Decision-Tree Learning

- Introduction
 - Decision Trees
 - TDIDT: Top-Down Induction of Decision Trees
- ID3
 - Attribute selection
 - Entropy, Information, Information Gain
 - Gain Ratio
- C4.5
 - Numeric Values
 - Missing Values
 - Pruning
- Regression and Model Trees

There are several decision tree algorithms. All of them are trying to create trees.

They all have different training methodologies

Acknowledgements:

Many slides based on Frank & Witten, a few on Kan, Steinbach & Kumar

Decision Trees

- a decision tree consists of
 - Nodes:
 - test for the value of a certain attribute
 - Edges:
 - correspond to the outcome of a test
 - connect to the next node or leaf
 - Leaves:
 - terminal nodes that predict the outcome

to classifiy an example:

- 1. start at the root
- 2. perform the test
- 3. follow the edge corresponding to outcome
- 4. goto 2. unless leaf
- 5. predict that outcome associated with the leaf

Decision Tree Learning

A Sample Task

Day	Temperature	Outlook	Humidity	Windy	Play Golf?		
07-05	hot	sunny	high	false	no		
07-06	hot	sunny	high	true	no		
07-07	hot	overcast	overcast high		yes		
07-09	cool	rain	normal	false	yes		
07-10	cool	overcast	normal	true	yes		
07-12	mild	sunny	high	false	no		
07-14	cool	sunny	normal	false	yes		
07-15	mild	rain normal		false	yes		
07-20	mild	sunny	normal	true	yes		
07-21	mild	overcast	high	true	yes		
07-22	hot	overcast	normal	false	yes		
07-23	mild	rain	high	true	no		
07-26	cool	rain	normal	true	no		
07-30	mild	rain	high	false	yes		

today	cool	sunny	normal	false	?
tomorrow	mild	sunny	normal	false	?

Decision Tree Learning

Divide-And-Conquer Algorithms

- Family of decision tree learning algorithms
 - TDIDT: Top-Down Induction of Decision Trees
- Learn trees in a Top-Down fashion:
 - divide the problem in subproblems
 - solve each problem

Basic Divide-And-Conquer Algorithm:

- 1. select a test for root node
 Create branch for each possible outcome of the test
- split instances into subsetsOne for each branch extending from the node
- repeat recursively for each branch, using only instances that reach the branch
- 4. stop recursion for a branch if all its instances have the same class

ID3 Algorithm

ID3 is the most basic decision tree algorithm

some heuristic function

basic sudo code for decision tree

Function ID3

- Input: Example set S
- Output: Decision Tree DT
- If all examples in S belong to the same class c
 - return a new leaf and label it with c
- Else
 - i. Select an attribute *A* according to some heuristic function
 - ii. Generate a new node DT with A as test
 - iii. For each Value v_i of A
 - (a) Let $S_i = \text{all examples in } S \text{ with } A = V_i$
 - (b) Use ID3 to construct a decision tree DT_i for example set S_i
 - (c) Generate an edge that connects DT and DT_i

A Different Decision Tree

- also explains all of the training data
- will it generalize well to new data?

what is wrong with this tree?

this tree is a large tree, and it means it has a compleks model. with compleks models, we have overfitting problems.

here we again want a simple model, a simple tree.

so we need to select our attributes. accordingly.

Which attribute to select as the root?

What is a good Attribute?

Entropy is a good measure for finding the best attribute which will lead us to find a simple model.

We want to grow a simple tree

- → a good attribute prefers attributes that split the data so that each successor node is as *pure* as posssible
- i.e., the distribution of examples in each node is so that it mostly contains examples of a single class
- In other words:
 - We want a measure that prefers attributes that have a high degree of "order":
 - Maximum order: All examples are of the same class
 - Minimum order: All classes are equally likely
 - → Entropy is a measure for (un-)orderedness
 - Another interpretation:
 - Entropy is the amount of information that is contained
 - all examples of the same class → no information

Entropy (for two classes)

- S is a set of examples
 - p_{\oplus} is the proportion of examples in class \oplus
- $p_{\ominus} = 1 p_{\oplus}$ is the proportion of examples in class \ominus

Entropy:

$$E(S) = -p_{\oplus} \cdot \log_2 p_{\oplus} - p_{\ominus} \cdot \log_2 p_{\ominus}$$

