Cognome:
Corso di laurea: \square SGI \square SSE — Anno: \square II \square III o più
Prova scritta di ASM - Modulo Analisi Esplorativa del 10.02.2017
La durata della prova è di 60 minuti. Si svolgano gli esercizi 1 e 2 riportando il risultato dove indicato.
Esercizio 1. Punteggio: 7
Alla matrice $X_{n \times p}$ sono associati i seguenti autovalori $\lambda_1 = 6, \lambda_2 = 4$ e autovettori normalizzati $v_1 = \begin{bmatrix} 1/\sqrt{5} \\ 2/\sqrt{5} \end{bmatrix},$ $v_2 = \begin{bmatrix} 2/\sqrt{5} \\ -1/\sqrt{5} \end{bmatrix}.$
a. Quante sono le colonne di $\underset{n \times p}{X}$? $p = \dots$
b. Determinare la matrice di varianze/covarianze $\underset{p\times p}{S}=$
c. Riportare
 varianza totale = e generalizzata = l'indice di variabilità relativo (arrontondare al secondo decimale) =
d. Determinare $S^2_{p \times p} = \frac{1}{p}$
e. Calcolare la proporzione di varianza spiegata dalla prima componente principale
=
f. Calcolare la correlazione tra la prima colonna \tilde{x}_1 di \tilde{X}_n e i punteggi y_1 della prima componente principale, arrotondando al secondo decimale
=
g. Determinare (arrotondando al secondo decimale) la matrice di correlazione $\underset{p \times p}{R} =$
h. Riportare (arrotondando al secondo decimale) gli autovalori e gli autovettori normalizzati di $\frac{R}{p \times p}$ calcolata al punto precedente.

```
## [,1] [,2]
## [1,] 4.4 0.8
```

[2,] 0.8 5.6

[1] 24

[1] 10

[1] 0.97

[,1] [,2]

[1,] 20 8

[2,] 8 32

[1] 0.6

[1] 0.52

[,1] [,2]

[1,] 1.00 0.16

[2,] 0.16 1.00

[1] 1.16 0.84

[,1] [,2]

[1,] 0.71 -0.71

[2,] 0.71 0.71

Esercizio 2. Punteggio: 6.5

Si consideri il dataset quakes presente nella libreria datasets, che contiene n = 1000 osservazioni (eventi sismici) su cui sono state misurate le seguenti 5 variabili:

- lat latitudine dell'evento sismico
- long longitudine dell'evento sismico
- depth profondità (in km) dell'evento sismico
- mag magnitudo (scala Richter)
- stations Numero di stazioni che hanno riportato l'evento sismico
- a. Si consideri la matrice $X_{1000\times5}$ che contiene le seguenti variabili: lat, long, depth, mag e stations. Si costruisca il diagramma a scatola con baffi (boxplot) per ciascuna delle variabili presenti in $X_{1000\times5}$ e si riporti il numero di valori anomali (outliers).

			lat	long	depth	mag	stations
numero di valori anomali							
##	lat	long	depth		mag stations		3
##	32	204		0	7	54	4

- b. Per la matrice $X_{1000 \times 5}$ calcolata al punto a., si calcoli il quadrato della distanza di Mahalanobis di ciascuna unità statistica u_i' dal baricentro \bar{x}' e si riporti il valore minimo e il valore massimo, arrotondando i calcoli al secondo decimale.
- ## [1] 0.57
- ## [1] 25.9

$$\min_{i=1,\dots,1000} \{d_M^2(u_i,\bar{x})\} = \dots$$

$$\max_{i=1,\dots,1000} \{d_M^2(u_i,\bar{x})\} = \dots$$

- c. Utilizzare l'algoritmo delle K-medie (specificando algorithm = "Lloyd") per formare K=4 gruppi sulla base della matrice dei dati standardizzati $Z_{1000\times 5}$ ottenuta a partire da $X_{1000\times 5}$, inizializzando i centroidi con le osservazioni di riga 200, 400, 600 e 800, ed eseguendo l'algoritmo una sola volta. Riportare i valori dei centroidi dei 4 gruppi ottenuti, arrotondando alla seconda cifra decimale.
- ## lat long depth mag stations ## 1 -0.15 0.23 0.02 1.61 1.82 ## 2 0.95 -1.89 -0.76 0.22 -0.10 ## 3 -0.51 0.70 -0.79 -0.26 -0.34 ## 4 0.01 0.25 1.03 -0.59 -0.46

	Centroidi									
	lat	long	depth	mag	stations					
Gruppo 1										
Gruppo 2										
Gruppo 3										
Gruppo 4										

d. Calcolare, arrotondando al secondo decimale, l'indice di Calinski and Harabasz per i quattro gruppi individuati al punto c.

[1] 474.8148

Indice di Calinski and Harabasz =