

Calcul et modélisation géométrique pour l'informatique graphique

Raphaëlle Chaine Université Claude Bernard Lyon 1 Equipe GéoMod du LIRIS Promo 95

Quelle place pour la géométrie en informatique?

- Problèmes géométriques et applications
 - Informatique graphique
 - Détection de collisions
 - Calcul d'illuminations
 - Non prise en compte des parties cachées
 - Robotique
 - Planification de trajectoires
 - Télécommunication
 - Détermination du relais le plus proche

2

Quelle place pour la géométrie en informatique?

- Problèmes géométriques et applications
 - Chimie
 - Modélisation des molécules
 - Détection de poches
 - Calcul de surfaces de contact
 - CAD (Computer Aided Design), CAM (Computer Aided Manufacturing)
 - Conception de circuits intégrés
 - Reverse engineering

3

Quelle place pour la géométrie en informatique?

- Problèmes géométriques et applications
 - Musées et boutiques virtuels
 - Numérisation et mise à disposition du patrimoine
 - Systèmes d'information géographique
 - Création virtuelle
 - Film d'animation, jeux vidéos
 - Loisirs numériques

4

Le problème mascotte du cours : la reconstruction 3D

- Un problème de votre enfance
 - En entrée : un ensemble fini de points 2D, numérotés ou non

Le problème mascotte du cours : la reconstruction 3D

- Un problème de votre enfance
 - En sortie: Apparition d'une forme, grâce à votre crayon, votre intelligence et votre dextérité!

Le problème mascotte du cours : la reconstruction 3D

- Maintenant on enlève les numéros et on procède en 3D
 - Points 3D:
 - Scanner X, échographie, IRM, PET, stéréovision
 - Structurés (images de profondeur) ou non
 - Possibilité d'une organisation en coupes
 - Information additionnelle : normale à la surface

Le problème mascotte du cours : la reconstruction 3D

- Hypothèse: les points appartiennent bien tous à la surface de la forme
- Comment construire une forme s'appuyant sur ces points?
- Dans quel cas peut-on garantir la validité géométrique et topologique de la surface? (hypothèses supplémentaires sur l'échantillonnage de la surface de départ)

8

Le problème mascotte du cours : la reconstruction 3D

- Lier entre eux les points en évitant les croisements sur la surface, et en formant des « mailles » surfaciques.
- D'où la notion de maillage!

9

Mais revenons sur la difficulté de faire de la géométrie en informatique...

10

Nuance entre les approches Géométrie Algorithmique et Géométrie Discrète

- But commun
 - Manipulation d'objets géométriques dans un monde discret
- Géométrie Discrète
 - Discrétisation des objets géométriques sur des grilles

1 point = 1 pixel

Nuance entre les approches Géométrie Algorithmique et Géométrie Discrète

- Géométrie algorithmique
 - Manipulation des objets géométriques comme des instances de types abstraits
 - Opérations consistantes avec les propriétés géométriques des objets manipulés

Nuance entre les approches Géométrie Algorithmique et Géométrie Discrète

- Géométrie algorithmique
 - Objets combinatoires
 - Les formes sont décrites par assemblage de primitives géométriques
 - Tout peut être construit combinatoirement sur la notion de sommet

13

Quels objets géométriques élémentaires pensez-vous nécessaire de modéliser?

14

Quels objets géométriques élémentaires pensez vous nécessaire de modéliser?

- Points:
 - Quels points?
- Bien se souvenir que nous sommes assujettis à une arithmétique discrète...

Représentation des réels en virgule flottante $(-1)^{s*}2^{(exposant-décalage)*}1, M$ (norme IEEE)

15

Quels objets géométriques élémentaires pensez vous nécessaire de modéliser?

- Points
- Segments
- Avec cela on peut fabriquer des lignes brisées
 - Comment modéliseriez vous des segments?
 - Qu'est-ce que l'intersection de deux segments?
- Vecteurs, droites, demi-droites, ...

16

Quels objets géométriques élémentaires pensez vous nécessaire de modéliser?

- Retour sur la notion de point :
 - Un triplet de coordonnées
 - OU BIEN Un arbre de construction

Quels objets géométriques élémentaires pensez vous nécessaire de modéliser?

- Polygones
 - Triangle = polygone s'appuyant sur un nombre minimum de points
- · Cercles, Sphères
- Plein de formes peuvent être décrites combinatoirement à partir de quelques points

Notion de combinaison affine

$$p = \sum_{i=1}^{n} \lambda_i x_i , \quad \sum_{i=1}^{n} \lambda_i = 1$$

- Combinaison affine de n points
 - Ensemble des combinaisons possibles de ces n points
 - Les coefficients $\boldsymbol{\lambda}_i$ peuvent être négatifs ou positifs
- Exemple:
 - Tous les points d'une droite AB s'expriment par combinaison affine de A et B

Notion d'enveloppe convexe

$$p = \sum_{i=1}^{n} \lambda_i x_i , \quad \sum_{i=1}^{n} \lambda_i = 1$$

- Enveloppe convexe de n points :
 - Ensemble des combinaisons convexes de ces n points : combinaisons affines obtenues avec des coefficients λ_i positifs
- Pour un point p dans l'enveloppe convexe, les coefficients λ_i sont uniques
 - Coordonnées barycentriques

