11th i-CoMSE Workshop: Mesoscale Particle-Based Modeling

Mississippi State University July 21–25, 2025

Session 1: Introduction to coarse graining

Multiscale modeling

Length and time scales → level of detail in treatment of matter

Multiscale modeling

What type of phenomena are we trying capture with the model?

- Quantum: chemical reactions, charge transfer, etc.
- Atomistic: phase diagrams, thermophysical and transport properties, macromolecular structure (protein folding), etc.
- Mesoscale: macromolecular self-assembly, complex fluid rheology, hydrodynamic phenomena, etc.
- Continuum: device-level modeling of heat, mass, momentum transport.

Multiscale modeling

What inputs do we need to model at different length scales?

- Quantum: atomic number*
- Atomistic: force fields for describing bonded and nonbonded interactions between atoms
- Mesoscale: force fields for describing bonded and nonbonded interactions between mesoparticles
- Continuum: bulk material properties (e.g., thermal conductivity, elastic moduli, etc)

Coarse graining

 Coarse graining approaches allow us to obtain the information (force fields, material properties, etc.) to necessary to develop atomistic, mesoscale, and continuum models

 Bottom-up: reproduce specific features of a more detailed (higher-resolution) model

Coarse graining

 Coarse graining approaches allow us to obtain the information (force fields, material properties, etc.) to necessary to develop atomistic, mesoscale, and continuum models

- Bottom-up: reproduce specific features of a more detailed (higher-resolution) model
- Top-down: reproduce specific phenomenological or emergent properties at macroscale, or theoretical expectations

Coarse graining

 Coarse graining approaches allow us to obtain the information (force fields, material properties, etc.) to necessary to develop atomistic, mesoscale, and continuum models

http://web.mit.edu/mbuehler/www/

- Bottom-up: reproduce specific features of a more detailed (higher-resolution) model
- Top-down: reproduce specific phenomenological or emergent properties at macroscale, or theoretical expectations
- "Hypothesis-driven": use hypotheses regarding essential interactions driving the behavior of interest to propose a CG model

 Quantum→ Atomistic: parameterization of a class II force field using quantum mechanics data

$$U_{total} = U_{nonbonded} + U_{bonds} + U_{angles} + U_{torsions}$$

$$\mathbf{F}_i = -\frac{\partial U_{total}}{\partial r_i} \text{ (net force on atom } i\text{)}$$

 Quantum→ Atomistic: parameterization of a class II force field using quantum mechanics data

$$U_{total} = U_{nonbonded} + U_{bonds} + U_{angles} + U_{torsions}$$

$$\mathbf{F}_i = -\frac{\partial U_{total}}{\partial r_i} \text{ (net force on atom } i\text{)}$$

https://encyclopedia.pub/entry/33716

Quantum -> Atomistic: parameterization of a class II force field using quantum mechanics data

$$u_{total} = u_{nonbonded} + u_{bonds} + u_{angles} + u_{torsions}$$

$$\mathbf{F}_i = -\frac{\partial u_{total}}{\partial r_i} \text{ (net force on atom } i\text{)}$$

$$i \xrightarrow{r_{ij}} j$$

$$\begin{array}{ccc} & & & & \\ & & & \\ i & & & \\$$

$$\varepsilon_{ij} = \sqrt{\varepsilon_i \varepsilon_j}.$$
 $\sigma_{ij} = \frac{1}{2} (\sigma_i + \sigma_j)$

Quantum

Atomistic: parameterization of a class II force field using quantum mechanics data

$$\mathcal{U}_{total} = \mathcal{U}_{nonbonded} + \mathcal{U}_{bonds} + \mathcal{U}_{angles} + \mathcal{U}_{torsions}$$

$$\mathbf{F}_i = -\frac{\partial \mathcal{U}_{total}}{\partial r_i} \text{ (net force on atom } i\text{)}$$

$$u_{nonbonded} = \sum_{i} \sum_{j \neq i} 4\varepsilon_{ij} \left[\left(\frac{\sigma_{ij}}{r_{ij}} \right)^{12} - \left(\frac{\sigma_{ij}}{r_{ij}} \right)^{6} \right] + \sum_{i} \sum_{j \neq i} \frac{q_{i}q_{j}}{\varepsilon r_{ij}}$$
van der Waals
$$u_{bonds} = \sum_{bonds} \frac{1}{2} k_{bond} (r_{ij} - l)^{2}$$

