$$

information in $z \sim Q(Z \mid X = x)$

 $\Longrightarrow \begin{cases} \text{Capture as much } (x\text{-independent}) \text{ information about } z \text{ in the prior } P(Z) \text{ as possible.} \\ \text{Encode as little (unnecessary) information in } Q(Z \mid X = x) \text{ as possible.} \end{cases}$

Remark: Data Compression With VAEs

- ▶ **So far, no compression:** Z still takes up lots of memory (even if its inf. content is low).
- ▶ Real compression has to actually reduce Z to its information content: entropy coding

Rate/Distortion Trade-off

▶ Tuning β allows us to trade off *bit rate* against *distortion*.

originals (uncompressed)

BPG 4:4:4 left: 0.143 bit/pixel right: 0.14 bit/pixel

VAE-based

left: 0.142 bit/pixel right: 0.13 bit/pixel

[Yang, RB, Mandt, NeurlPS 2020]

JPEG left: 0.142 bit/pixel right: 0.14 bit/pixel

Agenda

1

Theory of Communication

2

Applications to Machine Learning

Derive & interpret:

- ▶ information content
- ► (conditional) entropy
- ► KL divergence
- ► mutual information
- ► data processing ineq.

Brief code example of data compression with a deep-learning model (GPT-2).

When are information-theoretical metrics useful?

Limitations of information theory, and common pitfalls.

$$I_P(X;Y) = D_{\mathsf{KL}}\big(P(X,Y) \, \big\| \, P(X) \, P(Y)\big) = \mathbb{E}_P\left[-\log_2\frac{p(X) \, p(Y)}{p(X,Y)}\right] \qquad \text{(if densities p exist)}$$

Exercise: let X' = f(X), Y' = g(Y), where f and g are differentiable *injective* functions. Convince yourself that I_P is independent of representation, i.e., $I_P(X'; Y') = I_P(X; Y)$.

Example 1a:

$$P(X) = P(Y) = \mathcal{U}([-1,1)) \implies h_P(X) = h_P(Y) = \log_2(2) = 1.$$

$$P(Y \mid X) = \begin{cases} \mathcal{U}([-1,0)) & \text{if } X < 0; \\ \mathcal{U}([0,1)) & \text{if } X \ge 0. \end{cases}$$

▶ Interpretation: observing X tells us (only) the sign of Y. $\Longrightarrow 1$ bit of information.

Example 1b: non-uniform P(X).

$$p(y) = \begin{cases} \alpha & \text{if } y \in [-1, 0); \\ 1 - \alpha & \text{if } y \in [0, 1). \end{cases} \text{ (for } \alpha \in [0, 1])$$

$$\Rightarrow h_P(Y) = -\int_{-1}^1 p(y) \log_2 p(y) \, dy$$

$$= -\alpha \log_2(\alpha) - (1 - \alpha) \log_2(1 - \alpha) =: H_2(\alpha)$$

$$P(Y \mid X) = \begin{cases} \mathcal{U}([-1,0)) & \text{if } X < 0; \\ \mathcal{U}([0,1)) & \text{if } X \ge 0. \end{cases}$$
 (as before)
$$\Rightarrow h_P(Y \mid X) = 0 \quad \text{(as before)}$$

- ▶ Mutual information: $I_P(X; Y) = h_P(Y) h_P(Y | X) = H_2(\alpha) 0 = H_2(\alpha) \le 1$ bit.
- ▶ Interpretation: observing X still tells us sign(Y) with certainty, but sign(Y) now carries less than one bit of information (in expectation) if $\alpha \neq \frac{1}{2}$.

Example 1c: back to uniform P(X), but different P(Y|X):

►
$$P(X) = \mathcal{U}([-1,1));$$

$$P(Y|X) = \begin{cases} \mathcal{U}(\left[-\frac{\alpha}{2}, 1 - \frac{\alpha}{2}\right)) & \text{if } X \ge 0; \\ \mathcal{U}(\left[-1 + \frac{\alpha}{2}, \frac{\alpha}{2}\right)) & \text{if } X < 0. \end{cases}$$

Method 1: $I_P(X; Y) = h_P(Y) - h_P(Y | X)$

 $ightharpoonup h_P(Y \mid X) = 0$ as before.

$$p(y) = \begin{cases} \frac{1}{2} & \text{if } y \in \left[\frac{\alpha}{2}, 1 - \frac{\alpha}{2}\right) \cup \left[-1 + \frac{\alpha}{2}, -\frac{\alpha}{2}\right); \\ 1 & \text{if } y \in \left[-\frac{\alpha}{2}, \frac{\alpha}{2}\right). \end{cases}$$

$$\implies h_P(Y) = -\int_{\frac{\alpha}{2}}^{1-\frac{\alpha}{2}} \frac{1}{2} \log_2(\frac{1}{2}) \, dy - \int_{-1+\frac{\alpha}{2}}^{-\frac{\alpha}{2}} \frac{1}{2} \log_2(\frac{1}{2}) \, dy - \int_{-\frac{\alpha}{2}}^{\frac{\alpha}{2}} 1 \log_2(1) \, dy = 1 - \alpha.$$

▶ Interpretation: sign(Y) has one bit of entropy again, but knowing X no longer tells us sign(Y) with certainty, it only improves our odds of predicting it.

