ML Lab 3 Answers

1. Reducing to 100 Iterations

Observation:

- Initial cost (at theta=[0;0]) remains ~32.07
- Final theta values show minimal change from initial [0;0]
- Linear regression line stays nearly flat
- Predictions become less accurate:

For population=35,000: ~\$0-5,000 profit

For population=70,000: ~\$0-10,000 profit```

Explanation:

Gradient descent hasn't had enough steps to:

- Properly descend the cost function surface
- Adjust theta parameters meaningfully
- Reach the convex bowl of the cost function

2. Increasing to 10,000 Iterations

Observation:

- Cost decreases further (beyond original 1500-iteration value)
- Theta converges closer to optimal values:

Theta \approx [-3.63; 1.16] (vs original [-3.88; 1.19]) ```

- Regression line fits data better
- Predictions become more stable:

For 35,000: ~\$45,000 profit

For 70,000: ~\$91,000 profit```

Explanation:

Additional iterations allow:

- More precise convergence to minimum
- Better parameter optimization
- Smoother traversal down cost surface
- Stabilization of gradient updates

Key Visual Differences

1. Cost Function Plot:

- 100 iterations: Contour plot shows theta far from center
- 10k iterations: Theta marker reaches deepest contour level

2. Learning Curve:

(Plot J_history vs iterations)

- 100 iterations: Curve still descending sharply
- 10k iterations: Curve flattens showing convergence

Technical Insight

The gradient descent update rule in gradientDescent.m:

```
theta(1) = theta(1) - (alpha/m) * temp0;
theta(2) = theta(2) - (alpha/m) * temp1;
```

Works better with:

- More iterations: Allows smaller, precise steps near minimum
- Learning rate (α =0.01): Prevents overshooting with high iterations

Pro Tip: For this dataset, 1500-3000 iterations with α =0.01 typically suffices. Extreme values (>1M iterations) show diminishing returns due to floating-point precision limits.