- Prediction / Recognition

- Face Recognition

- Speech Recognition

- Weather for casting

- Stock market price prediction

- Problems which deals with imprecise or incomplete information

- The problems which are computationally hard

Does late night studies during the exam improve your result?

(is
$$\chi \rightarrow \gamma$$
 correct $\{\}$)

Data set

$$Y = f(x)$$
 Learn

X	0	1	0	1	0	0	1	0	0	1
Y	1	1	1	1	1	1	1	0	0	0

 $\frac{Y = m \times + C}{learn values of}$ m & C

P(
$$\sqrt{X}$$
) - Probabilistic Modeling
P(\sqrt{X}) - Probabilistic Modeling
P(\sqrt{X}) = \sqrt{X} are R.V.
P(\sqrt{X}) = P(\sqrt{X}) = $\sqrt{3}$ 4
P(\sqrt{X}) = P(\sqrt{X}) = $\sqrt{3}$ 4
P(\sqrt{X}) = P(\sqrt{X}) = $\sqrt{4}$ 4
P(\sqrt{X}) = P(\sqrt{X}) = $\sqrt{4}$ 4
P(\sqrt{X}) = P(\sqrt{X}) = $\sqrt{4}$ 4
P(\sqrt{X}) = P(\sqrt{X}) = $\sqrt{4}$ 7

Out come depends on many factors

Baye's Theorem:
$$P(Y/X) = P(X/Y) \cdot P(Y)$$

$$P(X \cap Y) = P(X/Y) \cdot P(Y) = P(Y/X) \cdot P(X)$$

$$P(\gamma/\chi) =$$

Posterior

Likeliheod

$$P(x/y) \cdot P(y)$$
 $P(y/x) = P(x)$
 $P(x)$

Predictor

prior

Naive Bayes Classifier

_	X	0	1	0	- 1	0	Ŏ	1	0	0	1
	Y	1	1	1	1	1	1	1	0	0	0

$$P(Y=1/X=1) = \frac{P(X=1/Y=1) \times P(Y=1)}{P(X=1)}$$

$$= \frac{\binom{3}{4} \times \binom{4}{16}}{\binom{4}{16}}$$

$$= \frac{3/4}{4}$$

$$X_1 = \text{Late Night Study }$$

 $X_2 = \text{Regular Sudies }$
 $X_3 = \text{Extra Curricular }$

$$P(\gamma/\chi_1,\chi_2,\chi_3) = \frac{P(\chi_1,\chi_2,\chi_3/\gamma) \cdot P(\gamma)}{P(\chi_1,\chi_2,\chi_3)}$$