

GTU Electronics Engineering

ELEC 331 Electronic Circuits 2

Fall Semester

Instructor: Assist. Prof. Önder Şuvak

HW 1 Questions and Answers

Updated October 20, 2017 - 13:33

Assigned:

Due:

Answers Out:

Late Due:

Contents

itle Page	T
Contents	1
uestion 1	2
Question	2
Solution	
uestion 2	4
Question	4
Solution	5
Suestion 3	12
Question	12
Solution	13
uestion 4	16
Question	16
Solution	17
uestion 5	18
Question	18
Solution	19
uestion 6	23
Question	23
Solution	

BJT Cascode Active Load

Razavi 9.11 d

11. Determine the output impedance of each circuit shown in Fig. 9.46. Assume $\beta \gg 1$. Explain which ones are considered cascode stages.

Necessary Knowledge and Skills: Output impedance calculation, BJT cascode stage properties, relatively high impedance

Active-Loaded MOS Amplifier

Razavi 9.68

68. The common-gate stage of Fig. 9.83 employs the current source M_3 as the load to achieve

Figure 9.83

a high voltage gain. For simplicity, neglect channel-length modulation in M_1 . Assuming $(W/L)_3=40/0.18$, $\lambda_n=0.1~{\rm V}^{-1}$, and $\lambda_p=0.2~{\rm V}^{-1}$, design the circuit for a voltage gain of 20, an input impedance of 50 Ω , and a power budget of 13 mW. (You may not need all of the power budget.)

Necessary Knowledge and Skills: Current mirrors, DC bias computation, common-gate amplifier design, voltage gain and input impedance computations, power budget considerations

hote that
$$ID_{1} = ID_{1} = ID_{1}$$

$$ID_{1} = ID_{2} = ID_{3}$$

$$ID_{1} = ID_{2} = ID_{3}$$

$$ID_{2} = ID_{3} = ID_{3}$$

$$ID_{2} = ID_{3} = ID_{3} = ID_{3}$$

$$ID_{3} = ID_{3} = ID_{3} = ID_{3} = ID_{3} = ID_{3}$$

$$ID_{4} = ID_{1} = ID_{3} = ID_{4} =$$

Mow check (3)

$$\frac{1}{\sqrt{100}} = \frac{1}{\sqrt{100}}$$

$$\frac{1}{\sqrt{100}} = \frac{10^{10}}{\sqrt{100}}$$

$$= \frac{10^{10}}{\sqrt{100}} = 2kN$$
Observe that $2kN \gg 50N$

then $\frac{1}{\sqrt{9m}} / ro_2 \approx \frac{1}{\sqrt{9m}} = 20mN$

$$\frac{1}{\sqrt{100}} = \frac{1}{\sqrt{100}} = 20mN$$

$$\frac{1}{\sqrt{100}} = \frac{1}{\sqrt{100}} = \frac{1}{\sqrt{100}} = \frac{1}{\sqrt{100}}$$

$$\frac{1}{\sqrt{100}} =$$

Mg hode check

hote
$$V_{DS} > V_{GJ} - V_{Ch,n}$$
 (NMOS) for satur.

and $V_{SD} > V_{GG} - V_{Ch,p}$ (PMOS) for satur.

Observe $V_{SG,4} = V_{SG,3}$ (My-Mg is acture mirror)

 $V_{SD,3} > 1.45 - 0.5$ for Mg to remain morturation

Ms - check

hote Mg VGS, ref = VGS, 5

then $V_{DS,5} > V_{GS,5} - V_{Ch,n}$
 $V_{DS,5} > 0.6 - 0.4 = 0.2V$

But we have $V_{DS,4} + V_{DS,5} = V_{DD} = 1.8V$

1.45 $V_{DS,5} = V_{DS,5} = V_{DD} = 1.8V$

1.45 $V_{DS,5} = V_{DS,5} =$

My-vire computation

Note Mref - M2 is a current Myror
$$\frac{9}{2}$$
.

My-size $\frac{W}{L} = 5 \frac{W}{L}$ ref = $\frac{450}{1.8}$

Recall $\frac{V_{50,3}}{V_{50,3}} > 0.95V$ for vot $\frac{V_{50,3}}{V_{50,2}} > 0.2V$ / $\frac{1}{2}$

Var. $\frac{1}{2} > 0.9V$

There of to ret a $\frac{1}{2} > 0.9V$

The place $\frac{1}{2} > 0.9V$

The place $\frac{1}{2} > 0.9V$ in votur.

