A Tale of Three Algorithms: Linear Time Suffix Array Construction

Juha Kärkkäinen

Department of Computer Science
University of Helsinki

10 August, 2006

5th Estonian Summer School in Computer and Systems Science (ESSCaSS'06)

Linear time suffix array construction

Contents

- Introduction
 - the problem
 - significance
 - history
- ► Three algorithms from June 2003
 - description in parallel
 - differences and similarities

Suffix array construction

Sort the suffixes of a text lexicographically

- ▶ text $T = T[0, n) = t_0 t_1 \cdots t_{n-1}$
- ightharpoonup suffix $S_i = T[i,n) = t_i t_{i+1} \cdots t_{n-1}$

Output: suffix array

- sorted array of suffixes
- ightharpoonup suffix S_i is represented by i

0 1 2 3 4 5				012345
	banana			banana
	•			
0	banana		6	
1	anana		5	a
2	nana		3	ana
3	ana	\Longrightarrow	1	anana
4	na		0	banana
5	a		4	na
6			2	nana
	2 3 4 5	banana 0 banana 1 anana 2 nana 3 ana 4 na 5 a	banana 0 banana 1 anana 2 nana 3 ana \Longrightarrow 4 na 5 a	banana 0 banana 6 1 anana 5 2 nana 3 3 ana → 1 4 na 0 5 a 4

Applications

- Full-text indexing
 - binary and backward search
- Construction of other index structures
 - suffix tree
 - compressed indexes
- Text compression
 - Burrows-Wheeler transform
- Finding regularities
 - longest repetition, etc.
- Comparing two or more strings

•
$$T = T_1 \# T_2$$

012345 banana

0	6	
1	5	a
2	3	ana
3	1	anana
4	0	banana
5	4	na
6	2	nana

Many of the applications need the longest common prefix array

computable in linear time [Kasai et al., 2001]

Suffix array vs. Suffix tree

- Suffix arrays are no more an inferior simplification of suffix trees
- many recent suffix array algorithms are
 - efficient in theory and practice
 - different from suffix tree algorithms
 - nontrivial, even surprising
- case in point: linear time construction

Suffix array vs. Suffix tree

- Suffix arrays are no more an inferior simplification of suffix trees
- many recent suffix array algorithms are
 - efficient in theory and practice
 - different from suffix tree algorithms
 - nontrivial, even surprising
- case in point: linear time construction

"In 2003 four papers have been published that collectively seem to establish the superiority of the suffix array over the suffix tree" "Thus, if I were writing Chapter 5 today instead of in 2000/2001, I believe I would take a completely different approach: presenting suffix arrays as the main data structure"

— Bill Smyth: Errata on Computing Patterns in Strings

Alphabet

General alphabet

- only character comparisons in constant time
- ▶ lower bound $\Omega(n \log n)$ on suffix sorting

Constant alphabet

constant number of distinct characters

Integer alphabet

characters are integers from the range [1, n]

Alphabet

General alphabet

- only character comparisons in constant time
- > lower bound $\Omega(n \log n)$ on suffix sorting

Constant alphabet

constant number of distinct characters

Integer alphabet

- ightharpoonup characters are integers from the range [1,n]
- order preserving renaming for other alphabets: sort characters and rename them with ranks
- linear time algorithm for integer alphabet
 - sorting suffixes is no harder than sorting characters

History of linear time suffix array construction

1973 Suffix tree [Weiner]

linear time construction for constant alphabet

1990 Suffix array

[Manber & Myers]

linear time construction only by conversion from suffix tree

1997 Integer alphabet

[Farach]

linear time suffix tree construction for integer alphabet

2003 Direct linear time suffix array construction

[Ko & Aluru][Kim & al.][Kärkkäinen & Sanders]

integer alphabet

Linear time suffix tree construction

- incremental algorithms[Weiner '73] [McCreight '76] [Ukkonen '95]
 - add suffixes/characters one at a time
 - constant alphabet
 - suffix links needed
 - suffix automaton [Blumer et al., '83]

Linear time suffix tree construction

- divide-and-conquer [Farach '97]
 - 1. build suffix tree of $R = [t_0t_1][t_2t_3]\dots$
 - 2. build odd and even tree
 - 3. merge them (complicated)
 - integer alphabet
 - suffix links needed in merging

