QuC HW04

Corbin T. Rochelle February 23, 2022

Question 1

Α.

The initial realiziation I made was that that the Eigenvectors, $|E_1\rangle$, $|E_2\rangle$, $|E_3\rangle$, and $|E_4\rangle$, were the same values for all values of ham2factorC; however the Eigenvalues change with a different pattern: namely $|E_1\rangle$ is the negation of $|E_2\rangle$ and $|E_3\rangle$ is the negation of $|E_4\rangle$, while $|E_2\rangle$ is calculated with 1 + ham2factorC where $|E_1\rangle$ is calculated with $|E_2\rangle$ is calculated with $|E_1\rangle$ is calculated with $|E_2\rangle$ is calculated with $|E_1\rangle$ is calculated with $|E_2\rangle$ is calculated with $|E_1\rangle$ and $|E_2\rangle$ is calculated with $|E_1\rangle$ for different values of ham2factorC's, we see different values of $|\psi_{final}\rangle$, but if we take the norm of all of the resulting states, we get $|E_1\rangle$. This means when we take $|E_1\rangle$ the $|E_2\rangle$ will select one value from $|E_1\rangle$ and when taking the square of the $|E_1\rangle$, we get $|E_1\rangle$, which is the values we see for all $|E_1\rangle$.

В.

The first thing I notice is that the Eigenvalues follow the same pattern described for the system in question 1A. The second thing I notice is that although the Eigenvalues follow that pattern, the Eigenvectors do not. The $|\psi_{initial}\rangle$ is the same as $|\psi_{final}\rangle$ because the $P_j(t)$ function requires the norm to be taken of both wave functions. The norm of $|\psi_{initial}\rangle = |\psi_{final}\rangle$ for all four values, creating a straight line. For all values of t, the vectors are changing, but the norm of the values are always the same. This is because H_{total} and $|\psi_{final}\rangle$ are orthogonal to each other!

$\mathbf{C}.$

I found two Hamiltonians that meet the following criteria:

$$H_{total} = (\sigma^x \bigotimes \sigma^x) + C(\sigma^x \bigotimes \sigma^x)$$
and
$$H_{total} = (\sigma^y \bigotimes \sigma^y) + C(\sigma^y \bigotimes \sigma^y)$$
and
$$H_{total} = (\sigma^z \bigotimes \sigma^z) + C(\sigma^z \bigotimes \sigma^z)$$

For all of these, the bell state is
$$|\psi_{initial}\rangle = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ 0 \\ 0 \\ -\frac{1}{\sqrt{2}} \end{pmatrix}$$
 and $|\psi_{final}\rangle = \begin{pmatrix} x \\ 0 \\ 0 \\ x \end{pmatrix}$,

where the norm of $x = \frac{1}{\sqrt{2}}$. From this we can see two of the j Cbits will select one of the x's, namely the $|00\rangle$ or $|11\rangle$, which have the $P_j(t) = 0.5$, while the other js will multiply by the zeros and have $P_j(t) = 0$. We know $|\psi_{final}\rangle$ will always have two 0s because the eigenvectors are always orthogonal to $|\psi_{final}\rangle$.

Question 2

A.

For any system of N qbits, $E_{GS} = -N$, while $E_2 = -(N-2)$. And I have checked and verified up to 6 qbits.

В.

See my Mathematica file!

$\mathbf{C}.$

See my Mathematica file!

D.

See my Mathematica file!