Valutare la difficoltà dei problemi

```
esiste un algoritmo che risolve il
       problema con questa complessità
             limite superiore: O(n^2)
n \log n
\log n
\log n
```

Valutare la difficoltà dei problemi

```
ogni algoritmo che risolve il
            problema ha complessità
n \log n
            maggiore o uguale di questa
           limite inferiore: \Omega(n)
```

Un limite superiore per il problema dell'ordinamento

Abbiamo visto che Insert-Sort per ordinare n oggetti richiede $O(n^2)$ operazioni

Quindi $O(n^2)$ è un limite superiore

Vedremo in seguito che $\Theta(n \log n)$ è un limite stretto per il problema dell'ordinamento.

Per ora ci limitiamo a dimostrare che:

La complessità nel caso pessimo di ogni algoritmo di ordinamento <u>sul posto</u> che confronta e scambia tra loro soltanto <u>elementi</u> <u>consecutivi</u> dell'array è $\Omega(n^2)$.

Quindi il problema di ordinare sul posto un array scambiando tra loro soltanto elementi consecutivi ha complessità $\Theta(n^2)$.

Sia A[1..n] un array

Se i < j e A[i] > A[j] diciamo che la coppia di indici (i, j) è una *inversione*

i	$oldsymbol{j}$	\boldsymbol{k}
8	3	3

Se l'array è ordinato non ci sono inversioni.

Se l'array è ordinato in senso opposto e gli elementi sono tutti distinti allora ogni coppia (i, j) di indici con i < j è una inversione e quindi ci sono esattamente n(n-1)/2 inversioni.

Come cambia il numero di inversioni quando facciamo uno scambio tra due elementi consecutivi A[i] ed A[i+1] dell'array?

Consideriamo tutte le coppie di indici (j, k) con j < k e vediamo quante e quali di esse possono cambiare di stato da inversioni a non inversioni o viceversa quando scambiamo A[i] con A[i+1].

Se j e k sono entrambi diversi da i e i+1 la coppia (j, k) non cambia di stato e quindi il numero di inversioni di questo tipo non cambia.

$oldsymbol{j}$	i i+1	k
u	yx	$ \mathbf{V} $

Consideriamo le due coppie (i, k) e (i+1, k) con k > i+1 ossia

(i, k) è inversione dopo lo scambio se e solo se (i+1, k) lo era prima e (i+1, k) è inversione se e solo se (i, k) lo era prima.

Quindi le due coppie si scambiano gli stati ma il numero totale di inversioni non cambia.

Consideriamo le coppie (j, i) e (j, i+1) con j < i ossia

La situazione è simmetrica di quella precedente e quindi anche in questo caso il numero totale di inversioni non cambia. Rimane soltanto da considerare la coppia (i, i+1) che con lo scambio cambia di stato se i due elementi sono diversi.

In conclusione con lo scambio di due elementi consecutivi dell'array il numero totale di inversioni aumenta o diminuisce di 1 (o rimane invariato se i due elementi scambiati erano uguali).

Nel caso pessimo in cui l'array è ordinato in senso inverso e gli elementi sono tutti distinti le inversioni iniziali sono n(n-1)/2.

Occorrono quindi almeno n(n-1)/2 scambi tra elementi consecutivi per ridurre tale numero a 0.

Siccome $n(n-1)/2 = \Omega(n^2)$ rimane dimostrato il limite inferiore.

Esercizio: Abbiamo dimostrato che scambiando due elementi diversi consecutivi il numero totale di inversioni aumenta o diminuisce di 1.

Quindi se prima dello scambio il numero di inversioni totale era pari, dopo lo scambio esso risulta dispari e viceversa.

Mostrare che questo cambiamento della parità del numero totale di inversioni avviene anche se si scambiano due elementi diversi non consecutivi.

Soluzione delle ricorrenze

Metodo di sostituzione:

Si assume che la soluzione sia di un certo tipo, ad esempio

$$T(n) = k_1 n \log_2 n + k_2 n + k_3$$

dove k_1 , k_2 e k_3 sono delle costanti

Si sostituisce la soluzione nella ricorrenza e si cercano dei valori delle costanti per i quali la ricorrenza è soddisfatta.

