

Assignment 3

Team Members

Num	Full Name in ARABIC	SEC	BN
1	منة الله احمد مصطفى عبده	2	25
2	مایکل ایهاب میخائیل عبد الملاك	2	5

Table of contents:

1. Part One	3
1.1 Gram-Schmidt Orthogonalization	
1.2 Signal Space Representation	
1.3 Signal Space Representation with adding AWGN	
1.4 Noise Effect on Signal Space	8
2. Appendix A: Codes for Part One:	9
A.1 Code for Gram-Schmidt Orthogonalization	9
A.2 Code for Signal Space representation	
A.3 Code for plotting the bases functions	
A.4 Code for plotting the Signal space Representations	11
A.5 Code for effect of noise on the Signal space Representations	
List of Figures	
FIGURE 1 Ф1 VS TIME AFTER USING THE GM_BASES FUNCTION	4
FIGURE 2 Φ2 VS TIME AFTER USING THE GM_BASES FUNCTION	
FIGURE 3 SIGNAL SPACE REPRESENTATION OF SIGNALS \$1,52	
Figure 4 Signal Space representation of signals s1,s2 with $E/\Sigma - 2 = 10$ dB	
Figure 5 Signal Space representation of signals s1,s2 with $E/\Sigma - 2 = 0$ dB	
Figure 6 Signal Space representation of signals s1,s2 with $E/z-2 = -5DB$	8

1. Part One

1.1 Gram-Schmidt Orthogonalization

The Gram-Schmidt Orthogonalization in communication systems creates orthogonal signals to reduce interference and increase system efficiency, specially in wireless communications where signals overlap in frequency.

Hand Analysis

Page 3 of 14

Simulation Results

Figure 1 Φ1 VS time after using the GM_Bases function

Figure 2 Φ 2 VS time after using the GM_Bases function

1.2 Signal Space Representation

Here we represent the signals using the base functions.

Hand Analysis:

Simulation Results

Figure 3 Signal Space representation of signals s1,s2
Page 5 of 14

1.3 Signal Space Representation with adding AWGN

-the expected real points will be solid and the received will be hollow

Case 1: $10 \log(E/\sigma^2) = 10 dB$

Figure 4 Signal Space representation of signals s1,s2 with $E/\sigma^{-2} = 10dB$

Case 2: $10 \log(E/\sigma^2) = 0 dB$

Figure 5 Signal Space representation of signals s1,s2 with E/σ -2 =0dB

Case 3: $10 \log(E/\sigma^2) = -5 dB$

Figure 6 Signal Space representation of signals s1,s2 with E/σ^{-2} =-5dB

1.4 Noise Effect on Signal Space

Question: How does the noise affect the signal space? Does the noise effect increase or decrease with increasing σ^2 ?

Answer:

As σ^2 increases the E/ σ^2 decreases so the noise effect increases and the received points are far from the expected point (As seen in figure 6)

As σ^2 decreases the E/ σ^2 increases so the noise effect decreases and the received points are close to the expected point (As seen in figure 4)

2. Appendix A: Codes for Part One:

A.1 Code for Gram-Schmidt Orthogonalization

```
def GM Bases(s1, s2):
    # Calculate the energy of the first signal
    E1 = np.sum(s1**2) / numOfSamples
    # Create the first orthogonal basis (phi1) by normalizing the
first signal
    phi1 = s1 / np.sqrt(E1)
    # Project the second signal onto the first basis (phi1)
    s21 = np.sum(s2*phi1) / numOfSamples
    # Subtract the projection from the second signal to make it
orthogonal to the first basis
    g2 = s2 - s21 * phi1
    # Calculate the energy of the new, orthogonalized second
signal
    E2 = np.sum(g2**2) / numOfSamples
    # Create the second orthogonal basis (phi2) by normalizing
the new second signal
    phi2 = g2 / np.sqrt(E2)
    # Check if the two bases are identical, if so, set the second
basis to a zero vector
    if np.array_equal(phi1, phi2):
        phi2 = np.zeros(numOfSamples)
    # Return the two orthogonal bases
```



```
return phi1, phi2
```

