CHOMP

Functional Gradient Optimization for Manipulation

HERB

G % 🕏

Carnegie Mellon University

Siddhartha Srinivasa

Associate Professor Robotics Institute, CMU Director Personal Robotics Lab

Motion

Optimal Motion

Optimal Motion with Functional Gradient Optimization

CHOMP: Covariant Hamiltonian Optimization for Motion Planning.

Zucker, Ratliff, Dragan, Pivtoraiko, Klingensmith, Dellin, Bagnell, Srinivasa International Journal of Robotics Research (IJRR) 2013.

Three spaces of manipulation planning

Infinite Dimensional Hilbert Space

Cost Functional

$$U[\xi] = \lambda f_{smooth}[\xi] + f_{obs}[\xi]$$

The Smoothness Cost

The Obstacle Cost

W

ICRA'09: Ratliff et. al

CHOMP: Gradient Optimization

Techniques for Efficient Motion Planning

Optimizing the functional

gradient of U

smoothness metric

$$\xi_{t+1} = \min_{\xi \in \Xi} \ \mathcal{U}(\xi_t) + y_t^T(\xi - \xi_t) + \frac{\eta_t}{2} \|\xi - \xi_t\|_A^2$$

first order approximation of *U*

regularization

Covariant Functional Gradient Update

CHOMP:Realtime

CHOMP:Realtime

Local minima

Alleviating the local minima problem

Make the problem easier by taking advantage of the natural flexibility in manipulation.

Goal sets

Goal sets

goal set for placing bowl on the dinner table

goal set for throwing objects into the recycle bin

goal set for hand-off

Optimal Motion with Functional Gradient Optimization

CHOMP: Covariant Hamiltonian Optimization for Motion Planning.

Zucker, Ratliff, Dragan, Pivtoraiko, Klingensmith, Dellin, Bagnell, Srinivasa International Journal of Robotics Research (IJRR) 2013

Optimal Motion

CHOMP

Functional Gradient Optimization for Manipulation

HERB

G % 🕏

Carnegie Mellon University

Siddhartha Srinivasa

Associate Professor Robotics Institute, CMU Director Personal Robotics Lab