BEST AVAILABLE COPY

List of Claims:

1. (Currently Amended) A copolymer comprising an isoolefin and a multiolefin, the copolymer having a copolymer sequence distribution defined by the following equation:

$$F = m A / (1 + mA)^2$$

wherein m is the copolymer sequence distribution parameter; A is the molar ratio of multiolefin to isoolefin in the copolymer; [[and]] F is the isoolefin-multiolefin triad fraction in the copolymer; wherein m is from greater than 1.5; and wherein m is determined by solving said equation.

- 2. (Original) The copolymer of claim 1, wherein m is from greater than 2.0.
- (Original) The copolymer of claim 1, wherein m is from greater than 2.5.
- (Original) The copolymer of claim 1, wherein m is from greater than 3.5.
- (Previously presented) The copolymer of claim 1, wherein the multiolefin is a conjugated diene.
- 6. (Previously presented) The copolymer of claim 1, wherein the multiolefin content is from greater than 0.5 mol%.
- 7. (Previously presented) The copolymer of claim 1, wherein the multiolefin content is from greater than 1.0 mol%.
- 8. (Previously presented) The copolymer of claim 1, wherein the multiolefin content is from greater than 2.5 mol%.
- (Previously presented) The copolymer of claim 1, wherein the multiolefin content is from greater than 5.0 mol%.
- 10. (Currently Amended) A copolymer comprising isobutylene and isoprene, the copolymer having a copolymer sequence distribution defined by the following equation:

$$F = m A / (1 + mA)^2$$

wherein m is the copolymer sequence distribution parameter; A is the molar ratio of isoprene to isobutylene in the copolymer; [[and]] F is the isobutylene-isoprene triad fraction in the copolymer; wherein m is from greater than 1.5; and wherein m is determined by solving said equation.

Page 3 of 18

BEST AVAILABLE COPY

U.S. Application No. 10/538,860 Attorney Docket No. 2003B133C (US) Supplemental Response to OA of June 28, 2006 Response Dated December 8, 2006

- 11. (Original) The copolymer of claim 10, wherein m is from greater than 2.0.
- 12. (Original) The copolymer of claim 10, wherein m is from greater than 2.5.
- 13. (Original) The copolymer of claim 10, wherein m is from greater than 3.5.
- 14. (Previously presented) The copolymer of claim 10, wherein the isoprene content is from greater than 0.5 mol%.
- 15. (Previously presented) The copolymer of claim 10, wherein the isoprene content is from greater than 1.0 mol%.
- 16. (Previously presented) The copolymer of claim 10, wherein the isoprene content is from greater than 2.5 mol%.
- 17. (Previously presented) The copolymer of claim 10, wherein the isoprene content is from greater than 5.0 mol%.
- 18. (Currently Amended) A copolymer comprising an isoolefin and a multiolefin, the copolymer having a copolymer sequence distribution defined by the following equation:

$$F = m A / (1 + mA)^2$$

wherein m is the copolymer sequence distribution parameter; A is the molar ratio of multiolefin to isoolefin in the copolymer; [[and]] F is the isoolefin-multiolefin triad fraction in the copolymer; wherein m is from 1.10 to 1.25; and wherein m is determined by solving said equation.

- 19. (Original) The copolymer of claim 18, wherein m is from 1.15 to 1.20.
- 20. (Original) The copolymer of claim 18, wherein m is from 1.15 to 1.25.
- 21. (Original) The copolymer of claim 18, wherein m is about 1.20.
- (Previously presented) The copolymer of claim 18, wherein the multiolefin is a conjugated diene.
- 23. (Previously presented) The copolymer of claim 18, wherein the multiolefin content is from greater than 0.5 mol%.
- 24. (Previously presented) The copolymer of claim 18, wherein the multiolefin content is from greater than 1.0 mol%.
- 25. (Previously presented) The copolymer of claim 18, wherein the multiolefin content is from greater than 2.5 mol%.

Page 4 of 18

BEST AVAILABLE COPY

U.S. Application No. 10/538,860 Attorney Docket No. 2003B133C (US) Supplemental Response to OA of June 28, 2006 Response Dated December 8, 2006

- 26. (Previously presented) The copolymer of claim 18, wherein the multiolefin content is from greater than 5.0 mol%.
- 27. (Currently Amended) A copolymer comprising isobutylene and isoprene, the copolymer having a copolymer sequence distribution defined by the following equation:

$$F = m A / (1 + mA)^2$$

wherein m is the copolymer sequence distribution parameter; A is the molar ratio of isoprene to isobutylene in the copolymer; [[and]] F is the isobutylene-isoprene triad fraction in the copolymer; wherein m is from 1.10 to 1.25; and wherein m is determined by solving said equation.

