$$H || z:$$

 $H = 2 JS_1 S_2 - \mu_B gHS_z$

$$S = 0 \left(2 J S_1 S_2 = -\frac{15}{2} J \right)$$
:

$$e_1 = 0$$

 $\Delta = 2 J$

$$S = I \left(2 J S_1 S_2 = -\frac{II}{2} J \right)$$
:

mat₂ // MatrixForm

матричная форма

Out[98]//MatrixForm=

$$\begin{pmatrix} -\,e + \triangle - g\,H\,\mu & 0 & 0 \\ 0 & -\,e + \triangle & 0 \\ 0 & 0 & -\,e + \triangle + g\,H\,\mu \end{pmatrix}$$

In[99]:= **det**₂ = **Det**[**mat**₂]

детерминант

Out[99]=
$$-e^3 + 3e^2 \triangle - 3e \triangle^2 + \triangle^3 + ee^2 H^2 \mu^2 - ee^2 H^2 \triangle \mu^2$$

привести

$$\mathbf{e} \, = \, \Delta \, \mid \, \mid \, \mathbf{e} \, = \, \Delta \, - \, \mathbf{g} \, \mathbf{H} \, \mu \, \mid \, \mid \, \mathbf{e} \, = \, \Delta \, + \, \mathbf{g} \, \mathbf{H} \, \mu$$

$$S = 2\left(2JS_1S_2 = -\frac{3}{2}J\right)$$
:

In[104]:= mat₃ = 3 \triangle * IdentityMatrix[5] -

единичная матрица

mat₃ // MatrixForm

матричная форма

Out[105]//MatrixForm=

$$\begin{pmatrix} -\,e + 3\,\triangle - 2\,g\,H\,\mu & 0 & 0 & 0 & 0 & 0 \\ 0 & -\,e + 3\,\triangle - g\,H\,\mu & 0 & 0 & 0 & 0 \\ 0 & 0 & -\,e + 3\,\triangle & 0 & 0 & 0 \\ 0 & 0 & 0 & -\,e + 3\,\triangle + g\,H\,\mu & 0 & 0 \\ 0 & 0 & 0 & 0 & -\,e + 3\,\triangle + 2\,g\,H\,\mu \end{pmatrix}$$

 $In[106]:= det_3 = Det[mat_3]$

детерминант

Out[106]=
$$(-e+3\triangle)$$
 $(-e+3\triangle+gH\mu)$ $(-e+3\triangle+2gH\mu)$ $(e^2-6e\triangle+9\triangle^2+3egH\mu-9gH\triangle\mu+2g^2H^2\mu^2)$

In[107]:= Reduce[det₃ == 0, e]

привести

Out[107]=

 $e \, = \, 3 \, \triangle \, \mid \, \mid \, e \, = \, 3 \, \triangle \, - \, 2 \, g \, H \, \mu \, \mid \, \mid \, e \, = \, 3 \, \triangle \, - \, g \, H \, \mu \, \mid \, \mid \, e \, = \, 3 \, \triangle \, + \, g \, H \, \mu \, \mid \, \mid \, e \, = \, 3 \, \triangle \, + \, 2 \, g \, H \, \mu \,$

$$S = 3\left(2 J S_1 S_2 = \frac{9}{2} J\right)$$
:

In[108]:= mat₄ = 6 \triangle * IdentityMatrix[7] -

единичная матрица

g μ H * DiagonalMatrix[{3, 2, 1, 0, -1, -2, -3}] - e * IdentityMatrix[7]; диагональная матрица

mat₄ // MatrixForm

матричная форма

Out[109]//MatrixForm=

In[110]:= **det**₄ = **Det**[**mat**₄]

детерминант

In[111]:= Reduce[det₄ == 0, e]

привести

$$\begin{array}{l} e == 6 \, \triangle \mid \mid e == 3 \, \left(2 \, \triangle - g \, H \, \mu \right) \, \mid \mid e == 2 \, \left(3 \, \triangle - g \, H \, \mu \right) \, \mid \mid \\ e == 6 \, \triangle - g \, H \, \mu \mid \mid e == 3 \, \left(2 \, \triangle + g \, H \, \mu \right) \, \mid \mid e == 2 \, \left(3 \, \triangle + g \, H \, \mu \right) \, \mid \mid e == 6 \, \triangle + g \, H \, \mu \end{array}$$

$$H \parallel x$$
:
 $H = 2 J S_1 S_2 - \mu_B g H S_X$

$$S = 0 \left(2 J S_1 S_2 = -\frac{15}{2} J \right)$$
:

$$e_1 = 0$$

 $\Delta = 2 J$

$$S = I \left(2 J S_1 S_2 = -\frac{II}{2} J \right)$$
:

$$g \mu H * \left(\begin{array}{c} Diagonal Matrix \left[\left\{ \frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2} \right\}, 1 \right] + Diagonal Matrix \left[\left\{ \frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2} \right\}, -1 \right] \right) - \left[\frac{1}{2} \left[\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2} \right], -1 \right] \right)$$

e * IdentityMatrix[3];

