P.PORTO		Tipo de Prova Teste 1	Ano letivo 2018/2019	Data 12-04-2019
	ESCOLA SUPERIOR DE TECNOLOGIA	Curso Licenciatura em Engenharia Informática Licenciatura em Segurança Informática de Redes de Comput		Hora 00:00
	E GESTÃO	Unidade Curricular Matemática Discreta		Duração 1,5 horas

Observações

Responda às questões que se seguem na folha do enunciado da prova.

Submeta no moodle um ficheiro com os cálculos que efetue no sum

Na realização desta prova é permitido usar formulário em formato A4, manuscrito pelo estudante que está a realizar o teste/exame. O Formulário tem que conter o nome e número de aluno e deve ser entregue junto com a folha de respostas.

VERSÕES – <mark>10AbrilV1</mark> + <mark>10AbrilV2</mark> + <mark>12AbrilV3</mark> + <mark>12AbrilV4</mark>

NOTAS:

- Tirei o 4 do conjunto Y porque eram muitos elementos. Os conteúdos e é mais fácil corrigir. Por exemplo
- Falta ao produto cartesiano e complementar (temos de ter o conjunto universo e não temos)
- adicionei o coniunto Z (ou C conforme as versões) e alterei a 1.2.2 e 1.2.3.
- Falta funções --- acrescentei 1.1.5 e 11.6

1. Considere os conjuntos

10AbrilV1
$$X = \{x^2 - x : x \in \{0,1,2,3\}\}, Y = \{\{1\}, 1,2,\{2\}, 3,\{3,4\}\} \ e \ Z = \{x \in N : x < 3 \ e \ x \ e \ impar\} = \{1\}$$
10AbrilV2 $X = \{|x - 2| : x \in \{0,1,2,3\}\}, Y = \{1,2,\{2\},3,\{1,2,3\},4\} \ e \ Z = \{x \in N : x < 4 \ e \ x \ e \ par\} = \{2\}$
12AbrilV3 $A = \{a^2 - a : a \in \{0,1,2,3\}\}, B = \{\{1\}, 1,2,\{2\},3,\{3,4\}\} \ e \ C = \{x \in N : x < 4 \ e \ x \ e \ par\} = \{1\}$
12AbrilV4 $A = \{|a - 2| : a \in \{0,1,2,3\}\}, B = \{1,2,\{2\},3,\{1,2,3\},4\} \ e \ C = \{x \in N : x < 4 \ e \ x \ e \ par\} = \{2\}$

1.1. Indique, se cada uma das seguintes afirmações é verdadeira ou falsa. No caso de ser falsa, corrija a afirmação de forma a torná-la verdadeira.

1.1.1. $\{\emptyset, 1, \{1\}\} \subseteq Y$	1.1.2. $\{\emptyset, \{2\}, \{2,6\}\} \in \mathcal{P}(X)$
1.1.3. $\#\mathcal{P}(\mathcal{P}(X)) = 2^8$	1.1.4. $\#Y = 7$
1.1.5. A função $f: X \to \mathcal{P}(X)$ tal que $f(x) = \{x\} \text{ \'e injetiva e sobrejetiva.}$ F $\text{\'e injetiva e não sobrejetiva}$	1.1.6. Seja $g: \mathbb{Z} \to \mathbb{Z}$ tal que $g(x) = 3x$, então $g^{-1}(Z) = 3$ Falso, $g^{-1}(\{1\}) = 1/3$

PROPOSTA DE CORREÇÃO

Temos que

10AbrilV1
$$X = \{x^2 - x : x \in \{0,1,2,3\}\} = \{0^2 - 0, 1^2 - 1, 2^2 - 2, 3^2 - 3\} = \{0,0,2,6\} = \{0,2,6\}$$

 $Y = \{\{1\}, 1,2,\{2\}, 3,\{3,4\}\}\}$
10AbrilV2 $X = \{|x-2| : x \in \{0,1,2,3\}\} = \{2,1,0,1\} = \{0,1,2\} \text{ e } Y = \{1,2,\{2\}, 3,\{1,2,3\}, 4\}$
12AbrilV3 $A = \{a^2 - a : a \in \{0,1,2,3\}\} \text{ e } B = \{\{1\}, 1,2,\{2\}, 3,\{3,4\}\} \text{ \'e IGUAL A 10AbrilV1}$
12AbrilV4 $A = \{|a-3| : a \in \{0,1,2,3\}\} \text{ e } B = \{1,2,\{2\}, 3,\{1,2,3\}, 4\} \text{ \'e IGUAL A 10AbrilV2}$

1.1.1. 10AbrilV1 $\{\emptyset, 1, \{1\}\} \subseteq Y$ Afirmação falsa (porque $\{\emptyset, 1, \{1\}\}$ não é subconjunto de Y uma vez que \emptyset não é elemento de Y). Possíveis respostas: $\{1, \{1\}\} \subseteq Y$, $\{\emptyset, 1, \{1\}\}$ não está contido Y

ESTG-PR05-Mod013V2 Página 1 de 13

P.PORTO SUI		Tipo de Prova Teste 1	Ano letivo 2018/2019	Data 12-04-2019
	ESCOLA SUPERIOR DE TECNOLOGIA	Curso Licenciatura em Engenharia Informática Licenciatura em Segurança Informática de Redes de Comput	adores	Hora 00:00
	E GESTÃO	Unidade Curricular Matemática Discreta		Duração 1,5 horas

