

Teoría de Algoritmos I

SEGUNDO CUATRIMESTRE DE 2021

Trabajo Práctico 1

Alumno	Número de padrón	Email
LAZZARO, Melina	105931	mlazzaro@fi.uba.ar

Profesor: Podberezski, Víctor Daniel

Entrega: 29 de Septiembre de 2021

$\mathbf{\acute{I}ndice}$

1.	Karatsuba	2
	1.1. Multiplicación paso a paso mediante el algoritmo de Karatsuba	2
	1.2. Cuenta de sumas y multiplicaciones	8
	1.3. Comparación con el método tradicional	8
	1.4. División y conquista	8
2.	Cuestión de complejidad	9
	2.1. Teorema maestro	9
	2.2. Complejidad temporal	9

1. Karatsuba

1.1. Multiplicación paso a paso mediante el algoritmo de Karatsuba

Dados dos números x=13594113 e y=23985455 y n=8 su número de dígitos El algoritmo de Karatsuba consiste en encontrar $x\cdot y$ separando los números por la mitad, pudiendo así expresarlos de la siguiente manera:

$$x = x_1 10^{n/2} + x_0 \qquad y = y_1 10^{n/2} + y_0$$

Es decir, el método realiza llamadas recursivas hasta que al menos uno de los números recibidos tenga un solo dígito.

Luego,

$$x \cdot y = (x_1 10^{n/2} + x_0)(y_1 10^{n/2} + y_0) =$$

$$= (x_1 10^{n/2})(y_1 10^{n/2}) + x_1 y_0 10^{n/2} + x_0 y_1 10^{n/2} + x_0 y_0$$

$$= x_1 y_1 10^{2(n/2)} + (x_1 y_0 + x_0 y_1) 10^{n/2} + x_0 y_0$$

Donde puedo calcular x_1y_1 y x_0y_0 mediante el algoritmos de Karatsuba, y $(x_1y_0+x_0y_1)$ como $((x_1+x_0)(y_1+y_0))-x_1y_1-x_0y_0$

Inicialmente

$$x_1 = 1359$$
 $x_0 = 4113$ $y_1 = 2398$ $y_0 = 5455$
 $x \cdot y = 1359 \cdot 2398 \cdot 10^8 + (1359 \cdot 5455 + 4113 \cdot 2398) \cdot 10^4 + 4113 \cdot 5455$ [1]

$$1359 \cdot 5455 + 4113 \cdot 2398 = ((1359 + 4113) \cdot (2398 + 5455)) - (1359 \cdot 2398) - (4113 \cdot 5455) = (5472 \cdot 7853) - (1359 \cdot 2398) - (4113 \cdot 5455)$$

Reemplazando en [1]: $x \cdot y = 1359 \cdot 2398 \cdot 10^8 + \left(5472 \cdot 7853 - 1359 \cdot 2398 - 4113 \cdot 5455\right) \cdot 10^4 + 4113 \cdot 5455$

Karatsuba con 1359x2398

$$x_1 = 13$$
 $x_0 = 59$ $y_1 = 23$ $y_0 = 98$
 $x \cdot y = 13 \cdot 23 \cdot 10^4 + (13 \cdot 98 + 59 \cdot 23) \cdot 10^2 + 59 \cdot 98$ [2]

$$13 \cdot 98 + 59 \cdot 23 = ((13 + 59) \cdot (23 + 98)) - (13 \cdot 23) - (59 \cdot 98) = (72 \cdot 121) - (13 \cdot 23) - (59 \cdot 98) = (72 \cdot 121) - (13 \cdot 23) - (13$$

Reemplazando en [2]: $x \cdot y = 13 \cdot 23 \cdot 10^4 + ((72 \cdot 121) - (13 \cdot 23) - (59 \cdot 98)) \cdot 10^2 + 59 \cdot 98$

Karatsuba con 13x23

$$x_1 = 1$$
 $x_0 = 3$ $y_1 = 2$ $y_0 = 3$
 $x \cdot y = 1 \cdot 2 \cdot 10^2 + (1 \cdot 3 + 3 \cdot 2) \cdot 10^1 + 3 \cdot 3$

La llamada a Karatsuba con 1,2 y 3,3 devolverá el producto de los números ya que tienen un solo dígito, entonces:

$$x \cdot y = 2 \cdot 10^2 + (1 \cdot 3 + 3 \cdot 2) \cdot 10^1 + 9$$
 [3]

