1 Probability theory overview

1.1 Cumulative distribution function (cdf) Every real-valued random variable X can be described by its cumulative distribution function $(cdf)F_X: \mathbb{R} \to [0,1]$ defined as

$$F_X(x) = \mathbb{P}[X \le x]$$

Notice that, as mentioned above, $\{X \leq x\} = X^{-1}((-\infty, x]) \in \mathcal{F}$.

Discrete random variable

We call var. discrete, if its image (pmf) is finite or countably finite.

Continuos random variables

We call radom var continuos if its cdf is contunous. It implies the image of X (pdf) is "uncountably infite".

1.2 Quantile functions and quantiles

Quantile is **generalized inverse of the cdf F_T of X, defined as:

$$Q_X(p) = \inf \{x \in \mathbb{R} \mid p \leq F_X(x)\}$$

For some probability level $\alpha \epsilon(0,1)$, the $\alpha-quantile$ is just the value $Q_x(\alpha)$

1.3 Expected Value

or expectation, mean, average, first moment- characterises the tendency or long-run average value

For absolutely continuous

$$\mathbb{E}[X] = \int_{-\infty}^{\infty} x f_X(x) dx$$

For discrete

$$\mathbb{E}[X] = \sum_{k=1}^{\infty} x_k \mathbf{P} \left[X = x_k \right] = \sum_{k=1}^{\infty} x_k p_k$$

Main take-home Example. Let $X \sim \mathcal{U}(a, b)$, (uniformly distributed) then the expected value of X is

$$\mathbb{E}[X] = \int_{-\infty}^{\infty} x f_X(x) dx = \int_a^b \frac{x}{b-a} dx = \left. \frac{x^2}{2(b-a)} \right|_{x=a}^b$$
$$= \frac{b^2 - a^2}{2(b-a)} = \frac{a+b}{2}$$

$$\mathbb{E}[X] = \frac{a+b}{2}$$

1.4 Variance and SD

- $\bullet\,\,$ variance: distance to the mean, expect eation of the squared devation from its mean
- standard devation: squre root of variance

$$\operatorname{Var}(X) = \mathbb{V}[X] = \mathbb{E}\left[\left(X - \mathbb{E}[X]\right)^2\right]$$
$$\operatorname{Var}(X) = \frac{(b-a)^2}{10^{-10}}$$

1.5 Covariance between two RV

expected value of the product of their SD.

$$\begin{aligned} \operatorname{cov}(X,Y) &= \frac{\sigma_{XY} = \sigma(X,Y)}{N-1} = \frac{\mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])]}{N-1} \\ & \operatorname{cov}(X,Y) &= \frac{\mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]}{N-1} \end{aligned}$$

1.6 Pearson's correlation

Measure of linear correlation between two RV

$$\rho_{X,Y} = \frac{\text{cov}(X,Y)}{\sqrt{\mathbb{V}[X]}\sqrt{\mathbb{V}[Y]}} = \frac{\sigma_{X,Y}}{\sigma_X \sigma_Y}$$

! If two vars are independent, they are also uncorrelated, the opposite must not be true.

$$\mathrm{V}[X+Y] = \mathbb{V}[X] + \mathbb{V}[Y] + 2\operatorname{cov}(X,Y)$$

Note that variance of a sum is sum of variance only if vars are uncorrelated

1.7 Skewness

Measure of the assymetry of the distribution around its mean. Third standardized moment.

$$\gamma_1(X) = \mathbb{E}\left[\left(\frac{X - \mathbb{E}[X]}{\sqrt{\mathbb{V}[X]}}\right)^3\right] = \mathbb{E}\left[\left(\frac{X - \mu}{\sigma}\right)^3\right]$$

1.8 Kurtosis

Measure of the width of its tails. Fourth standadized moment. Kurtosis = 3 is average, above (below) is excess kurtosis.

$$\operatorname{Kurt}[X] = \gamma_2(X) = \kappa(X) = \mathbb{E}\left[\left(\frac{X - \mu}{\sigma}\right)^4\right]$$

