Knowledge Representation and Reasoning: SOLVING CONSTRAINT SATISFACTION PROBLEMS

CHAPTER 6.2, 6.3

Constraint Satisfaction Problems

- \diamondsuit Binary constraint network $\gamma = \langle V, D, C \rangle$
 - V a finite set of variables v_1, \ldots, v_n
 - D a set of [finite] sets D_{v_1}, \ldots, D_{v_n}
 - C a set of binary relations $\{C_{u,v} \mid u,v \in V, u \neq v\}$ $C_{u,v} \subseteq D_u \times D_v$

Outline of the lecture

- ♦ Constraint modelling
- Inference
- Forward checking
- ♦ Variable and value ordering
- ♦ Arc consistency

Constraint Modelling

- Before any constraint solving can happen, the CSP must be defined
- Model must define V, D and C
- Explicit definition of C is painful, so use high-level description
- Hence we want to write a logical models
 - Write constraints as formulae of first order logic
 - Describe what would count as a solution to the problem
 - Compiler will turn this into a low-level constraint network
 - Logical model is purely declarative: no algorithm!
- Old style constraint programming: logic is implicit in the program

MiniZinc

We shall use the constraint modelling language MiniZinc

```
% N Queens Problem: place N queens on an NxN
% chessboard so that no queen attacks another
int: N;
array[1..N] of var 1..N: q;
constraint forall (x,y in 1..N where x < y) (
           q[x] != q[y] /
           abs(q[x]-q[y]) != y-x);
solve satisfy;
```

MiniZinc is essentially first order logic with some syntactic sugar and basic support for arithmetic etc.

Minizinc

- MiniZinc model is completely solver-independent
- ♦ Also good to separate the "conceptual model" of the problem from data defining a specific problem instance
 - e.g. for the N queens, the data file could specify N = 8;
- MiniZinc gets transformed into a simple fragment "Flat Zinc"
- ♦ Flat Zinc can be turned into input code for many solvers
 - Finite domain (FD) solvers
 - Mixed integer programming (MIP) solvers
 - SAT solvers
 - Local search solvers
- ♦ Mapping into low-level data structures is internal to the solvers
- ♦ Logical model + default mapping: the Holy Grail

Recall Backtracking

```
function Backtrack(\gamma, a) returns solution, or "inconsistent"
   if a is inconsistent with \gamma then return "inconsistent"
   if a is total then return a
   select variable v for which a is not defined
   for each d in D_v do
      a' \leftarrow a \cup \{(v,d)\}
      a'' \leftarrow \text{BACKTRACK}(\gamma, a')
      if a'' \neq "inconsistent" then return a''
   end
   return "inconsistent"
call: Backtrack(\gamma, {})
```

Backtracking: the Good and the Bad

- Better that exhaustive search: avoids enumerating many inconsistent (partial) assignments by detecting them as soon as they happen
- Once an inconsistent partial assignment is reached, all of its extensions are pruned

\Diamond Advantages:

Very simple to implement Very fast (per node of the search tree) Complete (always gives a decision)

♦ Disadvantages:

Does no reasoning except detecting actual inconsistency Cannot look further ahead than the current state

Simple example: Graph colouring

- Given an undirected graph with n nodes, given k colours, assign a colour to each node so that no two adjacent nodes (with an edge between them) are the same colour.
- Representation using binary constraints is easy.
- Problem is NP-complete, so difficult in the worst case.

 \diamondsuit Assign values from the bottom left corner, going across the rows

- \diamondsuit Assign values from the bottom left corner, going across the rows
- ♦ Choose blue first

- ♦ Assign values from the bottom left corner, going across the rows
- ♦ Choose blue first
- ♦ Inconsistent

- ♦ Assign values from the bottom left corner, going across the rows
- ♦ Choose blue first
- ♦ Choose red next

- \diamondsuit Assign values from the bottom left corner, going across the rows
- ♦ Choose blue first, then red
- \Diamond Now nodes 5 and 6 must both be green

- ♦ Assign values from the bottom left corner, going across the rows
- ♦ Choose blue first, then red
- ♦ Nodes 5 and 6 must both be green

- ♦ Assign values from the bottom left corner, going across the rows
- ♦ Choose blue first, then red
- ♦ Nodes 5 and 6 must both be green

- ♦ Assign values from the bottom left corner, going across the rows
- ♦ Choose blue first, trhen red
- ♦ You are wasting your time!

- ♦ Assign values from the bottom left corner, going across the rows
- ♦ Choose blue first, then red
- ♦ You are wasting your time!

- \diamondsuit Assign values from the bottom left corner, going across the rows
- ♦ Choose blue first, then red, then green
- ♦ It won't work!!

