Smart Factory 구현 기술

- 제어 Engineering 기반 기술 Guide -

2016.09

Smart Factory Engineering

Smart Factory 구축을 위한 제어 기반 기술을 Guide

제어 Engineering 기반 기술을 바탕으로 'SK주식회사 C&C'의 Smart Factory 기술의 내재화

0. Smart Factory를 위한 Technical Architecture

제조 공장의 시스템 체계 및 Smart Factory를 위한 적용 기술 영역

제조 공장의 시스템 체계

ERP SCM MES **ESH** PLM IT Control S/W Control & HMI/SCADA Monitoring **PLCs** SIEMENS, GE, Controller ABB, B&R, PILZ OTMachine Equipment, Conveyor AMHS, Machine Utility & Field Device Sensor & Actuator Sensor, Valve, Actuator, Detector Instrument ... DeviceNet POWERLINK **GEM** Modbus EtherNet/IP SECS-II Connectivity **PROFIBUS PROFINET** SECS-I & CC-Link HSMS Protocol HART ... **Industry** SEMI / OPC Fieldbus Ethernet

적용 기술 영역

<u>Category</u>	<u>Item</u>
제어 시스템	 PLC/PAC, HMI/SCADA Safety, Redundancy (이중화) IO-Link - Smart Sensor Remote IO System Machine Control System - 제어 S/W Motion, Robot, 공압 통신 Interface
표준화 기술	 Sed Interface OPC/OPC UA Gateway Box 형성 관리 - Platform 표준 사양서 (Specification) - 제어/Safety/통신
모니터링 체계	 예지 정비 (PdM) 에너지 절감 Motor Control - Smart MCC 설비 종합 효율 (OEE) 보안 체계

주) IT : Information Technology, OT : Operation Technology

1. 제어 시스템

1. 제어 시스템 > Safety 기반의 제어 시스템

Safety 기능을 적용한 '제어 시스템의 표준화' 구축 안

제어 시스템의 구성

주) PLC: Programmable Logic Controller, SIL: Safety Integrity Level (SIL1~4) PL: Performance Level (a~e 등급), ATEX: ATmospheres Explosibles Fail-Safe: 시스템 결함이 발생 하여도 안전한 상태로 복구하는 기능

적용 안

1 Safety 기반의 Solution 적용으로 제어시스템의 안전성 강화

Redundancy (이중화)

- Safety PLC (SIL3 이상의 시스템 구축)
 - 검증된 Safety Logic 및 Fail-Safe 기능 적용
- Safety Device (PL d 등급 이상의 시스템 구축)
 - 방폭(ATEX) 인증 및 신뢰성 검증된 Component 적용
- SAFETY Protocol
 - Safety Fieldbus 적용으로 안전 제어 시스템 구현 및 Safety Data 관리

2

표준 설계 및 구현

- 표준 규격에 의거한 기구 및 전장(PLC) 설계
 - ISO 13849-1 (제어 시스템), ISO 14119 (Interlocking 장치), EN 60204-1 (배선 및 전기 안전), ISO 13850 (비상 정지)을 준수
 - V-Model 적용 : 모듈 설계 및 소프트웨어 개발의 단계별 기능 검증 (IEC 61508 규격)
- 표준화된 통신 프로토콜 적용
 - Safety Protocol 적용으로 Safety Data의 안정적인 전송
 - 다양한 Fieldbus 및 산업용 Ethernet/OPC UA 대응

[Back-up] Safety PLC 적용 안

Fail-Safe 이중화(Redundancy) 기능을 적용한 '안전 제어 시스템'의 구축 안

이중화(Redundancy) 시스템의 적용 범위

Redundancy

- 제어 및 PLC 시스템의 고속 입출력, 대용량 데이터 처리에 의한 고신뢰성 및 안전성 확보를 위한 이중화 시스템

이중화 시스템의 적용 범위

Dual Redundant Fail-Safe System

- Fail-Safe PLC 시스템의 높은 무결성(High Integrity) 및 가용성(High Availability)에 의한 안정성과 신뢰성 확보를 위한 Two Independent Fail-Safe System

주) Fail-Safe : 기계나 그 부품, 시스템의 고장이나 장애 발생 시 항상 안전을 유지하는 구조와 기능 Fault Tolerant : 시스템을 구성하는 부품의 일부에서 결함(fault) 또는 고장(failure)이 발생하여도 정상적 혹은 부분적으로 기능을 수행할 수 있는 시스템

적용 안

1

Dual Redundant Process Safety System 구현

DI : Digital Input DOR : Digital Output Relay

- 두 개의 독립된 이중화 Fail-Safe system의 적용으로 안전 기능 및 결함 허용 수준(Fault Tolerant)의 향상
- 두 개의 독립된 Dual Processor 간 높은 동기화 수준 가능

2 Fail-Safe 기반의 Emergency Shutdown System 구현

■ BPCS(Basic Process Control System) 기능

- 1차 Process Control 및 주요 Event 및 Alarm 검출
- Critical Alarms 기능 (중대 Alarm Process)
 - 중대 Alarm Process 및 Event 처리
- SIS(Safety Instrumented System) 기능
 - Critical Event에 의한 Damage 최소화를 위한 Emergency Shutdown Process

1. 제어 시스템 > IO-Link

IO-Link 표준 통신 프로토콜 기술을 적용한 Sensor/Actuator의 연계

IO-Link의 개념

- Field 단의 센서가 상위의 정보 시스템을 포함한 Connected Enterprise로 용이하게 통합되도록 하는 공개 표준 통신 프로토콜(IEC 61131-9)이며, Sensor 및 Actuator를 위한 연결 기술
 - Sensor/Actuator와 IO Block의 1:1 통신
 - I/O 데이터, 센서 설정 Parameter, 프로세스 데이터 및 진단 정보 접근 가능
- IO-Link의 시스템 구성
 - IO-Link Maser Device (Gateway) General Station Description (GSD)
 - IO-Link Device I/O Device Description (IODD)

모든 Sensor 및 Device를 Fieldbus/Ethernet Network에 연결 => Smart Sensor

적용 안

1

Sensor 및 Actuator의 연계 시스템 구축

■ IO-Link 표준을 채택한 Component와의 인터페이스

[Valve Assembly Line의 Component 구성 사례]

1. 제어 시스템 > Remote IO System

Remote IO System를 이용한 제어 시스템의 구성

Remote IO System의 도입 배경

■ 제어 시스템(PLC)의 구성 변화

제어 시스템+ I/O Card 제어 시스템+ Fieldbus Master I/O Card Fieldbus Master Card • CPU/전원/통신/IO Module로 구성 • IO Module 필요 없음

■ 제어 시스템 변화의 따른 I/O의 구성 변화

Remote IO System의 구성

■ Controller/Coupler + I/O Module + End Module

일반적인 Remote IO의 구성

1. 제어 시스템 > 제어 S/W - Machine Control System

Conveyor 설비를 위한 제어 S/W를 Solution화 함

Machine Control System의 구성

Conveyor 설비를 위한 제어 S/W의 Concept

- CCS (Conveyor Control System)
 - 전체 Conveyor System의 제어 및 상태 모니터링
- **ZCS** (Zone Control System)
 - Interface 제어 및 Conveyor 구간 제어
- CUS (Conveyor Unit control board System)
- Conveyor Motion 제어 및 I/O 상태 관리

적용 안

1

Conveyor 설비의 제어 시스템 Solution화

■ PC 기반의 CCS Master에 의한 제어 S/W 구성

- H/W 시스템의 구성
 - Controller, Network, I/O, 전원의 이중화 시스템 구성
 - Conveyor Motion 제어를 위한 전용 제어 Board 채택

2

표준 설계 및 구현

- 표준 규격에 의거한 제어 설계
 - ISO 13849-1 : 제어 시스템의 안전 설계
 - IEC 61508 : 모듈 설계 및 소프트웨어 개발의 단계별 기능 검증 (V-Model 적용)
- 표준화된 통신 프로토콜 적용
 - 표준 기반 Ethernet 적용 및 OPC UA 기술 적용

1. 제어 시스템 > Robot Control System

Robot 제어를 위한 Robot Control System을 Solution화 함

산업용 Robot의 분류

■ 기계적인 구조에 따른 산업용 Robot의 분류

직교좌표형 • 각 축들이 직선 운동하는 형태 (보통 직교 Robot/XY Robot) 원동좌표형 • 2개의 직선 축 + 1개의 회전 축의 결합 극좌표형 • 직선 축과 회전 축을 혼용 다관절형 • SCARA(Selective Compliance Assembly Robot Arm) 수평 다관절형 - 관절 운동이 수평 (XY 축), 4축 구성 수직 다관절형 • 회전 축으로만 구성, 5~7축 구성 Parallel • Delta Robot Link Bot - 3축 또는 4축 구성

