Mecânica Analítica

2020-2021

Série 0

Responsável: Hugo Terças

O objectivo desta série de exercícios consiste numa primeira exposição ao cálculo tensorial e suas aplicações

Problema 1. Transformação de tensores. Usando a propriedade de transformação de vectores contravariantes, $x'^{\mu} = A^{\mu}_{\nu} x^{\nu}$, onde $A^{\alpha}_{\beta} = \frac{\partial x'^{\alpha}}{\partial x^{\beta}}$ (a definição de A é arbitrária, sendo que escolhemos A^{-1} para designar a matriz de transformação dos vectores da base), verifique as seguintes propriedades:

- a) $\omega'_{\mu\nu} = (A^{-1})^{\alpha}_{\mu} (A^{-1})^{\beta}_{\nu} \omega_{\alpha\beta}$
- b) A contracção de um vector contravariante com um vector covariante é um invariante, i.e. $a'^\mu b'_\mu = a^\nu b_\nu$
- c) O produto interno usual só é invariante em espaços ortornormados, i.e $a'^{\mu}y'^{\mu}=a^{\nu}y^{\nu}$ sse $A^T=A^{-1}$.
- d) O produto interno generalizado $\mathbf{a} \cdot \mathbf{b} = t_{\mu\nu} a^{\mu} b^{\nu}$ é invariante e mantém a comutatividade se $t_{\mu\nu}$ for um tensor simétrico.
- e) Os tensores $s_{\mu\nu} = u_{\mu}w_{\nu} + u_{\nu}w_{\mu}$ e $a_{\mu\nu} = u_{\mu}w_{\nu} u_{\nu}w_{\mu}$ são respectivamente simétrico e antisimétrico.
- f) A contracção do símbolo de Levi-Civita com um tensor simétrico é nulo, $\epsilon_{\mu\nu\alpha}s_{\nu\alpha}=0$.
- g) Recorrendo ao tensor de Levi-Civita, mostre a seguinte (muito útil!) identidade vectorial: $\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \cdot \mathbf{c})\mathbf{b} (\mathbf{a} \cdot \mathbf{b})\mathbf{c}$
- h) Repita o procedimento para se convencer de que $\nabla \times (\nabla f) = 0$ e $\nabla \cdot (\nabla \times \mathbf{u}) = 0$, para quaisquer $f \in \mathbf{u}^1$.
- i) Com alguma paciência, parta da definição do tensor de Levi-Civita para demonstrar $\epsilon_{\mu\nu\alpha}\epsilon_{\mu\rho\beta} = \delta_{\nu\rho}\delta_{\alpha\beta} \delta_{\nu\beta}\delta_{\alpha\rho}$.

Problema 2. Tensor da métrica. Considere o tensor da métrica definido por $g_{\mu\nu} = \frac{\partial x^{\alpha}}{\partial x^{\prime\nu}} \frac{\partial x_{\alpha}}{\partial x^{\prime\nu}}$

 $^{^{1}}$ Não invente! Seja simpático e assuma que f e \mathbf{u} estão bem definidos no seu domínio. Deixemos as patologias para os matemáticos...

a) Parta da definição para mostrar que o tensor da métrica em coordenadas polares (r, θ) se escreve

$$g_{\mu\nu} = \left[\begin{array}{cc} 1 & 0 \\ 0 & r^2 \end{array} \right].$$

Porque razão é diagonal?

- b) Partindo da métrica euclidiana, $g_{\mu\nu}={\rm diag}(1,1)$, faça uso da regra de transformação dos tensores para chegar ao resultado do ponto a).
- c) Verifique a seguinte propriedade de contracção da métrica, $g_{\mu\nu}g^{\mu\alpha} = \delta^{\alpha}_{\nu}$.
- d) Mostre que a métrica é um tensor definido positivo, i.e. que o produto interno por ela definido satisfaz $\mathbf{a} \cdot \mathbf{a} \ge 0$.
- e) Use a propriedade da conversão de índices covariantes em índices contravariantes para determinar a forma dos tensores $g^{\mu\nu}$ e g^{μ}_{ν} .
- f) Seja $x_{\mu} = (r, \theta)$ um covector em coordenadas polares. Determine x^{μ} .

Problema 3. Curvas em espaços curvos. Considere um sistema de coordenadas esféricas (r, θ, ϕ) de métrica $g_{\mu\nu} = \text{diag}(1, r^2, r^2 \sin^2 \theta)$. Considere uma curva ℓ parametrizada por $t \in]0, \infty]$ da seguinte forma

$$r = t$$
 $\theta = \arcsin\left(\frac{1}{t}\right)$ $\phi = \sqrt{t^2 - 1}$.

Mostre que o segmento de curva $t \in [1, 2]$ tem comprimento $s = \sqrt{6}$.