Линейная алгебра и геометрия

Slava Boben

September 9, 2019

Содержание

1	Лег	кция 1
	1.1	Общая информация
		1.1.1 Контакты
		1.1.2 О дисциплине
		1.1.3 Оценка
		1.1.4 Содержание курса
	1.2	Матрицы
		1.2.1 Операции над матрицами
		$1.2.2$ \mathbb{R}^n
		1.2.3 Транспонирование
		1.2.4 Умножение матриц
		1.2.1 s mioricine marping
2	Лен	кция 2
	2.1	Сумма
	2.2	Умножение матриц
	2.3	Системы линейных уравнений
3	Cen	минар 1
	3.1	Контакты
	3.2	Матрицы
		3.2.1 Аномалии
		3.2.2 Блочные операции
		3.2.3 Кек
		3.2.4 Лол
		3.2.5 Xex
		3.2.6 Мда

1 Лекция 1

1.1 Общая информация

1.1.1 Контакты

Авдеев Роман Сергеевич

- suselr@yandex.ru
- ravdeev@hse.ru

1.1.2 О дисциплине

1 - 4 модули

Письменный экзамен: 2, 4 модули

1.1.3 Оценка

- 1. Экзамен
- 2. Коллоквиум
- 3. Контрольная работа
- 4. Больше ДЗ
- 5. Работа на семинарах
- 6. Бонус Задачи из листков

$$O_{\rm Итог} = \min(10, {\rm Округлениe}(0.4*O_{\rm Экз} + 0.22*O_{\rm Колл} + 0.16*O_{\rm KP} + 0.16*O_{\rm ДЗ} + 0.08*O_{\rm Cem} + 0.08*O_{\rm Л}), 10)$$

$$O$$
кругление $(x) = [x]$

1.1.4 Содержание курса

- 1. Начало алгебры 9 10 занятий
 - Матрицы
 - Системы линейных уравнений
 - Определители
 - Комплексные числа
- 2. Собственно линейная алгебра
 - Вектороное пространство

1.2 Матрицы

Определение 1. Матрица размера $n \times m$ — это прямоугольная таблица высоты m и ширины n

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$

 $a_i j$ – элемент на пересечении і-й строки и ј-го столбца

Краткая запись – $A = (a_{ij})$

Множество всех матриц размера $m \times n$ с коэффициентами из \mathbb{R} (множество всех действительных чисел) — $\mathrm{Mat}_{n*m}(\mathbb{R})$ или Mat_{n*m}

Определение 2. Две матрицы $A \in \mathrm{Mat}_{n \times m}$ и $B \in \mathrm{Mat}_{p \times q}$ называются *равными*, если m = p, n = q, и соответствующие элементы равны

2

Пример.
$$\begin{pmatrix} \circ & \circ & \circ \\ \circ & \circ & \circ \end{pmatrix} \neq \begin{pmatrix} \circ & \circ \\ \circ & \circ \\ \circ & \circ \end{pmatrix}$$

Операции над матрицами

 $A, B \in \mathrm{Mat}_{m*n}$

- $Cymma\ A + B := (a_{ij} + b_{ij})$
- Произведение на скаляр $\alpha \in \mathbb{R} \implies \lambda A := (\lambda a_{ij})$

Свойства суммы и произведения на скаляр

 $\forall A, B, C \in \operatorname{Mat}_{m * n} \forall \lambda, \mu \in \mathbb{R}$

- (1) A + B = B + A (коммутативность)
- (2) (A + B) + C = A + (B + C) (ассоциативность)

(3)
$$A+0=0+A=A$$
, где $0=\begin{pmatrix} 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 \end{pmatrix}$

- (4) A + (-A) = 0-A — Противоположная матрица
- (5) $(\lambda + \mu)A = \lambda A + \mu A$
- (6) $\lambda(A+B) = \lambda A + \lambda B$
- (7) $\lambda(\mu A) = \lambda \mu A$
- (8) 1A = A

Упраженение. Доказать эти свойства

Примечание. Из свойств (1)-(8) следует, что $\mathrm{Mat}_{n*m}(\mathbb{R})$ является векторным пространством над \mathbb{R}

