Föreläsning 1 - Introduktion till Data Mining och Maskininlärning

Josef Wilzen

2022-08-22

Outline

- Introduktion
 - Kursupplägg
 - Introduktion till Data Mining och Maskininlärning
- Maskininlärningsprocessen
- Översikt av metoder
- Modellval och generalisering

Outline

- Introduktion
 - Kursupplägg
 - Introduktion till Data Mining och Maskininlärning
- 2 Maskininlärningsprocessen
- Översikt av metoder
- 4 Modellval och generalisering

Kursupplägg

- Lärare och examinator: Josef Wilzén
- Upplägg
 - Föreläsningar
 - ► Datorövningar/labbar
 - lacktriangledown Projektarbete = 2.5 hp (U,G) ightarrow görs i par
 - ▶ Tenta = 5 hp (U,G,VG)

Kursupplägg

- Föreläsningar
 - Ny information och metoder presenteras
- Datorövningar
 - Lösning av övningar som behandlar tidigare material
 - ► Förberder både inför projektarbetet och tentan
- Projektarbete:
 - ► Större uppgift där ni ska analysera data mer självständigt
- Seminarium
 - Projektarbetet presenteras och opponeras
- Tenta
 - Påminner om datorövningarna, kan ha teoretiska frågor

Kursutvärdering 2021

- Antal respondenter: 17
- Antal svar: 7 (Svarsfrekvens: 41 %)
- Vilket helhetsbetyg ger du kursen? 3
- Förändringar:
 - ▶ Labbar
 - ightharpoonup Projekt ightarrow startar tidigare
 - ightharpoonup Tentan ightarrow lite mer hjälp

Bonuspoäng till tentan

- Chans till 2 bonuspoäng till tentan
- Krav: deltar på 9 av 14 labbtillfällen
- Deltaga betyder:
 - vara där och jobba aktivit med kursinnehållet
 - ställa minst en fråga till läraren om kursinnehållet eller visar upp minst en lösning till någon uppgift
- Bonuspoängen:
 - Gilltiga f\u00f6r de tre tentatillf\u00e4llena som \u00e4r kopplade till 2022 \u00e4rs omg\u00e4ng av kursen
 - Används på det första tentatillfället som man deltar i av dessa tre (sparas inte)
 - Kan bara användas för att få godkänt betyg

Projektarbete

- Gör i grupper om två
- Gruppanmälan på Lisam
- Man ska välja data själv
 - Separat inlämning för val av datamaterial

Förkunskaper

Vad behövs sen tidigare?

- Linjär algebra
- Matematisk analys
- Programmering
- Regression och Variansanalys
- Statistik teori

Outline

- Introduktion
 - Kursupplägg
 - Introduktion till Data Mining och Maskininlärning
- Maskininlärningsprocessen
- 3 Översikt av metoder
- 4 Modellval och generalisering

Statistik

Från Wikipedia: "Statistik är en gren inom tillämpad matematik som sysslar med insamling, utvärdering, analys och presentation av data eller information."

- Vad ni har sysslat med i två år...
- Tradionellt så har statistiker sysslat med
 - Relativt små och "enkla" dataset
 - Inferens: hypotestest och konfindesintervall
 - Prediktioner
 - Strävar efter att använda så korrekta antagaden som möjligt
 - Modeller som är lätta att beräkna

Statistik modellering

- Startar med ett problem som relaterar till data
- Konstruktikon av abstrakta modeller som beskriver sambandet/relationen mellan ett antal variabler
- Utgår från att det finns osäkerhet eller slumpelement i problemet och att den ska vara med i modellen
- Beskrivs matematiskt: sannolikhetsfördelningar och ekvationer

Statistik modellering (forts.)

