Applied Graph Theory

Contents

1	Introdcution	2
2	Cartesian Products	2
3	Trees	3
4	Blocks	5
5	Adjacency Matrices	7

1 Introduction

A graph is an ordered pair G = (V, E) where V is a nonempty set called the *vertex set*, whose elements are the *vertices* of G, and E is a set of unordered pairs of distinct vertices of G, whose elements are the *edges* of G. The *order* of G is its number of vertices and the *size* of G is its number of edges.

Two vertices u and v of G are adjacent, denoted by $u \sim v$, if $(u,v) \in E(G)$ — we may also denote the edge (u,v) as simply uv. Note that uv = vu. If there is no edge between u and v, then they are nonadjacent, denoted by $u \not\sim v$. The vertex v and the edge uv are said to be incident with each other. The degree of a vertex v is the number of edges incident with it, or equivalently, the number of vertices adjacent with it, and is denoted by $\deg(v)$.

Lemma 1.1 (Handshaking Lemma). The sum of the degrees of all vertices of a graph is twice its size.

Proof. Exercise.

2 Cartesian Products

The *Cartesian product* of two graphs G and H is the graph denoted by $G \times H$, whose vertex set is $V(G) \times V(H)$ (the Cartesian product of the vertex sets V(G) and V(H), consisting of all ordered pairs (u, v) where u is a vertex of G and v is a vertex of H), in which two vertices (u_1, v_1) and (u_2, v_2) are adjacent if and only if either $u_1 = u_2$ and $v_1 \sim v_2$ or $v_1 \sim v_2$ and $v_2 \sim v_2$ or $v_2 \sim v_2$ and $v_3 \sim v_3$ are $v_3 \sim v_3$.

Exercise 2.1. Prove that if G is a graph of order p_1 and size q_1 , and H is a graph of order p_2 and size q_2 , then $G \times H$ is a graph of order p_1p_2 and size $p_1q_2 + p_2q_1$.

3 Trees

A *tree* is a connected, acyclic graph. There are several well known characterisations or alternative definitions of trees. We take the given definition as the basic one and prove its equivalence to some others.

Theorem 3.1. A graph T is a tree if and only if there is a unique path joining every two vertices of T.

Proof. First, suppose that T is a tree, and let u and v be vertices of T. Since T is connected, there is a path, say P_1 , joining u and v. Now we must show that this path is unique. Assume to the contrary that there exists another path P_2 from u to v. When traversing P_1 from u to v, let w be the first vertex that is present on P_1 but not P_2 . Let x be the vertex on P_1 preceding w, and note that x is on P_2 as well. Let y be the next vertex common to both P_1 and P_2 when traversing P_1 from x to v. Then the portion of P_1 from x to y together with the portion of P_2 from y to x forms a cycle in the tree T, which is a contradiction. Thus, P_1 is the unique path joining u and v.

Conversely, suppose that T is a graph in which there is a unique path joining any two vertices. Clearly, T is connected. To show that T is acyclic, suppose that v_1, v_2, \ldots, v_n is a cycle in T. Then we get two different paths joining v_1 and v_n , namely the path v_1, v_2, \ldots, v_n and the path v_1, v_n (since $v_1 \sim v_n$ in the cycle). This contradicts our assumption. Thus, T must be acyclic and hence is a tree.

The next two results show that the size of a tree is always one less than its order, and that conversely, this property together with either connectedness or acyclicity implies that the graph is a tree.

Theorem 3.2. A (p, q)-graph T is a tree if and only if it is connected and p = q + 1.

Proof. Let T be a tree with p vertices and q edges. Then T is connected. We prove that p = q + 1 by induction. This is clearly true when p = 1.

Assume it to be true for all trees of order less than p. Now in T, we know that every two vertices are joined by a unique path. Thus, if e is any edge of T, then the graph $T - \{e\}$ obtained by deleting e has exactly two components, say T_1 and T_2 . Each one is a tree, since it is connected and acyclic. Let T_i have p_i vertices and q_i edges, i = 1, 2. Then by the hypothesis, $p_i = q_i + 1$ (since $p_i < p$). But $p = p_1 + p_2$ and $q = q_1 + q_2 + 1$ (since the size of $T - \{e\}$ is one less than that of T). Thus, $p = q_1 + q_2 + 2 = q + 1$.

