

Definições do Ambiente

Num	Observation	Min	Max	Mean
0	hull_angle	0	2*pi	0.5
1	hull_angularVelocity	-inf	+inf	-
2	vel_x	-1	+1	-
3	vel_y	-1	+1	-
4	hip_joint_1_angle	-inf	+inf	15.0
5	hip_joint_1_speed	-inf	+inf	-
6	knee_joint_1_angle	-inf	+inf	
7	knee_joint_1_speed	-inf	+inf	-
8	leg_1_ground_contact_flag	0	1	
9	hip_joint_2_angle	-inf	+inf	-)
10	hip_joint_2_speed	-inf	+inf	-
11	knee_joint_2_angle	-inf	+inf	-
12	knee_joint_2_speed	-inf	+inf	-
13	leg_2_ground_contact_flag	0	1	-
14-23	10 lidar readings	-inf	+inf	4.1

Cada linha da tabela representa uma variável de observação que é obtida em cada estado do agente durante a simulação

Estados (states)

Um estado é representado por um vetor contínuo que descreve a configuração e dinâmica do agente.

Perceções (percepts)

As perceções referem-se às observações fornecidas ao agente sobre o estado atual do ambiente, e estas são divididas em três grandes grupos:

- Estado do corpo do agente (Hull)
- Estado das articulações das pernas
- Leituras do sensor LIDAR

Definições do Ambiente

Ações (Actions)

O espaço de ações é contínuo (intervalo [-1,1]) e representam valores de velocidade para as articulações do Bipedal Walker, tanto no quadril como nos joelhos.

As ações são usadas para alcançar os seguintes objetivos:

- Progredir horizontalmente (andar para a frente).
- Manter o equilíbrio do corpo do robô.
- Alternar as pernas de forma adequada.
- Evitar quedas e obstáculos.

Recompensas (Rewards)

Caso o robô caia, recebe uma penalização de -100 pontos. A manipulação de velocidades nas articulações (quadris e o joelhos) tem um pequeno custo em pontos.

Um agente mais eficiente obterá uma pontuação superior.

Fase de Desenvolvimento

Começamos por treinar 8 algoritmos (modo normal) até 1 milhão de steps para decidir em que algoritmo nos íamos focar com mais detalhe.

Após análise do gráfico, corremos um script que nos dava o rácio do value por tempo gasto. Os três melhores algoritmos segundo esse rácio são PPO, TRPO e TQC, sendo assim vamo-nos focar nesses algoritmos.

Algoritmo: PPO_0, Time (min): 91.74, Best_Ep_Rew_Mean: 276.21, Ratio (Best_Ep_Rew_Mean/Time): 3.010830

Algoritmo: TRPO_0, Time (min): 167.82, Best_Ep_Rew_Mean: 274.77, Ratio (Best_Ep_Rew_Mean/Time): 1.637297

Algoritmo: TQC_0, Time (min): 636.60, Best_Ep_Rew_Mean: 329.05, Ratio (Best_Ep_Rew_Mean/Time): 0.516884

Algoritmo: SAC_0, Time (min): 629.40, Best_Ep_Rew_Mean: 339.32, Ratio (Best_Ep_Rew_Mean/Time): 0.491458

Algoritmo: DDPC_0, Time (min): 389.58, Best_Ep_Rew_Mean: 72.51, Ratio (Best_Ep_Rew_Mean/Time): 0.186131

Algoritmo: RecurrentPPO_0, Time (min): 589.94, Best_Ep_Rew_Mean: -70.99, Ratio (Best_Ep_Rew_Mean/Time): -0.139207

Algoritmo: ARS_0, Time (min): 28.370, Best_Ep_Rew_Mean: -73.87, Ratio (Best_Ep_Rew_Mean/Time): -0.585155

Algoritmo: A2C_0, Time (min): 88.32, Best_Ep_Rew_Mean: -78.31, Ratio (Best_Ep_Rew_Mean/Time): -0.886638

Com foco no PPO, TRPO e TQC, decidimos treinar estes algoritmos até aos 5 milhões de steps, mas desta vez no modo hardcore.

Pela análise do gráfico, conclui-se que os values, tanto do PPO como TRPO são muito baixos, pelo que vamos implementar R*eward Wrappers*, de forma a maximizar o value. Já o TQC apresenta um value muito positivo, e o foco sobre este algoritmo é em melhorar o andar do agente.

Estes foram os resultados no ambiente com reward wrapper para o TQC., Treinamos por 1 milhão de steps, desde o hardcore mode, totalizando 6 milhões de steps.

Estes foram os resultados no ambiente com Reward Wrappers para o PPO e TRPO. Treinamos ambos os algoritmos até 25 milhões de steps, apresentando em ambos os casos apresentavam values de rewards positivos.

Parte Experimental e Análise de Resultados

PPO

Parte Experimental e Análise de Resultados

TRPO

Parte Experimental e Análise de Resultados

TQC

A implementação do reward wrapper tornou o andar menos robótico, obrigando o robô a usar as duas pernas.

Conclusões

PPO

Vantagens

Simples, versátil e eficiente; boa taxa de aprendizagem e estabilidade.

Desvantagens

Menos robusto em situações extremas; atualizações menos precisas.

TQC

Vantagens

Altamente robusto e eficiente em exploração; desempenho estável.

Desvantagens

Tempo de treino do modelo muito elevado.

TRPO

Vantagens

Alta estabilidade e segurança; bom desempenho em tarefas contínuas

Desvantagens

Complexidade computacional elevada; mais lento que PPO e resultados semelhantes

Trabalho futuro

No futuro, pretendemos treinar o robô com outros algoritmos e em diferentes contextos. Planeamos criar um novo ambiente e adaptar o robô de forma a que este consiga completar o percurso com sucesso.