Motivation

Most intelligent computer-assisted language learning (ICALL) applications (*Rosetta Stone, Duolingo*, etc.) rely on outdated, ineffective methods:

► rote memorization & grammatical error detection; menu-based vs. free input;

Image-Based Learner Sentences

Indiana University

Levi King

August 6, 2021

Semantic Analysis of

"engineering first": no second language acquisition, pedagogy;

SLA research → communicative & task-based learning

How can we bridge this gap?

- ▶ My vision: open source app; transparent; pipeline of existing tools;
- teachers create new games/stories by adding visual prompts and crowdsourcing native speaker (NS) responses;
- ▶ use NS model to evaluate non-native speaker (NNS) responses

2 / 53

1 / 53

Research Questions

- RQ1. Are the picture description task (PDT) responses of L2 English learners sufficiently similar to those of NSs to allow automatic evaluation based on a collection of NS responses?
- RQ2. For PDT responses, what are appropriate representations for the purpose of providing meaning-oriented feedback or evaluation?
- RQ3. What kinds of NLP tools are appropriate here?
- RQ4. How do "bag-of-words" and "bag-of-dependencies" approaches compare in terms of performance?
- RQ5. Can the accuracy of the system be improved with information from semantic tools (e.g., BERT)?
- RQ6. What is the annotation scheme for this task and can the system perform within the range of human performance?

. / 53

System

Step 1: Dependency parse:

Get dependencies:Step 2: Lemmatize:root(eating, vroot) \rightarrow root(eat, vroot)det(the, boy) \rightarrow det(the, boy)nsubj(boy, eating) \rightarrow nsubj(boy, eat)aux(is, eating) \rightarrow aux(be, eat)dobj(pizza, eating) \rightarrow dobj(pizza, eat)

System

Step 3: tf-idf (term frequency-inverse document frequency)

NS model: [He is eating pizza. The boy is eating pizza.]

NNS 1: He is eating food. NNS 2: He is eating pizza.

	NS	NS model	Z	NNS 1	Z	NNS 2
NS ∪ NNSs	tf	tf-idf	Ħ	tf-idf	tf	tf-idf
aux(be,eat)	2	.04	1	.02	П	.02
det(the,boy)	1	.04	1	0	1	0
dobj(food,eat)	ı	0	1	90.	1	0
dobj(pizza,eat)	2	.16	1	0	1	80.
nsubj(boy,eat)	1	80.	ı	0	ı	0
nsubj(he,eat)	1	.04	1	.02	1	.02
root(eat,vroot)	2	.02	1	.01	1	.01

Response scores: cosine(NS model tf-idf vector, NNS tf-idf vector)

NNS 1: 0.139; NNS 2: 0.886 \rightarrow NNS 2 is closest to the model.

5 / 53

6 / 53

Data collection

Two PDT prompt versions:

Intended for exploring the specificity needed for my approach

Data collection

PDT with very simple images only:

Intended to focus participants' attention on the main action

Data collection

3 verb types:

10 ditransitive items	What is the girl doing?
10 transitive items	What is the boy doing?
10 intransitive items	What is the girl doing?

Intended for exploring whether my approach can generalize to a range of sentence types

Data collection

The pilot study rake problem; 100% of NS used the verb rake:

► NNS responses without rake are penalized;

► I address this by asking NSs for two non-identical responses.

9 / 53

Annotation features

5 binary features:

► CORE EVENT: Does response capture main action?

► ANSWERHOOD: Does response directly answer prompt?

► GRAMMATICALITY: Is response free from grammar problems?

▶ INTERPRETABILITY: Does response evoke a clear mental image?

► VERIFIABILITY: Is all response info supported by image?

Main study: Data collection

499 participants, 13,533 responses:

▶ 141 NNSs (ELIP at IU), 4,290 responses;

▶ 125 Mandarin, 4 Korean, 3 Burmese, 2 Hindi; 1 each: Arabic, Indonesian, German, Gujarati, Spanish, Thai, Vietnamese;

▶ 358 NSs, 9,243 responses:

329 crowdsourced, purchased via SurveyMonkey;

▶ 7,960 responses;

▶ 29 familiar, unpaid colleagues;

▶ 1,283 responses;

10/53

Annotation features

Core event, Answerhood, Grammaticality, Interpretability, Verifiability

Inter-rater reliability (Cohen's kappa): $0.744~(\mathbf{l})-0.936~(\mathbf{A})$

To evaluate system performance, I need **benchmark rankings** for the NNS test set.