10AbrilV2 $\{1, \{1\}, 4\} \subseteq Y$ Afirmação falsa (porque $\{1, \{1\}\}$ não é subconjunto de Y uma vez que $\{1\}$ não é elemento de Y). Possíveis respostas: $\{1\} \subseteq Y$, $\{1, \{1\}, 4\}$ não está contido Y **12**AbrilV3 $\{\emptyset, 2, \{2\}\} \subseteq B$ **12**AbrilV4 $\{1, \{1\}, 3\} \subseteq B$

1.1.2. 10AbrilV1 $\{\emptyset, \{2\}, \{2,6\}\} \in \mathcal{P}(X) \text{ A afirmação falsa. } \emptyset, \{2\}, \{2,6\} \text{ são elementos de } \mathcal{P}(X) \text{ mas}$ $\{\emptyset, \{2\}, \{2,6\}\} \text{ não \'e, portanto } \{\emptyset, \{2\}, \{2,6\}\} \subset \mathcal{P}(X) \text{ ou } \emptyset, \{2\}, \{2,6\} \in \mathcal{P}(X).$ 10AbrilV2 $\emptyset, \{2\}, \{1,2,3\} \in \mathcal{P}(X) \text{ A afirmação \'e verdadeira.}$ 12AbrilV3 $\{\emptyset, \{1\}, \{2,6\}\} \in \mathcal{P}(A) \text{ A afirmação falsa}$

1.1.3. 10AbrilV1 # $\mathcal{P}(\mathcal{P}(X)) = 2^8$ A afirmação é verdadeira # $\mathcal{P}(X) = 2^3 = 8$ e # $\mathcal{P}(\mathcal{P}(X)) = 2^{\#\mathcal{P}(X)} = 2^8$ 10AbrilV2 # $\mathcal{P}(\mathcal{P}(X)) = 2^6$ A afirmação é falsa# $\mathcal{P}(\mathcal{P}(X)) = 2^8$ 12AbrilV3 # $\mathcal{P}(\mathcal{P}(A)) = 2^6$ 12AbrilV4 # $\mathcal{P}(\mathcal{P}(A)) = 2^6$

1.1.4. 10AbrilV1 #Y = 7 A afirmação é falsa. Resposta: #Y = 6 10AbrilV2 #Y = 6 A afirmação é verdadeira 12AbrilV3 #B = 7 A afirmação é falsa. Resposta: #Y = 6 12AbrilV4 #B = 6 A afirmação é verdadeira

12AbrilV4 \emptyset , $\{1\}$, $\{2,3\}$ ∈ $\mathcal{P}(A)$ A afirmação é verdadeira.

1.1.5 A função
$$f: X \to \mathcal{P}(X)$$
 tal que $f(x) = \{x\}$ é injetiva e sobrejetiva.

F é injetiva e não sobrejetiva [10AbrilV]

A função $f: A \to \mathcal{P}(A)$ tal que $f(a) = \{a\}$ é injetiva e sobrejetiva.

12AbrilV3

1.1.6 Seja $g: \mathbb{Z} \to \mathbb{Z}$ tal que $g(x) = 3x$, então $g^{-1}(Z) = 3$

Falso, $g^{-1}(\{1\}) = 1/3$

10AbrilV1

Seja $g: \mathbb{Z} \to \mathbb{Z}$ tal que $g(a) = 3a$, então $g^{-1}(Z) = 3$

Falso, $g^{-1}(\{1\}) = 1/3$

12AbrilV3

1.1.8 Seja $g: \mathbb{Z} \to \mathbb{Z}$ tal que $g(x) = 2x$, então $g^{-1}(Z) = 2$

F é injetiva e não sobrejetiva [1.1.8 Seja $g: \mathbb{Z} \to \mathbb{Z}$ tal que $g(x) = 2x$, então $g^{-1}(Z) = 2$

F é injetiva e não sobrejetiva [1.1.8 Seja $g: \mathbb{Z} \to \mathbb{Z}$ tal que $g(x) = 2x$, então $g^{-1}(Z) = 2$

Falso, $g^{-1}(\{1\}) = 1/2$

10AbrilV2

1.2. Defina por extensão os conjuntos:

1.2.1. $X \cup Y$

1.2.2. $X \oplus (Y - C)$

1.2.3. $\mathcal{P}(X) \cap Y = - - \mathcal{P}(Z) \cap Y$

PROPOSTA DE CORREÇÃO

1.2.1. 10AbrilV1 $X \cup Y = \{0,2,6\} \cup \{\{1\},1,2,\{2\},3,\{3,4\}\} = \{0,\{1\},1,2,\{2\},3,\{3,4\},6\}$ 10AbrilV2 $X \cup Y = \{0,1,2\} \cup \{1,2,\{2\},3,\{1,2,3\},4\} = \{0,1,2,\{2\},3,\{1,2,3\},4\}$ 12AbrilV3 $A \cap B = \{0,2,6\} \cap \{\{1\},1,2,\{2\},3,\{3,4\}\} = \{2\}$ 12AbrilV4 $A \cap B = \{0,1,2\} \cap \{1,2,\{2\},3,\{1,2,3\},4\} = \{1\}$

ESTG-PR05-Mod013V2 Página 2 de 13

	ESCOLA SUPERIOR DE TECNOLOGIA	Tipo de Prova Teste 1	Ano letivo 2018/2019	Data 12-04-2019
P.PORTO		Curso Licenciatura em Engenharia Informática Licenciatura em Segurança Informática de Redes de Comput.		Hora 00:00
	E GESTÃO	Unidade Curricular Matemática Discreta		Duração 1,5 horas

NOTA:
$$X \oplus (Y - X) = (X \cup (Y - X)) \cap (X \cap (Y - X)) = (X \cup Y) \cap \emptyset = X \cup Y$$

$$(Y - X) \oplus X = ((Y - X) \cup X) \cap ((Y - X) \cap X) = (X \cup Y) \cap \emptyset = X \cup Y$$
Fica repetido nas versões 1 e 2!!

