Grupo EMAC grupoemac@udea.edu.co

Facultad de Ciencias Exactas y Naturales Instituto de Matemáticas Universidad de Antioquia

25 de agosto de 2021

Matriz estándar de $T: \mathbb{R}^n \longrightarrow \mathbb{R}^m$

Propiedad 1

Sea $T: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ una transformación lineal tal que

$$T(\mathbf{e}_{1}) = \begin{pmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{pmatrix}, \ T(\mathbf{e}_{2}) = \begin{pmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{m2} \end{pmatrix}, \ \dots, \ T(\mathbf{e}_{n}) = \begin{pmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{pmatrix}.$$

Entonces la matriz $m \times n$ cuyas columnas son los $T(\mathbf{e}_j)$,

$$A_T = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}$$

es tal que $T(\mathbf{v}) = A_T \mathbf{v}$ para todo $\mathbf{v} \in \mathbb{R}^n$. La matriz A_T es llamada matriz estándar para T o también la representación matricial de T.

Observación 1

- ullet Se debe tener cuidado con la aplicación de la Propiedad 1. Solamente es válida para transformaciones lineales de \mathbb{R}^n en \mathbb{R}^m .
- ② La propiedad anterior nos dice que para hallar la matriz estándar de una transformación lineal que va de \mathbb{R}^n a \mathbb{R}^m basta hallar las imágenes de los vectores de la base estándar de \mathbb{R}^n y ponerlas como columnas de la matriz.
- 9 Se puede demostrar que la matriz A de la Propiedad 1 es la *única* matriz que satisface que $T(\mathbf{v}) = A\mathbf{v}$ para todo $\mathbf{v} \in \mathbb{R}^n$.

Ejemplo 1

Determine la matriz estándar A de la transformación lineal $T:\mathbb{R}^3\longrightarrow\mathbb{R}^2$ definida por

$$T\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x - 2y \\ 2x + y \end{pmatrix}$$

y verifique que $T(\mathbf{v}) = A\mathbf{v}$ para todo $\mathbf{v} \in \mathbb{R}^3$.

Propiedad 2 (Matriz de transformación para bases no estándar)

Sean V y W espacios vectoriales de dimensión finita con bases \mathcal{B}_1 y \mathcal{B}_2 , respectivamente, donde $\mathcal{B}_1 = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$. Si $T: V \longrightarrow W$ es una transformación lineal tal que

$$[T(\mathbf{v_1})]_{\mathcal{B}_2} = \begin{pmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{pmatrix}, \ [T(\mathbf{v_2})]_{\mathcal{B}_2} = \begin{pmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{m2} \end{pmatrix}, \dots, \ [T(\mathbf{v_n})]_{\mathcal{B}_2} = \begin{pmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{pmatrix},$$

entonces la matriz $m \times n$ cuyas n columnas son los vectores $[T(\mathbf{v_j})]_{\mathcal{B}_2}$,

$$A_T = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}$$

es tal que $[T(\mathbf{v})]_{\mathcal{B}_2} = A_T[\mathbf{v}]_{\mathcal{B}_1}$ para todo $\mathbf{v} \in V$. Esta matriz es llamada la matriz de T con respecto a las bases \mathcal{B}_1 y \mathcal{B}_2 .

Matriz de transformación para bases no estándar

Ejemplo 2

Considere la transformación lineal $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ definida por

$$T\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x+y \\ 2x-y \end{pmatrix}$$

Encuentre la matriz de T con respecto a las bases

$$\mathcal{B}_1 = \left\{ \underbrace{(1,2)}_{\mathbf{v}_1}, \underbrace{(-1,1)}_{\mathbf{v}_2} \right\} \quad \text{y} \quad \mathcal{B}_2 = \left\{ \underbrace{(1,0)}_{\mathbf{w}_1}, \underbrace{(0,1)}_{\mathbf{w}_2} \right\}.$$

Matriz de transformación para bases no estándar

Ejemplo 3

Para la transformación lineal del ejemplo anterior, $T:\mathbb{R}^2\longrightarrow\mathbb{R}^2$ definida por

$$T\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x+y \\ 2x-y \end{pmatrix},$$

encuentre $T(\mathbf{v})$, donde $\mathbf{v} = (2, 1)$, de dos formas distintas:

- \odot De manera directa, usando la definición de T.
- \bigcirc Usando la matriz de T con respecto a las bases \mathcal{B}_1 y \mathcal{B}_2 .