■ 산업용 Robot의 구성

- 기구부
- Manipulator : 3축 이상의 기계의 바닥 또는 모바일 플랫폼에 고정된 장치
- Actuator : 공압식/유압식/전기식
- 제어부
- Robot 제어기: 명령 전달, 위치 제어기, 모터 제어기

■ 협업 Robot (Collaboration Robot)

- 인간과의 직접적인 상호 작용을 위해 설계되어, 인간과 함께 안전하게 작업 할 수 있는 Robot
- 가볍고 유연하며 새로운 작업으로 이동 및 프로그래밍이 용이 충돌 대응 안전 기술, 빠른 Teaching 및 간편한 조작 (직접 위치 지시)
- 관련 규격
- ISO 10218-1 : 산업용 로봇의 안전 사항
- ISO/TS 15066 : 협업 Robot이 인간과 안전하게 작업 할 수 있는 규격 정의

Robot 제어의 적용 안

■ Robot Control System의 Solution화

- Conveyor Tracking 및 Vision System 기술을 활용한 물류 시스템 구성 (Packing/Unpacking)
- Conveyor Tracking : Conveyor 제어 및 속도 측정
- Vision System : 방향, 위치, 속도, Pattern Matching 등의 Inspection 기능

1. 제어 시스템 > Motion Control System

Motor의 분류 및 제어 기술

산업용 Motor의 분류

■ 입력 전기에 따른 분류

DC Motor

- 직류 전원(Battery)을 사용하는 Motor
- 기동 toke가 크며, 고효율, 가격 대비 성능이 장점

AC Motor

- 교류 전원(220V)을 사용하는 Motor
- 저소음/저진동, 반영구적인 수명 및 안정적인 성능이 장점

■ 제어 방식에 따른 분류

- Sensor를 이용하여 Feedback 제어에 의한 명령의 고속/고정밀로 동작
 - 운반 기계 및 초소형 제어 시스템에 적용
 - 산업용 기계 및 자동화 시스템에 적용
 - Robot, 반도체 장비의 정밀 속도 및 각도 제어

Linear Motor

- 일반 회전형 모터를 축 방향으로 잘라서 선형(Liner type)으로 펼쳐 놓은 구조로 직선으로 직접 구동되는 Motor
- Stepping 위치를 Pulse 단위 Motor • 입력 Pulse 수에 다
- 위치를 Pulse 단위로 분해하여 지정 Pulse대로 이동하는 Motor
 - 입력 Pulse 수에 대응하여 일정 각도씩 이동

Stepping Servo Motor

• Stepping Motor의 탈조 발생 방지를 위해 위치 Sensor를 부착하여 Feedback 제어

Servo Motor의 비교

DC Servo Motor

- Brush Type
- 제어구조 간단 (소형화가 용이)
- 단상 Inverter
- 회전전기자형 (Coil이 회전)
- 방열이 나쁨
- 유지보수 필요 (Brush 마모)
- 최대 속도 낮음
- 정격 용량이 작음

AC Servo Motor

- Brushless Type
- 제어구조 복잡 (고가)
- 3상 Inverter
- 회전계자형 (자석이 회전)
- 방열이 양호
- 유지보수 거의 필요 없음
- 최대 속도 높음
- 정격 용량이 큼

Motor 제어를 위한 요구 기술

■ Motor의 제어 기술

Open Loop 제어

• Stepping Motor의 정지 Toke를 이용한 위치 제어에 사용

Close Loop 제어 • Servo Motor의 위치, 속도, Toke 제어에 적합 (Encoder 등의 Feedback Sensor)

Inverter 제어

- AC Motor를 이용하여, Inverter 출력 전압과 주파수를 변환함으로써 가감속 제어하는 방식
- Inverter : 전기적으로 DC를 AC로 역변환하는 장치이며, 상용 전원으로부터 공급된 전력을 입력 받아 자체 내에서 전압과 주파수를 가변 시켜 전동기에 공급함으로써 전동기(Motor) 속도를 용이하게 제어하는 장치

Servo System

- Command에 대해 동작 가능한 제어 기구를 총칭

- Servo Motor : 회전자가 영구자석형인 모터 + Motor의 회전량을 측정하는 엔코더 (Feedback Sensor)
- Servo Drive : 모션 제어기의 위치 명령과 엔코더에서 측정한 모터 - 회전량의 차이에 해당하는 전류를 서보 모터에 흘려주어 모터를 구동
- Motion Controller : 서보 드라이브에서 위치 펄스를 보내는 상위 제어기

1. 제어 시스템 > Motion Control System

Motion 제어를 위한 Motion Control System을 Solution화 함

Motion 제어의 Concept

■ Motion을 위한 제어 Concept

적용 안

■ Motion Control System의 Solution화

- 하나의 Motion Controller는 여러 대의 Servo Motor 및 Stepping Motor를 제어
- 여러 개의 Sensor Input 및 Digital Output을 제어
- Ethernet 기반 표준 Protocol 및 분산 제어 시스템의 구성 용이

1. 제어 시스템 > PAC 기반의 통합 제어 시스템 구축

PAC를 적용한 통합 제어 시스템의 구축 안

PAC의 개요 및 기능

■ PAC (Programmable Automation Controller)

- PLC(Programmable Logic Controller)의 진화된 개념으로, 최신 운영체제(OS), Real-time Multitasking 지원, 향상된 네트워크 성능, 상위 정보시스템으로의 대용량 데이터의 빠른 전송을 지원하는 Controller
- Motion, Inverter, Safety, I/O 등의 이기종 제어 장비를 통합으로 제어 하며, IT 표준의 산업용 네트워크 인프라를 통해 Enterprise와 연결을 지원

■ 통합 제어 시스템 구성의 요구 기능

Controller

- Sequence, Motion, Process, Drive를 포함한 다양한 기능을 단일 제어기로 구성

Motion

- 별도 Motion을 위한 CPU가 필요 없음
- 안전 기능 내장 SIL 3/PL d 만족
- 기본적인 모든 Stop Category 및 고급 Safety 기능 지원

Safety Solution

- 일반 제어와 안전 제어를 통합한 단일 제어 Platform으로 구성
- 안전 Drive Solution 탑재: Safe Torque Off, Safe Speed Monitoring 기능

보안 체계

- 구조화되고 견고한 IACS Network Infrastructure 구현
- 심층 방어 방식(Defense-in-depth) 적용: 여러 개의 방어책을 사용하여 시스템 또는 컴포넌트간의 무결성을 제공하며, 제조 현장의 설비, 자산, 지적 재산을 보호

설비 종합 효율(OEE)

- 설비 활용도, 성능 효율 및 양질의 제품 비율에 관한 수집 되는 Data의 관리 및 KPI 연계 솔루션 필요 (OEE = 활용도x성능x품질)

주) IACS: Industrial Automation and Control System (산업용 자동화 및 제어시스템) OEE: Overall Equipment Effectiveness, HMI: Human Machine Interface

SCADA: Supervisory Control and Data Acquisition

PAC 기반의 제어 시스템 적용

<u>PLC 기반의 개별 시스템으로 구성</u>

Controller/Network/Safety System/Motion 이 개별로 제어

PAC 기반의 통합 시스템으로 구성

Controller/Network/Safety System/Motion의 통합제어

2. 표준화 기술

2. 표준화 기술 > 통신 Interface

OPC UA, IO-Link 기술 및 Gateway Box를 활용한 통신 인터페이스의 표준화 설계 및 적용

Smart Factory를 위한 통신의 요구사항

Smart Factory를 위한 표준 네트워크 기술

제조 자동화 : Smart Factory

	제조 자동화	
Sensor & Actuator	물리적 연결	
통신 Protocol	Fieldbus, 다양한 종류의 표준	
통신 특성	Enterprise와의 분리, 제한된 Node 개수, 제한된 보안	
Data 활용	제한적 수집/분석	
제어 시스템	Controller 중심	

	Smart Factory
	통신으로 연결
	표준 Ethernet, 단일 표준
	Enterprise와의 통합, Node 개수 무제한, 보안 강화, 유무선 통합
	무제한 수집 분석, Big Data
1	IT와 융합, IoT

Smart Factory를 위한 통신의 Issue

표준 Protocol를 적용한 산업용 네트워크의 통합 필요

- OPC UA, Gateway Box, IO-Link의 적용

2. 표준화 기술 > 통신 Interface > 1) OPC UA

OPC UA 표준 기술을 적용한 통신 Interface의 내재화

OPC 및 OPC UA의 개념 및 Architecture

OPC (OLE for Process Control)

