

M66-OpenCPU Hardware Design

GSM/GPRS Module Series

Rev. M66-OpenCPU_Hardware_Design_V1.0

Date: 2014-11-14

Our aim is to provide customers with timely and comprehensive service. For any assistance, please contact our company headquarters:

Quectel Wireless Solutions Co., Ltd.

Office 501, Building 13, No.99, Tianzhou Road, Shanghai, China, 200233

Tel: +86 21 5108 6236 Mail: info@quectel.com

Or our local office, for more information, please visit:

http://www.quectel.com/support/salesupport.aspx

For technical support, to report documentation errors, please visit:

http://www.quectel.com/support/techsupport.aspx

GENERAL NOTES

QUECTEL OFFERS THIS INFORMATION AS A SERVICE TO ITS CUSTOMERS. THE INFORMATION PROVIDED IS BASED UPON CUSTOMERS' REQUIREMENTS. QUECTEL MAKES EVERY EFFORT TO ENSURE THE QUALITY OF THE INFORMATION IT MAKES AVAILABLE. QUECTEL DOES NOT MAKE ANY WARRANTY AS TO THE INFORMATION CONTAINED HEREIN, AND DOES NOT ACCEPT ANY LIABILITY FOR ANY INJURY, LOSS OR DAMAGE OF ANY KIND INCURRED BY USE OF OR RELIANCE UPON THE INFORMATION. ALL INFORMATION SUPPLIED HEREIN IS SUBJECT TO CHANGE WITHOUT PRIOR NOTICE.

COPYRIGHT

THIS INFORMATION CONTAINED HERE IS PROPRIETARY TECHNICAL INFORMATION OF QUECTEL CO., LTD. TRANSMITTABLE, REPRODUCTION, DISSEMINATION AND EDITING OF THIS DOCUMENT AS WELL AS UTILIZATION OF THIS CONTENTS ARE FORBIDDEN WITHOUT PERMISSION. OFFENDERS WILL BE HELD LIABLE FOR PAYMENT OF DAMAGES. ALL RIGHTS ARE RESERVED IN THE EVENT OF A PATENT GRANT OR REGISTRATION OF A UTILITY MODEL OR DESIGN.

Copyright © Quectel Wireless Solutions Co., Ltd. 2014. All rights reserved.

About the Document

History

Revision	Date	Author	Description
1.0	2014-11-14	Felix YIN	Initial

Contents

			ent	
Fiç	gure Inde	ex		
1	Introd	uction .		
	1.1.	Safet	y Information	10
2	Produ	ct Cond	ept	11
	2.1.	Gene	ral Description	11
	2.2.	Key I	-eatures	12
	2.3.	Func	tional Diagram	14
	2.4.		ssignment	
	2.5.		ating Modes	
	2.6.	Flash	Memory Allocation	22
3	Applic	ation li	nterface	23
	3.1.	Gene	ral Description	23
	3.2.	Powe	er Supply	23
	3.2	2.1. F	Power Features of Module	23
	3.2	2.2. [Decrease Supply Voltage Drop	24
	3.2		Reference Design for Power Supply	
	3.2		Monitor Power Supply	
	3.3.		er On and Down Scenarios	
	3.3	3.1. I	Power On	26
	3.3	3.2. I	Power Down	27
		3.3.2		
		3.3.2	2. Power Down Module Using the API Function	28
		3.3.2	3 1 3 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	3.3		Recommended Turn-on Structure for OpenCPU Syste	
	3.4.		er Saving	
	3.4		Minimum Functionality Mode	
	3.4		Sleep Mode	
	3.5.			
	3.6.		I Interfaces	
	3.0		JART Port	
		3.6.1		
		3.6.1	3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 -	
		3.6.1	1.5	
			Debug Port	
			Auxiliary UART Port	
			JART Application	
	3.7.	Audio	Interfaces	40

	3.7.1.	Decrease TDD Noise and Other Noise	40
	3.7.2.	Reference Design for AIN	41
	3.7.3.	Reference Design for AOUT1 and AOUT2	42
	3.7.4.	Reference Design for an Earphone	44
	3.7.5.	Audio Characteristics	44
	3.8. SII	M Card Interface	45
	3.9. PC	CM Interface	47
	3.9.1.	Configuration	48
	3.9.2.	Timing	48
	3.9.3.	Reference Design	50
	3.9.4.	AT Command	50
	3.10. SF	PI and I2C Interface	51
	3.10.1.	SPI Interface	51
	3.10.2.	I2C Interface	52
	3.11. AD	DC	53
	3.12. Ex	ternal Interrupt	54
	3.13. PV	VM	55
	3.14. GF	PIO	56
		Transmitting Signal Indication	
4		terface	
	4.1. GS	SM Antenna Interface	59
	4.1.1.	Reference Design	
	4.1.2.	RF Output Power	61
	4.1.3.	RF Receiving Sensitivity	61
	4.1.4.	Operating Frequencies	
	4.1.5.	RF Cable Soldering	62
	4.2. Blu	uetooth Antenna Interface	62
5	Electrical,	Reliability and Radio Characteristics	64
		osolute Maximum Ratings	
	5.2. Op	perating Temperature	64
	5.3. Po	ower Supply Ratings	65
	5.4. Cu	urrent Consumption	66
	5.5. Ele	ectro-static Discharge	68
6		l Dimensions	
	6.1. Me	echanical Dimensions of Module	69
	6.2. Re	ecommended Footprint	71
	6.3. To	p View of the Module	72
	6.4. Bo	ottom View of the Module	72
7	_	d Manufacturing	
	7.1. Sto	orage	73
		data da a	7
	7.2. So	oldering	

	7.3.1.	Tape and Reel Packaging	. 75
8	Appendix A	Reference	. 76
9	Appendix B	GPRS Coding Scheme	. 81
10	Appendix C	GPRS Multi-slot Class	. 83

Table Index

TABLE 1: KEY FEATURES	12
TABLE 2: CODING SCHEMES AND MAXIMUM NET DATA RATES OVER AIR INTERFACE	13
TABLE 3: IO PARAMETERS DEFINITION	15
TABLE 4: PIN DESCRIPTION	16
TABLE 5: MULTIPLEXED FUNCTIONS	20
TABLE 6: OVERVIEW OF OPERATING MODES	21
TABLE 7: LOGIC LEVELS OF THE UART INTERFACE	34
TABLE 8: PIN DEFINITION OF THE UART INTERFACES	35
TABLE 9: PIN DEFINITION OF AUDIO INTERFACE	40
TABLE 10: TYPICAL ELECTRET MICROPHONE CHARACTERISTICS	44
TABLE 11: TYPICAL SPEAKER CHARACTERISTICS	44
TABLE 12: PIN DEFINITION OF THE SIM INTERFACE	45
TABLE 13: PIN DEFINITION OF PCM INTERFACE	47
TABLE 14: CONFIGURATION	48
TABLE 15: QPCMON COMMAND DESCRIPTION	51
TABLE 16: QPCMVOL COMMAND DESCRIPTION	51
TABLE 17: LOGIC LEVELS OF THE SPI INTERFACE	52
TABLE 18: PIN DEFINITION OF THE SPI INTERFACE	52
TABLE 19: LOGIC LEVELS OF THE I2C INTERFACE	53
TABLE 20: PIN DEFINITION OF THE I2C INTERFACE	53
TABLE 21: PIN DEFINITION OF THE ADC	54
TABLE 22: CHARACTERISTICS OF THE ADC	
TABLE 23: PIN LIST FOR EXTERNAL INTERRUPT	54
TABLE 24: WORKING STATUS FOR NETLIGHT	
TABLE 25: PIN LIST FOR GPIO	56
TABLE 26: PIN DEFINITION OF THE RFTXMON	57
TABLE 27: PIN DEFINITION OF THE RF_ANT	59
TABLE 28: ANTENNA CABLE REQUIREMENTS	60
TABLE 29: ANTENNA REQUIREMENTS	60
TABLE 30: THE MODULE CONDUCTED RF OUTPUT POWER	61
TABLE 31: THE MODULE CONDUCTED RF RECEIVING SENSITIVITY	61
TABLE 32: THE MODULE OPERATING FREQUENCIES	
TABLE 33: PIN DEFINITION OF THE BT_ANT	63
TABLE 34: ABSOLUTE MAXIMUM RATINGS	64
TABLE 35: OPERATING TEMPERATURE	64
TABLE 36: THE MODULE POWER SUPPLY RATINGS	65
TABLE 37: THE MODULE CURRENT CONSUMPTION	
TABLE 38: THE ESD ENDURANCE (TEMPERATURE: 25°C, HUMIDITY: 45%)	68
TABLE 39: RELATED DOCUMENTS	76
TABLE 40: TERMS AND ABBREVIATIONS	
TABLE 41: DESCRIPTION OF DIFFERENT CODING SCHEMES	81
TABLE 42: GPRS MULTI-SLOT CLASSES	83

