COMPUTER SCIENCE, BS

for the degree of Bachelor of Science in Computer Science

The Computer Science curriculum provides both a broad and deep knowledge of the theory, design, and application of computer systems, with an emphasis on software systems. Because computing is ubiquitous, application areas involve virtually any field imaginable - from developing gene sequencing algorithms via techniques in computational biology, to designing user interfaces for mobile applications; from designing methods for high frequency trading, to creating computer generated graphics and special effects in the gaming industry; and from creating embedded real time systems to be deployed in medical devices, to analyzing social data from internet communication patterns. During the first two years the curriculum provides a strong foundation in mathematics, science, and computation. Advanced coursework both in more technical core areas and in areas of the student's choosing follows in the second two years. Graduates regularly go on to graduate study or leading positions in industry.

Both a combined B.S.-M.S. degree program and a B.S-M.C.S. degree program are available. The admission and course requirements are described on the Siebel School of Computing and Data Science website (https://siebelschool.illinois.edu/).

Current Program Educational Objectives (https://cs.illinois.edu/about/accreditation/)

for the degree of Bachelor of Science in Computer Science

Graduation Requirements

Minimum hours required for graduation: 128 hours.

M (https://go.grainger.illinois.edu/TechnicalGPA/)inimum Technical GPA (https://go.grainger.illinois.edu/TechnicalGPA/): 2.0

TGPA is required for CS and Math courses. See **Technical GPA (https://go.grainger.illinois.edu/TechnicalGPA/)** to clarify requirements.

University Requirements

Minimum of 40 hours of upper-division coursework, generally at the 300-or 400-level. These hours can be drawn from all elements of the degree. Students should consult their academic advisor for additional guidance in fulfilling this requirement.

The university and residency requirements can be found in the Student Code (https://studentcode.illinois.edu/article3/part8/3-801/) (§ 3-801) and in the Academic Catalog (http://catalog.illinois.edu/general-information/degree-general-education-requirements/).

General Education Requirements

Follows the campus General Education (Gen Ed) requirements (https://courses.illinois.edu/gened/DEFAULT/DEFAULT/). Some Gen Ed requirements may be met by courses required and/or electives in the program.

Code	Title	Hours
Composition I		4-6
Advanced Compos	sition	3
Humanities & the	Arts (6 hours)	6
Natural Sciences 8	& Technology (6 hours)	6
fulfilled by PHY	S 211 and PHYS 212	
Social & Behaviora	al Sciences (6 hours)	6
Cultural Studies: N	Ion-Western Cultures (1 course)	3
Cultural Studies: L	JS Minority Cultures (1 course)	3
Cultural Studies: V	Vestern/Comparative Cultures (1 course)	3
Quantitative Reaso	oning (2 courses, at least one course must be oning I)	6-10
•	TH 220 or MATH 221; and MATH 231, YS 211, PHYS 212, CS 124, CS 128, CS 225	
3 3 1	ment (Completion of the third semester or guage other than English is required)	0-15

Orientation and Professional Development

Code	Title	Hours
ENG 100	Grainger Engineering Orientation Seminar (External transfer students take ENG 300.)	1
3 ,	d, optional 1 credit hour course, CS 100 rientation. Credit hour counts toward free	
CS 210	Ethical & Professional Issues	2 or 3
or CS 211	Ethical and Professional Conduct	
Total Hours		3-4

Foundational Mathematics and Science

Code	Title	Hours
MATH 221	Calculus I (MATH 220 may be substituted. MATH 220 is appropriate for students with no background in calculus. 4 of 5 credit hours count towards degree.)	4
MATH 231	Calculus II	3
MATH 241	Calculus III	4
MATH 257	Linear Algebra with Computational Applications	3
or MATH 415	Applied Linear Algebra	
or MATH 416	Abstract Linear Algebra	
PHYS 211	University Physics: Mechanics	4
PHYS 212	University Physics: Elec & Mag	4
One Science elective	course:	3

Students must take one course from the Natural Science & Technology (NST) list, in addition to those taken as part of the General Education requirements. The course must be a course that is allowed for credit by the Grainger College of Engineering.

