Draft-1

STA 210 - Summer 2022

Team 2 - Alicia Gong, Ashley Chen, Abdel Shehata, Claire Tam 6-8-2022

Setup

```
library(tidywerse)
library(tidymodels)
library(dplyr)
library(ggplot2)
library(cowplot)
library(knitr)
library(recipes)
library(raret)
library(InformationValue)
library(ISLR)
library(MASS)
library(nnet)
```

```
redwine <- read.csv("data/winequality-red.csv", sep = ";")
whitewine <- read.csv("data/winequality-white.csv", sep = ";")
redwine <- redwine %>% mutate(color="red")
whitewine <- whitewine %>% mutate(color="white")
wine <- redwine %>% full_join(whitewine)
wine <- slice(wine, sample(1:n()))</pre>
```

Load packages and data:

Introduction and Data

Introduction About 234 million hectoliters of wine were consumed in 2020, worldwide, with the US making up approximetly 14% of that consumption (Karlsson 2020). Since Wine composition and wine quality varies widely, it raises the question: what makes a good wine?

To answer that question, we will analyze the wine quality dataset from Vinho Verde vinyard in Portogal, and more importantly try to narrow down our question to make it possible for it to be supported by evidence. Below is the introduction to our research:

Project Goal: To identify variables that are important in explaining variation in the response. "Vinho Verde" is the kind of wine exclusively produced in the demarcated region of Vinho Verde in northwestern Portugal. The Vinho Verde wine has its own unique system of production and is only produced from the indigenous grape varieties of the region. Vinho Verde region is one of the largest and oldest wine regions in the world, and is home to thousands of producers, generating a wealth of economic activity and jobs, and strongly contributes to the development of Minho province and the country. The Vinho Verde wine also enjoys high reputation worldwide. It is recurrently awarded in national and international competitions. The goal of this dataset is to model wine quality based on physicochemical tests. We believe that this dataset can also be used to analyze the relationship between different chemical compositions and the ratings of wine quality. We believe that this dataset can also be used to analyze what chemical factors are attributable to the final rating of Vinho Verde wine. Our research may shed light on future research and development directions for improving the quality of Vinho Verde wine, which may also contribute to the competitiveness of Portuguese wine industry.

Our goal is to produce a classification model that best explains how different chemical compositions of the Portuguese "Vinho Verde" wine affects the variation of the wine quality.

Data Introduction The Wine Quality dataset was collected from Vinho Verde wine Samples, from the North of Portugal. The data was originally donated in 2009 by Professor Cortez. The specific mechanism of the collection of the data was lab work done on different wines to measure their chemical attributites (like acidity etc.). The quality of the wine however was obtained through the average rating of three wine experts. The dataset is divided into two: Red wine and White wine. Red Wine has 1599 observations, and white wine has 4898 observations (each observation being a specific wine). Information about the wine include but are not limited to:PH,Density,Acidity, and alcohol content.

Each observation is a specific wine from the Vinho Verde region. Thus, there might be a little uncertainty in collecting the exact numbers for each numbers. However, since the Vinho Verde region is a vast region spreading 15500 hectareas of vineyards in far-north Portugal, this uncertainty shouldn't be significant in our analysis or project. Thus, we will assume that the datas are independent and random

glimpse(wine)

```
Rows: 6,497
Columns: 13
$ fixed.acidity
                       <dbl> 9.8, 7.0, 6.4, 5.2, 7.1, 6.2, 7.3, 7.3, 8.0, 7.7,~
$ volatile.acidity
                       <dbl> 0.39, 0.23, 0.26, 0.37, 0.28, 0.37, 0.23, 0.21, 0~
                       <dbl> 0.43, 0.32, 0.21, 0.33, 0.35, 0.24, 0.37, 0.21, 0~
$ citric.acid
                       <dbl> 1.65, 1.80, 8.20, 1.20, 3.50, 6.10, 1.80, 1.60, 1~
$ residual.sugar
$ chlorides
                       <dbl> 0.068, 0.048, 0.050, 0.028, 0.028, 0.032, 0.032, ~
                       <dbl> 5.0, 25.0, 51.0, 13.0, 35.0, 19.0, 60.0, 35.0, 40~
$ free.sulfur.dioxide
$ total.sulfur.dioxide <dbl> 11, 113, 182, 81, 91, 86, 156, 133, 131, 27, 127,~
$ density
                       <dbl> 0.99478, 0.99150, 0.99542, 0.99020, 0.99022, 0.98~
$ pH
                       <dbl> 3.19, 3.11, 3.23, 3.37, 2.96, 3.04, 3.11, 3.38, 3~
                       <dbl> 0.46, 0.47, 0.48, 0.38, 0.33, 0.26, 0.35, 0.46, 0~
$ sulphates
                       <dbl> 11.4, 11.1, 9.5, 11.7, 12.1, 13.4, 11.1, 10.0, 10~
$ alcohol
                       <int> 5, 6, 5, 6, 5, 8, 6, 6, 5, 5, 6, 5, 6, 8, 7, 6, 7~
$ quality
                       <chr> "red", "white", "white", "white", "white", "white"
$ color
```