Matriz de transformación para otros espacios vectoriales

Ejemplo 4

Sea $D_x:P_2\longrightarrow P_1$ el operador direrencial que transforma un polinomio cuadrático p en su derivada p'. Ya sabemos que D_x es una transformación lineal. Determine la matriz de D_x con respecto a las bases

$$\mathcal{B}_1 = \{1, x, x^2\}$$
 y $\mathcal{B}_2 = \{1, x\}.$

Use la matriz hallada A_T para verificar que

$$[D_x(p)]_{\mathcal{B}_2} = A_T [p]_{\mathcal{B}_1}$$

 $con p = a + bx + cx^2.$

Rango y nulidad de una transformación lineal

Propiedad 3

Sean V y W espacios vectoriales de dimensión finita con dimV=n y sea $T:V\longrightarrow W$ una trasnfomación lineal cuya matriz con respecto a ciertas bases de V y W, respectivamente, es A. Entonces:

- $\nu(T) = \nu(A).$
- $\nu(T) + \rho(T) = n.$

Observación 2

Los ítems (a) y (b) de la propiedad anterior implican que $\rho(A)$ y $\nu(A)$ son independientes de las bases escogidas para V y W.

Rango y nulidad de una transformación lineal

Ejemplo 5

Considere la transformación lineal $T: P_3 \longrightarrow P_2$ definida por

$$T(a_0 + a_1x + a_2x^2 + a_3x^3) = a_1 + a_2x^2.$$

Halle A_T y utilícela para determinar el núcleo y la imagen de T.

Rango y nulidad de una transformación lineal

Ejemplo 6

Considere la transformación lineal $T: P_2 \longrightarrow P_3$ definida por

$$(Tp)(x) = xp(x).$$

Halle A_T y utilícela para determinar el núcleo y la imagen de T.

Definición 1 (Composición de transformaciones lineales)

Sean $T: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ y $S: \mathbb{R}^m \longrightarrow \mathbb{R}^p$ transformaciones lineales. La **composición** de S con T, denotada por $S \circ T$, es una función de \mathbb{R}^n en \mathbb{R}^p definida por

$$(S \circ T)(\mathbf{v}) = S(T(\mathbf{v}))$$

para todo $\mathbf{v} \in \mathbb{R}^n$.

Ejemplo 7

Considere las transformaciones lineales $T:\mathbb{R}^2\longrightarrow\mathbb{R}^3$ y $S:\mathbb{R}^3\longrightarrow\mathbb{R}^4$ definidas por

$$T(x,y) = (x,2x-y,3x+4y) \quad \text{y} \quad S(x,y,z) = (2x+z,3y-z,x-y,x+y+z).$$

Encuentre $S \circ T : \mathbb{R}^2 \longrightarrow \mathbb{R}^4$.

Propiedad 4

Sean $T:\mathbb{R}^n\longrightarrow\mathbb{R}^m$ y $S:\mathbb{R}^m\longrightarrow\mathbb{R}^p$ transformaciones lineales. Entonces la composición $S\circ T:\mathbb{R}^n\longrightarrow\mathbb{R}^p$ es una transformación lineal. Más aún, si A_T es la matriz estándar para T y A_S es la matriz estándar para S, entonces la matriz estándar para $S\circ T$ es A_SA_T , es decir,

$$A_{S \circ T} = A_S A_T$$

Ejemplo 8

Considere las transformaciones lineales T_1 y T_2 de $\mathbb{R}^3 \longrightarrow \mathbb{R}^3$ definidas por

$$T_1(x, y, z) = (2x + y, 0, x + z)$$
 y $T_2(x, y, z) = (x - y, z, y)$.