Exceptions to the list are: ASTR 100, PHYS 101 and PHYS 102, and CHEM 101.

Students who select either ASTR 121, ASTR 122, or ASTR 150 to satisfy the Science Elective requirement will not receive credit for any other 100-level ASTR course as a free elective (maximum of 4 credit hours of ASTR 100-level can count towards graduation requirements for all Grainger College of Engineering Undergraduates).

Total Hours	25

Computer Science Technical Core

Code	Title	Hours
CS 124	Introduction to Computer Science I	3
CS 128	Introduction to Computer Science II	3
CS 173	Discrete Structures	3
CS 222	Software Design Lab	1
CS 225	Data Structures	4
CS 233	Computer Architecture	4
CS 341	System Programming	4
CS 357	Numerical Methods I	3
CS 361	Probability & Statistics for Computer Science	3
CS 374	Introduction to Algorithms & Models of Computation	4
CS 421	Programming Languages & Compilers	3
Total Hours		35

Technical Electives

Title Code Hours Students must take a minimum of (6) six additional technical electives with at least eighteen (18) cumulative credit hours and chosen from CS 397 and the CS 400-level courses, not including CS 400, CS 401, CS 402, CS 403 or CS 491. CS 500level courses may be used as technical electives, but only with special permission from the CS Academic Office. CS 397 and CS 499 may be used with a cumulative maximum of six (6) credits from them counting as technical electives. One "CS-like" course in another department (e.g., ECE) may also be counted as a CS 400-level course with permission of the CS Academic Office. Non-CS tech electives will not be considered in focus areas.

18

At least one (1) of the CS courses used for technical electives must be chosen from the list below of CS courses satisfying the team project requirement.

Team Project Course List:

CS 417	Virtual Reality	3
CS 427	Software Engineering I	3 or 4
CS 428	Software Engineering II	3 or 4
CS 429	Software Engineering II, ACP	3
CS 437	Topics in Internet of Things	3
CS 465	User Interface Design	4
CS 467	Social Visualization	3 or 4
CS 493	Senior Project II, ACP	3
CS 494	Senior Project II	3
CS 497	CS Team Project	1 to 3

At least three (3) of the CS courses used for technical electives must be chosen from a single focus area, from among the list of focus areas listed below. The team project course may be used as one of them.

CS 498 Special Topics and CS 598 Special Topics classes may be included in a focus area by department approval.

	, , , , , , , , , , , , , , , , , , , ,	
Software Foundati	ons:	
CS 407	Cryptography	3 or 4
CS 409	The Art of Web Programming	3
CS 422	Programming Language Design	3 or 4
CS 426	Compiler Construction	3 or 4
CS 427	Software Engineering I	3 or 4
CS 428	Software Engineering II	3 or 4
CS 429	Software Engineering II, ACP	3
CS 474	Logic in Computer Science	3 or 4
CS 476	Program Verification	3 or 4
CS 477	Formal Software Development Methods	3 or 4
CS 492	Senior Project I	3
CS 493	Senior Project II, ACP	3
CS 494	Senior Project II	3
CS 521	Advanced Topics in Programming Systems	4
CS 522	Programming Language Semantics	4
CS 524	Concurrent Progrmg Languages	4
CS 526	Advanced Compiler Construction	4
CS 527	Topics in Software Engineering	4
CS 576	Topics in Automated Deduction	2 to 4
Algorithms and Mo	odels of Computation:	
CS 407	Cryptography	3 or 4
CS 413	Intro to Combinatorics	3 or 4
CS 473	Algorithms	4
CS 474	Logic in Computer Science	3 or 4
CS 475	Formal Models of Computation	3 or 4
CS 476	Program Verification	3 or 4
CS 477	Formal Software Development Methods	3 or 4
CS 481	Advanced Topics in Stochastic Processes & Applications	3 or 4
CS 482	Simulation	3 or 4
CS 571	Combinatorial Mathematics	4
CS 572	Extremal Graph Theory	4
CS 574	Randomized Algorithms	4
CS 575	Methods of Combinatorics	4
CS 576	Topics in Automated Deduction	2 to 4
CS 579	Computational Complexity	4
CS 580	Topics in Algorithmic Game Theory	4
CS 581	Algorithmic Genomic Biology	4
CS 583	Approximation Algorithms	4
CS 584	Embedded System Verification	4
CS 586	Combinatorial Optimization	4
Intelligence and Bi	_	
CS 410	Text Information Systems	3 or 4
CS 411	Database Systems	3 or 4
CS 412	Introduction to Data Mining	3 or 4
CS 414	Multimedia Systems	3 or 4