1.2.2 \mathbb{R}^n

$$\mathbb{R}^n:=\{(x_1,\ldots,x_n)\mid x_i\in\mathbb{R}\ \forall i=1,\ldots,n\}$$
 $\mathbb{R}^1=\mathbb{R}$ — числовая прямая

$$\mathbb{R}^1 = \mathbb{R}$$
 — числовая прямая

$$\mathbb{R}^2$$
 – плоскость

$$\mathbb{R}^3$$
 — трехмерное пространство

Договоримся отождествлять \mathbb{R}^n со столбцами высоты n

$$(x_1,\ldots,x_n)\leftrightarrow \left(egin{array}{c} x_1\ dots\ x_n \end{array}
ight)$$
 — "вектор столбец"

$$\mathbb{R}^n \leftrightarrow \mathrm{Mat}_{n*m}(\mathbb{R})$$

$$\begin{bmatrix} x^n \leftrightarrow \operatorname{Mat}_{n*m}(\mathbb{R}) \\ x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \mathbb{R}^n, y = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} \in \mathbb{R}^n \end{bmatrix} \implies [x = y \iff x_i = y_i \forall i]$$

$$x + y := \begin{pmatrix} x_1 + y_1 \\ \vdots \\ x_n + y_n \end{pmatrix}$$

$$\lambda \in \mathbb{R} \implies \lambda x_i := (\lambda x_1, \dots)$$

$$A \in \operatorname{Mat}_{m*n} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} \rightsquigarrow A^T \in \operatorname{Mat}_{n*m} := \begin{pmatrix} a_{11} & a_{21} & \dots & a_{m1} \\ a_{12} & a_{22} & \dots & a_{m2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \dots & a_{mn} \end{pmatrix}$$

 A^T — Транспонированная матриц

Свойства:

$$(1) (A^T)^T = A$$

(2)
$$(A+B)^T = A^T + B^T$$

$$(3) (\lambda A)^T = \lambda A^T$$

Пример.
$$\begin{pmatrix} x_1 & \dots & x_n \end{pmatrix}^T = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

Пример.
$$\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}^T = \begin{pmatrix} x_1 & \dots & x_n \end{pmatrix}$$

Пример.
$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix}^T = \begin{pmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{pmatrix}$$

1.2.4 Умножение матриц

$$A=(a_{ij})$$
 $A_{(i)}-i$ -я строка матрицы A $A^{(j)}-j$ -й столбец матрицы A

(1) Частный случай: Произведение строки на столбец одинаковой длинны

$$\underbrace{(x_1,\ldots,x_n)}_{1\times n}\underbrace{\begin{pmatrix} x_1\\ \vdots\\ x_n \end{pmatrix}} = x_1*y_1+\cdots+x_n*y_n$$

(2) A - матрица размера m*n

B - матрица размера n*p

Кол-во строк матрицы A равно кол-ву столбцов матрицы B — условие согласованности матриц $AB:=C\in \mathrm{Mat}_{m*p},$ где $C_{ij}=A_{(i)}B^{(j)}$

Пример.
$$\begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} \begin{pmatrix} x_1 & \dots & x_n \end{pmatrix} := \begin{pmatrix} x_1 y_1 & x_2 y_1 & \dots & x_n y_1 \\ x_1 y_2 & x_2 y_2 & \dots & x_n y_2 \\ \vdots & \vdots & \ddots & \vdots \\ x_1 y_n & x_2 y_m & \dots & x_n y_m \end{pmatrix}$$

Пример.
$$\begin{pmatrix} 1 & 0 & 2 \\ 0 & -1 & 3 \end{pmatrix} \times \begin{pmatrix} 2 & -1 \\ 0 & 5 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 1*2+0*0+2*1 & 1*(-1)+0*5+2*1 \\ 0*2+(-1)*0+3*1 & 0*(-1)+(-1)*5+3*1 \end{pmatrix} = \begin{pmatrix} 4 & 1 \\ 3 & -2 \end{pmatrix}$$

2 Лекция 2

2.1 Сумма

$$S_p, S_{p+1}, \dots, S_q$$
 — набор чисел $\sum_{i=p}^q S_i := S_p + S_{p+1} + \dots + S_q$ — сумма по i от p до q $\sum_{i=1}^1 00i^2 = 1^2 + 2^2 + \dots + 100^2$

