

Mathématiques

Classe: 4^{ème} Mathématiques

Série: Révision 1°T

Nom du prof : Masmoudi Radhouane

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir Gabes / Djerba

Exercice 1:

(5) 40 min

5 pts

Soit ABD un triangle rectangle et isocèle en A tel que $(\overrightarrow{AB}, \overrightarrow{AD}) \equiv \frac{\pi}{2} [2\pi]$.

On note I, E et F les milieux respectifs des segments [BD], [AD] et [AB] (voir la figure 1 de l'annexe).

- 1) a) Montrer qu'il existe un unique déplacement f qui transforme A en B et D en A.
 - b) Caractériser f.
- 2) Soit C = f(B) et soit $g = t_{\overline{BC}} \circ f$ et $h = S_{(AB)} \circ f$.
 - a) Caractériser g.
 - b) Montrer que h est une symétrie glissante dont on donnera la forme réduite.
- 3) Soit Δ la parallèle à (BD) passant par A et J le point tel que ABIJ est un On pose $\phi = S_{\Delta} \circ S_{(AD)} \circ S_{(BD)}$. parallélogramme.
 - a) Déterminer $\varphi(C)$ et montrer que $\varphi(B) = D$.
 - b) Déterminer $\varphi(I)$. Caractériser alors φ .
- 4) On note ζ le cercle circonscrit au triangle ADI et soit ψ un déplacement tel que : $\psi(A) = I \text{ et } \psi((AD)) = (DI).$
 - a) Montrer que ψ ne peut être qu'une rotation et que son centre Ω est un point de ζ .
 - b) Déterminer les déplacements ψ vérifiant $\psi(A) = I$ et $\psi((AD)) = (DI)$.

Exercice 2 : 5 30 min

4 pts

1

Dans le plan complexe rapporté à un repère orthonormé direct (O,u,v) on considère la droite Δ d'équation : y = 1.

- 1) Soit M(z) tel que $(\vec{u}, \overrightarrow{OM}) \equiv \theta \ [2\pi]$ où $\theta \in]0, \pi[$.
 - a) Montrer que $M \in \Delta$ si et seulement si |z| = |z 2i|.
 - b) Montrer que $M \in \Delta$ si et seulement si $z = \cot an\theta + i$.
- 2) Soit, dans \mathbb{C} , l'équation (E_n) : $z^n = (z-2i)^n$ où n un entier naturel tel que $n \ge 2$.
 - a) Montrer que si z est solution de (E_n) alors $M(z) \in \Delta$.

- b) Soit $\alpha \in \left]0,2\pi\right[$. Montrer que $\frac{z}{z-2i}=e^{i\alpha}$ si et seulement si $z=cotan\left(\frac{\alpha}{2}\right)+i$.
- c) Résoudre dans \mathbb{C} l'équation (E_n) .
- 3) Dans la figure 2 de l'annexe, on a construit la demi-droite $\left[0t \right) \text{ telle que } \left(\vec{u} \text{ , } \overrightarrow{Ot} \right) \equiv \frac{\pi}{5} \left[2\pi \right] \text{. Construire les points images des solutions de } \left(\mathsf{E_{5}} \right) \text{.}$
- 4) Soit M_k , $k \in \{1,2,...,n-1\}$ les points images des solutions de (E_n) .

 Montrer que $\sum_{k=1}^{n-1} \overrightarrow{OM_k} = (n-1) \vec{v}$ (on distinguera deux cas : n paire et n impaire).

Exercice 3:

S 50 min

6 pts

La figure ci-contre est la représentation graphique, dans un repère orthonormé $\left(O,\vec{i},\vec{j}\right)$, d'une fonction g dérivable sur $\left]0,+\infty\right[$. Les axes du repère sont des asymptotes à la courbe de g.

- 1) a) Dresser le tableau de variation de g. b) Calculer $\lim_{x\to 0} \frac{g(2\cos x)+1}{\cos x-1}.$
- 2) Soit f la fonction dérivable sur $]0,+\infty[$ telle que : pour tout x>0, on a :

- a) Montrer que (C_f) admet un point d'inflexion que l'on précisera.
- b) Sachant que les axes du repère sont des asymptotes à (C_f), dresser le tableau de variation de f.
- c) Montrer que l'équation f(x)=0 admet une solution unique α et que $0 < \alpha < 1$.
- d) Tracer l'allure de (C_f) en précisant les tangentes aux points d'abscisses 1 et 2.
- 3) Pour $n \in \mathbb{N}^*$, on pose $F_n(x) = f(x+n) f(x)$, $x \in]0, +\infty[$.
 - a) Montrer que pour tout $x \ge 1$, on a : $F_n(x) < 0$.
 - b) Montrer que F_n est strictement décroissante sur]0,1].
 - c) Montrer que l'équation $F_n(x)=0$ admet dans $]0,+\infty[$ une solution unique u_n et que $\alpha < u_n < 1$.
 - d) Montrer que pour tout $n \in \mathbb{N}^*$, $u_n + n < u_{n+1} + n + 1$.
 - e) En déduire que (un) est décroissante.
 - f) Montrer que la suite (u_n) converge vers α .

Exercice 4:

5 pts

Soit f la fonction définie sur $\left[0, \frac{\pi}{2}\right]$ par $f(x) = \tan x$.

- 1) a) Montrer que f réalise une bijection de $\left[0,\frac{\pi}{2}\right[$ sur $\left[0,+\infty\right[$.
 - b) En déduire que pour tout $x \ge 0$, il existe un seul réel $\alpha \in \left[0, \frac{\pi}{2}\right[$ tel que $f(\alpha) = \sqrt{x}$.
 - c) Soit $g=f^{-1}$. Montrer que g est dérivable sur $\left\lceil 0,+\infty\right\rceil$ et calculer g'(x) pour $x\geq 0$.
- 2) Soit ϕ la fonction définie sur $\left[0,+\infty\right[$ par : $\phi(x)=\frac{4}{\pi}g\left(\sqrt{x+1}-\sqrt{x}\right)$.
- a) Montrer que pour tout $\alpha \in \left[0, \frac{\pi}{2}\right[$, $\tan\left(\frac{\pi}{4} \frac{\alpha}{2}\right) = \frac{1 \sin\alpha}{\cos\alpha}$.
- b) En déduire que pour tout $x \ge 0$, $\varphi(x) = 1 \frac{2}{\pi}g(\sqrt{x})$.
- c) Prouver alors que $tan\left(\frac{\pi}{12}\right) = 2 \sqrt{3}$.
- d) Montrer que φ est dérivable sur $]0,+\infty[$ et que pour tout $x>0, \varphi'(x)=\frac{-1}{\pi\sqrt{x}(x+1)}$.
- e) Montrer que pour tout réel x>0, il existe $c\in \left]0,x\right[$ tel que $\frac{2g\left(\sqrt{x}\right)}{x}=\frac{1}{(c+1)\sqrt{c}}$.

En déduire que $\,\phi\,$ n'est pas dérivable à droite en 0.

- f) Montrer que $\,\phi\,$ réalise une bijection de $\left[0,+\infty\right[$ sur un intervalle K que l'on précisera.
- g) Expliciter $\phi^{-1}(x)$ pour $x \in K$.