- 1 List the members of these sets.
 - a) $\{x \mid x \text{ is a real number such that } x^2 = 1\}$
 - **b)** $\{x \mid x \text{ is a positive integer less than } 12\}$
 - c) $\{x \mid x \text{ is the square of an integer and } x < 100\}$
 - **d)** $\{x \mid x \text{ is an integer such that } x^2 = 2\}$

- 2. Suppose that A, B, and C are sets such that $A \subseteq B$ and $B \subseteq C$. Show that $A \subseteq C$.
- 3. Determine whether each of these statements is true or false.
 - a) $0 \in \emptyset$

b) $\emptyset \in \{0\}$

c) $\{0\} \subset \emptyset$

d) $\emptyset \subset \{0\}$

e) $\{0\} \in \{0\}$

f) $\{0\} \subset \{0\}$

 $\mathbf{g}) \ \{\emptyset\} \subseteq \{\emptyset\}$

- 4 Draw the Venn diagrams for each of these combinations of the sets A, B, and C.

 - **a)** $A \cap (B C)$ **b)** $(A \cap B) \cup (A \cap C)$
 - c) $(A \cap B) \cup (A \cap C)$
- 5 Let $A_i = \{1, 2, 3, ..., i\}$ for i = 1, 2, 3, ... Find a) $\bigcup_{i=1}^{n} A_i$. b) $\bigcap_{i=1}^{n} A_i$.

• 6 Let A, B, and C be sets. Use the identities in Table 1 to show that $(A \cup B) \cap (B \cup C) \cap (A \cup C) = A \cap \overline{B} \cap C$.

• 7

Find these values.

a) $\lceil \frac{3}{4} \rceil$

b) $\lfloor \frac{7}{8} \rfloor$

c) $[-\frac{3}{4}]$

d) $[-\frac{7}{8}]$

e) [3]

 \mathbf{f}) $\begin{bmatrix} -1 \end{bmatrix}$

 $\mathbf{g}) \ \left\lfloor \frac{1}{2} + \left\lceil \frac{3}{2} \right\rceil \right\rfloor$

h) $\lfloor \frac{1}{2} \cdot \lfloor \frac{5}{2} \rfloor \rfloor$

• 8 Determine whether the function $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ is onto if

- **a**) f(m, n) = m + n.
- **b**) $f(m, n) = m^2 + n^2$.
- **c**) f(m, n) = m.
- **d**) f(m, n) = |n|.
- **e**) f(m, n) = m n.

- 9 Find these terms of the sequence $\{a_n\}$, where $a_n =$ $2\cdot(-3)^n+5^n.$

- **a**) a_0 **b**) a_1 **c**) a_4 **d**) a_5

- 10 Compute each of these double sums.
- Compute each of these double sum. **a)** $\sum_{i=1}^{2} \sum_{j=1}^{3} (i+j)$ **b)** $\sum_{i=0}^{2} \sum_{j=0}^{3} (2i+3j)$ **c)** $\sum_{j=0}^{2} \sum_{j=1}^{3} ij$