

Examen-de-ejemplo.pdf

Anónimo

Química General

1º Grado en Ingeniería Mecánica

Escuela Politécnica Superior Universidad de Sevilla

Tu ex quiere verte llorar, nosotros verte sonreír

Clínicas Cleardent, consigue tu mejor sonrisa. Tu bienestar es nuestra prioridad.

Experiencia y Confianza: más de 20 años y 50 clínicas a tu servicio. Encuentra tu clínica dental más cercana

Tu ex quiere verte llorar, nosotros verte sonreír

Clínicas Cleardent, consigue tu mejor sonrisa. Tu bienestar es nuestra prioridad.

QUÍMICA GENERAL. EXAMEN FINAL. SEGUNDA CONVOCATORIA GRADO EN INGIENERÍA MECÁNICA 21 de septiembre de 2021

Nombre: Grupo:

- El óxido de nitrógeno (II) reacciona con el oxígeno del aire para formar dióxido de nitrógeno. Para comprobar que esta experiencia podía tener lugar, se hizo reaccionar 210 g de óxido de nitrógeno (II) con aire.
 - a) Escriba y ajuste la reacción química. Indique el reactivo limitante de la reacción. (0.25 p)
 - b) Determine los moles que se han generado de dióxido de nitrógeno. (0.25 p)
 - c) ¿Cuál sería el volumen de aire a 25 °C y 1 atm de presión requerido para que el óxido de nitrógeno (II) reaccionara por completo? (0.50 p)
 - d) Determine la presión parcial del dióxido de nitrógeno si se hace reaccionar el aire y el óxido de nitrógeno (II) contenidos en un recipiente cerrado en cantidades estequiométricas. Considere que la reacción ha tenido lugar a 25 °C (temperatura que se mantiene invariable durante todo el experimento), en un recipiente cerrado de 10L. (0.50 p)

Datos: Masas atómicas: N (14 g/mol), O (16 g/mol). R =0,082 atm·L·mol·¹·K·¹. Relación N₂/O₂ en el aire: 79/21

 La dimetilhidracina, N₂H₂(CH₃)₂, se utiliza como combustible de cohetes. Cuando reacciona con oxígeno la ecuación termoquímica de la reacción es:

$$1/2 N_2H_2(CH_3)_2(I) + 2 O_2(g) \rightarrow CO_2(g) + 2 H_2O(g) + 1/2 N_2(g)$$
 $\Delta H = -901,6 \text{ kJ}$

a) Calcula ΔH para las siguientes reacciones: (0.25 p)

$$N_2H_2(CH_3)_2(I) + 4 O_2(g) \rightarrow 2 CO_2(g) + 4 H_2O(g) + N_2(g)$$

 $CO_2(g) + 2 H_2O(g) + 1/2 N_2(g) \rightarrow 1/2 N_2H_2(CH_3)_2(I) + 2 O_2(g)$

b) El calor de vaporización del agua es 44,0 kJ·mol⁻¹, calcula ΔH para la reacción: (0.25 p)

$$1/2 N_2H_2(CH_3)_2(I) + 2 O_2(g) \rightarrow CO_2(g) + 2 H_2O(I) + 1/2 N_2(g)$$

- c) Calcula ΔH°_f del N₂H₂(CH₃)₂ (I) (0.25 p)
- d) ¿Cuánto calor se desprende al quemarse en un recipiente abierto 10,0 g de N₂H₂(CH₃)₂ (I)? (0.25 p)
- e) La temperatura de un calorímetro aumenta 1,78°C cuando se absorben 8,55 kJ. Si se quema dimetilhidracina a 25°C en dicho calorímetro, la temperatura aumenta hasta 29,55°C. ¿Qué masa de dimetilhidracina se ha quemado? (0.50 p)

Datos: Calor formación CO₂(g) = -393,5 kJ·mol·1; Calor formación H₂O(g) = -241,8 kJ·mol·1

