GenCore version 5.1.6 Copyright (c) 1993 - 2004 Compugen Ltd.

OM protein - protein search, using sw model

Run on: January 14, 2004, 10:28:18; Search time 27.7352 Seconds

(without alignments)

165.965 Million cell updates/sec

Title: US-09-843-221A-167

Perfect score: 29

Sequence: 1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29

Scoring table: OLIGO

Gapop 60.0 , Gapext 60.0

Searched: 1107863 seqs, 158726573 residues

Word size : 0

Total number of hits satisfying chosen parameters: 75810

Minimum DB seq length: 28 Maximum DB seq length: 40

Post-processing: Listing first 1000 summaries

Database : A Geneseq 19Jun03:*

/SIDS1/gcgdata/geneseq/geneseqp-emb1/AA1980.DAT:* /SIDS1/gcgdata/geneseq/geneseqp-embl/AA1981.DAT:* 3: /SIDS1/gcgdata/geneseq/geneseqp-emb1/AA1982.DAT:* 4: /SIDS1/gcgdata/geneseq/geneseqp-embl/AA1983.DAT:* 5: /SIDS1/gcgdata/geneseq/geneseqp-embl/AA1984.DAT:* 6: /SIDS1/gcgdata/geneseq/geneseqp-embl/AA1985.DAT:* 7: /SIDS1/gcgdata/geneseq/geneseqp-embl/AA1986.DAT:* 8: /SIDS1/gcgdata/geneseq/geneseqp-embl/AA1987.DAT:* 9: /SIDS1/gcgdata/geneseq/geneseqp-embl/AA1988.DAT:* 10: /SIDS1/gcgdata/geneseq/geneseqp-embl/AA1989.DAT:* 11: /SIDS1/qcqdata/qeneseq/qeneseqp-emb1/AA1990.DAT:* 12: /SIDS1/gcgdata/geneseq/geneseqp-embl/AA1991.DAT:* 13: /SIDS1/gcgdata/geneseq/geneseqp-embl/AA1992.DAT:* 14: /SIDS1/gcgdata/geneseq/geneseqp-emb1/AA1993.DAT: * 15: /SIDS1/gcgdata/geneseq/geneseqp-embl/AA1994.DAT:* 16: /SIDS1/gcgdata/geneseq/geneseqp-embl/AA1995.DAT:* 17: /SIDS1/gcgdata/geneseq/geneseqp-embl/AA1996.DAT:* 18: /SIDS1/gcgdata/geneseq/geneseqp-embl/AA1997.DAT:* 19: /SIDS1/gcgdata/geneseq/geneseqp-embl/AA1998.DAT:* 20: /SIDS1/gcgdata/geneseq/geneseqp-embl/AA1999.DAT:* 21: /SIDS1/gcgdata/geneseq/geneseqp-emb1/AA2000.DAT:* 22: /SIDS1/gcgdata/geneseq/geneseqp-emb1/AA2001.DAT:* 23: /SIDS1/gcgdata/geneseq/geneseqp-emb1/AA2002.DAT:* 24: /SIDS1/gcgdata/geneseq/geneseqp-emb1/AA2003.DAT:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed,

and is derived by analysis of the total score distribution.

SUMMARIES

		%				
Result		Query				5
No.	Score	Match	Length	DB	ID	Description
				- -	***************************************	Human parathyroid
1	29	100.0	29	17	AAR88836	Parathyroid hormon
2	29	100.0	29	23	AAU73063	Human parathyroid
3	29	100.0	30	17	AAR88832	Parathyroid hormon
4	29	100.0	30	23	AAU73051	
5	29	100.0	30	23	AAU73178	Parathyroid hormon
6	29	100.0	31	19	AAW42059	Human parathyroid
7	29	100.0	31	19	AAW42051	Human parathyroid
8	29	100.0	31	20	AAY02578	N-terminal 31 resi
9	29	100.0	31	22	AAB81080	Human parathyroid
10	29	100.0	31	22	AAB91097	Parathyroid hormon
11	29	100.0	31	23	AAE23720	Human parathyroid
12	29	100.0	31	23	AAU73039	Parathyroid hormon
13	29	100.0	31	23	AAU73177	Parathyroid hormon
14	29	100.0	32	23	AAU73176	Parathyroid hormon
15	29	100.0	33	21	AAY98018	Human amino-termin
16	29	100.0	34	4	AAP30022	Human parathyroid-
17	29	100.0	34	6	AAP50377	[Met(O)8,18]hPTH-(
18	29	100.0	34		AAP60031	Sequence of the fi
19	29	100.0	34		AAR07919	Human parathyroid
20	29	100.0	34	11	AAR07922	Human parathyroid
21	29	100.0	34	13	AAR22283	Parathyroid hormon
22	29	100.0	34	14	AAR41549	[D-Ser3]hPTH (1-34
23	29	100.0	34	14	AAR41570	[Gln25]hPTH (1-34)
24	29	100.0	34	15	AAR58291	[Lys(For)26, Lys(F
25	29	100.0	34	15	AAR58228	[D-Asp30]-hPTH(1-3)
26	29	100.0	34	15	AAR58232	[Lys32]-hPTH(1-34)
27	29	100.0	34	15	AAR58181	[Thr33, Ala34]-hPT
28	29	100.0	34	15	AAR58016	N-alpha-Isopropyl-
29	29	100.0	34	15	AAR58017	[Lys(N-epsilon-Iso
30	29	100.0	34	15	AAR55724	Parathormone N-ter
31	29	100.0	34	16	AAR74521	Human parathyroid
32	29	100.0	34	17	AAW99449	Human parathyroid
33	29	100.0	34	17	AAR99978	Human parathyroid
34	29	100.0	34	17	AAR98951	Target peptide (PT
35	29	100.0	34	17	AAR98966	PTH(1-34). Not sp
36	29	100.0	34	17	AAR88835	Human parathyroid
37	29	100.0	34	18	AAW24273	Wild type parathyr
38	29	100.0	34	18	AAW19994	Cyclised human par
39	29	100.0	34	18	AAW20000	Cyclised human par
40	29	100.0	34	18	AAW20006	Cyclised human par
41	29	100.0	34	18	AAW17948	Human parathyroid
42	29	100.0	34	. 18	AAW17968	Human parathyroid
43	29	100.0			AAW17955	Human parathyroid
44	29	100.0		. 19	AAW67283	Parathyroid hormon
45	29	100.0			AAW67291	Parathyroid hormon
46	29	100.0				Parathyroid hormon
47	29	100.0				Human parathyroid
48	29	100.0				Human parathyroid
49	29	100.0			AAW48392	Human parathyroid
50	29	100.0		20	AAY50593	Resin bound cyclic

51	29	100.0	34	20	AAY17752	Human parathyroid
52	29	100.0	34	20	AAY14151	Human parathyroid
53	29	100.0	34	20	AAY02579	N-terminal 34 resi
	29	100.0	34	20	AAW81871	Human PTH N-termin
54			34	21	ABJ10712	Human parathyroid
55	29	100.0				Amino acids 1-34 o
56	29	100.0	34	21	AAB07454	
57	29	100.0	34	21	AAY98017	Human amino-termin
58	29	100.0	34	21	AAY82631	Human parathyroid
59	29	100.0	34	21	AAY68763	Amino acids 1-34 o
60	29	100.0	34	22	AAB84778	Native rat parathy
61	29	100.0	34	22	AAB96898	Human parathyroid
62	29	100.0	34	22	AAB96929	Human parathyroid
63	29	100.0	34	22	AAB81079	Human parathyroid
64	29	100.0	34	22	AAB91098	Parathyroid hormon
65	29	100.0	34	23	ABJ05328	Human PTH(1-34) pe
66	29	100.0	34	23	AAE23727	Human parathyroid
67	29	100.0	34	23	ABB06329	Human parathyroid
68	29	100.0	34	23	ABB08595	C-terminal truncat
69	29	100.0	34	23	AAE18395	Human PTH peptide
70	29	100.0	34	23	ABB07147	Parathyroid hormon
70	29	100.0	34	23	AAU73028	Parathyroid hormon
		100.0	34	24	ABP71500	Human parathyroid
72	29					Human parathyroid
73	29	100.0	34	24	ABG74235	
74	29	100.0	35	22	AAB91112	Parathyroid hormon
75	29	100.0	35	23	AAU73172	Parathyroid hormon
76	29	100.0	36	14	AAR39450	Ser-Val-(hPTH 3-35
77	29	100.0	36	15	AAR58286	[D-Leu24] -hPTH(1-3
78	29	100.0	36	15	AAR58292	[D-Lys27] -hPTH(1-3
79	29	100.0	36	15	AAR58293	[D-Leu28]-hPTH(1-3
80	29	100.0	36	15	AAR58294	[D-Phe34]-hPTH(1-3)
81	29	100.0	36	15	AAR58295	[D-Val35]-hPTH(1-3
82	29	100.0	36	15	AAR58296	[Ala35] -hPTH(1-36)
83	29	100.0	36	15	AAR58297	[Pro35]-hPTH(1-36)
84	29	100.0	36	15	AAR58298	[NMeVal35]-hPTH(1-
85	29	100.0	36	15	AAR58299	[Thr35,Ala36]-hPTH
86	29	100.0	36	15	AAR58300	[D-Ala36]-hPTH(1-3
87	29	100.0	36	15	AAR58301	[NMeAla36]-hPTH(1-
88	29	100.0	36	15	AAR58260	[D-Val2]-hPTH(1-36
89	29	100.0	36	15	AAR58263	[D-Ile5]-hPTH(1-36
90	29		36			[D-Gln6]-hPTH(1-36
91	29	100.0	36	15	AAR58265	[D-Leu7] -hPTH(1-36
92	29	100.0	36	15	AAR58270	[D-Leu11] -hPTH(1-3
93	29	100.0	36	15	AAR58270 AAR58272	[D-Lys13]-hPTH(1-3
		100.0			AAR58272 AAR58273	[D-Leu15] -hPTH(1-3
94	29		36	15		[Met (O2) 18] -hPTH(1
95	29	100.0	36	15	AAR58276	
96	29	100.0	36	15	AAR58278	[D-Met18]-hPTH(1-3
97	29	100.0	36	15	AAR58280	[D-Arg20] -hPTH(1-3
98	29	100.0	36	15	AAR58281	[D-Val21] -hPTH(1-3
99	29	100.0	36	15	AAR58284	[D-Trp23] -hPTH(1-3
100	29	100.0	36	15	AAR58227	[D-Gln29]-hPTH(1-3
101	29	100.0	36	15	AAR58229	[Ala30] -hPTH(1-36)
102	29	100.0	36	15	AAR58230	[D-Val31]-hPTH(1-3
103	29	100.0	36	15	AAR58231	[Ala31] -hPTH(1-36)
104	29	100.0	36	15	AAR58233	[D-His32]-hPTH(1-3
105	29	100.0	36	15	AAR58234	[Ala32]-hPTH(1-36)
106	29	100.0	36	15	AAR58235	[D-Asn33] -hPTH(1-3
107	29	100.0	36	15	AAR58236	[Ala33]-hPTH(1-36)

						5
108	29	100.0	36	15	AAR58237	[NMePhe34] -hPTH(1-
109	29	100.0	36	15	AAR58238	[D-Asp30] -hPTH(1-3
110	29	100.0	36	15	AAR58242	[Lys(Isopropyl)13]
111	29	100.0	36	15	AAR58246	Acetyl-hPTH $(1-36)$ -
112	29	100.0	36.	15	AAR58249	[D-Ser1]-hPTH(1-36
113	29	100.0	36	15	AAR58191	[Ala34]-hPTH(1-36)
114	29	100.0	36	15	AAR58196	[D-Phe34, D-Ala36]
115	29	100.0	36	15	AAR58198	[D-Ser3]-hPTH(1-36
116	29	100.0	36	15	AAR58199	[D-Glu4]-hPTH(1-36
117	29	100.0	36	15	AAR58200	[D-His9] -hPTH(1-36
118	29	100.0	36	15	AAR58202	[D-Asn10] -hPTH(1-3
			36	15	AAR58202 AAR58210	[D-His14] -hPTH(1-3
119	29	100.0				[D-Asn16] -hPTH(1-3
120	29	100.0	36	15	AAR58211	
121	29	100.0	36	15	AAR58213	[D-Ser17] -hPTH(1-3
122	29	100.0	36	15	AAR58215	[D-Glu19] -hPTH(1-3
123	29	100.0	36	15	AAR58220	[D-Lys26] -hPTH(1-3
124	29	100.0	36	15	AAR58171	[N-Me-Ser1]-hPTH(1
125	29	100.0	37	12	AAR11882	Parathyroid hormon
126	29	100.0	37	13	AAR24778	hPTH(1-37)-amide/e
127	29	100.0	37	15	AAR58244	[Ala0] -hPTH(1-36) -
128	29	100.0	37	15	AAR58245	[Pro0]-hPTH(1-36)-
129	29	100.0	37	22	AAB86226	Human parathyroid
130	29	100.0	37	22	AAB86229	Human parathyroid
131	29	100.0	37	23	ABB82203	Human parathyroid
132	29	100.0	38	3	AAP20248	Parathyroid hormon
133	29	100.0	38	15	AAR58282	[Trp (SO2Pmc) 23] -hP
134	29	100.0	38	15	AAR58283	[Trp (Pmc) 23] -hPTH(
134	29	100.0	38	15	AAR58018	Isopropyl-[Lys(Iso
		100.0	38	15	AAR58018 AAR58162	[Arg33] -hPTH(1-38)
136	29					[Pro33] -hPTH(1-38)
137	29	100.0	38	15	AAR58163	
138	29	100.0	38	15	AAR58164	[Asp33] -hPTH(1-38)
139	29	100.0	38	15	AAR58165	[Ile33] -hPTH(1-38)
140	29	100.0	38	15	AAR58166	[Lys33] -hPTH(1-38)
141	29	100.0	38	15	AAR58167	[Ile31,Arg33]-hPTH
142	29	100.0	38	15	AAR58075	[Ser33] -hPTH(1-38)
143	29	100.0	38	15	AAR58076	[Thr33]-hPTH(1-38)
144	29	100.0	38	15	AAR58077	[Leu33] -hPTH(1-38)
145	29	100.0	38	15	AAR58078	[Gly33]-hPTH(1-38)
146	29	100.0	38	15	AAR58084	[Gln33]-hPTH(1-38)
147	29	100.0	38	15	AAR54234	PTH N-terminal. S
148	29	100.0	38	20	AAY02580	N-terminal 38 resi
149	29	100.0	~ 38	22	AAB91101	Parathyroid hormon
150	29	100.0	38	23	AAE23729	Human parathyroid
151	29	100.0	38	23	AAE18400	Human PTH peptide
152	29	100.0	38	23	AAU73026	Parathyroid hormon
153	28	96.6	28	17	AAR88837	Human parathyroid
154	28	96.6	28	21	AAY98052	Human parathyroid
155	28	96.6	28	23	AAU73064	Parathyroid hormon
156	28	96.6	29	12	AAR11731	Adenine-rich PTH-(
						Parathyroid hormon
157	28	96.6	29	23	AAU73179	Parathyroid hormon
158	28	96.6	30	23	AAU73055	
159	28	96.6	33	21	AAY98012	Human amino-termin
160	28	96.6	33	21	AAY98015	Human amino-termin
161	28	96.6	34	18	AAW01610	Parathryoid hormon
162	28	96.6	34	19	AAW67293	Parathyroid hormon
163	28	96.6	34	21	AAY98010	Human amino-termin
164	28	96.6	34	21	AAY98011	Human amino-termin

165	28	96.6	34	21	AAY98014	Human amino-termin
166	28	96.6	34	22	AAB91113	Parathyroid hormon
167	28	96.6	34	23	AAE23728	Human parathyroid
168	28	96.6	34	23	AAE18399	Human PTH peptide
169	28	96.6	34	23	AAU73032	Parathyroid hormon
170	28	96.6	36	12	AAR15842	Human parathyroid
171	28	96.6	36	13	AAR23995	Human paprthyroid
172	28	96.6	36	15	AAR58254	[4-aminosalicylic
173	28	96.6	36	15	AAR58255	[TMSA1] -hPTH(1-36)
174	28	96.6	36	15	AAR58256	[Phe1]-hPTH(1-36)-
175	28	96.6	36	15	AAR58257	[Propargylglycin1]
176	28	96.6	36	15	AAR58262	[Ala1]-hPTH(1-36)-
177	28	96.6	36	15	AAR58243	Propargyl-[A1]-hPT
178	28	96.6	36	15	AAR58247	[Hyp1] -hPTH(1-36)-
179	28	96.6	36	15	AAR58248	N-Dimethyl-[Ala1]-
180	28	96.6	36	15	AAR58250	[Lys(For)1]-hPTH(1
181	28	96.6	36	15	AAR58251	[D-glyceric acid1]
182	28	96.6	36	15	AAR58252	[Asn1] -hPTH(1-36)-
183	28	96.6	36	15	AAR58253	[4-aminobenzoic ac
184	28	96.6	36	15	AAR58190	[Ala29] -hPTH(1-36)
185	28	96.6	36	15	AAR58169	[D-Pro1]-hPTH(1-36
186	28	96.6	36	15	AAR58170	[Nva1] -hPTH(1-36)-
187	28	96.6	36	15	AAR58172	[Indole-2-carboxyl
188	28	96.6	36	15	AAR58173	[Indole-3-carboxyl
		96.6	36	15	AAR58173 AAR58174	[Pyridine-3-carbox
189	28		36 36	15	AAR58174 AAR58175	[Pyridine-2-carbox
190	28	96.6				[Hexahydropyridazi
191	28	96.6	36	15	AAR58176	
192	28	96.6	36	15	AAR58177	[Morpholine-2-carb
193	28	96.6	36	15	AAR58178	[Pro1] -hPTH(1-36) -
194	28	96.6	36	15	AAR58179	[Leu1] -hPTH(1-36) -
195	28	96.6	36	15	AAR58180	[Ile1] -hPTH(1-36) -
196	28	96.6	36	15	AAR58026	N-alpha-methyl[Ala
197	28	96.6	36	15	AAR58168	[1-amino-cyclopent
198	28	96.6	37	23	AAU73027	Parathyroid hormon
199	28	96.6	38	15	AAR58019	N-alpha-methyl [Ala
200	28	96.6	38	_. 15	AAR58022	[Ile1]-hPTH(1-38)-
201	28	96.6	38	15	AAR58028	[Thr1] -hPTH(1-38) -
202	28	96.6	38	15	AAR58029	[Leu1] -hPTH(1-38)-
203	28	96.6	38	15	AAR58030	[Abul or Gabal]-hP
204	27	93.1	28	21	AAY98048	Human parathyroid
205	27	93.1	28	21	AAY98050	Human parathyroid
206	27	93.1	32	5	AAP40427	Parathyroid antago
207	27	93.1	34	18	AAW17947	Human parathyroid
208	27	93.1	34	18	AAW17951	Human parathyroid
209	27	93.1	34	19	AAW67282	Parathyroid hormon
210	27	93.1	34	19	AAW67286	Parathyroid hormon
211	27	93.1	34	22	AAB61638	Peptide #1 that ca
212	27	93.1	36	15	AAR58259	[aBU2]-hPTH(1-36)-
213	27	93.1	36	15	AAR58261	[Tert.Leu]-hPTH(1-
214	27	93.1	38	15	AAR58023	[Ala1,Abu2 or Nva2
215	27	93.1	38	15	AAR58024	[Ala1,Ile2]-hPTH(1
216	27	93.1	38	15	AAR58159	[Val28]-hPTH(1-38)
217	27	93.1	38	15	AAR58160	[Ile28]-hPTH(1-38)
218	26	89.7	28	17	AAR88838	Human parathyroid
219	26	89.7	28	22	AAB81074	Human parathyroid
220	26 26	89.7	29	17	AAR88839	Human parathyroid
221		89.7	29	22	AAB81075	Human parathyroid
221	26	07.1	43	44	PVD01013	man parachyroid

222	26	89.7	30	17	AAR88833	Human parathyroid
223	26	89.7	30	19	AAW42052	Human parathyroid
224	26	89.7	30	23	AAU73062	Parathyroid hormon
225	26	89.7	31	5	AAP40760	Human parathyroid
226	26	89.7	31	19	AAW42056	Human parathyroid
227	26	89.7	31	19	AAW42057	Human parathyroid
228	26	89.7	31	19	AAW42060	Human parathyroid
229	26	89.7	31	19	AAW42062	Human parathyroid
230	26	89.7	31	19	AAW42067	Human parathyroid
231	26	89.7	31	19	AAW42049	Human parathyroid
232	26	89.7	31	19	AAW42050	Human parathyroid
233	26	89.7	31	19	AAW42053	Human parathyroid
234	26	89.7	31	23	AAU73040	Parathyroid hormon
235	26	89.7	31	23	AAU82640	Analogue of human
236	26	89.7	34	13	AAR22298	Human parathyroid
237	26	89.7	34	13	AAR22299	Human parathyroid
	26	89.7	34	14	AAR41550	[D-Ala3]hPTH (1-34
238			34	14	AAR41554	[Thr27]hPTH (1-34)
239	26	89.7	34	14	AAR41555	[Asn27] hPTH (1-34)
240	26	89.7				[Ser27]hPTH (1-34)
241	26	89.7	34	14	AAR41558	[Gly27]hPTH (1-34)
242	26	89.7	34	14	AAR41559	[His27]hPTH (1-34)
243	26	89.7	34	14	AAR41560	Human parathyroid
244	26	89.7	34	17	AAR88829	
245	26	89.7	34	17	AAR88834	Human parathyroid
246	26	89.7	34	18	AAW17969	Human parathyroid
247	26	89.7	34	18	AAW17957	Human parathyroid
248	26	89.7	34	19	AAW67292	Parathyroid hormon
249	26	89.7	34	19	AAW67297	Parathyroid hormon
250	26	89.7	34	19	AAW42054	Human parathyroid
251	26	89.7	34	19	AAW42055	Human parathyroid
252	26	89.7	36	15	AAR58222	[His27] -hPTH(1-36)
253	26	89.7	36	15	AAR58223	[Phe27] -hPTH(1-36)
254	26	89.7	36	15	AAR58224	[Nle27]-hPTH(1-36)
255	26	89.7	36	15	AAR58225	[Asn27] - hPTH(1-36)
256	26	89.7	36	15	AAR58226	[Ala27] -hPTH(1-36)
257	26	89.7	36	15	AAR58197	[Ala3] -hPTH(1-36) -
258	26	89.7	38	15	AAR58154	[Val27]-hPTH(1-38)
259	26	89.7	38	15	AAR58155	[Ile27]-hPTH(1-38)
260	26	89.7	38	15	AAR58156	[Leu27] -hPTH(1-38)
261	26	89.7	38	15	AAR58157	[Arg27] -hPTH(1-38)
262	26	89.7	38	15	AAR58158	[Ala27] -hPTH(1-38)
263	26	89.7	38	15		[Pro3,Thr33]-hPTH(
264	25	86.2	30	23		Human parathyroid
265	25	86.2	32	23		Human parathyroid
266	25	86.2	34	14		
267	25	86.2	34	14		
268	25	86.2	34	14		——————————————————————————————————————
269	25	86.2	36	15		
270	25	86.2	36	15		
270	25	86.2	36	15		
271	25	86.2	38	15		
272		82.8	34	14		
	24 24	82.8	34	14		
274	24					
275	24	82.8	34	14		
276	24	82.8	34	19		_ _
277	24	82.8	36	15		
278	24	82.8	36	15	AAR58288	[mys23] -11F1H(1-30)

279	24	82.8	36	15	AAR58289	[Ala25] -hPTH(1-36)
280	24	82.8	36	15	AAR58192	[Gln25]-hPTH(1-36)
281	23	79.3	28	13	AAR22064	Modified hPTH(7-34
282	23	79.3	28	13	AAR22065	Modified [Tyr_34]h
283	23	79.3	28	23	AAE23734	Human parathyroid
284	23	79.3	28	23	AAU73044	Parathyroid hormon
285	23	79.3	32	21	AAB07468	Antigenic peptide
286	23	79.3	34	18	AAW17949	Human parathyroid
287	23	79.3	34	18	AAW17945	Human parathyroid
288	23	79.3	34	18	AAW17950	Human PTH analogue
289	23	79.3	34	18	AAW01609	Parathryoid hormon
290	23	79.3	34	19	AAW67280	Parathyroid hormon
291	23	79.3	34	19	AAW67284	Parathyroid hormon
292	23	79.3	34	19	AAW67285	Parathyroid hormon
293	23	79.3	34	19	AAW67288	Parathyroid hormon
294	23	79.3	34	19	AAW67289	Parathyroid hormon
295	23	79.3	34	19	AAW67294	Parathyroid hormon
296	23	79.3	34	19	AAW67295	Parathyroid hormon
297	23	79.3	34	19	AAW67296	Parathyroid hormon
	23	79.3	34	19	AAW67303	Parathyroid hormon
298		79.3	38	17	AAR98958	Target peptide (PT
299	23					Parathyroid hormon
300	22	75.9	30	23	AAU73136	Parathyroid hormon
301	22	75.9	30	23	AAU73137	
302	22	75.9	31	17	AAR88830	Human parathyroid
303	22	75.9	32	17	AAR88840	Human parathyroid
304	22	75.9	33	9	AAP82176	Sequence of parath
305	22	75.9	33	17	AAR88841	Human parathyroid
306	22	75.9	34	14	AAR34358	Human parathyroid
307	22	75.9	34	14	AAR34353	Human parathyroid
308	22	75.9	34	14	AAR34354	Human parathyroid
309	22	75.9	34	14	AAR34355	Human parathyroid
310	22	75.9	34	14	AAR34356	Human parathyroid
311	22	75.9	34	14	AAR34357	Human parathyroid
312	22	75.9	34	14	AAR34359	Human parathyroid
313	22	75.9	34	14	AAR34360	Human parathyroid
314	22	75.9	34	14	AAR34361	Human parathyroid
315	22	75.9	34	14	AAR34362	Human parathyroid
316	22	75.9	34	14	AAR34363	Human parathyroid
317	22	75.9	34	14	AAR34364	Human parathyroid
318	22	75.9	34	14	AAR34365	Human parathyroid
319	22	75.9	34	14	AAR34366	Human parathyroid
320	22	75.9	34	14	AAR34367	Human parathyroid
321	22	75.9	34	14	AAR34368	Human parathyroid
322	22	75.9	34	15	AAR58187	[Phe23, His25, His26
323	22	75.9	34	15	AAR58189	[F23,H25,H26,L27,I
324	22	75.9	34	18	AAW17943	Human parathyroid
325	22	75.9	34	18	AAW17944	Human parathyroid
326	22	75.9	34	19	AAW67278	Parathyroid hormon
327	22	75.9	34	19	AAW67279	Parathyroid hormon
328	22	75.9	34	22	AAB91085	Parathyroid hormon
329	22	75.9	34	23	AAU73100	Parathyroid hormon
330	22	75.9	34	23	AAU73101	Parathyroid hormon
331	22	75.9	36	15	AAR58285	[Ala23] -hPTH(1-36)
332	22	75.9	36	15		[Phe23] -hPTH(1-36)
333	21	72.4	28	21	ABJ10776	Human parathyroid
334	21	72.4	30	23		Parathyroid hormon
335	21	72.4	30	23		Parathyroid hormon
JJJ	21	14.7	50	23	AAU (JIJ)	1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

336	21	72.4	31	19	AAW42063	Human parathyroid
337	21	72.4	31	19	AAW42065	Human parathyroid
338	21	72.4	31	19	AAW42066	Human parathyroid
339	21	72.4	34	13	AAR22293	Human parathyroid
340	21	72.4	34	15	AAR49697	Sequence of varian
341	21	72.4	34	15	AAR49698	Sequence of varian
342	21	72.4	34	19	AAW67305	Parathyroid hormon
343	21	72.4	34	19	AAW67299	Parathyroid hormon
344	21	72.4	34	19	AAW67302	Parathyroid hormon
345	21	72.4	34	19	AAW67304	Parathyroid hormon
346	21	72.4	34	21	ABJ10706	Human parathyroid
347	21	72.4	34	21	ABJ10714	Human parathyroid
348	21	72.4	34	21	ABJ10717	Human parathyroid
349	21	72.4	34	21	ABJ10719	Human parathyroid
350	21	72.4	34	21	ABJ10722	Human parathyroid
351	21	72.4	34	21	ABJ10724	Human parathyroid
352	21	72.4	34	21	ABJ10727	Human parathyroid
353	21	72.4	34	21	ABJ10729	Human parathyroid
354	21	72.4	34	21	ABJ10730	Human parathyroid
355	21	72.4	34	21	ABJ10733	Human parathyroid
356	21	72.4	34	21	ABJ10736	Human parathyroid
357	21	72.4	34	21	ABJ10772	Human parathyroid
358	21	72.4	34	21	ABJ10773	Human parathyroid
359	21	72.4	34	23	AAU73102	Parathyroid hormon
360	21	72.4	34	23	AAU73103	Parathyroid hormon
361	21	72.4	34	23	AAU73104	Parathyroid hormon
362	21	72.4	34	23	AAU73140	Parathyroid hormon
363	21	72.4	36	15	AAR58266	[Nle8] -hPTH(1-36) -
364	21	72.4	36	15	AAR58267	[Phe8] -hPTH(1-36) -
365	21	72.4	36	15	AAR58268	[Cha8] -hPTH(1-36) -
366	21	72.4	36	15	AAR58217	[Ala22] - hPTH (1-36)
367	21	72.4	36	15	AAR58182	[Nva8] -hPTH(1-36) -
368	21	72.4	38	15	AAR58269	[Leu8] -hPTH(1-38) -
369	21	72.4	38	15	AAR58145	[Gly22] -hPTH(1-38)
370	21	72.4	38	15	AAR58146	[Leu22] -hPTH(1-38)
371	21	72.4	38	15	AAR58147	[His22] -hPTH(1-38)
372	21	72.4	38	15	AAR58148	[Ala22]-hPTH(1-38) [Ile22]-hPTH(1-38)
373	21	72.4	38	15	AAR58149	[11e22] -HPTH(1-38) [Val22] -hPTH(1-38)
374	21	72.4	38	15	AAR58150	[Ser22]-hPTH(1-38)
375	21	72.4	38	15	AAR58151	[Ser22] -HPTH(1-38) [Arg22] -hPTH(1-38)
376	21	72.4	38	15	AAR58152	Parathyroid hormon
377	20	69.0	34	18	AAW24276	[Ala21] -hPTH(1-36)
378	20	69.0	36	15	AAR58216	[Ala21] -hPTH(1-38)
379	20	69.0	38	15	AAR58138 AAR58139	[Gly21] -hPTH(1-38)
380	20	69.0 69.0	38	15		[Phe21] -hPTH(1-38)
381	20	69.0	38	15	AAR58140 AAR58141	[Leu21]-hPTH(1-38)
382	20		38 38	15	AAR58141 AAR58142	[Asn21] -hPTH(1-38)
383	20	69.0		15 15	AAR58142 AAR58143	[Gln21] -hPTH(1-38)
384	20	69.0 69.0	38 38	15	AAR58143	[Ser21]-hPTH(1-38)
385 386	20 19	65.5	36 31	17	AAR88831	Human parathyroid
385	19	65.5	34	17	AAW15812	[Trp(10)]-hPTH(1-3
388	19	65.5	34	18	AAW13812 AAW08120	Human PTH derivati
389	19	65.5	34	18	AAW08120 AAW08109	Human parathyroid
390	19	65.5	34	18	AAW08103	Human PTH derivati
391	19	65.5	34	18	AAW08114 AAW08118	Human PTH derivati
392	19	65.5	34	18	AAW08119	Human PTH derivati
ے ر د	1.7	03.5	J-1	-0		-10

393	19	65.5	36	15	AAR58279	[Lys20] -hPTH(1-36)
394	19	65.5	36	15	AAR58201	[Ala10] -hPTH(1-36)
395	19	65.5	38	15	AAR58137	[Phe20] -hPTH(1-38)
396	18	62.1	28	21	AAY98046	Human parathyroid
397	18	62.1	30	23	AAU73052	Parathyroid hormon
398	18	62.1	30	23	AAU73053	Parathyroid hormon
399	18	62.1	30	23	AAU73054	Parathyroid hormon
400	18	62.1	34	13	AAR22292	Human parathyroid
401	18	62.1	34	13	AAR22294	Human parathyroid
402	18	62.1	34	13	AAR22296	Human parathyroid
403	18	62.1	34	13	AAR22297	Human parathyroid
404	18	62.1	34	15	AAR58193	[L8,D10,K11,T33,A3
405	18	62.1	34	15	AAR58194	[A1, H5, L8, D10, K11,
406	18	62.1	34	18	AAW08108	Human parathyroid
407	18	62.1	34	18	AAW08113	Human PTH derivati
408	18	62.1	34	18	AAW08117	Human PTH derivati
409	18	62.1	34	18	AAW17941	Human parathyroid
410	18	62.1	34	18	AAW17939	Human parathyroid
411	18	62.1	34	18	AAW17954	Human parathyroid
412	18	62.1	34	19	AAW67274	Parathyroid hormon
413	18	62.1	34	19	AAW67276	Parathyroid hormon
414	18	62.1	34	21	ABJ10713	Human parathyroid
415	18	62.1	34	21	ABJ10737	Human parathyroid
416	18	62.1	34	21	ABJ10769	Human parathyroid
417	18	62.1	34	23	AAU73029	Parathyroid hormon
418	18	62.1	34	23	AAU73030	Parathyroid hormon
419	18	62.1	34	23	AAU73031	Parathyroid hormon
420	18	62.1	35	23	AAU73173	Parathyroid hormon
421	18	62.1	35	23	AAU73174	Parathyroid hormon
422	18	62.1	35	23	AAU73174 AAU73175	Parathyroid hormon
423	18	62.1	36	15	AAR58271	[Ala11] -hPTH(1-36)
424	18	62.1	36	15	AAR58214	[Ala19] -hPTH(1-36)
425	18	62.1	38	15	AAR58136	[Arg19] -hPTH(1-38)
426	18	62.1	38	15	AAR58123	[Ser19] -hPTH(1-38)
427	18	62.1	38	15	AAR58123 AAR58124	[Lys19] -hPTH(1-38)
428	18	62.1	38	15	AAR58125	[Leu19] -hPTH(1-38)
		62.1	38	15	AAR58125 AAR58126	[Ala19] -hPTH(1-38)
429	18	62.1	38		AAR58120 AAR58127	[Tyr19] -hPTH(1-38)
430	18			15		[Met19] -hPTH(1-38)
431	18	62.1	38	15	AAR58128	[His19] -hPTH(1-38)
432	18	62.1	38	15	AAR58129 AAR58130	[Val19] -hPTH(1-38)
433	18	62.1 62.1	38	15		[Gly19] -hPTH(1-38)
434	18		38	15	AAR58131 AAR58132	[Pro19] -hPTH(1-38)
435	18	62.1	38	15		
436	18	62.1	38	15	AAR58133	[Asp19] -hPTH(1-38) [Ile19] -hPTH(1-38)
437	18	62.1	38	15	AAR58134	
438	18	62.1	38	15	AAR58135	[Val19,Gln24] -hPTH
439	17	58.6	28	13	AAR22066	Modified [D-Trp_12
440	17	58.6	28	21	AAY98041	Human parathyroid
441	17	58.6	28	21	AAY98042	Human parathyroid
442	17	58.6	28	21	AAY98044	Human parathyroid
443	17	58.6	34	11	AAR08300	Human parathyroid
444	17	58.6	34	11	AAR08303	Human parathyroid
445	17	58.6	34	13	AAR22291	Human parathyroid
446	17	58.6	34	18	AAW08121	Human PTH derivati
447	17	58.6	34	18	AAW08115	Human PTH derivati
448	17	58.6	34	18	AAW08116	Human PTH derivati
449	17	58.6	34	18	AAW17959	Human parathyroid

450	17	58.6	34	19	AAW67298	Parathyroid hormon
451	17	58.6	34	19	AAW67300	Parathyroid hormon
452	17	58.6	34	19	AAW67301	Parathyroid hormon
453	17	58.6	34	21	ABJ10742	Human parathyroid
454	17	58.6	34	22	AAB84771	Parathyroid hormon
455	17	58.6	34	22	AAB84826	Parathyroid hormon
456	17	58.6	34	22	AAB96893	Rat parathyroid ho
457	17	58.6	34	22	AAB96916	Parathyroid hormon
458	17	58.6	34	22	AAB96919	Parathyroid hormon
459	17 17	58.6	34	22	AAB96930	Rat parathyroid ho
459	17	58.6	34	22	AAB91087	Parathyroid hormon
		58.6	36	15		[Nle18] -hPTH(1-36)
461	17				AAR58277	[Ala12] -hPTH(1-36)
462	17	58.6	36 36	15	AAR58203	[Gln18] -hPTH(1-36)
463	17	58.6	36 36	15	AAR58183	
464	17	58.6	36	15	AAR58184	[Tyr18] -hPTH(1-36)
465	17	58.6	36	15	AAR58185	[Lys18] -hPTH(1-36)
466	17	58.6	36	15	AAR58186	[Ala18] -hPTH(1-36)
467	17	58.6	38	15	AAR58089	[Arg12] -hPTH(1-38)
468	17	58.6	38	15	AAR58090	[Ser12]-hPTH(1-38)
469	16	55.2	28	22	AAB81078	Human parathyroid
470	16	55.2	28	23	AAU73105	Parathyroid hormon
471	16	55.2	28	23	AAU73106	Parathyroid hormon
472	16	55.2	30	6	AAP50665	Human parathyroid
473	16	55.2	31	22	AAB81077	Human parathyroid
474	16	55.2	34	17	AAW14310	Cyclic parathyroid
475	16	55.2	34	17	AAW14311	Cyclic parathyroid
476	16	55.2	34	18	AAW08112	Human PTH derivati
477	16	55.2	34	18	AAW17958	Human parathyroid
478	16	55.2	36	15	AAR58204	[Gln13] -hPTH(1-36)
479	16	55.2	36	15	AAR58205	[His13] -hPTH(1-36)
480	16	55.2	36	15	AAR58206	[Leu13] -hPTH(1-36)
481	16	55.2	36	15	AAR58207	[Ala13] -hPTH(1-36)
482	16	55.2	36	15	AAR58212	[Ala17] -hPTH(1-36)
483	16	55.2	38	15	AAR58091	[Cys13] -hPTH(1-38)
484	16	55.2	38	. 15	AAR58092	[Ile13] -hPTH(1-38)
485	16	55.2	38	15		[Asn13] -hPTH(1-38)
486	16	55.2	38	15	AAR58094	[Trp13] -hPTH(1-38)
487	16	55.2	38	15	AAR58095	[Asp13] -hPTH(1-38)
488	16	55.2	38	15		[Val13] -hPTH(1-38)
489	16	55.2	38	15		[Thr13] -hPTH(1-38)
490	16	55.2	38	15		[Ser13] -hPTH(1-38)
491	16	55.2	38	15		[Tyr13] -hPTH(1-38)
492	16	55.2	38	15	AAR58100	[Met13] -hPTH(1-38)
493	16	55.2	38	15	AAR58101	[Gln13] -hPTH(1-38)
494	16	55.2	38	15	AAR58102	[Leu13] -hPTH(1-38)
495	16	55.2	38	15	AAR58103	[Ala13] -hPTH(1-38)
496	16	55.2	38	15	AAR58104	[Gly13] -hPTH(1-38)
497	16	55.2	38	15	AAR58120	[Ala17] -hPTH(1-38)
498	16	55.2	38	15	AAR58121	[Met17] -hPTH(1-38)
499	16	55.2	38	15	AAR58122	[Ile17] -hPTH(1-38)
500	15	51.7	28	23	AAU73107	Parathyroid hormon
501	15	51.7	28	23	AAU73108	Parathyroid hormon
502	15	51.7	28	23		Parathyroid hormon
503	15	51.7	30	23		Parathyroid hormon
504	15	51.7	31	21		Parathyroid hormon
505	15	51.7	31	21		Parathyroid hormon
506	15	51.7	34	14	AAR41551	[Thr16]hPTH (1-34)

507	15	51.7	34	14	AAR41552	[Glu16]hPTH (1-34)
508	15	51.7	34	14	AAR41553	[Lys16]hPTH (1-34)
509	15	51.7	34	14	AAR41561	[Lys16, Gln27]hPTH
510	15	51.7	34	14	AAR41562	[Orn16, Gln27]hPTH
511	15	51.7	34	14	AAR41563	[Hci16, Gln27]hPTH
512	15	51.7	34	14	AAR41564	[Asp16, Gln27]hPTH
513	15	51.7	34	14	AAR41565	[Arg16, Gln27]hPTH
514	15	51.7	34	14	AAR41571	[D-Lys16]hPTH (1-3
515	15	51.7	34	14	AAR41573	[Gln16]hPTH (1-34)
516	15	51.7	34	14	AAR41574	[Ser16]hPTH (1-34)
517	15	51.7	34	14	AAR41575	[Gly16]hPTH (1-34)
518	15	51.7	34	14	AAR41576	[Lys16]hPTH (1-34)
519	15	51.7	34	14	AAR41577	[Lys16, Asp17]hPTH
520	1 5	51.7	34	14	AAR41580	[Lys16,17]hPTH (1-
521	15	51.7	34	14	AAR41581	[Arg16,17]hPTH (1-
522	15	51.7	34	17	AAR99981	Porcine parathyroi
523	15	51.7	34	18	AAW08129	Human PTH derivati
524	15	51.7	34	18	AAW08132	Human PTH derivati
525	15	51.7	34	18	AAW17967	Human PTH analogue
526	15	51.7	34	18	AAW17953	Human parathyroid
527	15	51.7	34	18	AAW17956	Human parathyroid
528	15	51.7	34	19	AAW61660	Parathyroid hormon
529	15	51.7	34	19	AAW61880 AAW65977	Porcine parathyroi
					AAW42616	
530	15	51.7	34	19		Porcine parathyroi
531	15	51.7	34	19	AAW48394	Human PTH/PTHrP hy
532	15	51.7	34	20	AAW81873	Porcine PTH N-term
533	15	51.7	34	22	AAB84775	Parathyroid hormon
534	15	51.7	34	22	AAB96922	Parathyroid hormon
535	15	51.7	34	23	AAU73036	Parathyroid hormon
536	15	51.7	36	15	AAR58275	[Ala16] -hPTH(1-36)
537	15	51.7	36	15	AAR58209	[Ala14]-hPTH(1-36)
538	15	51.7	37	22	AAB86232	Porcine parathyroi
539	15	51.7	38	15	AAR58036	[Gln16] -hPTH(1-38)
540	15	51.7	38	15	AAR58037	[Ser14]-hPTH(1-38)
541	15	51.7	38	15	AAR58105	[Val14]-hPTH(1-38)
542	15	51.7	38	15	AAR58106	[Ala14]-hPTH(1-38)
543	15	51.7	38	15	AAR58107	[Lys14]-hPTH(1-38)
544	15	51.7	38	15	AAR58108	[Arg14]-hPTH(1-38)
545	15	51.7	38	15	AAR58109	[Thr14]-hPTH(1-38)
546	15	51.7	38	15	AAR58110	[Ile14]-hPTH(1-38)
547	15	51.7	38	15	AAR58111	[Tyr14]-hPTH(1-38)
548	15	51.7	38	15	AAR58115	[Lys16]-hPTH(1-38)
549	15	51.7	38	15	AAR58116	[Ser16]-hPTH(1-38)
550	15	51.7	38	15	AAR58117	[Leu16]-hPTH(1-38)
551	15	51.7	38	15	AAR58118	[Ala16] -hPTH(1-38)
552	15	51.7	38	15	AAR58119	[Gly16] -hPTH(1-38)
553	14	48.3	30	23	AAU73060	Parathyroid hormon
554	14	48.3	34	9	AAP82177	Sequence of parath
555	14	48.3	34	11	AAR07917	Rat parathyroid ho
556	14	48.3	34	11	AAR07920	Rat parathyroid ho
557	14	48.3	34	14	AAR41568	[Lys15,16 His27]hP
558	14	48.3	34	14	AAR41569	[Lys15, 10 His27]HPTH
559	14	48.3	34	14	AAR41572	[Lys15, Mis2/]HFH [Lys15,16,17, His2
560	14	48.3	34	14	AAR41572 AAR41579	[Lys15,16,17, HIS2 [Lys15,15,17]hPTH
561	14	48.3	34	14	AAR41579 AAR41582	[Arg15,16,17] hPTH
562	14	48.3	34	16	AAR62432	Accelerator peptid
	14	48.3	34	17	AAR99980	Rat parathyroid ho
563	14	40.3	34	Τ.	HARJJJUU	kat parathyroid no

564	14	48.3	34	18	AAW19996	Cyclised rat parat
565	14	48.3	34	18	AAW20002	Cyclised rat parat
566	14	48.3	34	18	AAW20008	Cyclised rat parat
567	14	48.3	34	18	AAW17942	Human parathyroid
						Human parathyroid
568	14	48.3	34	18	AAW17952	
569	14	48.3	34	19	AAW67277	Parathyroid hormon
570	14	48.3	34	19	AAW67287	Parathyroid hormon
571	14	48.3	34	19	AAW48398	Human PTH/PTHrP hy
572	14	48.3	34	22	AAB84777	Native human parat
573	14	48.3	34	22	AAB96897	Rat parathyroid ho
574	14	48.3	34	22	AAB91100	Parathyroid hormon
575	14	48.3	34	23	AAU73037	Parathyroid hormon
				24		Parathyroid hormon
576	14	48.3	34		ABP71489	
577	14	48.3	34	24	ABP71499	Rat parathyroid ho
578	14	48.3	36	15	AAR58274	[Ala15] -hPTH(1-36)
579	14	48.3	36	15	AAR58071	[Aib3, Gln18]-hPTH
580	14	48.3	36	15	AAR58088	[1-amino-cyclopent
581	14	48.3	37	22	AAB86231	Rat parathyroid ho
582	14	48.3	38	15	AAR58061	[Ile15]-hPTH(1-38)
583	14	48.3	38	15	AAR58112	[Tyr15] -hPTH(1-38)
						[Arg15] -hPTH(1-38)
584	14	48.3	38	15	AAR58113	-
585	14	48.3	38	15	AAR58114	[Val15] -hPTH(1-38)
586	13	44.8	28	13	AAR22058	Modified bovine PT
587	13	44.8	28	13	AAR22059	Modified [Tyr_34]b
588	13	44.8	28	13	AAR22060	Modified [D-Trp_12
589	13	44.8	28	22	AAB91115	Parathyroid hormon
590	13	44.8	28	23	AAE18405	Bovine PTH peptide
591	13	44.8	28	23	AAU73046	Parathyroid hormon
						Parathyroid hormon
592	13	44.8	28	23	AAU73047	
593	13	44.8	28	23	AAU73050	Parathyroid hormon
594	13	44.8	28	23	AAU73066	Parathyroid hormon
595	13	44.8	30	23	AAU73057	Parathyroid hormon
596	13	44.8	31	5	AAP40510	Bovine parathyroid
597	13	44.8	31	21	AAY96975	Parathyroid hormon
598	13	44.8	32	22	AAB91096	Parathyroid hormon
599	13	44.8	32	23	AAE23739	Bovine parathyroid
600	13	44.8	32	23	AAE18402	Bovine PTH peptide
			32	23	AAU73042	Parathyroid hormon
601	13	44.8				
602	13	44.8	34	11	AAR07918	Bovine parathyroid
603	13	44.8	34	11	AAR07921	Bovine parathyroid
604	13	44.8	34	11	AAR08299	Bovine parathyroid
605	13	44.8	34	11	AAR08302	Bovine parathyroid
606	13	44.8	34	14	AAR41578	[Lys14,15,16,17]hP
607	13	44.8	34	15	AAR58195	[S14, I15, Q16, D17, L
608	13	44.8	34	17	AAR99979	Bovine parathyroid
609	13	44.8	34	18	AAW08124	Human PTH derivati
610	13	44.8	34	18	AAW08111	Human PTH derivati
611	13	44.8	34	18	AAW19995	Cyclised bovine pa
612	13	44.8	34	18	AAW20001	Cyclised bovine pa
613	13	44.8	34	18	AAW20007	Cyclised bovine pa
614	13	44.8	34	18	AAW17963	Human PTH analogue
615	13	44.8	34	19	AAW61659	Parathyroid hormon
616	13	44.8	34	19	AAW65976	Bovine parathyroid
617	13	44.8	34	19	AAW42615	Bovine parathyroid
						Bovine PTH N-termi
618	13	44.8	34	20	AAW81872	
619	13	44.8	34	23	AAE23738	Bovine parathyroid
620	13	44.8	34	23	AAE18394	Bovine PTH peptide

				0.0	3 3 1 1 7 2 0 2 4	Parathyroid hormon
621	13	44.8	34	23	AAU73034	Bovine parathyroid
622	13	44.8	37	22	AAB86230	
623	13	44.8	37	22	AAB86233	Canine parathyroid
624	13	44.8	37	23	ABB82204	Bovine parathyroid
625	12	41.4	34	14	AAY18002	Human PTH(1-34) de
626	12	41.4	34	17	AAW14308	Cyclic parathyroid
627	12	41.4	34	17	AAW14309	Cyclic parathyroid
628	12	41.4	34	17	AAW14312	Cyclic parathyroid
629	12	41.4	34	17	AAW14313	Cyclic parathyroid
630	12	41.4	34	17	AAW14314	Cyclic parathyroid
631	12	41.4	34	17	AAW14315	Cyclic parathyroid
632	12	41.4	34	18	AAW08122	Human PTH derivati
633	12	41.4	34	18	AAW08123	Human PTH derivati
634	12	41.4	34	20	AAY03923	Analogue of parath
	12	41.4	34	20	AAY03919	Analogue of parath
635						Parathyroid hormon
636	12	41.4	34	24	ABP71490	Parathyroid hormon
637	12	41.4	34	24	ABP71491	
638	12	41.4	34	24	ABP71492	Parathyroid hormon
639	12	41.4	34	24	ABP71494	Parathyroid hormon
640	12	41.4	36	15	AAR58208	[A13,Q26,F27,D-F34
641	11	37.9	28	13	AAR22061	Modified [Nle_8,18
642	11	37.9	28	13	AAR22062	Modified [Nle_8,18
643	11	37.9	28	13	AAR22067	Modified [Nle_8,_1
644	11	37.9	28	13	AAR22068	Modified [Nle_8,_1
645	11	37.9	28	21	ABJ10774	Human parathyroid
646	11	37.9	28	21	ABJ10775	Human parathyroid
647	11	37.9	28	23	AAE18404	Bovine PTH peptide
648	11	37.9	28	23	AAU73045	Parathyroid hormon
649	11	37.9	28	23	AAU73048	Parathyroid hormon
650	11	37.9	28	23	AAU73049	Parathyroid hormon
651	11	37.9	28	23	AAU73065	Parathyroid hormon
652	11	37.9	28	23	AAU73067	Parathyroid hormon
			30	22	AAB91089	Parathyroid hormon
653	11	37.9				Parathyroid hormon
654	11	37.9	30	22	AAB91092	Parathyroid hormon
655	11	37.9	30	23	AAU73056	
656	11	37.9	30	23	AAU73058	Parathyroid hormon
657	11	37.9	31	5	AAP40511	Bovine parathyroid
658	11	37.9	31	5	AAP40761	Human parathyroid
659	11	37.9	32	12	AAR14726	Human parathyroid
660	11	37.9	32	22	AAB91088	Parathyroid hormon
661	11	37.9	32	22	AAB91090	Parathyroid hormon
662	11	37.9	32	22	AAB91091	Parathyroid hormon
663	11	37.9	32	23	AAE18403	Bovine PTH peptide
664	11	37.9	32	23	AAU73041	Parathyroid hormon
665	11	37.9	32	23	AAU73043	Parathyroid hormon
666	11	37.9	33	17	AAW15814	[Leu(8), Trp(10), Al
667	11	37.9	34	6	AAP50517	Sequence of methio
668	11	37.9	34	11	AAR07924	Bovine parathyroid
669	11	37.9	34	11	AAR07925	Human parathyroid
670	11	37.9	34	11	AAR08305	Bovine parathyroid
671	11	37.9	34	11	AAR08306	Human parathyroid
672	11	37.9	34	13	AAR22295	Human parathyroid
673	11	37.9	34	15	AAR45528	Parathyroid hormon
674	11	37.9	34	15	AAR58239	Isopropyl-[Nle8,18
		37.9 37.9	34	15	AAR58241	[Nle8,18,D-Asn33,D
675	11					[L8,Q18,T33,A34]-h
676	11	37.9	34	15	AAR55817	[L8, A16, Q18, T33, A3
677	11	37.9	34	15	AAR55819	[10,410,010,133,43

678	11	37.9	34	15	AAR55821		[L8,D10,K11,Q18,T3
679	11	37.9	34	15	AAR55823		[L8,D10,K11,A16,Q1
680	11	37.9	34	15	AAR58021		[L8,D10,A16,Q18,T3
681	11	37.9	34	15	AAR58034		Isopropyl-[L8,K(Is
682	11	37.9	34	16	AAR69055		PTH analogue with
683	11	37.9	34	17	AAW15813		[Leu(8), Trp(10), Al]
684	11	37.9	34	17	AAW15815		[Leu(8), Trp(10), DL]
685	11	37.9	34	17	AAW15828		N-alpha-acylated [
686	11	37.9	34	17	AAW14316		Cyclic parathyroid
687	11	37.9	34	18	AAW13352		Truncated parathyr
688	11	37.9	34	18	AAW12651		Parathyroid hormon
689	11	37.9	34	18	AAW20004		Cyclised [Nle 8,18
690	11	37.9	34	18	AAW19997		Cyclised [Nle 8,18
691	11	37.9	34	18	AAW19998		Cyclised [Nle 8,18
692	11	37.9	34	18	AAW20003		Cyclised [Nle 8,18
693	11	37.9	34	18	AAW20009		Cyclised [Nle 8,18
694	11	37.9	34	18	AAW20010		Cyclised [Nle 8,18
695	11	37.9	34	18	AAW17940		Human PTH analogue
696	11	37.9	34	18	AAW17970		Human PTH analogue
697	11	37.9	34	18	AAW17964		Human PTH analogue
698	11	37.9	34	19	AAW67275		Parathyroid hormon
699	11	37.9	34	19	AAW61725		Parathyroid hormon
700	11	37.9	34	19	AAW66053		Parathyroid hormon
700	11	37.9	34	19	AAW42602		Parathyroid hormon
	11		34	19	AAW42802 AAW48395		Human PTH/PTHrP hy
702		37.9	34	20			Parathyroid hormon
703	11	37.9		20	AAY02587		Analogue of parath
704	11	37.9	34		AAW92218		
705	11	37.9	34	20	AAW92219		Analogue of parath
706	11	37.9	34	20	AAY03920		Analogue of parath
707	11	37.9	34	20	AAY03921	•	Analogue of parath
708	11	37.9	34	20	AAY03922		Analogue of parath
709	11	37.9	34	20	AAY03924		Analogue of parath
710	11	37.9	34	20	AAY03925		Analogue of parath
711	11	37.9	34	20	AAY03926		Analogue of parath
712	11	37.9	34	20	AAY03927		Analogue of parath
713	11	37.9	34	20	AAY03928		Analogue of parath
714	11	37.9	34	20	AAY03929		Analogue of parath
715	11	37.9	34	20	AAY03930		Analogue of parath
716	11	37.9	34	20	AAY03931		Analogue of parath
717	11	37.9	34	20	AAY03932		Analogue of parath
718	11	37.9	34	20	AAY03933		Analogue of parath
719	11	37.9	34	20	AAW92236		Analogue of parath
720	11	37.9	34	20	AAW92237		Analogue of parath
721	11	37.9	34	20	AAW92238		Analogue of parath
722	11	37.9	34	20	AAW92239		Analogue of parath
723	11	37.9	34	20	AAW92240		Analogue of parath
724	11	37.9	34	20	AAW92241		Analogue of parath
725	11	37.9	34	20	AAW92242		Analogue of parath
726	11	37.9	34	20	AAW92243		Analogue of parath
727	11	37.9	34	20	AAW92244		Analogue of parath
728	11	37.9	34	20	AAW92245		Analogue of parath
729	11	37.9	34	20	AAW92246		Analogue of parath
730	11	37.9	34	20	AAW92247		Analogue of parath
731	11	37.9	34	20	AAW92248		Analogue of parath
732	11	37.9	34	20	AAW92249		Analogue of parath
733	11	37.9	34	20	AAW92250		Analogue of parath
734	11	37.9	34	20	AAW92220		Analogue of parath

735	11	37.9	34	20	AAW92221	Analogue of parath
736	11	37.9	34	20	AAW92222	Analogue of parath
	11	37.9	34	20	AAW92223	Analogue of parath
737						Analogue of parath
738	11	37.9	34	20	AAW92224	Analogue of parath
739	11	37.9	34	20	AAW92225	-
740	11	37.9	34	20	AAW92226	Analogue of parath
741	11	37.9	34	20	AAW92227	Analogue of parath
742	11	37.9	34	20	AAW92228	Analogue of parath
743	11	37.9	34	20	AAW92229	Analogue of parath
744	11	37.9	34	20	AAW92230	Analogue of parath
745	11	37.9	34	20	AAW92231	Analogue of parath
746	11.	37.9	34	20	AAW92232	Analogue of parath
747	11	37.9	34	20	AAW92233	Analogue of parath
748	11	37.9	34	20	AAW92234	Analogue of parath
749	11	37.9	34	20	AAW92235	Analogue of parath
750	11	37.9	34	20	AAY03947	Analogue of parath
751	11	37.9	34	20	AAY03948	Analogue of parath
752	11	37.9	34	20	AAW92204	Analogue of parath
753	11	37.9	34	20	AAW92205	Analogue of parath
754	11	37.9	34	20	AAW92207	Analogue of parath
755	11	37.9	34	20	AAW92208	Analogue of parath
756	11	37.9	34	20	AAW92209	Analogue of parath
757	11	37.9	34	20	AAW92210	Analogue of parath
758	11	37.9	34	20	AAW92211	Analogue of parath
759	11	37.9	34	20	AAW92212	Analogue of parath
760	11	37.9	34	20	AAW92212 AAW92213	Analogue of parath
			34	20	AAW92213	Analogue of parath
761	11	37.9				Analogue of parath
762	11	37.9	34	20	AAW92215	
763	11	37.9	34	20	AAW92216	Analogue of parath
764	11	37.9	34	20	AAW92217	Analogue of parath
765	11	37.9	34	20	AAW92206	Analogue of parath
766	11	37.9	34	20	AAW92203	Analogue of parath
767	11	37.9	34	20	AAY03934	Analogue of parath
768	11	37.9	34	20	AAY03935	Analogue of parath
769	11	37.9	34	20	AAY03936	Analogue of parath
770	11	37.9	34	20	AAY03937	Analogue of parath
771	11	37.9	34	20	AAY03938	Analogue of parath
772	11	37.9	34	20	AAY03939	Analogue of parath
773	11	37.9	34	20	AAY03940	Analogue of parath
774	11	37.9	34	20	AAY03941	Analogue of parath
775	11	37.9	34	20	AAY03942	Analogue of parath
776	11	37.9	34	20	AAY03943	Analogue of parath
777	11	37.9	34	20	AAY03944	Analogue of parath
778	11	37.9	34	20	AAY03945	Analogue of parath
779	11	37.9	34	20	AAY03946	Analogue of parath
780	11	37.9	34	20	AAY03949	Analogue of parath
781	11	37.9	34	20	AAY03950	Analogue of parath
782	11	37.9	34	20	AAY03951	Analogue of parath
783	11	37.9	34	20	AAY03952	Analogue of parath
784	11	37.9	34	20	AAY03953	Analogue of parath
785	11	37.9	34	20	AAY03954	Analogue of parath
786	11	37.9	34	20	AAY03955	Analogue of parath
787	11	37.9	34	20	AAY03956	Analogue of parath
788	11	37.9	34	20	AAW92198	Analogue of parath
789	11	37.9	34	20	AAW92199	Analogue of parath
790	11	37.9	34	20	AAW92200	Analogue of parath
791	11	37.9	34	20	AAW92200 AAW92201	Analogue of parath
121	Τ.Τ	31.7	⊅ 4	20	AAN 744VI	indiogue or paracil

792	11	37.9	34	20	AAW92202	Analogue of parath
793	11	37.9	34	20	AAW92183	Analogue of parath
794	11	37.9	34	20	AAW92184	Analogue of parath
795	11	37.9	34	20	AAW92185	Analogue of parath
796	11	37.9	34	20	AAW92186	Analogue of parath
797	11	37.9	34	20	AAW92187	Analogue of parath
798	11	37.9	34	20	AAW92167	Analogue of parath
799	11	37.9	34	20	AAW92188	Analogue of parath
800	11	37.9	34	20	AAW92189	Analogue of parath
	11	37.9	34	20	AAW92190	Analogue of parath
801	11 11	37.9 37.9	34	20	AAW92191	Analogue of parath
802			34	20	AAW92192	Analogue of parath
803	11	37.9				Analogue of parath
804	11	37.9	34	20	AAW92193	Analogue of parath
805	11	37.9	34	20	AAW92194	Analogue of parath Analogue of parath
806	11	37.9	34	20	AAW92195	
807	11	37.9	34	20	AAW92196	Analogue of parath
808	11	37.9	34	20	AAW92197	Analogue of parath
809	11	37.9	34	20	AAW92166	Analogue of parath
810	11	37.9	34	20	AAW92168	Analogue of parath
811	11	37.9	34	20	AAW92169	Analogue of parath
812	11	37.9	34	20	AAW92170	Analogue of parath
813	11	37.9	34	20	AAW92171	Analogue of parath
814	11	37.9	34	20	AAW92172	Analogue of parath
815	11	37.9	34	20	AAW92173	Analogue of parath
816	11	37.9	34	20	AAW92174	Analogue of parath
817	11	37.9	34	20	AAW92175	Analogue of parath
818	11	37.9	34	20	AAW92176	Analogue of parath
819	11	37.9	34	20	AAW92177	Analogue of parath
820	11	37.9	34	20	AAW92178	Analogue of parath
821	11	37.9	34	20	AAW92179	Analogue of parath
822	11	37.9	34	20	AAW92180	Analogue of parath
823	11	37.9	34	20	AAW92181	Analogue of parath
824	11	37.9	34	20	AAW92182	Analogue of parath
825	11	37.9	34	20	AAW92152	Analogue of parath
826	11	37.9	34	20	AAW92150	Analogue of parath
827	11	37.9	34	20	AAW92151	Analogue of parath
828	11	37.9	34	20	AAW92153	Analogue of parath
829	11	37.9	34	20	AAW92154	Analogue of parath
830	11	37.9	34	20	AAW92155	Analogue of parath
831	11	37.9	34	20	AAW92156	Analogue of parath
832	11	37.9	34	20	AAW92157	Analogue of parath
833	11	37.9	34	20	AAW92158	Analogue of parath
834	11	37.9	34	20	AAW92159	Analogue of parath
835	11	37.9	34	20	AAW92160	Analogue of parath
836	11	37.9	34	20	AAW92161	Analogue of parath
837	11	37.9	34	20	AAW92162	Analogue of parath
838	11	37.9	34	20	AAW92163	Analogue of parath
839	11	37.9	34	20	AAW92164	Analogue of parath
840	11	37.9	34	20	AAW92165	Analogue of parath
841	11	37.9	34	20	AAW92148	Analogue of parath
842	11	37.9	34	20	AAW92149	Analogue of parath
843	11	37.9	34	20	AAW74396	Modified parathyro
844	11	37.9	34	20	AAW81945	Synthetic PTH and
845	11	37.9	34	21	ABJ10705	Human parathyroid
846	11	37.9	34	21	ABJ10707	Human parathyroid
847	11	37.9	34	21	ABJ10708	Human parathyroid
848	11	37.9	34	21	ABJ10709	Human parathyroid
-						-

849	11	37.9	34	21	ABJ10710	Human parathyroid
850	11	37.9	34	21	ABJ10711	Human parathyroid
851	11	37.9	34	21	ABJ10715	Human parathyroid
852	11	37.9	34	21	ABJ10716	Human parathyroid
853	11	37.9	34	21	ABJ10718	Human parathyroid
854	11	37.9	34	21	ABJ10720	Human parathyroid
855	11	37.9	34	21	ABJ10721	Human parathyroid
856	11	37.9	34	21	ABJ10723	Human parathyroid
857	11	37.9	34	21	ABJ10725	Human parathyroid
858	11	37.9	34	21	ABJ10726	Human parathyroid
859	11	37.9	34	21	ABJ10728	Human parathyroid
860	11	37.9	34	21	ABJ10731	Human parathyroid
861	11	37.9	34	21	ABJ10732	Human parathyroid
862	11	37.9	34	21	ABJ10734	Human parathyroid
863	11	37.9	34	21	ABJ10735	Human parathyroid
864	11	37.9	34	21	ABJ10738	Human parathyroid
865	11	37.9	34	21	ABJ10739	Human parathyroid
866	11	37.9	34	21	ABJ10740	Human parathyroid
867	11	37.9	34	21	ABJ10741	Human parathyroid
868	11	37.9	34	21	ABJ10743	Human parathyroid
869	11	37.9	34	21	ABJ10744	Human parathyroid
870	11	37.9	34	21	ABJ10745	Human parathyroid
871	11	37.9	34	21	ABJ10746	Human parathyroid
872	11	37.9	34	21	ABJ10747	Human parathyroid
873	11	37.9	34	21	ABJ10748	Human parathyroid
874	11	37.9	34	21	ABJ10749	Human parathyroid
875	11	37.9	34	21	ABJ10750	Human parathyroid
876	11	37.9	34	21	ABJ10751	Human parathyroid
877	11	37.9	34	21	ABJ10752	Human parathyroid
878	11	37.9	34	21	ABJ10753	Human parathyroid
879	11	37.9	34	21	ABJ10754	Human parathyroid
880	11	37.9	34	21	ABJ10755	Human parathyroid
881	11	37.9	34	21	ABJ10756	Human parathyroid
882	11	37.9	34	21	ABJ10761	Human parathyroid
883	11	37.9	34	21	ABJ10762	Human parathyroid
884	11	37.9	34	21	ABJ10763	Human parathyroid
885	11	37.9	34	21	ABJ10764	Human parathyroid
886	11	37.9	34	21	ABJ10765	Human parathyroid
887	11	37.9	34			Human parathyroid
888	11	37.9	34	21	ABJ10767	Human parathyroid
889	11	37.9	34	21	ABJ10768	Human parathyroid
890	11	37.9	34	21	ABJ10771	Human parathyroid
891	11	37.9	34	21	ABJ10777	Human parathyroid
892	11	37.9	34	22	AAB91084	Parathyroid hormon
893	11	37.9	34	23	AAE18396	Bovine PTH peptide
894	11	37.9	34	23	AAE18397	Human PTH peptide
895	11	37.9	34	23	AAU73033	Parathyroid hormon
896	11	37.9	34	23	AAU73035	Parathyroid hormon
897	11		35	2	AAP10140	h-PTH antigen. Sy
		37.9				Parathyroid hormon
898	11	37.9	35 35	16 16	AAR74512	Parathyroid hormon
899	11	37.9	35 35	16	AAR74513 AAR74514	Parathyroid hormon
900	11 11	37.9	35 35	16	AAR74514 AAR74515	Parathyroid hormon
901	11	37.9				Parathyroid hormon
902	11	37.9	35 35	16 16	AAR74516 AAR74517	Parathyroid hormon
903	11	37.9	35 35		AAR74517 AAR74518	Parathyroid hormon
904	11	37.9		16		Parathyroid hormon
905	11	37.9	35	16	AAR74519	Parachyrord normon

906	11	27 0	35	16	AAR74520	Parathyroid hormon
	11	37.9				Human parathyroid
907	11	37.9	35	16	AAR74527	Parathyroid hormon
908	11	37.9	35	16	AAR74506	=
909	11	37.9	35	16	AAR74507	Parathyroid hormon
910	11	37.9	35	16	AAR74508	Parathyroid hormon
911	11	37.9	35	16	AAR74509	Parathyroid hormon
912	11	37.9	35	16	AAR74510	Parathyroid hormon
913	11	37.9	35	16	AAR74511	Parathyroid hormon
914	11	37.9	35	16	AAR74464	Parathyroid hormon
915	11	37.9	35	16	AAR74465	Parathyroid hormon
916	11	37.9	35	16	AAR74466	Parathyroid hormon
917	11	37.9	35	16	AAR74467	Parathyroid hormon
918	11	37.9	35	16	AAR74468	Parathyroid hormon
919	11	37.9	35	16	AAR74469	Parathyroid hormon
920	11	37.9	35	16	AAR74470	Parathyroid hormon
921	11	37.9	35	16	AAR74471	Parathyroid hormon
922	11	37.9	35	16	AAR74472	Parathyroid hormon
923	11	37.9	35	16	AAR74473	Parathyroid hormon
924	11	37.9	35	16	AAR74474	Parathyroid hormon
925	11	37.9	35	16	AAR74475	Parathyroid hormon
926	11	37.9	35	16	AAR74476	Parathyroid hormon
927	11	37.9	35	16	AAR74477	Parathyroid hormon
928	11	37.9	35	16	AAR74478	Parathyroid hormon
929	11	37.9	35	16	AAR74479	Parathyroid hormon
930	11	37.9	35	16	AAR74448	Parathyroid hormon
931	11	37.9	35	16	AAR74449	Parathyroid hormon
932	11	37.9	35	16	AAR74450	Parathyroid hormon
933	11	37.9	35	16	AAR74451	Parathyroid hormon
934	11	37.9	35	16	AAR74452	Parathyroid hormon
935	11	37.9	35	16	AAR74453	Parathyroid hormon
936	11	37.9	35	16	AAR74454	Parathyroid hormon
937	11	37.9	35	16	AAR74455	Parathyroid hormon
938	11	37.9	35	16	AAR74456	Parathyroid hormon
939	11	37.9	35	16	AAR74457	Parathyroid hormon
940	11	37.9	35	16	AAR74458	Parathyroid hormon
941	11	37.9	35	16	AAR74459	Parathyroid hormon
942	11	37.9	35	16	AAR74460	Parathyroid hormon
943	11	37.9	35	16	AAR74461	Parathyroid hormon
944	11	37.9	35	16	AAR74462	Parathyroid hormon
945	11	37.9	35	16	AAR74463	Parathyroid hormon
946	11	37.9	35	16	AAR74432	Parathyroid hormon
947	11	37.9	35	16	AAR74433	Parathyroid hormon
948	11	37.9	35	16	AAR74433	Parathyroid hormon
	11		35	16	AAR74435	Parathyroid hormon
949 950	11	37.9	35	16	AAR74435 AAR74436	Parathyroid hormon
		37.9		16		Parathyroid hormon
951	11	37.9	35	16	AAR74437	Parathyroid hormon
952	11	37.9	35	16	AAR74438	Parathyroid hormon
953	11	37.9	35	16	AAR74439 AAR74440	Parathyroid hormon
954	11	37.9	35			
955 956	11	37.9	35	16	AAR74441	Parathyroid hormon
956	11	37.9	35	16	AAR74442	Parathyroid hormon
957	11	37.9	35	16	AAR74443	Parathyroid hormon
958	11	37.9	35	16	AAR74444	Parathyroid hormon
959	11	37.9	35	16	AAR74445	Parathyroid hormon
960	11	37.9	35	16	AAR74446	Parathyroid hormon
961	11	37.9	35	16	AAR74447	Parathyroid hormon
962	11	37.9	35	16	AAR74423	Parathyroid hormon

```
AAR74429
                                                               Parathyroid hormon
                          35
963
          11
                37.9
                              16
                                                               Parathyroid hormon
964
          11
                37.9
                          35
                              16
                                  AAR74430
          11
                37.9
                          35
                                                               Parathyroid hormon
965
                              16
                                  AAR74431
          11
                          35
                              16
                                                               Parathyroid hormon
966
                37.9
                                  AAR74398
                                                               Parathyroid hormon
          11
                37.9
                          35
                              16
967
                                  AAR74399
                                                               Parathyroid hormon
          11
                37.9
                         35
                              16
                                  AAR74400
968
                                                               Parathyroid hormon
          11
                37.9
                         35
                              16
                                  AAR74406
969
                                                               Parathyroid hormon
                37.9
                         35
                              16
                                  AAR74407
970
          11
                                                               Parathyroid hormon
971
          11
                37.9
                          35
                              16
                                  AAR74408
                          35
                              16
                                  AAR74409
                                                               Parathyroid hormon
972
          11
                37.9
          11
                37.9
                          35
                              16
                                  AAR74394
                                                               Parathyroid hormon
973
                37.9
          11
                          35
                              16
                                  AAR74395
                                                               Parathyroid hormon
974
                          35
                              16
                                                               Parathyroid hormon
975
          11
                37.9
                                  AAR74396
976
          11
                37.9
                          35
                              16
                                  AAR74397
                                                               Parathyroid hormon
977
          11
                37.9
                          36
                              12
                                  AAR14729
                                                               Human parathyroid
                37.9
                          36
                              15
                                                               [L8,D10,K11,L18]-h
978
          11
                                  AAR58042
979
          11
                37.9
                          36
                              15
                                  AAR58044
                                                               [L8,D10,K11,A17,L1
980
          11
                37.9
                          36
                              15
                                  AAR58055
                                                               [L8,Q18]-hPTH(1-36
          11
                          36
                              15
981
                37.9
                                  AAR58057
                                                               [L8, D10, A16, Q18] -h
982
          11
                37.9
                          36
                              15
                                  AAR55820
                                                               [L8, D10, K11, Q18] -h
                          36
                              15
                                  AAR55824
983
          11
                37.9
                                                               [L8,D10,K11,A16,Q1
          11
                37.9
                          36
                              15
                                 AAR58027
                                                               [A1,A3,L8,Q18]-hPT
984
                37.9
                          36
                              15
                                  AAR58031
                                                               [L8,K11,Q18]-hPTH(
985
          11
986
          11
                37.9
                          36
                              15
                                  AAR58072
                                                               Isopropyl-[L8,D10,
                              15
                                                               [L8, Y18] -hPTH(1-36
987
          11
                37.9
                          36
                                  AAR58074
                34.5
                          30
                              22
988
          10
                                  AAB84834
                                                               Parathyroid hormon
                              22
989
          10
                34.5
                          30
                                  AAB96905
                                                               Parathyroid hormon
990
          10
                34.5
                          31
                              20
                                  AAY02585
                                                               Parathyroid hormon
991
          10
                34.5
                          32
                              22
                                  AAB84835
                                                               Parathyroid hormon
992
          10
                34.5
                          32
                              22
                                  AAB96906
                                                               Parathyroid hormon
993
          10
                34.5
                          34
                              11
                                  AAR08298
                                                               Rat parathyroid ho
994
          10
                34.5
                          34
                              11
                                  AAR08301
                                                               Rat parathyroid ho
                                  AAR41548
995
          10
                34.5
                          34
                              14
                                                               Modified hPTH (1-3
996
          10
                34.5
                          34
                              15
                                  AAR58040
                                                               [L8,Q18,A29,E30,I3
997
          10
                34.5
                          34
                              15
                                  AAR58045
                                                               [L8,Q16,D17,L18,R1
998
          10
                34.5
                          34
                              15
                                  AAR58049
                                                               [L8,D10,K11,Q16,D1
999
          10
                34.5
                          34
                              15
                                  AAR58056
                                                               [L8,D10,K11,A16,Q1
1000
          10
                34.5
                          34
                              15
                                  AAR58058
                                                               [L8,D10,K11,A16,Q1
```

ALIGNMENTS

```
RESULT 1
AAR88836
ID
     AAR88836 standard; peptide; 29 AA.
XX
AC
     AAR88836;
XX
DT
     07-OCT-1996
                  (first entry)
XX
DE
     Human parathyroid hormone analogue, hPTH(1-29)-NH2.
XX
KW
     Parathyroid hormone; PTH; analogue; osteoporosis; bone cell;
KW
     calcium regulation; reduced PKC activity; protein kinase C;
KW
     increased adenylyl cyclase activity; cAMPase; bone loss.
XX
```

```
OS
    Synthetic.
XX
                    Location/Qualifiers
FΗ
    Key
    Modified-site
                    29
FT
                     /note= "amidated"
FT
XX
    CA2126299-A.
PN
XX
PD
     21-DEC-1995.
ХX
                    94CA-2126299.
PF
     20-JUN-1994;
XX
                    94CA-2126299.
PR
     20-JUN-1994;
XX
     (WILL/) WILLICK G E.
PΑ
XX
     Neugebauer W, Sung WL, Surewicz W, Whitfield JF;
ΡI
     Willick GE;
ΡI
XX
     WPI; 1996-151754/16.
DR
XX
     New human parathyroid hormone analogues - which have increased
PT
     adenylyl cyclase activating activity, used for treating osteoporosis
PT
XX
     Claim 1; Fig 9; 21pp; English.
PS
XX
     AAR88829-R88841 are human parathyroid hormone (hPTH) analogues. The
CC
     analogues increase G-protein coupled adenylyl cyclase (cAMPase)
CC
     activity and reduce protein kinase C (PKC) activity. The analogues
CC
     can reverse the loss of bone and increase bone mass and density
CC
     without undesirable effects. They are useful for the treatment of
CC
     osteoporosis and other bone related disorders and disorders
CC
     involving bone cell calcium regulation.
CC
XX
SO
     Sequence
                29 AA;
                          100.0%; Score 29; DB 17; Length 29;
  Query Match
                          100.0%; Pred. No. 5.6e-22;
  Best Local Similarity
                                                  0; Indels
                                                                 0; Gaps
                                                                             0:
           29; Conservative 0; Mismatches
  Matches
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
QУ
              Db
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
RESULT 2
AAU73063
     AAU73063 standard; Peptide; 29 AA.
ID
XX
AC
     AAU73063;
XX
DT
     12-MAR-2002
                  (first entry)
XX
     Parathyroid hormone PTH/PTHrP modulating domain #45.
DE
XX
     Human; parathyroid hormone; PTH; parathyroid hormone-related protein;
KW
     PTHrP; bone resorption inhibitor; osteoprotegrin; OPG; OPG-L antibody;
KW
```

```
calcitonin; bisphosphonate; oestrogen; oestrogen receptor; tibolone;
KW
     osteopenia; hyperthyroidism; hypercalcaemia; tumour metastasis; bone;
KW
     breast cancer; prostate cancer; cachexia; anorexia; osteoporosis;
KW
     Paget's disease; osteomyelitis; osteonecrosis; bone cell death;
KW
     Gaucher's disease; sickle cell anaemia; systemic lupus erythematosus;
KW
     rheumatoid arthritis; periodontal disease; alopecia; fracture repair;
KW
     immunoglobulin G; IgG.
KW
XX
OS
     Homo sapiens.
XX
PN
     WO200181415-A2.
XX
     01-NOV-2001.
PD
XX
ΡF
     27-APR-2001; 2001WO-US13528.
XX
     27-APR-2000; 2000US-200053P.
PR
     28-JUN-2000; 2000US-214860P.
PR
PR
     06-FEB-2001; 2001US-266673P.
PR
     26-APR-2001; 2001US-0843221.
XX
     (AMGE-) AMGEN INC.
PΑ
XX
PI
     Kostenuik P, Liu C, Lacey DL;
XX
     WPI; 2002-066435/09.
DR
XX
     Composition, useful for treating osteopenia, comprises parathyroid
PT
     hormone and parathyroid hormone-related protein receptor modulators -
PT
XX
     Disclosure; Page 27; 107pp; English.
PS
XX
     The invention relates to a composition (I) comprising modulators of
CC
     parathyroid hormone (PTH) and parathyroid hormone-related protein (PTHrP)
CC
     which comprise a PTH/PTHrP modulating domain and a vehicle. (I)
CC
     comprising PTH agonist optionally with a bone resorption inhibitor, such
CC
     as osteoprotegrin (OPG), OPG-L antibody, calcitonin, bisphosphonates,
CC
     oestrogens, oestrogen receptor modulators and tibolone is useful for
CC
     treating osteopenia. (I) is useful for therapeutic and prophylactic
CC
     purposes. Antagonists of PTH receptor are useful in treating primary and
CC
     secondary hyperthyroidism, hypercalcaemia, tumour metastases,
CC
     particularly breast and prostate cancer, cachexia and anorexia,
CC
     osteopenia, including various forms of osteoporosis, Paget's disease of
CC
     bone, osteomyelitis, osteonecrosis or bone cell death, associated with
CC
     traumatic injury or nontraumatic necrosis associated with Gaucher's
CC
     disease, sickle cell anaemia, systemic lupus erythematosus, rheumatoid
CC
     arthritis, periodontal disease and alopecia. PTH receptor agonists are
CC
     useful as therapeutic agents in conditions including fracture repair
CC
     (including healing of non-union fractures), osteopenia, including various
CC
     forms of osteoporosis. AAU73018-AAU73181 represent parathyroid hormone
CC
     and parathyroid hormone related protein (PTH/PTHrP) modulators and
CC
CC
     related amino acid sequences of the invention.
XX
SO
     Sequence
                29 AA;
                          100.0%; Score 29; DB 23; Length 29;
  Query Match
                          100.0%; Pred. No. 5.6e-22;
  Best Local Similarity
```

```
0; Mismatches
  Matches
           29; Conservative
                                                   0; Indels
                                                                    Gaps
                                                                 0;
Qу
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
              Db
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
RESULT 3
AAR88832
    AAR88832 standard; peptide; 30 AA.
XX
AC
    AAR88832;
XX
DT
     07-OCT-1996 (first entry)
XX
DE
    Human parathyroid hormone analogue, hPTH(1-30)-NH2.
XX
KW
     Parathyroid hormone; PTH; analogue; osteoporosis; bone cell;
KW
     calcium regulation; reduced PKC activity; protein kinase C;
KW
     increased adenylyl cyclase activity; cAMPase; bone loss.
XX
OS
     Synthetic.
XX
FΗ
                     Location/Qualifiers
     Key
FT
     Modified-site
FT
                     /note= "amidated"
XX
PN
    CA2126299-A.
XX
PD
     21-DEC-1995.
XX
PF
     20-JUN-1994;
                    94CA-2126299.
XX
PR
     20-JUN-1994;
                    94CA-2126299.
XX
PA
     (WILL/) WILLICK G E.
XX
PΙ
    Neugebauer W, Sung WL, Surewicz W, Whitfield JF;
ΡI
    Willick GE;
XX
DR
    WPI; 1996-151754/16.
XX
PT
    New human parathyroid hormone analogues - which have increased
PΤ
    adenylyl cyclase activating activity, used for treating osteoporosis
XX
PS
    Claim 1; Fig 5; 21pp; English.
XX
CC
    AAR88829-R88841 are human parathyroid hormone (hPTH) analogues. The
CC
    analogues increase G-protein coupled adenylyl cyclase (cAMPase)
CC
    activity and reduce protein kinase C (PKC) activity. The analogues
CC
    can reverse the loss of bone and increase bone mass and density
    without undesirable effects. They are useful for the treatment of
CC
CC
    osteoporosis and other bone related disorders and disorders
CC
     involving bone cell calcium regulation.
XX
SQ
    Sequence
               30 AA;
```

0;

```
100.0%; Pred. No. 5.7e-22;
 Best Local Similarity
                               0; Mismatches
                                                 0; Indels
                                                                0; Gaps
                                                                            0;
 Matches
           29; Conservative
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
Qу
              Db
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
RESULT 4
AAU73051
ID
    AAU73051 standard; Peptide; 30 AA.
XX
AC
    AAU73051;
XX
DT
    12-MAR-2002 (first entry)
XX
DΕ
    Parathyroid hormone PTH/PTHrP modulating domain #33.
XX
KW
    Human; parathyroid hormone; PTH; parathyroid hormone-related protein;
    PTHrP; bone resorption inhibitor; osteoprotegrin; OPG; OPG-L antibody;
KW
KW
     calcitonin; bisphosphonate; oestrogen; oestrogen receptor; tibolone;
     osteopenia; hyperthyroidism; hypercalcaemia; tumour metastasis; bone;
KW
    breast cancer; prostate cancer; cachexia; anorexia; osteoporosis;
KW
     Paget's disease; osteomyelitis; osteonecrosis; bone cell death;
KW
KW
    Gaucher's disease; sickle cell anaemia; systemic lupus erythematosus;
     rheumatoid arthritis; periodontal disease; alopecia; fracture repair;
KW
KW
     immunoglobulin G; IgG.
XX
OS
    Homo sapiens.
XX
PN
    WO200181415-A2.
XX
PD
     01-NOV-2001.
XX
PF
     27-APR-2001; 2001WO-US13528.
XX
PR
     27-APR-2000; 2000US-200053P.
     28-JUN-2000; 2000US-214860P.
PR
PR
     06-FEB-2001; 2001US-266673P.
     26-APR-2001; 2001US-0843221.
PR
XX
PΑ
     (AMGE-) AMGEN INC.
XX
PI
     Kostenuik P, Liu C, Lacey DL;
XX
DR
    WPI; 2002-066435/09.
XX
PT
     Composition, useful for treating osteopenia, comprises parathyroid
PT
    hormone and parathyroid hormone-related protein receptor modulators -
XX
PS
    Disclosure; Page 27; 107pp; English.
XX
CC
     The invention relates to a composition (I) comprising modulators of
     parathyroid hormone (PTH) and parathyroid hormone-related protein (PTHrP)
CC
CC
     which comprise a PTH/PTHrP modulating domain and a vehicle. (I)
CC
     comprising PTH agonist optionally with a bone resorption inhibitor, such
```

100.0%; Score 29; DB 17; Length 30;

Query Match

```
as osteoprotegrin (OPG), OPG-L antibody, calcitonin, bisphosphonates,
CC
    oestrogens, oestrogen receptor modulators and tibolone is useful for
CC
    treating osteopenia. (I) is useful for therapeutic and prophylactic
CC
    purposes. Antagonists of PTH receptor are useful in treating primary and
CC
    secondary hyperthyroidism, hypercalcaemia, tumour metastases,
CC
    particularly breast and prostate cancer, cachexia and anorexia,
CC
    osteopenia, including various forms of osteoporosis, Paget's disease of
CC
    bone, osteomyelitis, osteonecrosis or bone cell death, associated with
CC
     traumatic injury or nontraumatic necrosis associated with Gaucher's
CC
    disease, sickle cell anaemia, systemic lupus erythematosus, rheumatoid
CC
    arthritis, periodontal disease and alopecia. PTH receptor agonists are
CC
    useful as therapeutic agents in conditions including fracture repair
CC
     (including healing of non-union fractures), osteopenia, including various
CC
     forms of osteoporosis. AAU73018-AAU73181 represent parathyroid hormone
CC
     and parathyroid hormone related protein (PTH/PTHrP) modulators and
CC
CC
     related amino acid sequences of the invention.
XX
                30 AA;
SQ
     Sequence
                          100.0%; Score 29; DB 23; Length 30;
  Query Match
                          100.0%; Pred. No. 5.7e-22;
  Best Local Similarity
                                0; Mismatches
                                                  0; Indels
                                                                 0; Gaps
                                                                             0;
  Matches
            29; Conservative
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
Qу
              1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
Db
RESULT 5
AAU73178
ID
     AAU73178 standard; Peptide; 30 AA.
XX
AC
     AAU73178;
XX
DT
     12-MAR-2002 (first entry)
XX
     Parathyroid hormone PTH/PTHrP modulating domain #160.
DE
XX
     Human; parathyroid hormone; PTH; parathyroid hormone-related protein;
KW
     PTHrP; bone resorption inhibitor; osteoprotegrin; OPG; OPG-L antibody;
KW
     calcitonin; bisphosphonate; oestrogen; oestrogen receptor; tibolone;
KW
     osteopenia; hyperthyroidism; hypercalcaemia; tumour metastasis; bone;
KW
     breast cancer; prostate cancer; cachexia; anorexia; osteoporosis;
KW
     Paget's disease; osteomyelitis; osteonecrosis; bone cell death;
KW
     Gaucher's disease; sickle cell anaemia; systemic lupus erythematosus;
KW
     rheumatoid arthritis; periodontal disease; alopecia; fracture repair;
KW
KW
     immunoglobulin G; IgG.
XX
OS
     Synthetic.
XX
     WO200181415-A2.
PN
XX
PD
     01-NOV-2001.
XX
PF
     27-APR-2001; 2001WO-US13528.
XX
PR
     27-APR-2000; 2000US-200053P.
```

```
28-JUN-2000; 2000US-214860P.
PR
    06-FEB-2001; 2001US-266673P.
PR
    26-APR-2001; 2001US-0843221.
PR
XX
     (AMGE-) AMGEN INC.
PA
XX
    Kostenuik P, Liu C, Lacey DL;
PΙ
XX
    WPI; 2002-066435/09.
DR
XX
    Composition, useful for treating osteopenia, comprises parathyroid
РΤ
    hormone and parathyroid hormone-related protein receptor modulators -
PT
XX
PS
    Disclosure; Page 63; 107pp; English.
XX
CC
    The invention relates to a composition (I) comprising modulators of
     parathyroid hormone (PTH) and parathyroid hormone-related protein (PTHrP)
CC
    which comprise a PTH/PTHrP modulating domain and a vehicle. (I)
CC
     comprising PTH agonist optionally with a bone resorption inhibitor, such
CC
     as osteoprotegrin (OPG), OPG-L antibody, calcitonin, bisphosphonates,
CC
     oestrogens, oestrogen receptor modulators and tibolone is useful for
CC
     treating osteopenia. (I) is useful for therapeutic and prophylactic
CC
     purposes. Antagonists of PTH receptor are useful in treating primary and
CC
     secondary hyperthyroidism, hypercalcaemia, tumour metastases,
CC
     particularly breast and prostate cancer, cachexia and anorexia,
CC
CC
     osteopenia, including various forms of osteoporosis, Paget's disease of
     bone, osteomyelitis, osteonecrosis or bone cell death, associated with
CC
     traumatic injury or nontraumatic necrosis associated with Gaucher's
CC
     disease, sickle cell anaemia, systemic lupus erythematosus, rheumatoid
CC
     arthritis, periodontal disease and alopecia. PTH receptor agonists are
CC
     useful as therapeutic agents in conditions including fracture repair
CC
     (including healing of non-union fractures), osteopenia, including various
CC
     forms of osteoporosis. AAU73018-AAU73181 represent parathyroid hormone
CC
     and parathyroid hormone related protein (PTH/PTHrP) modulators and
CC
CC
     related amino acid sequences of the invention.
XX
SQ
     Sequence
                30 AA;
  Query Match
                          100.0%; Score 29; DB 23; Length 30;
  Best Local Similarity
                          100.0%; Pred. No. 5.7e-22;
          29; Conservative 0; Mismatches
  Matches
                                                 0; Indels
                                                                 0;
                                                                    Gaps
                                                                             0;
Qу
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
              Db
            2 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 30
RESULT 6
AAW42059
ID
     AAW42059 standard; peptide; 31 AA.
XX
AC
    AAW42059;
XX
DT
     06-JUL-1998 (first entry)
XX
     Human parathyroid hormone cyclic peptide analogue SEQ ID {\tt NO:14}.
DE
XX
```

```
Human; parathyroid hormone; hPTH; cyclic; osteoporosis; fracture;
KW
     hypotensive action; bone.
KW
XX
OS
     Synthetic.
OS
     Homo sapiens.
XX
                     Location/Qualifiers
FΗ
     Kev
FT
     Modified-site
                     /note= "Glu is bound to Lys at position 26 to form
FT
                             a cyclic structure"
FT
FT
     Modified-site
                     26
                     /note= "Lys is bound to Glu at position 22 to form
FT
FT
                             a cyclic structure"
FT
     Modified-site
                     31
                     /note= "amidated"
FT
XX
     WO9805683-A1.
PN
XX
PD
     12-FEB-1998.
XX
PF
     01-AUG-1997;
                    97WO-CA00547.
XX
PR
     14-MAR-1997;
                    97US-0040560.
PR
     02-AUG-1996;
                    96US-0691647.
XX
PΑ
     (CANA ) NAT RES COUNCIL CANADA.
XX
PΙ
     Barbier J, Morley P, Neugebauer W, Ross V, Whitfield J;
PI
     Willick GE;
XX
DR
     WPI; 1998-145550/13.
XX
PT
     Cyclic human parathyroid hormone peptide(s) with 27Lys substitution
PT
     - for treating osteoporosis and fractures, also method for screening
PT
     osteogenic peptide(s) based on their hypotensive action
XX
PS
     Claim 41; Fig 21; 77pp; English.
XX
CC
     The present sequence represents a human parathyroid hormone (hPTH)
     (1-31) peptide analogue. The present invention also describes a method
CC
CC
     for screening peptides for osteogenic activity by subcutaneous injection
CC
     of a test compound and seeing if a small drop in arterial pressure
CC
     occurs after a short time. The hPTH peptide analogue can be useful for
CC
     stimulating bone growth, restoring bone and promoting bone healing,
CC
     especially treatment of osteoporosis and normal fractures. The hPTH
CC
     peptide analogue can be administered by injection or inhalation,
CC
     rectally or orally, generally at at most 0.05 mg/kg/day. Substitution
CC
     of Lys26 stabilises an alpha-helix in the receptor-binding region of
     the hormone and increases adenylyl cyclase (AC) activity, while
CC
     cyclisation increases stability against proteases. The screening method,
CC
CC
     which can be performed in intact female animals, is a quick and simple
     way of identifying inactive compounds, avoiding the need for long-term,
CC
CC
     expensive tests on ovariectomised animals.
XX
SO
     Sequence 31 AA;
```

100.0%; Score 29; DB 19; Length 31;

Query Match

```
Best Local Similarity 100.0%; Pred. No. 5.9e-22;
                                                                            0;
 Matches
           29; Conservative 0; Mismatches 0; Indels
                                                                0; Gaps
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
QУ
              1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
Db
RESULT 7
AAW42051
    AAW42051 standard; peptide; 31 AA.
ID
XX
AC
    AAW42051;
XX
     06-JUL-1998 (first entry)
DT
XX
    Human parathyroid hormone cyclic peptide analogue SEQ ID NO:6.
DE
XX
KW
     Human; parathyroid hormone; hPTH; cyclic; osteoporosis; fracture;
KW
    hypotensive action; bone.
XX
OS
     Synthetic.
OS
     Homo sapiens.
XX
FH
     Kev
                     Location/Qualifiers
FT
     Modified-site
FT
                     /note= "Lys is bound to Asp at position 30 to form
FT
                            a cyclic structure"
FΤ
     Modified-site
                     30
FT
                     /note= "Asp is bound to Lys at position 27 to form
FT
                            a cyclic structure"
FT
     Modified-site
                     31
FT
                     /note= "amidated"
XX
PN
     WO9805683-A1.
XX
PD
     12-FEB-1998.
XX
PF
     01-AUG-1997;
                    97WO-CA00547.
XX
PR
     14-MAR-1997;
                    97US-0040560.
PR
     02-AUG-1996;
                    96US-0691647.
XX
PΑ
     (CANA ) NAT RES COUNCIL CANADA.
XX
PΙ
     Barbier J, Morley P, Neugebauer W, Ross V, Whitfield J;
PΙ
     Willick GE;
XX
DR
     WPI; 1998-145550/13.
XX
PT
     Cyclic human parathyroid hormone peptide(s) with 27Lys substitution
PT
     - for treating osteoporosis and fractures, also method for screening
PT
     osteogenic peptide(s) based on their hypotensive action
XX
PS
     Claim 33; Fig 10; 77pp; English.
XX
     The present sequence represents a human parathyroid hormone (hPTH)
```

CC

```
for screening peptides for osteogenic activity by subcutaneous injection
CC
    of a test compound and seeing if a small drop in arterial pressure
CC
    occurs after a short time. The hPTH peptide analogue can be useful for
CC
    stimulating bone growth, restoring bone and promoting bone healing,
CC
    especially treatment of osteoporosis and normal fractures. The hPTH
CC
    peptide analogue can be administered by injection or inhalation,
CC
     rectally or orally, generally at at most 0.05 mg/kg/day. Substitution
CC
     of Lys26 stabilises an alpha-helix in the receptor-binding region of
CC
     the hormone and increases adenylyl cyclase (AC) activity, while
CC
     cyclisation increases stability against proteases. The screening method,
CC
     which can be performed in intact female animals, is a quick and simple
CC
     way of identifying inactive compounds, avoiding the need for long-term,
CC
     expensive tests on ovariectomised animals.
CC
XX
SO
     Sequence
                31 AA;
                          100.0%; Score 29; DB 19; Length 31;
  Query Match
                          100.0%; Pred. No. 5.9e-22;
  Best Local Similarity
                                                0; Indels
                                                                             0;
  Matches
           29; Conservative
                                 0; Mismatches
                                                                     Gaps
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
Qy
              Db
            1 SVSEIOLMHNLGKHLNSMERVEWLRKKLO 29
RESULT 8
AAY02578
     AAY02578 standard; peptide; 31 AA.
ΙD
XX
AC
     AAY02578;
XX
DT
     16-JUL-1999 (first entry)
XX
DE
     N-terminal 31 residues of human parathyroid hormone (hPTH).
XX
KW
     Human parathyroid hormone; hPTH; bone mass;
     3-(substituted phenoxy)benzo(b)thiophene compound;
KW
     bone loss treatment; osteoporosis.
KW
XX
OS
     Homo sapiens.
XX
ΡN
     WO9918945-A1.
XX
PD
     22-APR-1999.
XX
PF
     05-OCT-1998;
                    98WO-US20848.
XX
PR
     14-OCT-1997;
                    97US-0061800.
XX
     (ELIL ) LILLY & CO ELI.
PΑ
XX
PI
     Sato M;
XX
DR
     WPI; 1999-287871/24.
XX
PT
     Method of building bone mass by co-administration of a parathyroid
```

(1-31) peptide analogue. The present invention also describes a method

CC

```
XX
    Claim 6; Page 39; 48pp; English.
PS
XX
    The present sequence represents a fragment of human parathyroid hormone
CC
     (hPTH). hPTH and its fragments are used in the method of the invention.
CC
    The specification describes a method for building bone mass, comprising
CC
     coadministration of a parathyroid hormone with a 3-(substituted
CC
    phenoxy) benzo(b) thiophene compound. The method is used for treatment
CC
CC
    of bone loss, e.g. in osteoporosis.
XX
SQ
     Sequence
               31 AA;
                          100.0%; Score 29; DB 20; Length 31;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 5.9e-22;
                                                 0; Indels
                                                                    Gaps
                                                                            0;
  Matches
           29; Conservative
                               0; Mismatches
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
Qу
              Db
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
RESULT 9
AAB81080
     AAB81080 standard; peptide; 31 AA.
ID
XX
AC
     AAB81080;
XX
DT
     26-JUN-2001 (first entry)
XX
DE
     Human parathyroid hormone 1-31.
XX
     Parathyroid hormone; PTH; blood calcium level regulator; osteopathic;
KW
     vulnerary; bone growth; bone healing; osteoporosis; fracture; human.
KW
XX
OS
     Homo sapiens.
XX
FΗ
                     Location/Qualifiers
     Key
FT
     Modified-site
                     /note= "C-terminal amide"
FT
XX
PN
     WO200121643-A2.
XX
PD
     29-MAR-2001.
XX
     21-SEP-2000; 2000WO-CA01083.
PF
XX
PR
     22-SEP-1999;
                    99US-0406813.
XX
PΑ
     (CANA ) NAT RES COUNCIL CANADA.
XX
     Barbier J, Morley P, Whitfield J, Willick GE;
PΙ
XX
DR
     WPI; 2001-308081/32.
XX
     New human parathyroid hormone (HPTH) analog useful for stimulating bone
PT
     growth, for restoring bone, for promotion of bone healing, and for
PT
```

hormone with a 3-(substituted phenoxy)benzo(b)thiophene compound

PT

```
XX
PS
     Disclosure; Fig 2; 34pp; English.
XX
     Parathyroid hormone (PTH) is a major regulator of blood calcium levels,
CC
     this invention relates to hPTH analogues, or their salts. Use of the
CC
     analogues results in osteopathic and vulnerary activity. The hPTH
CC
     analogues are useful for treating a warm-blooded animal for stimulating
CC
     bone growth, for restoring bone, and for the promotion of bone healing
CC
CC
     during the treatment of osteoporosis and normal fractures. The present
     sequence represents human parathyroid hormone hPTH-NH2.
CC
XX
SQ
     Sequence
               31 AA;
  Query Match
                         100.0%; Score 29; DB 22; Length 31;
                         100.0%; Pred. No. 5.9e-22;
  Best Local Similarity
                              0; Mismatches
  Matches
           29; Conservative
                                                0; Indels
                                                                0; Gaps
                                                                            0;
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
Qу
              Db
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
RESULT 10
AAB91097
     AAB91097 standard; Peptide; 31 AA.
ΙD
XX
AC
     AAB91097;
XX
DT
     22-JUN-2001 (first entry)
XX
DE
     Parathyroid hormone (PTH) related peptide SEQ ID NO:271.
XX
KW
     Protection; endogenous therapeutic peptide; peptidase; conjugation;
KW
     blood component; modification; succinimidyl; maleimido group; amino;
     hydroxyl; thiol; hormone; growth factor; neurotransmitter.
KW
XX
OS
     Homo sapiens.
OS
     Synthetic.
XX
PN
     WO200069900-A2.
XX
PD
     23-NOV-2000.
XX
PF
     17-MAY-2000; 2000WO-US13576.
XX
PR
     17-MAY-1999:
                    99US-0134406.
PR
     10-SEP-1999:
                    99US-0153406.
PR
     15-OCT-1999;
                    99US-0159783.
XX
PΑ
     (CONJ-) CONJUCHEM INC.
XX
ΡI
     Bridon DP, Ezrin AM, Milner PG, Holmes DL, Thibaudeau K;
XX
DR
     WPI; 2001-112059/12.
XX
PT
     Modifying and attaching therapeutic peptides to albumin prevents
```

treating osteoporosis and normal fractures -

PT

```
peptidase degradation, useful for increasing length of in vivo activity
PT
PT
XX
     Disclosure; Page 281; 733pp; English.
PS
XX
     The present invention describes a modified therapeutic peptide (I)
CC
     comprising a therapeutically active amino acid region (III) and a
CC
     reactive group (II) (e.g. succinimidyl and maleimido groups) attached to
CC
     a less therapeutically active amino acid region (IV), which covalently
CC
     bonds with amino/hydroxyl/thiol groups on blood components to form a
CC
     peptidase stabilised therapeutic peptide composed of 3-50 amino acids.
CC
     (I) are useful for modifying therapeutic peptides e.g. hormones, growth
CC
     factors and neurotransmitters, to protect them from peptidase activity
CC
     in vivo for the treatment of various disorders. Endogenous therapeutic
CC
     peptides are not suitable as drug candidates as they require frequent
CC
     administration due to rapid degradation by peptidases in the body.
CC
     Modifying and attaching therapeutic peptides to albumin prevents or
CC
     reduces the action of peptidases to increase length of activity (half
CC
     life) and specificity as bonding to large molecules decreases
CC
     intracellular uptake and interference with physiological processes.
CC
     AAB90829 to AAB92441 represent peptides which can be used in the
CC
     exemplification of the present invention.
CC
XX
SQ
     Sequence
                31 AA;
                          100.0%; Score 29; DB 22; Length 31;
  Query Match
                          100.0%; Pred. No. 5.9e-22;
  Best Local Similarity
                               0; Mismatches
                                                 0; Indels
                                                                 0; Gaps
                                                                             0;
           29: Conservative
  Matches
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
Qу
               11111111111111
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
Dh
RESULT 11
AAE23720
     AAE23720 standard; peptide; 31 AA.
TD
XX
AC
     AAE23720;
XX
DT
     10-SEP-2002 (first entry)
XX
     Human parathyroid hormone (hPTH) peptide (1-31).
DE
XX
     Human parathyroid hormone; hPTH; PTH-related peptide; PTHrP; eczema;
KW
     hyperproliferative skin disorder; psoriasis; ichthyosis; skin cancer;
KW
KW
     acne; actinic keratosis; alopecia; gene therapy.
XX
OS
     Homo sapiens.
XX
PN
     WO200228420-A2.
XX
PD
     11-APR-2002.
XX
PF
     05-OCT-2001; 2001WO-US31082.
XX
PR
     06-OCT-2000; 2000US-238134P.
```

```
XX
     (HOLI/) HOLICK M F.
PΑ
XX
PΙ
    Holick MF;
XX
    WPI; 2002-452304/48.
DR
    N-PSDB; AAD37995.
DR
XX
     Regulating mammalian skin or hair cell proliferation and
PT
     differentiation by administering nucleic acids encoding peptides
PT
     derived from N-terminal region of human parathyroid hormone (hPTH) or
PT
PT
     hPTH-related protein
XX
     Disclosure; Fig 8; 56pp; English.
PS
XX
     The invention relates to a method for regulating proliferation or
CC
     enhancing differentiation of mammalian skin or hair cell. The method
CC
     involves administering nucleic acids encoding peptides derived from
CC
     N-terminal region of human parathyroid hormone (hPTH) or hPTH-related
CC
     peptide (PTHrP). The method is used for inhibiting hyperproliferative
CC
     skin disorders such as psoriasis, ichthyosis, eczema, acne, actinic
CC
     keratosis, skin cancer, for inhibiting hair growth or preventing hair
CC
     regrowth. It is useful for stimulating cell growth, rejuvenating aged
CC
     skin, preventing skin wrinkles, treating skin wrinkles, enhancing wound
CC
     healing, stimulating hair growth, maintaining hair growth, treating or
CC
     preventing female or male pattern baldness, for treating chemotherapy
CC
     induced alopecia and also for stimulating epidermal cell growth or
CC
     hair follicle cell growth. The method is also used in gene therapy.
CC
     The present sequence is hPTH peptide.
CC
XX
     Sequence
                31 AA;
SQ
                          100.0%; Score 29; DB 23; Length 31;
  Query Match
                          100.0%; Pred. No. 5.9e-22;
  Best Local Similarity
                                                                             0:
                                                0; Indels
                                                                 0; Gaps
           29; Conservative
                                0; Mismatches
  Matches
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
Qу
              1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
Db
RESULT 12
AAU73039
     AAU73039 standard; Peptide; 31 AA.
ID
XX
     AAU73039;
AC
XX
DT
     12-MAR-2002 (first entry)
XX
      Parathyroid hormone PTH/PTHrP modulating domain #21.
 DΕ
 XX
     Human; parathyroid hormone; PTH; parathyroid hormone-related protein;
 KW
      PTHrP; bone resorption inhibitor; osteoprotegrin; OPG; OPG-L antibody;
 KW
      calcitonin; bisphosphonate; oestrogen; oestrogen receptor; tibolone;
 KW
      osteopenia; hyperthyroidism; hypercalcaemia; tumour metastasis; bone;
 KW
     breast cancer; prostate cancer; cachexia; anorexia; osteoporosis;
 KW
      Paget's disease; osteomyelitis; osteonecrosis; bone cell death;
 KW
```

```
Gaucher's disease; sickle cell anaemia; systemic lupus erythematosus;
KW
     rheumatoid arthritis; periodontal disease; alopecia; fracture repair;
KW
     immunoglobulin G; IgG.
KW
XX
OS
     Homo sapiens.
XX
     WO200181415-A2.
PN
XX
PD
     01-NOV-2001.
XX
PF
     27-APR-2001; 2001WO-US13528.
XX
     27-APR-2000; 2000US-200053P.
PR
     28-JUN-2000; 2000US-214860P.
PR
     06-FEB-2001; 2001US-266673P.
PR
     26-APR-2001; 2001US-0843221.
PR
XX
     (AMGE-) AMGEN INC.
PΑ
XX
     Kostenuik P, Liu C, Lacey DL;
PΙ
XX
     WPI: 2002-066435/09.
DR
XX
     Composition, useful for treating osteopenia, comprises parathyroid
PT
     hormone and parathyroid hormone-related protein receptor modulators -
PT
XX
     Disclosure; Page 26; 107pp; English.
PS
XX
     The invention relates to a composition (I) comprising modulators of
CC
     parathyroid hormone (PTH) and parathyroid hormone-related protein (PTHrP)
CC
     which comprise a PTH/PTHrP modulating domain and a vehicle. (I)
CC
     comprising PTH agonist optionally with a bone resorption inhibitor, such
CC
     as osteoprotegrin (OPG), OPG-L antibody, calcitonin, bisphosphonates,
CC
     oestrogens, oestrogen receptor modulators and tibolone is useful for
CC
     treating osteopenia. (I) is useful for therapeutic and prophylactic
CC
     purposes. Antagonists of PTH receptor are useful in treating primary and
CC
     secondary hyperthyroidism, hypercalcaemia, tumour metastases,
CC
     particularly breast and prostate cancer, cachexia and anorexia,
CC
     osteopenia, including various forms of osteoporosis, Paget's disease of
CC
     bone, osteomyelitis, osteonecrosis or bone cell death, associated with
CC
     traumatic injury or nontraumatic necrosis associated with Gaucher's
CC
     disease, sickle cell anaemia, systemic lupus erythematosus, rheumatoid
CC
     arthritis, periodontal disease and alopecia. PTH receptor agonists are
CC
     useful as therapeutic agents in conditions including fracture repair
CC
      (including healing of non-union fractures), osteopenia, including various
CC
      forms of osteoporosis. AAU73018-AAU73181 represent parathyroid hormone
CC
     and parathyroid hormone related protein (PTH/PTHrP) modulators and
CC
     related amino acid sequences of the invention.
CC
XX
                31 AA;
SQ
     Sequence
                           100.0%; Score 29; DB 23; Length 31;
  Query Match
                           100.0%; Pred. No. 5.9e-22;
  Best Local Similarity
                                                                  0; Gaps
                                                                              0;
                                                   0; Indels
           29; Conservative
                               0; Mismatches
  Matches
```

```
RESULT 13
AAU73177
     AAU73177 standard; Peptide; 31 AA.
XX
AC
     AAU73177;
XX
DT
     12-MAR-2002 (first entry)
XX
DE
     Parathyroid hormone PTH/PTHrP modulating domain #159.
XX
KW
     Human; parathyroid hormone; PTH; parathyroid hormone-related protein;
KW
     PTHrP; bone resorption inhibitor; osteoprotegrin; OPG; OPG-L antibody;
KW
     calcitonin; bisphosphonate; oestrogen; oestrogen receptor; tibolone;
KW
     osteopenia; hyperthyroidism; hypercalcaemia; tumour metastasis; bone;
KW
     breast cancer; prostate cancer; cachexia; anorexia; osteoporosis;
KW
     Paget's disease; osteomyelitis; osteonecrosis; bone cell death;
KW
     Gaucher's disease; sickle cell anaemia; systemic lupus erythematosus;
KW
     rheumatoid arthritis; periodontal disease; alopecia; fracture repair;
KW
     immunoglobulin G; IgG.
XX
OS
     Synthetic.
XX
PN
     WO200181415-A2.
XX
PD
     01-NOV-2001.
XX
PF
     27-APR-2001; 2001WO-US13528.
XX
PR
     27-APR-2000; 2000US-200053P.
PR
     28-JUN-2000; 2000US-214860P.
PR
     06-FEB-2001; 2001US-266673P.
PR
     26-APR-2001; 2001US-0843221.
XX
PA
     (AMGE-) AMGEN INC.
XX
ΡI
     Kostenuik P, Liu C, Lacey DL;
XX
DR
     WPI; 2002-066435/09.
XX
PT
     Composition, useful for treating osteopenia, comprises parathyroid
PΤ
     hormone and parathyroid hormone-related protein receptor modulators -
XX
PS
     Disclosure; Page 63; 107pp; English.
XX
CC
     The invention relates to a composition (I) comprising modulators of
CC
     parathyroid hormone (PTH) and parathyroid hormone-related protein (PTHrP)
CC
     which comprise a PTH/PTHrP modulating domain and a vehicle. (I)
CC
     comprising PTH agonist optionally with a bone resorption inhibitor, such
CC
     as osteoprotegrin (OPG), OPG-L antibody, calcitonin, bisphosphonates,
CC
     oestrogens, oestrogen receptor modulators and tibolone is useful for
CC
     treating osteopenia. (I) is useful for therapeutic and prophylactic
     purposes. Antagonists of PTH receptor are useful in treating primary and
CC
CC
     secondary hyperthyroidism, hypercalcaemia, tumour metastases,
CC
     particularly breast and prostate cancer, cachexia and anorexia,
```

```
osteopenia, including various forms of osteoporosis, Paget's disease of
CC
     bone, osteomyelitis, osteonecrosis or bone cell death, associated with
CC
     traumatic injury or nontraumatic necrosis associated with Gaucher's
CC
     disease, sickle cell anaemia, systemic lupus erythematosus, rheumatoid
CC
     arthritis, periodontal disease and alopecia. PTH receptor agonists are
CC
     useful as therapeutic agents in conditions including fracture repair
CC
     (including healing of non-union fractures), osteopenia, including various
CC
     forms of osteoporosis. AAU73018-AAU73181 represent parathyroid hormone
CC
     and parathyroid hormone related protein (PTH/PTHrP) modulators and
CC
     related amino acid sequences of the invention.
CC
XX
SO
     Sequence
                31 AA;
                          100.0%; Score 29; DB 23; Length 31;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 5.9e-22;
                                                  0; Indels
                                                                 0: Gaps
                                                                             0;
                               0; Mismatches
  Matches
            29; Conservative
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
Qу
              1111111111111
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
Db
RESULT 14
AAU73176
     AAU73176 standard; Peptide; 32 AA.
ΙD
XX
AC
     AAU73176;
XX
     12-MAR-2002 (first entry)
DT
XX
     Parathyroid hormone PTH/PTHrP modulating domain #158.
DE
XX
     Human; parathyroid hormone; PTH; parathyroid hormone-related protein;
KW
     PTHrP; bone resorption inhibitor; osteoprotegrin; OPG; OPG-L antibody;
ΚW
     calcitonin; bisphosphonate; oestrogen; oestrogen receptor; tibolone;
KW
     osteopenia; hyperthyroidism; hypercalcaemia; tumour metastasis; bone;
KW
     breast cancer; prostate cancer; cachexia; anorexia; osteoporosis;
KW
     Paget's disease; osteomyelitis; osteonecrosis; bone cell death;
KW
     Gaucher's disease; sickle cell anaemia; systemic lupus erythematosus;
KW
     rheumatoid arthritis; periodontal disease; alopecia; fracture repair;
KW
     immunoglobulin G; IgG.
KW
XX
OS
     Synthetic.
XX
PN
     WO200181415-A2.
XX
     01-NOV-2001.
PD
XX
PF
     27-APR-2001; 2001WO-US13528.
XX
     27-APR-2000; 2000US-200053P.
PR
     28-JUN-2000; 2000US-214860P.
PR
      06-FEB-2001; 2001US-266673P.
PR
     26-APR-2001; 2001US-0843221.
 PR
XX
 PΑ
      (AMGE-) AMGEN INC.
XX
```

```
Kostenuik P, Liu C, Lacey DL;
PΙ
XX
    WPI; 2002-066435/09.
DR
XX
     Composition, useful for treating osteopenia, comprises parathyroid
PT
     hormone and parathyroid hormone-related protein receptor modulators -
PT
XX
     Disclosure; Page 63; 107pp; English.
PS
XX
     The invention relates to a composition (I) comprising modulators of
CC
     parathyroid hormone (PTH) and parathyroid hormone-related protein (PTHrP)
CC
     which comprise a PTH/PTHrP modulating domain and a vehicle. (I)
CC
     comprising PTH agonist optionally with a bone resorption inhibitor, such
CC
     as osteoprotegrin (OPG), OPG-L antibody, calcitonin, bisphosphonates,
CC
     oestrogens, oestrogen receptor modulators and tibolone is useful for
CC
     treating osteopenia. (I) is useful for therapeutic and prophylactic
CC
     purposes. Antagonists of PTH receptor are useful in treating primary and
CC
     secondary hyperthyroidism, hypercalcaemia, tumour metastases,
CC
     particularly breast and prostate cancer, cachexia and anorexia,
CC
     osteopenia, including various forms of osteoporosis, Paget's disease of
CC
     bone, osteomyelitis, osteonecrosis or bone cell death, associated with
CC
     traumatic injury or nontraumatic necrosis associated with Gaucher's
CC
     disease, sickle cell anaemia, systemic lupus erythematosus, rheumatoid
CC
     arthritis, periodontal disease and alopecia. PTH receptor agonists are
CC
     useful as therapeutic agents in conditions including fracture repair
CC
     (including healing of non-union fractures), osteopenia, including various
CC
     forms of osteoporosis. AAU73018-AAU73181 represent parathyroid hormone
CC
     and parathyroid hormone related protein (PTH/PTHrP) modulators and
CC
     related amino acid sequences of the invention.
CC
XX
SQ
     Sequence
                32 AA;
                          100.0%; Score 29; DB 23; Length 32;
  Query Match
                          100.0%; Pred. No. 6.1e-22;
  Best Local Similarity
                               0; Mismatches 0; Indels
                                                                 0; Gaps
                                                                             0:
            29; Conservative
  Matches
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
Qу
               1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
Db
RESULT 15
AAY98018
     AAY98018 standard; peptide; 33 AA.
ID
XX
AC
     AAY98018;
XX
     04-SEP-2000 (first entry)
 DT
 XX
     Human amino-terminal modified parathyroid hormone analogue # 9.
 DΕ
 XX
     Parathyroid hormone peptide; PTH; renal cell; osseous cell; human;
 KW
      signal transduction; osteoporosis; amino-terminal modification;
 KW
     bone disease; parathyroid hormone receptor; osteopaenia;
 KW
     hypoparathyroidism; fracture repair; hypercalcaemia; cancer; osteopathic.
 KW
 XX
 OS
      Homo sapiens.
```

```
XX
                     Location/Qualifiers
FΗ
    Key
    Modified-site
FT
                     /note= "Ser is desamino residue"
FT
XX
PN
    WO200031137-A1.
XX
PD
     02-JUN-2000.
XX
PF
     23-NOV-1999;
                   99WO-US27656.
XX
PR
     25-NOV-1998;
                   98US-0110152.
XX
PΑ
     (BRIN/) BRINGHURST F R.
     (TAKA/) TAKASU H.
PΑ
PΑ
     (GARD/) GARDELLA T J.
XX
     Bringhurst FR, Takasu H, Gardella TJ;
PI
XX
DR
     WPI; 2000-400045/34.
XX
     New parathyroid hormone (PTH) analogs having one or more amino acid
PT
     substitutions that confer PTH-1/PTH-2 receptor agonist properties,
PT
PT
     useful for treating old age osteoporosis and post-menopausal
PT
     osteoporosis -
XX
PS
     Disclosure; Page 65; 69pp; English.
XX
CC
     Parathyroid hormone (PTH) binds to PTH receptors in renal and osseous
     cells, initiating signal transduction. It has been identified that the
CC
     carboxyl terminal of PTH is important for PTH receptor binding, while the
CC
CC
     amino terminal is important for signal transduction. The present
CC
     sequence is a human PTH peptide, with an amino-terminal modification
     which results in effective activation of the PTH-2 receptor and therefore
CC
CC
     downstream signalling. Aberrant PTH activity has been implicated in a
     number of disorders: osteoporosis, osteopaenia, hypoparathyroidism and
CC
     hypercalcaemia. In turn, hypercalcaemia is associated with hypernephroma
CC
     and a variety of cancers: breast, lung and prostate carcinoma, multiple
CC
CC
     myeloma and epidermoid cancers of the head, neck and oesophagus. This
CC
     peptide would be suitable for prophylaxis and treatment of the above
     disorders. In addition, the present sequence would be suitable for
CC
CC
     fracture repair. The present sequence is modified to have a
CC
     desamino residue at position 1.
XX
SO
     Sequence
                33 AA;
                          100.0%; Score 29; DB 21; Length 33;
  Query Match
                          100.0%; Pred. No. 6.2e-22;
  Best Local Similarity
                                                                             0;
            29; Conservative
                               0; Mismatches
                                                   0: Indels
                                                                 0; Gaps
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
Qу
              Db
            1 SVSEIOLMHNLGKHLNSMERVEWLRKKLQ 29
```

```
AAP30022 standard; peptide; 34 AA.
ID
XX
AC
     AAP30022;
XX
DT
     25-MAR-2003
                  (updated)
DT
     01-SEP-1992
                 (first entry)
XX
DE
     Human parathyroid-(1-34) amide.
XX
KW
     PTH; parathyroid gland; antibodies.
XX
OS
     Synthetic.
XX
FH
                     Location/Qualifiers
     Key
FΤ
     Modified-site
FT
                     /note= "amidated"
XX
ΡN
     JP58096052-A.
XX
PD
     07-JUN-1983.
XX
PF
     30~NOV-1983;
                    83JP-0193212.
XX
PR
     31-MAR-1981;
                    81JP-0048887.
XX
PΑ
     (TOXN ) TOYO JOZO KK.
XX
DR
     WPI; 1983-709291/28.
XX
PT
     High activity human parathyroid hormone amide prodn. - by
PT
     condensing protected aminoacid(s) and/or peptide(s) useful for
PT
     lowering parathyroid gland function
XX
PS
     Claim 1; Page 1; 20pp; Japanese.
XX
CC
     The human parathyroid hormone, hPTH(1-34)-amide was prepd. by
CC
     the following steps: Firstly the carboxy gp. at the C-terminal
CC
     phenylalanine was converted into its amide form. The protected
CC
     individual amino acids were condensed, in order, by liquid phase
CC
     synthesis. The protecting groups were removed from the N-terminal
CC
     amino gp. and other functional gps. by acidolysis, and the
CC
     resulting hPTH(1-34)-amide purified by gel filtration
CC
     chromatography using a Sephadex G-25, G-50 or LH-20 column or by
CC
     column chromatography with carboxymethyl cellulose or ion exchange
CC
     resin. The peptide amide is useful in lowering the activity of the
CC
     parathyroid gland and in the prepn. of antibodies for diagnosis of
CC
     parathyroid gland function.
CC
     (Updated on 25-MAR-2003 to correct PR field.)
XX
SQ
     Sequence
                34 AA;
  Query Match
                          100.0%; Score 29; DB 4; Length 34;
  Best Local Similarity
                          100.0%; Pred. No. 6.4e-22;
                                                  0; Indels
 Matches
            29; Conservative
                                 0; Mismatches
                                                                  0; Gaps
                                                                              0;
Qу
```

```
RESULT 17
AAP50377
     AAP50377 standard; peptide; 34 AA.
XX
     AAP50377;
AC
XX
                  (updated)
DT
     25-MAR-2003
     08-MAR-1992 (first entry)
DT
XX
     [Met(0)8,18]hPTH-(1-34).
DE
XX
     Human parathyroid hormone; calcium regulation.
KW
XX
     Homo sapiens.
OS
XX
                     Location/Qualifiers
FH
     Key
     Modified-site
FT
                     /label= oxidised methionine
FT
     Modified-site
FT
                     /label= oxidised methionine
FT
XX
PN
     JP59204159-A.
XX
     19-NOV-1984.
PD
XX
     28-APR-1983;
                    83JP-0075607.
PF
XX
                    83JP-0075607.
     28-APR-1983;
PR
XX
     (TOXN ) TOYO JOZO KK.
PA
XX
     WPI; 1985-003560/01.
DR
XX
     New (Met(0)8,18)hPTH-(1-34) peptide - increases calcium level in
PT
     blood and decreases level in urine.
PT
XX
     Claim 1; Page 1; 3pp; Japanese.
PS
XX
     Unmodified hPTH(1-34) increases Ca in blood, decreases P in blood,
CC
     decreases Ca in urine and increases P in urine by increasing cAMP in
CC
     urine and enhancing vitamin D hydroxylase activity in kidneys.
CC
     modified derivative only has the effect of lowering Ca levels in
CC
     urine and can be used when only this particular effect is required.
 CC
      (Updated on 25-MAR-2003 to correct PA field.)
 CC
      (Updated on 25-MAR-2003 to correct DR field.)
 CC
 XX
                 34 AA;
 SQ
      Sequence
                           100.0%; Score 29; DB 6; Length 34;
   Query Match
                           100.0%; Pred. No. 6.4e-22;
  Best Local Similarity
           29; Conservative 0; Mismatches 0; Indels
                                                                  0; Gaps
  Matches
             1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
 Qу
```

```
RESULT 18
AAP60031
    AAP60031 standard; peptide; 34 AA.
XX
AC
    AAP60031;
XX
     25-MAR-2003
                 (updated)
DT
     06-JUL-1991 (first entry)
DT
XX
     Sequence of the first 34 AA residues of a parathyroid hormone
_{
m DE}
     obtainable from a human or animal.
DE
XX
     Osteoporosis therapy.
KW
XX
OS
     Homo sapiens/animal.
XX
     EP197514-A.
PΝ
XX
PD
     15-OCT-1986.
XX
                    86EP-0104562.
PF
     03-APR-1986;
XX
     04-APR-1985;
                    85US-0720018.
PR
                    86US-0939308.
     05-DEC-1986;
PR
                    87US-0052383.
     21-MAY-1987;
PR
XX
     (GEHO ) GEN HOSPITAL CORP.
PΑ
XX
     Potts JT, Neer RM, Slovik DM;
PΙ
XX
     WPI; 1986-273437/42.
DR
XX
     Compsn. and kits for increasing bone mass in osteoporosis -
PT
     contg. parathyroid hormone or fragment with hydroxylated
PT
     vitamin/D cpd. or calcium salt
PT
XX
     Claim 4; Page 24; 26pp; English.
PS
XX
     The peptide is used in a pharmaceutical compsn. together with a
CC
     hydroxylated vitamin D compound, or a non-toxic calcium salt, pref.
CC
     CaCO3. The compsn. pref. contains 100-700 (pref. 200-600, esp. 400-
CC
     500) units of the peptide. The vitamin D compound is pref. 1-alpha-
CC
     hydroxy vitamin D2 or 1-alpha, 25-dihydroxy vitamin D2.
CC
      (Updated on 25-MAR-2003 to correct PA field.)
CC
XX
     Sequence 34 AA;
SQ
                           100.0%; Score 29; DB 7; Length 34;
  Ouery Match
                           100.0%; Pred. No. 6.4e-22;
  Best Local Similarity
  Matches 29; Conservative 0; Mismatches 0; Indels
                                                                   0; Gaps
                                                                               0:
             1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
 Qу
               1111111111111111111111111111111111111
             1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
Db
```

```
RESULT 19
AAR07919
     AAR07919 standard; protein; 34 AA.
ID
XX
     AAR07919;
AC
XX
     18-FEB-1991 (first entry)
DT
XX
     Human parathyroid hormone analogue, hPTH(7-34).
DE
XX
     Osteoporosis; hypercalcemia; hyperparathyroidism; hypertension.
KW
XX
OS
     Homo sapiens.
XX
     US4968669-A.
PN
XX
     06-NOV-1990.
PD
XX
     21-APR-1989;
                    89US-0341597.
ΡF
XX
     21-APR-1989;
                    89US-0341597.
PR
     09-MAY-1988;
                    88US-0191512.
PR
XX
     (MERI ) MERCK & CO INC.
PΑ
XX
     Rosenblatt M, Chorev M;
PΙ
XX
     WPI: 1990-354642/47.
DR
XX
     New para: thyroid hormone analogues - which inhibit hormone
PT
     activity by binding receptors while not producing second
PT
     messenger molecules
PT
XX
     Claim 1; Column 8; 6pp; English.
PS
XX
     Peptide analogues have high affinity for PTH cell surface receptors,
CC
     but do not stimulate production of secondary messenger molecules.
CC
     They may be used in inhibition of PTH action, and in diagnosis and
CC
      treatment of osteoporosis, hypercalcemia and hyperparathyroidism.
CC
     Analogues may also be used in treatment of tumours and other cells
 CC
     overproducing peptide hormone-like substances, and immune diseases
 CC
      eg. allergic inflammation and hyperactive lymphocytes.
 CC
     Naturally occuring PTH levels may also be measured in vitro.
 CC
 XX
      Sequence
                34 AA;
 SO
                           100.0%; Score 29; DB 11; Length 34;
   Query Match
                           100.0%; Pred. No. 6.4e-22;
   Best Local Similarity
                                                                              0;
                                                                  0; Gaps
  Matches 29; Conservative 0; Mismatches
                                                  0: Indels
             1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
 Qу
               11111111111111
             1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
 Db
```

```
RESULT 20
AAR07922
    AAR07922 standard; protein; 34 AA.
ID
XX
AC
    AAR07922;
XX
DT
     18-FEB-1991 (first entry)
XX
    Human parathyroid hormone analogue, Tyr34 hPTH(7-34).
DE
XX
     Osteoporosis; hypercalcemia; hyperparathyroidism; hypertension.
KW
XX
OS
     Homo sapiens.
XX
PN
     US4968669-A.
XX
PD
     06-NOV-1990.
XX
PF
     21-APR-1989;
                    89US-0341597.
XX
PR
     21-APR-1989;
                    89US-0341597.
                    88US-0191512.
PR
     09-MAY-1988;
XX
     (MERI ) MERCK & CO INC.
PΑ
XX
     Rosenblatt M, Chorev M;
PΙ
XX
DR
     WPI; 1990-354642/47.
XX
     New para: thyroid hormone analogues - which inhibit hormone
PT
PT
     activity by binding receptors while not producing second
PT
     messenger molecules
XX
PS
     Claim 1; Column 8; 6pp; English.
XX
     Peptide analogues have high affinity for PTH cell surface receptors,
CC
     but do not stimulate production of secondary messenger molecules.
CC
     They may be used in inhibition of PTH action, and in diagnosis and
CC
CC
     treatment of osteoporosis, hypercalcemia and hyperparathyroidism.
     Analogues may also be used in treatment of tumours and other cells
CC
     overproducing peptide hormone-like substances, and immune diseases
CC
CC
     eq. allergic inflammation and hyperactive lymphocytes.
CC
     Naturally occuring PTH levels may also be measured in vitro.
XX
SO
     Sequence
                34 AA;
                          100.0%; Score 29; DB 11; Length 34;
  Query Match
                          100.0%; Pred. No. 6.4e-22;
  Best Local Similarity
                              0; Mismatches
                                                      Indels
                                                                 0; Gaps
                                                                             0;
            29; Conservative
                                                   0;
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
Qу
              Db
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
```

```
AAR22283 standard; peptide; 34 AA.
ID
XX
AC
     AAR22283;
XX
     29-JUL-1992 (first entry)
DT
XX
     Parathyroid hormone analogue N-terminus [1-34].
DE
XX
     Human; hPTH; wound healing; hair growth; hyperproliferation skin;
KW
     disorders; psoriasis; cancer; burns.
KW
XX
OS
     Homo sapiens.
XX
PN
     WO9204039-A.
XX
     19-MAR-1992.
PD
XX
                    91WO-US06218.
     30-AUG-1991;
PF
XX
                    90US-0575219.
     30-AUG-1990;
PR
XX
     (HOLI/) HOLICK M F.
PΑ
XX
PΙ
     Holick MF;
XX
     WPI; 1992-114063/14.
DR
XX
     Use of peptide having homology with parathyroid hormone - for
PT
     enhancement of cell proliferation for wound healing
PT
XX
     Disclosure; Fig 1; 34pp; English.
PS
XX
     The peptide can be easily synthesised by recombinant DNA or solid
CC
     phase peptide synthesis techniques. The peptide has > 50 percent
CC
     homology with the N-terminal 1-34 amino acids of human parathyriod
CC
     hormone or hypercalcaemic region. It is esp. PTH (7-34). The
CC
     peptide may be used in a method for the treatment of hyperprolifer-
CC
     ation skin disorders e.g. psoriasis, cancers, burns or skin
CC
     ulcerations by inhibition of cell proliferation and enhancement of
CC
     cell differentiation (agonist activity). They are also used to
CC
     enhance cell proliferation (antagonist activity) for wound healing.
CC
     They are also applicable in the promotion of new hair growth or
CC
     stimulation of the rate of hair growth e.g. following chemotherapy
CC
     or for treating alopecia e.g. male pattern baldness.
CC
XX
SO
     Sequence
                34 AA;
                           100.0%; Score 29; DB 13; Length 34;
  Query Match
                          100.0%; Pred. No. 6.4e-22;
  Best Local Similarity
           29; Conservative 0; Mismatches 0; Indels
                                                                              0;
                                                                  0;
                                                                     Gaps
  Matches
             1 SVSEIOLMHNLGKHLNSMERVEWLRKKLQ 29
Qу
               11111111111111
             1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
Db
```

```
AAR41549
    AAR41549 standard; protein; 34 AA.
XX
AC
    AAR41549;
XX
DT
     25-MAR-2003
                  (updated)
DΤ
     11-APR-1994
                  (first entry)
XX
     [D-Ser3] hPTH (1-34) NH2.
DE
XX
     PTH; parathyroid hormone; protease resistance; osteoporosis;
KW
     hypoparathyroidism; hypertension.
KW
XX
     Homo sapiens.
OS
XX
                     Location/Qualifiers
FH
     Key
FT
     Misc-difference 3
                     /note = "D-form residue"
FT
     Modified-site
FT
                     /note = "C terminal is amidated"
FT
XX
PΝ
     EP561412-A1.
XX
PD
     22-SEP-1993.
XX
                    93EP-0104500.
PF
     18-MAR-1993;
XX
                    92JP-0063517.
PR
     19-MAR-1992;
     18-FEB-1993;
                    93JP-0029283.
PR
XX
     (TAKE ) TAKEDA CHEM IND LTD.
PA
XX
     Fukuda T, Nakagawa S, Taketomi S;
PI
XX
     WPI; 1993-296712/38.
DR
XX
     New parathyroid hormone derivs. - used for the treatment of
PT
     osteoporosis hypoparathyroidism and hypertension
PT
XX
     Example 1; Page 17; 37pp; English.
PS
XX
     Human parathyroid hormone (PTH) analogues (AAR41548 - generic sequence;
CC
     AAR41549-R41582 - specific examples) show increased resistance to
CC
     proteases and a greater persistency of activity within the blood is
CC
     obtained. The proteins can be used to treat a number of bone and blood
CC,
     disorders. This analogue was used as a test compound.
CC
      (Updated on 25-MAR-2003 to correct PN field.)
CC
XX
     Sequence
                34 AA;
SQ
                          100.0%; Score 29; DB 14; Length 34;
   Query Match
                          100.0%; Pred. No. 6.4e-22;
   Best Local Similarity
            29; Conservative 0; Mismatches 0; Indels
                                                                 0; Gaps
                                                                             0;
  Matches
             1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
Qу
               1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
Db
```

```
RESULT 23
AAR41570
TD
    AAR41570 standard; protein; 34 AA.
XX
AC
     AAR41570;
XX
DT
     25-MAR-2003
                  (updated)
     11-APR-1994
DT
                 (first entry)
XX
DE
     [Gln25]hPTH (1-34).
XX
     PTH; parathyroid hormone; protease resistance; osteoporosis;
KW
     hypoparathyroidism; hypertension.
KW
XX
OS
     Homo sapiens.
XX
PN
     EP561412-A1.
XX
     22-SEP-1993.
PD
XX
ΡF
     18-MAR-1993;
                    93EP-0104500.
XX
     19-MAR-1992;
                    92JP-0063517.
PR
     18-FEB-1993;
                    93JP-0029283.
PR
XX
PΑ
     (TAKE ) TAKEDA CHEM IND LTD.
XX
ΡI
     Fukuda T, Nakagawa S, Taketomi S;
XX
DR
     WPI; 1993-296712/38.
XX
     New parathyroid hormone derivs. - used for the treatment of
PT
PT
     osteoporosis hypoparathyroidism and hypertension
XX
     Example 1; Page 27; 37pp; English.
PS
XX
     Human parathyroid hormone (PTH) analogues (AAR41548 - generic sequence;
CC
     AAR41549-R41582 - specific examples) show increased resistance to
CC
     proteases and a greater persistency of activity within the blood is
CC
     obtained. The proteins can be used to treat a number of bone and blood
CC
CC
     disorders. This analogue was used as a test compound.
     (Updated on 25-MAR-2003 to correct PN field.)
CC
XX
SO
     Sequence
               34 AA;
                          100.0%; Score 29; DB 14; Length 34;
                          100.0%; Pred. No. 6.4e-22;
  Best Local Similarity
           29; Conservative 0; Mismatches 0; Indels
                                                                0; Gaps
                                                                            0;
  Matches
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
Qу
              1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
Db
```

```
AAR58291
     AAR58291 standard; peptide; 34 AA.
ID
XX
AC
     AAR58291;
XX
DT
     20-SEP-1994 (first entry)
XX
     [Lys(For)26, Lys(For)27]-hPTH(1-34)-NH2.
DΕ
XX
     Human parathyroid hormone; hPTH; variant; analogue;
KW
     calcium; depletion; fixation; resorption; osteopathy; osteoporosis;
KW
     hypoparathyroidism.
KW
XX
     Synthetic.
OS
XX
                      Location/Qualifiers
FΗ
     Key
     Modified-site
                      26
FT
                      /label= Other
FT
                      /note= "Formyl-Lys."
FT
                      27
     Modified-site
FT
                      /label= Other
FT
                      /note= "Formyl-Lys."
FT
FT
     Modified-site
                      /note= "in amide form"
FT
XX
PN
     GB2269176-A.
XX
PD
     02-FEB-1994.
XX
                     93GB-0014384.
PF
     12-JUL-1993;
XX
                     92GB-0015009.
PR
     15-JUL-1992;
                     92GB-0026415.
PR
     18-DEC-1992;
                     92GB-0026859.
      23-DEC-1992;
PR
                     92GB-0026861.
PR
      23-DEC-1992;
      28-JAN-1993;
                     93GB-0001691.
 PR
                     93GB-0001692.
 PR
     28-JAN-1993;
                     93GB-0007673.
 PR
      14-APR-1993;
                     93GB-0008033.
 PR
      19-APR-1993;
XX
 PΑ
      (SANO ) SANDOZ LTD.
      (BAUE/) BAUER W.
 PA
      (SANO ) SANDOZ PATENT GMBH.
 PΑ
      (SANO ) SANDOZ-ERFINDUNGEN VERW GES MBH.
 PΑ
 XX
      Albert R, Bauer W, Breckenridge R, Cardinaux F;
 PΙ
      Gombert F, Gram H, Lewis I, Ramage P, Schneider H;
 PΙ
      Waelchli R, Rainer A;
 PI
 XX
      WPI; 1994-018352/03.
 DR
 XX
      New active para-thyroid hormone variants - used for treating or
 PT
      preventing osteoporosis etc.
 PT
 XX
      Example 289; Page 47; 92pp; English.
 PS
 XX
      This peptide is an example of a highly generic formula covering
 CC
```

```
parathyroid hormone variants useful for treating or preventing bone
CC
     conditions associated with calcium depletion/resorption, in cases
CC
     where calcium fixation is required (esp. osteoporosis) or to treat
CC
     hypoparathyroidism.
CC
XX
     Sequence
                34 AA;
SO
                           100.0%; Score 29; DB 15; Length 34;
  Query Match
                          100.0%; Pred. No. 6.4e-22;
  Best Local Similarity
                                                                   0; Gaps
                                                   0;
                                                                               0;
                                0; Mismatches
                                                        Indels
            29; Conservative
 Matches
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
Qy
              1111111111111111111111111111111111
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
Db
RESULT 25
AAR58228
     AAR58228 standard; peptide; 34 AA.
ID
XX
AC
     AAR58228;
XX
     20-SEP-1994 (first entry)
DT
XX
DΕ
     [D-Asp30] - hPTH(1-34) - NH2.
XX
     Human parathyroid hormone; hPTH; variant; analogue;
KW
     calcium; depletion; fixation; resorption; osteopathy; osteoporosis;
KW
     hypoparathyroidism.
KW
XX
OS
     Synthetic.
XX
                      Location/Qualifiers
FΗ
     Key
     Misc-difference 30
FT
                      /note= "D-form residue."
FT
FT
     Modified-site
                      /note= "in amide form"
FT
XX
     GB2269176-A.
PN
XX
PD
     02-FEB-1994.
XX
ΡF
     12-JUL-1993;
                     93GB-0014384.
XX
     15-JUL-1992;
                     92GB-0015009.
PR
      18-DEC-1992;
                     92GB-0026415.
PR
                     92GB-0026859.
     23-DEC-1992;
PR
                     92GB-0026861.
PR
      23-DEC-1992;
                     93GB-0001691.
PR
      28-JAN-1993;
      28-JAN-1993;
                     93GB-0001692.
PR
                     93GB-0007673.
      14-APR-1993;
PR
                     93GB-0008033.
      19-APR-1993;
PR
XX
      (SANO ) SANDOZ LTD.
PA
      (BAUE/) BAUER W.
PA
      (SANO ) SANDOZ PATENT GMBH.
PA
      (SANO ) SANDOZ-ERFINDUNGEN VERW GES MBH.
PΑ
```

```
PI
    Albert R, Bauer W, Breckenridge R, Cardinaux F;
     Gombert F, Gram H, Lewis I, Ramage P, Schneider H;
PI
PI
     Waelchli R, Rainer A;
XX
DR
    WPI; 1994-018352/03.
XX
PΤ
    New active para-thyroid hormone variants - used for treating or
PT
     preventing osteoporosis etc.
XX
     Example 226; Page 45; 92pp; English.
PS
XX
CC
     This peptide is an example of a highly generic formula covering
CC
     parathyroid hormone variants useful for treating or preventing bone
CC
     conditions associated with calcium depletion/resorption, in cases
CC
     where calcium fixation is required (esp. osteoporosis) or to treat
CC
    hypoparathyroidism.
XX
SQ
     Sequence
                34 AA;
                                  Score 29; DB 15; Length 34;
  Query Match
                          100.0%;
  Best Local Similarity
                          100.0%; Pred. No. 6.4e-22;
          29; Conservative 0; Mismatches
                                                      Indels
                                                                 0; Gaps
                                                                             0;
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
Qу
              Db
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
RESULT 26
AAR58232
ID
     AAR58232 standard; peptide; 34 AA.
XX
AC
     AAR58232;
XX
DT
     20-SEP-1994 (first entry)
XX
DE
     [Lys32] - hPTH(1-34) - NH2.
XX
KW
     Human parathyroid hormone; hPTH; variant; analogue;
KW
     calcium; depletion; fixation; resorption; osteopathy; osteoporosis;
KW
     hypoparathyroidism.
XX
OS
     Synthetic.
XX
FH
                     Location/Qualifiers
     Key
FT
     Modified-site
FT
                     /note= "in amide form"
XX
PN
     GB2269176-A.
XX
PD
     02-FEB-1994.
XX
PF
     12-JUL-1993;
                    93GB-0014384.
XX
PR
     15-JUL-1992;
                    92GB-0015009.
PR
     18-DEC-1992;
                    92GB-0026415.
```

```
92GB-0026859.
PR
     23-DEC-1992;
                   92GB-0026861.
PR
     23-DEC-1992;
                   93GB-0001691.
PR
    28-JAN-1993;
    28-JAN-1993; 93GB-0001692.
PR
PR
    14-APR-1993;
                 93GB-0007673.
                   93GB-0008033.
PR
     19-APR-1993;
XX
     (SANO ) SANDOZ LTD.
PΑ
PA
     (BAUE/) BAUER W.
     (SANO ) SANDOZ PATENT GMBH.
PΑ
     (SANO ) SANDOZ-ERFINDUNGEN VERW GES MBH.
PΑ
XX
     Albert R, Bauer W, Breckenridge R, Cardinaux F;
PΙ
     Gombert F, Gram H, Lewis I, Ramage P, Schneider H;
ΡI
     Waelchli R, Rainer A;
PI
XX
     WPI; 1994-018352/03.
DR
XX
     New active para-thyroid hormone variants - used for treating or
PT
PT
     preventing osteoporosis etc.
XX
     Example 230; Page 45; 92pp; English.
PS
XX
     This peptide is an example of a highly generic formula covering
CC
     parathyroid hormone variants useful for treating or preventing bone
CC
     conditions associated with calcium depletion/resorption, in cases
CC
     where calcium fixation is required (esp. osteoporosis) or to treat
CC
CC
     hypoparathyroidism.
XX
SQ
     Sequence
                34 AA;
  Query Match
                          100.0%; Score 29; DB 15; Length 34;
                          100.0%; Pred. No. 6.4e-22;
  Best Local Similarity
           29; Conservative 0; Mismatches
                                                                 0; Gaps
                                                                             0;
                                                 0; Indels
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
Qу
              Db
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
RESULT 27
AAR58181
     AAR58181 standard; peptide; 34 AA.
ID
XX
AC
     AAR58181;
XX
DT
     20-SEP-1994 (first entry)
XX
DΕ
     [Thr33, Ala34] - hPTH(1-34) - NH2.
XX
     Human parathyroid hormone; hPTH; variant; analogue;
KW
     calcium; depletion; fixation; resorption; osteopathy; osteoporosis;
KW
KW
     hypoparathyroidism.
XX
OS
     Synthetic.
XX
FH
                     Location/Qualifiers
     Key
```

```
FT
    Modified-site
                    /note= "in amide form"
FT
XX
    GB2269176-A.
PN
XX
    02-FEB-1994.
PD
XX
                   93GB-0014384.
    12-JUL-1993;
PF
XX
    15-JUL-1992;
                   92GB-0015009.
PR
                   92GB-0026415.
    18-DEC-1992;
PR
                   92GB-0026859.
    23-DEC-1992;
PR
                   92GB-0026861.
PR
     23-DEC-1992;
PR
     28-JAN-1993;
                    93GB-0001691.
     28-JAN-1993;
                    93GB-0001692.
PR
                    93GB-0007673.
PR
     14-APR-1993;
PR
     19-APR-1993;
                    93GB-0008033.
XX
PΑ
     (SANO ) SANDOZ LTD.
     (BAUE/) BAUER W.
PA
     (SANO ) SANDOZ PATENT GMBH.
PA
     (SANO ) SANDOZ-ERFINDUNGEN VERW GES MBH.
PA
XX
     Albert R, Bauer W, Breckenridge R, Cardinaux F;
PI
     Gombert F, Gram H, Lewis I, Ramage P, Schneider H;
PΙ
     Waelchli R, Rainer A;
PΙ
XX
DR
     WPI; 1994-018352/03.
XX
     New active para-thyroid hormone variants - used for treating or
PT
PT
     preventing osteoporosis etc.
XX
     Example 179; Page 43; 92pp; English.
PS
XX
     This peptide is an example of a highly generic formula covering
CC
     parathyroid hormone variants useful for treating or preventing bone
CC
CC
     conditions associated with calcium depletion/resorption, in cases
CC
     where calcium fixation is required (esp. osteoporosis) or to treat
CC
     hypoparathyroidism.
XX
SQ
     Sequence
              34 AA;
                          100.0%; Score 29; DB 15;
  Query Match
                                                      Length 34;
  Best Local Similarity 100.0%; Pred. No. 6.4e-22;
            29; Conservative
                               0; Mismatches
                                                  0; Indels
                                                                 0; Gaps
                                                                             0;
  Matches
Qу
            1 SVSEIOLMHNLGKHLNSMERVEWLRKKLQ 29
              1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
Db
RESULT 28
AAR58016
ID
     AAR58016 standard; peptide; 34 AA.
XX
AC
     AAR58016;
XX
```

```
DT
     20-SEP-1994 (first entry)
XX
     N-alpha-Isopropyl-hPTH(1-34)-NH2 parathyroid hormone variant.
DE
XX
     Human parathyroid hormone; hPTH; variant; analogue;
KW
KW
     calcium; depletion; fixation; resorption; osteopathy; osteoporosis;
KW
     hypoparathyroidism.
XX
OS
     Synthetic.
XX
FΗ
                     Location/Qualifiers
     Key
FT
     Modified-site
FT
                     /note= "N-alpha-isopropyl-Ser"
FT
     Modified-site
FT
                     /note= "in amide form"
XX
PN
     GB2269176-A.
XX
PD
     02-FEB-1994.
XX
PF
     12-JUL-1993;
                    93GB-0014384.
XX
PR
     15-JUL-1992;
                    92GB-0015009.
PR
     18-DEC-1992;
                    92GB-0026415.
PR
     23-DEC-1992;
                    92GB-0026859.
PR
     23-DEC-1992;
                    92GB-0026861.
PR
     28-JAN-1993;
                    93GB-0001691.
PR
     28-JAN-1993;
                    93GB-0001692.
PR
     14-APR-1993;
                    93GB-0007673.
PR
     19-APR-1993;
                    93GB-0008033.
XX
PA
     (SANO ) SANDOZ LTD.
PA
     (BAUE/) BAUER W.
PA
     (SANO ) SANDOZ PATENT GMBH.
     (SANO ) SANDOZ-ERFINDUNGEN VERW GES MBH.
PA
XX
PΙ
     Albert R, Bauer W, Breckenridge R, Cardinaux F;
PΙ
     Gombert F, Gram H, Lewis I, Ramage P, Schneider H;
PΙ
     Waelchli R, Rainer A;
XX
     WPI; 1994-018352/03.
DR
XX
PT
     New active para-thyroid hormone variants - used for treating or
PT
     preventing osteoporosis etc.
XX
PS
     Example 1; Page 30; 92pp; English.
XX
     This peptide is an example of a highly generic formula covering
CC
     parathyroid hormone variants useful for treating or preventing bone
CC
CC
     conditions associated with calcium depletion/resorption, in cases
CC
     where calcium fixation is required (esp. osteoporosis) or to treat
CC
     hypoparathyroidism.
XX
SO
     Sequence
                34 AA;
  Query Match
                           100.0%;
                                    Score 29; DB 15; Length 34;
                          100.0%; Pred. No. 6.4e-22;
  Best Local Similarity
```

```
0; Gaps
                                                                             0;
                                                   0; Indels
           29; Conservative
                                 0; Mismatches
 Matches
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
Qу
              1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
Db
RESULT 29
AAR58017
     AAR58017 standard; peptide; 34 AA.
ID
XX
AC
     AAR58017;
XX
DT
     20-SEP-1994 (first entry)
XX
     [Lys(N-epsilon-Isopropyl)26,27]-human parathyroid hormone(1-34)-NH2.
DΕ
XX
     Human parathyroid hormone; hPTH; variant; analogue;
KW
     calcium; depletion; fixation; resorption; osteopathy; osteoporosis;
KW
     hypoparathyroidism.
KW
XX
OS
     Synthetic.
XX
                     Location/Qualifiers
FΗ
     Key
FT
     Modified-site
                     /note= "N-epsilon-Isopropyl-Lys"
FT
     Modified-site
                     27
FT
                     /note= "N-epsilon-Isopropyl-Lys"
FT
     Modified-site
FT
                     /note= "in amide form"
FT
XX
     GB2269176-A.
PN
XX
     02-FEB-1994.
PD
XX
PF
     12-JUL-1993;
                    93GB-0014384.
XX
                    92GB-0015009.
     15-JUL-1992;
PR
                    92GB-0026415.
PR
     18-DEC-1992;
                    92GB-0026859.
     23-DEC-1992;
PR
                    92GB-0026861.
     23-DEC-1992;
₽R
                    93GB-0001691.
PR
     28-JAN-1993;
PR
     28-JAN-1993;
                    93GB-0001692.
                    93GB-0007673.
PR
     14-APR-1993;
                    93GB-0008033.
PR
     19-APR-1993;
XX
      (SANO ) SANDOZ LTD.
PA
      (BAUE/) BAUER W.
PΑ
      (SANO ) SANDOZ PATENT GMBH.
PΑ
      (SANO ) SANDOZ-ERFINDUNGEN VERW GES MBH.
PA
XX
     Albert R, Bauer W, Breckenridge R, Cardinaux F;
PΙ
     Gombert F, Gram H, Lewis I, Ramage P, Schneider H;
PΙ
     Waelchli R, Rainer A;
PΙ
XX
     WPI; 1994-018352/03.
DR
XX
```

```
preventing osteoporosis etc.
PΤ
XX
     Example 2; Page 32; 92pp; English.
PS
XX
     This peptide is an example of a highly generic formula covering
CC
     parathyroid hormone variants useful for treating or preventing bone
CC
     conditions associated with calcium depletion/resorption, in cases
CC
     where calcium fixation is required (esp. osteoporosis) or to treat
CC
CC
    hypoparathyroidism.
XX
SQ
     Sequence
               34 AA;
                          100.0%; Score 29; DB 15; Length 34;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 6.4e-22;
                              0; Mismatches
                                                 0; Indels
                                                                    Gaps
                                                                            0;
  Matches
           29; Conservative
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
Qу
              Db
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
RESULT 30
AAR55724
    AAR55724 standard; peptide; 34 AA.
ID
XX
AC
     AAR55724;
XX
DT
     25-MAR-2003
                  (updated)
DT
     16-NOV-1994
                 (first entry)
XX
DE
     Parathormone N-terminal sequence.
XX
     Parathormone; parathyroid hormone; fatty acyl-peptide; conjugate;
KW
KW
     antiproliferative; tumor; psoriasis; docosahexaenoic acid; DHA;
     eicosapentaenoic acid; EPA; antitumor.
KW
XX
OS
     Synthetic.
XX
PN
     WO9412530-A1.
XX
PD
     09-JUN-1994.
XX
PF
     29-NOV-1993;
                    93WO-HU00065.
XX
PR
     30-NOV-1992;
                    92US-0984293.
XX
     (BIOS-) BIOSIGNAL KUTATO FEJLESZTO KFT.
PΑ
PΑ
     (SYNT-) SYNTHETIC PEPTIDES INC.
XX
     Balogh A, Cachia PJ, Hodges RS, Horvath A, Keri G;
PI
     Szederkenyi F, Vadasz Z;
PΙ
XX
DR
     WPI; 1994-200194/24.
XX
     New fatty acyl-peptide conjugates for inhibiting cell
PT
     proliferation - more active than free peptide, partic. for
PT
```

New active para-thyroid hormone variants - used for treating or

PT

```
XX
PS
     Disclosure; Fig. 1; 45pp; English.
XX
     The peptides given in AAR55718-48 can each be conjugated through an
CC
CC
     amide linkage with a polyunsaturated fatty acid moiety, such as
CC
     docosahexaenoic acid (DHA) or eicosapentanoic acid, to improve
     antiproliferative activity. The parathormone N-terminal fragment
CC
CC
     inhibits osteoblast proliferation.
CC
     (Updated on 25-MAR-2003 to correct PN field.)
XX
SQ
     Sequence
                34 AA;
  Query Match
                          100.0%; Score 29; DB 15; Length 34;
  Best Local Similarity
                          100.0%; Pred. No. 6.4e-22;
            29; Conservative 0; Mismatches 0; Indels
 Matches
                                                                 0; Gaps
                                                                             0;
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
QУ
              1111111111111111
Db
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
RESULT 31
AAR74521
    AAR74521 standard; Peptide; 34 AA.
ID
XX
AC
     AAR74521;
XX
DT
     25-MAR-2003
                  (updated)
DT
     04-DEC-1995 (first entry)
XX
DE
     Human parathyroid hormone (1-34).
XX
KW
     Analogue; truncated human parathyroid hormone; PTH; hPTH; substitution;
KW
     osteoporosis; hypercalcaemia; hyperparathroidism;
KW
     metabolic bone disease; human; veterinary medicine;
KW
     iontophoretic transdermal transport; recombinant E.coli.
XX
OS
     Homo sapiens.
XX
PN
     W09511988-A1.
XX
PD
     04-MAY-1995.
XX
PF
     25-OCT-1994;
                    94WO-US12205.
XX
PR
     25-OCT-1993;
                    93US-0142551.
XX
PΑ
     (AFFY-) AFFYMAX TECHNOLOGIES NV.
XX
PΙ
     Oldenburg KR, Selick HE;
XX
     WPI; 1995-178880/23.
DR
XX
PT
     New active analogues of parathyroid hormone - with increased
PT
     activity, stability in serum etc., esp. for treating
PT
     osteoporosis, also related DNA and vectors
```

treating tumours, virus-infected cells, psoriasis, etc.

