WeightWatcher: A Diagnostic Tool for Deep Neural Networks

Charles H. Martin PhD, Calculation Consulting

(in joint with Michael Mahoney, UC Berkeley)
pip install weightwatcher

Martin WeightWatcher June 2021 1/11

Open source tool: weightwatcher

https://github.com/CalculatedContent/WeightWatcher

WeightWatcher (WW): is an open-source, diagnostic tool for analyzing Deep Neural Networks (DNN), without needing access to training or even test data. It can be used to:

- analyze pre/trained pyTorch and keras models
- inspect models that are difficult to train
- gauge improvements in model performance
- predict test accuracies across different models
- detect potential problems when compressing or fine-tuning pretrained models

It is based on theoretical research (done injoint with UC Berkeley) into Why Deep Learning Works, using ideas from Random Matrix Theory (RMT), Statistical Mechanics, and Strongly Correlated Systems.

pip install weightwatcher

Shape and Scale Metrics

WeightWatcher (WW): analyzes the shape and scale of the correlations in the layer weight matrices:

WW: extracts, plots, and fits the Empirical Spectral Density (ESD, or eigenvalues) for each layer weight matrix (or tensor slice).

The tail of the ESD contains the most informative components.

The shape of the tail carries useful information!

Martin WeightWatcher June 2021 3 / 11

WeightWatcher: Usage

Usage

```
import weightwatcher as ww watcher = ww.WeightWatcher(model=model) details = watcher.analyze(plot=True) summary = watcher.get_summary(details)
```

	layer_id	name	D	м	N	alpha	alpha_weighted	has_esd	lambda_max	layer_type	_	rand_num_spikes	rand_sigma_mp	ra
0	2	None	0.240111	3.0	64.0	2.400712	2.627967	1.0	12.435451	LAYER_TYPE.CONV2D		135.0	1.000000	П
1	5	None	0.112669	64.0	128.0	7.116304	4.721276	1.0	4.607285	LAYER_TYPE.CONV2D	_	25.0	0.551250	
2	8	None	0.076209	128.0	256.0	2.981087	1.739893	1.0	3.833927	LAYER_TYPE.CONV2D		17.0	0.451562	
3	10	None	0.068890	256.0	256.0	5.667264	2.600458	1.0	2.876445	LAYER_TYPE.CONV2D		0.0	0.935068	
4	13	None	0.084938	256.0	512.0	2.593428	1.432684	1.0	3.568032	LAYER_TYPE.CONV2D		8.0	0.431523	
5	15	None	0.038416	512.0	512.0	3.309962	2.216486	1.0	4.673487	LAYER_TYPE.CONV2D		0.0	0.939111	
6	18	None	0.052924	512.0	512.0	3.446656	1.859810	1.0	3.464163	LAYER_TYPE.CONV2D		0.0	0.888574	
7	20	None	0.034290	512.0	512.0	3.261262	2.524426	1.0	5.943799	LAYER_TYPE.CONV2D		0.0	0.942012	
8	25	None	0.032563	4096.0	25088.0	2.325065	3.583809	1.0	34.784030	LAYER_TYPE.DENSE		1.0	0.898506	
9	28	None	0.030891	4096.0	4096.0	2.167513	3.858526	1.0	60.278519	LAYER_TYPE.DENSE		1.0	0.959863	
10	31	None	0.039773	1000.0	4096.0	2.825653	4.999373	1.0	58.786867	LAYER_TYPE.DENSE		206.0	1.000000	

 $summary = watcher.get_summary(details)$

```
{'log_norm': 2.11,
  'alpha': 3.06,
  'alpha_weighted': 2.78,
  'log_alpha_norm': 3.21,
  'log_spectral_norm': 0.89,
  'stable_rank': 20.90,
  'mp_softrank': 0.52}]
```

4 / 11

Layer-by-Layer Analysis

WW layer metrics: can detect potential problems in the ESD shapes Poorly trained models (orange) can have unusually large layer α 's.

GPT and GPT2 Layer Weight Matrix Power Law Exponents α , $\rho(\lambda) \sim \lambda^{-\alpha}$

Layer-by-Layer Analysis

WW layer metrics: can detect potential problems in the ESD Scales Compressed models (red) can show unexpected scale changes

example from Intel distiller Group Regularization technique

Martin WeightWatcher June 2021 6 / 11

α : a regularization metric

The WW $\langle \alpha \rangle$ metric: predicts test accuracy for a given model (i.e same depth) when varying the regularization hyper-parameters (such as batch size, weight decay, momentum, etc.)—without access to the test or training data.

$\hat{\alpha}$: a multi-purpose metric

The WW $\hat{\alpha}$ **metric**: predicts test accuracy for models in the same architecture series across varying depth and other architecture parameters and regularization hyper-parameters—without access to the test or training data.

 Martin
 WeightWatcher
 June 2021
 8 / 11

Research Update: Early Stopping with α

Early Stopping: Our HTSR theory suggests that when our PL metric $\alpha < 2.0$, the layer may be overtrained. Moreover, the early stopping should be applied when the layer averaged $\langle \alpha \rangle < 2.0$.

Early results by Xander Dunn show this amazingly well! Here, when training a transformer model, as the training error decreases, α decreases. But just when the test error starts to increase, $\alpha < 2.0$. This is remarkable, and we are pursuing this on a wide variety of models.

Research Update: Early Stopping with α

Early Stopping: Our HTSR theory suggests that when our PL metric $\alpha < 2.0$, the layer may be overtrained. Moreover, the early stopping should be applied when the layer averaged $\langle \alpha \rangle < 2.0$.

Early results by Xander Dunn show this amazingly well! Here, when training a transformer model, as the training error decreases, α decreases. But just when the test error starts to increase, $\alpha < 2.0$. This is remarkable, and we are pursuing this on a wide variety of models.

Research Update: Heavy Tails in W and X

Correlation Traps We *conjecture* that when the unusually large elements $W_{i,j}$ arise in the weight matrices, these act like traps (in the ESD of **X** that prevent good generalization.

(a) ESD of W and randomized W.

(b) ESD of W and randomized W.

These can be seen using the [randomize] option in **weightwatcher**. We believe we can use this to detect overfitting and are investigating this.

Martin WeightWatcher June 2021 11/11