

Βιομηχανική Ηλεκτρονική 5ου Εξαμήνου

Συστήματα Ηλεκτρικής Κίνησης ΕΡ

Στ. Παπαθανασίου Καθ. ΕΜΠ

Βασικές συνιστώσες συστήματος ηλεκτρικής κίνησης

Εφαρμογές των Συστημάτων Ηλεκτρικής Κίνησης

Τομείς της βιομηχανίας

Είδη εφαρμογών

Βασικά πλεονεκτήματα

- Έλεγχος και δυνατότητα μεταβολής της ταχύτητας του φορτίου
- Δυνατότητα ελέγχου της θέσης του φορτίου
- Άμεσος έλεγχος της ροπής του κινητήρα (προστασία φορτίου, προσαρμογή σε ιδιαίτερες απαιτήσεις λειτουργίας)
- Δυνατότητα ομαλής εκκίνησης (μικρό ρεύμα εκκίνησης, χαμηλή καταπόνηση του φορτίου)
- Εξοικονόμηση ενέργειας
- Δυνατότητα αυτοματοποίησης (έλεγχος από απόσταση, ρύθμιση παραμέτρων λειτουργίας)
- Περιορισμός/κατάργηση μηχανικών συστημάτων ελέγχου και ρύθμισης

Τα 4 τεταρτημόρια στο επίπεδο Τ-ω

Βασική κατάσταση λειτουργίας

Χαρακτηριστικές ροπής και ισχύος του φορτίου

T ≈ 1/N	Τ = Σταθερή	T≈N	T≈ N²
ΗΡ = Σταθερή	HP≈N	HP ≈ N ²	HP ≈ N ³
T N	HP N	T / HP	T HP N
•Περιελικτικές μηχανές •Τόρνοι •Κοπτικά εργαλεία	•Ανυψωτικά •Μεταφορικές ταινίες •Εργαλειομηχανές •Κυλιόμενοι μύλοι	•Πρέσες (ορισμένοι τύποι) •Πέδες δινορρευμάτων	•Αντλίες •Ανεμιστήρες •Φυγοκεντριστές

T[Nm]= $=9550 \times \frac{P[kW]}{n[1/min]}$

Ο κινητήρας επαγωγής

Πινακίδα κινητήρα επαγωγής

Δακτύλιος β/κ αγωγών

PE 21 PLUS™				PREMIUM EFFICIENCY						
MILL AND CHEMICAL DUTY QUALITY INDUCTION MOTOR										
ORD.NO.	51-	502-03	3				DATE CODE	017		4 5 6
TYPE	RG	Z ESD					FRAME	284	Т	7 8 9
H.P.	25				SERVICE FACTOR	1.15		I1 I2 I3		
AMPS.	56.8/28.4				VOLTS	230/460		LOW VOLT.		
R.P.M.	1750				HERTZ	60		CONN. 4 5 6		
DUTY	CO	NT.	40° C AMB. 3 P			3 PH	7 8 9			
CLASS INSUL	F	NEMA Design	В	K.V	DE	G	NEMA NOM.EFF.	93.0		1 2 3
SH. END BRG.	50BC03JPP3 OPP. EN			458C0	2JPP3		• • •			
					HIGH VOLT. CONN.					

Βασικές συνδεσμολογίες

Κιβώτιο ακροδεκτών

Συνδεσμολογία τριγώνου

Συνδεσμολογία αστέρα

Βασικές σχέσεις:
$$V_Y = \frac{V_\Delta}{\sqrt{3}}$$
 $\Phi_Y = \frac{\Phi_\Delta}{\sqrt{3}}$ $I_Y = \frac{I_\Delta}{3}$ $T_Y = \frac{T_\Delta}{3}$

$$\Phi_Y = \frac{\Phi_\Delta}{\sqrt{3}}$$

$$I_Y = \frac{I_{\Delta}}{3}$$

$$T_Y = \frac{T_{\Delta}}{3}$$

Χαρακτηριστικές του κινητήρα επαγωγής

Ισοδύναμο κύκλωμα

Pεύμα στάτη: $I_S = \sqrt{I_M^2 + I_W^2}$

Μαγνητική ροή στο διάκενο: $\Phi \sim I_{\scriptscriptstyle M} = \frac{E}{2\pi f L_{\scriptscriptstyle M}} \Longrightarrow \Phi \sim \frac{E}{f} \approx \frac{V}{f}$

Ηλεκτρομαγνητική ροπή: $T \sim \Phi I_W$

Μέγιστη ροπή: $T_{\text{max}} \sim \Phi^2$

Χαρακτηριστική ροπής-στροφών

περιστροφής

Έλεγχος σταθερού λόγου V/f

Χαρακτηριστικές Τ-ω του κινητήρα

Χαρακτηριστική ελέγχου V-f

Μαγνητική ροή στο διάκενο: $\Phi \sim \frac{E}{f} \approx \frac{V}{f} = \sigma \tau \alpha \theta.$

Μέγιστη ροπή: $T_{\text{max}} \sim \Phi^2 = \sigma \tau \alpha \theta$.

Εξασθένηση πεδίου (field weakening)

Χαρακτηριστική V-f σε ταχύτητες/συχνότητες > ονομαστικής

Μέγιστη ροπή:

Ροπή φορτίου (I_W=σταθ.):
$$T \sim \Phi = \frac{\sigma \tau \alpha \theta}{f}$$

Ισχύς φορτίου: $P = T\omega = \sigma \tau \alpha \theta$.

