

Introduction to Mathematical Logic

For CS Students

CS104/CS108

Yida TAO (陶伊达)

2024年4月16日

Table of Contents 1 Warm Up

► Warm Up

Soundness and Completeness

Summary

A proof $\Sigma \vdash A$:

- Starts with a set of premises Σ
- Transforms the premises using a set of inference rules
- Ends with the conclusion

A proof is purely syntactic: one could write a computer program that would verify the proof.

What are properties of a proof system?

1 Warm Up

We've introduced 3 formal proof systems.

• Hilbert-style system: $\Sigma \vdash_H A$

• Natural Deduction System: $\Sigma \vdash_{\mathit{ND}} A$

• Resolution: $\Sigma \vdash_{Res} A$

What are properties of a proof system?

What are desired properties of an ideal proof system?

Proof vs. Entailment

1 Warm Up

 $\Sigma \vDash A$:

 $\Sigma \vDash A$ if and only if every valuation satisfying $\Sigma^{\mathsf{v}} = 1$ implies that $A^{\mathsf{v}} = 1$.

 $\Sigma \vdash A$:

 $\Sigma \vdash A$ if and only if there is a proof in the deduction system beginning with the premises of Σ and ending with A.

What's the "relations" between (syntactic) proof and (semantic) entailment?

Table of Contents

2 Soundness and Completeness

▶ Warm Up

► Soundness and Completeness

Summary

Soundness (可靠性)

Soundness means that the conclusion of a proof is always a logical consequence of the premises. That is,

If
$$\Sigma \vdash A$$
, then $\Sigma \vDash A$

If we could syntactically prove a conclusion (e.g., by applying inference rules), then we could also semantically entail the conclusion.

Soundness (可靠性)

Soundness means that the conclusion of a proof is always a logical consequence of the premises. That is,

If
$$\Sigma \vdash A$$
, then $\Sigma \vDash A$

Soundness shows that the proof rules are all correct in the sense that valid proof sequents all "preserve truth" computed by our truth-table semantics.

If a proof system is not sound, then it's pretty much useless.

Completeness

Completeness means that all logical consequences in propositional logic are provable in the proof system. That is,

If
$$\Sigma \vDash A$$
, then $\Sigma \vdash A$

If we could semantically entail a conclusion, then we could also prove it syntactically using the proof system.

Let's prove the soundness of ND, that is

If
$$\Sigma \vdash_{ND} \alpha$$
, then $\Sigma \vDash \alpha$

Let's prove the soundness of ND, that is

If
$$\Sigma \vdash_{ND} \alpha$$
, then $\Sigma \vDash \alpha$

The proof is by induction on proof length: The length of a natural deduction proof is the number of lines in it.

Let P(n) be the statement that "For any well-formed formula φ and any set of well-formed formulas Σ , if Σ proves φ in n lines, then $\Sigma \vDash \varphi$." We prove P(n) is true for all positive integers n.

Base Case: n = 1

If $\Sigma \vdash_{ND}$ with a proof of size 1 (a one-line proof) for any wff α , then $\alpha \in \Sigma$.

1. α Premise

Hence, whenever a valuation makes Σ true, since $\alpha \in \Sigma$, it must make α true (by definition of the satisfiability of a set of formulas). Thus, by definition of semantic entailment, $\Sigma \vDash \alpha$.

Inductive Hypothesis

Assume that P(i) holds for all integers $1 \le i \le k$ for some integer k.

2 Soundness and Completeness

Inductive Step

Consider the last line of $\Sigma \vdash_{\mathit{ND}} \alpha$

```
1. \vdots \qquad \vdots \\ k \\ k+1 \quad \alpha \quad \mathsf{Some\ rule}
```

Which rule could give us α ?

