Knowledge Graph Fact Prediction via Knowledge-Enriched Tensor Factorization

Ankur Padia, Konstantinos Kalpakis, Francis Ferraro and Tim Finin

University of Maryland, Baltimore County

Baltimore, MD, USA

International Semantic Web Conference, 2019

involving language understanding

Knowledge graphs of one kind or

another have been used for more than

60 years for AI tasks, especially those

Today it's important to combine

knowledge graphs and machine

learning to make both better

Knowledge Graphs ⇔ Machine Learning

- Both important in intelligent computing systems
 - KG⇒ML: Use existing KGs to support ML applications
 - KG←ML: Use ML to enrich and improve KGs
- KGFP has elements of both
 - Uses simple meta-knowledge extracted from an existing KG as data to ...
 - Improve a machine learning system's ability to predict relations that should be in the graph

KGFP Contributions

- KGFP predicts likely relations in a KG and outperforms RESCAL and similar systems
- Identifies relations believed to hold (link verification)
 rather than a ranked list of possible relations (link ranking)
- Does not require KG schemas, but computes a relational similarity matrix from an existing graph
- Evaluated on eight existing KG datasets, including ones based on DBpedia and Freebase

Knowledge Graph

Belief 1: Russian_Hacker attacked United States.

Belief 2: Barack_Obama Spouse Michelle_Obama .

Belief 3: Barack_Obama President United_States .

Belief 4: Barack_Obama citizen United States .

Belief 5: Wikileaks isa non-profit organization.

Knowledge Graph as Tensor

attacked

Knowledge Graph as Tensor

president

Learning Embeddings for Entities and Relations

X

 χ : a data tensor of size: e x e x k

e = number of entities

k = number of relations

Learning Embeddings for Entities and Relations

Jointly learn Entity (E) and Relation (R) embeddings

 χ : a data tensor of size: e x e x k

e = number of entities

k = number of relations

p = latent dimension

E = shared entity matrix of size: e x p

R = compact relation tensor

of size: p x p x k

Learning Embeddings for Entities and Relations

Jointly learn Entity (E) and Relation (R) embeddings

We learn parameters to minimize error in reconstructing tensor from entity and relation embeddings

- Since
 - Obama president US = 1
- We want
 - $E(Obama) \bullet R(president) \bullet E(US)^T \rightarrow 1$

Objective Function to Jointly Learn Embeddings

We modify RESCAL's approach, adding a new component with prior knowledge derived from the graph

Relation Similarity as Prior Information

Similarity Relation

symmetry	How often do Ri & Rj share subject or object	obama		
agency	How often do Ri & Rj share same subject	obama		
patient	How often do Ri & Rj share same object	obama		
transitivity	How often is Ri's object Rj's subject	obama USA		
reverse transitivity	How often is Ri's subject Rj's object	obama USA		

We evaluated five simple, easy to compute relation similarity metrics for every pair of relations in initial KG

Transitivity Best

- •Which similarity metric is
- best depends on the KG
- •Experiments showed **transitivity**

shown

- gave best performance overallEspecially for graphs derived
- from DBpedia and Freebase related

 Heatmap for WIN18RR relation meronym
- •Heatmap for WIN18RR relation meronym similarity matrix using transitivity mainr

0.40

0.32

0.24

0.16

0.08

0.00

Evaluation on eight datasets

Dataset	Domain	Entities	Relations	Facts	Avg. Deg	Graph Density	
Kinship	Social	104	26	10.7K	102.75	0.98798	
UMLS	Medical	135	49	6.8K	50.01	0.37048	
FB15-237	General	14.5K	237	310.1K	21.32	0.00147	
DB10k	General	4.3K	140	10.0K	2.27	0.00052	
FrameNet	Language	22.3K	16	62.3K	2.79	0.00013	
WN18	Language	40.9K	18	151.4K	3.7	0.00009	
FB13	General	81.1K	13	360.5K	4.45	0.00005	
WN18RR	Language	40.9K	11	93.0K	2.27	0.00005	

- Comparison with SOTA tensor factorization & translation-based models
- Used Precision-Recall AUC evaluation metric
- Note that Kinship and UMLS are outliers w.r.t. graph density

high

≥

Experimental results

Model Name	Kinship	UMLS	WN18	FB13	DB10	Framenet	WN18RR	FB15-237
Previous tensor factorization models								
RESCAL	93.24	88.53	62.13	65.37	61.27	82.54	66.63	92.56
NN-RESCAL	92.19	88.37	83.93	79.13	81.72	82.6	68.49	93.03
Linear/Quadratic Regularized/Constrained tensor factorization models								
LR	93.99	88.22	81.86	80.07	80.79	78.11	69.15	90.00
QR	93.89	88.11	84.41	79.12	80.47	82.34	66.73	93.07
LC	92.87	84.71	80.18	75.79	80.67	73.64	66.46	81.88
★ QC	93.84	86.17	91.07	85.15	81.69	86.24	72.62	86.47

Fact prediction AUC performance for all models. The **quadratic-constrained** model is best overall for graphs with low density, which include the those derived from DBpedia and Freebase.

Results: High Density KGs

Results: Low Density KGs

When graph density low, the quadratic + constraint model is significantly better

Results: Compared to Neural Systems

KGFP performed better than TransE, ComplEx & DistMult for our experiments on low density graphs

Future Work

- Exploring additional relation similarity models
- Using KGFP to help identify NLP information extraction system errors
- Using KGFP as a module in a system to clean noisy knowledge graphs by identifying unlikely relations
- Apply KGFP to cybersecurity knowledge graphs created from STIX cyberthreat intelligence feeds, NVD and other semi-structured cybersecurity data resources

Conclusions

- KGFP is a novel tensor factorization approach for KG fact prediction, giving SOTA results on many graphs
- Exploits **relation similarity** extracted from existing graphs, with the **transitivity prior** generally best
- Performs well on relatively sparse graphs like DBpedia and Freebase

More information

- Code & datasets: https://github.com/Ebiquity/KGFP
- Preprint of <u>JWS paper</u>
- ISWC journal track <u>paper</u>
- For more information, contact Dr. Ankur Padia,
 Philips Research Americas, pankur1@umbc.edu