
Sequence Listing was accepted.

See attached Validation Report.

If you need help call the Patent Electronic Business Center at (866)

217-9197 (toll free).

Reviewer: Durreshwar Anjum

Timestamp: [year=2009; month=4; day=27; hr=13; min=29; sec=4; ms=718;]

Validated By CRFValidator v 1.0.3

Application No: 10567074 Version No: 2.0

Input Set:

Output Set:

Started: 2009-04-14 17:39:59.103

Finished: 2009-04-14 17:40:03.182

Elapsed: 0 hr(s) 0 min(s) 4 sec(s) 79 ms

Total Warnings: 29

Total Errors: 1

No. of SeqIDs Defined: 60

Actual SeqID Count: 60

Error code		Error Descrip	tion								
W	402	Undefined	organism	found	in	<213>	in	SEQ	ID	(3)	
Ε	201	Mandatory	field dat	a miss	sing	g in <22	23>	in	SEÇ) ID	(3)
W	402	Undefined	organism	found	in	<213>	in	SEQ	ID	(4)	
W	402	Undefined	organism	found	in	<213>	in	SEQ	ID	(5)	
W	402	Undefined	organism	found	in	<213>	in	SEQ	ID	(16)	
W	402	Undefined	organism	found	in	<213>	in	SEQ	ID	(18)	
W	402	Undefined	organism	found	in	<213>	in	SEQ	ID	(29)	
W	402	Undefined	organism	found	in	<213>	in	SEQ	ID	(30)	
W	402	Undefined	organism	found	in	<213>	in	SEQ	ID	(31)	
W	402	Undefined	organism	found	in	<213>	in	SEQ	ID	(32)	
W	402	Undefined	organism	found	in	<213>	in	SEQ	ID	(33)	
W	402	Undefined	organism	found	in	<213>	in	SEQ	ID	(34)	
W	402	Undefined	organism	found	in	<213>	in	SEQ	ID	(35)	
W	402	Undefined	organism	found	in	<213>	in	SEQ	ID	(38)	
W	402	Undefined	organism	found	in	<213>	in	SEQ	ID	(41)	
W	402	Undefined	organism	found	in	<213>	in	SEQ	ID	(42)	
W	402	Undefined	organism	found	in	<213>	in	SEQ	ID	(44)	
W	402	Undefined	organism	found	in	<213>	in	SEQ	ID	(47)	
W	402	Undefined	organism	found	in	<213>	in	SEQ	ID	(49)	
W	402	Undefined	organism	found	in	<213>	in	SEQ	ID	(50)	

Input Set:

Output Set:

Started: 2009-04-14 17:39:59.103 **Finished:** 2009-04-14 17:40:03.182

Elapsed: 0 hr(s) 0 min(s) 4 sec(s) 79 ms

Total Warnings: 29
Total Errors: 1
No. of SeqIDs Defined: 60

Actual SeqID Count: 60

Error code		Error Description										
W	402	Undefined organism found in <213> in SEQ ID (51) This error has occured more than 20 times, will not be displayed										
W	213	Artificial or Unknown found in <213> in SEQ ID (53)										
W	213	Artificial or Unknown found in <213> in SEQ ID (54)										
W	213	Artificial or Unknown found in <213> in SEQ ID (55)										
W	213	Artificial or Unknown found in <213> in SEQ ID (56)										
W	213	Artificial or Unknown found in <213> in SEQ ID (57)										
W	213	Artificial or Unknown found in <213> in SEQ ID (58)										
W	213	Artificial or Unknown found in <213> in SEQ ID (59)										
W	213	Artificial or Unknown found in <213> in SEQ ID (60)										

<110> Scherer, Stephen W. Minassian, Berge A. <120> Lafora's Disease Gene <130> 4012.1000-003 <140> 10567074 <141> 2009-04-14 <150> PCT/CA2004/001449 <151> 2004-07-30 <150> US 60/491,968 <151> 2003-08-04 <160> 60 <170> PatentIn version 3.1 <210> 1 <211> 2120 <212> DNA <213> Homo sapiens <400> 1 atggcggccg aagcctcgga gagcgggcca gcgctgcatg agctcatgcg cgaggcggag 60 atcagcctgc tcgagtgcaa ggtgtgcttt gagaagtttg gccaccggca gcagcggcgc 120