PT

```
PS
     Disclosure; Page 1; 109pp; English.
XX
CC
     This sequence represents residues 1-34 of human parathyroid hormone
     (RPTH). This sequence was used in the production of analogues of the
CC
CC
     truncated form of PTH. These analogues have increased activity and
CC
     longer serum half life than native PTH due to eg. substitution of Met
CC
     residues with Leu residues and replacing the carboxy Phe with Tyr.
CC
     carboxy terminal may also be modified by the addition of a homoserine
CC
     residue or analogue, or by the addition of residues 35-84 of wild type
CC
     PTH (see AAR74410). These PTH analogues may be used in the treatment of
CC
     osteoporosis or hypercalcaemia, hyperparathroidism or other metabolic
CC
     bone diseases in human or veterinary medicine. These peptides may also
CC
     have increased iontophoretic transdermal transport compared to wild type
CC
     PTH and can be produced in high yield in recombinant E.coli.
CC
     (Updated on 25-MAR-2003 to correct PN field.)
XX
SQ
     Sequence
                34 AA;
  Query Match
                          100.0%; Score 29; DB 16; Length 34;
  Best Local Similarity
                          100.0%; Pred. No. 6.4e-22;
  Matches
                                0; Mismatches 0; Indels
           29; Conservative
                                                                 0; Gaps
Qу
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
              71111111111111111
Db
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
RESULT 32
AAW99449
ID
     AAW99449 standard; peptide; 34 AA.
XX
AC
     AAW99449;
XX
DT
     08-JUN-1999 (first entry)
XX
DE
     Human parathyroid hormone aa1-34.
XX
KW
     Parathyroid hormone; PTH; parathormone; premature birth; pregnancy;
KW
     spontaneous abortion; uterine contraction; human.
XX
OS
     Homo sapiens.
XX
ΡN
     US5880093-A.
XX
PD
     09-MAR-1999.
XX
PF
     05-APR-1995;
                    95US-0411726.
XX
PR
     28-SEP-1992;
                    92IT-MI02331.
XX
PΑ
     (BAGN/) BAGNOLI F.
XX
PΙ
     Baqnoli F;
XX
DR
     WPI; 1996-162392/17.
XX
```

```
PT
     preventing premature birth or spontaneous abortion or for treating
PT
     unwanted uterine contractions
XX
PS
    Disclosure; Column 7-8; 11pp; English.
XX
     Peptides AAW99448-W99452 represent all or part of the parathyroid
CC
CC
    hormone (PTH; parathormone) sequence or related peptide. The peptides
CC
     are used for preventing premature birth, spontaneous abortion or unwanted
    uterine contractions in a pregnant human patient.
CC
CC
     (Note: this patent is the first Major Country Equivalent to Italian
CC
     Patent IT1255388).
XX
SQ
    Sequence
               34 AA;
 Query Match
                         100.0%; Score 29; DB 17; Length 34;
 Best Local Similarity
                         100.0%; Pred. No. 6.4e-22;
 Matches
                              0; Mismatches 0; Indels
           29; Conservative
                                                                0; Gaps
Qу
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
              Db
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
RESULT 33
AAR99978
    AAR99978 standard; peptide; 34 AA.
ID
XX
AC
    AAR99978;
XX
DT
     30-APR-1997 (first entry)
XX
     Human parathyroid hormone peptide fragment (1-34).
DE
XX
KW
     cyclic parathyroid hormone fragment; calcium-regulating activity;
ΚW
     osteoporosis; inhibit proliferation; epidermal cell; psoriasis;
     improved half life; calcium retention; bone.
KW
XX
OS
     Synthetic.
XX
PN
     DE19508672-A1.
XX
PD
     12-SEP-1996.
XX
PF
     10-MAR-1995;
                   95DE-1008672.
XX
PR
     10-MAR-1995;
                   95DE-1008672.
XX
     (BOEF ) BOEHRINGER MANNHEIM GMBH.
PΑ
XX
PI
     Dony C, Esswein A, Hoffmann E, Honold K, Schaefer W;
XX
DR
    WPI; 1996-413519/42.
XX
PT
     Cyclic parathyroid hormone fragments with lactam bridge - have good
PT
     in vivo half life and are useful for treating osteoporosis and
PT
    preventing epidermal cell proliferation
```

Use of composition containing parathormone or fragments - for

PT

```
PS
    Disclosure; Page 9; 14pp; German.
XX
CC
    New cyclic parathyroid hormone fragments (CPTH) have the amino acid
     sequence of h, b, p, r or cPTH(1-34), opt. extended by up to 4 amino
CC
     acids (aa) at the C-terminus and opt. shortened by up to 3 amino acids at
CC
     the N-terminus, and are cyclised between positions 13 and 17. One of
CC
CC
     these positions is occupied by L- or D- Orn or Lys, and the other by L-
CC
     or D- Glu or Asp. CPTH have calcium-regulating activity (esp. for
CC
     treating osteoporosis and inhibit proliferation of epidermal cells (for
CC
     treating psoriasis). The CPTH have an improved half life in vivo than
CC
    known PTH fragments, increased mitogenicity and DNA-synthesising
CC
     capacity, reduced catabolic, calcium-mobilising activity and increased
CC
     activity for calcium retention and incorporation into bone. The
CC
    present sequence is that of human PTH peptide fragment (1-34).
XX
SO
     Sequence
               34 AA;
  Query Match
                          100.0%; Score 29; DB 17; Length 34;
  Best Local Similarity
                          100.0%; Pred. No. 6.4e-22;
           29; Conservative 0; Mismatches
                                                 0; Indels
                                                                 0; Gaps
                                                                             0;
Qy
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
              1141111111111
Db
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
RESULT 34
AAR98951
     AAR98951 standard; peptide; 34 AA.
ID
XX
AC
    AAR98951;
XX
DT
     15-JAN-1997 (first entry)
XX
DE
     Target peptide (PTH(1-34)) used in fusion protein construct.
XX
KW
     Fusion protein construct; isolation; purification;
     growth hormone releasing factor; glucagon-like peptide 1;
KW
KW
     parathyroid hormone; inclusion body; carbonic anhydrase.
XX
OS
     Synthetic.
XX
PN
     WO9617942-A1.
XX
PD
     13-JUN-1996.
XX
PF
     07-DEC-1995;
                    95WO-US15800.
XX
PR
     07-DEC-1994;
                    94US-0350530.
XX
     (BION-) BIONEBRASKA INC.
PA
XX
PΙ
     De LA MOTTE RS, Henriksen DB, Holmquist B, Manning SD;
PI
     Partridge BE, Stout JS, Wagner FW;
XX
     WPI; 1996-287186/29.
DR
```

```
Isolation and purificn of peptide(s) from fusion protein constructs
PΤ
     - which include a carbonic anhydrase and a variable fused
PT
    polypeptide
PT
XX
     Claim 18; Page 48; 67pp; English.
PS
XX
     A new method for the isolation and/or purification of a recombinant
CC
     peptide employs a fusion protein construct (FPC) comprising a
CC
     carbonic anhydrase and a variable fused polypeptide containing a
CC
     target peptide. The method comprises precipitating either the FPC or
CC
     a fragment of the FPC including the carbonic anhydrase. An
CC
     alternative method of producing the peptide comprises expressing the
CC
     FPC as part of an inclusion body. The target peptides of the FPC are
CC
     derived from growth hormone releasing factor (GRF), glucagon-like
CC
     peptide 1 (GLP1) or parathyroid hormone (PTH). This sequence
CC
CC
     corresponds to amino acids 1-34 of PTH.
XX
               34 AA;
SO
     Sequence
                          100.0%; Score 29; DB 17; Length 34;
  Query Match
                         100.0%; Pred. No. 6.4e-22;
  Best Local Similarity
                                                                0; Gaps
                                                                            0;
          29: Conservative 0; Mismatches 0;
                                                     Indels
            1 SVSEIOLMHNLGKHLNSMERVEWLRKKLQ 29
Оv
              1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
Db
RESULT 35
AAR98966
     AAR98966 standard; Peptide; 34 AA.
ID
XX
AC
    AAR98966;
XX
DT
     02-DEC-1996 (first entry)
XX
DE
     PTH(1-34).
XX
     PTH; parathyroid hormone; parathormone; C-amide;
KW
     C-amidated peptide; alpha-carboxamide; recombinant protein;
KW
KW
     fusion protein; transpeptidation.
XX
OS
     Not specified.
XX
ΡN
     W09617941-A2.
XX
PD
     13-JUN-1996.
XX
PF
     07-DEC-1995;
                    95WO-US15799.
XX
PR
     07-DEC-1994;
                    94US-0350528.
XX
     (BION-) BIONEBRASKA INC.
PΑ
XX
                   Holmquist B, Patridge BE, Stout JS;
PΙ
     Heriksen DB,
PΙ
     Wagner FW;
```

```
WPI; 1996-287185/29.
DR
XX
     Production of C-terminal alpha-carboxamidated peptide(s) - by
PT
     cleavage and transpeptidation of recombinant multicopy peptide(s) or
PT
     fusion constructs
PT
XX
     Claim 12; Page 70; 93pp; English.
PS
XX
     GLP1(7-35), GRF(1-44) and PTH(1-34) peptides (AAR98964-66) can be
CC
     produced as C-terminal amidated peptides utilising novel recombinant
CC
     protein constructs (see also AAR98967-72) in which single or multiple
CC
     copies of the peptide are linked by intraconnecting peptides that
CC
CC
     permit the construct to be selectively reacted to produce product
CC
     peptides having a C-terminal alpha-carboxamide. Expression cassettes
     (see also AAT34865-70) can be incorporated into vectors allowing prodn.
CC
CC
     of the recombinant proteins in transformed E. coli host cells.
XX
SQ
     Sequence
                34 AA;
  Query Match
                          100.0%;
                                   Score 29; DB 17; Length 34;
  Best Local Similarity
                          100.0%; Pred. No. 6.4e-22;
            29; Conservative
                               0; Mismatches
                                                   0;
                                                       Indels
                                                                  0; Gaps
                                                                              0;
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
Qу
              1111111111111111
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
Db
RESULT 36
AAR88835
ID
     AAR88835 standard; peptide; 34 AA.
XX
AC
     AAR88835;
XX
DT
     07-OCT-1996 (first entry)
XX
     Human parathyroid hormone analogue, cyclo-PTH(1-34)-NH2.
DE
XX
     Parathyroid hormone; PTH; analogue; osteoporosis; bone cell;
KW
KW
     calcium regulation; reduced PKC activity; protein kinase C;
KW
     increased adenylyl cyclase activity; cAMPase; cyclic; bone loss.
XX
     Synthetic.
OS
XX
FH
                     Location/Qualifiers
     Key
FT
     Modified-site
FT
                     /note= "forms peptide bond with Lys at posn. 26"
FT
     Modified-site
FT
                     /note= "forms peptide bond with Asp at posn. 30"
FT
     Modified-site
                     /note= "forms peptide bond with Asn at posn. 10"
FT
FT
     Modified-site
FT
                     /note= "forms peptide bond with His at posn. 14"
FT
     Modified-site
FT
                     /note= "amidated"
XX
```

```
XX
PD
     21-DEC-1995.
XX
PF
     20-JUN-1994;
                    94CA-2126299.
XX
PR
     20-JUN-1994;
                    94CA-2126299.
XX
PΑ
     (WILL/) WILLICK G E.
XX
PΙ
     Neugebauer W, Sung WL, Surewicz W, Whitfield JF;
ΡI
     Willick GE;
XX
DR
     WPI; 1996~151754/16.
XX
PT
     New human parathyroid hormone analogues - which have increased
PT
     adenylyl cyclase activating activity, used for treating osteoporosis
XX
PS
     Claim 3; Fig 8; 21pp; English.
XX
CC
     AAR88829-R88841 are human parathyroid hormone (hPTH) analogues. The
CC
     analogues increase G-protein coupled adenylyl cyclase (cAMPase)
     activity and reduce protein kinase C (PKC) activity. The analogues
CC
CC
     can reverse the loss of bone and increase bone mass and density
     without undesirable effects. They are useful for the treatment of
CC
CC
     osteoporosis and other bone related disorders and disorders
CC
     involving bone cell calcium regulation.
XX
SO
     Sequence
                34 AA:
                          100.0%; Score 29; DB 17; Length 34;
  Query Match
                         100.0%; Pred. No. 6.4e-22;
  Best Local Similarity
  Matches
            29; Conservative
                               0; Mismatches
                                                                            0;
                                                 0; Indels
                                                                0; Gaps
Qу
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
              Db
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
RESULT 37
AAW24273
ID
    AAW24273 standard; protein; 34 AA.
XX
AC
    AAW24273;
XX
DT
     17-OCT-1997 (first entry)
XX
DE
    Wild type parathyroid hormone.
XX
KW
    Analogue; parathyroid hormone; PTH; hirudin; hirulog;
KW
     electrotransportability; alpha-helix; beta-sheet.
XX
OS
    Homo sapiens.
XX
PN
    WO9639423-A2.
XX
PD
    12-DEC-1996.
```

PN

CA2126299-A.

```
XX
PF
     06-JUN-1996;
                   96WO-US09647.
XX
PR
     06-JUN-1995;
                   95US-0468275.
XX
PΑ
     (ALZA ) ALZA CORP.
XX
ΡI
    Holladay LA, Oldenburg KR;
XX
DR
    WPI; 1997-043058/04.
XX
PT
     Prepn. of analogues of parent poly-peptide(s), esp. parathyroid
PT
     hormone and hirulog - which exhibit better or enhanced
PT
     electro-transportability through a body surface
XX
PS
     Claim 7; Fig 1A; 55pp; English.
XX
CC
     The sequences given in AAW24273-76 represent wildtype and analogues of
     parathyroid hormone (PTH). The analogues exhibit better/enhanced
CC
CC
     electrotransportability through a body surface, and are characterised
     by substituting one or more amino acid residues of the parent
CC
     polypeptide to disrupt one or more alpha-helical and/or beta-sheet
CC
CC
     segments of the parent polypeptide. An electrotransport device can
CC
     deliver the polypeptide analogue through a body surface by electro-
     transport by including providing a therapeutically effective amount
CC
CC
     of the polypeptide analogue in a donor reservoir of the electrotransport
     device. The electrotransport flux of a polypeptide is increased by
CC
CC
     reducing the potential of the polypeptide for forming alpha-helix or
CC
     beta-sheet segment.
XX
SO
     Sequence
               34 AA;
  Query Match
                         100.0%; Score 29; DB 18; Length 34;
                         100.0%; Pred. No. 6.4e-22;
  Best Local Similarity
  Matches
                               0; Mismatches 0; Indels
           29; Conservative
                                                                0; Gaps
                                                                            0;
Qу
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLO 29
              Db
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
RESULT 38
AAW19994
ID
    AAW19994 standard; peptide; 34 AA.
XX
AC
    AAW19994;
XX
DT
     28-AUG-1997 (first entry)
XX
DE
     Cyclised human parathyroid hormone (1-34) amide.
XX
KW
     Parathyroid hormone; PTH; amino terminus; cyclic; analogue;
KW
     adenylate cyclase activity; bone growth; osteoporosis; fracture;
KW
     antiresorptive therapy.
XX
OS
     Homo sapiens.
XX
```

```
FT
     Misc-difference 13
FT
                     /note= "joined via amide bond to residue 17"
FT
     Misc-difference 17
FT
                     /note= "joined via amide bond to residue 13"
FT
    Misc-difference 34
FT
                     /note= "amidated"
XX
PN
    WO9640193-A1.
ХX
PD
     19-DEC-1996.
XX
PF
     06-JUN-1996;
                    96WO-US09674.
XX
PR
     07-JUN-1995;
                    95US-0488105.
XX
     (BETH-) BETH ISRAEL HOSPITAL ASSOC.
PA
XX
ΡI
     Chorev M,
               Rosenblatt M;
XX
     WPI; 1997-051884/05.
DR
XX
PT
     New cyclic analogues of parathyroid hormone - having di:sulphide or
     amide bond between residues 13 and 17 and/or between residues 26 and
PT
PT
     30, useful for treating osteoporosis and bone fractures
XX
PS
     Claim 4; Page -; 23pp; English.
XX
CC
     AAW19994 is a cyclised peptide derived from the N-terminal sequence
CC
     of human parathyroid hormone (PTH). The peptide is able to bind to
CC
     PTH receptors and stimulate adenylate cyclase activity. Cyclised
CC
     PTH peptides stimulate bone growth and thus are useful in the
     treatment of osteoporosis and bone fractures. Optionally they may
CC
CC
     be administered concurrently with antiresorptive therapy (e.g.
CC
     bisphosphonate and calicitonin).
CC
     N.B. sequence not given in the specification, created from known
CC
     sequence of amino acids 1-34 of human PTH.
XX
SQ
     Sequence
               34 AA;
  Query Match
                          100.0%; Score 29; DB 18; Length 34;
  Best Local Similarity
                          100.0%; Pred. No. 6.4e-22;
 Matches
           29; Conservative
                              0; Mismatches
                                                  0; Indels
                                                                 0; Gaps
                                                                             0;
Qу
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
              1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
RESULT 39
AAW20000
ID
     AAW20000 standard; peptide; 34 AA.
XX
AC
    AAW20000;
XX
DT
     28-AUG-1997 (first entry)
XX
```

Location/Qualifiers

FH

Kev

```
XX
     Parathyroid hormone; PTH; amino terminus; cyclic; analogue;
KW
     adenylate cyclase activity; bone growth; osteoporosis; fracture;
KW
     antiresorptive therapy.
KW
XX
OS
     Homo sapiens.
XX
FΗ
                     Location/Qualifiers
     Key
FT
     Misc-difference 26
                     /note= "joined via amide bond to residue 30"
FT
FT
     Misc-difference 30
                     /note= "joined via amide bond to residue 26"
FT
FT
     Misc-difference 34
                     /note= "amidated"
FΤ
XX
PN
     WO9640193-A1.
XX
PD
     19-DEC-1996.
XX
PF
     06-JUN-1996;
                    96WO-US09674.
XX
PR
     07~JUN-1995;
                    95US-0488105.
XX
     (BETH-) BETH ISRAEL HOSPITAL ASSOC.
PA
XX
PΙ
     Chorev M, Rosenblatt M;
XX
DR
     WPI; 1997-051884/05.
XX
PT
     New cyclic analogues of parathyroid hormone - having di:sulphide or
PT
     amide bond between residues 13 and 17 and/or between residues 26 and
PT
     30, useful for treating osteoporosis and bone fractures
XX
PS
     Claim 6; Page -; 23pp; English.
XX
CC
     AAW20000 is a cyclised peptide derived from the N-terminal sequence
CC
     of human parathyroid hormone (PTH). The peptide is able to bind to
CC
     PTH receptors and stimulate adenylate cyclase activity. Cyclised
CC
     PTH peptides stimulate bone growth and thus are useful in the
     treatment of osteoporosis and bone fractures. Optionally they may
CC
     be administered concurrently with antiresorptive therapy (e.g.
CC
CC
     bisphosphonate and calicitonin).
CC
     N.B. sequence not given in the specification, created from known
     sequence of amino acids 1-34 of human PTH.
CC
XX
SQ
     Sequence
                34 AA;
  Query Match
                          100.0%; Score 29; DB 18; Length 34;
                          100.0%; Pred. No. 6.4e-22;
  Best Local Similarity
                                 0; Mismatches
  Matches
            29; Conservative
                                                   0; Indels
                                                                      Gaps
                                                                              0;
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
QУ
              1111111111111111111111111
Db
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
```

Cyclised human parathyroid hormone (1-34) amide.

DE

```
RESULT 40
AAW20006
     AAW20006 standard; peptide; 34 AA.
ID
XX
AC
     AAW20006;
XX
DT
     28-AUG-1997 (first entry)
XX
DE
     Cyclised human parathyroid hormone (1-34) amide.
XX
KW
     Parathyroid hormone; PTH; amino terminus; cyclic; analogue;
KW
     adenylate cyclase activity; bone growth; osteoporosis; fracture;
KW
     antiresorptive therapy.
XX
     Homo sapiens.
OS
XX
FΗ
                     Location/Qualifiers
     Key
FT
     Misc-difference 13
FT
                     /note= "joined via amide bond to residue 17"
FT
     Misc-difference 17
FT
                     /note= "joined via amide bond to residue 13"
     Misc-difference 26
FT
FT
                     /note= "joined via amide bond to residue 30"
FT
     Misc-difference 30
FT
                     /note= "joined via amide bond to residue 26"
FT
     Misc-difference 34
FT
                     /note= "amidated"
XX
     WO9640193-A1.
PN
XX
PD
     19-DEC-1996.
XX
PF
     06-JUN-1996;
                    96WO-US09674.
XX
PR
     07-JUN-1995;
                    95US-0488105.
XX
PΑ
     (BETH-) BETH ISRAEL HOSPITAL ASSOC.
XX
PΙ
     Chorev M, Rosenblatt M;
XX
DR
     WPI; 1997-051884/05.
XX
     New cyclic analogues of parathyroid hormone - having di:sulphide or
PT
PT
     amide bond between residues 13 and 17 and/or between residues 26 and
PT
     30, useful for treating osteoporosis and bone fractures
XX
PS
     Claim 8; Page -; 23pp; English.
XX
CC
     AAW20006 is a cyclised peptide derived from the N-terminal sequence
CC
     of human parathyroid hormone (PTH). The peptide is able to bind to
     PTH receptors and stimulate adenylate cyclase activity. Cyclised
CC
CC
     PTH peptides stimulate bone growth and thus are useful in the
CC
     treatment of osteoporosis and bone fractures. Optionally they may
     be administered concurrently with antiresorptive therapy (e.g.
CC
CC
     bisphosphonate and calicitonin).
CC
     N.B. sequence not given in the specification, created from known
CC
     sequence of amino acids 1-34 of human PTH.
```

Search completed: January 14, 2004, 10:34:27

Job time : 28.7352 secs

GenCore version 5.1.6 Copyright (c) 1993 - 2004 Compugen Ltd.

OM protein - protein search, using sw model

Run on: January 14, 2004, 10:28:59; Search time 9.84735 Seconds

(without alignments)

124.604 Million cell updates/sec

Title: US-09-843-221A-167

Perfect score: 29

Sequence: 1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29

Scoring table: OLIGO

Gapop 60.0 , Gapext 60.0

Searched: 328717 segs, 42310858 residues

Word size : 0

Total number of hits satisfying chosen parameters: 25778

Minimum DB seq length: 28 Maximum DB seq length: 40

Post-processing: Listing first 1000 summaries

Database : Issued_Patents_AA:*

9

1: /cgn2_6/ptodata/1/iaa/5A_COMB.pep:*
2: /cgn2_6/ptodata/1/iaa/5B_COMB.pep:*
3: /cgn2_6/ptodata/1/iaa/6A_COMB.pep:*
4: /cgn2_6/ptodata/1/iaa/6B_COMB.pep:*
5: /cgn2_6/ptodata/1/iaa/PCTUS_COMB.pep:*
6: /cgn2_6/ptodata/1/iaa/backfiles1.pep:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Result No.	Score	Query Match	Length	DB	ID	Description
	20	100.0			11G 00 262 405G 5	
1	29	100.0	30	1	US-08-262-495C-5	Sequence 5, Appli
2	29	100.0	31	1	US-08-262 - 495C-3	Sequence 3, Appli
3	29	100.0	31	2	US-08-691 - 647C-1	Sequence 1, Appli
4	29	100.0	31	2	US-08-691-647C-6	Sequence 6, Appli
5	29	100.0	31	3	US-08-904-760B-1	Sequence 1, Appli
6	29	100.0	31	3	US-08-904-760B-6	Sequence 6, Appli
7	29	100.0	31	3	US-08-904-760B-14	Sequence 14, Appl
8	29	100.0	31	3	US-08-904-760B-32	Sequence 32, Appl
9	29	100.0	31	4	US-09-406-813-2	Sequence 2, Appli
10	29	100.0	31	4	US-09-536-785A-1	Sequence 1, Appli
11	29	100.0	31	4	US-09-536 - 785A-6	Sequence 6, Appli

```
31 4 US-09-536-785A-14
                                                      Sequence 14, Appl
12
       29 100.0
                     31 4
                            US-09-536-785A-32
                                                      Sequence 32, Appl
       29 100.0
13
                     33 4
                                                      Sequence 9, Appli
14
       29 100.0
                            US-09-447-800-9
                                                      Sequence 1, Appli
15
       29 100.0
                     34 1
                            US-07-765-373-1
       29 100.0
                     34 1 US-08-033-099-1
                                                      Sequence 1, Appli
16
       29
                     34 1
                                                      Sequence 1, Appli
17
           100.0
                            US-08-262-495C-1
                     34 1
                                                      Sequence 1, Appli
18
       29
           100.0
                            US-07-915-247A-1
19
       29
           100.0
                     34
                        1
                            US-08-443-863-1
                                                      Sequence 1, Appli
20
       29
           100.0
                     34 1 US-08-448-070-1
                                                      Sequence 1, Appli
21
       29
          100.0
                     34 1 US-08-488-105-7
                                                      Sequence 7, Appli
22
       29 100.0
                     34 1 US-08-468-275-6
                                                      Sequence 6, Appli
23
       29 100.0
                     34 1 US-08-449-500-1
                                                      Sequence 1, Appli
24
       29 100.0
                     34 1 US-08-449-317A-1
                                                      Sequence 1, Appli
25
       29
           100.0
                     34
                         2 US-08-142-551B-2
                                                      Sequence 2, Appli
                     34 2
26
       29
           100.0
                            US-08-477-022-1
                                                      Sequence 1, Appli
                     34 2
27
       29
           100.0
                            US-08-449-447-1
                                                      Sequence 1, Appli
28
       29
           100.0
                     34 2
                            US-08-835-231-13
                                                      Sequence 13, Appl
29
       29 100.0
                     34 2 US-08-184-328-1
                                                      Sequence 1, Appli
30
       29 100.0
                     34 2 US-08-411-726-2
                                                      Sequence 2, Appli
31
       29 100.0
                     34 2
                            US-08-691-647C-5
                                                      Sequence 5, Appli
32
       29 100.0
                     34 2
                            US-08-521-097-1
                                                      Sequence 1, Appli
                     34 3
33
       29 100.0
                            US-09-044-536A-1
                                                      Sequence 1, Appli
                     34
34
       29
           100.0
                         3
                            US-08-904-760B-22
                                                      Sequence 22, Appl
                                                      Sequence 1, Appli
35
       29
           100.0
                     34 3
                            US-08-903-497A-1
36
       29
           100.0
                     34 3
                            US-09-108-661-13
                                                      Sequence 13, Appl
37
       29 100.0
                     34 4 US-09-007-466-6
                                                      Sequence 6, Appli
38
       29 100.0
                     34 4 US-09-406-813-1
                                                      Sequence 1, Appli
39
       29 100.0
                     34 4 US-08-952-980B-6
                                                      Sequence 6, Appli
40
       29 100.0
                     34 4 US-09-635-076-1
                                                      Sequence 1, Appli
                                                      Sequence 1, Appli
41
       29 100.0
                     34 4 US-09-228-990-1
                     34 4 US-09-447-800-8
42
       29 100.0
                                                      Sequence 8, Appli
43
       29
           100.0
                     34 4
                            US-09-536-785A-22
                                                      Sequence 22, Appl
44
       29
           100.0
                     34 4
                            US-09-442-989-26
                                                      Sequence 26, Appl
       29 100.0
                     34 5 PCT-US95-15800-22
45
                                                      Sequence 22, Appl
                     35 1 US-08-256-363-3
46
       29 100.0
                                                      Sequence 3, Appli
47
       29 100.0
                     36 1 US-08-256-363-4
                                                      Sequence 4, Appli
48
       29 100.0
                     37 1
                            US-08-440-117-1
                                                      Sequence 1, Appli
       29 100.0
49
                     37 3
                            US-09-068-738A-16
                                                      Sequence 16, Appl
                     38 1
50
       29
           100.0
                            US-08-112-024-1
                                                      Sequence 1, Appli
51
       29
           100.0
                     38
                         1
                            US-08-232-849-1
                                                      Sequence 1, Appli
52
       29
           100.0
                     38
                         2
                            US-08-625-586-1
                                                      Sequence 1, Appli
                     38 3 US-09-128-401-1
53
       29
           100.0
                                                      Sequence 1, Appli
54
       28
            96.6
                     28 4 US-09-448-867-12
                                                      Sequence 12, Appl
       28
55
            96.6
                     33 4 US-09-447-800-3
                                                      Sequence 3, Appli
       28
            96.6
                     33 4 US-09-447-800-6
56
                                                      Sequence 6, Appli
57
       28
            96.6
                     34 4 US-09-447-800-1
                                                      Sequence 1, Appli
58
       28
            96.6
                     34 4
                            US-09-447-800-2
                                                      Sequence 2, Appli
59
       28
            96.6
                     34 4
                            US-09-447-800-5
                                                      Sequence 5, Appli
60
       28
            96.6
                     36
                         1
                            US-08-112-024-2
                                                      Sequence 2, Appli
                                                      Sequence 8, Appli
61
       27
            93.1
                     28 4
                            US-09-448-867-8
62
       27
                     28 4
                            US-09-448-867-10
            93.1
                                                      Sequence 10, Appl
       27
                     33 1 US-08-256-363-1
63
            93.1
                                                      Sequence 1, Appli
                     34 1 US-08-256-363-2
64
       27
            93.1
                                                      Sequence 2, Appli
                     28 4 US-09-406-813-3
65
       26
            89.7
                                                      Sequence 3, Appli
                     29 4
                            US-09-406-813-4
66
       26
            89.7
                                                      Sequence 4, Appli
                     30 1
                            US-08-262-495C-6
67
       26
            89.7
                                                      Sequence 6, Appli
                     30 3 US-08-904-760B-7
68
       26
            89.7
                                                      Sequence 7, Appli
```

```
69
                      30 4 US-09-536-785A-7
                                                        Sequence 7, Appli
        26
             89.7
                                                        Sequence 4, Appli
                      31 1
70
        26
             89.7
                             US-08-262-495C-4
71
        26
                      31 2
                             US-08-691-647C-2
                                                        Sequence 2, Appli
             89.7
72
                      31 2
                             US-08-691-647C-3
                                                        Sequence 3, Appli
        26
             89.7
73
                      31 2
        26
             89.7
                             US-08-691-647C-4
                                                        Sequence 4, Appli
                      31
                             US-08-904-760B-2
                                                        Sequence 2, Appli
74
        26
             89.7
                          3
                      31
75
        26
             89.7
                          3
                             US-08-904-760B-3
                                                        Sequence 3, Appli
76
        26
             89.7
                      31 3
                             US-08-904-760B-4
                                                        Sequence 4, Appli
77
        26
             89.7
                      31 3
                             US-08-904-760B-5
                                                        Sequence 5, Appli
78
        26
             89.7
                      31 3
                             US-08-904-760B-8
                                                        Sequence 8, Appli
79
        26
             89.7
                      31 3
                             US-08-904-760B-11
                                                        Sequence 11, Appl
80
        26
             89.7
                      31 3
                             US-08-904-760B-12
                                                        Sequence 12, Appl
81
        26
             89.7
                      31 3
                             US-08-904-760B-15
                                                        Sequence 15, Appl
82
        26
             89.7
                      31 3
                             US-08-904-760B-16
                                                        Sequence 16, Appl
83
        26
             89.7
                      31
                          3
                             US-08-904-760B-17
                                                        Sequence 17, Appl
 84
        26
             89.7
                      31
                          4
                             US-09-536-785A-2
                                                        Sequence 2, Appli
85
        26
             89.7
                      31 4
                             US-09-536-785A-3
                                                        Sequence 3, Appli
             89.7
                      31 4
86
        26
                             US-09-536-785A-4
                                                        Sequence 4, Appli
 87
        26
             89.7
                      31 4 US-09-536-785A-5
                                                        Sequence 5, Appli
 88
        26
              89.7
                      31 4
                             US-09-536-785A-8
                                                        Sequence 8, Appli
 89
        26
             89.7
                      31 4
                             US-09-536-785A-11
                                                        Sequence 11, Appl
 90
        26
             89.7
                      31 4
                             US-09-536-785A-12
                                                        Sequence 12, Appl
 91
        26
             89.7
                      31 4
                             US-09-536-785A-15
                                                        Sequence 15, Appl
                             US-09-536-785A-16
 92
        26
             89.7
                      31 4
                                                        Sequence 16, Appl
 93
        26
             89.7
                      31 4
                             US-09-536-785A-17
                                                        Sequence 17, Appl
        26
             89.7
                      34 1 US-08-262-495C-2
 94
                                                        Sequence 2, Appli
        26
 95
             89.7
                     34 3 US-08-904-760B-9
                                                        Sequence 9, Appli
 96
        26
             89.7
                      34 3 US-08-904-760B-10
                                                         Sequence 10, Appl
              89.7
                      34 4 US-09-449-632-24
 97
        26
                                                        Sequence 24, Appl
 98
        26
             89.7
                      34 4 US-09-536-785A-9
                                                        Sequence 9, Appli
 99
        26
             89.7
                      34 4
                             US-09-536-785A-10
                                                        Sequence 10, Appl
                      31
100
        25
             86.2
                          3
                             US-08-904-760B-21
                                                        Sequence 21, Appl
101
        25
             86.2
                      31 4
                             US-09-536-785A-21
                                                        Sequence 21, Appl
102
        24
             82.8
                      34 1 US-07-773-098-5
                                                        Sequence 5, Appli
103
        24
             82.8
                      34 1
                                                        Sequence 6, Appli
                             US-07-773-098-6
104
        23
             79.3
                      38 5
                             PCT-US95-15800-29
                                                        Sequence 29, Appl
105
        21
             72.4
                      31 3
                             US-08-904-760B-18
                                                         Sequence 18, Appl
106
        21
             72.4
                      31 3
                             US-08-904-760B-19
                                                        Sequence 19, Appl
107
        21
             72.4
                      31 3
                             US-08-904-760B-20
                                                        Sequence 20, Appl
108
        21
             72.4
                      31 4
                             US-09-536-785A-18
                                                        Sequence 18, Appl
109
        21
             72.4
                      31 4
                             US-09-536-785A-19
                                                        Sequence 19, Appl
110
        21
             72.4
                      31 4
                             US-09-536-785A-20
                                                        Sequence 20, Appl
111
        20
             69.0
                      34 4
                             US-08-952-980B-9
                                                        Sequence 9, Appli
112
        19
             65.5
                      34 3
                             US-09-044-536A-9
                                                        Sequence 9, Appli
        19
113
              65.5
                      34 3
                             US-09-044-536A-10
                                                         Sequence 10, Appl
114
        19
              65.5
                      34 3
                             US-09-044-536A-13
                                                         Sequence 13, Appl
115
        19
              65.5
                      34 3
                             US-09-044-536A-14
                                                        Sequence 14, Appl
        19
116
             65.5
                      34 3
                             US-09-044-536A-15
                                                        Sequence 15, Appl
        18
              62.1
                      28 4
117
                             US-09-448-867-6
                                                        Sequence 6, Appli
118
        18
              62.1
                      34
                          3
                             US-09-044-536A-8
                                                        Sequence 8, Appli
119
                          3
         18
              62.1
                       34
                             US-09-044-536A-11
                                                        Sequence 11, Appl
120
        18
                      34 3
                             US-09-044-536A-12
              62.1
                                                        Sequence 12, Appl
121
                      28 4
        17
              58.6
                             US-09-448-867-1
                                                        Sequence 1, Appli
122
        17
                      28 4
              58.6
                             US-09-448-867-2
                                                        Sequence 2, Appli
123
        17
              58.6
                      28 4
                             US-09-448-867-4
                                                        Sequence 4, Appli
124
        16
              55.2
                      28 4
                             US-09-406-813-6
                                                        Sequence 6, Appli
125
        16
              55.2
                      31 4
                             US-09-406-813-5
                                                        Sequence 5, Appli
```

						G 1 Pro-1:
126	16	55.2	34	1	US-08-488-105-1	Sequence 1, Appli
127	16	55.2	34	1	US-08-488-105-13	Sequence 13, Appl
128	16	55.2	34	3	US-09-044-536A-26	Sequence 26, Appl
129	15	51.7	34	1	US-07-915-247A-3	Sequence 3, Appli
130	15	51.7	34	1	US-08-443-863-3	Sequence 3, Appli
131	15	51.7	34	1	US-08-448-070-3	Sequence 3, Appli
132	15	51.7	34	1	US-08-449-500-3	Sequence 3, Appli
133	15	51.7	34	1	US-08-449-317A-3	Sequence 3, Appli
134	15	51.7	34	2	US-08-477-022-3	Sequence 3, Appli
135	15	51.7	34	2	US-08-449-447-3	Sequence 3, Appli
136	15	51.7	34	2	US-08-184-328-3	Sequence 3, Appli
137	15	51.7	34	2	US-08-521-097-3	Sequence 3, Appli
138	15	51.7	34	3	US-09-044-536A-25	Sequence 25, Appl
139	15	51.7	34	3	US-09-044-536A-29	Sequence 29, Appl
140	15	51.7	34	3	US-08-903-497A-3	Sequence 3, Appli
141	15	51.7	34	4	US-09-635-076-3	Sequence 3, Appli
142	14	48.3	34	1	US-08-488-105-3	Sequence 3, Appli
	14	48.3	34	1	US-08-488-105-9	Sequence 9, Appli
143					US-08-488-105-15	Sequence 15, Appl
144	14	48.3	34	1		Sequence 7, Appli
145	14	48.3	34	3	US-08-903-497A-7	
146	14	48.3	34	4	US-09-635-076-7	Sequence 7, Appli
147	13	44.8	30	3	US-08-904-760B-33	Sequence 33, Appl
148	13	44.8	30	3	US-08-904-760B-34	Sequence 34, Appl
149	13	44.8	30	3	US-08-904-760B-35	Sequence 35, Appl
150	13	44.8	30	4	US-09-536-785A-33	Sequence 33, Appl
151	13	44.8	30	4	US-09-536-785A-34	Sequence 34, Appl
152	13	44.8	30	4	US-09-536-785A-35	Sequence 35, Appl
153	13	44.8	34	1	US-07 - 915-247A-2	Sequence 2, Appli
154	13	44.8	34	1	US-08-443-863-2	Sequence 2, Appli
155	13	44.8	34	1	US-08-448-070-2	Sequence 2, Appli
156	13	44.8	34	1	US-08-488-105-2	Sequence 2, Appli
157	13	44.8	34	1	US-08-488-105-8	Sequence 8, Appli
158	13	44.8	34	1	US-08-449-500-2	Sequence 2, Appli
159	13	44.8	34	1	US-08-449-317A-2	Sequence 2, Appli
160	13	44.8	34	2	US-08-477-022-2	Sequence 2, Appli
161	13	44.8	34	2	US-08-449-447-2	Sequence 2, Appli
162	13	44.8	34	2	US-08-184-328-2	Sequence 2, Appli
163	13	44.8	34	2	US-08-521-097-2	Sequence 2, Appli
164	13	44.8	34	3	US-09-044-536A-18	Sequence 18, Appl
165	13	44.8	34	3	US-09-044-536A-19	Sequence 19, Appl
166	12	41.4	34	1	US-08-049-402-2	Sequence 2, Appli
167	12	41.4	34	1	US-08-488-105-14	Sequence 14, Appl
168	12	41.4	34	1	US-08-526-987 - 2	Sequence 2, Appli
169	12	41.4	34	3	US-09-044-536A-16	Sequence 16, Appl
170	12	41.4	34	3	US-09-044-536A-17	Sequence 17, Appl
171	11	37.9	34	1	US-08-488-105-4	Sequence 4, Appli
172	11	37.9	34	1	US-08-488-105-6	Sequence 6, Appli
173	11	37.9	34	1	US-08-488-105-10	Sequence 10, Appl
174	11	37.9	34	1	US-08-488-105-11	Sequence 11, Appl
175	11	37.9	34	1	US-08-488-105-16	Sequence 16, Appl
176	11	37.9	34	1	US-08-488-105-18	Sequence 18, Appl
177	11	37.9	34	1	US-08-449-500-79	Sequence 79, Appl
178	11	37.9	34	1	US-08-449-317A-79	Sequence 79, Appl
179	11	37.9	34	2	US-08-142-551B-3	Sequence 3, Appli
180	11	37.9	34	2	US-08-477-022-79	Sequence 79, Appl
181	11	37.9	34	2	US-08-449-447-79	Sequence 79, Appl
182	11	37.9	34	2	US-08-184-328-79	Sequence 79, Appl
**		· · · -			•	• • • •

```
Sequence 79, Appl
         11
               37.9
                        34
                                US-08-521-097-79
183
                                                             Sequence 4, Appli
                                US-08-903-497A-4
         11
               37.9
                        34
                             3
184
                                                             Sequence 4, Appli
                                US-09-635-076-4
                        34
                             4
         11
               37.9
185
                                                             Sequence 4, Appli
                        35
                                US-08-142-551B-4
         11
               37.9
186
                                                             Sequence 5, Appli
               37.9
                        35
                             2
                                US-08-142-551B-5
         11
187
                                                             Sequence 7, Appli
                        35
                             2
                                US-08-142-551B-7
188
         11
               37.9
                                                             Sequence 11, Appl
                         35
                             2
                                US-08-142-551B-11
189
         11
               37.9
                                                             Sequence 12, Appl
         11
               37.9
                         35
                             2
                                US-08-142-551B-12
190
                                                             Sequence 13, Appl
         11
               37.9
                         35
                             2
                                US-08-142-551B-13
191
                                                             Sequence 14, Appl
               37.9
                         35
                             2
                                US-08-142-551B-14
192
          11
                                                              Sequence 15, Appl
               37.9
                         35
                             2
                                US-08-142-551B-15
193
          11
                                                              Sequence 16, Appl
               37.9
                         35
                             2
                                US-08-142-551B-16
194
          11
                                                              Sequence 17, Appl
               37.9
                         35
                             2
                                US-08-142-551B-17
          11
195
                                                              Sequence 18, Appl
                         35
                             2
                                US-08-142-551B-18
          11
               37.9
196
                                                              Sequence 19, Appl
                         35
                             2
                                US-08-142-551B-19
          11
               37.9
197
                                                              Sequence 20, Appl
               37.9
                         35
                             2
                                US-08-142-551B-20
          11
198
                                                              Sequence 21, Appl
                         35
                             2
                                US-08-142-551B-21
               37.9
199
          11
                                                              Sequence 22, Appl
                         35
                             2
                                US-08-142-551B-22
          11
               37.9
200
                                                              Sequence 23, Appl
                         35
                             2
                                US-08-142-551B-23
               37.9
          11
201
                                                              Sequence 24, Appl
                         35
                             2
                                US-08-142-551B-24
               37.9
          11
202
                                                              Sequence 25, Appl
                         35
                             2
                                US-08-142-551B-25
               37.9
203
          11
                                                              Sequence 26, Appl
                                US-08-142-551B-26
               37.9
                         35
                             2
204
          11
                                                              Sequence 27, Appl
                         35
                             2
                                US-08-142-551B-27
          11
               37.9
205
                                                              Sequence 28, Appl
                         35
                             2
                                US-08-142-551B-28
               37.9
206
          11
                                                              Sequence 29, Appl
                         35
                             2
                                US-08-142-551B-29
207
          11
               37.9
                                                              Sequence 30, Appl
                             2
               37.9
                         35
                                US-08-142-551B-30
208
          11
                                                              Sequence 31, Appl
                                US-08-142-551B-31
          11
               37.9
                         35
                             2
209
                             2
                                US-08-142-551B-32
                                                              Sequence 32, Appl
               37.9
                         35
210
          11
                                                              Sequence 33, Appl
          11
               37.9
                         35
                             2
                                US-08-142-551B-33
211
                                                              Sequence 34, Appl
                         35
                             2
                                 US-08-142-551B-34
          11
               37.9
212
                         35
                             2
                                 US-08-142-551B-35
                                                              Sequence 35, Appl
          11
               37.9
213
                         35
                             2
                                 US-08-142-551B-36
                                                              Sequence 36, Appl
214
          11
               37.9
                         35
                             2
                                                              Sequence 37, Appl
          11
               37.9
                                 US-08-142-551B-37
215
                         35
                                 US-08-142-551B-38
                                                              Sequence 38, Appl
          11
               37.9
                             2
216
                         35
                                 US-08-142-551B-39
                                                              Sequence 39, Appl
               37.9
                             2
          11
217
                                                              Sequence 40, Appl
                         35
                                 US-08-142-551B-40
               37.9
                             2
218
          11
                                                              Sequence 41, Appl
               37.9
                         35
                             2
                                 US-08-142-551B-41
219
          11
                             2
                                 US-08-142-551B-42
                                                              Sequence 42, Appl
               37.9
                         35
220
          11
                             2
                                 US-08-142-551B-43
                                                              Sequence 43, Appl
                         35
               37.9
221
          11
                                                              Sequence 44, Appl
                             2
                                 US-08-142-551B-44
          11
               37.9
                         35
222
                                                              Sequence 45, Appl
                         35
                             2
                                 US-08-142-551B-45
          11
               37.9
223
                                                              Sequence 46, Appl
               37.9
                         35
                             2
                                 US-08-142-551B-46
224
          11
                                                              Sequence 47, Appl
                             2
                                 US-08-142-551B-47
               37.9
                         35
225
          11
                                                              Sequence 48, Appl
                              2
                                 US-08-142-551B-48
               37.9
                         35
226
          11
                                                              Sequence 49, Appl
                              2
                                 US-08-142-551B-49
               37.9
                         35
227
          11
                                                              Sequence 50, Appl
                         35
                              2
                                 US-08-142-551B-50
          11
               37.9
228
                                                              Sequence 51, Appl
                         35
                              2
                                 US-08-142-551B-51
229
          11
                37.9
                                 US-08-142-551B-52
                                                              Sequence 52, Appl
                              2
230
          11
                37.9
                         35
                                                              Sequence 53, Appl
                37.9
                         35
                              2
                                 US-08-142-551B-53
231
          11
                                                              Sequence 54, Appl
                         35
                              2
                                 US-08-142-551B-54
                37.9
232
          11
                                                              Sequence 55, Appl
                         35
                              2
                                 US-08-142-551B-55
          11
                37.9
233
                                                              Sequence 56, Appl
                         35
                              2
                                 US-08-142-551B-56
          11
                37.9
234
                                                              Sequence 57, Appl
                37.9
                         35
                              2
                                 US-08-142-551B-57
          11
235
                              2
                                 US-08-142-551B-58
                                                              Sequence 58, Appl
                         35
                37.9
236
          11
                              2
                                                              Sequence 59, Appl
                         35
                                 US-08-142-551B-59
                37.9
237
          11
                                                              Sequence 60, Appl
                         35
                              2
                                 US-08-142-551B-60
          11
                37.9
238
                              2
                                 US-08-142-551B-61
                                                              Sequence 61, Appl
                37.9
                         35
          11
239
```

240	11	37.9	35	2	US-08-142-551B-62	Sequence 62, Appl
241	11	37.9	35	2	US-08-142-551B-63	Sequence 63, Appl
242	11	37.9	35	2	US-08-142-551B-64	Sequence 64, Appl
243	11	37.9		2	US-08-142-551B-65	Sequence 65, Appl
244	11	37.9		2	US-08-142-551B-66	Sequence 66, Appl
245	11	37.9		2	US-08-142-551B-67	
						Sequence 67, Appl
246	11	37.9		2	US-08-142-551B-68	Sequence 68, Appl
247	11	37.9		2	US-08-142-551B-70	Sequence 70, Appl
248	11	37.9	35	2	US-08-142 - 551B-73	Sequence 73, Appl
249	11	37.9	35	2	US-08-142-551B-80	Sequence 80, Appl
250	11	37.9	35	2	US-08-142-551B-90	Sequence 90, Appl
251	11	37.9	35	2	US-08-142-551B-94	Sequence 94, Appl
252	11	37.9	35	2	US-08-142-551B-104	Sequence 104, App
253	11	37.9		2	US-08-142-551B-105	Sequence 105, App
254	11	37.9		2	US-08-142-551B-106	Sequence 106, App
255	11	37.9		2	US-08-142-551B-107	
						Sequence 107, App
256	11	37.9		2	US-08-142-551B-108	Sequence 108, App
257	11	37.9		2	US-08-142-551B-109	Sequence 109, App
258	11	37.9		2	US-08-142-551B-110	Sequence 110, App
259	11	37.9		2	US-08-142-551B-111	Sequence 111, App
260	11	37.9	35	2	US-08-142-551B-112	Sequence 112, App
261	11	37.9	35	2	US-08-142-551B-113	Sequence 113, App
262	11	37.9	35	2	US-08-142-551B-114	Sequence 114, App
263	11	37.9	35	2	US-08-142-551B-115	Sequence 115, App
264	11	37.9		2	US-08-142-551B-116	Sequence 116, App
265	11	37.9		2	US-08-142-551B-117	Sequence 117, App
266	11	37.9		2	US-08-142-551B-118	
267	11	37.9		2		Sequence 118, App
					US-08-142-551B-122	Sequence 122, App
268	10	34.5		1	US-08-033-099-2	Sequence 2, Appli
269	10	34.5		3	US-09-044-536A-20	Sequence 20, Appl
270	10	34.5		3	US-09-044-536A-21	Sequence 21, Appl
271	10	34.5	34	3	US-09-044-536A-22	Sequence 22, Appl
272	10	34.5	34	3	US-09-044-536A-24	Sequence 24, Appl
273	10	34.5	34	3	US-09-044-536A-27	Sequence 27, Appl
274	10	34.5	34	3	US-09-044-536A-28	Sequence 28, Appl
275	10	34.5	35	2	US-08-142-551B-69	Sequence 69, Appl
276	10	34.5	35	2	US-08-142-551B-71	Sequence 71, Appl
277	10	34.5		2	US-08-142-551B-101	Sequence 101, App
278	10	34.5		2	US-08-142-551B-102	Sequence 102, App
279	10				US-08-142-551B-103	Sequence 102, App
280	10	34.5		2	US-08-142-551B-120	
						Sequence 120, App
281	9	31.0		4	US-09-228-990-54	Sequence 54, Appl
282	9	31.0		4	US-09-228-990-62	Sequence 62, Appl
283	9	31.0		4	US-09-228-990 - 65	Sequence 65, Appl
284	9	31.0		4	US-09-228-990-79	Sequence 79, Appl
285	9	31.0	-	4	US-09 - 442-989-22	Sequence 22, Appl
286	9	31.0	28	4	US-09-442-989 - 25	Sequence 25, Appl
287	9	31.0	29	4	US-09-406-813-8	Sequence 8, Appli
288	9	31.0	29	4	US-09-228-990-53	Sequence 53, Appl
289	9	31.0		4	US-09-228-990-63	Sequence 63, Appl
290	9	31.0		4	US-09-228-990-52	Sequence 52, Appl
291	9	31.0		4	US-09-228-990-64	Sequence 64, Appl
292	9	31.0		3	US-08-904-760B-13	Sequence 13, Appl
293	9					
		31.0		4	US-09-228-990-3	Sequence 3, Appli
294	9	31.0		4	US-09-228-990-4	Sequence 4, Appli
295	9	31.0		4	US-09-228-990-5	Sequence 5, Appli
296	9	31.0	31	4	US-09-228-990-6	Sequence 6, Appli

297	9	31.0	31	4	US-09-228-990-7	Sequence 7, Appli
298	9	31.0	31	4	US-09-228-990-8	Sequence 8, Appli
299	9	31.0	31	4	US-09-228-990-9	Sequence 9, Appli
300	9	31.0	31	4	US-09-228-990-10	Sequence 10, Appl
301	9	31.0	31	4	US-09-228-990-20	Sequence 20, Appl
302	9	31.0	31	4	US-09-228-990-21	Sequence 21, Appl
303	9	31.0	31	4	US-09-228-990-22	Sequence 22, Appl
304	9	31.0	31	4	US-09-228-990-23	Sequence 23, Appl
305	9	31.0	31	4	US-09-228-990-24	Sequence 24, Appl
305		31.0	31	4	US-09-228-990-25	Sequence 25, Appl
	9			4		
307	9	31.0	31		US-09-228-990-26	Sequence 26, Appl
308	9	31.0	31	4	US-09-228-990-27	Sequence 27, Appl
309	9	31.0	31	4	US-09-228-990-36	Sequence 36, Appl
310	9	31.0	31	4	US-09-228-990-37	Sequence 37, Appl
311	9	31.0	31	4	US-09-228-990-38	Sequence 38, Appl
312	. 9	31.0	31	4	US-09-228-990-39	Sequence 39, Appl
313	9	31.0	31	4	US-09-228-990-47	Sequence 47, Appl
314	9	31.0	31	4	US-09-228-990-48	Sequence 48, Appl
315	9	31.0	31	4	US-09-228-990-49	Sequence 49, Appl
316	9	31.0	31	4	US-09-228-990-50	Sequence 50, Appl
317	9	31.0	31	4	US-09-228-990-51	Sequence 51, Appl
318	9	31.0	31	4	US-09-228-990-69	Sequence 69, Appl
319	9	31.0	31	4	US-09-228-990-70	Sequence 70, Appl
320	9	31.0	31	4	US-09-228 - 990-74	Sequence 74, Appl
321	9	31.0	31	4	US-09-228-990-81	Sequence 81, Appl
322	9	31.0	31	4	US-09-228-990-82	Sequence 82, Appl
323	9	31.0	31	4	US-09-228-990-83	Sequence 83, Appl
324	9	31.0	31	4	US-09-228-990-84	Sequence 84, Appl
325	9	31.0	31	4	US-09-228-990-85	Sequence 85, Appl
326		31.0	31			
	9			4	US-09-536-785A-13	Sequence 13, Appl
327	9	31.0	31	4	US-09-442-989-1	Sequence 1, Appli
328	9	31.0	31	4	US-09-442-989-2	Sequence 2, Appli
329	9	31.0	31	4	US-09-442-989-3	Sequence 3, Appli
330	9	31.0	31	4	US-09-442-989-4	Sequence 4, Appli
331	9	31.0	31	4	US-09-442-989-5	Sequence 5, Appli
332	9	31.0	31	4	US-09-442-989-6	Sequence 6, Appli
333	9	31.0	31	4	US-09-442-989-7	Sequence 7, Appli
334	9	31.0	31	4	US-09-442 - 989-8	Sequence 8, Appli
335	9	31.0	31	4	US-09-442 - 989-17	Sequence 17, Appl
336	9	31.0	31	4	US-09-442-989-32	Sequence 32, Appl
337	9	31.0	34	3	US-09-044-536A-2	Sequence 2, Appli
338	9	31.0	34	3	US-09-044-536A-23	Sequence 23, Appl
339	9	31.0	34	4	US-09-228-990-46	Sequence 46, Appl
340	9	31.0	34	4	US-09-442-989-18	Sequence 18, Appl
341	9	31.0	34	4	US-09-442-989-46	Sequence 46, Appl
342	9	31.0	35	2	US-08-142-551B-72	Sequence 72, Appl
343	9	31.0	35	2	US-08-142-551B-74	Sequence 74, Appl
344	9	31.0	35	2	US-08-142 - 551B-75	Sequence 75, Appl
345	9	31.0	35	2	US-08-142-551B-76	Sequence 76, Appl
346	9	31.0	35	2	US-08-142-551B-77	Sequence 77, Appl
347	9	31.0	35	2	US-08-142-551B-78	Sequence 78, Appl
348	9	31.0	35	2	US-08-142-551B-79	Sequence 79, Appl
349	9	31.0	35	2	US-08-142-551B-81	Sequence 81, Appl
350	9	31.0	35	2	US-08-142-551B-82	Sequence 82, Appl
				2	US-08-142-551B-83	
351	9	31.0	35 35	2		Sequence 83, Appl
352	9	31.0	35		US-08-142-551B-84	Sequence 84, Appl
353	9	31.0	35	2	US-08-142-551B-85	Sequence 85, Appl

354	9	31.0	35	2	US-08-142-551B-86	Sequence 86, Appl
355	9	31.0	35	2	US-08-142-551B-87	Sequence 87, Appl
356	9	31.0	35	2	US-08-142 - 551B-88	Sequence 88, Appl
357	9	31.0	35	2	US-08-142-551B-89	Sequence 89, Appl
358	9	31.0	35	2	US-08-142-551B-91	Sequence 91, Appl
359	9	31.0	35	2	US-08-142-551B-92	Sequence 92, Appl
360	9	31.0	35	2	US-08-142-551B-93	Sequence 93, Appl
361	9	31.0	35	2	US-08-142-551B-95	Sequence 95, Appl
362	9	31.0	35	2	US-08-142-551B-96	Sequence 96, Appl
363	9	31.0	35	2	US-08-142-551B-97	Sequence 97, Appl
364	9	31.0	35	2	US-08-142-551B-98	Sequence 98, Appl
365	9	31.0	35	2	US-08-142-551B-99	Sequence 99, Appl
366	9	31.0	35	2	US-08-142-551B-100	Sequence 100, App
367	9	31.0	35	2	US-08-142-551B-123	Sequence 123, App
368	9	31.0	35	3	US-09-044-536A-30	Sequence 30, Appl
369	9	31.0	36	3	US-09-044-536A-31	Sequence 31, Appl
370	9	31.0	37	3	US-09-044-536A-32	Sequence 32, Appl
371	9	31.0	38	3	US-09-044-536A-33	Sequence 33, Appl
372	9	31.0	39	3	US-09-044-536A-34	Sequence 34, Appl
373	9	31.0	40	3	US-09-044-536A-35	Sequence 35, Appl
374	8	27.6	28	4	US-09-228-990-78	Sequence 78, Appl
375	8	27.6	28	4	US-09-442-989-24	Sequence 24, Appl
376	8	27.6	29	1	US-07-778-926-6	Sequence 6, Appli
377	8	27.6	30	1	US-07-778-926-10	
378	8	27.6	31	1		Sequence 10, Appl
376 379	8			4	US-07-778-926-14	Sequence 14, Appl
		27.6	31		US-09-228-990-11	Sequence 11, Appl
380	8	27.6	31	4	US-09-228-990-19	Sequence 19, Appl
381	8	27.6	31	4	US-09-228-990-28	Sequence 28, Appl
382	8	27.6	31	4	US-09-228-990-35	Sequence 35, Appl
383	8	27.6	31	4	US-09-228-990-40	Sequence 40, Appl
384	8	27.6	31	4	US-09-228-990-45	Sequence 45, Appl
385	8	27.6	31	4	US-09-228-990-66	Sequence 66, Appl
386	8	27.6	31	4	US-09-228-990-67	Sequence 67, Appl
387	8	27.6	31	4	US-09-228-990-68	Sequence 68, Appl
388	8	27.6	31	4	US-09-228-990-73	Sequence 73, Appl
389	8	27.6	31	4	US-09-228-990-76	Sequence 76, Appl
390	8	27.6	31	4	US-09-228-990-80	Sequence 80, Appl
391	8	27.6	31	4	US-09-442-989-16	Sequence 16, Appl
392	8	27.6	32	1	US-07-778-926-18	Sequence 18, Appl
393 •	8	27.6	33	1	US-07-778-926-7	Sequence 7, Appli
394	8	27.6	34	1	US-07-778 - 926-11	Sequence 11, Appl
395	8	27.6	34	1	US-07-773-098-3	Sequence 3, Appli
396	8	27.6	34	1	US-07-773-098-4	Sequence 4, Appli
397	8	27.6	34	3	US-08-903-497A-5	Sequence 5, Appli
398	8	27.6	34	4	US-09-635-076-5	Sequence 5, Appli
399	8	27.6	34	4	US-09-228-990-75	Sequence 75, Appl
400	8	27.6	34	4	US-09-442-989-19	Sequence 19, Appl
401	8	27.6	35	1	US-07 - 778-926-15	Sequence 15, Appl
402	8	27.6	36	1	US-07-778-926-19	Sequence 19, Appl
403	8	27.6	37	1	US-07-778-926-8	Sequence 8, Appli
404	8	27.6	38	1	US-07-778-926-12	Sequence 12, Appl
405	8	27.6	39	1	US-07-778-926-16	Sequence 16, Appl
406	8	27.6	40	1	US-07-778-926-20	Sequence 20, Appl
407	7	24.1	28	1	US-07-778-926-2	Sequence 2, Appli
408	7	24.1	31	4	US-09-406-813-9	Sequence 9, Appli
409	7	24.1	31	4	US-09-228-990-12	Sequence 12, Appl
410	7	24.1	31	4	US-09-228-990-18	Sequence 18, Appl
	•			-	0,0 ,, 10	podestice to tubbi

```
Sequence 29, Appl
411
              24.1
                       31 4
                              US-09-228-990-29
                       31 4
                               US-09-228-990-34
                                                           Sequence 34, Appl
412
              24.1
          7
                                                           Sequence 41, Appl
413
              24.1
                       31 4
                               US-09-228-990-41
          7
                                                           Sequence 44, Appl
414
              24.1
                       31
                           4
                              US-09-228-990-44
          7
                       31
                                                           Sequence 9, Appli
415
              24.1
                              US-09-442-989-9
          7
                                                           Sequence 15, Appl
              24.1
                       31
                           4
                              US-09-442-989-15
416
                                                           Sequence 3, Appli
          7
              24.1
                       32
                           1
                              US-07-778-926-3
417
          7
                                                           Sequence 1, Appli
              24.1
                       32
                          1
                              US-08-305-799A-1
418
          7
419
              24.1
                       32
                              US-08-305-799A-2
                                                           Sequence 2, Appli
          7
420
              24.1
                       34
                           1
                               US-07-915-247A-23
                                                           Sequence 23, Appl
          7
                                                           Sequence 24, Appl
421
              24.1
                       34
                           1
                               US-07-915-247A-24
          7
                                                           Sequence 23, Appl
              24.1
                       34
                           1
422
                               US-08-443-863-23
          7
423
              24.1
                       34
                           1
                               US-08-443-863-24
                                                           Sequence 24, Appl
                                                           Sequence 23, Appl
          7
              24.1
424
                       34
                           1
                               US-08-448-070-23
                                                           Sequence 24, Appl
          7
              24.1
                       34
                           1
                               US-08-448-070-24
425
          7
              24.1
                       34 1
426
                               US-08-488-105-5
                                                           Sequence 5, Appli
          7
                        34 1
427
              24.1
                               US-08-488-105-12
                                                           Sequence 12, Appl
428
          7
              24.1
                        34 1
                               US-08-488-105-17
                                                           Sequence 17, Appl
429
          7
              24.1
                       34 1
                               US-08-468-275-7
                                                           Sequence 7, Appli
          7
                       34 1
                               US-08-468-275-8
                                                           Sequence 8, Appli
430
              24.1
          7
                                                           Sequence 23, Appl
431
              24.1
                       34
                           1
                               US-08-449-500-23
432
          7
              24.1
                        34
                           1
                               US-08-449-500-24
                                                           Sequence 24, Appl
          7
433
              24.1
                        34
                           1
                               US-08-449-500-35
                                                           Sequence 35, Appl
          7
                          1
              24.1
                               US-08-449-500-36
                                                           Sequence 36, Appl
434
                        34
          7
                        34 1
                                                           Sequence 61, Appl
                              US-08-449-500-61
435
              24.1
          7
436
              24.1
                        34 1
                               US-08-449-317A-23
                                                           Sequence 23, Appl
          7
437
              24.1
                        34 1
                               US-08-449-317A-24
                                                           Sequence 24, Appl
          7
              24.1
438
                        34 1
                               US-08-449-317A-35
                                                           Sequence 35, Appl
          7
                                                           Sequence 36, Appl
439
              24.1
                        34
                           1
                               US-08-449-317A-36
440
          7
              24.1
                        34
                           1
                               US-08-449-317A-61
                                                           Sequence 61, Appl
441
          7
              24.1
                        34
                            2
                               US-08-477-022-23
                                                           Sequence 23, Appl
442
          7
              24.1
                        34
                           2
                               US-08-477-022-24
                                                           Sequence 24, Appl
443
          7
              24.1
                        34 2
                               US-08-477-022-35
                                                           Sequence 35, Appl
444
          7
              24.1
                        34 2
                               US-08-477-022-36
                                                           Sequence 36, Appl
445
          7
              24.1
                        34 2
                               US-08-477-022-61
                                                           Sequence 61, Appl
446
          7
              24.1
                        34 2
                               US-08-449-447-23
                                                           Sequence 23, Appl
          7
447
              24.1
                        34
                           2
                               US-08-449-447-24
                                                           Sequence 24, Appl
          7
448
              24.1
                        34
                           2
                               US-08-449-447-35
                                                           Sequence 35, Appl
          7
449
              24.1
                        34
                           2
                               US-08-449-447-36
                                                           Sequence 36, Appl
          7
450
              24.1
                        34
                           2
                               US-08-449-447-61
                                                           Sequence 61, Appl
          7
451
              24.1
                        34
                           2
                               US-08-184-328-23
                                                           Sequence 23, Appl
          7
                        34 2
452
              24.1
                               US-08-184-328-24
                                                           Sequence 24, Appl
          7
                        34 2
453
              24.1
                               US-08-184-328-35
                                                           Sequence 35, Appl
          7
454
              24.1
                        34
                               US-08-184-328-36
                                                           Sequence 36, Appl
          7
              24.1
                           2
455
                        34
                               US-08-184-328-61
                                                           Sequence 61, Appl
          7
456
              24.1
                        34
                            2
                               US-08-521-097-23
                                                           Sequence 23, Appl
          7
                            2
457
              24.1
                        34
                               US-08-521-097-24
                                                           Sequence 24, Appl
          7
              24.1
                        34
                            2
458
                               US-08-521-097-35
                                                           Sequence 35, Appl
          7
459
              24.1
                        34
                           2
                               US-08-521-097-36
                                                           Sequence 36, Appl
          7
                           2
                               US-08-521-097-61
460
              24.1
                        34
                                                           Sequence 61, Appl
          7
                        34
461
              24.1
                           4
                               US-09-007-466-7
                                                           Sequence 7, Appli
          7
462
              24.1
                        34
                               US-09-007-466-8
                                                           Sequence 8, Appli
463
              24.1
                        34
                               US-09-449-632-22
                                                           Sequence 22, Appl
          7
                        35
464
              24.1
                           2
                               US-08-142-551B-10
                                                           Sequence 10, Appl
          7
                        35
              24.1
                            2
                               US-08-142-551B-121
                                                           Sequence 121, App
465
          7
                        35
466
              24.1
                            2
                               US-08-142-551B-124
                                                           Sequence 124, App
                        35
                           4
                               US-08-952-980B-7
                                                           Sequence 7, Appli
467
              24.1
```

468 7 24.1 35 4 US-08-952-980B-8 Sequence 8, Appl1 469 7 24.1 36 1 US-09-326-4 Sequence 23, Appl 471 6 20.7 31 4 US-09-326-785h-23 Sequence 23, Appl 472 6 20.7 31 4 US-09-326-785h-23 Sequence 23, Appl 472 6 20.7 31 4 US-09-406-813-7 Sequence 7, Appl 5 Sequence 13, Appl 474 6 20.7 31 4 US-09-406-813-7 Sequence 13, Appl 474 6 20.7 31 4 US-09-228-990-13 Sequence 13, Appl 475 6 20.7 31 4 US-09-228-990-15 Sequence 15, Appl 476 6 20.7 31 4 US-09-228-990-15 Sequence 17, Appl 476 6 20.7 31 4 US-09-228-990-15 Sequence 17, Appl 477 6 20.7 31 4 US-09-228-990-16 Sequence 17, Appl 478 6 20.7 31 4 US-09-228-990-17 Sequence 31, Appl 480 6 20.7 31 4 US-09-228-990-30 Sequence 31, Appl 480 6 20.7 31 4 US-09-228-990-31 Sequence 31, Appl 480 6 20.7 31 4 US-09-228-990-32 Sequence 31, Appl 482 6 20.7 31 4 US-09-228-990-32 Sequence 31, Appl 484 6 20.7 31 4 US-09-228-990-32 Sequence 32, Appl 484 6 20.7 31 4 US-09-228-990-42 Sequence 42, Appl 484 6 20.7 31 4 US-09-228-990-42 Sequence 43, Appl 484 6 20.7 31 4 US-09-228-990-43 Sequence 43, Appl 484 6 20.7 31 4 US-09-228-990-49 Sequence 41, Appl 484 6 20.7 31 4 US-09-228-990-86 Sequence 87, Appl 486 6 20.7 31 4 US-09-228-990-86 Sequence 87, Appl 486 6 20.7 31 4 US-09-238-990-87 Sequence 87, Appl 486 6 20.7 31 4 US-09-356-785h-36 Sequence 88, Appl 487 6 20.7 31 4 US-09-356-785h-36 Sequence 89, Appl 490 6 20.7 31 4 US-09-428-990-18 Sequence 11, Appl 490 6 20.7 31 4 US-09-442-999-10 Sequence 10, Appl 490 6 20.7 31 4 US-09-442-999-10 Sequence 11, Appl 490 6 20.7 31 4 US-09-442-999-10 Sequence 11, Appl 490 6 20.7 31 4 US-09-442-999-11 Sequence 11, Appl 490 6 20.7 31 4 US-09-442-999-10 Sequence 37, Appl 490 6 20.7 31 4 US-09-462-999-10 Sequence 37, Appl 590 6 20.7 31 4 US-09-556-785h-38 Sequence 37, Appl 590 6 20.7 31 4 US-09-566-785h-38 Sequence 37, Appl 590 6 20.7 34 1 US-09-566-785h-38 Sequence 37, Appl 590 6 20.7 34 1 US-09-566-785h-39 Sequence 37, Appl 590 6 20.7 34 1 US-09-566-785h-39 Sequence 37, Appl 590 6 20.7 34 1 US-09-567-799h-1 Sequence 47, Appl 590 6 20.7 34 1 US-09-566-785h-36 Se								
469 7 24.1 36 1 US-07-778-926-4 Sequence 4, Appli 470 6 20.7 31 4 US-08-9406-813-7 Sequence 22, Appl 471 6 20.7 31 4 US-08-9406-813-7 Sequence 13, Appl 473 6 20.7 31 4 US-09-228-990-13 Sequence 13, Appl 474 6 20.7 31 4 US-09-228-990-14 Sequence 14, Appl 475 6 20.7 31 4 US-09-228-990-15 Sequence 14, Appl 476 6 20.7 31 4 US-09-228-990-15 Sequence 15, Appl 476 6 20.7 31 4 US-09-228-990-16 Sequence 17, Appl 477 6 20.7 31 4 US-09-228-990-17 Sequence 17, Appl 478 6 20.7 31 4 US-09-228-990-17 Sequence 17, Appl 478 6 20.7 31 4 US-09-228-990-17 Sequence 31, Appl 479 6 20.7 31 4 US-09-228-990-30 Sequence 31, Appl 480 6 20.7 31 4 US-09-228-990-32 Sequence 31, Appl 481 6 20.7 31 4 US-09-228-990-32 Sequence 31, Appl 482 6 20.7 31 4 US-09-228-990-32 Sequence 31, Appl 483 6 20.7 31 4 US-09-228-990-42 Sequence 42, Appl 483 6 20.7 31 4 US-09-228-990-42 Sequence 42, Appl 484 6 20.7 31 4 US-09-228-990-42 Sequence 42, Appl 484 6 20.7 31 4 US-09-228-990-86 Sequence 87, Appl 486 6 20.7 31 4 US-09-228-990-88 Sequence 87, Appl 486 6 20.7 31 4 US-09-228-990-88 Sequence 87, Appl 487 6 20.7 31 4 US-09-228-990-89 88 Sequence 88, Appl 488 6 20.7 31 4 US-09-228-990-88 Sequence 89, Appl 490 6 20.7 31 4 US-09-238-990-89 Sequence 89, Appl 490 6 20.7 31 4 US-09-3546-7858-36 Sequence 89, Appl 490 6 20.7 31 4 US-09-442-989-10 Sequence 11, Appl 490 6 20.7 31 4 US-09-442-989-11 Sequence 11, Appl 490 6 20.7 31 4 US-09-442-989-12 Sequence 11, Appl 491 6 20.7 31 4 US-09-442-989-13 Sequence 11, Appl 491 6 20.7 31 4 US-09-456-7858-38 Sequence 38, Appl 495 6 20.7 31 4 US-09-536-7858-38 Sequence 39, Appl 495 6 20.7 31 4 US-09-536-7858-39 Sequence 39, Appl 496 6 20.7 31 4 US-09-536-7858-39 Sequence 39, Appl 496 6 20.7 31 4 US-09-536-7858-39 Sequence 39, Appl 496 6 20.7 31 4 US-09-536-7858-39 Sequence 39, Appl 496 6 20.7 31 4 US-09-536-7858-39 Sequence 39, Appl 496 6 20.7 31 4 US-09-536-7858-39 Sequence 39, Appl 496 6 20.7 31 4 US-09-536-7858-39 Sequence 39, Appl 496 6 20.7 31 4 US-09-536-7858-39 Sequence 39, Appl 496 6 20.7 31 4 US-09-536-7858-39 Sequence	468	7	24.1	35	4	US-08-952-980B-8	Sequence 8, Appli	
470 6 20.7 30 4 US-09-36-785A-23 Sequence 23, Appl 471 6 20.7 31 3 US-08-406-813-7 Sequence 7, Appl 472 6 20.7 31 4 US-09-406-813-7 Sequence 13, Appl 474 6 20.7 31 4 US-09-228-990-15 Sequence 14, Appl 475 6 20.7 31 4 US-09-228-990-16 Sequence 15, Appl 476 6 20.7 31 4 US-09-228-990-16 Sequence 17, Appl 477 6 20.7 31 4 US-09-228-990-20 Sequence 30, Appl 478 6 20.7 31 4 US-09-228-990-32 Sequence 30, Appl 480 6 20.7 31 4 US-09-228-990-32 Sequence 31, Appl 481 6 20.7 31 4 US-09-228-990-32 Sequence 31, Appl 482 6 20.7 31 4 US-09-228-990-32 Sequence 31, Appl 483 6 20.7 31 4 US-09-228-990-33 Sequence 31, App	469	7	24.1		1	US-07-778-926-4	Seguence 4, Appli	
471 6 20.7 31 4 US-09-208-990-15 Sequence 23, Appl 47608-23 Sequence 7, Appl 477 6 20.7 31 4 US-09-268-990-13 Sequence 14, Appl 477 6 20.7 31 4 US-09-228-990-15 Sequence 15, Appl 476 6 20.7 31 4 US-09-228-990-15 Sequence 16, Appl 477 6 20.7 31 4 US-09-228-990-16 Sequence 17, Appl 478 6 20.7 31 4 US-09-228-990-17 Sequence 17, Appl 478 6 20.7 31 4 US-09-228-990-30 Sequence 31, Appl 479 6 20.7 31 4 US-09-228-990-30 Sequence 31, Appl 480 6 20.7 31 4 US-09-228-990-32 Sequence 31, Appl 480 6 20.7 31 4 US-09-228-990-32 Sequence 32, Appl 480 6 20.7 31 4 US-09-228-990-32 Sequence 33, Appl 482 6 20.7 31 4 US-09-228-990-42 Sequence 33, Appl 483 6 20.7 31 4 US-09-228-990-42 Sequence 42, Appl 484 6 20.7 31 4 US-09-228-990-42 Sequence 33, Appl 484 6 20.7 31 4 US-09-228-990-86 Sequence 42, Appl 485 6 20.7 31 4 US-09-228-990-86 Sequence 86, Appl 486 6 20.7 31 4 US-09-228-990-86 Sequence 87, Appl 486 6 20.7 31 4 US-09-228-990-88 Sequence 87, Appl 486 6 20.7 31 4 US-09-228-990-88 Sequence 87, Appl 488 6 20.7 31 4 US-09-228-990-88 Sequence 87, Appl 488 6 20.7 31 4 US-09-228-991-10 Sequence 10, Appl 489 6 20.7 31 4 US-09-526-785A-36 Sequence 36, Appl 490 6 20.7 31 4 US-09-442-999-12 Sequence 10, Appl 490 6 20.7 31 4 US-09-442-999-12 Sequence 10, Appl 490 6 20.7 31 4 US-09-442-999-12 Sequence 11, Appl 491 6 20.7 31 4 US-09-442-999-12 Sequence 11, Appl 491 6 20.7 31 4 US-09-442-999-12 Sequence 11, Appl 493 6 20.7 31 4 US-09-542-891-11 Sequence 11, Appl 493 6 20.7 34 1 US-09-542-891-11 Sequence 11, Appl 493 6 20.7 34 1 US-09-542-891-11 Sequence 13, Appl 500 6 20.7 34 1 US-09-542-891-11 Sequence 14, Appl 497 6 20.7 34 1 US-09-542-891-11 Sequence 14, Appl 500 6 20.7 34 1 US-09-542-891-11 Sequence 14, Appl 500 6 20.7 34 1 US-09-536-785A-38 Sequence 38, Appl 500 6 20.7 34 1 US-09-536-785A-38 Sequence 37, Appl 500 6 20.7 34 1 US-09-536-785A-39 Sequence 37, Appl 500 6 20.7 34 1 US-09-536-785A-39 Sequence 37, Appl 500 6 20.7 34 1 US-08-305-799A-19 Sequence 37, Appl 500 6 20.7 34 1 US-08-305-799A-19 Sequence 37, Appl 500 5 17.2 34 1 US-08-30								
472 6 20.7 31 4 US-09-208-990-13 Sequence 13, Appl 474 6 20.7 31 4 US-09-228-990-14 Sequence 14, Appl 475 6 20.7 31 4 US-09-228-990-15 Sequence 15, Appl 476 6 20.7 31 4 US-09-228-990-15 Sequence 16, Appl 477 6 20.7 31 4 US-09-228-990-16 Sequence 16, Appl 478 6 20.7 31 4 US-09-228-990-17 Sequence 30, Appl 479 6 20.7 31 4 US-09-228-990-31 Sequence 31, Appl 480 6 20.7 31 4 US-09-228-990-31 Sequence 31, Appl 480 6 20.7 31 4 US-09-228-990-31 Sequence 32, Appl 481 6 20.7 31 4 US-09-228-990-32 Sequence 32, Appl 482 6 20.7 31 4 US-09-228-990-33 Sequence 33, Appl 482 6 20.7 31 4 US-09-228-990-42 Sequence 42, Appl 483 6 20.7 31 4 US-09-228-990-43 Sequence 42, Appl 484 6 20.7 31 4 US-09-228-990-89 Sequence 42, Appl 485 6 20.7 31 4 US-09-228-990-89 Sequence 86, Appl 485 6 20.7 31 4 US-09-228-990-89 Sequence 87, Appl 486 6 20.7 31 4 US-09-228-990-89 Sequence 87, Appl 487 6 20.7 31 4 US-09-228-990-89 Sequence 87, Appl 487 6 20.7 31 4 US-09-228-990-89 Sequence 88, Appl 488 6 20.7 31 4 US-09-228-990-89 Sequence 89, Appl 489 6 20.7 31 4 US-09-228-991 Sequence 30, Appl 499 6 20.7 31 4 US-09-442-989-11 Sequence 11, Appl 490 6 20.7 31 4 US-09-442-989-11 Sequence 11, Appl 490 6 20.7 31 4 US-09-442-989-11 Sequence 11, Appl 490 6 20.7 31 4 US-09-442-989-11 Sequence 11, Appl 493 6 20.7 31 4 US-09-442-989-13 Sequence 36, Appl 493 6 20.7 31 4 US-09-346-785A-38 Sequence 37, Appl 494 6 20.7 31 4 US-09-536-785A-38 Sequence 37, Appl 494 6 20.7 34 1 US-09-536-785A-38 Sequence 37, Appl 495 6 20.7 34 1 US-09-536-785A-38 Sequence 37, Appl 495 6 20.7 34 1 US-09-536-785A-37 Sequence 7, Appl 496 6 20.7 34 1 US-09-536-785A-37 Sequence 7, Appl 500 6 20.7 34 1 US-09-536-785A-37 Sequence 7, Appl 500 6 20.7 34 1 US-09-536-785A-37 Sequence 7, Appl 500 6 20.7 34 1 US-09-536-785A-37 Sequence 7, Appl 500 6 20.7 34 1 US-09-536-785A-37 Sequence 7, Appl 500 6 20.7 34 1 US-09-536-785A-37 Sequence 7, Appl 501 51.7 2 30 1 US-08-536-785A-27 Sequence 7, Appl 501 51.7 2 30 1 US-08-536-785A-27 Sequence 7, Appl 501 51.7 2 34 1 US-09-536-785A-27 Sequence 7, Appl 501 5								
473 6 20.7 31 4 US-09-228-990-13 Sequence 13, Appl 474 6 20.7 31 4 US-09-228-990-15 Sequence 14, Appl 475 6 20.7 31 4 US-09-228-990-15 Sequence 16, Appl 476 6 20.7 31 4 US-09-228-990-16 Sequence 17, Appl 477 6 20.7 31 4 US-09-228-990-17 Sequence 17, Appl 478 6 20.7 31 4 US-09-228-990-30 Sequence 31, Appl 479 6 20.7 31 4 US-09-228-990-31 Sequence 31, Appl 480 6 20.7 31 4 US-09-228-990-32 Sequence 31, Appl 481 6 20.7 31 4 US-09-228-990-32 Sequence 32, Appl 482 6 20.7 31 4 US-09-228-990-32 Sequence 33, Appl 483 6 20.7 31 4 US-09-228-990-42 Sequence 33, Appl 484 6 20.7 31 4 US-09-228-990-85 Sequence 42, Appl 485 6 20.7 31 4 US-09-228-990-86 Sequence 87, Appl 486 6 20.7 31 4 US-09-228-990-86 Sequence 87, Appl 487 6 20.7 31 4 US-09-228-990-88 Sequence 87, Appl 488 6 20.7 31 4 US-09-228-990-88 Sequence 87, Appl 489 6 20.7 31 4 US-09-228-990-88 Sequence 87, Appl 489 6 20.7 31 4 US-09-288-990-88 Sequence 87, Appl 489 6 20.7 31 4 US-09-442-989-10 Sequence 11, Appl 489 6 20.7 31 4 US-09-442-989-11 Sequence 11, Appl 490 6 20.7 31 4 US-09-442-989-11 Sequence 11, Appl 491 6 20.7 31 4 US-09-442-989-13 Sequence 12, Appl 492 6 20.7 31 4 US-09-442-989-13 Sequence 13, Appl 493 6 20.7 32 4 US-09-442-989-13 Sequence 14, Appl 494 6 20.7 31 4 US-09-442-989-13 Sequence 14, Appl 495 6 20.7 34 1 US-09-656-785A-37 Sequence 17, Appl 496 6 20.7 34 1 US-09-656-785A-37 Sequence 38, Appl 497 6 20.7 34 1 US-09-656-785A-37 Sequence 18, Appl 498 6 20.7 34 1 US-09-656-785A-37 Sequence 19, Appl 499 6 20.7 34 1 US-09-656-785A-37 Sequence 19, Appl 490 6 20.7 34 1 US-09-656-785A-37 Sequence 19, Appl 491 6 20.7 34 1 US-09-656-785A-37 Sequence 19, Appl 492 6 20.7 34 1 US-09-656-785A-37 Sequence 24, Appl 503 6 20.7 34 1 US-09-656-785A-37 Sequence 37, Appl 504 5 17.2 30 1 US-09-306-798A-1 Sequence 19, Appl 505 6 20.7 34 1 US-09-536-785A-36 Sequence 26, Appl 506 5 17.2 30 1 US-09-306-798A-1 Sequence 37, Appl 507 5 17.2 30 1 US-08-305-799A-7 Sequence 37, Appl 508 5 17.2 30 1 US-08-305-799A-7 Sequence 37, Appl 509 5 17.2 34 US-09-644-056-79 Sequence 37, App							-	
474 6 20.7 31 4 US-09-228-990-14 Sequence 14, Appl 475 6 20.7 31 4 US-09-228-990-15 Sequence 15, Appl 476 6 20.7 31 4 US-09-228-990-16 Sequence 16, Appl 477 6 20.7 31 4 US-09-228-990-17 Sequence 17, Appl 479 6 20.7 31 4 US-09-228-990-31 Sequence 30, Appl 479 6 20.7 31 4 US-09-228-990-31 Sequence 31, Appl 480 6 20.7 31 4 US-09-228-990-32 Sequence 32, Appl 481 6 20.7 31 4 US-09-228-990-33 Sequence 33, Appl 482 6 20.7 31 4 US-09-228-990-33 Sequence 33, Appl 482 6 20.7 31 4 US-09-228-990-43 Sequence 42, Appl 483 6 20.7 31 4 US-09-228-990-43 Sequence 42, Appl 484 6 20.7 31 4 US-09-228-990-43 Sequence 43, Appl 485 6 20.7 31 4 US-09-228-990-86 Sequence 86, Appl 485 6 20.7 31 4 US-09-228-990-87 Sequence 87, Appl 486 6 20.7 31 4 US-09-228-990-87 Sequence 88, Appl 487 6 20.7 31 4 US-09-228-990-88 Sequence 89, Appl 487 6 20.7 31 4 US-09-228-991 Sequence 31, Appl 489 6 20.7 31 4 US-09-442-989-11 Sequence 10, Appl 489 6 20.7 31 4 US-09-442-989-11 Sequence 10, Appl 490 6 20.7 31 4 US-09-442-989-11 Sequence 11, Appl 490 6 20.7 31 4 US-09-442-989-13 Sequence 12, Appl 491 6 20.7 31 4 US-09-442-989-13 Sequence 11, Appl 494 6 20.7 31 4 US-09-442-989-13 Sequence 11, Appl 493 6 20.7 31 4 US-09-442-989-14 Sequence 11, Appl 494 6 20.7 31 4 US-09-536-785A-38 Sequence 38, Appl 494 6 20.7 34 1 US-09-548-98-15 Sequence 37, Appl 494 6 20.7 34 1 US-09-536-785A-38 Sequence 38, Appl 506 6 20.7 34 1 US-09-536-785A-38 Sequence 37, Appl 506 6 20.7 34 1 US-09-536-785A-38 Sequence 6, Appl 507 507 507 507 507 507 507 507 507 507			=					
475 6 20.7 31 4 US-09-228-990-15 Sequence 16, Appl 477 6 20.7 31 4 US-09-228-990-30 Sequence 17, Appl 478 6 20.7 31 4 US-09-228-990-31 Sequence 31, Appl 479 6 20.7 31 4 US-09-228-990-32 Sequence 32, Appl 480 6 20.7 31 4 US-09-228-990-32 Sequence 33, Appl 482 6 20.7 31 4 US-09-228-990-42 Sequence 42, Appl 483 6 20.7 31 4 US-09-228-990-42 Sequence 43, Appl 484 6 20.7 31 4 US-09-228-990-48 Sequence 66, Appl 485 6 20.7 31 4 US-09-228-990-88 Sequence 86, Appl 487 6 20.7 31 4 US-09-248-98-10 Sequence 87, Appl 488 6 20.7 31 4 US-09-546-785A-36 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>·</td><td></td></t<>							·	
476 6 20.7 31 4 US-09-228-990-16 Sequence 17, Appl 478 6 20.7 31 4 US-09-228-990-30 Sequence 30, Appl 479 6 20.7 31 4 US-09-228-990-31 Sequence 31, Appl 480 6 20.7 31 4 US-09-228-990-31 Sequence 31, Appl 481 6 20.7 31 4 US-09-228-990-33 Sequence 32, Appl 481 6 20.7 31 4 US-09-228-990-42 Sequence 32, Appl 482 6 20.7 31 4 US-09-228-990-43 Sequence 32, Appl 483 6 20.7 31 4 US-09-228-990-43 Sequence 42, Appl 484 6 20.7 31 4 US-09-228-990-87 Sequence 32, Appl 485 6 20.7 31 4 US-09-228-990-87 Sequence 32, Appl 486 6 20.7 31 4 US-09-228-990-87 Sequence 88, Appl 487 6 20.7 31 4 US-09-242-990-18 Sequence 37, Appl 488 6 20.7 31 4 US-09-442-989-10 Sequence 10, Appl 489 6 20.7 31 4 US-09-442-989-11 Sequence 11, Appl 490 6 20.7 31 4 US-09-442-989-12 Sequence 11, Appl 491 6 20.7 31 4 US-09-442-989-12 Sequence 11, Appl 492 6 20.7 31 4 US-09-442-989-12 Sequence 11, Appl 493 6 20.7 31 4 US-09-442-989-14 Sequence 11, Appl 494 6 20.7 32 4 US-09-442-989-14 Sequence 11, Appl 495 6 20.7 34 1 US-09-442-989-14 Sequence 14, Appl 496 6 20.7 32 4 US-09-536-785A-38 Sequence 38, Appl 497 6 20.7 34 1 US-09-546-785A-38 Sequence 38, Appl 498 6 20.7 34 1 US-09-536-785A-38 Sequence 37, Appl 499 6 20.7 34 1 US-09-536-785A-38 Sequence 38, Appl 495 6 20.7 34 1 US-09-536-785A-38 Sequence 37, Appl 496 6 20.7 34 1 US-09-536-785A-38 Sequence 37, Appl 497 6 20.7 34 1 US-09-536-785A-27 Sequence 27, Appl 498 6 20.7 34 1 US-09-536-785A-27 Sequence 27, Appl 500 6 20.7 36 4 US-09-536-785A-27 Sequence 27, Appl 501 6 20.7 36 4 US-09-536-785A-27 Sequence 27, Appl 502 6 20.7 36 4 US-09-536-785A-27 Sequence 27, Appl 503 6 20.7 37 4 US-09-536-785A-27 Sequence 27, Appl 504 5 17.2 30 1 US-08-305-799A-11 Sequence 11, Appl 505 5 17.2 30 1 US-08-305-799A-11 Sequence 27, Appl 506 5 17.2 30 1 US-08-305-799A-11 Sequence 27, Appl 507 5 17.2 30 1 US-08-305-799A-11 Sequence 27, Appl 508 5 17.2 30 1 US-08-305-799A-11 Sequence 37, Appl 509 6 20.7 36 4 US-09-536-785A-27 Sequence 37, Appl 511 5 17.2 34 2 US-08-649-317A-37 Sequence 37, Appl 512 5 17.2 34 1 US-08-449-407-1 Sequen					_			
477 6 20.7 31 4 US-09-228-990-31 Sequence 30, Appl 479 6 20.7 31 4 US-09-228-990-31 Sequence 31, Appl 480 6 20.7 31 4 US-09-228-990-32 Sequence 33, Appl 481 6 20.7 31 4 US-09-228-990-42 Sequence 42, Appl 482 6 20.7 31 4 US-09-228-990-85 Sequence 43, Appl 484 6 20.7 31 4 US-09-228-990-86 Sequence 66, Appl 485 6 20.7 31 4 US-09-228-990-87 Sequence 87, Appl 486 6 20.7 31 4 US-09-228-990-88 Sequence 98, Appl 487 6 20.7 31 4 US-09-242-989-10 Sequence 10, Appl 488 6 20.7 31 4 US-09-442-989-11 Sequence 11, Appl 490 6 20.7 31 4 US-09-442-989-14 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								
478 6 20.7 31 4 US-09-228-990-30 Sequence 30, Appl 480 6 20.7 31 4 US-09-228-990-32 Sequence 31, Appl 481 6 20.7 31 4 US-09-228-990-32 Sequence 32, Appl 482 6 20.7 31 4 US-09-228-990-42 Sequence 32, Appl 483 6 20.7 31 4 US-09-228-990-43 Sequence 42, Appl 484 6 20.7 31 4 US-09-228-990-43 Sequence 42, Appl 485 6 20.7 31 4 US-09-228-990-87 Sequence 43, Appl 486 6 20.7 31 4 US-09-228-990-87 Sequence 47, Appl 487 6 20.7 31 4 US-09-228-990-87 Sequence 87, Appl 488 6 20.7 31 4 US-09-228-990-88 Sequence 36, Appl 489 6 20.7 31 4 US-09-442-989-10 Sequence 36, Appl 489 6 20.7 31 4 US-09-442-989-11 Sequence 10, Appl 490 6 20.7 31 4 US-09-442-989-11 Sequence 11, Appl 490 6 20.7 31 4 US-09-442-989-12 Sequence 12, Appl 491 6 20.7 31 4 US-09-442-989-13 Sequence 37, Appl 492 6 20.7 31 4 US-09-442-989-14 Sequence 13, Appl 493 6 20.7 32 4 US-09-442-989-14 Sequence 14, Appl 494 6 20.7 33 4 US-09-536-785A-38 Sequence 37, Appl 495 6 20.7 34 1 US-09-442-989-15 Sequence 37, Appl 496 6 20.7 34 1 US-09-536-785A-38 Sequence 37, Appl 497 6 20.7 34 1 US-09-536-785A-38 Sequence 37, Appl 498 6 20.7 34 1 US-09-536-785A-38 Sequence 37, Appl 499 6 20.7 34 1 US-09-536-785A-38 Sequence 38, Appl 499 6 20.7 34 1 US-09-536-785A-38 Sequence 38, Appl 499 6 20.7 34 1 US-09-536-785A-27 Sequence 27, Appli 500 6 20.7 34 4 US-09-536-785A-28 Sequence 37, Appl 501 6 20.7 36 4 US-09-536-785A-25 Sequence 27, Appl 502 6 20.7 36 4 US-09-536-785A-25 Sequence 27, Appl 503 6 20.7 36 4 US-09-536-785A-27 Sequence 27, Appl 504 5 17.2 30 1 US-08-305-799A-1 Sequence 37, Appl 505 5 17.2 30 1 US-08-305-799A-7 Sequence 37, Appl 506 5 17.2 30 1 US-08-305-799A-7 Sequence 37, Appl 507 5 17.2 34 1 US-08-449-447-37 Sequence 37, Appl 508 5 17.2 34 1 US-08-449-91-37 Sequence 37, Appl 509 5 17.2 34 1 US-08-449-91-37 Sequence 37, Appl 511 5 17.2 34 2 US-08-818-328-37 Sequence 37, Appl 512 5 17.2 34 1 US-08-649-317A-37 Sequence 37, Appl 513 5 17.2 34 2 US-08-818-328-37 Sequence 37, Appl 514 5 17.2 34 2 US-08-818-328-37 Sequence 37, Appl 515 6 17.2 34 1 US-08-649-317A-37 Sequence 37,							- · · · · · · · · · · · · · · · · · · ·	
490 6 20.7 31 4 US-09-228-990-31 Sequence 31, Appl 481 6 20.7 31 4 US-09-228-990-33 Sequence 32, Appl 482 6 20.7 31 4 US-09-228-990-42 Sequence 33, Appl 483 6 20.7 31 4 US-09-228-990-43 Sequence 42, Appl 484 6 20.7 31 4 US-09-228-990-84 Sequence 43, Appl 484 6 20.7 31 4 US-09-228-990-86 Sequence 86, Appl 485 6 20.7 31 4 US-09-228-990-86 Sequence 86, Appl 485 6 20.7 31 4 US-09-228-990-88 Sequence 87, Appl 486 6 20.7 31 4 US-09-228-990-88 Sequence 88, Appl 487 6 20.7 31 4 US-09-228-990-88 Sequence 86, Appl 487 6 20.7 31 4 US-09-442-899-10 Sequence 10, Appl 489 6 20.7 31 4 US-09-442-899-11 Sequence 11, Appl 490 6 20.7 31 4 US-09-442-899-11 Sequence 11, Appl 491 6 20.7 31 4 US-09-442-899-13 Sequence 12, Appl 491 6 20.7 31 4 US-09-442-899-13 Sequence 13, Appl 492 6 20.7 31 4 US-09-442-899-13 Sequence 13, Appl 493 6 20.7 31 4 US-09-442-899-13 Sequence 13, Appl 494 6 20.7 31 4 US-09-536-785A-37 Sequence 37, Appl 494 6 20.7 34 US-09-536-785A-37 Sequence 38, Appl 494 6 20.7 34 US-09-536-785A-38 Sequence 38, Appl 495 6 20.7 34 1 US-09-536-785A-38 Sequence 38, Appl 496 6 20.7 34 1 US-09-536-785A-38 Sequence 38, Appl 497 6 20.7 34 1 US-09-536-785A-38 Sequence 38, Appl 498 6 20.7 34 1 US-09-536-785A-38 Sequence 38, Appl 499 6 20.7 34 1 US-09-536-785A-38 Sequence 1, Appl 500 6 20.7 34 1 US-09-536-785A-25 Sequence 24, Appl 500 6 20.7 34 1 US-09-536-785A-25 Sequence 27, Appl 500 6 20.7 34 1 US-09-536-785A-25 Sequence 27, Appl 500 6 20.7 36 4 US-09-536-785A-25 Sequence 27, Appl 500 6 20.7 36 4 US-09-536-785A-27 Sequence 27, Appl 500 6 20.7 36 4 US-09-536-785A-27 Sequence 27, Appl 500 6 20.7 36 4 US-09-536-785A-27 Sequence 27, Appl 500 6 20.7 36 4 US-09-536-785A-27 Sequence 27, Appl 500 6 20.7 36 4 US-09-536-785A-27 Sequence 27, Appl 500 6 20.7 36 4 US-09-536-785A-27 Sequence 37, Appl 500 6 20.7 36 4 US-09-536-785A-27 Sequence 37, Appl 500 6 20.7 36 4 US-09-536-785A-27 Sequence 37, Appl 500 6 20.7 36 4 US-09-536-785A-27 Sequence 37, Appl 500 5 17.2 34 1 US-08-305-799A-1 Sequence 37, Appl 500 5 17.2 34 1 US-08-305-799A-1 Sequence								
480 6 20.7 31 4 US-09-228-990-32 Sequence 32, Appl 481 6 20.7 31 4 US-09-228-990-43 Sequence 33, Appl 483 6 20.7 31 4 US-09-228-990-43 Sequence 43, Appl 484 6 20.7 31 4 US-09-228-990-85 Sequence 43, Appl 485 6 20.7 31 4 US-09-228-990-86 Sequence 47, Appl 485 6 20.7 31 4 US-09-228-990-87 Sequence 87, Appl 486 6 20.7 31 4 US-09-228-990-87 Sequence 87, Appl 486 6 20.7 31 4 US-09-228-990-88 Sequence 36, Appl 487 6 20.7 31 4 US-09-428-990-88 Sequence 36, Appl 488 6 20.7 31 4 US-09-442-899-10 Sequence 10, Appl 489 6 20.7 31 4 US-09-442-899-11 Sequence 11, Appl 490 6 20.7 31 4 US-09-442-899-12 Sequence 12, Appl 491 6 20.7 31 4 US-09-442-899-13 Sequence 12, Appl 493 6 20.7 31 4 US-09-442-899-14 Sequence 14, Appl 493 6 20.7 31 4 US-09-442-899-14 Sequence 14, Appl 493 6 20.7 33 4 US-09-432-899-14 Sequence 37, Appl 494 6 20.7 33 4 US-09-432-899-14 Sequence 37, Appl 495 6 20.7 34 1 US-09-442-899-15 Sequence 37, Appl 495 6 20.7 34 1 US-09-442-899-15 Sequence 37, Appl 495 6 20.7 34 1 US-09-409-402-1 Sequence 37, Appl 496 6 20.7 34 1 US-09-536-785A-37 Sequence 38, Appl 495 6 20.7 34 1 US-09-635-0785A-37 Sequence 2, Appli 497 6 20.7 34 1 US-09-635-078-5A-37 Sequence 1, Appli 498 6 20.7 34 1 US-09-635-078-5A-26 Sequence 1, Appli 500 6 20.7 34 1 US-09-635-078-5A-26 Sequence 6, Appli 500 6 20.7 34 1 US-09-635-078-5A-25 Sequence 6, Appli 500 6 20.7 34 4 US-09-536-785A-25 Sequence 6, Appli 501 6 20.7 35 4 US-09-536-785A-25 Sequence 27, Appli 503 6 20.7 37 4 US-09-536-785A-25 Sequence 27, Appli 503 6 20.7 37 4 US-09-536-785A-27 Sequence 37, Appl 504 5 17.2 30 1 US-08-305-799A-7 Sequence 7, Appl 507 5 17.2 30 1 US-08-305-799A-7 Sequence 7, Appl 508 5 17.2 30 1 US-08-305-799A-7 Sequence 37, Appl 509 5 17.2 30 1 US-08-305-799A-7 Sequence 37, Appl 509 5 17.2 34 1 US-08-449-500-37 Sequence 37, Appl 511 5 17.2 34 2 US-08-447-02-37 Sequence 37, Appl 512 5 17.2 34 1 US-08-449-500-37 Sequence 37, Appl 513 5 17.2 34 1 US-08-449-500-37 Sequence 37, Appl 514 5 17.2 34 1 US-08-449-500-37 Sequence 37, Appl 514 5 17.2 34 1 US-08-449-500-37 Sequenc								
481 6 20.7 31 4 US-09-228-990-33 Sequence 33, Appl 482 6 20.7 31 4 US-09-228-990-43 Sequence 42, Appl 484 6 20.7 31 4 US-09-228-990-86 Sequence 42, Appl 485 6 20.7 31 4 US-09-228-990-86 Sequence 86, Appl 486 6 20.7 31 4 US-09-228-990-87 Sequence 87, Appl 486 6 20.7 31 4 US-09-228-990-87 Sequence 88, Appl 487 6 20.7 31 4 US-09-228-990-88 Sequence 88, Appl 487 6 20.7 31 4 US-09-228-990-88 Sequence 88, Appl 488 6 20.7 31 4 US-09-442-899-10 Sequence 10, Appl 489 6 20.7 31 4 US-09-442-989-11 Sequence 11, Appl 490 6 20.7 31 4 US-09-442-989-12 Sequence 12, Appl 491 6 20.7 31 4 US-09-442-989-13 Sequence 12, Appl 492 6 20.7 31 4 US-09-442-989-13 Sequence 13, Appl 493 6 20.7 32 4 US-09-536-785A-37 Sequence 37, Appl 494 6 20.7 33 4 US-09-536-785A-38 Sequence 37, Appl 494 6 20.7 33 4 US-09-536-785A-38 Sequence 37, Appl 495 6 20.7 34 1 US-09-442-989-13 Sequence 12, Appl 494 6 20.7 34 1 US-09-4042-989-13 Sequence 27, Appl 495 6 20.7 34 1 US-09-536-785A-38 Sequence 38, Appl 495 6 20.7 34 1 US-09-536-785A-38 Sequence 38, Appl 496 6 20.7 34 1 US-08-526-987-1 Sequence 1, Appli 497 6 20.7 34 1 US-09-536-785A-24 Sequence 1, Appli 500 6 20.7 34 1 US-08-526-987-1 Sequence 1, Appli 500 6 20.7 34 4 US-09-536-785A-25 Sequence 24, Appl 501 6 20.7 35 4 US-09-536-785A-25 Sequence 27, Appl 501 6 20.7 36 4 US-09-536-785A-26 Sequence 27, Appl 502 6 20.7 36 4 US-09-536-785A-26 Sequence 27, Appl 503 6 20.7 37 4 US-09-536-785A-27 Sequence 27, Appl 503 6 20.7 37 4 US-09-536-785A-27 Sequence 27, Appl 504 5 17.2 30 1 US-08-305-799A-1 Sequence 27, Appl 509 5 17.2 30 1 US-08-305-799A-1 Sequence 27, Appl 509 5 17.2 30 1 US-08-305-799A-1 Sequence 37, Appl 509 5 17.2 34 1 US-08-305-799A-1 Sequence 37, Appl 509 5 17.2 34 1 US-08-305-799A-1 Sequence 37, Appl 509 5 17.2 34 1 US-08-305-799A-1 Sequence 37, Appl 509 5 17.2 34 1 US-08-305-799A-1 Sequence 37, Appl 509 5 17.2 34 1 US-08-305-799A-1 Sequence 37, Appl 509 5 17.2 34 1 US-08-305-799A-1 Sequence 37, Appl 509 5 17.2 34 1 US-08-305-799A-1 Sequence 37, Appl 509 5 17.2 34 1 US-08-409-307-37 Sequence 37,							_	
482 6 20.7 31 4 US-09-228-990-42 Sequence 42, Appl 484 6 20.7 31 4 US-09-228-990-86 Sequence 86, Appl 485 6 20.7 31 4 US-09-228-990-87 Sequence 87, Appl 485 6 20.7 31 4 US-09-228-990-88 Sequence 87, Appl 486 6 20.7 31 4 US-09-228-990-88 Sequence 88, Appl 487 6 20.7 31 4 US-09-238-990-89 Sequence 36, Appl 487 6 20.7 31 4 US-09-242-989-10 Sequence 36, Appl 488 6 20.7 31 4 US-09-442-989-10 Sequence 11, Appl 490 6 20.7 31 4 US-09-442-989-11 Sequence 11, Appl 490 6 20.7 31 4 US-09-442-989-13 Sequence 12, Appl 491 6 20.7 31 4 US-09-442-989-13 Sequence 13, Appl 492 6 20.7 31 4 US-09-442-989-13 Sequence 14, Appl 493 6 20.7 32 4 US-09-536-785A-36 Sequence 38, Appl 494 6 20.7 33 4 US-09-536-785A-37 Sequence 14, Appl 495 6 20.7 34 1 US-08-6409-402-1 Sequence 14, Appl 497 6 20.7 34 1 US-08-526-987-1 Sequence 2, Appli 499 6 20.7 34 1 US-08-526-987-1 Sequence 1, Appli 499 6 20.7 34 1 US-08-526-987-1 Sequence 2, Appli 500 6 20.7 34 1 US-08-526-987-1 Sequence 2, Appli 500 6 20.7 34 1 US-08-536-785A-24 Sequence 2, Appli 500 6 20.7 34 US-09-536-785A-24 Sequence 2, Appli 500 6 20.7 34 US-09-536-785A-24 Sequence 2, Appli 500 6 20.7 36 US-09-536-785A-24 Sequence 2, Appli 500 6 20.7 36 US-09-536-785A-24 Sequence 2, Appli 500 6 20.7 36 US-09-536-785A-25 Sequence 2, Appli 500 6 20.7 36 US-09-536-785A-25 Sequence 26, Appli 500 6 20.7 36 US-09-536-785A-26 Sequence 26, Appli 500 6 20.7 36 US-09-536-785A-27 Sequence 27, Appli 500 5 17.2 30 1 US-08-305-799A-7 Sequence 27, Appli 500 5 17.2 30 1 US-08-305-799A-7 Sequence 37, Appl 500 5 17.2 30 1 US-08-305-799A-7 Sequence 37, Appl 500 5 17.2 34 1 US-08-405-993-10 Sequence 37, Appl 500 5 17.2 34 1 US-08-449-500-37 Sequence 37, Appl 500 5 17.2 34 1 US-08-449-500-37 Sequence 37, Appl 500 5 17.2 34 1 US-08-449-500-37 Sequence 37, Appl 501 5 17.2 34 1 US-08-449-500-37 Sequence 37, Appl 501 5 17.2 34 1 US-08-818-252-22 Sequence 37, Appl 501 5 17.2 34 1 US-08-818-252-22 Sequence 37, Appl 501 5 17.2 34 1 US-08-818-252-22 Sequence 37, Appl 502 4 13.8 28 1 US-08-818-252-22 Sequence 22, Appl 502 4 13.8								
483 6 20.7 31 4 US-09-228-990-86 Sequence 43, Appl 484 6 20.7 31 4 US-09-228-990-86 Sequence 86, Appl 485 6 20.7 31 4 US-09-228-990-87 Sequence 87, Appl 486 6 20.7 31 4 US-09-228-990-88 Sequence 88, Appl 487 6 20.7 31 4 US-09-285-990-88 Sequence 88, Appl 488 6 20.7 31 4 US-09-442-889-10 Sequence 10, Appl 489 6 20.7 31 4 US-09-442-899-11 Sequence 11, Appl 490 6 20.7 31 4 US-09-442-899-12 Sequence 12, Appl 491 6 20.7 31 4 US-09-442-899-13 Sequence 12, Appl 492 6 20.7 31 4 US-09-442-899-13 Sequence 13, Appl 492 6 20.7 31 4 US-09-536-785A-37 Sequence 13, Appl 493 6 20.7 32 4 US-09-536-785A-37 Sequence 37, Appl 494 6 20.7 32 4 US-09-536-785A-37 Sequence 37, Appl 494 6 20.7 32 4 US-09-536-785A-37 Sequence 38, Appl 495 6 20.7 34 1 US-08-049-402-1 Sequence 14, Appl 496 6 20.7 34 1 US-08-049-402-1 Sequence 14, Appl 497 6 20.7 34 1 US-08-049-402-1 Sequence 1, Appli 499 6 20.7 34 1 US-08-03-937A-6 Sequence 6, Appli 500 6 20.7 34 4 US-09-536-785A-27 Sequence 6, Appli 500 6 20.7 34 4 US-09-635-076-6 Sequence 6, Appli 500 6 20.7 34 4 US-09-536-785A-25 Sequence 27, Appl 501 6 20.7 36 4 US-09-536-785A-25 Sequence 27, Appl 501 6 20.7 36 4 US-09-536-785A-27 Sequence 27, Appl 502 6 20.7 36 4 US-09-536-785A-26 Sequence 27, Appl 503 6 20.7 37 4 US-09-536-785A-27 Sequence 27, Appl 504 5 17.2 30 1 US-08-305-799A-7 Sequence 27, Appl 506 5 17.2 30 1 US-08-305-799A-7 Sequence 27, Appl 508 5 17.2 30 1 US-08-305-799A-7 Sequence 27, Appl 508 5 17.2 30 1 US-08-305-799A-1 Sequence 10, Appl 509 5 17.2 34 1 US-08-449-500-37 Sequence 37, Appl 514 5 17.2 34 1 US-08-449-500-37 Sequence 37, Appl 514 5 17.2 34 1 US-08-449-500-37 Sequence 37, Appl 515 5 17.2 34 1 US-08-449-500-37 Sequence 37, Appl 514 5 17.2 34 1 US-08-449-500-37 Sequence 37, Appl 515 5 17.2 34 1 US-08-449-500-37 Sequence 37, Appl 514 5 17.2 34 2 US-08-184-328-37 Sequence 37, Appl 515 5 17.2 34 1 US-08-69-518-53-4 Sequence 37, Appl 516 4 13.8 28 1 US-08-818-252-22 Sequence 22, Appl 518 4 13.8 28 2 US-08-185-3499-76 Sequence 37, Appl 516 4 13.8 28 3 US-08-818-252-22 Sequence 22, Appl								
484 6 20.7 31 4 US-09-228-990-87 Sequence 86, Appl 485 6 20.7 31 4 US-09-228-990-87 Sequence 87, Appl 486 6 20.7 31 4 US-09-238-990-87 Sequence 88, Appl 487 6 20.7 31 4 US-09-536-785A-36 Sequence 36, Appl 488 6 20.7 31 4 US-09-442-989-10 Sequence 10, Appl 489 6 20.7 31 4 US-09-442-989-11 Sequence 11, Appl 490 6 20.7 31 4 US-09-442-989-12 Sequence 11, Appl 491 6 20.7 31 4 US-09-442-989-13 Sequence 13, Appl 492 6 20.7 31 4 US-09-442-989-13 Sequence 13, Appl 492 6 20.7 32 4 US-09-536-785A-37 Sequence 14, Appl 493 6 20.7 32 4 US-09-536-785A-37 Sequence 38, Appl 494 6 20.7 33 4 US-09-536-785A-37 Sequence 38, Appl 495 6 20.7 34 1 US-08-09-402-1 Sequence 14, Appl 496 6 20.7 34 1 US-08-09-402-1 Sequence 1, Appli 497 6 20.7 34 1 US-08-526-987-1 Sequence 1, Appli 498 6 20.7 34 1 US-08-526-987-1 Sequence 1, Appli 500 6 20.7 34 4 US-09-536-785A-25 Sequence 3, Appl 500 6 20.7 34 4 US-09-536-785A-25 Sequence 2, Appli 500 6 20.7 34 4 US-09-536-785A-25 Sequence 2, Appl 501 6 20.7 35 4 US-09-536-785A-25 Sequence 2, Appl 502 6 20.7 36 4 US-09-536-785A-25 Sequence 26, Appl 503 6 20.7 37 4 US-09-536-785A-25 Sequence 27, Appl 504 5 17.2 30 1 US-08-305-799A-7 Sequence 27, Appl 505 5 17.2 30 1 US-08-305-799A-7 Sequence 27, Appl 506 5 17.2 30 1 US-08-305-799A-7 Sequence 10, Appl 507 5 17.2 30 1 US-08-305-799A-1 Sequence 11, Appl 508 5 17.2 30 1 US-08-305-799A-1 Sequence 11, Appl 509 5 17.2 34 1 US-08-305-799A-1 Sequence 37, Appl 509 5 17.2 34 1 US-08-305-799A-1 Sequence 37, Appl 509 5 17.2 34 1 US-08-449-317A-37 Sequence 37, Appl 514 5 17.2 34 1 US-08-449-317A-37 Sequence 37, Appl 514 5 17.2 34 1 US-08-449-317A-37 Sequence 37, Appl 514 5 17.2 34 2 US-08-449-317A-37 Sequence 37, Appl 514 5 17.2 34 2 US-08-449-317A-37 Sequence 37, Appl 514 5 17.2 34 2 US-08-449-317A-37 Sequence 37, Appl 514 5 17.2 34 1 US-08-305-799A-10 Sequence 37, Appl 515 5 17.2 34 2 US-08-18-18-22-22 Sequence 22, Appl 518 4 13.8 28 1 US-08-818-252-22 Sequence 22, Appl 519 4 13.8 28 1 US-08-818-252-22 Sequence 22, Appl 522 4 13.8 28 3 US-08-818-252-22 Sequence 22, Ap								
485 6 20.7 31 4 US-09-228-990-87 Sequence 87, Appl 486 6 20.7 31 4 US-09-228-990-88 Sequence 88, Appl 487 6 20.7 31 4 US-09-442-989-10 Sequence 36, Appl 488 6 20.7 31 4 US-09-442-989-11 Sequence 10, Appl 490 6 20.7 31 4 US-09-442-989-11 Sequence 11, Appl 490 6 20.7 31 4 US-09-442-989-12 Sequence 12, Appl 491 6 20.7 31 4 US-09-442-989-13 Sequence 12, Appl 492 6 20.7 31 4 US-09-442-989-13 Sequence 14, Appl 492 6 20.7 31 4 US-09-442-989-14 Sequence 14, Appl 493 6 20.7 32 4 US-09-536-785A-37 Sequence 37, Appl 494 6 20.7 32 4 US-09-536-785A-37 Sequence 38, Appl 495 6 20.7 34 1 US-09-536-785A-38 Sequence 2, Appli 495 6 20.7 34 1 US-08-049-402-1 Sequence 1, Appli 496 6 20.7 34 1 US-08-049-402-1 Sequence 1, Appli 497 6 20.7 34 1 US-08-049-402-1 Sequence 1, Appli 498 6 20.7 34 4 US-09-635-076-6 Sequence 1, Appli 500 6 20.7 34 4 US-09-635-076-6 Sequence 6, Appli 500 6 20.7 34 4 US-09-635-076-6 Sequence 24, Appl 500 6 20.7 34 4 US-09-536-785A-24 Sequence 24, Appl 501 6 20.7 35 4 US-09-536-785A-24 Sequence 24, Appl 502 6 20.7 36 4 US-09-536-785A-25 Sequence 27, Appl 503 6 20.7 36 4 US-09-536-785A-25 Sequence 27, Appl 504 5 17.2 30 1 US-08-305-799A-7 Sequence 27, Appl 505 5 17.2 30 1 US-08-305-799A-7 Sequence 9, Appli 506 5 17.2 30 1 US-08-305-799A-7 Sequence 9, Appli 508 5 17.2 30 1 US-08-305-799A-1 Sequence 10, Appl 508 5 17.2 30 1 US-08-305-799A-1 Sequence 11, Appl 508 5 17.2 30 1 US-08-305-799A-1 Sequence 27, Appl 509 5 17.2 34 1 US-08-305-799A-1 Sequence 37, Appl 511 5 17.2 34 1 US-08-449-517A-37 Sequence 37, Appl 511 5 17.2 34 1 US-08-449-517A-37 Sequence 37, Appl 514 5 17.2 34 2 US-08-447-022-37 Sequence 37, Appl 515 5 17.2 34 2 US-08-447-022-37 Sequence 37, Appl 516 4 13.8 28 1 US-08-818-253-22 Sequence 37, Appl 517 4 13.8 28 1 US-08-818-253-22 Sequence 22, Appl 518 4 13.8 28 1 US-08-818-253-22 Sequence 22, Appl 522 4 13.8 28 3 US-08-818-253-22 Sequence 22, Appl 522 4 13.8 28 4 US-09-316-919-38 Sequence 38, Appl								
486 6 20.7 31 4 US-09-228-990-88 Sequence 88, Appl 487 6 20.7 31 4 US-09-536-785A-36 Sequence 36, Appl 488 6 20.7 31 4 US-09-442-989-10 Sequence 10, Appl 489 6 20.7 31 4 US-09-442-989-11 Sequence 11, Appl 490 6 20.7 31 4 US-09-442-989-12 Sequence 12, Appl 491 6 20.7 31 4 US-09-442-989-13 Sequence 13, Appl 492 6 20.7 31 4 US-09-442-989-13 Sequence 13, Appl 492 6 20.7 31 4 US-09-442-989-14 Sequence 37, Appl 493 6 20.7 32 4 US-09-536-785A-37 Sequence 37, Appl 494 6 20.7 33 4 US-09-536-785A-38 Sequence 38, Appl 495 6 20.7 34 1 US-08-049-402-1 Sequence 1, Appli 496 6 20.7 34 1 US-08-049-402-1 Sequence 1, Appli 497 6 20.7 34 1 US-08-049-402-1 Sequence 1, Appli 498 6 20.7 34 3 US-09-536-785A-38 Sequence 38, Appl 499 6 20.7 34 4 US-09-635-076-6 Sequence 6, Appli 500 6 20.7 34 4 US-09-536-785A-24 Sequence 6, Appli 500 6 20.7 34 4 US-09-536-785A-25 Sequence 25, Appl 501 6 20.7 35 4 US-09-536-785A-26 Sequence 25, Appl 502 6 20.7 36 4 US-09-536-785A-26 Sequence 25, Appl 503 6 20.7 36 4 US-09-536-785A-27 Sequence 27, Appl 504 5 17.2 30 1 US-08-305-799A-7 Sequence 7, Appl 505 5 17.2 30 1 US-08-305-799A-10 Sequence 7, Appl 507 5 17.2 30 1 US-08-305-799A-10 Sequence 7, Appl 508 5 17.2 30 1 US-08-305-799A-10 Sequence 7, Appl 509 5 17.2 30 1 US-08-305-799A-10 Sequence 37, Appl 509 5 17.2 30 1 US-08-305-799A-10 Sequence 37, Appl 509 5 17.2 30 1 US-08-305-799A-11 Sequence 37, Appl 509 5 17.2 30 1 US-08-305-799A-10 Sequence 37, Appl 509 5 17.2 34 1 US-08-449-500-37 Sequence 37, Appl 510 5 17.2 34 1 US-08-449-500-37 Sequence 37, Appl 511 5 17.2 34 2 US-08-447-002-37 Sequence 37, Appl 512 5 17.2 34 2 US-08-447-002-37 Sequence 37, Appl 513 5 17.2 34 2 US-08-184-328-37 Sequence 37, Appl 514 5 17.2 34 2 US-08-818-328-37 Sequence 37, Appl 515 5 17.2 34 2 US-08-184-90-90-37 Sequence 37, Appl 516 4 13.8 28 1 US-08-818-252-22 Sequence 22, Appl 517 4 13.8 28 1 US-08-818-252-22 Sequence 22, Appl 520 4 13.8 28 3 US-08-818-252-22 Sequence 22, Appl 521 4 13.8 28 4 US-09-316-919-38 Sequence 38, Appl								
487 6 20.7 31 4 US-09-536-785A-36 Sequence 36, Appl 488 6 20.7 31 4 US-09-442-989-10 Sequence 10, Appl 489 6 20.7 31 4 US-09-442-989-11 Sequence 11, Appl 490 6 20.7 31 4 US-09-442-989-12 Sequence 12, Appl 491 6 20.7 31 4 US-09-442-989-13 Sequence 12, Appl 492 6 20.7 31 4 US-09-442-989-13 Sequence 14, Appl 492 6 20.7 31 4 US-09-442-989-14 Sequence 14, Appl 493 6 20.7 32 4 US-09-536-785A-37 Sequence 38, Appl 494 6 20.7 33 4 US-09-536-785A-38 Sequence 38, Appl 495 6 20.7 34 1 US-08-04-02-1 Sequence 2, Appli 495 6 20.7 34 1 US-08-049-402-1 Sequence 1, Appli 496 6 20.7 34 1 US-08-049-402-1 Sequence 1, Appli 498 6 20.7 34 1 US-08-049-402-1 Sequence 1, Appli 499 6 20.7 34 4 US-09-536-785A-25 Sequence 6, Appli 500 6 20.7 34 4 US-09-536-785A-25 Sequence 24, Appl 501 6 20.7 34 4 US-09-536-785A-25 Sequence 24, Appl 501 6 20.7 34 4 US-09-536-785A-25 Sequence 25, Appl 502 6 20.7 36 4 US-09-536-785A-25 Sequence 27, Appl 502 6 20.7 36 4 US-09-536-785A-25 Sequence 27, Appl 503 6 20.7 37 4 US-09-536-785A-25 Sequence 27, Appl 504 5 17.2 30 1 US-08-305-799A-7 Sequence 27, Appl 506 5 17.2 30 1 US-08-305-799A-9 Sequence 7, Appl 507 5 17.2 30 1 US-08-305-799A-1 Sequence 10, Appl 507 5 17.2 30 1 US-08-305-799A-1 Sequence 11, Appl 508 5 17.2 30 1 US-08-305-799A-1 Sequence 11, Appl 509 5 17.2 34 1 US-08-305-799A-1 Sequence 11, Appl 509 5 17.2 34 1 US-08-305-799A-1 Sequence 37, Appl 511 5 17.2 34 2 US-08-449-500-37 Sequence 37, Appl 512 5 17.2 34 2 US-08-449-500-37 Sequence 37, Appl 513 5 17.2 34 2 US-08-449-500-37 Sequence 37, Appl 514 5 17.2 34 2 US-08-449-500-37 Sequence 37, Appl 514 5 17.2 34 2 US-08-449-500-37 Sequence 37, Appl 515 5 17.2 34 2 US-08-449-500-37 Sequence 37, Appl 516 4 13.8 28 1 US-08-818-52-29 Sequence 4, Appl 517 4 13.8 28 1 US-08-818-52-29 Sequence 22, Appl 519 4 13.8 28 2 US-08-185-949B-76 Sequence 37, Appl 519 4 13.8 28 2 US-08-185-949B-76 Sequence 22, Appl 522 4 13.8 28 3 US-08-818-52-29 Sequence 22, Appl 522 4 13.8 28 4 US-09-316-919-38 Sequence 28, Appl					4			
488 6 20.7 31 4 US-09-442-989-10 Sequence 10, Appl 489 6 20.7 31 4 US-09-442-989-11 Sequence 11, Appl 490 6 20.7 31 4 US-09-442-989-13 Sequence 12, Appl 491 6 20.7 31 4 US-09-442-989-13 Sequence 12, Appl 492 6 20.7 31 4 US-09-442-989-14 Sequence 13, Appl 493 6 20.7 32 4 US-09-536-785A-37 Sequence 37, Appl 494 6 20.7 33 4 US-09-536-785A-38 Sequence 37, Appl 495 6 20.7 34 1 US-09-536-785A-38 Sequence 2, Appl 496 6 20.7 34 1 US-08-049-402-1 Sequence 2, Appl 497 6 20.7 34 1 US-08-049-402-1 Sequence 1, Appli 498 6 20.7 34 1 US-08-903-497A-6 Sequence 6, Appli 499 6 20.7 34 4 US-09-536-785A-24 Sequence 6, Appli 500 6 20.7 34 4 US-09-536-785A-24 Sequence 27, Appl 501 6 20.7 35 4 US-09-536-785A-25 Sequence 25, Appl 502 6 20.7 35 4 US-09-536-785A-26 Sequence 27, Appl 503 6 20.7 36 4 US-09-536-785A-26 Sequence 27, Appl 504 5 17.2 30 1 US-08-305-799A-7 Sequence 27, Appl 505 5 17.2 30 1 US-08-305-799A-7 Sequence 7, Appl 506 5 17.2 30 1 US-08-305-799A-1 Sequence 10, Appl 507 5 17.2 30 1 US-08-305-799A-1 Sequence 3, Appl 508 5 17.2 30 1 US-08-305-799A-1 Sequence 7, Appl 509 5 17.2 30 1 US-08-305-799A-1 Sequence 3, Appl 509 5 17.2 30 1 US-08-305-799A-1 Sequence 11, Appl 509 5 17.2 30 1 US-08-305-799A-1 Sequence 3, Appl 501 5 17.2 30 1 US-08-305-799A-1 Sequence 11, Appl 502 6 17.2 30 1 US-08-305-799A-1 Sequence 37, Appl 503 5 17.2 30 1 US-08-305-799A-1 Sequence 37, Appl 504 5 17.2 30 1 US-08-305-799A-1 Sequence 37, Appl 505 5 17.2 34 1 US-08-305-799A-1 Sequence 37, Appl 506 5 17.2 34 1 US-08-305-799A-1 Sequence 37, Appl 507 5 17.2 34 1 US-08-305-799A-1 Sequence 37, Appl 508 5 17.2 34 2 US-08-449-510-37 Sequence 37, Appl 510 5 17.2 34 2 US-08-449-500-37 Sequence 37, Appl 511 5 17.2 34 2 US-08-847-022-37 Sequence 37, Appl 512 5 17.2 34 2 US-08-149-600-37 Sequence 37, Appl 513 5 17.2 34 2 US-08-149-600-37 Sequence 37, Appl 514 5 17.2 34 2 US-08-184-328-37 Sequence 37, Appl 515 5 17.2 34 2 US-08-198-660-76 Sequence 37, Appl 516 4 13.8 28 1 US-08-521-097-37 Sequence 37, Appl 517 4 13.8 28 1 US-08-8198-860-76 Sequence 68, Appl 518 4					4			
489 6 20.7 31 4 US-09-442-989-11 Sequence 11, Appl 490 6 20.7 31 4 US-09-442-989-12 Sequence 13, Appl 491 6 20.7 31 4 US-09-442-989-13 Sequence 13, Appl 492 6 20.7 31 4 US-09-442-989-14 Sequence 13, Appl 493 6 20.7 32 4 US-09-536-785A-37 Sequence 37, Appl 494 6 20.7 33 4 US-09-536-785A-37 Sequence 38, Appl 495 6 20.7 34 1 US-09-536-785A-38 Sequence 38, Appl 496 6 20.7 34 1 US-08-640-402-1 Sequence 1, Appli 497 6 20.7 34 1 US-08-526-987-1 Sequence 1, Appli 498 6 20.7 34 1 US-08-526-987-1 Sequence 1, Appli 499 6 20.7 34 4 US-09-635-076-6 Sequence 6, Appli 500 6 20.7 34 4 US-09-536-785A-25 Sequence 24, Appl 501 6 20.7 35 4 US-09-536-785A-25 Sequence 24, Appl 502 6 20.7 36 4 US-09-536-785A-25 Sequence 26, Appl 503 6 20.7 36 4 US-09-536-785A-25 Sequence 27, Appl 504 5 17.2 30 1 US-08-305-799A-7 Sequence 7, Appl 505 5 17.2 30 1 US-08-305-799A-1 Sequence 9, Appl 507 5 17.2 30 1 US-08-305-799A-1 Sequence 10, Appl 508 5 17.2 30 1 US-08-305-799A-1 Sequence 10, Appl 509 5 17.2 30 1 US-08-305-799A-1 Sequence 10, Appl 509 5 17.2 30 1 US-08-305-799A-1 Sequence 10, Appl 509 5 17.2 34 1 US-08-305-799A-1 Sequence 11, Appl 509 5 17.2 34 1 US-08-305-799A-1 Sequence 11, Appl 509 5 17.2 34 1 US-08-305-799A-1 Sequence 12, Appl 509 5 17.2 34 1 US-08-305-799A-1 Sequence 12, Appl 509 5 17.2 34 1 US-08-305-799A-1 Sequence 17, Appl 510 5 17.2 34 1 US-08-305-799A-1 Sequence 17, Appl 511 5 17.2 34 1 US-08-449-500-37 Sequence 37, Appl 512 5 17.2 34 1 US-08-449-317A-37 Sequence 37, Appl 513 5 17.2 34 2 US-08-449-317A-37 Sequence 37, Appl 514 5 17.2 34 2 US-08-449-317A-37 Sequence 37, Appl 515 5 17.2 38 1 US-08-319-66-76 Sequence 37, Appl 516 4 13.8 28 1 US-08-818-253-22 Sequence 22, Appl 517 4 13.8 28 1 US-08-818-252-22 Sequence 76, Appl 518 4 13.8 28 2 US-08-818-252-22 Sequence 22, Appl 520 4 13.8 28 3 US-08-818-252-22 Sequence 22, Appl 521 4 13.8 28 4 US-09-316-919-38 Sequence 18, Appl	487	6	20.7	31	4	US-09-536 - 785A-36	Sequence 36, Appl	
490 6 20.7 31 4 US-09-442-989-12 Sequence 12, Appl 491 6 20.7 31 4 US-09-442-989-13 Sequence 13, Appl 492 6 20.7 32 4 US-09-442-989-14 Sequence 14, Appl 493 6 20.7 32 4 US-09-536-785A-37 Sequence 37, Appl 494 6 20.7 33 4 US-09-536-785A-38 Sequence 38, Appl 495 6 20.7 34 1 US-09-536-785A-38 Sequence 38, Appl 496 6 20.7 34 1 US-08-049-402-1 Sequence 1, Appli 497 6 20.7 34 1 US-08-049-402-1 Sequence 1, Appli 498 6 20.7 34 1 US-08-049-402-1 Sequence 1, Appli 499 6 20.7 34 1 US-08-635-076-6 Sequence 6, Appli 500 6 20.7 34 4 US-09-635-076-6 Sequence 24, Appl 500 6 20.7 34 4 US-09-536-785A-24 Sequence 24, Appl 501 6 20.7 36 4 US-09-536-785A-25 Sequence 24, Appl 502 6 20.7 36 4 US-09-536-785A-25 Sequence 27, Appl 503 6 20.7 36 4 US-09-536-785A-25 Sequence 27, Appl 504 5 17.2 30 1 US-08-305-799A-7 Sequence 27, Appl 505 5 17.2 30 1 US-08-305-799A-9 Sequence 7, Appl 506 5 17.2 30 1 US-08-305-799A-1 Sequence 10, Appl 507 5 17.2 30 1 US-08-305-799A-1 Sequence 11, Appl 508 5 17.2 30 1 US-08-305-799A-1 Sequence 11, Appl 509 5 17.2 30 1 US-08-305-799A-1 Sequence 12, Appl 509 5 17.2 34 1 US-08-305-799A-1 Sequence 17, Appl 511 5 17.2 34 1 US-08-305-799A-1 Sequence 37, Appl 512 5 17.2 34 1 US-08-305-799A-1 Sequence 37, Appl 513 5 17.2 34 2 US-08-449-510-37 Sequence 37, Appl 514 5 17.2 34 2 US-08-447-37 Sequence 37, Appl 515 5 17.2 38 1 US-08-449-317A-37 Sequence 37, Appl 516 4 13.8 28 1 US-08-449-317A-37 Sequence 37, Appl 517 4 13.8 28 1 US-08-191-866D-76 Sequence 19, Appl 518 4 13.8 28 2 US-08-191-866D-76 Sequence 4, Appl 519 4 13.8 28 2 US-08-191-866D-76 Sequence 22, Appl 520 4 13.8 28 3 US-08-641-873-8 Sequence 22, Appl 521 4 13.8 28 3 US-08-641-873-8 Sequence 22, Appl 522 4 13.8 28 4 US-09-316-919-38 Sequence 22, Appl	488		20.7	31	4	US-09-442-989-10	Sequence 10, Appl	
491 6 20.7 31 4 US-09-442-989-13 Sequence 13, Appl 492 6 20.7 31 4 US-09-442-989-14 Sequence 14, Appl 493 6 20.7 32 4 US-09-536-785A-37 Sequence 37, Appl 494 6 20.7 33 4 US-09-536-785A-38 Sequence 38, Appl 495 6 20.7 34 1 US-08-07-765-373-2 Sequence 2, Appli 496 6 20.7 34 1 US-08-049-402-1 Sequence 1, Appli 497 6 20.7 34 1 US-08-526-987-1 Sequence 1, Appli 498 6 20.7 34 1 US-08-526-987-1 Sequence 1, Appli 498 6 20.7 34 3 US-08-903-497A-6 Sequence 6, Appli 500 6 20.7 34 4 US-09-536-785A-24 Sequence 25, Appl 501 6 20.7 35 4 US-09-536-785A-25 Sequence 25, Appl 502 6 20.7 36 4 US-09-536-785A-25 Sequence 27, Appl 503 6 20.7 37 4 US-09-536-785A-25 Sequence 27, Appl 504 5 17.2 30 1 US-08-305-799A-7 Sequence 27, Appl 505 5 17.2 30 1 US-08-305-799A-10 Sequence 10, Appl 506 5 17.2 30 1 US-08-305-799A-10 Sequence 10, Appl 507 5 17.2 30 1 US-08-305-799A-10 Sequence 11, Appl 508 5 17.2 30 1 US-08-305-799A-10 Sequence 11, Appl 509 5 17.2 34 1 US-08-305-799A-10 Sequence 11, Appl 509 5 17.2 34 1 US-08-305-799A-10 Sequence 11, Appl 509 5 17.2 34 1 US-08-305-799A-10 Sequence 12, Appl 509 5 17.2 34 1 US-08-305-799A-10 Sequence 37, Appl 510 5 17.2 34 1 US-08-305-799A-17 Sequence 37, Appl 511 5 17.2 34 1 US-08-305-799A-17 Sequence 37, Appl 512 5 17.2 34 1 US-08-449-517A-37 Sequence 37, Appl 513 5 17.2 34 2 US-08-447-37 Sequence 37, Appl 514 5 17.2 34 2 US-08-447-37 Sequence 37, Appl 515 5 17.2 38 1 US-08-849-347-37 Sequence 37, Appl 516 4 13.8 28 1 US-08-841-328-37 Sequence 37, Appl 517 4 13.8 28 1 US-08-819-8660-76 Sequence 19, Appl 518 4 13.8 28 2 US-08-191-8660-76 Sequence 4, Appli 519 4 13.8 28 2 US-08-818-252-22 Sequence 22, Appl 520 4 13.8 28 3 US-08-641-873-8 Sequence 8, Appl 521 4 13.8 28 3 US-08-641-873-8 Sequence 22, Appl 522 4 13.8 28 4 US-09-316-919-38 Sequence 38, Appl	489	6	20.7	31	4	US-09-442-989-11	Sequence 11, Appl	
492 6 20.7 31 4 US-09-442-989-14 Sequence 14, Appl 493 6 20.7 32 4 US-09-536-785A-37 Sequence 37, Appl 494 6 20.7 33 4 US-09-536-785A-38 Sequence 38, Appl 495 6 20.7 34 1 US-08-049-402-1 Sequence 1, Appli 496 6 20.7 34 1 US-08-6987-1 Sequence 1, Appli 497 6 20.7 34 1 US-08-6987-1 Sequence 1, Appli 498 6 20.7 34 4 US-09-635-076-6 Sequence 6, Appli 499 6 20.7 34 4 US-09-635-076-6 Sequence 6, Appli 500 6 20.7 34 4 US-09-536-785A-24 Sequence 24, Appl 501 6 20.7 35 4 US-09-536-785A-25 Sequence 25, Appl 502 6 20.7 36 4 US-09-536-785A-25 Sequence 26, Appl 503 6 20.7 36 4 US-09-536-785A-26 Sequence 27, Appl 504 5 17.2 30 1 US-08-305-799A-7 Sequence 27, Appl 505 5 17.2 30 1 US-08-305-799A-9 Sequence 9, Appl 506 5 17.2 30 1 US-08-305-799A-10 Sequence 10, Appl 507 5 17.2 30 1 US-08-305-799A-11 Sequence 11, Appl 508 5 17.2 30 1 US-08-305-799A-11 Sequence 11, Appl 509 5 17.2 30 1 US-08-305-799A-12 Sequence 27, Appl 509 5 17.2 34 1 US-08-449-500-37 Sequence 37, Appl 510 5 17.2 34 1 US-08-449-500-37 Sequence 37, Appl 511 5 17.2 34 2 US-08-449-317A-37 Sequence 37, Appl 512 5 17.2 34 2 US-08-449-447-37 Sequence 37, Appl 513 5 17.2 34 2 US-08-449-447-37 Sequence 37, Appl 514 5 17.2 38 1 US-08-317A-37 Sequence 37, Appl 515 5 17.2 38 1 US-08-317A-37 Sequence 37, Appl 516 4 13.8 28 1 US-08-818-253-22 Sequence 76, Appl 517 4 13.8 28 1 US-08-818-5949B-76 Sequence 76, Appl 520 4 13.8 28 3 US-08-641-873-8 Sequence 76, Appl 521 4 13.8 28 4 US-08-818-252-22 Sequence 22, Appl 522 4 13.8 28 4 US-08-818-252-22 Sequence 22, Appl 523 4 13.8 28 4 US-09-316-919-38 Sequence 18, Appl	490	6	20.7	31	4	US-09-442-989-12	Sequence 12, Appl	
493 6 20.7 32 4 US-09-536-785A-37 Sequence 37, Appl 494 6 20.7 33 4 US-09-536-785A-38 Sequence 28, Appl 495 6 20.7 34 1 US-08-549-402-1 Sequence 1, Appli 496 6 20.7 34 1 US-08-649-402-1 Sequence 1, Appli 497 6 20.7 34 1 US-08-526-987-1 Sequence 1, Appli 498 6 20.7 34 1 US-08-526-987-1 Sequence 1, Appli 498 6 20.7 34 4 US-09-635-076-6 Sequence 6, Appli 500 6 20.7 34 4 US-09-536-785A-24 Sequence 6, Appli 500 6 20.7 34 4 US-09-536-785A-24 Sequence 24, Appl 501 6 20.7 35 4 US-09-536-785A-25 Sequence 25, Appl 502 6 20.7 36 4 US-09-536-785A-25 Sequence 26, Appl 503 6 20.7 37 4 US-09-536-785A-25 Sequence 27, Appl 503 6 20.7 37 4 US-09-536-785A-27 Sequence 27, Appl 504 5 17.2 30 1 US-08-305-799A-7 Sequence 7, Appli 505 5 17.2 30 1 US-08-305-799A-7 Sequence 9, Appli 506 5 17.2 30 1 US-08-305-799A-1 Sequence 9, Appli 507 5 17.2 30 1 US-08-305-799A-1 Sequence 10, Appl 508 5 17.2 30 1 US-08-305-799A-1 Sequence 11, Appl 509 5 17.2 30 1 US-08-305-799A-1 Sequence 12, Appl 509 5 17.2 30 1 US-08-305-799A-1 Sequence 12, Appl 509 5 17.2 34 1 US-08-305-799A-1 Sequence 37, Appl 510 5 17.2 34 1 US-08-305-799A-1 Sequence 37, Appl 511 5 17.2 34 1 US-08-449-500-37 Sequence 37, Appl 512 5 17.2 34 2 US-08-447-37 Sequence 37, Appl 513 5 17.2 34 2 US-08-447-302-37 Sequence 37, Appl 514 5 17.2 34 2 US-08-449-317A-37 Sequence 37, Appl 515 5 17.2 34 2 US-08-184-328-37 Sequence 37, Appl 516 4 13.8 28 1 US-07-899-535A-4 Sequence 76, Appl 517 4 13.8 28 1 US-08-819-8660-76 Sequence 76, Appl 518 4 13.8 28 2 US-08-185-949B-76 Sequence 76, Appl 520 4 13.8 28 2 US-08-185-949B-76 Sequence 76, Appl 521 4 13.8 28 3 US-08-641-873-8 Sequence 8, Appl 521 4 13.8 28 3 US-08-641-873-8 Sequence 22, Appl 522 4 13.8 28 4 US-09-316-919-38 Sequence 18, Appl 523 4 13.8 28 4 US-09-316-919-38 Sequence 18, Appl	491	6	20.7	31	4	US-09-442-989-13	Sequence 13, Appl	
494 6 20.7 33 4 US-09-536-785A-38 Sequence 38, Appl 495 6 20.7 34 1 US-07-765-373-2 Sequence 2, Appli 496 6 20.7 34 1 US-08-049-402-1 Sequence 1, Appli 497 6 20.7 34 1 US-08-526-987-1 Sequence 1, Appli 498 6 20.7 34 3 US-08-903-497A-6 Sequence 6, Appli 499 6 20.7 34 4 US-09-635-076-6 Sequence 6, Appli 500 6 20.7 34 4 US-09-536-785A-24 Sequence 24, Appl 501 6 20.7 35 4 US-09-536-785A-25 Sequence 25, Appl 501 6 20.7 35 4 US-09-536-785A-25 Sequence 27, Appl 502 6 20.7 36 4 US-09-536-785A-26 Sequence 27, Appl 503 6 20.7 36 4 US-09-536-785A-27 Sequence 27, Appl 504 5 17.2 30 1 US-08-305-799A-7 Sequence 7, Appl 505 5 17.2 30 1 US-08-305-799A-10 Sequence 9, Appl 506 5 17.2 30 1 US-08-305-799A-10 Sequence 10, Appl 507 5 17.2 30 1 US-08-305-799A-11 Sequence 11, Appl 508 5 17.2 30 1 US-08-305-799A-11 Sequence 11, Appl 508 5 17.2 30 1 US-08-305-799A-12 Sequence 12, Appl 509 5 17.2 34 1 US-08-449-317A-37 Sequence 37, Appl 510 5 17.2 34 1 US-08-449-317A-37 Sequence 37, Appl 511 5 17.2 34 2 US-08-449-317A-37 Sequence 37, Appl 512 5 17.2 34 2 US-08-449-317A-37 Sequence 37, Appl 513 5 17.2 34 2 US-08-449-317A-37 Sequence 37, Appl 514 5 17.2 34 2 US-08-449-317A-37 Sequence 37, Appl 515 5 17.2 38 1 US-08-305-799A-1 Sequence 37, Appl 514 5 17.2 34 2 US-08-449-317A-37 Sequence 37, Appl 515 5 17.2 38 1 US-08-349-347-022-37 Sequence 37, Appl 516 4 13.8 28 1 US-08-8149-317A-37 Sequence 37, Appl 516 4 13.8 28 1 US-08-818-525-22 Sequence 4, Appl 518 4 13.8 28 2 US-08-185-949B-76 Sequence 76, Appl 518 4 13.8 28 2 US-08-185-949B-76 Sequence 76, Appl 519 4 13.8 28 2 US-08-818-252-22 Sequence 22, Appl 521 4 13.8 28 3 US-08-818-252-22 Sequence 22, Appl 522 4 13.8 28 4 US-09-818-252-22 Sequence 22, Appl 522 4 13.8 28 4 US-09-316-919-38 Sequence 38, Appl	492	6	20.7	31	4	US-09-442-989-14	Sequence 14, Appl	
494 6 20.7 33 4 US-09-536-785A-38 Sequence 38, Appl 495 6 20.7 34 1 US-07-765-373-2 Sequence 2, Appli 496 6 20.7 34 1 US-08-049-402-1 Sequence 1, Appli 497 6 20.7 34 1 US-08-526-987-1 Sequence 1, Appli 498 6 20.7 34 4 US-09-635-076-6 Sequence 6, Appli 499 6 20.7 34 4 US-09-635-076-6 Sequence 6, Appli 500 6 20.7 34 4 US-09-536-785A-24 Sequence 24, Appl 501 6 20.7 35 4 US-09-536-785A-25 Sequence 25, Appl 502 6 20.7 36 4 US-09-536-785A-25 Sequence 27, Appl 503 6 20.7 36 4 US-09-536-785A-25 Sequence 27, Appl 504 5 17.2 30 1 US-08-305-799A-7 Sequence 27, Appl 505 5 17.2 30 1 US-08-305-799A-10 Sequence 9, Appli 506 5 17.2 30 1 US-08-305-799A-10 Sequence 10, Appl 507 5 17.2 30 1 US-08-305-799A-11 Sequence 11, Appl 508 5 17.2 30 1 US-08-305-799A-11 Sequence 11, Appl 509 5 17.2 30 1 US-08-305-799A-11 Sequence 11, Appl 509 5 17.2 30 1 US-08-305-799A-11 Sequence 11, Appl 509 5 17.2 34 1 US-08-449-317A-37 Sequence 37, Appl 510 5 17.2 34 1 US-08-449-317A-37 Sequence 37, Appl 511 5 17.2 34 2 US-08-449-317A-37 Sequence 37, Appl 512 5 17.2 34 2 US-08-449-317A-37 Sequence 37, Appl 513 5 17.2 34 2 US-08-449-317A-37 Sequence 37, Appl 514 5 17.2 34 2 US-08-449-317A-37 Sequence 37, Appl 515 5 17.2 38 1 US-08-305-799A-477-32 Sequence 37, Appl 516 4 13.8 28 1 US-07-899-535A-4 Sequence 37, Appl 517 4 13.8 28 1 US-08-818-252-22 Sequence 76, Appl 520 4 13.8 28 2 US-08-185-949B-76 Sequence 76, Appl 521 4 13.8 28 3 US-08-818-252-22 Sequence 22, Appl 522 4 13.8 28 4 US-08-818-252-22 Sequence 22, Appl 523 4 US-08-316-919-38 Sequence 22, Appl	493	6	20.7	32	4	US-09-536 - 785A-37	Sequence 37, Appl	
495 6 20.7 34 1 US-07-765-373-2 Sequence 2, Appli 496 6 20.7 34 1 US-08-049-402-1 Sequence 1, Appli 497 6 20.7 34 1 US-08-526-987-1 Sequence 1, Appli 498 6 20.7 34 3 US-08-903-497A-6 Sequence 6, Appli 499 6 20.7 34 4 US-09-635-076-6 Sequence 6, Appli 500 6 20.7 34 4 US-09-536-785A-24 Sequence 24, Appl 501 6 20.7 35 4 US-09-536-785A-25 Sequence 25, Appl 502 6 20.7 36 4 US-09-536-785A-25 Sequence 26, Appl 503 6 20.7 37 4 US-09-536-785A-26 Sequence 27, Appl 503 6 20.7 37 4 US-09-536-785A-27 Sequence 27, Appl 504 5 17.2 30 1 US-08-305-799A-7 Sequence 7, Appl 505 5 17.2 30 1 US-08-305-799A-7 Sequence 7, Appl 506 5 17.2 30 1 US-08-305-799A-1 Sequence 9, Appl 507 5 17.2 30 1 US-08-305-799A-10 Sequence 10, Appl 508 5 17.2 30 1 US-08-305-799A-11 Sequence 11, Appl 508 5 17.2 30 1 US-08-305-799A-11 Sequence 12, Appl 509 5 17.2 34 1 US-08-305-799A-12 Sequence 12, Appl 509 5 17.2 34 1 US-08-449-500-37 Sequence 27, Appl 510 5 17.2 34 1 US-08-449-500-37 Sequence 37, Appl 511 5 17.2 34 2 US-08-449-317A-37 Sequence 37, Appl 512 5 17.2 34 2 US-08-447-022-37 Sequence 37, Appl 513 5 17.2 34 2 US-08-184-328-37 Sequence 37, Appl 514 5 17.2 34 2 US-08-184-328-37 Sequence 37, Appl 515 5 17.2 34 2 US-08-184-328-37 Sequence 37, Appl 516 4 13.8 28 1 US-07-899-535A-4 Sequence 76, Appl 517 4 13.8 28 1 US-08-95-19-535A-4 Sequence 76, Appl 518 4 13.8 28 1 US-08-191-866D-76 Sequence 76, Appl 519 4 13.8 28 2 US-08-185-949B-76 Sequence 76, Appl 520 4 13.8 28 2 US-08-185-949B-76 Sequence 76, Appl 520 4 13.8 28 3 US-08-818-253-22 Sequence 22, Appl 521 4 13.8 28 4 US-08-818-253-22 Sequence 22, Appl 522 4 13.8 28 4 US-08-818-253-22 Sequence 22, Appl 522 4 13.8 28 4 US-09-316-919-38 Sequence 38, Appl	494	6	20.7	33	4	US-09-536-785A-38		
496 6 20.7 34 1 US-08-049-402-1 Sequence 1, Appli 497 6 20.7 34 1 US-08-526-987-1 Sequence 1, Appli 498 6 20.7 34 3 US-08-903-497A-6 Sequence 6, Appli 499 6 20.7 34 4 US-09-635-076-6 Sequence 6, Appli 500 6 20.7 34 4 US-09-536-785A-24 Sequence 24, Appl 501 6 20.7 35 4 US-09-536-785A-25 Sequence 25, Appl 502 6 20.7 36 4 US-09-536-785A-25 Sequence 26, Appl 503 6 20.7 37 4 US-09-536-785A-27 Sequence 27, Appl 504 5 17.2 30 1 US-08-305-799A-7 Sequence 27, Appl 505 5 17.2 30 1 US-08-305-799A-7 Sequence 7, Appl 506 5 17.2 30 1 US-08-305-799A-10 Sequence 10, Appl 507 5 17.2 30 1 US-08-305-799A-11 Sequence 11, Appl 508 5 17.2 30 1 US-08-305-799A-11 Sequence 11, Appl 509 5 17.2 34 1 US-08-305-799A-12 Sequence 12, Appl 509 5 17.2 34 1 US-08-305-799A-12 Sequence 37, Appl 510 5 17.2 34 1 US-08-449-500-37 Sequence 37, Appl 511 5 17.2 34 2 US-08-449-500-37 Sequence 37, Appl 512 5 17.2 34 2 US-08-449-317A-37 Sequence 37, Appl 513 5 17.2 34 2 US-08-449-447-37 Sequence 37, Appl 514 5 17.2 34 2 US-08-449-447-37 Sequence 37, Appl 515 5 17.2 38 1 US-08-344-328-37 Sequence 37, Appl 516 4 13.8 28 1 US-08-444-005-19 Sequence 19, Appl 517 4 13.8 28 1 US-08-444-005-19 Sequence 76, Appl 518 4 13.8 28 1 US-08-818-253-22 Sequence 76, Appl 520 4 13.8 28 2 US-08-818-253-22 Sequence 22, Appl 520 4 13.8 28 3 US-08-818-253-22 Sequence 22, Appl 522 4 13.8 28 4 US-09-316-919-38 Sequence 16, Appl 523 4 13.8 28 4 US-09-316-919-38 Sequence 16, Appl 523 4 13.8 28 4 US-09-316-919-38 Sequence 16, Appl 523 4 13.8 28 4 US-08-818-253-22 Sequence 22, Appl 524 4 13.8 28 4 US-08-818-253-22 Sequence 22, Appl 524 4 13.8 28 4 US-08-818-253-22 Sequence 16, Appl 523 4 13.8 28 4 US-09-316-919-38 Sequence 16, Appl 524 4 13.8 28 4 US-09-316-919-38 Sequence 16, Appl 523 4 13.8 28 4 US-09-316-919-38 Sequence 16, Appl 524 4 13.8 28 4 US-09-316-919-38 Sequence 38, Appl 524 4 13.8 28 4 US-09-316-919-38 Sequence 38, Appl	495	6	20.7	34	1			
497 6 20.7 34 1 US-08-526-987-1 Sequence 1, Appli 498 6 20.7 34 4 US-09-635-076-6 Sequence 6, Appli 500 6 20.7 34 4 US-09-536-785A-24 Sequence 24, Appl 501 6 20.7 35 4 US-09-536-785A-25 Sequence 25, Appl 502 6 20.7 36 4 US-09-536-785A-25 Sequence 27, Appl 503 6 20.7 37 4 US-09-536-785A-26 Sequence 27, Appl 503 6 20.7 37 4 US-09-536-785A-27 Sequence 27, Appl 504 5 17.2 30 1 US-08-305-799A-7 Sequence 7, Appl 505 5 17.2 30 1 US-08-305-799A-9 Sequence 7, Appl 506 5 17.2 30 1 US-08-305-799A-10 Sequence 10, Appl 507 5 17.2 30 1 US-08-305-799A-11 Sequence 11, Appl 508 5 17.2 30 1 US-08-305-799A-11 Sequence 11, Appl 509 5 17.2 30 1 US-08-305-799A-11 Sequence 11, Appl 509 5 17.2 34 1 US-08-449-500-37 Sequence 27, Appl 510 5 17.2 34 1 US-08-449-500-37 Sequence 37, Appl 511 5 17.2 34 1 US-08-449-500-37 Sequence 37, Appl 512 5 17.2 34 2 US-08-449-447-37 Sequence 37, Appl 513 5 17.2 34 2 US-08-449-447-37 Sequence 37, Appl 514 5 17.2 34 2 US-08-449-447-37 Sequence 37, Appl 515 5 17.2 34 2 US-08-449-447-37 Sequence 37, Appl 515 5 17.2 34 2 US-08-449-447-37 Sequence 37, Appl 516 4 13.8 28 1 US-08-444-005-19 Sequence 19, Appl 516 4 13.8 28 1 US-08-844-328-37 Sequence 19, Appl 517 4 13.8 28 1 US-08-185-949B-76 Sequence 76, Appl 518 4 13.8 28 2 US-08-185-949B-76 Sequence 76, Appl 520 4 13.8 28 2 US-08-818-253-22 Sequence 22, Appl 521 4 13.8 28 3 US-08-818-252-22 Sequence 22, Appl 522 4 13.8 28 4 US-08-316-919-38 Sequence 16, Appl 523 4 13.8 28 4 US-08-316-919-38 Sequence 176, Appl 524 4 13.8 28 4 US-08-818-252-22 Sequence 22, Appl 524 4 13.8 28 4 US-08-818-252-22 Sequence 176, Appl 524 4 13.8 28 4 US-08-818-252-22 Sequence 22, Appl 524 4 13.8 28 4 US-08-818-252-22 Sequence 176, Appl 524 4 13.8 28 4 US-08-818-252-22 Sequence 22, Appl 524 4 13.8 28 4 US-08-818-253-22 Sequence 186, Appl 524 4 13.8 28 4 US-08-818-253-22 Sequence 186, Appl 524 4 13.8 28 4 US-08-818-253-22 Sequence 22, Appl 524 4 13.8 28 4 US-08-818-253-22 Sequence 23, Appl 524 4 13.8 28 4 US-08-316-919-38 Sequence 38, Appl					1	US-08-049-402-1		
498 6 20.7 34 3 US-08-903-497A-6 Sequence 6, Appli 499 6 20.7 34 4 US-09-635-076-6 Sequence 6, Appli 500 6 20.7 34 4 US-09-536-785A-24 Sequence 24, Appl 501 6 20.7 35 4 US-09-536-785A-25 Sequence 25, Appl 502 6 20.7 36 4 US-09-536-785A-26 Sequence 26, Appl 503 6 20.7 37 4 US-09-536-785A-27 Sequence 27, Appl 504 5 17.2 30 1 US-08-305-799A-7 Sequence 7, Appl 505 5 17.2 30 1 US-08-305-799A-9 Sequence 9, Appl 506 5 17.2 30 1 US-08-305-799A-10 Sequence 10, Appl 507 5 17.2 30 1 US-08-305-799A-11 Sequence 11, Appl 508 5 17.2 30 1 US-08-305-799A-12 Sequence 12, Appl 509 5 17.2 30 1 US-08-305-799A-12 Sequence 12, Appl 509 5 17.2 34 1 US-08-449-500-37 Sequence 37, Appl 510 5 17.2 34 1 US-08-449-500-37 Sequence 37, Appl 511 5 17.2 34 1 US-08-449-500-37 Sequence 37, Appl 512 5 17.2 34 2 US-08-449-447-37 Sequence 37, Appl 513 5 17.2 34 2 US-08-449-447-37 Sequence 37, Appl 514 5 17.2 34 2 US-08-449-500-37 Sequence 37, Appl 515 5 17.2 34 2 US-08-521-097-37 Sequence 37, Appl 516 4 13.8 28 1 US-08-521-097-37 Sequence 37, Appl 517 4 13.8 28 1 US-08-844-05-19 Sequence 19, Appl 518 4 13.8 28 2 US-08-185-949B-76 Sequence 76, Appl 519 4 13.8 28 2 US-08-818-253-22 Sequence 22, Appl 520 4 13.8 28 3 US-08-818-253-22 Sequence 22, Appl 522 4 13.8 28 4 US-08-842-322-16 Sequence 22, Appl 523 4 13.8 28 4 US-09-316-919-38 Sequence 38, Appl	497				1			
499 6 20.7 34 4 US-09-635-076-6 Sequence 6, Appli 500 6 20.7 34 4 US-09-536-785A-24 Sequence 24, Appl 501 6 20.7 35 4 US-09-536-785A-25 Sequence 25, Appl 502 6 20.7 36 4 US-09-536-785A-26 Sequence 26, Appl 503 6 20.7 37 4 US-09-536-785A-27 Sequence 27, Appl 504 5 17.2 30 1 US-08-305-799A-7 Sequence 7, Appl 505 5 17.2 30 1 US-08-305-799A-9 Sequence 9, Appli 506 5 17.2 30 1 US-08-305-799A-10 Sequence 9, Appli 507 5 17.2 30 1 US-08-305-799A-11 Sequence 10, Appl 508 5 17.2 30 1 US-08-305-799A-11 Sequence 11, Appl 508 5 17.2 30 1 US-08-305-799A-12 Sequence 12, Appl 509 5 17.2 34 1 US-08-305-799A-12 Sequence 37, Appl 510 5 17.2 34 1 US-08-449-500-37 Sequence 37, Appl 510 5 17.2 34 1 US-08-449-317A-37 Sequence 37, Appl 511 5 17.2 34 2 US-08-449-447-37 Sequence 37, Appl 512 5 17.2 34 2 US-08-449-447-37 Sequence 37, Appl 514 5 17.2 34 2 US-08-144-238-37 Sequence 37, Appl 515 5 17.2 34 2 US-08-144-238-37 Sequence 37, Appl 516 4 13.8 28 1 US-08-95-35A-4 Sequence 76, Appl 517 4 13.8 28 1 US-08-186D-76 Sequence 76, Appl 518 4 13.8 28 2 US-08-185-949B-76 Sequence 76, Appl 519 4 13.8 28 2 US-08-818-253-22 Sequence 22, Appl 520 4 13.8 28 3 US-08-818-253-22 Sequence 22, Appl 522 4 13.8 28 4 US-08-842-322-16 Sequence 16, Appl 523 4 13.8 28 4 US-09-316-919-38 Sequence 28, Appl	498				3		= = = = = = = = = = = = = = = = = = = =	
500 6 20.7 34 4 US-09-536-785A-24 Sequence 24, Appl 501 6 20.7 35 4 US-09-536-785A-25 Sequence 25, Appl 502 6 20.7 36 4 US-09-536-785A-26 Sequence 26, Appl 503 6 20.7 37 4 US-09-536-785A-27 Sequence 27, Appl 504 5 17.2 30 1 US-08-305-799A-7 Sequence 27, Appl 505 5 17.2 30 1 US-08-305-799A-9 Sequence 10, Appl 506 5 17.2 30 1 US-08-305-799A-11 Sequence 11, Appl 508 5 17.2 30 1 US-08-305-799A-12 Sequence 11, Appl 508 5 17.2 30 1 US-08-305-799A-11 Sequence 12, Appl 509 5 17.2 34 1 US-08-305-799A-12 Sequence 12, Appl 509 5 17.2 34 1 US-08-08-305-799A-13 <td></td> <td></td> <td></td> <td></td> <td>4</td> <td></td> <td></td> <td></td>					4			
501 6 20.7 35 4 US-09-536-785A-25 Sequence 25, Appl 502 6 20.7 36 4 US-09-536-785A-26 Sequence 26, Appl 503 6 20.7 37 4 US-09-536-785A-27 Sequence 27, Appl 504 5 17.2 30 1 US-08-305-799A-7 Sequence 9, Appli 505 5 17.2 30 1 US-08-305-799A-10 Sequence 10, Appl 506 5 17.2 30 1 US-08-305-799A-11 Sequence 11, Appl 507 5 17.2 30 1 US-08-305-799A-12 Sequence 12, Appl 508 5 17.2 30 1 US-08-305-799A-12 Sequence 12, Appl 509 5 17.2 34 1 US-08-449-500-37 Sequence 37, Appl 510 5 17.2 34 1 US-08-449-317A-37 Sequence 37, Appl 511 5 17.2 34 2 US-08-449-317A-37								
502 6 20.7 36 4 US-09-536-785A-26 Sequence 26, Appl 503 6 20.7 37 4 US-09-536-785A-27 Sequence 27, Appl 504 5 17.2 30 1 US-08-305-799A-7 Sequence 7, Appli 505 5 17.2 30 1 US-08-305-799A-9 Sequence 9, Appli 506 5 17.2 30 1 US-08-305-799A-10 Sequence 10, Appl 507 5 17.2 30 1 US-08-305-799A-11 Sequence 11, Appl 508 5 17.2 30 1 US-08-305-799A-11 Sequence 11, Appl 508 5 17.2 30 1 US-08-305-799A-12 Sequence 12, Appl 509 5 17.2 34 1 US-08-449-500-37 Sequence 37, Appl 510 5 17.2 34 1 US-08-449-317A-37 Sequence 37, Appl 511 5 17.2 34 2 US-08-477-022-37 Sequence 37, Appl 512 5 17.2 34 2 US-08-477-022-37 Sequence 37, Appl 513 5 17.2 34 2 US-08-449-447-37 Sequence 37, Appl 514 5 17.2 34 2 US-08-184-328-37 Sequence 37, Appl 514 5 17.2 34 2 US-08-184-328-37 Sequence 37, Appl 515 5 17.2 38 1 US-08-521-097-37 Sequence 37, Appl 516 4 13.8 28 1 US-07-899-535A-4 Sequence 4, Appl 517 4 13.8 28 1 US-08-185-949B-76 Sequence 76, Appl 518 4 13.8 28 2 US-08-185-949B-76 Sequence 76, Appl 519 4 13.8 28 2 US-08-818-253-22 Sequence 22, Appl 520 4 13.8 28 3 US-08-641-873-8 Sequence 22, Appl 522 4 13.8 28 4 US-09-316-919-38 Sequence 16, Appl 523 4 13.8 28 4 US-09-316-919-38 Sequence 38, Appl							_ ·	
503 6 20.7 37 4 US-09-536-785A-27 Sequence 27, Appl 504 5 17.2 30 1 US-08-305-799A-7 Sequence 7, Appli 505 5 17.2 30 1 US-08-305-799A-9 Sequence 9, Appli 506 5 17.2 30 1 US-08-305-799A-10 Sequence 10, Appl 507 5 17.2 30 1 US-08-305-799A-11 Sequence 11, Appl 508 5 17.2 30 1 US-08-305-799A-12 Sequence 11, Appl 508 5 17.2 30 1 US-08-305-799A-12 Sequence 12, Appl 509 5 17.2 34 1 US-08-449-500-37 Sequence 37, Appl 510 5 17.2 34 1 US-08-449-317A-37 Sequence 37, Appl 511 5 17.2 34 2 US-08-449-317A-37 Sequence 37, Appl 512 5 17.2 34 2 US-08-477-022-37 Sequence 37, Appl 513 5 17.2 34 2 US-08-449-447-37 Sequence 37, Appl 514 5 17.2 34 2 US-08-184-328-37 Sequence 37, Appl 515 5 17.2 34 2 US-08-521-097-37 Sequence 37, Appl 515 5 17.2 38 1 US-08-521-097-37 Sequence 37, Appl 516 4 13.8 28 1 US-08-844-005-19 Sequence 19, Appl 517 4 13.8 28 1 US-08-99-535A-4 Sequence 76, Appl 518 4 13.8 28 2 US-08-185-949B-76 Sequence 76, Appl 519 4 13.8 28 2 US-08-185-949B-76 Sequence 76, Appl 520 4 13.8 28 3 US-08-818-253-22 Sequence 22, Appl 521 4 13.8 28 3 US-08-818-253-22 Sequence 22, Appl 522 4 13.8 28 4 US-08-842-322-16 Sequence 16, Appl 523 4 13.8 28 4 US-08-316-919-38 Sequence 38, Appl					_			
504 5 17.2 30 1 US-08-305-799A-7 Sequence 7, Appli 505 5 17.2 30 1 US-08-305-799A-9 Sequence 9, Appli 506 5 17.2 30 1 US-08-305-799A-10 Sequence 10, Appl 507 5 17.2 30 1 US-08-305-799A-11 Sequence 11, Appl 508 5 17.2 30 1 US-08-305-799A-12 Sequence 12, Appl 509 5 17.2 34 1 US-08-449-500-37 Sequence 37, Appl 510 5 17.2 34 1 US-08-449-317A-37 Sequence 37, Appl 511 5 17.2 34 1 US-08-449-317A-37 Sequence 37, Appl 512 5 17.2 34 2 US-08-447-022-37 Sequence 37, Appl 512 5 17.2 34 2 US-08-184-328-37 Sequence 37, Appl 513 5 17.2 34 2 US-08-184-328-37 Sequence 37, Appl 514 5 17.2 34 2 US-08-184-328-37 Sequence 37, Appl 515 5 17.2 38 1 US-08-184-005-19 Sequence 37, Appl 516 4 13.8 28 1 US-08-949-509-37 Sequence 19, Appl 517 4 13.8 28 1 US-08-191-866D-76 Sequence 76, Appl 518 4 13.8 28 2 US-08-185-949B-76 Sequence 76, Appl 519 4 13.8 28 2 US-08-818-253-22 Sequence 8, Appl 520 4 13.8 28 3 US-08-818-252-22 Sequence 8, Appl 521 4 13.8 28 4 US-08-818-252-22 Sequence 8, Appl 522 4 13.8 28 4 US-08-818-252-22 Sequence 16, Appl 523 4 13.8 28 4 US-08-818-252-22 Sequence 16, Appl 523 4 13.8 28 4 US-08-818-252-22 Sequence 16, Appl 523 4 13.8 28 4 US-09-316-919-38 Sequence 38, Appl								
505 5 17.2 30 1 US-08-305-799A-9 Sequence 9, Appli 506 5 17.2 30 1 US-08-305-799A-10 Sequence 10, Appl 507 5 17.2 30 1 US-08-305-799A-11 Sequence 11, Appl 508 5 17.2 34 1 US-08-305-799A-12 Sequence 12, Appl 509 5 17.2 34 1 US-08-449-500-37 Sequence 37, Appl 510 5 17.2 34 1 US-08-449-317A-37 Sequence 37, Appl 511 5 17.2 34 2 US-08-477-022-37 Sequence 37, Appl 512 5 17.2 34 2 US-08-449-447-37 Sequence 37, Appl 513 5 17.2 34 2 US-08-184-328-37 Sequence 37, Appl 514 5 17.2 34 2 US-08-521-097-37 Sequence 37, Appl 515 5 17.2 38 1 US-08-844-005-19 Sequence 19, Appl 516 4 13.8 28 1								
506 5 17.2 30 1 US-08-305-799A-10 Sequence 10, Appl 507 5 17.2 30 1 US-08-305-799A-11 Sequence 11, Appl 508 5 17.2 30 1 US-08-305-799A-12 Sequence 12, Appl 509 5 17.2 34 1 US-08-449-500-37 Sequence 37, Appl 510 5 17.2 34 1 US-08-449-317A-37 Sequence 37, Appl 511 5 17.2 34 2 US-08-447-022-37 Sequence 37, Appl 512 5 17.2 34 2 US-08-449-447-37 Sequence 37, Appl 513 5 17.2 34 2 US-08-184-328-37 Sequence 37, Appl 514 5 17.2 34 2 US-08-521-097-37 Sequence 37, Appl 515 5 17.2 38 1 US-08-444-005-19 Sequence 19, Appl 516 4 13.8 28 1 US-08-191-866D-76 Sequence 4, Appli 517 4 13.8 28 1								
507 5 17.2 30 1 US-08-305-799A-11 Sequence 11, Appl 508 5 17.2 30 1 US-08-305-799A-12 Sequence 12, Appl 509 5 17.2 34 1 US-08-449-500-37 Sequence 37, Appl 510 5 17.2 34 1 US-08-449-317A-37 Sequence 37, Appl 511 5 17.2 34 2 US-08-477-022-37 Sequence 37, Appl 512 5 17.2 34 2 US-08-449-447-37 Sequence 37, Appl 513 5 17.2 34 2 US-08-184-328-37 Sequence 37, Appl 514 5 17.2 34 2 US-08-521-097-37 Sequence 37, Appl 515 5 17.2 38 1 US-08-444-005-19 Sequence 37, Appl 516 4 13.8 28 1 US-08-444-005-19 Sequence 19, Appl 517 4 13.8 28 1 US-08-99-535A-4 Sequence 4, Appli 517 4 13.8 28 1 US-08-191-866D-76 Sequence 76, Appl 518 4 13.8 28 2 US-08-185-949B-76 Sequence 76, Appl 519 4 13.8 28 2 US-08-185-949B-76 Sequence 76, Appl 520 4 13.8 28 3 US-08-641-873-8 Sequence 8, Appli 521 4 13.8 28 3 US-08-818-252-22 Sequence 22, Appl 522 4 13.8 28 4 US-08-842-322-16 Sequence 16, Appl 523 4 13.8 28 4 US-09-316-919-38 Sequence 38, Appl								
508 5 17.2 30 1 US-08-305-799A-12 Sequence 12, Appl 509 5 17.2 34 1 US-08-449-500-37 Sequence 37, Appl 510 5 17.2 34 1 US-08-449-317A-37 Sequence 37, Appl 511 5 17.2 34 2 US-08-449-447-37 Sequence 37, Appl 512 5 17.2 34 2 US-08-184-328-37 Sequence 37, Appl 513 5 17.2 34 2 US-08-521-097-37 Sequence 37, Appl 514 5 17.2 34 2 US-08-521-097-37 Sequence 37, Appl 515 5 17.2 38 1 US-08-644-005-19 Sequence 19, Appl 516 4 13.8 28 1 US-08-191-866D-76 Sequence 4, Appl 517 4 13.8 28 1 US-08-185-949B-76 Sequence 76, Appl 518 4 13.8 28 2 US-08-818-253-22 Sequence 22, Appl 520 4 13.8 28 3								
509 5 17.2 34 1 US-08-449-500-37 Sequence 37, Appl 510 5 17.2 34 1 US-08-449-317A-37 Sequence 37, Appl 511 5 17.2 34 2 US-08-447-022-37 Sequence 37, Appl 512 5 17.2 34 2 US-08-449-447-37 Sequence 37, Appl 513 5 17.2 34 2 US-08-184-328-37 Sequence 37, Appl 514 5 17.2 34 2 US-08-521-097-37 Sequence 37, Appl 515 5 17.2 38 1 US-08-521-097-37 Sequence 37, Appl 516 4 13.8 28 1 US-08-444-005-19 Sequence 19, Appl 517 4 13.8 28 1 US-08-191-866D-76 Sequence 4, Appli 518 4 13.8 28 2 US-08-185-949B-76 Sequence 76, Appl 519 4 13.8 28 2 US-08-818-253-22 Sequence 8, Appli 520 4 13.8 28 3								
510 5 17.2 34 1 US-08-449-317A-37 Sequence 37, Appl 511 5 17.2 34 2 US-08-477-022-37 Sequence 37, Appl 512 5 17.2 34 2 US-08-449-447-37 Sequence 37, Appl 513 5 17.2 34 2 US-08-184-328-37 Sequence 37, Appl 514 5 17.2 34 2 US-08-521-097-37 Sequence 37, Appl 515 5 17.2 38 1 US-08-68-444-005-19 Sequence 37, Appl 516 4 13.8 28 1 US-07-899-535A-4 Sequence 19, Appl 517 4 13.8 28 1 US-08-191-866D-76 Sequence 76, Appl 518 4 13.8 28 2 US-08-818-253-22 Sequence 76, Appl 519 4 13.8 28 2 US-08-818-253-22 Sequence 22, Appl 520 4 13.8 28 3 US-08-818-252-22 Sequence 22, Appl 522 4 13.8 28 4								
511 5 17.2 34 2 US-08-477-022-37 Sequence 37, Appl 512 5 17.2 34 2 US-08-449-447-37 Sequence 37, Appl 513 5 17.2 34 2 US-08-184-328-37 Sequence 37, Appl 514 5 17.2 34 2 US-08-521-097-37 Sequence 37, Appl 515 5 17.2 38 1 US-08-521-097-37 Sequence 19, Appl 516 4 13.8 28 1 US-08-444-005-19 Sequence 19, Appl 517 4 13.8 28 1 US-08-99-535A-4 Sequence 4, Appli 517 4 13.8 28 1 US-08-191-866D-76 Sequence 76, Appl 518 4 13.8 28 2 US-08-185-949B-76 Sequence 76, Appl 519 4 13.8 28 2 US-08-818-253-22 Sequence 22, Appl 520 4 13.8 28 3 US-08-818-252-22 Sequence 8, Appli 521 4 13.8 28 4 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								
512 5 17.2 34 2 US-08-449-447-37 Sequence 37, Appl 513 5 17.2 34 2 US-08-184-328-37 Sequence 37, Appl 514 5 17.2 34 2 US-08-521-097-37 Sequence 37, Appl 515 5 17.2 38 1 US-08-444-005-19 Sequence 19, Appl 516 4 13.8 28 1 US-07-899-535A-4 Sequence 4, Appli 517 4 13.8 28 1 US-08-191-866D-76 Sequence 76, Appl 518 4 13.8 28 2 US-08-185-949B-76 Sequence 76, Appl 519 4 13.8 28 2 US-08-818-253-22 Sequence 22, Appl 520 4 13.8 28 3 US-08-641-873-8 Sequence 8, Appli 521 4 13.8 28 4 US-08-842-322-16 Sequence 16, Appl 523 4 13.8 28 4 US-09-316-919-38 Sequence 38, Appl								
513 5 17.2 34 2 US-08-184-328-37 Sequence 37, Appl 514 5 17.2 34 2 US-08-521-097-37 Sequence 37, Appl 515 5 17.2 38 1 US-08-444-005-19 Sequence 19, Appl 516 4 13.8 28 1 US-07-899-535A-4 Sequence 4, Appli 517 4 13.8 28 1 US-08-191-866D-76 Sequence 76, Appl 518 4 13.8 28 2 US-08-185-949B-76 Sequence 76, Appl 519 4 13.8 28 2 US-08-818-253-22 Sequence 22, Appl 520 4 13.8 28 3 US-08-641-873-8 Sequence 8, Appli 521 4 13.8 28 3 US-08-818-252-22 Sequence 22, Appl 522 4 13.8 28 4 US-08-842-322-16 Sequence 16, Appl 523 4 13.8 28 4 US-09-316-919-38 Sequence 38, Appl								
514 5 17.2 34 2 US-08-521-097-37 Sequence 37, Appl 515 5 17.2 38 1 US-08-444-005-19 Sequence 19, Appl 516 4 13.8 28 1 US-07-899-535A-4 Sequence 4, Appli 517 4 13.8 28 1 US-08-191-866D-76 Sequence 76, Appl 518 4 13.8 28 2 US-08-185-949B-76 Sequence 76, Appl 519 4 13.8 28 2 US-08-818-253-22 Sequence 22, Appl 520 4 13.8 28 3 US-08-641-873-8 Sequence 8, Appli 521 4 13.8 28 3 US-08-818-252-22 Sequence 22, Appl 522 4 13.8 28 4 US-08-842-322-16 Sequence 16, Appl 523 4 13.8 28 4 US-09-316-919-38 Sequence 38, Appl								
515 5 17.2 38 1 US-08-444-005-19 Sequence 19, Appl 516 4 13.8 28 1 US-07-899-535A-4 Sequence 4, Appli 517 4 13.8 28 1 US-08-191-866D-76 Sequence 76, Appl 518 4 13.8 28 2 US-08-185-949B-76 Sequence 76, Appl 519 4 13.8 28 2 US-08-818-253-22 Sequence 22, Appl 520 4 13.8 28 3 US-08-641-873-8 Sequence 8, Appli 521 4 13.8 28 3 US-08-818-252-22 Sequence 22, Appl 522 4 13.8 28 4 US-08-842-322-16 Sequence 16, Appl 523 4 13.8 28 4 US-09-316-919-38 Sequence 38, Appl								
516 4 13.8 28 1 US-07-899-535A-4 Sequence 4, Appli 517 4 13.8 28 1 US-08-191-866D-76 Sequence 76, Appl 518 4 13.8 28 2 US-08-185-949B-76 Sequence 76, Appl 519 4 13.8 28 2 US-08-818-253-22 Sequence 22, Appl 520 4 13.8 28 3 US-08-641-873-8 Sequence 8, Appli 521 4 13.8 28 3 US-08-818-252-22 Sequence 22, Appl 522 4 13.8 28 4 US-08-842-322-16 Sequence 16, Appl 523 4 13.8 28 4 US-09-316-919-38 Sequence 38, Appl								
517 4 13.8 28 1 US-08-191-866D-76 Sequence 76, Appl 518 4 13.8 28 2 US-08-185-949B-76 Sequence 76, Appl 519 4 13.8 28 2 US-08-818-253-22 Sequence 22, Appl 520 4 13.8 28 3 US-08-641-873-8 Sequence 8, Appli 521 4 13.8 28 3 US-08-818-252-22 Sequence 22, Appl 522 4 13.8 28 4 US-08-842-322-16 Sequence 16, Appl 523 4 13.8 28 4 US-09-316-919-38 Sequence 38, Appl								
518 4 13.8 28 2 US-08-185-949B-76 Sequence 76, Appl 519 4 13.8 28 2 US-08-818-253-22 Sequence 22, Appl 520 4 13.8 28 3 US-08-641-873-8 Sequence 8, Appli 521 4 13.8 28 3 US-08-818-252-22 Sequence 22, Appl 522 4 13.8 28 4 US-08-842-322-16 Sequence 16, Appl 523 4 13.8 28 4 US-09-316-919-38 Sequence 38, Appl								
519 4 13.8 28 2 US-08-818-253-22 Sequence 22, Appl 520 4 13.8 28 3 US-08-641-873-8 Sequence 8, Appli 521 4 13.8 28 3 US-08-818-252-22 Sequence 22, Appl 522 4 13.8 28 4 US-08-842-322-16 Sequence 16, Appl 523 4 13.8 28 4 US-09-316-919-38 Sequence 38, Appl								
520 4 13.8 28 3 US-08-641-873-8 Sequence 8, Appli 521 4 13.8 28 3 US-08-818-252-22 Sequence 22, Appl 522 4 13.8 28 4 US-08-842-322-16 Sequence 16, Appl 523 4 13.8 28 4 US-09-316-919-38 Sequence 38, Appl								
521 4 13.8 28 3 US-08-818-252-22 Sequence 22, Appl 522 4 13.8 28 4 US-08-842-322-16 Sequence 16, Appl 523 4 13.8 28 4 US-09-316-919-38 Sequence 38, Appl								
522 4 13.8 28 4 US-08-842-322-16 Sequence 16, Appl 523 4 13.8 28 4 US-09-316-919-38 Sequence 38, Appl								
523 4 13.8 28 4 US-09-316-919-38 Sequence 38, Appl								
524 4 13.8 28 4 US-09-323-867A-153 Sequence 153, App								
	524	4	13.8	28	4	US-09-323-867A-153	Sequence 153, App	

```
Sequence 3, Appli
                        28
                            5
                               PCT-US92-07813-3
525
              13.8
                                                            Sequence 33, Appl
              13.8
                        29
                            1
                               US-08-188-582-33
526
          4
                                                            Sequence 33, Appl
              13.8
                        29
                            1
                               US-08-646-715-33
          4
527
                                                            Sequence 386, App
                        29
                               US-09-227-357-386
              13.8
528
                                                            Sequence 8, Appli
          4
              13.8
                        29
                               US-09-695-458-8
529
                                                            Sequence 1006, Ap
                        29
                               US-09-205-258-1006
          4
              13.8
                            4
530
                                                            Sequence 3, Appli
                        30
                               US-08-305-799A-3
              13.8
                            1
531
          4
                                                            Sequence 4, Appli
532
          4
              13.8
                        30
                            1
                               US-08-305-799A-4
                                                            Sequence 821, App
533
          4
              13.8
                        30
                            4
                               US-09-205-258-821
                                                            Sequence 3, Appli
          4
               13.8
                        31
                            1
                               US-07-829-462-3
534
                                                            Sequence 3, Appli
                               US-08-340-812-3
535
          4
               13.8
                        31
                            1
                                                            Sequence 5, Appli
536
               13.8
                        31
                            1
                               US-08-248-021A-5
                                                            Sequence 44, Appl
                               US-08-323-531-44
537
          4
               13.8
                        31
                            1
                                                            Sequence 50, Appl
                        31
                            1
                                US-08-323-531-50
          4
               13.8
538
                                                            Sequence 62, Appl
                                US-08-323-531-62
          4
               13.8
                        31
                            1
539
                                                            Sequence 44, Appl
          4
               13.8
                        31
                            1
                                US-08-198-094-44
540
                                                             Sequence 50, Appl
                                US-08-198-094-50
          4
               13.8
                        31
                            1
541
                                US-08-198-094-62
                                                            Sequence 62, Appl
                            1
               13.8
                        31
542
           4
                                                             Sequence 3, Appli
               13.8
                        31
                            1
                                US-08-459-064B-3
           4
543
                                                             Sequence 3, Appli
           4
               13.8
                        31
                            2
                                US-08-460-421A-3
544
                                                             Sequence 32, Appl
               13.8
                        31
                            2
                                US-08-663-566A-32
           4
545
                                                             Sequence 32, Appl
               13.8
                        31
                            2
                                US-08-023-610-32
546
           4
                                                             Sequence 32, Appl
               13.8
                        31
                            2
                                US-08-288-065A-32
547
           4
                                                             Sequence 32, Appl
           4
               13.8
                        31
                            2
                                US-08-362-240A-32
548
                                                             Sequence 44, Appl
               13.8
                        31
                            3
                                US-08-107-794A-44
           4
549
                                                             Sequence 50, Appl
                        31
                            3
                                US-08-107-794A-50
           4
               13.8
550
                                                             Sequence 62, Appl
               13.8
                        31
                            3
                                US-08-107-794A-62
551
           4
                                                             Sequence 1001, Ap
               13.8
                        31
                             4
                                US-09-205-258-1001
552
           4
                                PCT-US93-00909-3
                                                             Sequence 3, Appli
                        31
                             5
553
           4
               13.8
                                                             Sequence 44, Appl
           4
               13.8
                        31
                             5
                                PCT-US93-07424-44
554
                                                             Sequence 50, Appl
           4
               13.8
                        31
                             5
                                PCT-US93-07424-50
555
                                                             Sequence 62, Appl
           4
               13.8
                        31
                             5
                                PCT-US93-07424-62
556
                                                             Sequence 44, Appl
           4
               13.8
                        31
                             5
                                PCT-US95-02087-44
557
                                                             Sequence 50, Appl
               13.8
                         31
                             5
                                PCT-US95-02087-50
558
                                                             Sequence 62, Appl
               13.8
                         31
                                PCT-US95-02087-62
           4
559
                                                             Sequence 32, Appl
               13.8
                         31
                             5
                                PCT-US95-10245-32
560 -
           4
                                                             Sequence 110, App
                         32
                             1
                                US-08-190-802A-110
           4
               13.8
561
                                                             Sequence 114, App
               13.8
                         32
                             1
                                US-08-190-802A-114
562
           4
                                                             Sequence 183, App
               13.8
                         32
                             1
                                US-08-190-802A-183
563
           4
                                                             Sequence 216, App
                         32
                             1
                                US-08-190-802A-216
               13.8
564
           4
                                                             Sequence 110, App
                             3
                                US-08-477-346-110
               13.8
                         32
565
           4
                                                             Sequence 114, App
                         32
                             3
                                US-08-477-346-114
               13.8
           4
566
                         32
                             3
                                US-08-477-346-183
                                                             Sequence 183, App
               13.8
           4
567
                                                             Sequence 216, App
                                US-08-477-346-216
               13.8
                         32
                             3
           4
568
                                                             Sequence 110, App
               13.8
                         32
                             4
                                US-08-473-089-110
569
           4
                                                             Sequence 114, App
                         32
                             4
                                US-08-473-089-114
           4
               13.8
570
                         32
                             4
                                US-08-473-089-183
                                                             Sequence 183, App
               13.8
571
           4
                                                             Sequence 216, App
                         32
                            4
                                US-08-473-089-216
572
           4
               13.8
                                                             Sequence 442, App
573
           4
               13.8
                         32
                            4
                                US-09-149-476-442
                                US-08-487-072A-110
                                                             Sequence 110, App
574
           4
               13.8
                         32
                                US-08-487-072A-114
                                                             Sequence 114, App
               13.8
                         32
                             4
575
           4
                         32
                                US-08-487-072A-183
                                                             Sequence 183, App
           4
               13.8
                            4
576
                         32
                            4
                                US-08-487-072A-216
                                                             Sequence 216, App
577
           4
               13.8
                                                             Sequence 10, Appl
               13.8
                         33
                             1
                                US-08-781-020-10
           4
578
                            3
                         33
                                US-09-038-935-10
                                                             Sequence 10, Appl
           4
               13.8
579
                         33
                             4
                                US-09-149-476-660
                                                             Sequence 660, App
           4
               13.8
580
                                                             Sequence 4, Appli
                         33
                             4
                                US-09-122-144-4
581
           4
               13.8
```

```
Sequence 368, App
582
               13.8
                         33
                                US-09-205-258-368
583
               13.8
                         34
                                 US-08-007-775-1
                                                              Sequence 1, Appli
                                                              Sequence 7, Appli
584
           4
               13.8
                         34
                             1
                                US-07-956-700B-7
                                                              Sequence 7, Appli
                                US-08-476-537-7
585
           4
               13.8
                         34
                             1
                                                              Sequence 7, Appli
586
           4
               13.8
                         34
                             1
                                 US-08-485-607-7
           4
               13.8
                         34
                             2
                                 US-08-475-879-7
                                                              Sequence 7, Appli
587
           4
               13.8
                         34
                             4
                                 US-09-433-043B-7
                                                              Sequence 7, Appli
588
                                                              Sequence 6, Appli
           4
               13.8
                         35
                             1
                                 US-08-463-660-6
589
                         35
                             1
                                                              Sequence 6, Appli
590
           4
               13.8
                                 US-08-678-280-6
               13.8
                         35
                             4
                                 US-09-690-454-138
                                                              Sequence 138, App
591
592
           4
               13.8
                         36
                             1
                                 US-08-477-727A-104
                                                              Sequence 104, App
               13.8
                         36
                                                              Sequence 26, Appl
593
                             1
                                 US-08-471-675A-26
           4
                             2
                                                              Sequence 30, Appl
               13.8
                         36
                                 US-08-892-549-30
594
           4
595
           4
               13.8
                         36
                             3
                                 US-08-302-069A-25
                                                              Sequence 25, Appl
               13.8
                         37
                             1
                                 US-08-231-730A-45
                                                              Sequence 45, Appl
596
           4
597
           4
               13.8
                         37
                             1
                                 US-08-477-727A-102
                                                              Sequence 102, App
                         37
                             1
                                                              Sequence 103, App
598
           4
               13.8
                                 US-08-477-727A-103
599
           4
               13.8
                         37
                             1
                                 US-08-477-727A-105
                                                              Sequence 105, App
               13.8
                         37
                                 US-08-477-727A-106
                                                              Sequence 106, App
600
           4
                             1
               13.8
                         37
                                 US-08-477-727A-107
                                                              Sequence 107, App
601
           4
                             1
                         37
602
               13.8
                             1
                                 US-08-471-675A-24
                                                              Sequence 24, Appl
           4
                                                              Sequence 25, Appl
603
           4
               13.8
                         37
                             1
                                 US-08-471-675A-25
604
               13.8
                         37
                             1
                                 US-08-471-675A-27
                                                              Sequence 27, Appl
           4
605
           4
               13.8
                         37
                             1
                                 US-08-471-675A-28
                                                              Sequence 28, Appl
                         37
           4
               13.8
                             1
                                 US-08-471-675A-29
                                                              Sequence 29, Appl
606
           4
               13.8
                         37
                             2
                                 US-08-259-762-12
                                                              Sequence 12, Appl
607
608
           4
               13.8
                         37
                             2
                                 US-08-259-762-13
                                                              Sequence 13, Appl
609
           4
               13.8
                         37
                             2
                                 US-08-283-917-12
                                                              Sequence 12, Appl
           4
               13.8
                         37
                             2
                                 US-08-961-716-12
                                                              Sequence 12, Appl
610
611
           4
               13.8
                         37
                             2
                                 US-08-505-486-50
                                                              Sequence 50, Appl
612
           4
               13.8
                         37
                             2
                                 US-08-892-549-6
                                                              Sequence 6, Appli
613
           4
               13.8
                         37
                             2
                                 US-08-892-549-28
                                                              Sequence 28, Appl
                                 US-08-892-549-29
614
           4
               13.8
                         37
                             2
                                                              Sequence 29, Appl
615
           4
               13.8
                         37
                             2
                                 US-08-892-549-31
                                                              Sequence 31, Appl
616
           4
               13.8
                         37
                             2
                                 US-08-892-549-32
                                                              Sequence 32, Appl
617
               13.8
                         37
                             2
                                 US-08-892-549-33
                                                              Sequence 33, Appl
618
           4
               13.8
                         37
                             3
                                 US-08-689-489C-45
                                                              Sequence 45, Appl
619
           4
               13.8
                         37
                             3
                                 US-08-801-028-50
                                                              Sequence 50, Appl
                         37
620
           4
               13.8
                             3
                                 US-09-340-154-50
                                                              Sequence 50, Appl
621
           4
               13.8
                         37
                             3
                                 US-08-302-069A-23
                                                              Sequence 23, Appl
                         37
622
           4
               13.8
                             3
                                 US-08-302-069A-24
                                                              Sequence 24, Appl
           4
                         37
                             3
623
               13.8
                                 US-08-302-069A-26
                                                              Sequence 26, Appl
                             3
           4
               13.8
                         37
                                 US-08-302-069A-27
624
                                                              Sequence 27, Appl
625
           4
               13.8
                         37
                             3
                                 US-08-302-069A-28
                                                              Sequence 28, Appl
           4
                         37
                             3
626
               13.8
                                 US-09-232-802A-45
                                                              Sequence 45, Appl
627
           4
               13.8
                         37
                             4
                                                              Sequence 50, Appl
                                 US-09-482-611B-50
               13.8
                         37
                             5
628
           4
                                 PCT-US95-04718-45
                                                              Sequence 45, Appl
               13.8
                         37
                             5
629
           4
                                 PCT-US95-09338-50
                                                              Sequence 50, Appl
630
           4
               13.8
                         37
                             5
                                 PCT-US95-09339-50
                                                              Sequence 50, Appl
                             1
                                                              Sequence 18, Appl
631
           4
               13.8
                         38
                                 US-07-781-254A-18
           4
                         38
                             2
632
               13.8
                                 US-08-378-548-12
                                                              Sequence 12, Appl
           4
               13.8
                         39
                             4
                                 US-09-227-357-384
633
                                                              Sequence 384, App
634
           4
               13.8
                         39
                             4
                                 US-09-323-867A-25
                                                              Sequence 25, Appl
                         28
635
           3
               10.3
                             1
                                 US-07-620-410-2
                                                              Sequence 2, Appli
           3
               10.3
                         28
                             1
                                 US-07-690-300B-1
636
                                                              Sequence 1, Appli
           3
                         28
                             1
                                 US-07-690-300B-12
637
               10.3
                                                              Sequence 12, Appl
           3
                         28
                             1
                                 US-07-690-300B-23
638
               10.3
                                                              Sequence 23, Appl
```