- ▶ Mean average precision (MAP) to see how system rankings predict individual features;
- ► Also need MAP from benchmark rankings (upper bound);
- **Spearman** rank correlation: Compare system rankings with benchmark rankings to see how system predicts overall quality;

How do we get benchmark rankings from 5 binary annotations?

- ▶ Determine feature weights and apply to annotations to obtain benchmark holistic scores and then rankings.
- Annotators performed a preference task for pairs of responses.
- ► Feature weights were derived according to how frequently each feature is "yes" among preferred responses.

13 / 53

SBERT for comparison

I also use SBERT for comparing my system's performance.

- State-of-the-art sentence embedding for semantic textual similarity.
- lacktriangle Replaces dependency parser + lemmatizer + tf-idf cosine pipeline.
- Provides distance between NNS response and NS model; rankable.
- ▶ Not explainable; Internal representations are not suitable for informing a feedback module.
- Dependencies are suitable.

Benchmark rankings

Weighted annotation score (WAS); weighted annotation ranking (WAR)

What is happening?	C	Α	G	_	>	V WAS WAR	WAR
The boy is eating	365	.093	.055	.093 .055 .224 .263	.263	10	П
pizza							
Child is eating pizza	365	.093	0	.224	.263	.945	2
Tommy is eating	365	.093	.055	.224	0	.737	33
pizza							
The boy's eating his	0	.093	.055	0	0	.513	4
favorite food							
Pizza is this boy's	0	0	.055	0	0	.055	2
favorite food							

Agreement for two annotators on a sample of 300 pairs:

(1)
Observed Agree
Chance Agree .621

14 / 53

System configuration

Optimizing means finding the best system settings:

- ► **Transitivity**: intransitive, transitive, ditransitive;
- ► **Targeting**: targeted, untargeted;
- ► Familiarity: familiar, crowdsourced;
- ▶ Primacy:
- primary: NS model contains only 1st responses;
- ▶ mixed: NS model: 1st & 2nd responses (50-50);
- ► Term Representation:
- ▶ 1dh: label-dependent-head; i.e., labeled dependencies;
- xdb: dependent-head; i.e., unlabeled dependencies;
- xdx: dependent only; cf. bag of words;
- Does not apply to SBERT (operates on plain text);

A system configuration combines one setting from each.

Sampling data

NNS test sets:

All experiments rank the same randomly sampled NNS test sets;

▶ 70 targeted, 70 untargeted per PDT item (max available for NNS data);

NS models:

▶ 14-response models (max available for familiar data);

▶ 50-response models (max available for crowdsourced data);

17 / 53

Predicting features: CORE EVENT MAP

	$\overline{}$		_	_		$\overline{}$			
50	SBERT	.831	.701	.629	.704	.736	.719	.721	.720
Crowd NS model = 50	WAR	.865	.742	099.	.735	777.	.756	.756	.756
NS mo	xqx	.852	.725	.661	.729	.763	.745	.746	.746
Crowd	xdh	.854	.733	.656	.735	.759	.748	.746	.750 .747
	ldh	.855	.736	.657	.737	.762	.750	.749	.750
14	SBERT	.835	.703	.634	.708	.740	.723	.725	.724
${\tt Crowd}$ NS ${\tt model}=14$	WAR	.865	.742	.660	.735	777.	952.	.756	.756
NS mo	xpx	.854	.728	.664	.732	.765	747	.750	.748
rowd	xdh	.856	.735	.661	.738	.763	.752	.749	.751
0	ldh	.859	.737	.665	.739	.768	.754	.753	.735 .751
		Intr	Tran	Ditr	Targ	Untg	Prim	Mix	Total

▶ In all cases, ldh + 14NS is best (slightly);

