Universidade de Évora

Departamento de Matemática

$2.^a$ Frequência de AM I - 25/11/2017

RESOLUCÃO

Grupo I

- 1. Considere-se a função $f(x) = \frac{\pi}{2} \arccos\left(\frac{x}{2}\right)$.
 - a) Como [-1,1] é o domínio da função $\arccos x$, então tem-se

$$D_f = \left\{ x \in \mathbb{R} : -1 \le \frac{x}{2} \le 1 \right\} = [-2, 2].$$

Além disso, como

$$f(x) = 0 \Leftrightarrow \frac{\pi}{2} - \arccos\left(\frac{x}{2}\right) = 0 \Leftrightarrow \arccos\left(\frac{x}{2}\right) = \frac{\pi}{2} \Leftrightarrow \frac{x}{2} = \cos\frac{\pi}{2} = 0 \Leftrightarrow x = 0,$$

pelo que a função f tem um único zero em x = 0.

- b) Dado que f é a diferença de duas funções contínuas: $g_1(x) = \frac{\pi}{2}$ que é uma função constante, logo contínua em \mathbb{R} , e $g_2(x) = \arccos\left(\frac{x}{2}\right)$ que resulta da composição da função arccos x (que é contínua em [-1,1]) com a função polinomial $p(x) = \frac{x}{2}$, que sendo contínua em \mathbb{R} , em particular, é contínua em [-2,2], e uma vez que $h(D_h) \subset [-1,1]$, então (pelo teorema da continuidade da função composta) pode afirmar-se que $g_2(x)$ é contínua em [-2,2]. Portanto, f é uma função contínua no seu domínio.
- **c**) Como

$$0 \le \arccos\left(\frac{x}{2}\right) \le \pi \Leftrightarrow -\pi \le -\arccos\left(\frac{x}{2}\right) \le 0 \Leftrightarrow$$

$$\frac{\pi}{2} - \pi \le \frac{\pi}{2} - \arccos\left(\frac{x}{2}\right) \le \frac{\pi}{2} + 0 \Leftrightarrow -\frac{\pi}{2} \le f(x) \le \frac{\pi}{2}, \quad \forall x \in [-2, 2],$$

$$f(-2) = \frac{\pi}{2} - \arccos(-1) = \frac{\pi}{2} - \pi = -\frac{\pi}{2}$$
 e $f(2) = \frac{\pi}{2} - \arccos 1 = \frac{\pi}{2} - 0 = \frac{\pi}{2}$,

$$\log D_f' = \left[-\frac{\pi}{2}, \frac{\pi}{2} \right].$$

Além disso, como f é uma função contínua num intervalo limitado e fechado, então pelo teorema de Weierstrass pode concluir-se que f tem máximo e mínimo. Sendo $f(2) = \frac{\pi}{2}$ o máximo de f e $f(-2) = -\frac{\pi}{2}$ o seu mínimo.

d) Queremos mostrar que $\exists c \in (-1,1) : f(c) = c$.

Consideremos a função $g\left(x\right)=f\left(x\right)-x.$

Dado que f é uma função contínua em [-2, 2], em particular, f é uma função contínua em [-1, 1]. Portanto, sendo g a diferença de duas funções contínuas: a função f e a função polinomial x (que é contínua em \mathbb{R}), vem que g é contínua em [-1, 1].

Por outro lado, tem-se

$$g(-1) = f(-1) + 1 = \frac{\pi}{2} - \arccos\left(\frac{-1}{2}\right) + 1 = \frac{\pi}{2} - \frac{2\pi}{3} + 1 = 1 - \frac{\pi}{6} > 0$$

e

$$g(1) = f(1) - 1 = \frac{\pi}{2} - \arccos\left(\frac{1}{2}\right) - 1 = \frac{\pi}{2} - \frac{\pi}{3} - 1 = \frac{\pi}{6} - 1 < 0.$$

Logo, por aplicação do teorema de Bolzano, conclui-se que

$$\exists c \in (-1,1) : g(c) = f(c) - c = 0,$$

ou seja,

$$\exists c \in (-1,1) : f(c) = c.$$

Grupo II

2. Seja $b \in \mathbb{R}$ e $f: \mathbb{R} \longrightarrow \mathbb{R}$ a função real de variável real definida por

$$f(x) = \begin{cases} arctg(bx) & \text{se } x < 0, \\ \\ 2xe^{-x} & \text{se } x \ge 0. \end{cases}$$

a) Como

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} \operatorname{arctg}(bx) = \operatorname{arctg}(0) = 0$$

e

$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} 2xe^{-x} = 0 \times 1 = 0,$$

então vem que $\lim_{x\to 0^-} f(x) = \lim_{x\to 0^+} f(x) = 0 = f(0)$, pelo que f é contínua em x=0, para qualquer $b\in\mathbb{R}$.