единичная матрица

matx₂ // MatrixForm

Out[113]//MatrixForm=

$$\begin{pmatrix} -e + \triangle & -\frac{g \, H \, \mu}{\sqrt{2}} & 0 \\ -\frac{g \, H \, \mu}{\sqrt{2}} & -e + \triangle & -\frac{g \, H \, \mu}{\sqrt{2}} \\ 0 & -\frac{g \, H \, \mu}{\sqrt{2}} & -e + \triangle \end{pmatrix}$$

$$ln[114]:= detx_2 = Det[matx_2] // Expand$$

детерминант раскрыты

Out[114]=
$$-e^3 + 3e^2 \triangle - 3e \triangle^2 + \triangle^3 + eg^2 H^2 \mu^2 - g^2 H^2 \triangle \mu^2$$

$$ln[115] = Reduce[detx_2 == 0, e]$$

привести

 $e = \triangle \mid \mid e = \triangle - g H \mu \mid \mid e = \triangle + g H \mu$ Out[115]=

$$S = 2\left(2JS_1S_2 = -\frac{3}{2}J\right)$$
:

$$log[116]:=$$
 matx₃ = 3 Δ * IdentityMatrix[5] - g μ H * $\left(\begin{array}{c} Diagonal Matrix[\{1, \frac{\sqrt{6}}{2}, \frac{\sqrt{6}}{2}, 1\}, 1] + \\ degundary Matrix[\{1, \frac{\sqrt{6}}{2}, \frac{\sqrt{6}}{2}, 1\}, 1] + \\ degundary Matrix[\{1, \frac{\sqrt{6}}{2}, \frac{\sqrt{6}}{2}, \frac{\sqrt{6}}{2}, 1\}, 1] + degundary Matrix[\{1, \frac{\sqrt{6}}{2}, \frac{\sqrt{6}}{2}, \frac{\sqrt{6}}{2}, \frac{\sqrt{6}}{2}, 1\}, 1] + degundary Matrix[\{1, \frac{\sqrt{6}}{2}, \frac{\sqrt{6}}$

DiagonalMatrix
$$\left[\left\{1, \frac{\sqrt{6}}{2}, \frac{\sqrt{6}}{2}, 1\right\}, -1\right]\right)$$
 — е * IdentityMatrix[5]; диагональная матрица

matx₃ //

MatrixForm

матричная форма

Out[117]//MatrixForm=

$$\begin{pmatrix} -e + 3 \triangle & -g \, H \, \mu & 0 & 0 & 0 \\ -g \, H \, \mu & -e + 3 \triangle & -\sqrt{\frac{3}{2}} \, g \, H \, \mu & 0 & 0 \\ 0 & -\sqrt{\frac{3}{2}} \, g \, H \, \mu & -e + 3 \triangle & -\sqrt{\frac{3}{2}} \, g \, H \, \mu & 0 \\ 0 & 0 & -\sqrt{\frac{3}{2}} \, g \, H \, \mu & -e + 3 \triangle & -g \, H \, \mu \\ 0 & 0 & 0 & -g \, H \, \mu & -e + 3 \triangle \end{pmatrix}$$

$$ln[118]:= detx_3 = Det[matx_3] // Expand$$

детерминант раскрыть

In[119]:= Reduce[detx₃ == 0, e] привести

Out[119]=

 $e \, = \, 3 \, \triangle \, \mid \, \mid \, e \, = \, 3 \, \triangle \, - \, 2 \, g \, H \, \mu \, \mid \, \mid \, e \, = \, 3 \, \triangle \, - \, g \, H \, \mu \, \mid \, \mid \, e \, = \, 3 \, \triangle \, + \, g \, H \, \mu \, \mid \, \mid \, e \, = \, 3 \, \triangle \, + \, 2 \, g \, H \, \mu \,$

$$S = 3\left(2 J S_1 S_2 = \frac{9}{2} J\right)$$
:

ln[120]:= matx₄ = 6 \triangle * IdentityMatrix[7] -

единичная матрица

$$\left\{\frac{\sqrt{6}}{2}, \frac{\sqrt{10}}{2}, \frac{\sqrt{12}}{2}, \frac{\sqrt{12}}{2}, \frac{\sqrt{10}}{2}, \frac{\sqrt{6}}{2}\right\}, -1\right]$$
 - e * IdentityMatrix[7];