1.2.2. 10 AbrilV1 $X \oplus (Y - Z) = \{0,2,6\}$

$$10 \text{AbrilV2} X \oplus (Y - Z) = \{0,1,2\}$$

$$12 \text{AbrilV3} A \oplus (B - C) = \{0,2,6\}$$

$$12 \text{AbrilV4} A \oplus (B - C) = \{0,1,2\}$$
1.2.3

1.2.3

1.2.3

1.3.3

1.4.4 \(\text{I}\) \(\text{Y}\) \(\text{Z}\) \(\text{Z}\) \(\text{Y}\) \(\text{Z}\) \(\text{Z}\) \(\text{Y}\) \(\text{Z}\) \

Considere as relações

10AbrilV1

 $R = \{(x, y): x, y \in \mathbb{Z} \text{ e } x - y \text{ \'e inteiro}\}\ \text{e } S = \{(1,2),(2,1),(2,2),(3,2)\}\ \text{definida sobre o conjunto }\{1,2,3,4\}.$

10AbrilV2

 $R = \{(1,3),(1,4),(3,3),(3,1)\}\$ definida sobre o conjunto $\{1,2,3,4\}\$ e $S = \{(x,y): x,y\in \mathbb{Z}\$ e x+y é inteiro $\}$.

12AbrilV3

 $R = \{(1,3),(1,4),(1,1),(4,1)\}\$ definida sobre o conjunto $\{1,2,3,4\}\$ e $S = \{(x,y):x,y\in\mathbb{Z}\$ e x+y é inteiro $\}$

12AbrilV4

 $R = \{(x, y): x, y \in \mathbb{Z} \text{ e } x - y \text{ \'e inteiro}\} \in S = \{(2,3),(2,1),(3,2),(4,4)\}\$ definida sobre o conjunto $\{1,2,3,4\}$.

Aldina, o teste demora muito a fazer por isso coloquei a relação S com menos elementos porque é mais rápido de resolver e continuamos a conseguir avaliar se os alunos sabem a matéria. Para além disso faltavam os conceitos de simétrico, reflevivo e transitivo .

2.1. Mostre que $\frac{R}{S}$ é uma relação de equivalência em \mathbb{Z} . $\frac{10AbrilV1}{10AbrilV2}$ e $\frac{12AbrilV3}{10AbrilV2}$ e $\frac{S}{S}$ é uma relação de equivalência em \mathbb{Z} . $\frac{10AbrilV2}{10AbrilV3}$ e $\frac{S}{S}$

 $\frac{12\text{AbrilV4}C \times \mathcal{P}(C) = \{2\} \times \{\emptyset, \{2\}\} = \{(2, \emptyset), (2, \{2\})\}}{2}$

- 2.2. Calcule a classe de equivalência de 2, relativamente à relação R. 10AbrilV1e12AbrilV4

 Calcule a classe de equivalência de 2, relativamente à relação S. 10AbrilV2 e 12AbrilV3
- 2.3. Indique o domínio e o contradomínio de <mark>S. 10AbrilV1</mark>e12AbrilV4
 Indique o domínio e o contradomínio de R 10AbrilV2 e 12AbrilV3
- 2.4. Calcule $S \circ S$; S^{-1} ; $S^{-1} \cap R$ e simétrico(S) 10AbrilV1 e reflexivo(S) 12AbrilV4 Calcule $R \circ R$; R^{-1} ; $R^{-1} \cap S$ e simétrico(R) 10AbrilV2 e reflexivo (R) 12AbrilV3

PROPOSTA DE CORREÇÃO

2.1. Mostre que $\frac{R}{}$ é uma relação de equivalência em \mathbb{Z} . $\frac{10AbrilV1}{}$ e $\frac{12AbrilV4}{}$ R $\frac{10AbrilV2}{}$ e $\frac{12AbrilV3}{}$ S $\frac{10AbrilV1}{}$

 $R = \{(x, y) : x, y \in \mathbb{Z} \text{ e } x - y \text{ \'e inteiro}\} = \mathbb{Z} \times \mathbb{Z}$

Reflexividade: Seja $x \in \mathbb{Z}$. Temos que $x - x = 0 \in \mathbb{Z}$, portanto R é reflexiva.

Simetria: Sejam x, y dois números inteiros. Temos que se x - y é um número inteiro também y - x é inteiro, donde, se $(x, y) \in R$ então $(y, x) \in R$, e portanto a relação R é simétrica.

Transitividade: Sejam $x, y, z \in \mathbb{Z}$. Se $(x, y) \in R$ e $(y, z) \in R$, então x - y é inteiro e y - z é inteiro *NOTA: para as outras versões é iqual. Apenas fica + em vez de -*.

