Lecture 13: Recurrent Neural Networks

Ivan Provilkov

Outline

- 1. Contex idea
- 2. RNN intuitions
- 3. LSTM
- 4. Names generation from scratch
- 5. Q & A

Optional: Vanishing gradient and attention outro

Words cooccurrences: sliding window

Words cooccurrences: n-grams

RNNs generating...

Shakespeare

PANDARUS:

Alas, I think he shall be come approached and the day When little srain would be attain'd into being never fed, And who is but a chain and subjects of his death, I should not sleep.

Second Senator:

They are away this miseries, produced upon my soul, Breaking and strongly should be buried, when I perish The earth and thoughts of many states.

DUKE VINCENTIO:

Well, your wit is in the care of side and that.

Second Lord:

They would be ruled after this chamber, and my fair nues begun out of the fact, to be conveyed, Whose noble souls I'll have the heart of the wars.

Clown:

Come, sir, I will make did behold your worship.

VIOLA:

I'll drink it.

Algebraic Geometry (Latex)

```
Proof. Omitted.
Lemma 0.1. Let C be a set of the construction.
   Let C be a gerber covering. Let F be a quasi-coherent sheaves of O-modules. We
have to show that
                                     \mathcal{O}_{\mathcal{O}_{+}} = \mathcal{O}_{X}(\mathcal{L})
Proof. This is an algebraic space with the composition of sheaves \mathcal{F} on X_{Oute} we
                           \mathcal{O}_X(\mathcal{F}) = \{morph_1 \times_{\mathcal{O}_X} (\mathcal{G}, \mathcal{F})\}
where G defines an isomorphism F \to F of O-modules.
Lemma 0.2. This is an integer Z is injective.
Proof. See Spaces, Lemma ??.
Lemma 0.3. Let S be a scheme. Let X be a scheme and X is an affine open
covering. Let U \subset X be a canonical and locally of finite type. Let X be a scheme.
Let X be a scheme which is equal to the formal complex.
The following to the construction of the lemma follows.
Let X be a scheme. Let X be a scheme covering. Let
                      b: X \rightarrow Y' \rightarrow Y \rightarrow Y \rightarrow Y' \times_X Y \rightarrow X.
be a morphism of algebraic spaces over S and Y.
Proof. Let X be a nonzero scheme of X. Let X be an algebraic space. Let F be a
quasi-coherent sheaf of O_X-modules. The following are equivalent

 F is an algebraic space over S.

    (2) If X is an affine open covering.
Consider a common structure on X and X the functor O_X(U) which is locally of
finite type.
```

Linux kernel (source code)

```
* If this error is set, we will need anything right after that BSD.
static void action new function(struct s stat info *wb)
 unsigned long flags;
 int lel idx bit = e->edd, *sys & -((unsigned long) *FIRST COMPAT);
 buf[0] = 0xFFFFFFFF & (bit << 4);
 min(inc, slist->bytes);
 printk(KERN WARNING "Memory allocated %02x/%02x, "
   "original MLL instead\n"),
   min(min(multi run - s->len, max) * num data in),
   frame pos, sz + first seg);
 div u64 w(val, inb p);
 spin unlock(&disk->queue lock);
 mutex unlock(&s->sock->mutex);
 mutex unlock(&func->mutex);
 return disassemble(info->pending bh);
```

Proof. Omitted.

Lemma 0.1. Let C be a set of the construction.

Let C be a gerber covering. Let F be a quasi-coherent sheaves of O-modules. We have to show that

$$\mathcal{O}_{\mathcal{O}_X} = \mathcal{O}_X(\mathcal{L})$$

.

Proof. This is an algebraic space with the composition of sheaves F on $X_{\acute{e}tale}$ we have

$$\mathcal{O}_X(\mathcal{F}) = \{morph_1 \times_{\mathcal{O}_X} (\mathcal{G}, \mathcal{F})\}$$

where \mathcal{G} defines an isomorphism $\mathcal{F} \to \mathcal{F}$ of \mathcal{O} -modules.

Lemma 0.2. This is an integer Z is injective.

Proof. See Spaces, Lemma ??.

Lemma 0.3. Let S be a scheme. Let X be a scheme and X is an affine open covering. Let $U \subset X$ be a canonical and locally of finite type. Let X be a scheme. Let X be a scheme which is equal to the formal complex.