S =banana

odd tree

even tree

Linear time suffix array construction

- three algorithms in June 2003
 - **A2:** [Kim, Sim, Park & Park., CPM '03]
 - A3: [Kärkkäinen & Sanders, ICALP '03]
 - Ax: [Ko & Aluru, CPM '03]
- common structure: divide-and-conquer
 - 0. Choose a sample S of suffixes
 - 1. Sort the sample S by recursion
 - 2. Sort other suffixes \bar{S} using sorted S
 - 3. Merge S and S
- rest of talk
 - step-by-step description
 Step 0 → Step 3 (→ Step 1 → Step 2)
 - all algorithms in parallel

Time complexity

- 0. Choose a sample S of suffixes
- 1. Sort the sample S by recursion
- 2. Sort other suffixes \bar{S} using sorted S
- 3. Merge S and \bar{S}
- integer alphabet
- excluding recursive call everything is linear
- recursion on text R over integer alphabet with $|R| = |\mathcal{S}| \le 2n/3$
- ▶ time complexity $T(n) \le \mathcal{O}(n) + T(2n/3) = \mathcal{O}(n)$

Step 0: Compute sample

A2:
$$S = \{S_i \mid i \mod 2 \neq 0\} = \text{odd suffixes}$$

[Kim & al.]

 \triangleright sample size n/2

Step 0: Compute sample

A2: $S = \{S_i \mid i \mod 2 \neq 0\} = \text{odd suffixes}$

[Kim & al.]

- \triangleright sample size n/2
- **A3:** $S = \{S_i \mid i \mod 3 \neq 0\} = \{S_1, S_2, S_4, S_5, S_7 \dots\}$

[K & Sanders]

 \triangleright sample size 2n/3

Step 0: Compute sample

A2:
$$S = \{S_i \mid i \mod 2 \neq 0\} = \text{odd suffixes}$$

[Kim & al.]

 \triangleright sample size n/2

A3:
$$S = \{S_i \mid i \mod 3 \neq 0\} = \{S_1, S_2, S_4, S_5, S_7 \dots\}$$

[K & Sanders]

 \triangleright sample size 2n/3

Ax:
$$S = \text{smaller of } \{S_i \mid S_i < S_{i+1}\} \text{ and } \{S_i \mid S_i > S_{i+1}\}$$

[Ko & Aluru]

- \triangleright sample size $\leq n/2$
- \triangleright w.l.o.g. assume $S = \{S_i \mid S_i \lt S_{i+1}\}$

$$ightharpoonup S_i \in \mathcal{S} \quad \Longleftrightarrow \quad t_i < t_{i+1} \text{ or } t_i = t_{i+1} \text{ and } S_{i+1} \in \mathcal{S}$$

Step 0: Compute sample: Example

$$0 1 2 3 4 5$$

 $S =$ banana

A2:
$$S = \{S_i \mid i \mod 2 \neq 0\}$$

A3:
$$S = \{S_i \mid i \mod 3 \neq 0\}$$

Ax:
$$S = \{S_i \mid S_i < S_{i+1}\}$$

Step 3: Merge S and \bar{S}

A2:
$$S = \{S_i \mid i \mod 2 \neq 0\}$$
 $\bar{S} = \{S_j \mid j \mod 2 = 0\}$

very complicated (simulates suffix tree?)

Step 3: Merge S and \bar{S}

A2:
$$S = \{S_i \mid i \mod 2 \neq 0\}$$
 $\bar{S} = \{S_j \mid j \mod 2 = 0\}$

very complicated (simulates suffix tree?)

A3:
$$S = \{S_i \mid i \mod 3 \neq 0\}$$
 $\bar{S} = \{S_j \mid j \mod 3 = 0\}$

- standard comparison-based merge
- ▶ need to compare $S_i \in \mathcal{S}$ and $S_j \in \bar{\mathcal{S}}$:
- $i \mod 3 = 1 \implies S_{i+1}, S_{j+1} \in \mathcal{S}$ $\implies \text{ compare } (t_i, S_{i+1}) \text{ and } (t_j, S_{j+1})$
- $i \bmod 3 = 2 \implies S_{i+2}, S_{j+2} \in \mathcal{S}$ $\Longrightarrow \text{ compare } (t_i, t_{i+1}, S_{i+2}) \text{ and } (t_j, t_{j+1}, S_{j+2})$

Step 3: Merge S and \bar{S}

A2:
$$S = \{S_i \mid i \mod 2 \neq 0\}$$
 $\bar{S} = \{S_j \mid j \mod 2 = 0\}$

very complicated (simulates suffix tree?)

