## Solutions for "Relations" chapter of "How to prove it" book

by drets

May 2017

(make contain various errors)

## 1 Ordered Pairs and Cartesian Products

1.

- (a)  $\{(p,c) \in P \times P \mid \text{ the person p is a parent of c}\} = \{(\text{Prince Charles, Prince William}), (\text{Prince Charles, Price Harry}), \dots\}$
- (b)  $\{(c,u) \in C \times U \mid \text{there is someone who lives in c and attends u}\}$ . If you are a university student, then let x be the city you live in, and let y be the university you attend; (x, y) will then be an element of this truth set.

2.

- (a)  $\{(p,c)\in P\times C\mid \text{the person p lives in c city}\}=\{(\text{drets, Poznan}),$  (Prince William, London), . . . }
  - (b)  $\{(c, n) \in C \times \mathbb{N} \mid \text{the population of c is n} \} = \{(Poznan, 600000), (Tokyo, 13600000), \dots \}$

3.

(a) 
$$y = x^2 - x - 2$$



(b) 
$$y < x$$

$$\{(0,1),(0.1,1.1),\dots\}$$

(c) Either 
$$y = x^2 - x - 2$$
 or  $y = 3x - 2$ 

$$\{(-1,0),(0,-2),(0.666666(6),0),(2,0),\dots\}$$



(d) y < x, and either  $y = x^2 - x - 2$  or y = 3x - 2

 $\{(0,-2),(0.666666(6),0),(2,0),\dots\}$ 



$$A = \{1, 2, 3\}$$

$$B = \{1, 4\}$$

$$C = \{3, 4\}$$

$$D = \{5\}$$

$$1) A \times (B \cap C) = (A \times B) \cap (A \times C)$$

$$B \cap C = \{4\}$$

$$A \times (B \cap C) = \{(1, 4), (2, 4), (3, 4)\}$$

$$A \times B = \{(1, 1), (2, 1), (3, 1), (1, 4), (2, 4), (3, 4)\}$$

$$A \times C = \{(1, 3), (2, 3), (3, 3), (1, 4), (2, 4), (3, 4)\}$$

$$(A \times B) \cap (A \times C) = \{(1, 4), (2, 4), (3, 4)\}$$

$$(A \times B) \cap (A \times C) = \{(1, 4), (2, 4), (3, 4)\}$$

$$2) A \times (B \cup C) = (A \times B) \cup (A \times C)$$

$$B \cup C = \{1, 3, 4\}$$

$$A \times (B \cup C) = \{(1, 1), (2, 1), (3, 1), (1, 3), (2, 3), (3, 3), (1, 4), (2, 4), (3, 4)\}$$

$$A \times B = \{(1, 1), (2, 1), (3, 1), (1, 4), (2, 4), (3, 4)\}$$

$$A \times B = \{(1, 3), (2, 3), (3, 3), (1, 4), (2, 4), (3, 4)\}$$

$$(A \times B) \cup (A \times C) = \{(1, 1), (2, 1), (3, 1), (1, 3), (2, 3), (3, 3), (1, 4), (2, 4), (3, 4)\}$$

$$3) (A \times B) \cap (C \times D) = (A \cap C) \times (B \cap D)$$

$$A \times B = \{(1, 1), (2, 1), (3, 1), (1, 4), (2, 4), (3, 4)\}$$

$$C \times D = \{(3, 5), (4, 5)\}$$

$$(A \cap C) \times (B \cap D) = \emptyset$$

$$4) (A \times B) \cup (C \times D) \subseteq (A \cup C) \times (B \cup D)$$

$$A \times B = \{(1, 1), (2, 1), (3, 1), (1, 4), (2, 4), (3, 4)\}$$

$$C \times D = \{(3, 5), (4, 5)\}$$

$$(A \cap C) \times (B \cap D) = \emptyset$$

$$4) (A \times B) \cup (C \times D) \subseteq (A \cup C) \times (B \cup D)$$

$$A \times B = \{(1, 1), (2, 1), (3, 1), (1, 4), (2, 4), (3, 4)\}$$

$$C \times D = \{(3, 5), (4, 5)\}$$

$$(A \cap C) \times (B \cap D) = \emptyset$$

$$4) (A \times B) \cup (C \times D) = \{(1, 1), (2, 1), (3, 1), (1, 4), (2, 4), (3, 4)\}$$

$$C \times D = \{(3, 5), (4, 5)\}$$

$$(A \times B) \cup (C \times D) = \{(1, 1), (2, 1), (3, 1), (1, 4), (2, 4), (3, 4), (3, 5), (4, 5)\}$$

$$A \cup C = \{1, 2, 3, 4\}$$

$$B \cup D = \{1, 4, 5\}$$

 $(A \cup C) \times (B \cup D) = \{(1,1), (2,1), (3,1), (4,1), (1,4), (2,4), (3,4), (4,4), (1,5), (2,5), (3,5), (4,5)\}$ 

5) 
$$A \times \varnothing = \varnothing \times A = \varnothing$$
  
 $A \times \varnothing = \{1, 2, 3\} \times \varnothing = \varnothing$   
 $\varnothing \times A = \varnothing \times \{1, 2, 3\} = \varnothing$ 

5. 
$$A\times (B\cup C) = (A\times B)\cup (A\times C)$$
 1)

Givens 
$$Goal$$
 
$$p \in A \times (B \cup C) \quad p \in (A \times B) \cup (A \times C)$$

Givens Goal 
$$x \in A \qquad p \in (A \times B) \cup (A \times C)$$
 
$$y \in B \lor y \in C$$

Givens Goal 
$$x \in A \qquad p \in (A \times B) \cup (A \times C)$$
 
$$y \in B \lor y \in C$$

Case 1. 
$$\label{eq:Givens} \textit{Givens} \quad \textit{Goal}$$

$$x \in A$$
  $p \in (A \times B) \cup (A \times C)$ 

 $y \in B$ 

Case 2. 
$$\label{eq:Givens} \textit{Givens} \quad \textit{Goal}$$

$$x \in A \qquad p \in (A \times B) \cup (A \times C)$$
 
$$y \in C$$

2) 
$$Givens \qquad Goal$$
 
$$p \in (A \times B) \cup (A \times C) \quad p \in A \times (B \cup C)$$

Case 1.

Givens Goal 
$$x \in A \qquad x \in A \land (y \in B \lor y \in C)$$
 
$$y \in B$$

Case 2.

Givens Goal 
$$x \in A \qquad x \in A \land (y \in B \lor y \in C)$$
 
$$y \in C$$

Proof of 2. Let p be an arbitrary element of  $A \times (B \cup C)$ . Then by definition of Cartesian product, p must be an ordered pair whose first coordinate is an element of A and second coordinate is an element of  $B \cup C$ . In other words, p = (x, y) for some  $x \in A$  and  $y \in B \cup C$ . Since  $y \in B \cup C$ ,  $y \in B$  or  $y \in C$ .

Case 1.  $y \in B$ . Since  $x \in A$  and  $y \in B$ ,  $p = (x, y) \in A \times B$ . Thus,  $p \in (A \times B) \cup (A \times C)$ 

Case 2.  $y \in C$ . Since  $x \in A$  and  $y \in C$ ,  $p = (x,y) \in A \times C$ . Thus,  $p \in (A \times B) \cup (A \times C)$ 

Since p was an arbitrary element of  $A \times (B \cup C)$ , it follows that  $A \times (B \cup C) \subseteq (A \times B) \cup (A \times C)$ .

Now let p be an arbitrary element of  $p \in (A \times B) \cup (A \times C)$ . Then  $p \in A \times B$  or  $p \in A \times C$ .

Case 1.  $p \in A \times B$ . Then p = (x, y) for some  $x \in A$  and  $y \in B$ . Thus,  $x \in A \lor (y \in B \lor y \in C)$ . Therefore,  $p \in A \times (B \cup C)$ 

Case 2.  $p \in A \times C$ . Then p = (x, y) for some  $x \in A$  and  $y \in C$ . Thus,  $x \in A \vee (y \in B \vee y \in C)$ . Therefore,  $p \in A \times (B \cup C)$ .

