Agrupamento de Dados

Prof. Debora Medeiros

Como agrupar naturalmente os seguintes objetos?

→ Cluster é um conceito subjetivo!

Keogh, E. A Gentle Introduction to Machine Learning and Data Mining for the Database Community, SBBD 2003, Manaus.

O que é um grupo (cluster)? Motivação

- Definições subjetivas:
 - "Semelhanças entre objetos".
 - Quais atributos devemos considerar para computar similaridades?

1. Motivação

- Numa "abordagem matemática", critérios numéricos usualmente consideram:
 - Homogeneidade (coesão interna);
 - Heterogeneidade (separação entre grupos);

Agrupamento de Dados (ADs) é uma técnica importante para Análise Exploratória de Dados :

- Engenharia;
- Biologia;
- Psicologia;
- Medicina;
- Administração (Marketing, Finanças,...);
- Ciência da Computação:
 - Bioinformática;
 - Dados coletados via sensores;
 - · Componentes de sistemas inteligentes;
 - Componentes de algoritmos para aprendizado de máquina, ...

6

https://www.kdnuggets.com/2019/04/top-data-science-machine-learning-methods-2018-2019.html

2. Conceitos Básicos

Algumas Definições (Everitt, 1974):

- Um cluster (grupo) é um conjunto de entidades
 semelhantes, e entidades pertencentes a diferentes
 clusters não são semelhantes.
- Um grupo é uma aglomeração de pontos no espaço tal que a <u>distância</u> entre quaisquer <u>dois pontos no grupo</u> é <u>menor</u> do que a <u>distância</u> entre qualquer ponto no grupo e qualquer <u>ponto fora</u> deste.
- Grupos podem ser descritos como <u>regiões</u> conectadas de um espaço multidimensional contendo uma <u>densidade</u> de pontos relativamente <u>alta</u>, <u>separada</u> de outras tais regiões por uma região contendo uma <u>densidade</u> relativamente <u>baixa</u> de pontos.
- Humanos reconhecem *clusters* no plano quando os vêem, sem saber explicar exatamente porquê (Jain & Dubes, 1988) ...

Agrupamento X Classificação?

Algoritmos para particionamento: construir partições.

Algoritmos hierárquicos: criar uma decomposição hierárquica.

2. Conceitos Básicos

Métodos para Particionamento:

Sobreposição

- Em princípio requerem a definição, a priori, do número de grupos;
- Métodos hierárquicos, por sua vez...

Algoritmos particionais

Partições rígidas

Abordaremos um algoritmo amplamente usados na prática:

k-médias (k-means);

Algoritmo k-médias (MacQueen, 1967)

- Amplamente usado na prática:
 - Simplicidade;
 - >Interpretabilidade;
 - Eficiência Computacional.

Assumamos que queremos encontrar três clusters (k
 = 3) para uma base de dados bi-dimensional:

From the slides by Gregory Piatetsky-Shapiro & Gary Parker - available at www.kdnuggets.com

• Calcular dissimilaridades entre objetos e protótipos (k_1, k_2, k_3) , encontrando grupos iniciais pela regra do vizinho mais próximo:

Atualizar os protótipos (centróides) dos grupos:

24

- Calcular dissimilaridades entre objetos e centróides;
- Atualizar clusters (regra do vizinho mais próximo);

• Repetir até convergência/ número de iterações.

From the slides by Gregory Piatetsky-Shapiro & Gary Parker - available at www.kdnuggets.com

Algoritmo básico:

- 1. Selecionar *k* pontos (*centróides* iniciais);
- 2. Repetir até "convergir":
 - 2.1 Formar *k* grupos atribuindo cada ponto ao seu centróide mais próximo;
 - 2.2 Re-computar o centróide de cada grupo;

Detalhes sobre o k-médias:

- Centróides iniciais são frequentemente escolhidos aleatoriamente.
 - Clusters obtidos podem variar de uma rodada para outra?
- Proximidade pode ser medida por meio de Distância Euclidiana, co-seno, correlação, etc.
- k-média converge, geralmente nas primeiras iterações;
- Vejamos alguns exemplos interessantes...

Consideremos duas partições diferentes obtidas para k = 3:

Pontos originais

Importância da escolha dos centróides iniciais:

Importância da escolha dos centróides iniciais...

Soluções para inicialização?

- Múltiplas execuções:
 - Ajuda, mas pequena P_{sucesso};
- Amostragem via métodos hierárquicos;
- Seleção "informada" de centróides distantes entre si;
- Algoritmos de busca (e.g., evolutivos);

Avaliando os grupos obtidos:

Soma dos erros quadráticos:

$$SEQ = \sum_{i=1}^{k} \sum_{x \in C_i} dist^2(m_i, x)$$

- Dadas duas partições, escolher aquela que apresenta SEQ menor;
- Aumento de k : tende a diminuir, por si só, SEQ;

Limitações do k-médias:

- Grupos de diferentes:
 - Tamanhos;
 - Densidades;
 - Formas não globulares.

Outliers.

Limitações do k-médias: grupos de tamanhos diferentes

Tan, Steinbach & Kumar, Introduction to Data Mining, Pearson, 2006.

Pontos originais

Limitações do *k*-médias: densidades diferentes

Tan, Steinbach & Kumar, Introduction to Data Mining, Pearson, 2006.

Limitações do k-médias: formas não globulares

Pontos originais

2-médias

Superando algumas limitações do k-médias

Pontos originais "Mais Grupos"

Superando algumas limitações do *k-médias...*

Pontos originais

"Mais grupos"

Superando algumas limitações do k-médias...