Example 1c: back to uniform P(X), but different P(Y | X):

$$P(X) = \mathcal{U}([-1,1));$$

$$P(Y \mid X) = \begin{cases} \mathcal{U}(\left[-\frac{\alpha}{2}, 1 - \frac{\alpha}{2}\right)) & \text{if } X \ge 0; \\ \mathcal{U}(\left[-1 + \frac{\alpha}{2}, \frac{\alpha}{2}\right)) & \text{if } X < 0. \end{cases}$$

Method 2: $I_P(X; Y) = h_P(X) - h_P(X \mid Y)$

$$P(X \mid Y) = \begin{cases} \mathcal{U}([0,1)) & \text{if } Y \in \left[\frac{\alpha}{2}, 1 - \frac{\alpha}{2}\right); \\ \mathcal{U}([-1,1)) & \text{if } Y \in \left[-\frac{\alpha}{2}, \frac{\alpha}{2}\right); \\ \mathcal{U}([-1,0)) & \text{if } Y \in \left[\frac{\alpha}{2} - 1, -\frac{\alpha}{2}\right). \end{cases}$$

$$P(X \mid Y) = \begin{cases} \mathcal{U}([0,1)) & \text{if } Y \in \left[\frac{\alpha}{2}, 1 - \frac{\alpha}{2}\right); \\ \mathcal{U}([-1,1)) & \text{if } Y \in \left[-\frac{\alpha}{2}, \frac{\alpha}{2}\right); \\ \mathcal{U}([-1,0)) & \text{if } Y \in \left[\frac{\alpha}{2} - 1, -\frac{\alpha}{2}\right). \end{cases}$$

$$\Rightarrow h_{P}(X \mid Y) = \mathbb{E}_{v \sim P(Y)} \left[h_{P}(X \mid Y = y)\right] = \frac{1}{2}(1 - \alpha) \log_{2}(1) + \alpha \log_{2}(2) + \frac{1}{2}(1 - \alpha) \log_{2}(1) = \alpha.$$

▶ Interpretation: sign(X) has one bit of entropy, but a fraction α of possible observations of Y won't tell us sign(X) at all (while the other observations of Y tell it with certainty).

Symmary of Example 1

The mutual information $I_P(X; Y)$ takes into account:

Example 1a:

▶ how much new information an observation of X reveals about Y (and vice versa) ...

Example 1b:

in comparison to how much we'd know about Y anyway;

Example 1c (Methods 1 & 2):

- with what certainty the new information is revealed; and
- ► how probable it is to make an informative observation.

Example 2: Gaussian Signal With Gaussian Noise

Consider an analog signal $x \sim \mathcal{N}(0, \sigma_s^2)$, sent over a noisy channel (e.g., voltage on a wire).

 \implies Receiver receives a somewhat corrupted signal: $y \sim \mathcal{N}(x, \sigma_n^2)$.

Mutual information: $I_P(X; Y) = h_P(Y) - h_P(Y \mid X)$

$$p(y) = \mathbb{E}_{P(X)} [p(y \mid X)] = \int \mathcal{N}(x; 0, \sigma_{s}^{2}) \, \mathcal{N}(y; x, \sigma_{s}^{2}) \, dx = \mathcal{N}(y; 0, \sigma_{s}^{2} + \sigma_{n}^{2})$$

$$\Rightarrow I_{P}(X; Y) = h_{P}(Y) - h_{P}(Y \mid X) = \frac{1}{2} \log_{2}(\sigma_{s}^{2} + \sigma_{n}^{2}) - \frac{1}{2} \log_{2}(\sigma_{n}^{2}) = \frac{1}{2} \log_{2}\left(1 + \frac{\sigma_{s}^{2}}{\sigma_{n}^{2}}\right).$$

Interpretation: σ_s^2/σ_n^2 is the signal-to-noise ratio (SNR).

- ▶ For SNR \rightarrow 0, we have $I_P(X; Y) \rightarrow 0$; \Longrightarrow receiver receives no meaningful information.
- \blacktriangleright But, as long as SNR > 0, one can still extract *some* information from the received signal.
- In the theory of channel coding (aka error correction), P(Y|X) models a communication channel. Its channel capacity $C := \sup_{P(X)} I_P(X;Y)$ is the number of bits that can be transmitted noise-free per invocation of the noisy channel (in the limit of long messages).