 $1\cdot 3+3\cdot 2=((1+3)\cdot (2+3))-(1\cdot 2)-(3\cdot 3)$ de donde ya se calculó $1\cdot 2 \text{ y } 3\cdot 3,\ (1+3)\cdot (2+3)=4\cdot 5$ y como tienen un solo dígito la llamada a Karatsuba devuelve el producto de los mismos $4\cdot 5=20,$ por lo que $(1\cdot 3+3\cdot 2)=20-2-9=9$

Reemplazando en [3]: $x \cdot y = 2 \cdot 10^2 + 9 \cdot 10^1 + 9 = 299$

Karatsuba con 59x98

$$x_1 = 5$$
 $x_0 = 9$ $y_1 = 9$ $y_0 = 8$
 $x \cdot y = 5 \cdot 9 \cdot 10^2 + (5 \cdot 8 + 9 \cdot 9) \cdot 10^1 + 9 \cdot 8$

La llamada a Karatsuba con 5,9 y 9,8 devolverá el producto de los números ya que tienen un solo dígito, entonces:

$$x \cdot y = 45 \cdot 10^2 + (5 \cdot 8 + 9 \cdot 9) \cdot 10^1 + 72$$
 [4]

 $5\cdot 8+9\cdot 9=(5+9)\cdot (9+8)-5\cdot 9-9\cdot 8$ de donde ya se calculó $5\cdot 9$ y $9\cdot 8,\, (5+9)\cdot (9+8)=14\cdot 17,$ obteniendo:

$$(5 \cdot 8 + 9 \cdot 9) = 14 \cdot 17 - 45 - 72$$

Reemplazando en [4]: $x \cdot y = 45 \cdot 10^2 + (14 \cdot 17 - 45 - 72) \cdot 10^1 + 72$

Karatsuba con 14x17

$$x_1 = 1$$
 $x_0 = 4$ $y_1 = 1$ $y_0 = 7$
 $x \cdot y = 1 \cdot 1 \cdot 10^2 + (1 \cdot 7 + 4 \cdot 1) \cdot 10^1 + 4 \cdot 7$

La llamada a Karatsuba con 1,1 y 4,7 devolverá el producto de los números ya que tienen un solo dígito, entonces:

$$x \cdot y = 1 \cdot 10^2 + (1 \cdot 7 + 4 \cdot 1) \cdot 10^1 + 28$$
 [5]

 $1\cdot 7+4\cdot 1=((1+4)\cdot (1+7))-(1\cdot 1)-(4\cdot 7)$ de donde ya se calculó $1\cdot 1\text{ y }4\cdot 7, (1+4)\cdot (1+7)=5\cdot 8$ y como tienen un solo dígito la llamada a Karatsuba devuelve el producto de los mismos $5\cdot 8=40,$ por lo que $(1\cdot 7+4\cdot 1)=40-1-28=11$

Volviendo a [5]: $x \cdot y = 1 \cdot 10^2 + (1 \cdot 7 + 4 \cdot 1) \cdot 10^1 + 28 = 1 \cdot 10^2 + 11 \cdot 10^1 + 28 = 238$

Volviendo a [4]

Por [5]:
$$x \cdot y = 45 \cdot 10^2 + (14 \cdot 17 - 45 - 72) \cdot 10^1 + 72 = 45 \cdot 10^2 + (238 - 45 - 72) \cdot 10^1 + 72 = 5782$$

Karatsuba con 072x121

$$x_1 = 07$$
 $x_0 = 2$ $y_1 = 12$ $y_0 = 1$
 $x \cdot y = 7 \cdot 12 \cdot 10^2 + (7 \cdot 1 + 2 \cdot 12) \cdot 10^1 + 2 \cdot 1$

La llamada a Karatsuba con 7,12 y 2,1 devolverá el producto de los números ya que tienen un solo dígito, entonces:

$$x \cdot y = 84 \cdot 10^2 + (7 \cdot 1 + 2 \cdot 12) \cdot 10^1 + 2$$
 [6]

 $7\cdot 1+2\cdot 12=((7+2)\cdot (12+1))-(7\cdot 12)-(2\cdot 1)$ de donde ya se calculó $7\cdot 12$ y $2\cdot 1$, $(7+2)\cdot (12+1)=9\cdot 13$ y como tienen un solo dígito la llamada a Karatsuba devuelve el producto de los mismos $9\cdot 13=117$, por lo que $(7\cdot 1+2\cdot 12)=117-84-2=31$