CS 416	Data Visualization	3 or 4	CS 565	Human-Computer Interaction	4
CS 440	Artificial Intelligence	3 or 4	CS 567	Social Signals and Social Media	4
CS 441	Applied Machine Learning	3 or 4	Media:		
CS 442	Trustworthy Machine Learning	3 or 4	CS 409	The Art of Web Programming	3 or 4
CS 444	Deep Learning for Computer Vision	3 or 4	CS 414	Multimedia Systems	3 or 4
CS 445	Computational Photography	3 or 4	CS 416	Data Visualization	3 or 4
CS 446	Machine Learning	3 or 4	CS 417	Virtual Reality	3 or 4
CS 447	Natural Language Processing	3 or 4	CS 418	Interactive Computer Graphics	3 or 4
CS 448	Audio Computing Laboratory	3 or 4	CS 419	Production Computer Graphics	3 or 4
CS 464	Topics in Societal and Ethical Impacts of	3	CS 445	Computational Photography	3 or 4
	Computer Technology		CS 448	Audio Computing Laboratory	3 or 4
CS 466	Introduction to Bioinformatics	3 or 4	CS 465	User Interface Design	4
CS 467	Social Visualization	3 or 4	CS 467	Social Visualization	3 or 4
CS 469	Computational Advertising Infrastructure	3	CS 468	Tech and Advertising Campaigns	3
CS 470	Social and Information Networks	3	CS 469	Computational Advertising Infrastructure	3 or 4
CS 510	Advanced Information Retrieval	4	CS 519	Scientific Visualization	4
CS 511	Advanced Data Management	4	CS 545	Machine Learning for Signal Processing	4
CS 512	Data Mining Principles	4	CS 565	Human-Computer Interaction	4
CS 514	Advanced Topics in Network Science	4	CS 567	Social Signals and Social Media	4
CS 540	Deep Learning Theory	4	Scientific, Parallel	, and High Perfomance Computing:	
CS 542	Statistical Reinforcement Learning	4	CS 419	Production Computer Graphics	3 or 4
CS 543	Computer Vision	4	CS 435	Cloud Networking	3 or 4
CS 544	Optimiz in Computer Vision	4	CS 450	Numerical Analysis	3 or 4
CS 545	Machine Learning for Signal Processing	4	CS 466	Introduction to Bioinformatics	3 or 4
CS 546	Advanced Topics in Natural Language	4	CS 482	Simulation	3 or 4
	Processing		CS 483	Applied Parallel Programming	4
CS 562	Advanced Topics in Security, Privacy, and	4	CS 484	Parallel Programming	3 or 4
00 507	Machine Learning		CS 519	Scientific Visualization	4
CS 567	Social Signals and Social Media	4	CS 554	Parallel Numerical Algorithms	4
CS 576	Topics in Automated Deduction	2 to 4	CS 555	Numerical Methods for PDEs	4
CS 582	Machine Learning for Bioinformatics	4	CS 556	Iterative & Multigrid Methods	4
Human and Socia		0 4	CS 558	Topics in Numerical Analysis	4
CS 409	The Art of Web Programming	3 or 4	Distributed System	ns, Networking, and Security:	
CS 416	Data Visualization	3 or 4	CS 407	Cryptography	3 or 4
CS 417	Virtual Reality	3 or 4	CS 423	Operating Systems Design	3 or 4
CS 441	Applied Machine Learning	3 or 4	CS 424	Real-Time Systems	3 or 4
CS 442	Trustworthy Machine Learning	3 or 4	CS 425	Distributed Systems	3 or 4
CS 460	Security Laboratory	3 or 4	CS 431	Embedded Systems	3 or 4
CS 461	Computer Security I	4	CS 435	Cloud Networking	3 or 4
CS 463	Computer Security II	3 or 4	CS 436	Computer Networking Laboratory	3 or 4
CS 464	Topics in Societal and Ethical Impacts of	3	CS 437	Topics in Internet of Things	3 or 4
00.465	Computer Technology	4	CS 438	Communication Networks	3 or 4
CS 465	User Interface Design	2 - 4	CS 439	Wireless Networks	3 or 4
CS 467	Social Visualization	3 or 4	CS 460	Security Laboratory	3 or 4
CS 468	Tech and Advertising Campaigns	3	CS 461	Computer Security I	4
CS 469	Computational Advertising Infrastructure	3	CS 463	Computer Security II	3 or 4
CS 470	Social and Information Networks	3	CS 483	Applied Parallel Programming	4
CS 500	Current Topics in Computing Education Research	4	CS 484	Parallel Programming	3 or 4
CS 514	Advanced Topics in Network Science	4	CS 523	Advanced Operating Systems	4
CS 562	Advanced Topics in Network Science Advanced Topics in Security, Privacy, and	4	CS 524	Concurrent Progrmg Languages	4
55 502	Machine Learning	4	CS 525	Advanced Distributed Systems	4
CS 563	Advanced Computer Security	4	CS 537	Advanced Topics in Internet of Things (IoT)	4
				3 ()	