- OPC 표준은 MS의 OLE 기술을 기반으로 Client와 Server 사이에서 통신과 Data의 변환을 위한 산업 표준 메커니즘을 제공
- Process Data의 Client Application과 Server 사이의 인터페이스 방식의 규정으로 OPC 호환 Client는 다수의 OPC 호환 Server들로부터 Data Read/Write 가능

• OPC UA (Open Platform Communication Unified Architecture)

- IEC 62541 표준으로 기존의 OPC DA/HAD/A&E 및 Security를 통합
- 표준 Ethernet 기반의 실시간 및 동기화 제공

OPC UA System Architecture

- OPC UA Information Model for IEC 61131-3 7.1.1 System Architecture General

주) OLE: Object Linking Embedding

적용 안

■ OPC UA 표준 기반의 Interface Module 구성

• OPC UA Protocol Unit의 내재화

2. 표준화 기술 > 통신 Interface > 2) Gateway Box

이기종의 Machine 및 Device와의 Connectivity를 위한 인터페이스 기술의 확보

Gateway Box의 기술 내재화

- Interface를 Device Platform 구축
- 다양한 통신 프로토콜(TCP/IP, PLC, SECS, OPC 등)를 연계, Machine의 Message 송수신 지원
- 서로 다른 Fieldbus들을 상호 연결하는 Gateway System

Gateway Box 2/System Architecture

Gateway Box의 기능

- User Service
- 내부 프로그램 구현, 장비 상태 및 통신 상태 모니터링
- Memory Area
 - 통신 Data 저장, Data 저장/가공/Backup 영역
- Communication Driver
 - Standard Communication Driver : 통신 프로토콜 지원
 - -> TCP/IP, PLC, SECS/HSMS, OPC 등
- Communication Library :

Field Device의 프로토콜을 Library 형태로 구성

- User Defined Communication : 사용자가 직접 프로토콜 제작
- Media Block
- Ethernet 및 Serial 통신 Port

Smart Factory Platform フ축

[Back-up] 표준 통신 Interface 기술을 적용한 Data 연계 안

OPC 및 Gateway를 활용한 Field Data의 연계 안

1. OPC 및 OPC UA를 적용한 Data 연계

- OPC 표준을 적용한 Data 수집 및 RTDB와의 연계
 - Tag List 표준화: PLC Tag List의 기준 Naming Rule 정의
 - OPC Server 구축: OPC Driver 적용
 - GE, SIEMENS, AB, OMRON, Modbus 등의 Fieldbus
 - PLC OPC Server간 통신 개통, 표준 Tag 적용 및 Data 연계
 - OPC UA를 통한 RTDB 연계

■ 시스템 구성

- Field Data 연계를 위한 시스템 구축의 예

2. OPC UA 기반의 Gateway Box를 적용한 Data 연계

- OPC UA 및 Gateway를 활용한 Data 수집 및 연계
- Field Data 연계를 위한 OPC UA 기반의 Gateway 적용 및 Legacy System의 연계

[Back-up] 반도체 산업군에서 통신 Interface

반도체 장비 Data의 수집 유형 및 생성 Data 구분

장비 Data의 수집 유형

SECS/GEM

- 일반적인 장비 제어 및 Data 수집 방법 (Event/Alarm/Trace/Control 담당)

■ EDA (Equipment Data Acquisition)

- 반도체 장비에서 발생하는 각종 Data를 신속하고 유연하게 수집 및 제공 목적
- 장비 제어 경로(SECS/GEM)와 분리해 상호간의 성능 간섭을 피하기 위한 방법 (Event/Alarm/Trace 담당)
- Interface A: SEMATECH(Semiconductor Manufacturing Technology)에서 제안
- TDI (Tool Data Interface) : SELETE/JEITA에서 제안

주) DCP : Data Collection Plan, DCR : Data Collection Request ODBC : Open Database Connectivity, FDC : Fault Detection and Classification

장비 생성 Data의 구분

■ 장비에서 생성되는 Data의 구분

장비 Event 및 Parameter	 Process Status: Init, Idle, Setup, Executing, End 등 장비 Event: 장비 상태 변화, Job 상태 변경, Material의 단위 동작(Pick/Place 등) SVID/DVID/CEID 장비 Parameter (Config Data) ECID Recipe Data Alarm Report
장비 운영	 장비 상태 : Idle, Run, Alarm, Process Run/Pause/Abort/Process Ready 등 Remote 상태 : On-line(Local/Remote), Off-line 등 Remote Control : Start, Stop, Pause, Resume, Cancel,
Data	Abort 등

장비 Event 및 Parameter의 정의

• Material 이동 위치 : Wafer, FOUP 등

• Recipe Control : Select, Delete, Save, Change 등

종류	의미	예
SVID (Status Value ID)	어느 시점에도 항상 유효한 장비의 상태 값 (Sensor Data, FDC)	Status, Wafer ID, Lot ID, Temperature, Vacuum (Pressure) MFC (Gas Value)
DVID (Data Value ID)	특정 시점에만 유효	Processing
CEID (Collection Event ID)	발생되는 Event에 ID 번호를 부여하여 관리	Alarm, Process 상태 변경, Wafer 유무, 장비의 상태 변경
ECID (Equipment Constant ID)	장비 Parameter (Timeout 설정, Auto/Manual 변경)	Motor Position/Speed/Torque, Cassette ID (Loading 시점)
ALID (Alarm ID)	Alarm/Warning 보고	

[Back-up] 반도체 산업군에서 통신 Interface

기존의 SECS/GEM 및 OPC UA를 적용한 통신 Interface 구성 안

반도체 산업군에서의 통신 Interface의 적용

일반적인SECS/GEM(반도체장비간통신)적용

SECS/GEM: OPC UA 비교

	SECS Protocol	OPC UA Protocol
정의	반도체 장비간 인터페이스를 위한 Protocol	Client와 Server 사이에서 통신과 Data의 변환
통신 Interface	Serial, Ethernet (TCP/IP)	Ethernet
PLC에서의 지원 여부	지원하지 않음 (타 시스템 연계시 Converter 또는 Server 필요)	지원 (다양한 Field Device 및 PLC의 통합 관리)
보안 Protocol	지원하지 않음	지원
확장성	반도체 장비간 통신으로만 한정	원격 제어 및 무제한의 Device 연결, 손실 없는 Data의 연계
속도	상대적으로 느림	빠름

SECS/GEM + OPC UA의 적용

予) MES: Manufacturing Execution System EES: Equipment Engineering System YMS: Yield Management System EAP: Equipment Application Program MCS: Material Control System AMHS: Auto Material Handling System E84: Enhanced Handoff Parallel I/O Interface

2. 표준화 기술 > 형상 관리

제어 시스템 설계 및 Engineering에서의 실시간 Data 반영 및 표준화를 위한 "형상 관리 Platform"의 구축

Smart Factory를 위한 제조 Engineering의 요구 사항

표준화

- 일관성 있는 Data Process 및 동일한 Policy & Rule 적용
- 표준 Master Template 및 Master Data 기반의 업무 Process
- 국제 표준을 준수하는 표준 Process
- 설계/도면, 공정, Engineering, 제어/관리 표준 등

자동화

- 표준 Data에 맞는 모든 Data의 자동 Engineering 필요 - 모듈화 엔지니어링
- 설계~유지보수 업무 Process 전과정의 Data Consistency Process 구축 필요
- 부품 연계 자동화 및 엔지니어링 자동화
- ERP/SCM/PLM과 BOM의 통합

설비 관리

- FMEA 기반의 문제점 조기 발견 및 조치
- 장애 설비 및 부품 자동 감지 및 통보
- Data 기반의 유지보수 시스템 예방 정비 시스템의 필요
- Engineering Data와 운영 시스템간의 연동

Data 및 표준화 기반의 설계/운영을 위한 형상 관리 Tool 적용 필요

[변경 관리 Solution]의 구축

■ Tool 기반의 형상 관리 Solution의 구축 단계

■ 구현 가능 범위

설계 기준 (BEDD)

- 각 장비별 수전 관리 (Hook-up 사양 기준)
- Fieldbus(DeviceNet, Probifus 등)의 계통도 및 위치
- 산업용 Ethernet의 계통도 및 위치, IP Address 등

장비 기준 (Process/ 물류 장비)

- Safety Circuit 표준화 및 배포/관리
- 자동 도면 검증 시스템 반영 (설비 효율, 에너지 절감 등)
- 설비 보전 (예방/예지 정비)

