

Concours d'entrée (2016 – 2017) Examen de chimie Durée : 1 h (Programme Bac. Français) Date : 3/7/2016

Traiter les deux exercices suivants :

Premier exercice (10 points) Identification de quelques composés organiques

On dispose de quatre flacons notés A, B, C, et D contenant chacun un liquide différent des autres ayant des molécules à chaîne carbonée saturée et non cyclique formée de trois atomes de carbone. On tend à identifier le contenu de chaque flacon Un laboratoire a réalisé des spectres RMN et IR pour les molécules des liquides contenus dans les flacons. Les résultats sont indiqués ci-dessous:

Protons équivalents	Nombre de protons	Nombre de pics du signal	
Protons du groupe	6	1	

Spectre IR de la molécule de A

1- À partir de deux spectres déterminer la formule semi-développée de A.

Protons équivalents	Nombre de pics du signal	Hauteur d'intégration
Protons du groupe (a)	3	3
Protons du groupe (b)	4	2
Protons du groupe (c)	1	1

Exploitation du RMN de la molécule de C

Spectre IR de la molécule de C

2- À partir de deux spectres déterminer la formule semi-développée de C.

Protons équivalents	Nombre de pics du signal	Hauteur d'intégration
Protons du groupe (a)	3	3
Protons du groupe (b)	4	2
Protons du groupe (c)	1	1

Exploitation du RMN de la molécule de B

Spectre IR de la molécule de B

3- À partir de deux spectres déterminer la formule semi-développée de B.

Protons équivalents	Nombre de pics du signal	Hauteur intégration
Protons du groupe (a)	2	6
Protons du groupe (b)	7	1
Protons du groupe (c)	1	2

Exploitation du RMN de la molécule de D

- 4- Montrer que D peut être la propoan-2-amine.
- 5- Tracer l'allure du spectre IR de D entre 4000 et 2000 cm⁻¹.
- 6- On soumet un échantillon du flacon C à l'oxydation ménagée catalytique par le dioxygène de l'air, on obtient le produit contenu dans B. Écrire, en utilisant les formules semi-développées des composés organiques, l'équation de la réaction.
- 7- . Un autre échantillon du flacon C est soumis á l'hydrogénation on obtient un produit E.
- 7.1- Identifier E.
- 7.2- Écrire l'équation de la réaction de E avec le contenu de B et donner le nom du produit organique F obtenu.

Donnée: Table d'absorption des principales liaisons en IR

Liaison	-О-Н	-N-H	-С-Н	-C-C -	-C-N -	-C=O
∂ (cm ⁻¹)	3200 à	3100 à	2800 à	1000 à	1000 à	1650 à
	3400	3500	3100	1250	1100	1750
	FL	M	F	F	F	F

FL: forte large M: moyenne et fine F: forte et fine

Une amine primaire présente deux modes de vibration. À chaque mode de vibration correspond une énergie donc une radiation absorbée.

Deuxième exercice (10 points) Comportement du phénol et de l'acide benzoïque dans l'eau

Une solution aqueuse (S₁) de phénol (C₆H₅ – OH) de concentration C₁ = $1,1\times10^{-2}$ mol.L⁻¹ a un pH₁ = 5,9. Une solution aqueuse (S₂) d'acide benzoïque (C₆H₅ – COOH) de même concentration a un pH₂ = 3,1.

- 1- Écrire, en justifiant la réponse, l'équation de la réaction du phénol avec l'eau.
- 2- Comparer, en justifiant la réponse, le comportement en solution aqueuse :
 - du phénol et de l'acide benzoïque ;
 - de l'ion phénolate et de l'ion benzoate.

- 3- Situer, sur un axe de pKa, le pKa₂ du couple phénol/ion phénolate par rapport au pKa₁ du couple acide benzoïque/ion benzoate, sachant qu'ils sont de 4,2 et de 10.
- 4- On mélange à volumes égaux des solutions de même concentration de benzoate de sodium, de phénol, d'acide benzoïque et de phénolate de sodium.
 4.1- Justifier laquelle de deux réactions est plus avancée celle de l'ion benzoate avec le phénol ou celle de l'acide benzoïque avec le phénolate.
 - 4.2- Écrire l'équation de la réaction qui aura lieu.
 - 4.3- Calculer le pH de la solution obtenue. (Prendre $10^{2,9} = 800$)
- 5- Calculer le volume d'une solution d'hydroxyde de sodium de concentration $C_B = 0.01 \text{ mol.L}^{-1}$ qu'il faut ajouter à 50 mL de la solution d'acide benzoïque pour préparer une solution tampon de pH = 4,2.

