Hệ mã hóa công khai RSA

Bước 1: Tạo khóa

- 1. Chọn 2 số nguyên tố lớn ngẫu nhiên p và q và tính n = pq. Cần chọn p và q sao cho $M < 2^{i-1} < n < 2^i$. Với i = 1024 thì n là một số nguyên khoảng 309 chữ số.
- 2. Tính số làm modulo hệ thống: n = pq và $\phi(n) = (p-1)(q-1) = \phi(pq)$
- 3. Chọn ngẫu nhiên khóa mã hóa b: $\{1 < b < \phi(n) \ GCD(b, \ \phi(n) = 1 \}$
- 4. Giải phương trình để tìm khóa giải mã a: $a = b^{-1} \mod \phi(n)$ Euclide mở rộng. Tức $b * a = 1 \mod \phi(n)$ với $0 \le a \le \phi(n)$
 - 5. Khóa công khai (mã hóa): $K_{public} = \{b, n\}$
 - 6. Khóa bí mật (giải mã): $K_{private} = \{a, p, q\}$

Bước 2: Mã hóa với $K_{public} = \{b, n\}$

$$y = e_{Kpub}(x) = x^b \mod n$$
$$x \in Z_n = \{0, 1, ..., n-1\}$$

Bước 3: Giải mã với $K_{private} = \{a, p, q\}$

$$x = d_{K_{pri}}(y) = y^a \bmod n$$

Alice gửi dữ liệu cho	Bob
	1. Choose $p=3$, $q=11$
	2. <i>n</i> = <i>pq</i> =33, <i>N</i> =20
	3. Choose $b=3$, $GCD(20,3)=1$
$x=4$ / $Kpu=\{b,n\}=\{3,33\}<=Bob$	4. $a = b^{-1} \mod N = 3^{-1} \mod 20 = 7 = > K_{pri}$
$y = x^b mod \ n = 4^3 mod 33 = 31$	$A => y = 31$ / $K_{pri} = \{a, p, q\} = \{7, 3, 11\}$
	$x = y^a \mod n = 31^7 \mod 33 = 4$

Câu 1: Cho hệ mã hóa RSA với p=5, q=7, b=5

- a. Hãy tìm khóa công khai K_{pub} và khóa bí mật K_{pri}
- b. Hãy thực hiện mã háo chuỗi "secure" và giải mã ngược lại bản mã có được.

a. Tạo mã

- 1. p = 5, q = 7, b = 5
- 2. Modulo hệ thống n = pq = 5*7 = 35. $\phi(n) = \phi(pq) = (p-1)(q-1) = 24$
- 3. Tim $a = b^{-1} \mod \phi(n) = 5^{-1} \mod 24 = 5$
- 4. $K_{pub} = \{b, n\} = \{5, 35\}$
- 5. $K_{pri} = \{a, p, q\} = \{5, 5, 7\}$

<u>b. Mã hóa X = "Secure" với $K_{pub} = \{b, n\} = \{5,35\}$ </u>

$$x_1 = S = 18 \implies y_1 = e_{Kpub}(x_1) = x_1^b \mod n = 18^5 \mod 35 = 23$$
 (Bình phương & nhân)

$$x_2 = E = 4 \implies y_2 = x_2^b \mod n = 4^5 \mod 35 = 9$$

$$x_3 = C = 2 \implies y_3 = 2^5 \mod 35 = 32$$

$$x_4 = U = 20 \implies y_4 = 20^5 \mod 35 = 20$$

$$x_5 = R = 17 \implies y_5 = 17^5 \mod 35 = 12$$

$$x_6 = E = 4 \implies y_6 = 4^5 \mod 35 = 9$$

c. Giải mã Y = "XJGUMJ" = $\{23, 9, 32, 20, 12, 9\}$ với $K_{pri} = \{a, p, q\} = \{5, 5, 7\}$

$$n = pq = 35$$

$$x_1 = d_{Kpri}(y_1) = y_1^a \mod n = 23^5 \mod 35 = 18$$
 $x_4 = 20^5 \mod 35 = 20$

$$x_2 = 9^5 \mod 35 = 4$$
 $x_5 = 12^5 \mod 35 = 17$

$$x_3 = 32^5 \mod 35 = 2$$
 $x_6 = 9^5 \mod 35 = 4$

=> Bản rõ X = "SECURE"

Câu 2: Cho hệ mã hóa RSA có p = 103, q = 113, b = 71. Hãy tìm khóa công khai K_{pub} và khóa bí mật K_{pri} của hệ mã trên. Sau đó mã hóa thông điệp X = 1102 và giải mã ngược lại kết quả nhận được.

