Problems with discrete events
eg. counting experiments: LHC, dark matter direct detection
Source detection: 8-ray/w astronomy
discovery of ultrafaint galaxies in stor cotalogs.
Simple example:
Source + background
bright source background Observation
OR OR
Parameter estimation: what are the properties of the source? Model selection: is there a source there?
Need: "data", "model", P("data" / "model")
Data = { n = # counts in circle m = # counts in ring
Model: S= model prediction for # source counts in circle b= " " background counts in ring
Poisson probability: has parameter M
P(k M) = e-Muk = probability of observing k counts/events
(koisa integer, MZO a real number)
Applies in the case where events occur independently of
Dag Standie

il. What values 5=3 and 6=3 maximize likelihood Function (for Jones data n, m)?

solve:
$$\frac{\partial \ln P(n,m|\hat{s},\hat{b})}{\partial s} = 0$$
 and $\frac{\partial \ln P(n,m|\hat{s},\hat{b})}{\partial b} = 0$

(be careful about \$<0).

subjective choice T(5)