#### Nonparametric Dispersion and Equality Tests

Nathaniel E. Helwig

Assistant Professor of Psychology and Statistics University of Minnesota (Twin Cities)



Updated 04-Jan-2017

#### Copyright

Copyright © 2017 by Nathaniel E. Helwig

#### Outline of Notes

- 1) Dispersion (Ansari-Bradley):
  - Overview
  - Procedure
  - Example 1

- 3) Equality (Kolmogorov-Smirnov):
  - Overview
  - Procedure
  - Example 3

- 2) Dispersion/Location (Lepage):
  - Overview
  - Procedure
  - Example 2

# Dispersion Test (Ansari-Bradley)

### Problem(s) of Interest

Like two-sample location problem, we have N = m + n observations

- $X_1, \ldots, X_m$  are iid random sample from population 1
- $Y_1, \ldots, Y_n$  are iid random sample from population 2

We want to make inferences about difference in distributions

- Let  $F_1$  and  $F_2$  denote distributions of populations 1 and 2
- Null hypothesis is same distribution  $(F_1(z) = F_2(z))$  for all z)

Using the location-scale parameter model, we have

- $F_1(z) = G([z \theta_1]/\eta_1)$  and  $F_2(z) = G([z \theta_2]/\eta_2)$
- $\theta_i$  and  $\eta_i$  are median and scale parameters for population j

#### **Assumptions**

Within sample independence assumption

- $X_1, \ldots, X_m$  are iid random sample from population 1
- $Y_1, \ldots, Y_n$  are iid random sample from population 2

Between sample independence assumption

• Samples  $\{X_i\}_{i=1}^m$  and  $\{Y_i\}_{i=1}^n$  are mutually independent

Continuity assumption: both  $F_1$  and  $F_2$  are continuous distributions

Location assumption:  $\theta_1 = \theta_2$  or  $\theta_1$  and  $\theta_2$  are known

### Parameter of Interest and Hypothesis

Parameter of interest is the ratio of the variances:

$$\gamma^2 = \frac{V(X)}{V(Y)}$$

so that  $\gamma^2 = 1$  whenever V(X) = V(Y).

The null hypothesis about  $\gamma^2$  is

$$H_0: \gamma^2 = 1$$

and we could have one of three alternative hypotheses:

- One-Sided Upper-Tail:  $H_1: \gamma^2 > 1$
- One-Sided Lower-Tail:  $H_1: \gamma^2 < 1$
- Two-Sided:  $H_1: \gamma^2 \neq 1$

#### Test Statistic

Let  $\{Z_{(k)}\}_{k=1}^N$  denote the order statistics for the combined sample, and assign rank scores

$$\textit{R}^*_{\textit{k}} = \left\{ \begin{array}{ll} 1, 2, 3, \dots, \frac{N}{2}, \frac{N}{2}, \dots, 3, 2, 1 & \text{if $N$ is even} \\ 1, 2, 3, \dots, \frac{N-1}{2}, \frac{N+1}{2}, \frac{N-1}{2}, \dots, 3, 2, 1 & \text{if $N$ is odd} \end{array} \right.$$

to the combined sample  $\{Z_{(k)}\}_{k=1}^{N}$ .

The Ansari-Bradley test statistic C is defined as

$$C=\sum_{j=1}^n R_j$$

where  $R_i$  is the assigned rank score of  $Y_i$  for i = 1, ..., n

#### Distribution of Test Statistic under $H_0$

Under  $H_0$  all  $\binom{N}{n}$  arrangements of Y-ranks occur with equal probability

- Given (N, n), calculate C for all  $\binom{N}{n}$  possible outcomes
- Each outcome has probability  $1/\binom{N}{n}$  under  $H_0$

#### Example null distribution with m = 3 and n = 2:

| _                                                 |                                  |   |                 |
|---------------------------------------------------|----------------------------------|---|-----------------|
| _                                                 | Probability under H <sub>0</sub> | С | <i>Y</i> -ranks |
| _                                                 | 1/10                             | 3 | 1,2             |
|                                                   | 1/10                             | 4 | 1,3             |
|                                                   | 1/10                             | 3 | 1,4             |
|                                                   | 1/10                             | 2 | 1,5             |
| Note: there are $\binom{5}{2} = 10$ possibilities | 1/10                             | 5 | 2,3             |
|                                                   | 1/10                             | 4 | 2,4             |
|                                                   | 1/10                             | 3 | 2,5             |
|                                                   | 1/10                             | 5 | 3,4             |
|                                                   | 1/10                             | 4 | 3,5             |
|                                                   | 1/10                             | 3 | 4.5             |

