Assessment and evaluation tools for the undergraduate statistics major

Matthew Beckman Penn State University

February 26, 2020 University of Minnesota

Collaborators (alphabetical)

- Beth Chance (Cal Poly–San Luis Obispo)
- Kirsten Eilertson (Colorado State)
- Alyssa Hu (Penn State)
- Jennifer Kaplan (Middle Tennessee State)
- Kari Lock Morgan (Penn State)
- Dennis Pearl (Penn State)
- Paul Roback (Saint Olaf College)

Overview

- Goal: Evaluate student outcomes upon completion of undergraduate statistics program (e.g. major)
 - comprehensive scope
 - snapshot of student outcomes
 - cohort comparisons
- Constraints
 - faithful to (2014) ASA Curriculum Guidelines¹
 - applicable across institutions, instructors, years
- Assessment instruments
 - student assessment instruments
 - indirect assessment (i.e., survey)
 - direct assessment (i.e., test)
 - multi-year pilot data collection ongoing
 - faculty survey—proxy for program emphasis
 - new in Spring 2020

¹American Statistical Association Undergraduate Guidelines Workgroup (2014). *Curriculum guidelines for undergraduate programs in statistical science.*

(2014) ASA Guidelines for Undergraduate Programs in Statistical Sciences

44 See Zhu et al. (2013) "Data acquisition and por-processing in studies on humans. What is not taught in statistics classes." The American Statistics, 67(4):23–241, which includes a series of statis. (1) age to have the tudy, (2) assess the validity of variable cooling. (3) assess data entry accuracy (4) perform data cleaning; and (5) edit identified data errors.

platform for data exchange, we do not recommend it as a primary analysis environment. 45 Appropriate environments could include R, Python, and SAS,

5 Appropriate environments ould include R, Python, and SAS, implemented by tools including nell scripts and knitr.

46 Futschek (2006) defines algorithmic thinking as a set of

abilities related to constructing and understanding algorithms. (1) Bild ability to enable a single properties (1) Bild ability to enable a single property and the related to the related

47 We define structured programming as the ability to use functions and control structures (e "for"loops). 48 This recommendation is consistent with the efforts of Connol Welfram and the Computer-Seaded Multi initiative, www.computerbasedmath.org and www.efriyout.com.tel wolfram. The incorporation of these tools may be particularly valuable at the bachelor's level, since students will generally have less technical knowledge (and need to be able to simulate to generate insights and/ or check analytic results).

49 Students should develop the specialty tem insight for femals such as CN, ISON (IsoN (IsoN Cope) (Orich Nostins of a distribution) format this is say to read, parts, and greents per folial and 16 might larg (2014) 3ML and 18 might larg (2014) 3ML (IsoN cope) 4ML (IsoN (Is

50 We are not prescriptive regarding which technologies are incorporated into the curriculum, as long as they are sufficiently fisoible and powerful. Many undergraduate statistics students develop expertis in environments such as RRStudio, Pathon, and SSS.

recommended.

52 Markov chains are a useful topic for undergraduate majors in

\$3 This linkage includes topics such as the delta method, in addition, many students might benefit from exposure to modeling and simulation in their mathematics control as a superior additional hole. data. Such skills underpin strategies for assessing and ensuring data quality as part of data preparation and are a necessary precursor to many analyses⁴³.

- Use of one or more professional statistical software environments⁶⁴
- Data management using software in a well-documented and reproducible way¹⁵, data processing in different formats, and methods for addressing miscing data
- Basic programming concepts (e.g., breaking a problem into modular pieces, algorithmic thinking⁶⁶, structured programming⁶⁷, debugging, and efficiency)
- Computationally intensive statistical methods (e.g., iterative methods, optimization, resampling, and simulation/Monte Carlo methods)⁴⁸
- Use of multiple data tools⁴⁹, so graduates are not wedded to one and are better able to learn new technologies⁵⁰

Mathematical Foundations

The study of mathematics lays the foundation for statistical theory. Undergraduate statistics majors should have a firm understanding of why and when statistical methods work. They should be able to communicate in the language of mathematics and explain the interplay between mathematical derivations and statistical applications.