C20	2	10.2	20	7		Company 24 Appl
639 640	3 3	10.3 10.3	28 28	1 1	US-07-690-300B-24 US-07-690-300B-25	Sequence 24, Appl Sequence 25, Appl
641	3	10.3	28	1	US-07-690-300B-26	Sequence 26, Appl
642	3	10.3	28	1	US-07-690-300B-27	Sequence 27, Appl
643	3	10.3	28	1	US-07-690-300B-28	Sequence 28, Appl
644	3	10.3	28	1	US-07-690-300B-29	Sequence 29, Appl
645	3	10.3	28	1	US-07-690-300B-30	Sequence 30, Appl
646	3	10.3	28	1	US-07-690-300B-31	Sequence 31, Appl
647	3	10.3	28	1	US-07-690-300B-32	Sequence 32, Appl
648	3	10.3	28	1	US-07-690-300B-33	Sequence 33, Appl
649	3	10.3	28	1	US-07-690-300B-34	Sequence 34, Appl
650	3	10.3	28	1	US-07-690-300B-35	Sequence 35, Appl
651 652	3 3	10.3 10.3	28 28	1 1	US-07-690-300B-36 US-07-690-300B-37	Sequence 36, Appl
653	3	10.3	28	1	US-07-690-300B-37	Sequence 37, Appl Sequence 38, Appl
654	3	10.3	28	1	US-07-690-300B-39	Sequence 39, Appl
655	3	10.3	28	1	US-07-690-300B-40	Sequence 40, Appl
656	3	10.3	28	1	US-07-690-300B-41	Sequence 41, Appl
657	3	10.3	28	1	US-07-690-300B-42	Sequence 42, Appl
658	3	10.3	28	1	US-07-690-300B-43	Sequence 43, Appl
659	3	10.3	28	1	US-07-690-300B-44	Sequence 44, Appl
660	3	10.3	28	1	US-07-690-300B-45	Sequence 45, Appl
661	3	10.3	28	1	US-07-690-300B-46	Sequence 46, Appl
662	3	10.3	28	1	US-07-690-300B-47	Sequence 47, Appl
663	3	10.3	28	1	US-07-690-300B-48	Sequence 48, Appl
664	3	10.3	28	1	US-07-690-300B-49	Sequence 49, Appl
665	3	10.3	28	1	US-07-690-300B-50	Sequence 50, Appl
666 667	3 3	10.3 10.3	28 28	1	US-07-690-300B-51 US-07-690-300B-52	Sequence 51, Appl
668	3	10.3	28	1	US-07-690-300B-53	Sequence 52, Appl Sequence 53, Appl
669	3	10.3	28	1	US-07-690-300B-54	Sequence 54, Appl
670	3	10.3	28	1	US-07-690-300B-55	Sequence 55, Appl
671	3	10.3	28	1	US-07-690-300B-56	Sequence 56, Appl
672	3	10.3	28	1	US-07-690-300B-63	Sequence 63, Appl
673	3	10.3	28	1	US-07-690-300B-64	Sequence 64, Appl
674	3	10.3	28	1	US-07-690-300B-68	Sequence 68, Appl
675	3	10.3	28	1	US-07-690-300B-71	Sequence 71, Appl
676	3	10.3	28	1	US-07-690-300B-78	Sequence 78, Appl
677	3	10.3	28	1	US-07-690-300B-79	Sequence 79, Appl
678	3	10.3	28	1	US-07-690-300B-82	Sequence 82, Appl
679 680	3 3	10.3	28	1	US-07-690-300B-88	Sequence 88, Appl
680 681	3	10.3 10.3	28 28	1 1	US-07-690-300B-91 US-07-690-300B-93	Sequence 91, Appl
682	3	10.3	28	1	US-07-663-413-29	Sequence 93, Appl Sequence 29, Appl
683	3	10.3	28	1	US-07-676-987A-1	Sequence 1, Appli
684	3	10.3	28	1	US-07-676-987A-2	Sequence 2, Appli
685	3	10.3	28	1	US-07-833-468-1	Sequence 1, Appli
686	3	10.3	28	1	US-08-052-681-10	Sequence 10, Appl
687	3	10.3	28	1	US-07-789-344A-11	Sequence 11, Appl
688	3	10.3	28	1	US-07-868-906-1	Sequence 1, Appli
689	3	10.3	28	1	US-08-201-092-1	Sequence 1, Appli
690	3	10.3	28	1	US-08-201-092-2	Sequence 2, Appli
691	3	10.3	28	1	US-08-055-530-29	Sequence 29, Appl
692	3	10.3	28	1	US-08-122-578-1	Sequence 1, Appli
693	3	10.3	28	1	US-08-032-848C-1	Sequence 1, Appli
694 695	3 3	10.3 10.3	28 28	1 1	US-07-966-187-2 US-08-255-558B-6	Sequence 2, Appli Sequence 6, Appli
0,7,3	3	±0.0	20	_	UU UU 2JJ-JJOD-U	bequence 6, Appli

```
696
              10.3
                                                            Sequence 11, Appl
                        28
                               US-07-924-054-11
697
              10.3
                        28
                               US-08-243-082-1
                                                            Sequence 1, Appli
698
          3
              10.3
                        28
                            1
                               US-08-246-572-4
                                                            Sequence 4, Appli
              10.3
                                                            Sequence 5, Appli
699
          3
                        28
                            1
                               US-08-246-572-5
          3
                        28
                                                            Sequence 84, Appl
700
              10.3
                            1
                               US-08-190-802A-84
701
          3
              10.3
                        28
                            1
                               US-08-361-443-1
                                                            Sequence 1, Appli
702
          3
              10.3
                        28
                            1
                               US-08-311-611A-12
                                                            Sequence 12, Appl
          3
              10.3
                        28
                            1
                               US-08-311-611A-56
                                                            Sequence 56, Appl
703
          3
                        28
704
              10.3
                            1
                               US-08-311-611A-193
                                                            Sequence 193, App
          3
705
              10.3
                        28
                            1
                               US-08-311-611A-194
                                                            Sequence 194, App
          3
              10.3
                        28
                                                            Sequence 195, App
706
                               US-08-311-611A-195
707
          3
              10.3
                        28
                            1
                               US-08-311-611A-196
                                                            Sequence 196, App
          3
              10.3
                               US-07-938-782A-8
                                                            Sequence 8, Appli
708
                        28
                            1
          3
709
              10.3
                        28
                            1
                               US-07-949-797B-1
                                                            Sequence 1, Appli
710
          3
              10.3
                        28
                            1
                               US-08-194-591-1
                                                            Sequence 1, Appli
711
          3
              10.3
                        28
                            1
                               US-08-194-591-2
                                                            Sequence 2, Appli
712
          3
              10.3
                        28
                            1
                               US-08-372-783-12
                                                            Sequence 12, Appl
          3
              10.3
                        28
                            1
                               US-08-372-783-56
                                                            Sequence 56, Appl
713
714
          3
              10.3
                        28
                            1
                               US-08-372-783-193
                                                            Sequence 193, App
              10.3
715
          3
                        28
                            1
                               US-08-372-783-194
                                                            Sequence 194, App
716
              10.3
          3
                        28
                               US-08-372-783-195
                                                            Sequence 195, App
                            1
717
          3
              10.3
                        28
                               US-08-372-783-196
                                                            Sequence 196, App
                            1
718
          3
              10.3
                        28
                            1
                               US-07-794-288D-7
                                                            Sequence 7, Appli
719
          3
              10.3
                        28
                            1
                               US-07-794-288D-65
                                                            Sequence 65, Appl
720
          3
              10.3
                        28
                            1
                               US-07-794-288D-103
                                                            Sequence 103, App
721
          3
              10.3
                        28 1
                               US-07-977-630-42
                                                            Sequence 42, Appl
722
          3
              10.3
                        28
                            1
                               US-07-977-630-45
                                                            Sequence 45, Appl
723
          3
              10.3
                        28
                            1
                               US-07-977-630-47
                                                            Sequence 47, Appl
724
          3
              10.3
                        28
                            1
                               US-08-288-681A-1
                                                            Sequence 1, Appli
                                                            Sequence 12, Appl
725
          3
              10.3
                        28
                            1
                               US-08-366-591-12
726
          3
              10.3
                        28
                            1
                               US-07-776-272-26
                                                            Sequence 26, Appl
                                                            Sequence 12, Appl
727
          3
              10.3
                        28
                            1
                               US-08-372-105-12
728
          3
              10.3
                        28
                            1
                               US-08-372-105-56
                                                            Sequence 56, Appl
729
          3
              10.3
                        28
                            1
                               US-08-372-105-193
                                                            Sequence 193, App
730
          3
              10.3
                        28
                            1
                               US-08-372-105-194
                                                            Sequence 194, App
731
          3
               10.3
                        28
                            1
                                US-08-372-105-195
                                                            Sequence 195, App
732
          3
               10.3
                        28
                            1
                               US-08-372-105-196
                                                            Sequence 196, App
733
          3
               10.3
                        28
                               US-08-306-473A-12
                                                            Sequence 12, Appl
                            1
734
          3
               10.3
                        28
                                                            Sequence 56, Appl
                            1
                                US-08-306-473A-56
735
          3
               10.3
                        28
                            1
                                US-08-306-473A-193
                                                            Sequence 193, App
736
          3
               10.3
                        28
                            1
                                US-08-306-473A-194
                                                            Sequence 194, App
737
          3
               10.3
                        28
                            1
                                US-08-306-473A-195
                                                            Sequence 195, App
          3
738
               10.3
                        28
                           1
                               US-08-306-473A-196
                                                            Sequence 196, App
          3
739
                        28
                            1
               10.3
                                US-08-331-394-19
                                                            Sequence 19, Appl
740
          3
               10.3
                        28
                            1
                                US-08-308-729-1
                                                            Sequence 1, Appli
          3
741
               10.3
                        28
                            1
                               US-08-308-729-2
                                                            Sequence 2, Appli
          3
742
               10.3
                        28
                               US-08-308-729-3
                            1
                                                            Sequence 3, Appli
743
          3
               10.3
                        28
                            1
                                US-08-308-729-4
                                                            Sequence 4, Appli
                                                            Sequence 5, Appli
744
          3
               10.3
                        28
                            1
                                US-08-308-729-5
          3
                                                            Sequence 6, Appli
745
               10.3
                        28
                            1
                                US-08-308-729-6
746
          3
               10.3
                        28
                            1
                                US-08-308-729-7
                                                            Sequence 7, Appli
747
          3
                        28
                                                            Sequence 8, Appli
               10.3
                            1
                               US-08-308-729-8
          3
                        28
748
               10.3
                            1
                               US-08-308-729-9
                                                            Sequence 9, Appli
749
          3
               10.3
                        28
                            1
                                US-08-308-729-10
                                                            Sequence 10, Appl
750
          3
               10.3
                        28
                               US-08-308-729-11
                                                            Sequence 11, Appl
                            1
          3
751
                        28
                               US-08-308-729-12
                                                            Sequence 12, Appl
               10.3
                            1
752
          3
                        28
               10.3
                           1
                               US-08-308-729-13
                                                            Sequence 13, Appl
```

						_
753	3	10.3	28	1	US-08-308-729 - 14	Sequence 14, Appl
754	3	10.3	28	1	US-08-308-729-15	Sequence 15, Appl
755	3	10.3	28	1	US-08-308-729-16	Sequence 16, Appl
756	3	10.3	28	1	US-08-308-729-17	Sequence 17, Appl
757	3	10.3	28	1	US-08-308-729-18	Sequence 18, Appl
	3					Sequence 19, Appl
758		10.3	28	1	US-08-308-729-19	
759	3	10.3	28	1	US-08-308-729-20	Sequence 20, Appl
760	3	10.3	28	1	US-08-308-729-21	Sequence 21, Appl
761	3	10.3	28	1	US-08-308-729-22	Sequence 22, Appl
762	3	10.3	28	1	US-08-308-729-23	Sequence 23, Appl
763	3	10.3	28	1	US-08-308-729-24	Sequence 24, Appl
764	3	10.3	28	1	US-08-308-729-25	Sequence 25, Appl
765	3	10.3	28	1	US-08-308-729-26	Sequence 26, Appl
	3					
766		10.3	28	1	US-08-308-729-27	Sequence 27, Appl
767	3	10.3	28	1	US-08-308-729-28	Sequence 28, Appl
768	3	10.3	28	1	US-08-308-729-29	Sequence 29, Appl
769	3	10.3	28	1	US-08-308-729-31	Sequence 31, Appl
770	3	10.3	28	1	US-08-308-729-33	Sequence 33, Appl
771	3	10.3	28	1	US-08-308-729-34	Sequence 34, Appl
772	3	10.3	28	1	US-08-308-729-35	Sequence 35, Appl
773	3	10.3	28	1	US-08-308-729-36	Sequence 36, Appl
774	3	10.3	28	1	US-08-308-729-37	Sequence 37, Appl
775	3	10.3	28	1	US-08-308-729-38	Sequence 38, Appl
776	3	10.3	28	1	US-08-308-729-39	Sequence 39, Appl
777	3	10.3	28	1	US-08-308-729-40	Sequence 40, Appl
778	3	10.3	28	1	US-08-308-729-41	Sequence 41, Appl
779	3	10.3	28	1	US-08-308-729-44	Sequence 44, Appl
780	3	10.3	28	1	US-08-308-729-45	Sequence 45, Appl
781	3	10.3	28	1	US-08-308-729-46	Sequence 46, Appl
782	3	10.3	28	1	US-08-308-729-47	Sequence 47, Appl
783	3	10.3	28	1	US-08-308-729-48	Sequence 48, Appl
784	3	10.3	28	1	US-08-308-729-49	Sequence 49, Appl
785	3	10.3	28	1	US-08-308-729-50	Sequence 50, Appl
786	3	10.3	28	1	US-08-308-729-53	Sequence 53, Appl
787	3	10.3	28	1	US-08-308-729-54	Sequence 54, Appl
788	3	10.3	28	1	US-08-308-729-55	Sequence 55, Appl
789	3	10.3	28	1	US-08-308-729-56	Sequence 56, Appl
790	3	10.3	28	1	US-08-308-729-57	Sequence 57, Appl
791	3		28			
		10.3		1	US-08-308-729-58	Sequence 58, Appl
792	3	10.3		1		Sequence 59, Appl
793	3	10.3	28	1	US-08-308-729-60	Sequence 60, Appl
794	3	10.3	28	1	US-08-308-729-61	Sequence 61, Appl
795	3	10.3	28	1	US-08-308 - 729-62	Sequence 62, Appl
796	3	10.3	28	1	US-08-308-729-63	Sequence 63, Appl
797	3	10.3	28	1	US-08-308-729-64	Sequence 64, Appl
798	3	10.3	28	1	US-08-308-729-70	Sequence 70, Appl
799	3	10.3	28	1	US-08-308-729-71	Sequence 71, Appl
800	3	10.3		_		
			28	1	US-08-308-729-72	Sequence 72, Appl
801	3	10.3	28	1	US-08-308-729-73	Sequence 73, Appl
802	3	10.3	28	1	US-08-630-524-8	Sequence 8, Appli
803	3	10.3	28	1	US-08-062-472B-40	Sequence 40, Appl
804	3	10.3	28	1	US-08-250-858-19	Sequence 19, Appl
805	3	10.3	28	1	US-08-171-701A-1	Sequence 1, Appli
806	3	10.3	28	1	US-08-171-701A-2	Sequence 2, Appli
807	3	10.3	28	1	US-08-261-660A-19	Sequence 19, Appl
808	3	10.3	28	1	US-08-741-678-1	Sequence 1, Appli
809	3	10.3	28	1	US-08-209-762-12	Sequence 12, Appl
509	ی	±∪.3	40	1	05-00-203-702-12	bequence is, Appi

010	~		0.0	-	***************************************	G
810	3	10.3		1	US-08-209-762-56	Sequence 56, Appl
811	3	10.3		1	US-08-446-915-19	Sequence 19, Appl
812	3	10.3	28	1	US-08-404-731A-8	Sequence 8, Appli
813	3	10.3	28	1	US-08-438-870-1	Sequence 1, Appli
814	3	10.3	28	1	US-08-446-692-3	Sequence 3, Appli
815	3	10.3	28	1	US-08-473-344-12	Sequence 12, Appl
816	3	10.3	28	1	US-08-473-344-56	Sequence 56, Appl
817	3	10.3	28	1	US-08-519-180-2	Sequence 2, Appli
818	3	10.3	28	1	US-08-944-133-4	Sequence 4, Appli
819	3	10.3	28	1	US-08-944-133-8	Sequence 8, Appli
820	3	10.3	28	1	US-08-944-133-22	Sequence 22, Appl
821	3	10.3	28	1	US-08-944-133-27	Sequence 27, Appl
822	3	10.3	28	1	US-08-944-133-39	Sequence 39, Appl
823	3	10.3	28	1	US-08-944-133-43	Sequence 43, Appl
824	3	10.3	28	2	US-08-520-535-25	Sequence 25, Appl
825	3	10.3	28	2	US-08-488-351A-3	Sequence 3, Appli
	3			2		
826		10.3	28		US-08-414-424-1	Sequence 1, Appli
827	3	10.3	28	2	US-08-621-803-30	Sequence 30, Appl
828	3	10.3	28	2	US-08-621-803-139	Sequence 139, App
829	3	10.3	28	2	US-08-621-803-140	Sequence 140, App
830	3	10.3	28	2	US-08-621-803-142	Sequence 142, App
831	3	10.3	28	2	US-08-621-803-143	Sequence 143, App
832	3	10.3	28	2	US-08-485-445A-12	Sequence 12, Appl
833	3	10.3	28	2	US-08-485-445A-56	Sequence 56, Appl
834	3	10.3	28	2	US-08-485-445A-193	Sequence 193, App
835	3	10.3	28	2	US-08-485-445A-194	Sequence 194, App
836	3	10.3	28	2	US-08-485-445A-195	Sequence 195, App
837	3	10.3	28	2	US-08-485-445A-196	Sequence 196, App
838	3	10.3	28	2	US-08-621-259A-5	Sequence 5, Appli
839	3	10.3	28	2	US-08-621-259A-110	Sequence 110, App
840	.3	10.3	28	2	US-08-621-259A-111	Sequence 111, App
841	3	10.3	28	2	US-08-621-259A-113	Sequence 113, App
842	3	10.3	28	2	US-08-621-259A-114	Sequence 114, App
843	3	10.3	28	2	US-08-449-933-9	Sequence 9, Appli
844	3	10.3	28	2	US-08-744-139-19	Sequence 19, Appl
845	3	10.3	28	2	US-08-503-226B-8	Sequence 8, Appli
846	3	10.3	28	2	US-08-598-873-43	Sequence 43, Appl
847	3 .		28	2	US-08-620-151-66	Sequence 66, Appl
848	3	10.3	28	2	US-08-620-151-126	Sequence 126, App
849	3	10.3		2		
					US-08-620-151-129	Sequence 129, App
850 851	3	10.3 10.3	28 28	2	US-08-398-590A-43	Sequence 43, Appl Sequence 10, Appl
852	3 3	10.3	28	2	US-08-821-619-10	Sequence 10, Appl Sequence 8, Appli
853	3	10.3			US-08-635-007-8	- · · · · · · · · · · · · · · · · · · ·
			28	2	US-09-079-432-25	Sequence 25, Appl
854	3	10.3	28	2	US-08-859-106A-8	Sequence 8, Appli
855	3	10.3	28	2	US-08-833-377-11	Sequence 11, Appl
856	3	10.3	28	2	US-08-031-538-48	Sequence 48, Appl
857	3	10.3	28	2	US-08-413-708B-1	Sequence 1, Appli
858	3	10.3	28	2	US-08-413-708B-2	Sequence 2, Appli
859	3	10.3	28	2	US-08-413-708B-8	Sequence 8, Appli
860	3	10.3	28	2	US-08-563-892A-4	Sequence 4, Appli
861	3	10.3	28	2	US-08-691-814B-73	Sequence 73, Appl
862	3	10.3	28	2	US-08-818-253-37	Sequence 37, Appl
863	3	10.3	28	2	US-08-897-624-1	Sequence 1, Appli
864	3	10.3	28	2	US-08-897-624-2	Sequence 2, Appli
865	3	10.3	28	3	US-09-110-953-8	Sequence 8, Appli
866	3	10.3	28	3	US-08-930-845-1	Sequence 1, Appli

```
Sequence 84, Appl
                        28
                                US-08-486-099-84
              10.3
                            3
867
                                                             Sequence 136, App
                                US-08-486-099-136
              10.3
                        28
                            3
868
          3
                                                             Sequence 34, Appl
                        28
                            3
                                US-08-433-522A-34
          3
              10.3
869
                                                             Sequence 94, Appl
                        28
                            3
                                US-08-360-107A-94
870
          3
              10.3
                                                             Sequence 18, Appl
                        28
                            3
                                US-08-788-231A-18
871
          3
              10.3
                                                             Sequence 84, Appl
                        28
                            3
                                US-08-484-223B-84
872
          3
              10.3
                                                             Sequence 136, App
                                US-08-484-223B-136
                        28
                            3
          3
              10.3
873
                                                             Sequence 38, Appl
                                US-09-100-414B-38
                        28
                            3
874
          3
              10.3
                                                             Sequence 18, Appl
875
          3
              10.3
                        28
                             3
                                US-08-665-259-18
                                                             Sequence 18, Appl
                        28
                             3
                                US-08-762-500-18
          3
              10.3
876
                                                             Sequence 1, Appli
                        28
                             3
                                US-08-952-568-1
877
          3
              10.3
                                                             Sequence 3, Appli
                                US-08-952-568-3
                        28
                             3
878
          3
               10.3
                                                             Sequence 4, Appli
                             3
                                US-08-952-568-4
879
          3
               10.3
                        28
                                                             Sequence 5, Appli
               10.3
                         28
                             3
                                US-08-952-568-5
          3
880
                                                             Sequence 6, Appli
                         28
                             3
                                US-08-952-568-6
881
          3
               10.3
                                                             Sequence 10, Appl
                         28
                             3
882
          3
               10.3
                                US-08-952-568-10
                                                             Sequence 11, Appl
                         28
                             3
                                US-08-952-568-11
          3
               10.3
883
                                                             Sequence 12, Appl
                         28
                             3
                                US-08-952-568-12
           3
               10.3
884
                                                              Sequence 13, Appl
                         28
           3
               10.3
                             3
                                US-08-952-568-13
885
                                                              Sequence 14, Appl
886
           3
               10.3
                         28
                                US-08-952-568-14
                                                              Sequence 50, Appl
                                US-08-256-747C-50
           3
               10.3
                         28
                             3
887
                                                              Sequence 84, Appl
                         28
                                US-08-919-597-84
           3
               10.3
                             3
888
                                                              Sequence 136, App
           3
               10.3
                         28
                             3
                                US-08-919-597-136
889
                                                              Sequence 12, Appl
           3
               10.3
                         28
                             3
                                US-09-119-263-12
890
                                                              Sequence 56, Appl
           3
               10.3
                         28
                             3
                                US-09-119-263-56
891
                                                              Sequence 193, App
                                US-09-119-263-193
           3
               10.3
                         28
                             3
892
                                                              Sequence 194, App
           3
               10.3
                         28
                             3
                                US-09-119-263-194
893
                                                              Sequence 195, App
           3
               10.3
                         28
                             3
                                US-09-119-263-195
894
                                                              Sequence 196, App
           3
               10.3
                         28
                             3
                                US-09-119-263-196
895
                                                              Sequence 84, Appl
896
           3
               10.3
                         28
                             3
                                US-08-475-668A-84
                                                              Sequence 136, App
897
           3
               10.3
                         28
                             3
                                US-08-475-668A-136
                                                              Sequence 21, Appl
           3
               10.3
                         28
                             3
                                US-09-192-048-21
898
                                                              Sequence 84, Appl
           3
               10.3
                         28
                             3
                                US-08-485-551A-84
899
                                                              Sequence 136, App
           3
               10.3
                         28
                             3
                                US-08-485-551A-136
900
                                                              Sequence 6, Appli
           3
               10.3
                         28
                             3
                                US-08-838-413A-6
901
                                                              Sequence 34, Appl
               10.3
                         28
                             3
                                US-09-135-166-34
902
           3
                                US-08-471-913A-84
                                                              Sequence 84, Appl
                         28
                             3
903
           3
               10.3
                                                              Sequence 136, App
           3
               10.3
                         28
                             3
                                US-08-471-913A-136
904
                                                              Sequence 8, Appli
               10.3
                         28
                             3
                                 US-08-721-458B-8
905
           3
                                                              Sequence 43, Appl
               10.3
                         28
                             3
                                 US-08-908-643C-43
           3
906
                                                              Sequence 39, Appl
                         28
                             3
                                 US-08-405-647B-39
           3
               10.3
907
                                                              Sequence 2, Appli
               10.3
                         28
                             3
                                 US-08-893-749-2
           3
908
                                                              Sequence 3, Appli
               10.3
                         28
                             3
                                 US-08-893-749-3
           3
909
                                                              Sequence 32, Appl
                         28
                             3
                                 US-08-893-749-32
               10.3
910
           3
                                                              Sequence 12, Appl
                             3
                                 US-08-657-162-12
           3
               10.3
                         28
911
                                                              Sequence 56, Appl
                         28
                             3
                                 US-08-657-162-56
           3
               10.3
912
                                                              Sequence 193, App
                         28
                             3
                                 US-08-657-162-193
           3
               10.3
913
                                                              Sequence 194, App
                         28
                             3
                                 US-08-657-162-194
           3
914
               10.3
                                                              Sequence 195, App
915
           3
               10.3
                         28
                             3
                                 US-08-657-162-195
                         28
                                 US-08-657-162-196
                                                              Sequence 196, App
           3
               10.3
                             3
916
                         28
                                 US-09-433-428D-62
                                                              Sequence 62, Appl
           3
               10.3
                             3
917
                                                              Sequence 15, Appl
                         28
                             3
                                 US-08-679-006-15
918
           3
               10.3
                                                              Sequence 12, Appl
           3
                         28
                             3
                                 US-09-224-480-12
919
               10.3
           3
               10.3
                         28
                             3
                                 US-09-224-480-56
                                                              Sequence 56, Appl
920
           3
                         28
                             3
                                 US-09-224-480-193
                                                              Sequence 193, App
               10.3
921
                         28
                             3
                                 US-09-224-480-194
                                                              Sequence 194, App
           3
               10.3
922
                                                              Sequence 195, App
                         28
                             3
                                 US-09-224-480-195
923
           3
                10.3
```

924	3	10.3	28	3	US-09-224-480-196	Sequence 196, App
925	3	10.3	28	3	US-08-796 - 899-30	Sequence 30, Appl
926	3	10.3	28	3	US-08-974-549A-166	Sequence 166, App
927	3	10.3	28	3	US-08-392-542-22	Sequence 22, Appl
928	3	10.3	28	3	US-08-819-286-29	Sequence 29, Appl
929	3	10.3	28	3	US-08-834-130A-50	Sequence 50, Appl
930	3	10.3	28	3	US-08-448-398-12	Sequence 12, Appl
931	3	10.3	28	3	US-08-985-499-39	Sequence 39, Appl
932	3	10.3	28	3	US-08-818-252-37	Sequence 37, Appl
933	3	10.3	28	3	US-08-363-558-1	Sequence 1, Appli
934	3	10.3	28	3	US-09-066-046-19	Sequence 19, Appl
	3		28	3		Sequence 223, App
935		10.3			US-09-253-396A-223	<u>-</u>
936	3	10.3	28	3	US-09-107-991-12	Sequence 12, Appl
937	3	10.3	28	3	US-09-093-539-12	Sequence 12, Appl
938	3	10.3	28	3	US-09-093-539-56	Sequence 56, Appl
939	3	10.3	28	3	US-08-485-264A-84	Sequence 84, Appl
940	3	10.3	28	3	US-08-485-264A-136	Sequence 136, App
941	3	10.3	28	3	US-09-303-323 - 38	Sequence 38, Appl
942	3	10.3	28	3	US-09-041-886-36	Sequence 36, Appl
943	3	10.3	28	3	US-09-041-886-37	Sequence 37, Appl
944	3	10.3	28	3	US-09-041-886-38	Sequence 38, Appl
945	3	10.3	28	3	US-09-041-886-39	Sequence 39, Appl
946	3	10.3	28	3	US-09-041-886-40	Sequence 40, Appl
947	3	10.3	28	3	US-09-041-886-42	Sequence 42, Appl
948	3	10.3	28	3	US-09-041-886-47	Sequence 47, Appl
949	3	10.3	28	3	US-09-041-886-50	Sequence 50, Appl
	3 3					
950		10.3	28	3.	US-09-041-886-53	Sequence 53, Appl
951	3	10.3	28	3	US-09-041-886-54	Sequence 54, Appl
952	3	10.3	28	3	US-09-041-886-56	Sequence 56, Appl
953	3	10.3	28	3	US-09-127-680-2	Sequence 2, Appli
954	3	10.3	28	3	US-07-966-049A-9	Sequence 9, Appli
955	3	10.3	28	3	US-08-995 - 369-1	Sequence 1, Appli
956	3	10.3	28	3	US-09-171-654-1	Sequence 1, Appli
957	3	10.3	28	3	US-08-605-430-43	Sequence 43, Appl
958	3	10.3	28	3	US-08-894-327-22	Sequence 22, Appl
959	3	10.3	28	3	US-09-082-279B-54	Sequence 54, Appl
960	3	10.3	28	3	US-09-082-279B-62	Sequence 62, Appl
961	3	10.3	28	3	US-09-082-279B-1279	Sequence 1279, Ap
962	3	10.3	28	3	US-09-082-279B-1280	Sequence 1280, Ap
963	3	10.3	28			Sequence 1314, Ap
964	3	10.3	28	3	US-09-082-279B-1315	Sequence 1315, Ap
965	3	10.3	28	3	US-08-477-346-84	Sequence 84, Appl
966	3	10.3	28	3	US-08-942-046-34	Sequence 34, Appl
967	3	10.3	28	3	US-08-894-997-43	Sequence 43, Appl
968	3	10.3	28	3	US-09-217-352-30	Sequence 30, Appl
969	3	10.3	28	3	US-09-217-352-30	Sequence 139, App
	3					
970		10.3	28	3	US-09-217-352-140	Sequence 140, App
971	3	10.3	28	3	US-09-217-352-142	Sequence 142, App
972	3	10.3	28	3	US-09-217-352-143	Sequence 143, App
973	3	10.3	28	3	US-09-019-095A-34	Sequence 34, Appl
974	3	10.3	28	4	US-09-260-846-16	Sequence 16, Appl
975	3	10.3	28	4	US-08-474-349A-84	Sequence 84, Appl
976	3	10.3	28	4	US-08-474-349A-136	Sequence 136, App
977	3	10.3	28	4	US-09-099-041A-19	Sequence 19, Appl
978	3	10.3	28	4	US-09-099-041A-23	Sequence 23, Appl
979	3	10.3	28	4	US-09-187-789-23	Sequence 23, Appl
980	3	10.3	28	4	US-08-473-089-84	Sequence 84, Appl
						,

981	3	10.3	28	4	US-09-227-357-481	Sequence	481, App
982	3	10.3	28	4	US-09-315-304B-54	Sequence	54, Appl
983	3	10.3	28	4	US-09-315-304B-62	Sequence	62, Appl
984	3	10.3	28	4	US-09-315-304B-1279	Sequence	1279, Ap
985	3	10.3	28	4	US-09-315-304B-1280	Sequence	1280, Ap
986	3	10.3	28	4	US-09-315-304B-1314	Sequence	1314, Ap
987	3	10.3	28	4	US-09-315-304B-1315	Sequence	1315, Ap
988	3	10.3	28	4	US-09-432-879-8	Sequence	8, Appli
989	3	10.3	28	4	US-08-979-608A-26	Sequence	26, Appl
990	3	10.3	28	4	US-09-245-281-19	Sequence	19, Appl
991	3	10.3	28	4	US-09-245-281-23	Sequence	23, Appl
992	. 3	10.3	28	4	US-08-842 - 322-31	Sequence	31, Appl
993	3	10.3	28	4	US-09-280-909A-19	Sequence	19, Appl
994	3	10.3	28	4	US-09-333-842 - 1	Sequence	1, Appli
995	3	10.3	28	4	US-09-685-027-22	Sequence	22, Appl
996	3	10.3	28	4	US-08-487-072A-84	Sequence	84, Appl
997	3	10.3	28	4	US-09-446-352B-1	Sequence	l, Appli
998	3	10.3	28	4	US-09-139-600-18	Sequence	18, Appl
999	3	10.3	28	4	US-09-288-143-131	Sequence	131, App
1000	3	10.3	28	4	US-08-255-208A-20	Sequence	20, Appl

ALIGNMENTS

```
RESULT 1
US-08-262-495C-5
; Sequence 5, Application US/08262495C
; Patent No. 5556940
  GENERAL INFORMATION:
    APPLICANT: WILLICK, Gordon E.
    APPLICANT: WHITFIELD, James F.
    APPLICANT: SUREWICZ, Witold
    APPLICANT: SUNG, Wing L.
    APPLICANT: NEUGENBAUER, Witold
    TITLE OF INVENTION: PARATHYROID HORMONE ANALOGUES
    TITLE OF INVENTION: FOR THE TREATMENT OF OSTEOPOROSIS
    NUMBER OF SEQUENCES: 6
    CORRESPONDENCE ADDRESS:
      ADDRESSEE: Kirby, Eades, Gale, Baker
      STREET: 112 Kent Street, Suite 770,
      CITY: Ottawa
      COUNTRY: Canada
    COMPUTER READABLE FORM:
      MEDIUM TYPE: Floppy disk
      COMPUTER: IBM PC Compatible
      OPERATING SYSTEM: PC-DOS/MS-DOS
      SOFTWARE: Wordperfect 5.1
    CURRENT APPLICATION DATA:
      APPLICATION NUMBER: US/08/262,495C
      FILING DATE:
      CLASSIFICATION: 530
    PRIOR APPLICATION DATA:
      APPLICATION NUMBER:
      FILING DATE:
      CLASSIFICATION:
    ATTORNEY/AGENT INFORMATION:
```

```
REGISTRATION NUMBER: 5,263
      REFERENCE/DOCKET NUMBER: 36210
    TELECOMMUNICATION INFORMATION:
       TELEPHONE: (613) -237-6900
       TELEFAX: (613)-237-0045
  INFORMATION FOR SEQ ID NO: 5:
    SEQUENCE CHARACTERISTICS:
      LENGTH: 30 amino acids
       TYPE: amino acid
       TOPOLOGY: linear
    MOLECULE TYPE: peptide
US-08-262-495C-5
                         100.0%; Score 29; DB 1; Length 30;
 Query Match
  Best Local Similarity
                         100.0%; Pred. No. 1.1e-20;
                                0; Mismatches
 Matches
           29; Conservative
                                                                 0; Gaps
                                                                             0;
                                                 0; Indels
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
Qу
              1111111111111111111111111111111111
Dh
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
RESULT 2
US-08-262-495C-3
; Sequence 3, Application US/08262495C
; Patent No. 5556940
  GENERAL INFORMATION:
    APPLICANT: WILLICK, Gordon E.
    APPLICANT: WHITFIELD, James F.
    APPLICANT:
                SUREWICZ, Witold
    APPLICANT:
                SUNG, Wing L.
    APPLICANT: NEUGENBAUER, Witold
    TITLE OF INVENTION: PARATHYROID HORMONE ANALOGUES
    TITLE OF INVENTION: FOR THE TREATMENT OF OSTEOPOROSIS
    NUMBER OF SEQUENCES: 6
     CORRESPONDENCE ADDRESS:
       ADDRESSEE: Kirby, Eades, Gale, Baker
       STREET: 112 Kent Street, Suite 770,
       CITY: Ottawa
       COUNTRY: Canada
     COMPUTER READABLE FORM:
       MEDIUM TYPE: Floppy disk
       COMPUTER: IBM PC Compatible
       OPERATING SYSTEM: PC-DOS/MS-DOS
       SOFTWARE: Wordperfect 5.1
     CURRENT APPLICATION DATA:
       APPLICATION NUMBER: US/08/262,495C
       FILING DATE:
       CLASSIFICATION: 530
    PRIOR APPLICATION DATA:
      APPLICATION NUMBER:
       FILING DATE:
       CLASSIFICATION: 530
    ATTORNEY/AGENT INFORMATION:
       NAME: EADES, No. 5556940ris M.
       REGISTRATION NUMBER: 5,263
```

NAME: EADES, No. 5556940ris M.

```
TELECOMMUNICATION INFORMATION:
      TELEPHONE: (613)-237-6900
      TELEFAX: (613)-237-0045
   INFORMATION FOR SEQ ID NO: 3:
    SEQUENCE CHARACTERISTICS:
      LENGTH: 31 amino acids
      TYPE: amino acid
      TOPOLOGY: linear
    MOLECULE TYPE: peptide
US-08-262-495C-3
                         100.0%; Score 29; DB 1; Length 31;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 1.1e-20;
           29; Conservative
                               0; Mismatches
                                                                           0;
 Matches
                                               0; Indels
                                                               0; Gaps
           1 SVSEIOLMHNLGKHLNSMERVEWLRKKLQ 29
QУ
             1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
Db
RESULT 3
US-08-691-647C-1
; Sequence 1, Application US/08691647C
; Patent No. 5955425
   GENERAL INFORMATION:
    APPLICANT: Barbier, Jean-Rene
    APPLICANT: Morley, Paul
    APPLICANT: Neugebauer, Witold
    APPLICANT:
                Ross, Virginia
    APPLICANT:
                Whitfield, James
    APPLICANT: Willick, Gordon E.
    TITLE OF INVENTION: CYCLIC PARATHYROID HORMONE ANALOGUES
    TITLE OF INVENTION: FOR THE TREATMENT OF OSTEOPOROSIS
    NUMBER OF SEQUENCES: 6
     CORRESPONDENCE ADDRESS:
      ADDRESSEE: NIXON & VANDERHYE, P.C.
      STREET: 1100 New York Avenue, 8th Floor
      CITY: Arlington
      STATE: Virginia
      COUNTRY: U.S.A.
      ZIP: 22201-4714
     COMPUTER READABLE FORM:
      MEDIUM TYPE: Floppy disk
      COMPUTER: IBM PC compatible
      OPERATING SYSTEM: PC-DOS/MS-DOS
      SOFTWARE: ASCII Text
     CURRENT APPLICATION DATA:
      APPLICATION NUMBER: US/08/691,647C
      FILING DATE: August 2, 1996
      CLASSIFICATION: 514
    ATTORNEY/AGENT INFORMATION:
      NAME: Crawford, Arthur R.
      REGISTRATION NUMBER: 25,327
      REFERENCE/DOCKET NUMBER: 1339-5
    TELECOMMUNICATION INFORMATION:
      TELEPHONE: (703) 816-4005
```

REFERENCE/DOCKET NUMBER: 36210

```
TELEFAX: (703) 816-4100
      TELEX: N/A
  INFORMATION FOR SEO ID NO: 1:
    SEQUENCE CHARACTERISTICS:
      LENGTH: 31 amino acids
      TYPE: amino acid
      TOPOLOGY: linear
    MOLECULE TYPE: protein
US-08-691-647C-1
                         100.0%; Score 29; DB 2; Length 31;
 Query Match
 Best Local Similarity 100.0%; Pred. No. 1.1e-20;
          29; Conservative
                              0; Mismatches
                                                0; Indels
                                                               0; Gaps
                                                                          0;
 Matches
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
Qу
             Dh
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
RESULT 4
US-08-691-647C-6
; Sequence 6, Application US/08691647C
; Patent No. 5955425
  GENERAL INFORMATION:
    APPLICANT: Barbier, Jean-Rene
    APPLICANT: Morley, Paul
    APPLICANT: Neugebauer, Witold
    APPLICANT: Ross, Virginia
    APPLICANT: Whitfield, James
    APPLICANT: Willick, Gordon E.
    TITLE OF INVENTION: CYCLIC PARATHYROID HORMONE ANALOGUES
    TITLE OF INVENTION: FOR THE TREATMENT OF OSTEOPOROSIS
    NUMBER OF SEQUENCES: 6
    CORRESPONDENCE ADDRESS:
      ADDRESSEE: NIXON & VANDERHYE, P.C.
      STREET: 1100 New York Avenue, 8th Floor
      CITY: Arlington
      STATE: Virginia
      COUNTRY: U.S.A.
      ZIP: 22201-4714
    COMPUTER READABLE FORM:
      MEDIUM TYPE: Floppy disk
      COMPUTER: IBM PC compatible
      OPERATING SYSTEM: PC-DOS/MS-DOS
      SOFTWARE: ASCII Text
    CURRENT APPLICATION DATA:
      APPLICATION NUMBER: US/08/691,647C
      FILING DATE: August 2, 1996
      CLASSIFICATION: 514
    ATTORNEY/AGENT INFORMATION:
      NAME: Crawford, Arthur R.
      REGISTRATION NUMBER: 25,327
      REFERENCE/DOCKET NUMBER: 1339-5
    TELECOMMUNICATION INFORMATION:
      TELEPHONE: (703) 816-4005
      TELEFAX: (703) 816-4100
      TELEX: N/A
```

```
INFORMATION FOR SEQ ID NO: 6:
    SEQUENCE CHARACTERISTICS:
      LENGTH: 31 amino acids
      TYPE: amino acid
      TOPOLOGY: cyclic
    MOLECULE TYPE: protein
US-08-691-647C-6
                         100.0%; Score 29; DB 2; Length 31;
 Query Match
                         100.0%; Pred. No. 1.1e-20;
 Best Local Similarity
           29; Conservative
                                0; Mismatches
                                                 0; Indels
                                                                   Gaps
                                                                           0;
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
Qу
              1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
Db
RESULT 5
US-08-904-760B-1
; Sequence 1, Application US/08904760B
 Patent No. 6110892
  GENERAL INFORMATION:
    APPLICANT: Jean-Rene, Barbier
    APPLICANT: Neugebauer, Witold
    APPLICANT: Ross, Virginia
    APPLICANT:
               Whitfield, James
    APPLICANT: Willick, Gordon E.
    TITLE OF INVENTION: PARATHYROID HORMONE ANALOGUES FOR THE
    TITLE OF INVENTION: TREATMENT OF OSTEOPOROSIS
    NUMBER OF SEQUENCES: 35
    CORRESPONDENCE ADDRESS:
      ADDRESSEE: NIXON & VANDERHYE P.C.
      STREET: 1100 No. 6110892th Glebe Rd. 8th floor
      CITY: Arlington
      STATE: VA
      COUNTRY: USA
      ZIP: 22201-4741
    COMPUTER READABLE FORM:
      MEDIUM TYPE: Floppy disk
      COMPUTER: IBM PC compatible
      OPERATING SYSTEM: PC-DOS/MS-DOS
      SOFTWARE: PatentIn Release #1.0, Version #1.30
    CURRENT APPLICATION DATA:
      APPLICATION NUMBER: US/08/904,760B
      FILING DATE: 01-AUG-1997
      CLASSIFICATION: 514
     PRIOR APPLICATION DATA:
      APPLICATION NUMBER: 08/691,647
      FILING DATE: 02-AUG-1996
    ATTORNEY/AGENT INFORMATION:
      NAME: Crawford, Arthur R.
      REGISTRATION NUMBER: 25,327
      REFERENCE/DOCKET NUMBER: 1339-6
    TELECOMMUNICATION INFORMATION:
      TELEPHONE: 703-816-4000
      TELEFAX: 703-816-4100
   INFORMATION FOR SEQ ID NO:
```

```
SEQUENCE CHARACTERISTICS:
      LENGTH: 31 amino acids
      TYPE: amino acid
      STRANDEDNESS:
      TOPOLOGY: linear
    MOLECULE TYPE: protein
US-08-904-760B-1
 Query Match
                         100.0%; Score 29; DB 3; Length 31;
 Best Local Similarity
                         100.0%; Pred. No. 1.1e-20;
                              0; Mismatches
 Matches
           29; Conservative
                                                 0; Indels
                                                                0; Gaps
                                                                           0:
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
Qу
              11111111111111
Db
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLO 29
RESULT 6
US-08-904-760B-6
; Sequence 6, Application US/08904760B
; Patent No. 6110892
  GENERAL INFORMATION:
    APPLICANT: Jean-Rene, Barbier
    APPLICANT: Neugebauer, Witold
    APPLICANT: Ross, Virginia
    APPLICANT: Whitfield, James
    APPLICANT: Willick, Gordon E.
    TITLE OF INVENTION: PARATHYROID HORMONE ANALOGUES FOR THE
    TITLE OF INVENTION: TREATMENT OF OSTEOPOROSIS
    NUMBER OF SEQUENCES: 35
    CORRESPONDENCE ADDRESS:
      ADDRESSEE: NIXON & VANDERHYE P.C.
      STREET: 1100 No. 6110892th Glebe Rd. 8th floor
      CITY: Arlington
      STATE: VA
      COUNTRY: USA
      ZIP: 22201-4741
    COMPUTER READABLE FORM:
      MEDIUM TYPE: Floppy disk
      COMPUTER: IBM PC compatible
      OPERATING SYSTEM: PC-DOS/MS-DOS
      SOFTWARE: PatentIn Release #1.0, Version #1.30
    CURRENT APPLICATION DATA:
      APPLICATION NUMBER: US/08/904,760B
      FILING DATE: 01-AUG-1997
      CLASSIFICATION: 514
    PRIOR APPLICATION DATA:
      APPLICATION NUMBER: 08/691,647
      FILING DATE: 02-AUG-1996
    ATTORNEY/AGENT INFORMATION:
      NAME: Crawford, Arthur R.
      REGISTRATION NUMBER: 25,327
      REFERENCE/DOCKET NUMBER: 1339-6
    TELECOMMUNICATION INFORMATION:
      TELEPHONE: 703-816-4000
      TELEFAX: 703-816-4100
   INFORMATION FOR SEQ ID NO: 6:
```

```
SEQUENCE CHARACTERISTICS:
      LENGTH: 31 amino acids
      TYPE: amino acid
      STRANDEDNESS:
      TOPOLOGY: circular
    MOLECULE TYPE: protein
    FEATURE:
      OTHER INFORMATION: cyclo Lys27-Asp30, and this sequence
      OTHER INFORMATION: has an amino group c-terminus (NH2).
US-08-904-760B-6
                         100.0%; Score 29; DB 3; Length 31; 100.0%; Pred. No. 1.1e-20;
 Query Match
 Best Local Similarity
           29; Conservative
                              0; Mismatches 0; Indels
 Matches
                                                                0; Gaps
                                                                            0;
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
Qу
              Dh
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
RESULT 7
US-08-904-760B-14
; Sequence 14, Application US/08904760B
; Patent No. 6110892
  GENERAL INFORMATION:
    APPLICANT: Jean-Rene, Barbier
    APPLICANT: Neugebauer, Witold
    APPLICANT: Ross, Virginia
                Whitfield, James
    APPLICANT:
    APPLICANT: Willick, Gordon E.
    TITLE OF INVENTION: PARATHYROID HORMONE ANALOGUES FOR THE
    TITLE OF INVENTION: TREATMENT OF OSTEOPOROSIS
    NUMBER OF SEQUENCES: 35
    CORRESPONDENCE ADDRESS:
      ADDRESSEE: NIXON & VANDERHYE P.C.
      STREET: 1100 No. 6110892th Glebe Rd. 8th floor
      CITY: Arlington
      STATE: VA
      COUNTRY: USA
       ZIP: 22201-4741
    COMPUTER READABLE FORM:
      MEDIUM TYPE: Floppy disk
      COMPUTER: IBM PC compatible
      OPERATING SYSTEM: PC-DOS/MS-DOS
      SOFTWARE: PatentIn Release #1.0, Version #1.30
    CURRENT APPLICATION DATA:
      APPLICATION NUMBER: US/08/904,760B
      FILING DATE: 01-AUG-1997
      CLASSIFICATION: 514
    PRIOR APPLICATION DATA:
      APPLICATION NUMBER: 08/691,647
      FILING DATE: 02-AUG-1996
    ATTORNEY/AGENT INFORMATION:
      NAME: Crawford, Arthur R.
      REGISTRATION NUMBER: 25,327
      REFERENCE/DOCKET NUMBER: 1339-6
    TELECOMMUNICATION INFORMATION:
```

```
TELEFAX: 703-816-4100
  INFORMATION FOR SEQ ID NO: 14:
    SEQUENCE CHARACTERISTICS:
      LENGTH: 31 amino acids
      TYPE: amino acid
      STRANDEDNESS:
      TOPOLOGY: circular
    MOLECULE TYPE: protein
    FEATURE:
      OTHER INFORMATION: cyclo Glu22-Lys26, and this sequence
      OTHER INFORMATION: has an amino group c-terminus (NH2).
US-08-904-760B-14
                         100.0%; Score 29; DB 3; Length 31;
 Query Match
 Best Local Similarity 100.0%; Pred. No. 1.1e-20;
          29; Conservative
                                0; Mismatches
                                                                0; Gaps
                                                                            0;
 Matches
                                                0; Indels
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
Qу
              !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Db
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
RESULT 8
US-08-904-760B-32
; Sequence 32, Application US/08904760B
 Patent No. 6110892
  GENERAL INFORMATION:
    APPLICANT: Jean-Rene, Barbier
    APPLICANT: Neugebauer, Witold
    APPLICANT: Ross, Virginia
    APPLICANT: Whitfield, James
    APPLICANT: Willick, Gordon E.
    TITLE OF INVENTION: PARATHYROID HORMONE ANALOGUES FOR THE
    TITLE OF INVENTION: TREATMENT OF OSTEOPOROSIS
    NUMBER OF SEQUENCES: 35
    CORRESPONDENCE ADDRESS:
      ADDRESSEE: NIXON & VANDERHYE P.C.
      STREET: 1100 No. 6110892th Glebe Rd. 8th floor
      CITY: Arlington
      STATE: VA
      COUNTRY: USA
      ZIP: 22201-4741
     COMPUTER READABLE FORM:
      MEDIUM TYPE: Floppy disk
      COMPUTER: IBM PC compatible
      OPERATING SYSTEM: PC-DOS/MS-DOS
      SOFTWARE: PatentIn Release #1.0, Version #1.30
     CURRENT APPLICATION DATA:
      APPLICATION NUMBER: US/08/904,760B
      FILING DATE: 01-AUG-1997
      CLASSIFICATION: 514
    PRIOR APPLICATION DATA:
      APPLICATION NUMBER: 08/691,647
      FILING DATE: 02-AUG-1996
    ATTORNEY/AGENT INFORMATION:
      NAME: Crawford, Arthur R.
```

TELEPHONE: 703-816-4000

```
REGISTRATION NUMBER: 25,327
      REFERENCE/DOCKET NUMBER: 1339-6
    TELECOMMUNICATION INFORMATION:
      TELEPHONE: 703-816-4000
      TELEFAX: 703-816-4100
  INFORMATION FOR SEQ ID NO:
    SEQUENCE CHARACTERISTICS:
      LENGTH: 31 amino acids
      TYPE: amino acid
      STRANDEDNESS:
      TOPOLOGY: linear
    MOLECULE TYPE: protein
    FEATURE:
      OTHER INFORMATION: This sequence has an amino group
      OTHER INFORMATION: c-terminus (NH2).
US-08-904-760B-32
                        100.0%; Score 29; DB 3; Length 31;
 Query Match
 Best Local Similarity 100.0%; Pred. No. 1.1e-20;
 Matches 29; Conservative 0; Mismatches 0; Indels
                                                              0; Gaps
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
QУ
             1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
Db
RESULT 9
US-09-406-813-2
; Sequence 2, Application US/09406813
; Patent No. 6316410
; GENERAL INFORMATION:
; APPLICANT: Barbier, Jean-Rene
 APPLICANT: Morley, Paul
; APPLICANT: Whitfield, James
; APPLICANT: Willick, Gordon E.
  TITLE OF INVENTION: PARATHYROID HORMONE ANALOGUES FOR THE TREATMENT OF
  TITLE OF INVENTION: OSTEOPOROSIS
; FILE REFERENCE: 10688-1B
  CURRENT APPLICATION NUMBER: US/09/406,813
  CURRENT FILING DATE: 1999-09-22
; PRIOR APPLICATION NUMBER: 08/904,760
; PRIOR FILING DATE: 1997-08-01
; NUMBER OF SEQ ID NOS: 9
  SOFTWARE: PatentIn Ver. 2.0
; SEQ ID NO 2
   LENGTH: 31
   TYPE: PRT
   ORGANISM: Homo sapiens
   FEATURE:
   OTHER INFORMATION: This sequence has an amino group c-terminus (NH2).
US-09-406-813-2
                         100.0%; Score 29; DB 4; Length 31;
 Query Match
                        100.0%; Pred. No. 1.1e-20;
 Best Local Similarity
                                                              0; Gaps
 Matches 29; Conservative 0; Mismatches
                                              0; Indels
                                                                          0;
```

```
RESULT 10
US-09-536-785A-1
; Sequence 1, Application US/09536785A
; Patent No. 6541450
; GENERAL INFORMATION:
  APPLICANT: BARBIER, JEAN-RENE
  APPLICANT: MORLEY, PAUL
  APPLICANT: NEUGEBAUER, WITOLD
  APPLICANT:
              ROSS, VIRGINIA J.S.
  APPLICANT: WHITFIELD, JAMES F.
  APPLICANT: WILLICK, GORDON E.
  TITLE OF INVENTION: PARATHYROID HORMONE ANALOGUES FOR THE TREATMENT OF
  TITLE OF INVENTION: OSTEOPOROSIS
  FILE REFERENCE: 1339-9
  CURRENT APPLICATION NUMBER: US/09/536,785A
  CURRENT FILING DATE: 2000-03-28
   PRIOR APPLICATION NUMBER: 08/904,760
  PRIOR FILING DATE: 1997-08-01
 PRIOR APPLICATION NUMBER: 08/691,647
 PRIOR FILING DATE: 1996-08-02
  PRIOR APPLICATION NUMBER: 08/262,495
 PRIOR FILING DATE: 1994-06-20
  PRIOR APPLICATION NUMBER: 60/040,560
  PRIOR FILING DATE: 1997-03-14
  NUMBER OF SEQ ID NOS: 39
   SOFTWARE: PatentIn Ver. 2.1
 SEQ ID NO 1
   LENGTH: 31
    TYPE: PRT
    ORGANISM: Homo sapiens
US-09-536-785A-1
  Query Match
                         100.0%; Score 29; DB 4; Length 31;
                         100.0%; Pred. No. 1.1e-20;
  Best Local Similarity
  Matches
           29; Conservative
                               0; Mismatches
                                               0; Indels
                                                               0; Gaps
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
Qу
              Db
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
RESULT 11
US-09-536-785A-6
; Sequence 6, Application US/09536785A
; Patent No. 6541450
; GENERAL INFORMATION:
; APPLICANT: BARBIER, JEAN-RENE
  APPLICANT: MORLEY, PAUL
  APPLICANT: NEUGEBAUER, WITOLD
  APPLICANT: ROSS, VIRGINIA J.S.
              WHITFIELD, JAMES F.
  APPLICANT:
  APPLICANT: WILLICK, GORDON E.
   TITLE OF INVENTION: PARATHYROID HORMONE ANALOGUES FOR THE TREATMENT OF
```

```
TITLE OF INVENTION: OSTEOPOROSIS
  FILE REFERENCE: 1339-9
  CURRENT APPLICATION NUMBER: US/09/536,785A
  CURRENT FILING DATE:
                         2000-03-28
  PRIOR APPLICATION NUMBER: 08/904,760
  PRIOR FILING DATE: 1997-08-01
  PRIOR APPLICATION NUMBER: 08/691,647
  PRIOR FILING DATE: 1996-08-02
  PRIOR APPLICATION NUMBER: 08/262,495
  PRIOR FILING DATE: 1994-06-20
  PRIOR APPLICATION NUMBER: 60/040,560
  PRIOR FILING DATE: 1997-03-14
  NUMBER OF SEQ ID NOS: 39
  SOFTWARE: PatentIn Ver. 2.1
 SEQ ID NO 6
   LENGTH: 31
   TYPE: PRT
   ORGANISM: Homo sapiens
   FEATURE:
   NAME/KEY: SITE
   LOCATION: (27)..(30)
   OTHER INFORMATION: Cyclo Lys27-Asp30
   OTHER INFORMATION: Amino c-terminus
US-09-536-785A-6
  Query Match
                          100.0%; Score 29; DB 4; Length 31;
 Best Local Similarity
                          100.0%; Pred. No. 1.1e-20;
            29; Conservative
                                                   0; Indels
 Matches
                                 0; Mismatches
                                                                  0;
                                                                     Gaps
                                                                              0:
Qу
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
              1111111111111111111111111111111111
Db
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
RESULT 12
US-09-536-785A-14
 Sequence 14, Application US/09536785A
 Patent No. 6541450
; GENERAL INFORMATION:
  APPLICANT: BARBIER, JEAN-RENE
  APPLICANT: MORLEY, PAUL
  APPLICANT: NEUGEBAUER, WITOLD
  APPLICANT: ROSS, VIRGINIA J.S.
  APPLICANT:
               WHITFIELD, JAMES F.
               WILLICK, GORDON E.
  APPLICANT:
   TITLE OF INVENTION: PARATHYROID HORMONE ANALOGUES FOR THE TREATMENT OF
   TITLE OF INVENTION: OSTEOPOROSIS
  FILE REFERENCE: 1339-9
  CURRENT APPLICATION NUMBER: US/09/536,785A
  CURRENT FILING DATE: 2000-03-28
   PRIOR APPLICATION NUMBER: 08/904,760
   PRIOR FILING DATE: 1997-08-01
  PRIOR APPLICATION NUMBER: 08/691,647
  PRIOR FILING DATE: 1996-08-02
   PRIOR APPLICATION NUMBER: 08/262,495
   PRIOR FILING DATE: 1994-06-20
   PRIOR APPLICATION NUMBER: 60/040,560
```

```
PRIOR FILING DATE: 1997-03-14
  NUMBER OF SEQ ID NOS: 39
  SOFTWARE: PatentIn Ver. 2.1
 SEO ID NO 14
   LENGTH: 31
   TYPE: PRT
    ORGANISM: Homo sapiens
    FEATURE:
   NAME/KEY: SITE
    LOCATION: (22)..(26)
    OTHER INFORMATION: Cyclo Glu22-Lys26
    OTHER INFORMATION: Amino c-terminus
US-09-536-785A-14
                         100.0%; Score 29; DB 4; Length 31;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 1.1e-20;
                                0; Mismatches
                                                     Indels
                                                                    Gaps
                                                                            0;
  Matches
           29; Conservative
                                                 0;
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
Qу
              1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
Db
RESULT 13
US-09-536-785A-32
; Sequence 32, Application US/09536785A
; Patent No. 6541450
; GENERAL INFORMATION:
   APPLICANT: BARBIER, JEAN-RENE
   APPLICANT: MORLEY, PAUL
   APPLICANT: NEUGEBAUER, WITOLD
   APPLICANT: ROSS, VIRGINIA J.S.
   APPLICANT:
              WHITFIELD, JAMES F.
              WILLICK, GORDON E.
   APPLICANT:
   TITLE OF INVENTION: PARATHYROID HORMONE ANALOGUES FOR THE TREATMENT OF
   TITLE OF INVENTION: OSTEOPOROSIS
   FILE REFERENCE: 1339-9
   CURRENT APPLICATION NUMBER: US/09/536,785A
   CURRENT FILING DATE: 2000-03-28
   PRIOR APPLICATION NUMBER: 08/904,760
   PRIOR FILING DATE: 1997-08-01
   PRIOR APPLICATION NUMBER: 08/691,647
   PRIOR FILING DATE: 1996-08-02
   PRIOR APPLICATION NUMBER: 08/262,495
   PRIOR FILING DATE: 1994-06-20
   PRIOR APPLICATION NUMBER: 60/040,560
   PRIOR FILING DATE: 1997-03-14
   NUMBER OF SEQ ID NOS: 39
   SOFTWARE: PatentIn Ver. 2.1
  SEQ ID NO 32
    LENGTH: 31
    TYPE: PRT
    ORGANISM: Homo sapiens
    OTHER INFORMATION: Amino c-terminus
US-09-536-785A-32
```

```
Query Match
                         100.0%; Score 29; DB 4; Length 31;
  Best Local Similarity 100.0%; Pred. No. 1.1e-20;
          29; Conservative
                              0; Mismatches 0; Indels
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
Qу
              Db
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
RESULT 14
US-09-447-800-9
; Sequence 9, Application US/09447800
; Patent No. 6537965
 GENERAL INFORMATION:
  APPLICANT: BRINGHURST, F. RICHARD
  APPLICANT: TAKASU, HISASHI
  APPLICANT: GARDELLA, THOMAS J.
  TITLE OF INVENTION: AMINO-TERMINAL MODIFIED PARATHYROID HORMONE (PTH)
  TITLE OF INVENTION: ANALOGS
  FILE REFERENCE: 0609.4630001
  CURRENT APPLICATION NUMBER: US/09/447,800
  CURRENT FILING DATE: 1999-11-23
   EARLIER APPLICATION NUMBER: 60/110,152
   EARLIER FILING DATE: 1998-11-25
  NUMBER OF SEQ ID NOS: 10
   SOFTWARE: PatentIn Ver. 2.1
; SEO ID NO 9
   LENGTH: 33
   TYPE: PRT
   ORGANISM: Homo sapiens
    FEATURE:
   NAME/KEY: MOD RES
   LOCATION: (1)
    OTHER INFORMATION: Desamino Ser
US-09-447-800-9
  Query Match
                         100.0%; Score 29; DB 4; Length 33;
  Best Local Similarity
                         100.0%; Pred. No. 1.1e-20;
                                                                           0;
  Matches
           29; Conservative
                              0; Mismatches
                                                0; Indels
                                                                0; Gaps
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
Qу
              1111111111111111111111111111111111
Db
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
RESULT 15
US-07-765-373-1
; Sequence 1, Application US/07765373
 Patent No. 5393869
   GENERAL INFORMATION:
     APPLICANT: NAKAGAWA, Shizue
     APPLICANT: FUKUDA, Tsunehiko
    APPLICANT: KAWASE, Masahiro
    APPLICANT: YAMAZAKI, Iwao
     TITLE OF INVENTION: PARATHYROID HORMONE DERIVATIVES
     NUMBER OF SEQUENCES: 2
     CORRESPONDENCE ADDRESS:
```

```
ADDRESSEE: DAVID G. CONLIN; DIKE, BRONSTEIN, ROBERTS &
      ADDRESSEE: CUSHMAN
      STREET: 130 Water Street
      CITY: Boston
      STATE: Massachusetts
      COUNTRY: US
      ZIP: 02109
    COMPUTER READABLE FORM:
      MEDIUM TYPE: Floppy disk
      COMPUTER: IBM PC compatible
      OPERATING SYSTEM: PC-DOS/MS-DOS
      SOFTWARE: PatentIn Release #1.0, Version #1.25
    CURRENT APPLICATION DATA:
      APPLICATION NUMBER: US/07/765,373
      FILING DATE: 19910925
      CLASSIFICATION: 530
    ATTORNEY/AGENT INFORMATION:
      NAME: WILLIAMS, Gregory D.
      REGISTRATION NUMBER: 30901
      REFERENCE/DOCKET NUMBER: 41289
    TELECOMMUNICATION INFORMATION:
      TELEPHONE: (617)523-3400
      TELEFAX: (617) 523-6440
      TELEX: 20091 STRE UR
   INFORMATION FOR SEQ ID NO: 1:
    SEOUENCE CHARACTERISTICS:
      LENGTH: 34 amino acids
      TYPE: AMINO ACID
       TOPOLOGY: linear
    MOLECULE TYPE: peptide
    FRAGMENT TYPE: N-terminal
US-07-765-373-1
                         100.0%; Score 29; DB 1; Length 34;
  Query Match
                         100.0%; Pred. No. 1.2e-20;
  Best Local Similarity
                                                  0; Indels
                                                                0; Gaps
                                                                            0;
                                0; Mismatches
           29; Conservative
  Matches
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
Qу
              11111111111111111111111111111111111
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
Db
RESULT 16
US-08-033-099-1
; Sequence 1, Application US/08033099
 Patent No. 5434246
   GENERAL INFORMATION:
     APPLICANT: FUKUDA, Tsunehiko
     APPLICANT: NAKAGAWA, Shizue
     APPLICANT: TAKETOMI, Shigehisa
     TITLE OF INVENTION: PARATHYROID HORMONE DERIVATIVES
     NUMBER OF SEQUENCES: 2
     CORRESPONDENCE ADDRESS:
       ADDRESSEE: DAVID G.CONLIN; DIKE, BRONSTEIN, ROBERTS &
       ADDRESSEE: CUSHMAN
       STREET: 130 Water Street
       CITY: Boston
```

```
COUNTRY: US
      ZIP: 02109
    COMPUTER READABLE FORM:
      MEDIUM TYPE: Floppy disk
      COMPUTER: IBM PC compatible
      OPERATING SYSTEM: PC-DOS/MS-DOS
      SOFTWARE: PatentIn Release #1.0, Version #1.25
    CURRENT APPLICATION DATA:
      APPLICATION NUMBER: US/08/033,099
      FILING DATE: 19930316
      CLASSIFICATION: 530
    ATTORNEY/AGENT INFORMATION:
      NAME: WILLIAMS, Gregory D
      REGISTRATION NUMBER: 30901
      REFERENCE/DOCKET NUMBER: 42528
    TELECOMMUNICATION INFORMATION:
      TELEPHONE: (617)523-3400
      TELEFAX: (613)523-6440
      TELEX: 200291 STRE UR
  INFORMATION FOR SEQ ID NO: 1:
    SEQUENCE CHARACTERISTICS:
      LENGTH: 34 amino acids
      TYPE: AMINO ACID
      TOPOLOGY: linear
    MOLECULE TYPE: protein
    FRAGMENT TYPE: N-terminal
US-08-033-099-1
                         100.0%; Score 29; DB 1; Length 34;
 Query Match
 Best Local Similarity 100.0%; Pred. No. 1.2e-20;
                             0; Mismatches 0; Indels
 Matches
           29; Conservative
                                                               0; Gaps
Qу
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
             Db
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
RESULT 17
US-08-262-495C-1
; Sequence 1, Application US/08262495C
; Patent No. 5556940
  GENERAL INFORMATION:
    APPLICANT: WILLICK, Gordon E.
    APPLICANT: WHITFIELD, James F.
    APPLICANT: SUREWICZ, Witold
    APPLICANT: SUNG, Wing L.
    APPLICANT: NEUGENBAUER, Witold
    TITLE OF INVENTION: PARATHYROID HORMONE ANALOGUES
    TITLE OF INVENTION: FOR THE TREATMENT OF OSTEOPOROSIS
    NUMBER OF SEQUENCES: 6
    CORRESPONDENCE ADDRESS:
      ADDRESSEE: Kirby, Eades, Gale, Baker
      STREET: 112 Kent Street, Suite 770,
      CITY: Ottawa
      COUNTRY: Canada
    COMPUTER READABLE FORM:
```

STATE: Massachusetts

```
MEDIUM TYPE: Floppy disk
      COMPUTER: IBM PC Compatible
      OPERATING SYSTEM: PC-DOS/MS-DOS
      SOFTWARE: Wordperfect 5.1
    CURRENT APPLICATION DATA:
      APPLICATION NUMBER: US/08/262,495C
      FILING DATE:
      CLASSIFICATION: 530
    PRIOR APPLICATION DATA:
      APPLICATION NUMBER:
      FILING DATE:
      CLASSIFICATION: 530
    ATTORNEY/AGENT INFORMATION:
      NAME: EADES, No. 5556940ris M.
      REGISTRATION NUMBER: 5,263
      REFERENCE/DOCKET NUMBER: 36210
    TELECOMMUNICATION INFORMATION:
      TELEPHONE: (613)-237-6900
      TELEFAX: (613)-237-0045
  INFORMATION FOR SEQ ID NO: 1:
    SEQUENCE CHARACTERISTICS:
      LENGTH: 34 amino acids
      TYPE: amino acid
      TOPOLOGY: linear
    MOLECULE TYPE: protein
US-08-262-495C-1
                         100.0%; Score 29; DB 1; Length 34;
 Query Match
 Best Local Similarity 100.0%; Pred. No. 1.2e-20;
 Matches 29; Conservative
                             0; Mismatches 0; Indels
                                                              0; Gaps
                                                                          0;
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
Qу
             Db
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
RESULT 18
US-07-915-247A-1
; Sequence 1, Application US/07915247A
; Patent No. 5589452
  GENERAL INFORMATION:
    APPLICANT: Krstenansky, John L.
    APPLICANT: Nestor Jr., John J.
    APPLICANT: Ho, Teresa H.
    APPLICANT: Vickery, Brian H.
    APPLICANT: Bach, Chinh T.
    TITLE OF INVENTION: ANALOGS OF PARATHYROID HORMONE AND
    TITLE OF INVENTION: PARATHYROID HORMONE RELATED PEPTIDE: SYNTHESIS AND USE
    TITLE OF INVENTION: FOR THE TREATMENT OF OSTEOPOROSIS
    NUMBER OF SEQUENCES: 34
    CORRESPONDENCE ADDRESS:
      ADDRESSEE: Patent Dept., Syntex (U.S.A.), Inc.
      STREET: 3401 Hillview Ave.
      CITY: Palo Alto
      STATE: CA
      COUNTRY: USA
      ZIP: 94303
```

```
COMPUTER READABLE FORM:
      MEDIUM TYPE: Floppy disk
      COMPUTER: IBM PC compatible
      OPERATING SYSTEM: PC-DOS/MS-DOS
      SOFTWARE: PatentIn Release #1.0, Version #1.25
    CURRENT APPLICATION DATA:
      APPLICATION NUMBER: US/07/915,247A
      FILING DATE: 19920714
      CLASSIFICATION: 435
    ATTORNEY/AGENT INFORMATION:
      NAME: Schmonsees, William
      REGISTRATION NUMBER: 31,796
      REFERENCE/DOCKET NUMBER: 27610
    TELECOMMUNICATION INFORMATION:
      TELEPHONE: 415-855-6593
      TELEFAX: 415-496-3529
  INFORMATION FOR SEQ ID NO: 1:
    SEQUENCE CHARACTERISTICS:
      LENGTH: 34 amino acids
      TYPE: amino acid
      TOPOLOGY: linear
    MOLECULE TYPE: peptide
    HYPOTHETICAL: NO
    FRAGMENT TYPE: N-terminal
US-07-915-247A-1
                         100.0%; Score 29; DB 1; Length 34;
  Query Match
 Best Local Similarity 100.0%; Pred. No. 1.2e-20;
                              0; Mismatches 0; Indels
                                                               0; Gaps
          29; Conservative
 Matches
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
Qу
             1 SVSEIOLMHNLGKHLNSMERVEWLRKKLQ 29
Db
RESULT 19
US-08-443-863-1
; Sequence 1, Application US/08443863
; Patent No. 5693616
   GENERAL INFORMATION:
    APPLICANT: Krstenansky, John L.
    APPLICANT: Nestor Jr., John J.
    APPLICANT: Ho, Teresa H.
    APPLICANT: Vickery, Brian H.
    APPLICANT: Bach, Chinh T.
     TITLE OF INVENTION: ANALOGS OF PARATHYROID HORMONE AND
     TITLE OF INVENTION: PARATHYROID HORMONE RELATED PEPTIDE: SYNTHESIS AND USE
     TITLE OF INVENTION: FOR THE TREATMENT OF OSTEOPOROSIS
     NUMBER OF SEQUENCES: 34
     CORRESPONDENCE ADDRESS:
       ADDRESSEE: Patent Dept., Syntex (U.S.A.), Inc.
       STREET: 3401 Hillview Ave.
       CITY: Palo Alto
       STATE: CA
       COUNTRY: USA
       ZIP: 94303
     COMPUTER READABLE FORM:
```

```
COMPUTER: IBM PC compatible
      OPERATING SYSTEM: PC-DOS/MS-DOS
      SOFTWARE: PatentIn Release #1.0, Version #1.25
     CURRENT APPLICATION DATA:
      APPLICATION NUMBER: US/08/443,863
      FILING DATE: 14-JUL-1992
      CLASSIFICATION: 514
    ATTORNEY/AGENT INFORMATION:
      NAME: Schmonsees, William
      REGISTRATION NUMBER: 31,796
      REFERENCE/DOCKET NUMBER:
                                27610
     TELECOMMUNICATION INFORMATION:
       TELEPHONE: 415-855-6593
       TELEFAX: 415-496-3529
   INFORMATION FOR SEQ ID NO: 1:
    SEQUENCE CHARACTERISTICS:
      LENGTH: 34 amino acids
      TYPE: amino acid
      TOPOLOGY: linear
    MOLECULE TYPE: peptide
    HYPOTHETICAL: NO
    FRAGMENT TYPE: N-terminal
US-08-443-863-1
  Query Match
                         100.0%; Score 29; DB 1; Length 34;
  Best Local Similarity
                         100.0%; Pred. No. 1.2e-20;
  Matches
          29; Conservative
                               0; Mismatches
                                                0; Indels
                                                               0; Gaps
                                                                           0:
Qy
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
              Db
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
RESULT 20
US-08-448-070-1
; Sequence 1, Application US/08448070
 Patent No. 5695955
  GENERAL INFORMATION:
    APPLICANT: Krstenansky, John L.
    APPLICANT: Nestor Jr., John J.
               Ho, Teresa H.
    APPLICANT:
    APPLICANT: Vickery, Brian H.
    APPLICANT: Bach, Chinh T.
    TITLE OF INVENTION: ANALOGS OF PARATHYROID HORMONE AND
    TITLE OF INVENTION: PARATHYROID HORMONE RELATED PEPTIDE: SYNTHESIS AND USE
    TITLE OF INVENTION: FOR THE TREATMENT OF OSTEOPOROSIS
    NUMBER OF SEQUENCES: 34
    CORRESPONDENCE ADDRESS:
      ADDRESSEE: Patent Dept., Syntex (U.S.A.), Inc.
      STREET: 3401 Hillview Ave.
      CITY: Palo Alto
      STATE: CA
      COUNTRY: USA
      ZIP: 94303
    COMPUTER READABLE FORM:
      MEDIUM TYPE: Floppy disk
```

MEDIUM TYPE: Floppy disk

```
OPERATING SYSTEM: PC-DOS/MS-DOS
      SOFTWARE: PatentIn Release #1.0, Version #1.25
    CURRENT APPLICATION DATA:
      APPLICATION NUMBER: US/08/448,070
      FILING DATE: 14-JUL-1992
      CLASSIFICATION: 435
    ATTORNEY/AGENT INFORMATION:
      NAME: Schmonsees, William
      REGISTRATION NUMBER: 31,796
      REFERENCE/DOCKET NUMBER: 27610
    TELECOMMUNICATION INFORMATION:
      TELEPHONE: 415-855-6593
      TELEFAX: 415-496-3529
  INFORMATION FOR SEQ ID NO: 1:
    SEQUENCE CHARACTERISTICS:
      LENGTH: 34 amino acids
      TYPE: amino acid
      TOPOLOGY: linear
    MOLECULE TYPE: peptide
    HYPOTHETICAL: NO
    FRAGMENT TYPE: N-terminal
US-08-448-070-1
                         100.0%; Score 29; DB 1; Length 34;
  Query Match
                         100.0%; Pred. No. 1.2e-20;
  Best Local Similarity
                                                                          0;
                                                 0; Indels
                                                               0;
                                                                  Gaps
           29; Conservative
                             0; Mismatches
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
Qy
              Db
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
RESULT 21
US-08-488-105-7
; Sequence 7, Application US/08488105
 Patent No. 5717062
  GENERAL INFORMATION:
    APPLICANT: Chorev, Michael
     APPLICANT: Rosenblatt, Michael
     TITLE OF INVENTION: CYCLIC ANALOGS OF PTH AND PTHrP
     NUMBER OF SEQUENCES: 22
     CORRESPONDENCE ADDRESS:
       ADDRESSEE: Fish & Richardson P.C.
       STREET: 225 Franklin Street
      CITY: Boston
       STATE: MA
       COUNTRY: USA
       ZIP: 02110-2804
     COMPUTER READABLE FORM:
       MEDIUM TYPE: Floppy disk
       COMPUTER: IBM PC compatible
       OPERATING SYSTEM: PC-DOS/MS-DOS
       SOFTWARE: PatentIn Release #1.0, Version #1.30
     CURRENT APPLICATION DATA:
       APPLICATION NUMBER: US/08/488,105
       FILING DATE: 07-JUN-1995
```

COMPUTER: IBM PC compatible

```
CLASSIFICATION: 530
    ATTORNEY/AGENT INFORMATION:
      NAME: Tsao, Y. Rocky
      REGISTRATION NUMBER: 34,053
      REFERENCE/DOCKET NUMBER: 00537/112001
    TELECOMMUNICATION INFORMATION:
      TELEPHONE: 617/542-5070
      TELEFAX: 617/542-8906
      TELEX: 200154
  INFORMATION FOR SEQ ID NO:
    SEQUENCE CHARACTERISTICS:
      LENGTH: 34 amino acids
      TYPE: amino acid
      STRANDEDNESS: not relevant
      TOPOLOGY: linear
    MOLECULE TYPE: protein
    FEATURE:
                          The side chains of Lys at
      OTHER INFORMATION:
                         position 26 and Asp at position 30 are linked by an
      OTHER INFORMATION:
amide bond,
                        and this sequence has an amide C-terminus (i.e.,
      OTHER INFORMATION:
CONH2), rather
      OTHER INFORMATION: than a carboxy C-terminus (i.e., COOH).
US-08-488-105-7
                         100.0%; Score 29; DB 1; Length 34;
 Query Match
                         100.0%; Pred. No. 1.2e-20;
 Best Local Similarity
                                                0; Indels
                                                               0; Gaps
                               0; Mismatches
 Matches
           29; Conservative
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
Qу
             1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
Db
RESULT 22
US-08-468-275-6
; Sequence 6, Application US/08468275
; Patent No. 5747453
   GENERAL INFORMATION:
    APPLICANT: HOLLADAY, LESLIE A.
     APPLICANT: OLDENBURG, KEVIN R.
     TITLE OF INVENTION: METHOD FOR INCREASING THE
     TITLE OF INVENTION: ELECTROTRANSPORT FLUX OF POLYPEPTIDES
    NUMBER OF SEQUENCES: 10
     CORRESPONDENCE ADDRESS:
      ADDRESSEE: ALZA CORPORATION
       STREET: 950 PAGE MILL ROAD
      CITY: PALO ALTO
       STATE: CALIFORNIA
       COUNTRY: USA
       ZIP: 94303-0802
     COMPUTER READABLE FORM:
      MEDIUM TYPE: Floppy disk
       COMPUTER: IBM PC compatible
       OPERATING SYSTEM: PC-DOS/MS-DOS
       SOFTWARE: PatentIn Release #1.0, Version #1.30
     CURRENT APPLICATION DATA:
```

```
FILING DATE: 06-JUN-1995
      CLASSIFICATION: 514
    ATTORNEY/AGENT INFORMATION:
      NAME: MILLER, D. BYRON
      REGISTRATION NUMBER: 30,661
      REFERENCE/DOCKET NUMBER: 0360-0002; ARC-2349
    TELECOMMUNICATION INFORMATION:
      TELEPHONE: (415) 496-8150
      TELEFAX: (415) 496-8048
  INFORMATION FOR SEQ ID NO: 6:
    SEQUENCE CHARACTERISTICS:
      LENGTH: 34 amino acids
      TYPE: amino acid
      STRANDEDNESS: single
      TOPOLOGY: linear
    MOLECULE TYPE: protein
US-08-468-275-6
                         100.0%; Score 29; DB 1; Length 34;
 Query Match
                         100.0%; Pred. No. 1.2e-20;
 Best Local Similarity
         29; Conservative 0; Mismatches 0; Indels
                                                              0; Gaps
 Matches
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
Qу
             1 SVSEIOLMHNLGKHLNSMERVEWLRKKLQ 29
Dh
RESULT 23
US-08-449-500-1
; Sequence 1, Application US/08449500
; Patent No. 5798225
   GENERAL INFORMATION:
     APPLICANT: Krstenansky, John L.
    APPLICANT: Nestor Jr., John J.
     APPLICANT: Ho, Teresa H.
     APPLICANT: Vickery, Brian H.
     APPLICANT: Bach, Chinh T.
     TITLE OF INVENTION: ANALOGS OF PARATHYROID HORMONE AND
     TITLE OF INVENTION: PARATHYROID HORMONE RELATED PEPTIDE: SYNTHESIS AND USE
     TITLE OF INVENTION: FOR THE TREATMENT OF OSTEOPOROSIS
     NUMBER OF SEQUENCES: 86
     CORRESPONDENCE ADDRESS:
       ADDRESSEE: Patent Dept., Syntex (U.S.A.), Inc.
       STREET: 3401 Hillview Ave.
       CITY: Palo Alto
       STATE: CA
       COUNTRY: USA
       ZIP: 94303
     COMPUTER READABLE FORM:
       MEDIUM TYPE: Floppy disk
       COMPUTER: IBM PC compatible
       OPERATING SYSTEM: PC-DOS/MS-DOS
       SOFTWARE: PatentIn Release #1.0, Version #1.25
     CURRENT APPLICATION DATA:
       APPLICATION NUMBER: US/08/449,500
       FILING DATE: 18-JAN-1994
```

APPLICATION NUMBER: US/08/468,275

```
ATTORNEY/AGENT INFORMATION:
      NAME: Schmonsees, William
      REGISTRATION NUMBER: 31,796
      REFERENCE/DOCKET NUMBER: 27610-P1
    TELECOMMUNICATION INFORMATION:
      TELEPHONE: 415-855-6593
      TELEFAX: 415-496-3529
  INFORMATION FOR SEQ ID NO: 1:
    SEQUENCE CHARACTERISTICS:
      LENGTH: 34 amino acids
      TYPE: amino acid
      TOPOLOGY: linear
    MOLECULE TYPE: peptide
    HYPOTHETICAL: NO
    FRAGMENT TYPE: N-terminal
US-08-449-500-1
                          100.0%; Score 29; DB 1; Length 34;
  Query Match
                         100.0%; Pred. No. 1.2e-20;
  Best Local Similarity
                                                                0; Gaps
           29; Conservative 0; Mismatches 0; Indels
  Matches
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
Qу
              11111111111111111111111111111111111
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
Db
RESULT 24
US-08-449-317A-1
; Sequence 1, Application US/08449317A
; Patent No. 5807823
   GENERAL INFORMATION:
     APPLICANT: Vickery, Brian H.
     TITLE OF INVENTION: METHOD FOR TREATMENT OF CORTICOSTEROID
     TITLE OF INVENTION: INDUCED OSTEOPENIA
     NUMBER OF SEQUENCES: 86
     CORRESPONDENCE ADDRESS:
       ADDRESSEE: Patent Dept., Syntex (U.S.A.), Inc.
       STREET: 3401 Hillview Ave.
       CITY: Palo Alto
       STATE: CA
       COUNTRY: USA
       ZIP: 94303
     COMPUTER READABLE FORM:
       MEDIUM TYPE: Floppy disk
       COMPUTER: IBM PC compatible
       OPERATING SYSTEM: PC-DOS/MS-DOS
       SOFTWARE: PatentIn Release #1.0, Version #1.25
     CURRENT APPLICATION DATA:
       APPLICATION NUMBER: US/08/449,317A
       FILING DATE: 07-JUN-1995
       CLASSIFICATION: 435
     ATTORNEY/AGENT INFORMATION:
       NAME: Schmonsees, William
       REGISTRATION NUMBER: 31,796
       REFERENCE/DOCKET NUMBER: 27610-P2
     TELECOMMUNICATION INFORMATION:
```

CLASSIFICATION: 435

```
TELEFAX: 415-496-3529
  INFORMATION FOR SEQ ID NO: 1:
    SEQUENCE CHARACTERISTICS:
      LENGTH: 34 amino acids
      TYPE: amino acid
      TOPOLOGY: linear
    MOLECULE TYPE: peptide
    HYPOTHETICAL: NO
     FRAGMENT TYPE: N-terminal
US-08-449-317A-1
                         100.0%; Score 29; DB 1; Length 34;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 1.2e-20;
           29; Conservative 0; Mismatches
                                                               0; Gaps
                                                0; Indels
  Matches
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
Qу
              1111111111111111
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
Db
RESULT 25
US-08-142-551B-2
; Sequence 2, Application US/08142551B
; Patent No. 5814603
   GENERAL INFORMATION:
     APPLICANT: Oldenburg, Kevin R.
     APPLICANT: Selick, Harold E.
     TITLE OF INVENTION: COMPOUNDS WITH PTH ACTIVITY AND
     TITLE OF INVENTION: RECOMBINANT DNA VECTORS ENCODING SAME
     NUMBER OF SEQUENCES: 132
     CORRESPONDENCE ADDRESS:
       ADDRESSEE: Burns, Doane, Swecker & Mathis
       STREET: 699 Prince Street
       CITY: Alexandria
       STATE: Virginia
       COUNTRY: US
       ZIP: 22313
     COMPUTER READABLE FORM:
       MEDIUM TYPE: Floppy disk
       COMPUTER: IBM PC compatible
       OPERATING SYSTEM: PC-DOS/MS-DOS
       SOFTWARE: PatentIn Release #1.0, Version #1.25
     CURRENT APPLICATION DATA:
       APPLICATION NUMBER: US/08/142,551B
       FILING DATE: 25-OCT-1993
       CLASSIFICATION: 435
     PRIOR APPLICATION DATA:
       APPLICATION NUMBER: US 08/077,296
       FILING DATE: 14-JUN-1993
     PRIOR APPLICATION DATA:
       APPLICATION NUMBER: US 07/898,219
       FILING DATE: 12-JUN-1992
     PRIOR APPLICATION DATA:
       APPLICATION NUMBER: US 07/965,677
       FILING DATE: 22-OCT-1992
     ATTORNEY/AGENT INFORMATION:
```

TELEPHONE: 415-855-6593

```
REGISTRATION NUMBER: 30,113
      REFERENCE/DOCKET NUMBER: 000324-010
    TELECOMMUNICATION INFORMATION:
      TELEPHONE: (415) 854-7400
      TELEFAX: (415) 854-8275
  INFORMATION FOR SEQ ID NO:
    SEQUENCE CHARACTERISTICS:
      LENGTH: 34 amino acids
      TYPE: amino acid
      TOPOLOGY: unknown
    MOLECULE TYPE: protein
    FEATURE:
      NAME/KEY: Peptide
      LOCATION: 1..34
      OTHER INFORMATION: /note= "The sequence of the 34
      OTHER INFORMATION: amino acid truncated human PTH peptide,
      OTHER INFORMATION: designated: Human PTH."
US-08-142-551B-2
                         100.0%; Score 29; DB 2; Length 34;
  Query Match
                        100.0%; Pred. No. 1.2e-20;
  Best Local Similarity
                                                              0; Gaps
 Matches 29; Conservative 0; Mismatches 0; Indels
                                                                          0;
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
Qу
             1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
Db
RESULT 26
US-08-477-022-1
; Sequence 1, Application US/08477022
; Patent No. 5821225
  GENERAL INFORMATION:
     APPLICANT: Vickery, Brian H.
     TITLE OF INVENTION: METHOD FOR TREATMENT OF CORTICOSTEROID
     TITLE OF INVENTION: INDUCED OSTEOPENIA
     NUMBER OF SEQUENCES: 86
     CORRESPONDENCE ADDRESS:
       ADDRESSEE: Patent Dept., Syntex (U.S.A.), Inc.
       STREET: 3401 Hillview Ave.
       CITY: Palo Alto
      STATE: CA
       COUNTRY: USA
       ZIP: 94303
     COMPUTER READABLE FORM:
       MEDIUM TYPE: Floppy disk
       COMPUTER: IBM PC compatible
       OPERATING SYSTEM: PC-DOS/MS-DOS
       SOFTWARE: PatentIn Release #1.0, Version #1.25
     CURRENT APPLICATION DATA:
       APPLICATION NUMBER: US/08/477,022
       FILING DATE: 07-JUN-1995
       CLASSIFICATION: 435
     ATTORNEY/AGENT INFORMATION:
       NAME: Schmonsees, William
       REGISTRATION NUMBER: 31,796
```

