BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI Hyderabad Campus

SECOND SEMESTER 2021-2022

Course Handout Part I

Date: 16-01-2023

In addition to Part-I (General Handout for all courses appended to the timetable) this portion gives further specific details regarding the course.

Course No. : ECE F344

Course Title : **Information Theory and Coding**

Instructor-in-charge : Dr. Atri Mukhopadhyay

Team of Instructors : Dr. Atri Mukhopadhyay, Dr. Sumit Kumar Chatterjee

1. Course description: 3 0 3

Information sources and source coding theorem, Kraft inequality, Shannon-Fano codes, Huffman codes, Arithmetic Codes, Lempel-Ziv-Welch algorithm, universal source codes; channel capacity: channel capacity; noisy channel coding theorem for discrete memoryless channels; error control coding: linear block codes and their properties, low density-parity-check codes, BCH codes, Reed-Solomon codes, cryptography: basic concepts on cryptography and crypto analysis, security issues; private-key encryption algorithms- stream ciphers, block ciphers, introduction to number theory - modular arithmetic, public-key encryption algorithms-Diffie-Hellman public-key distribution scheme, RSA public-key cryptosystem; Message authentication, digital signatures.

2. Scope & Objective:

The course covers source coding, channel coding & encryption. The former deals with error correction in noisy channel, and the latter deals with secrecy of communication. Channel coding, which constitutes the major portion of the course, will introduce a number of important classes of error-detecting and error-correcting codes and their decoding. Finally, the course will introduce encryption & decryption of data for secret communications.

3. Text Books

1. Information Theory, Coding and Cryptography, 3rd Ed., Dr. Ranjan Bose, Tata McGrawHill, 2016

4. Reference Books

- 1. Elements of information theory, Thomas M.Cover and Joy A.Thomas, Wiley-India
- 2. Foundations of Coding, Jiri Adamek, John Wiley, 1991
- 3. The Mathematics of Coding Theory, Paul Garrett, Pearson Education, 2005
- 4. Information Theory, Inference and Learning Algorithms, David Mackay, Cambridge University Press, 2003
- 5. Coding Theory A First course, Ling and Xing, Cambridge University press, 2004

5. Course Plan

Lect. No.	Topics to be covered	Learning Objectives	Chapter in the Text Book
1-2	Introduction to Information Theory	Measure of Information	1.1 to 1.2
3-5	Average Mutual Information and Entropy	Concept of Binary Symmetric channel, conditional\l entropy	1.3
6-7	Source coding theorem	Fundamentals of source coding	1.6

8-9	Huffman Coding, Shannon-Fano-Elias Coding	To introduce Universal Source coding	1.7, 1.8
10-11	Arithmetic Coding, The Lempel-Ziv algorithm, run length encoding, rate distortion function	To introduce optimal codes	1.9-1.12
12-13	Channel Capacity and Models	To understand Channel capacity & noisy coding theorem	2.1 to 2.9
14-16	Block codes for error correction	Introduction to error correcting codes	3.1 to 3.2
17-20	Matrix description of linear block codes	Parity check matrix, decoding of a linear code	3.3 to 3.6
21	Syndrome decoding		3.7
22	Hamming codes, LDPC		3.10 to 3.11
23-25	Cyclic codes	Division algorithm for cyclic codes	4.1 to 4.3
26-27	Matrix description of cyclic codes		4.4 to 4.5
28-29	BCH codes, Reed- Solomon code	Generator polynomials, Minimal polynomials	5.1 to 5.7
30-35	Convolutional codes, Viterbi decoding, turbo codes	To introduce the important class of Convolutional coder & decoder	7.1-7.11
36-38	Cryptography: Models, goals and early cipher systems	Overview of encryption techniques, symmetric key cryptography,	9.1 to 9.7
39-40	Public Key Crypto systems and some examples Asymmetric key cryptography	The RSA algorithm	9.8 to 9.9

6. Evaluation Scheme:

Component	Duration	Weightage	Marks	Date & Time	Nature of Component
Mid Sem	90 mins	30%	90	18/03 2.00 - 3.30PM	Closed Book
Quizzes	TBA	10%	30	TBA	Closed Book
Assignments	TBA	20%	60	TBA	Open Book
Compre. Exam.	180 mins	40%	180	20/05 FN	Closed Book
Total			300		

7. Chamber Consultation Hour: To be announced in the class.

email: atrimukhopadhyay@hyderabad.bits-pilani.ac.in

- **8. Make-up Policy**: No make-up will be given for Quizzes. However, for mid sem and Comprehensive Examination make-up examination will be given only in extremely genuine cases for which prior permission of the instructor-in-charge is required.
- **9. Notices**: Notices, if any, concerning the course will be put up on CMS /CANVAS (will be announced in class).
- 10. **Academic Honesty and Integrity Policy**: Academic honesty and integrity are to be maintained by all the students throughout the semester and no type of academic dishonesty is acceptable.

Atri Mukhopadhyay Instructor-in-charge