EA044A - Planejamento e Análise de Sistemas de Produção

10. Semestre de 2010 - Prova 2 - Prof. Vinícius A.Armentano

Questão 1

a)

$$\mathbf{B}^{-1}\mathbf{b} = \begin{bmatrix} 2/3 & 0 & -1/3 \\ -1/3 & 1 & -1/3 \\ -1/3 & 0 & 2/3 \end{bmatrix} \begin{bmatrix} 40 + \delta \\ 30 \\ 40 \end{bmatrix} = \begin{bmatrix} 40/3 + 2\delta/3 \\ 10/3 - \delta/3 \\ 40/3 - \delta/3 \end{bmatrix} \ge \mathbf{0}$$

A base permanece ótima se $-20 \le \delta \le 10$, que implica no intervalo [20, 50].

b)

$$\mathbf{c_B}\mathbf{B}^{-1} = \begin{bmatrix} 50 & 0 & 40 + \delta \end{bmatrix} \begin{bmatrix} 2/3 & 0 & -1/3 \\ -1/3 & 1 & -1/3 \\ -1/3 & 0 & 2/3 \end{bmatrix} = \begin{bmatrix} 20 - \delta/3 & 0 & 10 + 2\delta/3 \end{bmatrix}$$

O custo reduzido de cada váriavel não básica é dado por

$$\bar{c}_3 = c_3 - \mathbf{c_B} \mathbf{B}^{-1} \mathbf{a}_3 = 0 - \begin{bmatrix} 20 - \delta/3 & 0 & 10 + 2\delta/3 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = -20 + \delta/3$$

$$\bar{c}_5 = c_5 - \mathbf{c_B} \mathbf{B}^{-1} \mathbf{a}_5 = 0 - \begin{bmatrix} 20 - \delta/3 & 0 & 10 + 2\delta/3 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = -10 - 2\delta/3$$

A base permaneça ótima se $-20+\delta/3 \le 0$ e $-10-2\delta/3 \le 0$, que implica em $-15 \le \delta \le 60$ e no intervalo do preço de venda de C1 [25,100].

c)

$$\bar{c}_3 = c_3 - \mathbf{c_B} \mathbf{B}^{-1} \mathbf{a}_3 = 50 - \begin{bmatrix} 20 & 0 & 10 \end{bmatrix} \begin{bmatrix} 0, 5 \\ 3 \\ 3 \end{bmatrix} = 50 - 40 = 10$$

$$\mathbf{B}^{-1}\mathbf{a}_3 = \begin{bmatrix} 2/3 & 0 & -1/3 \\ -1/3 & 1 & -1/3 \\ -1/3 & 0 & 2/3 \end{bmatrix} \begin{bmatrix} 0,5 \\ 3 \\ 3 \end{bmatrix} = \begin{bmatrix} -2/3 \\ 11/6 \\ 11/6 \end{bmatrix}$$

z	x_1	x_2	x_3	s_1	s_2	s_3	LD	VB
1	0	0	-10	20	0	10	1200	z
	0	1	-2/3	2/3	0	-1/3	40/3	x_2
		0	11/6	-1/3	1	-1/3	10/3	s_2
	1	0	11/6	-1/3	0	2/3	40/3	x_1

z	x_1	x_2	x_3	s_1	s_2	s_3	LD	VB
1	0	0	0	200/11	60/11	90/11	13400/11	z
	0	1	0	-1/3	4/11	-7/33	580/33	x_2
	0	0	1	-2/11	6/11	-2/11	20/11	x_3
	1	0	0	0	-1	1	10	x_1

d) Milho = 1; Lúpulo = 0; Malte = 10

e)

$$x_1 + s_4 = 13$$
 e $x_1 = 1/3s_1 - 2/3s_3 + 40/3$

z	x_1	x_2	s_1	s_2	s_3	s_4	LD	VB
1	0	0	20	0	10	0	1200	z
	0	1	2/3	0	-1/3	0	40/3	x_2
	0	0	-1/3	1	-1/3	0	10/3	s_2
	1	0	-1/3	0	2/3	0	40/3	x_1
	0		1/3					

z	x_1	x_2	s_1	s_2	s_3	s_4	LD	VB
1	0	0	15	0	0	15	1115	z
	0	1	1/2	0	0	-1/2	119/9	x_2
	0	0	-1/2	1	0	-1	29/9	s_2
	-2/3	0	0	0	0	1	119/9 29/9 13	x_1
	0	0	-1/2	0	1	-3/2	1/2	s_3

Questão 2

a)

$$\min w = \quad 18u_1 \quad +30u_2 \\ 2u_1 \quad +3u_2 \quad \geq 5 \\ \text{Problema dual} \qquad \qquad u_1 \quad +u_2 \quad \geq 3 \\ u_1 \quad +2u_2 \quad \geq 4 \\ u_1 \geq 0 \quad u_2 \geq 0 \\ \end{cases}$$

b)

c) Solução do dual: $w=66,\ u_1=2,\ u_2=1.$ Como a primeira restrição do dual não está ativa, tem-se $x_1=0.$ Portanto, a solução ótima do primal é dada pela solução do sistema.

$$x_2 + x_3 = 18$$

 $x_2 + 2x_3 = 30$

que fornece $x_2 = 6$, $x_3 = 12$, z = 66.

Questão 3

Solução inicial

Cálculo das variáveis duais e dos custos reduzidos

$$\bar{c}_{32} = c_{32} - (u_3 - u_2) = 12 - (5 + 12) = -5$$

$$\bar{c}_{42} = c_{42} - (u_4 - u_2) = 1 - (0 + 12) = -11$$

Nova solução

A base permanece igual e o fluxo no arco $(4,2\ \mathrm{vai}\ \mathrm{para}\ \mathrm{seu}\ \mathrm{limite}\ \mathrm{superior}.$

Cálculo das variáveis duais e dos custos reduzidos

$$\bar{c}_{12} = c_{12} - (u_1 - u_2) = 20 - (15 - 0) = 5$$

 $\bar{c}_{42} = c_{42} - (u_4 - u_2) = 1 - (17 - 0) = -16$

Solução corrente é ótima.

Questão 4. Admite duas soluções equivalentes

Solução 1

Custo unitário nos arcos

$$c_{14} = 4$$
, $c_{15} = 4 + 2 = 6$, $c_{16} = 4 + 2 + 2 = 8$
 $c_{24} = 4 + 15 = 19$, $c_{25} = 4$, $c_{26} = 4 + 2 = 6$
 $c_{34} = 4 + 15 + 15 = 34$, $c_{35} = 4 + 15 = 19$, $c_{36} = 4$

Solução 2

Custo unitário nos arcos

$$c_{14} = 4$$
, $c_{25} = 4$, $c_{36} = 4$
 $c_{45} = 2$, $c_{54} = 15$, $c_{56} = 2$, $c_{65} = 15$