PHYSICS DATA SHEET

Constants

Acceleration Due to Gravity Near Earth	
Gravitational Constant	$G = 6.67 \times 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2$
Radius of Earth	$r_{\rm e} = 6.37 \times 10^6 \mathrm{m}$
Mass of Earth	$M_{\rm e} = 5.97 \times 10^{24} \rm kg$
Elementary Charge	$e = 1.60 \times 10^{-19} \mathrm{C}$
Coulomb's Law Constant	$k = 8.99 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2$
Electron Volt	$1 \text{ eV} = 1.60 \times 10^{-19} \text{ J}$
Index of Refraction of Air.	n = 1.00
Speed of Light in Vacuum.	$c = 3.00 \times 10^8 \text{ m/s}$
Planck's Constant	$h = 6.63 \times 10^{-34} \text{ J} \cdot \text{s}$ $h = 4.14 \times 10^{-15} \text{ eV} \cdot \text{s}$
Atomic Mass Unit	$u = 1.66 \times 10^{-27} \text{ kg}$

Physics Principles

- **0** Uniform motion $(\vec{F}_{net} = 0)$
- 1 Accelerated motion $(\vec{F}_{net} \neq 0)$
- 2 Uniform circular motion (\vec{F}_{net} is radially inward)
- **3** Work-energy theorem
- 4 Conservation of momentum
- **5** Conservation of energy
- **6** Conservation of mass-energy
- 7 Conservation of charge
- **8** Conservation of nucleons
- **9** Wave-particle duality

Prefixes Used with SI Units

Prefix	Symbol	Exponential Value
atto	a	10^{-18}
		10^{-15}
pico	p	10^{-12}
	n	
		10^{-6}
	m	_
centi	c	10^{-2}
deci	d	10^{-1}
deka	da	10 ¹
hecto	h	10^2
kilo	k	10 ³
mega	M	10 ⁶
	G	_
	T	

Particles				
	Charge	Mass		
Alpha Particle	+2 <i>e</i>	$6.65 \times 10^{-27} \text{ kg}$		
Electron	1 <i>e</i>	$9.11 \times 10^{-31} \text{ kg}$		
Proton	+1 <i>e</i>	$1.67 \times 10^{-27} \text{ kg}$		
Neutron	0	$1.67 \times 10^{-27} \text{ kg}$		
First-Generation Fermions Charge Mass				
Electron	1e	$\sim 0.511 \text{ MeV/c}^2$		

210011111111111111111111111111111111111	0.011 1.10 .,0
Positron +1 <i>e</i>	~0.511 MeV/c ²
Electron neutrino, v 0	$< 2.2 \text{ eV/c}^2$

Electron antineutrino,
$$\overline{v}$$
....... 0 < 2.2 eV/c²

Up quark, u.....
$$+\frac{2}{3}e$$
 ~2.4 MeV/c²

Anti-down antiquark,
$$\overline{d}$$
 $+\frac{1}{3}e$ ~4.8 MeV/c²

EQUATIONS

Kinematics

$$\vec{v}_{\text{ave}} = \frac{\Delta \vec{d}}{\Delta t}$$

$$\vec{v}_{\text{ave}} = \frac{\Delta \vec{d}}{\Delta t}$$
 $\vec{d} = \vec{v}_{\text{f}}t - \frac{1}{2}\vec{a}t^2$

$$\vec{a}_{\text{ave}} = \frac{\Delta \vec{v}}{\Delta t}$$

$$\vec{a}_{\text{ave}} = \frac{\Delta \vec{v}}{\Delta t}$$
 $\vec{d} = \left(\frac{\vec{v}_{\text{f}} + \vec{v}_{\text{i}}}{2}\right)t$

$$\vec{d} = \vec{v}_i t + \frac{1}{2} \vec{a} t^2$$
 $v_f^2 = v_i^2 + 2ad$

$$v_{\rm f}^2 = v_{\rm i}^2 + 2ad$$

$$\left| \vec{v}_{\rm c} \right| = \frac{2\pi r}{T}$$

$$\left|\vec{v}_{\rm c}\right| = \frac{2\pi r}{T}$$
 $\left|\vec{a}_{\rm c}\right| = \frac{v^2}{r} = \frac{4\pi^2 r}{T^2}$

