Database Forensic Analysis with DBCarver

James Wagner, **Alexander Rasin**, Tanu Malik, Karen Heart, Hugo Jehle, Jonathan Grier

Data Systems and Optimization Lab at DePaul

James Wagner

Tanu Malik

Karen Heart

Hugo Jehle

Jonathan Grier

Motivation

- Cyber-crime
 - Detecting (and proving) data theft
 - JP Morgan/Dow Jones
 - Mobile device analysis
 - FBI, 4Discovery
- Involves a database

Motivation

- Example Queries
 - Reconstruct deleted data
 - Identify recent access, modifications
 - Detect catalog/data tampering
- Un-trusted environment

Forensic Analysis Targets

- Logs
 - Audit, Query, WAL
- RAM
 - Buffer cache, intermediate data
- Query-able DB content
 - Tables, MVs, Catalog
- Un-query-able content
 - Indexes, Deleted data, Free-listed data

Forensic Analysis Targets

- Logs
 - Audit, Query, WAL
- RAM
 - Buffer cache, intermediate data
- Query-able DB content
 - Tables, MVs, Catalog
- Un-query-able content
 - Indexes, Deleted data, Free-listed data

File Carving (JPEG)

Forensic Analysis Targets

- Logs
 - Audit, Query, WAL
- RAM
 - Buffer cache, intermediate data
- Query-able DB content
 - Tables, MVs, Catalog
- Un-query-able content
 - Indexes, Deleted data, Free-listed data

Generalized Page Carving

Forensic Analysis Targets

- Logs
 - Audit, Query, WAL
- RAM
 - Buffer cache, int. data
- Query-able DB content
 - Tables, MVs, Catalog
- Un-query-able content
 - Indexes, Deleted data, Free-listed data

CARVING

DBCarver Architecture

DBCarver Architecture

	Oracle	PostgreSQL	SQLite	Firebird	DB2	SQLServer	MySQL	Apache Derby	
Structure Identifier	Yes	No		Yes			No		
Unique Page ID				Yes			No		
Row Dir. Sequence		Top-to-bo	ttom in	om insertion Bottom-to-top ins			to-top ins	insertion	
Row Identifier	No	Yes			No		Y	es	
Column Count		Yes		No		Yes	No	Yes	
			4, N	Mark, Bos	ston	3	3-columr	n row	
		Row ₄	4, 1	Mark, Bos	ston				
		Row ₄	4 4, N	Mark, Bos	ston				
		Row ₄	3 4, N	Mark, Bos	ston				

DBCarver Architecture

DBCarver Output (SQLite on Android)

Forensic Value of an Index (Update)

Memory (RAM)

Disk Storage _					
Disk Storage	111	J. Doe	•••	Emp.	42K
Data Page	222	J. Smith	•••	Emp.	35K
	333	A.Locke	•••	Mgr.	65K
	444	P. Jack	•••	Emp.	37K

Data Page (a copy in RAM)

_	111	J. Doe	•••	Emp.	42K
	222	J. Smith	•••	Emp.	35K
	333	A.Locke	•••	Mgr.	65K
	444	P. Jack		Emp.	37K

Memory (RAM)

Disk Storage
111

222

333

111	J. Doe	•••	Emp.	42K
222	J. Smith	•••	Emp.	35K
333	A.Locke	•••	Mgr.	65K
444	P. Jack	•••	Emp.	37K

Data Page (a copy in RAM)

111	J. Doe	•••	Emp.	42K
222	J. Smith		Emp.	35K
333	A.Locke	•••	Mgr.	65K
444	P. Jack	•••	Emp.	37K
222	I. NotSmith		Emp.	35K

Memory (RAM)

Disk Storage _					
DISK Storage	111	J. Doe	•••	Emp.	42K
Data Page	222	J. Smith	•••	Emp.	35K
	333	A.Locke	•••	Mgr.	65K
	444	P. Jack	•••	Emp.	37K

Data Page (a copy in RAM)

111	J. Doe	•••	Emp.	42K
222	J. Smith		Emp.	35K
333	A.Locke		Mgr.	65K
444	P. Jack		Emp.	37K
222	I. NotSmith		Emp.	35K

Memory (RAM)

Disk Storage

Data Page_

111	J. Doe	•••	Emp.	42K
222	J. Smith		Emp.	35K
333	A.Locke		Mgr.	65K
444	P. Jack	•••	Emp.	37K
222	I. NotSmith		Emp.	35K

Delete Progression

- Storage state:
 - Issue the delete command
 - ??? (Profit?)
 - Value is gone
- Observe disk and RAM state
 - In Table, Index (e.g., *Unique*), MV

Delete Progression

- T₀: Load the data (Table, Index, MV)
- T₁: Delete a unique value (222)
- T₂: Refresh the MV
- T₃: Flush_buffer_cache()
- T₄: Overwrite the buffer cache
- T₅: Vacuum Table, Index and MV

	Table	Index	MV	Table	Index	MV
		Disk			RAM	
T_0	222	222	222			
T_1	222	222	222	2)2(2)	222	
T_2	222	222	222	2)2(2)	222	2)(2)
T ₃	2)2(2	222	2/2/2	2)2(2	222	2)22
T_4	2)22	222	2)22			
T ₅						

Recover Corrupted Data

- Load SSBM Scale1 data
- Simulate disk corruption (random writes)

DWDate
Supplier
Customer
Part
Lineorder
Full JOIN

	File Percent Damage							
	0%	1%	2%	5%	10%			
	2556 (100%)	2459 (96%)	2384 (93%)	2130 (83%)	2147 (84%)			
	2000 (100%)	1987 (99%)	2000 (100%)	1740 (87%)	1680 (84%)			
r [120K (100%)	118K (98%)	115K (96%)	108K (90%)	96K (80%)			
	200K (100%)	195K (97%)	189K (94%)	174K (87%)	146K (73%)			
	6M (100%)	5.8M (97%)	5.7M (95%)	5.2M (87%)	4.5M (75%)			
	6M (100%)	5.3M (88%)	4.9M (81%)	2.9M (49%)	1.9M (31%)			

Conclusions/Future Work

- DB Carving
- No apriori assumptions
- Forensic Meta-Queries
 - Reconstruct deleted data
 - Detect recently updated values
 - Identify log tampering

