Grand Prix of Hailiang, Stage 2

Jury's Solution and Tutorial

-、选择题: 每题 2 分, 共 15 题, 30 分. 在每小题给出的四个选项中,只有一项是符合题目要求的

题号	P1	P2	Р3	P4	P5	P6	P7	P8	P9	P10	P11	P12	P13	P14	P15
答案	В	D	С	D	A	С	D	В	В	A	В	A	С	A	В

- 二、阅读程序(程序输入不超过数组或字符串定义的范围;判断题正确填 \checkmark ,错误填x;除特殊说明外,判断 题每题 1.5 分,选择题每题 4 分,共 40 分)

题号	P16	P17	P18	P19	P20	P21
答案	1	1	✓	Х	В	С
分值	1	1	1.5	1.5	3	4

(二) (13 分)阅读下面一段程序,完成 $22 \sim 27$ 六道小题。

题号	P22	P23	P24	P25	P26	P27
答案	1	Х	X	Х	A	D
分值	1.5	1.5	1.5	1.5	3.5	3.5

(三) $(15 \, \text{分})$ 阅读下面一段程序,完成 $28 \sim 33$ 六道小题。

题号	P28	P29	P30	P31	P32	P33
答案	1	1	Х	1	D	В
分值	1.5	1.5	1.5	1.5	4	5

- 三、完善程序(单选题,每小题3分,共30分)
 - (一) $(15 \, \text{分})$ 阅读下面一段程序, 完成 $34 \sim 38 \, \text{五道小题}$ 。

题号	P34	P35	P36	P37	P38
答案	D	D	С	A	D

(二) $(15 \, \text{分})$ 阅读下面一段程序,完成 $39 \sim 43 \, \text{五道小题}$ 。

题号	P39	P40	P41	P42	P43
答案	В	В	A	D	С

四、Solutions to Selected Problems

/px

Problem 10

Let \mathcal{D}_n be the *n*-th Derangement number, i.e. $\mathcal{D}_n = n! \sum_{k=0}^n \frac{(-1)^k}{k}$.

- 4+0, $\binom{4}{4}\binom{2}{0}\mathcal{D}_4=9$.
- 3+1, $\binom{4}{3} \times \binom{2}{1} \times (\mathcal{D}_3 + 3 \times 3) = 88$
- 2+2, $\binom{4}{2} \times \binom{2}{2} \times (2! \times \mathcal{D}_2 + 2 \times 4 + 2! \times 2!) = 84$

Thus, ans = 9 + 88 + 84 = 181.

Problem 11

Let F be the generating function of $\{f_n\}$, obviously that

$$F(x) = 3xF(x) - 2x^2F(x) + 2 - 3x$$

So
$$F(x) = \frac{2-3x}{2} \cdot (-2) \left(\frac{1}{1-x} - \frac{1}{1/2-x} \right) = (3x-2) \left(\sum_n (1-2 \cdot 2^n) x^n \right)$$
.
Then $[x^n] F(x) = 3 \cdot (1-2^n) - 2 \cdot (1-2^{n+1}) = 1 + 2^{n-1}$ and we got the answer.

Let F be the generating function of a given sequence $p_n(\sum p_n = 1)$ where $\Pr(X = k) = p_k$. Then we have:

$$\begin{cases} F(1) = \sum_{n} p_{n} = 1 & = \mathbb{E}[X^{\underline{0}}] \\ F'(1) = \sum_{n} n p_{n} = \mathbb{E}[X] & = \mathbb{E}[X^{\underline{1}}] \\ \dots \\ F^{(d)}(1) = \sum_{n} n^{\underline{d}} p_{n} = \mathbb{E}[X] & = \mathbb{E}[X^{\underline{d}}] \end{cases}$$

So we have:

$$Var[X] = \mathbb{E}[(X - \mathbb{E}[X])^2] = F''(1) + F'(1) - (F'(1))^2$$

and...

$$F(x) = \frac{3}{4}x^2 + \frac{1}{4}x^3$$

then we have F(1) = 1, $F'(1) = \frac{9}{4}$, F''(1) = 3, so $Var[X] = 3 + \frac{9}{4} - (\frac{9}{4})^2 = \frac{3}{16}$

Problem 13

see Why isn't vector

bool> a STL container?

Problem 14

First note that for x < -2, the LHS is not an integer. When x = -1, the LHS is 2 which is not a perfect square. When x=0, we have $y=\pm 2$. We can try x=1,2 and see that these do not work.

So consider $x \ge 3$. We have $(y-1)(y+1) = 2^x(2^{x+1}+1)$. Now certainly (y-1) and (y+1) are both even, and since they differ by 2 at most one of them can be a multiple of 4.

But the RHS has a factor of 2^x , so what does this mean? It means this power 2^x can only be distributed among (y-1) and (y+1) as 2 and 2^{x-1} or 2^{x-1} and 2 respectively. For $x \ge 3$, any other distribution leaves either one of (y-1),(y+1) to be odd or both of them a multiple of 4.

In other words, it means either $y-1=2^{x-1}k$ or $y+1=2^{x-1}k$ for some odd k. (Note k is odd because 2x-1 should already account for all the powers of 2 which divide $y \pm 1$.)

Going back to the original equation, we have $(2^{x-1}k\pm 1)^2=2^{2x+1}+2^x+1$. Now if $k\geq 5$, we have $y\geq 4\times 2^{x-1}=2^{x+1}$ so $y^2\geq 2^{2x+2}$. This means $2^{2x+1}+2^x+1\geq 2^{2x+2}$, or $2^x+1\geq 2^{2x}+1$, which is evidently impossible.

Thus k=1 or 3. Let 2x-1=t for convenience. When k=1, we have $(t\pm 1)2=8t^2+2t+1$, or $t\pm 2=8t+2$, which has no possible solutions for t.

When k=3, we have $(3t\pm 1)^2=8t^2+2t+1$, or $9t\pm 6=8t+2$. For 9t-6=8t+2 this gives t=8 while for 9t+6=8t+2 there are no possible $t\in\mathbb{Z}$.

So t = 8 which gives x = 4 and then $y = \pm 23$.

In conclusion, the only solutions are $(x, y) = (0, \pm 2), (4, \pm 23)$.

Problem 15

When G is not a multigraph, each region would have at least 3 edges, therefore a degree of ≥ 3 .

Also note that 2e = |E|, which is sum of degrees of r regions, where $2e \ge 3r$.

Using Euler's theorem, $2 = v - e + r \le v - e + (2/3)e = v - (1/3)e$.

Then, we have: $6 \le 3v - e \iff e \le 3v - 6$, that means $|E| = \mathcal{O}(|V|)$