- 28. (Original) The copolymer of claim 18, wherein m is from 1.15 to 1.20.
- 29. (Original) The copolymer of claim 18, wherein m is from 1.15 to 1.25.
- 30. (Original) The copolymer of claim 18, wherein m is about 1.20.
- 31. (Previously presented) The copolymer of claim 27, wherein the isoprene content is from greater than 0.5 mol%.
- 32. (Previously presented) The copolymer of claim 27, wherein the isoprene content is from greater than 1.0 mol%.
- 33. (Previously presented) The copolymer of claim 27, wherein the isoprene content is from greater than 2.5 mol%.
- 34. (Previously presented) The copolymer of claim 27, wherein the isoprene content is from greater than 5.0 mol%.
- 35. (Currently Amended) A copolymer produced by the process comprising contacting an isoolefin, preferably isobutylene, a multiolefin, one or more Lewis acid(s), one or more initiator(s), and a diluent comprising one or more hydrofluorocarbon(s) (HFC's); the copolymer having a copolymer sequence distribution defined by the following equation:

$$F = m A / (1 + mA)^2$$

wherein **m** is the copolymer sequence distribution parameter; **A** is the molar ratio of multiolefin to isoolefin in the copolymer; [[and]] **F** is the isoolefin-multiolefin triad fraction in the copolymer; wherein **m** is from greater than 1.5 or **m** is from 1.10 to 1.25; and wherein **m** is determined by solving said equation.

BEST AVAILABLE COPY

U.S. Application No. 10/538,860 Attorney Docket No. 2003B133C (US) Supplemental Response to OA of June 28, 2006 Response Dated December 8, 2006

- 36. (Previously presented) The copolymer of claim 35, wherein m is from greater than 2.0.
- 37. (Previously presented) The copolymer of claim 35, wherein m is from greater than 2.5.
- 38. (Previously presented) The copolymer of claim 35, wherein m is from greater than 3.5.
- 39. (Previously presented) The copolymer of claim 35, wherein m is from 1.15 to 1.20.
- 40. (Previously presented) The copolymer of claim 35, wherein m is from 1.15 to 1.25.
- 41. (Previously presented) The copolymer of claim 35, wherein m is about 1.20.
- 42. (Original) The copolymer of claim 35, wherein the multiolefin is a conjugated diene, preferably isoprene.
- 43. (Previously presented) The copolymer of claim 35, wherein the multiolefin content is from greater than 0.5 mol%.
- 44. (Previously presented) The copolymer of claim 35, wherein the multiolefin content is from greater than 1.0 mol%.
- 45. (Previously presented) The copolymer of claim 35, wherein the multiolefin content is from greater than 2.5 mol%.
- 46. (Previously presented) The copolymer of claim 35, wherein the multiolefin content is from greater than 5.0 mol%.
- 47. (Previously presented) The copolymer of claim 35, wherein one or more hydrofluorocarbon(s) is represented by the formula: C_xH_yF_z wherein x is an integer from 1 to 40 and y and z are integers of one or more.
- 48. (Original) The copolymer of claim 47, wherein x is from 1 to 10.
- 49. (Original) The copolymer of claim 47, wherein x is from 1 to 6.
- 50. (Original) The copolymer of claim 47, wherein x is from 1 to 3.
- (Original) The copolymer of claim 35, wherein the one or more hydrofluorocarbon(s) is independently selected from the group consisting of fluoromethane; difluoromethane; trifluoromethane; fluoroethane; 1,1-difluoroethane; 1,2-difluoroethane; 1,1,1-trifluoroethane; 1,1,2-trifluoroethane; 1,1,2-tetrafluoroethane; 1,1,1,2-tetrafluoropropane; 1,1-difluoropropane; 1,2-difluoropropane; 1,3-difluoropropane; 2,2-difluoropropane; 1,1,1-trifluoropropane; 1,1,2-trifluoropropane; 1,1,3-trifluoropropane; 1,2,3-trifluoropropane; 1,2,3-trifluoropropane;