A3:
$$S = \{S_i \mid i \mod 3 \neq 0\}$$
 $\bar{S} = \{S_j \mid j \mod 3 = 0\}$

- standard comparison-based merge
- ▶ need to compare $S_i \in \mathcal{S}$ and $S_j \in \bar{\mathcal{S}}$:
- $i \bmod 3 = 1 \implies S_{i+1}, S_{j+1} \in \mathcal{S}$ $\Longrightarrow \text{ compare } (t_i, S_{i+1}) \text{ and } (t_j, S_{j+1})$
- $i \mod 3 = 2 \implies S_{i+2}, S_{j+2} \in \mathcal{S}$ $\implies \text{ compare } (t_i, t_{i+1}, S_{i+2}) \text{ and } (t_j, t_{j+1}, S_{j+2})$

Ax:
$$S = \{S_i \mid S_i < S_{i+1}\}$$
 $\bar{S} = \{S_j \mid S_j > S_{j+1}\}$

- $\blacktriangleright \text{ let } \mathcal{S}_c = \{ S_i \in \mathcal{S} \mid t_i = c \} \text{ and } \bar{\mathcal{S}}_c = \{ S_j \in \bar{\mathcal{S}} \mid t_j = c \}$
- ightharpoonup suffix array is $\bar{\mathcal{S}}_a \mathcal{S}_a \bar{\mathcal{S}}_b \mathcal{S}_b \dots$
- ightharpoonup proof: $\bar{\mathcal{S}}_c \ni cab < ccc \ldots < cccd \in \mathcal{S}_c$

Merging in A2 and A3

Problem: comparing sample and nonsample suffixes

= sample position = nonsample position

A2: Comparing odd and even suffixes

even ...

A3: Comparing 0-suffixes and 1-suffixes

0-suffix 1-suffix

Comparing 0-suffixes and 2-suffixes

0-suffix 2-suffix

- 1. construct text R whose suffixes exactly represent sample S
 - ▶ let $S = \{S_{i_1}, S_{i_2}, S_{i_3}, \ldots\}$ with $i_1 < i_2 < i_3 < \cdots$
 - ▶ natural choice: $R = [t_{i_1} \dots t_{i_2-1}][t_{i_2} \dots t_{i_3-1}][t_{i_3} \dots t_{i_4-1}]\dots$
- 2. rename characters of R with ranks \implies alphabet [1, |R|]
- 3. sort suffixes of R (recursion)

A2:
$$S = \{S_i \mid i \mod 2 \neq 0\}$$

$$ightharpoonup R = [t_1 t_2][t_3 t_4] \dots$$

$$R = [ba][na][na]$$

- 1. construct text R whose suffixes exactly represent sample $\mathcal S$
 - ▶ let $S = \{S_{i_1}, S_{i_2}, S_{i_3}, \ldots\}$ with $i_1 < i_2 < i_3 < \cdots$
 - ▶ natural choice: $R = [t_{i_1} \dots t_{i_2-1}][t_{i_2} \dots t_{i_3-1}][t_{i_3} \dots t_{i_4-1}]\dots$
- 2. rename characters of R with ranks \implies alphabet [1, |R|]
- 3. sort suffixes of R (recursion)
- **A2:** $S = \{S_i \mid i \mod 2 \neq 0\}$
 - $ightharpoonup R = [t_1t_2][t_3t_4]\dots$
- **A3:** $S = \{S_i \mid i \mod 3 \neq 0\}$
 - $R \neq [t_1][t_2t_3][t_4][t_5t_6]\dots$

- 1. construct text R whose suffixes exactly represent sample S
 - ▶ let $S = \{S_{i_1}, S_{i_2}, S_{i_3}, \ldots\}$ with $i_1 < i_2 < i_3 < \cdots$
 - ▶ natural choice: $R = [t_{i_1} \dots t_{i_2-1}][t_{i_2} \dots t_{i_3-1}][t_{i_3} \dots t_{i_4-1}]\dots$
- 2. rename characters of R with ranks \implies alphabet [1, |R|]
 - proper prefix problem: [a][a...] < [ab][...] < [a][c...]</p>
- 3. sort suffixes of R (recursion)
- **A2:** $S = \{S_i \mid i \mod 2 \neq 0\}$
 - $ightharpoonup R = [t_1t_2][t_3t_4]\dots$
- **A3**: $S = \{S_i \mid i \mod 3 \neq 0\}$
 - $R \neq [t_1][t_2t_3][t_4][t_5t_6]\dots$

