

Monsoon Semester (Aug-Nov), 2023 Discrete Structures (DS)

HW I August 12, 2023

Due: 20.08.23 Instructor: Dr. P. Kumar

INSTRUCTIONS:

Problems to be discussed in Tutorial in the week of Monday 21th August 2023. Write on your own. Attend tutorial to discuss solutions after deadline.

- 1. (Contrapositive Proofs) Prove the following using contrapositive.
 - (a) For all integers n, if n^2 is not divisible by 7, then n is not divisible by 7.
 - (b) If m and n are positive integers such that mn = 100, then $m \le 10$ or $n \le 10$.
 - (c) If x is a real number such that 0 < x < 1, then $x > x^2$.
- 2. (Equivalence (if and only if) Proofs) Prove the following equivalences.
 - 1. Let $x, y \in \mathbb{R}$. Prove that |x + y| = |x| + |y| if and only if $xy \ge 0$.
 - 2. For all positive integers m and n, m|n and n|m if and only if m=n.
- 3. (Contradiction Proofs) Prove the following using contradiction.
 - 1. Prove that the set

$$A = \left\{ \frac{n-1}{n} : n \in \mathbb{Z}^+ \right\}$$

does not have a largest element.

- 2. If the mean of four distinct number is $n \in \mathbb{Z}$, then at least one of the integers is greater than n+1.
- 3. Prove that there is no rational number r such that $2^r = 3$.
- 4. (Existence Proofs) Prove the following existence proofs.
 - 1. A conference is being attended by 367 people. Prove that there exists at least two people born with same date of birth.
 - 2. Let $\{b_1, b_2, \ldots, b_n\}$ be a set of integers such that $\sum b_k^2 < n$. Prove that at least one of the integers in the set is zero.

Student's name: End of Tutorial