Translation Methods

Лабораторные:

- 1. Perl
- 2. Ручное построение трансляторов
- 3. Использование автоматических генераторов трансляторов e.g. ANTLR (java), Bison + Yacc (c++), Happy (haskell)
- 4. Написание автоматического генератора транслятора

$$\Sigma, \Sigma^*, L \subset \Sigma^*$$
 - формальный язык

Базовый класс формальных языков - регулярные (= автоматные). Для порождения - регулярные выражения, для распознавания - конечные автоматы

Контекстно-свободные языки: КС-грамматики / МП-автоматы (магазинная память)

Токены (лексемы) - единые неделимые элементы языка ($\in \Sigma$)

Лексический анализ

Первый этап любого разбора - лексический анализ

Последовательность символов -> последовательность токенов ($\in \Sigma^*$)

е.д. арифмитические выражения

$$egin{aligned} \Sigma &= \{n, +, imes, \ (, \)\} \ & (2 \ + \ 2) imes 2
ightarrow (n+n) imes n \ & n : (0|1|\dots|9)(0|1|\dots|9)^* \end{aligned}$$

жадный лексический анализ на базе регулярных выражений: пропускаем пробельные символы, смотрим первый непробельный, находим максимальный префикс какого-то возможного токена

- 1. Проверить, что строка выводится в грамматике Γ // алгоритм КЯК(???) $\mathrm{O}(n^3)$
- 2. Построить дерево разбора
- 3. Синтаксически управляемая трансляция

$$egin{array}{c} E
ightarrow T \ E
ightarrow E \ + \ T \ T
ightarrow F \ T
ightarrow T imes F \ F
ightarrow n \ F
ightarrow (E) \end{array}$$

Аттрибутно-транслирующие грамматики - контекстно-свободные языки с добавлением двух элементов: аттрибуты и транслирующие символы

Транслирующие символы - фрагменты кода, которые вставляем в грамматику, которые могут взаимодействовать с аттрибутами

$$E o E \ + \ T \ \{E_0.v = E_1.v \ + \ T.v\}$$
 $T o T \ imes F \ \{T_0.v = T_1.v \ + \ F.v\}$

Однозначность - если у любого слова не более одного дерева разбора в этой грамматике // Модификация алгоритма Эрли - $\mathrm{O}(n^2)$

LL, LR - грамматики, на которые наложены дополнительные ограничения, чтобы разбор работал за линейное время. **LL(R)** - **L**: left to right parse - обходим слово слева направо; **L(R)**: leftmost derivation (right most derivation) - левосторонний (правосторонний) вывод.

 Γ , w на вход

Можем строить дерево разбора сверзу вниз - **нисходящая трансляция**(used **LL**). Шаг называется *раскрытие нетерминала*. Нисходящий парсер :

- 1. Находим нетерминал, у которого неизвестно поддерево
- Раскрываем егоВ основном это самый левый нетерминал

Снизу вверх - восходящий разбор (used LR). Шаг - свёртка

- 1. Находим правую часть какого-то терминала
- 2. Сворачиваем ее Получается правосторонний вывод слова (поэтому R)

Метод нисходящих трансляций для LL грамматик

LL(k) - грамматика

Def: Грамматика $\Gamma = \langle \Sigma, N, S, P \rangle$, где Σ - множество терминалов (terms), N - множество нетерминалов (nonterms), S - стартовый символ ($S \in N$), P - множество правил вывода (productions) $\alpha \to \beta$. Пусть Γ - контекстно-свободная (в левой части только одиночные нетерминалы)

Def: LL(k)-грамматика - если достаточно посмотреть на первые k символов γ , чтобы понять, какое правило применить для нетерминала A:

S - стартовый нетерминал, **w** - слово, префикс которого разобран. Рассмотрим два произвольных левосторонних вывода слова **w** .

