Chapitre VI Méthode des moindres carrés

- 1. Introduction
- 2. Equations normales
- 3. Exemple d'application

Exemple introductif

- On s'intéresse à une grandeur ${f b}$ pouvant prendre les valeurs $b_1,b_2,...,b_m$; on notera :

$$\mathbf{b} = (b_1, b_2, \dots, b_m)^T$$

Les valeurs b_i dépendent a priori d'un paramètre x_i . Cela signifie que chaque valeur b_i de la grandeur \mathbf{b} est reliée à une valeur x_i par une fonction f a priori inconnue*; on notera :

$$\forall i \in [1, m], \quad b_i = f(x_i)$$

- Supposons que f soit un polynôme de degré n-1, alors :

$$\begin{cases} b_1 = a_0 + a_1 x_1 + a_2 x_1^2 + \dots + a_{n-1} x_1^{n-1} \\ b_2 = a_0 + a_1 x_2 + a_2 x_2^2 + \dots + a_{n-1} x_2^{n-1} \\ \vdots \\ b_m = a_0 + a_1 x_m + a_2 x_m^2 + \dots + a_{n-1} x_m^{n-1} \end{cases}$$

On a alors un système de m équations à n inconnues qui sont les coefficients du polynôme, c'est-à-dire $a_0, a_1, a_2, \ldots, a_{n-1}$. Le plus souvent le nombre de mesures (m) est plus grand que le nombre d'inconnues (n).

^{*} on peut imaginer que b_i est une température mesurée pour une pression donnée x_i (ou alors une tension mesurée en fonction de l'intensité du courant, ou encore l'intensité d'une source lumineuse en fonction de la longueur d'onde)

Le système précédent s'écrit sous forme matricielle :

$$\mathbf{A}\mathbf{x} = \mathbf{b} \quad \text{avec} \quad \mathbf{A} = \begin{pmatrix} 1 & x_1 & x_1^2 & \dots & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \dots & x_2^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_m & x_m^2 & \dots & x_m^{n-1} \end{pmatrix} \in \mathbb{R}^{m \times n}$$

$$\mathbf{x} = \begin{pmatrix} a_0 \\ a_1 \\ a_2 \\ \vdots \\ a_{n-1} \end{pmatrix} \in \mathbb{R}^n \quad \text{et} \quad \mathbf{b} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix} \in \mathbb{R}^m$$

Attention, les notations sont trompeuses : $\mathbf{x} = (a_0, a_1, ..., a_{n-1})^T$ et les x_i apparaissent dans la matrice \mathbf{A}

- Le système ci-dessus étant surdimensionné ($m \ge n$), il n'admet pas de solution. Cependant il doit bien exister un vecteur \mathbf{x}^* qui minimise la distance entre les vecteurs $\mathbf{A}\mathbf{x}$ et \mathbf{b} , c'est-à-dire un vecteur \mathbf{x}^* tel que $\|\mathbf{A}\mathbf{x}^* - \mathbf{b}\|$ soit le plus petit possible. On note :

$$\mathbf{x}^* = \underset{\mathbf{x} \in \mathbb{R}^n}{\operatorname{argmin}} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|$$

Schématiquement :

$$\mathbf{A}\mathbf{x} - \mathbf{b} = \begin{pmatrix} a_0 + a_1 x_1 + \cdots + a_{n-1} x_1^{n-1} - b_1 \\ a_0 + a_1 x_2 + \cdots + a_{n-1} x_2^{n-1} - b_2 \\ \vdots \\ a_0 + a_1 x_m + \cdots + a_{n-1} x_m^{n-1} - b_m \end{pmatrix}$$

$$= \begin{pmatrix} f(x_1) - b_1 \\ f(x_2) - b_2 \\ \vdots \\ f(x_m) - b_m \end{pmatrix}$$

$$\Rightarrow \|\mathbf{A}\mathbf{x} - \mathbf{b}\|^2 = \sum_{i=1}^m [f(x_i) - b_i]^2$$

Minimiser $\|\mathbf{A}\mathbf{x} - \mathbf{b}\|$ revient donc à minimiser la somme des carrés des écarts $\Delta_i = f(x_i) - b_i$

C'est le problème des moindres carrés qui de façon générale s'énonce de la façon suivante :

On considère le système d'équations linéaires $\mathbf{A}\mathbf{x} = \mathbf{b}$ avec $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\mathbf{x} \in \mathbb{R}^n$, $\mathbf{b} \in \mathbb{R}^m$ et $m \ge n$ (plus d'équations que d'inconnues). Ce système n'ayant pas de solution on a forcément $\mathbf{A}\mathbf{x} - \mathbf{b} \ne \mathbf{0}$. On cherche alors un vecteur $\mathbf{x}^* \in \mathbb{R}^n$ qui minimise la distance $\|\mathbf{A}\mathbf{x} - \mathbf{b}\|$ entre les vecteur $\mathbf{A}\mathbf{x}$ et \mathbf{b} .