Figure Index

FIGURE 1: MODULE FUNCTIONAL DIAGRAM	14
FIGURE 2: PIN ASSIGNMENT	15
FIGURE 3: FLASH MEMORY ALLOCATION	22
FIGURE 4: VOLTAGE RIPPLE DURING TRANSMITTING	24
FIGURE 5: REFERENCE CIRCUIT FOR THE VBAT INPUT	24
FIGURE 6: REFERENCE CIRCUIT FOR POWER SUPPLY	25
FIGURE 7: TURN ON THE MODULE WITH AN OPEN-COLLECTOR DRIVER	26
FIGURE 8: TURN ON THE MODULE WITH A BUTTON	26
FIGURE 9: TURN-ON TIMING	
FIGURE 10: TURN-OFF TIMING	28
FIGURE 11: RECOMMENDED TURN-ON STRUCTURE FOR OPENCPU SYSTEM	29
FIGURE 12: SKETCH MAP FOR WATCHDOG	30
FIGURE 13: VRTC IS SUPPLIED BY A NON-CHARGEABLE BATTERY	32
FIGURE 14: VRTC IS SUPPLIED BY A RECHARGEABLE BATTERY	
FIGURE 15: VRTC IS SUPPLIED BY A CAPACITOR	
FIGURE 16: REFERENCE DESIGN FOR UART PORT	36
FIGURE 17: REFERENCE DESIGN FOR FIRMWARE UPGRADE	37
FIGURE 18: REFERENCE DESIGN FOR DEBUG PORT	
FIGURE 19: REFERENCE DESIGN FOR AUXILIARY UART PORT	
FIGURE 20: LEVEL MATCH DESIGN FOR 3.3V SYSTEM	38
FIGURE 21: SKETCH MAP FOR RS-232 INTERFACE MATCH	39
FIGURE 22: REFERENCE DESIGN FOR AIN	
FIGURE 23: REFERENCE DESIGN FOR AOUT1	42
FIGURE 24: REFERENCE DESIGN WITH AN AMPLIFIER FOR AOUT1	
FIGURE 25: REFERENCE DESIGN FOR AOUT2	43
FIGURE 26: REFERENCE DESIGN WITH AN AMPLIFIER FOR AOUT2	43
FIGURE 27: REFERENCE DESIGN FOR AN EARPHONE	44
FIGURE 28: REFERENCE CIRCUIT FOR SIM INTERFACE WITH 8-PIN SIM CARD HOLDER	46
FIGURE 29: REFERENCE CIRCUIT FOR SIM INTERFACE WITH THE 6-PIN SIM CARD HOLDER	46
FIGURE 30: LONG SYNCHRONIZATION & SIGN EXTENSION DIAGRAM	49
FIGURE 31: LONG SYNCHRONIZATION & ZERO PADDING DIAGRAM	49
FIGURE 32: SHORT SYNCHRONIZATION & SIGN EXTENSION DIAGRAM	49
FIGURE 33: SHORT SYNCHRONIZATION & ZERO PADDING DIAGRAM	50
FIGURE 34: REFERENCE DESIGN FOR PCM	50
FIGURE 35: REFERENCE DESIGN FOR NETLIGHT	55
FIGURE 36: GPIO LEVEL MATCH DESIGN FOR 3.3V SYSTEM	57
FIGURE 37: RFTXMON SIGNAL DURING BURST TRANSMISSION	58
FIGURE 38: RFTXMON SIGNAL DURING CALLING	58
FIGURE 39: REFERENCE DESIGN FOR GSM ANTENNA	60
FIGURE 40: RF SOLDERING SAMPLE	62
FIGURE 41: REFERENCE DESIGN FOR BLUETOOTH ANTENNA	63

FIGURE 42: M66-OPENCPU MODULE TOP AND SIDE DIMENSIONS (UNIT: MM)	. 69
FIGURE 43: M66-OPENCPU MODULE BOTTOM DIMENSIONS (UNIT: MM)	. 70
FIGURE 44: RECOMMENDED FOOTPRINT (UNIT: MM)	. 71
FIGURE 45: TOP VIEW OF THE MODULE	. 72
FIGURE 46: BOTTOM VIEW OF THE MODULE	. 72
FIGURE 47: RAMP-SOAK-SPIKE REFLOW PROFILE	. 74
FIGURE 48: TAPE AND REEL SPECIFICATION	. 75
FIGURE 49: DIMENSIONS OF REEL	. 75
FIGURE 50: RADIO BLOCK STRUCTURE OF CS-1, CS-2 AND CS-3	. 81
	00

1 Introduction

This document defines the M66-OpenCPU module and describes its hardware interface which are connected with the customer application and the air interface.

This document can help customer quickly understand module interface specifications, electrical and mechanical details. Associated with application notes and user guide, customer can use M66-OpenCPU module to design and set up mobile applications easily.

1.1. Safety Information

The following safety precautions must be observed during all phases of the operation, such as usage, service or repair of any cellular terminal or mobile incorporating M66-OpenCPU module. Manufacturers of the cellular terminal should send the following safety information to users and operating personnel and to incorporate these guidelines into all manuals supplied with the product. If not so, Quectel does not take on any liability for customer failure to comply with these precautions.

Full attention must be given to driving at all times in order to reduce the risk of an accident. Using a mobie while driving (even with a handsfree kit) cause distraction and can lead to an accident. You must comply with laws and regulations restricting the use of wireless devices while driving.

Switch off the cellular terminal or mobile before boarding an aircraft. Make sure it switched off. The operation of wireless appliances in an aircraft is forbidden to prevent interference with communication systems. Consult the airline staff about the use of wireless devices on boarding the aircraft, if your device offers a Fight Mode which must be enabled prior to boarding an aircraft.

Switch off your wireless device when in hospitals or clinics or other health care facilities. These requests are desinged to prevent possible interference with sentitive medical equipment.

Cellular terminals or mobiles operate over radio frequency signal and cellular network and cannot be guaranteed to connect in all conditions, for example no mobile fee or an invalid SIM card. While you are in this condition and need emergent help, Please Remember using emergency call. In order to make or receive call, the cellular terminal or mobile must be switched on and in a service area with adequate cellular signal strength.

Your cellular terminal or mobile contains a transmitter and receiver. When it is ON, it receives and transmits radio frequency energy. RF interference can occur if it is used close to TV set, radio, computer or other electric equipment.

In locations with potencially explosive atmospheres, obey all posted signs to turn off wireless devices such as your phone or other cellular terminals. Areas with potencially exposive atmospheres including fuelling areas, below decks on boats, fuel or chemical transfer or storage facilities, areas where the air contains chemicals or particles such as grain, dust or metal powders.

2 Product Concept

2.1. General Description

OpenCPU is a method that the module acts as the main processor. With the developing communication technology and changing market, more and more customers have realized the advantages of OpenCPU solution. Especially, the advantage of reducing the product cost effectively is greatly valued by customers. With the help of OpenCPU solution, development flow for wireless application and hardware design will be simplified. The main features for OpenCPU solution are as below:

- 1. Reduce the product development period.
- 2. Simplify the circuit design and reduce the cost.
- 3. Decrease the product's size.
- 4. Decrease the power consumption.
- 5. Upgraded via OpenCPU FOTA.
- 6. Improve the performance-to-price ratio and enhance the competitive strength.

M66-OpenCPU module adopts the baseband processor with ARM7EJ-STM core whose frequency can reach to 260MHz.

M66-OpenCPU is a Quad-band GSM/GPRS engine that works at frequencies of GSM850MHz, EGSM900MHz, DCS1800MHz and PCS1900MHz. The M66-OpenCPU module features GPRS multi-slot class 12 and supports the GPRS coding schemes CS-1, CS-2, CS-3 and CS-4. For more details about GPRS multi-slot classes and coding schemes, please refer to *Appendix B and Appendix C*.

M66-OpenCPU is a SMD-type module with LCC package and a tiny profile of 15.8mm \times 17.7mm \times 2.3mm. Furthermore, M66-OpenCPU possesses abundant hardware interfaces and can be embedded into customer's application smoothly.

Designed with power saving technique, the current consumption of M66-OpenCPU module is as low as 1.3mA in Sleep Mode when DRX is 5.

M66-OpenCPU is integrated with internet service protocols, which are TCP/UDP, HTTP and FTP, etc. Customers can use these internet service protocols easily by calling the API functions.

M66-OpenCPU supports Bluetooth interface, it is fully compliant with Bluetooth specification 3.0.

The module fully complies with the RoHS directive of the European Union.

2.2. Key Features

The following table describes the detailed features of M66-OpenCPU module.

Table 1: Key Features

Feature	Implementation
Power Supply	Single supply voltage: 3.3V ~ 4.6V
Power Suppry	Typical supply voltage: 4V
Power Saving	Typical power consumption in SLEEP mode: 1.3 mA @DRX=5
Power Saving	1.2 mA @DRX=9
	 Quad-band: GSM850, EGSM900, DCS1800, PCS1900.
Frequency Bands	The module can search these frequency bands automatically
Frequency bands	 The frequency bands can be set by AT+QBAND command
	Compliant to GSM Phase 2/2+
GSM Class	Small MS
T	Class 4 (2W) at GSM850 and EGSM900
Transmitting Power	 Class 1 (1W) at DCS1800 and PCS1900
	GPRS multi-slot class 12 (default)
GPRS Connectivity	 GPRS multi-slot class 1~12 (configurable)
	GPRS mobile station class B
	GPRS data downlink transfer: max. 85.6kbps
	 GPRS data uplink transfer: max. 85.6kbps
DATA GPRS	Coding scheme: CS-1, CS-2, CS-3 and CS-4
DATA OF NO	 Support the protocols PAP (Password Authentication Protocol)
	 Internet service protocols TCP/UDP, FTP, HTTP, NTP, PING
	 Support Unstructured Supplementary Service Data (USSD)
	 Normal operation: -35°C ~ +80°C
Temperature Range	 Restricted operation: -40°C ~ -35°C and +80°C ~ +85°C ¹⁾
	Storage temperature: -45°C ~ +90°C
Bluetooth	 Support Bluetooth specification 3.0
Didetootii	 Output Power: Class 1 (Typical 7.5dBm)
	Text and PDU mode
SMS	SMS storage: SIM card
	MT MO
SIM Interface	Support SIM card: 1.8V, 3.0V

	Speech codec modes:		
	Half Rate (ETS 06.20)		
	Full Rate (ETS 06.10)		
Audio Features	 Enhanced Full Rate (ETS 06.50/06.60/06.80) 		
	 Adaptive Multi-Rate (AMR) 		
	Echo Suppression		
	Noise Reduction		
	UART Port:		
	 Seven lines on UART port interface 		
	 Used for AT command, GPRS data 		
	Multiplexing function		
UART Interfaces	Debug Port:		
	 Two lines on debug port interface DBG_TXD and DBG_RXD 		
	 Debug Port only used for firmware debugging 		
	Auxiliary Port:		
	Used for AT command		
Phonebook Management Support phonebook types: SM, ME, ON, MC, RC, DC, LD, LA			
SIM Application Toolkit	Support SAT class 3, GSM 11.14 Release 99		
Real Time Clock	Supported		
Dhysical Characteristics	Size: 15.8±0.15 × 17.7±0.15 × 2.3±0.2mm		
Physical Characteristics	Weight: Approx. 1.3g		
Cirmura I Ingrada	Via UART Port		
Firmware Upgrade	Via OpenCPU FOTA		
Antenna Interface	Connected to antenna pad with 50 Ohm impedance control		

NOTE

Table 2: Coding Schemes and Maximum Net Data Rates over Air Interface

Coding Scheme	1 Timeslot	2 Timeslot	4 Timeslot
CS-1	9.05kbps	18.1kbps	36.2kbps
CS-2	13.4kbps	26.8kbps	53.6kbps
CS-3	15.6kbps	31.2kbps	62.4kbps
CS-4	21.4kbps	42.8kbps	85.6kbps

¹⁾ When the module works in the restricted temperature, the deviation from the GSM specification may occur. For example, the frequency error or the phase error will be increased.

2.3. Functional Diagram

The following figure shows a block diagram of M66-OpenCPU and illustrates the major functional parts.

