Compositionality Entails Sequentializability

Pranav Garg, P. Madhusudan
University of Illinois at Urbana-Champaign

What is Sequentializability?

- Sequentialization requires that the size of sequential program is of the same order as the size of concurrent program.
 - The constant in O(N) and O(L) must be independent of #threads.
- For non-recursive concurrent programs, global simulation is always possible to obtain a sequential program.
 - Leads to a state-space explosion (L^n where n is #threads)
 - Is not a sequentialization.
- Recursive programs are even harder.

Why are sequentializations appealing?

Practically

- Allows the use of analysis tools developed for sequential programs to be used directly for concurrent programs.
 - Deductive verification
 - Symbolic model checking
 - Predicate abstraction
 - Symbolic test case generation

Theoretically

- Intriguing
 - When are concurrent programs sequentializable?

Earlier Results

- Analysis of concurrent programs under a bounded number of contextrounds (no thread creation).
 - Lal and Reps [CAV 2008].
 - Used for bounded model checking of concurrent programs.
 - STORM [Lahiri, Qadeer and Rakamaric] and Poirot from Microsoft.
 - LaTorre, Madhusudan and Parlato [CAV 2009]
 - Shown to be more efficient for explicit model checking with state caching.
 - LaTorre, Madhusudan and Parlato [Unpublished]
 - Parameterized programs with unbounded number of threads but a bounded number of rounds.
- Analysis of concurrent programs with dynamic thread creation under a delay bound.
 - Emmi, Qadeer and Rakamaric [POPL 2011]

Compositionality entails sequentializability

Compositional semantics of a concurrent program with respect to a set of auxiliary variables can be sequentialized.

- It generalizes the prior sequentializations known for the underapproximate context-bounded analysis.
 - Bounding the number of context switches makes them amenable to compositional reasoning.
- Compositional semantics: Over-approximation
 - Can be used to "prove" concurrent programs correct.

Overview

- Jones style rely-guarantee proofs
- Compositional semantics for concurrent program
- Main theorem, intuition behind the sequentialization.
- Experimental results.
- Conclusion.

Rely-Guarantee Proofs

Hoare style method for proving concurrent program.

```
P \models (pre, post, rely, guar)
```

- pre, post are unary predicates defining subsets of states.
- rely, guar are binary relations defining transformations to the shared state.

Parallel compositional rule:

$$\begin{array}{ll} \textit{guar}_1 \Rightarrow \textit{rely}_2, & \textit{guar}_2 \Rightarrow \textit{rely}_1, \\ \textit{P} \models (\textit{pre}, \textit{post}_1, \textit{rely}_1, \textit{guar}_1), & \textit{Q} \models (\textit{pre}, \textit{post}_2, \textit{rely}_2, \textit{guar}_2) \\ \textit{rely} \Rightarrow \textit{rely}_1, \; \textit{rely} \Rightarrow \textit{rely}_2, & (\textit{guar}_1 \lor \textit{guar}_2) \Rightarrow \textit{guar} \end{array}$$

$$P||Q \models (pre, post_1 \land post_2, rely, guar)$$

Auxiliary variables

Parallel compositional rule in itself is not complete.

• Example:

- Impossible to come up with consistent *rely-guar* conditions which are strong enough to prove the *post*.

Auxiliary variables

- Since auxiliary variables are not read, the semantics of the concurrent program remains unchanged.
- Auxiliary variables are the local variables which are required to be exposed to the environment to prove the concurrent program compositionally.

Compositional Semantics wrt. Auxiliary variables

$P = P_1 || P_2$

- L_1 , L_2 : the set of local variables of the individual threads.
- S: the set of shared variables.
- $A \subseteq L_1 \cup L_2$: the set of auxiliary variables.
- δ_1, δ_2 : local (binary) transition relations of PI and P2

Compositional Semantics is defined by four sets:

$$\begin{array}{ll} R_1 \subseteq (Val_{L_1} \times Val_S \times Val_{A \cap L_2}), \\ R_2 \subseteq (Val_{L_2} \times Val_S \times Val_{A \cap L_1}), \end{array} \qquad \text{$R_i:$ Reachable state in P_i} \\ Guar_1, Guar_2 \subseteq (Val_S \times Val_A \times Val_S \times Val_A), \qquad \text{$Guar_i:$ Guarantee that P_i promises.} \end{array}$$

Compositional Semantics wrt. Auxiliary variables

a) Initialization:

- R_i contains the set $\{(l_i, s, t) \mid l_i \cup s \cup t \in Init \downarrow (L_i \cup A \cup S)\}$.
- **b) Transitions of** P_1 : If $(l_1, s, t) \in R_1$ and $\delta_1(l_1, s, l'_1, s')$ holds, then
 - Local update: $(l'_1, s', t) \in R_1$.
 - Update to guarantee: $(s, l_1 \downarrow A \cup t, s', l'_1 \downarrow A \cup t) \in Guar_1$.
- c) Transitions of P_2 : Similar to (b)

d) Interference:

- If $(l_1,s,t) \in R_1$ and $(s,l_1 \downarrow A \cup t,s',t') \in Guar_2$, then $(l_1,s',t' \downarrow L_2) \in R_1$.
- If $(l_2,s,t) \in R_2$ and $(s,l_2 \downarrow A \cup t,s',t') \in Guar_1$, then $(l_2,s',t' \downarrow L_1) \in R_2$.

$$Reach_A = \{(l_1, s, l_2) \mid (l_1, s, l_2 \downarrow A) \in R_1 \text{ and } (l_2, s, l_1 \downarrow A) \in R_2\}$$

Compositional Semantics wrt. Auxiliary variables

■ Existence of a Jones style rely-guarantee proof →
 Compositional semantics of the concurrent program with respect to the corresponding auxiliary variables is correct.