- Tạo khóa:
 - 1. Hai số nguyên tố: p = 103, q = 113 (TM)
 - 2. Modulo hệ thống: n = pq = 103*113 = 11639,

$$\phi(n) = \phi(pq) = (p-1)(q-1) = (103-1)(113-1) = 11424$$

- 3. Khóa mã hóa b = 71 thỏa mãn: $\{1 < b < \phi(n) \ (TM) \ GCD(b, \ \phi(n) = 1 \ (TM) \}$
- 4. Tìm khóa giải mã: $a = b^{-1} \mod \phi(n) = 71^{-1} \mod 11424 = 9815$ Theo thuật toán Euclide mở rộng tính $71^{-1} \mod 11424$ với $r_0 = 11424$, $r_1 = 71$, $r_i = r_{i+1}*q_{i+1} + r_{i+2}$, $s_0 = 1$, $s_1 = 0$, $s_i = s_{i-2} - q_{i-1}*s_{i-1}$, $t_0 = 0$, $t_1 = 1$, $t_i = t_{i-2} - q_{i-1}*t_{i-1}$. Thuật toán được biểu diễn qua bảng sau:

Bước	r_{i}	q_{i+1}	r_{i+1}	r_{i+2}	Si	t _i
0	11424	160	71	64	1	0
1	71	1	64	7	0	1
2	64	9	7	1	1	-160
3	7	7	1	0	-1	161
4	1				10	-1609

Vậy $71^{-1} \mod 11424 \equiv (-1609) \mod 11424 = -1609 + 11424 = 9815$

- 5. Khóa công khai $K_{pub} = \{b, n\} = \{71, 11639\}$
- 6. Khóa bí mật $K_{pri} = \{a, p, q\} = \{9815, 103, 113\}$

- Mã hóa X = 1102 với
$$K_{pub}$$
 = {b, n} = {71, 11639}

$$x = 1102 => y = e_{Kpub}(x) = x^b \mod n = 1102^{71} \mod 11639 = 2345$$

=> Bản mã Y = 2345

Theo thuật toán Bình phương và nhân tính 1102^{71} mod 11639 = 2345 với x = 1102, k = 71 = 1000111, n = 11639. Khởi tạo p = 1 thuật toán được biểu diễn qua bảng:

b[i]	p=p*p	p(mod n)	p=p*x	p(mod n)
1	1	1	1102	1102
0	1214404	3948	-	3948
0	15586704	2083	1	2083
0	4338889	9181	ı	9181
1	84290761	1123	1237546	3812
1	14531344	5872	6470944	11299
1	127667401	10849	11955598	2345

- Giải mã Y=2345 với $K_{pri}=\{a,p,q\}=\{9815,103,113\}$. Tính n=pq=11639 $x=d_{Kpri}(y)=y^a \bmod n=2345^{9815} \bmod 11639=1102$ => Bản rõ X=1102

Theo thuật toán Bình phương và nhân tính 2345^{9815} mod 11639 = 1102 với x = 2345, k = 11639 = 10011001010111, n = 11639. Khởi tạo p = 1 thuật toán được biểu diễn qua bảng sau:

b[i]	p=p*p	p(mod n)	p=p*x	p(mod n)
1	1	1	2345	2345
0	5499025	5417	-	5417
0	29343889	1970	-	1970
1	3880900	5113	11989985	1815
1	3294225	388	909860	2018
0	4072324	10313	-	10313
0	106357969	787	-	787
1	619369	2502	5867190	1134
0	1285956	5666	-	5666
1	32103556	3194	7489930	6053
0	36638809	10876	-	10876
1	118287376	219	513555	1439
1	2070721	10618	24899210	3389
1	11485321	9267	21731115	1102

Hệ mật mã ElGamal

Bước 1: Tạo khóa

- Cho p là một số nguyên tố sao cho bài toán logarit rời rạc trong Zp là khó giải.
- Chọn phần tử nguyên thủy $\alpha \in \mathbb{Z}p^*$
- Chọn $a \in \{2, 3, ..., p-2\}$ là khóa bí mật thứ nhất (Khóa người nhận, giải mã)
- $Tinh \beta = \alpha^a \mod p$.
- Khi đó: $K_{pub} = (p, \alpha, \beta)$ gọi là khóa công khai, và $K_{pri} = (a)$ là khóa bí mật.

