1. (a <u>)</u>	Soli	lidate ution		<u> </u>														
		A		Cos	t.	Co	st.											
		4		25	.4	2	-											
		В		18.	5	16.	6											
		С		18.	2	۷	-1											
	ٳ	D		ונ	.ક	15	.4											
	I	E		۷,	Ь	18	.۷											
		F		24	.8	18	٤.											
		G		21	.6	17	?4											
	J	Н		24	.8	٤	1.8											
7.	herefi	ore,	for	low	pow	er, n	je sh	ould	choc	ose (
Fo	or hi	igh p	er for	man	œ, i	we s	houlo	l cho	ose	D.								
(b).	E																	
					Θ	<u>c</u>												
					- (I	BG		A										
						(b))		(E)								
										→c	,							
			B.D.															
(c). Si																		
			s dom															
			B, D,						ated	by	other	S.						
Th	nerefor	re, B	B, D,	G a	re Pa	reto	Point	•										

2.(0)). We can choose a	state variable _init = true > false, which is only true in the initial state.
		able pre(s) for the states of the control FSM.
(b),	For So, we hav	le: _init = true;
		pre (s)= nil;
		So. go to S_1 , S =false; x = nil ; y = nil ;
	For Si, we have	einit = false;
		pre (s) = false;
		Si if a=true, b=false then
		go to Si;S= true; x=false; y= false;
		else if a= false, b= true then
		go to S_1 , S = false; x = true; y = false;
		else
		go to S_1 ; S = false; x = false; y = false;
	For Sing have	einit = fake;
	101 Ss, 10e 1100	pre(s) = true;
		Sz. if a= true, b= false then
		go to Si; S= false; x= true; y= false;
		else if a= false, b= true then
		go to S;S= false; x= true; y= true;
		else
		go to S_2 ; $S = true$; $x = false$; $y = false$;
(c).	So	S ₁
	S=-/	S=0
	initial state	ab = 10 or () ab = 10
		ab=01 S2
		$\begin{pmatrix} S_2 \\ S=1 \end{pmatrix} \Rightarrow ab=00$
(d).	It takes two inp	out a, b and generates two outputs x,y based on the internal state S.
•	When pre(s) = fal	e, internal state will not change as long as a= false. b will affect the outputs a,y.
	When b = true,	it will output x= true, y= false. When b is false, it will output x= false, y=false.
•	When pre(s)=fa	lse, internal state will be changed to true when a = true. b can only be false now.
	Now it outputs	x= true, y= false

· When pre(s) = true, the internal state will not change as long as a = false, b = false. And it will output X = false, y = false. · When pre (s)= true, the internal state will change when (a=true, b=fake) or (a=fake, b=true). For a=true, b=false, it will output x=true, y=false. For a=false, b=true, it will output x=true, y=true. (e) Please see Theoretical 2.c' file (f)ab= 00 ab=01 ab=01 So Si S. st = 10 st=st=00/ ab=00 ab=10 ab=10 ab=00 ab=10 ab=01 ab=01 st=11 st=01 ab=10 ab=00 program_I is a mealy FSM while program_2 is a moore FSM. Mealy machine tends to have less states and both input and state decide the output. For Moore machine, state decides the output, and input decides the state. In fact, a mealy machine can be converted into a moore machine, and vice versa. They are just different representation of logic flow.

3 .(a).	Pleas	se se	e sa	lf.h H	fle.																		
(b).	Pleas	e se	e c-	bare	-meta	21-s	kelet	on.c"	file.														
(c).	We o	an ar	range	. diffe	rent o	ctors	on s	everal	proc	essors.	E.g.	AAC	on P	I and	BD	on l	P).						
	We c	an a	dd #	includ	de <0	mp.h>	and	l add	#p	ragma	omp	para	ullel",	so t	hat i	the c	ompiler	can	do j	arallel	aut	omati	ically.
	The c	ode i	s lik	٤.																			
	#pra	gma	omp	paral	lel																		
	ξ																						
		Aز																					
		A;																					
		B;																					
		Cj																					
		Di																					
	j																						