Baze podataka

Predavanja veljača 2008.

2. Relacijski model podataka

Relacijski model podataka

 E. F. Codd: "A Relational Model of Data for Large Shared Data Banks", Comm. ACM 13, No. 6, June 1970.

Dr. Edgar Frank Codd (1923-2003)

Ciljevi relacijskog modela podataka:

- osigurati visoki stupanj nezavisnosti podataka
- postaviti temelje za rješavanje problema semantike, konzistentnosti i redundancije podataka (normalizacija)
- omogućiti razvoj DML jezika temeljenih na operacijama nad skupovima

Relacijski model podataka

- Važni projekti u ranim 70-tim: jezik ISBL temeljen na relacijskoj algebri, jezici SQUARE i SEQUEL (DBMS System R) temeljeni na relacijskoj algebri i predikatnom računu te Query-By-Example temeljen na predikatnom računu nad domenama
 - razvojem prototipova dokazuje se praktična upotrebljivost relacijskog modela
 - postavljaju se temelji za rješavanje problema implementacije u područjima upravljanja transakcijama, paralelnog pristupa, obnove, optimizacije upita, sigurnosti i konzistentnosti podataka
- Projekti su potaknuli:
 - razvoj strukturiranog upitnog jezika (SQL)
 - razvoj komercijalnih relacijskih sustava za upravljanje bazama podataka (RDBMS)
 - Ingres, Oracle, IBM DB2, Informix, ...
 - danas: u upotrebi je nekoliko stotina različitih RDBMS sustava

Relacijski model podataka

objekti u relacijskom modelu podataka su RELACIJE

mjesto

pbr	nazMjesto	sifZup
42000	Varaždin	7
51000	Rijeka	2
52100	Pula	4
51300	Delnice	2
42230	Ludbreg	7

zupanija

sifZup	nazZup
2	Primorsko-goranska
7	Varaždinska
4	Istarska

- neformalna definicija: relacija je imenovana dvodimenzionalna tablica
 - atribut je imenovani stupac relacije
 - domena je skup dopuštenih vrijednosti atributa
 - nad istom domenom može biti definiran jedan ili više atributa
 - n-torka (tuple) je redak relacije

Svojstva relacija

- relacija posjeduje ime koje je jedinstveno unutar sheme baze podataka
- atributi unutar relacije imaju jedinstvena imena
- jedan atribut može poprimiti vrijednost iz samo jedne domene
- u jednoj relaciji ne postoje dvije jednake n-torke
- redoslijed atributa unutar relacije je nebitan
- redoslijed n-torki unutar relacije je nebitan

zupanija

sifZup	nazZup
2	Primorsko-goranska
7	Varaždinska
4	Istarska

zupanija

nazZup	sifZup
Varaždinska	7
Istarska	4
Primorsko-goranska	2

Matematička relacija

 Relacija R definirana nad skupovima D₁, D₂, ..., D_n je podskup Kartezijevog produkta skupova D₁, D₂, ..., D_n

Relacijska shema (formalna definicija)

Neka su zadani atributi A₁, A₂, ..., A_n. Relacijska shema R (intenzija) je imenovani skup atributa
R = { A₁, A₂, ..., A_n }

- radi pojednostavljenja, koristit će se i sljedeća notacija:
 R = A₁ A₂ ... A_n
- uočite: poredak atributa u shemi relacije je nebitan $R = \{ A_1, A_2, A_3 \} \equiv \{ A_3, A_1, A_2 \}$
- Primjer: relacijska shema MJESTO
 MJESTO = { pbr, nazMjesto, sifZup }

Relacijska shema (primjer)

- Zadani su atributi pbr, nazMjesto, sifZup
- Relacijska shema
 MJESTO = { pbr, nazMjesto, sifZup }
 - identična je relacijskoj shemi

MJESTO = { sifZup, pbr, nazMjesto }

n-torka (formalna definicija)

Neka je R = { A₁, A₂, ..., A_n } relacijska shema;
 neka su D₁, D₂, ..., D_n domene atributa A₁, A₂, ..., A_n;
 n-torka t definirana na relacijskoj shemi R je skup parova oblika atribut: vrijednostAtributa

$$t = \{ \ A_1 : v_1, \ A_2 : v_2, \ ..., \ A_n : v_n \ \},$$
 pri čemu je $v_1 \in D_1, \ v_2 \in D_2, \ ..., \ v_n \in D_n$

- Uočite: poredak elemenata n-torke nije bitan { $A_1:v_1$, $A_2:v_2$, $A_3:v_3$ } \equiv { $A_3:v_3$, $A_1:v_1$, $A_2:v_2$ }
- Ponekad će se koristiti pojednostavljena notacija: pretpostavi li se da poredak vrijednosti atributa odgovara "poretku atributa" u relacijskoj shemi, n-torka se može prikazati na sljedeći način:

$$t = \langle v_1, v_2, ..., v_n \rangle$$

n-torka (primjer)

Zadana je relacijska shema OSOBA = { matBr, ime, prez }, pri čemu su domene atributa:

```
dom (matBr) = {1234, 1235, 1236, 1237 }
dom (ime) = { Iva, Hrvoje, Ivan }
dom (prez) = { Novak, Kolar }
t<sub>1</sub> = { matBr:1234, ime:Iva, prez:Novak }
t<sub>2</sub> = { matBr:1236, ime:Hrvoje, prez:Novak }
t<sub>3</sub> = { matBr:1237, ime:Ivan, prez:Kolar }
```

- n-torka t₁ se jednako ispravno može napisati na sljedeći način (poredak elemenata n-torke je nebitan)
 t₁ = { ime:lva, prez:Novak, matBr:1234 }
- pojednostavljena notacija:

```
t_1 = < 1234, Iva, Novak >
```

Relacija (formalna definicija)

- Neka je R = { A₁, A₂, ..., A_n } relacijska shema;
 neka su D₁, D₂, ..., D_n domene atributa A₁, A₂, ..., A_n;
 relacija r (instanca relacije) definirana na shemi relacije R je skup n-torki koje su definirane na relacijskoj shemi R
- kad se želi naglasiti da je relacija r definirana na shemi relacije R, kao oznaka za relaciju koristi se r(R) ili r({ A₁, A₂, ..., A_n }) ili r(A₁ A₂ ... A_n)
- relacijska shema R: mijenja se relativno rijetko
- instanca relacije r: predstavlja trenutnu vrijednost relacije i često se mijenja (pri unosu/brisanju/izmjeni podataka)

Relacija (primjer)

