

planetmath.org

Math for the people, by the people.

behavior exists uniquely (finite case)

 ${\bf Canonical\ name} \quad {\bf Behavior Exists Uniquely finite Case}$

Date of creation 2013-03-22 16:02:35 Last modified on 2013-03-22 16:02:35 Owner Wkbj79 (1863) Last modified by Wkbj79 (1863)

Numerical id 13

Author Wkbj79 (1863)

Entry type Proof Classification msc 16U99 Classification msc 13M05

Classification msc 13A99

The following is a proof that behavior exists uniquely for any finite cyclic ring R.

Proof. Let n be the http://planetmath.org/OrderRingorder of R and r be a http://planetmath.org/Generatorgenerator of the additive group of R. Then there exists $a \in \mathbb{Z}$ with $r^2 = ar$. Let $k = \gcd(a, n)$ and $b \in \mathbb{Z}$ with a = bk. Since $\gcd(b, n) = 1$, there exists $c \in \mathbb{Z}$ with $bc \equiv 1 \mod n$. Since $\gcd(c, n) = 1$, cr is a generator of the additive group of R. Since $(cr)^2 = c^2r^2 = c^2(ar) = c^2(bkr) = c(bc)(kr) = k(cr)$, it follows that k is a behavior of R. Thus, existence of behavior has been proven.

Let g and h be behaviors of R. Then there exist generators s and t of the additive group of R such that $s^2 = gs$ and $t^2 = ht$. Since t is a generator of the additive group of R, there exists $w \in \mathbb{Z}$ with gcd(w, n) = 1 such that t = ws.

Note that $(hw)s = h(ws) = ht = t^2 = (ws)^2 = w^2s^2 = w^2(gs) = (gw^2)s$. Thus, $gw^2 \equiv hw \mod n$. Recall that $\gcd(w,n) = 1$. Therefore, $gw \equiv h \mod n$. Since g and h are both positive divisors of n and $\gcd(w,n) = 1$, it follows that $g = \gcd(g,n) = \gcd(gw,n) = \gcd(h,n) = h$. Thus, uniqueness of behavior has been proven.

Note that it has also been shown that, if R is a finite cyclic ring of order n, r is a generator of the additive group of R, and $a \in \mathbb{Z}$ with $r^2 = ar$, then the behavior of R is gcd(a, n).