Since p was an arbitrary element of  $p \in (A \times B) \cup (A \times C)$ , it follows that  $(A \times B) \cup (A \times C) \subseteq A \times (B \cup C)$ , so  $(A \times B) \cup (A \times C) = A \times (B \cup C)$ 

$$(A \times B) \cap (C \times D) = (A \cap C) \times (B \cap D)$$

$$1)$$

$$Givens \qquad Goal$$

$$p \in (A \times B) \cap (C \times D) \quad p \in (A \cap C) \times (B \cap D)$$

$$Givens \qquad Goal$$
 
$$p \in A \times B \qquad p \in (A \cap C) \times (B \cap D)$$
 
$$p \in C \times D$$

Givens Goal 
$$x \in A \qquad p \in (A \cap C) \times (B \cap D)$$
 
$$y \in B$$
 
$$x \in C$$
 
$$y \in D$$

2) 
$$Givens \qquad Goal$$
 
$$p \in (A \cap C) \times (B \cap D) \quad p \in (A \times B) \cap (C \times D)$$

Givens Goal 
$$x \in A \cap C \quad p \in (A \times B) \cap (C \times D)$$
 
$$y \in B \cap D$$

Proof of 3

Let (x,y) be an arbitrary element of  $(A \times B) \cap (C \times D)$ . Then  $(x,y) \in A \times B$  and  $(x,y) \in C \times D$ . Then  $x \in A$  and  $x \in C$ , and  $y \in B$  and  $y \in D$ . Therefore  $(x,y) \in (A \cap C) \times (B \cap D)$ . Since (x,y) was an arbitrary element of  $(A \times B) \cap (C \times D)$ , it follows that  $(A \times B) \cap (C \times D) \subseteq (A \cap C) \times (B \cap D)$ 

Now let (x,y) be an arbitrary element of  $(A \cap C) \times (B \cap D)$ . Then  $x \in A$  and  $x \in C$ , and  $y \in B$  and  $y \in D$ . Therefore  $(x,y) \in (A \times B) \cap (C \times D)$ . Since (x,y) was an arbitrary element of  $(A \cap C) \times (B \cap D)$ , it follows that  $(A \cap C) \times (B \cap D) \subseteq (A \times B) \cap (C \times D)$ , so  $(A \times B) \cap (C \times D) = (A \cap C) \times (B \cap D)$ .

- 6. The cases are not exhaustive.
- 7. If A has m elements and B has n elements,  $A \times B$  have m \* n elements.

8. 
$$A \times (B \setminus C) = (A \times B) \setminus (A \times C)$$

1) 
$$Givens \qquad Goal$$
 
$$p \in A \times (B \setminus C) \quad p \in (A \times B) \setminus (A \times C)$$

Givens Goal 
$$x \in A \qquad p \in A \times B \land \neg (p \in A \times C)$$
 
$$y \in B$$
 
$$y \notin C$$

Givens Goal

$$x \in A$$
  $x \in A \land y \in B \land \neg(x \in A \land y \in C)$ 

 $y \in B$ 

 $y \notin C$ 

Givens Goal

$$x \in A$$
  $x \in A \land y \in B \land (x \notin A \lor y \notin C)$ 

 $y \in B$ 

 $y \not\in C$ 

2)  $Givens \qquad Goal$   $p \in (A \times B) \setminus (A \times C) \quad p \in A \times (B \setminus C)$ 

Givens Goal

$$x \in A \land y \in B \land (x \notin A \lor y \notin C)$$
  $x \in A \land y \in B \land y \notin C$ 

Case 1.

Givens Goal

 $x \in A \land y \in B \land y \not\in C \quad \ x \in A \land y \in B \land y \not\in C$ 

Case 2.

Givens Goal

 $x \in A \land y \in B \land x \not \in A \quad \ x \in A \land y \in B \land y \not \in C$ 

Givens Goal

 $x \in A \land y \in B \quad x \in A$ 

**Theorem.**  $A \times (B \setminus C) = (A \times B) \setminus (A \times C)$ 

*Proof.* Let (x,y) be an arbitrary element of  $A \times (B \setminus C)$ . Then  $x \in A$ ,  $y \in B$  and  $y \notin C$ . Thus  $x \in A \land y \in B \land (x \notin A \lor y \notin C)$ . Therefore,  $(x,y) \in (A \times B) \setminus (A \times C)$ . Since (x,y) was an arbitrary element of  $A \times (B \setminus C)$ , it follows that  $A \times (B \setminus C) \subseteq (A \times B) \setminus (A \times C)$ .

Now let (x, y) be arbitrary element of  $(A \times B) \setminus (A \times C)$ . Then  $x \in A \land y \in B \land (x \notin A \lor y \notin C)$ .

Case 1.  $x \notin A$ .  $x \notin A$  contradicts to  $x \in A$ .

Case 2.  $y \notin C$ . Then  $x \in A$  and  $y \in B$  and  $y \notin C$ . Therefore,  $(x,y) \in A \times (B \setminus C)$ 

Since (x, y) was an arbitrary element of  $(A \times B) \setminus (A \times C)$ , it follows that  $(A \times B) \setminus (A \times C) \subseteq A \times (B \setminus C)$ , so  $(A \times B) \setminus (A \times C) = A \times (B \setminus C)$ .

9. 
$$(A \times B) \setminus (C \times D) = [A \times (B \setminus D)] \cup [(A \setminus C) \times B]$$
  
1) Givens Goal

 $(x,y) \in (A \times B) \setminus (C \times D) \quad (x \in A \land y \in B \land y \notin D) \lor (x \in A \land x \notin C \land y \in B)$ 

$$(x,y) \in (A \times B) \setminus (C \times D)$$
  
 $x \in A \land y \in B \land (x \notin C \lor y \notin D)$   
 $Givens$   $Goal$   
 $x \in A \land y \in B \land (x \notin C \lor y \notin D)$   $(x,y) \in [A \times (B \setminus D)] \cup [(A \setminus C) \times B]$ 

$$(x,y) \in [A \times (B \setminus D)] \cup [(A \setminus C) \times B]$$

 $(x \in A \land y \in B \land y \notin D) \lor (x \in A \land x \notin C \land y \in B)$ 

Givens Goal

 $x \in A \land y \in B \land (x \notin C \lor y \notin D) \quad (x \in A \land y \in B \land y \notin D) \lor (x \in A \land x \notin C \land y \in B)$ 

Givens 
$$Goal$$
 
$$x \in A \land y \in B \land (x \notin C \lor y \notin D) \quad x \in A \land y \in B \land (x \notin C \lor y \notin D)$$

2) 
$$Givens \qquad Goal$$
 
$$(x,y) \in [A \times (B \setminus D)] \cup [(A \setminus C) \times B] \quad (x,y) \in (A \times B) \setminus (C \times D)$$

Givens Goal 
$$x \in A \land y \in B \land (x \notin C \lor y \notin D) \quad x \in A \land y \in B \land (x \notin C \lor y \notin D)$$

**Theorem.** 
$$(A \times B) \setminus (C \times D) = [A \times (B \setminus D)] \cup [(A \setminus C) \times B]$$

*Proof.* Let (x, y) be an arbitrary element of  $(A \times B) \setminus (C \times D)$ . Then  $x \in A \land y \in B \land (x \notin C \lor y \notin D)$  which is equivalent to  $(x \in A \land y \in B \land y \notin D) \lor (x \in A \land x \notin C \land y \in B)$ . Thus  $(x, y) \in [A \times (B \setminus D)] \cup [(A \setminus C) \times B]$ . Since (x, y) was an arbitrary element of  $(A \times B) \setminus (C \times D)$ , it follows that  $(A \times B) \setminus (C \times D) \subseteq [A \times (B \setminus D)] \cup [(A \setminus C) \times B]$ .

Now let (x, y) be an arbitrary element of  $[A \times (B \setminus D)] \cup [(A \setminus C) \times B]$ . Then  $(x \in A \land y \in B \land y \notin D) \lor (x \in A \land x \notin C \land y \in B)$  which is equivalent to  $x \in A \land y \in B \land (x \notin C \lor y \notin D)$ . Thus  $(x, y) \in (A \times B) \setminus (C \times D)$ . Since (x, y) was an arbitrary element of  $[A \times (B \setminus D)] \cup [(A \setminus C) \times B]$ , it follows that  $[A \times (B \setminus D)] \cup [(A \setminus C) \times B] \subseteq (A \times B) \setminus (C \times D)$ , so  $(A \times B) \setminus (C \times D) = [A \times (B \setminus D)] \cup [(A \setminus C) \times B]$ .

10. If 
$$A \times B \cap C \times D = \emptyset$$
 then  $A \cap B = \emptyset$  or  $B \cap D = \emptyset$  Givens Goal 
$$A \times B \cap C \times D = \emptyset \quad A \cap C = \emptyset \vee B \cap D = \emptyset$$

Givens Goal 
$$p \notin A \times B \cap C \times D \quad A \cap C = \varnothing \vee B \cap D = \varnothing$$

$$\begin{split} p \notin A \times B \cap C \times D \\ \neg (x \in A \land y \in B \land x \in C \land y \in D) \\ x \notin A \lor x \notin C \lor y \notin B \lor y \notin D \\ Givens & Goal \\ x \notin A \lor x \notin C \lor y \notin B \lor y \notin D \quad x \notin A \cap C \lor y \notin B \cap D \end{split}$$

Givens 
$$Goal$$
 
$$x \notin A \lor x \notin C \lor y \notin B \lor y \notin D \quad x \notin A \lor x \notin C \lor y \notin B \lor y \notin D$$

**Theorem.** If  $A \times B \cap C \times D = \emptyset$  then either  $A \cap B = \emptyset$  or  $B \cap D = \emptyset$ . Proof. Suppose  $A \times B \cap C \times D = \emptyset$ . Then  $(x,y) \notin A \times B \cap C \times D$ . Therefore,  $x \notin A \lor x \notin C \lor y \notin B \lor y \notin D$ . Then  $A \cap C = \emptyset \lor B \cap D = \emptyset$   $x \notin A \cap C \lor y \notin B \cap D$  $x \notin A \lor x \notin C \lor y \notin B \lor y \notin D$ 

Therefore, if  $A \times B \cap C \times D = \emptyset$  then either  $A \cap B = \emptyset$  or  $B \cap D = \emptyset$ .