▶ xdx becomes more competitive for larger model (50NS);

• ditrans, untarg: most complex—i.e., highest STTRs;

▶ In general: 1dh STTR > xdh STTR > xdx STTR

Sampling data: Complexity

Standardized type-to-token ratio (STTR) for response samples. Tokens here are dependencies.

	n1	n14	n50	n70
	Fam	Crd	Crd	NNS
Intrans	.558	.525	.535	.391
Trans	.569	.580	.581	.517
Ditrans	.598	.640	.637	909.
Target	.545	.535	.545	.481
Untarg	.610	.633	.621	.528
Primary	N/A	.517	.523	.505
Mixed	929.	.652	.645	A/N
xpx	.364	.424	.421	.364
xdh	.658	.661	099.	.572
ldh	.665	.664	.671	.578
Total	.576	.583	.584	.505

Complexity often correlates with parameter settings in terms of system performance.

Within each parameter block, complexity increases as we move down the rows. E.g.:

 ${\tt Intrans} < {\tt Trans} < {\tt Ditrans}$

In some settings (e.g., Intrans), Crowd complexity is closer to NNS than is Familiar; other settings vice versa (e.g., Ditrans). 18/53

Predicting features: CORE EVENT MAP

	Fa	milia	Familiar NS r	model = 14	= 14		Crowd	NS mc	$Crowd\ NS\ model = 14$	14
	1dh	ydpx	xpx	WAR	SBERT	1dh	xdb	xpx	WAR	SBERT
Intr	.859	.859	.865	.865	.838	.857	.852	.848	.865	.833
Tran	.740	.737	.726	.742	.703	.738	.735	.728	.742	.702
Ditr	.651	.648	099	099.	.625	.663	.659	.673	099.	.641
Targ	.733	.732	.732	.735	707.	.739	.736	.733	.735	.709
Untg	.767	.764	692.	777.	.737	292.	.761	292 .	777.	.742
Total	.750	.748	.751	.756	.722	.753	.749	.750	.756	.725

*mixed only (due to sparse familiar data);

► Totals: crowdsourced outperforms familiar (slightly);

crowdsourced works best with 1dh;

► familiar works best with xdx;

20 / 53

For all 5 features, my system outperforms SBERT.

ANSWERHOOD, in all cases:

- \mathbf{v} xdx > xdh > 1dh;
- ► Model size makes no difference;
- ▶ familiar > crowdsourced;

GRAMMATICALITY, in most cases:

- \mathbf{x} \mathbf{x} \mathbf{x} \mathbf{x} \mathbf{x} \mathbf{x} \mathbf{x}
- ▶ familiar 14NS > crowd 14NS > crowd 50NS;

Predicting ANSWERHOOD or GRAMMATICALITY is relatively simple; requires only small model and bag-of-words representation.

21 / 53

Predicting quality

Holistic quality experiments use one set of 360 Spearman correlations:

targeting (2) \times primacy (2) \times term rep (3) \times items (30) = 360. (Familiar vs. Crowd handled separately due to sparse data.)

Each experiment focuses on one variable, e.g., targeting:

Divide 360 into 180 targeted scores and 180 untargeted scores; compare mean, median, etc.

SBERT uses plain text (no term rep), thus only 120 total.

(SBERT always wins over system.)

Predicting features: MAP Results

INTERPRETABILITY

▶ 14NS crowd > 14NS familiar > 50NS crowd;

VERIFIABILITY:

- ▶ 14NS crowd > 50NS crowd > 14NS familiar;
- \blacktriangleright Model size effect is most pronounced with untargeted & mixed;
- Unconstrained settings; larger models have more noise;

For both INTERPRETABILITY & VERIFIABILITY:

- ightharpoonup intransitives work best with xdx;
- transitives work best with 1dh;
- ► Why? Transitive responses are relatively homogenous; Annotators relatively strict;

