Information Theory. 4th Chapter Slides

Boris Kudryashov

ITMO University

December 26, 2016

Agenda

- Monotone codes
- 2 Interval coding
- Sliding dictionary method (LZ-77)
- 4 LZW Algorithm (LZ-78)
- 6 Prediction by Partial Matching
- 6 Archivers characteristics

• for Gallagher-Van Voorhees code

$$\alpha^T + \alpha^{T+1} \le 1 < \alpha^{T-1} + \alpha^T. \tag{1}$$

• for monotone code

$$mon(i) = (unar(|bin'(i)| + 1), bin'(i)). \quad (2)$$

• Levenshtein codeword lev(21) = (1110)(0)(00)(0101) = 11100000101.

Elias code

•

$$elias(21) = (1110)(00)(0101) = 1110000101.$$

• Elias codeword length for arbitrary i

$$I_{i} = \begin{cases} 1, & i = 1, \\ \lfloor \log i \rfloor + 2 \lfloor \log \lfloor \log i \rfloor \rfloor + 2, & i > 1, \end{cases}$$
(3)

satisfies

$$I_i \leq \log i + 2\log(1+\log i) + 2, \quad i = 1, 2, \dots$$

(+)

Table: Monotone codes table

:	Monotone		Levenshte	ein Elias c		de
'	code		code			
	mon(i)	I_i	lev(i)	I _i	elias(i)	I_i
1	0	1	0	1	0	1
2	100	3	100	3	100	3
3	101	3	101	3	101	3
4	11000	5	110000	6	110000	6
		5		6		6
7	11011	5	110011	6	110011	6
8	1110000	7	1101000	7	1101000	7
		7		7		7
2^{1023}	1 ¹⁰²³ 00 ¹⁰²³	2047	1 ⁴ 010011 ⁹ 0 ¹⁰²³	1041	$1^{10}01^{9}10^{1023}$	1043

Theorem

Let random variable i take values from natural numbers and it's probability distribution satisfies: $p_i \leq p_j$ if i > j. Then, average length of Elias codewords \bar{l} satisfies

$$\bar{I} \leq H(1+o(H)),$$

where H is entropy of i, and $o(H) \rightarrow 0$ when $H \rightarrow \infty$.

Proof.

•

$$p_i \le \frac{1}{i}$$
 , $i \le \frac{1}{p_i}$, $i = 1, 2, ...$ (5)

$$\bar{I} = \sum_{i=1}^{\infty} l_i p_i \leq
\leq \sum_{i=1}^{\infty} p_i (\log i + 2 \log \log i + 2) \leq
\leq \sum_{i=1}^{\infty} p_i \log \frac{1}{p_i} + 2 \sum_{i=1}^{\infty} p_i \log \left(1 + \log \frac{1}{p_i} \right) + 2 \leq
\leq H + 2 \log(1 + H) + 2.$$
(6)

(74, 72, 35, 88, 73, 3, 72, 71, 80, 1, 81, 86, 6,

76, 4, 3, 6, 86, 3, 10, 10, 3, 3, 6, 87, 83, 9, 6, 6, 7, 3, 8, 81, 9, 9, 9, 9, 7, 2, 5, 3, 10, 8, 3, 10, 10, 3, 13, 6, 13)

Theorem

Let H(X) be the entropy of one-dimensional distribution of discrete stationary source. Average code rate for interval coding in composition with Elias code satisfies:

$$\bar{R} \leq H(X)(1+o(H(X)),$$

where $o(H) \rightarrow 0$ when $H \rightarrow \infty$.

Proof.