NAME: Swiss, Gerald F.

```
TELECOMMUNICATION INFORMATION:
      TELEPHONE: 415-855-6593
      TELEFAX: 415-496-3529
  INFORMATION FOR SEQ ID NO: 1:
    SEQUENCE CHARACTERISTICS:
      LENGTH: 34 amino acids
      TYPE: amino acid
      TOPOLOGY: linear
    MOLECULE TYPE: peptide
    HYPOTHETICAL: NO
    FRAGMENT TYPE: N-terminal
US-08-477-022-1
 Query Match
                         100.0%; Score 29; DB 2; Length 34;
                        100.0%; Pred. No. 1.2e-20;
 Best Local Similarity
                                                                          0;
Matches
           29; Conservative
                             0; Mismatches
                                                0; Indels
                                                               0; Gaps
Qу
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
             1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
Db
RESULT 27
US-08-449-447-1
; Sequence 1, Application US/08449447
; Patent No. 5840837
  GENERAL INFORMATION:
    APPLICANT: Krstenansky, John L.
    APPLICANT: Nestor Jr., John J.
    APPLICANT: Ho, Teresa H.
               Vickery, Brian H.
    APPLICANT:
    APPLICANT: Bach, Chinh T.
    TITLE OF INVENTION: ANALOGS OF PARATHYROID HORMONE AND
    TITLE OF INVENTION: PARATHYROID HORMONE RELATED PEPTIDE: SYNTHESIS AND USE
    TITLE OF INVENTION: FOR THE TREATMENT OF OSTEOPOROSIS
    NUMBER OF SEQUENCES: 86
    CORRESPONDENCE ADDRESS:
      ADDRESSEE: Patent Dept., Syntex (U.S.A.), Inc.
      STREET: 3401 Hillview Ave.
      CITY: Palo Alto
      STATE: CA
      COUNTRY: USA
      ZIP: 94303
    COMPUTER READABLE FORM:
      MEDIUM TYPE: Floppy disk
      COMPUTER: IBM PC compatible
      OPERATING SYSTEM: PC-DOS/MS-DOS
      SOFTWARE: PatentIn Release #1.0, Version #1.25
    CURRENT APPLICATION DATA:
      APPLICATION NUMBER: US/08/449,447
      FILING DATE: 18-JAN-1994
      CLASSIFICATION: 530
    ATTORNEY/AGENT INFORMATION:
      NAME: Schmonsees, William
      REGISTRATION NUMBER: 31,796
      REFERENCE/DOCKET NUMBER: 27610-P1
```

REFERENCE/DOCKET NUMBER: 27610-P2

```
TELEPHONE: 415-855-6593
      TELEFAX: 415-496-3529
  INFORMATION FOR SEO ID NO:
    SEQUENCE CHARACTERISTICS:
      LENGTH: 34 amino acids
      TYPE: amino acid
      TOPOLOGY: linear
    MOLECULE TYPE: peptide
    HYPOTHETICAL: NO
    FRAGMENT TYPE: N-terminal
US-08-449-447-1
  Query Match
                         100.0%; Score 29; DB 2; Length 34;
                        100.0%; Pred. No. 1.2e-20;
 Best Local Similarity
                               0; Mismatches
 Matches
           29; Conservative
                                                 0;
                                                     Indels
                                                               0; Gaps
                                                                           0;
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
Qу
             Db
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
RESULT 28
US-08-835-231-13
; Sequence 13, Application US/08835231
; Patent No. 5861284
  GENERAL INFORMATION:
    APPLICANT: NISHIMURA, Osamu
    APPLICANT: KURIYAMA, Masato
                KOYAMA, No. 5861284uyuki
    APPLICANT:
                FUKUDA, Tsunehiko
    APPLICANT:
    TITLE OF INVENTION: METHOD FOR PRODUCING A BIOLOGICALLY
    TITLE OF INVENTION: ACTIVE RECOMBINANT CYSTEINE-FREE
    NUMBER OF SEQUENCES: 37
    CORRESPONDENCE ADDRESS:
      ADDRESSEE: DIKE, BRONSTEIN, ROBERTS & CUSHMAN, LLP
      STREET: 130 WATER STREET
      CITY: BOSTON
      STATE: MA
      COUNTRY: USA
      ZIP: 02109
    COMPUTER READABLE FORM:
      MEDIUM TYPE: Diskette
      COMPUTER: IBM Compatible
      OPERATING SYSTEM: DOS
      SOFTWARE: FastSEQ Version 1.5
    CURRENT APPLICATION DATA:
      APPLICATION NUMBER: US/08/835,231
      FILING DATE:
      CLASSIFICATION: 435
    PRIOR APPLICATION DATA:
      APPLICATION NUMBER: 08/350,709
      FILING DATE: 07-DEC-1994
      APPLICATION NUMBER: 07/838,857
      FILING DATE: 18-FEB-1992
      APPLICATION NUMBER: JP 024841
      FILING DATE: 19-FEB-1991
```

TELECOMMUNICATION INFORMATION:

```
FILING DATE: 18-OCT-1991
    ATTORNEY/AGENT INFORMATION:
      NAME: DAVID, RESNICK S
      REGISTRATION NUMBER: 34,235
      REFERENCE/DOCKET NUMBER: 41614-FWC
    TELECOMMUNICATION INFORMATION:
      TELEPHONE: 617-523-3400
      TELEFAX: 617-523-6440
      TELEX: 200291 STRE
  INFORMATION FOR SEQ ID NO: 13:
    SEQUENCE CHARACTERISTICS:
      LENGTH: 34 amino acids
      TYPE: amino acid
      STRANDEDNESS: single
      TOPOLOGY: linear
    MOLECULE TYPE: peptide
    HYPOTHETICAL: NO
    ANTI-SENSE: NO
    FRAGMENT TYPE: N-terminal
    ORIGINAL SOURCE:
US-08-835-231-13
                         100.0%; Score 29; DB 2; Length 34;
 Query Match
                         100.0%; Pred. No. 1.2e-20;
 Best Local Similarity
                             0; Mismatches 0;
                                                               0; Gaps
                                                    Indels
           29; Conservative
 Matches
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
Qу
             1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
Db
RESULT 29
US-08-184-328-1
; Sequence 1, Application US/08184328
; Patent No. 5874086
   GENERAL INFORMATION:
    APPLICANT: Krstenansky, John L.
    APPLICANT: Nestor Jr., John J.
     APPLICANT: Ho, Teresa H.
     APPLICANT: Vickery, Brian H.
     APPLICANT: Bach, Chinh T.
     TITLE OF INVENTION: ANALOGS OF PARATHYROID HORMONE AND
     TITLE OF INVENTION: PARATHYROID HORMONE RELATED PEPTIDE: SYNTHESIS AND USE
     TITLE OF INVENTION: FOR THE TREATMENT OF OSTEOPOROSIS
     NUMBER OF SEQUENCES: 86
     CORRESPONDENCE ADDRESS:
       ADDRESSEE: Patent Dept., Syntex (U.S.A.), Inc.
       STREET: 3401 Hillview Ave.
       CITY: Palo Alto
       STATE: CA
       COUNTRY: USA
       ZIP: 94303
     COMPUTER READABLE FORM:
       MEDIUM TYPE: Floppy disk
       COMPUTER: IBM PC compatible
       OPERATING SYSTEM: PC-DOS/MS-DOS
```

APPLICATION NUMBER: JP 0271438

```
CURRENT APPLICATION DATA:
      APPLICATION NUMBER: US/08/184,328
      FILING DATE: 18-JAN-1994
      CLASSIFICATION: 435
    ATTORNEY/AGENT INFORMATION:
      NAME: Schmonsees, William
      REGISTRATION NUMBER: 31,796
      REFERENCE/DOCKET NUMBER: 27610-P1
    TELECOMMUNICATION INFORMATION:
      TELEPHONE: 415-855-6593
      TELEFAX: 415-496-3529
  INFORMATION FOR SEQ ID NO: 1:
    SEQUENCE CHARACTERISTICS:
      LENGTH: 34 amino acids
      TYPE: amino acid
      TOPOLOGY: linear
    MOLECULE TYPE: peptide
    HYPOTHETICAL: NO
    FRAGMENT TYPE: N-terminal
US-08-184-328-1
                         100.0%; Score 29; DB 2; Length 34;
 Query Match
 Best Local Similarity 100.0%; Pred. No. 1.2e-20;
          29; Conservative 0; Mismatches 0; Indels
                                                              0; Gaps
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
Qу
             1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
Db
RESULT 30
US-08-411-726-2
; Sequence 2, Application US/08411726
; Patent No. 5880093
  GENERAL INFORMATION:
    APPLICANT: BAGNOLI, Franco
    TITLE OF INVENTION: Use of Parathormone, Its Biologically
     TITLE OF INVENTION: Active Fragments and Correlated Peptides, for The
Preparation of
     TITLE OF INVENTION: Pharmaceutical Compositions Useful for The Treatment
of Pregnanc
     NUMBER OF SEQUENCES: 5
     CORRESPONDENCE ADDRESS:
       ADDRESSEE: Kenyon & Kenyon
       STREET: 1 Broadway
       CITY: New York
       STATE: NY
       COUNTRY: US
       ZIP: 10004
     COMPUTER READABLE FORM:
       MEDIUM TYPE: 3.5 Floppy disk
       COMPUTER: IBM PC compatible
       OPERATING SYSTEM: PC-DOS/MS-DOS 6.2
       SOFTWARE: WordPerfect 6.1 for Windows
     CURRENT APPLICATION DATA:
       APPLICATION NUMBER: US/08/411,726
```

SOFTWARE: PatentIn Release #1.0, Version #1.25

```
CLASSIFICATION: 514
    PRIOR APPLICATION DATA:
      APPLICATION NUMBER: PCT/EP93/02755
      FILING DATE: 08-OCT-1993
      APPLICATION NUMBER: MI-92A002331
      FILING DATE: 09-OCT-1992
    ATTORNEY/AGENT INFORMATION:
      NAME: PALMESE, Maria Luisa
      REGISTRATION NUMBER: 34,402
      REFERENCE/DOCKET NUMBER: 2111/1300
    TELECOMMUNICATION INFORMATION:
      TELEPHONE: 212-425-7200
      TELEFAX: 212-425-5288
  INFORMATION FOR SEQ ID NO: 2:
    SEQUENCE CHARACTERISTICS:
      LENGTH: 34 amino acids
      TYPE: amino acid
      STRANDEDNESS: single
      TOPOLOGY: linear
    MOLECULE TYPE: protein
US-08-411-726-2
                         100.0%; Score 29; DB 2; Length 34;
  Query Match
                         100.0%; Pred. No. 1.2e-20;
  Best Local Similarity
                                                                0; Gaps
           29; Conservative 0; Mismatches 0; Indels
  Matches
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
Qу
              11111111111111111111111111111111
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
Db
RESULT 31
US-08-691-647C-5
; Sequence 5, Application US/08691647C
; Patent No. 5955425
   GENERAL INFORMATION:
     APPLICANT: Barbier, Jean-Rene
     APPLICANT: Morley, Paul
     APPLICANT: Neugebauer, Witold
     APPLICANT: Ross, Virginia
     APPLICANT: Whitfield, James
     APPLICANT: Willick, Gordon E.
     TITLE OF INVENTION: CYCLIC PARATHYROID HORMONE ANALOGUES
     TITLE OF INVENTION: FOR THE TREATMENT OF OSTEOPOROSIS
     NUMBER OF SEQUENCES: 6
     CORRESPONDENCE ADDRESS:
       ADDRESSEE: NIXON & VANDERHYE, P.C.
       STREET: 1100 New York Avenue, 8th Floor
       CITY: Arlington
       STATE: Virginia
       COUNTRY: U.S.A.
       ZIP: 22201-4714
     COMPUTER READABLE FORM:
       MEDIUM TYPE: Floppy disk
       COMPUTER: IBM PC compatible
       OPERATING SYSTEM: PC-DOS/MS-DOS
```

FILING DATE: 05-APR-1995

```
SOFTWARE: ASCII Text
ï
    CURRENT APPLICATION DATA:
      APPLICATION NUMBER: US/08/691,647C
      FILING DATE: August 2, 1996
      CLASSIFICATION: 514
    ATTORNEY/AGENT INFORMATION:
      NAME: Crawford, Arthur R.
      REGISTRATION NUMBER: 25,327
      REFERENCE/DOCKET NUMBER: 1339-5
    TELECOMMUNICATION INFORMATION:
      TELEPHONE: (703) 816-4005
      TELEFAX: (703) 816-4100
      TELEX: N/A
  INFORMATION FOR SEQ ID NO: 5:
    SEQUENCE CHARACTERISTICS:
      LENGTH: 34 amino acids
      TYPE: amino acid
      TOPOLOGY: linear
    MOLECULE TYPE: protein
US-08-691-647C-5
 Query Match
                         100.0%; Score 29; DB 2; Length 34;
                         100.0%; Pred. No. 1.2e-20;
 Best Local Similarity
          29; Conservative 0; Mismatches
 Matches
                                               0; Indels
                                                              0; Gaps
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
Qу
             1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
Db
RESULT 32
US-08-521-097-1
; Sequence 1, Application US/08521097
; Patent No. 5977070
  GENERAL INFORMATION:
    APPLICANT: Krstenansky, John L.
    APPLICANT: Nestor Jr., John J.
    APPLICANT: Ho, Teresa H.
    APPLICANT: Vickery, Brian H.
    APPLICANT: Bach, Chinh T.
    TITLE OF INVENTION: ANALOGS OF PARATHYROID HORMONE AND
    TITLE OF INVENTION: PARATHYROID HORMONE RELATED PEPTIDE: SYNTHESIS AND USE
    TITLE OF INVENTION: FOR THE TREATMENT OF OSTEOPOROSIS
    NUMBER OF SEQUENCES: 86
    CORRESPONDENCE ADDRESS:
      ADDRESSEE: Patent Dept., Syntex (U.S.A.), Inc.
      STREET: 3401 Hillview Ave.
      CITY: Palo Alto
      STATE: CA
      COUNTRY: USA
      ZIP: 94303
    COMPUTER READABLE FORM:
      MEDIUM TYPE: Floppy disk
      COMPUTER: IBM PC compatible
      OPERATING SYSTEM: PC-DOS/MS-DOS
      SOFTWARE: PatentIn Release #1.0, Version #1.25
    CURRENT APPLICATION DATA:
```

```
FILING DATE: 29-AUG-1995
      CLASSIFICATION: 514
    PRIOR APPLICATION DATA:
      APPLICATION NUMBER: 08/184,328
      FILING DATE: 18-JAN-1994
    ATTORNEY/AGENT INFORMATION:
      NAME: Schmonsees, William
      REGISTRATION NUMBER: 31,796
      REFERENCE/DOCKET NUMBER: 27610-P1
    TELECOMMUNICATION INFORMATION:
      TELEPHONE: 415-855-6593
      TELEFAX: 415-496-3529
   INFORMATION FOR SEQ ID NO: 1:
    SEQUENCE CHARACTERISTICS:
      LENGTH: 34 amino acids
      TYPE: amino acid
      TOPOLOGY: linear
    MOLECULE TYPE: peptide
    HYPOTHETICAL: NO
    FRAGMENT TYPE: N-terminal
US-08-521-097-1
  Query Match
                         100.0%; Score 29; DB 2; Length 34;
  Best Local Similarity
                         100.0%; Pred. No. 1.2e-20;
  Matches
          29; Conservative
                             0; Mismatches
                                                0; Indels
                                                                  Gaps
Qу
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
              Db
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
RESULT 33
US-09-044-536A-1
; Sequence 1, Application US/09044536A
  Patent No. 6025467
  GENERAL INFORMATION:
    APPLICANT: FUKUDA, Tsunehiko
    APPLICANT: NAKAGAWA, Shizue
    APPLICANT: HABASHITA, Junko
    APPLICANT: TAKETOMI, Shigehisa
    TITLE OF INVENTION: PARATHYROID HORMONE DERIVATIVES AND THEIR USE
    NUMBER OF SEQUENCES: 36
     CORRESPONDENCE ADDRESS:
      ADDRESSEE: DIKE, BRONSTEIN, ROBERTS & CUSHMAN
      STREET: 130 Water Street
      CITY: Boston
      STATE: Massachusetts
      COUNTRY: US
      ZIP: 02109
    COMPUTER READABLE FORM:
      MEDIUM TYPE: Floppy disk
      COMPUTER: IBM PC compatible
      OPERATING SYSTEM: PC-DOS/MS-DOS
      SOFTWARE: PatentIn Release #1.0, Version #1.30
    CURRENT APPLICATION DATA:
      APPLICATION NUMBER: US/09/044,536A
```

APPLICATION NUMBER: US/08/521,097

```
PRIOR APPLICATION DATA:
      APPLICATION NUMBER: 08/662,871
      FILING DATE: 12-JUN-1996
    ATTORNEY/AGENT INFORMATION:
      NAME: CONLIN, David G
      REGISTRATION NUMBER: 27,026
      REFERENCE/DOCKET NUMBER: 46509-DIV
    TELECOMMUNICATION INFORMATION:
      TELEPHONE: (617)523-3400
      TELEFAX: (617)523-6440
  INFORMATION FOR SEQ ID NO: 1:
    SEQUENCE CHARACTERISTICS:
      LENGTH: 34 amino acids
      TYPE: amino acid
      STRANDEDNESS:
      TOPOLOGY: linear
    MOLECULE TYPE: peptide
    FEATURE:
      NAME/KEY: partial peptide
                 1..34
      LOCATION:
US-09-044-536A-1
                         100.0%; Score 29; DB 3; Length 34;
  Query Match
                         100.0%; Pred. No. 1.2e-20;
  Best Local Similarity
                              0; Mismatches 0; Indels
                                                                0; Gaps
           29; Conservative
  Matches
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
Qу
              11111111111111111111111111111111
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
Db
RESULT 34
US-08-904-760B-22
; Sequence 22, Application US/08904760B
; Patent No. 6110892
   GENERAL INFORMATION:
     APPLICANT: Jean-Rene, Barbier
     APPLICANT: Neugebauer, Witold
     APPLICANT: Ross, Virginia
     APPLICANT: Whitfield, James
     APPLICANT: Willick, Gordon E.
     TITLE OF INVENTION: PARATHYROID HORMONE ANALOGUES FOR THE
     TITLE OF INVENTION: TREATMENT OF OSTEOPOROSIS
     NUMBER OF SEQUENCES: 35
     CORRESPONDENCE ADDRESS:
       ADDRESSEE: NIXON & VANDERHYE P.C.
       STREET: 1100 No. 6110892th Glebe Rd. 8th floor
       CITY: Arlington
       STATE: VA
       COUNTRY: USA
       ZIP: 22201-4741
     COMPUTER READABLE FORM:
       MEDIUM TYPE: Floppy disk
       COMPUTER: IBM PC compatible
       OPERATING SYSTEM: PC-DOS/MS-DOS
       SOFTWARE: PatentIn Release #1.0, Version #1.30
```

FILING DATE: 19-MAR-1998

```
APPLICATION NUMBER: US/08/904,760B
      FILING DATE: 01-AUG-1997
      CLASSIFICATION: 514
    PRIOR APPLICATION DATA:
      APPLICATION NUMBER: 08/691,647
      FILING DATE: 02-AUG-1996
    ATTORNEY/AGENT INFORMATION:
      NAME: Crawford, Arthur R.
      REGISTRATION NUMBER: 25,327
      REFERENCE/DOCKET NUMBER: 1339-6
    TELECOMMUNICATION INFORMATION:
      TELEPHONE: 703-816-4000
      TELEFAX: 703-816-4100
  INFORMATION FOR SEQ ID NO: 22:
    SEQUENCE CHARACTERISTICS:
      LENGTH: 34 amino acids
      TYPE: amino acid
      STRANDEDNESS:
      TOPOLOGY: linear
    MOLECULE TYPE: protein
US-08-904-760B-22
                         100.0%; Score 29; DB 3; Length 34;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 1.2e-20;
                                               0; Indels
                                                               0; Gaps
                             0; Mismatches
          29; Conservative
  Matches
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
Qу
             1 SVSEIOLMHNLGKHLNSMERVEWLRKKLQ 29
Db
RESULT 35
US-08-903-497A-1
; Sequence 1, Application US/08903497A
; Patent No. 6147186
  GENERAL INFORMATION:
    APPLICANT: Gardella, Thomas J.
     APPLICANT: J ppner, Harald
     TITLE OF INVENTION: No. 6147186el Parathyroid Hormone-Related
     TITLE OF INVENTION: Peptide Analogs
     NUMBER OF SEQUENCES: 7
     CORRESPONDENCE ADDRESS:
       ADDRESSEE: Sterne, Kessler, Goldstein and Fox P.L.L.C.
       STREET: 1100 New York Avenue, N.W., Suite 600
       CITY: Washington
       STATE: DC
       COUNTRY: USA
       ZIP: 20005
     COMPUTER READABLE FORM:
       MEDIUM TYPE: Floppy disk
       COMPUTER: IBM PC compatible
       OPERATING SYSTEM: PC-DOS/MS-DOS
       SOFTWARE: PatentIn Release #1.0, Version #1.30
     CURRENT APPLICATION DATA:
       APPLICATION NUMBER: US/08/903,497A
       FILING DATE: 30-JUL-1997
```

CURRENT APPLICATION DATA:

```
PRIOR APPLICATION DATA:
      APPLICATION NUMBER: US 60/025,471
      FILING DATE: 31-JUL-1996
    ATTORNEY/AGENT INFORMATION:
      NAME: Markowicz, Karen R.
      REGISTRATION NUMBER: 36,351
      REFERENCE/DOCKET NUMBER: 0609.4310001/JAG/KRM
    TELECOMMUNICATION INFORMATION:
      TELEPHONE: (202) 371-2600
      TELEFAX: (202) 371-2540
  INFORMATION FOR SEQ ID NO: 1:
    SEQUENCE CHARACTERISTICS:
      LENGTH: 34 amino acids
      TYPE: amino acid
      STRANDEDNESS: single
      TOPOLOGY: not relevant
    MOLECULE TYPE: peptide
    FEATURE:
      NAME/KEY: MODIFIED-SITE
      LOCATION:
                 34
      OTHER INFORMATION: CARBOXY-TERMINAL MODIFICATION OF TYROSINE-
      OTHER INFORMATION: AMIDE
US-08-903-497A-1
                         100.0%; Score 29; DB 3; Length 34;
 Query Match
                         100.0%; Pred. No. 1.2e-20;
 Best Local Similarity
                                                              0; Gaps
           29; Conservative
                              0: Mismatches 0; Indels
                                                                          0;
 Matches
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
Qу
             1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
Dh
RESULT 36
US-09-108-661-13
; Sequence 13, Application US/09108661
; Patent No. 6287806
  GENERAL INFORMATION:
    APPLICANT: NISHIMURA, Osamu
    APPLICANT: KURIYAMA, Masato
    APPLICANT: KOYAMA, No. 6287806uyuki
    APPLICANT: FUKUDA, Tsunehiko
    TITLE OF INVENTION: METHOD FOR PRODUCING A BIOLOGICALLY
    TITLE OF INVENTION: ACTIVE RECOMBINANT CYSTEINE-FREE
    NUMBER OF SEQUENCES: 37
    CORRESPONDENCE ADDRESS:
      ADDRESSEE: DIKE, BRONSTEIN, ROBERTS & CUSHMAN, LLP
      STREET: 130 WATER STREET
      CITY: BOSTON
      STATE: MA
       COUNTRY: USA
       ZIP: 02109
    COMPUTER READABLE FORM:
      MEDIUM TYPE: Diskette
       COMPUTER: IBM Compatible
      OPERATING SYSTEM: DOS
```

CLASSIFICATION: 514

```
CURRENT APPLICATION DATA:
      APPLICATION NUMBER: US/09/108,661
      FILING DATE:
      CLASSIFICATION: 435
    PRIOR APPLICATION DATA:
      APPLICATION NUMBER: 08/350,709
      FILING DATE: 07-DEC-1994
      APPLICATION NUMBER: 07/838,857
      FILING DATE: 18-FEB-1992
      APPLICATION NUMBER: JP 024841
      FILING DATE: 19-FEB-1991
      APPLICATION NUMBER: JP 0271438
      FILING DATE: 18-OCT-1991
    ATTORNEY/AGENT INFORMATION:
      NAME: DAVID, RESNICK S
      REGISTRATION NUMBER: 34,235
      REFERENCE/DOCKET NUMBER: 41614-FWC
    TELECOMMUNICATION INFORMATION:
      TELEPHONE: 617-523-3400
      TELEFAX: 617-523-6440
      TELEX: 200291 STRE
  INFORMATION FOR SEQ ID NO:
    SEQUENCE CHARACTERISTICS:
      LENGTH: 34 amino acids
      TYPE: amino acid
      STRANDEDNESS: single
      TOPOLOGY: linear
    MOLECULE TYPE: peptide
    HYPOTHETICAL: NO
    ANTI-SENSE: NO
    FRAGMENT TYPE: N-terminal
    ORIGINAL SOURCE:
US-09-108-661-13
                         100.0%; Score 29; DB 3; Length 34; 100.0%; Pred. No. 1.2e-20;
  Query Match
  Best Local Similarity
                                                                            0;
           29; Conservative
                              0; Mismatches
                                                 0;
                                                     Indels
                                                                0; Gaps
  Matches
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
Qу
              1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
Db
RESULT 37
US-09-007-466-6
; Sequence 6, Application US/09007466
; Patent No. 6313092
  GENERAL INFORMATION:
     APPLICANT: HOLLADAY, LESLIE A.
     APPLICANT: OLDENBURG, KEVIN R.
     TITLE OF INVENTION: METHOD FOR INCREASING THE
     TITLE OF INVENTION: ELECTROTRANSPORT FLUX OF POLYPEPTIDES
     NUMBER OF SEQUENCES: 10
     CORRESPONDENCE ADDRESS:
       ADDRESSEE: ALZA CORPORATION
       STREET: 950 PAGE MILL ROAD
```

SOFTWARE: FastSEQ Version 1.5

```
STATE: CALIFORNIA
      COUNTRY: USA
      ZIP: 94303-0802
    COMPUTER READABLE FORM:
      MEDIUM TYPE: Floppy disk
      COMPUTER: IBM PC compatible
      OPERATING SYSTEM: PC-DOS/MS-DOS
      SOFTWARE: PatentIn Release #1.0, Version #1.30
    CURRENT APPLICATION DATA:
      APPLICATION NUMBER: US/09/007,466
      FILING DATE:
      CLASSIFICATION:
    PRIOR APPLICATION DATA:
      APPLICATION NUMBER: US 08/468,275
      FILING DATE: 06-JUN-1995
    ATTORNEY/AGENT INFORMATION:
      NAME: MILLER, D. BYRON
      REGISTRATION NUMBER: 30,661
      REFERENCE/DOCKET NUMBER: 0360-0002; ARC-2349
    TELECOMMUNICATION INFORMATION:
      TELEPHONE: (415) 496-8150
      TELEFAX: (415) 496-8048
  INFORMATION FOR SEQ ID NO: 6:
    SEQUENCE CHARACTERISTICS:
      LENGTH: 34 amino acids
      TYPE: amino acid
      STRANDEDNESS: single
      TOPOLOGY: linear
    MOLECULE TYPE: protein
US-09-007-466-6
                         100.0%; Score 29; DB 4; Length 34;
  Query Match
                         100.0%; Pred. No. 1.2e-20;
  Best Local Similarity
                                                               0; Gaps
                                                                           0;
                                                0; Indels
           29; Conservative 0; Mismatches
 Matches
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
Qу
              1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
Dh
RESULT 38
US-09-406-813-1
; Sequence 1, Application US/09406813
 Patent No. 6316410
; GENERAL INFORMATION:
  APPLICANT: Barbier, Jean-Rene
  APPLICANT: Morley, Paul
  APPLICANT: Whitfield, James
  APPLICANT: Willick, Gordon E.
  TITLE OF INVENTION: PARATHYROID HORMONE ANALOGUES FOR THE TREATMENT OF
  TITLE OF INVENTION: OSTEOPOROSIS
  FILE REFERENCE: 10688-1B
   CURRENT APPLICATION NUMBER: US/09/406,813
   CURRENT FILING DATE: 1999-09-22
   PRIOR APPLICATION NUMBER: 08/904,760
   PRIOR FILING DATE: 1997-08-01
```

CITY: PALO ALTO

```
NUMBER OF SEQ ID NOS: 9
  SOFTWARE: PatentIn Ver. 2.0
 SEQ ID NO 1
   LENGTH: 34
   TYPE: PRT
   ORGANISM: Homo sapiens
US-09-406-813-1
                         100.0%; Score 29; DB 4; Length 34;
  Query Match
                         100.0%; Pred. No. 1.2e-20;
 Best Local Similarity
                                                               0; Gaps
                              0; Mismatches
                                               0; Indels
                                                                          0;
           29; Conservative
 Matches
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
Qу
              1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
Db
RESULT 39
US-08-952-980B-6
; Sequence 6, Application US/08952980B
; Patent No. 6333189
  GENERAL INFORMATION:
     APPLICANT: HOLLADAY, LESLIE A.
     APPLICANT: OLDENBURG, KEVIN R.
     TITLE OF INVENTION: METHOD FOR INCREASING THE
     TITLE OF INVENTION: ELECTROTRANSPORT FLUX OF POLYPEPTIDES
     NUMBER OF SEQUENCES: 12
     CORRESPONDENCE ADDRESS:
       ADDRESSEE: ALZA CORPORATION
       STREET: 950 PAGE MILL ROAD
       CITY: PALO ALTO
       STATE: CALIFORNIA
       COUNTRY: USA
       ZIP: 94303-0802
     COMPUTER READABLE FORM:
       MEDIUM TYPE: Floppy disk
       COMPUTER: IBM PC compatible
       OPERATING SYSTEM: PC-DOS/MS-DOS
       SOFTWARE: PatentIn Release #1.0, Version #1.30
     CURRENT APPLICATION DATA:
       APPLICATION NUMBER: US/08/952,980B
       FILING DATE: 20-NOV-1997
       CLASSIFICATION: 530
     ATTORNEY/AGENT INFORMATION:
       NAME: MILLER, D. BYRON
       REGISTRATION NUMBER: 30,661
       REFERENCE/DOCKET NUMBER: 2349 CIP 1
     TELECOMMUNICATION INFORMATION:
       TELEPHONE: (650) 496-8150
       TELEFAX: (650) 496-8048
   INFORMATION FOR SEQ ID NO:
     SEQUENCE CHARACTERISTICS:
       LENGTH: 34 amino acids
       TYPE: amino acid
       STRANDEDNESS: single
       TOPOLOGY: linear
     MOLECULE TYPE: protein
```

```
100.0%; Score 29; DB 4; Length 34;
 Query Match
 Best Local Similarity 100.0%; Pred. No. 1.2e-20;
                             0; Mismatches 0; Indels
                                                              0; Gaps
                                                                          0;
           29; Conservative
 Matches
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
Qу
             1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
Db
RESULT 40
US-09-635-076-1
; Sequence 1, Application US/09635076
; Patent No. 6362163
  GENERAL INFORMATION:
    APPLICANT: Gardella, Thomas J.
     APPLICANT: J ppner, Harald
     TITLE OF INVENTION: No. 6362163el Parathyroid Hormone-Related
     TITLE OF INVENTION: Peptide Analogs
     NUMBER OF SEQUENCES: 7
     CORRESPONDENCE ADDRESS:
      ADDRESSEE: Sterne, Kessler, Goldstein and Fox P.L.L.C.
       STREET: 1100 New York Avenue, N.W., Suite 600
       CITY: Washington
       STATE: DC
       COUNTRY: USA
       ZIP: 20005
     COMPUTER READABLE FORM:
       MEDIUM TYPE: Floppy disk
       COMPUTER: IBM PC compatible
       OPERATING SYSTEM: PC-DOS/MS-DOS
       SOFTWARE: PatentIn Release #1.0, Version #1.30
     CURRENT APPLICATION DATA:
       APPLICATION NUMBER: US/09/635,076
       FILING DATE:
       CLASSIFICATION:
     PRIOR APPLICATION DATA:
       APPLICATION NUMBER: 08/903,497
       FILING DATE:
     ATTORNEY/AGENT INFORMATION:
       NAME: Markowicz, Karen R.
       REGISTRATION NUMBER: 36,351
       REFERENCE/DOCKET NUMBER: 0609.4310001/JAG/KRM
     TELECOMMUNICATION INFORMATION:
       TELEPHONE: (202) 371-2600
       TELEFAX: (202) 371-2540
   INFORMATION FOR SEQ ID NO: 1:
     SEQUENCE CHARACTERISTICS:
       LENGTH: 34 amino acids
       TYPE: amino acid
       STRANDEDNESS: single
       TOPOLOGY: not relevant
     MOLECULE TYPE: peptide
     FEATURE:
       NAME/KEY: MODIFIED-SITE
```

34

LOCATION:

Search completed: January 14, 2004, 10:43:36

Job time : 10.8474 secs

GenCore version 5.1.6 Copyright (c) 1993 - 2004 Compugen Ltd.

OM protein - protein search, using sw model

Run on: January 14, 2004, 10:28:19; Search time 8.58255 Seconds

(without alignments)

324.949 Million cell updates/sec

Title: US-09-843-221A-167

Perfect score: 29

Sequence: 1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29

Scoring table: OLIGO

Gapop 60.0 , Gapext 60.0

Searched: 283308 seqs, 96168682 residues

Word size : (

Total number of hits satisfying chosen parameters: 3709

Minimum DB seq length: 28 Maximum DB seq length: 40

Post-processing: Listing first 1000 summaries

Database : PIR 76:*

1: pir1:*
2: pir2:*
3: pir3:*

4: pir4:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Result		% Query				
No.	Score	~ _	Length	DB	ID	Description
1	5	17.2	34	2	A84241	hypothetical prote
2	5	17.2	34	2	B97032	transcription regu
3	4	13.8	28	2	T09594	gene LFY protein -
4	4	13.8	29	1	A55527	pyrroloquinoline q
5	4	13.8	29	2	I78537	copper transportin
6	4	13.8	29	2	S78412	ribosomal protein
7	4	13.8	30	2	S63531	hypothetical prote
8	4	13.8	31	2	S44471	glucagon G1 - Nort
9	4	13.8	31	2	S44472	glucagon G2 - Nort
10	4	13.8	31	2	D70236	hypothetical prote
11	4	13.8	32	2	F23454	ovalbumin phosphos
12	4	13.8	32	2	D31461	T-cell receptor de
13	4	13.8	33	2	E81714	hypothetical prote

14							
16	14	4	13.8	35	2	D23454	ovalbumin phosphos
17	15	4	13.8	35	2	G23454	ovalbumin phosphos
18	16	4	13.8	35	2	E95098	hypothetical prote
18	17	4	13.8	35	2	D82125	hypothetical prote
19							
20							
21 4 13.8 36 2 S46227 hypothetical prote hemoglobin, extrac homoglobin, extrac homoglobin							
22							
23 4 13.8 39 1 CKPHCS sarcotoxin IC - fl 24 4 13.8 39 1 CKPHCS sarcotoxin IC - fl 25 4 13.8 39 2 S71913 hemoglobin, extrac 26 3 10.3 28 2 A42272 brain-type creatin 27 3 10.3 28 2 E60071 vasoactive intesti 28 3 10.3 28 2 E60071 vasoactive intesti 30 3 10.3 28 2 S85836 T-cell receptor be 31 3 10.3 28 2 S70894 hypothetical prote 31 3 10.3 28 2 S70894 hypothetical prote 33 3 10.3 28 2 S22659 hypothetical prote 34 3 10.3 28 2 S26254 rel protein - chic 35 3 10.3 28 2 S26254 rel protein - chic 36 3 10.3 28 2 IS9477 antigen, T-cell receptor et 37 3 10.3 28 2 S39589 probable hydro-lya 38 3 10.3 28 2 S39589 probable hydro-lya 39 3 10.3 29 2 S39589 probable hydro-lya 39 3 10.3 29 2 S17147 galanin - chicken 40 3 10.3 29 2 S17147 galanin - chicken 41 3 10.3 29 2 S16164 dystrophin - rat (42 3 10.3 29 2 S65747 CDP-paratose synth 44 3 10.3 29 2 S65747 CDP-paratose synth 45 3 10.3 29 2 S65747 CDP-paratose synth 46 3 10.3 29 2 S65748 CDP-paratose synth 47 3 10.3 29 2 F85570 hypothetical prote 48 3 10.3 29 2 S65747 CDP-paratose synth 49 3 10.3 29 2 S65748 CDP-paratose synth 40 3 10.3 29 2 S65749 NADH2 dehydroxybenzo 41 3 10.3 29 2 T31443 cytochrome bc chai 42 3 10.3 29 2 S65749 NADH2 dehydroxybenzo 43 3 10.3 29 2 S7768 mammary-derived gr 44 3 10.3 29 2 F85570 hypothetical prote 45 3 10.3 29 2 S7768 mammary-derived gr 55 3 10.3 30 2 A35315 pancreatic ribonuc 56 3 10.3 30 2 A45913 cytochrome bc chai 57 3 10.3 30 2 A45915 pancreatic ribonuc 58 3 10.3 30 2 A45915 pancreatic ribonuc 59 3 10.3 30 2 A45915 pancreatic ribonuc 59 3 10.3 30 2 A45915 pancreatic ribonuc 50 3 10.3 30 2 A34451 heat shock protein 50 3 10.3 30 2 A3515 pancreatic ribonuc 50 3 10.3 30 2 A34451 heat shock protein 50 3 10.3 30 2 A34451 heat shock protein 50 3 10.3 30 2 A34451 heat shock protein 50 3 10.3 30 2 A34451 heat shock protein 50 3 10.3 30 2 A34451 heat shock protein							
24							
26							
26 3 10.3 28 2 A42272 brain-type creatin 27 3 10.3 28 2 C32416 phospholipase A2 (28 3 10.3 28 2 B60071 vasoactive intesti 29 3 10.3 28 2 S58386 T-cell receptor be 31 3 10.3 28 2 S78386 T-cell receptor be 32 3 10.3 28 2 S78386 T-cell receptor be 33 3 10.3 28 2 S78384 hypothetical prote 34 3 10.3 28 2 S26254 rel protein - chic 35 3 10.3 28 2 S26254 rel protein - chic 36 3 10.3 28 2 S26254 rel protein - chic 37 3 10.3 28 2 F86522 T-cell receptor et 38 3 10.3 29 1 GCCB glucagon - Chinchi 38 3 10.3 29 2 S39968 probable hydro-lya 39 3 10.3 29 2 S39968 probable hydro-lya 39 3 10.3 29 2 S7147 galanin - chicken 41 3 10.3 29 2 S17147 galanin - chicken 41 3 10.3 29 2 S17147 galanin - chicken 41 3 10.3 29 2 S01614 dystrophin - rat (42 3 10.3 29 2 S01614 dystrophin - rat (43 3 10.3 29 2 S85574 CDP-paratose synth 44 3 10.3 29 2 S85574 CDP-paratose synth 45 3 10.3 29 2 S65748 CDP-paratose synth 46 3 10.3 29 2 S65748 CDP-paratose synth 47 3 10.3 29 2 S65748 CDP-paratose synth 48 3 10.3 29 2 S65748 CDP-paratose synth 49 3 10.3 29 2 S73143 cytochrome bc chai 49 3 10.3 29 2 S73143 cytochrome bc chai 50 3 10.3 29 2 T4425 NADH2 dehydrogenas 50 3 10.3 29 2 T4476 probable antigen 2 51 3 10.3 29 2 T4476 probable antigen 2 52 3 10.3 29 2 T4476 probable antigen 2 53 3 10.3 29 2 T4476 probable antigen 2 54 3 10.3 29 2 T4476 probable antigen 2 55 3 10.3 29 2 T4478 CDP-paratose synth 55 3 10.3 29 2 T4478 probable antigen 2 56 3 10.3 30 2 A57688 mammary-derived gr 57 3 10.3 30 2 A58562 glutathione transf 58 3 10.3 30 2 A58562 glutathione transf 59 3 10.3 30 2 A4598 endo-1,4-beta-xyla 56 3 10.3 30 2 A4598 endo-1,4-beta-xyla 57 3 10.3 30 2 A44591 cytochrome bc chai 58 3 10.3 30 2 A44591 cytochrome bc chai 59 3 10.3 30 2 A44591 cytochrome bc chai 66 3 10.3 30 2 A44591 cytochrome bc chai 67 3 10.3 30 2 A44591 cytochrome bc chai 68 3 10.3 30 2 A44591 cytochrome bc chai 69 3 10.3 30 2 A44591 cytochrome bc chai 60 3 10.3 30 2 A44591 cytochrome bc chai 61 3 10.3 30 2 A44591 cytochrome bc chai 62 3 10.3 30 2 A44591 cytochrome bc chai 63 10.3 30 2							
27							
28							- -
10.3 28 2 A60304 Vasoactive intesti 30 3 10.3 28 2 S58386 T-cell receptor be 31 3 10.3 28 2 S70894 hypothetical prote 4 4 3 10.3 28 2 S70894 hypothetical prote 5 3 10.3 28 2 S22469 hypothetical prote 5 3 10.3 28 2 S22469 hypothetical prote 6 5 3 10.3 28 2 S26254 rel protein - chic 6 3 10.3 28 2 S26254 rel protein - chic 6 3 10.3 28 2 F46522 T-cell receptor et 7 7 7 7 7 7 7 7 7	27	3	10.3				- · · · · · · · · · · · · · · · · · · ·
30	28	3	10.3	28	2	B60071	vasoactive intesti
31 10.3 28 2 PN0047 signal transductio 32 3 10.3 28 2 S70894 hypothetical prote 33 3 10.3 28 2 S22469 hypothetical prote 34 3 10.3 28 2 S26254 rel protein - chic 35 3 10.3 28 2 I59477 antigen. T-cell re 36 3 10.3 28 2 F46522 T-cell receptor et 37 3 10.3 29 1 GCCB glucagon - Chinchi 38 3 10.3 29 2 S39968 probable hydro-lya 39 3 10.3 29 2 S7147 galanin - chicken 40 3 10.3 29 2 S17147 galanin - chicken 41 3 10.3 29 2 S17147 galanin - chicken 42 3 10.3 29 2 S01614 dystrophin - rat (43 3 10.3 29 2 S01614 dystrophin - rat (44 3 10.3 29 2 B81136 hypothetical prote 45 3 10.3 29 2 B81136 hypothetical prote 46 3 10.3 29 2 S65747 CDP-paratose synth 47 3 10.3 29 2 S65747 CDP-paratose synth 48 3 10.3 29 2 S65748 CDP-paratose synth 48 3 10.3 29 2 S6894 2,3-dihydroxybenzo 50 3 10.3 29 2 S6894 2,3-dihydroxybenzo 51 3 10.3 29 2 F85570 hypothetical prote 52 3 10.3 29 2 F85570 hypothetical prote 53 3 10.3 29 2 F85570 hypothetical prote 54 3 10.3 29 2 S4094 2,3-dihydrogenas 55 3 10.3 30 2 S40309 tyrosine 3-monoxy 56 3 10.3 30 2 S40309 tyrosine 3-monoxy 57 3 10.3 30 2 S40309 tyrosine 3-monoxy 58 3 10.3 30 2 A28562 glutathione transf 59 3 10.3 30 2 A28562 glutathione transf 59 3 10.3 30 2 A28562 glutathione transf 50 3 10.3 30 2 S21815 Hexporting ATPas 60 3 10.3 30 2 F32502 T-cell receptor de 61 3 10.3 30 2 A34461 heat shock protein 62 3 10.3 30 2 A34461 heat shock protein 63 10.3 30 2 A44913 Sectrin beta chai 64 5 10.3 30 2 A44913 Sectrin beta chai 65 3 10.3 30 2 A44913 Sectrin beta chai 66 3 10.3 30 2 A44913 Sectrin beta chai 67 3 10.3 30 2 A44913 Sectrin beta chai 68 3 10.3 30 2 A44913 Sectrin beta chai 68 3 10.3 30 2 A44913 Sectrin beta chai 69 3 10.3 30 2 A44913 Sectrin beta chai 60 3 10.3 30 2 A44913 Sectrin beta chai 61 3 10.3 30 2 A44913 Sectrin beta chai 62 3 10.3 30 2 A34461 heat shock protein 63 10.0 3 30 2 A34461 heat shock protein	29	3	10.3	28	2	A60304	
31 10.3 28 2 PN0047 signal transductio 32 3 10.3 28 2 S70894 hypothetical prote 33 3 10.3 28 2 S22469 hypothetical prote 34 3 10.3 28 2 S26254 rel protein - chic 35 3 10.3 28 2 I59477 antigen. T-cell re 36 3 10.3 28 2 F46522 T-cell receptor et 37 3 10.3 29 1 GCCB glucagon - Chinchi 38 3 10.3 29 2 S39968 probable hydro-lya 39 3 10.3 29 2 S7147 galanin - chicken 40 3 10.3 29 2 S17147 galanin - chicken 41 3 10.3 29 2 S17147 galanin - chicken 42 3 10.3 29 2 S01614 dystrophin - rat (43 3 10.3 29 2 S01614 dystrophin - rat (44 3 10.3 29 2 B81136 hypothetical prote 45 3 10.3 29 2 B81136 hypothetical prote 46 3 10.3 29 2 S65747 CDP-paratose synth 47 3 10.3 29 2 S65747 CDP-paratose synth 48 3 10.3 29 2 S65748 CDP-paratose synth 48 3 10.3 29 2 S6894 2,3-dihydroxybenzo 50 3 10.3 29 2 S6894 2,3-dihydroxybenzo 51 3 10.3 29 2 F85570 hypothetical prote 52 3 10.3 29 2 F85570 hypothetical prote 53 3 10.3 29 2 F85570 hypothetical prote 54 3 10.3 29 2 S4094 2,3-dihydrogenas 55 3 10.3 30 2 S40309 tyrosine 3-monoxy 56 3 10.3 30 2 S40309 tyrosine 3-monoxy 57 3 10.3 30 2 S40309 tyrosine 3-monoxy 58 3 10.3 30 2 A28562 glutathione transf 59 3 10.3 30 2 A28562 glutathione transf 59 3 10.3 30 2 A28562 glutathione transf 50 3 10.3 30 2 S21815 Hexporting ATPas 60 3 10.3 30 2 F32502 T-cell receptor de 61 3 10.3 30 2 A34461 heat shock protein 62 3 10.3 30 2 A34461 heat shock protein 63 10.3 30 2 A44913 Sectrin beta chai 64 5 10.3 30 2 A44913 Sectrin beta chai 65 3 10.3 30 2 A44913 Sectrin beta chai 66 3 10.3 30 2 A44913 Sectrin beta chai 67 3 10.3 30 2 A44913 Sectrin beta chai 68 3 10.3 30 2 A44913 Sectrin beta chai 68 3 10.3 30 2 A44913 Sectrin beta chai 69 3 10.3 30 2 A44913 Sectrin beta chai 60 3 10.3 30 2 A44913 Sectrin beta chai 61 3 10.3 30 2 A44913 Sectrin beta chai 62 3 10.3 30 2 A34461 heat shock protein 63 10.0 3 30 2 A34461 heat shock protein	30	3	10.3	28	2	S58386	T-cell receptor be
32			10.3	28	2	PN0047	
33							
34							
35 3 10.3 28 2 159477 antigen, T-cell ree 36 3 10.3 28 2 F46522 T-cell receptor et 37 3 10.3 29 1 GCCB glucagon - Chinchi 38 3 10.3 29 2 S39968 probable hydro-lya 39 3 10.3 29 2 A61509 islet amyloid poly 40 3 10.3 29 2 S17147 galanin - chicken 41 3 10.3 29 2 T44245 ribosomal protein 42 3 10.3 29 2 NO5272 gelsolin, cytosoli 44 3 10.3 29 2 B81136 hypothetical prote 45 3 10.3 29 2 B81136 hypothetical prote 46 3 10.3 29 2 S65747 CDP-paratose synth 47 3 10.3 29 2 S65748 CDP-paratose synth 48 3 10.3 29 2 S65748 CDP-paratose synth 49 3 10.3 29 2 S65748 CDP-paratose synth 50 3 10.3 29 2 S65094 2,3-dihydroxybenzo 50 3 10.3 29 2 F85570 hypothetical prote 51 3 10.3 29 2 F85570 hypothetical prote 52 3 10.3 29 2 F85570 hypothetical prote 53 3 10.3 29 2 F85570 hypothetical prote 54 3 10.3 29 2 S49309 tyronical prote 55 3 10.3 29 2 S40309 tyronical prote 56 3 10.3 30 2 S40309 tyrosine 3-monooxy 57 3 10.3 30 2 A4558 endo-ryosine 3-monooxy 58 3 10.3 30 2 A4558 endo-ryosine 3-monooxy 59 3 10.3 30 2 A4558 endo-ryosine 3-monooxy 59 3 10.3 30 2 A4558 endo-l,4-beta-xyla 60 3 10.3 30 2 A44518 endo-l,4-beta-xyla 61 3 10.3 30 2 A44912 cysteine proteinas 62 3 10.3 30 2 A44912 cysteine proteinas 63 3 10.3 30 2 A44912 cysteine proteinas 64 3 10.3 30 2 A44912 cysteine proteinas 65 3 10.3 30 2 A44912 cysteine proteinas 66 3 10.3 30 2 A44912 cysteine proteinas 67 3 10.3 30 2 A44913 spectrin beta chai 68 3 10.3 30 2 A44913 spectrin beta chai 69 3 10.3 30 2 A44913 34K core flagella 69 3 10.3 30 2 A44913 34K core flagella							
36							
37							
38							-
39							
40							
41							
42							
43	41					T44245	
44	42	3	10.3	29	2	S01614	dystrophin - rat (
45 3 10.3 29 2 184189	43	3	10.3	29	2	A05272	gelsolin, cytosoli
45	44	3	10.3	29	2	B81136	hypothetical prote
46			10.3	29	2	I84189	cyclic AMP recepto
47 3 10.3 29 2 S65748 CDP-paratose synth 48 3 10.3 29 2 B41476 probable antigen 2 49 3 10.3 29 2 S68094 2,3-dihydroxybenzo 50 3 10.3 29 2 A27688 mammary-derived gr 51 3 10.3 29 2 F85570 hypothetical prote 53 3 10.3 29 2 I49732 NADH2 dehydrogenas 54 3 10.3 29 2 A59479 NADP phosphatase I 55 3 10.3 30 2 S40309 tyrosine 3-monooxy 56 3 10.3 30 2 C21897 ornithine carbamoy 57 3 10.3 30 2 A28562 glutathione transf 58 3 10.3 30 2 A44598 endo-1,4-beta-xyla 60 3 10.3 30 2 A44598 endo-1,4-beta-xyla 61 3 10.3 30 2 S21815 H+-exporting ATPas 62 3 10.3 30 2 A44912 cysteine proteinas 63 3 10.3 30 2 F32502 T-cell receptor de 64 3 10.3 30 2 A34461 heat shock protein 65 3 10.3 30 2 A24973 delta-endotoxin - 68 3 10.3 30 2 A24973 delta-endotoxin - 68 3 10.3 30 2 A44913 34K core flagella 69 3 10.3 30 2 A44913 34K core flagella 69 3 10.3 30 2 A44913 34K core flagella							
48							
49 3 10.3 29 2 S68094 2,3-dihydroxybenzo 50 3 10.3 29 2 A27688 mammary-derived gr 51 3 10.3 29 2 T31443 cytochrome bc chai 52 3 10.3 29 2 F85570 hypothetical prote 53 3 10.3 29 2 A59479 NADH2 dehydrogenas 54 3 10.3 29 2 A59479 NADP phosphatase I 55 3 10.3 30 2 S40309 tyrosine 3-monooxy 56 3 10.3 30 2 C21897 ornithine carbamoy 57 3 10.3 30 2 A28562 glutathione transf 58 3 10.3 30 2 A44598 endo-1,4-beta-xyla 60 3 10.3 30 2 A44133 trypsin (EC 3.4.21 61 3 10.3 30 2 A44912 cysteine proteinas 62 3							
50 3 10.3 29 2 A27688 mammary-derived gr 51 3 10.3 29 2 T31443 cytochrome bc chai 52 3 10.3 29 2 F85570 hypothetical prote 53 3 10.3 29 2 A59479 NADH2 dehydrogenas 54 3 10.3 29 2 A59479 NADP phosphatase I 55 3 10.3 30 2 S40309 tyrosine 3-monooxy 56 3 10.3 30 2 C21897 ornithine carbamoy 57 3 10.3 30 2 A28562 glutathione transf 58 3 10.3 30 2 A44598 endo-1,4-beta-xyla 60 3 10.3 30 2 A61333 trypsin (EC 3.4.21 61 3 10.3 30 2 S21815 H+-exporting ATPas 62 3 10.3 30 2 F32502 T-cell receptor de 64 3							
51 3 10.3 29 2 T31443 cytochrome bc chai 52 3 10.3 29 2 F85570 hypothetical prote 53 3 10.3 29 2 I49732 NADH2 dehydrogenas 54 3 10.3 29 2 A59479 NADP phosphatase I 55 3 10.3 30 2 S40309 tyrosine 3-monooxy 56 3 10.3 30 2 C21897 ornithine carbamoy 57 3 10.3 30 2 A28562 glutathione transf 58 3 10.3 30 2 A05315 pancreatic ribonuc 59 3 10.3 30 2 A44598 endo-1,4-beta-xyla 60 3 10.3 30 2 S21815 H+-exporting ATPas 62 3 10.3 30 2 F32502 T-cell receptor de 64 3 10.3 30 2 S21195 spectrin beta chai 65 3							
52 3 10.3 29 2 F85570 hypothetical prote 53 3 10.3 29 2 I49732 NADH2 dehydrogenas 54 3 10.3 29 2 A59479 NADP phosphatase I 55 3 10.3 30 2 S40309 tyrosine 3-monooxy 56 3 10.3 30 2 C21897 ornithine carbamoy 57 3 10.3 30 2 A28562 glutathione transf 58 3 10.3 30 2 A05315 pancreatic ribonuc 59 3 10.3 30 2 A44598 endo-1,4-beta-xyla 60 3 10.3 30 2 S21815 H+-exporting ATPas 62 3 10.3 30 2 S21815 H+-exporting ATPas 63 3 10.3 30 2 F32502 T-cell receptor de 64 3 10.3 30 2 PD0013 cAMP response elem 65 3							
53 3 10.3 29 2 149732 NADH2 dehydrogenas 54 3 10.3 29 2 A59479 NADP phosphatase I 55 3 10.3 30 2 S40309 tyrosine 3-monooxy 56 3 10.3 30 2 C21897 ornithine carbamoy 57 3 10.3 30 2 A28562 glutathione transf 58 3 10.3 30 2 A05315 pancreatic ribonuc 59 3 10.3 30 2 A44598 endo-1,4-beta-xyla 60 3 10.3 30 2 S21815 H+-exporting ATPas 61 3 10.3 30 2 S21815 H+-exporting ATPas 62 3 10.3 30 2 F32502 T-cell receptor de 64 3 10.3 30 2 F22502 T-cell receptor de 65 3 10.3 30 2 A34461 heat shock protein 66 3							
54 3 10.3 29 2 A59479 NADP phosphatase I 55 3 10.3 30 2 S40309 tyrosine 3-monooxy 56 3 10.3 30 2 C21897 ornithine carbamoy 57 3 10.3 30 2 A28562 glutathione transf 58 3 10.3 30 2 A44598 endo-1,4-beta-xyla 60 3 10.3 30 2 A61333 trypsin (EC 3.4.21 61 3 10.3 30 2 S21815 H+-exporting ATPas 62 3 10.3 30 2 F32502 T-cell receptor de 64 3 10.3 30 2 F32502 T-cell receptor de 65 3 10.3 30 2 S21195 spectrin beta chai 66 3 10.3 30 2 A34461 heat shock protein 67 3 10.3 30 2 A44913 34K core flagella 69 3 1							· · · · · · · · · · · · · · · · · ·
55 3 10.3 30 2 S40309 tyrosine 3-monooxy 56 3 10.3 30 2 C21897 ornithine carbamoy 57 3 10.3 30 2 A28562 glutathione transf 58 3 10.3 30 2 A44598 endo-1,4-beta-xyla 60 3 10.3 30 2 A61333 trypsin (EC 3.4.21 61 3 10.3 30 2 S21815 H+-exporting ATPas 62 3 10.3 30 2 A44912 cysteine proteinas 63 3 10.3 30 2 F32502 T-cell receptor de 64 3 10.3 30 2 PD0013 cAMP response elem 65 3 10.3 30 2 A34461 heat shock protein 66 3 10.3 30 2 A22977 delta-endotoxin - 68 3 10.3 30 2 A44913 34K core flagella 69 3 10							
56 3 10.3 30 2 C21897 ornithine carbamoy 57 3 10.3 30 2 A28562 glutathione transf 58 3 10.3 30 2 A05315 pancreatic ribonuc 59 3 10.3 30 2 A44598 endo-1,4-beta-xyla 60 3 10.3 30 2 A61333 trypsin (EC 3.4.21 61 3 10.3 30 2 S21815 H+-exporting ATPas 62 3 10.3 30 2 F32502 T-cell receptor de 63 3 10.3 30 2 PD0013 cAMP response elem 65 3 10.3 30 2 S21195 spectrin beta chai 66 3 10.3 30 2 A22977 delta-endotoxin - 68 3 10.3 30 2 A44913 34K core flagella 69 3 10.3 30 2 S08565 ribulose-bisphosph							
57 3 10.3 30 2 A28562 glutathione transf 58 3 10.3 30 2 A44598 endo-1,4-beta-xyla 60 3 10.3 30 2 A61333 trypsin (EC 3.4.21 61 3 10.3 30 2 S21815 H+-exporting ATPas 62 3 10.3 30 2 F32502 T-cell receptor de 63 3 10.3 30 2 PD0013 cAMP response elem 65 3 10.3 30 2 S21195 spectrin beta chai 66 3 10.3 30 2 A22977 delta-endotoxin - 68 3 10.3 30 2 A44913 34K core flagella 69 3 10.3 30 2 S08565 ribulose-bisphosph							
58 3 10.3 30 2 A05315 pancreatic ribonuc 59 3 10.3 30 2 A44598 endo-1,4-beta-xyla 60 3 10.3 30 2 A61333 trypsin (EC 3.4.21 61 3 10.3 30 2 S21815 H+-exporting ATPas 62 3 10.3 30 2 A44912 cysteine proteinas 63 3 10.3 30 2 F32502 T-cell receptor de 64 3 10.3 30 2 PD0013 cAMP response elem 65 3 10.3 30 2 S21195 spectrin beta chai 66 3 10.3 30 2 A34461 heat shock protein 67 3 10.3 30 2 A42977 delta-endotoxin - 68 3 10.3 30 2 S08565 ribulose-bisphosph					2		
59	57		10.3	30	2	A28562	
60 3 10.3 30 2 A61333 trypsin (EC 3.4.21 61 3 10.3 30 2 S21815 H+-exporting ATPas 62 3 10.3 30 2 A44912 cysteine proteinas 63 3 10.3 30 2 F32502 T-cell receptor de 64 3 10.3 30 2 PD0013 cAMP response elem 65 3 10.3 30 2 S21195 spectrin beta chai 66 3 10.3 30 2 A34461 heat shock protein 67 3 10.3 30 2 A22977 delta-endotoxin - 68 3 10.3 30 2 A44913 34K core flagella 69 3 10.3 30 2 S08565 ribulose-bisphosph	58	3	10.3	30	2	A05315	pancreatic ribonuc
61 3 10.3 30 2 S21815 H+-exporting ATPas 62 3 10.3 30 2 A44912 cysteine proteinas 63 3 10.3 30 2 F32502 T-cell receptor de 64 3 10.3 30 2 PD0013 cAMP response elem 65 3 10.3 30 2 S21195 spectrin beta chai 66 3 10.3 30 2 A34461 heat shock protein 67 3 10.3 30 2 A22977 delta-endotoxin - 68 3 10.3 30 2 A44913 34K core flagella 69 3 10.3 30 2 S08565 ribulose-bisphosph	59	3	10.3	30	2	A44598	endo-1,4-beta-xyla
62 3 10.3 30 2 A44912 cysteine proteinas 63 3 10.3 30 2 F32502 T-cell receptor de 64 3 10.3 30 2 PD0013 cAMP response elem 65 3 10.3 30 2 S21195 spectrin beta chai 66 3 10.3 30 2 A34461 heat shock protein 67 3 10.3 30 2 A22977 delta-endotoxin - 68 3 10.3 30 2 A44913 34K core flagella 69 3 10.3 30 2 S08565 ribulose-bisphosph	60	3	10.3	30	2	A61333	trypsin (EC 3.4.21
62 3 10.3 30 2 A44912 cysteine proteinas 63 3 10.3 30 2 F32502 T-cell receptor de 64 3 10.3 30 2 PD0013 cAMP response elem 65 3 10.3 30 2 S21195 spectrin beta chai 66 3 10.3 30 2 A34461 heat shock protein 67 3 10.3 30 2 A22977 delta-endotoxin - 68 3 10.3 30 2 A44913 34K core flagella 69 3 10.3 30 2 S08565 ribulose-bisphosph	61	3	10.3	30	2	S21815	H+-exporting ATPas
63 3 10.3 30 2 F32502 T-cell receptor de 64 3 10.3 30 2 PD0013 cAMP response elem 65 3 10.3 30 2 S21195 spectrin beta chai 66 3 10.3 30 2 A34461 heat shock protein 67 3 10.3 30 2 A22977 delta-endotoxin - 68 3 10.3 30 2 A44913 34K core flagella 69 3 10.3 30 2 S08565 ribulose-bisphosph		3			2		
64 3 10.3 30 2 PD0013 CAMP response elem 65 3 10.3 30 2 S21195 spectrin beta chai 66 3 10.3 30 2 A34461 heat shock protein 67 3 10.3 30 2 A22977 delta-endotoxin - 68 3 10.3 30 2 A44913 34K core flagella 69 3 10.3 30 2 S08565 ribulose-bisphosph							
65 3 10.3 30 2 S21195 spectrin beta chai 66 3 10.3 30 2 A34461 heat shock protein 67 3 10.3 30 2 A22977 delta-endotoxin - 68 3 10.3 30 2 A44913 34K core flagella 69 3 10.3 30 2 S08565 ribulose-bisphosph							
66 3 10.3 30 2 A34461 heat shock protein 67 3 10.3 30 2 A22977 delta-endotoxin - 68 3 10.3 30 2 A44913 34K core flagella 69 3 10.3 30 2 S08565 ribulose-bisphosph							
67 3 10.3 30 2 A22977 delta-endotoxin - 68 3 10.3 30 2 A44913 34K core flagella 69 3 10.3 30 2 S08565 ribulose-bisphosph							
68 3 10.3 30 2 A44913 34K core flagella 69 3 10.3 30 2 S08565 ribulose-bisphosph							——————————————————————————————————————
69 3 10.3 30 2 S08565 ribulose-bisphosph							
							· · · · · · · · · · · · · · · · · · ·
/U 3 10.3 30 2 530333 N-Carbamoy1-D-amin							<u></u>
	70	3	10.3	30	2	530333	M-Carballoy1-D-alliII

71	3	10.3	30	2	PQ0444	hypothetical prote
72	3	10.3		2	H95021	hypothetical prote
73	3	10.3		2	D72276	hypothetical prote
	3			2		
74		10.3			D70253	conserved hypothet
75	3	10.3		2	B70165	hypothetical prote
76	3	10.3		2	B81956	hypothetical prote
77	3	10.3	30	2	E82294	hypothetical prote
78	3	10.3	30	2	S72626	small-cell-variant
79	3	10.3	30	2	A35687	probable 39K inorg
80	3	10.3		2	\$73316	photosystem I chai
81	3	10.3		2	A32946	trypsin-like serin
82	3	10.3		2	PL0189	Ig light chain - s
83	3	10.3		2	S65519	carcinoembryonic a
84	3	10.3		2	S34765	4-hydroxybutyryl-C
85	3	10.3	30	2	D81532	hypothetical prote
86	3	10.3	30	2	A48923	retrovirus-related
87	3	10.3	30	2	B56586	storage hexamer 2
88	3	10.3		2	F81360	very hypothetical
89	3	10.3		2	S15650	NADH2 dehydrogenas
90	3	10.3		2	H97596	hypothetical prote
91	3	10.3		4	152605	hypothetical MLL/E
92	3	10.3		1	A28805	leiurotoxin I [val
93	3	10.3	31	1	A49078	leiurotoxin I-like
94	3	10.3	31	1	S34504	photosystem I prot
95	3	10.3	31	2	T44925	hypothetical prote
96	3	10.3	31	2	A58793	relaxin chain B -
97	3	10.3		2	A58586	conotoxin MrVIA -
98	3	10.3		2	F30608	Ig kappa chain V-I
99	3	10.3		2	D30608	Ig kappa chain V-I
100	3	10.3		2	F31461	T-cell receptor de
101	3	10.3		2	152232	tau protein - huma
102	3	10.3		2	S04980	ferritin heavy cha
103	3	10.3	31	2	S32610	antiviral protein
104	3	10.3	31	2	S38881	inner membrane pro
105	3	10.3	31	2	G95018	hypothetical prote
106	3	10.3		2	G95022	hypothetical prote
107	3	10.3		2	A95085	hypothetical prote
108	3	10.3		2	Н95093	hypothetical prote
	3			2		
109		10.3			E95140	hypothetical prote
110	3	10.3		2	E95151	hypothetical prote
111	3	10.3		2	E70202	hypothetical prote
112	3	10.3		2	E70223	hypothetical prote
113	3	10.3	31	2	H70225	hypothetical prote
114	3	10.3	31	2	C70240	hypothetical prote
115	3	10.3	31	2	E64562	hypothetical prote
116	3	10.3		2	S49191	hypothetical prote
117	3	10.3		2	A05051	hypothetical prote
	3	10.3		2		histone H1.3 - whe
118					B23605	
119	3	10.3		2	\$78738	protein YOL038c-a
120	3	10.3		2	A36221	cecropin P1 - pig
121	3	10.3		2	S27112	sarcolipin - rabbi
122	3	10.3		2	D81591	hypothetical prote
123	3	10.3	31	2	G81558	hypothetical prote
124	3	10.3		2	G82816	hypothetical prote
125	3	10.3		2	F82565	hypothetical prote
126	3	10.3		1	TCEE	calcitonin - Japan
127	3	10.3		1	TCON2	calcitonin 2 - soc
12/	J	10.3	24	_	ICONZ	Carciconiii 2 - 500

128	3	10.3	32	1	TCON2C	calcitonin 2 - chu
129	3	10.3	32	1	TCON2P	calcitonin 2 - pin
130	3	10.3	32	1	TCON3	calcitonin 3 - coh
131	3	10.3	32	2	S20719	alcohol dehydrogen
				2		trypsin (EC 3.4.21
132	3	10.3	32		A61143	
133	3	10.3	32	2	D32502	T-cell receptor de
134	3	10.3	32	2	A32502	T-cell receptor de
135	3	10.3	32	2	B40186	ubiquitin / riboso
136	3	10.3	32	2	<i>S</i> 57780	histone H3 - rice
137	3	10.3	32	2	A24047	gap junction prote
138	3	10.3	32	2	S51524	anchorin CII - bov
139	3	10.3	32	2	S36809	GTP-binding regula
140	3	10.3	32	2	A29743	translation initia
141	3	10.3	32	2	A03367	lectin - Macrotylo
	3	10.3	32	2	A44900	fimbrin, SEF 21 -
142						
143	3	10.3	32	2	S03273	photosystem II oxy
144	3	10.3	32	2	C46107	polyomavirus enhan
145	3	10.3	32	2	S08482	regulatory protein
146	3	10.3	32	2	E87694	hypothetical prote
147	3	10.3	32	2	G84161	hypothetical prote
148	3	10.3	32	2	D70222	hypothetical prote
149	3	10.3	32	2	E70225	hypothetical prote
150	3	10.3	32	2	B70241	hypothetical prote
151	3	10.3	32	2	B70257	hypothetical prote
152	3	10.3	32	2	E82279	hypothetical prote
	3			2		
153		10.3	32		E82089	hypothetical prote
154	3	10.3	32	2	H82416	hypothetical prote
155	3	10.3	32	2	T17394	vrlN protein - Dic
156	3	10.3	32	2	S23476	hypothetical prote
157	3	10.3	32	2	S22304	hypothetical prote
158	3	10.3	32	2	S78323	photosystem II pro
159	3	10.3	32	2	A05015	hypothetical prote
160	3	10.3	32	2	138619	zinc finger protei
161	3	10.3	32	2	S28398	t-complex protein
162	3	10.3	32	2	T14569	hypothetical prote
163	3	10.3	32	2	H84081	hypothetical prote
164	3	10.3	32	2	F82833	hypothetical prote
	3			2		
165		10.3	32		JC5802	ovulation stimulat
166	3	10.3	32	2	E85588	hypothetical prote
167	3	10.3	33	2	S43312	2',3'-cyclic-nucle
168	3	10.3	33	2	S26859	chitinase (EC 3.2.
169	3	10.3	33	2	152219	c-ras-Ki-2 protein
170	3	10.3	33	2	I53221	K-ras protein – hu
171	3	10.3	33	2	PC2300	gaegurin 1 - Korea
172	3	10.3	33	2	I56451	relaxin - hamadrya
173	3	10.3	33	2	E32502	T-cell receptor de
174	3	10.3	33	2	A31461	T-cell receptor de
175	3	10.3	33	2	B31461	T-cell receptor de
176	3	10.3	33	2	A03150	retinoic acid-bind
177	3	10.3	33	2	C46027	neurotransmitter t
178	3	10.3	33	2	PQ0150	dnaK-type molecula
179	3	10.3	33	2	B44906	L1 protein - human
180	3	10.3	33	2	PQ0418	matrix protein M1
181	3	10.3	33	2	S34505	hypothetical prote
182	3	10.3	33	2	G95006	hypothetical prote
183	3	10.3	33	2	C95200	hypothetical prote
184	3	10.3	33	2	A87213	hypothetical prote

				_		
185	3	10.3	33	2	F84163	hypothetical prote
186	3	10.3	33	2	E82135	hypothetical prote
187	3	10.3	33	2	H82475	hypothetical prote
188	3	10.3	33	2	S68096	lactate dehydrogen
189	3	10.3	33	2	E82526	hypothetical prote
190	3	10.3	33	2	AC1012	hypothetical prote
191	3	10.3	33	2	C97406	hypothetical prote
192	3	10.3	34	2	S57282	phospholipase A2 (
	3	10.3	34	2	A40298	dermaseptin - Sauv
193						=
194	3	10.3	34	2	148887	cryptdin-4 - mouse
195	3	10.3	34	2	132502	T-cell receptor de
196	3	10.3	34	2	H31461	T-cell receptor de
197	3	10.3	34	2	A19197	class II histocomp
198	3	10.3	34	2	D48147	troponin I (altern
199	3	10.3	34	2	A43564	neurogenic protein
200	3	10.3	34	2	H95047	hypothetical prote
201	3	10.3	34	2	D95189	hypothetical prote
202	3	10.3	34	2	C90973	hypothetical prote
202	3	10.3	34	2	F70242	hypothetical prote
				2		hypothetical prote
204	3	10.3	34		B70252	<u>-</u>
205	3	10.3	34	2	F81919	hypothetical prote
206	3	10.3	34	2	H81883	hypothetical prote
207	3	10.3	34	2	F81044	hypothetical prote
208	3	10.3	34	2	F82163	hypothetical prote
209	3	10.3	34	2	E82100	hypothetical prote
210	3	10.3	34	2	B82449	hypothetical prote
211	3	10.3	34	2	S13662	cellulase (EC 3.2.
212	3	10.3	34	2	A60110	repetitive protein
213	3	10.3	34	2	S44828	F54F2.3 protein -
	3	10.3	34	2	F84079	hypothetical prote
214						
215	3	10.3	34	2	H81600	hypothetical prote
216	3	10.3	34	2	H82820	hypothetical prote
217	3	10.3	34	2	C82819	hypothetical prote
218	3	10.3	34	2	B82679	hypothetical prote
219	3	10.3	34	2	G85820	unknown protein en
220	3	10.3	35	2	E38601	Ig kappa chain V r
221	3	10.3	35	2	A05302	hemoglobin beta ch
222	3	10.3	35	2	A29663	histone H4 - starf
223	3	10.3	35	2	S27154	ribosomal protein
224	3	10.3	35	2	E48401	ribosomal protein
225	3	10.3	35	2	S13435	lectin III - furze
	3			2		photosystem II psb
226		10.3	35		\$74556 \$10004	- -
227	3	10.3	35	2	S18224	filamentous hemagg
228	3	10.3	35	2	S18226	opacity protein op
229	3	10.3	35	2	T07870	major latex protei
230	3	10.3	35	2	B33770	hypothetical prote
231	3	10.3	35	2	PS0439	potassium channel
232	3	10.3	35	-2	148925	homeobox protein -
233	3 '	10.3	35	2	F87622	hypothetical prote
234	3	10.3	35	2	C96619	protein T30E16.7 [
235	3	10.3	35	2	B84674	hypothetical prote
236	3	10.3	35	2		hypothetical prote
					F84395	
237	3	10.3	35	2	B82012	hypothetical prote
238	3	10.3	35	2	H81948	hypothetical prote
239	3	10.3	35	2	A82151	hypothetical prote
240	3	10.3	35	2	F82051	hypothetical prote
241	3	10.3	35	2	S58708	neutral phosphatas

242	3	10.3	35	2	F69827	hypothetical prote
243	3	10.3	35	2	C69977	hypothetical prote
244	3	10.3	35	2	S65772	early nodulin 40 -
245	3	10.3	35	2	A38107	mammalian toxin -
246	3	10.3	35	2	S49309	oncofetal protein
	3	10.3	35	2	C81560	hypothetical prote
247			36	2	H32502	T-cell receptor de
248	3	10.3		2	C32502	T-cell receptor de
249	3	10.3	36			ribosomal protein
250	3	10.3	36	2	S08552	ribosomal protein
251	3	10.3	36	2	S72299	
252	3	10.3	36	2	B44400	myosin heavy chain
253	3	10.3	36	2	I46593	myosin - pig (frag
254	3	10.3	36	2	B31872	retinoic acid-bind
255	3	10.3	36	2	S35572	zona pellucida pro
256	3	10.3	36	2	B41481	virulence-associat
257	3	10.3	36	2	A38659	methanol dehydroge
258	3	10.3	36	2	C95218	conserved domain p
259	3	10.3	36	2	E84416	hypothetical prote
260	3	10.3	36	2	S17834	acetyl-CoA carboxy
261	3	10.3	36	2	E70220	hypothetical prote
262	3	10.3	36	2	E70238	hypothetical prote
263	3	10.3	36	2	F64604	hypothetical prote
264	3	10.3	36	2	G81853	hypothetical prote
			36	2	S16552	hypothetical prote
265	3	10.3				hypothetical prote
266	3	10.3	36	2	G82281	hypothetical prote
267	3	10.3	36	2	A82163	
268	3	10.3	36	2	C82111	hypothetical prote
269	3	10.3	36	2	A82092	hypothetical prote
270	3	10.3	36	2	B82093	hypothetical prote
271	3	10.3	36	2	A82437	hypothetical prote
272	3	10.3	36	2	A38729	pyruvate decarboxy
273	3	10.3	36	2	A69326	hypothetical prote
274	3	10.3	36	2	S67795	probable membrane
275	3	10.3	36	2	T22263	hypothetical prote
276	3	10.3	36	2	A57443	guanylate cyclase
277	3	10.3	36	2	D83682	hypothetical prote
278	3	10.3	36	2	A83870	hypothetical prote
279	3	10.3	36	2	F84074	hypothetical prote
280	3	10.3	36	2	A56634	neuropeptide F - A
281	3	10.3	36	2	S77071	probable plastoqui
282	3	10.3	36	2	AF1015	hypothetical prote
283	3	10.3	36	2	AI1841	hypothetical prote
284	3	10.3	37	1	S32792	iberiotoxin - east
285	3	10.3	37	1	HSWT93	histone H2A.3 - wh
	3	10.3	37	2	S48656	fusicoccin recepto
286	3			2	S03570	trypsin (EC 3.4.21
287		10.3	37			proteinase omega -
288	3	10.3	37	2	S39367	transforming prote
289	3	10.3	37	2	S06217	
290	3	10.3	37	2	S05037	insulinoma amyloid
291	3	10.3	37	2	A30607	Ig kappa chain V-I
292	3	10.3	37	2	PC1121	antifungal 25K pro
293	3	10.3	37	2	G01887	MEK kinase - human
294	3	10.3	37	2	S07517	gene 6.3 protein -
295	3	10.3	37	2	G70223	hypothetical prote
296	3	10.3	37	2	E70241	hypothetical prote
297	3	10.3	37	2	D83199	hypothetical prote
298	3	10.3	37	2	H82304	hypothetical prote
						·

299	3	10.3	37	2	S21132	photosystem II cyt
300	3	10.3	37	2	F59103	hypothetical prote
301	3	10.3	37	2	T36662	small hypothetical
302	3	10.3	37	2	T11815	hypothetical prote
303	3	10.3	37	2	A57127	diuretic hormone 1
304	3	10.3	37	2	C32112	R15 gamma peptide
305	3	10.3	37	2	B48845	sterol regulatory
306	3	10.3	37	2	S68261	hypothetical prote
307	3	10.3	37	2	S49982	Tcell receptor alp
308	3	10.3	37	2	PN0550	metabotropic gluta
309	3	10.3	37	2	S70931	histone-like prote
310	3	10.3	37	2	F81403	hypothetical prote
311	3	10.3	38	1	R5EC36	ribosomal protein
312	3	10.3	38	2	C34047	stylar glycoprotei
313	3	10.3	38	2	T11763	acetyl-CoA carboxy
	3	10.3	38	2		lipid transfer pro
314	3			2	S39034	
315		10.3	38		A42974	natriuretic peptid
316	3	10.3	38	2	A49165	pituitary adenylat
317	3	10.3	38	2	A61070	pituitary adenylat
318	3	10.3	38	2	PS0129	H-2 class I histoc
319	3	10.3	38	2	S50764	ribosomal protein
320	3	10.3	38	2	E72247	ribosomal protein
321	3	10.3	38	2	H83113	50S ribosomal prot
322	3	10.3	38	2	AG0028	50S ribosomal prot
323	3	10.3	38	2	D91149	50S ribosomal subu
324	3	10.3	38	2	AF1008	50S ribosomal chai
325	3	10.3	38	2	PH1920	annexin-like 40K p
326	3	10.3	38	2	S72344	pilE protein - Nei
327	3	10.3	38	2	A60216	hyperglycemic horm
328	3	10.3	38	2	S65416	pyruvate synthase
329	3	10.3	38	2	B95069	hypothetical prote
330	3	10.3	38	2	A95139	hypothetical prote
331	3	10.3	38	2	H91111	hypothetical prote
332	3	10.3	38	2	D90631	hypothetical prote
333	3	10.3	38	2	E72306	hypothetical prote
334	3	10.3	38	2	E81873	hypothetical prote
335	3	10.3	38	2	T14885	hypothetical prote
336	3	10.3	38	2	A82478	hypothetical prote
337	3	10.3	38	2	E82463	hypothetical prote
338	3	10.3	38	2	A82450	hypothetical prote
339	3	10.3	38	2	D37842	hypothetical prote
340	3	10.3	38	2	B69492	hypothetical prote
341	3	10.3	38	2	S23173	photosystem I chai
342	3	10.3	38	2	T01992	hypothetical prote
343	3	10.3	38	2	S58601	hypothetical prote
344	3	10.3	38	2	T01741	hypothetical prote
345	3	10.3	38	2	B39888	synapsin I - bovin
346	3	10.3	38	2	A83863	hypothetical prote
347	3	10.3	38	2	H81603	hypothetical prote
348	3	10.3	38	2	E82858	hypothetical prote
349	3	10.3	38	2	G71305	probable ribosomal
350	3	10.3	38	2	B97327	hypothetical prote
351	3	10.3	38	2	E86077	hypothetical prote
352	3	10.3	38	2	H85994	50S ribosomal subu
353	3	10.3	38	2	AB0747	hypothetical prote
354	3	10.3	38	2	AH0774	hypothetical prote
355	3	10.3	38	2	C97551	hypothetical prote
233	,	10.5	20	_		"The arrest of the field

356	3	10.3	39	1	CTDFAS	corticotropin - sp
357	3	10.3	39	1	HWGH3Z	exendin-3 - Mexica
358	3	10.3	39	1	HWGH4G	exendin-4 - Gila m
359	3	10.3	39	2	B45946	gamma-glutamyltran
360	3	10.3	39	2	155325	aspartate transami
361	3	10.3	39	2	S09645	hygromycin-B kinas
362	3	10.3	39	2	A01458	corticotropin - fi
363	3	10.3	39	2	PN0127	corticotropin - se
	3	10.3	39	2	A61127	adrenocorticotropi
364 365	3	10.3	39	2	A01459	corticotropin - os
	3	10.3	39	2	A01457	corticotropin - ra
366	3	10.3	39	2	C55995	prostaglandin E2 r
367	3	10.3	39	2	S07458	Ig kappa chain V r
368		10.3	39	2	PH0878	Ig kappa chain V r
369	3			2	S72459	ribosomal protein
370	3	10.3	39			tubulin beta chain
371	3	10.3	39	2	PQ0011	tubulin beta chain
372	3	10.3	39	2	S63482	actin - nematode (
373	3	10.3	39	2	A45793	
374	3	10.3	39	2	AH2286	photosystem II pro
375	3	10.3	39	2	G64944	yebJ protein - Esc
376	3	10.3	39	2	A85795	hypothetical prote
377	3	10.3	39	2	S78008	fucosyltransferase
378	3	10.3	39	2	A48110	RNA recognition mo
379	3	10.3	39	2	H95146	hypothetical prote hypothetical prote
380	3	10.3	39	2	D70239	
381	3	10.3	39	2	C70254	hypothetical prote
382	3	10.3	39	2	G81899	hypothetical prote hypothetical prote
383	3	10.3	39	2	B81912	very hypothetical
384	3	10.3	39	2	B81954	hypothetical prote
385	3	10.3	39	2	F82329	43K outer membrane
386	3	10.3	39	2	A43591	lactococcin G pept
387	3	10.3	39	2	A44918 S67938	hypothetical prote
388	3	10.3	39	2		photosystem II pro
389	3	10.3	39 39	2	S73118 PC4294	high mobility grou
390	3	10.3 10.3	39	2	T15158	hypothetical prote
391	3 3	10.3	39	2	I46466	luteinizing hormon
392	3	10.3	39	2	B40984	finger protein zfe
393		10.3	39	2	T03365	gene e2 protein -
394	3	10.3	39	2	F81587	hypothetical prote
395	3	10.3	39	2	E81540	hypothetical prote
396	3 3	10.3	39	2	T12905	hypothetical prote
397 398	3	10.3	39	2	AD0162	hypothetical prote
	3	10.3	39	2	AE3109	hypothetical prote
399	3	10.3	40	1	SWFGS	sauvagine - Sauvag
400 401	3 3	10.3	40	2	B61320	plastocyanin - Aqu
401	3	10.3	40	2	S52343	hypothetical prote
402	3	10.3	40	2	S00264	creatine kinase (E
403	3	10.3	40	2	S34407	adenylate kinase (
405	3	10.3	40	2	PQ0202	endo-1,4-beta-xyla
405	3	10.3	40	2	S50021	trypsin-like prote
406	3	10.3	40	2	B60908	beta-lactamase (EC
407	3	10.3	40	2	B41440	protein disulfide-
408	3	10.3	40	2	A19940	antithrombin III -
410	3	10.3	40	2	B59005	thymosin beta - sc
411	3	10.3	40	2	A59005	thymosin beta - se
412	3	10.3	40	2	B31791	sarcotoxin ID - fl
	,			-		

413	3	10.3	40	2	S07969	T-cell receptor al
414	3	10.3	40	2	I50012	MHC class I protei
415	3	10.3	40	2	I50013	MHC class I protei
416	3	10.3	40	2	S61539	ribosomal protein
417	3	10.3	40	2	A60171	proteoglycan core
418	3	10.3	40	2	A60645	tubulin beta chain
419	3	10.3	40	2	A29184	vitellogenin - tur
420	3	10.3	40	2	S65907	conglutin gamma -
421	3	10.3	40	2	S08656	protein VI - human
422	3	10.3	40	2	A53708	indolepyruvate syn
423	3	10.3	40	2	T08107	nonenzymatic prote
424	3	10.3	40	2	S71917	hemoglobin, extrac
425	3	10.3	40	2	S58853	homeotic protein u
426	3	10.3	40	2	Н95063	hypothetical prote
427	3	10.3	40	2	H91281	hypothetical prote
428	3	10.3	40	2	A87642	hypothetical prote
429	3	10.3	40	2	F87419	hypothetical prote
430	3	10.3	40	2	C32338	hypothetical 4K pr
431	3	10.3	40	2	C72398	hypothetical prote
432	3	10.3	40	2	S44935	hypothetical prote
433	3	10.3	40	2	A82203	hypothetical prote
434	3	10.3	40	2	A82382	hypothetical prote
435	3	10.3	40	2	I39944	regulatory extrace
436	3	10.3	40	2	F69677	phosphatase (RapK)
437	3	10.3	40	2	I41476	probable antigen 9
438	3	10.3	40	2	S27709	hypothetical prote
439	3	10.3	40	2	F45095	photosystem I ligh
440	3	10.3	40	2	T11811	hypothetical prote
441	3	10.3	40	2	T07472	hypothetical prote
442	3	10.3	40	2	T07516	hypothetical prote
443	3	10.3	40	2	T07523	hypothetical prote
444	3	10.3	40	2	T48629	hypothetical prote
445	3	10.3	40	2	S53001	mitotic-specific c
446	3	10.3	40	2	T03831	hypothetical prote
447	3	10.3	40	2	S71295	deoxyguanosine kin
448	3	10.3	40	2	S56768	capsid protein - L
449	3	10.3	40	2	T07206	hypothetical prote
450	3	10.3	40	2	H81592	hypothetical prote
451	3	10.3	40	2	H81520	hypothetical prote
452	3	10.3	40	2	F81511	hypothetical prote
453	3	10.3	40	2	G82620	hypothetical prote
454	3	10.3	40	2	A82590	hypothetical prote
455	3	10.3	40	2	A86123	hypothetical prote
456	3	10.3	40	2	B97413	hypothetical prote
457	2	6.9	28	1	LFSEW	trp operon leader
458	2	6.9	28	1	LFEBLT	leu operon leader
459	2	6.9	28	1	LFECL	leu operon leader
460	2	6.9	28	1	G9BPSV	gene 9 protein - s
461	2	6.9	28	2	S41774	ubiquinol-cytochro
462	2	6.9	28	2	S71598	cytochrome P450 HP
463	2	6.9	28	2	S04341	cytochrome P450 PB
464	2	6.9	28	2	PX0033	cytochrome P450 te
465	2	6.9	28	2	S66436	allophycocyanin al
466	2	6.9	28	2	S47624	D-aspartate oxidas
467	2	6.9	28	2	T14210	NADH2 dehydrogenas
468	2	6.9	28	2	T14213	NADH2 dehydrogenas
469	2	6.9	28	2	T12301	NADH2 dehydrogenas

470	2	6.9	28	2	PC1162	cytochrome-c oxida
471	2	6.9	28	2	S21278	glutathione transf
472	2	6.9	28	2	C33948	glutathione transf
473	2	6.9	28	2	A34244	hexokinase (EC 2.7
474	2	6.9	28	2	D38578	protein kinase 4 (
475	2	6.9	28	2	B39116	epidermal growth f
476	2	6.9	28	2	A31859	deoxycytidine kina
477	2	6.9	28	2	B54257	deoxynucleoside ki
478	2	6.9	28	2	155596	lysosomal acid lip
479	2	6.9	28	2	B35948	phospholipase A2 (
	2	6.9	28	2	C35948	phospholipase A2 (
480	2	6.9	28	2	A35115	hypothetical prote
481	2	6.9	28	2	A61281	lysozyme homolog A
482						chymotrypsin (EC 3
483	2	6.9	28	2	A61529	24K proteinase (EC
484	2	6.9	28	2	A60291	proteasome beta ch
485	2	6.9	28	2	S08186	_
486	2	6.9	28	2	S55729	orotidine-5'-monop
487	2	6.9	28	2	140034	trpE protein - Bac
488	2	6.9	28	2	A32643	deoxyribodipyrimid
489	2	6.9	28	2	S77854	glutamate-tRNA lig
490	2	6.9	28	2	JX0059	serine proteinase
491	2	6.9	28	2	S07156	trypsin inhibitor
492	2	6.9	28	2	JX0058	trypsin inhibitor
493	2	6.9	28	2	B45041	trypsin inhibitor
494	2	6.9	28	2	S20393	trypsin inhibitor
495	2	6.9	28	2	A25802	2S seed storage pr
496	2	6.9	28	2	T47196	RAS protein [impor
497	2	6.9	28	2	A61322	somatostatin-28 -
498	2	6.9	28	2	B60583	glycoprotein hormo
499	2	6.9	28	2	A38232	vasoactive intesti
500	2	6.9	28	2	A60303	vasoactive intesti
501	2	6.9	28	2	JT0412	bombyxin-IV chain
502	2	6.9	28	2	A56366	intestinal trefoil
503	2	6.9	28	2	C44180	alpha-neurotoxin-l
504	2	6.9	28	2	C39327	long neurotoxin -
505	2	6.9	28	2	132529	Ig lambda chain V
506	2	6.9	28	2	PC1001	Ig light chain V r
507	2	6.9	28	2	B47719	T-cell receptor al
508	2	6.9	28	2	D47719	T-cell receptor al
509	2	6.9	28	2	S58389	T-cell receptor be
510	2	6.9	28	2	PH0250	T-cell receptor Vb
511	2	6.9	28	2	PH0247	T-cell receptor Vb
512	2	6.9	28	2	A49829	T-cell receptor va
513	2	6.9	28	2	D49829	T-cell receptor va
514	2	6.9	28	2	PH1908	T-cell receptor al
515	2	6.9	28	2	D41912	T-cell receptor be
516	2	6.9	28	2	G47719	house-dust-mite-re
517	2	6.9	28	2	E49533	T-cell receptor be
518	2	6.9	28	2	I46921	gene Bota protein
519	2	6.9	28	2	S11618	ribosomal protein
520	2	6.9	28	2	S51060	ribosomal protein
521	2	6.9	28	2	S51067	ribosomal protein
522	2	6.9	28	2	S72460	ribosomal protein
523	2	6.9	28	2	S08569	ribosomal protein
524	2	6.9	28	2	S10052	ribosomal protein
525	2	6.9	28	2	S55442	beta A2 crystallin
526	2	6.9	28	2	A45626	beta 2-tubulin - n
220	2	J.,		_		

527	2	6.9	28	2	S21231	calcium-binding pr
528	2	6.9	28	2	A23691	apolipoprotein C-I
529	2	6.9	28	2	A05296	fibrinogen alpha c
530	2	6.9	28	2	A61113	cellular retinol-b
531	2	6.9	28	2	B35577	cell adhesion rece
532	2	6.9	28	2	I48349	fibronectin - mous
533	2	6.9	28	2	A61233	retinol-binding pr
534	2	6.9	28	2	145911	dnaK-type molecula
535	2	6.9	28	2	PQ0263	dnaK-type molecula
536	2	6.9	28	2	A03356	omega-gliadin - ei
537	2	6.9	28	2	A60359	pollen allergen DG
538	2	6.9	28	2	A60752	outer membrane pro
539	2	6.9	28	2	PQ0691	photosystem I 5.6K
540	2	6.9	28	2	G32351	34K class B flagel
541	2	6.9	28	2	S47614	zinc finger protei
542	2	6.9	28	2	S49924	stp protein (Baker
543	2	6.9	28	2	B39227	calcium channel pr
544	2	6.9	28	2	F54346	pyruvate synthase
545	2	6.9	28	2	A36153	major allergen Ole
546	2	6.9	28	2	B54127	dolichyl-diphospho
547	2	6.9	28	2	S56746	alpha-synuclein, N
548	2	6.9	28	2	148178	orphan receptor -
549	2	6.9	28	2	PC4429	peroxisome prolife
550	2	6.9	28	2	PC4430	peroxisome prolife
551	2	6.9	28	2	S29135	
552	2	6.9	28	2	S29135 S29136	aminopyrine N-deme aminopyrine N-deme
553	2	6.9	28	2	PN0625	homeobox JRX prote
554	2	6.9	28	2	B56779	
555	2	6.9	28	2	JU0297	tetM 5'-region lea
555 556	2	6.9	28	2	G90638	fruR-shl operon le
557	2	6.9	28	2	C90639	leu operon leader
558	2	6.9	28	2	B47310	fruR leader peptid MHVS28AA – murine
559	2	6.9	28	2	E64656	
560	2	6.9	28	2	B64669	hypothetical prote
561	2	6.9	28	2	S15235	hypothetical prote hypothetical prote
562	2	6.9	28	2		
563	2	6.9	28	2	E81239	uvrB 3'-region hyp
564	2	6.9	28	2		hypothetical prote
565	2	6.9	28 28	2	I60364 S56121	phosphorybosylpyro
566	2	6.9	28	2		type I DNA methylt
567	2	6.9	28	2	T17391	hypothetical prote hypothetical prote
568	2	6.9	28	2	A56499	brevicin-27 - Lact
569	2	6.9	28	2		
570	2	6.9	28	2	A41476 S16228	probable antigen 1
570 571	2	6.9	28 28	2	G69384	aryl acylamidase - conserved hypothet
572	2	6.9		2		
573	2	6.9	28 28	2	A69259 T06925	hypothetical prote
574	2	6.9	28	2	S38524	hypothetical prote
						rRNA N-glycosidase
575 576	2 2	6.9 6.9	28	2	PQ0800	calmodulin antagon
576 577			28	2	T06340	ribosomal protein
577 578	2 2	6.9 6.9	28	2	T07599	hypothetical prote
578 579			28	2	PH0220	peroxidase (EC 1.1
	2	6.9	28	2	JQ0272	hypothetical 3K pr
580 501	2	6.9	28	2	S46250	fatty-acid-binding
581	2	6.9	28	2	A44923	carboxypeptidase 3
582	2	6.9	28	2	S64701	hypothetical prote
583	2	6.9	28	2	T38041	similarity to yeas

584	2	6.9	28	2	A27261	proteinase inhibit
585	2	6.9	28	2	A61417	bdellin B-3 - medi
586	2	6.9	28	2	S06668	toxin-like protein
587	2	6.9	28	2	S07826	venom protein - Am
588	2	6.9	28	2	C34923	omega-agatoxin IIA
589	2	6.9	28	2	A44877	cell surface prote
590	2	6.9	28	2	JW0019	mast cell degranul
591	2	6.9	28	2	A61273	interleukin-1 - st
592	2	6.9	28	2	S68643	nicotinic acetylch
593	2	6.9	28	2	PC2162	angiotensin II rec
594	2	6.9	28	2	I54183	cell adhesion regu
595	2	6.9	28	2	S54338	cytochrome P450 CY
596	2	6.9	28	2	152627	erythrocyte chemok
597	2	6.9	28	2	JQ1035	hypothetical 3.2K
598	2	6.9	28	2	PH1335	Ig heavy chain DJ
599	2	6.9	28	2	S37683	protein IEF SSP 91
600	2	6.9	28	2	S37686	protein IEF SSP 92
601	2	6.9	28	2	PH1911	T-cell receptor al
602	2	6.9	28	2	139288	ZF3 domain - human
603	2	6.9	28	2	PL0005	pepsin A (EC 3.4.2
604	2	6.9	28	2	A60692	proline-rich prote
605	2	6.9	28	2	PC2239	heat shock protein
606	2	6.9	28	2	PT0366	T-cell receptor be
	2	6.9	28	2	I58115	cystic fibrosis tr
607	2					-
608	2	6.9	28	2	A46690	sialic acid-specif
609		6.9	28	2	C83797	hypothetical prote
610	2	6.9	28	2	C83969	hypothetical prote
611	2	6.9	28	2	S51593	myrB protein - Mic
612	2	6.9	28	2	C85490	fruR leader peptid
613	2	6.9	28	2	C97078	hypothetical prote
614	2	6.9	28	2	F97000	hypothetical prote
615	2	6.9	28	2	G85489	leu operon leader
616	2	6.9	28	2	H85908	hypothetical prote
617	2	6.9	28	2	AB1093	hypothetical prote
618	2	6.9	28	2	T06490	probable ribulose-
619	2	6.9	28	2	S73563	H+-transporting tw
620	2	6.9	28	2	AG0516	leu operon leader
621	2	6.9	28	4	168614	frame shifted FMR1
622	2	6.9	28	4	JN0014	GABA(A) receptor a
623	2	6.9	29	1	TIPU	trypsin inhibitor
624	2	6.9	29	1	TIPU3	trypsin inhibitor
625	2	6.9	29	1		trypsin inhibitor
626	2	6.9	29	1	GCOPV	glucagon - North A
627	2	6.9	29	1	GCDK	glucagon - duck
628	2	6.9	29	1	A61583	glucagon - ostrich
629	2	6.9	29	1	GCFLE	glucagon - Europea
630	2	6.9	29	1	GCDF	glucagon - smaller
631	2	6.9	29	1	GCEN	glucagon - elephan
632	2	6.9	29	1	GCTTS	glucagon - slider
633	2	6.9	29	1	TNLJBR	trans-activating t
634	2	6.9	29	1	Q1BP5 7	gene 1.5 protein -
635	2	6.9	29	2	A60558	cytochrome P450 HL
636	2	6.9	29	2	T17079	NADH2 dehydrogenas
637	2	6.9	29	2	T17076	NADH2 dehydrogenas
638	2	6.9	29	2	A48427	flavohemoglobin hm
639	2	6.9	29	2	A54234	cytochrome-c oxida
640	2	6.9	29	2	S08201	peroxidase (EC 1.1

						1 C-3 C acch
641	2	6.9	29	2	A26208	acetyl-CoA C-acety
642	2	6.9	29	2	A22018	phosphotransferase
643	2	6.9	29	2	S46211	kallikrein rK8 (pK
644	2	6.9	29	2	S28174	heat-shock protein
645	2	6.9	29	2	A32414	bothrolysin (EC 3.
646	2	6.9	29	2	S17432	H+-transporting tw
647	2	6.9	29	2	S02578	H+-transporting tw
648	2	6.9	29	2	S23122	peptidylprolyl iso
649	2	6.9	29	2	JU0211	squash-type trypsi
650	2	6.9	29	2	T03653	phospholipid trans
651	2	6.9	29	2	C24536	alpha-amylase/tryp
652	2	6.9	29	2	C25310	alpha-amylase/tryp
653	2	6.9	29	2	D55998	brevinin-2Ed - edi
654	2	6.9	29	2	D53578	brevinin-2Ee - edi
		6.9	29	2	A91740	glucagon - turkey
655	2	6.9	29	2	A91741	glucagon - rabbit
656	2	6.9	29	2	A91741 A91742	glucagon - Arabian
657	2		29 29	2	S07211	glucagon - marbled
658	2	6.9		2	A61135	glucagon - bigeye
659	2	6.9	29	2	C39258	glucagon - common
660	2	6.9	29		C60840	glucagon I - Europ
661	2	6.9	29	2		glucagon - bowfin
662	2	6.9	29	2	539018	cholestokinin - do
663	2	6.9	29	2	A39462	toxin II.9 - scorp
664	2	6.9	29	2	A60791	omega-conotoxin MV
665	2	6.9	29	2	JH0699	omega-conotoxin MV
666	2	6.9	29	2	A58537	low affinity nerve
667	2	6.9	29	2	152628	conceptus protein
668	2	6.9	29	2	C61233	Ig heavy chain (cl
669	2	6.9	29	2	S10061	T-cell receptor Vb
670	2	6.9	29	2	PH0239	
671	2	6.9	29	2	PH0251	T-cell receptor Vb T-cell receptor Vb
672	2	6.9	29	2	PH0254	
673	2	6.9	29	2	PH0233	T-cell receptor Vb
674	2	6.9	29	2	E31485	Ig heavy chain V r
675	2	6.9	29	2	H31485	Ig kappa chain V r
676	2	6.9	29	2	G31461	T-cell receptor de
677	2	6.9	29	2	C47719	T-cell receptor al
678	2	6.9	29	2	E47719	house-dust-mite-re
679	2	6.9	29	2	PS0134	H-2 class I histoc
680	2	6.9	29	2	PS0132	H-2 class I histoc
681	2	6.9	29	2	I37534	gene HLA-DRB prote
682	2	6.9	29	2	I37535	gene HLA-DRB prote
683	2	6.9	29	2	137536	MHC class II histo
684	2	6.9	29	2	137301	MHC class II histo
685	2	6.9	29	2		HLA-DR beta - huma
686	2	6.9	29	2		HLA-DR beta - huma
687	2	6.9	29	2		protein-tyrosine-p
688	2	6.9	29	2		histone H2B.2, spe
689	2	6.9	29	2		histone H3 - barle
690	2	6.9	29	2		ribosomal protein
691	2	6.9	29	2		ribosomal protein
692	2	6.9	29	2		ribosomal protein
693	2	6.9	29	2		ribosomal protein
694	2	6.9	29	2		ribosomal protein
695	2	6.9	29	2		ribosomal protein
696	2	6.9	29	2		Meth A tumor-speci
697	2	6.9	29	2	S10725	calmodulin-binding

698	2	6.9	29	2	B44101	calmodulin, vasoac
699	2	6.9	29	2	E33208	calreticulin, uter
700	2	6.9	29	2	C33208	calreticulin, slow
701	2	6.9	29	2	D33208	calreticulin, brai
						thrombospondin 2 -
702	2	6.9	29	2	A45474	<u>-</u>
703	2	6.9	29	2	G39690	neural cell adhesi
704	2	6.9	29	2	A61166	endometrial proges
705	2	6.9	29	2	152402	alpha-fetoprotein
706	2	6.9	29	2	S57232	homeotic protein s
707	2	6.9	29	2	S06854	chorion class B pr
707	2	6.9	29	2	A43038	auxin-binding prot
				2	T12082	proline-rich prote
709	2	6.9	29			• • • • • • • • • • • • • • • • • • •
710	2	6.9	29	2	S70328	gamma35 secalin -
711	2	6.9	29	2	S29208	avenin gamma-3 - o
712	2	6.9	29	2	S07055	photosystem I prot
713	2	6.9	29	2	S05032	photosystem II pro
714	2	6.9	29	2	S08088	gene VII protein -
715	2	6.9	29	2	F42075	finger protein (cl
						probable rhicadhes
716	2	6.9	29	2	S42642	<u>=</u>
717	2	6.9	29	2	T51116	probable precorrin
718	2	6.9	29	2	A53145	high conductance c
719	2	6.9	29	2	A35121	hypothetical prote
720	2	6.9	29	2	S03277	photosystem II 5K
721	2	6.9	29	2	A55891	delta-conotoxin Gm
722	2	6.9	29	2	S32730	homeotic protein -
				2		labial protein (cl
723	2	6.9	29		S57225	
724	2	6.9	29	2	S32732	homeotic protein -
725	2	6.9	29	2	S32734	homeotic protein -
726	2	6.9	29	2	S32733	homeotic protein -
727	2	6.9	29	2	G90719	hypothetical prote
728	2	6.9	29	2	S07513	gene 5.1 protein -
729	2	6.9	29	2	S14040	hypothetical prote
730	2	6.9	29	2	E64586	hypothetical prote
						hypothetical prote
731	2	6.9	29	2	B64607	
732	2	6.9	29	2	G64674	hypothetical prote
733	2	6.9	29	2	G83440	KdpF protein PA163
734	2	6.9	29	2	A49288	alcohol dehydrogen
735	2	6.9	29	2	A81078	hypothetical prote
736	2	6.9	29	2	B81006	hypothetical prote
737	2	6.9	29	2	T48910	KdpF protein [vali
738	2	6.9	29	2	A35445	repY protein - Esc
						aadB protein - Kle
739	2	6.9	29	2	S19943	
740	2	6.9	29	2	A49914	S-layer protein va
741	2	6.9	29	2	E64036	hypothetical prote
742	2	6.9	29	2	B48363	2-hydroxyglutaryl-
743	2	6.9	29	2	C40638	orf 3' of cycI - R
744	2	6.9	29	2	B56817	photosystem I chai
745	2	6.9	29	2	S74572	hypothetical prote
						putrescine carbamo
746	2	6.9	29	2	C60743	
747	2	6.9	29	2	S67989	HA-19/HA-52 protei
748	2	6.9	29	2	S14099	12-alpha-hydroxyst
749	2	6.9	29	2	S77569	plantaricin SA6 -
750	2	6.9	29	2	S21222	48K protein - Euba
751	2	6.9	29	2	S03947	hydrogen dehydroge
752	2	6.9	29	2	T37120	hypothetical prote
752 753	2	6.9	29	2	T36654	probable small mem
			29	2	B43937	endo-1,4-beta-xyla
754	2	6.9	23	4	D#3331	GHQO-1,4-DCCa-Xy1a

755	2	6.9	29	2	S09556	hypothetical prote
756	2	6.9		2	T06904	hypothetical prote
757	2	6.9		2	S73197	hypothetical prote
		6.9		2	S78326	conserved hypothet
758	2			2	S78310	hypothetical prote
759	2	6.9		2	S78310	hypothetical prote
760	2	6.9		2	S01572	hypothetical prote
761	2	6.9				hypothetical prote
762	2	6.9		2	T07450	hypothetical prote
763	2	6.9		2	S01448	rRNA N-glycosidase
764	2	6.9		2	S38525	translation elonga
765	2	6.9	29	2	T52557	allantoinase (EC 3
766	2	6.9	_	2	PQ0862	globulin 2a - taro
767	2	6.9		2	PQ0486	prolamin alpha-1 -
768	2	6.9		2	S02200	-
769	2	6.9	29	2	A60683	malate dehydrogena
770	2	6.9	29	2	JQ0212	hypothetical 3K pr
771	2	6.9	29	2	\$58541	hypothetical prote
772	2	6.9	29	2	PC2035	alanine transamina
773	2	6.9	29	2	S78714	protein YDR524w-a
774	2	6.9	29	2	B21112	variant surface gl
775	2	6.9	29	2	C60110	repetitive protein
776	2	6.9	29	2	D24802	cuticle protein 36
777	2	6.9	29	2	A56591	E75 steroid recept
778	2	6.9	29	2	A61613	ceratotoxin A - Me
779	2	6.9	29	2	B61613	ceratotoxin B - Me
780	2	6.9	29	2	PH1230	lectin - namazu (f
781	2	6.9	29	2	A32860	biotin-binding pro
782	2	6.9	29	2	150382	c-mil protein - ch
783	2	6.9	29	2	I50695	non-collagenous al
784	2	6.9	29	2	B54197	70k thyroid autoan
785	2	6.9	29	2	A35891	carcinoembryonic a
786	2	6.9	. 29	2	I77372	CD44SP - human
787	2	6.9	29	2	S54340	diazepam binding i
788	2	6.9	29	2	A41683	hyaluronate recept
789	2	6.9	29	2	C54037	splicing regulator
790	2	6.9	29	2	S35924	T-cell receptor ga
791	2	6.9	29	2	C61384	trachael mucin gly
792	2	6.9	29	2	A60604	glutathione peroxi
793	2	6.9	29	2	S57204	oviduct-specific s
794	2	6.9	29	2	I47025	antigen WC1 [impor
795	2	6.9	29	2	A49410	t-complex polypept
796	2	6.9	29	2	PS0125	H-2 class I histoc
797	2	6.9	29	2	S46929	teg169 protein - m
798	2	6.9	29	2	S38749	vimentin homolog -
799	2	6.9	29	2	S42764	Ca2+/calmodulin-de
800	2	6.9	29	2	A49708	synaptosomal-assoc
801	2	6.9	29	2	Н83777	hypothetical prote
802	2	6.9	29	2	C83833	hypothetical prote
803	2	6.9	29	2	F83870	hypothetical prote
804	2	6.9	29	2	B84144	hypothetical prote
805	2	6.9	29	2	PC4421	multactivase (EC 3
806	2	6.9	29	2	B85840	hypothetical prote
807	2	6.9	29	2	C85840	hypothetical prote
808	2	6.9	29	2	G86058	hypothetical prote
809	2	6.9	29	2	E89904	hypothetical prote
	2	6.9	29	2	H89949	hypothetical prote
810		6.9	29 29	2	A59278	neurotoxin BmK A3-
811	2	0.9	43	4	AJJ410	HOMEOCONEH Dank HO

		•				
812	2	6.9	29	2	S17496	inorganic diphosph
813	2	6.9	29	2	PQ0782	NADH2 dehydrogenas
814	2	6.9	29	2	S34762	L-serine ammonia-l
815	2	6.9	29	2	AB0717	hypothetical prote
816	2	6.9	29	2	AC0717	hypothetical prote
817	2	6.9	29	2	AH2338	PetN protein [impo
818	2	6.9	29	4	158970	hypothetical prote
819	2	6.9	30	1	AIBSAF	thermophilic amino
820	2	6.9	30	1	TIPU1W	trypsin inhibitor
821	2	6.9	30	1	OEON2K	beta-endorphin II
822	2 2	6.9 6.9	30	1	IRTRC3 IRTRC2	protamine CIII, ma
823 824	2	6.9	30 30	1 1	IRTR78	protamine la - rai protamine CIII, mi
825	2	6.9	30	1	IRTR4	protamine CIII, mi protamine pTP4 - r
826	2	6.9	30	1	CLHRY2	protamine PII - Pa
827	2	6.9	30	1	CLHR2A	protamine YII - At
828	2	6.9	30	1	SNUMP	sillucin - Rhizomu
829	2	6.9	30	2	157689	ubiquinol-cytochro
830	. 2	6.9	30	2	152254	gene CYP11B2 prote
831	2	6.9	30	2	B56859	fatty acid omega-h
832	2	6.9	30	2	A27375	photosystem I iron
833	2	6.9	30	2	S11131	NADH2 dehydrogenas
834	2	6.9	30	2	S14214	NADH2 dehydrogenas
835	2	6.9	30	2	S08202	peroxidase (EC 1.1
836	2	6.9	30	2	S08204	peroxidase (EC 1.1
837	2	6.9	30	2	S08203	peroxidase (EC 1.1
838	2	6.9	30	2	A39089	hydrogenase (EC 1.
839	2	6.9	30	2	138066	nitric-oxide synth
840	2	6.9	30	2	139799	CAT-66 - Bacillus
841	2	6.9	30	2	A18780	dimethylallyltrans
842	2	6.9	30	2	S03283	methionine adenosy
843	2	6.9	30	2	S71865	glutathione transf
844	2	6.9	30	2	B27103	aspartate transami
845	2	6.9	30	2	A27103	aspartate transami
846 847	2 2	6.9 6.9	30 30	2	I55427 A49955	aspartate transami
848	2	6.9	30	2	S68639	protein-tyrosine k nigroxin A - black
849	2	6.9	30	2	S68640	nigroxin B - black
850	2	6.9	30	2	A05004	pancreatic ribonuc
851	2	6.9	30	2	D57001	endo-1,4-beta-xyla
852	2	6.9	30	2	A43937	endo-1,4-beta-xyla
853	2	6.9	30	2	PC2361	alpha-glucosidase
854	2	6.9	30	2	PX0073	epoxide hydrolase
855	2	6.9	30	2	B60291	30K serine protein
856	2	6.9	30	2	A27634	major fecal allerg
857	2	6.9	30	2	B27634	major fecal allerg
858	2	6.9	30	2	I77411	renin-2 - mouse (f
859	2	6.9	30	2	PC2328	proteasome endopep
860	2	6.9	30	2	A34486	inorganic diphosph
861	2	6.9	30	2	S21816	H+-exporting ATPas
862	2	6.9	30	2	S21814	H+-exporting ATPas
863	2	6.9	30	2	S74121	fructose-bisphosph
864	2	6.9	30	2	S25666	phosphopyruvate hy
865	2	6.9	30	2	S69600	peptidylprolyl iso
866	2	6.9	30	2	A60517	alpha-1-antitrypsi
867	2	6.9	30	2	S24979	proteinase inhibit
868	2	6.9	30	2	JX0057	trypsin inhibitor

869	2	6.9	30	2	JS0579	squash-type trypsi
870	2	6.9	30	2	JQ1958	trypsin inhibitor
871	2	6.9	30	2	PC1113	proteinase inhibit
872	2	6.9	30	2	C42842	antifungal 2S stor
873	2	6.9	30	2	S70341	napin large chain
874	2	6.9	30	2	S70343	napin large chain
875	2	6.9	30	2	A33308	thrombomodulin - r
876	2	6.9	30	2	S01657	atrial natriuretic
877	2	6.9		2		
	2		30	2	A61130	somatotropin - Ame
878		6.9	30		S44473	glucagon-like pept
879	2	6.9	30	2	B61125	glucagon-like pept
880	2	6.9	30	2	C61125	glucagon-like pept
881	2	6.9	30	2	A59076	defensin alpha-1 -
882	2	6.9	30	2	B59076	defensin alpha-2 -
883	2	6.9	30	2	C59076	defensin alpha-3 -
884	2	6.9	30	2	B60791	toxin II.6 - scorp
885	2	6.9	30	2	A31187	neurotoxin II.22.5
886	2	6.9	30	2	I68109	interferon alpha-W
887	2	6.9	30	2	C49533	T-cell receptor al
888	2	6.9	30	2	S20778	Ig heavy chain V r
889	2	6.9	30	2	PL0092	Ig heavy chain V r
890	2	6.9	30	2	PH0245	T-cell receptor Vb
891	2	6.9	30	2	PH0228	T-cell receptor Vb
892	2	6.9	30	2	PH0252	T-cell receptor Vb
893	2	6.9	30	2	PH0882	Ig kappa chain V r
894	2	6.9	30	2	E31461	
	2			2		T-cell receptor de
895		6.9	30		PH0235	T-cell receptor Vb
896	2	6.9	30	2	A49533	T-cell receptor al
897	2	6.9	30	2	C27579	T-cell receptor be
898	2	6.9	30	2	137626	Fc gamma (IgG) rec
899	2	6.9	30	2	PS0121	H-2 class I histoc
900	2	6.9	30	2	S74192	crotoxin inhibitor
901	2	6.9	30	2	A05253	hemoglobin epsilon
902	2	6.9	30	2	A21680	hemoglobin epsilon
903	2	6.9	30	2	A05254	hemoglobin epsilon
904	2	6.9	30	2	S68618	histone H2B - sea
905	2	6.9	30	2	PD0014	cAMP response elem
906	2	6.9	30	2	S11613	ribosomal protein
907	2	6.9	30	2	S11617	ribosomal protein
908	2	6.9	30	2	A60511	gamma-crystallin -
909	2	6.9	30	2	149412	gamma-crystallin-3
910	2	6.9	30	2	S12965	gamma-crystallin -
911	2	6.9	30	2	S69269	ezrin homolog - bo
912	2	6.9	30	2	A61189	tubulin beta chain
913	2	6.9	30	2	152806	Duchenne muscular
914	2			2		
		6.9	30		PC4172	profilin - rat (fr
915	2	6.9	30	2	S21153	calcium-binding pr
916	2	6.9	30	2	A26188	lipocortin I - pig
917	2	6.9	30	2	A56790	annexin, isoform P
918	2	6.9	30	2	A34622	fibrinogen beta ch
919	2	6.9	30	2	A03148	retinol-binding pr
920	2	6.9	30	2	A48299	taurine transporte
921	2	6.9	30	2	B61511	serum albumin, mil
922	2	6.9	30	2	B39819	neutrophil chemota
923	2	6.9	30	2	A38933	vitronectin - bovi
924	2	6.9	30	2	S57234	fushi tarazu segme
925	2	6.9	30	2	S69124	rRNA N-glycosidase
						•

						_
926	2	6.9	30	2	S69125	rRNA N-glycosidase
927	2	6.9	30	2	S07065	rRNA N-glycosidase
928	2	6.9	30	2	A31836	17K antigen - Rick
929	2	6.9	30	2	PQ0669	photosystem I 17.5
	2	6.9	30	2	E45095	photosystem I ligh
930						
931	2	6.9	30	2	B45095	photosystem I ligh
932	2	6.9	30	2	S30757	genome polyprotein
933	2	6.9	30	2	S30760	genome polyprotein
934	2	6.9	30	2	S30759	genome polyprotein
935	2	6.9	30	2	B44314	intracisternal A p
936	2	6.9	30	2	S26175	tail tubular prote
937	2	6.9	30	2	S69352	N-methylhydantoin
938	2	6.9	30	2	S68312	glucuronosyltransf
939	2	6.9	30	2	S42364	aromatic-amino-aci
940	2	6.9	30	2	S05223	photosystem I 6.5K
941	2	6.9	30	2	S28991	antifungal protein
942	2	6.9	30	2	PC2307	X-Pro aminopeptida
943	2	6.9	30	2	PQ0484	globulin 1b - taro
944	2	6.9	30	2	C43591	51K outer membrane
		6.9	30	2	B43591	45K outer membrane
945	2					
946	2	6.9	30	2	S06411	killer plasmid 28K
947	2	6.9	30	2	B49292	GDP dissociation i
948	2	6.9	30	2	A60914	pheromone-binding
949	2	6.9	30	2	PS0437	potassium channel
950	2	6.9	30	2	PS0438	potassium channel
951	2	6.9	30	2	A47607	immunogenic protei
952	2	6.9	30	2	S02088	blood group Rh-rel
953	2	6.9	30	2	S29138	aniline monooxygen
						- -
954	2	6.9	30	2	S57227	proboscipedia prot
955	2	6.9	30	2	B95020	hypothetical prote
956	2	6.9	30	2	C95030	hypothetical prote
957	2	6.9	30	2	G95031	hypothetical prote
958	2	6.9	30	2	E95079	hypothetical prote
959	2	6.9	30	2	F95118	hypothetical prote
960	2	6.9	30	2	E95145	hypothetical prote
961	2	6.9	30	2	F89406	protein R10E8.7 [i
962	2	6.9	30	2	F87254	hypothetical prote
963	2	6.9	30	2	E84786	hypothetical prote
964	2	6.9	30	2	C84481	hypothetical prote
965	2	6.9	30	2	B47483	cysteine-rich para
966	2	6.9	30	2	S15141	hypothetical prote
967	2	6.9	30	2	S13985	hypothetical prote
968	2	6.9	30	2	S14038	hypothetical prote
969	2	6.9	30	2	S13994	hypothetical prote
970	2	6.9	30	2	A72205	hypothetical prote
971	2	6.9	30	2	E72356	hypothetical prote
972	2	6.9	30	2	H72312	hypothetical prote
973	2	6.9	30	2	S66448	trimethylamine deh
974	2	6.9	30	2	A70105	conserved hypothet
975	2	6.9	30	2	F70118	hypothetical prote
976	2	6.9	30	2	D70144	hypothetical prote
977	2	6.9	30	2	H70152	hypothetical prote
978	2	6.9	30	2	A70209	hypothetical prote
979	2	6.9	30	2	E70246	hypothetical prote
980	2			2		hypothetical prote
		6.9	30		F70253	
981	2	6.9	30	2	F70254	hypothetical prote
982	2	6.9	30	2	H64522	hypothetical prote

983 984 985 986	2 2 2 2	6.9 6.9 6.9	30 30 30 30	2 2 2	E64565 E64577 C64709 A83556	hypothetical prote hypothetical prote hypothetical prote hypothetical prote 4-hydroxybenzoyl-C
987	2	6.9	30	2	S30347	D-tagatose 3-epime
988	2	6.9	30	2	PC2251	
989	2	6.9	30	2	A44807	ethylene-forming e
990	2	6.9	30	2	S06966	hypothetical prote
991	2	6.9	30	2	S74107	cytochrome c' - Me
992	2	6.9	30	2	B81889	hypothetical prote
993	2	6.9	30	2	B81891	hypothetical prote
994	2	6.9	30	2	H81862	hypothetical prote
995	2	6.9	30	2	C81791	hypothetical prote
996	2	6.9	30	2	H81202	hypothetical prote
997	2	6.9	30	2	G81031	hypothetical prote
998	2	6.9	30	2	169492	gene aeg-46.5 prot
999	2	6.9	30	2	A36733	hypothetical prote
1000	2	6.9	30	2	A60283	shiga-like toxin I

ALIGNMENTS

```
RESULT 1
A84241
hypothetical protein Vng0840h [imported] - Halobacterium sp. NRC-1
C; Species: Halobacterium sp. NRC-1
C;Date: 02-Feb-2001 #sequence_revision 02-Feb-2001 #text change 02-Feb-2001
C; Accession: A84241
R;Ng, W.V.; Kennedy, S.P.; Mahairas, G.G.; Berquist, B.; Pan, M.; Shukla, H.D.;
Lasky, S.R.; Baliga, N.; Thorsson, V.; Sbrogna, J.; Swartzell, S.; Weir, D.;
Hall, J.; Dahl, T.A.; Welti, R.; Goo, Y.A.; Leithauser, B.; Keller, K.; Cruz,
R.; Danson, M.J.; Hough, D.W.; Maddocks, D.G.; Jablonski, P.E.; Krebs, M.P.;
Angevine, C.M.; Dale, H.; Isenbarger, T.A.; Peck, R.F.; Pohlschrod, M.; Spudich,
J.L.; Jung, K.H.; Alam, M.; Freitas, T.
Proc. Natl. Acad. Sci. U.S.A. 97, 12176-12181, 2000
A; Authors: Hou, S.; Daniels, C.J.; Dennis, P.P.; Omer, A.D.; Ebhardt, H.; Lowe,
T.M.; Liang, P.; Riley, M.; Hood, L.; DasSarma, S.
A; Title: Genome sequence of Halobacterium species NRC-1.
A; Reference number: A84160; MUID: 20504483; PMID: 11016950
A; Accession: A84241
A; Status: preliminary
A; Molecule type: DNA
A:Residues: 1-34 <STO>
A; Cross-references: GB: AE004437; NID: g10580410; PIDN: AAG19293.1; GSPDB: GN00138
C; Genetics:
A; Gene: VNG0840H
                          17.2%; Score 5; DB 2;
                                                   Length 34;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 84;
             5; Conservative 0; Mismatches
                                                   0; Indels
                                                                  0; Gaps
                                                                              0;
  Matches
           24 LRKKL 28
Qу
```

26 LRKKL 30

Db

```
B97032
transcription regulator, AcrR family [imported] - Clostridium acetobutylicum
C; Species: Clostridium acetobutylicum
C;Date: 14-Sep-2001 #sequence_revision 14-Sep-2001 #text_change 14-Sep-2001
C; Accession: B97032
R; Nolling, J.; Breton, G.; Omelchenko, M.V.; Markarova, K.S.; Zeng, Q.; Gibson,
R.; Lee, H.M.; Dubois, J.; Qiu, D.; Hitti, J.; Wolf, Y.I.; Tatusov, R.L.;
Sabathe, F.; Doucette-Stamm, L.; Soucaille, P.; Daly, M.J.; Bennett, G.N.;
Koonin, E.V.; Smith, D.R.
J. Bacteriol. 183, 4823-4838, 2001
A; Title: Genome Sequence and Comparative Analysis of the Solvent-Producing
Bacterium Clostridium acetobutylicum.
A; Reference number: A96900; MUID: 21359325; PMID: 21359325
A; Accession: B97032
A; Status: preliminary
A; Molecule type: DNA
A; Residues: 1-34 < KUR>
A; Cross-references: GB: AE001437; PIDN: AAK79045.1; PID: q15023984; GSPDB: GN00168
A; Experimental source: Clostridium acetobutylicum ATCC824
C; Genetics:
A; Gene: CAC1071
                          17.2%; Score 5; DB 2; Length 34;
  Query Match
  Best Local Similarity
                          100.0%; Pred. No. 84;
  Matches
           5; Conservative 0; Mismatches
                                                    0; Indels
                                                                  0; Gaps
                                                                              0;
QУ
            1 SVSEI 5
              11111
Db
           30 SVSEI 34
RESULT 3
T09594
gene LFY protein - Monterey pine (fragment)
C; Species: Pinus radiata (Monterey pine)
C;Date: 16-Jul-1999 #sequence revision 16-Jul-1999 #text change 16-Jul-1999
C; Accession: T09594
R; Izquierdo, L.Y.; Vergara, R.F.; Alvarez-Buylla, E.R.
submitted to the EMBL Data Library, August 1996
A; Description: Partial characterization of Pinus radiata meristem identity
homolog gene (LFY).
A; Reference number: Z16756
A; Accession: T09594
A; Status: preliminary; translated from GB/EMBL/DDBJ
A; Molecule type: DNA
A; Residues: 1-28 < IZQ>
A; Cross-references: EMBL: U66725; NID: g1513305; PID: g1513306
C; Genetics:
A; Gene: LFY
C; Function:
A; Description: controls meristem identity
  Query Match
                          13.8%; Score 4; DB 2; Length 28;
  Best Local Similarity
                          100.0%; Pred. No. 8.7e+02;
            4; Conservative
                                0; Mismatches 0; Indels
                                                                  0; Gaps
                                                                              0;
```

RESULT 2

```
24 LRKK 27
Qу
              111
           15 LRKK 18
Db
RESULT 4
A55527
pyrroloquinoline quinone precursor pqqD - Methylobacterium extorquens
C; Species: Methylobacterium extorquens
C;Date: 18-Feb-2000 #sequence revision 18-Feb-2000 #text change 18-Feb-2000
C; Accession: A55527.
R; Morris, C.J.; Biville, F.; Turlin, E.; Lee, E.; Ellermann, K.; Fan, W.H.;
Ramamoorthi, R.; Springer, A.L.; Lidstrom, M.E.
J. Bacteriol. 176, 1746-1755, 1994
A; Title: Isolation, phenotypic characterization, and complementation analysis of
mutants of Methylobacterium extorquens AM1 unable to synthesize pyrroloquinoline
quinone and sequences of pqqD, pqqG, and pqqC.
A; Reference number: A55527; MUID: 94179111; PMID: 8132470
A; Accession: A55527
A; Status: preliminary
A; Molecule type: DNA
A; Residues: 1-29 < MOR>
A; Cross-references: GB:L25889; NID:g414589; PIDN:AAA17878.1; PID:g414590
C; Genetics:
A;Gene: pqqD
C; Superfamily: pyrroloquinoline quinone precursor pqqA
C; Keywords: quinoprotein
F;16,20/Product: pyrrologuinoline guinone #status predicted <MAT>
F;16-20/Cross-link: pyrroloquinoline quinone (Glu, Tyr) #status predicted
                          13.8%; Score 4; DB 1; Length 29;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 9e+02;
  Matches
            4; Conservative 0; Mismatches 0; Indels
            2 VSEI 5
Qу
              1111
Db
            8 VSEI 11
RESULT 5
I78537
copper transporting P-type ATPase - human (fragment)
C; Species: Homo sapiens (man)
C;Date: 29-May-1998 #sequence revision 29-May-1998 #text change 21-Jul-2000
C; Accession: I78537
R; Thomas, G.R.; Forbes, J.R.; Roberts, E.A.; Walshe, J.M.; Cox, D.W.
Nature Genet. 9, 210-217, 1995
A; Title: The Wilson disease gene: spectrum of mutations and their consequences.
A; Reference number: I58128; MUID: 95235569; PMID: 7626145
A; Accession: I78537
A; Status: preliminary; translated from GB/EMBL/DDBJ
A; Molecule type: DNA
A; Residues: 1-29 < RES>
A; Cross-references: GB: S77450; NID: q957354; PIDN: AAB34087.1; PID: g957355
C; Genetics:
A;Gene: GDB:ATP7B
```

A; Cross-references: GDB:120494; OMIM:277900

```
A; Map position: 13q14.3-13q21.1
                          13.8%; Score 4; DB 2; Length 29;
  Ouery Match
  Best Local Similarity 100.0%; Pred. No. 9e+02;
            4; Conservative 0; Mismatches 0; Indels
  Matches
                                                                  0; Gaps
Qу
            3 SEIQ 6
              1111
Db
           14 SEIQ 17
RESULT 6
S78412
ribosomal protein RL22/RL24, mitochondrial [validated] - rat (tentative
sequence) (fragment)
C; Species: Rattus norvegicus (Norway rat)
C;Date: 25-Feb-1998 #sequence revision 13-Mar-1998 #text change 21-Jul-2000
C; Accession: S78412; S78413
R; Goldschmidt-Reisin, S.; Graack, H.R.
submitted to the Protein Sequence Database, February 1998
A; Reference number: S78411
A; Accession: S78412
A; Molecule type: protein
A; Residues: 1-29 <GOL>
A; Note: the protein is designated as mitochondrial ribosomal protein L22
A; Accession: S78413
A; Molecule type: protein
A; Residues: 1-10, 'XXP', 14-15, 'X', 17-24 <GO2>
A; Note: the protein is designated as mitochondrial ribosomal protein L24
C; Keywords: mitochondrion; protein biosynthesis; ribosome
  Query Match
                          13.8%; Score 4; DB 2; Length 29;
  Best Local Similarity 100.0%; Pred. No. 9e+02;
             4; Conservative 0; Mismatches
                                                   0; Indels
                                                                  0; Gaps
                                                                              0:
           24 LRKK 27
Qу
              1111
            4 LRKK 7
RESULT 7
S63531
hypothetical protein 1 - Sulfolobus solfataricus (fragment)
C; Species: Sulfolobus solfataricus
C;Date: 28-Oct-1996 #sequence revision 13-Mar-1997 #text change 17-Mar-1999
C; Accession: S63531
R; Jones, C.E.; Fleming, T.M.; Cowan, D.A.; Littlechild, J.A.; Piper, P.W.
Eur. J. Biochem. 233, 800-808, 1995
A; Title: The phosphoglycerate kinase and glyceraldehyde-3-phosphate
dehydrogenase genes from the thermophilic archaeon Sulfolobus solfataricus
overlap by 8-bp: isolation, sequencing of the genes and expression in
Escherichia coli.
A; Reference number: S63528; MUID: 96085144; PMID: 8521845
A; Accession: S63531
A; Status: preliminary
A; Molecule type: DNA
A; Residues: 1-30 < JON>
```

```
A:Cross-references: EMBL:X80178
                          13.8%; Score 4; DB 2; Length 30;
  Ouery Match
                          100.0%; Pred. No. 9.3e+02;
  Best Local Similarity
                                                                              0;
            4; Conservative 0; Mismatches 0; Indels
                                                                 0; Gaps
  Matches
           23 WLRK 26
Qу
              1111
           11 WLRK 14
Db
RESULT 8
S44471
glucagon G1 - North American paddlefish (Polyodon spathula)
C; Species: Polyodon spathula
C;Date: 18-Sep-1997 #sequence_revision 18-Sep-1997 #text_change 07-May-1999
C; Accession: S44471
R; Nguyen, T.M.; Mommsen, T.P.; Mims, S.M.; Conlon, J.M.
Biochem. J. 300, 339-345, 1994
A; Title: Characterization of insulins and proglucagon-derived peptides from a
phylogenetically ancient fish, the paddlefish (Polyodon spathula).
A; Reference number: S44467; MUID: 94271144; PMID: 8002937
A: Accession: S44471
A; Molecule type: protein
A; Residues: 1-31 <NGU>
A; Experimental source: pancreas
C; Superfamily: glucagon
C; Keywords: carbohydrate metabolism; duplication; hormone; pancreas
F,1-31/Product: glucagon G1 #status predicted <MAT>
                           13.8%; Score 4; DB 2; Length 31;
  Query Match
                           100.0%; Pred. No. 9.6e+02;
  Best Local Similarity
             4; Conservative 0; Mismatches 0; Indels
                                                                  0; Gaps
  Matches
           21 VEWL 24
QУ
               1111
           23 VEWL 26
Db
RESULT 9
S44472
glucagon G2 - North American paddlefish (Polyodon spathula)
C; Species: Polyodon spathula
 C;Date: 19-Mar-1997 #sequence revision 12-Dec-1997 #text change 07-May-1999
 C; Accession: S44472
 R; Nguyen, T.M.; Mommsen, T.P.; Mims, S.M.; Conlon, J.M.
 Biochem. J. 300, 339-345, 1994
A; Title: Characterization of insulins and proglucagon-derived peptides from a
 phylogenetically ancient fish, the paddlefish (Polyodon spathula).
 A; Reference number: S44467; MUID: 94271144; PMID: 8002937
 A; Accession: S44472
 A; Molecule type: protein
 A; Residues: 1-31 < NGU>
 A; Note: the sequence from Fig. 3 is inconsistent with that from Fig. 5 in having
 29-Glu
 C; Superfamily: glucagon
 C; Keywords: carbohydrate metabolism; duplication; hormone; pancreas
```

```
13.8%; Score 4; DB 2; Length 31;
  Query Match
                          100.0%; Pred. No. 9.6e+02;
  Best Local Similarity
             4; Conservative
                                0; Mismatches
                                                 0;
                                                      Indels
                                                                      Gaps
  Matches
           21 VEWL 24
Qу
              1111
           23 VEWL 26
Dh
RESULT 10
D70236
hypothetical protein BBH11 - Lyme disease spirochete plasmid H/lp28-3
C; Species: Borrelia burgdorferi (Lyme disease spirochete)
C;Date: 13-Feb-1998 #sequence revision 13-Feb-1998 #text change 08-Oct-1999
C; Accession: D70236
R; Fraser, C.M.; Casjens, S.; Huang, W.M.; Sutton, G.G.; Clayton, R.; Lathigra,
R.; White, O.; Ketchum, K.A.; Dodson, R.; Hickey, E.K.; Gwinn, M.; Dougherty,
B.; Tomb, J.F.; Fleischmann, R.D.; Richardson, D.; Peterson, J.; Kerlavage,
A.R.; Quackenbush, J.; Salzberg, S.; Hanson, M.; Vugt, R.V.; Palmer, N.; Adams,
M.D.; Gocayne, J.; Weidman, J.; Utterback, T.; Watthey, L.; McDonald, L.;
Artiach, P.; Bowman, C.; Garland, S.; Fujii, C.; Cotton, M.D.; Horst, K.;
Roberts, K.; Hatch, B.
Nature 390, 580-586, 1997
A; Authors: Smith, H.O.; Venter, J.C.
A; Title: Genomic sequence of a Lyme disease spirochaete, Borrelia burgdorferi.
A; Reference number: A70100; MUID: 98065943; PMID: 9403685
A; Accession: D70236
A; Status: preliminary; nucleic acid sequence not shown; translation not shown
A; Molecule type: DNA
A; Residues: 1-31 <KLE>
A; Cross-references: GB: AE000784; NID: g2690041; PIDN: AAC66002.1; PID: g2690058;
TIGR:BBH11
A; Experimental source: strain B31
C; Genetics:
A; Genome: plasmid
                          13.8%; Score 4; DB 2; Length 31;
  Query Match
                          100.0%; Pred. No. 9.6e+02;
  Best Local Similarity
                                                                  0; Gaps
  Matches
             4; Conservative
                               0; Mismatches
                                                   0; Indels
                                                                              0;
Qу
           26 KKLQ 29
              1111
           26 KKLQ 29
Db
RESULT 11
F23454
ovalbumin phosphoserine peptide - fulvous whistling-duck (fragments)
C; Species: Dendrocygna bicolor (fulvous whistling-duck)
C;Date: 05-Jun-1987 #sequence revision 05-Jun-1987 #text_change 13-Mar-1998
C:Accession: F23454
R; Henderson, J.Y.; Moir, A.J.G.; Fothergill, L.A.; Fothergill, J.E.
Eur. J. Biochem. 114, 439-450, 1981
A; Title: Sequences of sixteen phosphoserine peptides from ovalbumins of eight
species.
```

F;1-31/Product: glucagon G2 #status predicted <GCN>

```
A; Reference number: A91106; MUID: 81164535; PMID: 6783411
A; Accession: F23454
A; Molecule type: protein
A; Residues: 1-32 < HEN>
C; Superfamily: antithrombin III
                          13.8%; Score 4; DB 2; Length 32;
  Query Match
                          100.0%; Pred. No. 9.8e+02;
  Best Local Similarity
             4; Conservative 0; Mismatches 0; Indels
                                                                      Gaps
  Matches
            1 SVSE 4
Qу
              1111
           26 SVSE 29
Db
RESULT 12
D31461
T-cell receptor delta chain BDN7, thymus - mouse (fragment)
C; Species: Mus musculus (house mouse)
C;Date: 05-Oct-1989 #sequence_revision 05-Oct-1989 #text change 30-May-1997
C; Accession: D31461
R; Lacy, M.J.; McNeil, L.K.; Roth, M.E.; Kranz, D.M.
Proc. Natl. Acad. Sci. U.S.A. 86, 1023-1026, 1989
A; Title: T-cell receptor delta-chain diversity in peripheral lymphocytes.
A; Reference number: A31461; MUID: 89128840; PMID: 2783779
A:Accession: D31461
A; Status: preliminary; not compared with conceptual translation
A; Molecule type: mRNA
A; Residues: 1-32 <LAC>
C; Superfamily: immunoglobulin V region; immunoglobulin homology
C; Keywords: T-cell receptor
                           13.8%; Score 4; DB 2; Length 32;
  Query Match
                           100.0%; Pred. No. 9.8e+02;
  Best Local Similarity
                                                 0; Indels
             4; Conservative 0; Mismatches
                                                                  0; Gaps
                                                                              0:
  Matches
           18 MERV 21
Qу
              Db
            8 MERV 11
RESULT 13
E81714
hypothetical protein TC0337 [imported] - Chlamydia muridarum (strain Nigg)
C; Species: Chlamydia muridarum, Chlamydia trachomatis MoPn
C;Date: 31-Mar-2000 #sequence_revision 31-Mar-2000 #text_change 11-May-2000
C; Accession: E81714
R; Read, T.D.; Brunham, R.C.; Shen, C.; Gill, S.R.; Heidelberg, J.F.; White, O.;
Hickey, E.K.; Peterson, J.; Utterback, T.; Berry, K.; Bass, S.; Linher, K.;
Weidman, J.; Khouri, H.; Craven, B.; Bowman, C.; Dodson, R.; Gwinn, M.; Nelson,
W.; DeBoy, R.; Kolonay, J.; McClarty, G.; Salzberg, S.L.; Eisen, J.; Fraser,
C.M.
Nucleic Acids Res. 28, 1397-1406, 2000
A; Title: Genome sequences of Chlamydia trachomatis MoPn and Chlamydia pneumoniae
A; Reference number: A81500; MUID: 20150255; PMID: 10684935
A; Accession: E81714
```

```
A; Status: preliminary
A; Molecule type: DNA
A; Residues: 1-33 <TET>
A; Cross-references: GB: AE002301; GB: AE002160; NID: g7190372; PIDN: AAF39200.1;
PID:g7190379; GSPDB:GN00121; TIGR:TC0337
A; Experimental source: strain Nigg (MoPn)
C; Genetics:
A;Gene: TC0337
                          13.8%; Score 4; DB 2; Length 33;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 1e+03;
            4; Conservative 0; Mismatches 0; Indels
  Matches
                                                                  0; Gaps
                                                                              0;
           24 LRKK 27
Qу
              1111
           26 LRKK 29
Dh
RESULT 14
D23454
ovalbumin phosphoserine peptide - golden pheasant (fragments)
C; Species: Chrysolophus pictus (golden pheasant)
C;Date: 05-Jun-1987 #sequence_revision 05-Jun-1987 #text_change 13-Mar-1998
C; Accession: D23454
R; Henderson, J.Y.; Moir, A.J.G.; Fothergill, L.A.; Fothergill, J.E.
Eur. J. Biochem. 114, 439-450, 1981
A; Title: Sequences of sixteen phosphoserine peptides from ovalbumins of eight
A; Reference number: A91106; MUID: 81164535; PMID: 6783411
A; Accession: D23454
A; Molecule type: protein
A; Residues: 1-35 < HEN>
C; Superfamily: antithrombin III
                          13.8%; Score 4; DB 2; Length 35;
  Query Match
                          100.0%; Pred. No. 1.1e+03;
  Best Local Similarity
  Matches
            4; Conservative 0; Mismatches 0; Indels
                                                                  0; Gaps
Qу
            1 SVSE 4
              1111
Db
           29 SVSE 32
RESULT 15
G23454
ovalbumin phosphoserine peptide - magpie goose (fragments)
C; Species: Anseranas semipalmata (magpie goose)
C;Date: 05-Jun-1987 #sequence revision 05-Jun-1987 #text change 13-Mar-1998
C; Accession: G23454
R; Henderson, J.Y.; Moir, A.J.G.; Fothergill, L.A.; Fothergill, J.E.
Eur. J. Biochem. 114, 439-450, 1981
A; Title: Sequences of sixteen phosphoserine peptides from ovalbumins of eight
species.
A; Reference number: A91106; MUID: 81164535; PMID: 6783411
A; Accession: G23454
A; Molecule type: protein
A; Residues: 1-35 < HEN>
```

```
Query Match
                          13.8%; Score 4; DB 2; Length 35;
                          100.0%; Pred. No. 1.1e+03;
  Best Local Similarity
            4; Conservative 0; Mismatches 0; Indels
                                                                 0; Gaps
  Matches
            1 SVSE 4
Qу
              1111
           29 SVSE 32
Dh
RESULT 16
E95098
hypothetical protein SP0853 [imported] - Streptococcus pneumoniae (strain TIGR4)
C; Species: Streptococcus pneumoniae
C;Date: 03-Aug-2001 #sequence revision 03-Aug-2001 #text change 03-Aug-2001
C; Accession: E95098
R; Tettelin, H.; Nelson, K.E.; Paulsen, I.T.; Eisen, J.A.; Read, T.D.; Peterson,
S.; Heidelberg, J.; DeBoy, R.T.; Haft, D.H.; Dodson, R.J.; Durkin, A.S.; Gwinn,
M.; Kolonay, J.F.; Nelson, W.C.; Peterson, J.D.; Umayam, L.A.; White, O.;
Salzberg, S.L.; Lewis, M.R.; Radune, D.; Holtzapple, E.; Khouri, H.; Wolf, A.M.;
Utterback, T.R.; Hansen, C.L.; McDonald, L.A.; Feldblyum, T.V.; Angiuoli, S.;
Dickinson, T.; Hickey, E.K.; Holt, I.E.
Science 293, 498-506, 2001
A; Authors: Loftus, B.J.; Yang, F.; Smith, H.O.; Venter, J.C.; Dougherty, B.A.;
Morrison, D.A.; Hollingshead, S.K.; Fraser, C.M.
A; Title: Complete Genome Sequence of a virulent isolate of Streptococcus
pneumoniae.
A; Reference number: A95000; MUID: 21357209; PMID: 11463916
A; Accession: E95098
A; Status: preliminary
A; Molecule type: DNA
A; Residues: 1-35 < KUR>
A; Cross-references: GB: AE005672; PIDN: AAK74982.1; PID: q14972326; GSPDB: GN00164;
TIGR: SP4SP0853
A; Experimental source: strain TIGR4
C:Genetics:
A;Gene: SP0853
  Query Match
                          13.8%; Score 4; DB 2; Length 35;
  Best Local Similarity
                          100.0%; Pred. No. 1.1e+03;
  Matches
           4; Conservative 0; Mismatches 0; Indels
                                                                 0; Gaps
                                                                             0;
           26 KKLQ 29
Qу
              30 KKLQ 33
Db
RESULT 17
D82125
hypothetical protein VC2034 [imported] - Vibrio cholerae (strain N16961
serogroup 01)
C; Species: Vibrio cholerae
C;Date: 18-Aug-2000 #sequence revision 20-Aug-2000 #text_change 02-Feb-2001
C:Accession: D82125
R; Heidelberg, J.F.; Eisen, J.A.; Nelson, W.C.; Clayton, R.A.; Gwinn, M.L.;
Dodson, R.J.; Haft, D.H.; Hickey, E.K.; Peterson, J.D.; Umayam, L.A.; Gill,
```