- 1. construct text R whose suffixes exactly represent sample S
 - ▶ let $S = \{S_{i_1}, S_{i_2}, S_{i_3}, \ldots\}$ with $i_1 < i_2 < i_3 < \cdots$
 - ▶ natural choice: $R = [t_{i_1} \dots t_{i_2-1}][t_{i_2} \dots t_{i_3-1}][t_{i_3} \dots t_{i_4-1}]\dots$
- 2. rename characters of R with ranks \implies alphabet [1, |R|]
 - proper prefix problem: [a][a...] < [ab][...] < [a][c...]</p>
- 3. sort suffixes of R (recursion)
- **A2:** $S = \{S_i \mid i \mod 2 \neq 0\}$
 - $ightharpoonup R = [t_1t_2][t_3t_4]\dots$
- **A3**: $S = \{S_i \mid i \mod 3 \neq 0\}$
 - $R = [t_1t_2t_3][t_4t_5t_6]\dots[t_2t_3t_4][t_5t_6t_7]\dots$

- 1. construct text R whose suffixes exactly represent sample S
 - ▶ let $S = \{S_{i_1}, S_{i_2}, S_{i_3}, \ldots\}$ with $i_1 < i_2 < i_3 < \cdots$
 - ▶ natural choice: $R = [t_{i_1} \dots t_{i_2-1}][t_{i_2} \dots t_{i_3-1}][t_{i_3} \dots t_{i_4-1}]\dots$
- 2. rename characters of R with ranks \implies alphabet [1, |R|]
 - ▶ proper prefix problem: [a][a...] < [ab][...] < [a][c...]
- 3. sort suffixes of R (recursion)
- **A2:** $S = \{S_i \mid i \mod 2 \neq 0\}$
 - $ightharpoonup R = [t_1t_2][t_3t_4]\dots$
- **A3:** $S = \{S_i \mid i \mod 3 \neq 0\}$
 - $ightharpoonup R = [t_1t_2t_3][t_4t_5t_6]\dots[t_2t_3t_4][t_5t_6t_7]\dots$
- **Ax:** $S = \{S_i \mid S_i < S_{i+1}\}$
 - $R = [t_{i_1} \dots t_{i_2-1} t_{i_2} \infty][t_{i_2} \dots t_{i_3-1} t_{i_3} \infty][t_{i_3} \dots t_{i_4-1} t_{i_4} \infty] \dots$

Step 1: Sort the sample: Example

$$0$$
 1 2 3 4 5 $S =$ banana

A2:
$$S = \{S_i \mid i \mod 2 \neq 0\}$$

$$R = [an][an][a]$$
 $[an][a]$

A3:
$$S = \{S_i \mid i \mod 3 \neq 0\}$$

$$R = [ana][na][nan][a]$$

$$[nan][a]$$

$$[na][nan][a]$$

$$[a]$$

Ax:
$$S = \{S_i \mid S_i < S_{i+1}\}$$

$$R = [\mathtt{ana}\infty][\mathtt{ana}]$$

Step 2: Sort other suffixes \bar{S}

- ▶ Let $next(\bar{S}) = \{S_{j+1} \mid S_j \in \bar{S}\}$ and $\bar{S}_c = \{S_j \in \bar{S} \mid t_j = c\}$
- For each $S_i \in next(\bar{S})$ in sorted order insert S_{i-1} into \bar{S}_c with $c = t_{i-1}$

A2:
$$S = \{S_i \mid i \mod 2 \neq 0\}$$
 $\bar{S} = \{S_j \mid j \mod 2 = 0\}$

 $ightharpoonup next(\bar{\mathcal{S}}) = \mathcal{S}$

Step 2: Sort other suffixes \bar{S}

- ▶ Let $next(\bar{S}) = \{S_{j+1} \mid S_j \in \bar{S}\}$ and $\bar{S}_c = \{S_j \in \bar{S} \mid t_j = c\}$
- For each $S_i \in next(\bar{S})$ in sorted order insert S_{i-1} into \bar{S}_c with $c = t_{i-1}$