Set
$$V_{f1} = 0.25V$$

$$\Rightarrow V_{DS,2} = 0.25V > 0.2V$$

$$(M_2, INSORT)$$

$$V_6 = V_{S1} + V_{GS,1} = 1.15V$$

$$0.25V \quad 0.9V$$

$$\Rightarrow V_{DS,1} > 0.5V \quad \text{for Jatur.}$$

$$V_{GJ,1} - V_{th,n}$$

$$\Rightarrow V_{D,1} > 0.75V$$

$$(V_{S,1} + V_{DJ,1})$$

$$\Rightarrow V_{SD,3} < 1.05V$$

$$\text{since } V_{DD} = 1.8V = V_{SD,3} + V_{D,1}$$

$$\Rightarrow We \text{ necded to have } V_{D,3} > 0.95V$$

$$\text{then } 0.K.$$

MOS Widlar Current Source

Rashid 9.6

7.6 The Widlar current source shown in Fig. P9.6 has $I_{\rm ref} = 50 \, \mu A$, $R = 2 \, k\Omega$, and $V_{\rm DD} = 12 \, \rm V$. The MOS parameters are $K_{\rm n} = 100 \, \mu A/V^2$, $V_{\rm t} = 1 \, \rm V$, $|V_{\rm m}| = 100 \, \rm V$, and $(W/L)_1 = (W/L)_2 = 20$. Determine (a) the output current $I_{\rm o}$, (b) the output resistance $r_{\rm o2}$, and (c) the value of $R_{\rm ref}$.

FIGURE P9.6

Necessary Knowledge and Skills: Widlar current source, DC bias computation, small-signal model and approximations, output impedance calculation

equivolently
for M₁ satur. \Rightarrow $V_{D1} - RI_o \Rightarrow (V_{GS2} - RI_o) - V_t$ $V_{D1} \ge V_{GS2} - V_t$

Note that numerical values are left to be computed.

BJT Current Mirrors Rashid 9.26

9.26 The multiple transistors of the current source in Fig. P9.26 have $\beta_F = 150$, $R_1 = 10 \text{ k}\Omega$, $V_{CC} = 15 \text{ V}$, and $V_A = 100 \text{ V}$. The B-E voltages are equal, $V_{BE} = 0.7 \text{ V}$. Calculate (a) the output current I_O , (b) the output resistance R_O , (c) Thevenin's equivalent voltage V_{Th} , and (d) the collector current ratio if $V_{CE2} = 15 \text{ V}$.

FIGURE P9.26

Necessary Knowledge and Skills: Current Mirrors, small signal equiv. of BJT, output impedance computation, current assembly, Early voltage and its graphical interpretation

$$\frac{V_{CC} - V_{BE}}{R_{1}} = I_{r} = \frac{15 - 0.7}{10k}$$

$$= \frac{14.3 V}{10k \Omega} = 1.43 mH$$

$$I_0 = I_7 \frac{3}{2} = 1.43 \frac{3}{2} = 2.16 \text{ m}$$

$$R_{0} = \frac{V_{ff}}{I_{o}/3} / \frac{V_{ff}}{I_{o}/3} / \frac{V_{ff}}{I_{o}/3}$$

$$= \frac{V_{ff}}{I_{o}} = \frac{100 \text{ V}}{2.16 \text{ m/p}} \text{ (compute)}$$

$$= I_0 R_0 = V_{\overline{A}} = 1000V$$

$$= I_0 + OI_C = \frac{3}{2} + \frac{OI_C}{I_{Rr}}$$

$$= I_0 R_0 = V_{\overline{A}} = 1000V$$

$$= I_0 + OI_C = \frac{3}{2} + \frac{OI_C}{I_{Rr}}$$

$$= I_0 R_0 = V_{\overline{A}} = 1000V$$

$$= I_0 + OI_C = \frac{3}{2} + \frac{OI_C}{I_{Rr}}$$

$$= I_0 R_0 = V_{\overline{A}} = 1000V$$

$$= I_0 + OI_C = \frac{3}{2} + \frac{OI_C}{I_{Rr}}$$

$$= I_0 R_0 = V_{\overline{A}} = 1000V$$

$$= I_0 + OI_C = \frac{3}{2} + \frac{OI_C}{I_{Rr}}$$

$$= I_0 R_0 = V_{\overline{A}} = 1000V$$

$$= I_0 + OI_C = \frac{3}{2} + \frac{OI_C}{I_{Rr}}$$

$$= I_0 R_0 = V_{\overline{A}} = 1000V$$

$$= I_0 R_0 = I_0 R_0$$

offector current new
$$Tr$$

computation
$$\frac{\Delta Ic}{15lope} = \frac{1}{Ro}$$

$$\frac{\Delta Ic}{15-14.3} = \frac{1}{Ro}$$

$$\Delta Ic = \frac{0.7}{Ro}$$

$$14.3V 15V$$

Wilson Current Source

Rashid 9.31

9.31 For the Wilson current source in Fig. P9.31, determine the output current $I_{\rm O}$ and the output resistance $R_{\rm o}$. Assume $V_{\rm CC}=20$ V, $V_{\rm BE}=0.7$ V, $V_{\rm T}=26$ mV, $V_{\rm A}=150$ V, and $\beta_{\rm F}=150$.

