SISTEMI LINEARI

Sistema di *m* equazioni in *n* incognite:

$$\sum_{j=1}^{n} a_{ij} x_{j} = b_{i} \qquad i = 1,...,m$$

$$Ax = b$$
(1)

Soluzione del sistema: n-upla che soddisfi tali equazioni. Trattiamo solo sistemi quadrati ovvero tali che: m = n, per cui: $A \in R^{n \times n}$, $b \in R^n$.

In tal caso, $\exists_1 x \in R^n$ soluzione di (1) se e solo se:

1)
$$\exists A^{-1}$$
 oppure 2) rank(A) = n oppure 3) $A\underline{x} = 0 \Rightarrow \underline{x} = 0$.

Teorema di Cramer

Se $det(A) \neq 0$ \exists_1 soluzione del sistema data da:

$$x_i = \frac{\det(\Delta_i)}{\det(A)}$$

(2)

$$con \Delta_i = \begin{vmatrix} a_{11} & . & b_1 & . & a_{1n} \\ . & & & & \\ a_{n1} & b_n & a_{nn} \end{vmatrix}$$
i-esima colonna

Costo computazionale di (2): (n+1)! flops.

Se n = 50, 10^9 flops \Rightarrow time $\approx 10^{47}$ anni!

Numero di condizionamento di una matrice $A \in C^{nxn}$:

$$\exists A^{-1} : k(A) = ||A|| ||A^{-1}||$$

dove $\left\| \cdot \right\|$ sia una norma matriciale scelta.

Poiché:
$$1 = ||AA^{-1}|| \le ||A|| \cdot ||A^{-1}|| = k(A)$$

più k(A) è grande, maggiore è la sensibilità della soluzione di Ax = b alle perturbazioni nei dati.

NB: il determinante di una matrice non è un indice di condizionamento. Si possono infatti trovare matrici con determinante piccolo e numero di condizionamento grande e viceversa.

Vediamo ora la relazione di k(A) con le perturbazioni sui dati.

Indichiamo con δA , δx , δb le perturbazioni su A, x, b, rispettivamente. Allora il sistema da risolvere e':

$$(A + \delta A)(x + \delta x) = b + \delta b$$

e supponiamo che esso sia risolto esattamente.

$$\frac{\|\delta x\|}{\|x\|} \le \frac{k(A)}{1 - k(A)\|\delta A\|/\|A\|} \left(\frac{\|\delta b\|}{\|b\|} + \frac{\|\delta A\|}{\|A\|} \right)$$

Si supponga che sia $\delta A = 0$. Allora:

$$\frac{1}{k(A)} \frac{\left\|\delta b\right\|}{\left\|b\right\|} \le \frac{\left\|\delta x\right\|}{\left\|x\right\|} \le k(A) \frac{\left\|\delta b\right\|}{\left\|b\right\|}$$

Vediamo un metodo analitico per ricavare il numero di condizionamento K(A).

Siano A, $F \in \Re^{nxn}$, b, $f \in \Re^n$, $\epsilon \in \Re^+$, $det(A) \neq 0$.

$$\begin{cases} \left(A + \varepsilon F \right) x(\varepsilon) = b + \varepsilon f \\ x(0) = x \end{cases}$$
 (3)

Sia ε piccolo, det(A + ε F) \neq 0. La soluzione della (3) e' data da:

$$x(\varepsilon) = (A + \varepsilon F)^{-1}(b + \varepsilon f)$$

Deriviamo la (3) rispetto ad ε nell' intorno dello zero:

$$Fx(\varepsilon) + (A + \varepsilon F) \dot{x}(\varepsilon) = f$$

Per
$$\varepsilon = 0$$
 si ha:
$$Fx(0) + Ax(0) = f$$

Da cui:
$$x(0) = A^{-1}(f - Fx(0))$$

Se:
$$x(\varepsilon) \approx x(0) + \varepsilon x(0)$$
si ha:
$$\frac{\left\|x(\varepsilon) - x(0)\right\|}{\left\|x(0)\right\|} \approx$$

$$\frac{\left\|\varepsilon x(0)\right\|}{\left\|x(0)\right\|} = \frac{\left\|\varepsilon A^{-1}(f - Fx(0))\right\|}{\left\|x(0)\right\|} \le \varepsilon \left\|A^{-1}\right\| \left(\frac{\left\|f\right\|}{\left\|x(0)\right\|} + \left\|F\right\|\right) = \varepsilon \left\|A^{-1}\right\| \left\|A\right\| \left(\frac{\left\|f\right\|}{\left\|A\right\|\left\|x\right\|} + \frac{\left\|F\right\|}{\left\|A\right\|}\right) \le$$

$$\le k(A) \left(\frac{\left\|\varepsilon f\right\|}{\left\|b\right\|} + \frac{\left\|\varepsilon F\right\|}{\left\|A\right\|}\right)$$

