```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model selection import train test split
from sklearn.feature_selection import mutual_info_classif
from \ sklearn.metrics \ import \ accuracy\_score, \ confusion\_matrix, \ classification\_report
from \ sklearn.preprocessing \ import \ StandardScaler
from \ sklearn.linear\_model \ import \ LogisticRegression
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from \ sklearn.neighbors \ import \ KNeighbors Classifier
from \ scipy.stats \ import \ ttest\_ind
import warnings
warnings.filterwarnings('ignore')
from google.colab import drive
drive.mount('/content/drive')
```

Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount("/content/drive", force_remount=True).

path = "_/content/drive/MyDrive/Datasets/Kaggle/Heart_data.csv"
df = pd.read_csv(path)
df.head()

₹		age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca	thal	target	
	0	63	Male	3	145	233	1	0	150	0	2.3	0	0	1	1	
	1	37	Male	2	130	250	0	1	187	0	3.5	0	0	2	1	
	2	41	Female	1	130	204	0	0	172	0	1.4	2	0	2	1	
	3	56	Male	1	120	236	0	1	178	0	8.0	2	0	2	1	
	4	57	Female	0	120	354	0	1	163	1	0.6	2	0	2	1	

Renaming Columns

₹		Age	Sex	Chest_Pain	Resting_Blood_Pressure	Cholesterol	Fasting_Blood_Sugar	ECG_results	Max_heart_rate	Exercise_Induced_
	0	63	Male	3	145	233	1	0	150	
	1	37	Male	2	130	250	0	1	187	
	2	41	Female	1	130	204	0	0	172	
	3	56	Male	1	120	236	0	1	178	
	4	57	Female	0	120	354	0	1	163	

#Checking for null values
null_values = df.isnull().sum()
print(null_values)

_ _	Age	0
	Sex	0
	Chest_Pain	0
	Resting_Blood_Pressure	0
	Cholesterol	0
	Fasting_Blood_Sugar	0
	ECG_results	0
	Max_heart_rate	0
	Exercise_Induced_Angina	0
	ST_depression	0
	ST_slope	0
	Vessels_colored	0
	Thalessemia_types	0
	Target	0
	dtype: int64	

 $\overline{\Rightarrow}$

•		Age	Chest_Pain	Resting_Blood_Pressure	Cholesterol	Fasting_Blood_Sugar	ECG_results	Max_heart_rate	Exercise_Induce
	count	303.000000	303.000000	303.000000	303.000000	303.000000	303.000000	303.000000	3
	mean	54.366337	0.966997	131.623762	246.264026	0.148515	0.528053	149.646865	
	std	9.082101	1.032052	17.538143	51.830751	0.356198	0.525860	22.905161	
	min	29.000000	0.000000	94.000000	126.000000	0.000000	0.000000	71.000000	
	25%	47.500000	0.000000	120.000000	211.000000	0.000000	0.000000	133.500000	
	50%	55.000000	1.000000	130.000000	240.000000	0.000000	1.000000	153.000000	
	75%	61.000000	2.000000	140.000000	274.500000	0.000000	1.000000	166.000000	
	max	77.000000	3.000000	200.000000	564.000000	1.000000	2.000000	202.000000	

```
num_cols = df.select_dtypes(include=['int', 'float']).columns
sns.boxplot(data = df[num_cols], orient = 'h')
plt.title("Boxplots for Outlier detection")
plt.show()
```


As per observation, Males record to have more association with Coronary Artery Disease

```
sns.countplot(data = df[df['Target'] == 1], x = 'Sex', hue = 'Sex', palette = ['darkorange', 'lightskyblue'])
plt.xlabel("Gender")
plt.ylabel("Count")
plt.title("Presence of Heart disease w.r.t Gender")
plt.show()
```


As per observation, the age group of 50-60 show a significant amount of Choslesterol level

```
sns.jointplot(data = df, x = 'Age', y = 'Cholesterol', kind = "hex", color = "plum")
plt.xlabel("Age")
plt.ylabel("Cholesterol")
plt.suptitle('Density of Cholesterol w.r.t Age')
plt.subplots_adjust(top=0.94)
plt.show()
```


