Universidade Federal do Rio Grande do Norte
Unidade Acadêmica Especializada em Ciências Agrárias
Escola Agrícola de Jundiaí
Curso de Análise e Desenvolvimento de Sistemas
TAD0006 - Sistemas Operacionais - Turma 01

Gerência de E/S

Antonino Feitosa antonino.feitosa@ufrn.br

Macaíba, julho de 2025

Aula Passada

- Arquivos
- Diretórios
- Esquemas de Sistemas de Arquivos
- Implementação de Arquivos

Roteiro

- Princípios do Hardware de E/S
- Princípios do Software de E/S
- Camadas do Software de E/S

Princípios do Hardware de E/S

Princípios do Hardware de E/S

- Como o hardware é programado?
 - Associada a operações internas.

- Classificados em duas categorias:
 - Dispositivos de Blocos: armazena informações em blocos de tamanho fixo, cada um com seu próprio endereço.
 - Dispositivos de Caracteres: envia ou aceita um fluxo de caracteres, desconsiderando qualquer estrutura de bloco.
- Alguns dispositivos não se enquadram nessa classificação.
 - Relógios, telas, etc.
- Cada dispositivo pode ter uma velocidade de trabalho diferente.

- Dispositivos de Blocos: O primeiro armazena informações em blocos de tamanho fixo, cada um com seu próprio endereço.
 - Tamanhos de blocos comuns variam de 512 a 65.536 bytes.
 - Todas as transferências são em unidades de um ou mais blocos inteiros (consecutivos).
 - Cada bloco pode ser lido ou escrito independentemente de todos os outros.

- Dispositivos de Caracteres: envia ou aceita um fluxo de caracteres, desconsiderando qualquer estrutura de bloco.
 - Não é endereçável.
 - Não tem qualquer operação de busca.

FIGURA 5.1 Algumas taxas de dados típicas de dispositivos, placas de redes e barramentos.

Dispositivo	Taxa de dados	
Teclado	10 bytes/s	
Mouse	100 bytes/s	
Modem 56 K	7 KB/s	
Scanner em 300 dpi	1 MB/s	
Filmadora camcorder digital	3,5 MB/s	
Disco Blu-ray 4x	18 MB/s	
Wireless 802.11n	37,5 MB/s	
USB 2.0	60 MB/s	
FireWire 800	100 MB/s	
Gigabit Ethernet	125 MB/s	
Drive de disco SATA 3	600 MB/s	
USB 3.0	625 MB/s	
Barramento SCSI Ultra 5	640 MB/s	
Barramento de faixa única PCle 3.0	985 MB/s	
Barramento Thunderbolt2	2,5 GB/s	
Rede SONET OC-768	5 GB/s	

Controladores de Dispositivos

Controladores de Dispositivos

- Unidades de E/S:
 - Um componente mecânico: o dispositivo em si.
 - Um componente eletrônico: controlador do dispositivo ou adaptador.
 - Chip na placa-principal.
 - Circuito impresso inserido em um slot de expansão (PCIe).
 - Podem lidar com vários dispositivos idênticos.
 - Padronização da interface (ANSI, IEEE ou ISO).
 - A interface é muito próxima ao funcionamento do dispositivo.
 - Necessitamos de abstração!
 - Efetua a verificação de erros (checksum).
 - A separação permite um projeto modular.

Controladores de Dispositivos

FIGURA 1.6 Alguns dos componentes de um computador pessoal simples.

- Cada controlador tem alguns registradores que são usados para comunicar-se com a CPU.
 - Escrita nos registradores enviam comandos ao dispositivo.
 - Leitura dos registradores obtêm o estado do dispositivo.
- Muitos dispositivos utilizam um buffer de dados.
 - Área de memória temporária usada para armazenar dados que estão sendo processados ou transferidos entre diferentes componentes de um sistema.

- Como a CPU se comunica com os registradores de controle e também com os buffers de dados do dispositivo?
 - Cada registrador de controle é designado um número de porta de E/S, um inteiro de 8 ou 16 bits.
 - O conjunto de todas as portas de E/S formam o espaço de E/S.
 - Instruções especiais para escrita e leitura desses registrados.
 - Protegidos (espaço do núcleo)
 - Cada registrador de controle é designado um endereço de memória único para o qual nenhuma memória é designada.
 - Esse sistema é chamado de E/S mapeada na memória.
 - Abordagem híbrida.

- E/S mapeada na memória.
 - Os registradores de controle do dispositivo são apenas variáveis na memória e podem ser endereçados da mesma maneira que quaisquer outras variáveis.
 - Sem a E/S mapeada na memória, é necessário algum código em linguagem de montagem.
 - Nenhum mecanismo de proteção especial é necessário para evitar que processos do usuário realizem E/S.
 - O uso de cache para um registrador de controle do dispositivo seria desastroso.
 - O hardware tem de ser capaz de desabilitar seletivamente a cache.

