آزمون فصل سوم

ورودی x(t) و پاسخ ضربه h(t) یک سیستم LTI در شکل زیر داده شده است. در چه لحظهای خروجی y(t) به ماکزیمم مقدار خود میرسد و مقدار این ماکزیمم چقدر است؟

- اگر به یک سیستم LTI با پاسخ ضربه [n] ، [n] ، ورودی $[n] = (\frac{1}{\gamma})^n \, u[-rn-1] (\frac{1}{\gamma})^n \, u[-rn-1]$ اعمال y[n] عبارت خواهد بود از: y[n] عبارت خواهد بود از: $\frac{1}{7}h[n-1] + \frac{1}{7}h[n-7]$ () $\frac{1}{7}h[n+1] + \frac{1}{7}h[n+7]$ () $\frac{1}{7}h[n+1] + 7$ () $\frac{1}{7}h[n+1] + 7$ () $\frac{1}{7}h[n+1] + 7$ ()

- 7h[n+1]+7h[n+7]
- یک سیستم LTI دارای پاسخ ضربه به صورت $[-1]^n u[Tn-1]$ است. این سیستم کــدام خــواص را دارد؟
 - ۱) علی و پایدار ۲) علی و ناپایدار ۳) غیرعلی و پایدار ۱) غیرعلی و ناپایدار
- رابطه ورودی ــ خروجی یک سیستم پیوسته با زمان خطی بهصــورت $y(t+1)=\int_{-\infty}^{\infty}x(au)\,u(au-t)\,d au$ داده شده است. u(t) تابع پله واحد است. این سیستم تغییر با زمان و است. ۱) پذیر _ علی ۲) پذیر _ غیرعلی ۳) ناپذیر _ غیرعلی ۴) ناپذیر _ علی
- پاسخ یک سیستم خطی به ورودی $x[n] = \delta[n-k]$ نصریه اعمال شده در لحظه $x[n] = \delta[n-k]$ به صورت % میباشد. ضابطه کلی سیستم بین ورودی و خروجی کدام است $y[n] = \delta[n-\tau k]$
 - $y[n] = \frac{1}{r}x[r]$ (f $y[n] = rx_{(r)}[n]$ (f $y[n] = x_{(r)}[n]$ (f y[n] = x[r] (1)