Evaluation metrics for classification problems

Fraud detection: Is it a fraudulent transaction?

Confusion matrix

- True positive (TP): correctly predicted positive
- True negative (TN): correctly predicted negative
- False positive (FP): incorrectly predicted positive
- False negative (FN): incorrectly predicted negative

Spam detection: Is it a spam email?

Accuracy

 $\frac{\text{correct predictions}}{\text{total predictions}}$

Accuracy

Predicted

A constant prediction: right in 8 out of 10 cases

Predicted Class

Actual Class

Classification Quality

Accuracy paradox

A model that predicts all negative will have high accuracy on an imbalanced dataset.

Predicting frequent class (negative samples) adds little value

Precision

correctly predicted positive predicted positive

Use when FP is costly

FP ♠, Precision ➡

Recall

correctly predicted positive actual positive

Use when FN is costly

FN ♠, Recall

Classification threshold changes the confusion matrix

Precision-recall tradeoff

Increase threshold:

- More conservative: fewer positive predictions, but mostly right
- When in doubt, predict negative (y=0)
- Precision Recall

Decrease threshold:

- More aggressive: more positive predictions, but more mistakes
- When in doubt, predict positive (y=1)

Visualizing the confusion matrix

https://developers-dot-devsite-v2-prod.appspot.com/machine-learning/crash-course/classification/accuracy-precision-recall_48d642036b6a12f05752bd92fcdf132b3f73d1d61a0897727e060c27ed347370.frame

Optimize for precision or recall

FP is costly: optimize for precision

FN is costly: optimize for recall

Fraud detection:

- FP: non-fraudulent transaction is classified as fraudulent
- FN: fraudulent transaction is classified as non-fraudulent

Propensity to buy:

- FP: non-buyer is classified as buyer
- FN: buyer is classified as non-buyer

F1 score

$$2 imes rac{ ext{precision} imes ext{recall}}{ ext{precision} + ext{recall}}$$

Use when you want a single metric that balances precision and recall.

ROC and ROC-AUC

ROC: Receiver-operating characteristic curve

• shows the performance of a binary classifier with *different thresholds*

ROC-AUC: Area under the ROC curve

 Relative scores to discriminate between positive or negative instances across all classification thresholds.

TPR and FPR

When to use ROC-AUC

ROC-AUC: a single metric that summarizes the model performance across all thresholds

Useful:

- for model comparison
- when the costs of errors are similar
- when the data is balanced

Less useful:

- when you care about different costs of error
- when the data is heavily imbalanced

Precision-recall (PR) curve

- For imbalanced datasets, use PR curve instead of ROC curve
- Precision vs. Recall across all thresholds
- Precision-recall tradeoff
- PR AUC: Area under the PR curve