$$\begin{array}{l} s \Rightarrow^* xA\alpha \Rightarrow x\gamma\alpha \Rightarrow^* xy\zeta \\ s \Rightarrow^* xA\beta \Rightarrow x\xi\beta \Rightarrow^* xy\mu \end{array}$$

где x и γ - цепочки из терминалов - разобранная часть слова ${\bf w}, A$ - нетерминал грамматики, в которой есть правила $A \to \gamma, A \to \xi$, причем $\alpha, \beta, \xi, \gamma, \mu, \zeta$ - последовательности из терминалов и нетерминалов. Если из выполнения условий, что (|y|=k) или ($|y|< k, \mu=\zeta=\epsilon$) , следует равенство $\gamma=\xi$, то Γ называется ${\bf LL(k)}$ -грамматикой

Грамматика Γ называется **LL(1) грамматикой** (посмотрев на первый символ можно понять какое следующее правило нужно применить), если $s \Rightarrow^* x A \alpha \Rightarrow x \gamma \alpha \Rightarrow^* x c \zeta$ $s \Rightarrow^* x A \beta \Rightarrow x \xi \beta \Rightarrow^* x c \mu$

Неформально это означает, что, посмотрев на очередной символ после уже выведенной части слова, можно однозначно определить, какое правило из грамматики выбрать.

(Смотрим на символ c в строке и сразу понимаем, что $\gamma=\xi$, что значит, что мы используем одно и то же правило для A)

LL(0) грамматика - для каждого нетерминала есть только одно правило. По-другому называются "линейные программы". Такие грамматики лежат в основе теории архивации (если грамматика короче, то слово сжато, тк каждый нетерминал будет задавать только одно слово и вы можете его заменить на соответсвующий нетерминал)

Example 1: Рассмотрим грамматику и покажем, что она **LL(1)**.

$$B \rightarrow bC|a$$

 $\mathbf{w} = aaabd$

$$S\Rightarrow aA\Rightarrow aaB\Rightarrow aaaC\Rightarrow aaabD\Rightarrow aaabd$$

$$S \Rightarrow^* aaabd$$

Каждый раз когда мы смотрели на очередной символ мы сразу определяли правило для дальнейшего вывода.

Example 2: Рассмотрим грамматику, которая по первому символу не позволяет определить правило для дальнейшего вывода.

$$B \rightarrow d$$

 $\mathbf{w} = abd$

Смотрим на первый символ **w**, он подходит под несколько правил стартового нетерминала, только со второго символа понятно какое правило выбирать \Rightarrow не **LL(1)-грамматика**.

Example 3:

$$E
ightarrow E \, + \, T$$

$$T \to F$$

$$T o T \, imes \, F$$

$$F \to n$$

$$F \rightarrow (E)$$

Данная грамматика не является **LL(k)**. Контр-пример:

$$2*2*2*2*...+2$$
, где k символов до $+$

Мы не можем понять по первым k символам понять по какому нетерминалу нам применять правило.

FIRST u FOLLOW

 $\textbf{def}\ \textit{FIRST}:\ (N\cup\Sigma)^*\to 2^{\Sigma\cup\{\epsilon\}}.\ \ \text{По строчке из терминалов и нетерминалов возвращается множество, которое состоит из символов и $\epsilon$$

 $c \in FIRST(lpha) \Leftrightarrow lpha \Rightarrow^* cx$. Множество символов, с которых может начинаться lpha