2. 표준화 기술 > 형상 관리

Data 및 표준화 기반 설계, 운영/유지보수의 일관성을 제공하는 "형상 관리 시스템"의 구축

[형상 관리 Platform]의 적용 Concept

■ 제어/전장 엔지니어링 기반의 설계 및 운영/유지보수 통합 Process 구축

설계, 운영/유지보수 엔지니어링에서의 변경점 관리 Concept

 설계, 운영/유지보수 엔지니어링에서의 변경 Data는 상호 연계 및 실시간으로 반영되는 시스템 구축

2. 표준화 기술 > 표준 사양서의 정립

제어/통신 영역의 표준 사양서(Standard Specification)의 정립

표준 사양서(Standard Specification)의 적용 대상

■ 표준 사양서의 목적

- 최적화된 설계 반영으로 설비/장비의 안전성 및 신뢰성 확보
- 표준에 의한 일관성 있는 시스템 제작 및 유지 보수에 반영
- •기술 Leading 및 Ownership 확보

■ 표준 사양서의 적용 대상

적용 안

1

'표준 제어 설계 사양서 '의 정립

- 제어 시스템의 설계에 관한 사항
 - 표준 규격에 의거한 제어/전장(PLC) 및 기구의 설계 반영
 - ISO 13849-1 (제어 시스템), EN 60204-1 등
 - V-Model을 적용한 기능 검증 사항 반영
 - IEC 61508: 모듈 설계 및 소프트웨어 개발의 단계별 기능 검증

■ 표준 Safety 설계에 관한 사항

- 검증된 Safety Logic 및 Fail-Safe 기능 적용
- Safety Device 적용 : 방폭(ATEX) 인증 및 신뢰성 검증
- SAFETY Protocol 적용 : 안전 제어 시스템 구현 및 Safety Data 관리

■ 표준 규격에 의거한 형상 관리에 관한 사항

• 국제 규격을 준수하는 일관성 있는 표준 Process 반영

2

'표준통신사양서'의 정립

- 표준화된 통신 Protocol 적용에 관한 사항
 - 다양한 Fieldbus의 인터페이스를 위한 Platform 설계 및 기능 구현
 - 표준 기반 Ethernet 및 OPC UA 기술 등 적용

2. 표준화 기술 > 표준 사양서의 정립 > 1) 표준 제어 설계 사양서

제어 설계를 위한 표준 사양서(Specification) 의 조건 – 제어 시스템

제어 시스템 반영을 위한 Concept

■ 적용 항목 및 범위

- PLC 설계 (I/O, 이중화, Logic 등)
- 전기 Panel 및 전기 설계 기준
- 비상 정지 회로
- Drive 과부하 보호
- 개폐 서지(Surge) 및 낙뢰로 인한 과전압 보호
- 접지(Earth) 및 감전 방지대책
- 설비 운영 Manual
- 유지 보수 절차 및 Manual

■ 표준 규격에 의거한 설계 공통 사양 적용

- 모든 제어 시스템(기구/전장/PLC 등)은 공통으로 다음 규격이 적용되어 설계되도록 '표준 제어 설계 사양서'에 반영되어야 함
- ISO 13849-1 (제어 시스템)
- EN 60204-1 (배선 및 전기 안전)
- ISO 13850 (비상 정지)
- ISO 14119 (Interlocking 장치)

■ V-Model을 적용한 기능 검증 사항 반영

- 모듈 설계 및 소프트웨어 개발의 단계별 기능 검증 (IEC 61508 규격)

2. 표준화 기술 > 표준 사양서의 정립 > 1) 표준 제어 설계 사양서

제어 설계를 위한 표준 사양서(Specification)의 조건 – Safety

Safety 시스템 반영을 위한 Concept

■ 적용 항목 및 범위

- 안전 시스템 관련 표준 규격에 의거한 설계
- 안전 관련 부품들은 관련 규격에 따른 부품 선정과 설계 적용
- 안전 회로 설계 사양 반영
- EN ISO 13849-1에 의거 Annex A에 따른 Risk Parameter S, F, P를 평가하고 요구되는 Performance Level (PLr) 을 결정
- 검증 및 인증 사항 반영
- 안전 회로의 신뢰성 검증
- 모든 안전 회로는 요구되는 PLr 을 만족하는지 PL 계산 및 검증하여 이를 증명하는 PL Report 를 제출 하여야 함
- 안전 관련 부분은 단일 결함이 안전 기능의 상실로 이어지지 않도록 설계
- 단일 결함은 즉각적인 또는 다음 안전기능 요구시 그 이전에 감지되어야 하며, 축적된 결함이 안전기능의 상실을 유발하지 않아야 함
- 안전 부품의 인증
- 모든 안전 부품은 검증된 부품과 관련 규격에 따른 Test 결과에 대한 인증 및 인증서를 제출하여야 함
- 방폭(ATEX) 인증 및 신뢰성이 검증된 Component 적용으로 PL d 등급 이상의 시스템이 구축 되어야 함

- Safety 통신 Protocol의 적용
- 표준 안전 통신 Protocol의 반영
- IEC 61508 기반으로 개발 되고 인증 된 Safety Protocol 로 SIL 3 등급의 안전 통신 사양 적용
- ISO 26262 규격 (Functional Safety Network)
- 산업용 안전 통신의 요구 사항을 반영한 설계
- 표준 제어 프로세스를 통해 모든 정보를 전송
- 시간 제약이 있는 안전 관련 데이터의 안전한 전송
- 매우 빠른 동기화 적용에서 모든 신호의 실시간 통신
- 주기적인 자가 진단 기능
- 신속한 고장 진단
- 오류 검출 능력 : 통신 에러, 네트워크 에러, 케이블 결함, 안전 부품 고장, 사전 진단 등
- '표준 인터페이스' 기반의 Network Topology 반영
- Linear/Star/Tree/Ring 구조
- Ring Redundancy : Cable 및 Switch의 결함 또는 Loop 장애시 안정성 보장
- 전송 대기시간 최소화 방안
- 전송 효율성 증대

2. 표준화 기술 > 표준 사양서의 정립 > 1) 표준 제어 설계 사양서

제어 설계를 위한 표준 사양서(Specification)의 조건 – 형상 관리

변경점 반영을 위한 Concept

- 적용 항목 및 범위
- 공정/전기 등의 시스템 설계는 '표준 형상 관리 Tool'를 이용
- 표준 규격에 의거한 '변경 관리'의 적용 다음 규격을 준수 하여 설계 반영하여 야 함
- IEC 81346 (프로젝트 구조 및 식별자 지정)
- IEC 61175 (신호 지정)
- IEC 61666 (터미널 지정)
- IEC 81714 (기호 설계)
- IEC 60617/ISO 14617 (도면의 Symbol)
- IEC 61355 (도면의 구분과 지정)
- IEC 61082 (전기 설계 도면의 작성 요건)
- IEC 62027 (파트 리스트 작성 요건)

<u>설계 적용 표준 규격 및 연관성</u>

■ 설계 환경 설정의 의 표준화 적용

- 플랫폼 및 프로젝트 설정은 국제 표준 규격 (IEC)에 의해서 설정되도록 반영되어야 함

설계 환경 설정의 표준화 및 업무 Process

플랫폼 설정 프로젝트 설정 표준 배포 및 관리

		_
수행 업무	IEC 표준 대응	
Grid 및 참조 Grid 설정	61082	
출력 양식 작성	61082	
보고서 양식 작성	62027 61666	F
Symbol Library 작성	61082 60617	-
		- 1

수행 업무	IEC 표준 대응
프로젝트 구조 및 식별자 설정	81348-1 81346-2
도면의 구분과 지정	61355
Interrupt 표시	61082
Layer 설정	61082
접속Numbering 설정	61175

수행 업무	변경 관리 Tool 기능
프로젝트 Template 관리	기본 프로젝트
사용자 환경 배포	Toolbar 관리
프로젝트 관리	프로젝트 관리
표준 배포	Add-on

2. 표준화 기술 > 표준 사양서의 정립 > 2) 표준 통신 사양서

통신 설계를 위한 표준 사양서(Specification)의 조건

통신 사양 반영을 위한 Concept

■ 적용 항목 및 범위

- 통신 Interface 정의
 - Serial (RS-232C/RS-422/RS-485), Ethernet (TCP/IP)
- Fieldbus의 특성 정의
 - 계층 구조(Physical/Data Link/Application Layer 등), Frame의 구조, Message 규약 (FMS : Fieldbus Message Specification)
- 통신 대상(장비)의 특성 정의
 - Status Specification, Data 구조, Relation Sequence
 - Memory Map 정의
- 통신 Protocol의 체계화
- Interface 및 통신 Format, Command Message 정의