C; Superfamily: antithrombin III

```
S.R.; Nelson, K.E.; Read, T.D.; Tettelin, H.; Richardson, D.; Ermolaeva, M.D.;
Vamathevan, J.; Bass, S.; Qin, H.; Dragoi, I.; Sellers, P.; McDonald, L.;
Utterback, T.; Fleishmann, R.D.; Nierman, W.C.; White, O.; Salzberg, S.L.;
Smith, H.O.; Colwell, R.R.; Mekalanos, J.J.; Venter, J.C.; Fraser, C.M.
Nature 406, 477-483, 2000
A; Title: DNA Sequence of both chromosomes of the cholera pathogen Vibrio
cholerae.
A; Reference number: A82035; MUID: 20406833; PMID: 10952301
A; Accession: D82125
A; Status: preliminary
A; Molecule type: DNA
A; Residues: 1-35 <HEI>
A; Cross-references: GB: AE004278; GB: AE003852; NID: g9656579; PIDN: AAF95182.1;
GSPDB:GN00126; TIGR:VC2034
A; Experimental source: serogroup O1; strain N16961; biotype El Tor
C:Genetics:
A;Gene: VC2034
A; Map position: 1
  Query Match
                          13.8%; Score 4; DB 2; Length 35;
  Best Local Similarity 100.0%; Pred. No. 1.1e+03;
  Matches
            4; Conservative 0; Mismatches
                                                  0; Indels
                                                                  0; Gaps
                                                                              0;
Qу
           26 KKLQ 29
              1111
           24 KKLQ 27
Db
RESULT 18
S70806
hypothetical protein 5 - Vibrio cholerae (fragment)
N; Alternate names: flagellar protein flaA homolog
C; Species: Vibrio cholerae
C;Date: 12-Feb-1998 #sequence revision 20-Feb-1998 #text change 26-Aug-1999
C; Accession: S70806
R; Camilli, A.; Mekalanos, J.J.
Mol. Microbiol. 18, 671-683, 1995
A; Title: Use of recombinase gene fusions to identify Vibrio cholerae genes
induced during infection.
A; Reference number: S70798; MUID: 96414469; PMID: 8817490
A; Accession: S70806
A; Status: preliminary; nucleic acid sequence not shown
A; Molecule type: DNA
A; Residues: 1-36 < CAM>
A; Cross-references: EMBL: U25820; NID: g1165195; PIDN: AAC43560.1; PID: g1165196
C; Superfamily: flagellin
  Query Match
                          13.8%; Score 4; DB 2; Length 36;
  Best Local Similarity
                          100.0%; Pred. No. 1.1e+03;
 Matches
             4; Conservative 0; Mismatches
                                                  0; Indels
                                                                  0; Gaps
           17 SMER 20
Qу
              1111
Db
           14 SMER 17
```

```
hypothetical protein SP0497 [imported] - Streptococcus pneumoniae (strain TIGR4)
C; Species: Streptococcus pneumoniae
C;Date: 03-Aug-2001 #sequence_revision 03-Aug-2001 #text_change 03-Aug-2001
C; Accession: F95057
R; Tettelin, H.; Nelson, K.E.; Paulsen, I.T.; Eisen, J.A.; Read, T.D.; Peterson,
S.; Heidelberg, J.; DeBoy, R.T.; Haft, D.H.; Dodson, R.J.; Durkin, A.S.; Gwinn,
M.; Kolonay, J.F.; Nelson, W.C.; Peterson, J.D.; Umayam, L.A.; White, O.;
Salzberg, S.L.; Lewis, M.R.; Radune, D.; Holtzapple, E.; Khouri, H.; Wolf, A.M.;
Utterback, T.R.; Hansen, C.L.; McDonald, L.A.; Feldblyum, T.V.; Angiuoli, S.;
Dickinson, T.; Hickey, E.K.; Holt, I.E.
Science 293, 498-506, 2001
A; Authors: Loftus, B.J.; Yang, F.; Smith, H.O.; Venter, J.C.; Dougherty, B.A.;
Morrison, D.A.; Hollingshead, S.K.; Fraser, C.M.
A; Title: Complete Genome Sequence of a virulent isolate of Streptococcus
pneumoniae.
A; Reference number: A95000; MUID: 21357209; PMID: 11463916
A; Accession: F95057
A; Status: preliminary
A; Molecule type: DNA
A; Residues: 1-36 < KUR>
A; Cross-references: GB:AE005672; PIDN:AAK74655.1; PID:g14971969; GSPDB:GN00164;
TIGR:SP4SP0497
A; Experimental source: strain TIGR4
C:Genetics:
A;Gene: SP0497
                          13.8%; Score 4; DB 2; Length 36;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 1.1e+03;
             4; Conservative 0; Mismatches
                                                    0; Indels
                                                                  0; Gaps
                                                                              0:
           26 KKLQ 29
Qу
               1111
           10 KKLQ 13
Db
RESULT 20
A84774
hypothetical protein At2g35870 [imported] - Arabidopsis thaliana
C:Species: Arabidopsis thaliana (mouse-ear cress)
C;Date: 02-Feb-2001 #sequence revision 02-Feb-2001 #text change 02-Feb-2001
C; Accession: A84774
R; Lin, X.; Kaul, S.; Rounsley, S.D.; Shea, T.P.; Benito, M.I.; Town, C.D.;
Fujii, C.Y.; Mason, T.M.; Bowman, C.L.; Barnstead, M.E.; Feldblyum, T.V.; Buell,
C.R.; Ketchum, K.A.; Lee, J.J.; Ronning, C.M.; Koo, H.; Moffat, K.S.; Cronin,
L.A.; Shen, M.; VanAken, S.E.; Umayam, L.; Tallon, L.J.; Gill, J.E.; Adams,
M.D.; Carrera, A.J.; Creasy, T.H.; Goodman, H.M.; Somerville, C.R.; Copenhaver,
G.P.; Preuss, D.; Nierman, W.C.; White, O.; Eisen, J.A.; Salzberg, S.L.; Fraser,
C.M.; Venter, J.C.
Nature 402, 761-768, 1999
A; Title: Sequence and analysis of chromosome 2 of the plant Arabidopsis
 thaliana.
A; Reference number: A84420; MUID: 20083487; PMID: 10617197
A; Accession: A84774
A; Status: preliminary
 A; Molecule type: DNA
A; Residues: 1-36 <STO>
```

F95057

```
A; Cross-references: GB: AE002093; NID: g4510382; PIDN: AAD21470.1; GSPDB: GN00139
C; Genetics:
A; Gene: At2g35870
A; Map position: 2
                          13.8%; Score 4; DB 2; Length 36;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 1.1e+03;
             4; Conservative 0; Mismatches
                                                    0; Indels
           26 KKLQ 29
Qу
              1111
            4 KKLQ 7
Db
RESULT 21
S46227
hypothetical protein - Streptomyces chrysomallus (fragment)
C; Species: Streptomyces chrysomallus
C; Date: 19-Mar-1997 #sequence revision 29-Auq-1997 #text change 28-May-1999
C; Accession: S46227
R; Pahl, A.; Keller, U.
EMBO J. 13, 3472-3480, 1994
A; Title: Streptomyces chrysomallus FKBP-33 is a novel immunophilin consisting of
two FK506 binding domains; its gene is transcriptionally coupled to the FKBP-12
gene.
A; Reference number: S46227; MUID: 94341259; PMID: 8062824
A; Accession: S46227
A; Molecule type: DNA
A; Residues: 1-36 < PAH>
A; Cross-references: GB:Z34523; NID:g535270; PIDN:CAA84281.1; PID:g633645
A; Experimental source: strain ATCC 11523
  Query Match
                          13.8%; Score 4; DB 2; Length 36;
  Best Local Similarity
                          100.0%; Pred. No. 1.1e+03;
  Matches
             4; Conservative 0; Mismatches
                                                 0; Indels
Qу
           19 ERVE 22
              1111
Db
           27 ERVE 30
RESULT 22
S71912
hemoglobin, extracellular, chain A1 - polychaete (Perinereis aibuhitensis)
(fragment)
C; Species: Perinereis aibuhitensis
C;Date: 14-Apr-1998 #sequence revision 08-May-1998 #text change 02-Jul-1998
C; Accession: S71912
R; Matsubara, K.; Yamaki, M.; Nagayama, K.; Imai, K.; Ishii, H.; Gotoh, T.;
Ebina, S.
Biochim. Biophys. Acta 1290, 215-223, 1996
A; Title: Wheat germ agglutinin-reactive chains of giant hemoglobin from the
polychaete Perinereis aibuhitensis.
A; Reference number: S71912; MUID: 96350431; PMID: 8765123
A; Accession: S71912
A; Molecule type: protein
A; Residues: 1-37 < MAT>
```

```
C; Superfamily: globin; globin homology
C; Keywords: chromoprotein; heme; iron; oxygen carrier
  Query Match
                          13.8%; Score 4; DB 2; Length 37;
                          100.0%; Pred. No. 1.1e+03;
  Best Local Similarity
                                                                  0; Gaps
             4; Conservative
                               0; Mismatches
                                                  0; Indels
                                                                              0;
  Matches
           19 ERVE 22
Qу
              1111
Db
           25 ERVE 28
RESULT 23
T12635
homeotic protein HAHB-2 - common sunflower (fragment)
C; Species: Helianthus annuus (common sunflower)
C;Date: 13-Aug-1999 #sequence_revision 13-Aug-1999 #text_change 21-Jul-2000
C; Accession: T12635
R; Chan, R.L.; Gonzalez, D.H.
Plant Physiol. 106, 1687-1688, 1994
A; Title: A cDNA encoding an HD-zip protein from sunflower.
A; Reference number: Z17563; MUID: 95148747; PMID: 7846169
A; Accession: T12635
A; Status: preliminary; translated from GB/EMBL/DDBJ
A; Molecule type: mRNA
A; Residues: 1-37 < CHA>
A; Cross-references: EMBL: L22849; NID: g349258; PIDN: AAA63766.1; PID: g349259
C; Keywords: DNA binding; homeobox; transcription regulation
                          13.8%; Score 4; DB 2; Length 37;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 1.1e+03;
            4; Conservative
                               0; Mismatches 0; Indels
                                                                  0; Gaps
                                                                              0;
           25 RKKL 28
Qу
              1111
Db
            6 RKKL 9
RESULT 24
CKFHCS
sarcotoxin IC - flesh fly (Sarcophaga peregrina)
C; Species: Sarcophaga peregrina
C;Date: 31-Mar-1988 #sequence revision 31-Mar-1988 #text change 08-Dec-1995
C; Accession: C22625
R;Okada, M.; Natori, S.
J. Biol. Chem. 260, 7174-7177, 1985
A; Title: Primary structure of sarcotoxin I, an antibacterial protein induced in
the hemolymph of Sarcophaga peregrina (flesh fly) larvae.
A; Reference number: A92536; MUID: 85207747; PMID: 3888997
A; Accession: C22625
A; Molecule type: protein
A; Residues: 1-39 < OKA>
C; Comment: Sarcotoxins, which are potent bactericidal proteins, are produced in
response to injury. They are cytotoxic to both Gram positive and Gram negative
bacteria.
C; Superfamily: cecropin
C; Keywords: amidated carboxyl end; antibacterial; hemolymph
```

```
13.8%; Score 4; DB 1; Length 39;
  Query Match
                          100.0%; Pred. No. 1.2e+03;
  Best Local Similarity
            4; Conservative 0; Mismatches 0; Indels
                                                                 0; Gaps
                                                                              0;
 Matches
           23 WLRK 26
Qу
              1111
            2 WLRK 5
Dh
RESULT 25
S71913
hemoglobin, extracellular, chain A2 - polychaete (Perinereis aibuhitensis)
(fragment)
C; Species: Perinereis aibuhitensis
C;Date: 14-Apr-1998 #sequence revision 08-May-1998 #text_change 02-Jul-1998
C; Accession: S71913
R; Matsubara, K.; Yamaki, M.; Nagayama, K.; Imai, K.; Ishii, H.; Gotoh, T.;
Ebina, S.
Biochim. Biophys. Acta 1290, 215-223, 1996
A; Title: Wheat germ agglutinin-reactive chains of giant hemoglobin from the
polychaete Perinereis aibuhitensis.
A; Reference number: S71912; MUID: 96350431; PMID: 8765123
A; Accession: S71913
A; Molecule type: protein
A; Residues: 1-39 <MAT>
C; Superfamily: globin; globin homology
C; Keywords: chromoprotein; heme; iron; oxygen carrier
                          13.8%; Score 4; DB 2; Length 39;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 1.2e+03;
             4; Conservative 0; Mismatches 0; Indels
                                                                  0; Gaps
                                                                              0;
  Matches
           19 ERVE 22
              1111
           27 ERVE 30
RESULT 26
A42272
brain-type creatine kinase, peptide B - spiny dogfish (fragment)
C; Species: Squalus acanthias (spiny dogfish)
C;Date: 04-Mar-1993 #sequence revision 18-Nov-1994 #text change 11-Apr-1997
C; Accession: A42272
R; Friedman, D.L.; Roberts, R.
J. Biol. Chem. 267, 4270-4276, 1992
A; Title: Purification and localization of brain-type creatine kinase in sodium
chloride transporting epithelia of the spiny dogfish, Squalus acanthias.
A; Reference number: A42272; MUID: 92156175; PMID: 1310991
A; Accession: A42272
A; Status: preliminary
A; Molecule type: protein
A; Residues: 1-28 <FRI>
A; Note: sequence extracted from NCBI backbone (NCBIP:82919)
C; Superfamily: creatine kinase; creatine kinase repeat homology
```

F;39/Modified site: amidated carboxyl end (Arg) #status predicted

```
10.3%; Score 3; DB 2; Length 28;
 Query Match
 Best Local Similarity 100.0%; Pred. No. 1.1e+04;
            3; Conservative 0; Mismatches 0; Indels
                                                                 0; Gaps
                                                                             0;
 Matches
          26 KKL 28
Qу
              | | |
          10 KKL 12
Db
RESULT 27
C32416
phospholipase A2 (EC 3.1.1.4) pseudexin chain C - red-bellied black snake
(fragment)
C; Species: Pseudechis porphyriacus (red-bellied black snake)
C;Date: 05-Oct-1989 #sequence revision 05-Oct-1989 #text_change 23-Jun-1993
C; Accession: C32416
R; Schmidt, J.J.; Middlebrook, J.L.
Toxicon 27, 805-818, 1989
A; Title: Purification, sequencing and characterization of pseudexin
phospholipases A-2 from Pseudechis porphyriacus (Australian red-bellied black
snake).
A; Reference number: A32416; MUID: 89388835; PMID: 2675391
A: Accession: C32416
A; Status: preliminary
A; Molecule type: protein
A; Residues: 1-28 <SCH>
C; Superfamily: phospholipase A2
C; Keywords: carboxylic ester hydrolase
                          10.3%; Score 3; DB 2; Length 28;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 1.1e+04;
           3; Conservative
                                                                 0; Gaps
                                                                             0;
  Matches
                               0; Mismatches 0; Indels
            5 IOL 7
Qy
              Db
            3 IQL 5
RESULT 28
B60071
vasoactive intestinal peptide - rhesus macaque
C; Species: Macaca mulatta (rhesus macaque)
C;Date: 28-Apr-1993 #sequence revision 28-Apr-1993 #text_change 20-Mar-1998
C:Accession: B60071
R; Yu, J.; Xin, Y.; Eng, J.; Yalow, R.S.
Regul. Pept. 32, 39-45, 1991
A; Title: Rhesus monkey gastroenteropancreatic hormones: relationship to human
sequences.
A:Reference number: A60071; MUID:91164506; PMID:2003150
A; Accession: B60071
A; Status: protein sequence not shown
A; Molecule type: protein
A; Residues: 1-28 < YUA>
A; Note: the sequence is identical with the human sequence
C; Superfamily: glucagon
C; Keywords: duplication; hormone; intestine; neuropeptide; vasodilator
```

```
10.3%; Score 3; DB 2; Length 28;
 Query Match
 Best Local Similarity 100.0%; Pred. No. 1.1e+04;
                                                                  0; Gaps
           3; Conservative 0; Mismatches 0; Indels
                                                                              0;
           15 LNS 17
Qу
              111
           23 LNS 25
Db
RESULT 29
A60304
vasoactive intestinal peptide - dog
N; Alternate names: VIP
C; Species: Canis lupus familiaris (dog)
C;Date: 15-Jan-1993 #sequence_revision 15-Jan-1993 #text_change 20-Mar-1998
C:Accession: A60304
R; Eng, J.; Pan, Y.C.E.; Raufman, J.P.; Yalow, R.S.
Regul. Pept. Suppl. 3, S14, 1985
A; Title: Purification and sequencing of dog and guinea pig VIP's.
A; Reference number: A60304
A: Accession: A60304
A: Molecule type: protein
A; Residues: 1-28 < ENG>
C:Superfamily: glucagon
C; Keywords: duplication; hormone; intestine; neuropeptide; vasodilator
                          10.3%; Score 3; DB 2; Length 28;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 1.1e+04;
             3; Conservative 0; Mismatches
                                                   0; Indels
                                                                              0;
  Matches
           15 LNS 17
Qу
              111
           23 LNS 25
Dh
RESULT 30
S58386
T-cell receptor beta-chain Vb11-Jb2.4 - mouse (fragment)
C: Species: Mus musculus (house mouse)
C;Date: 29-Nov-1995 #sequence_revision 01-Mar-1996 #text change 23-Jul-1999
C; Accession: S58386
R; Johnston, S.L.; Strausbauch, M.; Sarkar, G.; Wettstein, P.J.
Nucleic Acids Res. 23, 3074-3075, 1995
A; Title: A novel method for sequencing members of multi-gene families.
A; Reference number: S58384; MUID: 95388532; PMID: 7659534
A; Accession: S58386
A; Status: preliminary; nucleic acid sequence not shown
A; Molecule type: mRNA
A; Residues: 1-28 < JOH>
A; Cross-references: EMBL: U20300; NID: g663123; PIDN: AAA62247.1; PID: g663124
A; Note: the nucleotide sequence was submitted to the EMBL Data Library, January
1995
A; Note: only a part of the coding sequence is given
C; Superfamily: immunoglobulin V region; immunoglobulin homology
C; Keywords: T-cell receptor
                           10.3%; Score 3; DB 2; Length 28;
  Query Match
```

```
Best Local Similarity 100.0%; Pred. No. 1.1e+04;
                               0; Mismatches 0; Indels 0; Gaps
                                                                              0;
             3; Conservative
 Matches
           19 ERV 21
Qу
              111
           12 ERV 14
Db
RESULT 31
PN0047
signal transduction protein QM0017 - mouse (fragments)
C; Species: Mus musculus (house mouse)
C; Date: 29-Oct-1997 #sequence_revision 29-Oct-1997 #text_change 15-Oct-1999
C; Accession: PN0047
R; Kato, H.
Kawasaki Igakkaishi 22, 245-259, 1996
A; Title: Analysis of proteins isolated by two dimensional electrophoresis of
mouse neuroblastoma cells.
A; Reference number: PN0041
A; Accession: PN0047
A; Molecule type: protein
A; Residues: 1-28 < KAT>
A; Experimental source: neuroblastoma cell
C; Comment: The molecular mass is 25,600 and the pI is 6.07. The amino-terminus
is blocked.
C; Superfamily: signal transduction protein DJ-1
C; Keywords: brain
                           10.3%; Score 3; DB 2; Length 28;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 1.1e+04;
             3; Conservative 0; Mismatches 0; Indels
  Matches
           10 NLG 12
Qу
              \parallel \parallel \parallel
Db
           14 NLG 16
RESULT 32
S70894
hypothetical protein 1 - Vibrio anguillarum (fragment)
C:Species: Vibrio anguillarum
C;Date: 19-Mar-1997 #sequence revision 25-Apr-1997 #text change 08-Oct-1999
C; Accession: S70894
R;O'Toole, R.; Milton, D.L.; Wolf-Watz, H.
Mol. Microbiol. 19, 625-637, 1996
A; Title: Chemotactic motility is required for invasion of the host by the fish
pathogen Vibrio anguillarum.
A; Reference number: S70894; MUID: 96228710; PMID: 8830252
A; Accession: S70894
A; Status: preliminary
A; Molecule type: DNA
A; Residues: 1-28 <OTO>
A;Cross-references: GB:U36378; EMBL:L47344; NID:g1020321; PIDN:AAB38488.1;
 PID:g1723992
                           10.3%; Score 3; DB 2; Length 28;
   Query Match
                           100.0%; Pred. No. 1.1e+04;
   Best Local Similarity
```

```
Matches
                                 0; Mismatches 0; Indels
                                                                 0; Gaps
             3; Conservative
Qу
           15 LNS 17
              111
Db
           18 LNS 20
RESULT 33
S22469
hypothetical protein 1 - Prochlorothrix hollandica
C; Species: Prochlorothrix hollandica
C;Date: 13-Jan-1995 #sequence revision 13-Jan-1995 #text change 15-Oct-1999
C; Accession: S22469; S16850
R; Greer, K.L.; Golden, S.S.
Plant Mol. Biol. 19, 355-365, 1992
A:Title: Conserved relationship between psbH and petBD genes: presence of a
shared upstream element in Prochlorothrix hollandica.
A; Reference number: S22469; MUID: 92322967; PMID: 1623188
A; Accession: S22469
A; Status: preliminary
A; Molecule type: DNA
A; Residues: 1-28 <GRE>
A; Cross-references: EMBL: X60313; NID: q45528; PIDN: CAA42858.1; PID: q45529
                          10.3%; Score 3; DB 2; Length 28;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 1.1e+04;
             3; Conservative 0; Mismatches
                                                   0; Indels
            1 SVS 3
Qу
              111
Db
            4 SVS 6
RESULT 34
S26254
rel protein - chicken
C; Species: Gallus gallus (chicken)
C;Date: 25-Feb-1994 #sequence revision 10-Nov-1995 #text change 06-Dec-1996
C; Accession: S26254
R; Capobianco, A.J.; Gilmore, T.D.
Oncogene 6, 2203-2210, 1991
A; Title: Repression of the chicken c-rel promoter by vRel in chicken embryo
fibroblasts is not mediated through a consensus NF-kappaB binding site.
A; Reference number: S26254; MUID: 92115319; PMID: 1766669
A; Accession: S26254
A; Status: preliminary; translation not shown
A; Molecule type: DNA
A; Residues: 1-28 < CAP>
A; Cross-references: EMBL: X59588
                          10.3%; Score 3; DB 2; Length 28;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 1.1e+04;
  Matches 3; Conservative 0; Mismatches
                                                 0; Indels
                                                                  0; Gaps
           20 RVE 22
QУ
              | | |
Db
            1 RVE 3
```

```
RESULT 35
I59477
antigen, T-cell receptor - human (fragment)
C; Species: Homo sapiens (man)
C;Date: 02-Jul-1996 #sequence revision 02-Jul-1996 #text change 21-Jul-2000
C; Accession: I59477
R; Mathioudakis, G.; Chen, P.
Scand. J. Immunol. 38, 31-36, 1993
A; Title: Preferential rearrangements of the V gamma I subgroup of the gamma-
chain of the T-cell antiqen receptor to J gamma 2C gamma 2 gene segments in
peripheral blood lymphocyte transcripts from normal donors.
A; Reference number: I59477; MUID: 93318104; PMID: 8392223
A; Accession: I59477
A; Status: preliminary; translated from GB/EMBL/DDBJ
A; Molecule type: mRNA
A; Residues: 1-28 < RES>
A; Cross-references: GB: M89844; NID: g181657; PIDN: AAA02695.1; PID: g181658
C; Keywords: T-cell receptor
                          10.3%; Score 3; DB 2; Length 28;
  Query Match
                          100.0%; Pred. No. 1.1e+04;
  Best Local Similarity
                                                                  0; Gaps
                                0; Mismatches 0; Indels
  Matches
             3; Conservative
           26 KKL 28
Qy
              111
           10 KKL 12
Dh
RESULT 36
F46522
T-cell receptor eta chain - rat (fragment)
C; Species: Rattus norvegicus (Norway rat)
C;Date: 18-Jun-1993 #sequence revision 18-Nov-1994 #text change 05-Nov-1999
C; Accession: F46522; I56191
R; Jensen, J.P.; Cenciarelli, C.; Hou, D.; Rellahan, B.L.; Dean, M.; Weissman,
A.M.
J. Immunol. 150, 122-130, 1993
A; Title: T cell antigen receptor-eta subunit. Low levels of expression and
limited cross-species conservation.
A; Reference number: A46522; MUID: 93107707; PMID: 8417118
A; Accession: F46522
A; Status: preliminary; not compared with conceptual translation
A; Molecule type: nucleic acid
A; Residues: 1-28 <JEN>
A;Cross-references: GB:S51404; NID:g262180; PIDN:AAB24606.1; PID:g262181
A; Note: sequence extracted from NCBI backbone (NCBIP:120909)
R; Itoh, Y.; Matsuura, A.; Kinebuchi, M.; Honda, R.; Takayama, S.; Ichimiya, S.;
Kon, S.; Kikuchi, K.
J. Immunol. 151, 4705-4717, 1993
A; Title: Structural analysis of the CD3 zeta/eta locus of the rat. Expression of
zeta but eta transcripts by rat T cells.
A; Reference number: I56191; MUID: 94014415; PMID: 8409430
A; Accession: I56191
A; Status: preliminary; translated from GB/EMBL/DDBJ
A; Molecule type: DNA
```

```
A; Cross-references: GB:D13556; NID:g436580; PIDN:BAA02754.1; PID:g436581
C: Keywords: T-cell receptor
                          10.3%; Score 3; DB 2; Length 28;
  Query Match
                          100.0%; Pred. No. 1.1e+04;
  Best Local Similarity
             3; Conservative 0; Mismatches 0; Indels
                                                                  0; Gaps
           25 RKK 27
Qу
              111
Db
           13 RKK 15
RESULT 37
GCCB
qlucagon - Chinchilla brevicaudata
C; Species: Chinchilla brevicaudata, Chinchilla lanigera brevicaudata
C;Date: 31-Mar-1993 #sequence revision 31-Mar-1993 #text_change 20-Mar-1998
C; Accession: A60413
R; Eng, J.; Kleinman, W.A.; Chu, L.S.
Peptides 11, 683-685, 1990
A; Title: Purification of peptide hormones from chinchilla pancreas by chemical
assay.
A; Reference number: A60413; MUID: 91045327; PMID: 2235678
A; Accession: A60413
A; Molecule type: protein
A; Residues: 1-29 < ENG>
C; Superfamily: glucagon
C; Keywords: carbohydrate metabolism; duplication; hormone; pancreas
                          10.3%; Score 3; DB 1; Length 29;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 1.1e+04;
  Matches
             3; Conservative 0; Mismatches 0; Indels
                                                                  0; Gaps
           13 KHL 15
Qу
              111
Db
           12 KHL 14
RESULT 38
S39968
probable hydro-lyase (EC 4.2.1.-) [similarity] - Streptomyces griseus (fragment)
N; Alternate names: hypothetical protein 6
C; Species: Streptomyces griseus
C;Date: 20-Feb-1995 #sequence revision 30-Jan-1998 #text change 18-Aug-2000
C; Accession: S39968
R; Kruegel, H.; Schumann, G.; Haenel, F.; Fiedler, G.
Mol. Gen. Genet. 241, 193-202, 1993
A; Title: Nucleotide sequence analysis of five putative Streptomyces griseus
genes, one of which complements an early function in daunorubicin biosynthesis
that is linked to a putative gene cluster involved in TDP-daunosamine formation.
A; Reference number: S39963; MUID: 94049680; PMID: 8232204
A; Accession: S39968
A; Status: preliminary
A; Molecule type: DNA
A; Residues: 1-29 < KRU>
```

A; Residues: 1-28 < RES>

```
A; Cross-references: EMBL: X73148; NID: g407882; PIDN: CAA51673.1; PID: e80351;
PID:q1235599
C; Superfamily: erythromycin resistance protein
C; Keywords: antibiotic resistance; carbon-oxygen lyase; hydro-lyase
                          10.3%; Score 3; DB 2; Length 29;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 1.1e+04;
             3; Conservative 0; Mismatches 0;
                                                       Indels
                                                                      Gaps
                                                                              0;
           19 ERV 21
Qу
              111
           16 ERV 18
RESULT 39
A61509
islet amyloid polypeptide - cougar (fragment)
C; Species: Felis concolor (cougar)
C;Date: 19-Mar-1997 #sequence_revision 26-Feb-1998 #text_change 11-May-2000
C; Accession: A61509
R; Johnson, K.H.; Wernstedt, C.; O'Brien, T.D.; Westermark, P.
Comp. Biochem. Physiol. B 98, 115-119, 1991
A; Title: Amyloid in the pancreatic islets of the cougar (Felis concolor) is
derived from islet amyloid polypeptide (IAPP).
A; Reference number: A61509; MUID: 91284578; PMID: 2060275
A; Accession: A61509
A; Molecule type: protein
A; Residues: 1-29 < JOH>
C; Superfamily: calcitonin
  Query Match
                          10.3%; Score 3; DB 2; Length 29;
  Best Local Similarity 100.0%; Pred. No. 1.1e+04;
             3; Conservative 0; Mismatches 0; Indels
  Matches
                                                                  0; Gaps
                                                                              0;
           10 NLG 12
Qу
              111
           22 NLG 24
Dh
RESULT 40
S17147
galanin - chicken (fragment)
C; Species: Gallus gallus (chicken)
C;Date: 21-Nov-1993 #sequence revision 10-Nov-1995 #text change 03-May-1996
C; Accession: S17147
R; Norberg, A.; Sillard, R.; Carlquist, M.; Joernvall, H.; Mutt, V.
FEBS Lett. 288, 151-153, 1991
A; Title: Chemical detection of natural peptides by specific structures.
Isolation of chicken galanin by monitoring for its N-terminal dipeptide, and
determination of the amino acid sequence.
A; Reference number: S17147; MUID: 91348254; PMID: 1715289
A; Accession: S17147
A; Status: preliminary
A; Molecule type: protein
A; Residues: 1-29 < NOR>
C; Superfamily: galanin
```

Query Match 10.3%; Score 3; DB 2; Length 29;
Best Local Similarity 100.0%; Pred. No. 1.1e+04;
Matches 3; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

Qy 15 LNS 17
| | | |
Db 4 LNS 6

Search completed: January 14, 2004, 10:37:28

Job time : 9.58255 secs

GenCore version 5.1.6 Copyright (c) 1993 - 2004 Compugen Ltd.

OM protein - protein search, using sw model

January 14, 2004, 10:37:44; Search time 19.514 Seconds Run on:

(without alignments)

303.882 Million cell updates/sec

US-09-843-221A-167 Title:

Perfect score: 29

Sequence: 1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29

Scoring table: OLIGO

Gapop 60.0 , Gapext 60.0

Searched: 762491 segs, 204481190 residues

Word size : 0

Total number of hits satisfying chosen parameters: 28045

Minimum DB seq length: 28 Maximum DB seg length: 40

Post-processing: Listing first 1000 summaries

Database : Published Applications AA:*

1: /cgn2 6/ptodata/1/pubpaa/US07 PUBCOMB.pep:*

/cgn2 6/ptodata/1/pubpaa/PCT NEW PUB.pep:*

/cgn2_6/ptodata/1/pubpaa/US06_NEW_PUB.pep:*

/cgn2 6/ptodata/1/pubpaa/US06 PUBCOMB.pep:* 4:

/cgn2 6/ptodata/1/pubpaa/US07_NEW_PUB.pep:* 5:

/cqn2 6/ptodata/1/pubpaa/PCTUS PUBCOMB.pep:* 6:

/cgn2 6/ptodata/1/pubpaa/US08 NEW PUB.pep:*

8: /cgn2_6/ptodata/1/pubpaa/US08_PUBCOMB.pep:*

/cgn2 6/ptodata/1/pubpaa/US09A PUBCOMB.pep:*

10: /cgn2 6/ptodata/1/pubpaa/US09B PUBCOMB.pep:*

/cgn2_6/ptodata/1/pubpaa/US09C PUBCOMB.pep:* 11:

12: /cgn2_6/ptodata/1/pubpaa/US09 NEW PUB.pep:*

13: /cgn2 6/ptodata/1/pubpaa/US10A PUBCOMB.pep:*

14: /cgn2 6/ptodata/1/pubpaa/US10B PUBCOMB.pep:*

15: /cgn2 6/ptodata/1/pubpaa/US10C_PUBCOMB.pep:*

16: /cgn2_6/ptodata/1/pubpaa/US10_NEW_PUB.pep:*

17: /cgn2_6/ptodata/1/pubpaa/US60_NEW_PUB.pep:*

/cgn2_6/ptodata/1/pubpaa/US60_PUBCOMB.pep:* 18:

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Result Query

Score Match Length DB ID No.

왕

Description

```
29
                                                          Sequence 51, Appl
1
        29
            100.0
                          11
                              US-09-843-221A-51
                                                         Sequence 167, App
2
        29
            100.0
                      29 11
                              US-09-843-221A-167
            100.0
                      30 11
                                                         Sequence 39, Appl
3
        29
                              US-09-843-221A-39
4
       29
           100.0
                      30 11
                              US-09-843-221A-166
                                                         Sequence 166, App
5
       29 100.0
                      31 9 US-09-169-786-2
                                                         Sequence 2, Appli
       29
           100.0
                      31 11 US-09-843-221A-27
6
                                                         Sequence 27, Appl
7
       29
           100.0
                      31 11
                              US-09-843-221A-165
                                                         Sequence 165, App
8
       29
           100.0
                      33
                          12
                              US-10-361-928-9
                                                         Sequence 9, Appli
                         9 US-09-169-786-3
       29
           100.0
9
                      34
                                                         Sequence 3, Appli
                                                         Sequence 6, Appli
10
        29
            100.0
                      34
                         10
                              US-09-928-047B-6
        29
                                                          Sequence 16, Appl
11
            100.0
                      34
                         11
                              US-09-843-221A-16
12
        29
            100.0
                      34
                         11
                              US-09-843-221A-161
                                                         Sequence 161, App
13
        29
            100.0
                      34 12
                              US-09-928-048A-6
                                                         Sequence 6, Appli
        29
            100.0
                      34 12
14
                              US-10-361-928-8
                                                         Sequence 8, Appli
                      34 12
15
        29
           100.0
                              US-10-340-484-15
                                                          Sequence 15, Appl
16
        29
            100.0
                      34 12
                              US-10-340-484-16
                                                          Sequence 16, Appl
17
                      34 14
        29
           100.0
                              US-10-016-403-5
                                                          Sequence 5, Appli
            100.0
                              US-10-097-079-1
18
        29
                      34 14
                                                         Sequence 1, Appli
                                                          Sequence 9, Appli
                      37 12
19
        29
            100.0
                              US-10-168-185-9
                                                         Sequence 4, Appli
20
        29
            100.0
                      38 9
                             US-09-169-786-4
21
        29
            100.0
                      38 11
                              US-09-843-221A-14
                                                          Sequence 14, Appl
22
                      38 12
        29
            100.0
                              US-10-245-707-1
                                                          Sequence 1, Appli
23
                      28 11
        28
             96.6
                              US-09-843-221A-52
                                                         Sequence 52, Appl
                      28 11
24
        28
             96.6
                              US-09-843-221A-168
                                                         Sequence 168, App
25
        28
             96.6
                      30 11
                              US-09-843-221A-43
                                                          Sequence 43, Appl
        28
             96.6
                      33 12
                              US-10-361-928-3
26
                                                          Sequence 3, Appli
27
        28
             96.6
                      33 12
                              US-10-361-928-6
                                                          Sequence 6, Appli
28
        28
             96.6
                      34
                         11
                              US-09-843-221A-20
                                                          Sequence 20, Appl
29
        28
             96.6
                      34
                         12
                              US-10-361-928-1
                                                          Sequence 1, Appli
30
        28
             96.6
                      34 12
                              US-10-361-928-2
                                                          Sequence 2, Appli
31
        28
             96.6
                      34 12
                              US-10-361-928-5
                                                          Sequence 5, Appli
32
        28
             96.6
                      34 14
                              US-10-016-403-7
                                                          Sequence 7, Appli
33
        28
             96.6
                      37 11
                              US-09-843-221A-15
                                                          Sequence 15, Appl
34
        26
             89.7
                      30 11
                              US-09-843-221A-50
                                                          Sequence 50, Appl
35
        26
             89.7
                      31
                         11
                              US-09-843-221A-28
                                                          Sequence 28, Appl
36
        26
             89.7
                      31
                         12
                              US-10-031-874A-206
                                                          Sequence 206, App
                      34
37
        26
             89.7
                         12
                              US-10-372-095-24
                                                          Sequence 24, Appl
38
        23
             79.3
                      28
                         11
                              US-09-843-221A-32
                                                          Sequence 32, Appl
39
        23
             79.3
                      34
                         14
                              US-10-016-403-6
                                                          Sequence 6, Appli
40
        22
             75.9
                      30
                         11
                              US-09-843-221A-124
                                                          Sequence 124, App
41
        22
             75.9
                      30 11
                              US-09-843-221A-125
                                                          Sequence 125, App
42
                              US-09-843-221A-88
        22
             75.9
                      34
                         11
                                                          Sequence 88, Appl
43
        22
             75.9
                      34 11
                              US-09-843-221A-89
                                                          Sequence 89, Appl
44
        21
             72.4
                      30
                         11
                              US-09-843-221A-126
                                                          Sequence 126, App
45
        21
             72.4
                      30
                         11
                              US-09-843-221A-127
                                                          Sequence 127, App
46
        21
             72.4
                      34
                         11
                              US-09-843-221A-90
                                                          Sequence 90, Appl
47
        21
             72.4
                      34
                         11
                              US-09-843-221A-91
                                                          Sequence 91, Appl
48
        21
             72.4
                      34
                                                          Sequence 92, Appl
                         11
                              US-09-843-221A-92
49
        21
             72.4
                      34
                         11
                              US-09-843-221A-128
                                                          Sequence 128, App
50
                      30 11
        18
             62.1
                              US-09-843-221A-40
                                                          Sequence 40, Appl
51
        18
                      30 11
                                                          Sequence 41, Appl
             62.1
                              US-09-843-221A-41
52
                      30 11
                                                          Sequence 42, Appl
       18
             62.1
                              US-09-843-221A-42
53
        18
             62.1
                      34 11
                              US-09-843-221A-17
                                                          Sequence 17, Appl
54
        18
                      34
                         11
             62.1
                              US-09-843-221A-18
                                                          Sequence 18, Appl
55
       18
             62.1
                      34
                          11
                              US-09-843-221A-19
                                                         Sequence 19, Appl
56
        18
             62.1
                      34 11
                              US-09-843-221A-162
                                                         Sequence 162, App
```

57	18	62.1	34	11	US-09-843-221A-163	Sequence 163, App
58	18	62.1	34	11	US-09-843-221A-164	Sequence 164, App
59	17	58.6	34	12	US-10-340-484-17	Sequence 17, Appl
60	16	55.2	28	11	US-09-843-221A-93	Sequence 93, Appl
61	16	55.2	28	11	US-09-843-221A-94	Sequence 94, Appl
62	15	51.7	28	11	US-09-843 - 221A-95	Sequence 95, Appl
63	15	51.7	28	11	US-09-843-221A-96	Sequence 96, Appl
64	15	51.7	28	11	US-09-843-221A-97	Sequence 97, Appl
65	15	51.7	30	11	US-09-843-221A-47	Sequence 47, Appl
66	15	51.7	34	11	US-09-843-221A-24	Sequence 24, Appl
67	15	51.7	34	12	US-10-340-484-19	Sequence 19, Appl
68	14	48.3	30	11	US-09-843-221A-48	Sequence 48, Appl
69	14	48.3	34	11	US-09-843-221A-25	Sequence 25, Appl
70	14	48.3	34	12	US-10-340-484-22	Sequence 22, Appl
71	14	48.3	34	12	US-10-340-484-23	Sequence 23, Appl
72	13	44.8	28	11	US-09-843-221A-34	Sequence 34, Appl
73	13	44.8	28	11	US-09-843-221A-35	Sequence 35, Appl
74	13	44.8	28	11	US-09-843-221A-54	Sequence 54, Appl
75 75	13	44.8	30	11	US-09-843-221A-45	Sequence 45, Appl
76	13	44.8	32	11	US-09-843-221A-30	Sequence 30, Appl
77	13	44.8	34	11	US-09-843-221A-22	Sequence 22, Appl Sequence 18, Appl
78 70	13	44.8	34	12	US-10-340-484-18	
79	13	44.8	34	12	US-10-340-484-20	Sequence 20, Appl
80	13	44.8	40 28	15 11	US-10-014-162-111	Sequence 111, App Sequence 33, Appl
81	11 11	37.9 37.9	28	11	US-09-843-221A-33 US-09-843-221A-36	Sequence 35, Appl Sequence 36, Appl
82 83	11	37.9	28	11	US-09-843-221A-53	Sequence 53, Appl
84	11	37.9	28	11	US-09-843-221A-55	Sequence 55, Appl
85	11	37.9	30	11	US-09-843-221A-44	Sequence 44, Appl
86	11	37.9	30	11	US-09-843-221A-46	Sequence 46, Appl
87	11	37.9	32	11	US-09-843-221A-29	Sequence 29, Appl
88	11	37.9	32	11	US-09-843-221A-31	Sequence 31, Appl
89	11	37.9	34	9	US-09-169-786-11	Sequence 11, Appl
90	11	37.9	34	11	US-09-843-221A-21	Sequence 21, Appl
91	11	37.9	34	11	US-09-843-221A-23	Sequence 23, Appl
92	10	34.5	31	9	US-09-169-786-9	Sequence 9, Appli
93	9	31.0	28		US-10-097-079-54	Sequence 54, Appl
94	9	31.0	28	14	US-10-097-079-62	Sequence 62, Appl
95	9	31.0	28	14	US-10-097-079-65	Sequence 65, Appl
96	9	31.0	28	14	US-10-097-079-79	Sequence 79, Appl
97	9	31.0	29	14	US-10-097-079-53	Sequence 53, Appl
98	9	31.0	29	14	US-10-097-079-63	Sequence 63, Appl
99	9	31.0	30	14	US-10-097-079-52	Sequence 52, Appl
100	9	31.0	30	14	US-10-097-079-64	Sequence 64, Appl
101	9	31.0	31	14	US-10-097-079-3	Sequence 3, Appli
102	9	31.0	31	14	US-10-097-079-4	Sequence 4, Appli
103	9	31.0	31	14	US-10-097-079-5	Sequence 5, Appli
104	9	31.0	31	14	US-10-097-079-6	Sequence 6, Appli
105	9	31.0	31	14	US-10-097-079-7	Sequence 7, Appli
106	9	31.0	31	14	US-10-097-079-8	Sequence 8, Appli
107	9	31.0	31	14	US-10-097-079-9	Sequence 9, Appli
108	9	31.0	31	14	US-10-097-079-10	Sequence 10, Appl
109	9	31.0	31	14	US-10-097-079-20	Sequence 20, Appl
110	9	31.0	31	14	US-10-097-079-21	Sequence 21, Appl
111	9	31.0	31	14	US-10-097-079-22	Sequence 22, Appl
112	9	31.0	31	14	US-10-097-079-23	Sequence 23, Appl
113	9	31.0	31	14	US-10-097-079-24	Sequence 24, Appl

114	9	31.0	31	14	US-10-097-079-25	Sequence 25, Appl
115	9	31.0	31	14	US-10-097-079-26	Sequence 26, Appl
116	9	31.0	31	14	US-10-097-079-27	Sequence 27, Appl
117	9	31.0	31	14	US-10-097-079-36	Sequence 36, Appl
118	9	31.0	31	14	US-10-097-079-37	Sequence 37, Appl
119	9	31.0	31	14	US-10-097-079-38	Sequence 38, Appl
120	9	31.0	31	14	US-10-097-079-39	Sequence 39, Appl
121	9	31.0	31	14	US-10-097-079-47	Sequence 47, Appl
122	9	31.0	31	14	US-10-097-079-48	Sequence 48, Appl
123	9	31.0	31	14	US-10-097-079-49	Sequence 49, Appl
124	9	31.0	31	14	US-10-097-079-50	Sequence 50, Appl
125	9	31.0	31	14	US-10-097-079-51	Sequence 51, Appl
126	9	31.0	31	14	US-10-097-079-69	Sequence 69, Appl
127	9	31.0	31	14	US-10-097-079-70	Sequence 70, Appl
128	9	31.0	31	14	US-10-097-079-74	Sequence 74, Appl
129	9	31.0	31	14	US-10-097-079-81	Sequence 81, Appl
130	9	31.0	31	14		Sequence 82, Appl
131	9	31.0	31	14		Sequence 83, Appl
132	9	31.0	31	14		Sequence 84, Appl
		31.0		14		
133	9		31		US-10-097-079-85	Sequence 85, Appl
134	9	31.0	34	14	US-10-097-079-46	Sequence 46, Appl
135	8	27.6	28	14	US-10-097-079-78	Sequence 78, Appl
136	8	27.6	30	11	US-09-843-221A-158	Sequence 158, App
137	8	27.6	30	11	US-09-843-221A-159	Sequence 159, App
138	8	27.6	31	9	US-09-169-786-10	Sequence 10, Appl
139	8	27.6	31	14	US-10-097-079-11	Sequence 11, Appl
140	8	27.6	31	14	US-10-097-079-19	Sequence 19, Appl
141	8	27.6	31	14	US-10-097-079-28	Sequence 28, Appl
142	8	27.6	31	14	US-10-097-079-35	Sequence 35, Appl
143	8	27.6	31	14	US-10-097-079-40	Sequence 40, Appl
144	8	27.6	31	14		Sequence 45, Appl
145	8	27.6	31	14		Sequence 66, Appl
146	8	27.6	31	14		Sequence 67, Appl
147	8	27.6	31	14	US-10-097-079-68	Sequence 68, Appl
148	8	27.6	31	14		Sequence 73, Appl
149	8	27.6	31	14		Sequence 76, Appl
150	8	27.6	31	14		Sequence 80, Appl
151	8	27.6	34	11		Sequence 122, App
152	8	27.6	34	11		Sequence 123, App
153	8	27.6	34		US-10-097-079 - 75	Sequence 75, Appl
154	7	24.1	30	11	US-09-843-221A-49	Sequence 49, Appl
155	7	24.1	31	14		Sequence 12, Appl
156	7	24.1	31	14	US-10-097-079-18	Sequence 18, Appl
157	7	24.1	31	14	US-10-097-079-29	Sequence 29, Appl
158	7	24.1	31	14	US-10-097-079-34	Sequence 34, Appl
159	7	24.1	31	14	US-10-097-079 - 41	Sequence 41, Appl
160	7	24.1	31	14	US-10-097-079-44	Sequence 44, Appl
161	7	24.1	34	11	US-09-843-221A-26	Sequence 26, Appl
162	7	24.1	34	12	US-10-372-095-22	Sequence 22, Appl
163	7	24.1	34	12	US-10-340-484-24	Sequence 24, Appl
164	6	20.7	30	11	US-09-843-221A-77	Sequence 77, Appl
165	6	20.7	31	14	US-10-097-079-13	Sequence 13, Appl
166	6	20.7	31	14	US-10-097-079-14	Sequence 14, Appl
167	6	20.7	31	14	US-10-097-079-15	Sequence 15, Appl
168	6	20.7	31	14	US-10-097-079-16	Sequence 16, Appl
169	6	20.7	31	14	US-10-097-079-17	Sequence 17, Appl
170	6	20.7	31	14	US-10-097-079-30	Sequence 30, Appl
						= · · · · · ·

171	6	20.7	31	14	US-10-097-079-31	Sequence 31, Appl
172	6	20.7	31	14	US-10-097-079-32	Sequence 32, Appl
173	6	20.7	31	14	US-10-097-079-33	Sequence 33, Appl
174	6	20.7	31	14	US-10-097-079-42	Sequence 42, Appl
175	6	20.7	31	14	US-10-097-079-43	Sequence 43, Appl
176	6	20.7	31	14		Sequence 86, Appl
177	6	20.7	31	14		
						Sequence 87, Appl
178	6	20.7	31	14		Sequence 88, Appl
179	6	20.7	36	11	US-09-843-221A-65	Sequence 65, Appl
180	5	17.2	28	11	US-09-843-221A-69	Sequence 69, Appl
181	5	17.2	28	11	US-09-843-221A-169	Sequence 169, App
182	5	17.2	34	9	US-09-864-761-38558	Sequence 38558, A
183	5	17.2	34	12	US-10-317-832-178	Sequence 178, App
184	5	17.2	38	9	US-09-864-761-49110	Sequence 49110, A
185	4	13.8	28	9	US-09-864-761-37690	Sequence 37690, A
186	4	13.8	28	9	US-09-929-818-122	Sequence 122, App
187	4	13.8	28	9	US-09-929-818-200	Sequence 200, App
188	4	13.8	28	10	US-09-003-869-153	Sequence 153, App
189	4	13.8	28	10	US-09-999-745-38	Sequence 38, Appl
190	4	13.8	28	10	US-09-554-000-22	Sequence 22, Appl
191	4	13.8	28	11	US-09-756 - 690A-153	Sequence 153, App
192	4	13.8	28	11	US-09-776-724A-198	Sequence 198, App
193	4	13.8	28	11	US-09-899-495-104	Sequence 104, App
194	4	13.8	28	12	US-10-029-386-28289	Sequence 28289, A
195	4	13.8	28	15	US-10-157-224A-153	Sequence 153, App
196	4	13.8	28	15	US-10-187-051-153	Sequence 153, App
197	4	13.8	29	9	US-09-730-379B-5	
198	4		29	11		Sequence 5, Appli
		13.8			US-09-983-802-386	Sequence 386, App
199	4	13.8	29	11		Sequence 133, App
200	4	13.8	29	11		Sequence 24, Appl
201	4	13.8	29	12	US-09-933 - 767-1006	Sequence 1006, Ap
202	4	13.8	29	15	US-10-023-282-1006	Sequence 1006, Ap
203	4	13.8	29	15	US-10-106-698-5404	Sequence 5404, Ap
204	4	13.8	29	15	US-10-197-954-111	Sequence 111, App
205	4	13.8	30	9	US-09-864-761-41441	Sequence 41441, A
206	4	13.8	30	9	US-09-864-761-46868	Sequence 46868, A
207	4	13.8	30	10	US-09-756-983-20	Sequence 20, Appl
208	4	13.8	30		US-09-774-639-191	Sequence 191, App
209	4	13.8	30	12	US-09-911-261A-20	Sequence 20, Appl
210	4	13.8	30		US-10-310-113-19	Sequence 19, Appl
211	4	13.8	30	12	US-09-933-767-821	Sequence 821, App
212	4	13.8	30	12		
	4					Sequence 40, Appl
213		13.8	30		US-10-188-947-11	Sequence 11, Appl
214	4	13.8	30		US-10-057-408-20	Sequence 20, Appl
215	4	13.8	30		US-10-023-282-821	Sequence 821, App
216	4	13.8	31	9	US-09-864-761-38725	Sequence 38725, A
217	4	13.8	31	9	US-09-864 - 761-40464	Sequence 40464, A
218	4	13.8	31	10	US-09 - 738-626-6281	Sequence 6281, Ap
219	4	13.8	31	12	US-10-360-053-20	Sequence 20, Appl
220	4	13.8	31	12	US-09-933-767-1001	Sequence 1001, Ap
221	4	13.8	31	12	US-10-029-386-32285	Sequence 32285, A
222	4	13.8	31	15		Sequence 1001, Ap
223	4	13.8	31		US-10-106-698-7956	Sequence 7956, Ap
224	4	13.8	32	9	US-09-864-761-48632	Sequence 48632, A
225	4		32			
226		13.8		9	US-09-281-717-16	Sequence 16, Appl
	4	13.8	32		US-09-809-391-442	Sequence 442, App
227	4	13.8	32	12	US-09-882-171-442	Sequence 442, App

```
13.8
228
                        32
                             12
                                 US-10-310-113-23
                                                               Sequence 23, Appl
229
                         32
                             12
               13.8
                                 US-10-310-113-134
                                                               Sequence 134, App
                                                               Sequence 135, App
230
               13.8
                         32
                             12
                                 US-10-310-113-135
231
          4
               13.8
                        32
                            12
                                 US-10-310-113-136
                                                               Sequence 136, App
               13.8
232
          4
                        32
                             12
                                 US-10-164-279-39
                                                               Sequence 39, Appl
233
          4
               13.8
                        32
                             12
                                 US-10-164-279-43
                                                               Sequence 43, Appl
                                                               Sequence 212, App
234
          4
               13.8
                         32
                             15
                                 US-10-174-410-212
235
          4
               13.8
                         33
                             9
                                US-09-864-761-35714
                                                              Sequence 35714, A
          4
               13.8
                         33
                             9
                                US-09-864-761-48253
236
                                                              Sequence 48253, A
               13.8
                         33
                             9
237
          4
                                US-09-864-761-49019
                                                              Sequence 49019, A
238
               13.8
                         33
                             9
                                US-09-925-299-1526
                                                              Sequence 1526, Ap
239
           4
               13.8
                         33
                             11
                                 US-09-925-299-1526
                                                               Sequence 1526, Ap
240
          4
               13.8
                         33
                             11
                                 US-09-809-391-660
                                                               Sequence 660, App
               13.8
                         33
                             12
241
          4
                                 US-09-882-171-660
                                                               Sequence 660, App
242
          4
               13.8
                         33
                             12
                                 US-09-933-767-368
                                                               Sequence 368, App
243
          4
               13.8
                         33
                             12
                                 US-10-164-279-63
                                                               Sequence 63, Appl
244
          4
               13.8
                         33
                             14
                                 US-10-215-297-4
                                                               Sequence 4, Appli
245
          4
               13.8
                         33
                             15
                                 US-10-215-298-4
                                                               Sequence 4, Appli
246
               13.8
                         33
                             15
                                 US-10-081-816-110
                                                               Sequence 110, App
247
               13.8
                         33
                             15
                                 US-10-023-282-368
                                                               Sequence 368, App
248
          4
               13.8
                         34
                             9
                                US-09-864-761-44185
                                                              Sequence 44185, A
249
          4
               13.8
                         34
                             9
                                US-09-864-761-44916
                                                              Sequence 44916, A
250
           4
               13.8
                         34
                             9
                                US-09-864-761-45430
                                                              Sequence 45430, A
251
          4
               13.8
                         34
                             9
                                US-09-864-761-48511
                                                              Sequence 48511, A
252
          4
               13.8
                         34
                             12
                                 US-10-231-417-538
                                                               Sequence 538, App
           4
253
               13.8
                         34
                             12
                                 US-10-029-386-27795
                                                               Sequence 27795, A
254
           4
               13.8
                         34
                             15
                                 US-10-106~698-8037
                                                               Sequence 8037, Ap
255
               13.8
                         35
                             9
                                US-09-925-299-1258
                                                              Sequence 1258, Ap
256
           4
               13.8
                         35
                             10
                                 US-09-811-824-7
                                                               Sequence 7, Appli
257
          4
               13.8
                         35
                             11
                                 US-09-820-843A-106
                                                               Sequence 106, App
258
          4
               13.8
                         35
                             11
                                 US-09-925-299-1258
                                                               Sequence 1258, Ap
                                                               Sequence 75, Appl
259
          4
               13.8
                         35
                             12
                                 US-10-289-660-75
260
          4
               13.8
                         35
                             12
                                 US-10-340-484-13
                                                               Sequence 13, Appl
                         35
261
          4
               13.8
                             12
                                 US-10-012-952A-147
                                                               Sequence 147, App
262
           4
               13.8
                         35
                             12
                                 US-10-062-599-138
                                                               Sequence 138, App
263
               13.8
                         35
                             15
                                 US-10-133-128-75
                                                               Sequence 75, Appl
264
               13.8
                         35
                             15
                                 US-10-062-831-138
                                                               Sequence 138, App
265
           4
               13.8
                         36
                                US-08-851-965-24
                             8
                                                              Sequence 24, Appl
266
          4
               13.8
                         36
                             9
                                US-09-864-761-34257
                                                              Sequence 34257, A
                                                              Sequence 39771, A
267
           4
               13.8
                         36
                             9
                                US-09-864-761-39771
268
          4
               13.8
                         36
                             9
                                US-09-864-761-46707
                                                              Sequence 46707, A
269
          4
               13.8
                         36
                             9
                                US-09-864-761-48628
                                                              Sequence 48628, A
270
          4
               13.8
                             10
                         36
                                 US-09-454-533-30
                                                               Sequence 30, Appl
           4
271
               13.8
                         36
                             12
                                 US-10-340-484-12
                                                               Sequence 12, Appl
272
               13.8
                         36
                             15
                                 US-10-050-704-192
                                                               Sequence 192, App
273
           4
               13.8
                         37
                             8
                                US-08-851-965-22
                                                              Sequence 22, Appl
274
           4
               13.8
                         37
                             8
                                US-08-851-965-23
                                                              Sequence 23, Appl
275
               13.8
                         37
                                                              Sequence 25, Appl
          4
                             8
                                US-08-851-965-25
                                                              Sequence 26, Appl
276
          4
               13.8
                         37
                             8
                                US-08-851-965-26
277
          4
               13.8
                         37
                             8
                                US-08-851-965-27
                                                              Sequence 27, Appl
278
          4
                         37
                             9
               13.8
                                US-09-864-761-38287
                                                              Sequence 38287, A
                         37
                             9
279
          4
               13.8
                                US-09-864-761-41884
                                                              Sequence 41884, A
280
               13.8
                         37
                                US-09-864-761-42087
                                                              Sequence 42087, A
                         37
                                                               Sequence 79, Appl
281
          4
               13.8
                             10
                                 US-09-908-805B-79
282
                        37
          4
               13.8
                                 US-09-454-533-6
                                                               Sequence 6, Appli
                             10
283
          4
                        37
               13.8
                             10
                                 US-09-454-533-28
                                                               Sequence 28, Appl
284
               13.8
                         37
                             10
                                 US-09-454-533-29
                                                               Sequence 29, Appl
```

```
285
                         37
           4
               13.8
                             10
                                  US-09-454-533-31
                                                               Sequence 31, Appl
               13.8
                         37
286
           4
                             10
                                  US-09-454-533-32
                                                               Sequence 32, Appl
                         37
287
           4
               13.8
                             10
                                  US-09-454-533-33
                                                               Sequence 33, Appl
288
               13.8
                         37
           4
                             11
                                  US-09-764-872-347
                                                               Sequence 347, App
                                                               Sequence 209, App
289
           4
               13.8
                         37
                             12
                                  US-10-012-952A-209
290
           4
                         37
               13.8
                             12
                                  US-10-339-740-265
                                                               Sequence 265, App
                         37
291
           4
               13.8
                             12
                                  US-10-283-403-9
                                                               Sequence 9, Appli
                         37
292
           4
               13.8
                             12
                                  US-10-370-570-10
                                                                Sequence 10, Appl
293
               13.8
                         37
                             15
           4
                                  US-10-082-830-161
                                                               Sequence 161, App
294
           4
               13.8
                         37
                             15
                                  US-10-106-698-6085
                                                               Sequence 6085, Ap
                         38
295
               13.8
                             9
           4
                                US-09-250-883-21
                                                              Sequence 21, Appl
296
               13.8
                         38
                             9
           4
                                 US-09-864-761-34617
                                                              Sequence 34617, A
297
           4
               13.8
                         38
                             9
                                 US-09-864-761-38489
                                                              Sequence 38489, A
                         38
                             9
298
           4
               13.8
                                 US-09-864-761-42372
                                                              Sequence 42372, A
299
           4
               13.8
                         38
                             9
                                US-09-864-761-44123
                                                              Sequence 44123, A
300
           4
               13.8
                         38
                             9
                                US-09-864-761-44436
                                                              Sequence 44436, A
301
                         39
                             9
           4
               13.8
                                 US-09-864-761-41089
                                                              Sequence 41089, A
302
           4
               13.8
                         39
                                 US-09-864-761-41410
                                                              Sequence 41410, A
                         39
303
           4
               13.8
                             10
                                  US-09-003-869-25
                                                               Sequence 25, Appl
                         39
304
           4
               13.8
                             11
                                  US-09-983-802-384
                                                               Sequence 384, App
                         39
305
               13.8
           4
                             11
                                  US-09-756-690A-25
                                                               Sequence 25, Appl
306
           4
               13.8
                         39
                             15
                                  US-10-157-224A-25
                                                               Sequence 25, Appl
307
               13.8
                         39
                             15
           4
                                  US-10-187-051-25
                                                               Sequence 25, Appl
308
           4
               13.8
                         39
                             15
                                  US-10-106-698-7822
                                                               Sequence 7822, Ap
309
           4
               13.8
                         40
                             11
                                  US-09-764-891-2762
                                                                Sequence 2762, Ap
           4
                         40
                             12
310
               13.8
                                  US-10-058-053A-81
                                                                Sequence 81, Appl
311
           4
               13.8
                         40
                             12
                                  US-10-058-053A-264
                                                                Sequence 264, App
                                                               Sequence 223, App
312
               13.8
                         40
                             15
                                  US-10-091-572-223
313
           3
               10.3
                         28
                             8
                                US-08-908-884-7
                                                              Sequence 7, Appli
314
           3
               10.3
                         28
                             9
                                US-09-799-983-16
                                                              Sequence 16, Appl
315
           3
               10.3
                         28
                             9
                                 US-09-799-983-18
                                                              Sequence 18, Appl
                                                              Sequence 10, Appl
316
           3
               10.3
                         28
                             9
                                 US-09-730-379B-10
317
           3
               10.3
                         28
                             9
                                 US-09-765-527-30
                                                              Sequence 30, Appl
318
           3
                         28
                             9
               10.3
                                 US-09-765-527-139
                                                              Sequence 139, App
319
           3
               10.3
                         28
                             9
                                US-09-765-527-140
                                                              Sequence 140, App
320
           3
               10.3
                         28
                             9
                                 US-09-765-527-142
                                                              Sequence 142, App
321
           3
               10.3
                         28
                                 US-09-765-527-143
                                                              Sequence 143, App
322
           3
               10.3
                         28
                             9
                                 US-09-895-072-27
                                                              Sequence 27, Appl
323
           3
               10.3
                         28
                             9
                                 US-09-864-761-33837
                                                              Sequence 33837, A
324
           3
                         28
               10.3
                             9
                                US-09-864-761-34933
                                                              Sequence 34933, A
325
           3
               10.3
                         28
                             9
                                 US-09-864-761-34971
                                                              Sequence 34971, A
326
           3
               10.3
                         28
                             9
                                 US-09-864-761-35640
                                                              Sequence 35640, A
327
          3
               10.3
                         28
                             9
                                 US-09-864-761-35827
                                                              Sequence 35827, A
328
           3
               10.3
                         28
                             9
                                US-09-864-761-36728
                                                              Sequence 36728, A
329
           3
                         28
                             9
               10.3
                                US-09-864-761-37848
                                                              Sequence 37848, A
330
           3
               10.3
                         28
                             9
                                 US-09-864-761-37919
                                                              Sequence 37919, A
           3
331
               10.3
                         28
                             9
                                US-09-864-761-37927
                                                              Sequence 37927, A
332
           3
                         28
                             9
               10.3
                                US-09-864-761-39084
                                                              Sequence 39084, A
333
           3
               10.3
                         28
                             9
                                US-09-864-761-39493
                                                              Sequence 39493, A
334
          3
               10.3
                         28
                             9
                                US-09-864-761-39762
                                                              Sequence 39762, A
335
           3
               10.3
                         28
                             9
                                US-09-864-761-39984
                                                              Sequence 39984, A
336
          3
               10.3
                         28
                             9
                                US-09-864-761-40300
                                                              Sequence 40300, A
337
          3
               10.3
                         28
                             9
                                US-09-864-761-41015
                                                              Sequence 41015, A
338
           3
               10.3
                         28
                             9
                                US-09-864-761-41850
                                                              Sequence 41850, A
339
           3
               10.3
                         28
                                US-09-864-761-42022
                                                              Sequence 42022, A
340
          3
               10.3
                         28
                                 US-09-864-761-42177
                                                              Sequence 42177, A
               10.3
341
          3
                         28
                             9
                                US-09-864-761-42253
                                                              Sequence 42253, A
```

```
10.3
342
                            US-09-864-761-43275
                                                       Sequence 43275, A
                      28 9
                                                       Sequence 43979, A
343
             10.3
                            US-09-864-761-43979
         3
             10.3
                     28 9
                            US-09-864-761-44041
                                                       Sequence 44041, A
344
         3
                     28 9
                                                       Sequence 44733, A
345
         3
             10.3
                            US-09-864-761-44733
                      28 9
                                                       Sequence 45427, A
         3
             10.3
                            US-09-864-761-45427
346
                     28 9
                                                       Sequence 46128, A
347
         3
             10.3
                            US-09-864-761-46128
                            US-09-864-761-47128
         3
                     28 9
                                                       Sequence 47128, A
348
             10.3
                     28 9 US-09-864-761-47465
         3 10.3
                                                       Sequence 47465, A
349
                     28 9 US-09-864-761-47968
                                                       Sequence 47968, A
350
         3
             10.3
             10.3
         3
                     28 9 US-09-864-761-48171
                                                       Sequence 48171, A
351
         3
             10.3
                     28 9 US-09-864-761-48316
                                                       Sequence 48316, A
352
                     28 9
         3
                                                       Sequence 26, Appl
             10.3
                            US-09-962-055-26
353
                      28 9
         3
                                                       Sequence 1524, Ap
354
             10.3
                            US-09-925-301-1524
         3
             10.3
                      28 9
                            US-09-925-299-1173
                                                       Sequence 1173, Ap
355
         3
             10.3
                     28 9
                            US-09-728-721-19
                                                       Sequence 19, Appl
356
                     28 9
         3
             10.3
                            US-09-728-721-23
                                                       Sequence 23, Appl
357
                     28 9 US-09-908-323-7
                                                       Sequence 7, Appli
         3
             10.3
358
                     28 9
359
         3
             10.3
                            US-09-881-490-5
                                                       Sequence 5, Appli
                     28 9
360
         3
             10.3
                            US-09-881-490-110
                                                       Sequence 110, App
                     28 9
         3
             10.3
                            US-09-881-490-111
                                                       Sequence 111, App
361
                     28 9
         3
             10.3
                            US-09-881-490-113
                                                       Sequence 113, App
362
                     28 9
363
         3
             10.3
                            US-09-881-490-114
                                                       Sequence 114, App
                     28 9
                                                       Sequence 4, Appli
364
         3
             10.3
                            US-09-879-666-4
         3
             10.3
                    28 9 US-09-929-818-1
                                                       Sequence 1, Appli
365
         3
                    28 9 US-09-929-818-2
366
             10.3
                                                       Sequence 2, Appli
         3
                     28 9 US-09-929-818-3
367
             10.3
                                                       Sequence 3, Appli
         3
             10.3
                      28 9 US-09-929-818-4
                                                       Sequence 4, Appli
368
         3
             10.3
                      28 9 US-09-929-818-5
                                                       Sequence 5, Appli
369
         3
             10.3
                      28 9 US-09-929-818-6
                                                       Sequence 6, Appli
370
371
         3
             10.3
                      28 9
                            US-09-929-818-7
                                                       Sequence 7, Appli
                      28 9
372
         3
             10.3
                             US-09-929-818-8
                                                       Sequence 8, Appli
373
         3
             10.3
                      28 9
                             US-09-929-818-9
                                                       Sequence 9, Appli
374
         3
             10.3
                      28 9 US-09-929-818-10
                                                       Sequence 10, Appl
375
         3
             10.3
                      28 9 US-09-929-818-11
                                                       Sequence 11, Appl
376
         3
             10.3
                      28 9
                             US-09-929-818-12
                                                       Sequence 12, Appl
                      28 9
377
         3
             10.3
                             US-09-929-818-13
                                                       Sequence 13, Appl
378
         3
                      28 9
             10.3
                             US-09-929-818-14
                                                       Sequence 14, Appl
                      28 9
379
         3
             10.3
                             US-09-929-818-15
                                                       Sequence 15, Appl
                      28 9
380
         3
             10.3
                             US-09-929-818-16
                                                       Sequence 16, Appl
                      28 9
                                                       Sequence 17, Appl
381
         3
             10.3
                             US-09-929-818-17
382
         3
             10.3
                      28 9
                             US-09-929-818-18
                                                       Sequence 18, Appl
         3
383
             10.3
                      28 9
                             US-09-929-818-19
                                                       Sequence 19, Appl
         3
                      28 9 US-09-929-818-20
384
             10.3
                                                       Sequence 20, Appl
         3
385
             10.3
                      28 9
                             US-09-929-818-21
                                                       Sequence 21, Appl
386
         3
             10.3
                      28 9
                             US-09-929-818-22
                                                       Sequence 22, Appl
                      28 9
         3
387
             10.3
                             US-09-929-818-23
                                                       Sequence 23, Appl
         3
                      28 9
                                                       Sequence 24, Appl
388
             10.3
                             US-09-929-818-24
                      28 9
         3
389
             10.3
                             US-09-929-818-25
                                                       Sequence 25, Appl
         3
                      28 9
390
             10.3
                             US-09-929-818-26
                                                       Sequence 26, Appl
         3
                      28 9
391
             10.3
                             US-09-929-818-27
                                                       Sequence 27, Appl
         3
                      28 9
392
             10.3
                             US-09-929-818-28
                                                       Sequence 28, Appl
         3
                      28 9
393
             10.3
                             US-09-929-818-29
                                                       Sequence 29, Appl
394
         3
             10.3
                      28 9
                             US-09-929-818-30
                                                       Sequence 30, Appl
395
         3
             10.3
                      28 9
                             US-09-929-818-31
                                                       Sequence 31, Appl
                      28 9
396
         3
                                                       Sequence 32, Appl
             10.3
                             US-09-929-818-32
                      28 9
         3
397
                                                       Sequence 33, Appl
             10.3
                             US-09-929-818-33
                      28 9 US-09-929-818-34
398
             10.3
                                                       Sequence 34, Appl
```

						_
399	3	10.3	28	9	US-09-929-818-35	Sequence 35, Appl
400	3	10.3	28	9	US-09-929-818-36	Sequence 36, Appl
401	3	10.3	28	9	US-09-929-818-37	Sequence 37, Appl
402	3	10.3	28	9	US-09-929-818-38	Sequence 38, Appl
						-
403	3	10.3	28	9	US-09-929-818-39	Sequence 39, Appl
404	3	10.3	28	9	US-09-929-818-40	Sequence 40, Appl
405	3	10.3	28	9	US-09-929-818-41	Sequence 41, Appl
406	3	10.3	28	9	US-09-929-818-42	Sequence 42, Appl
407	3	10.3	28	9	US-09-929-818-43	Sequence 43, Appl
408	3	10.3	28	9	US-09-929-818-44	Sequence 44, Appl
409	3	10.3	28	9	US-09-929-818-45	Sequence 45, Appl
410	3	10.3	28	9	US-09-929-818-46	Sequence 46, Appl
411	3	10.3	28	9	US-09-929-818-47	Sequence 47, Appl
412	3	10.3	28	9	US-09-929-818-48	Sequence 48, Appl
413	3	10.3	28	9	US-09-929-818-49	Sequence 49, Appl
414	3	10.3	28	9	US-09-929-818-50	Sequence 50, Appl
				-		
415	3	10.3	28	9	US-09-929-818-51	Sequence 51, Appl
416	3	10.3	28	9	US-09-929-818-52	Sequence 52, Appl
417	3	10.3	28	9	US-09-929-818-53	Sequence 53, Appl
418	3	10.3	28	9	US-09-929-818-54	Sequence 54, Appl
419	3	10.3	28	9	US-09-929-818-61	Sequence 61, Appl
420	3	10.3	28	9	US-09-929-818-62	Sequence 62, Appl
421	3	10.3	28	9	US-09-929-818-66	Sequence 66, Appl
422		10.3		9		
	3		28		US-09-929-818-69	Sequence 69, Appl
423	3	10.3	28	9	US-09-929-818-76	Sequence 76, Appl
424	3	10.3	28	9	US-09-929-818-77	Sequence 77, Appl
425	3	10.3	28	9	US-09-929-818-80	Sequence 80, Appl
426	3	10.3	28	9	US-09-929-818-87	Sequence 87, Appl
427	3	10.3	28	9	US-09-929-818-94	Sequence 94, Appl
428	3	10.3	28	9	US-09-929-818-95	Sequence 95, Appl
429	3	10.3	28	9	US-09-929-818-97	Sequence 97, Appl
430	3	10.3	28	9	US-09-929-818-99	Sequence 99, Appl
431	3	10.3	28	9	US-09-929-818-100	Sequence 100, App
432	3	10.3	28	9	US-09-929-818-101	Sequence 101, App
433	3	10.3	28	9	US-09-929-818-102	Sequence 102, App
434	3	10.3	28	9	US-09-929-818-103	Sequence 103, App
435	3	10.3	28	9	US-09-929-818-104	Sequence 104, App
436	3	10.3	28	9	US-09-929-818-105	Sequence 105, App
437	3	10.3		9		
			28	-	US-09-929-818-106	Sequence 106, App
438	3	10.3	28	9	US-09-929-818-107	Sequence 107, App
439	3	10.3	28	9	US-09-929-818-108	Sequence 108, App
440	3	10.3	28	9	US-09-929-818-109	Sequence 109, App
441	3	10.3	28	9	US-09-929-818-110	Sequence 110, App
442	3	10.3	28	9	US-09-929-818-111	Sequence 111, App
443	3	10.3	28	9	US-09-929-818-112	Sequence 112, App
444	3	10.3	28	9	US-09-929-818-113	Sequence 113, App
445	3	10.3	28	9	US-09-929-818-114	Sequence 114, App
446	3	10.3	28	9	US-09-929-818-115	Sequence 115, App
447	3	10.3	28	9	US-09-929-818-116	Sequence 116, App
448	3	10.3	28	9	US-09-929-818-117	Sequence 117, App
449	3	10.3	28	9	US-09-929-818-118	Sequence 118, App
450	3	10.3	28	9	US-09-929-818-119	Sequence 119, App
451	3	10.3	28	9	US-09-929-818-120	Sequence 120, App
452	3	10.3	28	9	US-09-929-818-121	Sequence 121, App
453	3	10.3	28	9	US-09-929-818-123	Sequence 123, App
454	3	10.3	28	9	US-09-929-818-124	Sequence 124, App
455	3	10.3	28	9	US-09-929-818-125	Sequence 125, App

456	3	10.3	28	9	US-09-929-818-126	Sequence 126, App
457	3	10.3		9	US-09-929-818-127	Sequence 127, App
458	3	10.3		9	US-09-929-818-128	Sequence 128, App
459	3	10.3	28	9	US-09-929-818-129	Sequence 129, App
460	3	10.3		9	US-09-929-818-130	Sequence 130, App
461	3	10.3	28	9	US-09-929-818-131	Sequence 131, App
462	3	10.3		9	US-09-929-818-132	Sequence 132, App
463	3	10.3	28	9	US-09-929-818-133	Sequence 133, App
464	3	10.3	28	9	US-09-929-818-134	Sequence 134, App
465	3	10.3	28	9	US-09-929-818-135	Sequence 135, App
466	3	10.3	28	9	US-09-929-818-136	Sequence 136, App
467	3	10.3	28	9	US-09-929-818-137	Sequence 137, App
468	3	10.3	28	9	US-09-929-818-138	Sequence 138, App
469	3	10.3	28	9	US-09-929-818 - 139	Sequence 139, App
470	3	10.3	28	9	US-09-929-818-140	Sequence 140, App
471	3	10.3	28	9	US-09-929-818-141	Sequence 141, App
472	3	10.3	28	9	US-09-929-818-142	Sequence 142, App
473	3	10.3	28	9	US-09-929-818 - 143	Sequence 143, App
474	3	10.3	28	9	US-09-929-818-144	Sequence 144, App
475	3	10.3	28	9	US-09-929-818-145	Sequence 145, App
476	3	10.3	28	9	US-09-929-818-146	Sequence 146, App
477	3	10.3	28	9	US-09-929-818-147	Sequence 147, App
478	3	10.3	28	9	US-09-929-818 - 148	Sequence 148, App
479	3	10.3	28	9	US-09-929-818-149	Sequence 149, App
480	3	10.3	28	9	US-09-929-818 - 150	Sequence 150, App
481	3	10.3	28	9	US-09-929-818-151	Sequence 151, App
482	3	10.3		9	US-09-929-818-152	Sequence 152, App
483	3	10.3		9	US-09-929-818-153	Sequence 153, App
484	3	10.3		9	US-09-929-818-154	Sequence 154, App
485	3	10.3		9	US-09-929-818-155	Sequence 155, App
486	3	10.3		9	US-09-929-818-156	Sequence 156, App
487	3	10.3	28	9	US-09-929-818-157	Sequence 157, App
488	3	10.3	28	9	US-09-929-818-158	Sequence 158, App
489	3	10.3	28	9	US-09-929-818-159	Sequence 159, App
490	3	10.3		9	US-09-929-818-160	Sequence 160, App
491	3	10.3		9	US-09-929-818-161	Sequence 161, App
492	3	10.3	28	9	US-09-929-818-162	Sequence 162, App
493	3	10.3	28	9	US-09-929-818-163	Sequence 163, App
494	3	10.3	28	9	US-09-929-818-164	Sequence 164, App
495	3	10.3		9	US-09-929-818-165	Sequence 165, App
496	3 3	10.3	28	9	US-09-929-818-166	Sequence 166, App
497 498	3	10.3	28	9	US-09-929-818-167	Sequence 167, App
499	3	10.3	28	9	US-09-929-818-168	Sequence 168, App
500	3	10.3		9 9	US-09-929-818-169	Sequence 169, App
501	3	10.3 10.3	28	9	US-09-929-818-170 US-09-929-818-171	Sequence 170, App
502	3	10.3	28 28	9	US-09-929-818-172	Sequence 171, App Sequence 172, App
503	3	10.3	28	9	US-09-929-818-173	
504	3	10.3	28	9	US-09-929-818-174	Sequence 173, App Sequence 174, App
505	3	10.3	28	9	US-09-929-818-175	Sequence 174, App Sequence 175, App
506	3	10.3	28	9	US-09-929-818-176	Sequence 176, App
507	3	10.3		9	US-09-929-818-177	Sequence 177, App
508	3	10.3		9	US-09-929-818-178	Sequence 178, App
509	3	10.3	28	9	US-09-929-818-179	Sequence 179, App
510	3	10.3	28	9	US-09-929-818-180	Sequence 180, App
511	3	10.3		9	US-09-929-818-181	Sequence 181, App
512	3	10.3		9	US-09-929-818-182	Sequence 182, App
		_			· -	·

513	3	10.3	28	9	US-09-929-818-183	Sequence 183, App
514	3	10.3	28	9	US-09-929-818-184	Sequence 184, App
515	3	10.3	28	9	US-09-929-818-185	Sequence 185, App
516	3	10.3	28	9	US-09-929-818-186	Sequence 186, App
517	3	10.3	28	9	US-09-929-818-187	Sequence 187, App
518	3	10.3	28	9	US-09-929-818-188	Sequence 188, App
						=
519	3	10.3	28	9	US-09-929-818-189	Sequence 189, App
520	3	10.3	28	9	US-09-929 - 818-190	Sequence 190, App
521	3	10.3	28	9	US-09-929-818-191	Sequence 191, App
522	3	10.3	28	9	US-09-929-818-192	Sequence 192, App
523	3	10.3	28	9	US-09-929-818-193	Sequence 193, App
524	3	10.3	28	9	US-09-929-818-194	Sequence 194, App
525	3	10.3	28	9	US-09-929-818-195	Sequence 195, App
526	3	10.3	28	9	US-09-929-818-196	Sequence 196, App
527	3	10.3	28	9	US-09-929-818-197	Sequence 197, App
	3			9		= -
528		10.3	28	_	US-09-929-818-198	Sequence 198, App
529	3	10.3	28	9	US-09-929-818-199	Sequence 199, App
530	3	10.3	28	9	US-09-929-818-201	Sequence 201, App
531	3	10.3	28	9	US-09-929-818-202	Sequence 202, App
532	3	10.3	28	9	US-09-929-818-207	Sequence 207, App
533	3	10.3	28	10	US-09-117-380B-4	Sequence 4, Appli
534	3	10.3	28	10	US-09-003-869-40	Sequence 40, Appl
535	3	10.3	28	10	US-09-003-869-90	Sequence 90, Appl
536	3	10.3	28	10	US-09-003-869-91	Sequence 91, Appl
537	3	10.3	28	10	US-09-003 - 869-92	Sequence 92, Appl
538	3	10.3	28	10	US-09-003-869-95	Sequence 95, Appl
539	3	10.3	28	10	US-09-003-869-104	Sequence 104, App
	3	10.3	28	10		
540					US-09-003-869-105	Sequence 105, App
541	3	10.3	28	10	US-09-003-869-106	Sequence 106, App
542	3	10.3	28	10	US-09-003-869-107	Sequence 107, App
543	3	10.3	28	10	US-09-003-869-108	Sequence 108, App
544	3	10.3	28	10	US-09-003-869-109	Sequence 109, App
545	3	10.3	28	10	US-09-003-869-111	Sequence 111, App
546	3	10.3	28	10	US-09-003-869-113	Sequence 113, App
547	3	10.3	28	10	US-09-003-869-115	Sequence 115, App
548	3	10.3	28	10	US-09-003-869-117	Sequence 117, App
549	3	10.3	28	10	US-09-003-869 - 119	Sequence 119, App
550	3	10.3	28	10	US-09-003-869-121	Sequence 121, App
551	3	10.3	28	10	US-09-003-869-123	Sequence 123, App
552	3	10.3	28	10	US-09-003-869-125	Sequence 125, App
553	3	10.3	28	10	US-09-003-869-127	Sequence 127, App
554	3	10.3	28	10	US-09-003-869-129	Sequence 127, App
	3	10.3				
555			28	10	US-09-003-869-131	Sequence 131, App
556	3	10.3	28	10	US-09-003-869-133	Sequence 133, App
557	3	10.3	28	10	US-09-003-869-135	Sequence 135, App
558	3	10.3	28	10	US-09-003-869-137	Sequence 137, App
559	3	10.3	28	10	US-09-003-869-139	Sequence 139, App
560	3	10.3	28	10	US-09-003-869-141	Sequence 141, App
561	3	10.3	28	10	US-09-003-869-143	Sequence 143, App
562	3	10.3	28	10	US-09-003-869-145	Sequence 145, App
563	3	10.3	28	10	US-09-003-869-147	Sequence 147, App
564	3	10.3	28	10	US-09-003-869-149	Sequence 149, App
565	3	10.3	28	10	US-09-003-869-151	Sequence 151, App
566	3	10.3	28	10	US-09-003-869-155	Sequence 155, App
567	3	10.3	28	10	US-09-003-869-163	Sequence 163, App
568	3	10.3	28	10	US-09-003-869-165	Sequence 165, App
569	3	10.3	28	10	US-09-903-456-116	Sequence 116, App
505	ر	10.5	ں ہے	± 0	25 02 202 430 110	bequeitee 110, App

570	3	10.3	28	10	US-09-989 - 903-23	Sequence 23, Appl
571	3	10.3	28	10	US-09-986-552-27	Sequence 27, Appl
			28	10		Sequence 20, Appl
572	3	10.3			US-09-934-060A-20	-
573	3	10.3	28	10	US-09-999-745-53	Sequence 53, Appl
574	3	10.3	28	10	US-09-981-876-241	Sequence 241, App
575	3	10.3	28	10	US-09-880-498-1	Sequence 1, Appli
576	3	10.3	28	10	US-09-554-000-37	Sequence 37, Appl
577	3	10.3	28	10	US-09-848-967 - 3	Sequence 3, Appli
578	3	10.3	28	10	US-09-848-967 - 4	Sequence 4, Appli
579	3	10.3	28	10	US-09-976-740-26	Sequence 26, Appl
580	3	10.3	28	11	US-09-983-802-481	Sequence 481, App
581	3	10.3	28	11	US-09-999-724-28	Sequence 28, Appl
582	3	10.3	28	11	US-09-148-545-241	Sequence 241, App
583	3	10.3	28	11	US-09-974-879-269	Sequence 269, App
584	3	10.3	28	11	US-09-974-879-520	Sequence 520, App
585	3	10.3	28	11	US-09-974-879-543	Sequence 543, App
586	3	10.3	28	11	US-09-974-879-579	Sequence 579, App
587	3	10.3	28	11	US-09-756-690A-40	Sequence 40, Appl
588	3	10.3	28	11	US-09-756-690A-90	Sequence 90, Appl
589	3	10.3	28	11	US-09-756-690A-91	Sequence 91, Appl
590	3	10.3	28	11	US-09-756-690A-92	Sequence 92, Appl
591	3	10.3	28	11	US-09-756-690A-95	Sequence 95, Appl
592	3	10.3	28	11	US-09-756-690A-104	Sequence 104, App
593	3	10.3	28	11	US-09-756-690A-105	Sequence 105, App
594	3	10.3	28	11	US-09-756-690A-106	Sequence 106, App
595	3	10.3	28	11	US-09-756-690A-107	Sequence 107, App
596	3	10.3	28	11	US-09-756-690A-108	Sequence 108, App
597	3	10.3	28	11	US-09-756-690A-109	
	3	10.3	28	11	US-09-756-690A-111	Sequence 109, App
598	3		28	11		Sequence 111, App
599	3 3	10.3 10.3	28	11	US-09-756-690A-113	Sequence 113, App
600				11	US-09-756-690A-115	Sequence 115, App
601	3 3	10.3	28 28	11	US-09-756-690A-117	Sequence 117, App
602		10.3			US-09-756-690A-119	Sequence 119, App
603	3	10.3	28	11	US-09-756-690A-121	Sequence 121, App
604	3	10.3	28	11	US-09-756-690A-123	Sequence 123, App
605	3	10.3	28	11	US-09-756-690A-125	Sequence 125, App
606	3	10.3	28	11	US-09-756-690A-127	Sequence 127, App
607	3	10.3	28	11	US-09-756-690A-129	Sequence 129, App
608	3	10.3	28	11	US-09-756-690A-131	Sequence 131, App
609	3	10.3	28	11	US-09-756-690A-133	Sequence 133, App
610	3	10.3	28	11	US-09-756-690A-135	Sequence 135, App
611	3	10.3	28	11	US-09-756-690A-137	Sequence 137, App
612	3	10.3	28	11	US-09-756-690A-139	Sequence 139, App
613	3	10.3	28	11	US-09-756-690A-141	Sequence 141, App
614	3	10.3	28	11	US-09-756-690A-143	Sequence 143, App
615	3	10.3	28	11	US-09-756-690A-145	Sequence 145, App
616	3	10.3	28	11	US-09-756-690A-147	Sequence 147, App
617	3	10.3	28	11	US-09-756-690A-149	Sequence 149, App
618	3	10.3	28	11	US-09-756-690A-151	Sequence 151, App
619	3	10.3	28	11	US-09-756-690A-155	Sequence 155, App
620	3	10.3	28	11	US-09-756 - 690A-163	Sequence 163, App
621	3	10.3	28	11	US-09-756-690A-165	Sequence 165, App
622	3	10.3	28	11	US-09-843-221A-72	Sequence 72, Appl
623	3	10.3	28	11	US-09-843-221A-75	Sequence 75, Appl
624	3	10.3	28	11	US-09-843-221A-104	Sequence 104, App
625	3	10.3	28	11	US-09-925-299-1173	Sequence 1173, Ap
626	3	10.3	28	11	US-09-945-917-23	Sequence 23, Appl

605	2	10.7	0.0		110 00 010 150 000	G
627	3	10.3	28		US-09-813-153-220	Sequence 220, App
628	3	10.3	28	11	US-09-876-904A-230	Sequence 230, App
629	3	10.3	28	11	US-09-892-877-335	Sequence 335, App
630	3	10.3	28	11	US-09-910-180-19	Sequence 19, Appl
631	3	10.3	28	11	US-09-305-736-285	Sequence 285, App
632	3	10.3	28	11	US-09-305-736-522	Sequence 522, App
633	3	10.3	28	11	US-09-305-736-545	Sequence 545, App
634	3	10.3	28	11	US-09-305-736-580	Sequence 580, App
635	3	10.3	28	11	US-09-948-783-348	Sequence 348, App
636	3	10.3	28	11	US-09-866-066-31	Sequence 31, Appl
637	3	10.3	28	12	US-10-195-730-307	Sequence 307, App
638	3	10.3	28	12		
					US-10-195-730-354	Sequence 354, App
639	3	10.3	28	12	US-10-309-422-4	Sequence 4, Appli
640	3	10.3	28	12	US-10-334-405-4	Sequence 4, Appli
641	3	10.3	28	12	US-10-251-703-21	Sequence 21, Appl
642	3	10.3	28	12	US-10-306-686-27	Sequence 27, Appl
643	3	10.3	28	12	US-09-991 - 225-35	Sequence 35, Appl
644	3	10.3	28	12	US-10-100-256B-1	Sequence 1, Appli
645	3	10.3	28	12	US-10-254-569A-1	Sequence 1, Appli
646	3	10.3	28	12	US-10-254-569A-2	Sequence 2, Appli
647	3	10.3	28	12	US-10-254-569A-3	Sequence 3, Appli
648	3	10.3	28	12	US-10-254-569A-4	Sequence 4, Appli
649	3	10.3	28	12	US-10-254-569A-5	Sequence 5, Appli
650	3	10.3	28	12	US-10-254-569A-6	Sequence 6, Appli
651	3	10.3	28	12	US-10-254-569A-7	Sequence 7, Appli
652	3	10.3	28	12	US-10-254-569A-8	Sequence 8, Appli
653	3	10.3	28	12	US-10-254-569A-9	Sequence 9, Appli
654	3	10.3	28	12	US-10-254-569A-10	Sequence 10, Appl
655	3	10.3	28	12	US-10-254-569A-11	Sequence 11, Appl
656	3	10.3	28	12	US-10-254-569A-12	Sequence 12, Appl
657	3	10.3	28	12	US-10 - 156-911-116	Sequence 116, App
658	3	10.3	28	12	US-09-845-917A-23	Sequence 23, Appl
659	3	10.3	28	12	US-10-322-746-7	Sequence 7, Appli
660	3	10.3	28	12	US-10-411-224-108	Sequence 108, App
661	3	10.3	28	12	US-09-829-922-22	Sequence 22, Appl
662	3	10.3	28	12	US-10-231-417-591	Sequence 591, App
663	3	10.3	28	12	US-10-312-691-2	Sequence 2, Appli
664	3	10.3	28	12	US-10-314-506-17	Sequence 17, Appl
665	3	10.3	28	12	US-10-408-736-81	Sequence 81, Appl
666	3	10.3	28	12	US-09-933-767-626	Sequence 626, App
667	3	10.3	28	12	US-09-933-767-638	Sequence 638, App
668	3	10.3	28	12	US-09-933-767-1089	Sequence 1089, Ap
669	3	10.3	28	12	US-10-105-232-329	Sequence 329, App
670	3	10.3	28	12	US-10-131 - 686A-19	Sequence 19, Appl
671	3	10.3	28	12	US-10-289-135A-36	Sequence 36, Appl
672	3	10.3	28	12	US-10 - 276-392-1	Sequence 1, Appli
673	3	10.3	28	12	US-10-276-392-7	Sequence 7, Appli
674	3	10.3	28	12	US-10-276-392-8	Sequence 8, Appli
675	3	10.3	28	12	US-10-276-392-9	Sequence 9, Appli
676	3	10.3	28	12	US-10-276-392-10	Sequence 10, Appl
677	3	10.3	28	12	US-10-276-392-11	Sequence 11, Appl
678	3	10.3	28	12	US-10-276-392-12	Sequence 12, Appl
679	3	10.3	28	12	US-10-276-392-12 US-10-276-392-13	Sequence 12, Appl Sequence 13, Appl
	3					
680		10.3	28	12	US-10-276-392-14	Sequence 14, Appl
681	3	10.3	28	12	US-10-276-392 - 15	Sequence 15, Appl
682	3	10.3	28	12	US-10-276-392-16	Sequence 16, Appl
683	3	10.3	28	12	US-10-276 - 392-17	Sequence 17, Appl

684	3	10.3	28	12	US-10-276-392-18	Sequence 18, Appl
685	3	10.3	28	12	US-10-276-392-19	Sequence 19, Appl
686	3	10.3	28	12	US-10-276-392-20	Sequence 20, Appl
687	3	10.3	28	12	US-10-276-392-21	Sequence 21, Appl
688	3	10.3	28	12	US-10-330-872-9	Sequence 9, Appli
689	3	10.3	28	12	US-10-351-641-54	Sequence 54, Appl
690	3	10.3	28	12	US-10-351-641-62	Sequence 62, Appl
691	3	10.3	28	12	US-10-351-641-1279	Sequence 1279, Ap
692	3	10.3	28	12	US-10-351-641-1280	Sequence 1280, Ap
693	3	10.3	28	12	US-10-351-641-1314	Sequence 1314, Ap
694	3	10.3	28	12	US-10-351-641-1315	Sequence 1315, Ap
695	3	10.3	28	12	US-10-029-386-27986	Sequence 27986, A
696	3	10.3	28	12	US-10-029-386-28154	Sequence 28154, A
697	3	10.3	28	12	US-10-029-386-28548	Sequence 28548, A
698	3	10.3	28	12	US-10-029-386-31090	Sequence 31090, A
699	3	10.3	28	12	US-10-029-386-31138	Sequence 31138, A
700	3	10.3	28	12	US-10-029-386-31267	Sequence 31267, A
701	3	10.3	28	12	US-10-029-386-31429	Sequence 31429, A
702	3	10.3	28	12	US-10-029-386-33289	Sequence 33289, A
702	3	10.3	28	12	US-10-029-386-33582	Sequence 33582, A
703	3	10.3	28	12	US-10-189-437-316	<u> </u>
	3	10.3	28	12		Sequence 316, App
705			28 28	12	US-10-189-437-669	Sequence 669, App
706	3	10.3			US-10-080-254-100	Sequence 100, App
707	3	10.3	28	12	US-10-080-608A-1	Sequence 1, Appli
708	3	10.3	28	12	US-09-818-683-285	Sequence 285, App
709	3	10.3	28	12	US-09-818-683-522	Sequence 522, App
710	3	10.3	28	12	US-09-818-683-545	Sequence 545, App
711	3	10.3	28	12	US-09-818-683-580	Sequence 580, App
712	3	10.3	28	12	US-10-370-685 - 90	Sequence 90, Appl
713	3	10.3	28	12	US-09-873-155-43	Sequence 43, Appl
714	3	10.3	28	12	US-10-366 - 493-24	Sequence 24, Appl
715	3	10.3	28	12	US-10-391-399-86	Sequence 86, Appl
716	3	10.3	28	12	US-10-211-689-8	Sequence 8, Appli
717	3	10.3	28	12	US-10-324-143-148	Sequence 148, App
718	3	10.3	28	12	US-10-242-355-646	Sequence 646, App
719	3	10.3	28	12	US-10-245-871-32	Sequence 32, Appl
720	3	10.3	28	12	US-10-154-884B-11082	Sequence 11082, A
721	3	10.3	28	12	US-10-264-049-2573	Sequence 2573, Ap
722	3	10.3	28	12	US-10-264-049-3158	Sequence 3158, Ap
723	3	10.3	28	14	US-10-014-269-17	Sequence 17, Appl
724	3	10.3	28	14	US-10-023-529-26	Sequence 26, Appl
725	3	10.3	28	14	US-10-105-931-19	Sequence 19, Appl
726	3	10.3	28	14	US-10-105-931-23	Sequence 23, Appl
727	3	10.3	28	14	US-10-090-109A-1	Sequence 1, Appli
728	3	10.3	28	14	US-10-023-523-26	Sequence 26, Appl
729	3	10.3	28	14	US-10-044-722-8	Sequence 8, Appli
730	3	10.3	28	14	US-10-002-974-17	Sequence 17, Appl
731	3	10.3	28	14	US-10-118-984-19	Sequence 19, Appl
732	3	10.3	28	14	US-10-118-984-23	Sequence 23, Appl
733	3	10.3	28	15	US-10-014-162-48	Sequence 48, Appl
734	3	10.3	28	15	US-10-000-256A-219	Sequence 219, App
735	3	10.3	28	15	US-10-068-564-23	Sequence 23, Appl
736	3	10.3	28	15	US-10-008-304-23	Sequence 126, App
737	3	10.3	28	15	US-10-004-530A-17	Sequence 17, Appl
738	3	10.3	28	15	US-10-131-433-6	Sequence 6, Appli
736 739	3	10.3	28 28	15	US-10-131-433-6 US-10-097-065-486	Sequence 486, App
740	3	10.3	28 28	15		Sequence 598, App
/ 1 U	٦	10.3	20	тЭ	US-10-097-065-598	bequence 530, App

741	3	10.3	28 1	L5	US-10-059-261-324	Sequence 324, App
742	3	10.3		15	US-10-150-111-131	Sequence 131, App
743	3	10.3		15	US-10-211-994-1	Sequence 1, Appli
744	3	10.3		15	US-10-157-224A-40	Sequence 40, Appl
745	3	10.3		15	US-10-157-224A-90	Sequence 90, Appl
746	3	10.3		15	US-10-157-224A-91	Sequence 91, Appl
747	3	10.3		15	US-10-157-224A-92	Sequence 92, Appl
748	3	10.3		15	US-10-157-224A-95	Sequence 95, Appl
749 750	3	10.3		15	US-10-157-224A-104	Sequence 104, App
750 751	3 3	10.3 10.3		15 15	US-10-157-224A-105 US-10-157-224A-106	Sequence 105, App
751 752	3	10.3		15 15	US-10-157-224A-106 US-10-157-224A-107	Sequence 106, App Sequence 107, App
752 753	3	10.3		15	US-10-157-224A-107	Sequence 107, App Sequence 108, App
754	3	10.3		15	US-10-157-224A-109	Sequence 109, App
755	3	10.3		15	US-10-157-224A-111	Sequence 111, App
756	3	10.3		15	US-10-157-224A-113	Sequence 113, App
757	3	10.3		15	US-10-157-224A-115	Sequence 115, App
758	3	10.3		15	US-10-157-224A-117	Sequence 117, App
759	3	10.3		1.5	US-10-157-224A-119	Sequence 119, App
760	3	10.3		15	US-10-157-224A-121	Sequence 121, App
761	3	10.3	28	15	US-10-157-224A-123	Sequence 123, App
762	3	10.3	28	15	US-10-157-224A-125	Sequence 125, App
763	3	10.3	28	15	US-10-157 - 224A-127	Sequence 127, App
764	3	10.3	28	15	US-10-157-224A-129	Sequence 129, App
765	3	10.3	28	15	US-10-157-224A-131	Sequence 131, App
766	3	10.3		15	US-10-157-224A-133	Sequence 133, App
767	3	10.3		15	US-10-157~224A-135	Sequence 135, App
768	3	10.3		15	US-10-157-224A-137	Sequence 137, App
769	3	10.3		15	US-10-157~224A-139	Sequence 139, App
770	3	10.3		15	US-10-157-224A-141	Sequence 141, App
771	3	10.3		15	US-10-157-224A-143	Sequence 143, App
772	3 3	10.3		15	US-10-157~224A-145	Sequence 145, App
773 774	3	10.3 10.3		15 15	US-10-157-224A-147 US-10-157-224A-149	Sequence 147, App
775	3	10.3		15 15	US-10-157-224A-149	Sequence 149, App Sequence 151, App
776	3	10.3		15	US-10-157-224A-151	Sequence 151, App Sequence 155, App
777	3	10.3		15	US-10-157-224A-163	Sequence 163, App
778	3	10.3		15	US-10-157-224A-165	Sequence 165, App
779	3	10.3		15	US-10-187-051-40	Sequence 40, Appl
780	3	10.3		15	US-10-187-051-90	Sequence 90, Appl
781	3	10.3		15	US-10-187-051-91	Sequence 91, Appl
782	3	10.3		15	US-10-187-051-92	Sequence 92, Appl
783	3	10.3	28	15	US-10-187-051-95	Sequence 95, Appl
784	3	10.3	28	15	US-10-187-051-104	Sequence 104, App
785	3	10.3	28	15	US-10-187-051-105	Sequence 105, App
786	3	10.3		15	US-10-187-051-106	Sequence 106, App
787	3	10.3		15	US-10-187-051-107	Sequence 107, App
788	3	10.3		15	US-10-187-051-108	Sequence 108, App
789	3	10.3		15	US-10-187-051-109	Sequence 109, App
790	3	10.3		15	US-10-187-051-111	Sequence 111, App
791	3	10.3		15	US-10-187-051-113	Sequence 113, App
792	3	10.3		15	US-10-187-051-115	Sequence 115, App
793 794	3 3	10.3		15	US-10-187-051-117	Sequence 117, App
79 4 795	3	10.3 10.3		15 15	US-10-187-051-119	Sequence 119, App Sequence 121, App
795 796	3	10.3		15 15	US-10-187-051-121 US-10-187-051-123	Sequence 121, App Sequence 123, App
797	3	10.3		15	US-10-187-051-125	Sequence 125, App Sequence 125, App
	7	10.5			22 TO TO! 03T-152	bodassos 120, npp

```
798
          3
               10.3
                        28
                             15
                                 US-10-187-051-127
                                                              Sequence 127, App
799
          3
               10.3
                        28
                             15
                                                              Sequence 129, App
                                 US-10-187-051-129
800
          3
               10.3
                        28
                             15
                                 US-10-187-051-131
                                                              Sequence 131, App
801
          3
               10.3
                        28
                             15
                                 US-10-187-051-133
                                                              Sequence 133, App
802
          3
               10.3
                        28
                             15
                                 US-10-187-051-135
                                                              Sequence 135, App
803
          3
               10.3
                        28
                                                              Sequence 137, App
                             15
                                 US-10-187-051-137
          3
                        28
                                                              Sequence 139, App
804
               10.3
                             15
                                 US-10-187-051-139
805
          3
               10.3
                        28
                             15
                                 US-10-187-051-141
                                                              Sequence 141, App
                                                              Sequence 143, App
806
          3
               10.3
                        28
                             15
                                 US-10-187-051-143
807
          3
               10.3
                        28
                             15
                                 US-10-187-051-145
                                                              Sequence 145, App
808
          3
               10.3
                        28
                             15
                                 US-10-187-051-147
                                                              Sequence 147, App
809
          3
               10.3
                        28
                             15
                                 US-10-187-051-149
                                                              Sequence 149, App
810
          3
               10.3
                        28
                             15
                                 US-10-187-051-151
                                                              Sequence 151, App
          3
               10.3
                        28
                             15
811
                                 US-10-187-051-155
                                                              Sequence 155, App
          3
                             15
812
               10.3
                        28
                                 US-10-187-051-163
                                                              Sequence 163, App
          3
813
               10.3
                        28
                             15
                                 US-10-187-051-165
                                                              Sequence 165, App
          3
               10.3
                        28
                             15
814
                                 US-10-023-282-626
                                                              Sequence 626, App
815
          3
               10.3
                        28
                             15
                                 US-10-023-282-638
                                                              Sequence 638, App
          3
               10.3
                        28
                             15
816
                                 US-10-023-282-1089
                                                              Sequence 1089, Ap
          3
817
               10.3
                        28
                             15
                                 US-10-255-532-6
                                                              Sequence 6, Appli
818
          3
               10.3
                        28
                             15
                                 US-10-075-869-24
                                                               Sequence 24, Appl
819
          3
               10.3
                        28
                             15
                                 US-10-202-724-3
                                                              Sequence 3, Appli
820
          3
               10.3
                        28
                                 US-10-262-017-3
                             15
                                                              Sequence 3, Appli
821
          3
               10.3
                        28
                             15
                                 US-10-106-698-5608
                                                              Sequence 5608, Ap
                                                              Sequence 6764, Ap
822
           3
               10.3
                        28
                             15
                                 US-10-106-698-6764
           3
823
               10.3
                         28
                             15
                                 US-10-106-698-7736
                                                               Sequence 7736, Ap
          3
               10.3
                             15
824
                        28
                                 US-10-106-698-7875
                                                              Sequence 7875, Ap
           3
825
               10.3
                        28
                             15
                                 US-10-106-698-8447
                                                               Sequence 8447, Ap
           3
826
               10.3
                         28
                             15
                                 US-10-197-954-62
                                                               Sequence 62, Appl
827
          3
               10.3
                         28
                             15
                                 US-10-197-954-145
                                                               Sequence 145, App
          3
828
               10.3
                        28
                             15
                                 US-10-283-500-19
                                                               Sequence 19, Appl
          3
829
               10.3
                        28
                             15
                                 US-10-295-981-19
                                                               Sequence 19, Appl
                                                              Sequence 23, Appl
           3
830
               10.3
                        28
                             15
                                 US-10-295-981-23
          3
               10.3
                                                              Sequence 22, Appl
831
                        28
                             15
                                 US-10-160-290-22
832
           3
               10.3
                        29
                                US-08-913-430-4
                             8
                                                              Sequence 4, Appli
           3
833
               10.3
                        29
                             9
                                US-09-205-658-71
                                                              Sequence 71, Appl
           3
834
               10.3
                         29
                             9
                                US-09-730-379B-4
                                                              Sequence 4, Appli
835
           3
               10.3
                         29
                             9
                                US-09-765-527-13
                                                              Sequence 13, Appl
836
           3
               10.3
                        29
                             9
                                US-09-765-527-64
                                                              Sequence 64, Appl
837
           3
               10.3
                        29
                             9
                                US-09-005-243-73
                                                              Sequence 73, Appl
838
           3
               10.3
                        29
                             9
                                US-09-904-380-23
                                                              Sequence 23, Appl
839
           3
               10.3
                        29
                             9
                                US-09-224-683-73
                                                              Sequence 73, Appl
840
          3
               10.3
                        29
                             9
                                US-09-932-161-1
                                                              Sequence 1, Appli
841
           3
               10.3
                        29
                             9
                                US-09-844-353A-71
                                                              Sequence 71, Appl
           3
842
                        29
                             9
               10.3
                                US-09-864-761-33834
                                                              Sequence 33834, A
           3
843
               10.3
                        29
                             9
                                US-09-864-761-34011
                                                              Sequence 34011, A
           3
844
               10.3
                         29
                             9
                                US-09-864-761-34337
                                                              Sequence 34337, A
845
          3
               10.3
                        29
                             9
                                US-09-864-761-35314
                                                              Sequence 35314, A
           3
846
               10.3
                        29
                             9
                                US-09-864-761-36235
                                                              Sequence 36235, A
           3
847
               10.3
                        29
                             9
                                US-09-864-761-37068
                                                              Sequence 37068, A
848
           3
              10.3
                        29
                             9
                                US-09-864-761-37579
                                                              Sequence 37579, A
849
          3
               10.3
                        29
                             9
                                US-09-864-761-37814
                                                              Sequence 37814, A
850
          3
                        29
                             9
               10.3
                                                              Sequence 38222, A
                                US-09-864-761-38222
           3
851
               10.3
                        29
                             9
                                US-09-864-761-38638
                                                              Sequence 38638, A
852
          3
                        29
               10.3
                             9
                                US-09-864-761-38968
                                                              Sequence 38968, A
853
          3
               10.3
                        29
                             9
                                US-09-864-761-39320
                                                             Sequence 39320, A
854
                        29
               10.3
                             9
                                US-09-864-761-40067
                                                             Sequence 40067, A
```

```
Sequence 40393, A
                        29
                                US-09-864-761-40393
               10.3
                             9
          3
855
                                US-09-864-761-40727
                                                             Sequence 40727, A
                        29
                             9
856
          3
               10.3
                                                             Sequence 40944, A
          3
               10.3
                        29
                             9
                                US-09-864-761-40944
857
                                                             Sequence 41199, A
          3
                        29
                             9
                                US-09-864-761-41199
               10.3
858
                                US-09-864-761-41596
                                                             Sequence 41596, A
          3
                        29
                             9
859
               10.3
                                                             Sequence 42035, A
                                US-09-864-761-42035
          3
               10.3
                        29
                             9
860
                                                             Sequence 42321, A
                        29
                             9
                                US-09-864-761-42321
          3
               10.3
861
                                                             Sequence 42342, A
                        29
                             9
                                US-09-864-761-42342
862
          3
               10.3
                                                             Sequence 42467, A
                                US-09-864-761-42467
                        29
                             9
863
          3
               10.3
                                                             Sequence 42588, A
                         29
                             9
                                US-09-864-761-42588
864
          3
               10.3
                                                             Sequence 42832, A
                         29
                             9
                                US-09-864-761-42832
               10.3
865
          3
                                                             Sequence 42924, A
                        29
                             9
                                US-09-864-761-42924
866
           3
               10.3
                                                             Sequence 43064, A
                             9
                                US-09-864-761-43064
                        29
867
           3
               10.3
                                                             Sequence 43635, A
           3
               10.3
                         29
                             9
                                US-09-864-761-43635
868
                                                             Sequence 44716, A
               10.3
                         29
                             9
                                US-09-864-761-44716
869
           3
                                                             Sequence 44947, A
                             9
                                US-09-864-761-44947
                         29
870
           3
               10.3
                                                             Sequence 45207, A
                             9
           3
               10.3
                         29
                                US-09-864-761-45207
871
                                                             Sequence 45581, A
                         29
                             9
                                US-09-864-761-45581
           3
               10.3
872
                                                             Sequence 45777, A
                         29
                             9
                                US-09-864-761-45777
873
           3
               10.3
                                                             Sequence 45815, A
                             9
                                US-09-864-761-45815
                         29
874
           3
               10.3
                                                             Sequence 45948, A
                             9
                         29
                                US-09-864-761-45948
875
           3
               10.3
                                                             Sequence 47028, A
                         29
                                US-09-864-761-47028
               10.3
876
           3
                                                             Sequence 47383, A
                         29
                             9
                                US-09-864-761-47383
877
           3
               10.3
                                                             Sequence 47524, A
                                US-09-864-761-47524
                         29
                             9
878
           3
               10.3
                                                             Sequence 48505, A
                         29
                             9
                                US-09-864-761-48505
879
           3
               10.3
                                                             Sequence 48518, A
                         29
                             9
                                US-09-864-761-48518
           3
               10.3
880
                                                             Sequence 22, Appl
                             9
                         29
                                US-09-876-388-22
881
           3
               10.3
                                                             Sequence 1270, Ap
                             9
                         29
                                US-09-925-299-1270
882
           3
               10.3
                                                              Sequence 638, App
                         29
                                US-09-764-869-638
           3
               10.3
883
                                                              Sequence 674, App
                         29
                             9
                                US-09-764-869-674
884
           3
               10.3
                                                              Sequence 3, Appli
                             9
885
           3
               10.3
                         29
                                US-09-881-490-3
                                                              Sequence 13, Appl
886
           3
               10.3
                         29
                             9
                                US-09-789-836-13
                                                               Sequence 5, Appli
                                 US-09-927-112-5
887
           3
               10.3
                         29
                             10
                                                               Sequence 6, Appli
888
           3
               10.3
                         29
                             10
                                 US-09-927-112-6
                                                               Sequence 17, Appl
889
           3
               10.3
                         29
                             10
                                 US-09-872-864-17
                                                               Sequence 18, Appl
                         29
                             10
                                 US-09-872-864-18
890
           3
               10.3
                                                               Sequence 19, Appl
                         29
                             10
                                  US-09-872-864-19
891
           3
               10.3
                                                               Sequence 20, Appl
                         29
                             10
                                 US-09-872-864-20
892
           3
               10.3
                                                               Sequence 258, App
893
           3
               10.3
                         29
                             10
                                  US-09-922-261-258
                                                               Sequence 8, Appli
                                  US-09-908-664-8
           3
               10.3
                         29
                             10
894
                                                               Sequence 9, Appli
                         29
                                  US-09-908-664-9
           3
               10.3
                             10
895
                                                               Sequence 18, Appl
           3
               10.3
                         29
                             10
                                  US-09-908-664-18
896
                                                               Sequence 12, Appl
           3
               10.3
                         29
                             10
                                  US-09-905-831-12
897
                                                               Sequence 15, Appl
           3
               10.3
                         29
                             10
                                  US-09-905-831-15
898
                                                               Sequence 79, Appl
           3
                10.3
                         29
                             10
                                  US-09-003-869-79
899
                                                               Sequence 98, Appl
           3
                10.3
                         29
                             10
                                  US-09-003-869-98
900
                                                               Sequence 7, Appli
           3
                10.3
                         29
                             10
                                  US-09-911-969-7
901
                                                               Sequence 1395, Ap
           3
                10.3
                         29
                             10
                                  US-09-764-877-1395
902
                                                               Sequence 152, App
           3
                10.3
                         29
                             10
                                  US-09-867-852-152
 903
                                                               Sequence 189, App
           3
                10.3
                         29
                             10
                                  US-09-071-838-189
904
                                                               Sequence 242, App
           3
                10.3
                         29
                             10
                                  US-09-071-838-242
 905
                                                               Sequence 1, Appli
           3
                10.3
                         29
                             10
                                  US-09-956-206A-1
 906
                                                               Sequence 227, App
                                  US-09-984-245-227
 907
           3
                10.3
                         29
                             10
                                                               Sequence 480, App
 908
           3
                10.3
                         29
                             11
                                  US-09-983-802-480
                                                               Sequence 38, Appl
           3
                10.3
                         29
                             11
                                  US-09-956-940-38
 909
                         29
                                  US-09-974-879-406
                                                               Sequence 406, App
           3
                10.3
                             11
 910
                                  US-09-974-879-511
                                                               Sequence 511, App
           3
                10.3
                         29
                             11
 911
```

912	3	10.3	29	11	US-09-974-879-527	Sequence 527, App
913	3	10.3	29	11	US-09-974-879-580	Sequence 580, App
914	3	10.3	29	11	US-09-259-658 - 15	Sequence 15, Appl
915	3	10.3	29	11	US-09-756-690A-79	Sequence 79, Appl
916	3	10.3	29	11	US-09-756-690A-98	Sequence 98, Appl
917	3	10.3	29	11	US-09-843-221A-152	Sequence 152, App
918	3	10.3	29	11	US-09-925-299-1270	Sequence 1270, Ap
919	3	10.3	29	11	US-09-847-102A-80	Sequence 80, Appl
920	3	10.3	29	11	US-09-813-153-218	Sequence 218, App
921	3	10.3	29	11	US-09-966-262-227	Sequence 227, App
922	3	10.3	29	11	US-09-969-730-196	Sequence 196, App
923	3	10.3	29	11	US-09-983-966-227	Sequence 227, App
	3	10.3	29	11	US-09-876-904A-28	Sequence 28, Appl
924	3		29	11	US-09-764-891-4191	Sequence 4191, Ap
925		10.3				
926	3	10.3	29	11	US-09-764-891-4851	Sequence 4851, Ap
927	3	10.3	29	11	US-09-892-877-436	Sequence 436, App
928	3	10.3	29	11	US-09-847-208-125	Sequence 125, App
929	3	10.3	29	11	US-09-305-736-406	Sequence 406, App
930	3	10.3	29	11	US-09-305-736-512	Sequence 512, App
931	3	10.3	29	11	US-09-305-736-529	Sequence 529, App
932	3	10.3	29	11	US-09-305-736-581	Sequence 581, App
933	3	10.3	29	11	US-09-095-478-25	Sequence 25, Appl
934	3	10.3	29	11	US-09-908-139-19	Sequence 19, Appl
935	3	10.3	29	11	US-09-908-139-21	Sequence 21, Appl
936	3	10.3	29	11	US-09-491-614-14	Sequence 14, Appl
937	3	10.3	29	11	US-09-491-614-15	Sequence 15, Appl
938	3	10.3	29	11	US-09-948-783-438	Sequence 438, App
939	3	10.3	29	11	US-09-910-082A-158	Sequence 158, App
940	3	10.3	29	11	US-09-910-082A-368	Sequence 368, App
941	3	10.3	29	12	US-10-153-604A-72	Sequence 72, Appl
942	3	10.3	29	12	US-10-231-894-44	Sequence 44, Appl
943	3	10.3	29	12	US-10-234-816-95	Sequence 95, Appl
944	3	10.3	29	12	US-09-789-831-13	Sequence 13, Appl
945	3	10.3	29	12	US-09-935-384-757	Sequence 757, App
946	3	10.3	29	12	US-09-935-384-758	Sequence 758, App
947	3	10.3	29	12	US-10-131-909A-4	Sequence 4, Appli
948	3	10.3	29	12	US-10-131-909A-7	Sequence 7, Appli
949	3	10.3	29	12	US-10-096-777-1	Sequence 1, Appli
950	3	10.3	29	12	US-10-008-524A-123	Sequence 123, App
951	3	10.3	29	12	US-10-340-458-4	Sequence 4, Appli
952	3	10.3	29	12	US-10-340-458-21	Sequence 21, Appl
953	3	10.3	29	12	US-09-933-767-1182	Sequence 1182, Ap
954	3	10.3	29	12	US-09-963-693-71	Sequence 71, Appl
955	3	10.3	29	12	US-10-105-232-319	Sequence 319, App
956	3	10.3	29	12	US-10-105-232-512	Sequence 512, App
957	3	10.3	29	12	US-10-280-066-334	Sequence 334, App
958	3	10.3	29	12	US-10-289 - 135A-25	Sequence 25, Appl
959	3	10.3	29	12	US-10-029-386-27545	Sequence 27545, A
960	3	10.3	29	12	US-10-029-386 - 27995	Sequence 27995, A
961	3	10.3	29	12	US-10-029-386-29238	Sequence 29238, A
962	3	10.3	29	12	US-10-029-386-30256	Sequence 30256, A
963	3	10.3	29	12	US-10-029-386-31071	Sequence 31071, A
964	3	10.3	29	12	US-10-029-386-31577	Sequence 31577, A
965	3	10.3	29	12	US-10-029-386-32473	Sequence 32473, A
966	3	10.3	29	12	US-10-029-386-33620	Sequence 33620, A
967	3	10.3	29	12	US-10-189-437-306	Sequence 306, App
968	3	10.3	29	12	US-10-189-437-499	Sequence 499, App

969	3	10.3	29	12	US-10-189-437-641	Sequence 64	1, App
970	3	10.3	29	12	US-10-189-437-693	Sequence 69	3, App
971	3	10.3	29	12	US-10-189-437-716	Sequence 71	.6, App
972	3	10.3	29	12	US-10-231-889-44	Sequence 44	, Appl
973	3	10.3	29	12	US-09-818-683-406	Sequence 40	6, App
974	3	10.3	29	12	US-09-818-683-512	Sequence 51	2, App
975	3	10.3	29	12	US-09-818-683-529	Sequence 52	29, App
976	3	10.3	29	12	US-09-818-683-581	Sequence 58	31, App
977	3	10.3	29	12	US-10-350-719-123	Sequence 12	23, App
978	3	10.3	29	12	US-09-933~780C-4	Sequence 4,	Appli
979	3	10.3	29	12	US-10-074-024-284	Sequence 28	34, App
980	3	10.3	29	12	US-10-080-334-264	Sequence 26	4, App
981	3	10.3	29	12	US-10-154-884B-11109	Sequence 11	109, A
982	3	10.3	29	12	US-10-227-577 - 638	Sequence 63	88, App
983	3	10.3	29	12	US-10-227~577-674	Sequence 67	74, App
984	3	10.3	29	12	US-10-264-049-3305	Sequence 33	805, Ap
985	3	10.3	29	12	US-10-387-977-16	Sequence 16	, Appl
986	3	10.3	29	14	US-10-090-624-3	Sequence 3,	Appli
987	3	10.3	29	14	US-10-153-064-72	Sequence 72	2, Appl
988	3	10.3	29	14	US-10-044-592-26	Sequence 26	, Appl
989	3	10.3	29	14	US-10-001-876-168	Sequence 16	8, App
990	3	10.3	29	15	US-10-214-188-12	Sequence 12	2, Appl
991	3	10.3	29	15	US-10-214-188-13	Sequence 13	3, Appl
992	3	10.3	29	15	US-10-014-162-11	Sequence 11	l, Appl
993	3	10.3	29	15	US-10-014-162-47	Sequence 47	, Appl
994	3	10.3	29	15	US-10-014-162-80	Sequence 80), Appl
995	3	10.3	29	15	US-10-018-103A-4	Sequence 4,	Appli
996	3	10.3	29	15	US-10-018-103A-7	Sequence 7,	Appli
997	3	10.3	29	15	US-10-045-465-12	Sequence 12	2, Appl
998	3	10.3	29	15	US-10-091-572-397	Sequence 39	
999	3	10.3	29	15	US-10-097-065-380	Sequence 38	30, App
1000	3	10.3	29	15	US-10-097 - 065-517	Sequence 51	

ALIGNMENTS

RESULT 1

US-09-843-221A-51

- ; Sequence 51, Application US/09843221A
- ; Publication No. US20030039654A1
- ; GENERAL INFORMATION:
- ; APPLICANT: KOSTENUIK, PAUL
- ; APPLICANT: LIU, CHUAN-FA
- ; APPLICANT: LACEY, DAVID LEE
- ; TITLE OF INVENTION: MODULATORS OF RECEPTORS FOR PARATHYROID HORMONE AND

PARATHYROID HORMONE-

- ; TITLE OF INVENTION: RELATED PROTEIN
- ; FILE REFERENCE: A-665B
- ; CURRENT APPLICATION NUMBER: US/09/843,221A
- ; CURRENT FILING DATE: 2001-04-26
- ; PRIOR APPLICATION NUMBER: 60/266,673
- ; PRIOR FILING DATE: 2001-02-06
- ; PRIOR APPLICATION NUMBER: 60/214,860
- ; PRIOR FILING DATE: 2000-06-28
- ; PRIOR APPLICATION NUMBER: 60/200,053
- ; PRIOR FILING DATE: 2000-04-27

```
NUMBER OF SEQ ID NOS: 170
  SOFTWARE: PatentIn version 3.1
 SEQ ID NO 51
   LENGTH: 29
   TYPE: PRT
   ORGANISM: Homo sapiens
US-09-843-221A-51
                         100.0%; Score 29; DB 11; Length 29;
 Query Match
                         100.0%; Pred. No. 1.1e-22;
 Best Local Similarity
                               0; Mismatches
                                                 0; Indels
                                                               0; Gaps
                                                                           0;
 Matches
           29; Conservative
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
QУ
              1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
Db
RESULT 2
US-09-843-221A-167
; Sequence 167, Application US/09843221A
; Publication No. US20030039654A1
; GENERAL INFORMATION:
; APPLICANT: KOSTENUIK, PAUL
  APPLICANT: LIU, CHUAN-FA
  APPLICANT: LACEY, DAVID LEE
  TITLE OF INVENTION: MODULATORS OF RECEPTORS FOR PARATHYROID HORMONE AND
PARATHYROID HORMONE-
  TITLE OF INVENTION: RELATED PROTEIN
  FILE REFERENCE: A-665B
  CURRENT APPLICATION NUMBER: US/09/843,221A
  CURRENT FILING DATE: 2001-04-26
  PRIOR APPLICATION NUMBER: 60/266,673
  PRIOR FILING DATE: 2001-02-06
  PRIOR APPLICATION NUMBER: 60/214,860
  PRIOR FILING DATE: 2000-06-28
  PRIOR APPLICATION NUMBER: 60/200,053
  PRIOR FILING DATE: 2000-04-27
  NUMBER OF SEQ ID NOS: 170
  SOFTWARE: PatentIn version 3.1
 SEQ ID NO 167
   LENGTH: 29
   TYPE: PRT
   ORGANISM: Artificial Sequence
   OTHER INFORMATION: Preferred embodiments - PTH
   NAME/KEY: misc_feature
   LOCATION: (1)..(1)
   OTHER INFORMATION: Fc domain attached at the N-terminus through optional
linker
US-09-843-221A-167
                         100.0%; Score 29; DB 11; Length 29;
  Query Match
                         100.0%; Pred. No. 1.1e-22;
  Best Local Similarity
                                0; Mismatches
                                                0; Indels
  Matches
           29; Conservative
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
Qу
```

111111111111111

```
RESULT 3
US-09-843-221A-39
; Sequence 39, Application US/09843221A
; Publication No. US20030039654A1
; GENERAL INFORMATION:
  APPLICANT: KOSTENUIK, PAUL
  APPLICANT: LIU, CHUAN-FA
  APPLICANT: LACEY, DAVID LEE
  TITLE OF INVENTION: MODULATORS OF RECEPTORS FOR PARATHYROID HORMONE AND
PARATHYROID HORMONE-
  TITLE OF INVENTION: RELATED PROTEIN
  FILE REFERENCE: A-665B
  CURRENT APPLICATION NUMBER: US/09/843,221A
  CURRENT FILING DATE: 2001-04-26
  PRIOR APPLICATION NUMBER: 60/266,673
  PRIOR FILING DATE: 2001-02-06
  PRIOR APPLICATION NUMBER: 60/214,860
  PRIOR FILING DATE: 2000-06-28
  PRIOR APPLICATION NUMBER: 60/200,053
  PRIOR FILING DATE: 2000-04-27
  NUMBER OF SEQ ID NOS: 170
  SOFTWARE: PatentIn version 3.1
; SEQ ID NO 39
   LENGTH: 30
   TYPE: PRT
   ORGANISM: Homo sapiens
US-09-843-221A-39
  Query Match
                         100.0%; Score 29; DB 11; Length 30;
  Best Local Similarity 100.0%; Pred. No. 1.1e-22;
 Matches
           29; Conservative
                             0; Mismatches
                                               0; Indels
                                                               0; Gaps
                                                                           0;
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
QУ
              Db
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
RESULT 4
US-09-843-221A-166
; Sequence 166, Application US/09843221A
; Publication No. US20030039654A1
; GENERAL INFORMATION:
  APPLICANT: KOSTENUIK, PAUL
  APPLICANT: LIU, CHUAN-FA
  APPLICANT: LACEY, DAVID LEE
  TITLE OF INVENTION: MODULATORS OF RECEPTORS FOR PARATHYROID HORMONE AND
PARATHYROID HORMONE-
  TITLE OF INVENTION: RELATED PROTEIN
  FILE REFERENCE: A-665B
  CURRENT APPLICATION NUMBER: US/09/843,221A
  CURRENT FILING DATE: 2001-04-26
  PRIOR APPLICATION NUMBER: 60/266,673
   PRIOR FILING DATE: 2001-02-06
  PRIOR APPLICATION NUMBER: 60/214,860
```

```
PRIOR FILING DATE: 2000-06-28
  PRIOR APPLICATION NUMBER: 60/200,053
  PRIOR FILING DATE: 2000-04-27
  NUMBER OF SEQ ID NOS: 170
  SOFTWARE: PatentIn version 3.1
; SEQ ID NO 166
   LENGTH: 30
   TYPE: PRT
   ORGANISM: Artificial Sequence
   FEATURE:
   OTHER INFORMATION: Preferred embodiments - PTH
   NAME/KEY: misc feature
   LOCATION: (30)..(30)
   OTHER INFORMATION: Optional linker and Fc domain attached at the C-terminus
US-09-843-221A-166
  Query Match
                         100.0%; Score 29; DB 11; Length 30;
  Best Local Similarity
                         100.0%; Pred. No. 1.1e-22;
           29; Conservative
                               0; Mismatches
                                                0; Indels
                                                              0; Gaps
                                                                          0;
Qу
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
             Db
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
RESULT 5
US-09-169-786-2
; Sequence 2, Application US/09169786B
; Patent No. US20020025929A1
 GENERAL INFORMATION:
  APPLICANT: Sato, Masahiko
  TITLE OF INVENTION: METHOD OF BUILDING AND MAINTAINING BONE
  FILE REFERENCE: X-11480
  CURRENT APPLICATION NUMBER: US/09/169,786B
  CURRENT FILING DATE: 1998-10-09
  EARLIER APPLICATION NUMBER: US 60/061,800
  EARLIER FILING DATE: 1997-10-14
  NUMBER OF SEQ ID NOS: 12
  SOFTWARE: PatentIn Ver. 2.0
 SEQ ID NO 2
   LENGTH: 31
   TYPE: PRT
    ORGANISM: Homo sapiens
US-09-169-786-2
                         100.0%; Score 29; DB 9; Length 31;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 1.1e-22;
  Matches
           29; Conservative
                             0; Mismatches
                                               0; Indels
                                                               0; Gaps
                                                                          0;
Qу
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
             Db
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
RESULT 6
US-09-843-221A-27
; Sequence 27, Application US/09843221A
```

```
; Publication No. US20030039654A1
; GENERAL INFORMATION:
  APPLICANT: KOSTENUIK, PAUL
  APPLICANT: LIU, CHUAN-FA
  APPLICANT: LACEY, DAVID LEE
  TITLE OF INVENTION: MODULATORS OF RECEPTORS FOR PARATHYROID HORMONE AND
PARATHYROID HORMONE-
  TITLE OF INVENTION: RELATED PROTEIN
   FILE REFERENCE: A-665B
   CURRENT APPLICATION NUMBER: US/09/843,221A
   CURRENT FILING DATE: 2001-04-26
   PRIOR APPLICATION NUMBER: 60/266,673
   PRIOR FILING DATE: 2001-02-06
   PRIOR APPLICATION NUMBER: 60/214,860
   PRIOR FILING DATE: 2000-06-28
   PRIOR APPLICATION NUMBER: 60/200,053
   PRIOR FILING DATE: 2000-04-27
   NUMBER OF SEQ ID NOS: 170
   SOFTWARE: PatentIn version 3.1
; SEQ ID NO 27
    LENGTH: 31
    TYPE: PRT
    ORGANISM: Homo sapiens
US-09-843-221A-27
                          100.0%; Score 29; DB 11; Length 31;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 1.1e-22;
           29; Conservative 0; Mismatches
                                                 0; Indels
                                                                     Gaps
  Matches
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
Qу
              11111111111111
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
Db
RESULT 7
US-09-843-221A-165
; Sequence 165, Application US/09843221A
; Publication No. US20030039654A1
; GENERAL INFORMATION:
   APPLICANT: KOSTENUIK, PAUL
   APPLICANT: LIU, CHUAN-FA
   APPLICANT: LACEY, DAVID LEE
   TITLE OF INVENTION: MODULATORS OF RECEPTORS FOR PARATHYROID HORMONE AND
PARATHYROID HORMONE-
   TITLE OF INVENTION: RELATED PROTEIN
   FILE REFERENCE: A-665B
   CURRENT APPLICATION NUMBER: US/09/843,221A
   CURRENT FILING DATE: 2001-04-26
   PRIOR APPLICATION NUMBER: 60/266,673
   PRIOR FILING DATE: 2001-02-06
   PRIOR APPLICATION NUMBER: 60/214,860
   PRIOR FILING DATE: 2000-06-28
   PRIOR APPLICATION NUMBER: 60/200,053
   PRIOR FILING DATE: 2000-04-27
   NUMBER OF SEQ ID NOS: 170
   SOFTWARE: PatentIn version 3.1
 ; SEQ ID NO 165
```

```
LENGTH: 31
   TYPE: PRT
   ORGANISM: Artificial Sequence
   FEATURE:
   OTHER INFORMATION: Preferred embodiments - PTH
   NAME/KEY: misc feature
   LOCATION: (31)..(31)
   OTHER INFORMATION: Optional linker and Fc domain attached at the C-terminus
US-09-843-221A-165
 Query Match
                         100.0%; Score 29; DB 11;
                                                     Length 31;
 Best Local Similarity
                         100.0%; Pred. No. 1.1e-22;
 Matches
           29; Conservative
                              0; Mismatches
                                                 0; Indels
                                                                0; Gaps
                                                                            0:
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
Qу
              1111111111111111111111111111111111
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
Dh
RESULT 8
US-10-361-928-9
; Sequence 9, Application US/10361928
; Publication No. US20030144209A1
; GENERAL INFORMATION:
  APPLICANT: BRINGHURST, F. RICHARD
  APPLICANT: TAKASU, HISASHI
  APPLICANT: GARDELLA, THOMAS J.
  TITLE OF INVENTION: AMINO-TERMINAL MODIFIED PARATHYROID HORMONE (PTH)
  TITLE OF INVENTION: ANALOGS
  FILE REFERENCE: 0609.4630002
   CURRENT APPLICATION NUMBER: US/10/361,928
   CURRENT FILING DATE: 2003-02-11
   PRIOR APPLICATION NUMBER: 09/447,800
  PRIOR FILING DATE: 1999-11-23
  PRIOR APPLICATION NUMBER: 60/110,152
   PRIOR FILING DATE: 1998-11-25
   NUMBER OF SEO ID NOS: 10
   SOFTWARE: PatentIn Ver. 2.1
; SEQ ID NO 9
   LENGTH: 33
   TYPE: PRT
   ORGANISM: Homo sapiens
   FEATURE:
    NAME/KEY: MOD RES
    LOCATION: (1)
    OTHER INFORMATION: Desamino Ser
US-10-361-928-9
  Query Match
                         100.0%; Score 29; DB 12; Length 33;
                         100.0%; Pred. No. 1.2e-22;
  Best Local Similarity
                                0; Mismatches
 Matches
           29; Conservative
                                                 0; Indels
                                                                0; Gaps
                                                                            0;
Qу
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
              Db
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
```

```
RESULT 9
US-09-169-786-3
; Sequence 3, Application US/09169786B
 Patent No. US20020025929A1
; GENERAL INFORMATION:
  APPLICANT: Sato, Masahiko
  TITLE OF INVENTION: METHOD OF BUILDING AND MAINTAINING BONE
  FILE REFERENCE: X-11480
  CURRENT APPLICATION NUMBER: US/09/169,786B
  CURRENT FILING DATE: 1998-10-09
  EARLIER APPLICATION NUMBER: US 60/061,800
  EARLIER FILING DATE: 1997-10-14
  NUMBER OF SEQ ID NOS: 12
  SOFTWARE: PatentIn Ver. 2.0
 SEQ ID NO 3
   LENGTH: 34
   TYPE: PRT
   ORGANISM: Homo sapiens
US-09-169-786-3
                         100.0%; Score 29; DB 9; Length 34;
  Query Match
                         100.0%; Pred. No. 1.2e-22;
  Best Local Similarity
           29; Conservative 0; Mismatches 0; Indels
                                                                0; Gaps
                                                                            0;
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
Qу
              111111111111111111111111111111111
Db
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
RESULT 10
US-09-928-047B-6
; Sequence 6, Application US/09928047B
 Patent No. US20020160945A1
; GENERAL INFORMATION:
  APPLICANT: Cantor, Thomas
  TITLE OF INVENTION: CYCLASE INHIBITING PARATHYROID HORMONE
  TITLE OF INVENTION: ANTAGONIST OR MODULATORS AND OSTEOPOROSIS
  FILE REFERENCE: 53221-20002.00
  CURRENT APPLICATION NUMBER: US/09/928,047B
   CURRENT FILING DATE: 2001-08-10
  PRIOR APPLICATION NUMBER: US 60/224,446
  PRIOR FILING DATE: 2000-08-10
  NUMBER OF SEQ ID NOS: 8
   SOFTWARE: FastSEQ for Windows Version 4.0
 SEQ ID NO 6
   LENGTH: 34
    TYPE: PRT
   ORGANISM: Homo sapiens
US-09-928-047B-6
  Query Match
                         100.0%; Score 29; DB 10; Length 34;
  Best Local Similarity
                         100.0%; Pred. No. 1.2e-22;
           29; Conservative
                                0; Mismatches
                                                 0; Indels
                                                                    Gaps
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
Qу
              Db
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
```

```
RESULT 11
US-09-843-221A-16
; Sequence 16, Application US/09843221A
; Publication No. US20030039654A1
; GENERAL INFORMATION:
  APPLICANT: KOSTENUIK, PAUL
  APPLICANT: LIU, CHUAN-FA
  APPLICANT: LACEY, DAVID LEE
  TITLE OF INVENTION: MODULATORS OF RECEPTORS FOR PARATHYROID HORMONE AND
PARATHYROID HORMONE-
  TITLE OF INVENTION: RELATED PROTEIN
  FILE REFERENCE: A-665B
  CURRENT APPLICATION NUMBER: US/09/843,221A
  CURRENT FILING DATE: 2001-04-26
  PRIOR APPLICATION NUMBER: 60/266,673
  PRIOR FILING DATE: 2001-02-06
  PRIOR APPLICATION NUMBER: 60/214,860
  PRIOR FILING DATE: 2000-06-28
  PRIOR APPLICATION NUMBER: 60/200,053
  PRIOR FILING DATE: 2000-04-27
 NUMBER OF SEQ ID NOS: 170
  SOFTWARE: PatentIn version 3.1
; SEQ ID NO 16
   LENGTH: 34
   TYPE: PRT
    ORGANISM: Homo sapiens
US-09-843-221A-16
  Query Match
                         100.0%; Score 29; DB 11; Length 34;
  Best Local Similarity 100.0%; Pred. No. 1.2e-22;
 Matches
           29; Conservative
                              0; Mismatches 0; Indels
                                                                   Gaps
Qу
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
              Db
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
RESULT 12
US-09-843-221A-161
; Sequence 161, Application US/09843221A
; Publication No. US20030039654A1
; GENERAL INFORMATION:
  APPLICANT: KOSTENUIK, PAUL
  APPLICANT: LIU, CHUAN-FA
  APPLICANT: LACEY, DAVID LEE
  TITLE OF INVENTION: MODULATORS OF RECEPTORS FOR PARATHYROID HORMONE AND
PARATHYROID HORMONE-
  TITLE OF INVENTION: RELATED PROTEIN
  FILE REFERENCE: A-665B
  CURRENT APPLICATION NUMBER: US/09/843,221A
  CURRENT FILING DATE: 2001-04-26
  PRIOR APPLICATION NUMBER: 60/266,673
  PRIOR FILING DATE: 2001-02-06
  PRIOR APPLICATION NUMBER: 60/214,860
  PRIOR FILING DATE: 2000-06-28
```

```
PRIOR APPLICATION NUMBER: 60/200,053
  PRIOR FILING DATE: 2000-04-27
  NUMBER OF SEQ ID NOS: 170
  SOFTWARE: PatentIn version 3.1
; SEQ ID NO 161
   LENGTH: 34
   TYPE: PRT
   ORGANISM: Artificial Sequence
   FEATURE:
   OTHER INFORMATION: Preferred embodiments - PTH
   NAME/KEY: misc feature
   LOCATION: (34)..(34)
    OTHER INFORMATION: Optional linker and Fc domain attached at the C-terminus
US-09-843-221A-161
                         100.0%; Score 29; DB 11; Length 34;
  Query Match
                         100.0%; Pred. No. 1.2e-22;
  Best Local Similarity
                                                                            0;
                                0; Mismatches
                                                     Indels
                                                                0; Gaps
                                                 0;
  Matches
          29; Conservative
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
Qу
              1111111111111111111111111111111111
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
Db
RESULT 13
US-09-928-048A-6
; Sequence 6, Application US/09928048A
; Publication No. US20030138858A1
: GENERAL INFORMATION:
  APPLICANT: Scantibodies Laboratory, Inc.
   APPLICANT: Cantor, Thomas L.
   TITLE OF INVENTION: METHODS AND DEVICES FOR DIRECT
   TITLE OF INVENTION: DETERMINATION OF CYCLASE INHIBITING PARATHYROID HORMONE
   FILE REFERENCE: 53221-20015.00
  CURRENT APPLICATION NUMBER: US/09/928,048A
   CURRENT FILING DATE: 2000-08-10
   NUMBER OF SEQ ID NOS: 8
   SOFTWARE: FastSEQ for Windows Version 4.0
  SEQ ID NO 6
    LENGTH: 34
    TYPE: PRT
    ORGANISM: Homo sapiens
US-09-928-048A-6
                          100.0%; Score 29; DB 12; Length 34;
  Query Match
                          100.0%; Pred. No. 1.2e-22;
  Best Local Similarity
                                                      Indels
                                                                 0; Gaps
                                                                             0;
                                0; Mismatches
                                                   0;
            29; Conservative
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
Qу
              1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
Db
RESULT 14
US-10-361-928-8
; Sequence 8, Application US/10361928
; Publication No. US20030144209A1
```

```
; GENERAL INFORMATION:
  APPLICANT: BRINGHURST, F. RICHARD
  APPLICANT:
             TAKASU, HISASHI
  APPLICANT: GARDELLA, THOMAS J.
  TITLE OF INVENTION: AMINO-TERMINAL MODIFIED PARATHYROID HORMONE (PTH)
  TITLE OF INVENTION: ANALOGS
  FILE REFERENCE: 0609.4630002
  CURRENT APPLICATION NUMBER: US/10/361,928
  CURRENT FILING DATE: 2003-02-11
  PRIOR APPLICATION NUMBER: 09/447,800
  PRIOR FILING DATE: 1999-11-23
  PRIOR APPLICATION NUMBER: 60/110,152
  PRIOR FILING DATE: 1998-11-25
  NUMBER OF SEQ ID NOS: 10
  SOFTWARE: PatentIn Ver. 2.1
 SEQ ID NO 8
   LENGTH: 34
   TYPE: PRT
   ORGANISM: Homo sapiens
   FEATURE:
   NAME/KEY: MOD RES
   LOCATION: (1)
   OTHER INFORMATION: Desamino Ser
US-10-361-928-8
 Query Match
                         100.0%; Score 29; DB 12; Length 34;
 Best Local Similarity
                         100.0%; Pred. No. 1.2e-22;
 Matches
           29; Conservative
                                0; Mismatches
                                                  0; Indels
                                                                0; Gaps
                                                                            0;
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
Qу
              Db
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
RESULT 15
US-10-340-484-15
; Sequence 15, Application US/10340484
; Publication No. US20030171288A1
; GENERAL INFORMATION:
  APPLICANT: Stewart, Andrew F.
  TITLE OF INVENTION: Treatment of Bone Disorders with Skelatal Anabolic
  TITLE OF INVENTION: Drugs
  FILE REFERENCE: 25200-501
  CURRENT APPLICATION NUMBER: US/10/340,484
  CURRENT FILING DATE: 2003-01-10
  PRIOR APPLICATION NUMBER: 60/347,215
  PRIOR FILING DATE: 2002-01-10
  PRIOR APPLICATION NUMBER: 60/353,296
  PRIOR FILING DATE: 2002-02-01
  PRIOR APPLICATION NUMBER: 60/368,955
  PRIOR FILING DATE: 2002-03-28
  PRIOR APPLICATION NUMBER: 60/379,125
  PRIOR FILING DATE: 2002-05-08
  NUMBER OF SEQ ID NOS: 27
  SOFTWARE: PatentIn Ver. 2.1
; SEQ ID NO 15
   LENGTH: 34
```

```
TYPE: PRT
   ORGANISM: Homo sapiens
US-10-340-484-15
                         100.0%; Score 29; DB 12; Length 34;
 Query Match
                         100.0%; Pred. No. 1.2e-22;
 Best Local Similarity
                                                                          0;
                              0; Mismatches
                                                0;
                                                     Indels
                                                               0; Gaps
           29; Conservative
 Matches
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
QУ
              1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
Db
RESULT 16
US-10-340-484-16
; Sequence 16, Application US/10340484
 Publication No. US20030171288A1
; GENERAL INFORMATION:
   APPLICANT: Stewart, Andrew F.
   TITLE OF INVENTION: Treatment of Bone Disorders with Skelatal Anabolic
   TITLE OF INVENTION: Drugs
   FILE REFERENCE: 25200-501
   CURRENT APPLICATION NUMBER: US/10/340,484
   CURRENT FILING DATE: 2003-01-10
   PRIOR APPLICATION NUMBER: 60/347,215
   PRIOR FILING DATE: 2002-01-10
   PRIOR APPLICATION NUMBER: 60/353,296
   PRIOR FILING DATE: 2002-02-01
   PRIOR APPLICATION NUMBER: 60/368,955
   PRIOR FILING DATE: 2002-03-28
   PRIOR APPLICATION NUMBER: 60/379,125
   PRIOR FILING DATE: 2002-05-08
   NUMBER OF SEQ ID NOS: 27
   SOFTWARE: PatentIn Ver. 2.1
; SEQ ID NO 16
    LENGTH: 34
    TYPE: PRT
    ORGANISM: Macaca fascicularis
US-10-340-484-16
                          100.0%; Score 29; DB 12; Length 34;
  Query Match
                         100.0%; Pred. No. 1.2e-22;
  Best Local Similarity
                                                                           0;
            29; Conservative
                                0; Mismatches
                                                               0; Gaps
                                                 0;
                                                     Indels
  Matches
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
Qу
              1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
Db
RESULT 17
US-10-016-403-5
 ; Sequence 5, Application US/10016403
  Publication No. US20020107505A1
    GENERAL INFORMATION:
         APPLICANT: Holladay, Leslie A.
         TITLE OF INVENTION: MODIFICATION OF POLYPEPTIDE DRUGS TO
                             INCREASE ELECTROTRANSPORT FLUX
```

```
NUMBER OF SEQUENCES: 10
        CORRESPONDENCE ADDRESS:
             ADDRESSEE: Stroud, Stroud, Willink, Thompson & Howard
             STREET: 25 West Main Street
             CITY: Madison
             STATE: WI
             COUNTRY: USA
             ZIP: 53701-2236
        COMPUTER READABLE FORM:
             MEDIUM TYPE: Floppy disk
             COMPUTER: IBM PC compatible
             OPERATING SYSTEM: PC-DOS/MS-DOS
             SOFTWARE: PatentIn Release #1.0, Version #1.25
        CURRENT APPLICATION DATA:
             APPLICATION NUMBER: US/10/016,403
             FILING DATE: 10-Dec-2001
             CLASSIFICATION: <Unknown>
        PRIOR APPLICATION DATA:
             APPLICATION NUMBER: 08/466,610
             FILING DATE: 1995-JUN-06
        ATTORNEY/AGENT INFORMATION:
             NAME: Frenchick, Grady J.
             REGISTRATION NUMBER: 29,018
             REFERENCE/DOCKET NUMBER: 8734.28
        TELECOMMUNICATION INFORMATION:
             TELEPHONE: 608-257-2281
             TELEFAX: 608-257-7643
   INFORMATION FOR SEQ ID NO: 5:
        SEQUENCE CHARACTERISTICS:
             LENGTH: 34 amino acids
             TYPE: amino acid
             TOPOLOGY: linear
        FEATURE:
             NAME/KEY: Peptide
             LOCATION: 1..34
             OTHER INFORMATION: /note= "parathyroid hormone"
        SEQUENCE DESCRIPTION: SEQ ID NO: 5:
US-10-016-403-5
                         100.0%; Score 29; DB 14; Length 34;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 1.2e-22;
                              0; Mismatches
                                                  0; Indels
                                                                0;
                                                                    Gaps
 Matches
           29; Conservative
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
Qу
              1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
Db
RESULT 18
US-10-097-079-1
; Sequence 1, Application US/10097079
; Publication No. US20020132973A1
    GENERAL INFORMATION:
         APPLICANT: Condon, Stephen M.
                    Morize, Isabelle
         TITLE OF INVENTION: PEPTIDE PARATHYROID HORMONE ANALOGS
         NUMBER OF SEQUENCES: 88
```

```
CORRESPONDENCE ADDRESS:
             ADDRESSEE: Rhone-Poulenc Rorer Inc.
             STREET: 500 Arcola Road, Mailstop 3C43
             CITY: Collegeville
             STATE: PA
             COUNTRY: USA
             ZIP: 19426
        COMPUTER READABLE FORM:
             MEDIUM TYPE: Floppy disk
             COMPUTER: IBM PC compatible
             OPERATING SYSTEM: PC-DOS/MS-DOS
             SOFTWARE: PatentIn Release #1.0, Version #1.30
        CURRENT APPLICATION DATA:
             APPLICATION NUMBER: US/10/097,079
             FILING DATE: 13-Mar-2002
             CLASSIFICATION: <Unknown>
        PRIOR APPLICATION DATA:
             APPLICATION NUMBER: 09/228,990
             FILING DATE: <Unknown>
             APPLICATION NUMBER: US 60/046,472
             FILING DATE: 14-MAY-1997
        ATTORNEY/AGENT INFORMATION:
             NAME: Martin Esq., Michael B.
             REGISTRATION NUMBER: 37,521
             REFERENCE/DOCKET NUMBER: A2678B-WO
        TELECOMMUNICATION INFORMATION:
             TELEPHONE: (610) 454-2793
             TELEFAX: (610) 454-3808
   INFORMATION FOR SEQ ID NO: 1:
        SEQUENCE CHARACTERISTICS:
             LENGTH: 34 amino acids
             TYPE: amino acid
             STRANDEDNESS: <Unknown>
             TOPOLOGY: No. US20020132973A1 Relevant
        MOLECULE TYPE: peptide
        FRAGMENT TYPE: N-terminal
        SEQUENCE DESCRIPTION: SEQ ID NO: 1:
US-10-097-079-1
                         100.0%; Score 29; DB 14; Length 34;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 1.2e-22;
                                                                0; Gaps
                                                 0; Indels
  Matches
           29; Conservative
                              0; Mismatches
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
Qу
              1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
Dh
RESULT 19
US-10-168-185-9
; Sequence 9, Application US/10168185
; Publication No. US20030175802A1
; GENERAL INFORMATION:
; APPLICANT: Armbruster, Franz Paul
 APPLICANT: Missbichler, Albert
              Schmidt-Gayk, Heinrich
; APPLICANT:
 APPLICANT: Roth, Heinz-Jurgen
```

```
TITLE OF INVENTION: Method for Determining Parathormone
   TITLE OF INVENTION: Activity in a Human Sample
   FILE REFERENCE: HLZ-004US
   CURRENT APPLICATION NUMBER: US/10/168,185
   CURRENT FILING DATE: 2002-06-17
   PRIOR APPLICATION NUMBER: PCT/EP00/12911
  PRIOR FILING DATE: 2000-12-18
  PRIOR APPLICATION NUMBER: DE 19961350
   PRIOR FILING DATE: 1999-12-17
  NUMBER OF SEQ ID NOS: 11
  SOFTWARE: FastSEO for Windows Version 4.0
 SEQ ID NO 9
   LENGTH: 37
    TYPE: PRT
    ORGANISM: Homo sapiens
US-10-168-185-9
  Query Match
                         100.0%; Score 29; DB 12; Length 37;
  Best Local Similarity
                         100.0%; Pred. No. 1.3e-22;
                                                                0;
 Matches
           29; Conservative
                              0; Mismatches
                                                  0;
                                                      Indels
                                                                    Gaps
                                                                            0:
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
Qу
              1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
Db
RESULT 20
US-09-169-786-4
; Sequence 4, Application US/09169786B
; Patent No. US20020025929A1
; GENERAL INFORMATION:
  APPLICANT: Sato, Masahiko
   TITLE OF INVENTION: METHOD OF BUILDING AND MAINTAINING BONE
   FILE REFERENCE: X-11480
   CURRENT APPLICATION NUMBER: US/09/169,786B
   CURRENT FILING DATE: 1998-10-09
   EARLIER APPLICATION NUMBER: US 60/061,800
  EARLIER FILING DATE: 1997-10-14
  NUMBER OF SEQ ID NOS: 12
   SOFTWARE: PatentIn Ver. 2.0
 SEQ ID NO 4
   LENGTH: 38
    TYPE: PRT
    ORGANISM: Homo sapiens
US-09-169-786-4
  Query Match
                          100.0%; Score 29; DB 9; Length 38;
  Best Local Similarity
                         100.0%; Pred. No. 1.3e-22;
           29; Conservative
                                0; Mismatches
                                                  0;
                                                      Indels
                                                                0; Gaps
                                                                            0:
Qу
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
              11111111111111111111111111111111
Db
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
```

