1 Bayesian Classifiers

Probabilities Sum Rule

$$P(A) = \sum_{B} P(A, B)$$

$$P(A) = \sum_{B} \sum_{C} P(A, B, C)$$

Product Rule

$$P(A, B) = P(B|A) \times P(A) = P(A|B) \times P(B)$$

Bayes Theorem

$$P(A|B) = \frac{P(A,B)}{P(B)} = \frac{P(B|A)P(A)}{P(B)}$$

(Generalised case)

$$P(A_1...A_k|B_1...B_p) = \frac{P(B_1...B_p, A_1...A_k)}{P(B_1...B_p)}$$

Bayesian Classifiers

Bayesian classifiers aim to find the mapping $f: \mathbf{x} \Rightarrow \mathbf{y}$ for supervised learning in the form of conditional probability $P(v|\mathbf{X})$ via Baves rule.

$$P(y|\mathbf{X}) = \frac{P(y, \mathbf{X})}{P(\mathbf{X})} = \frac{P(\mathbf{X}|y)P(y)}{P(\mathbf{X})}$$

For a classification with C classes, given a data instance **x***:

$$y^* = c^* i f c^* = \underset{c}{\operatorname{argmax}} P(y = c | \mathbf{x}^*)$$

Applying Bayes rule,

$$P(y = c|\mathbf{x}^*) = \frac{P(\mathbf{x}^*|y = c)P(y = c)}{P(\mathbf{x}^*)}$$

Therefore,

$$y^* = \underset{c}{\operatorname{argmax}} \frac{P(\mathbf{x}^*|y=c)P(y=c)}{P(\mathbf{x}^*)}$$

$$= \underset{c}{\operatorname{argmax}} P(\mathbf{x}^*|y=c)P(y=c)$$

2 Bayesian Decision Theory

Incorporating cost of misclassification on top of simple Bayesian Classifiers.

Loss/Cost

Actions: a_c , i.e., predict y = cDefine λ_{ij} as the cost of a_i when optimal action is a_i . E.g.:

 $\lambda_{00} = 0$ (predict correctly) $\lambda_{11} = 0$ (predict correctly) $\lambda_{01} = 10$ misclassify 1 as 0 $\lambda_{00} = 1$ misclassify 0 as 1

Expected Risk

Expected risk for taking action a_i :

$$R(a_i|\mathbf{x}) = \sum_{c=0}^{C-1} \lambda_{ic} P(y=c|\mathbf{x})$$

To classify, for all actions, calculate expected risk, then choose the action with the minimum risk.

Special Case: 0/1 loss

$$\lambda_{ij} = \begin{cases} 0 \text{ if } i = j \\ 1 \text{ if } i \neq j \end{cases}$$

 $\therefore R(a_i|\mathbf{x}) = 1 - P(y = i|\mathbf{x})$ In this case.

Choose
$$a_i$$
 if $R(a_i|\mathbf{x}) = \min_{a_c} R(a_c|\mathbf{x})$

Is equivalent to:

3 Naïve Bayes Classifiers

Independence

A is **independent** of B, if:

$$P(A, B) = P(A|B) \times P(B) = P(A) \times P(B)$$

 $P(A, B) = P(B|A) \times P(A) = P(A) \times P(B)$
 $P(A|B) = P(A)$
 $P(B|A) = P(B)$

Conditional Independence

A is conditionally independent of B, given C if: P(A|B,C) = P(A|C)

Naïve Bayes Classifier

1. Assumption: conditional independence of features given label

$$p(\mathbf{x}|y=c) = P(x_1,...,x_d|y=c)$$

$$= P(x_1|y=c)P(x_2|y=c)...P(x_d|y=c) \\$$

$$= \prod_{i=1}^{d} P(x_i|y=c)$$

To classify a test record \mathbf{x}^* , compute the **M-estimate** posteriors for each class:

$$p(y = c|\mathbf{x}^*) = \frac{(\prod_{i=1}^d P(x_i^*|y = c))P(y = c)}{P(\mathbf{x}^*)}$$

Since $P(\mathbf{x}^*)$ is constant for each class c, it is sufficient to choose the class that maximises the numerator term.

$$y^* = \underset{c}{\operatorname{argmax}} (\prod_{i=1}^{d} P(x_i^* | y = c)) P(y = c)$$

Estimating Cond Prob (Discrete)

$$P(x_i = k | y = c) = \frac{|(x_i - k) \land (y = c)|}{|y = c|}$$

Estimating Cond Prob (Continuous)

$$P(x_i|y=c) = \frac{1}{\sqrt{2\pi\sigma_{ic}^2}} e^{-\frac{(x_i - \mu_{ic})^2}{2\sigma_{ic}^2}}$$

Predict $y = c^*$ if $P(y = c^*|\mathbf{x}) = \max_{c} P(y = c|\mathbf{x})$ supposing there are N_c instances in class c, Sample mean:

$$\mu_{ic} = \frac{1}{N_c} \sum_{j=1}^{N_c} x_{ij}$$

Sample variance:

$$\sigma_{ic}^2 = \frac{1}{N_c - 1} \sum_{i=1}^{N_c} (x_{ij} - \mu_{ic})^2$$

Laplace Estimate

Alternative prob estimation for discrete

$$P(x_i = k | y = c) = \frac{|(x_i - k) \land (y = c)| + 1}{|y = c| + n_i}$$

where n_i is #distinct values of x_i . In extreme cases with no training data, $P(x_i = k | y = c) = \frac{1}{n}$

A more general estimation:

$$P(x_i|y=c) = \frac{1}{\sqrt{2\pi\sigma_{ic}^2}} e^{-\frac{(x_i - \mu_{ic})^2}{2\sigma_{ic}^2}} \qquad P(x_i = k|y=c) = \frac{|(x_i - k) \wedge (y=c)| + m \times \tilde{P}(x_i = k|y=c)}{|y=c| + m}$$

Where m is a hyperparameter and $\vec{P}(x_i = k|y = c)$ is prior information of $P(x_i = k | y = c)$. (e.g., domain knowled-

Extreme case with no training data: $P(x_i = k | y = c) = \tilde{P}(x_i = k | y = c)$