A correlational analysis of how climate change can affect the occurrence of pathogenic diseases

CHARLES YAP

nature climate change

Explore content Y About the journal Y Publish with us Y

nature > nature climate change > analyses > article

Analysis Published: 08 August 2022

Over half of known human pathogenic diseases can be aggravated by climate change

Camilo Mora ☑, Tristan McKenzie, Isabella M. Gaw, Jacqueline M. Dean, Hannah von Hammerstein,

Tabatha A. Knudson, Renee O. Setter, Charlotte Z. Smith, Kira M. Webster, Jonathan A. Patz & Erik C.

Franklin

Nature Climate Change 12, 869–875 (2022) Cite this article

103k Accesses | 78 Citations | 6380 Altmetric | Metrics

Abstract

It is relatively well accepted that climate change can affect human pathogenic diseases; however, the full extent of this risk remains poorly quantified. Here we carried out a systematic search for empirical examples about the impacts of ten climatic hazards sensitive to greenhouse gas (GHG) emissions on each known human pathogenic disease. We found that 58% (that is, 218 out of 375) of infectious diseases confronted by humanity worldwide have been at some point aggravated by climatic hazards; 16% were at times diminished. Empirical cases revealed 1,006 unique pathways in which climatic hazards, via different transmission types, led to pathogenic diseases. The human pathogenic diseases and transmission pathways aggravated by climatic hazards are too numerous for comprehensive societal

Trend lines of diseases against no_of_rainy_days

The correlation between no_of_rainy_days and average disease occurrence is -0.08416138917110441

The correlation between total_rainfall and average disease occurrence is -0.16003721777734653

The correlation between mean_rh and average disease occurrence is 0.04501022026850151

The correlation between wet_bulb_temperature and average disease occurrence is 0.0760217505663096

The correlation between mean_sunshine_hrs and average disease occurrence is -0.037980876839857625

The correlation between monthly_mean_of_min_daily_temperature_celcius and average disease occurrence is 0.043905546215027985

CLIMATE/WEATHER METRIC	DISEASE	CORRELATION
monthly_mean_of_min_daily_temperature_celcius	SALMONELLOSIS	0.2998
wet_bulb_temperature	SALMONELLOSIS	0.2749
total_rainfall	PERTUSSIS	-0.2517
no_of_rainy_days	MEASLES	-0.2411
maximum_rainfall_in_a_day	PERTUSSIS	-0.2405
total_rainfall	MEASLES	-0.2377
mean_rh	MALARIA	0.2334
monthly_mean_of_min_daily_temperature_celcius	HEPATITIS B	0.2276
mean_rh	HEPATITIS A	0.2207
mean_rh	MEASLES	-0.2152

SALMONELLA!

- Optimal growth temperature: 37°C
- When not in host, survives in moist regions.
- Hotter = FESTERING BACTERIA

Pertussis AKA WHOOPING COUGH

- Transmitted via water droplets in air
- Rain = less transmissions???

- Another respiratory-transmitted disease
- Rain + Humid = less transmissions???

- Fecal-oral route of transmission
- High humidity/temperature = Poorer sanitation

WHAT DO I PUT HERE IDK

RECOMMEND ATIONS:

FOR PEOPLE IN POWER

WE PLEBS ARE POWERLESS

- conduct longitudinal studies,
- include additional climate variables,
- assess role of population dynamics and behavioral factors,
- optimizing health interventional methods,
- develop better climate monitoring and disease modelling tools to facilitate adapting to the situation.