- Zadana je relacijska shema STUDENT = { matBr, prez, slika }, pri čemu su domene atributa:
 - dom (matBr) = { 100, 102, 107, 111, 135 }
 - dom (prez) = { Novak, Kolar, Horvat, Ban }
 - dom (slika) = { 🙀 , 🥻 , 🥡 }

```
student(STUDENT) = { { matBr:102, prez:Novak, slika: 1 }, { matBr:135, prez:Ban, slika: 1 } }
```

■ IDENTIČNA RELACIJA (poredak n-torki i članova n-torki je nebitan):

```
student(STUDENT) = { { prez:Ban, matBr:135, slika: }, { slika: , matBr:102, prez:Novak } }
```

Relacija (primjer)

```
student(STUDENT) = { { prez:Ban, matBr:135, slika: }, { slika: }, matBr:102, prez:Novak } }
```

pojednostavljenje prikaza relacije (vizualizacija relacije tablicom)

student (STUDENT)

matBr	prez	slika
102	Novak	
135	Ban	

A-vrijednost n-torke, X-vrijednost n-torke

- Oznaka t(A) predstavlja vrijednost koju atribut A poprima u n-torki t. t(A) se naziva A-vrijednost n-torke t.
- Primjer:

```
t = { matBr:102, prez:Novak, slika: } } t (prez) = Novak
```

- Neka je X ⊆ R. n-torka t reducirana na skup atributa X naziva se X-vrijednost n-torke t i označava s t(X)
- Primjer:

```
t = \{ matBr: 102, prez: Novak, slika: \}

X = \{ matBr, prez \} \quad X \subseteq R

t(X) = t(\{ matBr, prez \}) = \{ matBr: 102, prez: Novak \}
```

Stupanj i kardinalnost relacije

- stupanj relacije: broj atributa (stupaca) degree
- kardinalnost relacije: broj n-torki (redaka) cardinality

mjesto

pbr	nazMjesto	sifZup
42000	Varaždin	7
51000	Rijeka	2
52100	Pula	4
51300	Delnice	2
42230	Ludbreg	7

kardinalnost = 5

Oznake: deg(mjesto) = 3 card(mjesto) = 5

Shema i instanca baze podataka

- Shema baze podataka je skup relacijskih shema $\Re = \{ R_1, R_2, ..., R_n \}$
 - očito, relacijske sheme u jednoj shemi baze podataka moraju imati različita imena
- Instanca baze podataka definirana na shemi baze podataka R = { R₁, R₂, ..., Rₙ } je skup instanci relacija
 • r (P) r (P) r (P) ?

$$r = \{ r_1(R_1), r_2(R_2), ..., r_n(R_n) \}$$

- shema baze podataka se relativno rijetko mijenja
- instanca baze podataka se često mijenja

 π

Operacije relacijske algebre su:

agregacija, grupiranje

Primjer:
$$r_4 = \sigma_{A=x \land B=y} (r_1 \cup (r_2 \cap r_3))$$

Karakteristika relacijske algebre - proceduralnost - navodi se redoslijed operacija koje se provode nad relacijama

Predikatni račun

- Operacije se specificiraju navođenjem predikata r = { t | F(t) }
- t je varijabla koja predstavlja:
 - n-torke n-torski račun
 - rezultat r je skup n-torki t za koje je vrijednost predikata F istina
 - domene domenski račun
 - rezultat je skup domena t za koje je vrijednost predikata F istina
- Primjer:

$$r_4 = \left\{ t \mid \left(r_1(t) \vee \left(\left(r_2(t) \wedge r_3(t) \right) \right) \wedge t(A) = x \wedge t(B) = y \right\} \right\}$$

- Predikatni račun je neproceduralan
 - ne navodi se redoslijed operacija
 - navode se predikati koje n-torke (domene) moraju zadovoljavati

SQL

Kratki pogled

- SQL (Structured Query Language) je temeljen na relacijskom modelu podataka.
- nastao je na temelju jezika SEQUEL
- temelji se na predikatnom računu i relacijskoj algebri
- proglašen standardnim jezikom za relacijske sustave
- objekti u SQL-u su tablice, a ne (formalno definirane) relacije
 - poredak atributa (stupaca) u nekim je slučajevima značajan
 - u tablici ili rezultatu operacija nad tablicama moguća je pojava dvije ili više istih n-torki
 - ipak, postoje načini kako se to može spriječiti

- kreiranje nove instance baze podataka (kreiranje baze podataka)
 - jedan SUBP može istovremeno upravljati s više baza podataka

Rječnik podataka sadrži opise relacijskih shema, integritetskih ograničenja, ...

DROP DATABASE knjiznica;

- opisivanje relacijske sheme (kreiranje relacije)
 - kreira praznu relaciju
 - ujedno je moguće definirati i integritetska ograničenja

DROP TABLE mjesto;

upisivanje novih n-torki u relaciju

mjesto
pbr nazMjesto sifZup

miesto

pbr	nazMjesto	sifZup
42230	Ludbreg	7
42000	Varaždin	7
52100	Pula	4

Treba li poredak n-torki u relaciji biti u skladu s redoslijedom upisa?

dohvat podataka iz relacije

mjesto

pbr	nazMjesto	sifZup
42230	Ludbreg	7
42000	Varaždin	7
52100	Pula	4

dohvat podataka o mjestima čija šifra županije ima vrijednost 7

SELECT * FROM mjesto WHERE sifZup = 7;

pbr	nazMjesto	sifZup
42000	Varaždin	7
42230	Ludbreg	7

izmjena vrijednosti atributa u relaciji

mjesto

mjesto

pbr	nazMjesto	sifZup
42230	Ludbreg	7
42000	Varaždin	7
52100	Pula	4

naziv mjesta s poštanskim brojem 42000 promijeniti u VARAŽDIN

UPDATE mjesto SET nazMjesto = 'VARAŽDIN' WHERE pbr = 42000;

pbr	nazMjesto	sifZup
42230	Ludbreg	7
42000	VARAŽDIN	7
52100	Pula	4

brisanje n-torki iz relacije

mjesto

mjesto

pbr	nazMjesto	sifZup
42230	Ludbreg	7
42000	VARAŽDIN	7
52100	Pula	4

obrisati mjesta za koje šifra županije ima vrijednost 7

DELETE FROM mjesto
WHERE sifZup = 7;

pbr	nazMjesto	sifZu
E0400	Dule	1

- Unarne operacije
 - projekcija, selekcija, preimenovanje
 - agregacija, grupiranje
- Binarne operacije
 - skupovske operacije (set operations)
 - temelje se na relacijama kao skupovima n-torki
 - unija, presjek, razlika
 - ostale binarne operacije
 - Kartezijev produkt, dijeljenje, spajanje

obavljanje operacije ne utječe na operande, npr.