1.9 Independence We say two elements A and B of a σ -algebra are independent and we write $A \perp B$ if

$$\mathbb{P}[A \cap B] = \mathbb{P}[A]\mathbb{P}[B]$$

To see why we call this property independence, we recall the definition of the conditional probability and use 'independence',

$$\mathbb{P}[A\mid B] = \frac{\mathbb{P}[A\cap B]}{\mathbb{P}[B]} = \frac{\mathbb{P}[A]\mathbb{P}[B]}{\mathbb{P}[B]} = \mathbb{P}[A]$$

So the probability of A stays the same independent of the occurrence of B. The same is true the other way around

$$\mathbb{P}[B \mid A] = \frac{\mathbb{P}[B \cap A]}{\mathbb{P}[A]} = \mathbb{P}[B]$$

1.10 Normal distribution

probability density function

$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right).$$

density function, cdf

$$\varphi(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right)$$

Combined

$$f_X(x) = \frac{1}{\sigma} \varphi\left(\frac{x-\mu}{\sigma}\right)$$

1.11 Log-normal distribution

We say X is log-normally distributed and write $X \sim \log \mathcal{N}\left(\mu, \sigma^2\right)$ if $Y = \log(X) \sim \mathcal{N}\left(\mu, \sigma^2\right)$

$$f(x) = \frac{1}{x\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(\log x - \mu)^2}{2\sigma^2}\right]$$

1.12 t-distribution Like normal but with heavier tails. cdf

$$t_{\nu}(x) = \int_{-\infty}^{x} \frac{\Gamma\left(\frac{\nu+1}{2}\right)\nu^{\frac{\nu}{2}}}{\sqrt{\pi}\Gamma\left(\frac{\nu}{2}\right)} \left(\nu + t^{2}\right)^{-\frac{\nu+1}{2}} dt$$

Where ν denotes the degrees of freedom.

Bonds

2.1 Present value of Zero coupon bonds

$$PV(y) = \frac{C_T}{(1+y)^T}$$

Notes:

- market value of zero-coupon bonds decreases with longer maturities
- keeping T fixed, the market value of the zero-coupon bond decreases as the yield increases

Semi-annual compounding (e.g. used in the U.S. Treasury bond market): interest rate y_{ϕ} is derived from:

$$P\left(y_{s}\right) = \frac{C_{T}}{\left(1 + \frac{y_{s}}{2}\right)^{2T}}$$

Continuous compounding (used ubiquitously in the quantitative finance literature) interest rate y_C is derived from:

$$P(y_c) = \frac{C_T}{\exp(y_c T)} = e^{-y_c T} C_T$$

 $yield = (\frac{FV}{C_T})^{\frac{1}{T}} - 1$

$$1 + y_{p.a.} = (1 + \frac{y_{p.s.}}{2})^2 = exp(y_{continous})$$

Price of a coupon paying bond

$$P(y) = \frac{cF}{y} \left(1 - \frac{1}{(1+y)^T} \right) + \frac{F}{(1+y)^T}$$

Price of a perpetual bond/consol: $P(y) = \frac{c}{y}F$

2.2 Taylor series

$$T_{f,x_0}(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$$
$$= f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2} (x - x_0)^2 + \dots$$

$$\sum_{n=0}^{2} \frac{f^{(n)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n} = f\left(x_{0}\right) + f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right) + \frac{f^{\prime\prime}\left(x_{0}\right)}{2}\left(x-x_{0}\right)^{2}$$

a Taylor polynomial of degree two and so on.

2.3 Duration ▷ The Dollar-Duration (DD) is the negative of the first derivative

$$DD(y) = -P'(y)$$

 \triangleright The Modified Duration (D^*) is a normalized version of the Dollar-Duration:

$$D^*(y) = \frac{DD(y)}{P(y)} = -\frac{P'(y)}{P(y)}$$

 \triangleright The Macaulay Duration (D_M) , yet another normalized version:

$$D_M(y) = (1+y)D^*(y) = -(1+y)\frac{P'(y)}{P(y)}$$

Duration is average cash-flow during maturity, or average time at which cash is received. Measures sensitivity to change in yields.