## Hypothesis Testing

#### One-Sided Upper Tail Test:

- $H_0: \gamma^2 = 1 \text{ versus } H_1: \gamma^2 > 1$
- Reject  $H_0$  if  $C \geq c_{\alpha}$  where  $P(C > c_{\alpha}) = \alpha$

#### One-Sided Lower Tail Test:

- $H_0: \gamma^2 = 1 \text{ versus } H_1: \gamma^2 < 1$
- Reject  $H_0$  if  $C \leq [c_{1-\alpha} 1]$

#### Two-Sided Test:

- $H_0: \gamma^2 = 1 \text{ versus } H_1: \gamma^2 \neq 1$
- Reject  $H_0$  if  $C \ge c_{\alpha/2}$  or  $C \le [c_{1-\alpha/2} 1]$

#### Large Sample Approximation

Under  $H_0$ , the expected value and variance of C are

- if N is even:  $E(C) = \frac{n(N+2)}{4}$  and  $V(C) = \frac{mn(N+2)(N-2)}{48(N-1)}$
- if N is odd:  $E(C) = \frac{n(N+1)^2}{4N}$  and  $V(C) = \frac{mn(N+1)(3+N^2)}{48N^2}$

We can create a standardized test statistic  $C^*$  of the form

$$C^* = rac{C - E(C)}{\sqrt{V(C)}}$$

which asymptotically follows a N(0, 1) distribution.

#### Derivation of Large Sample Approximation

Note that we have  $C = \sum_{j=1}^{n} R_j$ , which implies that

- $\bullet$  C/n is the average of the (combined) Y rank scores
- C/n has same distribution as sample mean of size n drawn without replacement from finite population

$$S = \{1, 2, 3, \dots, \frac{N}{2}, \frac{N}{2}, \dots, 3, 2, 1\} \text{ if } N \text{ is even}$$
 
$$S = \{1, 2, 3, \dots, \frac{N-1}{2}, \frac{N+1}{2}, \frac{N-1}{2}, \dots, 3, 2, 1\} \text{ if } N \text{ is odd}$$

Using some basic results of finite population theory, we have

• 
$$E(C/n) = \mu$$
, where  $\mu = \frac{1}{N} \sum_{k=1}^{N} S_k = \begin{cases} \frac{N+2}{4} & \text{if } N \text{ is even} \\ \frac{(N+1)^2}{4N} & \text{if } N \text{ is odd} \end{cases}$ 

#### Handling Ties

If  $Z_i = Z_j$  for any two observations from combined sample  $(X_1, \ldots, X_m, Y_1, \ldots, Y_n)$ , then use the average ranking procedure.

- C is calculated in same fashion (using average ranks)
- ullet Average ranks with null distribution is approximate level lpha test
- ullet Can still obtain an exact level lpha test via conditional distribution

Large sample approximation variance formulas:

$$V_*(C) = \begin{cases} \frac{mn\left[16\sum_{j=1}^g t_j r_j^2 - N(N+2)^2\right]}{16N(N-1)} & \text{if } N \text{ is even} \\ \frac{mn\left[16N\sum_{j=1}^g t_j r_j^2 - (N+1)^4\right]}{16N^2(N-1)} & \text{if } N \text{ is odd} \end{cases}$$

#### where

- g is the number of tied groups
- t<sub>i</sub> is the size of the tied group
- r<sub>i</sub> is the average rank score for group

## Example 1: Data

#### Some simulated data:

| Χ     | $R_k$ | Y     | $R_k$ |
|-------|-------|-------|-------|
| -0.63 | (5)   | 0.78  | (8)   |
| 0.18  | (9)   | -1.24 | (2)   |
| -0.84 | (3)   | -4.43 | (1)   |
| 1.60  | (5)   | 2.25  | (1)   |
| 0.33  | (10)  | -0.09 | (7)   |
| -0.82 | (4)   | -0.03 | (8)   |
| 0.49  | (11)  | 1.89  | (2)   |
| 0.74  | (9)   | 1.64  | (4)   |
| 0.58  | (10)  | 1.19  | (7)   |
| -0.31 | (6)   | 1.84  | (3)   |
| 1.51  | (6)   |       |       |