- Metoder f\u00f6r att skatta modellens parameterar h\u00e4rleds och implementeras
- Sen används modellen för:
 - ▶ inferens = kvantifiera osäkerhet i modellen och dess parameterar
 - prediktion = utvärdera modellen i nytt sammanhang/ny data/framtiden etc
- Del i större vetenskapligt arbete

Exempel: linjär regression

Repons: y och förklarande variabler X

- Vi antar att det finns ett linjärt samband mellan y och X
- En deterministiskt modell:

$$y = X\beta$$

En slumpmodell

$$y = X\beta + \varepsilon$$
 $\varepsilon \sim N(0, \sigma^2)$

- Skattning: $\hat{\beta} = (X^T X)^{-1} X^T y$
- ullet Inferens: vi kan konstuera olika test för modellen, tex t-test, eller konfidensintervall för eta
- ullet Prediktion: Vi kan beräkna anpassade värden \hat{y} för nya värden på X_{test}

Maskininlärning

Maskininlärning (Machine learning):

- System/modell/algoritm som kan lära sig från data utan att att explicita instruktioner/regler behöver ges
- Systemet lär sig av "erfarenhet" från data
- Används för att fatta datadrivna beslut och prediktioner
- Kan beskrivas som matematiska modeller eller algoritmer
- Ofta fokus på skalbarhet och beräkningseffektivitet
 - Stora datormängder, snabba beräkningar
- Ofta del i ett större system/programvara
- Ursprung i datorvetenskapen, del av området artificiell intelligens (AI)

Data Mining

Data Mining (datautvining):

- Metoder för att hitta mönster, samband stora datamängder
- Skärningspunkten mellan:
 - datorvetenskap, databashantering och statistik
- Ofta fokus på skalbarhet och beräkningseffektivitet
- Fokus är ofta på explorativ dataanalys (vi vet inte var vi letar efter...)

Maskininlärning vs Data Mining

Stort överlapp mellen fälten!!!

- Maskininlärning: mer fokus på prediktioner
- ullet Data mining: mer explorativ dataanalys och hitta nya samband Statistical learning pprox Maskininlärning "learning" inom maskininlärning betyder ofta "estimation" i statistik.

Diskussionsfråga

Diskutera i grupper om 3:

- Ge ett exempel på två stora eller komplexa datamängder där man kan finna intressant information.
- Beskriv mängden och ange vilken information som kan finnas däri

Exempel på stora datamaterial

- Transaktionsdatabaser
- Elektroniska hälsoregister
- Register av telefonsamtal
- Sociala nätverk
- Webbsidologgar
- Korpus (stor samling språkliga data)
- Väder och klimatdata
- Astrofysisk data

Maskininlärning

- Metoderna kan vara antingen deterministiska eller probabilistiska
 - ► Del beskivs med hjälp av algoritmer (=ingen explicit "modell")
- Många klassiska statistika metoder används inom maskininlärning, ex:
 - Linjär regression
 - Logistik regression
 - Principal komponent analys (kommer i Multivariata metoder)
- ullet Maskininlärning pprox (nya) statistiska metoder som passar för komplexa/stora dataset
 - Mer fokus på att lära sig en "funktion" än linjära modeller
 - Mer fokus på prediktion

Dataset

Tabellformat

case	variable 1	variable 1	variable 1	variable 1			•
1							
2							
3							
:							

- Rader:
 - object, record, observation, transaction
- Kolumner:
 - ► Variable, attribute, feature, covariate
- Finns många andra format:
 - tidserier, text, bilder, kartor, grafer, videor

Olika dataskalor

- Nominell: "Röd", "Grön", "Blå"
 - 1 Binär: 0 eller 1, TRUE eller FALSE
- Ordinal: "låg", "mellan", "hög"
- \odot Intervall/Kvot: $[0, 1], \mathbb{R}, \mathbb{R}^+$

Analysprocessen

Övergripande:

- Problemformulering
- Samla in data
- ullet Datahatering och utforskning: Rådata o Användbar data
 - ► NA, felaktigheter, rensa, outliers, skalning
 - Metadata, plottar, beskrivande statistik
- Modellering: skatta modeller och gör prediktioner
- Evaluering: jämför med problemformuleringen!

