3 Numeri interi e Polinomi

Terminato l'esempio che spero non sia stato troppo traumatico, introduco i due principali protagonisti - dramatis personae - del corso. A livello poco formale dovreste averli incontrati già ripetute volte. Si tratta degli interi $\mathbb Z$ e dell'insieme dei polinomi a coefficienti reali? complessi? razionali? Vedremo che si possono definire polinomi a coefficienti su un qualsiasi insieme dotato della struttura di anello commutativo. Noi ci limiteremo al caso in cui questo anello è un campo. Se denoto con K il misterioso campo (K è l'iniziale di Körper, ossia campo in tedesco), indicherò con K[x] l'insieme dei polinomi a coefficienti in K nella variabile x.

Spesso indicherò con A, $\mathbb Z$ oppure K[x], A perché loro stessi sono degli anelli, perfino commutativi. Come vedremo si possono analizzare le due strutture in parallelo. Molti testi preferiscono parlare prima e più a lungo degli interi e, successivamente, quando tipicamente ci siamo dimenticati quasi tutto si trattano i polinomi. Spero che questa mia scelta risulti vincente.

Si potrebbero definire i polinomi in modo più formale rendendo solido il concetto di variabile o indeterminata (sarà un caso se viene chiamata così?).

Osservazione 3.1 Si osservi che sulla base della definizione data si ha che due polinomi sono uguali sse coincidono in quanto successioni a valori in A = K[x]. Si deve prestare attenzione alla differenza che intercorre tra il concetto di funzione polinomiale (comunemente usata in contesti analitici) e il concetto di polinomio. Ad ogni polinomio è associata una funzione polinomiale $F: A \rightarrow A$ definita attraverso la notazione simbolica:

$$b \longmapsto a_n b^n + \dots + a_1 b + a_0 \in A$$

solitamente detta valutazione del polinomio $a_0 + \dots a_n x^n$ in b. Nel caso dei polinomi definiti su un campo infinito vi è una corrispondenza biunivoca tra funzioni polinomiali e polinomi ma in generale questo non è vero. Si consideri a titolo di esempio l'anello B_0 incontrato nel precedente capitolo e il polinomio $a(x) := x^2 - x$. Allora si vede subito che a(x) ha come funzione polinomiale associata la funzione nulla ma non è il polinomio nullo.

Definizione 3.2 Si definisce grado di un polinomio non nullo $a(x) = \sum_i a_i x^i$ il massimo intero n tale $a_n \neq 0$. Il coefficiente a_n viene detto **coefficiente** direttivo di a(x). Scriveremo $\deg(a(x)) = I$ polinomi di grado 0 incluso il polinomio nullo si dicono costanti.

Osservazione 3.3 $Se\ a(x)\ e\ b(x)$ sono due polinomi allora il grado della somma a(x)+b(x) non può ovviamente superare il massimo tra i gradi di $a(x)\ e\ b(x)$. Potrebbe però essere minore, ad esempio siano a(x)=5x+1 e b(x)=-5x+2 in $\mathbb{R}[x]$, allora a(x)+b(x)=3 ha grado 0.

Per quanto riguarda il prodotto a(x)b(x) di due generici polinomi si ha (pensando alla scrittura simbolica usuale) che il grado è al più pari alla somma dei gradi dei due polinomi.

Lemma 3.4 Siano $a(x), b(x) \in K[x]$ l'anello di polinomi su un campo K, allora

- (i) $\deg(a(x) + b(x)) \le \max(\deg(a(x)), \deg(b(x)))$.
- (ii) deg(a(x)b(x)) = deg(a(x)) + deg(b(x)).

Rimane da considerare se sia sensato attribuire un grado anche al polinomio nullo. Nel caso in cui K è un dominio sarebbe interessante preservare la proprietà $\deg(a(x)b(x)) = \deg(a(x)) + \deg(b(x))$ (Principio di Hankel-Peacock). Questo obbliga a definire

$$\deg(0) = -\infty,$$

dove il segno meno sottintende che tale valore vada considerato come inferiore a qualsiasi altro grado.

Una conseguenza del lemma 3.4 è che ab=0 sse uno dei due fattori è 0. Quindi sia \mathbb{Z} che K[x] sono dei **domini** ossia degli anelli commutativi in cui vale la **la legge di annullamento** del prodotto.

3.1 Algoritmo di divisione sugli Interi

Riprendiamo ed estendiamo a \mathbb{Z} il classico algoritmo di divisione.

Proposizione 3.5 (Algoritmo di divisione) Siano $a, b \in \mathbb{Z}$, $b \neq 0$. Allora esistono e sono unici $q, r \in \mathbb{Z}$ tali che:

- 1. a = bq + r.
- 2. $0 \le r < |b|$.

Dim. Sostituendo b con -b e q con -q, possiamo supporre che $b \in \mathbb{N}$. Iniziamo ad analizzare il caso $a \in \mathbb{N}$.

Sia $R = \{a - bq : q \in \mathbb{Z}\} \cap \mathbb{N}$. Siccome $a \in R$, $R \neq \emptyset$. Pertanto, per il principio di induzione, esiste $r = \min(R)$. Il principio di induzione equivale al principio di buon ordinamento in \mathbb{N} , ossia ogni sottoinsieme non vuoto di \mathbb{N} ammette minimo (si veda [Chi09, Chapter 2, Theorem 8]).

Se fosse $r = a - bq \ge b$, potrei scrivere $0 \le r - b = a - (q+1)b < r$, contro la minimalità di r. Quindi $0 \le r < b$.

Sia a < 0, allora, per il caso precedente, esistono $q', r' \in \mathbb{Z}$ tali che -a = bq' + r', $0 \le r' < b$. Se r' = 0, allora a = bq con q = -q'. Altrimenti r' > 0 e a = -b(q'+1) + (b-r') e l'asserto è verificato con q = -(q'+1) e r = b - r'.

Sia ora a=bq+r=bq'+r' con $r\geq r'$. Allora b|(r-r'). Ma r-r'< b, quindi r=r' e, di conseguenza q'=q.

Questa dimostrazione si potrebbe tradurre in un algoritmo - non molto efficiente. Si parte da a e si sottrae (q>0) o aggiunge (q<0) b fino ad ottenere un valore in [0,|b|). Il costo computazionale di questo approccio è |q|. L'usuale algoritmo che credo insegnino ancora in corsi pre-universitari (Scuola Primaria, Secondaria, ecc...) richiede invece $\log_{10}|q|$ passi. Puntualizzo solo il fatto che questo algoritmo lavora per approssimazioni successive individuando per eccesso