Advanced Techniques for Combinatorial Algorithms: Introduction to Information Theory

Gianluca Della Vedova

Univ. Milano-Bicocca http://gianluca.dellavedova.org

2016-01-29T18:16:39+0000 71e9e9f

Entropy

Entropy

Let A be a discrete random variable over universe set U. Then its entropy is

$$H(A) = \sum_{x \in U} p_x \log_2 \frac{1}{p_x} = -\sum_{x \in U} p_x \log_2 p_x$$

where p_x is the probability of the event x.

Entropy measures information content.

Entropy 2

Entropy of a text T

Let $f(\sigma)$ be the relative frequency of symbol σ in T. Then its entropy is

$$H(T) = -\sum_{\sigma \in \Sigma} f(\sigma) \log_2 f(\sigma)$$

Jensen Inequality

Jensen Inequality

Let A be a random variable, and let ψ be a convex function. Then

$$\psi(E(A)) \le E(\psi(A))$$

where E() is the expectation.

Prefix code

Code

$$\phi: A \subset \mathbb{N} \mapsto \{0,1\}$$

Variable length codewords

Example

 $0 \mapsto 1010$

 $1 \mapsto 0010$

 $2 \mapsto 00$

Not prefix code

Prefix code

Prefix Code

No codeword is the prefix of another codeword.

Examples

 $0 \mapsto 1$

 $1 \mapsto 01$

 $2 \mapsto 001$

Lemma

All prefix codes are uniquely decodable.

Elias gamma encoding

Encoding n > 1

- $oldsymbol{0}$ N zeroes followed by n in binary

Requires $2\lfloor \log_2 n \rfloor + 1$ bits

Examples

$$9 = 1001_2 \mapsto 0001001$$

$$15 = 1111_2 \mapsto 0001111$$

Elias delta encoding

Encoding $n \ge 1$

- $0 N \leftarrow \lfloor \log_2 n \rfloor$
- $2 L \leftarrow \lfloor \log_2 N + 1 \rfloor$
- ${\color{red} \odot}$ Elias γ encoding of N+1, followed by $n-2^N$ as N-bits

Requires $2\lfloor \log_2(\lfloor \log_2 n \rfloor + 1) \rfloor + \lfloor \log_2 n \rfloor + 1$ bits

Examples

$$9 = 1001_2 \mapsto 011001$$

$$15 = 1111_2 \mapsto 011111$$

Huffman encoding

All elements of U are weighted.

Algorithm 1: Huffman encoding

```
1 a, b \leftarrow the two lightest elements of U;
```

- 2 $c \leftarrow$ new element $w(c) \leftarrow w(a) + w(b)$;
- 3 if |U|>1 then
- 4 $\phi_1 \leftarrow \mathsf{Huffman}(U \setminus \{a,b\} \cup \{c\});$
- $\mathbf{5} \mid \phi \leftarrow \phi_1;$
- **6** $\phi(a) \leftarrow \phi_1(c)0; \phi(b) \leftarrow \phi_1(c)1;$
- 7 | Remove $c, \phi(c)$;
- 8 else
- 9 $\phi(u) \leftarrow \text{empty codeword};$
- 10 Return(ϕ);