Quindi, il numero di condizionamento $k(A) = ||A|||A^{-1}|| e'$ correlato all'errore da:

$$k(A) \ge \frac{\text{errore sui risultati}}{\text{errore sui dati}}$$

Quanto più k(A) è prossimo ad 1 tanto piu' A è ben condizionata. Pero' la conoscenza di $\|A^{-1}\|$ non è facile da ottenere.

Modo empirico (analisi a posteriori)

Perturbare i dati e vederne l'influenza sui risultati. Se la matrice non è mal condizionata si può risolvere il sistema.

Esempio di matrice mal condizionata: la matrice di Hilbert.

$$H_{n} = \begin{bmatrix} 1 & \frac{1}{2} & \frac{1}{3} & \dots & \frac{1}{n} \\ \frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \frac{1}{n+1} \\ \vdots & & & \\ \frac{1}{n} & \frac{1}{n+1} & \dots & \frac{1}{2n-1} \end{bmatrix}$$

n
$$k(H_n)$$

$$3 5 \cdot 10^2$$

$$4 1 \cdot 10^4$$

5
$$4 \cdot 10^5$$

$$6 1 \cdot 10^7$$

$$10 1 \cdot 10^{13}$$

Correlazione tra k(A) e $\rho(A)$:

$$k(A) \ge \rho(A) \cdot \rho(A^{-1})$$

$$k(A) \ge \frac{\max_{\lambda \in \sigma} |\lambda|}{\min_{\lambda \in \sigma} |\lambda|}$$

Sia quindi A una matrice non singolare e ben condizionata.

Metodi diretti e metodi iterativi

Mentre i **metodi diretti** sono adatti ai sistemi con **matrici piene, i metodi iterativi** sono adatti ai sistemi con **matrici sparse**, contenenti cioe' molti zeri.

Metodi diretti. Poiché il risultato di tali metodi e' sempre un sistema triangolare, occupiamoci prima di risolvere un tale sistema.

Risoluzione di sistemi triangolari

- Metodo delle sostituzioni in avanti.

Sia dato il seguente sistema lineare 3x3 non degenere:

$$\begin{bmatrix} \ell_{11} & 0 & 0 \\ \ell_{21} & \ell_{22} & 0 \\ \ell_{31} & \ell_{32} & \ell_{33} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$

$$Lx = b$$

Poiché, per ipotesi, $det(L) \neq 0 \implies \ell_{ii} \neq 0$, la soluzione è quindi data da:

$$\begin{cases} x_1 = b_1/\ell_{11} \\ x_2 = (b_2 - \ell_{21}x_1)/\ell_{22} \\ x_3 = (b_3 - \ell_{31}x_1 - \ell_{32}x_2)/\ell_{33} \end{cases}$$

In generale si ha quindi:

$$x_1 = b_1 / \ell_{11}$$

$$x_i = \left(b_i - \sum_{j=1}^{i-1} \ell_{ij} x_j\right) / \ell_{ii}$$
 $i = 2, ..., n$

Costo computazionale: numero di moltiplicazioni e divisioni = n(n+1)/2 numero di addizioni e sottrazioni = n(n-1)/2 per un totale di $\approx n^2$ flops.

- Metodo delle sostituzioni indietro.

Si deve risolvere il sistema: Ux = b ovvero:

$$\begin{bmatrix} u_{11} & u_{12} & u_{13} \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$

$$\Rightarrow x_n = b_n / u_{nn}$$

$$x_i = \left(b_i - \sum_{j=i+1}^n u_{ij} x_j\right) / u_{ii} \quad i = n-1,...,1$$

che ha la stessa complessità computazionale del metodo precedente.

Metodi diretti

La soluzione è ottenuta con un numero finito di passi.