$$u_{angles} = \sum_{angles} \frac{1}{2} k_{angle} (\theta_{jik} - \theta_{0})^{2}$$

$$u_{torsion} = \sum_{torsions} k_{tor} [1 + \cos(n_i \phi_{ijkl} + \delta_i)]$$

 Quantum→ Atomistic: parameterization of a class II force field using quantum mechanics data

$$U_{total} = U_{nonbonded} + U_{bonds} + U_{angles} + U_{torsions}$$

$$\mathbf{F}_i = -\frac{\partial U_{total}}{\partial r_i} \text{ (net force on atom } i\text{)}$$

- Perform quantum calculations on different configurations of the system to generate reference data
- "Force matching": use numerical optimization / machine-learning methods to find model parameters for the atomistic force field that best reproduce energies and forces from quantum calculations (i.e., minimize L)

$$L = w_{energy} \sum_{configs} \left(\mathcal{U}_{total}^{A} - \mathcal{U}_{total}^{Q} \right)^{2} + w_{force} \sum_{configs} \sum_{atoms} \sum_{x,y,z} \left(\mathbf{F}_{i}^{A} - \mathbf{F}_{i}^{Q} \right)^{2}$$

- Atomistic → Mesoscale: parameterization of a mesoscale force field using atomistic simulation data
- Determine the desired resolution of the mesoscale model
 - How are atoms grouped to define each mesoscale beads?

Ye et al., ACS Omega 6, 1758-1772, 2021

- Atomistic → Mesoscale: parameterization of a mesoscale force field using atomistic simulation data
- Determine the desired resolution of the mesoscale model
 - How are atoms grouped to define each mesoscale beads?
 - What type of potential terms are required?

Ye et al., ACS Omega 6, 1758-1772, 2021

- Atomistic

 Mesoscale: parameterization of a mesoscale force field using atomistic simulation data
- Determine the desired resolution of the mesoscale model
- Perform atomistic simulations of the systems to generate reference energy and force data
- Use numerical optimization / machine-learning methods to find model parameters for the mesoscale (CG) force field that best reproduce energies and forces from atomistic simulations (i.e., minimize L)

$$L = w_{energy} \sum_{configs} \left(\mathcal{U}_{total}^{CG} - \mathcal{U}_{total}^{A}\right)^{2} + w_{force} \sum_{configs} \sum_{beads} \sum_{x,y,z} \left(\mathbf{F}_{i}^{CG} - \mathbf{F}_{i}^{A}\right)^{2}$$

Atomistic vs. mesoscale force fields

For atomistic systems

- \mathcal{U}_{total} typically has a pre-defined functional form (e.g., class II force fields)
- u_{total} can also be represented using neural networks; these can provide better accuracy but are ~10-100 times more computationally intensive

For mesoscale systems

- Interactions between mesoscale beads are typically "softer" than those for atomistic systems
- Pre-defined functional forms are common, but it is often challenging to develop simple analytical functions to describe these interactions
- Tabulated potentials with interpolation schemes (e.g., splines) offer greater flexibility and accuracy and do not appreciably change the computational cost

- Develop mesoscale force field by using theory to find parameters that reproduce experimental phase diagram
- Determine the desired resolution of the mesoscale model
 - How are atoms grouped to define each mesoscale beads?
 - What type of potential terms are required?

Muller and Jackson., Annu. Rev. Chem. Biomol. Eng. 5:405–27, 2014

- Develop mesoscale force field by using theory to find parameters that reproduce experimental phase diagram
- Determine the desired resolution of the mesoscale model

Use theory (e.g., statistical associating fluid theory) + numerical optimization methods minimize deviation from experimental vapor-liquid equilibrium curve

Muller and Jackson., Annu. Rev. Chem. Biomol. Eng. 5:405–27, 2014

- Develop mesoscale force field by using theory to find parameters that reproduce experimental phase diagram
- Determine the desired resolution of the mesoscale model
- Use theory (e.g., statistical associating fluid theory) + numerical optimization methods minimize deviation from experimental vapor-liquid equilibrium curve
- Use simulation to validate and study other model properties