2.4 Convexity Improved approximation of bond price sensitivity given by duration. Taylor series up to the second derivative. Hence: \triangleright Again, we take the second derivative of each term in the sum separately. We get for all $t \in \{1, ..., T\}$.

$$\frac{\mathrm{d}^2}{\mathrm{d}y^2} \left(\frac{C_t}{(1+y)^t} \right) = \frac{\mathrm{d}}{\mathrm{d}y} \left(-\frac{tC_t}{(1+y)^{t+1}} \right) = \frac{t(t+1)C_t}{(1+y)^{t+2}}$$

 \trianglerighteq Hence, the second derivative of the bond price is given by

$$P''(y) = \frac{d^2 P}{dy^2}(y) = \sum_{t=1}^T \frac{t(t+1)C_t}{(1+y)^{t+2}} = \frac{1}{(1+y)^2} \sum_{t=1}^T \frac{t(t+1)C_t}{(1+y)^t}$$
$$= \frac{1}{(1+y)^2} \left(\frac{2C_1}{1+y} + \frac{6C_2}{(1+y)^2} + \dots + \frac{T(T+1)C_n}{(1+y)^T}\right).$$

Dollar convexity (DC) is defined as the second derivative of the bond price with respect to the yield, that means we set

$$DC(y) = \frac{\mathrm{d}^2 P}{\mathrm{d}y^2}(y) = P''(y)$$

Bond convexity

 (κ) is defined to be the second derivative of the bond price with respect to the yield, divided by the bond price, that is

$$\kappa(y) = \frac{DC(y)}{P(y)} = \frac{P''(y)}{P(y)}$$

Note that some practitioners refer to convexity as the second derivative divided by the present value and additionally multiplied by the factor $\frac{1}{2}$

Zero Coupon convexity

$$\kappa(y) = \frac{(T+1)T}{(1+y)^2}$$

Conclusions:

- for small movements, duration (linear approx.) is reasonably good.
- dollar duration measures the negative slope of the tanget to the price-yield curve at the point y_0
- duration is the average time to wait for each payment weighted by their present values

3 Econometrics (volatility)

- vol alludes to the fact that asset price, thus the return, is random
- · vol is a measure of uncertainty of the stock returns
- typical vol of stocks is between 20-50%
- · matters for rebalancing positions

3.1 Stylized facts

- returns of stocks exhibit heteroscedasticity and positive autocorrelation
- volatility clusters large (small) vol is followed by also large(small) vol, of either sign
- autocorrelations are not large and decrease more or less slowly with the lag order

3.2 Intro Unbiased estimator of the variance

$$\widehat{v} = \frac{1}{n-1} \sum_{i=1}^{n} (u_i - \bar{u})^2$$

The annualized volatility $\hat{\sigma}$, under the assumption of Gaussianity, can be estimated as

$$\hat{\sigma} = \frac{\sqrt{v}}{\sqrt{\tau}}$$

 $SE = \frac{\hat{\sigma}}{\sqrt{2n}}$.

3.3 ARCH(m)

- $\bullet\,$ captures dependence in the form of positive autocorrelations in the square residuals
- estimate of the variance is based on LT average variance and m observations.
 The older it is, less weight it's given.

Creation

$$\sigma_n^2 = \sum_{i=1}^m \alpha u_{n-i}^2$$

 \triangleright The coefficient $\alpha_i > 0$ is the weight given to the observation i days ago. Alpha serves to give higher weights to more recent observations

Extension is the assumption there is a long-run variance rate and that it should be given some weight.

$$\sigma_n^2 = \gamma V_L + \sum_{i=1}^m \alpha_i u_{n-i}^2$$

where V_L is the long-run variance rate and γ is the weight assigned to V_L . Often, $\omega=\gamma V_L$. Because the weights must sum to unity, we have

$$\gamma + \sum_{i=1}^{m} \alpha_i = 1.$$

EWMA Model

· designed to track changes in the volatility

Weights α_i decrease exponentially as we move back through time.

$$\alpha_{i+1} = \lambda \alpha_i$$
, where $\lambda \in [0, 1]$

It turns out that this weighting scheme leads to a particularly simple formula for updating volatility estimates:

$$\sigma_n^2 = \lambda \sigma_{n-1}^2 + (1-\lambda)u_{n-1}^2$$

$$\sigma_n^2 = (1 - \lambda) \sum_{i=1}^m \lambda^{i-1} u_{n-i}^2 + \lambda^m \sigma_{n-m}^2$$

Lambda is empirically at 0.94.