Metodo di eliminazione di Gauss

Sia $Ax = b \operatorname{con} \operatorname{det}(A) \neq 0$:

$$\begin{cases} a_{11}x_1 + ... + a_{1n}x_n = b_1 \\ \vdots \\ a_{n1}x_1 + ... + a_{nn}x_n = b_n \end{cases}$$

Sia $a_{11} \neq 0$. Se ciò non si ha si scambia la prima riga con una delle successive in cui il coefficiente di x_1 sia diverso da zero.

Sia $m_{i1}^{(1)} = -\frac{a_{i1}}{a_{11}}$ per i = 2,...,n e aggiungiamo alla i-esima equazione la prima equazione

moltiplicata per m_{i1}. Si ha:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + ... + a_{1n}x_n = b_1 \\ a_{22}^{(2)}x_2 + ... + a_{2n}^{(2)}x_n = b_2^{(2)} \\ \vdots \\ a_{n2}^{(2)}x_2 + ... + a_{nn}^{(2)}x_n = b_n^{(2)} \end{cases}$$

dove:
$$a_{ij}^{(2)} = a_{ij} + m_{i1}^{(1)} a_{1j}$$
 i, $j = 2,...,n$
 $b_i^{(2)} = b_i + m_{i1}^{(1)} b_1$ i = 2,...,n

Operiamo allo stesso modo nel secondo passo moltiplicando per $m_{i2} = -\frac{a_{i2}^{(2)}}{a_{22}^{(2)}}$.

Al passo n-1 si ottiene un sistema triangolare che si risolve con il metodo della sostituzione all'indietro.

Il costo computazionale del metodo di Gauss e' $\approx \frac{4}{3}n^3$.

Perché il metodo di Gauss funzioni è necessario che gli elementi a_{ii} siano diversi da zero. Ciò non è comunque sufficiente a garantire che nei passi successivi gli elementi diagonali non si annullino. Infatti sia:

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 7 & 8 & 9 \end{bmatrix} \quad a_{ii} \neq 0 , i=1,2,3$$

Eppure:
$$A^{(2)} = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 0 & -1 \\ 0 & -6 & -12 \end{bmatrix} \quad da \ cui \ a_{22}^{(2)} = 0$$

Abbiamo quindi bisogno di condizioni più restrittive su A. Vedremo più avanti che se tutti i minori principali di A sono non nulli allora anche gli elementi diagonali in tutti i passi di eliminazione saranno non nulli. Poiché la matrice A ha il secondo minore principale uguale a zero, scambiando in $A^{(2)}$ la seconda e la terza riga il metodo funziona.

Per evitare inoltre problemi di arrotondamento si usano le tecniche del *pivot parziale* e del *pivot totale*.

Pivot parziale. Al j-esimo passo si cerca la riga I contenente il massimo elemento della j-esima colonna: $a_{Ij} = \max_{j \leq i \leq n} \left| a_{ij} \right| \text{ e si scambia la riga i con la riga I. Pertanto al primo passo: } a_{I1} = \max_{I \leq i \leq n} \left| a_{i1} \right| \text{ . Usa } n^2 \text{ confronti.}$

Pivot totale. Si trova il massimo elemento della matrice: $a_{IJ} = \max_{i,j} |a_{ij}|$ e si scambiano la riga i con la riga I e la colonna j con la colonna J. Usa 2/3 n³ confronti.

Il metodo del pivot totale è più preciso ma bisogna memorizzare l'ordine di eliminazione delle variabili e quindi si occupa molta memoria.

Metodi di fattorizzazione. Sono una riformulazione matriciale del metodo di Gauss. Consistono nel trovare una matrice S non singolare e formare un sistema equivalente a quello originale.

$$Ax = b \implies SAx = Sb, SA = U$$

U = matrice triangolare superiore.

Se S è triangolare inferiore lo è pure S-1:

$$A = S^{-1}U = LU$$

Riformulazione matriciale del metodo di Gauss

I vantaggi di fattorizzare A nel prodotto LU derivano dal fatto che L ed U non dipendono dal termine noto. Poiché il costo computazionale della procedura di eliminazione è ≈n³flops si ha un risparmio di operazioni se si devono risolvere più sistemi lineari che hanno la stessa matrice.

