Протонные зарядовые кластеры ядерных размеров

В.Г.Сапогин

Донской государственный технический университет пл. Гагарина, 1, г. Ростов-на-Дону, 344000, Россия

1. Введение

Последние два десятилетия XX века ознаменовались открытием скоплений одноименных зарядов высокой плотности. Автономные скопления зарядов были обнаружены Шоулдерсом (США, Бодега, 1987) у поверхности острийного катода в вакууме, получили название "Electrum Validum" (EV) и были применены в технологии обработки металлических поверхностей [1]. Скопления зарядов (зарядовые кластеры), наблюдаемые Шоулдерсом, имеют малые размеры (от долей до десятков микрометров), большой отрицательный заряд (от 10⁸ до 10¹¹ электронов в скоплении) и время высвечивания от 30 до 100 пс, которое превышает время возможного разлета зарядов за счёт кулоновского расталкивания.

В эти же годы Флейшман и Понс зафиксировали избыточное тепло при электролизе тяжёлой воды. Объяснить причины выделения тепла в этих экспериментах можно было существованием нового класса ядерных реакций, протекающих без появления нейтронов (явление было названо холодный ядерный синтез, ХЯС, [2]).

Некоторые из ядерщиков считают, что избыточное тепло, возникающее при электролизе, можно объяснить реакциями холодного ядерного синтеза, которые были теоретически предсказаны в работах Алвареца [3], Зельдовича и Сахарова [4-6].

Позже, сразу несколькими исследователями, экспериментально были обнаружены так называемые низкоэнергетические ядерные реакции (low energy nuclear reactions, LENR), возникающие при протекании тока в тлеющем разряде (см., например, [7]). Они проявили себя появлением в материале катода новых элементов.

Вместе с трансмутацией на электродах в электрическом разряде через водород или гелий было зарегистрировано спорадически возникающее аномальное выделение тепловой энергии, которое до сих пор не имеет под собой никаких объяснений.

Автором в заметке выдвинута гипотеза о том, что возможными инициаторами LENR и XЯС при электрическом разряде в водороде или гелии могут быть протонные зарядовые кластеры ядерных размеров, в которых отсутствуют нейтроны.

2. Основные уравнения задачи

Последовательная теория, объясняющая возможную кратковременную локализацию одноимённых зарядов в ограниченной области пространства, развита в [8] и для систем с однородной температурой базируется на уравнениях, которые в обозначениях современного векторного анализа имеют вид (принята система CGS)

$$\rho \vec{E} + \vec{f} = 0; \tag{1}$$

$$\nabla \cdot \vec{E} = 4\pi \rho \; ; \tag{2}$$

$$\vec{E} = -\nabla \varphi; \tag{3}$$

$$p = \rho kT/q = nkT; (4)$$

$$\vec{f} = -\nabla p \,. \tag{5}$$

Здесь ρ — плотность заряда в элементарном объеме, \vec{E} — напряженность макроскопического электрического поля, создаваемая коллективом зарядов в месте расположения объема, p — давление зарядов, φ — потенциал самосогласованного поля, q — одиночный заряд системы, n — концентрация зарядов системы, k — постоянная Больцмана, f — сила Бернулли.

Первое уравнение системы представляет собой условие равновесия элементарного объема системы зарядов. Второе – дифференциальная форма закона

Кулона, позволяющая рассчитывать дивергентные статические поля размазанных зарядов. Уравнение (3) дает связь потенциала с напряженностью электрического поля, а (4) — уравнение состояния с однородной температурой. Уравнение (5) является определением газостатической силы Бернулли.

Покажем, что система (1-5) описывает коллективное взаимодействие между зарядами, при котором возникает обратное действие поля на заряды, порождающие это поле. Для этого выясним физический смысл компенсирующей объемной плотности сил (далее — объемной силы) \vec{f} . С одной стороны, эта сила газостатическая (5) и ее введение делает замкнутой систему уравнений газостатики зарядов одного знака. С другой стороны, подставляя в (1) плотность заряда из уравнения (2), получим

$$\vec{f} = -\rho \vec{E} = -\vec{E}(\nabla \cdot \vec{E})/4\pi = -\vec{G}. \tag{6}$$

Из (6) видно, что эта же сила создается градиентом давления самосогласованного поля $\vec{G} = \vec{E}(\nabla \cdot \vec{E}\,)/4\pi$, противоположна ему по направлению, действует на массовую плотность зарядов, как и обычный градиент давления, и в статических равновесиях компенсирует действие объемной силы $\rho \vec{E}$, играющей роль объемной кулоновской силы.