We use same weight matrices for all steps

Now with formulas

$$h_{0} = \bar{0}$$

$$h_{1} = \sigma(\langle W_{\text{hid}}[h_{0}, x_{0}] \rangle + b)$$

$$h_{2} = \sigma(\langle W_{\text{hid}}[h_{1}, x_{1}] \rangle + b) = \sigma(\langle W_{\text{hid}}[\sigma(\langle W_{\text{hid}}[h_{0}, x_{0}] \rangle + b, x_{1}] \rangle + b)$$

$$h_{i+1} = \sigma(\langle W_{\text{hid}}[h_{i}, x_{i}] \rangle + b)$$

$$P(x_{i+1}) = \operatorname{softmax}(\langle W_{\text{out}}, h_{i} \rangle + b_{\text{out}})$$

chain rule!

chain rule!

Vanishing gradient problem:

When the derivatives are small, the gradient signal gets smaller and smaller as it backpropagates further

More info: "On the difficulty of training recurrent neural networks", Pascanu et al, 2013 http://proceedings.mlr.press/v28/pascanu13.pdf

Gradient signal from far away is lost because it's much smaller than from close-by.

So model weights updates will be based only on short-term effects.

Vanishing gradient problem

 $oldsymbol{h}^{(1)}$

Exploding gradient problem

 If the gradient becomes too big, then the SGD update step becomes too big:

$$heta^{new} = heta^{old} - \overset{\text{learning rate}}{\alpha} \overset{\text{pradient}}{\nabla_{\theta} J(\theta)}$$

- This can cause bad updates: we take too large a step and reach a bad parameter configuration (with large loss)
- In the worst case, this will result in Inf or NaN in your network (then you have to restart training from an earlier checkpoint)

Exploding gradient solution

 Gradient clipping: if the norm of the gradient is greater than some threshold, scale it down before applying SGD update

Algorithm 1 Pseudo-code for norm clipping $\hat{\mathbf{g}} \leftarrow \frac{\partial \mathcal{E}}{\partial \theta} \\ \mathbf{if} \quad ||\hat{\mathbf{g}}|| \geq threshold \ \mathbf{then} \\ \hat{\mathbf{g}} \leftarrow \frac{threshold}{||\hat{\mathbf{g}}||} \hat{\mathbf{g}} \\ \mathbf{end} \quad \mathbf{if}$

 Intuition: take a step in the same direction, but a smaller step

Exploding gradient solution

Without clipping

With clipping

Vanilla RNN

LSTM

$$f_t = \sigma\left(W_f \cdot [h_{t-1}, x_t] + b_f\right)$$

$$i_t = \sigma \left(W_i \cdot [h_{t-1}, x_t] + b_i \right)$$

$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

$$o_t = \sigma (W_o [h_{t-1}, x_t] + b_o)$$

$$h_t = o_t * \tanh (C_t)$$

Tips

- Do not forget about dropout. It really rocks.
- Other regularization approaches are welcome as well (see previous lectures).
- Combining RNN and CNN worlds? Coming soon

Vanishing gradient: LSTM

Forget gate: controls what is kept vs forgotten, from previous cell state

Input gate: controls what parts of the new cell content are written to cell

Output gate: controls what parts of cell are output to hidden state

New cell content: this is the new content to be written to the cell

Cell state: erase ("forget") some content from last cell state, and write ("input") some new cell content

Hidden state: read ("output") some content from the cell

Sigmoid function: all gate values are between 0 and 1

$$egin{aligned} oldsymbol{f}^{(t)} &= \sigma \left(oldsymbol{W}_f oldsymbol{h}^{(t-1)} + oldsymbol{U}_f oldsymbol{x}^{(t)} + oldsymbol{b}_f
ight) \ oldsymbol{i}^{(t)} &= \sigma \left(oldsymbol{W}_i oldsymbol{h}^{(t-1)} + oldsymbol{U}_i oldsymbol{x}^{(t)} + oldsymbol{b}_i
ight) \ oldsymbol{o}^{(t)} &= \sigma \left(oldsymbol{W}_o oldsymbol{h}^{(t-1)} + oldsymbol{U}_o oldsymbol{x}^{(t)} + oldsymbol{b}_o
ight) \end{aligned}$$