- Calculus (e.g., integration and differentiation)⁵¹
- Linear algebra (e.g., matrix manipulations, linear transformations, projections in Euclidean space, eigenvalues/eigenvectors, and matrix decompositions)

- Probability (e.g., properties of univariate and multivariate random variables, discrete and continuous distributions)³²
- Emphasis on connections between concepts in these mathematical foundations courses and their applications in statistics⁵³

Statistical Practice

Strong communication skills complement technical knowledge and are particularly necessary for statisticians; graduates need technical skills to perform analyses and communication skills to understand clients' needs and then effectively discuss results and conclusions. Important practical skills include the following:

Comprehensive Undergraduate Statistics Program (CUSP) Assessment Strategy

- Test Blueprint (Link)
- 95 competencies cited in 2014 ASA Guidelines
- single assessment tool likely not sufficient

# Competencies	ASA Guidelines Topic
37	Statistical Methods & Theory
16	Data Wrangling, Computing, & Data Science
11	Mathematical Foundations
18	Statistical Practice
9	Problem Solving
4	Discipline-Specific Knowledge

Comprehensive Undergraduate Statistics Program (CUSP) Assessment Map

- CUSP Survey–Indirect assessment (students)
 - self-evaluated survey
 - all 95 competancies in (2014) ASA Guidelines
 - \sim 10-15 minutes duration
 - single institution w. multiple cohorts
- CUSP Test-Direct assessment (students)
 - selected response test
 - prioritized subset of the 95 competencies
 - ~ 1 hour duration
 - multiple institutions w. single cohort
 - single institution w. multiple cohorts
- Faculty Perception of SPECs-Indirect assessment (program)
 - program emphasis self-reported by faculty
 - all 95 competancies in (2014) ASA Guidelines
 - single institution; single implementation (Spring 2020)
 - scale: {incidental; T shows; S does; Assessed}

Indirect assessment-CUSP Survey

Benefits

- easy implementation
- may administer multiple times
- no problem if topics haven't been taught
- includes limited demographics

Risks/Issues

- lexical ambiguity issues
- over/underconfidence with content exposure
- reflection of affect vs knowledge? (Sitzman et al., 2010)
- Indirect Assessment (Survey Link)

Excerpt

Statistical Theory

(scale: [1] very low / never learned; [2] low; [3] fair; [4] good; [5] very good; [6] excellent; [7] exceptional)

Please rate your current level of knowledge/competency related to:

1 2 3 4 5 6

Example Use

- Indirect assessment tool (i.e., Survey) administered at key program milestones
 - first-year seminar
 - midpoint course(s)—if possible
 - beginning & end of capstone course
- Informative for annual program evaluation data
 - requires due caution about interpretation (e.g., Sitzman et al., 2010)
 - most effective when corroborated by other tools

Comprehensive Undergraduate Statistics Program (CUSP) Assessment Map

- Indirect assessment–CUSP Survey
- Next: Direct assessment-CUSP Test
 - selected response test
 - approx. 1 hour duration
 - multiple institutions w. single cohort
 - single institution w. multiple cohorts
- Indirect assessment–Faculty Perception of SPECs
- Future work

Direct assessment-CUSP Test

- Selected response assessment tool with broad coverage
- 33 tasks; some with multiple parts
 - 9 testlets
 - 24 conventional MC questions
- several tasks/subtasks assess multiple competancies
 - score adjustment for successive competancies (1, 1/2, 1/4, ...)
 - 86 points possible
- some tasks adpted from other instruments (with permission)
 - 2 from the REGRESS assessment (Enders, 2013)
 - 9 from the CAOS assessment (delMas et al., 2007)

CUSP Test

- Instructor Preview (link)
 - preview is not for classroom use
 - password protected