22 / 53

Predicting quality: Transitivity

Spearman rank correlations: System vs. WAR (benchmark)

		int	intrans	tr	trans	dit	ditrans
		Sys	SBERT	Sys	SBERT	Sys	SBERT
	count	120	40	120	40	120	40
SN	mean	.439	.497	.314	.563	.267	.400
ΙtΤ	median	.416	.479	.304	.555	.276	.444
SN	mean	.423	.516	.345	.566	.278	.446
109	median	.426	.517	.331	.561	.286	.471

- ► SBERT, regardless of model size: trans > intrans > ditrans;
- System, regardless of model size: intrans > trans > ditrans;
- More complex items (TTR) work best with larger models;
- ▶ trans & ditrans: 50NS model is best;
- ▶ intrans: 14NS gives best mean, 50NS gives best median;

Predicting quality: Results

Targeting:

targeted > untargeted

► 50NS models > 14NS models

Model size effect is most pronounced for targeted

Familiarity (14NS models only):

► System: No discernible difference for familiar vs crowdsourced

► SBERT: familiar > crowdsourced

▶ NNS STTR < familiar STTR < crowdsourced STTR

25 / 53

26 / 53

25 / 6

► Collected 13,533 PDT responses from 499 participants;

Summary

- Annotated for 5 features, focused on content;
- ► Established feature weights and benchmark rankings;
- Features and weights are reliable;
- ► Developed explainable semantic textual similarity system based on dependencies and tf-idf;
- ► Uncovered some exploitable patterns for predicting features and holistic quality;

Predicting quality: Results

Primacy:

▶ System: 14NS: primary < mixed (slight difference)

▶ System: 50NS: primary ≈ mixed

► SBERT: primary > mixed

▶ System & SBERT: 50NS > 14NS

System: model size effect is greatest for primary

Term representation:

► SBERT: 50NS > 14NS

▶ System: for ldh & xdh: 50NS > 14NS;

► Model size effect is greater for 1dh

▶ System: for xdx: NS14 > NS50 (very slight)

Future work

With more data, I would:

► Explore results for broader range of L1s;

► Compare results across L2 English proficiency levels;

▶ Further map relationship between complexity and optimal settings;

► For a given PDT item, try clustering responses into multiple models:

► Route NNS responses to most appropriate model;

Backup slides

(The following slides are all backup for Q&A.)

Research Questions (full)

- compare in terms of performance? Is a bag-of-words approach alone RQ4. How do "bag-of-words" and "bag-of-dependencies" approaches adequate for our needs?
- RQ5. Can the accuracy of the system be improved by the inclusion of semantic information from tools like semantic role labelers, WordNet, or word and sentence embeddings?
- does it mean for a response to be appropriate and how can this be perform within the range of human performance? Relatedly, what RQ6. What is the annotation scheme for this task and can the system captured with annotation?

Research Questions (full)

- RQ1. Are the responses of L2 English learners sufficiently similar to those of NSs to allow automatic evaluation based on a collection of NS overlap with native-like usage in a picture description task (PDT) responses? In other words, do learners demonstrate significant
- In the constrained communicative environment of a PDT, what are providing meaning-oriented feedback or evaluation? In other words, which linguistic components are crucial and which are superfluous? appropriate response and model representations for the purpose of RQ2.
- RQ3. What kinds of existing NLP tools and language resources can be integrated to form a content analysis system for open response language learning tasks?

29 / 53

30/53

Pilot study: Data

Response (L1)

He is droning his wife pitcher. (Ar)

The artist is drawing a pretty women. (Ch)

The artist is painting a portrait of a lady. (En)

The painter is painting a woman's paint. (Sp)

Figure: Example item from the pilot study showing responses from native speakers of Arabic (Ar), Chinese (Ch), English (En) and Spanish (Sp).