#### Example 1: By Hand

| X      | $R_k$ | Y      | $R_k$ |
|--------|-------|--------|-------|
| -0.63  | (5)   | 0.78   | (8)   |
| 0.18   | (9)   | -1.24  | (2)   |
| -0.84  | (3)   | -4.43  | (1)   |
| 1.60   | (5)   | 2.25   | (1)   |
| 0.33   | (10)  | -0.09  | (7)   |
| -0.82  | (4)   | -0.03  | (8)   |
| 0.49   | (11)  | 1.89   | (2)   |
| 0.74   | (9)   | 1.64   | (4)   |
| 0.58   | (10)  | 1.19   | (7)   |
| -0.31  | (6)   | 1.84   | (3)   |
| 1.51   | (6)   |        |       |
| $\sum$ | 78    | $\sum$ | 43    |

$$C = \sum_{j=1}^{10} R_j = 43$$

# Example 1: Using R (Hard Way)

```
> set.seed(1)
> x = round(rnorm(11), 2)
> y = round(rnorm(10,0,2),2)
> m = length(x)
> n = length(y)
> N = m + n
> z = sort(c(x,y), index=TRUE)
> rz = seq(1, (N-1)/2)
> rz = c(rz, (N+1)/2, rev(rz))
> r = rz[sort(z$ix,index=TRUE)$ix]
> sum(r[1:11])
[11 78
> sum(r[12:21])
[11 43
```

## Example 1: Using R (Easy Way)

```
> set.seed(1)
> x = round(rnorm(11), 2)
> y = round(rnorm(10,0,2),2)
> ansari.test(x,y)
 Ansari-Bradley test
data: x and v
AB = 78, p-value = 0.04563
alternative hypothesis: true ratio of scales is not equal to 1
> ansari.test(x,y,alternative="less")
 Ansari-Bradlev test
data: x and y
AB = 78, p-value = 0.02282
alternative hypothesis: true ratio of scales is less than 1
```

# Dispersion/Location (Lepage)

### Problem(s) of Interest

Like other two-sample problems, we have N = m + n observations

- $X_1, \ldots, X_m$  are iid random sample from population 1
- $Y_1, \ldots, Y_n$  are iid random sample from population 2

We want to make inferences about difference in distributions

- Let  $F_1$  and  $F_2$  denote distributions of populations 1 and 2
- Null hypothesis is same distribution  $(F_1(z) = F_2(z))$  for all z)

Using the location-scale parameter model, we have

- $F_1(z) = G([z \theta_1]/\eta_1)$  and  $F_2(z) = G([z \theta_2]/\eta_2)$
- $\theta_i$  and  $\eta_i$  are median and scale parameters for population j

### **Assumptions**

Within sample independence assumption

- $X_1, \ldots, X_m$  are iid random sample from population 1
- $Y_1, \ldots, Y_n$  are iid random sample from population 2

Between sample independence assumption

• Samples  $\{X_i\}_{i=1}^m$  and  $\{Y_i\}_{i=1}^n$  are mutually independent

Continuity assumption: both  $F_1$  and  $F_2$  are continuous distributions

### Parameters of Interest and Hypothesis

Parameters of interest are the median difference and variance ratio:

$$\delta = \theta_1 - \theta_2$$
 and  $\gamma^2 = \frac{V(X)}{V(Y)}$ 

so that  $\delta = 0$  whenever  $\theta_1 = \theta_2$  and  $\gamma^2 = 1$  whenever V(X) = V(Y).

The null hypothesis about  $\delta$  and  $\gamma^2$  is

$$H_0: \delta = 0$$
 and  $\gamma^2 = 1$ 

and there is only one alternative hypothesis

$$H_1: \delta \neq 0$$
 and/or  $\gamma^2 \neq 1$ 

#### Test Statistic

The Lepage test statistic D is given by

$$D = \frac{[W - E(W)]^2}{V(W)} + \frac{[C - E(C)]^2}{V(C)}$$

- W is the Wilcoxon rank sum test statistic
- C is the Ansari-Bradley test statistic

#### Hypothesis Testing & Large Sample Approximation

One-Sided Upper Tail Test:

- $H_0: \delta = 0$  and  $\gamma^2 = 1$  versus  $H_1: \delta \neq 0$  and/or  $\gamma^2 \neq 1$
- Reject  $H_0$  if  $D \ge d_{\alpha}$  where  $P(D > d_{\alpha}) = \alpha$

This is the only appropriate test here...

