

#### 75-08 Sistemas Operativos Lic. Ing. Osvaldo Clúa 2011

Facultad de Ingeniería Universidad de Buenos Aires

#### Memoria Virtual

#### Objetivos

- Permite separar el direccionamiento del almacenamiento.
  - Soluciona los problemas de fragmentación
  - Soluciona la reubicación de código y datos.
  - Permite direccionar mas memoria que la instalada
- Es parte de la arquitectura requiere soporte de hardware

### Memoria instalada y Memoria requerida

- Como correr programas demasiado grandes para la cantidad de memoria disponible.
- Una solución fue la de usar Overlays para compartir partes de la memoria.
  - Reemplaza un bloque de código por otro.
  - El programador debe planificar el uso de overlays según el uso de las rutinas del sistema.
- · Aún se usa en PDAs, Celulares y Embedded.

#### Overlays

- Main puede llamar a cualquier procedimiento.
- A puede llamar a B
  - No a C ni a D, E o F.
- C no puede llamar a ninguno
- Cada una de las tres partes son excluyentes.



### Páginas (Page)

- Las direcciones generadas por la CPU se dividen bloques de tamaño fijo llamados páginas.
  - Estas direcciones se llaman direcciones virtuales.
  - Generalmente de 2 o 4 KB para evitar fragmentación interna.
  - Esta técnica permite el uso de memoria no contigua.

#### Marcos de Páginas (Frames)

- · La memoria principal se divide en frames.
  - Del mismo tamaño que las páginas.
- Las direcciones de los frames se llaman direcciones reales
- Una unidad de Hardware mapea las direcciones virtuales en reales.
  - La MMU (Memory Management Unit) hace esta traducción de direcciones.

### La MMU Memory management unit

- Responsable de traducir las direcciones virtuales (o lógicas) a direcciones reales (o físicas)
- En general hace uso de una cache asociativo, el Translation Lookaside Buffer o TLB.



#### Haciendo números

- Por cada instrucción hay al menos 3 accesos a memoria.
- Con paginado, cada acceso a memoria consiste en una búsqueda en tabla y un acceso.
- ¿En cuanto se aumenta el tiempo de ejecución de la instrucción?
  - Más del 30% sería inadmisible.

# Usando Context Addressable Memory (CAM)

- Como cache de la tabla se usa un TLB (Translation Lookaside Buffer).
- La penalización por acceso depende si la dirección se encuentra o no en la tabla.
  - La figura muestra una Tabla de Páginas Invertida (a ver mas adelante)



#### Hit/Miss ratio

- La relación entre aciertos y fracasos se llama Hit/Miss.
  - 95% de éxitos
  - 5 ns de acceso a TLB
  - 100 ns de acceso a memoria.
  - 0.95\*105+.05\*205=110 ns (10 % de penalidad)
  - Son típicas relaciones de 0.995 a 0.998

#### Manejo del Miss de TLB

- Por Hardware (ej. IA 32/X86-64).
  - La búsqueda en las tablas forma parte de la Microarquitectura de la traducción.
    - Si se encuentra la página, se sube la entrada al TLB.
    - · Si no hay Page Fault.
- Por Software (ej. MIPS)
  - La arquitectura provee una TLB-MISS exception.
- · Hay esquemas mixtos (SPARC, Itanium)

#### Memoria Virtual

• En la memoria no caben Memoria Todas las páginas.

 Las páginas se guardan en disco en un "page data set".

Si la página no está, se produce un "page fault"



# Traducción de direcciones (Memoria real < Memoria virtual)



75-08 Sistemas Operativos Prof. Lic. Ing. Osvaldo Clúa

## ¿Qué se logra con la Memoria Virtual?

- La memoria del usuario queda separada de la memoria física.
  - Solo una parte del programa debe estar en la memoria para su ejecución.
  - El espacio de direcciones de los procesos pueden ser mas grandes que la memoria disponible.
  - Permite compartir los espacios de memoria.

#### Oportunidades de optimización

- · Algoritmos de paginado.
  - Y que partes pasar al Hard.
  - Y como evitar los page faults.
- Estructura de las tablas de páginas.
- · Organización del Page Data Set.
- Algunas otras cosas que se resuelven con el paginado.

### Paginado por demanda (1)

- No todas las páginas se encuentran en memoria
- Las páginas se traen a memoria cuando se las necesita





75-08 Sistemas Operativos Prof. Lic. Ing. Osvaldo Clúa

### Paginado por demanda (2)

- Solo se traen a memoria las páginas que se van a usar.
- Un bit adicional en la Page Table (y en el TLB) indica si la página está cargada o nó.
  - Bit de página válida.
- Un acceso a una página inválida produce un page fault.
  - Es una software trap que interrumpe al proceso.

#### Proceso de un Page Fault (1)

- Al no encontrarse la página en memoria, se debe ingresar la copia del disco.
- Para eso se debe buscar una página a sacar.
  - Si está modificada, se debe copiar primero a disco.
- El proceso que sufre el page fault se bloquea.

