Semantics of HoTT Lecture Notes

Paige Randall North

April 17, 2024

1 Syntactic categories

Consider a Martin-Löf type theory \mathbb{T} . By a Martin-Löf type theory, we mean a type theory with the structural rules of Martin-Löf type theory [Hof97]; we are agnostic about which type formers are included in \mathbb{T} .

Definition 1.1. The *syntactic category of* \mathbb{T} is the category, denoted $\mathcal{C}[\mathbb{T}]$, consisting of the following.

- The objects are the contexts of \mathbb{T}^{1} .
- The morphisms are the context morphisms. A context morphism $f: \Gamma \to \Delta$ consists of terms

$$\Gamma \vdash f_0 : \Delta_0$$

$$\Gamma \vdash f_1 : \Delta_1[f_0/y_0]$$

$$\vdots$$

$$\Gamma \vdash f_n : \Delta_n[f_0/y_0][f_1/y_1] \cdots [f_{n-1}/y_{n-1}]$$

where $\Delta = (y_0 : \Delta_0, y_1 : \Delta_1, ..., y_n : \Delta_n)^2$

- Given an object/context Γ , the identity morphism $1_{\Gamma}: \Gamma \to \Gamma$ consists of fill in the blank
- Given morphisms $f: \Gamma \to \Delta$ and $g: \Delta \to E$, the composition $g \circ f$ is given by [fill in the blank]

Now we show that left unitality, right unitality, and associativity are satisfied.

• [fill in the blank]

These are given up to judgmental equality in \mathbb{T} : i.e., if $\Gamma \doteq \Delta$ as contexts, then $\Gamma = \Delta$ as objects.

²These morphisms are given up to judgmental equality in \mathbb{T} : i.e., if $f_0 \doteq g_0 : \Delta_0, ..., f_n \doteq g_n : \Delta_n[\delta_0/y_0] \cdots [\delta_{n-1}/y_{n-1}]$, then f = g as morphisms.

- [fill in the blank]
- [fill in the blank]

We think of $\mathcal{C}[\mathbb{T}]$ as the syntax of \mathbb{T} , arranged into a category.

Lemma 1.1. The empty context is the terminal object of $C[\mathbb{T}]$.

Proof. [fill in the blank]

2 Display map categories

Definition 2.1. Let \mathcal{C} be a category, and consider a subclass $\mathcal{D} \subseteq \operatorname{mor}(\mathcal{C})$. \mathcal{D} is a *display structure* [Tay99] if for every $d: \Gamma \to \Delta$ in \mathcal{D} and every $s: E \to \Delta$ in \mathcal{C} , there is a given pullback $s^*d \in \mathcal{D}$.

We call the elements of \mathcal{D} display maps.

In the syntactic category $\mathcal{C}[\mathbb{T}]$, we are often interested in objects of the form $\Gamma, z:A$ for a context Γ and a type A; these are often written as $\Gamma.A$. We are then often interested in morphisms of the form $\pi_{\Gamma}:\Gamma.A\to\Gamma$ where each component of π_{Γ} is given by the variable rule. We think of such a morphism as representing the type A in context Γ .

Theorem 2.1. The class of maps of the form $\pi_{\Gamma}: \Gamma.A \to \Gamma$ form display structure in the syntactic category $\mathcal{C}[\mathbb{T}]$.

Proof. [fill in the blank]

Definition 2.2. Let \mathcal{C} be a category, and consider a subclass $\mathcal{D} \subseteq \operatorname{mor}(\mathcal{C})$. \mathcal{D} is a *class of displays* if \mathcal{D} is stable under pullback.

Lemma 2.1. Any class of displays is closed under isomorphism.

Proof. [fill in the blank]

Corollary 2.1 (to Theorem 2.1). Let \mathcal{D} denote the closure under isomorphism of the class of maps of the form $\pi_{\Gamma}: \Gamma.A \to \Gamma$ in $\mathcal{C}[\mathbb{T}]$. Then \mathcal{D} is a class of displays.

Proof. [fill in the blank]

Now suppose that we close the class of maps of the form $\pi_{\Gamma}: \Gamma.A \to \Gamma$ under composition. This is then the class of maps of the form $\pi_{\Gamma}: \Gamma, \Delta \to \Gamma$ where Γ and Δ are arbitrary contexts.

Lemma 2.2. Now let \mathcal{D} denote the class of maps of the form $\pi_{\Gamma}: \Gamma, \Delta \to \Gamma$ in $\mathcal{C}[\mathbb{T}]$. Then

- 1. \mathcal{D} is closed under composition,
- 2. \mathcal{D} contains all the maps to the terminal object,

3. every identity is in \mathcal{D}

Proof. [fill in the blank]

Definition 2.3. A clan [Joy17] is a category \mathcal{C} with a terminal object * and a distinguished class \mathcal{D} of maps such that

- 1. \mathcal{D} is closed under isomorphisms,
- 2. \mathcal{D} contains all isomorphisms,
- 3. \mathcal{D} is closed under composition,
- 4. \mathcal{D} is stable under pullbacks, and
- 5. \mathcal{D} contains all maps to the terminal object.

Note that the first requirement follows from the others.

Theorem 2.2. Let \mathcal{D} denote the closure under isomorphism of morphisms of the form $\pi_{\Gamma}: \Gamma, \Delta \to \Gamma$ in $\mathcal{C}[\mathbb{T}]$. This is a clan.

Proof. [fill in the blank]

The presence of Σ -types and a unit type allows us to conflate contexts and types.

Theorem 2.3. If \mathbb{T} has Σ -types (with both computation/ β and uniqueness/ η rules [nLa]) and a unit type, then the closure under isomorphism of the class of maps of the form $\pi_{\Gamma} : \Gamma.A \to \Gamma$ constitutes a clan (and indeed, is the same class as in Theorem 2.2).

Proof. [fill in the blank]

References

- [Hof97] Martin Hofmann. Syntax and semantics of dependent types. Extensional Constructs in Intensional Type Theory, pages 13–54, 1997.
- [Joy17] André Joyal. Notes on clans and tribes. arXiv preprint arXiv:1710.10238, 2017.
- [nLa] nLab authors. Dependent sum type. https://ncatlab.org/nlab/show/dependent+sum+type. .
- [Tay99] Paul Taylor. *Practical foundations of mathematics*, volume 59. Cambridge University Press, 1999.