APA Modulo 1 Lezione 4

Elena Zucca

16 marzo 2020

Grafi: ripasso definizione

- grafo orientato G = (V, E)
- V insieme di nodi o vertici, E insieme di archi (edges)
- \bullet ogni arco è una coppia (u, v) di nodi detti estremi dell'arco
- in grafo non orientato archi = coppie non ordinate (u, v) e (v, u) denotano lo stesso arco
- cappio = arco da nodo in se stesso, grafo senza cappi = semplice (alcune definizioni lo richiedono)

Ripasso terminologia grafi non orientati

- l'arco (A, B) è incidente sui nodi A e B
- i nodi A e B sono adiacenti
- grado $\delta(u)$ = numero di archi incidenti sul nodo u per esempio $\delta(B) = 4$

Ripasso terminologia grafi orientati

- l'arco (A, B) è incidente sui nodi A e B, uscente da A, entrante in B
- il nodo B è adiacente ad A, ma A non è adiacente a B
- grado $\delta(u)$ = numero di archi incidenti sul nodo u
- grado uscente (outdegree) $\delta_{out}(u)$ = numero di archi uscenti da u per esempio $\delta_{out}(B) = 2$
- grado entrante (indegree) $\delta_{in}(u)$ = numero di archi entranti in u per esempio $\delta_{in}(B) = 2$

Elena Zucca APA-Zucca-3 16 marzo 2020 4 / 29

Alcune ovvie proprietà

Sia G = (V, E), con n nodi ed m archi

- G = (V, E) non orientato:
 - somma gradi dei nodi = doppio del numero archi $\sum_{u \in V} \delta(u) = 2m$
 - m= al massimo numero di tutte le coppie non ordinate di nodi $n+(n-1)+\ldots+1=n(n+1)/2$ quindi $m=O(n^2)$

Alcune ovvie proprietà

Sia G = (V, E), con n nodi ed m archi

- G = (V, E) orientato:
 - somma gradi uscenti = somma gradi entranti = numero archi $\sum_{u \in V} \delta_{out}(u) = \sum_{u \in V} \delta_{in}(u) = m$ quindi anche in questo caso $\sum_{u \in V} \delta(u) = 2m$
 - m= al massimo numero di tutte le coppie ordinate di nodi n^2 quindi $m=O(n^2)$
- in genere $m << n^2$
- complessità espressa in funzione di n e m
- se $m \sim n^2$ si dice grafo denso

Ripasso terminologia

- cammino (path) = sequenza $u_0, ..., u_n$ con $n \ge 0$ e per ogni $i \in 0..n - 1$, (u_i, u_{i+1}) arco
- nel caso grafo non orientato catena
- n-1 = numero archi = lunghezza del cammino
- cammino degenere o nullo = un solo nodo (lunghezza 0)
- semplice se nodi distinti tranne al più il primo e l'ultimo
- in grafo orientato:
 ciclo = cammino non nullo con primo nodo = ultimo
- in grafo non orientato: ciclo o circuito = cammino (catena) di lunghezza ≥ 3 con primo nodo = ultimo
- v è raggiungibile da u se esiste un cammino da u a v

Ripasso terminologia

- G aciclico se non vi sono cicli
- DAG = directed acyclic graph = grafo orientato aciclico
- grafo non orientato connesso se ogni nodo è raggiungibile da ogni altro
- grafo orientato fortemente connesso se ogni nodo è raggiungibile da ogni altro, debolmente connesso se il grafo non orientato corrispondente è connesso
- sottografo di G = (V, E) = grafo ottenuto da G non considerando alcuni archi e/o nodi
- sottografo indotto da $V' \subseteq V$ = sottografo di G con nodi V' e gli archi di G che li connettono

Esempio

sottografo indotto da A, B, C:

Albero libero

• albero libero= grafo non orientato connesso aciclico

ullet se si fissa un nodo u come radice, si ottiene un albero nel senso usuale

(ossia, radicato), avente u come radice

• si può pensare di "appendere" il grafo a un qualunque nodo, e si ottiene sempre un albero.

