

Chaîne ouverte – Banc d'essai vibrant*

Pôle Chateaubriand - Joliot Curie

Savoirs et compétences :

Res1.C2 : principe fondamental de la dynamique

1

 Res1.C1.SF1: proposer une démarche permettant la détermination de la loi de mouvement

Présentation

Les vibrations se retrouvent dans tous les systèmes et nuisent à leur durée de vie. On s'intéresse à un banc d'essai permettant d'étudier les conséquences de ces vibrations sur l'usure et la fatigue des pièces mécaniques. La figure ci-après représente un modèle cinématique du dispositif étudié. Une modélisation plane a été retenue. Le bâti vibrant est modélisé par un solide S_1 , de masse m_1 en liaison glissière parfaite avec un support S_0 , fixe par rapport à un repère \mathcal{R}_0 supposé galiléen.

Le solide S_1 est rappelé par un ressort de longueur libre l_0 et de raideur k. Une masse ponctuelle m_2 excentrée, placée en P, tourne sur un rayon r et est entraînée à vitesse constante Ω . Elle modélise le balourd du rotor d'un moteur S_7 .

Un pendule simple de longueur L, porte à son extrémité D une masse concentrée m_3 , l'ensemble constitue le solide S_3 , en liaison pivot parfaite d'axe $(C, \overrightarrow{z_0})$ avec S_1 . Les masses autres que m_1 , m_2 et m_3 sont négligées.

Moteur + balourd de masse m_2 S_0 S_0 S_0 S_1 S_1 S_1 S_2 S_2 S_1 S_2 S_2 S_1 S_2 S_2 S_3 S_4 S_1 S_1 S_2 S_2 S_3 S_4 S_1 S_2 S_3 S_4 S_5 S_4 S_5 S_4 S_5 S_5 S_6 S_7 S_8 S_7 S_8 $S_$

Objectif Déterminer les conditions géométriques permettant de supprimer les vibrations.

Question 1 Réaliser le graphe d'analyse du système.

Question 2 Préciser les théorèmes à utiliser permettant de déterminer deux équations différentielles liant x, θ et leurs dérivées et les paramètres cinétiques et cinématiques utiles.

Question 3 Déterminer ces deux équations.

On souhaite supprimer les vibrations du bâti vibrant. On recherche alors une solution du système d'équations différentielles déterminé précédemment autour de la position d'équilibre $(x_0,\theta_0)=(0,0)$ en supposant que x, θ , \dot{x} , $\dot{\theta}$ sont des petites variations de position ou de vitesse autour de cette position d'équilibre.

Question 4 Proposer une linéarisation, à l'ordre 1, des deux équations différentielles précédentes.

On s'intéresse uniquement au régime d'oscillations forcées. On cherche donc des solutions de la forme $x(t) = A\cos(\Omega t)$ et $\theta(t) = B\cos(\Omega t)$.

Question 5 *Déterminer le système d'équations permettant de calculer A et B*.

Question 6 Indiquer la condition que doit vérifier la longueur L afin d'assurer x(t) = 0 en régime forcé.

Chargement et déchargement des cargos porteconteneurs *

Centrale Supelec PSI 2013

Savoirs et compétences :

- Res1.C2 : principe fondamental de la dynamique
- Res1.C1.SF1 : proposer une démarche permettant la détermination de la loi de mouvement

Modélisation dynamique du comportement de la charge

Objectif Déterminer les équations du mouvement du conteneur de façon à en obtenir un modèle simple pour la synthèse de la commande.

En vue d'élaborer une commande automatisée du déchargement des conteneurs, une bonne compréhension de la dynamique du système est nécessaire. Cette partie vise à établir les équations du mouvement du conteneur. La charge peut alors balancer selon le modèle présenté ci-après. Dans cette étude, la vitesse de vent nulle. On fait l'hypothèse que le conteneur est suspendu à un seul câble indéformable, en liaison pivot à ses extrémités. Les liaisons entre les solides 0, 1, 2 et 3 sont supposées parfaites. Le portique support du chariot est noté 0, le chariot 1, le câble 2 et l'ensemble {spreader + conteneur} 3.

Paramétrage

- Le repère $\mathcal{R}_0 = (O_0; \overrightarrow{x_0}, \overrightarrow{y_0}, \overrightarrow{z_0})$ est lié au portique fixe; il est supposé galiléen avec $\overrightarrow{z_0}$ l'axe vertical
- La position du chariot telle que $\overrightarrow{OE} = y_{ch}(t)\overrightarrow{y_0}$ est notée $y_{ch}(t)$; l'angle $(\overrightarrow{z_0}, \overrightarrow{z_2})$ d'inclinaison du câble $\theta(t)$ et l'angle $(\overrightarrow{z_2}, \overrightarrow{z_3})$ d'inclinaison du conteneur par rapport au câble $\beta(t)$.

