

VIGILADA MINEDUCACIÓN - SNIES 1732

# ANÁLISIS Y VISUALIZACIÓN DE DATOS CON PYTHON



## **CIENCIA DE LOS DATOS**

- Sabemos que estamos ante una época de una proliferación inimaginable de datos. Se producen datos por doquier.
- Los datos nos proporcionan respuestas a través de valores ocultos y patrones.
- Hay suficientes datos, pero está la dificultad de analizarlos y tomar provecho de ellos.
- Para ello se aplican los métodos que permiten el análisis masivo de datos y poder extraer conocimiento de ellos.





El proceso de análisis de datos permite:

- Refinar datos sin procesar.
- Transformar datos a una mejor calidad y formato estándar.
- Visualizar datos para facilitar su comprensión.





## Tipos de análisis de datos:

- Análisis de texto.
- Análisis estadístico.
- Análisis de diagnóstico.
- Análisis predictivo.
- Análisis prescriptivo.





#### 1. Análisis de texto:

Comprende el proceso automatizado para extraer y clasificar información de un texto como por ejemplo emails, tweets, respuesta a encuestas, etc.

Dentro de las tareas más comunes se encuentran análisis de sentimientos, extracción de palabras clave y detección de temas.





#### 2. Análisis estadístico:

Este proceso permite recolectar, explorar y presentar grandes volúmenes de datos para identificar patrones y tendencias.

Mediante el uso de estadísticas, es posible agrupar y organizar los datos, para luego realizar algunas inferencias.

Por ejemplo: analizar el flujo de personas que frecuentan una sala de urgencias en un periodo de tiempo.





### 3. Análisis de diagnóstico:

En este proceso se examinan los datos y se busca identificar la razón por la cual sucedió un evento particular.

A través del análisis de diagnóstico es posible hacer correlaciones de las variables que intervienen en el estudio y así poder determinar la razón de cierto comportamiento como el aumento de casos del COVID por ejemplo. En este caso se identificaron las variables que tenían incidencia en la exposición y contagio del virus.





#### 4. Análisis predictivo:

En este proceso se trabaja con datos históricos para encontrar patrones y poder predecir efectos similares a futuro.

En el ejemplo del COVID, se puede predecir un aumento de casos por cierta condición como una festividad que promueve las reuniones de varias personas en sitios cerrados.





#### 5. Análisis prescriptivo:

En este proceso se sugieren acciones ante la situación detectada. Por ejemplo, en el caso de un aumento de casos, se puede sugerir establecer políticas restrictiva para el ingreso a ciertos establecimientos o el aumento de personal médico que pueda atender la emergencia.





Incluye diversos procesos, tales como:

- Recopilación de datos.
- Limpieza de datos.
- Procesamiento, configuración de datos.
- Visualización.
- Interpretación.
- Divulgación de resultados.





## FORMATO DE LOS DATOS

Los conjuntos de datos pueden estar en diferentes formatos, pero los más comunes son:

- CSV (Comma Separated Value).
- Excel
- JSON (JavaScript Object Notation).
- Texto





1. Buscar en el siguiente link un conjunto de datos para regresión univariable

https://archive.ics.uci.edu/ml/datasets.php

Bike Sharing Dataset (data folder)

- 2. Agregar las librerías: pandas, numpy, matplotlib, seaborn y sklearn para usar el modelo lineal.
- 3. Importar el conjunto de datos (por días)





```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn import linear_model
import seaborn as sns
import warnings

from google.colab import files
datos = files.upload()
```

#### Elegir archivos day.csv

day.csv(application/vnd.ms-excel) - 57569 bytes, last modified: 20/9/2021 - 100% done
 Saving day.csv to day (1).csv





4. Convertir el conjunto de datos en un dataframe y visualizarlo.





4. Convertir el conjunto de datos en un dataframe y visualizarlo.

```
import io
datos_bici = pd.read_csv(io.BytesIO(datos['day.csv']))
datos_bici
```

5. Visualizar la información estadística





4. Convertir el conjunto de datos en un dataframe y visualizarlo.

```
import io
datos_bici = pd.read_csv(io.BytesIO(datos['day.csv']))
datos_bici
```