Pontos originais

"Mais grupos"

Critérios de validade:

Medidas numéricas para julgar diversos aspectos de validade:

- Índices Internos: medem a qualidade de uma estrutura de agrupamento independentemente de informação externa (e.g., EQ);
- Índices Relativos: comparam duas partições (ou grupos).
- Índices Externos: medem o quão bem os rótulos dos grupos representam categorias préestabelecidas (e.g., Rand);
- Iniciaremos por um índice interno que já foi "indiretamente" estudado...

42

Erro Quadrático (EQ):

- Usado para medir a qualidade da estrutura de grupos obtida sem se considerar informações externas;
- Comparar partições (mesmo k) e grupos (EQ médio) ;
- Pode ser usado para estimar o número de grupo (com cuidado!):

Tan, Steinbach & Kumar, Introduction to Data Mining, Pearson, 2006.

Estimando o número de grupos:

Keogh, E. A Gentle Introduction to Machine Learning and Data Mining for the Database Community, SBBD 2003, Manaus.

Keogh, E. A Gentle Introduction to Machine Learning and Data Mining for the Database Community, SBBD 2003, Manaus.

Keogh, E. A Gentle Introduction to Machine Learning and Data Mining for the Database Community, SBBD 2003,

Keogh, E. A Gentle Introduction to Machine Learning and Data Mining for the Database Community, SBBD 2003,

Plotar EQ para k = 1,...6, tentando identificar um joelho:

Índices Relativos:

Normalmente usados para comparar partições diferentes e para estimar o número de grupos de dados;

Silhueta (Kaufman & Rousseeuw, 1990):

i	Х	У	cluster
1	1	1	\mathbf{C}_1
2	1	2	C ₁
3	2	1	\mathbf{C}_1
4	2	2	C ₁
5	10	1	\mathbf{C}_2
6	10	2	\mathbf{C}_2
7	11	1	C ₂
8	11	2	C ₂
9	5	5	C ₃
10	5	6	C ₃
	~ 1_		"al pecif

- Quão bem "classificado" está o *i*-ésimo objeto (e.g., *i*=1)?
- 1)Dissimilaridade em relação aos objetos do seu grupo:
- $\Box a(i)$: dissimilaridade média de i aos objetos do seu grupo:

 $(d_{12} + d_{13} + d_{14})/3$.

50

i	X	У	cluster
1	1	1	\mathbf{C}_{1}
2	1	2	\mathbf{C}_1
3	2	1	\mathbf{C}_1
4	2	2	$\mathbf{C}_{_{1}}$
5	10	1	\mathbf{C}_2
6	10	2	\mathbf{C}_2
7	11	1	\mathbf{C}_2
8	11	2	\mathbf{C}_2
9	5	5	\mathbf{C}_3
10	5	6	\mathbf{C}_3

2) O que se pode dizer em relação à sua dissimilaridade relativa aos objetos do grupo vizinho?

b(i): min{
$$(d_{15} + d_{16} + d_{17} + d_{18})/4$$
; $(d_{19} + d_{110})/2$ }.

Silhueta (Kaufman & Rousseeuw, 1990):

$$s(i) = \frac{b(i) - a(i)}{\max\{a(i), b(i)\}}$$

$$S_{M} = \frac{\sum_{i=1}^{N} s(i)}{N}$$

- a(i): dissimilaridade média de i aos outros objetos de seu grupo.
- *b*(i): dissimilaridade média de *i* em relação aos objetos de seu grupo vizinho.
- \rightarrow Aumentar k tende a diminuir a(i), mas também tende a diminuir b(i).

Existem dezenas de índices reportados na literatura;

Maior parte dos índices é baseada em conceitos de compactação e separabilidade...

Índices Externos:

- Comparar uma partição obtida com uma partição de referência;
- > Aplicações:
 - Experimentos controlados;
 - Prática?
- Consideremos:
 - Um par de objetos $(\mathbf{x}_i, \mathbf{x}_j)$ de $\mathbf{X} = {\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n};$
 - Uma partição dos dados $C = \{C_1, C_2, ..., C_k\}$;
 - Uma partição de referência $P = \{P_1, P_2, ..., P_p\}$:

Há 4 casos possíveis para atribuir (x_i, x_i) :

Caso 1: $x_i e x_j$ estão no mesmo grupo em C e na mesma categoria em P; (a)

Caso 2: $x_i e x_j$ estão no mesmo grupo em C e em categorias diferentes em P; (b)

Caso 3: $x_i e x_j$ estão em grupos diferentes em C e na mesma categoria em P; (c)

<u>Caso 4</u>: $x_i e x_j$ estão em grupos diferentes em **C** e em categorias diferentes em **P**; (d)

Exemplo (Xu & Wunch, 2009):

Partição de Referência - P.

Nº de pares: $a+b+c+d = \frac{n(n-1)}{2} = 21.$

Alguns índices muito usados:

Jaccard (1908):
$$J = \frac{a}{a+b+c}$$

Principais referências usadas para preparar essa aula:

- Xu, R., Wunsch, D., Clustering, IEEE Press, 2009.
 Capítulo 4.
- Tan, Steinbach & Kumar, Introduction to Data Mining, Pearson, 2006.
 - Capítulo 8, pp. 496-515.
- Jain, A. K., Dubes, R. C., Algorithms for Clustering Data, Prentice Hall, 1988.
 - Capítulo 3, pp. 89-142.
- Bishop, C. M., Pattern Recognition and Machine Learning, 2006.
 - Capítulo 9, pp. 423-439.