```
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.naive_bayes import MultinomialNB
from sklearn.linear_model import LogisticRegression
from sklearn.svm import SVC
from sklearn.metrics import accuracy_score, classification_report
import matplotlib.pyplot as plt
data = pd.read_csv('spam.csv', encoding='latin-1')
data = data[['v1', 'v2']]
data.columns = ['label', 'message']
data['label'] = data['label'].map({'ham': 0, 'spam': 1})
X_train, X_test, y_train, y_test = train_test_split(data['message'], data['label'], test_size=0.2, random_state=42)
tfidf_vectorizer = TfidfVectorizer(stop_words='english')
X_train_tfidf = tfidf_vectorizer.fit_transform(X_train)
X_test_tfidf = tfidf_vectorizer.transform(X_test)
classifiers = {
    'Naive Bayes': MultinomialNB(),
    'Logistic Regression': LogisticRegression(),
    'Support Vector Machine': SVC()
}
for name, classifier in classifiers.items():
   classifier.fit(X_train_tfidf, y_train)
    y_pred = classifier.predict(X_test_tfidf)
   accuracy = accuracy_score(y_test, y_pred)
   print(f"{name} Accuracy: {accuracy}")
   print(classification_report(y_test, y_pred))
best_model = LogisticRegression()
best_model.fit(X_train_tfidf, y_train)
def classify_sms(message):
    message_tfidf = tfidf_vectorizer.transform([message])
    prediction = best_model.predict(message_tfidf)
    return "spam" if prediction[0] == 1 else "legitimate"
spam_count = data['label'].value_counts()[1]
legitimate_count = data['label'].value_counts()[0]
plt.figure(figsize=(8, 6))
plt.bar(['Spam', 'Legitimate'], [spam_count, legitimate_count], color=['red', 'green'])
plt.title('Distribution of Spam vs Legitimate Messages')
plt.xlabel('Message Type')
plt.ylabel('Count')
plt.show()
```

Naive Bayes Accuracy: 0.9668161434977578				
-	precision	recall	f1-score	support
		4 00		0.55
0	0.96		0.98	965
1	1.00	0.75	0.86	150
accuracy			0.97	1115
macro avg	0.98	0.88	0.92	1115
weighted avg	0.97	0.97	0.96	1115
weighted avg	0.57	0.57	0.50	1113
Logistic Regression Accuracy: 0.9524663677130045				
	precision	recall	f1-score	support
0	0.95	1.00	0.97	965
1	0.97	0.67	0.79	150
accuracy			0.95	1115
macro avg	0.96	0.83	0.88	1115
weighted avg	0.95	0.95	0.95	1115
Support Vector Machine Accuracy: 0.9766816143497757				
Support Vect		-		
	precision	recall	f1-score	support
0	0.97	1.00	0.99	965
1	0.99	0.83	0.91	150
1	0.55	0.03	0.51	130
accuracy			0.98	1115
macro avg	0.98	0.92	0.95	1115
weighted avg	0.98	0.98	0.98	1115
biicca avg	0.50	0.50	0.50	1113

