Esame di Ricerca Operativa del 20/12/13

(Cognome)	(Nome)	(Corso di laurea)

Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

$$\begin{cases} \max -4 \ x_1 - x_2 \\ -3 \ x_1 + 5 \ x_2 \le 12 \\ 3 \ x_1 + x_2 \le 6 \\ -x_1 - 2 \ x_2 \le 12 \\ 3 \ x_1 - x_2 \le 6 \\ -5 \ x_1 - 2 \ x_2 \le 20 \\ -2 \ x_1 - 3 \ x_2 \le 26 \end{cases}$$

Base	Soluzione di base	Ammissibile	Degenere
		(si/no)	Degenere (si/no)
$\{1, 2\}$	x =		
${3, 5}$	y =		

Esercizio 2. Effettuare due iterazioni dell'algoritmo del simplesso primale per il problema dell'esercizio 1.

	Base	x	y	Indice	Rapporti	Indice
				uscente		entrante
1° iterazione	{3,4}					
2° iterazione						

Esercizio 3. Una ditta utilizza un cargo per il trasporto di 3 prodotti P1, P2 e P3. Il cargo ha tre scompartimenti per il carico: A,B,C. La seguente tabella mostra i limiti in peso e spazio degli scompartimenti.

	capacità di peso (tonn)	capacità di spazio (m^3)
Α	22	6000
В	16	8500
С	12	5000

La seguente tabella mostra per ogni prodotto la quantità massima (in tonn) di merce da caricare e il volume occupato.

	peso (tonn)	volume occupato $(m^3/tonn)$
P1	20	200
P2	15	300
P3	12	250

Sapendo che il profitto ottenuto dal trasporto di una tonnellata di merce è di 300 Euro/tonn per P1, 350 Euro/tonn per P2 e 250 Euro/tonn per P3, determinare come distribuire la merce negli scompartimenti per massimizzare il profitto.

C=	COMANDI DI MATLAB	
A=	b=	
Aeq=	beq=	
4	~~q	
71	,	
lb=	ub=	

Esercizio 4. Completare la seguente tabella considerando il problema di flusso di costo minimo sulla seguente rete (su ogni nodo è indicato il bilancio e su ogni arco sono indicati, nell'ordine, il costo e la capacità).

Archi di T	Archi di U	Soluzione di base	Ammissibile	Degenere
			(si/no)	(si/no)
(1,4) (2,5) (4,3)				
(4,6) (5,7) (6,7)	(3,7)	x =		
(1,2) (1,3) (1,4)				
(3,5) (5,7) (6,7)	(3,7)	$\pi = (0,$		

Esercizio 5. Effettuare due iterazioni dell'algoritmo del simplesso su reti per il problema dell'esercizio 3.

	1° iterazione	2° iterazione
Archi di T	(1,2) (1,4) (2,5) (3,7) (4,6) (6,7)	
Archi di U	(3,5)	
x		
π		
Arco entrante		
ϑ^+,ϑ^-		
Arco uscente		

Esercizio 6. a) Applicare l'algoritmo di Dijkstra per trovare l'albero dei cammini minimi di radice 1 sulla seguente rete.

	ite	r 1	ite	r 2	ite	r 3	ite	r 4	ite	r 5	ite	r 6	ite	r 7
	π	p												
nodo visitato														
nodo 2														
nodo 3														
nodo 4														
nodo 5														
nodo 6														
nodo 7														
insieme Q														

b) Applicare l'algoritmo FFEK per trovare il flusso massimo tra il nodo 1 ed il nodo 7 sulla seguente rete.

cammino aumentante	δ	x	v

Taglio di capacità minima: $N_s =$

Esercizio 7. Si consideri il seguente problema di programmazione lineare intera:

$$\begin{cases} \max 5 x_1 + 14 x_2 \\ 17 x_1 + 6 x_2 \le 60 \\ 7 x_1 + 14 x_2 \le 51 \\ x_1 \ge 0 \\ x_2 \ge 0 \\ x_1, x_2 \in \mathbb{Z} \end{cases}$$

a) C	alcolare una	valutazione	superiore del	valore	ottimo	risol	vendo	il	rilassamento	continuo
------	--------------	-------------	---------------	--------	--------	-------	-------	----	--------------	----------

sol. ottima del rilassamento = $v_S(P)$ =

b) Calcolare una valutazione inferiore del valore ottimo arrotondando la soluzione ottima del rilassamento.

sol. ammissibile =
$$v_I(P) =$$

c) Calcolare un taglio di Gomory.

r = taglio:

Esercizio 8. Si consideri il problema di trovare il ciclo hamiltoniano di costo minimo su una rete di 5 città, le cui distanze reciproche sono indicate in tabella:

città	2	3	4	5
1	44	21	50	21
2		11	50	25
3			8	29
4				21

a) Trovare una valutazione inferiore del valore ottimo calcolando il 5-albero di costo minimo.