As per observation, more number of people between the age group of 50-65 are associated with Heart Disease

```
sns.histplot(data = df[df['Target'] == 1], x = 'Age', bins = [20, 35, 50, 65, 80], kde = True)
plt.xlabel("Age")
plt.ylabel("Count")
plt.title("Presence of Heart disease w.r.t Age")
plt.show()
```


80

60

20

20

Count 40

50

Age

60

70

80

Presence of Heart disease w.r.t Age

mean_trestbps = df.groupby('Target')['Resting_Blood_Pressure'].mean()
#median_trestbps = df.groupby('target')['trestbps'].median()
mean_trestbps.reset_index()

40

→ *		Target	Resting_Blood_Pressure
	0	0	134.398551
	1	1	129.303030

The Typical Angina type Chest pain i.e 1 have more chances of having Heart Disease

```
sns.barplot(data = df, x = df['Chest_Pain'], y = df['Target'], hue = 'Chest_Pain', palette = ['yellow', 'olive', 'orange', 'cornflowerb:
plt.xlabel("Chest Pain Type")
plt.ylabel("Measure of presence or absence")
plt.title("Presence of Heart disease w.r.t Chest Pain Type")
plt.xticks(ticks=[0, 1, 2, 3], labels=['Asymptomatic', 'Typical Angina', 'Atypical Angina', 'Non-Anginal pain'])
plt.show()
```


Individuals with exercise-induced angina have a lower maximum heart rate compared to those without the condition

Chest Pain Type

```
plt.figure(figsize=(8, 6))
sns.stripplot(x='Exercise_Induced_Angina', y='Max_heart_rate', data=df, hue='Exercise_Induced_Angina', palette='Set2', dodge = True)
plt.xlabel('Exercise-Induced Angina (exang)')
plt.ylabel('Maximum Heart Rate During Exercise (thalach)')
plt.title('Relationship Between Exercise-Induced Angina and Maximum Heart Rate')
plt.legend(title='Exercise-Induced Angina', labels=['No', 'Yes'], loc = "center")
```

plt.xticks(ticks=[0, 1], labels=['No Angina', 'Exercise-Induced Angina'])
plt.show()

When someone has exercise-induced angina, thier heart is under stress during physical activity which might limit their maximum heart rate to avoid overstraining the heart. This is a protective mechanism to prevent severe cardiac events, such as heart attacks. **Hence, this observation** below aligns with medical knowledge about heart disease.

Performing T test for further validation

```
t_stat, p_value = ttest_ind(a = angina, b = no_angina, equal_var = False)

print(f"T-statistic: {t_stat}")

print(f"P-value: {p_value}")

if p_value < 0.05:

    print("We reject the null hypothesis that is the difference in heart rates between the two groups is statistically significant")

else:

    print("We fail to reject the null hypothesis that is the difference in heart rates between the two groups is statistically insignificant

T-statistic: -7.128177921857431

    P-value: 1.9037161774425142e-11

    We reject the null hypothesis that is the difference in heart rates between the two groups is statistically significant

df['ST_slope'].unique()

array([0, 2, 1])
```

As per observation, this typically represents that Slope-2 or Downsloping shows more chances of the presence of Coronary artery disease

```
sns.barplot(data = df, x = df['ST_slope'], y = df['Target'], hue = 'ST_slope')
plt.xlabel("Slope")
plt.ylabel("Measure of presence or absence")
plt.title("Analysis of the Slope feature")
plt.xticks(ticks = [0, 1, 2], labels = ['Upsloping', 'Flat', 'Downsloping'])
plt.show()
```


Analysis of the Slope feature

pd.crosstab(df['Target'], df['ECG_results'])

₹	ECG_results	0	1	2
	Target			
	0	79	56	3
	1	68	96	1

As per observation, it shows that the ECG type-1 shows more presence of Heart Disease

```
pd.crosstab(df['ECG_results'], df['Target']).plot(kind = "bar")
plt.xlabel("ECG results")
plt.ylabel("Count")
plt.legend(["No Heart Disease", "Heart Disease"])
plt.title("Presence of Heart disease w.r.t ECG results")
plt.xticks(rotation = 0)
plt.show()
```