11. (a) 
$$\cup_{i \in I} (A_i \times B_i) \subseteq (\cup_{i \in I} A_i) \times (\cup_{i \in I} B_i)$$
 
$$Givens \qquad Goal$$
 
$$p \in \cup_{i \in I} (A_i \times B_i) \quad p \in (\cup_{i \in I} A_i) \times (\cup_{i \in I} B_i)$$

Givens Goal 
$$\exists i (i \in I \land p \in A_i \times B_i) \quad p \in (\cup_{i \in I} A_i) \times (\cup_{i \in I} B_i)$$

Givens Goal 
$$i \in I \qquad x \in (\cup_{i \in I} A_i) \land y \in (\cup_{i \in I} B_i)$$
 
$$p \in A_i \times B_i$$

Givens Goal 
$$i \in I \qquad \exists (i \in I \land x \in A_i) \land \exists (i \in I \land y \in B_i)$$
 
$$x \in A_i$$
 
$$y \in B_i$$

**Theorem.**  $\bigcup_{i \in I} (A_i \times B_i) \subseteq (\bigcup_{i \in I} A_i) \times (\bigcup_{i \in I} B_i).$ 

Proof. Let p be an arbitrary. Suppose  $p \in \bigcup_{i \in I} (A_i \times B_i)$ . Let choose some i such that  $i \in I$  and  $p \in A_i \times B_i$ . Then by definition of Cartesian product  $x \in A_i$  and  $y \in B_i$ . Since  $i \in I$  and  $x \in A_i$ ,  $x \in (\bigcup_{i \in I} A_i)$ . Since  $i \in I$  and  $y \in B_i$ ,  $y \in (\bigcup_{i \in I} B_i)$ . Since  $x \in (\bigcup_{i \in I} A_i)$  and  $y \in (\bigcup_{i \in I} B_i)$ ,  $p \in (\bigcup_{i \in I} A_i) \times (\bigcup_{i \in I} B_i)$ . Since p was an arbitrary,  $\bigcup_{i \in I} (A_i \times B_i) \subseteq (\bigcup_{i \in I} A_i) \times (\bigcup_{i \in I} B_i)$ .

(b) 
$$\forall (i,j) \in I \times I(C_{(i,j)} = A_i \times B_j \wedge P = I \times I)$$
 Givens 
$$Goal$$
 
$$\forall (i,j) \in I \times I(C_{(i,j)} = A_i \times B_j \wedge P = I \times I) \quad \cup_{p \in P} C_p = (\cup_{i \in I} A_i) \times (\cup_{i \in I} B_i)$$

1) 
$$Givens \qquad Goal$$
 
$$\forall (i,j) \in I \times I(C_{(i,j)} = A_i \times B_j \wedge P = I \times I) \quad t \in (\cup_{i \in I} A_i) \times (\cup_{i \in I} B_i)$$
 
$$t \in \cup_{p \in P} C_p$$

$$\forall (i,j) \in I \times I(C_{(i,j)} = A_i \times B_j \wedge P = I \times I) \quad t \in (\cup_{i \in I} A_i) \times (\cup_{i \in I} B_i)$$
$$\exists p (p \in P \wedge t \in C_p)$$

$$\forall (i,j) \in I \times I(C_{(i,j)} = A_i \times B_j \wedge P = I \times I) \quad t \in (\cup_{i \in I} A_i) \times (\cup_{i \in I} B_i)$$
$$(i,i) \in I \times I \wedge t \in C_{(i,i)}$$

Givens Goal 
$$C_{(i,i)} = A_i \times B_i \quad t \in (\cup_{i \in I} A_i) \times (\cup_{i \in I} B_i)$$
 
$$t \in C_{(i,i)}$$

Givens Goal 
$$t \in A_i \times B_i \quad t \in (\cup_{i \in I} A_i) \times (\cup_{i \in I} B_i)$$

Givens Goal 
$$x \in A_i \quad x \in (\cup_{i \in I} A_i) \land y \in (\cup_{i \in I} B_i)$$
 
$$y \in B_i$$

2) 
$$Givens \qquad Goal$$
 
$$\forall (i,j) \in I \times I(C_{(i,j)} = A_i \times B_j \wedge P = I \times I) \quad t \in \cup_{p \in P} C_p$$
 
$$t \in (\cup_{i \in I} A_i) \times (\cup_{i \in I} B_i)$$

$$\forall (i,j) \in I \times I(C_{(i,j)} = A_i \times B_j \wedge P = I \times I) \quad \exists p(p \in P \wedge t \in C_p)$$
$$\exists i(i \in I \wedge x \in A_i)$$
$$\exists i(i \in I \wedge y \in B_i)$$

$$\forall (i,j) \in I \times I(C_{(i,j)} = A_i \times B_j \wedge P = I \times I) \quad \exists p(p \in P \wedge t \in C_p)$$
$$(i,j) \in I \times I$$
$$x \in A_i$$
$$y \in B_j$$

Givens Goal 
$$C_{(i,j)} = A_i \times B_j \quad \exists p (p \in P \land t \in C_p)$$
 
$$(i,j) \in I \times I$$
 
$$P = I \times I$$
 
$$t = (x,y)$$
 
$$x \in A_i$$

 $y \in B_j$ 

Givens Goal 
$$C_{(i,j)} = A_i \times B_j \quad \exists p (p \in P \land t \in C_p)$$
 
$$(i,j) \in P$$
 
$$t \in A_i \times B_j$$

Givens Goal 
$$t \in C_{(i,j)} \quad \exists p (p \in P \land t \in C_p)$$
 
$$(i,j) \in P$$

**Theorem.** Suppose  $\forall (i,j) \in I \times I(C_{(i,j)} = A_i \times B_j \wedge P = I \times I)$ . Then  $\bigcup_{p \in P} C_p = (\bigcup_{i \in I} A_i) \times (\bigcup_{i \in I} B_i)$ .

Proof. Let t be an arbitrary element of  $\cup_{p\in P}C_p$ . Then we can choose some p such that  $p\in I\times I$  and  $t\in C_p$ . Since  $\forall (i,j)\in I\times I(C_{(i,j)}=A_i\times B_j\wedge P=I\times I)$ , then in particular  $C_p=A_i\times B_j$  and  $P=I\times I$ . Since  $t\in C_p$  and  $C_p=A_i\times B_j,\, t\in A_i\times B_j$ . Since  $t\in A_i\times B_i,\, x\in A_i$  and  $y\in B_i$ . Since  $x\in A_i,\, x\in \cup_{i\in I}A_i$ . Since  $y\in B_i,\, y\in \cup_{i\in I}B_i$ . Since  $x\in C_p$  and  $x\in C_p$  are all  $x\in C_p$  and  $x\in C_p$  and  $x\in C_p$  and  $x\in C_p$  and  $x\in C_p$  are all  $x\in C_p$  and  $x\in C_p$  and  $x\in C_p$  are all  $x\in C_p$  and  $x\in C_p$  are all  $x\in C_p$  and  $x\in C_p$  and  $x\in C_p$  are all  $x\in C_p$  are all  $x\in C_p$  and  $x\in C_p$  are all  $x\in C_p$  are all  $x\in C_p$  and  $x\in C_p$  are all  $x\in C_p$  are all  $x\in C_p$  are all  $x\in C_p$  and  $x\in C_p$  are all  $x\in C_p$  are all  $x\in C_p$  are all  $x\in C_p$  and  $x\in C_p$  are all  $x\in C_p$  are all  $x\in C_p$  are all  $x\in C_p$  and  $x\in C_p$  are all  $x\in C_p$ 

Now let t be arbitrary element of  $(\bigcup_{i\in I}A_i)\times(\bigcup_{i\in I}B_i)$ . Then  $x\in\bigcup_{i\in I}A_i$  and  $y\in\bigcup_{i\in I}B_i$ . Since  $x\in\bigcup_{i\in I}A_i$  we can choose some i such that  $x\in A_i$  and  $i\in I$ . Since  $y\in\bigcup_{i\in I}B_i$  we can choose some j such that  $y\in B_j$  and  $j\in I$ . Since  $i\in I$  and  $j\in I$ ,  $(i,j)\in I\times I$ . Since  $(i,j)\in I\times I$  and  $\forall (i,j)\in I\times I(C_{(i,j)}=A_i\times B_j\wedge P=I\times I)$ ,  $C_{(i,j)}=A_i\times B_j$  and  $P=I\times I$ . Since  $P=I\times I$  and  $(i,j)\in I\times I$ ,  $(i,j)\in P$ . Since  $C_{(i,j)}=A_i\times B_j$  and  $t\in A_i\times B_j$ ,  $t\in C_{(i,j)}$ . Since  $(i,j)\in P$  and  $t\in C_{(i,j)}$ , let p=(i,j), so  $t\in\bigcup_{p\in P}C_p$ . Since t was an arbitrary element of  $(\bigcup_{i\in I}A_i)\times(\bigcup_{i\in I}B_i)$ , it follows that  $(\bigcup_{i\in I}A_i)\times(\bigcup_{i\in I}B_i)\subseteq\bigcup_{p\in P}C_p$ , so  $\bigcup_{p\in P}C_p=(\bigcup_{i\in I}A_i)\times(\bigcup_{i\in I}B_i)$ .

