

The classical decomposition model

Full control of the c

Lecture 2

Estimating trend and seasonality

MATH 8090 Time Series Analysis August 24 & 26, 2021

> Whitney Huang Clemson University

Agenda

The classical decomposition model

Toria Edimation

stimating Seasonality

1 The classical decomposition model

2 Trend Estimation

The Classical (Additive) Decomposition Model

CLEMS N

ullet The additive model for a time series $\{Y_t\}$ is

$$Y_t = \mu_t + s_t + \eta_t,$$

where

- μ_t is the trend component
- s_t is the seasonal component
- η_t is the random (noise) component with $\mathbb{E}(\eta_t)$ = 0
- Standard procedure:
 - (1) Estimate/remove the trend and seasonal components
 - (2) Analyze the remainder, the residuals $\hat{\eta}_t = y_t \hat{\mu}_t \hat{s}_t$
- We will focus on (1) for this week

ecomposition model

Estimating Spacehality

Mauna Loa Atmospheric CO₂ **Concentration Revisited**

Monthly atmospheric concentrations of CO_2 at the Mauna Loa

Observatory [Source: Keeling & Whorf, Scripps Institution of Oceanography]

The classical decomposition model

Estimating Trend for Nonseasonal Model

• Assuming $s_t = 0$ (i.e., there is no "seasonal" variation), we have

$$Y_t = \mu_t + \eta_t,$$

with
$$\mathbb{E}(\eta_t) = 0$$

- Methods for estimating trends
 - Least squares regression
 - Smoothing
- Alternatively, one can remove trend by differening time series

The classical decomposition model

end Estimation

Trend Estimation: Linear Regression

ullet The additive nonseasonal time series model for $\{Y_t\}$ is

$$Y_t = \mu_t + \eta_t,$$

where the trend is assumed to be a linear combination of known covariate series $\{x_{it}\}_{i=1}^p$

$$\mu_t = \beta_0 + \sum_{i=1}^p \beta_i x_{it}.$$

- Here we want to **estimate** $\beta = (\beta_0, \beta_1, \cdots, \beta_p)^T$ from the data $\{y_t, \{x_{it}\}_{i=1}^p\}_{t=1}^T$
- You're likely quite familiar with this formulation already ⇒ Regression Analysis

decomposition model

rend Estimation

Some Examples of Covariate Series $\{x_{it}\}$

Simple linear regression model:

$$\mu_t = \beta_0 + \beta_1 x_t,$$

for example, the temperature trend at time could be a constant (β_0) plus a multiple (β_1) of the carbon dioxide level at time t (x_t)

Polynomial regression model:

$$\mu_t = \beta_0 + \sum_{i=1}^p \beta_i t^i$$

Change point model:

$$\mu_t = \begin{cases} \beta_0 & \text{if } t \le t^*; \\ \beta_0 + \beta_1 & \text{if } t \ge t^*. \end{cases}$$

decomposition model

Trend Estimation

Parameter Estimation: Ordinary Least Squares

The classical decomposition model

end Estimation

Estimating Seasonality

- Like in the linear regression setting, we can estimate the parameters via ordinary least squares (OLS)
- Specifically, we minimize the following objective function:

$$\ell_{ols} = \sum_{t=1}^{T} (y_t - \beta_0 - \sum_{k=1}^{p} x_{kt} \beta_k)^2.$$

• The estimates $\beta = (\beta_0, \beta_1, \cdots, \beta_p)^T$ minimizing the above objective function are called the OLS estimates of $\beta \Rightarrow$ they are easiest to express in **matrix form**

The Model and Parameter Estimates in Matrix Form

Matrix representation:

$$Y = X\beta + \eta$$
,

where
$$\boldsymbol{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_T \end{bmatrix}$$
, $\boldsymbol{X} = \begin{bmatrix} 1 & x_{11} & x_{12} & \cdots & x_{1p} \\ 1 & x_{21} & x_{22} & \cdots & x_{2p} \\ 1 & \vdots & \cdots & \cdots & \vdots \\ 1 & x_{t1} & x_{t2} & \cdots & x_{tp} \end{bmatrix}$, and $\boldsymbol{\eta} = \begin{bmatrix} \eta_1 \\ \vdots \\ \eta_T \end{bmatrix}$

