Análisis Matemático II

Javier Ortín Rodenas Hoja de ejercicios

Contenidos

I Teoría de la medida e Integral de Lebesgue	3
1. Funciones medibles	3
1.1.1 Ejercicio 5	3

I Teoría de la medida e Integral de Lebesgue

§1. Funciones medibles

1.1.1 Ejercicio 5

Sea $f: \mathbb{R}^N \longrightarrow \mathbb{R}$ uniformemente continua y acotada, demuestra que la siguiente función es medible:

$$\varphi: \mathbb{R}^N \longrightarrow \mathbb{R}$$
 $t \longmapsto \varphi(t) = \sup_{x \in \mathbb{R}^N} |f(x+t) - f(x)|$

Demostración:

Por ser f acotada, tenemos que $\exists M \in \mathbb{R} : |f(x)| \leq M \forall x \in \mathbb{R}^N$. De este modo, sean $x,y \in \mathbb{R}^N$, tenemos:

$$|f(x) - f(y)| < |f(x)| + |f(y)| < M + M = 2M$$

Por tanto, concluimos que φ es también acotada. Veamos que es medible por la definición.

Sea $K:=\sup_{t\in\mathbb{R}^N}\varphi(t)$, como φ solo toma valores no negativos tenemos que:

$$\varphi^{-1}\Big((-\infty,0]\Big) = \varnothing \in \mathfrak{M}_N$$
 $\qquad \qquad \varphi^{-1}\Big((-\infty,K]\Big) = \mathbb{R}^N \in \mathfrak{M}_N$

Fijando ahora $\varepsilon \in (0, K)$ cualquiera, veamos que $\varphi \Big((-\infty, \varepsilon] \Big)$ es medible. Al ser f uniformemente continua por hipótesis, tenemos que para el ε fijado existe un $\delta > 0$ tal que:

$$||x - y|| < \delta \Rightarrow |f(x) - f(y)| < \varepsilon \quad \forall x, y \in \mathbb{R}^N$$

Podemos reescribir y = x + t para $t = y - x \in \mathbb{R}^N$. De este modo; sea $t \in \mathbb{R}^N$, se tiene:

$$||t|| < \delta \Rightarrow |f(x+t) - f(x)| < \varepsilon$$

Se cumple la condición para todo x de \mathbb{R}^N . Al tomar supremos, la desigualdad pasa a ser no estricta, y el término mayorado por ε se corresponde con $\varphi(t)$ por definición:

$$||t|| < \delta \Rightarrow \varphi(t) = \sup_{x \in \mathbb{R}^N} |f(x+t) - f(x)| \le \varepsilon$$

Así, sea $(t_n)_n$ una sucesión que tiende al origen, ha de "atravesar" todos las bolas de radio δ asociado a valores de ε arbitrariamente pequeños. Por tanto, podemos concluir que ϕ es continua en el origen.

Sean $s, t \in \mathbb{R}^N$ cualesquiera, se cumple:

$$\begin{split} \varphi(t) &= \sup_{x \in \mathbb{R}^N} |f(x+t) - f(x)| \leq \sup_{x \in \mathbb{R}^N} |f(x+t) - f(x+s)| + |f(x+s) - f(x)| \leq \\ &\leq \sup_{x \in \mathbb{R}^N} |f(x+t) - f(x+s)| + \sup_{y \in \mathbb{R}^N} |f(y+s) - f(y)| \stackrel{z=x+s}{=} \sup_{z \in \mathbb{R}^N} |f(z+(t-s)) - f(z)| + \varphi(s) \end{split}$$

Despejando, obtenemos $0 \le \varphi(t) - \varphi(s) \le \varphi(t-s) \xrightarrow{s \to t} \varphi(0) = 0$.

Por todo lo anterior, concluimos que φ es continua y acotada, luego es medible en \mathfrak{B}_N y en \mathfrak{M}_N