Επιλογή κινητήρα

Μέγιστη ταχύτητα

Frame size	Speed r/min
63-100	6000
112-200	4500
225-280	3600
315, 2-pole	3600
315, other pole numbers	3000
355, 400 2-pole	3600
355, 400 other pole numbers	2500

Σημαντικοί παράγοντες

- Ψύξη στις χαμηλές ταχύτητες
- Κλάση μόνωσης τυλίγματος
- Δυνατότητα υπερτάχυνσης
- Μέγιστο ρεύμα μετατροπέα (~150% In)

Ψύξη και κλάση μόνωσης τυλίγματος

Μετατροπείς ισχύος συστημάτων κίνησης ΕΡ

Αντιστροφέας Πηγής Τάσης (κύρια τεχνολογία των σύγχρονων συστημάτων)

Αντιστροφέας Πηγής Ρεύματος (δεν χρησιμοποιείται πλέον σε νέα συστήματα)

Βαθμίδα ανόρθωσης ΕΡ/ΣΡ

$$V_d \cong \frac{3\sqrt{2}}{\pi} V_{LL}^{rms} = 1.35 V_{LL}^{rms}$$

Ενδεικτικές κυματομορφές

Βαθμίδα αντιστροφής ΣΡ/ΕΡ

Steps 1 2 3 4 5 6 7 8 9 -60° B 0 A-B Output

Λειτουργία τετραγωνικού παλμού

$$V_{LL}^{rms} = \frac{\sqrt{6}}{\pi} V_d \cong 0.78 V_d$$

Ρεύμα γραμμής κινητήρα

Μεγάλη αρμονική παραμόρφωση σε χαμηλές συχνότητες (κυρίως 5ης, 7ης, 11ης και 13ης τάξης)

Οδήγηση του κινητήρα επαγωγής

Διακοπτικές καταστάσεις

- 6 βασικοί συνδυασμοί κατάστασης των διακοπτών
- Αντιστοιχούν σε διαδοχικές θέσεις του στρεφόμενου μαγνητικού πεδίου
- Διαδοχική εμφάνισή τους σε κάθε κύκλο της τάσης τροφοδοσίας

Διαμόρφωση Εύρους Παλμών Pulse Width Modulation (PWM)

Τυπικές κυματομορφές και αρχή ελέγχου

Ημιτονοειδής διαμόρφωση (SPWM)

Κυματομορφή φορέα $(f_{c'}V_{c})$

$$m_f = \frac{f_r}{f_c} \qquad m_a = \frac{\hat{V_r}}{\hat{V_c}}$$

Γραμμική περιοχή (0≤m_a≤1):

$$V_{LL}^{rms} = \frac{\sqrt{3}}{2\sqrt{2}} m_a V_d$$

$$V_{LL~{\rm max},lin}^{rms}\cong 0.61V_d$$

Υπερδιαμόρφωση (m_a>1):

$$V_{LL \max}^{rms} \cong 0.78 V_d$$

Πέδηση στα συστήματα κίνησης ΕΡ

Βασικές μέθοδοι

- Φυσική πέδηση (ροπή φορτίου, τριβές)
- Μείωση συχνότητας κινητήρα
- Έγχυση ΣΡ
- Αναγεννητική πέδηση

Τοπολογίες αναγεννητικής πέδησης

DC Link

DC Link

Συστήματα διπλών μετατροπέων πηγής τάσης

Βασικά πλεονεκτήματα

- Λειτουργία ανορθωτή-αντιστροφέα (αναγεννητική πέδηση)
- Έλεγχος συντελεστή ισχύος εισόδου (επαγωγικές και χωρητικές τιμές)
- Βελτιωμένη ποιότητα ισχύος (αρμονικές)

Βαθμός απόδοσης

Ενδεικτικοί πίνακες τεχνικών χαρακτηριστικών

English	MICROMASTER					
Feature	410	420	440			
Input Voltage	1Ø AC 100V to 120V ±10% 1Ø AC 200 to 240 VAC ÷10%	1Ø AC 200V to 240V ±10% 3Ø AC 200V to 240V ±10% 3Ø AC 380V to 480V ±10%	1Ø AC 200V to 240V ±10% 3Ø AC 200V to 240V ±10% 3Ø AC 380V to 480V ±10% 3Ø AC 500V to 600V ±10%			
Output Voltage	0 to Approximate Input Value	0 to Approximate Input Value	0 to Approximate Input Value			
Input Frequency	47 to 63 Hz	47 to 63 Hz	47 to 63 Hz			
Output Frequency	0 Hz to 650 Hz	0 Hz to 650 Hz	0 Hz to 650 Hz			
Power Range	1/6 to 1 HP	1/6 to 15 HP	1/6 to 100 HP			
Overload Capacity	Up to 150% of rated output current for 60 s, followed by 85 for 240 s, cycle time 300 s	150 s of rated load current for a period of 60 s within 300 s	150% of rated load current for a period of 60 s within 300 s or 200% of rated load current for a period of 3 s within 60 s.			
Control	V/f	V/f. FCC	V/f, FCC, Vector (sensorless and optional dosed loop), torque			
Inputs	3 digital, 1 analog	3 digital, 1 analog	6 digital, 2 analog, 1 PTC			
Outputs	1 relay	1 analog, 1 relay	2 analog, 3 relay			
Serial Interface	RS-485 for use with USS protocol	RS-485 for use with USS protocol, optional RS232	RS-485 for use with USS protocol, optional RS232			
Braking	DC braking, compound braking	DC Braking, compound braking	DC Braking, compound braking, fully- rated integral brake chopper			

Διάγραμμα ακροδεκτών βιομηχανικού αντιστροφέα

Ενδεικτική δομή βιομηχανικού αντιστροφέα

