This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

PAT-NO:

JP405145370A

DOCUMENT-IDENTIFIER: JP 05145370 A

TITLE:

SURFACE WAVE DEVICE

PUBN-DATE:

June 11, 1993

INVENTOR-INFORMATION: NAME TAKAKUWA, YASUTOKU KADOTA, MICHIO MOROZUMI, KAZUHIKO

INT-CL (IPC): H03H009/25

US-CL-CURRENT: 310/313A

ABSTRACT:

PURPOSE: To the front wave device utilizing an SH wave such as a BGS wave in which spurious vibration is suppressed by enhancing more the accuracy of an end face of a piezoelectric substrate.

CONSTITUTION: The device is a surface wave device 1 of an end face reflection type utilizing an SH wave such as a BGS wave and made up of at least one interdigital transducer formed on one major side of a piezoelectric substrate 2 and the piezoelectric substrate is formed by using a ceramic material whose grain diameter is 2.0μm or below.

COPYRIGHT: (C)1993,JPO&Japio ----- KWIC -----Document Identifier - DID (1):

JP 05145370 A

(19)日本国特許庁(JP)

(12) 公開特許公報 (A) (11)特許出願公開番号

特開平5-145370

(43)公開日 平成5年(1993)6月11日

(51) Int. C1. 5

識別記号 庁内整理番号

FΙ

技術表示箇所

H03H 9/25 C 7259 - 5 J

審査請求 未請求 請求項の数1

(全6頁)

(21)出願番号

特願平3-328242

(22)出願日

平成3年(1991)11月15日

(71)出願人 000006231

株式会社村田製作所

京都府長岡京市天神二丁目26番10号

(72)発明者 髙桑 泰徳

京都府長岡京市天神二丁目26番10号 株式

会社村田製作所内

(72)発明者 門田 道雄

京都府長岡京市天神二丁目26番10号 株式

会社村田製作所内

(72) 発明者 諸角 和彦

京都府長岡京市天神二丁目26番10号 株式

会社村田製作所内

(74)代理人 弁理士 宮▼崎▲ 主税

(54) 【発明の名称】表面波装置

(57)【要約】

(修正有)

【目的】 圧電基板1の端面2a, 2bの精度をより一 層高めることにより、スプリアス振動を抑制し得るBG S波等のSH波を利用した表面波装置を得る。

【構成】 BGS波等のSH波を利用した端面反射型の 表面波装置であり、圧電基板の一方主面に少なくとも1 のインターデジタルトランスデューサを形成してなり、 圧電基板が、粒径が 2. 0 μ m以下のセラミック材料を 用いて構成されている、表面波装置。

3

10

【特許請求の範囲】

SH波を利用した端面反射型の表面波装 【請求項1】 置であって、

圧電基板と、

ذ

前記圧電基板上に形成された少なくとも1つのインター デジタルトランスデューサとを備え、

前記圧電基板が、粒径2.0μm以下のセラミック材料 を用いて構成されていることを特徴とする、表面波装 置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、BGS波等のSH波を 利用した表面波装置に関し、特に、端面反射型の表面波 装置において端面精度を高めることを可能とする構成を 備えた表面波装置に関する。

[0002]

【従来の技術】図2は、従来のBGS波を利用した表面 波装置を示す斜視図である。表面波装置1は、矩形の圧 電基板2の上面に一対のくし歯電極3,4を形成した構 し合うように配置されており、従って、くし歯電極3, 4により1つのインターデジタルトランスデューサが構 成されている。圧電基板2は、例えば、チタン酸・ジル コン酸鉛(PZTと略す。) 系セラミックスのような圧 電材料から構成されており、図示の矢印P方向に分極処 理されている。表面波装置1では、くし歯電極3,4間 に交流電界を印加することにより、図示の矢印X方向ま たはX方向と逆方向に進むBGS波が励起される。そし て、励起されたBGS波は、圧電基板2の端面2a, 2 b間で反射されるように構成されており、従って、表面 30 波装置1は、BGS波を利用した端面反射型の表面波共 振子として動作するものである。