- Memory
- Radio frequency part
- Power management
- The peripheral interface
 - —Power supply
 - -Turn-on/off interface
 - —UART interface
 - -Audio interface
 - —PCM interface
 - —SPI interface
 - -I2C interface
 - —SIM interface
 - -ADC interface
 - -RF interface
 - -BT interface

Figure 1: Module Functional Diagram

NOTE

About alternate functions of the interfaces marked with "*", please refer to Table 5.

2.4. Pin Assignment

Figure 2: Pin Assignment

NOTE

Keep all reserved pins open.

Table 3: IO Parameters Definition

Туре	Description
IO	Bidirectional input/output
DI	Digital input
DO	Digital output
PI	Power input

PO	Power output
Al	Analog input
AO	Analog output

Table 4: Pin Description

Power Supply						
PIN Name	PIN No.	I/O	Description	DC Characteristics	Comment	
VBAT	42,43	PI	Main power supply of module: VBAT=3.3V~4.6V	V _I max=4.6V V _I min=3.3V V _I norm=4.0V	Make sure that supply sufficient current in a transmitting burst typically rises to 1.6A.	
VRTC	44	10	Power supply for RTC when VBAT is not supplied for the system. Charging for backup battery or golden capacitor when the VBAT is applied.	V _I max=3.3V V _I min=1.5V V _I norm=2.8V V _O max=3V V _O min=2V V _O norm=2.8V I _O max=2mA Iin≈10uA	If unused, keep this pin open.	
VDD_ EXT	24	РО	Supply 2.8V voltage for external circuit.	V _O max=2.9V V _O min=2.7V V _O norm=2.8V I _O max=20mA	 If unused, keep this pin open. Recommend to add a 2.2~4.7uF bypass capacitor, when using this pin for power supply. 	
GND	27,34 36,37 40,41		Ground			
Turn On/off						
PIN Name	PIN No.	I/O	Description	DC Characteristics	Comment	
PWR KEY	7	DI	Power on/off key. PWRKEY should be pulled down for a moment to turn on or turn off the system.	V _{IL} max= 0.1×VBAT V _{IH} min= 0.6×VBAT		

 V_{IH} max=3.1V

Audio Int	terface				
PIN Name	PIN No.	I/O	Description	DC Characteristics	Comment
MICP MICN	3, 4	Al	Positive and negative voice input		If unused, keep these pins open. If unused, keep these pins open. Support both voice and ringtone output.
SPK1P SPK1N	5, 6	АО	Channel 1 positive and negative voice output		
SPK2P	2	АО	Channel 2 voice output	Refer to Section 3.7	
AGND	1		Analog ground. Separate ground connection for external audio circuits.		If unused, keep this pin open.
Network	Status II	ndicator			
PIN Name	PIN No.	I/O	Description	DC Characteristics	Comment
NETLIG HT	16	DO	Network status indication	V _{OH} min= 0.85×VDD_EXT V _{OL} max= 0.15×VDD_EXT	If unused, keep this pin open.
UART Po	ort				
PIN Name	PIN No.	I/O	Description	DC Characteristics	Comment
TXD	17	DO	Transmit data	V _{IL} min=0V	If only use TXD, RXD and GND to communicate, recommended connecting RTS to GND via 0R resistor and keeping other pins open.
RXD	18	DI	Receive data	V _{IL} max= 0.25×VDD_EXT	
DTR	19	DI	Data terminal ready	V _{IH} min= — 0.75×VDD_EXT	
RI	20	DO	Ring indication	V _{IH} max= VDD EXT+0.2	
DCD	21	DO	Data carrier detection	V _{OH} min=	
CTS	22	DO	Clear to send	0.85×VDD_EXT _ V _{OL} max=	
RTS	23	DI	Request to send	0.15×VDD_EXT	
Debug Po	ort				
PIN Name	PIN No.	I/O	Description	DC Characteristics	Comment

DBG_ TXD	39	DO	Transmit data	Same as above	If unused, keep			
DBG_ RXD	38	DI	Receive data	Same as above	these pins open.			
Auxiliary	Auxiliary Port							
PIN Name	PIN No.	I/O	Description	DC Characteristics	Comment			
TXD_ AUX	29	DO	Transmit data	− Same as above	If unused, keep these pins open.			
RXD_ AUX	28	DI	Receive data	Sume as above				
SIM Inter	rface							
PIN Name	PIN No.	I/O	Description	DC Characteristics	Comment			
SIM_ VDD	14	РО	Power supply for SIM card	The voltage can be selected by software automatically. Either 1.8V or 3.0V.				
SIM_ CLK	13	DO	SIM clock	V _{OL} max= 0.15×SIM_VDD V _{OH} min= 0.85×SIM_VDD	All signals of SIM interface should be protected against ESD with a TVS			
SIM_ DATA	11	Ю	SIM data	$\begin{array}{l} \text{V}_{\text{IL}}\text{max} = \\ 0.25 \times \text{SIM}_\text{VDD} \\ \text{V}_{\text{IH}}\text{min} = \\ 0.75 \times \text{SIM}_\text{VDD} \\ \text{V}_{\text{OL}}\text{max} = \\ 0.15 \times \text{SIM}_\text{VDD} \\ \text{V}_{\text{OH}}\text{min} = \\ 0.85 \times \text{SIM}_\text{VDD} \end{array}$	diode array. Maximum trace length is 200mm from the module pad to SIM card holder.			
SIM_ RST	12	DO	SIM reset	V _{OL} max= 0.15×SIM_VDD V _{OH} min= 0.85×SIM_VDD	_			
SIM_ GND	10		SIM ground					
ADC								
PIN Name	PIN No.	I/O	Description	DC Characteristics	Comment			
AVDD	8	PO	Reference voltage of ADC circuit	V_{O} max=2.9V V_{O} min=2.7V V_{O} norm=2.8V	If unused, keep this pin open.			

ADC0	9	AI	General purpose analog to digital converter.	Voltage range: 0V to 2.8V	If unused, keep this pin open.		
PCM							
PIN Name	PIN No.	I/O	Description	DC Characteristics	Comment		
PCM_ CLK	30	DO	$\begin{array}{c} \text{PCM clock} & \text{V_{IL}min= 0V} \\ \text{V_{IL}max=} \end{array}$				
PCM_ SYNC	31	DO	PCM frame synchronization	0.25×VDD_EXT V _{IH} min=			
PCM_ IN	32	DI	PCM data input	0.75×VDD_EXT V _{IH} max=			
PCM_ OUT	33	DO	$VDD_EXT+0.2 \\ V_{OH}min= \\ 0.85 \times VDD_EXT \\ V_{OL}max= \\ 0.15 \times VDD_EXT$				
Antenna	Interfac	е					
PIN Name	PIN No.	I/O	Description	DC Characteristics	Comment		
RF_ ANT	35	10	GSM antenna pad	Impedance of 50Ω			
BT_ ANT	26	Ю	BT antenna pad	Impedance of 50Ω			
Transmi	tting Sig	nal Indicat	ion				
PIN Name	PIN No.	I/O	Description	DC Characteristics			
RFTX MON	25 DO Transmission signal indication		V_{OH} min= $0.85 \times VDD_{EXT}$ V_{OL} max= $0.15 \times VDD_{EXT}$				
Other In	terface						
PIN Name	PIN No.	I/O	Description	DC Characteristics			
RESER VED	15				Keep these pins open.		

Table 5: Multiplexed Functions

PIN Name	PIN No.	Mode1 (Default)	Mode 2	Mode 3	Mode 4
NETLIGHT	16	NETLIGHT	GPIO	PWM	
DTR	19	DTR	GPIO	EINT	SIM_PRESENCE
RI	20	RI	GPIO	I2C_SCL	
DCD	21	DCD	GPIO	I2C_SDA	
CTS	22	CTS	GPIO		
RTS	23	RTS	GPIO		
RXD_AUX	28	RXD_AUX	GPIO		
TXD_AUX	29	TXD_AUX	GPIO		
PCM_CLK	30	PCM_CLK	GPIO	SPI_CS	
PCM_ SYNC	31	PCM_SYNC	GPIO	SPI_MISO	
PCM_IN	32	PCM_IN	GPIO	SPI_CLK	
PCM_OUT	33	PCM_OUT	GPIO	SPI_MOSI	

2.5. Operating Modes

The table below briefly summarizes the various operating modes.

Table 6: Overview of Operating Modes

Mode	Function		
	GSM/GPRS Sleep	After enabling sleep mode by calling QI_SleepEnable(), the module will automatically enter into Sleep Mode when CPU is in idle state. In this case, the current consumption of module will reduce to the minimal level. During Sleep Mode, the module can still receive paging message and SMS from the network normally.	
	GSM IDLE	Software is active. The module has registered to the GSM network, and the module is ready to send and receive GSM data.	
Normal Operation	GSM TALK	GSM connection is ongoing. In this mode, the power consumption is decided by the configuration of Power Control Level (PCL), dynamic DTX control and the working RF band.	
	GPRS IDLE	The module is not registered to GPRS network. The module is not reachable through GPRS channel.	
	GPRS STANDBY	The module is registered to GPRS network, but no GPRS PDP context is active. The SGSN knows the Routing Area where the module is located at.	
	GPRS READY	The PDP context is active, but no data transfer is ongoing. The module is ready to receive or send GPRS data. The SGSN knows the cell where the module is located at.	
	GPRS DATA	There is GPRS data in transfer. In this mode, power consumption is decided by the PCL, working RF band and GPRS multi-slot configuration.	
POWER DOWN	Normal shutdown calling QI_PowerDown() or using the PWRKEY pin. The power management ASIC disconnects the power supply from the base band part of the module, and only the power supply for the RTC is remained. Software is not active. The UART interfaces are not accessible. Operating voltage (connected to VBAT) remains applied.		
Minimum Functionality Mode (without removing power supply) AT+CFUN command can set the module to a minimum functionality without removing the power supply. In this case, the RF part of the module work or the SIM card will not be accessible, or both RF part and SIM card disabled, but the UART port is still accessible. The power consumption case is very low.			

2.6. Flash Memory Allocation

A 32M-bit flash memory is used in the module. The flash memory allocation is shown as below.

Figure 3: FLASH Memory Allocation

M66-OpenCPU module allocates 360KB space for customer's code and 300KB file system space which is used to store the data (e.g. system configuration file, temporary data, image, multimedia file, and so on) related to file operation.

RAM

M66-OpenCPU reserves 100KB RAM space for the embedded application and provides about 500KB dynamic memory at most.

3 Application Interface

3.1. General Description

The module adopts LCC package and has 44 pins. The following chapters provide detailed descriptions about these pins.

