Course Introduction and Empirical Methods

Isaac Griffith

CS 6620 - Empirical Software Engineering Department of Computer Science Idaho State University

A Thought

"Science, done right, works hard to respect absolutely no authority at all other than experience and empirical data. It never succeeds entirely, but it comes closer and has a better track record than any other method we apes have found for learning about the world around us." – Adam Becker

Syllabus Review

Course Outline

Part 1: The Basics

- Wk 01: Introduction
- Wk 02: Measurement, Validity, GQM, and Replication
- Wk 03: Scientific Writing

Part 3: Evaluation

- Wk 11: Case Study Discus
- Wk 12: Experiment Discus
- Wk 13: Survey/Interview Discus
- Wk 14: Secondary Study Discus

Part 2: Empirical Methods

- Wk 04: Case Studies
- Wk 05: More on Case Studies
- Wk 06: Experiments
- Wk 07: More on Experiments
- Wk 08: Surveys, Focus Groups and Interviews
- Wk 09: Secondary Studies
- Wk 10: Simulations

Part 4: Final Project Presentation

• Wk 15: Presentations

Course Evaluation

- Students will be evaluated in the following ways:
 - 60% of your grade is based on the Research Project
 - 28% of your grade is based on discussion leadership (4)
 - 12% of your grade is based on class participation

Research Project

- As this is a 6000 level graduate course, you are expected to complete an individual research project focused on empirical evaluation within the domain of software engineering.
- The project requires that you apply one of the following 5 research methods:
 - Experiment
 - Case Study
 - Secondary Study (SLR/SMS)
 - Simulation Study
 - Replication Study
- The research you conduct must be novel or present novel results.

Research Project

- The research project is subdivided into 3 components each with 2 graded events:
 - Project Topic Selection
 - Topic Selection Report (12.5%)
 - Topic Selection Presentation/Discussion (7.5%)
 - Project Proposal
 - Project Proposal Report (25%)
 - Project Proposal Presentation/Discussion (7.5%)
 - Final Project
 - Final Project Report (40%)
 - Final Project Presentation/Discussion (7.5%)

Conducting Research

Is this your research plan?

- Build a new tool
- **2** ??
- Profit

Engineering vs. Science

Traditional View:

Scientists...

- Create knowledge
- Study the world as it is
- Are trained in scientific method
- Use explicit knowledge
- Are thinkers

Engineers...

- Apply that knowledge
- Seek to change the world
- Are trained in engineering design
- Use tacit knowledge
- Are doers

Engineering vs. Science

More Realistic View:

Scientists...

- Create knowledge
- Are problem-driven
- Seek to understand and explain
- Design experiments to test theories
- Prefer abstract knowledge
- But rely on tacit knowledge

Engineers...

- Create knowledge
- Are problem-driven
- Seek to understand and explain
- Design devices to test theories
- Prefer contingent knowledge
- But rely on tacit knowledge

Both involve a mix of design and discovery

Scientific Method

- No single "official" scientific method
- Somehow, scientists are supposed to this:

Observe!

Scientific Inquiry

Some Characteristics of Science

- Science seeks to improve our understanding of the world.
- Explanations are based on observations
 - Scientific truths must stand up to empirical scrutiny
 - Sometimes "scientific truth" must be thrown out in the face of new findings
- Theory and observation affect one another:
 - Our perceptions of the world affect how we understand it
 - Our understanding of the world affects how we perceive it
- Creativity is important
 - Theories, hypotheses, experimental designs
 - Search for elegance, simplicity

All Methods are Flawed

- E.g. Laboratory Experiments
 - Cannot study large scale software development in the lab!
 - Too many variables to control them all
- E.g. Case Studies
 - How do we know what's true in one project generalizes to others?
 - Researcher chose what questions to ask, hence biased the study
- E.g. Surveys
 - Self-selection of respondents biases the study
 - Respondents tell you what they think they ought to do, not what they actually do
- ...etc...

ldaho Star Strategies to overcome weaknesses

- Theory-building
 - Testing a hypothesis is pointless (single flawed study!)...
 - ...unless it builds evidence for a clearly stated theory
- Empirical Induction
 - Series of studies over time...
 - Each designed to probe more aspects of the theory
 - ...together build evidence for a clearly stated theory
- Mixed Methods Research
 - Use multiple methods to investigate the same research question
 - Each method compensates for the flaws of the other
 - ...together build evidence for a clearly stated theory

Reasoning

The 3 Types of Reasoning

- Deductive Making an inference based on widely accepted facts or premises
- Inductive Making an inference based on an observation, often a sample
- Abductive Making a probable conclusion from what you know.

Reasoning

Deduction: Given the rule and the cause, Induction: Given a cause and an effect, deduce the effect. induce a rule. Rule Rule Cause Effect Cause Effect Rule Cause **Effect**

Abduction: Given a rule and an effect, abduce a cause.