$$r_3 = r_1 \cup r_2$$

- obavljanjem prethodne operacije nastaje nova relacija r₃,
 a relacije r₁ i r₂ se pri tome ne mijenjaju
- operandi su relacije, a rezultat obavljanja operacije je uvijek relacija. To znači:
 - skup relacija je zatvoren s obzirom na operacije relacijske algebre
 - ta činjenica omogućava da se rezultat jedne operacije upotrijebi kao operand u sljedećoj operaciji, što omogućava formiranje složenih izraza

$$\mathbf{r_5} = (\mathbf{r_1} \cup \mathbf{r_2}) \times (\mathbf{r_3} \rhd \lhd \mathbf{r_4})$$

Unijska kompatibilnost

- Dvije relacije su unijski kompatibilne ukoliko vrijedi:
 - relacije su istog stupnjai
 - korespondentni atributi su definirani nad istim domenama

polozioMatem		
matBr	ime	prez
12345	Ivo	Kolar
13254	Ana	Horvat

poloziol	polozioProgi			
mbr	prezSt	imeSt		
92632	Ban	Jura		
67234	Novak	Iva		

- · relacije su istog stupnja
- dom (matBr) = dom(mbr)
- dom (ime) = dom(imeSt)
- dom (prez) = dom(prezSt)

→ relacije su unijski kompatibilne

kod ocjene jesu li relacije unijski kompatibilne

nolozioDrogr

- poredak atributa nije bitan
- imena atributa nisu bitna

Unijska kompatibilnost

 dvije relacije koje imaju jednak broj atributa i jednaka imena atributa ne moraju ujedno biti unijski kompatibilne

zrakoplov		_	pecivo	
oznaka	naziv		oznaka	naziv
B-747	Boeing 747		ZE	Žemlja
A-360	Airbus 360		PR	Perec

- relacije su istog stupnja
- dom (zrakoplov.oznaka) ≠ dom(pecivo.oznaka)
- dom (zrakoplov.naziv) ≠ dom(pecivo.naziv)
 - → relacije NISU unijski kompatibilne
- notacija imeRelacije.imeAtributa se često koristi kada je potrebno razlikovati istoimene atribute različitih relacija

Skupovske operacije: unija, presjek, razlika

 Skupovske operacije (unija, presjek, razlika) mogu se obavljati isključivo nad UNIJSKI KOMPATIBILNIM relacijama

Unija

- Rezultat operacije r₁ ∪ r₂ je relacija čije su n-torke elementi relacije r₁ ili elementi relacije r₂ ili elementi obje relacije.
 - n-torke koje su elementi obje relacije u rezultatu se pojavljuju samo jednom (jer relacija je SKUP n-torki)

polozioMatem

mbr	ime	prez
100	Ivan	Kolar
102	Ana	Novak
103	Tea	Ban
107	Jura	Horvat

polozioProgr

mbr	ime	prez
102	Ana	Novak
105	Rudi	Kolar
107	Jura	Horvat

polozioBaremJedan = polozioMatem ∪ polozioProgr

polozioBaremJedan

mbr	ime	prez
100	Ivan	Kolar
102	Ana	Novak
103	Tea	Ban
105	Rudi	Kolar
107	Jura	Horvat

studenti koji su položili **ili** Matematiku **ili** Programiranje **ili** oba predmeta

$$\mathbf{r_1} \cup \mathbf{r_2} \equiv \mathbf{r_2} \cup \mathbf{r_1}$$

Presjek

 Rezultat operacije r₁ ∩ r₂ je relacija čije su n-torke elementi relacije r₁ i elementi relacije r₂

polozioMatem

mbr	ime	prez
100	Ivan	Kolar
102	Ana	Novak
103	Tea	Ban
107	Jura	Horvat

polozioProgr

mbr	ime	prez
102	Ana	Novak
105	Rudi	Kolar
107	Jura	Horvat

polozioOba = polozioMatem ∩ polozioProgr

polozioOba

mbr	ime	prez
102	Ana	Novak
107	Jura	Horvat

studenti koji su položili i Matematiku i Programiranje

$$\mathbf{r_1} \cap \mathbf{r_2} \equiv \mathbf{r_2} \cap \mathbf{r_1}$$

Razlika

 Rezultat operacije r₁ \ r₂ je relacija čije su n-torke elementi relacije r₁ i nisu elementi relacije r₂

polozioMatem

mbr	ime	prez
100	Ivan	Kolar
102	Ana	Novak
103	Tea	Ban
107	Jura	Horvat

polozioProgr

mbr	ime	prez
102	Ana	Novak
105	Rudi	Kolar
107	Jura	Horvat

polozioSamoMatem = polozioMatem \ polozioProgr

polozioSamoMatem			
mbr	ime	prez	
100	Ivan	Kolar	
103	Tea	Ban	

studenti koji su položili Matematiku, ali **nisu** položili Programiranje

$$r_1 \setminus r_2 \neq r_2 \setminus r_1$$

polozioSamoProgr = polozioProgr \ polozioMatem

polozioSamoProgr

mbr	ime	prez
105	Rudi	Kolar

ŠTO AKO SE IMENA KORESPONDENTNIH ATRIBUTA RAZLIKUJU

Unija, presjek, razlika: u slučajevima kada su relacije unijski kompatibilne, ali se u relacijama koriste različita imena korespondentnih atributa, primjenjuje se sljedeći dogovor (konvencija): kao imena atributa u rezultantnoj relaciji koriste se imena atributa prvog operanda

polozioMatem

mbr	imeSt	prezSt
100	Ivan	Kolar
102	Ana	Novak
103	Tea	Ban
107	Jura	Horvat

polozioProgr

mbr	ime	prez
102	Ana	Novak
105	Rudi	Kolar
107	Jura	Horvat

polozioOba = polozioMatem ∩ polozioProgr

polozioOba

mbr	imeSt	prezSt
102	Ana	Novak
107	Jura	Horvat

Zadaci za vježbu

- zadane su <u>unijski kompatibilne</u> relacije
 - m (mbr ime prez) → studenti koji su položili Matematiku
 - d (mbr ime prez) → studenti koji su položili Dig. logiku
 - p (mbr ime prez) → studenti koji su položili Programiranje
- napisati izraze relacijske algebre koji određuju relacije koje sadrže studente (točnije rečeno n-torke):
 - a) koji su položili sva tri predmeta
 - b) koji su položili ili Matematiku ili Digitalnu logiku, ali ne oba predmeta (*ekskluzivni ili*)
 - c) koji su položili točno jedan (bilo koji) od ta tri predmeta
 - d) koji su položili bilo koja dva predmeta (ali nisu položili treći)