- Power supply
- Power on/down
- Power saving
- RTC
- Serial interfaces
- Audio interfaces
- SIM card interface
- PCM interface
- SPI and I2C interface
- ADC
- External interrupts
- PWM
- GPIO
- RF transmitting signal indication

3.2. Power Supply

3.2.1. Power Features of Module

The power supply is an important point during designing GSM terminals. Due to the 577us radio burst emission in GSM every 4.615ms, power supply must be able to deliver high current peaks in a burst period. During these peaks, drops on the supply voltage must not exceed minimum working voltage of module.

For the M66-OpenCPU module, the max current consumption could reach to 1.6A during a transmit burst. It will cause a large voltage drop on the VBAT. In order to ensure stable operation of the module, it is recommended that the max voltage drop for VBAT during the transmit burst does not exceed 400mV.

Figure 4: Voltage Ripple during Transmitting

3.2.2. Decrease Supply Voltage Drop

The power supply range of the module is 3.3V to 4.6V. Make sure that the input voltage will never drop below 3.3V even in a transmitting burst. If the power voltage drops below 3.3V, the module could turn off automatically. For better power performance, it is recommended to place a 100uF tantalum capacitor with low ESR (ESR=0.7 Ω) and a ceramic capacitor (100nF~1uF) near the VBAT pin. In order to improve the RF interference, other low capacitance capacitors should be placed close to VBAT pin. The reference circuit is illustrated in Figure 5.

The VBAT route should be wide enough to ensure that there is not too much voltage drop occurring during transmit burst. The width of trace should be no less than 2mm and the principle of the VBAT route is the longer route, the wider trace.

Figure 5: Reference Circuit for the VBAT Input

3.2.3. Reference Design for Power Supply

The power design for the module is very important, since the performance of power supply for the module largely depends on the power source. The power supply is capable of providing the sufficient current up to 2A at least. If the voltage drop between the input and output is not too high, it is suggested to use a LDO as module's power supply. If there is a big voltage difference between the input source and the desired output (VBAT), a switcher power converter is recommended to be used as a power supply.

The following figure shows a reference design for +5V input power source. The designed output for the power supply is 4.0V and the maximum load current is 3A. In addition, in order to get a stable output voltage, a zener diode is placed close to the pins of VBAT. As to the zener diode, it is suggested to use a zener diode whose reverse zener voltage is 5.1V and dissipation power is more than 1 Watt.

Figure 6: Reference Circuit for Power Supply

NOTE

It is suggested to control the module's main power supply (VBAT) via LDO enable pin to restart the module when the module has become abnormal. Power switch circuit like P-channel MOSFET switch circuit can also be used to control VBAT.

3.2.4. Monitor Power Supply

The module can monitor the supply voltage by using AT+CBC command or calling RIL_GetPowerSupply(). Your application program can start a timer and periodically use AT+CBC command or call RIL_GetPowerSupply() to check the power supply.

For more information about the software design, please refer to the document [12].

3.3. Power On and Down Scenarios

3.3.1. Power On

The module can be turned on by driving the pin PWRKEY to a low level voltage. An open collector driver circuit is suggested to control the PWRKEY. A simple reference circuit is illustrated as below.

Figure 7: Turn on the Module with an Open-collector Driver

The other way to control the PWRKEY is through a button directly. A TVS component is indispensable to be placed nearby the button for ESD protection. For the best performance, the TVS component must be placed nearby the button. When pressing the key, electrostatic strike may generate from finger. A reference circuit is shown in the following figure.

Figure 8: Turn on the Module with a Button

The turn-on timing is illustrated as the following figure.

Figure 9: Turn-on Timing

NOTE

- 1. Make sure that VBAT voltage is stable before pulling down PWRKEY pin. The time of T1 is recommended as 100ms.
- Set PWRKEY low for at least 1 second to turn on the system. If the PWRKEY is set as low consistently, the module can also be turned on, but in this case, PWRKEY cannot be used to turn off the module.

3.3.2. Power Down

The following methods can be used to turn off the module.

- Normal power down procedure: Turn off module using the PWRKEY pin
- Normal power down procedure: Turn off module by executing command AT+QPOWD or calling API
 QI PowerDown()
- under-voltage automatic shutdown: Take effect when under-voltage is detected.

3.3.2.1. Power Down Module Using the PWRKEY Pin

Set the PWRKEY pin low for a certain time and then the module will be turned off. During turn-off, the module will log off from the network and save important data. As logout network time is related to the local mobile network, it is recommended to delay about 12 seconds before disconnecting the power supply or restarting the module.

After the PWRKEY pin is set to low, the module will be powered down by calling API function. For more information about software design, please refer to the **document [12]**.

After turn-off, the module enters into POWER DOWN Mode. The turn-off timing is shown as below.

Figure 10: Turn-off Timing

NOTE

If the PWRKEY pin is used to turn off the module, it cannot be set to low consistently. Otherwise, the module will restart after being turned off.

3.3.2.2. Power Down Module Using the API Function

Module can achieve normal turn-off through calling an API function QI_PowerDown().

For detailed information about the software design, please refer to the document [12].

3.3.2.3. Under-voltage Automatic Shutdown

Under-voltage will cause the module to turn off. The module will constantly monitor the voltage applied on the VBAT. If any circumstance shown below occurs, the module will notify customer's application through Callback functions.

- VBAT voltage is ≤ 3.5V: under-voltage warning.
- VBAT voltage is <3.3V: under-voltage turn-off.

For detailed information about the software design, please refer to the *document [12]*.

3.3.3. Recommended Turn-on Structure for OpenCPU System

In order to ensure the stability of OpenCPU system, it is suggested to use a low-power MCU to monitor the status of the module. The MCU should possess several GPIOs and one ADC interface. The system structure is shown in the figure below. This structure possesses two advantages:

- When the VBAT voltage detected by ADC is too low, the MCU will turn off the module by controlling PWRKEY pin and switch off power supply by controlling the PMOS transistor.
- Normally, the module outputs periodic pulse to the MCU. If the MCU does not detect the pulse within
 the stipulated time, the MCU will switch off VBAT and then turn on the module again.

Figure 11: Recommended Turn-on Structure for OpenCPU System

Furthermore, a watchdog component can also be used to control the power of module. A watchdog component with timeout of 1.6s at least should be used, for instance, TI's TPS3823-33DBVR. One GPIO of module should be connected to the WDI pin of the watchdog and change the electrical level of the WDI pin timely. If timeout occurs, the watchdog will switch off the power of module. The sketch map for watchdog is shown as below.

Figure 12: Sketch Map for Watchdog

NOTE

If the power of module is controlled by watchdog circuit, and the module is only powered by VRTC, when power is switched off the real time will have an error about 5 minutes a day.

3.4. Power Saving

Based on system requirements, there are two methods to drive the module to enter into low current consumption status. One is to use the API function to make the module enter into Minimum Functionality Mode, the other is to use the API function to make the module enter into Sleep Mode.

3.4.1. Minimum Functionality Mode

M66-OpenCPU module reduces its functionality to minimum level in order to minimize the current consumption in Minimum Functionality Mode. M66-OpenCPU module can enter into Minimum Functionality Mode through using **AT+CFUN=0** command. If the returned value is not equal to 1, the module can enter into Full Functionality Mode through using **AT+CFUN=1** command. For detailed information about software design, please refer to the *document* [12].

3.4.2. Sleep Mode

After entering into Sleep Mode, M66-OpenCPU module can still receive calls, SMS and GPRS data, but the serial interfaces do not work. The Sleep Mode is disabled by default. The module can enter into Sleep Mode when it is idle through calling the API function **QI_SleepEnable()**.

When M66-OpenCPU module is in Sleep Mode, the following methods can wake it up.

- Incoming call
- SMS or MMS
- GPRS data
- External interrupts
- System timer timeout

The following methods can make the module exit from Sleep Mode.

• Call the API function QI_SleepDisable() when the application program is executed.

For detailed information about software design, please refer to the document [12].

3.5. RTC

The RTC (Real Time Clock) function is supported. The RTC is designed to work with an internal power supply.

There are three kinds of designs for RTC backup power:

Use VBAT as the RTC power source

When the module is turned off and the main power supply (VBAT) is remained, the real time clock is still active as the RTC core is supplied by VBAT. In this case, the VRTC pin can be kept floating.

Use VRTC as the RTC power source

If the main power supply (VBAT) is removed after the module is turned off, a backup supply such as a coin-cell battery (rechargeable or non-chargeable) or a super-cap can be used to supply the VRTC pin to keep the real time clock active.

Use VBAT and VRTC as the RTC power source

As only power the VRTC pin to keep the RTC will lead an error about 5 minutes a day, it is recommended to power VBAT and VRTC pin at the same time when RTC function is needed. The recommended supply for RTC core circuits are shown as below.

Figure 13: VRTC is Supplied by a Non-chargeable Battery

Figure 14: VRTC is Supplied by a Rechargeable Battery

Figure 15: VRTC is Supplied by a Capacitor

A rechargeable or non-chargeable coin-cell battery can also be used here, for more information, please visit http://www.sii.co.jp/en/.

API functions related to RTC are shown as below:

Get RTC time: QI_GetLocalTime()Set RTC time: QI_SetLocalTime()

For detailed information about software design, please refer to the document [12].

NOTE

If want to keep an accurate real time, please keep the main power supply VBAT alive.

3.6. Serial Interfaces

The module provides three serial ports: UART Port, Debug Port and Auxiliary UART Port. The module is designed as a DCE (Data Communication Equipment), which should be used according to the traditional DCE-DTE (Data Terminal Equipment) connection. The module adopts fixed baudrate and its default baudrate is 115200.

The UART Port:

- TXD: Send data to RXD of DTE.
- RXD: Receive data from TXD of DTE.
- RTS: Request to send.
- CTS: Clear to send.
- DTR: DTE is ready and inform DCE (this pin can wake up the module).
- RI: Ring indication (when there is a call, SMS or URC output, the module will inform DTE with the RI pin.)
- DCD: Data carrier detection.

The Debug Port:

- DBG_TXD: Send data to the RXD of DTE
- DBG_RXD: Receive data from the TXD of DTE

The Auxiliary UART Port:

- TXD_AUX: Send data to the RXD of DTE
- RXD_AUX: Receive data from the TXD of DTE

The logic levels of these serial interfaces are described in the following table.