Vejamos agora se f é diferenciável em zero, ou seja, se $f'_d(0) = f'_e(0)$.

Como

$$f_d^{'}(0) = \lim_{x \to 0^+} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^+} \frac{2xe^{-x} - 0}{x} = \lim_{x \to 0^+} \frac{2}{e^x} = 2$$

e

$$f'_{e}(0) = \lim_{x \to 0^{-}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{-}} \frac{\operatorname{arctg}(bx) - 0}{x} =$$

$$= \lim_{x \to 0^{-}} \frac{\operatorname{arctg}(bx)}{bx} \times b = \lim_{x \to 0^{-}} \frac{\operatorname{b}\lim_{y \to 0^{-}} \frac{\operatorname{arctg}(y)}{y}}{y} = b,$$
Fazendo $y = bx$

$$x \to 0 \Rightarrow y \to 0$$

então f é diferenciável em x = 0 se e só se b = 2.

b) Se
$$x < 0$$
, então $f(x) = arctg(2x)$ e $f'(x) = \frac{(2x)^{2}}{1 + (2x)^{2}} = \frac{2}{1 + 4x^{2}}$.
Se $x > 0$, então $f(x) = 2xe^{-x}$ e

$$f'(x) = (2x)'e^{-x} + 2x(e^{-x})' = 2e^{-x} - 2xe^{-x} = 2(1-x)e^{-x}.$$

Portanto, pela alínea anterior, tem-se

$$f'(x) = \begin{cases} \frac{2}{1+4x^2} & se \ x < 0, \\ 2 & se \ x = 0, \\ 2(1-x)e^{-x} & se \ x > 0. \end{cases}$$

c)
$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} 2x (e^{-x}) = 2 \lim_{x \to +\infty} \frac{x}{e^x} = 2 \times 0 = 0$$
, porque $x \ll e^x$, quando $x \to +\infty$, e

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \operatorname{arctg}(2x) = -\frac{\pi}{2}.$$

d) Como $f'(x) = \frac{2}{1+4x^2} > 0$, para qualquer x < 0, então pode afirmar-se que f é monótona crescente em $]-\infty,0[$.

Por outro lado, se x > 0 tem-se $f'(x) = 2(1-x)e^{-x}$. Dado que $e^{-x} > 0$, para qualquer $x \in \mathbb{R}$, então o sinal de f'(x) depende apenas do sinal de (1-x) e

$$f'(x) = 0 \Leftrightarrow 2(1-x)e^{-x} = 0 \Leftrightarrow 1-x = 0 \Leftrightarrow x = 1,$$

pelo que se tem

x	0	1	$+\infty$
f'	+	0	_
f	7		>

Logo, conclui-se que f é monótona crescente em $]-\infty,1[$ e é monótona decrescente em $]1,+\infty[$, tendo um ponto de máximo local em x=1.

Grupo III

3. Sabe-se que x(t) e $v(t) = \frac{dx}{dt}$ são deriváveis e que $a(t) = \frac{dv}{dt}$. Além disso, tem-se ainda que $x(t_1) = x(t_2)$, com $t_1 < t_2$, e $v(t_1) = 0$.

Queremos provar que existe um instante τ , com $t_1 < \tau < t_2$, tal que $a(\tau) = 0$.

Dado que x(t) é derivável em \mathbb{R} , então x(t) é contínua em $[t_1, t_2]$ e é derivável em $]t_1, t_2[$. Como $x(t_1) = x(t_2)$, então, pelo teorema de Rolle, podemos afirmar que

$$\exists t_3 \in [t_1, t_2] : x'(t_3) = v(t_3) = 0.$$

Como v(t) é derivável em \mathbb{R} , então v(t) é contínua em $[t_1, t_3]$ e é derivável em $]t_1, t_3[$ e tem-se $v(t_1) = 0 = v(t_3)$. Logo, aplicando novamente o teorema de Rolle, temos que

$$\exists \tau \in]t_1, t_3[: v'(\tau) = a(\tau) = 0.$$

Finalmente, uma vez que $\ \tau \in \]t_1,t_3[\ \subset\]t_1,t_2[\ ,$ então concluimos que