- E/S mapeada na memória.
 - A tendência nos computadores pessoais modernos é ter um barramento de memória de alta velocidade dedicado.
 - Os dispositivos de E/S não têm como enxergar os endereços de memória quando estes são lançados no barramento da memória.
 - Eles não têm como responder, pois não enxergam a requisição.

- A CPU precisa endereçar os controladores dos dispositivos para poder trocar dados com eles.
 - Requisitar dados de um controlador de E/S um byte de cada vez desperdiça o tempo de processamento da CPU.

- Acesso direto à memória (Direct Memory Access DMA).
- O SO pode usar somente DMA se o hardware tiver um controlador de DMA.
 - Geralmente um único controlador de DMA está disponível (por exemplo, na placa-principal).
 - Podem ser programados para lidar com múltiplas transferências ao mesmo tempo.
 - Múltiplas solicitações para diferentes controladores de dispositivos podem estar pendentes ao mesmo tempo.

- DMA pode operar em dois modos:
- Modo word-at-a-time: o controlador de DMA solicita a transferência de uma palavra e consegue.
 - Se a CPU também quiser o barramento, ela tem de esperar.
 - Roubo de ciclo: o controlador do dispositivo entra furtivamente e rouba um ciclo de barramento ocasional da CPU de vez em quando, atrasando-a ligeiramente.
- Modo de surto (burst): o controlador de DMA diz para o dispositivo para adquirir o barramento, emitir uma série de transferências, então libera o barramento.
 - É mais eficiente do que o roubo de ciclo, pois adquirir o barramento leva tempo.
 - Pode bloquear a CPU e outros dispositivos por um período substancial caso um surto longo esteja sendo transferido.

FIGURA 5.4 Operação de transferência utilizando DMA.

Interrupções

- Quando um dispositivo de E/S termina o trabalho dado a ele, gera uma interrupção.
- Envia um sinal pela linha de barramento à qual está associado.
- O sinal é detectado pelo chip controlador de interrupções na placa-mãe,
 que então decide o que fazer.

Interrupções

- Controlador de interrupção processa a interrupção imediatamente, se estiver livre.
- Novas interrupções são ignoradas durante o tratamento.
 - O sinal de interrupção é gerado continuamente no barramento até que seja tratado.
- O número nas linhas de endereço é usado como um índice em uma tabela chamada de vetor de interrupções para buscar um novo contador de programa.
 - Interrupções de software: traps ou armadilhas.

- A maioria das CPUs modernas ser projetada com pipelines profundos e, muitas vezes, superescalares (paralelismo interno).
- Interrupções precisas: deixa a máquina em um estado bem definido.
 - O contador do programa (Program Counter PC) é salvo em um lugar conhecido.
 - Todas as instruções anteriores àquela apontada pelo PC foram completadas.
 - Nenhuma instrução posterior à apontada pelo PC foi concluída.
 - O estado de execução da instrução apontada pelo PC é conhecido.

- Objetivos do software de E/S:
 - Independência de dispositivo: devemos ser capazes de escrever programas que podem acessar qualquer dispositivo de E/S sem ter de especificá-lo antecipadamente.
 - Nomeação uniforme: o nome de um arquivo ou um dispositivo deve simplesmente ser uma cadeia de caracteres ou um número inteiro e não depender do dispositivo de maneira alguma.

- Objetivos do software de E/S:
 - Tratamento de erros: erros devem ser tratados o mais próximo possível do hardware.
 - Apenas se as camadas mais baixas não forem capazes de lidar com o problema as camadas superiores devem ser informadas a respeito.

- Objetivos do software de E/S:
 - Transferências síncronas (bloqueantes) versus assíncronas (orientadas à interrupção).
 - A maioria das E/S físicas são assíncronas.
 - A CPU inicializa a transferência e vai fazer outra coisa até a chegada da interrupção.
 - Programas do usuário são muito mais fáceis de escrever se as operações de E/S forem bloqueantes.
 - Após uma chamada de sistema read, o programa é automaticamente suspenso até que os dados estejam disponíveis no buffer.

- Objetivos do software de E/S:
 - Utilização de um buffer.
 - Muitas vezes, dados provenientes de um dispositivo não podem ser armazenados diretamente em seu destino final.
 - Taxa de preenchimento x taxa no qual é esvaziado.
 - Envolve consideráveis operações de cópia e muitas vezes tem um impacto importante sobre o desempenho de E/S.

- Objetivos do software de E/S:
 - Dispositivos compartilhados versus dedicados.
 - Nenhum problema é causado por múltiplos usuários terem arquivos abertos no mesmo disco ao mesmo tempo.
 - Impressoras têm de ser dedicados a um único usuário até ele ter concluído sua operação.

- Três maneiras fundamentais para realizar E/S:
 - E/S programada: CPU realiza todo o trabalho.
 - CPU ociosa esperando o dispositivo.
 - E/S orientada a interrupções: a comunicação com o dispositivo ocorre por meio das interrupções.
 - Interrupção para cada comunicação.
 - E/S usando DMA: o DMA realiza a E/S programada em vez da CPU.
 - Reduz a quantidade de interrupções.