■ 표준 규격에 의거한 설계 공통 사양 적용

- 모든 통신 관련 시스템은 공통으로 다음 규격이 적용되어 설계되도록 '표준 통신 사양서'에 반영되어야 함
- IEC 61508 : 기능적 안전 통신망 요구 사항의 반영
- 규정된 통신 Error를 해결 하도록 반영
 - -> Corruption, Unintended repetition, Incorrect sequence, Loss, Unacceptable delay, Insertion, Masquerade, Addressing
- IEC 61131-9 (Sensor 및 Actuator의 통신 Interface 정의)
- IEC 61158 (Real Time Network)
- IEC 61850 (전력 통신 네트워크 및 시스템 정의)
- IEC 62439 (고가용성 자동화 네트워크 정의)
- IEC 62541 (OPC UA)

■ IIoT Platform의 구조 설계 및 체계화

- 이기종의 Machine 및 Device와의 Connectivity를 위한 통신 인터페이스의 기능 정의 및 상세 설계
- IIoT Platform의 Architecture 및 기능 정의

주) IIoT: Industrial Internet of Thing

3. 모니터링 체계

3. 모니터링 체계 > 예지 정비

예지 정비를 위한 상태 모니터링 및 진단의 기반 시스템의 구축

Smart Factory를 위한 설비 보전의 단계

단계 정의 선행 요소 ■ 고장이 발생하면 유지 보수 수행 사후 정비 (Reactive) ■ 고장에 대한 긴급 유지 보수가 중요 ■ 고장 발생 전에 유지 보수 업무 수행 • 계획 활동 예방 정비 (TBM/CBM) (Preventive) ■ 고장 방지를 위한 계획 활동 ■ 기법을 적용하여 <u>사전에 고장을 제거</u> • Data 확보 예지 정비 (Big Data) ■ 고장 사전 진단 기법 적용 및 비용과 (Predictive) • 분석 Platform 이윤 최적화 자율 보전 ■ 고장의 근원을 모두 제거 • 가상화 • Deep Learning 및 (Proactive) ■ 고장 원인 사전 봉쇄 Machine Learning 예지 정비를 위한 설비의 Data Source

주) VFD : Variable Frequency Drive

적용 안

* 향후, 분석/설계 후 상세화

[Back-up] 예지 정비(PdM)을 위한 통합 모니터링 시스템의 구축 안

Field Data의 연계 및 '통합 DB'을 활용한 통합 모니터링 시스템의 구축 (예시)

시스템 구성 안

■ 통합 모니터링 시스템의 구성

- 실시간 모니터링 체계 구축
- 실시간 이상 감지 및 Alarm
- Early Warning System 체계 기반 구축
- 설비 유형별 분석 Logic 적용
- 무사고/무중단 설비 운영을 위한 예방적 체계 확립
- RTDB와 연계한 분석 Platform 구축
- '통합 DB' 구축
- 설비 Data의 기존 정보(운전/보전)와의 연계 분석
- 현장 운영 시스템과의 통신 연계
- 통신 인터페이스 표준화 (OPC 및 OPC UA 적용)
- 현장 설비 운영 Field Data(PLC/HMI)의 수집
- Real Data 및 Alarm Data

 $\stackrel{\textstyle \leftarrow}{\rightarrow}$) RDBMS : Relational Data Base Management System, RTDB : Real Time Data Base

3. 모니터링 체계 > 에너지 관리

에너지 관리를 위한 모니터링 시스템 구축 안

Smart Factory를 위한 에너지 관리

■ 에너지 관리의 목표

소비 모니터링

- 에너지 소비의 정확한 가시성 확보
- 패턴 예측 및 에너지 사용 경향 파악
- 비정상적인 에너지 사용의 알림

데이터 분석

- 실시간 에너지 공급과 생산 데이터의 상관 관계
- 생산 단위당 에너지 절감
- 동일 수준의 에너지 사용으로 생산 능력의 향상

사용량 제어

- 수요 비용 절감 및 실시간 사용량 관리
- 에너지 소비 데이터와 생산 데이터의 효율 관리

■ 에너지 관리의 대상

일반적인 시설에서 에너지 사용은 운영 예산의 30% 를 차지한다. (USA, 에너지부)

에너지 최적화 및 에너지 소비 절감을 위한 시스템 구축 필요

적용 안

1

에너지 관리 시스템 의 구축

■ 계측 모듈과 연계한 에너지 현황 모니터링

Energy Management

- 에너지 사용 관리 개선
- 장비 및 제어 Logic 개선으로 에너지 비용 절감
- Fan/Pump의 모터 부하

Monitoring

- 전력 품질 및 설비 진단
- 고장 예측, 설비 보전

3. 모니터링 체계 > Motor 제어 Solution

Smart MCC 개념을 적용한 Motor의 제어 및 운영

MCC의 개념 및 Smart MCC의 필요성

- MCC (Motor Control Center 전동기 제어반)
- 다수의 Motor를 한곳에 모아 가동/정지 및 상태를 감시하며, Motor 운전시 전원을 중앙집중식으로 공급하여 제어 및 보호를 위한 시스템
- MCC의 주요 구성품

Motor Control Center

Smart Factory를 위한 MCC의 요구 사항

- 원격 모니터링 지원 필요 연속적인 성능 모니터링, 문제 발생시 즉각적인 경보 알림 및 문제 해결 지원
- 운영 및 제어, 서비스, 진단 등의 Data 활용
- Down time 및 유지보수 시간 감소를 통한 가동 효율 극대화
- 에너지 소비의 절감

지능형 Motor Solution 필요

- Smart MCC
- 지능형 모터 보호 계전기를 적용하여 통신을 통한 원격 제어 및 모니터링 기능 지원
- 모터 보호 설정 및 Unit 내부 제어 회로를 프로그램으로 Logic화

Smart MCC의 구성 Concept

■ 제어/감시 구성

ICMS: Integration Control Monitoring System

ECMS: Electrical Equipment Protection Control & Monitoring System

(전력설비 보호감시 제어시스템)

■ 제어/감시 Data의 수집

Conventional Type MCC - 조작 및 상태 감시

Control	Status
Start	Run
Stop	Stop
	Fault

Smart MCC - 다양한 운전 Data 수집

Control	Status	Data
Start	Run	Test Position
Stop	Stop	부하 전류
	Fault	Fault 상세 원인
		위험 Alarm
		조작 Fail

- Fault 상세 원인: Control Power Fail, Overload, Earth Fault (접지) 등
- 위험 Alarm: 설정 값 이상의 전류 도달시, 과부하 Trip 전에 Warning
- 조작 Fail: Starter or Stop 제어시 실제 부하가 정확한 운전/정지 여부 확인

[Appendix]

[Appendix. 1] Smart Factory를 위한 기술 요구 사항

Smart Factory 구현을 위한 요구 기술의 배경

Industry 4.0에서 요구하는 IT 기술의 조건

■ Industry 4.0에서의 요구 기술

- INTREE 4.0 FORUM
- 1. One Integrated system for all levels
- 2. Commands from the production to the system
- 3. **Integration** of horizontal and vertical systems
- 4. Gets the information from the cloud
- 5. Access for the whole supply chain
- 6. **Decentralized (CPS)** * Cyber Physical System
- 7. Apps (SaaS)
- * Software as a Service
- 8. Opens Standard
- 9. Real-time Data
- 10. Pay-per-use

IEC TC65 – Smart Manufacturing Use Cases 에서의 기술 Keyword

■ IEC TC65에서의 Smart Manufacturing Use Cases

1-3 IEC TC65 Smart Manufacturing Use Cases (overview)

- Smart manufacturing: Customers requireflexible production systems and prore
- Modularization: Intelligent machinand compatibility
- Flexible scheduling of production or production systems;
- · Energy efficiency: Cost effectiven
- Smart Grid: Renewable energy an adds flexibility needs to the produ
- Engineering: product and product operation
- Feedback loops: KPIs, results of o
- Simulation of production, machin relevant supply chain
- · Safety in an environment of a flex
- Condition Monitoring for the pro
- Cyber Security: With the higher le have to be done for security
- · Quality: Quality improvements ca
- · Communication with real time per
- Connected Word business between

All have to fulfill non functional requirement.

- ✓ Smart manufacturing
- **✓** Modularization
- ✓ Energy efficiency
- ✓ Safety
- **✓** Condition monitoring
- **✓** Communication : Real time

■ IEC TC65: 산업용 공정 계측, 제어 및 자동화를 위해 사용되는 시스템과 요소 기술에 대한 국제 표준의 제정 및 개정 업무를 수행하는 IEC 산하 기술 위원회

traceability, scalability, migration path, deterministic open for integration, distributed measurement. control. etc.