RESULT 21 US-09-843-221A-14

```
; Sequence 14, Application US/09843221A
; Publication No. US20030039654A1
; GENERAL INFORMATION:
  APPLICANT: KOSTENUIK, PAUL
  APPLICANT: LIU, CHUAN-FA
  APPLICANT: LACEY, DAVID LEE
  TITLE OF INVENTION: MODULATORS OF RECEPTORS FOR PARATHYROID HORMONE AND
PARATHYROID HORMONE-
  TITLE OF INVENTION: RELATED PROTEIN
  FILE REFERENCE: A-665B
  CURRENT APPLICATION NUMBER: US/09/843,221A
  CURRENT FILING DATE: 2001-04-26
  PRIOR APPLICATION NUMBER: 60/266,673
  PRIOR FILING DATE: 2001-02-06
  PRIOR APPLICATION NUMBER: 60/214,860
  PRIOR FILING DATE: 2000-06-28
   PRIOR APPLICATION NUMBER: 60/200,053
   PRIOR FILING DATE: 2000-04-27
  NUMBER OF SEQ ID NOS: 170
  SOFTWARE: PatentIn version 3.1
 SEQ ID NO 14
    LENGTH: 38
    TYPE: PRT
    ORGANISM: Homo sapiens
US-09-843-221A-14
                          100.0%; Score 29; DB 11; Length 38;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 1.3e-22;
                                0; Mismatches
                                                0; Indels
                                                                    Gaps
           29; Conservative
  Matches
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
Qу
              1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
Db
RESULT 22
US-10-245-707-1
; Sequence 1, Application US/10245707
  Publication No. US20030171282A1
  GENERAL INFORMATION:
   APPLICANT: Patton, John S.
   TITLE OF INVENTION: Pulmonary Delivery of Active Fragments of Parathyroid
Hormone
   FILE REFERENCE: 032055-047
   CURRENT APPLICATION NUMBER: US/10/245,707
   CURRENT FILING DATE: 2003-03-11
   PRIOR APPLICATION NUMBER: US 09/577,264
   PRIOR FILING DATE: 2000-05-22
   PRIOR APPLICATION NUMBER: US 09/128,401
   PRIOR FILING DATE: 1998-08-03
   PRIOR APPLICATION NUMBER: US 08/625,586
   PRIOR FILING DATE: 1996-03-28
   PRIOR APPLICATION NUMBER: US 08/232,849
   PRIOR FILING DATE: 1994-04-25
   PRIOR APPLICATION NUMBER: US 07/953,397
   PRIOR FILING DATE: 1992-09-29
   NUMBER OF SEQ ID NOS: 1
```

```
SOFTWARE: FastSEQ for Windows Version 4.0
 SEQ ID NO 1
   LENGTH: 38
   TYPE: PRT
   ORGANISM: Artificial Sequence
   FEATURE:
   OTHER INFORMATION: parathyroid hormone (PTH) fragment molecues
US-10-245-707-1
  Query Match
                         100.0%; Score 29; DB 12; Length 38;
                         100.0%; Pred. No. 1.3e-22;
  Best Local Similarity
  Matches
           29; Conservative
                               0; Mismatches
                                                0; Indels
                                                                0; Gaps
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
Qу
              111111111111111111111111111111111
Db
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
RESULT 23
US-09-843-221A-52
; Sequence 52, Application US/09843221A
: Publication No. US20030039654A1
; GENERAL INFORMATION:
  APPLICANT: KOSTENUIK, PAUL
  APPLICANT: LIU, CHUAN-FA
  APPLICANT: LACEY, DAVID LEE
  TITLE OF INVENTION: MODULATORS OF RECEPTORS FOR PARATHYROID HORMONE AND
PARATHYROID HORMONE-
  TITLE OF INVENTION: RELATED PROTEIN
  FILE REFERENCE: A-665B
  CURRENT APPLICATION NUMBER: US/09/843,221A
  CURRENT FILING DATE: 2001-04-26
  PRIOR APPLICATION NUMBER: 60/266,673
  PRIOR FILING DATE: 2001-02-06
  PRIOR APPLICATION NUMBER: 60/214,860
  PRIOR FILING DATE: 2000-06-28
  PRIOR APPLICATION NUMBER: 60/200,053
  PRIOR FILING DATE: 2000-04-27
  NUMBER OF SEQ ID NOS: 170
  SOFTWARE: PatentIn version 3.1
; SEQ ID NO 52
   LENGTH: 28
   TYPE: PRT
   ORGANISM: Homo sapiens
US-09-843-221A-52
  Query Match
                         96.6%; Score 28; DB 11; Length 28;
 Best Local Similarity
                         100.0%; Pred. No. 1.1e-21;
 Matches
           28; Conservative
                                0; Mismatches
                                                 0; Indels
                                                                0; Gaps
Qу
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
              Db
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
```

RESULT 24 US-09-843-221A-168

```
; Sequence 168, Application US/09843221A
; Publication No. US20030039654A1
 GENERAL INFORMATION:
  APPLICANT: KOSTENUIK, PAUL
  APPLICANT: LIU, CHUAN-FA
  APPLICANT: LACEY, DAVID LEE
  TITLE OF INVENTION: MODULATORS OF RECEPTORS FOR PARATHYROID HORMONE AND
PARATHYROID HORMONE-
  TITLE OF INVENTION: RELATED PROTEIN
  FILE REFERENCE: A-665B
  CURRENT APPLICATION NUMBER: US/09/843,221A
   CURRENT FILING DATE: 2001-04-26
   PRIOR APPLICATION NUMBER: 60/266,673
   PRIOR FILING DATE: 2001-02-06
   PRIOR APPLICATION NUMBER: 60/214,860
   PRIOR FILING DATE: 2000-06-28
   PRIOR APPLICATION NUMBER: 60/200,053
   PRIOR FILING DATE: 2000-04-27
   NUMBER OF SEQ ID NOS: 170
   SOFTWARE: PatentIn version 3.1
; SEQ ID NO 168
    LENGTH: 28
    TYPE: PRT
    ORGANISM: Artificial Sequence
    FEATURE:
    OTHER INFORMATION: Preferred embodiments - PTH
    NAME/KEY: misc_feature
    LOCATION: (1) .. (1)
    OTHER INFORMATION: Fc domain attached at the N-terminus through optional
linker
US-09-843-221A-168
                          96.6%; Score 28; DB 11; Length 28;
  Query Match
                          100.0%; Pred. No. 1.1e-21;
  Best Local Similarity
                                                 0; Indels
                                                                0; Gaps
                               0; Mismatches
            28; Conservative
  Matches
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
Qу
              1 SVSEIOLMHNLGKHLNSMERVEWLRKKL 28
Db
RESULT 25
US-09-843-221A-43
; Sequence 43, Application US/09843221A
; Publication No. US20030039654A1
; GENERAL INFORMATION:
   APPLICANT: KOSTENUIK, PAUL
   APPLICANT: LIU, CHUAN-FA
   APPLICANT: LACEY, DAVID LEE
   TITLE OF INVENTION: MODULATORS OF RECEPTORS FOR PARATHYROID HORMONE AND
PARATHYROID HORMONE-
   TITLE OF INVENTION: RELATED PROTEIN
   FILE REFERENCE: A-665B
   CURRENT APPLICATION NUMBER: US/09/843,221A
   CURRENT FILING DATE: 2001-04-26
   PRIOR APPLICATION NUMBER: 60/266,673
   PRIOR FILING DATE: 2001-02-06
```

```
PRIOR APPLICATION NUMBER: 60/214,860
  PRIOR FILING DATE: 2000-06-28
  PRIOR APPLICATION NUMBER: 60/200,053
 PRIOR FILING DATE: 2000-04-27
 NUMBER OF SEQ ID NOS: 170
  SOFTWARE: PatentIn version 3.1
; SEQ ID NO 43
   LENGTH: 30
   TYPE: PRT
   ORGANISM: Artificial Sequence
   FEATURE:
   OTHER INFORMATION: modified human PTH
US-09-843-221A-43
                         96.6%; Score 28; DB 11; Length 30;
 Query Match
                         100.0%; Pred. No. 1.1e-21;
 Best Local Similarity
           28; Conservative 0; Mismatches 0; Indels
                                                               0; Gaps
                                                                           0;
           2 VSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
Qу
             2 VSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
RESULT 26
US-10-361-928-3
; Sequence 3, Application US/10361928
; Publication No. US20030144209A1
; GENERAL INFORMATION:
  APPLICANT: BRINGHURST, F. RICHARD
  APPLICANT: TAKASU, HISASHI
  APPLICANT: GARDELLA, THOMAS J.
  TITLE OF INVENTION: AMINO-TERMINAL MODIFIED PARATHYROID HORMONE (PTH)
  TITLE OF INVENTION: ANALOGS
  FILE REFERENCE: 0609.4630002
  CURRENT APPLICATION NUMBER: US/10/361,928
  CURRENT FILING DATE: 2003-02-11
  PRIOR APPLICATION NUMBER: 09/447,800
  PRIOR FILING DATE: 1999-11-23
  PRIOR APPLICATION NUMBER: 60/110,152
  PRIOR FILING DATE: 1998-11-25
  NUMBER OF SEQ ID NOS: 10
  SOFTWARE: PatentIn Ver. 2.1
 SEQ ID NO 3
   LENGTH: 33
   TYPE: PRT
   ORGANISM: Homo sapiens
   FEATURE:
   NAME/KEY: MOD_RES
   LOCATION: (1)
   OTHER INFORMATION: Desamino Gly
US-10-361-928-3
                         96.6%; Score 28; DB 12; Length 33;
  Query Match
                         100.0%; Pred. No. 1.2e-21;
  Best Local Similarity
                               0; Mismatches
                                                0;
                                                     Indels
                                                               0; Gaps
  Matches 28; Conservative
```



```
RESULT 27
US-10-361-928-6
; Sequence 6, Application US/10361928
; Publication No. US20030144209A1
; GENERAL INFORMATION:
  APPLICANT: BRINGHURST, F. RICHARD
  APPLICANT: TAKASU, HISASHI
  APPLICANT: GARDELLA, THOMAS J.
  TITLE OF INVENTION: AMINO-TERMINAL MODIFIED PARATHYROID HORMONE (PTH)
  TITLE OF INVENTION: ANALOGS
  FILE REFERENCE: 0609.4630002
  CURRENT APPLICATION NUMBER: US/10/361,928
  CURRENT FILING DATE: 2003-02-11
  PRIOR APPLICATION NUMBER: 09/447,800
  PRIOR FILING DATE: 1999-11-23
  PRIOR APPLICATION NUMBER: 60/110,152
  PRIOR FILING DATE: 1998-11-25
  NUMBER OF SEQ ID NOS: 10
  SOFTWARE: PatentIn Ver. 2.1
 SEQ ID NO 6
   LENGTH: 33
   TYPE: PRT
   ORGANISM: Homo sapiens
   FEATURE:
   NAME/KEY: MOD_RES
   LOCATION: (1)
   OTHER INFORMATION: Desamino Ala
US-10-361-928-6
  Query Match
                         96.6%; Score 28; DB 12; Length 33;
                         100.0%; Pred. No. 1.2e-21;
 Best Local Similarity
           28; Conservative
                               0; Mismatches 0; Indels
                                                               0; Gaps
                                                                           0;
Qу
           2 VSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
             Db
           2 VSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
RESULT 28
US-09-843-221A-20
; Sequence 20, Application US/09843221A
; Publication No. US20030039654A1
; GENERAL INFORMATION:
  APPLICANT: KOSTENUIK, PAUL
  APPLICANT: LIU, CHUAN-FA
  APPLICANT: LACEY, DAVID LEE
  TITLE OF INVENTION: MODULATORS OF RECEPTORS FOR PARATHYROID HORMONE AND
PARATHYROID HORMONE-
  TITLE OF INVENTION: RELATED PROTEIN
  FILE REFERENCE: A-665B
  CURRENT APPLICATION NUMBER: US/09/843,221A
  CURRENT FILING DATE: 2001-04-26
  PRIOR APPLICATION NUMBER: 60/266,673
```

```
PRIOR FILING DATE: 2001-02-06
  PRIOR APPLICATION NUMBER: 60/214,860
  PRIOR FILING DATE: 2000-06-28
  PRIOR APPLICATION NUMBER: 60/200,053
  PRIOR FILING DATE: 2000-04-27
  NUMBER OF SEO ID NOS: 170
  SOFTWARE: PatentIn version 3.1
 SEQ ID NO 20
   LENGTH: 34
   TYPE: PRT
   ORGANISM: Artificial Sequence
    FEATURE:
    OTHER INFORMATION: modified human PTH
US-09-843-221A-20
                          96.6%; Score 28; DB 11; Length 34;
 Query Match
 Best Local Similarity 100.0%; Pred. No. 1.2e-21;
 Matches 28; Conservative
                               0; Mismatches 0; Indels
                                                                    Gaps
           2 VSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
Qу
             Db
           2 VSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
RESULT 29
US-10-361-928-1
; Sequence 1, Application US/10361928
; Publication No. US20030144209A1
; GENERAL INFORMATION:
  APPLICANT: BRINGHURST, F. RICHARD
  APPLICANT: TAKASU, HISASHI
  APPLICANT: GARDELLA, THOMAS J.
  TITLE OF INVENTION: AMINO-TERMINAL MODIFIED PARATHYROID HORMONE (PTH)
  TITLE OF INVENTION: ANALOGS
  FILE REFERENCE: 0609.4630002
  CURRENT APPLICATION NUMBER: US/10/361,928
  CURRENT FILING DATE: 2003-02-11
  PRIOR APPLICATION NUMBER: 09/447,800
  PRIOR FILING DATE: 1999-11-23
  PRIOR APPLICATION NUMBER: 60/110,152
  PRIOR FILING DATE: 1998-11-25
  NUMBER OF SEQ ID NOS: 10
  SOFTWARE: PatentIn Ver. 2.1
; SEQ ID NO 1
   LENGTH: 34
    TYPE: PRT
    ORGANISM: Homo sapiens
    FEATURE:
    NAME/KEY: UNSURE
    LOCATION: (1)
    OTHER INFORMATION: Can be desamino Ser, desamino Ala, or desamino Gly
US-10-361-928-1
 Query Match 96.6%; Score 28; DB 12; Length 34; Best Local Similarity 100.0%; Pred. No. 1.2e-21;
  Matches 28; Conservative 0; Mismatches 0; Indels
```

```
2 VSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
Qу
             111111111111
           2 VSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
Db
RESULT 30
US-10-361-928-2
; Sequence 2, Application US/10361928
; Publication No. US20030144209A1
; GENERAL INFORMATION:
  APPLICANT: BRINGHURST, F. RICHARD
  APPLICANT: TAKASU, HISASHI
  APPLICANT: GARDELLA, THOMAS J.
  TITLE OF INVENTION: AMINO-TERMINAL MODIFIED PARATHYROID HORMONE (PTH)
  TITLE OF INVENTION: ANALOGS
  FILE REFERENCE: 0609.4630002
  CURRENT APPLICATION NUMBER: US/10/361,928
   CURRENT FILING DATE: 2003-02-11
  PRIOR APPLICATION NUMBER: 09/447,800
   PRIOR FILING DATE: 1999-11-23
   PRIOR APPLICATION NUMBER: 60/110,152
   PRIOR FILING DATE: 1998-11-25
  NUMBER OF SEQ ID NOS: 10
   SOFTWARE: PatentIn Ver. 2.1
; SEQ ID NO 2
   LENGTH: 34
   TYPE: PRT
   ORGANISM: Homo sapiens
    FEATURE:
   NAME/KEY: MOD RES
   LOCATION: (1)
    OTHER INFORMATION: Desamino Gly
US-10-361-928-2
                         96.6%; Score 28; DB 12; Length 34;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 1.2e-21;
  Matches 28; Conservative 0; Mismatches 0; Indels
                                                               0; Gaps
           2 VSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
Qу
              Db
            2 VSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
RESULT 31
US-10-361-928-5
; Sequence 5, Application US/10361928
; Publication No. US20030144209A1
; GENERAL INFORMATION:
; APPLICANT: BRINGHURST, F. RICHARD
   APPLICANT: TAKASU, HISASHI
   APPLICANT: GARDELLA, THOMAS J.
   TITLE OF INVENTION: AMINO-TERMINAL MODIFIED PARATHYROID HORMONE (PTH)
   TITLE OF INVENTION: ANALOGS
   FILE REFERENCE: 0609.4630002
   CURRENT APPLICATION NUMBER: US/10/361,928
   CURRENT FILING DATE: 2003-02-11
   PRIOR APPLICATION NUMBER: 09/447,800
```

```
PRIOR FILING DATE: 1999-11-23
  PRIOR APPLICATION NUMBER: 60/110,152
  PRIOR FILING DATE: 1998-11-25
  NUMBER OF SEQ ID NOS: 10
  SOFTWARE: PatentIn Ver. 2.1
 SEQ ID NO 5
   LENGTH: 34
   TYPE: PRT
   ORGANISM: Homo sapiens
   FEATURE:
   NAME/KEY: MOD RES
   LOCATION: (1)
   OTHER INFORMATION: Desamino Ala
US-10-361-928-5
                         96.6%; Score 28; DB 12; Length 34;
  Query Match
                         100.0%; Pred. No. 1.2e-21;
  Best Local Similarity
 Matches
           28; Conservative
                                0; Mismatches
                                                 0; Indels
                                                                0; Gaps
                                                                            0;
           2 VSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
Qу
              2 VSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
Db
RESULT 32
US-10-016-403-7
; Sequence 7, Application US/10016403
; Publication No. US20020107505A1
    GENERAL INFORMATION:
         APPLICANT: Holladay, Leslie A.
         TITLE OF INVENTION: MODIFICATION OF POLYPEPTIDE DRUGS TO
                            INCREASE ELECTROTRANSPORT FLUX
         NUMBER OF SEQUENCES: 10
         CORRESPONDENCE ADDRESS:
             ADDRESSEE: Stroud, Stroud, Willink, Thompson & Howard
              STREET: 25 West Main Street
              CITY: Madison
             STATE: WI
              COUNTRY: USA
             ZIP: 53701-2236
         COMPUTER READABLE FORM:
             MEDIUM TYPE: Floppy disk
              COMPUTER: IBM PC compatible
              OPERATING SYSTEM: PC-DOS/MS-DOS
              SOFTWARE: PatentIn Release #1.0, Version #1.25
         CURRENT APPLICATION DATA:
             APPLICATION NUMBER: US/10/016,403
              FILING DATE: 10-Dec-2001
              CLASSIFICATION: <Unknown>
         PRIOR APPLICATION DATA:
              APPLICATION NUMBER: 08/466,610
              FILING DATE: 1995-JUN-06
         ATTORNEY/AGENT INFORMATION:
              NAME: Frenchick, Grady J.
              REGISTRATION NUMBER: 29,018
              REFERENCE/DOCKET NUMBER: 8734.28
         TELECOMMUNICATION INFORMATION:
```

```
TELEPHONE: 608-257-2281
             TELEFAX: 608-257-7643
   INFORMATION FOR SEQ ID NO: 7:
        SEQUENCE CHARACTERISTICS:
             LENGTH: 34 amino acids
             TYPE: amino acid
             TOPOLOGY: linear
        FEATURE:
             NAME/KEY: Peptide
             LOCATION: 1..34
             OTHER INFORMATION: /note= "modified parathyroid
             hormone"
        SEQUENCE DESCRIPTION: SEQ ID NO: 7:
US-10-016-403-7
                         96.6%; Score 28; DB 14; Length 34;
 Query Match
 Best Local Similarity 100.0%; Pred. No. 1.2e-21;
                             0; Mismatches 0; Indels
                                                              0; Gaps
 Matches 28; Conservative
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
QУ
             1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
Db
RESULT 33
US-09-843-221A-15
; Sequence 15, Application US/09843221A
; Publication No. US20030039654A1
; GENERAL INFORMATION:
  APPLICANT: KOSTENUIK, PAUL
  APPLICANT: LIU, CHUAN-FA
  APPLICANT: LACEY, DAVID LEE
  TITLE OF INVENTION: MODULATORS OF RECEPTORS FOR PARATHYROID HORMONE AND
PARATHYROID HORMONE-
  TITLE OF INVENTION: RELATED PROTEIN
  FILE REFERENCE: A-665B
  CURRENT APPLICATION NUMBER: US/09/843,221A
  CURRENT FILING DATE: 2001-04-26
  PRIOR APPLICATION NUMBER: 60/266,673
  PRIOR FILING DATE: 2001-02-06
  PRIOR APPLICATION NUMBER: 60/214,860
  PRIOR FILING DATE: 2000-06-28
  PRIOR APPLICATION NUMBER: 60/200,053
  PRIOR FILING DATE: 2000-04-27
  NUMBER OF SEQ ID NOS: 170
  SOFTWARE: PatentIn version 3.1
 SEQ ID NO 15
   LENGTH: 37
   TYPE: PRT
   ORGANISM: Homo sapiens
US-09-843-221A-15
                         96.6%; Score 28; DB 11; Length 37;
  Query Match
                         100.0%; Pred. No. 1.3e-21;
  Best Local Similarity
  Matches 28; Conservative 0; Mismatches 0; Indels
                                                               0; Gaps
```

2 VSEIQLMHNLGKHLNSMERVEWLRKKLQ 29

Qу

Db

```
RESULT 34
US-09-843-221A-50
; Sequence 50, Application US/09843221A
 Publication No. US20030039654A1
; GENERAL INFORMATION:
  APPLICANT: KOSTENUIK, PAUL
  APPLICANT: LIU, CHUAN-FA
  APPLICANT: LACEY, DAVID LEE
   TITLE OF INVENTION: MODULATORS OF RECEPTORS FOR PARATHYROID HORMONE AND
PARATHYROID HORMONE-
   TITLE OF INVENTION: RELATED PROTEIN
   FILE REFERENCE: A-665B
   CURRENT APPLICATION NUMBER: US/09/843,221A
   CURRENT FILING DATE: 2001-04-26
   PRIOR APPLICATION NUMBER: 60/266,673
   PRIOR FILING DATE: 2001-02-06
   PRIOR APPLICATION NUMBER: 60/214,860
   PRIOR FILING DATE: 2000-06-28
   PRIOR APPLICATION NUMBER: 60/200,053
   PRIOR FILING DATE: 2000-04-27
   NUMBER OF SEQ ID NOS: 170
   SOFTWARE: PatentIn version 3.1
; SEQ ID NO 50
    LENGTH: 30
    TYPE: PRT
    ORGANISM: Artificial Sequence
    FEATURE:
    OTHER INFORMATION: modified human PTH
US-09-843-221A-50
                          89.7%; Score 26; DB 11; Length 30;
  Query Match
  Best Local Similarity
                          100.0%; Pred. No. 1.2e-19;
                                                                            0;
  Matches
            26; Conservative
                                0; Mismatches 0; Indels
                                                                 0; Gaps
            1 SVSEIQLMHNLGKHLNSMERVEWLRK 26
Qу
              Db
            1 SVSEIQLMHNLGKHLNSMERVEWLRK 26
RESULT 35
US-09-843-221A-28
; Sequence 28, Application US/09843221A
; Publication No. US20030039654A1
; GENERAL INFORMATION:
   APPLICANT: KOSTENUIK, PAUL
   APPLICANT: LIU, CHUAN-FA
   APPLICANT: LACEY, DAVID LEE
   TITLE OF INVENTION: MODULATORS OF RECEPTORS FOR PARATHYROID HORMONE AND
PARATHYROID HORMONE-
   TITLE OF INVENTION: RELATED PROTEIN
   FILE REFERENCE: A-665B
   CURRENT APPLICATION NUMBER: US/09/843,221A
```

CURRENT FILING DATE: 2001-04-26

```
PRIOR APPLICATION NUMBER: 60/266,673
  PRIOR FILING DATE: 2001-02-06
  PRIOR APPLICATION NUMBER: 60/214,860
  PRIOR FILING DATE: 2000-06-28
  PRIOR APPLICATION NUMBER: 60/200,053
  PRIOR FILING DATE: 2000-04-27
  NUMBER OF SEQ ID NOS: 170
  SOFTWARE: PatentIn version 3.1
 SEQ ID NO 28
   LENGTH: 31
   TYPE: PRT
   ORGANISM: Artificial Sequence
   FEATURE:
   OTHER INFORMATION: modified human PTH
US-09-843-221A-28
                         89.7%; Score 26; DB 11; Length 31;
 Query Match
 Best Local Similarity 100.0%; Pred. No. 1.3e-19;
           26; Conservative
 Matches
                              0; Mismatches 0; Indels
                                                              0; Gaps
           1 SVSEIQLMHNLGKHLNSMERVEWLRK 26
Qу
             1 SVSEIQLMHNLGKHLNSMERVEWLRK 26
Db
RESULT 36
US-10-031-874A-206
; Sequence 206, Application US/10031874A
; Publication No. US20030190598A1
; GENERAL INFORMATION:
  APPLICANT: TANHA, JAMSHID
  APPLICANT: DUBUC, GINETTE
  APPLICANT: NARANG, SARAN
  TITLE OF INVENTION: SINGLE-DOMAIN ANTIGEN-BINDING ANTIBODY FRAGMENTS
  TITLE OF INVENTION: DERIVED FROM LLAMA ANTIBODIES
  FILE REFERENCE: 11054-1
  CURRENT APPLICATION NUMBER: US/10/031,874A
  CURRENT FILING DATE: 2002-11-14
  PRIOR APPLICATION NUMBER: 60/207,234
  PRIOR FILING DATE: 2000-05-26
  NUMBER OF SEQ ID NOS: 212
  SOFTWARE: PatentIn Ver. 2.1
 SEQ ID NO 206
    LENGTH: 31
    TYPE: PRT
    ORGANISM: Lama glama
US-10-031-874A-206
                         89.7%; Score 26; DB 12; Length 31;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 1.3e-19;
  Matches 26; Conservative 0; Mismatches 0; Indels
                                                              0; Gaps
                                                                          0;
           1 SVSEIQLMHNLGKHLNSMERVEWLRK 26
Qу
              Db
           1 SVSEIQLMHNLGKHLNSMERVEWLRK 26
```

```
RESULT 37
US-10-372-095-24
; Sequence 24, Application US/10372095
 Publication No. US20030162256A1
 GENERAL INFORMATION:
  APPLICANT: Juppner, Harald
  APPLICANT: Rubin, David A.
   TITLE OF INVENTION: PTH1R and PTH3R Receptors, Methods and Uses Thereof
   FILE REFERENCE: 0609.4740002
   CURRENT APPLICATION NUMBER: US/10/372,095
   CURRENT FILING DATE: 2003-02-25
   PRIOR APPLICATION NUMBER: 09/449,632
   PRIOR FILING DATE: 1999-11-30
   PRIOR APPLICATION NUMBER: US 60/110,467
   PRIOR FILING DATE: 1998-11-30
   NUMBER OF SEQ ID NOS: 25
   SOFTWARE: PatentIn Ver. 2.1
 SEQ ID NO 24
   LENGTH: 34
    TYPE: PRT
    ORGANISM: Homo sapiens
US-10-372-095-24
                          89.7%; Score 26; DB 12; Length 34;
  Query Match
                         100.0%; Pred. No. 1.4e-19;
  Best Local Similarity
                                0; Mismatches
                                                 0; Indels
                                                                0;
                                                                    Gaps
           26; Conservative
            4 EIQLMHNLGKHLNSMERVEWLRKKLQ 29
Qу
              Db
            4 EIQLMHNLGKHLNSMERVEWLRKKLQ 29
RESULT 38
US-09-843-221A-32
; Sequence 32, Application US/09843221A
; Publication No. US20030039654A1
; GENERAL INFORMATION:
   APPLICANT: KOSTENUIK, PAUL
   APPLICANT: LIU, CHUAN-FA
   APPLICANT: LACEY, DAVID LEE
   TITLE OF INVENTION: MODULATORS OF RECEPTORS FOR PARATHYROID HORMONE AND
PARATHYROID HORMONE-
   TITLE OF INVENTION: RELATED PROTEIN
   FILE REFERENCE: A-665B
   CURRENT APPLICATION NUMBER: US/09/843,221A
   CURRENT FILING DATE:
                         2001-04-26
   PRIOR APPLICATION NUMBER: 60/266,673
   PRIOR FILING DATE: 2001-02-06
   PRIOR APPLICATION NUMBER: 60/214,860
   PRIOR FILING DATE: 2000-06-28
   PRIOR APPLICATION NUMBER: 60/200,053
   PRIOR FILING DATE: 2000-04-27
   NUMBER OF SEQ ID NOS: 170
   SOFTWARE: PatentIn version 3.1
; SEQ ID NO 32
    LENGTH: 28
    TYPE: PRT
```

```
ORGANISM: Homo sapiens
US-09-843-221A-32
                         79.3%; Score 23; DB 11; Length 28;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 1.3e-16;
                                                                            0;
          23; Conservative 0; Mismatches
                                                 0; Indels
                                                                0; Gaps
  Matches
Qу
            7 LMHNLGKHLNSMERVEWLRKKLQ 29
              Db
            1 LMHNLGKHLNSMERVEWLRKKLQ 23
RESULT 39
US-10-016-403-6
; Sequence 6, Application US/10016403
; Publication No. US20020107505A1
    GENERAL INFORMATION:
         APPLICANT: Holladay, Leslie A.
         TITLE OF INVENTION: MODIFICATION OF POLYPEPTIDE DRUGS TO
                             INCREASE ELECTROTRANSPORT FLUX
         NUMBER OF SEQUENCES: 10
         CORRESPONDENCE ADDRESS:
              ADDRESSEE: Stroud, Stroud, Willink, Thompson & Howard
              STREET: 25 West Main Street
              CITY: Madison
              STATE: WI
              COUNTRY: USA
              ZIP: 53701-2236
         COMPUTER READABLE FORM:
              MEDIUM TYPE: Floppy disk
              COMPUTER: IBM PC compatible
              OPERATING SYSTEM: PC-DOS/MS-DOS
              SOFTWARE: PatentIn Release #1.0, Version #1.25
         CURRENT APPLICATION DATA:
              APPLICATION NUMBER: US/10/016,403
              FILING DATE: 10-Dec-2001
              CLASSIFICATION: <Unknown>
         PRIOR APPLICATION DATA:
              APPLICATION NUMBER: 08/466,610
              FILING DATE: 1995-JUN-06
         ATTORNEY/AGENT INFORMATION:
              NAME: Frenchick, Grady J.
              REGISTRATION NUMBER: 29,018
              REFERENCE/DOCKET NUMBER: 8734.28
         TELECOMMUNICATION INFORMATION:
              TELEPHONE: 608-257-2281
              TELEFAX: 608-257-7643
    INFORMATION FOR SEQ ID NO: 6:
         SEQUENCE CHARACTERISTICS:
              LENGTH: 34 amino acids
              TYPE: amino acid
              TOPOLOGY: linear
         FEATURE:
              NAME/KEY: Peptide
              LOCATION: 1..34
              OTHER INFORMATION: /note= "modified parathyroid
```

hormone"

```
SEQUENCE DESCRIPTION: SEQ ID NO: 6:
US-10-016-403-6
                        79.3%; Score 23; DB 14; Length 34;
 Ouery Match
 Best Local Similarity 100.0%; Pred. No. 1.5e-16;
           23; Conservative 0; Mismatches
                                              0: Indels
                                                                         0:
                                                              0; Gaps
QУ
           7 LMHNLGKHLNSMERVEWLRKKLQ 29
             7 LMHNLGKHLNSMERVEWLRKKLQ 29
Db
RESULT 40
US-09-843-221A-124
; Sequence 124, Application US/09843221A
; Publication No. US20030039654A1
; GENERAL INFORMATION:
  APPLICANT: KOSTENUIK, PAUL
  APPLICANT: LIU, CHUAN-FA
; APPLICANT: LACEY, DAVID LEE
  TITLE OF INVENTION: MODULATORS OF RECEPTORS FOR PARATHYROID HORMONE AND
PARATHYROID HORMONE-
; TITLE OF INVENTION: RELATED PROTEIN
  FILE REFERENCE: A-665B
  CURRENT APPLICATION NUMBER: US/09/843,221A
  CURRENT FILING DATE: 2001-04-26
  PRIOR APPLICATION NUMBER: 60/266,673
  PRIOR FILING DATE: 2001-02-06
  PRIOR APPLICATION NUMBER: 60/214,860
  PRIOR FILING DATE: 2000-06-28
  PRIOR APPLICATION NUMBER: 60/200,053
  PRIOR FILING DATE: 2000-04-27
  NUMBER OF SEQ ID NOS: 170
  SOFTWARE: PatentIn version 3.1
; SEQ ID NO 124
   LENGTH: 30
   TYPE: PRT
   ORGANISM: Artificial Sequence
   FEATURE:
   OTHER INFORMATION: modified human PTH
US-09-843-221A-124
                        75.9%; Score 22; DB 11; Length 30;
 Query Match
 Best Local Similarity 100.0%; Pred. No. 1.5e-15;
 Matches
         22; Conservative 0; Mismatches 0; Indels
                                                             0; Gaps
Qу
           1 SVSEIOLMHNLGKHLNSMERVE 22
             Db
           1 SVSEIQLMHNLGKHLNSMERVE 22
```

Search completed: January 14, 2004, 11:15:09 Job time: 20.514 secs

GenCore version 5.1.6 Copyright (c) 1993 - 2004 Compugen Ltd.

OM protein - protein search, using sw model

Run on:

January 14, 2004, 10:28:19; Search time 21.6822 Seconds

(without alignments)

345.145 Million cell updates/sec

Title:

US-09-843-221A-167

Perfect score: 29

Sequence: 1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29

Scoring table: OLIGO

Gapop 60.0 , Gapext 60.0

Searched:

830525 seqs, 258052604 residues

Word size :

0

Total number of hits satisfying chosen parameters:

13497

Minimum DB seq length: 28 Maximum DB seq length: 40

Post-processing: Listing first 1000 summaries

Database :

SPTREMBL 23:*

- 1: sp archea:*
- 2: sp bacteria:*
- 3: sp_fungi:*
- 4: sp human:*
- 5: sp invertebrate:*
- sp mammal:*
- 7: sp mhc:*
- 8: sp_organelle:*
- 9: sp phage:*
- 10: sp plant:*
- 11: sp_rodent:*
- 12: sp_virus:*
- 13: sp vertebrate:*
- 14: sp unclassified:*
- 15: sp rvirus:*
- 16: sp bacteriap:*
- 17: sp archeap:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

응

Result Query

> No. Score Match Length DB ID

1	14	48.3	31	11 Q91Y90	Q91y90 peromyscus
2	14	48.3	31	11 Q91Y91	Q91y91 peromyscus
3	5	17.2	34	5 017148	017148 echinococcu
4	5	17.2	34	16 Q97K50	Q97k50 clostridium
5	5	17.2	34	17 Q9HR65	Q9hr65 halobacteri
6	5	17.2	35	11 Q8BTB9	Q8btb9 mus musculu
7	4	13.8	28	10 024285	O24285 pinus radia
8	4	13.8	28	10 Q8GZQ8	Q8gzq8 hordeum vul
9	4	13.8	29	2 Q49148	Q49148 methylobact
10	4	13.8	29	4 Q9UCL2	Q9ucl2 homo sapien
					Q96pp3 homo sapien
11	4	13.8	29		
12	4	13.8	29	5 Q25603	Q25603 onchocerca
13	4	13.8	29	13 013043	013043 scyliorhinu
14	4	13.8	30	2 Q9JMV3	Q9jmv3 escherichia
15	4	13.8	30	4 Q9UBV5	Q9ubv5 homo sapien
16	4	13.8	30	16 Q8DZP7	Q8dzp7 streptococc
17	4	13.8	31	1 Q55314	Q55314 sulfolobus
18	4	13.8	31	4 Q8NEI8	Q8nei8 homo sapien
19		13.8	31	8 Q9MS77	Q9ms77 phacus acum
	4				· · · · · · · · · · · · · · · · · · ·
20	4	13.8	31	16 050669	050669 borrelia bu
21	4	13.8	32	11 Q9QZQ2	Q9qzq2 mus musculu
22	4	13.8	33	5 Q95 <i>S</i> D4	Q95sd4 drosophila
23	4	13.8	33	16 Q9PKX3	Q9pkx3 chlamydia m
24	4	13.8	34	2 Q9ZG81	Q9zg81 chlamydia t
25	4	13.8	34	2 Q8GFK2	Q8gfk2 staphylococ
26	4	13.8	34	13 Q90ZJ4	Q90zj4 gallus gall
27	4	13.8	34	16 Q8G2Q2	Q8g2q2 brucella su
28	4	13.8	35	12 Q8V6J8	Q8v6j8 halovirus h
29	4	13.8	35	16 Q9KQG4	Q9kqg4 vibrio chol
30	4	13.8	35	16 Q97RG6	Q97rg6 streptococc
31	4	13.8	35	16 Q8F102	Q8f102 leptospira
32	4	13.8	36	2 Q53920	Q53920 streptomyce
33	4	13.8	36	2 068941	068941 rhodospiril
34	4	13.8	36	4 Q8WXW8	Q8wxw8 homo sapien
35	4	13.8	36	10 Q9SJ63	Q9sj63 arabidopsis
36	4	13.8	36	12 Q9PXD1	Q9pxd1 hepatitis c
37	4	13.8	36	12 Q91D77	Q91d77 ttv-like mi
38	4	13.8	36	13 Q9YHT9	Q9yht9 brachydanio
39	4	13.8	36	16 Q97S91	Q97s91 streptococc
40	4	13.8	37	2 Q8KYJ0	Q8kyj0 bacillus an
41	4	13.8	37	5 Q9N2L2	Q9n2l2 caenorhabdi
42	4	13.8	37	10 Q39942	Q39942 helianthus
43	4	13.8	37	13 Q8AWW8	Q8aww8 oncorhynchu
44	4	13.8	37	16 Q8F6U2	Q8f6u2 leptospira
45	4	13.8	37	16 Q8F5H3	Q8f5h3 leptospira
46	4	13.8	37	16 Q8F419	Q8f419 leptospira
47	4	13.8	37	16 Q8EXV9	Q8exv9 leptospira
48	4	13.8	38	2 Q8KWH7	Q8kwh7 lactobacill
49	4	13.8	38	5 Q9NBE3	Q9nbe3 chironomus
50	4	13.8	38	5 Q9NBE5	Q9nbe5 chironomus
51	4	13.8	38	5 Q9NBE8	Q9nbe8 chironomus
52	4	13.8	38	5 Q9NBE4	Q9nbe4 chironomus
53	4	13.8	38	5 Q9NBE7	Q9nbe7 chironomus
54	4	13.8	38		Q91vc8 mus musculu
				11 Q91VC8	
55 56	4	13.8	38	13 Q8AWW9	Q8aww9 oncorhynchu
56	4	13.8	38	16 Q8E0D2	Q8e0d2 streptococc
57	4	13.8	39	2 Q8GPQ8	Q8gpq8 pseudomonas

						0051 1
58	4	13.8	39	10	Q9FEY1	Q9fey1 heterocapsa
59	4	13.8	39	12	Q68847	Q68847 hepatitis c
60	4	13.8	39	12	Q68845	Q68845 hepatitis c
61	4	13.8	39	12	Q68846	Q68846 hepatitis c
62	4	13.8	39	13	Q90776	Q90776 gallus gall
63	4	13.8	39	16	Q9KYH4	Q9kyh4 streptomyce
64	4	13.8	39	16	Q8F0C7	Q8f0c7 leptospira
65	4	13.8	39	16	Q8EZ33	Q8ez33 leptospira
66	4	13.8	40	2	Q8GCS7	Q8gcs7 eubacterium
67	4	13.8	40	4	P78340	P78340 homo sapien
68	4	13.8	40	6	Q29283	Q29283 sus scrofa
69	4	13.8	40	10	Q8H192	Q8h192 arabidopsis
70	4	13.8	40	12	Q91JZ7	Q91jz7 hepatitis c
71	4	13.8	40	12	Q8V647	Q8v647 rabies viru
72	3	10.3	28	2	Q01303	Q01303 treponema p
73	3	10.3	28	2	Q05574	Q05574 prochloroth
74	3	10.3	28	2	Q9ZB83	Q9zb83 vibrio angu
75	3	10.3	28	3	Q8TGT8	Q8tgt8 saccharomyc
76	3	10.3	28	4	Q96SD9	Q96sd9 homo sapien
77	3	10.3	28	4	Q16326	Q16326 homo sapien
78	3	10.3	28	4	Q96EU0	Q96eu0 homo sapien
79	3	10.3	28	4	075980	075980 homo sapien
80	3	10.3	28	4	095737	095737 homo sapien
81	3	10.3	28	5	OWUM8Q	Q8muw0 schistosoma
82	3	10.3	28	5	Q8MPY2	Q8mpy2 caenorhabdi
	3			5		Q9bm68 glottidia p
83		10.3	28		Q9BM68	
84	3	10.3	28	5	Q9BJE4	Q9bje4 pauropus sp
85	3	10.3	28	6	062821	062821 bubalus bub
86	3	10.3	28	8	Q8WBC8	Q8wbc8 cucurbita e
87	3	10.3	28	8	Q9TIE9	Q9tie9 centella er
88	3	10.3	28	8	Q9TIE8	Q9tie8 centella as
89	3	10.3	28	8	Q9MR96	Q9mr96 crocodylus
90	3	10.3	28	8	Q9TIE6	Q9tie6 centella hi
	3					
91		10.3	28	8	Q9ZYS4	Q9zys4 leishmania
92	3	10.3	28	8	Q9MR94	Q9mr94 chelonia my
93	3	10.3	28	8	Q9TIE7	Q9tie7 centella tr
94	3	10.3	28	8	Q8HS23	Q8hs23 pisum sativ
95	3	10.3	28	8	Q8HS11	Q8hs11 spathiphyll
96	3	10.3	28	8	Q8HS07	Q8hs07 welwitschia
97	3	10.3	28		Q8HKF0	Q8hkf0 rhipicephal
98	3	10.3	28	9	Q9AZJ9	Q9azj9 bacteriopha
99	3	10.3	28	10	Q8S526	Q8s526 ipomoea bat
100	3	10.3	28	10	Q8W232	Q8w232 zea mays (m
101	3	10.3	28	10	Q944P1	Q944p1 manihot esc
102	3	10.3	28	11	Q9ESI4	Q9esi4 petromus ty
103	3	10.3	28	11	Q9ESI5	Q9esi5 thryonomys
104	3	10.3	28	11	Q9ESI6	Q9esi6 hystrix afr
105	3	10.3	28	11	Q99PL9	Q99pl9 mus musculu
106	3	10.3				Q9esi2 cryptomys h
			28	11	Q9ESI2	
107	3	10.3	28	11	Q9EP60	Q9ep60 heliophobiu
108	3	10.3	28	11	Q9ESI0	Q9esi0 cryptomys s
109	3	10.3	28	11	Q91XP0	Q91xp0 rattus norv
110	3	10.3	28	11	P70651	P70651 mus sp. bet
111	3	10.3	28	11	Q9EP59	Q9ep59 georychus c
112	3	10.3	28	11	Q9ESI1	Q9esi1 cryptomys d
113	3	10.3	28	11	P97914	P97914 rattus norv
114	3	10.3	28	11	Q9EP61	Q9ep61 heterocepha
T T -	3	10.5	20	т т	Qaret	Asebot mererocebug

			0.0		OODGMO	Ologha bathuargus
115	3	10.3	28	11	Q9ESH8	Q9esh8 bathyergus Q9esh9 bathyergus
116	3	10.3	28	11	Q9ESH9	Q9qxb4 mus musculu
117	3	10.3	28	11	Q9QXB4	Q9qxb4 mus muscuru Q9esi3 cryptomys h
118	3	10.3	28	11	Q9ESI3	
119	3	10.3	28	12	Q67786	Q67786 human adeno
120	3	10.3	28	12	Q83181	Q83181 cauliflower
121	3	10.3	28	12	Q68552	Q68552 hepatitis c
122,	3	10.3	28	12	Q9WNI4	Q9wni4 tt virus. o
123	3	10.3	28	13	Q9PRE8	Q9pre8 oryzias lat
124	3	10.3	28	13	Q9PRI9	Q9pri9 amia calva
125	3	10.3	28	13	Q9PRN8	Q9prn8 carassius a
126	3	10.3	28	15	071346	071346 human endog
127	3	10.3	28	15	Q9QEY3	Q9qey3 human immun
128	3	10.3	28	16	Q8NVB8	Q8nvb8 staphylococ
129	3	10.3	28	16	Q8ENT7	Q8ent7 oceanobacil
130	3	10.3	28	16	Q8CK95	Q8ck95 yersinia pe
131	3	10.3	29	2	Q9ZGG4	Q9zgg4 heliobacill
132	3	10.3	29	2	Q54200	Q54200 streptomyce
133	3	10.3	29	2	Q9X3E3	Q9x3e3 prochloroco
134	3	10.3	29	2	Q9X3J9	Q9x3j9 prochloroco
135	3	10.3	29	2	Q47650	Q47650 escherichia
136	3	10.3	29	2	Q9AKV1	Q9akvl neisseria g
137	3	10.3	29	2	Q9R526	Q9r526 vibrio chol
138	3	10.3	29	3	P78747	P78747 saccharomyc
139	3	10.3	29	4	Q9Y3G1	Q9y3g1 homo sapien
140	3	10.3	29	4	Q9UN87	Q9un87 homo sapien
141	3	10.3	29	4	Q9H465	Q9h465 homo sapien
142	3	10.3	29	4	Q8NEF6	Q8nef6 homo sapien
143	3	10.3	29	4	Q8TDW8	Q8tdw8 homo sapien
144	3	10.3	29	4	Q961R5	Q96ir5 homo sapien
145	3	10.3	29	4	Q9BSQ3	Q9bsq3 homo sapien
146	3	10.3	29	5	Q95VB2	Q95vb2 spirometra
147	3	10.3	29	5	Q95NF4	Q95nf4 drosophila
148	3	10.3	29	5	Q8T936	Q8t936 folsomia ca
149	3	10.3	29	6	Q9TRG5	Q9trg5 sus scrofa Q8wbb9 cucurbita f
150	3	10.3	29	8	Q8WBB9	Q8w7w7 cucurbita p
151	3 3	10.3	29 -29	8 8	Q8W7W7 Q9GF70	Q9qf70 trochodendr
152	_	10.3		_	Q9GF70 Q8W7W4	Q8w7w4 cucurbita a
153	3	10.3 10.3	29 29	8 8	Q8W7W4 Q8W7W6	Q8w7w4 cucurbita a Q8w7w6 cucurbita p
154	3	10.3	29	8	Q8WBC1	Q8wbcl cucurbita o
155 156	3	10.3	29	8	Q9B5Z6	Q9b5z6 pseudostylo
	3 3	10.3	29	8	Q9B3Z6 Q8W7W5	Q8w7w5 cucurbita p
157	3 3	10.3	29	8	Q9G370	Q9g370 draco blanf
158		10.3	29	8	Q8WBD0	Q8wbd0 cucurbita a
159 160	3 3	10.3	29	8	Q8WBB6	Q8wbb6 citrullus 1
161	3	10.3	29	8	Q8W7W9	Q8w7w9 cucurbita f
162	3	10.3	29	8	Q8W7W9 Q8W7W8	Q8w7w8 cucurbita m
		10.3	29	8	Q8HS21	Q8hs21 rheum x cul
163 164	3	10.3	29 29	9	Q8HSZI Q9FZX6	Q9fzx6 bacteriopha
165	3 3	10.3	29	10	P82196	P82196 spinacia ol
166	3	10.3	29	11	Q9Z2C0	Q9z2c0 mus musculu
167	3	10.3	29 29	11	Q922C0 Q921Z6	Q921z6 mus musculu
		10.3	29 29	11	Q9Z1Z6 Q9Z2C1	Q9z2c1 mus musculu
168	3	10.3	29 29	11	070564	070564 mus musculu
169 170	3 3		29 29	11		Q9qy65 mus musculu
170 171	3	10.3 10.3	29 29	11	Q9QY65 Q62300	Q62300 mus musculu
1/1	3	10.3	43	ΤŢ	Q02300	Zoboo mab mabcata

	2	10.3	20	11	000000	008980 mus musculu
172	3	10.3	29	11	008980	Q8cgm8 mus musculu
173	3	10.3	29	11	Q8CGM8	
174	3	10.3	29	12	Q91HB1	Q91hb1 porcine cir
175	3	10.3	29	12	092646	092646 hepatitis e
176	3	10.3	29	12	Q919A5	Q919a5 porcine rep
177	3	10.3	29	12	Q919A7	Q919a7 porcine rep
178	3	10.3	29	12	Q86872	Q86872 cauliflower
179	3	10.3	29	12	092648	092648 hepatitis e
180	3	10.3	29	12	056835	O56835 vibrio chol
181	3	10.3	29	13	P82235	P82235 rana tempor
182	3	10.3	29	13	Q8AYR0	Q8ayr0 oryzias lat
183	3	10.3	29	13	Q8AWC2	Q8awc2 gallus gall
184	3	10.3	29	15	072001	072001 human endog
			29	15		071342 human endog
185	3	10.3			071342	071342 Human endog
186	3	10.3	29	15	071339	
187	3	10.3	29	15	071347	071347 human endog
188	3	10.3	29	15	071340	071340 human endog
189	3	10.3	29	15	071343	071343 human endog
190	3	10.3	29	15	Q9IQJ8	Q9iqj8 human immun
191	3	10.3	29	15	071991	071991 human endog
192	3	10.3	29	15	Q9IQJ1	Q9iqj1 human immun
193	3	10.3	29	15	071994	071994 human endog
194	3	10.3	29	15	071341	071341 human endog
195	3	10.3	29	15	071345	071345 human endog
196	3	10.3	29	15	071336	071336 human endog
197	3	10.3	29	15	071344	071344 human endog
198	3	10.3	29	15	071333	071338 human endog
	3		29	15	071992	071992 human endog
199		10.3				071337 human endog
200	3	10.3	29	15	071337	
201	3	10.3	29	15	Q9IQJ9	Q9iqj9 human immun
202	3	10.3	29	15	071997	071997 human endog
203	3	10.3	29	15	071335	071335 human endog
204	3	10.3	29	16	Q9JZN6	Q9jzn6 neisseria m
205	3	10.3	29	16	Q8X419	Q8x419 escherichia
206	3	10.3	30	2	Q9JP75	Q9jp75 salmonella
207	3	10.3	30	2	Q9L8W9	Q918w9 streptomyce
208	3	10.3	30	2	Q9L8X1	Q918x1 streptomyce
209	3	10.3	30	2	Q9R4Z6	Q9r4z6 clostridium
210	3	10.3	30	2	Q9REI5	Q9rei5 acidiphiliu
211	3	10.3	30	2	Q9R4J2	Q9r4j2 helicobacte
212	3	10.3	30	2	Q8VUW9	Q8vuw9 staphylococ
213	3	10.3	30	2	Q9R4I5	Q9r4i5 mycoplasma
214	3	10.3	30	2	Q9R5Q3	Q9r5q3 leuconostoc
215	3	10.3	30	2	Q93GF6	Q93gf6 staphylococ
216	3	10.3	30	2	Q45966	Q45966 coxiella bu
	3	10.3		2		Q9r5c4 comamonas.
217			30		Q9R5C4	Q9r5k3 leptospira
218	3	10.3	30	2	Q9R5K3	Q913K3 Teptospiia Q9r4i6 mycoplasma
219	3	10.3	30	2	Q9R4I6	
220	3	10.3	30	2	Q9RER6	Q9rer6 enterobacte
221	3	10.3	30	3	Q8TGM3	Q8tgm3 saccharomyc
222	3	10.3	30	3	Q9URB0	Q9urb0 candida alb
223	3	10.3	30	4	Q16330	Q16330 homo sapien
224	3	10.3	30	4	095595	095595 homo sapien
225	3	10.3	30	4	P78460	P78460 homo sapien
226	3	10.3	30	4	Q8N563	Q8n563 homo sapien
227	3	10.3	30	4	P78542	P78542 homo sapien
228	3	10.3	30	4	Q8IU66	Q8iu66 homo sapien
					-	

229	3	10.3	30 5	Q8SZJ6	Q8szj6 drosophila
230	3	10.3	30 5	Q9TWH7	Q9twh7 ancylostoma
231	3	10.3	30 5	P82214	P82214 bombyx mori
232	3	10.3	30 6	Q9BDK1	Q9bdk1 bos taurus
233	3	10.3	30 6	Q9TTF9	Q9ttf9 ateles belz
234	3	10.3	30 8	Q8W7L1	Q8w7l1 cucurbita m
235	3	10.3	30 8	Q8W7K9	Q8w7k9 cucurbita p
236	3	10.3	30 8	Q8W7H8	Q8w7h8 cucurbita a
237	3	10.3	30 8	Q8WBC2	Q8wbc2 cucurbita o
238	3	10.3	30 8	Q8W7K8	Q8w7k8 cucurbita p
239	3	10.3	30 8	Q8W7H6	Q8w7h6 cucurbita m
240	3	10.3	30 8	Q8WBC4	Q8wbc4 cucurbita p
241	3	10.3	30 8	Q8W7L2	Q8w7l2 cucurbita a
242	3	10.3	30 8	Q8WBC6	Q8wbc6 cucurbita a
243	3	10.3	30 8	Q8WBB7	Q8wbb7 sechium edu
244	3	10.3	30 8	Q99328	Q99328 meloidogyne
245	3	10.3	30 8	Q8W7H7	Q8w7h7 cucurbita e
246	3	10.3	30 8	Q8WBC0	Q8wbc0 cucurbita f
247	3	10.3	30 8	Q9T2T8	Q9t2t8 bos taurus
248	3	10.3	30 8	Q8W7L0	Q8w7l0 cucurbita p
249	3	10.3	30 8	Q8HKG1	Q8hkg1 rhipicephal
250	3	10.3	30 9		Q8w674 enterobacte
251	3	10.3	30 1	0 023933	O23933 flaveria tr
252	3	10.3	30 1	0 Q8RUD1	Q8rud1 zea mays (m
253	3	10.3	30 1	0 Q93WY2	Q93wy2 oryza sativ
254	3	10.3	30 1	1 Q63885	Q63885 mus sp. cys
255	3	10.3	30 1	1 088549	088549 mesocricetu
256	3	10.3	30 1	1 Q8VDL1	Q8vdl1 mus musculu
257	3	10.3	30 1	1 Q9QV18	Q9qv18 rattus sp.
258	3	10.3	30 1	1 Q9QV14	Q9 $qv14$ mus sp. col
259	3	10.3	30 1	1 Q9QV19	Q9qv19 rattus sp.
260	3	10.3	30 1	1 Q10753	Q10753 rattus norv
261	3	10.3	30 1	1 Q8BR32	Q8br32 mus musculu
262	3	10.3	30 1	2 Q91HB7	Q91hb7 tt virus. o
263	3	10.3	30 1	2 Q91HC4	Q91hc4 tt virus. o
264	3	10.3	30 1	2 Q9IJV5	Q9ijv5 norwalk vir
265	3	10.3	30 1	2 Q86870	Q86870 cauliflower
266	3	10.3	30 1	2 Q91HC3	Q91hc3 tt virus. o
267	3	10.3	30 1	2 Q9WLK3	Q9wlk3 hepatitis e
268	3	10.3	30 1	2 Q91HC0	Q91hc0 tt virus. o
269	3	10.3	30 1	3 042551	042551 brachydanio
270	3	10.3	30 1	3 Q9PRW0	Q9prw0 struthio ca
271	3	10.3	30 1	3 Q9PT00	Q9pt00 oncorhynchu
272	3	10.3	30 1	5 Q86599	Q86599 human endog
273	3	10.3	30 1	5 Q991P5	Q991p5 human immun
274	3	10.3	30 1	6 050822	O50822 borrelia bu
275	3	10.3	30 1	6 Q9X0W9	Q9x0w9 thermotoga
276	3	10.3		6 Q9PP53	Q9pp53 campylobact
277	3	10.3		6 Q9KU55	Q9ku55 vibrio chol
278	3	10.3		6 Q9JWF4	Q9jwf4 neisseria m
279	3	10.3		6 Q97SX5	Q97sx5 streptococc
280	3	10.3		6 Q9K1W7	Q9k1w7 chlamydia p
281	3	10.3		6 Q8U566	Q8u566 agrobacteri
282	3	10.3		6 Q8KE55	Q8ke55 chlorobium
283	3	10.3		6 Q93RS7	Q93rs7 streptomyce
284	3	10.3		6 Q8G1R1	Q8g1r1 brucella su
285	3	10.3	30 1	6 Q8FZX9	Q8fzx9 brucella su

286	3	10.3	30	16	Q8CU88	Q8cu88 staphylococ
287	3	10.3	30	17		Q8zzf0 pyrobaculum
288	3	10.3	30	17		Q8zvl0 pyrobaculum
289	3	10.3	31	2	Q9S619	Q9s619 prochloroco
290	3	10.3	31	2	Q8KYK0	Q8kyk0 bacillus an
291	3	10.3	31	2	Q9JMV2	Q9jmv2 escherichia
292	3	10.3	31	2	Q9X3C3	Q9x3c3 prochloroco
293	3	10.3	31	2	O68825	068825 pseudomonas
294	3	10.3	31	2	Q93GF7	Q93gf7 staphylococ
295	3	10.3	31	2	Q47323	Q47323 escherichia
296	3	10.3	31	2	Q9RHF9	Q9rhf9 acinetobact
297	3	10.3	31	2	Q9R4X1	Q9r4x1 treponema d
298	3	10.3	31	2	Q8KYI9	Q8kyi9 bacillus an
299	3	10.3	31	2	Q8RTS5	Q8rts5 uncultured
300	3	10.3	31	2		Q813d3 colwellia m
	3		31	3	Q8L3D3	
301 302	3	10.3 10.3		ے 4	094120	094120 saccharomyc
	3		31		Q96A45	Q96a45 homo sapien
303		10.3	31	4	Q9UHM9	Q9uhm9 homo sapien
304	3	10.3	31	4	Q9UEA9	Q9uea9 homo sapien
305	3	10.3	31	4	Q8N5X3	Q8n5x3 homo sapien
306	3	10.3	31	4	Q9BXM4	Q9bxm4 homo sapien
307	3		31	4	Q9UDE5	Q9ude5 homo sapien
308	3	10.3	31	5	Q81QV3	Q8iqv3 drosophila
309	3	10.3	31	5	Q8IEY3	Q8iey3 trypanosoma
310	3	10.3	31	6	Q8MI94	Q8mi94 tupaia tana
311	3	10.3	31	6	Q9GLD6	Q9gld6 sus scrofa
312	3	10.3	31	6	Q8MIH5	Q8mih5 canis famil
313	3	10.3	31	6	077625	077625 bos taurus
314	3	10.3	31	6	Q8MIC3	Q8mic3 ochotona pr
315	3	10.3	31	6	Q95LC0	Q951c0 sus scrofa
316	3	10.3	31	6	Q9N1C8	Q9n1c8 ovis aries
317	3	10.3	31	6	Q8MIC9	Q8mic9 nycticebus
318	3	10.3	31	6	Q9GKL4	Q9gkl4 canis famil
319	3	10.3	31	6	Q8MIG4	Q8mig4 cynocephalu
320	3	10.3	31	6	Q9XSB9	Q9xsb9 ateles belz
321	3	10.3	31	7	Q29868	Q29868 homo sapien
322	3	10.3	31	8	Q9MNM2	Q9mnm2 bufo americ
323	3	10.3	31	8	Q9MS59	Q9ms59 euglena san
324	3	10.3	31			080011 enallagma a
325	3	10.3	31	8	Q9MS62	Q9ms62 euglena myx
326	3	10.3	31	8	Q34922	Q34922 limulus pol
327	3	10.3	31	8	Q8WEJ4	Q8wej4 gnetum gnem
328	3	10.3	31	8	Q9MS74	Q9ms74 euglena ana
329	3	10.3	31	8	Q9MS68	Q9ms68 euglena des
330	3	10.3	31	8	Q8M9Y3	Q8m9y3 chaetosphae
331	3	10.3	31	8	Q9MS53	Q9ms53 euglena vir
332	3	10.3	31	8	Q9MNL2	Q9mnl2 torrentophr
333	3	10.3	31	8	Q9MS56	Q9ms56 euglena ste
334	3	10.3	31	8	Q9MS78	Q9ms78 phacus acum
335	3	10.3	31	8	Q9MNL3	Q9mml3 torrentophr
336	3	10.3	31	9	Q38499	Q38499 bacteriopha
337	3	10.3	31	10	Q9XIT0	Q9xit0 glycine max
338	3	10.3	31	10	Q8LKB4	Q81kb4 musa acumin
339	3	10.3	31	11	Q8K1W2	Q8k1w2 cavia porce
340	3	10.3	31	11	Q9QXB6	Q9qxb6 mus musculu
341	3	10.3	31	11	Q99KK6	Q99kk6 mus musculu
342	3	10.3	31	11	Q8K1P4	Q8k1p4 sciurus vul

343	3	10.3	31	11	Q8CGM7	Q8cgm7 mus musculu
344	3	10.3	31	12	Q919E5	Q919e5 human papil
345	3	10.3	31	12	Q919E4	Q919e4 human papil
346	3	10.3	31	12	056713	056713 hepatitis c
347	3	10.3	31	12	Q919F7	Q919f7 human papil
348	3	10.3	31	12	Q919E6	Q919e6 human papil
349	3	10.3	31	12	056692	056692 hepatitis c
350	3	10.3	31	12	Q919F3	Q919f3 human papil
351	3	10.3	31	12	056707	056707 hepatitis c
352	3	10.3	31	12	056687	O56687 hepatitis c
353	3	10.3	31	12	Q919F8	Q919f8 human papil
354	3	10.3	31	12	056691	056691 hepatitis c
355	3	10.3	31	12	Q919E1	Q919e1 human papil
356	3	10.3	31	12	O56701	056701 hepatitis c
357	3	10.3	31	12	056694	056694 hepatitis c
358	3	10.3	31	12	Q919D9	Q919d9 human papil
359	3	10.3	31	12	Q919F6	Q919f6 human papil
360	3	10.3	31	12	Q919E3	Q919e3 human papil
361	3	10.3	31	12	056712	056712 hepatitis c
362	3	10.3	31	12	Q919E8	Q919e8 human papil
363	3	10.3	31	12	056710	056710 hepatitis c
364	3	10.3	31	12	056688	O56688 hepatitis c
365	3	10.3	31	12	056696	O56696 hepatitis c
366	3	10.3	31	12	056695	O56695 hepatitis c
367	3	10.3	31	12	056698	O56698 hepatitis c
368	3	10.3	31	12	056702	O56702 hepatitis c
	3	10.3	31	12	056702	O56702 Nepatitis C
369	3	10.3	31	12	056697	O56697 hepatitis c
370						
371	3	10.3	31	12	Q919F0	Q919f0 human papil
372	3	10.3	31	12	056709	O56709 hepatitis c
373	3	10.3	31	12 12	Q919F4	Q919f4 human papil
374	3	10.3	31		056689	O56689 hepatitis c
375 376	3	10.3	31	12	Q919F2	Q919f2 human papil Q919f1 human papil
376	3	10.3	31	12	Q919F1	
377	3	10.3	31	12	056711	056711 hepatitis c
378	3	10.3	31	12	Q919E2	Q919e2 human papil
379	3	10.3	31	12	Q919D8	Q919d8 human papil
380	3	10.3	31	12	056686	O56686 hepatitis c
381	3	10.3	31	12	Q9WMX5	Q9wmx5 human echov
382	3	10.3	31	12	056690	056690 hepatitis c
383	3	10.3	31	12	Q919E9	Q919e9 human papil
384	3	10.3	31	12	056706	O56706 hepatitis c
385	3	10.3	31	12	056700	O56700 hepatitis c
386	3	10.3	31	12	056704	056704 hepatitis c
387	3	10.3	31	12	Q919D7	Q919d7 human papil
388	3	10.3	31	12	Q919F5	Q919f5 human papil
389	3	10.3	31	12	056693	056693 hepatitis c
390	3	10.3	31	12	056685	056685 hepatitis c
391	3	10.3	31	12	056708	056708 hepatitis c
392	3	10.3	31	12	Q919E0	Q919e0 human papil
393	3	10.3	31	12	056705	O56705 hepatitis c
394	3	10.3	31	12	Q919E7	Q919e7 human papil
395	3	10.3	31	12	Q914M9	Q914m9 sulfolobus
396	3	10.3	31	12	056699	056699 hepatitis c
397	3	10.3	31	13	042540	042540 brachydanio
398	3	10.3	31	13	Q91763	Q91763 xenopus lae
399	3	10.3	31	13	Q9PSU1	Q9psul xenopus lae

400	3	10.3	31 13	Q91816	Q91816 xenopus lae
401	3	10.3	31 15		083937 ovine lenti
402	3	10.3	31 16		O25108 helicobacte
403	3	10.3	31 16		O50709 borrelia bu
404	3	10.3	31 16		050858 borrelia bu
405	3	10.3	31 16		O51007 borrelia bu
406	3	10.3	31 16		Q9pgf2 xylella fas
407	3	10.3	31 16		Q9paw4 xylella fas
408	3	10.3	31 16		Q97sz9 streptococc
409	3	10.3	31 16		Q97sw8 streptococc
410	3	10.3	31 16	Q97Q J 4	Q97qj4 streptococc
411	3	10.3	31 16	Q97QB7	Q97qb7 streptococc
412	3	10.3	31 16	Q97CV6	Q97cv6 streptococc
413	3	10.3	31 16	Q9K2A0	Q9k2a0 chlamydia p
414	3	10.3	31 16	Q9K236	Q9k236 chlamydia p
415	3	10.3	31 16	Q8P9W1	Q8p9w1 xanthomonas
416	3	10.3	31 16	Q8KEV8	Q8kev8 chlorobium
417	3	10.3	31 16	Q8KCQ0	Q8kcq0 chlorobium
418	3	10.3	31 16	Q8KBJ8	Q8kbj8 chlorobium
419	3	10.3	31 16	Q8EIW8	Q8eiw8 shewanella
420	3	10.3	31 16	Q8EI77	Q8ei77 shewanella
421	3	10.3	31 16	Q8E9Y5	Q8e9y5 shewanella
422	3	10.3	31 16	Q8E8G1	Q8e8g1 shewanella
423	3	10.3	31 16	Q8CTA2	Q8cta2 staphylococ
424	3	10.3	32 2	Q9AJ41	Q9aj41 buchnera ap
425	3	10.3	32 2	Q00491	Q00491 streptomyce
426	3	10.3	32 2	Q49249	Q49249 mycoplasma
427	3	10.3	32 2	Q44499	Q44499 anabaena va
428	3	10.3	32 2	Q9S629	Q9s629 prochloroco
429	3	10.3	32 2	Q8KYN3	Q8kyn3 bacillus an
430	3	10.3	32 2	Q44509	Q44509 azotobacter
431	3	10.3	32 2	Q45534	Q45534 bacillus su
432	3	10.3	32 2	Q8VN21	Q8vn21 kluyvera ci
433	3	10.3	32 2	Q9R5Q7	Q9r5q7 aeromonas h
434	3	10.3	32 2	Q8KYM4	Q8kym4 bacillus an
435	3	10.3	32 2	032493	032493 bacteroides
436	3	10.3	32 2	Q8VNT6	Q8vnt6 enterobacte
437	3	10.3	32 2	Q9L373	Q91373 rhizobium 1
438	3	10.3	32 2		Q8gf58 zymomonas m
439	3	10.3	32 3	Q01058	Q01058 kluyveromyc
440	3	10.3	32 3	Q8TGT3	Q8tgt3 saccharomyc
441 442	3	10.3 10.3	32 4 32 4	Q12900	Q12900 homo sapien
442	3			Q8TC25	Q8tc25 homo sapien
443	3	10.3 10.3	32 4 32 4	Q96GM7	Q96gm7 homo sapien
444	3 3	10.3		Q9HAX8 Q8TBQ3	Q9hax8 homo sapien
446	3	10.3	32 4 32 4	Q96I20	Q8tbq3 homo sapien
447	3	10.3	32 4	Q9UN69	Q96i20 homo sapien Q9un69 homo sapien
448	3	10.3	32 4	Q9UQV1	Q9uqv1 homo sapien
449	3	10.3	32 5	Q90QV1 Q9GPD9	Q9dqV1 nomo sapien Q9gpd9 drosophila
450	3	10.3	32 5	Q9GPD9 Q8T382	Q9gpd9 drosophila Q8t382 leishmania
451	3	10.3	32 5	096634	096634 trypanosoma
452	3	10.3	32 5	Q9TWR8	Q9twr8 procambarus
453	3	10.3	32 5	Q31WR6	018606 branchiosto
454	3	10.3	32 5	Q8T757	Q8t757 branchiosto
455	3	10.3	32 6	Q9TR67	Q9tr67 sus scrofa
456	3	10.3	32 6	Q8MJ91	Q8mj91 macaca mula
· - -	-	•		×	z

457	3	10.3	32	7	Q8SNF1	Q8snf1 gallinago m
458	3	10.3	32	7	019722	019722 homo sapien
459	3	10.3	32	8	Q36494	Q36494 farfantepen
460	3	10.3	32	8	Q8SL89	Q8sl89 euglena ste
461	3	10.3	32	8	Q9GF95	Q9gf95 cercidiphyl
462	3	10.3	32	8	Q31736	Q31736 beta vulgar
463	3	10.3	32	8	Q8 <i>S</i> L87	Q8sl87 euglena vir
464	3	10.3	32	8	Q31735	Q31735 beta vulgar
465	3	10.3	32	8	Q9MNM0	Q9mnm0 bufo andrew
466	3	10.3	32	8	Q9MNL0	Q9mnl0 bufo danate
467	3	10.3	32	8	Q951Q4	Q951q4 renilla ren
468	3	10.3	32	8	Q9GF72	Q9gf72 saururus ce
469	3	10.3	32	9	Q9MBU5	Q9mbu5 chlamydia p
470	3	10.3	32	10	Q8S527	Q8s527 ipomoea bat
471	3	10.3	32	10	Q8RXQ5	Q8rxq5 arabidopsis
472	3	10.3	32	10	Q40727	Q40727 oryza sativ
473	3	10.3	32	11	Q9JIU1	Q9jiul rattus norv
474	3	10.3	32	11	Q9R0E3	Q9r0e3 mus musculu
475	3	10.3	32	11	Q9QWM2	Q9qwm2 mus musculu
476	3	10.3	32	11	Q9QWB2	Q9qwb2 rattus sp.
477	3	10.3	32	11	Q8C2N8	Q8c2n8 mus musculu
478	3	10.3	32	11	Q8BS12	Q8bs12 mus musculu
479	3	10.3	32	12	Q9WNI5	Q9wni5 tt virus. o
480	3	10.3	32	12	Q914F9	Q914f9 sulfolobus
481	3	10.3	32	12	Q8QYT4	Q8qyt4 grapevine v
482	3	10.3	32	12	Q8QYT7	Q8qyt7 grapevine v
483	3	10.3	32	12	Q8QYU0	Q8qyu0 grapevine v
484	3	10.3	32	12	Q9Q934	Q9q934 shope fibro
485	3	10.3	32	13	Q8QG73	Q8qg73 oncorhynchu
486	3	10.3	32	13	Q8QG72	Q8qg72 salmo salar
487	3	10.3	32	13	Q8QG71	Q8qg71 oncorhynchu
488	3	10.3	32	13	Q9PS21	Q9ps21 carassius a
489	3	10.3	32	13	Q8QG84	Q8qg84 oncorhynchu
490	3	10.3	32	13	Q8QG83	Q8qg83 oncorhynchu
491	3	10.3	32	13	Q8QG82	Q8qg82 oncorhynchu
492	3	10.3	32	13	Q8QG70	Q8qg70 salvelinus
493	3	10.3	32	13	P82780	P82780 rana catesb
494	3	10.3	32	13	Q9W7P3	Q9w7p3 morone saxa
495	3	10.3	32	13	Q9W7P2	Q9w7p2 morone saxa
496	3	10.3	32	16	050706	O50706 borrelia bu
497	3	10.3	32	16	050851	O50851 borrelia bu
498	3	10.3	32	16	050865	O50865 borrelia bu
499	3	10.3	32	16	051003	O51003 borrelia bu
500	3	10.3	32	16	Q9PGT0	Q9pgt0 xylella fas
501	3	10.3	32	16	~	Q9ktv2 vibrio chol
502	3	10.3	32	16		Q9kpn9 vibrio chol
503	3	10.3	32	16	~	Q9klf0 vibrio chol
504	3	10.3	32	16	Q9K7B0	Q9k7b0 bacillus ha
505	3	10.3	32	16	Q9A2H0	Q9a2h0 caulobacter
506	3	10.3	32	16	Q98AB6	Q98ab6 rhizobium l
507	3	10.3	32	16	Q8X3V6	Q8x3v6 escherichia
508	3	10.3	32	16	Q8KG49	Q8kg49 chlorobium
509	3	10.3	32	16	Q8KEZ9	Q8kez9 chlorobium
510	3	10.3	32	16		Q8kcv3 chlorobium
511	3	10.3	32	16		Q9k4g0 streptomyce
512	3	10.3	32	16	Q8EAD5	Q8ead5 shewanella
513	3	10.3	32	16	Q8CU60	Q8cu60 staphylococ

514	3	10.3	32	16	Q8CTR7	08ctr7 s	staphylococ
515	3	10.3	32	16	Q8CRE7		staphylococ
516	3	10.3	32	17	Q9HSZ0		nalobacteri
517	3	10.3	32	17	Q8ZZF7		yrobaculum
518	3	10.3	33	1	Q9UWL4		ethanopyru
519	3	10.3	33	2	Q8KH96	· · · · · · · · · · · · · · · · · · ·	seudomonas
	3	10.3	33	2			rochloroco
520					Q9S624		cochloroco
521	3	10.3	33	2	Q9R2M3		rochloroco
522	3	10.3	33	2	Q9X3M5	-	
523	3	10.3	33	2	Q9S651		reptococc
524	3	10.3	33	2	Q9K370		nizobium l
525	3	10.3	33	2	Q9S3N5		acillus ce
526	3	10.3	33	2	Q8KQ80		ibrio chol
527	3	10.3	33	2	Q56414		scherichia
528	3	10.3	33	2	Q9S622		rochloroco
529	3	10.3	33	2	Q9F1F4		nterococcu
530	3	10.3	33	2	Q9KI23		elicobacte
531	3	10.3	33	2	Q8GQU2		eptospira
532	3	10.3	33	3	Q8TGR1		accharomyc
533	3	10.3	33	4	Q99950		omo sapien
534	3	10.3	33	4	Q9UP36	-	omo sapien
535	3	10.3	33	4	Q15285		omo sapien
536	3	10.3	33	4	Q9UDI1		omo sapien
537	3	10.3	33	4	Q9P1T8	Q9p1t8 ho	omo sapien
538	3	10.3	33	4	Q9BV16	Q9bv16 ho	omo sapien
539	3	10.3	33	4	Q92668	Q92668 ho	omo sapien
540	3	10.3	33	5	Q9GTB2	Q9gtb2 e:	imeria ten
541	3	10.3	33	5	Q9GT93	Q9gt93 cı	ryptospori
542	3	10.3	33	5	Q26673	Q26673 te	ethya aura
543	3	10.3	33	5	Q26672		ethya aura
544	3	10.3	33	5	Q9GTC2		lasmodium
545	3	10.3	33	5	Q27637	Q27637 dı	rosophila
546	3	10.3	33	5	Q9GTB3		imeria ten
547	3	10.3	33	5	Q9GTA6		arcocystis
548	3	10.3	33	5	Q9GTA1	Q9qta1 ba	abesia bov
549	3	10.3	33	5	Q17293		ancer ante
550	3	10.3	33	5	Q27310		aramecium
551	3	10.3	33	5	Q9GTA9	_	arcocystis
552	3	10.3	33		017147		chinococcu
553	3	10.3	33	5	Q9GT95		ryptospori
554	3	10.3	33	5	Q9GTA2		abesia bov
555	3	10.3	33	6	Q28788		apio hamad
556	3	10.3	33	6	018916		us scrofa
557	3	10.3	33	6	Q9TSX7		us scrofa
558	3	10.3	33	6	Q95M05		os taurus
559	3	10.3	33	7	Q8MGU2		os taurus
560	3	10.3	33	7	Q8SNF0		allinago m
561	3	10.3	33	8	Q9BAC6		uglena gra
562	3	10.3	33	8	Q8W9G0		eloidogyne
563	3	10.3	33	8	Q9BAC1		uglena ste
564	3	10.3	33	8	Q9BAC1 Q9XNP3		oophilus m
565	3	10.3	33	8	Q9ANF3 078857		hytophthor
566	3	10.3	33	8	Q9T2N1		icotiana t
	3	10.3					uglena mut
567 560	3		33	8	Q9BAC4		inkgo bilo
568 569	3 3	10.3	33	8	Q8WEJ5		nlamydomon
569 570	3	10.3	33	8	Q8HUH3		ydrastis c
570	ے	10.3	33	8	Q8HS33	yonia33 ny	Antabrib C

571	3	10.3	33	9	Q38588	Q38588 bacteriopha
572	3	10.3	33	9	Q38551	Q38551 bacteriopha
573	3	10.3	33	10	049775	049775 arabidopsis
574	3					
		10.3	33	10	Q9S8V5	Q9s8v5 zea mays (m
575	3	10.3	33	10	Q9AYQ5	Q9ayq5 cucumis sat
576	3	10.3	33	11	Q9QVM2	Q9qvm2 mus sp. glu
577	3	10.3	33	12	072982	072982 hepatitis c
578	3	10.3	33	12	073068	073068 hepatitis c
579	3	10.3	33	12	Q90085	Q90085 human papil
						_
580	3	10.3	33	12	072979	072979 hepatitis c
581	3	10.3	33	12	Q91J04	Q91j04 tt virus. o
582	3	10.3	33	12	072996	072996 hepatitis c
583	3	10.3	33	12	Q91J14	Q91j14 tt virus. o
584	3	10.3	33	12	072988	072988 hepatitis c
585	3	10.3	33	12	072992	
						072992 hepatitis c
586	3	10.3	33	12	Q91J12	Q91j12 tt virus. o
587	3	10.3	33	12	Q91J15	Q91j15 tt virus. o
588	3	10.3	33	12	Q91J07	Q91j07 tt virus. o
589	3	10.3	33	12	072995	072995 hepatitis c
590	3	10.3	33	12	Q91J09	Q91j09 tt virus. o
	3	10.3	33	12		
591					072990	072990 hepatitis c
592	3	10.3	33	12	073010	073010 hepatitis c
593	3	10.3	33	12	Q86912	Q86912 hepatitis c
594	3	10.3	33	12	Q8V5G7	Q8v5g7 hepatitis c
595	3	10.3	33	12	072981	072981 hepatitis c
596	3	10.3	33	12	Q91J08	Q91j08 tt virus. o
597	3	10.3	33	12	072997	072997 hepatitis c
598	3	10.3	33	12	073008	073008 hepatitis c
						_
599	3	10.3	33	12	Q83963	Q83963 avian influ
600	3	10.3	33	12	072986	072986 hepatitis c
601	3	10.3	33	12	072993	072993 hepatitis c
602	3	10.3	33	12	Q91J06	Q91j06 tt virus. o
603	3	10.3	33	12	072984	072984 hepatitis c
604	3	10.3	33	12	073005	073005 hepatitis c
605	3	10.3	33	12	073067	073067 hepatitis c
						_
606	3	10.3	33	12	072985	072985 hepatitis c
607	3	10.3	33	12	072999	072999 hepatitis c
608	3	10.3	33	12	Q91J16	Q91j16 tt virus. o
609	3	10.3	33	12	072998	072998 hepatitis c
610	3	10.3	33	12	Q91J11	Q91j11 tt virus. o
611	3	10.3	33	12	072994	072994 hepatitis c
612	3	10.3	33	12	Q8V5H0	Q8v5h0 hepatitis c
613	3	10.3	33	12	Q91J13	Q91j13 tt virus. o
614	3	10.3	33	12	Q8V5G8	Q8v5g8 hepatitis c
615	3	10.3	33	12	072983	072983 hepatitis c
616	3	10.3	33	12	073007	073007 hepatitis c
617	3	10.3	33	12	Q91J10	Q91j10 tt virus. o
618	3	10.3	33	12	072987	072987 hepatitis c
619	3	10.3				Q91j17 tt virus. o
			33	12	Q91J17	
620	3	10.3	33	12	Q69461	Q69461 human herpe
621	3	10.3	33	12	Q8V5G9	Q8v5g9 hepatitis c
622	3	10.3	33	12	072978	072978 hepatitis c
623	3	10.3	33	12	073009	073009 hepatitis c
624	3	10.3	33	12	073004	073004 hepatitis c
625	3	10.3	33	12	Q99138	Q99138 avian influ
626	3	10.3	33	13	P82740	P82740 rana tempor
627	3					
021	3	10.3	33	13	P82236	P82236 rana tempor

628	3	10.3	33	15 Q9DZ98	Q9dz98 human immun
629	3	10.3		15 Q86107	Q86107 simian sarc
630	3	10.3		16 Q9PA23	Q9pa23 xylella fas
631	3	10.3		16 Q9KQP4	Q9kqp4 vibrio chol
632	3	10.3		16 Q9KML1	Q9kml1 vibrio chol
633	3	10.3		16 Q97 T 91	Q97t91 streptococc
634	3	10.3	33	16 Q97PC1	Q97pc1 streptococc
635	3	10.3	33	16 Q932N2	Q932n2 staphylococ
636	3	10.3		16 Q8ZKL2	Q8zkl2 salmonella
637	3	10.3		16 Q8Z1V4	Q8z1v4 salmonella
638	3	10.3		16 Q8U5M4	Q8u5m4 agrobacteri
639	3	10.3		16 Q8VK01	
640	3	10.3		16 Q8NUL1	Q8null staphylococ
641	3	10.3		16 Q8NT95	
642	3	10.3		16 Q8NLP2	
643	3 3	10.3 10.3		16 Q8KG99 16 Q8KBZ0	· · · · · · · · · · · · · · · · · · ·
644 645	3	10.3		16 Q8G0U8	Q8g0u8 brucella su
646	3	10.3		16 Q8FZ67	
647	3	10.3		16 Q8FYR6	·-
648	3	10.3		16 Q8FY86	· · · · · · · · · · · · · · · · · · ·
649	3	10.3		16 Q8FSG0	
650	3	10.3		16 Q8EJH6	
651	3	10.3	33	16 Q8EGA9	Q8ega9 shewanella
652	3	10.3	33	16 Q8EE59	Q8ee59 shewanella
653	3	10.3	33	16 Q8EE42	
654	3	10.3		16 Q8E8W4	
655	3	10.3		16 Q8E1Y5	
656	3	10.3		16 Q8CTR8	
657	3	10.3		16 Q8CQY7	
658	3	10.3		17 Q9HSX6	
659 660	3 3	10.3 10.3		17 Q8U2X8 2 Q54427	Q8u2x8 pyrococcus Q54427 spiroplasma
661	3	10.3		2 Q9X3L6	Q9x316 prochloroco
662	3	10.3		2 Q9R5U1	Q9r5ul campylobact
663	3	10.3		2 Q44208	Q44208 pseudomonas
664	3	10.3		2 Q9X7J6	Q9x7j6 pseudomonas
665	3	10.3	34	2 Q8KYH2	Q8kyh2 bacillus an
666	3	10.3		2 031061	031061 butyrivibri
667	3	10.3	34	2 Q9R8A2	Q9r8a2 chlamydia t
668	3	10.3		2 Q9RZW6	Q9rzw6 borrelia bu
669	3	10.3		2 Q8GJC8	Q8gjc8 campylobact
670	3	10.3		2 Q8G8C9	Q8g8c9 pseudomonas
671	3	10.3		3 Q00377	Q00377 coccidioide
672	3	10.3		4 Q99910	Q99910 homo sapien
673	3	10.3		4 Q9H3R8	Q9h3r8 homo sapien Q9ui64 homo sapien
674 675	3 3	10.3 10.3	34 34	4 Q9UI64 4 Q8WY57	Q8wy57 homo sapien
676	3	10.3		4 Q8WW51	Q8ww51 homo sapien
677	3	10.3		4 Q0WW31 4 Q9BSP7	Q9bsp7 homo sapien
678	3	10.3	34	4 Q9H4L8	Q9h418 homo sapien
679	3	10.3	34	4 Q8NEQ3	Q8neq3 homo sapien
680	3	10.3	_	4 Q15251	Q15251 homo sapien
681	3	10.3		4 Q9NQY9	Q9nqy9 homo sapien
682	3	10.3	34	5 Q9BIP7	Q9bip7 cooperia pu
683	3	10.3	34	5 Q27821	Q27821 trichomonas
684	3	10.3	34	5 Q9GQE5	Q9gqe5 branchiosto

685	· 3	10.3	34	6	Q9TS91	Q9ts91 oryo	rtolagus
686	3	10.3	34	6	P79429	P79429 capi	
687	3	10.3	34	6	Q9TRI2	Q9tri2 sus	
688	3	10.3	34	6	P82908	P82908 bos	
689	3	10.3	34	8	079025	079025 enal	
690	3	10.3	34	8	Q9T2T7	Q9t2t7 bos	-
691	3	10.3	34	8	Q8MCA2	Q8mca2 phas	
692	3	10.3	34	8	Q8HKE1	Q8hke1 rhip	
693	3	10.3	34	10	Q8W2H0	Q8w2h0 pas	
694	3	10.3	34	10	Q8VWL0	Q8vwl0 pas	
695	3	10.3	34	10	Q9SCA3	Q9sca3 lyo	
696	3	10.3	34	11	Q923Z1	Q923z1 mus	
697	3	10.3	34	11	Q8R557	Q8r557 mus	
698	3	10.3	34	11	Q9ET72	Q9et72 mus	
699	3	10.3	34	11	Q99KM9	Q99km9 mus	
700	3	10.3	34	11	Q99KX7	Q99kx7 mus	
701	3	10.3	34	11	Q8VHL4	Q8vhl4 rat	
702	3	10.3	34	11	Q8C4P4	Q8C4p4 mus	
703	3	10.3	34	13	042521	042521 scy	
704	3	10.3	34	13	013101	013101 amb	
705	3	10.3	34	13	Q8QGG2	Q8qgg2 one	
706	3	10.3	34	13	Q8QFM9	Q8qfm9 one	
707	3	10.3	34	13	042526	Q8q15 Onc	
708	3	10.3	34	13	Q9PRE7	Q9pre7 ory	
709	3	10.3	34	13	Q8QGG1	Q8qgg1 ond	
710	3	10.3	34	13	Q8QGF7	Q8qgf7 one	
711	3	10.3	34	13	Q98TM8	Q98tm8 pla	
712	3	10.3	34	15	040445	040445 hur	
713	3	10.3	34	15	Q9WR32	Q9wr32 hun	
714	3	10.3	34	15	Q9W8Y1	Q9w8y1 chi	
715	3	10.3	34	16	050812	050812 box	
716	3	10.3	34	16	050877	050877 box	
717	3	10.3	34	16	Q9PGH3	Q9pgh3 xyl	
718	3	10.3	34	16	Q9PGF8	Q9pgf8 xyl	
719	3	10.3	34	16	Q9PDD0	Q9pdd0 xyl	
720	3	10.3	34	16	Q9KRA8	Q9kra8 vil	
721	3	10.3	34	16	Q9KPW9	Q9kpw9 vit	
722	3	10.3	34	16	Q9KM63	Q9km63 vil	
723	3	10.3	34			Q9k7c6 bac	
724	3	10.3	34	16	Q9JY24	Q9jy24 nei	
725	3	10.3	34	16	Q9JVP3	Q9jvp3 nei	
726	3	10.3	34	16	Q9JUR9	Q9jur9 nei	
727	3	10.3	34	16	Q98FK5	Q98fk5 rhi	
728	3	10.3	34	16	Q97SF7	Q97sf7 str	
729	3	10.3	34	16	Q97PI6	Q97pi6 str	-
730	3	10.3	34	16	Q9K2B9	Q9k2b9 chl	
731	3	10.3	34	16	Q8X4V1	Q8x4v1 esc	
732	3	10.3	34	16	Q8U5V2	Q8u5v2 agr	
733	3	10.3	34	16	Q8VIY1	Q8viy1 myc	
734	3	10.3	34	16	Q8RIC7	Q8ric7 fus	
735	3	10.3	34	16	Q8NWX3	Q8nwx3 sta	
736	3	10.3	34	16	Q8NV10	Q8nv10 sta	
737	3	10.3	34	16	Q8KEQ8	Q8keq8 chl	
738	3	10.3	34	16	Q8KEL5	Q8kel5 chl	
739	3	10.3	34	16	Q8KDE4	Q8kde4 chl	
740	3	10.3	34	16	Q8F830	Q8f830 lep	
741	3	10.3	34	16	Q8F827	Q8f827 lep	
						~	

10.3 34 16 QBF009 QBF009 Leptospira L	742	3	10.3	34	16	Q8F5Y7	Q8f5y7 leptospira
744 3 10.3 34 16 QBEZE6 QBezef Leptospira 745 3 10.3 34 16 QBEZ17 QBez37 leptospira 746 3 10.3 34 16 QBEZ16 QBEXH6 QBeygf Leptospira 747 3 10.3 34 16 QBEXH6 QBEXH6 QBeygf Leptospira 748 3 10.3 34 16 QBEXH6 QBEXH6 QBexh6 Leptospira 748 3 10.3 34 16 QBEXH8 QBEXH8 QBexh8 leptospira 749 3 10.3 34 16 QBEXH5 QBEXH5 QBeifs shewanella 750 3 10.3 34 16 QBEH45 QBeBX1 QBexh3 shewanella 751 3 10.3 34 16 QBEBX1 QBEXH3 QBexh3 shewanella 752 3 10.3 34 16 QBEBX1 QBexh3 shewanella 753 3 10.3 34 16 QBEBX1 QBexh3 shewanella 754 3 10.3 34 16 QBERX1 QBEXH3 QBexh3 shewanella 755 3 10.3 34 16 QBEXH3 QBEXH3 Shewanella 756 3 10.3 34 16 QBEXH3 QBEXH3 SHEWANELLA 757 3 10.3 34 16 QBEXH3 QBEXH3 SHEWANELLA 757 3 10.3 34 16 QBEXH3 QBEXH3 SHEWANELLA 757 3 10.3 35 2 QPK624 QPK624 Shewanella 757 3 10.3 35 2 QPK624 QPK624 Shewanella 757 3 10.3 35 2 QPK624 QPK624 Shewanella 757 3 10.3 35 2 QPK625 QPK625 Shewanella 758 3 10.3 35 2 QPK626 QPK626 QPK626 Shewanella 758 3 10.3 35 2 QPK626 QPK626 QPK626 Shewanella 758 3 10.3 35 2 QPK626 QPK626 QPK626 Shewanella 758 3 10.3 35 2 QPK626 QPK626 QPK626 Shewanella 758 3 10.3 35 2 QPK626 QPK626 QPK626 Shewanella 758 3 10.3 35 2 QPK626 QPK626 QPK626 Shewanella 758 3 10.3 35 2 QPK626 QPK626 QPK626 Shewanella 758 3 10.3 35 2 QPK626 QPK626 QPK626 Shewanella 758 3 10.3 35 2 QPK626 QPK626 QPK626 Shewanella 758 3 10.3 35 2 QPK626 QPK626 QPK626 Shewanella 758 3 10.3 35 2 QPK626 QPK626 QPK626 Shewanella 758 3 10.3 35 2 QPK626 QPK626 QPK626 Shewanella 758 3 10.3 35 4 QPW751 QPK751 Shewanella 758 3 10.3 35 5 QPW751 QPK751 Shewanella 758 3 10.3 35 5 QPW751 QPW751 Shewanella 758 3 10.3 35 5 QPW751 QPW751 Shewanella 758 3 10.3 35 5 QPW751 QPW751 Shewanella 759 3 10.3 35 5 QPW751 QPW751 Shewanella 759							
745 3 10.3 34 16 QBEZ37 QBez37 Leptospira 746 3 10.3 34 16 QBEX66 QBEX66 QBey66 Leptospira 747 3 10.3 34 16 QBEX48 QBEX46 QBex46 Leptospira 748 3 10.3 34 16 QBEX48 QBEX48 QBex48 Leptospira 749 3 10.3 34 16 QBEX45 QBex45 QBex45 Shewanella 750 3 10.3 34 16 QBEX45 QBex45 QBex45 Shewanella 751 3 10.3 34 16 QBEX45 QBex45 Shewanella 752 3 10.3 34 16 QBEX45 QBex45 Shewanella 752 3 10.3 34 16 QBEBU5 QBex45 Shewanella 753 3 10.3 34 16 QBEBU5 QBex45 Shewanella 754 3 10.3 34 16 QBEBU5 QBEX45 Shewanella 755 3 10.3 34 16 QBEBU5 QBEX45 Shewanella 755 3 10.3 34 16 QBEX73 QBEX73 Staphylococ 755 3 10.3 34 16 QBEX73 QBCX73 QBCX73 Staphylococ 755 3 10.3 34 16 QBCX73 QBCX73 Staphylococ 755 3 10.3 35 10 QBX64 QBX64 QBX64 QBX65 QBX6							
746 3 10.3 34 16 QBEXM6 QBexM6 QBexM6 leptospira 748 3 10.3 34 16 QBEXM6 QBEXM6 QBexM6 leptospira 748 3 10.3 34 16 QBEXM6 QBEXM6 QBexM8 Leptospira 749 3 10.3 34 16 QBEM55 QBej65 bewanella 750 3 10.3 34 16 QBEM55 QBej65 shewanella 751 3 10.3 34 16 QBEM5 QBehU5 QBehU5 shewanella 752 3 10.3 34 16 QBEM5 QBebU5 QBehU5 shewanella 753 3 10.3 34 16 QBEM3 QBe893 shewanella 753 3 10.3 34 16 QBEM3 QBEM3 QBe893 shewanella 754 3 10.3 34 16 QBEM3 QBEM3 QBEM3 shewanella 755 3 10.3 34 16 QBEM3 QBEM3 QBEM3 shewanella 755 3 10.3 34 16 QBEM3 QBEM3 QBEM3 shewanella 756 3 10.3 34 16 QBEM3 QBEM3 QBEM3 shewanella 756 3 10.3 34 16 QBEM3 QBEM3 QBEM3 shewanella 757 3 10.3 35 2 QM624 QM624 bacillus su 757 3 10.3 35 2 QM624 QM624 bacillus su 758 3 10.3 35 2 QM8626 QM624 bacillus su 759 3 10.3 35 2 QM825 QM825 QM825 QM825 ABM6 QM836 prochloroco 756 3 10.3 35 2 QM825 QM825 QM825 QM826 QM836 prochloroco 756 3 10.3 35 2 QM825 QM826 QM836 prochloroco 756 3 10.3 35 2 QM825 QM825 QM825 QM826 QM836 prochloroco 756 3 10.3 35 2 QM825 SM825 QM825 QM825 SM825 QM825 QM825 QM825 SM825 QM825 QM825 SM825 SM825 SM825 SM825 SM825 SM825 QM825 SM825 SM							
747 3 10.3 34 16 QBEXM6 QBexM6 QBexM6 leptospira 749 3 10.3 34 16 QBEXM6 QBEXM6 QBexM8 leptospira 749 3 10.3 34 16 QBEXM6 QBEM5 QBeqM8 leptospira 750 3 10.3 34 16 QBEM5 QBeM5 shewanella 751 3 10.3 34 16 QBEM5 QBeM5 shewanella 752 3 10.3 34 16 QBEM5 QBeM5 shewanella 752 3 10.3 34 16 QBEM3 QBeBW3 QBeBW3 shewanella 754 3 10.3 34 16 QBEM3 QBeBW3 Shewanella 754 3 10.3 34 16 QBEM3 QBeBW3 Shewanella 755 3 10.3 34 16 QBEM3 QBEW3 Shewanella 756 3 10.3 34 16 QBEM3 QBEW3 Shewanella 757 3 10.3 34 16 QBEM3 QBEW3 Shewanella 755 3 10.3 35 2 QPM624 QBCM3 Shewanella 756 3 10.3 35 2 QPM624 QBCM3 Shewanella 757 3 10.3 35 2 QPM624 QPC624 bacillus su 758 3 10.3 35 2 QPM625 QPM625 QPM625 QPM625 QPM625 QPM625 QPM625 QPM626							
748							
749 3 10.3 34 16 QBEJ65 QBej65 shewanella 750 3 10.3 34 16 QBEHU5 QBei45 shewanella 751 3 10.3 34 16 QBEHU5 QBeHU5 QBehU5 shewanella 752 3 10.3 34 16 QBEBU3 QBeBU3 shewanella 753 3 10.3 34 16 QBEBU3 QBeBU3 Shewanella 754 3 10.3 34 16 QBEBU3 QBeBU3 Shewanella 755 3 10.3 34 16 QBEBU3 QBeBU3 Shewanella 756 3 10.3 34 16 QBEBU3 QBeBU3 Shewanella 756 3 10.3 34 16 QBECW3 QBCW3 Shewanella 757 3 10.3 35 2 QPKC24 QBCCW3 QBCW3 Shewanella 757 3 10.3 35 2 QPKC24 QBCCW3 QBCW3 Shewanella 758 3 10.3 35 2 QPKC24 QBCCW3 QBCW3 Shewanella 759 3 10.3 35 2 QPKC25 QPYC25 Dacillus 8u 750 3 10.3 35 2 QPXD29 QPPG9 QPPG25 Dacillus 8u 750 3 10.3 35 2 QPXD20 QPYC25 Dacillus 8u 750 3 10.3 35 2 QPXD20 QPYC25 Dacillus 8u 750 3 10.3 35 2 QPXD20 QPYC25 Dacillus 8u 750 3 10.3 35 2 QPXD20 QPYC25 Dacillus 8u 750 3 10.3 35 2 QPXD20 QPYC25 Dacillus 8u 750 3 10.3 35 2 QPXD20 QPYC25 Dacillus 8u 750 3 10.3 35 2 QPXD20 QPYC25 Dacillus 8u 750 3 10.3 35 2 QPXD20 QPXD20 Dacillus CC 750 3 10.3 35 2 QPXD20 QPXD20 Dacillus CC 750 3 10.3 35 2 QPXD20 QPXD20 Dacillus CC 750 3 10.3 35 2 QPXD20 QPXD20 Dacillus CC 750 3 10.3 35 2 QPXD20 QPXD20 QPXD20 Dacillus CC 750 3 10.3 35 2 QPXD20 QPXD20 QPXD20 Dacillus CC 750 3 10.3 35 2 QPXD20 QPXD20 QPXD20 Dacillus CC 750 3 10.3 35 2 QPXD20 QPXD20 QPXD20 Dacillus CC 750 3 10.3 35 2 QPXD20 QPXD20 QPXD20 Dacillus CC 750 3 10.3 35 2 QPXD20 QPXD20 QPXD20 Dacillus CC 750 3 10.3 35 2 QPXD20 QPXD20 QPXD20 Dacillus CC 750 3 10.3 35 2 QPXD20 QPXD20 QPXD20 Dacillus CC 750 QPXD20 QPXD20 QPXD20 Dacillus MPXD20 Q							
750					16		
751 3 10.3 34 16 QBEHU5 QBEHU5 QBENU5 shewanella Shewanella QBENU5 Shewanella QBENU5 Shewanella Shewanella QBENU5 Shewanella Shewanella QBENU5 Shewanella Shewanella Shewanella QBENU5 Shewanella Shewanella QBENU5 Shewanella Shewan	749		10.3	34	16	Q8 E J65	
752	750	3	10.3	34	16	Q8EI45	
753	751	3	10.3	34	16	Q8EHU5	Q8ehu5 shewanella
753 3 10.3 34 16 QBEBW3 QBeBW3 shewanella 754 3 10.3 34 16 QBE173 QBE173 streptococc 755 3 10.3 34 16 QBE173 QBE173 streptococc 755 3 10.3 34 16 QBERY3 QBERY3 streptococc 755 3 10.3 34 17 QBUII1 QBUII1 QBUII1 QBUII1 pyrococcus 757 3 10.3 35 2 QBR624 QPr624 bacillus su 758 3 10.3 35 2 QBR625 QPR625 QPr625 bacillus su 758 3 10.3 35 2 QBR625 QPR625 QPr625 bacillus su 758 3 10.3 35 2 QBR625 QPR625 QPr625 bacillus su 760 3 10.3 35 2 QBR625 QPR625 porchloroco 761 3 10.3 35 2 QBR513 QPR624 QPr624 clostridium 763 3 10.3 35 2 QBRB0 QPR624 QPR624 clostridium 763 3 10.3 35 2 QBRB0 QPR806 bacillus ce 764 3 10.3 35 2 QBRB0 QPR806 DECENTION PROPERTIES PRO	752	3	10.3	34	16	Q8E8Y3	Q8e8y3 shewanella
754 3 10.3 34 16 QBERTY3 QBERTY3 streptococc 755 3 10.3 34 16 QBERTY3 QBERTY3 staphylococ 756 3 10.3 35 2 QPR624 QPr624 bacillus su 757 3 10.3 35 2 QPR625 QPr625 bacillus su 759 3 10.3 35 2 QPR625 QPr625 bacillus su 760 3 10.3 35 2 QPR625 QPS236 bacillus su 761 3 10.3 35 2 QPRCX4 QPfcx4 QPfcx4 clostridium 762 3 10.3 35 2 QPSX36 QPSXb0 bacillus ce 764 3 10.3 35 2 QPSX56 QPSXb0 bacillus ce 765 3 10.3 35 2 QPSXB0 QPAthyb bacillus ce 766 3 10.3 35 2 QPSXB0 QPSYB35 chlamydia t 767							08e8w3 shewanella
755 3 10.3 34 16 QBCRY3 QBcrY3 staphylococ 756 3 10.3 34 17 QBUIII QBuIII QRUIII pyrococcus 757 3 10.3 35 2 Q9R624 Q9r624 bacillus su 758 3 10.3 35 2 Q9R625 Q9r625 Q9rigop neisseria 759 3 10.3 35 2 Q9R625 Q9rigop neisseria 760 3 10.3 35 2 Q9R625 Q9rigop neisseria 761 3 10.3 35 2 Q9R513 Q9r531 Q9r531 thermoanaer 762 3 10.3 35 2 Q9R513 Q9r531 Q9r531 thermoanaer 763 3 10.3 35 2 Q9R513 Q9r544 Q9r6x4 clostridium 764 3 10.3 35 2 Q9R516 Q9x3bk0 bacillus ce 765 3 10.3 35 2 Q9R517 Q46537 bacteroides 766 3 10.3 35 2 Q98BK0 Q9xbk0 bacillus ce 767 3 10.3 35 2 Q9R651 Q9r335 chlamydia t 768 3 10.3 35 2 Q9R651 Q9r335 chlamydia t 769 3 10.3 35 2 Q9R4A1 Q9r4a1 klebsiella 769 3 10.3 35 2 Q9R656 Q9r368 Chlamydia t 769 3 10.3 35 2 Q9R631 Q9r431 klebsiella 769 3 10.3 35 2 Q9R631 Q9r431 Q9r4a1 klebsiella 769 3 10.3 35 2 Q9R631 Q9r431 Q9r4a1 klebsiella 769 3 10.3 35 2 Q9R668 Q9r368 Chlamydia t 770 3 10.3 35 2 Q9R626 Q9r368 Chlamydia t 771 3 10.3 35 2 Q9R626 Q9r626 bacillus su 774 3 10.3 35 2 Q9R626 Q9r626 bacillus su 775 3 10.3 35 3 Q9BUT3 Q9r57 P81927 P81927 lactobacillu 776 3 10.3 35 4 Q13380 Q13380 knom sapien 777 3 10.3 35 4 Q13380 Q13380 knom sapien 778 3 10.3 35 4 Q13264 Q13380 knom sapien 778 3 10.3 35 4 Q13264 Q13380 knom sapien 780 3 10.3 35 4 Q13264 Q13380 knom sapien 781 3 10.3 35 4 Q13264 Q13264 homo sapien 782 3 10.3 35 5 Q27754 Q27754 pisaster oc 785 3 10.3 35 5 Q27754 Q27754 pisaster oc 786 3 10.3 35 5 Q9U783 Q9V88 Doophilus 787 3 10.3 35 5 Q9U783 Q9V88 Doophilus 788 3 10.3 35 5 Q9U783 Q9V88 Doophilus 789 3 10.3 35 5 Q9U783 Q9V878 Doophilus 789 3 10.3 35 5 Q9U781 Q9V878 Doophilus 780 3 10.3 35 5 Q9U783 Q9V878 Doophilus 780 3 10.3 35 6 Q9U783 Q9U781 Doophilus 780 3 10.3 35 6 Q9U783 Q9U781 D9V38 Doophilus 780 3 10.3 35 6 Q9U783 Q9U781 D9V378 Doophilus 780 3 10.3 35 6 Q9U783 Q9U783 Doophilus 780 3 10.3 35 6 Q9U783 Q9U784 Doophilus 780 3 10.3 35 8 Q9U785 Q9U785 Q9U787 Q9U787 Sus scrofa 780 3 10.3 35 8 Q9U788 Q9U789 Q9U789 Doophilus 78							
756 3 10.3 35 2 Q9R624 Q9r624 bacillus su 758 3 10.3 35 2 Q9R624 Q9r624 bacillus su 758 3 10.3 35 2 Q9R625 Q9r625 bacillus su 759 3 10.3 35 2 Q9R625 Q9r625 bacillus su 760 3 10.3 35 2 Q9R625 Q9r625 bacillus su 761 3 10.3 35 2 Q9R3D6 Q9r3d6 Q9r3d6 Q9r3d6 Q9r624 bacillus su 761 3 10.3 35 2 Q9R3D6 Q9r625 bacillus su 762 3 10.3 35 2 Q9R513 Q9r513 thermoanaer 762 3 10.3 35 2 Q9R54 Q9r624 Q9r624 clostridium 763 3 10.3 35 2 Q9R54 Q9r624 Q9r624 clostridium 763 3 10.3 35 2 Q9R54 Q9r624 Q9r624 d10stridium 763 3 10.3 35 2 Q9R54 Q9r54 Q9r54 d10stridium 766 3 10.3 35 2 Q9R625 Q9r54 Q9r55 chlamydia t 767 3 10.3 35 2 Q9R625 Q9r54 Q9r55 chlamydia t 767 3 10.3 35 2 Q9R4A1 Q9r41 klebsiella 768 3 10.3 35 2 Q9R626 Q9r41 Q9r41 klebsiella 769 3 10.3 35 2 Q9R626 Q9r626 bacillus ce 771 3 10.3 35 2 Q9R626 Q9r626 bacillus su 772 3 10.3 35 2 Q9R626 Q9r626 bacillus su 773 3 10.3 35 2 Q9R626 Q9r626 bacillus su 774 3 10.3 35 2 Q9R626 Q9r626 bacillus su 775 3 10.3 35 4 Q9BVR9 Q9bvr9 homo sapien 776 3 10.3 35 4 Q9BVR9 Q9bvr9 homo sapien 777 3 10.3 35 4 Q3BVR9 Q9bvr9 homo sapien 778 3 10.3 35 4 Q3BVR9 Q9bvr9 homo sapien 779 3 10.3 35 4 Q3BVR9 Q9bvr9 homo sapien 779 3 10.3 35 4 Q3BVR9 Q9bvr9 homo sapien 779 3 10.3 35 4 Q3BVR9 Q9bvr9 homo sapien 778 3 10.3 35 4 Q3BVR9 Q9bvr9 homo sapien 778 3 10.3 35 4 Q3BVR9 Q9bvr9 homo sapien 778 3 10.3 35 4 Q3BVR9 Q9bvr9 homo sapien 778 3 10.3 35 4 Q3BVR9 Q9bvr9 homo sapien 778 3 10.3 35 4 Q3BVR9 Q9bvr9 homo sapien 778 3 10.3 35 5 Q3C754 Q2C754 Q							The state of the s
757 3 10.3 35 2 Q9R624 Q9r624 bacillus su Q9r628 3 10.3 35 2 Q9RG25 Q9Jpg9 Q9jpg9 neisseria m P759 3 10.3 35 2 Q9R625 Q9F625 bacillus su Q9r625 bacillus su Q9r626 3 10.3 35 2 Q9R625 Q9F625 bacillus su Q9r626 3 10.3 35 2 Q9FCX4 Q9fcx4 clostridium Q9fcx4 clostri							
758							
759 3 10.3 35 2 Q9R625 Q9r625 Bacillus su 760 3 10.3 35 2 Q9X3B6 Q9r533 Q9r533 thermoanaer 761 3 10.3 35 2 Q9FCX4 Q9fCX4 Q9fCX4 clostridium 762 3 10.3 35 2 Q9XBK0 Q9xbk0 bacillus ce 763 3 10.3 35 2 Q9XBK0 Q9xbk0 bacillus ce 764 3 10.3 35 2 Q9XBK0 Q9xbk0 bacillus ce 765 3 10.3 35 2 Q9XBK0 Q9xbk0 bacillus ce 766 3 10.3 35 2 Q9XBK0 Q9xbk0 bacillus ce 767 3 10.3 35 2 Q92G35 Q92G35 G9zg35 chlamydia t 768 3 10.3 35 2 Q9R45 Q9rbg5 bacillus ce 768 3 10.3 35 2 Q9R45 Q9rbg5 bacillus ce 769 3 10.3 35 2 Q9R4A1 Q9r4a1 klebsiella 769 3 10.3 35 2 Q9R4A1 Q9r4a1 klebsiella 770 3 10.3 35 2 Q9R63 Q9zg68 Clostridium 771 3 10.3 35 2 Q8RKG3 Q8rkg3 Clostridium 772 3 10.3 35 2 Q8RKG3 Q8rkg3 Clostridium 773 3 10.3 35 2 Q9R626 Q9r626 bacillus su 774 3 10.3 35 2 Q9R626 Q9r626 bacillus su 775 3 10.3 35 3 Q96UT3 Q96ut3 saccharomyc 776 3 10.3 35 4 Q9BVR9 Q9bvr9 homo sapien 777 3 10.3 35 4 Q9BVR9 Q9bvr9 homo sapien 778 3 10.3 35 4 Q13380 Q13380 homo sapien 780 3 10.3 35 4 Q1348 Q1348 Q9r54 homo sapien 781 3 10.3 35 4 Q1348 Q1348 Q9r634 homo sapien 782 3 10.3 35 5 Q2774 Q27754 pisaster 783 3 10.3 35 5 Q27754 Q27754 pisaster 784 3 10.3 35 5 Q27754 Q27754 pisaster 785 3 10.3 35 5 Q27754 Q27754 pisaster 786 3 10.3 35 5 Q27754 Q27754 pisaster 787 3 10.3 35 5 Q27754 Q27754 pisaster 788 3 10.3 35 5 Q27754 Q27754 pisaster 789 3 10.3 35 5 Q27754 Q27754 Q27754 pisaster 789 3 10.3 35 5 Q27754 Q27754 Q27754 pisaster 789 3 10.3 35 5 Q27754 Q27754 Q27754 pisaster 789 3 10.3 35 5 Q27754 Q27754 Q27754 pisaster 789 3 10.3 35 5 Q27754 Q27754 Q27754 pisaster 789 3 10.3 35 5 Q27754 Q27754 Q27754 pisaster 780 3 10.3 35 5 Q27754 Q27754 Q27754 pisaster 780 3 10.3 35 5 Q27754 Q27754 Q27754 pisaster 780 3 10.3 35 5 Q27754 Q27754 Q27754 pisaster 780 3 10.3 35 5 Q27754 Q27754 Q27754 pisaster 780 3 10.3 35 5 Q27754 Q27754 Q27754 pisaster 780 3 10.3 35 5 Q27754 Q27754 Q27754 pisaster 780 3 10.3 35 5 Q27754 Q27754 Q27754 pisaster 780 3 10.3 35 5 Q27754 Q27754 Q27754 pisaster 790 3 1							· · · · · · · · · · · · · · · · · · ·
760							
761							
762							
763							
764							
765	763		10.3		2	Q9XBK0	
766	764	3	10.3	35	2	Q53564	Q53564 neisseria g
766 3 10.3 35 2 Q9RG35 Q9rhg5 bacillus ce 767 3 10.3 35 2 Q9RHG5 Q9rhg5 bacillus ce 768 3 10.3 35 2 Q9R4A1 Q9r4a1 klebsiella 769 3 10.3 35 2 Q9R3661 Q30661 vibrio chol 770 3 10.3 35 2 Q9ZG68 Q9zg68 chlamydia t 771 3 10.3 35 2 Q8ZG68 Q9zg68 chlamydia t 772 3 10.3 35 2 Q8ZG68 Q8rkg3 clostridium 773 3 10.3 35 2 Q8RKG3 Q8rkg2 clostridium 774 3 10.3 35 2 Q9R626 Q9r626 bacillus su 774 3 10.3 35 2 P81927 P81927 lactobacill 775 3 10.3 35 3 Q96UT3 Q96ut3 saccharomyc 776 3 10.3 35 4 Q9BVR9 Q9bvr9 homo sapien 777 3 10.3 35 4 Q9BS62 Q9bs62 homo sapien 778 3 10.3 35 4 Q13380 Q13380 homo sapien 779 3 10.3 35 4 Q13264 Q13165 homo sapien 780 3 10.3 35 4 Q13264 Q13264 homo sapien 781 3 10.3 35 4 Q81UT7 Q8iu77 homo sapien 782 3 10.3 35 5 Q27754 Q27754 pisaster oc 785 3 10.3 35 5 Q27754 Q27754 pisaster oc 786 3 10.3 35 5 Q9U782 Q9U782 Doophilus m 789 3 10.3 35 5 Q9U782 Q9U782 Doophilus m 789 3 10.3 35 5 Q9U781 Q9u781 boophilus m 789 3 10.3 35 5 Q9U781 Q9u781 boophilus m 789 3 10.3 35 6 Q9U781 Q9u781 boophilus m 789 3 10.3 35 6 Q9U781 Q9u781 boophilus m 789 3 10.3 35 6 Q9U781 Q9u781 boophilus m 789 3 10.3 35 6 Q9U781 Q9u781 boophilus m 789 3 10.3 35 6 Q9U781 Q9u781 boophilus m 789 3 10.3 35 6 Q9U781 Q9u781 boophilus m 789 3 10.3 35 8 Q9GF85 Q9G85 G9PG85 Ginkgo bilo	765	3	10.3	35	2	Q46537	Q46537 bacteroides
767			10.3	35	2	Q9ZG35	Q9zg35 chlamydia t
768 3 10.3 35 2 Q9R4A1 Q9r4a1 klebsiella 769 3 10.3 35 2 O30661 O30661 vibrio chol 770 3 10.3 35 2 Q9RKG3 Q8rkg3 clostridium 772 3 10.3 35 2 Q8RKG3 Q8riw2 clostridium 773 3 10.3 35 2 Q9R626 Q9r626 bacillus su 774 3 10.3 35 2 Q9BVT9 P81927 P81927 lactobacill 775 3 10.3 35 3 O96UT3 saccharomyc 776 3 10.3 35 4 Q9BVR9 Q9bvr9 homo sapien 777 3 10.3 35 4 Q9BVR9 Q9brs62 homo sapien 778 3 10.3 35 4 Q131865 Q13165 homo sapien 778 3 10.3 35							
769							
770							
771							
772							
773 3 10.3 35 2 Q9R626 Q9r626 bacillus su 774 3 10.3 35 2 P81927 P81927 lactobacill 775 3 10.3 35 3 Q96UT3 Q96ut3 saccharomyc 776 3 10.3 35 4 Q9BVR9 Q9bvr9 homo sapien 777 3 10.3 35 4 Q9BS62 Q9bs62 homo sapien 778 3 10.3 35 4 Q13380 Q13380 homo sapien 779 3 10.3 35 4 Q13165 Q13165 homo sapien 780 3 10.3 35 4 Q13828 Q13828 homo sapien 781 3 10.3 35 4 Q13264 Q13264 homo sapien 782 3 10.3 35 4 Q8IUT7 Q8iuT7 homo sapien 784 3 10.3 35 5 Q27754 Q27754 pisaster oc 785 3 10.3 35 5 Q9U780 Q9u780 boophilus a 786 3 10.3 35 5 Q9U782 Q9u782 boophilus m 788 3 10.3 35 5 Q9U783 Q9u783 boophilus m 790 3 10.3 35 5 Q9U783 Q9u783 boophilus m 790 3 10.3 35 5 Q9U784 Q9u784 boophilus m 791 3 10.3 35 5 Q9U784 Q9u784 boophilus m 792 3 10.3 35 6 Q9U784 Q9u784 boophilus m 793 3 10.3 35 6 Q9U784 Q9u784 boophilus m 794 3 10.3 35 6 Q9U787 Q9u781 boophilus m 795 3 10.3 35 6 Q9U781 Q9u781 boophilus m 796 3 10.3 35 8 Q9EF85 Q9EF85 Q9GF85 Q9GF85 ginkgo bilo							
774							
775 3 10.3 35 3 Q96UT3 Q96ut3 saccharomyc 776 3 10.3 35 4 Q9BVR9 Q9bvr9 homo sapien 777 3 10.3 35 4 Q13380 Q13380 homo sapien 778 3 10.3 35 4 Q9BS62 Q9bs62 homo sapien 779 3 10.3 35 4 Q13165 Q13165 homo sapien 780 3 10.3 35 4 Q13264 Q13828 Q13828 homo sapien 781 3 10.3 35 4 Q13264 Q13264 homo sapien 782 3 10.3 35 4 Q9Y634 Q9Y634 homo sapien 783 3 10.3 35 4 Q8IU77 Q8iu77 homo sapien 784 3 10.3 35 5 Q27754 Q27754 pisaster oc 785 3 10.3 35 5 Q9U780 Q9u780 boophilus a 786 3 10.3 35 5 Q9U780 Q9u780 boophilus a 786 3 10.3 35 5 Q9U782 Q26372 tribolium c 787 3 10.3 35 5 Q9U782 Q9u782 boophilus m 788 3 10.3 35 5 Q9U783 Q9u782 boophilus m 789 3 10.3 35 5 Q9U783 Q9u784 boophilus m 790 3 10.3 35 5 Q9U784 Q9u784 boophilus m 791 3 10.3 35 5 Q9U781 Q9u781 boophilus m 792 3 10.3 35 5 Q9IF21 Q8if21 trypanosoma 793 3 10.3 35 6 Q9SN74 Q9mz7 quus cabal 794 3 10.3 35 8 Q9SF85 Q9SF85 Q9GF85 ginkgo bilo							· · · · · · · · · · · · · · · · · · ·
776							
777 3 10.3 35 4 Q13380 Q13380 homo sapien 778 3 10.3 35 4 Q9BS62 Q9bs62 homo sapien 779 3 10.3 35 4 Q13165 Q13165 homo sapien 780 3 10.3 35 4 Q13284 Q13288 homo sapien 781 3 10.3 35 4 Q13264 Q13264 homo sapien 782 3 10.3 35 4 Q9Y634 Q9y634 homo sapien 783 3 10.3 35 4 Q8IU77 Q8iu77 homo sapien 784 3 10.3 35 5 Q27754 Q27754 pisaster oc 785 3 10.3 35 5 Q9U780 Q9u780 boophilus a 786 3 10.3 35 5 Q9U780 Q9u780 boophilus a 787 3 10.3 35 5 Q9U782 Q26372 tribolium c 788 3 10.3 35 5 Q9U782 Q9u782 boophilus m 788 3 10.3 35 5 Q9U783 Q9u782 boophilus m 789 3 10.3 35 5 Q9U784 Q9u783 boophilus m 790 3 10.3 35 5 Q9U784 Q9u784 boophilus m 791 3 10.3 35 5 Q9U781 Q9u781 boophilus m 792 3 10.3 35 5 Q9U781 Q9u781 boophilus m 793 3 10.3 35 6 Q9NZA7 Q9mza7 sus scrofa 794 3 10.3 35 6 Q9MZA7 Q9mza7 sus scrofa 795 3 10.3 35 8 Q9GF85 Q9GF85 ginkgo bilo							
778							
779							
780 3 10.3 35 4 Q13828 Q13828 homo sapien 781 3 10.3 35 4 Q13264 Q13264 homo sapien 782 3 10.3 35 4 Q9Y634 Q9y634 homo sapien 783 3 10.3 35 4 Q81U77 Q8iu77 homo sapien 784 3 10.3 35 5 Q27754 Q27754 pisaster oc 785 3 10.3 35 5 Q9U780 Q9u780 boophilus a 786 3 10.3 35 5 Q9U782 Q26372 tribolium c 787 3 10.3 35 5 Q9U782 Q9u782 boophilus m 788 3 10.3 35 5 Q9U782 Q9u783 boophilus m 789 3 10.3 35 5 Q9U783 Q9u784 boophilus m 791 3 10.3 35 5 Q9U781 Q9u784 boophilus m 792 3 10.					4		
781 3 10.3 35 4 Q13264 homo sapien 782 3 10.3 35 4 Q9Y634 Q9y634 homo sapien 783 3 10.3 35 4 Q8IU77 Q8iu77 homo sapien 784 3 10.3 35 5 Q27754 Q27754 pisaster oc 785 3 10.3 35 5 Q9U780 Q9u780 boophilus a 786 3 10.3 35 5 Q26372 Q26372 tribolium c 787 3 10.3 35 5 Q9U782 Q9u782 boophilus m 788 3 10.3 35 5 Q9U783 Q9tvj7 boophilus m 789 3 10.3 35 5 Q9U784 Q9u784 boophilus m 791 3 10.3 35 5 Q9U781 Q9u781 boophilus m 792 3 10.3 35 5 Q8IF21 Q8if21 trypanosoma 793 3 10.3	779		10.3		4		
782 3 10.3 35 4 Q9Y634 Nome sapien 783 3 10.3 35 4 Q8IU77 Q8iu77 home sapien 784 3 10.3 35 5 Q27754 Q27754 pisaster oc 785 3 10.3 35 5 Q9U780 Q9u780 boophilus a 786 3 10.3 35 5 Q26372 Q26372 tribolium c 787 3 10.3 35 5 Q9U782 Q9u782 boophilus m 788 3 10.3 35 5 Q9U783 Q9u782 boophilus m 789 3 10.3 35 5 Q9U784 Q9u783 boophilus m 790 3 10.3 35 5 Q9U784 Q9u784 boophilus m 791 3 10.3 35 5 Q9U781 Q9u781 boophilus m 792 3 10.3 35 5 Q8IF21 Q8if21 trypanosoma 794 3 10.3	780	3					
783 3 10.3 35 4 Q8IU77 Q8iu77 homo sapien 784 3 10.3 35 5 Q27754 Q27754 pisaster oc 785 3 10.3 35 5 Q9U780 Q9u780 boophilus a 786 3 10.3 35 5 Q26372 tribolium c 787 3 10.3 35 5 Q9U782 Q9u782 boophilus m 788 3 10.3 35 5 Q9U783 Doophilus m 789 3 10.3 35 5 Q9U784 Q9u783 boophilus m 790 3 10.3 35 5 Q9U784 Q9u784 boophilus m 791 3 10.3 35 5 Q9U781 Q9u781 boophilus m 792 3 10.3 35 5 Q8IF21 Q8if21 trypanosoma 793 3 10.3 35 6 Q95N74 Q9mza7 sus scrofa 795 3 10.3 35 8 Q951Q6 Q951q6 protoptilum 796 3 10	781	3	10.3	35	4	Q13264	Q13264 homo sapien
784 3 10.3 35 5 Q27754 pisaster oc 785 3 10.3 35 5 Q9U780 Q9u780 boophilus a 786 3 10.3 35 5 Q26372 tribolium c 787 3 10.3 35 5 Q9U782 Q9u782 boophilus m 788 3 10.3 35 5 Q9U783 Q9u783 boophilus m 789 3 10.3 35 5 Q9U784 Q9u784 boophilus m 790 3 10.3 35 5 Q9U781 Q9u781 boophilus m 791 3 10.3 35 5 Q9U781 Q9u781 boophilus m 792 3 10.3 35 5 Q8IF21 Q8if21 trypanosoma 793 3 10.3 35 6 Q9SN74 Q95n74 equus cabal 794 3 10.3 35 8 Q9MZA7 Q9mza7 sus scrofa 795 3 10.3 35 8 Q9SN789 Q9sh789 colpomenia 797 3 10.3	782	3	10.3	35	4	Q9Y634	Q9y634 homo sapien
784 3 10.3 35 5 Q27754 pisaster oc 785 3 10.3 35 5 Q9U780 Q9u780 boophilus a 786 3 10.3 35 5 Q26372 tribolium c 787 3 10.3 35 5 Q9U782 Q9u782 boophilus m 788 3 10.3 35 5 Q9U783 Q9u783 boophilus m 789 3 10.3 35 5 Q9U784 Q9u784 boophilus m 790 3 10.3 35 5 Q9U781 Q9u781 boophilus m 791 3 10.3 35 5 Q9U781 Q9u781 boophilus m 792 3 10.3 35 5 Q8IF21 Q8if21 trypanosoma 793 3 10.3 35 6 Q9SN74 Q95n74 equus cabal 794 3 10.3 35 8 Q9MZA7 Q9mza7 sus scrofa 795 3 10.3 35 8 Q9SN789 Q9sh789 colpomenia 797 3 10.3	783	3	10.3	35	4	Q8IU77	Q8iu77 homo sapien
785 3 10.3 35 5 Q9U780 Q9u780 boophilus a 786 3 10.3 35 5 Q26372 tribolium c 787 3 10.3 35 5 Q9U782 Q9u782 boophilus m 788 3 10.3 35 5 Q9U781 Q9u783 boophilus m 789 3 10.3 35 5 Q9U783 Q9u784 boophilus m 790 3 10.3 35 5 Q9U781 Q9u784 boophilus m 791 3 10.3 35 5 Q9U781 Q9u781 boophilus m 792 3 10.3 35 5 Q8IF21 Q8if21 trypanosoma 793 3 10.3 35 6 Q95N74 Q95n74 equus cabal 794 3 10.3 35 6 Q9MZA7 Q9mza7 sus scrofa 795 3 10.3 35 8 Q951Q6 Q951q6 protoptilum 796 3 10.3 35 8 Q8W7S9 Q8w7s9 colpomenia 797 3	784	3	10.3	35	5		Q27754 pisaster oc
786 3 10.3 35 5 Q26372 tribolium c 787 3 10.3 35 5 Q9U782 Q9u782 boophilus m 788 3 10.3 35 5 Q9TVJ7 Q9tvj7 boophilus m 789 3 10.3 35 5 Q9U783 Q9u783 boophilus m 790 3 10.3 35 5 Q9U784 Q9u784 boophilus m 791 3 10.3 35 5 Q9U781 Q9u781 boophilus m 792 3 10.3 35 5 Q8IF21 Q9u781 boophilus m 793 3 10.3 35 5 Q8IF21 Q8if21 trypanosoma 794 3 10.3 35 6 Q9SN74 Q9mza7 sus scrofa 795 3 10.3 35 8 Q951Q6 Q951q6 protoptilum 796 3 10.3 35 8 Q8W7S9 Q8w7s9 colpomenia 797 3 10.3 35 8 Q9GF85 Q9gf85 ginkgo bilo					5		
787 3 10.3 35 5 Q9U782 Q9u782 boophilus m 788 3 10.3 35 5 Q9U7VJ7 Q9tvj7 boophilus m 789 3 10.3 35 5 Q9U783 Q9u783 boophilus m 790 3 10.3 35 5 Q9U784 Q9u784 boophilus m 791 3 10.3 35 5 Q9U781 Q9u781 boophilus m 792 3 10.3 35 5 Q8IF21 Q8if21 trypanosoma 793 3 10.3 35 6 Q95N74 Q95n74 equus cabal 794 3 10.3 35 6 Q9MZA7 Q9mza7 sus scrofa 795 3 10.3 35 8 Q951Q6 Q951q6 protoptilum 796 3 10.3 35 8 Q8W7S9 Q8w7s9 colpomenia 797 3 10.3 35 8 Q9GF85 Q9gf85 ginkgo bilo							
788 3 10.3 35 5 Q9TVJ7 Q9tvj7 boophilus m 789 3 10.3 35 5 Q9U783 Q9u783 boophilus m 790 3 10.3 35 5 Q9U784 Q9u784 boophilus m 791 3 10.3 35 5 Q9U781 Q9u781 boophilus m 792 3 10.3 35 5 Q8IF21 Q8if21 trypanosoma 793 3 10.3 35 6 Q95N74 Q95n74 equus cabal 794 3 10.3 35 6 Q9MZA7 Q9mza7 sus scrofa 795 3 10.3 35 8 Q951Q6 Q951q6 protoptilum 796 3 10.3 35 8 Q8W7S9 Q8w7s9 colpomenia 797 3 10.3 35 8 Q9GF85 Q9gf85 ginkgo bilo							
789 3 10.3 35 5 Q9U783 Q9u783 boophilus m 790 3 10.3 35 5 Q9U784 Q9u784 boophilus m 791 3 10.3 35 5 Q9U781 Q9u781 boophilus m 792 3 10.3 35 5 Q8IF21 Q8if21 trypanosoma 793 3 10.3 35 6 Q95N74 Q95n74 equus cabal 794 3 10.3 35 6 Q9MZA7 Q9mza7 sus scrofa 795 3 10.3 35 8 Q951Q6 Q951q6 protoptilum 796 3 10.3 35 8 Q8W7S9 Q8w7s9 colpomenia 797 3 10.3 35 8 Q9GF85 Q9gf85 ginkgo bilo							
790 3 10.3 35 5 Q9U784 Q9u784 boophilus m 791 3 10.3 35 5 Q9U781 Q9u781 boophilus m 792 3 10.3 35 5 Q8IF21 Q8if21 trypanosoma 793 3 10.3 35 6 Q95N74 Q95n74 equus cabal 794 3 10.3 35 8 Q9MZA7 Q9mza7 sus scrofa 795 3 10.3 35 8 Q951Q6 Q951q6 protoptilum 796 3 10.3 35 8 Q8W7S9 Q8w7s9 colpomenia 797 3 10.3 35 8 Q9GF85 Q9gf85 ginkgo bilo							
791 3 10.3 35 5 Q9U781 Q9u781 boophilus m 792 3 10.3 35 5 Q8IF21 Q8if21 trypanosoma 793 3 10.3 35 6 Q95N74 Q95n74 equus cabal 794 3 10.3 35 6 Q9MZA7 Q9mza7 sus scrofa 795 3 10.3 35 8 Q951Q6 Q951q6 protoptilum 796 3 10.3 35 8 Q8W7S9 Q8w7s9 colpomenia 797 3 10.3 35 8 Q9GF85 Q9gf85 ginkgo bilo							
792 3 10.3 35 5 Q8IF21 Q8if21 trypanosoma 793 3 10.3 35 6 Q95N74 Q95n74 equus cabal 794 3 10.3 35 6 Q9MZA7 Q9mza7 sus scrofa 795 3 10.3 35 8 Q951Q6 Q951q6 protoptilum 796 3 10.3 35 8 Q8W7S9 Q8w7s9 colpomenia 797 3 10.3 35 8 Q9GF85 Q9gf85 ginkgo bilo							
793 3 10.3 35 6 Q95N74 Q95n74 equus cabal 794 3 10.3 35 6 Q9MZA7 Q9mza7 sus scrofa 795 3 10.3 35 8 Q951Q6 Q951q6 protoptilum 796 3 10.3 35 8 Q8W7S9 Q8w7s9 colpomenia 797 3 10.3 35 8 Q9GF85 Q9gf85 ginkgo bilo							
794 3 10.3 35 6 Q9MZA7 Q9mza7 sus scrofa 795 3 10.3 35 8 Q951Q6 Q951q6 protoptilum 796 3 10.3 35 8 Q8W7S9 Q8w7s9 colpomenia 797 3 10.3 35 8 Q9GF85 Q9gf85 ginkgo bilo							· · · · · · · · · · · · · · · · · · ·
795 3 10.3 35 8 Q951Q6 Q951q6 protoptilum 796 3 10.3 35 8 Q8W7S9 Q8w7s9 colpomenia 797 3 10.3 35 8 Q9GF85 Q9gf85 ginkgo bilo							
796 3 10.3 35 8 Q8W7S9 Q8w7s9 colpomenia 797 3 10.3 35 8 Q9GF85 Q9gf85 ginkgo bilo							
797 3 10.3 35 8 Q9GF85 Q9gf85 ginkgo bilo					8		
"					8	Q8W7S9	
	797	. 3	10.3	35	8	Q9GF85	
	798	3	10.3	35	8	Q8W7T0	Q8w7t0 petalonia b

799	3	10.3	35	8	Q8W7S8	Q8w7s8 petalonia f
800	3	10.3	35		Q8WE70	Q8we70 miliaria ca
801	3	10.3	35		Q8W7S7	Q8w7s7 scytosiphon
802	3	10.3	35		Q9GF98	Q9gf98 ceratophyll
803	3	10.3	35	8	Q95766	Q95766 cerataphis
804	3	10.3	35		Q94P82	Q94p82 corallium r
805	3	10.3	35	8	Q8WEJ7	Q8wej7 cycas circi
806	3	10.3	35	8	Q951S7	Q951s7 anthothela
807	3	10.3	35		Q951R1	Q951r1 narella nut
808	3	10.3	35		Q951S1	Q951s1 corallium k
809	3	10.3	35		Q8WII3	Q8wii3 colpomenia
810	3	10.3	35	8	Q951R3	Q951r3 anthomurice
811	3	10.3	35	8	Q8WIH9	Q8wih9 scytosiphon
812	3	10.3	35	8	Q8WIH5	Q8wih5 hydroclathr
813	3	10.3	35		Q951S9	Q951s9 protodendro
814	3	10.3	35	8	Q8WII1	Q8wiil scytosiphon
815	3	10.3	35	8	Q951Q9	Q951q9 narella sp.
816	3	10.3	35	8	Q951S4	Q951s4 paragorgia
817	3	10.3	35	8	Q951R5	Q951r5 corallium s
818	3	10.3	35	10	Q9SPU2	Q9spu2 arabidopsis
819	3	10.3	35	10	Q9MAB1	Q9mabl arabidopsis
820	3	10.3	35	10	Q9ZUW2	Q9zuw2 arabidopsis
821	3	10.3	35	10	P92971	P92971 arabidopsis
822	3	10.3	35	10	Q9LV08	Q9lv08 arabidopsis
823	3	10.3	35	10	Q9LQ64	Q9lq64 arabidopsis
824	3	10.3	35	10	Q94IS4	Q94is4 pinus radia
825	3	10.3	35	10	Q39297	Q39297 brassica na
826	3	10.3	35	10	Q8RVJ7	Q8rvj7 populus eur
827	3	10.3	35	10	Q9FJ84	Q9fj84 arabidopsis
828	3	10.3	35	10	Q8GUX4	Q8gux4 picea maria
829	3	10.3	35	11	Q63397	Q63397 rattus norv
830	3	10.3	35	11	Q9JLA4	Q9jla4 mus musculu
831	3	10.3	35	11	Q60608	Q60608 mus musculu
832	3	10.3	35	11	Q9QV50	Q9qv50 rattus sp.
833	3	10.3	35	11	Q922H5	Q922h5 mus musculu
834	3	10.3	35	11	Q8BK89	Q8bk89 mus musculu
835	3	10.3	35	12	Q90151	Q90151 bombyx mori
836	3	10.3	35	12	Q65380	Q65380 banana bunc
837	3	10.3	35	12	Q83333	Q83333 murine hepa
838	3	10.3	35	12	055549	055549 measles vir
839	3	10.3	35	12	Q8BB50	Q8bb50 human papil
840	3	10.3	35	13	Q90XB5	Q90xb5 xenopus lae
841	3	10.3	35	13	P83224	P83224 oxyuranus m
842	3	10.3	35	13	P83225	P83225 oxyuranus s
843	3	10.3	35	13	P83227	P83227 oxyuranus m
844	3	10.3	35	13	P83228	P83228 oxyuranus s
845	3	10.3	35	13	P83229	P83229 oxyuranus s
846	3	10.3	35	13	P83226	P83226 oxyuranus s
847	3	10.3	35	15	Q75981	Q75981 human immun
848	3	10.3	35	15	Q70328	Q70328 human immun
849	3	10.3	35	15	Q70380	Q70380 human immun
850	3	10.3	35	15	Q70319	Q70319 human immun
851	3	10.3	35	15	Q79465	Q79465 human immun
852	3	10.3	35	15	Q70426	Q70426 human immun
853	3	10.3	35	15	Q9J3S2	Q9j3s2 human immun
854	3	10.3	35	15		071950 human immun
855	3	10.3	35	15	Q9IPY2	Q9ipy2 human immun
		•		_	~ -	

856	3	10.3	35 15	Q80574	Q80574 human immun
857	3	10.3	35 15	Q70425	Q70425 human immun
858	3	10.3	35 15	Q70362	Q70362 human immun
859	3	10.3	35 15	Q80601	Q80601 human immun
860	3	10.3	35 15	Q8QDX6	Q8qdx6 human immun
861	3	10.3	35 1 5		Q77702 human immun
862	3	10.3	35 15		Q9qfa0 human immun
863	3	10.3	35 15		Q70330 human immun
864	3	10.3	35 15		Q77584 human immun
865	3	10.3	35 15		Q70317 human immun
866	3	10.3	35 15		Q70316 human immun
867	3	10.3	35 15		Q70402 human immun
868	3	10.3	35 15		Q9ym80 human immun
869	3	10.3	35 15		Q8qdy0 human immun
	3	10.3	35 15		Q75970 human immun
870					Q70409 human immun
871	3	10.3	35 15		Q70325 human immun
872	3	10.3	35 15		Q70323 Human immun
873	3	10.3	35 15	~	· · ·
874	3	10.3	35 15		Q79468 human immun
875	3	10.3	35 15		Q9ym96 human immun
876	3	10.3	35 15		Q70363 human immun
877	3	10.3	35 15	-	Q70321 human immun
878	3	10.3	35 15		Q9ym22 human immun
879	3	10.3	35 15	~	Q75990 human immun
880	3	10.3	35 15		Q70323 human immun
881	3	10.3	35 15	~	Q75989 human immun
882	3	10.3	35 15		Q70428 human immun
883	3	10.3	35 15		Q9ym67 human immun
884	3	10.3	35 15	Q77585	Q77585 human immun
885	3	10.3	35 15	Q70403	Q70403 human immun
886	3	10.3	35 15	Q70327	
887	3	10.3	35 15	Q77250	Q77250 human immun
888	3	10.3	35 15	Q75955	
889	3	10.3	35 15	Q9IPY4	Q9ipy4 human immun
890	3	10.3	35 15	Q70424	Q70424 human immun
891	3	10.3	35 15	Q77582	Q77582 human immun
892	3	10.3	35 16	007593	007593 bacillus su
893	3	10.3	35 16	Q9KR18	Q9kr18 vibrio chol
894	3	10.3	35 16	Q9KNU1	Q9knul vibrio chol
895	. 3	10.3	35 16	Q9JWX5	Q9jwx5 neisseria m
896	3	10.3	35 16	Q9JV38	Q9jv38 neisseria m
897	3	10.3	35 16	Q9A427	Q9a427 caulobacter
898	3	10.3	35 16	Q9K241	Q9k241 chlamydia p
899	3	10.3	35 16		Q8xzb7 ralstonia s
900	3	10.3	35 16		
901	3	10.3	35 16		Q8g2d4 brucella su
902	3	10.3	35 16		······································
903	3	10.3	35 16		
904	3	10.3	35 16		Q8f1w8 leptospira
905	3	10.3	35 16		
906	3	10.3	35 16		
907	3	10.3	35 16		_
908	3	10.3	35 16		
909	3	10.3	35 16		
910	3	10.3	35 16		-
911	3	10.3	35 16		·-
912	3 3	10.3	35 17	~	Q9hmp1 halobacteri
フェム	3	10.3	33 17	Qannat	Asymbi naiopacceii