Table 7: Logic Levels of the UART Interface

Parameter	Min.	Max.	Unit
V _{IL}	0	0.25×VDD_EXT	V
V _{IH}	0.75×VDD_EXT	VDD_EXT +0.2	V
V _{OL}	0	0.15×VDD_EXT	V
V _{OH}	0.85×VDD_EXT	VDD_EXT	V

Table 8: Pin Definition of the UART Interfaces

Interface	Pin No.	Pin Name	Description
	17	TXD	Transmit data
	18	RXD	Receive data
	19	DTR	Data terminal ready
UART Port	20	RI	Ring indication
	21	DCD	Data carrier detection
	22	CTS	Clear to send
	23	RTS	Request to send
Debug Port	38	DBG_RXD	Receive data
Debug Fort	39	DBG_TXD	Transmit data
Auxiliary UART Port	28	RXD_AUX	Receive data
Advillary DAINT FUIL	29	TXD_AUX	Transmit data

NOTE

If DCD, RI, DTR, CTS and RTS are not used, they can be multiplexed as GPIOs. As to GPIO, please refer to Section *3.14 GPIO*.

Functions and events related to serial interfaces are as below:

- QI_UART_Register: register a callback for the specified serial port.
- QI_UART_Open: open the specified serial port.
- QI_UART_Write: send data to the specified serial port.
- QI_UART_Read: read data from the specified serial port.
- QI_UART_SetDCBConfig: set DCB of serial port.
- EVENT_UART_READY_TO_READ: read indication when data comes.

For detailed information about software design, please refer to the document [12].

3.6.1. **UART Port**

3.6.1.1. The Features of UART Port.

- 8 data bits, no parity bit, one stop bit.
- Firmware upgrade and data communication.
- Supported baud rates are as below:
 300, 600, 2400, 4800, 9600, 14400, 19200, 28800, 38400, 57600, 115200, 230400, 460800.
- The module adopts a fixed baud rate and its default baud rate is 115200.
- Support hardware flow control, but it is disabled by default.

NOTE

The API function QI_UART_SetDCBConfig can be used to set different baudrate.

The API function QI_UART_Open can be used to set hardware flow control.

3.6.1.2. Reference Design for UART Port

The reference design for UART Port is shown as below.

Figure 16: Reference Design for UART Port

3.6.1.3. Firmware Upgrade

The UART Port can be used to upgrade firmware. The PWRKEY pin must be pulled down before the firmware upgrade. The following cautions must be taken into account.

- VBAT voltage must be stable.
- PWRKEY pin must be set low

The following figure shows the reference design for firmware upgrade.

Figure 17: Reference Design for Firmware Upgrade

3.6.2. Debug Port

As to Debug Port, there are two working modes, Basic Mode and Advanced Mode, which can be switched through configuring APP software.

- Under Basic Mode, it can be used to execute software debug and it can also connect to a peripheral device. Furthermore, its default baud rate is 115200bps.
- Under Advanced Mode, it can only be used to execute software debug, capture the system's log with Cather tool and call QI_Debug_Trace() to output the application log. In this mode, its baud rate is 460800bps.

The reference design for Debug Port is shown as below.

Figure 18: Reference Design for Debug Port

3.6.3. Auxiliary UART Port

Auxiliary UART Port:

- 8 data bits, no parity bit, one stop bit.
- Supported baud rates are as below:
 1200, 2400, 4800, 9600, 14400, 19200, 28800, 38400, 57600, 115200, 230400, 460800.
- The default baud rate is 115200bps.

The reference design for Auxiliary UART Port is shown as below.

Figure 19: Reference Design for Auxiliary UART Port

3.6.4. UART Application

The reference design for 3.3V level match is shown as below. If the peripheral is a 3V system, please change the 5.6K resistor to 10K.

Figure 20: Level Match Design for 3.3V System

It is highly recommended to add the resistor divider circuit on the UART signal lines when the host's level is 3V or 3.3V. For the higher voltage level system, a level shifter IC could be used between the host and the module. For more details about UART circuit design, please refer to *document* [14].

The following figure shows a sketch map between module and standard RS-232 interface. Since the electrical level of module is 2.8V, so a RS-232 level shifter must be used. Note that you should assure the IO voltage of level shifter which connects to module is 2.8V.

Figure 21: Sketch Map for RS-232 Interface Match

Please visit vendor web site to select correct IC, such as: http://www.maximintegrated.com and http://www.exar.com/.

3.7. Audio Interfaces

The module provides one analog audio input channel and two analog audio output channels.

Table 9: Pin Definition of Audio Interface

Interface	Name	Pin NO.	Description
	MICP	3	Microphone positive input
A IN I/A OL IT4	MICN	4	Microphone negative input
AIN/AOUT1	SPK1P	5	Channel 1 Audio positive output
	SPK1N	6	Channel 1 Audio negative output
	MICP	3	Microphone positive input
AINI/A OLUTO	MICN	4	Microphone negative input
AIN/AOUT2	SPK2P	2	Channel 2 Audio positive output
	AGND	1	Form a pseudo-differential pair with SPK2P

Features about two audio interfaces are described as below:

- AIN are used for input of microphone or line. An electret microphone is usually used. AIN are differential input channels.
- AOUT1 is an output channel used for a receiver. This channel is typically used for a receiver. AOUT1 channel is a differential channel and it supports voice and ringtone output, and so on.
- AOUT2 is typically used for a headset. It is a single-ended and mono channel. SPK2P and AGND
 can form a pseudo differential pair and it supports voice and ringtone output, and so on.
- Select the audio channel with command AT+QAUDCH.
- Adjust the input gain of the microphone with command **AT+QMIC**.
- Adjust the output gain for receiver or speaker with command AT+CLVL.
- Configure the parameters of echo cancellation function with command AT+QECHO.
- Configure the side tone gain with command AT+QSIDET.

3.7.1. Decrease TDD Noise and Other Noise

It is suggested to use the electret microphone with built-in RF filtering capacitors (e.g. 10pF and 33pF). The 33pF capacitor is applied for filtering out 900MHz RF interference when the module is transmitting at EGSM900MHz. Without this capacitor, TDD noise could be heard. Moreover, the 10pF capacitor here is for filtering out 1800MHz RF interference. Since the resonant frequency point of a capacitor largely depends on the material and production technique, therefore, customers need to discuss with their capacitor vendor

to choose the most suitable capacitor for filtering out GSM850MHz, EGSM900MHz, DCS1800MHz and PCS1900MHz separately.

The RF interference in the audio channel during GSM transmitting period largely depends on the application design. In some cases, EGSM900 TDD noise is more severe, while in other cases, DCS1800 TDD noise is more obvious. Therefore, customers can select the suitable capacitors according to the test result. Sometimes, even RF filtering capacitor is not required.

The capacitor which is used for filtering out RF noise should be close to audio interfaces. Furthermore, the audio trace should be as short as possible.

In order to decrease radio or other signal interference, the RF antenna should be kept away from audio interface, and the RF trace should be away from the audio trace. In addition, the power trace should also be away from the audio trace.

Finally, the differential audio traces must be routed according to the differential signal layout rule.

3.7.2. Reference Design for AIN

AIN channel come with internal bias supply for external electret microphone. A reference circuit is shown in the following figure.

Figure 22: Reference Design for AIN

3.7.3. Reference Design for AOUT1 and AOUT2

Figure 23: Reference Design for AOUT1

Figure 24: Reference Design with an Amplifier for AOUT1

Figure 25: Reference Design for AOUT2

Figure 26: Reference Design with an Amplifier for AOUT2

The suitable differential audio amplifier can be chosen from the Texas Instrument's website (http://www.ti.com/). There are also other excellent audio amplifier vendors in the market.

NOTE

The value of C1 and C2 depends on the input impedance of the audio amplifier.

3.7.4. Reference Design for an Earphone

Figure 27: Reference Design for an Earphone

3.7.5. Audio Characteristics

Table 10: Typical Electret Microphone Characteristics

Parameter	Min.	Тур.	Max.	Unit
Working Voltage	1.2	1.5	2.0	V
Working Current	200		500	uA
External Microphone Load Resistance		2.2		k Ohm

Table 11: Typical Speaker Characteristics

Parameter			Min.	Тур.	Max.	Unit
Cinala andad		Load resistance		32		Ohm
AOUT1 Output	Single-ended	Ref level	0		2.4	Vpp
	Differential	Load resistance		32		Ohm

		Ref level	0		4.8	Vpp
AOUT2	Cingle anded	Load resistance		32		Load Resistance
Output	Single-ended	Reference level	0		2.4	Vpp

3.8. SIM Card Interface

The SIM interface supports the functionality of the GSM Phase 1 specification and also supports the functionality of the new GSM Phase 2+ specification for FAST 64kbps SIM card, which is intended for use with a SIM application Tool-kit.

The SIM interface is powered by an internal regulator in the module. Both 1.8V and 3.0V SIM Cards are supported.

Table 12: Pin Definition of the SIM Interface

Pin NO.	Name	Description	Alternate Function ¹⁾
14	SIM_VDD	Supply power for SIM card. Automatic detection of SIM card voltage: 3.0V±5% and 1.8V±5%. Maximum supply current is around 10mA.	
13	SIM_CLK	SIM card clock	
11	SIM_DATA	SIM card data I/O	
12	SIM_RST	SIM card reset	
19	SIM_PRESENCE	SIM card detection	DTR
10	SIM_GND	SIM card ground	

NOTE

¹⁾ If several interfaces share the same I/O pin, to avoid conflict between these alternate functions, only one peripheral should be enabled at a time.

The following figure is the reference design for SIM interface.

Figure 28: Reference Circuit for SIM Interface with 8-pin SIM Card Holder

If SIM card detection function is not used, keep SIM_PRESENCE pin open. The reference circuit for a 6-pin SIM card socket is illustrated as the following figure.

Figure 29: Reference Circuit for SIM Interface with the 6-pin SIM Card Holder

For more information of SIM card holder, you can visit http://www.amphenol.com and http://www.amphenol.com and

In order to enhance the reliability and availability of the SIM card in the customer's application, please follow the following rules in the SIM card circuit design.

- Keep layout of SIM card as close as possible to the module. Assure the possibility of the length of the trace is less than 200mm.
- Keep SIM card signal away from RF and VBAT alignment.
- Assure the ground between module and SIM cassette short and wide. Keep the width of ground no less than 0.5mm to maintain the same electric potential. The decouple capacitor of SIM_VDD is less than 1uF and must be near to SIM cassette.
- To avoid cross talk between SIM_DATA and SIM_CLK. Keep them away with each other and shield them with surrounded ground.
- In order to offer good ESD protection, it is recommended to add a TVS diode array. For more information of TVS diode, please visit http://www.onsemi.com/. The most important rule is to place the ESD protection device close to the SIM card socket and make sure the nets being protected will go through the ESD device first and then lead to module. The 22Ω resistors should be connected in series between the module and the SIM card so as to suppress the EMI spurious transmission and enhance the ESD protection. Please to be noted that the SIM peripheral circuit should be close to the SIM card socket.
- Place the RF bypass capacitors (33pF) close to the SIM card on all signals line for improving EMI.