### Proceso de un Page Fault (2)

- Si hay frames libres
  - se copia la página a ese frame.
  - se actualiza la page table.
  - el proceso pasa a ready para continuar su ejecución.
- Si no hay frames libres
  - se debe desalojar una página de la memoria

## Algoritmos de reemplazo de páginas

- Siempre se trata de reemplazar primero una página que no fue modificada (clean).
  - Si fue modificada (dirty) debe escribirse primero a disco.
  - Un bit más en la page table (y en el TLB)
    marca si es clean o no.
- Con las páginas limpias se pueden usar distintos algoritmos

## Óptimo

- Reemplazar la página cuyo uso está mas lejano en el futuro.
- Debe conocerse a priori el comportamiento del programa.
  - En general no es posible
    - Si lo es, conviene usar overlays.
- Sirve como comparación para el resto de los algoritmos.

#### **FIFO**

- Se reemplazan las páginas que hace mas tiempo que están en la memoria.
  - Requiere mantener una cola de páginas.
  - No es buena idea
    - reemplaza las páginas del scheduler o del Kernel.
- Este algoritmo experimenta la anomalía de Belady
  - En algún caso, con mas frames, pagina mas

# No Usado Recientemente (NRU)

- -Se agrega un bit de referencia (r) al de dirty (modificado) al TLB.
- -Con cada acceso a una página, se marca este bit r.
- -Cada tanto, se limpian todos los bits de referencia.
- -La preferencia de la elección está en las páginas:
  - no referenciadas no modificadas.
  - referenciada y no modificada
  - no referenciadas, modificadas (el reloj limpió el bit r)
  - referenciada y modificada

#### 2da Oportunidad/Reloj

Son mejoras al FIFO.

- 2<sup>nd</sup> chance - usa el bit r y una cola para decidir si se reemplaza o no.

- Clock usa una lista circular
  - la "aguja" indica la página mas vieja.
- Ambos limpian el bit r en cada pasada.



Si r==0 reemplaza sino, limpia r y avanza

#### Menos Recientemente Usado LRU

- Cada referencia a memoria actualiza un time stamp en la page table.
  - Se reemplaza la página cuyo time stamp sea el mas antiguo.
- Requiere bastante auxilio de hard para tener una performance adecuada.
- Hay variantes en software
  - NFU (Non Frequently Used) o Aging

#### Working Set

- Los programas exhiben un comportamiento conocido como localidad de referencia.
  - En cada fase de su ejecución, el proceso referencia solo a un pequeño número de páginas (no necesariamente contiguas).
  - Ese conjunto se llama Working Set (aunque la definición cambia con la implementación).
- El Working Set va cambiando a medida que progresa la ejecución

#### Pre-paginado

- Si un proceso pagina durante mas tiempo que el que ejecuta se dice que hace thrashing.
  - thrash= sacudir
  - no confundir con trash=basura
- Se pre-pagina (cargan en memoria) todas las páginas del último Working Set del proceso.
- Se re-calcula el Working Set a intervalos.
- Ejemplo WSClock.

## Tablas de páginas Locales y Globales

- Algunos Sistemas permiten el reemplazo de cualquier página (paginado global).
- Otros solo permiten que un proceso pagine sobre si mismo, evitando efectos en la performance del resto.
  - Esta estrategia es la que se usaría en un Sistema Operativo orientado a Objetos.

#### Estructura de las page tables

- 32 bits direccionan 4.294.967.296 bytes.
  - Con páginas de 4K son 1.048.575 entradas.
  - ¿Con 64 bits?
- · Una idea es usar varios niveles de páginas.
  - El primer nivel indica en que tabla buscar.
  - El segundo indica el frame.
  - Solo hay tablas secundarias para las páginas que están en memoria.

#### Inverted Page Tables

- Combina una tabla de frames y una de páginas en una sola estructura.
  - Una entrada por cada frame.
  - El índice es el número de frame.
  - Contiene el número de la página en memoria.
- La búsqueda es asociativa por contenido (TLB).

#### Tabla de Páginas Directa e Invertida



75-08 Sistemas Operativos Prof. Lic. Ing. Osvaldo Clúa

#### Archivos de paginado

- Una página no es una buena unidad de transferencia.
  - Se usan entonces láminas (slab) de páginas en cada transferencia.
  - La ubicación de una página es entonces #slab + offset.
- Las slabs se acomodan en el page data set (o partición de paginado).
  - Que se formatea y ubica por anticipado.

#### Paginado de código

- · Las páginas de código son read-only.
  - Se paginan directamente desde el archivo del programa ejecutable.
    - El elf tiene previsiones para ello.
    - Es una forma muy eficiente de cargar un programa a memoria.
- El resto de las páginas tiene su "shadow" en disco.

#### Otros tópicos

- El paginado interactúa con la I/O.
  - Se deben fijar las páginas donde hay transferencia desde memoria secundaria.
- Los archivos pueden accederse como memoria virtual.
  - más en la clase de archivos...
- Algunos sistemas permiten tamaños de página distintos (Intel).