$$e \in FIRST(\alpha) \Leftrightarrow \alpha \Rightarrow^* \epsilon$$

```
Example S 	o SS
              S 	o (S)
               S	o\epsilon
   FIRST(S) = \{c, \epsilon\}
   FIRST('S)') = \{(,)\}
   FIRST(\epsilon) = \{\epsilon\}
   FIRST('))((') = \{')'\}
\mathsf{def}\: \textit{FOLLOW} \text{: } N \to 2^{\Sigma \cup \{\$\}}
   c \in FOLLOW(A) \Leftrightarrow S \Rightarrow^* \alpha Ac\beta. Множество символов, которые могут быть после
   \$ \in FOLLOW(A) \Leftrightarrow S \Rightarrow^* \alpha A
нетерминала
   Example E 	o T
              E 
ightarrow E \,+\, T
              T \to F
              T 	o T \, 	imes \, F
               F \rightarrow n
               F 	o (E)
   FOLLOW(F) = \{\}, \$, +, \times \}
   FOLLOW(E) = \{\}, \$, +\}
Лемма о рекурсивном вычислении FIRST
\alpha = c\beta
FIRST(\alpha) = \{c\}
\alpha = A\beta
FIRST(\alpha) = (FIRST(A)) \setminus \epsilon) \cup (FIRST(\beta) \ if \ \epsilon \in FIRST(A))
FIRST(\epsilon) = \{\epsilon\}
Алгоритм построения FIRST
\forall A \ FIRST[A] = \emptyset
```

```
orall A\ FIRST[A] = \emptyset while\ (FIRST\ changes) \{ for\ A 
ightarrow lpha: FIRST[A] \cup = FIRST[lpha] \}
```

Алгоритм построения FOLLOW

```
FOLLOW: map < N, set < \Sigma \cup \$ >> \\ FOLLOW(S) = \$ \\ do \{ \\ for \ A \rightarrow \alpha \\ for \ B \ in \ \alpha \\ let \ \alpha = \xi B \eta \\ FOLLOW(B) = FIRST(\eta) \setminus \epsilon \\ if \ \epsilon \in FIRST(\eta) \\ FOLLOW(B) \cup = FOLLOW(A) \text{ // novemy FOLLOW(A)} \} \ while \ FOLLOW \ changes
```

Алгоритм TODO()

- 1. Удалить непорождающие символы
- 2. Удалить недостижимые

Менять шаги алгоритма нельзя

ex: Grammar:

Удаление непорождающих символов TODO()

1. Множество непорождающих символов $Gen=\emptyset$

```
do {  \text{for A} \to \alpha \\ \text{if } \alpha \in (\Sigma \cup Gen)^* \colon \\ \text{Gen } \cup = \mathsf{A} \\ \} \text{ while Gen change}   \text{NonGen} = \mathsf{N} \setminus \mathsf{Gen}
```

А - порождающий, но Алгоритм 1 выбрал как порождающий

$$A \Rightarrow \alpha \Rightarrow^{k-1} x$$

Алгоритм TODO()

```
FIRST: map<N, set<\Sigma \cup \epsilon>> function getFIRST(\alpha)  \text{if } \alpha = \epsilon \text{ return } \{\epsilon\}   \text{if } \alpha[i] \in \Sigma \text{ return } \{\alpha[i]\}   \# \alpha[0] \in N   \text{return } (FIRST[\alpha[0]] \setminus \epsilon) \cup (getFIRST(\alpha[1:]), if \epsilon \in FIRST[\alpha[0]])
```

Теорема 1

Ге **LL(1)**
$$\Leftrightarrow \forall A \to \alpha, A \to \beta$$
:

1. $FIRST(\alpha) \cap FIRST(\beta) = \emptyset$
2. $\epsilon \in FIRST(\alpha) \Rightarrow FIRST(\beta) \cap FOLLOW(A) = \emptyset$

Доказательство:
Определение **LL(1)**.

1. $S \Rightarrow^* xA\xi \Rightarrow^* x\gamma\xi \Rightarrow^* xc\tau$
2. $S \Rightarrow^* xA\eta \Rightarrow^* x\delta\eta \Rightarrow^* xc\sigma$
Тогда $\gamma = \delta$
 \Rightarrow) (Необходимость). Пусть $\Gamma \in \text{LL}(1)$