•

$$l_i(a) \le \log r_i(a) + 2\log(1 + \log r_i(a)) + 2.$$
 (7)

•

$$\overline{\overline{l}}(a) \le \log \overline{r}(a) + 2\log(1 + \log \overline{r}(a)) + 2. \tag{8}$$

•

$$\bar{r}(a) \le \frac{1}{p(a)}. (9)$$

•

$$\bar{R} = \sum p(a)\bar{I}(a) \le H(X) + 2\log(1 + H(X)) + 2.$$

Lemma

Let random variable i be taking values from natural number $\{1, 2, ...\}$ according to distribution $\{p_i, i = 1, 2, ...\}$. Then holds

$$M[i] = \sum_{j=1}^{\infty} P(i \ge j).$$
 (10)

$$r = \min\{k \ge 1 : x_0 = x_k = a\}.$$
 (11)

$$q_a(r) = P(x_1, ..., x_{k-1} \neq a, x_k = a | x_0 = a),$$
 (12)

•

$$\bar{r}_a = \sum_{i=1}^{3} r q_a(r) \quad . \tag{13}$$

Lemma

(Katz Lemma). For discrete stationary source such that p(a) > 0 holds:

$$ar{r}_a p(a) = \mathrm{P}(x_n = a \quad at \ least \ one \quad n, \quad n = 0, 1, ...).$$
 (14)

for an ergodic source:

$$\bar{r}(a) = \frac{1}{p(a)}. (15)$$

$$r_a p(a) = p(a) \sum_{t=1}^{\infty} r q_a(r) = p(a) \sum_{t=1}^{\infty} Q_a(t),$$
 (16)

$$Q_a(t) = \sum_{j=t}^{\infty} q_a(j) = \mathrm{P}(r \geq t).$$

$$Q_a(t) = P(x_1, ..., x_t \neq a | x_0 = a).$$

$$r_a p(a) = P(x_0 = a) \sum_{t=1}^{\infty} P(x_1, ... x_t \neq a | x_0 = a) =$$

$$= \sum_{t=1}^{\infty} P(x_0 = a, x_1, ... x_t \neq a).$$

$$r_a p_a(t) = \sum_{t=1}^{\infty} \tilde{P}(x_0, ..., x_{t-1} \neq a, x_t = a) =$$

$$= \tilde{P}(x_t = a \text{ for at least one } t, \quad t = 1, 2, ...).$$

```
Alphabet: X = \{0, 1, ..., M - 1\}. "window" length
 W.
Input: sequence length n, source sequence x = x_1^n;
Output: Codeword c for x;
Init: N = 0, c is "empty" codeword;
while N < n do
   find max I such that \mathbf{x}_{N+1}^{N+I} = \mathbf{x}_{N-d+1}^{N-d+I};
   for some d \in \{1, ..., W\}::
   if l > 0 then;
   (sequence is found);

    Concatenate to a codeword c::

         - flag 1::
         - distance to d as a binary sequence of length [log W];;
         - match length / as a non-uniform prefix code:

    N ← N + I::

   else :
    (sequence not found):

    Concatenate to a codeword c:;

         - flag 0::
         - new letter XN+1 as binary sequence of length [log M]:

    N ← N + 1;;

end
```

Figure: LZ-77 Algorithm

			Letter			Code	
	Step	Flag	sequence	d	1	sequence	Bits
	0	0	1	-	0	0 bin(I)=0	9
	1	0	F	-	0	0 bin(F)	9
	2	0	_	-	0	0 bin(_)	9
	3	0	W	-	0	0 bin(W)	9
	4	0	E	-	0	0 bin(E)	9
	5	1	_	2(5)	1	1 010 0	5
	6	0	С	-	0	0 bin(C)	9
	7	0	A	-	0	0 bin(A)	9
	8	0	N	-	0	0 bin(N)	9
	9	1	N	0(9)	1	1 0000 0	6
	10	0	0	-	0	0 bin(O)	9
Ravia Kuduusahau	11	0 niversity	T St. Determine		0	0 bin(T)	9=
Boris Kudryashov	1100	inversity	St. Peters	E'(10)	-1	1 0110 0	Page 17