Sia:
$$A = \begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{n1} & \dots & a_{nn} \end{bmatrix}$$
e:
$$L_{1} = \begin{bmatrix} 1 & & & 0 \\ m_{21} & 1 & & \\ \vdots & & \ddots & & \\ m_{n} & 0 & & 1 \end{bmatrix} \quad \text{con } m_{i1} = -\frac{a_{i1}}{a_{11}} \quad i = 2, \dots n$$

Il prodotto L₁A equivale al primo passo di Gauss.

In generale, il passo i-esimo e' L, A, dove:

$$L_{i} = \begin{bmatrix} 1 & & & & & \\ & \ddots & & & 0 & \\ & m_{ji} & 1 & & \\ 0 & \vdots & 0 & \ddots & \\ & m_{ni} & & 1 \end{bmatrix} \quad \text{con } m_{ji} = -\frac{a_{ji}^{(i)}}{a_{ii}^{(i)}} \quad j = i+1,...n$$

Alla fine si ha: $U = L_{n-1}L_{n-2}...L_2L_1A$

Poniamo: $\tilde{L} = L_{n-1}...L_1 \implies U = \tilde{L}A$; $A = \tilde{L}^{-1}U$ e ponendo $L = \tilde{L}^{-1}$ si ha: A = LU.

La soluzione di

$$Ax = b \Leftrightarrow LUx = b$$

si trova in due passi:

i) si pone: Ly = b e si risolve per y

ii) da: Ux = y si trova x.

La fattorizzazione LU può essere combinata con il pivoting e con lo scaling dei fattori mediante la pre o post moltiplicazione con matrici di permutazione.

Matrici di permutazione

Una matrice di permutazione è una matrice ottenuta scambiando le righe o le colonne della matrice identità. In particolare, scambiando la riga i con la riga j di I e premoltiplicando la matrice così ottenuta per A si ottiene lo stesso scambio di righe, invece postmoltiplicando si ottiene lo scambio di colonne.

In generale, se vogliamo scambiare la riga i con la riga j dobbiamo premoltiplicare A per la matrice $P^{(i,j)}$ di elementi

$$p_{rs}^{(i,j)} = \begin{cases} 1 & se \quad r = s = 1,...,i-1,i+1,...,j-1,j+1,...,n \\ 1 & se \quad r = j,s = i \quad o \quad r = i,s = j \\ 0 & altrimenti \end{cases}$$

Così, ad esempio, se: $P = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$, il prodotto PA darà uno scambio della prima e

seconda riga, mentre AP darà uno scambio della prima e seconda colonna.

Non c'è comunque <u>unicità</u> <u>nella scelta di L ed U</u> se L ed U sono generiche. Infatti:

$$\begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{n1} & \cdots & a_{nn} \end{bmatrix} = \begin{bmatrix} \ell_{11} & & 0 \\ \vdots & \ddots & \\ \ell_{n1} & \cdots & \ell_{nn} \end{bmatrix} \begin{bmatrix} \mathbf{u}_{11} & \cdots & \mathbf{u}_{1n} \\ & \ddots & \\ 0 & & \mathbf{u}_{nn} \end{bmatrix}$$

Uguagliando i termini si hanno n^2 equazioni che però contengono ognuna $\frac{n(n+1)}{2}$

incognite per un totale di n^2 + n incognite; n di esse vanno quindi determinate arbitrariamente.

Siano L₁U₁ ed L₂U₂ due fattorizzazioni di A:

$$A = L_1U_1 = L_2U_2 \implies L_2^{-1}L_1 = U_2U_1^{-1}$$

Poiché la matrice a sinistra è triangolare inferiore e quella a destra è triangolare superiore, perche' esse siano uguali devono necessariamente essere diagonali. Indicando tale matrice diagonale con D, si ha: $L_1 = L_2D$, $U_1 = D^{-1}U_2$

Scegliendo come costanti arbitrarie

$$\ell_{11} = \ell_{22} = \dots = \ell_{nn} = 1$$

si ha il metodo di **Doolittle**, che è il metodo di fattorizzazione equivalente all'eliminazione gaussiana senza pivoting.

Scegliendo invece:

$$u_{11} = u_{22} = \dots = u_{nn} = 1$$

si ha il metodo di Crout.