matx₄ //
MatrixForm

матричная форма

Out[121]//MatrixForm=

 $\begin{array}{l} \text{Out} [122] = & -\,e^7\,+\,42\,\,e^6\,\,\triangle - 756\,\,e^5\,\,\triangle^2\,+\,7560\,\,e^4\,\,\triangle^3\,-\,45\,\,360\,\,e^3\,\,\triangle^4\,+\,163\,\,296\,\,e^2\,\,\triangle^5\,-\,\\ 326\,592\,\,e\,\,\triangle^6\,+\,279\,\,936\,\,\triangle^7\,+\,14\,\,e^5\,\,g^2\,\,H^2\,\,\mu^2\,-\,420\,\,e^4\,\,g^2\,\,H^2\,\,\triangle\,\,\mu^2\,+\,5040\,\,e^3\,\,g^2\,\,H^2\,\,\triangle^2\,\,\mu^2\,-\,\\ 30\,\,240\,\,e^2\,\,g^2\,\,H^2\,\,\triangle^3\,\,\mu^2\,+\,90\,\,720\,\,e\,\,g^2\,\,H^2\,\,\triangle^4\,\,\mu^2\,-\,108\,\,864\,\,g^2\,\,H^2\,\,\triangle^5\,\,\mu^2\,-\,49\,\,e^3\,\,g^4\,\,H^4\,\,\mu^4\,+\,\\ 882\,\,e^2\,\,g^4\,\,H^4\,\,\triangle\,\,\mu^4\,-\,5292\,\,e\,\,g^4\,\,H^4\,\,\triangle^2\,\,\mu^4\,+\,10\,\,584\,\,g^4\,\,H^4\,\,\triangle^3\,\,\mu^4\,+\,36\,\,e\,\,g^6\,\,H^6\,\,\mu^6\,-\,216\,\,g^6\,\,H^6\,\,\triangle\,\,\mu^6 \end{array}$

In[123]:= **Reduce[detx₄ == 0, e]** привести

$$H || y:$$

 $H = 2 JS_1 S_2 - \mu_B gHS_y$

$$S = 0 \left(2 J S_1 S_2 = -\frac{15}{2} J \right)$$
:

$$e_1 = 0$$

 $\Delta = 2 J$

$$S = I \left(2 J S_1 S_2 = -\frac{II}{2} J \right)$$
:

$$log[124]$$
:= maty₂ = Δ * IdentityMatrix[3] - g μ H * $\left[\begin{array}{c} \text{DiagonalMatrix}\left[\left\{\frac{-i\sqrt{2}}{2}\right\}, \frac{-i\sqrt{2}}{2}\right\}, 1\right]$ + $\left[\begin{array}{c} \text{DiagonalMatrix}\left[\left\{\frac{-i\sqrt{2}}{2}\right\}, \frac{-i\sqrt{2}}{2}\right\}, 1\right]$ +

maty₂ // MatrixForm

матричная форма

$$\begin{pmatrix} -e + \triangle & \frac{i gH \mu}{\sqrt{2}} & 0 \\ -\frac{i gH \mu}{\sqrt{2}} & -e + \triangle & \frac{i gH \mu}{\sqrt{2}} \\ 0 & -\frac{i gH \mu}{\sqrt{2}} & -e + \triangle \end{pmatrix}$$

детерминант раскрыть

Out[126]=
$$-e^3 + 3e^2 \triangle - 3e \triangle^2 + \triangle^3 + eg^2 H^2 \mu^2 - g^2 H^2 \triangle \mu^2$$

$$In[127]:=$$
 Reduce [dety₂ == 0, e]

Out[127]=
$$\mathbf{e} = \Delta \mid \mathbf{e} = \Delta - \mathbf{g} \mathbf{H} \mu \mid \mathbf{e} = \Delta + \mathbf{g} \mathbf{H} \mu$$

$$S = 2\left(2JS_1S_2 = -\frac{3}{2}J\right)$$
:

 $In[128]:= maty_3 =$

$$3 \Delta * IdentityMatrix[5] - g \mu H * \left(\begin{array}{c} DiagonalMatrix[\{-i*1, \frac{-i*\sqrt{6}}{2}, \frac{-i*\sqrt{6}}{2}, -i*1\}, 1] + \\ \\ DiagonalMatrix[\{-i*1, \frac{-i*\sqrt{6}}{2}, \frac{-i*\sqrt{6}}{2}, -i*1\}, 1] + \\ \end{array} \right)$$