LZFG Algorithm

```
Alphabet, X = \{0, 1, ..., M - 1\}, window length W;
Input: Sequence length n;;
       Source sequence \mathbf{x} = \mathbf{x}_1^n;
Output: codeword c для x;
Init: :
N = 0, c - "empty" codeword;
while N < n do
   Find max I in range {3, ...17} such that
     \mathbf{x}_{N+1}^{N+1} = \mathbf{x}_{N-d+1}^{N-d+1} for some d \in \{1, ..., W\};
   if l > 2 then

    Write number I to a codeword c as a binary

        sequence of length 4
        ([3, ... 17] < - > [0001, ... 1111] distance to
        sample d as a binary sequence pf length
        \lceil \log W \rceil::

    N ← N + I::

   else :
   (1 < 2):

    To a codeword c concatenate::

        - sequence 0000; ;
        - number of letters L \in \{1...16\}, at
        input(without coding);
        [1,...,16] < - > [0000,...,1111];
        - L letters of source without coding as a binary
        sequence of length \lceil \log M \rceil:

    N ← N + L::
```

St. Petersburg, 2016 7FC

end

Table: Example of LZFG

C	1	D'ata a a	Nl	C. I.	T	Contr
Step	Length	Distance	Number of	Code	Transmitted	Costs
	of match	to pattern	"new" letters	characters	letters	(bit)
1	0	_	16	0000 1111	IF_WE_	8+8×16
				bin(I)	CANNOT	=136
					DO	
2	1(<3)	_	2	0000 0001	AS	8+8×2
				bin(AS)		=24
3	4	15(18)	_	0010 01111	_WE_	4+5=9
4	1(<3)	_	5	0000 0100	WOULD	8+5×8
				bin(WOULD)		=48
5	4	8(27)	_	0010 01000	_WE_	4+5 =9
6	_	_	2	0000 0001	SH	8+2×8
	_	_		bin(SH)		=24
7	5	9(33)	=	0011 001001	OULD_	4+6 =10
8	9	24(38)	=	0111 011000	DO AS	4+6=10
		-	_		_WE_	
9	3	40(47)	_	0001 101000	CAN	4+6=10
In tot	al					280

```
Source alpabet X = \{0, 1, ..., M - 1\};
Input: Sequence length n::
        Source sequence \mathbf{x} = \mathbf{x}_{1}^{n}::
Output: codeword c для x;
Init: N = 0; c is "empty" word; ;
The dictionary consists of M words of length 1, i.e.
 of letters of X. c = M.
while N < n do
       • find max I such that x_{N+1}^{N+1} matches j-th word in
          dictionary for some i < c;
          (at first step i = c is allowed).

    Number of word i is concatenated to a word as

          a binary sequence:
          of length \lceil \log(c-1) \rceil (For first step sequence
          of length \lceil \log c \rceil = \lceil \log M \rceil is allowed).
       • New dictionary of length I+1 is added to a
          dictionary:
          like \mathbf{x}_{N+1}^{N+l+1} = (\mathbf{x}_{N+1}^{N+l}, \mathbf{x}_{N+l+1}).

    N ← N + I::

    c ← c + 1::

end
```

St. Petersburg, 2016

Table: LZW usage example

Step	Dictionary	Word	Code	Costs
		number	characters	(bit)
0	esc	_	_	_
1	I	0	bin(I)	0+8=8
2	F	0	bin(F)	log(1)+8=8
3	_	0	0bin(_)	$\lceil \log(2) \rceil + 8 = 9$
4	W	0	00bin(W)	$\lceil \log(3) \rceil + 8 = 10$
5	Е	0	00bin(E)	$\lceil \log(4) \rceil + 8 = 10$
6	_C	3	011	3
7	С	0	000bin(C)	3+8=11
8	А	0	000bin(A)	3+8=11
9	N	0	000bin(N)	3+8=11
10	NO	0	000bin(N)	4+8=12
11	0	0	0000bin(O)	4+8=12
12	Т	0	0000bin(T)	4+8=12
13	_D	3	0011	4
14	D	0	0000bin(D)	4+8=12
15	0	11	1011	4 □ 4=47 → < ≥

Table: LZW usage example

Step	Dictionary	Word	Code	Costs
Стер	2 .cc.onary	number	characters	(bit)
0	esc	_	_	-
16	_A	3	0011	4
17	AS	8	1000	4
18	S	0	00000bin(S)	5+8
19	_W	3	00011	5
20	WE	4	00100	5
21	E_	5	00101	5
22	_WO	19	10011	5
23	OU	11	01011	5
24	U	0	00000bin(U)	5+8=13
25	L	0	00000bin(L)	5+8=13
26	D_	14	01110	5
27	_WE	19	10011	5
28	E_S	21	10101	5
29	SH	18	10010	5