- Interpretation:
 - amount of unorderedness in the class distribution of S

Example: Attribute Outlook

we use entropy as a selection criteria

Outlook = sunny: 3 examples yes, 2 examples no

$$E(\text{Outlook} = \text{sunny}) = -\frac{2}{5} \log \left(\frac{2}{5}\right) - \frac{3}{5} \log \left(\frac{3}{5}\right) = 0.971$$

Outlook = overcast: 4 examples yes, 0 examples no

$$E(\text{Outlook} = \text{overcast}) = -1 \log(1) - 0 \log(0) = 0$$

Note: this is normally undefined. Here: = 0

Outlook = rainy: 2 examples yes, 3 examples no

$$E(\text{Outlook} = \text{rainy}) = -\frac{3}{5}\log\left(\frac{3}{5}\right) - \frac{2}{5}\log\left(\frac{2}{5}\right) = 0.971$$

Entropy (for more classes)

- Entropy can be easily generalized for n > 2 classes
 - p_i is the proportion of examples in S that belong to the *i*-th class

$$E(S) = -p_1 \log p_1 - p_2 \log p_2 ... - p_n \log p_n = -\sum_{i=1}^{n} p_i \log p_i$$

Average Entropy / Information

Problem:

- Entropy only computes the quality of a single (sub-)set of examples
 - corresponds to a single value
- How can we compute the quality of the entire split?
 - corresponds to an entire attribute

Solution:

- Compute the weighted average over all sets resulting from the split
 - weighted by their size

$$I(S, A) = \sum_{i} \frac{|S_{i}|}{|S|} \cdot E(S_{i})$$

Example:

Average entropy for attribute *Outlook*:

$$I(\text{Outlook}) = \frac{5}{14} \cdot 0.971 + \frac{4}{14} \cdot 0 + \frac{5}{14} \cdot 0.971 = 0.693$$

Information Gain

- When an attribute A splits the set S into subsets S_i
 - we compute the average entropy
 - and compare the sum to the entropy of the original set S

Information Gain for Attribute A

$$Gain(S, A) = E(S) - I(S, A) = E(S) - \sum_{i} \frac{|S_{i}|}{|S|} \cdot E(S_{i})$$

- The attribute that maximizes the difference is selected
 - i.e., the attribute that reduces the unorderedness most!
- Note:
 - maximizing information gain is equivalent to minimizing average entropy, because E(S) is constant for all attributes A

Example

Gain(S, Outlook) = 0.246

$$= .940 - (8/14).811 - (6/14)1.0$$

= .048

$$Gain(S, Temperature) = 0.029$$

Example (Ctd.)

Example (Ctd.)


```
Gain(Temperature) = 0.571 	ext{ bits}
Gain(Humidity) = 0.971 	ext{ bits}
Gain(Windy) = 0.020 	ext{ bits}
```

Humidity is selected

Example (Ctd.)

Final decision tree

Properties of Entropy

- Entropy is the only function that satisfies all of the following three properties
 - When node is pure, measure should be zero
 - When impurity is maximal (i.e. all classes equally likely), measure should be maximal
 - Measure should obey multistage property:
 - p, q, r are classes in set S, and T are examples of class $t = q \vee r$

$$E_{p,q,r}(S) = E_{p,t}(S) + \frac{|T|}{|S|} \cdot E_{q,r}(T)$$

- → decisions can be made in several stages
- Simplification of computation of average entropy (information):

$$I(S,[2,3,4]) = -\frac{2}{9} \cdot \log(\frac{2}{9}) - \frac{3}{9} \cdot \log(\frac{3}{9}) - \frac{4}{9} \cdot \log(\frac{4}{9})$$
$$= -\frac{1}{9} (2 \cdot \log(2) + 3 \cdot \log(3) + 4 \cdot \log(4) - 9 \cdot \log(9))$$

Highly-branching attributes

- Problematic: attributes with a large number of values
 - extreme case: each example has its own value
 - e.g. example ID; Day attribute in weather data
- Subsets are more likely to be pure if there is a large number of different attribute values
 - Information gain is biased towards choosing attributes with a large number of values
- This may cause several problems:
 - Overfitting
 - selection of an attribute that is non-optimal for prediction
 - Fragmentation
 - data are fragmented into (too) many small sets

Decision Tree for Day attribute

Entropy of split:

$$I(\text{Day}) = \frac{1}{14} (E([0,1]) + E([0,1]) + ... + E([0,1])) = 0$$

Information gain is maximal for Day (0.940 bits)

