Evolution of CNN Architectures for Image Classification

Vineeth N Balasubramanian

Department of Computer Science and Engineering Indian Institute of Technology, Hyderabad

History of CNNs

Neocognitron, 1980 shared connections = spatial filtering input pattern = convolution feature pooling recognition extraction (C-cells) (classification) (S-cells)

LeNet-5 (1989-1998)

- ullet Conv filters were 5×5 , applied at stride 1
- ullet Subsampling (Pooling) layers were 2×2 applied at stride 2
- Overall Architecture: [CONV-POOL-CONV-POOL-FC-FC]

Credit: Fei-Fei Li, Justin Johnson and Serena Yeung, CS231n course, Stanford, Spring 2019

ImageNet Classification Challenge

- Image database organized according to WordNet hierarchy (currently only nouns)
- Currently, over five hundred images per node
- Started the ImageNet LSVRC in 2010, for benchmarking of methods for image classification
- Performance measure in Top-1 error and Top-5 error
- http://www.image-net.org/

Loss Functions: Beyond Mean Square Error

- Cross-Entropy Loss Function: Most popular for classification
- Given by:

$$L = -\frac{1}{C} \sum_{i=1}^{C} y_i \log \hat{y}_i$$

$$= -y_i \log \hat{y}_i + (1 - y_i) \log(1 - \hat{y}_i) \text{(binary case)}$$

• When activation function is sigmoid $\left(\sigma(x) = \frac{1}{1+e^{-x}}\right)$, derivative of cross-entropy loss function, $\frac{\partial L}{\partial w_j}$, w.r.t. a weight in last layer, w_i , is:

Loss Functions: Beyond Mean Square Error

- Cross-Entropy Loss Function: Most popular for classification
- Given by:

When activation function is sigmoid
$$\begin{aligned} & = -\frac{1}{n}\sum_{x}^{C}y_{i}\log\hat{y}_{i} \\ & = -y_{i}\log\hat{y}_{i} + (1-y_{i})\log(1-\hat{y}_{i})(\text{binary case}) \end{aligned} = \frac{1}{n}\sum_{x}\frac{\sigma'(z)x_{j}}{\sigma(z)(1-\sigma(z))}(\sigma(z)-y)$$

• When activation function is sigmoid $\left(\sigma(x) = \frac{1}{1+e^{-x}}\right), \text{ derivative of }$ cross-entropy loss function, $\frac{\partial L}{\partial w_j}$, w.r.t. a weight in last layer, w_i , is:

Note the last term in the final expression, very similar to gradient of MSE loss function

 $\frac{\partial L}{\partial w_i} = -\frac{1}{n} \sum_{z} \left(\frac{y}{\sigma(z)} - \frac{1-y}{1-\sigma(z)} \right) \frac{\partial \sigma}{\partial w_i}$

Activation Function in Output Layer

Credit: Dario Redicic, TowardsDataScience blog

Winners of ImageNet Classification Challenge

Credit: Fei-Fei Li, Justin Johnson and Serena Yeung, CS231n course, Stanford, Spring 2019

Vineeth N B (IIT-H) §5.3 CNN Architectures 7/33

AlexNet¹

- Winner of ImageNet LSVRC-2012
- Overall architecture design similar to LeNet; but deeper with conv layers stacked on top of each other
- Trained over 1.2M images using SGD with regularization

 $^{^{1}}$ Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional neural networks." NIPS 2012.

- 8 layers in total (5 convolutional layers, 3 fully connected layers)
- Trained on ImageNet Dataset

- 8 layers in total (5 convolutional layers, 3 fully connected layers)
- Trained on ImageNet Dataset
- Response normalization layers follow the first and second convolutional layers.

