ASSIGNMENT

02

NAME: Abdullah Al Mahmud

ID: 22201502

SEC: 18

$$D = (+30-16)$$
, $(20+10)$
= $20,30$
 $\pm E = 0$
 $\pm L = 1$

-	P	ND	PL/PE	+1	F.E.	EL
4	pp	30	PL	1.33	0	1
	botton	-30	PE	6.33	0.33	1
Rig	ght	20	PC.	0.75	0.33	0.75
le	£4	-20	PE	71.5	0.33	.75
_			1	4		

$$P(tE)_{x}=(0+(0.33)\times 20)$$

 $P(tE)_{y}=-10+(0.33)\times 30$
 $=-0.1$
 $=-0.1$

$$P(41) = 10 + (.75) \times 20$$
= 25
 $P(45) = -10 + (.75) \times 30$
= 12.5
(25, 12.5)

$$M_{L} = \begin{vmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{vmatrix}$$
 Flip Maxis

 $M_{L} = \begin{vmatrix} c_{0}s_{90} & -si_{1}s_{90} & 0 \\ bi_{1}s_{90} & c_{0}s_{90} & 0 \\ 0 & 0 & 1 \end{vmatrix}$
 $= \begin{vmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{vmatrix}$

$$M_3 = \begin{vmatrix} 1 & 0 & -7 \\ 0 & 1 & 6 \\ 0 & 0 & 1 \end{vmatrix}$$
 + translate (-7,6)

for y=x, 0=45° Nortate 45° dockwise

RECORD OF BUT COURSES OF SECTION OF SECTIONS OF

12 . 1 . 1 . . .

$$M_{4} = \begin{vmatrix} \cos(45) & -\sin(-45) & 0 \\ \sin(-45) & \cos(-45) & 0 \end{vmatrix}$$

$$= \begin{vmatrix} 0.707 & 0.707 & 0 \\ -0.707 & .707 & 0 \end{vmatrix}$$

$$M_{5} = \begin{vmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{vmatrix}$$

$$M_{6} = \begin{vmatrix} \cos 45 & -\sin 45 & 0 \\ \sin 45 & \cos 45 & 0 \\ 0 & 0 & 1 \end{vmatrix}$$

$$= \begin{vmatrix} .707 & -.707 & 0 \\ .707 & 0.707 & 0 \\ 0 & 0 & 1 \end{vmatrix}$$

composite matrix =
$$M_6 \times M_5 \times M_9 \times M_3 \times M_2 \times M_1$$

= $M_6 \times M_5 \times M_9 \times M_9 \times M_3 \times M_2 \times M_1$
= $M_6 \times M_5 \times M_9 \times M_9 \times M_9 \times M_1 \times M_2 \times M_1$
= $M_6 \times M_5 \times M_9 \times M_9 \times M_9 \times M_1 \times M_2 \times M_1$
= $M_6 \times M_5 \times M_9 \times M_9 \times M_9 \times M_1 \times M_2 \times M_1$
= $M_6 \times M_5 \times M_9 \times M_9 \times M_9 \times M_1 \times M_2 \times M_1$
= $M_6 \times M_5 \times M_9 \times M_9 \times M_9 \times M_1 \times M_2 \times M_1$
= $M_6 \times M_5 \times M_9 \times M_9 \times M_9 \times M_1 \times M_1 \times M_1 \times M_2 \times M_1$
= $M_6 \times M_5 \times M_9 \times M_9 \times M_9 \times M_1 \times M_1$