A Bayesian Non-Parametric Framework for Modelling Implied Volatility BEMACS Thesis Fair

Filippo Grandoni

Supervisor: Professor Antonio Lijoi Bocconi University

26th September 2025

Motivation & Research Gap

Why this matters

- Options require an accurate implied-volatility (IV) surface across strike & maturity.
- Black-Scholes: constant vol; Heston / SVI: rigid parametric shapes.
- Outcome: smile/skew mispricing ⇒ weaker pricing/hedging and risk metrics.

Goal (one-liner)

• Learn the IV surface directly from data with uncertainty bands, then plug into standard pricing.

Method

Two-stage, interpretable, fast

- Stage 1 BNP clustering on $\log(IV)$: Dirichlet-Process Gaussian mixture discovers \sim 3–5 regimes (levels + spreads).
- Stage 2 Local tilt inside each regime: OLS on {Moneyness, DTE} to bend the surface ⇒ piecewise-affine IV surface.
- Output: point forecasts & 90% predictive bands for any (moneyness, DTE).

Why it's better

BNP flexibility with interpretability and speed (no heavy black-box).

Method: BNP baseline

Goal: learn the baseline structure of log(IV) directly from data.

ullet For each option quote $i\colon \log \mathrm{IV}_i$ is drawn from a Dirichlet–Process Gaussian Mixture

$$\log IV_i \mid c_i = k \sim \mathcal{N}(\mu_k, \sigma_k^2), \qquad G \sim DP(\alpha, H)$$

- The DP prior lets the data decide the number of volatility regimes (typically 3–5).
- Each regime has its own mean level μ_k and spread σ_k^2 .
- After MCMC we obtain a consensus clustering and take the regime's median level m_k as its baseline.

Key point: flexible piece-wise constant "surface skeleton" that captures level-shifts (ATM vs OTM, short vs long maturities).

Method: Local linear tilt & prediction

Step 2: refine each regime with a simple linear slope.

For option i in regime k:

$$\log \mathrm{IV}_i = m_k + \beta_{1,k} \, \mathsf{Moneyness}_i + \beta_{2,k} \, \mathsf{DTE}_i + \varepsilon_i, \qquad \varepsilon_i \sim \mathcal{N}(0, \tau_k^2)$$

- m_k acts as the cluster-specific intercept (baseline level from Stage 1).
- $\beta_{1,k}, \beta_{2,k}$ give the **local linear tilt** inside each regime.
- Prediction for a new quote uses the **most likely regime** k^* and its coefficients.
- \bullet Uncertainty bands come from posterior predictive draws; for the talk we show the central $90\,\%$ interval.

Result: a piece-wise affine IV surface with quantified uncertainty, simple enough to update live.

Data & Setup

Fig. 1 — SPY Calls: Implied-Volatility vs Moneyness, showing the characteristic smile across 2020–22.

Dataset highlights

- Underlying: SPY options (proxy for S&P 500)
- **Period:** Jan 2020 Dec 2022 (COVID shock \rightarrow recovery \rightarrow 2022 turbulence)
- Size: over 500 k quotes after cleaning

Filtering for modelling

- Moneyness window: $0.85 \le m \le 1.15$
- Time-to-expiry: 20 60 calendar days

Validation protocol

• Rolling CV: train on past 50 trading days \rightarrow test on following month

Key Results vs Benchmarks

Predictive performance (OOS)

- BNP achieves NRMSE ≈ 0.14 (Calls), ≈ 0.19 (Puts).
- SVI benchmark: NRMSE ≈ 0.23 less accurate, especially in wings.
- Heston (calibrated): NRMSE ≈ 0.28 struggles with smile/skew.
- Coverage of 90% PI: BNP 88-91% (close to nominal) vs SVI 73%.

Take-away

 BNP provides better fit in skewed wings and more reliable uncertainty bands than popular parametric surfaces.

Fig. 2 — Predicted vs Observed IV: BNP close to diagonal, parametric benchmarks show heavier dispersion.

BNP outperforms SVI & Heston in accuracy and UQ.

Thank you for your attention!

Filippo Grandoni — BEMACS Thesis Fair 2025 filippo@grandoni.it