Le vecteur \mathbf{x}^* est appelé solution du système $\mathbf{A}\mathbf{x} = \mathbf{b}$ au sens des moindres carrés et il est noté :

$$\mathbf{x}^* = \underset{\mathbf{x} \in \mathbb{R}^n}{\operatorname{argmin}} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|^2$$

Interprétation géométrique

On note $\mathbf{b}^* = \mathbf{A}\mathbf{x}^*$ alors :

- $\mathbf{b}^* \in \operatorname{Im} \mathbf{A}$ (évident)
- \mathbf{b}^* est le vecteur qui minimise la distance entre \mathbf{b} et Im \mathbf{A} (qui est un sous-espace vectoriel $de\mathbb{R}^n$)

Intuitivement, \mathbf{b}^* est la projection orthogonale de \mathbf{b} sur Im \mathbf{A} .

Soit $\mathbf{x} \in \mathbb{R}^n$ alors $\langle \mathbf{A}\mathbf{x}, \mathbf{b} - \mathbf{b}^* \rangle = 0$ car $\mathbf{A}\mathbf{x} \in \operatorname{Im} \mathbf{A}$ et $\mathbf{b} - \mathbf{b}^* \perp \operatorname{Im} \mathbf{A}$ (voir figure précédente).

La solution au sens des moindres carrés, notée \mathbf{x}^* , du problème $\mathbf{A}\mathbf{x} = \mathbf{b}$ est donc la solution du système d'équations $\mathbf{A}^T\mathbf{A}\mathbf{x}^* = \mathbf{A}^T\mathbf{b}$ où $\mathbf{A}^T\mathbf{A}$ est une matrice carrée de dimension $n \times n$ (encore faut-il que cette matrice soit inversible !). On montre (voir démonstration page suivante) que si $\operatorname{rg} \mathbf{A} = n$ alors la matrice $\mathbf{A}^T\mathbf{A}$ est inversible.

Démonstration

Soit $\mathbf{z} \in \text{Ker}(\mathbf{A}^T \mathbf{A})$ alors $\mathbf{A}^T \mathbf{A} \mathbf{z} = 0$ donc $\mathbf{A} \mathbf{z} \in \text{Ker}(\mathbf{A}^T)$.

Or Ker $\mathbf{A}^T = (\operatorname{Im} \mathbf{A})^{\perp}$ (admis) donc $\mathbf{Az} \in (\operatorname{Im} \mathbf{A})^{\perp}$.

Mais par définition $Az \in Im A$ donc $Az \in Im A \cap (Im A)^{\perp} = \{0\}$ donc Az = 0 donc $Az \in Im A$.

Comme par hypothèse $\operatorname{rg} \mathbf{A} = n$ on a $\dim \operatorname{Ker} \mathbf{A} = 0$, c'est-à-dire $\operatorname{Ker} \mathbf{A} = \{\mathbf{0}\}$ donc $\mathbf{A}^T \mathbf{A}$ est inversible.

A retenir

Soient $\mathbf{A} \in \mathbb{R}^{m \times n}$ de rang n avec $m \ge n$ et $\mathbf{b} \in \mathbb{R}^m$. La solution au sens des moindres carrés du système $\mathbf{A}\mathbf{x} = \mathbf{b}$, où $\mathbf{x} \in \mathbb{R}^n$, est l'<u>unique</u> solution des équations $\mathbf{A}^T \mathbf{A} \mathbf{x} = \mathbf{A}^T \mathbf{b}$, c'est-à-dire:

$$\mathbf{x}^* \stackrel{\text{def}}{=} \underset{\mathbf{x} \in \mathbb{D}^n}{\operatorname{argmin}} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|^2 = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \mathbf{b}$$

Les équations $\mathbf{A}^T \mathbf{A} \mathbf{x}^* = \mathbf{A}^T \mathbf{b}$ sont appelées les **équations normales**.