12.

$$Givens \qquad Goal$$
 
$$A\times B\subseteq C\times D \quad A\subseteq C\wedge B\subseteq D$$

Givens Goal 
$$A \times B \subseteq C \times D \quad A \subseteq C \land B \subseteq D$$
 
$$(a,b) \in A \times B$$

$$Givens \qquad Goal$$
 
$$A\times B\subseteq C\times D \qquad A\subseteq C\wedge B\subseteq D$$
 
$$(a,b)\in A\times B$$
 
$$(a,b)\in C\times D$$

$$Givens \qquad Goal$$
 
$$a \in C \qquad A \subseteq C \land B \subseteq D$$
 
$$b \in D$$

 $\begin{aligned} &Givens && Goal \\ &a \in C && A \subseteq C \\ &a \in A \end{aligned}$ 

Givens Goal 
$$a \in C \qquad \forall x (x \in A \rightarrow x \in C)$$
  $a \in A$ 

 $Givens \quad Goal$   $a \in C \quad x \in C$   $a \in A$   $x \in A$ 

"Since a and b were arbitrary elements of A and B, respectively, this shows that  $A \subseteq C$  and  $B \subseteq D$ " is wrong conclusion. Having  $a \in C$  and  $a \in A$ , it's not possible to prove that  $A \subseteq C$ .

Theorem is incorrect.

Counterexample:

$$A = \{1\}$$

$$C = \varnothing$$

$$B = \varnothing$$

$$D = \varnothing$$

$$A \times B = \varnothing$$

$$C \times D = \varnothing$$

## 2 Relations

1.

(a)

```
(a) R = \{(p,q) \in P \times P \mid \text{the person p is a parent of the person q}\}
Dom(R) = \{ p \in P \mid \exists q \in P((p,q) \in R) \}
Dom(R) = \{ p \in P \mid \exists q \in P \text{ (the person p is a parent of the person q)} \}
Dom(R) = \{ p \in P \mid \text{the person p is a parent of some person} \}
Dom(R) = \{ p \in P \mid p \text{ has a living child} \}
Ran(R) = \{ q \in P \mid \exists p \in P((p,q) \in R) \}
Ran(R) = \{ q \in P \mid \exists p \in P \text{ (the person p is a parent of the person q)} \}
Ran(R) = \{q \in P \mid \text{some person is a parent of the person q}\}
Ran(R) = \{ q \in P \mid q \text{ has a living parent} \}
(b) L = \{(x, y) \in \mathbb{R}^2 \mid y > x^2\}
Dom(L) = \{ x \in \mathbb{R} \mid \exists y \in \mathbb{R}((x, y) \in L) \}
Dom(L) = \{ x \in \mathbb{R} \mid \exists y \in \mathbb{R}(y > x^2) \}
Dom(L) = \mathbb{R}
Ran(L) = \{ y \in \mathbb{R} \mid \exists x \in \mathbb{R}((x, y) \in L) \}
Ran(L) = \{ y \in \mathbb{R} \mid \exists x \in \mathbb{R}(y > x^2) \}
Ran(L) = \mathbb{R}^+
2.
```

 $Dom(P) = \{ p \in P \mid \exists q \in P \text{ (the person p is a brother of the person q)} \}$ 

 $P = \{(p,q) \in P \times P \mid \text{the person p is a brother of the person q}\}$ 

 $Dom(P) = \{ p \in P \mid \exists q \in P((p,q) \in P) \}$ 

$$Dom(P) = \{ p \in P \mid \text{the person p is a brother of some person} \}$$
  
 $Ran(P) = \{ q \in P \mid \text{some person is a brother of person q} \}$ 

(b) 
$$L = \{(x,y) \in \mathbb{R}^2 \mid y^2 = 1 - 2/(x^2 + 1)\}$$
 
$$Dom(P) = \{x \in \mathbb{R} \mid \exists y \in \mathbb{R}(y^2 = 1 - 2/(x^2 + 1))\}$$
 
$$Dom(P) = \{x \in \mathbb{R} \mid |x| \ge 1\}$$
 
$$Ran(P) = \{y \in \mathbb{R} \mid \exists x \in \mathbb{R}(y^2 = 1 - 2/(x^2 + 1))\}$$
 
$$Ran(P) = \{y \in \mathbb{R} \mid |y| < 1\}$$

3.

(a)

 $L = \{(s,r) \in S \times R \mid \text{the student s lives in the dorm room r}\}$   $L^{-1} \circ L$ 

Because L is a relation from S to R and  $L^{-1}$  is a relation from R to S.

 $L^{-1} \circ L$  is the relation from S to S defined as follows.

$$\begin{split} L^{-1} \circ L &= \{(s,t) \in S \times S \mid \exists r \in R((s,r) \in L \text{ and } (r,t) \in L^{-1})\} \\ &= \{(s,t) \in S \times S \mid \exists r \in R \text{(the studend s lives in the dorm room r, and so is the student t)}\} \\ &= \{(s,t) \in S \times S \mid \text{there is some room that the students s and r are both live in}\} \end{split}$$

(b) 
$$E \circ (L^{-1} \circ L)$$

We saw in part (a) that  $L^{-1} \circ L$  is a relation from S to S, and E is a relation from S to C, so  $E \circ (L^{-1} \circ L)$  is the relation from S to C defined as follows.

$$E \circ (L^{-1} \circ L) = \{(r, p) \in S \times C \mid \exists s \in S((r, s) \in L^{-1} \circ L \text{ and } (s, p) \in E)\}$$
$$= \{(r, p) \in S \times C \mid \exists s \in S(\text{there is some room that the students r and s are both live in, and the student s is enrolled in the course p)}$$

 $= \{(r,p) \in S \times C \mid \text{(some student who lives in some room with the student r is enrolled in the course p)}\}$ 

4.

(a)  $S \circ R$  is the relation from A to B.

$$S \circ R = \{(r, p) \in A \times B \mid \exists b \in B((r, b) \in R \text{ and } (b, p) \in S)\}$$
$$= \{(1, 5), (1, 6), (1, 4), (2, 4), (3, 6)\}$$

(b)  $S \circ S^{-1}$  is the relation from B to B.

$$S \circ S^{-1} = \{(r, p) \in B \times B \mid \exists b \in B((r, b) \in S^{-1} \text{ and } (b, p) \in S)$$
$$= \{(r, p) \in B \times B \mid \exists b \in B((b, r) \in S \text{ and } (b, p) \in S)$$
$$= \{(5, 5), (5, 6), (6, 5), (6, 6), (4, 4)\}$$

5.

(a)

 $S^{-1}$  is the relation from C to B.

R is the relation from A to C.

 $S^{-1} \circ R$  is the relation from A to B.

$$\begin{split} S^{-1} \circ R &= \{(r,p) \in A \times B \mid \exists c \in C((r,c) \in R \text{ and } (c,p) \in S^{-1})\} \\ &= \{(r,p) \in A \times B \mid \exists c \in C((r,c) \in R \text{ and } (p,c) \in S)\} \\ &= \varnothing \end{split}$$

(b)

 $R^{-1}$  is the relation from C to A.

S is the relation from B to C.

 $R^{-1} \circ S$  is the relation from B to A.

$$\begin{split} R^{-1} \circ S &= \{(r,p) \in B \times A \mid \exists c \in C((r,c) \in S \text{ and } (c,p) \in R^{-1})\} \\ &= \{(r,p) \in B \times A \mid \exists c \in C((r,c) \in S \text{ and } (p,c) \in R)\} \\ &= \varnothing \end{split}$$

6.