Données

- $\mathcal{R}_1 = (E; \overrightarrow{x_0}, \overrightarrow{y_0}, \overrightarrow{z_0})$ repère lié au chariot de levage
- $\Re_2 = (E; \overrightarrow{x_0}, \overrightarrow{y_2}, \overrightarrow{z_2})$ repère lié au câble 2; $\ell_2 = 50$ m la longueur EF du câble; la masse est négligée.
- $\mathcal{R}_3 = (F; \overrightarrow{x_0}, \overrightarrow{y_3}, \overrightarrow{z_3})$ repère lié à l'ensemble {spreader + conteneur}; $m_3 = 50$ tonnes la masse du solide 3; G_3 le centre de gravité du solide 3, tel que

$$\overrightarrow{G_3F} = h_3 \overrightarrow{z_3}$$
 où $h_3 = 2.5 \,\mathrm{m}$; la matrice d'inertie du solide 3 s'écrit $I_3(G_3) = \begin{pmatrix} A_3 & 0 & 0 \\ 0 & B_3 & 0 \\ 0 & 0 & C_3 \end{pmatrix}_{\left(\overrightarrow{Y_0}, \overrightarrow{Y_0}, \overrightarrow{Y_$

$$A_3 = 52 \times 10^3 \,\mathrm{kg} \,\mathrm{m}^2$$

 $B_3 = 600 \times 10^3 \,\mathrm{kg} \,\mathrm{m}^2$
 $C_3 = 600 \times 10^3 \,\mathrm{kg} \,\mathrm{m}^2$

• la motorisation M_D du mouvement de direction

- mécaniques sur (1) qui se réduisent à un glisseur de la forme $\overrightarrow{R(M_D \to 1)} = F \overrightarrow{y_0}$;
- l'action mécanique du câble sur le spreader est notée $\overrightarrow{R(2 \to 3)} = F_{23} \overrightarrow{z_2}$.

Question 1 Après avoir réalisé le graphe de structure, déterminer le nombre de degrés de liberté et le nombre d'actionneurs du modèle proposé figure précédente. En déduire le nombre de degrés de liberté non motorisés. Expliquer pourquoi il est difficile de poser le conteneur sur un camion avec précision?

Question 2 Déterminer littéralement, au point G_3 , la vitesse $V(G_3, 3/0)$ puis le torseur dynamique $\{\mathcal{D}(3/0)\}$ de l'ensemble {conteneur + spreader} (3) dans son mouvement par rapport au repère galiléen \mathcal{R}_0 .

Question 3 En précisant l'isolement et le bilan des actions mécaniques extérieures, déterminer l'équation différentielle de résultante reliant les paramètres $\theta(t)$, $\beta(t)$ et $y_{ch}(t)$, sans inconnue de liaison et sans l'action du moteur.

Question 4 En précisant l'isolement et le bilan des exerce, par l'intermédiaire de câbles, des actions actions mécaniques extérieures, déterminer les équations

différentielles reliant les paramètres $\theta(t)$, $\beta(t)$ et $y_{ch}(t)$ et sans inconnue de liaison. La méthode sera clairement séparée des calculs.

Question 5 En supposant que θ , β , $\dot{\theta}$ et $\dot{\beta}$ sont petits, linéariser les équations précédentes.

Les courbes temporelles ont été obtenues par simulation, à partir des équations précédentes, pour un échelon en $y_{ch}(t)$ de $10\,\mathrm{m}$.

Question 6 Proposer une simplification de la modélisation précédente.

Dynamique du véhicule – Segway de première génération*

Frédéric SOLLNER - Lycée Mermoz - Montpellier

Savoirs et compétences :

- Res1.C2 : principe fondamental de la dynamique
- Res1.C1.SF1: proposer une démarche permettant la détermination de la loi de mouvement

Présentation

Le support de l'étude est le véhicule auto balancé Segway®. Il s'agit d'un moyen de transport motorisé qui permet de se déplacer en ville. En termes de prestations, il est moins rapide qu'une voiture ou qu'un scooter, mais plus maniable, plus écologique, moins encombrant et nettement plus moderne.

La première génération de Segway avait un guidon fixe et une poignée de direction). Cette technologie provoquait un effet de roulis qui pouvait conduire à un renversement. Dans cet exercice, nous nous proposons d'étudier le dérapage et le renversement d'un Segway de première génération.

La seconde génération de Segway a vu apparaître une technologie appelée LeanSteer avec guidon inclinable qui permet de faire tourner le Segway lorsque l'utilisateur penche son corps sur le côté (non étudié dans cet exercice).

On donne les caractéristiques géométriques et cinématiques suivantes :

- la route (**0**) est munie du repère $\mathcal{R}_0 = (O; \overrightarrow{x_0}, \overrightarrow{y_0}, \overrightarrow{z_0})$. Ce référentiel associé est supposé galiléen.
- la plate-forme (1) a pour centre de gravité *C*. Le conducteur (2) a pour centre de gravité *G*. Les roues

3 et 4,de masse et inertie négligeable, sont liées à 1 par des liaisons pivots d'axe $(C, \overrightarrow{y_1})$. L'ensemble E=1+2 forme le système matériel indéformable E de centre de gravité G_E et de masse m_E . Il est animée d'un mouvement de rotation par rapport au sol dont le centre instantané de rotation est O. Le rayon de courbure de la trajectoire du point G_E dans \mathcal{R}_0 est \mathcal{R}_C . Le repère lié à 1 est \mathcal{R}_1 tel que $\overrightarrow{z_1}=\overrightarrow{z_0}=\overrightarrow{z_0}=$ et on note $\theta=(\overrightarrow{x_0},\overrightarrow{x_1})=(\overrightarrow{y_0},\overrightarrow{y_1})$.

On donne $\overrightarrow{OG_E} = R_C \overrightarrow{y_1} + h \overrightarrow{z}_{01}$. L'opérateur d'inertie de E en G_E dans $\mathcal{B}_1 = (\overrightarrow{x_1}, \overrightarrow{y_1}, \overrightarrow{z_1})$ est : $I_{G_E}(E) = \begin{pmatrix} A & -F & -E \\ -F & B & -D \\ -E & -D & C \end{pmatrix}$.