Intrinsic Information of an Attribute

- Intrinsic information of a split
 - entropy of distribution of instances into branches
 - i.e. how much information do we need to tell which branch an instance belongs to

$$IntI(S, A) = -\sum_{i} \frac{|S_{i}|}{|S|} \log \left(\frac{|S_{i}|}{|S|} \right)$$

- Example:
 - Intrinsic information of Day attribute:

$$IntI(Day) = 14 \times \left(-\frac{1}{14} \cdot \log\left(\frac{1}{14}\right)\right) = 3.807$$

- Observation:
 - Attributes with higher intrinsic information are less useful

Gain Ratio

- modification of the information gain that reduces its bias towards multi-valued attributes
- takes number and size of branches into account when choosing an attribute
 - corrects the information gain by taking the intrinsic information of a split into account
- Definition of Gain Ratio:

$$GR(S, A) = \frac{Gain(S, A)}{IntI(S, A)}$$

- Example:
 - Gain Ratio of Day attribute

$$GR(\text{Day}) = \frac{0.940}{3.807} = 0.246$$

Gain ratios for weather data

Outlook		Temperature						
Info:	0.693	Info:	0.911					
Gain: 0.940-0.693	0.247	Gain: 0.940-0.911	0.029					
Split info: info([5,4,5])	1.577	Split info: info([4,6,4])	1.557					
Gain ratio: 0.247/1.577	0.157	Gain ratio: 0.029/1.557	0.019					
Humidity		Windy						
Info:	0.788	Info:	0.892					
Gain: 0.940-0.788	0.152	Gain: 0.940-0.892	0.048					
Split info: info([7,7])	1.000	Split info: info([8,6])	0.985					
Gain ratio: 0.152/1	0.152	Gain ratio: 0.048/0.985	0.049					

- Day attribute would still win...
 - one has to be careful which attributes to add...
- Nevertheless: Gain ratio is more reliable than Information Gain

Gini Index

- Many alternative measures to Information Gain
- Most popular altermative: Gini index
 - used in e.g., in CART (Classification And Regression Trees)
 - impurity measure (instead of entropy)

$$Gini(S) = 1 - \sum_{i} p_i^2$$

average Gini index (instead of average entropy / information)

$$Gini(S, A) = \sum_{i} \frac{|S_{i}|}{|S|} \cdot Gini(S_{i})$$

- Gini Gain
 - could be defined analogously to information gain
 - but typically avg. Gini index is minimized instead of maximizing Gini gain

Comparison among Splitting Criteria

For a 2-class problem:

Industrial-strength algorithms

- For an algorithm to be useful in a wide range of real-world applications it must:
 - Permit numeric attributes
 - Allow missing values
 - Be robust in the presence of noise
 - Be able to approximate arbitrary concept descriptions (at least in principle)
- → ID3 needs to be extended to be able to deal with real-world data
- Result: C4.5
 - Best-known and (probably) most widely-used learning algorith
 - original C-implementation at http://www.rulequest.com/Personal/
 - Re-implementation of C4.5 Release 8 in Weka: J4.8
 - Commercial successor: C5.0

Numeric attributes

- Standard method: binary splits
 - E.g. temp < 45
- Unlike nominal attributes, every attribute has many possible split points
- Solution is straightforward extension:
 - Evaluate info gain (or other measure)
 for every possible split point of attribute
 - Choose "best" split point
 - Info gain for best split point is info gain for attribute
- Computationally more demanding

numeric attributes is one challenge. we need to find the split points when you have numeric attributes.

Example

- Assume a numerical attribute for Temperature
- First step:
 - Sort all examples according to the value of this attribute
 - Could look like this:

- One split between each pair of values
 - **E.g.** Temperature < 71.5: yes/4, no/2 Temperature ≥ 71.5 : yes/5, no/3

$$I(\text{Temperature} @ 71.5) = \frac{6}{14} \cdot E(\text{Temperature} < 71.5) + \frac{8}{14} E(\text{Temperature} \ge 71.5) = 0.939$$

Split points can be placed between values or directly at values

Efficient Computation

- Efficient computation needs only one scan through the values!
 - Linearly scan the sorted values, each time updating the count matrix and computing the evaluation measure
 - Choose the split position that has the best value