Encuentre las matrices estándar para $T_1 \circ T_2$ y $T_2 \circ T_1$.

Inversa de una transformación lineal

Definición 2

Sea $T:\mathbb{R}^n\longrightarrow\mathbb{R}^n$ una transformación lineal. Decimos que T es **invertible** si existe una función $S:\mathbb{R}^n\longrightarrow\mathbb{R}^n$ tal que

$$S \circ T = I$$
 y $T \circ S = I$

donde I es la transformación identidad. En este caso se dice que S es la **inversa** de T o también que T es la **inversa** de S.

Observación 3

La condición dada en la definición anterior equivale a

$$S(T(\mathbf{v})) = \mathbf{v}$$
 y $T(S(\mathbf{v})) = \mathbf{v}$ para todo $\mathbf{v} \in \mathbb{R}^n$.

- No toda transformación lineal T tiene inversa.
- \odot ¿Cuándo una transformación lineal T tiene inversa?

Propiedad 5

Sea $T: \mathbb{R}^n \longrightarrow \mathbb{R}^n$ una transformación lineal invertible. Entonces su función inversa $T^{-1}: \mathbb{R}^n \longrightarrow \mathbb{R}^n$ es también una transformación lineal. Más aún, si A_T es la matriz estándar para T, entonces A_T es invertible y A_T^{-1} es la matriz estándar para T^{-1} , es decir, $A_T^{-1} = A_{T^{-1}}$.

Ejemplo 9

Considere la transformación lineal $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ definida por

$$T(x, y, z) = (2x + 3y + z, 3x + 3y + z, 2x + 4y + z).$$

Muestre que T es invertible y encuentre su inversa T^{-1} .

Definición 1

Sean $\mathcal{B} = \{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n\}$ y $\mathcal{C} = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ bases para un espacio vectorial V. A la matriz $n \times n$ cuyas columnas son los vectores coordenados

$$[\mathbf{u}_1]_{\mathcal{C}}, [\mathbf{u}_2]_{\mathcal{C}}, \ldots, [\mathbf{u}_n]_{\mathcal{C}}$$

se le llama *matriz de cambio de base* de \mathcal{B} a \mathcal{C} y se denota por $P_{\mathcal{C} \leftarrow \mathcal{B}}$. Es decir, $P_{\mathcal{C} \leftarrow \mathcal{B}} = \left(\begin{array}{c|c} [\mathbf{u}_1]_{\mathcal{C}} & [\mathbf{u}_2]_{\mathcal{C}} & \cdots & [\mathbf{u}_n]_{\mathcal{C}} \end{array} \right)$

Observación 1

Si \mathcal{B} y \mathcal{C} son dos bases de V, las columnas de la matriz de cambio de base $P_{\mathcal{C} \leftarrow \mathcal{B}}$ son precisamente los vectores coordenados obtenidos al escribir los vectores de la base \mathcal{B} en términos de los de la base \mathcal{C} .

Propiedad 1

Si $\mathcal{B} = \{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n\}$ y $\mathcal{C} = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ bases para un espacio vectorial V y sea $P_{\mathcal{C} \leftarrow \mathcal{B}}$ la matriz de cambio de base de \mathcal{B} a \mathcal{C} , entonces

$$P_{\mathcal{C} \leftarrow \mathcal{B}}[\mathbf{x}]_{\mathcal{B}} = [\mathbf{x}]_{\mathcal{C}}$$
, para todo \mathbf{x} en V .

Vimos que...