ESTG-PR05-Mod013V2 Página 3 de 13

P.PORTO SUI		Tipo de Prova Teste 1	Ano letivo 2018/2019	Data 12-04-2019
	ESCOLA SUPERIOR DE TECNOLOGIA	Curso Licenciatura em Engenharia Informática Licenciatura em Segurança Informática de Redes de Comput	adores	Hora 00:00
	E GESTÃO	Unidade Curricular Matemática Discreta		Duração 1,5 horas

2.2. Calcule a classe de equivalência de 2, relativamente à relação R. 10AbrilV1e12AbrilV4 R 10AbrilV2 e 12AbrilV3 S 10AbrilV1

 $[2]_R = \mathbb{Z}$, uma vez que $x-2 \in \mathbb{Z}$ para qualquer $x \in \mathbb{Z}$. *NOTA: para as outras versões é igual. Apenas fica + em vez de -.*

2.3. Indique o domínio e o contradomínio de S. 10AbrilV1e 12AbrilV4 S e 10AbrilV2 e 12AbrilV3 R

 $\frac{10 \text{AbrilV1}}{S} = \{(1,2), (2,1), (2,2), (3,2)\} ---- \text{dom(S)} = \{1,2,3\} \text{ e cdom(S)} = \{1,2\}$

 $\frac{10 \text{AbrilV2}}{R} = \{(1,3), (1,4), (3,3), (3,1)\} ---- \text{dom}(R) = \{1,3\} \text{ e cdom}(R) = \{1,3,4\}$

 $\frac{12AbrilV3}{R} = \{(1,3),(1,4),(1,1),(4,1)\} ---- dom(R) = \{1,4\} e cdom(R) = \{1,3,4\}$

 $\frac{12 \text{AbrilV4}}{S} = \{(2,3),(2,1),(3,2),(4,4)\} ---- \text{dom(S)} = \{2,3,4\} \text{ e cdom(S)} = \{1,2,3,4\}$

10AbrilV1

$$S \circ S = \{(1,1), (1,2), (2,1), (2,2), (3,1), (3,2)\}$$

 $S = \{(1,2),(2,1),(2,2),(3,2)\} --- S^{-1} = \{(2,1),(1,1),(2,2),(2,3)\}$ FALTA ORDENAR!!!

 $S^{-1} \cap R = S^{-1} \cap (\mathbb{Z} \times \mathbb{Z}) = S^{-1}$

 $S = \{(1,2),(2,1),(2,2),(3,2)\}$ --- simétrico(S) =SU $\{(2,3)\}$ = $\{(1,2),(2,1),(2,2),(3,2),(2,3)\}$ FALTA ORDENAR!!!

12AbrilV4

$$S \circ S = \{(2,2), (3,3), (3,1)\}$$

 $S = \{(2,3),(2,1),(3,2),(4,4)\} --- S^{-1} = \{(3,2),(1,2),(2,3),(4,4)\}$

FALTA ORDENAR!!!

 $S^{-1} \cap R = S^{-1} \cap (\mathbb{Z} \times \mathbb{Z}) = S^{-1}$

 $S = \{(2,3),(2,1),(3,2),(4,4)\} --- \text{ reflexivo } (S) = S \cup \{(1,1),(2,2),(3,3)\} = \{(2,3),(2,1),(3,2),(4,4),(1,1),(2,2),(3,3)\}$

FALTA ORDENAR!!!

Calcule $R \circ R$; R^{-1} ; $R^{-1} \cap S \in \text{simétrico}(R) \frac{10 \text{AbrilV2}}{10 \text{AbrilV2}} \in \text{reflexivo}(R) \frac{12 \text{AbrilV3}}{10 \text{AbrilV3}}$

10AbrilV2

 $R \circ R = \{(1,3), (3,1), (3,3), (3,4)\}$

 $R = \{(1,3),(1,4),(3,3),(3,1)\} - --R^{-1} = \{(3,1),(4,1),(3,3),(1,3)\}$ FALTA ORDENAR!!!

 $R^{-1} \cap S = R^{-1} \cap (\mathbb{Z} \times \mathbb{Z}) = R^{-1}$

Simétrico(R) = R \cup {(4,1)} = {(1,3),(1,4),(3,3),(3,1),(4,1)} FALTA ORDENAR!!!

12AbrilV3

 $R \circ R = \{(1,1), (1,4), (4,3), (4,4)\}$

 $R = \{(1,3),(1,4),(1,1),(4,1)\} - --R^{-1} = \{(3,1),(4,1),(1,1),(1,4)\}$ FALTA ORDENAR!!!

 $R^{-1} \cap S = R^{-1} \cap (\mathbb{Z} \times \mathbb{Z}) = R^{-1}$

reflexivo (R)=R \cup {(2,2),(3,3),(4,4)} ={(1,3),(1,4), (1,1), (4,1),(2,2),(3,3),(4,4)} FALTA ORDENAR!!!

