IN THE SPECIFICATION

At pages 10 and 11, please replace the paragraph beginning at line 36 of page 10 as follows:

USSN: 09/587,111

To identify the presence of an ankyrin repeat domain in an hVR-1, hVR-2, and rVR-2 protein and make the determination that a protein of interest has a particular profile, the amino acid sequence of the protein is searched against a database of HMMs (e.g., the Pfam database, release 2.1) using the default parameters ([[http://]]www.sanger.ac.uk/Software/Pfam/HMM_search). A description of the Pfam database can be found in Sonhammer et al. (1997) Proteins 28(3)405-420 and a detailed description of HMMs can be found, for example, in Gribskov et al.(1990) Meth. Enzymol. 183:146-159; Gribskov et al.(1987) Proc. Natl. Acad. Sci. USA 84:4355-4358; Krogh et al.(1994) J. Mol. Biol. 235:1501-1531; and Stultz et al.(1993) Protein Sci. 2:305-314, the contents of which are incorporated herein by reference. A search was performed against the HMM database resulting in the identification of three ankyrin repeat domains in the amino acid sequence of SEQ ID NO:2 (at about residues 201-233, 248-283, and 333-361) and SEQ ID NO:5 (at about residues 162-194, 208-243, and 293-328). The results of the searches are set forth in Figures 13 and 15.

At page 24, please replace the paragraphs beginning at line 10 as follows:

The comparison of sequences and determination of percent identity between two sequences can be accomplished using a mathematical algorithm. In a embodiment, the percent identity between two amino acid sequences is determined using the Needleman and Wunsch (*J. Mol. Biol.* (48):444-453 (1970)) algorithm which has been incorporated into the GAP program in the GCG software package (available at [[http://]]www.gcg.com), using either a Blossum 62 matrix or a PAM250 matrix, and a gap weight of 16, 14, 12, 10, 8, 6, or 4 and a length weight of 1, 2, 3, 4, 5, or 6. In yet another embodiment, the percent identity between two nucleotide sequences is determined using the GAP program in the GCG software package (available at [[http://]]www.gcg.com), using a NWSgapdna.CMP matrix and a gap weight of 40, 50, 60, 70, or 80 and a length weight of 1, 2, 3, 4, 5, or 6. In another embodiment, the percent identity between two amino acid or nucleotide sequences is determined using the algorithm of E. Meyers and W. Miller (CABIOS, 4:11-17 (1989)) which has been incorporated into the ALIGN program (version 2.0), using a PAM120 weight residue table, a gap length penalty of 12 and a gap penalty of 4.

The nucleic acid and protein sequences of the present invention can further be used as a "query sequence" to perform a search against public databases to, for example, identify other family members or related sequences. Such searches can be performed using the NBLAST and XBLAST programs (version 2.0) of Altschul, *et al.* (1990) *J. Mol. Biol.* 215:403-10. BLAST nucleotide searches can be performed with the NBLAST program, score = 100, wordlength = 12 to obtain nucleotide sequences homologous to hVR-1, hVR-2, and rVR-2 nucleic acid molecules of the invention. BLAST protein searches can be performed with the XBLAST program, score = 50, wordlength = 3 to obtain amino acid sequences homologous to hVR-1, hVR-2, and rVR-2 protein molecules of the invention. To obtain gapped alignments for comparison purposes, Gapped BLAST can be utilized as described in Altschul *et al.*, (1997) *Nucleic Acids Res.* 25(17):3389-3402. When utilizing BLAST and Gapped BLAST programs, the default parameters of the respective programs (*e.g.*, XBLAST and NBLAST) can be used. See [[http://]]www.ncbi.nlm.nih.gov.

USSN: 09/587,111