BEST AVAILABLE COPY

1,1,2,2-tetrafluoropropane; 1,1,1,2-tetrafluoropropane; 1,1,1,3-tetrafluoropropane; 1,2,2,3-tetrafluoropropane; 1,1,3,3-tetrafluoropropane; 1,1,2,3-tetrafluoropropane; 1,1,1,3,3-1,1,1,2,2-pentafluoropropane; 1,1,1,2,3-pentafluoropropane; 1,1,2,3,3-pentafluoropropane; 1,1,2,2,3-pentafluoropropane; pentafluoropropane; 1,1,1,3,3,3-1,1,1,2,3,3-hexafluoropropane; 1,1,1,2,2,3-hexafluoropropane; hexafluoropropane; 1,1,1,2,2,3,3-heptafluoropropane; 1,1,1,2,3,3,3-heptafluoropropane; 1,1-difluorobutane; 1,3-1.2-difluorobutane; 2-fluorobutane; 1-fluorobutane; 1,4-difluorobutane; 2,2-difluorobutane; 2,3-difluorobutane; 1,1,1difluorobutane: trifluorobutane; 1,1,2-trifluorobutane; 1,1,3-trifluorobutane; 1,1,4-trifluorobutane; 1,2,2-1,3,3-trifluorobutane; 2,2,3-trifluorobutane; trifluorobutane; 1,2,3-trifluorobutane; 1,1,1,2-tetrafluorobutane; 1,1,1,3-tetrafluorobutane; 1,1,1,4-tetrafluorobutane; 1,1,2,2-1,1,2,3-tetrafluorobutane; 1,1,2,4-tetrafluorobutane; 1,1,3,3tetrafluorobutane; 1,1,4,4-tetrafluorobutane; 1,2,2,3tetrafluorobutane; 1,1,3,4-tetrafluorobutane; tetrafluorobutane: 1,2,2,4-tetrafluorobutane; 1,2,3,3-tetrafluorobutane; 1,2,3,4-2,2,3,3-tetrafluorobutane; 1,1,1,2,2-pentafluorobutane; 1,1,1,2,3tetrafluorobutane; pentafluorobutane; 1,1,1,2,4-pentafluorobutane; 1,1,1,3,3-pentafluorobutane; 1,1,1,3,4pentafluorobutane; 1,1,1,4,4-pentafluorobutane; 1,1,2,2,3-pentafluorobutane; 1,1,2,2,4pentafluorobutane; 1,1,2,3,3-pentafluorobutane; 1,1,2,4,4-pentafluorobutane; 1,1,3,3,4pentafluorobutane; 1,2,2,3,3-pentafluorobutane; 1,2,2,3,4-pentafluorobutane; 1,1,1,2,2,3hexafluorobutane; 1,1,1,2,3,3-hexafluorobutane, 1,1,1,2,2,4-hexafluorobutane; 1,1,1,2,3,4-hexafluorobutane; 1,1,1,2,4,4-hexafluorobutane; 1,1,1,3,3,4-hexafluorobutane; 1,1,1,3,4,4-hexafluorobutane; 1,1,1,4,4,4-hexafluorobutane; 1,1,2,2,3,3-hexafluorobutane; 1,1,2,2,3,4-hexafluorobutane; 1,1,2,2,4,4-hexafluorobutane; 1,1,2,3,3,4-hexafluorobutane; 1,2,2,3,3,4-hexafluorobutane; 1,1,1,2,2,3,3-1,1,2,3,4,4-hexafluorobutane; 1,1,1,2,2,3,4-heptafluorobutane; 1,1,1,2,2,4,4-heptafluorobutane; heptafluorobutane; 1,1,1,2,3,3,4-heptafluorobutane; 1,1,1,2,3,4,4-heptafluorobutane; 1,1,1,2,4,4,4-1,1,1,2,2,3,3,4-octafluorobutane: 1,1,1,3,3,4,4-heptafluorobutane; heptafluorobutane; 1,1,1,2,2,3,4,4-octafluorobutane; 1,1,1,2,3,3,4,4-octafluorobutane; 1,1,1,2,2,4,4,4octafluorobutane; 1,1,1,2,3,4,4,4-octafluorobutane; 1,1,1,2,2,3,3,4,4-nonafluorobutane; 1,1,1,2,2,3,4,4,4-nonafluorobutane; 1-fluoro-2-methylpropane; 1,1-difluoro-2methylpropane; 1,3-difluoro-2-methylpropane; 1,1,1-trifluoro-2-methylpropane; 1,1,3trifluoro-2-methylpropane; 1,3-difluoro-2-(fluoromethyl)propane; 1,1,1,3-tetrafluoro-2-1,1,3-trifluoro-2methylpropane; 1,1,3,3-tetrafluoro-2-methylpropane;

