Wydział Elektroniki i Technik Informacyjnych Politechnika Warszawska

Projektowanie układów sterowania (projekt grupowy)

Sprawozdanie z projektu i ćwiczenia laboratoryjnego nr 1, zadanie nr 4

Piotr Chachuła, Cezary Dudkiewicz, Piotr Roszkowski

Spis treści

I.	$\mathbf{Projekt}$

1.	Wer	yfikacja punktu pracy
		Opis postępowania
2.	Odp	owiedzi skokowe
	2.1.	Wyznaczanie odpowiedzi skokwych
	2.2.	Wyznaczanie charakterystyki statycznej procesu
	2.3.	Wzmocnienie statyczne
3.	Prze	ekształcenie odpowiedzi skokowej
4.	Regi	ulator PID
	4.1.	Algorytm działania
	4.2.	Ręczne strojenie regulatora PID
		4.2.1. Wyliczenie wstępnych parametrów regulatora
		4.2.2. Zmniejszenie przeregulowania
		4.2.3. Dalsze zmniejszenie przeregulowania
		4.2.4. Przyspieszenie regulatora
		4.2.5. Człon różniczkujacy

Część I

Projekt

1. Weryfikacja punktu pracy

1.1. Opis postępowania

W celu sprawdzenia poprawności wartości sygnałów $U_{\rm pp}$ i $Y_{\rm pp}$ pobudzono obiekt sterowaniem o wartości $U_{\rm pp}=2,0$ i sprawdzeniu czy stabilizuje się on w punkcjie pracy $Y_{\rm pp}=0,8$. Do symulacji wyjscia obiektu użyto udostępnionej funkcji symulacja_obiektu4Y. Do testów napisano skrypt PROJ1_1.m. Wyniki przedstawiono poniżej.

1.2. Wyniki

Zgodnie z przewidywaniami wyjscie obiektu ustaliło się na wartości $Y_{\rm pp}=2,0.$ Punkt pracy ustalony jest więc poprawnie.

Rys. 1.1. Odpowiedź obiektu na sterowanie
i $U_{\rm pp}=0.8$

2. Odpowiedzi skokowe

2.1. Wyznaczanie odpowiedzi skokwych

W celu wyznaczenia odpowiedzi skokowej obiekt, znajdujący się w punkcie pracy (tzn. $U_{pp}=2.0,Y_{pp}=0.8$) pobudzoną różną zmianą wartoci sterowań. Rysunek 2.1 przedstawia odpowiedź obiektu na jego różne wartosci.

2.2. Wyznaczanie charakterystyki statycznej procesu

Aby wyznaczyć charakterystykę statyczną procesu przeprowadzono analogiczne działania co w rozdziale 1. Tym razem przy użyciu skryptu PROJ1_2.m dla wielu wartosci $U_{\rm pp}$ wyznaczono odpowiadające im $Y_{\rm pp}$ oraz z ich pomocą utworzono wykres 2.2. Jak widać charakterystyka statyczna obiektu jest liniowa, a co za tym idzie obiekt jest liniowy.

2.3. Wzmocnienie statyczne

Wzmocnienie statyczne, czyli stosunek pomiędzy zmianą wartosci wyjscia i zmianą wartosci sterowania w stanie ustalonym. Aby ją wyznaczyć można na przykład znaleźć nachylenie charakterystyki statycznej do osi OX, czyli np.:

$$K_{\text{stat}} = \frac{y(U_{\text{max}}) - y(U_{\text{min}})}{U_{\text{max}} - U_{\text{min}}}$$
(2.1)

W przypadku tak wykreślonej charakterystyki, wzmocnienie statyczne jest równe tangensowi kąta α pomiędzy prostą a osią OX.

$$K_{\text{stat}} = \frac{1,239 - 0,361}{2,8 - 1,2} \approx 0,549$$
 (2.2)

2. Odpowiedzi skokowe 5

Rys. 2.1. Odpowiedzi procesu na skokowe zmiany sterowania w momencie k=11 $\,$

2. Odpowiedzi skokowe 6

Rys. 2.2. Charakterystka statyczna $\boldsymbol{y}(\boldsymbol{u})$ symulowanego procesu

3. Przekształcenie odpowiedzi skokowej

Aby uzyskać znormalizowaną odpowiedź skokową, należy przerzutować ją względem punktu pracy oraz wielkosci skoku, a także przesuąć chwilę skoku sterowania do chwili k=0 (z chwili k_{skok}). Do tego celu można użyć wzoru:

$$s_i = \frac{s_{i+k_{skok}} - Y_{pp}}{\Delta U} \tag{3.1}$$

Wyznaczono ją przy użyciu skrpytu PROJ1_3.m (dla odpowiedzi skokwej przy $\Delta u=0.5$). Następnie przycięto ją do miejsca w którym osiąga 0,995 swojej maksymalnej wartosci. Długosc tej odpowiedzi jest przyjętym horyzontem dynamiki tego obiektu i jest równy 120. Wynik działania przedstawiony jest na rysunku 3. Odpowiedź ta zostanie użyta do zaprojektowania regulatora DMC.

Rys. 3.1. Postać przeksztal
conej odpowiedzi skokowej symulowanego obiektu ze zmianą sterowania w momencie
 $\mathbf{k}{=}0$

4.1. Algorytm działania

Algorytm działania regulatora oraz implementacja została dobrze udokumentowana w pliku doPID.m . Listing jego częsci algorytmicznej przedstawiony jest poniżej:

```
function [ error ] = doPID( paras ) % Tylko dla auto
% Ustawiamy dlugosc symulacji
 sim_len=1200;
 K=paras(1);
Ti=paras(2);
Td=paras(3);
% Czas probkowania
T=1;
% Parametry wygodnego, dyskretnego PIDa
r0=K*(1+T/(2*Ti)+Td/T);
r1=K*(T/(2*Ti)-(2*Td/T)-1);
r2=K*Td/T;
% Inicjalizujemy macierze przechowujace zmienne
Y=zeros(sim_len,1);
U=zeros(sim_len,1);
e=zeros(sim_len,1);
y=zeros(sim_len,1);
u=zeros(sim_len,1);
Yzad=zeros(sim_len,1);
kk=linspace(1,sim_len,sim_len)';
 % Ustalamy wartosci przed rozpoczeciem symulacji na wartosci w punktu pracy
 Y(1:11)=Ypp;
U(1:11)=Upp;
% Tworzymy horyzont wartosci zadanej
Yzad(1:29) = 0.8;
Yzad(30:sim_len/3-1) = 1.0;
Yzad(sim_len/3:2*sim_len/3-1) = 0.6;
Yzad(2*sim_len/3:sim_len) = 0.7;
%Rzutujemy ograniczenia sterowan wzgledem punktu pracy.
Umin=1.2;
Umax=2.8;
deltaumax=0.25;
umin=Umin-Upp;
umax=Umax-Upp;
         k=12:sim_len
% Symulujemy wyjscie obiektu
Y(k)=symulacja_obiektu4Y(U(k-10),U(k-11),Y(k-1),Y(k-2));
% Rzutujemy wartosc wyjscia wzgledem punktu pracy
y(k)=Y(k)-Ypp;
% Liczymy uchyb i uaktualniamy wspolczynnik bledu
e(k)=Yzad(k)-Y(k);
error=error+e(k)^2;
          Liczymy wartosc sterowania
u_wyliczone=r2*e(k-2)+r1*e(k-1)+r0*e(k)+u(k-1);
          \mbox{\it \%} Rzutowanie ograniczen na wartosc sterowania
         if u_wyliczone < umin
    u_wyliczone = umin;
elseif u_wyliczone > umi
    u_wyliczone = umax;
end
```

Listing 4.1. Implementacja regulatora PID

4.2. Ręczne strojenie regulatora PID

4.2.1. Wyliczenie wstępnych parametrów regulatora

W celu dobrania wstępnych parametrów regulatora PID użyto metody eksperymentalnej; przeprowadzono dużą ilosc symulacji dla arbitralnych wartosci $K_{\rm r},\,T_{\rm i},\,T_{\rm d}$. Sposrod ponad 100 symulacji, wybrano te parametry, których wskaźnik jakoci był najlepszy. Stało się to dla regulatora przedstawionego na rysunku 4.2.

Rys. 4.1. Wyjscie dla $K_{\mathrm{r}}{=}1,\,T_{\mathrm{i}}{=}4,\,T_{\mathrm{d}}{=}0{,}5$

Rys. 4.2. Sterowanie dla $K_{\rm r}{=}1,\,T_{\rm i}{=}4,\,T_{\rm d}{=}0{,}5$

4.2.2. Zmniejszenie przeregulowania

W celu zmniejszenia znacznego przeregulowania występującego w regulatorze zmniejszono jego wzmocnienie do $K_{\rm r}{=}0.8$ oraz dodatkowo zmieniono parametr członu różniczkującego do $T_{\rm d}{=}0.25$. Wyniki symulacji dla zmienionego regulatora przedstawone zostały na rysunku 4.4.

Rys. 4.3. Wyjscie dla $K_{\mathrm{r}}{=}0.8,\,T_{\mathrm{i}}{=}4,\,T_{\mathrm{d}}{=}0.25$

Rys. 4.4. Sterowanie dla $K_{\rm r}{=}0.8,\,T_{\rm i}{=}4,\,T_{\rm d}{=}0.25$

4.2.3. Dalsze zmniejszenie przeregulowania

Przeregulowanie ciągle występuję w dosc znacznym stopniu, dlatego w następnym kroku zmneijeszono całkowanie do $T_{\rm i}$ =5 oraz dodatkowo zmniejszono różniczkowanie do $T_{\rm d}$ =0,05. Wyniki symulacji dla zmienionego regulatora przedstawione zostały na rysunku 4.6.

Rys. 4.5. Wyjscie dla $K_{\mathrm{r}}{=}0.8,\,T_{\mathrm{i}}{=}5,\,T_{\mathrm{d}}{=}0.05$

Rys. 4.6. Sterowanie dla $K_{\rm r}{=}0.8,\,T_{\rm i}{=}5,\,T_{\rm d}{=}0.95$

4.2.4. Przyspieszenie regulatora

W celu zwiększenia szybkosci regulatora zwiększono jego wzmocnienie do $K_{\rm r}{=}2,4$ oraz w ramach kompensacji zmniejszono całkowanie do $T_{\rm i}{=}8$. Wyniki symulacji dla zmienionego regulatora przedstawione zostały na rysunku 4.8.

Rys. 4.7. Wyjscie dla $K_{\rm r}{=}0.8,\,T_{\rm i}{=}5,\,T_{\rm d}{=}0.05$

Rys. 4.8. Sterowanie dla $K_{\rm r}{=}0.8,\,T_{\rm i}{=}5,\,T_{\rm d}{=}0.05$

4.2.5. Człon różniczkujący

Podczas wczesniejszego strojenia zauważono fakt, iż zmniejszenie członu różniczkującego pozytywnie wpływa na jakosć regulacji. Postanowiono więc znacznie go zmniejszyć, do wartosci $T_{\rm d}{=}0,0005$. Wyniki symulacji dla zmienionego regulatora przedstawione zostały na rysunku 4.10.

Rys. 4.9. Wyjscie dla $K_{\mathrm{r}}{=}0.8,\,T_{\mathrm{i}}{=}5,\,T_{\mathrm{d}}{=}0.05$

Rys. 4.10. Sterowanie dla $K_{\rm r}{=}0.8,\,T_{\rm i}{=}5,\,T_{\rm d}{=}0.05$

Rys. 4.11. Przebieg oraz sterowanie dla parametrów N = 25, Nu = 5, $\lambda = 0.2$

Rys. 4.12. Przebieg oraz sterowanie dla parametrów N = 25, Nu = 5, $\lambda=1$

Rys. 4.13. Przebieg oraz sterowanie dla parametrów N = 25, Nu = 5, $\lambda = 5$

Rys. 4.14. Przebieg oraz sterowanie dla parametrów N = 25, Nu = 10, $\lambda = 0.2$

Rys. 4.15. Przebieg oraz sterowanie dla parametrów N = 25, Nu = 10, $\lambda=1$

Rys. 4.16. Przebieg oraz sterowanie dla parametrów N = 25, Nu = 10, $\lambda=5$

Rys. 4.17. Przebieg oraz sterowanie dla parametrów N = 25, Nu = 15, $\lambda = 0.2$

Rys. 4.18. Przebieg oraz sterowanie dla parametrów N = 25, Nu = 15, $\lambda=1$

Rys. 4.19. Przebieg oraz sterowanie dla parametrów N = 25, Nu = 15, $\lambda=5$

Rys. 4.20. Przebieg oraz sterowanie dla parametrów N = 25, Nu = 20, $\lambda = 0.2$

Rys. 4.21. Przebieg oraz sterowanie dla parametrów N = 25, Nu = 20, $\lambda=1$

Rys. 4.22. Przebieg oraz sterowanie dla parametrów N = 25, Nu = 20, $\lambda=5$

Rys. 4.23. Przebieg oraz sterowanie dla parametrów N = 50, Nu = 5, $\lambda = 0.2$

Rys. 4.24. Przebieg oraz sterowanie dla parametrów N = 50, Nu = 5, $\lambda=1$

Rys. 4.25. Przebieg oraz sterowanie dla parametrów N = 50, Nu = 5, $\lambda = 5$

Rys. 4.26. Przebieg oraz sterowanie dla parametrów N = 50, Nu = 10, $\lambda = 0.2$

Rys. 4.27. Przebieg oraz sterowanie dla parametrów N = 50, Nu = 10, $\lambda=1$

Rys. 4.28. Przebieg oraz sterowanie dla parametrów N = 50, Nu = 10, $\lambda=5$

Rys. 4.29. Przebieg oraz sterowanie dla parametrów N = 50, Nu = 15, $\lambda = 0.2$

Rys. 4.30. Przebieg oraz sterowanie dla parametrów N = 50, Nu = 15, $\lambda=1$

Rys. 4.31. Przebieg oraz sterowanie dla parametrów N = 50, Nu = 15, $\lambda=5$

Rys. 4.32. Przebieg oraz sterowanie dla parametrów N = 50, Nu = 20, $\lambda = 0.2$

Rys. 4.33. Przebieg oraz sterowanie dla parametrów N = 50, Nu = 20, $\lambda=1$

Rys. 4.34. Przebieg oraz sterowanie dla parametrów N = 50, Nu = 20, $\lambda=5$

Rys. 4.35. Przebieg oraz sterowanie dla parametrów N = 75, Nu = 5, $\lambda = 0.2$

Rys. 4.36. Przebieg oraz sterowanie dla parametrów N = 75, Nu = 5, $\lambda=1$

Rys. 4.37. Przebieg oraz sterowanie dla parametrów N = 75, Nu = 5, $\lambda = 5$

Rys. 4.38. Przebieg oraz sterowanie dla parametrów N = 75, Nu = 10, $\lambda = 0.2$

Rys. 4.39. Przebieg oraz sterowanie dla parametrów N = 75, Nu = 10, $\lambda=1$

Rys. 4.40. Przebieg oraz sterowanie dla parametrów N = 75, Nu = 10, $\lambda=5$

Rys. 4.41. Przebieg oraz sterowanie dla parametrów N = 75, Nu = 15, $\lambda = 0.2$

Rys. 4.42. Przebieg oraz sterowanie dla parametrów N = 75, Nu = 15, $\lambda=1$

Rys. 4.43. Przebieg oraz sterowanie dla parametrów N = 75, Nu = 15, $\lambda=5$

Rys. 4.44. Przebieg oraz sterowanie dla parametrów N = 75, Nu = 20, $\lambda = 0.2$

Rys. 4.45. Przebieg oraz sterowanie dla parametrów N = 75, Nu = 20, $\lambda=1$

Rys. 4.46. Przebieg oraz sterowanie dla parametrów N = 75, Nu = 20, $\lambda=5$

Rys. 4.47. Przebieg oraz sterowanie dla parametrów N = 100, Nu = 5, $\lambda = 0.2$

Rys. 4.48. Przebieg oraz sterowanie dla parametrów N = 100, Nu = 5, $\lambda=1$

Rys. 4.49. Przebieg oraz sterowanie dla parametrów N = 100, Nu = 5, $\lambda=5$

Rys. 4.50. Przebieg oraz sterowanie dla parametrów N = 100, Nu = 10, $\lambda = 0.2$

Rys. 4.51. Przebieg oraz sterowanie dla parametrów N = 100, Nu = 10, $\lambda=1$

Rys. 4.52. Przebieg oraz sterowanie dla parametrów N = 100, Nu = 10, $\lambda=5$

Rys. 4.53. Przebieg oraz sterowanie dla parametrów N = 100, Nu = 15, $\lambda = 0.2$

Rys. 4.54. Przebieg oraz sterowanie dla parametrów N = 100, Nu = 15, $\lambda=1$

Rys. 4.55. Przebieg oraz sterowanie dla parametrów N = 100, Nu = 15, $\lambda=5$

Rys. 4.56. Przebieg oraz sterowanie dla parametrów N = 100, Nu = 20, $\lambda = 0.2$

Rys. 4.57. Przebieg oraz sterowanie dla parametrów N = 100, Nu = 20, $\lambda=1$

Rys. 4.58. Przebieg oraz sterowanie dla parametrów N = 100, Nu = 20, $\lambda=5$