

Intelligent Infrared CO2 Module (Model: MH-Z19)

User's Manual

(Version: 1.0)

Valid from: 2015.03.03

Zhengzhou Winsen Electronics Technology Co., Ltd
ISO9001 certificated company

Statement

This manual's copyright belongs to Zhengzhou Winsen Electronics Technology Co., LTD. Without

the written permission, any part of this manual shall not be copied, translated, stored in database or

retrieval system, also can't spread through electronic, copying, record ways.

Thanks for purchasing our product. In order to let customers use it better and reduce the faults

caused by misuse, please read the manual carefully and operate it correctly in accordance with the

instructions. If users disobey the terms or remove, disassemble, change the components inside of

the sensor, we shall not be responsible for the loss.

The specific such as color, appearance, sizes &etc., please in kind prevail.

We are devoting ourselves to products development and technical innovation, so we reserve the

right to improve the products without notice. Please confirm it is the valid version before using this

manual. At the same time, users' comments on optimized using way are welcome.

Please keep the manual properly, in order to get help if you have questions during the usage in the

future.

Zhengzhou Winsen Electronics Technology CO., LTD.

2015.03.03

MH-Z19 NDIR CO2 Module

1. Profile

MH-Z19 NDIR infrared gas module is a common type, small size sensor, using non-dispersive infrared (NDIR) principle to detect the existence of CO 2 in the air, with good selectivity, non-oxygen dependent and long life. Built-in temperature sensor can do temperature compensation; and it has digital output and analog voltage output. It is developed by the tight integration of mature infrared absorbing gas detection technology, precision optical circuit design and superior circuit design.

2. Applications

MH-Z19 NDIR infrared gas module is widely used in the HVAC refrigeration and indoor air quality monitoring.

3. Main Functions and Features

High sensitivity, high resolution
Low power consumption
Output modes: UART and PWM wave
Temperature compensation, excellent linear output
Good stability
Long lifespan
Anti-water vapor interference
No poisoning

4. Technical Parameters and Structure

Product Model	MH-Z19			
Target Gas	CO2			
Working voltage	3.6~ 5.5 V DC			
Average current	<18 mA			
Interface level	3.3 V			
Measuring range	0 ~ 0.5% VOL optional			
0 4 4 1	UART			
Output signal	PWM			
Preheat time	3 min			
Reponse Time	T ₉₀ <60 s			
Working	0 ~ 50 ℃			
temperature				
Working humidity	0~ 95% RH			
working numbers	(No condensation)			
Dimension	33 mm×20 mm×9 mm			
Differential	$(L\times W\times H)$			
Weight	21 g			
Lifespan	>5 years			

Table 1 Main Technical Parameters Figure 1 Structure

Target Gas	Formula	Measuring Range	Accuracy	Remark
		0∼2000 ppm		Temperature
Carbon Dioxide	CO ₂	0 *2000 ppiii	±(50ppm+5%readi	compensation
(CO2)		0 5000	ngvalue)	Temperature
		0∼5000 ppm		compensation

Table 2 Measuring Range and Accuracy

5. Pins

PIN	Description
Pin 6	Vin (input voltage)
Pin 7	GND
Pin 1	Vout (output voltage 3.3V, output
	current lower than 10mA)
Pin 9	PWM
Pin 5	HD (zero calibration, low level
	above 7 seconds)
Pin 2	UART (RXD) 0~3.3V digitalinput
Pin 3	UART (TXD) 0~3.3V digital output
Pin 4	SR (Reserved)
Pin 8	AOT(Reserved)

Table 3 Definition for Pins

Figure 2 Pins Diagram

6. Application Circuit

Figure 3 Application Circuit

7. Output Data Reading

7.1 PWM output (taking PWM output from 2000ppm as example)

CO2 output range: 0ppm-2000ppm

Cycle: 1004ms ±5%

High level output for beginning: 2ms ±5%

Middle of cycle: 1000ms ±5%

Low level output for ending: 2ms ±5%

Account formula for CO2 concentration which gets through PWM,

$$C_{ppm} = 2000 \times (T_H - 2ms) / (T_H + T_L - 4ms)$$

Among:

 C_{ppm} is calculated CO2 concentration, unit is ppm;

 T_H is time for high level during an output cycle;

 T_L is time for low level during an output cycle.