GARCH (1,1)

- vol. clustering often generates more extreme values and less central values compared to case when returns are independent, i.e. $\alpha=\beta=0$
- incorporates mean-reversion, whereas EWMA does not

The conditional variance σ_t^2 is calculated from a long-run average variance rate V_L , the past variance σ_{t-1}^2 , and the past return u_{t-1} :

$$\sigma_t^2 = \underbrace{\gamma \cdot V_L}_{\omega} + \beta \cdot \sigma_{t-1}^2 + \alpha \cdot u_{t-1}^2,$$

Where:

- conditional variance σ_{t-1}^2 is calculated from the LT average V_L , past return
- $\bullet \quad 1 = \gamma + \beta + \epsilon$

4 Copulas Correlation measures only linear dependency- copulas solve this problem.

Definition Copulas are functions that separate the marginal distributions from the dependency structure of a multivar distribution

Copulas express dependence on a quantile scale- useful for dependence of extreme outcomes. They facilite bottom-up approach- that is better because we often understand marginal behavior of individual risk factors than the aggregate, whole dependence structure

Definition 2 Coupula is a function with 2 vars and has 3 properties:

- groundedness
- margins
- increasing

4.1 Grounded functions

Definition. We say a function $H: X \times Y \to \mathbb{R}$ is grounded if

$$H(x, m_Y) = H(m_X, y) = 0$$
 for all $(x, y) \in X \times Y$

Example. Let $H: [-1,1] \times [0,\infty] \to \mathbb{R}$ be defined by

$$H(x,y) = \frac{(x+1)(e^y - 1)}{x + 2e^y - 1}$$

Then H is grounded, since H(x,0)=H(-1,y)=0 for all $x\in[-1,1]$ and $y\in[0,\infty]$.

4.2 Margins Suppose now that $M_X = \max X$ and $M_Y = \max Y$ exist. **Definition.** The margins of a function $H: X \times Y \to \mathbb{R}$ are the functions

 $F: X \to \mathbb{R}$ defined by $F(x) = H(x, M_Y)$ and $G: Y \to \mathbb{R}$ defined by $G(y) = H(M_X, y)$

4.3 2-increasing functions

Definition. Let $A=[x_1,x_2]\times [y_1,y_2]\subset X\times Y.$ The H -volume of the rectangle A is defined as

$$V_{H}\left(A\right)=H\left(x_{2},y_{2}\right)-H\left(x_{2},y_{1}\right)-H\left(x_{1},y_{2}\right)+H\left(x_{1},y_{1}\right).$$

We abbreviate this as

$$V_H(A) = \Delta_{y_1}^{y_2} \Delta_{x_1}^{x_2} H(x, y)$$

for the first order differences of H on A. $\Delta_{x_1}^{x_2}H(x,y)=H\left(x_2,y\right)-H\left(x_1,y\right)$ and $\Delta_{y_1}^{y_2}H(x,y)=H\left(x,y_2\right)-H\left(x,y_1\right).$ We call a function $H:X\times Y\to\mathbb{R}$ 2-increasing 1 if $V_H(A)\geq 0$ for all rectangles $A\subset X\times Y$

4.4 Summary of copulas with properties Definition. A function

 $C:[0,1]^2 \to [0,1]$ is called a copula (or more precisely, a two-dimensional copula, or a 2-copula) if 1. C is grounded, that means C(u,0)=C(0,v)=0, 2. Its margins are the identity, that means for every $u,v\in[0,1]$

$$C(u, 1) = u \text{ and } C(1, v) = v$$

3. C is 2 -increasing, that means for every $u_1,u_2,v_1,v_2\in[0,1]$ with $u_1\leq u_2,v_1\leq v_2$ we have

$$C(u_2, v_2) - C(u_2, v_1) - C(u_1, v_2) + C(u_1, v_1) \ge 0$$

4.5 Types of copulas Example. The fundamental examples are: \triangleright Product or independence copula: $\Pi(u,v) = uv, \triangleright$ Lower Fréchet-Hoeffding bound: $M(u,v) = \min(u,v)$. \triangleright Upper Fréchet-Hoeffding bound: $M(u,v) = \min(u,v)$.