La matrice $\mathbf{A}^{\dagger} = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T$ est appelée matrice pseudo-inverse de \mathbf{A} .

On parle de matrice pseudo-inverse car la matrice A n'étant pas carrée, elle ne peut être inversible.

On remarquera cependant que:

-
$$\mathbf{A}^{\dagger}\mathbf{A} = (\mathbf{A}^{T}\mathbf{A})^{-1}\mathbf{A}^{T}\mathbf{A} = \mathbf{M}^{-1}\mathbf{M} = \mathbf{I}$$

-
$$\mathbf{A}\mathbf{A}^{\dagger} = \mathbf{A}(\mathbf{A}^T\mathbf{A})^{-1}\mathbf{A}^T \neq \mathbf{I}$$

Remarque

Si $\mathbf{A} \in \mathbb{R}^{m \times n}$ avec $m \ge n$ et $\operatorname{rg} \mathbf{A} = r < n$ alors la solution n'est pas unique. En effet :

Soit \mathbf{x}^* une solution au sens des moindres carrés de $\mathbf{A}\mathbf{x} = \mathbf{b}$ et soit $\mathbf{z} \in \operatorname{Ker} \mathbf{A}$:

$$A(x^* + z) - b = Ax^* + Az - b = Ax^* - b$$

Donc si \mathbf{x}^* minimise $\|\mathbf{A}\mathbf{x} - \mathbf{b}\|$ alors il en est de même pour $\mathbf{x}^* + \mathbf{z}$.

On retiendra que si $\operatorname{rg} \mathbf{A} = r < n$ et si \mathbf{x}^* est une solution au sens des moindres carrés de $\mathbf{A}\mathbf{x} = \mathbf{b}$ alors il existe une infinité de solutions ; elles sont de la forme $\mathbf{x}^* + \mathbf{z}$ où $\mathbf{z} \in \operatorname{Ker} \mathbf{A}$.

Exercice

Calculer la solution au sens des moindres carrés du système défini par :

$$\begin{cases} x_1 - x_2 &= 4 \\ 3x_1 + 2x_2 &= 1 \\ -2x_1 + 4x_2 &= 3 \end{cases}$$

Solution

Ici
$$m = 3$$
, $n = 2$, $\mathbf{A} = \begin{pmatrix} 1 & -1 \\ 3 & 2 \\ -2 & 4 \end{pmatrix}$, $\mathbf{b} = \begin{pmatrix} 4 \\ 1 \\ 3 \end{pmatrix}$ et $\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$

La matrice $\bf A$ est de rang 2 (évident car les deux vecteurs colonnes sont libres), le problème $\bf Ax = b$ admet donc une solution unique (au sens des moindres carrés) $\bf x^*$ qui vérifie les équations normales :

$$\mathbf{A}^T \mathbf{A} \mathbf{x} = \mathbf{A}^T \mathbf{b}$$

avec
$$\mathbf{A}^T \mathbf{A} = \begin{pmatrix} 14 & -3 \\ -3 & 21 \end{pmatrix}$$
 et $\mathbf{A}^T \mathbf{b} = \begin{pmatrix} 1 \\ 10 \end{pmatrix}$.

Il suffit donc d'inverser la matrice $\mathbf{A}^T \mathbf{A}$:

$$(\mathbf{A}^T \mathbf{A})^{-1} = \frac{1}{14 \times 21 - 9} \begin{pmatrix} 21 & 3 \\ 3 & 14 \end{pmatrix} = \begin{pmatrix} \frac{7}{95} & \frac{1}{95} \\ \frac{1}{95} & \frac{14}{285} \end{pmatrix}$$

La solution est donc:

$$\mathbf{x}^* = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \mathbf{b} = \begin{pmatrix} \frac{7}{95} & \frac{1}{95} \\ \frac{1}{95} & \frac{14}{285} \end{pmatrix} \begin{pmatrix} 1 \\ 10 \end{pmatrix} = \begin{pmatrix} \frac{17}{95} \\ \frac{143}{285} \end{pmatrix}$$

Graphiquement:

Si on divise la dernière ligne par un nombre positif a que l'on fait varier de 1 à 100 :

$$\begin{cases} x_1 - x_2 &= 4\\ 3x_1 + 2x_2 &= 1\\ -\frac{2}{a}x_1 + \frac{4}{a}x_2 &= \frac{3}{a} \end{cases}$$

La résolution au sens des moindres carrés des systèmes $\mathbf{A}_a\mathbf{x}=\mathbf{b}$ avec $\mathbf{A}_a=\begin{pmatrix}1&-1\\3&2\\-2/a&4/a\end{pmatrix}$ et $\mathbf{b}=\begin{pmatrix}4\\1\\3/a\end{pmatrix}$, donne :

Interprétation?

