

ALGORITHMEN UND DATENSTRUKTUREN

ÜBUNG 10: SUCHEN & KORRIGIEREN, AVL-BÄUME

Eric Kunze

eric.kunze@mailbox.tu-dresden.de

TU Dresden, 09.01.2020

KMP-ALGORITHMUS — DIE ZWEI-FINGER-METHODE

Die Methode beruht auf der Gleichung

```
Tab[j] = \max \{-1\} \cup \{m \mid 0 \le m \le j - 1 \land b_0 \dots b_{m-j} = b_{j-m} \land b_{j-1} \land b_m \ne b_j\}
```

Daraus ergibt sich nach Initialisierung von Tab[0] = -1 für jeden folgenden Eintrag Tab[i] folgendes Verfahren:

- wähle m < i in absteigender Reihenfolge (also i − 1, i − 2, ...), sodass Pat [i] ≠ Pat [m]</p>
- ▶ wenn Pat[0 ...m-1] = Pat[i-m ...i-1], dann fülle Tab[i] = m.
- wenn keine passende Position m gefunden werden kann, dann fülle Tab[i] = −1.

Teil (a) Pattern: abbabbaa

Teil (a) Pattern: abbabbaa

Position	0	1	2	3	4	5	6	7
Pattern	а	b	b	а	b	b	а	а
Tabelle	-1	0	0	-1	0	0	-1	4

Teil (a) Pattern: abbabbaa

Position	0	1	2	3	4	5	6	7
Pattern	а	b	b	а	b	b	а	а
Tabelle	-1	0	0	-1	0	0	-1	4

Teil (b)

Position	0	1	2	3	4	5
Pattern	b	а	b	а	b	С
Tabelle	-1	?	?	0	?	3

LEVENSHTEIN-DISTANZ

Kosten zur Überführung eines Wortes $w = w_1 \dots w_n$ in ein Wort $v = v_1 \dots v_k$; schreibe $d(w_1 \dots w_j, v_1 \dots v_i) = d(j, i)$.

$$\begin{aligned} d(0,i) &= i \\ d(j,0) &= j \\ d(j,i) &= \min \left\{ d(j,i-1) + 1, d(j-1,i) + 1, d(j-1,i-1) + \delta_{j,i} \right\} \end{aligned}$$

für alle $1 \le j \le n$ und alle $1 \le i \le k$ wobei

$$\delta_{j,i} = \begin{cases} 1 & \text{wenn } w_j \neq v_i \\ 0 & \text{sonst} \end{cases}$$

LEVENSHTEIN-DISTANZ

Kosten zur Überführung eines Wortes $w = w_1 \dots w_n$ in ein Wort $v = v_1 \dots v_k$; schreibe $d(w_1 \dots w_j, v_1 \dots v_i) = d(j, i)$.

$$d(0,i) = i$$

$$d(j,0) = j$$

$$d(j,i) = \min \{d(j,i-1) + 1, d(j-1,i) + 1, d(j-1,i-1) + \delta_{j,i}\}$$

für alle $1 \le j \le n$ und alle $1 \le i \le k$ wobei

$$\delta_{j,i} = \begin{cases} 1 & \text{wenn } w_j \neq v_i \\ 0 & \text{sonst} \end{cases}$$

Anschaulich: Überlagerung durch Pattern → Pfeile zeigen "Ursprung" des Minimums an

$$w_j \neq v_i$$
: $\begin{vmatrix} +1 & +1 \\ +1 & ? \end{vmatrix}$ $w_j = v_i$: $\begin{vmatrix} +0 & +1 \\ +1 & ? \end{vmatrix}$

AUFGABE 9.4

d(j,i)		D	i	S	t	a	n	Z
	0 →	1 →	. 2 →	3 →	. 4 →	. 5 →	6 →	7
D	1	0 →	. 1 →	2 →	. 3 →	4 →	5 →	6
i	2	1	0 →	. 1 →	. 2 →	. 3 →		_
n	→ 3	↓ 2	↓ ↓ 1	1 →	· 2 →	. 3	3 →	4
S	↓ 4	↓ 3	↓ ↓ 2		· 2 →	· 3 →	↓ <i>≯</i>	
t	↓ 5	↓ 4	↓ 3	↓ ↓ 2		. 2 →	3 →	4
a	↓ 6	↓ 5	↓ 4	→ 3	↓ \ 2		2 →	3
S	↓ 7	+ 6	↓ 5		→ 3		_ 2 →	

AUFGABE 9.4

Alignments mit minimaler Levenshtein-Distanz:

```
D i n s t a * s
| | | | | | | | |
D i * s t a n z
d i s
```

```
D i n s t a s *
| | | | | | | | | |
D i * s t a n z
d s i
```

d(j,i)		S	С	h	ü	r	z e
	0 →	1 →	2 →	3 →	4 →	. 5 →	6 → 7
b	1 1	1 →		3 →			
ü	¹	↓ ↓ 2		3	3 →	· 4 →	5 → 6
r	3	3	3	3 <i>→</i>	4	3 →	4 → 5
S	4	3 <i>→</i>			4		
t	5	↓ \ 4	4 →	5	5	5	5 5
е	↓ 6	↓ ↓ 5	↓ \ 5	5 →	↓	↓	↓ \6 5

d(j,i)		S	С	h	ü	r	z e
	0 →	1 →	2 →	3 →	4 →	. 5 →	6 → 7
	1		_ \				
b	i	1 →	2 →	3 →	4 →	- 5 →	6 → 7
**	1 7	→ →	2			4	г с
ü		2	2 →				5 → 6
r	3	3	3	3 <i>→</i>	↓ ↓ 4	3 →	4 → 5
S	↓ \ 4	3 <i>→</i>	↓ \ 4	↓ \ 4	4	↓ \ 4	4 → 5
t	↓ 5	↓ \ 4	4 →		↓ ↓ 5	↓ \ 5	↓ ↓ 5 5
е	↓ 6	↓ ↓ 5	↓ \ 5	5 →	↓		↓ ↓ 6 5

$$d(b\ddot{u}rste, sch\ddot{u}rze) = 5$$

