	CompSci 404.1	Name:		Homework 3
	Elementa	ary Sorting	$C(n,2)$ =n!/(2!(n-2)!) = n(r $oldsymbol{ ext{Algorithms}}$ combination formula and purely coincidental.	n-1)/2 = 1+2+3++(n-1). The sum formula coinciding is not
of comparison of comparison first 2 questi	. Selection makes rons and in this case ons. I thought you	า!/(2(n-2)!)=n(n-1)/2 makes.the.minimu meant identical bel	comparisons no matter the keys, while insertion m.which is n-1 Neither make any swaps of couveen two the methods. If you receive answers I	n makes at most the same number urse You may want to rewrite the like my second answers to these
1) Insertion in numbers up faster.	s at most O((n^2)/2 to the outer loop's i	e)=O(n^2) while selection	ection is equal to the same since selection's inno n only does so at maximum (depending on initia	er loop iterates over all of the lorder). This insertion is generally
	2. Which method	l runs faster for an	array in reverse order, selection sort or insertion	sort? Why?
invariant nun	nber of comparisons	s that selection ma	comparisons for insertion is now maximum, mees; and that swaps are maximum for both but recomplexity is the same there are more swap	rfor selection and the same as
2) Reverse o equal to sele	rder makes no diffe ction's (which is wh	rence except in the en the order is con	case of initial order (or reverse of) being the or plete opposite).	ne where insertion's iterations are
	3. Suppose that	we use insertion son	on a randomly ordered array where elements l	nave only one of three
			quadratic, or something in between?	
equal to the larger array,	size of set of keys. while normally the i	, the ratio of repetit number of consecu	te set of keys will necessarily have repetitions a cons necessarily increases withive repetitions increases with larger array while	
stavs the sar	ne. ⊤ne former me	ans · · · · · · · · · · · · · · · · ·	at need to be swapped is lower compared to w	
with selection	n being more signifi	cantly lower. For i	sertion there are on average less comparisons	•
Despite thes	e differences, the ru	untime for insertion	s still quadratic. For example, 3213213 is (1)	(3)*2/3+(1/3)*1/3=1/3 times the max
time complex			ning on the order of (n^2)/6 which is still O(n^2) tion sort to sort a singly linked list in ascending	
	9	00 0	ort's runtime complexity change if you were to	ů .
	list?	ow does insertion i	or the remaining completing change if you were to	abo it to sort a nimed
can create a resequence of cois still O(1). If	new node with the comparisons) of the	lata of the data of t ordered list, and th ping for every com	don't need to swap for every comparison exce le head node of the unordered list and insert it i en delete said head. The time complexity is sti parison before the insertion is necessarily part o	nto the correct spot (after a Il O(n^2) and the space complexity If what defines insertion sort,
	_		tion sort for h-sorting in shellsort? Why is this	
			n decrease of h), the sorts are better pa	rtially ordered,
	and insertic	on is faster for pa	rtially ordered.	
	• • • • • • • • • • • • • • • • • • • •			
	of the time the relative to the	ey are to be shippe cost of exchanges (charged with the task of rearranging a number of out. Thus, the cost of compares is very low (jumoving the crates). The warehouse is nearly ful ates, but not two. What sorting method should	ust look at the labels) l: there is extra space
	Selection so	ort: it minimizes	he exchanges down to at most the num	ber of crates.

CompSci 404.	Name:				Homework 3
Merge	Sort				
order. Is y	ne thinks that input ar your colleague right or youring each merge, who	wrong? Why?			
If the input a	rrays are (6, 1, 8, 0) ar	nd (5, 3, 7, 3), then	n you get (5, 3	, 6, 1, 7, 3, 8, 0), whi	ch is far from ordered.
			• • • • • • • • • • • • • • • • • • • •		
8. Give trace mergesort	s showing how the key	s 69 65 83 89 8	1 85 69 83 8	4 73 79 78 are sorte	ed with top-down
65 69 83 65 69 83 65 69 83 65 69 83 65 69 69 65 69 69 65 69 69	8 8 9 8 1 8 5 6 9 8 3 8 4 7 8 8 9 8 1 8 5 6 9 8 3 8 4 7 8 8 9 8 1 8 5 6 9 8 3 8 4 7 8 8 9 8 1 8 5 6 9 8 3 8 4 7 8 8 9 8 1 8 5 6 9 8 3 8 4 7 8 8 9 8 1 8 5 6 9 8 3 8 4 7 8 8 9 8 1 8 3 8 5 8 9 8 4 7 8 8 1 8 3 8 3 8 5 8 9 7 3 8 1 8 3 8 3 8 3 8 3 8 3 8 3 8 3 8 3 8	73 79 78 73 79 78 73 79 78 73 79 78 73 79 78 73 79 78 73 79 78 34 79 78 34 78 79 78 79 84			
9. Give trace mergesort	s showing how the keys	69 65 83 89 81	85 69 83 84	73 79 78 are sorted	d with bottom-up
65 69 83 65 69 69	89 81 85 69 83 84 73 89 81 85 69 83 73 84 89 81 85 69 83 73 84 89 81 85 69 83 73 84 89 81 83 85 73 84 89 69 81 83 85 73 78 81 83 83 85 89 73 78 73 78 79 81 83 83 84	79 78 79 78 79 78 79 78 79 78 78 79 78 79 78 79 79 84			

