ESCOLA DE ENGENHARIA DA UFMG

PROJETO DE SISTEMAS EMBUTIDOS

Laboratório 1 - Pisca LED

Nome: Giovanni Martins de Sá Júnior

 $Matricula:\ 2017001850$

Semestre: 2023/2

Conteúdo

1	Descrição do SDK	1
2	Interface GPIO de Entrada	3
3	Interface GPIO de Saída	4
4	Experimento	5
5	Conclusão	7

1 Descrição do SDK

1. Liste o nome, modelo, microcontrolador, memórias e interfaces de $\mathrm{E/S}.$
• Nome: Arduino Uno R3.
• Modelo: ATmega328P.
• Memórias:
– Flash (32 KB);
- SRAM (2 KB);
– EEPROM (1 KB).
• Interfaces de E/S:
- 14 pinos digitais de E/S (dos quais 6 podem ser usados como saídas PWM);
6 entradas analógicas;
- 1 porta USB;
- 1 conector de alimentação;
- 1 header ICSP:

2. Apresente uma imagem com a localização de todos os sinais de interface disponíveis.

- 1 botão de Reset.

Figura 1: Fonte: https://docs.arduino.cc/retired/boards/arduino-uno-rev3-withlong-pins

- 3. Cite qual ambiente de desenvolvimento de SW será utilizado.
 - Arduino IDE 2.2.1.

2 Interface GPIO de Entrada

- 1. Descreva como uma chave está, ou será, conectada a um pino de entrada.
 - Para o desenvolvimento do trabalho, a chave se ao pino 2 do Arduino, com o auxílio de um resistor pull-up de 220 Ohms.
- 2. Inclua um diagrama elétrico. Seu uC tem resistor de pull-up interno?
 - Sim, o Arduino Uno R3 apresenta um resistor de pull-up interno, porém ele é mantido desativado por configuração padrão. Contudo, para a realização do trabalho foi utilizado um resistor externo. Abaixo, é possível visualizar o diagrama elétrico do projeto, com o auxílio do software Tinkercad.

Figura 2: Diagrama Elétrico do Projeto. Desenvolvimento próprio

- 3. Descreva como esse pino será configurado e usado.
 - O pino 2 será utilizado como entrada com o resistor pull-up. Em seguida, esse pino será utilizado para ler o estado da chave, com o parâmetro estado_Botao na função loop. Assim, a variável estado_Botao armazenará o valor HIGH caso a chave estiver pressionada, e LOW caso estiver solta.

3 Interface GPIO de Saída

- 1. Descreva como um LED está, ou estará, ligado a um pino GPIO de saída
 - No problema descrito, o LED estará conectado ao pino 13 do Arduino, juntamente de um resistor e com uma fonte de 5V para o circuito.
- 2. Inclua um diagrama elétrico.
 - O mesmo, vide Figura 2.
- 3. Descreva como esse peno será configurado e usado.
 - O pino 13 será definido como saída. Em seguida, ele será utilizado exatamente para acender e apagar o LED. Para isso, será utilizado a função digitalWrite() dentro do loop, passando a variável ledpino e o valor HIGH ou LOW dependendo da situação.

4 Experimento

- Nesta seção, será tratado da implementação prática do trabalho. Neste sentido, declaramos logo abaixo, a implementação esperada a respeito do projeto, e em seguida, a implementação desenvolvida para o mesmo.
- Algoritmo de Funcionamento:
 - 1. Esperar a chave ser pressionada e liberada.
 - 2. Acender o LED por 1 segundo.
 - 3. Apagar o LED por 2 segundo.
 - 4. Finalmente, piscar rapidamente o LED por meio segundo indicando fim de ciclo, ou seja, acenda por 0,25 segundo e em seguida apague por 0,25 segundo.
 - 5. Volte ao passo 1.
- Algoritmo desenvolvido: Como pode ser visto abaixo, a implementação é
 divida em três momentos: a primeira, composta pela declaração das variáveis,
 a segunda pela definição da função setup(), em que são definidas a entrada
 e a saída do circuito com o método pinMode, e no terceito bloco, definido
 pela função loop(), em que se executa as instruções definidas pelo algoritmo.

```
// Declaracao de Variaveis
      int botao_Pino = 13;
      int led_Pino = 2;
      int estado_Botao = LOW;
      void setup() {
        // Pino do Botao
        pinMode(botao_Pino, INPUT);
        // Pino do Led
        pinMode(led_Pino, OUTPUT);
      }
11
      void loop() {
        // Leitura do Estado da Chave
        estado_Botao = digitalRead(botao_Pino);
        // A chave foi pressionada
17
        if(estado_Botao == HIGH) {
18
          // Aguarda a liberacao da Chave
19
          while(digitalRead(botao_Pino) == HIGH) {} // Passo 1
          // Acende o Led
          digitalWrite(led_Pino, HIGH); // Passo 2
          delay(1000);
          // Desliga o Led
          digitalWrite(led_Pino, LOW); // Passo 3
          delay(2000);
          // Pisca o Led - Passo 4
          digitalWrite(led_Pino,HIGH);
          delay(250);
          digitalWrite(led_Pino, LOW);
          delay(250);
34
        // Fim do Loop - Passo 5
35
      }
36
37
```

Listing 1: Implementação do Código

Figura 3: Montagem Final do Circuito

5 Conclusão

A realização do trabalho não trouxe muitas dificuldades para a sua resolução. A prototipação do projeto com o auxílio do tinkercad facilitou muito a montagem do circuito real, fazendo com que a danificação de componentes causada pela montagem incorreta pudesse ser evitada.

O único impedimento enfrentado, foi na escolha do resistor para interface de saída. Idealmente, para os cálculos de corrente e queda de tensão do resistor, seria melhor a escolha de um resistor de 220 Ohms. Contudo, o resistor de valor mais próximo disponível para o desenvolvimento do projeto, era de 330 Ohms, o que não prejudicou na execução da tarefa. Abaixo, é possível a montagem final do Pisca Led.