3. Determine, apresentando todos os cálculos:

| To Abril | $\sum_{i=0}^{100} 3 \times \left(-\frac{1}{2}\right)^i + \sum_{i=5}^{50} [(-1)^i]$ | $\sum_{j=1}^{30} \prod_{k=10}^{12} (k-1)$ | $\sum_{j=1}^{30} \prod_{k=10}^{12} (k-1)$ | $\sum_{j=1}^{30} \prod_{k=10}^{12} (k-1)$ | $\sum_{j=1}^{30} (10-1) \times (11-1) \times (12-1)$ | $\sum_{j=1}^{30} (10-1) \times (11-1) \times (12-1)$ | $\sum_{j=1}^{30} (10-1) \times (11-1) \times (12-1)$ | $\sum_{j=1}^{30} 9 \times 10 \times 11 = \sum_{j=1}^{30} 990$ | $\sum_{j=1}^{30} 9 \times 10 \times 11 = \sum_{j=1}^{30} 990$ | $\sum_{j=1}^{30} 990 \times (30-1+1) = 29700$ | $\sum_{j=1}^{30} 990 \times (30-1+1)$ | $\sum_{j=1}^{30}$

ESTG-PR05-Mod013V2 Página 4 de 13

	-	<u> </u>
		soma=0; for k1=1:30 soma=soma+prod(k2-1) end
10AbrilV2	$\sum_{i=0}^{110} 5 \times \left(-\frac{1}{3}\right)^i + \sum_{i=0}^{25} \lceil (-1)^i \rceil$	$\sum_{j=1}^{25} \prod_{k=20}^{22} (k-2)$ $\sum_{j=1}^{25} (20-2) \times (21-2) \times (22-2)$ $= \sum_{j=1}^{25} 18 \times 19 \times 20 = \sum_{j=1}^{25} 6840$ $= 6840 \times (25-1+1) = 171000$
12AbrilV3	$\sum_{i=0}^{105} 4 \times \left(-\frac{1}{4}\right)^i + \sum_{i=0}^{30} \left[(-1)^i\right]$	$\sum_{j=1}^{60} \prod_{k=5}^{7} (k+1)$ $\sum_{j=1}^{60} (5+1) \times (6+1) \times (7+1)$ $= \sum_{j=1}^{60} 6 \times 7 \times 8 = \sum_{j=1}^{60} 336$ $= 336 \times (60-1+1) = 20160$
12AbrilV4	$\sum_{i=0}^{115} 2 \times \left(-\frac{1}{5}\right)^i + \sum_{i=0}^{45} \lfloor (-1)^i \rfloor$	$\sum_{j=1}^{55} \prod_{k=8}^{10} (k+2)$ $\sum_{j=1}^{55} (8+2) \times (9+2) \times (10+2)$ $= \sum_{j=1}^{55} 10 \times 11 \times 12 = \sum_{j=1}^{60} 1320$ $= 1320 \times (55-1+1) = 72600$

4. Considere a fórmula de recorrência dada por:

$$\begin{cases}
G(1) = 2 \\
G(n) = 7 G(n-1) + 1, & n > 1
\end{cases}$$

Recorrendo ao algoritmo EGV (Expand, Guess, Verify), encontre a fórmula fechada.

		,,,,,
10AbrilV1	$\begin{cases} G(1) = \frac{2}{3} \\ G(n) = \frac{7}{3} G(n-1) + 1, & n > 1 \end{cases}$	$G(n) = 7^{n-1}G(1) + 7^{n-2} + 7^{n-3} + \dots + 7^{1} + 7^{0}$
	G(n) = 7 G(n-1) + 1, n > 1	$= 2 \times 7^{n-1} + 7^{n-2} + 7^{n-3} + \dots + 7^1 + 7^0, n \ge 1$
10AbrilV2	$\begin{cases} G(1) = 3 \\ G(n) = 5 G(n-1) + 1, \ n \ge 2 \end{cases}$	
	$G(n) = 5 G(n-1) + 1, \ n \ge 2$	

ESTG-PR05-Mod013V2 Página 5 de 13

		Tipo de Prova Teste 1	Ano letivo 2018/2019	Data 12-04-2019
P.PORTO	ESCOLA SUPERIOR DE TECNOLOGIA	Curso Licenciatura em Engenharia Informática Licenciatura em Segurança Informática de Redes de Computadores		Hora 00:00
	E GESTÃO	Unidade Curricular Matemática Discreta		Duração 1,5 horas

12AbrilV3	G(1) = 4	
	G(n) = 3G(n-1) + 1 $n > 2$	
12AbrilV4	G(1) = 5	
	$\begin{cases} G(1) = 5 \\ G(n) = 2 G(n-1) + 1, & n > 1 \end{cases}$	

PROPOSTA DE CORREÇÃO

Expand

$$G(n) = 7 G(n-1) + 1 = 7[7 G(n-2) + 1] + 1 = 7^2 G(n-2) + 7 + 1$$
 = $7^2[7 G(n-3) + 1] + 7 \times 1 + 1 = 7^3 G(n-3) + 7^2 + 7 + 1$ = $7^3[7 G(n-4) + 1] + 7^2 + 7 + 1 = 7^4 G(n-4) + 7^3 + 7^2 + 7 + 1$

Guess

$$G(n) = 7^k G(n-k) + 7^{k-1} + 7^{k-2} + \dots + 7^1 + 7^0$$

Se
$$n - k = 1$$
, temos

$$G(n) = 7^{n-1}G(1) + 7^{n-2} + 7^{n-3} + \dots + 7^1 + 7^0 = 2 \times 7^{n-1} + 7^{n-2} + 7^{n-3} + \dots + 7^1 + 7^0, n \geq 1$$

Verify

Passo Base – $G(1) = 2 \times 7^0 = 2$ Verdadeiro

Passo indutivo – Hipótese: $G(k) = 2 \times 7^{k-1} + 7^{k-2} + \dots + 7^1 + 7^0$

Tese:
$$G(k + 1) = 2 \times 7^k + 7^{k-1} + \dots + 7^1 + 7^0$$

Temos que

G(k+1) = 7G(k) + 1, por definição de G

 $=7[2 \times 5^{k-1} + 5^{k-2} + \dots + 7^1 + 7^0] + 1$, pela hipótese de indução

 $= 2 \times 7^k + 7^{k-1} + \dots + 7^1 + 7^0$ c.q.m.

