Recurrent Neural Networks

Elman Network

$$h_t = \sigma(W_1 x_t + W_2 h_{t-1})$$

$$x_{t+1} = \rho(W_3 h_t)$$

Can be viewed as a non-linear IIR Filter

Elman Network

$$x_{t+1} = \rho(W_3 h_t)$$

Training: Back Propagation Through Time

Forward Pass

Pass inputs through the unrolled network compute the error at every time step

Training: Back Propagation Through Time

Backward Pass

Compute the contribution of error at every time step accumulate this gradient while going back in time update the parameters

Deep RNNs

Shortcoming of Elman Nets

Exploding gradients

Vanishing gradients

Unable to capture long-term dependencies

Training is somewhat brittle

recently gained a lot of popularity

have explicit memory "cells" to store short-term activations

the presence of additional gates partly alleviates the vanishing gradient problem

multi-layer versions shown to work quite well on tasks which have "medium term" dependencies

$$h_{t-1} = \sigma(W_1 x_t + W_2 h_{t-1})$$
Encoder
$$x_t$$

$$g_{t} = \sigma(W_{1}x_{t} + W_{2}h_{t-1})$$

$$i_{t} = \sigma(W_{3}x_{t} + W_{4}h_{t-1})$$

$$o_{t} = \sigma(W_{5}x_{t} + W_{6}h_{t-1})$$

$$i_{t} = \sigma(W_{4}x_{t} + W_{5}h_{t-1} + W_{6}c_{t-1})$$

$$o_{t} = \sigma(W_{7}x_{t} + W_{8}h_{t-1} + W_{9}c_{t-1})$$

$$f_{t} = \sigma(W_{10}x_{t} + W_{11}h_{t-1} + W_{12}c_{t-1})$$

