LES RECTIONS ACIDO-BASIQUES

Exercice n°1

On donne les constantes d'acidité respectives de l'acide Maléïque HOOC-CH=CH-COOH (Noté H_2A): $pK_{A1} = 2$ et $pK_{A2} = 6.3$.

- 1°) L'ion HA apparaît dans une réaction faisant intervenir H₂A et A² comme produits.
 - a) Ecrire cette réaction.
 - b) Calculer sa constante d'équilibre.
 - c) Comment qualifier l'ion HA-?
- 2°) Sur un axe gradué en pH, indiquer les domaines de prédominance des différentes espèces.
- 3°) Pour une solution de concentration initiale C_0 en H_2A , exprimer en fonction de h, K_{A1} et K_{A2} les rapports $\alpha_0 = [A^2]/C_0$; $\alpha_1 = [HA^2]/C_0$; $\alpha_2 = [H_2A]/C_0$.

Tracer sur le même graphe les courbes $\alpha_i = f(pH)$ (On choisira $\alpha_i = 10^{-3}$ comme limite d'existence d'une espèce). 4°) Que remarque-t-on pour $pH = pK_{A1}$ et $pH = pK_{A2}$.

Exercice n°2

Les courbes fournies en annexe correspondent aux pourcentages de AsO₄³⁻ (1), HAsO₄²⁻ (2), H₂AsO₄ (3), H₃AsO₄ (4) en fonction du pH. A l'aide de ce diagramme déterminer les grandeurs suivantes :

- 1°) Les valeurs des pK_A des couples acido-basiques.
- 2°) Pour pH = 2.3 le pourcentage en H_3AsO_4 est 43.5% et celui de H_2AsO_4 est de 56.5%. Retrouver la valeur du pK_{A1}.
- 3°) Représenter le diagramme de prédominance de ce triacide.

Exercice n°3

L'acide diphosphorique $H_4P_2O_7$ est un tétraacide dont les valeurs des constantes d'acidité relatives à l'eau à 298 K sont : $pK_{A1} = 1.5$; $pK_{A2} = 1.8$; $pK_{A3} = 6.0$ et $pK_{A4} = 8.2$

- 1. Tracer le diagramme de prédominance simple des espèces acido-basiques issues de l'acide diphosphorique.
- 2. Tracer le diagramme de prédominance pour lequel on néglige une espèce face à une autre si leurs concentrations diffèrent d'un facteur 10. Que peut-on dire du cas du triacide ?
- 3. Le diagramme de répartition des espèces acido-basiques a été calculé par un logiciel de simulation. Il est présenté.

- **3.1.** Attribuer à chaque courbe la concentration qu'elle représente.
- **3.2.** Retrouver vos conclusions de la question précédente grâce à ce diagramme.
- 3.3. Existe-t-il un pH pour lequel le milieu contient presque quantitativement l'ion dihydrogéno-diphosphate H₂P₂O₇²-?
- 3.4. Existe-t-il un pH pour lequel le milieu contient presque quantitativement l'ion hydrogéno-diphosphate HP₂O₇³-?

Exercice n°4

Un bécher est rempli à partir de quatre volumes identiques v_0 = 25ml d'acide benzoïque C_6H_5COOH , d'acide éthanoïque CH_3COOH , de benzoate de sodium ($C_6H_5COO^-+N$ a+) et d'éthanoate de sodium (CH_3COO^-+N a+), toute de concentration C_0 = 10^{-2} mol. L_{-1} .

données : $pK_a(CH_3COO^-) = 4.8$ et $pK_a(C_6H_5COO^+/C_6H_5COO^-) = 8$.

- 1. Sur une échelle des pH, faire apparaître les espèces en solution.
- 2. Ecrire la réaction dont la constante d'équilibre est supérieure à 1.
- 3. Calculer la constante de l'équilibre précédent.
- 4. Prédire dans quel sens évolue le système.
- 5. Déterminer l'avancement volumique x de la réaction en supposant la réaction totale.
- 6. Déterminer l'avancement volumique x de la réaction sans faire l'hypothèse que la réaction est totale Comparer avec le résultat de la question précédente.
- 7. Calculer le pH de la solution.

Exercice n°5

Etudions le titrage d'un volume V_A = 10ml de H_2Gly^+ de concentration C_A inconnue mais voisine de 0,1mol. L^{-1} par de la soude de concentration C_B = 0,1mol. L^{-1} .

- 1. Sur le graphique, écrire les réactions de dosage successives. Préciser leurs constantes.
- 2. Déterminer le volume de soude versée à l'équivalence et calculer C_A.
- 3. Déterminer le pH de la solution initiale.

