Sub Code: AHT003 ROLL NO......

ODD SEMESTER EXAMINATION, 2024 – 25

1stYear (1st - Sem) B.Tech.

INTRODUCTION TO ENGINEERING MATHEMATICS

Duration: 3:00 hrs Max Marks: 100

Note: - Attempt all questions. All Questions carry equal marks. In case of any ambiguity or missing data, the same may be assumed and state the assumption made in the answer.

Q 1.		x2= 20)	
	a) (i) Show that the function $f(x) = \begin{cases} x \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0. \end{cases}$ is continuous but not differentiable at a		
	point $x = 0$.	(5 marks)	
	(ii) State Lagrange's mean value theorem, find the value of c by Lagrange's mean where $f(x) = 2x^2 + 3x + 4$ in [1, 2].	value theorem (5 marks)	
	b) State Taylor's theorem in two variables. Expand e^x siny in power of x and y, $x = 0$, $y = 0$ as far as terms		
	of third degree.	(10 marks)	
	c) If $u = log(x^3 + y^3 + z^3 - 3xyz)$, Show that		
	(i) $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = \frac{3}{x + y + z}$.		
	(ii) $\left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z}\right)^2 u = -\frac{9}{(x+y+z)^2}$.	(10 marks)	
	$\frac{\partial x}{\partial x} \frac{\partial y}{\partial z} \frac{\partial z}{\partial z} \frac{\partial z}{\partial z} \frac{(x+y+z)^2}{\partial z}$	(=	
Q 2.	Answer any two parts of the following. (10	0x2 = 20)	
	a) (i) Evaluate $\iint x \ y \ dx \ dy$, over R where R is quadrant of the cricle $x^2 + y^2 = a^2$ where $x \ge 0$, $y \ge a$		
	0.	(5 marks)	
	(ii) Evaluate $\int_0^\infty e^{-x^2} dx$ with the help of Gamma function.	(5 marks)	
	b) Trace the curve $x^3 + y^3 = a^2x$.	(10 marks)	
	c) Evaluate by change of order of integration $\int_0^1 \int_{x^2}^{2-x} x y dy dx$.	(10 marks)	
Q 3.	Answer any two parts of the following. (10	x2= 20)	
	a) (i) If $x + y + z = u$, $y + z = uv$, $z = uvw$, show that $\frac{\partial(x,y,z)}{\partial(u,v,w)} = u^2v$.	(5 marks)	
	(ii) Find area enclosed between the parabola $y = x^2$ and the straight-line $y = x$.	(5 marks)	
	b) Evaluate $\iiint (x^2 + y^2 + z^2) dx dy dz$, over R where R denotes the region bounded by $x = 0$, $y = 0$,		
	z = 0, and $x + y + z = a$ (a > 0).	(10 marks)	
	c) A triangular thin plate with vertices $(0, 0)$, $(2, 0)$ and $(2, 4)$ has density $\rho = 1 + x + y$, then find		
	(i) The mass of the plane	(10 1)	
0.4	(ii) Centre of gravity.	(10 marks)	
Q 4.		(10x2=20)	
	a) (i) If $\vec{f} = x^2yi - 2xzj + 2yzk$, find div f, curl f, and curl(curl f).	(5 marks)	
	(ii) If $\vec{f} = 2zi - xj + yk$,	Evaluate	
	$\iiint \vec{f} \ dV$, over V where V is region bounded by the surface $x = 0$, $y = 0$, $x = 2$	2, y = 4 and z =	

 $x^2, z = 2. (5 marks)$

- b) State Green's theorem for the plane. Verify Green's theorem in the plane for $\int (xy + y^2) dx + x^2 dy$, over C, where C is the region bounded by y = x and $y = x^2$. (10 marks)
- c) State Gauss Divergence theorem, Verify Gauss divergence theorem for $\vec{f} = 4xzi y^2j + yzk$, take over the cube bounded by the planes x = 0, x = 1, y = 0, y = 1 and z = 0, z = 1. (10 marks)
- Q 5. Answer any two parts of the following. (10x2=20)
 - a) (i) Find the rank of matrix $A = \begin{bmatrix} 1 & 2 & 3 & 2 \\ 2 & 3 & 5 & 1 \\ 1 & 3 & 4 & 5 \end{bmatrix}$. (5 marks)
 - (ii) Find the eigen value of the matrix $A = \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$. (5 marks)
 - b) Find for what values of λ and μ the system of linear equations:

$$x + y + z = 16$$
$$x + 2y + 5z = 10$$
$$2x + 3y + \lambda z = \mu$$

- Has (i) A unique solution (ii) No solution (iii) Infinite solution. Also find the solution for $\lambda = 2$ and $\mu = 8$. (10 marks)
- c) Find the characteristic equation of the matrix $A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$ and verify that it is satisfied by A (Cayley- Hamilton Theorem) and hence obtain A^{-1} .