Concours d'entrée (2016 – 2017) Solution de chimie Durée : 1 h (Programme Bac. Français) Date : 3/7/2016

Premier exercice (10 points) Identification de quelques composés organiques

1- D'après le spectre RMN la molécule A renferme six protons correspondant à 1 groupe de protons équivalents.

D'après le spectre IR la molécule A renferme le groupement fonctionnel carbonyle (absorption F autour de 1700 cm⁻¹).

La chaîne carbonée est à 3 atomes de carbone et renferme un groupement carbonyle et 6 atomes hydrogène correspondant à 6 protons équivalents elle correspond donc à : CH₃—C—CH₃

2- D'après le spectre RMN la molécule C renferme six protons et renferme 3 groupes de protons équivalents.

D'après le spectre IR la molécule C renferme le groupement fonctionnel carbonyle (absorption F autour de 1700 cm⁻¹).

La chaîne carbonée est à 3 atomes de carbone et renferme un groupement carbonyle et 3 groupes de protons équivalents répartis 3,2et 1 elle correspond donc à : CH₃—CH₂—C—H

0

3- D'après le spectre RMN la molécule B renferme six protons et renferme 3 groupes de protons équivalents.

D'après le spectre IR la molécule C renferme le groupement fonctionnel carbonyle (absorption F autour de 1700 cm⁻¹) et le groupement hydroxyle (absorption FL autour de 3400 cm⁻¹)

La chaine carbonée est à 3 atomes de carbone et renferme un groupement carbonyle et 3 groupes de protons équivalents répartis 3,2et 1 elle correspond donc à : CH₃—CH₂—C—OH

4- La molécule propan-2-amine de formule semi-développée

Renferme 3 groupes de protons équivalents et ces 3 groupes répondent au résultat obtenu.

Protons équivalents	Nombre de pics du signal	Hauteur intégration
Protons du groupe (a)	1 voisin 2 pics	6 protons h 6
Protons du groupe (b)	6 voisins 7 pics	1 proton h 1
Protons du groupe (c)	0 voisin 1pic	2 protons h 2

5- Les liaisons dans D sont -C—H , -C—C- , -C—N- et -N—H Les bandes qui apparaissent correspondent à -C—H (autour de 3000 cm⁻¹), et -N—H (autour de 3400 cm⁻¹ avec 2 pics)

- 6- L'équation de la réaction est : $CH_3 - CH_2 - CHO + \frac{1}{2}O_2 \rightarrow CH_3 - CH_2 - COOH$
- 7- 7.1- L'hydrogénation du propanal donne le composé (E) qui est le propan-1-ol de formule : CH₃ – CH₂ – CH₂OH. 7.2- L'équation de sa réaction avec l'acide propanoique est :

 $CH_3 - CH_2 - COOH + CH_3 - CH_2 - CH_2OH \Rightarrow CH_3 - CH_2 - COO - CH_2 - CH_2 - CH_3 + H_2OH \Rightarrow CH_3 - CH_2 - COO - CH_2 - CH_3 -$

Le produit organique F est le propanoate de propyle.

Deuxième exercice (10 points) Comportement de phénol et d'acide benzoïque dans l'eau

1- L'équation de la réaction du phénol avec l'eau s'écrit :

 $C_6H_5 - OH + H_2O \rightleftharpoons C_6H_5 - O^- + H_3O^+.$

La concentration est $C_1 = 1.1 \times 10^{-2} \text{ mol.L}^{-1}$ et pH = 5,9. Le phénol est un acide faible puisque $[H_3O^+] = 10^{-5.9} = 1.26 \times 10^{-6} \text{ mol.L}^{-1} < 1.1 \times 10^{-2} \text{ mol.L}^{-1}$.