- 8 layers in total (5 convolutional layers, 3 fully connected layers)
- Trained on ImageNet Dataset
- Response normalization layers follow the first and second convolutional layers.
- Max-pooling follow first, second and the fifth convolutional layers

- 8 layers in total (5 convolutional layers, 3 fully connected layers)
- Trained on ImageNet Dataset
- Response normalization layers follow the first and second convolutional layers.
- Max-pooling follow first, second and the fifth convolutional layers
- The ReLU non-linearity is applied to the output of every layer

- Convolutional layers cumulatively contain about 90-95% of computation, only about 5% of the parameters
- Fully-connected layers contain about 95% of parameters.

- Fully-connected layers contain about 95% of parameters.
- Trained with SGD
 - on two NVIDIA GTX 580 3GB GPUs
 - for about a week

Winners of ImageNet Classification Challenge

Credit: Fei-Fei Li, Justin Johnson and Serena Yeung, CS231n course, Stanford, Spring 2019

Vineeth N B (IIT-H) §5.3 CNN Architectures 13/33

Similar to AlexNet but:

Vineeth N B (IIT-H) §5.3 CNN Architectures

²Zeiler and Fergus, "Visualizing and Understanding Convolutional Networks", ECCV 2014

Similar to AlexNet but:

Vineeth N B (IIT-H) §5.3 CNN Architectures

²Zeiler and Fergus, "Visualizing and Understanding Convolutional Networks", ECCV 2014

- Similar to AlexNet but:
 - CONV1: change from $(11 \times 11 \text{ stride } 4)$ to $(7 \times 7 \text{ stride } 2)$

Vineeth N B (IIT-H) §5.3 CNN Architectures 14/33

²Zeiler and Fergus, "Visualizing and Understanding Convolutional Networks", ECCV 2014

- Similar to AlexNet but:
 - CONV1: change from $(11 \times 11 \text{ stride 4})$ to $(7 \times 7 \text{ stride 2})$
 - CONV3,4,5: instead of 384, 384, 256 filters, use 512, 1024, 512
- ImageNet top-5 error: $16.4\% \rightarrow 11.7\%$

Credit: Fei-Fei Li, Justin Johnson and Serena Yeung, CS231n course, Stanford, Spring 2019

Vineeth N B (IIT-H) §5.3 CNN Architectures 14/33

²Zeiler and Fergus, "Visualizing and Understanding Convolutional Networks", ECCV 2014

Winners of ImageNet Classification Challenge

Credit: Fei-Fei Li, Justin Johnson and Serena Yeung, CS231n course, Stanford, Spring 2019

Vineeth N B (IIT-H) §5.3 CNN Architectures 15/33

conv-128 maxpool

conv-256 conv-256 maxpool

conv-512 conv-512 maxpool

conv-512 conv-512 maxpool

FC-4096 FC-4096 FC-1000 softmax

11-layer

image	image
conv-64	conv-64
maxpool	conv-64
	maxpool
conv-128	conv-128
maxpool	conv-128
	maxpool
conv-256	conv-256
conv-256	conv-256
maxpool	maxpool
conv-512 conv-512 maxpool	conv-512 conv-512 maxpool
conv-512 conv-512 maxpool	conv-512 conv-512 maxpool
FC-4096 FC-4096 FC-1000 softmax	FC-4096 FC-4096 FC-1000 softmax
11-layer	13-layer

image	image	image
conv-64	conv-64	conv-64
maxpool	conv-64	conv-64
	maxpool	maxpool
conv-128	conv-128	conv-128
maxpool	conv-128	conv-128
	maxpool	maxpool
conv-256	conv-256	conv-256
conv-256	conv-256	conv-256
maxpool	maxpool	conv-256
		maxpool
conv-512	conv-512	conv-512
conv-512	conv-512	conv-512
maxpool	maxpool	conv-512
		maxpool
conv-512	conv-512	conv-512
conv-512	conv-512	conv-512
maxpool	maxpool	conv-512
		maxpool
FC-4096	FC-4096	FC-4096
FC-4096	FC-4096	FC-4096
FC-1000	FC-1000	FC-1000
softmax	softmax	softmax
11-layer	13-layer	16-layer

