Summary of Halmos' Naive Set Theory

Robin Adams

August 20, 2023

Contents

1	Primitive Terms and Axioms	2
2	The Subset Relation	3
3	Comprehension Notation	4
4	Unordered Pairs	5
5	Unions and Intersections	6

Primitive Terms and Axioms

Let there be sets. We assume that everything is a set.

Let there be a binary relation of membership, \in . If $x \in A$ we say that x belongs to A, x is an element of A, or x is contained in A. If this does not hold we write $x \notin A$.

Axiom 1.1 (Axiom of Extensionality). Two sets are equal if and only if they have the same elements.

Axiom 1.2 (Axiom of Comprehension, Aussonderungsaxiom). To every set A and to every condition S(x) there corresponds a set B whose elements are exactly those elements x of A for which S(x) holds.

Axiom 1.3. A set exists.

Axiom 1.4 (Axiom of Pairing). For any two sets, there exists a set that they both belong to.

Axiom 1.5 (Union Axiom). For every set A, there exists a set that contains all the elements that belong to at least one element of A.

The Subset Relation

Definition 2.1 (Subset). Let A and B be sets. We say that A is a *subset* of B, or B includes A, and write $A \subseteq B$ or $B \supseteq A$, iff every element of A is an element of B.

Theorem 2.2. For any set A, we have $A \subseteq A$.

PROOF: Every element of A is an element of A. \square

Theorem 2.3. For any sets A, B and C, if $A \subseteq B$ and $B \subseteq C$ then $A \subseteq C$.

PROOF: If every element of A is an element of B, and every element of B is an element of C, then every element of A is an element of C. \Box

Theorem 2.4. For any sets A and B, if $A \subseteq B$ and $B \subseteq A$ then A = B.

PROOF: If every element of A is an element of B, and every element of B is an element of A, then A and B have the same elements, and therefore are equal by the Axiom of Extensionality. \square

Definition 2.5 (Proper Subset). Let A and B be sets. We say that A is a proper subset of B, or B properly includes A, and write $A \subseteq B$ or $B \supseteq A$, iff $A \subseteq B$ and $A \neq B$.

Comprehension Notation

Definition 3.1. Given a set A and a condition S(x), we write $\{x \in A : S(x)\}$ for the set whose elements are exactly those elements x of A for which S(x) holds.

PROOF: This exists by the Axiom of Comprehension and is unique by the Axiom of Extensionality. \Box

Theorem 3.2. There is no set that contains every set.

```
Proof:
```

```
\(\frac{1}{1}\)1. Let: A be a set.

Prove: There exists a set B such that B \notin A.
\(\frac{1}{2}\)2. Let: B = \{x \in A : x \notin x\}
\(\frac{1}{3}\)3. If B \in A then we have B \in B if and only if B \notin B.
\(\frac{1}{4}\)4. B \notin A
```

Unordered Pairs

Theorem 4.1. There exists a set with no elements.
PROOF: Pick a set A by Axiom 1.3. Then the set $\{x\in A: x\neq x\}$ has no elements. \Box
Definition 4.2 (Empty Set). The <i>empty set</i> \emptyset is the set with no elements.
Theorem 4.3. For any set A we have $\emptyset \subset A$.
Proof: Vacuous.
Definition 4.4 ((Unordered) Pair). For any sets a and b , the (unordered) pair $\{a,b\}$ is the set whose elements are just a and b .
Proof: This exists by the Axioms of Pairing and Comprehension, and is unique by the Axiom of Extensionality. \Box
Definition 4.5 (Singleton). For any set a , the $singleton \{a\}$ is defined to be $\{a,a\}$.

