# In [1]:

- 1 import numpy as np
- 2 import pandas as pd
- 3 import seaborn as sns
- 4 import matplotlib.pyplot as plt
- 5 from sklearn import preprocessing,svm
- 6 from sklearn.model\_selection import train\_test\_split
- 7 **from** sklearn.linear\_model **import** LinearRegression

## In [2]:

- 1 df=pd.read\_csv(r"C:\Users\teppa\Downloads\USA\_Housing.csv")
- 2 df

#### Out[2]:

| Ac                                    | Price        | Area<br>Population | Avg. Area<br>Number<br>of<br>Bedrooms | Avg.<br>Area<br>Number<br>of<br>Rooms | Avg.<br>Area<br>House<br>Age | Avg. Area<br>Income | ] <b>:</b> |
|---------------------------------------|--------------|--------------------|---------------------------------------|---------------------------------------|------------------------------|---------------------|------------|
| 208 Michael Fer<br>674\nLaurabu       | 1.059034e+06 | 23086.800503       | 4.09                                  | 7.009188                              | 5.682861                     | 79545.458574        | 0          |
| 188 Johnson<br>Suite 079<br>Kathleer  | 1.505891e+06 | 40173.072174       | 3.09                                  | 6.730821                              | 6.002900                     | 79248.642455        | 1          |
| 9127 Eli<br>Stravenue\nDani∈<br>WI 0  | 1.058988e+06 | 36882.159400       | 5.13                                  | 8.512727                              | 5.865890                     | 61287.067179        | 2          |
| USS Barnett\nF                        | 1.260617e+06 | 34310.242831       | 3.26                                  | 5.586729                              | 7.188236                     | 63345.240046        | 3          |
| USNS Raymond<br>AE                    | 6.309435e+05 | 26354.109472       | 4.23                                  | 7.839388                              | 5.040555                     | 59982.197226        | 4          |
|                                       |              |                    |                                       |                                       |                              |                     |            |
| USNS Williams<br>AP 3015:             | 1.060194e+06 | 22837.361035       | 3.46                                  | 6.137356                              | 7.830362                     | 60567.944140        | 4995       |
| PSC 925<br>8489\nAPO AA 4             | 1.482618e+06 | 25616.115489       | 4.02                                  | 6.576763                              | 6.999135                     | 78491.275435        | 4996       |
| 4215 Tracy (<br>Suite 076\nJoshu<br>∖ | 1.030730e+06 | 33266.145490       | 2.13                                  | 4.805081                              | 7.250591                     | 63390.686886        | 4997       |
| USS Wallace\nF                        | 1.198657e+06 | 42625.620156       | 5.44                                  | 7.130144                              | 5.534388                     | 68001.331235        | 4998       |
| 37778 George I<br>Apt. 509\nEas       | 1.298950e+06 | 46501.283803       | 4.07                                  | 6.792336                              | 5.992305                     | 65510.581804        | 4999       |

5000 rows × 7 columns

In [3]: 1 df.info()

> <class 'pandas.core.frame.DataFrame'> RangeIndex: 5000 entries, 0 to 4999

Data columns (total 7 columns):

| # | olumn Non-Null Count         |               | Dtype   |
|---|------------------------------|---------------|---------|
|   |                              |               |         |
| 0 | Avg. Area Income             | 5000 non-null | float64 |
| 1 | Avg. Area House Age          | 5000 non-null | float64 |
| 2 | Avg. Area Number of Rooms    | 5000 non-null | float64 |
| 3 | Avg. Area Number of Bedrooms | 5000 non-null | float64 |
| 4 | Area Population              | 5000 non-null | float64 |
| 5 | Price                        | 5000 non-null | float64 |
| 6 | Address                      | 5000 non-null | object  |
|   |                              |               |         |

dtypes: float64(6), object(1) memory usage: 273.6+ KB

## In [4]:

1 df.describe()