4.6 Sklar's theorem Theorem. (Sklar's theorem) 1. Let H be a joint distribution function with margins F and G. Then there exists a copula C such that for

$$H(x, y) = C(F(x), G(y))$$

If F and G are continuous, then C is unique. Otherwise, C is uniquely determined on $\operatorname{Ran} F \times \operatorname{Ran} G$, where $\operatorname{Ran} F$ denotes the range of F. 2. Conversely, if C is a copula and F and G are distribution functions, then the function H, given in Equation (1), defines a joint distribution function with margins F and G. THEN THE ASSOCIATED COPULA IS:

$$C(u, v) = \frac{uv}{v + v + vv}$$

Examples of copulas

all $x, y \in \overline{\mathbb{R}}$

- fundamental couplas: independent copula, upper and lower bounds
- implicit copulas: extracted from known cdf's F via Sklar's theorem. Cannot write C=.... directly.
- explicit copulas: can write C=... directly, but their use is very limited and they are quite unnecessary.

Parametric copulas We can divide parametric couplas into implicit and explicit ones. Sklar's theorem states that we can always find a copula in a parametric distribution function. Let H be the distribution function and let F_1 , F_2 its continuous margins. Then the implied copula is

$$C\left(u_{1},u_{2}\right)=H\left(F_{1}^{\left(-1\right)}\left(u_{1}\right),F_{2}^{\left(-1\right)}\left(u_{2}\right)\right)$$

Such a copula may not have a simple closed form.

Financial interpretation \triangleright Consider 2 daily returns $X=(X_1,X_2)$ with pairwise correlations all equal to $\rho=0.5$.

However, we are unsure about the best joint model.

D If the copula of X is $C_{\rho=0.5}^{\text{Gauss}}$, the probability that on a given day both returns lie below their $\alpha=0.01$ quantiles is (this is a coupla)

$$\mathbb{P}\left[X_1 \leq F_1^{-1}(\alpha), X_2 \leq F_2^{-1}(\alpha)\right] = \mathbb{P}\left[U_1 \leq \alpha, U_2 \leq \alpha\right] \approx 1.29 \times 10^{-3}$$

In the long run such an event will happen approximately once every 775 trading days (\approx once every 3 years

 \triangleright If the copula of X is $C^t_{\nu=4,\rho=0.5}$ (student distribution) however, such an event will happen approximately 2.22 times more often, i.e. \approx once every 1.3 years.!!!!!

5 Guest Lecture - Modelling dependencies

5.1 Pearson correlation

$$\rho\left(X_{1},X_{2}\right)=\frac{\operatorname{Cov}\left(X_{1},X_{2}\right)}{\sqrt{\operatorname{Var}\left(X_{1}\right)\operatorname{Var}\left(X_{2}\right)}}$$

where $\operatorname{Cov}\left(X_{1},X_{2}\right)=E\left(X_{1}X_{2}\right)-E\left(X_{1}\right)E\left(X_{2}\right)$

- parametric
- parametric
 only captures linear dependeces (no tail risk)
- **5.2** Spearman $\rho_S(X_1, X_2) = \rho(F_1(X_1), F_2(X_2))$
 - not sensitive to outliers -good for heavy tailed distributions
- $\begin{array}{ll} \textbf{5.3} & \textbf{Kendall} \ \tau\left(X_1,X_2\right) = E\left[\sin\left(\left(X_1 \bar{X}_1\right)\left(X_2 \bar{X}_2\right)\right) \right] \ \text{where} \ \bar{X}_1 \ \text{and} \ \bar{X}_2 \\ \text{have the same joint distribution, but are independent of} \ X_1 \ \text{and} \ X_2 \end{array}$
 - not sensitive to outliers -good for heavy tailed distributions
 - !appropraite to measure tail behavior

6 Discrete Time Models

6.1 Adaptedness and predictability

We call an indexed family of RV a stochastic process \triangleright A stochastic process $Z=(Z_t)_{t=0,...,T}$ is called $\mathbb F$ -adapted if Z_t is

 $\mathcal{F}_{(\mathsf{J}) \text{ measurable for every } t = 0, \dots, T} . \rightarrow \mathsf{A} \text{ stochastic process } Y = (Y_t)_{t=1, \dots, T} \text{ is called } \mathbb{F} \text{-predictable if } Y_t \text{ is } \mathcal{F}_{(t-x)} - \text{ measurable for every } t = 1, \dots, T \text{ In our model,}$ the price process $\bar{S} = (\bar{S}_t)_{t=0,...,T}$ is \mathbb{F} -adapted.

