Problemi sul secondo principio della termodinamica (2)

1. Tre moli di un gas perfetto monoatomico, inizialmente alla temperatura $T_A=300\,$ K, compiono il seguente ciclo:

AB: compressione adiabatica reversibile fino al volume $V_B = V_A/2$;

BC: espansione libera fino al volume V_C ;

CD: compressione adiabatica reversibile fino al volume $V_D = V_A$;

DA: isocora in contatto termico con un serbatoio alla temperatura T_A .

Sapendo che la variazione di entropia dell'universo in un ciclo è $\Delta S_{U,ciclo}=60$ J/K, determinare:

- a) la temperatura T_C del gas in C;
- b) la temperatura T_D del gas in D;
- c) il lavoro W_{ciclo} del gas nel ciclo;
- d) la variazione $\Delta S_{U,BC}$ di entropia dell'universo nella trasformazione BC.
- 2. I pistoni di due cilindri A e B isolati dall'ambiente sono contrapposti e posti orizzontalmente, uniti tra loro da una fune ideale tesa. I due cilindri sono in contatto termico con un serbatoio

contenente una miscela di acqua e ghiaccio alla temperatura di fusione del ghiaccio $T_0=273.15~{\rm K}$, e contengono rispettivamente $n_A=0.1~{\rm moli}$ e $n_B=0.4~{\rm moli}$ di un gas perfetto.

Sono note le sezioni dei cilindri A e B, rispettivamente uguali a $S_A=0.05~\rm m^2~e~S_B=0.1~m^2$, e il volume iniziale del cilindro A, pari a $V_{0A}=0.01~\rm m^3$. La pressione esterna è $p_{amb}=10^5$ Pa e il sistema è inizialmente in equilibrio. Ad un certo punto si taglia la fune e si aspetta l'instaurarsi di un nuovo stato di equilibrio. Determinare:

- a) le pressioni iniziali p_{0A} e p_{0B} del gas nei due cilindri;
- b) le masse m_A e m_B di ghiaccio fuso durante il processo;
- c) la variazione di entropia dell'universo ΔS_U .
- 3. Una macchina di Carnot funziona tra due serbatoi alle temperature $T_1=300~{\rm K}$ e $T_0=279~{\rm K}$; la sostanza che compie il ciclo è costituita da n=2 moli di gas ideale e si sa che nell'espansione isoterma il rapporto tra il volume finale quello iniziale è $V_f/V_i=3$. Determinare:
 - a) il lavoro W_C compiuto dalla macchina in un ciclo.

Una seconda macchina, non reversibile e sincrona alla precedente, funziona tra due serbatoi alle temperature $T_2=400~{\rm K}$ e T_0 , compiendo in un ciclo il lavoro $W_M=2W_C$. Si costruisce adesso una macchina costituita dalla macchina non reversibile e dalla macchina di Carnot funzionante come frigorifero. Al termine di un ciclo della macchina composta, la variazione di entropia dell'universo è $\Delta S_{U.ciclo}=4.7~{\rm J/K}$. Determinare:

- b) il rendimento η_M della macchina non reversibile;
- d) il calore $Q_{0,TOT}$ complessivamente scambiato in un ciclo dalla macchina composta con il serbatoio alla temperatura T_0 .