Компенсация указывает на неизвестное ранее свойство самосогласованного электрического поля удерживать неоднородную систему одноименных зарядов в ограниченной области пространства силами неэлектромагнитного происхождения. Из (5) и (6) следуют условие и механизм удержания:

$$\vec{G} = \nabla p \,. \tag{7}$$

Система коллективного взаимодействия зарядов находится в состоянии газостатического равновесия с самосогласованным полем в том случае, когда равенство градиентов давлений поля и зарядов выполняется в любом элементарном объеме системы.

Исследование решений системы уравнений (1-5) указывает на принципиальную возможность существования ограниченных в пространстве полых зарядовых кластеров. Самосогласованное поле системы формирует в них два типа атмосфер (рис. 1). В атмосфере, помещенной слева на рисунке (ее удобно назвать внешней), плотность зарядов нарастает в направлении оси x, а в атмосфере, помещенной справа на рисунке (ее удобно назвать внутренней), плотность зарядов убывает в направлении оси x.

Рис. 1. Возможные направления объёмных сил, удерживающих в равновесии квазиплоский слой положительных зарядов полого кластера

Рассмотрим возможные направления объемных сил, удерживающих внешнюю атмосферу полого кластера, состоящего из положительных зарядов (левая часть рис. 1). Предположим, что в произвольном элементе объема сила $\rho \vec{E}$ совпадает по направлению с внешней нормалью (ось x). Из уравнений (1) и (5) следует, что направление градиента давления зарядов совпадает с направлением вектора \vec{E} . Поскольку вектор \vec{E} совпадает с направлением оси x, то его единственная проекция положительна. Из уравнения (2) следует, что в этом объеме

дивергенция $\frac{dE}{dx} > 0$ и напряженность поля нарастает в направлении оси x. Это нарастание формирует градиент давления поля, имеющий такое же направление, как и градиент давления зарядов.

Для уравнения состояния (4) они оказываются равными друг другу, в связи с чем выполняется условие удержания (7). Сила \vec{f} , компенсирующая $\rho \vec{E}$, противоположна градиенту давления поля и равна ему по модулю.

Рассмотрим физику удержания в равновесии элементарного объема зарядов во внутренней атмосфере кластера (правая часть рис. 1). Как и ранее, градиент давления зарядов совпадает с направлением объемной силы $\rho \vec{E}$ и равен ей. Но теперь их направления противоположны направлению внешней нормали и единственная проекция вектора \vec{E} отрицательна. Тогда из уравнения (2) следует, что в этом объеме $\frac{dE}{dx} < 0$ и напряженность поля убывает с ростом x. Это убывание формирует градиент давления поля, направленный против оси x и равный градиенту давления зарядов (7). Газостатическая сила, компенсирующая силу $\rho \vec{E}$, направлена по оси x и противоположна градиенту давления поля.

Если поле исследуемой системы однокомпонентное и плоское, т.е. $\vec{E} = [E_x(x),0,0]$, то равенство градиентов (7) имеет вид

$$G_x - \frac{dp}{dx} = \frac{E_x}{4\pi} \frac{dE_x}{dx} - \frac{dp}{dx} = \frac{d}{dx} \left(\frac{E_x^2}{8\pi} - p \right) = 0$$

и приводит к интегралу полного давления

$$\frac{E_x^2}{8\pi} - p = \frac{(\varphi')^2}{8\pi} - p(\varphi) = H(\varphi', \varphi) = const, \qquad (8)$$

который является гамильтоновой функцией системы (далее — гамильтониан). В ней роль обобщенного времени (циклическая переменная) играет координата x, а

канонически сопряженными величинами являются обобщенный импульс $\varphi'/4\pi$ и обобщенная координата φ .

Гамильтониан (8) определяет физические свойства плоских и квазиплоских неоднородных систем зарядов. Из закона сохранения видно, что в системах одноименных зарядов реализуется спектр возможных распределений. В каждой системе существует три типа равновесий зарядов с полем, соответствующих трем значениям полного давления системы: положительному (давление поля больше давления зарядов), нулевому (давление поля равно давлению зарядов) и отрицательному (давление поля меньше давления зарядов).

3. Уравнение самосогласованной электростатики неизлучающих зарядов и его решения

Из системы (1-5) легко получить уравнение самосогласованной электростатики неизлучающих зарядов. Для этого в системе нужно всё выразить через потенциал и получить из (5), (3), (1) и (4) скалярный интеграл, из которого последует функция распределения Больцмана. Её следует подставить в правую часть (2) и получить

$$\Delta \varphi = -4\pi p_0 \exp(-\sigma e \varphi / kT), \tag{9}$$

где σ – знак одиночного заряда системы, а e – элементарный заряд.