For the converse, suppose that T is a connected (p,q)-graph with p=q+1. We must show that is acyclic. Suppose to the contrary that T has a cycle C with k vertices. Then C has k edges as well. Since T is connected, there is a path from every vertex not on C to some vertex of C. The shortest path from each vertex v not on C to a vertex on C has a unique edge incident with v, which is not part of C. Since there are p-k vertices in T not on C, there are p-k such edges. Thus $q \ge (p-k) + k = p$, which contradicts our assumption that p=q+1. Thus, T must be acyclic.

In the following theorem, the proof of the direct part is identical to that of Theorem 3.2, except for the assertion being about acyclicity rather than connectedness. The proof of the converse part is entirely different.

Theorem 3.3. A (p,q)-graph T is a tree if and only if it is acyclic and p = q + 1.

Proof. Let T be a tree with p vertices and q edges. Then T is acyclic. We prove that p = q + 1 by induction. This is clearly true when p = 1. Assume it to be true for all trees of order less than p. Now in T, we know that every two vertices are joined by a unique path. Thus, if e is any edge of T, then the graph $T - \{e\}$ obtained by deleting e has exactly two components, say T_1 and T_2 . Each one is a tree, since it is connected and acyclic. Let T_i have p_i vertices and q_i edges, i = 1, 2. Then by the hypothesis, $p_i = q_i + 1$ (since $p_i < p$). But $p = p_1 + p_2$ and

 $q = q_1 + q_2 + 1$ (since the size of $T - \{e\}$ is one less than that of T). Thus, $p = q_1 + q_2 + 2 = q + 1$.

Conversely, suppose that T is an acyclic (p,q)-graph with p=q+1. To show that T is connected, we need to prove that it is connected – i.e., it has only one component. Let T have k components T_1, \ldots, T_k . Each one is acyclic, and being connected, is a tree. Thus from the first part of the theorem, we know that if p_i and q_i are respectively the order and size of the component T_i , $p_i = q_i + 1$. Now $p = p_1 + \cdots + p_k = (q_1 + 1) + \cdots + (q_k + 1) = q + k$. But we know that p = q + 1. Therefore, k = 1. Thus, T is a tree. \Box

Exercise 3.1. A *pendant vertex* of a graph is a vertex of degree 1. Prove that every non-trivial tree contains at least two pendant vertices.

Hint: Observe that a non-trivial tree cannot have a vertex of degree zero. Use Handshaking Lemma and assume every degree is at least 2 to get a contradiction.

Exercise 3.2. The *centre* of a graph G is the set of all vertices of G with minimum eccentricity – i.e., the set of all vertices v of G with ecc v = rad v. Show that every tree has a centre consisting of either exactly one vertex or exactly two adjacent vertices.

Hint: Observe that deleting all pendant vertices of a tree results in a new tree with the same centre.

Exercise 3.3. If G and H are two trees of orders n and m respectively, what is the size of $G \times H$?

4 Blocks

A *cutvertex* of a graph is a vertex whose removal increases the number of components, i.e., a vertex v of G such that G - v has more components than G. If G is connected, we can equivalently say that v is a cutvertex if G - v is disconnected. Similarly, a *cutedge* or *bridge* of a graph whose removal increases the number of components. A *nonseparable* graph is a connected, non-trivial graph with no cutvertices. A maximal nonseparable subgraph of a graph is a *block* of the graph. A nonseparable graph is itself said to be a block as well.

Example 4.1. The graph shown below has 6 blocks and 3 cutvertices (v_1, v_2, v_3) .

The 6 blocks of this graph are shown below.

Theorem 4.2. If G is a connected graph, and v is any vertex of G, then the following are equivalent:

- (i) v is a cutvertex of G.
- (ii) There exist vertices u and w of G, distinct from v, such that every u-w path passes through v.
- (iii) There exists a partition of V(G) v into two non-empty subsets U and W such that for all $u \in U$ and $w \in W$, every u-w path passes through v.

Proof. (i) \Longrightarrow (iii). Since v is a cutvertex, the graph G-v is disconnected, i.e., it has two or more components. Let U be all the vertices in any one of the components, and let W be all the remaining vertices of G-v. Clearly, $\{U,W\}$ is a partition of V(G)-v. Now, if $u\in U$ and $w\in W$, then u and w are in different components of G-v, which implies that any path from u to w must pass through v.

 $(iii) \implies (ii)$ is obvious as the latter is a special case of the former.