Hypothèse(s) • Les contacts entre les roues 3 et \underbrace{A} et la route 0 ont lieu en A et B définis par $\overline{G_EA} = -l \overrightarrow{y_1} - h \overrightarrow{z_0}$ et $\overline{G_EB} = l \overrightarrow{y_1} - h \overrightarrow{z_0}$, l désignant la demi voie du véhicule. Les contacts sont modélisés par des liaisons sphère-plan de centres A et B et de normale $\overrightarrow{z_{01}}$. Le contact dans ces liaisons se fait avec un coefficient de frottement noté f (on supposera pour simplifier que les coefficients de frottement et d'adhérence sont identiques). Les actions mécaniques de la route 0 sur les roues \overline{A} et \overline{A} sont modélisées par des glisseurs en \overline{A} et \overline{B} de résultantes \overline{B} (\overline{A} o \overline{A}) = \overline{A} \overline

- On se place dans un cas où le rayon de courbure R_C de la trajectoire du point C, ainsi que la vitesse de rotation $\dot{\theta}$ par rapport au référentiel \mathcal{R}_0 sont constants.
- L'accélération de la pesanteur est $\overrightarrow{g} = -g \overrightarrow{z_0}$. Accélération de la pesanteur, $g = 10 \,\text{ms}^{-2}$.
- On néglige la masse et les l'inertie des roues.

On donne:

- coefficient d'adhérence pneu-route : f = 1;
- masse de E = 1 + 2: $m_E = 134$ kg;
- demi largeur des voies : l = 35 cm, h = 86 cm.

Objectif L'objectif est de valider l'exigence 1 : permettre à l'utilisateur de se déplacer sur le sol.

Étude du dérapage en virage du véhicule Segway

On donne ci-dessous un extrait du cahier des charges.

Exigence	Niveau
id=«1.1» Glissement du véhicule pou	ır Interdit
une vitesse de 20 km h ⁻¹ dans un virag	ge
de rayon de courbure 10 m	

Question 1 Exprimer la vitesse, notée $V(G_E/\mathcal{R}_0)$, du point G_E dans son mouvement par rapport à \mathcal{R}_0 en fonction de $\dot{\theta}$ et R_C . Exprimer la vitesse linéaire $V_L = \|\overline{V(G_E/\mathcal{R}_0)}\|$ du véhicule en fonction de R_C et $\dot{\theta}$.

Question 2 Exprimer l'accélération, notée $\Gamma(G_E/\Re_0)$, du point G_E dans son mouvement par rapport à \Re_0 en fonction de $\dot{\theta}$ et R_C .

Question 3 Exprimer les conditions d'adhérence liant T_A , T_B , N_A , N_B et f traduisant le non glissement du véhicule. En déduire une inéquation liant $T_A + T_B$ à f et $N_A + N_B$.

Question 4 Isoler E et les roues. Écrire le théorème de la résultante dynamique en projection sur $\overrightarrow{z_0}$.

Question 5 Isoler E et les roues. Écrire le théorème de la résultante dynamique en projection sur $\overrightarrow{y_1}$. En déduire une inéquation donnant la vitesse limite V_L de passage dans un virage qui ne provoque pas le dérapage.

Question 6 Faire les applications numériques nécessaires et vérifier la conformité au cahier des charges.

Étude du renversement en virage du véhicule Segway

On donne ci-dessous un extrait du cahier des charges.

Exigence	Niveau
id=«1.2» Renversement du véhicule	Interdit
pour une vitesse de 20 km h ⁻¹ dans un virage de rayon de courbure 10 m.	
virage de rayon de courbure 10 m.	

Hypothèse(s) On suppose qu'il y a adhérence des roues en A et B.

Question 7 Calculer le torseur dynamique du système matériel E en G_E dans son mouvement par rapport au référentiel $\mathcal{R}_0 = \left(O; \overrightarrow{x_0}, \overrightarrow{y_0}, \overrightarrow{z_0}\right)$. Exprimer ses composantes dans la base $\mathcal{B}_1 = \left(\overrightarrow{x_1}, \overrightarrow{y_1}, \overrightarrow{z_1}\right)$.

Question 8 Calculer $\overline{\delta(B, E/\mathcal{R}_0)} \cdot \overline{x_1}$ le moment dynamique au point B de l'ensemble (E) dans son mouvement par rapport au référentiel $\mathcal{R}_0 = (O; \overline{x_0}, \overline{y_0}, \overline{z_0})$ en projection sur $\overline{x_1}$.

Question 9 En appliquant le théorème du moment dynamique au point B à l'ensemble E et les roues dans leur mouvement par rapport à \mathcal{R}_0 , en projection sur $\overrightarrow{x_1}$, écrire l'équation scalaire qui donne N_A en fonction de $\overline{\delta}(B, E/\mathcal{R}_0) \cdot \overrightarrow{x_1}$ et des données du problème.

Question 10 Écrire la condition de non renversement du véhicule.

On néglige $I_{G_E}(E)$ pour simplifier l'application numérique.

Question 11 Faire les applications numériques nécessaires et vérifier la conformité au cahier des charges.