Dynamics

$$\vec{a} = \frac{\vec{F}_{\text{net}}}{m}$$

$$\vec{a} = \frac{\vec{F}_{\text{net}}}{m}$$
 $\left| \vec{F}_{\text{g}} \right| = \frac{Gm_1m_2}{r^2}$

$$\left| \vec{F}_{\rm f} \right| = \mu \left| \vec{F}_{\rm N} \right| \qquad \left| \vec{g} \right| = \frac{Gm}{r^2}$$

$$\left| \vec{g} \right| = \frac{Gm}{r^2}$$

$$\vec{F}_{\rm s} = -k\vec{x} \qquad \qquad \vec{g} = \frac{\vec{F}_{\rm g}}{m}$$

$$\vec{g} = \frac{\vec{F}_g}{m}$$

Momentum and Energy

$$\vec{p} = m\vec{v}$$

$$E_{\rm k} = \frac{1}{2}mv^2$$

$$\vec{F}\Delta t = m\Delta \vec{v}$$
 $E_{\rm p} = mgh$

$$E_{\rm p} = mgh$$

$$W = |\vec{F}| |\vec{d}| \cos \theta \qquad E_{\rm p} = \frac{1}{2} k x^2$$

$$E_{\rm p} = \frac{1}{2}kx$$

$$W = \Delta E$$

$$P = \frac{W}{t}$$

Waves

$$T = 2\pi \sqrt{\frac{m}{k}}$$

$$T = 2\pi\sqrt{\frac{m}{k}} \qquad m = \frac{h_{\rm i}}{h_{\rm o}} = \frac{-d_{\rm i}}{d_{\rm o}}$$

$$T = 2\pi \sqrt{\frac{l}{g}}$$

$$T = 2\pi \sqrt{\frac{l}{g}} \qquad \frac{1}{f} = \frac{1}{d_{\rm o}} + \frac{1}{d_{\rm i}}$$

$$T = \frac{1}{f}$$

$$T = \frac{1}{f} \qquad \frac{n_2}{n_1} = \frac{\sin \theta_1}{\sin \theta_2}$$

$$v = f\lambda$$

$$v = f\lambda \qquad \frac{n_2}{n_1} = \frac{v_1}{v_2} = \frac{\lambda_1}{\lambda_2}$$

$$f = \left(\frac{v}{v \pm v_{\rm s}}\right) f_{\rm s} \qquad \lambda = \frac{d \sin \theta}{n}$$

$$\lambda = \frac{d \sin \theta}{n}$$

$$\lambda = \frac{xd}{nl}$$

Electricity and Magnetism

$$\left| \vec{F}_{\rm e} \right| = \frac{kq_1q_2}{r^2} \qquad \Delta V = \frac{\Delta E}{q}$$

$$\Delta V = \frac{\Delta E}{q}$$

$$\left| \vec{E} \, \right| \, = \, \frac{kq}{r^2} \qquad \qquad I \, = \, \frac{q}{t}$$

$$I = \frac{q}{t}$$

$$\vec{E} = \frac{\vec{F}_{e}}{q}$$

$$\vec{E} = \frac{\vec{F}_{e}}{q} \qquad |\vec{F}_{m}| = Il_{\perp}|\vec{B}|$$

$$\left| \vec{E} \, \right| = \frac{\Delta V}{\Delta d}$$

$$\left| \vec{E} \, \right| \, = \frac{\Delta V}{\Delta d} \qquad \qquad \left| \vec{F}_{\rm m} \right| \, = \, q v_{\perp} \left| \vec{B} \right|$$

Atomic Physics

$$W = hf_0$$

$$E = hf = \frac{hc}{\lambda}$$

$$E_{\rm k_{max}} = q_{\rm e} V_{\rm stop}$$

$$N = N_0 \left(\frac{1}{2}\right)^n$$

Quantum Mechanics and Nuclear Physics

$$\Delta E = \Delta mc^2$$

$$E = pc$$

$$p = \frac{h}{\lambda}$$

$$\Delta \lambda = \frac{h}{mc} (1 - \cos \theta)$$

Trigonometry and Geometry

$$\sin \theta = \frac{\text{opposite}}{\text{hypotenuse}}$$

Line
$$m = \frac{\Delta y}{\Delta x}$$

$$\cos\theta = \frac{\text{adjacent}}{\text{hypotenuse}}$$

$$y = mx + b$$

$$\tan \theta = \frac{\text{opposite}}{\text{adjacent}}$$

$$c^2 = a^2 + b^2$$

Rectangle =
$$lw$$

Triangle = $\frac{1}{2}ab$

Circle =
$$\pi r^2$$

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$c^2 = a^2 + b^2 - 2ab \cos C$$
 Circumferen
Circle = $2\pi r$