Relation

A subset of A×B is called a relation from A to B.

Number of Relation

Total number of relation from A to B is equal to the number of subsets of A×B. i.e. $|P(A\times B)|=2^{|A\times B|}$.

Ex. |A|=3, $|B|=2 \Rightarrow$ Total number of relation from A to B is $2^{3\times2}=64$ Binary Relation

A subset of $A \times A$ is called a binary relation on A.

Number of binary relation on a set

If
$$|A|=n$$
, then $|A\times A|=n^2$

Total number of binary relation = 2^{n^2} .

Ex. $|A|=2\Rightarrow$ Total number of binary relation on $A=2^{2^2}=2^4=16$.

Type's of Relation

Empty Relation

As Ø is subset of every set hence $\emptyset \subseteq A \times A$ is also a relation on A called empty relation. i.e. no any pair of element satisfies the given condition.

Identity Relation

A subset I of A×A is called identity relation on A. If $a \in A$ then $(a,a) \in A \times A$.

- ✓ Identity relation is unique for each set A.
- ✓ On a set a relation is said to be identity if every element of A related to itself.

Reflexive Relation

Irreflexive Relation

A subset S of A×A is called reflexive relation. If every element of A must related to itself i.e. \forall a ϵ A then (a,a) ϵ A×A. **Properties of Reflexive Relation**

 \checkmark Total number of reflexive relation on A = 2^{n^2-n} .where |A|= n \checkmark A={1,2,3}, |A| = 3 \Longrightarrow Total number of

reflexive relation on $A = 2^{3^2-3} = 2^{9-3} = 2^6$ = 64. **✓** Empty relation on nonempty set is never

reflexive. **✓** Empty relation on empty set is always

reflexive. **✓** The least cardinality of a reflexive relation on A with n elements is n.

✓ There are relations, which are neither reflexive nor irreflexive.

A subset S of A×A is called irreflexive relation. If no element of A related to itself i.e. \forall a \in A then (a,a) \notin A \times A. **Properties of Irreflexive Relation:-**

✓ Total number of irreflexive relation on A $= 2^{n^2-n}$.where |A| = n

 \checkmark A={1,2,3}, |A| = 3 \Longrightarrow Total number of Irreflexive relation on $A = 2^{3^2-3} = 2^{9-3} =$ $2^6 = 64$.

✓ Empty relation on nonempty set is never irreflexive.

✓ Empty relation on empty set is always irreflexive.

✓ There does not exist any non empty relation which is reflexive as well as irreflexive.

 $(a,b) \in S$ then $(b,a) \in S$.

Properties of symmetric relation:-Total number of symmetric relation on A = $2^{\sum n}$ where |A| = n, $\sum n = \frac{n(n+1)}{2}$

✓ |A|=3 ⇒ Total number of symmetric relation on A

 $=2^{\sum n}=2^{\frac{n(n+1)}{2}}=2^{\frac{3(3+1)}{2}}=2^{\frac{3(4)}{2}}=2^{6}=64.$

✓ Ex. A = $\{1,2,3\}$, $\mathcal{R} = \{(1,2),(2,1)\}$ be a relation on A ⇒

Ex. A = $\{1,2,3\}$, $\mathcal{R} = \{(1,2)(1,3),(2,3)\}$ be a relation on A \mathcal{R} is symmetric relation on A.

*Empty relation is both symmetric as well as asymmetric. *A non empty relation relation cannot be both asymmetric as well as

symmetric. symmetric but not identity. If $(a, b) \in S$ then $(b, a) \notin S$. **Properties of Asymmetric relation** \checkmark Total number of asymmetric relation on A = $3^{\sum(n-1)}$ where |A|=n

 $\sum n = \frac{n(n+1)}{2}$, $\sum (n-1) = \frac{(n-1)(n-1+1)}{2} = \frac{n(n-1)}{2}$ \checkmark |A|=3 \Rightarrow Total number of asymmetric relation on A $=3^{\sum(n-1)}=3^{\frac{n(n-1)}{2}}=3^{\frac{3(3-1)}{2}}=3^3=27$

 $\Rightarrow \mathcal{R}$ is asymmetric relation on A.

*Identity relation is symmetric relation but ther exist some relations which are *A non empty reflexive relation cannot be asymmetric.

Anti-symmetric Relation

A subset S of A×A is called anti-symmetric relation. If $(a,b) \in S$ and $(b,a) \in S$ then a=b.

Properties of Anti-symmetric relation

- Total number of anti-symmetric relation on $A = 2^n 3^{\sum (n-1)}$, where |A| = n, $\sum n = \frac{n(n+1)}{2}$, $\sum (n-1) = \frac{(n-1)(n-1+1)}{2} = \frac{n(n-1)}{2}$
- ✓ Ex. A ={1,2,3} , \mathcal{R} = {(1,1),(2,2) } be a relation on A $\Rightarrow \mathcal{R}$ is antisymmetric relation on A. i.e. A ={1,2,3} , |A|=3 then total number of anti-symmetric relation on A = $2^n 3^{\sum (n-1)} = 2^n 3^{\frac{n(n-1)}{2}} = 2^3 3^{\frac{3(3-1)}{2}} = 8 \times 27 = 216$
- ✓ Empty relation on empty set is always anti-symmetric .
- **✓** The term symmetric and anti-symmetric are not opposite.
- ✓ A relation may be both symmetric and anti-symmetric. ex. $A=\{1,2,3\}$, $\mathcal{R}=\{(1,1),(2,2)\}$ is both symmetric and antisymmetric.
- ✓ A relation may not be both symmetric and anti-symmetric iff it contains some pair of the form (a, b) where $a \neq b$.