There are 6497 observations and 13 variables (14 if you include the new response variable added later).

```
any(is.na(wine))
```

[1] FALSE

There are no NAs in our data, so we shouldn't be concerned about missing data.

```
wine <- wine %>%
  mutate(good_wine = if_else(quality >= 7,"1","0"))
wine <- wine %>%
  mutate(good_wine = as.factor(good_wine))
wine <- wine %>%
  mutate(good_wine_names = if_else(good_wine=="1","Good wine","Bad or subpar wine"))
no1 <- colnames(wine)[1:11]
colnames(wine)[1:11] = paste("c_", no1, sep = "")</pre>
```

Data Wrangling

Distribution of good wine in data

Distribution of wine quality in data


```
p1 <- ggplot(data = wine, aes(x = quality) ) +
    geom_bar(fill = "pink") +
    labs(x = "quality")

p2 <- ggplot(data = wine, aes(x = c_fixed.acidity) ) +
    geom_histogram(fill = "pink") +
    labs(x = "fixed acidity")

p3 <- ggplot(data = wine, aes(x = c_volatile.acidity) ) +
    theme(axis.text=element_text(size=9)) +
    geom_histogram(fill = "pink") +
    labs(x = "volatile acidity")

p4 <- ggplot(data = wine, aes(x = c_citric.acid) ) +
    theme(axis.text = element_text(size=9)) +
    geom_histogram(fill = "pink") +
    labs(x = "citric acid")</pre>
```

```
p5 <- ggplot(data = wine, aes(x = c_residual.sugar)) +
  geom_histogram(fill = "pink") +
  labs(x = "residual sugar")
p6 <- ggplot(data = wine, aes(x = c chlorides)) +
 theme(axis.text = element text(size = 11)) +
  geom_histogram(fill = "pink") +
  labs(x = "chlorides")
p7 <- ggplot(data = wine, aes(x = c_free.sulfur.dioxide)) +
  theme(axis.text = element_text(size=9)) +
  geom_histogram(fill = "pink") +
  labs(x = "free sulfur dioxide")
p8 <- ggplot(data = wine, aes(x = c_total.sulfur.dioxide) ) +</pre>
  theme(axis.text = element_text(size=9)) +
  geom_histogram(fill = "pink") +
  labs(x = "total sulfur dioxide")
p9 <- ggplot(data = wine, aes(x = c density)) +
 theme(axis.text = element text(size = 7.5)) +
  geom_histogram(fill= "pink") +
  labs(x = "density")
p10 <- ggplot(data = wine, aes(x = c_pH)) +
  geom_histogram(fill = "pink") +
 labs(x = "pH")
p11 <- ggplot(data = wine, aes(x = c_sulphates) ) +</pre>
  theme(axis.text = element_text(size=9)) +
  geom_histogram(fill= "pink") +
  labs(x = "sulphates")
p12 <- ggplot(data = wine, aes(x = c_alcohol)) +
  geom histogram(fill= "pink") +
  labs(x = "alcohol")
plot_grid(p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, ncol = 3, nrow = 4)
```



```
a1 <- ggplot(wine, aes(y = c_alcohol, x = as.factor(good_wine))) +
   geom_boxplot() +
   labs(x = "good wine", y = "alcohol")</pre>
```

```
a2 <- ggplot(wine, aes(y = c_density, x = as.factor(good_wine))) +
    geom_boxplot() +
    labs(x = "good wine", y = "density")

a3 <- ggplot(wine, aes(y = c_volatile.acidity, x = as.factor(good_wine))) +
    geom_boxplot() +
    labs(x = "good wine", y = "volatile acidity")

a4 <- ggplot(wine, aes(y = c_chlorides, x = as.factor(good_wine))) +
    geom_boxplot() +
    labs(x = "good wine", y = "chlorides")

plot_grid(a1, a2, a3, a4, ncol = 2, nrow = 2)</pre>
```



```