(a) 
$$Ran(R^{-1}) = Dom(R)$$

First note that  $Ran(R^{-1})$  and Dom(R) are both subsets of A. Now let a be an arbitrary element of A. Then

$$a \in Ran(R^{-1}) \text{ iff } \exists b \in B((b, a) \in R^{-1})$$
  
iff  $\exists b \in B((a, b) \in R) \text{ iff } a \in Dom(R).$ 

(b) 
$$Dom(R^{-1}) = Ran(R)$$
 
$$(Dom(R^{-1}))^{-1} = (Ran(R))^{-1}$$
 
$$Dom((R^{-1})^{-1}) = Ran(R^{-1})$$
 
$$Dom(R) = Ran(R^{-1})$$
 
$$Ran(R^{-1}) = Dom(R)$$

(c)

Now suppose  $(a,d) \in (T \circ S) \circ R$ . By the definition of composition, this means that we can choose some  $b \in B$  such that  $(a,b) \in R$  and  $(b,d) \in T \circ S$ . Since  $(b,d) \in T \circ S$ , we can again use the definition of composition and choose some  $c \in C$  such that  $(b,c) \in S$  and  $(c,d) \in T$ . Now since  $(a,b) \in R$  and  $(b,c) \in S$ , we can conclude that  $(a,c) \in S \circ R$ . Similarly, since  $(a,c) \in S \circ R$  and  $(c,d) \in T$ , it follows that  $(a,d) \in T \circ (S \circ R)$ 

(d) 
$$(S\circ R)^{-1}=R^{-1}\circ S^{-1}$$
 Clearly  $(S\circ R)^{-1}$  and  $R^{-1}\circ S^{-1}$  are both relations from C to A. Let  $(c,a)$  be an arbitrary element of  $C\times A$ .

$$\begin{split} (c,a) &\in (S \circ R)^{-1} \text{ iff } (a,c) \in S \circ R \\ &\text{iff } \exists B((a,b) \in R \text{ and } (b,c) \in S) \\ &\text{iff } \exists B((b,a) \in R^{-1} \text{ and } (c,b) \in S^{-1}) \\ &\text{iff } (c,a) \in R^{-1} \circ S^{-1} \end{split}$$

7. 
$$E \circ E \subseteq F$$

8.

(a) 
$$Dom(S \circ R) \subseteq Dom(R)$$

 $S \circ R$  is the relation from A to C.

 $Dom(S \circ R)$  is subset of A.

Dom(R) is subset of A.

Givens Goal

$$\forall t(t \in Dom(S \circ R) \to t \in Dom(R))$$

Let a be an arbitrary element from A.

$$a\in Dom(S\circ R)\to a\in Dom(R)$$

$$a \in Dom(S \circ R) \quad a \in Dom(R)$$

$$a \in Dom(S \circ R)$$

$$\exists c \in C((a,c) \in S \circ R)$$

Let choose some  $c \in C$  such that  $(a, c) \in S \circ R$ 

$$(a,c) \in S \circ R \quad \ a \in Dom(R)$$

$$c \in C$$

$$(a,c) \in S \circ R$$

$$=\{(a,c)\in A\times C\mid \exists b\in B((a,b)\in R \text{ and } (b,c)\in S)\}$$

$$a \in Dom(R) = \exists b \in B((a, b) \in R)$$

Givens 
$$\{(a,c) \in A \times C \mid \exists b \in B((a,b) \in R \text{ and } (b,c) \in S)\} \quad \exists b \in B((a,b) \in R)$$
  $c \in C$ 

Givens Goal 
$$(a,b) \in R \quad \exists b \in B((a,b) \in R)$$
 
$$(b,c) \in S$$
 
$$c \in C$$
 
$$b \in B$$

Givens 
$$Goal$$
 $(a,b) \in R$   $(a,b) \in R$ 
 $(b,c) \in S$ 
 $c \in C$ 
 $b \in B$ 

## **Theorem.** $Dom(S \circ R) \subseteq Dom(R)$

Proof. Clearly  $Dom(S \circ R)$  and Dom(R) is subset of A. Let a be an arbitrary element of A. Suppose  $a \in Dom(S \circ R)$ . Then, let choose some  $c \in C$  such that  $(a,c) \in S \circ R$ . Then, by definition of composition we can choose some  $b \in B$  such that  $(a,b) \in R$  and  $(b,c) \in S$ . So, since  $(a,b) \in R$  and  $b \in B$  we can conclude that  $a \in Dom(R)$ . Since a was an arbitrary element of A, it follows that  $Dom(S \circ R) \subseteq Dom(R)$ .

(b) If 
$$Ran(R) \subseteq Dom(S)$$
 then  $Dom(S \circ R) = Dom(R)$ . R is a relation from A to B. S is a relation from B to C.

$$Givens \qquad Goal \\ Ran(R) \subseteq Dom(S) \qquad Dom(S \circ R) = Dom(R) \\ S \circ R \text{ is a relation from A to C.} \\ Dom(S \circ R) \text{ is a subset of A.} \\ Dom(R) \text{ is subset of A.} \\ \text{Let a be an arbitrary element of A.} \\ (\rightarrow) \qquad \qquad Givens \qquad Goal \\ Ran(R) \subseteq Dom(S) \qquad a \in Dom(R) \\ a \in Dom(S \circ R) \\ a \in A$$

$$a \in Dom(S \circ R)$$
 iff  $\exists c \in C((a,c) \in S \circ R)$  
$$Givens \qquad Goal$$
 
$$Ran(R) \subseteq Dom(S) \quad a \in Dom(R)$$
 
$$c \in C$$
 
$$(a,c) \in S \circ R$$

$$(a,c) \in S \circ R$$
 iff  $\{(a,c) \in S \times R \mid \exists b \in B((a,b) \in R \text{ and } (b,c) \in S)\}$  Givens Goal 
$$Ran(R) \subseteq Dom(S) \quad a \in Dom(R)$$
 
$$c \in C$$
 
$$b \in B$$
 
$$(a,b) \in R$$
 
$$(b,c) \in S$$

```
a\in Dom(R)
iff \exists b \in B((a,b) \in R)
                   Givens
                                              Goal
                   Ran(R) \subseteq Dom(S)
                                             \exists b \in B((a,b) \in R)
                   c \in C
                   b \in B
                   (a,b) \in R
                   (b,c) \in S
(\leftarrow)
                     Givens
                                               Goal
                    Ran(R) \subseteq Dom(S)
                                              a \in Dom(S \circ R)
                    a \in A
                    a \in Dom(R)
Ran(R) and Dom(S) are subsets of B.
a \in Dom(R)
iff \exists b \in B((a,b) \in R)
          Givens
                                                         Goal
          \forall b \in B(b \in Ran(R) \to b \in Dom(S)) \quad \  a \in Dom(S \circ R)
          a \in A
          b \in B
          (a,b) \in R
                Givens
                                                    Goal
               b \in Ran(R) \to b \in Dom(S) \quad \  a \in Dom(S \circ R)
               a \in A
               (a,b) \in R
```

Givens 
$$Goal$$
  $b \in Dom(S)$   $a \in Dom(S \circ R)$   $a \in A$   $(a,b) \in R$ 

$$b \in Dom(S)$$
 iff  $\exists c \in C((b,c) \in S)$  
$$Givens \qquad Goal$$
 
$$(b,c) \in S \qquad a \in Dom(S \circ R)$$
 
$$a \in A$$
 
$$c \in C$$
 
$$(a,b) \in R$$

Givens Goal 
$$(a,c) \in S \circ R \quad a \in Dom(S \circ R)$$
  $c \in C$ 

Givens Goal 
$$(a,c) \in S \circ R \quad \exists c \in C((a,c) \in S \circ R)$$
  $c \in C$ 

**Theorem.** If  $Ran(R) \subseteq Dom(S)$  then  $Dom(S \circ R) = Dom(R)$ .

*Proof.* Suppose  $Ran(R) \subseteq Dom(S)$ . Clearly  $Dom(S \circ R)$  and Dom(R) are subsets of A. Then, let a be an arbitrary element of A.

Suppose  $a \in Dom(S \circ R)$ . Let choose some  $c \in C$  such that  $(a, c) \in S \circ R$ . By definition of composition we can choose some  $b \in B$  such that  $(a, b) \in R$  and  $(b, c) \in S$ . Since  $b \in B$  and  $(a, b) \in R$ , it follows that  $a \in Dom(R)$ .

Suppose  $a \in Dom(R)$ . Clearly Ran(R) and Dom(S) are subsets of B. Since  $a \in Dom(R)$ , we can choose some  $b \in B$  such that  $(a,b) \in R$ . Since  $b \in B$  and for all  $b \in B$  we have  $b \in Ran(R) \to b \in Dom(S)$ , it follows that  $b \in Ran(R) \to b \in Dom(S)$ . Since  $a \in A$  and  $(a,b) \in R$ ,  $b \in Ran(R)$ . Since  $b \in Ran(R)$  and  $b \in Ran(R) \to b \in Dom(S)$ ,  $b \in Dom(S)$ . Since  $b \in Dom(S)$ , we can choose some  $c \in C$  such that  $(b,c) \in S$ . Since  $(a,b) \in R$  and  $(b,c) \in S$ ,  $(a,c) \in S \circ R$ . Since  $c \in C$  and  $c \in C \circ R$ , it follows that  $c \in Dom(S) \circ R$ .

Since a was an arbitrary element of A,  $Dom(S \circ R) = Dom(R)$ .

(c) 
$$Ran(S \circ R) \subseteq Ran(S)$$

 $S \circ R$  is relation from A to C.