Dijeljenje (division)

Zadane su relacije r(R) i s(S). Neka je S ⊆ R. Rezultat operacije r ÷ s je relacija sa shemom P = R \ S. n-torka t_r(P) se pojavljuje u rezultatu ako i samo ako za n-torku t_r∈r vrijedi da se t_r(P) u relaciji r pojavljuje u kombinaciji sa svakom n-torkom t_s∈s

polozer	1
mbrSt	sifPred
100	1
100	2
101	1
101	2
101	3
102	2
102	3
103	1
103	2
103	3
104	3

studenti koji su položili sve predmete sa šiframa u relaciji predmet

poloziliSve = polozen ÷ predmet

mbrSt
101
103

Projekcija

- Zadana je relacija r(R). Neka je skup atributa $\{A_1, A_2, ..., A_k\} \subseteq R$
- Obavljanjem operacije π_{A1, A2, ..., Ak}(r) dobiva se relacija s sa shemom { A1, A2, ..., Ak } koja sadrži vertikalni podskup relacije r
 - deg(s) = k
 - card(s) ≤ card(r) (jer se eliminiraju duplikati)

Projekcija (primjer)

Relacija nastup: u kojim gradovima nastup su nastupali koji tenori kojeg datuma

Traži se: u kojim gradovima su nastupali koji tenori

tenorGrad = $\pi_{tenor,grad}$ (nastup)

tenor	grad	datum
P. Domingo	London	15.2.1976
P. Domingo	New York	27.3.1981
P. Domingo	London	11.4.1987
J. Carreras	New York	11.4.1987
L. Pavarotti	Sydney	22.6.1992
L. Pavarotti	London	15.2.1976
L. Pavarotti	Sydney	19.1.1993
L. Pavarotti	London	14.7.1993

Pavarotti

London

tenorGrad

tenor	grad
P. Domingo	London
P. Domingo	New York
J. Carreras	New York
L. Pavarotti	Sydney
L. Pavarotti	London

SQL - Lista za selekciju

mjesto	pbr	nazMjesto	sifZup
	42000	Varaždin	7
	52100	Pula	4

- SELECT SELECT List FROM table
- SELECT List je lista za selekciju: dio SELECT naredbe koji određuje koji će se "stupci" pojaviti u rezultatu

```
SELECT * FROM mjesto; = SELECT mjesto.pbr

, mjesto.nazMjesto
, mjesto.sifZup

FROM mjesto;
```

- uz ime atributa može se navesti ime relacije (radi izbjegavanja dvosmislenosti u slučajevima kada se podaci dohvaćaju istovremeno iz više relacija čija se imena atributa podudaraju) imeRelacije.imeAtributa
- u slučajevima kada takva dvosmislenost ne postoji, ime relacije se može (ali ne mora) ispustiti

SQL - Lista za selekciju

mjesto		
pbr	nazMjesto	sifZup
42000	Varaždin	7
52100	Pula	4

zupanija	sifZupanija	nazZup
	7	Varaždinska
	4	Istarska

u listi za selekciju se ne moraju navesti svi atributi relacije navedene u FROM dijelu naredbe:

nazMjesto	pbr
Varaždin	42000
Ludbreg	52100

 u listi za selekciju se mogu navesti samo oni atributi koji se nalaze u dosegu SELECT naredbe, tj. atributi relacije koja je navedena u FROM dijelu naredbe:

SELECT nazMjesto
 , pbr
 , nazZup
FROM mjesto;

Neispravna naredba

SQL - Projekcija

- za ispravno obavljanje projekcije <u>nije dovoljno</u> u listi za selekciju samo navesti imena atributa prema kojima se obavlja projekcija:
 - primjer koji ujedno pokazuje kako
 rezultat SQL naredbe ne mora uvijek biti relacija

SELECT tenor , grad FROM nastup;

Neispravna projekcija

tenor	grad
P. Domingo	London
P. Domingo	New York
P. Domingo	London
J. Carreras	New York
L. Pavarotti	Sydney
L. Pavarotti	London
L. Pavarotti	Sydney
L. Pavarotti	London

 $\pi_{\text{tenor,qrad}}(\text{nastup})$

SELECT DISTINCT tenor
, grad
FROM nastup;

Ispravna projekcija

tenor	grad
P. Domingo	London
P. Domingo	New York
J. Carreras	New York
L. Pavarotti	Sydney
L. Pavarotti	London

Selekcija

- Zadana je relacija r(R). Neka je F predikat (formula, uvjet, condition) koji se sastoji od operanada i operatora
 - operandi su:
 - imena atributa iz R
 - konstante
 - operatori su:
 - operatori usporedbe: < ≤ = ≠ > ≥
 - logički operatori: ∧ ∨ ¬
- Obavljanjem operacije σ_F(r) dobiva se relacija sa shemom R koja sadrži one n-torke relacije r za koje je vrijednost predikata F istina (true)

Selekcija (primjer)

student	matBr	ime	prez	postBr
	100	Ivan	Kolar	52000
_	102	Ana	Horvat	10000
	105	Jura	Novak	21000
	107	Ana	Ban	51000

rezultat =
$$\sigma_{\text{ime} = \text{'Ana'} \vee \text{postBr} > 31000}$$
 (student)

- Za svaku pojedinu n-torku relacije:
 - vrijednosti atributa uvrštavaju se u predikat uvrštavanjem vrijednosti u predikat dobiva se sud
 - onda i samo onda kada je vrijednost dobivenog suda istina (true), n-torka se pojavljuje u rezultatu selekcije

→'Ivan' = 'Ana' ∨	52000 > 31000 → true <	
→'Ana' = 'Ana' ∨	10000 > 31000 → true	_
'Jura' = 'Ana' v	21000 > 31000 → false	_
'Ana' = 'Ana' ∨	51000 > 31000 → true ——	-

_			
matBr	ime	prez	postBr
100	Ivan	Kolar	52000
102	Ana	Horvat	10000
107	Ana	Ban	51000

rezultat

SQL - Selekcija

- SELECT SELECT List FROM table [WHERE Condition]
- Uvjet (Condition) se sastoji od operanada i operatora
 - operandi su:
 - imena atributa iz relacije table
 - konstante
 - operatori su:
 - operatori usporedbe: < <= = <> > >=
 - logički operatori: AND OR NOT
- Vrijednosti svake n-torke iz relacije table se uvrštavaju u
 Condition (a to je u stvari predikat). Ako je dobiveni sud istinit
 (true), n-torka se pojavljuje u rezultatu.

