

5/18/2022

وظيفة مقرر الرياضيات المتقطعة BDM501

عمل الطالب: تمام مبروكة (tamam_158877)

الفصل: ITE_C4_F21

اسم المادة:BDM501

تحت اشراف الدكتور: محسن

Tamam Mabroukeh

السؤال الأول:

1) أ- كتابة جدول الحقيقة للقضية التالية:

$$(\mathbf{p} \wedge \mathbf{q})V(\neg \mathbf{p} \wedge \mathbf{q})V(\neg \mathbf{p} \wedge \neg \mathbf{q}) \equiv \neg \mathbf{p}V\mathbf{q}$$

سوف أرمز للجزء الأيسر للقضية بالرمز A

р	q	¬р	¬q	$p \cap q$	$\neg p \cap q$	$\neg p \cap \neg q$	Α	¬р Vq	القضية =
Т	Т	F	F	Т	F	F	Т	Т	Т
Т	F	F	Т	F	F	F	F	F	Т
F	Т	Т	F	F	Т	F	Т	Т	Т
F	F	Т	Т	F	F	Т	Т	Т	Т

ب- حل القضية باستخدام المكافآت المنطقية:

$$(\mathbf{p} \wedge \mathbf{q})V(\neg \mathbf{p} \wedge \mathbf{q})V(\neg \mathbf{p} \wedge \neg \mathbf{q}) \equiv \neg \mathbf{p} V\mathbf{q}$$

نطبق بعض القواعد على الطرف الأيسر ٨ للوصول الى الطرف الأيمن:

 $(p \wedge q)V(\neg p \wedge q)$ بسحب q عامل مشترك من القضيتين

 $\mathbf{q} \wedge (\mathbf{p} \vee \neg \mathbf{p}) \vee (\neg \mathbf{p} \wedge \neg \mathbf{q})$:A أصبحت

القضية (p V - p) هي قضية صحيحة دوما وبالتالي فأن:

$$\mathbf{q} \wedge (\mathbf{p} \vee \neg \mathbf{p}) \equiv \mathbf{q} \wedge \mathbf{t} \equiv \mathbf{q}$$

أصبح لدينا:

$$(\neg \mathbf{p} \wedge \neg \mathbf{q}) \vee \mathbf{q}$$

 $(\mathbf{p} \wedge \mathbf{q}) \rightarrow \mathbf{p}$

حسب الخاصية:

$$(\neg p \land \neg q) \rightarrow \neg p$$

وبالتالي فأن:

 $\neg p V q$

أصبح لدينا:

وهي تكافئ الطرف الأيمن من القضية

2) أ- كتابة مقلوب وعكس والتضاد الإيجابي ونفي الاقتراح الشرطي التالي باللغة العربية:

إذا اجتهدت أو واظبت على الدوام ستنجح بهذه المادة وتنتقل الى صف أعلى

المقلوب: إذا لم تجتهد ولم تواظب على الدوام لن تنجح بهذه المادة أو لن تنتقل الى صف أعلى

العكس: إذا نجحت بهذه المادة وانتقلت الى صف أعلى ستجتهد أو تواظب على الدوام

التضاد: إذا لم تنجح بهذه المادة أو لم تنتقل الى صف أعلى لن تجتهد ولن تواظب على الدوام

النفى: اجتهد أو واظب على الدوام ولم تنجح بهذه المادة او لم تنتقل الى صف أعلى

ب- التعبير عما سبق باستخدام العلاقات المنطقية مع المتحولات:

أولا نقوم بإعطاء المفردات اسم متحول:

اجتهدت: p

واظبت على الدوام:p

تنجح بهذه المادة: r

تنتقل الى صف أعلى: Q

 $p \ Vq
ightarrow r \wedge Q$:أي يمكن التعبير عن الاقتراح الشرطى السابق بالعلاقة

 $\neg (p \ Vq) \rightarrow \neg (r \land Q) = \neg p \land \neg q \rightarrow \neg r \ V \neg Q$ المقلوب:

 $(r \land Q) \rightarrow (p \lor q)$ المعكوس:

 $\neg(r \land Q) \rightarrow \neg(p \ Vq) = \neg r \ V \neg Q \rightarrow \neg p \land \neg q$ التضاد الإيجابي:

 $m{p}
ightarrow m{q}
ightarrow -m{p} \, V \, m{q}$ النفى بتطبيق العلاقة:

 $(p \lor q) \rightarrow (r \land Q) = \neg (p \lor q) \lor (r \land Q)$

 $abla \left(\neg (p \ V \ q) \ V \ (r \land Q) \right) = (p \ V \ q) \land (\neg r V \neg Q) :$ بنفي العبارة :

السؤال الثاني:

1) المطلوب اثبات أن القضية التالية هي قضية متناقضة:

-إذا تغيب أحمد عن المدرسة فسيرسب.

