2020 OSS 개발자 포럼 겨울 캠프

AlphaZero 오목 Al - Day 1

옥찬호

Nexon Korea, Microsoft MVP utilForever@gmail.com

참고

- 오늘 코드는 'Deep Learning and the Game of Go' (Manning, 2019)을 기반으로 변형해서 만들었습니다.
- 발표 준비를 도와준 조교 김현수/박준영 학생에게 감사의 말씀을 드립니다.

2020 OSS Winter AlphaZero 오목 Al - Day 1

- 강화학습이란?
- 오목 게임 만들기
- 간단한 오목 AI 봇 만들기
- MCTS(Monte-Carlo Tree Search)

강화학습이란?

B. F. Skinner (1904~1990)

2020 OSS Winter AlphaZero 오목 Al - Day 1

- 1. 굶긴 쥐를 상자에 넣는다.
- 2. 쥐는 돌아다니다가 우연히 상자 안에 있는 지렛대를 누르게 된다.
- 3. 지렛대를 누르자 먹이가 나온다.
- 4. 지렛대를 누르는 행동과 먹이와의 상관관계를 모르는 쥐는 다시 돌아다닌다.
- 5. 그러다가 우연히 쥐가 다시 지렛대를 누르면 쥐는 이제 먹이와 지렛대 사이의 관계를 알게 되고 점점 지렛대를 자주 누르게 된다.
- 6. 이 과정을 반복하면서 쥐는 지렛대를 누르면 먹이를 먹을 수 있다는 것을 학습한다.

아이가 첫걸음을 떼는 과정도 일종의 강화라고 할 수 있다.

- 1. 아이는 걷는 것을 배운 적이 없다.
- 2. 아이는 스스로 이것저것 시도해 보다가 우연히 걷게 된다.
- 3. 자신이 하는 행동과 걷게 된다는 보상 사이의 상관관계를 모르는 아이는 다시 넘어진다.
- 4. 시간이 지남에 따라 그 관계를 학습해서 잘 걷게 된다.

EARLY BABY DEVELOPMENT

강화학습

- 에이전트는 사전 지식이 없는 상태에서 학습함
- 에이전트는 자신이 놓인 환경에서 자신의 상태를 인식한 후 행동
- 환경은 에이전트에게 보상을 주고 다음 상태를 알려줌
- 에이전트는 보상을 통해 어떤 행동이 좋은 행동인지 간접적으로 알게 됨

강화학습 문제

결정을 순차적으로 내려야 하는 문제에 강화학습을 적용한다. 이 문제를 풀기 위해서는 문제를 수학적으로 정의해야 한다.

강화학습 문제

수학적으로 정의된 문제는 다음과 같은 구성 요소를 가진다.

- 1. 상태 (State) 현재 에이전트의 정보 (정적인 요소 + 동적인 요소)
- 2. 행동 (Action) 에이전트가 어떠한 상태에서 취할 수 있는 행동
- 3. 보상 (Reward)
 <u>에이전트가 학습할 수 있는 유일한 정보</u>, 자신이 했던 행동을 평가할 수 있는 지표 강화학습의 목표는 <u>시간에 따라 얻는 보상의 합을 최대로 하는 정책을 찾는 것</u>
- 4. 정책 (Policy)

 <u>순차적 행동 결정 문제에서 구해야 할 답</u>
 모든 상태에 대해 에이전트가 어떤 행동을 해야 하는지 정해놓은 것

MDP

강화 학습은 순차적으로 행동을 계속 결정해야 하는 문제를 푸는 것

→ 이 문제를 수학적으로 표현한 것이 MDP(Markov Decision Process)

- MDP의 구성 요소
- 상태
- 행동
- 보상 함수
- 상태 변환 확률 (생략)
- 감가율 (생략)

그리드 월드

격자로 이뤄진 환경에서 문제를 푸는 각종 예제

에이전트가 관찰 가능한 상태의 집합 : S

- 그리드 월드에서 상태의 개수는 유한
- 그리드 월드에 상태가 5개 있을 경우, 수식으로 표현하면 $S = \{(x_1, y_1), (x_2, y_2), (x_3, y_3), (x_4, y_4), (x_5, y_5)\}$
- 그리드 월드에서 상태는 격자 상의 각 위치(좌표)
- 에이전트는 시간에 따라 상태 집합 안에 있는 상태를 탐험한다. 이 때 시간을 t, 시간 t일 때의 상태를 S_t 라고 표현한다.
- 예를 들어, 시간이 t일 때 상태가 (1, 3)이라면 $S_t = (1,3)$

에이전트가 관찰 가능한 상태의 집합 : S

- 어떤 t에서의 상태 S_t 는 정해진 것이 아니다.
- 때에 따라서 t = 1일 때 $S_t = (1,3)$ 일 수도 있고 $S_t = (4,2)$ 일 수도 있다.

"상태 = 확률 변수(Random Variable)"

$$S_t = s$$

"시간 t에서의 상태 S_t 가 어떤 상태 S다."

에이전트가 상태 S_t 에서 할 수 있는 가능한 행동의 집합 : A

• 보통 에이전트가 할 수 있는 행동은 모든 상태에서 같다.

$$A_t = a$$

- "시간 t에 에이전트가 특정한 행동 a를 했다."
- t라는 시간에 에이전트가 어떤 행동을 할 지는 정해져 있지 않으므로 A_t 처럼 대문자로 표현한다.
- 그리드 월드에서 에이전트가 할 수 있는 행동은 $A = \{\text{up, down, left, right}\}$
- 만약 시간 t에서 상태가 (1, 3)이고 $A_t = right$ 라면 다음 시간의 상태는 (2, 3)이 된다.

에이전트가 학습할 수 있는 유일한 정보

보상 함수 (Reward Function)

$$R_s^a = E[R_{t+1}|S_t = s, A_t = a]$$

- 시간 t일 때 상태가 $S_t = s$ 이고 그 상태에서 행동이 $A_t = a$ 를 했을 경우 받을 보상에 대한 기댓값(Expectation) E
- 에이전트가 어떤 상태에서 행동한 시간 : t 보상을 받는 시간 : t+1
- 이유 : 에이전트가 보상을 알고 있는게 아니라 환경이 알려주기 때문에이전트가 상태 s에서 행동 a를 하면 환경은 에이전트가 가게 되는 다음 상태 s'와에이전트가 받을 보상을 에이전트에게 알려준다. 이 시점이 t+1이다.

에이전트가 학습할 수 있는 유일한 정보

모든 상태에서 에이전트가 할 행동

- 상태가 입력으로 들어오면 행동을 출력으로 내보내는 일종의 함수
- 하나의 행동만을 나타낼 수도 있고, 확률적으로 $a_1 = 10\%$, $a_2 = 90\%$ 로 나타낼 수도 있다.

$$\pi(a|s) = P[A_t = a|S_t = s]$$

- 시간 t에 에이전트가 $S_t=s$ 에 있을 때 가능한 행동 중에서 $A_t=a$ 를 할 확률
- 강화 학습 문제를 통해 알고 싶은 것은 정책이 아닌 "최적 정책"

가치함수

우리가 지금까지 한 일 : 문제를 MDP로 정의

→ 에이전트는 MDP를 통해 최적 정책을 찾으면 된다.

하지만 에이전트가 어떻게 최적 정책을 찾을 수 있을까?

가치함수

에이전트 입장에서 어떤 행동을 하는 것이 좋은지를 어떻게 알 수 있을까?

→ 현재 상태에서 앞으로 받을 보상을 고려해서 선택해야 좋은 선택!

하지만 아직 받지 않은 보상들을 어떻게 고려할 수 있을까?

→ 에이전트는 가치함수를 통해 행동을 선택할 수 있다.

감사합니다

http://github.com/utilForever 질문 환영합니다!