Wydział: EAIiIB	Imię i nazwisko: Jakub Cios			Rok: III Blok: B	
AUII			=	Grupa: 1	
Data wykonania:	LABORATORIUM ELEKTRONIKI PRZEMYSŁOWEJ				
31.10.23	Ćw. 1: Awaryjne stany pracy przetwornicy DC-DC				
Zaliczenie:	Podpis prowadzącego:	Uwagi:		-	

Układ pomiarowy

W ramach tego ćwiczenia badaliśmy stany awaryjne przetwornicy opartej na dwutranzystorowym układzie, która została zaprojektowana z myślą o zastosowaniach w kopalnianych systemach elektrycznych.

U_{we}=250V - Znamionowe napięcie zasilania

U0=13,8V - Napięcie wyjściowe (zalecana wartość napięcia ładowania akumulatora kwasowego 12 V)

 P_{0max} =150W - Maksymalne zapotrzebowanie na moc obwodów pomocniczych lokomowtywy

Zestawienie parametrów przetwornicy

Dane elementów obwodu głównego przetwornicy			
C0	10 mF/63 V		
CF	470 μF/500 V		
D0, DP	HFA30PA60C		
LO	50 μH		
LF	1,1 mH		
RF	4,7 Ω		
T1, T2 D1, D2	PM20CSJ060 Mitsubishi		
TR	z1 = 82, z2 = 12, rdzeń EDT 49/25/16 Philips		

Podstawowe parametry modułu PM20CSJ060				
symbol	parametr	wartość maksymalna		
Vcc	napięcie zasilania	450 V		
Vces	napięcie kolektor – emiter	600 V		
Ic	prąd kolektora	20 A		
fpwm	częstotliwość PWM	20 kHz		
		wartość typowa		
VCE(sat)	napięcie nasycenia kolektor – emiter	1,8 V		
VEC	napięcie przewodzenia diody	2,5 V		
ton	czas załączania	0,6 μs		
toff	czas wyłączania	1,5 μs		

Podstawowe parametry diod HFA30PA60C				
symbol	parametr	wartość		
VRWM	napięcie powtarzalne wsteczne	600 V		
VF(IF)	napięcie w stanie przewodzenia	1,7 V		
lF	prąd ciągły	30 A		
trr	czas wyłączania	60 ns		

Zarejestrowane oscylogramy przebiegów

Stan prawidłowej pracy

Grafika 1 Napięcie U₁ oraz U₂

podstawa czasu 10us

$$f = \frac{1}{T} \approx \frac{1}{42us} \approx 23809Hz - zbliżone do wartości na oscylogramie$$

$$\varepsilon = \frac{t1}{T} \approx \frac{14\mu s}{42\mu s} \approx 0.33$$

Na pierwszym kanale obserwujemy napięcie po stronie pierwotnej (U₁) przy zasilaniu 200V. Wzmocnienie tego kanału wynosi 10V zatem możemy odczytać, iż wartość wynosi około 12V (około 20 razy mniej niż napięcie zasilania) podczas załączenia transformatorów oraz około -12V po wyłączeniu transformatorów, dopóki nie uwolni się cała zgromadzona w cewkach energia elektromagnetyczna. Na drugim kanale obserwujemy napięcie po stronie wtórnej, którego przebieg odpowiada napięciu po stronie pierwotnej lecz z mniejszymi wartościami oraz zakłóceniami. Przebiegi wyglądają podobnie ponieważ na drugim kanale wzmocnienie oraz wartość jest odpowiednio mniejsza. Wartość napięcia jest przeskalowana o przekładnię transformatora. Wygląd przebiegów jest podobny ponieważ napięcie po stronie

wtórnej jest indukowane przez stronę pierwotną, a następnie po wyłączeniu tranzystorów, zachodzi tak jak po stronie wtórnej oddanie energii przez cewkę.

Grafika 2 Napięcie U₁ oraz prąd I₁

podstawa czasu 10us

Na drugim oscylogramie na kanale pierwszym nadal obserwowaliśmy napięcie po stronie pierwotnej, natomiast na drugim kanale przeszliśmy do obserwacji prądu na uzwojeniu pierwotnym (i₁). Prąd ten podczas załączenia tranzystorów osiąga większą wartość i rośnie ponieważ jest sumą prądu i₂', który jest prądem strony wtórnej sprowadzonym na stronę pierwotną z zależności i₂' $z_1 = i_2 z_2$, oraz prąd magnesowania i_u. Po wyłączeniu tranzystorów pozostaje opadający prąd i_u. Drgania spowodowane są stosunkowo dużą częstotliwością.