A2:
$$S = \{S_i \mid i \mod 2 \neq 0\}$$
 $\bar{S} = \{S_j \mid j \mod 2 = 0\}$

 $ightharpoonup next(\bar{\mathcal{S}}) = \mathcal{S}$

A3:
$$S = \{S_i \mid i \mod 3 \neq 0\}$$
 $\bar{S} = \{S_j \mid j \mod 3 = 0\}$

$$ightharpoonup next(\bar{\mathcal{S}}) \subset \mathcal{S}$$

Step 2: Sort other suffixes \bar{S}

- ▶ Let $next(\bar{S}) = \{S_{j+1} \mid S_j \in \bar{S}\}$ and $\bar{S}_c = \{S_j \in \bar{S} \mid t_j = c\}$
- For each $S_i \in next(\bar{S})$ in sorted order insert S_{i-1} into \bar{S}_c with $c = t_{i-1}$

A2:
$$S = \{S_i \mid i \mod 2 \neq 0\}$$
 $\bar{S} = \{S_j \mid j \mod 2 = 0\}$

 $ightharpoonup next(\bar{\mathcal{S}}) = \mathcal{S}$

A3:
$$S = \{S_i \mid i \mod 3 \neq 0\}$$
 $\bar{S} = \{S_j \mid j \mod 3 = 0\}$

 $ightharpoonup next(\bar{\mathcal{S}}) \subset \mathcal{S}$

Ax:
$$S = \{S_i \mid S_i < S_{i+1}\}$$
 $\bar{S} = \{S_j \mid S_j > S_{j+1}\}$

- ightharpoonup scan suffix array $\epsilon \bar{\mathcal{S}}_a \mathcal{S}_a \bar{\mathcal{S}}_b \mathcal{S}_b \dots$
- ▶ if suffix S_i is in $next(\bar{S})$ insert S_{i-1}
- when scan reaches $S_j \in \bar{S}$ it is already in place because $S_{j+1} < S_j$

Implementating A3: Subroutines

```
// compare pairs and triples
inline bool leg(int a1, int a2, int b1, int b2)
{ return(a1 < b1 | a1 == b1 && a2 <= b2); }
inline bool leg(int a1, int a2, int a3, int b1, int b2, int b3)
\{ \text{ return}(a1 < b1 \mid a1 == b1 \&\& leg(a2,a3, b2,b3)); \} 
// radix sort (one pass)
static void radixPass(int* a, int* b, int* r, int n, int K)
{
   // count occurrences
   int* c = new int[K + 1];
                                                // counter array
   for (int i = 0; i \le K; i++) c[i] = 0; // reset counters
  for (int i = 0; i < n; i++) c[r[a[i]]]++; // count occurrences
  for (int i = 0, sum = 0; i \le K; i++) // exclusive prefix sums
   { int t = c[i]; c[i] = sum; sum += t; }
   // sort
   for (int i = 0; i < n; i++) b[c[r[a[i]]]++] = a[i];
   delete [] c;
```

Implementating A3: Main function

```
// compute suffix array of s
// \text{ require } s[n]=s[n+1]=s[n+2]=0, n>=2
void suffixArray(int* s, int* SA, int n, int K) {
   // initialize
   int n0=(n+2)/3, n1=(n+1)/3, n2=n/3, n02=n0+n2;
   int* s12 = new int[n02 + 3]; s12[n02] = s12[n02+1] = s12[n02+2] = 0;
   int* SA12 = new int[n02 + 3]; SA12[n02]=SA12[n02+1]=SA12[n02+2]=0;
   int* s0 = new int[n0];
   int* SA0 = new int[n0];
   Step 0: Compute sample
   Step 1: Sort sample
   Step 2: Sort other suffi xes
   Step 3: Merge
   // clean up
   delete [] s12; delete [] SA12; delete [] SA0; delete [] s0;
```

Implementing A3: Step 0: Compute sample

```
// compute sample for (int i=0, j=0; i < n+(n0-n1); i++) if (i \% 3 != 0) s12[j++] = i;
```

