FICHE 02-07: Un théorème de Sylow: MET-1 1.4.7

Yvann Le Fay

Juillet 2019

Enoncé

- 1. Soit G un groupe abélien fini. Soit p un nombre premier divisant l'ordre de G. Montrer qu'il existe un sous groupe de G d'ordre p.
- 2. Soit G un groupe fini d'ordre h, non supposé abélien. Démontrer le théorème de Sylow : Si $p^{\alpha} \mid h$ avec $\alpha \in \mathbb{N}$, alors il existe un sous groupe de G d'ordre p^{α} . Indication : on pourra procéder par récurrence sur le cardinal de G.

Solution

1. Soit G un groupe abélien fini, p un nombre premier divisant l'ordre de G. G étant fini, on peut introduire (x_1, \ldots, x_n) un système de générateurs de G. On note $r_1, \ldots r_n$ les ordres des éléments du générateur. Posons

$$\varphi: \begin{cases} \langle x_1 \rangle \times \ldots \times \langle x_n \rangle \to G \\ (y_1, \ldots, y_n) & \mapsto y_1 \ldots y_n \end{cases}$$

Par définition du système générateur, φ est surjective. D'après un théorème d'isomorphie,

$$G \cong \prod_{1 \le i \le n} \langle x_i \rangle / \ker \varphi$$

Ainsi,

$$|G||\ker\varphi| = \prod_{1\leq i\leq n} r_i$$

On en déduit que $p \mid \prod_{1 \leq i \leq n} r_i$ puis il existe $i \in [1; n]$ tel que $p \mid r_i$. S'il existe $q \in \mathbb{N}^*$ tel que $r_i = pq$ alors x_i^q est d'ordre p puis $\langle x_i^q \rangle$ est un sous groupe de G d'ordre p.

2. Procédons par récurrence sur h = |G|, pour h = 1 le résultat est vérifié. Supposons vraie la propriété pour les rangs strictement inférieurs à h, on sait qu'il existe une famille finie $(H_i)_{i \in I}$ de sous groupes stricts de G telle que

$$h=|G|=|Z(G)|+\sum_{i\in I}\frac{h}{|H_i|}$$

Deux cas se présentent : il existe $i \in I : p^{\alpha} \mid |H_i|$, alors par le théorème de Lagrange, il existe un sous groupe H de H_i et donc de G d'ordre p^{α} .

Dans le cas contraire, pour tout $i \in I$, $p^{\alpha} \nmid |H_i|$, mais $p^{\alpha} \mid h$, d'où $p \mid h/|H_i|$. Ainsi $p \mid |Z(G)|$ puis d'après la question précédente, il existe un groupe d'ordre p, noté H de Z(G). Considérons la surjection canonique π de G dans G/H. L'ordre du groupe G/H est h/p, d'où $p^{\alpha-1} \mid |G/H|$ puis par récurrence, il existe un sous groupe H' de G/H d'ordre $p^{\alpha-1}$. Enfin, $\pi^{-1}(H')$ est un sous groupe de G d'ordre p^{α} .

1