ccgcgcaacc tgtcctgcgg ccacgtggtc tgcctggcct gcgtggccgc cctggcgcac

180

ccgcgcactc	tggccctcga	gtgcccattc	tgcaggcgag	cttgccgggg	ctgcgacacc	240
agcgactgcc	tgccggtgct	gcacctcata	gageteetgg	gctcagcgct	tegecagtee	300
ccggccgccc	atcgcgccgc	ccccagcgcc	cccggagccc	tcacctgcca	ccacaccttc	360
ggcggctggg	ggaccctggt	caaccccacc	ggactggcgc	tttgtcccaa	gacggggcgt	420
gtcgtggtgg	tgcacgacgg	caggaggcgt	gtcaagattt	ttgactcagg	gggaggatgc	480
gcgcatcagt	ttggagagaa	gggggacgct	gcccaagaca	ttaggtaccc	tgtggatgtc	540
accatcacca	acgactgcca	tgtggttgtc	actgacgccg	gcgatcgctc	catcaaagtg	600
tttgattttt	ttggccagat	caagcttgtc	attggaggcc	aattctcctt	accttggggt	660
gtggagacca	cccctcagaa	tgggattgtg	gtaactgatg	cggaggcagg	gtccctgcac	720
ctcctggacg	tcgacttcgc	ggaaggggtc	cttcggagaa	ctgaaaggtt	gcaagctcat	780
ctgtgcaatc	cccgaggggt	ggcagtgtct	tggctcaccg	gggccattgc	ggtcctggag	840
caccccctgg	ccctggggac	tggggtttgc	agcaccaggg	tgaaagtgtt	tagctcaagt	900
atgcagcttg	tcggccaagt	ggataccttt	gggctgagcc	tctactttcc	ctccaaaata	960
actgcctccg	ctgtgacctt	tgatcaccag	ggaaatgtga	ttgttgcaga	tacatctggt	1020
ccagctatcc	tttgcttagg	aaaacctgag	gagtttccag	taccgaagcc	catggtcact	1080
catggtcttt	cgcatcctgt	ggctcttacc	ttcaccaagg	agaattctct	tcttgtgctg	1140
gacacagcat	ctcattctat	aaaagtctat	aaagttgact	gggggtgatg	ggctggggtg	1200
ggtccctgga	atcagaagca	ctagtgctgc	cattaatgaa	ttgtttaacc	ctggataagt	1260
cacttaaact	catctatcca	ggcagggata	attaaaacca	tctggcagac	ttacaaagct	1320
tgggacagtt	attggagatt	aatctaccat	ttattgaatg	catactctgt	gcaaggaaat	1380
ttgcaaatat	tagcttattt	aatctgtact	atccagtgag	gtaatttctt	ccccccaag	1440
atagagtcaa	gctctgtcac	ccaggctgga	gtgcagaagc	atgatcacag	ctcactacag	1500
tttcaacgtc	ccccgctcag	gtggtccttc	cacctcagcc	tcccaagtag	ctgggaccac	1560
aagtgtgcat	taccacactc	agctaatttt	tgtattttgg	cagagatggg	gtttcaccat	1620
gttgcccagg	ctggtctcaa	actcctgagt	tcaagcaatc	caccttcctc	ggcctcccaa	1680
agtactagga	gtacaggcat	agccacttgc	tcagccataa	tttttattat	taatctcatt	1740
gtacaagtga	gaaaactgag	acccagagag	cttaagtgac	ttcctcgagg	tcatagttac	1800
ttactgcctt	agtcccaatt	tgaattcaat	tctgattcca	aataagttgc	gcttaaataa	1860

gacaacagat gtgggaaaaa	tatgtgaatg tgtagtgttç	g ctatgtgtac tgtctttac	a 1920
agtagctaat tattttagca	caaagatgtg caaagaaagg	g agactttatg gagagttca	ıg 1980
gagaaaaagg attttgtggt	ggccatcact ttcattcaat	ttgcgactgc tctgatggc	a 2040
cattagatga agttactgtt	gateetgagt taegtgaata	a agaaaaacaa ttgaactgc	et 2100
tattaaaaaa gtaaacatgt			2120
<210> 2			
<211> 395			
<212> PRT			
<213> Homo sapiens			
<400> 2			
Met Ala Ala Glu Ala Se	r Glu Ser Glv Pro Ala	a Leu His Glu Leu Met	
1 5	10	15	
Arg Glu Ala Glu Ile Se. 20	r Leu Leu Glu Cys Ly: 25	S Val Cys Phe Glu Lys 30	
Phe Gly His Arg Gln Gl:	n Arg Arg Pro Arg Ası 40	n Leu Ser Cys Gly His 45	
33	40	43	
Val Val Cys Leu Ala Cy	s Val Ala Ala Leu Ala	a His Pro Arg Thr Leu	
50	55	60	
Ala Leu Glu Cys Pro Ph	e Cys Arg Arg Ala Cy:	s Arg Gly Cys Asp Thr	
65 70	75	80	
G	l Tan Min Tan The Cha	. I.v. I.v. Gla Gan Ala	
Ser Asp Cys Leu Pro Va 85	1 Leu His Leu lle Git 90	e Leu Leu Gly Ser Ala 95	
Leu Arg Gln Ser Pro Al	a Ala His Arg Ala Ala 105	a Pro Ser Ala Pro Gly 110	
Ala Leu Thr Cys His Hi	s Thr Phe Gly Gly Trp	o Gly Thr Leu Val Asn	