3.9. PCM Interface

M66-OpenCPU module supports PCM interface which is also called Digital Audio Interface. This interface can be used to communicate with peripheral devices which possess the digital audio interface, such as BT, CODEC, etc. In addition, this interface supports master mode and 13-bit linear data format only. A-law and U-law are not supported.

Table 13: Pin Definition of PCM Interface

Pin NO.	Pin Name	Description
30	PCM_CLK	PCM clock output
31	PCM_SYNC	PCM frame synchronization output
32	PCM_IN	PCM data input
33	PCM_OUT	PCM data output

If the PCM function is not used, these pins can be used as GPIOs. For detailed information about GPIO, please refer to Section *3.14 GPIO*.

3.9.1. Configuration

M66-OpenCPU module supports 13-bit line code PCM format. The sample rate is 8 KHz, and the clock source is 256 KHz, and the module can only act as master mode. The PCM interface supports both long and short synchronization simultaneously. Furthermore, it only supports MSB first. For detailed information, please refer to the table below.

Table 14: Configuration

PCM	
Line Interface Format	Line
Data Length	Line: 13 bits
Sample Rate	8KHz
PCM Clock/Synchronization Source	PCM master mode: clock and synchronization is generated by module
PCM Synchronization Rate	8KHz
PCM Clock Rate	PCM master mode: 256 KHz (line)
PCM Synchronization Format	Long/short synchronization
PCM Data Ordering	MSB first
Zero Padding	Yes
Sign Extension	Yes

3.9.2. **Timing**

The sample rate of the PCM interface is 8 KHz and the clock source is 256 KHz, so every frame contains 32 bits data, since M66-OpenCPU supports 16 bits line code PCM format, the left 16 bits are invalid. The following diagram shows the timing of different combinations. The synchronization length in long synchronization format can be programmed by firmware from one bit to eight bits. In the Sign extension mode, the high three bits of 16 bits are sign extension, and in the Zero padding mode, the low three bits of 16 bits are zero padding.

Under zero padding mode, you can configure the PCM input and output volume by executing **AT+QPCMVOL** command. For more details, please refer to **Chapter 3.9.4**.

Figure 30: Long Synchronization & Sign Extension Diagram

Figure 31: Long Synchronization & Zero Padding Diagram

Figure 32: Short Synchronization & Sign Extension Diagram

Figure 33: Short Synchronization & Zero Padding Diagram

3.9.3. Reference Design

As M66-OpenCPU can only act as a master, the module provides synchronization and clock source. The reference design is shown as below.

Figure 34: Reference Design for PCM

3.9.4. AT Command

There are two AT commands to configure PCM, listed as below.

AT+QPCMON can configure operating mode of PCM.

AT+QPCMON=mode, Sync_Type, Sync_Length, SignExtension, MSBFirst.

Table 15: QPCMON Command Description

Parameter	Scope	Description
		0: Close PCM
Mode	0~2	1: Open PCM
		2: Open PCM when audio talk is set up
Comp. Toma	0.4	0: Short synchronization
Sync_Type	0~1	1: Long synchronization
Sync_Length	1~8	Programmed from one bit to eight bit
CignEytonoion	0.1	0: Zero padding
SignExtension	0~1	1: Sign extension
MCDEirot	0.1	0: MSB first
MSBFirst	0~1	1: Not support

AT+QPCMVOL can configure the volume of input and output.

AT+QPCMVOL=vol_pcm_in, vol_pcm_out

Table 16: QPCMVOL Command Description

Parameter	Scope	Description
vol_pcm_in	0~32767	Set the input volume
vol_pcm_out	0~32767	Set the output volume The voice may be distorted when this value exceeds 16384.

3.10. SPI and I2C Interface

M66-OpenCPU module supports SPI and I2C interface.

3.10.1. SPI Interface

SPI interface is multiplexed by PCM interface. SPI interface of M66-OpenCPU is master only. It provides a duplex, synchronous and serial communication link with the peripheral devices. Its operation voltage is 2.8V, with clock rates up to 10MHZ. Main features for the SPI interface are as below.

- Support master mode operation
- Adjustable clock speed
- Serial clock with programmable polarity and phase

The logic levels of SPI interfaces are described in the following table.

Table 17: Logic Levels of the SPI Interface

Parameter	Min.	Max.	Unit
V_{IL}	0	0.25×VDD_EXT	V
V _{IH}	0.75×VDD_EXT	VDD_EXT +0.2	V
V _{OL}	0	0.15×VDD_EXT	V
V _{OH}	0.85×VDD_EXT	VDD_EXT	V

Table 18: Pin Definition of the SPI Interface

Pin NO.	Name	Description	Alternate Function ¹⁾
33	SPI_MOSI	Master output, Slave input of SPI Interface	PCM_OUT
32	SPI_CLK	Clock signal of SPI interface	PCM_IN
31	SPI_MISO	Master input, Slave output of SPI Interface	PCM_SYNC
30	SPI_CS	Chip select of SPI Interface	PCM_CLK

NOTE

The M66-OpenCPU SPI must be configured as the master. The API functions of the file system can be used to read/write SPI. For detailed information about software design, please refer to the **document** [12].

3.10.2. I2C Interface

I2C is a two-wire serial interface which is multiplexed by RI and DCD pins. The two signals are SCL and SDA. Main features for the I2C interface are as below.

¹⁾ If several interfaces share the same I/O pin, to avoid conflict between these alternate functions, only one peripheral should be enabled at a time.

- Support master mode operation
- Adjustable clock speed for LS/FS mode operation
- Supports 7-bit addressing
- Supports high speed mode

Table 19: Logic Levels of the I2C Interface

Parameter	Min.	Max.	Unit
V_{IL}	0	0.25×VDD_EXT	V
V _{IH}	0.75×VDD_EXT	VDD_EXT +0.2	V
V _{OL}	0	0.15×VDD_EXT	V
V _{OH}	0.85×VDD_EXT	VDD_EXT	V

Table 20: Pin Definition of the I2C Interface

Pin NO.	Name	Description	Comment	Alternate Function ¹⁾
20	I2C_SCL	I2C serial clock	Require external	RI
21	I2C_SDA	I2C serial data	pull-up resistor	DCD

The API functions of the file system can be used to read/write I2C. For detailed information about software design, please refer to the *document* [12].

3.11. ADC

The module provides an ADC input channels to measure the value of voltage. The API function QI_ADC_Sampling() can be used to read the voltage value from ADC input channel. For detailed information about software design, please refer to the *document* [12].

¹⁾ If several interfaces share the same I/O pin, to avoid conflict between these alternate functions, only one peripheral should be enabled at a time.

Table 21: Pin Definition of the ADC

Pin NO.	Pin Name	Description
8	AVDD	Reference voltage of ADC circuit
9	ADC0	Analog to digital converter.

Table 22: Characteristics of the ADC

Item	Min.	Тур.	Max.	Unit
Voltage Range	0		2.8	V
ADC Resolution		10		bits
ADC Accuracy		2.7		mV

If the voltage value from ADC input channel is greater than 2.8V, it will be read as 2.8V only by QI_ADC_Sampling(). So you need to keep the voltage value of ADC less than 2.8V by voltage divider.

3.12. External Interrupt

M66-OpenCPU module possesses one external interrupt which can support level trigger. External interrupt is multiplexed function, and when their default functions are not used, they can be configured as external interrupt.

Table 23: Pin List for External Interrupt

Pin NO.	Pin Name	Trigger Type
19	DTR	Level

If an external interrupt occurs, the previously registered interrupt callback function will be invoked. For detailed information about software design, please refer to the *document* [12].

If external interrupt is not used, related pins can be multiplexed as GPIO. For detailed information about GPIO, please refer to Section *3.14 GPIO*.

3.13. PWM

M66-OpenCPU module provides a PWM signal output channel which is called NETLIGHT. NETLIGHT indicates network status by default and it can also be configured by related API function. The working status for NETLIGHT is shown in the following table.

Table 24: Working Status for NETLIGHT

State	Module Function
Off	The module is not running.
64ms On/800ms Off	The module is not synchronized with network.
64ms On/2000ms Off	The module is synchronized with network.
64ms On/600ms Off	The GPRS data transmission.

Reference design for NETLIGHT is shown as below.

Figure 35: Reference Design for NETLIGHT

Furthermore, PWM signal parameters can be configured by calling the API function **QI_PWM_Output()**. For detailed information about software design, please refer to the *document [12]*.

3.14. GPIO

M66-OpenCPU module provides 12 GPIOs in all. In order to reduce the pin number, GPIO is multiplexed with other functions. When pin's default function is not used, it can be configured as GPIO. API functions, such as QI_GPIO_Init, QI_GPIO_SetLevel, QI_GPIO_SetDirection, QI_GPIO_SetPullSelection, can be used for GPIO operation. For detailed information about software design, please refer to the *document* [12].

Table 25: Pin List for GPIO

Pin No.	Name	Mode	Reset I/O	PU/PD	Output Driving
16	NETLIGHT	Mode 2	1	PD	4mA
19	DTR	Mode 2	I	PD	4mA
20	RI	Mode 2	1	PD	4mA
21	DCD	Mode 2	T	PD	4mA
22	CTS	Mode 2		PU	4mA
23	RTS	Mode 2	Ī	PU	4mA
28	RXD_AUX	Mode 2	I	PD	4mA
29	TXD_AUX	Mode 2	1	PD	4mA
30	PCM_CLK	Mode 2	НО	-	4mA
31	PCM_SYNC	Mode 2	I	PD	4mA
32	PCM_IN	Mode 2	I	PU	4mA
33	PCM_OUT	Mode 2	I	PD	4mA

If you configure GPIO as input or output port, please pay attention to level match when the module is connected with other peripherals. The reference design for 3.3V level match is shown as below.

Figure 36: GPIO Level Match Design for 3.3V System

If the digital I/O between customer and module does not match, it will cause some unexpected result. So it is highly recommended to add the level match circuit when the module is connected with other peripherals. For more details about digital IO application, please refer to *document* [14].

3.15. RF Transmitting Signal Indication

The M66-OpenCPU provides a RFTXMON pins which will rise when the transmitter is active and fall after the transmitter activity is completed.

Table 26: Pin Definition of the RFTXMON

Pin Name	Pin No.	Description
RFTXMON	25	Transmission signal indication

There are two different modes for this function:

1. Active during the TX activity

RFTXMON pin is used to indicate the TX burst, when it outputs a high level, 220us later there will be a TX burst.

You can execute **AT+QCFG="RFTXburst"**, **1** to enable the function. The timing of the RFTXMON signal is shown below.