2 Soundness and Completeness

Case 1 ($\wedge e$):

If α is derived by the rule $\wedge e$, then the proof looks like below for some formula β :

```
1. \vdots \qquad \vdots \\ j \qquad \alpha \wedge \beta \quad \text{Some rule} \\ \vdots \qquad \vdots \\ k \\ k+1 \quad \alpha \qquad \land e: \mathbf{i}
```

The subsequence of this proof from top to $\alpha \wedge \beta$ is a proof of $\alpha \wedge \beta$ of length $\leq k$, i.e., $\Sigma \vdash_{\mathit{ND}} \alpha \wedge \beta$. By inductive hypothesis, $\Sigma \vDash \alpha \wedge \beta$ If $\Sigma \vDash \alpha \wedge \beta$, then $\Sigma \vDash \alpha$ (can be proved by definition).

2 Soundness and Completeness

Case 2 ($\wedge i$):

If α is derived by the rule $\wedge i$, then α has the form $\beta_1 \wedge \beta_2$ and the proof looks like:

2 Soundness and Completeness

 $\Sigma \vdash_{\mathit{ND}} \beta_1$ is a proof of length $\leq k$. By inductive hypothesis, $\Sigma \vDash \beta_1$. $\Sigma \vdash_{\mathit{ND}} \beta_2$ is a proof of length $\leq k$. By inductive hypothesis, $\Sigma \vDash \beta_2$. Hence, we have $\Sigma \vDash \beta_1 \wedge \beta_2$ (can be proved by definition).

2 Soundness and Completeness

Case 3 (\rightarrow *i*):

If α is derived by the rule \to i, then α has the form $(\beta \to \gamma)$ for well-formed formulas β and γ , and the proof looks like:

1.			
÷	÷		
j.	β	Assumption	
÷	:		
k.	γ	Some Rule	
+ 1.	α	ightarrow i: j - k	

2 Soundness and Completeness

Case 3 (\rightarrow *i*) (continued):

By removing line k+1, we no longer have a complete proof. However, if we add β to our list of premises, we can then prove γ in $\leq k$ lines, i.e.,

$$\Sigma \cup \{\beta\} \vdash_{ND} \gamma$$

By the Induction Hypothesis, we have:

$$\Sigma \cup \{\beta\} \vDash \gamma$$

Notice here that since our induction hypothesis holds for ANY Σ , we could take a new sigma, say $\Sigma_1 = \Sigma \cup \{\beta\}$ and use the IH on this.

Case 3 (\rightarrow *i*) (continued):

Finally, we claim that if $\Sigma \cup \{\beta\} \vDash \gamma$, then $\Sigma \vDash (\beta \to \gamma)$.

Proof by contradiction: assume $\Sigma\not\vDash(\beta\to\gamma)$ (exercise).

Case 4 (\to e): If α is derived by the rule \to e, then the proof looks like ...

(Proved in class)

There's a few more Natural Deduction rules we still have to consider, which are left as exercises.

This completes the proof of soundness.

Once proven, soundness implies that to prove a semantic entailment $\Sigma \vDash \alpha$, we can use:

- True table
- Direct Proof (Assume we have a valuation that evaluates true for all premises and show that this implies that the conclusion also evaluates to true under the same valuation)
- Proof by Contradiction
- $\Sigma \vdash_{\mathit{ND}} \alpha$ (because of soundness)

Let's prove the completeness of ND, that is

If
$$\Sigma \vDash \alpha$$
, then $\Sigma \vdash_{ND} \alpha$

That is, every logical consequence has a proof.

Completeness of ND

2 Soundness and Completeness

Let $\Sigma = \{\alpha_0, \alpha_1, ..., \alpha_n\}$ for wff α_i (for all $0 \le i \le n$). To prove completeness, we want to show for any wff β :

If
$$\Sigma \vDash \beta$$
 holds, then $\Sigma \vdash_{ND} \beta$ is valid.

The proof is done if we could prove the 3 lemmas below:

- Lemma 1: If $\Sigma \vDash \beta$, then $\emptyset \vDash (\alpha_0 \to (\alpha_1 \to (\dots \to (\alpha_n \to \beta)\dots))$
- Lemma 2: For any wff γ , If $\emptyset \vDash \gamma$, then $\emptyset \vdash_{ND} \gamma$ (i.e., tautologies are provable)
- Lemma 3: If $\emptyset \vdash_{ND} (\alpha_0 \to (\alpha_1 \to (... \to (\alpha_n \to \beta)...))$, then $\{\alpha_0, \alpha_1, ..., \alpha_n\} \vdash_{ND} \beta$, which is exactly $\Sigma \vdash_{ND} \beta$.