Sorted Values
Split Positions

Cheat	No No)	N	No Yes		S	Yes		Yes		No		No		No		No				
		Taxable Income																				
—		60		70	75		5	85		90		95		100		120		125		220		
	55		65		7	72		0	87		92		97		110		122		172		230	
	<=	>	<=	>	<=	>	<=	>	<=	>	<=	>	<=	>	<=	>	<=	>	<=	>	<=	>
Yes	0	3	0	3	0	3	0	3	1	2	2	1	3	0	3	0	3	0	3	0	3	0
No	0	7	1	6	2	5	3	4	3	4	3	4	3	4	4	3	5	2	6	1	7	0
Gini	0.420 0.400		0.3	375 0.		343 0.4		117	0.400		<u>0.300</u>		0.343		0.3	375 0.4		0.420		120		

32

Binary vs. Multiway Splits

- Splitting (multi-way) on a nominal attribute exhausts all information in that attribute
 - Nominal attribute is tested (at most) once on any path in the tree
- Not so for binary splits on numeric attributes!
 - Numeric attribute may be tested several times along a path in the tree
- Disadvantage: tree is hard to read
- Remedy:
 - pre-discretize numeric attributes (→ discretization), or
 - use multi-way splits instead of binary ones
 - can, e.g., be computed by building a subtree using a single numerical attribute.
 - subtree can be flattened into a multiway split
 - other methods possible (dynamic programming, greedy...)

Missing values

- Examples are classified as usual
 - if we are lucky, attributes with missing values are not tested by the tree
- If an attribute with a missing value needs to be tested:
 - split the instance into fractional instances (pieces)
 - one piece for each outgoing branch of the node
 - a piece going down a branch receives a weight proportional to the popularity of the branch
 - weights sum to 1
- Info gain or gain ratio work with fractional instances
 - use sums of weights instead of counts
- during classification, split the instance in the same way
 - Merge probability distribution using weights of fractional instances

Overfitting and Pruning

- The smaller the complexity of a concept, the less danger that it overfits the data
 - A polynomial of degree n can always fit n+1 points
- Thus, learning algorithms try to keep the learned concepts simple
 - Note a "perfect" fit on the training data can always be found for a decision tree! (except when data are contradictory)

Pre-Pruning:

stop growing a branch when information becomes unreliable

Post-Pruning:

- grow a decision tree that correctly classifies all training data
- simplify it later by replacing some nodes with leafs
- Postpruning preferred in practice—prepruning can "stop early"

Prepruning

- Based on statistical significance test
 - Stop growing the tree when there is no statistically significant association between any attribute and the class at a particular node
- Most popular test: chi-squared test
- ID3 used chi-squared test in addition to information gain
 - Only statistically significant attributes were allowed to be selected by information gain procedure

Early stopping

- Pre-pruning may stop the growth process prematurely: early stopping
- Classic example: XOR/Parity-problem
 - No individual attribute exhibits any significant association to the class

a	b	class
0	0	0
0	1	1
1	0	1
1	1	0

→ In a dataset that contains XOR attributes a and b, and several irrelevant (e.g., random) attributes, ID3 can not distinguish between relevant and irrelevant attributes

37

- → Prepruning won't expand the root node
- Structure is only visible in fully expanded tree
- But:
 - XOR-type problems rare in practice
 - prepruning is faster than postpruning

Post-Pruning

- basic idea
 - first grow a full tree to capture all possible attribute interactions
 - later remove those that are due to chance
 - 1.learn a complete and consistent decision tree that classifies all examples in the training set correctly
 - 2.as long as the performance increases
 - try simplification operators on the tree
 - evaluate the resulting trees
 - make the replacement the results in the best estimated performance
 - 3.return the resulting decision tree

Postpruning

- Two subtree simplification operators
 - Subtree replacement
 - Subtree raising
- Possible performance evaluation strategies
 - error estimation
 - on separate pruning set ("reduced error pruning")
 - with confidence intervals (C4.5's method)
 - significance testing
 - MDL principle

Subtree replacement

- Bottom-up
- Consider replacing a tree only after considering all its subtrees

Subtree raising

- Delete node B
- Redistribute instances of leaves 4 and 5 into C

Estimating Error Rates

- Prune only if it does not increase the estimated error
 - Error on the training data is NOT a useful estimator (would result in almost no pruning)
- Reduced Error Pruning
 - Use hold-out set for pruning
 - Essentially the same as in rule learning
 - only pruning operators differ (subtree replacement)
- C4.5's method
 - Derive confidence interval from training data
 - with a user-provided confidence level
 - Assume that the true error is on the upper bound of this confidence interval (pessimistic error estimate)