• Assuming X^TX is **invertible**, the OLS estimate of β can be shown to be

$$\hat{\boldsymbol{\beta}} = (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{y},$$

and the 1m function in R calculates OLS estimates

Lake Huron Example Revisited

Year

Let's **assume** there is a linear trend in time \Rightarrow we need to estimate the **intercept** β_0 and **slope** β_1

The classical decomposition model

end Estimation

mating Seasonality

The R Output

```
Call:
lm(formula = LakeHuron \sim yr)
```

Residuals:

Min 10 Median 30 Max -2.50997 -0.72726 0.00083 0.74402 2.53565

Coefficients:

Signif. codes:

Estimate Std. Error t value Pr(>|t|) (Intercept) 625.554918 7.764293 80.568 < 2e-16 *** -0.024201 0.004036 -5.996 3.55e-08 *** yr 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1

Residual standard error: 1.13 on 96 degrees of freedom

Multiple R-squared: 0.2725, Adjusted R-squared: 0.2649

F-statistic: 35.95 on 1 and 96 DF, p-value: 3.545e-08

Plot the (Estimated) Trend $\hat{\mu}_t$ = $\hat{\beta}_0$ + $\hat{\beta}_1 t$

The classical decomposition model

end Estimation

Estimating Seasonality

 $\hat{\beta}_1$ = -0.0242 (ft/yr) \Rightarrow there seems to be a decreasing trend

Plot the Residuals $\{\hat{\eta}_t = y_t - \hat{\beta}_0 - \hat{\beta}_1 t\}$

 $\{\hat{\eta}_t\}$ seems to exhibit some temporal dependence structure, should we worry about the results we have (recall OLS makes an i.i.d. assumption)?

Statistical Properties of the OLS Estimates with Correlated Errors

• Assume the components of X are not random, the OLS estimates $\hat{\beta}$ are unbiased for β Proof:

decomposition model

rend Estimation

stimating Seasonality

• Since $\{\eta_t\}$ is typically not an i.i.d. process (see the acf plot below), statistical inferences regarding β will be invalid

Smoothing or Local Averaging

In certain situations, we may want to relax the assumption on the trend \Rightarrow "non-parametric" approach

Here, we break the time series up into "small" blocks (each with 10 years of data) and average each block

Doing this gives a very rough estimate of the trend. **Can we do better?**

The classical decomposition model

end Estimation

Moving Average Smoother

 A moving average smoother estimates the trend at time t by averaging the current observation and the q nearest observations from either side. That is

$$\hat{\mu}_t = \frac{1}{2q+1} \sum_{j=-q}^{q} y_{t-j}$$

• q is the "smoothing" parameter, which controls the smoothness of the estimated trend $\hat{\mu}_t$

decomposition model

rend Estimation

Exponential Smoothing

The classical decomposition model

rend Estimation

Estimating Seasonality

• Let $\alpha \in [0,1]$ be some fixed constant, defined

$$\hat{\mu}_t = \begin{cases} Y_1 & \text{if } t = 1; \\ \alpha Y_t + (1 - \alpha)\hat{\mu}_{t-1} & t = 2, \dots T. \end{cases}$$

• For $t = 2, \dots, T$, we can rewrite $\hat{\mu}_t$ as

$$\sum_{j=0}^{t-2} \alpha (1-\alpha)^j Y_{t-j} + (1-\alpha)^{t-1} Y_1.$$

 \Rightarrow it is a one-sided moving average filter with exponentially decreasing weights. One can alter α to control the amounts of smoothing (see next slide for an example)

α is the Smoothing Parameter for Exponential Smoothing

The classical decomposition model

end Estimation

Estimating Seasonality

The smaller the α , the smoother the resulting trend

Differencing

ullet We define the first order difference operator abla as

$$\nabla Y_t = Y_t - Y_{t-1} = (1 - B)Y_t,$$

where B is the **backshift operator** and is defined as $BY_t = Y_{t-1}$.