Example

- Deduction:
 - Rule: All swans are white
 - Fact: Daisy is a swan
 - Conclusion: Daisy is white
- Induction:
 - Case 1: Daisy is a swan & white
 - Case 2: Danny is a swan & white
 - Case 3: Dante is a swan & white
 - Rule: All swans are white

- Abduction:
 - Rule: All swans are white
 - Case: Daisy is white
 - Conclusion: Daisy is a swan

Reasoning and Empiricism

Reasoning and Empiricism

What is a research contribution?

- A better understanding of how people use software technology?
- Identification of problems with the current state-of-the-art?
- A characterization of the properties of new tools/techniques?
- Evidence that approach A is better than approach B?

How will you validate your claims?

Thinking about Research

- What was the research question?
 - i.e. "Is tool A better than tool B?"
- What would count as an answer?
- What use would the answer be?
 - How is it a "contribution to knowledge"?
- How does this evaluation relate to the existing literature?

Experiments as Clinical Trials

Why do we need to know?

What will we do with the answer?

Is drug A better than drug B?

Better in what way?

Better in what situations?

You gotta have a theory!

Some Definitions

- A modelis an abstract representation of a phenomenon or set of related phenomena
 - Some details included, others excluded
- A theory is a set of statements that explain a set of phenomena
 - Serves to explain and predict
 - Precisely defined terminology
 - Concepts, relationships, causal inferences
 - (operation definitions for theoretical terms)
- A hypothesisis a testable statement derived from a theory
 - A hypothesis is not a theory!
 - It does not predict but simply states how the world apparently is.
- In CS, we have mostly folk theories

A Simpler Definition

A (good) Theory is the best explanation of all the available evidence

The Role of Theory Building

- Theories lie at the heart of what is means to do science.
 - Production of generalizable knowledge
- Theory provides orientation for data collection
 - Cannot observe the world without a theoretical perspective
- Theories allow us to compare similar work
 - Theories include precise definition for the key terms
 - Theories provide a rationale for which phenomena to measure
- Theories support analytical generalization
 - Provide a deeper understanding of our empirical results
 - ...and hence how they apply more generally
 - Much more powerful than statistical generalization

that Type of Question are you asking?

- Exploratory
- Baserate
- Correlation
- Causal Relationship
- Design

Exploratory Questions

- Existence:
 - Does X exist?
- Description and Classification
 - What is X like?
 - What are its properties?
 - How can it be categorized?
 - How can we measure it?
 - What are its components?
- Descriptive-Comparative
 - How does X differ from Y?

Baserate Questions

- Frequency and Distribution
 - How often does X occur?
 - What is an average amount of X?
- Descriptive-Process
 - How does X normally work?
 - By what process does X happen?
 - What are the steps as X evolves?

Correlation Questions

- Relationship
 - Are X and Y related?
 - Do occurrences of X correlate with occurrences of Y?

Causal Relationship Questions

- Causality
 - Does X cause Y?
 - Does X prevent Y?
 - What causes X?
 - What effect does X have on Y?
- Causality-Comparative
 - Does X cause more Y than does Z?
 - Is X better at preventing Y than does Z?
 - Does X cause more Y than does Z under one condition but not others?

Design Questions

- What is an effective way to achieve X?
- How can we improve X?

Putting the Question in Context

Many Available Methods

Common "in the lab" methods

- Controlled Experiments
- Rational Reconstructions
- Exemplars
- Benchmarks
- Simulations
- Artifact/Archive analysis ("mining"!)

Common "in the wild" methods

- Quasi-experiments
- Case studies
- Survey research
- Ethnographies
- Action research

Warning

- No method is perfect
- Don't get hung up on methodological purity
- Pick something and get on with it
- Some knowledge is better than none

Why build a tool?

- Build a tool to test a theory
 - Tool is part of the experimental materials needed to conduct your study
- Build a tool to develop a theory
 - Theory emerges as you explore the tool
- Build a tool to explain your theory
 - Theory as a concrete instantiation of (some aspect of) the theory

Myths about Science

- "It's just a theory"
 - Theory = "best explanation for the available evidence"
 - Overwhelming evidence doesn't stop it being a theory...
 - ...but lack of evidence does.

Examples:

We have a "law of gravity" ...but no "theory of gravity"
We have a "theory of evolution" ...but no "law of evolution"

Myths about Science

- "Scientists follow the scientific method"
 - There is no one method
 - Many methods available...
 - ...and all of them have known flaws
 - Scientists use imagination, creativity, prior knowledge, perseverance...
- "Scientific knowledge is general and absolute"
 - Empirical Induction used to build evidence
 - Scientists often get it wrong
 - ...but Science (as a process) is self-correcting
 - All scientific laws and theories have limited scope
 - E.g. biological theories probably only apply on our own planet
 - E.g. laws of classical physics don't apply at the subatomic level

Are there any questions?