Table: LZW usage example

Step	Dictionary	nary Word Code		Costs
		number	characters	(bit)
30	Н	0	00000bin(H)	5+8=13
31	OUL	23	10111	5
32	LD	25	11001	5
33	D_D	26	11010	5
4	DO	14	001110	6
35	O_A	15	001111	6
36	AS_	17	010001	6
37	_WE_	27	011011	6
38	_CA	6	000110	6
39	AN	8	001000	6
40	N	9	001001	6
Total				291

```
Alphabet X = \{0, 1, ..., M - 1\}, max length of
 condext D:
Input: Sequence length n, source sequence
         x = x_1^n;
Output: Codeword c for x;
Init: t = 0; c - \text{"empty" word};
while t < n do
    find max d such that \hat{p}_t(\mathbf{x}_{t-d+1}^t) > 0.;
    Choose context \mathbf{s} = \mathbf{x}_{t-d+1}^t.;
   if \hat{p}_t(x_{t+1}|s) > 0 then ;
    encode x_{t+1} according to c \hat{p}_t(x|s).;
    else:
    while \hat{p}_t(x_{t+1}|s) = 0 do
        Encode esc according to \hat{p}_t(esc|s).;
        Decrease condets length: ;
        d \leftarrow d - 1, \ s = x_{t-d+1}^t;
        if d > 0 then:
```

$$\hat{\rho}_t(a|\mathbf{s}) = \frac{\tau_t(\mathbf{s},a)}{\tau_t(\mathbf{s})+1}, \quad \tau_t(\mathbf{s},a) > 0,$$
 (17)

$$\hat{p}_t(esc|\mathbf{s}) = \frac{1}{\tau_t(\mathbf{s}) + 1}, \tag{18}$$

where $\tau_t(s)$ and $\tau_t(s, a)$ denote number of sequences s and (s, a) respectively, which contain in sequence of length t.

$$\hat{p}_t(a|\mathbf{s}) = \frac{\tau_t(\mathbf{s},a) - 1/2}{\tau_t(\mathbf{s})}, \quad \tau_t(\mathbf{s},a) > 0,$$
 (19)

$$\hat{p}_t(esc|\mathbf{s}) = \frac{M_t(\mathbf{s})}{2\tau_t(\mathbf{s})}, \tag{20}$$

where $M_t(s)$ is number of different letters, which appear in sequence of length followed by the context s.

Table: PPMA usage example

Шаг	Letter	Context	- (-)	PPMA	PPMA		
Шаг		5	$\tau_t(s)$	$\hat{p}_t(esc s)$	$\hat{p}_t(a s)$		
1	- 1	#	0	1	1/256		
2	F	#	1	1/2	1/255		
3	_	#	2	1/3	1/254		
4	W	#	3	1/4	1/253		
5	E	#	4	1/5	1/252		
6		#	5		1/6		
7	C	_	1,6	1/2×1/6'	1/251		
8	A	#	7	1/8	1/250		
9	N	#	8	1/9	1/249		
10	N	#	9		1/10		
11	0	N	1,10	1/2×1/9'	1/248		
12	Т	#	11	1/12	1/247		
13		#	12		2/13		
14	D		2,13	1/3×1/12'	1/246		
15	0	#	14		1/15		
16	_	0	1,15	1/2	3/15'		
17	A	_	3,16	1/4	1/14'		
18	S	A	1,17	1/2×1/16'	1/245		
19		#	18		4/19		
20	W		4		1/5		
21	E	_W	1		1/2		
22	_	_WE	1		1/2		
23	W	_WE_	1,1,1,5	1/2×1'×1'	2/5'		
24	0	W	2,2,23	1/3×1'	2/22'		
25	U	0	2,24	1/3×1/18'	1/244		
26	L	#	25	1/26	1/243		
27	D	#	26		1/27		
28	_	D	1,27	1/2	6/25'		
29	W	_	6		3/7		
30	E	_w	3		2/4		
31	_	_WE	2		2/3		
32	S	_WE_	2,2,2,7,31	1/3×1'×1'×1/3'	1/23'		
33	Н	S	1,32	1/2×1/25'	1/242		
34	0	#	33		3/34		
35	U	0	3		1/4		
36	L	OU	1	4 □	1/2		
37	D	OUL	1		1/2		
38	S+	DULDE	ulra 20	16	1/2		