1. $\exists A \to \alpha, A \to \beta, c \in FIRST(\alpha) \cap FIRST(\beta)$
 $S \Rightarrow^* xA\sigma \Rightarrow x\alpha\sigma \Rightarrow^* xc\xi\sigma$
 $S \Rightarrow^* xA\sigma \Rightarrow x\beta\sigma \Rightarrow^* xc\eta\sigma$. По символу c мы не можем понять какое из правил выбирать следующим $\Rightarrow \Gamma \notin \text{LL}(1)$
2. $\epsilon \in FIRST(\alpha) \cap FIRST(\beta)$
 $S \Rightarrow^* xA\sigma \Rightarrow x\alpha\sigma \Rightarrow^* x\sigma \Rightarrow xc\tau$

```
S\Rightarrow^*xA\sigma\Rightarrow xeta\sigma\Rightarrow^*x\sigma\Rightarrow xc	au. По символу c мы не можем понять какое из правил выбирать следующим \Rightarrow\Gamma\not\in LL(1)
```

- 3. $\epsilon \in FIRST(\alpha)$ и $c \in FIRST(\beta) \cap FOLLOW(A)$ $S \Rightarrow^* xA\xi \Rightarrow^* x\alpha\xi \Rightarrow^* x\xi \Rightarrow xc\eta$ $S \Rightarrow^* xA\xi \Rightarrow^* x\beta\xi \Rightarrow^* xc\beta'\xi$. Аналогино первым двум пунктам
- \Leftarrow) (Достаточность). Пусть $\gamma \neq \delta$. При этом выполнены условия 1 и 2:
 - 1. Если из γ выводится c и из δ выводится c, то $c \in FIRST(\gamma)$ и $c \in FIRST(\delta)$, что противоречит условию 1 теоремы.
 - 2. Если из γ выводится c и из δ выводится ϵ , при этом c лежит в η , тогда $c \in FIRST(\gamma)$, $c \in FOLLOW(A)$ и $\epsilon \in FIRST(\delta)$, что противоречит условию 2 теоремы. (аналогично для $\gamma \Rightarrow^* \epsilon \zeta$ и $\delta \Rightarrow^* c\sigma$).
 - 3. Если из γ выводится ϵ и из δ выводится ϵ , тогда, соответственно, $\epsilon \in FIRST(\gamma)$ и $\epsilon \in FIRST(\delta)$, что противоречит 1 пункту теоремы.

Рекурсивный спуск

Алгоритм

```
A 	o lpha_1 |lpha_2| \dots |lpha_k|
```

- 1. Построить множества FIRST и FOLLOW
- 2. Определим структуру Node

```
Node: s:N\cup\Sigma ch: array(Node) token:\Sigma\cup\{\$\} // текущий терминал next() // функция взятия следующего токена
```

3. Определим мета-фукцию FIRST' (которая, на самом деле, является множеством)

```
FIRST'(A \rightarrow \alpha) = (FIRST(\alpha) \setminus \epsilon) \cup (FOLLOW(A) \ if \ \epsilon \in FIRST(\alpha))
```

4. Для каждого нетерминала построим функции (строим дерево разбора).

```
Node A() {
    Node res = Node(A)
    switch (token)
        FIRST`(A -> a1):
            // a1 = X1X2...Xl
            // X1 in N
            Node x1 = X1() // вызывается рекурсивно X1
            res.addChild(x1)
            // X1 in N
            Node x2 = X2()
            res.addChild(x2)
            // X3 in Sigma
            assert x3 = token or Error()
            res.addChild(token)
            next()
            . . .
            // Xl ...
            . . .
```

ETF (expression, therm, factor)

Grammar:

$$\begin{split} E &\rightarrow E + T \\ E &\rightarrow T \\ T &\rightarrow T \times F \\ T &\rightarrow F \\ F &\rightarrow n \\ F &\rightarrow (E) \end{split}$$

	FIRST	FOLLOW
E	n, (\$, +,)
Т	n, (\$, +, *,)
F	n, (\$, +, *,)

 $FIRST^{*}(E+T)=n, ($ $FIRST^{*}(T)=n, ($ замечаем, что наша грамматика не **LL(1)** (она леворекурсивная)

Левая рекурсия и правое ветвление

Определение. Γ называется *леворекурсивной*, если в $\Gamma:A\Rightarrow^+A\alpha$ Определение. Говорят, что в грамматике есть правое ветвление, если $A\to \alpha\beta$, $A\to \alpha\gamma$ и $\beta\neq\gamma$

Теорема 2.