Reflexive Relation

Transitive Relation

Let $A = \{a, b, c, d\}$ and \mathcal{R} be defined as follows:

 $\mathcal{R} = \{(a, a), (a, c), (b, a), (b, b), (c, c), (d, c), (d, d)\}.$

R is a reflexive relation.

☐ Let R be a relation on a set then if R is reflexive then R⁻¹ is reflexive

Proof

Let $(a, a) \in R \forall a \in A$

 $\therefore (a,a) \in R^{-1} \ \forall \ a \in A$

 $\therefore R^{-1}$ is reflexive

Symmetric Relation

- **Exa.** equality (=) is symmetric, but strict inequality (<) is not.
- ightharpoonup Let A = {a, b, c, d} and R = {(a, a), (b, c), (c, b), (d, d)}.
- Show that R is symmetric.
- \blacktriangleright let R be a relation on a set A then R is symmetric iff R = R^{-1}

Sol. Assume R is a symmetric, let $(a, b) \in R \rightarrow (b, a) \in R$ $(b, a) \in R^{-1}$ and $(a, b) \in R^{-1}$

 $(b,a) ∈ R^{-1}$ and $(a,b) ∈ R^{-1}$ ∴ $R = R^{-1}$

let $(a, b) \in R \to (b, a) \in R^{-1}$ & $(b, a) \in R$ since $R = R^{-1}$

∴ R is symmetric

Let $A = \{a, b, c, d\}$ and R be defined as follows: $R = \{(a, b), (a, c), (b, d), (a, d), (b, c), (d, c)\}$. Here R is transitive relation on A.

Transitive Relation

A subset S of A×A is called transitive relation. If $(a, b) \in S$ and $(b, c) \in S$ then $(a,c) \in S$.

Equivalence Relation

An equivalence relation R on a set S is one that satisfies these three properties for all $x, y, z \in S$.

- 1. (Reflexive) $x\mathcal{R}x$, $\forall x \in \mathcal{R}$
- 2. (Symmetric) If $x\mathcal{R}y$, then $y\mathcal{R}x$, $\forall x, y \in \mathcal{R}$
- 3. (Transitive) If $x\mathcal{R}y$ and $y\mathcal{R}z$ then $x\mathcal{R}z$, $\forall x, y, z\in\mathcal{R}$

Example.

1.For any nonempty set S, the equality relation = defined by the subset $\{(x, x) \mid x \in S\}$ of $S \times S$ is an equivalence relation

Inverse Relation

Given a relation R from A to B, the inverse of R, denoted R^{-1} , is the relation from B to A defined as bR^{-1} a

$$R^{-1} = \{(b, a) : (a, b) \in R\}$$

For instance, if R is the relation "being a son or daughter of", then R^{-1} is the relation "being a parent of".

Example . let
$$R = \{(1, 0), (2, 0), (2, 1), (3, 0), (3, 1), (3, 2)\}$$
 then

$$R^{-1} = \{(0, 1), (0, 2), (1, 2), (0, 3), (1, 3), (2, 3)\}$$

Example. Let R and S be a relations between A and B.

i. Show that, if
$$R \subseteq S$$
 then $R^{-1} \subseteq S^{-1}$.

ii. Prove that
$$(R \cap S)^{-1} = R^{-1} \cap S^{-1}$$

Proof (i)Let $(a, b) \in R^{-1} \to (b, a) \in R$ definition of inverse relation

$$\therefore (b,a) \in S \quad since R \subseteq S \therefore (a,b)$$

$$\in S^{-1}$$
 definition of inverse relation

$$\therefore R^{-1} \subseteq S^{-1}$$

definition of subset

Proof (ii) (1) Let
$$(a, b) \in (R \cap S)^{-1}$$

∴ $(b, a) \in (R \cap S)$
 $(b, a) \in R$ and $(b, a) \in S$
 $(a, b) \in R^{-1}$ and $(b, a) \in S^{-1}$
 $(a, b) \in R^{-1} \cap S^{-1}$
 $(R \cap S)^{-1} \subseteq R^{-1} \cap S^{-1}$
(2) Let $(a, b) \in R^{-1}$ and $(b, a) \in S^{-1}$
 $(a, b) \in R^{-1}$ and $(b, a) \in S^{-1}$
 $(b, a) \in R$ and $(b, a) \in S$
∴ $(b, a) \in (R \cap S)$
∴ $(a, b) \in (R \cap S)^{-1}$

definition of inverse definition of intersection definition of inverse definition of intersection definition of subset

definition of intersection definition of inverse definition of intersection definition of inverse

$$R^{-1} \cap S^{-1} \subseteq (R)$$

: from (1) and (2) we have
$$(R \cap S)^{-1} = R^{-1} \cap S^{-1}$$

Finite set:

If a set consist of finite number of elements, it is called a finite set. e.g., {1,2,3,.....n}, Ø are finite set.

Def. Power set:

The power set of A denoted by P(A), is defined as the set $\{B:B\subseteq A\}$.. Thus, P(A) is the collection of all possible subsets of A.

- 1. Let A be any set. Let P(A) be the power set of A, that is, the set of all subsets of A;P(A)={B:B⊆A}. Then which the following
- Is/ are true about the set P(A)? (a) $P(A) = \emptyset$ for some A
- (b)P(A) is a finite set for some A
- (c)P(A) is a countable set for some A
- (d)P(A) is a uncounteble set for some A
- Power set of any set contains at least one element so option(a) is not true Let A be finite Then P(A) is finite. Every finite set is countable. Hence, options (b) and (c) are true.
- Taking A = N, Then, P(N) is uncountable. Hence, option (d) is true.