1.
$$\lambda \sum_{i=1}^{n} S_i = \sum_{i=1}^{q} \lambda S_i$$

2.
$$\sum_{i=1}^{q} (S_i + t_i) = \sum_{i=1}^{n} S_i + \sum_{i=1}^{n} t_i$$

3.
$$\sum_{i=1}^m \sum_{j=1}^n S_{ij} = \sum_{j=1}^n \sum_{i=1}^m$$
 — Сумма всех элементов матрицы $S=(s_{ij})$

2.2 Умножение матриц

$$A \in \operatorname{Mat}_{m \times n}, B \in \operatorname{Mat}_{n \times p}$$
 $AB = C$
 $c_{ij} = A_{(i)}B^{(j)} = a_{i1}b_{1j} + a_{i2}b_{2j} + \cdots + a_{1n}b_{nj} = \sum_{k=1}^{n} a_{ik}b_{kj}$
Свойства умножения матриц:

1.
$$A(B+C) = AB + AC -$$
 левая дистрибутивность

Доказательство
$$x_{ij} = A_{(i)}(B+C)^{(j)} = \sum_{k=1}^n a_{ik}(b_{kj}+c_{kj}) = \sum_{k=1}^n (a_{ik}b_{kj}+a_{ik}c_{kj}) = \sum_{k=1}^n a_{ik}bkj + \sum_{k=1}^n a_{ik}c_{kj} = A_{(i)}B^{(j)} + A_{(i)}C^{(j)} = yij$$

2. (A+B)C = AC + BC — правая дистрибутивность, доказывается аналогично

3.
$$\lambda(AB) = (\lambda A)B = A(\lambda B)$$

4. (AB)C = A(BC) — ассоциативность Доказательство

$$\underbrace{(AB)C}_{u} = x, A\underbrace{(BC)}_{v} = y$$

$$x_{ij} = \sum_{k=1}^{p} u_{ik} * c_{kp}$$

$$= \sum_{k=1}^{p} (\sum_{l=1}^{n} a_{il} b_{lk}) c_{kj}$$

$$= \sum_{k=1}^{p} (\sum_{l=1}^{n} a_{il} b_{lk}) c_{kj})$$

$$= \sum_{l=1}^{n} (\sum_{k=1}^{p} a_{il} b_{lk}) c_{kj}$$

$$= \sum_{l=1}^{n} a_{il} (\sum_{k=1}^{p} b_{lk} c_{kj})$$

$$= \sum_{l=1}^{n} a_{il} v_{lj}$$

$$= u_{ii}$$

$$5. \ \underbrace{(\stackrel{T}{AB})}_{x} = \underbrace{B^T A^T}_{y}$$

Доказательство

$$x_{ij} = [AB]_{ji} = A_{(j)}B^{(i)} = (B^T)_{(i)}(A^T)^{(j)} = y_{ij}$$

Умножение матриц не коммутативно

$$A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, B = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$
$$AB = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, BA = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

Определение 3. $A \in \operatorname{Mat}_{n \times n} \implies A$ называется $\kappa \operatorname{\it eadpmano\'u}$ матрицей подярка n

Обозн.:
$$M_n := \operatorname{Mat}_{n \times n} A \in M_n$$

Определение 4. Матрица $A \in M_n$ называется *диагональной* если все ее элементы вне главной диагонали равны нулю $(a_{ij} = 0 \text{ при } i \neq j)$

$$A = \Longrightarrow A = diag(a_1, a_2, \dots, a_n)$$

Лемма. $A = diag(a_1, \ldots, a_n) \in M_n \implies$

1.
$$\forall B \in Mat_{n \times p}, AB = \begin{pmatrix} a_1 B_{(1)} \\ a_2 B_{(2)} \\ \vdots \\ a_n B_{(n)} \end{pmatrix}$$

2. $\forall B \in Mat_{m \times n}$ – аналогично (вектор строка)

Доказательство

1.
$$[AB]_{ij} = \begin{pmatrix} 0 & \dots & 0 & a_i & 0 & \dots & 0 \end{pmatrix} \begin{pmatrix} b_{1j} \\ b_{2j} \\ \vdots \\ b_{nj} \end{pmatrix} = a_i b_{ij}$$

2.
$$[BA]_{ij} =$$

Определение 5. Матрица $E=E_n=diag(1,1,\ldots,1)$ называется edunuчной матрицей порядка n.

