

# Оглавление

| 1 | Основные понятия |                             | 2 |
|---|------------------|-----------------------------|---|
|   | 1.1              | Метрическое пространство    | 2 |
|   | 1.2              | Топологическое пространство | 4 |
|   | 1.3              | Внутренность и замыкание    | 6 |

# Глава 1

## Основные понятия

### 1.1 Метрическое пространство

**Определение.** *Метрикой* на множестве X называют  $\rho: X \to \mathbb{R}$ , удовлетворяющую аксиомам метрики:

- $\rho(x) \ge 0$
- $\rho(x,y) = \rho(y,x)$
- $\rho(x,y) + \rho(y,z) \ge \rho(x,z)$

**Определение.** Пару  $\langle X, \rho \rangle$ , где  $\rho$  — метрика на X, называют метрическим пространством

### Примеры.

- Стандартная метрика на  $\mathbb{R}^n$ :  $\rho(x,y) = |x,y|_2$ , где  $d_k(x,y) \stackrel{def}{=} |x,y|_k = \sqrt[k]{\sum_{i=1}^n (x_i y_i)^k}$
- $|.,.|_k$  является метрикой на  $\mathbb R$  при любых  $k\geqslant 1$
- $|x,y|_{\infty} = \max_{i=1}^n (x_i y_i)$  метрика на  $\mathbb R$
- $\rho(x,y) = 1$  при  $x \neq y$  и  $\rho(x,y) = 0$  иначе метрика, порождающая дискретное пространство.

 $\Delta$ алее, если не указано, речь идет о метрическом пространстве X

**Определение.** Шаром радиуса r с центром в точке x называется

$$B_r(x) \stackrel{def}{=} \{ y \in X \mid \rho(x, y) < r \}$$

**Определение.** Замкнутым шаром радиуса r с центром в точке x называется

$$\overline{B_r}(x) \stackrel{def}{=} \{ y \in X \mid \rho(x, y) \leq r \}$$

**Определение.** Расстоянием от точки x до множества A называется

$$\rho(x,A) \stackrel{def}{=} \inf_{y \in A} \rho(x,y)$$

Определение. Диаметром множества А называется

$$diam(A) = \sup \{ \rho(x, y) \mid x, y \in A \}$$

**Определение.** В метрическом пространстве *открытыми* называют множества A такие, что

$$\forall x \in A \exists B_r(x) \subset A$$

Иначе говоря, любая точка открытого множества входит в него с некоторым шаром.

**Определение.** Множество A называют ограниченным, если  $\operatorname{diam}(A) < +\infty$ 

**Теорема 1.1.1.** Множество A ограниченно  $\Longleftrightarrow$  его можно вписать в шар

Доказательство.

- $\Longrightarrow$  Пусть m= diam(A). Покажем, что A можно вписать в шар радиуса m+1. Возьмем произвольную точку  $x\in A$ . Тогда  $\forall y\in A\ \rho(x,y)\leqslant m< m+1\Longrightarrow y\in B_{m+1}(x)$
- $\iff$  Пусть  $y,z \in A$  и A можно вписать в шар  $B_r(x)$ . Тогда  $2r > \rho(x,y) + \rho(x,z) \geqslant \rho(y,z) \Longrightarrow \rho(y,z) < 2r \Longrightarrow A$  ограничено.

Теорема 1.1.2.

- Произольное объединение открытых множеств открыто
- Пересечение двух (а значит, и произвольного конечного числа) открытых множеств открыто.

Доказательство.

• Пусть  $\{G_a\}_{a \in A}$  — семейство открытых множеств. Тогда

$$x\in\bigcup_{\alpha\in A}G_{\alpha}\Longrightarrow x\in G_{\alpha}\Longrightarrow \exists U(x)\subset G_{\alpha}\subset\bigcup_{\alpha\in A}G_{\alpha}$$

• Пусть А и В — открытые множества. Тогда

$$x \in A \cap B \Longrightarrow x \in A \land x \in B \Longrightarrow$$
$$\exists B_{r_1}(x) \subset A \land B_{r_2}(x) \subset B \Longrightarrow$$
$$x \in B_{\min(r_1, r_2)}(x) \subset A \cap B$$

**Определение.** Липшицево эквивалентными называют отображения f и g в  $\mathbb{R}$ , такие, что  $\exists c_1, c_2 \colon c_1 f \leqslant g \leqslant c_2 f$ 

**Пример.** В  $\mathbb{R}^n$  метрики  $d_1$  и  $d_2$  липшицево эквивалентны

### 1.2 Топологическое пространство

**Определение.** *Топологией* на множестве X называют  $\Omega \subseteq \mathcal{P}(X)$ , удовлетворяющее следующим свойствам:

- $\emptyset, X \in \Omega$
- $A, B \in \Omega \Longrightarrow A \cap B \in \Omega$
- $\{X_{\alpha} \in \Omega\}_{\alpha \in A} \Longrightarrow \bigcup_{\alpha \in A} X_{\alpha} \in \Omega$

Иными словами, топология замкнута относительно конечных пересечений и произвольных объединений её элементов.

