Relatório do Desempenho de Aplicações Paralelas Usando OpenMP

Miguel Nunes

18/10/2022

1 Algoritmos e Descrição do Ambiente

Foi analisado o algoritmos de Mandelbrot paralelizado usando Open MP e MPI, com apenas leves modificações na entrada de dados e alocação de memória para facilitar a automatização dos testes. Foram utilizadas os valores como entrada:

max_row = 340 max_column = 1000 max_n = 4600

Pois foi observado experimentalmente que, em execuções sequenciais do algoritmo, essas entradas levavam, em média, 64 segundos para serem processadas.

Os testes foram realizados nos servidores ens1, ens2 e ens4 disponibilizados pelo professor e foram executados automaticamente a partir de um script em bash, com o auxílio de um makefile.

2 Coleta dos Dados

O algoritmo usando MPI foi executado em 12 processos, 4 processos em cada servidor, já o algoritmo usando Open MP foi executado com 4 threads em cada servidor. Ao fim da execução dos algoritmos, o tempo de execução é imprimida para stdout. Nos testes stdout era redirecionado para um arquivo de texto por meio de operações de *pipe* do bash.

Foram feitas 10 execuções de cada algoritmo, com os seguintes resultados de tempo de execução:

Execução	Tempo de Execução
1	11.474648
2	11.559622
3	11.450598
4	11.610346
5	11.499296
6	11.464533
7	11.526878
8	11.562462
9	11.513563
10	11.513563

Table 1: Mandelbrot com Open MP em ${\tt ens1}$

 ${
m M\'edia}=11.514~{
m segundos},~{
m Desvio}~{
m Padr\~ao}=0.050804.$

Execução	Tempo de Execução
1	11.953199
2	11.525896
3	11.584578
4	11.575379
5	11.574743
6	11.569756
7	11.664425
8	11.585252
9	11.739646
10	11.77709

Table 2: Mandelbrot com Open MP em ${\tt ens2}$

 $\label{eq:media} \mbox{M\'edia} = 11.654 \mbox{ segundos, Desvio Padr\~ao} = 0.132338.$

Execução	Tempo de Execução
1	5.6473
2	5.6755
3	5.5199
4	5.5874
5	5.4372
6	5.5894
7	5.6809
8	5.5273
9	5.5947
10	5.7734

Table 3: Mandelbrot com Open MP em ${\tt ens4}$

 ${
m M\'edia}=5.603~{
m segundos}, {
m Desvio}~{
m Padr\~ao}=0.096000.$

Execução	Tempo de Execução
1	4.8423
2	4.9263
3	4.9343
4	4.8407
5	4.8459
6	4.8148
7	4.8427
8	4.8440
9	4.8720
10	4.8746

Table 4: Mandelbrot com MPI

Média = 4.863 segundos, Desvio Padrão = 0.038894.

3 Análise do Dados

Analisando os resultados de tempo de execução e o gráfico abaixo podemos observar que o teste com MPI teve desempenho consideravelmente superior que os testes com Open MP, porém a diferença não foi tão grande quando comparada com o teste em Open MP rodado no servidor ens4, que tem *hardware* consideravelmente melhor que os outros dois servidores.

Podemos então concluir que MPI consegue ter um desempenho melhor em situações onde há diversos computadores com *hardware* de baixo desempenho, porém não consegue um desempenho ideal em situações onde há computadores com *hardware* de alto e baixo desempenho misturados numa rede.

Isso é evidente comparando os resultados do caso de Open MP em ens4 e o caso de MPI. Apesar do algoritmo rodando MPI estar rodando 4 processos em 3 computadores distintos, ele teve um tempo médio de execução apenas 0.8 segundos menor que o caso do Open MP naquele servidor, o que indica que o MPI não conseguiu se aproveitar totalmente dos recursos de ens4.

Ao mesmo tempo, o teste em Open MP nesse servidor poderia ter desempenho melhor, já que apenas 4 das 8 threads disponíveis foram utilizadas.