

Figure 1 (A-F)

Construct Forms Comprising at Least one Single-Stranded Region

Figure 2 (A-F)

Functional Forms of the Construct

Figure 3 (A-C)

Three Constructs with an RNA Polymerase Covalently Attached to a Transcribing Cassette

Figure 4 (A-C)

Three Constructs with Promoters for Endogenous RNA Polymerase

M13mp18. Seq Length: 7250

1.	AATGCTACTA	CTATTAGTAG	AATTGATGCC	ACCTTTTCAG	стозозос
51.	AAATGAAAAT	ATAGCTAAAC	AGGTTATTGA	CCATTTGCGA	AATGTATCTA
101.	ATGGTCAAAC	TAAATCTACT	OGTTOGCAGA	ATTEGGAATC	AACTGTTACA
151.	TGGAATGAAA	CTTOCAGACA	COGTACTITA	GTTGCATATT	TAAAACATGT
201	TGAGCTACAG	CACCAGATTC	AGCAATTAAG	CTCTAAGCCA	TOOGCAAAAA
251	TGACCTCTTA	TCAAAAGGAG	CAATTAAAGG	TACTCTCTAA	TOCTGACCTG
301.	TTGGAGTTTG	спосстст	GGTTCGCTTT	GAAGCTCGAA	TTAAAACGCG
351.	ATATTTGAAG	TCTTTCCGCGC	TTCCTCTTAA	TCTTTTGAT	GCAATCCGCT
401.	TTGCTTCTGA	CTATAATAGT	CAGGGTAAAG	ACCTGATTTT	TGATTTATGG
451.	TCATTCTCGT	TTTCTGAACT	GTTTAAAGCA	TTTGAGGGGG	ATTCAATGAA
501.	TATTTATGAC	GATTOOGCAG	TATTGGACGC	TATOCAGTOT	AAACATTTTA
551.	CTATTACCC	CTCTGGCAAA	ACTTCTTTTG	CAAAAGOCTC	TOGCTATTTT
601.	GGTTTTTATC	GIOGICIGGI	AAAOGAGGGT	TATGATAGTG	TTGCTCTTAC
651.	TATGCCTCGT	AATTCCTTTT	GGCGTTATGT	ATCTGCATTA	GTTGAATGTG
701.	GTATTCCTAA	ATCTCAACTG	ATGAATCTTT	CTACCTGTAA	TAATGTTGTT
751.	COGTTAGTTC	GTTTATTAA	CGTAGATTTT	TCTTCCCAAC	GTCCTGACTG
801.	GTATAATGAG	CCAGTTCTTA	AAATCGCATA	AGGTAATTCA	CAATGATTAA
851.	AGTTGAAATT	AAACCATCTC	AAGCCCAATT	TACTACTOGT	TCTGGTGTTC
901.	TOGTCAGGGC	AAGCTTATT	CACTGAATGA	GCAGCTTTGT	TACGTTGATT
951.	TGGGTAATGA	ATATOOGGTT	CTTGTCGAAG	ATTACTCTTG	ATGAAGGTCA
1001	GOCAGOCTAT	ecesciedic	TGTACACCGT	TCATCTGTCC	TCTTTCAAAG
1051	TTGGTCAGTT	COGTTCCCTT	ATGATTGACC	GTCTGCCGCCT	CONTROP
1101	AAGTAACATG	GAGCAGGTCG	CGGATTTCGA	CACAATTTAT	CAGGOGATGA
1151	TACAAATCTC	CGTTGTACCTT	TGTTTOGOGC	TTGGTATAAT	COCTOCOCCCT
1201	CAAAGATGAG	TGTTTTAGTG	TATTCTTTCG	CCTCTTTCGT	TTTAGGTTGG

