

SYDNEY BOYS HIGH SCHOOL

MATHEMATICS EXTENSION 2

Trial Higher School Certificate 2001

Time Allowed: 3 hours (plus 5 minutes reading time)

Total Marks: 120

Examiner: Mr R Dowdell, Mr PS Parker

INSTRUCTIONS:

- Attempt all questions.
- All questions are of equal value.
- All necessary working should be shown in every question. Full marks may not be awarded if work is careless or badly arranged.
- Standard integrals are provided on the last page. Approved calculators may be used.
- Return your answers in 8 booklets, 1 for each question. Each booklet must show your name.
- If required, additional Writing Booklets may be obtained from the Examination Supervisor upon request.

NOTE: This is a trial paper only and does not necessarily reflect the content or format of the final Higher School Certificate Examination Paper for this subject.

Question 1:

Marks

(a) Evaluate $\int_0^{\frac{3}{2}} \frac{dx}{\sqrt{9-x^2}}$

2

(b) Find $\int x^3 e^{x^4+7} dx$

2

- (i) Express $\frac{x^2 + x + 2}{(x^2 + 1)(x + 1)}$ in the form $\frac{Ax + B}{x^2 + 1} + \frac{C}{x + 1}$, where A, B and C
- (ii) Hence find $\int \frac{x^2 + x + 2}{(x^2 + 1)(x + 1)} dx$.

Using integration by parts or otherwise, evaluate $\int_0^{\frac{1}{2}} \sin^{-1} x \, dx$

3

5

by using the substitution $x = \pi - y$, or otherwise, evaluate $\int_0^{\pi} x \sin^3 x \, dx$

**

Question 2: START A NEW BOOKLET

Marks

(a)
$$\frac{4+3i}{1+\sqrt{2}i} = a+ib$$
, for a, b real.

2

Find the exact values of a and b.

Given $z = 1 - \sqrt{3}i$,

3

- (i) show that z^2 is a real multiple of $\frac{1}{z}$;
- (ii) plot z, z^2 , $\frac{1}{z}$ on an Argand diagram.
- (c) Sketch the region represented by

$$|z| \le 4$$
 and $\frac{\pi}{3} < \arg z \le \frac{2\pi}{3}$.

(d)

2

For what values of k is $\frac{(1+i\sqrt{3})^6}{(\sqrt{3}-i)^k}$ purely imaginary?

The points P_1 , P_2 and P_3 represent the complex numbers z_1 , z_2 and z_3 respectively. (NOTE: $z_3 = 0$.)

If P_1 , P_2 and P_3 are the vertices of an equilateral triangle, show that $\frac{z_2}{z_1} = \frac{1+i\sqrt{3}}{2}$ and deduce that $z_1^2 + z_2^2 = z_1 z_2$.

(ii)

Deduce that if z_1, z_2 and z_3 are ANY three complex numbers at the vartices of an equilateral triangle then

$$Z_1^2 + Z_2^2 + Z_3^2 = Z_1 Z_2 + Z_2 Z_3 + Z_3 Z_1$$

12

(a) If the curve below represents y = f(x),

make neat sketches, on separate axes, of

(i)
$$y = (f(x))^2$$

(ii)
$$y = \frac{1}{f(x)}$$

(iii)
$$y = |f(x)|$$

$$\widehat{\text{(iv)}} \quad y = f(|x|)$$

$$(v) y^2 = f(x)$$

(b)

Two sides of a triangle arc in the ratio 3:1 and the angles opposite these sides differ by $\frac{\pi}{6}$. Show that the smaller of the two angles is $\tan^{-1}\left(\frac{1}{6-\sqrt{3}}\right)$.

3

Question 4: START A NEW BOOKLET

Marks

- (a) 1+i and 3-i are zeroes of a real, monic polynomial, p(x), of degree 4.
- 3
- (i) Express p(x) as a product of two real quadratic factors.

Explain briefly why the polynomial p(x) cannot take negative values.

(b) $x^3 + 3px + q = 0$ has a double root of x = k.

4

- (i) Show that $p = -k^2$
- (ii) Show that $4p^3 + q^2 = 0$.
- Hence factorise $x^3 6ix + 4 4i$ into linear factors, given that it has a repeated factor.

Consider $f(x) = x^3 + 9x + 26$ and $g(x) = x^2 + 26x - 27$.

3

5

(i) Verify that $f\left(x-\frac{3}{x}\right) = \frac{g(x^3)}{x^3}$.

P θ R

 ΔPQR is a triangle inscribed in a circle of radius r. PR has length l, and $\angle PQR = \alpha$

- (i) Show that $l = 2r \sin \alpha$.
- (ii) If $\angle QPR = \theta$, show that the area of $\triangle PQR$ is $r^2 \sin \alpha (\cos \alpha \cos(2\theta + \alpha))$
- (iii) If PQ = QR, what is the area of $\triangle PQR$ in terms of r and α ?