2 Soundness and Completeness

Lemma 1: If $\Sigma \models \beta$, then $\emptyset \models (\alpha_0 \rightarrow (\alpha_1 \rightarrow (... \rightarrow (\alpha_n \rightarrow \beta)...))$

Proof: Assume $\Sigma \vDash \beta$. Assume towards a contradiction that

$$\emptyset \not\models (\alpha_0 \to (\alpha_1 \to (\dots \to (\alpha_n \to \beta)\dots))$$

Then, there exists a truth valuation v such that the long implication on the right is *false*. Unwinding implication by implication, this means that $\alpha_i^v=1$ for all $1\leq i\leq n$ and that $\beta^v=0$. This contradicts with $\Sigma\vDash\beta$.

Hence, we proved lemma 1.

2 Soundness and Completeness

一个 放进表

Lemma 3: If $\emptyset \vdash_{ND} (\alpha_0 \to (\alpha_1 \to (... \to (\alpha_n \to \beta)...))$, then $\{\alpha_0, \alpha_1, ..., \alpha_n\} \vdash_{ND} \beta$.

```
Proof:
                 1
                         (\alpha_0 \to (\alpha_1 \to (\dots \to (\alpha_n \to \beta)\dots))) Some Rule
           k+1.
                                                                                      Premise
           k+2. (\alpha_1 \rightarrow (\alpha_2 \rightarrow (... \rightarrow (\alpha_m \rightarrow \beta)..))) \rightarrow e: k, k+1
           k+2.
                                                                                      Premise
                      \alpha_1
           k+3. (\alpha_2 \rightarrow (\alpha_2 \rightarrow (\dots \rightarrow (\alpha_n \rightarrow \beta)\dots))) \rightarrow e: k+2, k+3
k + (2n + 1).
                                                                                      Premise
                       \alpha_{m}
k + (2n + 2).
                                                                                          k + (2n + 1), k + (2n + 2)
```


2 Soundness and Completeness

Lemma 2: For any wff γ , If $\emptyset \vDash \gamma$, then $\emptyset \vdash_{ND} \gamma$ (i.e., tautologies are provable)

Idea of proof: Let's use the tautology $p \wedge q \rightarrow p$ as an example.

 $p \wedge q \rightarrow p$ has two atoms p and q. First, we want to prove:

$$p, q \vdash p \land q \rightarrow p$$
$$\neg p, q \vdash p \land q \rightarrow p$$
$$p, \neg q \vdash p \land q \rightarrow p$$
$$\neg p, \neg q \vdash p \land q \rightarrow p.$$

2 Soundness and Completeness

Then, we could leverage the proof, LEM, and $\vee e$ to prove $p \wedge q \rightarrow p$.

Note that we get line 7 from 2 and 4, using the the result of the previous page.

Hence, we only need to prove:

$$p, q \vdash p \land q \rightarrow p$$
$$\neg p, q \vdash p \land q \rightarrow p$$
$$p, \neg q \vdash p \land q \rightarrow p$$
$$\neg p, \neg q \vdash p \land q \rightarrow p.$$

which could be generalize to the following sublemma:

2 Soundness and Completeness

Sublemma: For any formula γ containing atoms $p_1, p_2, ..., p_n$ and any valuation ν :

• If
$$\gamma^{\mathbf{v}}=1$$
, then $\{\widehat{p}_1,\widehat{p}_2,...,\widehat{p}_n\}\vdash \gamma$

• If
$$\gamma^{\nu} = 0$$
, then $\{\widehat{p}_1, \widehat{p}_2, ..., \widehat{p}_n\} \vdash (\neg \gamma)$

where \widehat{p}_i is defined as follows for all $1 \le i \le n$:

$$\widehat{p}_i = egin{cases} p_i & ext{if } p_i^v = 1 \ \neg p_i & ext{if } p_i^v = 0 \end{cases}$$