As per observation, it shows that the Thalessemia type-2 shows more presence of Heart Disease

```
pd.crosstab(df['Thalessemia_types'], df['Target']).plot(kind = "bar")
plt.xlabel("Thalessemia types")
plt.ylabel("Count")
plt.legend(["No Heart Disease", "Heart Disease"])
plt.title("Presence of Heart disease w.r.t Thalessemia types")
plt.xticks(rotation = 0)
```

```
plt.grid()
plt.show()
```

_

Presence of Heart disease w.r.t Thalessemia types


```
new_df = df.drop('Target', axis = 1)
target = df[['Target']]
new_df['Sex'] = new_df.Sex.map({"Male" : 1, "Female" : 0})
new_df.head()
```

₹		Age	Sex	Chest_Pain	Resting_Blood_Pressure	Cholesterol	Fasting_Blood_Sugar	ECG_results	Max_heart_rate	Exercise_Induced_Ang
	0	63	1	3	145	233	1	0	150	
	1	37	1	2	130	250	0	1	187	
	2	41	0	1	130	204	0	0	172	
	3	56	1	1	120	236	0	1	178	
	4	57	0	0	120	354	0	1	163	

Train Test Split

```
X_train, X_test, y_train, y_test = train_test_split(new_df, target, test_size = 0.2, random_state = 30)
print("Size of X_train is: ", X_train.shape)
print("Size of X_test is: ", X_test.shape)
print("Size of y_train is: ", y_train.shape)
print("Size of y_test is: ", y_test.shape)

Size of X_train is: (242, 13)
    Size of X_test is: (61, 13)
    Size of y_train is: (242, 1)
```

Feature Selection using Information Gain technique

Size of y_test is: (61, 1)

```
mutual_info_score = mutual_info_classif(X_train, y_train)
{\tt mutual\_info\_score}
⇒ array([0.01488079, 0.04261402, 0.09955932, 0.
                                                              , 0.0197637 ,
            0. , 0.0084458 , 0.09667651, 0.13357041, 0.07378568, 0.08096144, 0.1002136 , 0.15635438])
mutual_info_score = pd.Series(mutual_info_score)
mutual_info_score.index = X_train.columns
mutual_info_score.sort_values(ascending = False)
print(mutual_info_score)
→ Age
                                  0.014881
                                  0.042614
     Sex
     Chest_Pain
                                  0.099559
                                  0.000000
     Resting_Blood_Pressure
     Cholesterol
                                  0.019764
```

```
0.000000
Fasting_Blood_Sugar
ECG_results
                           0.008446
Max_heart_rate
                           0.096677
Exercise_Induced_Angina
                           0.133570
ST_depression
                           0.073786
                           0.080961
ST_slope
                           0.100214
Vessels colored
Thalessemia types
                           0.156354
dtype: float64
```

```
mutual_info_score.sort_values(ascending = False).plot(kind = "bar", color = 'c')
plt.xticks(rotation = 90)
plt.xlabel("Features")
plt.ylabel("Mutual Information Score")
plt.title("Feature Selection - Information gain")
plt.figure(figsize = (10, 5))
plt.show()
```


Logistic Regression

```
model = LogisticRegression()
#Training the model
model.fit(X_train, y_train)
y_predicted_lr = model.predict(X_test)
y_predicted_lr.shape
→ (61,)
lr_score = round(accuracy_score(y_test, y_predicted_lr)*100, 2)
The Accuracy score of the model achieved using Logistic Regression is: 85.25
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test, y_predicted_lr)
sns.heatmap(cm, annot = True)
plt.xlabel("Predicted label")
plt.ylabel("True label")
plt.title("Confusion Matrix")
plt.show()
```


Classification Report

print(classification_report(y_test, y_predicted_lr))

→	precision	recall	f1-score	support
0	0.76	0.92	0.83	24
1	0.94	0.81	0.87	37
accuracy			0.85	61
macro avg	0.85	0.86	0.85	61
weighted avg	0.87	0.85	0.85	61

