ROUTNG

make evil go away.

Verse 1	there is a world verse 3 we'll do our best
	that is virtual and different to never let you down
9 -	we're up to the test
	makes us stand up for what's right to turn this world are
W.	our hope through our life.
9	if we reset it to the start minichorus
- Chorus	here we are, going bar mini-chorus
34	to save all that we love.
200	if we give, all we've got
	we will make it through mini-change
97	here we are, like a star
W	Shining bright on your world
-07	today (make evil go away) by Noam Kaniel (vocals)
W.	code lyoko we'll, recet it all
w	code lyoko be, there when you call written by
y.	code typico ever will stand real tall Ygal Amar
200	code lyoko stronger after all. Franck Keller
verse 2	a world of machines A WORLD WITHOUT DANGER
7/3	it can shadow homen nature cope Lyoko (June 6, 2004)
V.	ay that we need
	is the way to find the answer
	and one thing is for sure
	you can count on us for good.
c.horus	g • p
9 "	

RECAP MIMIM MIMIMIM queving system MICI/ 1 MIDII M/M/1 L, w, ws, Lq, wq, Ls tablar sommary , 70 70Mbps loons 150 150 401 wz 100 33-33 150 λ_3 100 WS routing 1 1-3-6 & 2-5-6 1-4-6 8 2-4-6 routing 1 f=70 = 0.7 1100 4 evi: delay from 173 10⁻⁶ - 100 hs = 33.3 ns ω, = L1 - P1 λι λι (1- β.)

Classmate

Date \$.9.2020;

Page 32020;

 $\omega_1 = \omega_5 = 33.33 \text{ ns}$

1 1 6 2 1 6

$$\lambda_1 = 70$$
 $\mu_1 = 150$ $f = 70$

1-4 (0) = L1 = 70 = 12.5 ms

2-4 w2 = 12.5 ms

4-6 24 = 140 ly = 150 gy = 140

 $\frac{\omega_1 = L_2}{\lambda_2} = \frac{100 \text{ ns}}{}$

net delay on un + con = 112.5 ns

altered blow routing load control algorithm

rejected.

throughput = offered load - rejected load

Classmate

O. P= &1, 23

done.

einitialization
$$D_1 = 0$$
 $D_2 = \infty$ $D_3 = 2$ $D_4 = \infty$ $D_5 = \infty$ $D_6 = \infty$ $D_6 = \infty$

(a)
$$P = \{1, 2, 3\}$$

 $D_2 = 2$ $D_3 = 2$ $D_4 = 5$ $D_5 = 4$ $D_6 = \infty$

(3)
$$P = \{1, 2, 3, 5\}$$

 $P_2 = 2$ $D_3 = 2$ $D_5 = 4$ $D_4 = 5$ $D_6 = 5.5$

running time |V| = N # Hiterations = N-1 O(N) in each iteration O(N2) > O(NIOgN) O(IEI + IVI log IVI) dijkstra disadvantage (1) - Ve edges are not allowed. BELLMAN-FORD - ve edget are allowed shortest path is not defined but, no -ve wt cycles. + init that Din = 0 h= 1...n algorithm Dint : min & dij + Did } + c+1 terminate if Di = Din-1 +i (Di min. cost of reaching jusing atmost hedges) Dintl < min Sdj + Din Ding every step, shortest path with m edges to each node is alculated.

PROPOSITION

(a) Dins are generated by the algorithm are equal to the shortest path from i to 1 of # edges & h.

(b) the algorithm terminates ciff all cycles not containing node.

I are having non--ver costs. cif algo terminates, it so in

I AN & at termination, Di is the cost of shortest path

from 1 to i (or i to 1).

HW. Kih prove ntl

Dikti & Dik + K& h.

FLOYD - WARSHALL

Call-pair shortest path)

 $D_{ij}^{o} = d_{ij} \qquad \forall i,j \qquad \text{for } N = 0...N-1$ $D_{ij}^{n+1} = \min \left[D_{ij}^{in}, D_{ik}^{h} + D_{kj}^{h} \right]$

iteration - h:

we have the shortest path cost from i to j using nodes 1,2,...h (h=0, w/o any node)

O(NB) O(INI3)