6.2 Trading strategies

 $\sum \xi_t^k$ represents the number of shares of asset k held during the t^{th} trading period between times t-1 and t. $\sum \xi_t^k S_{t-1}^k$ denotes the amount invested in the k^{th} asset at time t-1, while $\xi_t^k S_t^k$ is the resulting value at time t. D Predictability of the strategy represents the fact that any investment must be allocated at the beginning of each trading period, without anticipating future prices.

Valuation process

The (discounted) value process $V = (V_t)_{t \in \{0,\dots,T\}}$ of a trading strategy $\bar{\xi}$ is given by $\Rightarrow V_0 = \bar{\xi}_1 \cdot \bar{X}_0$ and $V_t = \bar{\xi}_t \cdot \bar{X}_t$ for $t = 1, \dots, T$ V_t represents the portfolio value at

Arbitrage opportunities Arbitrage is a self-financing, risk-free trading strategy such that: $V_0 < 0$; $V_T > 0$

Martingale definition Definition. Let $(\Omega, \mathcal{F}, \mathbb{F}, \mathbb{P})$ be a filtered probability space. Then a stochastic process $M=(M_t)_{t=0,\ldots,T}$ is called a (P,\mathbb{F}) -martingale if

 $\triangleright M$ is \mathbb{F} -adapted,

For every $t \in \{0, \dots, T\}$ $\mathbb{E}_{\mathbf{P}}[\|M_t\|] < \infty$ for every $t \in \{0, \dots, T\}$ $\mathbb{E}_{\mathbf{P}}[M_t \mid \mathcal{F}_s] = M_s$, for all $0 \le s \le t \le T$ Interpretation. The best prediction given the information up until now is exactly the current value. This is our definition of a 'fair game'.

check whether up + d - dp = 0, if not, not a margingale. (probabilities of up-down with the values)

Market is arbitrage free only if $d < r_f < u$

In this one-period binomial model, this means we search for a measure \mathbb{P}^* identified by $(p^*, 1-p^*)$ such that

$$p^* \frac{S_0(1+u)}{1+r} + \left(1 - p^*\right) \frac{S_0(1+d)}{1+r} = S_0$$

This is equivalent to

$$p^*(1+u) + (1-p^*)(1+d) = 1+r.$$

Binomial model

Solving for p* from above

$$p* = \frac{r-d}{u-d} \Leftrightarrow 1-p* = \frac{u-r}{u-d};$$

In the two period tree

$$100 = 200p_{\mathbf{u}}^{*} + 50p_{\mathbf{d}}^{*} \iff p_{\mathbf{u}}^{*} = \frac{1}{3}, p_{\mathbf{d}}^{*} = \frac{2}{3}$$
$$200 = 300p_{\mathbf{u}\mathbf{u}}^{*} + 150p_{\mathbf{u}\mathbf{d}}^{*} \iff p_{\mathbf{u}\mathbf{u}}^{*} = \frac{1}{3}, p_{\mathbf{u}\mathbf{d}}^{*} = \frac{2}{3}$$
$$50 = 60p_{\mathbf{d}\mathbf{u}}^{*} + 20p_{\mathbf{d}\mathbf{d}}^{*} \iff p_{\mathbf{d}\mathbf{u}}^{*} = \frac{3}{4}, p_{\mathbf{d}\mathbf{d}}^{*} = \frac{1}{4}$$

Where $p_u + p_d = 1$; $p_u = 1 - p_d$

6.3 Contingent claims (basically options)

Pay-off CALL
$$\rightarrow (S_T - K)^+ = \max(0, S_T - K)$$
.

Pay-off PUT
$$\rightarrow (S_T - K)^+ = \max(0, K - S_T)$$
.