CS 538	Advanced Computer Networks	4
CS 562	Advanced Topics in Security, Privacy, and Machine Learning	4
CS 563	Advanced Computer Security	4
Machines:		
CS 423	Operating Systems Design	3 or 4
CS 424	Real-Time Systems	3 or 4
CS 426	Compiler Construction	3 or 4
CS 431	Embedded Systems	3 or 4
CS 433	Computer System Organization	3 or 4
CS 437	Topics in Internet of Things	3 or 4
CS 484	Parallel Programming	3 or 4
CS 523	Advanced Operating Systems	4
CS 526	Advanced Compiler Construction	4
CS 533	Parallel Computer Architecture	4
CS 534	Advanced Topics in Computer Architecture	4
CS 536	Fault-Tolerant Dig Syst Design	4
CS 541	Computer Systems Analysis	4
CS 584	Embedded System Verification	4
CS 588	Autonomous Vehicle System Engineering	4

Computer Science Advanced Electives

Code	Title	Hours
Students m	nust take for a letter grade a minimum of two (2)	6
advanced e	elective courses comprising at least six (6) credit	
hours. The	se advanced elective courses must be distinct from	
courses us	sed to satisfy the technical electives. They may	
be chosen	from CS 397 Individual Study and the 400-level	
courseworl	k offered for letter grade in ANY area offered at the	
University of	of Illinois at Urbana-Champaign. It is expected that	
students w	vill select these additional advanced courses in a way	
that best a	ugments their program of study. Consultation with a	
faculty mer	ntors is highly encouraged. A maximum of six (6) credit	
hours of CS	S 397 may be used in the combination of technical	
electives ar	nd advanced electives.	