Autre méthode pour démontrer la formule des équations normales

On définit la fonction suivante :

$$E(\mathbf{x}) = \|\mathbf{A}\mathbf{x} - \mathbf{b}\|^2$$
 avec $\mathbf{x} = (x_1, x_2, ..., x_n)^T$

 $E(\mathbf{x})$ est l'écart (au carré) entre $\mathbf{A}\mathbf{x}$ et \mathbf{b} , c'est une fonction réelle des variables réelles x_1, x_2, \dots, x_n .

Résoudre le problème $\mathbf{A}\mathbf{x} = \mathbf{b}$ au sens des moindres carrés revient à déterminer le vecteur $\mathbf{x}^* = (x_1^*, x_2^*, ..., x_n^*)^T$ qui minimise $E(\mathbf{x})$, c'est-à-dire tel que :

$$\overrightarrow{\operatorname{grad}} E(\mathbf{x}) = \mathbf{0}_{\mathbb{R}^n}$$

Or: $E(\mathbf{x}) = \|\mathbf{A}\mathbf{x} - \mathbf{b}\|^2$

Donc (cf. chapitre II):

Finalement:

Factorisation QR appliquée aux problèmes des moindres carrés

Reprenons les équations normales dans lesquelles on remplace la matrice ${f A}$ par sa décomposition QR :

$$\mathbf{A}^T \mathbf{A} \mathbf{x} = \mathbf{A}^T \mathbf{b}$$

A retenir

Soient $\mathbf{A} \in \mathbb{R}^{m \times n}$ de rang n avec $m \ge n$ et $\mathbf{b} \in \mathbb{R}^m$. Soit \mathbf{x}^* la solution au sens des moindres carrés du système

 $\mathbf{A}\mathbf{x} = \mathbf{b}$, où $\mathbf{x} \in \mathbb{R}^n$. Alors :

$$\mathbf{x}^* = \mathbf{R}^{-1} \mathbf{Q}^T \mathbf{b}$$

où Q et R sont les matrices de la factorisation QR de A.

Déterminer la solution au sens des moindres carrés du système $\mathbf{A}\mathbf{x} = \mathbf{b}$ où $\mathbf{A} = \begin{pmatrix} 1 & -2 & -1 \\ 2 & 0 & 1 \\ 2 & -4 & 2 \\ 4 & 0 & 0 \end{pmatrix}$ et $\mathbf{b} = \begin{pmatrix} -1 \\ 1 \\ 1 \\ -2 \end{pmatrix}$.

La décomposition QR de A donne :

$$\mathbf{A} = \mathbf{Q}\mathbf{R} \text{ avec } \mathbf{Q} = \frac{1}{5} \begin{pmatrix} 1 & -2 & -4 \\ 2 & 1 & 2 \\ 2 & -4 & 2 \\ 4 & 2 & -1 \end{pmatrix} \text{ et } \mathbf{R} = \begin{pmatrix} 5 & -2 & 1 \\ 0 & 4 & -1 \\ 0 & 0 & 2 \end{pmatrix}$$

On a vu que $\mathbf{x}^* = \mathbf{R}^{-1}\mathbf{Q}^T\mathbf{b}$ mais plutôt que d'inverser la matrice \mathbf{R} on résout le système triangulaire $\mathbf{R}\mathbf{x}^* = \mathbf{Q}^T\mathbf{b}$

avec
$$\mathbf{Q}^T \mathbf{b} = \frac{1}{5} \begin{pmatrix} 1 & -2 & -4 \\ 2 & 1 & 2 \\ 2 & -4 & 2 \\ 4 & 2 & -1 \end{pmatrix} \begin{pmatrix} -1 \\ 1 \\ 1 \\ -2 \end{pmatrix} = \begin{pmatrix} -1 \\ -1 \\ 2 \end{pmatrix}$$