$$\exists \tau \in]t_1, t_2[: a(\tau) = 0, \quad c.q.m..$$

4. a)
$$\lim_{t\to 1} \frac{\sqrt[3]{t}-1}{t-1} = ?$$

Fazendo a substituição $t=s^3$ tem-se que se $t\to 1,$ então $s\to \sqrt[3]{1}=1.$ Logo,

$$\lim_{t \to 1} \frac{\sqrt[3]{t} - 1}{t - 1} = \lim_{s \to 1} \frac{s - 1}{s^3 - 1} = \left(\frac{0}{0}\right) = \lim_{s \to 1} \frac{s - 1}{(s - 1)(s^2 + s + 1)} = \lim_{s \to 1} \frac{1}{s^2 + s + 1} = \frac{1}{3},$$

pois, aplicando por exemplo a regra de Ruffini, sabe-se que $s^3-1=(s-1)\left(s^2+s+1\right)$.

b) Como $\lim_{t\to 1} \frac{\sqrt[3]{t}-1}{t-1} = \lim_{t\to 1} \frac{f(t)-1}{t-1} = f'(1)$ quando a função f(t) é $\sqrt[3]{t}$ e dado que, aplicando a regra de derivação da potência, se obtém

$$f'(t) = \left(\sqrt[3]{t}\right)' = \frac{1}{3}t^{-\frac{2}{3}} = \frac{1}{3\sqrt[3]{t^2}}.$$

Então, tem-se

$$f'(1) = \frac{1}{3\sqrt[3]{1^2}} = \frac{1}{3},$$

o que confirma o resultado obtido na alínea anterior.

Grupo IV

5. Como $\sum_{n=1}^{+\infty} (-1)^n \frac{4^n}{8^n+1}$ é uma série alternada, comecemos por estudar a série do módulo, ou seja, a série

$$\sum_{n=1}^{+\infty} \left| (-1)^n \frac{4^n}{8^n + 1} \right| = \sum_{n=1}^{+\infty} \frac{4^n}{8^n + 1}.$$

Dado que

$$\lim_{n} \frac{a_{n+1}}{a_n} = \lim_{n} \frac{\frac{4^{n+1}}{8^{n+1}+1}}{\frac{4^n}{8^n+1}} = \lim_{n} \frac{4^{n+1}}{8^{n+1}+1} \times \frac{8^n+1}{4^n} =$$

$$=4\times \lim_n \frac{8^n+1}{8^{n+1}+1}=4\times \lim_n \frac{1+\frac{1}{8^n}}{8+\frac{1}{8^n}}=4\times \frac{1}{8}=\frac{1}{2}<1,$$

então, pelo critério de D'Alembert, conclui-se que a série módulo é convergente. Logo, a série alternada é absolutamente convergente

- **6.** Considere $\alpha \in \mathbb{R}^+$ e a série $\sum_{n=1}^{+\infty} (-1)^n \frac{1}{n^{\alpha}}$.
 - a) Comecemos por estudar a série do módulo, ou seja, a série

$$\sum_{n=1}^{+\infty} \left| (-1)^n \frac{1}{n^{\alpha}} \right| = \sum_{n=1}^{+\infty} \frac{1}{n^{\alpha}}.$$

Como se trata de uma série de Dirichlet que sabemos ser convergente se $\alpha > 1$ e divergente se $\alpha \leq 1$, então conclui-se que a série alternada é absolutamente convergente se $\alpha > 1$.

b) Pela alínea anterior, sabemos que a série do módulo é divergente se $\alpha \leq 1$. Então, também o é para $\alpha \in]0,1]$. Assim, considerando $\alpha \in]0,1]$ vamos estudar a convergência da série alternada através da aplicação do critério de Leibniz, ou seja, vejamos se a sucessão $a_n = \frac{1}{n^{\alpha}}$ é decrescente e se tem limite nulo, quando n tende para $+\infty$.

Como

$$\lim_{n} a_{n} = \lim_{n} \frac{1}{n^{\alpha}} = 0, \text{ se } \alpha \in \mathbb{R}^{+},$$

então também se verifica se $\alpha \in [0,1]$. Por outro lado, como

$$(n+1)^{\alpha} \ge n^{\alpha}, \quad \forall n \in \mathbb{N} \text{ e } \alpha \in [0,1],$$

tem-se

$$a_{n+1} = \frac{1}{(n+1)^{\alpha}} \le \frac{1}{n^{\alpha}} = a_n, \quad \forall n \in \mathbb{N} \in \alpha \in [0,1],$$

ou seja, a sucessão $(a_n)_n$ é decrescente. Portanto, pelo critério de Leibniz, conclui-se que a série alternada é convergente. Logo, a série alternada é simplesmente convergente se $\alpha \in]0,1].$