FIGURE P9.31

Necessary Knowledge and Skills: Wilson current source analysis, BJT large and small signal analysis, output impedance computation

Compute first
$$I_R$$
 (reference current)
that flow over $R_1 = 15 k\Omega$

$$I_{R} = \frac{V_{CC} - (\sqrt{BE1} + \sqrt{E})}{R_{I}}$$

$$I_R = \frac{20 - (0.7 + 0.7)}{15 k N} = \frac{18.6 V}{15 k N}$$

- All the tronsisters are identical.

$$I_{E2} = I_{C2} \frac{\beta+1}{\beta} = \left(1 + \frac{2}{\beta}\right) I_{C3}$$

$$I_{C1}$$

$$I_R = I_{C_1} + I_{82}$$

$$= I_{C2} \frac{\beta+1}{\beta} \frac{1}{\left(1+\frac{2}{\beta}\right)} + I_{C2} \frac{1}{\beta}$$

$$\underline{\Gamma_{R}} = \underline{\Gamma_{C2}} \left[\frac{\beta+1}{\beta+2} + \frac{1}{\beta} \right] \Rightarrow \frac{\underline{\Gamma_{C2}}}{\underline{\Gamma_{R}}} = \frac{\beta(\beta+2)}{\beta^{2}+2\beta+2} \\
= 1 - \frac{2}{\alpha^{2}+2\alpha+2}$$

⇒ Ir computed above, β given, comp. Generated by CamScanner

$$R_0 \simeq r_{02} + \frac{r_{02} I_{gmi}}{R_g I_{ge'}} + r_{02} I_{ge} \frac{R_e I_{ge'}}{R_g + R_e'} \frac{R_e I_{gmi}}{Continued}$$
then
$$R_0 \simeq r_{02} \left(1 + \frac{P_2}{2}\right)$$

$$g_m r_{\pi} = \beta \Rightarrow r_{\pi} = \beta \frac{\sqrt{T}}{T_g}$$

Plus in and compute the numerical values.

and $r_0 = \frac{\sqrt{4}}{I_C}$

Current Source Sensitivity

Rashid 9.34

9.34 Determine the sensitivity S of output current I_O to supply voltage V_{CC} for the circuit in Fig. P9.34. S is defined as

$$S = \frac{V_{\rm CC}/I_{\rm O}}{\delta I_{\rm O}/\delta V_{\rm CC}}$$

FIGURE P9.34

Necessary Knowledge and Skills: Sensitivity analysis, BJT current source/reference, BJT large and small signal analysis,

$$\int_{Vcc}^{T_0} \frac{\partial I_0}{\partial V_{CC}} = \frac{\partial I_0}{\partial V_{CC}} \frac{V_{CC}}{I_0}$$

$$\frac{V_{CC}}{\partial V_{CC}} \frac{\partial I_0}{\partial V_{CC}} = \frac{\partial I_0}{\partial V_{CC}} \frac{V_{CC}}{I_0}$$

$$\frac{V_{CC}}{\partial V_{CC}} \frac{\partial I_0}{\partial V_{CC}} = \frac{\partial I_0}{\partial V_{CC}}$$

$$\frac{V_{CC}}{I_0} \frac{\partial I_0}{\partial V_{CC}} = \frac{\partial I_0}{\partial V_{CC}}$$

$$\frac{V_{CC}}{I_0} \frac{\partial I_0}{\partial V_{CC}} = \frac{\partial I_0}{\partial V_{CC}}$$

$$\frac{V_{CC}}{I_0} \frac{I_0}{I_0} = \frac{I_0}{I_0}$$

$$\frac{I_0}{I_0} \frac{I_0}{I_0} =$$

$$I_{o} = \begin{bmatrix} V_{cc} - V_{BE1} - V_{BE2} \\ R_{1} \end{bmatrix} + \frac{pV_{BE1}}{R_{2}}$$

$$Cont.$$

$$Considering that $V_{BE1} \cong V_{BE2} \cong 0.7V$

$$\frac{2I_{o}}{2V_{cc}} = \frac{1}{R_{1}} \frac{\beta}{\beta^{2} + \beta + 1}$$
then
$$\int_{V_{cc}}^{I_{o}} = \frac{1}{R_{1}} \frac{\beta}{\beta^{2} + \beta + 1} \frac{V_{cc}}{F_{o}}$$

$$P_{cont}$$$$

Blank Page