Total Hours Free Electives

Code	Title	Hours
Additional co	urse work, subject to the Grainger College of	24-25
Engineering re	estrictions to Free Electives,so that there are	!
at least 128 c	redit hours earned toward the degree. (https:	://
go.grainger.ill	linois.edu/FreeElectives/)	
Total Hours of	f Curriculum to Graduate	128

for the degree of Bachelor of Science in Computer Science

Sample Sequence

This sample sequence is intended to be used only as a guide for degree completion. All students should work individually with their academic advisors to decide the actual course selection and sequence that works best for them based on their academic preparation and goals. Enrichment programming such as study abroad, minors, internships, and so on may impact the structure of this four-year plan. Course availability is not

guaranteed during the semester indicated in the sample sequence. The curriculum sequence can also be viewed via dynamic and static curricular maps (https://grainger.illinois.edu/academics/undergraduate/majors-and-minors/cs-map/), which include prerequisite sequencing.

Students must fulfill their Language Other Than English requirement by successfully completing a third level of a language other than English. See the corresponding section on the Degree and General Education Requirements (http://catalog.illinois.edu/general-information/degreegeneral-education-requirements/). If the option of CS 211 is chosen, it will satisfy a core course requirement and the Campus General Education Advanced Composition requirement.

Free Electives: Additional course work, subject to the Grainger College of Engineering restrictions to Free Electives (https://go.grainger.illinois.edu/FreeElectives/), so that there are at least 128 credit hours earned toward the degree.

First Year

Second Year

CS 222

CS 225

MATH 241

PHYS 211

First Semester

First Semester	Hours Second Semester	Hours
CS 100 (Optional course, highly recommended, free elective)	1 CS 128	3
CS 124	3 CS 173	3
MATH 221 (MATH 220 may be substituted)	4 MATH 231	3
ENG 100	1 General Education course (Choose a Humanities or Social/Behavioral Science course with Cultural Studies designation)	3
Science elective course	3 General Education (Choose a Humanities or Social/Behavioral Science course) or Composition I course	3-4
Composition I or General Education (Choose a Humanities or Social/Behavioral Science course)	4-3	
	16	15

Hours Second Semester

1 CS 233

4 CS 361

4 MATH 257

4 PHYS 212

Hours

4

3

3

4

Third Year		
	16	17
designation)		
Cultural Studies		
course with		
Science		
Social/Behavioral		
a Humanities or		
course (choose		
Education	course	
General	3 Free elective	3

Third Year		
First Semester	Hours Second Semester	Hours
CS 210 (CS 211 may be substituted)	2 CS 374	4
CS 341	4 CS Technical elective course	3
CS 357	3 CS Technical elective course	3
CS Technical elective course	3 General Education course (choose a Humanities or Social/Behavioral Science course with Cultural Studies designation)	3
Language Other Than English (3rd level) course	4 Free elective course	3
	16	16

Fourth Year		
First Semester	Hours Second Semester	Hours
CS 421	3 CS Technical elective course	3
CS Advanced elective course	3 CS Technical elective course	3
CS Advanced elective course	3 CS Technical elective course	3
Free elective course	3 Free elective course	4
Free elective course	4 Free elective course	3
16		16

Total Hours 128

for the degree of Bachelor of Science Major in Computer Science

By the time of graduation, students will have the ability to:

- 1. Analyze a complex computing problem and apply principles of computing and other relevant disciplines to identify solutions.
- 2. Design, implement, and evaluate a computing-based solution to meet a given set of computing requirements in the context of the program's discipline.

- 3. Communicate effectively in a variety of professional contexts.
- Recognize professional responsibilities and make informed judgments in computing practice based on legal and ethical principles.
- 5. Function effectively as a member or leader of a team engaged in activities appropriate to the program's discipline.
- 6. Apply computer science theory and software development fundamentals to produce computing-based solutions.

for the degree of Bachelor of Science in Computer Science

Siebel School of Computing and Data Science (https://siebelschool.illinois.edu/)

Siebel School of Computing and Data Science Faculty (https://siebelschool.illinois.edu/about/people/all-faculty/)

The Grainger College of Engineering Admissions (https://grainger.illinois.edu/)

The Grainger College of Engineering