Definición 1

Sean $\mathcal{B} = \{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n\}$ y $\mathcal{C} = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ bases para un espacio vectorial V. A la matriz $n \times n$ cuyas columnas son los vectores coordenados

$$\left[\mathbf{u}_{1}\right]_{\mathcal{C}},\left[\mathbf{u}_{2}\right]_{\mathcal{C}},\ldots,\left[\mathbf{u}_{n}\right]_{\mathcal{C}}$$

se le llama matriz de cambio de base de \mathcal{B} a \mathcal{C} y se denota por $P_{\mathcal{C} \leftarrow \mathcal{B}}$. Es decir,

$$P_{\mathcal{C} \leftarrow \mathcal{B}} = \left(\left[\mathbf{u}_1 \right]_{\mathcal{C}} \mid \left[\mathbf{u}_2 \right]_{\mathcal{C}} \mid \cdots \mid \left[\mathbf{u}_n \right]_{\mathcal{C}} \right)$$

Propiedad 2

Sean $\mathcal{B} = \{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n\}$ y $\mathcal{C} = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ bases para un espacio vectorial V. Sean

$$B = ([\mathbf{u}_1]_{\mathcal{E}} \mid \cdots \mid [\mathbf{u}_n]_{\mathcal{E}})$$
 y $C = ([\mathbf{v}_1]_{\mathcal{E}} \mid \cdots \mid [\mathbf{v}_n]_{\mathcal{E}}),$

donde \mathcal{E} es cualquier base para V. Entonces al aplicar eliminación de Gauss-Jordan a la matriz aumentada ($C \mid B$), se obtiene

$$(C \mid B) \longrightarrow (I \mid P_{\mathcal{C} \leftarrow \mathcal{B}}).$$

Ejemplo 1

Sea $T: \mathbb{R}^2 \to \mathbb{R}^2$ la transformación lineal T(x,y) = (x+3y,2x+2y) y considere en \mathbb{R}^2 las bases $\mathcal{B} = \{(1,0),(0,1)\}$ y $\mathcal{B}' = \{(1,1),(3,-2)\}$. Halle:

- La matriz de cambio de base $P_{\mathcal{B}' \leftarrow \mathcal{B}}$.
- \bullet A_T respecto a la base \mathcal{B} .
- \bullet A'_T respecto a la base \mathcal{B}' .

Problema de diagonalización

Observación 2

Sea V es un espacio vectorial de dimensión finita con base $\mathcal B$ y sea

$$T:V \to V$$

es una transformación lineal, con matriz A_T respecto a la base \mathcal{B} . ¿Cómo hallar una base \mathcal{B}' de V para la cual A'_T sea una matriz diagonal?

Matrices semejantes

Propiedad 3

Sea V un un espacio vectorial de dimensión finita con bases \mathcal{B} y \mathcal{B}' y sea $T:V\longrightarrow V$ una transformación lineal. Si A_T la matriz de T con respecto la base \mathcal{B} y A'_T la matriz de T con respecto a la base \mathcal{B}' , entonces

$$A'_T = P^{-1}A_T P,$$

donde $P = P_{\mathcal{B} \leftarrow \mathcal{B}'}$ es la matriz de cambio de base de \mathcal{B}' a \mathcal{B} .

Observación 3

Ejemplo 2

Considere la transformación lineal $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ dada por

$$T\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2x - 2y \\ -x + 3y \end{pmatrix}$$

y las bases de \mathbb{R}^2 , $\mathcal{B} = \{(1,0),(0,1)\}$ y $\mathcal{B}' = \{(1,0),(1,1)\}$.

- \bigcirc Encuentre la matriz de representación A_T respecto a la base \mathcal{B} .
- Use la propiedad 3 para hallar A'_T respecto a la base \mathcal{B}' .

Ejemplo 3(a)

Sea $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ un transformación lineal y considere en \mathbb{R}^2 las bases

$$\mathcal{B} = \{(-3,2), (4,-2)\} \qquad y \qquad \mathcal{B}' = \{(-1,2), (2,-2)\}.$$

Suponga que la matriz de representación A_T respecto a la base \mathcal{B} es

$$A_T = \left(\begin{array}{cc} -2 & 7 \\ -3 & 7 \end{array} \right).$$

Encuentre la matriz de representación A'_T respecto a la base \mathcal{B}' .