- ightharpoonup 10 (transitive) PDT items imes 53 participants = 530 responses;
- ▶ 14 NSs (grad students), 39 NNSs (ESL students);
- ▶ Annotation: Given the prompt, would the response be acceptable to most English speakers? Acceptable/unacceptable
- 1 annotator (me)

Pilot study: Processing

First approach: Rule-based triple extraction and matching

Dependency parser \rightarrow lemmatizer $\rightarrow V(S,O)$ extraction rules;

Compare NNS V(S,O) & NS V(S,O) list \rightarrow covered / not covered;

Dependency-based

Captures aspects of form and meaning;

Subjects, objects, verbs clearly labeled;

► V(S,O) extraction

► Decision tree based on dependency indexing & labels, POS;

▶ Custom for my transitive PDT, not generalizable, not robust;

 $ightharpoonup \approx 92\%$ accurate, $\approx 8\%$ extraction errors;

► Overall accuracy: 58.9%

▶ I.e., Acceptable covered, unacceptable not covered;

33 / 53

System configuration

All parameters or variables and their settings:

Transitivity	Targeting	Familiarity	Primacy	Primacy Term Rep.
intransitive	targeted	familar	primary 1dh	ldh
transitive	untargeted	crowdsourced	mixed	xdh
ditransitive				xpx

A system configuration combines one setting from each column.

If particular settings correlate highly with item characteristics (intransitive / transitive / ditransitive; response complexity), I can optimize the system for new items.

Pilot study: Processing

Second approach: Semantic similarity scoring

Dependency parser \rightarrow lemmatizer \rightarrow term frequency-inverse document frequency (tf-idf; "term" = lemmatized dependency);

NNS response score = cosine distance of NS and NNS tf-idf scores;

► tf-idf: Score dependencies according to importance;

► Vectorize & Score

▶ Get sorted union set of NS and NNS dependencies;

▶ NNS vector: Replace deps with their NNS tf-idf scores;

► NS vector: Replace deps with their **NS** tf-idf scores;

lacktriangle Response score = cosine distance for NNS & NS vectors;

► Rank by scores & calculate Mean Average Precision (MAP);

► MAP *acceptable* responses: ≈51%

▶ Process is more robust & generalizable;

► Dataset (especially NS models) and annotation are weak;

34 / 53

Sampling data: Response length

	u	n=14	n=50	n=70
	Fam	Crowd	Crowd	NNS
Intrans	5.5	4.9	4.9	4.9
Trans	6.9	6.3	6.2	2.9
Ditrans	7.8	7.2	7.2	8.3
Target	6.5	5.4	5.4	6.3
Untarg	6.9	8.9	8.9	6.9
primary	N/A	5.7	5.8	9.9
mixed	2.9	6.5	6.4	N/A
Total	2.9	6.1	6.1	9.9

Table: Comparing average response length (in words) for the samples used throughout this chapter as NS models and NNS test sets, in total and by parameter setting.

3

First iteration: accuracy (A) & native-likeness (NL)

• 2: +A, +NL > 1: +A, -NL > 0: -A, -NL

▶ Not operationalizable: e.g., response is accurate w.r.t. prompt but adds unverifiable details; is this still accurate?

► Not reliable, not valid;

This was scrapped and I settled on the 5 binary features.

37 / 53

Weighting features

Raters perform holistic preference test (blind to annotations)

What is the boy doing?	Pref?	Core	Ansr	Gram	Intrp	Verif
He is eating food.	yes	0	1	1	1	1
He may get fat eating.	no	0	0	1	1	0
He is hungry.	no	0	0	1	0	1
the boy is eating pizza	yes	1	1	1	1	1
The child is about to eat pizza.	yes	1	0	1	1	1
he eating.	no	0	1	0	1	1
Totals preferred responses		2	2	3	က	က
Totals dispreferred responses		0	1	2	2	2
Net preferred (pref - dispref)		2	1	1	1	1
Feature weight		.333	.167	.167	.167	.167
*Real feature weight		.365	.093	.055	.224	.263

Annotation features

Inter-rater reliability for two annotators and 10% of the dataset: yes annotations for Annotator 1 (note skewedness), expected chance agreement (Chance), actual observed agreement (Observed) and Cohen's kappa (Kappa)

Set	A1Yes	Chance	Observed	Карра
CORE EVENT	.733	.601	.923	808.
ANSWERHOOD	.834	.721	.982	.936
GRAMMATICALITY	.861	.768	096.	.827
INTERPRETABILITY	.818	.682	.919	.744
VERIFIABILITY	.845	.719	896.	.884
Intransitive	.863	.758	.978	.910
Transitive	.780	.653	.949	.853
Ditransitive	.812	.678	.924	.764