Figure 5

1251	TGCCTTCGTA	GTGGCATTAC	GTATTTTA∞	CGTTTAATCG	AAACTTCCTC
1301	ATGAAAAAGT	CTTTAGTCCT	CAAAGCCTCT	GTAGOOGTTG	CTACCCTCGT
1351	TOOGATGCTG	TCTTTCGCTG	CTGAGGGTGA	OGATOCCGCA	AAAGOGGOCT
1401	TTAACTCCCT	GCAAGCCTCA	COCCACCICAAT	ATATOGGTTA	TEOGTEOGOG
1451	ATGGTTGTTG	TCATTGTCCG	CGCAACTATC	GGTATCAAGC	TGTTTAAGAA
1501	ATTCACCTCG	AAAGCAAGCT	GATAAACCGA	TACAATTAAA	GGCTCCTTTT
1551	GGAGCCTTTT	TTTTGGAGA	TTTTCAACGT	GAAAAAATTA	TTATTOGCAA
1601	TTCCTTTAGT	TGTTCCTTTC	TATTCTCACT	COCCTGAAAC	TGTTGAAAGT
1651	TGTTTAGCAA	AACCCCATAC	AGAAAATTCA	TTTACTAACG	TCTGGAAAGA
1701	CGACAAAACT	TTAGATCGTT	ACGCTAACTA	TGAGGGTTGT	CTGTGGAATG
1751	CTACAGGCGT	TGTAGTTTGT	ACTEGTGACG	AAACTCAGTG	TTACGGTACA
1801	TEGETTECTA	Песеспес	TATCCCTGAA	AATGAGGGTG	GTGGCTCTGA
1851	COCTICCOCCT	TOTGAGGGTG	GOGGTTCTĞA	COCTTCCCCCCTT	ACTAAACCTC
1901	CTGAGTACGG	TGATACACCT	ATTCCGGGGCT	ATACTTATAT	CAACCCTCTC
1951	GACCGCACTT	ATCCCCCTCCC	TACTGAGCAA	AACCCCTA	ATOCTAATOC
2001	TTCTCTTGAG	GAGTCTCAGC	CTCTTAATAC	TTTCATGTTT	CAGAATAATA
2051	GGTTCCGAAA	TAGGCAGGGG	GCATTAACTG	TTTATACGCC	CACTGTTACT
2101	CAAGGCACTG	ACCOCCUTTAA	AACTTATTAC	CAGTACACTC	CTGTATCATC
2151	AAAAGCCATG	TATGACGCTT	ACTOGAACOGG	TAAATTCAGA	GACTGCGCTT
2201	CAAGGCACTG	ACCCCCTTAA	AACTTATTAC	CAGTACACTC	CTGTATCATC
2151	AAAAGCCATG	TGCCTCAACC	TOCTGTCAAT	ecticecceccs	COTOTOGTICG
2201	TOCATTCTGG	CTTTAATCAA	GATOCATTOG	TTTGTGAATA	TCAAGGCCAA
2251	TOGTCTGACC	TOCCTCAACC	TCCTGTCAAT	actressesses	ectic tegting
2301	TEGTTCTEGT	GEOGRACICIE	ACCCTCCCTCCC	CICTGAGGGT	COCCOGTTICTICS
2351	ACCETTOCCCC	CTCTGAGGGA	COOCCETTOCCS	GIEGIECCIC	TEGTTCCGGT
2401	GATTTTGATT	ATGAAAAGAT	GGCAAACGCT	AATAAGGGGGG	CTATGACCGA
2451	AAATGCCGAT	GAAAACGCCCC	TACAGTCTGA	COCTAMAGOC	AAACTTGATT

