

Análisis y diseño de algoritmos avanzados

Grupo 570

Reflexión

Fernanda Ríos Juárez- A01656047

Ayetza Yunnuen Infante Garcia - A01709011

En el presente trabajo se abordó el tema de Maximum Linear Arrangement (MaxDLA). El cual es una variante del problema de disposición lineal aplicada a grafos dirigidos. Esta variante consiste en encontrar una permutación de los vértices de un grafo de manera que se maximice la suma de las diferencias positivas entre las posiciones de los vértices finales e iniciales de cada arista. $\Sigma max(0, \pi(v) - \pi(u))$

Este problema pertenece a la clase NP-complete, por lo que, encontrar una solución óptima resulta computacionalmente costoso, especialmente en grafos medianos y grandes. En este entregable se implementó un algoritmo básico de búsqueda local conocido como mejora iterativa. El cual parte de una permutación inicial aleatoria y genera vecinos mediante intercambios entre pares de elementos, aceptando únicamente a aquellos que mejoran el valor objetivo. El proceso continúa hasta encontrar el número máximo de iteraciones o no encontrar mejoras adicionales entre los vecinos actuales.

El objetivo del reporte consiste en presentar los resultados obtenidos después de aplicar el algoritmo de mejora iterativa a distintas instancias del problema MaxDLA. Para cada caso de prueba, se realizaron 10 ejecuciones independientes, cada una de 1000 iteraciones.

Instancia	Nodos	Aristas	Mejor	Promedio	Desviación	Tiempo (s)
bipartite7x8.txt	15	56	420	420	0	0
cycle20.txt	20	20	115	99.6	8.29699	0.0001506
gd95c.txt	62	144	2080	1883.3	129.042	0.00029951
HB-494_bus.txt	494	585	54192	49525.1	3305.49	0.00094096
HB-can_161.txt	161	608	18053	16800.3	664.741	0.00076024
HB-can_715.txt	715	2975	392691	369790	14742.3	0.00192743
HB-dwt_234.txt	117	162	3799	3321.8	313.002	0.00026041
HB-ibm32.txt	32	90	745	658.9	53.793	9.989e-05
HB-will57.txt	57	127	1549	1322	153.264	0.00025243
mesh33x33.txt	1089	2112	388394	383544	3563.2	0.00216258
mobiousLadder16 .txt	16	24	127	119.8	5.75847	0.00019959
path20.txt	20	19	99	92.5	4.24853	0.00019988

petersen.txt	10	15	50	49.8	0.4	9.986e-05
Tree_22_3_rot1.tx	22	42	263	241.4	14.6983	9.984e-05
wheel20.txt	20	38	289	274.1	8.26378	0.00010973

Los resultados obtenidos mediante la implementación del algoritmo de búsqueda local o mejora iterativa para resolver el problema de MaxDLA demostró ser eficiente en tiempo, donde este fue menor de 0.003 segundos, y efectiva para grafos pequeños, pero con limitaciones en instancias grandes y complejas. En las cuales, la calidad de las soluciones varió significativamente debido a la convergencia prematura a óptimos locales. Sin embargo, debido a que la calidad de la solución depende de la permutación inicial y el número de iteraciones, es preferible explorar técnicas de búsqueda más sofisticadas que permitan la probabilidad de escapar de los óptimos locales y mejorar los resultados obtenidos.