Pro Thr Gly Leu Ala Leu Cys Pro Lys Thr Gly Arg Val Val Val 130 135 140

115 120 125

His Asp Gly	Arg Arg	Arg Val	Lys Ile	Phe Asp 155	Ser Gly	Gly Gly	Cys 160
Ala His Gln	Phe Gly 165	Glu Lys	Gly Asp	Ala Ala 170	Gln Asp	Ile Arg 175	Tyr
Pro Val Asp	Val Thr	Ile Thr	Asn Asp	Cys His	Val Val	Val Thr 190	Asp
Ala Gly Asp	_	Ile Lys	Val Phe 200	Asp Phe	Phe Gly 205	Gln Ile	Lys
Leu Val Ile 210	Gly Gly	Gln Phe 215	Ser Leu	Pro Trp	Gly Val 220	Glu Thr	Thr
Pro Gln Asn 225	Gly Ile	Val Val 230	Thr Asp	Ala Glu 235	Ala Gly	Ser Leu	His 240
Leu Leu Asp	Val Asp 245	Phe Ala	Glu Gly	Val Leu 250	Arg Arg	Thr Glu 255	Arg
Leu Gln Ala	His Leu 260	Cys Asn	Pro Arg 265	Gly Val	Ala Val	Ser Trp 270	Leu
Thr Gly Ala		Val Leu	Glu His 280	Pro Leu	Ala Leu 285	Gly Thr	Gly
Val Cys Ser 290	Thr Arg	Val Lys 295	Val Phe	Ser Ser	Ser Met 300	Gln Leu	Val
Gly Gln Val	Asp Thr	Phe Gly 310	Leu Ser	Leu Tyr 315	Phe Pro	Ser Lys	Ile 320
Thr Ala Ser	Ala Val	Thr Phe	Asp His	Gln Gly 330	Asn Val	Ile Val	Ala
Asp Thr Ser	Gly Pro 340	Ala Ile	Leu Cys	Leu Gly	Lys Pro	Glu Glu 350	Phe
Pro Val Pro		Met Val	Thr His	Gly Leu	Ser His	Pro Val	Ala

Leu Thr Phe Thr Lys Glu Asn Ser Leu Leu Val Leu Asp Thr Ala Ser 370 380

His Ser Ile Lys Val Tyr Lys Val Asp Trp Gly 385 390 395

<210> 3

<211> 3008

<212> DNA

<213> Canis sp.

<220>

<221> CDS

<222> (698)..(1897)

<223>

<220>

<221> misc_feature

<222> (2692)..(2692)

<223> N=any nucleic acid

<220>

<221> misc_feature

<222> (2748)..(2748)

<223> N=any nucleic acid

<220>

<221> misc_feature

<222> (2750)..(2750)

<223> N=any nucleic acid

```
<220>
<221> misc_feature
<222> (2793)..(2793)
<223> N=any nucleic acid
<220>
<221> misc_feature
<222> (2845)..(2845)
<223> N=any nucleic acid
<220>
<221> misc_feature
<222> (2916)..(2916)
<223> N=any nucleic acid
<220>
<221> misc_feature
<222> (2918)..(2918)
<223> N=any nucleic acid
<220>
<221> misc_feature
<222> (2931)..(2931)
<223> N=any nucleic acid
<220>
<221> misc_feature
```

<222> (2941)..(2941)

<220>

<221> misc_feature

<222> (2990)..(2990)