Figure 37: RFTXMON Signal during Burst Transmission

2. Active during the Call

RFTXMON will be HIGH during a call and the pin will become LOW after hanged up.

You can execute **AT+QCFG="RFTXburst"**, **2** to enable the function. The timing of the RFTXMON signal is shown below.

Figure 38: RFTXMON Signal during Calling

4 Antenna Interface

M66-OpenCPU has two antenna interfaces, GSM antenna and BT antenna. The pin 26 is the Bluetooth antenna pad. The pin 35 is the GSM antenna pad. The RF interface of the two antenna pad has an impedance of 50Ω .

4.1. GSM Antenna Interface

There is a GSM antenna pad named RF_ANT for M66-OpenCPU.

Table 27: Pin Definition of the RF_ANT

Name	Pin	Description
GND	34	Ground
RF_ANT	35	GSM antenna pad
GND	36	Ground
GND	37	Ground

4.1.1. Reference Design

The external antenna must be matched properly to achieve best performance, so the matching circuit is necessary, the reference design for RF is shown as below.

Figure 39: Reference Design for GSM Antenna

M66-OpenCPU provides an RF antenna pad for antenna connection. The RF trace in host PCB connected to the module RF antenna pad should be coplanar waveguide line or microstrip line, whose characteristic impedance should be close to 50Ω . M66-OpenCPU comes with grounding pads which are next to the antenna pad in order to give a better grounding. Besides, a π type match circuit is suggested to be used to adjust the RF performance.

To minimize the loss on the RF trace and RF cable, please pay attention to the design. The following table shows the requirement on GSM antenna.

Table 28: Antenna Cable Requirements

Туре	Requirements
GSM850/EGSM900	Cable insertion loss <1dB
DCS1800/PCS1900	Cable insertion loss <1.5dB

Table 29: Antenna Requirements

Туре	Requirements
Frequency Range	Depending by frequency band (s) provided by the network operator
VSWR	≤ 2
Gain (dBi)	1
Max Input Power (W)	50

Input Impedance (Ω)	50
Polarization Type	Vertical

4.1.2. RF Output Power

Table 30: The Module Conducted RF Output Power

Frequency	Max.	Min.
GSM850	33dBm±2dB	5dBm±5dB
EGSM900	33dBm±2dB	5dBm±5dB
DCS1800	30dBm±2dB	0dBm±5dB
PCS1900	30dBm±2dB	0dBm±5dB

NOTE

In GPRS 4 slots TX mode, the max output power is reduced by 2.5dB. This design conforms to the GSM specification as described in section *13.16* of *3GPP TS 51.010-1*.

4.1.3. RF Receiving Sensitivity

Table 31: The Module Conducted RF Receiving Sensitivity

Frequency	Receive Sensitivity
GSM850	< -109dBm
EGSM900	< -109dBm
DCS1800	< -109dBm
PCS1900	< -109dBm

4.1.4. Operating Frequencies

Table 32: The Module Operating Frequencies

Frequency	Receive	Transmit	ARFCH
GSM850	869~894MHz	824~849MHz	128~251
EGSM900	925~960MHz	880~915MHz	0~124, 975~1023
DCS1800	1805~1880MHz	1710~1785MHz	512~885
PCS1900	1930~1990MHz	1850~1910MHz	512~810

4.1.5. RF Cable Soldering

Soldering the RF cable to RF pad of module correctly will reduce the loss on the path of RF, please refer to the following example of RF soldering.

Figure 40: RF Soldering Sample

4.2. Bluetooth Antenna Interface

M66-OpenCPU supports Bluetooth interface. Bluetooth is a wireless technology that allows devices to communicate, or transmit data or voice, wirelessly over a short distance. It is described as a short-range communication technology intended to replace the cables connecting portable and/or fixed devices while maintaining high level of security. Bluetooth is standardized as IEEE802.15 and operates in the 2.4 GHz range using RF technology. Its data rates up to 3Mbps.

M66-OpenCPU is fully compliant with Bluetooth specification 3.0. It supports profile including SPP and OPP.

The module provides a Bluetooth antenna pad named BT_ANT.

Table 33: Pin Definition of the BT_ANT

Name	Pin	Description
BT_ANT	26	BT antenna pad
GND	27	Ground

The external antenna must be matched properly to achieve best performance, so the matching circuit is necessary, the connection is recommended as the following figure.

Figure 41: Reference Design for Bluetooth Antenna

There are some suggestions for placing components and RF trace lying for Bluetooth RF traces:

- Antenna matching circuit should be closed to the antenna;
- Keep the RF traces as 50Ω;
- The RF traces should be kept far away from the high frequency signals and strong disturbing source.

5 Electrical, Reliability and Radio Characteristics

5.1. Absolute Maximum Ratings

Absolute maximum ratings for power supply and voltage on digital and analog pins of module are listed in the following table.

Table 34: Absolute Maximum Ratings

Parameter	Min.	Max.	Unit
VBAT	-0.3	+4.73	V
Peak Current of Power Supply	0	2	A
RMS Current of Power Supply (during one TDMA- frame)	0	0.7	A
Voltage at Digital Pins	-0.3	3.08	V
Voltage at Analog Pins	-0.3	3.08	V
Voltage at Digital/analog Pins in Power Down Mode	-0.25	0.25	V

5.2. Operating Temperature

The operating temperature is listed in the following table.

Table 35: Operating Temperature

Parameter	Min.	Тур.	Max.	Unit
Normal Temperature	-35	+25	+80	°C

Restricted Operation ¹⁾	-40 ~ -35	+80 ~ +85	°C
Storage Temperature	-45	+90	°C

5.3. Power Supply Ratings

Table 36: The Module Power Supply Ratings

Parameter	Description	Conditions	Min.	Тур.	Max.	Unit
	Supply voltage	Voltage must stay within the min/max values, including voltage drop, ripple, and spikes.	3.3	4.0	4.6	V
VBAT	Voltage drop during transmitting burst	Maximum power control level on GSM850 and EGSM900.			400	mV
		Power down mode		150		uA
		SLEEP mode @DRX=5		1.3		mA
		Minimum functionality mode AT+CFUN=0				
		IDLE mode		13		mA
		SLEEP mode		0.98		mA
		AT+CFUN=4				
		IDLE mode		13		mA
L	Average supply	SLEEP mode		1.0		mA
I_{VBAT}	current	TALK mode				
		GSM850/EGSM 900 ¹⁾		223/219		mA
		DCS1800/PCS1900 ²⁾		153/151		mA
		DATA mode, GPRS (3Rx, 2Tx)				
		GSM850/EGSM 900 ¹⁾		363/393		mA
	DCS1800/PCS1900 ²⁾		268/257		mA	
		DATA mode, GPRS (2 Rx,3Tx)				
		GSM850/EGSM 900 ¹⁾		506/546		mA
		DCS1800/PCS1900 ²⁾		366/349		mA

¹⁾When the module works within this temperature range, the deviation from the GSM specification may occur. For example, the frequency error or the phase error will be increased.

	DATA mode, GPRS (4 Rx,1Tx)			
	GSM850/EGSM 900 ¹⁾	217/234		mΑ
	DCS1800/PCS1900 ²⁾	172/170		m/
	DATA mode, GPRS (1Rx,4Tx)			
	GSM850/EGSM 900 ¹⁾	458/485 ³⁾		mA
	DCS1800/PCS1900 ²⁾	462/439		m/
Peak supply				
current (during	Maximum power control level on	1.6	2	۸
transmission	GSM850 and EGSM900.	1.6	2	Α
slot)				

- 1. 1) Power control level PCL 5.
- 2. Power control level PCL 0.
- 3. $^{3)}$ Under the GSM850 and EGSM900 spectrum, the power of 1Rx and 4Tx has been reduced.

5.4. Current Consumption

The values of current consumption are shown as below.

Table 37: The Module Current Consumption

Condition	Current Consumption
Voice Call	
	@power level #5 <300mA, Typical 223mA
GSM850	@power level #12, Typical 83mA
	@power level #19, Typical 62mA
	@power level #5 <300mA, Typical 219mA
EGSM900	@power level #12, Typical 83mA
	@power level #19, Typical 63mA
	@power level #0 <250mA, Typical 153mA
DCS1800	@power level #7, Typical 73mA
	@power level #15, Typical 60mA
	@power level #0 <250mA, Typical 151mA
PCS1900	@power level #7, Typical 76mA
	@power level #15, Typical 61mA
GPRS Data	

DATA Mode, GPRS	`
	@power level #5 <550mA, Typical 363mA
GSM850	@power level #12, Typical 131mA
	@power level #19, Typical 91mA
	@power level #5 <550mA, Typical 393mA
EGSM900	@power level #12, Typical 132mA
	@power level #19, Typical 92mA
	@power level #0 <450mA, Typical 268mA
DCS1800	@power level #7, Typical 112mA
	@power level #15, Typical 88mA
	@power level #0 <450mA, Typical 257mA
PCS1900	@power level #7, Typical 119mA
	@power level #15, Typical 89mA
DATA Mode, GPRS	(2 Rx, 3Tx) CLASS 12
	@power level #5 <640mA, Typical 506mA
GSM850	@power level #12, Typical 159mA
	@power level #19, Typical 99mA
	@power level #5 <600mA, Typical 546mA
EGSM900	@power level #12, Typical 160mA
	@power level #19, Typical 101mA
	@power level #0 <490mA, Typical 366mA
DCS1800	@power level #7, Typical 131mA
	@power level #15, Typical 93mA
	@power level #0 <480mA, Typical 348mA
PCS1900	@power level #7, Typical 138mA
	@power level #15, Typical 94mA
DATA Mode, GPRS	(4 Rx,1Tx) CLASS 12
	@power level #5 <350mA, Typical 216mA
GSM850	@power level #12, Typical 103mA
	@power level #19, Typical 83mA
	@power level #5 <350mA, Typical 233mA
EGSM900	@power level #12, Typical 104mA
	@power level #19, Typical 84mA
	@power level #0 <300mA, Typical 171mA
DCS1800	@power level #7, Typical 96mA
	@power level #15, Typical 82mA
	@power level #0 <300mA, Typical 169mA
PCS1900	@power level #7, Typical 98mA
	@power level #15, Typical 83mA
	51 year (215) W. 101 year (2000)

@power level #5 <660mA, Typical 457mA
@power level #12, Typical 182mA
@power level #19, Typical 106mA
@power level #5 <660mA, Typical 484mA
@power level #12, Typical 187mA
@power level #19, Typical 109mA
@power level #0 <530mA, Typical 461mA
@power level #7, Typical 149mA
@power level #15, Typical 97mA
@power level #0 <530mA, Typical 439mA
@power level #7, Typical 159mA
@power level #15, Typical 99mA

GPRS Class 12 is the default setting. The module can be configured from GPRS Class 1 to Class 12. Setting to lower GPRS class would make it easier to design the power supply for the module.