Decision Tree Classifier

```
model = DecisionTreeClassifier()
#Training the model
model.fit(X_train, y_train)
y_predicted_dt = model.predict(X_test)
y_predicted_dt.shape

→ (61,)
dt_score = round(accuracy_score(y_test, y_predicted_dt)*100,2)
\verb|print("The Accuracy score of the model achieved using Decision Tree is: ", \verb|dt_score||| \\
→ The Accuracy score of the model achieved using Decision Tree is: 73.77
from sklearn.metrics import confusion_matrix
\label{eq:cm} \mbox{cm = confusion\_matrix}(\mbox{y\_test, y\_predicted\_dt})
sns.heatmap(cm, annot = True, cmap = plt.cm.BuPu_r)
plt.xlabel("Predicted label")
plt.ylabel("True label")
plt.title("Confusion Matrix")
plt.show()
```


print(classification_report(y_test, y_predicted_dt))

₹	precision	recall	f1-score	support
(0.64	0.75	0.69	24
:	0.82	0.73	0.77	37
accurac	/		0.74	61
macro av		0.74	0.73	61
weighted av	0.75	0.74	0.74	61

Random Forest Classifier

```
max_acc = 0
for i in range(200):
  model = RandomForestClassifier(random_state = i)
  {\tt model.fit(X\_train,\ y\_train)}
  y_predicted_rf = model.predict(X_test)
  current_acc = round(accuracy_score(y_test, y_predicted_rf)*100, 2)
  if current_acc > max_acc:
    max_acc = current_acc
    best_rs = i
#Training the model with the best random_state
model = RandomForestClassifier(random_state = best_rs)
model.fit(X_train, y_train)
y_predicted_rf = model.predict(X_test)
rf_score = round(accuracy_score(y_test, y_predicted_rf)*100, 2)
print("The Accuracy score of the model achieved using Random Forest is: ", rf_score)
→ The Accuracy score of the model achieved using Random Forest is: 86.89
\label{eq:cm} \mbox{cm = confusion\_matrix}(\mbox{y\_test, y\_predicted\_rf})
sns.heatmap(cm, annot = True, cmap = plt.cm.Pastel2_r)
plt.xlabel("Predicted label")
plt.ylabel("True label")
plt.title("Confusion Matrix")
plt.show()
```


Classification Report

print(classification_report(y_test, y_predicted_rf))

_	precision	recall	f1-score	support
0	0.81	0.88	0.84	24
1	0.91	0.86	0.89	37
accuracy			0.87	61
macro avg	0.86	0.87	0.86	61
weighted avg	0.87	0.87	0.87	61

K Nearest Neighbors

```
model = KNeighborsClassifier(n_neighbors=7)
#Training the model
```

scaler = StandardScaler()

X_train = scaler.fit_transform(X_train)

X_test = scaler.fit_transform(X_test)

model.fit(X_train,y_train)

y_predicted_knn = model.predict(X_test)

y_predicted_knn.shape

→ (61,)

knn_score = round(accuracy_score(y_test, y_predicted_knn)*100, 2)
print(f"The Accuracy score of the model achieved using KNN is: {knn_score}")

The Accuracy score of the model achieved using KNN is: 83.61

Classification Report

 $\verb|print(classification_report(y_test, y_predicted_knn))| \\$

₹		precision	recall	f1-score	support
	0	0.79	0.79	0.79	24
	1	0.86	0.86	0.86	37
	accuracy			0.84	61
	macro avg	0.83	0.83	0.83	61
	weighted avg	0.84	0.84	0.84	61

```
algos = ['Logistic Regression', 'Decision Tree', 'Random Forest', 'KNN']
scores = [lr_score, dt_score, rf_score, knn_score]
```

KNN

Random Forest

Algorithms

Using Pearson's Correlation

 $\overline{\Rightarrow}$

0

```
df2 = df
df2['Sex'] = df['Sex'].map({"Male" : 1, "Female" : 0})
cor = new_df.corr()
plt.figure(figsize = (11, 11))
#sns.heatmap(cor, annot = True, cmap = plt.cm.CMRmap_r)
sns.heatmap(cor, annot = True, cmap = "bwr", fmt = ".2g")
plt.xlabel("Features")
plt.ylabel("Features")
plt.title("Correlation Matrix")
plt.show()
```

Logistic Regression Decision Tree