 Γ - леворекурсивная или в Γ есть правое ветвление $\Rightarrow \ \Gamma \not\in LL(1)$

Доказательство

1. Левая рекурсия

$$egin{aligned} A &\Rightarrow^* x, \ x \in \Sigma^* \ A &\Rightarrow^+ A lpha \ A &\Rightarrow^* B \xi \Rightarrow \gamma \xi \Rightarrow^* A lpha \Rightarrow^* x lpha = cy lpha \ A &\Rightarrow^* B \xi \Rightarrow \delta \xi \Rightarrow^* x = cy \ c &\in (FIRST(\delta)) \setminus \epsilon \cup (FIRST(\xi) \ if \ \epsilon \in FIRST(\delta)) \ c &\in FIRST(\gamma) \setminus \epsilon \cup (FIRST(\xi) \ if \ \epsilon \ inFIRST(\gamma)) \end{aligned}$$

2. Правое ветвление

```
Очевидно из того, по A	o lpha eta, A	o lpha \gamma и eta 
eq \gamma не выполняется пункт 1 теоремы 1 ( FIRST(lpha eta)\cap FIRST(lpha \gamma) 
eq \emptyset)
```

Непосредственная левая рекурсия

$$A \to A \alpha$$

$$A o \beta$$

 $\beta \alpha^*$

Устранение левой рекурсии и правого ветвления

Правое ветвление

Проблема:

$$A
ightarrow lpha \gamma$$

Решение:

$$A
ightarrow lpha A$$
 '

$$A$$
 ' $o eta$

$$A$$
' $ightarrow \gamma$

Непосредственная левая рекурсия

Проблема:

$$A o A \alpha$$

Решение:

$$A
ightarrow eta A$$
'

$$A$$
' $ightarrow \epsilon$

$$A$$
 ' $\rightarrow \alpha A$ '

Косвенная левая рекурсия (без ϵ правил)

Добьемся такого:

$$A_1,\ldots,A_n$$

Если
$$A_i \Rightarrow^+ A_j lpha$$
, то $j > i$

```
for\ i=1..n removeDescentRecursion(A_i	o A_ilpha) for\ j=i+1..n if(exist(A_j	o A_ieta))\{ forall\ A_i	o \gamma insert(A_j	o \gammaeta) remove(A_j	o A_ieta) \} Инвариант: Если k< i,A_k	o eta,eta[1]=A_l, тогда l>k Если k\geq i,A_k	o eta,eta[1]=A_l, тогда l\geq i
```

Грамматика с устранённой непосредственной левой рекурсией

$$\begin{split} E &\rightarrow TE^{\epsilon} \\ E^{\epsilon} &\rightarrow \epsilon \\ E^{\epsilon} &\rightarrow +TE^{\epsilon} \\ T &\rightarrow FT^{\epsilon} \\ T^{\epsilon} &\rightarrow \epsilon \\ T^{\epsilon} &\rightarrow \times FT^{\epsilon} \\ F &\rightarrow n \\ F &\rightarrow (E) \end{split}$$

