Policy Evaluation Dynamic Programming

Marius Lindauer

Winter Term 2021

- ▶ Initialize $V_0^{\pi}(s) = 0$ for all $s \in S$
- ightharpoonup For k=1 until convergence
 - ightharpoonup For all s in S

$$V_k^{\pi}(s) = r(s, \pi(s)) + \gamma \sum_{s' \in S} p(s' \mid s, \pi(s)) V_{k-1}^{\pi}(s')$$

- $igwedge V_k^\pi(s)$ is exact value of k-horizon value of state s under policy π
- $lackbox{} V_k^\pi(s)$ is an estimate of infinite horizon value of state s under policy π

$$V^\pi(s) = \mathbb{E}_\pi[G_t \mid s_t = s] \approx \mathbb{E}[r_t + \gamma V_{k-1} \mid s_t = s]$$

$$V^{\pi}(s) = \mathbb{E}_{\pi}[G_t \mid s_t = s] \approx \mathbb{E}[r_t + \gamma V_{k-1} \mid s_t = s]$$

$$V^{\pi}(s) = \mathbb{E}_{\pi}[G_t \mid s_t = s] \approx \mathbb{E}[r_t + \gamma V_{k-1} \mid s_t = s]$$

Lindauer

$$V^{\pi}(s) = \mathbb{E}_{\pi}[G_t \mid s_t = s] \approx \mathbb{E}[r_t + \gamma V_{k-1} \mid s_t = s]$$

ightarrow DP computes one step update at a time

Lindauer

 \leadsto bootstrapping the rest of the expected return by the value estimate V_{k-1}

Policy Evaluation:
$$V^{\pi} = \mathbb{E}[G_t \mid s_t = s]$$

- $lackbox{ } G_t = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \ldots$ in MDP M under policy π
- Dynamic Programming

 - ightharpoonup Requires model of MDP M
 - Bootstraps future return using value estimate
 - Requires Markov assumption: bootstrapping regardless of history

Policy Evaluation:
$$V^{\pi} = \mathbb{E}[G_t \mid s_t = s]$$

- $lackbox{ } G_t = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \ldots$ in MDP M under policy π
- Dynamic Programming

 - ightharpoonup Requires model of MDP M
 - Bootstraps future return using value estimate
 - Requires Markov assumption: bootstrapping regardless of history
- ▶ What if we don't know the dynamic model P and/or reward model R?