

Regressão

Notas Gerais e Comentários sobre Avaliação de Desempenho

Introdução

- A tarefa em que se prediz o valor contínuo de uma variável dá-se o nome de estimação (ou regressão) e, portanto, possui muitas características e processos em comum com a classificação
- A preparação da base de dados, a separação dos dados em treinamento e teste, a definição dos critérios de parada do algoritmo e o treinamento e teste são feitos de forma equivalente
- Uma diferença importante entre essas tarefas, entretanto, encontra-se na avaliação da saída
 - No caso dos classificadores, essa avaliação é baseada em alguma medida de acurácia do classificador, ou seja, a quantidade de objetos classificados corretamente
 - No caso dos estimadores, a qualidade é normalmente medida calculando-se uma distância ou erro entre a saída do estimador e a saída desejada

Avaliação de Desempenho

- A saída de um estimador é um valor numérico contínuo que deve ser o mais próximo possível do valor desejado, e a diferença entre esses valores fornece uma medida de erro de estimação do algoritmo
 - Seja d_j , j = 1, ..., n, a resposta desejada para o objeto $j \in y_j$ a resposta estimada (predita) do algoritmo, obtida a partir de uma entrada \mathbf{x}_j apresentada ao algoritmo
 - $e_j = d_j y_j$ é o sinal de erro observado na saída do sistema para o objeto j

Avaliação de Desempenho

Tabela 6.1 Medidas de desempenho para predição numérica (estimação)	
Medida de Desempenho	Fórmula
SSE (SUM SQUARE ERF Soma dos erros quadráticos	SEQ = $\sum_{j=1}^{n} e_j^2$
MSE (MEAN SQUARE El Erro quadrático médio	RROR) $EQM = \frac{1}{n} \sum_{j=1}^{n} e_j^2$
Raiz do erro quadrático médio	$REQM = \sqrt{\frac{1}{n} \sum_{j=1}^{n} e_j^2}$
MAE (MEAN ABSOLUTE Erro absoluto médio	ERROR) $EAM = \frac{1}{n} \sum_{j=1}^{n} e_{j} $
Erro quadrático relativo	$EQR = \frac{1}{n} \sum_{j=1}^{n} \frac{e_{j}^{2}}{(d_{j} - \overline{d})^{2}} , \overline{d} = \frac{1}{n} \sum_{j=1}^{n} d_{j}$
Raiz do erro quadrático relativo	$REQR = \sqrt{\frac{1}{n} \sum_{j=1}^{n} \frac{e_j^2}{(d_j - \overline{d})^2}} , \qquad \overline{d} = \frac{1}{n} \sum_{j=1}^{n} d_j$
Erro absoluto relativo	$EAR = \frac{1}{n} \sum_{j=1}^{n} \frac{ e_{j} }{ d_{j} - \overline{d} }$
Coeficiente de correlação	$\rho = \frac{\sum_{j=1}^{n} (d_{j} - \overline{d}) \ (y_{j} - \overline{y})}{\sqrt{\sum_{j=1}^{n} (d_{j} - \overline{d})^{2}} \cdot \sqrt{\sum_{j=1}^{n} (y_{j} - \overline{y})^{2}}}$

Regressão

- Regressão Linear (Simples, Múltipla)
- Árvore de Decisão (e variações (Random Forest))
- K-NN
- SVM
- ANN
- ...

Árvore de Decisão (e variações (Random Forest))

- A construção de uma árvore de regressão é semelhante à construção de uma árvore de classificação
- A diferença encontra-se na medida a ser utilizada para decidir sobre o melhor particionamento para o conjunto de dados
 - No caso da regressão, busca-se minimizar uma função de custo

Árvore de Decisão (e variações (Random Forest))

 Na referência tem-se a apresentação da seguinte medida

$$SDR(h_A) = sd(\mathbf{D}, \mathbf{y}) - \frac{n_L}{n} \times sd(\mathbf{D}_L, \mathbf{y}) - \frac{n_R}{n} \times sd(\mathbf{D}_R, \mathbf{y})$$

SDR = Standard Deviation Reduction

$$sd(\mathbf{D}, \mathbf{y}) = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - \overline{y})^2}$$

A constante associada às folhas de uma árvore de regressão é a média dos valores do atributo alvo dos exemplos de treinamento que caem na folha

Árvore de Decisão (e variações (Random Forest)) X[0] <= 5.5 mse = 4.686 mse = 1.5

Outras possibilidades são possíveis

$$SDR(h_A) = sd(\mathbf{D}, \mathbf{y}) - \frac{n_L}{n} \times sd(\mathbf{D}_L, \mathbf{y}) - \frac{n_R}{n} \times sd(\mathbf{D}_R, \mathbf{y})$$

https://scikitlearn.org/stable/modules/gener ated/sklearn.tree.DecisionTreeR egressor.html

https://medium.com/analyticsvidhya/regression-trees-decision-tree-forregression-machine-learninge4d7525d8047

$$ext{MSE} = rac{1}{n} \sum_{i=1}^n (Y_i - \hat{Y_i})^2$$

A constante associada às folhas de uma árvore de regressão é a média dos valores do atributo alvo dos exemplos de treinamento que caem na folha