# exploring interaction effects
a5 <- ggplot(wine, aes(y = c_sulphates, x = as.factor(good_wine), color = color)) +</pre>
```

```
geom_boxplot() +
labs(x = "good wine", y = "chlorides")

a6 <- ggplot(wine, aes(y = c_pH, x = as.factor(good_wine), color = color)) +
    geom_boxplot() +
labs(x = "good wine", y = "chlorides")

a7 <- ggplot(wine, aes(y = c_total.sulfur.dioxide, x = as.factor(good_wine), color = color))
    geom_boxplot() +
labs(x = "good wine", y = "chlorides")

a8 <- ggplot(wine, aes(y = c_alcohol, x = as.factor(good_wine), color = color)) +
    geom_boxplot() +
labs(x = "good wine", y = "alcohol")

plot_grid(a5, a6, a7, a8, ncol = 2, nrow = 2)</pre>
```



```
a1 <- ggplot(wine, aes(y = c_alcohol, x = as.factor(quality))) +
    geom_boxplot() +
    labs(x = "good wine", y = "alcohol")

a2 <- ggplot(wine, aes(y = c_density, x = as.factor(quality))) +
    geom_boxplot() +
    labs(x = "good wine", y = "density")

a3 <- ggplot(wine, aes(y = c_volatile.acidity, x = as.factor(quality))) +
    geom_boxplot() +
    labs(x = "good wine", y = "volatile acidity")

a4 <- ggplot(wine, aes(y = c_chlorides, x = as.factor(quality))) +
    geom_boxplot() +
    labs(x = "good wine", y = "chlorides")

plot_grid(a1, a2, a3, a4, ncol = 2, nrow = 2)</pre>
```



```
# exploring interaction effects
a5 <- ggplot(wine, aes(y = c_sulphates, x = as.factor(quality), color = color)) +
  geom_boxplot() +
  labs(x = "good wine", y = "chlorides")

a6 <- ggplot(wine, aes(y = c_pH, x = as.factor(quality), color = color)) +
  geom_boxplot() +
  labs(x = "good wine", y = "chlorides")

a7 <- ggplot(wine, aes(y = c_total.sulfur.dioxide, x = as.factor(quality), color = color)) +
  geom_boxplot() +
  labs(x = "good wine", y = "chlorides")

a8 <- ggplot(wine, aes(y = c_alcohol, x = as.factor(quality), color = color)) +
  geom_boxplot() +
  labs(x = "good wine", y = "alcohol")

plot_grid(a5, a6, a7, a8, ncol = 2, nrow = 2)</pre>
```


Exploratory Data Analysis

Methodology

```
set.seed(222)
wine_split <- initial_split(wine, prop = 3/4)
wine_train <- training(wine_split)
wine_test <- training(wine_split)

wine_spec <- logistic_reg() %>% set_engine("glm")

wine_rec1 <- recipe(
   good_wine ~., data = wine_train) %>%
```

```
step_rm(good_wine_names, quality) %>%
step_center(all_numeric_predictors())%>%
step_dummy(all_nominal_predictors()) %>%
step_zv(all_predictors())
```

```
wine_wflow1 <- workflow() %>%
  add_model(wine_spec) %>%
  add_recipe(wine_rec1)
```

```
wine_fit1 <- wine_wflow1 %>%
  fit(data = wine_train)
kable(tidy(wine_fit1), digits = 3)
```

Logistic Model: Reduced

term	estimate	std.error	statistic	p.value
(Intercept)	-1.454	0.219	-6.636	0.000
c_fixed.acidity	0.482	0.078	6.207	0.000
c_volatile.acidity	-3.878	0.459	-8.441	0.000
c_citric.acid	-0.586	0.404	-1.452	0.146
c_residual.sugar	0.210	0.031	6.879	0.000
c_chlorides	-8.934	3.118	-2.866	0.004
$c_free.sulfur.dioxide$	0.013	0.004	3.524	0.000
$c_total.sulfur.dioxide$	-0.004	0.002	-2.711	0.007
$c_density$	-388.101	77.362	-5.017	0.000
с_рН	2.442	0.419	5.823	0.000
c_sulphates	2.389	0.328	7.291	0.000
c_alcohol	0.507	0.094	5.407	0.000
color_white	-0.682	0.286	-2.380	0.017