Table: PPMD usage example

Шаг	Letter	Context	$\tau_t(s)$	M _t (s)	PPMD	
шаі		s			$\hat{p}_t(esc s)$	$\hat{p}_t(a s)$
1	1	#	0	0	1	1/256
2	F	#	1	1	1/2	1/255
3	_	#	2	2	2/4	1/254
4	W	#	3	3	3/6	1/253
5	E	#	4	4	4/8	1/252
6		#	5	5		1/10
7	C	_	1,6	1,5	1/2×4/8'	1/251
8	A	#	7	6	6/14	1/250
9	N	#	8	7	7/16	1/249
10	N	#	9	8		1/18
11	0	N	1,10	1,8	1/2×8/18'	1/248
12	T	#	11	9	9/22	1/247
13		#	12	10		3/24
14	D		2,13	2,10	2/4×8/22'	1/246
15	0	#	14	11		1/28
16		0	1,15	1,11	1/2	5/28'
17	Ā		3,16	3,11	3/6	1/26'
18	S	A	1,17	1,11	1/2×10/30'	1/245
19		#	18	12		7/36
20	W		4	4		1/8
21	E	w	1	1		1/2
22		WE	1	1		1/2
23	W	WE	1,1,1,5	1,1,1,4	1/2×1'×1'	3/8'
24	0	-w	2,2,23	1,1,12	1/4×1'	3/42'
25	U	ō	2,24	2,12	2/4×10/34'	1/244
26	L	#	25	13	13/50	1/243
27	D	#	26	14		1/52
28		D	1,27	1,14	1/2	11/52'
29	W		6	4		5/12
30	E	-w	3	2		3/6
31		WE	2	1		3/4
32	S	WE	2,2,2,7,31	2,2,2,4,14	2/4×1'×1'×2/4'	1/48'
33	Н	S	1,32	1,14	1/2×13/50	1/242
34	0	#	33	15	· /··	5/66
35	Ü	ő	3	3		1/6
36	L	OU	1	1	4 🗆 🕨	1/2
37	D	OUL	1	1		1/2
20		WILL DO	1 1	2010		1/2

