Homework 4: Subspace, Linear Combination, Span

Instructions. All answers to textbook problems should be justified. For problems 5 and 6, you may not use any theorems; you should use only definitions. Assignments should be **stapled** and written clearly and legibly.

- 1. $\S4.2$, #3(a), #5(a)(b).
- 2. Give an example of a nonempty subset of $M_{2,3}$ which is not a subspace of $M_{2,3}$.
- 3. Consider the set W of all vectors in \mathbb{R}^4 of the form $\begin{bmatrix} a \\ b \\ -2b \\ a \end{bmatrix}$.
 - (a) Prove that W is a subspace of \mathbb{R}^4 using Theorem 1.2 from my notes.
 - (b) Prove that W is a subspace of \mathbb{R}^4 using Theorem 1.3 from my notes.
- 4. $\S4.2$, #10(b)(c), 12(a)(b), 14(a)(c)(d)(e).
- 5. Let \mathbf{u} , \mathbf{v} , \mathbf{w} be vectors in a vector space V. Prove that $\mathrm{Span}\{\mathbf{u},\mathbf{v}\}$ is a subspace of $\mathrm{Span}\{\mathbf{u},\mathbf{v},\mathbf{w}\}$.

Hint. Begin the proof as follows: "Suppose that \mathbf{z} is in $\mathrm{Span}\{\mathbf{u},\mathbf{v}\}$. I must show that \mathbf{z} is also in $\mathrm{Span}\{\mathbf{u},\mathbf{v},\mathbf{w}\}$."

- 6. Let $\mathbf{u}, \mathbf{v}, \mathbf{w}, \mathbf{x}, \mathbf{y}$ be vectors in a vector space V. Suppose that \mathbf{x} and \mathbf{y} are in $\mathrm{Span}\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ and \mathbf{c} is a scalar.
 - (a) Prove that $\mathbf{x} + \mathbf{y}$ is in $\mathrm{Span}\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$.
 - (b) Prove that $c\mathbf{x}$ is in Span $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$.
 - (c) What do parts (a) and (b) tell you about $Span\{u, v, w\}$? (You may use a theorem to answer this question.)

Hint. The proofs of (a) and (b) are taken from the proof of a theorem from class.