Note:

- Compositional semantics is an over-approximation of the standard operational semantics of the concurrent programs.

The main result

- Given a concurrent program C with auxiliary variables A, we can build a sequential program $S_{C,A}$ such that
 - The compositional semantics of the concurrent program with respect to the auxiliary variables A is correct iff $S_{C,A}$ is correct.
 - At any point, the scope of $S_{C,A}$ keeps a constant number of copies of the variables of C.

Intuition behind the sequentialization

• Let there be methods G_1 and G_2 which semantically capture the guarantees $Guar_1$ and $Guar_2$ respectively.

```
G_i(\hat{s}, \hat{a}) = \{(s, a) \mid (\hat{s}, \hat{a}, s, a) \in Guar_i\}
```

Once we have G_2 , we can compute the reachable states R_1 according to:

```
while(*) {
  if (*) then
     <<simulate a transition of P1>>
  else
     (s,a) := G2(s,a);
  fi
}
```

- Track the local state L₁, shared state and the auxiliary state of the second thread
- On two successive calls to G_2 , there is no preservation of the local state of P_2 .

Intuition behind the sequentialization

The method G_2 (and similarly G_1) can be implemented as:

An example sequentialization

```
decl int x, pc1, pc2;
decl int x*, pc1*, pc2*;
decl bool z, term;
main begin
                                  G_1() begin
    G_1();
    return
end
                                    main 1():
\mathcal{I}_i: if(term = true) then
     return fi
                                    return
   if(!z & *) then
                                  end
     x', pc1', pc2' :=
          x*, pc1*, pc2*;
    G_{3-i}();
     z, term:=false, false;
                                     T_{1}
     x*, pc1*, pc2* :=
           x', pc1', pc2'
                                    pc1 := 1;
   fi
                                     \mathcal{I}_1
   if(x = x^* \& pc1 = pc1^* \&
    pc2 = pc2^* \& *) then
                                     \mathcal{I}_1
    z := true
   fi
                                    return
   if(z & *) then
                                  end
    term := true; return
   fi
```

```
z, term:=false, false;
 x*, pc1*, pc2* :=
       x, pc1, pc2
 x, pc1, pc2 := 0, 0, 0;
 assume(term = true);
main_1() begin
 decl int x', pc1', pc2';
 x := x + 1:
 assert(spec1);
```

```
G_2() begin
 z, term:=false, false;
x*, pc1*, pc2*:=
         x, pc1, pc2
 x, pc1, pc2:=0, 0, 0;
 main_2();
 assume(term = true);
 return
end
main_2() begin
 decl int x', pc1', pc2';
  T_{2}
 x := x + 2:
 pc2 := 1;
   \mathcal{I}_2
 assert(spec2);
   \mathcal{I}_1
 return
end
```

Applications of the theorem

- Deductive verification
- Predicate abstraction

Deductive Verification

Concurrent program *C* with Auxiliary variables *A*

 \rightarrow Sequentialization $S_{C,A}$

Jones style Rely/guarantee annotation

→ Hoare-style pre-post conditions & assertions

- rely/guar

 \rightarrow summaries of G_1 and G_2

pre/post

→ pre/post conditions

- assertions
- → assertions
- loop invariants
- → loop invariants

• Use deductive verification tools (like Boogie/Z3) to verify the correctness of $S_{C,A}$ and hence the correctness of the rely/guarantee proof of C.

Deductive Verification

Experimental results

	Concurrent pgm			Sequential pgm		
Programs	#Threads	#LOC	#Lines of	#LOC	#Lines of	Time
			annotations		annotations	
X++	2	38	5	113	6	8s
Lock	2	50	9	184	10	122s
Peterson	2	52	35	232	36	145s
Bakery	2	55	8	147	13	18s
ArrayIndexSearch	2	74	17	222	21	126s
GCD	2	78	23	279	29	869s
Bluetooth	unbdd	69	20	276	55	107s

- Manually wrote Jones-style rely/guarantee annotations
- Boogie for Hoare-style verification of the corresponding sequential program.
- Experiments run on Intel dual-core with 1.6 GHz and 1Gb RAM.

Predicate Abstraction

Concurrent program C + auxiliary variables A determined manually/heuristically \rightarrow Sequential program S_{CA}

- Use a predicate abstraction tool (like SLAM) to prove $S_{C,A}$ and hence C correct.
 - The procedure is sound but incomplete.
 - If $S_{C,A}$ cannot be proved correct, cannot deduce anything (more auxiliary variables may be needed)
- We get a semi-automatic predicate abstraction tool for concurrent programs.
 - Determining auxiliary variables can be automated [Cohen-Namjoshi, Gupta-Popeea-Rybalchenko]
- Used for proving programs: X++, Lock, Bakery and Peterson.

Broader context of the result

Conclusion

- Compositionality entails sequentializability.
- Can be used to prove concurrent programs correct.
- Our result could potentially have a number of applications:
 - Deductive verification
 - Predicate abstraction
 - Symbolic testing
 - Static analysis