Logo, a formula fechada para a recorrência apresentada é $G(n) = 2 \times 7^{n-1} + 7^{n-2} + 7^{n-3} + \cdots + 7^1 + 7^0$.

Esta parte é opcional!!!

Adicionalmente, como

$$7^{n-2} + 7^{n-3} + \dots + 7^1 + 7^0 = \sum_{i=0}^{n-2} 7^i = 1 \times \frac{1 - 7^{n-2+1}}{1 - 7} = -\frac{1 - 7^{n-1}}{6}$$

(soma de uma progressão geométrica – ver Teorema 5 da pág. 28)

Temos que
$$G(n) = 2 \times 7^{n-1} - \frac{1-7^{n-1}}{6} = -\frac{1}{6} + \left(2 + \frac{1}{6}\right) \times 7^{n-1} = -\frac{1}{6} + \frac{13}{6} \times 7^{n-1}, n \ge 1$$

ESTG-PR05-Mod013V2 Página 6 de 13

DE TECNO		Tipo de Prova Teste 1	Ano letivo 2018/2019	Data 12-04-2019
	SUPERIOR	Curso Licenciatura em Engenharia Informática Licenciatura em Segurança Informática de Redes de Computadores		Hora 00:00
	E GESTÃO	Unidade Curricular Matemática Discreta		Duração 1,5 horas

5. Considere o grafo G_1 definido por $V(G_1) = \{a, b, c, d, e\} \in E(G_1) = \{(a, a), (a, b), (a, e), (b, c), (c, d), (c, e), (d, e)\}, o grafo <math>\vec{G}_2$

representado na **Figura 1** e o grafo \vec{G}_3 cujos vértices são A,B,C,D e a matriz de adjacências é introduzida no Scilab usando o código:

-->M=[1 1 0 0; 1 0 0 2; 1 1 0 0; 1 0 0 1]

IDEIA v1 G1 não orientado V2 orientado V2 G1 orientado V2 não orientado

	10AbrilV1	10AbrilV2	12AbrilV3	12AbrilV4
G1	Não orientado V(G ₁) = {a, b, c, d, e} e E(G ₁) = {(a, a), (a, b), (a, e), (b, c), (c, d), (c, e), (d, e)}	Orientado V(\overrightarrow{G}_1) = {a, b, c, d, e} e E(\overrightarrow{G}_1) = { (a, a), (a, b), (a, e), (b, c), (c, d), (c, e), (d, e)}	Não orientado V(G ₁) = {a, b, c, d, e} e E(G ₁) = { (a, b), (a, e), (b,b), (b, c), (b, d), (c, e), (d, e)}	Orientado $V(\vec{G}_1) = \{a, b, c, d, e\} e E(\vec{G}_1) = \{(a, b), (a, e), (b, b), (b, c), (b, d), (c, e), (d, e)\}$
G2	(1) (1) (2) (3) (4) (4)	O de baixo é maior. Acho melhor ficar para depois Igual a LEI1T2_v1 do ano passado		O de baixo é maior. Acho melhor ficar para depois Igual a LEIT2_v2 do ano passado
G 3	M=[1 1 0 0; 1 0 0 2; 1 1 0 0; 1 0 0 1]	M=[1 1 0 0; 1 1 0 0; 1 0 0 2; 1 0 0 1] (Troquei a 2.a com a 3.a linha)	M=[1 0 0 2; 1 1 0 0; 1 1 0 0; 1 0 0 1] (Troquei a 1.a com a 2.a linha)	M=[1 0 0 1; 1 1 0 0; 1 1 0 0; 1 0 0 2] (Troquei a 1.a com a 4.a linha)

5.1. Indique a matriz de adjacências de \vec{G}_2

$$M_{\overrightarrow{G_2}} = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 \end{bmatrix}$$

5.2. Represente G_1 e \vec{G}_3 graficamente

ESTG-PR05-Mod013V2 Página 7 de 13

P. PORTO ESCOLA SUPERIOR OF TECHOLOGIA E GESTÃO		Tipo de Prova Teste 1	Ano letivo 2018/2019	Data 12-04-2019
	SUPERIOR	Curso Licenciatura em Engenharia Informática Licenciatura em Segurança Informática de Redes de Comput	adores	Hora 00:00
	1707.0 2 200.0	Unidade Curricular Matemática Discreta		Duração 1,5 horas

5.3. Determine os graus de cada vértice de G_1 e \vec{G}_3

grau(a) = 4; grau(b) = 2; grau(c) = 3; grau(d) = 2; grau(e) = 3 \vec{G}_3 $grau^e(A) = 4; grau^s(A) = 2;$ $grau^e(B) = 2; grau^s(B) = 3;$ $grau^e(C) = 0; grau^s(C) = 2;$ $grau^e(D) = 3; grau^s(D) = 2$

5.4. Indique, justificando quantos caminhos de comprimento 5 do vértice C para o vértice B, existem no grafo \vec{G}_3 ;

10AbrilV1

 G_1

 $\frac{10 \text{AbrilV2}}{10}$ comprimento 4 do vértice B para o vértice C, existem no grafo \vec{G}_3 ;

