5877AD9F9FB0DC5A7314E7307F299735

Python script for the IoT devices to send real-time traffic data to the traffic information platform:

1.IoT Device (Traffic Data Simulator):

```
# IoT Device (Traffic Data Simulator) script
import paho.mgtt.client as mgtt
import json
import time
import random
# Define your MQTT broker information
broker_address = "mqtt.yourbroker.com" # Update with your broker's address
port = 1883 # Default MQTT port
topic = "traffic data" # MQTT topic to publish data
# Create an MQTT client
client = mqtt.Client("TrafficSimulator")
# Callback when the client connects to the broker
def on_connect(client, userdata, flags, rc):
  if rc == 0:
     print("Connected to MQTT broker")
  else:
     print(f"Connection failed with code {rc}")
# Set the callback function
client.on_connect = on_connect
# Connect to the broker
client.connect(broker_address, port, 60)
# Simulate and send traffic data
while True:
  # Generate synthetic traffic data
  traffic_data = {
```

```
"location": "Intersection A",
     "vehicle_count": random.randint(0, 100), # Simulated vehicle count
     "average_speed": random.uniform(20.0, 60.0), # Simulated average speed in km/h
     "timestamp": int(time.time())
  }
  # Convert traffic data to JSON
  traffic_data_json = json.dumps(traffic_data)
  # Publish traffic data to the MQTT topic
  client.publish(topic, traffic_data_json)
  # Print a confirmation message
  print(f"Published traffic data: {traffic data json}")
  # Wait for some time (e.g., 10 seconds) before sending the next data
  time.sleep(10)
# Keep the script running
client.loop_forever()
2. Traffic Information Platform (Data Receiver):
# Traffic Information Platform (Data Receiver) script
import paho.mgtt.client as mgtt
import json
# Define your MQTT broker information
broker_address = "mqtt.yourbroker.com" # Update with your broker's address
port = 1883 # Default MQTT port
topic = "traffic data" # MQTT topic to subscribe
# Create an MQTT client
client = mqtt.Client("TrafficDataReceiver")
# Callback when the client connects to the broker
def on connect(client, userdata, flags, rc):
  if rc == 0:
     print("Connected to MQTT broker")
     # Subscribe to the traffic data topic
     client.subscribe(topic)
```

else:

print(f"Connection failed with code {rc}")

Callback when a message is received
def on_message(client, userdata, msg):
 # Process the received traffic data
 traffic_data = json.loads(msg.payload.decode())
 print("Received traffic data:")
 print(json.dumps(traffic_data, indent=4))

Set the callback functions client.on_connect = on_connect client.on_message = on_message

Connect to the broker client.connect(broker_address, port, 60)

Keep the script running to receive data client.loop_forever()

Example:

