Regression Analysis Other Regression Methods

Nicoleta Serban, Ph.D.

Associate Professor

Stewart School of Industrial and Systems Engineering

Time Series Regression

About this lesson

Multiple Linear Regression

Data: $\{(x_{11},...,x_{1p}),Y_1\},....,\{(x_{n1},...,x_{np}),Y_n\}$

What if uncorrelated errors assumption does not hold?

- Degrees of freedom are not equal to the sample size
- Higher variability or uncertainty than estimated thus less reliable statistical inference
- Linearity/Mean Zero Assumption: $E(\varepsilon_i) = 0$
- Constant Variance Assumption: $Var(\varepsilon_i) = \sigma^2$
- Independence Assumption: $\{\epsilon_1,...,\epsilon_n\}$ are independent random variables
- Normality Assumption: $\varepsilon_i \sim Normal$

Example: Time Series

Correlation in time:

- US yearly GDP
- Monthly sales of Australian red wine
- Monthly accidental deaths in the U.S.
- Monthly interest rates in the U.S.
- Daily Average Temperature from La Harpe station in Hancock County, Illinois
- Daily stock price of IBM stock
- 1-minute intraday S&P500 return

Time Series: Characteristics

- Trend: long-term increase or decrease in the data over time
- Seasonality: influenced by seasonal factors (e.g. quarter of the year, month, or day of the week)
- Periodicity: exact repetition in regular pattern (seasonal series often called periodic, although they do not exactly repeat themselves)
- Cyclical trend: data exhibit rises and falls that are not of a fixed period
- Heteroskedasticity: varying variance with time
- Correlation: positive (successive observations are similar) or negative (successive observations are dissimilar)

Example: GDP

Example: Daily IBM Stock Price

Example: S&P500 Intraday

Is Time Series Analysis Necessary?

Time Series ⇒ **Dependence**

- Data redundancy: number of degrees of freedom is smaller than T (T is the number of observations)
- Data sampling: Y_t , t = 1,...,T concentrated about a small part of the probability space

Ignoring dependence leads to

- Inefficient estimates of regression parameters
- Poor predictions
- Standard errors unrealistically small (too narrow CI ⇒ improper inferences)

Time Series: Basics

Data: Y_t , where t indexes time, e.g. minute, hour, day, month

Model: $Y_t = m_t + s_t + X_t$

- m_t is a trend component;
- s_t is a seasonality component with known periodicity d $(s_t=s_{t+d})$ such that $\sum_{j=1}^d s_j=0$
- X_t is a stationary component, i.e. its probability distribution does not change when shifted in time

Estimation: m_t and s_t are first estimated and subtracted from Y_t to have left the stationary process X_t to be model using time series modeling approaches.

Summary