<223> N=any nucleic acid

<400> 3						
ccccaaggcc	ccccggccc	ccaggcaaco	c ccaggcccc	c aggcaaccca	aggccccccg	60
gccccaagcc	ccccaggttc	ccggccccaa	a gaaccaagc	c ccccggcccc	ccgccccag	120
cacccagcac	caagcccccg	ccccccgccc	c caagcaccc	a gccccagcac	ccagcccccg	180
ccccagcccc	agccccagca	cccagcccc	c gccccagca	c ccagccccag	cacccagccc	240
ccgccccagc	cccagccccc	gtccccccc	c ccagcaccc	a gccccagccc	cagcagcagc	300
acccagcagg	ggactgcaaa	gcgtaggcta	a ccccaggtg	g aacaccgtgt	tctagttttg	360
ctttgccgtt	tgcagcctgg	gcgatcggg	g gccaccgct	c gagcctgttt	cccgtcgcgg	420
aaagcggagc	cgccccgccc	cgccccccg	c ctgcctgaa	g gtcacgggcc	tgggcctgcg	480
gcgcgcggtg	cggcccgcga	gcgtccgcto	c ccgcgccct	c cgcagtcagc	gecegeeege	540
ccdccddddd	accgcaggcc	gcggccgaga	a ggctgcgcg	c tgcgcccgcg	acgtcaggcc	600
ccgccccgcc	ccgccccgcc	ccgtgaccg	g ccccggccc	c ggccccggcc	ccggccccgg	660
accgagcggc	gcccgcggga	gcggcggcgc		tg ggg gcc ga Met Gly Ala G		715
ggg agc ggg	g cgg gcg c	tg cgg gag	ctg gtg cg	c gag gcc ga	g gtc agc	763
Gly Ser Gly	y Arg Ala L 10	eu Arg Glu	Leu Val Ar 15	g Glu Ala Glı 20	u Val Ser	
tta ata gad	r tac aaa a	ta tac ttc	gag agg tt	c ggc cac cg	c cad cad	811
				e Gly His Arc		
25		30		35		
cgg cgc ccg	g cgc aac c	tg ccc tgc	ggc cac gt	g gtg tgc cto	g gcc tgc	859
	o Arg Asn L	_	Gly His Va	ıl Val Cys Leı	u Ala Cys	
40		45		50		
gtg gcg gcd	c ctg gcg c	ac ccg cgg	acg ctg gc	c ctg gag tg	c ccc ttc	907
Val Ala Ala	a Leu Ala H	is Pro Arg	Thr Leu Al	a Leu Glu Cy:	s Pro Phe	
55	6	0	65		70	

_	_		-	_	cgc Arg		_	_		_	_	_	_	_		955
			_		ctc Leu	_		_		_	_		_		_	1003
_		_	-	-	ccc Pro	-	-	_		_	_	_		-		1051
					ttc Phe											1099
	_		_	_	ccc Pro 140	_				-					_	1147
					aag Lys											1195
_				_	ggg Gly		-	_	_	_					_	1243
_	-	-	-		aac Asn	Ī	-			_	-		_	_		1291
_	-				gtg Val		-				_		_		_	1339
		-	_		tcc Ser 220										_	1387
		-		_	act Thr	-	-		-		_	_		_	_	1435
_	-	-		_	gaa Glu		-		_			-	_	_		1483
		_	_		ccg Pro	-			_							1531
_			-	_	gag Glu			_		_		_				1579