**Определение.** Пара  $(X, \Omega)$ , где  $\Omega$  — топология на X, называется топологическим пространством.

**Определение.** Элементы топологии называются *открытыми множествами*. Дополнения открытых множеств называются *замкнутыми множествами*.

#### Примеры.

- $\Omega = \mathcal{P}(X)$  дискретная топология
- $\Omega = \{\emptyset, X\}$  антидискретная топология
- Все метрические пространства являются топологическими пространствами, порожденными метрикой.
- $\Omega = \emptyset \cup \{$  все дополнения конечных множеств  $\}$

**Определение.** *Метризуемым* называется топологическое пространство, топология которого может быть порождена метрикой.

#### Примеры.

- Дискретная топология метризуема
- Антидискретная топология не метризуема

**Определение.** Окрестностью точки x называют любое открытое множество, содержащее x. Далее окрестность точки x будет обозначаться U(x).

**Определение.** Точка x называется *внутренней* для множества A, если она входит в него с некоторой окрестностью:

$$\exists U(x): U(x) \subset A$$

**Определение.** Точка x называется *граничной* точкой множества A, если любая окрестность точки x имеет непустое пересечение как с A, так и с его дополнением:

$$\forall U(x) \ A \cap U(x) \neq \emptyset \land (X \setminus A) \cap U(x) \neq \emptyset$$

**Определение.** Точка x называется *предельной* точкой множества A, если любая окрестность точки x имеет непустое пересечение с A:

$$\forall U(x) \ A \cap U(x) \neq \emptyset$$

**Определение.** Точка x называется внешней точкой A, если

$$\exists U(x) \ A \cap U(x) = \emptyset$$

**Определение.** Точка x называется точкой прикосновения множества A, если

$$\forall U(x) \ A \cap U(x) \neq \emptyset$$

**Замечание.** Точка прикосновения и внешняя точка — формальные отрицания друг друга.

#### Теорема 1.2.1.

- $\emptyset$ , X замкнуты
- A, B замкнуты  $\Longrightarrow A \cup B$  замкнуто
- если  $C_{\alpha}$  замнкнуты, то  $\bigcap_{\alpha \in A} C_{\alpha}$  замкнуто

Доказательство.

- $X = X \setminus \emptyset$  замкнуто по опделелению. Аналогично  $\emptyset = X \setminus X$
- $A \cup B$  замкнуто  $\iff X \setminus (A \cap B)$  открыто  $\iff (X \setminus A) \cup (X \setminus B)$  открыто  $\iff (X \setminus A)$ ,  $(X \setminus B)$  открыты  $\iff A, B$  замкнуты.
- Аналогично іі

**Теорема 1.2.2.** A открыто, B замкнуто. Тогда

- $A \setminus B$  открыто
- $B \setminus A$  замкнуто

Доказательство.

- $A \setminus B = A \cap (X \setminus B)$  открыто
- $B \setminus A = B \cap (X \setminus A)$  замкнуто

5

### 1.3 Внутренность и замыкание

**Определение.** *Внутренностью* множества *А* называют наибольшее по включению открытое множество, содержащееся в *А*, иначе говоря:

$$\operatorname{Int}(A) \stackrel{def}{=} \bigcup_{\substack{U \subseteq A \\ open_X(U)}} U$$

**Определение.** Замыканием множества A называют наименьшее по включению замкнутое множество, сожержащее A, иначе говоря:

$$Cl(A) \stackrel{def}{=} \bigcap_{\substack{C \supseteq A \\ cl_X(C)}} C$$

**Теорема 1.3.1.** (Свойства Int)

- Int(A) открыто
- $Int(A) \subseteq A$
- $open_X(B), B \subseteq A \Longrightarrow B \subseteq Int(A)$
- $Int(A) = A \iff open_{X}(A)$
- Int(Int(A)) = A
- $A \subseteq B \Longrightarrow \operatorname{Int}(A) \subseteq \operatorname{Int}(B)$
- $Int(A \cap B) = Int(A) \cap Int(B)$
- $\operatorname{Int}(A \cup B) \supseteq \operatorname{Int}(A) \cup \operatorname{Int}(B)$

Доказательство.

