Computabilità 25 gennaio 2021

Esercizio 1

Sia $A \subseteq \mathbb{N}$ un insieme e sia $f : \mathbb{N} \to \mathbb{N}$ una funzione calcolabile. È vero che se A è r.e. allora anche $f^{-1}(A) = \{x \in \mathbb{N} \mid f(x) \in A\}$ è r.e.? E se l'insieme A è ricorsivo possiamo concludere che $f^{-1}(A)$ è ricorsivo? Motivare le risposte con prove o controesempi.

Soluzione: Per la prima parte, se A è r.e allora anche $f^{-1}(A)$ lo è. Infatti, per definizione vale $x \in f^{-1}(A)$ se e solo se $f(x) \downarrow$ e $f(x) \in A$ ovvero se e solo se $sc_A(f(x)) = 1$, dove sc_A è la funzione semi-caratteristica di A, calcolabile in quanto A r.e.. Quindi possiamo scrivere la funzione semi-caratteristica di $f^{-1}(A)$ come $sc_{f^{-1}(A)}(x) = sc_A(f(x))$, calcolabile in quanto composizione di funzioni calcolabili. Quindi $f^{-1}(A)$ è r.e.

Lo stesso risultato non vale per la ricorsività. Ad esempio, la funzione semicaratteristica di K, ovvero sc_k è calcolabile, ma $sc_k^{-1}(\mathbb{N}) = \{x \mid sc_K(x) \in \mathbb{N}\} = \{x \mid sc_K(x) \downarrow\} = K$ non ricorsivo, nonostante \mathbb{N} sia ricorsivo.

Esercizio 2

Studiare la ricorsività dell'insieme $A = \{x \in \mathbb{N} \mid W_x = \overline{E_x}\}$, ovvero dire se A e \overline{A} sono ricorsivi/ricorsivamente enumerabili.

Soluzione: Si osserva che A è saturato, dato che $A = \{x \in \mathbb{N} \mid \varphi_x \in \mathcal{A}\}$, dove $\mathcal{A} = \{f \mid dom(f) \setminus cod(f) \text{ finito}\}$.

Quindi per Rice-Shapiro si conclude che A e \bar{A} sono non r.e., e quindi non sono neppure ricorsivi. In dettaglio:

• A non r.e. Si consideri la funzione

$$f(x) = \begin{cases} \uparrow & \text{se } x = 0\\ x & \text{altrimenti} \end{cases}$$

Si nota che $f \in \mathcal{A}$, dato che $dom(f) = \mathbb{N} \setminus \{0\} = \overline{cod(f)} = \overline{\{0\}}$. Inoltre nessuna sottofunzione finita $\theta \subseteq f$ può essere in $\overline{\mathcal{A}}$, dato che se θ è finita, $dom(\theta)$ e $cod(\theta)$ sono finiti, e quindi non possono essere l'uno il complementare dell'altro, poiché il complementare di un insieme finito è infinito. Quindi per Rice-Shapiro si conclude che A non è r.e.

• \bar{A} non r.e. Infatti $f \notin \bar{A}$, ma la funzione sempre indefinita $\varnothing \subseteq f$ e $\varnothing \in \overline{A}$, dato che $dom(f) = \varnothing \neq \overline{cod(f)} = \overline{\varnothing}$. Quindi per Rice-Shapiro si conclude che \bar{A} non è r.e.

Esercizio 2

Studiare la ricorsività dell'insieme $A = \{x \in \mathbb{N} \mid W_x \setminus E_x \text{ finito}\}$, ovvero dire se A e \bar{A} sono ricorsivi/ricorsivamente enumerabili.

Soluzione: Si osserva che A è saturato, dato che $A = \{x \in \mathbb{N} \mid \varphi_x \in A\}$, dove $A = \{f \mid dom(f) = \overline{cod(f)}\}$.

Quindi per Rice-Shapiro si conclude che A e \bar{A} sono non r.e., e quindi non sono neppure ricorsivi. In dettaglio:

- A non r.e.
 Indicato con 1 la costante 1, bvale che 1 ∉ A, dato che dom(1) \ cod(1) = N \ {1}
 è infinito. Inoltre la funzione sempre indefinita Ø ⊆ 1 e Ø ∈ A, dato che dom(f) \ cod(f) = Ø finito. Quindi per Rice-Shapiro si conclude che A non è r.e.
- \bar{A} non r.e. Si osserva che $\mathbf{1} \in \bar{\mathcal{A}}$, ma nessuna sottofunzione finita $\theta \subseteq \mathbf{1}$ può essere in $\bar{\mathcal{A}}$, dato che se θ è finita, $dom(\theta)$ e $cod(\theta)$ sono finiti, e quindi anche $dom(\theta) \setminus cod(\theta)$ è finito. Quindi per Rice-Shapiro si conclude che \bar{A} non è r.e.

Esercizio 3

Studiare la ricorsività dell'insieme $B = \{x \in \mathbb{N} \mid \exists y. (x \leq y \leq 2x \land y \in W_x)\}$, ovvero dire se $B \in \overline{B}$ sono ricorsivi/ricorsivamente enumerabili.

Soluzione: L'insieme B non è ricorsivo dato che $K \leq_m B$. Per mostrarlo si può considerare la funzione g(x,y)=1 se $x \in K$ e indefinita altrimenti. Tale funzione è calcolabile, dato che $g(x,y)=sc_k(x)$. Quindi per il teorema smn, esiste una funzione calcolabile totale $s: \mathbb{N} \to \mathbb{N}$ tale che $\varphi_{s(x)}(y)=g(x,y)$ per ogni $x,y \in \mathbb{N}$. Si vede dunque che s è funzione di riduzione di K a B. Infatti

- Se $x \in K$ allora $g(x, y) = \varphi_{s(x)}(y) = 1$ per ogni $y \in \mathbb{N}$. Quindi $W_{s(x)} = \mathbb{N}$ e pertanto esiste certamente y, con $s(x) \leq y \leq 2s(x)$ tale che $y \in W_{s(x)}$, ad esempio y = s(x). Quindi $s(x) \in B$.
- Se $x \notin K$ allora $g(x,y) = \varphi_{s(x)}(y) \uparrow$ per ogni $y \in \mathbb{N}$. Quindi $W_{s(x)} = \emptyset$ e pertanto non può esistere y, con $s(x) \leq y \leq 2s(x)$ tale che $y \in W_{s(x)}$. Quindi $s(x) \notin B$.

L'insieme B è r.e., infatti la sua funzione semi-caratteristica

$$sc_B(x) = \mathbf{1}(\mu w.(H(x,(w)_1,(w)_2) \land (x \leq (w)_1 \leq 2x)),$$

è calcolabile.

Dato che B è r.e., ma non ricorsivo, il suo complementare \bar{B} non r.e. (altrimenti entrambi sarebbero ricorsivi), e quindi \bar{B} non è neppure ricorsivo.