0	A	NIF_WE_CANNOT_DO_AS_WE_WOULD_WE_SHOULD_DO_AS_WE_	C
1	A	NNOT_DO_AS_WE_WOULD_WE_SHOULD_DO_AS_WE_CANIF_WE_	C
2	A	S_WE_CANIF_WE_CANNOT_DO_AS_WE_WOULD_WE_SHOULD_DO	-
3	A	S_WE_WOULD_WE_SHOULD_DO_AS_WE_CANIF_WE_CANNOT_DO	-
4	С	ANIF_WE_CANNOT_DO_AS_WE_WOULD_WE_SHOULD_DO_AS_WE	_
5	С	ANNOT_DO_AS_WE_WOULD_WE_SHOULD_DO_AS_WE_CANIF_WE	-
6	D	O_AS_WE_CANIF_WE_CANNOT_DO_AS_WE_WOULD_WE_SHOULD	-
7	D	O_AS_WE_WOULD_WE_SHOULD_DO_AS_WE_CANIF_WE_CANNOT	-
8	D	_DO_AS_WE_CANIF_WE_CANNOT_DO_AS_WE_WOULD_WE_SHOU	L
9	D	_WE_SHOULD_DO_AS_WE_CANIF_WE_CANNOT_DO_AS_WE_WOU	L
10	E	_CANIF_WE_CANNOT_DO_AS_WE_WOULD_WE_SHOULD_DO_AS_	W
11	Е	_CANNOT_DO_AS_WE_WOULD_WE_SHOULD_DO_AS_WE_CANIF_	W
12	Е	_SHOULD_DO_AS_WE_CANIF_WE_CANNOT_DO_AS_WE_WOULD_	W
13	Е	_WOULD_WE_SHOULD_DO_AS_WE_CANIF_WE_CANNOT_DO_AS_	W
14	F	_WE_CANNOT_DO_AS_WE_WOULD_WE_SHOULD_DO_AS_WE_CAN	I*
15	Н	OULD_DO_AS_WE_CANIF_WE_CANNOT_DO_AS_WE_WOULD_WE_	S
16	Ι	F_WE_CANNOT_DO_AS_WE_WOULD_WE_SHOULD_DO_AS_WE_CA	N
17	L	D_DO_AS_WE_CANIF_WE_CANNOT_DO_AS_WE_WOULD_WE_SHO	U
18	L	D_WE_SHOULD_DO_AS_WE_CANIF_WE_CANNOT_DO_AS_WE_WO	U
19	N	IF_WE_CANNOT_DO_AS_WE_WOULD_WE_SHOULD_DO_AS_WE_C	A
20	N	NOT_DO_AS_WE_WOULD_WE_SHOULD_DO_AS_WE_CANIF_WE_C	A
21	N	OT_DO_AS_WE_WOULD_WE_SHOULD_DO_AS_WE_CANIF_WE_CA	N
22	0	T_DO_AS_WE_WOULD_WE_SHOULD_DO_AS_WE_CANIF_WE_CAN	N
23	0	ULD_DO_AS_WE_CANIF_WE_CANNOT_DO_AS_WE_WOULD_WE_S	H
24	0	ULD_WE_SHOULD_DO_AS_WE_CANIF_WE_CANNOT_DO_AS_WE_	W
25	0	_AS_WE_CANIF_WE_CANNOT_DO_AS_WE_WOULD_WE_SHOULD_	D
26	0	_AS_WE_WOULD_WE_SHOULD_DO_AS_WE_CANIF_WE_CANNOT_	D
27	S	HOULD_DO_AS_WE_CANIF_WE_CANNOT_DO_AS_WE_WOULD_WE	-
28	S	_WE_CANIF_WE_CANNOT_DO_AS_WE_WOULD_WE_SHOULD_DO_	A
29	S	_WE_WOULD_WE_SHOULD_DO_AS_WE_CANIF_WE_CANNOT_DO_	A
30	T	_DO_AS_WE_WOULD_WE_SHOULD_DO_AS_WE_CANIF_WE_CANN	0
31	U	LD_DO_AS_WE_CANIF_WE_CANNOT_DO_AS_WE_WOULD_WE_SH	0
32	U	LD_WE_SHOULD_DO_AS_WE_CANIF_WE_CANNOT_DO_AS_WE_W	0
33	W	E_CANIF_WE_CANNOT_DO_AS_WE_WOULD_WE_SHOULD_DO_AS	-
34	W	E_CANNOT_DO_AS_WE_WOULD_WE_SHOULD_DO_AS_WE_CANIF	-
35	W	E_SHOULD_DO_AS_WE_CANIF_WE_CANNOT_DO_AS_WE_WOULD	-
36	W	E_WOULD_WE_SHOULD_DO_AS_WE_CANIF_WE_CANNOT_DO_AS_	
37	W	OULD_WE_SHOULD_DO_AS_WE_CANIF_WE_CANNOT_DO_AS_WE	
38		AS UP-CANEE HE CANNOT DO AS HE HOURD HE SHOULD D	n

Letter	number	bits				
esc	15	log(50)				
0	23	$\log(50-15+1) = \log(36)$				
1	1	$\log(50-15-23+1) = \log(13)$				
2	4	log(12)				
3	1	log(8)				
4	2	log(7)				
5	1	log(5)				
6	1	log(4)				
7	0	log(3)				
8	0	log(3)				
9	1	log(3)				
10	1	log(2)				
Total [33, 98] + 1=35 bit						