 $Ran(S \circ R)$  is subset of C

Ran(S) is subset of C

Givens Goal 
$$c \in Ran(S \circ R)$$
  $c \in Ran(S)$ 

Givens Goal 
$$\exists a \in A((a,c) \in S \circ R) \quad c \in Ran(S)$$

Givens Goal 
$$a \in A$$
  $c \in Ran(S)$   $(a, c) \in S \circ R$ 

Givens 
$$Goal$$
 
$$a \in A$$
 
$$c \in Ran(S)$$
 
$$\{(a,c) \in A \times C \mid \exists b \in B((a,b) \in S \text{ and } (b,c) \in R)\}$$

Givens 
$$Goal$$
 
$$a \in A \qquad \exists b \in B((b,c) \in S)$$
 
$$\{(a,c) \in A \times C \mid \exists b \in B((a,b) \in R \text{ and } (b,c) \in S)\}$$

Givens Goal 
$$a \in A \qquad \exists b \in B((b,c) \in S)$$
 
$$b \in B$$
 
$$(b,c) \in S$$

**Theorem.**  $Ran(S \circ R) \subseteq Ran(S)$ 

Proof. Clearly  $Ran(S \circ R)$  and Ran(S) are subsets of C. Let c be an arbitrary element of C. Suppose  $c \in Ran(S \circ R)$ . Then we can choose some  $a \in A$  such that  $(a,c) \in S \circ R$ . By definition of composition, we can choose some  $b \in B$  such that  $(b,c) \in S$  and  $(a,b) \in R$ . Since  $b \in B$  and  $(b,c) \in S$ , we can conclude that  $c \in Ran(S)$ . Since c was an arbitrary element of C,  $Ran(S \circ R) \subseteq Ran(S)$ .

If 
$$Dom(S) \subseteq Ran(R)$$
 then  $Ran(S \circ R) = Ran(S)$ .  
 $S \circ R$  is relation from A to C.  
 $Ran(S \circ R)$  is subset of C.  
 $Ran(S)$  is subset of C.  
 $Givens$   $Goal$   
 $Dom(S) \subseteq Ran(R)$   $Ran(S \circ R) = Ran(S)$ 

Givens 
$$Goal$$

$$Dom(S) \subseteq Ran(R) \quad c \in Ran(S)$$

$$c \in Ran(S \circ R)$$

$$c \in C$$

Givens 
$$Goal$$
 
$$Dom(S) \subseteq Ran(R) \qquad c \in Ran(S)$$
 
$$\exists a \in A((a,c) \in S \circ R)$$

Givens 
$$Goal$$
 
$$Dom(S) \subseteq Ran(R) \qquad c \in Ran(S)$$
 
$$a \in A$$
 
$$\{(a,c) \in A \times C \mid \exists b \in B((a,b) \in R \text{ and } (b,c) \in S)\}$$

Givens 
$$Goal$$

$$Dom(S) \subseteq Ran(R) \quad \exists b \in B((b,c) \in S)$$
 $a \in A$ 
 $b \in B$ 
 $(a,b) \in R$ 
 $(b,c) \in S$ 

$$(\leftarrow)$$
 
$$Givens \qquad Goal$$
 
$$Dom(S) \subseteq Ran(R) \quad c \in Ran(S \circ R)$$
 
$$c \in Ran(S)$$
 
$$c \in C$$

Givens 
$$Goal$$
 
$$Dom(S) \subseteq Ran(R) \quad c \in Ran(S \circ R)$$
 
$$\exists b \in B((b,c) \in S)$$
 
$$c \in C$$

Givens 
$$Goal$$
 
$$\forall b \in B(b \in Dom(S) \rightarrow b \in Ran(R)) \quad c \in Ran(S \circ R)$$
 
$$b \in B$$
 
$$(b,c) \in S$$
 
$$c \in C$$

Givens 
$$Goal$$
  $b \in Dom(S) \rightarrow b \in Ran(R)$   $c \in Ran(S \circ R)$   $b \in B$   $(b,c) \in S$   $c \in C$ 

Givens 
$$Goal$$
 
$$\exists c \in C((b,c) \in C) \to b \in Ran(R) \quad c \in Ran(S \circ R)$$
 
$$b \in B$$
 
$$(b,c) \in S$$
 
$$c \in C$$

$$Givens \qquad Goal$$
 
$$b \in Ran(R) \quad c \in Ran(S \circ R)$$
 
$$b \in B$$
 
$$(b,c) \in S$$
 
$$c \in C$$

Givens 
$$Goal$$
 
$$\exists a \in A((a,b) \in R) \quad c \in Ran(S \circ R)$$
 
$$b \in B$$
 
$$(b,c) \in S$$
 
$$c \in C$$

Givens Goal 
$$(a,b) \in R \quad c \in Ran(S \circ R)$$
 
$$a \in A$$
 
$$b \in B$$
 
$$(b,c) \in S$$
 
$$c \in C$$

Givens 
$$Goal$$
 
$$(a,c) \in S \circ R \quad c \in Ran(S \circ R)$$
  $c \in C$ 

Givens Goal 
$$(a,c) \in S \circ R \quad \exists a \in A((a,c) \in S \circ R)$$
 
$$a \in A$$

**Theorem.** If  $Dom(S) \subseteq Ran(R)$  then  $Ran(S \circ R) = Ran(S)$ .

*Proof.* Suppose  $Dom(S) \subseteq Ran(R)$ . Clearly  $Ran(S \circ R)$  and Ran(S) are subsets of C. Let c be an arbitrary element from C.

Suppose  $c \in Ran(S \circ R)$ . Then we can choose some ainA such that  $(a, c) \in S \circ R$ . By definition of composition we can choose some  $b \in B$  such that  $(a, b) \in R$  and  $(b, c) \in S$ . Since  $b \in B$  and  $(b, c) \in S$ , it follows that  $c \in Ran(S)$ .

Suppose  $c \in Ran(S)$ . Then we can choose some  $b \in B$  such that  $(b,c) \in S$ . Since  $c \in C$ ,  $b \in B$ ,  $(b,c) \in S$  and  $Dom(S) \subseteq Ran(R)$ , we can conclude that  $b \in Ran(R)$ . Since  $b \in Ran(R)$  we can choose some  $a \in A$  such that  $(a,b) \in R$ . Since  $(b,c) \in S$  and  $(a,b) \in R$ ,  $(a,c) \in S \circ R$ . Since  $(a,c) \in S \circ R$  and  $a \in A$ , it follows that  $c \in Ran(S \circ R)$ .

Since c was an arbitrary element from C,  $Ran(S \circ R) = Ran(S)$ .

9. R is relation from A to B.

S is relation from A to B.

(a) 
$$R \subseteq Dom(R) \times Ran(R)$$
  
 $R \subseteq A \times B$   
 $Dom(R)$  is subset of A  
 $Ran(R)$  is subset of B  
 $Givens$   $Goal$   
 $(a,b) \in R$   $(a,b) \in Dom(R) \times Ran(R)$   
 $\forall t(t \in R \to t \in A \times B)$ 

Givens Goal 
$$(a,b) \in A \times B \quad \exists b \in B((a,b) \in R) \land \exists a \in A((a,b) \in R)$$
  $a \in A$   $b \in B$ 

**Theorem.**  $R \subseteq Dom(R) \times Ran(R)$ 

Proof. Clearly  $Dom(R) \times Ran(R)$  is relation from A to B. Let (a,b) be an arbitrary element from A to B relation. Suppose  $(a,b) \in R$ . Since  $(a,b) \in R$  and R is relation from A to B, it follows that  $(a,b) \in A \times B$ . Since  $(a,b) \in A \times B$ ,  $a \in A$  and  $b \in B$ . Since  $b \in B$  and  $(a,b) \in R$ ,  $(a,b) \in Dom(R)$ . Since  $a \in A$  and  $(a,b) \in R$ ,  $(a,b) \in Ran(R)$ . Since  $(a,b) \in Dom(R)$  and  $(a,b) \in Ran(R)$ ,  $(a,b) \in Dom(R) \times Ran(R)$ . Since  $(a,b) \in R$  was an arbitrary element from A to B relation, therefore  $R \subseteq Dom(R) \times Ran(R)$ .

(b) If 
$$R\subseteq S$$
 then  $R^{-1}\subseteq S^{-1}.$  
$$Givens \quad Goal$$
 
$$R\subseteq S \quad R^{-1}\subseteq S^{-1}$$

$$\begin{split} R^{-1} \subseteq S^{-1} \\ \forall (b,a) \in B \times A((b,a) \in R^{-1} \to (b,a) \in S^{-1}) \\ \text{Let } (b,a) \text{ be an arbitrary element from } B \times A. \\ Givens & Goal \\ R \subseteq S & (a,b) \in S \\ (a,b) \in R \end{split}$$

Givens 
$$Goal$$
 
$$\forall t(t \in R \to t \in S) \quad (a, b) \in S$$
  $(a, b) \in R$ 

Givens Goal 
$$(a,b) \in S \quad (a,b) \in S$$

**Theorem.** If  $R \subseteq S$  then  $R^{-1} \subseteq S^{-1}$ .

Proof. Suppose  $R \subseteq S$ . Then,  $R \subseteq S$  iff  $\forall (a,b) \in A \times B((a,b) \in R \to (a,b) \in S)$  iff  $\forall (b,a) \in B \times A((b,a) \in R^{-1} \to (b,a) \in S^{-1})$  iff  $R^{-1} \subseteq S^{-1}$ .

