Proyecto 1. Automatismo Puerta Automática.

Realizar el siguiente automatismo para la apertura de una puerta mediante motor trifásico.

<u>FASE 1: FUNCIONAMIENTO AUTOMATICO</u>. Cuando la fotocélula 1B3 detecta a una persona o vehículo durante al menos 2 segundos (para evitar falsas detecciones), la puerta se abre hasta llegar al detector 1B2. En este instante la puerta permanece abierta durante un tiempo (este tiempo es introducido a través del SCADA). Pasado el tiempo la puerta se cierra hasta llegar a 1B1.

Si la puerta se está cerrando y la fotocélula 1B3 detecta a una persona, la puerta se vuelve a abrir.

Mientras la puerta se abre o cierra, un piloto (Q0.2) debe activarse de forma intermitente (0,5 seg.) ON – 0,5 seg. OFF)

<u>FASE 2: FUNCIONAMIENTO MANUAL.</u> En la pantalla se dispone de un selector (MAN-AUTO) y dos pulsadores de Abrir y Cerrar (pulso y abre – suelto y para) . Los detectores 1B1 y 1B2 deben de actuar como seguridad en todo momento.

<u>FASE 3:</u> Queremos que la puerta se abra automáticamente a las 12:00h y se cierre a las 12:30h. Tanto el funcionamiento MANUAL como el AUTOMATICO quedaran deshabilitados. Debes realizar el ejercicio de forma autodidacta.

Consulta el Manual de Usuario: Tipos de datos de fecha y hora (pág. 122, 123) y Funciones de Fecha, Hora y Reloj (pág. 329 a 334).

Consultar Video: https://youtu.be/pXFsS XP1og

<u>FASE 4: PARO.</u> Al pulsar paro la puerta debe parar y al volver a pulsar paro la puerta debe continuar su movimiento. Si se pulsa paro cuando la puerta está totalmente abierta (estando el temporizador en marcha), se debe parar el tiempo del temporizador y cuando se pulse de nuevo paro, el temporizador debe continuar con el tiempo que tenía (Utilizar un temporizador **TONR**).

<u>FASE 5: DISPARO TERMICO</u>. Si se dispara el térmico, se debe parar el motor. Al rearmar el térmico y al pulsar un pulsador de reinicio, la puerta se debe cerrar hasta llegar al detector 1B1.

Realizar un SCADA el cual debe incluir:

- Introducción del tiempo de apertura.
- Visualización del tiempo que queda para que la puerta se cierre.
- Selector MAN-AUTO y pulsadores abrir y cerrar.

Tabla 5-32 Tipos de datos de fecha y hora

Tipo de datos	Tama- ño	Rango	Ejemplos de entrada de constantes
Time	32 bits	T#-24d_20h_31m_23s_648ms a T#24d_20h_31m_23s_647ms Almacenado como: -2.147.483.648 ms has- ta +2.147.483.647 ms	T#5m_30s T#1d_2h_15m_30s_45ms TIME#10d20h30m20s630ms 500h10000ms 10d20h30m20s630ms
Date	16 bits	D#1990-1-1 a D#2168-12-31	D#2009-12-31 DATE#2009-12-31 2009-12-31
Hora	32 bits	TOD#0:0:0.0 a TOD#23:59:59.999	TOD#10:20:30.400 TIME_OF_DAY#10:20:30.400 23:10:1
DTL (fecha y hora en formato largo)	12 bytes	Min.: DTL#1970-01-01-00:00:00.0 Máx.: DTL#2262-04-11:23:47:16.854 775 807	DTL#2008-12-16-20:30:20.25 0

Time

El dato TIME se guarda como entero doble con signo y se interpreta como milisegundos. El formato del editor puede utilizar información para día (d), horas (h), minutos (m), segundos (s) y milisegundos (ms).

No es necesario especificar todas las unidades de tiempo. Son válidos por ejemplo T#5h10s y 500h.

El valor combinado de todos los valores de unidad especificados no puede superar los límites superior o inferior en milisegundos para el tipo de datos Time (-2.147.483.648 ms a +2.147.483.647 ms).

Date

DATE se guarda como valor entero sin signo y se interpreta como número de días agregados a la fecha patrón 01/01/1990 para obtener la fecha específica. El formato del editor debe específica un año, un mes y un día.