i	Sequence	yi(yi,max)
0	<pre>Ĉ?_?????L?W???ISNU?A???H?D????O??????????E??T??F???</pre>	0
1	CC_2 ?????L?W???ISNU?A???H?D? $\hat{?}$??O?????????E??T??F???	11(29)
2	CCL?W???ISNU?A???H?D?_??O??????????E??T??F???	0
3	CCLLW???ISNU?A???H?D?_??O?????????E??T??F???	5(24)
4	CCLLWWWWÎSNU?A???HWD?_??O?????????E??T??F???	0
5	CCLLWWWWISNU?A???HWD?_??O?????????E??T??F???	20(23)
6	CCLLWWWWISNU?A???HWD?_??O?????????E??T?SF???	3(22)
7	CCLLWWWWISNÛ?A?N?HWD?_??O?????????E??T?SF???	0
8	CCLLWWWWISNUUÂ?N?HWD?_??O?????????E??T?SF???	3(19)
9	CCLLWWWWISNUUAAÑ?HWD?_A?O?????????E??T?SF???	0
10	CCLLWWWWISNUUAANNĤWD?_A?O?????????E??T?SF???	0
11	CCLLWWWWISNUUAANNHWD?_A?O?????????E??T?SF???	0
12	CCLLWWWWISNUUAANNHWD?_A?O?????????E??T?SF???	12(16)
13	CCLLWWWWISNUUAANNHWDD_A?O?????????E?DT?SF???	4(15)
14	CCLLWWWWISNUUAANNHWDD_Â?O??_??????E?DT?SF???	0
15	CCLLWWWWISNUUAANNHWDD_AAÔ??_??????PT?SF???	5(11)
16	CCLLWWWWISNUUAANNHWDD_AAOOO_????0?E?DT?SF???	0
17	CCLLWWWWISNUUAANNHWDD_AAOOOOÔE?DT?SF???	0
18	CCLLWWWWISNUUAANNHWDD_AAOOOOOÊ?DT?SF???	1(4)
19	CCLLWWWWISNUUAANNHWDD_AAOOOOOEEDTESF???	1(3)
20	CCLLWWWWISNUUAANNHWDD_AAOOOOOEEDTESFD??	0
21	CCLLWWWWISNUUAANNHWDD_AAOOOOOEEDTÊSFD??	2(2)
22	CCLLWWWWISNUUAANNHWDD_AAOOOOOEEDTESFD?E	1(1)
23	CCLLWWWWISNUUAANNHWDD_AAOOOOOEEDTESFDSE	

•

$$p_i(a) = \begin{cases} \frac{1}{2}, & a = 0, \\ \frac{1}{2} \frac{1}{y_{i,\max}}, & a \neq 0 \end{cases}$$

•

$$22 + \left\lceil -\log\left(\frac{1}{29 \cdot 24 \cdot 23 \cdot 22 \cdot 19 \cdot 16 \cdot 15 \cdot 11 \cdot 4 \cdot 3 \cdot 2 \cdot 1}\right) \right\rceil =$$

$$I = 6 + 120 + 42 + 61 + 6 = 235$$
 bit

Archivers characteristics

Algorithm	Section	Costs
		(bits)
Transmitting without coding		400
Two-pass coding,	??	302
Huffman coding		
Enumerative coding	??	283
Adaptive arithmetic	??	293
coding (A algorithm)		
Adaptive arithmetic	??	283
coding (D algorithm)		
LZ77 algorithm	??	280
LZFG algorithm	??	299
LZW algorithm	??	291
PPMA algorithm	??	250
PPMD algorithm	??	232
BW Transform +	??	255
book stack		
BW transform +	??	235
distance coding		

Archivers characteristics

Table: Archivers comparison on Calgary Corpus

Archiver	How it works	Rate
(author)		(bit/byte)
RK 1.04.01	LZ, PPMZ	1.8226
(M. Taylor)		
SBC 0.968	Burrows-Wheeler	1.8846
(S. J. Mäkinen)	transform	
RAR(Win32)3.00b5	LZ77 variant	1.9244
(E.Rashol)	+ Huffman	
ACB 2.00c	Associative Coding	1.9546
(G.Buyanovsky)	Algorithm	
PPMD vE	PPM	2.0153
(D. Shkarin)		2.0153
PKZIP 2.6.02 Win95	LZH, LZW	2.6062
(PKWARE)		