Since the p-value of the citric acid coefficient is well above our significance level of 0.05, we perform an Anova test:

```
wine_rec2 <- recipe(
  good_wine ~., data = wine_train) %>%
  step_rm(good_wine_names,quality,c_citric.acid) %>%
  step_center(all_numeric_predictors()) %>%
  step_dummy(all_nominal_predictors()) %>%
```

```
step_zv(all_predictors())
wine_wflow2 <- workflow() %>%
  add_model(wine_spec) %>%
  add_recipe(wine_rec2)

wine_fit2 <- wine_wflow2 %>%
  fit(data = wine_train)

fit_engine1 <- extract_fit_engine(wine_fit1)
fit_engine2 <- extract_fit_engine(wine_fit2)</pre>
```

```
fit_engine1 <- extract_fit_engine(wine_fit1)
fit_engine2 <- extract_fit_engine(wine_fit2)
anova(fit_engine2, fit_engine1, test = "Chisq") %>%
    kable(digits = 3)
```

Resid. Df	Resid. Dev	Df	Deviance	Pr(>Chi)
4860	3742.045	NA	NA	NA
4859	3739.911	1	2.134	0.144

Based on these results, we should remove citric acid.

```
wine_rec_full <- recipe(good_wine ~., data = wine_train) %>%
  step_rm(good_wine_names,quality,c_citric.acid) %>% # i don't think we should remove citric
  step_dummy(color) %>%
  step_interact(terms = ~starts_with("c_"):starts_with("color")) %>%
  step_dummy(all_nominal_predictors()) %>%
  step_zv(all_predictors())
```

```
wine_flow_model <- workflow() %>%
  add_model(wine_spec) %>%
  add_recipe(wine_rec_full)
```

```
wine_fit_test <- wine_flow_model %>%
  fit(data = wine_train)
```

```
tidy(wine_fit_test,conf.int = T) %>%
kable(digits = 3)
```

Full Model

term	estimate	std.error	statistic	p.value	conf.low	conf.high
(Intercept)	201.576	128.917	1.564	0.118	-51.501	454.769
c_fixed.acidity	0.274	0.146	1.883	0.060	-0.013	0.560
$c_{volatile.acidity}$	-3.150	0.788	-3.999	0.000	-4.728	-1.637
$c_{residual.sugar}$	0.215	0.099	2.182	0.029	0.010	0.400
c _chlorides	-8.150	4.372	-1.864	0.062	-17.766	-0.805
$c_free.sulfur.dioxide$	0.017	0.015	1.091	0.275	-0.013	0.046
$c_total.sulfur.dioxide$	-0.019	0.006	-2.991	0.003	-0.032	-0.007
$c_density$	-	131.599	-1.651	0.099	-	41.064
	217.245				475.716	
c_pH	0.215	1.174	0.183	0.855	-2.109	2.500
$c_sulphates$	3.492	0.639	5.462	0.000	2.224	4.746
c_alcohol	0.874	0.152	5.759	0.000	0.581	1.177
color_white	447.773	168.987	2.650	0.008	117.678	780.483
$c_fixed.acidity_x_color_white$	0.265	0.179	1.484	0.138	-0.084	0.618
$c_volatile.acidity_x_color_whi$	te -0.456	0.967	-0.471	0.637	-2.336	1.458
$c_{residual.sugar_x_color_whit}$	e 0.084	0.107	0.783	0.434	-0.118	0.304
$c_chlorides_x_color_white$	-6.861	6.287	-1.091	0.275	-18.848	5.891
c_free.sulfur.dioxide_x_color_	white.006	0.016	-0.376	0.707	-0.037	0.025
$c_total.sulfur.dioxide_x_color_$	_white018	0.007	2.713	0.007	0.006	0.031
$c_density_x_color_white$	-	171.983	-2.644	0.008	-	-118.703
	454.672				793.257	
$c_pH_x_color_white$	3.076	1.273	2.416	0.016	0.595	5.593
$c_sulphates_x_color_white$	-1.252	0.753	-1.662	0.096	-2.729	0.235
$c_alcohol_x_color_white$	-0.770	0.201	-3.834	0.000	-1.168	-0.380