BEST AVAILABLE COPY

1,1,1,3,3-pentafluoro-2-methylpropane; 1,1,3,3-tetrafluoro-2-(fluoromethyl)propane; (fluoromethyl)propane; 1,1,1,3-tetrafluoro-2-(fluoromethyl)propane; fluorocyclobutane; 1,2-difluorocyclobutane; 1,3-difluorocyclobutane; 1.1-difluorocyclobutane: trifluorocyclobutane; 1,1,3-trifluorocyclobutane; 1,2,3-trifluorocyclobutane; 1,1,2,2tetrafluorocyclobutane; 1,1,3,3-tetrafluorocyclobutane; 1,1,2,2,3-pentafluorocyclobutane; 1,1,2,2,3,3-hexafluorocyclobutane; 1,1,2,3,3-pentafluorocyclobutane; 1,1,2,2,3,4-1,1,2,3,3,4-hexafluorocyclobutane; hexafluorocyclobutane; 1,1,2,2,3,3,4heptafluorocyclobutane; vinyl fluoride; 1,1-difluoroethene; 1,2-difluoroethene; 1,1,2trifluoroethene; 1-fluoropropene, 1,1-difluoropropene; 1,2-difluoropropene; difluoropropene; 2,3-difluoropropene; 3,3-difluoropropene; 1,1,2-trifluoropropene; 1,1,3trifluoropropene; 1,2,3-trifluoropropene; 1,3,3-trifluoropropene; 2,3,3-trifluoropropene; 3,3,3-trifluoropropene; 1-fluoro-1-butene; 2-fluoro-1-butene; 3-fluoro-1-butene; 4-fluoro-1-butene; 1,1-difluoro-1-butene; 1,2-difluoro-1-butene; 1,3-difluoropropene; 1,4-difluoro-1-butene; 2,3-difluoro-1-butene; 2,4-difluoro-1-butene; 3,3-difluoro-1-butene; 3,4difluoro-1-butene; 4,4-difluoro-1-butene; 1,1,2-trifluoro-1-butene; 1,1,3-trifluoro-1butene; 1,1,4-trifluoro-1-butene; 1,2,3-trifluoro-1-butene; 1,2,4-trifluoro-1-butene; 1,3,3trifluoro-1-butene; 1,3,4-trifluoro-1-butene; 1,4,4-trifluoro-1-butene; 2,3,3-trifluoro-1butene; 2,3,4-trifluoro-1-butene; 2,4,4-trifluoro-1-butene; 3,3,4-trifluoro-1-butene; 3,4,4trifluoro-1-butene; 4,4,4-trifluoro-1-butene; 1,1,2,3-tetrafluoro-1-butene; tetrafluoro-1-butene; 1,1,3,3-tetrafluoro-1-butene; 1,1,3,4-tetrafluoro-1-butene; 1,1,4,4tetrafluoro-1-butene; 1,2,3,3-tetrafluoro-1-butene; 1,2,3,4-tetrafluoro-1-butene; 1,2,4,4tetrafluoro-1-butene; 1,3,3,4-tetrafluoro-1-butene; 1,3,4,4-tetrafluoro-1-butene; 1,4,4,4tetrafluoro-1-butene; 2,3,3,4-tetrafluoro-1-butene; 2,3,4,4-tetrafluoro-1-butene; 2,4,4,4tetrafluoro-1-butene; 3,3,4,4-tetrafluoro-1-butene; 3,4,4,4-tetrafluoro-1-butene; 1,1,2,3,3pentafluoro-1-butene; 1,1,2,3,4-pentafluoro-1-butene; 1,1,2,4,4-pentafluoro-1-butene; 1,1,3,3,4-pentafluoro-1-butene; 1,1,3,4,4-pentafluoro-1-butene; 1,1,4,4,4-pentafluoro-1-1,2,3,4,4-pentafluoro-1-butene: 1,2,3,3,4-pentafluoro-1-butene; butene; 1.2.4.4.4pentafluoro-1-butene; 2,3,3,4,4-pentafluoro-1-butene; 2,3,4,4,4-pentafluoro-1-butene; 3,3,4,4,4-pentafluoro-1-butene; 1,1,2,3,3,4-hexafluoro-1-butene; 1,1,2,3,4,4-hexafluoro-1-butene; 1,1,2,4,4,4-hexafluoro-1-butene; 1,2,3,3,4,4-hexafluoro-1-butene; 1,2,3,4,4,4hexafluoro-1-butene; 2,3,3,4,4,4-hexafluoro-1-butene; 1,1,2,3,3,4,4-heptafluoro-1-butene; 1,1,2,3,4,4,4-heptafluoro-1-butene; 1,1,3,3,4,4,4-heptafluoro-1-butene; 1.2.3.3.4.4.4heptafluoro-1-butene; 1-fluoro-2-butene; 2-fluoro-2-butene; 1,1-difluoro-2-butene; 1,2-

BEST AVAILABLE COPY

difluoro-2-butene; 1,3-difluoro-2-butene; 1,4-difluoro-2-butene; 2,3-difluro-2-butene; 1,1,1-trifluoro-2-butene; 1,1,2-trifluoro-2-butene; 1,1,3-trifluoro-2-butene; 1,1,4-trifluoro-2-butene; 1,2,3-trifluoro-2-butene; 1,1,1,2-tetrafluoro-2-butene; 1,1,1,3-tetrafluoro-2-butene; 1,1,1,4-tetrafluoro-2-butene; 1,1,2,3-tetrafluoro-2-butene; 1,1,2,4-tetrafluoro-2-butene; 1,1,2,3-pentafluoro-2-butene; 1,1,1,2,4-pentafluoro-2-butene; 1,1,1,3,4-pentafluoro-2-butene; 1,1,1,4,4-pentafluoro-2-butene; 1,1,2,3,4-pentafluoro-2-butene; 1,1,1,2,3,4-hexafluoro-2-butene; 1,1,1,2,4,4-hexafluoro-2-butene; 1,1,1,2,3,4,4-hexafluoro-2-butene; 1,1,1,2,3,4,4-hexafl