Свойства

1.
$$EA = A \quad \forall A \in \operatorname{Mat}_{n \times p}$$

2.
$$AE = A \quad \forall A \in Mat_{p \times n}$$

3.
$$AE = EA = A \quad \forall A \in M_n$$

Определение 6. Следом матрицы $A \in M_n$ называется число $trA = a_{11} + a_{22} + \dots + a_{nn} = \sum_{i=1}^n a_{ii}$

Свойства

1.
$$tr(A+B) = trA + trB$$

2.
$$tr(\lambda A) = \lambda tr A$$

3.
$$tr(A^T) = tr(A)$$

4.
$$tr(AB) = tr(BA) \forall A \in Mat_{m \times n}, B \in Mat_{nm}$$

Доказательство

$$AB = x \in M_m, BA = y \in M_n$$

$$trx = \sum_{i=1}^m x_{ii} = \sum_{i=1}^m \sum_{j=1}^n a_{ij}b_{ji} = \sum_{i=1}^n \sum_{j=1}^m b_{ji}a_{ij} = \sum_{j=1}^n y_{ij} = try$$

Пример.
$$A=(1,2,3), B=\begin{pmatrix}4\\5\\6\end{pmatrix}$$

$$tr(AB)=tr(1\cdot 4+2\cdot 5+3\cdot 6)=32$$

$$tr(BA)=\begin{pmatrix}4&8&12\\5&10&15\\6&12&18\end{pmatrix}=4+10+18=32$$

2.3 Системы линейных уравнений

Определение 7. Линейное уравнение
$$-a_1x_1+a_2x_2+\cdots+a_nx_n=b$$
 a_1,a_2,\ldots,a_n,b — коэффициенты x_1,x_2,\ldots,x_n — неизвестные

Система линейных уравнений

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$$

$$a_{ij}, b_i \in \mathbb{R}$$

Основная задача: решить СЛУ

$$egin{aligned} \mathbf{\Pi}\mathbf{pumep.} & n=m=1 \\ ax=b \\ a
eq 0 &\Longrightarrow x=rac{b}{a} \\ a=0 &\Longrightarrow 0x=b \\ b
eq 0 &\Longrightarrow \text{ нет решений} \\ b=0 &\Longrightarrow x \in \mathbb{R} - \text{бесконечно много решений} \end{aligned}$$

$$A \in Mat_{m \times n}(R) = egin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$
 — матрица коэффициентов

$$B\in \mathrm{Mat}_{m imes 1}=egin{pmatrix} b_1\b_2\ dots\b_n \end{pmatrix}$$
 — столбец правых частей

$$X \in \mathrm{Mat}_{m imes 1} = egin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$
 — столбец неизвестных

 $(*) \leftrightarrow Ax = b$ — Матричная форма записи СЛУ

Определение 8. СЛУ называется

- совместной, если у нее есть хотя бы одно решение
- несовмествной, если решений нет

3 Семинар 1

3.1 Контакты

Трушин Дмитрий Витальевич – Дима trushindima@yandex.ru

3.2 Матрицы

3.2.1 Аномалии

1.
$$A \cdot B \neq B \cdot A$$

$$\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$
$$\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = 0$$

$$A \neq 0 \cdot B \neq 0 = 0$$

$$2. \ A \neq 0$$

$$\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}^2 = 0$$

$$\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}^2 = 0$$

3.2.2 Блочные операции

A	В			
С	D			
X	Y			
Z	W			
$A \lambda$	AX + B			

$$A \cdot B = A \cdot (B_1, B_2, \dots, B_N)$$

$$B = (B_1, B_2, \dots, B_N) = (AB_1, AB_2, \dots, AB_n)$$

$$A = (A_1, \dots, A_n)$$

$$B = (B_1, \dots, B_n)$$

$$AB^T = (A_1, \dots, A_n) \begin{pmatrix} B_1^T \\ \vdots \\ B_N^T \end{pmatrix} = A_1 B_1^T + \dots + A_n B_n^T$$

- 3.2.3 Keĸ
- 3.2.4 Лол

$$(A \cdot B)^T = B^T \cdot A^T$$

3.2.5 Xex

A	В		T
С	D		
A^T		C^T	
B^T		D^T	

3.2.6 Мда

$$x \in M_n(\mathbb{R})$$
$$xJ_0 = J_0x$$