DYNAMICAL SYSTEMS Fall semester 2023/24

LAB 1

The real quadratic family: Conjugacies and symbolic dynamics.

Consider the one-dimensional real dynamical system

$$Q_c(x) = x^2 + c, \ c \in \mathbb{R}.$$

1. General facts about Q_c

- (a) Prove that every quadratic polynomial of the form $P(x) = Ax^2 + Bx + C$ is globally conjugate to a member of the quadratic family, by a linear map $h(x) = \alpha x + \beta$ ($\alpha \neq 0$). In other words, show that given $A, B, C \in \mathbb{R}$, $A \neq 0$, there exist $\alpha, \beta, c \in R$, $\alpha \neq 0$, such that $h \circ P = Q_c \circ h$.
- (b) Compute the fixed points of Q_c and determine their existence and character in terms of the parameter c.
- (c) Let c < 0 and let β_c denote the fixed point that is always repelling. Draw the graph of Q_c and the diagonal y = x and prove that the following conditions hold.
 - (b.1) If $x \notin [-\beta_c, \beta_c]$ then $|Q_c^n(x)| \to \infty$ as $n \to \infty$.
 - (b.2) If $c \in [-2,0)$ then $-\beta_c \le c$ and $|Q_c^n(x)| \le \beta_c$ for all $x \in [-\beta_c,\beta_c]$, and for all $n \ge 0$.
- (d) Set c = -2 ($\beta_{-2} = 2$). Prove that $\#\operatorname{Per}_n(Q_c) = 2^n$ (Draw the graph of Q_c and of its iterates, and and use the intervals of monotonicity to count the intersections with the diagonal).

2. The non-escaping set Λ

From now one we fix $c < -\frac{1}{4}(5+2\sqrt{5}) < -2$. Set $\mathcal{I} := [-\beta_c, \beta_c]$, and define

$$A_n := \{ x \in \mathcal{I} \mid Q_c^{n-1}(x) \in \mathcal{I}, \ Q_c^n(x) \notin \mathcal{I}, \ n > 0 \}$$

$$\Lambda := \Lambda_c := \{ x \in \mathcal{I} \mid Q_c^n(x) \in \mathcal{I} \ \forall \ n \ge 1 \} = \mathcal{I} \setminus \bigcup_{n \ge 1} A_n$$
(1)

Notice that A_n is the set of points that escape I at the n^{th} iteration, while Λ is the set of points that remain in I forever. Prove the following statements.

- (a) $|Q'_c(x)| > 1$ for all $x \in \mathcal{I} \setminus A_1$.
- (b) Λ is closed.
- (c) Λ is nowhere dense (i.e. it contains no intervals). (Hint: use the expansivity of Q_c outside of A_0 and the Mean Value Theorem).
- (d) Λ is perfect (it has no isolated points).

In other words Λ is a Cantor set.

Note: Λ is a Cantor set as long as c < -2. However, the proof of (c) is harder in the case when $Q'_c(x)$ is not larger than one in modulus.

We shall consider the dynamical system $Q|_{\Lambda}: \Lambda \to \Lambda$ (we ignore the dependence on c for the sake of exposition).

3. The space of sequences and the shift map

We define the abstract space of infinite sequences

$$\Sigma_2 = \{ s = s_0 s_1 s_2 \dots \text{ where } s_j \in \{0, 1\} \},\$$

with the distance

$$d(s,t) = \sum_{j\geq 0} \frac{|s_j - t_j|}{2^j}.$$

On this space, let σ denote the shift map, which is defined as

$$\sigma: (\Sigma_2, d) \longrightarrow (\Sigma_2, d)$$

 $s_0 s_1 s_2 s_3 \dots \mapsto s_1 s_2 s_3 \dots$

Prove that:

- (a) (Σ, d) is a metric space.
- (b) σ is a continuous map.
- (c) $Per(\sigma)$ is dense in Σ_2 .
- (d) There exists $s \in \Sigma_2$ whose σ -orbit is dense.
- (e) σ has sensitive dependence with respect to initial conditions.

In other words, $\sigma: \Sigma_2 \to \Sigma_2$ is **chaotic**.

4. Symbolic dynamics: the itinerary map

Let I_0 (resp. I_1) be the left (resp. right) interval of $\mathcal{I} \setminus A_0$. Given $x \in \Lambda$, we define the **itinerary** of x as follows

$$s(x) = s_0 s_1 s_2 \dots$$
, where $s_j = k \iff Q_c^j(x) \in I_k, k \in \{0, 1\},$

and the **itinerary map** S as

$$S: \Lambda \longrightarrow \Sigma_2$$

$$x \to s(x).$$

Prove that:

- (a) S is a homeomorphism.
- (b) S is a topological conjugacy between $Q|_{\Lambda}: \Lambda \to \Lambda$ and $\sigma: \Sigma_2 \to \Sigma_2$.
- (c) Deduce that $Q|_{\Lambda}: \Lambda \to \Lambda$ is chaotic.