- Se preparan dos disoluciones acuosas de dos ácidos. Para la primera de ella se emplean 5 g de ácido clorhídrico en 250 mL de agua destilada, mientras que la segunda se emplea diluyendo 10 g de ácido hipocloroso en 250 mL de agua.
 - a) Calcule el pH ambas disoluciones. Indique el carácter ácido o básico de la disolución resultante. (0.50 p)
 - b) Prediga el pH que se obtendría si se añaden 200 mL de una disolución de hidróxido de sodio 2 M (0.75 p)

Datos: Masas atómicas: Cl (35,5 g/mol); H (1 g/mol); O (16 g/mol). Constante de acidez del ácido hipocloroso: 3,47·10-8.

- 4. Se hace circular una corriente eléctrica de 1.25 A durante 2 h a través de una celda electroquímica que contiene un 750 cm³ de disolución AgNO₃ de concentración 0,20 M. Se observa que se desprende oxígeno molecular en uno de los electrodos y se deposita plata en el otro.
 - a) Indica la especie que se oxida y la que se reduce. Escribe y ajusta las reacciones que se producen y la reacción molecular global. (0.50 p)

 b) Calcula los moles de plata depositados en esas condiciones y la concentración del ion metálico que queda finalmente en la disolución. (0.50 p)

Datos: Masas atómicas: Ag (107,86 g/mol); N (14 g/mol); O (16 g/mol); H (1g/mol) . F=96485 C/mol

- 5. Responda a las siguientes cuestiones.
 - a) ¿En qué grupo y en qué periodo se encuentra el elemento cuya configuración electrónica termina en 4f¹⁴
 5d⁵ 6s² (0.25 p)
 - b) ¿Es posible el siguiente conjunto de números cuánticos (1, 1, 0, ½)
 (0.25 p)
 - c) ¿La configuración electrónica 1s² 2s² 2p² 3s²pertenece a un átomo en su estado fundamental? (0.25 p)
 - d) Dados dos elementos A y B del 3º periodo, con 5 y 7 electrones de valencia respectivamente, indicar cuál tiene mayor energía de ionización y cuál mayor radio atómico. (0.25 p)
 - e) ¿Existirá desplazamiento del par de electrones del enlace A B hacia alguno de sus átomos? En su caso, hacia cuál de ellos ¿A ó B? (0.25 p)
- Responda a las siguientes cuestiones justificando la respuesta:
 - a) Dados los siguientes compuestos: F₂, NaF, BF₃, H₂S y NH₃, indique razonadamente cuáles tienen enlace covalente puro, enlace predominantemente covalente y enlace iónico. (0.50 p)
 - b) Deduzca la estructura de Lewis de las siguientes especies químicas: BF₃ y SF₆. (0.50 p)
 - c) Proponga una estructura de Lewis válida e indique la geometría para las siguientes especies según la teoría RPECV (VSPER): NH₃ y CO₃²⁻ (0.50 p)

Datos: H(Z=1); B(Z=5); C(Z=6); N(Z=7); O(Z=8); F(Z=9); Na(Z=11); S(Z=16);

7. Formule o nombre correctamente: (1 p)

Hidróxido de Magnesio KMnO $_4$ Amoníaco Cu $_2$ S
Óxido de fósforo (V) Li $_2$ O $_2$ Nitrato de calcio Na $_3$ PO $_4$ 3-etil-4-propilhexa-1,3dien-5-ino

 En la práctica 3 se mostraba la reacción entre el yoduro de potasio y el nitrato de plomo. Escriba y ajuste la reacción que tiene lugar e identifique el sólido obtenido experimentalmente. (0.50 p)

En la práctica 4 se estudiaba el funcionamiento de la pila Daniell. ¿Cómo influyen las concentraciones de Cu²⁺ y Zn²⁺ en el potencial de la pila Daniell construida? (0.50 p)

Datos: E° cu2+/Cu = 0,334V; E°Zn2+/Zn= -0,763V

