Comparisons between Different Methods of SNP Calling from Ryegrass Genotyping-by-Sequencing (GBS) Data

Executive Summary

This document serves as the supplementary file to the publication titled "snpGBS: A Simple and Flexible Bioinformatics Workflow to Identify SNPs from Genotyping-by-Sequencing Data". Both detailed analytical results and the codes used to generate these outputs are included in this document, with a focus on comparing different methods of SNP calling from ryegrass GBS data.

Data Description

Ninety-six samples were selected from a perennial ryegrass training population as described in [3], for which GBS had been performed using previously established methods [2]. Briefly, DNA was isolated from leaf tissue samples, then digested using the *Ape*KI restriction enzyme (NEB). Each GBS sample was ligated to a unique barcode identifier and a common adapter before merging into a 96-plex library. GBS libraries were each sequenced on two lanes of an Illumina HiSeq 2500 flowcell at AgResearch Invermay, New Zealand.

Bioinformatic Processing and Data Analyses

snpGBS involves demultiplexing raw GBS reads using cutadapt [8], mapping demultiplexed reads back to the same reference genome as described in [3] with bowtie2 [5], and finally, SNP calling using bcftools [6] with default options. For comparison, SNPs had been also identified using UNEAK [7] and TASSEL5 [4]. Genetic analyses of different SNP datasets were carried out using KGD [1].

Summary of KGD Outputs

Item	snpGBS	snpGBS-filtered	TASSEL5	UNEAK
Number of Samples	96	96	96	96
(Pre-KGD filtering)				
Number of Samples	95*	95*	95*	95*
(Post-KGD filtering)				

Number of SNPs (Pre-	1,915,974	837,102	254,079	267,720
KGD filtering)				
Number of SNPs**	1,305,406^	830,207	254,079^^^	267,720^^^
(Post-KGD filtering)				
Mean Co-Call Rate	0.371	0. 4618938	0.5591871	0.2531523
Min. Co-Call Rate	0.152	0. 1946683	0.2213551	0.07533991
Proportion of Missing	0.481	0. 386157	0.2819255	0.5620006
Genotypes				
Call Rates	0.519	0. 613843	0.7180745	0.4379994
Mean Sample Depth	1.922	2. 347947	2.566835	1.019548
Mean Self-Relatedness	1.018	1.005822	1.001888	1.042407
(G5 Diagonal)				
Number of SNP per	4.556719	3.753765	2.371545	NA
GBS Fragment				

Note

^ 610568 SNPs with MAF=0 or depth < 0.01 removed

^^ 6895 SNPs with MAF=0 or depth < 0.01 removed

^^^ 0 SNPs with MAF=0 or depth < 0.01 removed

^^^ 0 SNPs with MAF=0 or depth < 0.01 removed

^{* 1} sample with maximum depth of 1 and/or mean depth < 0.3 removed

Graphic Outputs of KGD

Reference

- 1. Dodds, Ken G., et al. "Construction of relatedness matrices using genotyping-by-sequencing data." BMC Genomics 16.1 (2015): 1-15.
- 2. Elshire, Robert J., et al. "A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species." PloS one 6.5 (2011): e19379.
- 3. Faville, Marty J., et al. "Predictive ability of genomic selection models in a multi-population perennial ryegrass training set using genotyping-by-sequencing." Theoretical and Applied Genetics 131.3 (2018): 703-720.
- 4. Glaubitz, Jeffrey C., et al. "TASSEL-GBS: a high capacity genotyping by sequencing analysis pipeline." PloS ONE 9.2 (2014): e90346.
- 5. Langmead, Ben and Salzberg, Steven L."Fast gapped-read alignment with Bowtie 2." Nature Methods 9.4 (2012): 357.
- 6. Li, Heng. "A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data." Bioinformatics 27.21 (2011): 2987-2993.
- 7. Lu, Fei, et al. "Switchgrass genomic diversity, ploidy, and evolution: novel insights from a network-based SNP discovery protocol." PLoS Genet 9.1 (2013): e1003215.
- 8. Martin, Marcel. "Cutadapt removes adapter sequences from high-throughput sequencing reads." EMBnet. journal 17.1 (2011): 10-12.

Scripts

snpGBS

```
echo $i
   do
   samtools view -q 20 -bS $i > "${i\%.sam}.bam"
done
# sorting
for i in *.bam
          echo $i
   do
   samtools sort $i -o "${i%.bam}.sorted.bam"
done
# generating list of bam files
for i in *.sorted.bam
   do
          echo $i
done > bamlist
# SNP calling
bcftools mpileup -I -Ou -f ryegrass chr1-8.fa -b bamlist -a AD -d
1000000 | bcftools call -cv - | bcftools view -M2 - >
snpGBS ryegrass apeki.vcf
# KGD
python vcf2ra.py snpGBS.vcf &>vcf2ra.stdout
Rscript run KGD snpGBS.R &> run KGD snpGBS.stdout
snpGBS-KGD (in R)
gform <- "Tassel" ####Used for HapMap files</pre>
genofile <- " snpGBS ryegrass apeki.vcf.ra.tab" ###Add location to</pre>
Ra or HapMap file
sampdepth.thresh <- 0.3</pre>
source("/home/kangj/git/KGD/GBS-Chip-Gmatrix.R")
Gfull <- calcG()</pre>
GHWdgm.05 \leftarrow calcG(which(HWdis > -0.05), "HWdgm.05", npc=4)
###To save a G Matrix
writeG(GHWdgm.05, "GHWdgm.05 snpGBS goat", outtype=c(1,2,3,4,6))
save.image(file = "KGD snpGBS.image")
#To write out vcf file
# writeVCF(outname="GHWdgm.05_run1")
```

