Rhythms

Analyzing Rhythms (Part 3)

Instructor: Mark Kramer

Today

Rhythms from spike trains

Review

spectrum > which rhythms dominate a signal

$$S_{xx,j} \sim X_j X_j^*$$

$$d\!f = rac{1}{T}$$
 — Duration of recording

$$f_{
m NQ} = rac{f_0}{2}$$
 — Sampling frequency

Today

Define:

$$dn(t) = \begin{cases} 1 \text{ when a spike occurs in small time interval } \Delta \\ 0 \text{ otherwise} \end{cases}$$

Why?

Q: Why dn(t)?

A: Consider n(t) = the number of spikes that occur from 0 to t.

dn(t) is the change in n(t)

Either 0 or 1 when a spike occurs

Subtract the mean

Define:
$$d\bar{n}(t) = dn(t) - \lambda_o \Delta$$
 where λ_o = mean spike rate estimate λ_o from data = $\frac{n(T)}{T}$ — number of spikes after total time T — total time Δ = time bin (e.g., 1 ms)

 $\lambda_o \Delta$ = expected number of spikes in a single time bin

Given a spike occurred at time t, how likely is another spike at t+ τ ?

Idea: Compare spike train to a shifted version of itself ... match?

previously
$$r_{xx}[L] = \frac{1}{N} \sum_{n=1}^{N-L} (x_{n+L} - \bar{x})(x_n - \bar{x})$$

Notation change

$$\Gamma_{n\eta}[\tau] = \frac{1}{N} \leq A\pi(t) A\pi(t+\tau)$$
 $\log \tau$ ** spike train (mean subtracted)

START ZOOM

Ex.

Q. $r_{nn}[0]$?

 $\mathsf{copy}\,(\tau=0)$

$$r_{nn}[0]$$
 = big (spikes align)

 $r_{nn}[\neq 0] = ?$

Plot $r_{nn}[au]$

Big, usually ignore it

Interesting (how spike now relates to future spikes)

T

Remember: spectrum is the Fourier transform of the autocovariance

$$S_{nn,j} = 2 \ \Delta \ FT\{ \ r_{nn} \}$$
 function of frequency function of time

So, the peak in r_{nn} at lag 0 impacts the spectrum

Q. How?

Ex. Random spiking at a fixed rate

- **Q.** What is the autocovariance $r_{nn}[\tau]$?
- **Q.** What is the spectrum $S_{nn,i}$?

Ex. Random spiking at a fixed rate

Q. What is $r_{nn}[0]$?

Ex. Random spiking at a fixed rate

Q. What is $r_{nn}[0]$?

$$\lceil nn \lceil o \rceil = \frac{1}{N} \underset{t}{\leq} dn(t)^{2} \underset{t}{\sim} \frac{\text{total $\#$ spikes}}{\text{total $\#$ time bins}} = \frac{n(T)}{N}$$

Remember the mean spike rate:
$$\lambda_o = \frac{n(T)}{T}$$
 so $n(T) = \lambda_o T$

$$r_{nn}[0] = \lambda_0 \Delta$$

expected number of spikes in a time bin

Ex. Random spiking at a fixed rate

Plot idealized $r_{nn}[\tau]$

peak at 0 lag of height =
$$\lambda_0$$
 Δ 0 for $au \neq 0$ lags

$$r_{nn}[\tau] = \lambda_0 \Delta \delta[\tau]$$
 where $\Im[\tau] = \begin{cases} 1 & \text{when } \tau = 6 \\ 0 & \text{otherwise} \end{cases}$ Q. What is the spectrum?

Ex. Random spiking at a fixed rate

Q. What is the spectrum?

Use
$$S_{nn,j} = 2 \Delta FT \{ r_{nn} \} = 2 \Delta FT \{ \lambda_0 \Delta \delta[\tau] \}$$

= $2 \Delta^2 \lambda_0 FT \{ \delta[\tau] \}$

in our example

 $r_{nn}[\tau] = \lambda_0 \Delta \delta[\tau]$

In our case, we need $FT\{\delta[\tau]\}$

Q. What frequency sinusoids do we need?

A. All the frequencies

$$FT\{\delta[\tau]\} = 1$$

Need contribution from each frequency to capture this sharp event

Ex. Random spiking at a fixed rate

Q. What is the spectrum?

$$S_{nn,j} = 2 \Delta FT \{ r_{nn} \}$$

$$r_{nn}[\tau] = \lambda_0 \Delta \delta[\tau]$$

$$S_{nn,i} = 2 \Delta (\lambda_0 \Delta) FT \{\delta[\tau]\}$$

 $S_{nn,i} = 2 \Delta FT \{\lambda_0 \Delta \delta[\tau]\}$

$$S_{nn,i} = 2 \quad \Delta^2 \lambda_0 \qquad 1$$

$$S_{nn,j} = 2 \Delta^2 \lambda_0$$

This is the spectrum of random spiking at fixed rate

Ex. Random spiking at a fixed rate

Q. What is the spectrum?

$$S_{nn,j} = 2 \Delta^2 \lambda_0$$

Plot it $S_{nn,j}$ $2 \Delta^2 \lambda_0$

Spectrum (spike train)

Use autocovariance to gain intuition

Alternative: compute spectrum directly.

$$S_{nn,j} = \frac{2\Delta^2}{T} D_j D_j^*$$

Fourier transform of **spike train**

Like our approach for "fields"

new notation

$$D_{j} = \sum_{n=1}^{N} d\bar{n}(t) \exp(-2\pi i f_{j} t_{n})$$
complex exponentials at frequency f_{j}

spike train with mean subtracted

Spectrum (spike train)

Q. What is the spectrum?

A. Use autocovariance to gain intuition

Random spiking

Ex. Random spiking at a fixed rate

Q. What is the <u>autocovariance</u>?

Q. What is the <u>spectrum</u>?

Python

Ex. Random spiking with refractory period.

- **Q.** What is the autocovariance $r_{nn}[\tau]$?
- **Q.** What is spectrum $S_{nn,j}$?

Ex. Random spiking with refractory period.

Q. What is the <u>autocovariance</u> $r_{nn}[\tau]$?

[sketch]

Ex. Random spiking with refractory period.

Q. What is spectrum $S_{nn,j}$?

[sketch]

Ex. Random spiking with refractory period.

Q. What is the <u>autocovariance</u> $r_{nn}[\tau]$?

Q. What is spectrum $S_{nn,j}$?

Python