Figure 5

M13mp18 Nucleic Acid Sequence

2501 CTGTCGCTAC TGATTACGGT GCTGCTATCG ATGGTTTCAT TGGTGACGTT 2551 TOOGGOCTIG CTAATGGTAA TGGTGCTACT GGTGATTTTG CTGGCTCTAA 2601 TTOOCAAATG GCTCAAGTOG GTGACGGTGA TAATTCACCT TTAATGAATA 2651 ATTTCCGTCA ATATTTACCT TCCCTCCCTC AATCGGTTGA ATGTCGCCCT 2701 TTTGTCTTTA GOGCTGGTAA ACCATATGAA TTTTCTATTG **ATTGTGACAA** 2751 AATAAACTTA TTOOGTGGTG TCTTTGCGTT TCTTTTATAT GTTGCCACCT 2801 TTATGTATGT ATTITCTACG TITGCTAACA TACTGCGTAA TAAGGAGTCT 2851 TTATCATGCC AGTTCTTTTG GGTATTCCGT TATTATTGCG TTTCCTCGGT 2901 TICCTICTIGG TAACTITIGTT COGCTATCTG CTTACTTTTC TTAAAAAGGG 2951 CTICGGTAAG ATAGCTATTG CTATTTCATT GTTTCTTGCT CTTATTATTG 3001 GCTTAACTC AATTCTTGTG GGTTATCTCT CTGATATTAG 3051 COCTCTGACT TTGTTCAGGG TGTTCAGTTA ATTCTCCCGT CTAATGCGCT 3101 TCCCTGTTTT TATGTTATTC TCTCTGTAAA GGCTGCTATT TTCATTTTTG 3151 ACGTTAAACA AAAAATCGTT TCTTATTTGG ATTGGGATAA 3201 TGTTTATTTT GTAACTGGCA AATTAGGCTC TGGAAAGACG CTCGTTAGCG 3251 TTGGTAAGAT TCAGGATAAA ATTGTAGCTG GGTGCAAAAT **AGCAACTAAT** 3301 CTTGATTTAA GGCTTCAAAA OCTOOOGCAA GTOOGGAGGT TCGCTAAAAC 3351 GOCTOGOGIT CTTAGAATAC OGGATAAGOC TTCTATATCT GATTTGCTTG 3401 CTATTGGGGG CGGTAATGAT TOCTACGAATG AAAATAAAAA CGGCTTGCTT 3451 GTTCTCGATG AGTGCCGTAC TTGGTTTAAT ACCCGTTCTT GGAATGATAA 3501 GGAAAGACAG COGATTATTG ATTGGTTTCT ACTGCTCGT **AAATTAGGAT** 3551 GGGATATTAT TITTCTTGTT CAGGACTTAT CTATTGTTGA TAAACAGGCG 3601 OGTTCTGCAT TAGCTGAACA TGTTGTTTAT TGTOGTCGTC TGGACAGAAT 3651 TACTITACCT TITGTOGGTA CTTTATATTC TCTTATTACT GGCTOGAAAA 3701 TECCTCTECC TAAATTACAT GTTEECGTTG TTAAATATGG CGATTCTCAA 3751 TTAAGCCCTA CTGTTGAGCG TTGGCTTTAT ACTGGTAAGA ATTTGTATAA 3801 CGCATATGAT ACTAAACAGG CTTTTTCTAG TAATTATGAT TCCGGTGTTT