Data Processing Inequality I: Intuition

Remember when we were all still young and looking at slide 40?

$$I_{P}(X;Y) = D_{KL}(P(X,Y) \parallel P(X) P(Y)) = \mathbb{E}_{P}\left[-\log_{2}\frac{p(X) p(Y)}{p(X,Y)}\right]$$
 (if densities p exist)

Exercise: let X' = f(X), Y' = g(Y), where f and g are differentiable *injective* functions. Convince yourself that I_P is independent of representation, i.e., $I_P(X'; Y') = I_P(X; Y)$.

Question: what do *non-injective* transformations do to the mutual information?

- **Example:** start from last slide: $X \sim \mathcal{N}(0, \sigma_s^2)$; $Y|X \sim \mathcal{N}(X, \sigma_n^2)$.
- ▶ Then, consider $Z := Y^2$.
- ► Is $I_P(X; Z)$ $\begin{cases} larger than, \\ smaller than, \\ or equal to \end{cases} I_P(X; Y)?$

Data Processing Inequality II: Formalization

Consider a Markov chain: $X \longrightarrow Y \longrightarrow Z$, i.e., P(X, Y, Z) = P(X) P(Y|X) P(Z|Y).

- \Leftrightarrow X and Z are conditionally independent given Y (i.e., P(X,Z|Y) = P(X|Y)P(Z|Y)).
- \Leftrightarrow $Z \longrightarrow Y \longrightarrow X$ is a Markov chain (i.e., P(X, Y, Z) = P(Z) P(Y|Z) P(X|Y)).

Theorem (data processing inequality): "once we've removed some information from a random variable, further processing cannot restore the removed information."

Proof:

Inf.-Theoretical Bounds on Model Performance

Consider a classification task: assign label Y to input data X: learn P(Y|X)

- ▶ Data generative distribution: $P(X, Y_{g.t.}) = P(Y_{g.t.}) P(X \mid Y_{g.t.})$
 - \implies Markov chain: $\left[Y_{g.t.} \xrightarrow{\text{data gen.}} X \xrightarrow{\text{classifier}} Y\right]$
 - Perfect classification would mean $Y = Y_{g.t.} \implies I_P(Y_{g.t.}; Y) = H_P(Y_{g.t.}) \underbrace{H_P(Y_{g.t.} \mid Y)}_{=0}$
 - More generally: high accuracy \Longrightarrow high $I_P(Y_{g.t.}; Y) \Longrightarrow$ high $I_P(Y_{g.t.}; X) \ge I_P(Y_{g.t.}; Y)$:

 Bound: accuracy $\le f^{-1}(I_P(Y_{g.t.}; X))$ where $f(\alpha) = H_P(Y_{g.t.}) + \alpha \log_2 \alpha + (1 \alpha) \log_2 \frac{1 \alpha}{\# classes 1}$ [Meyen, 2016 (MSc thesis advised by U. von Luxburg)]
- Now introduce a preprocessing step: $Y_{g.t.} \xrightarrow{\text{data gen.}} X \xrightarrow{\text{preprocessing}} Z \xrightarrow{\text{classifier}} Y$
 - ▶ Theoretical bound now: accuracy $\leq f^{-1}(I_P(Y_{g.t.}; Z)) \leq f^{-1}(I_P(Y_{g.t.}; X))$ (by information processing inequality and monotonicity of f).
 - ⇒ Information theory suggests: preprocessing can only hurt (bound on) downstream performance.

Limitations of Information Theory

- ▶ **Observation:** classification accuracy *decreases* for very large rate (= bound on mutual information).
- **Explanation:** information theory doesn't consider (computational/modeling) *complexity*.
 - ► Forcing the encoder to throw away some of the (least relevant) information can make downstream tasks *easier in practice*.
 - Note: it's the *information* bottleneck that can make downstream processing easier, not any (possible) dimensionality reduction.

(In fact, many downstream tasks become *easier* in higher dimensions \rightarrow kernel trick.)

Be Creative! You Now Have the Tools for It.

[Hanqi Zhou, RB, CM Wu, Á Tejero-Cantero, ICLR 2024]

We want to quantify:

► How **specific** are learner representations s for their learner ℓ ?

$$I_P(s;\ell) = H_P(\ell) - H_P(\ell \mid s)$$

► How **consistent** are representations for a fixed learner if we train on different subsets of time steps?

$$\mathbb{E}_{\ell_{\mathsf{sub}}}ig[\mathit{I}_{P}(\mathit{s}^{\ell};\ell_{\mathsf{sub}})ig]$$

▶ **Disentanglement**, i.e., how informative is each *component* of $s \in \mathbb{R}^n$ about learner identity ℓ ?

$$H_P(s) - H_P(s \mid \ell)_{\mathsf{diag}}$$