Renault Twizy – A TERMINER

Concours Mines Ponts - PSI 2017

Savoirs et compétences :

- □ Mod2.C18.SF1 : Déterminer l'énergie cinétique d'un solide, ou d'un ensemble de solides, dans son mouvement par rapport à un autre solide.
- Res1.C1.SF1: Proposer une démarche permettant la détermination de la loi de mouvement.

Mise en situation

Choix du motoréducteur

Objectif Mettre en place un modèle permettant de choisir un ensemble moto-réducteur afin d'obtenir les exigences d'accélération et de vitesse.

On donne le paramétrage et les données nécessaires pour cette modélisation.

Hypothèses générales :

Xavier Pessoles

- le vecteur $\overrightarrow{z_0}$ est vertical ascendant et on notera g l'accélération de la pesanteur;
- le repère $(O; \overrightarrow{x_0}, \overrightarrow{y_0}, \overrightarrow{z_0})$ est galiléen; Le centre de gravité de l'ensemble voiture et charges est sup-

- posé rester dans le plan de symétrie de la voiture $(O, \overrightarrow{z_s}, \overrightarrow{x_s});$
- toutes les liaisons sont supposées parfaites à l'exception du contact roue - sol;
- les roues roulent sans glisser sur le sol en *I*_i ;
- le coefficient de résistance au roulement μ est identique pour tous les contacts roue – sol : $\mu = 3e - 3m$. On pose $\overrightarrow{I_1 J_1} = \mu \overrightarrow{x_s}$, avec $\mu > 0$ si le déplacement du véhicule est suivant $+\overrightarrow{x_s}$;
- les frottements de l'air sur le véhicule seront négligés; seules les roues arrière sont motrices.

Actions mécaniques Le torseur des actions mécaniques du sol sur un ensemble, avant ou arrière, de roues

est:
$$\{\mathscr{F}(s \to i)\} = \left\{\begin{array}{c} T_i \overrightarrow{x_s} + N_i \overrightarrow{z_s} \\ 0 \end{array}\right\}_{J_i}$$
 avec $J_i \in \left(O, \overrightarrow{x_s}, \overrightarrow{y_s}\right)$

et i = 1 (roues arrières) ou 2 (roues avants). Le moteur permet d'appliquer un couple en 3 et 4 tel que $\{\mathscr{F}(3 \to 4)\}$ 0

$C_m \overrightarrow{y_0}$ Masses et inerties:

- le moment d'inertie du rotor moteur autour de son axe $(A, \overrightarrow{y_0})$: $J_m = 6 \times 10^{-3} \,\mathrm{kg} \,\mathrm{m}^2$;
- le moment d'inertie d'une roue autour de son axe $(O_i, \overrightarrow{y_0}): J_R = 0.1 \text{ kg m}^2 \text{ (masse de la roue négligée)};$
- la masse du véhicule en charge : $m = 685 \,\mathrm{kg}$;
- le centre de gravité du véhicule en charge sera noté
- les autres inerties seront négligées.

Grandeurs cinématiques : Soit ω_m la vitesse de rotation de l'arbre moteur 4 par rapport à 3, ω_{13} la vitesse de rotation des roues arrière 1 par rapport à 3 et ω_{23} la vitesse de rotation des roues avant 2 par rapport à 3.

On notera r le rapport de transmission du réducteur tel que $\omega_m = r\omega_{13}$. On appellera $\overrightarrow{V(G,3/0)} = \overrightarrow{V}_{3/0} =$ $v \overrightarrow{x_s}$ la vitesse du véhicule. Les roues ont un rayon R =280 mm.

Choix de l'ensemble moto-réducteur

Équation de mouvement du véhicule

Objectif Objectif: Déterminer l'équation de mouvement nécessaire pour choisir l'ensemble motoréducteur.

Chapitre 3 - Colle

Notations:

- puissance extérieure des actions mécaniques du solide i sur le solide j dans le mouvement de i par rapport à $0: \mathcal{P}(i \to j/0)$;
- puissance intérieure des actions mécaniques entre le solide i et le solide $j: \mathcal{P}(i \longleftrightarrow j)$;
- énergie cinétique du solide i dans son mouvement par rapport à $0: \mathcal{E}_c(i/0)$.

Question 1 Rédiger les réponses aux questions suivantes dans le cadre prévu à cet effet du document réponse :

- écrire la forme générale du théorème de l'énergie puissance appliqué au véhicule en identifiant les différentes puissances extérieures, les différentes puissances intérieures et les énergies cinétiques des différents éléments mobiles en respectant les notations précédentes;
- déterminer explicitement les différentes puissances extérieures;
- déterminer explicitement les différentes puissances intérieures;
- déterminer explicitement les énergies cinétiques;
- en déduire une équation faisant intervenir C_m , N_1 , N_2 , v, ω_m , $\omega_{1/0}$, $\omega_{2/0}$;
- expliquer pourquoi l'équation obtenue n'est pas l'équation de mouvement du véhicule.

Question 2 À partir des théorèmes généraux de la dynamique, déterminer une équation supplémentaire qui permet simplement de déterminer $(N_1 + N_2)$. Puis avec l'équation précédente, écrire l'équation de mouvement du véhicule.

Question 3 Déterminer en énonçant les hypothèses nécessaires les relations entre (v,ω_{10}) , (v,ω_{20}) et (ω_m,ω_{10}) . Montrer que l'équation de mouvement du véhicule peut se mettre sous la forme $\frac{r\,C_m(t)}{R}-F_r(t)=M_{eq}\frac{dv(t)}{dt}$ avec $F_r(t)$ fonction de m,μ,g,R et α et M_{eq} fonction m,J_m,J_R,R et r.

