Teste de Escalonabilidade (Escalonamento) – Análise por Tempo de Resposta

Dr. Osmar Marchi dos Santos

Análise por Tempo de Resposta

- Análise de escalonamento exata (tanto suficiente como necessária)
 - Do inglês "Response-Time Analysis"
- Utilizada para modelos de escalonamento baseado em prioridades estáticos
- Contém um conjunto grande de estensões como, por exemplo:
 - Lidar com dependência (offsets)
 - Compartilhamento de dados (bloqueio)
 - Comunicação

Conceitos básicos

- Baseada na noção de instante crítico
 - Momento em que todas as tarefas do sistema encontram-se na fila de processos prontos para execução
- É pior momento (maior sobrecarga) para a execução das tarefas do sistema
 - Interferência decorrente de tarefas de maior ou igual prioridade sobre as outras tarefas de menor ou igual prioridade
- Caso as tarefas sejam escalonáveis nesse momento, elas serão escalonáveis em qualquer momento

Conceitos básicos

- Utiliza o conceito de tempo de resposta máximo de uma tarefa (response time)
 - Tempo da chegada da tarefa até o término de sua execução
 - Considera a interferência de tarefas de maior ou igual prioridade sobre a tarefa sendo analisada

Análise por Tempo de Resposta

• Para calcular o tempo de resposta de uma tarefa i, temos seguinte equação:

•
$$R_i = C_i + \sum_j I_j$$

 $j \epsilon hp(i)$

- Onde:
 - hp(i) são as tarefas de maior prioridade que i
 - I_i é a interferência que a tarefa i pode sofrer

•
$$I_j = [R_i / P_j] * C_j$$

- Onde:
 - R_i é a janela de tempo em análise
 - R_i / P_j representa o número de liberações da tarefa j na janela de tempo

Análise por Tempo de Resposta

A expressão pode ser reescrita como:

•
$$R_i = C_i + \sum_j R_i / P_j * C_j$$

 $j \in hp(i)$

 Como R_i aparece em ambos os lados da expressão, é necessário utilizar uma solução iterativa:

•
$$R_i^{n+1} = C_i + \sum_{j=1}^{n} R_j / P_j$$
 * C_j
 $j \in hp(i)$

- $R_i^0 = C_i$
- O método converge quando a tarefa é escalonável

Exercício

Considerando o seguinte sistema, veja se ele é escolanável ou não:

Tarefa	P _i =D _i	C _i	Prio. p _i
А	50	5	1
В	70	10	2
С	80	20	3
D	150	20	4
Е	150	20	5

Exercício

- Implementar usando a linguagem C:
 - Análise de escalonamento baseada em utilização (aula passada)
 - Análise de escalonamento por tempo de resposta
- Considerar um modelo de tarefas com tarefas independente deadline menor ou igual ao período das tarefas
 - Alocação de Prioridades utilizando Deadline Monotonic
- Considerar que as tarefas são adicionadas a um vetor e seus valores temporais (modelo de tarefas do sistema) são gerados de forma randômica
 - Funções srand() e rand()
- Abstração: como representar as tarefas e suas informações em um programa C?