Volviendo a [6]: $x \cdot y = 84 \cdot 10^2 + (7 \cdot 1 + 2 \cdot 12) \cdot 10^1 + 2 = 84 \cdot 10^2 + 31 \cdot 10^1 + 2 = 8712$

Volviendo a [2]

Por [3], [4] y [6]:
$$x \cdot y = 299 \cdot 10^4 + (8712 - 299 - 5782) \cdot 10^2 + 5782 = 3258882$$

Karatsuba con 4113x5455

$$x_1 = 41$$
 $x_0 = 13$ $y_1 = 54$ $y_0 = 55$
 $x \cdot y = 41 \cdot 54 \cdot 10^4 + (41 \cdot 55 + 13 \cdot 54) \cdot 10^2 + 13 \cdot 55$ [7]

$$41 \cdot 55 + 13 \cdot 54 = ((41 + 13) \cdot (54 + 55)) - (41 \cdot 54) - (13 \cdot 55) = (54 \cdot 109) - (41 \cdot 54) - (13 \cdot 55)$$

Reemplazando en [7]: $x \cdot y = 41 \cdot 54 \cdot 10^4 + ((54 \cdot 109) - (41 \cdot 54) - (13 \cdot 55)) \cdot 10^2 + 13 \cdot 55$

Karatsuba con 41x54

$$x_1 = 4$$
 $x_0 = 1$ $y_1 = 5$ $y_0 = 4$
 $x \cdot y = 4 \cdot 5 \cdot 10^2 + (4 \cdot 4 + 1 \cdot 5) \cdot 10^1 + 1 \cdot 4$

La llamada a Karatsuba con 4,5 y 1,4 devolverá el producto de los números ya que tienen un solo dígito, entonces:

$$x \cdot y = 20 \cdot 10^2 + (4 \cdot 4 + 1 \cdot 5) \cdot 10^1 + 4$$
 [8]

 $4 \cdot 4 + 1 \cdot 5 = ((4+1) \cdot (5+4)) - (4 \cdot 5) - (1 \cdot 4)$ de donde ya se calculó $4 \cdot 5$ y $1 \cdot 4$, $(4+1) \cdot (5+4) = 5 \cdot 9$ y como tienen un solo dígito la llamada a Karatsuba devuelve el producto de los mismos $5 \cdot 9 = 45$, por lo que $(4 \cdot 4 + 1 \cdot 5) = 45 - 20 - 4 = 21$

Reemplazando en [8]: $x \cdot y = 20 \cdot 10^2 + 21 \cdot 10^1 + 4 = 2214$

Karatsuba con 13x55

$$x_1 = 1$$
 $x_0 = 3$ $y_1 = 5$ $y_0 = 5$
 $x \cdot y = 1 \cdot 5 \cdot 10^2 + (1 \cdot 5 + 3 \cdot 5) \cdot 10^1 + 3 \cdot 5$

La llamada a Karatsuba con 1,5 y 3,5 devolverá el producto de los números ya que tienen un solo dígito, entonces:

$$x \cdot y = 5 \cdot 10^2 + (1 \cdot 5 + 3 \cdot 5) \cdot 10^1 + 15$$
 [9]

 $1 \cdot 5 + 3 \cdot 5 = ((1+3) \cdot (5+5)) - (1 \cdot 5) - (3 \cdot 5)$ de donde ya se calculó $1 \cdot 5$ y $3 \cdot 4$, $(1+3) \cdot (5+5) = 4 \cdot 10$ y como tienen un solo dígito la llamada a Karatsuba devuelve el producto de los mismos $4 \cdot 10 = 40$, por lo que $(1 \cdot 5 + 3 \cdot 5) = 40 - 5 - 15 = 20$

Reemplazando en [9]: $x \cdot y = 5 \cdot 10^2 + 20 \cdot 10^1 + 15 = 715$

Karatsuba con 054x109

$$x_1 = 05$$
 $x_0 = 4$ $y_1 = 10$ $y_0 = 9$
 $x \cdot y = 05 \cdot 10 \cdot 10^2 + (5 \cdot 9 + 4 \cdot 10) \cdot 10^1 + 4 \cdot 9$