- 52. (Original) The copolymer of claim 35, wherein the one or more hydrofluorocarbon(s) is independently selected from the group consisting of fluoromethane, difluoromethane, trifluoromethane, 1,1-difluoroethane, 1,1,1-trifluoroethane, 1,1,2-tetrafluoroethane, and mixtures thereof.
- 53. (Original) The copolymer of claim 35, wherein the diluent comprises from 15 to 100 volume % HFC based upon the total volume of the diluent.
- 54. (Original) The copolymer of claim 35, wherein the diluent comprises from 20 to 100 volume % HFC based upon the total volume of the diluent.
- 55. (Original) The copolymer of claim 35, wherein the diluent comprises from 25 to 100 volume % HFC based upon the total volume of the diluent.
- 56. (Original) The copolymer of claim 35, wherein the diluent further comprises a hydrocarbon, a non-reactive olefin, and/or an inert gas.
- 57. (Original) The copolymer of claim 56, wherein the hydrocarbon is a halogenated hydrocarbon other than an HFC.
- 58. (Original) The copolymer of claim 57, wherein the halogenated hydrocarbon is methyl chloride.
- 59. (Original) The copolymer of claim 35, wherein the one or more Lewis acid(s) is represented by the formula MX4;
 wherein M is a Group 4, 5, or 14 metal; and each X is a halogen.

Page 9 of 18

BEST AVAILABLE COPY

60. (Original) The copolymer of claim 35, wherein the one or more Lewis acid(s) is represented by the formula MR_pX_{4-n} :

wherein M is Group 4, 5, or 14 metal;

each R is a monovalent C_1 to C_{12} hydrocarbon radical independently selected from the group consisting of an alkyl, aryl, arylalkyl, alkylaryl and cycloalkyl radicals;

n is an integer from 0 to 4; and

each X is a halogen.

61. (Original) The copolymer of claim 35, wherein the one or more Lewis acid(s) is represented by the formula M(RO)_nR'_mX_{4-(m+n)};

wherein M is Group 4, 5, or 14 metal;

each RO is a monovalent C₁ to C₃₀ hydrocarboxy radical independently selected from the group consisting of an alkoxy, aryloxy, arylalkoxy, alkylaryloxy radicals;

each R' is a monovalent C_1 to C_{12} hydrocarbon radical independently selected from the group consisting of an alkyl, aryl, arylalkyl, alkylaryl and cycloalkyl radicals;

n is an integer from 0 to 4;

m is an integer from 0 to 4, wherein the sum of n and m is not more than 4; and each X is a halogen.

62. (Original) The copolymer of claim 35, wherein the one or more Lewis acid(s) is represented by the formula M(RC=OO)_nR'_mX_{4-(m+n)};

wherein M is Group 4, 5, or 14 metal;

each RC=OO is a monovalent C₂ to C₃₀ hydrocarbacyl radical independently selected from the group consisting of an alkacyloxy, arylacyloxy, arylacyloxy, alkylarylacyloxy radicals;

each R' is a monovalent C_1 to C_{12} hydrocarbon radical independently selected from the group consisting of an alkyl, aryl, arylalkyl, alkylaryl and cycloalkyl radicals;

n is an integer from 0 to 4;

m is an integer from 0 to 4, wherein the sum of n and m is not more than 4; and each X is a halogen.

Page 10 of 18

BEST AVAILABLE COPY

63. (Original) The copolymer of claim 35, wherein the one or more Lewis acid(s) is represented by the formula MOX₃;

wherein M is a Group 5 metal; and

each X is a halogen.

64. (Original) The copolymer of claim 35, wherein the one or more Lewis acid(s) is represented by the formula MX₃;

wherein M is a Group 13 metal; and

each X is a halogen.

65. (Original) The copolymer of claim 35, wherein the one or more Lewis acid(s) is represented by the formula MR_nX_{3-n} :

wherein M is a Group 13 metal;

each R is a monovalent C_1 to C_{12} hydrocarbon radical independently selected from the group consisting of an alkyl, aryl, arylalkyl, alkylaryl and cycloalkyl radicals;

n is an integer from 1 to 3; and

each X is a halogen.

66. (Original) The copolymer of claim 35, wherein the one or more Lewis acid(s) is represented by the formula $M(RO)_nR^*_{nr}X_{3-(m+n)}$;

wherein M is a Group 13 metal;

each RO is a monovalent C₁ to C₃₀ hydrocarboxy radical independently selected from the group consisting of an alkoxy, aryloxy, aryloxy, alkylaryloxy radicals;

each R' is a monovalent C_1 to C_{12} hydrocarbon radical independently selected from the group consisting of an alkyl, aryl, arylalkyl, alkylaryl and cycloalkyl radicals;

n is an integer from 0 to 3;

m is an integer from 0 to 3, wherein the sum of n and m is from 1 to 3; and each X is a halogen.