Bước 2: Xây dựng hàm mã hóa dữ liệu

- Chọn 1 số ngẫu nhiên bí mật $k \in \mathbb{Z}_{p-1}$, Ta xác định: $k \in \mathbb{Z}_{p-1} = \{0, 1, ..., p-2\}$
- Định nghĩa: $e_{K_{pub}}(x,k) = (y_1,y_2)$ với $y_1 = \alpha^k \mod p$ và $y_2 = x\beta^k \mod p$

Bước 3: Giải mã

 $V\acute{o}i \ y_1, \ y_2 \in \mathbb{Z}p^* \ ta \ x\acute{a}c \ dinh: \ d_{K_{pri}}(y_1, y_2) = y_2(y_1^a)^{-1} \ mod \ p$

A (gửi)	B (nhận)
Choose private key $K_{priA} = \alpha_A$	Choose private key $K_{priB} = \alpha_B$
Compute $K_{pubA} = \alpha^{aA} \mod p = bA$	$K_{\text{pubB}} = \alpha^{\text{aB}} \mod p = bB$
bB<==B	A==>bA
$k_{AB} = bB^{aA} = \alpha^{aA*aB} \bmod p$	$k_{AB} = bA^{aB} = \alpha^{aB*aA} \mod p$
$y = x * k_{AB} \mod p$	A==>y
	$x = y * k_{AB}^{-1} \bmod p$

Bài tập 1: Trong hệ mật mã Elgamal, lấy $p=5987, \alpha=2, a=913, k=1647.$ Hãy mã hóa bản rõ x=122 và giải mã ngược lại kết quả đó.

- Bước 1: Tạo khóa

$$p = 5987, Z_p = \{0, ..., 5988\}; \alpha = 2 \in Zp^* (TM), a = 913 \in \{2, 3, ..., p-2\} (TM)$$

Tính $\beta=\alpha^a \mod p=2^{913} \mod 5987=4087$. Theo thuật toán bình phương và nhân có $x=2,\,k=913=1110010001,\,n=5987$ ta có bảng sau.

b[i]	p=p*p	p=p (mod n)	p=p * x	p=p (modn)
1	1	1	2	2
1	4	4	8	8
1	64	64	128	128
0	16384	4410	-	4410
0	19448100	2324	-	2324
1	5400976	702	1404	1404
0	1971216	1493	-	1493
0	2229049	1885	-	1885
0	3553225	2934	-	2934
1	8608356	5037	10074	4087

$$=> K_{pub} = (p, \alpha, \beta) = (5987, 2, 4087)$$

$$K_{pri} = (a) = (913)$$

- Bước 2: Mã hóa bản rõ x = 122 với K_{pub} = (p, α, β) = (5987, 2, 4087)

$$k = 1647 \in Z_{p-1} (TM)$$

Ta có: $e_{K_{pub}}(x, k) = (y_1, y_2)$ với $y_1 y_2$ thỏa mãn:

 $y_1 = \alpha^k \mod p = 2^{1647} \mod 5987 = 955$ Theo thuật toán Bình phương và nhân với x=2, k=1647=11001101111, n=5987 ta có bảng sau:

b[i]	p=p*p	p=p(mod n)	p = p * x	p = p(mod n)
1	1	1	2	2
1	4	4	8	8
0	64	64	-	64
0	4096	4096	-	4096
1	16777216	1642	3284	3284
1	10784656	2069	4138	4138
0	17123044	224	-	224
1	50176	2280	4560	4560
1	20793600	749	1498	1498
1	2244004	4866	9732	3745
1	14025025	3471	6942	955

 $y_2 = x\beta^k \mod p = 122 * 4087^{1647} \mod 5987 = ((122 \mod 5987) * (4087^{1647} \mod 5987)) \mod 5987 = (122 * 129) \mod 5987 = 3764$ Theo thuật toán Bình phương và nhân tính $4087^{1647} \mod 5987$ với x=4087, k=1647=11001101111, n=5987 ta có bảng sau:

b[i]	p=p*p	p=p(mod n)	p = p * x	p = p(mod n)
1	1	1	4087	4087
1	16703569	5826	23810862	563
0	316969	5645	-	5645
0	31866025	3211	-	3211
1	10310521	907	3706909	956
1	913936	3912	15988344	3054
0	9326916	5157	-	5157
1	26594649	395	1614365	3862
1	14915044	1427	5832149	811
1	657721	5138	20999006	2597
1	6744409	3047	12453089	129