12AbrilV3 comprimento 5 do vértice A para o vértice C, existem no grafo \vec{G}_3 ;

12AbrilV4 comprimento 4 do vértice C para o vértice A, existem no grafo \vec{G}_{3} ;

	10AbrilV1	10AbrilV2		
G1	Não orientado $V(G_1) = \{a, b, c, d, e\} e E(G_1) =$	Orientado	Não orientado V(G ₁) = {a, b, c, d, e} e E(G ₁) = {	Orientado
	{ (a, a), (a, b), (a, e), (b, c), (c, d), (c, e), (d, e)}	$V(\vec{G}_1) = \{a, b, c, d, e\} \in E(\vec{G}_1)$ = \{ (a, a), (a, b), (a, e), (b, c), (c, d), (c, e), (d, e)\}	(a, b), (a, e), (b,b),(b, c), (b, d), (c, e), (d, e)}	$V(\vec{G}_1) = \{a, b, c, d, e\} e E(\vec{G}_1)$ = \{ (a, b), (a, e), (b,b), (b, c), (b, d), (c, e), (d, e)\}

```
MG3=[1 1 0 0; 1 0 0 2; 1 1 0 0; 1 0 0 1]
MG3^5
--> M^5
 ans =
   24.
          11.
                 0.
                      18.
   29.
                      22.
          13.
                 0.
   24.
          11.
                 0.
                      18.
   20.
          9.
                 0.
                      15.
```

Existem 11 caminhos

5.5. Indique, justificando quais dos grafos são grafos simples;
Um grafo simples é um grafo que não tem arestas múltiplas nem lacetes. Assim, nenhum dos grafos é simples.

5.6. Indique, justificando quais dos grafos são grafos conexos ou fortemente conexos. Diga, justificando se \vec{G}_3 é fortemente conexo.

 G_1 Corolário 1:

ESTG-PR05-Mod013V2 Página 8 de 13

	ESCOLA SUPERIOR DE TECNOLOGIA E GESTÃO	Tipo de Prova Teste 1	Ano letivo 2018/2019	Data 12-04-2019
P.PORTO		Curso Licenciatura em Engenharia Informática Licenciatura em Segurança Informática de Redes de Computadores		Hora 00:00
		Unidade Curricular Matemática Discreta		Duração 1,5 horas

Um grafo não orientado é conexo (fortemente conexo) se o fecho transitivo da sua matriz de adjacências não tiver entradas nulas.

$$M_{G_1} = \begin{bmatrix} 1 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 & 0 \end{bmatrix}$$

$$F_{G_1} = M_{G_1} + M_{G_1}^2 + M_{G_1}^3 + M_{G_1}^4 + M_{G_1}^5 =$$

$$MG1 = \begin{bmatrix} 1 & 1 & 0 & 0 & 1; 1 & 0 & 1 & 0 & 0; 0 & 1 & 0 & 1 & 1; 1 & 0 & 0 & 1 & 1 & 1 & 0 \end{bmatrix}$$

$$FG3 = MG1 + MG1^2 + MG1^3 + MG1^4 + MG1^5$$

$$60. \quad 45. \quad 47. \quad 38. \quad 58.$$

$$45. \quad 26. \quad 40. \quad 27. \quad 36.$$

$$47. \quad 40. \quad 42. \quad 38. \quad 54.$$

$$38. \quad 27. \quad 38. \quad 29. \quad 40.$$

$$58. \quad 36. \quad 54. \quad 40. \quad 51.$$

A matriz fecho não tem entradas nulas, logo o grafo G_1 é conexo.

 \vec{G}_2

Corolário 1:

Um grafo orientado é fortemente conexo se o fecho transitivo da sua matriz de adjacências não tiver entradas nulas.

$$M_{\overrightarrow{G_2}} = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 \end{bmatrix}$$

$$F_{\overline{G_2}} = M_{\overline{G_2}} + M_{\overline{G_2}}^2 + M_{\overline{G_2}}^3 + M_{\overline{G_2}}^4 + M_{\overline{G_2}}^5 = \\ \text{MG2} = \begin{bmatrix} 1 & 0 & 0 & 1 & 0; 1 & 0 & 0 & 0; 0; 1 & 1 & 1 & 0 & 0; 0 & 0 & 1 & 0 & 1; 0 & 0 & 1 & 0 & 0 \end{bmatrix} \\ \text{FG2} = \text{MG2} + \text{MG2}^2 + \text{MG2}^3 + \text{MG2}^4 + \text{MG2}^5 \\ 24. & 9. & 17. & 11. & 5. \\ 11. & 4. & 9. & 5. & 3. \\ 33. & 11. & 24. & 17. & 9. \\ 26. & 8. & 16. & 13. & 6. \\ 17. & 5. & 11. & 9. & 4. \\ \end{bmatrix}$$

A matriz fecho não tem entradas nulas, logo o grafo \vec{G}_2 é fortemente conexo.

```
\vec{G}_3
   MG3=[1 1 0 0; 1 0 0 2; 1 1 0 0; 1 0 0 1]
    FG2=MG3+MG3^2+MG3^3+MG3^4
F_3 = M + M^2 + M^3 + M^4=
ans =
                                                  Tem gralha.
                                                  Falta corrigir
   19.
         9.
                0. 14.
   23. 10.
                0. 18.
                    14.
   19.
         9.
                0.
                     12.
```

A matriz fecho da matriz de adjacências do grafo \vec{G}_3 tem entradas nulas, pelo que o grafo não é fortemente conexo. Vejamos se é conexo, apaisando o fecho da matriz de adjacências do grafo suporte:

ESTG-PR05-Mod013V2 Página 9 de 13

	ESCOLA SUPERIOR DE TECNOLOGIA E GESTÂD	Tipo de Prova Teste 1	Ano letivo 2018/2019	Data 12-04-2019
P.PORTO		Curso Licenciatura em Engenharia Informática Licenciatura em Segurança Informática de Redes de Computadores		Hora 00:00
		Unidade Curricular Matemática Discreta		Duração 1,5 horas

153.	146.	71.	137.
146.	155.	66.	129.
71.	66.	33.	63.
137.	129.	63.	124.