Unions and Intersections

Definition 5.1 (Union). For any set \mathcal{C} , the union of \mathcal{C} , $\bigcup \mathcal{C}$, is the set whose elements are the elements of the elements of C. PROOF: This exists by the Union Axiom and Comprehension Axiom, and is unique by the Axiom of Extensionality. Proposition 5.2. $\bigcup \emptyset = \emptyset$ PROOF: There is no set that is an element of an element of \emptyset . \square **Proposition 5.3.** For any set A, we have $\bigcup \{A\} = A$. PROOF: For any x, we have x is an element of an element of $\{A\}$ if and only if x is an element of A. \square **Definition 5.4.** We write $A \cup B$ for $\bigcup \{A, B\}$. **Proposition 5.5.** For any set A, we have $A \cup \emptyset = A$. PROOF: $x \in A \cup \emptyset$ iff $x \in A$ or $x \in \emptyset$, iff $x \in A$. \square **Proposition 5.6** (Commutativity). For any sets A and B, we have $A \cup B =$ $B \cup A$. PROOF: $x \in A \cup B$ iff $x \in A$ or $x \in B$, iff $x \in B$ or $x \in A$, iff $x \in B \cup A$. \square **Proposition 5.7** (Associativity). For any sets A, B and C, we have $A \cup (B \cup A)$ $(C) = (A \cup B) \cup C$.

PROOF: Each is the set of all x such that $x \in A$ or $x \in B$ or $x \in C$. \square Proposition 5.8 (Idempotence). For any set A, we have $A \cup A = A$.

PROOF: $x \in A$ or $x \in A$ is equivalent to $x \in A$. \square

Proposition 5.9. For any sets A and B, we have $A \subseteq B$ if and only if $A \cup B = B$.

PROOF: For any x, the statement "if $x \in A$ then $x \in B$ " is equivalent to " $x \in A$ or $x \in B$ if and only if $x \in B$ ". \square

Proposition 5.10. For any sets a and b, we have $\{a\} \cup \{b\} = \{a,b\}$.

PROOF: Immediate from definitions. \square

Definition 5.11 ((Unordered) Triple). Given sets a_1, \ldots, a_n , define the (unordered) n-tuple $\{a_1, \ldots, a_n\}$ to be

$$\{a_1,\ldots,a_n\} := \{a_1\} \cup \cdots \cup \{a_n\}$$
.

Definition 5.12 (Intersection). For any sets A and B, the *intersection* $A \cap B$ is defined to be $\{x \in A : x \in B\}$.

Proposition 5.13. For any set A, we have $A \cap \emptyset = \emptyset$.

PROOF: There is no x such that $x \in A$ and $x \in \emptyset$. \square

Proposition 5.14. For any sets A and B, we have

$$A \cap B = B \cap A$$
.

PROOF: $x \in A$ and $x \in B$ if and only if $x \in B$ and $x \in A$. \square

Proposition 5.15. For any sets A, B and C, we have

$$A \cap (B \cap C) = (A \cap B) \cap C$$
.

PROOF: Each is the set of all x such that $x \in A$ and $x \in B$ and $x \in C$. \square

Proposition 5.16. For any set A, we have

$$A \cap A = A$$
.

PROOF: We have $x \in A$ and $x \in A$ if and only if $x \in A$. \square

Proposition 5.17. For any sets A and B, we have $A \subseteq B$ if and only if $A \cap B = A$.

PROOF: For any x, the statement "if $x \in A$ then $x \in B$ " is equivalent to " $x \in A$ and $x \in B$ if and only if $x \in A$ ". \square

Definition 5.18 (Disjoint). Two sets A and B are disjoint if and only if $A \cap B = \emptyset$.

Definition 5.19 (Pairwise Disjoint). Let A be a set. We say the elements of A are *pairwise disjoint* if and only if, for all $x, y \in A$, if $x \cap y \neq \emptyset$ then x = y.

Proposition 5.20. For any sets A, B and C, we have

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

Proof:

$$x \in A \land (x \in B \lor x \in C) \Leftrightarrow (x \in A \land x \in B) \lor (x \in A \land x \in C)$$

Proposition 5.21. For any sets A, B and C, we have

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

Proof:

$$x \in A \lor (x \in B \land x \in C) \Leftrightarrow (x \in A \lor x \in B) \land (x \in A \lor x \in C)$$
.