Hierarchical Machine Translation

Miguel Rios

Universiteit van Amsterdam

April 21, 2017

Content

- 1 Motivation
- 2 Hierarchical models of translation Hiero

3 Decoding

Motivation

Figure: Koehn [2010]

Why hierarchical structure?

Better generalisation

- compositionality
- reordering

Monotone translation is unrealistic

languages differ wrt word-order

Monotone translation is unrealistic

 languages differ wrt word-order e.g. different syntactic structure

Monotone translation is unrealistic

 languages differ wrt word-order e.g. different syntactic structure e.g. rich morphology

Monotone translation is unrealistic

 languages differ wrt word-order e.g. different syntactic structure e.g. rich morphology

Reordering is arguably one of the hardest problems in MT

Monotone translation is unrealistic

 languages differ wrt word-order e.g. different syntactic structure e.g. rich morphology

Reordering is arguably one of the hardest problems in MT

 part of the model of translational equivalences the part that determines the space of translations

Key aspects

Expressiveness

how much can two languages differ wrt word order?

Key aspects

Expressiveness

how much can two languages differ wrt word order?

Modelling

how many parameters do we have to estimate?

Content

- 1 Motivation
- 2 Hierarchical models of translation Hiero
- 3 Decoding

Local Reordering

Local Reordering

Monotone

 $J'_1 ai_2 \rightarrow I_1 have_2$

Local Reordering

Swap les yeux₄ noirs₅ \rightarrow black₃ eyes₄

Local Reordering

Discontinuous $ai_2 X_{3-4} noirs_5 \rightarrow have_2 black_3$ X_4

Discontiguous Phrases

Discontiguous Phrases

 $\begin{tabular}{ll} \blacksquare & {\sf Gappy phrase} \\ & {\sf ne \ vais \ pas} \to {\sf do \ not \ go} \\ & {\sf ne \ } X_{vais} \ {\sf pas} \to {\sf do \ not \ } X_{go} \\ \end{tabular}$

Long Distance Reordering

Long Distance Reordering

How can we extract a biphrase for shall be passing on?

Long Distance Reordering

- How can we extract a biphrase for shall be passing on?
- We cannot, we need to extract to you some comments along

Long Distance Reordering

- How can we extract a biphrase for shall be passing on?
- We cannot, we need to extract to you some comments along
- Unless we replace all those words by a variable

Long Distance Reordering

shall be passing on to you some comments

werde Ihnen die entsprechenden Anmerkungen aushändigen

Long Distance Reordering

shall be passing on to you some comments werde //h/n/e/n/di/e/e/n/tsprechheh/de/n/Anhhe/k/un/e/k/un/e/e/n aushändigen

Hierarchical phrase-based - Motivation

Long Distance Reordering

shall be passing on X \updownarrow werde X aushändigen

Extends phrase-based MT with hierarchical rules [Chiang, 2005]

conditions on word alignment

- conditions on word alignment
- heuristic rule extraction

- conditions on word alignment
- heuristic rule extraction
- heuristic scoring by relative frequency counting

- conditions on word alignment
- heuristic rule extraction
- heuristic scoring by relative frequency counting
- log-linear model

- conditions on word alignment
- heuristic rule extraction
- heuristic scoring by relative frequency counting
- log-linear model
- SCFG decoding

- conditions on word alignment
- heuristic rule extraction
- heuristic scoring by relative frequency counting
- log-linear model
- SCFG decoding

Extends phrase-based MT with hierarchical rules [Chiang, 2005]

- conditions on word alignment
- heuristic rule extraction
- heuristic scoring by relative frequency counting
- log-linear model
- SCFG decoding

Motivation

long-distance reordering

Extends phrase-based MT with hierarchical rules [Chiang, 2005]

- conditions on word alignment
- heuristic rule extraction
- heuristic scoring by relative frequency counting
- log-linear model
- SCFG decoding

Motivation

- long-distance reordering
- lexicalised reordering

Heuristic rule extraction

Initial phrase pairs created with same heuristic as PBSMT.

shall be passing on to you some comments

werde Ihnen die entsprechenden Anmerkungen aushändigen

Heuristic rule extraction

Initial phrase pairs created with same heuristic as PBSMT.

shall be passing on the some comments

werde //////// die entsprechenden Anmerkungen aushändigen

Initial phrase pairs created with same heuristic as PBSMT.

shall be passing on X_1 some comments

werde X_1 die entsprechenden Anmerkungen aushändigen

Initial phrase pairs created with same heuristic as PBSMT.

Initial phrase pairs created with same heuristic as PBSMT.

shall be passing on
$$X_1$$
 X_2 \updownarrow werde X_1 X_2 aushändigen

Initial phrase pairs created with same heuristic as PBSMT.

- $[X] \rightarrow \text{shall be passing on } X_1 X_2 \mid \text{werde } X_1 X_2 \text{ aushändigen}$
- $[X] o \mathsf{shall}$ be passing on $X_3 \mid \mathsf{werde}\ X_3$ aushändigen
- $[X] \rightarrow \text{to you} \mid \text{Ihnen}$
- $[X] \rightarrow$ some comments | die entsprechenden Anmerkungen
- $[X] \rightarrow$ to you some comments | Ihnen die entsprechenden Anmerkungen

Hiero - Scoring

Relative frequency: assume all fragments have been "observed" Give a count of one to phrase pair occurrence, then distribute its weight equally among the obtained rules.