Détermination du coefficient de résistance au roulement $\boldsymbol{\mu}$

Objectif Déterminer le coefficient de résistance au roulement μ suite à une expérimentation.

Question 4 En utilisant les résultats de l'essai routier effectué ci-dessous, il est possible de déterminer le coefficient de résistance au roulement μ . Proposer un protocole expérimental pour l'évaluer :

- justifier dans quelle phase se placer;
- définir la variable mesurée;
- définir les hypothèses nécessaires;
- énoncer les équations utilisées pour déterminer μ.

Choix du moto-réducteur

Objectif Choisir un ensemble moto-réducteur afin d'obtenir les exigences d'accélération et de vitesse.

Les courbes de l'évolution de l'accélération maximale $\frac{\mathrm{d}v(t)}{\mathrm{d}t}$ du véhicule obtenue pour 3 moteurs présélectionnés en fonction du rapport de transmission r issues de l'équation de mouvement du véhicule précédente sont fournies sur le document réponse.

Question 5 Déterminer la valeur minimale du rapport de transmission r_{mini} pour les 3 moteurs proposés qui permet d'obtenir l'accélération maximale moyenne souhaitée dans le diagramme des exigences.

Question 6 Déterminer la valeur maximale du rapport de transmission r_{max} qui permet d'obtenir au moins la vitesse maximale du véhicule souhaitée dans le diagramme des exigences.

Question 7 À partir des résultats précédents, choisir parmi les 3 moteurs proposés, celui qui respecte les exigences d'accélération et de vitesse souhaitées permettant la plus grande plage possible pour le rapport de transmission.

Validation du choix constructeur du moto-réducteur

Objectif Valider le choix du moto-réducteur fait par le constructeur.

Question 8 À partir de la vue 3D du réducteur choisi par le constructeur, compléter le schéma cinématique du document réponse, calculer son rapport de transmission $r = \frac{\omega_{4/3}}{\omega_{4/3}}$ et conclure.

Quille pendulaire *

Concours Commun Mines Ponts 2014 Savoirs et compétences :

- Mod2.C18.SF1: Déterminer l'énergie cinétique d'un solide, ou d'un ensemble de solides, dans son mouvement par rapport à un autre solide.
- Res1.C1.SF1: Proposer une démarche permettant la détermination de la loi de mouvement.

Mise en situation

Les actions de l'air et de l'eau permettent au voilier d'avancer mais provoquent aussi son inclinaison autour de l'axe longitudinal $\overrightarrow{z_N}$. C'est le phénomène de gîte. Pour contrebalancer ce mouvement et éviter que le voilier ne se couche sur l'eau, la quille joue le rôle de contrepoids.

Une évolution récente des voiliers de course océanique a été de les doter d'une quille pendulaire. Cette quille est en liaison pivot d'axe (O, \overline{z}_N) avec la coque du navire et peut être orientée d'un côté ou de l'autre du navire. Une fois l'orientation désirée obtenue, tout mouvement dans la liaison pivot est supprimé par le blocage en rotation de celle-ci.

Modèle volumique 3D

Objectif L'objectif est de déterminer la puissance utile au déplacement de la quille et de la comparer à celle installée par le constructeur.

Hypothèses

- Les liaisons sont toutes parfaites.
- Le bateau est à l'arrêt et son repère R_N est galiléen.
- Lors de la commande de basculement de la quille, les vérins sont alimentés de telle sorte que : $F_{h2} > 0$ et $F_{h3} = 0$. Le vérin 2–4 est alors moteur et le vérin 3–5 est libre (F_{h2} désigne l'action hydraulique sur la tige du vérin 2; on a donc $-F_{h2}$ qui agit sur 4).
- Le mouvement du fluide dans les diverses canalisations s'accompagne d'un phénomène de frottement visqueux défini. L'eau exerce sur le voile de quille une action hydrodynamique.

Le modèle de calcul est donné dans les figures suivantes.

Modèle 2D

Données géométriques, massiques et inertielles

 $\overrightarrow{OA} = R\overrightarrow{y_1}; \overrightarrow{CA} = x_{24}(t)\overrightarrow{x_2};$ $\overrightarrow{AB} = x_{35}(t)\overrightarrow{x_3},$ • Solide 1, masse M_1 ,
centre d'inertie G_1 , $\overrightarrow{OG_1} = -L_1\overrightarrow{y_1}, I_{G_1}(1) =$

$$\begin{pmatrix} A_1 & 0 & 0 \\ 0 & B_1 & -D_1 \\ 0 & -D_1 & C_1 \end{pmatrix}_{(\overrightarrow{x_1}, \overrightarrow{y_1}, \overrightarrow{z_N})} .$$
Solide 2, masse M_2 ,

- Solide 2, masse M_2 , centre d'inertie G_2 , $\overrightarrow{AG_2} = -L_2 \overrightarrow{x_2}$, $I_{G_2}(2) = \begin{pmatrix} A_2 & 0 & 0 \\ 0 & B_2 & 0 \\ 0 & 0 & B_2 \end{pmatrix}_{\left(\overrightarrow{x_2}, \overrightarrow{y_2}, \overrightarrow{z_N}\right)}$.
- Solide 3, masse M_3