5-albero: $v_I(P) =$

b) Trovare una valutazione superiore applicando l'algoritmo del nodo più vicino a partire dal nodo 3.

ciclo: $v_S(P) =$

c) Applicare il metodo del *Branch and Bound*, utilizzando il 5-albero di costo minimo come rilassamento di ogni sottoproblema ed istanziando, nell'ordine, le variabili x_{24} , x_{23} , x_{34} .

SOLUZIONI

Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

$$\begin{cases} \max -4 x_1 - x_2 \\ -3 x_1 + 5 x_2 \le 12 \\ 3 x_1 + x_2 \le 6 \\ -x_1 - 2 x_2 \le 12 \\ 3 x_1 - x_2 \le 6 \\ -5 x_1 - 2 x_2 \le 20 \\ -2 x_1 - 3 x_2 \le 26 \end{cases}$$

Base	Soluzione di base	Ammissibile	Degenere
		(si/no)	(si/no)
{1, 2}	x = (1, 3)	SI	NO
{3, 5}	$y = \left(0, \ 0, \ -\frac{3}{8}, \ 0, \ \frac{7}{8}, \ 0\right)$	NO	NO

Esercizio 2. Effettuare due iterazioni dell'algoritmo del simplesso primale per il problema dell'esercizio 1.

	Base	x	y	Indice	Rapporti	Indice
				uscente		entrante
1° iterazione	{3, 4}	(0, -6)	$(0, \ 0, \ 1, \ -1, \ 0, \ 0)$	4	$\frac{294}{11}$, 7, 56	5
2° iterazione	${3, 5}$	(-2, -5)	$\left(0,\ 0,\ -\frac{3}{8},\ 0,\ \frac{7}{8},\ 0\right)$	3	8	1

Esercizio 3.

variabili decisionali	modello
$x_{i,j}={ m tonnellate\ di\ prodotto\ i}$ immagazzinato nello scompartimento j; i= 1,2,3; j=A,B,C	$\begin{cases} \max & 300 \ (x_{1A} + x_{1B} + x_{1C}) \\ +350 \ (x_{2A} + x_{2B} + x_{2C}) \\ +250 \ (x_{3A} + x_{3B} + x_{3C}) \\ x_{1A} + x_{1B} + x_{1C} \le 20 \\ x_{2A} + x_{2B} + x_{2C} \le 15 \\ x_{3A} + x_{3B} + x_{3C} \le 12 \\ x_{1A} + x_{2A} + x_{3A} \le 22 \\ x_{1B} + x_{2B} + x_{3B} \le 16 \\ x_{1C} + x_{2C} + x_{3C} \le 12 \\ 200 \ x_{1A} + 300 \ x_{2A} + 250 \ x_{3A} \le 6000 \\ 200 \ x_{1B} + 300 \ x_{2B} + 250 \ x_{3B} \le 8500 \\ 200 \ x_{1C} + 300 \ x_{2C} + 250 \ x_{3C} \le 5000 \\ x_{i,j} \ge 0 \end{cases}$

Esercizio 4. Completare la tabella considerando il problema di flusso di costo minimo sulla seguente rete (su ogni nodo è indicato il bilancio e su ogni arco sono indicati, nell'ordine, il costo e la capacità).

Archi di T	Archi di U	Soluzione di base	Ammissibile	Degenere
			(si/no)	(si/no)
(1,4) (2,5) (4,3)				
(4,6) (5,7) (6,7)	(3,7)	x = (0, 0, 7, 3, 0, 0, 11, 5, 0, -4, -4)	NO	SI
(1,2) (1,3) (1,4)				
(3,5) $(5,7)$ $(6,7)$	(3,7)	$\pi = (0, 3, 10, 4, 20, 17, 27)$	NO	SI

Esercizio 5. Effettuare due iterazioni dell'algoritmo del simplesso su reti per il problema dell'esercizio 4.