67. (Original) The copolymer of claim 35, wherein the one or more Lewis acid(s) is represented by the formula M(RC=OO)_nR'_nX_{3-fm+n}):

wherein M is a Group 13 metal;

BEST AVAILABLE COPY

each RC=OO is a monovalent hydrocarbacyl radical independently selected from the group independently selected from the C_2 to C_{30} group consisting of an alkacyloxy, arylacyloxy, arylacyloxy, alkylarylacyloxy radicals;

each R' is a monovalent C_1 to C_{12} hydrocarbon radical independently selected from the group consisting of an alkyl, aryl, arylalkyl, alkylaryl and cycloalkyl radicals;

n is an integer from 0 to 3;

m is a integer from 0 to 3, wherein the sum of n and m is from 1 to 3, and each X is a halogen.

68. (Original) The copolymer of claim 35, wherein the one or more Lewis acid(s) is represented by the formula MX_y;

wherein M is a Group 15 metal;

each X is a halogen; and

y is 3, 4 or 5.

69. (Original) The copolymer of claim 35, wherein the one or more Lewis acid(s) is represented by the formula MR_nX_{y-n;}

wherein M is a Group 15 metal;

each R is a monovalent C₁ to C₁₂ hydrocarbon radical independently selected from the group consisting of an alkyl, aryl, arylalkyl, alkylaryl and cycloalkyl radicals;

n is an integer from 0 to 4;

y is 3, 4 or 5, wherein n is less than y; and

each X is a halogen.

70. (Original) The copolymer of claim 35, wherein the one or more Lewis acid(s) is represented by the formula $M(RO)_nR^*_mX_{y-(m+n)}$;

wherein M is a Group 15 metal,

each RO is a monovalent C_1 to C_{30} hydrocarboxy radical independently selected from the group consisting of an alkoxy, aryloxy, arylakoxy, alkylaryloxy radicals;

each R' is a monovalent C_1 to C_{12} hydrocarbon radical independently selected from the group consisting of an alkyl, aryl, arylalkyl, alkylaryl and cycloalkyl radicals;

Page 12 of 18

BEST AVAILABLE COPY

n is an integer from 0 to 4;

m is an integer from 0 to 4;

y is 3, 4 or 5, wherein the sum of n and m is less than y; and

each X is a halogen.

71. (Original) The copolymer of claim 35, wherein the one or more Lewis acid(s) is represented by the formula $M(R(=OO)_nR'_mX_{y-(m+n)};$

wherein M is a Group 15 metal;

each RC=OO is a monovalent C₂ to C₃₀ hydrocarbacyloxy radical independently selected from the group consisting of an alkacyloxy, arylacyloxy, arylacyloxy, alkylarylacyloxy radicals;

each R' is a monovalent C_1 to C_{12} hydrocarbon radical independently selected from the group consisting of an alkyl, aryl, arylalkyl, alkylaryl and cycloalkyl radicals;

n is an integer from 0 to 4;

m is an integer from 0 to 4;

y is 3, 4 or 5, wherein the sum of n and m is less than y; and each X is a halogen.

72. (Original) The copolymer of claim 35, wherein the one or more Lewis acid(s) is independently selected from the group consisting of titanium tetrachloride, titanium tetrabromide, vanadium tetrachloride, tin tetrachloride, zirconium tetrachloride, titanium bromide trichloride, titanium dibromide dichloride, vanadium bromide trichloride, tin trifluoride. benzyltitanium trichloride, dibenzyltitanium dichloride, benzylzirconium trichloride, dibenzylzirconium dibromide, methyltitanium trichloride, difluoride, dimethyltin dichloride, phenylvanadium trichloride, dimethyltitanium methoxytitanium trichloride, n-butoxytitanium trichloride, di(isopropoxy)titanium dichloride, phenoxytitanium tribromide, phenylmethoxyzirconium trifluoride, methyl methoxytitanium dichloride, methyl methoxytin dichloride, benzyl isopropoxyvanadium dichloride, acetoxytitanium trichloride, benzoylzirconium tribromide, benzoyloxytitanium trifluoride, isopropoyloxytin trichloride, methyl acetoxytitanium dichloride, benzyl benzoyloxyvanadium chloride, vanadium oxytrichloride, aluminum trichloride, boron trifluoride, trichloride, indium trifluoride, ethylaluminum dichloride, gallium

Page 13 of 18

BEST AVAILABLE COPY

methylaluminum dichloride, benzylaluminum dichloride, isobutylgallium dichloride, diethylaluminum chloride, dimethylaluminum chloride, ethylaluminum sesquichloride, methylaluminum sesquichloride trimethylaluminum, triethylaluminum, methoxyaluminum dichloride, 2,6-di-tertethoxyaluminum dichloride, butylphenoxyaluminum dichloride, methoxy methylaluminum chloride, 2,6-di-tertbutylphenoxy methylaluminum chloride, isopropoxygallium dichloride, phenoxy methylindium fluoride, acetoxyaluminum dichloride, benzoyloxyaluminum dibromide, benzoyloxygallium difluoride, methyl acetoxyaluminum chloride, isopropoyloxyindium trichloride, antimony hexachloride, antimony hexafluoride, arsenic pentafluoride, antimony chloride pentafluoride, arsenic trifluoride, bismuth trichloride arsenic fluoride tetrachloride, tetraphenylantimony chloride, triphenylantimony dichloride, tetrachloromethoxyantimony, dimethoxytrichloroantimony, dichloromethoxyarsine, chlorodimethoxyarsine, difluoromethoxyarsine, acetatotetrachloroantimony, (benzoato) tetrachloroantimony, and bismuth acetate chloride.