20

Notion de combinaison affine

$$p = \sum_{i=1}^{n} \lambda_i x_i , \qquad \sum_{i=1}^{n} \lambda_i = 1$$

- De deux points :
 - Combinaison affine : droite
 - Combinaison convexe (coefficients positifs): segment
- De trois points
 - Combinaison affine: plan
 - Combinaison convexe: triangle
- Notion de coordonnées barycentriques

Vocabulaire employé en Géométrie Algorithmique

- 0-simplexe : point
- 1-simplexe : segment
- 2-simplexe : triangle
- 3-simplexe : tétraèdre
- k-simplexe: Enveloppe convexe de k+1 points affinement indépendants (combinaisons affines de ces points = espace de dimension k)

22

Vocabulaire employé en Géométrie Algorithmique

- Face: Les faces d'un k-simplexe défini par k+1 points sont les d-simplexes que l'on peut former à partir d'un sous ensemble de d + 1 < k + 1 de ses sommets
- Comment feriez vous pour définir formellement ce qu'est une triangulation à partir des définitions précédentes?

23

Vocabulaire employé en Géométrie Algorithmique

- Etant donné un ensemble E de points de R^k, on appelle triangulation de E un ensemble de k-simplexes dont les sommets sont les points de E et vérifiant :
 - l'intersection de 2 k-simplexes est soit vide, soit une face commune aux 2 k-simplexes,
 - les k-simplexes pavent l'enveloppe convexe de E.

Triangulation

- Par abus de langage, on continue à parler de triangulation dans le cas où l'ensemble des k-simplexes s'appuie sur des points dans un espace de dimension supérieure à k
- La contrainte de couverture est alors relâchée
- Exemple: Triangulation d'une surface (k=2) s'appuyant sur des points 3D

25

Combinatoire des maillages connexes de points 2D • Relation d'Euler c-a+s=1-t • Intuition de la preuve • On part d'un sommet (la relation d'Euler est vérifiée : 0-0+1 = 1-0) et on ajoute les arêtes une à une en maintenant la connexité. • Ajout d'une arête s'appuyant sur un nouveau sommet : s+ = 1, a+ = 1 • Ajout d'une arête s'appuyant sur des sommets existants : c+ = 1 ou t+ = 1 • A chaque ajout d'arête, (c + t) - a + s reste invariant.

Cas particulier des triangulations • Peut-on en dire plus sur le lien entre le nombre de faces, arêtes et sommets?

Cas particulier des triangulations

- Nombre de cellules et d'arêtes d'une triangulation de s points
 - Relation d'Euler:
 - c-a+s=1
 - Relation entre a et c dans une triangulation 2a = 3c
 + k où k est le nombre d'arêtes sur l'enveloppe
 - c = 2s 2 k
 - a = 3s 3 k

31

Structures de données

 Comment stocker un maillage triangulaire de manière à pouvoir naviguer facilement à travers celui-ci?

32

Structures de données

- Information géométrique :
 - coordonnées des positions des sommets
- Information topologique:
 - relations d'incidence et d'adjacence entre sommets, arêtes et faces

33

Structures de données

- Représentation basée triangle et sommet (uniquement pour maillage triangulé)
 - Triangle:
 - Accès 3 sommets incidents (ordre trigonométrique)
 - Accès 3 triangles adjacents
 - Numérotation : sommet i face à triangle voisin i
 - Sommet:
 - Accès à 1 triangle incident
 - Accès au point sous-jacent (géométrie)

34

Structures de données

- Cas d'une triangulation 2D
 - Ajout d'un sommet fictif (appelé sommet infini) dont les triangles incidents s'appuient sur les arêtes de l'enveloppe convexe
- La structure de donnée peut également être utilisée pour les triangulations surfaciques
 - Ajout de sommets fictifs uniquement s'il y a des trous

Stockage naïf et non compressé d'un maillage dans un fichier

- · Fichiers off
- Description du format
 - Nombre de sommets s
- Nombre de faces c
- Coordonnées des s sommets
- Description des faces (de 0 à c-1)
 - Nombre de sommets dans la face
 - Description de la face par les indices de ses sommets (dans le sens inverse des aiguilles d'une montre en 2D, ou en orientant les faces vers l'extérieur en 3D)

Comment charger un maillage dans une structure de données?

- Nécessité de retrouver les adjacences entre faces
- Utilisation d'une map pendant la lecture des faces
 - Associant à chaque arête rencontrée (paire d'indice de sommets) ...
 l'indice de la face concernée
 - Lorsqu'une arête est incidente à deux faces, l'adjacence entre ces deux faces est enregistrée dans la structure

Comment charger un maillage dans une structure de données?

- Utilisation d'une map pendant la lecture des faces
- Complexité en O(s*log(s)) où s nombre de sommets
- Rque: Si on utilise une hmap plutôt qu'une map, on obtient une complexité presque linéaire.

39

Structures de données

- Représentation basée ½ arêtes et sommets
 - ½ arête :
 - Accès ½ arête couplée
 - Accès ½ arête suivante
 - Accès sommet cible
 - <u>Sommet</u>:
 - Accès à 1 ½ arête de cible le sommet
 - Accès au point sous-jacent

40

Structures de données

- Cas d'une triangulation 3D
 - Structure basée tétraèdres et sommets
 - Cartes combinatoires (extension des structures basées demi-arêtes ou brins)
 - β₁: suivant
 β₂ et β₃: brins couplés
 β₃

Structures de données

- Cas des triangulations en nD
 - Structures basées n-simplexes et sommets
 - Cartes combinatoires $\bullet \ \beta_1$: suivant

 - β₂, β₃ ... β_n: brins couplés