Vậy bản mã $Y = (y_1, y_2) = (955, 3764)$

- Bước 3: Giải mã Y =
$$(y_1, y_2)$$
 = $(955, 3764)$ với K_{pri} = (a) = (913)

$$d_{K_{pri}}(y_1, y_2) = y_2(y_1^a)^{-1} \mod p = 3764 * (955^{913})^{-1} \mod 5987$$

=
$$(3764 \mod 5987 * (955^{913})^{-1} \mod 5987) \mod 5987$$

$$= (3764 \mod 5987 * (955^{913} \mod 5987)^{-1} \mod 5987) \mod 5987$$

$$= (3764 * 129^{-1} \mod 5987) \mod 5987 = (3764*3388) \mod 5987 = 122$$

Theo thuật toán Bình phương và nhân tính 955^{913} mod 5987 = 129 với x=955, k=913, n=5987

b[i]	p=p*p	p=p(mod n)	p = p * x	$p = p \pmod{n}$
1	1	1	955	955
1	912025	2001	1910955	1102
1	1214404	5030	4803650	2076
0	4309776	5123	-	5123

0	26245129	4108	_	4108
1	16875664	4298	4104590	3495
0	12215025	1545	-	1545
0	2387025	4199	-	4199
0	17631601	5873	-	5873
1	34492129	1022	976010	129

Theo thuật toán Euclide mở rộng tính 129^{-1} mod 5987 với $r_0 = 5987$, $r_1 = 129$, $r_i = r_{i+1}*q_{i+1} + r_{i+2}$, $s_0 = 1$, $s_1 = 0$, $s_i = s_{i-2} - q_{i-1}*s_{i-1}$, $t_0 = 0$, $t_1 = 1$, $t_i = t_{i-2} - q_{i-1}*t_{i-1}$. Thuật toán được biểu diễn qua bảng sau:

Bước	r_i	q_{i+1}	r_{i+1}	r_{i+2}	Si	t _i
0	5987	46	129	53	1	0
1	129	2	53	23	0	1
2	53	2	23	7	1	-46
3	23	3	7	2	-2	93
4	7	3	2	1	5	-232
5	2	2	1	0	-17	789
6	1				56	-2599

 $=> 129^{-1} \mod 5987 = (-2599) \mod 5987 = -2599 + 5987 = 3388$

Bài tập 2: Cho hệ mật mã ElGamal có p=83, $\alpha=5$ là một phần tử nguyên thủy của Zp^* , a=71 (phần tử bí mật mà người nhận chọn). Hãy tìm khóa công khai K_{pub} và khóa bí mật K_{pri} của hệ mã trên.

Cho k = 47. Hãy mã hóa bản rõ x = 23 và giải mã ngược lại kết quả đó.

- Tao khóa:

p=83 là một số nguyên tố (TM), phần tử nguyên thủy $\alpha=5\in Zp^*$ (TM) $a=71\in\{2,3,...,p-2\}$ (TM) là phần tử bí mật thứ nhất mà người nhận chọn Tính $\beta=\alpha^a \bmod p=5^{71} \bmod 83=80$. Theo thuật toán bình phương và nhân có x=5, k=71=1000111, n=83, khởi tạo p=1 ta có bảng sau:

$$b[i]$$
 $p=p*p$ $p=p \pmod{n}$ $p=p*x$ $p=p \pmod{n}$

1	1	1	5	5
0	25	25	-	25
0	625	44	-	44
0	1936	27	ı	27
1	729	65	325	76
1	5776	49	245	79
1	6241	16	80	80

=> Khóa công khai $K_{pub}=(p,\alpha,\beta)=(83,5,80)$. Khóa bí mật $K_{pri}=(a)=(71)$

- Mã hóa dữ liệu
$$X=23$$
 với $K_{pub}=(p,\alpha,\beta)=(83,5,80)$

Chọn
$$k = 47 \in \mathbb{Z}p-1 = \{0, 1, ..., p-1\}$$
 (TM)

Ta có:
$$e_{K_{pub}}(x, k) = (y_1, y_2)$$
 với $y_1 y_2$ thỏa mãn:

 $y_1 = \alpha^k \mod p = 5^{47} \mod 83 = 62$ Theo thuật toán Bình phương và nhân với x=5, k=47=101111, n=83 ta có bảng sau:

b[i]	p=p*p	p=p(mod n)	p = p * x	$p = p \pmod{n}$
1	1	1	5	5
0	25	25	-	25
1	625	44	220	54
1	2916	11	55	55
1	3025	37	185	19
1	361	29	145	62

$$y_2 = x\beta^k \mod p = 23 * 80^{47} \mod 83 = ((23 \mod 83) * (80^{47} \mod 83)) \mod 83 = (23 * 18) \mod 83 = 82$$