Da un punto di vista computazionale, è possibile memorizzare le matrici L ed U nella stessa area di memoria di A. Pertanto questi ultimi due metodi sono *metodi compatti* in quanto permettono di memorizzare L ed U nell'area di memoria di A non essendo necessario memorizzare gli elementi, rispettivamente, ℓ_{ii} o u_{ii} .

Comunque, non sempre esiste una fattorizzazione LU di A.

Esempio: $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$. Sebbene esista A^{-1} non è possibile fattorizzare A.

Invece la matrice I + A, che è singolare, ha una fattorizzazione LU.

$$I+A=\begin{bmatrix}1 & 1\\ 1 & 1\end{bmatrix}=\begin{bmatrix}1 & 0\\ 1 & 1\end{bmatrix}\begin{bmatrix}1 & 1\\ 0 & 0\end{bmatrix}=LU$$

Se A e' tale che $det(A) \neq 0 \Rightarrow \exists P \text{ matrice di permutazione}:$

$$PA = LU$$

Per due tipi di matrici <u>non</u> <u>è necessario uno scambio di righe o di colonne</u> per aversi la fattorizzazione LU: <u>diagonalmente dominanti, simmetriche definite positive</u>.

I metodi di fattorizzazione modificano la matrice iniziale e a causa dell'effetto del *fill-in*, se la matrice iniziale è *sparsa*, cioè ha molti zeri, si hanno problemi di memoria. In tali casi e' piu' conveniente utilizzare i metodi iterativi.

Metodo di Cholesky.

Teorema.

Sia $A \in \Re^{nxn}$, $A = A^T$, $x^TAx > 0$ per $\forall x \neq 0 \Rightarrow$ esiste almeno una L triangolare inferiore :

$$A = LL^{T}$$

Se si impone che ℓ_{ii} >0 la fattorizzazione è unica.

Dimostrazione.

Per il criterio di Sylvester: $det(A_k) > 0 \forall k$.

Per il teorema precedente esiste un'unica fattorizzazione LU. Ponendo:

$$\begin{bmatrix} \mathbf{u}_{11} & \mathbf{0} \\ \vdots & \ddots \\ \mathbf{u}_{1n} & \cdots & \mathbf{u}_{nn} \end{bmatrix} \begin{bmatrix} \mathbf{u}_{11} & \cdots & \mathbf{u}_{1n} \\ & \ddots & \\ \mathbf{0} & & \mathbf{u}_{nn} \end{bmatrix} = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{n1} & \cdots & a_{nn} \end{bmatrix}$$

si ha:
$$a_{kk} = \sum_{p=1}^{k} u_{pk}^2 = u_{kk}^2 + \sum_{p=1}^{k-1} u_{pk}^2 \implies u_{kk}^2 = a_{kk} - \sum_{p=1}^{k-1} u_{pk}^2$$

$$a_{kj} = \sum_{i=1}^{k} u_{ki} u_{ij} = u_{kk} u_{kj} + \sum_{i=1}^{k-1} u_{ki} u_{ij} \implies u_{kj} = \left(a_{kj} - \sum_{i=1}^{k-1} u_{ki} u_{ij}\right) / u_{jj} \quad k > j$$

da cui si ha il metodo di Cholesky:

$$u_{ij} = \sqrt{a_{11}}$$

$$u_{ij} = \left(a_{ij} - \sum_{k=1}^{j-1} u_{ik} u_{jk}\right) / u_{jj} \quad i = 2, ..., n \quad j=1, ... i-1$$

$$u_{ii} = \left(a_{ii} - \sum_{k=1}^{i-1} u_{ik}^2\right)^{1/2} \quad i = 2, ..., n$$

Sistemi tridiagonali (Algoritmo di Thomas)

 a_{ij} = 0 : |i - j| > 1. Scriviamo la matrice, che ha 3n-2 elementi, come prodotto di due matrici particolari le cui incognite sono α_i , i=1,...,n e γ_i , i=1,...,n-1.

Costo computazionale: 8n - 7 flops.

Metodi iterativi

I metodi iterativi generano una successione di vettori $\{x^{(k)}\}_{k\in\mathbb{N}}$ che si spera converga alla soluzione di $A\underline{x} = \underline{b}$. La matrice A non viene modificata.