As we can see from some variables p values and confidence interval, we can drop some of those valuables if we were to conduct to a hypothesis test since their p value would exceed 0.05, meaning that we would not have enough to reject the null hypothesis. (better wording later)

```
wine_full_reduced <- recipe(good_wine ~., data = wine_train) %>%
  step_rm(good_wine_names, quality, c_citric.acid) %>%
  step_dummy(color)%>%
  step_interact(terms = ~starts_with("c_"):starts_with("color")) %>%
  step_rm(c_sulphates_x_color_white, c_free.sulfur.dioxide_x_color_white, c_chlorides_x_color_white)
```

```
step_dummy(all_nominal_predictors()) %>%
step_zv(all_predictors())
```

```
wine_full_reduced_workflow<- workflow() %>%
  add_model(wine_spec) %>%
  add_recipe(wine_full_reduced)

wine_fit_test <- wine_full_reduced_workflow %>%
  fit(data = wine_train)

tidy(wine_fit_test,conf.int = T) %>%
  kable(digits = 3)
```

term	estimate	std.error	statistic	p.value	conf.low	conf.high
(Intercept)	286.536	86.865	3.299	0.001	117.163	458.206
c_fixed.acidity	0.394	0.069	5.732	0.000	0.260	0.530
c_volatile.acidity	-3.361	0.451	-7.461	0.000	-4.254	-2.488
c_residual.sugar	0.259	0.032	8.108	0.000	0.197	0.322
c _chlorides	-12.021	3.278	-3.667	0.000	-18.704	-5.896
$c_free.sulfur.dioxide$	0.011	0.004	3.196	0.001	0.004	0.018
$c_total.sulfur.dioxide$	-0.015	0.004	-3.737	0.000	-0.024	-0.008
$c_density$	-	87.066	-3.459	0.001	-	-131.465
	301.199				473.285	
$c_sulphates$	2.458	0.336	7.306	0.000	1.796	3.115
c_alcohol	0.811	0.124	6.532	0.000	0.571	1.059
color_white	257.245	78.819	3.264	0.001	102.590	411.830
$c_total.sulfur.dioxide_x_color$	_whi 0 e013	0.004	3.172	0.002	0.005	0.022
$c_density_x_color_white$	-	78.393	-3.355	0.001	-	-109.152
	262.974				416.712	
$c_pH_x_color_white$	2.736	0.402	6.806	0.000	1.951	3.528
$c_alcohol_x_color_white$	-0.585	0.148	-3.955	0.000	-0.880	-0.299

```
AIC_fit <- logistic_reg() %>%
   set_engine("glm") %>%
   fit(good_wine~.-c_citric.acid-quality-good_wine_names, data = wine_train)

AIC_fit <- repair_call(AIC_fit, data = wine_train)
AIC_fit_engine <- AIC_fit %>% extract_fit_engine()
```

```
best_AIC_model <- stepAIC(AIC_fit_engine, direction="forward", trace=FALSE)</pre>
```

```
best_AIC_model %>% tidy()
```

Stepwise

# 1	A tibble: 12 x 5				
	term	estimate	${\tt std.error}$	statistic	p.value
	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
1	(Intercept)	376.	76.1	4.94	7.83e- 7
2	<pre>c_fixed.acidity</pre>	0.460	0.0759	6.05	1.43e- 9
3	c_volatile.acidity	-3.66	0.433	-8.45	3.03e-17
4	c_residual.sugar	0.212	0.0305	6.93	4.16e-12
5	c_chlorides	-9.17	3.10	-2.95	3.13e- 3
6	<pre>c_free.sulfur.dioxide</pre>	0.0127	0.00357	3.57	3.54e- 4
7	${\tt c_total.sulfur.dioxide}$	-0.00446	0.00156	-2.87	4.14e- 3
8	c_density	-396.	77.1	-5.14	2.76e- 7
9	c_pH	2.47	0.418	5.91	3.32e- 9
10	c_sulphates	2.37	0.327	7.24	4.59e-13
11	c_alcohol	0.485	0.0925	5.24	1.57e- 7
12	colorwhite	-0.706	0.286	-2.47	1.34e- 2