【0003】ところで、BGS波を利用した端面反射型 の表面波装置では、圧電基板2の端面2a, 2b間の距 離は、BGS波の波長を λ としたときに、(λ /2)× n (但し、nは整数) とされねばならない。そして、こ の端面間の距離が正確に $(\lambda/2)$ ×nに一致されなけ ば、スプリアス振動がかなりの大きさで発生するという 問題があった。そこで、従来、矩形の圧電基板2を得る にあたっては、端面2a, 2bを髙精度なダイサーを用 40 いて切断することにより形成し、それによって端面間の 距離を髙精度に制御していた。

[0004]

【発明が解決しようとする課題】しかしながら、圧電基 板2は、PZT等のセラミックスからなるものであるた め、高精度なダイサーを用いて端面2a,2bを切断・ 形成したとしても、切断面においてチッピングが生じる ことは避けられなかった。その結果、チッピングが生じ た部分では、端面間の距離が (1/2)×nからずれる ことになり、全体としての端面間距離の精度が上記チッ 50 を用いて圧電基板を構成し、ダイサーとしてディスコ社

ピングの分だけ低下せざるを得なかった。そのため、図 3に示すように、得られた表面波装置1のインピーダン スー周波数特性(実線)及び位相-周波数特性極性(破 線)上において、かなり大きなスプリアス振動S1, S 2 が発生していた。本発明の目的は、圧電基板の端面の 精度をより一層高めることにより、スプリアス振動を効 果的に抑制し得るSH波を利用した表面波装置を提供す ることにある。

[0005]

【課題を解決するための手段】本発明は、SH波を利用 した端面反射型の表面波装置であって、圧電基板と、こ の圧電基板上に形成された少なくとも1つのインターデ ジタルトランスデューサとを備え、上記圧電基板が、粒 径2.0 μm以下のセラミック材料を用いて構成されて いることを特徴とする。

[0006]

【作用】本発明では、圧電基板を構成するセラミック材 料が、粒径2. 0μm以下のセラミック材料からなるた め、圧電基板の端面を機械的に加工した場合、チッピン 造を有する。くし歯電極3,4は、互いの電極指が間挿 20 グの大きさを3. Оμm程度以下に抑えることが可能と なる。従って、端面間の距離の精度を高めることがで き、それによってスプリアスレベルが小さく、周波数特 性に優れたSH波を利用した端面反射型の表面波装置を 得ることができる。

[0007]

【実施例の説明】本願発明者は、髙精度なダイサーを用 いて圧電基板の端面をダイシングしたとしても、チッピ ングを避けることができず、そのため図3に示したよう なスプリアス振動SI、S2の発生を防止することがで きなかった。チッピングの大きさを低減すれば、スプリ アス振動のレベルを抑制し得るのではないかと考え、チ ッピングの大きさを抑制する方法を種々検討した。その 結果、圧電基板を構成するセラミック材料の粒径を小さ くすれば、チッピングの大きさを低減することができ、 それによってスプリアス振動を抑制し得ることを見出し た。

【0008】図1は、PbTi_xO₃-PbZr_{1-x}O₃の 組成のPZT系セラミックスにおいて、セラミック材料 の粒径を変えて種々の圧電基板を作製し、ダイサーを用 いて該圧電基板の端面を切断した場合のチッピングの大 きさを測定した結果を示す図である。図1から明らかな ように、セラミック材料の粒径を小さくすれば、チッピ ングの大きさを小さくし得ることがわかる。なお、セラ ミック材料の粒径は、グランメトリック法に従って測定 したものであり、チッピングは、レーザー測長器により 測定した。

【0009】セラミック材料の粒径を小さくすれば実際 にチッピングが低減されることを確認するために、粒径 3. 1 μ m 及び粒径 1. 3 μ m の 2 種のセラミック材料 نز