Pessimistic Error Rates

- Consider classifying E examples incorrectly out of N examples as observing E events in N trials in the binomial distribution.
- For a given confidence level CF, the upper limit on the error rate over the whole population is $U_{CF}(E,N)$ with CF% confidence.
- Example:
 - 100 examples in a leaf
 - 6 examples misclassified
 - How large is the true error assuming a pessimistic estimate with a confidence of 25%?
- Note:
 - this is only a heuristic!
 - but one that works well

C4.5's method

Pessimistic error estimate for a node

$$e = \frac{f + \frac{z^2}{2N} + z\sqrt{\frac{f}{N} - \frac{f^2}{N} + \frac{z^2}{4N^2}}}{1 + \frac{z^2}{N}}$$

- z is derived from the desired confidence value
 - If c = 25% then z = 0.69 (from normal distribution)
- f is the error on the training data
- N is the number of instances covered by the leaf
- Error estimate for subtree is weighted sum of error estimates for all its leaves
- →A node is pruned if error estimate of subtree is lower than error estimate of the node

Reduced Error Pruning

- basic idea
 - optimize the accuracy of a decision tree on a separate pruning set
 - 1.split training data into a growing and a pruning set
 - 2.learn a complete and consistent decision tree that classifies all examples in the growing set correctly
 - 3.as long as the error on the pruning set does not increase
 - try to replace each node by a leaf (predicting the majority class)
 - evaluate the resulting (sub-)tree on the pruning set
 - make the replacement the results in the maximum error reduction
 - 4.return the resulting decision tree

Complexity of tree induction

- Assume
 - *m* attributes
 - n training instances
 - tree depth O (log n)
- Building a tree $O(m n \log n)$
- Subtree replacement O(n)
- Subtree raising $O(n (\log n)^2)$
 - Every instance may have to be redistributed at every node between its leaf and the root
 - Cost for redistribution (on average): O (log n)
- Total cost: $O(m n \log n) + O(n (\log n)^2)$

From trees to rules

- Simple way: one rule for each leaf
- C4.5rules: greedily prune conditions from each rule if this reduces its estimated error
 - Can produce duplicate rules
 - Check for this at the end
- Then
 - look at each class in turn
 - consider the rules for that class
 - find a "good" subset (guided by MDL)
- Then rank the subsets to avoid conflicts
- Finally, remove rules (greedily) if this decreases error on the training data

Decision Lists and Decision Graphs

- Decision Lists
 - An ordered list of rules
 - the first rule that fires makes the prediction
 - can be learned with a covering approach
- Decision Graphs
 - Similar to decision trees, but nodes may have multiple predecessors
 - DAGs: Directed, acyclic graphs
 - there are a few algorithms that can learn DAGs
 - learn much smaller structures
 - but in general not very successful
- Special case:
 - a decision list may be viewed as a special case of a DAG

Example

- A decision list for a rule set with rules
 - with 4, 2, 2, 1 conditions, respectively
 - drawn as a decision graph

C4.5: choices and options

- C4.5rules slow for large and noisy datasets
- Commercial version C5.0rules uses a different technique
 - Much faster and a bit more accurate
- C4.5 has several parameters
 - Confidence value (default 25%):
 lower values incur heavier pruning
 - -m Minimum number of instances in the two most popular branches (default 2)
 - Others for, e.g., having only two-way splits (also on symbolic attributes), etc.