- ♦ Assign values from the bottom left corner, going across the rows
- ♦ Choose blue first, then red, then green

- ♦ Assign values from the bottom left corner, going across the rows
- ♦ Choose blue first, then red, then green

- ♦ Assign values from the bottom left corner, going across the rows
- ♦ Choose blue first, then red, then green

- \diamondsuit Assign values from the bottom left corner, going across the rows
- ♦ Choose blue first. then red, then green
- ♦ So a way of detecting the problem early could save work.
 So could assigning the green ones before the red one to their left

More about inference

- ♦ Inference in CSP solving: deducing additional constraints that follow from the already known constraints.
- \diamondsuit Hence a matter of replacing γ by an equivalent and strictly tighter constraint network γ' .
- \Diamond γ and γ' with the same variables are equivalent iff they have the same solutions.
- ♦ Inference reduces the number of consistent partial assignments

How to use inference

Inference as offline pre-processing

- ♦ Just once before search starts
- Little runtime overhead, modest pruning power. Not considered here.
 - but important in SAT solving, for instance

Inference during search

- \Diamond At every recursive call of backtracking
- \diamondsuit When backing up out of a search branch, retract any inferred constraints that were local to that branch because they depend on a
- ♦ Strong pruning power. May have large runtime overhead

Backtracking with inference

```
function Backtrack(\gamma, a) returns solution, or "inconsistent"
   if a is inconsistent with \gamma then return "inconsistent"
    if a is total then return a
    \gamma' \leftarrow a copy of \gamma
    \gamma' \leftarrow \mathsf{Inference}(\gamma', a)
   if exists v with D'_v = \{\} then return "inconsistent"
    \overline{\text{select}} variable \overline{v} for which a is not defined
   for each d in D'_v do
        a' \leftarrow a \cup \{(v,d)\}
        a'' \leftarrow \text{BACKTRACK}(\gamma', a')
       if a'' \neq "inconsistent" then return a''
   end
    return "inconsistent"
```

 \diamondsuit Inference sets $D_v = \{d\}$ for each $(v, d) \in a$ and then delivers a tighter equivalent network.

Forward Checking

- \diamondsuit Inference: for all variables v and u where a(v) = d is defined and a(u) is undefined, set D_u to $\{d': d' \in D_u, (d', d) \in C_{u,v}\}$.
- ♦ That is, remove from domains any value not consistent with those that have been assigned.
- \diamondsuit Obviously sound: it does not rule out any solutions
- \diamondsuit Can be implemented incrementally for efficiency: only necessary to consider v to be the variable which has just been assigned.
- Simple to implement and low computational cost
- \Diamond Almost always pays off (unless subsumed by stronger inferences)

 \diamondsuit As before, start in the bottom left corner and go across the rows

♦ Impossible values get removed from related domains

 \diamondsuit So no inconsistent assignment actually gets reached

♦ We still don't make two-step inferences

♦ We still don't make two-step inferences

 \Diamond Now there is a wipeout: a variable with an empty domain

 \Diamond Backtrack and change – but now there is another wipeout

♦ So backtrack some more

♦ Continue to explore the branch

♦ Now some moves are forced

♦ Now some moves are forced, and still consistent

 \Diamond Blue is the bad choice

 \Diamond And ...

♦ And we're . . .

♦ And we're done!

Making choices

```
function Backtrack(\gamma, a) returns solution, or "inconsistent" if a is inconsistent with \gamma then return "inconsistent" if a is total then return a select some variable v for which a is not defined for each d in D_v in some order do a' \leftarrow a \cup \{(v, d)\} a'' \leftarrow \text{Backtrack}(\gamma, a') if a'' \neq \text{"inconsistent"} then return a'' end return "inconsistent"
```

The size of the search space depends on the order in which we choose variables and values.

Variable ordering

- \diamondsuit Common strategy: most constrained variable (aka "first-fail") Choose a variable with the smallest (consistent) domain Minimise $|\{d \in D_v : a \cup \{(v,d)\} \text{ consistent}\}|$
- ♦ Minimises branching factor (at the current node)
- ♦ Extreme case: select variables with unique possible values first
 - Value is forced by the existing assignment
 - Obviously should be done in all cases
 - Compare unit propagation in SAT solving

Other variable ordering strategies

- \diamondsuit Most constraining variable Involved in as many constraints as possible Maximise $|\{u \in V : a(u) \text{ undefined}, C_{u,v} \in C\}|$
- Seek biggest effect on domains of unassigned variables
 Detect inconsistencies earlier, shortening search tree branches
- Others include history-dependent strategies
 - e.g. involved in a lot of (recent) conflicts
 - or selected many/few times before
- ♦ Random selection can also help, especially for tie-breaking

Value ordering

- \diamondsuit Common strategy: least constraining value Choose a value that won't conflict much with others Minimise $|\{\{d' \in D_u : a(u) \text{ undefined}, C_{u,v} \in C, (d,d') \notin C_{u,v}\}|$
- ♦ Minimise useless backtracking below current node
- ♦ If no solutions, or if we want all solutions, value ordering doesn't matter: we have to go over the whole sub-tree anyway.
- ♦ If there is a solution, we may be lucky and find it without backtracking on this value choice

- ♦ Forward checking is rather weak on its own, but it combines well with the first-fail heuristic for variable ordering, to make a powerful technique.
- Unit propagation (selecting variables with singleton domains) is particularly important when forward checking is used.