A.2 Code for Signal Space representation

```
def signal_space(s, phi1, phi2):
    # Project the signal 's' onto the first basis 'phi1' to find
its coefficient 'v1'
    v1 = np.sum(s*phi1) / numOfSamples
    # Project the signal 's' onto the second basis 'phi2' to find
its coefficient 'v2'
    v2 = np.sum(s*phi2) / numOfSamples
    # Return the coefficients 'v1' and 'v2' which represent the
signal 's' in the new basis
    return v1, v2
```

A.3 Code for plotting the bases functions

```
# Calculate bases functions for given s1,s2
phi1, phi2 = GM_Bases(s1, s2)

plt.figure()
plt.plot(time_axis, phi1, linewidth=2)
plt.vlines(x=0, ymin=0, ymax=phi1[0])
plt.vlines(x=1, ymin=phi1[-1], ymax=0)
plt.xlabel("Time(sec)")
plt.ylabel("phi1")
plt.legend()
```



```
plt.plot(time_axis, phi2, linewidth=2)
plt.vlines(x=0, ymin=0, ymax=phi2[0])
plt.vlines(x=1, ymin=phi2[-1], ymax=0)
plt.xlabel("Time(sec)")
plt.ylabel("phi2")
plt.legend()
```

A.4 Code for plotting the Signal space Representations

```
v11, v12 = signal_space(s1, phi1, phi2)
v21, v22 = signal_space(s2, phi1, phi2)

# Plot signal space representation
plt.figure()
plt.scatter(v11, v12, label='s1', c='b')
plt.scatter(v21, v22, label='s2', c='m')
plt.plot([0, v11], [0, v12], 'b', linewidth=2)
plt.plot([0, v21], [0, v22], 'm', linewidth=2)
plt.title('Signal Space Representation')
plt.xlabel("phi1")
plt.ylabel("phi2")
plt.legend()
plt.show()
```

A.5 Code for effect of noise on the Signal space Representations


```
# An array of E/\sigma^2 values in dB
E_over_sigma_2_arr = [-5, 0, 10]
for E_over_sigma_2_db in E_over_sigma_2_arr:
    plt.figure()
    # Set the title of the plot with the current E/\sigma^2 value
    plt.title('Signal Space Representation (E/\sigma^2 = '+
str(E over sigma 2 db) + 'dB)')
    plt.xlabel('phi1')
    plt.ylabel('phi2')
    for n in range(numOfSamples):
        # Convert E/\sigma^2 from dB to linear scale
        E over sigma 2 = 10**(E \text{ over sigma } 2 \text{ db } / 10)
        # Calculate noise for S1
        E1 = np.sum(s1**2) / numOfSamples # Calculate the energy
of S1
        sigma squared = E1 / E over sigma 2 # Calculate the
noise variance for S1
        sigma = np.sqrt(sigma_squared) # Calculate the standard
deviation of the noise
        noise1 = np.random.normal(0, sigma, numOfSamples) #
Generate noise for S1
        # Calculate noise for S2
        E2 = np.sum(s2**2) / numOfSamples # Calculate the energy
of S2
```



```
sigma_squared = E2 / E_over_sigma_2 # Calculate the
noise variance for S2
       sigma = np.sqrt(sigma squared) # Calculate the standard
deviation of the noise
       noise2 = np.random.normal(0, sigma, numOfSamples) #
Generate noise for S2
       r1 = s1 + noise1 # Add noise to S1 to get the received
signal R1
       r2 = s2 + noise2 # Add noise to S2 to get the received
signal R2
       # Project the noisy received signals onto the signal
space
       v11 noisy, v12 noisy = signal space(r1,phi1,phi2)
       v21_noisy ,v22_noisy = signal_space(r2,phi1,phi2)
       # Plot the noisy projections of S1 and S2
        plt.scatter(v11 noisy, v12 noisy, facecolors='none',
edgecolors='g')
        plt.scatter(v21 noisy, v22 noisy, facecolors='none',
edgecolors='b')
       # Plot the original projections of S1 and S2 without
noise
       plt.scatter(v11, v12, c='m')
       plt.scatter(v21, v22, c='y')
```


plt.legend(['Noisy s1','Noisy s2','s1','s2'])