- M_2 , centre d'inertie G_3 , $AG_3 = L_2 \overrightarrow{x_3}$, $I_{G_3}(3) = \begin{pmatrix} A_3 & 0 & 0 \\ 0 & B_3 & 0 \\ 0 & 0 & B_3 \end{pmatrix}_{(\overrightarrow{x_3}, \overrightarrow{y_3}, \overrightarrow{z_N})}$.
- Solide 4, masse M_4 , centre d'inertie C, $I_C(4) = \begin{pmatrix} A_4 & 0 & 0 \\ 0 & B_4 & 0 \\ 0 & 0 & C_4 \end{pmatrix}_{(\stackrel{\longrightarrow}{\chi_2}, \stackrel{\longrightarrow}{\gamma_2}, \stackrel{\longrightarrow}{z_2}, \stackrel{\longrightarrow}{z$
- Solide 5, masse M_5 , centre d'inertie B, $I_B(5) = \begin{pmatrix} A_5 & 0 & 0 \\ 0 & B_5 & 0 \\ 0 & 0 & C_5 \end{pmatrix}_{\left(\overrightarrow{Y_2}, \overrightarrow{Y_2}, \overrightarrow{Z_3}\right)}$.

Actions mécaniques

- Action de pression de l'huile sur 2 : $\{\mathcal{T}(ph \to 2)\} = \left\{\begin{array}{c} F_{h2}\overrightarrow{x_2} \\ \overrightarrow{0} \end{array}\right\}_C$
- Action de pression de l'huile sur 3 : $\{\mathcal{T}(ph \to 3)\}$ = $\left\{\begin{array}{c} -F_{h3}\overrightarrow{x_3} \\ \overrightarrow{0} \end{array}\right\}_{R}$.

Action de frottement visqueux de l'huile sur 2 : $\{\mathcal{T}(phf \rightarrow 2)\}$ = $-k \frac{\mathrm{d}x_{24}(t)}{\mathrm{d}t} \overrightarrow{x_2}$

$$\left\{\begin{array}{c} -k \frac{-k - 24(x)}{dt} x_2' \\ \overrightarrow{0} \end{array}\right\}_A \text{ avec } k > 0.$$

- Action de frottement visqueux de l'huile sur $3: \{\mathcal{T}(phf \rightarrow 3)\} =$
- Action hydraudynamique de l'eau sur 1 : $\{\mathcal{T}(eau \rightarrow 1)\}\ =$ $\left\{\begin{array}{c} F_p \overrightarrow{z_1} + F_t \overrightarrow{x_1} \\ \overrightarrow{0} \end{array}\right\} \text{ avec } \overrightarrow{OP} = -h \overrightarrow{y_1}.$

Vecteurs vitesse

Question 1 Tracer le graphe de liaisons.

Question 2 Exprimer les vitesses suivantes :

- 1. $\overrightarrow{V(G_1,1/N)}$ en fonction de $\frac{d\theta_1(t)}{dt}$ et des paramètres géométriques utiles;
- 2. $\overline{V(G_2,2/N)}$ en fonction $de \frac{d\theta_2(t)}{dt}$, $\frac{dx_{24}(t)}{dt}$, x_{24} et des paramètres géométriques utiles;

 3. $\overline{V(G_3,3/N)}$ en fonction $de \frac{d\theta_3(t)}{dt}$, $\frac{dx_{35}(t)}{dt}$, x_{35} et des paramètres géométriques utiles;

 4. $\overline{V(A,2/4)}$ en fonction $de \frac{dx_{24}(t)}{dt}$.

Energie cinétique

Soit *E* l'ensemble constitué des solides 1, 2, 3, 4 et 5. On note $\mathcal{E}_c(i/N)$ l'énergie cinétique de i dans son mouvement par rapport au référentiel galiléen R_N .

Question 3 Exprimer les énergies cinétiques suivantes:

- ε_c (1/N), en fonction de dθ₁(t) dt et des paramètres inertiels et géométriques utiles;
 ε_c (2/N), en fonction de dθ₂(t) dt , dx₂₄(t) et des paramètres inertiels et géométriques utiles.
 ε_c (4/N), en fonction de dθ₂(t) dt et des paramètres inertiels et géométriques utiles
- inertiels et géométriques ut

Evaluation des puissances développées par les actions mécaniques intérieures à E

Question 4 Recenser, puis exprimer les puissances non nulles (notées $\mathcal{P}(i \leftrightarrow j)$) développées par les actions mécaniques intérieures à E en fonction du (ou des) paramètre(s) propre(s) à la liaison ou au mouvement concerné.

Evaluation des puissances développées par les actions mécaniques extérieures à E

Question 5 Recenser, puis exprimer les puissances galiliéennes non nulles (notées $\mathcal{P}(i \to j/k)$) développées par les actions mécaniques extérieures à E. Chaque puissance sera exprimée à l'aide du (ou des) paramètre(s) propre(s) à la liaison ou au mouvement concerné.

Question 6 Appliquer le théorème de l'énergiepuissance à E dans son mouvement par rapport à N. Écrire ce théorème de façon globale en utilisant uniquement les notations précédentes, sans leur développement. Exprimer dans ces conditions la puissance motrice que fournit le vérin moteur en fonction du reste : équation (1).

On se place dans le cas où une commande en vitesse est générée à destination du vérin [2, 4]. Le vérin [3, 5] est libre. Cette commande « en trapèze de vitesse » provoque le déplacement de la quille de la position $\theta_1 = 0$ à la position $\theta_1 = 45^{\circ}$ en 4 secondes, le maintien de la quille dans cette position pendant 1 seconde puis le retour à la position $\theta_1 = 0$ en 4 secondes. Les phases d'accélération et de décélération (rampes) durent 1 seconde.