$$oldsymbol{o}^{(t)} = \sigma igg| oldsymbol{W}_o oldsymbol{h}^{(t-1)} + oldsymbol{U}_o oldsymbol{x}^{(t)} + oldsymbol{b}_o$$

$$egin{aligned} ilde{oldsymbol{c}} & ilde{oldsymbol{c}}^{(t)} = anh\left(oldsymbol{W}_c oldsymbol{h}^{(t-1)} + oldsymbol{U}_c oldsymbol{x}^{(t)} + oldsymbol{b}_c
ight) \ oldsymbol{c}^{(t)} & = oldsymbol{f}^{(t)} \circ oldsymbol{c}^{(t-1)} + oldsymbol{i}^{(t)} \circ ilde{oldsymbol{c}}^{(t)} \end{aligned}$$

$$m{ au} m{h}^{(t)} = m{o}^{(t)} \circ anh m{c}^{(t)}$$

Gates are applied using element-wise product

Vanishing gradient: GRU

Vanishing gradient: GRU

<u>Update gate:</u> controls what parts of hidden state are updated vs preserved

Reset gate: controls what parts of previous hidden state are used to compute new content

New hidden state content: reset gate selects useful parts of prev hidden state. Use this and current input to compute new hidden content.

Hidden state: update gate simultaneously controls what is kept from previous hidden state, and what is updated to new hidden state content

$$egin{aligned} oldsymbol{u}^{(t)} &= \sigma \left(oldsymbol{W}_u oldsymbol{h}^{(t-1)} + oldsymbol{U}_u oldsymbol{x}^{(t)} + oldsymbol{b}_u
ight) \ oldsymbol{ au}^{(t)} &= \sigma \left(oldsymbol{W}_r oldsymbol{h}^{(t-1)} + oldsymbol{U}_r oldsymbol{x}^{(t)} + oldsymbol{b}_r
ight) \end{aligned}$$

$$m{ ilde{h}}^{(t)} = anh\left(m{W}_h(m{r}^{(t)} \circ m{h}^{(t-1)}) + m{U}_hm{x}^{(t)} + m{b}_h
ight)$$
 $m{h}^{(t)} = (1 - m{u}^{(t)}) \circ m{h}^{(t-1)} + m{u}^{(t)} \circ m{ ilde{h}}^{(t)}$

How does this solve vanishing gradient?
Like LSTM, GRU makes it easier to retain info long-term (e.g. by setting update gate to 0)

Vanishing gradient: LSTM vs GRU

- LSTM and GRU are both great
 - GRU is quicker to compute and has fewer parameters than LSTM
 - There is no conclusive evidence that one consistently performs better than the other
 - LSTM is a good default choice (especially if your data has particularly long dependencies, or you have lots of training data)

Rule of thumb: start with LSTM, but switch to GRU if you want something more efficient

Vanishing gradient in non-RNN

Vanishing gradient is present in all deep neural network architectures.

- Due to chain rule / choice of nonlinearity function, gradient can become vanishingly small during backpropagation
- Lower levels are hard to train and are trained slower
- Potential solution(but not actually for that problem): dense connections (just like in DenseNet)

Conclusion:

Though vanishing/exploding gradients are a general problem, RNNs are particularly unstable due to the repeated multiplication by the same weight matrix [Bengio et al, 1994]. Gradients magnitude drops exponentially with connection length.

Very Deep Backlog

Vanishing gradient in non-RNN

Vanishing gradient is present in all deep neural network architectures.

- Due to chain rule / choice of nonlinearity function, gradient can become vanishingly small during backpropagation
- Lower levels are hard to train and are trained slower
- Potential solution: direct (or skip-) connections (just like in ResNet)

Figure 2. Residual learning: a building block.

Source: "Deep Residual Learning for Image Recognition", He et al, 2015. https://arxiv.org/pdf/1512.03385.pdf

Vanishing gradient in non-RNN

Vanishing gradient is present in all deep neural network architectures.

- Due to chain rule / choice of nonlinearity function, gradient can become vanishingly small during backpropagation
- Lower levels are hard to train and are trained slower
- Potential solution: dense connections (just like in DenseNet)

Another view on ResNets and vanishing gradient

"Residual Networks Behave Like Ensembles of Relatively Shallow Networks"

Source: https://arxiv.org/pdf/1605.06431.pdf