Camadas do Software de E/S

Camadas do Software de E/S

 Organização em quatro camadas, cada uma com uma interface bem definida para as camadas adjacentes.

	Software de E/S no nível do usuário
	Software do sistema operacional independente do dispositivo
	Drivers do dispositivo Tratadores de interrupção
	Hardware

Tratadores de Interrupção

- As interrupções devem ser abstraídas, transparentes para a camada do usuário.
- Bloquear o driver que inicializou uma operação de E/S até que ela se complete e a interrupção ocorra.
 - O fim da interrupção pode desbloquear o driver que a chamou.

Drivers dos Dispositivos

- Controladores de dispositivos.
 - Registradores para enviar comandos e obter resultados.
- O número de registradores do dispositivo e a natureza dos comandos variam radicalmente de dispositivo para dispositivo.
- Driver do dispositivo: código específico associado a um dispositivo de E/S para controlá-lo.
 - Geralmente é escrito pelo fabricante do dispositivo e fornecido junto com ele.
 - Normalmente lida com um tipo ou uma classe de dispositivos muito relacionados.
 - Dispositivos completamente diferentes são baseados na mesma tecnologia subjacente. Exemplo: USB

Drivers dos Dispositivos

- O driver do dispositivo deve fazer parte do núcleo do SO.
 - Acesso direto ao hardware do dispositivo.
 - Pedaços de código (drivers) escritos por terceiros serão instalados no SO.
 - A arquitetura deve permitir essa instalação.

FIGURA 5.12 Posicionamento lógico dos drivers de dispositivos. Na realidade, toda comunicação entre os drivers e os controladores dos dispositivos passa pelo barramento.

Dr

- Algumas partes do software de E/S são independentes.
- Busca realizar as funções de E/S que são comuns a todos os dispositivos e fornecer uma interface uniforme para o software no nível do usuário.

- Interface uniforme para os drivers dos dispositivos.
 - Como fazer todos os dispositivos de E/S e drivers parecerem mais ou menos o mesmo?
 - Para cada classe de dispositivos, como discos ou impressoras, o sistema operacional define um conjunto de funções que o driver deve fornecer.
 - Como os dispositivos de E/S são nomeados?
 - O software independente do dispositivo cuida do mapeamento de nomes de dispositivos simbólicos para o driver apropriado.

- Utilização de buffer.
 - Processo do usuário fornece um buffer de n caracteres no espaço do usuário e faz uma leitura de n caracteres.
 - A rotina de tratamento da interrupção coloca os caracteres que chegam nesse buffer até que ele esteja completamente cheio.
 - Apenas então ele desperta o processo do usuário.

- O que acontece se o buffer for paginado para o disco quando um caractere chegar?
 - Um buffer dentro do núcleo.
 - Os dados são copiados para o buffer na página do usuário quando o buffer do núcleo estiver cheio.
 - O que acontece com os caracteres que chegam enquanto a página com o buffer do usuário está sendo trazida do disco?
 - Já que o buffer está cheio, não há um lugar para colocá-los.
 - Podemos usar um segundo buffer.
 - Buffer duplo (double buffering).

FIGURA 5.15 (a) Entrada não enviada para buffer. (b) Utilização de buffer no espaço do usuário. (c) Utilização de buffer no núcleo seguido da cópia para o espaço do usuário. (d) Utilização de buffer duplo no núcleo.

Relatório de Erros

- Erros são muito mais comuns no contexto de E/S do que em outros contextos.
 - O SO deve lidar com eles da melhor maneira possível.
- Erros de programação
 - Ocorrem quando um processo pede por algo impossível.
 - Fornecer um endereço de buffer inválido.
 - Especificar um dispositivo inválido.
 - Relatar de volta um código de erro para o chamador.

Software de E/S do Espaço do Usuário

- Bibliotecas de E/S ligadas aos programas do usuário.
 - cin, cout do C++
- Spooling: é uma maneira de lidar com dispositivos de E/S dedicados em um sistema de multiprogramação.
 - o Processo especial, daemon, que possui o dispositivos de E/S dedicado.
 - Diretório, diretório de spooling.
 - O daemon retira o arquivo do diretório e o envia para o dispositivo de E/S.

Software de E/S do Espaço do Usuário

FIGURA 5.17 Camadas do sistema de E/S e as principais funções de cada camada.

Resumo

Resumo

- Princípios do Hardware de E/S
 - Tipos de Dispositivos
 - Controladores de Dispositivos
 - Tipos de E/S
- Princípios do Software de E/S
 - Objetivos do Software de E/S
 - o E/S Programada
 - E/S Orientada por Interrupções
 - o E/S Usando DMA
- Camadas de Software de E/S
 - Tratadores de Interrupção
 - Drivers dos Dispositivos
 - o Software de E/S Independente de Dispositivo
 - Software de E/S do Espaço do Usuário

Dúvidas?