Contigent claim with maturity T is attaible(replicable) if there exists a self-financing strategy $\bar{\xi}$ whose terminal port. value coincides with C_T , that is

$$C_T = \bar{\xi}_T \cdot \bar{S}_T \quad \mathbb{P}-\text{a.s}$$

 C_T is attainable if and only if its corresponding discounted claim $H_T = \frac{C_T}{(1+r)^T}$ can be

$$H_T = \bar{\xi}_T \cdot \bar{X}_T = V_T = V_0 + \sum_{t=1}^{T} \xi_t \cdot (X_t - X_{t-1})$$

for a self-financing trading strategy $\bar{\xi}$ with value process V.

The replicating strategy $(\overline{\xi_1}, \overline{\xi_2})$ must satisfy the following: 1. The self-financing property $\overline{\xi_1} \cdot \overline{S}_1 = \overline{\xi_2} \cdot \overline{S}_1$:

$$\begin{array}{l} \boldsymbol{\xi}_1^0 \cdot \boldsymbol{B}_1 + \boldsymbol{\xi}_1^1 \cdot \boldsymbol{S}_1 \; (\boldsymbol{\omega}_u) = \boldsymbol{\xi}_2^0 \cdot \boldsymbol{B}_1 + \boldsymbol{\xi}_2^1 \cdot \boldsymbol{S}_1 \; (\boldsymbol{\omega}_u) \; , \\ \boldsymbol{\xi}_1^0 \cdot \boldsymbol{B}_1 + \boldsymbol{\xi}_1^1 \cdot \boldsymbol{S}_1 \; (\boldsymbol{\omega}_d) = \boldsymbol{\xi}_2^0 \cdot \boldsymbol{B}_1 + \boldsymbol{\xi}_2^1 \cdot \boldsymbol{S}_1 \; (\boldsymbol{\omega}_d) \; , \end{array}$$

2. The replicating property $C_2 = \overline{\xi_2} \cdot \overline{S_2}$

$$\xi_{2,u}^{0}\cdot\boldsymbol{B}_{2}+\xi_{2,u}^{1}\cdot\boldsymbol{S}_{2}\left(\boldsymbol{\omega}_{uu}\right)=\boldsymbol{C}_{2}\left(\boldsymbol{\omega}_{uu}\right),\label{eq:equation:equa$$

$$\begin{array}{l} \xi_{2,u}^{0} \cdot B_{2} + \xi_{1,u}^{1} \cdot S_{2}\left(\omega_{ud}\right) = C_{2}\left(\omega_{ud}\right), \\ \xi_{2,d}^{0} \cdot B_{2} + \xi_{2,d}^{1} \cdot S_{2}\left(\omega_{du}\right) = C_{2}\left(\omega_{du}\right), \\ \xi_{2,d}^{0} \cdot B_{2} + \xi_{2,d}^{1} \cdot S_{2}\left(\omega_{dd}\right) = C_{2}\left(\omega_{dd}\right). \end{array}$$

Arbitrage free prices

The goal is to price a discounted contigent claim H_T without introducing arbitrage. If H_T is attainble, the discounted initial investment needed for replicating H_T is $\bar{\xi}_1$ $\bar{X}_0 = V_0 = \mathbb{E}_{P^*}[H_T]$. It can be interpreted as the unique discounted arbitrage-free

6.4 Put-call parity At time T, one can observe that

 $K + (S_T - K)^+ - (K - S_T)^+ = S_T$ This implies that $V_T(P_1) = V_T(P_2)$. ** Put call parity**

$$C_t - P_t = S_t - \frac{KB}{(1+r)^t} \Leftrightarrow KB_t + C_t - P_t = S_t$$

Price of a european call:

$$Price(call) = \frac{1}{1+r} \left(\frac{r-d}{u-d} \left((1+u)S_0 - K \right)^+ + \frac{u-r}{u-d} \left((1+d)S_0 - K \right)^+ \right)$$

6.5 Complete markets A multiperiod arbitrage-free market is called complete if every

 \Rightarrow arbitrage-free model is complete iff there exists just one equivalent martingale

6.6 Replication

Formal description of payoff (left) with the replication (right). We again search for the weights $\xi_{0.1}$.