- Large  $\frac{(W-E(W))^2}{V(W)}$  and  $\frac{(C-E(C))^2}{V(C)}$  provide more evidence against  $H_0$
- We only reject H<sub>0</sub> if test statistic D is too large

Under  $H_0$  and as  $n \to \infty$ , we have that  $D \sim \chi^2_{(2)}$ 

- $\chi^2_{(2)}$  denotes a chi-squared distribution with 2 df
- Reject  $H_0$  if  $D \ge \chi^2_{(2);\alpha}$  where  $P(\chi^2_{(2)} > \chi^2_{(2);\alpha}) = \alpha$

## Example 2: Data

#### Same simulated data:

| X     | $[W_{R_k}]$ | $(C_{R_k})$ | Y     | $[W_{R_k}]$ | $(C_{R_k})$ |
|-------|-------------|-------------|-------|-------------|-------------|
| -0.63 | [5]         | (5)         | 0.78  | [14]        | (8)         |
| 0.18  | [9]         | (9)         | -1.24 | [2]         | (2)         |
| -0.84 | [3]         | (3)         | -4.43 | [1]         | (1)         |
| 1.60  | [17]        | (5)         | 2.25  | [21]        | (1)         |
| 0.33  | [10]        | (10)        | -0.09 | [7]         | (7)         |
| -0.82 | [4]         | (4)         | -0.03 | [8]         | (8)         |
| 0.49  | [11]        | (11)        | 1.89  | [20]        | (2)         |
| 0.74  | [13]        | (9)         | 1.64  | [18]        | (4)         |
| 0.58  | [12]        | (10)        | 1.19  | [15]        | (7)         |
| -0.31 | [6]         | (6)         | 1.84  | [19]        | (3)         |
| 1.51  | [16]        | (6)         |       |             |             |

 $(C_{R_k})$ 

#### Example 2: By Hand

 $(C_{R_k})$ 

 $[W_{R_{\nu}}]$ 

| -0.63  | [5]  | (5)  | 0.78  | [14] | (8) |
|--------|------|------|-------|------|-----|
| 0.18   | [9]  | (9)  | -1.24 | [2]  | (2) |
| -0.84  | [3]  | (3)  | -4.43 | [1]  | (1) |
| 1.60   | [17] | (5)  | 2.25  | [21] | (1) |
| 0.33   | [10] | (10) | -0.09 | [7]  | (7) |
| -0.82  | [4]  | (4)  | -0.03 | [8]  | (8) |
| 0.49   | [11] | (11) | 1.89  | [20] | (2) |
| 0.74   | [13] | (9)  | 1.64  | [18] | (4) |
| 0.58   | [12] | (10) | 1.19  | [15] | (7) |
| -0.31  | [6]  | (6)  | 1.84  | [19] | (3) |
| 1.51   | [16] | (6)  |       |      |     |
| $\sum$ | 106  | 78   | Σ     | 125  | 43  |
|        |      |      |       |      |     |
|        |      |      |       |      |     |

$$W_* = \frac{W - E(W)}{\sqrt{V(W)}} = \frac{W - n(N+1)/2}{\sqrt{mn(N+1)/12}} = \frac{125 - 110}{\sqrt{201.6667}} = 1.056268$$

$$C_* = \frac{C - E(C)}{\sqrt{V(C)}} = \frac{C - n(N+1)^2/(4N)}{\sqrt{mn(N+1)(3+N^2)/(48N^2)}} = \frac{43 - 57.61905}{\sqrt{50.75964}} = -2.051917$$

$$D = W_*^2 + C_*^2 = (1.056268)^2 + (-2.051917)^2 = 5.326067$$

# Example 2: Using R (Hard Way)

```
> set.seed(1)
> x = round(rnorm(11), 2)
> v = round(rnorm(10,0,2),2)
> m = length(x)
> n = length(v)
> N = m + n
> z = sort(c(x,y), index=TRUE)
> rz = seg(1, (N-1)/2)
> rz = c(rz, (N+1)/2, rev(rz))
> r = rz[sort(z$ix,index=TRUE)$ix]
> C = sum(r[12:21])
> rk = rank(c(x,v))
> W = sum(rk[12:21])
> Wstar = (W-n*(N+1)/2)/sqrt(m*n*(N+1)/12)
> \text{Cstar} = (C-n*((N+1)^2)/(4*N))/\text{sqrt}(m*n*(N+1)*(3+N^2)/(48*(N^2)))
> D = Wstar^2 + Cstar^2
> D
> 1 - pchisq(D,2)
[1] 0.06973637
```