Vineeth N B (IIT-H) §5.3 CNN Architectures 16/33

Vineeth N B (IIT-H) §5.3 CNN Architectures 16/33

a critical component for good performance

16 / 33

Homogeneous Architecture: From

- Runner-up in ILSVRC 2014
- More layers lead to more nonlinearities
 - Key contribution: Depth of the network is a critical component for good performance
- Homogeneous Architecture: From beginning to end:
 - 3×3 CONV stride 1 pad 1

TEL

image conv-64 maxpool conv-128 maxpool conv-256	image conv-64 conv-64 maxpool conv-128 conv-128 maxpool conv-256	image conv-64 conv-64 maxpool conv-128 conv-128 maxpool conv-256	Runner-up in ILSVRC 2014 conv-64 conv-64 maxpool conv-128 conv-128 maxpool conv-256 Runner-up in ILSVRC 2014 More layers lead to more nonlinearities Key contribution: Depth of the network is a critical component for good performance
conv-512 conv-512 maxpool	conv-512 conv-512 maxpool	conv-256 conv-256 maxpool conv-512 conv-512 conv-512 maxpool	conv-256 conv-256 conv-256 maxpool conv-512 conv-512 conv-512 conv-512 maxpool maxpool
conv-512 conv-512 maxpool FC-4096 FC-4096 FC-1000 softmax	conv-512 conv-512 maxpool FC-4096 FC-4096 FC-1000 softmax	conv-512 conv-512 conv-512 maxpool FC-4096 FC-4096 FC-1000 softmax	conv-512 conv-512 conv-512 maxpool FC-4096 FC-4096 FC-1000 softmax

Vineeth N B (IIT-H) §5.3 CNN Architectures

- Runner-up in ILSVRC 2014
- More layers lead to more nonlinearities
 - Key contribution: Depth of the network is a critical component for good performance

- Homogeneous Architecture: From beginning to end:
 - 3×3 CONV stride 1 pad 1
 - ullet 2 imes 2 MAX POOL stride 2
- Smaller receptive fields:

image	image	image	image
conv-64	conv-64	conv-64	conv-64
maxpool	conv-64	conv-64	conv-64
	maxpool	maxpool	maxpool
conv-128	conv-128	conv-128	conv-128
maxpool	conv-128	conv-128	conv-128
	maxpool	maxpool	maxpool
conv-256	conv-256	conv-256	conv-256
conv-256	conv-256	conv-256	conv-256
maxpool	maxpool	conv-256	conv-256
		maxpool	conv-256
			maxpool
conv-512	conv-512	conv-512	conv-512
conv-512	conv-512	conv-512	conv-512
maxpool	maxpool	conv-512	conv-512
		maxpool	conv-512
			maxpool
conv-512	conv-512	conv-512	conv-512
conv-512	conv-512	conv-512	conv-512
maxpool	maxpool	conv-512	conv-512
		maxpool	conv-512
			maxpool
FC-4096	FC-4096	FC-4096	FC-4096
FC-4096	FC-4096	FC-4096	FC-4096
FC-1000	FC-1000	FC-1000	FC-1000
softmax	softmax	softmax	softmax
11-layer	13-layer	16-layer	19-layer

- Runner-up in ILSVRC 2014
- More layers lead to more nonlinearities
- Key contribution: Depth of the network is
 a critical component for good performance

- Homogeneous Architecture: From beginning to end:
 - 3×3 CONV stride 1 pad 1
 - 2×2 MAX POOL stride 2
- Smaller receptive fields:
 - less parameters; faster