2 Soundness and Completeness

Sublemma: For any formula γ containing atoms $p_1, p_2, ..., p_n$ and any valuation ν :

• If
$$\gamma^{\mathbf{v}} = 1$$
, then $\{\widehat{p}_1, \widehat{p}_2, ..., \widehat{p}_n\} \vdash \gamma$

• If
$$\gamma^{\nu} = 0$$
, then $\{\widehat{p}_1, \widehat{p}_2, ..., \widehat{p}_n\} \vdash (\neg \gamma)$

Concrete example: $\gamma = (p \rightarrow q)$. Consider this truth table:

p	q	$(p \rightarrow q)$	Claim in sublemma
T	T	T	$\{p,q\} \vdash_{\textit{ND}} (p \to q)$
Т	F	F	$\{p, (\neg q)\} \vdash_{\mathit{ND}} (\neg (p \to q))$
F	Т	T	$\{(\neg p), q\} \vdash_{\mathit{ND}} (p \to q)$
F	F	Т	$\{(\neg p),(\neg q)\}\vdash_{\mathit{ND}}(p\rightarrow q)$

2 Soundness and Completeness

Sublemma: For any formula γ containing atoms $p_1, p_2, ..., p_n$ and any valuation ν :

- If $\gamma^{\mathsf{v}} = 1$, then $\{\widehat{p}_1, \widehat{p}_2, ..., \widehat{p}_n\} \vdash \gamma$
- If $\gamma^{\mathsf{v}} = 0$, then $\{\widehat{p}_1, \widehat{p}_2, ..., \widehat{p}_n\} \vdash (\neg \gamma)$

The first case of this sublemma is exactly a generalization of the previous example, in which all the valuations of a tautology is true.

$$p, q \vdash p \land q \to p$$
$$\neg p, q \vdash p \land q \to p$$
$$p, \neg q \vdash p \land q \to p$$
$$\neg p, \neg q \vdash p \land q \to p.$$

So, all we need to do right now is to prove the sublemma.

We prove sublemma by structural induction.

Base case: $\gamma = p_1$ (atom):

$$ullet$$
 If $\gamma^{oldsymbol{
u}}=p_1^{oldsymbol{
u}}=1$, then $\widehat{p}_1=p_1dash p_1=\gamma$

• If
$$\gamma^{\mathsf{v}} = p_1^{\mathsf{v}} = 0$$
, then $\widehat{p}_1 = \neg p_1 \vdash \neg p_1 = \neg \gamma$

Induction Hypothesis: Let $P(\gamma)$ be the statement verbatim as above. Assume that $P(\gamma_1)$ and $P(\gamma_2)$ are true for some wff γ_1 and γ_2 .

2 Soundness and Completeness

Induction Step:

Case 1: $\gamma = \neg \gamma_1$

If $\gamma^{\nu} = 1$, then $(\neg \gamma_1)^{\nu} = 1$ so $\gamma_1^{\nu} = 0$. Since $P(\gamma_1)$ is true by inductive hypothesis, and γ_1 has the same atoms as γ , we have:

$$\{\widehat{p}_1,\widehat{p}_2,...,\widehat{p}_n\} \vdash \neg \gamma_1 = \gamma$$

If $\gamma^{\nu} = 0$, then $(\neg \gamma_1)^{\nu} = 0$ so $\gamma_1^{\nu} = 1$. Again, by inductive hypothesis, we have:

$$\{\widehat{p}_1,\widehat{p}_2,...,\widehat{p}_n\} \vdash \gamma_1$$

By applying the $\neg\neg i$ rule, we have

$$\{\widehat{p}_1, \widehat{p}_2, ..., \widehat{p}_n\} \vdash (\neg(\neg\gamma_1)) = \neg\gamma$$

which completes the proof of case 1.

2 Soundness and Completeness

Case 2: $\gamma = \gamma_1 \rightarrow \gamma_2$.