Un logiciel de calcul permet de tracer l'évolution temporelle des puissances mises en jeu. Ces puissances sont représentées sur la figure suivante.

Question 7 Dans le but de chiffrer la valeur maximale de la puissance que doit fournir l'actionneur pour réaliser le mouvement prévu, tracer, à l'aide de la figure précédente, l'allure de l'évolution temporelle de cette puissance. Pour cela, évaluer les valeurs aux instants t = 0 s, t = 1 s, t = 3 s et t = 4 s. Sur cet intervalle [0, 4 s], évaluer, en kW, la valeur maximale de la puissance que doit fournir l'actionneur. Expliquer pourquoi le maximum de puissance est situé sur cet intervalle.

motrice installée sur son bateau de 30 kW. Dans les hypothèses utilisées pour constituer le modèle de calcul, in-

Question 8 Le constructeur indique une puissance | diquer ce qui peut expliquer la différence entre la valeur calculée et la valeur installée.

Dynamique du véhicule – Segway de première génération*

Frédéric SOLLNER - Lycée Mermoz - Montpellier

Savoirs et compétences :

- Res1.C2 : principe fondamental de la dynamique
- Res1.C1.SF1: proposer une démarche permettant la détermination de la loi de mouvement

Présentation

Le support de l'étude est le véhicule auto balancé Segway®. Il s'agit d'un moyen de transport motorisé qui permet de se déplacer en ville. En termes de prestations, il est moins rapide qu'une voiture ou qu'un scooter, mais plus maniable, plus écologique, moins encombrant et nettement plus moderne.

La première génération de Segway avait un guidon fixe et une poignée de direction). Cette technologie provoquait un effet de roulis qui pouvait conduire à un renversement. Dans cet exercice, nous nous proposons d'étudier le dérapage et le renversement d'un Segway de première génération.

La seconde génération de Segway a vu apparaître une technologie appelée LeanSteer avec guidon inclinable qui permet de faire tourner le Segway lorsque l'utilisateur penche son corps sur le côté (non étudié dans cet exercice).

On donne les caractéristiques géométriques et cinématiques suivantes :

- la route (**0**) est munie du repère $\mathcal{R}_0 = (O; \overrightarrow{x_0}, \overrightarrow{y_0}, \overrightarrow{z_0})$. Ce référentiel associé est supposé galiléen.
- la plate-forme (1) a pour centre de gravité *C*. Le conducteur (2) a pour centre de gravité *G*. Les roues

3 et 4,de masse et inertie négligeable, sont liées à 1 par des liaisons pivots d'axe $(C, \overrightarrow{y_1})$. L'ensemble E=1+2 forme le système matériel indéformable E de centre de gravité G_E et de masse m_E . Il est animée d'un mouvement de rotation par rapport au sol dont le centre instantané de rotation est O. Le rayon de courbure de la trajectoire du point G_E dans \mathscr{R}_0 est \mathscr{R}_C . Le repère lié à 1 est \mathscr{R}_1 tel que $\overrightarrow{z_1}=\overrightarrow{z_0}=\overrightarrow{z_{01}}=$ et on note $\theta=(\overrightarrow{x_0},\overrightarrow{x_1})=(\overrightarrow{y_0},\overrightarrow{y_1})$.

On donne $\overrightarrow{OG_E} = R_C \overrightarrow{y_1} + h \overrightarrow{z}_{01}$. L'opérateur d'inertie de E en G_E dans $\mathcal{B}_1 = (\overrightarrow{x_1}, \overrightarrow{y_1}, \overrightarrow{z_1})$ est : $I_{G_E}(E) = \begin{pmatrix} A & -F & -E \\ -F & B & -D \\ -E & -D & C \end{pmatrix}$.

Hypothèse(s)• Les contacts entre les roues 3 et $\overline{G_EA} = -l \overrightarrow{y_1} - h \overrightarrow{z_0}$ et $\overline{G_EB} = l \overrightarrow{y_1} - h \overrightarrow{z_0}$, l désignant la demi voie du véhicule. Les contacts sont modélisés par des liaisons sphère-plan de centres A et B et de normale $\overrightarrow{z_{01}}$. Le contact dans ces liaisons se fait avec un coefficient de frottement noté f (on supposera pour simplifier que les coefficients de frottement et d'adhérence sont identiques). Les actions mécaniques de la route 0 sur les roues 3 et 4 sont modélisées par des glisseurs en A et B de résultantes $\overrightarrow{R(0 \to 3)} = -T_A \overrightarrow{y_1} + N_A \overrightarrow{z_1}$ et $\overrightarrow{R(0 \to 4)} = -T_B \overrightarrow{y_1} + N_B \overrightarrow{z_1}$.

- On se place dans un cas où le rayon de courbure R_C de la trajectoire du point C, ainsi que la vitesse de rotation $\dot{\theta}$ par rapport au référentiel \mathcal{R}_0 sont constants.
- L'accélération de la pesanteur est $\overrightarrow{g} = -g \overrightarrow{z_0}$. Accélération de la pesanteur, $g = 10 \,\text{ms}^{-2}$.
- On néglige la masse et les l'inertie des roues.

On donne:

- coefficient d'adhérence pneu-route : f = 1;
- masse de E = 1 + 2: $m_E = 134$ kg;
- demi largeur des voies : l = 35 cm, h = 86 cm.