Sample Experimental Evaluation

Parameters	Tree Size	Purity	Predictive Accuracy
No Pruning (C4.5 -m1)	547	99.7%	$60.3\%~(\pm~4.8)$
C4.5 -m2	314	91.8%	$60.1\%~(\pm~3.3)$
C4.5 -m5	170	82.3%	$60.4\%~(\pm~5.7)$
C4.5 -m10	90	76.6%	$60.0\%~(\pm~5.2)$
C4.5 -m15	62	74.1%	$61.6\%~(\pm~4.7)$
C4.5 -m20	47	71.9%	$62.7\%~(\pm~2.0)$
C4.5 -m25	37	71.3%	$63.0\%~(\pm~2.2)$
C4.5 -m30	26	70.1%	$65.1\%~(\pm~2.5)$
C4.5 -m35	22	69.9%	$65.0\%~(\pm~4.2)$
C4.5 -m40	20	69.2%	$64.8\%~(\pm~2.6)$
C4.5 -m50	24	69.1%	$64.5\%~(\pm~3.5)$
C4.5 -c75	524	99.7%	$61.0\%~(\pm~4.5)$
C4.5 -c50	357	95.3%	$60.2\%~(\pm~3.6)$
C4.5 -c25	257	91.2%	$62.3\%~(\pm~4.4)$
C4.5 -c15	137	81.8%	$64.8\%~(\pm~4.6)$
C4.5 -c10	75	76.9%	$65.9\%~(\pm~4.9)$
C4.5 -c5	53	74.7%	$63.8\%~(\pm~6.0)$
C4.5 -c1	27	70.2%	$63.4\%~(\pm~5.8)$
C4.5 Default	173	86.2%	$62.5\%~(\pm~5.2)$
C4.5 -m30 -c10	20	69.6%	$66.7\%~(\pm~3.7)$
Mode Prediction	1	56.8%	56.8%

Typical behavior with growing m and decreasing c

- tree size and training accuracy (= purity)
 - always decrease
- predictive accuracy
 - first increases (overfitting avoidance)
 - then decreases (over-generalization)
- ideal value on this data set near
 - m = 30
 - c = 10

Rules vs. Trees

- Each decision tree can be converted into a rule set
- → Rule sets are at least as expressive as decision trees
 - a decision tree can be viewed as a set of non-overlapping rules
 - typically learned via divide-and-conquer algorithms (recursive partitioning)
- Transformation of rule sets / decision lists into trees is less trivial
 - Many concepts have a shorter description as a rule set
 - low complexity decision lists are more expressive than low complexity decision trees (Rivest, 1987)
 - exceptions: if one or more attributes are relevant for the classification of all examples (e.g., parity)
- Learning strategies:
 - Separate-and-Conquer vs. Divide-and-Conquer

Discussion TDIDT

- The most extensively studied method of machine learning used in data mining
- Different criteria for attribute/test selection rarely make a large difference
- Different pruning methods mainly change the size of the resulting pruned tree
- C4.5 builds univariate decision trees
- Some TDITDT systems can build multivariate trees (e.g. CART)
 - multi-variate: a split is not based on a single attribute but on a function defined on multiple attributes

Regression Problems

- Regression Task
 - the target variable is numerical instead of discrete
- Two principal approaches
 - Discretize the numerical target variable
 - e.g., equal-with intervals, or equal-frequency
 - and use a classification learning algorithm
 - Adapt the classification algorithm to regression data
 - → Regression Trees and Model Trees

Regression Trees

Differences to Decision Trees (Classification Trees)

- Leaf Nodes:
 - Predict the average value of all instances in this leaf
- Splitting criterion:
 - Minimize the variance of the values in each subset S_i
 - Standard deviation reduction

$$SDR(A,S) = SD(S) - \sum_{i} \frac{|S_{i}|}{|S|} SD(S_{i})$$

Termination criteria:

Very important! (otherwise only single points in each leaf)

- lower bound on standard deviation in a node
- lower bound on number of examples in a node
- Pruning criterion:
 - Numeric error measures, e.g. Mean-Squared Error

Model Trees

- In a Leaf node
 - Classification Trees predict a class value
 - Regression Trees predict the average value of all instances in the model
 - Model Trees use a linear model for making the predictions
 - growing of the tree is as with Regression Trees
- Linear Model:
 - $LM(x) = \sum_{i=1}^{n} w_i v_i(x)$ where $v_i(x)$ is the value of attribute A_i for example x and w_i is a weight
 - The attributes that have been used in the path of the tree can be ignored
- Weights can be fitted with standard math packages
 - Minimize the Mean Squared Error $MSE = \sum_{j} (y_{j} r_{j})^{2}$

Summary

- Classification Problems require the prediction of a discrete target value
 - can be solved using decision tree learning
 - iteratively select the best attribute and split up the values according to this attribute
- Regression Problems require the prediction of a numerical target value
 - can be solved with regression trees and model trees
 - difference is in the models that are used at the leafs
 - are grown like decision trees, but with different splitting criteria
- Overfitting is a serious problem!
 - simpler, seemingly less accurate trees are often preferable
 - evaluation has to be done on separate test sets