Figure 5

3851 ATTCTTATTT AACGCCTTAT TTATCACACG GTCGGTATTT CAAACCATTA 3901 AATTTAGGTC AGAAGATGAA ATTAACTAAA ATAATATTGA AAAAGTTTTC 3951 TOGOGTTCTT TGTCTTGCGA TTGGATTTGC **ATCAGCATTT ACATATAGTT** 4001 ATATAACCCA ACCTAACCCG GAGGTTAAAA AGGTAGTCTC TCAGACCTAT 4051 GATTTTGATA AATTCACTAT TGACTCTTCT CAGCGTCTTA ATCTAAGCTA 4101 TOGCTATGTT TTCAAGGATT CTAAGGGAAA ATTAATTAAT AGOGACGATT 4151 TACAGAAGCA AGGTTATTCA CTCACATATA TTGATTTATG TACTGTTTCC 4201 ATTAAAAAG GTAATTCAAA TGAAATTGTT AAATGTAATT **AATTITGTTT** 4251 TCTTGATGTT TGTTTCATCA TCTTCTTTTG CTCAGGTAAT **TGAAATGAAT** 4301 AATTOGOCTC TGCGCGATTT TGTAACTTGG TATTCAAAGC AATCAGGCGA 4351 AATCCGTTATT GTTTCTCCCG atgtaaaagg TACTGTTACT **GTATATTCAT** 4401 CTGACGTTAA ACCTGAAAAT CTACGCAATT TCTTTATTTC **TGTTTTACGT** 4451 GCTAATAATT TTGATAATGGT TGGTTCAATT CCTTCCATAA TTCAGAAGTA 4501 TAATCCAAAC AATCAGGATT ATATTGATGA ATTGCCATCA **TCTGATAATC** 4551 AGGAATATGA TGATAATTCC ectecticis stestiticit **TGTTCCGCAA** 4601 AATGATAATG TTACTCAAAC TTTAAAATTT AATAACGTTC **GGGCAAAGGA** 4651 TTTAATACGA GTTGTCGAAT TGTTTGTAAA GTCTAATACT TCTAAATCCT 4701 CAAATGTATT ATCTATTGAC **GGCTCTAATC** TATTAGTTGT TAGTGCTCCT 4751 AAAGATATTT TAGATAACCT TCCTCAATTC CTTTCTACTG TTGATTTGCC 4801 AACTGACCAG ATATTGATTG AGGGTTTGAT ATTTGAGGTT CAGCAAGGTG 4851 ATGCTTTAGA TTTTTCATTT **COLOCIOSCI** CTCAGOGTGG CACTGTTGCA 4901 GGCGGTGTTA ATACTGACCG CCTCACCTCT GTTTTATCTT CTECTEGTEG 4951 TTCGTTCGGT ATTTTTAATG GCGATGTTTT AGGCCTATCA GTTCGCCGCAT 5 0 0 1 TAAAGACTAA TAGOCATTCA AAAATATTGT CTGTGCCACG **TATTCTTACG** 5051 CTTTCAGGTC AGAAGGGTTC TATCTCTGTT **GGCCAGAATG** TCCCTTTTAT 5 1 0 1 TAAAGACTAA TAGOCATTCA AAAATATTGT CTGTGOCACG TATTCTTACG 5151 CGATTGAGCG TCAAAATGTA GGTATTTCCA TGAGCGTTTT TCCTGTTGCA

Figure 5

M13mp18 Nucleic Acid Sequence

5201	ATEGCTEGOG	GTAATATTGT:	TCTGGATATT	ACCAGCAAGG	COGATAGTTT
5251	GAGTTCTCT	ACTCAGGCAA	GTGATGTTAT	TACTAATCAA	AGAAGTATTG
5301	CTACAACGGT	TAATTTGCGT	GATGGACAGA	CTCTTTTACT	COGTICACCTIC
5351	ACTGATTATA	AAAACACTTC	TCAAGATTCT	GGCGTACCGT	TOCTGTCTAA
5401	AATCCCTTTA	ATCGGCCTCC	TGTTTAGCTC	COGCTCTGAT	TOCAACGAGG
5451	AAAGCACGTT	ATACGTGCTC	GTCAAAGCAA	CCATAGTACG	CCCCTCTAG
5501	CCCCCCATTA	ACCOCCCCCCC	GIGIGGIGGI	TACCOCCACC	GTGACCGCTA
5551	CACTTGCCAG	CGCCCTAGCCG	CCCCCTCCTT	TCGCTTTCTT	∞спсспт
5601	CTCGCCACGT	TOGOOGGCTT	TCCCCGTCAA	GCTCTAAATC	CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
5651	TTTAGGGTTC	CGATTTAGTG	CTTTACGGCA	CCTCGACCCC	AAAAAACTTG
5701	ATTTGGGTGA	TEGTTCACGT	AGTGGGCCAT	CCCCTGATA	GACGGTTTTT
5751	COCCTTTGA	COTTIGGAGTC	CACGITCITT	AATAGTGGAC	TCTTGTTCCA
5801	AACTGGAACA	ACACTCAACC	CTATCTCGGG	CTATTCTTTT	GATTTATAAG
5851	GGATTTTGCC	GATTTOGGAA	OCACCATICAA	ACAGGATTTT	OCCUTENT TO SE
5901	GGCAAACCAG	CCTTCCACCCC	TTGCTGCAAC	TCTCTCAGGG	CCAGGOGGTG
5951	AAGGGCAATC	AGCTGTTGCC	CONTINUENCIA	GTGAAAAGAA	AAACCACCCT
6001	GGCGCCCAAT	ACGCAAAACCG	CCTCTCCCCCG	COCCTTOCCC	GATTCATTAA
6051	TGCAGCTGGC	ACGACACGCTT	TOOOGACTEG	AAAGOGGGCA	GTGAGCGCAA
6101	CGCAATTAAT	GTGAGTTAGC	TCACTCATTA	GGCACCCCAG	GCTTTACACT
6151	TTATCCTTCC	GECTOGTATG	TTGTGTGGAA	TIGIGAGOGG	ATAACAATTT
6201	CACACAGGAA	ACAGCTATGA	CCATGATTAC	GAATTOGAGC	TOGGTACCOG
6251	GOGATOCTCT	AGAGTOGACC	TECAGGCATG	CAAGCTTGGC	ACTGGCCGTC
6301	GTTTTACAAC	GTOGTGACTG	GGAAAACCCT	CCCCTTACCC	AACTTAATCG
6351	CCTTGCAGCA	CAATCCCCTT	TOGOCAGCTG	GOGTAATAGC	GAAGAGGCCC
6401	CCACCCATCG	COCTTCCCAA	CAGTTGCGCA	COCTGAATCG	OGAATGGGGGC
6451	TTTGCCTGGT_	TTCCCCCACC	AGAAGCGGTG	CCCGGAAAGCT	COCTOGAGTG
6501	CEATCITCCT	GAGGCCCGATA	व्यवाव्याव्या	CCCTCAAAC	TEGCAGATEC