Grafika 3 Prąd i_{L0} oraz i₁

podstawa czasu 10us

Na trzecim oscylogramie na drugim kanale nadal obserwowaliśmy prąd i₁, natomiast na kanale pierwszym zmieniliśmy naszą obserwację na prąd i_{L0}, który jest prądem magnesującym cewki filtra przed odbiornikiem. Jak widać jego wartość przy załączeniu tranzystorów również wzrasta, co jest spowodowane występowaniem prądu i₂, natomiast przy wyłączeniu tranzystorów obserwujemy opadający prąd magnesujący danej cewki. Na danym oscylogramie zmieniła nam się częstotliwość i nie zgadza się nam ona z obliczeniami. Dzieje się tak również na następnych oscylogramach, na których na kanale pierwszym obserwujemy prąd i_{L0} w stanie ciągłości.

Grafika 4 \Prąd iL0 oraz UL0

podstawa czasu 10us

Na czwartym oscylogramie na pierwszym kanale nadal obserwowaliśmy prąd i_{L0} , natomiast na drugim oscylogramie przeszliśmy do obserwacji napięcia U_{L0} , którego przebieg jest pochodną prądu. Wynika to z zależności $U=L\cdot dI/dt$.

Grafika 5 Prąd i_{L0} oraz i 1

podstawa czasu 10us

Piąty oscylogram na pierwszym kanale przedstawia nadal prąd i_{LO}, natomiast na drugim kanale wróciliśmy do obserwacji prądu i₁, aby zaznaczyć, iż nie zaczyna się on od zera, a także aby określić średni prąd odbiornika, który wynosi 6,2 A. Początkowy skok prądu i₁ wynika z mocnej ciągłości prądu i_{LO}.

Grafika 6 Prąd iL0 na granicy ciągłości oraz i 1

podstawa czasu 10us

Na szóstym oscylogramie obserwujemy te same prądy jednak prąd i_{LO} jest na granicy ciągłości, a wartość średnia prądu obciążenia wynosi około 3,3A. Zauważalny jest spadek prądu i₁, który zaczyna się już od zera. Na tym oscylogramie częstotliwość wraca do zgodnej z obliczeniami.

Grafika 7 Prąd iL0 nie ciągły oraz i 1

podstawa czasu 10us

Siódmy oscylogram przedstawia nadal te same prądy jednak w tej sytuacji prąd i_{L0} nie jest już ciągły, a średni prąd odbiornika w tej sytuacji wynosi 2,4A. W tej sytuacji wartość prądu i₁ również zmalała względem poprzedniego oscylogramu. Ciągłość prądu i_{L0}, którą obserwowaliśmy na ostatnich trzech wykresach wynika z wielkości obciążenia. Nieciągłość prądu i_{L0} powoduje nagły wzrost napięcia U₀.

Grafika 8 Praca przetwornicy

$$f = \frac{1}{T} \approx \frac{1}{42\mu s} \approx 23809 Hz - zbliżone do wartości na oscylogramie$$

Na ósmym oscylogramie obserwujemy prace przetwornicy przed stanem awaryjnym. Ograniczyliśmy prąd wyjściowy na 0,5A, prąd wejściowy w tym czasie wynosił 0,7A (wartości średnie).

Pierwszy stan awaryjny – zbyt mała częstotliwość

Grafika 9 Praca przetwornicy - zbyt duża częstotliwość podstawa czasu 25us

$$f=rac{1}{T}pproxrac{1}{95\mu s}pprox10526Hz-zbliżone do wartości na oscylogramie$$

Na dziewiątym oscylogramie obserwowaliśmy pierwszy stan awaryjny wynikający ze zbyt małej częstotliwości impulsowania tranzystorów. Charakterystyczne nieliniowe, stopniowo coraz szybciej wzrastające przebiegi w tym stanie spowodowane są zależnością

prądu i_u od krzywej magnesowania. Jak można zauważyć na poniższym wykresie po przekroczeniu punktu nasycenia rdzenia nachylenie nam się nagle zmienia. Im wyższy punkt tym narastanie prądu jest szybsze.