snpGBS-filtered (in bash)

```
# define input and output
VCF IN=snpGBS ryegrass apeki.vcf
VCF OUT=snpGBS ryegrass apeki filtered.vcf
# define filtering thresholds
MISS=0.9 # MIN DEPTH=5
QUAL=30 # MAX DEPTH=50
MAF = 0.03
# filtering using vcftools
vcftools --vcf $VCF IN --max-missing $MISS --maf $MAF --minQ $QUAL -
-recode --stdout >$VCF OUT
TASSEL5
# 01.GBSSeqToTagDBPlugin
run pipeline.pl -Xms512m -Xmx300q -fork1 -GBSSeqToTaqDBPluqin -e
ApeKI -i fastq/ -db output/GBSV2.db -k key/key.txt -kmerLength 64 -
minKmerL 20 -mnQS 20 -mxKmerNum 100000000 -endPlugin -runfork1
# 02.TagExportToFastqPlugin
run pipeline.pl -Xms512m -Xmx300q -fork1 -TagExportToFastqPluqin -db
output/GBSV2.db -o output/tagsForAlign.fa.gz -c 1 -endPlugin
runfork1
# 03.Alignment.sh
# Bowtie2 create index from the reference genome
bowtie2-build referenceGenome/ryegrass chr1-8.fa ryegrass >bowtie2-
build.stdout 2>bowtie2-build.stderr
# Bowtie2 Alignment
bowtie2 -p 8 --very-sensitive -x ryegrass -U
output/tagsForAlign.fa.gz -S tagsForAlignFullvs.sam >bowtie2.stdout
2>bowtie2.stderr
# 04.SAMToGBSdbPlugin
run pipeline.pl -Xms512m -Xmx300g -fork1 -SAMToGBSdbPlugin -i
tagsForAlignFullvs.sam -db output/GBSV2.db -minMAPQ 20 -aProp 0.0 -
aLen 0 -endPlugin -runfork1
```

```
# 05.DiscoverySNPCallerPluginV2
run pipeline.pl -Xms512m -Xmx300g -fork1 -
DiscoverySNPCallerPluginV2 -db output/GBSV2.db -mnLCov 0.1 -mnMAF
0.03 -deleteOldData true -endPlugin -runfork1
# 06.ProductionSNPCallerPluginV2
run pipeline.pl -Xms512m -Xmx300g -fork1 -
ProductionSNPCallerPluginV2 -db output/GBSV2.db -e ApeKI -i fastq/ -
k key/key.txt -kmerLength 64 -o ryegrass apeki tassel5 q20 -
endPlugin -runfork1
TASSEL-KGD (in R)
gform <- "Tassel" ####Used for HapMap files</pre>
genofile <- "../ryegrass apeki tassel5 q20.vcf.ra.tab" ###Add</pre>
location to Ra or HapMap file
sampdepth.thresh <- 0.3</pre>
source("/home/kangj/git/KGD/GBS-Chip-Gmatrix.R")
Gfull <- calcG()</pre>
GHWdgm.05 \leftarrow calcG(which(HWdis > -0.05), "HWdgm.05", npc=4)
###To save a G Matrix
writeG(GHWdgm.05, "GHWdgm.05 tassel5", outtype=c(1,2,3,4,6))
save.image("KGD apeki ryegrass tassel5.image")
#To write out vcf file
writeVCF(outname="GHWdgm.05 tassel5")
UNEAK
# 01.Create dirs
run pipeline.pl -fork1 -UCreatWorkingDirPlugin -w . -endPlugin -
runfork1
# 02.FASTQtoTagCount
run pipeline.pl -Xms512m -Xmx300g -fork1 -UFastqToTagCountPlugin -w
. -c 1 -e ApeKI -s 400000000 -endPlugin -runfork1
# 03.MergeTaxaTagCounts
```

```
run pipeline.pl -Xms512m -Xmx300g -fork1 -UMergeTaxaTagCountPlugin -
w . -t n -m 600000000 -x 100000000 -c 3 -endPlugin -runfork1
# 04.TagCountToTagPair
run_pipeline.pl -Xms512m -Xmx300g -fork1 -UTagCountToTagPairPlugin -
w . -e 0.03 -endPlugin -runfork1
# 05.TagPairToTBT
run_pipeline.pl -Xms512m -Xmx300g -fork1 -UTagPairToTBTPlugin -w . -
endPlugin -runfork1
# 06.TBTToMapInfo
run pipeline.pl -Xms512m -Xms300g -fork1 -UTBTToMapInfoPlugin -w . -
endPlugin -runfork1
# 07.MapInfoHapMap
run pipeline.pl -Xms512m -Xmx300g -fork1 -UMapInfoToHapMapPlugin -w
. -mnMAF 0.03 -mxMAF 0.5 -mnC 0.1 -mxC 1 -endPlugin -runfork1
UNEAK-KGD (in R)
                   ####Used for HapMap files
gform <- "uneak"</pre>
genofile <- "../hapMap/HapMap.hmc.txt" ###Add location to Ra or</pre>
HapMap file
sampdepth.thresh <- 0.3</pre>
source("/home/kangj/git/KGD/GBS-Chip-Gmatrix.R")
Gfull <- calcG()</pre>
GHWdgm.05 \leftarrow calcG(which(HWdis > -0.05),"HWdgm.05", npc=4)
###To save a G Matrix
writeG(GHWdgm.05, "GHWdgm.05_uneak_ryergass_apeki",
outtype=c(1, 2, 3, 4, 6))
save.image(file = "KGD uneak ryegrass apeki.image")
#To write out vcf file
# writeVCF(outname="GHWdgm.05 uneak")
```