La llamada a Karatsuba con $5,\!10$ y $4,\!9$ devolverá el producto de los números ya que tienen un solo dígito, entonces:

$$x \cdot y = 50 \cdot 10^2 + (5 \cdot 9 + 4 \cdot 10) \cdot 10^1 + 36$$
 [10]

$$5 \cdot 9 + 4 \cdot 10 = ((5+4) \cdot (10+9)) - (5 \cdot 10) - (4 \cdot 9)$$

de donde ya se calculó 5.10 y 4.9, $(5+4)\cdot(10+9) = 9.19$ y como tienen un solo dígito la llamada a Karatsuba devuelve el producto de los mismos 9.19 = 171, por lo que (5.9+4.10) = 171-50-36 = 85

Reemplazando en [10]: $x \cdot y = 50 \cdot 10^2 + 85 \cdot 10^1 + 36 = 5886$

Volviendo a [7]

Por [8], [9] y [10]:
$$x \cdot y = 2214 \cdot 10^4 + (5886 - 2214 - 715) \cdot 10^2 + 715 = 22436415$$

Karatsuba con 5472x7853

$$x_1 = 54$$
 $x_0 = 72$ $y_1 = 78$ $y_0 = 53$
 $x \cdot y = 54 \cdot 78 \cdot 10^4 + (54 \cdot 53 + 72 \cdot 78) \cdot 10^2 + 72 \cdot 53$ [11]

$$54 \cdot 53 + 72 \cdot 78 = ((54 + 72) \cdot (78 + 53)) - (54 \cdot 78) - (72 \cdot 53) = 126 \cdot 131 - 54 \cdot 78 - 72 \cdot 53$$

Reemplazando en [11]: $x \cdot y = 54 \cdot 78 \cdot 10^4 + (126 \cdot 131 - 54 \cdot 78 - 72 \cdot 53) \cdot 10^2 + 72 \cdot 53$

Karatsuba con 54x78

$$x_1 = 5$$
 $x_0 = 4$ $y_1 = 7$ $y_0 = 8$
 $x \cdot y = 5 \cdot 7 \cdot 10^2 + (5 \cdot 8 + 4 \cdot 7) \cdot 10^1 + 4 \cdot 8$

La llamada a Karatsuba con 5,7 y 4,8 devolverá el producto de los números ya que tienen un solo dígito, entonces:

$$x \cdot y = 35 \cdot 10^2 + (5 \cdot 8 + 4 \cdot 7) \cdot 10^1 + 32$$
 [12]

 $5 \cdot 8 + 4 \cdot 7 = ((5+4) \cdot (7+8)) - (5 \cdot 7) - (4 \cdot 8)$ de donde ya se calculó $5 \cdot 7$ y $4 \cdot 8$, $(5+4) \cdot (7+8) = 9 \cdot 15$ y como tienen un solo dígito la llamada a Karatsuba devuelve el producto de los mismos $9 \cdot 15 = 135$, por lo que $(5 \cdot 8 + 4 \cdot 7) = 135 - 35 - 32 = 68$

Reemplazando en [12]: $x \cdot y = 35 \cdot 10^2 + 68 \cdot 10^1 + 32 = 4212$

Karatsuba con 72x53

$$x_1 = 7$$
 $x_0 = 2$ $y_1 = 5$ $y_0 = 3$
 $x \cdot y = 7 \cdot 5 \cdot 10^2 + (7 \cdot 3 + 2 \cdot 5) \cdot 10^1 + 2 \cdot 3$

La llamada a Karatsuba con 7.5 y 2.3 devolverá el producto de los números ya que tienen un solo dígito, entonces:

$$x \cdot y = 35 \cdot 10^2 + (7 \cdot 3 + 2 \cdot 5) \cdot 10^1 + 6$$
 [13]

 $7 \cdot 3 + 2 \cdot 5 = ((7+2) \cdot (5+3)) - (7 \cdot 5) - (2 \cdot 3)$ de donde ya se calculó $7 \cdot 5$ y $2 \cdot 3$, $(7+2) \cdot (5+3) = 9 \cdot 8$ y como tienen un solo dígito la llamada a Karatsuba devuelve el producto de los mismos $9 \cdot 8 = 72$, por lo que $(7 \cdot 3 + 2 \cdot 5) = 72 - 35 - 6 = 31$

Reemplazando en [13]: $x \cdot y = 35 \cdot 10^2 + 31 \cdot 10^1 + 6 = 3816$

Karatsuba con 126x131

$$x_1 = 12$$
 $x_0 = 6$ $y_1 = 13$ $y_0 = 1$
 $x \cdot y = 12 \cdot 13 \cdot 10^2 + (12 \cdot 1 + 6 \cdot 13) \cdot 10^1 + 6 \cdot 1$

