MIN STATE OF STATE OF

United International University School of Science and Engineering

Mid Assessment Trimester: Summer-2020

Course Title: Linear Algebra, Ordinary & Partial Differential Equations

/ Calculus and Linear Algebra

Course Code: Math 183/Math-2183 Marks: 20 Time: 1 Hour

Answer any one from 1 and 2, whereas 3 is mandatory. Figures are in the right hand margin indicating full marks. Answer all parts of a question together.

1.	For the function $f(x) = x^3 - 18x^2 + 2$ find			
	(i) (ii) (iii) (iv) (v)	Its stationary and inflection points. The intervals on which $f(x)$ is increasing and decreasing. The intervals on which $f(x)$ is concave up and down. Find the slope of the surface $z = f(x,y) = 2\sqrt{x^2 + y^2}$ in the x -direction at the point $(3, 4)$. Using chain rule find $\frac{\partial w}{\partial p}$, where $= z \sin(xy) + \sqrt{zy}$, $x = p + 2r$, $y = \frac{r}{2n}$, $z = r^2$	[10]	
		-r	F4.01	
2.		on $f(x) = x^3 - 9x^2 + 9$ find	[10]	
	(i)	Its critical points and intercepts.		
	(ii)	Its relative maximum and minimum by using 1 st derivative test.		
	(iii)	Its relative maximum and minimum by using 2 nd derivative test.		
	(iv)	Find the slope of the surface $z = f(x, y) = 4\sqrt{x^3 + y^3}$ in the		
		y-direction at the point (3, 3).		
	(vi)	Using chain rule find $\frac{\partial w}{\partial r}$, where		
	w = 1	$z \cos(xz) + \sqrt{xy}, x = r + 2p, y = \frac{p}{2r}, z = r^2 + p^2$		
3.		the solution of the given differential equations	[6]	
	i)	$ty' + 3y = 4t^2 + t$		
	ii)	$ty' + 3y = 4t^2 + t$ $y' = \frac{e^{-x} - e^x}{3 + 4y}, \qquad y(0) = 1$		
		3T4 <i>y</i>	[4]	
	(b) Solve	$(x^2 + xy + y^2)dx - x^2dy = 0$		
	. ,			