SQL - Selekcija

student

matBr	ime	prez	postBr
100	Ivan	Kolar	52000
102	Ana	Horvat	10000
105	Jura	Novak	21000
107	Ana	Ban	51000

o ime = 'Ana' ∨ postBr > 31000 (student)

SELECT * FROM student
WHERE ime = 'Ana'

OR postBr > 31000;

matBr	ime	prez	postBr
100	Ivan	Kolar	52000
102	Ana	Horvat	10000
107	Ana	Ban	51000

SQL - Projekcija i selekcija

student	matBr	ime	prez	postBr
	100	Ivan	Kolar	52000
	102	Ana	Horvat	10000
	105	Jura	Novak	21000
	107	Ana	Ban	51000

$$\pi_{\text{ime}}(\sigma_{\text{ime} = \text{'Ana'} \vee \text{postBr} > 31000} \text{ (student)})$$

SELECT DISTINCT ime

FROM student

WHERE ime = 'Ana'

OR postBr > 31000;

"međurezultat"

matBr	ime	prez	postBr
100	Ivan	Kolar	52000
102	Ana	Horvat	10000
107	Ana	Ban	51000

Kartezijev produkt

- Zadana je relacija r(R) i relacija s(S), pri čemu je R \cap S = \emptyset .
- Obavljanjem operacije r x s dobiva se relacija p(P), P = R ∪ S. n-torke relacije p se dobivaju spajanjem (ulančavanjem) svake n-torke iz relacije r sa svakom n-torkom iz relacije s
 - deg(p) = deg(r) + deg(s)
 - $card(p) = card(r) \cdot card(s)$

Kartezijev produkt (primjer)

student

mbr	ime	prez
100	Ivan	Kolar
102	Ana	Novak
103	Tea	Ban

predmet

sifra	naziv
1	Programiranje
2	Matematika

upis = student \times predmet

upis

mbr	ime	prez	sifra	naziv
100	Ivan	Kolar	1	Programiranje
100	Ivan	Kolar	2	Matematika
102	Ana	Novak	1	Programiranje
102	Ana	Novak	2	Matematika
103	Tea	Ban	1	Programiranje
103	Tea	Ban	2	Matematika

SQL - Kartezijev produkt

SELECT SELECT List

FROM table [, table]... [WHERE Condition]

 navede li se u FROM dijelu naredbe više od jedne relacije, obavlja se operacija Kartezijevog produkta navedenih relacija

student

mbr	ime	prez
100	Ivan	Kolar
102	Ana	Novak
103	Tea	Ban

prec	Imet	

sifra	naziv
1	Programiranje
2	Matematika

student × predmet

SELECT *
FROM student, predmet;

SELECT student.*, predmet.*
FROM student, predmet;

mbr	ime	prez	sifra	naziv
100	Ivan	Kolar	1	Programiranje
100	Ivan	Kolar	2	Matematika
102	Ana	Novak	1	Programiranje
102	Ana	Novak	2	Matematika
103	Tea	Ban	1	Programiranje
103	Tea	Ban	2	Matematika

SQL - Kartezijev produkt

- drugačija sintaksa:
- SELECT SELECT List
 FROM table [CROSS JOIN table]...
 [WHERE Condition]

```
SELECT *
  FROM student CROSS JOIN predmet;
```

Kartezijev produkt triju relacija:

```
SELECT *
FROM r1 CROSS JOIN r2 CROSS JOIN r3;
```

Kartezijev produkt

Što učiniti ukoliko je potrebno obaviti operaciju Kartezijevog produkta nad relacijama r(R) i s(S), u slučaju kada R ∩ S ≠ Ø

r	
Α	В
1	а
2	b
3	С

Α	В	В	С
1	а	С	α
1	а	d	β
2	b	С	α
2	b	d	β
3	С	С	α
3	С	d	β

→ Potrebno je koristiti operaciju preimenovanja

Preimenovanje (relacije, atributa)

- Zadana je relacija r({ A₁, A₂, ..., A_n })
 - preimenovanje relacije: operacijom preimenovanja ρ_s(r) dobiva se relacija s koja ima jednaku shemu i sadržaj kao relacija r
 - **preimenovanje relacije i atributa:** operacijom preimenovanja ρ_{s(B₁, B₂, ..., B_n)}(**r**) dobiva se relacija **s** čija shema umjesto atributa A₁, A₂, ..., A_n sadrži atribute B₁, B₂, ..., B_n, a sadržaj relacije **s** je jednak sadržaju relacije **r**

p

$$p = r \times \rho_{s(B2, C)}(s)$$

Α	В
1	а
2	b
3	С

Α	В	B2	С
1	а	С	α
1	а	d	β
2	b	С	α
2	b	d	β
3	С	С	α
3	С	d	β

SQL - Preimenovanje atributa

- ukoliko se drugačije ne navede, imena stupaca u rezultatu odgovaraju imenima atributa iz liste za selekciju
- implicitna imena stupaca rezultata se mogu promijeniti korištenjem operatora za preimenovanje AS

zupanija	sifZupanija	nazZup
	7	Varaždinska
	4	Istarska

```
SELECT sifZupanija AS sifraZ
, nazZup AS nazZ
FROM zupanija;
```

sifraZ	nazZ
7	Varaždinska
4	Istarska

 rezervirana riječ AS smije se ispustiti

```
SELECT sifZupanija sifraZ
, nazZup nazZ
FROM zupanija;
```

SQL - Preimenovanje atributa

- Primjer u kojem je potrebno koristiti preimenovanje atributa
 - SQL naredba bi bila ispravna i bez preimenovanja, ali tada kao rezultat ne bismo dobili relaciju (jer bi u shemi rezultata postojala dva atributa istog imena)

r	Α	В
	1	а
	2	b
	3	С

$$r \times \rho_{s(B2, C)}(s)$$

SELECT A, r.B, s.B AS B2, C FROM r, s;

Α	В	B2	С
1	а	С	α
1	а	d	β
2	b	С	α
2	b	d	β
3	С	С	α
3	С	d	β

Spajanje uz uvjet ili θ - spajanje (θ - join)

- Zadane su relacije r(R) i s(S) pri čemu je R \cap S = \emptyset . Neka je F predikat oblika r.A_i θ s.B_j, pri čemu je A_i ∈ R, B_j ∈ S, a θ je operator usporedbe iz skupa operatora { <, ≤, =, ≠, >, ≥ }
- Obavljanjem operacije r ⊳⊲ s dobiva se relacija koja sadrži n-torke iz r × s za koje je vrijednost predikata F istina (*true*), odnosno:

$$r \triangleright \sigma s = \sigma_F(r \times s)$$

što možemo reći o stupnju i kardinalnosti rezultata?