913	3	10.3	35	17	Q8ZXX9	Q8zxx9 pyrobaculum
914	3	10.3		2	006954	006954 salmonella
	3	10.3		2	Q8VTS7	Q8vts7 listeria in
915		10.3		2	Q9ZG79	Q9zq79 chlamydia t
916	3			2	Q9ZG79 Q9RHE3	Ogrhe3 pediococcus
917	3	10.3		2		Q8vts5 listeria we
918	3	10.3			Q8VTS5	Q44437 agrobacteri
919	3	10.3		2	Q44437	091b55 helicobacte
920	3	10.3		2	Q9LB55	
921	3	10.3	36	2	Q48507	Q48507 lactococcus
922	3	10.3		2	Q99094	Q99094 salmonella
923	3	10.3		2	Q9S635	Q9s635 prochloroco
924	3	10.3	36	2	Q8VTR8	Q8vtr8 listeria iv
925	3	10.3	36	2	Q8VTS0	Q8vts0 listeria mo
926	3	10.3	36	2	Q8KYW1	Q8kyw1 uncultured
927	3	10.3	36	2	Q9R4X9	Q9r4x9 azotobacter
928	3	10.3	36	2	Q9R5L0	Q9r5l0 sarcina ven
929	3	10.3	36	2	Q9X3G2	Q9x3g2 prochloroco
930	3	10.3	36	2	Q9R536	Q9r536 sphingomona
931	3	10.3	36	2	Q8GRH1	08grh1 pectobacter
932	3	10.3	36	3	Q96W36	Q96w36 ophiostoma
933	3	10.3	36	4	Q9UNV7	Q9unv7 homo sapien
	3	10.3	36	4	Q9P1E9	Q9ple9 homo sapien
934				4	Q9UPB7	Q9upb7 homo sapien
935	3	10.3	36			Q8ne47 homo sapien
936	3	10.3	36 36	4	Q8NE47	Q9gsy9 carcinus ma
937	3	10.3	36	5	Q9GSY9	Q9gsy9 carefinds and Q9ngn1 strongyloce
938	3	10.3	36	5	Q9NGN1	
939	3	10.3	36	5	Q27730	Q27730 plasmodium
940	3	10.3	36	5	Q9GNP3	Q9gnp3 caenorhabdi
941	3	10.3	36	5	001333	001333 caenorhabdi
942	3	10.3	36	5	Q25781	Q25781 plasmodium
943	3	10.3	36	5	Q8ISR7	Q8isr7 spodoptera
944	3	10.3	36	5	Q8IGF5	Q8igf5 drosophila
945	3	10.3	36	6	097889	097889 pongo pygma
946	3	10.3	36	6	Q29059	Q29059 sus scrofa
947	3	10.3	36	6	Q9XT44	Q9xt44 pongo pygma
948	3	10.3	36	6	Q9N1C5	Q9n1c5 bos taurus
949	3	10.3	36	6	097890	097890 pan troglod
950	3	10.3	36	6	P79428	P79428 capra hircu
951	3	10.3	36	8	063675	063675 emberiza pu
952	3	10.3	36	8	Q9GF81	Q9gf81 gnetum gnem
953	3	10.3	36	8	Q9TIE4	Q9tie4 hydrocotyle
95 4	3	10.3	36	8	Q9TIF1	Q9tif1 bolax gummi
955	3	10.3	36	8	Q9GFA3	Q9gfa3 cabomba car
	3	10.3	36	8	Q9GF97	Q9qf97 ceratophyll
956					Q94VL4	Q94v14 salmo trutt
957	3	10.3	36	8		Q36303 musa schizo
958	3	10.3	36	8	Q36303	Q9tif0 klotzschia
959	3	10.3	36	8	Q9TIF0	Q94ny5 salmo salar
960	3	10.3	36	8	Q94NY5	
961	3	10.3	36	8	Q9GF76	Q9gf76 lactoris fe
962	3	10.3	36	8	Q9MSP9	Q9msp9 nymphaea od
963	3	10.3	36	8	Q9TIF3	Q9tif3 eremocharis
964	3	10.3	36	8	Q9GF74	Q9gf74 liriodendro
965	3	10.3	36	8	Q9TIE2	Q9tie2 aralia chin
966	3	10.3	36	8	Q9TIF2	Q9tif2 azorella tr
967	3	10.3	36	8	Q9GF89	Q9gf89 drimys wint
968	3	10.3	36	8	Q9MSR0	Q9msr0 zamia furfu
969	3	10.3	36	8	063650	063650 emberiza sc

970	3	10.3	36	8	Q9TIE3	Q9tie3 hydrocotyle
971	3	10.3	36	8	Q9TIE5	Q9tie5 xanthosia a
972	3	10.3	36	8	Q9GFA9	Q9gfa9 acorus cala
973	3	10.3	36	8	Q8HS50	Q8hs50 ascarina lu
974	3	10.3	36	8	Q8HS46	Q8hs46 austrobaile
975	3	10.3	36	8	Q8HS42	Q8hs42 chloranthus
976	3	10.3	36	8	Q8HS31	Q8hs31 lilium supe
977	3	10.3	36	8	Q8HS27	Q8hs27 magnolia st
978	3	10.3	36	8	Q8HS18	Q8hs18 sagittaria
979	3	10.3	36	8	Q8HKF5	Q8hkf5 rhipicephal
980	3	10.3	36	8	Q8HKC6	Q8hkc6 haemaphysal
981	3	10.3	36	10	Q38977	Q38977 arabidopsis
982	3	10.3	36	10	Q8VY71	Q8vy71 arabidopsis
983	3	10.3	36	10	Q41995	Q41995 arabidopsis
984	3	10.3	36	11	Q60937	Q60937 mus musculu
985	3	10.3	36	11	P97598	P97598 rattus norv
986	3	10.3	36	12	Q9QQS6	Q9qqs6 tanapox vir
987	3	10.3	36	12	090722	090722 calicivirus
988	3	10.3	36	12	Q83609	Q83609 myxoma viru
989	3	10.3	36	12	Q91CY3	Q91cy3 tt virus. o
990	3	10.3	36	12	Q8QQZ2	Q8qqz2 simian viru
991	3	10.3	36	13	042264	042264 xenopus lae
992	3	10.3	36	13	Q8QGS0	Q8qgs0 gallus gall
993	3	10.3	36	15	Q90RH5	Q90rh5 human immun
994	3	10.3	36	15	Q76587	Q76587 human immun
995	3	10.3	36	15	Q80551	Q80551 human immun
996	3	10.3	36	15	Q9YNX9	Q9ynx9 human immun
997	3	10.3	36	15	Q80550	Q80550 human immun
998	3	10.3	36	15	Q80553	Q80553 human immun
999	3	10.3	36	15	Q79436	Q79436 human immun
1000	3	10.3	36	15	040258	040258 human immun

ALIGNMENTS

31 AA.

```
AC
     Q91Y90;
     01-DEC-2001 (TrEMBLrel. 19, Created)
01-DEC-2001 (TrEMBLrel. 19, Last sequence update)
DT
DT
DT
     01-OCT-2002 (TrEMBLrel. 22, Last annotation update)
DE
     Parathyroid hormone (Fragment).
GN
     PTH.
OS
     Peromyscus maniculatus (Deer mouse).
OC
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
     Mammalia; Eutheria; Rodentia; Sciurognathi; Muridae; Sigmodontinae;
OC
     Peromyscus.
OX
     NCBI_TaxID=10042;
RN
     [1]
RP
     SEQUENCE FROM N.A.
RA
     Prince K.L., Dewey M.J.;
RL
     Submitted (MAY-2001) to the EMBL/GenBank/DDBJ databases.
DR
     EMBL; AF382953; AAK63072.1; -.
DR
     InterPro; IPR001415; Parathyrd hrm.
DR
     InterPro; IPR003625; Pthyrhorm sub.
```

PRT;

RESULT 1 Q91Y90 ID Q91

Q91Y90

PRELIMINARY;

```
DR
     Pfam; PF01279; Parathyroid; 1.
     ProDom; PD010687; Pthyrhorm sub; 1.
DR
     PROSITE; PS00335; PARATHYROID; 1.
DR
FT
     NON TER
                  1
                          1
FT
     NON TER
                  31
                         31
                31 AA; 3461 MW; A208B0E772B9B55B CRC64;
     SEQUENCE
SQ
                          48.3%; Score 14; DB 11; Length 31;
  Query Match
                          100.0%; Pred. No. 4.2e-08;
  Best Local Similarity
                                                                             0;
            14; Conservative 0; Mismatches 0;
                                                                 0; Gaps
                                                      Indels
  Matches
            2 VSEIQLMHNLGKHL 15
Qу
              14 VSEIQLMHNLGKHL 27
Db
RESULT 2
Q91Y91
                                           31 AA.
ID
                 PRELIMINARY;
                                   PRT;
     O91Y91
     091Y91;
AC
     01-DEC-2001 (TrEMBLrel. 19, Created)
DT
     01-DEC-2001 (TrEMBLrel. 19, Last sequence update)
DT
     01-OCT-2002 (TrEMBLrel. 22, Last annotation update)
DT
     Parathyroid hormone (Fragment).
DΕ
     PTH.
GN
     Peromyscus polionotus (Oldfield mouse).
OS
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
     Mammalia; Eutheria; Rodentia; Sciurognathi; Muridae; Sigmodontinae;
OC
OC
     Peromyscus.
OX
     NCBI_TaxID=42413;
RN
     [1]
     SEQUENCE FROM N.A.
RP
     Prince K.L., Dewey M.J.;
RA
     Submitted (MAY-2001) to the EMBL/GenBank/DDBJ databases.
RL
     EMBL; AF382952; AAK63071.1; -.
DR
     InterPro; IPR001415; Parathyrd_hrm.
DR
     InterPro; IPR003625; Pthyrhorm sub.
DR
     Pfam; PF01279; Parathyroid; 1.
DR
     ProDom; PD010687; Pthyrhorm sub; 1.
DR
     PROSITE; PS00335; PARATHYROID; 1.
DR
                          1
FT
     NON TER
                  1
     NON TER
                  31
                         31
FT
                31 AA; 3461 MW; A208B0E772B9B55B CRC64;
     SEQUENCE
SQ
  Query Match 48.3%; Score 14; DB 11; Length 31; Best Local Similarity 100.0%; Pred. No. 4.2e-08;
                               0; Mismatches 0; Indels
                                                                              0;
           14; Conservative
                                                                  0; Gaps
  Matches
Qу
            2 VSEIOLMHNLGKHL 15
               14 VSEIQLMHNLGKHL 27
Db
RESULT 3
017148
                                            34 AA.
                                  PRT;
ID
     017148
                  PRELIMINARY;
AC
     017148;
```

```
01-JAN-1998 (TrEMBLrel. 05, Last sequence update)
DT
    01-DEC-2001 (TrEMBLrel. 19, Last annotation update)
DT
    Antigen B/1 (Fragment).
DE
    AGB/1.
GN
    Echinococcus vogeli.
OS
     Eukaryota; Metazoa; Platyhelminthes; Cestoda; Eucestoda;
OC
     Cyclophyllidea; Taeniidae; Echinococcus.
OC
OX
    NCBI TaxID=6213;
RN
     [1]
     SEQUENCE FROM N.A.
RΡ
     MEDLINE=94359533; PubMed=8078520;
RX
     Frosch P., Hartmann M., Muhlschlegel F., Frosch M.;
RA
     "Sequence heterogeneity of the echinococcal antigen B.";
RT
     Mol. Biochem. Parasitol. 64:171-175(1994).
RL
RN
     [2]
     SEQUENCE FROM N.A.
RP
     Haag K.L., Zaha A., Gottstein B.;
RA
     "E. vogeli AgB/1 coding sequence.";
RT
     Submitted (SEP-1997) to the EMBL/GenBank/DDBJ databases.
RL
     EMBL; AF024665; AAB81611.1; -.
DR
                          1
FT
     NON TER
                  1
     NON TER
                  34
                         34
FT
     SEQUENCE 34 AA; 3964 MW; 3BE894E129CF84F3 CRC64;
SO
                          17.2%; Score 5; DB 5; Length 34;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 2.7e+02;
                                0; Mismatches
                                                                              0;
             5; Conservative
                                                   0; Indels
                                                                  0; Gaps
  Matches
           24 LRKKL 28
Qу
              15 LRKKL 19
Db
RESULT 4
Q97K50
                                   PRT;
                                           34 AA.
     Q97K50
                 PRELIMINARY;
ID
AC
     Q97K50;
     01-OCT-2001 (TrEMBLrel. 18, Created)
DT
     01-OCT-2001 (TrEMBLrel. 18, Last sequence update)
DT
     01-OCT-2001 (TrEMBLrel. 18, Last annotation update)
DT
     Transcriptional regulator, AcrR family.
DE
     CAC1071.
GN
     Clostridium acetobutylicum.
OS
     Bacteria; Firmicutes; Clostridia; Clostridiales; Clostridiaceae;
OC
OC
     Clostridium.
     NCBI TaxID=1488;
OX
RN
     [1]
     SEQUENCE FROM N.A.
RP
     STRAIN=ATCC 824 / DSM 792 / VKM B-1787;
RC
     MEDLINE=21359325; PubMed=11466286;
RX
     Noelling J., Breton G., Omelchenko M.V., Makarova K.S., Zeng Q.,
RA
     Gibson R., Lee H.M., Dubois J., Qiu D., Hitti J., Wolf Y.I.,
RA
     Tatusov R.L., Sabathe F., Doucette-Stamm L., Soucaille P., Daly M.J.,
RA
     Bennett G.N., Koonin E.V., Smith D.R.;
RA
     "Genome sequence and comparative analysis of the solvent-producing
RT
     bacterium Clostridium acetobutylicum.";
RT
```

01-JAN-1998 (TrEMBLrel. 05, Created)

DT

```
DR
     EMBL; AE007622; AAK79045.1; -.
KW
     Complete proteome.
     SEOUENCE
                       4031 MW; 38D1A2A7C2F86E90 CRC64;
SO
                34 AA;
                          17.2%; Score 5; DB 16; Length 34;
 Query Match
 Best Local Similarity 100.0%; Pred. No. 2.7e+02;
             5; Conservative 0; Mismatches 0;
                                                       Indels
                                                                  0; Gaps
                                                                              0;
            1 SVSEI 5
Qу
              11111
Db
           30 SVSEI 34
RESULT 5
Q9HR65
                 PRELIMINARY;
                                   PRT;
                                           34 AA.
ID
     09HR65
AC
     Q9HR65;
DT
     01-MAR-2001 (TrEMBLrel. 16, Created)
DT
     01-MAR-2001 (TrEMBLrel. 16, Last sequence update)
DT
     01-MAR-2001 (TrEMBLrel. 16, Last annotation update)
     Vng0840h.
DΕ
GN
     VNG0840H.
OS
     Halobacterium sp. (strain NRC-1).
OC
     Archaea; Euryarchaeota; Halobacteria; Halobacteriales;
OC
     Halobacteriaceae; Halobacterium.
OX
     NCBI TaxID=64091;
RN
     [1]
RP
     SEQUENCE FROM N.A.
RX
     MEDLINE=20504483; PubMed=11016950;
     Ng W.V., Kennedy S.P., Mahairas G.G., Berquist B., Pan M.,
RA
     Shukla H.D., Lasky S.R., Baliga N.S., Thorsson V., Sbrogna J.,
RA
     Swartzell S., Weir D., Hall J., Dahl T.A., Welti R., Goo Y.A.,
RA
     Leithauser B., Keller K., Cruz R., Danson M.J., Hough D.W.,
RA
RA
     Maddocks D.G., Jablonski P.E., Krebs M.P., Angevine C.M., Dale H.,
RA
     Isenbarger T.A., Peck R.F., Pohlschroder M., Spudich J.L., Jung K.-H.,
RA
     Alam M., Freitas T., Hou S., Daniels C.J., Dennis P.P., Omer A.D.,
RA
     Ebhardt H., Lowe T.M., Liang P., Riley M., Hood L., DasSarma S.;
RT
     "Genome sequence of Halobacterium species NRC-1.";
RL
     Proc. Natl. Acad. Sci. U.S.A. 97:12176-12181(2000).
DR
     EMBL; AE005025; AAG19293.1; -.
KW
     Complete proteome.
SQ
     SEQUENCE
               34 AA; 3731 MW; BA957904338DCD45 CRC64;
  Query Match
                          17.2%; Score 5; DB 17; Length 34;
  Best Local Similarity
                          100.0%; Pred. No. 2.7e+02;
             5; Conservative
                               0; Mismatches
                                                   0; Indels
                                                                  0;
                                                                     Gaps
                                                                              0;
Qy
           24 LRKKL 28
              11111
Db
           26 LRKKL 30
RESULT 6
Q8BTB9
ID
     Q8BTB9
                 PRELIMINARY;
                                   PRT;
                                           35 AA.
AC
     Q8BTB9;
```

RL

J. Bacteriol. 183:4823-4838(2001).

```
01-MAR-2003 (TrEMBLrel. 23, Created)
DT
     01-MAR-2003 (TrEMBLrel. 23, Last sequence update)
DT
     01-MAR-2003 (TrEMBLrel. 23, Last annotation update)
DT
DE
    Translin.
OS
    Mus musculus (Mouse).
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
     Mammalia; Eutheria; Rodentia; Sciurognathi; Muridae; Murinae; Mus.
OC
     NCBI TaxID=10090;
OX
RN
     [1]
RP
     SEQUENCE FROM N.A.
RC
     STRAIN=C57BL/6J; TISSUE=Body;
     MEDLINE=22354683; PubMed=12466851;
RX
RA
     The FANTOM Consortium,
     the RIKEN Genome Exploration Research Group Phase I & II Team;
RA
     "Analysis of the mouse transcriptome based on functional annotation of
RT
     60,770 full-length cDNAs.";
RT
     Nature 420:563-573(2002).
RL
     EMBL; AK011220; BAC25325.1; -.
DR
     SEQUENCE 35 AA; 3967 MW; F81156686390ECD8 CRC64;
SQ
                          17.2%; Score 5; DB 11; Length 35;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 2.8e+02;
            5; Conservative 0; Mismatches 0; Indels
                                                                             0;
                                                                 0; Gaps
  Matches
            1 SVSEI 5
Qу
              1111
            2 SVSEI 6
RESULT 7
024285
ID
     024285
                 PRELIMINARY;
                                   PRT:
                                           28 AA.
     024285;
AC
     01-JAN-1998 (TrEMBLrel. 05, Created)
DT
     01-JAN-1998 (TrEMBLrel. 05, Last sequence update)
     01-DEC-2001 (TrEMBLrel. 19, Last annotation update)
DΤ
DE
     LFY protein (Fragment).
GN
     LFY.
OS
     Pinus radiata (Monterey pine).
     Eukaryota; Viridiplantae; Streptophyta; Embryophyta; Tracheophyta;
OC.
     Spermatophyta; Coniferopsida; Coniferales; Pinaceae; Pinus.
OC
OX
     NCBI TaxID=3347;
RN
     [1]
RΡ
     SEQUENCE FROM N.A.
RC
     TISSUE=Vegetative;
     Izquierdo L.Y., Vergara R.F., Alvarez-Buylla E.R.;
RA
     "Partial characterization of Pinus radiata meristem identity homolog
RT
     gene (LFY).";
RT
     Submitted (AUG-1996) to the EMBL/GenBank/DDBJ databases.
RL
DR
     EMBL; U66725; AAB06792.1; -.
FT
     NON TER
                   1
                          1
FT
     NON TER
                  28
                         28
SQ
     SEQUENCE
                28 AA; 3376 MW; 1736738622B4EE74 CRC64;
                          13.8%; Score 4; DB 10; Length 28;
  Query Match
                          100.0%; Pred. No. 2.9e+03;
  Best Local Similarity
                               0; Mismatches
                                                   0; Indels
                                                                     Gaps
             4; Conservative
```

```
Qу
           24 LRKK 27
               1111
           15 LRKK 18
Db
RESULT 8
Q8GZQ8
                                     PRT;
                                             28 AA.
ID
     O8GZO8
                  PRELIMINARY;
AC
     Q8GZQ8;
     01-MAR-2003 (TrEMBLrel. 23, Created)
DT
     01-MAR-2003 (TrEMBLrel. 23, Last sequence update)
DT
     01-MAR-2003 (TrEMBLrel. 23, Last annotation update)
DT
     SNF-1 related kinase (Fragment).
DE
GN
     BKIN12.
     Hordeum vulgare var. distichum (Two-rowed barley).
OS
     Eukaryota; Viridiplantae; Streptophyta; Embryophyta; Tracheophyta;
OC
     Spermatophyta; Magnoliophyta; Liliopsida; Poales; Poaceae; Pooideae;
OC
     Triticeae; Hordeum.
OC
     NCBI TaxID=112509;
OX
RN ·
     [1]
     SEQUENCE FROM N.A.
RΡ
RC
     STRAIN=cv. Igri;
     Clark J.S.C., Dani M., Barker J.H.A., Halford N.G., Karp A.;
RA
     "Bkin12 Promoter Variants - Examples of Functional Biodiversity?";
RT
     Submitted (NOV-2001) to the EMBL/GenBank/DDBJ databases.
RL
DR
     EMBL; AF448389; AAN76447.1; -.
KW
     Kinase.
FT
     NON TER
                   28
                          28
SQ
     SEQUENCE
                 28 AA; 2950 MW; 853EDC11F6BB2C6C CRC64;
  Query Match
                           13.8%; Score 4; DB 10; Length 28;
  Best Local Similarity 100.0%; Pred. No. 2.9e+03;
  Matches
             4; Conservative
                                0; Mismatches
                                                   0; Indels
                                                                    0; Gaps
                                                                                 0;
           10 NLGK 13
Qу
               Db
           18 NLGK 21
RESULT 9
Q49148
ID
     Q49148
                  PRELIMINARY;
                                     PRT;
                                             29 AA.
AC
     049148;
DT
     01-NOV-1996 (TrEMBLrel. 01, Created)
     01-NOV-1996 (TrEMBLrel. 01, Last sequence update) 01-NOV-1998 (TrEMBLrel. 08, Last annotation update)
DT
DT
DΕ
     PQQ biosynthesis polypeptide.
GN
     POOD.
OS
     Methylobacterium extorquens.
OC
     Bacteria; Proteobacteria; Alphaproteobacteria; Rhizobiales;
OC
     Methylobacteriaceae; Methylobacterium.
OX
     NCBI TaxID=408;
RN
     [1]
RP
     SEQUENCE FROM N.A.
RC
     STRAIN=AM1;
```

RX

MEDLINE=94179111; PubMed=8132470;

```
Ramamoorthi R., Springer A.L., Lidstrom M.E.;
RA
     "Isolation, phenotypic characterization, and complementation analysis
RT
     of mutants of Methylobacterium extorquens AM1 unable to synthesize
RT
     pyrroloquinoline quinone and sequences of pqqD, pqqG, and pqqC.";
RT
     J. Bacteriol. 176:1746-1755(1994).
RL
     EMBL; L25889; AAA17878.1; -.
DR
     SEQUENCE 29 AA; 3222 MW; B4831562CF76973C CRC64;
SO
                           13.8%; Score 4; DB 2; Length 29;
  Query Match
                          100.0%; Pred. No. 2.9e+03;
  Best Local Similarity
             4; Conservative 0; Mismatches 0; Indels
                                                                       Gaps
                                                                               0;
                                                                   0;
            2 VSEI 5
Qу
              1111
            8 VSEI 11
Db
RESULT 10
Q9UCL2
                                    PRT;
                                            29 AA.
     Q9UCL2
                 PRELIMINARY;
ID
AC
     O9UCL2;
     01-MAY-2000 (TrEMBLrel. 13, Created)
DT
     01-MAY-2000 (TrEMBLrel. 13, Last sequence update)
01-MAR-2003 (TrEMBLrel. 23, Last annotation update)
DT
DT
     Renal intestinal-type alkaline phosphatase (Fragment).
DΕ
     Homo sapiens (Human).
OS
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
     Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.
OC
OX
     NCBI_TaxID=9606;
RN
     [1]
RP
     SEQUENCE.
     MEDLINE=93092315; PubMed=1458595;
RX
     Nishihara Y., Hayashi Y., Adachi T., Koyama I., Stigbrand T.,
RA
RA
     Hirano K.;
     "Chemical nature of intestinal-type alkaline phosphatase in human
RT
     kidney.";
RT
     Clin. Chem. 38:2539-2542(1992).
RL.
     InterPro; IPR001952; Alk phosphtse.
DR
     ProDom; PD001868; Alk phosphtse; 1.
DR
     SEQUENCE 29 AA; 3250 MW; 30501BB7BEEAD8D0 CRC64;
SO
                           13.8%; Score 4; DB 4; Length 29;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 2.9e+03;
                                                   0; Indels
                                                                   0; Gaps
            4; Conservative
                                0; Mismatches
            26 KKLQ 29
Qу
               1111
            23 KKLO 26
RESULT 11
096PP3
                  PRELIMINARY;
                                     PRT;
                                             29 AA.
ID
      Q96PP3
AC
      Q96PP3;
      01-DEC-2001 (TrEMBLrel. 19, Created)
DT
      01-DEC-2001 (TrEMBLrel. 19, Last sequence update)
DT
```

Morris C.J., Biville F., Turlin E., Lee E., Ellermann K., Fan W.H.,

RA

```
01-DEC-2001 (TrEMBLrel. 19, Last annotation update)
DT
    Lympho-epithelial Kazal type-related inhibitor LEKTI (Fragment).
DE
GN
    SPINK5.
OS
    Homo sapiens (Human).
OC
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
    Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.
OC
OX
    NCBI TaxID=9606;
RN
     [1]
RP
    SEQUENCE FROM N.A.
RA
     Sprecher E., Chavanas S., DiGiovanna J.J., Amin S., Nielsen K.,
RA
     Prendiville J.S., Silverman R., Esterly N.B., Spraker M.K., Guelig E.,
RA
     de Luna M.L., Williams M.L., Buehler B., Pfendner E., Bale S.J.,
RA
     Uitto J., Hovnanian A., Richard G.;
RT
     "The spectrum of pathogenic mutations in SPINK 5 in 19 families with
RT
     Netherton syndrome - Implications for mutation detection and first
RT
     case of prenatal diagnosis.";
RL
    J. Invest. Dermatol. 0:0-0(2001).
DR
    EMBL; AF295783; AAK97140.1; -.
FT
    NON TER
                  1
                         1
FT
    NON TER
                  29
                         29
SO
     SEQUENCE
                29 AA; 3449 MW; 9F31E2AD857EC1BB CRC64;
  Query Match
                          13.8%; Score 4; DB 4; Length 29;
  Best Local Similarity 100.0%; Pred. No. 2.9e+03;
                                                                     Gaps
                                                                             0;
             4; Conservative 0; Mismatches
                                                   0; Indels
                                                                 0;
           10 NLGK 13
Qу
              14 NLGK 17
RESULT 12
Q25603
     Q25603
ID
                 PRELIMINARY;
                                   PRT:
                                           29 AA.
AC
     Q25603;
DT
     01-NOV-1996 (TrEMBLrel. 01, Created)
DT
     01-NOV-1996 (TrEMBLrel. 01, Last sequence update)
DT
     01-DEC-2001 (TrEMBLrel. 19, Last annotation update)
DE
     Tubulin.
OS
     Onchocerca volvulus.
OC
     Eukaryota; Metazoa; Nematoda; Chromadorea; Spirurida; Filarioidea;
OC
     Onchocercidae; Onchocerca.
OX
    NCBI_TaxID=6282;
RN
     [1]
RP
     SEQUENCE FROM N.A.
RA
     Chandrashekar R., Curtis K.C., Weil G.J.;
RT
     "Onchocerca volvulus cDNA clone.";
     Submitted (SEP-1994) to the EMBL/GenBank/DDBJ databases.
RL
DR
     EMBL; U15095; AAA50364.1; -.
SO
     SEQUENCE
               29 AA; 3539 MW; B917126A923EF884 CRC64;
  Query Match
                          13.8%; Score 4; DB 5; Length 29;
  Best Local Similarity
                         100.0%; Pred. No. 2.9e+03;
 Matches
            4; Conservative
                              0; Mismatches 0; Indels
                                                                     Gaps
Qу
            2 VSEI 5
```

```
RESULT 13
013043
                 PRELIMINARY;
                                    PRT;
                                             29 AA.
ID
     013043
AC
     013043;
     01-JUL-1997 (TrEMBLrel. 04, Created)
DT
     01-JUL-1997 (TrEMBLrel. 04, Last sequence update)
DT
     01-JUN-2002 (TrEMBLrel. 21, Last annotation update)
DT
     Whn transcription factor (Fragment).
DE
GN
     Scyliorhinus canicula (Spotted dogfish) (Spotted catshark).
OS
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Chondrichthyes;
OC
     Elasmobranchii; Galeomorphii; Galeoidea; Carcharhiniformes;
OC
     Scyliorhinidae; Scyliorhinus.
OC
OX
     NCBI_TaxID=7830;
RN
     [1]
RΡ
     SEQUENCE FROM N.A.
     MEDLINE=97268658; PubMed=9108066;
RX
     Schlake T., Schorpp M., Nehls M., Boehm T.;
RA
     "The nude gene encodes a sequence-specific DNA binding protein with
RT
     homologs in organisms that lack an anticipatory immune system.";
RT
     Proc. Natl. Acad. Sci. U.S.A. 94:3842-3847(1997).
RL
     EMBL; Y11539; CAA72302.1; -.
DR
     InterPro; IPR001766; TF Fork head.
DR
DR
     Pfam; PF00250; Fork head; 1.
DR
     ProDom; PD000425; TF Fork head; 1.
FT
     NON TER
                   1
                           1
     NON TER
FT
                   29
                          29
                 29 AA; 3243 MW; 62AE51F2BE7311E2 CRC64;
SQ
     SEQUENCE
  Query Match
                           13.8%; Score 4; DB 13; Length 29;
                           100.0%; Pred. No. 2.9e+03;
  Best Local Similarity
             4; Conservative 0; Mismatches 0; Indels
  Matches
                                                                    0; Gaps 0;
             2 VSEI 5
Qу
               Db
           17 VSEI 20
RESULT 14
O9JMV3
                                             30 AA.
                  PRELIMINARY;
                                     PRT;
ID
     Q9JMV3
AC
     09JMV3;
DT
     01-OCT-2000 (TrEMBLrel. 15, Created)
     01-OCT-2000 (TrEMBLrel. 15, Last sequence update)
01-JUN-2002 (TrEMBLrel. 21, Last annotation update)
DT
DT
     Luciferase alpha-subunit (Fragment).
DE
GN
     LUXA.
OS
     Escherichia coli.
     Bacteria; Proteobacteria; Gammaproteobacteria; Enterobacteriales;
OC
OC
     Enterobacteriaceae; Escherichia.
OX
     NCBI TaxID=562;
RN
     [1]
RΡ
     SEQUENCE FROM N.A.
RC
     STRAIN=HB101;
```

```
"luxAB/kan-cassette for site-directed insertion mutagenesis and
RT
     bacterial transcription studies.";
RT
     Submitted (SEP-1999) to the EMBL/GenBank/DDBJ databases.
RL
RN
     SEQUENCE FROM N.A.
RΡ
RC
     STRAIN=HB101;
     Olsson O., Koncz C., Szalay A.;
RA
     "The use of luxA gene of the bacterial luciferase operon as a reporter
RT
     gene.";
RT
     Mol. Gen. Genet. 215:1-9(1998).
RL
RN
     [3]
RP
     SEQUENCE FROM N.A.
     STRAIN=HB101;
RC
     MEDLINE=92114868; PubMed=1685011;
RX
     Escher A., O'Kane D.J., Szalay A.;
RA
     "The beta subunit polypeptide of Vibrio harveyi luciferase determines
RT
     light emission at 42 degrees C.";
RT
     Mol. Gen. Genet. 230:385-393(1991).
RL
     EMBL; AJ249443; CAB96206.1; -.
DR
     HSSP; P07740; 1LUC.
DR
     InterPro; IPR002103; Bac luciferase.
DR
     Pfam; PF00296; bac luciferase; 1.
DR
FT
     NON TER
                  30
                         30
                30 AA; 3454 MW;
                                  2FC87235BDBE72FD CRC64;
     SEQUENCE
SO
                          13.8%; Score 4; DB 2; Length 30;
  Ouery Match
  Best Local Similarity 100.0%; Pred. No. 3e+03;
                                                                   0; Gaps
                                                                               0;
                               0; Mismatches 0; Indels
  Matches
             4; Conservative
Qу
           10 NLGK 13
               1111
           26 NLGK 29
Db
RESULT 15
Q9UBV5
                                    PRT;
                                            30 AA.
ID
     Q9UBV5
                  PRELIMINARY;
AC
     Q9UBV5;
     01-MAY-2000 (TrEMBLrel. 13, Created)
DT
     01-MAY-2000 (TrEMBLrel. 13, Last sequence update)
DT
     01-MAR-2003 (TrEMBLrel. 23, Last annotation update)
DT
     Intestinal alkaline phosphatase (Fragment).
DE
     Homo sapiens (Human).
OS
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
     Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.
OC
OX
     NCBI TaxID=9606;
 RN
     [1]
 RP
     SEQUENCE.
     MEDLINE=93092315; PubMed=1458595;
RX
     Nishihara Y., Hayashi Y., Adachi T., Koyama I., Stigbrand T.,
RA
 RA
     Hirano K.;
      "Chemical nature of intestinal-type alkaline phosphatase in human
 RT
 RT
     kidney.";
     Clin. Chem. 38:2539-2542(1992).
 RL
      InterPro; IPR001952; Alk phosphtse.
 DR
      ProDom; PD001868; Alk_phosphtse; 1.
 DR
```

Lotz W., Bauer T.;

RA

```
SO
    SEQUENCE 30 AA; 3349 MW; 30501BB7BEB9BDE6 CRC64;
  Query Match
                         13.8%; Score 4; DB 4; Length 30;
                         100.0%; Pred. No. 3e+03;
  Best Local Similarity
            4; Conservative 0; Mismatches 0; Indels
                                                                0; Gaps
 Matches
           26 KKLQ 29
Qу
              1111
           24 KKLQ 27
Db
RESULT 16
Q8DZP7
ID
     Q8DZP7
                 PRELIMINARY;
                                   PRT;
                                           30 AA.
AC
     O8DZP7;
DT
     01-MAR-2003 (TrEMBLrel. 23, Created)
DT
     01-MAR-2003 (TrEMBLrel. 23, Last sequence update)
     01-MAR-2003 (TrEMBLrel. 23, Last annotation update)
DT
     Hypothetical protein.
DE
GN
     SAG1053.
     Streptococcus agalactiae (serotype V).
OS
     Bacteria; Firmicutes; Lactobacillales; Streptococcaceae;
OC
OC
     Streptococcus.
ΟX
     NCBI TaxID=216466;
RN
     [1]
RP
     SEQUENCE FROM N.A.
RC
     STRAIN=2603 V/R / Serotype V;
RX
     MEDLINE=22222988; PubMed=12200547;
RA
     Tettelin H., Masignani V., Cieslewicz M.J., Eisen J.A., Peterson S.,
     Wessels M.R., Paulsen I.T., Nelson K.E., Margarit I., Read T.D.,
RA
     Madoff L.C., Wolf A.M., Beanan M.J., Brinkac L.M., Daugherty S.C.,
RA
RA
     DeBoy R.T., Durkin A.S., Kolonay J.F., Madupu R., Lewis M.R.,
RA
     Radune D., Fedorova N.B., Scanlan D., Khouri H., Mulligan S.,
RA
     Carty H.A., Cline R.T., Van Aken S.E., Gill J., Scarselli M., Mora M.,
RA
     Iacobini E.T., Brettoni C., Galli G., Mariani M., Vegni F., Maione D.,
     Rinaudo D., Rappuoli R., Telford J.L., Kasper D.L., Grandi G.,
RA
RA
     Fraser C.M.;
RT
     "Complete genome sequence and comparative genomic analysis of an
     emerging human pathogen, serotype V Streptococcus agalactiae.";
RT
     Proc. Natl. Acad. Sci. U.S.A. 99:12391-12396(2002).
RL
DR
     EMBL; AE014240; AAM99934.1; -.
     TIGR; SAG1053; -.
DR
KW
     Hypothetical protein; Complete proteome.
SQ
     SEQUENCE
              30 AA; 3492 MW; 8BC8F7525007AE91 CRC64;
                          13.8%; Score 4; DB 16; Length 30;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 3e+03;
           4; Conservative 0; Mismatches 0; Indels
  Matches
           26 KKLQ 29
Qу
              23 KKLQ 26
Db
RESULT 17
Q55314
ID Q55314
                 PRELIMINARY;
                                  PRT;
                                           31 AA.
```

```
01-NOV-1996 (TrEMBLrel. 01, Created)
DT
     01-NOV-1996 (TrEMBLrel. 01, Last sequence update)
DT
     01-DEC-2001 (TrEMBLrel. 19, Last annotation update)
DT
DE
    Urf2 protein (Fragment).
GN
    URF2.
OS
    Sulfolobus solfataricus.
OC
    Archaea; Crenarchaeota; Thermoprotei; Sulfolobales; Sulfolobaceae;
OC
     Sulfolobus.
    NCBI TaxID=2287;
OX
RN
     [1]
RP
    SEQUENCE FROM N.A.
RX
    MEDLINE=96085144; PubMed=8521845;
     Jones C.E., Fleming T.M., Cowan D.A., Littlechild J.A., Piper P.W.;
RA
RT
     "The phosphoglycerate kinase and glyceraldehyde-3-phosphate
RT
     dehydrogenase genes from the thermophilic archaeon Sulfolobus
     solfataricus overlap by 8bp. Isolation, sequencing of the genes and
RT
     expression on Escherichia coli.";
RT
RL
     Eur. J. Biochem. 233:800-808(1995).
RN
     [2]
RP
     SEQUENCE FROM N.A.
    MEDLINE=94082761; PubMed=8259927;
RX
RΑ
     Arcari P., Russo A.D., Ianniciello G., Gallo M., Bocchini V.;
RT
     "Nucleotide sequence and molecular evolution of the gene coding for
RT
    glyceraldehyde-3-phosphate dehydrogenase in the thermoacidophilic
RT
     archaebacterium Sulfolobus solfataricus.";
RL
     Biochem. Genet. 31:241-251(1993).
DR
     EMBL; X80178; CAA56461.1; -.
FT
     NON TER
                  31
                         31
                31 AA; 3554 MW; 9A2538F911C7309A CRC64;
SO
     SEQUENCE
  Query Match
                          13.8%; Score 4; DB 1; Length 31;
  Best Local Similarity 100.0%; Pred. No. 3.1e+03;
  Matches
             4; Conservative
                               0; Mismatches
                                                   0; Indels
                                                                  0; Gaps
                                                                              0;
           23 WLRK 26
Qу
              11 WLRK 14
Db
RESULT 18
Q8NEI8
ID
     Q8NEI8
                 PRELIMINARY;
                                   PRT;
                                           31 AA.
AC
DT
     01-OCT-2002 (TrEMBLrel. 22, Created)
     01-OCT-2002 (TrEMBLrel. 22, Last sequence update)
DT
     01-OCT-2002 (TrEMBLrel. 22, Last annotation update)
DT
DΕ
     Hypothetical protein (Fragment).
OS
     Homo sapiens (Human).
OC
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
    Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.
OX
    NCBI TaxID=9606;
RN
     [1]
RP
     SEQUENCE FROM N.A.
RC
     TISSUE=Kidney;
RA
     Strausberg R.;
RL
     Submitted (JUN-2002) to the EMBL/GenBank/DDBJ databases.
```

AC

Q55314;

```
KW
     Hypothetical protein.
FT
     NON TER
                  1
     SEQUENCE
               31 AA; 3437 MW; 72DCD0761839F7F7 CRC64;
SQ
                          13.8%; Score 4; DB 4; Length 31;
  Ouery Match
  Best Local Similarity 100.0%; Pred. No. 3.1e+03;
            4; Conservative 0; Mismatches 0; Indels
                                                                             0;
                                                                 0; Gaps
            2 VSEI 5
Qу
              1111
Db
           18 VSEI 21
RESULT 19
Q9MS77
ID
     Q9MS77
                 PRELIMINARY;
                                   PRT;
                                           31 AA.
AC
     Q9MS77;
     01-OCT-2000 (TrEMBLrel. 15, Created)
DT
     01-OCT-2000 (TrEMBLrel. 15, Last sequence update)
DΤ
     01-DEC-2001 (TrEMBLrel. 19, Last annotation update)
DE
     Photosystem I protein M.
GN
     PSAM.
OS
     Phacus acuminata.
     Chloroplast.
OG
     Eukaryota; Euglenozoa; Euglenida; Euglenales; Phacus.
OC
OX
     NCBI TaxID=130316;
RN
     [1]
     SEQUENCE FROM N.A.
RP
RX
     MEDLINE=21080550; PubMed=11212923;
     Doetsch N.A., Thompson M.D., Favreau M.R., Hallick R.B.;
RA
     "Comparison of psbK operon organization and group III intron content
RT
     in chloroplast genomes of 12 Euglenoid species.";
RT
     Mol. Gen. Genet. 264:682-690(2001).
RL
     EMBL; AF241276; AAF82438.1; -.
DR
KW
     Chloroplast.
              31 AA; 3449 MW; 2FFB2AF4B4ACDEC8 CRC64;
SO
     SEQUENCE
                          13.8%; Score 4; DB 8; Length 31;
  Query Match
                          100.0%; Pred. No. 3.1e+03;
  Best Local Similarity
  Matches
            4; Conservative 0; Mismatches 0; Indels
                                                                 0; Gaps
Qу
           10 NLGK 13
              1111
           24 NLGK 27
Db
RESULT 20
050669
ID
     050669
                 PRELIMINARY;
                                   PRT;
                                           31 AA.
AC
     050669;
DT
     01-JUN-1998 (TrEMBLrel. 06, Created)
     01-JUN-1998 (TrEMBLrel. 06, Last sequence update)
DT
     01-MAR-2002 (TrEMBLrel. 20, Last annotation update)
DT
DE
     Hypothetical protein BBH11.
GN
     BBH11.
     Borrelia burgdorferi (Lyme disease spirochete).
OS
```

EMBL; BC030993; AAH30993.1; -.

DR

```
OG
     Plasmid 1p28-3.
     Bacteria; Spirochaetes; Spirochaetales; Spirochaetaceae; Borrelia.
OC
OX
     NCBI TaxID=139;
ŔŊ
     [1]
     SEQUENCE FROM N.A.
RP
     STRAIN=ATCC 35210 / B31;
RC
     MEDLINE=98065943; PubMed=9403685;
RX
     Fraser C.M., Casjens S., Huang W.M., Sutton G.G., Clayton R.A.,
RA
     Lathigra R., White O., Ketchum K.A., Dodson R., Hickey E.K., Gwinn M.,
RA
     Dougherty B., Tomb J.-F., Fleischmann R.D., Richardson D.,
RA
     Peterson J., Kerlavage A.R., Quackenbush J., Salzberg S., Hanson M.,
RA
     van Vugt R., Palmer N., Adams M.D., Gocayne J.D., Weidman J.,
RA
     Utterback T., Watthey L., McDonald L., Artiach P., Bowman C.,
RA
RA
     Garland S., Fujii C., Cotton M.D., Horst K., Roberts K., Hatch B.,
     Smith H.O., Venter J.C.;
RA
     "Genomic sequence of a Lyme disease spirochaete, Borrelia
RT
RT
     burgdorferi.";
RL
     Nature 390:580-586(1997).
     EMBL; AE000784; AAC66002.1; -.
DR
DR
     TIGR; BBH11; -.
     Hypothetical protein; Plasmid; Complete proteome.
KW
     SEQUENCE 31 AA; 3892 MW; 8C9F6B9E72D10FBA CRC64;
SQ
  Query Match
                          13.8%; Score 4; DB 16; Length 31;
                          100.0%; Pred. No. 3.1e+03;
  Best Local Similarity
            4; Conservative 0; Mismatches 0; Indels
  Matches
                                                                  0; Gaps
                                                                              0;
Qу
           26 KKLO 29
              Dh
           26 KKLQ 29
RESULT 21
Q9QZQ2
ID
     Q9QZQ2
                 PRELIMINARY;
                                   PRT;
                                           32 AA.
AC
     Q9QZQ2;
     01-MAY-2000 (TrEMBLrel. 13, Created)
DT
     01-MAY-2000 (TrEMBLrel. 13, Last sequence update)
DT
     01-OCT-2002 (TrEMBLrel. 22, Last annotation update)
DT
ĎΕ
     Neurotensin receptor (Fragment).
GN
     NTSR OR NTR1.
OS
     Mus musculus (Mouse).
OC
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
     Mammalia; Eutheria; Rodentia; Sciurognathi; Muridae; Murinae; Mus.
OC
OX
     NCBI TaxID=10090;
RN
     [1]
RP
     SEQUENCE FROM N.A.
RC
     STRAIN=129;
     MEDLINE=99445567; PubMed=10514493;
RX
     Tavares D., Tully K., Dobner P.R.;
RA
     "Sequences required for induction of neurotensin receptor gene
RT
RT
     expression during neuronal differentiation of N1E-115 neuroblastoma
RT
     cells.";
RT.
     J. Biol. Chem. 274:30066-30079(1999).
DR
     EMBL; AF172326; AAD51806.1; -.
DR
     MGD; MGI:97386; Ntsr.
KW
     Receptor.
```

```
7F7EA4FA2CCF2EFB CRC64;
     SEQUENCE
                32 AA; 3447 MW;
SQ
                          13.8%; Score 4; DB 11; Length 32;
 Query Match
                          100.0%; Pred. No. 3.2e+03;
 Best Local Similarity
                                                                  0; Gaps
                                                                              0;
                                0; Mismatches
                                                   0; Indels
             4: Conservative
Qу
           14 HLNS 17
              1111
Db
            2 HLNS 5
RESULT 22
Q95SD4
                                   PRT;
                                           33 AA.
ID
     Q95SD4
                 PRELIMINARY;
AC
     095SD4;
     01-DEC-2001 (TrEMBLrel. 19, Created)
DT
     01-DEC-2001 (TrEMBLrel. 19, Last sequence update)
DT
     01-OCT-2002 (TrEMBLrel. 22, Last annotation update)
DT
DE
     GM02640p.
GN
     BCDNA:GM02640.
     Drosophila melanogaster (Fruit fly).
OS
     Eukaryota; Metazoa; Arthropoda; Hexapoda; Insecta; Pterygota;
OC
     Neoptera; Endopterygota; Diptera; Brachycera; Muscomorpha;
OC
OC
     Ephydroidea; Drosophilidae; Drosophila.
     NCBI TaxID=7227;
OX
RN
     [1]
RP
     SEQUENCE FROM N.A.
     Stapleton M., Brokstein P., Hong L., Agbayani A., Carlson J.,
RA
     Champe M., Chavez C., Dorsett V., Farfan D., Frise E., George R.,
RA
RA
     Gonzalez M., Guarin H., Li P., Liao G., Miranda A., Mungall C.J.,
     Nunoo J., Pacleb J., Paragas V., Park S., Phouanenavong S., Wan K.,
RA
RA
     Yu C., Lewis S.E., Rubin G.M., Celniker S.;
     Submitted (OCT-2001) to the EMBL/GenBank/DDBJ databases.
RL
DR
     EMBL; AY060847; AAL28395.1; -.
DR
     FlyBase; FBgn0047288; BcDNA:GM02640.
     SEQUENCE 33 AA; 3720 MW; 9C3FC1AEC9FBE4A7 CRC64;
SQ
                          13.8%; Score 4; DB 5; Length 33;
  Query Match
                          100.0%; Pred. No. 3.3e+03;
  Best Local Similarity
             4; Conservative 0; Mismatches 0; Indels
                                                                              0;
                                                                  0; Gaps
  Matches
           26 KKLQ 29
Qу
               | | | | |
           21 KKLQ 24
Db
RESULT 23
O9PKX3
     Q9PKX3
                                            33 AA.
ID
                 PRELIMINARY;
                                    PRT;
AC
     Q9PKX3;
     01-OCT-2000 (TrEMBLrel. 15, Created)
DT
     01-OCT-2000 (TrEMBLrel. 15, Last sequence update)
DT
DT
     01-DEC-2001 (TrEMBLrel. 19, Last annotation update)
DΕ
     Hypothetical protein TC0337.
     TC0337.
GN
OS
     Chlamydia muridarum.
```

FT

NON TER

32

32

```
Bacteria; Chlamydiae; Chlamydiales; Chlamydiaceae; Chlamydia.
OC
    NCBI TaxID=83560;
OX
RN
RP
     SEQUENCE FROM N.A.
RC
     STRAIN=MoPn / Nigg;
RX
    MEDLINE=20150255; PubMed=10684935;
     Read T.D., Brunham R.C., Shen C., Gill S.R., Heidelberg J.F.,
RA
RA
    White O., Hickey E.K., Peterson J., Utterback T., Berry K., Bass S.,
RA
    Linher K., Weidman J., Khouri H., Craven B., Bowman C., Dodson R.,
     Gwinn M., Nelson W., DeBoy R., Kolonay J., McClarty G., Salzberg S.L.,
RA
RA
     Eisen J., Fraser C.M.;
RT
     "Genome sequences of Chlamydia trachomatis MoPn and Chlamydia
RT
    pneumoniae AR39.";
RL
     Nucleic Acids Res. 28:1397-1406(2000).
DR
     EMBL; AE002301; AAF39200.1; -.
DR
     TIGR; TC0337; -.
KW
     Hypothetical protein; Complete proteome.
SQ
     SEQUENCE
              33 AA; 4075 MW; 1E7C5AD9BA5371EC CRC64;
  Query Match
                          13.8%; Score 4; DB 16; Length 33;
                          100.0%; Pred. No. 3.3e+03;
  Best Local Similarity
           4; Conservative 0; Mismatches 0; Indels
  Matches
                                                                 0; Gaps
Qу
           24 LRKK 27
              1111
           26 LRKK 29
Db
RESULT 24
Q9ZG81
ID
     Q9ZG81
                 PRELIMINARY;
                                   PRT;
                                           34 AA.
AC
     Q9ZG81;
DT
     01-MAY-1999 (TrEMBLrel. 10, Created)
     01-MAY-1999 (TrEMBLrel. 10, Last sequence update)
DT
DT
     01-MAY-1999 (TrEMBLrel. 10, Last annotation update)
DE
     ATP-dependent permease (Fragment).
OS
     Chlamydia trachomatis.
     Bacteria; Chlamydiae; Chlamydiales; Chlamydiaceae; Chlamydia.
OC
OX
     NCBI TaxID=813;
RN
     [1]
RP
     SEQUENCE FROM N.A.
RC
     STRAIN=L2 434B;
RA
     Wang L., Steenburg S.D., Zheng Y., Larsen S.H.;
RT
     "Gene identification of Chlamydia trachomatis by random DNA
RT
     sequencing.";
     Submitted (AUG-1998) to the EMBL/GenBank/DDBJ databases.
RL
DR
     EMBL; AF087260; AAD04038.1; -.
FT
     NON TER
                  1
                          1
     NON TER
FT
                  34
                         34
     SEQUENCE
                34 AA; 4186 MW; 3B38196393258A53 CRC64;
  Query Match
                          13.8%; Score 4; DB 2; Length 34;
  Best Local Similarity
                          100.0%; Pred. No. 3.4e+03;
                                                                 0; Gaps
             4; Conservative 0; Mismatches 0; Indels
  Matches
           24 LRKK 27
Qу
              1111
```

```
RESULT 25
O8GFK2
                 PRELIMINARY:
                                    PRT;
                                             34 AA.
ID
     Q8GFK2
AC
     Q8GFK2;
     01-MAR-2003 (TrEMBLrel. 23, Created)
DT
     01-MAR-2003 (TrEMBLrel. 23, Last sequence update)
01-MAR-2003 (TrEMBLrel. 23, Last annotation update)
DT
DT
     ORF37.
DE
OS
     Staphylococcus aureus.
OG
     Plasmid EDINA plasmid.
     Bacteria; Firmicutes; Bacillales; Staphylococcus.
OC
OX
     NCBI TaxID=1280;
RN
     [1]
     SEQUENCE FROM N.A.
RP
RC
     STRAIN=E-1;
     Sugai M., Yamaguchi T., Hayashi T., Nakasone K., Takami H.;
RA
     "Complete nucleotide sequence of Staphylococcus aureus E-1 EDINA
RT
RT
     plasmid.";
     Submitted (JAN-2001) to the EMBL/GenBank/DDBJ databases.
RL
     EMBL; AP003089; BAC54529.1; -.
DR
KW
     Plasmid.
                 34 AA; 4138 MW; 88FBD773858BC6EE CRC64;
SO
     SEQUENCE
                           13.8%; Score 4; DB 2; Length 34;
  Ouery Match
  Best Local Similarity 100.0%; Pred. No. 3.4e+03;
              4; Conservative 0; Mismatches 0; Indels
  Matches
Qу
            26 KKLO 29
              Db
             6 KKLQ 9
RESULT 26
Q90ZJ4
                                             34 AA.
ID
     Q90ZJ4
                  PRELIMINARY;
                                     PRT;
AC
     Q90ZJ4;
DT
     01-DEC-2001 (TrEMBLrel. 19, Created)
     01-DEC-2001 (TrEMBLrel. 19, Last sequence update)
DT
     01-DEC-2001 (TrEMBLrel. 19, Last annotation update)
DT
     Platelet-derived growth factor A chain long form (Fragment).
DE
     PDGF-A.
GN
     Gallus gallus (Chicken).
OS
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
OC
     Archosauria: Aves: Neognathae; Galliformes; Phasianidae; Phasianinae;
OC
     Gallus.
     NCBI TaxID=9031;
OX
RN
      [1]
     SEQUENCE FROM N.A.
RP
     MEDLINE=21363439; PubMed=11470524;
RX
     Horiuchi H., Inoue T., Furusawa S., Matsuda H.;
RA
      "Characterization and expression of three forms of cDNA encoding
RT
      chicken platelet-derived growth factor-A chain.";
RT
     Gene 272:181-190(2001).
RL
DR
      EMBL; AB031024; BAB62544.1; -.
```

```
34 AA; 3983 MW; FEF02F8A45B27DA5 CRC64;
SO
     SEQUENCE
                          13.8%; Score 4; DB 13; Length 34;
 Ouery Match
                          100.0%; Pred. No. 3.4e+03;
 Best Local Similarity
                                                                             0;
                                                                     Gaps
             4; Conservative 0; Mismatches
                                                   0; Indels
                                                                 0;
Qу
           25 RKKL 28
              1111
           28 RKKL 31
Db
RESULT 27
Q8G2Q2
                                   PRT;
                                           34 AA.
ID
                 PRELIMINARY;
     Q8G2Q2
AC
     Q8G2Q2;
     01-MAR-2003 (TrEMBLrel. 23, Created)
DT
     01-MAR-2003 (TrEMBLrel. 23, Last sequence update)
DT
     01-MAR-2003 (TrEMBLrel. 23, Last annotation update)
DT
     Hypothetical protein.
DΕ
     BR0266.
GN
OS
     Brucella suis.
     Bacteria; Proteobacteria; Alphaproteobacteria; Rhizobiales;
OC
     Brucellaceae; Brucella.
OC
     NCBI_TaxID=29461;
OX
RN
     SEOUENCE FROM N.A.
RP
     STRAIN=1330 / Biovar 1;
RC
     MEDLINE=22247741; PubMed=12271122;
RX
     Paulsen I.T., Seshadri R., Nelson K.E., Eisen J.A., Heidelberg J.F.,
RA
     Read T.D., Dodson R.J., Umayam L., Brinkac L.M., Beanan M.J.,
RA
     Daugherty S.C., Deboy R.T., Durkin A.S., Kolonay J.F., Madupu R.,
RA
     Nelson W.C., Ayodeji B., Kraul M., Shetty J., Malek J., Van Aken S.E.,
RA
     Riedmuller S., Tettelin H., Gill S.R., White O., Salzberg S.L.,
RA
     Hoover D.L., Lindler L.E., Halling S.M., Boyle S.M., Fraser C.M.;
RA
     "The Brucella suis genome reveals fundamental similarities between
RT
     animal and plant pathogens and symbionts.";
RT
     Proc. Natl. Acad. Sci. U.S.A. 99:13148-13153(2002).
RL
     EMBL; AE014339; AAN29215.1; -.
DR
     TIGR; BR0266; -.
DR
     Hypothetical protein; Complete proteome.
KW
               34 AA; 3781 MW; 76E820326E6CA66E CRC64;
SO
     SEOUENCE
                          13.8%; Score 4; DB 16; Length 34;
  Ouery Match
  Best Local Similarity 100.0%; Pred. No. 3.4e+03;
                                                                  0; Gaps
                                                                              0;
            4; Conservative 0; Mismatches 0; Indels
  Matches
           11 LGKH 14
Qу
              1111
Dh
           10 LGKH 13
RESULT 28
Q8V6J8
                                    PRT;
                                            35 AA.
                  PRELIMINARY;
ID
     Q8V6J8
AC
     Q8V6J8;
     01-MAR-2002 (TrEMBLrel. 20, Created)
DT
```

FT

NON TER

```
01-MAR-2002 (TrEMBLrel. 20, Last sequence update)
DT
     01-MAR-2002 (TrEMBLrel. 20, Last annotation update)
DT
    Hypothetical 4.1 kDa protein.
DE
    Halovirus HF2.
OS
     Viruses; dsDNA viruses, no RNA stage; Caudovirales; Myoviridae.
OC
OX
     NCBI TaxID=33771;
RN
     [1]
     SEQUENCE FROM N.A.
RP
     Tang S.-L., Fisher C., Ngui K., Nuttall S.D., Dyall-Smith M.L.;
RA
     "Sequence and transcription of halovirus HF2.";
RT
     Submitted (JAN-2000) to the EMBL/GenBank/DDBJ databases.
RL
     EMBL; AF222060; AAL55025.1; -.
DR
     Hypothetical protein.
KW
              35 AA; 4115 MW; 2652C319622E9CE4 CRC64;
     SEQUENCE
SQ
                          13.8%; Score 4; DB 12; Length 35;
  Ouery Match
                          100.0%; Pred. No. 3.4e+03;
  Best Local Similarity
            4; Conservative 0; Mismatches 0; Indels
                                                                  0; Gaps
                                                                              0;
  Matches
            1 SVSE 4
Qу
              1111
           10 SVSE 13
Db
RESULT 29
Q9KQG4
                                            35 AA.
                 PRELIMINARY;
ID
     Q9KQG4
AC
     Q9KQG4;
     01-OCT-2000 (TrEMBLrel. 15, Created)
DT
     01-OCT-2000 (TrEMBLrel. 15, Last sequence update)
DT
     01-DEC-2001 (TrEMBLrel. 19, Last annotation update)
DT
     Hypothetical protein VC2034.
DE
GN
     VC2034.
     Vibrio cholerae.
OS
     Bacteria; Proteobacteria; Gammaproteobacteria; Vibrionales;
OC
     Vibrionaceae; Vibrio.
OC
OX
     NCBI TaxID=666;
RN
     [1]
RP
     SEQUENCE FROM N.A.
     STRAIN=El Tor N16961 / Serotype 01;
RC
     MEDLINE=20406833; PubMed=10952301;
RX
     Heidelberg J.F., Eisen J.A., Nelson W.C., Clayton R.A., Gwinn M.L.,
RA
     Dodson R.J., Haft D.H., Hickey E.K., Peterson J.D., Umayam L.A.,
RA
     Gill S.R., Nelson K.E., Read T.D., Tettelin H., Richardson D.,
RA
     Ermolaeva M.D., Vamathevan J., Bass S., Qin H., Dragoi I., Sellers P.,
RA
     McDonald L., Utterback T., Fleischmann R.D., Nierman W.C., White O.,
RA
     Salzberg S.L., Smith H.O., Colwell R.R., Mekalanos J.J., Venter J.C.,
RA
     Fraser C.M.;
RA
      "DNA sequence of both chromosomes of the cholera pathogen Vibrio
RT
     cholerae.";
RT
     Nature 406:477-483(2000).
RL
     EMBL; AE004278; AAF95182.1; -.
 DR
     TIGR; VC2034; -.
 DR
      Hypothetical protein; Complete proteome.
 KW
               35 AA; 4181 MW; D185B6339A711D54 CRC64;
 SQ
      SEQUENCE
                           13.8%; Score 4; DB 16; Length 35;
   Query Match
```

```
Best Local Similarity 100.0%; Pred. No. 3.4e+03;
             4; Conservative
                                 0; Mismatches 0; Indels
                                                                    0; Gaps
                                                                                0;
           26 KKLQ 29
Qу
               1111
Db
           24 KKLQ 27
RESULT 30
Q97RG6
                 PRELIMINARY;
                                    PRT:
                                             35 AA.
ID
     Q97RG6
AC
     Q97RG6;
     01-OCT-2001 (TrEMBLrel. 18, Created)
DT
     01-OCT-2001 (TrEMBLrel. 18, Last sequence update) 01-DEC-2001 (TrEMBLrel. 19, Last annotation update)
DT
DT
DΕ
     Hypothetical protein SP0853.
GN
     SP0853.
OS
     Streptococcus pneumoniae.
     Bacteria; Firmicutes; Lactobacillales; Streptococcaceae;
OC
OC
     Streptococcus.
     NCBI TaxID=1313;
OX
RN
     [1]
RP
     SEQUENCE FROM N.A.
RC
     STRAIN=TIGR4;
RX
     MEDLINE=21357209; PubMed=11463916;
RA
     Tettelin H., Nelson K.E., Paulsen I.T., Eisen J.A., Read T.D.,
RA
     Peterson S., Heidelberg J., DeBoy R.T., Haft D.H., Dodson R.J.,
RA
     Durkin A.S., Gwinn M., Kolonay J.F., Nelson W.C., Peterson J.D.,
RA
     Umayam L.A., White O., Salzberg S.L., Lewis M.R., Radune D.,
RA
     Holtzapple E., Khouri H., Wolf A.M., Utterback T.R., Hansen C.L.,
RA
     McDonald L.A., Feldblyum T.V., Angiuoli S., Dickinson T., Hickey E.K.,
RA
     Holt I.E., Loftus B.J., Yang F., Smith H.O., Venter J.C.,
RA
     Dougherty B.A., Morrison D.A., Hollingshead S.K., Fraser C.M.;
RT
     "Complete genome sequence of a virulent isolate of Streptococcus
RT
     pneumoniae.";
RL
     Science 293:498-506(2001).
DR
     EMBL; AE007391; AAK74982.1; -.
DR
     TIGR; SP0853; -.
KW
     Hypothetical protein; Complete proteome.
SQ
     SEQUENCE
               35 AA; 4276 MW; 6B8813CC028D6C7B CRC64;
  Query Match
                           13.8%; Score 4; DB 16; Length 35;
                           100.0%; Pred. No. 3.4e+03;
  Best Local Similarity
  Matches
             4; Conservative
                               0; Mismatches
                                                     0; Indels
                                                                        Gaps
           26 KKLQ 29
Qy
               1111
Db
           30 KKLQ 33
RESULT 31
Q8F102
ID
     Q8F102
                 PRELIMINARY;
                                     PRT;
                                             35 AA.
АÇ
     Q8F102;
DT
     01-MAR-2003 (TrEMBLrel. 23, Created)
     01-MAR-2003 (TrEMBLrel. 23, Last sequence update)
DT
     01-MAR-2003 (TrEMBLrel. 23, Last annotation update)
DT
```

```
LA3339.
GN
     Leptospira interrogans.
OS
     Bacteria; Spirochaetes; Spirochaetales; Leptospiraceae; Leptospira.
OC
     NCBI TaxID=173;
OX
RN
     [1]
     SEQUENCE FROM N.A.
RP
     STRAIN=56601 / Serogroup Icterohaemorrhagiae / Serovar lai;
RC
     Ren S.;
RA
     Submitted (MAR-2002) to the EMBL/GenBank/DDBJ databases.
RL
     EMBL; AE011494; AAN50536.1; -.
DR
     Hypothetical protein; Complete proteome.
KW
     SEQUENCE 35 AA; 4253 MW; ODDFEDFFB32E980B CRC64;
SQ
                          13.8%; Score 4; DB 16; Length 35;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 3.4e+03;
                               0; Mismatches
                                                                             0:
                                                0; Indels
                                                                 0; Gaps
           4; Conservative
           14 HLNS 17
Qу
              1111
            3 HLNS 6
Db
RESULT 32
053920
                                   PRT;
                                           36 AA.
                 PRELIMINARY;
ID
     Q53920
AC
     Q53920;
     01-NOV-1996 (TrEMBLrel. 01, Created)
DT
     01-NOV-1996 (TrEMBLrel. 01, Last sequence update)
DT
     01-JUN-2002 (TrEMBLrel. 21, Last annotation update)
DT
     OrfA protein (Fragment).
DΕ
GN
     ORFA.
     Streptomyces chrysomallus.
OS
     Bacteria; Actinobacteria; Actinobacteridae; Actinomycetales;
OC
     Streptomycineae; Streptomycetaceae; Streptomyces.
OC
OX
     NCBI TaxID=1899;
RN
      [1]
     SEQUENCE FROM N.A.
RP
     MEDLINE=94341259; PubMed=8062824;
RX
      Pahl A., Keller U.;
RA
      "Streptomyces chrysomallus FKBP-33 is a novel immunophilin consisting
RT
     of two FK506-binding domains with its gene transcriptionally coupled
RT
      to the FKBP-12 gene.";
RT
      EMBO J. 13:3472-3480(1994).
RL
     EMBL; Z34523; CAA84281.1; -.
DR
      InterPro; IPR004347; DUF245.
DR
      Pfam; PF03136; DUF245; 1.
DR
 FT
      NON TER
                   1
                36 AA; 4121 MW; EBD470AAF99A728E CRC64;
      SEQUENCE
 SQ
                           13.8%; Score 4; DB 2; Length 36;
  Ouery Match
                          100.0%; Pred. No. 3.5e+03;
  Best Local Similarity
             4; Conservative 0; Mismatches 0; Indels
                                                                  0; Gaps
                                                                              0:
  Matches
            19 ERVE 22
 Qу
               27 ERVE 30
 Db
```

Hypothetical protein.

DE

```
068941
                 PRELIMINARY;
                                   PRT;
ID
     068941
                                            36 AA.
AC
     068941;
DT
     01-AUG-1998 (TrEMBLrel. 07, Created)
     01-AUG-1998 (TrEMBLrel. 07, Last sequence update)
DT
     01-MAR-2002 (TrEMBLrel. 20, Last annotation update)
DT
DE
     Dinitrogenase 3 beta subunit (Fragment).
GN
     ANFK.
OS
     Rhodospirillum rubrum.
     Bacteria; Proteobacteria; Alphaproteobacteria; Rhodospirillales;
OC
OC
     Rhodospirillaceae; Rhodospirillum.
OX
     NCBI_TaxID=1085;
RN
     [1]
RP
     SEQUENCE FROM N.A.
RA
     Loveless T.M., Bishop P.E.;
     "Identification of Genes Unique to Mo-Independent Nitrogenase Systems
RT
RT
     in Diverse Diazotrophs.";
     Submitted (APR-1998) to the EMBL/GenBank/DDBJ databases.
RL
     EMBL; AF058778; AAC14327.1; -.
DR
     InterPro; IPR000510; Oxred nitrognsel.
DR
DR
     Pfam; PF00148; oxidored nitro; 1.
FT
     NON TER
                 36
                         36
     SEOUENCE
                36 AA; 3957 MW; D94F46BCFD437D97 CRC64;
SO
  Query Match
                           13.8%; Score 4; DB 2; Length 36;
  Best Local Similarity
                          100.0%; Pred. No. 3.5e+03;
                                0; Mismatches 0; Indels
  Matches
             4; Conservative
                                                                  0; Gaps
Qу
           24 LRKK 27
              1111
Db
            5 LRKK 8
RESULT 34
8WXW8
ID
     8WXW8
                 PRELIMINARY;
                                    PRT;
                                            36 AA.
     Q8WXW8;
AC
DT
     01-MAR-2002 (TrEMBLrel. 20, Created)
DT
     01-MAR-2002 (TrEMBLrel. 20, Last sequence update)
     01-JUN-2002 (TrEMBLrel. 21, Last annotation update)
DT
     Urea transporter JK glycoprotein (Fragment).
DE
GN
     JK.
OS
     Homo sapiens (Human).
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
OC
     Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.
OX
     NCBI TaxID=9606;
RN
     [1]
RΡ
     SEOUENCE FROM N.A.
RA
     Olsson M.L., Irshaid N.M., Eicher N.I., Poole J., Hustinx H.;
     "Molecular Basis of the Jk(a-b-) Phenotype in Non-Finnish European
RT
RT
     Pedigrees.";
     Br. J. Haematol. 0:0-0(2001).
\mathtt{RL}
DR
     EMBL; AF328890; AAL37474.1; -.
DR
     InterPro; IPR004937; Urea_transporter.
```

RESULT 33

```
Pfam; PF03253; UT; 1.
DR
     NON TER
FT
                  1
                          1
     SEQUENCE
                36 AA; 3989 MW; C3A6A964C2F41007 CRC64;
SO
                          13.8%; Score 4; DB 4; Length 36;
  Query Match
                          100.0%; Pred. No. 3.5e+03;
 Best Local Similarity
            4; Conservative 0; Mismatches
                                                  0; Indels
                                                                 0; Gaps
           15 LNSM 18
              1111
            7 LNSM 10
RESULT 35
Q9SJ63
ID
     Q9SJ63
                 PRELIMINARY;
                                   PRT;
                                           36 AA.
     Q9SJ63;
AC
     01-MAY-2000 (TrEMBLrel. 13, Created)
DT
DT
     01-MAY-2000 (TrEMBLrel. 13, Last sequence update)
DT
     01-DEC-2001 (TrEMBLrel. 19, Last annotation update)
DE
     At2g35870 protein.
GN
     AT2G35870.
OS
     Arabidopsis thaliana (Mouse-ear cress).
OC
     Eukaryota; Viridiplantae; Streptophyta; Embryophyta; Tracheophyta;
OC
     Spermatophyta; Magnoliophyta; eudicotyledons; core eudicots; Rosidae;
OC
     eurosids II; Brassicales; Brassicaceae; Arabidopsis.
OX
     NCBI TaxID=3702;
RN
     [1]
RP
     SEQUENCE FROM N.A.
RC
     STRAIN=cv. Columbia;
RX
     MEDLINE=20083487; PubMed=10617197;
RA
     Lin X., Kaul S., Rounsley S.D., Shea T.P., Benito M.-I., Town C.D.,
     Fujii C.Y., Mason T.M., Bowman C.L., Barnstead M.E., Feldblyum T.V.,
RA
     Buell C.R., Ketchum K.A., Lee J.J., Ronning C.M., Koo H., Moffat K.S.,
RA
     Cronin L.A., Shen M., VanAken S.E., Umayam L., Tallon L.J., Gill J.E.,
RA
RA
     Adams M.D., Carrera A.J., Creasy T.H., Goodman H.M., Somerville C.R.,
RA
     Copenhaver G.P., Preuss D., Nierman W.C., White O., Eisen J.A.,
RA
     Salzberg S.L., Fraser C.M., Venter J.C.;
     "Sequence and analysis of chromosome 2 of the plant Arabidopsis
RT
RT
     thaliana.";
     Nature 402:761-768(1999).
RL
RN
     [2]
RP
     SEQUENCE FROM N.A.
RC
     STRAIN=cv. Columbia;
RA
     Lin X.;
RL
     Submitted (MAR-2000) to the EMBL/GenBank/DDBJ databases.
     EMBL; AC007017; AAD21470.1; -.
DR
               36 AA; 4358 MW; DC966779BBD6B834 CRC64;
SQ
     SEQUENCE
  Query Match
                          13.8%; Score 4; DB 10; Length 36;
                         100.0%; Pred. No. 3.5e+03;
  Best Local Similarity
 Matches
             4; Conservative 0; Mismatches
                                                0; Indels
Qу
           26 KKLQ 29
              1111
Dh
            4 KKLQ 7
```

```
Q9PXD1
                 PRELIMINARY;
                                   PRT;
                                           36 AA.
ID
     Q9PXD1
AC
     Q9PXD1;
     01-MAY-2000 (TrEMBLrel. 13, Created)
DT
     01-MAY-2000 (TrEMBLrel. 13, Last sequence update)
DT
     01-DEC-2001 (TrEMBLrel. 19, Last annotation update)
DT
     Genome polyprotein [Contains: envelope glycoprotein E2/NS1 (GP68)]
DE
DE
     (Fragment).
     Hepatitis C virus.
OS
     Viruses; ssRNA positive-strand viruses, no DNA stage; Flaviviridae;
OC
OC
     Hepacivirus.
     NCBI TaxID=11103;
OX
RN
     [1]
RP
     SEQUENCE FROM N.A.
     MEDLINE=96343121; PubMed=8750162;
RX
     Chayama K., Tsubota A., Arase Y., Saitoh S., Ikeda K., Matsumoto T.,
ŔĀ
     Hashimoto M., Kobayashi M., Kanda M., Morinaga T.;
RA
RT
     "Genotype, slow decrease in virus titer during interferon treatment
     and high degree of sequence variability of hypervariable region are
RT
     indicative of poor response to interferon treatment in patients with
RT
     chronic hepatitis type C.";
RT
RL
     J. Hepatol. 23:648-653(1995).
DR
     InterPro; IPR002531; HCV NS1.
     Pfam; PF01560; HCV NS1; 1.
DR
     Coat protein; Envelope protein; Glycoprotein; Nonstructural protein;
KW
KW
     Polyprotein; Transmembrane.
     SEQUENCE
               36 AA; 3546 MW; 5BB7935A55048D34 CRC64;
SQ
  Query Match
                          13.8%; Score 4; DB 12; Length 36;
  Best Local Similarity 100.0%; Pred. No. 3.5e+03;
                                                                  0; Gaps
  Matches
           4; Conservative 0; Mismatches 0; Indels
                                                                              0;
Qу
            5 IOLM 8
              1111
Db
           33 IQLM 36
RESULT 37
Q91D77
                                   PRT;
                                           36 AA.
ID
     Q91D77
                 PRELIMINARY;
AC
     Q91D77;
     01-DEC-2001 (TrEMBLrel. 19, Created)
DT
     01-DEC-2001 (TrEMBLrel. 19, Last sequence update)
DT
DT
     01-MAR-2003 (TrEMBLrel. 23, Last annotation update)
     ORF2 hypothetical protein, isolate: HM0319 (Fragment).
DE
OS
     TTV-like mini virus.
OC
     Viruses; ssDNA viruses; Circoviridae.
OX
     NCBI TaxID=93678;
RN
     [1]
RΡ
     SEQUENCE FROM N.A.
RC
     STRAIN=HM0319;
     Michitaka K., Matsubara H., Horiike N., Kihana T., Yano M., Mori T.,
RA
RA
     Onji M.;
     "Existence of TT virus DNA and TTV-like mini virus DNA in infant cord
RT
RT
     blood.";
```

RESULT 36

```
RL
     Submitted (APR-2001) to the EMBL/GenBank/DDBJ databases.
DR
     EMBL; AB059561; BAB69654.1; -.
DR
     InterPro; IPR004118; TT ORF2.
     Pfam; PF02957; TT_ORF2; 1.
DR
KW
     Hypothetical protein.
FT
     NON TER
                  36
                         36
     SEQUENCE
                36 AA; 4291 MW; 92145F475EA841F1 CRC64;
SQ
  Query Match
                          13.8%; Score 4; DB 12; Length 36;
                          100.0%; Pred. No. 3.5e+03;
  Best Local Similarity
  Matches
            4; Conservative 0; Mismatches 0; Indels
                                                               0; Gaps
                                                                              0;
           26 KKLQ 29
Qу
              | | | |
Db
           14 KKLQ 17
RESULT 38
Q9YHT9
                 PRELIMINARY;
                                   PRT;
                                           36 AA.
ID
     Q9YHT9
AC
     O9YHT9;
     01-MAY-1999 (TrEMBLrel. 10, Created)
     01-MAY-1999 (TrEMBLrel. 10, Last sequence update)
DT
     01-OCT-2002 (TrEMBLrel. 22, Last annotation update)
DT
DE
     Synaptosome-associated protein 25.2 (Fragment).
     SNAP25B OR SNAP.
GN
OS
     Brachydanio rerio (Zebrafish) (Danio rerio).
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
OC
     Actinopteryqii; Neopteryqii; Teleostei; Ostariophysi; Cypriniformes;
OC
     Cyprinidae; Danio.
OX
     NCBI TaxID=7955;
RN
     [1]
RP
     SEQUENCE FROM N.A.
RX
     MEDLINE=99057281; PubMed=9843147;
RA
     Risinger C., Salaneck E., Soderberg C., Gates M., Postlethwait J.H.,
RA
     Larhammar D.;
RT
     "Cloning of two loci for synapse protein Snap25 in zebrafish:
RT
     comparison of paralogous linkage groups suggests loss of one locus in
RT
     the mammalian lineage.";
RL
     J. Neurosci. Res. 54:563-573(1998).
DR
     EMBL; AF091596; AAC73006.1; -.
DR
     ZFIN; ZDB-GENE-980526-392; snap25b.
     NON TER
FT
                  1
                          1
FT
     NON TER
                  36
                         36
SQ
     SEQUENCE
                36 AA; 4046 MW; E3434855F7EEC02F CRC64;
  Query Match
                          13.8%; Score 4; DB 13; Length 36;
  Best Local Similarity 100.0%; Pred. No. 3.5e+03;
  Matches
                               0; Mismatches
             4; Conservative
                                                   0; Indels
                                                                 0; Gaps
                                                                              0;
           19 ERVE 22
QУ
              | | | |
Db
            2 ERVE 5
```

```
36 AA.
     097591
                 PRELIMINARY;
                                    PRT;
ID
AC
     Q97S91;
     01-OCT-2001 (TrEMBLrel. 18, Created)
DT
     01-OCT-2001 (TrEMBLrel. 18, Last sequence update)
DT
     01-DEC-2001 (TrEMBLrel. 19, Last annotation update)
DT
     Hypothetical protein SP0497.
DΕ
GN
     SP0497.
OS
     Streptococcus pneumoniae.
     Bacteria; Firmicutes; Lactobacillales; Streptococcaceae;
OC
     Streptococcus.
OC
     NCBI TaxID=1313;
OX
RN
     [1]
     SEQUENCE FROM N.A.
RΡ
RC
     STRAIN=TIGR4;
     MEDLINE=21357209; PubMed=11463916;
RX
     Tettelin H., Nelson K.E., Paulsen I.T., Eisen J.A., Read T.D.,
RA
     Peterson S., Heidelberg J., DeBoy R.T., Haft D.H., Dodson R.J.,
RA
     Durkin A.S., Gwinn M., Kolonay J.F., Nelson W.C., Peterson J.D.,
RA
     Umayam L.A., White O., Salzberg S.L., Lewis M.R., Radune D.,
RA
     Holtzapple E., Khouri H., Wolf A.M., Utterback T.R., Hansen C.L.,
RA
     McDonald L.A., Feldblyum T.V., Angiuoli S., Dickinson T., Hickey E.K.,
RA
     Holt I.E., Loftus B.J., Yang F., Smith H.O., Venter J.C.,
RA
     Dougherty B.A., Morrison D.A., Hollingshead S.K., Fraser C.M.;
RΑ
     "Complete genome sequence of a virulent isolate of Streptococcus
RT
     pneumoniae.";
RT
     Science 293:498-506(2001).
RL
     EMBL; AE007361; AAK74655.1; -.
DR
     TIGR; SP0497; -.
DR
     Hypothetical protein; Complete proteome.
KW
                 36 AA; 4282 MW; 749D427D078ACA76 CRC64;
SO
     SEOUENCE
                            13.8%; Score 4; DB 16; Length 36;
  Query Match
                           100.0%; Pred. No. 3.5e+03;
  Best Local Similarity
                                                   0; Indels
                                                                    0; Gaps
                                                                                 0:
              4; Conservative
                                0; Mismatches
            26 KKLQ 29
Qу
               | | | |
Db
            10 KKLQ 13
RESULT 40
Q8KYJ0
                  PRELIMINARY;
                                     PRT;
                                             37 AA.
ID
      O8KYJ0
AC
      O8KYJ0;
      01-OCT-2002 (TrEMBLrel. 22, Created)
01-OCT-2002 (TrEMBLrel. 22, Last sequence update)
DТ
DT
      01-OCT-2002 (TrEMBLrel. 22, Last annotation update)
DT
DE
      Conserved hypothetical protein.
GN
      BXA0180.
      Bacillus anthracis.
OS
OG
      Plasmid pXO1.
      Bacteria; Firmicutes; Bacillales; Bacillaceae; Bacillus.
OC
      NCBI TaxID=1392;
OX
RN
      [1]
RP
      SEQUENCE FROM N.A.
RC
      STRAIN=A2012;
      MEDLINE=22061436; PubMed=12004073;
RX
```

```
RA
    Read T.D., Salzberg S.L., Pop M., Shumway M., Umayam L., Jiang L.,
    Holtzapple E., Busch J.D., Smith K.L., Schupp J.M., Solomon D.,
RA
RA
    Keim P., Fraser C.M.;
RT
     "Comparative Genome Sequencing for Discovery of Novel Polymorphisms in
RT
    Bacillus anthracis.";
RL
    Science 296:2028-2033(2002).
    EMBL; AE011190; AAM26125.1; -.
DR
KW
    Hypothetical protein; Plasmid.
SQ
    SEQUENCE 37 AA; 4416 MW; B5B11661AC3522BD CRC64;
 Query Match
                         13.8%; Score 4; DB 2; Length 37;
 Best Local Similarity 100.0%; Pred. No. 3.6e+03;
                              0; Mismatches
 Matches
            4; Conservative
                                                  0; Indels
                                                                0; Gaps
                                                                            0;
Qу
           24 LRKK 27
              | | | | |
           11 LRKK 14
Db
```

Search completed: January 14, 2004, 10:41:59

Job time : 23.6822 secs

GenCore version 5.1.6 Copyright (c) 1993 - 2004 Compugen Ltd.

OM protein - protein search, using sw model

Run on: January 14, 2004, 10:28:19; Search time 4.78816 Seconds

(without alignments)

284.822 Million cell updates/sec

Title: US-09-843-221A-167

Perfect score: 29

Sequence: 1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29

Scoring table: OLIGO

Gapop 60.0 , Gapext 60.0

Searched: 127863 seqs, 47026705 residues

Word size : (

Total number of hits satisfying chosen parameters: 1319

Minimum DB seq length: 28 Maximum DB seq length: 40

Post-processing: Listing first 1000 summaries

Database : SwissProt_41:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

		ે				
Result		Query				
No.	Score	Match	Length	DB	ID	Description
				-		
1	5	17.2	33	1	FABI_RHASA	P81175 rhamdia sap
2	4	13.8	39	1	SR1C_SARPE	P08377 sarcophaga
3	3	10.3	28	1	CH60_MYCSM	P80673 mycobacteri
4	3	10.3	28	1	COXB SOLTU	P80499 solanum tub
5	3	10.3	28	1	GUN SCHCO	P81190 schizophyll
6	3	10.3	28	1	PA23 TRIST	P82894 trimeresuru
7	3	10.3	28	1	PA2C PSEPO	P20260 pseudechis
8	3	10.3	28	1	VI03_VACCP	Q00334 vaccinia vi
9	3	10.3	28	1	VIP ALLMI	P48142 alligator m
10	3	10.3	28	1	VIP RANRI	P81016 rana ridibu
11	3	10.3	28	1	VIP_SHEEP	P04565 ovis aries
12	3	10.3	29	1	DMD RAT	P11530 rattus norv
13	3	10.3	29	1	GALA ALLMI	P47215 alligator m
14	3	10.3	29	1	GALA AMICA	P47214 amia calva
15	3	10.3	29	1	GALA CHICK	P30802 gallus gall
16	3	10.3	29		GALA ONCMY	P47213 oncorhynchu
17	3	10.3	29	1	GALA_RANRI	P47216 rana ridibu

18	3	10.3	29	1	GALA SHEEP		ovis aries
19	3	10.3	29	1	GLUC CHIBR	P31297	chinchilla
20	3	10.3	29	1	IPYR DESVH	P19371	desulfovibr
	3		29				solanum tub
21		10.3		1	NUO1_SOLTU		
22	3	10.3	29	1	P2SM_LOXIN		loxosceles
23	3	10.3	29	1	PCG4_PACGO		pachycondyl
24	. 3	10.3	29	1	RS7 METTE	093639	methanosarc
25	3	10.3	29	1	SODC OLEEU	P80740	olea europa
26	3	10.3	29	1	TL16 SPIOL		spinacia ol
27	3	10.3	30	1	DMS3 PHYSA		phyllomedus
							
28	3	10.3	30	1	FTN_BACFR		bacteroides
29	3	10.3	30	1	OTCC_AERPU		aeromonas p
30	3	10.3	30	1	PCG2_PACGO	P82415	pachycondyl
31	3	10.3	30	1	PCG3 PACGO	P82416	pachycondyl
32	3	10.3	30	1	PSAM PORPU		porphyra pu
33	3	10.3	30	1	TX2 THRPR		thrixopelma
34	3	10.3	30	1	UP61 UPEIN		uperoleia i
35	3	10.3	30	1	UP62_UPEIN		uperoleia i
36	3	10.3	30	1	VAA2_EQUAR		equisetum a
37	3	10.3	30	1	Y523_BORBU	051473	borrelia bu
38	3	10.3	31	1	CEC1 PIG	P14661	sus scrofa
39	3	10.3	31	1	CXMA CONMR	P56708	conus marmo
40	3	10.3	31	1	DEJP DROME		drosophila
41	3	10.3	31	1	DIUX DIPPU		diploptera
					_		
42	3	10.3	31	1	H13_WHEAT		triticum ae
43	3	10.3	31	1	LPL_BUCRP		buchnera ap
44	3	10.3	31	1	MALK_PHOLU		photorhabdu
45	3	10.3	31	1	PETL_LOTJA	Q9bbr4	lotus japon
46	3	10.3	31	1	PETL MARPO	P12179	marchantia
47	3	10.3	31	1	PETL MESVI		mesostigma
48	3	10.3	31	1	PETL NEPOL		nephroselmi
	3		31	1	_		euglena gra
49		10.3			PSAM_EUGGR		
50	3	10.3	31	1	SARL_MOUSE		mus musculu
51	3	10.3	31	1	SARL_RABIT		oryctolagus
52	3	10.3	31	1	SCK5_ANDMA	P31719	androctonus
. 53	3	10.3	31	1	SCKL LEIQH	P16341	leiurus qui
54	3	10.3	31	1	Y822 BORBU	051762	borrelia bu
55	3	10.3	32	1	ADHR DROYA		drosophila
	3	10.3	32	1			oncorhynchu
56					CAL2_ONCKE		_
57	3	10.3	32	1	CAL3_ONCKI		oncorhynchu
58	3	10.3	32	1	CAL_ANGJA		anguilla ja
59	3	10.3	32	1	COA2_BPIF1		bacteriopha
60	3	10.3	32	1	CY31_DESAC	P81078	desulfuromo
61	3	10.3	32	1	FF21 SALEN	P55224	salmonella
62	3	10.3	32	1	IAPP PIG	029119	sus scrofa
63	3	10.3	32	1	ITR3 CUCPE		cucurbita p
64	3	10.3	32	1	ITR4 CUCMA		cucurbita m
					_		
65	3	10.3	32	1	LEC_DOLAX		dolichos ax
66	3	10.3	32	1	MIFH_TRITR		trichuris t
67	3	10.3	32	1	P1SM_LOXIN		loxosceles
68	3	10.3	32	1	PETM_GUITH	078499	guillardia
69	3	10.3	32	1	PHSS DESBN		desulfovibr
70	3	10.3	32	1	PSAM MARPO		marchantia
71	3	10.3	32	1	PSBQ PEA		pisum sativ
72		10.3	32				odontella s
	3			1	PSBT_ODOSI		
73	3	10.3	32	1	PSBZ_EUGST		euglena ste
74	3	10.3	32	1	PSBZ_EUGVI	Q8s187	euglena vir

75	3	10.3	32	1	Y160 BPT4	P39247 bacter	iopha
76	3	10.3		1	YCPG MASLA	P29735 mastig	oclad
77	3	10.3		1	GGN1 RANRU	P80395 rana r	ugosa
78	3	10.3	33	1	RUGB RANRU	P80955 rana r	ugosa
79	3	10.3	33	1	T1F PARTE	Q27172 parame	cium
80	3	10.3	33	1	Y50A MYCTU	Q9cb56 mycoba	cteri
81	3	10.3	33	1	YC12 EUGGR	P31559 euglen	a gra
82	3	10.3	34	1	DMS1 PHYSA	P24302 phyllo	medus
83	3	10.3	34	1	DMS2 PHYSA	P80278 phyllo	medus
84	3	10.3	34	1	GUN1_SCLSC	P21833 sclero	tinia
85	3	10.3	34	1	TX1 SCOGR	P56855 scodra	gris
86	3	10.3	35	1	CECA AEDAL	P81417 aedes	
87	3	10.3	35	1	COPA CANFA	P40765 canis	famil
88	3	10.3	35	1	CPI2 PIG	P80736 sus sc	rofa
89	3	10.3	35	1	GP58 BPSP1	048412 bacter	iopha
90	3	10.3	35	1	LEC1 CYTSE	P22970 cytisu	s ses
91	3	10.3	35	1	LEC3 ULEEU	P23032 ulex e	urope
92	3	10.3	35	1	NP30 STAAU	P21222 staphy	lococ
93	3	10.3	35	1	PETG_CYACA	Q9tlq9 cyanid	ium c
94	3	10.3	35	1	PSBM SYNY3	P72701 synech	ocyst
95	3	10.3	35	1	RL15 SYNP7	P31160 synech	ococc
96	3	10.3	35	1	SCKK TITSE	P56219 tityus	serr
97	3	10.3	35	1	TX1 GRASP	P56852 grammo	stola
98	3	10.3	35	1	TX1 THRPR	P83480 thrixo	pelma
99	3	10.3	35	1	TX2 GRASP	P56853 grammo	stola
100	3	10.3	35	1	VORB METTM	P80908 methar	
101	3	10.3	35	1	YRKM BACSU	P54440 bacill	us su
102	3	10.3	36	1	ELH THETS	P80594 theron	ıyzon
103	3	10.3	36	1	NPF ARTTR	P41334 artion	
104	3	10.3	36	1	OSTS YEAST	Q99380 saccha	romyc
105	3	10.3	36	1	PETM SYNY3	P74810 synech	nocyst
106	3	10.3	36	1	R18A BOVIN	P82919 bos ta	
107	3	10.3	36	1	RET4_CHICK	P30370 gallus	
108	3	10.3	36	1	RL6 HALCU	P05968 haloba	acteri
109	3	10.3	36	1	Y260 BACHD	Q9kg53 bacill	
110	3	10.3	36	1	Y609 ARCFU	029646 archae	
111	3	10.3	37	1	DIU1_TENMO	P56618 tenebi	
112	3	10.3	37	1	IAPP_CRIGR	P19890 cricet	
113	3	10.3	37	1	LCNM_LACLA	P83002 lactor	
114	3	10.3	37	1	OGT1_RABIT	P81436 orycto	
115	3	10.3	37	1	PIP7_BOVIN	P21671 bos ta	
116	3	10.3	37	1	RL36_PASMU	P57942 paster	
117	3	10.3	37	1	SCKI_MESTA	P24663 mesob	
118	3	10.3	37	1	Y63_BPT3	P20328 bacte:	_
119	. 3	10.3	38	1	CPRP_CANPG	P81033 cance:	
120	3	10.3	38	1	DNP_DENAN	P28374 dendre	
121	3	10.3	38	1	$\mathtt{NLT1}_\mathtt{VITSX}$	P80275 vitis	
122	3	10.3	38	1	NLT2_VITSX	P33556 vitis	
123	3	10.3	38	1	OBP2_HYSCR	P81648 hystr	
124	3	10.3	38	1	PYSA_METBA	P80521 metha	
125	3	10.3	38	1	RL36_ECOLI	P21194 esche:	
126	3	10.3	38	1	RL36_PSEAE	Q9hwf6 pseud	
127	3	10.3	38	1	RL36_THEMA	Q9x1i6 therm	
128	3	10.3	38	1	RL36_YERPE	Q8zj91 yersi	
129	3	10.3	38	1	RR12_PINCO	P49168 pinus	
130	3	10.3	38	1	YJ39_ARCFU	028340 archa	
131	3	10.3	39	1	CEC_GLOMR	P83403 gloss	IIId IIIO

132	3	10.3	39	1	COLI BALPH	P01195 balaenopter
133	3	10.3	39	1	COLI RABIT	P06297 oryctolagus
134	3	10.3	39	1	COLI SQUAC	P01197 squalus aca
135	3	10.3	39	1	COLI STRCA	P01196 struthio ca
136	3	10.3	39	1	EXE3 HELHO	P20394 heloderma h
137	3	10.3	39	1	FUC3 RAT	P80349 rattus norv
			39	1	H2A BUFBG	P55897 bufo bufo g
138	3	10.3				_
139	3	10.3	39	1	LCGA_LACLA	P36961 lactococcus
140	3	10.3	39	1	PA2_AGKBI	Q9psf9 agkistrodon
141	3	10.3	39	1	PSBX_PORPU	P51197 porphyra pu
142	3	10.3	40	1	ALB1_TRASC	P81188 trachemys s
143	3	10.3	40	1	HPT_RABIT	P19007 oryctolagus
144	3	10.3	40	1	HS9A_RABIT	P30946 oryctolagus
145	3	10.3	40	1	KAD STACA	P35141 staphylococ
146	3	10.3	40	1	PHRK BACSU	031840 bacillus su
147	3	10.3	40	1	PRE BACLI	P18189 bacillus li
148	3	10.3	40	1	RK33 PEA	P51416 pisum sativ
149	3	10.3	40	1	RRPO LSV	P27328 lily sympto
150	3	10.3	40	1	SAUV PHYSA	P01144 phyllomedus
	3			1	SR1D SARPE	P18312 sarcophaga
151		10.3	40			P80617 zea mays (m
152	3	10.3	40	1	UC11_MAIZE	
153	3	10.3	40	1	VIT_MELGA	P56531 meleagris g
154	3	10.3	40	1	YDRB_STRPE	P32012 streptomyce
155	2	6.9	28	1	ACON_CANAL	P82611 candida alb
156	2	6.9	28	1	APC1_RABIT	P33047 oryctolagus
157	2	6.9	28	1	ARYC_NOCGL	P80008 nocardia gl
158	2	6.9	28	1	C1QC RAT	P31722 rattus norv
159	2	6.9	28	1	ETX2_BACCE	P80568 bacillus ce
160	2	6.9	28	1	FIBA CANFA	P02673 canis famil
161	2	6.9	28	1	FLA1 TREPH	P21988 treponema p
162	2	6.9	28	1	GDO TRIMO	P02865 triticum mo
163	2	6.9	28	1	GRP ALLMI	P31886 alligator m
164	2	6.9	28	1	GTS5 CHICK	P20137 gallus gall
	2		28		GVPC_OSCAG	P80999 oscillatori
165		6.9		1		P02864 hordeum spo
166	2	6.9	28	1	HORC_HORSP	-
167	2	6.9	28	1	ICPP_VIPLE	P82475 vipera lebe
168	2	6.9	28	1	IEL1_MOMCH	P10296 momordica c
169	2	6.9	28	1	IORB_METTM	P80911 methanobact
170	2	6.9	28	1	ITR2_MOMCH	P10295 momordica c
171	2	6.9	28	1	ITR3_LUFCY	P35628 luffa cylin
172	2	6.9	28	1	ITRA_MOMCH	P30709 momordica c
173	2	6.9	28	1	LECA IRIHO	P36230 iris hollan
174	2	6.9	28	1	LPFS ECOLI	P22183 escherichia
175	2	6.9	28	1	LPL ECOLI	P09149 escherichia
176	2	6.9	28	1	LPL SALTI	Q8z9h9 salmonella
177	2	6.9	28	1	LPL SALTY	P03062 salmonella
178	2	6.9	28	1	LPW SERMA	P03055 serratia ma
179	2	6.9	28	1	MAAI RAT	P57113 rattus norv
						P04567 megabombus
180	2	6.9	28	1	MCDP_MEGPE	-
181	2	6.9	28	1	NLT2_WHEAT	P39085 triticum ae
182	2	6.9	28	1	NXL1_BOUAN	P34074 boulengerin
183	2	6.9	28	1	OBP1_HYSCR	P81647 hystrix cri
184	2	6.9	28	1	OMPA_YERPS	P38399 yersinia ps
185	2	6.9	28	1	ORND_PLAOR	P25513 placobdella
186	2	6.9	28	1	OST1_CHICK	P80896 gallus gall
187	2	6.9	28	1	PA22_MICNI	P21791 micrurus ni
188	2	6.9	28	1	PA23_MICNI	P21792 micrurus ni

189	2	6.9	28	1	PETL_CYAPA	P48102 cyanophora
190	2	6.9	28	1	PHR_METTM	P58818 methanobact
191	2	6.9	28	1	PHYB_ASPFI	P81440 aspergillus
192	2	6.9	28	1	PP71_HCMVT	P24429 human cytom
193	2	6.9	28	1	PPOX_BOVIN	P56602 bos taurus
194	2	6.9	28	1	RL5_HALCU	P05972 halobacteri
195	2	6.9	28	1	RS19_PHYS1	066093 phytoplasma
196	2	6.9	28	1	SCX2_BUTSI	P15230 buthus sind
197	2	6.9	28	1	SLP1_LEIQH	P80669 leiurus qui
198	2	6.9	28	1	SMS2_ORENI	P81029 oreochromis
199	2	6.9	28	1	TXO2_AGEAP	P15971 agelenopsis
200	2	6.9	28	1	VG9_SPV4	P11341 spiroplasma
201	2	6.9	28	1	VIP_DIDMA	P39089 didelphis m
202	2	6.9	28	1	VIP_SCYCA	P09685 scyliorhinu
203	2	6.9	28	1	Y073_ARCFU	O30163 archaeoglob
204	2	6.9	28	1	Y16P_BPT4	P39248 bacteriopha
205	2	6.9	28	1	YA79 ARCFU	O29184 archaeoglob
206	2	6.9	29	1	12AH_CLOS4	P21215 clostridium
207	2	6.9	29	1	AL21 HORSE	P81216 equus cabal
208	2	6.9	29	1	ATP9 PICPJ	Q06838 pichia pijp
209	2	6.9	29	1	ATPA BRYMA	P26965 bryopsis ma
210	2	6.9	29	1	BR2D RANES	P40840 rana escule
211	2	6.9	29	1	BREE_RANES	P40841 rana escule
212	2	6.9	29	1	CERB CERCA	P36191 ceratitis c
213	2	6.9	29	1	COA1 BPI22	P15413 bacteriopha
214	2	6.9	29	1	COXJ CANFA	Q9tr29 canis famil
215	2	6.9	29	1	COXK SHEEP	Q9tr28 ovis aries
216	2	6.9	29	1	CU36 LOCMI	P11737 locusta mig
217	2	6.9	29	1	CXD6 CONGL	Q9twm7 conus glori
218	2	6.9	29	1	CXOC CONMA	P37300 conus magus
219	2	6.9	29	1	CXOD CONMA	Q26350 conus magus
220	2	6.9	29	1	CXST CONGE	P58844 conus geogr
221	2	6.9	29	1	DMS5 PHYSA	P80281 phyllomedus
222	2	6.9	29	1	GLUC ANAPL	P01276 anas platyr
223	2	6.9	29	1	GLUC CALMI	P13189 callorhynch
224	2	6.9	29	1	GLUC DIDMA	P18108 didelphis m
225	2	6.9	29	1	GLUC LAMFL	Q9prq9 lampetra fl
226	2	6.9	29	1	GLUC PLAFE	P23062 platichthys
227	2	6.9	29	1	GLUC_RABIT	P25449 oryctolagus
228	2	6.9	29	1	GLUC TORMA	P09567 torpedo mar
229	2	6.9	29	1	H2B2 ECHES	P13282 echinus esc
230	2	6.9	29	1	HOXY RHOOP	P22660 rhodococcus
231	2	6.9	29	1	HRJ BOTJA	P20416 bothrops ja
232	2	6.9	29	1	HS98 NEUCR	P31540 neurospora
233	2	6.9	29	1	ITH3 BOVIN	P56652 bos taurus
234	2	6.9	29	1	ITR1 CUCMA	P01074 cucurbita m
235	2	6.9	29	1	ITR1 LUFCY	P25849 luffa cylin
236	2	6.9	29	1	ITR1 MOMRE	P17680 momordica r
237	2	6.9	29	1	ITR2 BRYDI	P11968 bryonia dio
238	2	6.9	29	1	ITR3 CYCPE	P83394 cyclanthera
239	2	6.9	29	1	ITR4_CYCPE	P83395 cyclanthera
240	2	6.9	29	1	ITR5_CYCPE	P83396 cyclanthera
241	2	6.9	29	1	KDPF_ECOLI	P36937 escherichia
242	2	6.9	29	1	MDH BURPS	P80536 burkholderi
243	2	6.9	29	1	MULR ECHML	P81798 echis multi
244	2	6.9	29	1	PETN_ANASP	Q913p6 anabaena sp
245	2	6.9	29	1	PETN_ARATH	P12178 arabidopsis

246	2	6.9	29	1	PETN_CHAGL	Q8ma13 chaetosphae
247	2	6.9	29	1	PETN_CYAPA	P48258 cyanophora
248	2	6.9	29	1	PETN_GUITH	078498 guillardia
249	2	6.9	29	1	PETN_MAIZE	Q33302 zea mays (m
250	2	6.9	29	1	PETN_MARPO	P12177 marchantia
251	2	6.9	29	1	PETN_MESVI	Q9mus4 mesostigma
252	2	6.9	29	1	PETN_ODOSI	P49527 odontella s
253	2	6.9	29	1	PETN_PINTH	P41611 pinus thunb
254	2	6.9	29	1	PETN_PORPU	P51276 porphyra pu
255	2	6.9	29	1	PETN PSINU	Q8wi23 psilotum nu
256	2	6.9	29	1	PETN SKECO	096807 skeletonema
257	2	6.9	29	1	PETN SYNEL	Q8dkn2 synechococc
258	2	6.9	29	1	PETN SYNY3	P72717 synechocyst
259	2	6.9	29	1	PK4 DICDI	P34103 dictyosteli
260	2	6.9	29	1	PRO1 DACGL	P18689 dactylis gl
261	2	6.9	29	1	PSAF SYNP6	P31083 synechococc
262	2	6.9	29	1	PSAK SPIOL	P14627 spinacia ol
263	2	6.9	29	1	PSAM GUITH	078448 guillardia
264	2	6.9	29	1	PSBI SYNVU	P12240 synechococc
265	2	6.9	29	1	RL15 HALCU	P05971 halobacteri
	2	6.9	29	1	RL15_NALCO	P49975 streptomyce
266			29	1	RP54 CLOKL	P38944 clostridium
267	2	6.9			_	P56215 androctonus
268	2	6.9	29	1	SCX1_ANDMA	P80213 clostridium
269	2	6.9	29	1	SDHB_CLOPR	P80670 leiurus qui
270	2	6.9	29	1	SLP2_LEIQH	_
271	2	6.9	29	1	SLP3_LEIQH	P80671 leiurus qui
272	2	6.9	29	1	TAT_HV1Z3	P12510 human immun
273	2	6.9	29	1	TLP_ACTDE	P81370 actinidia d
274	2	6.9	29	1	VARF_VIOAR	P58451 viola arven
275	2	6.9	29	1	Y15_BPT7	P03792 bacteriopha
276	2	6.9	29	1	Y51_BPT3	P20326 bacteriopha
277	2	6.9	29	1	YCX4_ODOSI	P49830 odontella s
278	2	6.9	29	1	YCXC_ODOSI	P49838 odontella s
279	2	6.9	30	1	2ENR_CLOTY	P11887 clostridium
280	2	6.9	30	1	A1AT_CHIVI	P38026 chinchilla
281	2	6.9	30	1	AATC_RABIT	P12343 oryctolagus
282	2	6.9	30	1	AATM_RABIT	P12345 oryctolagus
283	2	6.9	30	1	ACB1 DIGLA	P81624 digitalis l
284	2	6.9	30	1	AMPT BACST	P00728 bacillus st
285	2	6.9	30	1	ANF RANRI	P09196 rana ridibu
286	2	6.9	30	1	CALM LYTPI	P05935 lytechinus
287	2	6.9	30	1	CBAL BACST	P13722 bacillus st
288	2	6.9	30	1	CH60 CLOPA	P81339 clostridium
289	2	6.9	30	1	CIRA CHAPA	P56871 chassalia p
290	2	6.9	30	1	CLPA PINPS	P81671 pinus pinas
291	2	6.9	30	1	COAE CORAM	P58101 corynebacte
292	2	6.9	30	1	COXC SOLTU	P80500 solanum tub
293	2	6.9	30	1	CRG2 SCOWA	P19865 scoliodon w
					_	P58625 conus betul
294	2	6.9	30	1	CX2A_CONBE	P58923 conus tulip
295	2	6.9	30	1	CX7A_CONTU	P58928 conus conso
296	2	6.9	30	1	CXEX_CONCN	
297	2	6.9	30	1	CXK4_CONST	P58921 conus stria
298	2	6.9	30	1	CXVB_CONER	P58783 conus ermin
299	2	6.9	30	1	CY35_DESAC	P81079 desulfuromo
300	2	6.9	30	1	CYO1_VIOOD	P82230 viola odora
301	2	6.9	30	1	CYO8_VIOOD	P58440 viola odora
302	2	6.9	30	1	DEF2_MACMU	P82317 macaca mula

303	2	6.9	30	1	DIDH_COMTE	P80702 comamonas t
304	2	6.9	30	1	DIU2_HYLLI	P82015 hyles linea
305	2	6.9	30	1	DIU2_MANSE	P24858 manduca sex
306	2	6.9	30	1	END2_ONCKE	P01205 oncorhynchu
307	2	6.9	30	1	FIBR_PANIN	P22775 panulirus i
308	2	6.9	30	1	GLUM_ANGAN	P41521 anguilla an
309	2	6.9	30	1	HCY2_HOMAM	P82297 homarus ame
310	2	6.9	30	1	HETA_RADMA	P58691 radianthus
311	2	6.9	30	1	HYPA_HYBPA	P58445 hybanthus p
312	2	6.9	30	1	IHFB_RHILE	P80606 rhizobium l
313	2	6.9	30	1	ITI1_LAGLE	P26771 lagenaria l
314	2	6.9	30	1	ITR1_CITLA	P11969 citrullus l
315	2	6.9	30	1	ITR1_MOMCH	P10294 momordica C
316	2	6.9	30	1	ITR2_ECBEL	P12071 ecballium e
317	2	6.9	30	1	ITR2_LUFCY	P25850 luffa cylin
318	2	6.9	30	1	ITR3_CUCMC	P32041 cucumis mel
319	2	6.9	30	1	ITR3_MOMCO	P82410 momordica c
320	2	6.9	30	1	ITR4_CUCSA	P10292 cucumis sat
321	2	6.9	30	1	ITR6_CYCPE	P83397 cyclanthera
322	2	6.9	30	1	ITR7_CYCPE	P83398 cyclanthera
323	2	6.9	30	1	KAB5_OLDAF	P58456 oldenlandia
324	2	6.9	30	1	LAS1_PIG	P80171 sus scrofa
325	2	6.9	30	1	LEAH_PHAVU	P81870 phaseolus v
326	2	6.9	30	1	MDH_HELGE	P80037 heliobacter
327	2	6.9	30	1	MMAL_DERMI	P16312 dermatophag
328	2	6.9	30	1	NU5M_PISOC	P24999 pisaster oc
329	2	6.9	30	1	NUO2_SOLTU	P80268 solanum tub
330	2	6.9	30	1	P2CO_ARTSP	P37365 arthrobacte
331	2	6.9	30	1	PCCA_MYXXA	P81185 myxococcus
332	2	6.9	30	1	PCG1_PACGO	P82414 pachycondyl
333	2	6.9	30	1	PCG5_PACGO	P82418 pachycondyl
334	2	6.9	30	1	PETN_NEPOL	Q9tl01 nephroselmi
335	2	6.9	30	1	PLF4_RABIT	P83470 oryctolagus
336	2	6.9	30	1	PLMS_SQUAC	P82542 squalus aca
337	2	6.9	30	1	PMGY_CANAL	P82612 candida alb
338	2	6.9	30	1	PRT1_CLUPA	P02335 clupea pall
339	2	6.9	30	1	PRT2_ONCMY	P02331 oncorhynchu
340	2	6.9	30	1	PRT3_ONCMY	P02332 oncorhynchu
341	2	6.9	30	1	PRT4_ONCMY	P02333 oncorhynchu
342	2	6.9	30	1	PRTB_ONCMY	P12819 oncorhynchu
343	2	6.9	30	1	PSAM_CYACA	Q9tlx5 cyanidium c
344	2	6.9	30	1	PSAM_MESVI	Q9mus2 mesostigma
345	2	6.9	30	1	PSAM_ODOSI	P49487 odontella s
346	2	6.9	30	1	PSAM_PINTH	P41601 pinus thunb
347	2	6.9	30	1	PYSD_METBA	P80524 methanosarc
348	2	6.9	30	1	RIPS_MOMCO	P20655 momordica c
349	2	6.9	30	1	RKGG_LEPKE	P21587 lepidochely
350	2	6.9	30	1	RNP_ODOVI	P19640 odocoileus
351	2	6.9		1	SCK2_TITSE	P08816 tityus serr
352	2	6.9	30	1	SCX2_CENLI	P18927 centruroide
353	2	6.9	30	1	SILU_RHIPU	P02885 rhizomucor
354	2	6.9	30	1	TAT_HV1ZH	P12512 human immun
355	2	6.9	30	1	TL1X_SPIOL	P82537 spinacia ol
356	2	6.9	30	1	TL29_SPIOL	P81833 spinacia ol
357	2	6.9	30	1	TX2_HETVE	P58426 heteropoda
358	2	6.9	30	1	UC35_MAIZE	P80641 zea mays (m
359	2	6.9	30	1	UDDP_SULAC	P80143 sulfolobus

360	2	6.9	30 1	URE1_ECOLI	Q03284 escherichia
361	2	6.9	30 1	VAA1_EQUAR	Q04236 equisetum a
362	2	6.9	30 1	VAA1_PSINU	Q04237 psilotum nu Q04239 psilotum nu
363	2	6.9	30 1	VAA2_PSINU	P81134 bos taurus
364	2	6.9	30 1	VATN_BOVIN	P25137 bacteriopha
365	2	6.9	30 1	VG03_BPPF1	P05948 human immun
366	2	6.9	30 1	VPU_HV1SC	P20837 bacteriopha
367	2	6.9	30 1	VTTA_BPT3	O83196 treponema p
368	2	6.9	30 1	Y161_TREPA	O51332 borrelia bu
369	2	6.9	30 1	Y357_BORBU	O51386 borrelia bu
370	2	6.9	30 1	Y425_BORBU	O83583 treponema p
371	2	6.9	30 1	Y573_TREPA Y932 TREPA	O83902 treponema p
372	2	6.9	30 1	YCCB ECOLI	P24244 escherichia
373	2	6.9	30 1 31 1	A98A DROME	O46201 drosophila
374	2	6.9		BCAM PIG	019098 sus scrofa
375	2	6.9 6.9	31 1 31 1	CIRB CHAPA	P56879 chassalia p
376	2		31 1	COG5_BOVIN	P83437 bos taurus
377	2	6.9 6.9	31 1	COX4 NEUCR	P06809 neurospora
378	2 2	6.9	31 1	CTRP PENMO	P35002 penaeus mon
379	2	6.9	31 1	CU54 LOCMI	P11738 locusta mig
380	2	6.9	31 1	CXD6_CONNI	P56710 conus nigro
381	2	6.9	31 1	CXG6 CONTE	P58922 conus texti
382	2	6.9	31 1	CYLA PSYLO	P56872 psychotria
383 384	2	6.9	31 1	DEF2 MESAU	P81466 mesocricetu
385	2	6.9	31 1	EFTU STRLU	P52390 streptomyce
386	. 2	6.9	31 1	ENDB CAMDR	P01203 camelus dro
387	2	6.9	31 1	ER29 BOVIN	P81623 bos taurus
388	2	6.9	31 1	ETFD PARDE	P55932 paracoccus
389	2	6.9	31 1	FIBB CANFA	P02677 canis famil
390	2	6.9	31 1	GT SERMA	P22416 serratia ma
391	2	6.9	31 1	HBA MACEU	P81043 macropus eu
392	2	6.9	31 1	HCY1 HOMAM	P82296 homarus ame
393	2	6.9	31 1	HCY2 MAISQ	P82303 maia squina
394	2	6.9	31 1	HEM2 PHAGO	P27687 phascolopsi
395	2	6.9	31 1	LC70 LACPA	P80959 lactobacill
396	2	6.9	31 1	LCCB_LEUME	P81052 leuconostoc
397	2	6.9	31 1	LPRM_ECOLI	P10739 escherichia
398	2	6.9	31 1	MDH_STRAR	P19982 streptomyce
399	2	6.9	31 1	NAP4_HUMAN	P19877 homo sapien
400	2	6.9	31 1	PETL_ANASP	Q8yvq2 anabaena sp
401	2	6.9	31 1	PETL_ARATH	P56776 arabidopsis
402	2	6.9	31 1	PETL_BETVU	P46612 beta vulgar
403	2	6.9	31 1	PETL_CHLVU	P56306 chlorella v
404	2	6.9	31 1	PETL_GUITH	078468 guillardia
405	2	6.9	31 1	PETL_MAIZE	P19445 zea mays (m
406	2	6.9	31 1	PETL_ODOSI	P49524 odontella s
407	2	6.9	31 1	PETL_OENHO	Q9mtk4 oenothera h
408	2	6.9	31 1	PETL_ORYSA	P12180 oryza sativ
409	2	6.9	31 1	PETL_PORPU	P51221 porphyra pu
410	2	6.9	31 1	_	Q8wi03 psilotum nu
411	2	6.9	31 1	_	Q9m310 spinacia ol P58247 triticum ae
412	2	6.9	31 1		Q9tlr5 cyanidium c
413	2	6.9	31 1	_	O9tlr6 cyanidium c
414	2	6.9	31 1		P02336 clupea pall
415	2	6.9	31 1		P23317 anabaena va
416	2	6.9	31 1	PSAK_ANAVA	LSSI, anabacna sa

417	2	6.9	31	1	PSAM CHLV	rj P5631	4 chlorella v
418	2	6.9		1	PSAM CYAF		5 cyanophora
419	2	6.9		1	PSBK SYNV		4 synechococc
420	2	6.9	31	1	PSBM_MESV		7 mesostigma
421	2	6.9	31	1	PSBT_CHLF		6 chlamydomon
422	2	6.9		1	PSBT_CHLV		7 chlorella v
423	2	6.9	31	1	PSBT_CYAE		9 cyanophora
424	2	6.9	31	1	PSBT_EUGO		6 euglena gra
425	2	6.9	31	1	PSBT_MESV		6 mesostigma
426	2	6.9	31	1	PSBT_PORE		3 porphyra pu 3 methanosarc
427	2	6.9	31 31	1	PYSG_METER RECX METO	= =	5 methylomona
428 429	2 2	6.9 6.9	31	1	RL21 STR		6 streptococc
430	2	6.9	31	1	SARL HUMA		1 homo sapien
431	2	6.9	31	1	SC37 MESN		7 mesobuthus
432	2	6.9	31	1	SODC STRE		3 striga herm
433	2	6.9	31	1	TX3 HETVE		7 heteropoda
434	2	6.9	31	1	TXA3_PARA		9 parasicyoni
435	2	6.9	31	1	Y191_BORE		9 borrelia bu
436	2	6.9	31	1	Y3KD_BPCI		7 bacteriopha
437	2	6.9		1	Y603_ARCI		2 archaeoglob
438	2	6.9		1	A2M_PACLI		8 pacifastacu
439	2	6.9	32	1	APL3_DIAG		1 diatraea gr
440	2	6.9	32	1	ATPO_PIG		1 sus scrofa
441	2	6.9	32	1	ATP7_SPI		8 spinacia ol 7 spinacia ol
442	2	6.9	32 32	1	ATPO_SPION B4G1 RAT		5 r beta-1,4-
443 444	2 2	6.9 6.9	32 32	1 1	CAAP MIC		2 micromonosp
444	2	6.9	32	1	CALO BOV		0 bos taurus
445	2	6.9	32	1	CALO PIG	· - ·	9 sus scrofa
447	2	6.9	32	1	CAR1 ECH		9 echis carin
448	2	6.9	32	1	CEC OIKK		0 oiketicus k
449	2	6.9	32	1	COA1_BPI		5 bacteriopha
450	2	6.9	32	1	COA1_BPI		6 bacteriopha
451	2	6.9	32	1	COA2_BPF		77 bacteriopha
452	2	6.9	32	1	CRP_PLEP		5 pleuronecte
453	2	6.9	32	1	CXG7_CON		1 conus penna
454	2	6.9	32	1	CYBL_RHO		33 rhodotorula
455	2	6.9	32	1	CYSB_FAS		9 fasciola he 3 synechocyst
456	2	6.9	32	1	DBH_SYNY		28 gallus gall
457	2 2	6.9 6.9	32 32	1 1	ER29_CHI ER29_TRI		29 trichosurus
458 459	2	6.9	32	1	ERH PIG		30 sus scrofa
460	2	6.9	32	1	FER PORC		21 porphyridiu
461	2	6.9	32	1	FLA1 MET		3 methanospir
462	2	6.9	32	1	FRIH ANA		15 anas platyr
463	2	6.9	32	1	GHR4 RAT		31 rattus norv
464	2	6.9	32	1	GLB4_LAM	5P P204	13 lamellibrac
465	2	6.9	32	1	GT82_DIC		08 dicentrarch
466	2	6.9	32	1	H2AZ_ONC		17 oncorhynchu
467	2	6.9	32	1	HCYC_CHE		72 cherax dest
468	2	6.9	32	1	IAPP_BOV		77 bos taurus
469	2	6.9	32	1	IAPP_SAG		84 saguinus oe
470	2	6.9	32	1	IAPP_SHE		05 ovis aries 29 enterobacte
471	2	6.9	32	1	ILVB_ENT		91 cucumis sat
472	2 2	6.9	32 32	1	ITR2_CUC LPID ECO		50 escherichia
473	2	6.9	32	Т	TEID_ECO	DI E020	JU ODGIIGI IGIIIG

4574	2	c 0	32	1	TOTO COMON	D08140	edwardsiell
474	2 2	6.9 6.9	32	1	LPID_EDWTA	_	escherichia
475			32	1 1	LPIV_ECOLI		nitzschia a
476	2	6.9			MDH_NITAL		sus scrofa
477	2	6.9	32	1	NEUB_PIG		anas platyr
478	2	6.9	32	1	OVOS_ANAPL		agkistrodon
479	2	6.9	32	1	PA22_AGKHP		rhopilema n
480	2	6.9	32	1	PA2_RHONO		_
481	2	6.9	32	1	PETL_CHLRE		chlamydomon
482	2	6.9	32	1	PETM_PORPU		porphyra pu
483	2	6.9	32	1	PHNS_DESMU		desulfovibr
484	2	6.9	32	1	PRI3_ONCMY		oncorhynchu
485	2	6.9	32	1	PRT1_ONCKE		oncorhynchu
486	2	6.9	32	1	PRT4_SCYCA		scyliorhinu
487	2	6.9	32	1	PRT5_ONCMY		oncorhynchu
488	2	6.9	32	1	PRT6_ONCMY		oncorhynchu
489	2	6.9	32	1	PRT7_ONCMY		oncorhynchu
490	2	6.9	32	1	PRT8_ONCMY		oncorhynchu
491	2	6.9	32	1	PRT9_ONCMY		oncorhynchu
492	2	6.9	32	1	PRTA_ONCMY		oncorhynchu
493	2	6.9	32	1	PRT_ORYLA		oryzias lat
494	2	6.9	32	1	PSBT_CYACA		cyanidium c
495	2	6.9	32	1	PSBT_GUITH		guillardia
496	2	6.9	32	1	PSBZ_EUGAN	Q8s195	euglena ana
497	2	6.9	32	1	PSBZ_EUGMY	Q8s191	euglena myx
498	2	6.9	32	1	RIP2 PHYDI	P34967	phytolacca
499	2	6.9	32	1	RK1_RABIT	P81655	oryctolagus
500	2	6.9	32	1	RS19 YEREN	Q56847	yersinia en
501	2	6.9	32	1	SCK2 CENNO	P58504	centruroide
502	2	6.9	32	1	TAT SIVM2	P05912	simian immu
503	2	6.9	32	1	TRYP PENMO	P35050	penaeus mon
504	2	6.9	32	1	TX29 PHONI	P29426	phoneutria
505	2	6.9	32	1	TXP7 APTSC		aptostichus
506	2	6.9	32	1	UC09 MAIZE		zea mays (m
507	2	6.9	32	1	Y169 TREPA		treponema p
508	2	6.9	32	1	Y433 BORBU		borrelia bu
509	2	6.9	32	1	YH17 HAEIN		haemophilus
510	2	6.9	32	1	YSCA YEREN		yersinia en
511	2	6.9	32	1	YTK3 ILTVT		infectious
512	2	6.9	33	1	ACT DICVI		dictyocaulu
	_	6.9	33	1	ALOX_PICPA		pichia past
513 514	2 2	6.9	33	1	ANP3 MYOSC		myoxocephal
	2	6.9	33	1	ANP5 MYOAE		myoxocephal
515 516	2	6.9	33	1	ATP7 SOLTU		solanum tub
516	2	6.9	33	1	BR2A RANES		rana escule
517					BR2B RANES		rana escule
518	2	6.9	33	1	BR2E RANES		rana escule
519	2	6.9	33	1	-		rana brevip
520	2	6.9	33	1	BR2_RANBP		heliothis v
521	2	6.9	33	1	CECB_HELVI		heliothis v
522	2	6.9	33	1	CECC_HELVI		
523	2	6.9	33	1	COA1_BPFD		bacteriopha bacteriopha
524	2	6.9	33	1	COA2_BPI22		_
525	2	6.9	33	1	COA2_BPIKE		bacteriopha
526	2	6.9	33	1	COXL_ONCMY		oncorhynchu
527	2	6.9	33	1	CU89_HUMAN		homo sapien
528	2	6.9	33	1	CXBW_CONRA		conus radia
529	2	6.9	33	1	CXO_CONVE		conus ventr
530	2	6.9	33	1	DBB2_DOLAU	P83376	dolabella a

531	2	6.9	33	1	DEF1 MESAU	P81465	mesocricetu
532	2	6.9	33	1	DEF3 MESAU	P81467	mesocricetu
533	2	6.9	33	1	DEF4 MESAU		mesocricetu
534	2	6.9	33	1	DHE3 PIG		sus scrofa
535	2	6.9	33	1	FER PORAE		porphyridiu
536	2	6.9	33	1	GAST CAVPO		cavia porce
537	2	6.9	33	1	GAST_CHIBR		chinchilla
538	2	6.9	33	1	GAST DIDMA		didelphis m
539	2	6.9	33	1			rana rugosa
	2	6.9	33	1	GGN2_RANRU GGN3 RANRU		
540	2						rana rugosa oreochromis
541		6.9	33	1	GLU2_ORENI		
542	2	6.9	33	1	HF40_MAIZE		zea mays (m
543	2	6.9	33	1	HOXU_RHOOP		rhodococcus
544	2	6.9	33	1	LPPY_SALTY		salmonella
545	2	6.9	33	1	LPRH_ECOLI		escherichia
546	2	6.9	. 33	1	LYC2_HORSE		equus cabal
547	2	6.9	33	1	MBP1_MAIZE		zea mays (m
548	2	6.9	33	1	MHAA_STRCH		streptomyce
549	2	6.9	33	1	MYMY_MYTED		mytilus edu
550	2	6.9	33	1	OTCC_PSEPU		pseudomonas
551	2	6.9	33	1	PEN3_ADECU	P35987	canine aden
552	2	6.9	33	1	PETM_CYAPA		cyanophora
553	2	6.9	33	1	PETM_SYNEL		synechococc
554	2	6.9	33	1	PK1_DICDI		dictyosteli
555	2	6.9	33	1	PK5_DICDI		dictyosteli
556	2	6.9	33	1	PRI1_ONCMY	P02326	oncorhynchu
557	2	6.9	33	1	PRI2_ONCMY	P02328	oncorhynchu
558	2	6.9	33	1	PRTB_MUGCE	P08130	mugil cepha
559	2	6.9	33	1	PRTL_ECOLI	P02338	escherichia
560	2	6.9	33	1	PSAK_CUCSA	P42051	cucumis sat
561	2	6.9	33	1	PSBT_ARATH	P37259	arabidopsis
562	2	6.9	33	1	PSBT_MAIZE	P37257	zea mays (m
563	2	6.9	33	1	RL21_XENLA	P49628	xenopus lae
564	2	6.9	33	1	RL26_XENLA	P49629	xenopus lae
565	2	6.9	33	1	RL28 XENLA	P46780	xenopus lae
566	2	6.9	33	1	RL4_HALCU	P05967	halobacteri
567	2	6.9	33	1	RPOC HETCA	P36441	heterosigma
568	2	6.9	33	1	RRPO_BPBZ1	P09674	bacteriopha
569	2	6.9	33	1	RS4_XENLA	P49401	xenopus lae
570	2	6.9	33	1	RT25 BOVIN	P82669	bos taurus
571	2	6.9	33	1	RUGA RANRU	P80954	rana rugosa
572	2	6.9	33	1	SCX9 BUTOC		buthus occi
573	2	6.9	33	1	THIO CLOST	P81109	clostridium
574	2	6.9	33	1	TX1 HETVE	P58425	heteropoda
575	2	6.9	33	1	TXHI SELHU		selenocosmi
576	2	6.9	33	1	TXN3 SELHA		selenocosmi
577	2	6.9	33	1	VT1B RAT	P58200	rattus norv
578	2	6.9	33	1	Y474 BORBU		borrelia bu
579	2	6.9	33	1	Y656 TREPA		treponema p
580	2	6.9	33	1	Y849 BORBU		borrelia bu
581	2	6.9	33	1	YC12 CHLRE		chlamydomon
582	2	6.9	33	1	YC12 MARPO		marchantia
583	2	6.9	33	1	YC12 MESVI		mesostigma
584	2	6.9	33	1	YC12 NEPOL		nephroselmi
585	2	6.9	33	1	YC12 PINTH		pinus thunb
586	2	6.9	33	1	YL74 ARCFU		archaeoglob
587	2	6.9	33	1	YLCH BP82		bacteriopha
							-

S88							
Section	E00	2	6 9	33 1		VI.CH ECOLI	047268 escherichia
Section						_	
Section						_	
1992 2 6.9						_	
1							
1							
1955 2 6.9 34 1 CXGS_CONGE P15472 conus geogr 1966 2 6.9 34 1 DEFT_RABIT P07468 oryctolagus 1977 2 6.9 34 1 DEFT_RABIT P07468 oryctolagus 1978 19							
1						_	
Section							
Section Sect							
Signature						_	
600 2 6.9 34 1 EGGR APLCA 601 2 6.9 34 1 GAST_CAPHI P04564 capra hircu 602 2 6.9 34 1 HIS_STRPU P19376 strongyloce 603 2 6.9 34 1 HIS_STRPU P19376 strongyloce 604 2 6.9 34 1 ITRI_MOMCO P82409 momordica c 605 2 6.9 34 1 ITRI_MOMCO P82409 momordica c 606 2 6.9 34 1 ITRI_MOMCO P82409 momordica c 606 2 6.9 34 1 ITRI_MOMCO P82409 momordica c 607 2 6.9 34 1 M44E HUMAN Q96pg1 home sapien 608 2 6.9 34 1 MYTE_MYTED P81613 mytilus edu 609 2 6.9 34 1 PRTI_SAROR P25327 sarda orien 610 2 6.9 34 1 PRTI_SAROR P25327 sarda orien 611 2 6.9 34 1 PRTI_SCOSC P83264 scomber sco 612 2 6.9 34 1 PRTI_SCOSC P83264 scomber sco 614 2 6.9 34 1 PRTI_SCOSC P83265 scomber sco 614 2 6.9 34 1 PRTI_THUTH P02321 thunnus thy 615 2 6.9 34 1 PRTI_THUTH P02322 thunnus thy 616 2 6.9 34 1 PRTI_TICLA Q9ps27 dicentrarch 617 2 6.9 34 1 PRTI_THUTH P02322 thunnus thy 618 2 6.9 34 1 PSAI_LOTJA Q9bs0 lotus japon 618 2 6.9 34 1 PSAI_CONHO Q9mt12 cenothera h 619 2 6.9 34 1 PSAI_CHARE P2267 chlamydomon 620 2 6.9 34 1 PSAI_CHARE P2277 chlamydomon 621 2 6.9 34 1 PSAI_CHARE P2277 chlamydomon 622 2 6.9 34 1 PSBM_CHARE P22277 chlamydomon 623 2 6.9 34 1 PSBM_CHARE P22277 chlamydomon 624 2 6.9 34 1 PSBM_CHARE P22277 chlamydomon 625 2 6.9 34 1 PSBM_CHARE P22277 chlamydomon 626 2 6.9 34 1 PSBM_CHARE P22277 chlamydomon 627 2 6.9 34 1 PSBM_CHARE P22277 chlamydomon 628 2 6.9 34 1 PSBM_CHARE P22277 chlamydomon 629 2 6.9 34 1 PSBM_CHARE P22277 chlamydomon 620 2 6.9 34 1 PSBM_CHARE P22277 chlamydomon 621 2 6.9 34 1 PSBM_CHARE P22277 chlamydomon 622 2 6.9 34 1 PSBM_CHARE P22277 chlamydomon 623 2 6.9 34 1 PSBM_CHARE P22397 canis famil 626 2 6.9 34 1 PSBM_CHARE P22397 canis famil 627 2 6.9 34 1 PSBM_CHARE P34833 pisum sativ 628 2 6.9 34 1 PSBM_CHAR P34833 pisum sativ 629 2 6.9 34 1 PSBM_CHAR P34833 pisum sativ 630 2 6.9 34 1 PSBM_CHAR P34833 pisum sativ 631 2 6.9 34 1 PSBM_CHAR P34833 pisum sativ 633 2 6.9 34 1 PSBM_CHAR P34833 pisum sativ 634 2 6.9 34 1 PSBM_CHAR P34833 pisum sativ 635 2 6.9 34 1 PSBM_CHAR P348343 pisum sativ 636 2 6.9 34 1 PSBM_CHAR P34834 pisum sativ 637 2 6.							
601 2 6.9 34 1 HIS_STRPU P19376 strongyloce P19376							_
1	600					_	
1	601					_	
604 2 6.9 34 1 ITR1_MOMCO P82408 momordica c 605 2 6.9 34 1 ITR2_MOMCO P82409 momordica c 606 2 6.9 34 1 LPTN_PROVU P28779 proteus vul 607 2 6.9 34 1 M44E_HUMAN O96pg1 homo sapien 608 2 6.9 34 1 MYTB_MYTED P81613 mytilus edu 609 2 6.9 34 1 PRTN_ANASP O9442 anabaena sp 610 2 6.9 34 1 PRTN_SCOSC P83264 scomber sco 611 2 6.9 34 1 PRTN_SCOSC P83265 scomber sco 612 2 6.9 34 1 PRTN_T SCOSC P83265 scomber sco 613 2 6.9 34 1 PRTN_T SCOSC P83265 scomber sco 614 2 6.9 34 1 PRTN_T SCOSC P83265 scomber sco 614 2 6.9 34 1 PRTN_T SCOSC P83265 scomber sco 614 2 6.9 34 1 PRTN_T SCOSC P83265 scomber sco 614 2 6.9 34 1 PRTN_T SCOSC P83265 scomber sco 614 2 6.9 34 1 PRTN_T SCOSC P83265 scomber sco 614 2 6.9 34 1 PRTN_T SCOSC P83265 scomber sco 614 2 6.9 34 1 PRTN_T SCOSC P83265 scomber sco 616 2 6.9 34 1 PRTN_T SCOSC P83265 scomber sco 617 2 6.9 34 1 PRTN_T SCOSC P83265 scomber sco 618 2 6.9 34 1 PRTN_T SCOSC P83265 scomber sco 619 2 6.9 34 1 PRSN_T SCOSC P83265 scomber sco 610 2 6.9 34 1 PRTN_T SCOSC P83265 scomber sco 611 2 6.9 34 1 PRTN_T SCOSC P83265 scomber sco 612 2 6.9 34 1 PRSN_T SCOSC P83265 scomber sco 613 2 6.9 34 1 PRSN_C SCOSC P83265 scomber sco 614 2 6.9 34 1 PRSN_C SCOSC P83265 scomber sco 615 2 6.9 34 1 PRSN_C SCOSC P83265 scomber sco 616 2 6.9 34 1 PRSN_C SCOSC P83265 scomber sco 617 2 6.9 34 1 PRSN_C SCOSC P83265 scomber sco 618 2 6.9 34 1 PRSN_C SCOSC P83265 scomber sco 619 2 6.9 34 1 PRSN_C SCOSC P83265 scomber sco 610 2 6.9 34 1 PRSN_C SCOSC P83265 scomber sco 611 2 6.9 34 1 PRSN_C SCOSC P83265 scomber sco 612 2 6.9 34 1 PRSN_C SCOSC P83265 scomber sco 612 2 6.9 34 1 PRSN_C SCOSC P83265 scomber sco 613 2 6.9 34 1 PRSN_C SCOSC P83265 scomber sco 614 2 6.9 34 1 PRSN_C SCOSC P83265 scomber sco 615 2 6.9 34 1 PRSN_C SCOSC P83265 scomber sco 616 2 6.9 34 1 PRSN_C SCOSC P83265 scomber sco 617 2 6.9 34 1 PRSN_C SCOSC P83265 scomber sco 618 2 6.9 34 1 PRSN_C SCOSC P83265 scomber sco 619 2 6.9 34 1 PRSN_C SCOSC P83265 scomber sco 610 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	602						
Section	603	2		34 1	-		
006	604	2	6.9	34 1	-		
607	605	2	6.9	34 1	L	ITR2_MOMCO	
608 2 6.9 34 1 MYTE_MYTED P81613 mytilus edu 609 2 6.9 34 1 PETM_ANASP Q9f4w2 anabaena sp 610 2 6.9 34 1 PRTI_SCOSC P83264 scomber sco 611 2 6.9 34 1 PRTI_TUTH P02321 thunnus thy 613 2 6.9 34 1 PRT2_SCOSC P83265 scomber sco 614 2 6.9 34 1 PRT2_SCOSC P83265 scomber sco 614 2 6.9 34 1 PRT2_SCOSC P83265 scomber sco 614 2 6.9 34 1 PRT2_SCOSC P83265 scomber sco 615 2 6.9 34 1 PRT2_SCOSC P83265 scomber sco 616 2 6.9 34 1 PRT2_SCOSC P83265 scomber sco 616 2 </td <td>606</td> <td>2</td> <td>6.9</td> <td>34 1</td> <td>Ļ</td> <td>LPTN_PROVU</td> <td></td>	606	2	6.9	34 1	Ļ	LPTN_PROVU	
608	607	2	6.9	34 1	L	M44E_HUMAN	
609 2 6.9 34 1 PETM_ANASP Q9f4w2 anabaena sp 610 2 6.9 34 1 PRTI_SAROR P25327 sarda orien 611 2 6.9 34 1 PRTI_SCOSC P83264 scomber sco 612 2 6.9 34 1 PRTI_SCOSC P83265 scomber sco 613 2 6.9 34 1 PRTI_THUTH P02321 thunnus thy 613 2 6.9 34 1 PRTI_SCOSC P83265 scomber sco 614 2 6.9 34 1 PRTI_SCOSC P83265 scomber sco 614 2 6.9 34 1 PRTI_SCOSC P83265 scomber sco 616 2 6.9 34 1 PRT_DICLA Q9ps27 dicentrarch 616 2 6.9 34 1 PRT_DICLA Q9ps27 dicentrarch 616 2 6.9 34 1 PRT_DICLA Q9ps20 perca flave 617 2 6.9 34 1 PSAT_LOTJA Q9bbs0 lotus japon 618 2 6.9 34 1 PSAT_LOTJA Q9bbs0 lotus japon 618 2 6.9 34 1 PSAT_LOTJA Q9bbs0 lotus japon 618 2 6.9 34 1 PSAM_CHAGL Q8ma15 chaetosphae 620 2 6.9 34 1 PSBM_CHAGL Q8ma15 chaetosphae 621 2 6.9 34 1 PSBM_CHAGL Q8ma15 chaetosphae 622 2 6.9 34 1 PSBM_MARPO P12168 marchantia 624 2 6.9 34 1 PSBM_MARPO P12168 marchantia 624 2 6.9 34 1 PSBM_NEPOL Q9t137 nephroselmi 625 2 6.9 34 1 PSBM_OEDHO Q9mtm8 cenothera h 626 2 6.9 34 1 PSBM_DED Q9t137 nephroselmi 626 2 6.9 34 1 PSBM_DED Q9mtm8 cenothera h 626 2 6.9 34 1 PSBM_DED Q9mtm8 cenothera h 627 2 6.9 34 1 PSBM_DED Q9mtm8 cenothera h 628 2 6.9 34 1 PSBM_PEA P34833 pisum sativ 627 2 6.9 34 1 PSBM_PEA P34833 pisum sativ 628 2 6.9 34 1 PSBM_DED Q9mtm8 cenothera h 631 2 6.9 34 1 PSBM_DED P312184 nicotiana t 630 2 6.9 34 1 PSBM_DED P312184 nicotiana t 630 2 6.9 34 1 PSBM_DED Q9mtm8 P34833 pisum sativ 631 2 6.9 34 1 PSBM_DED Q9mtm8 passiv 92ms stiv 633 2 6.9 34 1 PSBM_DETA P22397 canis famil 632 2 6.9 34 1 PSBM_DETA P22397 canis famil 633 2 6.9 34 1 PSBM_DETA P22397 canis famil 633 2 6.9 34 1 PSBM_DETA P22397 canis famil 633 2 6.9 34 1 PSBM_DETA P3200HNE Q40606 ochrosphaer 635 2 6.9 34 1 PSBM_DETA P3200HNE P3200		2	6.9	34 1	L	MYTB_MYTED	<u>-</u>
610			6.9	34 1	L	PETM ANASP	Q9f4w2 anabaena sp
611 2 6.9 34 1 PRT1_SCOSC P83264 scomber SCO 612 2 6.9 34 1 PRT1_THUTH P02321 thunnus thy 613 2 6.9 34 1 PRT2_SCOSC P83265 scomber SCO 614 2 6.9 34 1 PRT2_THUTH P02322 thunnus thy 615 2 6.9 34 1 PRT2_THUTH P02322 thunnus thy 615 2 6.9 34 1 PRT_DICTA Q9ps27 dicentrarch 616 2 6.9 34 1 PRT_DICTA Q9ps27 dicentrarch 617 2 6.9 34 1 PSAT_LOTJA Q9bbs0 lotus japon 618 2 6.9 34 1 PSAT_OENHO Q9mt12 oenothera h 619 2 6.9 34 1 PSBM_CHART P12169 arabidopsis 620 2 6.9 34 1 PSBM_CHARE P92277 chlamydomon 621 2 6.9 34 1 PSBM_CHARE P92277 chlamydomon 622 2 6.9 34 1 PSBM_MATZE P48189 zea mays (m 623 2 6.9 34 1 PSBM_MARPO P12168 marchantia 624 2 6.9 34 1 PSBM_DEPOL Q9t137 nephroselmi 625 2 6.9 34 1 PSBM_DEPOL Q9t137 nephroselmi 626 2 6.9 34 1 PSBM_PEA P34833 pisum sativ 627 2 6.9 34 1 PSBM_PEA P34833 pisum sativ 628 2 6.9 34 1 PSBM_WHEAT Q9xps6 triticum ae 629 2 6.9 34 1 PSBM_WHEAT Q9xps6 triticum ae 629 2 6.9 34 1 PSBM_WHEAT Q9xps6 triticum ae 630 2 6.9 34 1 PSPC_EOVIN P15783 bos taurus 631 2 6.9 34 1 PSPC_EOVIN P15783 bos taurus 632 2 6.9 34 1 PSPC_EOVIN P15783 bos taurus 633 2 6.9 34 1 PSPC_EOVIN P15783 bos taurus 634 2 6.9 34 1 RR2_OCHNE Q40606 ochrosphaer 635 2 6.9 34 1 SCXM_SCOMA P80719 scorpio mau 636 2 6.9 34 1 THEM_MALSU P13858 malbranchea 637 2 6.9 34 1 THEM_MALSU P13858 malbranchea 638 2 6.9 34 1 TXX5_BRASM P49266 brachypelma 639 2 6.9 34 1 TXX5_BRASM P49266 brachypelma				34 1	L	PRT1 SAROR	P25327 sarda orien
612				34 1	L	PRT1 SCOSC	P83264 scomber sco
613 2 6.9 34 1 PRT2_SCOSC P83265 scomber SCO 614 2 6.9 34 1 PRT2_THUTH P02322 thunnus thy 615 2 6.9 34 1 PRT_DICLA QPps27 dicentrarch 616 2 6.9 34 1 PRT_PERPV P29629 perca flave 617 2 6.9 34 1 PSAI_LOTJA QPbbs0 lotus japon 618 2 6.9 34 1 PSAI_LOTJA QPbbs0 lotus japon 618 2 6.9 34 1 PSBM_CHAGL Q8ma15 chaetosphae 620 2 6.9 34 1 PSBM_CHLRE P92277 chlamydomon 621 2 6.9 34 1 PSBM_CHLRE P92277 chlamydomon 622 2 6.9 34 1 PSBM_MAIZE P48189 zea mays (m 623 2 6.9 34 1 PSBM_MARPO P12168 marchantia 624 2 6.9 34 1 PSBM_DEPOL Q9t137 nephroselmi 625 2 6.9 34 1 PSBM_DEPOL Q9t137 nephroselmi 626 2 6.9 34 1 PSBM_PEA P34833 pisum sativ 627 2 6.9 34 1 PSBM_PEA P34833 pisum sativ 627 2 6.9 34 1 PSBM_PEA P34833 pisum sativ 628 2 6.9 34 1 PSBM_PEA P34833 pisum sativ 629 2 6.9 34 1 PSBM_WHEAT Q9xps6 triticum ae 629 2 6.9 34 1 PSBM_WHEAT Q9xps6 triticum ae 630 2 6.9 34 1 PSBM_WHEAT P12184 nicotiana t 630 2 6.9 34 1 PSPC_BOVIN P15783 bos taurus 631 2 6.9 34 1 PSPC_BOVIN P15783 bos taurus 631 2 6.9 34 1 PSPC_BOVIN P15783 bos taurus 633 2 6.9 34 1 RNL1_PIG P15466 sus scrofa 634 2 6.9 34 1 RNL1_PIG P15466 sus scrofa 635 2 6.9 34 1 RR2_OCHNE Q40606 ochrosphaer 636 2 6.9 34 1 SMS_MYXGL P19209 myxine glut 637 2 6.9 34 1 THEM_MALSU P13888 malbranchea 638 2 6.9 34 1 TX33_PHONI P81789 phoneutria 639 2 6.9 34 1 TX33_PHONI P81789 phoneutria					L	PRT1 THUTH	P02321 thunnus thy
614 2 6.9 34 1 PRT2_THUTH P02322 thunnus thy 615 2 6.9 34 1 PRT_DICLA Q9ps27 dicentrarch 616 2 6.9 34 1 PRT_PERFV P29629 perca flave 617 2 6.9 34 1 PSAI_LOTJA Q9bbs0 lotus japon 618 2 6.9 34 1 PSAI_LOTJA Q9bbs0 lotus japon 618 2 6.9 34 1 PSAI_OENHO Q9mt12 oenothera h 619 2 6.9 34 1 PSBM_CHLRE Q8ma15 chaetosphae 620 2 6.9 34 1 PSBM_CHLRE P92277 chlamydomon 622 2 6.9 34 1 PSBM_MAIZE P48189 zea mays (m 623 2 6.9 34 1 PSBM_MARPO P12168 marchantia 624 2 6.9 34 1 PSBM_NEPOL Q9t137 nephroselmi 625 2 6.9 34 1 PSBM_PEA P34833 pisum sativ 626 2 6.9 34 1 PSBM_PEA P34833 pisum sativ 627 2 6.9 34 1 PSBM_PEA P34833 pisum sativ 628 2 6.9 34 1 PSBM_PEA P34833 pisum sativ 629 2 6.9 34 1 PSBM_FINU Q8wi22 psilotum nu 628 2 6.9 34 1 PSBM_FINU Q8wi22 psilotum nu 629 2 6.9 34 1 PSBM_FINU Q8wi22 psilotum nu 630 2 6.9 34 1 PSBM_FINU Q8wi22 psilotum nu 631 2 6.9 34 1 PSBM_FINU Q8wi22 psilotum nu 632 2 6.9 34 1 PSBM_FINU Q8wi22 psilotum nu 633 2 6.9 34 1 PSBC_CANFA P12184 nicotiana t 630 2 6.9 34 1 PSPC_BOVIN P15783 bos taurus 631 2 6.9 34 1 PSPC_CANFA P22397 canis famil 632 2 6.9 34 1 PSPC_CANFA P22397 canis famil 633 2 6.9 34 1 RR2_OCHNE Q40606 ochrosphaer 635 2 6.9 34 1 RR2_OCHNE Q40606 ochrosphaer 636 2 6.9 34 1 SXS_MYXGL P19209 myxine glut 637 2 6.9 34 1 THEM_MALSU P13888 malbranchea 638 2 6.9 34 1 TX33_PHONI P81789 phoneutria 639 2 6.9 34 1 TX33_PHONI P81789 phoneutria					L		P83265 scomber sco
615					l		P02322 thunnus thy
616 2 6.9 34 1 PRT_PERFV P29629 perca flave 617 2 6.9 34 1 PSAT_LOTJA Q9bbs0 lotus japon 618 2 6.9 34 1 PSAT_LOTJA Q9bbs0 lotus japon 618 2 6.9 34 1 PSAT_OENHO Q9mtl2 oenothera h 619 2 6.9 34 1 PSBM_ARATH P12169 arabidopsis 620 2 6.9 34 1 PSBM_CHAGL Q8ma15 chaetosphae 621 2 6.9 34 1 PSBM_CHLRE P92277 chlamydomon 622 2 6.9 34 1 PSBM_MAIZE P48189 zea mays (m 623 2 6.9 34 1 PSBM_MAPPO P12168 marchantia 624 2 6.9 34 1 PSBM_NEPOL Q9tl37 nephroselmi 625 2 6.9 34 1 PSBM_PEA P34833 pisum sativ 626 2 6.9 34 1 PSBM_PEA P34833 pisum sativ 627 2 6.9 34 1 PSBM_PEA P34833 pisum sativ 628 2 6.9 34 1 PSBM_WHEAT Q9xps6 triticum ae 629 2 6.9 34 1 PSBM_WHEAT Q9xps6 triticum ae 629 2 6.9 34 1 PSPC_BOVIN P15783 bos taurus 631 2 6.9 34 1 PSPC_BOVIN P15783 bos taurus 631 2 6.9 34 1 PSPC_CANFA P22397 canis famil 632 2 6.9 34 1 RNL1_PIG P15466 sus scrofa 634 2 6.9 34 1 RNL1_PIG P15466 sus scrofa 635 2 6.9 34 1 TXSS_COMA P80719 scorpio mau 637 2 6.9 34 1 TYSS_BRASM P49266 brachypelma 638 2 6.9 34 1 TXPS_BRASM P49266 brachypelma						_	Q9ps27 dicentrarch
617 2 6.9 34 1 PSAI_LOTUA Q9bbs0 lotus japon 618 2 6.9 34 1 PSAI_OENHO Q9mtl2 cenothera h 619 2 6.9 34 1 PSBM_ARATH P12169 arabidopsis 620 2 6.9 34 1 PSBM_CHAGL Q8ma15 chaetosphae 621 2 6.9 34 1 PSBM_CHLRE P92277 chlamydomon 622 2 6.9 34 1 PSBM_MARPO P12168 marchantia 623 2 6.9 34 1 PSBM_MARPO P12168 marchantia 624 2 6.9 34 1 PSBM_NEPOL Q9tl37 nephroselmi 625 2 6.9 34 1 PSBM_PEA Q9mm8 cenothera h 626 2 6.9 34 1 PSBM_PEA P34833 pisum sativ 627 2 6.9 34 1 PSBM_PEA P34833 pisum sativ 628 2 6.9 34 1 PSBM_PEA P34833 pisum sativ 629 2 6.9 34 1 PSBM_WHEAT Q9xps6 triticum ae 629 2 6.9 34 1 PSBM_WHEAT Q9xps6 triticum ae 630 2 6.9 34 1 PSPC_BOVIN P12184 nicotiana t 631 2 6.9 34 1 PSPC_CANFA P22397 canis famil 632 2 6.9 34 1 PYSB_METBA P80522 methanosarc 633 2 6.9 34 1 RNL1_PIG P15466 sus scrofa 634 2 6.9 34 1 RNL1_PIG P15466 sus scrofa 635 2 6.9 34 1 RR2_OCHNE Q40606 ochrosphaer 636 2 6.9 34 1 TRSM_YXGL P19209 myxine glut 637 2 6.9 34 1 THEM_MALSU P13858 malbranchea 638 2 6.9 34 1 TXPS_BRASM P49266 brachypelma							P29629 perca flave
618 2 6.9 34 1 PSAT_OENHO Q9mt12 oenothera h 619 2 6.9 34 1 PSBM_ARATH P12169 arabidopsis 620 2 6.9 34 1 PSBM_CHAGL Q8ma15 chaetosphae 621 2 6.9 34 1 PSBM_CHAGE P92277 chlamydomon 622 2 6.9 34 1 PSBM_MAIZE P48189 zea mays (m 623 2 6.9 34 1 PSBM_MARPO P12168 marchantia 624 2 6.9 34 1 PSBM_NEPOL Q9t137 nephroselmi 625 2 6.9 34 1 PSBM_DENHO Q9mtm8 oenothera h 626 2 6.9 34 1 PSBM_PEA P34833 pisum sativ 627 2 6.9 34 1 PSBM_PEA P34833 pisum sativ 628 2 6.9 34 1 PSBM_WHEAT Q9xps6 triticum ae 629 2 6.9 34 1 PSBM_WHEAT Q9xps6 triticum ae 629 2 6.9 34 1 PSBM_WHEAT Q9xps6 triticum ae 630 2 6.9 34 1 PSPC_BOVIN P15783 bos taurus 631 2 6.9 34 1 PSPC_BOVIN P15783 bos taurus 632 2 6.9 34 1 PSPC_CANFA P22397 canis famil 632 2 6.9 34 1 RNL1_PIG P15466 sus scrofa 634 2 6.9 34 1 RNL1_PIG P15466 sus scrofa 635 2 6.9 34 1 SCXM_SCOMA P80719 scorpio mau 636 2 6.9 34 1 TX33_PHONI P13585 malbranchea 638 2 6.9 34 1 TX33_PHONI P81789 phoneutria 639 2 6.9 34 1 TX55_BRASM P49266 brachypelma							-
619							
620							
621 2 6.9 34 1 PSBM_CHLRE P92277 chlamydomon 622 2 6.9 34 1 PSBM_MAIZE P48189 zea mays (m 623 2 6.9 34 1 PSBM_MARPO P12168 marchantia 624 2 6.9 34 1 PSBM_NEPOL Q9tl37 nephroselmi 625 2 6.9 34 1 PSBM_OENHO Q9mtm8 oenothera h 626 2 6.9 34 1 PSBM_PEA P34833 pisum sativ 627 2 6.9 34 1 PSBM_PSINU Q8wi22 psilotum nu 628 2 6.9 34 1 PSBM_PSINU Q8wi22 psilotum nu 628 2 6.9 34 1 PSBM_PSINU Q8wi22 psilotum nu 629 2 6.9 34 1 PSBM_PSINU P12184 nicotiana t 630 2 6.9 34 1 PSPC_BOVIN P15783 bos taurus 631 2 6.9 34 1 PSPC_BOVIN P15783 bos taurus 631 2 6.9 34 1 PSPC_CANFA P22397 canis famil 632 2 6.9 34 1 PYSB_METBA P80522 methanosarc 633 2 6.9 34 1 RNL1 PIG P15466 sus scrofa 634 2 6.9 34 1 RR2_OCHNE Q40606 ochrosphaer 635 2 6.9 34 1 SCXM_SCOMA P80719 scorpio mau 636 2 6.9 34 1 SMS_MYXGL P19209 myxine glut 637 2 6.9 34 1 THEM_MALSU P13858 malbranchea 638 2 6.9 34 1 TXSS_PHONI P81789 phoneutria 639 2 6.9 34 1 TXPS_BRASM P49266 brachypelma							
622 2 6.9 34 1 PSBM_MAIZE P48189 zea mays (m 623 2 6.9 34 1 PSBM_MARPO P12168 marchantia 624 2 6.9 34 1 PSBM_NEPOL Q9t137 nephroselmi 625 2 6.9 34 1 PSBM_OENHO Q9mtm8 oenothera h 626 2 6.9 34 1 PSBM_PEA P34833 pisum sativ 627 2 6.9 34 1 PSBM_PEA P34833 pisum sativ 628 2 6.9 34 1 PSBM_PEA P34833 pisum sativ 629 2 6.9 34 1 PSBM_WHEAT Q9xps6 triticum ae 629 2 6.9 34 1 PSBT_TOBAC P12184 nicotiana t 630 2 6.9 34 1 PSPC_BOVIN P15783 bos taurus 631 2 6.9 34 1 PSPC_CANFA P22397 canis famil 632 2 6.9 34 1 PYSB_METBA P80522 methanosarc 633 2 6.9 34 1 RNL1_PIG P15466 sus scrofa 634 2 6.9 34 1 RR2_OCHNE Q40606 ochrosphaer 635 2 6.9 34 1 RR2_OCHNE Q40606 ochrosphaer 636 2 6.9 34 1 THEM_MALSU P13858 malbranchea 638 2 6.9 34 1 TX33_PHONI P81789 phoneutria 639 2 6.9 34 1 TXP5_BRASM P49266 brachypelma							· ·
623 2 6.9 34 1 PSBM_MARPO P12168 marchantia 624 2 6.9 34 1 PSBM_NEPOL Q9t137 nephroselmi 625 2 6.9 34 1 PSBM_OENHO Q9mtm8 oenothera h 626 2 6.9 34 1 PSBM_PEA P34833 pisum sativ 627 2 6.9 34 1 PSBM_PSINU Q8wi22 psilotum nu 628 2 6.9 34 1 PSBM_WHEAT Q9xps6 triticum ae 629 2 6.9 34 1 PSBM_TOBAC P12184 nicotiana t 630 2 6.9 34 1 PSPC_BOVIN P15783 bos taurus 631 2 6.9 34 1 PSPC_CANFA P22397 canis famil 632 2 6.9 34 1 PSPC_CANFA P80522 methanosarc 633 2 6.9 34 1 PNLTEPID P15466 sus scrofa 634 2 6.9 34 1 RR2_OCHNE Q40606 ochrosphaer						_	
624 2 6.9 34 1 PSBM_NEPOL Q9t137 nephroselmi 625 2 6.9 34 1 PSBM_OENHO Q9mtm8 oenothera h 626 2 6.9 34 1 PSBM_PEA P34833 pisum sativ 627 2 6.9 34 1 PSBM_PSINU Q8wi22 psilotum nu 628 2 6.9 34 1 PSBM_WHEAT Q9xps6 triticum ae 629 2 6.9 34 1 PSBT_TOBAC P12184 nicotiana t 630 2 6.9 34 1 PSPC_BOVIN P15783 bos taurus 631 2 6.9 34 1 PSPC_CANFA P22397 canis famil 632 2 6.9 34 1 PYSB_METBA P80522 methanosarc 633 2 6.9 34 1 RNL1_PIG P15466 sus scrofa 634 2 6.9 34 1 RR2_OCHNE Q40606 ochrosphaer 635 2 6.9 34 1 SMS_MYXGL P19209 myxine glut						-	
625 2 6.9 34 1 PSBM_OENHO Q9mtm8 oenothera h 626 2 6.9 34 1 PSBM_PEA P34833 pisum sativ 627 2 6.9 34 1 PSBM_PSINU Q8wi22 psilotum nu 628 2 6.9 34 1 PSBM_WHEAT Q9xps6 triticum ae 629 2 6.9 34 1 PSBM_WHEAT Q9xps6 triticum ae 630 2 6.9 34 1 PSPC_BOVIN P15783 bos taurus 631 2 6.9 34 1 PSPC_BOVIN P15783 bos taurus 631 2 6.9 34 1 PSPC_CANFA P22397 canis famil 632 2 6.9 34 1 PYSB_METBA P80522 methanosarc 633 2 6.9 34 1 RNL1_PIG P15466 sus scrofa 634 2 6.9 34 1 RRZ_OCHNE Q40606 ochrosphaer 635 2 6.9 34 1 SMS_MYXGL P19209 myxine glut							
626 2 6.9 34 1 PSBM_PEA P34833 pisum sativ 627 2 6.9 34 1 PSBM_PSINU Q8wi22 psilotum nu 628 2 6.9 34 1 PSBM_WHEAT Q9xps6 triticum ae 629 2 6.9 34 1 PSBT_TOBAC P12184 nicotiana t 630 2 6.9 34 1 PSPC_BOVIN P15783 bos taurus 631 2 6.9 34 1 PSPC_CANFA P22397 canis famil 632 2 6.9 34 1 PYSB_METBA P80522 methanosarc 633 2 6.9 34 1 RNL1_PIG P15466 sus scrofa 634 2 6.9 34 1 RR2_OCHNE Q40606 ochrosphaer 635 2 6.9 34 1 SCXM_SCOMA P80719 scorpio mau 636 2 6.9 34 1 THEM_MALSU P13858 malbranchea 638 2 6.9 34 1 TX33_PHONI P81789 phoneutria							-
627 2 6.9 34 1 PSBM_PSINU Q8wi22 psilotum nu 628 2 6.9 34 1 PSBM_WHEAT Q9xps6 triticum ae 629 2 6.9 34 1 PSBT_TOBAC P12184 nicotiana t 630 2 6.9 34 1 PSPC_BOVIN P15783 bos taurus 631 2 6.9 34 1 PSPC_CANFA P22397 canis famil 632 2 6.9 34 1 PYSB_METBA P80522 methanosarc 633 2 6.9 34 1 RNL1_PIG P15466 sus scrofa 634 2 6.9 34 1 RR2_OCHNE Q40606 ochrosphaer 635 2 6.9 34 1 SCXM_SCOMA P80719 scorpio mau 636 2 6.9 34 1 SMS_MYXGL P19209 myxine glut 637 2 6.9 34 1 THEM_MALSU P13858 malbranchea 638 2 6.9 34 1 TX33_PHONI P81789 phoneutria 639 2 6.9 34 1 TXP5_BRASM P49266 brachypelma					_		~
628 2 6.9 34 1 PSBM_WHEAT Q9xps6 triticum ae 629 2 6.9 34 1 PSBT_TOBAC P12184 nicotiana t 630 2 6.9 34 1 PSPC_BOVIN P15783 bos taurus 631 2 6.9 34 1 PSPC_CANFA P22397 canis famil 632 2 6.9 34 1 PYSB_METBA P80522 methanosarc 633 2 6.9 34 1 RNL1_PIG P15466 sus scrofa 634 2 6.9 34 1 RR2_OCHNE Q40606 ochrosphaer 635 2 6.9 34 1 SCXM_SCOMA P80719 scorpio mau 636 2 6.9 34 1 SMS_MYXGL P19209 myxine glut 637 2 6.9 34 1 THEM_MALSU P13858 malbranchea 638 2 6.9 34 1 TX33_PHONI P81789 phoneutria 639 2 6.9 34 1 TXP5_BRASM P49266 brachypelma </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
629 2 6.9 34 1 PSBT_TOBAC P12184 nicotiana t 630 2 6.9 34 1 PSPC_BOVIN P15783 bos taurus 631 2 6.9 34 1 PSPC_CANFA P22397 canis famil 632 2 6.9 34 1 PYSB_METBA P80522 methanosarc 633 2 6.9 34 1 RNL1_PIG P15466 sus scrofa 634 2 6.9 34 1 RR2_OCHNE Q40606 ochrosphaer 635 2 6.9 34 1 SCXM_SCOMA P80719 scorpio mau 636 2 6.9 34 1 SMS_MYXGL P19209 myxine glut 637 2 6.9 34 1 THEM_MALSU P13858 malbranchea 638 2 6.9 34 1 TX33_PHONI P81789 phoneutria 639 2 6.9 34 1 TXP5_BRASM P49266 brachypelma						_	
630						—	~ •
631 2 6.9 34 1 PSPC_CANFA P22397 canis famil 632 2 6.9 34 1 PYSB_METBA P80522 methanosarc 633 2 6.9 34 1 RNL1_PIG P15466 sus scrofa 634 2 6.9 34 1 RR2_OCHNE Q40606 ochrosphaer 635 2 6.9 34 1 SCXM_SCOMA P80719 scorpio mau 636 2 6.9 34 1 SMS_MYXGL P19209 myxine glut 637 2 6.9 34 1 THEM_MALSU P13858 malbranchea 638 2 6.9 34 1 TX33_PHONI P81789 phoneutria 639 2 6.9 34 1 TXP5_BRASM P49266 brachypelma						_	
632 2 6.9 34 1 PYSB_METBA P80522 methanosarc 633 2 6.9 34 1 RNL1_PIG P15466 sus scrofa 634 2 6.9 34 1 RR2_OCHNE Q40606 ochrosphaer 635 2 6.9 34 1 SCXM_SCOMA P80719 scorpio mau 636 2 6.9 34 1 SMS_MYXGL P19209 myxine glut 637 2 6.9 34 1 THEM_MALSU P13858 malbranchea 638 2 6.9 34 1 TX33_PHONI P81789 phoneutria 639 2 6.9 34 1 TXP5_BRASM P49266 brachypelma						_	
633 2 6.9 34 1 RNL1_PIG P15466 sus scrofa 634 2 6.9 34 1 RR2_OCHNE Q40606 ochrosphaer 635 2 6.9 34 1 SCXM_SCOMA P80719 scorpio mau 636 2 6.9 34 1 SMS_MYXGL P19209 myxine glut 637 2 6.9 34 1 THEM_MALSU P13858 malbranchea 638 2 6.9 34 1 TX33_PHONI P81789 phoneutria 639 2 6.9 34 1 TXP5_BRASM P49266 brachypelma						_	
634 2 6.9 34 1 RR2_OCHNE Q40606 ochrosphaer 635 2 6.9 34 1 SCXM_SCOMA P80719 scorpio mau 636 2 6.9 34 1 SMS_MYXGL P19209 myxine glut 637 2 6.9 34 1 THEM_MALSU P13858 malbranchea 638 2 6.9 34 1 TX33_PHONI P81789 phoneutria 639 2 6.9 34 1 TXP5_BRASM P49266 brachypelma						-	
635 2 6.9 34 1 SCXM_SCOMA P80719 scorpio mau 636 2 6.9 34 1 SMS_MYXGL P19209 myxine glut 637 2 6.9 34 1 THEM_MALSU P13858 malbranchea 638 2 6.9 34 1 TX33_PHONI P81789 phoneutria 639 2 6.9 34 1 TXP5_BRASM P49266 brachypelma							
636 2 6.9 34 1 SMS_MYXGL P19209 myxine glut 637 2 6.9 34 1 THEM_MALSU P13858 malbranchea 638 2 6.9 34 1 TX33_PHONI P81789 phoneutria 639 2 6.9 34 1 TXP5_BRASM P49266 brachypelma							
637 2 6.9 34 1 THEM_MALSU P13858 malbranchea 638 2 6.9 34 1 TX33_PHONI P81789 phoneutria 639 2 6.9 34 1 TXP5_BRASM P49266 brachypelma						-	
638 2 6.9 34 1 TX33_PHONI P81789 phoneutria 639 2 6.9 34 1 TXP5_BRASM P49266 brachypelma						_	
639 2 6.9 34 1 TXP5_BRASM P49266 brachypelma							
						_	
CAA O CA QA I MIVO DDMI POXXXY DACTERIADDA							
	640	2	6.9		1	VLYS_BPM1	_
641 2 6.9 34 1 VPU_HV1W2 P08808 human immun							
642 2 6.9 34 1 Y05J_BPT4 P39239 bacteriopha						-	
643 2 6.9 34 1 Y224 TREPA 083253 treponema p						—	
644 2 6.9 34 1 Y848_BORBU O51788 borrelia bu	644	2	6.9	34	1	Y848_BORBU	O51788 borrella bu