-إذا رسب أحمد فسيصبح غير مثقف.

-إذا قرأ أحمد العديد من الكتب فانه سيكون مثقفا.

-أحمد تغيب عن المدرسة وقرأ العديد من الكتب.

الحل: نقوم بترميز القضايا على الشكل التالي:

تغيب أحمد P، رسوب أحمد p

أحمد مثقف Q، قراءة الكتب r

من القضية نستنتج العبارات المنطقية التالية:

 $p \rightarrow q$ -1

 $q \rightarrow \neg Q$ -2

 $r \rightarrow Q$ -3

 $p \wedge r$ -4

 $(p \to q) \land (q \to \neg Q) \land (r \to Q) \land (p \land r) \equiv F$ القضية:

لحل القضية نستخدم العلاقات المنطقية:

$$(p \rightarrow q) \land (q \rightarrow \neg Q)$$
 من

p o
eg Q :حسب خاصية التعدي نحصل على:

$$(p \to \neg Q) \ \land (r \to Q) \land (p \land r) \equiv F$$

 $p o q \equiv \neg p \ V \ q$ وحسب الخاصية:

$$(\neg p \ V \neg Q) \land (\neg r \ V \ Q) \land (p \land r) \equiv F$$

 $(p V q) \land (\neg p V r) \equiv (q V r)$ وحسب الخاصية

$$(\neg p \ V \neg Q) \land (\neg r \ V \ Q) \equiv (\neg p \ V \neg r) <=$$
$$(\neg p \ V \neg r) \land (p \land r) \equiv F$$

بسحب النفي عامل مشترك:

$$\neg (p \land r) \land (p \land r) \equiv F$$

العلاقتان $(p \land r)$ و $(p \land r)$ هما علاقتان متعاكستان قيمتهما حسب الخاصية:

$$p \land \neg p \equiv F$$

$$\neg (p \land r) \land (p \land r) \equiv F$$
 وبالتالي فأن: F

$$F \equiv F$$

وبالتالي فان القضية غير متناسقة (متناقضة) لأنها تقود الى أنه إذا تغيب أحمد عن المدرسة فأنه سيصبح مثقفا وغير مثقفا في آن معا.

2) لدينا الفرضيات التالية المتعلقة بخوارزمية حاسوب:

-إذا كانت قيمة الدخل صغيرة أو كبيرة سيكون الخرج ممكن التنبؤ به

-قيمة الخرج ليست سالبة

-إذا كان الخرج ممكن التنبؤ به يجب عندئذ أن يكون سالبا

هل يمكن استنتاج أن قيمة الدخل ليست صغيرة؟

الحل: نقوم بترميز الفرضيات على الشكل التالي:

قيمة الدخل صىغيرة P، قيمة الدخل كبيرة q

الخرج ممكن التنبؤ به Q، قيمة الخرج سالبة r

من القضية نستنتج العبارات المنطقية التالية:

 $p V q \rightarrow Q - 1$

 $Q \rightarrow r$ -3 $\neg r$ -2

 $\therefore \neg p$

بالحل وفق قواعد الاستدلال:

$$Q o r$$
 -3 $\neg r$ -2 الرفض: $Q o r$ - $Q o r$ من 2 و 3 حسب قاعدة الرفض: $Q o r$ $\neg r$ $\therefore \neg Q-4$

: من $p \wedge \neg q$ حسب قاعدة التخصيص

$$\neg p \land \neg q$$

من 6 نستنتج أن قيمة الدخل ليست صغيرة

الحل وفق جداول الحقيقة:

$$\left((p\ V\ q \to Q)\ \wedge\ \neg r\ \wedge (Q \to r) \right) \to \neg p$$
 : القضية

р	q	Q	r	p V q	$p V q \rightarrow Q$	$\neg r$	Q o r	$\neg p$
Т	Т	Т	Т	Т	Т	F	Т	F
Т	Т	Т	F	Т	Т	Т	F	F
Т	Т	F	Т	Т	F	F	Т	F
Т	Т	F	F	Т	F	Т	Т	F
Т	F	Т	Т	Т	Т	F	Т	F
Т	F	Т	F	Т	Т	Т	F	F
Т	F	F	Т	Т	F	F	Т	F
Т	F	F	F	Т	F	Т	Т	F
F	Т	Т	Т	Т	Т	F	Т	Т
F	Т	Т	F	Т	Т	Т	F	Т
F	Т	F	Т	Т	F	F	Т	Т
F	Т	F	F	Т	F	Т	Т	Т
F	F	Т	Т	F	Т	F	Т	Т
F	F	Т	F	F	Т	Т	F	Т
F	F	F	Т	F	Т	F	Т	T
F	F	F	F	F '	T	Т	Т	T

من الجدول نجد أن السطر الحرج هو السطر الأخير

بدراسة السطر الأخير نجد أن جميع العلاقات صحيحة وبالتالي الحجة صالحة