- Fieldbus 및 산업용 Ethernet에 대한 국제 표준 수행
- 관련 주요 표준 : IEC 61508 Functional Safety,

ISO 26262 - Functional Safety Network,

IEC 62439 - High Availability Network,

IEC 61158 - Real Time Network,

IEC 62541 - OPC UA

[Appendix. 2] 제어 시스템의 구현

제어 시스템의 구성 및 제어의 분류

제어 시스템의 구성

■ 제어 시스템의 구성 요소

- 기계 장치(Mechanism) : 공정 운영 및 Data 수집을 위한 신호 Mechanism
- Sensor : 공정 변수 측정 (온도, 습도, 압력, 유량, Level 등)
- Actuator : 공정 Parameter 가동을 위한 Switch/Motor
- 제어기(Controller) : 기계 장치를 제어하는 Microprocessor
- Interface : 기계 장치와 제어기를 연결
- Serial, Fieldbus, Ethernet
- 제어 기술 : 제어 Algorithm
- Sequence 제어, Feedback 제어

제어의 분류

제어 시스템 기준의 제어 분류

Open Loop Control

- Feedback Loop을 이용하지 않으며, 출력 변수를 측정하지 않고 Process을 직접 제어

Closed Loop Control

- 출력 변수를 입력 Parameter와 비교하여, 출력이 입력에 보상하도록 제어

PID Control

- 제어 변수와 기준 입력 사이의 오차에 근거하여, 계통의 출력이 기준 전압을 유지 하도록 하는 Feedback 제어의 일종
- P (Proportional : 비례), I (Integral : 적분), D (Differential : 미분)
- P 제어 : 오차에 적당한 비례 상수 이득을 곱하여 제어
- PI 제어 : 비례 동작에 적분 동작을 추가한 제어로 편차를 제거하는 방식
- D 제어 : 오차 값의 변화를 바탕으로 조작의 크기를 결정하는 방식

[Appendix. 2] 제어 시스템의 구현

제어 방식의 비교 및 Maker별 PLC 현황

PC 기반: PLC 기반 – 제어 방식의 비교

구 분	PC 기반	PLC 기반
제어 대상	Scheduler, Recipe, Transfer, Robot/Motion, I/O 등	Sequence Robot/Motion, I/O 등
통신 방식	Serial, TCP/IP, OPC/OPC UA 등	Serial, TCP/IP 등
구현 방법	Programming Language - C, C++, C#, VB, Delphi 등	PLC Ladder - PLC Maker별
용도	복합 제어에 적합 - 장비 제어, 공정 제어, Robot 제어 등	Sequence 제어에 적합 - Conveyor System, Inline System, Motion 제어 등

PLCopen 기술

• 배경

- 사용자 Application Software 개발의 효율을 높이고 유지보수 비용을 줄이기 위해 1992년도에 창립

•목표 및 조직

- Vendor 및 생산자에 독립적인 국제적 단체로 국제 표준 기반의 산업용 제어 프로그램의 개발을 목표
- TC1(Standards), TC2(Motion Control), TC3(Certification), TC4(Communication), TC5(Safety), TC6(XML) 기술 및 프로모션 위원회로 구성

• 표준

- IEC 61131-3 : 표준 Motion Control Library, Safety, XML specification, Reusability Level and Conformity Level 등을 제공하기 위해 산업용 제어 프로그램의 표준 정의

Maker 별 PLC 현황

Maker	주요 PLC Product	НМІ	대응 Protocol
SIMENS	SIMATIC Series SIMATIC S7-200, S7-300, S7-400, S7-1200, S7-1500	SIMATIC WinCC SIMATIC WinCC OA	PROFIBUS / PROFINET
GE	FANUC SERIES 90-20, 90-30, 90-70 RX3i PacSystem RX7i PacSystem	CIMPLICITY	PROFIBUS / PROFINET
Rockwell Automation	ControlLogix 5570/5580 CompactLogix 5370/5380	FactoryTalk RSView	DeviceNet / EtherNet/IP
ABB	AC500 Series	DigiVis 500	EtherCAT
Schneider	Modicon	Vijeo Citect	Modbus/TCP CANopen
OMRON	CJ 1, CJ2, CS Series	Sysmac Studio	DeviceNet / EtherCAT EtherNet/IP
MITSUBISHI	MELSEC Q Series, L Series, F Series	GOT2000 Series GOT1000 Series	CC-Link / CC-Link IE
PILZ	PSS4000	PAS4000	SafetyNET p
B&R	X20	Automation Studio	ETHERNET POWERLINK, openSAFETY
Beckhoff	TwinCAT	-	EtherCAT

[Appendix. 3] Safety System의 구축

Safety System의 구축의 필요성 및 제어 PLC와 Safety PLC의 비교

Safety System 을 구축해야 하는 이유

그럼으로, Fail-Safe 기능이 탑재된 Safety PLC 적용 필요

국제 규격에 따른 Safety PLC의 적용

Fail-Safe 장비 제어 설비(Fail-to-safe Equipment Control System (FECS)) – ISO 13849-1 (EN 954-1)

=> 안정 기준에 따라 설계되고 실행되는 제어 회로로 안전과 관련된 프로그래밍이 가능한 설비 설계를 정의 함.

제어PLC: Safety PLC

구 분	제어 PLC	Safety PLC
기능	운영 및 제어	Safety System 관리
Fail-Safe	없음	Fail-Safe 기능 탑재로 오류 발생시 항상 off 상태를 유지
CPU	단일 CPU	이중 CPU
입력 Test Pulse	없음	이중화 구성으로 교차 단락 감지를 위한 Test Pulse 기능
Relay 출력	접점 융착에 의한 고장 위험 높음	접점 융착에 의한 고장 감지 기능
안전 검증 Data	없음	PL e 등급 - 만족 Category 4 - 만족

* Fail-Safe: 시스템 결함이 발생 하여도 안전한 상태로 복구하는 기능

[Appendix. 3] Safety System의 구축

Safety System의 등급 - PL, SIL의 설명 (SEMI-0712b에 언급된 ISO 13849-1)

PL

PL (Performance Level)

• 기계 장비에 적용된 Interlock 회로(E-Stop, Door SW 등)의 고장 확률(PFHd)을 최소화하여 Interlock 회로 고장으로 인해 발생 할 수 있는 사고를 예방하기 위한 안전 등급 (a ~ e 등급, e 등급이 가장 높음)

■ PLr의 결정

• Risk Parameter S, F, P를 사용해 요구되는 PLr을 결정

Required Performance Level (PLr)

High

- S: 상해의 정도 (Severity)
 - S1 : 경상
- S2 : 중상
- F: 주기 또는 재해에 대한 노출 (Frequency)
- F1 : 낮은 주기 또는 짧은 노출 시간
- F2: 지속적인 주기 또는 장시간의 노출
- P: 재해의 회피 및 상해의 제한 가능성 (Possibility)
- P1 : 특정한 조건하에서 가능
- P2 : 거의 불가능

SIL

SIL (Safety Integrity Level)

- 안전을 위해 현장에 설치될 계기설비의 등급으로 안전 계기 시스템(SIS)의 무결성을 나타내는 통계적 기준
- Safety Function에 의해 제공되는 위험저감 수준을 나타내며, 어떤 Safety Instrument Function(SIF)에 요구되는 성능에 대한 Measurement
- SIL1 ~ SIL4 : 등급의 숫자가 높을 수록 요구되는 안전 무결성의 수준이 높음

SIS (Safety Instrumented System)

- 조치를 취하지 않으면, 위험이 증가하는 현장 내의 위험을 예방 또는 위험스러운 사고를 완화시키는 조치를 수행하는 시스템
- Sensor(s), Logic Solver(s), Final Elements(s)의 요소로 조합으로 구성
- Sensor(s): Process Condition을 측정하기 위한 장치
 - -> Transmitters, Transducers, Process Switch
- Logic Solver(s): 하나 이상의 Logic 기능을 수행하는 장치
 - -> Electrical/Electronic/Pneumatic/Programmable Electronic Systems
- Final Element(s) : 안전한 상태로 만들기 위해 필요한 물리적 작동 장치 -> Valves, Switch Gear, Motors

PL과 SIL 간의 관계

PL	Average PFHd	SIL
а	10 ⁻⁵ ~ < 10 ⁻⁴	정의 없음
b	$3 \times 10^{-6} \sim < 10^{-5}$	1
С	10 ⁻⁶ ~ < 3 x 10 ⁻⁶	1
d	10 ⁻⁷ ~ < 10 ⁻⁶	2
е	10 ⁻⁸ ~ < 10 ⁻⁷	3

주) PFHd: Probability of Dangerous Failure per Hour

[Appendix. 4] 공압 기술

공압 기술의 개념 및 제어 방식

공압(Pneumatic) 기술의 개념

■ 공압 기술

- 공압 Cylinder 및 Motor 등의 공압 Actuator를 작동시키는 것
- Actuator : 공압 Cylinder + 공압 Motor