Objectif L'objectif est de valider l'exigence 1 : permettre à l'utilisateur de se déplacer sur le sol.

Étude du dérapage en virage du véhicule Segway

On donne ci-dessous un extrait du cahier des charges.

Exigence	Niveau
id=«1.1» Glissement du véhicule pour	Interdit
une vitesse de 20 km h ⁻¹ dans un virage	
de rayon de courbure 10 m	

Question 1 Exprimer la vitesse, notée $V(G_E/\mathcal{R}_0)$, du point G_E dans son mouvement par rapport à \mathcal{R}_0 en fonction de $\dot{\theta}$ et R_C . Exprimer la vitesse linéaire $V_L = \|\overline{V(G_E/\mathcal{R}_0)}\|$ du véhicule en fonction de R_C et $\dot{\theta}$.

Question 2 Exprimer l'accélération, notée $\overrightarrow{\Gamma(G_E/\mathcal{R}_0)}$, du point G_E dans son mouvement par rapport à \mathcal{R}_0 en fonction de $\dot{\theta}$ et R_C .

Question 3 Exprimer les conditions d'adhérence liant T_A , T_B , N_A , N_B et f traduisant le non glissement du véhicule. En déduire une inéquation liant $T_A + T_B$ à f et $N_A + N_B$.

Question 4 Isoler E et les roues. Écrire le théorème de la résultante dynamique en projection sur $\overrightarrow{z_0}$.

Question 5 Isoler E et les roues. Écrire le théorème de la résultante dynamique en projection sur $\overrightarrow{y_1}$. En déduire une inéquation donnant la vitesse limite V_L de passage dans un virage qui ne provoque pas le dérapage.

Question 6 Faire les applications numériques nécessaires et vérifier la conformité au cahier des charges.

Étude du renversement en virage du véhicule Segway

On donne ci-dessous un extrait du cahier des charges.

Exigence	Niveau
id=«1.2» Renversement du véhicule	Interdit
pour une vitesse de 20 km h ⁻¹ dans un	
virage de rayon de courbure 10 m.	

Hypothèse(s) On suppose qu'il y a adhérence des roues en A et B.

Question 7 Calculer le torseur dynamique du système matériel E en G_E dans son mouvement par rapport au référentiel $\mathcal{R}_0 = \left(O; \overrightarrow{x_0}, \overrightarrow{y_0}, \overrightarrow{z_0}\right)$. Exprimer ses composantes dans la base $\mathcal{B}_1 = \left(\overrightarrow{x_1}, \overrightarrow{y_1}, \overrightarrow{z_1}\right)$.

Question 8 Calculer $\overline{\delta(B, E/\mathcal{R}_0)} \cdot \overline{x_1}$ le moment dynamique au point B de l'ensemble (E) dans son mouvement par rapport au référentiel $\mathcal{R}_0 = (O; \overline{x_0}, \overline{y_0}, \overline{z_0})$ en projection sur $\overline{x_1}$.

Question 9 En appliquant le théorème du moment dynamique au point B à l'ensemble E et les roues dans leur mouvement par rapport à \mathcal{R}_0 , en projection sur $\overrightarrow{x_1}$, écrire l'équation scalaire qui donne N_A en fonction de $\overline{\delta}(B, E/\mathcal{R}_0) \cdot \overrightarrow{x_1}$ et des données du problème.

Question 10 Écrire la condition de non renversement du véhicule.

On néglige $I_{G_E}(E)$ pour simplifier l'application numérique.

Question 11 Faire les applications numériques nécessaires et vérifier la conformité au cahier des charges.

Exercice 1 - Mouvement RT - RSG **

B2-14

C1-05

 \mathcal{R}_0 .

Soit le mécanisme suivant. On a $\overrightarrow{IA} = R \overrightarrow{j_0}$ et $\overrightarrow{AB} = \ell_2 \overrightarrow{i_1}$. De plus R = 15 mm. On fait l'hypothèse de roulement sans glissement au point *I*. De plus :

- G₁ désigne le centre d'inertie de 1 tel que AG₁ = -l i₁, on note m₁ la masse de 1;
 G₂ = B désigne le centre d'inertie de 2, on note m₂ la masse de 2.

Un ressort exerce une action mécanique entre les points A et B.

Question 1 Réaliser le graphe d'analyse en faisant apparaître l'ensemble des actions mécaniques.

Question 2 Proposer une démarche permettant de déterminer les loi de mouvement de 1 et de 2 par rapport à

Corrigé voir ??.

Exercice 2 - Mouvement RT - RSG **

B2-14

C1-05 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{IA} = R \overrightarrow{j_0}$ et $\overrightarrow{AB} = L \overrightarrow{i_1}$. De plus R = 15 mm. On fait l'hypothèse de roulement sans glissement au point I. De plus :

- G₁ désigne le centre d'inertie de 1 tel que AG₁ = -l i₁, on note m₁ la masse de 1;
 G₂ = B désigne le centre d'inertie de 2, on note m₂ la masse de 2.

Un moteur exerce un couple entre les pièces 1 et 2.

Question 1 Réaliser le graphe d'analyse en faisant apparaître l'ensemble des actions mécaniques.

Question 2 Proposer une démarche permettant de déterminer les loi de mouvement de 1 et de 2 par rapport $\hat{a}\,\mathcal{R}_0$.

Corrigé voir ??.