CS 570: Analysis of Algorithms – H3

Submitted by: Indronil Bhattacharjee

Α	В	0	0	Ω	ω	Θ
lg ^k n	n [€]	yes	yes	no	no	no
n ^k	C ⁿ	yes	yes	no	no	no
√n	n ^{sin(n)}	no	no	no	no	no
2 ⁿ	2 ^(n/2)	no	no	yes	yes	no
n ^(lg c)	C ^(lg n)	yes	no	yes	no	yes
lg(n!)	lg(n ⁿ)	yes	no	yes	no	yes

1. A = $\lg^k n$ and B = n^{ϵ} :

A=O(B) if there exist positive constants c and n0 such that $0 \le A(n) \le c \cdot B(n)$ for all $n \ge n0$.

Let $A(n)=lg^k n$ and $B(n)=n^{\epsilon}$.

Since $\lg^k n$ is a positive function for all $n \ge 1$, we can set $n_0=1$.

Let's choose c=1, then $\lg^k n \le n^{\epsilon}$ for all $n \ge n_0=1$.

Thus, A=O(B).

To show B \neq O(A), we need to find constants c and n_0 such that $0 \le B(n) \le c \cdot A(n)$ for all $n \ge n_0$.

However, since $B(n)=n^{\epsilon}$ grows faster than $A(n)=lg^k n$ for all $n \ge 1$, such constants cannot be found.

Therefore, $B \neq O(A)$.

Since A = O(B) but B \neq O(A), A is O(B) but not Θ (B).

2. A = n^k and B = c^n :

A = O(B) if there exist positive constants c and n_0 such that $0 \le A(n) \le c \cdot B(n)$ for all $n \ge n_0$.

Let $A(n)=n^k$ and $B(n)=c^n$.

Since n^k is a positive function for all $n \ge 1$, we can set $n_0=1$.

Let's choose c=1, then $n^k \le c^n$ for all $n \ge n_0=1$.

Thus A = O(B).

To show B \neq O(A), we need to find constants c and n_0 such that $0 \le B(n) \le c \cdot A(n)$ for all $n \ge n_0$.

However, since $B(n) = c^n$ grows faster than $A(n)=n^k$ for all $n \ge 1$, such constants cannot be found.

Therefore, $B \neq O(A)$.

Since A=O(B) but $B\neq O(A)$, A is O(B) but not O(B).

3. A = Vn and $B = n^{sinn}$:

Comparison with definitions is more challenging here due to the oscillatory behavior of $B = n^{sinn}$.

We cannot apply the definitions of O, o, Ω , ω , and Θ directly to A and B because sinn oscillates between [-1,1]. We cannot lower or upper bound n^{sinn} with $n^{1/2}$.

4. $A = 2^n$ and $B = 2^{(n/2)}$

B intuitively represents the same function as A with a lower exponent, therefore it represents a strong lower bound of A.

Again, B = $2^{n/2} = 2^{1/2.n} = 2^{1/2.n} = \sqrt{2^n}$. 2^n grows faster than $\sqrt{2^n}$, since $2 > \sqrt{2}$.

Therefore, $A = \Omega(B)$

5. A = $n^{(lg c)}$ and B = $c^{(lg n)}$

To show A=O(B), we need to prove that there exist positive constants c and n0 such that $0 \le A(n) \le c \cdot B(n)$ for all $n \ge n0$.

Let $A(n)=n^{lgc}$ and $B(n)=c^{lgn}$.

We know that $\lg n \le n$ for all $n \ge 1$.

Let's choose c=1 and $n_0=1$, then $n^{lgc} \le n^{lgn} = c^{lgn}$ for all $n \ge n0=1$.

Thus, A=O(B).

To show $A = \Omega(B)$, we need to prove that there exist positive constants c and n_0 such that $0 \le c \cdot B(n) \le A(n)$ for all $n \ge n_0$.

Let $A(n)=n^{lgc}$ and $B(n)=c^{lgn}$.

We know that $\lg n \ge 1$ for all $n \ge 1$.

Let's choose c=1 and $n_0=1$, then $c^{lgn} \le n^{lgc}$ for all $n \ge n_0=1$.

Thus, $A=\Omega(B)$.

Therefore, by definition, $A=\Theta(B)$.

6. A = $\lg(n!)$ and B = $\lg(n^n)$

To show A=O(B), we need to prove that there exist positive constants c and n_0 such that $0 \le A(n) \le c \cdot B(n)$ for all $n \ge n_0$.

Let $A(n) = \lg(n!)$ and $B(n) = \lg(n^n)$.

We know that $n! \le n^n$ for all $n \ge 1$.

Taking the logarithm of both sides, we get $\lg(n!) \le \lg(n^n)$ for all $n \ge 1$.

Let's choose c = 1 and $n_0 = 1$, then $\lg(n!) \le \lg(n^n)$ for all $n \ge n_0 = 1$.

Thus, A=O(B).

To show $A=\Omega(B)$, we need to prove that there exist positive constants c and n0 such that $0 \le c \cdot B(n) \le A(n)$ for all $n \ge n0$.

Let A(n)=lg(n!) and $B(n)=lg(n^n)$.

Consider the ratio $log(n^n)/log(n!) = nlogn/log(n!)$.

As n approaches infinity, the ratio nlogn/log(n!) approaches 1/e (using Stirling's approximation).

Therefore, for c=1/2e, we can choose n_0 =1 and for all $n \ge n_0$, $0 \le 1/2e \cdot n \log n \le \log(n!)$.

Thus, $A=\Omega(B)$.

Therefore, by definition, $A=\Theta(B)$.