

Improved Fault Phase Selection Scheme for Lines Terminated by Inverter Based Resources

Yuhao Xie¹, Yu Liu^{1,2,*}, Yuan Nie¹, Dian Lu¹, Yuxuan Zhu¹, and Xiaodong Zheng² liuyu.shanghaitech@gmail.com

上海科技大学 Power System Protection and

1.School of Information Science and Technology, ShanghaiTech University, Shanghai, China 2. Key Laboratory of Control of Power Transmission and Conversion (SJTU), Shanghai, China

Fault Phase Selection Problem for Inverter Based Resources (IBRs)

The Phase Selector for Power System

- > Distinguish fault types when faults occurs.
- Provides information to other protective devices and assists relays in cutting out.
- Support fault location and automatic reclosing.

Limitations of Classic Selection Methods:

- > Traditional current-based phasor schemes.
- Incorrect selection results for line with IBRs.
- Uncertain results due to small negative sequence current.
- Existing voltage-based phasor schemes.
- Need additional assumptions (such as specific system) or availability of extra data.

The integration of IBRs

The Impact of IBRs:

- The system connected to the IBR are nonhomogeneous. Due to the sequence impedance of IBRs is determined by the control strategy.
- Some strategies of IBR restrain negative sequence current during the asymmetric fault.

Proposed method

- Compound proportion criterion.
- Use both voltage and current information.

Advantages

- High accuracy for system with IBRs connected to local terminal.
- Work under different control strategies and grid codes.
- Based on phasor, easy to implement and reliable.

Make full use of

measurement data

Proposed Composite Criterion and Fault Phase Selector Design

Sequence network and traditional method

The criterion of **traditional method** is to use local terminal currents criterion:

Angle range of traditional method, left: α , right: β It is not valid for line with IBRs.

Proposed method

There is still a equation of fault current. e.g. in A-G fault $\tilde{I}_{F1} = \tilde{I}_{F2} = \tilde{I}_{F0}$ holds. The fault current can be expressed as:

$$\tilde{I}_{F1} = \frac{-\Delta \tilde{V}_{G1} + \Delta \tilde{I}_{G1}(Z_{1L} + Z_{H1})}{(1 - m)Z_{1L} + Z_{H1}}$$

$$\tilde{I}_{F2} = \frac{-\tilde{V}_{G2} + \tilde{I}_{G2}(Z_{2L} + Z_{H2})}{(1 - m)Z_{2L} + Z_{H2}}$$

Thus the proposed criterion is defined as:

$$\delta = \arg(\frac{-\Delta \tilde{V}_{G1} + \Delta \tilde{I}_{G1}(Z_{1L} + Z_{H1})}{-\tilde{V}_{G2} + \tilde{I}_{G2}(Z_{1L} + Z_{H2})})$$

- Requires only local measurement
- Different value for corresponding fault type

Fault type zones of proposed method left: PPG or SPG faults, right: PP faults

Proposed phase selector scheme

Numerical Experiments and Conclusion

- 110 KV, 50Hz, 3-phase AC system, 50km transmission line
- Local bus is connected to a PV plant, Remote bus is dominated by SG.
- The inverter of PV uses P-Q control, utilize multiple control strategies.
- > Three fault phase selection methods are compared
- The **Traditional method** (current proportion method)
- The existing improved method (voltage proportion criterion)
- The **proposed method** (compound proportion criterion)
- > Two typical control modes are applied to verify adaptability
- Inject neg-seq current for European grid codes
- Restrain neg-seq current for China grid codes (similar to NA)

Tables I and Tables II shows the results under different control modes

Table I. Phase selection results with neg-seq current injection

Table II. Phase selection results without neg-seq current injection

	Fault type	m	Fault Resist.	δ	Prop. method	Trad. method	Exist. method	Fault type	m	Fault Resist.	δ	Prop. method	Trad. method	Exist. method
	AG	10%	1Ω	-2.7°	\checkmark	\times (ABG)	$\sqrt{}$	AG	10%	1Ω	-1.3°	\checkmark	×(N.A.)	
			100Ω	-4.7°	\checkmark	\times (ABG)	\times (N.A.)			100Ω	0.5°	\checkmark	\times (N.A.)	
		50%	1Ω	-3.5°	\checkmark	\times (N.A.)	$\sqrt{}$		50%	1Ω	-1.2°	\checkmark	\times (N.A.)	
			100Ω	-3.6°	\checkmark	\times (ABG)	\times (N.A.)			100Ω	0.5°	\checkmark	\times (N.A.)	×(N.A.)
		90%	1Ω	-3.7°	\checkmark	\times (N.A.)	$\sqrt{}$		90%	1Ω	-1.2°	\checkmark	\times (N.A.)	$\sqrt{}$
<u>-</u>			100Ω	-0.2°	$\sqrt{}$	×(ABG)	\times (N.A.)			100Ω	-0.8°	$\sqrt{}$	\times (N.A.)	×(N.A.)
	BC G	10%	1Ω	-172.9°	\checkmark	\times (CG)	$\sqrt{}$	BC G	10%	1Ω	174.6°	\checkmark	\times (N.A.)	$\sqrt{}$
			15Ω	-157.0°	\checkmark	\times (CG)	$\sqrt{}$			15Ω	177.2°	\checkmark	\times (N.A.)	×(N.A.)
		50%	1Ω	-179.1°	\checkmark	\times (CG)	$\sqrt{}$		50%	1Ω	177.6°	\checkmark	\times (N.A.)	$\sqrt{}$
			15Ω	-177.8°	\checkmark	\times (CG)	\times (N.A.)			15Ω	177.5°	$\sqrt{}$	\times (N.A.)	×(N.A.)
		90%	1Ω	179.9°	\checkmark	\times (CG)	$\sqrt{}$		90%	1Ω	178.0°	\checkmark	\times (N.A.)	$\sqrt{}$
			15Ω	177.6°	$\sqrt{}$	×(CG)	\times (N/A)			15Ω	176.4°		\times (N.A.)	×(N.A.)
	ВС	10%	1Ω	177.3°	\checkmark	$\sqrt{}$	\times (N.A.)	BC	10%	1Ω	178.0°	\checkmark	×	$\sqrt{}$
		50%	1Ω	177.6°	\checkmark	$\sqrt{}$	\times (N.A.)		50%	1Ω	178.1°	$\sqrt{}$	×	$\sqrt{}$
\		90%	1Ω	178.0°	$\sqrt{}$	$\sqrt{}$	\times (N.A.)		90%	1Ω	178.3°	$\sqrt{}$	×	$\sqrt{}$

Conclusion

- • The traditional current method can not identify the fault type due to the output characteristics of IBRs, especially special neg-seq current.
- Existing improved method can not identify the fault type correctly in some high resistance cases.
- The proposed method accurately identify various fault types with different fault resistances and IBR control schemes.