#### Out[4]:

|       | Avg. Area<br>Income | Avg. Area<br>House Age | Avg. Area<br>Number of<br>Rooms | Avg. Area<br>Number of<br>Bedrooms | Area<br>Population | Price        |
|-------|---------------------|------------------------|---------------------------------|------------------------------------|--------------------|--------------|
| count | 5000.000000         | 5000.000000            | 5000.000000                     | 5000.000000                        | 5000.000000        | 5.000000e+03 |
| mean  | 68583.108984        | 5.977222               | 6.987792                        | 3.981330                           | 36163.516039       | 1.232073e+06 |
| std   | 10657.991214        | 0.991456               | 1.005833                        | 1.234137                           | 9925.650114        | 3.531176e+05 |
| min   | 17796.631190        | 2.644304               | 3.236194                        | 2.000000                           | 172.610686         | 1.593866e+04 |
| 25%   | 61480.562388        | 5.322283               | 6.299250                        | 3.140000                           | 29403.928702       | 9.975771e+05 |
| 50%   | 68804.286404        | 5.970429               | 7.002902                        | 4.050000                           | 36199.406689       | 1.232669e+06 |
| 75%   | 75783.338666        | 6.650808               | 7.665871                        | 4.490000                           | 42861.290769       | 1.471210e+06 |
| max   | 107701.748378       | 9.519088               | 10.759588                       | 6.500000                           | 69621.713378       | 2.469066e+06 |
|       |                     |                        |                                 |                                    |                    |              |

#### In [5]:

1 df.columns

Out[5]: Index(['Avg. Area Income', 'Avg. Area House Age', 'Avg. Area Number of Room s', 'Avg. Area Number of Bedrooms', 'Area Population', 'Price', 'Addres s'], dtype='object')

In [6]: 1 sns.pairplot(df)

Out[6]: <seaborn.axisgrid.PairGrid at 0x14cc00eaa10>



```
In [11]: 1 sns.displot(df['Price'])
```

Out[11]: <seaborn.axisgrid.FacetGrid at 0x14cd96e0d00>



```
In [10]: 1 sns.displot(df['Area Population'])
```

Out[10]: <seaborn.axisgrid.FacetGrid at 0x14cd96c31c0>



In [29]: 1 Housedf=df[['Avg. Area Income', 'Avg. Area House Age', 'Avg. Area Number of Bedrooms', 'Area Population', 'Price']]

```
In [30]: 1 sns.heatmap(Housedf.corr())
```

Out[30]: <Axes: >



```
In [32]: 1     x=Housedf[['Avg. Area Income', 'Avg. Area House Age', 'Avg. Area Number of 'Avg. Area Number of Bedrooms', 'Area Population']]
3     y=df['Price']

In [35]: 1     from sklearn.model_selection import train_test_split
2     x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3,random_sflow)
In [36]: 1     from sklearn.linear_model import LinearRegression
2     lm=LinearRegression()
3     lm.fit(x_train,y_train)
```

## Out[36]: LinearRegression()

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.

On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

```
In [37]:
               print(lm.intercept_)
          -2641372.6673014304
In [50]:
               coeff_df=pd.DataFrame(lm.coef_,x.columns,columns=['coefficient'])
               coeff_df
Out[50]:
                                          coefficient
                                           21.617635
                       Avg. Area Income
                    Avg. Area House Age
                                       165221.119872
              Avg. Area Number of Rooms
                                       121405.376596
           Avg. Area Number of Bedrooms
                                         1318.718783
                        Area Population
                                           15.225196
In [42]:
               predictions=lm.predict(x_test)
               plt.scatter(y_test,predictions)
```

Out[42]: <matplotlib.collections.PathCollection at 0x14cd9e13700>



In [44]: 1 sns.displot((y\_test-predictions),bins=50);



```
In [46]: 1  from sklearn import metrics
2  print('MAE:',metrics.mean_absolute_error(y_test,predictions))
3  print('MSE:',metrics.mean_squared_error(y_test,predictions))
4  print('MSE:',np.sqrt(metrics.mean_squared_error(y_test,predictions)))

MAE: 81257.55795855941
    MSE: 10169125565.897606
    MSE: 100842.08231635048
```

In [ ]: 1