5. Visualizar la información estadística

```
datos_bici.describe()
```





6. Visualizar la información de los tipos de datos por campo





6. Visualizar la información de los tipos de datos por campo

```
datos_bici.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 731 entries, 0 to 730
Data columns (total 16 columns):
     Column
                Non-Null Count Dtype
                731 non-null
     instant
                                int64
     dteday
                731 non-null
                                object
     season
                731 non-null
                                int64
                731 non-null
     vr
                                int64
                731 non-null
                                int64
     mnth
     holiday
                731 non-null
                                int64
     weekday
                731 non-null
                                int64
     workingday 731 non-null
                                int64
     weathersit 731 non-null
                                int64
                731 non-null
                                float64
     temp
                731 non-null
                                float64
     atemp
                                float64
                731 non-null
     windspeed
                731 non-null
                                float64
     casual
                731 non-null
                                int64
     registered 731 non-null
                                int64
                 731 non-null
                                int64
 15 cnt
dtypes: float64(4), int64(11), object(1)
memory usage: 91.5+ KB
```





7. Visualizar los valores únicos de todos los campos

```
datos_bici.apply(lambda x: len(x.unique()))
instant
              731
dteday
              731
season
yr
mnth
               12
holiday
weekday
workingday
weathersit
              499
temp
              690
atemp
              595
hum
windspeed
              650
casual
              606
registered
              679
cnt
              696
dtype: int64
```





8. Visualizar los valores vacíos





8. Visualizar los valores vacíos

```
datos_bici.isnull().sum()
instant
dteday
season
mnth
holiday
weekday
workingday
weathersit
temp
atemp
hum
windspeed
casual
registered
cnt
dtype: int64
```





9. Si se quiere renombrar algunas columnas para entender mejor la información que contienen:





10. ¿Cuál información no es relevante para el análisis y predicción?

| 0 | datos_bici.head() |         |            |        |      |       |         |         |            |         |          |          |          |           | T √ € ■ |            |       |  |  |
|---|-------------------|---------|------------|--------|------|-------|---------|---------|------------|---------|----------|----------|----------|-----------|---------|------------|-------|--|--|
| ₽ |                   | instant | dteday     | season | year | month | holiday | weekday | workingday | weather | temp     | atemp    | humidity | windspeed | casual  | registered | count |  |  |
|   | 0                 | 1       | 2011-01-01 | 1      | 0    | 1     | 0       | 6       | 0          | 2       | 0.344167 | 0.363625 | 0.805833 | 0.160446  | 331     | 654        | 985   |  |  |
|   | 1                 | 2       | 2011-01-02 | 1      | 0    | 1     | 0       | 0       | 0          | 2       | 0.363478 | 0.353739 | 0.696087 | 0.248539  | 131     | 670        | 801   |  |  |
|   | 2                 | 3       | 2011-01-03 | 1      | 0    | 1     | 0       | 1       | 1          | 1       | 0.196364 | 0.189405 | 0.437273 | 0.248309  | 120     | 1229       | 1349  |  |  |
|   | 3                 | 4       | 2011-01-04 | 1      | 0    | 1     | 0       | 2       | 1          | 1       | 0.200000 | 0.212122 | 0.590435 | 0.160296  | 108     | 1454       | 1562  |  |  |
|   | 4                 | 5       | 2011-01-05 | 1      | 0    | 1     | 0       | 3       | 1          | 1       | 0.226957 | 0.229270 | 0.436957 | 0.186900  | 82      | 1518       | 1600  |  |  |





10. ¿Cuál información no es relevante para el análisis y predicción? Se deben borrar del conjunto de datos.