Sia $A \in Mat(n,n)$, $det(A) \neq 0$. Poniamo:

$$Ax = b$$

 $A = M - N$
 $(M - N)x = b$
 $Mx^{(k+1)} = Nx^{(k)} + b$
 $x^{(k+1)} = M^{-1}Nx^{(k)} + M^{-1}b$

Una decomposizione o *splitting* di A si dice *regolare* se: $det(M) \neq 0$, $M^{-1} \geq 0$, $N \geq 0$. Un metodo iterativo è detto *convergente* se per qualunque vettore iniziale x_0 la successione $\{x^{(k)}\}_{k\in\mathbb{N}}$ è convergente.

Teorema. Sia A = M - N uno splitting regolare di A e sia: $||M^{-1}N|| \le \lambda < 1$. Allora:

- I) A è non singolare
- II) Il metodo iterativo associato a tale splitting è convergente
- III) $||x^{(k)} x|| \le \lambda^k ||x^{(0)} x||$ che dà un limite all'errore commesso.

Teorema. Condizione necessaria e sufficiente perché un <u>metodo iterativo sia convergente</u> è che: $\rho(M^{-1}N) < 1$.

Condizioni necessarie per la convergenza di un metodo iterativo di facile verifica:

- poiché il determinante di una matrice è il prodotto degli autovalori, allora se | det(M-1N) |≥1 almeno uno degli autovalori è ≥1 e quindi il metodo non può convergere.
- Poiché la traccia $^{(*)}$ di una matrice è la somma degli autovalori, allora se $|t_r(M^{-1}N)| \ge n$ almeno uno degli autovalori è ≥ 1 e quindi il metodo non può convergere.

Quindi: $|\det(M^{-1}N)| < 1$, $|t_r(M^{-1}N)| < n$ sono condizioni necessarie per la convergenza del metodo.

(*) ricordiamo che:
$$t_r(A) = \sum_{i=1}^n a_{ii}$$
.

Teorema. Condizione necessaria e sufficiente perché un metodo iterativo sia convergente è che: $\rho(M^{-1}N) < 1$.

Metodo di Jacobi

Sia dato un sistema lineare di ordine 3.

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1 \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = b_2 \\ a_{31}x_1 + a_{32}x_2 + a_{33}x_3 = b_3 \end{cases} \quad \text{con } a_{11}, a_{22}, a_{33} \neq 0.$$

Ricaviamo le componenti:

$$\begin{cases} x_1 = (b_1 - a_{12}x_2 - a_{13}x_3)/a_{11} \\ x_2 = (b_2 - a_{21}x_1 - a_{23}x_3)/a_{22} \\ x_3 = (b_3 - a_{31}x_1 - a_{32}x_2)/a_{33} \end{cases}$$

Partendo da un vettore iniziale arbitrario $x^{(0)} \in \mathbb{R}^3$ si genera la successione $x^{(k)}$ dalle relazioni:

$$\begin{cases} x_1^{(k+1)} = \left(b_1 - a_{12}x_2^{(k)} - a_{13}x_3^{(k)}\right) / a_{11} \\ x_2^{(k+1)} = \left(b_2 - a_{21}x_1^{(k)} - a_{23}x_3^{(k)}\right) / a_{22} \\ x_3^{(k+1)} = \left(b_3 - a_{31}x_1^{(k)} - a_{32}x_2^{(k)}\right) / a_{33} \end{cases}$$

Per un sistema generale, il metodo di Jacobi è:

$$x_{i}^{(k+1)} = \left(b_{i} - \sum_{j=1}^{i-1} a_{ij} x_{j}^{(k)} - \sum_{j=i+1}^{n} a_{ij} x_{j}^{(k)}\right) / a_{ii} \qquad i = 1,...,n$$

Metodo di Gauss-Seidel

Poiché nella prima sommatoria si usano le componenti "vecchie" si può usare una variante che tiene conto delle "nuove" componenti e ciò dà luogo al metodo di Gauss-Seidel che in generale è più veloce del metodo di Jacobi.

$$x_{i}^{(k+1)} = \left(b_{i} - \sum_{j=1}^{i-1} a_{ij} x_{j}^{(k+1)} - \sum_{j=i+1}^{n} a_{ij} x_{j}^{(k)}\right) / a_{ii} \qquad i = 1,...,n$$

Criterio di arresto per i metodi iterativi.