- 2- Les solutions ayant des concentrations égales, on peut comparer leurs pH respectifs: $pH_2 = 3.1$ et $pH_2 = 5.9$. La solution d'acide le plus fort correspond à la solution de pH le plus petit. L'acide benzoïque est alors l'acide le plus fort. Inversement, le phénolate est une base plus forte que le benzoate.
- 3- La constate d'acidité p $Ka_1 = 4,2$ la plus petite correspond donc à l'acide le plus fort qui est l'acide benzoïque, et la constante p $Ka_2 = 10$ correspond à l'acide le plus faible le phénol :

$$\frac{C_{6}H_{5} - COOH \mid C_{6}H_{5} - COO^{-}}{pKa_{1} = 4,2} \qquad C_{6}H_{5} - OH \mid C_{6}H_{5} - O^{-}}{pKa_{2} = 10}$$

4-

- On a p Ka_2 p Ka_1 = 10 4,2 = 5,8 > 4. C'est donc l'acide benzoïque qui 4.1réagit sur l'ion phénolate et non l'inverse, car la constante de la réaction inverse est: $Kr = 10^{-5,8}$.
- 4.2-L'équation la réaction :

$$C_6H_5 - COOH + C_6H_5 - O^- \rightarrow C_6H_5 - COO^- + C_6H_5 - OH.$$

4.3-
$$C_6H_5 - COOH + C_6H_5 - O^- \rightarrow C_6H_5 - COO^- + C_6H_5 - OH.$$

$$10^{5,8} = \frac{C(1+x)C(1+x)}{C(1-x)C(1-x)} = \frac{(1+x)^2}{(1-x)^2} \quad ; \quad 10^{2,9} = \frac{(1+x)}{(1-x)} \quad ; \quad 800 \ (1-x) = (1+x) \quad ; \quad x = \frac{799}{801} \quad ;$$

D'après la relation : $pH = pKa + log \frac{[base]}{[acide]}$. On tire :

- pH = 10 +
$$\log \frac{1 - \frac{799}{801}}{1 + \frac{799}{801}}$$
 = 10 + $\log \frac{2}{1600}$ = 7,1 ou
- pH = 4,2 + $\log \frac{1 + \frac{799}{801}}{1 - \frac{799}{801}}$ = 4,2 + $\log \frac{1600}{2}$ = 7,1

$$-pH = 4.2 + \log \frac{1 + \frac{799}{801}}{1 - \frac{799}{801}} = 4.2 + \log \frac{1600}{2} = 7.1$$

5- D'après la relation :
$$pH = pKa_1 + log \frac{[C_6H_5 - COO^-]}{[C_6H_5 - COOH]}$$
.
Puisque $pH = pKa_1 = 4,2$ on a : $log \frac{[C_6H_5 - COO^-]}{[C_6H_5 - COOH]} = 0$ et

$$\begin{split} \text{L'équation est} : C_{6}H_{5} - \text{COOH} + \text{HO}^{-} &\rightarrow C_{6}H_{5} - \text{COO}^{-} + \text{H}_{2}\text{O} \\ \text{E initial} & \text{CV} & \text{C}_{B}\text{V}_{B} & 0 & \text{excès} \\ \text{E final} & \text{CV} - \text{C}_{B}\text{V}_{B} & 0 & \text{C}_{B}\text{V}_{B} & \text{excès} \\ \end{split}$$

$$\begin{aligned} & \frac{C_{B}\text{V}_{B}}{\text{CV} - \text{C}_{B}\text{V}_{B}} = \frac{0.01\text{V}_{B}}{1.1 \times 10^{-2} \times 50 - 0.01\text{V}_{B}} = 0 & \text{et} \\ & \frac{0.01\text{V}_{B}}{0.55 - 0.01\text{V}_{B}} = 1. \text{ D'où V}_{B} = 27.5 \text{ mL.} \end{aligned}$$

Concours d'entrée (2016 – 2017)

Examen de chimie

Durée : 1 h Juillet 2016

Traiter les deux exercices suivants :

Premier exercice (10 points) Identification de quelques composés organiques

On dispose de quatre flacons notés A, B, C, et D contenant chacun un liquide organique monofonctionnel différent des autres ayant des molécules non cycliques à chaînes carbonées saturées et formées de trois atomes de carbone. On tend à identifier le contenu de chaque flacon.

Donnée : La zone de virage du bleu de bromothymol est :

Jaune] 6,2 – Vert –7,6 [Bleu.