Excerpt (partial item)

driver or passenger side

Study design dictates appropriate statistical analysis, but often there is more than one reasonable approach to					
the analysis. Evaluate whether each of the following analysis suggestions is VALID or NOT VALID for testing					
and estimating the difference in durability for the two brake pad materials:					
	Valid	NOT Valid			
paired t-test for brake pad difference of each car (DriverSide - PassengerSide)	0	0			
paired t-test for brake pad difference of each car (Experimental - Standard)	0	0			
ANOVA with car as a blocking variable	0	0			

CUSP Test

Benefits

- test statistical "reflexes" of students
- built-in "CAOS" subtest
- objective measure of student competancies
 - for individual students
 - for a cohort of students
 - aggregate useful for program evaluation
- Easy implementation

Risks/Issues

- Variable use conditions may jeopardize comparisons
- Scope constrained by test fatigue
- Includes topics we don't necessarily teach
- Longer to implement

Example Use Cases

Penn State

- Indirect assessment (i.e., survey) administered multiple times
- Direct assessment (i.e., test) as midterm in capstone course
- benchmarking student skills and competancies against ASA Guidelines
- identify & prioritize cohort needs before graduation
- program feedback & annual evaluation data

Other Institutions

- no course credit
- homework, extra credit, etc
- resource constraints (or not)

Preliminary Item Analysis

Heuristics²

- unidimensionality: assumed by common methods of assessment evaluation
- reliability: coefficient alpha > 0.8
- descrimination $r_{it(i)} > 0.15$ preferred
- 0.6 < proportion correct < 0.9

Results

- PCA evidence supports unidimensionality
- coefficient alpha = 0.802
- 30/33 items with discrimination $r_{it(i)} > 0.15$
- 9/33 items in recommended difficulty range
- 21/33 items with > 50% correct

²Haladyna & Rodriguez (2013); Thorndike & Thorndike-Christ (2010)

Comprehensive Undergraduate Statistics Program (CUSP) Assessment Map

- Indirect assessment–CUSP Survey
- Direct assessment-CUSP Test
- Next: Indirect assessment–Faculty Perception of SPECs
 - program emphasis self-reported by faculty
 - same 95 topics from ASA Guidelines
 - scale: {incidental; T shows; S does; Assessed}
- Future work

Indirect assessment–Faculty Perception of SPECs

- Statistics Program Emphasis and Contents (SPECs)
- Indirect assessment
 - program emphasis self-reported by faculty/administrator
 - same 95 topics from ASA Guidelines

Computationally Intensive Statistical Methods							
(scale: 0-none, 1-incidental, 2-teacher, 3-student, 4-assessed)							
	I					l .	
		Learning C	Outcome Ex	posure sco	110	Course	
	0- None	1- Incidental	2- Teacher	3- Student	4- Assessed		
Iterative methods	0	0	0	0	0	*	
Optimization	0	\circ	\circ	\circ	\circ	A W	
Resampling	0	\circ	\circ	\circ	\circ	*	
Simulation/Monte Carlo methods	0	\circ	\circ	\circ	\circ	A	

Comprehensive Undergraduate Statistics Program (CUSP) Assessment Map

- Indirect assessment–CUSP Survey
- Direct assessment–CUSP Test
- Indirect assessment–Faculty SPECs
- Next: Future work

Future work

Shorter term goals

- Post-graduation follow-up for validation evidence
- Link CUSP Survey data to CUSP Test outcomes
- Streamline logistics for wider implementation
- Expand item bank for direct assessment

Longer term goals

- Experimentation with short/long forms
- Alternative or additional tools for more complete alignment to ASA Guidelines

Acknowledgments

- Advisory input
 - Nick Horton
 - Allan Rossman
- Pilot testers
 - Heather Smith
 - Andrew Schaffner
 - Nicole Lazar
 - Lynne Seymour
 - Paul Roback
 - Kirsten Filertson
 - Dave Hunter
 - Christian Schmid
 - Daisy Philtron
- Seed funding & support
 - Penn State Center for Excellence in Science Education
 - Jackie Bortiatynski
 - Mary Beth Williams