image	image	image	image
conv-64	conv-64	conv-64	conv-64
maxpool	conv-64	conv-64	conv-64
	maxpool	maxpool	maxpool
conv-128	conv-128	conv-128	conv-128
maxpool	conv-128	conv-128	conv-128
	maxpool	maxpool	maxpool
conv-256	conv-256	conv-256	conv-256
conv-256	conv-256	conv-256	conv-256
maxpool	maxpool	conv-256	conv-256
		maxpool	conv-256
			maxpool
conv-512	conv-512	conv-512	conv-512
conv-512	conv-512	conv-512	conv-512
maxpool	maxpool	conv-512	conv-512
		maxpool	conv-512
			maxpool
conv-512	conv-512	conv-512	conv-512
conv-512	conv-512	conv-512	conv-512
maxpool	maxpool	conv-512	conv-512
		maxpool	conv-512
			maxpool
FC-4096	FC-4096	FC-4096	FC-4096
FC-4096	FC-4096	FC-4096	FC-4096
FC-1000	FC-1000	FC-1000	FC-1000
softmax	softmax	softmax	softmax
11-laver	13-layer	16-layer	19-lave

- Runner-up in ILSVRC 2014
- More layers lead to more nonlinearities
- Key contribution: Depth of the network is a critical component for good performance
- Homogeneous Architecture: From beginning to end:
 - ullet 3 imes 3 CONV stride 1 pad 1
 - ullet 2 × 2 MAX POOL stride 2
- Smaller receptive fields:
 - less parameters; faster
 - two 3×3 conv has same receptive field as a single 5×5 conv; three 3×3 conv has same receptive field as a single 7×7 conv

image	image	image	image	Runner-up in ILSVRC 2014
conv-64	conv-64	conv-64	conv-64	
maxpool	conv-64	conv-64	conv-64	More layers lead to more nonlinearities
	maxpool	maxpool	maxpool	
conv-128	conv-128	conv-128	conv-128	New contribution: Depth of the network is
maxpool	conv-128	conv-128	conv-128	Ney contribution. Depth of the network is
	maxpool	maxpool	maxpool	a critical component for good performance
conv-256	conv-256	conv-256	conv-256	a critical component for good performance
conv-256	conv-256	conv-256	conv-256	Homogeneous Architecture: From
maxpool	maxpool	conv-256	conv-256	
		maxpool	conv-256	beginning to end:
			maxpool	
conv-512	conv-512	conv-512	conv-512	3×3 CONV stride 1 pad 1
conv-512	conv-512	conv-512	conv-512	2 x 2 MAX POOL stride 2
maxpool	maxpool	conv-512	conv-512	• 2 x 2 MAX POOL Stride 2
		maxpool	conv-512	Condition was and the Calder
			maxpool	Smaller receptive fields:
conv-512	conv-512	conv-512	conv-512	less management factors
conv-512	conv-512	conv-512	conv-512	less parameters; faster
maxpool	maxpool	conv-512	conv-512	• two 3×3 conv has same receptive field
		maxpool	conv-512	•
			maxpool	as a single 5×5 conv; three 3×3 conv
FC-4096	FC-4096	FC-4096	FC-4096	
FC-4096	FC-4096	FC-4096	FC-4096	has same receptive field as a single 7×7
FC-1000	FC-1000	FC-1000	FC-1000	conv
softmax	softmax	softmax	softmax	
11-layer	13-layer	16-layer	19-layer	• Fewer parameters: $3 \times 3^2 C^2$ (vs) $7^2 C^2$

Vineeth N B (IIT-H) §5.3 CNN Architectures 16/33

Vineeth N B (IIT-H) §5.3 CNN Architectures 17/33

AlexNet total: 1.9 MB VGG-16 total: 48.6 MB (25x)

Credit: Justin Johnson, Univ of Michigan

AlexNet total: 61M

VGG-16 total: 138M (2.3x)

18 / 33

AlexNet total: 1.9 MB VGG-16 total: 48.6 MB (25x)

Credit: Justin Johnson, Univ of Michigan

AlexNet total: 61M

VGG-16 total: 138M (2.3x)

 Uses a lot more memory and parameters

AlexNet total: 1.9 MB VGG-16 total: 48.6 MB (25x)

Credit: Justin Johnson, Univ of Michigan

AlexNet vs VGG-16 (Params, M)

AlexNet total: 61M

VGG-16 total: 138M (2.3x)

- Uses a lot more memory and parameters
- Most of these parameters are in the first fully connected layer

Vineeth N B (IIT-H)