■ 주요 공압 기기

- Air Compressor: 대기 중의 공기를 흡입/압축하여 압축 공기를 만드는 기기 (공기 압축기)
- After Cooler : 압축 공기를 냉각하여 공기 속의 수분을 분리 (압축 공기 온도 : 170~200°C)
- Air Tank : 압축 공기를 저장하는 용기
- Air Dryer : 압축 공기 속의 수분 제거
- Air Filter : 압축 공기 속의 미세 먼지 및 수분 제거 (공기압 Filter)
- Lubricator : 압축 공기 속에 윤활유를 분사하여 공압 기기의 마찰 부분에 급유하는 기기
- Directional Control Valve : 압축 공기가 흐르는 방향을 제어 (방향 제어 Valve)
- Flow Control Valve : 압축 공기의 유량을 조절하여 실린더 등의 속도를 제어 (유량 제어 Valve)
- Cylinder: 압축 공기의 에너지를 직선 왕복 운동으로 변환하여 기계적 일을 하는 기기

■ 주요 공압 제어 Valve

방향 제어 Valve	
유량 제어	

- 방향 제어 Valve : 공기가 흐르는 방향을 제어하여 공압 Cylinder의 동작을 제어 단독형/Manifold형
- P량 제어 Valve
- 유체의 양을 제어하여 Actuator의 속도를 조절(속도 조절 Valve) - 속도 제어 Valve/급속 배기 Valve
- 압력 제어 Valve
- 압축 공기의 압력을 적정 압력으로 감압 - 감압/Relief/Sequence/안전/압력 Valve
- Solenoid Valve
- 방향 제어 Valve와 전자석을 결합하여 전자석에 전류를 통전/ 단전 시켜 압축 공기의 흐름을 제어
- Single Solenoid Valve : Valve의 한쪽에만 Solenoid가 존재
- Double Solenoid Valve : Valve의 양쪽에 Solenoid가 존재

공압의 제어 방식

■ 순수 공압 제어

- 공기압을 사용하여 Actuator를 작동
- 전기 공압 제어
 - 전기로 작동하는 Solenoid Valve를 사용하여 공압 Actuator를 작동

제어 방식의 비교 – 순수 공압 제어 : 전기 공압 제어

저기계

고안계

	중립계 (Pneumatic System)	전기계 (Electric System)
구분	순수 공압 제어	전기 공압 제어
동력원	공기 압축기(Air Compressor)	정류기(Rectifier)
신호 입력 요소	· Limit Switch · Reed Switch · Air Barrier · Reflex(반향) Sensor · Back Pressure(배압) Sensor	· Push Button · Limit Switch · Reed Switch · Inductive(유도형) Sensor · Capacitive(용량형) Sensor · Optical Sensor
신호 처리 요소	 Valve Timer Cascade Shift Register Stepper	· Relay · Cascade · Stepper · PLC · Micro Processor
최종 제어 요소	· 방향 제어 Valve	· Power Contact · Power Transistor · Power SSR(Solid State Relay)
구동 요소	· 공압 Cylinder · 공압 Motor	· Solenoid Valve + 공압 Cylinder · Motor

[Appendix. 5] 산업용 Network

Protocol 기준의 Fieldbus 및 Ethernet등의 산업용 Network의 분류

Fieldbus

- 생산에 필요한 각종 장비/설비(Sensor, Actuator, 제어 Device 등)들의 운영 및 운전이 이루어지는 현장에서 데이터를 전송하는 디지털 직렬 통신망
- Field : 장비/설비들이 운영 및 운전이 이루어지는 현장 Bus : 각 장비/설비 사이의 데이터를 전송하는 통로

Protoc	rol	Association & Vendor	개요
AS-Interface	ASi	AS-INTERNATIONAL	센서, 액추에이터 및 스위치간의 상호 접속을 위한 프로토콜 (Actuator Sensor Interface)
BACnet	⊚ BACnet	ASHERE BACnet	ANSI/SHARE에 의해 개발된 빌딩 자동화 및 제어를 위한 통신 프로토콜 (Building Automation Central Network)
CAN Kingdom		CiA (CAN in Automation)	Bosch가 차량 제어용으로 개발 (Controller Area Network)
CANopen	CANopen	CiA	CAN을 기반으로 한 프로토콜
CC-Link	CC-Link	CLPA (CC-Link Partner Association)	미쯔비시전기에 의해 개발된 개방형 구조의 프로토콜
ControlNet (ControlNet	ODVA (Open DeviceNet	고속 자동 제어용으로 설계
DeviceNet	Device Net	Vendor Association), Rockwell	Allen-Bradley(현재 Rockwell Automation)에서 개발한 CAN 프로토콜을 기반으로 한 개방형 필드버스 표준
Foundation Field	lbus Fieldbus	Fieldbus Foundation -> FILEDCOMM GROUP	H1 – Processor Sensor 및 Actuator로 운영되어 지는 저속 통신 Level (Low Speed Communication Level)
HART	COMMUNICATION PROTOCOL	HART Communication Foundation -> FILEDCOMM GROUP	4-20mA 아날로그 신호 기반 (Highway Addressable Remote Transducer)
INTERBUS	INTERBUS	Phoenix Contact	Phoenix Contact에 의해 개발되어 공정 제어를 위해 링 구조에 기반
LonWorks	LonWorks	ECHELON	ECHELON에 의해 개발한 LonTalk 규약을 이용한 분산 제어 통신망
Modbus	Modbus	Modbus organization	Midicom에서 개발한 시리얼 통신 프로토콜 Client/Server (Master/Slave)의 구조 - Modbus Seral(ASCII/RTU), Modbus Plus Modbus TCP/IP
PROFIBUS	ृष्टक्षण्डाः विकास	PI(PROFIBUS/PROFINET International), SIEMENS	독일의 국가 표준 DIN19245로 지정된 개방형 프로토콜 (Process Field Bus) - PROFIBUS-DP : FA 용 (DP : Decentralized Peripherals) - PROFIBUS-PA : Process Automation 용
SERCOS I & II	Sercos the automation bus	VDW, ZVEI	NC(Numerical Controller)의 내부에서 사용 목적으로 개발 (Serial Real time Communications System)

주) RTU: Remote Terminal Unit

산업용 Ethernet

■ Ethernet 기반의 Protocol

• 산업 현장의 제어기(PLC)의 Master & Slave 사이 통신에 인터넷 통신 개념이 도입되면서 2006년 ISO TC 184 SC5 전문위원회에서 ISO 15745 Open Systems Application Integration Frameworks의 Part 4인 Ethernet-based control systems에서 규격 제정 시 탄생

Protocol	Association	<i>गा</i>
	& Vendor	-
EtherCAT EtherCAT.	ETG (EtherCAT Technology Group)	독일의 Beckhoff개발 (Ethernet for Control Automation Technology)
EtherNet/IP EtherNet/IP	ODVA, Rockwell	CIP(Common Industrial Protocol)를 사용하는 개방된 기술에 기반 (IP : Industrial Protocol)
ETHERNET ETHERNET POWERLINK	B&R, EPGS (Ethernet POWERLINK Standardization Group)	CANopen에서 정의된 구조를 바탕으로 표준화된 Application Interface
Foundation Fieldbus HSE	FILEDCOMM GROUP	제어기, PC, Inverter와 다른 계측기들이 다루어지는 고속 통신 Level (High Speed Communication Level)
Modbus TCP	Modbus organization	TCP/IP 및 표준 이더넷 네트워크를 사용하는 모드버스 메시지 전송을 개방 표준 으로 설계
PROFINET PROFINET	PI, SIEMENS	FA, PA Motion Control의 영역을 하나의 Backbone 으로 통합
RAPIEnet RAPIEnet	LS	(Real-time Automation Protocols for Industrial Ethernet)
SERCOS III #SERCOS	VDW, ZVEI	수치 제어 시스템을 위한 Motion Controller와 Drive, I/O, Actuator, Sensor를 상호 연결하는 개방형 디지 털 모션 제어용 버스
CC-Link/IE CC-Link IE	CLPA	(Industrial Ethernet)

그외 표준 Protocol

Protocol	Association	개요
OPC SPC VA	OPC FOUNDATION	다양한 장비들간의 통신을 위한 국제 산업 표준 - OPC DA/HAD/A&E, OPC UA
SECS	SEMI	반도체 장비 통신 표준 Protocol - SECS-I, HSMS, SECS-II, GEM, SEM
EDA (Interface A)	SEMATECH	SECS Protocol를 통한 Data 수집의 한계를 극복하기 위한 방법으로 제안
IEC 61850	IEC (International Electro- technical Commission)	변전 시스템의 통신/제어를 위해 기존의 복잡한 구리선 형태 에서 개방형 구조의 이더넷 기반 광케이블 디지털 방식으로 변환하기 위한 변전소 자동화 통신 Protocol