Datahatering

- Saknade värden
 - Eliminera objekt eller attribut (problem många saknade värde, attribut kan vara viktiga)
 - ightharpoonup Skatta saknade värden ightarrow imputering
 - Ignorera saknade värde
- Förbearbeta data
 - Aggregering
 - Urval
 - Reducera dimensionalitet
 - Diskretisering: göra en numerisk variabel till Nominell/Ordinal
 - Variabelomvandling (feature engingering)

Översikt av metoder

- Supervised learning (övervakand inlärning):
 - Klassificering och regression
 - Varje obs består av en repsonevariabel (y) och förklarande variabler (X).
 - Värdet på repsonevariabel: etiketter/ufall
- Unsupervised learning (oövervakad inlärning)
 - ▶ Ett antal variabler (X), men ingen reponsvariabel

Översikt av metoder

- Semisupervised learning
 - Värdet på responsvariabeln finns bara tillgängligt på en delmängd av data
 - Data: $\{X_a, y_a\}, \{X_b\}$
 - Använda all data för att förstå relationen $X \rightarrow y$
- Reinforcement learning:
 - ► Handlar om att lära sig att agera optimat i en miljö: robotar, självkörande bilar
 - ightharpoonup Data ightarrow Lära sig beteende

Exempel på olika inlärning

- Övervakad inlärning:
 - Prediktera morgondagens elkonsumtion. Utgå från väderdata, kalenderregister samt tidigare konsumtion.
 - ▶ Identifiera vilka siffror som finns i en bild.
 - Skapa beskrivande texter för bilder automatiskt
- Oövervakad inlärning:
 - Identifiera köpmönster vilket kan användas för reklamkampanjer.
 - Hitta liknade grupper av läkemedelsmolekyler
 - Hitta bedragare bland bankkunder

Kursens områden – översikt

- Klassificering:
 - y: Binär, nominell, ordinal
 - Bygg modell för ändligt antal klasser (utfall)
 - Prediktera klass för ny observation
- Regression:
 - ▶ y: \mathbb{R} , \mathbb{R}^+ , $a \le y \le b$
 - Bygg modell för kontinuerligt utfall
 - Prediktera utfall för ny observation
- Modeller: beslutsträd, neurala nätverk, k-närmaste grannar

Kursens områden – översikt

- Klusteranalys:
 - Dela upp observationer i grupper (kluster)
 - ► Placera ny observation i "rätt" kluster
 - Undersöka klustrens egenskaper
- Associationsanalys:
 - ullet Hitta samband som sker ofta i transaktionsdata, ex. $\{\mathsf{bl\"{o}jor}\} o \{\breve{\mathsf{o}l}\}$

Hur definieras en lämplig modell?

- Modellen ska fånga den relevanta strukturen i problemet och kunna svara på frågeställningen
 - ► En modells lämplighet beror alltid på sin kontext!
- Givet ovan: modellen ska vara så enkel som möjlig
 - Ockhams rakkniv
 - Vad vinner jag på att ha en mer komplicerad modell?
- Modellen ska att gå att beräkna i en rimlig tid

Hur definieras en lämplig modell?

$$y = f(x|w) + \varepsilon$$
 $E[\varepsilon] = 0$ $V[\varepsilon] = \sigma^2$

- f är en okänd funktion
- w är ev parameterar till f
- $oldsymbol{arepsilon}$ är en slumpmässig felterm
- Ex:
 - $f(x|w) = w_1 \cdot \sin(2\pi \cdot x \cdot w_2)$
 - $f(x|w) = w_1 \cdot exp(-x \cdot w_2)$
 - $f(x|w) = x_1w_1 + x_2w_2 + x_3w_3$

Hur definieras en lämplig modell?

- Underanpassning (underfitting): modellen fångar inte relevanta strukturer i problemet
- Överanpassning (overfitting): Modellen fångar upp bruset i data

Modellval

- Vi vill att modellen ska fungera bra på ny data
- Definer en felfunktion/kostnadsfunktion (error funciton/cost function):
 - Givet en datamängd så anger felfunktion hur bra modellen anpassar den aktuella datamängden
- Vanliga exempel:
 - Squared error loss: Tänk normalfördelning, ex: linjär regression

$$MSE = \frac{1}{n} \sum_{i=1}^{n} \left(y_i - \hat{f}(x_i) \right)^2$$

Mean absolute error loss:

$$MAE = \frac{1}{n} \sum_{i=1}^{n} \left| y_i - \hat{f}(x_i) \right|$$

- Cross entroy loss: Vanligt f\u00f6r klassificering med neurala n\u00e4tverk
- Misclassification loss

Modellval

- Dela upp dataset (om ej för liten) i slumpmässiga delar:
 - ► Träning (train)
 - Validering (validation)
 - Test
- Olika proportioner kan väljas: $(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}), (0.6, 0.2, 0.2), (0.7, 0.15, 0.15)$
- OBS! Träning bör inte ha mindre proportion än de andra.