(c) 
$$(R \cup S)^{-1} = R^{-1} \cup S^{-1}$$
 
$$\rightarrow$$
 
$$Givens \qquad Goal$$
 
$$(b,a) \in (R \cup S)^{-1} \quad (b,a) \in R^{-1} \cup S^{-1}$$

Givens Goal 
$$(b,a) \in (R \cup S)^{-1} \quad (b,a) \in R^{-1} \cup S^{-1}$$

**Theorem.**  $(R \cup S)^{-1} = R^{-1} \cup S^{-1}$ 

*Proof.* Clearly  $(R \cup S)^{-1}$  and  $R^{-1} \cup S^{-1}$  are relation from B to A. Let (b, a) be an arbitrary ordered pair in  $B \times A$ . Then

$$(b,a)\in (R\cup S)^{-1} \text{ iff } (a,b)\in R\cup S$$
 
$$\text{iff } (a,b)\in R\vee (a,b)\in S$$
 
$$\text{iff } (b,a)\in R^{-1}\vee (b,a)\in S^{-1}$$
 
$$\text{iff } (b,a)\in (R^{-1}\cup S^{-1})$$

10.

R is relation from A to B.

S is relation from B to C.

 $\rightarrow$ 

Givens Goal 
$$S \circ R = \varnothing \quad Ran(R) \cap Dom(S) = \varnothing$$

Suppose  $Ran(R) \cap Dom(S) \neq \emptyset$ , then we can choose some b such that  $b \in Ran(R) \cap Dom(S)$ . Then  $b \in Ran(R)$  and  $b \in Dom(S)$ .

Givens Goal 
$$b \in Ran(R) \quad S \circ R \neq \emptyset$$
 
$$b \in Dom(S)$$

Givens Goal 
$$b \in Ran(R) \quad \exists m(m \in S \circ R)$$
 
$$b \in Dom(S)$$

Givens Goal 
$$\exists a \in A((a,b) \in R) \quad \exists m(m \in S \circ R)$$
 
$$\exists c \in C((b,c) \in S)$$

Givens 
$$Goal$$
 
$$(a,c) \in S \circ R \quad \exists m(m \in S \circ R)$$
 
$$a \in A$$
 
$$c \in C$$

$$Givens$$
  $Goal$   $Ran(R) \cap Dom(S) = \varnothing$   $S \circ R = \varnothing$ 

Suppose  $S \circ R \neq \emptyset$ . Then  $\exists m \in A \times C (m \in S \circ R)$ .

Givens Goal 
$$(a,c) \in S \circ R \quad \exists b \in B(b \in Ran(R) \cap Dom(S))$$

Givens 
$$Goal \\ \{(a,c) \in A \times C \mid \exists b \in B((a,b) \in R \land (b,c) \in S)\} \quad \exists b \in B(b \in Ran(R) \cap Dom(S))\}$$

Givens Goal 
$$b \in B \qquad \exists b \in B (\exists a \in A((a,b) \in R) \land \exists c \in C((b,c) \in S))$$
 
$$a \in A$$
 
$$c \in C$$
 
$$(a,b) \in R$$
 
$$(b,c) \in S$$

**Theorem.**  $S \circ R = \emptyset$  iff  $Ran(R) \cap Dom(S) = \emptyset$ .

Proof. Suppose  $Ran(R) \cap Dom(S) \neq \emptyset$ . Clearly  $Ran(R) \cap Dom(S)$  is subset of B. Then we can choose some  $b \in B$  such that  $b \in Ran(R)$  and  $b \in Dom(S)$ . Since  $b \in Ran(R)$ , we can choose some  $a \in A$  such that  $(a,b) \in R$ . Since  $b \in Dom(S)$ , we can choose some  $c \in C$  such that  $(b,c) \in S$ . Since  $(a,b) \in R$  and  $(b,c) \in S$ ,  $(a,c) \in S \circ R$ . But it contradicts to  $S \circ R = \emptyset$ , therefore  $Ran(R) \cap Dom(S) = \emptyset$ .

Suppose  $S \circ R \neq \emptyset$ . Clearly  $S \circ R$  is ordered pairs of  $A \times C$ . Then we can choose some  $(a,c) \in A \times C$  such that  $(a,c) \in S \circ R$ . Since  $(a,c) \in S \circ R$ , it follows that  $a \in A$  and  $(a,b) \in R$ , so  $b \in Ran(R)$ . Since  $(a,c) \in S \circ R$ , it follows that  $c \in C$  and  $(b,c) \in S$ , so  $b \in Dom(S)$ . Since  $b \in B$  and  $b \in Ran(R)$  and  $b \in Dom(S)$ , it follows that  $Ran(R) \cap Dom(S) \neq \emptyset$ . But it contradicts to  $Ran(R) \cap Dom(S) = \emptyset$ , therefore  $S \circ R = \emptyset$ .

Therefore,  $S \circ R = \emptyset$  iff  $Ran(R) \cap Dom(S) = \emptyset$ .

11.

R is relation from A to B.

S and T are relations from B to C.

(a)

$$(S \circ R) \setminus (T \circ R) \subseteq (S \setminus T) \circ R$$

 $S \circ R$  is relation from A to C.

 $T \circ R$  is relation from A to C.

 $(S \circ R) \setminus (T \circ R)$  is relation from A to C

 $S \setminus T$  is relation from B to C

 $(S \setminus T) \circ R$  is relation from A to C

Givens

Goal

$$(a,c) \in (S \circ R) \setminus (T \circ R) \quad \ (a,c) \in (S \setminus T) \circ R$$

Givens

$$\{(a,c)\in A\times C\mid \exists b\in B((a,b)\in R\wedge (b,c)\in S)\}\quad \{(a,c)\in A\times C\mid \exists b\in B((a,b)\in R\wedge (b,c)\in S\setminus T)\}$$
 
$$(a,c)\notin T\circ R$$

Givens

 $b \in B \qquad (a,b) \in R \land (b,c) \in S \setminus T$ 

 $(a,b) \in R$ 

 $(b,c) \in S$ 

 $\neg(\{(a,c) \in A \times C \mid \exists b((a,b) \in R \land (b,c) \in T)\})$ 

Givens Goal

 $b \in B$   $(a,b) \in R \land (b,c) \in S \setminus T$ 

 $(a,b) \in R$ 

 $(b,c) \in S$ 

 $\forall b((a,b) \notin R \lor (b,c) \notin T)$ 

Givens Goal 
$$b \in B \qquad (a,b) \in R \land (b,c) \in S \setminus T$$
 
$$(a,b) \in R \qquad (b,c) \in S \qquad (a,b) \notin R \lor (b,c) \notin T$$

Case 1.

 $(a,b) \notin R$ 

Contradicts to  $(a, b) \in R$ .

Case 2.

 $(b,c) \notin T$ 

Givens Goal 
$$(b,c) \notin T \quad (a,b) \in R \land (b,c) \in S \setminus T$$
 
$$(a,b) \in R$$
 
$$(b,c) \in S$$

**Theorem.**  $(S \circ R) \setminus (T \circ R) \subseteq (S \setminus T) \circ R$ 

Proof. Clearly,  $(S \circ R) \setminus (T \circ R)$  and  $(S \setminus T) \circ R$  are relation from A to C. Then we can choose some (a,c) from ordered pairs  $A \times C$ . Suppose  $(a,c) \in (S \circ R) \setminus (T \circ R)$ . Then  $(a,c) \in S \circ R$  and  $(a,c) \notin T \circ R$ . Since  $(a,c) \in S \circ R$  we can choose some  $b \in B$  such that  $(a,b) \in R$  and  $(b,c) \in S$ . Since  $(a,c) \notin T \circ R$ , it follows that in particular  $(a,b) \notin R \vee (b,c) \notin T$ . Suppose  $(a,b) \notin R$ , but it contradicts to  $(a,b) \in R$ , so  $(a,c) \in (S \setminus T) \circ R$ . Now suppose  $(b,c) \notin T$ . Since  $(a,b) \in R$ ,  $(b,c) \in S$  and  $(b,c) \notin T$ , it follow that  $(a,c) \in (S \setminus T) \circ R$ . Therefore,  $(S \circ R) \setminus (T \circ R) \subseteq (S \setminus T) \circ R$ .

(b) "Similarly, since  $(a,b) \in R$  and  $(b,c) \notin T$ ,  $(a,c) \notin T \circ R$ " is wrong conclusion.

$$(a,c) \notin T \circ R$$
 is  $(b,c) \notin T$  and  $(a,b) \notin R$ .

(c) 
$$(S \setminus T) \circ R \subseteq (S \circ R) \setminus (T \circ R)$$
  
 $A = \{(1,2)\}$   
 $B = \{(3,4)\}$   
 $C = \{(2,1)\}$   
 $R = \{(1,3),(1,4),(2,3),(2,4)\}$   
 $S = \{(3,2),(3,1)\}$   
 $T = \{(4,2),(4,1)\}$   
 $S \setminus T = \{(3,2),(3,1)\}$   
 $(S \setminus T) \circ R = \{(1,1),(1,2),(2,1),(2,2)\}$   
 $S \circ R = \{(1,1),(1,2),(2,1),(2,2)\}$   
 $T \circ R = \{(1,1),(1,2),(2,1),(2,2)\} \nsubseteq \emptyset$ 

12.

