Orange Data Hoops Challenge

"The Data-Alley Oops"

Goal: Understanding Player Performance and predicting the winning Shot.

Challenges:

- Data Inefficiency: Initial data lacked accuracy for predictions, so we
 engineered new features focused on clutch and efficiency metrics.
- Missing Values: The dataset had numerous nulls, requiring careful imputation to ensure model reliability.
- Time Constraints: Limited time meant prioritizing key features and adjustments to quickly boost accuracy.

Exploratory Data Analysis (EDA)

Identified key features impacting game outcomes like scoring trends and clutch performance under pressure.

Feature Engineering

Engineered new features such as rest days, PER(Player Efficiency Rate), Field goal (FG), threepoint (3P) percentages and player clutch stats.

12841 made 9265 missed

Name: count, dtype: int64

	PER	FG_pct	3P_pct	FT_pct	clutch_pct
shooter					
	0.5	0.250000	0.250000	0.312500	0.000000
A'lahn Sumler	1.042129	0.456763	0.394678	0.175166	0.692308
A.J. Hoggard	1.07971	0.512077	0.164251	0.256039	0.722222
A.J. Lopez	1.121212	0.506494	0.329004	0.225108	0.500000
A.J. Neal	0.955414	0.401274	0.458599	0.184713	0.571429
_	-	-	-	***	
Zvonimir Ivisic	1.352113	0.633803	0.225352	0.281690	0.000000
Zy'Nyia White	1.1	0.500000	0.200000	0.400000	0.000000
Zyeir Lawrence	0.5	0.250000	0.000000	0.375000	0.000000
Zyon Pullin	1.253968	0.593254	0.150794	0.341270	0.782609
Zytarious Mortle	0.906103	0.417840	0.272300	0.225352	0.545455

```
temp_filter_columns = ['gene_id', 'action_tem', 'points', 'PER', 'PE_pct', 'PF_pct', 'FF_pct', 'clutch_pct'].
 temp of a df.merge(player_state)["FRN", "F0.pct", "SF.pct", "(Lutch_pct")], left_one'shooter", right_index=True, how='left";
 gone_wise_player_stats = temp_df[temp_filter_columns].drop_duplicates().groupdy(['game_id', 'action_tem']).agg
               # 'points': ['mean', 'max', 'median'],
                'PER's ['mean', 'max', 'median']
                'F0_oct': ['mean', 'max', 'median'],
               'BF_pct': ['mean', 'max', 'median'],
                'FT_pct": ['mean', 'max', 'median'],
                'clutch_pct': {'mean', 'max', 'median'))
             1. unstack!
 gone_wise_player_stats
40157555 1.195221 1278711 129705 1382665 1247056 1264706 0546876 0586411 0546515 0635619 _ 0582275 0495479 0250500 0274011 0546687 0547950 1.000000
401573356 1.192284 1.173806 1.360248 1.266364 1.175062 1.166116 0.544934 0.532174 0.638629 0.607088 _ 0.445455 0.322034 0.223602 0.268139 0.607907 0.618296 1.000000
401634067 1.734574 1.726772 1.246291 1.242105 1.725278 1.725934 0.514723 0.522940 0.621429 0.621053 _ 0.385714 0.442105 0.217647 0.246092 0.367945 0.568154 0.666667
431634088 1.095032 1.12121 1.365854 1.229665 1.094408 1.135135 0.497869 0.499882 0.682927 0.567568 __ 0.328358 0.513514 0.191950 0.193548 0.405403 0.522511 0.666667
401634069 1380533 1346721 1326409 1308642 1373585 1327371 0521557 0496145 0554896 0641638 _ 0303704 0341397 0263837 0393705 0431046 0470799 0666667
401634070 1.17603 1.17693 1.473684 1.246812 1.170732 1.100917 0.547030 0.514873 0.625000 0.623306 _ 0.318949 0.357302 0.252049 0.244240 0.540882 0.460823 0.818182
401636059 1.128188 1.122508 1.290102 1.186613 1.127371 1.135501 0.504514 0.508208 0.641638 0.583127 _ 0.352941 0.317618 0.205962 0.199866 0.464719 0.542929 0.857143
```

```
games_and_dates = df[['game_id', 'date', 'home', 'away']].drop_duplicates()
games_and_dates["date"] = pd.to_datetime(games_and_dates["date"])
# combine the home and away teams into a single column, but two rows per game
games_and_dates = pd.melt(games_and_dates, id_vars=['game_id', 'date'], value_vars=['home_away', value_name='team')
games_and_dates.drop(columns=['home_away'], inplace=True)
games_and_dates.sort_values(by=['team', 'date'], inplace=True)
games_and_dates['rest_days'] = games_and_dates.groupby('team')['date'].diff().dt.days -
games_and_dates
```

rest_days	team	date	game_id	
NaN	ANTELOPE	2023-12-30	401600143	11465
NaN	AR-Fort Smith	2023-12-10	401592097	11872
NaN	AR-Pine Bluff	2023-11-06	401594537	6377
2.0	AR-Pine Bluff	2023-11-09	401604754	377
1.0	AR-Pine Bluff	2023-11-11	401611838	378
		***	-	***
2.0	Youngstown St	2024-02-17	401587744	7428
5.0	Youngstown St	2024-02-23	401587749	10008
1.0	Youngstown St	2024-02-25	401587754	8734
2.0	Youngstown St	2024-02-28	401587756	1903
7.0	Youngstown St	2024-03-07	401625696	5980

```
# Merge the dataframes
      home wins = game wins.merge(home games[["game_id", "home"]].drop_duplicates(), on='game_id', how='left')
      # Calculate total games played by each team at home
      total home games = home wins.groupby('home')['game id'].count()
      # Calculate total wins by each team at home
      home_wins = home_wins.groupby('home')['winner'].sum()
      # Calculate win percentage
      home_win_percentage = (home_wins / total_home_games) * 100
      home win percentage
31] V 0.1s
   home
   AR-Pine Bluff
                     61.538462
   Abilene Chrstn
                    57.142857
                    25.000000
   Air Force
   Akron
                    78.947368
   Alabama
                    83.333333
                      ...
   Wright St
                    52.941176
   Wyoming
                    58.823529
   Xavier
                    57.894737
   Yale
                     81.818182
   Youngstown St
                    80.000000
   Length: 364, dtype: float64
```

Modelling

 Method-1: The first iteration of the model does not incorporate game situations or dynamic variables such as scores or in-game events. It is designed to make predictions based solely on pregame factors and static team/player metrics.

 Method-2: The enhanced model includes all relevant details, integrating dynamic game situations such as current scores, time remaining, and possession data. This allows for more contextual and accurate predictions based on real-time game scenarios.

Method -1: Used 6 different models for prediction and chose the one with the best accuracy.


```
# Predict on the testing data
   y_pred = catboost_classifier.predict(X_test)
   # Evaluate the model
   print(f'Accuracy: {accuracy_score(y_test, y_pred)}')
   print('Classification Report:')
   print(classification_report(y_test, y_pred))
   print('Confusion Matrix:')
   print(confusion_matrix(y_test, y_pred))
Accuracy: 0.7289628180039139
Classification Report:
                           recall f1-score support
              precision
                   0.65
                             0.55
                                       0.60
         0.0
                                                  372
         1.0
                   0.76
                             0.83
                                       0.80
                                                  650
                                       0.73
                                                 1022
    accuracy
                                                 1022
  macro avg
                   0.71
                             0.69
                                       0.70
weighted avg
                   0.72
                             0.73
                                       0.72
                                                 1022
Confusion Matrix:
[[204 168]
 [109 541]]
```

```
Accuracy: 0.7152641878669276
RandomForest Classification Report:
                           recall f1-score
              precision
                                              support
         0.0
                   0.64
                             0.50
                                       0.56
                                                  372
         1.0
                   0.75
                             0.84
                                       0.79
                                                  650
                                       0.72
                                                 1022
    accuracy
                                       0.68
                                                 1022
                   0.69
                             0.67
   macro avg
weighted avg
                   0.71
                             0.72
                                       0.71
                                                 1022
Confusion Matrix:
[[187 185]
 [106 544]]
```

• • •	Accuracy: 0.7	191780821917	808		
	XGB Classific	ation Report	:		
		precision	recall	f1-score	support
	0.0	0.63	0.56	0.59	372
	1.0	0.76	0.81	0.79	650
	accuracy			0.72	1022
	macro avg	0.70	0.69	0.69	1022
	weighted avg	0.71	0.72	0.72	1022
	Confusion Mat	rix:			
	[[210 162]				
	[125 525]]				

	ication R ecision	TVI	f1-score	support
85	ecision	recall	f1-score	support
а				
	0.64	0.55	0.59	372
.0	0.76	0.82	0.79	650
су			0.72	1022
vg	0.70	0.68	0.69	1022
vg	0.71	0.72	0.72	1022
	y /g	ry vg 0.70	ry vg 0.70 0.68	y 0.72 vg 0.70 0.68 0.69

Confusion Matrix:

[[204 168] [117 533]]

Accuracy: 0.6	565557729941	291		
DecisionTree	Classificati	on Report	:	
	precision	recall	f1-score	support
0.0	0.53	0.53	0.53	372
1.0	0.73	0.73	0.73	650
accuracy			0.66	1022
macro avg	0.63	0.63	0.63	1022
weighted avg	0.66	0.66	0.66	1022
Confusion Mat	rix:			
[[199 173]				
[178 472]]				

32,732	16.		Seeb	7.7	
Accuracy: 0.7	524461839530	333			
Tensorflow Cl	assification	Report:			
	precision	recall	f1-score	support	
0.0	0.69	0.57	0.63	372	
1.0	0.78	0.86	0.81	650	
accuracy			0.75	1022	
macro avg	0.74	0.71	0.72	1022	
weighted avg	0.75	0.75	0.75	1022	
Confusion Mat	rix:				
[[213 159]					
[94 556]]					

Method -2: Used the same 6 models for prediction and chose the one with the best accuracy.


```
# Fit the model on the training data
catboost_classifier.fit(X_train, y_train)

# Predict on the testing data
y_pred = catboost_classifier.predict(X_test)

# Evaluate the model
print(f'Accuracy: {accuracy_score(y_test, y_pred)}')
print('Classification Report:')
print(classification_report(y_test, y_pred))
print('Confusion Matrix:')
print(confusion_matrix(y_test, y_pred))
```

Accuracy: 0.9794520547945206

Classification Report:

	precision	recall	f1-score	support
0.0	0.98	0.97	0.97	372
1.0	0.98	0.99	0.98	650
accuracy			0.98	1022
macro avg	0.98	0.98	0.98	1022
weighted avg	0.98	0.98	0.98	1022

Confusion Matrix:

```
[[359 13]
[ 8 642]]
```


Accuracy: 0.986	3013698630	136	9.5	9) (3)
lightbgm Classi	fication R	eport:		
р	recision	recall	f1-score	support
0.0	0.99	0.97	0.98	372
1.0	0.98	0.99	0.99	650
accuracy			0.99	1022
macro avg	0.99	0.98	0.99	1022
weighted avg	0.99	0.99	0.99	1022
Confusion Matri	x:			
[[362 10]				
[4 646]]				

Accuracy: 0.961839530332681 DecisionTree Classification Report: precision recall f1-score support 0.0 0.94 0.95 0.95 372 1.0 0.97 0.97 0.97 650 0.96 1022 accuracy 0.96 0.96 0.96 1022 macro avg weighted avg 0.96 0.96 0.96 1022 Confusion Matrix: [[354 18] [21 629]]

	precision	recall	f1-score	support
0.0	0.95	0.85	0.90	372
1.0	0.92	0.98	0.95	650
accuracy			0.93	1022
macro avg	0.94	0.91	0.92	1022
weighted avg	0.93	0.93	0.93	1022
Confusion Mat	rix:			
[[317 55]				
[16 634]]				

	precision	recall	f1-score	support
0.0	0.98	0.97	0.98	372
1.0	0.98	0.99	0.99	650
accuracy			0.98	1022
macro avg	0.98	0.98	0.98	1022
weighted avg	0.98	0.98	0.98	1022
Confusion Mat	rix:			
[[362 10]				

Interactive Interface

• Used "Gradio UI Design" to create a user-friendly interface that simplifies input and output for the user.

```
import gradio as gr
home_team = gr.Dropdown(list(unique_home_teams), label="Home Team")
away_team = gr.Dropdown(list(unique_away_teams), label="Away Team")
home players = qr.Dropdown(list(unique_players), label="Home Players", multiselect=True, max choices=7)
away_players = gr.Dropdown(list(unique_players), label="Away Players", multiselect=True, max_choices=7)
home_rest_days = gr.Number(label="Home Team Rest Days")
away_rest_days = gr.Number(label="Away Team Rest Days")
output text = gr.Textbox(label="Prediction")
 def predict_winner_and_mvp(home_team, away_team, home_players, away_players, home_rest_days, away_rest_days):
    # create a dict with the features
    data_dict = dict()
    data_dict["home_rest_days"] = home_rest_days
    data dict["away rest days"] = away rest days
    data_dict["home_team_home_rating"] = home_team_performance[home_team]
    data_dict["away_team_away_rating"] = away_team_performance[away_team]
    data_dict["home_team_rating"] = team_performance[home_team]
    data_dict["away_team_rating"] = team_performance[away_team]
    data_dict["home_team_home_win_percentage"] = home_win_percentage[home_team]
    data_dict["away_team_away_win_percentage"] = away_win_percentage[away_team]
    data_dict["home_team_win_percentage"] = team_win_percentage[home_team]
    data_dict["away_team_win_percentage"] = team_win_percentage[away_team]
    data_dict["home_team_home_score_mean"] = home_team_scores.loc[home_team, 'home_team_home_score_mean']
    data_dict["home_team_home_score_median"] = home_team_scores.loc[home_team, 'home_team_home_score_median']
    data_dict["away_team_away_score_mean"] = away_team_scores.loc[away_team, 'away_team_away_score_mean']
    data dict["away team away score median"] = away team scores.loc[away team, 'away team away score median']
    data_dict["home_team_score_mean"] = team_scores.loc[home_team, 'mean_points']
    data_dict["home_team_score_median"] = team_scores.loc[home_team, 'median_points']
    data_dict["away_team_score_mean"] = team_scores.loc[away_team, 'mean_points']
    data_dict["away_team_score_median"] = team_scores.loc[away_team, 'median_points']
    data_dict["PER_mean_away"] = player_stats.loc[away_players, 'PER'].mean()
    data_dict["PER_mean_home"] = player_stats.loc[home_players, 'PER'].mean()
    data_dict["PER_max_away"] = player_stats.loc[away_players, 'PER'].max()
    data_dict["PER_max_home"] = player_stats.loc[home_players, 'PER'].max()
    data_dict["PER_median_away"] = player_stats.loc[away_players, 'PER'].median()
    data_dict["PER_median_home"] = player_stats.loc[home_players, 'PER'].median()
    data_dict["FG_pct_mean_away"] = player_stats.loc[away_players, 'FG_pct'].mean()
    data_dict["FG_pct_mean_home"] = player_stats.loc[home_players, 'FG_pct'].mean()
    data_dict["FG_pct_max_away"] = player_stats.loc[away_players, 'FG_pct'].max()
    data_dict["FG_pct_max_home"] = player_stats.loc[home_players, 'FG_pct'].max()
    data_dict["FG_pct_median_away"] = player_stats.loc[away_players, 'FG_pct'].median()
    data_dict["FG_pct_median_home"] = player_stats.loc[home_players, 'FG_pct'].median()
    data_dict["3P_pct_mean_away"] = player_stats.loc[away_players, '3P_pct'].mean()
    data_dict["3P_pct_mean_home"] = player_stats.loc[home_players, '3P_pct'].mean()
    data_dict["3P_pct_max_away"] = player_stats.loc[away_players, '3P_pct'].max()
    data_dict["3P_pct_max_home"] = player_stats.loc[home_players, '3P_pct'].max()
    data_dict["3P_pct_median_away"] = player_stats.loc[away_players, '3P_pct'].median()
    data_dict["3P_pct_median_home"] = player_stats.loc[home_players, '3P_pct'].median()
    data_dict["FT_pct_mean_away"] = player_stats.loc[away_players, 'FT_pct'].mean()
```

```
# Create a DataFrame from the data
            data_df = pd.DataFrame(data_dict, index=[0])
            # Rearrange the columns to match the model's input order
            data_df = data_df[X.columns]
            # Predict the winning team and MVP
            results = predict_winning_team_and_player_sklearn(catboost_classifier, data_df, home_team, away_team, home_players, away_players)
            # Convert the results to a string
            output = ['\n'.join([f'{result[0]} wins with a probability of {result[1]:.2f} and the MVP is {result[2]}' for result in results])]
            return output[0]
[250] \ \ 0.0s
         predict_winner_and_mvp(unique_home_teams[100], unique_away_teams[35],
                               unique_players[1000:1006],
                               unique_players[70:79], 0, 0)
      √ 0.0s
     'Maine wins with a probability of 0.99 and the MVP is Brandon Rush'
        unique home teams[100], unique away teams[35]
      ✓ 0.0s
     ('Maine', 'N Colorado')
                                                                                                               + Markdown
        # Launch the web app
        os.environ['GRADIO_NODE_PATH'] = '/usr/local/bin/node'
        iface = gr.Interface(
                    predict_winner_and_mvp,
                    [home_team, away_team, home_players, away_players, home_rest_days, away_rest_days],
                    outputs=output text)
        iface.launch(debug=True, inline=True, height=1000)
      (2 66m 45.0s
     Running on local URL: http://127.0.0.1:7860
     To create a public link, set `share=True` in `launch()`.
```

Interactive Interface

- User Inputs:
- Select home and away teams.
- Choose 7 players per team from dropdowns and also include Home & Away Rest Days for better prediction.

Interactive Interface

- Prediction Outputs:
- Winning team.
- Probability of winning.
- MVP responsible for the winning shot.

Prediction Logic

Winning Team Prediction:

 The neural network determines the likelihood of home or away victory based on input features.

Player Selection:

- Weighted scoring formula: Score = (clutch_pct × 0.4) + (PER × 0.6)
- The player with the highest score from the predicted winning team is identified as the MVP.

Demonstration

Results & Insights

Use Cases:

- For Coaches: Strategic decision-making for critical game moments.
- For Analysts: Advanced player performance analytics.
- For Fans: Enhanced engagement through predictive insights.

Future Scope

Enhancements

- Improve model accuracy by incorporating real-time data streams.
- Extend predictions to other aspects like defensive plays.
- · Add deeper player-level metrics (e.g., fatigue, injury probability).

Future Scope

Conclusion

- Successfully integrated data science and sports analytics.
- Intuitive tool for predicting game-changing moments.
- Open for questions and feedback.

