Area: History: Greek method of exhaustion

Eudoxus and Archimedes

Area under parabola f(x)= X2 from 0 to 1

Right endpoint approx.

Area & 4 (4)2+4(2)2+4(3)2+4(1)2 x 047 (overestimate)

left emprint approx.

Area $\chi + \frac{1}{4}(0)^2 + \frac{1}{4}(\frac{1}{4})^2 + \frac{1}{4}(\frac{1}{2})^2 + \frac{1}{4}(\frac{3}{4})^2 \times .22$ (underestimate).

Q: How can me produce a better estimate. ?

Midpoints approx:

Area & \frac{1}{9}\left(\frac{1}{8}\right)^2 + \frac{1}{4}\left(\frac{3}{8}\right)^2 + \frac{1}{4}\left(\frac{5}{8}\right)^2 + \frac{1}{4}\left(\frac{3}{8}\right)^2 & .33

over or under estimate? => ambiguous

More rectangles:

osing right endpts for this increasing function we still get overestimates, but the estimates are getting closer to the true value of the order.

Definition: the Area of the region that hes under the graph of a continuous Lunction of is the limit of the sum of the areas of the approximating rectangles

Whe: we do NOT specify left/right/midpoint approximation.
This is because in the limit all values are equivalent, and
equal the area.

Let's book at another function:

divide the interval [a,b] into

N especial size intervals

Q: Length? A: b-a = AX

Randonly choose sample ptes S(Xi)

Area & $\Delta X \cdot f(X_1) + \Delta X \cdot f(X_2) + \cdots + \Delta X \cdot f(X_3)$

Summation notation $\sum_{i=1}^{N} f(X_i) \cdot \Delta X = f(X_i) \Delta X + \dots + f(X_n) \Delta X$

letis Return to the example S(x) = x2 and write the over under the curve from O to I as a limit.

 Δx ? A: $\frac{1}{2}$ what is

Q: what is $f(x_i)$? A: using right endpts it is $(\frac{i}{n})^2$

Thus Area = $\lim_{N\to\infty} \sum_{j=1}^{N} \left(\frac{i}{n}\right)^2 \cdot \frac{1}{n}$

[Similar to 5.1.24] whe: Area actually equals shis limit.

The Distance Poulsiem: find distance traveled by our doject during a green time period if the velocity is known at all times. For constant velocity are have distance = velocity x time

Hurden of velocity is workonsternt.

	and the second s						Samuela		
ex	Time	0	5	60	15	20	26	30	200000
		25	21	36	43	47	46	41	M/c
	Velocity	125		\	1 .			1 . 1	, , ,

Story: odometer 3 broken and want to love obstance transled. we take speedometer readings every Ince seconds

1/9 Page 5

Q: how for dues the can formed during fine time interval 0 to 30

So for each & second subniferral 9= Axf. Know for constant velocity, wustout who city.

D & 55.25 + 55.81 mls + 55.35 mls + 55.43 + 55.47 + 55.46 = 1135 M We can do the same with a right endpoint approximation 1215m Q: How could me produce a nure accurate estimate of the distance?

0 = lim = 30. Vi