R is relation from A to B.

S and T are relations from B to C.

(a) If 
$$S \subseteq T$$
 then  $S \circ R \subseteq T \circ R$ .

 $S \circ R$  is relation from A to C.

 $T \circ R$  is relation from A to C.

Givens 
$$Goal$$
 
$$S \subseteq T \qquad (a,c) \in T \circ R$$
 
$$(a,c) \in S \circ R$$

Givens 
$$Goal$$
 
$$\forall (b,c) \in B \times C((b,c) \in S \rightarrow (b,c) \in T) \quad (a,c) \in T \circ R$$
 
$$(a,b) \in R$$
 
$$(b,c) \in S$$

Givens Goal 
$$(b,c) \in T \quad (a,c) \in T \circ R$$
 
$$(a,b) \in R$$
 
$$(b,c) \in S$$

Givens Goal 
$$(b,c) \in T \quad (a,c) \in T \circ R$$
 
$$(a,b) \in R$$
 
$$(b,c) \in S$$

**Theorem.** If  $S \subseteq T$  then  $S \circ R \subseteq T \circ R$ .

Proof. Suppose  $S \subseteq T$ . Let (a,c) be an arbitrary ordered pair from  $A \times C$ . Suppose  $(a,c) \in S \circ R$ . Then we can choose some  $b \in B$  such that  $(a,b) \in R$  and  $(b,c) \in S$ . Since  $S \subseteq T$  and  $(b,c) \in S$ , it follows that  $(b,c) \in T$ . Since  $(a,b) \in R$  and  $(b,c) \in T$ , it follows that  $(a,c) \in T \circ R$ . Therefore,  $S \circ R \subseteq T \circ R$ .

(b) 
$$(S\cap T)\circ R\subseteq (S\circ R)\cap (T\circ R).$$
 Givens Goal 
$$(a,c)\in (S\cap T)\circ R\quad (a,c)\in (S\circ R)\cap (T\circ R)$$

Givens Goal 
$$(a,b) \in R \quad (a,c) \in S \circ R \land (a,c) \in T \circ R$$
 
$$(b,c) \in S$$
 
$$(b,c) \in T$$

Givens Goal 
$$(a,b) \in R \quad (a,c) \in S \circ R \land (a,c) \in T \circ R$$
 
$$(b,c) \in S$$
 
$$(b,c) \in T$$

**Theorem.** 
$$(S \cap T) \circ R \subseteq (S \circ R) \cap (T \circ R)$$

Proof. Let (a,c) be an arbitrary ordered pair from  $A \times C$ . Suppose  $(a,c) \in (S \cap T) \circ R$ . We can choose some  $b \in B$  such that  $(a,b) \in R$  and  $(b,c) \in S \cap T$ . Then  $(b,c) \in S$  and  $(b,c) \in T$ . Since  $(a,b) \in R$  and  $(b,c) \in S$ ,  $(a,c) \in S \circ R$ . Similarly, since  $(a,b) \in R$  and  $(b,c) \in T$ ,  $(a,c) \in T \circ R$ . Therefore,  $(a,c) \in (S \circ R) \cap (T \circ R)$ . Thus,  $(S \cap T) \circ R \subseteq (S \circ R) \cap (T \circ R)$ .

(c) 
$$(S \cap T) \circ R = (S \circ R) \cap (T \circ R)$$
  
Givens Goal  
 $(a,c) \in S \circ R \quad (a,c) \in (S \cap T) \circ R$   
 $(a,c) \in T \circ R$ 

Givens 
$$Goal$$

$$b \in B \qquad \exists b \in B((a,b) \in R \land (b,c) \in S \cap T)$$

$$(a,b) \in R$$

$$(b,c) \in S$$

$$m \in B$$

$$(a,m) \in R$$

$$(m,c) \in T$$

Counterexample.

$$A = \{1,2\}$$

$$B = \{3,4\}$$

$$\begin{split} \mathbf{C} &= \{1, 4\} \\ \mathbf{R} &= \{(1, 3), (1, 4), (2, 3), (2, 4)\} \\ \mathbf{S} &= \{(3, 1), (3, 4)\} \\ \mathbf{T} &= \{(4, 1), (4, 4)\} \\ (S \cap T) \circ R &= (S \circ R) \cap (T \circ R) \\ S \cap T &= \varnothing \\ \varnothing \circ R &= \varnothing \\ S \circ R &= \{(1, 1), (1, 4), (2, 1), (2, 4)\} \\ T \circ R &= \{(1, 1), (1, 4), (2, 1), (2, 4)\} \\ \varnothing &\neq \{(1, 1), (1, 4), (2, 1), (2, 4)\} \\ \end{cases} \\ (\mathbf{d}) \ (S \cup T) \circ R &= (S \circ R) \cup (T \circ R) \\ (\rightarrow) \\ Givens & Goal \\ (a, c) \in (S \cup T) \circ R & (a, c) \in (S \circ R) \cup (T \circ R) \\ \end{cases} \\ (a, c) \in (S \cup T) \circ R \\ \text{iff } (a, b) \in R \wedge (b, c) \in S \cup T \\ \text{iff } (a, b) \in R \wedge ((b, c) \in S \vee (b, c) \in T) \\ Givens & Goal \\ (a, b) \in R \wedge ((b, c) \in S \vee (b, c) \in T) & (a, c) \in (S \circ R) \cup (T \circ R) \\ \end{cases} \\ Givens & Goal \\ (a, b) \in R \wedge ((b, c) \in S \vee (b, c) \in T) & (a, c) \in (S \circ R) \cup (T \circ R) \\ \end{cases} \\ Givens & Goal \\ (a, b) \notin R \wedge ((b, c) \in S \vee (b, c) \in T) & (a, b) \in R \wedge (b, c) \in S \\ (a, b) \notin R \vee (b, c) \notin T \\ \end{cases}$$

Case 1.

Givens Goal

$$(a,b) \in R \wedge (b,c) \in S \hspace{0.5cm} (a,b) \in R \wedge (b,c) \in S$$

 $(a,b) \notin R \lor (b,c) \notin T$ 

Case 2.

Givens Goal

$$(a,b) \in R \land (b,c) \in T \quad (a,b) \in R \land (b,c) \in S$$

 $(a,b) \notin R \lor (b,c) \notin T$ 

Case 2.1

Givens Goal

$$(a,b) \in R \land (b,c) \in T \quad (a,b) \in R \land (b,c) \in S$$

 $(a,b) \notin R$ 

Case 2.2

Givens Goal

$$(a,b) \in R \land (b,c) \in T \quad (a,b) \in R \land (b,c) \in S$$

 $(b,c) \notin T$ 

 $(\leftarrow)$ 

Givens Goal

$$(a,c) \in (S \circ R) \cup (T \circ R) \quad (a,c) \in (S \cup T) \circ R$$

Case 1.

Givens Goal

$$(a,c) \in (S \circ R) \quad (a,c) \in (S \cup T) \circ R$$

Givens Goal 
$$(a,b) \in R \quad (a,b) \in R \land ((b,c) \in S \lor (b,c) \in T)$$
 
$$(b,c) \in S$$

Case 2.

Givens Goal 
$$(a,b) \in R \quad (a,b) \in R \land ((b,c) \in S \lor (b,c) \in T)$$
 
$$(b,c) \in T$$

**Theorem.**  $(S \cup T) \circ R = (S \circ R) \cup (T \circ R)$ 

*Proof.* Let (a, c) be an arbitrary ordered pair from  $A \times C$ .

Suppose  $(a,c) \in (S \cup T) \circ R$ . Suppose  $(a,b) \notin R \vee (b,c) \notin T$ .

Case 1.  $(b,c) \in S$ . Since  $(a,b) \in R$ ,  $(a,b) \in R \land (b,c) \in S$ .

Case 2.  $(b,c) \in T$ 

Case 2.1  $(a, b) \notin R$ . But it contradicts to  $(a, b) \in R$ .

Case 2.2  $(b, c) \notin T$ . But it contradicts to  $(b, c) \in T$ .

Therefore  $(a,b) \in R \land (b,c) \in S$ .

Thus,  $(S \cup T) \circ R \subseteq (S \circ R) \cup (T \circ R)$ .

Now suppose,  $(a, c) \in (S \circ R) \cup (T \circ R)$ .

Case 1.  $(a,c) \in (S \circ R)$ . We can choose some  $b \in B$  such that  $(a,b) \in R$  and  $(b,c) \in S$ . Therefore  $(a,c) \in (S \cup T) \circ R$ .

Case 2.  $(a, c) \in (T \circ R)$ . We can choose some  $b \in B$  such that  $(a, b) \in R$  and  $(b, c) \in T$ . Therefore  $(a, c) \in (S \cup T) \circ R$ .

Therefore,  $(S \circ R) \cup (T \circ R) \subseteq (S \cup T) \circ R$ .

Thus,  $(S \cup T) \circ R = (S \circ R) \cup (T \circ R)$ .

3 More About Relations