	FIRST	FOLLOW
Е	(n	\$)
E,	+ e	\$)
Т	(n	+ \$)
T,	* е	+ \$)
F	(n	* + \$)

```
Node E()
   Node res = Node(E)
    switch (token)
        case n, (:
            // E -> TE'
            Node t = T()
            res.addChild(t)
            Node e' = E'()
            res.addChild(e')
            return res
        default:
            Error()
Node E'()
    Node res = Node(E')
    switch (token)
       case $, ):
           // E' -> e
           return res
       case +, e:
           // E' -> +TE'
```

```
assert token == +
           res.addChild(Node(t))
           next()
           Node t = T()
           res.addChild(t)
           Node e' = E'()
           res.addChild(e')
           return res
       default:
           Error()
    // T and T' are similar with above
Node F()
   Node res = Node(F)
    switch (token)
        case n:
            assert token == n
            res.addChild(n)
            next()
            return res
        case (:
           assert token == (
            res.addChild(\()
            next()
            Node e = E()
            res.addChild(e)
            assert token == )
            res.addChild(Node(\)))
            next()
            return res
```

Устранение левой рекурсии полный алгоритм (с удалением ϵ правил)

```
etalpha^* A() switch FIRST`(A	o eta_1) eta_1 FIRST`(A	o eta_2) eta_2 ... while (token \in FIRST'(A	o Alpha)) A\Rightarrow^+Alpha A	o Xlpha,\ X\in\Sigma или \#X>\#A A_1,A_2,\ldots,A_n,\ \#A_i=i A_1	o eta_1 A_1lpha A_1	o eta A_1	o eta A_1 A_1 A_2 A_1 A_3 A_4 A_4 A_5 A_5 A_5 A_5 A_7 A_7 A_7 A_7 A_7 A_7 A_7 A_7
```

1. Избавиться от ϵ -правила

```
A_1' \to \alpha
2. A_2 \to A_1 \alpha \leadsto A_2 \to \xi \alpha для всех A_1 \to \xi (A_2 \to A_2 \beta, A_2 \to \gamma)
A_2 \to A_2 \beta
A_2 \to \gamma

for i = 1..n
for j = 1..i - 1
A_i \to A_j alpha
for A_j \to xi alpha
add A_i \to xi alpha
remove A_i \to A_j alpha
```

```
egin{aligned} A&	olphaeta\ A&	olpha\gamma\ L(lpha)
eq\{\epsilon\},\ 	exttt{To LL(1)}\ A&	olpha A'\ A'&	oeta\ A'&	o\gamma \end{aligned}
```

 $A_1
ightarrow eta A_1' \ A_1
ightarrow eta \ A_1'
ightarrow lpha A_1'$

Построение нерекурсивных нисходящих разборов

Стек, управлящая таблица. В стеке будем хранить неразобранную часть дерева. (алгоритм ака dfs со стеком)

Напишем грамматику и занумеруем правила, построим для нее множества FIRST и FOLLOW

$$\begin{split} E &\rightarrow TE' \ (1) \\ E' &\rightarrow +TE' \ (2) \\ E' &\rightarrow \epsilon \ (3) \\ T &\rightarrow FT' \ (4) \\ T' &\rightarrow \times FT' \ (5) \\ T' &\rightarrow \epsilon \ (6) \\ F &\rightarrow n \ (7) \\ F &\rightarrow (E) \ (8) \end{split}$$

	FIRST	FOLLOW
Е	(n	\$)
E'	+ e	\$)
Т	(n	+ \$)
T'	* e	+ \$)
F	(n	* + \$)

	n	+	*	()	\$
E	1			1		
E'		2			3	3
Т	4			4		
T'		6	5		6	6
F	7			8		
n	\rightarrow					
+		\rightarrow				
*			\rightarrow			
(\rightarrow		
)					\rightarrow	
						OK

пустые ячейки соответствуют ошибке

e.g. to parse: 2 + 2 * 2 tree:

Атрибутно-транслирующие грамматики (АТГ)

 $N,S\in N;\Sigma;P$ - правила

Расширим определние грамматики

N & Σ определяется в Z

атрибуты

 Σ, N

- 0. имя
- 1. тип
- 2. значение (может быть не определено)
- 3. правило вычисления S-атрибуты - только присваивание атрибута

Атрибуты бывают:

1. Синтезируемые атрибуты

Если его значение зависит только от поддерева, в том числе, когда этот атрибут - атрибут терминала и его значение на этапе лексического анализа

2. Наследуемый атрибут

Значение зависит от родителей или братьев L-атрибутная

Транслирующий символ - специальный нетерминал, у которого единственное правило раскрыть его в ϵ и которого есть связанный с ним код, внутри которого мы можем работать с атрибутами

Могут быть именными и анонимными

$E ightarrow E \ + \ T$	\$MUL op1 = $T_1.v$ \$MUL op2 = $F.v$ $T_0.v$ = \$MUL res
E o T	E.V = T.V
$T_0 ightarrow T_1 \hspace{0.1cm} imes_2 \hspace{0.1cm} F_3$	$MUL op1 = T_1.v$ MUL op2 = F.v $T_0.v = MUL res$
T o F	T.v = F.v
F o n	F.V = n.V
F o(E)	F.V = E.V

$$\$MUL \left\{ egin{array}{l} op1 \ ext{наследуемый} \ op2 \ ext{наследуемый} \ res \ ext{синтезируемый} \end{array}
ight.$$

```
$ADD {
add = op1 + op2
}
```

Е	V	
Т	V	
F		синтезируемый
n		синтезируемый

E o TE'		E'.a = T.v E.v = E'.v
E' ightarrow + TE'	\$ADD E'	$ADD op1 = E'_0a$ ADD op2 = T.v $E'_4.a = ADD.res$
$E' ightarrow \epsilon$		E'.v = E'.a
T o FT'		T'.a = E'.a T.v = T'.v
T' o imes FT'	\$MUL T'	\$MUL op1 = T'_0 .a \$MUL op2 = F.v T'_4 .a = \$MUL res
$T' o \epsilon$		T'.v = T'.a
F o n		F.v = n.v
F o (E)		F.v = E.v

Е	v
Т	V
F	v синтезируемый
n	v синтезируемый
E'	а наследуемый v синтезируемый
T'	а наследуемый v синтезируемый

2 + 3 * 4


```
E'(a: int): int
    switch
        case // -> e
            return a
        case // +T $ADD E'
            skip +
           T.v = T()
            ADD.res = ADD(a, T.v)
            E'.v = E'(\$ADD.res)
            return E'.v
E(): int
   switch
       case
           T.v = T()
           E'v. = E'(T.v)
           return E'.v
$ADD(op1, op2: int): int
   return op1 + op2
// alternative:
Node E'(a)
    Node res = Node(E, atr = \{a.a\})
    switch
        -> e
           res v = res.a
           return res
```

```
-> +TE'
    skip +
    T = T()
    E'4.a = res.a + T.v
    E' = E'(E'4.a)
    res.v = E'v
    return res
```

Регистровые машины и Стековые машины

операции регистровых машин: load загрузить значение и store выгрузить в память преимущество перед регистровыми, в регистровых конечное количество регистров, здесь есть стек и операции push, pop

Непосредственная левая рекурсия

 $A o A \alpha$

A o eta

х - синтезируемый атрибут А

 $A o \beta A'$

 $A' o \epsilon$

A' o lpha A'

А' х - соответствует Ах - синтезируемый

а - аккумулятор - наследуемый

$$A
ightarrow eta A'$$
 $A'a = f(eta)$ $A'
ightarrow \epsilon$

A' o lpha A'

A s - синтезируемый атрибут

а - наследуемый атрибут

```
A(a) -> s
switch ()
...
// A -> a
s = f(alpha)
// alpha_k = B
B(<->)
```

Но вообще генерируются парсеры со стеком

Восходящий разбор

```
перенос - свёртка
shift - reduce
```

Рабочий стек (WS) и стек предпросмотра (PS) (изначально вся последовательность токенов лежит в стеке предпросмотра).

Есть две операции:

- 1) Перенос. Берем символ из PS и переносим в WS.
- 2) Свёртка. Берем суффикс из WS, находим правило, для которого это правая часть. Если правил несколько, то все зависит от метода разбора.