Hur hittas den bästa modellen?

• Ta fram några kandidatmodeller. De kan ha olika komplexitet.

M1(?,?) M3(?,?,?,?)

Träning Validering Test

Träningsmängden

• Används för att skatta parametrarna i modellerna

Valideringsmängden

- Används för att välja den bästa skattade modellen utifrån lämplig felfunktion.
- Vi kan iterara mellan att skatta nya modeller på träningsdata och utvärdera dem på valideringsdata.

Valideringsmängden

Träningsdata=svart, valideringdata=vit

Testmängden

- Används för att få en väntevärdesriktig skattning av felfunktionen på ny data.
- Vi bör inte ändra något på modellen när vi ska använda den på testdata. Varför?

K-fold cross-validation

Utgå från ett antal kandidatmodeller.

Dela upp data i K block och för varje modell:

- Ta bort ett block och anpassa modellen till återstående data
- Använd den anpassade modellen för att skatta felfunktionen för de borttagna observationerna (valideringsdata)
- Upprepa 1. och 2. för alla block och skatta felfunktionen för alla valideringsdata. Beräkna genomsnitt för felfunktionen över alla olika block.

Välj modellen med lägst genomsnittlig felfunktion.

Observera: Om vi har K block så måste vi skatta varje modell K gånger.

K-fold cross-validation

X ₁₁	X ₂₁	X_{p1}	y_1
X_{1K}	X_{2K}	X_{pK}	y_K
$X_{1, jK+1}$	$X_{2,jK+1}$	$X_{p,jK+1}$	У _{јК+1}
$X_{1,(j+1)K}$	$X_{2,(j+1)K}$	$X_{p,(j+1)K}$	$y_{(j+1)K}$
$X_{1,(m-1)K+1}$	$X_{2,(m-1)K+1}$	$X_{p,(m-1)K+1}$	$y_{(m-1)K+1}$
$X_{1,mK}$	$X_{2,mK}$	$X_{p,mK}$	$y_{p.mK}$

Leave-one-out cross-validation

Utgå från ett antal kandidatmodeller.

För varje modell:

- Ta bort en observation och anpassa modellen till återstående observationer
- Använd den anpassade modellen för att skatta felfunktionen för den borttagna observationen (valideringsdata)
- Upprepa 1. och 2. för alla observationer och skatta felfunktionen för alla valideringsdata. Beräkna genomsnitt för felfunktionen över alla olika block.

Välj modellen med lägst genomsnittlig felfunktion.

Observera: Om vi har n obs så måste vi skatta varje modell n gånger.

Leave-one-out cross-validation

Bias, varians, brus

$$y = f(x) + \varepsilon$$
 $E[\varepsilon] = 0$ $V[\varepsilon] = \sigma^2$ $\hat{y} = \hat{f}(x_{test})$

Förväntad test MSE:

$$E\left[y_{test} - \hat{f}\left(x_{test}\right)\right]^{2} = V\left[\varepsilon\right] + V\left[\hat{f}\left(x_{test}\right)\right] + Bias\left[\hat{f}\left(x_{test}\right)\right]^{2}$$

- ullet Brusvarians V[arepsilon]: irreducibel brus
- Modellens varians $V\left[\hat{f}\left(x_{test}\right)
 ight]$: Hur mycket kommer \hat{f} att ändras när vi byter dataset
- Modellens skewhet $Bias\left[\hat{f}\left(x_{test}\right)\right]$: Sytematisk skewhet eller modelleringsfel i modellen

Bias, varians, brus

Bias-variance-trade-off

- Vi fill ha
 - ► Lågt bias
 - ► Låg varians

Avslut

- Frågor? Kommentarer?
- Teams
- Kurshemsidan