AlexNet total: 1.9 MB VGG-16 total: 48.6 MB (25x)

Credit: Justin Johnson, Univ of Michigan

AlexNet vs VGG-16 (Params, M)

AlexNet total: 61M

VGG-16 total: 138M (2.3x)

- Uses a lot more memory and parameters
- Most of these parameters are in the first fully connected layer
- Most of the memory is used in early CONV layer

Vineeth N B (IIT-H)

 Deeper networks with focus on efficiency: reduce parameter count, memory usage, and computation

NPTEL

- Deeper networks with focus on efficiency: reduce parameter count, memory usage, and computation
- 22 layers

NPTEL

- Deeper networks with focus on efficiency: reduce parameter count, memory usage, and computation
- 22 layers
- No FC layers

NPTEL

- Deeper networks with focus on efficiency: reduce parameter count, memory usage, and computation
- 22 layers
- No FC layers
- Efficient "Inception" module

- Deeper networks with focus on efficiency: reduce parameter count, memory usage, and computation
- 22 layers
- No FC layers
- Efficient "Inception" module
- Only 5 million parameters! (12x less than AlexNet)

- Deeper networks with focus on efficiency: reduce parameter count, memory usage, and computation
- 22 layers
- No FC layers
- Efficient "Inception" module
- Only 5 million parameters! (12x less than AlexNet)
- ILSVRC'14 classification winner (6.7% top-5 error)

Inception module:

Local unit with parallel branches

 Local structure repeated many times throughout the networ

Credit: Justin Johnson, Univ of Michiga

Vineeth N B (IIT-H) §5.3 CNN Architectures 20/33

- Inception module: Local unit with parallel branches
- Local structure repeated many times throughout the network

Credit: Justin Johnson, Univ of Michigan
Vineeth N B (IIT-H)

- Inception module: Local unit with parallel branches
- Local structure repeated many times throughout the network

Credit: Justin Johnson, Univ of Michigan
Vineeth N B (IIT-H)

Naive Inception module

- Apply parallel filter operations on the input from previous layer:
 - Multiple receptive field sizes for convolution (1 \times 1, 3 \times 3, 5 \times 5)
 - Pooling operation ($3 \times 3 \text{ max}$ pooling)
- Concatenate all filter outputs together depth-wise

Naive Inception module

- Apply parallel filter operations on the input from previous layer:
 - Multiple receptive field sizes for convolution (1 \times 1, 3 \times 3, 5 \times 5)
 - Pooling operation ($3 \times 3 \text{ max}$ pooling)
- Concatenate all filter outputs together depth-wise
- What's the problem with this?

Naive Inception module

- Apply parallel filter operations on the input from previous layer:
 - Multiple receptive field sizes for convolution (1 \times 1, 3 \times 3, 5 \times 5)
 - Pooling operation $(3 \times 3 \text{ max pooling})$
- Concatenate all filter outputs together depth-wise
- What's the problem with this?
 Computationally very expensive

Credit: Fei-Fei Li, Justin Johnson and Serena Yeung, CS231n course, Stanford, Spring 2019

Solution: Use 1×1 "Bottleneck" layers to reduce channel dimension before expensive conv

layers

Solution: Use 1×1 "Bottleneck" layers to reduce channel dimension before expensive conv layers

Solution: Use 1×1 "Bottleneck" layers to reduce channel dimension before expensive conv layers

Preserves spatial dimensions, reduces depth!

