Homework 1

Instructor: Lijun Zhang Name: 左之睿, StudentId: 191300087

Problem 1:

- a). ①. 对于所有 $z \in Rn$, 取 x = (0,0,...0)时, z'x = 0, 由于对偶范数取的是上界, 因而 z 的对偶范数必然 ≥ 0 , 故满足非负性。
- ②. z=0 时 f(z)=0 显然成立, $z\neq0$ 时, 不妨设第一个分量 $z1\neq0$,此时取 x=(a/z1,0,...),(a>0),z' x=a,由于对偶范数取的是上界,故值必然 $\geq a>0$,所以 f(x)=0 only if x=0 得证
- 3. $\sup\{tz'x \mid ||x|| \le 1\} = |t| * \sup\{z'x \mid ||x|| \le 1\}$
- ④. sup{(a+b)'x | ||x||≤1}=sup{a'x+b'x | ||x||≤1},由于 a'x,b'x 未必可以同时取到上界, 故原式 <=sup{a'x | ||x||≤1}+sup{b'x | ||x||≤1}

综上得证,对偶范数是范数

b). 取 x=z/||z||, 此时 z'x=||z||, 由 Cauchy-Schwarz inequality, z'x≤||z||*||x||, 故 sup{z'x | ||x||≤1} =||z||,即欧拉范数的对偶范数是欧拉范数

Problem 2:

a). 必要性:由于凸集与凸集的交集仍然是凸的,故凸集 \cap 一条线仍然是凸的 充分性:若 S 与任意一条线交集都是凸的,则对于任意两点 x, $y \in S$, S 与通过 x, y 的直线的

交集是凸的, 即 $\theta x 1 + (1-\theta)x 2 \in S$ for all, $x 1, x 2 \in S, 0 \le \theta \le 1$, 故 S 是凸集,

b).

- 1) Yes
- 2) Yes
- 3) No
- 4) Yes
- 5) No

Problem 3:

1) 某个集合 A is convex 当且仅当他与任意一条线的交集{x*+tv | t∈R}是 convex 的, x*是一个向量,记(x*+tv)'A(x*+tv)+b'(x*+tv)+c=αt²+βt+γ, 其中 α=v'Av, β=b'v+2x*' Av, γ=c+b'x*+x*'Ax*

则 $C \to x^*+tv$ 的交集为 $\{x^*+tv \mid \alpha t^2+\beta t+\gamma \le 0\}$, 当 $\alpha \ge 0$ 时为 convex, 即 for any v, $v^*Av \ge 0$, 即 $A \ge 0$, 得证

2)True。

记 H={x | g'x+h=0}, α, β, γ 同 1)中, 并设 δ=g'v, ε=g'x*+h, **不妨假**设 x*∈H, 即 ε=0, 此时 C∩H={x*+tv | αt²+βt+γ≤0, δt=0}。

若 $\delta \neq 0$, 则交集为 $\{x^*\}$,若 $\gamma \leq 0$ 或者他是空集。其他情况下他是 convex 的。

若 δ =0, 集合变为 $\{x*+tv \mid \alpha t^2+\beta t+\gamma \le 0\}$, 在 $\alpha \ge 0$ 时是 convex 的。因此 C∩H 是 convex 的 当 g'v=0 即 v'Av ≥ 0

若存在 λ 满足 $A+\lambda gg' \geq 0$, 上式成立, 因为 $v'Av=v'(A+\lambda gg')v\geq 0$ 对任意 v 满足 g'v=0

Problem 4:代入 $\phi(x)$, $\psi(x)$, 整理可得 $\Gamma(x)=((EA+fc')x+(Eb+fd))/((g'A+hc')x+(g'b+hd))$ 显然, $\Gamma(x)$ 是 linear-fractional function

而给出的矩阵乘积也分别对应 $\Gamma(x)$ 各个系数

Problem 5:

- 1) 由于 K*是所有 x∈K 对应的半空间之交集, 所以 K*是 convex 的。 而对于 y∈K*, 显然有 cy∈K*, 故 K*是 convex cone
- X1*={a | x'a≥0, x∈K1}
 K2*={b | x'b≥0, x∈K2}
 K1 包含于 K2 → K2*={b | x'b≥0, x∈K1 ∪ (K2/K1) }
 故 for all b ∈K2*, b 满足 x'b≥0, x∈K1, 即 b∈K1*
 故 K2*包含于 K1*, 证毕