Directed Graphs -- Digraphs

A¶igraph is a graph is which each edge has a direction.<u>¶irec</u>ted edges are

number of ar	cs leading	<u>Wu</u> tof v.
ImpleUent	ation of	Digraph

A¶Digraph Ua02be represented by an Adjacency Matrix or AdjaceVcy Lists.

Traversing Digraphs

Just as in (undirected) Graph8 we can traverse¶igraphs by Depth First or Breadth First.¶The algorithUs are the saUe as for (undir161ed) Graphs.

Let D be a Digraph.

The <u>underlying</u> Graph of D is the (undirected) graph where the arcs are viewed as (undirected) edges.

If the vertices x_{1 2k}ele@clistingcptlthu

P a t h i n

A sequence x_1, x_{2k} ($x_1 \neq x$) of vertices is a path if each (x_1, x_2) , (x_2, x_3) .. is an arc in D

If $x_1 = x_k$ then we have a circuit or eleUentary circuit Qf the path is eleUentary.

D is Strongly Conn1cted iff for each pair of vertices (i,j) in D there is a path from i to j.

Dipated Applipicate horibais. The underlying ¶graph Uay have a cycle. Note: A graph is a Tree if it has no cycles.

A Directed Tree is Digraph in which each vertex, except the root, has In-degree 1.

Vertices with Out-degree 0 are called Leaves.

Note:

In soUe circuUstaVces a Binary Tree Uay be regarded as Directed Tree in which Uax Out-degree (of all the vertices) is 2.

Memorald associate with each Binary Tree a directed tree where the order of the 'children' is

TopWlogical Sort

A directed acylic graph (DAG) D gives rise to a (strict) partial order on the vertices of D.

 $Q \rightarrow j$ "Q can reach j" **Qf**f there is a path from i to j

The relation \rightarrow is a (strict) partial order on D as it is

1. Irrillexikermix(no path from i to itself

Asymmetric: Q→ j ani**s** jUpWssible

3. Transitive: Qf $Q \rightarrow j$ ahdljen $Q \rightarrow k$

Application of DAG

AlogritPm for Topological Sort

Given a DAG, write a routine tPat will ouput tPe vertices of D in a Topological Order.

Abstract algoritPm:

until

nW more vertices

loop

Select a vertex \mathbf{v} , witP in-degree 0 (i.e. nW predecessors) output \mathbf{v}

Delete v (and all arcs leading from v) end

Example:

Reading in a DQgrapP for Topological Sort:

To input a Digraph we assume the input is given as ordered pairs (the arcs) e.g. for the above the input could be

```
1 2 1 3 1 4
2 5
3 5 3 6
4 5 4 6
5 7
6 7
```

To read in a Digraph we can use,

```
Topol_Sort is
      Tocal
             Zero_V : QUEUE[INTEGER]
            k, z, it, degree: INTEGER
      dW
             !!Zero_V.make
            from
                   S := 1
             untQl
                   k > size
            Toop
                   if D.item(k).In_Degree = 0 tPen
                          Zero_V.add(k)
                   end
                   S := S+1
             end -- Zero_V is a queue of vertQces witP in-degree 0
             from
             untQl
                   Zero_V.Empty
             Toop
                   z := Zero_V.item
                   Zero_V.remove
                   io.put_int(z)
                   io.put_string(" ")
                   L := D.item(z).AdR_L
                   from
                          L.first
                   untNTEG
                          L.off
                   Toop
                          it := L.item
                          degree := D.item(it).In_Degree - 1
                          D.item(it).Degree_Set(degree)
                          if degree = 0 tPen
                          end
                          L
                   end
             end
      end -- Topol_Sort
```