Case 2a: If $\gamma^{\mathbf{v}}=0$, then $\gamma_1^{\mathbf{v}}=1$ and $\gamma_2^{\mathbf{v}}=0$.

Suppose that γ_1 contains atoms $q_1,...,q_k$ and γ_2 contains atoms $r_1,...,r_k$. By induction hypothesis, we have:

$$\{\widehat{q}_1, \widehat{q}_2, ..., \widehat{q}_n\} \vdash \gamma_1 \{\widehat{r}_1, \widehat{r}_2, ..., \widehat{r}_n\} \vdash \neg \gamma_2$$

Since both $\{\widehat{q}_1, \widehat{q}_2, ..., \widehat{q}_n\}$ and $\{\widehat{r}_1, \widehat{r}_2, ..., \widehat{r}_n\}$ are subsets of $\{\widehat{p}_1, \widehat{p}_2, ..., \widehat{p}_n\}$, we also have:

$$\begin{aligned} & \{\widehat{p}_1, \widehat{p}_2, ..., \widehat{p}_n\} \vdash \gamma_1 \\ & \{\widehat{p}_1, \widehat{p}_2, ..., \widehat{p}_n\} \vdash \neg \gamma_2 \end{aligned}$$

2 Soundness and Completeness

Case 2a: Since we have:

$$\{\widehat{p}_1, \widehat{p}_2, ..., \widehat{p}_n\} \vdash \gamma_1 \{\widehat{p}_1, \widehat{p}_2, ..., \widehat{p}_n\} \vdash \neg \gamma_2$$

We could apply the $\wedge i$ rule to get:

$$\{\widehat{p}_1,\widehat{p}_2,...,\widehat{p}_n\} \vdash \gamma_1 \land (\neg \gamma_2)$$

We could prove (how?):

$$\gamma_1 \wedge (\neg \gamma_2) \vdash \neg (\gamma_1 \rightarrow \gamma_2)$$

Hence, we have:

$$\{\widehat{p}_1, \widehat{p}_2, ..., \widehat{p}_n\} \vdash \neg(\gamma_1 \to \gamma_2) = \neg \gamma$$

which completes the proof of case 2a.

2 Soundness and Completeness

Case 2: $\gamma = \gamma_1 \rightarrow \gamma_2$.

Case 2b: If $\gamma^{\nu}=1$, then one of the following holds.

- $\gamma_1 = 1 \text{ and } \gamma_2 = 1.$
- $\gamma_1=0$ and $\gamma_2=1$.
- $\gamma_1 = 0$ and $\gamma_2 = 0$.

The proof is similar to case 2a.

In a similar manner, we could prove the claim for other binary connectives, which are left as exercises.

This completes the proof of the sublemma.

Table of Contents

3 Summary

Warm Up

Soundness and Completeness

▶ Summary

Properties of formal proof systems

3 Summary

Each of the 3 formal proof systems we've introduced is both sound and complete.

• Hilbert-style system: $\Sigma \vdash_H A$

• Natural Deduction System: $\Sigma \vdash_{ND} A$

• Resolution: $\Sigma \vdash_{Res} A$

Example: A proof system without the properties 3 Summary

Intuitionist's Natural Deduction

- Natural Deduction without the double negation elimination rule
- Intuitionist's Natural Deduction is sound but not complete, since we cannot prove $p \vee \neg p$ without the $\neg \neg e$ rule.

Example: A proof system without the properties 3 Summary

A proof system: Natural Deduction and $p \land \neg p$ as an axiom.

- This proof system is complete, but not sound.
- This is not sound since it contains a contradiction and hence we can prove anything.
- It's complete since anything that we can semantically entail will have a proof after we have our contradiction.

Readings for the proof of soundness and completeness:

Hilbert-style system: TextF Chapter 3.6

Natural Deduction System: TextB Chapter 1.4.3, 1.4.4

• Resolution: TextF Chapter 4.4

Reference: CS245 course notes of University of Waterloo.

Introduction to Mathematical Logic

Thank you for listening!
Any questions?