Multnomial Regression

```
full_fit1 <- multinom_reg() %>%
   set_engine("nnet") %>%
   fit(as.factor(quality)~.-good_wine_names-good_wine, data = wine_train)

full_fit1 <- repair_call(full_fit1, data = wine_train)
tidy(full_fit1)</pre>
```

Data Editing for Regression

```
2 4
          c_fixed.acidity
                                                      -3.27 1.09e- 3
                                 -0.463
                                            0.142
3 4
          c_volatile.acidity
                                 -1.52
                                            0.549
                                                      -2.77 5.54e- 3
          c_citric.acid
4 4
                                                       2.46 1.39e- 2
                                 1.47
                                            0.597
5 4
          c_residual.sugar
                                 -0.0849
                                            0.0507
                                                      -1.68 9.38e- 2
                                                    -499.
          c chlorides
6 4
                                -19.2
                                            0.0384
                                                             0
7 4
          c_free.sulfur.dioxide
                                -0.0576
                                            0.0179
                                                      -3.22 1.26e- 3
                                                       0.180 8.57e- 1
8 4
          c_total.sulfur.dioxide 0.00107
                                            0.00594
9 4
          c_density
                                 20.3
                                            0.0873
                                                     233.
10 4
          с_рН
                                 -2.02
                                            0.420
                                                      -4.81 1.55e- 6
# ... with 68 more rows
```

```
full_fit1_engine <- full_fit1 %>% extract_fit_engine()
newmodel <- stepAIC(full_fit1_engine, direction="both", trace=FALSE)</pre>
```

tidy(newmodel)

# A tibble: 72 x 6									
	y.level	term	estimate	std.error	statistic	p.value			
	<chr></chr>	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>			
1	4	(Intercept)	-5.63	0.0903	-62.4	0			
2	4	<pre>c_fixed.acidity</pre>	-0.358	0.137	-2.60	0.00927			
3	4	c_volatile.acidity	-1.77	0.525	-3.38	0.000732			
4	4	c_residual.sugar	-0.0931	0.0454	-2.05	0.0402			
5	4	c_chlorides	-17.0	0.0351	-485.	0			
6	4	<pre>c_free.sulfur.dioxide</pre>	-0.0543	0.0186	-2.91	0.00357			
7	4	<pre>c_total.sulfur.dioxide</pre>	0.00268	0.00591	0.454	0.650			
8	4	c_density	21.9	0.0905	242.	0			
9	4	c_pH	-1.96	0.446	-4.39	0.0000112			
10	4	c_sulphates	3.94	0.662	5.95	0.0000000271			
# .	with	62 more rows							

Results

Model selection- Logistic

```
wine_fit1_eg <- wine_fit1 %>% extract_fit_engine()
wine_fit2_eg <- wine_fit_test %>% extract_fit_engine()
```

```
# 1 = reduced, 2 = full
wine_test_pred1 <- predict(wine_fit1, wine_test, type = "prob") %>%
  bind cols(wine test)
wine test pred1
# A tibble: 4,872 x 17
   .pred_0 .pred_1 c_fixed.acidity c_volatile.acidity c_citric.acid
     <dbl>
            <dbl>
                             <dbl>
                                                <dbl>
                                                              <dbl>
 1
     0.989 0.0112
                               6.6
                                                 0.2
                                                               0.14
                                                 0.34
                                                               0.29
 2
    0.846 0.154
                               6
 3
    0.932 0.0684
                               6.8
                                                 0.44
                                                              0.37
                               7
    0.732 0.268
                                                0.29
                                                               0.33
 5
    0.964 0.0359
                               6.8
                                                 0.25
                                                               0.27
 6
    0.876 0.124
                               6.5
                                                0.17
                                                              0.33
 7
    0.955 0.0451
                              7.3
                                                 0.4
                                                               0.3
 8
    0.816 0.184
                               6.2
                                                 0.3
                                                               0.32
 9
    0.971 0.0289
                               7.8
                                                 0.55
                                                               0
10 0.580 0.420
                               6.7
                                                 0.24
                                                               0.3
# ... with 4,862 more rows, and 12 more variables: c_residual.sugar <dbl>,
   c_chlorides <dbl>, c_free.sulfur.dioxide <dbl>,
   c_total.sulfur.dioxide <dbl>, c_density <dbl>, c_pH <dbl>,
  c_sulphates <dbl>, c_alcohol <dbl>, quality <int>, color <chr>,
    good_wine <fct>, good_wine_names <chr>
wine_test_pred2 <- predict(wine_fit_test, wine_test, type = "prob") %>%
 bind_cols(wine_test)
wine_test_pred2
```