Implementing A3: Step 1: Sort the sample

```
// sort supercharacters (triples)
radixPass(s12 , SA12, s+2, n02, K);
radixPass(SA12, s12, s+1, n02, K);
radixPass(s12 , SA12, s , n02, K);
// construct recursive text
int name = 0, c0 = -1, c1 = -1, c2 = -1;
for (int i = 0; i < n02; i++) {
   if (s[SA12[i]] != c0 || s[SA12[i]+1] != c1 || s[SA12[i]+2] != c2)
   \{ \text{ name} ++; \text{ c0} = \text{s[SA12[i]]}; \text{ c1} = \text{s[SA12[i]}+1]; \text{ c2} = \text{s[SA12[i]}+2]; \}
   if (SA12[i] % 3 == 1) { s12[SA12[i]/3] = name; } // first half
   else { s12[SA12[i]/3 + n0] = name; }
                                                        // second half
if (name < n02) { // recurse if all supercharacters are not unique
   suffixArray(s12, SA12, n02, name);
   for (int i = 0; i < n02; i++) s12[SA12[i]] = i + 1;
} else // end of recursion: supercharacters are all unique
   for (int i = 0; i < n02; i++) SA12[s12[i] - 1] = i;
```

Implementing A3: Step 2: Sort other suffixes

```
// construct nonsample in order of next(nonsample)
for (int i=0, j=0; i < n02; i++)
   if (SA12[i] < n0) s0[j++] = 3*SA12[i];
// sort stably by first character
radixPass(s0, SA0, s, n0, K);</pre>
```

Implementing A3: Step 3: Merge

```
// merge sample and nonsample suffixes
   for (int p=0, t=n0-n1, k=0; k < n; k++) {
\#define \ GetI() \ (SA12[t] < n0 \ ? \ SA12[t] * 3 + 1 : \ (SA12[t] - n0) * 3 + 2)
      int i = GetI();
      int j = SA0[p];
      if (SA12[t] < n0 ? // compare
         leg(s[i], s12[SA12[t] + n0], s[i], s12[i/3]):
         leq(s[i], s[i+1], s12[SA12[t]-n0+1], s[j], s[j+1], s12[j/3+n0]))
           // sample suffix is smaller
         SA[k] = i; t++;
         if (t == n02) // done --- only nonsample suffixes left
            for (k++; p < n0; p++, k++) SA[k] = SA0[p];
      } else { // nonsample suffix is smaller
         SA[k] = j; p++;
         if (p == n0) // done --- only sample suffixes left
            for (k++; t < n02; t++, k++) SA[k] = GetI();
```

Concluding remarks

- Implementation
 - A3 and Ax are practical algorithms
 - can be made space-efficient
- Other models of computation
 - A3 is easily parallelizable and externalizable
 - improved BSP and EREW-PRAM algorithms [K & Sanders, '03]
 - fast external memory implementation [Dementiev & al, '05]
- Related construction algorithms
 - $\mathcal{O}(vn + n\log n)$ time, $\mathcal{O}(n/\sqrt{v})$ extra space $(v \in [3, n])$ fast and space-efficient in practice [Burkhardt & K, '03]
 - $\mathcal{O}(vn)$ time, $\mathcal{O}(n/\sqrt{v})$ extra space

[K & Sanders]

Open problems

- Suffix array has emerged from the shadow of suffix tree
 - several recent algoritms
 - missing algorithms?
- I still don't understand suffix arrays!
 - surprising algorithms
 - common combinatorial principles?
 - more surprises coming?

Difference cover samples

A3:
$$S = \{S_i \mid i \mod 3 \in \{1, 2\}\}$$

A7:
$$S = \{S_i \mid i \mod 7 \in \{3, 5, 6\}\}$$

Difference cover samples

 $D \subseteq [0, v)$ is a difference cover modulo v if

$${i - j \bmod v \mid i, j \in D} = [0, v)$$

- $ightharpoonup D = \{1, 2\}$ is a difference cover modulo 3
- $D = \{3, 5, 6\}$ is a difference cover modulo 7
- $ightharpoonup D = \{1\}$ is not a difference cover modulo 2

Algorithms

- **A**3
- $\triangleright \mathcal{O}(vn + n \log n)$ time, $\mathcal{O}(n/\sqrt{v})$ extra space
- $ightharpoonup \mathcal{O}(vn)$ time, $\mathcal{O}(n/\sqrt{v})$ extra space

[Burkhardt & K, '03]

[K & Sanders, ??]