	1° iterazione	2° iterazione
Archi di T	(1,2) $(1,4)$ $(2,5)$ $(3,7)$ $(4,6)$ $(6,7)$	(1,2) (1,3) (1,4) (2,5) (3,7) (4,6)
Archi di U	(3,5)	(3,5)
x	(0, 0, 7, 3, 0, 4, 2, 0, 5, 0, 1)	(0, 1, 6, 3, 0, 4, 3, 0, 4, 0, 0)
π	(0, 3, 13, 4, 7, 8, 18)	(0, 3, 10, 4, 7, 8, 15)
Arco entrante	(1,3)	(3,5)
ϑ^+,ϑ^-	9,1	6,1
Arco uscente	(6,7)	(1,3)

Esercizio 6. a) Applicare l'algoritmo di Dijkstra per trovare l'albero dei cammini minimi di radice 1 sulla seguente rete.

	iter	1	iter	· 2	iter	. 3	ite	r 4	ite	r 5	ite	r 6	ite	r 7
	π	p	π	p	π	p	π	p	π	p	π	p	π	p
nodo visitato	1		2		4		Ş	}	(5	ţ	,)	7	7
nodo 2	9	1	9	1	9	1	9	1	9	1	9	1	9	1
nodo 3	19	1	19	1	17	4	17	4	17	4	17	4	17	4
nodo 4	13	1	13	1	13	1	13	1	13	1	13	1	13	1
nodo 5	$+\infty$	-1	26	2	26	2	20	3	20	3	20	3	20	3
nodo 6	$+\infty$	-1	$+\infty$	-1	17	4	17	4	17	4	17	4	17	4
nodo 7	$+\infty$	-1	$+\infty$	-1	$+\infty$	-1	21	3	20	6	20	6	20	6
$\begin{array}{c} \text{insieme} \\ Q \end{array}$	2, 3	, 4	3, 4	, 5	3, 5	, 6	5, 6	5, 7	5,	7	7	7	()

b) Applicare l'algoritmo di Ford-Fulkerson (con la procedura di Edmonds-Karp per la ricerca del cammino aumentante) per trovare il flusso massimo tra il nodo 1 ed il nodo 7 sulla seguente rete.

cammino aumentante	δ	x	v
1 - 3 - 7	9	(0,9,0,0,0,9,0,0,0)	9
1 - 2 - 5 - 7	7	(7, 9, 0, 7, 0, 0, 9, 0, 0, 7, 0)	16
1 - 3 - 5 - 7	4	(7, 13, 0, 7, 0, 4, 9, 0, 0, 11, 0)	20
1 - 4 - 6 - 7	6	(7, 13, 6, 7, 0, 4, 9, 0, 6, 11, 6)	26

Taglio di capacità minima: $N_s = \{1, 2, 3, 5\}$ $N_t = \{4, 6, 7\}$

Esercizio 7. Si consideri il seguente problema di programmazione lineare intera:

$$\begin{cases} \max 5 x_1 + 14 x_2 \\ 17 x_1 + 6 x_2 \le 60 \\ 7 x_1 + 14 x_2 \le 51 \\ x_1 \ge 0 \\ x_2 \ge 0 \\ x_1, x_2 \in \mathbb{Z} \end{cases}$$

a) Calcolare una valutazione superiore del valore ottimo risolvendo il rilassamento continuo.

sol. ottima del rilassamento =
$$\left(0, \frac{51}{14}\right)$$
 $v_S(P) = 51$

b) Calcolare una valutazione inferiore del valore ottimo arrotondando la soluzione ottima del rilassamento.

sol. ammissibile =
$$(0,3)$$

c) Calcolare un taglio di Gomory.

$$r = 2$$
 $x_2 \le 3$ $x_2 \le 3$ $4x_1 + 8x_2 \le 29$

Esercizio 8. Si consideri il problema di trovare il ciclo hamiltoniano di costo minimo su una rete di 5 città, le cui distanze reciproche sono indicate in tabella:

città	2	3	4	5
1	44	21	50	21
2		11	50	25
3			8	29
4				21

a) Trovare una valutazione inferiore del valore ottimo calcolando il 5-albero di costo minimo.

5–albero:
$$(1,3)(1,5)(2,3)(3,4)(4,5)$$
 $v_I(P)=82$

b) Trovare una valutazione superiore applicando l'algoritmo del nodo più vicino a partire dal nodo 3.

ciclo:
$$3-4-5-1-2$$
 $v_S(P)=105$

c) Applicare il metodo del *Branch and Bound*, utilizzando il 5-albero di costo minimo come rilassamento di ogni sottoproblema ed istanziando, nell'ordine, le variabili x_{24} , x_{23} , x_{34} .

