MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 3 - DECEMBER 2007 SOLUTION KEY

Round 1

A) $\triangle ABC$ is a 30-60-90 triangle. Draw altitude \overline{CE} from C to \overline{AB} . \overline{AB} must be the base in isosceles triangle ABC. Therefore, E must also be a midpoint of \overline{AB} and $\triangle ACE$ must also be a 30-60-90 triangle congruent to $\triangle ACD \rightarrow AD = \boxed{4\sqrt{3}}$ (ADCE is a kite)

B)
$$A = 840 = \frac{h}{2}(b_1 + b2) = (3b - 1)(4b)/2 \Rightarrow 1680 = 12b^2 - 4b$$

 $\Rightarrow 3b^2 - b - 420 = (3b + 35)(b - 12) = 0 \Rightarrow b = 12$
 $\triangle ADE$, $\triangle BCF$ are $12 - 35 - 37$ right triangles
 $\Rightarrow Per = 74 + 48 = 122$, $AE = 35 \Rightarrow 122 : 35$

C) This is the ambiguous case, where we have information about two sides and the <u>non</u>-included angle. In general, there could be 0, 1 or 2 possible solutions. In this problem there are two solutions.

Using the law of sine,
$$\frac{AB}{\sin C} = \frac{AC}{\sin B} \Rightarrow \frac{4}{.5} = \frac{6}{\sin B}$$

 $\Rightarrow \sin B = \frac{3}{4} \Rightarrow \cos B = \pm \frac{\sqrt{7}}{4}$

Dropping an altitude from A creates a 30-60-90 triangle $ACD \rightarrow \overline{AD}$, the side opposite 30°, must have length 3 and \overline{CD} , the side opposite 60°, must have length $3\sqrt{3}$.

Clearly, referring to the diagram, the negative cosine value is associated with an obtuse angle $(\angle B \text{ in } \triangle ACB_1)$ and the positive cosine value is associated with the acute angle $(\angle B \text{ in } \triangle ACB_2)$ Thus, $BC = \sqrt{7} + 3\sqrt{3}$ or $3\sqrt{3} - \sqrt{7}$.

Alternate solution: Using only 30 - 60 - 90 right triangles (2 diagrams are possible)