- 73. (Original) The copolymer of claim 35, wherein the one or more Lewis acid(s) is independently selected from the group consisting of aluminum trichloride, aluminum tribromide, ethylaluminum dichloride, ethylaluminum sesquichloride, diethylaluminum chloride, methylaluminum sesquichloride, dimethylaluminum chloride, boron trifluoride, and titanium tetrachloride.
- 74. (Original) The copolymer of claim 35, wherein the Lewis acid is not a compound represented by formula MX₃, where M is a group 13 metal, X is a halogen.
- 75. (Original) The copolymer of claim 35, wherein the one or more initiator(s) comprise a hydrogen halide, a carboxylic acid, a carboxylic acid halide, a sulfonic acid, an alcohol, a phenol, a polymeric halide, a tertiary alkyl halide, a tertiary aralkyl halide, a tertiary aralkyl ester, a tertiary aralkyl ester, a tertiary aralkyl ether, an alkyl halide, an aryl halide, an alkylaryl halide or an arylalkylacid halide.
- 76. (Original) The copolymer of claim 35, wherein the one or more initiator(s) is independently selected from the group consisting of HCl, H₂O, methanol, (CH₃)₃CCl, C₆H₅C(CH₃)₂Cl, (2-Chloro-2,4,4-trimethylpentane) and 2-chloro-2-methylpropane.
- 77. (Original) The copolymer of claim 35, wherein the one or more initiator(s) is independently selected from the group consisting of hydrogen chloride, hydrogen bromide, hydrogen iodide, acetic acid, propanoic acid, butanoic acid; cinnamic acid,

Page 14 of 18

BEST AVAILABLE COPY

benzoic acid, 1-chloroacetic acid, dichloroacetic acid, trichloroacetic acid, trifluoroacetic acid, p-chlorobenzoic acid, p-fluorobenzoic acid, acetyl chloride, acetyl bromide, cinnamyl chloride, benzoyl chloride, benzoyl bromide, trichloroacetylchloride, trifluoroacetylchloride, p-fluorobenzoylchloride, methanesulfonic acid, trifluoromethanesulfonic acid, trichloromethanesulfonic acid, p-toluenesulfonic acid, methanesulfonyl chloride, methanesulfonyl bromide, trichloromethanesulfonyl chloride, trifluoromethanesulfonyl chloride, p-toluenesulfonyl chloride, methanol, propanol, 2-propanol, 2-methylpropan-2-ol, cyclohexanol, benzyl alcohol, phenol, 2methylphenol, 2,6-dimethylphenol, p-chlorophenol, p-fluorophenol, 2,3,4,5,6pentafluorophenol, and 2-hydroxynaphthalene.

- 78. (Original) The copolymer of claim 35, wherein the one or more initiator(s) is independently selected from the group consisting of 2-chloro-2,4,4-trimethylpentane; 2bromo-2,4,4-trimethylpentane; 2-chloro-2-methylpropane; 2-bromo-2-methylpropane; 2chloro-2,4,4,6,6-pentamethylheptane; 2-bromo-2,4,4,6,6-pentamethylheptane; 1-chloro-1methylethylbenzene; 1-chloroadamantane; 1-chloroethylbenzene; 1, 4-bis(1-chloro-1methylethyl) benzene; 5-tert-butyl-1,3-bis(1-chloro-1-methylethyl) benzene; 2-acetoxy-2,4,4-trimethylpentane; 2-benzoyloxy-2,4,4-trimethylpentane; 2-acetoxy-2methylpropane; 2-benzoyloxy-2-methylpropane; 2-acetoxy-2,4,4,6,6pentamethylheptane: 2-benzoyl-2,4,4,6,6-pentamethylheptane; I-acetoxy-1methylethylbenzene: 1-aceotxyadamantane: 1-benzoyloxyethylbenzene; 1.4-bis(1acetoxy-1-methylethyl) benzene; 5-tert-butyl-1,3-bis(1-acetoxy-1-methylethyl) benzene; 2-methoxy-2,4,4-trimethylpentane; 2-isopropoxy-2,4,4-trimethylpentane; 2-methoxy-2methylpropane; 2-benzyloxy-2-methylpropane; 2-methoxy-2,4,4,6,6-pentamethylheptane; 2-isopropoxy-2,4,4,6,6-pentamethylheptane; 1-methoxy-1-methylethylbenzene; methoxyadamantane: 1-methoxyethylbenzene; 1,4-bis(1-methoxy-1-methylethyl) benzene; 5-tert-butyl-1,3-bis(1-methoxy-1-methylethyl) benzene, and 1,3,5-tris(1-chloro-1-methylethyl) benzene.
- 79. (Original) The copolymer of claim 35, wherein the one or more initiator(s) further comprise a weakly-coordinating anion.
- 80. (Original) The copolymer of claim 35, wherein the one or more initiator(s) comprise greater than 30 ppm water (based upon weight).

