ChE445 Chemical Reactor Analysis II Seminar11 Winter2020

March 31, 2020

Department of Chemical and Materials Engineering, University of Alberta

1 Seminar 11. Evaluation of internal MTL and conversion in a PBR.

Q1. Evaluation of internal MTL and conversion in a PBR.

Nitrous oxide (N_2O) has a greenhouse gas global warming potential that is almost 300 times higher than that of carbon dioxide. Its catalytic reduction to harmless N_2 can be done using CH_4 , NH_3 or H_2 .

Consider gas-phase constant-density N_2O hydrogenation on a Pt/SiO_2 catalyst that follows an intrinsic first order to N_2O and apparent 0 to hydrogen due its large excess. There are no external transfer limitations, assume negligible pressure drop. The catalyst pellet can be considered isothermal. Evaluate internal mass transfer limitations: $P = 102000 \ pa$, Pore diameter in individual catalyst particle, $3*10^{-9}m$, Particle porosity= 0.2, Tortuosity in a particle= 4, Intrinsic rate constant (based on N_2O), $1.7 \frac{m^3 \ fluid}{(kg \ cat*s)}$ at 573 K, Catalyst density, $4000kg/m^3$, Reaction activation energy, 120000J/mol, Volumetric velocity at STP (0 oC , $100000\ Pa$), $0.8\ m^3/s$, Catalyst mass in PBR, 2kg

a). Assess the particle size effect: For catalyst particle diameters = (3,6,12,24,48,96,192,384) μm calculate molecular diffusivity, Knudsen diffusivity of N_2O , pore diffusivity of N_2O , effective diffusivity of N_2O , intrinsic rate constant $\left[\frac{m_{fl}^3}{m_{cat}^3*s}\right]$, Thiele modulus, Internal effectiveness factor, Volumetric velosity at reaction conditions, $\left[m_{fl}^3/s\right]$, conversion and ideal PBR conversion,%.

write down formulas you used and show the units conversion, when necessary. Sketch a graph "X vs. particle size" for an ideal and real PBR and clearly mark final and initial points. On this graph, circle a part of the real PBR curve where there are no MTL ("kinetic regime").

Remember that internal effectiveness factor is just a coefficient in front of the intrinsic rate law based on external surface concentration.

b). Assess the temperature effect: For different temperatures [457, 493, 533, 573, 613, 653, 693, 733] and catalyst particle diameters of 48 μm calculate molecular diffusivity, Knudsen diffusivity of N_2O , pore diffusivity of N_2O , effective diffusivity of N_2O , intrinsic rate constant $\left[\frac{m_{fl}^3}{m_{cat}^3 * s}\right]$ and Intrinsic rate constant, $\left[\frac{m_{fl}^3}{m_{cat}^3 * s}\right]$, Thiele modulus, Internal

effectiveness factor, Volumetric velosity at reaction conditions, $[\frac{m_{fl}^3}{s}]$, conversion and ideal PBR conversion,%.

Write down (an) additional formula(s) you used. Sketch a final "X vs. T" for an ideal and real PBR and clearly mark final and initial points. On this graph, circle a part of the real PBR curve where there are no MTL ("kinetic regime").

At what temperatures (lower or higher) the internal MTL become more significant and why?

2