and that the value $\epsilon(0)$ plays absolutely no role in this definition. The condition for f to be differentiable at a amounts to the fact that

$$\lim_{h \to 0} \frac{\|f(a+h) - f(a) - L(h)\|}{\|h\|} = 0$$

as $h \neq 0$ approaches 0, when $a + h \in A$. However, it does no harm to assume that $\epsilon(0) = 0$, and we will assume this from now on.

Again, we note that the derivative Df(a) of f at a provides an affine approximation of f, locally around a.

Remarks:

- (1) Since the notion of limit is purely topological, the existence and value of a derivative is independent of the choice of norms in E and F, as long as they are equivalent norms.
- (2) If $h: (-a, a) \to \mathbb{R}$ is a real-valued function defined on some open interval containing 0, we say that h is o(t) for $t \to 0$, and we write h(t) = o(t), if

$$\lim_{t \to 0, t \neq 0} \frac{h(t)}{t} = 0.$$

With this notation (the *little o notation*), the function f is differentiable at a iff

$$f(a+h) - f(a) - L(h) = o(||h||),$$

which is also written as

$$f(a+h) = f(a) + L(h) + o(||h||).$$

The following proposition shows that our new definition is consistent with the definition of the directional derivative and that the continuous linear map L is unique, if it exists.

Proposition 39.1. Let E and F be two normed affine spaces, let A be a nonempty open subset of E, and let $f: A \to F$ be any function. For any $a \in A$, if Df(a) is defined, then f is continuous at a and f has a directional derivative $D_u f(a)$ for every $u \neq 0$ in \overrightarrow{E} , and furthermore,

$$D_u f(a) = Df(a)(u).$$

Proof. If L = Df(a) exists, then for any nonzero vector $u \in \overrightarrow{E}$, because A is open, for any $t \in \mathbb{R} - \{0\}$ (or $t \in \mathbb{C} - \{0\}$) small enough, $a + tu \in A$, so

$$f(a + tu) = f(a) + L(tu) + \epsilon(tu) ||tu||$$

= $f(a) + tL(u) + |t|\epsilon(tu) ||u||$