Nama	:
No.	:
Kelas	:

LEMBAR KERJA PESERTA DIDIK

Fungsi Logaritma

Setelah kalian selesai mempelajari eksponensial mari kita kembangkan pembahasan kita pada materi logaritma. Untuk memahami pengertian logaritma dan sifatnya, coba kalian perhatikan pernyataan $p \times q = r$. Bagaimanakah menyatakan p dalam q dan r? Jawabnya adalah $p = \frac{r}{q}$, dengan $q \neq 0$. Kemudian kita perhatikan pernyataan $3^2 = 9$. Bagaimanakah menyatakan 3 dalam 2 dan 9? Jawabnya $3 = \sqrt[2]{9}$. Bagaimanakah cara menyatakan 2 dalam 3 dan 9? Jawabnya 2 adalah pangkat dari 3 sehingga $3^2 = 9$. Jika kita ambil secara umum $a^y = x$, maka y adalah eksponen dari a sehingga $a^y = x$, dan pernyatakan untuk y ini bisa ditulis dalam bentuk $y = a \log x$ atau $y = \log ax$ dengan a adalah bilangan dasar atau basis dan a adalah eksponennya. Untuk lebih jelas, coba perhatikan tabel berikut:

$f: x \to y = 2^x$		$f^{-1}: y \to x = {}^{2}\log y$		
Permasalahan	Jawab	Permasalahan	Jawab	
$x = 3$ $2^3 = ?$	8	$2^x = 8 x = ? \Leftrightarrow {}^2\log 8 = ?$	3	
$x = 2$ $2^2 = ?$	4	$2^x = 4 x = ? \Leftrightarrow {}^2\log 4 = ?$	2	
$x = 1$ $2^1 = ?$	2	$2^x = 2 x = ? \Leftrightarrow {}^2\log 2 = ?$	1	
$x = 0$ $2^0 = ?$	1	$2^x = 1 x = ? \Leftrightarrow {}^2\log 1 = ?$	0	
$x = -1$ $2^{-1} = ?$	$\frac{1}{2}$	$2^x = \frac{1}{2} x = ? \Leftrightarrow {}^2\log\frac{1}{2} = ?$	-1	
$x = -2$ $2^{-2} = ?$	$\frac{1}{4}$	$2^x = \frac{1}{4} x = ? \Leftrightarrow {}^2\log\frac{1}{4} = ?$	-2	
$x = -3$ $2^{-3} = ?$	$\frac{1}{8}$	$2^x = \frac{1}{8} x = ? \Leftrightarrow {}^2\log\frac{1}{8} = ?$	-3	

Berdasarkan tabel diatas, kita dapat memperoleh:

$$2^x = y \Leftrightarrow {}^2 \log y = x$$

Apabila bilangan pokoknya kita ganti dengan a, dari $a \log y = x$ maka diperoleh:

$$f^{-1}(y) = {}^{a}\log y$$
 sehingga $f^{-1}(x) = {}^{a}\log x$

Jika f^{-1} dinamakan g(x), maka $g(x) = {}^{a}\log x$. Fungsi $g: x \to {}^{a}\log x$ dinamakan fungsi logaritma. Jelaslah bahwa logaritma merupakan kebalikan dari eksponensial.

Logaritma adalah invers dari eksponen, $y = a^x$ ekuivalen $a \log y = x$.

Misalkan $a, b, c \in \mathbb{R}$, a > 0, $a \ne 1$, dan b > 0, maka $a \log b = c \Leftrightarrow a^c = b$.

Dengan: a disebut basis (0 < a < 1 atau a > 1)

b disebut numerus (b > 0)

c disebut hasil logaritma

Berdasarkan definisi tersebut, kita dapat menurunkan sifat-sifat logaritma dari sifat-sifat eksponensial.

Lengkapilah sifat-sifat logaritma dibawah ini.

$^{2}\log 2 =$	$^{3}\log 3 =$	⁵ log 5 =	$a \log a =$
$^{2}\log 1 =$	$^{3}\log 1 =$	⁵ log 1 =	$a \log 1 =$
² log 2 ³	$^{3}\log 3^{5} =$	$^{5}\log 5^{7} =$	$a \log a^n =$

Kesimpulan apa yang kalian peroleh?

L			

Sesuai dengan sifat-sifat dasar yang telah kalian temukan, lengkapilah sifat-sifat operasi dibawah ini.

1. Sifat penjumlahan logaritma

Misalkan $a^m = b$, maka m =

$$a^n = c$$
, maka $n =$

$$bc =$$

$$a \log bc =$$

Dengan demikian,

$$a \log b + a \log c =$$

2. Sifat pengurangan logaritma

Misalkan $a^m = b$, maka m =

$$a^n = c$$
, maka $n =$

$$\frac{b}{c}$$

Dengan demikian,

$$a \log b - a \log c =$$

3. Sifat pangkat numerus

$$a \log b^3 = a \log \times \times \times$$

$$= + + \text{ (sesuai aturan jumlah logaritma)}$$

$$= \times a \log b$$

Dengan demikian, langkah yang sama untuk pangkat n menjadi:

$$a \log b^n =$$

4. Sifat pembagian logaritma dengan basis yang sama

$$a \log b = m$$
, maka $a^m = b$

$$c \log a^m = c \log b$$

$$\times$$
 $^{c}\log a = ^{c}\log b$

$$m =$$

$$a \log b =$$

5. Perkalian logaritma

Menggunakan aturan point 4, lengkapilah langkah berikut.

$$^{a}\log b \cdot ^{b}\log c = \times =$$

6. Sifat pangkat basis dan numerus logaritma

$$a^m \log b^n =$$

7. Sifat bilangan berpangkat bentuk logaritma

Misalkan
$$a \log b = c$$
 maka $b =$

$$a^c =$$

$$a^{a_{\log b}} =$$

Kesimpulan

Dari kegiatan diatas, tuliskan semua rumus sifat-sifat dasar dan sifat operasi logaritma.

Latihan Soal

Selesaikan soal latihan berikut ini.

- 1. Tentukan nilai dari logaritma berikut.
 - a. $8 \log 32 =$
 - b. $\frac{1}{3\log 6} + \frac{1}{12\log 6} =$
 - c. $^{3}\log 18 ^{3}\log 2 =$
- 2. Diketahui $3\log 4 = m \operatorname{dan} 3\log 5 = n$, nyatakan $8\log 20\operatorname{dalam} m \operatorname{dan} n$.
- 3. Tentukan nilai

$$\frac{\left(\ ^{5}\log 10\right)^{2}-\left(\ ^{5}\log 2\right)^{2}}{^{5}\log \sqrt{20}}$$

4. Berapakah nilai dari 6 log 14 apabila diketahui 7 log 2 = a dan 2 log 3 = b?