Problem 10.5

Assume we have a language consisting of the object constant θ and unary function constants f and g.

Prove the goal from the given premises.

Proof Editor					
1.	p(0)	Premise			
2.	AX:(p(X) => p(f(X)))	Premise			
3.	AX:(p(f(X)) => p(g(X)))	Premise			
4.	p(X) => p(f(X))	Universal Elimination: 2			
5.	p(f(X)) => p(g(X))	Universal Elimination: 3			
6.	p(X)	Assumption			
7.	p(f(X))	Implication Elimination: 4, 6			
8.	p(g(X))	Implication Elimination: 5, 7			
9.	p(X) => p(g(X))	Implication Introduction: 8			
10.	AX:(p(X) => p(g(X)))	Universal Introduction: 9			
11.	AX:p(X)	Induction: 1, 2, 10			
Goal	AX:p(X)	Complete Submit			
	Assumption Negation Introduction Implication Introduction Reiteration Negation Elimination Implication Elimination	Universal Introduction Universal Elimination			

Delete	And Introduction	Biconditional Introduction	Existential Introduction
	And Elimination	Biconditional Elimination	Existential Elimination
	Or Introduction		Induction
	Or Elimination		
	Re	set Show XML	