

Step-by-step solution

Step 1 of 1

 $NTIME(n)_{\ \, \text{is strict subset of}}\ \, PSPACE(n)$

At most $t^{(n)}$ tape cells on each branch can be used by any Turing machine that operates in time $t^{(n)}$ on each computation branch. So, it can be stated that $t^{(n)}$ NSPACE $t^{(n)}$

- Now, consider the **Savitch's theorem** which says that: "Let $f: N \to R_{\text{be a function, with}}$ $f(n) \ge n$ then $\text{NSPACE}(f(n)) \subseteq \text{SPACE}((f(n))^2)_n$. Therefore according to Savitch's theorem $\text{NSPACE}(n) \subseteq \text{SPACE}(n^2)_n$.
- Now, consider the **space hierarchy theorem** which says that "if g is space-constructible ($1^n \to 1^{g(n)}$ can be computed in space $O(g(n))_{),}$ f(n) = O(g(n)) then $SPACE(f(n)) \subsetneq SPACE(g(n))_{.}$

Therefore, according to space hierarchy theorem it can be said that $SPACE\left(n^{2}\right) \subsetneq SPACE\left(n^{3}\right). \text{ The result follows because } SPACE\left(n^{3}\right) \subseteq PSPACE.$

From the above explanation, it can be said that $\begin{tabular}{l} NTIME(n) \subsetneq PSPACE(n) \ . \label{eq:pspace} \end{tabular}$

Comment