Simulation9

Mengqi Liu

Aug 29, 2023

Simulation result correction

Normal Distribution

Different generating functions

Analysis

- Methods: (\tilde{Z} is the discretized Z, and the data belonging to the same group share the same \tilde{Z} .)
 - "double_Z": permute X within each bin. At each time, regress Y on 1, Z and regress X on 1, Z separately, and take the *absolute* correlation between residuals from two linear regressions as the test statistic.

$$\operatorname{cor}(P_{Z^{\perp}}X_{\sigma}, P_{Z^{\perp}}Y) = \frac{\mathbb{E}(X_{\sigma}^{\top}P_{Z^{\perp}}P_{Z^{\perp}}Y) - \mathbb{E}(P_{Z^{\perp}}X_{\sigma})\mathbb{E}(P_{Z^{\perp}}Y)}{\sqrt{\operatorname{Var}(P_{Z^{\perp}}X_{\sigma})\operatorname{Var}(P_{Z^{\perp}}Y)}}$$
(1)

$$\propto \frac{\mathbb{E}(X_{\sigma}^{\top} P_{Z^{\perp}} Y)}{\mathrm{SD}(X_{\sigma})} \tag{2}$$

• "double_meanZ": permute X within each bin. At each time, regress Y on $1, \tilde{Z}$ and regress X on $1, \tilde{Z}$ separately, and take the absolute correlation between residuals from two linear regressions as the test statistic.

$$\operatorname{cor}(P_{\tilde{Z}^{\perp}}X_{\sigma}, P_{\tilde{Z}^{\perp}}Y) = \frac{\mathbb{E}(X_{\sigma}^{\perp}P_{\tilde{Z}^{\perp}}P_{\tilde{Z}^{\perp}}Y) - \mathbb{E}(P_{\tilde{Z}^{\perp}}X_{\sigma})\mathbb{E}(P_{\tilde{Z}^{\perp}}Y)}{\sqrt{\operatorname{Var}(P_{\tilde{Z}^{\perp}}X_{\sigma})\operatorname{Var}(P_{\tilde{Z}^{\perp}}Y)}}$$
(3)

$$\propto \mathbb{E}(X_{\sigma}^{\top}P_{\tilde{Z}^{\perp}}Y)$$
 (4)

- "noZ": use cor(X,Y) as test statistic with local permutation in X with respect to Z.
- "resid_Z": regress Y on 1,Z and regress X on 1,Z separately. Permute residuals from regression on for X and take the *absolute* correlation between permuted residuals as the test statistic.

$$\operatorname{cor}((P_{Z^{\perp}}X)_{\sigma}, P_{Z^{\perp}}Y) = \frac{\mathbb{E}((X^{\top}P_{Z^{\perp}})_{\sigma}P_{Z^{\perp}}Y) - \mathbb{E}((P_{Z^{\perp}}X)_{\sigma})\mathbb{E}(P_{Z^{\perp}}Y)}{\sqrt{\operatorname{Var}((P_{Z^{\perp}}X)_{\sigma})\operatorname{Var}(P_{Z^{\perp}}Y)}}$$
(5)

$$\propto \mathbb{E}((X^{\top} P_{Z^{\perp}})_{\sigma} \epsilon_{Y})$$
 (6)

- Basically "double_meanZ" and "resid_Z" are very similar both permuting residuals after regressing $X\sim 1+ ilde Z$ and $X\sim 1+Z$ respectively.
- ullet More generally, "no_Z" is also similar permuting residuals after regressing $X\sim 1$ but without using information of Z.

double_Z

- when Y in linear in Z:
 - lacksquare sometimes with uniform distribution on $X_\sigma^ op P_{Z^\perp} Y$ and $\mathrm{SD}(X_\sigma)$ (column2)
 - $lacksquare ext{sometimes with extremely small } \mathrm{SD}(X_\sigma) ext{ but } X_\sigma^ op P_{Z^\perp} Y ext{ with mean 0 (column1,3,4)} --- ext{ uniform distribution on } rac{X_\sigma^ op P_{Z^\perp} Y}{\mathrm{SD}(X_\sigma)}$

double_Z

- when Y in linear in Z:
 - sometimes with uniform distribution on $\mathrm{SD}(X_\sigma)$ but extremely high $X_\sigma^\top P_{Z^\perp} Y$ (column2) \to maybe due to the same generating function?
 - lacksquare sometimes with extremely small $\mathrm{SD}(X_\sigma)$ and $X_\sigma^\top P_{Z^\perp} Y$ with generally non-zero mean (column1,3,4) $-\to$ heavy density on large percentile(>0.95) $\frac{X_\sigma^\top P_{Z^\perp} Y}{\mathrm{SD}(X_\sigma)}$

double_meanZ

• SD(X) = 0.5, SD(Y) = 0.5

<matplotlib.image.AxesImage at 0x7fe3f3498580>

•
$$SD(X) = 0.5, SD(Y) = 0.01$$

<matplotlib.image.AxesImage at 0x7fe3f33d3a30>

•
$$SD(X) = 0.01, SD(Y) = 0.5$$

<matplotlib.image.AxesImage at 0x7fe3f3a7f160>

•
$$SD(X) = 0.01, SD(Y) = 0.01$$

<matplotlib.image.AxesImage at 0x7fe3e3954490>

resid_Z

• SD(X) = 0.5, SD(Y) = 0.5

<matplotlib.image.AxesImage at 0x7fe3e3215f70>

•
$$SD(X) = 0.5, SD(Y) = 0.01$$

<matplotlib.image.AxesImage at 0x7fe3d3c791c0>

•
$$SD(X) = 0.01, SD(Y) = 0.5$$

<matplotlib.image.AxesImage at 0x7fe3d41ebf10>

•
$$SD(X) = 0.01, SD(Y) = 0.01$$

<matplotlib.image.AxesImage at 0x7fe3d506aa00>

Power

• cor = 0.4

Normal Distribution

• cor = 0.2