TOD

TOD (TIME_OF_DAY) se guarda como entero doble sin signo y se interpreta como el número en milisegundos desde medianoche para obtener la hora específica del día (medianoche = 0 ms). Deben especificarse hora (24h/día), minuto y segundo. Las fracciones de segundo son opcionales.

DTL

El tipo de datos DTL (fecha y hora largo) utiliza una estructura de 12 bytes para guardar información sobre la fecha y la hora. DTL se puede definir en la memoria temporal de un bloque o en un DB. Debe indicarse un valor para todos los componentes en la columna "Valor inicial" del editor de DB.

Tabla 5-33 Tamaño y rango para DTL

Longi- tud (bytes)	Formato	Rango de valores	Ejemplo de un valor de entrada
12	Reloj y calendario	Mín.: DTL#1970-01-01-00:00:00.0	DTL#2008-12-16-20
	Año-Mes-Día:Ho- ra:Minuto: Segundo.Nanosegun- dos	Máx.: DTL#2554-12-31-23:59:59.999 999 999	:30:20.250

Todo componente de DTL contiene un tipo de datos y un rango de valores diferentes. El tipo de datos de un valor especificado debe concordar con el tipo de datos de los componentes correspondientes.

Tabla 5-34 Elementos de la estructura DTL

Byte	Componente	Tipo de datos	Rango de valores
0	Año	UINT	1970 a 2554
1			
2	Mes	USINT	1 a 12
3	Día	USINT	1 a 31
4	Día de la sema- na 1	USINT	1(domingo) a 7(sábado) 1
5	Hora	USINT	0 a 23
6	Minuto	USINT	0 a 59
7	Segundo	USINT	0 a 59
8	Nanosegundos	UDINT	0 a 999 999 999
9			
10			
11			

El formato Año-Mes-Día:Hora:Minuto: Segundo.Nanosegundos no incluye el día de la semana.

Descripción de los elementos:

CGMP	E/S PLC	Panel de Mandos	E/S PLC
0S1: Interruptor General, 3F+N		1S1: Pulsador	I0.4
		reinicio	
1Q1: Guardamotor 1M1	10.0	1S2: Pulsador paro	I0.5
1KM1: Contactor motor 1M1, bobina a 230 V.	Q0.0	1H1: Piloto puerta en	Q0.2
		movimiento	
1KM2: Contactor motor 1M1, bobina a 230 V.	Q0.1		
Máquina			
1B1: Detector 3 hilos PNP.	I0.1		
1B2: Detector 3 hilos NPN.	I0.2		
1B3: Fotocelula 2 hilos 230V. TELCO	I0.3		

REGLETEROS:

				T	
CGPM					
X0-1	Entrada, L1				
X0-2	Entrada, L2				
X0-3	Entrada, L3				
X0-4	Entrada, Neutro				
X0-5	Entrada, Cp				
X1-1	Salida, U1, 1M1	X3-1	Entrada común, 24 V+		
X1-2	Salida, V1, 1M1	X3-2	Salida, 1S1		
X1-3	Salida, W1, 1M1	X3-3	Entrada común, 24 V+		
X1-4	Salida, Cp, 1M1	X3-4	Entrada, 1S2		
		X3-5	Entrada, 1H1		
		X3-6	Entr. Común, Neutro		
X2-1	Común, 24V+		Salida, CP		
X2-2	Salida 1B1				
X2-3	Común, 0V				
X2-4	Común, 24V+				
X2-5	Salida 1B2				
X2-6	Común, 0V				
X2-7	Entrada, fase 230V				
X2-8	Salida 1B3				
X2-9	Entrada, Cp				

Actividades a realizar por este orden:

- 1.- Realiza el Grafcet.
- 2.- Programa del PLC con comentarios en cada sección y Programa SCADA.
- 3.- Realizar a mano alzada en tu libreta:
 - a) Esquema eléctrico con los borneros de interconexión.
 - b) Lista de E/S, lista de material y características de cada elemento utilizado.
- **4.-** Realiza el montaje del automatismo y verifica el funcionamiento de las entradas y salidas.
- 5.- Prueba el funcionamiento.

ENTREGAR: Enunciado del proyecto. Esquemas eléctricos en EPLAN con borneros y mangueras. Grafcet. Impresión del programa del PLC con comentarios. Impresión de las pantallas de SCADA con indicación de variables y animaciones. Listado de material utilizado y Hojas de características del material.