

Universidade do Minho

Escola de Engenharia Departamento de Informática

Preparação e Exploração avançada de dados com KNIME

LEI/MiEI @ 2022/2023, 2º sem [ADI^3]

Agenda

- Preparação de Dados
 - o Join, Concatenation, Sorter, Filter and Aggregations
- Preparação e Exploração Avançada de Dados
 - Missing Values Treatment, Binning, Feature Scaling, Outlier Detection
 - Feature Selection, Nominal Value Discretization, Feature Engineering
- Experimentação (hands on)

A Machine Learning Pipeline

(https://towardsdatascience.com/architecting-a-machine-learning-pipeline-a847f094d1c7)

Fluxo de Trabalho Típico @ Knime

Junção *Join*

Uma operação JOIN (junção) combina dados de diferentes fontes

Junção *Join*

No KNIME estão disponíveis 4 tipos de operações JOIN

Concatenação Concatenation

União de colunas

Concatenação Concatenation

Interseção de colunas

Concatenação Concatenation

Concatenate (Optional in) funciona como a concatenação (Concatenate), mas aceita até 4 inputs

Ordenação Sorter

■ Altera a ordem das colunas de *input*, com base na definição dos parâmetros

Ordena as linhas com base na definição dos parâmetros

 Permite que as linhas sejam classificadas a partir da tabela da base de dados de entrada (cláusula SQL ORDER BY)

making them movable between the two

lists.

Filtros Filter

Filtro de Colunas Column Filter

Filtro de Linhas Row Filter

Row Filter

Filtro de Linhas de Valores Nominais Nominal Value Row Filter

Nominal Value Row Filter

Filtro de Linhas de Baseado em Regras Rule-based Row Filter

Rule-based Row Filter

Filtro de Linhas em JAVA *Snippet*JAVA *Snippet Row Filter*

Java Snippet Row Filter

Operações de Agregação Count and Percent

Operações de Agregação Unique Count, Missing Values Count and Mode

Operações de Agregação Concatenate

Operações de Agregação Mean, Sum, Standard Deviation and Kurtosis

Operações de Agregação Min/Max vs First/Last

Operações de Agregação Dates

Operações Avançadas de Agregação Pattern Based

Operações Avançadas de Agregação Data Type Based

Operações Avançadas de Agregação No Aggregation vs No Grouping

Universidade do Minho

Escola de Engenharia Departamento de Informática

Preparação e Exploração Avançada de Dados em KNIME

Preparação e Exploração Avançada de Dados

- Tratamento de Valores em Falta/ Missing Values treatment
- Discretização em Intervalos/ Binning
- Redimensionamento de atributos/ Feature scaling
- Deteção de valores fora de limites/ Outlier detection

Tratamento de Valores em Falta *Missing Values*

- Tratamento de Valores em Falta
 - o Analisar cada atributo em relação à quantidade e proporção de valores em falta
 - Decidir o que fazer:
 - Remover
 - Calcular a média
 - Interpolação linear
 - Criar máscaras

• ...

Missing Value

Discretização em Intervalos Binning

- Discretização em Intervalos ou Binning
 - Agrupar valores numéricos em intervalos (bins)
- Tornar o modelo mais robusto e evitar o sobreajustamento.
- No entanto, penaliza o desempenho do modelo, uma vez que cada vez que se encerra algo, se sacrifica informação.

Discretização em Intervalos Binning

Discretização em Intervalos ou Binning

Agrupar valores numéricos em intervalos (bins)

Auto-Binner

 Tornar o modelo mais robusto e evitar o sobreajustamento.

No entanto, penaliza o desempenho do muma vez que cada vez que se encerra algose sacrifica informação.

Redimensionamento de atributos Feature scaling

- Normalizar a gama de valores de atributos
- Muitos classificadores usam métricas de distância (ex.: distância euclidiana)
 - O Se um atributo tiver uma gama ampla de valores, a distância será muito influenciada por esse atributo.
 - O Assim, a gama de valores deve ser normalizada para que cada atributo possa contribuir proporcionalmente para a distância final.

Redimensionamento de atributos Feature scaling

- Normalizar a gama de valores de atributos
 - Normalização
 Redimensionar os dados para que todos os valores caiam no intervalo de 0 e 1, por exemplo.

$$z = (b - a) \frac{x - \min(x)}{\max(x) - \min(x)} + a$$

Redimensionamento de atributos Feature scaling

- Normalizar a gama de valores de atributos
 - Standardization (ou Z-score Normalization)
 Redimensionar a distribuição de valores para que a média dos valores observados seja 0 e o desvio padrão seja 1.
 Assume que os dados se ajustam a uma distribuição gaussiana com média e desvio padrão bem comportados, o que nem sempre é o caso.

$$z = \frac{x_i - \mu}{\sigma}$$

- Deteção de valores fora de limites
 - o Estratégias baseadas em estatística
 - Box Plots
 - Z-Score (std. dev)

- Deteção de valores fora de limites
 - Estratégias baseadas em conhecimento

- Deteção de valores fora de limites
 - Estratégias baseadas em conhecimento

- Deteção de valores fora de limites
 - o Estratégias baseadas em modelos
 - Isolation Forest
 - One-Class SVM
 - Minimum Covariance Determinant

• ..

- Deteção de valores fora de limites
 - Estratégias baseadas em estatística
 - o Estratégias baseadas em conhecimento
 - Estratégias baseadas em modelos

Outlier Dilemma: Drop or Cap?

- o Para manter o tamanho do conjunto de dados, podemos querer limitar os outliers em vez de os apagar.
- No entanto, isso pode afetar a distribuição dos dados!

Preparação e Exploração Avançada de Dados

- Tratamento de Valores em Falta/ *Missing Values treatment*
- Discretização em Intervalos/ Binning
- Redimensionamento de atributos/ Feature scaling
- Deteção de valores fora de limites/ Outlier detection

- Seleção de Atributos/ Feature selection
- Discretização de Valores Nominais/ Nominal value discretization
- Engenharia de Atributos/ Feature Engineering

Outros Nodos