Theo thuật toán Bình phương và nhân tính 80^{47} mod 83 = 18 với x=80, k=47=101111, n=83, khởi tạo p = 1 ta có bảng sau:

b[i]	p=p*p	p=p(mod n)	p = p * x	p = p(mod n)
1	1	1	80	80
0	6400	9	-	9
1	81	81	6480	6
1	36	36	2880	58
1	3364	44	3520	34
1	1156	77	6160	18

Vậy bản mã
$$Y = (y_1, y_2) = (62, 82)$$

- Giải mã Giải mã
$$Y = (y_1, y_2) = (62, 82)$$
 với $K_{pri} = (a) = (71)$

$$d_{K_{pri}}(y_1, y_2) = y_2(y_1^a)^{-1} \mod p = 82 * (62^{71})^{-1} \mod 83$$

$$= (82 \mod 83 * (62^{71})^{-1} \mod 83) \mod 83$$

$$= (82 \mod 83 * (62^{71} \mod 83)^{-1} \mod 83) \mod 83$$

$$= (82 * 18^{-1} \mod 83) \mod 83 = (82*60) \mod 83 = 23$$

$$=>$$
 Bản rõ $X=23$

Theo thuật toán Bình phương và nhân tính 62^{71} mod 83 = 18 với x=62, k=71=1000111, n=83, khởi tạo p=1 ta có bảng sau:

b[i]	p=p*p	p=p(mod n)	p = p * x	p = p(mod n)
1	1	1	62	62
0	3844	26	-	26
0	676	12	-	12
0	144	61	-	61
1	3721	69	4278	45
1	2025	33	2046	54
1	2916	11	682	18

Theo thuật toán Euclide mở rộng tính $18^{-1} \mod 83 \equiv (-23) \mod 83 = -23 + 83 = 60$ với $r_0 = 83$, $r_1 = 18$, $r_i = r_{i+1} * q_{i+1} + r_{i+2}$, $t_0 = 0$, $t_1 = 1$, $t_i = t_{i-2} - q_{i-1} * t_{i-1}$. Thuật toán được biểu diễn qua bảng sau:

Bước	r_i	q_{i+1}	r_{i+1}	r_{i+2}	t_{i}
0	83	4	18	11	0
1	18	1	11	7	1
2	11	1	7	4	-4
3	7	1	4	3	5
4	4	1	3	1	-9
5	3	3	1	0	14
6	1				-23

Vậy bản mã là X = 23

Bài kiểm tra

Đề 1: (Nguyên bản) Cho hệ RSA lấy p = 31, q = 41, b = 71.

- a. Hãy tìm khóa công khai Kpub và khóa bí mật Kpri của hệ mã trên.
- b. Thông điệp được viết bằng tiếng anh, người ta dùng một hàm chuyển đổi các ký tự thành các số thập phân có hai chứ số như sau:

A	В	С	D	Е	F	G	Н	I	J	K	L	M
00	01	02	03	04	05	06	07	08	09	10	11	12
N	О	P	Q	R	S	T	U	V	W	X	Y	Z
13	14	15	16	17	18	19	20	21	22	23	24	25

Ví dụ xâu ABC được chuyển thành 00~01~02 và sau đó cắt thành các số có 3 chữ số 000~(=0) và 102 để mã hóa. Bản mã thu được là 1 tập các số \in Zn. Hãy thực hiện mã hóa xâu P = "ACTION".

Đề 2: (Sưu tầm) Cho hệ RSA lấy p = 31, q = 41, b = 271.

- a. Hãy tìm khóa công khai Kpub và khóa bí mật Kpri của hệ mã trên.
- b. Thông điệp được viết bằng tiếng anh, người ta dùng một hàm chuyển đổi các ký tự thành các số thập phân có hai chứ số như sau:

A	В	С	D	Е	F	G	Н	I	J	K	L	M
00	01	02	03	04	05	06	07	08	09	10	11	12
N	О	P	Q	R	S	T	U	V	W	X	Y	Z
13	14	15	16	17	18	19	20	21	22	23	24	25

Ví dụ xâu ABC được chuyển thành 00~01~02 và sau đó cắt thành các số có 3 chữ số 000~(=0) và 102 để mã hóa. Bản mã thu được là 1 tập các số \in Zn. Hãy thực hiện mã hóa xâu P = "SERIUS".

c. Giả sử bản mã thu được là $C = \langle 201, 793, 442, 18 \rangle$ hãy thực hiện giải mã để tìm ra thông điệp bản rõ ban đầu.