Impossible values get removed from related domains

 \diamondsuit Note that there is only one value in the middle

- \diamondsuit Colour that one green, as it has the smallest domain
- ♦ More domains are reduced to singletons

♦ Search was backtrack-free!

- ♦ A stronger inference rule: make all variables arc consistent
- \diamondsuit Variable v is arc consistent with respect to another variable u iff for every $d \in D_v$ there is at least one $d' \in D_u$ such that $(d, d') \in C_{v,u}$. A CSP $\gamma = (V, D, C)$ is said to be arc consistent (AC) iff every variable in V is arc consistent with every other.
- \diamondsuit Any $d \in D_v$ which has no support in D_u is incapable of being assigned to v in any solution, so it can be removed from D_v .
- \diamondsuit Removing all unsupported values makes γ AC. This is clearly a valid constraint inference, as no solutions are lost.
- \Diamond Enforcing AC subsumes both forward checking and unit propagation.

- ♦ Already done: since this is AC, the only possible assignment must be a solution.
- ♦ Now it's just a matter of filling in the values

- ♦ Already done: since this is AC, the only possible assignment must be a solution.
- ♦ Now it's just a matter of filling in the values

- ♦ Already done: since this is AC, the only possible assignment must be a solution.
- ♦ Now it's just a matter of filling in the values

- ♦ Already done: since this is AC, the only possible assignment must be a solution.
- ♦ Now it's just a matter of filling in the values

- ♦ Already done: since this is AC, the only possible assignment must be a solution.
- ♦ Now it's just a matter of filling in the values

- ♦ Already done: since this is AC, the only possible assignment must be a solution.
- ♦ Now it's just a matter of filling in the values

- ♦ Already done: since this is AC, the only possible assignment must be a solution.
- ♦ Now it's just a matter of filling in the values

 \diamondsuit Search was backtrack-free—and all over at step 2

Arc consistency: AC-3

```
function \operatorname{Revise}(\gamma,u,v) returns modified \gamma

for each d \in D_u do

if there is no d' \in D_v with (d,d') \in C_{u,v} then

D_u \leftarrow D_u \setminus \{d\}

end

return \gamma
```

```
function AC-3(\gamma) returns modified \gamma
M \leftarrow \{(u,v),(v,u): C_{u,v} \in C\}
while M \neq \{\} do
remove some element (u,v) from M
\gamma \leftarrow \text{REVISE}(\gamma, u, v)
if D_u has changed then
M \leftarrow M \cup \{(w,u): C_{w,u} \in C, w \neq v\}
end
return \gamma
```


$$M = \{(3,2), (5,2), (6,2)\}$$

$$M = \{(5,2), (6,2), (6,3)\}$$

$$M = \{(6,2), (6,3), (4,5), (6,5), (8,5), (9,5)\}$$

$$M = \{(6,3), (4,5), (6,5), (8,5), (9,5), (3,6), (5,6), (9,6)\}$$

 $M = \{(6,5), (8,5), (9,5), (3,6), (5,6), (9,6), (7,4), (8,4)\}$

$$M = \{(8,5), (9,5), (3,6), (5,6), (9,6), (7,4), (8,4), (2,6)\}$$

 $M = \{(9,5), (3,6), (5,6), (9,6), (7,4), (8,4), (2,6), (4,8), (7,8), (9,8)\}$

 $M = \{(3,6), (5,6), (9,6), (7,4), (8,4), (2,6), (4,8), (7,8), (9,8), (6,9), (8,9)\}$

 $M = \{(5,6), (9,6), (7,4), (8,4), (2,6), (4,8), (7,8), (9,8), (6,9), (8,9), (2,3)\}$

 $M = \{(7,4), (8,4), (2,6), (4,8), (7,8), (9,8), (6,9), (8,9), (2,3), (5,9)\}$

 $M = \{(8,4), (2,6), (4,8), (7,8), (9,8), (6,9), (8,9), (2,3), (5,9,(8,7))\}$

 $M = \{(2,6), (4,8), (7,8), (9,8), (6,9), (8,9), (2,3), (5,9), (8,7), (5,8)\}$

$$M = \{(9,8), (6,9), (8,9), (2,3), (5,9), (8,7), (5,8), (4,7)\}$$

Arc consistency: notes

- \diamondsuit At every iteration, all arcs not in the set M are consistent
 - M contains the arcs that still need to be checked
 - M often implemented as a queue, but it doesn't have to be
- ♦ On termination, the network is AC
- ♦ Unlike forward checking, makes inferences from unassigned variables
- ♦ Arc consistency is widely used in modern CSP solvers
- \Diamond Slower (per node) than forward checking, but prunes more

Summary

- ♦ Variable orderings in backtracking can dramatically reduce the size of the search tree. Value orderings don't, but they may lead to solutions earlier.
- \Diamond Inference tightens γ without losing equivalence, during backtracking. This reduces the amount of search needed. The benefit in reduced tree size must be traded off against the time cost of the reasoning.
- ♦ Forward checking removes values conflicting with an assignment already made
- Arc consistency extends this to all variables, whether assigned or not. It is stronger than forward checking and unit propagation, but costs more to compute.