Solution: Use 1×1 "Bottleneck" layers to reduce channel dimension before expensive conv layers

- Preserves spatial dimensions, reduces depth!
- Projects depth to lower dimension (combination of feature maps)

Credit: Fei-Fei Li, Justin Johnson and Serena Yeung, CS231n course, Stanford, Spring 2019

Vineeth N B (IIT-H) §5.3 CNN Architectures 22 / 33

Inception module with dimension reduction

Credit: Fei-Fei Li, Justin Johnson and Serena Yeung, CS231n course, Stanford, Spring 2019

Vineeth N B (IIT-H) §5.3 CNN Architectures 23 / 33

Full Architecture:

${\sf GoogleNet}$

Full Architecture:

${\sf GoogleNet}$

Full Architecture:

Full Architecture:

Auxiliary classification outputs to inject additional gradient at lower layers (AvgPool-1x1Conv-FC-FC-Softmax)

Full Architecture:

Auxiliary classification outputs to inject additional gradient at lower layers (AvgPool-1x1Conv-FC-FC-Softmax)

22 total layers (parallel layers count as 1 layer. Auxiliary output layers not counted)

Credit: Fei-Fei Li, Justin Johnson and Serena Yeung, CS231n course, Stanford, Spring 2019

Vineeth N B (IIT-H) §5.3 CNN Architectures 24 / 33

Deeper the Merrier

Credit: Fei-Fei Li, Justin Johnson and Serena Yeung, CS231n course, Stanford, Spring 2019

Vineeth N B (IIT-H) §5.3 CNN Architectures 25/33

What happens when we continue stacking deeper layers on a "plain" convolutional neural network?

What happens when we continue stacking deeper layers on a "plain" convolutional neural network?

What happens when we continue stacking deeper layers on a "plain" convolutional neural network?

What happens when we continue stacking deeper layers on a "plain" convolutional neural network?

Deeper model does worse than shallow model!

What happens when we continue stacking deeper layers on a "plain" convolutional neural network?

Deeper model does worse than shallow model! Why?

What happens when we continue stacking deeper layers on a "plain" convolutional neural network?

Deeper model does worse than shallow model! Why?

The initial guess is that the deep model is **overfitting** since it is much bigger than the shallow model

What happens when we continue stacking deeper layers on a "plain" convolutional neural network?

Deeper model does worse than shallow model! Why?

The deep model is actually **underfitting** since it also performs worse than the shallow model on the training set

How deep can we go? Vanishing/Exploding Gradient

How deep can we go? Vanishing/Exploding Gradient

Consider a simple network:

How deep can we go? Vanishing/Exploding Gradient

Consider a simple network:

- Vanishing gradients: Deeper the network, gradients vanish quickly, thereby slowing the rate of change in initial layers
- Exploding gradients: Happen when the individual layer gradients are much higher than 1, for instance can be overcome by gradient clipping

The deeper model should be able to perform at least as well as the shallower model; how?

The deeper model should be able to perform at least as well as the shallower model; how?

Solution: Change the network with identity connections between layers:

The deeper model should be able to perform at least as well as the shallower model; how?

Solution: Change the network with identity connections between layers:

NPTEL

The deeper model should be able to perform at least as well as the shallower model; how?

Solution: Change the network with identity connections between layers:

The deeper model should be able to perform at least as well as the shallower model; how?

Solution: Change the network with identity connections between layers:

- A residual network is a stack of many residual blocks
- Each residual block has two 3×3 conv layers

NPTEL

29 / 33

- A residual network is a stack of many residual blocks
- Each residual block has two 3×3 conv layers
- Periodically, double number of filters and downsample spatially using stride 2 (/2 in each dimension)

NPTEL

Softmax
FC 1000
Pool
—
3x3 conv, 512
3x3 conv, 512
•
3x3 conv, 512
3x3 conv, 512
3x3 conv, 512
3v3 copy 512 /2
3x3 conv, 512, /2
†
Ä
•
3x3 conv. 128
3x3 conv. 128
3x3 conv. 128
3x3 conv. 128
3x3 conv. 128
3x3 conv, 128, / 2
*
3x3 conv, 64
3x3 conv. 64
3x3 conv. 64
3x3 conv. 64
3x3 conv. 64
3x3 conv, 64
\(\)
Pool
7x7 conv. 64, / 2
Input

- A residual network is a stack of many residual blocks
- Each residual block has two 3×3 conv layers
- Periodically, double number of filters and downsample spatially using stride 2 (/2 in each dimension)
- Use global average pooling and a single linear layer at the end (FC 1000 to output classes)