BEST AVAILABLE COPY

- 81. (Original) The copolymer of claim 35, wherein the contacting further comprises contacting one or more monomer(s) independently selected from the group consisting of olefins, alpha-olefins, disubstituted olefins, isoolefins, conjugated dienes, non-conjugated dienes, styrenics, substituted styrenics, and vinyl others.
- 82. (Original) The copolymer of claim 35, wherein the contacting further comprises contacting one or more monomer(s) independently selected from the group consisting of styrene, para-alkylstyrene, para-methylstyrene, alpha-methyl styrene, divinylbenzene, diisopropenylbenzene, isobutylene, 2-methyl-1-butene, 3-methyl-1-butene, 2-methyl-2-pentene, isoprene, butadiene, 2,3-dimethyl-1,3-butadiene, ß-pinene, myrcene, 6,6-dimethyl-fulvene, hexadiene, cyclopentadiene, methyl cyclopentadiene, piperylene, methyl vinyl ether, ethyl vinyl ether, and isobutyl vinyl ether.
- 83. (Previously presented) The copolymer of any one of claims 1, 10, 18, 27, or 35, wherein the copolymer is halogenated to form a halogenated copolymer.
- 84. (Cancelled)
- 85. (Cancelled)
- 86. (Cancelled)
- 87. (Previously presented) The copolymer of any one of claims 1, 10, 18, 27, or 35, wherein the copolymer has a Mw of from greater than 50,000.
- 88. (Previously presented) The copolymer of any one of claims 1, 10, 18, 27, or 35, wherein the copolymer has a Mw of from greater than 100,000.
- 89. (Previously presented) The copolymer of any one of claims 1, 10, 18, 27, or 35, wherein the copolymer has a Mw of from greater than 500,000.
- 90. (Previously presented) The copolymer of any one of claims 1, 10, 18, 27, or 35, wherein the copolymer has a Mw of from greater than 1,000,000.
- 91. (Previously presented) The copolymer of any one of claims 1, 10, 18, 27, or 35, wherein the copolymer has a MWD of from greater than 2.
- 92. (Previously presented) The copolymer of any one of claims 1, 10, 18, 27, or 35, wherein the copolymer has a MWD of from 2 to 6.

BEST AVAILABLE COPY

- 93. (Previously presented) The copolymer of any one of claims 1, 10, 18, 27, or 35, wherein the copolymer has a Mooney viscosity of at least 20 ± 5 (ML 1 + 8 at 125°C, ASTM D 1646).
- 94. (Previously presented) The copolymer of any one of claims 1, 10, 18, 27, or 35, wherein the copolymer has a Mooney viscosity of from 20 ± 5 to 60 ± 5 (ML 1 + 8 at 125°C ASTM D 1646).
- 95. (Previously presented) A blend comprising the copolymer of any one of claims 1, 10, 18, 27, or 35 and a secondary rubber independently selected from the group consisting of at least one of natural rubber, polyisoprene rubber, poly(styrene-co-butadiene) rubber (SBR), polybutadiene rubber (BR), poly(isoprene-co-butadiene) rubber (IBR), styreneisoprene-butadiene rubber (SIBR), ethylene-propylene rubber (EPR), ethylene-propylenediene rubber (EPDM), polysulfide, isobutylene/cyclopentadiene copolymer rubber, isobutylene/methyl cyclopentadiene copolymer rubber, nitrile rubber, propylene oxide polymers, star-branched butyl rubber and halogenated star-branched butyl rubber, brominated butyl rubber, chlorinated butyl rubber, star-branched polyisobutylene rubber, star-branched brominated butyl (polyisobutylene/isoprene copolymer) poly(isobutylene-co-p-methylstyrene) and halogenated poly(isobutylene-co-pmethylstyrene), halogenated poly(isobutylene-co-isoprene-co-p-methylstyrene), poly(isobutylene-co-isoprene-co-styrene), halogenated poly(isobutylene-co-isoprene-copoly(isobutylene-co-isoprene-co-\alpha-methylstyrene) halogenated poly(isobutylene-co-isoprene-co-a-methylstyrene), and mixtures thereof.

tion/2007/2001(11/30C)US/2003(137C-US-2006D)/CD0-Recooner in OA do

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.