Q2,D radians Here a and d can be in any units as long as They are The same; d = a , Small angles: tan TT" & TT" [rad] d = a T" [rad] d[pc] & a [pc]

T"[rad] TT "[arcsec] = TT" [rad] x TT rad 180 x 3600 arcsec For observers on Earth, a = 1 Au $a [pc] = 1 \text{ Au} \times 1.496 \times 10^8 \text{ km} \times \frac{Pc}{3.086 \times 10^{13} \text{ km}}$ = 4.847×10-6 le a= 4.8×10-6 pc $d[pc] = 4.847 \times 10^6 \times 180 \times 3600 = 1.0$ $TT''[arcsec] \times TT = TT''[arcsec]$ if you could detect parallax of 3 arcmin (180")

you could see the parallax of a star at $d = \frac{1.0}{180} pc = 0.0056 pc = 4.3 \times 10^{-3} of$ But the closest star is 1.3 pc away - we could Not see parallax!

c)	Now we can measure parallaxes of 0.1×10^{-3} ercsec. \Rightarrow distances $\frac{1}{0.1 \times 10^{-3}}$ pc = 10^{4} pc
	> we can go slightly begond the Center of our Galaxy.
	An Eurth -centered cosmology has no annual parallax, and The fact that nobody (voltil recently) could defect any norallax seems like confirmation of the Ptaenaic model.
	But it's actually more like absence of evidence trans evidence of absence.

a) ok, if sidereal orbital periods are P_A and P_B and orbits are circles, $\theta_A = const$ and $\theta_B = const$ $= 2\pi T = 2\pi T$

-> OA(t) = 211 + BA

 $\theta_B(t) = \frac{2\pi}{P_B}t + \beta_B$

let's look at a conjunction blum planets: $O_A(t_1) - O_B(t_2) = 0$

A went around exactly one time more than B

Ot2

So The next conjunction is at to where Op(tr) - OB(tr) = ZIT

synatric period is Payn = t2-t, Find Psyn.

oh: $\theta_A(t_1) - \theta_B(t_1) = 0 = \frac{2N}{P_A}t_1 + \beta_A - \frac{2N}{P_B}t_1 - \beta_B$

 $O_A(t_2) - O_B(t_2) = 2\sqrt{t_2 + \beta_A} - 2\sqrt{t_2 + \beta_A} - 2\sqrt{t_2 + \beta_B}$

2 equations 2 unk (tz-t1)

subtract! linear system

rewrite 0=(-+ PB)t, + BA-BB 1 = (-1) t2 + BA-BB $I = \left(\frac{1}{P_A} - \frac{1}{P_B}\right)(t_2 - t_1) = \left(\frac{1}{P_A} - \frac{1}{P_B}\right) P_{Syn},$ Earth is farther out: B -> 0 Paym = Po Po So Po Paym Po Earth is closer in: A > 0 1 1 - 1 so 1 1 - 1
Psym = Po Pp Pp Pp Psym Find P_{sym} in terms of P_p and P_{o} for case d and let $P_p \to \infty$ $P_{sym} = \begin{pmatrix} 1 & -1 \\ P_{o} \end{pmatrix}^{-1} = \begin{pmatrix} P_p - P_{o} \\ P_p \end{pmatrix}^{-1} = P_{o}P_{p}$ $P_p - P_{o}$ $P_p - P_{o}$ f) Similarly for case c and let $P_p o P_p$ from below $P_{syn} = (P_p - P_p)^{-1} = (P_p - P_p)^{-1} = P_p P_p$ $P_p P_p o P_p P$ as Pp approaches Po this blows up to 00 which I suppose makes sense for the same reason that g) Mars is $P = 1.881 P_{\oplus}$ So $P_{Syn, mars} = 1.881 P_{\oplus}^2 = 1.881 P_{\oplus}$ for Neptone Nephine P= 164,79 Po Psyn, Nep = 164,79 Po Po Ok

c) From the right triangle: cos x = 1/RM $R_{M} = \frac{1}{\cos \alpha} = 1.36 \text{ Au}$ as advertised, less than 1.5 Am.

Mars was near perihelion on day 0 and 687. Q2.4) Hrv2 extra credit

A = $C \cos \theta$ see Fig 2.1

C = $A/\cos \theta$ A by the stream of the second part of the second p

uncertainty $\nabla_C = \left| \frac{dC}{d\theta} \right| \nabla_{\theta}$ At least trat's the one component of ∇_C

but $C = A(\cos \theta) = A(\cos \theta)^{-1}$ $dC/d\theta = A(-1)(\cos \theta)^{-2}(-\sin \theta) = A\sin \theta$ $\cos^2 \theta$

eval: $0 \sin \theta / \cos^2 \theta \sim \sqrt{c}$ $87^{\circ} 364$ $88^{\circ} 870$ $89^{\circ} 3282 \text{ Wow, up by } \times 10.$