645	2	6.9	34	1	Y870 HAEIN	P44065 haemophilus
646	2	6.9	34	1	Y967 HAEIN	P44086 haemophilus
647	2	6.9	34	1	YC12 GUITH	078460 guillardia
648	2	6.9	34	1	YC12 ODOSI	P49529 odontella s
649	2	6.9	34	1	YC12 PORPU	P51385 porphyra pu
650	2	6.9	34	1	YC12 SKECO	096797 skeletonema
651	2	6.9	34	1	YMIA AGRTU	P38437 agrobacteri
652	2	6.9	34	1	Z33B HUMAN	Q06731 homo sapien
653	2	6.9	35	1	ADO1 AGRDO	P58608 agriosphodr
654	2	6.9	35	1	C550_BACHA	P80091 bacillus ha
655	2	6.9	35	1	CEC4 BOMMO	P14666 bombyx mori
656	2	6.9	35	1	CECA HELVI	P83413 heliothis v
657	2	6.9	35	1	CECB ANTPE	P01509 antheraea p
658	2	6.9	35	1	D3HI RABIT	P32185 oryctolagus
659	2	6.9	35	1	DEFB MYTED	P81611 mytilus edu
660	2	6.9	35	1	END4 YEREN	P42691 yersinia en
661	2	6.9	35	1	ERFK KLEAE	Q08599 klebsiella
662	2	6.9	35	1	EXE2 HELSU	P04204 heloderma s
663	2	6.9	35	1	FAS CAPHI	P08757 capra hircu
664	2	6.9	35	1	FLAV NOSSM	P35707 nostoc sp.
665	2	6.9	35	1	GBGU MOUSE	Q61017 mus musculu
666	2	6.9	35	1	GRDB CLOPU	P55793 clostridium
667	2	6.9	35	1	GUR GYMSY	P25810 gymnema syl
668	2	6.9	. 35	1	HMWC DESGI	P38588 desulfovibr
669	2	6.9	35	1	IAAC HORVU	P34951 hordeum vul
670	2	6.9	35	1	KPPR PINPS	P81664 pinus pinas
671	2	6.9	35	1	LCGB_LACLA	P36962 lactococcus
672	2	6.9	35	1	NEF HV1H3	P05854 human immun
673	2	6.9	35	1	PBP1 LYMDI	P34176 lymantria d
674	2	6.9	35	1	PBP2 LYMDI	P34177 lymantria d
675	2	6.9	35	1	PBP HYACE	P34175 hyalophora
676	2	6.9	35	1	PBP ORGPS	P34178 orgyia pseu
677	2	6.9	35	1	PHI1 MYTCA	P35422 mytilus cal
678	2	6.9	35	1	PSAI CYAPA	P48116 cyanophora
679	2	6.9	35	1	PSBT MARPO	P12182 marchantia
680	2	6.9	35	1	PSBT_OENHO	P37258 oenothera h
681	2	6.9	35	1	PSBT ORYSA	P12183 oryza sativ
682	2	6.9	35	1	PSBT PINTH	P41625 pinus thunb
683	2	6.9	35			P15785 sus scrofa
684	2	6.9	35	1	RL32 HALCU	P05965 halobacteri
685	2	6.9	35	1	SCKB PANIM	P55928 pandinus im
686	2	6.9	35	1	SCKG PANIM	Q10726 pandinus im
687	2	6.9	35	1	SCX1 BUTSI	P15229 buthus sind
688	2	6.9	35	1	SCX5 BUTEU	P15222 buthus eupe
689	2	6.9	35	1	SCXP ANDMA	P01498 androctonus
690	2	6.9	35	1	SMS LAMFL	Q9prr0 lampetra fl
691	2	6.9	35	1	SPRC PIG	P20112 sus scrofa
692	2	6.9	35	1	THPA_THADA	P21381 thaumatococ
693	2	6.9	35	1	TMTX MESTA	Q9bn12 mesobuthus
694	2	6.9	35	1	TXAG AGEOP	P31328 agelena opu
695	2	6.9	35	1	TXH4 SELHU	P83303 selenocosmi
696	2	6.9	35	1	TXKS_STOHE	P29187 stoichactis
697	2	6.9	35	1	TXN4 SELHA	P83471 selenocosmi
698	2	6.9	35	1	VL3 PAPVD	P06919 deer papill
699	2	6.9	35	1	VSPA CERVI	P18692 cerastes vi
700	2	6.9	35	1	WSP7 PINPS	P81086 pinus pinas
701	2	6.9	35	1	Y210 HAEIN	P43964 haemophilus
					_	

702	2	6.9	35	1	Y320_BORBU	051299 borrelia bu
703	2	6.9	35	1	Y37_BPT3	P20325 bacteriopha
704	2	6.9	35	1	Y644 ARCFU	029613 archaeoglob
705	2	6.9	35	1	Y845 BORBU	051785 borrelia bu
706	2	6.9	35	1	Y847 BORBU	051787 borrelia bu
707	2	6.9	35	1	YC12 CYACA	Q9tlx0 cyanidium c
708	2	6.9	35	1	YC69 ARCFU	028999 archaeoglob
	2	6.9	35	1	YQB5 CAEEL	Q09258 caenorhabdi
709						P28839 sus scrofa
710	2	6.9	36	1	AMPL_PIG	P22642 anguilla ja
711	2	6.9	36	1	ANFV_ANGJA	
712	2	6.9	36	1	C3L1_BOVIN	P30922 bos taurus
713	2	6.9	36	1	CBBA_NITVU	P37102 nitrobacter
714	2	6.9	36	1	CECD_ANTPE	P01511 antheraea p
715	2	6.9	36	1	CYC7_GEOME	P81894 geobacter m
716	2	6.9	36	1	F4RE METOG	P80951 methanogeni
717	2	6.9	36	1	GLU1 ORENI	P81026 oreochromis
718	2	6.9	36	1	GLUC HYDCO	P09682 hydrolagus
719	2	6.9	36	1	H1L5 ENSMI	P27203 ensis minor
720	2	6.9	36	1	HBB PONPY	Q9tt34 pongo pygma
	2	6.9	36	1	IAA STRAU	P04082 streptomyce
721					-	P58609 isyndus obs
722	2	6.9	36	1	IOB1_ISYOB	
723	2	6.9	36	1	KAD_STRGR	P53398 streptomyce
724	2	6.9	36	1	LHG_RHOVI	P04126 rhodopseudo
725	2	6.9	36	1	LYOX_PIG	P45845 sus scrofa
726	2	6.9	36	1	MFA1_YEAST	P34165 saccharomyc
727	2	6.9	36	1	MPG2_DACGL	Q41183 dactylis gl
728	2	6.9	36	1	MYPC RAT	P56741 rattus norv
729	2	6.9	36	1	NEUH CARCA	P11975 cardisoma c
730	2	6.9	36	1	NEUY GADMO	P80167 gadus morhu
731	2	6.9	36	1	NEUY ONCMY	P29071 oncorhynchu
732	2	6.9	36	1	NEUY RABIT	P09640 oryctolagus
733	2	6.9	36	1	NEUY RANRI	P29949 rana ridibu
				1	_	P26249 enterobacte
734	2	6.9	36		NIFH_ENTAG	
735	2	6.9	36	1	NLTP_PINPI	P26912 pinus pinea
736	2	6.9	36	1	NUCM_SOLTU	P80264 solanum tub
737	2	6.9	36	1	OST2_CHICK	P80897 gallus gall
738	2	6.9	36	1	PAHO_ALLMI	P06305 alligator m
739	2	6.9	36	1	PAHO_ANSAN	P06304 anser anser
740	2	6.9	36	1	PAHO_CERSI	P37999 ceratotheri
741	2	6.9	36	1	PAHO DIDMA	P18107 didelphis m
742	2	6.9	36	1	PAHO EQUZE	P38000 equus zebra
743	2	6.9	36	1	PAHO ERIEU	P41335 erinaceus e
744	2	6.9	36	1	PAHO LARAR	P41337 larus argen
745	2	6.9	36	1	PAHO MACMU	P33684 macaca mula
746	2	6.9	36	1	PAHO RABIT	P41336 oryctolagus
747	2	6.9	36	1	—	P15427 rana catesb
748	2	6.9	36	1	PAHO RANTE	P31229 rana tempor
					_	P11967 struthio ca
749	2	6.9	36	1	PAHO_STRCA	
750	2	6.9	36	1	PAHO_TAPPI	P39659 tapirus pin
751	2	6.9	36	1	PGKH_CHLFU	P36232 chlorella f
752	2	6.9	36	1	PMY_PETMA	P80024 petromyzon
753	2	6.9	36	1	PSAH_PEA	P20121 pisum sativ
754	2	6.9	36	1	PSAI_ANGLY	P28251 angiopteris
755	2	6.9	36	1	PSAI_BRAOL	Q31909 brassica ol
756	2	6.9	36	1	PSAI CHAGL	Q8m9x5 chaetosphae
757	2	6.9	36	1	PSAI CHLVU	P58214 chlorella v
758	2	6.9	36	1	PSAI CYACA	Q9tm24 cyanidium c
. 50	2	5.7	50	_		≈1

759	2	6.9	36	1	PSAI HORVU	P13165 hordeum vul
760	2	6.9	36	1	PSAI_MAIZE	P30980 zea mays (m
761	2	6.9	36	1	PSAI MARPO	P12185 marchantia
762	2	6.9	36	1	PSAI MESVI	Q9muq4 mesostigma
763	2	6.9	36	1	PSAI NEPOL	Q9tl12 nephroselmi
764	2	6.9	36	1	PSAI ORYSA	P12186 oryza sativ
765	2	6.9	36	1	PSAI PICAB	O47040 picea abies
766	2	6.9	36	1	PSAI PORPU	P51387 porphyra pu
767	2	6.9	36	1	PSAI PSINU	Q8wi10 psilotum nu
768	2	6.9	36	'n	PSAI SKECO	096813 skeletonema
769	2	6.9	36	1	PSAI TOBAC	P12187 nicotiana t
770	2	6.9	36	1	PSAI WHEAT	P25410 triticum ae
771	2	6.9	36	1	PSBI ARATH	P09970 arabidopsis
772	2	6.9	36	1	PSBI HORVU	P25876 hordeum vul
773	2	6.9	36	1	PSBI MARPO	P09969 marchantia
774	2	6.9	36	1	PSBI ORYSA	P12161 oryza sativ
775	2	6.9	36	1	PSBI PINTH	P41599 pinus thunb
776	2	6.9	36	1	PSBI PSEMZ	P29796 pseudotsuga
777	2	6.9	36	1	PSBM CHLVU	P56325 chlorella v
778	2	6.9	36	1	PSBM SYNEL	Q8dha7 synechococc
779	2	6.9	36	1	PSBY ODOSI	P49543 odontella s
780	2	6.9	36	1	PSBY PORPU	P51206 porphyra pu
781	2	6.9	36	1	PYY AMICA	P29205 amia calva
782	2	6.9	36	1	PYY LEPSP	P09473 lepisosteus
783	2	6.9	36	1	PYY MYOSC	P09641 myoxocephal
784	2	6.9	36	1	PYY ONCKI	P09474 oncorhynchu
785	2	6.9	36	1	PYY ORENI	P81028 oreochromis
786	2	6.9	36	1	PYY PIG	P01305 sus scrofa
787	2	6.9	36	1	PYY RAJRH	P29206 raja rhina
788	2	6.9	36	1	PYY RANRI	P29204 rana ridibu
789	2	6.9	36	1	SCK2 CENLL	P45630 centruroide
790	2	6.9	36	1	SCK3 LEIQH	P45660 leiurus qui
791	2	6.9	36	1	SCX1 BUTEU	P15220 buthus eupe
792	2	6.9	36	1	SCXL LEIQU	P45639 leiurus qui
793	2	6.9	36	1	SPYY PHYBI	P80952 phyllomedus
794	2	6.9	36	1	TAEK ACTEQ	P81897 actinia equ
795	2	6.9	36	1	TLN1 CHICK	P54939 gallus gall
796	2	6.9	36	1	TX1B AGEAP	P15970 agelenopsis
797	2	6.9	36			P11495 metridium s
798	2	6.9	36	1	TXD3_PARLU	P83258 paracoelote
799	2	6.9	36	1	TXJB HADVE	P82226 hadronyche
800	2	6.9	36	1	Y16L BPT4	P39244 bacteriopha
801	2	6.9	36	1	Y297 ARCFU	029945 archaeoglob
802	2	6.9	36	1	Y4KD BPCHP	P19188 bacteriopha
803	2	6.9	36	1	Y609_BORBU	051554 borrelia bu
804	2	6.9	36	1	Y619 ARCFU	029636 archaeoglob
805	2	6.9	36	1	Y699 TREPA	083697 treponema p
805	2	6.9	36	1	YC12 CYAPA	P48256 cyanophora
807	2	6.9	36	1	YG50 HAEIN	P44281 haemophilus
808	2	6.9	36	1	YRKG BACSU	P54434 bacillus su
809	2	6.9	37	1	24KD PLACH	P14592 plasmodium
810	2	6.9	37	1	AFP4 MALPA	P83138 malva parvi
811	2	6.9	37	1	ANP3 PSEAM	P02733 pseudopleur
812	2	6.9	37	1	ATPO SOLTU	P80504 solanum tub
813	2	6.9	37	1	B2MG ORENI	Q03423 oreochromis
814	2	6.9	37	1	CAL1 PIG	P30880 sus scrofa
814	2	6.9	37	1	CEC2 MANSE	P14662 manduca sex
013	4	Q.J	۱ د		CHCT LEATINGE	<u> </u>

							_
816	2	6.9	37	1	CEC3_MANSE	-	manduca sex
817	2	6.9	37	1	CEC4_MANSE		manduca sex
818	2	6.9	37	1	CG2S_LUPAN		lupinus ang
819	2	6.9	37	1	CS40_STAAU	P81684	staphylococ
820	2	6.9	37	1	CUP4_SARBU	P14486	sarcophaga
821	2	6.9	37	1	DEFA MYTED	P81610	mytilus edu
822	2	6.9	37	1	ECAA ECTTU	P49343	ectatomma t
823	2	6.9	37	1	ES2A RANES		rana escule
824	2	6.9	37	1	ES2B RANES		rana escule
825	2	6.9	37	1	F13A BOVIN		bos taurus
826	2	6.9	37	1	GHR3 RAT		rattus norv
827	2	6.9	37	1	HCYB CANPG		cancer pagu
828	2	6.9	37	1	HOXF RHOOP		rhodococcus
829	2	6.9	37				serratia ma
				1	LPPY_SERMA		
830	2	6.9	37	1	MAUR_PARVE		paracoccus
831	2	6.9	37	1	ME20_EUPRA		euplotes ra
832	2	6.9	37	1	MIBP_PSESP		pseudomonas
833	2	6.9	37	1	NLT3_VITSX		vitis sp. (
834	2	6.9	37	1	$NLT4_VITSX$		vitis sp. (
835	2	6.9	37	1	NUFM_SOLTU	P80266	solanum tub
836	2	6.9	37	1	OP2A_OXYKI	P83248	oxyopes kit
837	2	6.9	37	1	OP2B_OXYKI	P83249	oxyopes kit
838	2	6.9	37	1	OP2C OXYKI	P83250	oxyopes kit
839	2	6.9	37	1	OP2D OXYKI	P83251	oxyopes kit
840	2	6.9	37	1	PETG ANASP		anabaena sp
841	2	6.9	37	1	PETG ANAVA		anabaena va
842	2	6.9	37	1	PETG ARATH		arabidopsis
843	2	6.9	37	1	PETG CHAGL		chaetosphae
844	2	6.9	37	1	PETG CHLEU	•	chlamydomon
845	2	6.9	37	1	PETG CHLRE		chlamydomon
846	2	6.9	37	1	PETG CHLVU		chlorella v
847	2	6.9	37	1	PETG_CHEVO		cuscuta ref
848	2	6.9	37 37	1	-		
	2				PETG_CYAPA		cyanophora
849		6.9	37	1	PETG_EUGGR		euglena gra
850	2	6.9	37	1	PETG_GUITH		guillardia
851	2	6.9	37	1	PETG_MARPO		marchantia
852	2	6.9	37	1	PETG_MESVI		mesostigma
853	2	6.9	37	1	PETG_NEPOL		nephroselmi
854	2	6.9	37	1	PETG_ODOSI		odontella s
855	2	6.9	37	1			oryza sativ
856	2	6.9	37	1	PETG_PINTH		pinus thunb
857	2	6.9	37	1	PETG_PORPU	P51318	porphyra pu
858	2	6.9	37	1	PETG_PSINU	Q8wi02	psilotum nu
859	2	6.9	37	1	PETG_SKECO	096811	skeletonema
860	2	6.9	37	1	PETG SYNEL	Q8dki2	synechococc
861	2	6.9	37	1	PETG SYNP7	Q9z3g1	synechococc
862	2	6.9	37	1	PIIL ACHLY		achromobact
863	2	6.9	37	1	POLN WEEV		western equ
864	2	6.9	37	1	PRF1 RAT		rattus norv
865	2	6.9	37	1	PSAI ARATH		arabidopsis
866	2	6.9	37	1	PSAJ EUGGR		euglena gra
867	2	6.9	37	1	PSBL ARATH		arabidopsis
868	2	6.9	37	1	PSBL ORYSA		oryza sativ
869	2	6.9	37	1	PSBM_OKISA PSBM_PINTH		pinus thumb
870	2	6.9	37	1	PSBY CYACA		cyanidium c
871	2	6.9	37 37	1	_		guillardia
872	2				PSBY_GUITH		gallus gall
0/2	۷.	6.9	37	1	PYY_CHICK	£23203	garrus yatt

873	2	6.9	37	1	REV_SIVM2		simian immu	
874	2	6.9	37	1	RK36_ARATH		arabidopsis	
875	2	6.9	37	1	RK36_ASTLO		astasia lon	
876	2	6.9	37	1	RK36_CHAGL		chaetosphae	
877	2	6.9	37	1	RK36_CHLVU		chlorella v	
878	2	6.9	37	1	RK36_CYACA		cyanidium c	
879	2	6.9	37	1	RK36_CYAPA		cyanophora	
880	2	6.9	37	1	RK36_EPIVI		epifagus vi	
881	2	6.9	37	1	RK36_EUGGR		euglena gra	
882	2	6.9	37	1	RK36_LOTJA		lotus japon	
883	2	6.9	37	1	RK36_MARPO		marchantia	
884	2	6.9	37	1	RK36_NEPOL		nephroselmi	
885	2	6.9	37	1	RK36_ODOSI		odontella s	
886	2	6.9	37	1	RK36_OENHO		oenothera h	
887	2	6.9	37	1	RK36_ORYSA		oryza sativ	
888	2	6.9	37	1	RK36_PEA		pisum sativ	
889	2	6.9	37	1	RK36_PINTH	P41631	pinus thunb	
890	2	6.9	37	1	RK36 PORPU	P51296	porphyra pu	
891	2	6.9	37	1	RK36 PSINU	Q8why9	psilotum nu	
892	2	6.9	37	1	RK36 SPIOL	P12230	spinacia ol	
893	2	6.9	37	1	RL36 ANASP	Q8ypk0	anabaena sp	
894	2	6.9	37	1	RL36 AQUAE	066487	aquifex aeo	
895	2	6.9	37	1	RL36 BACHD	050631	bacillus ha	
896	2	6.9	37	1	RL36 BACST	P07841	bacillus st	
897	2	6.9	37	1	RL36 BACSU	P20278	bacillus su	
898	2	6.9	37	1	RL36 BORBU	051452	borrelia bu	
899	2	6.9	37	1	RL36 CAMJE	Q9pm84	campylobact	
900	2	6.9	37	1	RL36 CLOAB	-	clostridium	
901	2	6.9	37	1	RL36 CLOPE	Q8xhu7	clostridium	
902	2	6.9	37	1	RL36 DEIRA	Q9rsk0	deinococcus	
903	2	6.9	37	1	RL36 HAEIN	P46361	haemophilus	
904	2	6.9	37	1	RL36 HELPJ	Q9zjt1	helicobacte	
905	2	6.9	37	1	RL36 HELPY	P56058	helicobacte	
906	2	6.9	37	1	RL36 LEPIN	Q9xd13	leptospira	
907	2	6.9	37	1	RL36 LISMO	Q927n0	listeria mo	
908	2	6.9	37	1	RL36 MYCGA	Q9rdv9	mycoplasma	
909	2	6.9	37	1	RL36 MYCGE	P47420	mycoplasma	
910	2	6.9	37	1	RL36_MYCLE	Q9x7a2	mycobacteri	
911	2	6.9	37	1	RL36 MYCPN	P52864	mycoplasma	
912	2	6.9	37	1	RL36 MYCPU	Q98q05	mycoplasma	
913	. 2	6.9	37	1	RL36 MYCSP	P38015	mycoplasma	
914	2	6.9	37	1	RL36 MYCTU	P45810	mycobacteri	
915	2	6.9	37	1	RL36 NEIMA	Q9jrb2	neisseria m	
916	2	6.9	37	1	RL36 STAAM	Q99s42	staphylococ	
917	2	6.9	37	1	RL36 STRCO	086772	streptomyce	
918	2	6.9	37	1	RL36 SYNP6	024707	synechococc	
919	2	6.9	37	1	RL36 THETH	P80256	thermus the	
920	2	6.9	37	1	RL36 THETN	Q8r7x8	thermoanaer	
921	2	6.9	37	1	RL36 TREPA	083239	treponema p	•
922	2	6.9	37	1	RL36_UREPA	· · · · · · · · · · · · · · · · · · ·	ureaplasma	
923	2	6.9	37	1	RL36_VIBCH	P78001	vibrio chol	
924	2	6.9	37	1	RL7_CLOPA		clostridium	
925	2	6.9	37	1	RS15_HELLU		helix lucor	
926	2	6.9	37	1	RUGC_RANRU		rana rugosa	
927	2	6.9	37	1	SCIT_MESTA		mesobuthus	
928	2	6.9	37	1	SCK2_LEIQH		leiurus qui	
929	2	6.9	37	1	SCK3_BUTOC	P59290	buthus occi	

•

930	2	6.9	37 1	SCK3_PARTR	P83112 parabuthus
931	2	6.9	37 1	SCKA_TITSE	P46114 tityus serr
932	2	6.9	37 1	SCKC_LEIQH	P13487 leiurus qui
933	2	6.9	37 1	SMS_PETMA	P21779 petromyzon
934	2	6.9	37 1	TCTP_TRYBB	P35758 trypanosoma
935	2	6.9	37 1	THHS HORVU	P33045 hordeum vul
936	2	6.9	37 1	TX21 SELHU	P82959 selenocosmi
937	2	6.9	37 1	TX22 SELHU	P82960 selenocosmi
938	2	6.9	37 1	TXD1 PARLU	P83256 paracoelote
939	2	6.9	37 1	TXD2 PARLU	P83257 paracoelote
940	2	6.9	37 1	TXD4 PARLU	P83259 paracoelote
941	2	6.9	37 1	TXJC HADVE	P82228 hadronyche
942	2	6.9	37 1	TXKB BUNGR	P29186 bunodosoma
943	2	6.9	37 1	TXOF HADVE	P81599 hadronyche
	2	6.9	37 1	TXP3 APTSC	P49268 aptostichus
944		6.9	37 1	VA1 BPBF2	P19347 bacteriopha
945	2			_	Q05250 mycobacteri
946	2	6.9	37 1	VG40_BPML5	P16515 bacteriopha
947	2	6.9	37 1	VG65_BPPH2	P08384 bacteriopha
948	2	6.9	37 1	VG65_BPPZA	
949	2	6.9	37 1	VGJ_BPPHX	P03651 bacteriopha
950	2	6.9	37 1	VP64_NPVBM	P41722 bombyx mori
951	2	6.9	37 1	VPU_HV1Z8	P08807 human immun
952	2	6.9	37 1	Y268_ARCFU	029971 archaeoglob
953	2	6.9	37 1	Y63_BPT7	P03799 bacteriopha
954	2	6.9	37 1	Y692_BORBU	051635 borrelia bu
955	2	6.9	37 1	Y700 BORBU	O51643 borrelia bu
956	2	6.9	37 1	Y762_BORBU	051703 borrelia bu
957	2	6.9	37 1	Y846 BORBU	O51786 borrelia bu
958	2	6.9	37 1	YBGT ECOLI	P56100 escherichia
959	2	6.9	37 1	YC12 CHLVU	P56328 chlorella v
960	2	6.9	37 1	YDA3 SCHPO	Q10345 schizosacch
961	2	6.9	37 1	YIM4 BPPH1	P10428 bacteriopha
962	2	6.9	37 1	YQGE BACCA	P28753 bacillus ca
963	2	6.9	37 1	YRYL CAEEL	Q19177 caenorhabdi
	2	6.9	38 1	AFP5 MALPA	P83139 malva parvi
964		6.9	38 1	BD01 BOVIN	P46159 bos taurus
965	2			BD01_BOVIN	P46166 bos taurus
966	2	6.9	38 1 38 1	COA3 XANCP	Q07484 xanthomonas
967	2	6.9		_	P15534 nototodarus
968	2	6.9	38 1	CRS3_NOTGO	P80323 lactobacill
969	2	6.9	38 1	CU47_LACCU	P00863 micrococcus
970	2	6.9	38 1	DCHS_MICSP	P41965 leiurus qui
971	2	6.9	38 1	DEF4_LEIQH	
972	2	6.9	38 1	DEF7_SPIOL	P81573 spinacia ol
973	2	6.9	38 1	DEFI_AESCY	P80154 aeschna cya
974	2	6.9	38 1	DEFI_MYTGA	P80571 mytilus gal
975	2	6.9	38 1	DLP3_ORNAN	P82141 ornithorhyn
976	2	6.9	38 1	DPOB_BOVIN	Q27958 bos taurus
977	2	6.9	38 1	E2F1_RAT	009139 rattus norv
978	2	6.9	38 1	EST5_DROMO	P10095 drosophila
979	2	6.9	38 1	EXE1_HELSU	P04203 heloderma s
980	2	6.9	38 1	FER_METPR	P81542 metallospha
981	2	6.9	38 1	GLUM_HYDCO	P23063 hydrolagus
982	2	6.9	38 1	GME1_RAT	Q9quz8 rattus norv
983	2	6.9	38 1	H5 COLLI	P02260 columba liv
984	2	6.9	38 1	HIS1 MACFA	P34084 macaca fasc
985	2	6.9	38 1	HMG2 BOVIN	P40673 bos taurus
986	2	6.9	38 1	HOXH RHOOP	P22661 rhodococcus
200		0.5			

```
P09942 adenanthera
                          38 1 ID5B ADEPA
                6.9
987
                                                                P32734 prosopsis j
                          38 1 ID5B PROJU
                 6.9
988
           2
                                                                P34166 saccharomyc
                          38 1 MFA2_YEAST
           2 6.9
989
                                                                P47763 yersinia en
                          38 1 MUTS YEREN
           2 6.9
990
                                                                P24644 maticora bi
                          38 1 PA21 MATBI
           2 6.9
991
                                                                P24645 maticora bi
                          38 1 PA22 MATBI
           2 6.9
992
                                                                P81039 uranoscopus
                          38 1 PACA URAJA
           2 6.9
993
          2 6.9 38 1 PERE_PIG
2 6.9 38 1 PETG_SYNY3
2 6.9 38 1 POI_MUSDO
2 6.9 38 1 PSAI_ODOSI
2 6.9 38 1 PSAI_PROMA
2 6.9 38 1 PSAI_SYNEL
2 6.9 38 1 PSAI_SYNEL
                                                               P80550 sus scrofa
994
                                                               P74149 synechocyst
995
                                                               P81765 musca domes
996
                                                                P49484 odontella s
997
                                                               087786 prochloroco
998
                                                                P25900 synechococc
 999
                                                                P05171 nicotiana t
1000
```

ALIGNMENTS

```
RESULT 1
FABI RHASA
                                           33 AA.
                                   PRT;
     FABI RHASA
                    STANDARD;
ID
     P81175:
AC
     15-JUL-1998 (Rel. 36, Created)
DT
     15-JUL-1998 (Rel. 36, Last sequence update)
DT
     15-JUL-1998 (Rel. 36, Last annotation update)
     Fatty acid-binding protein, intestinal (I-FABP) (FABPI) (Fragments).
DE
     Rhamdia sapo.
OS
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
     Actinopterygii; Neopterygii; Teleostei; Ostariophysi; Siluriformes;
OC
OC
     Pimelodidae; Rhamdia.
OX
     NCBI TaxID=55673;
RN
     [1]
     SEQUENCE.
RP
     TISSUE=Intestine;
RC
     MEDLINE=98036128; PubMed=9370361;
RX
     Di Pietro S.M., Dell'Angelica E.C., Veerkamp J.H., Sterin-Speziale N.,
RA
     Santome J.A.;
RA
     "Amino acid sequence, binding properties and evolutionary
RT
     relationships of the basic liver fatty-acid-binding protein from the
RТ
     catfish Rhamdia sapo.";
RT
     Eur. J. Biochem. 249:510-517(1997).
RL
     -!- FUNCTION: FABP ARE THOUGHT TO PLAY A ROLE IN THE INTRACELLULAR
CC
         TRANSPORT OF LONG-CHAIN FATTY ACIDS AND THEIR ACYL-COA ESTERS.
CC
     -!- SUBCELLULAR LOCATION: Cytoplasmic.
CC
     -!- TISSUE SPECIFICITY: INTESTINE.
CC
     -!- SIMILARITY: BELONGS TO THE FABP/P2/CRBP/CRABP FAMILY OF
CC
CC
         TRANSPORTERS.
     InterPro; IPR000463; Fatty acid BP.
DR
     PROSITE; PS00214; FABP; PARTIAL.
DR
     Transport; Lipid-binding.
KW
FT
     NON_TER
                  1
                         1
     NON_CONS
                  12
                          13
FT
FT
     NON CONS
                  20
                         21
                  28
                         29
FT
     NON CONS
                  33
                         33
FT
     NON TER
     SEQUENCE 33 AA; 3660 MW; 5BA16CC2880B7819 CRC64;
SQ
```

```
17.2%; Score 5; DB 1; Length 33;
  Ouery Match
  Best Local Similarity 100.0%; Pred. No. 39;
                                                   0; Indels
                                                                             0;
                                                                 0; Gaps
           5; Conservative 0; Mismatches
  Matches
            1 SVSEI 5
Qу
              1111
           13 SVSEI 17
Db
RESULT 2
SR1C SARPE
                    STANDARD;
                                   PRT;
                                           39 AA.
     SR1C SARPE
ID
AC
     P08377;
     01-AUG-1988 (Rel. 08, Created)
DT
     01-AUG-1988 (Rel. 08, Last sequence update)
DT
     28-FEB-2003 (Rel. 41, Last annotation update)
DΕ
     Sarcotoxin IC.
     Sarcophaga peregrina (Flesh fly) (Boettcherisca peregrina).
OS
     Eukaryota; Metazoa; Arthropoda; Hexapoda; Insecta; Pterygota;
OC
     Neoptera; Endopterygota; Diptera; Brachycera; Muscomorpha; Oestroidea;
OC
     Sarcophagidae; Sarcophaga.
OC
     NCBI_TaxID=7386;
OX
RN
     [1]
RΡ
     SEOUENCE.
     MEDLINE=85207747; PubMed=3888997;
RX
     Okada M., Natori S.;
RA
     "Primary structure of sarcotoxin I, an antibacterial protein induced
RT
     in the hemolymph of Sarcophaga peregrina (flesh fly) larvae.";
RT
     J. Biol. Chem. 260:7174-7177(1985).
RL
     -!- FUNCTION: SARCOTOXINS, WHICH ARE POTENT BACTERICIDAL PROTEINS,
CC
         ARE PRODUCED IN RESPONSE TO INJURY. THEY ARE CYTOTOXIC TO BOTH
CC
         GRAM-POSITIVE AND GRAM-NEGATIVE BACTERIA.
CC
     -!- SUBCELLULAR LOCATION: Secreted.
CC
     -!- SIMILARITY: BELONGS TO THE CECROPIN FAMILY.
CC
DR
     PIR; C22625; CKFHCS.
DR
     InterPro; IPR000875; Cecropin.
     InterPro; IPR003253; Sarctxn_cecrpn.
DR
     Pfam; PF00272; cecropin; 1.
DR
     ProDom; PD001670; Sarctxn cecrpn; 1.
DR
     PROSITE; PS00268; CECROPIN; 1.
DR
     Insect immunity; Antibiotic; Hemolymph; Amidation; Multigene family.
KW
                                  AMIDATION.
FT
     MOD RES
                39
                        39
                39 AA; 4227 MW; 11E79F4F405E855A CRC64;
     SEQUENCE
SO
                          13.8%; Score 4; DB 1; Length 39;
  Query Match
                          100.0%; Pred. No. 5.3e+02;
  Best Local Similarity
             4; Conservative 0; Mismatches 0; Indels
                                                                  0; Gaps
                                                                              0;
  Matches
           23 WLRK 26
Qу
               1111
Db
            2 WLRK 5
RESULT 3
 CH60 MYCSM
                                   PRT;
                                            28 AA.
                    STANDARD;
     CH60 MYCSM
```

```
AC
     P80673;
     01-OCT-1996 (Rel. 34, Created)
DT
     01-OCT-1996 (Rel. 34, Last sequence update)
DT
     28-FEB-2003 (Rel. 41, Last annotation update)
     60 kDa chaperonin (Protein Cpn60) (groEL protein) (Fragment).
DE
     GROL OR GROEL OR MOPA.
GN
     Mycobacterium smegmatis.
OS
     Bacteria; Actinobacteria; Actinobacteridae; Actinomycetales;
OC
OC
     Corynebacterineae; Mycobacteriaceae; Mycobacterium.
OX
     NCBI TaxID=1772;
RN
     [1]
RP
     SEQUENCE.
RC
     STRAIN=ATCC 607 / mc(2)6 / NRRL B-692;
     MEDLINE=97387814; PubMed=9243799;
RX
     Lundrigan M.D., Arceneaux J.E.L., Zhu W., Byers B.R.;
RA
     "Enhanced hydrogen peroxide sensitivity and altered stress protein
RT
     expression in iron-starved Mycobacterium smegmatis.";
RT
RL
     BioMetals 10:215-225(1997).
     -!- FUNCTION: Prevents misfolding and promotes the refolding and
CC
         proper assembly of unfolded polypeptides generated under stress
CC
CC
         conditions.
     -!- SUBUNIT: Oligomer of 14 subunits composed of two stacked rings of
CC
CC
         7 subunits (By similarity).
CC
     -!- SUBCELLULAR LOCATION: Cytoplasmic.
     -!- SIMILARITY: Belongs to the chaperonin (HSP60) family.
CC
     HAMAP; MF 00600; -; 1.
DR
     InterPro; IPR001844; Chaprnin Cpn60.
DR
     PROSITE; PS00296; CHAPERONINS CPN60; PARTIAL.
DR
     Chaperone; ATP-binding.
KW
FT
     NON TER
                  28
                         28
SO
     SEQUENCE
                28 AA; 3047 MW; 2F40F27B94EF8720 CRC64;
                           10.3%; Score 3; DB 1; Length 28;
  Query Match
  Best Local Similarity
                           100.0%; Pred. No. 4.6e+03;
  Matches
             3; Conservative
                                0; Mismatches
                                                     0; Indels
                                                                   0; Gaps
                                                                                0;
           15 LNS 17
QУ
              \parallel \parallel \parallel
           18 LNS 20
Dh
RESULT 4
COXB SOLTU
                                    PRT;
     COXB SOLTU
                     STANDARD;
                                             28 AA.
ID
AC
     P80499;
     01-FEB-1996 (Rel. 33, Created)
DΤ
     01-FEB-1996 (Rel. 33, Last sequence update)
DT
     15-JUL-1999 (Rel. 38, Last annotation update)
DT
     Cytochrome c oxidase polypeptide Vb (EC 1.9.3.1) (Fragment).
DE
OS
     Solanum tuberosum (Potato).
     Eukaryota; Viridiplantae; Streptophyta; Embryophyta; Tracheophyta;
OC
     Spermatophyta; Magnoliophyta; eudicotyledons; core eudicots;
OC
OC
     Asteridae; lamiids; Solanales; Solanaceae; Solanum.
OX
     NCBI TaxID=4113;
RN
     [1]
RΡ
     SEQUENCE.
RC
     TISSUE=Tuber;
```

```
MEDLINE=97077345; PubMed=8919912;
RX
     Jansch L., Kruft V., Schmitz U.K., Braun H.P.;
RA
     "New insights into the composition, molecular mass and stoichiometry
RT
     of the protein complexes of plant mitochondria.";
RT
     Plant J. 9:357-368(1996).
RL
     -!- CATALYTIC ACTIVITY: 4 ferrocytochrome c + O(2) = 4 ferricytochrome
CC
CC
         c + 2 H(2) O.
     -!- SUBCELLULAR LOCATION: Mitochondrial inner membrane.
CC
     -!- SIMILARITY: BELONGS TO THE CYTOCHROME C OXIDASE VB FAMILY.
CC
     InterPro; IPR002124; COX5B.
DR
     PROSITE; PS00848; COX5B; PARTIAL.
DR
     Oxidoreductase; Inner membrane; Mitochondrion.
KW
FT
     NON TER
                  28
                         28
                28 AA; 3101 MW; 1EAFA79E2682849C CRC64;
     SEQUENCE
SQ
                          10.3%; Score 3; DB 1; Length 28;
  Query Match
                          100.0%; Pred. No. 4.6e+03;
  Best Local Similarity
            3; Conservative 0; Mismatches
                                                   0; Indels
                                                                      Gaps
                                                                              0;
  Matches
            2 VSE 4
Qу
              2 VSE 4
Db
RESULT 5
GUN SCHCO
     GUN SCHCO
                    STANDARD;
                                   PRT;
                                            28 AA.
ID
AC
     P81190;
     15-JUL-1998 (Rel. 36, Created)
DT
     15-JUL-1998 (Rel. 36, Last sequence update)
DT
     28-FEB-2003 (Rel. 41, Last annotation update)
DT
     Endoglucanase (EC 3.2.1.4) (Endo-1,4-beta-glucanase) (Cellulase)
DE
DE
     (Fragment).
     Schizophyllum commune (Bracket fungus).
OS
     Eukaryota; Fungi; Basidiomycota; Hymenomycetes; Homobasidiomycetes;
OC
     Agaricales; Schizophyllaceae; Schizophyllum.
OC
OX
     NCBI TaxID=5334;
RN
     [1]
RP
     SEQUENCE.
     MEDLINE=97459758; PubMed=9315718;
RX
     Clarke A.J., Drummelsmith J., Yaguchi M.;
RA
     "Identification of the catalytic nucleophile in the cellulase from
RT
RT
     Schizophyllum commune and assignment of the enzyme to Family 5,
     subtype 5 of the glycosidases.";
RT
     FEBS Lett. 414:359-361(1997).
RL
     -!- CATALYTIC ACTIVITY: Endohydrolysis of 1,4-beta-D-glucosidic
CC
         linkages in cellulose, lichenin and cereal beta-D-glucans.
CC
     -!- SUBCELLULAR LOCATION: Attached to the membrane by a lipid anchor
CC
CC
         (Probable).
     -!- SIMILARITY: BELONGS TO CELLULASE FAMILY A (FAMILY 5 OF GLYCOSYL
CC
CC
         HYDROLASES).
     InterPro; IPR001547; Glyco hydro 5.
DR
DR
     PROSITE; PS00659; GLYCOSYL HYDROL F5; PARTIAL.
KW
     Cellulose degradation; Hydrolase; Glycosidase; Zymogen; Membrane;
KW
     Lipoprotein.
FT
     ACT SITE
                  20
                         20
                                   NUCLEOPHILE.
FT
     NON TER
                  28
                         28
```

```
28 AA; 2937 MW; B3F1C0C99C9950BE CRC64;
SQ
    SEQUENCE
                          10.3%; Score 3; DB 1; Length 28;
 Ouery Match
  Best Local Similarity 100.0%; Pred. No. 4.6e+03;
            3; Conservative 0; Mismatches 0; Indels
                                                                 0; Gaps
                                                                             0;
          22 EWL 24
Qу
              Db
           7 EWL 9
RESULT 6
PA23 TRIST
                    STANDARD;
                                   PRT;
                                           28 AA.
     PA23 TRIST
ID
     P82894;
AC
     16-OCT-2001 (Rel. 40, Created)
DT
     16-OCT-2001 (Rel. 40, Last sequence update)
DT
     28-FEB-2003 (Rel. 41, Last annotation update)
DT
     Phospholipase A2, basic 3 (EC 3.1.1.4) (PA2-III) (PLA2-III)
DE
     (Phosphatidylcholine 2-acylhydrolase) (Fragment).
DE
     Trimeresurus stejnegeri (Chinese green tree viper).
OS
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
     Lepidosauria; Squamata; Scleroglossa; Serpentes; Colubroidea;
OC
     Viperidae; Crotalinae; Trimeresurus.
OC
OX
     NCBI TaxID=39682;
RN
     [1]
     SEOUENCE.
RP
RC
     TISSUE=Venom;
     Li S.Y., Wang W.Y., Xiong Y.L.;
RA
     "Isolation, sequence and characterization of five variants of
ŔТ
     phospholipase A2 from venom of snake Trimeresurus stejnegeri.";
RT
     Submitted (DEC-2000) to the SWISS-PROT data bank.
RL
     -!- FUNCTION: PA2 catalyzes the calcium-dependent hydrolysis of the 2-
CC
         acyl groups in 3-sn-phosphoglycerides. Hemolytic and neurotoxic
CC
CC
         activities are not detected.
     -!- CATALYTIC ACTIVITY: Phosphatidylcholine + H(2)0 = 1-
CC
         acylglycerophosphocholine + a fatty acid anion.
CC
     -!- COFACTOR: Binds 1 calcium ion per subunit (By similarity).
CC
     -!- SUBCELLULAR LOCATION: Secreted.
CC
     -!- SIMILARITY: BELONGS TO THE PHOSPHOLIPASE A2 FAMILY. GROUP II
CC
CC
         SUBFAMILY.
DR
     HSSP; P82287; 1QLL.
     InterPro; IPR001211; PhospholipaseA2.
DR
     Pfam; PF00068; phoslip; 1.
DR
     ProDom; PD000303; PhospholipaseA2; 1.
DR
     PROSITE; PS00119; PA2_ASP; PARTIAL.
DR
     PROSITE; PS00118; PA2 HIS; PARTIAL.
DR
     Hydrolase; Lipid degradation; Calcium; Multigene family.
KW
FT
     NON TER
                  28
                         28
                28 AA; 3023 MW; 042104521CA1F103 CRC64;
SQ
     SEOUENCE
                          10.3%; Score 3; DB 1; Length 28;
  Query Match
                          100.0%; Pred. No. 4.6e+03;
  Best Local Similarity
             3; Conservative 0; Mismatches 0; Indels
                                                                  0; Gaps
  Matches
```

```
RESULT 7
PA2C PSEPO
                                   PRT:
                                           28 AA.
     PA2C PSEPO
                    STANDARD;
AC
     P20260;
DT
     01-FEB-1991 (Rel. 17, Created)
     01-FEB-1991 (Rel. 17, Last sequence update)
DT
     28-FEB-2003 (Rel. 41, Last annotation update)
DT
     Phospholipase A2 (EC 3.1.1.4) (Pseudexin C chain) (Phosphatidylcholine
DΕ
DΕ
     2-acylhydrolase) (Fragment).
     Pseudechis porphyriacus (Red-bellied black snake).
OS
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
     Lepidosauria; Squamata; Scleroglossa; Serpentes; Colubroidea;
OC
     Elapidae; Acanthophiinae; Pseudechis.
OC
     NCBI TaxID=8671;
OX
RN
     [1]
     SEQUENCE.
RP
     TISSUE=Venom;
RC
     MEDLINE=89388835; PubMed=2675391;
RX
     Schmidt J.J., Middlebrook J.L.;
RA
     "Purification, sequencing and characterization of pseudexin
RT
     phospholipases A2 from Pseudechis porphyriacus (Australian
RT
     red-bellied black snake).";
RT
     Toxicon 27:805-818(1989).
RL
     -!- FUNCTION: PA2 catalyzes the calcium-dependent hydrolysis of the 2-
CC
         acyl groups in 3-sn-phosphoglycerides.
CC
      -!- CATALYTIC ACTIVITY: Phosphatidylcholine + H(2)0 = 1-
CC
         acylglycerophosphocholine + a fatty acid anion.
CC
      -!- COFACTOR: Binds 1 calcium ion per subunit (By similarity).
CC
      -!- SUBCELLULAR LOCATION: Secreted.
CC
      -!- SIMILARITY: BELONGS TO THE PHOSPHOLIPASE A2 FAMILY. GROUP I
CC
CC
         SUBFAMILY.
     PIR; C32416; C32416.
DR
     HSSP; P00592; 2PHI.
DR
     InterPro; IPR001211; PhospholipaseA2.
DR
     Pfam; PF00068; phoslip; 1.
DR
      ProDom; PD000303; PhospholipaseA2; 1.
DR
      PROSITE; PS00119; PA2 ASP; PARTIAL.
DR
      PROSITE; PS00118; PA2 HIS; PARTIAL.
DR
     Hydrolase; Lipid degradation; Calcium; Multigene family.
KW
                          28
FT
      NON TER
                   28
                28 AA; 3210 MW; 5089A7E85CAAE0D5 CRC64;
SO
      SEOUENCE
                           10.3%; Score 3; DB 1; Length 28;
  Query Match
                           100.0%; Pred. No. 4.6e+03;
  Best Local Similarity
                                                                               0;
             3; Conservative 0; Mismatches 0; Indels
                                                                   0; Gaps
   Matches
             5 IQL 7
 Qу
               111
             3 IQL 5
 Db
```

RESULT 8
VI03_VACCP
ID VI03_VACCP STANDARD; PRT; 28 AA.

```
01-APR-1993 (Rel. 25, Created)
DT
    01-APR-1993 (Rel. 25, Last sequence update)
    01-FEB-1994 (Rel. 28, Last annotation update)
DT
    Protein I3 (Fragment).
DE
GN
    I3L.
    Vaccinia virus (strain L-IVP).
OS
    Viruses; dsDNA viruses, no RNA stage; Poxviridae; Chordopoxvirinae;
OC
    Orthopoxvirus.
OC
    NCBI TaxID=31531;
OX
RN
    [1]
    SEOUENCE FROM N.A.
RΡ
    MEDLINE=91066899; PubMed=2250685;
RX
    Ryazankina O.I., Shchelkunov S.N., Muravlev A.I., Netesova N.A.,
RA
    Mikryukov N.N., Gutorov V.V., Nikulin A.E., Kulichkov V.A.,
RA
    Malygin E.G.;
RA
    "Molecular-biological study of vaccinia virus genome. II.
RT
    Localization and nucleotide sequence of vaccinia virus genes coding
RT
    for proteins 36K and 12K.";
RT
    Mol. Biol. (Mosk) 24:968-976(1990).
RL
    -!- MISCELLANEOUS: THIS PROTEIN IS SYNTHESIZED IN THE EARLY AS WELL AS
CC
        THE LATE PHASE OF INFECTION.
CC
     ______
CC
     This SWISS-PROT entry is copyright. It is produced through a collaboration
CC
     between the Swiss Institute of Bioinformatics and the EMBL outstation -
CC
     the European Bioinformatics Institute. There are no restrictions on its
CC
    use by non-profit institutions as long as its content is in no way
CC
     modified and this statement is not removed. Usage by and for commercial
CC
     entities requires a license agreement (See http://www.isb-sib.ch/announce/
CC
     or send an email to license@isb-sib.ch).
CC
     ______
CC
     EMBL; X61165; CAA43473.1; -.
DR
     InterPro; IPR006754; Pox I3.
DR
     Pfam; PF04661; Pox_I3; 1.
DR
     Early protein; Late protein.
KW
     NON TER
              1
                       1
FT
     SEQUENCE 28 AA; 3238 MW; CE10813AC544F010 CRC64;
SO
                        10.3%; Score 3; DB 1; Length 28;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 4.6e+03;
          3; Conservative 0; Mismatches 0; Indels 0; Gaps
  Matches
          10 NLG 12
Qу
              111
           5 NLG 7
Db
RESULT 9
VIP ALLMI
                                 PRT;
                                        28 AA.
     VIP ALLMI
                  STANDARD;
ID
     P48142; P01285;
AC
     21-JUL-1986 (Rel. 01, Created)
DT
     21-JUL-1986 (Rel. 01, Last sequence update)
DT
     01-OCT-1996 (Rel. 34, Last annotation update)
DT
     Vasoactive intestinal peptide (VIP).
DE
GN
     VIP.
     Alligator mississippiensis (American alligator).
OS
```

AC

Q00334;

```
Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
     Archosauria; Crocodylidae; Alligatorinae; Alligator.
OX
     NCBI TaxID=8496;
RN
     [1]
     SEQUENCE.
RP
RC
     TISSUE=Stomach;
RX
     MEDLINE=93324451; PubMed=8101369;
RA
     Wang Y., Conlon J.M.;
RТ
     "Neuroendocrine peptides (NPY, GRP, VIP, somatostatin) from the brain
RT
     and stomach of the alligator.";
RL
     Peptides 14:573-579(1993).
CC
     -!- FUNCTION: VIP CAUSES VASODILATION, LOWERS ARTERIAL BLOOD
CC
         PRESSURE, STIMULATES MYOCARDIAL CONTRACTILITY, INCREASES
CC
         GLYCOGENOLYSIS AND RELAXES THE SMOOTH MUSCLE OF TRACHEA, STOMACH
CC
         AND GALL BLADDER.
CC
     -!- SIMILARITY: BELONGS TO THE GLUCAGON FAMILY.
DR
     InterPro; IPR000532; Glucagon.
DR
     Pfam; PF00123; hormone2; 1.
DR
     PRINTS; PR00275; GLUCAGON.
DR
     SMART; SM00070; GLUCA; 1.
DR
     PROSITE; PS00260; GLUCAGON; 1.
KW
     Glucagon family; Amidation; Hormone.
FT
     MOD RES
                  28
                        28
                                  AMIDATION.
SQ
     SEQUENCE
                28 AA; 3320 MW; 17B42D7573FF6F37 CRC64;
  Query Match
                          10.3%; Score 3; DB 1; Length 28;
  Best Local Similarity
                          100.0%; Pred. No. 4.6e+03;
  Matches
             3; Conservative
                                 0; Mismatches
                                                    0; Indels
                                                                  0; Gaps
           15 LNS 17
Qу
Db
           23 LNS 25
RESULT 10
VIP RANRI
     VIP RANRI
                    STANDARD;
                                    PRT;
                                            28 AA.
AC
     P81016;
DT
     01-NOV-1997 (Rel. 35, Created)
DT
     01-NOV-1997 (Rel. 35, Last sequence update)
DT
     01-NOV-1997 (Rel. 35, Last annotation update)
DE
     Vasoactive intestinal peptide (VIP).
OS
     Rana ridibunda (Laughing frog) (Marsh frog).
OC
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
     Amphibia; Batrachia; Anura; Neobatrachia; Ranoidea; Ranidae; Rana.
OX
     NCBI TaxID=8406;
RN
     [1]
RP
     SEQUENCE.
RX
     MEDLINE=95309202; PubMed=7540547;
RA
     Chartrel N., Wang Y., Fournier A., Vaudry H., Conlon J.M.;
RT
     "Frog vasoactive intestinal polypeptide and galanin: primary
RT
     structures and effects on pituitary adenylate cyclase.";
RL
     Endocrinology 136:3079-3086(1995).
CC
     -!- FUNCTION: VIP CAUSES VASODILATION, LOWERS ARTERIAL BLOOD
CC
         PRESSURE, STIMULATES MYOCARDIAL CONTRACTILITY, INCREASES
CC
         GLYCOGENOLYSIS AND RELAXES THE SMOOTH MUSCLE OF TRACHEA, STOMACH
CC
         AND GALL BLADDER.
```

OC

```
InterPro; IPR000532; Glucagon.
DR
     Pfam; PF00123; hormone2; 1.
DR
     PRINTS; PR00275; GLUCAGON.
DR
     PROSITE; PS00260; GLUCAGON; 1.
DR
    Glucagon family; Amidation; Hormone.
KW
FT
     MOD RES
                 28
                                  AMIDATION.
                         28
     SEQUENCE
                28 AA; 3320 MW; 17B42D7573FF6F37 CRC64;
                          10.3%; Score 3; DB 1; Length 28;
 Query Match
 Best Local Similarity 100.0%; Pred. No. 4.6e+03;
           3; Conservative 0; Mismatches 0; Indels
 Matches
                                                                      Gaps
           15 LNS 17
ОУ
              111
           23 LNS 25
Db
RESULT 11
VIP SHEEP
    VIP SHEEP
                                   PRT;
ID
                    STANDARD;
                                           28 AA.
AC
     P04565;
ĎΤ
     13-AUG-1987 (Rel. 05, Created)
DT
     13-AUG-1987 (Rel. 05, Last sequence update)
     01-OCT-1996 (Rel. 34, Last annotation update)
DT
DE
     Vasoactive intestinal peptide (VIP).
GN
OS
     Ovis aries (Sheep),
OS
     Capra hircus (Goat), and
OS
     Canis familiaris (Dog).
OC
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
     Mammalia; Eutheria; Cetartiodactyla; Ruminantia; Pecora; Bovoidea;
OC
     Bovidae; Caprinae; Ovis.
OX
     NCBI TaxID=9940, 9925, 9615;
RN
     [1]
RP
     SEQUENCE.
RC
     SPECIES=Sheep; TISSUE=Brain;
RX
     MEDLINE=91045331; PubMed=2235680;
RA
     Gafvelin G.;
RT
     "Isolation and primary structure of VIP from sheep brain.";
     Peptides 11:703-706(1990).
RL
RN
     [2]
RP
     SEQUENCE.
RC
     SPECIES=Sheep; TISSUE=Small intestine;
RX
     MEDLINE=91239834; PubMed=2034821;
RA
     Bounjoua Y., Vandermeers A., Robberecht P., Vandermeers-Piret M.C.,
RA
     Christophe J.;
RT
     "Purification and amino acid sequence of vasoactive intestinal
RT
     peptide, peptide histidine isoleucinamide and secretin from the ovine
RT
     small intestine.";
RL
     Regul. Pept. 32:169-179(1991).
RN
     [3]
RΡ
     SEQUENCE.
RC
     SPECIES=C.hircus, and C.familiaris;
     MEDLINE=86313167; PubMed=3748846;
RX
RA
     Eng J., Du B.-H., Raufman J.-P., Yalow R.S.;
RT
     "Purification and amino acid sequences of dog, goat and guinea pig
```

-!- SIMILARITY: BELONGS TO THE GLUCAGON FAMILY.

CC

```
Peptides 7 Suppl. 1:17-20(1986).
RL
    -!- FUNCTION: VIP CAUSES VASODILATION, LOWERS ARTERIAL BLOOD
CC
         PRESSURE, STIMULATES MYOCARDIAL CONTRACTILITY, INCREASES
CC
        GLYCOGENOLYSIS AND RELAXES THE SMOOTH MUSCLE OF TRACHEA, STOMACH
CC
        AND GALL BLADDER.
CC
     -!- SIMILARITY: BELONGS TO THE GLUCAGON FAMILY.
CC
DR
    PIR; A60304; A60304.
    PIR; B60072; VRSH.
DR
     InterPro; IPR000532; Glucagon.
DR
     Pfam; PF00123; hormone2; 1.
DR
     PRINTS; PR00275; GLUCAGON.
DR
     SMART; SM00070; GLUCA; 1.
DR
     PROSITE; PS00260; GLUCAGON; 1.
DR
     Glucagon family; Amidation; Hormone.
KW
     MOD RES
                 28
                       28
                                 AMIDATION.
FT
               28 AA; 3327 MW; EF313FB573FF6F3F CRC64;
     SEQUENCE
SQ
                         10.3%; Score 3; DB 1; Length 28;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 4.6e+03;
          3; Conservative 0; Mismatches 0; Indels
                                                               0; Gaps
                                                                           0;
  Matches
           15 LNS 17
Qу
              23 LNS 25
Db
RESULT 12
DMD RAT
                    STANDARD;
                                  PRT;
                                          29 AA.
ID
     DMD RAT
     P11530;
AC
     01-OCT-1989 (Rel. 12, Created)
DT
     01-OCT-1989 (Rel. 12, Last sequence update)
DT
     28-FEB-2003 (Rel. 41, Last annotation update)
DT
     Dystrophin (Fragment).
DE
GN
     DMD.
OS
     Rattus norvegicus (Rat).
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
     Mammalia; Eutheria; Rodentia; Sciurognathi; Muridae; Murinae; Rattus.
OC
     NCBI TaxID=10116;
OX
RN
     [1]
     SEQUENCE FROM N.A.
RP
     MEDLINE=88122671; PubMed=3340214;
RX
     Nudel U., Robzyk K., Yaffe D.;
RA
     "Expression of the putative Duchenne muscular dystrophy gene in
RT
     differentiated myogenic cell cultures and in the brain.";
RT
     Nature 331:635-638(1988).
RL
     -!- FUNCTION: May play a role in anchoring the cytoskeleton to the
CC
         plasma membrane.
CC
     -!- SUBUNIT: Interacts with the syntrophins SNTA1, SNTB1, SNTB2, SNTG1
CC
         and SNTG2 (By similarity).
CC
      _____
CC
     This SWISS-PROT entry is copyright. It is produced through a collaboration
CC
     between the Swiss Institute of Bioinformatics and the EMBL outstation -
CC
     the European Bioinformatics Institute. There are no restrictions on its
 CC
     use by non-profit institutions as long as its content is in no way
 CC
     modified and this statement is not removed. Usage by and for commercial
 CC
```

RT

VIPs.";

```
CC
    or send an email to license@isb-sib.ch).
    CC
    EMBL; X07000; CAA30057.1; -.
DR
    PIR; S01614; S01614.
DR
DR
    InterPro; IPR001589; Actbind_actnin.
    InterPro; IPR001202; WW_Rsp5_WWP.
DR
DR
    PROSITE; PS00019; ACTININ_1; PARTIAL.
DR
    PROSITE; PS00020; ACTININ_2; PARTIAL.
    PROSITE; PS01159; WW DOMAIN 1; PARTIAL.
DR
    PROSITE; PS50020; WW DOMAIN 2; PARTIAL.
KW
    Structural protein; Actin-binding; Calcium-binding; Cytoskeleton;
KW
    Repeat.
FT
    NON TER
                 1
             29
FT
    NON TER
                       29
    SEQUENCE 29 AA; 3289 MW; 8ECFB28A1A7ACAF0 CRC64;
SO
 Query Match
                       10.3%; Score 3; DB 1; Length 29;
 Best Local Similarity 100.0%; Pred. No. 4.8e+03;
 Matches 3; Conservative 0; Mismatches 0; Indels
          27 KLQ 29
Qу
           - 111
          12 KLO 14
RESULT 13
GALA ALLMI
ID GALA ALLMI
                  STANDARD;
                               PRT;
AC
    P47215;
    01-FEB-1996 (Rel. 33, Created)
DT
    01-FEB-1996 (Rel. 33, Last sequence update)
DT
    28-FEB-2003 (Rel. 41, Last annotation update)
DT
DE
    Galanin.
OS
    Alligator mississippiensis (American alligator).
    Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
    Archosauria; Crocodylidae; Alligatorinae; Alligator.
OC
OX
    NCBI TaxID=8496;
RN
    [1]
RP
    SEQUENCE.
RC
    TISSUE=Stomach;
RX
    MEDLINE=95023390; PubMed=7524049;
RA
    Wang Y., Conlon J.M.;
RT
    "Purification and primary structure of galanin from the alligator
RT
    stomach.";
RL
    Peptides 15:603-606(1994).
CC
     -!- FUNCTION: CONTRACTS SMOOTH MUSCLE OF THE GASTROINTESTINAL AND
CC
        GENITOURINARY TRACT, REGULATES GROWTH HORMONE RELEASE, MODULATES
CC
        INSULIN RELEASE, AND MAY BE INVOLVED IN THE CONTROL OF ADRENAL
CC
        SECRETION.
CC
     -!- SUBCELLULAR LOCATION: Secreted.
CC
    -!- SIMILARITY: BELONGS TO THE GALANIN FAMILY.
DR
    InterPro; IPR001600; Galanin.
DR
    Pfam; PF01296; Galanin; 1.
DR
    ProDom; PD005962; Galanin; 1.
DR
    PROSITE; PS00861; GALANIN; 1.
KW
    Hormone; Neuropeptide; Amidation.
```

entities requires a license agreement (See http://www.isb-sib.ch/announce/

CC

```
FT
    MOD RES
                 29
                        29
                                 AMIDATION.
SQ
     SEQUENCE
                29 AA; 3216 MW; E02F019B2D3E0529 CRC64;
  Query Match
                          10.3%; Score 3; DB 1; Length 29;
  Best Local Similarity 100.0%; Pred. No. 4.8e+03;
             3; Conservative 0; Mismatches 0; Indels
                                                                 0; Gaps
                                                                             0;
 Matches
Qу
           15 LNS 17
              Dh
            4 LNS 6
RESULT 14
GALA_AMICA
ID
     GALA AMICA
                    STANDARD;
                                   PRT;
                                           29 AA.
AC
     P47214;
     01-FEB-1996 (Rel. 33, Created)
DT
     01-FEB-1996 (Rel. 33, Last sequence update)
DΤ
DT
     28-FEB-2003 (Rel. 41, Last annotation update)
DΕ
     Galanin.
     Amia calva (Bowfin).
OS
OC
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
     Actinopterygii; Neopterygii; Amiiformes; Amiidae; Amia.
OC
OX
     NCBI TaxID=7924;
RN
     [1]
RP
     SEQUENCE.
RC
     TISSUE=Stomach;
RX
     MEDLINE=95083480; PubMed=7527531;
     Wang Y., Conlon J.M.;
RA
RT
     "Purification and characterization of galanin from the
     phylogenetically ancient fish, the bowfin (Amia calva) and dogfish
RT
RT
     (Scyliorhinus canicula).";
RL
     Peptides 15:981-986(1994).
     -!- FUNCTION: CONTRACTS SMOOTH MUSCLE OF THE GASTROINTESTINAL AND
CC
CC
         GENITOURINARY TRACT, REGULATES GROWTH HORMONE RELEASE, MODULATES
CC
         INSULIN RELEASE, AND MAY BE INVOLVED IN THE CONTROL OF ADRENAL
CC
         SECRETION.
CC
     -!- SUBCELLULAR LOCATION: Secreted.
CC
     -!- SIMILARITY: BELONGS TO THE GALANIN FAMILY.
     InterPro; IPR001600; Galanin.
DR
DR
     Pfam; PF01296; Galanin; 1.
     ProDom; PD005962; Galanin; 1.
DR
DR
     PROSITE; PS00861; GALANIN; 1.
KW
     Hormone; Neuropeptide; Amidation.
FT
     MOD RES
                  29
                         29
                                  AMIDATION.
SQ
     SEQUENCE
                29 AA; 3114 MW; 7518719B2D271627 CRC64;
                          10.3%; Score 3; DB 1; Length 29;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 4.8e+03;
             3; Conservative 0; Mismatches 0; Indels
                                                                 0; Gaps
                                                                             0;
           15 LNS 17
Qу
              Db
            4 LNS 6
```

```
PRT;
     GALA CHICK
                    STANDARD;
                                           29 AA.
AC
     P30802:
DT
     01-JUL-1993 (Rel. 26, Created)
     01-JUL-1993 (Rel. 26, Last sequence update)
DT
     28-FEB-2003 (Rel. 41, Last annotation update)
DT
DE
     Galanin.
GN
     GAL OR GALN.
OS
     Gallus gallus (Chicken).
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
OC
     Archosauria; Aves; Neognathae; Galliformes; Phasianidae; Phasianinae;
OC
OX
     NCBI_TaxID=9031;
RN
     [1]
RP
     SEQUENCE.
RC
     TISSUE=Intestine;
RX
     MEDLINE=91348254; PubMed=1715289;
RA
     Norberg A., Sillard R., Carlquist M., Joernvall H., Mutt V.;
RT
     "Chemical detection of natural peptides by specific structures.
RT
     Isolation of chicken galanin by monitoring for its N-terminal
     dipeptide, and determination of the amino acid sequence.";
RT
     FEBS Lett. 288:151-153(1991).
RL
     -!- FUNCTION: CONTRACTS SMOOTH MUSCLE OF THE GASTROINTESTINAL AND
CC
         GENITOURINARY TRACT, REGULATES GROWTH HORMONE RELEASE, MODULATES
CC
         INSULIN RELEASE, AND MAY BE INVOLVED IN THE CONTROL OF ADRENAL
CC
CC
         SECRETION.
CC
     -!- SUBCELLULAR LOCATION: Secreted.
CC
     -!- SIMILARITY: BELONGS TO THE GALANIN FAMILY.
DR
     PIR; S17147; S17147.
     InterPro; IPR001600; Galanin.
DR
DR
     Pfam; PF01296; Galanin; 1.
DR
     PRINTS; PR00273; GALANIN.
     ProDom; PD005962; Galanin; 1.
DR
DR
     PROSITE; PS00861; GALANIN; 1.
KW
     Hormone; Neuropeptide; Amidation.
FT
     MOD RES
                  29
                        29
                                  AMIDATION.
     SEQUENCE
SO
                29 AA; 3212 MW; EB66919B2D271629 CRC64;
                          10.3%; Score 3; DB 1; Length 29;
  Query Match
                          100.0%; Pred. No. 4.8e+03;
  Best Local Similarity
  Matches
             3; Conservative 0; Mismatches 0; Indels
                                                                  0; Gaps
           15 LNS 17
Qу
              111
            4 LNS 6
Db
RESULT 16
GALA ONCMY
ID
     GALA ONCMY
                    STANDARD;
                                   PRT;
AC
     P47213;
DT
     01-FEB-1996 (Rel. 33, Created)
DT
     01-FEB-1996 (Rel. 33, Last sequence update)
DT
     28-FEB-2003 (Rel. 41, Last annotation update)
DΕ
     Galanin.
OS
     Oncorhynchus mykiss (Rainbow trout) (Salmo gairdneri).
OC
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
```

GALA CHICK

```
Protacanthopterygii; Salmoniformes; Salmonidae; Oncorhynchus.
OC
     NCBI TaxID=8022;
OX
RN
     [1]
     SEQUENCE.
RP
RC
     TISSUE=Stomach;
RX
     MEDLINE=95164756; PubMed=7532194;
     Anglade I., Wang Y., Jensen J., Tramu G., Kah O., Conlon J.M.;
RA
     "Characterization of trout galanin and its distribution in trout
RT
RT
     brain and pituitary.";
     J. Comp. Neurol. 350:63-74(1994).
RL
CC
     -!- FUNCTION: CONTRACTS SMOOTH MUSCLE OF THE GASTROINTESTINAL AND
CC
         GENITOURINARY TRACT, REGULATES GROWTH HORMONE RELEASE, MODULATES
CC
         INSULIN RELEASE, AND MAY BE INVOLVED IN THE CONTROL OF ADRENAL
CC
         SECRETION.
CC
     -!- SUBCELLULAR LOCATION: Secreted.
CC
     -!- SIMILARITY: BELONGS TO THE GALANIN FAMILY.
DR
     InterPro; IPR001600; Galanin.
     Pfam; PF01296; Galanin; 1.
DR
     ProDom; PD005962; Galanin; 1.
DR
     PROSITE; PS00861; GALANIN; 1.
DR
KW
     Hormone; Neuropeptide; Amidation.
FT
     MOD RES
                 29
                         29
                                  AMIDATION.
SO
     SEOUENCE
                29 AA; 3044 MW; 73C37190403FA349 CRC64;
  Query Match
                          10.3%; Score 3; DB 1; Length 29;
  Best Local Similarity
                          100.0%; Pred. No. 4.8e+03;
             3; Conservative
                               0; Mismatches
                                                   0; Indels
                                                                  0; Gaps
                                                                               0;
Qу
           15 LNS 17
              111
            4 LNS 6
RESULT 17
GALA RANRI
     GALA RANRI
                                   PRT;
TD
                    STANDARD;
                                            29 AA.
AC
     P47216;
DT
     01-FEB-1996 (Rel. 33, Created)
DT
     01-FEB-1996 (Rel. 33, Last sequence update)
DT
     28-FEB-2003 (Rel. 41, Last annotation update)
DE
     Galanin.
OS
     Rana ridibunda (Laughing frog) (Marsh frog).
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
OC
     Amphibia; Batrachia; Anura; Neobatrachia; Ranoidea; Ranidae; Rana.
OX
     NCBI TaxID=8406;
RN
     [1]
RP
     SEQUENCE.
RX
     MEDLINE=95309202; PubMed=7540547;
RA
     Chartrel N., Wang Y., Fournier A., Vaudry H., Conlon J.M.;
RT
     "Frog vasoactive intestinal polypeptide and galanin: primary
RT
     structures and effects on pituitary adenylate cyclase.";
RL
     Endocrinology 136:3079-3086(1995).
CC
     -!- FUNCTION: CONTRACTS SMOOTH MUSCLE OF THE GASTROINTESTINAL AND
CC
         GENITOURINARY TRACT, REGULATES GROWTH HORMONE RELEASE, MODULATES
CC
         INSULIN RELEASE, AND MAY BE INVOLVED IN THE CONTROL OF ADRENAL
CC
         SECRETION.
```

Actinopterygii; Neopterygii; Teleostei; Euteleostei;

OC

```
-!- SIMILARITY: BELONGS TO THE GALANIN FAMILY.
CC
DR
     InterPro; IPR001600; Galanin.
     Pfam; PF01296; Galanin; 1.
DR
DR
     ProDom; PD005962; Galanin; 1.
DR
     PROSITE; PS00861; GALANIN; 1.
KW
     Hormone; Neuropeptide; Amidation.
FT
     MOD RES
                  29
                        29
                                  AMIDATION.
SQ
     SEQUENCE
                29 AA; 3162 MW; F718719B2D3FB529 CRC64;
  Query Match
                          10.3%; Score 3; DB 1; Length 29;
  Best Local Similarity 100.0%; Pred. No. 4.8e+03;
  Matches
             3; Conservative
                                0; Mismatches
                                                    0; Indels
                                                                  0;
                                                                       Gaps
                                                                               0;
QУ
           15 LNS 17
              +++
Db
            4 LNS 6
RESULT 18
GALA SHEEP
ID
     GALA SHEEP
                    STANDARD;
                                    PRT;
                                            29 AA.
AC
     P31234;
DT
     01-JUL-1993 (Rel. 26, Created)
DT
     01-JUL-1993 (Rel. 26, Last sequence update)
\mathsf{D}\mathbf{T}
     28-FEB-2003 (Rel. 41, Last annotation update)
DE
     Galanin.
GN
     GAL OR GALN OR GLNN.
OS
     Ovis aries (Sheep).
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
     Mammalia; Eutheria; Cetartiodactyla; Ruminantia; Pecora; Bovoidea;
OC
OC
     Bovidae; Caprinae; Ovis.
OX
     NCBI_TaxID=9940;
RN
     [1]
RP
     SEQUENCE.
RC
     TISSUE=Brain;
RX
     MEDLINE=92158824; PubMed=1724081;
RA
     Sillard R., Langel U., Joernvall H.;
RT
     "Isolation and characterization of galanin from sheep brain.";
RL
     Peptides 12:855-859(1991).
CC
     -!- FUNCTION: CONTRACTS SMOOTH MUSCLE OF THE GASTROINTESTINAL AND
CC
         GENITOURINARY TRACT, REGULATES GROWTH HORMONE RELEASE, MODULATES
CC
         INSULIN RELEASE, AND MAY BE INVOLVED IN THE CONTROL OF ADRENAL
CC
         SECRETION.
CC
     -! - SUBCELLULAR LOCATION: Secreted.
CC
     -! - SIMILARITY: BELONGS TO THE GALANIN FAMILY.
DR
     InterPro; IPR001600; Galanin.
DR
     Pfam; PF01296; Galanin; 1.
DR
     PRINTS; PR00273; GALANIN.
DR
     ProDom; PD005962; Galanin; 1.
DR
     PROSITE; PS00861; GALANIN; 1.
KW
     Hormone; Neuropeptide; Amidation.
FT
     MOD RES
                  29
                        29
                                  AMIDATION.
SO
     SEQUENCE
                29 AA; 3185 MW; F718719B2D3FB089 CRC64;
  Query Match
                           10.3%; Score 3; DB 1; Length 29;
  Best Local Similarity
                          100.0%; Pred. No. 4.8e+03;
```

-!- SUBCELLULAR LOCATION: Secreted.

CC

```
15 LNS 17
Qу
              \{1\}
Db
            4 LNS 6
RESULT 19
GLUC CHIBR
     GLUC CHIBR
                    STANDARD;
                                   PRT;
                                           29 AA.
AC
     P31297;
     01-JUL-1993 (Rel. 26, Created)
DT
     01-JUL-1993 (Rel. 26, Last sequence update)
DT
     28-FEB-2003 (Rel. 41, Last annotation update)
DT
     Glucagon.
DE
GN
     GCG.
     Chinchilla brevicaudata (Chinchilla).
OS
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
OC
     Mammalia; Eutheria; Rodentia; Hystricognathi; Chinchillidae;
OC
     Chinchilla.
OX
     NCBI TaxID=10152;
RN
     [1]
RΡ
     SEQUENCE.
RX
     MEDLINE=91045327; PubMed=2235678;
RA
     Eng J., Kleinman W.A., Chu L.S.;
     "Purification of peptide hormones from chinchilla pancreas by
RT
RT
     chemical assay.";
RL
     Peptides 11:683-685(1990).
     -!- FUNCTION: PROMOTES HYDROLYSIS OF GLYCOGEN AND LIPIDS, AND RAISES
CC
CC
         THE BLOOD SUGAR LEVEL.
CC
     -!- INDUCTION: PRODUCED IN THE A CELLS OF THE ISLETS OF LANGERHANS
CC
         IN RESPONSE TO A DROP IN BLOOD SUGAR CONCENTRATION.
     -!- SIMILARITY: BELONGS TO THE GLUCAGON FAMILY.
CC
DR
     PIR; A60413; GCCB.
DR
     HSSP; P01275; 1BH0.
DR
     InterPro; IPR000532; Glucagon.
DR
     Pfam; PF00123; hormone2; 1.
DR
     PRINTS; PR00275; GLUCAGON.
     SMART; SM00070; GLUCA; 1.
DR
DR
     PROSITE; PS00260; GLUCAGON; 1.
KW
     Glucagon family; Hormone.
SO
     SEQUENCE 29 AA; 3478 MW;
                                  19ECF4DABB752B27 CRC64;
  Query Match
                          10.3%; Score 3; DB 1; Length 29;
  Best Local Similarity 100.0%; Pred. No. 4.8e+03;
  Matches
             3; Conservative
                                0; Mismatches
                                                    0; Indels
                                                                   0; Gaps
                                                                               0;
           13 KHL 15
Qу
              \|\cdot\|
           12 KHL 14
RESULT 20
IPYR DESVH
     IPYR DESVH
                    STANDARD;
                                    PRT;
                                            29 AA.
ID
AC
     P19371;
DT
     01-NOV-1990 (Rel. 16, Created)
```

0; Mismatches

3; Conservative

Matches

0; Indels

0; Gaps

0;

```
28-FEB-2003 (Rel. 41, Last annotation update)
DT
     Inorganic pyrophosphatase (EC 3.6.1.1) (Pyrophosphate phospho-
DE
     hydrolase) (PPase) (Fragment).
DE
     Desulfovibrio vulgaris (strain Hildenborough).
OS
     Bacteria; Proteobacteria; Deltaproteobacteria; Desulfovibrionales;
OC
     Desulfovibrionaceae; Desulfovibrio.
OC
OX
     NCBI TaxID=882;
RN
     [1]
RP
     SEQUENCE.
     MEDLINE=90365722; PubMed=2168174;
RX
RA
     Liu M.-Y., le Gall J.;
     "Purification and characterization of two proteins with inorganic
RT
     pyrophosphatase activity from Desulfovibrio vulgaris: rubrerythrin
RT
     and a new, highly active, enzyme.";
RT
     Biochem. Biophys. Res. Commun. 171:313-318(1990).
RL
     -!- FUNCTION: INORGANIC PYROPHOSPHATASE IS AN ESSENTIAL ENZYME FOR THE
CC
         ACTIVATION OF SULFATE BY SULFATE REDUCING BACTERIA. THIS IS A HIGH
CC
         ACTIVITY PYROPHOSPHATASE.
CC
     -!- CATALYTIC ACTIVITY: Diphosphate + H(2)0 = 2 phosphate.
CC
     -!- SUBCELLULAR LOCATION: Periplasmic (Potential).
CC
     PIR; A35687; A35687.
DR
     HAMAP; MF 00209; -; 1.
DR
     InterPro; IPR001596; Pyrophosphatase.
DR
     PROSITE; PS00387; PPASE; PARTIAL.
DR
     Hydrolase; Periplasmic.
KW
                  29
FT
     NON TER
                29 AA; 3201 MW; 3FC5792360F2227B CRC64;
     SEQUENCE
SO
                          10.3%; Score 3; DB 1; Length 29;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 4.8e+03;
                                                                              0;
                                                                  0; Gaps
                                                 0; Indels
  Matches
            3; Conservative
                                0; Mismatches
            3 SEI 5
Qу
               15 SEI 17
Db
RESULT 21
NUO1 SOLTU
                                            29 AA.
                                    PRT;
     NUO1 SOLTU
                    STANDARD;
ID
AC
     P80267;
     01-FEB-1994 (Rel. 28, Created)
DT
     01-FEB-1994 (Rel. 28, Last sequence update)
DT
     28-FEB-2003 (Rel. 41, Last annotation update)
DT
     NADH-ubiquinone oxidoreductase 14 kDa subunit (EC 1.6.5.3)
DE
     (EC 1.6.99.3) (Complex I-14KD) (CI-14KD) (Fragment).
DE
     Solanum tuberosum (Potato).
OS
     Eukaryota; Viridiplantae; Streptophyta; Embryophyta; Tracheophyta;
OC
     Spermatophyta; Magnoliophyta; eudicotyledons; core eudicots;
OC
     Asteridae; lamiids; Solanales; Solanaceae; Solanum.
OC
 OX
     NCBI TaxID=4113;
RN
      [1]
 RP
     SEQUENCE.
     STRAIN=cv. Bintje; TISSUE=Tuber;
 RC
     MEDLINE=94124587; PubMed=8294484;
RX
     Herz U., Schroeder W., Liddell A., Leaver C.J., Brennicke A.,
 RA
```

01-NOV-1990 (Rel. 16, Last sequence update)

DT

```
Grohmann L.;
RA
RT
     "Purification of the NADH: ubiquinone oxidoreductase (complex I) of
     the respiratory chain from the inner mitochondrial membrane of
RT
     Solanum tuberosum.";
RT
RL
     J. Biol. Chem. 269:2263-2269(1994).
CC
     -!- FUNCTION: TRANSFER OF ELECTRONS FROM NADH TO THE RESPIRATORY
CC
         CHAIN. THE IMMEDIATE ELECTRON ACCEPTOR FOR THE ENZYME IS BELIEVED
CC
         TO BE UBIQUINONE.
CC
     -!- CATALYTIC ACTIVITY: NADH + ubiquinone = NAD(+) + ubiquinol.
CC
     -!- CATALYTIC ACTIVITY: NADH + acceptor = NAD(+) + reduced acceptor.
CC
     -!- SUBUNIT: COMPLEX I IS COMPOSED OF ABOUT 30 DIFFERENT SUBUNITS.
CC
     -!- SUBCELLULAR LOCATION: MATRIX SIDE OF THE MITOCHONDRIAL INNER
CC
         MEMBRANE.
DR
     PIR; I49732; I49732.
KW
     Oxidoreductase; NAD; Ubiquinone; Mitochondrion.
FT
                  29
SO
     SEQUENCE
                29 AA; 3269 MW; E2B4DFB558D423D4 CRC64;
  Query Match
                          10.3%; Score 3; DB 1; Length 29;
  Best Local Similarity
                          100.0%; Pred. No. 4.8e+03;
                               0; Mismatches
             3; Conservative
                                                    0; Indels
                                                                  0; Gaps
                                                                              0;
           25 RKK 27
Qу
              Db
            2 RKK 4
RESULT 22
P2SM LOXIN
     P2SM LOXIN
                    STANDARD;
                                   PRT;
                                           29 AA.
AC
     P83046;
     28-FEB-2003 (Rel. 41, Created)
DT
     28-FEB-2003 (Rel. 41, Last sequence update)
DT
DT
     28-FEB-2003 (Rel. 41, Last annotation update)
DE
     Sphingomyelinase P2 (EC 3.1.4.12) (Fragment).
OS
     Loxosceles intermedia (Spider).
OC
     Eukaryota; Metazoa; Arthropoda; Chelicerata; Arachnida; Araneae;
OC
     Araneomorphae; Haplogynae; Sicariidae; Loxosceles.
OX
     NCBI TaxID=58218;
RN
     [1]
RΡ
     SEQUENCE, FUNCTION, CATALYTIC ACTIVITY, COFACTOR, SUBCELLULAR
RP
     LOCATION, AND TISSUE SPECIFICITY.
RC
     TISSUE=Venom;
RX
     MEDLINE=99009277; PubMed=9790962;
RA
     Tambourgi D.V., Magnoli F.C., van den Berg C.W., Morgan B.P.,
RA
     de Araujo P.S., Alves E.W., Da Silva W.D.;
RT
     "Sphingomyelinases in the venom of the spider Loxosceles intermedia
RT
     are responsible for both dermonecrosis and complement-dependent
RT
     hemolysis.";
RL
     Biochem. Biophys. Res. Commun. 251:366-373(1998).
CC
     -!- FUNCTION: Has sphingomyelinase activity. Induces complement-
CC
         dependent hemolysis and dermonecrosis.
CC
     -!- CATALYTIC ACTIVITY: Sphingomyelin + H(2)O = N-acylsphingosine +
CC
         choline phosphate.
CC
     -!- COFACTOR: Calcium ion.
CC
     -! - SUBCELLULAR LOCATION: Secreted.
CC
     -!- TISSUE SPECIFICITY: Expressed by the venom gland.
```

```
FT
    NON TER
                 29
                       29
    SEOUENCE
               29 AA; 3281 MW; 4488EDD619BD2398 CRC64;
SO
                         10.3%; Score 3; DB 1; Length 29;
  Query Match
 Best Local Similarity
                         100.0%; Pred. No. 4.8e+03;
            3; Conservative 0; Mismatches 0; Indels
                                                                0; Gaps
 Matches
Qy
           10 NLG 12
             25 NLG 27
Dh
RESULT 23
PCG4 PACGO
     PCG4 PACGO
                   STANDARD;
                                  PRT;
                                          29 AA.
AC
     P82417;
DΤ
     16-OCT-2001 (Rel. 40, Created)
     16-OCT-2001 (Rel. 40, Last sequence update)
DT
DT
     15-SEP-2003 (Rel. 42, Last annotation update)
     Ponericin G4.
DΕ
OS
     Pachycondyla goeldii (Ponerine ant).
     Eukaryota; Metazoa; Arthropoda; Hexapoda; Insecta; Pterygota;
OC
     Neoptera; Endopterygota; Hymenoptera; Apocrita; Aculeata; Formicidae;
OC
OC
     Ponerinae; Pachycondyla.
OX
    NCBI TaxID=118888;
RN
     [1]
RP
     SEQUENCE, AND FUNCTION.
RC
     TISSUE=Venom;
RX
     MEDLINE=21264562; PubMed=11279030;
     Orivel J., Redeker V., Le Caer J.-P., Krier F., Revol-Junelles A.-M.,
RA
     Longeon A., Chafotte A., Dejean A., Rossier J.;
RA
RT
     "Ponericins, new antibacterial and insecticidal peptides from the
RT
     venom of the ant Pachycondyla goeldii.";
RL
     J. Biol. Chem. 276:17823-17829(2001).
CC
     -!- FUNCTION: HAS ACTIVITY AGAINST SOME GRAM-POSITIVE BACTERIA
CC
         AND S.CEREVISIAE. HAS A NON-HEMOLYTIC ACTIVITY.
CC
     -! - SUBCELLULAR LOCATION: Secreted.
CC
     -!- MASS SPECTROMETRY: MW=3163.87; METHOD=MALDI.
KW
     Antibiotic; Insect immunity; Fungicide.
SO
     SEQUENCE 29 AA; 3165 MW; 7037D0B855072AF8 CRC64;
  Query Match
                          10.3%; Score 3; DB 1; Length 29;
  Best Local Similarity 100.0%; Pred. No. 4.8e+03;
  Matches
           3; Conservative 0; Mismatches
                                                  0; Indels
                                                                0; Gaps
           22 EWL 24
Qу
              11 EWL 13
Db
RESULT 24
RS7 METTE
ID
    RS7 METTE
                    STANDARD;
                                  PRT;
                                          29 AA.
AC
     093639;
DT
     30-MAY-2000 (Rel. 39, Created)
DT
     30-MAY-2000 (Rel. 39, Last sequence update)
```

KW

Hydrolase; Toxin; Calcium; Hemolysis.

```
30S ribosomal protein S7P (Fragment).
DΕ
GN
    RPS7P OR S7.
OS
    Methanosarcina thermophila.
    Archaea; Euryarchaeota; Euryarchaeota orders incertae sedis;
OC
    Methanosarcinales; Methanosarcinaceae; Methanosarcina.
OC
OX
    NCBI TaxID=2210;
RN
    [1]
RP
    SEQUENCE FROM N.A.
    STRAIN=DSM 1825 / TM-1;
RC
RX
    MEDLINE=99059471; PubMed=9845338;
RA
    Thomas T., Cavicchioli R.;
RT
     "Archaeal cold-adapted proteins: structural and evolutionary analysis
RT
    of the elongation factor 2 proteins from psychrophilic, mesophilic and
RT
    thermophilic methanogens.";
RL
    FEBS Lett. 439:281-287(1998).
CC
     -!- FUNCTION: One of the primary rRNA binding proteins, it binds
        directly to 16S rRNA where it nucleates assembly of the head
CC
CC
        domain of the 30S subunit. Is located at the subunit interface
CC
        close to the decoding center (By similarity).
     -!- SUBUNIT: Part of the 30S ribosomal subunit.
CC
     -!- SIMILARITY: BELONGS TO THE S7P FAMILY OF RIBOSOMAL PROTEINS.
CC
CC
     ______
CC
    This SWISS-PROT entry is copyright. It is produced through a collaboration
CC
    between the Swiss Institute of Bioinformatics and the EMBL outstation -
CC
    the European Bioinformatics Institute. There are no restrictions on its
CC
    use by non-profit institutions as long as its content is in no way
CC
     modified and this statement is not removed. Usage by and for commercial
CC
    entities requires a license agreement (See http://www.isb-sib.ch/announce/
CC
     or send an email to license@isb-sib.ch).
     ______
CC
DR
     EMBL; AF026165; AAC79199.1; -.
DR
     PIR; T44245; T44245.
DR
    HAMAP; MF 00480; -; 1.
DR
    InterPro; IPR000235; Ribosomal S7.
DR
     PROSITE; PS00052; RIBOSOMAL S7; PARTIAL.
KW
    Ribosomal protein; RNA-binding; rRNA-binding.
FT
    NON TER
                 1
                        1
    SEQUENCE
               29 AA; 3217 MW; 1602B8A2E6C50C2B CRC64;
SQ
  Query Match
                        10.3%; Score 3; DB 1; Length 29;
  Best Local Similarity 100.0%; Pred. No. 4.8e+03;
  Matches
           3; Conservative 0; Mismatches 0; Indels
                                                             0; Gaps
                                                                        0;
          19 ERV 21
Qу
             111
          22 ERV 24
Db
RESULT 25
SODC OLEEU
    SODC OLEEU
                                 PRT;
ID
                  STANDARD;
                                        29 AA.
AC
     P80740;
DT
     01-NOV-1997 (Rel. 35, Created)
DT
     01-NOV-1997 (Rel. 35, Last sequence update)
    15-SEP-2003 (Rel. 42, Last annotation update)
DT
DE
    Superoxide dismutase [Cu-Zn] (EC 1.15.1.1) (Allergen Ole e 5) (Ole e
```

28-FEB-2003 (Rel. 41, Last annotation update)

DT

```
OS
     Olea europaea (Common olive).
     Eukaryota; Viridiplantae; Streptophyta; Embryophyta; Tracheophyta;
OC
     Spermatophyta; Magnoliophyta; eudicotyledons; core eudicots;
OC
OC
     Asteridae; lamiids; Lamiales; Oleaceae; Olea.
     NCBI TaxID=4146;
OX
RN
     [1]
RP
     SEQUENCE.
RC.
     TISSUE=Pollen;
RX
     MEDLINE=98160390; PubMed=9500754;
RA
     Boluda L., Alonso C., Fernandez-Caldas E.;
RT
     "Purification, characterization, and partial sequencing of two new
RT
     allergens of Olea europaea.";
     J. Allergy Clin. Immunol. 101:210-216(1998).
RL
CC
     -!- FUNCTION: Destroys rádicals which are normally produced within the
CC
         cells and which are toxic to biological systems (By similarity).
     -!- CATALYTIC ACTIVITY: 2 superoxide + 2 H(+) = O(2) + H(2)O(2).
CC
CC
     -!- COFACTOR: Binds 1 copper ion and 1 zinc ion per subunit (By
CC
         similarity).
     -!- SIMILARITY: BELONGS TO THE CU-ZN SUPEROXIDE DISMUTASE FAMILY.
CC
     InterPro; IPR001424; SOD CU ZN.
DR
DR
     Pfam; PF00080; sodcu; 1.
     PROSITE; PS00087; SOD CU ZN 1; PARTIAL.
DR
     PROSITE; PS00332; SOD CU ZN 2; PARTIAL.
DR
KW
     Antioxidant; Oxidoreductase; Metal-binding; Copper; Zinc; Allergen.
FT
     NON TER
                  29
                         29
SQ
     SEQUENCE
                29 AA; 2973 MW; 836C7A193EDAD71E CRC64;
                          10.3%; Score 3; DB 1; Length 29;
  Ouerv Match
 Best Local Similarity 100.0%; Pred. No. 4.8e+03;
            3; Conservative 0; Mismatches 0; Indels
 Matches
                                                                  0; Gaps
                                                                              0;
           15 LNS 17
Qy
              111
Db
            7 LNS 9
RESULT 26
TL16 SPIOL
     TL16 SPIOL
                                   PRT;
ΙD
                    STANDARD;
                                           29 AA.
AC
     P81834;
     30-MAY-2000 (Rel. 39, Created)
DT
DT
     30-MAY-2000 (Rel. 39, Last sequence update)
     16-OCT-2001 (Rel. 40, Last annotation update)
DT
     Thylakoid lumenal 16.5 kDa protein (P16.5) (Fragment).
DE
OS
     Spinacia oleracea (Spinach).
OC
     Eukaryota; Viridiplantae; Streptophyta; Embryophyta; Tracheophyta;
     Spermatophyta; Magnoliophyta; eudicotyledons; core eudicots;
OC
     Caryophyllidae; Caryophyllales; Chenopodiaceae; Spinacia.
OC
     NCBI_TaxID=3562;
ΟX
RN
     [1]
RΡ
     SEQUENCE.
RC
     TISSUE=Leaf;
RX
     MEDLINE=98175931; PubMed=9506969;
     Kieselbach T., Hagman A., Andersson B., Schroeder W.P.;
RA
RT
     "The thylakoid lumen of chloroplasts. Isolation and
RT
     characterization.";
```

DE

V) (Fragment).

```
J. Biol. Chem. 273:6710-6716(1998).
RL
     -!- SUBCELLULAR LOCATION: Chloroplast; within the thylakoid lumen.
CC
     Chloroplast; Thylakoid.
KW
    NON TER
                29
                         29
FT
                29 AA; 3464 MW; 58B785764E2623E3 CRC64;
     SEOUENCE
SQ
                          10.3%; Score 3; DB 1; Length 29;
  Query Match
                          100.0%; Pred. No. 4.8e+03;
  Best Local Similarity
            3; Conservative 0; Mismatches 0; Indels
                                                                             0;
                                                                 0; Gaps
  Matches
           25 RKK 27
Qу
              | | |
           19 RKK 21
Db
RESULT 27
DMS3 PHYSA
                                   PRT;
                                           30 AA.
                    STANDARD;
     DMS3 PHYSA
ID
     P80279;
AC
     01-FEB-1994 (Rel. 28, Created)
DT
     01-FEB-1994 (Rel. 28, Last sequence update)
DT
     15-SEP-2003 (Rel. 42, Last annotation update)
DT
     Dermaseptin 3 (DS III).
DE
     Phyllomedusa sauvagei (Sauvage's leaf frog).
OS
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
     Amphibia; Batrachia; Anura; Neobatrachia; Bufonoidea; Hylidae;
OC
     Phyllomedusinae; Phyllomedusa.
OC
     NCBI TaxID=8395;
OX
RN
     [1]
RP
     SEQUENCE.
     TISSUE=Skin secretion;
RC
     MEDLINE=94139686; PubMed=8306981;
RX
     Mor A., Nicolas P.;
RA
     "Isolation and structure of novel defensive peptides from frog skin.";
RT
     Eur. J. Biochem. 219:145-154(1994).
RL
     -!- FUNCTION: POSSESSES A POTENT ANTIMICROBIAL ACTIVITY AGAINST
CC
         BACTERIA FUNGI AND PROTOZOA. PROBABLY ACTS BY DISTURBING MEMBRANE
CC
         FUNCTIONS WITH ITS AMPHIPATIC STRUCTURE.
CC
     -!- SUBCELLULAR LOCATION: Secreted.
CC
     -!- TISSUE SPECIFICITY: Skin.
 CC
     -!- SIMILARITY: Belongs to the frog skin active peptide (FSAP) family.
 CC
          Dermaseptin subfamily.
 CC
     Amphibian defense peptide; Antibiotic; Fungicide; Multigene family.
 KW
     SEQUENCE 30 AA; 3024 MW; FD5F190C3DCBB0D7 CRC64;
 SO
                           10.3%; Score 3; DB 1; Length 30;
   Query Match
   Best Local Similarity 100.0%; Pred. No. 4.9e+03;
             3; Conservative 0; Mismatches 0; Indels
                                                                  0; Gaps
            26 KKL 28
 Qу
               | | |
            23 KKL 25
 Db
 RESULT 28
 FTN BACFR
                     STANDARD;
                                    PRT;
                                            30 AA.
      FTN BACFR
```

```
AC
     P28733;
     01-DEC-1992 (Rel. 24, Created)
DT
     01-DEC-1992 (Rel. 24, Last sequence update)
DT
     15-SEP-2003 (Rel. 42, Last annotation update)
DT
     Ferritin like protein (Fragment).
DE
     Bacteroides fragilis.
OS
     Bacteria; Bacteroidetes; Bacteroides (class); Bacteroidales;
OC
     Bacteroidaceae; Bacteroides.
OC
     NCBI TaxID=817;
OX
RN
     [1]
RΡ
     SEOUENCE.
     STRAIN=20656-2-1;
RC
     MEDLINE=92406001; PubMed=1526453;
RX
     Rocha E.R., Andrews S.C., Keen J.N., Brock J.H.;
RA
     "Isolation of a ferritin from Bacteroides fragilis.";
RT
     FEMS Microbiol. Lett. 74:207-212(1992).
RL
     -!- FUNCTION: MAY ALLEVIATE IRON TOXICITY IN THE PRESENCE OF
CC
CC
     -!- COFACTOR: BINDS ABOUT THREE IRON ATOMS PER MOLECULE.
CC
     -!- SUBUNIT: FORMS OLIGOMERS OF ABOUT 400 kDa (THE MONOMER IS ABOUT
CC
CC
         17 kDa).
     -!- SIMILARITY: BELONGS TO THE FERRITIN FAMILY. PROKARYOTIC SUBFAMILY.
CC
     -!- SIMILARITY: Contains 1 ferritin-like diiron domain.
CC
     InterPro; IPR001519; Ferritin.
DR
     Pfam; PF00210; ferritin; 1.
DR
     PROSITE; PS50905; FERRITIN LIKE; 1.
DR
     Iron storage; Iron; Metal-binding.
KW
                                  FERRITIN-LIKE DIIRON.
                   1
                        >30
FT
     DOMAIN
                                   IRON (BY SIMILARITY).
                  17
                         17
FT
     METAL
                          30
     NON TER
                  30
FT
                30 AA; 3529 MW; C70505B5696EFC4F CRC64;
     SEQUENCE
SQ
                           10.3%; Score 3; DB 1; Length 30;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 4.9e+03;
             3; Conservative 0; Mismatches 0; Indels
                                                                      Gaps
                                                                               0;
  Matches
           27 KLQ 29
Qу
              - 111
             5 KLO 7
Db
 RESULT 29
 OTCC AERPU
                                    PRT;
     OTCC AERPU
                     STANDARD;
                                            30 AA.
 ID
AC
     P11726;
     01-OCT-1989 (Rel. 12, Created)
 DT
      01-OCT-1989 (Rel. 12, Last sequence update)
 DT
     28-FEB-2003 (Rel. 41, Last annotation update)
DT
     Ornithine carbamoyltransferase, catabolic (EC 2.1.3.3) (OTCase)
 DE
      (Fragment).
 DE
     Aeromonas punctata (Aeromonas caviae).
 OS
     Bacteria; Proteobacteria; Gammaproteobacteria; Aeromonadales;
 OC
     Aeromonadaceae; Aeromonas.
 OC
     NCBI TaxID=648;
 OX
 RN
      [1]
 RΡ
     SEQUENCE.
     STRAIN=NCIB 9232;
 RC
```

```
MEDLINE=85104799; PubMed=3968036;
     Falmagne P., Portetelle D., Stalon V.;
RA
     "Immunological and structural relatedness of catabolic ornithine
RT
     carbamoyltransferases and the anabolic enzymes of enterobacteria.";
RT
     J. Bacteriol. 161:714-719(1985).
RL
     -!- CATALYTIC ACTIVITY: Carbamoyl phosphate + L-ornithine = phosphate
CC
CC
         + L-citrulline.
CC
     -!- PATHWAY: Arginine degradation via arginine deiminase; second step.
CC
     -!- SUBCELLULAR LOCATION: Cytoplasmic.
     -!- SIMILARITY: BELONGS TO THE ATCASES/OTCASES FAMILY.
CC
     InterPro; IPR006130; Asp/Orn COtranf.
DR
     InterPro; IPR006132; OTCace P.
DR
     Pfam; PF02729; OTCace N; 1.
     PROSITE; PS00097; CARBAMOYLTRANSFERASE; PARTIAL.
DR
KW
     Transferase; Arginine metabolism.
FT
     NON TER
                  30
                         30
SQ
     SEQUENCE
                30 AA; 3654 MW;
                                  673CB989FE72F9C1 CRC64;
  Query Match
                          10.3%; Score 3; DB 1; Length 30;
  Best Local Similarity 100.0%; Pred. No. 4.9e+03;
  Matches
            3; Conservative
                               0; Mismatches
                                                   0; Indels
                                                                  0; Gaps
                                                                              0;
            4 EIQ 6
Qу
              111
Db
           19 EIQ 21
RESULT 30
PCG2 PACGO
ID
     PCG2 PACGO
                    STANDARD;
                                   PRT;
                                           30 AA.
AC
     P82415;
     16-OCT-2001 (Rel. 40, Created)
DT
     16-OCT-2001 (Rel. 40, Last sequence update)
DT
     15-SEP-2003 (Rel. 42, Last annotation update)
DT
DE
     Ponericin G2.
OS
     Pachycondyla goeldii (Ponerine ant).
     Eukaryota; Metazoa; Arthropoda; Hexapoda; Insecta; Pterygota;
OC
     Neoptera; Endopterygota; Hymenoptera; Apocrita; Aculeata; Formicidae;
OC
OC
     Ponerinae; Pachycondyla.
OX
     NCBI TaxID=118888;
RN
     [1]
RΡ
     SEQUENCE, AND FUNCTION.
RC
     TISSUE=Venom;
RX
     MEDLINE=21264562; PubMed=11279030;
     Orivel J., Redeker V., Le Caer J.-P., Krier F., Revol-Junelles A.-M.,
RA
RA
     Longeon A., Chafotte A., Dejean A., Rossier J.;
     "Ponericins, new antibacterial and insecticidal peptides from the
RT
     venom of the ant Pachycondyla goeldii.";
RT
RL
     J. Biol. Chem. 276:17823-17829(2001).
     -!- FUNCTION: BROAD SPECTRUM OF ACTIVITY AGAINST BOTH GRAM-POSITIVE
CC
CC
         AND GRAM-NEGATIVE BACTERIA AND S.CEREVISIAE. HAS INSECTICIDAL
CC
         AND NON-HEMOLYTIC ACTIVITIES.
CC
     -!- SUBCELLULAR LOCATION: Secreted.
CC
     -!- MASS SPECTROMETRY: MW=3306.56; METHOD=MALDI.
KW
     Antibiotic; Insect immunity; Fungicide.
     SEQUENCE 30 AA; 3308 MW; A12CD4D0BAF40B5D CRC64;
SQ
```

RX

```
10.3%; Score 3; DB 1; Length 30;
 Best Local Similarity 100.0%; Pred. No. 4.9e+03;
           3; Conservative 0; Mismatches 0; Indels
                                                                            0;
                                                                 0; Gaps
 Matches
          22 EWL 24
Qу
              111
          11 EWL 13
Db
RESULT 31
PCG3 PACGO
                    STANDARD;
                                   PRT;
                                          30 AA.
     PCG3 PACGO
ID
     P82416;
AC
     16-OCT-2001 (Rel. 40, Created)
DT
     16-OCT-2001 (Rel. 40, Last sequence update)
DT
     15-SEP-2003 (Rel. 42, Last annotation update)
DT
     Ponericin G3.
DE
     Pachycondyla goeldii (Ponerine ant).
OS
     Eukaryota; Metazoa; Arthropoda; Hexapoda; Insecta; Pterygota;
OC
     Neoptera; Endopterygota; Hymenoptera; Apocrita; Aculeata; Formicidae;
OC
     Ponerinae; Pachycondyla.
OC
     NCBI TaxID=118888;
OX
RN
     SEQUENCE, AND FUNCTION.
RΡ
     TISSUE=Venom;
RC
     MEDLINE=21264562; PubMed=11279030;
RX
     Orivel J., Redeker V., Le Caer J.-P., Krier F., Revol-Junelles A.-M.,
RA
     Longeon A., Chafotte A., Dejean A., Rossier J.;
RA
     "Ponericins, new antibacterial and insecticidal peptides from the
RT
     venom of the ant Pachycondyla goeldii.";
RT
     J. Biol. Chem. 276:17823-17829(2001).
RL
     -!- FUNCTION: BROAD SPECTRUM OF ACTIVITY AGAINST BOTH GRAM-POSITIVE
CC
         AND GRAM-NEGATIVE BACTERIA AND S.CEREVISIAE. HAS INSECTICIDAL
CC
         AND NON-HEMOLYTIC ACTIVITIES.
CC
     -!- SUBCELLULAR LOCATION: Secreted.
CC
     -!- MASS SPECTROMETRY: MW=3381.36; METHOD=MALDI.
CC
     Antibiotic; Insect immunity; Fungicide.
KW
     SEQUENCE 30 AA; 3383 MW; BC0463D0AF140B53 CRC64;
SQ
                          10.3%; Score 3; DB 1; Length 30;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 4.9e+03;
            3; Conservative 0; Mismatches 0; Indels
                                                                 0; Gaps
                                                                             0;
  Matches
           22 EWL 24
Qу
              -111
           11 EWL 13
RESULT 32
PSAM PORPU
                                           30 AA.
                    STANDARD;
                                   PRT;
     PSAM PORPU
ID
     P51395;
AC
      01-OCT-1996 (Rel. 34, Created)
DT
      01-OCT-1996 (Rel. 34, Last sequence update)
DT
      01-OCT-1996 (Rel. 34, Last annotation update)
DT
      Photosystem I reaction centre subunit XII (PSI-M).
DE
 GN
     PSAM.
```

```
OS
     Porphyra purpurea.
OG
     Chloroplast.
OC
     Eukaryota; Rhodophyta; Bangiophyceae; Bangiales; Bangiaceae; Porphyra.
OX
     NCBI TaxID=2787;
RN
     [1]
RP
     SEQUENCE FROM N.A.
RC
     STRAIN=Avonport;
RA
     Reith M.E., Munholland J.;
RΤ
     "Complete nucleotide sequence of the Porphyra purpurea chloroplast
RT
     genome.";
RL
     Plant Mol. Biol. Rep. 13:333-335(1995).
CC
     -!- SIMILARITY: BELONGS TO THE PSAM FAMILY.
CC
CC
     This SWISS-PROT entry is copyright. It is produced through a collaboration
CC
     between the Swiss Institute of Bioinformatics and the EMBL outstation -
CC
     the European Bioinformatics Institute. There are no restrictions on its
CC
     use by non-profit institutions as long as its content is in no way
CC
     modified and this statement is not removed. Usage by and for commercial
CC
     entities requires a license agreement (See http://www.isb-sib.ch/announce/
CC
     or send an email to license@isb-sib.ch).
CC
    EMBL; U38804; AAC08281.1; -.
DR
DR
     PIR; S73316; S73316.
KW
     Photosystem I; Photosynthesis; Chloroplast.
SO
    SEQUENCE 30 AA; 3338 MW; 8D1930479D8A5527 CRC64;
  Query Match
                         10.3%; Score 3; DB 1; Length 30;
  Best Local Similarity 100.0%; Pred. No. 4.9e+03;
           3; Conservative 0; Mismatches 0; Indels
  Matches
                                                                0; Gaps
                                                                            0;
Qу
           11 LGK 13
            - 111
           24 LGK 26
RESULT 33
TX2 THRPR
     TX2_THRPR
                   STANDARD;
                                   PRT; 30 AA.
AC
     P83476;
     28-FEB-2003 (Rel. 41, Created)
DT
DT
     28-FEB-2003 (Rel. 41, Last sequence update)
     28-FEB-2003 (Rel. 41, Last annotation update)
DT
DE
     Toxin ProTx-II.
OS
     Thrixopelma pruriens (Green velvet).
OC
     Eukaryota; Metazoa; Arthropoda; Chelicerata; Arachnida; Araneae;
OC
     Mygalomorphae; Theraphosidae; Thrixopelma.
OX
     NCBI_TaxID=213387;
RN
RP
     SEQUENCE, FUNCTION, SUBCELLULAR LOCATION, TISSUE SPECIFICITY, MASS
     SPECTROMETRY, AND DISULFIDE BONDS.
RΡ
RC
     TISSUE=Venom;
RX
     MEDLINE=22363233; PubMed=12475222;
RA
     Middleton R.E., Warren V.A., Kraus R.L., Hwang J.C., Liu C.J., Dai G.,
     Brochu R.M., Kohler M.G., Gao Y.-D., Garsky V.M., Boqusky M.J.,
RA
RA
     Mehl J.T., Cohen C.J., Smith M.M.;
RT
     "Two tarantula peptides inhibit activation of multiple sodium
RT
     channels.";
```

```
Biochemistry 41:14734-14747(2002).
RL
     -!- FUNCTION: Inhibits voltage-gated calcium and sodium channels.
CC
         Shifts the voltage-dependence of channel activation to more
CC
         positive potentials.
CC
     -!- SUBCELLULAR LOCATION: Secreted.
CC
     -!- TISSUE SPECIFICITY: Expressed by the venom gland.
CC
     -!- MASS SPECTROMETRY: MW=3827; METHOD=Electrospray.
CC
     -!- MASS SPECTROMETRY: MW=3827; METHOD=MALDI.
CC-
     -!- SIMILARITY: BELONGS TO THE SPIDER POTASSIUM CHANNEL INHIBITORY
CC
         TOXIN FAMILY.
CC
     Toxin; Neurotoxin; Ionic channel inhibitor; Calcium channel inhibitor;
KW
     Sodium channel inhibitor.
KW
                         16
                   2
FT
     DISULFID
                   9
                         21
FT
     DISULFID
                         25
                  15
     DISULFID
FT
                30 AA; 3833 MW; 5B8CF4C6338C1B9B CRC64;
SO
     SEQUENCE
                          10.3%; Score 3; DB 1; Length 30;
  Query Match
                          100.0%; Pred. No. 4.9e+03;
  Best Local Similarity
                                                                              0;
                                0; Mismatches
            3; Conservative
                                                   0; Indels
                                                                      Gaps
  Matches
           26 KKL 28
QУ
              111
           27 KKL 29
RESULT 34
UP61 UPEIN
                                            30 AA.
     UP61 UPEIN
                    STANDARD;
                                    PRT;
ID
     P82037;
AC
     30-MAY-2000 (Rel. 39, Created)
DT
     30-MAY-2000 (Rel. 39, Last sequence update)
DT
     15-SEP-2003 (Rel. 42, Last annotation update)
DT
     Uperin 6.1.
DΕ
     Uperoleia inundata (Floodplain toadlet).
OS
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
     Amphibia; Batrachia; Anura; Neobatrachia; Bufonoidea; Myobatrachidae;
OC
     Myobatrachinae; Uperoleia.
OC
     NCBI TaxID=104953;
OX
      [1]
RN
     SEQUENCE, AND MASS SPECTROMETRY.
RP
     TISSUE=Skin secretion;
 RC
     Bradford A.M., Raftery M.J., Bowie J.H., Tyler M.J., Wallace J.C.,
 RA
     Adams G.W., Severini C.;
 RA
      "Novel uperin peptides from the dorsal glands of the australian
 RT
      floodplain toadlet Uperoleia inundata.";
 RT
     Aust. J. Chem. 49:475-484(1996).
 RL
      -!- FUNCTION: UNKNOWN.
 CC
      -!- SUBCELLULAR LOCATION: Secreted.
 CC
      -!- TISSUE SPECIFICITY: Expressed by the skin dorsal glands.
 CC
      -!- MASS SPECTROMETRY: MW=3233.85; METHOD=MALDI.
 CC
      Amphibian defense peptide.
 KW
                                  4EE15B9EB110F68E CRC64;
      SEQUENCE 30 AA; 3233 MW;
 SQ
                           10.3%; Score 3; DB 1; Length 30;
   Ouery Match
                           100.0%; Pred. No. 4.9e+03;
   Best Local Similarity
                               0; Mismatches
                                                    0; Indels
                                                                      Gaps
                                                                               0;
              3: Conservative
   Matches
```

```
Qу
           26 KKL 28
              +++
           24 KKL 26
Db
RESULT 35
UP62 UPEIN
                                   PRT;
                                           30 AA.
                    STANDARD;
    UP62 UPEIN
ID
     P82038;
AC
     30-MAY-2000 (Rel. 39, Created)
DT
     30-MAY-2000 (Rel. 39, Last sequence update)
DT
     15-SEP-2003 (Rel. 42, Last annotation update)
DT
     Uperin 6.2.
DΕ
     Uperoleia inundata (Floodplain toadlet).
OS
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
     Amphibia; Batrachia; Anura; Neobatrachia; Bufonoidea; Myobatrachidae;
OC
     Myobatrachinae; Uperoleia.
OC
     NCBI TaxID=104953;
OX
RN
     [1]
     SEQUENCE, AND MASS SPECTROMETRY.
RP
     TISSUE=Skin secretion;
RC
     Bradford A.M., Raftery M.J., Bowie J.H., Tyler M.J., Wallace J.C.,
RA
     Adams G.W., Severini C.;
RA
     "Novel uperin peptides from the dorsal glands of the australian
RT
     floodplain toadlet Uperoleia inundata.";
RT
     Aust. J. Chem. 49:475-484(1996).
RL
     -!- FUNCTION: UNKNOWN.
CC
     -!- SUBCELLULAR LOCATION: Secreted.
CC
     -!- TISSUE SPECIFICITY: Expressed by the skin dorsal glands.
CC
     -!- MASS SPECTROMETRY: MW=3261.85; METHOD=MALDI.
CC
     Amphibian defense peptide.
KW
               30 AA; 3261 MW; 4EE15B9EB10841DE CRC64;
     SEQUENCE
SQ
                           10.3%; Score 3; DB 1; Length 30;
  Query Match
                           100.0%; Pred. No. 4.9e+03;
  Best Local Similarity
                                                                               0:
             3; Conservative 0; Mismatches 0; Indels
                                                                   0; Gaps
  Matches
            26 KKL 28
Qу
               || ||
Db
            24 KKL 26
RESULT 36
VAA2 EQUAR
                                    PRT;
                                            30 AA.
                     STANDARD;
      VAA2 EQUAR
ID
AC
      Q04238;
      01-OCT-1996 (Rel. 34, Created)
DT
      01-OCT-1996 (Rel. 34, Last sequence update)
DT
      28-FEB-2003 (Rel. 41, Last annotation update)
DT
      Vacuolar ATP synthase catalytic subunit A, isoform 2 (EC 3.6.3.14)
DE
      (Fragment).
DE
      Equisetum arvense (Field horsetail) (Common horsetail).
 OS
      Eukaryota; Viridiplantae; Streptophyta; Embryophyta; Tracheophyta;
 OC
      Equisetophyta; Sphenopsida; Equisetales; Equisetaceae; Equisetum.
 OC
      NCBI TaxID=3258;
 OX
```

RN

[1]

```
MEDLINE=93138084; PubMed=8422915;
RX
    Starke T., Gogarten J.P.;
RA
    "A conserved intron in the V-ATPase A subunit genes of plants and
RT
RT
    algae.";
    FEBS Lett. 315:252-258(1993).
RL
    -!- FUNCTION: CATALYTIC SUBUNIT OF THE PERIPHERAL V1 COMPLEX OF
CC
        VACUOLAR ATPASE. V-ATPASE VACUOLAR ATPASE IS RESPONSIBLE FOR
CC
        ACIDIFYING A VARIETY OF INTRACELLULAR COMPARTMENTS IN EUKARYOTIC
CC
CC
        CELLS.
    -!- CATALYTIC ACTIVITY: ATP + H(2)O + H(+)(In) = ADP + phosphate +
CC
CC
        H(+) (Out).
     -!- SUBUNIT: V-ATPASE IS AN HETEROMULTIMERIC ENZYME COMPOSED OF A
CC
        PERIPHERAL CATALYTIC V1 COMPLEX (MAIN COMPONENTS: SUBUNITS A, B,
CC
        C, D, E, AND F) ATTACHED TO AN INTEGRAL MEMBRANE VO PROTON PORE
CC
        COMPLEX (MAIN COMPONENT: THE PROTEOLIPID PROTEIN).
CC
     -!- MISCELLANEOUS: TWO SEPARATE GENES ENCODE THE CATALYTIC 70 kDa
CC
        V-ATPASE SUBUNIT IN PSILOTUM AND EQUISETUM.
CC
     -!- SIMILARITY: Belongs to the ATPase alpha/beta chains family.
CC
     _____
CC
    This SWISS-PROT entry is copyright. It is produced through a collaboration
CC
    between the Swiss Institute of Bioinformatics and the EMBL outstation -
CC
     the European Bioinformatics Institute. There are no restrictions on its
CC
     use by non-profit institutions as long as its content is in no way
CC
     modified and this statement is not removed. Usage by and for commercial
CC
     entities requires a license agreement (See http://www.isb-sib.ch/announce/
CC
     or send an email to license@isb-sib.ch).
CC
     _____
CC
     EMBL; X56984; CAA40302.1; -.
DR
     PIR; S21815; S21815.
DR
     InterPro; IPR000194; ATPase_a/bcentre.
DR
     PROSITE; PS00152; ATPASE_ALPHA_BETA; PARTIAL.
DR
     ATP synthesis; Hydrogen ion transport; Hydrolase; ATP-binding;
KW
     Multigene family.
KW
     NON TER
FT
              1
                         1
     NON TER
FT
                 30
                        30
     SEQUENCE 30 AA; 3372 MW; 51CCA4A3DA9E5D84 CRC64;
SQ
                        10.3%; Score 3; DB 1; Length 30;
  Ouery Match
  Best Local Similarity 100.0%; Pred. No. 4.9e+03;
            3; Conservative 0; Mismatches 0; Indels 0; Gaps
                                                                         0;
  Matches
          18 MER 20
Оv
             23 MER 25
Db
RESULT 37
Y523 BORBU
     Y523 BORBU
                   STANDARD;
                                PRT; 30 AA.
ΙD
AC
     051473;
     15-DEC-1998 (Rel. 37, Created)
15-DEC-1998 (Rel. 37, Last sequence update)
DT
DT
     16-OCT-2001 (Rel. 40, Last annotation update)
DT
     Hypothetical protein BB0523.
DE
GN
     BB0523.
     Borrelia burgdorferi (Lyme disease spirochete).
OS
```

SEQUENCE FROM N.A.

RΡ

```
Bacteria; Spirochaetes; Spirochaetales; Spirochaetaceae; Borrelia.
OX
    NCBI TaxID=139;
RN
    [1]
    SEQUENCE FROM N.A.
RP
RC
    STRAIN=ATCC 35210 / B31;
RX
    MEDLINE=98065943; PubMed=9403685;
RA
    Fraser C.M., Casjens S., Huang W.M., Sutton G.G., Clayton R.A.,
RA
    Lathigra R., White O., Ketchum K.A., Dodson R., Hickey E.K., Gwinn M.,
RA
    Dougherty B., Tomb J.-F., Fleischmann R.D., Richardson D.,
    Peterson J., Kerlavage A.R., Quackenbush J., Salzberg S., Hanson M.,
RA
RA
    van Vugt R., Palmer N., Adams M.D., Gocayne J.D., Weidman J.,
RA
    Utterback T., Watthey L., McDonald L., Artiach P., Bowman C.,
    Garland S., Fujii C., Cotton M.D., Horst K., Roberts K., Hatch B.,
RA
    Smith H.O., Venter J.C.;
RA
RT
    "Genomic sequence of a Lyme disease spirochaete, Borrelia
RT
    burgdorferi.";
RL
    Nature 390:580-586(1997).
    _____
CC
CC
    This SWISS-PROT entry is copyright. It is produced through a collaboration
CC
    between the Swiss Institute of Bioinformatics and the EMBL outstation -
CC
    the European Bioinformatics Institute. There are no restrictions on its
    use by non-profit institutions as long as its content is in no way
CC
CC
    modified and this statement is not removed. Usage by and for commercial
CC
    entities requires a license agreement (See http://www.isb-sib.ch/announce/
CC
    or send an email to license@isb-sib.ch).
CC
    DR
    EMBL; AE001154; AAC66894.1; -.
DR
    PIR; B70165; B70165.
DR
    TIGR; BB0523; -.
KW
    Hypothetical protein; Complete proteome.
SO
    SEQUENCE 30 AA; 3431 MW; DE437B15D2A48AA8 CRC64;
 Query Match
                        10.3%; Score 3; DB 1; Length 30;
 Best Local Similarity 100.0%; Pred. No. 4.9e+03;
 Matches
         3; Conservative 0; Mismatches 0; Indels
                                                            0; Gaps
Qу
          19 ERV 21
            26 ERV 28
Db
RESULT 38
CEC1 PIG
ID
    CEC1 PIG
                  STANDARD;
                                PRT;
AC
    P14661;
DT
    01-APR-1990 (Rel. 14, Created)
    01-APR-1990 (Rel. 14, Last sequence update)
DT
    28-FEB-2003 (Rel. 41, Last annotation update)
DT
DΕ
    Cecropin P1.
OS
    Sus scrofa (Pig).
    Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
OC
    Mammalia; Eutheria; Cetartiodactyla; Suina; Suidae; Sus.
OX
    NCBI TaxID=9823;
RN
    [1]
RP
    SEQUENCE.
RX
    MEDLINE=90083227; PubMed=2512577;
    Lee J.-Y., Boman A., Chuanxin S., Andersson M., Joernvall H., Mutt V.,
RA
```

OC

```
"Antibacterial peptides from pig intestine: isolation of a mammalian
RT
RT
     cecropin.";
     Proc. Natl. Acad. Sci. U.S.A. 86:9159-9162(1989).
RL
RN
     [2]
     STRUCTURE BY NMR.
RΡ
     MEDLINE=93011123; PubMed=1396696;
RX
     Sipos D., Andersson M., Ehrenberg A.;
RA
RT
     "The structure of the mammalian antibacterial peptide cecropin P1 in
     solution, determined by proton-NMR.";
RT
     Eur. J. Biochem. 209:163-169(1992).
RL
CC
     -!- FUNCTION: CECROPINS HAVE LYTIC AND ANTIBACTERIAL ACTIVITY AGAINST
CC
         SEVERAL GRAM-POSITIVE AND GRAM-NEGATIVE BACTERIA. ACTS BY A
CC
         NONPORE MECHANISM.
CC
     -!- SUBCELLULAR LOCATION: Secreted.
CC
     -!- SIMILARITY: BELONGS TO THE CECROPIN FAMILY.
DR
     PIR; A36221; A36221.
     InterPro; IPR000875; Cecropin.
DR
     Pfam; PF00272; cecropin; 1.
DR
DR
     PROSITE; PS00268; CECROPIN; 1.
KW
     Antibiotic.
     SEQUENCE
                31 AA; 3339 MW; CB2B374A8B153850 CRC64;
SQ
  Query Match
                          10.3%; Score 3; DB 1; Length 31;
  Best Local Similarity
                          100.0%; Pred. No. 5.1e+03;
             3; Conservative
                                0; Mismatches
 Matches
                                                    0; Indels
                                                                  0; Gaps
                                                                               0;
           26 KKL 28
Qу
              111
Db
            8 KKL 10
RESULT 39
CXMA CONMR
     CXMA CONMR
                    STANDARD;
                                    PRT;
                                            31 AA.
ID
AC
     P56708;
DT
     30-MAY-2000 (Rel. 39, Created)
     30-MAY-2000 (Rel. 39, Last sequence update)
DT
     28-FEB-2003 (Rel. 41, Last annotation update)
DT
     Mu-O-conotoxin MrVIA.
DΕ
OS
     Conus marmoreus (Marble cone).
     Eukaryota; Metazoa; Mollusca; Gastropoda; Orthogastropoda;
OC
OC
     Apogastropoda; Caenogastropoda; Sorbeoconcha; Hypsogastropoda;
OC
     Neogastropoda; Conoidea; Conidae; Conus.
OX
     NCBI TaxID=42752;
RN
     [1]
RP
     SEQUENCE, AND SYNTHESIS.
RC
     TISSUE=Venom;
RX
     MEDLINE=95348106; PubMed=7622492;
     McIntosh J.M., Hasson A., Spira M.E., Gray W.R., Li W., Marsh M.,
RA
RΑ
     Hillyard D.R., Olivera B.M.;
RT
     "A new family of conotoxins that blocks voltage-gated sodium
RT
     channels.";
RL
     J. Biol. Chem. 270:16796-16802(1995).
CC
     -!- FUNCTION: Mu-O-conotoxins bind and block voltage-sensitive sodium
CC
         channel (VSSC).
CC
     -!- SUBCELLULAR LOCATION: Secreted.
```

RA

Boman H.G.;

```
-!- TISSUE SPECIFICITY: Expressed by the venom duct.
CC
     -!- MASS SPECTROMETRY: MW=3487.8; METHOD=LSIMS.
CC
     -!- SIMILARITY: BELONGS TO THE O-SUPERFAMILY OF CONOTOXINS. MU-O-TYPE
CC
CC
         FAMILY.
DR
     PIR; A58586; A58586.
     Toxin; Sodium channel inhibitor.
KW
FT
     DISULFID
                   2
                         20
                                  BY SIMILARITY.
                   9
                         25
FT
     DISULFID
                                  BY SIMILARITY.
                  19
                                  BY SIMILARITY.
FT
     DISULFID
                         30
                31 AA; 3495 MW; 741FA610E6F9D289 CRC64;
SO
     SEQUENCE
                          10.3%; Score 3; DB 1; Length 31;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 5.1e+03;
                               0; Mismatches
                                                    0; Indels
                                                                               0;
             3; Conservative
                                                                  0; Gaps
  Matches
           25 RKK 27
QУ
              | | |
            3 RKK 5
Db
RESULT 40
DEJP DROME
     DEJP DROME
                                    PRT;
                                            31 AA.
ID
                    STANDARD;
AC
     P81160;
DT
     15-JUL-1998 (Rel. 36, Created)
     15-JUL-1998 (Rel. 36, Last sequence update)
DT
     28-FEB-2003 (Rel. 41, Last annotation update)
DT
     Ductus ejaculatorius peptide 99B.
DE
GN
     DUP99B.
OS
     Drosophila melanogaster (Fruit fly).
     Eukaryota; Metazoa; Arthropoda; Hexapoda; Insecta; Pterygota;
OC
     Neoptera; Endopterygota; Diptera; Brachycera; Muscomorpha;
OC
OC
     Ephydroidea; Drosophilidae; Drosophila.
     NCBI TaxID=7227;
OX
RN
     [1]
     SEQUENCE OF 1-24 FROM N.A., AND SEQUENCE OF 9-31.
RP
     STRAIN=Oregon-R; TISSUE=Ductus ejaculatorius;
RC
RX
     MEDLINE=21835775; PubMed=11846801;
RA
     Saudan P., Hauck K., Soller M., Choffat Y., Ottiger M., Sporri M.,
     Ding Z., Hess D., Gehrig P.M., Klauser S., Hunziker P., Kubli E.;
RA
     "Ductus ejaculatorius peptide 99B (DUP99B), a novel Drosophila
RT
     melanogaster sex-peptide pheromone.";
RT
RL
     Eur. J. Biochem. 269:989-997(2002).
CC
     -!- FUNCTION: INDUCES POST-MATING RESPONSES.
     -!- SUBCELLULAR LOCATION: Secreted.
CC
CC
     -!- TISSUE SPECIFICITY: DUCTUS EJACULATORIUS.
CC
     -!- SIMILARITY: TO PARAGONIAL PEPTIDE B.
DR
     FlyBase; FBgn0024381; Dup99B.
     GO; GO:0045434; P:negative regulation of female receptivity, . . .; IMP.
DR
DR
     GO; GO:0046662; P:regulation of oviposition; NAS.
KW
     Behavior; Glycoprotein; Pyrrolidone carboxylic acid.
                                   PYRROLIDONE CARBOXYLIC ACID.
FT
     MOD RES
                   1
                          1
     DISULFID
FT
                  19
                         31
FT
     CARBOHYD
                   4
                          4
                                   N-LINKED (GLCNAC. . .).
SQ
     SEQUENCE
                31 AA; 3766 MW;
                                  B90A9B99C120EF49 CRC64;
                          10.3%; Score 3; DB 1; Length 31;
  Query Match
```

Best Local Similarity 100.0%; Pred. No. 5.1e+03;
Matches 3; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

Qy 10 NLG 12 || | | Db 22 NLG 24

Search completed: January 14, 2004, 10:35:38

Job time : 6.78816 secs