Grafika 10 Charakterystyka przepływu od prądu iu

Grafika 11 Praca przetwornicy - zbyt duża częstotliwość podstawa czasu 25us

$$f = \frac{1}{T} \approx \frac{1}{97\mu s} \approx 10309 Hz - zbliżone do wartości na oscylogramie$$

Na dziesiątym oscylogramie zmniejszyliśmy częstotliwość dla lepszego zaobserwowania stanu awaryjnego. Oprócz wskazującego na stan awaryjny przebiegu słyszeliśmy również pisk wynikający ze zbyt niskiej częstotliwości. Prąd wejściowy w tym

stanie wynosił 0,9A, natomiast prąd wyjściowy 0,6A. Zatem wartości prądu zgodnie z oczekiwaniami wzrosły.

Drugi stan awaryjny – zbyt duży współczynnik wypełnienia E

Grafika 11 Prąd i₁ E>0,5

podstawa czasu 100us

Na jedenastym oscylogramie obserwowaliśmy prąd i_1 podczas drugiego stanu awaryjnego wywołanego zbyt dużym wypełnieniem współczynnika ϵ (powyżej 0,5). Podczas zbyt dużego wypełnienia współczynnika ϵ prąd magnesujący nie może się rozładować i stale wzrasta co może prowadzić do zwarcia.

Grafika 12 Prąd i₁ E>0,5

podstawa czasu 100us

Dwunasty oscylogram był kolejnym zarejestrowanym przebiegiem prądu i_1 w danym stanie awaryjnym.

Grafika 13 Zbliżenie części narastającej prądu i₁ E>0,5

podstawa czasu 25us

$$\varepsilon_{awaryjny} \approx \frac{42,5us}{52,5us} = 0.81$$

Na trzynastym oscylogramie zarejestrowane zostało zbliżenie zbocza narastającego prądu i1 podczas danego stanu awaryjnego. Lepiej widoczna na nim jest piłokształtność przebiegu, dzięki czemu możemy też lepiej określić wartość współczynnika ε.

Grafika 14 Prąd i1 E>0,5

podstawa czasu 500us

Czternasty zarejestrowany oscylogram to przebieg prądu i₁ w danym stanie awaryjnym z większym zarejestrowanym przedziałem. Prąd początkowo przechodzi nagły wzrost i nieco łagodniejszy od wzrostu spadek spowodowany rozładowaniem kondensatora C_f, by ostatecznie przejść znowu już do znacznie łagodniejszego wzrostu spowolnianego przez cewkę L_f.

Wnioski

Po analizie obserwowanych stanów awaryjnych przetwornicy, można wyciągnąć kilka istotnych wniosków, które mają kluczowe znaczenie dla optymalizacji działania urządzenia.

Pierwszym istotnym wnioskiem jest konieczność kontrolowania częstotliwości załączania tranzystorów w celu uniknięcia nagłych wzrostów prądu magnesującego, będących wynikiem nasycenia rdzenia. Nadmierne nasycenie rdzenia może prowadzić do niekorzystnych skutków dla działania przetwornicy. Stąd też konieczne jest monitorowanie i utrzymanie odpowiedniej częstotliwości załączania tranzystorów, aby minimalizować ryzyko nasycenia rdzenia i zapewnić stabilność pracy układu. Ciekawym spostrzeżeniem jest to, że skrajne spadki częstotliwości jesteśmy w stanie nawet usłyszeć co ułatwia reakcję.

Kolejnym istotnym krokiem jest dbałość o właściwy współczynnik wypełnienia czasu załączania tranzystorów, aby zapewnić odpowiedni czas na rozładowanie energii zgromadzonej na cewkach. Utrzymanie współczynnika ε poniżej 0,5 zapobiega ciągłemu wzrostowi prądu, który może prowadzić do zwarć.

Ponadto, należy zwrócić uwagę na ciągłość prądu na cewce wyjściowej, aby uniknąć nagłych skoków napięcia na wyjściu. Zapewnienie ciągłego przepływu prądu na cewce zapobiega niekontrolowanym skokom napięcia na wyjściu, co z kolei przyczynia się do poprawy wydajności i niezawodności przetwornicy.