- Int(A) открыто как объединение открытых
- В объединения входят только подмножества A, поэтому  $Int(A) \subseteq A$
- В по определению войдет в объединение
- ⇒ по пункту (i). ← по пункту (iii)
- см. пункт (iv)
- Все открытые подмножества A являются открытыми подмножествами B
- $A \cap B \subseteq A$ ,  $A \cap B \subseteq B \Longrightarrow$  $Int(A \cap B) \subseteq Int(A)$ ,  $Int(B) \Longrightarrow Int(A \cap B) \subseteq Int(A) \cap Int(B)$

 $\operatorname{Int}(A) \cap \operatorname{Int}(B) \subseteq \operatorname{Int}(A) \subseteq A$ , аналогично  $\operatorname{Int}(A) \cap \operatorname{Int}(B) \subseteq B$ , поэтому  $\operatorname{Int}(A) \cap \operatorname{Int}(B) \subseteq A \cap B \Longrightarrow \operatorname{Int}(\operatorname{Int}(A) \cap \operatorname{Int}(B)) = \operatorname{Int}(A \cap B) \Longrightarrow \operatorname{Int}(A) \cap \operatorname{Int}(B) \subseteq \operatorname{Int}(A \cap B)$ 

Теорема 1.3.2. (Свойства Cl)

- Cl(A) замкнуто
- $Cl(A) \supseteq A$
- $cl_X(B)$ ,  $B \supseteq A \Longrightarrow B \supseteq Cl(A)$
- $Cl(A) = A \iff cl_X(A)$
- Cl(Cl(A)) = A
- $A \subseteq B \Longrightarrow Cl(A) \subseteq Cl(B)$
- $Cl(A \cup B) = Cl(A) \cup Cl(B)$
- $Cl(A \cap B) \subseteq Cl(A) \cap Cl(B)$

Доказательство. Можно доказать аналогично предыдущей теореме, а можно доказать, пользуясь переходом к дополнению в предыдущей теореме. ■

**Теорема 1.3.3.** (Связь Int и Cl)

- $X \setminus Int(A) = Cl(X \setminus A)$
- $X \setminus Cl(A) = Int(X \setminus A)$

Доказательство.

 $X \setminus \operatorname{Int}(A) \stackrel{def}{=} X \setminus \left(\bigcup_{\substack{U \subseteq A \\ open_X(U)}} U\right) = \bigcap_{\substack{U \subseteq A \\ open_X(U)}} X \setminus U \stackrel{def}{=} \operatorname{Cl}(X \setminus A)$ 

так как множества вида  $X \setminus U$  суть замкнутые множества, содержащие A

• Аналогично

Определение. Границей множества А называется

$$\operatorname{Fr}(A) \stackrel{def}{=} \operatorname{Cl}(A) \setminus \operatorname{Int}(A)$$

**Теорема 1.3.4.** (Свойства Fr)

- Fr(A) замкнуто
- $Fr(A) = Fr(X \setminus A)$
- A замкнуто  $\iff$   $Fr(A) \subseteq A$
- A открыто  $\iff$   $Fr(A) \cap A = \emptyset$

Доказательство.

- Очевидно в свете предыдущих теорем
- A замкнуто  $\iff$   $Cl(A) = A \iff Cl(A) \setminus Int(A) \subseteq A$
- A открыто  $\iff$   $Int(A) = A \iff$   $Fr(A) = Cl(A) \setminus A \iff$   $Fr(A) \cap A = \emptyset$

**Теорема 1.3.5.** (Характеризация внутренности)

Int(A) — множество всех внутренних точек A.

Доказательство. Докажем, что  $x \in Int(A) \iff x$  — внутренняя точка A

$$\implies x \in Int(A)$$
 — открыто  $\implies U(x) = Int(A) \subseteq A \implies x$  — внутренняя точка  $A$ 

 $\longleftarrow x$  — внутренняя для  $A \Longrightarrow \exists U(x) \subseteq A \Longrightarrow x \in Int(A)$  так как по определению Int(A) — это объединение всех открытых множеств, содержащихся в A, в том числе и U(x).

**Следствие 1.3.6.** *А* открыто  $\iff \forall x \in A \ x$  — внутренняя точка *A* 

**Теорема 1.3.7.** (Характеризация замыкания)

Cl(A) — множество всех точек прикосновения A.

Доказательство.

$$X \setminus Cl(A) = Int(X \setminus A) = \{$$
 внешние точки  $A\} = X \setminus \{$  точки прикосновения  $A\}$ 

**Определение.** Множество *A* называется всюду плотным, если Cl(A) = X.

**Определение.** Топологическое пространство X называют *сепарабельным*, если в нем существует не более чем счетное всюду плотное множество.