EXERCICE N°1 Taux de variation / taux d'accroissement

On considère la fonction f définie pour tout réels x par : $f(x) = x^2 + 4x$

1) Calculer les images par f de 2; 3; -5 et -4.

$$f(2) = 2^2 + 4 \times 2$$

$$f(2) = 12$$

$$f(-4) = (-4)^2 + 4 \times (-4)$$

$$f(-4) = 0$$

$$f(3) = 3^2 + 4 \times 3$$

$$f(3) = 21$$

$$f(-5) = (-5)^2 + 4 \times (-5)$$

$$f(-5) = 5$$

2) Calculer le taux d'accroissement entre les réels 2 et 3.

Notons m_1 le taux d'accroissement cherché.

$$m_1 = \frac{f(3) - f(2)}{3 - 2} = \frac{21 - 12}{1} = 9$$

Ainsi $m_1 = 9$

3) Calculer le taux d'accroissement entre les réels -5 et -4.

Notons m_2 le taux d'accroissement cherché.

$$m_2 = \frac{f(-4) - f(-5)}{(-4) - (-5)} = \frac{0 - 5}{1} = -5$$
Ainsi $m_2 = -5$

EXERCICE N°2 Coefficient directeur

On considère la fonction f définie pour tout réels x par : $f(x) = x^2 + 4x$

On note C_f sa courbe représentative et on donne les points suivants :

$$A(2;12)^{3}$$
; $B(3;21)^{3}$; $C(-5;5)$ et $D(-4;0)$

1) Vérifier que ces quatre points appartiennent à la courbe C_f .

On se souvient qu'un point appartient à une courbe si et seulement si ses coordonnées vérifient l'équation de la courbe.

$$f(x_A) = f(2) = 2^2 + 4 \times 2 = 12 = y_A$$

Ainsi: $A \in C_f$

■ Pour *B* :

$$f(x_B) = f(3) = 3^2 + 4 \times 3 = 21 = y_B$$

Ainsi: $B \in C_f$

■ Pour *C* :

$$f(x_C) = f(-5) = (-5)^2 + 4 \times (-5) = 5 = y_C$$

Ainsi: $C \in C_f$

■ Pour *D* :

$$f(x_D) = f(-4) = (-4)^2 + 4 \times (-4) = 0 = y_D$$

Ainsi: $D \in C_f$

2) Calculer le coefficient directeur de la droite (AB).

Notons m_1 le coefficient directeur cherché.

$$m_1 = \frac{f(3) - f(2)}{3 - 2} = \frac{21 - 12}{1} = 9$$

Ainsi $m_1 = 9$

3) Calculer le coefficient directeur de la droite (CD).

Notons m_2 le coefficient directeur cherché. $m_2 = \frac{f(-4) - f(-5)}{(-4) - (-5)} = \frac{0 - 5}{1} = -5$

Ainsi
$$m_2 = -5$$

Nombre dérivé par le calcul EXERCICE N°3

On considère la fonction f définie pour tout réels x par : $f(x) = x^2 + 4x$. Soit $h \in \mathbb{R}$.

1) Simplifier l'expression $\frac{f(2+h)-f(2)}{(2+h)-2}$

$$\frac{f(2+h)-f(2)}{(2+h)-2} = \frac{(2+h)^2 + 4(2+h) - [2^2 + 4 \times 2]}{h}$$

$$= \frac{4+4h+h^2 + 8+4h-4-8}{h}$$

$$= \frac{h^2 + 8h}{h}$$

$$= \frac{h(h+8)}{h}$$

$$= h+8$$

(Si h = 3-2 = 1 quelle question des exercices n°1 et n°2 retrouve-t-on?)

On retrouve les questions 2) des exercices 1 et 2.

2) Déterminer le nombre dérivé de f en 2.

On sait que pour tout $h \in \mathbb{R}$:

$$\frac{f(2+h)-f(2)}{(2+h)-2} = h+8$$

Or:

Quand h tend vers zéro, h+8 tend vers 8

Donc:

$$f'(2) = 8$$

3) Simplifier l'expression
$$\frac{f(-5+h)-f(-5)}{(-5+h)-(-5)}.$$

$$\frac{f(-5+h)-f(-5)}{(-5+h)-(-5)} = \frac{(-5+h)^2+4(-5+h)-[(-5)^2+4\times(-5)]}{h}$$

$$= \frac{25-10h+h^2-20+4h-25+20}{h}$$

$$= \frac{h^2-6h}{h}$$

$$= \frac{h(h-6)}{h}$$

$$= h-6$$

(Si h = -4-(5) = 1 quelle question des exercices n°1 et n°2 retrouve-t-on?)

On retrouve les questions 3) des exercices 1 et 2.

4) Calculer f'(-5).

On sait que pour tout $h \in \mathbb{R}$:

$$\frac{f(-5+h)-f(-5)}{(-5+h)-(-5)} = h-6$$

Quand h tend vers zéro, h-6 tend vers -6

Donc:

$$f'(-5) = -6$$

EXERCICE N°4 Nombre dérivé par lecture graphique.

On considère la fonction f définie pour tout réels x par : $f(x) = x^2 + 4x$

On note $\,C_f\,$ sa courbe représentative et on donne les points suivants :

$$A(2; 12)$$
 et $C(-5; 5)$.

Les droites T_1 et T_2 sont les tangentes à la courbe C_f respectivement en A et C .

1) Déterminer par lecture graphique le nombre dérivé de f en 2.

$$f'(2) = \frac{32}{4} = 8$$
, $f'(2) = 8$

2) Déterminer par lecture graphique f'(-5).

$$f'(-5) = \frac{-30}{5} = -6$$
, $f'(-5) = -6$

3) Déterminer par lecture graphique, l'équation réduite de T_2 .

$$y = -6x - 25$$

EXERCICE N°5 Équation de la tangente

On considère la fonction f définie pour tout réels x par : $f(x) = x^2 + 4x$.

On note C_f sa courbe représentative et on donne les points suivants :

$$A(2;12)$$
 et $C(-5;5)$.

1) Déterminer l'équation réduite de la tangente à la courbe C_f au point A.

• Commençons par déterminer $f'(x_A) = f'(2)$:

On sait que pour tout $h \in \mathbb{R}$:

$$\frac{f(2+h)-f(2)}{(2+h)-2} = h+8$$

Or:

Quand h tend vers zéro, h+8 tend vers 8

Donc:

$$f'(2) = 8$$

• Une équation de la tangente à C_f en A est donnée par la formule :

$$y = f'(x_A)(x-x_A) + f(x_A)$$

c'est à dire :

$$y = f'(2)(x-2)+f(2)$$

ou encore

$$y = 8(x-2)+12$$

d'où l'on déduit:

$$y = 8x-4$$

2) Déterminer l'équation réduite de la tangente à la courbe C_f au point C.

• Commençons par déterminer $f'(x_C) = f'(-5)$:

On sait que pour tout $h \in \mathbb{R}$:

$$\frac{f(-5+h)-f(-5)}{(-5+h)-(-5)} = h-6$$

Or:

Quand h tend vers zéro, h-6 tend vers -6

Donc:

$$f'(-5) = -6$$

• Une équation de la tangente à C_f en A est donnée par la formule :

$$y = f'(x_A)(x-x_A) + f(x_A)$$

c'est à dire:

$$y = f'(-5)(x-(-5))+f(-5)$$

ou encore

$$y = -6(x+5)+5$$

d'où l'on déduit:

$$y = -6x - 25$$

(Eh oui C_f et C c'est pas la même chose! On reste attentif!)