Moodle Pw: Kasteleyn.
Advertisement: lecture M.Sc. Physics 3 ECTS,
Order in disorder: stochastic geometry in physics.
Friday, 2-4 pm: Office hours (complements on class; buckground).
Monthly review session.
T
Vapor
Water + vapor
equilibrium states
> E the demp of phuse travision
ice ice t liquid Later liquid
Motivating question: what is the state of water as a function of time/heat/temperature?
State.
Quantum ~ density operator f. Hermitian.
(12.) ~ Z p; = trp = 1, to accurately repr. probabilities

Assume thermal equilibrium:
H= Hamiltonian of water
B = Inverse temperature
e-βH 1
~ $\rho = \frac{e^{-\beta H}}{tr e^{-\beta H}}$ only one state per temperature, contradictny flat parts of graph above.
Why should this make us feel uneasy?
Soln: e-BH/tre-BH is divergent/requires regularization:
1. trace $Z_i e^{-\beta e_i} = \infty$ not unique, matters.
2. H infinite in thermodynamic limit (some extensive term, cg binding energy)
Phase transition is obtained from details of regularization.
Phase transition is obtained from details of regularization. Control is remained to coepture physics of the transition.
The motivation is: how to abstructly treat systems w/ only
The motbatron is: how to abstructly treat systems w/ ody many dots. At one end, Ising model ~ at the other, QFT. In CM/SP case, the sos arise because of their
infinite extent.
Books. Classical: Sabne ~ SN of Lattice, slides.
Classical. Sapire . Col. of Earline) 3 has.
Quantum: Robert ~ · Brutelli, Robinson;
2 vols (we mainly
use volume 2).
-Thiring: vol 4
· Robert lecture notes.
Video fectures: Imacast.
Classical Stat Mech.

Overview muth part:
1. Ising model: existence of TL of pressure/free energy.
FV: Peierl's argument ch3: Phæxe transition
2. Gibbs measures in infinite volume.
DLR conditions: Dobrushm, Laurford, Ruelle. FV Ch G.
3. Mernin-Wayner thm, absence of cts sym. breaking, d=1,2 FV Ch. 9.
(4.) Reflection positivity/ex. of sym. breaking d=3
1. The Ising model.
Reference: Hugo Dummit-Copin: 100 years of (critical) Ising model (arxiv 2022).
1.1. The model.
Often: $\Delta = \{1,, L\}^d$, LENN ~ cubes.
Cartiguration space. $\Sigma_{\Lambda}:=[-1,+1]^{\Lambda}$.
wesh, w=(wi)ien, wie (±1).
heir external magnetic field,

$$\begin{aligned} \mathcal{H}_{\Lambda,h}: \Omega_{\Lambda} \to R \\ & \omega = (\omega_i)_{Le\Lambda} \mapsto \mathcal{H}_{\Lambda,h}(\omega) = \mathcal{Z}(\omega_i)_{Le\Lambda} + \mathcal{Z}(\omega_i)_{Le\Lambda} \\ & \omega_i = (\omega_i)_{Le\Lambda} \mapsto \mathcal{H}_{\Lambda,h}(\omega) = \mathcal{Z}(\omega_i)_{Le\Lambda} + \mathcal{Z}(\omega_i)_{Le\Lambda} \\ & \omega_i = (\omega_i)_{Le\Lambda} + \mathcal{Z}(\omega_i)_$$