Пример. Следующее дерево построено снизу-вверх.

Сразу понятно, что выбор операции (свертка или перенос) на текущем суффиксе WS неочевиден, есть различные способы как это можно сделать. Первый из них - это по приоритетам операторов.

LR - анализ

Неформальный смысл **LR(k)**. Если мы знаем строчку целиком и следующие **k** символов, то мы можем выбрать правило, по которому будем сворачивать

Отличие от LL. В LL грамматике мы знаем только первый символ того, что мы собираемся разбирать, а в LR грамматике мы знаем все символы того, что мы собираемся сворачивать и еще следующий.

LR(0) редко используется, есть LR(1) LR -> SLR (Simple LR) -> LALR -> LR(1)

$$\eta Bu \Rightarrow \eta \beta u = \xi At \Rightarrow \xi \alpha t = \omega$$

$$\gamma = \xi t \hspace{0.5cm} S \Rightarrow^* \gamma \hspace{0.5cm} \xi \in (\Sigma \cup N)^*, t \in \Sigma^*$$

lpha - подстрока γ

 $\gamma = \xi' lpha t' \quad \xi'$ - подстрока ξ , t' - суффикс t

$$S \Rightarrow^* \xi' A t' \Rightarrow \xi' \alpha t' = \xi t$$

Ситуации (items)

LR(1) - ситуация (
$$A o lpha, K \in \{0, \dots, |lpha|\}$$
)

Теорема

Ели строка альфа допускается автоматом, построенным по этим правилам, то:

1. Существует правио $B o \gamma$, γ - суффикс α

	IE	T	F	()	n	+	*	
[E0+0][F+E0][F0+7][F0+70F][F0+F)[F0+(E)](F0+0)	2	3	4	5		6			
[E,-E)[E-E-1]							7		
3 [E-07-] [T-07-0F]	1							8	
Y(T+F-)									
[F=(+E)][F=E+1][F=T)[F=TaF](F=F)[F=+(E)][F=+)	9	3	4	5		6			-
(F-n-)		-		-		0			
[E+E+.7][T++7][F+.F][F+(E)][F+++)		10	4	5		_			
8 (T-Tr.F) [F- (E)] [F-n]			11	5		5			
9[F-1(E)][E+E-47]			1)		6			
(EAEAT) [FAT.XF]					12		7		
[[-2/xf.]								8	
12 (E-(E)-)									
Mr. ster. 7									

	IE	T	n	+
mapm) [E = . E) [E E +] (E - T) (T n)	2	3	4	
2)[EE.][E-E.+T]				5
3(E→T.)				
4) [I-n.]				
5) [E > E+.T] [T-1.n]		6	4	
(E>E+T.) [E>E+T.)				-
				A

def Грамматика называется *LR0 грамматикой*, если детерминированная версия автомата по поиску основы каждое состояние содержит либо одно состояние недетерминированного автомата и ничего больше, либо содержит только нетерминальные состояния недетермнированного автомата.

Конфликт свёртки/свёртки ноль нетерминальных и больше одного терминала Конфликт переноса/свёртки: больше нуля нетерминальных и больше нуля терминальных

Когда не работает SLR:

LR1

def *LR1-ситуация* - это тройка из правила, числа от 0 до длины правой части и символа, который называется *символом предпросмотра (look ahead)

$$\begin{split} [A \to \alpha \bullet \beta, c] \\ [A \to \alpha \bullet d \ \beta, c] \overset{d}{\to} [A \to \alpha a \bullet \beta, c] \end{split}$$

lr1 - грамматике - если в детерминированном автомате по поиску lr1 основ

одно из них терминальное, а другое нетерминальное, то их символ предпросмотра отличается от символа перед которым находится позиция в правой части нетерминального

если они оба терминальные, то их символ предпросмотра не совпадает

Ir1 приколюхи