38 / 53

Mean Average Precision

Mean average precision is an average over multiple average precisions Average precision represents the area under the precision-recall curve. (here it's from multiple PDT items or datasets).

as a measure of how well a ranking separates "yes" and "no" annotations. This is a simplification, but for our purposes here, we can think of MAP

200d	yes	yes	yes	ou	no
Okay	yes	yes	no	yes	no
Pad	yes	no	no	yes	yes

$$\mathsf{MAP} = (0.51 + 0.64 + 1.00)/3 \approx 0.72$$

Predicting features: ANSWERHOOD MAP

									_
20	SBERT	898.	.838	.833	.798	.895	.846	.847	.846
$Crowd\ NS\ model = 50$	WAR	.881	.845	.837	.817	.892	.854	.854	.854
NS mo	xpx	.874	.851	.840	.811	836	.854	.856	.855
rowd	xdh	898.	.823	.822	682	988.	.840	.835	.838
_	ldh	998.	.818	.821	787.	.883	.837	.833	.835
14	SBERT	698.	.838	.833	662.	.894	.845	.848	.847
$Crowd\ NS\ model = 14$	WAR	.881	.845	.837	.817	.892	.854	.854	.854
NS mo	xpx	878.	.846	.841	.810	006.	.854	.857	.855
rowd	xdh	.871	.819	.826	.788	.890	.840	.838	.839
)	ldh	898.	.816	.824	787.	.885	.837	.835	.836
		Intr	Tran	Ditr	Targ	Untg	Prim	Mix	Total

ightharpoonup xdx > xdh > 1dh;

► Model size makes little difference;

Predicting ${\tt ANSWERHOOD}$ is relatively simple; requires only small model and bag-of-words representation.

41 / 53

Predicting features: GRAMMATICALITY MAP

x dbx .870 .756 .685)	+		Crowd	Crowd NS model =	= lapc	20
	xpx	WAR	SBERT	1dh	xdh	xpx	WAR	SBERT
	.872	788.	998.	.863	.864	998.	788.	.864
٠.	.757	.781	.757	.758	.760	192.	.781	.757
	200	.695	.694	629.	.685	269.	.695	.693
	.784	.800	.782	922.	922.		.800	.781
	692	922.	.762	.757	.762	992.	922.	.761
	922.	.788	.770	892.	.770	.774	.788	.770
	922	.788	.774	.765	.768	.775	.788	.772
	922.	.788	.772	792.	692.	.775	.788	.771

In most cases:

xdx > xdh > ldh;

Predicting GRAMMATICALITY is relatively simple; requires only small model and bag-of-words representation.

Predicting features: ANSWERHOOD MAP

	묘	milia	r NS	Familiar NS model = 14	= 14		Crowd	NS m	Crowd NS model = 14	14
	1dh	xdh	xpx	WAR	SBERT	1dh	xdh	xpx	WAR	SBERT
Intr	898.	.871	.882	.881	898.	698.	.873	878.	.881	.870
Tran	.824	.826	.852	.845	.840	.817	.818	.847	.845	.840
Ditr	.820	.822	.846	.837	.832	.820	.822	.845	.837	.835
Targ	982.	787.	.815	.817	862.	.785	787.	.813	.817	.802
Untg	888.	.892	.904	.892	968.	.885	688.	006.	.892	.894
Total	.837	.840	098.	.854	.847	.835	.838	.857	.854	.848

ightharpoonup xdx > xdh;

▶ familiar > crowdsourced;

Predicting ANSWERHOOD is relatively simple; requires only small model and bag-of-words representation.

