SPRAWOZDANIE

Zajęcia: Nauka o danych I

Prowadzący: prof. dr hab. Vasyl Martsenyuk

Laboratorium Nr 5	Anna Więzik
Data 23.11.2024	Informatyka
Temat: "Wykorzystanie narzędzi do	II stopień, niestacjonarne,
eksploracyjnej	1 semestr, gr.1b
analizy danych (EDA)"	
Wariant 10	

1. Polecenie:

Premise Child Health COVID-19 Health Services Disruption Survey 2020 http://ghdx.healthdata.org/record/ihme-data/premise-child-health-covid-19-health-services-disruption-survey-2020

Link do repozytorium: https://github.com/AnaShiro/NoD1 2024

2. Opis programu opracowanego

Przygotowanie środowiska pracy

Wczytanie i wstępne przetwarzanie danych

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 545 entries, 0 to 544
Data columns (total 13 columns):
                           Non-Null Count Dtype
 # Column
                        545 non-null
545 non-null
545 non-null
545 non-null
545 non-null
545 non-null
 1 area
2 bedrooms
                                                 int64
 3 bathrooms
 4 stories
5 mainroad
                                                 object
 6 guestroom 545 non-null
                                                 object
     basement
                            545 non-null
 8 hotwaterheating 545 non-null
9 airconditioning 545 non-null
10 parking 545 non-null
                                                 object
                                                 int64
 11 prefarea
                            545 non-null
                                                object
 12 furnishingstatus 545 non-null object
dtypes: int64(6), object(7)
memory usage: 55.5+ KB
                                                                               stories \
                 price
                                 area bedrooms bathrooms

    count
    5.450000e+02
    545.000000
    545.000000
    545.000000
    545.000000
    545.000000

    mean
    4.766729e+06
    5150.541284
    2.965138
    1.286239
    1.805505

       1.870440e+06 2170.141023 0.738064 0.502470 0.867492
std
          0.000000
50%
           0.000000
           1.000000
           3.000000
max
Output is truncated. View as a <u>scrollable element</u> or open in a <u>text editor</u>. Adjust cell output <u>settings</u>...
                                                                                  + Code + Markdown
```

Detekcja wartości odstających


```
from sklearm.ensemble import IsolationForest

# Department = models Isolation Forest
isolation forest = IsolationForest(contamination=0.05)
df['outliers'] = isolation_forest(contamination=0.05)
df['outliers'] = isolation_forest.fit_predict(df[['price', 'area']])
# Distriction to mortacic outscipeyed.

print(df[df['outliers'] == -1])

> 03

Python

Python
```

	price	area	bedrooms	bathrooms		mainroad	guestroom	
0	13300000	7420	4	2		yes	no	
1	12250000	8960	4	4	4	yes	no	
2	12250000	9960		2	2	yes	no	
	12215000	7500	4	2	2	yes	no	
4	11410000	7420	4	1	2	yes	yes	
	10850000	7500			1	yes	no	
	10150000	8580	4		4	yes	no	
	10150000	16200			2	yes	no	
8	9870000	8100	4	1	2	yes	yes	
	9800000	5750		2	4	yes	yes	
10	9800000	13200		1	2	yes	no	
13	9240000	3500	4	2	2	yes	no	
20	8750000	4320		1	2	yes	no	
56	7343000	11440	4	1	2	yes	no	
64	7000000	11175		1	1	yes	no	
66	6930000	13200	2	1	1	yes	no	
69	6790000	12090	4	2	2	yes	no	
125	5943000	15600		1	1	yes	no	
129	5873000	11460		1		yes	no	
186	5110000	11410	2	1	2	yes	no	
211	4900000	12900		1	1	yes	no	
403	3500000	12944		1	1	yes	no	
520	2450000	7700	2	1	1	yes	no	
527	2275000	1836	2	1	1	no	no	
530	unfur	nished	-1					
537	unfur	nished	-1					
541	semi-fur	nished	-1					
544	unfur	nished	-1					

- Analiza głównych składowych (PCA)
 - Wizualizacja redukcji wymiarowości- t-SNE

```
from sklearn.decomposition import PCA
from sklearn.preprocessing import standardscaler

# Skalowanie danych
scaler = Standardscaler()
scaled_data = scaler.fit_transform(df[['area', 'price', 'bedrooms']])

# PCA
pca = PCA(n_components=2)
principal_components = pca.fit_transform(scaled_data)

# Wynik PCA
df['PC1'] = principal_components[:, 0]
df['PC2'] = principal_components[:, 1]
print(pca.explained_variance_ratio_)

0.0s

[30] 
0.57528546 0.28653528]
```


o Wizualizacja redukcji wymiarowości-UMAP

```
import umap

# UPMAP

reducer = umap.UMAP(n_neighbors=10, min_dist=0.1, random_state=42)

umap_results = reducer.fit_transform(df[['price', 'area', 'bedrooms', 'bathrooms', 'stories', 'parking']])