Data una tolleranza ε, un metodo iterativo si deve fermare quando:

$$\frac{\left\|\mathbf{x}^{(k+1)} - \mathbf{x}^{(k)}\right\|_{\infty}}{\left\|\mathbf{x}^{(k)}\right\|_{\infty}} < \epsilon$$

Poiché ciò potrebbe non verificarsi mai, bisogna introdurre un altro criterio di arresto dato dal numero massimo di iterazioni da eseguire.

Riformulazione matriciale dei metodi di Jacobi e Gauß-Seidel

Per capire quali sono le condizioni sotto le quali un metodo iterativo converge, decomponiamo A: A = D - E - F

dove D è la diagonale di A, E ed F sono, rispettivamente, la sua parte inferiore e quella superiore cambiate di segno.

N.B. Indicati con a_{ij}, e_{ij}, f_{ij} gli elementi di A, E, F, si avrà: $e_{ij} = -a_{ij}, \ i > j, \ f_{ij} = -a_{ij}, \ i < j$.

$$(D - E - F)x = b$$

 $Dx^{(k+1)} = (E + F)x^{(k)} + b$

Supponiamo che esista D⁻¹ \rightarrow $x^{(k+1)} = D^{-1}(E + F)x^{(k)} + D^{-1}b$

La matrice: $M_J = D^{-1}(E + F)$ e' la matrice di Jacobi.

Convergenza. Il metodo di Jacobi converge se A è strettamente diagonalmente dominante (condizione sufficiente) ovvero se:

$$|a_{ii}| > \sum_{\substack{j=1 \ j \neq i}}^{n} |a_{ij}|$$
 i = 1, ..., n

Per il metodo di Gauss-Seidel si ha:

$$(D - E)x^{(k+1)} = Fx^{(k)} + b$$

Supponiamo che esista (D-E)-1 \rightarrow $x^{(k+1)} = (D - E)^{-1}Fx^{(k)} + (D - E)^{-1}b$

La matrice: $M_{GS} = (D - E)^{-1}F$ è la matrice di Gauss-Seidel.

Convergenza. Il metodo di Gauss – Seidel converge se A è simmetrica definita positiva (condizione sufficiente):

$$a_{ij} = a_{ji}$$
$$x^{T}Ax \ge 0 \quad \forall \ x \ne 0$$

e converge anche se A è strettamente diagonalmente dominante.

Tali metodi sono molto lenti se $\rho(M^{-1}N) \sim 1$, dove:

$$M = D$$
, $N = E + F$ in Jacobi: $M_J = D^{-1}(E + F)$

$$M = D - E$$
, $N = F$ in Gauss-Seidel: $M_{GS} = (D - E)^{-1}F$

Per accelerare la convergenza si usano i metodi di rilassamento.

Metodo SOR (Successive Over-Relaxation)

Tale metodo consiste nel calcolare una iterata di Gauss-Seidel ed effettuare una correzione dipendente da un parametro ω:

$$x^{(k+1)} = \omega \hat{x}^{(k+1)} + (1 - \omega)x^{(k)}$$

dove $\hat{x}^{(k+1)}$ è il passo (k+1) di G.S.

Ricaviamo tale schema:

$$Ax = b \rightarrow \omega Ax = \omega b$$

$$Dx + \omega (D - E - F)x = \omega b + Dx$$

$$Dx - \omega Ex = Dx + \omega (F - D)x + \omega b$$

$$(D - \omega E)x = [D(1 - \omega) + \omega F]x + \omega b$$

Se ω = 1 si ha G.S. . Se $\omega \neq 0$ la parte sinistra è triangolare inferiore. Introduciamo L ed R:

$$L = D^{-1}E, R = D^{-1}F$$

$$x^{(k+1)} = H(\omega)x^{(k)} + \omega(D - \omega E)^{-1}b$$

dove:

$$\begin{split} H(\omega) &= (D - \omega E)^{-1}[D(1 - \omega) + \omega F] = [D(I - \omega L)]^{-1}D[(1 - \omega)I + \omega R] = (I - \omega L)^{-1}D^{-1}D[(1 - \omega)I + \omega R] = \\ &= (I - \omega L)^{-1}[(1 - \omega)I + \omega R] \end{split}$$

Convergenza per SOR

Teorema.

$$\rho(H(\omega)) \ge |\omega-1| \quad \forall \ \omega \in \mathbb{R}.$$

Pertanto SOR diverge se $\omega \le 0$ oppure $\omega \ge 2$ e si ha convergenza per: $0 < \omega < 2$