On a alors:
$$\mathbf{R}\mathbf{x}^* = \mathbf{Q}^T\mathbf{b}$$
 \Leftrightarrow $\begin{pmatrix} 5 & -2 & 1 \\ 0 & 4 & -1 \\ 0 & 0 & 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} -1 \\ -1 \\ 2 \end{pmatrix}$ \Leftrightarrow $\begin{cases} 5x_1 - 2x_2 + x_3 = -1 \\ 4x_2 - x_3 = -1 \\ 2x_3 = 2 \end{cases}$

On a donc un système triangulaire qui se résout facilement, on trouve : $\mathbf{x}^* = \begin{pmatrix} 2 \\ 5 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix}^T$

Exercice

Déterminer l'équation de la droite passant au plus près des points suivants :

$$P_1 = \begin{pmatrix} -2 \\ -19 \end{pmatrix}, \qquad P_2 = \begin{pmatrix} -1 \\ 5 \\ -\frac{5}{2} \end{pmatrix}, \qquad P_3 = \begin{pmatrix} 0 \\ 3 \end{pmatrix}, \qquad P_4 = \begin{pmatrix} 1 \\ 4 \end{pmatrix}, \qquad P_5 = \begin{pmatrix} 2 \\ 2 \end{pmatrix}, \qquad P_6 = \begin{pmatrix} 3 \\ 11 \end{pmatrix}$$

Soit $y = a_0 + a_1 x$ l'équation de la droite recherchée alors :

$$\begin{cases}
-2a_1 + a_0 = -19 \\
-1a_1 + a_0 = -5/2 \\
0a_1 + a_0 = 3 \\
1a_1 + a_0 = 4 \\
2a_1 + a_0 = 2 \\
3a_1 + a_0 = 11
\end{cases} \Leftrightarrow \begin{pmatrix} 1 & -2 \\
1 & -1 \\
1 & 0 \\
1 & 1 \\
1 & 2 \\
1 & 3 \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \end{pmatrix} = \begin{pmatrix} -19 \\ -5/2 \\ 3 \\ 4 \\ 2 \\ 11 \end{pmatrix}$$

$$\Leftrightarrow \mathbf{A}\mathbf{x} = \mathbf{b} \text{ avec } \mathbf{A} = \begin{pmatrix} 1 & -2 \\ 1 & -1 \\ 1 & 0 \\ 1 & 1 \\ 1 & 2 \\ 1 & 3 \end{pmatrix}, \quad \mathbf{x} = \begin{pmatrix} a_0 \\ a_1 \end{pmatrix} \text{ et } \mathbf{b} = \begin{pmatrix} -19 \\ -5/2 \\ 3 \\ 4 \\ 2 \\ 11 \end{pmatrix}$$

Les équations normales s'écrivent $\mathbf{A}^T \mathbf{A} \mathbf{x} = \mathbf{A}^T \mathbf{b}$ avec :

$$\mathbf{A}^T \mathbf{A} = \begin{pmatrix} 6 & 3 \\ 3 & 19 \end{pmatrix} \quad \text{et} \quad \mathbf{A}^T \mathbf{b} = \begin{pmatrix} -3/2 \\ 163/2 \end{pmatrix}$$

On inverse $\mathbf{A}^T \mathbf{A}$:

$$(\mathbf{A}^T \mathbf{A})^{-1} = \frac{1}{105} \begin{pmatrix} 19 & -3 \\ -3 & 6 \end{pmatrix}$$

La solution au sens des moindre carrés est alors :

$$\mathbf{x}^* = (a_0^* \quad a_1^*)^T = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \mathbf{b} = \frac{1}{105} \begin{pmatrix} 19 & -3 \\ -3 & 6 \end{pmatrix} \begin{pmatrix} -\frac{3}{2} \\ \frac{163}{2} \end{pmatrix} = \begin{pmatrix} -\frac{91}{35} = -2.6 \\ \frac{329}{70} = 4.7 \end{pmatrix}$$

L'équation de la droite passant au plus près des points est donc : y = 4.7x - 2.6

Question : quelle est l'équation du polynôme du second degré passant au plus près des 6 points ? (à faire en exercice)

Réponse : $y = 0.614 + 5.905x - 1.205x^2$