| 0 | datos_bici.head() |     |            |        |      |       |         |         |            |         |          |          |          |           |        | ↑ ↓ ⑤ ▮    |       |  |
|---|-------------------|-----|------------|--------|------|-------|---------|---------|------------|---------|----------|----------|----------|-----------|--------|------------|-------|--|
| ₽ | insta             | nt  | dteday     | season | year | month | holiday | weekday | workingday | weather | temp     | atemp    | humidity | windspeed | casual | registered | count |  |
|   | 0                 | 1 : | 2011-01-01 | 1      | 0    | 1     | 0       | 6       | 0          | 2       | 0.344167 | 0.363625 | 0.805833 | 0.160446  | 331    | 654        | 985   |  |
|   | 1                 | 2 2 | 2011-01-02 | 1      | 0    | 1     | 0       | 0       | 0          | 2       | 0.363478 | 0.353739 | 0.696087 | 0.248539  | 131    | 670        | 801   |  |
|   | 2                 | 3 2 | 2011-01-03 | 1      | 0    | 1     | 0       | 1       | 1          | 1       | 0.196364 | 0.189405 | 0.437273 | 0.248309  | 120    | 1229       | 1349  |  |
|   | 3                 | 4   | 2011-01-04 | 1      | 0    | 1     | 0       | 2       | 1          | 1       | 0.200000 | 0.212122 | 0.590435 | 0.160296  | 108    | 1454       | 1562  |  |
|   | 4                 | 5   | 2011-01-05 | 1      | 0    | 1     | 0       | 3       | 1          | 1       | 0.226957 | 0.229270 | 0.436957 | 0.186900  | 82     | 1518       | 1600  |  |





10. ¿Cuál información no es relevante para el análisis y predicción? Se deben borrar del conjunto de datos.

| 0 | datos_bici.head() |         |       |        |       |         |         |            |         |          |          |          |           |        |            | © <b>E</b> |
|---|-------------------|---------|-------|--------|-------|---------|---------|------------|---------|----------|----------|----------|-----------|--------|------------|------------|
| ₽ | insta             | nt dt   | eday  | n year | month | holiday | weekday | workingday | weather | temp     | atemp    | humidity | windspeed | casual | registered | count      |
|   | 0                 | 1 2011- | )1-01 | 1 (    | 0 1   | 0       | 6       | 0          | 2       | 0.344167 | 0.363625 | 0.805833 | 0.160446  | 331    | 654        | 985        |
|   | 1                 | 2 2011- | 01-02 | 1 (    | 0 1   | 0       | 0       | 0          | 2       | 0.363478 | 0.353739 | 0.696087 | 0.248539  | 131    | 670        | 801        |
|   | 2                 | 3 2011- | 01-03 | 1 (    | 0 1   | 0       | 1       | 1          | 1       | 0.196364 | 0.189405 | 0.437273 | 0.248309  | 120    | 1229       | 1349       |
|   | 3                 | 4 2011- | 01-04 | 1 (    | 0 1   | 0       | 2       | 1          | 1       | 0.200000 | 0.212122 | 0.590435 | 0.160296  | 108    | 1454       | 1562       |
|   | 4                 | 5 2011- | 01-05 | 1 (    | 0 1   | 0       | 3       | 1          | 1       | 0.226957 | 0.229270 | 0.436957 | 0.186900  | 82     | 1518       | 1600       |

datos\_bici=datos\_bici.drop(columns=['instant','dteday','year'])
datos\_bici.head()





```
fig, ax=plt.subplots(figsize=(10,5))
sns.barplot(data=datos_bici, x='weekday', y='count', ax=ax)
ax.set(title='Count of bikes during different weekdays')
```

[Text(0.5, 1.0, 'Count of bikes during different weekdays')]

Count of bikes during different weekdays







- fig, ax=plt.subplots(figsize=(10,5))
  sns.barplot(data=datos\_bici, x='month', y='count', ax=ax)
  ax.set(title='Count of bikes during different months')
  - [Text(0.5, 1.0, 'Count of bikes during different months')]
    Count of bikes during different months







- fig, ax=plt.subplots(figsize=(10,5))
  sns.pointplot(data=datos\_bici, x='month', y='count',ax=ax)
  ax.set(title='Count of bikes by month')
- [Text(0.5, 1.0, 'Count of bikes by month')]







fig, ax=plt.subplots(figsize=(10,5))
sns.pointplot(data=datos\_bici, x='month', y='count',hue='weekday', ax=ax)
ax.set(title='Count of bikes during weekdays')