Figure 4 PWM Output

Tel: 86-371-67169097/67169670 Fax: 86-371-60932988 Email: sales@winsensor.com

7.2 Transmit Data

Vin-5V power

GND-Power Ground

RXD connect sensor TXD

TXD connect sensor RXD

You can read gas concentration via Uart, no need to calculate.

7.2.1 CommunicationProtocol

A.General Settings

Baudrate	9600
Date byte	8 byte
Stop byte	1byte
Calibrate byte	no

B.Command

Each command or return:

Contains 9 bytes (byte $0 \sim 8$)

starting byte fixed 0 XFF

command contains sensor number (factory default to 0 x01)

to check and end

Command List

0x86	Gas Concentration
0x87	Calibrate zero point (ZERO)
0x88	Calibrate span point (SPAN)

Gas concentration reading

Send command									
Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7	Byte8	
Starting	Sensor	command	-	-	-	-	-	Check value	
byte	No.								
0XFF	0x01	0x86	0x00	0x00	0x00	0x00	0x00	0x79	

Return value

Return										
Byte0 Byte1 Byte2 Byte3 Byte4 Byte5 Byte6 Byte7 Byte8							Byte8			
Starting	command	High level	Low level	-	-	-	-	Check value		
byte		concentration	concentration							
0XFF	0x86	0x02	0x60	0x47	0x00	0x00	0x00	0xD1		

Gas concentration= high level *256+low level

Tel: 86-371-67169097/67169670 Fax: 86-371-60932988 Email: sales@winsensor.com

Calibrate zero point

Send command										
Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7	Byte8		
Starting	Sensor	command	-	-	-	-	-	Check value		
byte	No.									
0XFF	0x01	0x87	0x00	0x00	0x00	0x00	0x00	0x78		

No return value

Calibrate span point

Send command									
Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7	Byte8	
Starting	Sensor	command	high level	Low level	-	-	-	Check	
byte	No.		spanpoint	span point				value	
0XFF	0x01	0x88	0x07	0xD0	0x00	0x00	0x00	0xA0	

No return value

C.Calibrate and Calculate

The checksum = (invert (byte 1 + ... + 7)) + 1

Gas concentration reading

Send command										
Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7	Byte8		
Starting	Sensor	command	-	-	-	-	-	Check		
byte	No.							value		
0XFF	0x01	0x86	0x00	0x00	0x00	0x00	0x00	0x79		

Except byte 0, add the other bytes together

$$0x1 + 0x86 + 0 + 0 + 0 + 0 + 0 = 0x87$$

Get the value from the first step, then invert it.

$$0xff - 0x87 = 0x78$$

The second value plus one

$$0x78 + 0x01 = 0x79$$

7.2.2 Program: C language

```
char getCheckSum(char *packet)
{
    char i, checksum;
    for( i = 1; i < 8; i++)
    {
        checksum += packet[i];
    }
    checksum = 0xff - checksum;
    checksum += 1;
    return checksum;
}</pre>
```

Tel: 86-371-67169097/67169670 Fax: 86-371-60932988 Email: <u>sales@winsensor.com</u>

8. Notes

- 8.1 Do not use the sensor in the high dusty environment for long time.
- 8.2 Please use the sensor with correct power supply.

Zhengzhou Zhengzhou Winsen Electronics Technology

Co., Ltd

Add: No.299, Jinsuo Road, National Hi-Tech Zone,

Zhengzhou 450001 China **Tel:** +86-371-67169097/67169670

Fax: +86-371-60932988

E-mail: sales@winsensor.com