

GREEN ELLIPSIS

Senior Design 2023-2024

Ryan Hunter Allison Wolfson Jacob Davis Christopher Zervos

Problem Statement

WHO:

Green Ellipsis, the sponsor of the project, processes 2-liter plastic bottles and upcycles them into usable filament for 3-D printing. They are a small company working to create a full process that can be used by community level groups to promote recycling and contribute to limiting pollution.

WHAT:

Currently the process costs more to complete than you can sell the end product for, and is therefore not appealing for a group to take on.

WHY:

Without the incentive of being able to sell the produced filament for a profit, the cost, upkeep, and use of the rig is not worth it to a community.

Process

- Bottles prepped and cleaned
- Bottle cut into strips
- Pulled through nozzle to turn into filament
- Wound on the spool
- Taken off spool for repackaging

Current End Product

Requirements

- Process uses all portions of the plastic bottle with minimal waste
- Bottles used are Pepsi branded
- The filament must be cheaper to produce than the cost it can sell for
- Filament withstand stress of spooling and 3-D printing
- The size of the processing machine must not be too big
- Budget of <\$1000
- All design components must use the metric system of measurements

Constraints

- The raw materials are sourced from used plastic bottles
- The process must be environmentally friendly with a net positive impact
- The process must be safe and usable by an average person
- The process must be low cost to build so the average consumer can afford to repeat it
- Filament must be usable with any standard 3-D printer: 1.75mm +/- .1mm
- The filament cannot break or become jammed during the pultrusion process
- Any power requirements must be available from a standard outlet: 120V

Concept Selection

First round of dowselection:

- Bottle cleaning and prep
- Pultrusion initiation
- Winding/Packaging
- Coloring the filament
- Splicing pieces of filament together

Cleaning and Prep

What is cleaning?

• The bottles must be delabeled and cleaned of residue before they can be used.

Why cleaning?

 Prepping the bottles for cutting is time consuming and labor intensive.

Winding/Packaging

What is winding/packaging?

• Filament must be taken off of machine and neatly wound.

Why winding/packaging?

 Currently, the machine must be stopped so the filament can be respooled.

Coloring

What is coloring?

• Add color pigment to filament

Why coloring?

• Increases value of product

Problems?

• PET doesn't easily accept color

Splicing

What is Splicing?

 Joining or connecting of two strands of material.

Why Splicing?

• Increase the amount of filament available per spool of material.

Problems?

 PET can recrystallize very easily, causing the filament to become brittle either breaking or jamming in the nozzle or the 3D printer.

Concept Selection

Pugh Matrix												
Critical Quality		Cleaning/ Prep	Pultrusion	Winding/ Packaging	Coloring	Splicing						
Difficulty	1	1	-1	0	1	-1						
Team Knowledge	2	0	1	1	-1	-1						
Time Saved	3	1	0	1	0	0						
Sponsor Preference	4	1	0	-1	-1	1						
Benefit	5	0	-1	0	0	1						
Maintenance	2	-1	1	0	-1	1						
Cost to Reproduce	2	0	-1	0	1	0						
Safety	3	0	1	1	1	0						

Summary Table										
Total "1s"	3	3	3	3	3					
Total "Os"	4	2	4	2	3					
Total "-1s"	1	3	1	3	2					
Total	6	-1	4	-2	8					

Mosaic Palette pro 2

- Current option used by hobbyists and recommended by others but is \$700
- Heats, compresses, and cools the filaments to splice them together
 [5] automatically.
- Trying to figure out a cheaper way to achieve this.

Mechanical Methods

With splicing selected, the following Mechanical ideas are being considered:

- Friction Welding (Ribbon)
- Hook and Loop or Zip Tie Design (Ribbon)
- Cutting and Gluing Techniques

Heating and Welding Methods.

Alternatively, these heating methods are another area to experiment with:

- Ultrasonic Welding
- Traditional Soldering
- Heated Air (Heat Gun)

Designs and Testing

Designs

Testing

- Tensile strength
- Brittleness
- Spooling
- Print quality

Possible Automation

- Selected Process
- Design a device for automation
- Human assistance
- No human assistance

What's Next?

- Finalizing experiment ideas
- Finalize budget and order all necessary parts
- Recreate available commercial and hobbyist jigs
- Design experiments to test splice joints
- Begin experimentation

References

[1] "Tension rod-less Recreator3D with runout detection", YouTube, Jul 12, 2022. Available: https://www.youtube.com/watch?v=w-EAWBNNP8s

[2]"3D Printing Filament Splicing Jig", Youtube, May 29, 2022. Available:

https://www.youtube.com/watch?v=UgFf3n4iQ6wslide 15

[3]"PET Bottle Recycling: Waste to 3D Printing Filament", Youtube, Sep 16, 2023. Available: https://www.youtube.com/watch?v=1yle1Pp_Nrg 8[1]

[4]" 3 Dprinter filament joiner welder connector", Youtube, Feb 10, 2022. Available: https://www.youtube.com/watch?v=guGbnYlyfu4 slide 15[1]

[5] Mosaic Manufacturing, Palette 2 & Palette 2 Pro: Filament Production Speeds, and Maximum Recommended Print Speeds, https://www.mosaicmfg.com/pages/palette-2-filament-production-speeds#:~:text=Palette%202%20and%20Palette%202,of%20filament%20during%20a%20print.

[6] "PET - Polyethylene terephthalate," Ensinger Plastics. https://www.ensingerplastics.com/en-us/shapes/engineering-plastics/pet-polyester (accessed Sept. 29, 2023).

[7] BotCan, "AUTO FILAMENT SPLICER" Printables,

https://www.printables.com/model/524622-auto-filament-splicer-afs-v1-using-your-3d-bowden-

Questions?