Figure 5

6551	ACGGTTACGA	TGCGCCCATC	TACACCAACG	TAACCTATCC	CATTACGGTC
6601	AATOOGOOGT	TTGTTCCCAC	GGAGAATOOG	ACGGGTTGTT	ACTOGCTCAC
6651	ATTTAATGTT	GATGAAAGCT	GGCTACAGGA	AGGCCAGACG	CGAATTATTT
6701	TTGATGGCGT	TOCTATTGGT	TAAAAAATGA	GCTGATTTAA	CAAAAATTTA
6751	ACGCGAATTT	TAACAAAATA	TTAACGTTTA	CAATTTAAAT	ATTTGCTTAT
6801	ACAATCTTCC	TGITTTTGGG	GCTTTTCTGA	TTATCAACCG	GGGTACATAT
6851	GATTGACATG	CTAGTTTTAC	GATTACCGTT	CATCGATTCT	співттівст
6901	CCAGACTCTC	AGGCAATGAC	CTGATAGOCT	TTGTAGATCT	CTCAAAAATA
6951	GCTACCCTCT	COGGCATGAA	TTTATCAGCT	AGAACGGTTG	AATATCATAT
7001	TGATGGTGAT	TTGACTGTCT		TCACCCTTTT	GAATCTTTAC
7051	CTACACATTA	CTCAGGCATT	GCATTTAAAA	TATATGAGGG	TTCTAAAAAT
7101	TTTTATCCTT	GOGTTGAAAT	AAAGGCTTCT	CCCCCAAAAG	TATTACAGGG
7151	TCATAATGTT	TTTGGTACAA	COGATTTAGC	TTTATGCTCT	GAGGCTTTAT

Figure 5

COMPLEMENTARY TO M₁₃

POSITION 645	5 ' 3' AGCAACACTATCATA	POSITION 631	M ₁₃ /1
615	ACGACGATAAAAACC	601	M ₁₃ /2
585	TTTTGCAAAAGAAGT	571	M ₁₃ /3
555	AATAGTAAAATGTTT	541	M ₁₃ /4
525	CAATACTGCGGAATG	5 1 1	M ₁₃ /5
495	TGAATCCCCCTCAAA	481	M ₁₃ /6
465	AGAAAAOGAGAATGA	451	M ₁₃ /7
435	CAGGTCTTTACCCTG	421	M ₁₃ /8
405	AGGAAAGCGGATTGC	391	M ₁₃ /9
375	AGGAAGOOOGAAAGA	361	M ₁₃ /10