- Umjesto jednostavnog predikata r.A_i θ s.B_j, može se koristiti složeni predikat dobiven primjenom logičkih operatora nad jednostavnim predikatima oblika r.A_i θ s.B_i
- Problem spajanja uz uvjet relacija r(R) i s(S) kod kojih je R ∩ S ≠ Ø, rješava se na jednak način kao kod Kartezijevog produkta (korištenjem operatora preimenovanja)

Spajanje uz uvjet (primjer)

linija

let	udaljenost
CA-825	700
LH-412	4800
BA-722	15000
CA-311	13000

zrakoplov

dolet
13000
5400
3100

mogućnost

let	udaljenost	tip	dolet
CA-825	700	B747	13000
CA-825	700	A320	5400
CA-825	700	DC-9	3100
LH-412	4800	B747	13000
LH-412	4800	A320	5400
CA-311	13000	B747	13000

Linije i zrakoplovi koji na tim linijama mogu letjeti

SQL - Spajanje uz uvjet

Koristi se ekvivalencija

$$r \triangleright \triangleleft s = \sigma_F(r \times s)$$

linija ⊳⊲ zrakoplov dolet ≥ udaljenost

in	ıij	a

let	udaljenost		
CA-825	700		
LH-412	4800		
BA-722	15000		
CA-311	13000		

zrakoplov

tip	dolet
B747	13000
A320	5400
DC-9	3100

SELECT *

FROM linija, zrakoplov

WHERE dolet >= udaljenost;

Kartezijev produkt

Selekcija

Linije i zrakoplovi koji na tim linijama mogu letjeti

let	udaljenost	tip	dolet
CA-825	700	B747	13000
CA-825	700	A320	5400
CA-825	700	DC-9	3100
LH-412	4800	B747	13000
LH-412	4800	A320	5400
CA-311	13000	B747	13000

SQL - Spajanje uz uvjet

- drugačija sintaksa:
- SELECT SELECT List
 FROM table [JOIN table ON joinCondition]...
 [WHERE Condition]

```
SELECT *
   FROM linija JOIN zrakoplov
   ON dolet >= udaljenost;
```

Spajanje uz uvjet triju relacija:

```
SELECT *

FROM r1

JOIN r2

ON joinCondition

JOIN r3

ON joinCondition;
```

SQL - Spajanje uz uvjet i selekcija

Kako pronaći linije i zrakoplove koji na tim linijama mogu letjeti, ali samo za one linije na kojima je udaljenost veća od 4000 km

 $\mathbf{O}_{\text{udaljenost} > 4000}(\text{linija} > \triangleleft \text{zrakoplov})$ dolet ≥ udaljenost

	SI	ELECT *
		FROM linija
ili		JOIN zrakoplov
		ON dolet >= udaljenost
		WHERE udaljenost > 4000;

let	udaljenost	tip	dolet
LH-412	4800	B747	13000
LH-412	4800	A320	5400
CA-311	13000	B747	13000

SQL - Spajanje uz uvjet i projekcija

 Kako pronaći tipove zrakoplova koji se mogu iskoristiti za letove na postojećim linijama

```
π<sub>tip</sub>(linija ⊳⊲ zrakoplov) dolet ≥ udaljenost
```

```
SELECT DISTINCT tip

FROM linija, zrakoplov
WHERE dolet >= udaljenost;
```

ili

```
SELECT DISTINCT tip

FROM linija

JOIN zrakoplov

ON dolet >= udaljenost;
```

tip B747 A320 DC-9

Spajanje s izjednačavanjem (*Equi-join*)

 Spajanje relacija s izjednačavanjem je poseban oblik spajanja uz uvjet u kojem se kao θ operator koristi <u>isključivo</u> operator jednakosti (=)

mjesto	pbr nazMjesto		sifZup
	42000	Varaždin	7
	52100 Pula		4
	42230	Ludbreg	7

zupanija	sifZupanija	nazZup
	7	Varaždinska
	4	Istarska

mjestouZupaniji = mjesto ⊳⊲ zupanija sifZup = sifZupanija

mjestouZupaniji	pbr	nazMjesto	sifZup	sifZupanija	nazZup
	42000	Varaždin	7	7	Varaždinska
	52100	Pula	4	4	Istarska
	42230	Ludbreg	7	7	Varaždinska

Problem spajanja s izjednačavanjem relacija r(R) i s(S) kod kojih je R ∩ S ≠ Ø, rješava se na jednak način kao kod Kartezijevog produkta (korištenjem operatora preimenovanja)

SQL - Spajanje s izjednačavanjem

Koristi se ekvivalencija

$$r \triangleright \triangleleft s = \sigma_F(r \times s)$$

mjesto ⊳⊲ zupanija sifZup = sifZupanija

mjesto

pbr	nazMjesto	sifZup
42000	Varaždin	7
52100	Pula	4
42230	Ludbreg	7

zupanija

sifZupanija	nazZup
7	Varaždinska
4	Istarska

```
SELECT *
 FROM mjesto, zupanija
WHERE sifZup = sifZupanija;
```



```
SELECT *

FROM mjesto

JOIN zupanija

ON sifZup = sifZupanija;
```

SQL - Spajanje s izjednačavanjem

U slučaju kada u relacijama postoje istoimeni atributi

zupanija

mjesto	pbr nazMjesto		sifZup
	42000	Varaždin	7
	52100	Pula	4
	42230	Ludbreg	7

sifZup	nazZup
7	Varaždinska
4	Istarska

slično i u slučaju korištenja drugačije sintakse

Prirodno spajanje (Natural Join)

- Prirodno spajanje obavlja se na temelju jednakih vrijednosti istoimenih atributa.
- Zadane su relacije r(R) i s(S). Neka je R \cap S = { A₁, A₂, ..., A_n }. Obavljanjem operacije r $\triangleright \triangleleft$ s dobiva se relacija sa shemom R \cup S koja sadrži n-torke nastale spajanjem n-torki t_r \in r, t_s \in s, za koje vrijedi t_r(A₁) = t_s(A₁) \wedge t_r(A₂) = t_s(A₂) \wedge ... t_r(A_n) = t_s(A_n).

zupar

mjesto	pbr nazMjesto		sifZup
	42000	Varaždin	7
	52100	Pula	4
	42230	Ludbreg	7

nija	sifZup	nazZup
	7	Varaždinska
	4	Istarska

mjestouZupaniji = mjesto ⊳⊲ zupanija

mjestouZupanij	ji
----------------	----

pbr	nazMjesto	sifZup	nazZup
42000	Varaždin	7	Varaždinska
52100	Pula	4	Istarska
42230	Ludbreg	7	Varaždinska

što možemo reći o stupnju rezultata?

