PUSH DOWN AUTOMATA

Prerequisite

- The basic relationship between CFG and R.E is that the CFG can be constructed for every R.E.
- But more than that CFG can also be written for non regular languages like 0ⁿ1ⁿ.
- . Thus we can say that regular expressions are the subset of CFG.
- For every R.E we can be drawn F.A., But F.A. is not sufficient to draw the CFG.
- For better understanding of PDA we must know about Stack and its operations.

Push Down Automata

The PDA will have input tape, finite control and stack.

- The input tape is divided in many cells.
- The finite control has some pointer which points to the current symbol which is to be read.
- At the end of the input \$ or ∆ blank symbol is placed to identify the end of input.

Definition of a PDA

· A pushdown automaton (PDA) is a seven-tuple:

$$M = (Q, \Sigma, \Gamma, \delta, q_0, z_0, F)$$

- Q A finite set of states
- Σ A finite input alphabet
- Γ A finite stack alphabet
- q₀ The initial/starting state, q₀ is in Q
- z_0 A starting stack symbol, is in Γ // need not always remain at the bottom of stack
- F A set of final/accepting states, which is a subset of Q
- δ A transition function, where
 - For DPDA $\delta: Q \times (\Sigma \cup \{\epsilon\}) \times \Gamma \rightarrow \text{finite subsets of } Q \times \Gamma^*$
 - FOR NIDBOA S. O. V (S. I. Jell v. F. finite subsets of 20 x ["

Push Down Automata

- Any language which is accepted by a F.A. can also accepted by PDA.
- PDA can also accepts the class of languages which are not accepted by F.A.,
 Thus PDA is much more superior to F.A.

Example: Design a PDA for accepting the Language $L=\{a^nb^n|n>=1\}$.

Solution:

The above given language is in which equal number of a's are followed by equal number of b's.

Logic for PDA:

- Push all a's onto the stack
- On reading every single b pop one a from the stack.
- If the input string is reached end and the stack is empty then the string is accepted by the PDA.

PDA

Example(2)

 The Description for the PDA can be given as follows.

$$\delta(q_0,a,z_0)=(q_0,az_0)$$

 $\delta(q_0,a,a)=(q_0,aa)$

$$\delta(q_0,b,a)=(q_1,\mathbb{Z})$$

$$\delta(q_1,b,a)=(q_1,B)$$

$$\delta(q_1, \$, z_0) = (q_2, \mathbb{Z})$$

Where q_0 is start state and q_2 is accept state.

 Simulation of PDA for the input string aaabbb as follows

$$\delta(q_0, aaabbb, z_0) \vdash (q_0, aabbb$, az_0)$$
 $\vdash (q_0, abbb$, aaaz_0)$
 $\vdash (q_0, bbb$, aaaz_0)$
 $\vdash (q_1, bb$, aaz_0)$
 $\vdash (q_1, b$, az_0)$
 $\vdash (q_1, b$, az_0)$
 $\vdash (q_2, \mathbb{Z})$
Accept State

Hence the string is accepted by the PDA.

Excercise1: Design a PDA that accept a string of well formed parenthesis. Consider the parenthesis is a (,),[,],{,}.

Excercise2: Construct PDA for the language L={anb2n | n>=1}.

Conversion of CFG to PDA

- For the conversion of CFG to PDA the necessary condition is that the first symbol on R.H.S. production must be a terminal symbol.
 - Rule1: For non terminal symbol, add following rule

$$\delta(q, \mathbb{Z}, A) = (q, \alpha)$$

Where the production rule is A-> α

Rule 2: For each terminal symbol, add the following rule.
 δ(q, a,a)=(q, □) for every terminal symbol.

Example: Construct PDA for the given CFG

S->OBB

B->0S | 1S | 0 and test whether 0104 is accepted by this PDA

Let PDA

$$A=\{\{q\},\{0,1\},\{S,B,0,1\},\delta,q,S,F\}$$

The Production rules δ can be written as:

R1:
$$\delta(q, \mathbb{Z}, S) = \{(q, OBB)\}$$

R2:
$$\delta(q, \mathbb{Z}, B) = \{(q, 0S), (q, 1S), (q, 0)\}$$

R3:
$$\delta(q, 0,0) = \{(q, \mathbb{Z})\}$$

R4:
$$\delta(q, 1, 1) = \{(q, \square)\}$$

Example(2):

Testing 010⁴ i.e. 010000 against PDA

$\delta(q,010000,S) \vdash (q,010000,0BB)$		Since R1
	⊢(q,10000,BB)	Since R3
	⊢(q,10000,1SB)	Since R2
	⊢(q,0000,SB)	Since R4
	⊢(q,0000,0BBB)	Since R1
	⊢(q,000,BBB)	Since R3
	⊢(q,000,0BB)	Since R2
	⊢(q,00,BB)	Since R3
	⊢(q,00,0B)	Since R2
	⊢(q,0, B)	Since R3
	⊢(q,0,0)	Since R2
	⊢(q, 🗈)	Since R3

Excercise1: Construct the PDA for the given CFG.

S->0A

A->0AB | 1

B->1

Excercise1: Construct the PDA for the given CFG.

S->aSA|bSB|a|b

A->a

B->b

Construction of CFG from PDA

Algorithm for getting production rules of CFG:

Rule1: The start symbol production can be

$$S \rightarrow [q_0, Z_0, q]$$

Where q indicates the next state an q0 is a start state.