42 / 53

Predicting features: GRAMMATICALITY MAP

		_					
14	SBERT	698.	.758	969.	.786	.763	.774
$Crowd\ NS\ model = 14$	WAR	788.	.781	.695	.800	.776	.788
NS m	xpx	.874	757.	669.	982.	.767	922.
Crowd	xdh	698.	.754	.680	777.	.759	.768
	1dh	898.	.752	.678	922.	.756	992.
= 14	SBERT	.863	.760	869.	.783	.764	.773
Familiar $NS \mod = 14$	WAR	788.	.781	.695	.800	922.	.788
ır NS r	xpx	.873	.762	869.	787.	892.	822.
milia	xdh	.864	.759	.685	922	.762	692.
ъ	ldh	.863	.760	.678	922	.757	292.
		Intr	Tran	Ditr	Targ	Untg	Total

In most cases:

ightharpoonup xdx > xdh > 1dh;

familiar 14NS > crowd 14NS > crowd 50NS;

Predicting GRAMMATICALITY is relatively simple; requires only small model and bag-of-words representation.

Predicting features: INTERPRETABILITY MAP

	—								
20	SBERT	.923	.804	.772	.826	.840	.833	.833	.833
= lap	WAR	.930	.803	.721	.804	.833	.818	.818	.818
Crowd NS model = 50	xpx	.933	.812	.792	.834	.857	.846	.845	.845
rowd	xdh	.927	.816	.782	.829	.855	.842	.841	.842
	1dh	.928	.821	.786	.833	.857	.845	.844	.845
4.	SBERT	.922	908.	777.	.828	.842	.837	.833	.835
Crowd NS model = 14	WAR	.930	.803	.721	.804	.833	.818	.818	.818
NS mo	xpx	.933	.811	.794	.836	.856	.846	.846	.846
howd	xdh	.931	.821	.784	.832	.858	.845	.846	.845
	1dh	.932	.823	.789	.835	.862	.847	.849	.848
		Intr	Tran	Ditr	Targ	Untg	Prim	Mix	Total

- ▶ 14NS crowdsourced > 50NS crowdsourced;
- lacktriansitives & ditransitives work best with xdx;
- transitives work best with 1dh;
- Why? Transitive responses are relatively homogenous; Annotators relatively strict;

45 / 53

Predicting features: VERIFIABILITY MAP

20	SBERT	.836	.785	962.	.810	.802	908.	.805	908.
Crowd NS model = 50	WAR	998.	.798	.780	.815	.815	.815	.815	.815
NS mo	xpx	.851	.803	.812	.823	.820	.822	.821	.822
rowd	xdh	.849	908.	800.	.824	.819	.823	.821	.822
	ldh	.849	.807	.811	.825	.820	.824	.821	.823
[4	WAR SBERT	.840	787.	.798	.812	.805	808	808.	808.
Crowd NS model = 14	WAR	998.	.798	.780	.815	.815	.815	.815	.815
NS mo	xpx	.853	.803	.815	.825	.822	.823	.824	.824
rowd	xdh	.852	808	.812	.824	.824	.824	.824	.824
	ldh	.852	808	.814	.825	.825	.826	.825	.825
		Intr	Tran	Ditr	Targ	Untg	Prim	Mix	Total

- ▶ 14NS crowd > 50NS crowd;
- ▶ intransitives & ditransitives work best with xdx;
- transitives work best with 1dh;
- Why? Transitive responses are relatively homogenous; Annotators relatively strict;

Predicting features: INTERPRETABILITY MAP

	ъ	milia	r NS r	Familiar NS model = 14	= 14		howd	NS mc	Crowd NS model = 14	14
	ldh	xdh	xpx	WAR	SBERT	1dh	xdh	xpx	WAR	SBERT
Intr	.930	.930	.934	.930	.923	.933	.931	.932	.930	.922
Tran	.822	.819	.811	.803	.805	.826	.824	.811	.803	.805
Ditr	787.	982.	962.	.721	.782	.788	.783	.795	.721	.772
Targ	.835	.833	988.	.804	.830	.835	.832	.835	804	.825
Untg	.858	.857	.858	.833	.843	.863	.859	.857	.833	.841
Total	.847	.845	.847	.818	.837	.849	.846	.846	.818	.833

- ▶ 14NS crowdsourced > 14NS familiar;
- lacktriangle intransitives & ditransitives work best with xdx;
- transitives work best with ldh;
- ► Why? Transitive responses are relatively homogenous; Annotators relatively strict;