Prirodno spajanje

Rezultat prirodnog spajanje relacija r(R) i s(S) za koje vrijedi da je je R ∩ S = Ø identičan je rezultatu obavljanja operacije Kartezijevog produkta r x s

mjesto	pbr nazMjesto		sifZup
	42000	Varaždin	7
	52100	Pula	4
	42230	Ludbreg	7

zupanija	sifZupanija	nazZup
	7	Varaždinska
	4	Istarska

mjestouZupaniji = mjesto ⊳⊲ zupanija

					_
mjestouZupaniji	pbr	nazMjesto	sifZup	sifZupanija	nazZup
	42000	Varaždin	7	7	Varaždinska
	42000	Varaždin	7	4	Istarska
	52100	Pula	4	7	Varaždinska
	52100	Pula	4	4	Istarska
	42230	Ludbreg	7	7	Varaždinska
	42230	Ludbreg	7	4	Istarska

SQL - Prirodno spajanje

 prirodno spajanje se razlikuje od spajanja s izjednačavanjem po tome što se istoimeni atributi iz dviju relacija izbacuju (tako da od svakog ostane samo po jedan)

zupanija

mjesto	pbr nazMjesto		sifZup
	42000	Varaždin	7
	52100	Pula	4
	42230	Ludbreg	7

sifZup	nazZup
7	Varaždinska
4	Istarska

```
SELECT mjesto.*, zupanija.nazZup
FROM mjesto, zupanija
WHERE mjesto.sifZup = zupanija.sifZup;
```

pbr	nazMjesto	sifZup	nazZup
42000	Varaždin	7	Varaždinska
52100	Pula	4	Istarska
42230	Ludbreg	7	Varaždinska

SQL - Prirodno spajanje

drugačija sintaksa:

```
SELECT mjesto.*, zupanija.nazZup
FROM mjesto JOIN zupanija
ON mjesto.sifZup = zupanija.sifZup;
```

Agregacija (aggregation)

ispit

mbrStud	akGod	nazPred	ocjena
100	2005	Matematika	3
101	2005	Matematika	5
102	2005	Matematika	2
103	2006	Matematika	3
100	2004	Fizika	5
101	2006	Fizika	5
102	2006	Fizika	2
100	2005	Vjerojatnost	4

Kako izračunati prosjek ocjena na svim ispitima?

prosjek prosjOcj 3.625

Agregacija

- Zadana je relacija $\mathbf{r}(R)$. Neka je atribut $A \in R$. Neka je $\mathcal{A}\mathcal{F}$ agregatna funkcija. Rezultat operacije agregacije $\mathcal{G}_{\mathcal{A}\mathcal{F}(A)}(\mathbf{r})$ je $\mathbf{relacija}$ stupnja 1 i kardinalnosti 1, pri čemu je vrijednost atributa određena primjenom funkcije $\mathcal{A}\mathcal{F}$ nad vrijednostima atributa A u svim n-torkama relacije \mathbf{r} . Funkcija $\mathcal{A}\mathcal{F}$ može biti jedna od:
 - COUNT određuje broj pojava (broji sve, eventualni duplikati se također broje)
 - SUM izračunava sumu vrijednosti
 - AVG izračunava aritmetičku sredinu vrijednosti
 - MIN izračunava najmanju vrijednost
 - MAX izračunava najveću vrijednost
- naziv rezultantne relacije i atributa nije definiran operacijom, stoga se najčešće koristi u kombinaciji s operacijom preimenovanja
- također se koriste agregatne funkcije
 - COUNT-DISTINCT, SUM-DISTINCT, AVG-DISTINCT

Agregacija

ispit

mbrStud	akGod	nazPred	ocjena
100	2005	Matematika	3
101	2005	Matematika	5
102	2005	Matematika	2
103	2006	Matematika	3
100	2004	Fizika	5
101	2006	Fizika	5
102	2006	Fizika	2
100	2005	Vjerojatnost	4

Prosjek ocjena na svim ispitima (rješenje):

$$\rho_{\text{prosjek(prosjOcj)}}(\mathcal{G}_{\text{AVG(ocjena)}}(\text{ispit}))$$
 prosjek prosjOcj 3.625

SELECT AVG(ocjena) AS prosjOcj
FROM ispit;

prosjOcj 3.625

Agregacija (primjeri ostalih agregatnih funkcija)

	osoba			
	sifra	te	zina	visina
	101		62	170
	103		94	186
	105		74	181
	107		62	165
•				

rez6

Moguće je odjednom izračunati više agregatnih vrijednosti:

 $\rho_{\text{rez6(broj6, broj7, broj8)}}(G_{\text{MIN(tezina), AVG(visina), MAX(visina)}}(\text{osoba}))$

broj6	broj7	broj8
62	175.5	186

SQL - Agregatne funkcije

 naziv rezultantnog atributa nije definiran operacijom, stoga se koristi AS operator za preimenovanje

oso	ba

sifra	tezina	visina
101	62	170
103	94	186
105	74	181
107	62	165

SELECT COUNT(sifra) AS broj1 FROM osoba;

broj1

SELECT SUM(tezina) AS broj2 FROM osoba;

broj2 292

SELECT AVG(visina) AS broj3 FROM osoba;

broj3 175.5

SELECT MAX(visina) AS broj4,
MIN(tezina) AS broj5
FROM osoba;

broj4	broj5
186	62

SQL - Agregatne funkcije

osoba

sifra	tezina	visina
101	62	170
103	94	190
105	74	170
107	62	170

agregatne funkcije s DISTINCT

SELECT COUNT(DISTINCT visina) AS broj1
FROM osoba;

broj1

SELECT SUM(DISTINCT tezina) AS broj2
FROM osoba;

broj2 230

SELECT AVG(DISTINCT visina) AS broj3
FROM osoba;

broj3 180

Agregacija i grupiranje

ispit

mbrStud	akGod	nazPred	ocjena
100	2005	Matematika	3
101	2005	Matematika	5
102	2005	Matematika	2
103	2006	Matematika	3
100	2004	Fizika	5
101	2006	Fizika	5
102	2006	Fizika	2
100	2005	Vjerojatnost	4