On soumet à des échantillons des quatre flacons des tests chimiques, les résultats sont dressés dans le tableau ci-dessous:

Test	A	В	С	D
2,4-DNPH	Précipité jaune	Négatif	Précipité jaune	Négatif
Liqueur de Fehling	Négatif	Négatif	Précipité rouge brique	Négatif
Bleu de bromothymol	Vert	Jaune	Vert	Bleu

- 1- Préciser lesquels des liquides peuvent être identifiés sans ambiguïté. Donner la formule semi-développée et le nom correspondant à chacun d'eux.
- 2- Le contenu de D est une amine, écrire les formules semi-développées des isomères possibles correspondants.
- 3- Le liquide dans B donne avec le liquide dans D le N- (1-méthyl)éthylpropanamide. Identifier le contenu de D.
- 4- On soumet un échantillon du flacon C à l'oxydation ménagée catalytique par le dioxygène de l'air, on obtient le produit contenu dans B. Ecrire, en utilisant les formules semi-développées des composés organiques, l'équation de la réaction.
- 5- Un autre échantillon du flacon C est soumis á l'hydrogénation, on obtient un produit E. Identifier E. Ecrire l'équation de la réaction de E avec le contenu de B et donner le nom du produit organique F obtenu.

Deuxième exercice (10 points) Comportement du phénol et de l'acide benzoïque dans l'eau

Une solution aqueuse (S_1) de phénol $(C_6H_5 - OH)$ de concentration $C_1 = 1.1 \times 10^{-2}$ mol.L⁻¹ a un pH₁ = 5,9. Une solution aqueuse (S_2) d'acide benzoïque $(C_6H_5 - COOH)$ de même concentration a un pH₂ = 3,1.

- 1- Écrire, en justifiant la réponse, l'équation de la réaction du phénol avec l'eau.
- 2- Comparer, en justifiant la réponse, le comportement en solution aqueuse :
 - du phénol et de l'acide benzoïque;
 - de l'ion phénolate et de l'ion benzoate.
- 3- Situer, sur un axe de pKa, le pKa₂ du couple phénol/ion phénolate par rapport au pKa₁ du couple acide benzoïque/ion benzoate, sachant qu'ils sont de 4,2 et de 10.
- 4- On mélange à volumes égaux des solutions de même concentration de benzoate de sodium, de phénol, d'acide benzoïque et de phénolate de sodium.
 - 4.1- Justifier laquelle de deux réactions est plus avancée celle de l'ion benzoate avec le phénol ou celle de l'acide benzoïque avec le phénolate.
 - 4.2- Écrire l'équation de la réaction qui aura lieu.
 - 4.3- Calculer le pH de la solution obtenue. (Prendre $10^{2.9} = 800$)
- 5- Calculer le volume d'une solution d'hydroxyde de sodium de concentration $C_B = 0.01 \text{ mol.L}^{-1}$ qu'il faut ajouter à 50 mL de la solution d'acide benzoïque pour préparer une solution tampon de pH = 4.2.

Concours d'entrée (2016 – 2017)

Solution de chimie

Durée: 1 h Juillet 2016

Premier exercice (10 points) Identification de quelques composés organiques

1- Le composé dans A donne un précipité jaune avec 2,4-DNPH, il est un aldéhyde ou une cétone. Il donne un test négatif avec la liqueur de Fehling, il est une cétone qui est de point de vu acido-basique neutre (Vert avec le BBT). Sa chaîne saturée, non cyclique et possède 3 atomes de carbone et monofonctionnel : CH₃ – CO – CH₃ c'est la propanone.

Le composé dans B donne un test négatif avec 2,4-DNPH et la liqueur de Fehling, mais, il donne une couleur jaune avec le BBT il est donc un acide dont la chaîne saturée et non cyclique contient 3 atomes de carbone et monofonctionnel : CH₃ – CH₂ – COOH, c'est l'acide propanoïque.

Le composé dans C donne un test positif avec 2,4-DNPH et avec la liqueur de Fehling et une coloration verte avec le BBT, c'est donc un aldéhyde dont la chaîne carbonée saturée et non cyclique à trois atomes de carbone et monofonctionnel : CH₃ – CH₂ – CHO, c'est le propanal.

Le composé dans D donne une couleur bleu avec le BBT c'est donc une base, c'est une amine de formule C₃H₉N qui ne peut pas être identifié sans ambiguïté.