A tibble: 4,872 x 17

.pred_0 .pred_1 c_fixed.acidity c_volatile.acidity c_citric.acid <dbl> <dbl> <dbl> <dbl> <dbl> 0.992 0.00827 6.6 0.2 0.14 1 2 0.843 0.157 6 0.34 0.29 3 0.915 0.0847 6.8 0.44 0.37 0.710 0.290 7 0.29 0.33 5 0.963 0.0368 6.8 0.25 0.27 6 0.866 0.134 6.5 0.17 0.33 7 0.986 0.0142 0.3 7.3 0.4 0.32 8 0.779 0.221 6.2 0.3 0.978 0.0220 9 7.8 0.55 0 10 0.573 0.427 6.7 0.24 0.3

```
# ... with 4,862 more rows, and 12 more variables: c_residual.sugar <dbl>,
# c_chlorides <dbl>, c_free.sulfur.dioxide <dbl>,
# c_total.sulfur.dioxide <dbl>, c_density <dbl>, c_pH <dbl>,
# c_sulphates <dbl>, c_alcohol <dbl>, quality <int>, color <chr>,
# good_wine <fct>, good_wine_names <chr>
```



```
wine_test_pred1 %>%
  roc_auc(truth = as.factor(good_wine), .pred_0)
```

```
# A tibble: 1 x 3
  .metric .estimator .estimate
  <chr>
          <chr>
                          <dbl>
1 roc_auc binary
                          0.816
wine_test_pred2 %>%
  roc_auc(truth = as.factor(good_wine), .pred_0)
# A tibble: 1 x 3
  .metric .estimator .estimate
  <chr>
          <chr>
                          <dbl>
                          0.820
1 roc_auc binary
Based on the roc_auc, the full model performs slightly better than the reduced model.
glance(wine_fit1_eg)$AIC
[1] 3765.911
glance(wine_fit2_eg)$AIC
[1] 3736.542
glance(wine_fit1_eg)$BIC
[1] 3850.298
glance(wine_fit2_eg)$BIC
[1] 3833.91
The full model has lower AIC and BIC.
anova(wine_fit1_eg, wine_fit2_eg)%>%tidy()
```

Drop-in-Deviance Test:

 H_0 : the β_j of all the additional interactive terms equal to 0. H_1 : at least one additional interactive term have β_j that does not equal 0.

```
pchisq(38.508, 4, lower.tail = FALSE)
```

[1] 8.802476e-08

```
wine2<-wine%>%mutate(quality=factor(quality,levels=0:10))
```

```
set.seed(22)
wine_split2 <- initial_split(wine2, prop = 3/4)
wine_train <- training(wine_split2)
wine_test <- testing(wine_split2)</pre>
```

```
full_fit1<- multinom_reg() %>%
  set_engine("nnet") %>%
  fit(quality~.,
  data = wine_train)
```

```
full_fit1 <- repair_call(full_fit1, data = wine_train)
full_fit1_eg <- full_fit1 %>% extract_fit_engine()
```

newmodel <- stepAIC(full_fit1_eg, direction="both",trace=FALSE)</pre>

full_fit1%>%tidy()

Multinominal Regression

# A tibb	le: 90 x 6					
y.lev	el term	estimate	std.error	statistic	p.val	ue
<chr></chr>	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<db< td=""><td>1></td></db<>	1>
1 4	(Intercept)	3.93	0.172	22.9	9.23e-1	16
2 4	${ t c_fixed.acidity}$	-0.612	0.133	-4.61	3.94e-	6
3 4	${ t c_volatile.acidity}$	-1.21	0.543	-2.22	2.63e-	2
4 4	$c_citric.acid$	0.793	0.488	1.62	1.04e-	1
5 4	c_residual.sugar	-0.0598	0.0565	-1.06	2.90e-	1
6 4	c_chlorides	-10.7	0.0870	-123.	0	
7 4	$c_{ t free.sulfur.dioxide}$	-0.0858	0.0147	-5.83	5.57e-	9
8 4	$c_total.sulfur.dioxide$	0.00934	0.00745	1.25	2.10e-	1
9 4	${ t c_density}$	17.9	0.172	104.	0	
10 4	c_pH	-4.03	0.658	-6.13	8.91e-	10
# wi	th 80 more rows					

newmodel%>%tidy()