Hue: es la serie

[Text(0.5, 1.0, 'Count of bikes during weekdays')]

Count of bikes during weekdays







```
fig, ax=plt.subplots(figsize=(10,5))
sns.pointplot(data=datos_bici, x='month', y='count',hue='season', ax=ax)
ax.set(title='Count of bikes by month and season')
```

[Text(0.5, 1.0, 'Count of bikes by month and season')]







fig, ax=plt.subplots(figsize=(10,5))
sns.pointplot(data=datos\_bici, x='month', y='casual',hue='weekday', ax=ax)
ax.set(title='Count of bikes during weekdays - unregistered users')

[Text(0.5, 1.0, 'Count of bikes by month and season')]







fig, ax=plt.subplots(figsize=(10,5))
sns.pointplot(data=datos\_bici, x='month', y='registered',hue='weekday', ax=ax)
ax.set(title='Count of bikes during weekdays - registered users')

[Text(0.5, 1.0, 'Count of bikes during weekdays - registered users')]

Count of bikes during weekdays - registered users







- fig, ax=plt.subplots(figsize=(10,5))
  sns.pointplot(data=datos\_bici, x='month', y='count',hue='weather', ax=ax)
  ax.set(title='Count of bikes during different weathers')
- [Text(0.5, 1.0, 'Count of bikes during different weathers')]









```
fig, (ax1,ax2)=plt.subplots(ncols=2, figsize=(10,5))
sns.regplot(data=datos_bici, x='temp', y='count', ax=ax1)
ax1.set(title='Relation between temperature and users')
sns.regplot(data=datos_bici, x='humidity', y='count', ax=ax2)
ax2.set(title='Relation between humidity and users')
[Text(0.5, 1.0, 'Relation between humidity and users')]
       Relation between temperature and users
                                                   Relation between humidity and users
  8000 -
                                             8000
                                             6000
   6000
# 4000
                                           5
4000
  2000
                                             2000
             0.2
                             0.6
                                     0.8
                                                  0.0
                                                         0.2
                                                                             0.8
                                                                humidity
                       temp
```





#### MATRIZ DE CORRELACIÓN

```
correlacion = datos_bici.corr()
sns.heatmap(correlacion, annot=True)
```

<matplotlib.axes.\_subplots.AxesSubplot at 0x7f33a1475610>

```
- 1.0
    season - 1 0.820.02000BD10.0190.330.340.21-0.230.210.410.41
     month -0.83 1 0.0109009500590440.220.230.220.210.120.290.28
                                                                       - 0.8
    holiday -0.0101019 1 -0.1-0.250.035.029.033.006006030540.1-0.06
             .00300950.1 1 0.036.081004010047505020140.060.050.067
                                                                       - 0.6
            0.0402.0059.240.036 1 0.060.050.050.024.0140.52 0.30.06
workingday -
                                                                       - 0.4
   weather -0.019.040.035.030.061 1 -0.120.120.590.040.250.26-0.3
      temp -0.330.220.92.900010530.12 1 0.990.130.160.540.540.6
                                                                       - 0.2
     atemp -0.340.230.03800050520.120.99 1 0.140.180.540.540.6
  humidity -0.210.220.016.05020240.590.130.14 1 0.250.070.0910.1
                                                                       - 0.0
windspeed -0.230.2010060014.019.040.160.180.25 1
                                                                       - -0.2
     casual -0.210.120.0540.060.520.25
 registered -0.410.290.1D.0570.3-0.260.540.540.09.D.22.0.4 1 0.95
```

No se aprecia correctamente la información





#### MATRIZ DE CORRELACIÓN

```
cols =['season', 'month', 'holiday','weekday','workingday','weather']
for col in cols:
   datos_bici[col]=datos_bici[col].astype('category')
datos_bici.info()
```





#### MATRIZ DE CORRELACIÓN

```
correlacion = datos_bici.corr()
sns.heatmap(correlacion, annot=True)
```

<matplotlib.axes.\_subplots.AxesSubplot at 0x7f33a1b2bc50>







## **REFERENCIAS**

https://youtu.be/3Ua6IT7Ye0A