46 / 53

Predicting features: VERIFIABILITY MAP

	Fa	milia	Familiar NS n	model = 14	= 14		Crowd	NS mc	$Crowd\ NS\ model = 14$	14
	ldh	xdh	xpx	WAR	SBERT	ldh	xdb	xpx	WAR	SBERT
Intr	.847	.847	.852	998.	.836	.852	.852	.854	998.	.843
Tran	808.	.807	.803	.798	787.	708.	807	.802	.798	.786
Ditr	.811	.811	.812	.780	.802	.815	.812	.817	.780	962.
Targ	.821	.821	.822	.815	.814	.824	.824	.826	.815	.811
Untg	.824	.822	.823	.815	.803	.825	.824	.823	.815	908.
Total	.822	.822	.823	.815	808.	.825	.824	.824	.815	808

- ▶ 14NS crowd > 14NS familiar;
- lacktriansitives & ditransitives work best with xdx;
- transitives work best with ldh;
- ► Why? Transitive responses are relatively homogenous; Annotators relatively strict;

Predicting quality: Targeting

Spearman rank correlations: System vs. WAR (benchmark)

		targ	targeted	untar	untargeted
		System	SBERT	System	SBERT
	count	180	09	180	09
SN	mean	.380	.530	.300	.444
It[median	.369	.545	.314	.472
SN	mean	.393	.550	305	.469
109	median	.389	.564	.323	.496

targeted > untargeted

▶ 50NS models > 14NS models

Model size effect is most pronounced for targeted

Predicting quality: Familiarity

Spearman rank correlations: System vs. WAR (benchmark)

		fami	familiar	crowds	crowdsourced
		System	SBERT	System	SBERT
	count	180	09	180	09
SN	mean	.338	.499	.339	.481
14[median	.329	.513	.326	.500

▶ System: No discernible difference for familiar vs crowdsourced

► SBERT: familiar > crowdsourced

▶ NNS STTR < familiar STTR < crowdsourced STTR

Predicting quality: Primacy

Spearman rank correlations: System vs. WAR (benchmark)

mixed	SBERT	09	.481	.500	.505	.518
mi	System	180	.340	.334	.344	.350
primary	SBERT	09	.493	.517	.514	.532
prir	System	180	.339	.326	.354	.345
		count	mean	median	mean	median
			SN]†T	SN	109

System: 14NS: primary < mixed (slight difference)

▶ System: 50NS: primary \approx mixed

► SBERT: primary > mixed

▶ System & SBERT: 50NS > 14NS

System: model size effect is greatest for primary

Predicting quality: Term Representation

50 / 53

49 / 53

Spearman rank correlations: System vs. WAR (benchmark)

ı						
SBERT	(text)	40	.487	.507	.509	.523
	xpx	120	.351	.330	.348	.331
System	xdh	120	.336	.344	.349	.374
	ldh	120	.333	.318	.350	.364
		count	mean	median	mean	median
			SN	ΙÞΙ	SN	201

► SBERT: 50NS > 14NS

. System: for 1dh & xdh: 50NS > 14NS;

► Model size effect is greater for 1dh

▶ System: for xdx: NS14 > NS50 (very slight)

Predicting quality: Term Normalization

Response A	Response B	Non-norm	Normal
7 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	The girl in the cute purple	-alized	-ized
81118111c ci 1118 ali i	dress is singing a song	weight	weight
det(the, girl)	det(the, girl)	.143 (2/14)	.175
nsubj(girl, sing)	nsubj(girl, sing)	.143	.175
	det(the, dress)	.071	.050
	amod(cute, dress)	.071 (1/14)	.050
	amod(purple, dress)	.071	.050
	prep_in(dress, girl)	.071	.050
aux(be, sing)	aux(be, sing)	.143	.175
root(sing, ROOT)	root(sing, ROOT)	.143	.175
	det(a, song)	.071	.050
	dobj(song, sing)	.071	.050
4	10	$1.0\ (14/14)$	1.0

A 2-response toy NS model. Normalizing for response length so each response (not dependency) in model carries equal weight reduces weight of some extraneous dependencies, but performance suffers overall.