

PVsyst - Simulation report

Grid-Connected System

Project: WORLD BANK

Variant: New simulation variant
No 3D scene defined, no shadings
System power: 27.68 kWp
World Bank - Nigeria

PVsyst V7.4.7

VC0, Simulation date: 13/08/25 17:34 with V7.4.7

Project: WORLD BANK

Variant: New simulation variant

Project summary

Geographical Site Situation

World Bank Latitude 9.04 °N Nigeria 7.52 °E Longitude

Altitude 0 m Time zone UTC

Weather data

World Bank

Meteonorm 8.1 (2010-2021), Sat=100% - Synthetic

Grid-Connected System

Simulation for year no 10

PV Field Orientation

Fixed plane

Tilt/Azimuth 10 / 180 ° No 3D scene defined, no shadings

System summary

Near Shadings

No Shadings

Daily household consumers

Seasonal modulation

User's needs

Project settings

Albedo

11.0 kWh/Day Average

System information

PV Array

Pnom total

Nb. of modules 45 units **Inverters**

Nb. of units Pnom total Pnom ratio

1.230

1.5 units 22.50 kWac **Battery pack**

Storage strategy: Self-consumption Nb. of units 10 units Voltage 51 V

3120 Ah Capacity

Results summary

Produced Energy **Used Energy**

41254 kWh/year 4004 kWh/year

27.68 kWp

Specific production

1491 kWh/kWp/year Perf. Ratio PR

Solar Fraction SF

75.03 % 100.00 %

0.20

Table of contents

Project and results summary	2
General parameters, PV Array Characteristics, System losses	3
Detailed User's needs	5
Main results	6
Loss diagram	7
Predef. graphs	8

PVsyst V7.4.7

Project: WORLD BANK Variant: New simulation variant

VC0, Simulation date: 13/08/25 17:34 with V7.4.7

General parameters

Grid-Connected System No 3D scene defined, no shadings

PV Field Orientation

Orientation **Sheds configuration** Models used

Fixed plane No 3D scene defined Transposition Perez Tilt/Azimuth 10 / 180 ° Diffuse Perez, Meteonorm

Circumsolar separate

Horizon **Near Shadings** User's needs

Free Horizon No Shadings Daily household consumers

Seasonal modulation

Average 11.0 kWh/Day

15.0 kWac

22.5 kWac

Storage

Kind Self-consumption

Charging strategy Discharging strategy When excess solar power is available As soon as power is needed

PV Array Characteristics

PV module Inverter Manufacturer Jinkosolar Manufacturer VMC JKM-615N-66HL4M-BDV Model Model Sunvec 15KTLD3

(Original PVsyst database)

Unit Nom. Power 615 Wp Unit Nom. Power Number of PV modules 45 units Number of inverters 3 * MPPT 50% 1.5 units Nominal (STC) 27.68 kWp Total power Modules 3 string x 15 In series Operating voltage 160-950 V

45 A

At operating cond. (50°C)

Max. power (=>25°C) 16.5 kWac 25.67 kWp 1.23 Pnom ratio (DC:AC) **Pmpp** 568 V U mpp No power sharing between MPPTs

Total PV power

Nominal (STC) 28 kWp Total power 22.5 kWac Total 45 modules Nb. of inverters 2 units Module area 121 m² 0.5 unused

> Pnom ratio 1.23

Battery Storage

Battery

I mpp

Manufacturer BYD Model Battery Box Premium LVS 12.0

Battery pack

10 in parallel Nb. of units Discharging min. SOC 40.0 % Stored energy 95.8 kWh

Battery input charger

Generic Model 23.0 kWdc Max. charg. power Max./Euro effic. 97.0/95.0 %

Battery to Grid inverter

Model Generic 2.2 kWac Max. disch. power Max./Euro effic. 97.0/95.0 %

Battery Pack Characteristics

Total inverter power

(Original PVsyst database)