- 10. An array contains n numbers, and you want to determine whether two of the numbers sum to a given number k. For instance, if the input is 8, 4, 1, 6 and k is 10, the answer is yes (4 and 6). A number may be used twice.
 - (a) Describe an $O(n^2)$ algorithm to solve this problem. Outer loop iterates i over the array of n numbers. Inner loop iterates j over the array. Whether the inner loop excludes prior i's or not doesn't affect $O(n^2)$, though excluding would obviously be faster. In the inner loop, if i + j == k then break, and the same after the inner loop but inside the outer loop. Outside the outer loop, if i + j == k then print "yes", else print "no".
 - (b) Describe an $O(n \log_2 n)$ algorithm to solve this problem. Hint: sort the items first. After doing so,

Con	npSci 404.1	Name:		Homework 3
		olve the problem tim sort. Then le	in linear time. et the outer loop iterate i from 0 to n-1 while a[i] + a[j]	< k. The inner loop
	iterates j f	rom m to 0 while	e a[i] + a[j] > k. $m = j$. After the outer loop, if $i + j = k$	then print "yes",
			the explicit bounds of the loops, they are implicitly bo	ounded such that
	the sum o	of iterations of th	ne two loops is at most n.	
11.	and combine us	sing a 3-way mer	half at each step of merge sort, you divide into thir ege. We call this new sorting method 3-way merge sort? Is it worth it to use 3-way merge sort over 2-way re-	t. What is the time
			of 2-way is O(n log_2 n), the time complexity of 3-way	
			with respect to log base. There will be fewer swaps a	
	t with greater d		one order of magnitude) in number of swaps. Whet	
	Quick Soi	rt		
12.		-	icksort (with no optimizations or improvements) parts 69 83 84 73 79 78.	citioning a subarray
	65 69 83 89	81 85 69 83 84	1 73 79 78	
13.			quicksort (with no optimizations or improvements) 9 83 84 73 79 78. For the purposes of this exercis	
	65 69 83 89 65 69 83 78 65 69 83 78 65 69 73 78 65 69 73 78 65 69 73 69 65 69 69 73	81 85 69 83 81 85 69 83 8 81 85 69 83 8 81 79 69 83 8 81 79 69 83 8 81 79 69 83 8 81 79 78 83 8 81 79 78 83	84 73 79 78 84 73 79 89 84 73 85 89 73 84 85 89 83 84 85 89 83 84 85 89 83 84 85 89 83 84 85 89	

14. Explain what happens when standard quicksort (with no optimizations or improvements) is run on an

CompSci 404.1 Name: Homework 3 The only swaps are pivot swaps (since strict inequalities are used), and it only meaningfully happens with the array having items with only two distinct keys. greater of the two. The j index stops on a lesser for a greater pivot, and doesn't stop until the last key for a lesser pivot. When the lesser of the two is the pivot and the following key is
another lesser, the scanner from the left ends on the last consecutive lesser from the pivot and the scanner from the right runs all
the way through, which results in a swap of two lessers. When a lesser is a pivot and is followed by a greater,
the scanner from left stops immediately and the scanner from right ends up on the same key, meaning no swaps
occur. All of this ends in the lessers all being on the left and greaters being on the right, with $O(n^2)$. 15. On average, standard quicksort (with no optimizations or improvements) runs in $O(n \log_2 n)$ time. However, its worst case time complexity is still listed as $O(n^2)$. Under what scenarios will quick sort perform so poorly? The above scenario is one. Another is when all the keys are equal. Another is when they are already sorted.
16. What benefits does 3-way quicksort provide over the traditional 2-way quicksort? Remember that 3-way quicksort is a flavor of quicksort where partitioning is done based on three relational buckets (less than, equal to, and greater than the subarray).
It is a better choice when there are a lot of repetitions.