Real World Machine Learning

TJ Machine Learning Club

Introduction

- So far in TJML:
 - Decision Tree
 - Random Forest
 - SVM
 - KNN
 - Naive Bayes
 - Neural Network
- How do data scientists today code these?

Setup

- Visualizing data:
 - Excel
 - Matplotlib
 - Seaborn
- Helpful data analysis libraries:
 - Pandas
 - Numpy

Conda

- Open-source Python package manager designed for data scientists.
- Can be installed through Anaconda, which bundles the package manager with 150+ data science packages for convenience.
 - Tensorflow, Keras, sklearn
- Another more efficient way to install Conda is with Miniconda, which will just install Conda and everything it needs to run, letting you decide what packages to install.
- Data scientists generally choose Conda over pip because it groups package installations into separate environments, which prevents conflicts between packages intended for separate projects.

Jupyter Notebooks

- An open-source web application that allows us to create and share codes and documents.
- It provides an environment, where you can document your code, run it, look at the outcome, visualize data and see the results without leaving the environment.
- Code can be written in individual cells that are run separately

brand_name				100000		cholest	CIUL	SOUTUII	carb	o ou	gars	biorerii	greek_or_no
Chahani													
Chobani	150				0		5.0	60	1	5	13	12	
Dannon	150				3		15.0	70		0	15	5	
Yoplait	150				1		10.0	105		6	19	6	no
Yoplait_Greek	150				0		2.5	60		0	7	15	gree
Dannon_Oikos	150	110	0.0		0		10.0	45	1	6	15	12	gree
La_Yogurt	170	160	5.0		3		20.0	80	2	3	19	6	no
Fage	227	190	0.0		0		0.0	70	2	7	25	20	gree
Lala	170	150	1.5		1		10.0	95	2	9	24	6	no
Stonyfield	227	200	8.0		5		25.0	110	2	6	22	7	no
Voskos	150	130	0.0	-	0		0.0	45	2	1	16	11	gree
		serving_size	calories	fat	sat_fat	cholesterol	sodium	carbs	sugars	protein	greek_o	r_not	
	brand_name												
	Chobani	150	110	0.0	0	5.0	60	15	13	12		greek	
	Dannon	150	140	4.5	3	15.0	70	20	15	5		not	
	Yoplait	150	150	2.0	1	10.0	105	26	19	6		not	
	Yoplait_Greek	150	100	0.0	0	2.5	60	10	7	15		greek	
	Dannon_Oikos	150	110	0.0	0	10.0	45	16	15	12		greek	
	La_Yogurt	170	160	5.0	3	20.0	80	23	19	6		not	
	Yoplait_Greek	150	100	0.0		2.5	60	10	105			greek	

27

29

26

21

25

24

22

16

20

6

7

11

greek

not

not

greek

227

170

227

150

Fage

Lala

Stonyfield

Voskos

190 0.0

150 1.5

200 8.0

130 0.0

0

1

5

0

0.0

10.0

25.0

0.0

70

95

110

45

Data Preprocessing

- Handling null values
 - o df.isnull()
 - Returns a boolean matrix, if the value is NaN then True otherwise False
 - o df.dropna()
- Imputation
 - Process of substituting the missing values of our dataset

```
from sklearn.impute import SimpleImputer
imputer = SimpleImputer(missing_values=np.nan, strategy='mean')
imputer = imputer.fit(df[['Weight']])
df['Weight'] = imputer.transform(df[['Weight']])
```

Data Preprocessing

- Standardization:
 - Transform values such that the mean of the values is 0 and the standard deviation is 1.

	Country	Age	Salary	Purchased
0	France	44.0	72000.000000	No
1	Spain	27.0	48000.000000	Yes
2	Germany	30.0	54000.000000	No
3	Spain	38.0	61000.000000	No
4	Germany	40.0	63777.777778	Yes

```
from sklearn.preprocessing import StandardScaler
std = StandardScaler()
X = std.fit_transform(df[['Age','Weight']])
```


Scikit-Learn

- Python library that provides many unsupervised and supervised learning algorithms
 - Regression, including Linear and Logistic Regression
 - Classification, including K-Nearest Neighbors
 - Clustering, including K-Means and K-Means++
 - Model selection
 - Preprocessing, including Min-Max Normalization

```
# train.csv and test.csv already read and preprocessed
from sklearn.model_selection import train_test_split
                                                   X_train = train_df.to_numpy().astype(float)
X_train, X_test, y_train, y_test = \
                                                   y_train = train_df['Survived'].astype(float).to_numpy()
   train_test_split(X, y, test_size = 0.20)
                                                   X_test = test_df.to_numpy().astype(float)
                                from sklearn import svm
                               model = svm.SVC()
                               model.fit(X_train, y_train)
                          y_pred = model.predict(X_test)
from sklearn.metrics import accuracy score
print('Accuracy: ' + str(accuracy_score(y_true=y_test, y_pred=y_pred)*100) + '%')
```

Keras

- One of the most common deep learning frameworks
- Uses Tensorflow backend
 - Used for Deep Learning
 - **Neural Networks**
 - **CNNs**

Neural Networks with Keras

```
model = Sequential()
model.add(Dense(256, activation='relu'))
model.add(Dense(128, activation='relu'))
model.add(Dense(64, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
```


Hyperparameter Tuning

- Tuning hyperparameters can largely be guess-and-check
- Sklearn has built-in 'guess-and-check' processes to help you find the best parameters
 - GridSearchCV()
 - RandomSearchCV()

Real-World ML

After splitting your data into training and testing data with sklearn, a confusion matrix is a simple way to gauge a model, once you know how to read one. A confusion matrix for a binary classification problem looks like this:

n=165	Predicted: NO	Predicted: YES
Actual: NO	50	10
Actual: YES	5	100

Real-World ML

- True positives and true negatives are cases where our model is correct
- A false positive (top right) is when the predicted value is yes but the actual value is no
- A false negative (bottom-left) is the opposite

Precision and Recall

 Precision: What proportion of positive identifications was actually correct?

$$Precision = \frac{TP}{TP + FP}$$

n=165	Predicted: NO	Predicted: YES
Actual: NO	50	10
Actual: YES	5	100

 Recall: What proportion of actual positives was identified correctly?

$$ext{Recall} = rac{TP}{TP + FN}$$

Confusion Matrix

```
from sklearn.metrics import confusion matrix
import matplotlib.pyplot as plt
import seaborn as sns
heatmap = sns.heatmap(confusion matrix(y test, y pred).T, square=True, annot=True, fmt='d')
x = plt.xlabel('true label')
y = plt.ylabel('predicted label')
                                      - 1000
                                      - 800
predicted label
                                      - 600
                                      - 400
                                      - 200
                true label
```


Results

After using np.reshape() and np.concatenate() to merge our y_pred array with a corresponding id row, writing to a .csv file is as simple as creating an output DataFrame and saving it:

Credits

Portions of this lecture have been adapted from Kevin Fu's October 2019 "Real World Machine Learning" lecture