- Zadatak: izračunati prosječnu ocjenu za svaki pojedini predmet
 - prosjek za Matematiku
 - prosjek za Fiziku
 - ... i za sve ostale predmete čiji se naziv pojavljuje u relaciji

Agregacija i grupiranje

- Loše rješenje:
 - Za svaki predmet napisati po jedan upit

```
\rho_{\text{prosjek(prosjOcjMat)}}(G_{\text{AVG(ocjena)}}(\sigma_{\text{nazPred= 'Matematika'}}(\text{ispit)}))
```

```
SELECT AVG(ocjena) AS prosjOcjMat
   FROM ispit
   WHERE nazPred = 'Matematika';
```

prosjOcjMat 3.25

```
\rho_{\text{prosjek(prosjOcjFiz)}}(G_{\text{AVG(ocjena)}}(\sigma_{\text{nazPred= 'Fizika'}}(\text{ispit)}))
```

```
SELECT AVG(ocjena) AS prosjOcjFiz

FROM ispit

WHERE nazPred = 'Fizika';
```

prosjOcjFiz 4

- itd. (za svaki naziv predmeta)
- postoji li bolje rješenje?

Grupiranje (grouping)

Zadana je relacija r(R). Neka su atributi A₁, A₂, ..., A_m, B₁, B₂, ...,
 B_n atributi sheme R. Opći oblik operacije grupiranja je sljedeći:

$$_{A_1, A_2, \dots, A_m}\mathcal{G}_{\mathcal{A}\mathcal{F}_1(B_1), \mathcal{A}\mathcal{F}_2(B_2), \dots, \mathcal{A}\mathcal{F}_n(B_n)}(\mathbf{r})$$

- a) određuju se grupe n-torki: u svakoj grupi se nalaze n-torke koje imaju jednake vrijednosti atributa A₁, A₂, ..., A_m
- b) za svaku grupu n-torki izračunavaju se vrijednosti agregatnih funkcija $\mathcal{AF}_1(\mathsf{B_1}),\ \mathcal{AF}_2(\mathsf{B_2}),\ ...,\ \ \mathcal{AF}_n(\mathsf{B_n})$
- c) za svaku grupu formira se n-torka s vrijednostima atributa A_1 , A_2 , ..., A_m i izračunatim vrijednostima agregatnih funkcija

Agregacija i grupiranje

				_
mbrStud	akGod	nazPred	ocjena	
100	2005	Matematika	3	
101	2005	Matematika	5	
102	2005	Matematika	2	
103	2006	Matematika	3	
100	2004	Fizika	5	
101	2006	Fizika	5	
102	2006	Fizika	2	
100	2005	Vjerojatnost	4	

Za svaki predmet ispisati prosječnu ocjenu (ispravno rješenje):

 $\rho_{\text{prosjek(nazPred, prosjOcj)}}(_{\text{nazPred}}\mathcal{G}_{\text{AVG(ocjena)}}(\text{ispit)})$

- grupirati po nazPred
- za svaku grupu izračunati AVG(ocjena)
- za svaku grupu formirati po jednu n-torku s vrijednošću atributa nazPred i izračunatim prosjekom
- obaviti operaciju preimenovanja

prosjek

•	
nazPred	prosjOcj
Matematika	4
Fizika	3.25
Vjerojatnost	4

ispit

Agregacija i grupiranje

Ispisati prosječnu i najveću ocjenu za svaki predmet i akademsku godinu:

mbrStud	akGod	nazPred	ocjena
100	2005	Matematika	3
101	2005	Matematika	5
102	2005	Matematika	2
103	2006	Matematika	3
100	2004	Fizika	5
101	2006	Fizika	5
102	2006	Fizika	2
100	2005	Vjerojatnost	4
	100 101 102 103 100 101 102	100 2005 101 2005 102 2005 103 2006 100 2004 101 2006 102 2006	100 2005 Matematika 101 2005 Matematika 102 2005 Matematika 103 2006 Matematika 100 2004 Fizika 101 2006 Fizika 102 2006 Fizika

 u istu grupu ulaze n-torke koje imaju jednake vrijednosti atributa nazPred i akGod

 $\rho_{\text{prosjek1(nazPred, akGod, prosjOcj, maxOcj)}}(\text{nazPred, akGod}\mathcal{G}_{\text{AVG(ocjena), MAX(ocjena)}}(\text{ispit}))$

prosjek1

nazPred	akGod	prosjOcj	maxOcj
Matematika	2005	3.333	5
Matematika	2006	3	3
Fizika	2004	5	5
Fizika	2006	3.5	5
Vjerojatnost	2005	4	4

ispit

SQL - Grupiranje

• SELECT SELECT List

FROM ...

[WHERE Condition]

[GROUP BY column [, column]...]

 $\rho_{\text{prosjek1(nazPred, akGod, prosjOcj, maxOcj)}}(_{\text{nazPred, akGod}}\mathcal{G}_{\text{AVG(ocjena), MAX(ocjena)}}(\text{ispit}))$

SELECT nazPred
 , akGod
 , AVG(ocjena) AS prosjOcj
 , MAX(ocjena) AS maxOcj
FROM ispit
GROUP BY nazPred, akGod;

nazPred	akGod	prosjOcj	maxOcj
Matematika	2005	3.333	5
Matematika	2006	3	3
Fizika	2004	5	5
Fizika	2006	3.5	5
Vjerojatnost	2005	4	4

SQL - Grupiranje

 svi atributi koji se nalaze u listi za selekciju, a koji nisu argumenti agregatnih funkcija, moraju biti navedeni u GROUP BY dijelu naredbe

SELECT nazPred

, akGod NEISPRAVNO!

, mbrStud

, AVG(ocjena) AS prosjOcj

, MAX(ocjena) AS maxOcj

FROM ispit

GROUP BY nazPred, akGod;

ıspıt				
mbrSt	ud	akGod	nazPred	ocjena
-	100	2005	Matematika	3
	101	2005	Matematika	5
102		2005	Matematika	2
103		2006	Matematika	3
,	100	2004	Fizika	5
101 20		2006	Fizika	5
102 2000		2006	Fizika	2
100		2005	Vjerojatnost	4

Zašto je to neispravno?
Za svaku grupu se formira
samo po jedna n-torka: što s
onim grupama u kojima
postoji više vrijednosti
atributa mbrStud?

<u>-</u>			_	
nazPred	akGod	mbrStud	prosjOcj	maxOcj
Matematika	2005	100, 101, 102 ?	3.333	5
Matematika	2006	?	3	3
Fizika	2004	?	5	5
Fizika	2006	?	3.5	5
Vjerojatnost	2005	?	4	4