Exercices de Géométrie Différentielle 1

Séance 6 - 09/11/2021

- 1. Soient M une n-variété lisse et $p \in M$. On dit que $f_1, \ldots, f_k \in C^{\infty}(M, \mathbb{R})$ sont indépendante en p si les $(f_j)_{*p}$ sont linéairement indépendant comme élément de $(T_pM)^*$. Montrer que $\varphi = (x_1, \ldots, x_n)$ est une application de carte pour un ouvert $U \subset M$ contenant p si et seulement si x_1, \ldots, x_n sont indépendant en p.
- 2. Pour chacune des applications suivantes, vérifier qu'elle est différentiable et en calculer la différentielle en chaque point du domaine.

$$f: GL(n, \mathbb{R}) \to Sym(n, \mathbb{R}): A \mapsto {}^{tr}AA,$$
 (1)

$$g: GL(n, \mathbb{R}) \to \mathbb{R}: A \mapsto \det(A),$$
 (2)

où $\operatorname{Sym}(n,\mathbb{R})$ désigne l'ensemble des matrices symétriques réelles de taille $n \times n$.

3. En utilisant l'exercice 2, montrer que les ensembles suivants possèdent une structure de sous-variété plongée de $\mathrm{GL}(n,\mathbb{R})$:

$$O(n, \mathbb{R}) := \{ A \in GL(n, \mathbb{R}) \mid {}^{tr}AA = I_n \}, \tag{3}$$

$$SL(n,\mathbb{R}) := \{ A \in GL(n,\mathbb{R}) \mid \det(A) = 1 \}. \tag{4}$$

- A. On considère la sphère unité \mathbb{S}^n dans \mathbb{R}^{n+1} . Donnée une base de $T_{(1,0,\dots,0)}\mathbb{S}^n$ et calculer la matrice de la différentielle de $A:\mathbb{S}^n\to\mathbb{S}^n:x\to -x$.
- B. Trouvée une carte de \mathbb{R}^{n+1} adaptée à \mathbb{S}^n en $(1,0,\ldots,0)$. Montrer que la carte induite sur \mathbb{S}^n est compatible avec $(\mathbb{S}^n \setminus \{(-1,0,\ldots,0)\}, \varphi_N)$.