Section with Barbara

Week 2

A11

About That

Bayes!

The frame of the world must be the effect of the wisdom and power of an intelligent cause

An Essay towards solving a Problem in the Doctrine of Chances. Richard Price (1763)

Fun Book on Bayes

"The" Textbook on Bayes

BAYES BEGINNINGS

BAYES NOW

Al Stories: Recommender Systems

Knowledge: Gaming Stats
Uncertainty: TrueSkill Ranking
Search: Player Matchmaking

projects

BAYES THEOREM

Bayes' Theorem Examples: A Visual Introduction For Beginners

PROBABILITY CHAIN RULE

conditional probability

$$P(B \ and \ A) = P(A \mid B) * P(B)$$
 joint probability marginal probability

CHAIN RULE TO BAYES

$$P(B \text{ and } A) = P \text{ } (A \text{ and } B)$$
 $P(A \mid B) * P(B) = P(B \mid A) * P(A)$
 $P(A \mid B) = \frac{P(B \mid A) * P(A)}{P(B)}$

"SCIENTIFIC" BAYES

$$P(A|B) = \frac{P(B|A) * P(A)}{P(B|A) * P(A) + P(B|A') * P(A')}$$

$$P(H_i|data) = \frac{P(data|H_i) * P(H_i)}{\sum_{i=1}^{n} P(data|H_i) * P(H_i)}$$

BAYESIAN INFERENCE

```
P(A) = a \text{ prior}, \qquad P(B) = \text{normalization}
P(B \mid A) = a \text{ likelihood}
P(A \mid B) = a \text{ posterior}
posterior = \frac{\text{likelihood} * \text{prior}}{\text{normalization}}
```

BAYESIAN NETWORK

MARKOV CHAIN

$$p(a,b,c) = p(a) \cdot p(b \mid a) \cdot p(c \mid a,b)$$

HIDDEN MARKOV MODELS

What is the prior? What is the posterior?

PROBABILITY DISTRIBUTIONS

DISCRETE DISTRIBUTIONS

JOINT LIKELIHOODS

Genes

CONDITIONAL LIKELIHOODS

Parent

CONDITIONAL LIKELIHOODS

P(Child Genes = 0 | Mom Genes, Dad Genes)

P(Child Genes = 1 | Mom Genes, Dad Genes)

P(Child Genes = 2 | Mom Genes, Dad Genes)

MARGINAL PROBABILITY

LIKELIHOOD TO PROBABILITY

pagerank

def transition_model(corpus, page, damping_factor):

Return a probability distribution over which page to visit next, given a current page.

With probability `damping_factor`, choose a link at random linked to by `page`. With probability `1 - damping_factor`, choose a link at random chosen from all pages in the corpus.

What is the probability of visiting a page from a link? What is the probability of visiting a page randomly?

pagerank

11 11 11

def sample_pagerank(corpus, damping_factor, n):

Return PageRank values for each page by sampling `n` pages according to transition model, starting with a page at random. Return a dictionary where keys are page names, and values are their estimated PageRank value (a value between 0 and 1). All PageRank values should sum to 1.

Check out random.choice from numpy - it will be helpful here.

pagerank

def iterate_pagerank(corpus, damping_factor):

Return PageRank values for each page by iteratively updating PageRank values until convergence.

Return a dictionary where keys are page names, and values are their estimated PageRank value (a value between 0 and 1). All PageRank values should sum to 1.

Make sure you understand generally how the Pagerank equation works in the project specs

Are you still confused about Bayes?

Let's do an exercise!