# Dodanie wyników do ramki danych

df['UMAP1'] = umap_results[:, 0]

df['UMAP2'] = umap_results[:, 1]

# wizualizacja

sns.scatterplot(data=df, x='UMAP1', y='UMAP2', hue='prefarea', palette='spectral')

plt.title('Wizualizacja UMAP')

plt.show()

183
```


Testy statystyczne

```
import altair as alt
chart = alt.Chart(df).mark_circle(size=60).encode(
     x='area',
     y='price',
     color='bedrooms',
     tooltip=['area', 'price', 'bedrooms']
).interactive()
chart.show()
14,000,000
                                                        bedrooms
12.000.000
10,000,000
8.000.000
                                                            3
6,000,000
4.000.000
2,000,000
      0-
                 4,000
                           8,000
                                     12,000
                                               16,000
                             area
```

```
from statsmodels.formula.api import ols
from statsmodels.stats.anova import anova_lm

# Model ANOVA
model = ols('price ~ C(bedrooms)', data=df).fit()
anova_results = anova_lm(model)

print(anova_results)

✓ 0.5s

df sum_sq mean_sq F PR(>F)
C(bedrooms) 5.0 2.933324e+14 5.866649e+13 19.642037 5.359906e-18
Residual 539.0 1.609876e+15 2.986782e+12 NaN NaN
```

3. Pytania kontrolne

- Jak działa algorytm Isolation Forest i jak interpretować jego wyniki?
 Algorytm Isolation Forest wykrywa anomalie przez "izolowanie" rzadkich punktów w danych, budując losowe drzewa decyzyjne. Wyniki interpretujemy na podstawie tzw. score anomalności punkty z wysokim wynikiem (bliskim 1) są anomaliami, a te z wynikiem bliskim 0 to dane normalne.
- W jaki sposób analiza PCA może pomóc w eksploracyjnej analizie danych? PCA (Principal Component Analysis) redukuje wymiarowość danych, przekształcając je w nowe, niezależne zmienne (główne składowe), co ułatwia ich wizualizację i wykrywanie ukrytych wzorców.
- Jakie są zalety wykorzystania interaktywnych wizualizacji?
 Interaktywne wizualizacje umożliwiają użytkownikom dynamiczne eksplorowanie danych, pozwalając na łatwiejsze odkrywanie wzorców, zrozumienie zależności i szybsze podejmowanie decyzji.
- Jak interpretować wyniki testu ANOVA?
 ANOVA porównuje średnie wartości w różnych grupach. Jeśli wynik testu (pwartość) jest mniejszy niż 0,05, oznacza to, że przynajmniej jedna grupa różni się statystycznie od innych.
- Jak działa algorytm t-SNE i kiedy warto go stosować?
 t-SNE (t-Distributed Stochastic Neighbor Embedding) jest metodą redukcji wymiarowości, która zachowuje lokalne struktury danych, idealna do wizualizacji skomplikowanych danych w niskich wymiarach (np. 2D, 3D).
- W jaki sposób algorytm UMAP różni się od t-SNE?
 UMAP (Uniform Manifold Approximation and Projection) jest podobny do t-SNE, ale jest szybszy i skalowalny na większe zbiory danych. UMAP zachowuje zarówno lokalne, jak i globalne struktury danych.
- Jak interpretować macierz korelacji?
 Macierz korelacji przedstawia zależności między zmiennymi. Wartości bliskie 1
 lub -1 wskazują na silną pozytywną lub negatywną korelację, natomiast wartości bliskie 0 oznaczają brak zależności.

4. Wnioski

t-SNE jest potężnym narzędziem do redukcji wymiarowości i wizualizacji danych. Dzięki swojej zdolności do zachowania lokalnych relacji w danych o wysokiej wymiarowości, umożliwia odkrywanie klastrów i wzorców w sposób wizualnie intuicyjny. Jednak w interpretacji wyników należy uwzględniać ograniczenia dotyczące globalnych relacji i konieczności dostosowania hiper parametrów.

Wizualizacje UMAP są cennym narzędziem do interpretacji danych o wysokiej wymiarowości, dostarczając intuicyjnego, niskowymiarowego przedstawienia. Poprzez zachowanie zarówno lokalnych sąsiedztw, jak i globalnych relacji, UMAP pozwala wizualnie wykrywać istotne struktury i związki w złożonych zbiorach danych.

ANOVA jest potężnym narzędziem do analizy różnic między grupami, a funkcja anova.lm w Pythonie pozwala na łatwe przeprowadzenie tej analizy. Kluczową rolę w interpretacji wyników odgrywają wartości p oraz F, które wskazują, czy różnice pomiędzy grupami są istotne statystycznie.