Se le cose non funzionano si riprova con un altro tipo di soluzione.

Esempio:
$$T(n) = \begin{cases} c & \text{se } n \le 1 \\ bn + a + 2T(n/2) & \text{se } n > 1 \end{cases}$$

assumiamo $T(n) = k_1 n \log_2 n + k_2 n + k_3$ sostituendo si ottiene:

$$k_1 n \log_2 n + k_2 n + k_3 =$$

$$= \begin{cases} c & \text{se } n \le 1 \\ bn + a + 2(k_1 \frac{n}{2} \log_2 \frac{n}{2} + k_2 \frac{n}{2} + k_3) & \text{se } n > 1 \end{cases}$$

Le costanti k_1 , k_2 e k_3 devono essere le stesse a sinistra e a destra.

per n = 1 si ottiene: $k_2 + k_3 = c$ mentre per n > 1 $k_1 n \log_2 n + k_2 n + k_3 =$ $= k_1 n \log_2 n + (b - k_1 + k_2) n + a + 2k_3$ da cui $k_1 = b$, $k_2 = -a$ e $k_2 = c + a$ e dunque $T(n) = bn \log_2 n + (c + a)n - a$ è la soluzione.

Soluzione delle ricorrenze

Metodo dell'esperto:

Fornisce direttamente le soluzioni asintotiche di molte ricorrenze del tipo:

$$T(n) = aT(n/b) + f(n)$$

dove n/b significa anche $\lfloor n/b \rfloor$ o $\lceil n/b \rceil$

Teorema dell'esperto:

Se T(n) = aT(n/b) + f(n) è una ricorrenza con $a \ge 1$ e b > 1 costanti e dove n/b può essere anche $\lfloor n/b \rfloor$ o $\lceil n/b \rceil$ allora :

- 1. $T(n) = \Theta(n^{\log_b a})$ se $f(n) = O(n^{\log_b a \varepsilon})$ per qualche costante $\varepsilon > 0$
- 2. $T(n) = \Theta(n^{\log_b a} \log n)$ se $f(n) = \Theta(n^{\log_b a})$
- 3. $T(n) = \Theta(f(n))$ se $f(n) = \Omega(n^{\log_b a + \varepsilon})$ per qualche costante $\varepsilon > 0$ ed esistono k < 1 ed N tali che $a f(n/b) \le k f(n)$ per ogni $n \ge N$

$$T(n) = f(n) + af(\frac{n}{b}) + a^2 f(\frac{n}{b^2}) + \dots + a^{\log_b n - 1} f(\frac{n}{b^{\log_b n - 1}}) + cn^{\log_b a}$$

Come usare il Teorema dell'esperto

$$T(n) = aT(n/b) + f(n)$$

- 1. Togliere eventuali arrotondamenti per eccesso o per difetto
- 2. Calcolare $\log_b a$
- 3. Calcolare il limite $\lim_{n\to\infty} \frac{f(n)}{n^{\log_b a}}$
- 4. Se il limite è finito e diverso da 0 siamo nel Caso 2 e

$$T(n) = \Theta(n^{\log_b a} \log n) = \Theta(f(n) \log n)$$

5. Se il limite è 0 <u>potremmo</u> essere nel Caso 1. Per esserne sicuri occorre trovare un valore positivo ε per il quale risulti finito il limite

$$\lim_{n\to\infty}\frac{f(n)}{n^{\log_b a-\varepsilon}}$$

nel qual caso possiamo concludere

$$T(n) = \Theta(n^{\log_b a})$$

Se per <u>ogni</u> ε positivo tale limite risulta infinito il teorema dell'esperto non si può usare.

- 6. Se il limite è ∞ *potremmo* essere nel Caso
 - 3. Per esserne sicuri occorre trovare un ε positivo per il quale risulti diverso da 0 il limite

$$\lim_{n\to\infty}\frac{f(n)}{n^{\log_b a+\varepsilon}}$$

Se è 0 per <u>ogni</u> ε positivo non si può usare il teorema dell'esperto.