Rule2: If there exists a move of PDA

$$\delta(q,a,Z)=\{(q', 2)\}$$

then the production rule can be written as:

$$\delta(q,Z,q')$$
->a

Rule3: If there exists a move of PDA as

$$\delta(q,a,Z)=\{(q',Z_1,Z_2,....Z_n)\}$$

Then the production rule of CFG can be written as

Example: The PDA is given below $A=(\{q_0, q_1\}, \{0,1\}, \{S,A\}, \delta, q_0, S, \phi)$

Where δ is given as follows:

$$\delta(q_{0,} 1,S) = \{(q_{0,} AS)\}$$

 $\delta(q_{0,} 1,S) = \{(q_{0,} 1)\}$
 $\delta(q_{0,} 1,A) = \{(q_{0,} AA)\}$
 $\delta(q_{0,} 0,A) = \{(q_{1,} A)\}$
 $\delta(q_{1,} 1,A) = \{(q_{1,} 1)\}$
 $\delta(q_{1,} 0,S) = \{(q_{0,} S)\}$

Construct the CFG equivalent to this PDA.

Example(2):

```
    Solution:

               Let we will construct a CFG
               G=(V,T,P,S)
              Here, T={0,1}, V={S \cup [q<sub>0</sub>,A q<sub>0</sub>],[q<sub>0</sub>,A q<sub>1</sub>],[q<sub>0</sub>,S q<sub>0</sub>],[q<sub>0</sub>,S q<sub>1</sub>], [q<sub>1</sub>,A q<sub>1</sub>], [q<sub>1</sub>,A q<sub>0</sub>], [q<sub>1</sub>,S q<sub>1</sub>], [q<sub>1</sub>,S q<sub>0</sub>]}
               Now let up build the production rules as:
               Using rule1 from the algorithm
              P1: S \rightarrow [q_0, S, q_0]
              P2: S->[q<sub>0</sub>,S<sub>q1</sub>]
               Using rule3 of algorithm for the \delta(q_0, 1, S) = \{(q_0, AS)\} we get,
               P3: [q_0, S, q_0] \rightarrow 1[q_0, A, q_0][q_0, S, q_0]
              P4: [q_0, S q_0] \rightarrow 1[q_0, A q_1][q_1, S q_0]
              P5: [q_0, Sq_1] \rightarrow 1[q_0, Aq_0][q_0, Sq_1]
               P6: [a<sub>0</sub>,S a<sub>1</sub>]->1[a<sub>0</sub>,A a<sub>1</sub>][a<sub>1</sub>,S a<sub>1</sub>]
```

Example(3):

```
Now for \delta(q_0, \mathbb{B}, S) = \{(q_0, \mathbb{B})\} using rule2 of algorithm we get
            P7: [q<sub>0</sub>, S q<sub>0</sub>]-> [3]
Similarly for \delta(q_0, 1, A) = \{(q_0, AA)\}\ Using rule3 we get
            P8:[q_0,Aq_0] \rightarrow 1[q_0,Aq_0][q_0,Aq_0]
            P9:[q_0,Aq_0] \rightarrow 1[q_0,Aq_1][q_1,Aq_0]
            P10:[q_0, A q_1] \rightarrow 1[q_0, A q_0][q_0, A q_1]
            P11:[q_0, Aq_1] \rightarrow 1[q_0, Aq_1][q_1, Aq_1]
Similarly for \delta(q_0, 0, A) = \{(q_1, A)\} gives
             P12:[q_0, A, q_0] \rightarrow 0[q_1, A, q_0]
             P13:[q<sub>0</sub>,Aq<sub>1</sub>]->0[q<sub>1</sub>,Aq<sub>1</sub>]
             \delta(q_1, 1, A) = \{(q_1, B)\} Gives
            P14:[q1,Aq1]->1
             \delta(q_1, 0, S) = \{(q_0, S)\}
            P15: [a, Sa, 1->0[a, Sa, 1
```

Exercise: Find the CFG corresponding to PDA whose transition mapping is as follows:

$$\delta(S \ a \ , X) = (s \ AX)$$

 $\delta(S \ b \ , A) = (s \ AA)$
 $\delta(S \ a \ , A) = (s \ B)$

Summary

- · From this session we learned what is Push Down Automata.
- How to Construct PDA.
- Conversion of CFG to PDA.
- · And Conversion of PDA to CFG.

Next Class

- In the Next Session we will Concentrate on importance of Normal forms.
- Types of Normal Forms.

Given PDA:

```
\delta(S \ a \ , X) = (s \ AX)

\delta(S \ b \ , A) = (s \ AA)

\delta(S \ a \ , A) = (s \ B)
```

Solution: Now we will apply conversion algorithm for each transition and obtain the production rules:

```
For \delta(S, a, X) = (s, AX)

P1: (S,X,s) -> a(S A S)(S X S) | a(S A s)(s X S)

P2: (S,X,S) -> a(S A S)(S X S) | a(S A s)(s X S)

For \delta(S, b, A) = (s, AA)

P3: (S, A, s) -> b(S A S)(S A S) | b(S A s)(s A S)

P4: (S, A, S) -> b(S A S)(S A S) | b(S A s)(s A S)

For \delta(S, a, A) = (s, B)

P5: (S, A, S) -> a
```

Hence, P1,P2,P3,P4 and P5 are productions in CFG.

THE END