# A tibble	: 78 x 6				
y.level	term	estimate	std.error	statistic	p.value
<chr></chr>	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
1 4	(Intercept)	22.5	0.171	131.	0
2 4	<pre>c_fixed.acidity</pre>	-0.576	0.133	-4.34	1.40e- 5
3 4	c_volatile.acidity	-1.40	0.543	-2.59	9.69e- 3
4 4	c_residual.sugar	-0.0523	0.0577	-0.906	3.65e- 1
5 4	c_chlorides	-11.0	0.0834	-132.	0
6 4	<pre>c_free.sulfur.dioxide</pre>	-0.0843	0.0147	-5.73	1.02e- 8
7 4	<pre>c_total.sulfur.dioxide</pre>	0.00825	0.00746	1.11	2.69e- 1
8 4	c_pH	-4.18	0.701	-5.97	2.44e- 9
9 4	c_sulphates	5.20	0.445	11.7	1.47e-31
10 4	c_alcohol	-0.217	0.239	-0.907	3.65e- 1
# with	68 more rows				

newmodel\$AIC

[1] 6581.262

```
glance(full_fit1)$AIC
```

[1] 6602.803

```
training_pred <- predict(full_fit1,wine_test)
accuracy <- mean(training_pred$.pred_class == wine_test$quality)</pre>
```

```
training_pred$.pred_class<-newmodel%>%predict(wine_test)
training_pred2<-training_pred%>%mutate(training_pred2=factor(.pred_class,levels=0:10))
accuracy2 <- mean(training_pred2$training_pred2 == wine_test$quality)
accuracy</pre>
```

[1] 0.6947692

```
accuracy2
```

[1] 0.6953846

```
full_fit1_aug <- augment(full_fit1, new_data = wine_test)
full_fit1_aug</pre>
```

A tibble: 1,625 x 23

	$c_fixed.acidity$	${\tt c_volatile.acidity}$	${\tt c_citric.acid}$	${\tt c_residual.sugar}$	c_chlorides
	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
1	7.1	0.28	0.35	3.5	0.028
2	7.3	0.21	0.21	1.6	0.046
3	7.1	0.23	0.3	2.6	0.034
4	7.4	0.66	0	1.8	0.075
5	7.1	0.21	0.35	2.5	0.04
6	6.4	0.21	0.34	16.0	0.04
7	5.6	0.18	0.31	1.5	0.038
8	8.2	0.34	0.37	1.9	0.057
9	7.1	0.68	0	2.2	0.073

```
# ... with 1,615 more rows, and 18 more variables: c_free.sulfur.dioxide <dbl>,
# c_total.sulfur.dioxide <dbl>, c_density <dbl>, c_pH <dbl>,
# c_sulphates <dbl>, c_alcohol <dbl>, quality <fct>, color <chr>,
# good_wine <fct>, good_wine_names <chr>, .pred_class <fct>, .pred_3 <dbl>,
# .pred_4 <dbl>, .pred_5 <dbl>, .pred_6 <dbl>, .pred_7 <dbl>, .pred_8 <dbl>,
# .pred_9 <dbl>

full_fit1_conf<-full_fit1_aug %>%
    count(quality, .pred_class, .drop=FALSE) %>%
    pivot_wider(names_from = .pred_class, values_from = n)

full_fit1_conf
```

0.62

0.047

0.39

7.2

11 10

# 1	A tibble:	11 x	12									
	quality	`0`	`1`	`2`	`3`	`4`	`5`	`6`	`7`	`8`	`9`	`10`
	<fct></fct>	<int></int>										
1	0	0	0	0	0	0	0	0	0	0	0	0
2	1	0	0	0	0	0	0	0	0	0	0	0
3	2	0	0	0	0	0	0	0	0	0	0	0
4	3	0	0	0	0	0	2	2	0	0	0	0
5	4	0	0	0	0	2	45	23	0	0	0	0
6	5	0	0	0	0	3	326	212	0	0	0	0
7	6	0	0	0	0	0	161	532	0	0	1	0
8	7	0	0	0	0	0	0	0	269	0	0	0
9	8	0	0	0	0	0	0	0	45	0	0	0
10	9	0	0	0	0	0	0	0	2	0	0	0