Lecture on Materials Science - Heat Treatment

Prof. Dr.-Ing. Christian Willberg Magdeburg-Stendal University of Applied Sciences

Contact: christian.willberg@h2.de
Parts of the script are adopted from
Prof. Dr.-Ing. Jürgen Häberle

Contents

Heat Treatment

- Annealing processes
- Hardening processes

Characterization:

- Type of heating
- Holding temperature
- Holding time
- Type of cooling (furnace, air, oil, water cooling)

Why?

- Improvement of machinability (soft annealing)
- Step in production process (hardening of tools)
- Enhancement of mechanical properties (tempering of steel, aging of aluminum alloys)
- Reduction of wear (surface hardening of gears)
- Elimination of work hardening (recrystallization annealing)
- Reduction of casting or welding stresses (stress-relief annealing)

Annealing

• Slow cooling, aiming to approach the equilibrium state

Objectives for:

- Stress-relief annealing
- Recrystallization annealing
- Soft annealing
- Normalizing
- Coarse grain annealing
- Diffusion annealing

Stress-Relief Annealing

- Slow heating to 550 650 °C (below A_{c1})
- Holding time 2 4 hours, slow cooling (furnace cooling)

Objective:

Reduction of internal stresses (residual stresses) without significant change to other properties

nule endal

Stress-Relief Annealing

- Slow heating to 550 650 °C (below ${
 m A}_{c1}$)
- Holding time 2 4 hours, slow cooling (furnace cooling)

Objective:

Reduction of internal stresses (residual stresses) without significant change to other properties

Recrystallization Annealing

- Reversal of property changes (hardening) caused by cold deformation
- Structural transformation or new formation in the solid state
- Stress reduction
- Increase in fracture elongation

Recrystallization Annealing

- Recrystallization temperature for steel: 500 - 600 °C
- Holding, slow cooling
- Excessive holding time: coarse grain formation

Soft Annealing

- Producing a soft condition favorable for further processing
- Cementite particles are spherodized (spherodized annealing).

Soft Annealing

- ullet Temperatures around ${
 m A}_{C1}$ (below, above, or oscillating around ${
 m A}_{C1}$)
- Slow cooling.

Normalizing

- Temperature 30 50 °C above transformation temperature in the austenite range
- ullet Rapid heating between A_{C1} and annealing temperature, short holding time
- Rapid cooling through twophase interval, then slow cooling

nule endal

Normalizing

- Produces a uniform, fine-grained structure with pearlite
- Approaches equilibrium state through double recrystallization (during heating and cooling)
- Frequently used process

Temperatur [°C]

Coarse Grain Annealing

- Achieves coarse grains
- Improves machinability

Coarse Grain Annealing

- Temperature significantly above A_{C3} (950 1100 °C)
- Holding time 1 to 2 hours
- Slow furnace cooling
- Faster air cooling afterward

Diffusion Annealing

 Eliminates local concentration differences (segregations) through diffusion

nule endal

Diffusion Annealing

- High temperature in the austenite range
- Long holding time (up to 50 hours)
- Slow cooling

TTT Diagrams

- Time-Temperature-Transformation diagrams
- Provided for various materials and alloys
- Basis for planning heat treatment processes
- Differentiation in cooling at
 - constant temperature (isothermal transformation)
 - continuous cooling

Isothermal Transformation

- Sample is quenched
- Held at constant temperature until transformation is complete

Continuous Cooling

- Starting from the austenitization condition, cooled at various rates
- Transformation into ferrite,
 pearlite, bainite (intermediate
 stage), or martensite occurs at
 different temperatures to varying
 extents
- Final hardness is usually marked at the end of the cooling curve

Hardening Processes

Hardening

- Cooling from a temperature above the transformation line GOSK at a rate faster than the critical rate ("quenching")
- Goal is a non-equilibrium state through the transformation of austenite into martensite (possibly bainite)

Processes

- Volume heating hardening
- Tempering
- Quenching and tempering
- Surface hardening
- Thermochemical processes
 - Carburizing / case hardening
 - Nitriding
- Thermomechanical processes
- Curing

Volume Heating Hardening

- Carbon content of at least 0.3% (otherwise pre-treatment required)
- For small cross-sections, complete martensite formation can occur throughout the section (through-hardening). For large sections, the critical cooling rate is achieved only up to a certain depth (case hardening).
- Maximum hardness depends only on carbon content

Surface Hardening

- Applied to low-alloy and unalloyed steels with 0.3 0.7% carbon (upper limit to avoid quench cracks)
- Especially for crankshafts, journals, rolls, gears, etc. The goal is a hard and wear-resistant surface with a tough core.
- Surface layer of the workpiece is heated to hardening temperature and quenched to harden.

Methods

The surface hardening can be achieved through the following methods:

- Flame hardening
- Induction hardening
- Beam hardening (electron beam and laser hardening)
- Quenching