В плоской симметрии уравнение (9) имеет интеграл полного давления, который является гамильтоновой функцией системы

$$\frac{(\varphi')^2}{8\pi} - p_0 \exp\left(-\frac{\sigma e \varphi}{kT}\right) = H(\varphi', \varphi) = C = const.$$
 (10)

Интегрируя (10) для граничного условия $\varphi(0) = \varphi'(0) = 0$, легко найти точное решение, которое является чётной функцией

$$y = \sigma \ln(\cos \xi), \tag{11}$$

где введены следующие обозначения

$$\xi = x/l, \ y = \varphi/\varphi_*. \tag{12}$$

В соотношениях (12) пространственный масштаб системы

$$l = \frac{1}{e} \sqrt{\frac{kT}{2\pi n_0}},\tag{13}$$

а масштаб потенциала

$$\varphi_* = 2kT/e. \tag{14}$$

В сферически симметричном случае уравнение (9) имеет вид

$$xy'' + 2y' = \alpha^2 x \exp(2y),$$
 (15)

где $y(x) = -\sigma \phi(r)/\phi_*$, x = r/R, R — радиус сферы, на которой задаются те же самые граничные условия, α — параметр состояния системы

$$\alpha^2 = R^2 / l^2 = T_* / T. \tag{16}$$

В (16) T_* – характеристическая температура системы

$$T_* = 2\pi e^2 n_0 R^2 / k \,. \tag{17}$$

Уравнение (15) относится к классу модифицированного E — уравнения Эмдена [9]. Его столетнее исследование показало, что оно не имеет точных аналитических решений в элементарных функциях. Для граничных условий y(1)=0, y'(1)=0в [8] найдено его приближённое решение, которым можно пользоваться для ограниченного диапазона значений параметра состояния ($\alpha \ge 3$, полый кластер с температурой ниже характеристической). Выпишем его для потенциала

$$\frac{\varphi}{\varphi_*} = \sigma \ln \left[\frac{\alpha r}{R \sqrt{\alpha^2 - 1}} \sin(A) \right],\tag{18}$$

где

$$A = \arcsin\left(\frac{\sqrt{\alpha^2 - 1}}{\alpha}\right) - \sqrt{\alpha^2 - 1}\ln\left(\frac{r}{R}\right).$$

Нули синуса в решении (18) дают асимптоты, которые и являются границами пространства взаимодействия кластера. Граница внутренней сферы:

$$ln\frac{r_1}{R} = \left[arcsin\left(\frac{\sqrt{\alpha^2 - 1}}{\alpha}\right) - \pi \right] / \sqrt{\alpha^2 - 1}.$$
 (19)

Граница внешней сферы ($r_2 > r_1$):

$$ln\frac{r_2}{R} = \left[arcsin\left(\frac{\sqrt{\alpha^2 - 1}}{\alpha}\right) \right] / \sqrt{\alpha^2 - 1}.$$
 (20)

Полученные формулы (18) – (20) позволяют получить аналитические выражения основных электростатических и кинетических характеристик зарядового кластера для случая полых состояний [8].

Исследуем поведение системы вблизи асимптоты. Введем координату $\delta \ge 0$, направленную по радиус-вектору, начало которой приходится на радиус асимптоты r_1 : $r=r_1+\delta$. Разлагая в (18) $\sin(A)$ в точке r_1 (внутренняя асимптота) по малому параметру δ/r_1 получим, что потенциал в тонком слое, прилежащем к полости, обладает логарифмической особенностью

$$\frac{\varphi}{\varphi_*} \approx \sigma \ln \left(\frac{\alpha \delta}{R} \right), \tag{21}$$

а зависимость концентрации от координаты δ следует из функции распределения Больцмана и имеет особенность $\sim \delta^2$

$$\frac{n}{n_0} \approx \frac{R^2}{\alpha^2 \delta^2} \,. \tag{22}$$

Как видно из (22), распределение зарядов в сферическом кластере оказывается таким, что самосогласованное поле сваливает их основную часть в потенциальные бесконечно глубокие щели, которые до конца не заполнены.