Joint rule probatility: $p(LHS, RHS_{source}, RHS_{target})$

$$p(X, \mathsf{Ia} \; \mathsf{maison} \; X_1, \mathsf{the} \; X_1 \; \mathsf{house})$$

Rule application probability: $p(RHS_{source}, RHS_{taraet}|LHS)$

$$p(\mathsf{Ia} \; \mathsf{maison} \; X_1, \mathsf{the} \; X_1 \; \mathsf{house} | X)$$

Direct translation probability: $p(RHS_{target}|RHS_{source}, LHS)$

$$p(\mathsf{the}\ X_1\ \mathsf{house}|\mathsf{la}\ \mathsf{maison}\ X_1,X)$$

Noisy-channel translation probability: $p(RHS_{source}|RHS_{target}, LHS)$

$$p(\mathsf{Ia} \; \mathsf{maison} \; X_1 | \mathsf{the} \; X_1 \; \mathsf{house}, X)$$

Lexical translation probability

$$\prod_{t_i \in RHS_{target}} p(t_i | RHS_{source}, a) \qquad \prod_{s_i \in RHS_{source}} p(s_i | RHS_{target}, a)$$

Hiero - Model

Log-linear combination of features

Hiero - Model

Log-linear combination of features Linear model

$$S_{\theta}(e, d, f) = \theta^{T} \sum_{r_{s,t} \in d} h_{i}(r_{s,t}|e, f)$$

where s is a span over F, t is a span over E and r is a rule. Weighted synchronous CFG. IM.

Hiero - Model

- (0) J' (1) ai (2) les (3) yeux (4) noir (5)
- (0) I (1) have (2) black (3) eyes (4)

$$X[0-2/0-2]
ightarrow {\sf J'}$$
 ai $|{\sf I}$ have

$$X[2-4/3-4] \to \mathsf{les\ yeux}|\mathsf{eyes}$$

$$X[2-5/2-4] \rightarrow X[2-4] \\ \text{noir} | \\ \text{black} X[3-4]$$

$$S[0-5/0-4] \to X[0-2]X[2-5]|X[0-2]X[2-4]$$

Content

- 1 Motivation
- 2 Hierarchical models of translation
- 3 Decoding

J' ai les yeux noirs

```
    PRP0/PRP → J' | I
    JJ → noirs | black
```

- $S \rightarrow PRP0 VP0 \mid PRP VP$

 J'_1 ai les yeux noirs

J'₁ ai les yeux noirs₂

J'₁ ai les yeux₃ noirs₂

J'₁ ai₄ les yeux₃ noirs₂

- 1 PRP0/PRP \rightarrow J' | I 2 JJ \rightarrow noirs | black
- $\begin{array}{c} VB & VB \\ VP0/VP \rightarrow & ai \text{ NP0} \mid have \text{ NP} \end{array}$

 $\{I_1, have_4 black_2 eyes_3\}$

J'₁ ai₄ les yeux₃ noirs₂

- ② JJ → noirs | black
- $\textbf{3} \ \mathsf{NPO/NP} \rightarrow \overset{DT}{les} \overset{NN}{yeux} \, \mathsf{JJ} \mid \mathsf{JJ}$
- $\begin{array}{c} \P \\ \text{VPO/VP} \rightarrow \begin{array}{c} VB \\ ai \end{array} \text{NPO} \mid \begin{array}{c} VB \\ have \end{array} \text{NP} \end{array}$
- S → PRP0 VP0 | PRP VP

 $\{I_1 \text{ have}_4 \text{ black}_2 \text{ eyes}_3\}$

Phrase-based

Phrase-based

Left-to-Right

Tree-based

Bottom-Up

Phrase-based

- Left-to-Right
- Beam Search

- Bottom-Up
- Chart Parsing (In the next Lab.)

Phrase-based

- Left-to-Right
- Beam Search
- Formally intersection:

- Bottom-Up
- Chart Parsing (In the next Lab.)
- Formally intersection:

Phrase-based

- Left-to-Right
- Beam Search
- Formally intersection:
- FST (TM) × FSA (LM)

- Bottom-Up
- Chart Parsing (In the next Lab.)
- Formally intersection:
- SCFG (TM) × FSA (LM)

References I

David Chiang. A hierarchical phrase-based model for statistical machine translation. In *Proceedings of the 43rd Annual Meeting of the Association for Computational Linguistics (ACL'05)*, pages 263–270, Ann Arbor, Michigan, June 2005. Association for Computational Linguistics. doi: 10.3115/1219840.1219873. URL http://www.aclweb.org/anthology/P05-1033.

Philipp Koehn. Statistical Machine Translation. Cambridge University Press, New York, NY, USA, 1st edition, 2010. ISBN 0521874157, 9780521874151.