製のダイサーを用い、圧電基板の端面を切断した。ダイ サーで切断された端面を、図4~図7に示す。図4は、 粒径3.1 μ mのセラミック材料の表面の電子顕微鏡写 真であり、図5は、同じく粒径3. 1μmのセラミック 材料を用いた圧電基板をダイサーで切断した場合の切断 部分(切断面間の距離は130 µm)を切断方向から見 た状態を示す顕微鏡写真である。

【0010】図6は、粒径1.3 μ mのセラミック材料 の表面の電子顕微鏡写真であり、図7は粒径1.3 μm のセラミック材料を用いて構成された圧電基板をダイサ 10 セラミック材料を用いて圧電基板が構成されているた ーで切断した状態の切断部分(切断面間の距離は130 μm) を切断方向から見た状態を示す顕微鏡写真であ る。図4及び図5と、図6及び図7を比較すれば、ダイ サーにより切断された端面は粒径1.3μmのセラミッ ク材料を用いた場合の方が、粒径3. 1μmのセラミッ ク材料を用いた場合に比べて端面のチッピングの大きさ が小さくなっており、それゆえ端面が平滑化されている ことがわかる。

【0011】上記のように、セラミック材料の粒径を小 さくすればチッピングの大きさを小さくすることがで き、従ってダイサーで切断された圧電基板の端面を平滑 化し得ることがわかったため、本願発明者らは、種々の 粒径のセラミック材料を用い、圧電基板を構成し、かつ 電極対数N=15対のインターデジタルトランスデュー サを該圧電基板を上に形成し、図2に示した表面波装置 を作製し、その周波数特性を測定した。その結果、チッ ピングの大きさを3.0μm以下にするためには、セラ ミック材料として粒径が2.0μm以下のものを用いれ ば(図1参照)、上記チッピングに基づくスプリアスレ ベルを効果的に低減し得ることを見出した。従って、本 30 発明では、圧電基板を構成するセラミック材料として、 粒径 2. 0μm以下のセラミック材料を用いることが必 要である。

【0012】本発明の一実施例の表面波装置として、圧 電基板材料として、PbTio.48O3-PbZro.48O3 の組成からなり、粒径が1.3μmのセラミック材料を 用いて圧電基板を形成し、該圧電基板の端面をダイサー で切断して形成し、上面に図2に示したくし歯電極3,

4 (但し、電極対数N=15対)を形成したものを作製 した。得られた表面波装置についてのインピーダンスー 周波数特性(実線)及び位相-周波数特性(破線)を測 定したところ、図8に示す結果が得られた。図8から明 らかなように、本実施例の表面波装置では、図3に示し たスプリアス振動S」、S2がほとんど見られないこと がわかる。

[0013]

【発明の効果】本発明によれば、粒径2.0 µm以下の め、端面反射型のSH波を利用した表面波装置におい て、端面の精度を効果的に高めることができ、それによ ってスプリアス振動を抑制することができる。よって、 本発明によれば、スプリアス振動の発生の少ない、周波 数特性に優れた表面波装置を提供することが可能とな

【図面の簡単な説明】

【図1】セラミック材料の粒径とダイシング後のチッピ ングの大きさの関係を示す図。

20 【図2】従来のBGS波を利用した端面反射型の表面波 装置を示す斜視図。

【図3】従来の表面波装置のインピーダンスー周波数特 性及び位相一周波数特性を示す図。

【図4】粒径3. 1 μ mのセラミック材料表面の粒子構 造の状態を示す電子顕微鏡写真。

【図5】粒径3. 1 µ mのセラミック材料を用いた場合 の圧電基板の切断面を上方から見た顕微鏡写真。

【図6】粒径1.3μmのセラミック材料表面の粒子構 造の状態を示す電子顕微鏡写真。

【図7】粒径1.3 μmのセラミック材料を用いた場合 の圧電基板の切断面を上方から見た顕微鏡写真。

【図8】実施例の表面波装置のインピーダンスー周波数 特性及び位相ー周波数特性を示す図。

【符号の説明】

1…表面波装置

2…圧電基板

2 a, 2 b…端面

3, 4…くし歯電極

【図2】

【図7】

