CS 480

Introduction to Artificial Intelligence

April 19, 2022

Announcements / Reminders

- Final Exam: April 28th!
 - Ignore Registrar date for CS 480
 - Online section: please contact Mr. Charles Scott (scott@iit.edu) to make arrangements if necessary
- End of semester course evaluation: open. Thank you!
- Programming Assignment #02: due TOMORROW (04/20)
- Written Assignment #03: due TONIGHT (04/19)
- Written Assignment #04: due on Wednesday (04/27)
- Grading TA assignment:

https://docs.google.com/spreadsheets/d/1Cav_GBTGC7fLGzxuBCAUmEuJYPeF-HMLCYvwPbq8Fus/edit?usp=sharing

Plan for Today

Casual Introduction to Machine Learning

Main Machine Learning Categories

Supervised learning

Supervised learning is one of the most common techniques in machine learning. It is based on known relationship(s) and patterns within data (for example: relationship between inputs and outputs).

Frequently used types: regression, and classification.

Unsupervised learning

Unsupervised learning involves finding underlying patterns within data. Typically used in clustering data points (similar customers, etc.)

Reinforcement learning

Reinforcement learning is inspired by behavioral psychology. It is based on a rewarding / punishing an algorithm.

Rewards and punishments are based on algorithm's a c t i o n within its environment.

Digit Image as ANN Feature Set

Individual features need to be "extracted" from an image. An image is numbers.

Source: https://nikolanews.com/not-just-introduction-to-convolutional-neural-networks-part-1/

ANN for Classification

ANN for Regression

ANN for Regression: Used Car Price

Used car price predictor: train it first with used car data - price pairs.

Unsupervised Learning

What is Unsupervised Learning?

Idea:

Unsupervised learning involves finding underlying patterns within data. Typically used in clustering data points (similar customers, etc.).

In other words:

- there is some structure (groups / clusters) in data (for example: customer information)
- we don't know what it is (= no labels!)
- unsupervised learning tries to discover it

Unsupervised Learning: K-Means Clustering

K-Means Clustering: The Idea

Source: https://stanford.edu/~cpiech/cs221/handouts/kmeans.html

Exercise: K-Means Clustering

https://lalejini.com/my_empirical_examples/KMean sClusteringExample/web/kmeans_clustering.html

3D K-Means Clustering Visualized

Source: https://github.com/Gautam-J/Machine-Learning

Where Would You Use Clustering?

K-Fold Cross-Validation

Ensemble Learning

In ensemble learning we are creating a collection (an ensemble) of hypotheses (models) $h_1, h_2, ..., h_N$ and combine their predictions by averaging, voting, or another level of machine learning. Indvidual hypotheses (models) are based models and their combination is the ensemble model.

- Bagging
- Boosting
- Random Trees
- etc.

Bagging: Regression

In bagging we generate K training sets by sampling with replacement from the original training set.

Bagging tends to reduce variance and helps with smaller data sets.

Bagging: Classification

In bagging we generate K training sets by sampling with replacement from the original training set.

Bagging tends to reduce variance and helps with smaller data sets.

scikit-learn Algorithm Cheat Sheet

Source: https://scikit-learn.org/stable/tutorial/machine_learning_map/index.html

k = 11 Nearest Neighbors

k = 11 Nearest Neighbors

k = 11 Nearest Neighbors

k = 25 Nearest Neighbors

k = 25 Nearest Neighbors

k = 25 Nearest Neighbors

How Would kNN Do Here?

Distance Measures

Source: https://towardsdatascience.com/9-distance-measures-in-data-science-918109d069fa

Practical ML: Feature Engineering

One-hot encoding

```
red = [1, 0, 0]
yellow = [0, 1, 0]
green = [0, 0, 1]
```

- Binning / Bucketing
- Normalization
- Dealing with missing data / features

Reinforcement Learning (RL)

What is Reinforcement Learning?

Idea:

Reinforcement learning is inspired by behavioral psychology. It is based on a rewarding / punishing an algorithm.

Rewards and punishments are based on algorithm's action within its environment.

RL: Agents and Environments

Source: https://www.youtube.com/watch?v=VMp6pq6_QjI

Source: https://www.youtube.com/watch?v=x4O8pojMF0w

Source: https://www.youtube.com/watch?v=kopoLzvh5jY

Source: https://www.youtube.com/watch?v=Tnu4O_xEmVk

ANN for Simple Game Playing

ANN for Simple Game Playing

Current game is an input. Decisions (UP/DOWN/JUMP) are rewarded/punished.

Correct all the weights using Reinforcement Learning.

RL: Agents and Environments

RL: Agents and Environments

Deep Learning

Machine Learning vs. Deep Learning

Machine Learning

Deep Learning

Source: https://www.quora.com/What-is-the-difference-between-deep-learning-and-usual-machine-learning

Machine Learning vs. Deep Learning

Source: https://www.intel.com/content/www/us/en/artificial-intelligence/posts/difference-between-ai-machine-learning-deep-learning.html

Deep Learning: Feature Extraction

Source: https://en.wikipedia.org/wiki/Deep_learning

Exercise: Object Recognition

https://braneshop.com.au/object-detection-in-the-browser.html

(you can try it on your smartphone)

Exercise: Image Colorizer

https://deepai.org/machine-learning-model/colorizer

Exercise: Deep Learning

https://www.handwriting-generator.com/