Foresta libera

Albero ricoprente

- dato grafo non orientato e connesso G, un albero ricoprente (spanning tree) di G è un sottografo di G che contiene tutti i nodi ed è un albero libero
- ullet ossia albero che connette tutti i nodi del grafo usando archi del grafo, ha quindi n nodi ed n-1 archi
- se grafo non connesso si ha foresta ricoprente

Esempio

Rappresentazione di grafi: lista di archi

- si memorizza insieme nodi e lista archi complessità spaziale O(n+m)
- molte operazioni richiedono di scorrere l'intera lista

operazione	tempo di esecuzione
grado di un nodo	O(m)
nodi adiacenti	O(m)
esiste arco	O(m)
aggiungi nodo	O(1)
aggiungi arco	O(1)
elimina nodo	O(m)
elimina arco	O(m)

Rappresentazione di grafi: liste di adiacenza

- per ogni nodo si memorizza lista nodi adiacenti 2m per grafo non orientato, m per grafo orientato, complessità spaziale O(n+m)
- per grafo non orientato informazione ridondante (coerenza)
- semplice trovare adiacenti di un nodo, operazione spesso cruciale

```
\begin{array}{lll} \textbf{operazione} & \textbf{tempo di esecuzione} \\ \text{grado di } u & O(\delta(u)) \\ \text{nodi adiacenti a } u & O(\delta(u)) \\ \text{esiste arco } (u,v) & O(\min(\delta(u),\delta(v))) \\ \text{aggiungi nodo} & O(1) \\ \text{aggiungi arco} & O(1) \\ \text{elimina nodo} & O(m) \\ \text{elimina arco } (u,v) & O(\delta(u)+\delta(v)) \end{array}
```

Rappresentazione di grafi: matrice di adiacenza

- matrice quadrata M di dimensione n a valori booleani (oppure 0,1)
- M[i,j] vero se e solo se esiste l'arco (u_i, u_j)
- complessità spaziale $O(n^2)$
- per grafo non orientato informazione ridondante (matrice simmetrica)
- verifica presenza arco tempo costante, trovare gli adiacenti più costoso (intera riga)

operazione	tempo di esecuzione
grado di un nodo	O(n)
nodi adiacenti	O(n)
esiste arco	O(1)
aggiungi nodo	$O(n^2)$ (riallocazione)
aggiungi arco	O(1)
elimina nodo	$O(n^2)$ (riallocazione)
elimina arco	O(1)

16 / 29

Riassumendo

- liste di adiacenza in genere preferibili, in particolare per grafi sparsi ossia con $m << n^2$
- matrice di adiacenza può essere preferibile per grafo denso $(m \sim n^2)$ o quando è importante controllare in modo efficiente se esiste un arco tra due vertici
- entrambe le rappresentazioni sono facilmente adattabili ai grafi pesati, ossia dove ogni arco ha un peso (costo) associato

Visite

- algoritmi simili a quelli per gli alberi, ma occorre marcare i nodi
- tradizionalmente marcati come bianco, grigio, e nero:
 - bianco: non ancora toccato
 - grigio: visita iniziata
 - nero: visita conclusa
- visite iterative usano frangia F da cui vengono via via estratti i nodi da visitare
- in visita in ampiezza frangia = coda, in visita in profondità frangia = pila, in algoritmi di Dijkstra e Prim frangia = coda a priorità (heap)
- costruiscono implicitamente albero di visita T (o foresta)

Visita in ampiezza (breadth-first)

convenzione: figli in ordine alfabetico

Breadth-First Search (BFS)

Coda: A ÁBC ØCDE ØDE ØEF ÆFGH FGH ØHIJ HIJK ÍJKL SKL KL L;

Pseudocodice

```
BFS(G,s) //visita nodi raggiungibili da s
 for each (u nodo in G)
   marca u come bianco;
Q = coda vuota
Q.add(s); marca s come grigio;
 while (O non vuota)
   u = Q.remove() //u non nero
   visita u
   for each ((u,v) arco in G)
         if (v bianco)
           marca v come grigio; Q.add(v);
   marca u come nero
```

