CSE400A: Capstone Project (part 1 of 3)

Credits: 0+1=1

Credit Hours & Teaching Scheme:

	Theory	Laboratory	Remarks
Credit Hours	0	1	Part 1 in the 1st semester
			(grade on 1 credit)
Contact Hours	0	2 Hours/Week for 13 weeks in the	
		1st semester	

Prerequisite: Students must complete at least 101 credits

Course Objective: Capstone is a metaphor used to describe a final achievement that builds upon previous works and encapsulates them. This project-based coursework is intended to provide a culminating experience that allows a student to demonstrate proficiency in several of the learning outcomes that are set forth by his or her degree program. The capstone project will integrate multidisciplinary subjects that will enable the students to enhance their professional skills that are difficult to impart in traditional lectured courses. This coursework will provide the students an opportunity to apply the knowledge and skills gathered through the earlier courseworks to the solution of complex engineering problems.

Course Outcomes (COs):

After completion of the first part of the course students will be able to:

CO	CO Descriptions	Learning Subdomains
CO1	Integrate new and previously acquired knowledge for	Cognitive (C2, C3)
	identifying a real-life complex computer science and	
	engineering problem as the capstone project.	
CO2	Examine various problem domains (literature review),	Cognitive (C4, C5, C6),
	define the problems, and formulate the objectives for the	Psychomotor (P2, P3, P4)
	capstone project.	

Mapping of COs to Knowledge Profile (K), Program Outcome (PO), Complex Engineering Problem (EP), and Complex Engineering Activity (EA):

CO	CO Descriptions	K	PO	EP	EA
CO1	Integrate new and	K1, K2, K3,	PO1	EP1, EP2,	-
	previously acquired	K4		EP3, EP4,	
	knowledge for			EP5, EP6,	
	identifying a real-life			EP7	
	complex engineering				
	problem as the				
	capstone project				

CO2	Examine various	K8	PO4	EP1,	EP2,	-
	problem domains			EP3,	EP4,	
	(literature review),			EP5,	EP6,	
	define the problems,			EP7		
	and formulate the					
	objectives for the					
	capstone project					
	1 1 0					

Teaching Learning Methodology and Assessment:

The group of students will prepare a report targeting CO1 and CO2 and finalizing a capstone project topic and its objectives. Grading will be done based on this report and the oral presentation of the students.

CSE400B: Capstone Project (part 2 of 3)

Credits: 0+2=2

Credit Hours & Teaching Scheme:

	Theory	Laboratory	Remarks
Credit Hours	0	2	Part 2 in the 2nd semester
			(grade on 2 credits)
Contact Hours	0	4 Hours/Week for 13 weeks in the	
		2nd semester	

Prerequisite: CSE400A

Course Objective: The objective of this part of the course is to enable students to select and use engineering and IT tools for analyzing and designing complex computer science and engineering problems considering various aspects of societal, health, safety, legal and cultural issues taking into account the relevant professional and engineering practices and solutions.

Course Outcomes (COs):

After completion of the second part of the course students will be able to:

CO	CO Descriptions	Learning Subdomains
CO3	Analyze various aspects of the	Cognitive (C2, C3, C4, C5)
	objectives for designing a solution for	
	the capstone project.	

CO4	Design and develop solutions for the capstone project that meet public health and safety, cultural, societal, and environmental considerations.	Affective (A4)
CO5	Identify and apply modern engineering and IT tools for the design and development of the capstone project.	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
CO6	Assess and address societal, health, safety, legal, and cultural aspects related to the implementation of the capstone project considering the relevant professional and engineering practices and solutions.	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \

Mapping of COs to Knowledge Profile (K), Program Outcome (PO), Complex Engineering Problem (EP), and Complex Engineering Activity (EA):

CO	CO Descriptions	K	PO	EP	EA
CO3	Analyze various aspects of the objectives for designing a solution of the capstone project	K1, K2, K3, K4	PO2	EP1, EP2, EP3, EP4, EP5, EP6, EP7	-
CO4	Design and develop solutions for the capstone project that meet public health and safety, cultural, societal, and environmental considerations	K5	PO3	EP1, EP2, EP3, EP4, EP5, EP6, EP7	-
CO5	Identify and apply modern engineering and IT tools for the design and development of the capstone project	K6	PO5	EP1, EP2, EP3, EP4, EP5, EP6, EP7	-
CO6	Assess and address societal, health, safety, legal, and cultural aspects related to the implementation of the capstone project	K7	PO6	EP1, EP2, EP3, EP4, EP5, EP6, EP7	-

considering	the		
relevant			
professional	and		
engineering			
practices	and		
solutions			

Teaching Learning Methodology and Assessment:

The group of students will prepare a report targeting CO3, CO4, CO5, and CO6 related to the design and implementation of the capstone project and its impact on societal, health, safety, legal and cultural issues. Grading will be done based on this report and the oral presentation of the students.