(ii) \Longrightarrow (i). Consider the graph G-v. As every u-w path passes through v, none of them is present in G-v, and therefore G-v is disconnected. Hence, v is a cutvertex of G.

5 Adjacency Matrices

The adjacency matrix of a graph G of order n, with vertex set $V = \{v_1, \ldots, v_n\}$, is the $n \times n$ matrix A = A(G) whose (i, j)-entry is

$$a_{ij} = \begin{cases} 1, & v_i \sim v_j \\ 0, & v_i \not\sim v_j. \end{cases}$$

Example 5.1. The adjacency matrix of the graph

is

$$A = \begin{bmatrix} 0 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 & 0 \end{bmatrix}.$$

Observe that, as the graphs we discuss are simple graphs and therefore have no self-loops on vertices, no vertex is adjacent to itself – i.e., $a_{ii} = 0$ for all i = 1, ..., n. Also, since the graphs are undirected, $v_i \sim v_j$ if and only if $v_j \sim v_i$ – i.e., $a_{ij} = a_{ji}$. Thus, we have the following observation.

Observation 5.2. The adjacency matrix of a (simple, undirected) graph is a symmetric, zero-diagonal, 0-1 matrix.

In the i^{th} row of the adjacency matrix, for each j, the j^{th} entry is 1 if v_j is adjacent to v_i , and 0 otherwise. That is, the number of 1s in the i^{th} row is the number of vertices adjacent to v_i , or in other words, the degree of v_i . Thus, the row sums of A are the vertex degrees. Observe that $A\mathbb{1}$ is the vector of row sums, where $\mathbb{1}$ is the vector (of suitable size) with all entries equal to 1. For instance, with the matrix A given in Example 5.1,

$$A = \begin{bmatrix} 0 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 6 \\ 2 \\ 6 \\ 2 \\ 2 \\ 2 \\ 2 \end{bmatrix}.$$

From the Handshaking Lemma and the preceding observation, it follows that the sum of all entries of *A* is twice the number of edges of the graph.

Exercise 5.1. Show that the (i, j)-entry of A^2 is the number of walks of length 2 from v_i to v_j . Hence show that $tr(A^2) = 2|E(G)|$.

Hint: Recall that if A is any $n \times n$ matrix, then the (i, j)-entry of A^2 is $\sum_{k=1}^n a_{ik} a_{kj}$. As A is a 0-1 matrix, each term in this summation is 1 or 0, with the former if and only if $a_{ik} = a_{kj} = 1$. What does this imply about the vertices v_i, v_k , and v_j ? Then, as k varies from 1 to n, what does the value of the sum imply about v_i and v_j ?

The following result (which generalises the statement in Exercise 5.1) shows that the adjacency matrix can be used to obtain certain information about walks in the graph.

Theorem 5.3. Let A be the adjacency matrix of a graph G with vertex set $\{v_1, \ldots, v_n\}$. Then the (i, j)-entry of A^m , for any positive integer m, is the number of walks of length k from v_i to v_j .

Proof. We prove the result by induction on m. For m = 1, the (i, j)-entry of $A^1 = A$ is a_{ij} , which is 1 if and only if v_i is adjacent to v_j , i.e., if and only if there is a walk of length 1 (namely, an edge) from v_i to v_j . Thus, the result holds for m = 1.

Now suppose, for the sake of induction, that the result holds for some $m \ge 1$, and consider A^{m+1} . The (i, j)-entry of A^{m+1} is

$$(A^{m+1})_{ij} = \sum_{k=1}^{n} (A^m)_{ik} a_{kj}.$$

First, note that $a_{kj} = 1$ if and only if $v_k \sim v_j$. Therefore, the above sum is equal to the sum of all $(A^m)_{ik}$ where $v_k \sim v_j$. Now, by the induction hypothesis, $(A^m)_{ik}$ is the number of walks of length m from v_i to v_k . If v_j is adjacent to v_j , then each walk of length m from v_i to v_k , together with the edge from v_j to v_j , forms a walk of length m+1 from v_i to v_j . Thus, for each k such that $v_k \sim v_j$, $(A^m)_{ik}a_{kj} = (A^m)_{ik}$ is the number of walks of length m+1 from v_i to v_j that pass through k. Summing over all k, this gives the total number of walks of length m+1 from v_i to v_j . Hence the result follows by induction.