La llamada a Karatsuba con 6,1 devolverá el producto de los números ya que tienen un solo dígito, entonces:

$$x \cdot y = 12 \cdot 13 \cdot 10^2 + (12 \cdot 1 + 6 \cdot 13) \cdot 10^1 + 6$$
 [14]

 $12 \cdot 1 + 6 \cdot 13 = ((12+6) \cdot (13+1)) - (12 \cdot 13) - (6 \cdot 1)$ de donde ya se calculó $6 \cdot 1$, $(12+6) \cdot (13+1) = 18 \cdot 14$, por lo que $(12 \cdot 1 + 6 \cdot 13) = 18 \cdot 14 - (12 \cdot 13) - 6$

Reemplazando en [14]: $x \cdot y = 12 \cdot 13 \cdot 10^2 + (18 \cdot 14 - (12 \cdot 13) - 6) \cdot 10^1 + 6$

Karatsuba con 12x13

$$x_1 = 1$$
 $x_0 = 2$ $y_1 = 1$ $y_0 = 3$
 $x \cdot y = 1 \cdot 1 \cdot 10^2 + (1 \cdot 3 + 2 \cdot 1) \cdot 10^1 + 2 \cdot 3$

La llamada a Karatsuba con 1,1 y 2,3 devolverá el producto de los números ya que tienen un solo dígito, entonces:

$$x \cdot y = 1 \cdot 10^2 + (1 \cdot 3 + 2 \cdot 1) \cdot 10^1 + 6$$
 [15]

 $1 \cdot 3 + 2 \cdot 1 = ((1+2) \cdot (1+3)) - (1 \cdot 1) - (2 \cdot 3)$ de donde ya se calculó $1 \cdot 1$ y $2 \cdot 3$, $(1+2) \cdot (1+3) = 3 \cdot 4$ y como tienen un solo dígito la llamada a Karatsuba devuelve el producto de los mismos $3 \cdot 4 = 12$, por lo que $(1 \cdot 3 + 2 \cdot 1) = 12 - 1 - 6 = 5$

Reemplazando en [15]: $x \cdot y = 1 \cdot 10^2 + 5 \cdot 10^1 + 6 = 156$

Karatsuba con 18x14

$$x_1 = 1$$
 $x_0 = 8$ $y_1 = 1$ $y_0 = 4$
 $x \cdot y = 1 \cdot 1 \cdot 10^2 + (1 \cdot 4 + 8 \cdot 1) \cdot 10^1 + 8 \cdot 4$

La llamada a Karatsuba con 1,1 y 8,4 devolverá el producto de los números ya que tienen un solo dígito, entonces:

$$x \cdot y = 1 \cdot 10^2 + (1 \cdot 4 + 8 \cdot 1) \cdot 10^1 + 32$$
 [16]

 $1\cdot 4 + 8\cdot 1 = ((1+8)\cdot (1+4)) - (1\cdot 1) - (8\cdot 4) \text{ de donde ya se calculó } 1\cdot 1 \text{ y } 8\cdot 4, (1+8)\cdot (1+4) = 9\cdot 5 \text{y}$ como tienen un solo dígito la llamada a Karatsuba devuelve el producto de los mismos $9\cdot 5 = 45$, por lo que $(1\cdot 4 + 8\cdot 1) = 45 - 1 - 32 = 12$

Reemplazando en [16]: $x \cdot y = 1 \cdot 10^2 + 12 \cdot 10^1 + 32 = 252$

Volviendo a [14]

Por [15] y [16]:
$$x \cdot y = 12 \cdot 13 \cdot 10^2 + (12 \cdot 1 + 6 \cdot 13) \cdot 10^1 + 6 \cdot 1 = 156 \cdot 10^2 + 90 \cdot 10^1 + 6 = 16506$$

Volviendo a [11]

Por [12], [13] y [14]:
$$x \cdot y = 54 \cdot 78 \cdot 10^4 + (126 \cdot 131 - 54 \cdot 78 - 72 \cdot 53) \cdot 10^2 + 72 \cdot 53 = 4212 \cdot 10^4 + (16506 - 4212 - 3816) \cdot 10^2 + 3816 = 42971616$$

Finalmente, volviendo a [1]

Por [2], [7] y [11]: $x \cdot y = 1359 \cdot 2398 \cdot 10^8 + (5472 \cdot 7853 - 1359 \cdot 2398 - 4113 \cdot 5455) \cdot 10^4 + 4113 \cdot 5455 = 3258882 \cdot 10^8 + (42971616 - 3258882 - 22436415) \cdot 10^4 + 22436415 = 326060985626415$

1.2. Cuenta de sumas y multiplicaciones

Cantidad de multiplicaciones

Para contar la cantidad de multiplicaciones tuve en cuenta la cantidad de llamadas a Karatsuba con el caso base (al menos un número de un dígito) y dos potencias de 10 por cada llamada que NO es un caso base.

