Decision Tree Diagram

- 1 import numpy as np
- 2 H = (-(10/16) *np.log2(10/16)) + (-(6/16) *np.log2(6/16))
- 3 H
- 0.9544340029249649

1

$$H(X) = -\sum_{x \in X} p(x) \log_2 p(x)$$

$$H(X \mid Y_n) = -\sum_{\substack{x \in X \\ y \in Y_n}} p(y) p(x \mid y) \log_2 p(x \mid y)$$

1 Hxy =
$$-0.5 * ((7/8) *np.log2(7/8) + (1/8)*np.log2(1/8)) + ((-0.5)* ((3/8)*np.log2(3/8) + (5/8)*np.log2(3/8)) + (5/8)*np.log2(3/8) +$$

- 2 Hxy
- 0.7489992230622806

3. The formula for information gain is given by:

$$GAIN_{split} = Entropy(p) - \left(\sum_{i=1}^{k} \frac{n_{i}}{n} Entropy(i)\right)$$

a. Using the data from question 2, calculate the information gain for splitting on Attribute1, and also for Attribute2. Which would make a better root node? why?

Income	Lot size	Ownership	Income	Lot size	Ownership
60.0	18.4	Owner	75.0	19.6	Non-owner
85.5	16.8	Owner	52.8	20.8	Non-owner
64.8	21.6	Owner	64.8	17.2	Non-owner
61.5	20.8	Owner	43.2	20.4	Non-owner
87.0	23.6	Owner	84.0	17.6	Non-owner
110.1	19.2	Owner	49.2	17.6	Non-owner
108.0	17.6	Owner	59.4	16.0	Non-owner
82.8	22.4	Owner	66.0	18.4	Non-owner
69.0	20.0	Owner	47.4	16.4	Non-owner
93.0	20.8	Owner	33.0	18.8	Non-owner
51.0	22.0	Owner	51.0	14.0	Non-owner
81.0	20.0	Owner	63.0	14.8	Non-owner

Income	Lot size	Ownership
51.0	14.0	Non-owner
63.0	14.8	Non-owner
59.4	16.0	Non-owner
47.4	16.4	Non-owner
85.5	16.8	Owner
64.8	17.2	Non-owner
108.0	17.6	Owner
84.0	17.6	Non-owner
49.2	17.6	Non-owner
60.0	18.4	Owner
66.0	18.4	Non-owner
33.0	18.8	Non-owner
110.1	19.2	Owner
75.0	19.6	Non-owner
69.0	20.0	Owner
81.0	20.0	Owner
43.2	20.4	Non-owner
61.5	20.8	Owner
93.0	20.8	Owner
52.8	20.8	Non-owner
64.8	21.6	Owner
51.0	22.0	Owner
82.8	22.4	Owner
87.0	23.6	Owner

$$P(X \ge 13) = \sum_{i=13}^{25} {25 \choose i} \varepsilon^{i} (1 - \varepsilon)^{25 - i} = 0.06$$

The Bagging Algorithm

Input:

Training set S Base Learning Algorithm B Number of bootstrap samples T

Procedure:

```
For i = 1 to T {
S' = \text{bootstrap sample from S (S' is a sample with replacemen } C = B(S') \text{ (create a new classifier from S')}
C*(x) = \underset{y \in Y}{\text{argmax}} \sum_{i \in I(x) = y} 1 \text{ (the most often predicted label y)}
```

Output

Classifier C*