# Example 2: Using R (Easy Way)

```
> require(NSM3)
> set.seed(1)
> x = round(rnorm(11), 2)
> y = round(rnorm(10, 0, 2), 2)
> pLepage(x,y)
Number of X values: 11 Number of Y values: 10
Lepage D Statistic: 5.3261
Monte Carlo (Using 10000 Iterations) upper-tail probability: 0.0643
```

# **Equality Test** (Kolmogorov-Smirnov)

### Problem(s) of Interest

Like other two-sample problems, we have N = m + n observations

- $X_1, \ldots, X_m$  are iid random sample from population 1
- $Y_1, \ldots, Y_n$  are iid random sample from population 2

We want to make inferences about difference in distributions

- Let F<sub>1</sub> and F<sub>2</sub> denote distributions of populations 1 and 2
- Null hypothesis is same distribution  $(F_1(z) = F_2(z))$  for all z)

Do NOT assume the location-scale parameter model

- More general test than the others
- Interested in any differences between F<sub>1</sub> and F<sub>2</sub>

#### **Assumptions**

Within sample independence assumption

- $X_1, \ldots, X_m$  are iid random sample from population 1
- $Y_1, \ldots, Y_n$  are iid random sample from population 2

Between sample independence assumption

• Samples  $\{X_i\}_{i=1}^m$  and  $\{Y_i\}_{i=1}^n$  are mutually independent

Continuity assumption: both  $F_1$  and  $F_2$  are continuous distributions

### Parameter of Interest and Hypothesis

Parameter of interest is the maximum absolute difference between the CDFs of X and Y:

$$\omega = \max_{-\infty \le z \le \infty} |F_1(z) - F_2(z)|$$

The null hypothesis about  $\omega$  is

$$H_0:\omega=0$$

and there is only one alternative hypothesis

$$H_1: \omega > 0$$

#### Test Statistic

Define the maximum absolute difference between the empirical CDFs of X and Y as

$$\hat{\omega} = \max_{k=1,\dots,N} |\hat{F}_{1,m}(Z_{(k)}) - \hat{F}_{2,n}(Z_{(k)})|$$

where

- $\hat{F}_{1,m}(z) = \frac{\sum_{i=1}^{m} \mathbb{1}_{\{X_i \le z\}}}{m}$  and  $\hat{F}_{2,n}(z) = \frac{\sum_{j=1}^{n} \mathbb{1}_{\{Y_j \le z\}}}{n}$
- $Z_{(k)}$  denotes the k-th order statistic of the combined sample

The Kolmogorov-Smirnov test statistic K is given by

$$K = \frac{mn}{d}\hat{\omega}$$

where d is greatest common divisor of m and n

#### Distribution of Test Statistic under $H_0$

Under  $H_0$  all  $\binom{N}{n}$  arrangements of ranks occur with equal probability

- Given (N, n), calculate K for all  $\binom{N}{n}$  possible outcomes
- Each outcome has probability  $1/\binom{N}{n}$  under  $H_0$