References

- 1 American Statistical Association Undergraduate Guidelines Workgroup (2014). 2014 Curriculum guidelines for undergraduate programs in statistical science. Alexandria, VA: American Statistical Association. http://www.amstat.org/education/curriculumguidelines.cfm
- 2 delMas, R., Garfield, J., Ooms, A., Chance, B. (2007). Assessing students' conceptual understanding after a first course in statistics. Statistics Education Research Journal. 6, 28-58.
- 3 Enders, F. (2013). Do clinical and translational science graduate students understand linear regression? Development and early validation of the REGRESS quiz. *Clinical and Translational Science*, 6(6), 444-451.
- 4 Haladyna, T. M., & Rodriguez, M. C. (2013). *Developing and validating test items*. Routledge: New York.
- 5 Sitzman, T., Ely, K., Brown, K., & Bauer, K. (2010). Self-Assessment of Knowledge: A Cognitive Learning or Affective Measure? *Academy of Management Learning & Education*, *9*(2), 169-191.
- 6 Thorndike, R. M. & Thorndike-Christ, T. (2010). Measurement and evaluation in psychology and education. Pearson: New York.

Q & A

Assessment and evaluation tools for the undergraduate statistics major

Matthew Beckman Penn State University

February 26, 2020 University of Minnesota

Backup slides

CUSP Test blueprint alignment to ASA Guidelines

Section	Subsection	Target Weight (%)
Statistical Methods and Theory	Statistical Theory	18.0
Statistical Methods and Theory	Exploratory Data Analysis	6.0
Statistical Methods and Theory	Design of Studies	18.0
Statistical Methods and Theory	Statistical Models	18.0
Data Wrangling Computation and Data Science	Software and Tools	0.0
Data Wrangling Computation and Data Science	Accessing and Wrangling Data	4.5
Data Wrangling Computation and Data Science	Basic Programming Concepts	1.5
Data Wrangling Computation and Data Science	Computationally Intensive Statistical Methods	4.0
Mathematical Foundations	Calculus	0.0
Mathematical Foundations	Linear Algebra	0.0
Mathematical Foundations	Probability	2.5
Mathematical Foundations	Connecting mathematical foundations & applications in statistics	2.5
Statistical Practice	Communication	0.0
Statistical Practice	Collaboration	0.0
Statistical Practice	Ethical Issues	5.0
Statistical Practice	Opportunities for Authentic Practice	0.0
Problem Solving	Complex open-ended problems	2.2
Problem Solving	Scientific method and statistical problem-solving cycle	12.8
Discipline-Specific Knowledge	Discipline-Specific Knowledge	5.0

Scree plot of CUSP test data

item discrimination

- Item-total correlations $r_{it(i)} < 0.15$
 - (21% correct; $r_{it(j)} = 0.11$) Validity of models aligned to a study design
 - (40% correct; $r_{it(i)} = -0.04$) CAOS task about CI interpretation
 - (3.6% correct; $r_{it(i)} = -0.10$) Strategies to maximize likelihood
- Highly discriminating items
 - $(r_{it(i)} = 0.59)$ Probability distributions task
 - $(r_{it(j)} = 0.50)$ CAOS Histograms & std deviation task
 - $(r_{it(i)} = 0.46)$ OLS regression assumptions task

Q20. Choose the **most** appropriate probability distribution from the list below for each of the scenarios described. Each distribution may be used more than once or not at all.

	X = how many of the next 20 cars that pass you on the highway are silver colored.	Binomial	*
	$\mathbf{X}=\mathbf{how}$ much time until the next diet coke is purchased from a vending machine.		*
	$\mathbf{X}=\mathbf{birth}$ weights of infants born within one week of their due date at a given nospital.		•
	K = the total number of goals scored during a randomly selected match in the FIFA World Cup soccer tournament.	✓ Bernoulli	
) Be	ockman (2018) No part of this work may be copied or distributed without written consent of the	Binomial Continuous Discrete U	niform