COMPLEMENTARY TO SS PHAGE DNA

POSITION	5' * * 3'	POSITION	
351	ATATTTGAAGTCTTT	366	M ₁₃ /11
371	TCTTTTGATGCAAT	386	M ₁₃ /12
391	CTATAATACTCAGGG	406	M ₁₃ /13
411	TGATTTATGGTCATT	426	M ₁₃ /14
431	GTTTAAAGCATTTGA	446	M ₁₃ /15
451	TATTTATGACGATTC	466	M ₁₃ /16
471	TATOCAGTCTAAACA	486	M ₁₃ /17
491	CTCTGGCAAAACTTC	506	M ₁₃ /18
5 1 1	TCGCTATTTTGGTTT	526	M ₁₃ /19
531	AAAOGAGGGTTATGA	546	M _{13/2} 0

Figure 6

Primers for Nucleic Acid Production Derived from M13mp18 Sequence

Figure 7

Appropriate M13mp18 Restriction Sites

Lane 1: from calf thymus + Taq digested mp18 amplification reaction

Lane 2: from Taq digested mp18 amplification reaction

Lane 3: from calf thymus amplification reaction

Lane 4: øX174 Hinf1 size marker

Figure 8

Lane 1: no template

Lane 2: mp18 template, phosphate buffer

Lane 3: Mspl/pBR322 size marker Lane 4: mp18 template, MOPS buffer

Figure 9

Top= (+) Template
Bottom= (-) Template

Lane 1: phosphate buffer

Lane 2: MES Lane 3: MOPS Lane 4: DMAB Lane 5: DMG

Lane 6: pBR322/Mspl size marker

Figure 10

Lane 1: DMAB buffer, no template Lane 2: DMAB buffer, mp18 template Lane 3: DMG buffer, no template Lane 4: DMG buffer, mp18 template Lane 5: No reaction Lane 6: 200 ng Taq I digested mp18

size marker/positive control

Figure 11

First Time Interval Second Time Interval

Agarose Gel Analysis

- Lane 1: lambda Hind III marker
- Lane 2: Amp/Untreated
- Lane 3: Amp/Kinased
- Lane 4: Amp/Kinased/Ligated
- Lane 5: PCR/Untreated
- Lane 6: PCR/Kinased
- Lane 7: PCR/Kinased/Ligated
- Lane 8: øX174/Hinf1 marker

Figure 13

19/23

1 2 3 4 5 6

Lane 1: Primers alone

Lane 2: Primers + taq digested M13 DNA

Lane 3: Molecular weight markers

Lane 4: Primers + RNA

Lane 5: Primers alone

Lane 6: M13 digested DNA

Buffer was dimethyl amino glycine, pH 8.6

Figure 14

Lane 1: Primers alone

Lane 2: Primers + taq digested M13 DNA

Lane 3: Molecular weight markers

Lane 4: Primers + RNA

Lane 5: Primers alone

Lane 6: M13 digested DNA Buffer was dimethyl amino glycine, pH 8.6

Figure 15

Figure 16

Figure 17

23/23

pIBI 31-BH5-2

fmet AUG of Lac z $$\rm (T7\ Promotor\ region\cdots)$$ LAC PROMOTOR.ATG ACC ATG ATT ACG CCA GAT ATC AAA TTA ATA CGA CTC ACT ATA

oligo 50-mer

3'- tac t*aa t*gc ggt* ct*a t*ag t*Vt aat* tat* gct* gag t*ga t*at* c-5' 10 base insert

T7 RNA Start {«« T3 Promotor Region } IGGG CTC ICCT TTA GTG ACG GTT AAT ...»»} «- T3 Start Signal

plBI 31 BSII/HCV

fmet AUG of Lac z (T3 Promotor region -») T3 RNA Start LAC PROMOTOR .ATG ACC ATG ATT ACG CCA AGC TCG AAA TTA ACC CTC ACT AAA /GGG oligo 50-mer 3'- tac t'aa t'ac t'aa t'gc ggt' t'V--10 base insert--.....

(«- T7 Promotor Region)

MULTIPLE CLONING SITE + 390 BASE INSERT CTA /TAG TGA GTC CGT ATT AAT....

«- T7 Start Signal

5'-ct'a t'ag t'ga gt'c gt'a tt'a at'..........