#### Example null distribution with m = 3 and n = 2:

| Y-ranks | $F_{1,m}(Z_{(k)})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $F_{2,n}(Z_{(k)})$                                        | $\hat{\omega}$ | K | Probability under $H_0$ |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|----------------|---|-------------------------|
| 1,2     | $(0,0,\frac{1}{3},\frac{2}{3},1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $(\frac{1}{2},1,1,1,1)$                                   | 1              | 6 | 1/10                    |
| 1,3     | ( 1 1 2 4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $(\frac{1}{2}, \frac{1}{2}, 1, 1, 1)$                     | 2/3            | 4 | 1/10                    |
| 1,4     | $(0,\frac{3}{3},\frac{2}{3},\frac{2}{3},1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, 1, 1)$           | 1/2            | 3 | 1/10                    |
| 1,5     | $(0,\frac{1}{3},\frac{2}{3},1,1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, 1)$ | 1/2            | 3 | 1/10                    |
| 2,3     | /1 1 1 2 ax                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $(\bar{0}, \frac{1}{2}, \bar{1}, \bar{1}, 1)$             | 2/3            | 4 | 1/10                    |
| 2,4     | $(\frac{1}{3}, \frac{1}{3}, \frac{2}{3}, \frac{2}{3}, 1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $(0,\frac{1}{2},\frac{1}{2},1,1)$                         | 1/3            | 2 | 1/10                    |
| 2,5     | $(\frac{1}{3}, \frac{1}{3}, \frac{2}{3}, \frac{1}{3}, 1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $(0,\frac{1}{2},\frac{1}{2},\frac{1}{2},1)$               | 1/2            | 3 | 1/10                    |
| 3,4     | $(\frac{1}{3}, \frac{2}{3}, \frac{2}{3}, \frac{2}{3}, 1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $(0, \bar{0}, \frac{1}{2}, \bar{1}, 1)$                   | 2/3            | 4 | 1/10                    |
| 3,5     | $\begin{array}{c} (\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}{13},\frac{1}$ | $(0,0,\frac{1}{2},\frac{1}{2},1)$                         | 2/3            | 4 | 1/10                    |
| 4,5     | $ \begin{array}{c} \left(\frac{1}{3}, \frac{2}{3}, \frac{2}{3}, \frac{2}{3}, 1\right) \\ \left(\frac{1}{3}, \frac{2}{3}, \frac{2}{3}, 1, 1\right) \\ \left(\frac{1}{3}, \frac{2}{3}, 1, 1, 1\right) \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $(0,0,\bar{0},\frac{1}{2},1)$                             | 1              | 6 | 1/10                    |

Note: there are  $\binom{5}{2} = 10$  possibilities and d = 1 is the gcd

#### Hypothesis Testing & Large Sample Approximation

One-Sided Upper Tail Test:

- $H_0$ :  $\omega = 0$  versus  $H_1$ :  $\omega > 0$
- Reject  $H_0$  if  $K > k_{\alpha}$  where  $P(K > k_{\alpha}) = \alpha$

This is the only appropriate test here...

- Large  $\hat{\omega} = |\hat{F}_{1.m}(z) \hat{F}_{2.n}(z)|$  provide more evidence against  $H_0$
- We only reject  $H_0$  if test statistic K is too large

Under  $H_0$  and as min $(m, n) \to \infty$ , Smirnov (1939) showed that

- $K^* = (mn/N)^{1/2} \hat{\omega} = \frac{d}{(mnN)^{1/2}} K$
- $P(K^* < z) = \sum_{k=-\infty}^{\infty} (-1)^k e^{-2k^2z^2}$

#### Handling Ties

The empirical CDFs  $\hat{F}_{1,m}$  and  $\hat{F}_{2,n}$  are well defined when ties occur within and/or between the two samples.

Consequently, we do NOT need any adjustment, and we still have a conservative test.

• Significance level will not exceed nominal level  $\alpha$ 

#### Example 3: Data

#### Same simulated data:

| k  | $Z_{(k)}$ | Population | $\hat{F}_{1,m}(Z_{(k)})$ | $\hat{F}_{2,n}(Z_{(k)})$ |
|----|-----------|------------|--------------------------|--------------------------|
| 1  | -4.43     | 2          | 0/11                     | 1/10                     |
| 2  | -1.24     | 2          | 0/11                     | 2/10                     |
| 3  | -0.84     | 1          | 1/11                     | 2/10                     |
| 4  | -0.82     | 1          | 2/11                     | 2/10                     |
| 5  | -0.63     | 1          | 3/11                     | 2/10                     |
| 6  | -0.31     | 1          | 4/11                     | 2/10                     |
| 7  | -0.09     | 2          | 4/11                     | 3/10                     |
| 8  | -0.03     | 2          | 4/11                     | 4/10                     |
| 9  | 0.18      | 1          | 5/11                     | 4/10                     |
| 10 | 0.33      | 1          | 6/11                     | 4/10                     |
| 11 | 0.49      | 1          | 7/11                     | 4/10                     |
| 12 | 0.58      | 1          | 8/11                     | 4/10                     |
| 13 | 0.74      | 1          | 9/11                     | 4/10                     |
| 14 | 0.78      | 2          | 9/11                     | 5/10                     |
| 15 | 1.19      | 2          | 9/11                     | 6/10                     |
| 16 | 1.51      | 1          | 10/11                    | 6/10                     |
| 17 | 1.60      | 1          | 11/11                    | 6/10                     |
| 18 | 1.64      | 2          | 11/11                    | 7/10                     |
| 19 | 1.84      | 2          | 11/11                    | 8/10                     |
| 20 | 1.89      | 2          | 11/11                    | 9/10                     |
| 21 | 2.25      | 2          | 11/11                    | 10/10                    |

Note: m = 11 and n = 10 so that d = 1.