agc acc gcc gtg aag gtg ttc agc cca act atg cag ctg atc ggc cag Ser Thr Ala Val Lys Val Phe Ser Pro Thr Met Gln Leu Ile Gly Gln 295 300 305 310	1627
gtg gat acc ttt ggg ctc agc ctc ttt ttc ccc tct aga ata acc gcc Val Asp Thr Phe Gly Leu Ser Leu Phe Phe Pro Ser Arg Ile Thr Ala 315 320 325	1675
tee gee gtg ace ttt gat cae cag ggg aat gtg att gtt gea gat act Ser Ala Val Thr Phe Asp His Gln Gly Asn Val Ile Val Ala Asp Thr 330 335 340	1723
tet agt cag gee gte eta tge ttg gga cag eet gag gaa ttt eea gte Ser Ser Gln Ala Val Leu Cys Leu Gly Gln Pro Glu Glu Phe Pro Val 345 350 355	1771
ctg aag ccc atc atc acc cat ggt ctt tcc cat cct gtg gca ctg acc Leu Lys Pro Ile Ile Thr His Gly Leu Ser His Pro Val Ala Leu Thr 360 365 370	1819
ttc acc aag gag aat tct ctt ctt gtg ctg gac agt gca gcc cat tcc Phe Thr Lys Glu Asn Ser Leu Leu Val Leu Asp Ser Ala Ala His Ser 375 380 385 390	1867
gta aaa gtc tac aag gct gac tgg ggg taa tgggggtgtgg tgggggtcct Val Lys Val Tyr Lys Ala Asp Trp Gly 395	1917
ggaactgcca ctaatccagt ttaaccctgg atgaattaat cccatctctc gaacggggat	1977
cattataact gcctgacaga cttataaagg ttgaaggtaa ttattaaaga ataataatga	2037
agtctaccgt ttattgagtt atgtgctccc tgtgctagga aactttgcaa atattagctc	2097
agegtgteet taeagtggta eccagggagg taatgeeeat cattaateee attttagaga	2157
tgagaaaact gagacccgag ggtttaagtg attctctgaa ggtcatgttt acttactgtg	2217
acagtcacaa tgggaactct attctgactc cccaatccct tgctcctaag taggataaca	2277
gatgtgagaa aacgacagca tgtgtctata tgttgttact gtgtgtactc tctttacagg	2337
tagctatttc tcttggttgg acgtgcagag aaaggagact ttctagagag ttcaagagga	2397
aaaagggtag tgtgatgagc atggacgtga gtgtcattga acttgctggt tctttgatgt	
	2457
cacagtaggt agaatgactg tggatccttc aactgccctt gggaaaggta aacatgtctg	2457 2517
cacagtaggt agaatgactg tggatccttc aactgccctt gggaaaggta aacatgtctg ttgggacctg gatgtcctcc atcataggaa cccaggaaat actagttggt tgctgcagaa	
	2517
ttgggacctg gatgtcctcc atcataggaa cccaggaaat actagttggt tgctgcagaa	2517 2577
ttgggacctg gatgtcctcc atcataggaa cccaggaaat actagttggt tgctgcagaa aggcttgtgt ggacataagt tcaaaactac tgccgaccac cgtacattca cacacctcca	2517 2577 2637

tttccc	ctaa ccagctccct t	gatgctnag	ctagcattta	ggccactggt	aaacccctgt	2877
atactto	cttg agttgaagtt a	agctttgac	ccagataang	nctgctttaa	tacntgcagt	2937
cgantg	gacc gaataagggg g	aaatttcag	gtgaggtggc	cgggttcttt	atnaaccggt	2997
tttggtt	ttgt a					3008
<210>	4					
<211>	399					
<212>	PRT					
<213>	Canis sp.					
<220>						
<221>	misc_feature					
<222>	(2692)(2692)					
<223>	N=any nucleic ac	id				
<220>						
<221>	misc_feature					
<222>	(2748)(2748)					
<223>	N=any nucleic ac	id				
<220>						
<221>	misc_feature					
<222>	(2750)(2750)					
<223>	N=any nucleic ac	id				
<220>						
<221>	misc_feature					
<222>	(2793)(2793)					
<223>	N=any nucleic ac	id				
<220>						

<221> misc_feature

```
<222> (2845)..(2845)
<223> N=any nucleic acid
<220>
<221> misc_feature
<222> (2916)..(2916)
<223> N=any nucleic acid
<220>
<221> misc_feature
<222> (2918)..(2918)
<223> N=any nucleic acid
<220>
<221> misc_feature
<222> (2931)..(2931)
<223> N=any nucleic acid
<220>
<221> misc_feature
<222> (2941)..(2941)
<223> N=any nucleic acid
<220>
<221> misc_feature
<222> (2990)..(2990)
<223> N=any nucleic acid
<400> 4
Met Gly Ala Glu Ala Gly Ser Gly Arg Ala Leu Arg Glu Leu Val
                                  10
Arg Glu Ala Glu Val Ser Leu Leu Glu Cys Lys Val Cys Phe Glu Arg
                                                   30
           20
                               25
```

Phe Gly His Arg Gln Gln Arg Arg Pro Arg Asn Leu Pro Cys Gly His 35 40 45

Val	Val 50	Cys	Leu	Ala	Cys	Val 55	Ala	Ala	Leu	Ala	His 60	Pro	Arg	Thr	Leu
Ala 65	Leu	Glu	Суз	Pro	Phe 70	Суз	Arg	Arg	Ala	Cys 75	Arg	Gly	Суз	Asp	Thr 80
Ser	Asp	Суз	Leu	Pro 85	Val	Leu	His	Leu	Leu 90	Glu	Leu	Leu	Gly	Ser 95	Ala

Cys Ala Pro Gly Ala Leu Ala Cys His His Ala Phe Gly Gly Trp Gly 120 125

Leu Arg Pro Ala Pro Ala Pro Arg Ala Ala Pro Arg Ala Ala Pro 105

100