■ Caso base: 33

 \blacksquare Potencias: 16 llamadas . 2 = 32

■ Total: 65

Cantidad de sumas Para contar la cantidad de sumas tuve en cuenta dos sumas por cada llamada a Karatsuba que NO es un caso base provenientes de $x \cdot y = x_1 y_1 10^{2(n/2)} + (x_1 y_0 + x_0 y_1) 10^{n/2} + x_0 y_0$, y cuatro sumas (dos sumas y dos restas) también por cada llamada que no es un caso base provinientes de la fórmula: $(x_1 y_0 + x_0 y_1) = ((x_1 + x_0)(y_1 + y_0)) - x_1 y_1 - x_0 y_0$

lacktriangle Primera fórmula: 16 llamadas . 2=32

 \blacksquare Segunda fórmula: 16 llamadas . 4=64

■ Total: 96

Relación con la complejidad temporal

La complejidad temporal está definida para $n \longrightarrow \infty$ y es $O(n^{\log_2(3)}) = O(n^{1,59})$ lo cual no se ve reflejado en este caso con n=8, ya que $8^{1,59} = 27,28$ pero la cantidad de operaciones realizadas es mucho mayor.

1.3. Comparación con el método tradicional

El método de división tradicional consiste en multiplicar cada dígito de uno de los números por cada uno de los dígitos del otro agregando un 0 cada vez para luego sumar todos los resultados. Este método es $O(n^2)$ y para este caso donde n=8, la cantidad de multiplicaciones que se deben realizar son $8^2=64$, menos que las realizadas mediante Karatsuba.

Por lo tanto, se puede concluir que el método de Karatsuba no es conveniente para n pequeños.

1.4. División y conquista

El algoritmo de Karatsuba de puede considerar de división y conquista ya que divide el problema inicial, una multiplicación de n dígitos, en multiplicaciones de n/2 dígitos recursivamente, conquista cuando alcanza un caso base de una multiplicación de 1 dígito que se puede resolver fácilmente y finalmente combina los resultados en una solución general.

2. Cuestión de complejidad

2.1. Teorema maestro

Dado: aT(n/b) + O(c) ; a = 2; b = 5; $c = n^2$ Obtengo:

$$2T(n/5) + O(n^2)$$

Condiciones de la relación de recurrencia para aplicar el Teorema Maestro:

- $a \ge 1$ y $b \ge 1$ constantes
- f(n) una función
- T(n) = aT(n/b) + f(n) una realción de recurrencia con T(0)=cte

Lo que le falta para poder aplicar el teorema, es que T(0)=cte

2.2. Complejidad temporal

Para calcular la complejidad temporal, primero calculo $log_b(a) = log_5(2) = 0,43$ y verifico a cual de los tres casos posibles le corresponde:

- Caso 1: $f(n) = O(n^{\log_b(a) e})$ con e>0 $\log_5(2) e = 0, 43 e \neq 2$ no cumple
- Caso 2: $f(n) = \theta(n^{\log_b(a)})$ $\log_5(2) = 0, 43 \neq 2$ no cumple
- Caso 3: $f(n) = \Omega(n^{\log_b(a)+e})$ con e>0 $\log_5(2) + e = 0.43 + e$ cumple

Como estoy en el tercer caso, debo buscar una cota inferior tal que:

$$\begin{split} f(n) &= \Omega(n^{log_b(a)+e}), \quad e > 0 \quad \rightarrow T(n) = \Theta(f(n)) \\ E \quad c < 1, n >> \quad / \quad af(n/b) \leq cf(n) \end{split}$$

Con e = 0, 1 se cumple que $n^2 \ge \Omega(n^{0.53})$, luego:

$$2f(n/5) \le cf(n)$$
$$2n^2/25 \le cn^2$$

Si c = 1/2 la condición se cumple, por lo tanto $T(n) = \Theta(n^2)$