## Example 3: By Hand

| k  | $Z_{(k)}$ | Population | $\hat{F}_{1,m}(Z_{(k)})$ | $\hat{F}_{2,n}(Z_{(k)})$ | ω̂     |
|----|-----------|------------|--------------------------|--------------------------|--------|
| 1  | -4.43     | 2          | 0/11                     | 1/10                     | 0.1000 |
| 2  | -1.24     | 2          | 0/11                     | 2/10                     | 0.2000 |
| 3  | -0.84     | 1          | 1/11                     | 2/10                     | 0.1091 |
| 4  | -0.82     | 1          | 2/11                     | 2/10                     | 0.0182 |
| 5  | -0.63     | 1          | 3/11                     | 2/10                     | 0.0727 |
| 6  | -0.31     | 1          | 4/11                     | 2/10                     | 0.1636 |
| 7  | -0.09     | 2          | 4/11                     | 3/10                     | 0.0636 |
| 8  | -0.03     | 2          | 4/11                     | 4/10                     | 0.0364 |
| 9  | 0.18      | 1          | 5/11                     | 4/10                     | 0.0545 |
| 10 | 0.33      | 1          | 6/11                     | 4/10                     | 0.1455 |
| 11 | 0.49      | 1          | 7/11                     | 4/10                     | 0.2364 |
| 12 | 0.58      | 1          | 8/11                     | 4/10                     | 0.3273 |
| 13 | 0.74      | 1          | 9/11                     | 4/10                     | 0.4182 |
| 14 | 0.78      | 2          | 9/11                     | 5/10                     | 0.3182 |
| 15 | 1.19      | 2          | 9/11                     | 6/10                     | 0.2182 |
| 16 | 1.51      | 1          | 10/11                    | 6/10                     | 0.3091 |
| 17 | 1.60      | 1          | 11/11                    | 6/10                     | 0.4000 |
| 18 | 1.64      | 2          | 11/11                    | 7/10                     | 0.3000 |
| 19 | 1.84      | 2          | 11/11                    | 8/10                     | 0.2000 |
| 20 | 1.89      | 2          | 11/11                    | 9/10                     | 0.1000 |
| 21 | 2.25      | 2          | 11/11                    | 10/10                    | 0.0000 |

Note: m = 11 and n = 10 so that d = 1.

$$K = (11)(10)(0.4182) = 46$$

# Example 3: Using R (Hard Way)

```
> set.seed(1)
> x = round(rnorm(11), 2)
> v = round(rnorm(10,0,2),2)
> z = sort(c(x,y), index=TRUE)
> zlab = c(rep("x",11),rep("v",10))
> j = ifelse(zlab[z$ix]=="x",1L,2L)
> F1vec = F2vec = 0
> for(k in 2:22){
      if(i[k-1]==1L){
          F1vec = c(F1vec,F1vec[k-1]+1)
           F2vec = c(F2vec, F2vec[k-1]+0)
+
      } else{
          Flvec = c(Flvec, Flvec[k-1]+0)
          F2\text{vec} = c(F2\text{vec}, F2\text{vec}[k-1]+1)
+
+
+
> F1vec = F1vec[2:22]/11
> F2vec = F2vec[2:22]/10
> omega = abs(F1vec-F2vec)
> max (omega)
[1] 0.4181818
```

## Example 3: Using R (Easy Way)

```
> x=round(rnorm(11),2)
> y=round(rnorm(10,0,2),2)
> ks.test(x,y)

Two-sample Kolmogorov-Smirnov test

data: x and y
D = 0.4182, p-value = 0.2586
alternative hypothesis: two-sided
```

> set.seed(1)

## Example 3: Using R (Easy Way, More Data)

```
> v = round(rnorm(100, 0, 2), 2)
> ks.test(x,v)
Two-sample Kolmogorov-Smirnov test
data: x and v
D = 0.24, p-value = 0.006302
alternative hypothesis: two-sided
Warning message:
In ks.test(x, y): p-value will be approximate in the presence of ties
```

> set.seed(1)

> x = round(rnorm(100), 2)