Dim: Siano λ_i gli autovalori di $H(\omega)$. Si ha:

$$\left| \prod_{i=1}^{n} \lambda_{i} \right| = |\det(H(\omega))| = |\det[(I - \omega L)^{-1}] \det[(1 - \omega)I + \omega R]| = |1 - \omega|^{n}$$

Pertanto deve esistere almeno un λ_i tale che $|\lambda_i| \ge |1 - \omega|$ e perché ci sia convergenza deve essere $|1 - \omega| < 1$ cioè $0 < \omega < 2$.

Se A è simmetrica definita positiva, $0 < \omega < 2$ è condizione necessaria e sufficiente.

Se A è strettamente diagonalmente dominante, $0 < \omega \le 1$ è condizione necessaria e sufficiente.

Metodo del gradiente

Per matrici simmetriche definite positive, la risoluzione del sistema lineare:

$$Ax = b$$

è equivalente a trovare il punto di minimo $\underline{x} \in \mathbb{R}^n$ della forma quadratica:

$$\phi (\underline{\mathbf{y}}) \equiv \frac{1}{2} \underline{\mathbf{y}}^{\mathrm{T}} \mathbf{A} \underline{\mathbf{y}} - \underline{\mathbf{y}}^{\mathrm{T}} \mathbf{b}$$

calcolando infatti il gradiente di ϕ , che ha componenti: $\frac{g\phi}{gy_i}$ i = 1, ..., n si ha:

$$\nabla \phi(\underline{y}) = \frac{1}{2} (A^{T} + A)\underline{y} - \underline{b} = A\underline{y} - \underline{b}$$

poiché A^T = A. Pertanto:

$$Ax = b \Leftrightarrow \nabla \phi(\underline{y}) = 0$$

Problema: determinare x minimo di ϕ partendo da $\underline{x}^{(0)} \in \mathbb{R}^n$ e quindi scegliere opportune direzioni lungo le quali avvicinarsi ad x. Tale direzione non è nota a priori. Sia:

$$\underline{\mathbf{x}}^{(k+1)} = \underline{\mathbf{x}}^{(k)} + \alpha_k \, \underline{\mathbf{d}}^{(k)}$$

 α_k = lunghezza del passo lungo la direzione $\underline{d}^{(k)}$.

Una delle scelte per tale direzione e' direzione di discesa piu' rapida: metodo steepest descent.

$$\nabla \phi(\underline{x}^{(k)}) = A\underline{x}^{(k)} - \underline{b} = -r^{(k)}$$
$$\underline{d}^{(k)} = \nabla \phi(\underline{x}^{(k)})$$

 α_k si calcola minimizzando ϕ :

$$\phi(\underline{x}^{(k+1)}) = \frac{1}{2} (\underline{x}^{(k)} + \alpha_k \underline{r}^{(k)})^T A(\underline{x}^{(k)} + \alpha_k \underline{r}^{(k)}) - (\underline{x}^{(k)} + \alpha_k \underline{r}^{(k)})^T b$$

$$\frac{g\phi}{g\alpha_k} = 0 \implies \alpha_k = \frac{\underline{\mathbf{r}}^{(k)T} r^{(k)}}{r^{(k)T} A r^{(k)}}$$

Ciò ha una semplice interpretazione geometrica nel caso n = 2.

Sia A = diag(
$$\lambda_1$$
, λ_2), $0 < \lambda_1 \le \lambda_2$, $\underline{b} = (b_1, b_2)^T$

Le curve ϕ (x_1 , x_2) = c descrivono una successione di ellissi.

Se λ_1 = λ_2 si hanno dei cerchi e il metodo converge in una sola iterazione poiché la direzione del gradiente passa per il centro. Se invece $\lambda_2 >> \lambda_1$ il metodo converge lentamente.

N.B. Se la matrice A non è simmetrica il metodo è applicato alla matrice A^TA che è simmetrica e si risolve il sistema equivalente:

$$A^{T}Ax = A^{T}b$$

La convergenza del metodo è migliorata se come direzione di discesa non si sceglie quella più ripida, determinata dal gradiente, ma si sceglie la direzione coniugata. Si ha quindi il metodo dei gradienti coniugati.