A matriz fecho do grafo suporte ao grafo \vec{G}_3 não tem entradas nulas, pelo que o grafo \vec{G}_3 é conexo.

5.7. Averigue se os grafos são Eulerianos ou semi-Eulerianos.

Averigue se o grafo \vec{G}_3 é Euleriano ou semi-Euleriano.

Teorema 14:

Um multigrafo conexo, com pelos menos dois vértices, é Euleriano se e só se todos os seus vértices têm grau par.

O grafo ${\cal G}_1$ é conexo, pela alínea anterior e

 G_1

$$grau(a) = 4$$
; $grau(b) = 2$; $grau(c) = 3$; $grau(d) = 2$; $grau(e) = 3$

Pela alínea 5.3, logo existindo vértices de grau impar tem-se que o grafo G_1 não é Euleriano.

Teorema 15:

Um grafo conexo é semi-Euleriano (e não Euleriano) se e só se possuir exatamente dois vértices de grau ímpar.

Como o grafo G_1 é conexo e possui 2 vértices de grau ímpar (c, e), pela alínea anterior e G_1

$$grau(a) = 4$$
; $grau(b) = 2$; $grau(c) = 3$; $grau(d) = 2$; $grau(e) = 3$

Pela alínea 5.3, logo existindo vértices de grau impar tem-se que o grafo G_1 não é Euleriano.

 \vec{G}_3

Teorema de Euler – Um grafo orientado admite um circuito de Euler sse for fortemente conexo e pseudo–simétrico, isto é, qualquer um dos vértices tem grau de entrada igual ao grau de saída.

Um grafo orientado contém um caminho de Euler sse é fortemente conexo e todos menos 2 vértices têm o mesmo grau de entrada e de saída, e os 2 vértices têm graus de entrada que diferem de 1.

ESTG-PR05-Mod013V2 Página 10 de 13

	ESCOLA SUPERIOR DE TECNOLOGIA E GESTÃO	Tipo de Prova Teste 1	Ano letivo 2018/2019	Data 12-04-2019
P.PORTO		Curso Licenciatura em Engenharia Informática Licenciatura em Segurança Informática de Redes de Computadores		Hora 00:00
		Unidade Curricular Matemática Discreta		Duração 1,5 horas

6. Considere o grafo apresentado na Figura 2 onde estão representados os Concelhos da Região do Tâmega e Sousa e algumas das distâncias em km entre cada um deles.

Concelhos	Vértice
Amarante	Α
Baião	В
Castelo de Paiva	CP
Celorico de Basto	СВ
Cinfães	С
Felgueiras	F
Lousada	L
Marco de Canaveses	MC
Paços de Ferreira	PF
Penafiel	Р
Resende	R

6.2. Use o algoritmo de Dijkstra para encontrar o caminho mais curto entre Paços de Ferreira e Resende.

ESTG-PR05-Mod013V2 Página 11 de 13

		Tipo de Prova Teste 1	Ano letivo 2018/2019	Data 12-04-2019
P.PORTO	COLUMN TO A STATE OF THE PARTY	Curso Licenciatura em Engenharia Informática Licenciatura em Segurança Informática de Redes de Computadores		Hora 00:00
		Unidade Curricular Matemática Discreta		Duração 1.5 horas

ESTG-PR05-Mod013V2 Página 12 de 13

P.PORTO	ESCOLA SUPERIOR DE TECNOLOGIA	Tipo de Prova Teste 1	Ano letivo 2018/2019	Data 12-04-2019
		Licenciatura em Engenharia Informática		Hora 00:00
	E GESTÃO	Unidade Curricular Matemática Discreta		Duração 1,5 horas

	Matemática Discreta	1,5 horas
	6 1	16.2
12AbrilV3	6 . 1 Comprimento 5 – de Celorico de Basto para Castelo de Paiva (CB,F,A,MC,P,CP) -> 24,5+19,8+24,6+21,3+20,8=111km	6 . 2 Resende e Felgueiras 24,5 Km A-70 17 Km 19,8 Km 21,9 Km 24,6 Km 24,6 Km 24,6 Km 24,6 Km 22,3 Km 20,8 Km 22,3 Km 20,8 Km 22,3 Km 26,2 Km 28,4 Km 22,3 Km
12AbrilV4	Comprimento 8 – de Resende e para Felgueiras (R,C,B,MC,P,CP,MC,A,F)-> 23,5+22,3+15,7+21,3+20,8+28,4 +24,6+19,8=176,4km	O caminho mais curto entre Resende e Felgueiras tem 70,9 km e é: F,A,B,R Penafiel e Celorico de Basto
		O caminho mais curto entre Penafiel e Celorico de Basto tem 45,9 km e é: P,A,CB

ESTG-PR05-Mod013V2 Página 13 de 13