Step-1

Given the complete solution to
$$Ax = \begin{bmatrix} 1 \\ 3 \end{bmatrix}_{is} x = \begin{bmatrix} 1 \\ 0 \end{bmatrix} + C \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

Any vector X_p in the null space can be added to a particular solution X_p . The solutions to all linear equations have this form, $X_p = X_p + X_p$

Complete solution $Ax_p = b$ and $Ax_n = 0$ produce $A(x_p + x_n) = b$

Step-2

So, the particular solution x_p is (1,0) and the solution x_n is (0,c)

Since, the linear combination of $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $C \begin{bmatrix} 0 \\ 1 \end{bmatrix}$

Therefore, the order of matrix A is 2 by 2.

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \text{ and } x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

$$Ax = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$$
 Given

$$\Rightarrow \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$$

$$\Rightarrow ax_1 + bx_2 = 1$$

$$cx_1 + dx_2 = 3 \ \hat{a} \in \hat{a} \in \hat{a} \in (1)$$

Step-3

From the complete solution $Ax_p = b$, we need to plug the particular solution in equation $\hat{a} \in (1)$.

So,

$$ax_1 + bx_2 = 1$$

$$cx_1 + dx_2 = 3$$

$$a(1)+b(0)=1$$

$$\Rightarrow a=1$$

$$c(1)+d(0)=3$$

Step-4

 $\Rightarrow c = 3$

Form the complete solution $Ax_n = 0$,

So,

$$\Rightarrow \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\Rightarrow ax_1 + bx_2 = 0$$
$$cx_1 + dx_2 = 0$$

Plug the solution of x_n ,

$$a(0)+b(c)=0$$

 $\Rightarrow b=0$ (Since, $c \neq 0$)
 $c(0)+d(c)=0$
 $\Rightarrow d=0$ (Since, $c \neq 0$)

Therefore, the values are a = 1, b = 0, c = 3 and d = 0.

Therefore, the matrix is $A = \begin{bmatrix} 1 & 0 \\ 3 & 0 \end{bmatrix}$