- A residual network is a stack of many residual blocks
- Each residual block has two 3×3 conv layers
- Periodically, double number of filters and downsample spatially using stride 2 (/2 in each dimension)
- Use global average pooling and a single linear layer at the end (FC 1000 to output classes)
- \bullet Total depths of $34,\,50,\,101,$ or 152 layers for ImageNet dataset

29 / 33

Vineeth N B (IIT-H) §5.3 CNN Architectures

For deeper networks (ResNet-50+), use "bottleneck" layer to improve efficiency (similar to GoogLeNet)

For deeper networks (ResNet-50+), use "bottleneck" layer to improve efficiency (similar to GoogLeNet)

- Able to train very deep networks
- Deeper networks performs better than shallow networks now (as expected); residual blocks help avoid vanishing gradient
- 1st place in all ILSVRC and COCO 2015 competitions
- We will discuss detection, localization, segmentation and the COCO dataset a bit later

- Able to train very deep networks
- Deeper networks performs better than shallow networks now (as expected); residual blocks help avoid vanishing gradient
- 1st place in all ILSVRC and COCO 2015 competitions
- We will discuss detection, localization, segmentation and the COCO dataset a bit later

- Able to train very deep networks
- Deeper networks performs better than shallow networks now (as expected); residual blocks help avoid vanishing gradient
- 1st place in all ILSVRC and COCO 2015 competitions
- We will discuss detection, localization, segmentation and the COCO dataset a bit later

- Able to train very deep networks
- Deeper networks performs better than shallow networks now (as expected); residual blocks help avoid vanishing gradient
- 1st place in all ILSVRC and COCO 2015 competitions
- We will discuss detection, localization, segmentation and the COCO dataset a bit later

- Able to train very deep networks
- Deeper networks performs better than shallow networks now (as expected); residual blocks help avoid vanishing gradient
- 1st place in all ILSVRC and COCO 2015 competitions
- We will discuss detection, localization, segmentation and the COCO dataset a bit later

ResNet @ ILSVRC & COCO 2015 Competitions

1st place in all five major challenges

- ImageNet Classification: "Ultra-deep" 152-layer nets
- ImageNet Detection: 16% better than the 2nd best
- ImageNet Localization: 27% better than the 2nd best
- COCO Detection: 11% better than the 2nd best
- \circ COCO Segmentation: 12% better than the 2nd best

Homework

Readings

- Tutorial: Illustrated: 10 CNN Architectures
- (Optional) For more details, skim through the following papers:
 - ImageNet Classification with Deep Convolutional Neural Networks
 - Very Deep Convolutional Networks for Large-Scale Image Recognition
 - Going Deeper with Convolutions
 - Deep Residual Learning for Image Recognition

Exercise

• Show that minimizing negative log likelihood in a neural network with a softmax activation function in the last layer is equivalent to minimizing cross-entropy error function (*Hint:* Read Chapter 3 of Nielsen's online book on basics of NNs)

References

Yann LeCun et al. "Gradient-based learning applied to document recognition". In: 1998.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. "ImageNet Classification with Deep Convolutional Neural Networks". In: NIPS. 2012.

Karen Simonyan and Andrew Zisserman. "Very Deep Convolutional Networks for Large-Scale Image Recognition". In: *CoRR* abs/1409.1556 (2015).

Christian Szegedy et al. "Going deeper with convolutions". In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2015), pp. 1–9.

Kaiming He et al. "Deep Residual Learning for Image Recognition". In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016), pp. 770–778.

Johnson, Justin, EECS 498-007 / 598-005 - Deep Learning for Computer Vision (Fall 2019). URL: https://web.eecs.umich.edu/~justincj/teaching/eecs498/ (visited on 06/29/2020).

Li, Fei-Fei; Johnson, Justin; Serena, Yeung; CS 231n - Convolutional Neural Networks for Visual Recognition (Spring 2019). URL: http://cs231n.stanford.edu/2019/ (visited on 06/29/2020).