Why use Patient Spirometry?

Patient Spirometry is an excellent tool for managing the patient's ventilation during anesthesia and critical care:

Measurement at the airway

- represents real patient values
- is not influenced by ventilator hoses or other breathing system components

Saved reference loops

- enable fast visual detection of changes
- help in adjusting optimal ventilator settings
- help in comparison of actual and previous ventilatory status

Modular flexibility

- can be used with a variety of ventilators
- enables flexible change of modules between patients

Integrated information

• ventilatory and hemodynamic information on a single screen provides a complete picture of the patient status

Comprehensive documentation

- graphical and numerical trends to evaluate of patient's history
- printed loops, trends and snapshots for easy reporting

© 2009 General Electric Company - All rights reserved. GE and GE Monogram are trademarks of General Electric Company. GE Healthcare, a division of General Electric Company

General Electric Company reserves the right to make changes in specification and features shown herein, or discontinue the product described at any time without notice or obligation. Contact your GE representative for the most current information

D-lite is a trademark of GE Healthcare Finland Oy.

GE Healthcare Finland Oy, a General Electric company, doing business as GE Healthcare.

CAUTION: U.S. Federal law restricts this device to sale by or on the order of a licensed medical practitioner.

Consult the User's Guide of the monitor for detailed instructions.

Healthcare Re-imagined

GE is dedicated to helping you transform healthcare delivery

GE Healthcare 8200 W. Tower Ave. Milwaukee, WI 53223 USA

www.gehealthcare.com

Finland Ov Finland

GE Healthcare 3/F Building # 1. GE Technology Park 1 Hua Tuo Road Shanahai 201203

by driving critical breakthroughs in biology and technology. Our expertise in medical imaging and information technologies, medical diagnostics, patient monitoring systems, drug discovery, and biopharmaceutical manufacturing technologies is enabling healthcare professionals around the world to discover new ways to predict, diagnose and treat disease earlier. We call this model of care "Early Health." The goal: to help clinicians detect disease earlier, access more information and intervene earlier with more targeted treatments, so they can help their patients live their lives to the fullest. Re-think, Re-discover, Re-invent, Re-imagine,

GE Healthcare Kuortaneenkatu 2 00510 Helsinki

China

604362 6/09

GF Healthcare

Quick Guide

Patient Spirometry

What is Patient Spirometry?

Patient Spirometry measures airway pressures, flow, volumes, compliance and airway resistance breathby-breath at the patient's airway. The dynamic interrelationships of pressure and volume or flow and volume are displayed as graphical loops.

In addition the inspired and expired as concentrations are measured (CO_2 , O_2 and anesthetic agents).

Pressure/Volume Loop

Flow/Volume Loop

All parameters are measured through a single, lightweight flow sensor and gas sampler, placed at the patient's airway. The "close to the patient" measurement is sensitive and continuous reflector of patient's ventilatory status, obtained independently of the ventilator used.

Spirometry split screen enables real-time monitoring of spirometry loops and numerical values, combined with hemodynamic information or real-time waveforms of airway pressure, flow and gases.

How is Patient Spirometry measured?

D-lite[™] is an innovative, patented pressure and flow sensor.

Its two pitot tubes measure the pressure difference created by the gas flow. This pressure difference is used together with gas concentration information to calculate the flow. From the flow, both inspiratory and expiratory volumes are calculated.

Total positive end expiratory pressure (PEEP_{tot}) is the sum of externally applied PEEP (extrinsic PEEP, PEEP_e) and intrinsic PEEP (PEEP_i).

PEEP_{tot}= PEEP_i + PEEP_e

Dynamic PEEP_i is detected when the expiratory flow has not stopped before the next inspiration starts. Presence of PEEP_i indicates the air trapping situation in the lung, which may lead both in respiratory and hemodynamic side effects.

Compliance reflects the distensibility of the respiratory system. It is defined as a pressure difference required to expand the lung by a certain volume.

$Compl = TVexp/(Pplat-PEEP_{tot})$

As continuous dynamic value it provides an easy tool to follow respiratory changes and to adjust ventilator settings.

Airway resistance (Raw) is calculated by using an equation, which gives an average system resistance between the lungs and the D-lite sensor over the total breathing cycle.

 $Paw(t) = Raw * V(t) + V(t) / Compl + PEEP_{tot}$

Clinical examples of Patient Spirometry

Leak in the airway

Leak in the airway is indicated by a loop remaining open at the end of expiration.

Leak in breathing system, in endotracheal tube or laryngeal mask, or even in the patient's lung may remain unnoticed without loop monitoring.

In Anesthesia

Monitoring of changes during laparoscopy

This figure illustrates the patient's ventilatory pattern before (1) and during CO_2 insuflation (2) in the laparoscopic operation.

A decrease in compliance and increase in airway pressure are clearly visible.

In Critical Care

Intrinsic PEEP (autoPEEP)

Presence of intrinsic PEEP can be seen as a loop, where the flow is not reaching zero line and also as an increased PEEPi value in the number field.

Intrinsic PEEP demonstrates air trapping situation which may lead to hyperinflation of the lung and increase the risk of the ventilation induced lung injury.

Obstruction in the airway

A loop moving towards the horizontal axis indicates airway obstruction that increases airway pressure without corresponding increase in tidal volume.

An obstruction caused by kinked tube, airway secretion or malposition of endotracheal tube can be immediately detected.

Spontaneous breathing efforts

This loop illustrates an initiation of a spontaneous breath during anesthesia.

Best possible PEEP

This figure demonstrates effects of different PEEP settings on patient compliance. The saved loop (1) illustrates decreased compliance.

The situation is altered by increasing PEEP setting to 8 cm H_2O which clearly improves the lung compliance (2).