Question 5: START A NEW BOOKLET

Marks

- (a) A mass of m kilograms falls from rest. It experiences resistance during its fall equal to mkv where v is its speed in metres per second and k is a positive constant. Let x be the distance in metres of the mass from its starting point measured positively as it falls and t be the time in seconds.
 - Show that the equation of motion of the mass is $\ddot{x} = g kv$ where g is the acceleration due to gravity.
 - (ii) Show that the terminal velocity is $\frac{g}{k}$.
 - (iii) Find v as a function of t.

Find x as a function of t.

- (b) (i) In how many ways can 10 students be grouped into two teams of 5 to play a game of basketball?
 - (ii) Two of the 10 students are twins. If the teams are formed at random, what is the probability that the twins play on the same team?

A group of men and women is seated randomly around a circular table. What is the probability that none of the men are sitting next to each other if there are

- (i) 3 men and 2 women;
- (ii) 2 men and 3 women;
- (iii) n men and n + 1 women?

Marks

5

(a) The base of a solid is the region enclosed by y = 2x and $y = x^2$. Cross sections taken perpendicular to the x axis are semicircles with the diameter in the base of the solid (as indicated the diameter AB of the semicircle is perpendicular to the x axis; the semicircle is perpendicular to the xy plane).

Find the volume of the solid.

The length of the arc AB on the curve y = f(x) between x = a and x = b is given by $l = \int_{a}^{b} \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx$.

Find the length of the arc on $y = x^{\frac{3}{2}}$ between x = 0 and x = 4.

OA is an arc of the parabola $y = x^2$. The region OABC is rotated about the y axis forming a bowl. By using cylindrical shells determine the holding capacity of the bowl.

Question 7: START A NEW BOOKLET

Marks

3

(a) Find the value of a given that $\left(\sqrt{x} + \frac{a}{x}\right)^{10}$ has 13440 as coefficient of x^{-4} .

Two circles intersect at A and B. AB is produced to a point C, such that CP and CQ are tangents to the circles as shown and PBQ is a straight line.

NOTE: The diagram is not drawn to scale.

- (i) Express CP in terms of CB and CA, and hence prove that CP = CQ.
- (ii) Show that A, P, C and Q are concyclic.
- (iii) Let QA produced meet the larger circle at D. Show that PB bisects $\angle CPD$.

(c) Let
$$T(m, y) = \frac{{}^{m}C_{0}}{y} - \frac{{}^{m}C_{1}}{y+1} + \frac{{}^{m}C_{2}}{y+2} - \dots + (-1)^{m} \frac{{}^{m}C_{m}}{y+m}$$
.

7

(i) If it is given that $T(k,x) = \frac{k!}{x(x+1)(x+2)....(x+k)}$ for a particular value of k, show that

us it.

$$T(k,x) - T(k,x+1) = T(k+1,x)$$

Hence prove, using Mathematical Induction or otherwise, that for $n \ge 1$

$$T(n,x) = \frac{{}^{n}C_{0}}{x} - \frac{{}^{n}C_{1}}{x+1} + \frac{{}^{n}C_{2}}{x+2} - \dots + (-1)^{n} \frac{{}^{n}C_{n}}{x+n} = \frac{n!}{x(x+1)(x+2)\dots(x+n)}$$

(NOTE: you may use without proof the result ${}^{m+1}C_r = {}^mC_r + {}^mC_{r-1}$)

(iii) Hence prove that

$$\frac{{}^{n}C_{0}}{1} - \frac{{}^{n}C_{1}}{3} + \frac{{}^{n}C_{2}}{5} - \dots + (-1)^{n} \frac{{}^{n}C_{n}}{2n+1} = \frac{2^{n}n!}{1.3.5....(2n+1)}$$

Marks

5

The arch $y = \sin x$, $0 \le x \le \pi$ is revolved around the line y = c to generate the solid shown. Find the value of c that minimises the volume.

Question 8 is continued on Page 10

(b) (i) Let
$$f(\theta) = \frac{2 - \cos \theta}{\sin \theta}$$
, $0 < \theta < \frac{\pi}{2}$.

Show that
$$f'(\theta) = \frac{1 - 2\cos\theta}{\sin^2\theta}$$
.

Find the minimum value of $f(\theta)$.

(ii) Two towns A and B are 16km apart, and each at a distance of d km from a water well at W. Let M be the midpoint of AB, P be a point on the line segment MW, and $\theta = \angle APM = \angle BPM$. The two towns are to be supplied with water from W, via three straight water pipes: PW, PA and PB as shown below.

Show that the total length of the water pipe L is given

by
$$L = 8f(\theta) + \sqrt{d^2 - 64}$$
, when $\frac{8}{d} \le \sin \theta \le 1$, where $f(\theta)$ is given in part (i).

- (iii) If d = 20, find the length of MP when L is minimum, and the minimum value of L.
 Show that this minimum value of L is less than the sum of any pair of sides of ΔABW.
- (iv) If d = 9, show that the minimum value of L cannot be found by using the same methods as used in part (iii). Explain briefly how to find the minimum value of L in this case. (Hint: Draw a diagram which illustrates this situation.)

END OF PAPER