Đề 3: (Sưu tầm) Cho hệ RSA lấy p = 29, q = 43, b = 11.

- a. Hãy tìm khóa công khai Kpub và khóa bí mật Kpri của hệ mã trên.
- **b.** Để mã hóa các thông điệp được viết bằng tiếng Anh người ta dùng một hàm chuyển đổi các ký tự thành các số thập phân có hai chữ số như sau:

A	В	C	D	Е	F	G	Н	I	J	K	L	M
00	01	02	03	04	05	06	07	08	09	10	11	12
N	О	P	Q	R	S	T	U	V	W	X	Y	Z
13	14	15	16	17	18	19	20	21	22	23	24	25

Ví dụ xâu ABC được chuyển thành 00~01~02 và sau đó cắt thành các số có 3 chữ số 000~(=0) và 102 để mã hóa. Bản mã thu được là 1 tập các số \in Zn. Hãy thực hiện mã hóa xâu P = "TAURUS".

c. Giả sử bản mã thu được là C = <1, 169, 1206, 433> hãy thực hiện giải mã để tìm ra thông điệp bản rõ ban đầu.

Đề 4: (Nguyên bản) Cho hệ mật mã ElGamal có p = 1187, $\alpha = 79$ là một phần tử nguyên thủy của Zp^* , a = 113 (phần tử bí mật mà người nhận chọn).

- a. Hãy tìm khóa công khai Kpub và khóa bí mật Kpri của hệ mã trên.
- **b.** Để mã hóa các thông điệp được viết bằng tiếng Anh người ta dùng một hàm chuyển đổi các ký tự thành các số thập phân có hai chữ số như sau:

A	В	C	D	Е	F	G	Н	I	J	K	L	M
00	01	02	03	04	05	06	07	08	09	10	11	12
N	О	P	Q	R	S	T	U	V	W	X	Y	Z
13	14	15	16	17	18	19	20	21	22	23	24	25

Ví dụ xâu ABC được chuyển thành 00~01~02 và sau đó cắt thành các số có 3 chữ số 000~(=0) và 102 để mã hóa. Bản mã thu được là 1 tập các cặp số $(C1,C2) \in Zp$. Cho k=15, Hãy mã hóa bản rõ M= "SERIUS".

Đề 5: (**Sưu tầm**) Cho hệ mật mã ElGamal có p = 1187, α = 79 là một phần tử nguyên thủy của Zp^* , a = 113 (phần tử bí mật mà người nhận chọn).

- c. Hãy tìm khóa công khai Kpub và khóa bí mật Kpri của hệ mã trên.
- d. Để mã hóa các thông điệp được viết bằng tiếng Anh người ta dùng một hàm chuyển đổi các ký tự thành các số thập phân có hai chữ số như sau:

Α	В	C	D	Е	F	G	Н	I	J	K	L	M
00	01	02	03	04	05	06	07	08	09	10	11	12
N	О	P	Q	R	S	T	U	V	W	X	Y	Z
13	14	15	16	17	18	19	20	21	22	23	24	25

Ví dụ xâu ABC được chuyển thành 00~01~02 và sau đó cắt thành các số có 3 chữ số 000~(=0) và 102 để mã hóa. Bản mã thu được là 1 tập các cặp số $(C1,C2) \in Zp$. Cho k=14, Hãy mã hóa bản rõ M= "TAURUS".

e. Giả sử thu được bản mã là một tập các cặp (C1, C2) là < (358, 305), (1079, 283), (608, 925), (786, 391)>. Hãy giải mã và đưa ra thông điệp ban đầu.

Đáp án:

Đề 2:

a. Kpub =
$$(271, 1271)$$
 Kpri = $(31,31,41)$

b.
$$C = (180, 634, 82, 18)$$

c.
$$P = (201, 700, 132, 18) = 201700132018$$
.

Tách thành (20, 17, 00, 13, 20, 18) = URANUS

Đề 5:

a.
$$Kpub = (1187, 79, 76) Kpri = (113)$$

b.
$$(C1, C2) = \{(981, 82), (981, 312), (981, 624), (981, 645)\}$$