- 2- Les formules semi-développées des isomères possibles du liquide dans D sont : CH₃ CH₂ CH₂ NH₂; CH₃ CH(NH₂) CH₃.
- 3- Puisque cette amine donne l'amide est N- (1-méthyl) éthylpropanamide, elle est une amine primaire de formule : CH₃ CH(NH₂) CH₃ qui est : 2-aminopropane.
- 4- L'équation de la réaction est : CH₃ - CH₂ - CHO + ½ O₂ → CH₃ - CH₂ - COOH
- 5- L'hydrogénation du propanal donne le composé (E) qui est le propan-1-ol de formule : CH₃ CH₂ CH₂OH. L'équation de sa réaction avec l'acide propanoique est : CH₃ CH₂ COOH + CH₃ CH₂ CH₂OH ≠ CH₃ CH₂ COO CH₂ CH₂ CH₃ +H₂O Le produit organique F est le propanoate de propyle.

Deuxième exercice (10 points) Comportement de phénol et d'acide benzoïque dans l'eau

1- L'équation de la réaction du phénol avec l'eau s'écrit :

 $C_6H_5 - OH + H_2O \rightleftharpoons C_6H_5 - O^- + H_3O^+.$

La concentration est $C_1 = 1,1 \times 10^{-2} \text{ mol.L}^{-1}$ et pH = 5,9. Le phénol est un acide faible puisque $[H_3O^+] = 10^{-5,9} = 1,26 \times 10^{-6} \text{ mol.L}^{-1} < 1,1 \times 10^{-2} \text{ mol.L}^{-1}$.

- 2- Les solutions ayant des concentrations égales, on peut comparer leurs pH respectifs : pH₂ = 3,1 et pH₂ = 5,9. La solution d'acide le plus fort correspond à la solution de pH le plus petit. L'acide benzoïque est alors l'acide le plus fort. Inversement, le phénolate est une base plus forte que le benzoate.
- 3- La constate d'acidité pKa₁ = 4,2 la plus petite correspond donc à l'acide le plus fort qui est l'acide benzoïque, et la constante pKa₂ = 10 correspond à l'acide le plus faible le phénol :

$$\frac{C_6H_5 - COOH \mid C_6H_5 - COO^-}{pKa_1 = 4,2} \qquad \frac{C_6H_5 - OH \mid C_6H_5 - O^-}{pKa_2 = 10}$$

4-

- 4.1- On a pKa₂ pKa₁ = 10 4,2 = 5,8 > 4. C'est donc l'acide benzoïque qui réagit sur l'ion phénolate et non l'inverse, car la constante de la réaction inverse est : Kr = $10^{-5.8}$.
- 4.2- L'équation la réaction :

$$C_6H_5 - COOH + C_6H_5 - O^- \Rightarrow C_6H_5 - COO^- + C_6H_5 - OH.$$

4.3- $C_6H_5 - COOH + C_6H_5 - O^- \leftrightarrows C_6H_5 - COO^- + C_6H_5 - OH.$

$$C(1-x)$$
 $C(1-x)$ $C(1+x)$ $C(1+x)$

$$10^{5,8} = \frac{C(1+x)C(1+x)}{C(1-x)C(1-x)} = \frac{(1+x)^2}{(1-x)^2} \quad ; \quad 10^{2,9} = \frac{(1+x)}{(1-x)} \quad ; \quad 800 \ (1-x) = (1+x) \quad ; \quad x = \frac{799}{801} \quad ; \quad x$$

D'après la relation : $pH = pKa + log \frac{[base]}{[acide]}$. On tire :

- pH = 10 +
$$\log \frac{1 - \frac{799}{801}}{1 + \frac{799}{801}}$$
 = 10 + $\log \frac{2}{1600}$ = 7,1 ou

- pH =
$$4.2 + \log \frac{1 + \frac{799}{801}}{1 - \frac{799}{801}} = 4.2 + \log \frac{1600}{2} = 7.1$$

5- D'après la relation : $pH = pKa_1 + log \frac{[C_6H_5 - COO^-]}{[C_6H_5 - COOH]}$. Puisque $pH = pKa_1 = 4,2$, on

a:
$$\log \frac{[C_6H_5 - COO^-]}{[C_6H_5 - COOH]} = 0$$
 et

$$\log \frac{\frac{C_{\rm B}V_{\rm B}}{V_{\rm t}}}{\frac{CV - C_{\rm B}V_{\rm B}}{V_{\rm t}}} = \frac{0.01V_{\rm B}}{1.1 \times 10^{-2} \times 50 - 0.01V_{\rm B}} = 0 \text{ et}$$

$$\frac{0.01 \,\mathrm{V_B}}{0.55 - 0.01 \,\mathrm{V_B}} = 1$$
. D'où $\mathrm{V_B} = 27.5 \;\mathrm{mL}$.