51 V Voltage **Nominal Capacity** 3120 Ah (C10) Temperature Fixed 20 °C

PVsyst V7.4.7

VC0, Simulation date: 13/08/25 17:34 with V7.4.7

Project: WORLD BANK

Variant: New simulation variant

Array losses

Array Soiling Losses

Module mismatch losses

Thermal Loss factor

DC wiring losses

Loss Fraction

Loss Fraction

3.0 % Module temperature according to irradiance

Global array res. 206 m Ω

Uc (const) Uv (wind) 29.0 W/m²K 0.0 W/m²K/m/s 1.5 % at STC

-0.8 %

Serie Diode Loss

LID - Light Induced Degradation

Module Quality Loss

Voltage drop

0.7 V

Loss Fraction 2.0 %

Loss Fraction

Loss Fraction

0.1 % at STC

Module average degradation

Loss Fraction

2.0 % at MPP

Year no 10 Loss factor 0.4 %/year

Mismatch due to degradation

Imp RMS dispersion

0.4 %/year

Vmp RMS dispersion 0.4 %/year

IAM loss factor

Incidence effect (IAM): Fresnel, AR coating, n(glass)=1.526, n(AR)=1.290

0°	30°	50°	60°	70°	75°	80°	85°	90°
1.000	0.999	0.987	0.962	0.892	0.816	0.681	0.440	0.000

Spectral correction

FirstSolar model

Precipitable water estimated from relative humidity

Coefficient Set	C0	C1	C2	C3	C4	C5
Monocrystalline Si	0.85914	-0.02088	-0.0058853	0.12029	0.026814	-0.001781

System losses

Unavailability of the system

Time fraction 2.0 %

7.3 days, 3 periods

AC wiring losses

Inv. output line up to injection point

Inverter voltage 380 Vac tri
Loss Fraction 0.47 % at STC

Inverter: Sunvec 15KTLD3

Wire section (2 Inv.) Copper 2 x 3 x 10 mm 2 Average wires length 20 m

Variant: New simulation variant

PVsyst V7.4.7

VC0, Simulation date: 13/08/25 17:34 with V7.4.7

Detailed User's needs

Daily household consumers, Seasonal modulation, average = 11.0 kWh/day

Summer (Jun-Aug)

	Nb.	Power	Use	Energy
		W	Hour/day	Wh/day
Lamps (LED or fluo)	10	10/lamp	5.0	500
TV / PC / Mobile	2	100/app	5.0	1000
Domestic appliances	1	500/app	4.0	2000
Fridge / Deep-freeze	2		24	1598
Dish- & Cloth-washers	1		2	2000
Ventilation	1	100 tot	24.0	2400
Air conditioning	1	1000 tot	3.0	3000
Stand-by consumers			24.0	144
Total daily energy				12642

Autumn (Sep-Nov)

	Nb.	Power	Use	Energy
		W	Hour/day	Wh/day
Lamps (LED or fluo)	10	10/lamp	5.0	500
TV / PC / Mobile	2	100/app	5.0	1000
Domestic appliances	1	500/app	5.0	2500
Fridge / Deep-freeze	2		24	1598
Dish- & Cloth-washers	1		2	2000
Ventilation	1	100 tot	24.0	2400
Stand-by consumers			24.0	144
Total daily energy				10142

Winter (Dec-Feb)

	Nb.	Power	Use	Energy
		W	Hour/day	Wh/day
Lamps (LED or fluo)	10	10/lamp	6.0	600
TV / PC / Mobile	2	100/app	6.0	1200
Domestic appliances	1	500/app	6.0	3000
Fridge / Deep-freeze	2		24	1598
Dish- & Cloth-washers	1		2	2000
Ventilation	1	100 tot	24.0	2400
Stand-by consumers			24.0	144
Total daily energy				10942

Spring (Mar-May)

	Nb.	Power	Use	Energy
		W	Hour/day	Wh/day
Lamps (LED or fluo)	10	10/lamp	5.0	500
TV / PC / Mobile	2	100/app	5.0	1000
Domestic appliances	1	500/app	5.0	2500
Fridge / Deep-freeze	2		24	1598
Dish- & Cloth-washers	1		2	2000
Ventilation	1	100 tot	24.0	2400
Stand-by consumers			24.0	144
Total daily energy				10142