Ejemplo 3(b)

Sea $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ un transformación lineal y considere en \mathbb{R}^2 las bases

$$\mathcal{B} = \{(-3, 2), (4, -2)\}$$
 y $\mathcal{B}' = \{(-1, 2), (2, -2)\}.$

Suponga que la matriz de representación A_T respecto a la base \mathcal{B} es

$$A_T = \left(\begin{array}{cc} -2 & 7 \\ -3 & 7 \end{array} \right).$$

O Calcule $[\mathbf{v}]_{\mathcal{B}}$, $[T(\mathbf{v})]_{\mathcal{B}}$ y $[T(\mathbf{v})]_{\mathcal{B}'}$, para el vector \mathbf{v} cuyo vector de coordenadas es

$$[\mathbf{v}]_{\mathcal{B}'} = \begin{pmatrix} -3\\-1 \end{pmatrix}$$

Ejemplo 3(c)

Sea $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ un transformación lineal y considere en \mathbb{R}^2 las bases

$$\mathcal{B} = \{(-3,2), (4,-2)\}$$
 y $\mathcal{B}' = \{(-1,2), (2,-2)\}.$

Suponga que la matriz de representación A_T respecto a la base \mathcal{B} es

$$A_T = \left(\begin{array}{cc} -2 & 7 \\ -3 & 7 \end{array} \right).$$

• Encuentre una fórmula para $T \begin{pmatrix} x \\ y \end{pmatrix}$.

Definición 1 (matrices semejantes)

Sean A y B matrices cuadradas $n \times n$. Se dice que B es **semejante** a A (o que B es **similar** a A) si existe una matriz invertible P tal que $B = P^{-1}AP$.

Observación 4

- ullet Si A es semejante a B, entonces B es semejante a A.
- lacktriangle Si A es semejante a B, entonces se dice que A y B son semejantes.
- $oldsymbol{Q}$ A y B son semejantes si existe una matriz invertible P tal que AP=PB.
- ② De acuerdo a la definición anterior y la propiedad 3, las matrices de una transformación lineal $T:V\longrightarrow V$ con respecto a bases distintas de V, son semejantes.

Definición 1 (matrices semejantes)

Sean A y B matrices cuadradas $n \times n$. Se dice que B es **semejante** a A (o que B es **similar** a A) si existe una matriz invertible P tal que $B = P^{-1}AP$.

Ejemplo 4

Considere las matrices

$$A = \begin{pmatrix} 1 & 2 \\ 0 & -1 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 0 \\ -2 & -1 \end{pmatrix} \quad \text{y} \quad P = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}.$$

Muestre que la matriz B es semejante a la matriz A.

Propiedad 5 (propiedades de las matrices similares)

Sean A y B matrices $n \times n$. Si A y B son semejantes, entonces:

- A es invertible si y sólo si B es invertible.
- A y B tienen el mismo rango $(\rho(A) = \rho(B))$.

Ejemplo 5

Muestre que las matrices A y B dadas a continuación no son semejantes.

$$A = \left(\begin{array}{cc} 1 & 2 \\ 2 & 1 \end{array}\right) \quad \text{y} \quad B = \left(\begin{array}{cc} 2 & 1 \\ 1 & 2 \end{array}\right).$$

Bibliografía

Stanley Grossman Álgebra lineal McGraw-Hill Interamericana, Edición 8, 2019.

David Poole

Álgebra lineal: una introducción moderna

Cengage Learning Editores, 2011.

Bernard Kolman Álgebra lineal Pearson Educación, 2006.

Ron Larson
Fundamentos de Álgebra lineal
Cengage Learning Editores, 2010.