[Appendix. 6] 반도체 산업군에서 통신 Protocol

SECS Protocol 및 EDA의 체계

SECS Protocol

■ 장비 제어 프로그램 관련 주요 SEMI 표준

	내용	Spec.
SECS-I	- 장비와 상위 Host와의 메시지를 주고 받기 위한 통신 인터페이스 정의 - 현재 거의 사용하지 않음, RS-232 Cable	SEMI E4
HSMS	- 상호 동작을 위한 고속의 통신 기능 제공 - SECS-I 대체, TCP/IP Network	E37
SECS-II	- 장비와 Host 사이에 교환되는 메시지가 해석 될 수 있는 구조 및 의미 규정 (Stream/Function으로 구성) - Data Format을 정의	E5
GEM	- 장비의 동작에 대한 시나리오 및 장비 구동에 대한 표준	E30
SEM	- GEM을 전제로 특별한 장비에 적용되는 사양 (반송 장비, Stocker)	E82, E88

EDA/Interface A

SECS/GEM : EDA 비교

SECS/GEM	EDA/Interface A
Protocol - SECS/GEM	Protocol - SOAP/XML, HTTP
EQ : Client는 1:1 연결	EQ : Client는 1:N 연결
보안이 없는 연결	Client의 권한 및 인증 필요
장비와 상위 인터페이스를 위한 Bridge 필요 (EAP, TC 등)	장비와 상위 인터페이스와의 직접 연결
물리적인 경로를 위한 Sensor Data의 수집	논리적인 경로를 위한 Sensor Data의 수집
DCP 변경이 어려움	엔지니어가 원하는 DCP를 직접 변경

주) SEMI : Semiconductor Equipment and Materials International

SECS: Semiconductor Equipment Communication Standard (Message Protocol)

HSMS: High-Speed Message Service GEM: Generic Equipment Model SEM: Specific Equipment Model

TC: Tool Control

SOAP : Simple Object Access Protocol XML : eXtensible Markup Language

[Appendix. 7] OPC 및 OPC UA의 개념

OPC 및 OPC UA의 개념 설명

OPC 및OPC UA의 개념

- OPC (OLE for Process Control)
 - 국제 산업 자동화 표준으로 다양한 시스템의 제어 장치간 통신을 위한 규격
 - 주로 PC 기반, MES, HMI/SCADA System에서 Data 교환 용도

- OPC UA (Open Platform Communication Unified Architecture)
- 보안 및 데이터 모델링을 지원하는 통합 오픈 플랫폼
- OPC History

- OPC DA (Data Access): 실시간 Data 통신
- OPC HDA (Historical Data Access) : 실시간 Data 저장/집계/검색
- OPC A&E (Alarm & Event) : Alarm 및 Event
- OPC UA (Unified Architecture) : 표준 통합 Architecture
- OPC UA HA (Historical Access)

OPC UA Architecture

OPC UA – Information Model Basics

- OPC FOUNDATION

DA: Data Access, AC: Alarms and Conditions, HA: Historical Access

Prg: Programs

■ OPC UA – Protocol Binding

- OPC FOUNDATION

[Appendix. 7] OPC 및 OPC UA의 개념

OPC UA Architecture

OPC UA Architecture

OPC UA Target Application

- OPC Unified Architecture Specification – Part 1 – 5 Overview – 5.2 General

OPC UA System Architecture

OPC Unified Architecture Specification – Part 1 – 6 Systems Concepts
 – 6.1 Overview

OPC UA Client Architecture

OPC Unified Architecture Specification – Part 1 – 6 Systems Concepts
 – 6.2 OPC UA Clients

OPC UA Server Architecture

OPC Unified Architecture Specification – Part 1 – 6 Systems Concepts
 – 6.3 OPC UA Servers – 6.3.1 General

[Appendix. 8] 설비 보전의 개념

설비 보전의 분류 및 보전의 지표

설비 보전의 분류

보전 = 정비(Maintenance) = 보수(Repair)

- BM : Breakdown Maintenance
- PM : Preventive Maintenance
- TBM: Time Based Maintenance
- CBM: Condition Based Maintenance
- DM : Daily Maintenance
- EM: Emergency Maintenance
- CM: Corrective Maintenance
- MP: Maintenance Prevention
- PdM : Predictive Maintenance
- SM : Scheduled Maintenance
- uSM: unscheduled Maintenance

설비 보전의 지표

■ 설비 종합 효율(OEE : Overall Equipment Effectiveness)

- 설비가 어느 정도 효율적으로 활용되고 있는지를 측정하는 지표
- 설비 효율을 저하 시키는 6대 Loss
 - -> 고장 Loss, 준비 교체/조정 Loss, 순간 정지 Loss, 속도 Loss, 불량/수정 Loss, 수율 Loss

설비종합효율 = 시간가동율 x 성능가동율 x 양품률

- 시간 가동율(Availability) : 부하 시간(설비를 가동시켜야 하는 시간)에 대한 실제 가동 시간의 비율
 - 시간 가동율 = (부하시간-정지시간)/부하시간
- •성능 가동율(Productivity): 속도 Loss를 산출하는 지표
 - 성능 가동율 = (생산량xCycle Time)/가동시간
- 양품률(Quality): 생산된 모든 제품 중에서 양품이 차지하는 비율
 - 양품률 = (생산량-불량수량)/생산량

■ 설비 가용성(Availability)

- 부하 시간에서 설비가 실제로 얼마나 가동되는 가를 나타내는 비율로 설비 효율성을 나타내는 특정 단위

- MTBF (Mean Time Between Failures) : 설비 평균 가동 시간
 - 고장에서 다음 고장까지의 시간 (평균 무고장 시간)
- MTTR (Mean Time To Repair) : 설비 평균 수리 시간
 - 고장후 수리(복구)까지의 시간
- MTTF (Mean Time To Failure) : 설비 평균 고장 수명
 - 수리 후 다음 고장까지의 시간

[설계에 관한 일반 사항]

제어 Concept 및 구축 안은 "국제 규격에 의거하여, CMSE 인증 엔지니어에 의해 설계되고 평가" 되어짐.

적용 국제 규격

규격	정의	주요 내용
ISO 12100	위험성 평가	기계류의 위험 평가 및 감소
ISO 13849-1	제어 시스템	제어 시스템의 안전
ISO 13850	비상 정지	Actuator의 전원 공급 중단 및 정지
ISO 13857	안전 거리	위험 구역의 안전 거리 확보
ISO 14119	Interlocking 장치	Interlock 장치의 설계
ISO 14120	가드 관련	이동식 가드의 설계 및 구축
ISO 4413/4414	유압/공압 유체 동력	유압/공압 시스템 및 부품에 대한 규정
ISO 10218-1	산업용 로봇	산업용 로봇의 안전 사항
EN 60204-1	기계의 전기적 장치	배선 및 전기 안전
IEC 60947-5-2	제어 장치	저전압 개폐장치 및 제어 장치-근접 스위치
IEC 61508	기능 안전	모듈 설계 및 소프트웨어 개발의 단계별 검증
IEC 61558	제어 전압	전력용 변압기, 전원 공급 장치 및 유사 기기의 안전
IEC 61558-2-16	제어 전압	변압기 또는 변압기에 장착된 스위치 모드 전원 장치
IEC 61131-3	산업용 프로그래밍	PLC 프로그램의 표준 정의 (PLCopen)
IEC 61131-9	통신 Interface	Sensor 및 Actuator의 통신 Interface 정의
IEC 61850	통신 Interface	전력 통신 네트워크 및 시스템을 정의
IEC 62061	제어 시스템	전기, 전자 및 프로그램 가능한 전자 제어 시스템의 기능상 안전
IEC 62439	통신 Interface	산업 통신 네트워크의 고가용성 자동화 네트워크 정의

CMSE - 전문가 인증

CERTIFICATE TUV NORD

Following the completion of training provided by Pilz, this certificate issued by TÜV NORD CERT to

Dae Uk Kwon

certifies that the above named has achieved the qualification

CMSE® - Certified Machinery Safety Expert

which meets the requirements of the guideline for Certification of Certified Machinery Safety Experts (CERT-P12VA101)
(Contents of Training and Examination overleaf)

Certificate No.: 44 506 16 456003 105

Issue Date: 2016-03-25

Valid Until: 2020-03-25

I. Beys

Martina Beyer Specialist Manager Personnel Certification

TÜV NORD CERT GmbH Langemarckstr. 20 45141 Essen, Germany technology@tuev-nord.de

[제어 Engineering 기반 기술의 내재화 Roadmap]

기술 내재화를 위한 Roadmap 및 우선 순위

기술 내재화 Roadmap