Variant: New simulation variant

PVsyst V7.4.7

VC0, Simulation date: 13/08/25 17:34 with V7.4.7

Main results

System Production

Produced Energy 41254 kWh/year Used Energy 4004 kWh/year

Specific production 1491 kWh/kWp/year
Perf. Ratio PR 75.03 %
Solar Fraction SF 100.00 %

Battery aging (State of Wear)

 Cycles SOW
 99.6 %

 Static SOW
 90.0 %

Normalized productions (per installed kWp)

Performance Ratio PR

Balances and main results

	GlobHor	DiffHor	T_Amb	Globinc	GlobEff	EArray	E_User	E_Solar	E_Grid	EFrGrid
	kWh/m²	kWh/m²	°C	kWh/m²	kWh/m²	kWh	kWh	kWh	kWh	kWh
January	168.0	78.6	27.99	152.0	142.6	3324	339.2	339.2	2805	0.000
February	154.3	95.8	30.36	145.4	137.5	3158	306.4	306.4	2738	0.000
March	177.9	104.8	32.04	172.6	164.0	3741	314.4	314.4	3300	0.000
April	190.3	97.8	31.09	190.3	181.3	4154	304.3	304.3	3315	0.000
May	180.6	94.5	29.45	185.1	176.4	4079	314.4	314.4	3330	0.000
June	164.2	83.6	26.74	170.6	162.4	3802	379.3	379.3	3299	0.000
July	168.7	86.4	26.28	174.4	165.9	3897	391.9	391.9	3380	0.000
August	150.8	91.4	25.36	151.9	144.0	3398	391.9	391.9	2595	0.000
September	163.3	81.6	25.58	160.2	151.9	3565	304.3	304.3	3143	0.000
October	179.3	83.9	26.83	169.6	160.3	3761	314.4	314.4	3325	0.000
November	183.8	57.7	27.86	165.4	155.5	3627	304.3	304.3	3205	0.000
December	167.1	72.3	27.92	149.2	139.7	3266	339.2	339.2	2815	0.000
Year	2048.4	1028.5	28.11	1986.7	1881.4	43773	4004.0	4004.0	37250	0.000

Legends

GlobHor Global horizontal irradiation

DiffHor Horizontal diffuse irradiation

T_Amb Ambient Temperature

Globlnc Global incident in coll. plane

GlobEff Effective Global, corr. for IAM and shadings

EArray Effective energy at the output of the array

E_User Energy supplied to the user
E_Solar Energy from the sun
E_Grid Energy injected into grid
EFrGrid Energy from the grid

Variant: New simulation variant

PVsyst V7.4.7 VC0, Simulation date: 13/08/25 17:34 with V7.4.7

to user to user

from grfdom solar

to grid

Loss diagram 2048 kWh/m² Global horizontal irradiation -3.01% Global incident in coll. plane -2.37% IAM factor on global -3.00% Soiling loss factor Effective irradiation on collectors 1881 kWh/m2 * 121 m2 coll. efficiency at STC = 22.79% PV conversion 52077 kWh Array nominal energy (at STC effic.) -3.80% Module Degradation Loss (for year #10) -0.61% PV loss due to irradiance level -6.24% PV loss due to temperature) -0.24% Spectral correction **₹+0.75**% Module quality loss -2.00% LID - Light induced degradation -3.75% Module array mismatch loss (including 1.8% for degradation dispersion ÷-1.10% Ohmic wiring loss 43773 kWh Array virtual energy at MPP ÷2.19% Inverter Loss during operation (efficiency) → 0.00% Inverter Loss over nominal inv. power 9 0.00% Inverter Loss due to max. input current → 0.00% Inverter Loss over nominal inv. voltage → 0.00% Inverter Loss due to power threshold ₩0.00% Inverter Loss due to voltage threshold 42812 kWh **Available Energy at Inverter Output**) -0.23% AC ohmic loss ÷ -2.33% System unavailability) -0.41% Battery IN, charger loss grid) -0.14% Battery Stored Energy balance consumption Direct use **Battery Storage** 95.5%) -0.22% Battery global loss (5.47% of the battery contribution) → -0.34% Battery OUT, inverter loss kWh 0 37250 Dispatch: user and grid reinjection

Variant: New simulation variant

PVsyst V7.4.7 VC0, Simulation date: 13/08/25 17:34 with V7.4.7