- Similarly the general order difference operator $\nabla^q Y_t$ is defined recursively as $\nabla[\nabla^{q-1}Y_t]$
- The backshift operator of power q is defined as $B^q Y_t$ = Y_{t-q}

In next slide we will see an example regarding the relationship between ∇^q and B^q

decomposition model

rend Estimation

The classical decomposition model

Trend Estimation

Estimating Seasonality

$$\nabla^2 Y_t = \nabla \big[\nabla Y_t \big]$$

The classical decomposition model

Trend Estimation

Estimating Seasonality

The classical decomposition model

Trend Estimation

stimating Seasonality

$$\nabla^2 Y_t = \nabla [\nabla Y_t]$$

$$= \nabla [Y_t - Y_{t-1}]$$

$$= (Y_t - Y_{t-1}) - (Y_{t-1} - Y_{t-2})$$

The classical decomposition model

Trend Estimation

Stimating Seasonality

$$\nabla^{2} Y_{t} = \nabla [\nabla Y_{t}]$$

$$= \nabla [Y_{t} - Y_{t-1}]$$

$$= (Y_{t} - Y_{t-1}) - (Y_{t-1} - Y_{t-2})$$

$$= Y_{t} - 2Y_{t-1} + Y_{t-2}$$

The classical decomposition model

rend Estimation

Estimating Seasonality

The second order difference is given by

$$\nabla^{2}Y_{t} = \nabla[\nabla Y_{t}]$$

$$= \nabla[Y_{t} - Y_{t-1}]$$

$$= (Y_{t} - Y_{t-1}) - (Y_{t-1} - Y_{t-2})$$

$$= Y_{t} - 2Y_{t-1} + Y_{t-2}$$

$$= (1 - 2B + B^{2})Y_{t}$$

In the next slide we will see an example of using differening to remove the trend

Removing Trend via Differening

Consider a time series data with a linear trend (i.e., $\{Y_t = \beta_0 + \beta_1 t + \eta_t\}$) where η_t is a stationary time series. Then first order differencing results in a stationary series with no trend. To see why

$$\nabla Y_t = Y_t - Y_{t-1}$$

$$= (\beta_0 + \beta_1 t + \eta_t) - (\beta_0 + \beta_1 (t-1) + \eta_{t-1})$$

$$= \beta_1 + \eta_t - \eta_{t-1}$$

This is the sum of a stationary series and a constant, and therefore we have successfully remove the linear trend.

lecomposition model

Takina dia a

Notes on Differening

The classical decomposition model

Irend Estimation

- A polynomial trend of order q can be removed by q-th order differencing
- \bullet By q-th order differencing a time series we are shortening its length by q
- Differencing does not allow you to estimate the trend, only to remove it. Therefore it is not appropriate if the aim of the analysis is to describe the trend

A Seasonal Model with Trend

ullet Let's now consider the "full model" for $\{Y_t\}$

$$Y_t = \mu_t + s_t + \eta_t,$$

with $\{s_t\}$ having period d (i.e., $s_{t+jd} = s_t$ for all integers j and t), $\sum_{t=1}^{d} s_t = 0$ and $\mathbb{E}(\eta_t) = 0$

- Two methods to estimate $\{s_t\}$
 - Harmonic regression
 - Seasonal mean model
- A method to remove $\{s_t\} \Rightarrow \text{Lag differencing}$

decomposition model

Tella Estillation

Harmonic Regression

A harmonic regression model has the form

$$s_t = \sum_{j=1}^k A_k \cos(2\pi f_j + \phi_j).$$

For each $j = 1, \dots, k$:

- $A_j > 0$ is the amplitude of the j-th cosine wave
- f_j controls the the frequency of the j-th cosine wave (how often waves repeats)
- $\phi_j \in [-\pi, \pi]$ is the phase of the j-th wave (where it starts)
- The above can be expressed as

$$\sum_{j=1}^{k} (\beta_{1j} \cos(2\pi f_j) + \beta_{2j} \sin(2\pi f_j)),$$

where $\beta_{1j} = A_j \cos(\phi_j)$ and $\beta_{2j} = A_j \sin(\phi_j) \Rightarrow \text{if } \{f_j\}_{j=1}^k$ are known, we can use regression techniques to estimate the parameters $\{\beta_{1j}, \beta_{2j}\}_{j=1}^k$

The classical decomposition model

irona Estimation

An Example R Output

The classical decomposition model

rena Esumation

Estimating Seasonality

```
Call:
```

lm(formula = tempdub ~ harmonics)

Residuals:

Min 1Q Median 3Q Max -11.1580 -2.2756 -0.1457 2.3754 11.2671

Coefficients:

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Seasonal Means Model

 Harmonics regression assumes the seasonal pattern has a regular shape, i.e., the height of the peaks is the same as the depth of the troughs

Estimating Seasonality

• A less restrictive approach $\{s_t\}$ to model it as

$$s_t = \left\{ \begin{array}{ll} \beta_1 & \text{for } t = 1, 1+d, 1+2d, \cdots \;\; ; \\ \beta_2 & \text{for } t = 2, 2+d, 2+2d, \cdots \;\; ; \\ \vdots & \vdots & \vdots & \vdots \\ \beta_d & \text{for } t = d, 2d, 3d, \cdots \;\; . \end{array} \right.$$

• This is the seasonal means model, the parameters $(\beta_1, \beta_2, \cdots, \beta_d)^T$ can be estimated under the linear model framework

An Example R Output

Call:

 $lm(formula = tempdub \sim month - 1)$

Residuals:

Min 1Q Median 3Q Max -8.2750 -2.2479 0.1125 1.8896 9.8250

Coefficients:

monthJanuary	16.608	0.987	16.83	<2e-16 ***
monthFebruary	20.650	0.987	20.92	<2e-16 ***
monthMarch	32.475	0.987	32.90	<2e-16 ***
monthApril	46.525	0.987	47.14	<2e-16 ***
monthMay	58.092	0.987	58.86	<2e-16 ***
monthJune	67.500	0.987	68.39	<2e-16 ***
monthJuly	71.717	0.987	72.66	<2e-16 ***
monthAugust	69.333	0.987	70.25	<2e-16 ***
monthSeptember	61.025	0.987	61.83	<2e-16 ***
monthOctober	50.975	0.987	51.65	<2e-16 ***
monthNovember	36.650	0.987	37.13	<2e-16 ***
monthDecember	23.642	0.987	23.95	<2e-16 ***
Signif. codes:	0 '***	0.001 '**'	0.01 '*'	0.05 '.' 0.1 '

Estimate Std. Error t value Pr(>|t|)

CLEMS N

The classical decomposition model

end Estimation

Seasonal Differening

CLEMS N

• The lag-d difference operator, ∇_d , is defined by

$$\nabla_d Y_t = Y_t - Y_{t-d} = (1 - B^d) Y_t.$$

Note: This is NOT ∇^d !

• **Example**: Consider data that arise from the model $Y_t = \beta_0 + \beta_1 t + s_t + \eta_t$, which has a linear trend and seasonal component that repeats itself every d time points. Then by just seasonal differencing (lag-d differening here) this series becomes stationary.

$$\nabla_{d}Y_{t} = Y_{t} - Y_{t-d}$$

$$= [\beta_{0} + \beta_{1}t + s_{t} + \eta_{t}] - [\beta_{0} + \beta_{1}(t-d) + s_{t-d} + \eta_{t-d}]$$

$$= d\beta_{1} + \eta_{t} - \eta_{t-d}$$

decomposition model

Trend Estimation

Seasonal and Trend decomposition using Loess [Cleveland, et. al., 1990]

```
CLEMS#N
UNIVERSITY
```

```
The classical decomposition model
```

```
# Seasonal and Trend decomposition using Loess (STL)

par(mar = c(4, 3.6, 0.8, 0.6))

stl <- stl(co2, s.window = "periodic")

plot(stl, las = 1)
```