Если ввести координату $\delta \ge 0$, направленную против радиус-вектора, начало которой приходится на радиус внешней асимптоты r_2 , то асимптотические

представления (21) и (22) останутся теми же. Основной вклад в число частиц зарядового кластера вносят особенности концентрации на асимптотах. Оценим вклад в число частиц у внутренней асимптоты. Для этого интегрирование в несобственном интеграле проведём в интервале $r_1+\delta < r < R$ при $\delta \to 0$. Получим для внутренней асимптоты кластера

$$N_{1} = \int_{V} n(r) dV = \frac{4\pi n_{0} R^{2}}{\alpha^{2}} \int_{r_{1} + \delta}^{R} \left(\frac{r}{\delta}\right)^{2} dr \sim \frac{4\pi n_{0} R^{2} r_{1}^{2}}{\alpha^{2} \delta},$$
 (23)

а для внешней асимптоты кластера (интегрирование в несобственном интеграле проведём в интервале $R < r < r_2 - \delta$ при $\delta \to 0$)

$$N_2 \sim \frac{4\pi n_0 R^2 r_2^2}{\alpha^2 \delta} \,. \tag{24}$$

Окончательная оценка числа частиц, удерживаемых зарядовым кластером, может быть представлена в виде

$$\frac{N}{N_*} = \frac{N_1 + N_2}{N_*} \sim \frac{\alpha}{2\beta} \left[\left(\frac{r_1}{R} \right)^2 + \left(\frac{r_2}{R} \right)^2 \right],\tag{25}$$

где введены обозначения

$$N_* = 8\pi n_0 l^3 \tag{26}$$

масштаб числа частиц,

$$\beta = \delta / R << 1 \tag{27}$$

 параметр относительной пустоты заполнения потенциальной щели зарядами кластера.

Полученные соотношения были использованы для оценок числа зарядов, удерживаемых в электронном кластере микронных размеров Шоулдерса [1], и дали хорошее совпадение при β =10⁻⁶. Распространим полученные результаты на пространственные размеры порядка ядерных (1 ферми=10⁻¹³ см). В таблицах представлено (выделено жирным) количество протонов, удерживаемых зарядовым кластером с минимальной концентрацией n_0 (см⁻³) (взято на сфере нулевого

давления поля), для диапазона температур, изменяющихся от 500 К до 2000 К. В расчётах для табл. 1 принято: параметр состояния α =3, а параметр относительной пустоты заполнения щели β = 10^{-7} . В этой же таблице, после вертикальной черточки проставлены радиусы r_2 получившихся протонных ядер в ферми. Известно, что радиус ядра никеля около 5 ферми.

Таблица 1. Количество протонов в кластере и его радиус для α =3.

$T(K)\backslash n_0$	$2 \cdot 10^{30}$	$4 \cdot 10^{30}$	6.10^{30}	8.10^{30}	$10 \cdot 10^{30}$	$12 \cdot 10^{30}$	$14 \cdot 10^{30}$
500	7 /7,2	5 /5,1	4 /4,1	3 /3,6	3 /3,2	3/2,9	2 /2,7
750	13/8,8	9/6,2	7 /5,1	6/4,4	6/3,9	5 /3,6	5 /3,3
1000	20 /10,1	14 /7,2	12 /5,9	10/5,1	9/4,5	8/4,1	7 /3,8
1250	29 /11,3	20 /8,0	16 /6,5	14/5,7	12 /5,1	11 /4,6	10 /4,3
1500	38 /12,4	27 /8,8	22 /7,2	19/6,2	17 /5,6	15 /5,1	14 /4,7
1750	48 /13,4	34/9,5	27 /7,7	24 /6,7	21/6,0	19/5,5	18 /5,1
2000	58 /14,3	41 /10,1	33 /8,3	29 /7,2	26 /6,4	24 /5,9	22/5,4

В таблице 2 те же расчёты выполнены для параметра состояния α =10.

Таблица 2. Количество протонов в кластере и его радиус для α =10.

$T(K)\backslash n_0$	$2 \cdot 10^{30}$	$4 \cdot 10^{30}$	6.10^{30}	8.10^{30}	$10 \cdot 10^{30}$	$12 \cdot 10^{30}$	$14 \cdot 10^{30}$
500	19 /18	13 /13	11 /10	9 /9	8 /8	7 /7	7 /7
750	35 /22	24 /16	20 /13	17 /11	15 /10	14 /9	13/8
1000	53 /25	38 /18	31 /15	26 /13	24 /11	22 /10	20 /10
1250	75 /28	53 /20	43 /16	37 /14	33 /13	30 /12	28 /11
1500	99 /31	70 /22	57 /18	49 /16	44 /14	40 /13	37 /12
1750	124 /34	88 /24	72 /20	62 /17	55 /15	50 /14	47 /13
2000	152 /36	107 /25	88 /21	76 /18	68 /16	62 /15	57 /14

4. Выводы

Предлагаемая в [8] последовательная теория скоплений одноименных зарядов, кратковременно удерживаемых в ограниченной области пространства, основана на следующих фундаментальных положениях:

- существует такой класс коллективного взаимодействия между одноименными зарядами динамической системы, в котором возникает обратное действие макроскопического самосогласованного поля на заряды, порождающие это поле;
- обратное действие поля на заряды при таком взаимодействии всегда приводит к появлению удерживающей объемной плотности газостатических сил полевого происхождения, которая связана с градиентом давления самосогласованного поля, совпадает с ним по величине и противоположна ему по направлению;
- в этом классе взаимодействия динамическая система зарядов находится в состоянии газостатического равновесия с самосогласованным полем в том случае, если градиенты давлений поля и зарядов равны друг другу в любом элементарном объеме скопления;
- равенство градиентов давлений поля и зарядов в плоских динамических скоплениях обусловливает закон сохранения скалярной функции системы – интеграл полного давления, который состоит из разности давлений поля и зарядов и играет роль гамильтониана взаимодействия;
- двухпараметрическая теория оказывается универсальной и предсказывает существование полых зарядовых кластеров с радиусами от сантиметровых масштабов до ядерных;
- распределение зарядов в кластере сферической симметрии оказывается таким,
 что поле сваливает их основную часть в потенциальные бесконечно глубокие
 щели, которые до конца не заполнены;
- показано, что число протонов в кластерах без нейтронов с параметром

- Сборник трудов II международной молодёжной научной конференции "Актуальные проблемы пьезоэлектрического приборостроения", г. Ростов-на-Дону, 6-10 сентября. Том II. Южный Федеральный университет. Ростов-на-Дону: Изд-во ЮФУ. 2015 г., с 8-18.
 - состояния α =3 и α =10 при значении параметра относительной пустоты заполнения щели β =10⁻⁷ может изменяться от 2 до 152 при радиусах кластера, изменяющихся от 2,7 ферми до 36 ферми;
- поскольку протонные зарядовые кластеры имеют радиусы порядка ферми, то и время их высвечивания должно значительно превышать времена жизни микронных кластеров Шоулдерса;
- существование протонных кластеров ядерных размеров в электрическом разряде водорода, гелия или их смеси может инициировать большое количество неизвестных безнейтронных ядерных реакций, которые могут вызывать трансмутации как в самой плазме, так и внутри материала катода.
- изложенный механизм инициализации неизвестных реакций протонными зарядовыми кластерами ядерных размеров может объяснить наблюдаемое в газовом разряде спорадическое аномальное выделение тепловой энергии.

Литература

- 1. Shoulders K. EV: A Tale of Discovery. 1987, Jupiter Technology, Austin TX; Shoulders Ken and Shoulders Steve, "Observation on the Role of Charge Clusters in Nuclear Cluster Reaction", Journal of New Energy. 1996. Vol. 1. No. 3. P. 111–121; Shoulders Ken and Shoulders Steve, "Charge clusters in action", Bodega, CA, 1999. P.12.
- 2. Fleishmann M., Pons S. And Hawkins M. Electrochemical Induced Nuclear Fusion of Deuterium//J.Electroanal. Chem., **261**, p.301-308 (1989).
- 3. Alvarez L.W., Bradner H., Crawford F.S. Jr., Crawford J.A., Falk-Vairant P., Good M.L., Gow J.D., Rosenfeld A.H., Solmitz F., Stevenson M.L., Ticho H.K. and Tripp R.D., Phys. Rev. 105, 1127 (1957).

- Сборник трудов II международной молодёжной научной конференции "Актуальные проблемы пьезоэлектрического приборостроения", г. Ростов-на-Дону, 6-10 сентября. Том II. Южный Федеральный университет. Ростов-на-Дону: Изд-во ЮФУ. 2015 г., с 8-18.
- 4. Зельдович Я.Б. Реакции, вызываемые μ-мезонами в водороде.//ДАН **95**(1954) с.493. 5. Зельдович Я.Б., Герштейн С.С. Ядерные реакции в холодном водороде. УФН, **71**, вып. 4 (1960), с.581-630.
- 6. Сахаров А.Д. Пассивные мезоны. Отчёт ФИАН (1948).
- 7. Савватимова И.Б., Карабут А.Б. Радиоактивность палладиевых электродов после облучения в тлеющем разряде.//Поверхность. Рентгеновские, синхротронные и нейтронные исследования. №1, 1996. С. 4-11.
- 8. Сапогин В.Г. Механизмы удержания вещества самосогласованным полем. Таганрог: изд-во ТРТУ, 2000. С. 254.
- 9. Emden R. Gaskugeln. Leipzig und Berlin. 1907. p. 497.