Altrimenti prima di concludere bisogna studiare la disequazione

$$a f(n/b) \le k f(n)$$

Se tale disequazione è soddisfatta per qualche costante *k* strettamente minore di 1 e per tutti i valori di *n* da un certo valore *N* in poi possiamo concludere che

$$T(n) = \Theta(f(n))$$

Altrimenti il teorema dell'esperto non si può usare.

Esempi:
$$T_{\min}^{QS}(n) = 2T_{\min}^{QS}(\lfloor n/2 \rfloor) + c_1 n + c_0$$

 $T^{MS}(n) = T^{MS}(\lfloor n/2 \rfloor) + T^{MS}(\lceil n/2 \rceil) + c_1 n + c_0$

Trascurando gli arrotondamenti entrambe sono della forma: $T(n) = aT(\frac{n}{b}) + f(n)$

Con
$$a=b=2$$
 ed $f(n)=\Theta(n)$

siccome $n^{\log_b a} = n^{\log_2 2} = n$ e quindi $f(n) = \Theta(n^{\log_b a})$

possiamo applicare il Caso 2 e concludere

$$T(n) = \Theta(n^{\log_b a} \log n) = \Theta(n \log n)$$

Esempio:
$$T(n) = 2T(\frac{n}{2}) + \log_2 n$$

In questo caso
$$\lim_{n\to\infty} \frac{f(n)}{n^{\log_b a}} = \lim_{n\to\infty} \frac{\log_2 n}{n} = 0$$

e quindi
$$f(n) = O(n^{\log_b a})$$
 Caso 1? Se $f(n) = O(n^{\log_b a - \varepsilon})$

Per
$$\varepsilon = 0.5$$
 $n^{\log_b a - \varepsilon} = n^{\log_2 2 - 0.5} = \sqrt{n}$

e
$$\lim_{n\to\infty} \frac{f(n)}{n^{\log_b a - \varepsilon}} = \lim_{n\to\infty} \frac{\log_2 n}{\sqrt{n}} = 0$$

Quindi $f(n) = O(n^{\log_b a - \varepsilon})$ e si applica il Caso 1 $T(n) = \Theta(n^{\log_b a}) = \Theta(n)$

$$T(n) = \Theta(n^{\log_b a}) = \Theta(n)$$

Esempio:
$$T(n) = 2T(\frac{n}{2}) + n^2$$

In questo caso $\lim_{n\to\infty} \frac{f(n)}{n^{\log_b a}} = \lim_{n\to\infty} \frac{n^2}{n} = \infty$
e quindi $f(n) = \Omega(n^{\log_b a})$ Caso 3?
Se $f(n) = \Omega(n^{\log_b a + \varepsilon})$ e $af(n/b) \le kf(n)$
Per $\varepsilon = 0.5$ $n^{\log_b a + \varepsilon} = n^{\log_2 2 + 0.5} = n\sqrt{n}$
e $\lim_{n\to\infty} \frac{f(n)}{n^{\log_b a + \varepsilon}} = \lim_{n\to\infty} \frac{n^2}{n\sqrt{n}} = \infty$
Quindi $f(n) = \Omega(n^{\log_b a + \varepsilon})$
Inoltre $af(n/b) = n^2/2 \le 0.5 f(n)$

Si applica il Caso 3: $T(n) = \Theta(f(n)) = \Theta(n^2)$

Esempio:
$$T(n) = 2T(\frac{n}{2}) + n \log_2 n$$

 $n^{\log_b a} = n^{\log_2 2} = n$ $f(n) = n \log_2 n = \Omega(n^{\log_b a})$
ma $n^{\log_b a + \varepsilon} = n^{1+\varepsilon} = nn^{\varepsilon}$
e quindi $f(n) = n \log_2 n = O(n^{\log_b a + \varepsilon})$
per qualunque $\varepsilon > 0$

Dunque non si può usare il metodo dell'esperto. Neanche la seconda condizione è soddisfatta

$$af(\frac{n}{b}) = 2\frac{n}{2}\log_2\frac{n}{2} = n\log n - n = f(n) - n$$

ma $\lim_{n\to\infty}\frac{f(n)-n}{f(n)} = 1$

e quindi non esiste nessun k < 1 tale che $f(n) - n \le kf(n)$ per ogni n > N