- per semplicità visita del sottografo connesso a partire da un nodo
- non è necessario distinguere tra nodi grigi e neri
- costruisce implicitamente albero di visita T, che può essere reso esplicito
- è un albero ricoprente

Pseudocodice con albero di visita

```
BFS(G,s) //visita nodi raggiungibili da s
 for each (u nodo in G)
   marca u come bianco; parent[s] = null
 Q = coda vuota
 Q.add(s); marca s come grigio;
 while (Q non vuota)
   u = Q.remove() //u non nero
   visita u
   for each ((u,v) arco in G)
         if (v bianco)
           marca v come grigio; Q.add(v);
           parent[v]=u
   marca ii come nero
```

- i nodi sono tutti quelli raggiungibili da s, ossia tutti gli u tali che parent[u] ≠ null, più s stesso
- gli archi sono gli u, v tali che parent[v]=u

Elena Zucca APA-Zucca-3 16 marzo 2020 21 / 29

Osservazioni

- o nodi nell'albero di visita corrente grigi o neri
- la frangia è una coda Q, che mantiene l'ordine in cui i nodi sono trovati; ogni nodo entra in coda una volta sola
- invariante del ciclo: nodi grigi = nodi in F nodi nell'albero = nodi neri e grigi
- il predecessore (padre) di un nodo viene deciso nel momento in cui il nodo viene incontrato
- la visita calcola la distanza (lunghezza minima di un cammino) dalla radice a ogni nodo

Visita in profondità (depth-first)

convenzione: figli in ordine alfabetico si segue un cammino nel grafo finché possibile

Visita in profondità iterativa con pila

Pseudocodice

```
DFS(G,s) //visita nodi di G raggiungibili da s
 for each (u nodo in G)
   marca u come bianco; parent[s] = null
 S = pila vuota
 S.push(s); marca s come grigio;
 while (S non vuota)
   u = S.pop()
   if (u non nero)
     visita u
     for each ((u,v) arco in G)
       if (v bianco)
         marca v come grigio; S.push(v); parent[v] = u
       else if (v grigio)
         S.push(v); parent[v] = u //modifica il padre
     marca u come nero
```

Osservazioni

- un nodo può essere inserito nella pila anche se grigio, quindi più volte, nel caso peggiore tante volte quanti sono i suoi archi entranti
- il padre viene modificato ogni volta
- può essere estratto dalla pila un nodo nero

Complessità della visita completa (caso DFS)

- n = numero nodi, m = numero archi
- marcatura e operazioni su coda/pila costanti (no in Dijkstra e Prim)
- marcature dei nodi: O(n)
- inserimenti in F e T, modifiche di F e T, estrazioni da F: ogni nodo viene inserito una prima volta in F e T, poi eventualmente F e T vengono aggiornati al più m volte: O(n+m)
- esplorazione archi incidenti eseguita per ogni nodo, quindi:
 - lista di archi: $O(n \cdot m)$
 - liste di adiacenza: O(n+m) perché ogni lista di adiacenza viene scandita una volta sola
 - matrice di adiacenza: $O(n^2)$
- complessità totale caso liste di adiacenza: O(n+m)

Elena Zucca APA-Zucca-3 16 marzo 2020 27 / 29

Visita in profondità ricorsiva

- occorre comunque marcare i nodi come visitati
- distinzione grigio/nero non necessaria, evidenzia fine visita
- algoritmo per visita completa (ossia, anche di un grafo non connesso)

```
DFS(G)
 for each (u nodo in G)
   marca u come bianco; parent[u]=null
 for each (u nodo in G)
   if (u bianco) DFS(G,u)
```

Visita a partire da un nodo

```
DFS(G,u)
 //inizio visita
 visita u; marca u come grigio
 for each ((u,v) arco in G)
   if (v bianco)
     parent[v]=u
     DFS(G,v)
 //marca u come nero
 //fine visita
```

viene costruita una foresta DFS