CSE400C: Capstone Project (part 3 of 3)

Credits: 0+3=3

Credit Hours & Teaching Scheme:

	Theory	Laboratory	Remarks
Credit Hours	0	3	Part 3 in the 3rd semester
			(grade on 3 credits)
Contact Hours	0	6 Hours/Week for 13 weeks in the 3rd semester	

Prerequisite: CSE400B

Course Objective: The objective of this part of the course is to enable students to solve complex computer science and engineering problems considering environment and sustainability, ethics, individual and teamwork, and project management issues as well as to communicate effectively with the heterogeneous environment and be able to learn throughout the professional life.

Course Outcomes (COs):

After completion of the third part of the course students will be able to:

CO	CO Descriptions	Learning Subdomains
CO7	Assess and address the sustainability and	Affective (A4),
	impact of the capstone project in societal and	Cognitive (C5)
	environmental contexts	
CO8	Apply professional and engineering ethical	Affective (A4, A5)
	principles and practices for the	Cognitive (C5)
	implementation of the capstone project.	

CO9	Work effectively as an individual and a team	Psychomotor (P4, P5),
	member for the successful completion of the	Affective (A3, A4, A5)
	capstone project.	
CO10	Write effective reports and design	Psychomotor (P3, P4),
	documentation, and make effective	Affective (A3, A4)
	presentations of the outcome of the capstone	
	project.	
CO11	Conduct economic analysis and cost	Cognitive (C2, C3),
	estimation, and apply appropriate project	Psychomotor (P4)
	management processes in the development	
	life cycle of the capstone project.	
CO12	Prepare to take part in independent and life-	Affective (A3),
	long learning for adapting emerging	Psychomotor (P4, P5)
	technologies for the solution of complex	
	computer science and engineering problems.	

Mapping of COs to Knowledge Profile (K), Program Outcome (PO), Complex Engineering Problem (EP), and Complex Engineering Activity (EA):

CO	CO Descriptions	K	PO	EP	EA
CO7	Assess and address the sustainability and impact of the capstone project in societal and environmental contexts	K7	PO7	EP1, EP2, EP3, EP4, EP5, EP6, EP7	-
CO8	Apply professional and engineering ethical principles and practices for the implementation of the capstone project	K7	PO8	-	-
CO9	Work effectively as an individual and a team member for successful completion of the capstone project	-	PO9	-	-
CO10	Write effective reports and design documentation, and make effective presentations of the outcome of the capstone project	-	PO10	-	EA1, EA2, EA3, EA4, EA5
CO11	Conduct economic analysis and cost	-	PO11	-	-

	estimation; and apply appropriate project management processes in the development life cycle of the capstone project				
CO12	Prepare to take part in independent and lifelong learning for adapting emerging technologies for the solution of the complex computer science and engineering problems	-	PO12	-	-

Teaching Learning Methodology and Assessment:

The group of students will prepare a report targeting CO7, CO8, CO9, CO10, CO11, and CO12 related to the design and implementation of the capstone project and its impact on environment and sustainability, ethics, individual and teamwork, and project management issues as well as to effective communication and life long learning. Grading will be done based on this report and the oral presentation of the students.

Final Outcomes:

- 1. Deliverable Product/Prototype
- 2. Final Capstone Project Report

Capstone	CO-PO Matrix		РО	Learning	Assessment
Project		T =	Descriptions	Domains	Weight
CSE400A	CO1	PO1	Engineering	Cognitive	45%
			Knowledge		
	CO2	PO4	Investigation	Cognitive,	45%
				Psychomotor	10%
CSE400B	CO3	PO2	Problem	Cognitive	25%
			Analysis		
	CO4	PO3	Design/	Cognitive,	45%
			Development of	Affective	5%
			Solutions		
	CO5	PO5	Modern Tool	Psychomotor,	10%
	003	103	Usage	Cognitive	5%
			Usage	Cognitive	370
	CO6	PO6	The Engineer	Affective,	5%
			and Society	Cognitive	5%
CSE400C	CO7	PO7	Environment	Affective,	5%
			and	Cognitive	5%
			Sustainability		
	CO8	PO8	Ethics	Affective,	5%
	008	108	Eulics	· · · · · · · · · · · · · · · · · · ·	5%
	CO9	PO9	Individual Work	Cognitive	10%
	(09	PO9		Psychomotor,	
	CO10	DO10	and Teamwork	Affective	10%
	CO10	PO10	Communication	Psychomotor,	30%
	6011	DO11	7	Affective	10%
	CO11	PO11	Project	Cognitive,	5%
			Management	Psychomotor	5%
			and Finance		
	CO12	PO12	Life-Long	Affective,	5%
			Learning	Psychomotor	5%
				•	