5.5. Electro-static Discharge

Although the GSM engine is generally protected against Electro-static Discharge (ESD), ESD protection precautions should still be emphasized. Proper ESD handling and packaging procedures must be applied throughout the processing, handling and operation of any applications using the module.

The measured ESD values of module are shown as the following table.

Table 38: The ESD Endurance (Temperature: 25°C, Humidity: 45%)

Tested Point	Contact Discharge	Air Discharge
VBAT, GND	±5KV	±10KV
RF_ANT	±5KV	±10KV
TXD, RXD	±2KV	±4KV
Others	±0.5KV	±1KV

6 Mechanical Dimensions

This chapter describes the mechanical dimensions of the module.

6.1. Mechanical Dimensions of Module

Figure 42: M66-OpenCPU Module Top and Side Dimensions (Unit: mm)

Figure 43: M66-OpenCPU Module Bottom Dimensions (Unit: mm)

6.2. Recommended Footprint

Figure 44: Recommended Footprint (Unit: mm)

NOTE

- 1. The module should be kept about 3mm away from other components in the host PCB.
- 2. The circular test points with a radius of 1.75mm in the above recommended footprint should be treated as keepout areas. ("keepout" means do not pour copper on the mother board).

6.3. Top View of the Module

Figure 45: Top View of the Module

6.4. Bottom View of the Module

Figure 46: Bottom View of the Module

7 Storage and Manufacturing

7.1. Storage

M66-OpenCPU module is distributed in a vacuum-sealed bag. The restriction for storage is shown as below.

Shelf life in the vacuum-sealed bag: 12 months at environments of <40°C temperature and <90%RH.

After the vacuum-sealed bag is opened, devices that need to be mounted directly must be:

- Mounted within 72 hours at the factory environment of ≤30°C temperature and <60% RH.
- Stored at <10% RH.

Devices require baking before mounting, if any circumstance below occurs.

- When the ambient temperature is 23°C±5°C, humidity indication card shows the humidity is >10% before opening the vacuum-sealed bag.
- If ambient temperature is <30°C and the humidity is <60%, the devices have not been mounted during 72hours.
- Stored at >10% RH.

If baking is required, devices should be baked for 48 hours at 125°C±5°C.

NOTE

As plastic container cannot be subjected to high temperature, devices must be removed prior to high temperature (125°C) bake. If shorter bake times are desired, refer to the IPC/JEDECJ-STD-033 for bake procedure.

7.2. Soldering

The squeegee should push the paste on the surface of the stencil that makes the paste fill the stencil openings and penetrate to the PCB. The force on the squeegee should be adjusted so as to produce a clean stencil surface on a single pass. To ensure the module soldering quality, the thickness of stencil at the hole of the module pads should be 0.2 mm for M66-OpenCPU. For more details, please refer to **document [13]**

It is suggested that peak reflow temperature is from 235°C to 245°C (for SnAg3.0Cu0.5 alloy). Absolute max reflow temperature is 260°C. To avoid damage to the module when it was repeatedly heated, it is suggested that the module should be mounted after the first panel has been reflowed. The following picture is the actual diagram which we have operated.

Figure 47: Ramp-Soak-Spike Reflow Profile

7.3. Packaging

The modules are stored in a vacuum-sealed bag which is ESD protected. It should not be opened until the devices are ready to be soldered onto the application.

7.3.1. Tape and Reel Packaging

The reel is 330mm in diameter and each reel contains 250 modules.

Figure 48: Tape and Reel Specification

Figure 49: Dimensions of Reel

8 Appendix A Reference

Table 39: Related Documents

SN	Document Name	Remark			
[1]	Quectel_M66_AT_Commands_Manual	AT commands manual			
[2]	ITU-T Draft new recommendation V.25ter	Serial asynchronous automatic dialing and control			
[3]	GSM 07.07	Digital cellular telecommunications (Phase 2+); AT command set for GSM Mobile Equipment (ME)			
[4]	GSM 07.10	Support GSM 07.10 multiplexing protocol			
[5]	GSM 07.05	Digital cellular telecommunications (Phase 2+); Use of Data Terminal Equipment – Data Circuit terminating Equipment (DTE – DCE) interface for Short Message Service (SMS) and Cell Broadcast Service (CBS)			
[6]	GSM 11.14	Digital cellular telecommunications (Phase 2+); Specification of the SIM Application Toolkit for the Subscriber Identity module – Mobile Equipment (SIM – ME) interface			
[7]	GSM 11.11	Digital cellular telecommunications (Phase 2+); Specification of the Subscriber Identity module – Mobile Equipment (SIM – ME) interface			
[8]	GSM 03.38	Digital cellular telecommunications (Phase 2+); Alphabets and language-specific information			
[9]	GSM 11.10	Digital cellular telecommunications (Phase 2); Mobile Station (MS) conformance specification; Part 1: Conformance specification			
[10]	GSM_UART_AN	UART port application notes			
[11]	GSM_EVB_UGD	GSM EVB user guide			
[12]	OpenCPU_User_Guide	Software design reference for OpenCPU			
[13]	Module_Secondary_SMT_User_Guide	Module secondary SMT user guide			

[14] Quectel_GSM_Module_Digital_IO_ Application_Note GSM Module Digital IO application note

Table 40: Terms and Abbreviations

Abbreviation	Description
ADC	Analog-to-Digital Converter
AMR	Adaptive Multi-Rate
ARP	Antenna Reference Point
ASIC	Application Specific Integrated Circuit
BER	Bit Error Rate
ВОМ	Bill Of Material
BTS	Base Transceiver Station
CHAP	Challenge Handshake Authentication Protocol
CS	Coding Scheme
CTS	Clear To Send
DAC	Digital-to-Analog Converter
DRX	Discontinuous Reception
DSP	Digital Signal Processor
DCE	Data Communications Equipment (typically module)
DTE	Data Terminal Equipment (typically computer, external controller)
DTR	Data Terminal Ready
DTX	Discontinuous Transmission
EFR	Enhanced Full Rate
EGSM	Enhanced GSM
EMC	Electromagnetic Compatibility
ESD	Electrostatic Discharge

ETS	European Telecommunication Standard
FCC	Federal Communications Commission (U.S.)
FDMA	Frequency Division Multiple Access
FR	Full Rate
GMSK	Gaussian Minimum Shift Keying
GPRS	General Packet Radio Service
GPI	General Purpose Input
GPO	General Purpose Output
GSM	Global System for Mobile Communications
НО	High output
HR	Half Rate
I/O	Input/Output
L/H	Low/High
PU/PD	Pull up/Pull down
IC	Integrated Circuit
IMEI	International Mobile Equipment Identity
Imax	Maximum Load Current
Inorm	Normal Current
kbps	Kilo Bits Per Second
LED	Light Emitting Diode
Li-lon	Lithium-Ion
MO	Mobile Originated
MS	Mobile Station (GSM engine)
MT	Mobile Terminated
PAP	Password Authentication Protocol

PBCCH	Packet Switched Broadcast Control Channel
PCB	Printed Circuit Board
PDU	Protocol Data Unit
PPP	Point-to-Point Protocol
RF	Radio Frequency
RMS	Root Mean Square (value)
RTC	Real Time Clock
RX	Receive Direction
SIM	Subscriber Identification Module
SMS	Short Message Service
TDMA	Time Division Multiple Access
TE	Terminal Equipment
TX	Transmitting Direction
UART	Universal Asynchronous Receiver&Transmitter
URC	Unsolicited Result Code
USSD	Unstructured Supplementary Service Data
VSWR	Voltage Standing Wave Ratio
V _o max	Maximum Output Voltage Value
V _O norm	Normal Output Voltage Value
V _O min	Minimum Output Voltage Value
V _{IH} max	Maximum Input High Level Voltage Value
V _{IH} min	Minimum Input High Level Voltage Value
V _{IL} max	Maximum Input Low Level Voltage Value
V _{IL} min	Minimum Input Low Level Voltage Value
V _I max	Absolute Maximum Input Voltage Value

V _I norm	Absolute Normal Input Voltage Value					
V _I min	Absolute Minimum Input Voltage Value					
V _{OH} max	Maximum Output High Level Voltage Value					
V _{OH} min	Minimum Output High Level Voltage Value					
V _{OL} max	Maximum Output Low Level Voltage Value					
Phonebook Abbreviations						
LD	SIM Last Dialing phonebook (list of numbers most recently dialed)					
MC	Mobile Equipment list of unanswered MT Calls (missed calls)					
ON	SIM (or ME) Own Numbers (MSISDNs) list					
RC	Mobile Equipment list of Received Calls					
SM	SIM phonebook					

9 Appendix B GPRS Coding Scheme

Four coding schemes are used in GPRS protocol. The differences between them are shown in the following table.

Table 41: Description of Different Coding Schemes

Scheme	Code Rate	USF	Pre-coded USF	Radio Block excl.USF and BCS	BCS	Tail	Coded Bits	Punctured Bits	Data Rate Kb/s
CS-1	1/2	3	3	181	40	4	456	0	9.05
CS-2	2/3	3	6	268	16	4	588	132	13.4
CS-3	3/4	3	6	312	16	4	676	220	15.6
CS-4	1	3	12	428	16	-	456		21.4

Radio block structure of CS-1, CS-2 and CS-3 is shown as the figure below.

Figure 50: Radio Block Structure of CS-1, CS-2 and CS-3

Radio block structure of CS-4 is shown as the following figure.

Figure 51: Radio Block Structure of CS-4

10 Appendix C GPRS Multi-slot Class

Twenty-nine classes of GPRS multi-slot modes are defined for MS in GPRS specification. Multi-slot classes are product dependant, and determine the maximum achievable data rates in both the uplink and downlink directions. Written as 3+1 or 2+2, the first number indicates the amount of downlink timeslots, while the second number indicates the amount of uplink timeslots. The active slots determine the total number of slots the GPRS device can use simultaneously for both uplink and downlink communications. The description of different multi-slot classes is shown in the following table.

Table 42: GPRS Multi-slot Classes

Multislot Class	Downlink Slots	Uplink Slots	Active Slots
1	1	1	2
2	2	1	3
3	2	2	3
4	3	1	4
5	2	2	4
6	3	2	4
7	3	3	4
8	4	1	5
9	3	2	5
10	4	2	5
11	4	3	5
12	4	4	5