DiagonalMatrix
$$\left[\left\{ i * 1, \frac{i \sqrt{6}}{2}, \frac{i \sqrt{6}}{2}, i * 1 \right\}, -1 \right] - e * IdentityMatrix[5];$$
 диагональная матрица

maty₃ // MatrixForm

матричная форма

Out[129]//MatrixForm=

$$\begin{pmatrix} -e + 3 \triangle & \text{i} \ g \ H \ \mu & 0 & 0 & 0 \\ -\text{i} \ g \ H \ \mu & -e + 3 \triangle & \text{i} \ \sqrt{\frac{3}{2}} \ g \ H \ \mu & 0 & 0 \\ 0 & -\text{i} \ \sqrt{\frac{3}{2}} \ g \ H \ \mu & -e + 3 \triangle & \text{i} \ \sqrt{\frac{3}{2}} \ g \ H \ \mu & 0 \\ 0 & 0 & -\text{i} \ \sqrt{\frac{3}{2}} \ g \ H \ \mu & -e + 3 \triangle & \text{i} \ g \ H \ \mu \\ 0 & 0 & 0 & -\text{i} \ g \ H \ \mu & -e + 3 \triangle \\ \end{pmatrix}$$

привести

Out[131]=
$$e = 3 \triangle | e = 3 \triangle - 2 g H \mu | e = 3 \triangle - g H \mu | e = 3 \triangle + g H \mu | e = 3 \triangle + 2 g H \mu$$

$$S = 3\left(2 J S_1 S_2 = \frac{9}{2} J\right)$$
:

$$ln[132] = maty_4 = 6 \Delta * IdentityMatrix[7] - g \mu H *$$

единичная матрица

DiagonalMatrix
$$\left[\left\{\frac{-\dot{\text{i}}\sqrt{6}}{2}, \frac{-\dot{\text{i}}\sqrt{10}}{2}, \frac{-\dot{\text{i}}\sqrt{12}}{2}, \frac{-\dot{\text{i}}\sqrt{12}}{2}, \frac{-\dot{\text{i}}\sqrt{12}}{2}, \frac{-\dot{\text{i}}\sqrt{10}}{2}, \frac{-\dot{\text{i}}\sqrt{6}}{2}\right\}, 1\right] +$$

DiagonalMatrix
$$\left[\left\{\frac{\dot{\mathtt{n}}\sqrt{6}}{2},\,\frac{\dot{\mathtt{n}}\sqrt{10}}{2},\,\frac{\dot{\mathtt{n}}\sqrt{12}}{2},\,\frac{\dot{\mathtt{n}}\sqrt{12}}{2},\,\frac{\dot{\mathtt{n}}\sqrt{10}}{2},\,\frac{\dot{\mathtt{n}}\sqrt{6}}{2}\right\}$$
, диагональная матрица

maty₄ //

MatrixForm

матричная форма

Out[133]//MatrixForm:

 $ln[134] = dety_4 = Det[maty_4] // Expand$

детерминант раскрыть

 $\text{Out} [134] = -e^7 + 42 \ e^6 \ \triangle - 756 \ e^5 \ \triangle^2 + 7560 \ e^4 \ \triangle^3 - 45 \ 360 \ e^3 \ \triangle^4 + 163 \ 296 \ e^2 \ \triangle^5 - 100 \ e^4 \ \triangle^4 + 163 \ e^5 \ \triangle^4 + 163 \ e^5 \ \triangle^5 - 100 \ e^5 \ \triangle^5 + 100 \ e^5 \ \triangle^5 - 100 \ e^5 \ \triangle^5 + 100 \ e^5 \ \triangle^5 - 100 \ e^5 \ \triangle^5$ 326 592 e \triangle^6 + 279 936 \triangle^7 + 14 e⁵ g² H² μ^2 – 420 e⁴ g² H² \triangle μ^2 + 5040 e³ g² H² \triangle^2 μ^2 – 30 240 e^2 g^2 H^2 \triangle^3 μ^2 + 90 720 e g^2 H^2 \triangle^4 μ^2 - 108 864 g^2 H^2 \triangle^5 μ^2 - 49 e^3 g^4 H^4 μ^4 + 882 e^2 g^4 H^4 \triangle μ^4 - 5292 e g^4 H^4 \triangle^2 μ^4 + 10 584 g^4 H^4 \triangle^3 μ^4 + 36 e g^6 H^6 μ^6 - 216 g^6 H^6 \triangle μ^6

In[135]:= Reduce[dety₄ == 0, e]

привести

 $e = 6 \triangle | | e = 3 (2 \triangle - g H \mu) | | e = 2 (3 \triangle - g H \mu) | |$ Out[135]= $e = 6 \triangle - g H \mu \mid \mid e = 3 (2 \triangle + g H \mu) \mid \mid e = 2 (3 \triangle + g H \mu) \mid \mid e = 6 \triangle + g H \mu$