- Develop mesoscale force field by using theory to find parameters that reproduce experimental phase diagram
- Determine the desired resolution of the mesoscale model
- Use theory (e.g., statistical associating fluid theory) + numerical optimization methods minimize deviation from experimental vapor-liquid equilibrium curve
- Use simulation to validate and study other model properties

Biomol. Eng. 5:405-27, 2014

 CO_2 + n- $C_{10}H_{22}$: exp (closed), sim (open)

Mesoscale models of soft materials

 "Soft materials": typical interactions strengths on order of thermal energy (~kT)

Examples:

- Pure fluids (gasses, liquids, supercritical)
- Macromolecules (polymers, proteins)
- Suspensions of colloids and nanoparticles
- Complex fluid (mixtures of the above)

Phenomena

- Equilibrium structure (e.g., radius of gyration) and self-assembly behavior (e.g., aggregation)
- Equilibrium dynamics (diffusion coefficients, viscosity, etc.)
- Nonequilibrium processes (transport under flow, shearing, etc.)

- Modeling nanoparticle and polymer solutions for the design of nanocomposites
- Use mesoscale simulations to test theories and provide improved understanding of experimental observations

 Nanoparticle particle transport through porous media for separations and diagnostic applications

Lateral flow assays

Image credit: NPR

Microfluidic separation

Salafi et. al., Nano-Micro Lett., 2019, 11, 77

 Nanoparticle particle transport through porous media for separations and diagnostic applications

 Stimuli-response polymer brushes for sensing, actuation, and self-cleaning surfaces

- Day 1: Coarse-grained models
 - Session 1: Introduction to coarse graining (this lecture)
 - Session 2: Top-down coarse graining
 - Session 3: Bottom-up coarse graining
 - Session 4: Visualization

- Define the concepts of coarse graining and mesoscale models.
- Explain basic approaches for top-down and bottom-up coarse-graining.
- Explain the concepts of potential of mean force (PMF) and implicit-solvent modeling for effective interactions between mesoparticles.
- Be able to visualize output from molecular simulations.

- Day 2: Molecular dynamics and Langevin dynamics
 - Session 5: Molecular dynamics (MD)
 - Session 6: Langevin dynamics (LD)
 - Session 7: Periodic boundary conditions I
 - Session 8: Periodic boundary conditions II
 - Session 9: Walls

- Explain the classical mechanics underlying MD, its numerical integration algorithm, and how to choose the integration time step
- Define the equations of motion for LD and explain how key parameters can be chosen to develop implicit-solvent models.
- Explain the concept of periodic boundary conditions and how they affect the calculation of structural and dynamics quantities.
- Be able to model quasi-2D, 1D, and 0D systems using solid surfaces (walls).

- Day 3: Multiparticle collision dynamics I
 - Session 10: Algorithm, pure solvent
 - Session 11: Coupling to polymers
 - Session 12: Coupling to colloids
 - Poster session

- Explain the basic MPCD algorithm and the importance of including an explicit coarse-grained solvent to capture hydrodynamic phenomenon in mesoscale simulations.
- Be able to use the MPCD solvent to model hydrodynamic interactions between mesoparticles (polymers & colloids).

- Day 4: Multiparticle collision dynamics II
 - Session 13: Coupling to boundaries I (wall-driven flow)
 - Session 14: Coupling to boundaries II (pressure-driven flow)
 - Session 15: Reproducibility / open-source software roundtable
 - Session 16: Applied project

- Explain how an MPCD solvent can be coupled to solid boundaries to simulate wall- and pressure-driven flows.
- Be able to simulate wall- and pressure-driven flows, then analyze simulation results to extract properties of interest.
- Define reproducibility and explain its importance in computational science.
 Identify strategies that computational scientists can use to promote reproducibility and accelerate scientific advances.
- Explain what open-source software is, and identify best practices for using and contributing to it.
- Apply mesoscale particle-based models to a scientific research problem.

- Day 5: Wrap up
 - Session 17: Project presentations and discussions.
 - Session 18: What we didn't cover / ask us anything!
- Learning objectives
 - Develop communication skills for computational research.
 - Identify topics for future learning.