$$(S_1 - K)^+ = \xi^0 B_1 + \xi^1 S_1 = \xi^0 (1+r) + \xi^1 S_1$$

$$\xi^{0} = \frac{(1+u)(S_{0}(1+d)-K)^{+} - (1+d)(S_{0}(1+u)-K)^{+}}{(1+r)(u-d)},$$

$$\xi^{1} = \frac{(S_{0}(1+u)-K)^{+} - (S_{0}(1+d)-K)^{+}}{(S_{0}(1+d)-K)^{+}},$$

6.7 T-period binomial model

$$S_t(\omega) = S_0 \cdot (1+u)^{j_t(\omega)} (1+d)^{t-j_t(\omega)},$$

where $j_t(\omega)$ is the number of up-moves in a total of t moves, when the event ω occurs We can rewrite simple return as

$$\begin{split} R_t(\omega) &= \frac{S_t(\omega) - S_{t-1}(\omega)}{S_{t-1}(\omega)} = (1+d)\frac{1-Y_t(\omega)}{2} + (1+u)\frac{1+Y_t(\omega)}{2} - 1 \\ &= \frac{1}{2}\left(d\left(1-Y_t(\omega)\right) + u\left(1+Y_t(\omega)\right)\right) = \left\{ \begin{array}{ll} u, & \text{if } Y_t(\omega) = 1 \\ d, & \text{if } Y_t(\omega) = -1 \end{array} \right. \end{split}$$

The price process of the risky asset can be written as

$$S_t = S_0 \prod_{s=1}^t \left(1 + R_s \right).$$

The discounted price process is of the form

$$X_t = \frac{S_t}{B_t} = S_0 \prod_{s=1}^t \frac{1+R_s}{1+r} = \frac{S_0}{(1+r)^t} \prod_{s=1}^t (1+R_s).$$

7 Stochastic calculus and B-S model

- discrete time stoch, procs. (binomial trees) are approximation of the continuos
- continuos time models are limit of discrete time models when "n" goes to infity

7.1 Brownian motion Definition. A one-dimensional standard Brownian motion is a stochastic process $(W_t)_{0 \le t \le T}$ with the following properties:

- 1. $W_0=0$, 2. $t\mapsto W_t(\omega)$ is a continuous function $\mathbb P$ -a.s.. 3. $(W_t)_0\leq t\leq T$ is adapted to the filtration $(\mathcal F_t)_0\leq t\leq T$,
- 4. !!!! the increments $W_t W_s$ are independent and normally distributed with variance t - s and zero mean for any $0 \le s \le t$.

D Intuitively, the change of Brownian motion on the interval $(t, t + \Delta t)$ can be perceived as $\Delta W_t := W_{t+\Delta t} - W_t = \epsilon \sqrt{\Delta t}$, where $\epsilon \sim \mathcal{N}(0, 1)$.

Important properties of Brownian motion

Martingale: Given the information up to s < t the conditional expectation of W_t is

$$\mathbb{E}(W_t \mid \mathcal{F}_s) = W_s$$

Q Quadratic variation: If we divide up the time interval [0, t] into a partition P with

$$\langle W \rangle_t = \lim_{n \to \infty} \sum_{t_i \in P} \left(W_{t_i} - W_{t_{i-1}} \right)^2 \xrightarrow{\text{a.s.}} t$$

Markov property: The conditional distribution of W_t given information up until s < tdepends only on W_S . That is, for any event A and s < t it holds that

$$\mathbb{P}\left(W_{t} \in A \mid \mathcal{F}_{\mathcal{S}}\right) = \mathbb{P}\left(W_{t} \in A \mid W_{\mathcal{S}}\right)$$

Normality: Over finite time increments t_{i-1} to $t_i, W_{t_i} - W_{t_{i-1}}$ is normally distributed with mean zero and variance $t_i - t_{i-1}$. Continuity. The paths of Brownian motion are continuous, there are no discontinuities. Brownian motion is the continuous-time limit of the discrete-time random walk. Non-differentiability: Almost surely (with probability 1), the paths are not differentiable at any point. Therefore, it is not possible to define $\int_0^1 f(s)dW_s$ as $\int_0^t f(s) \frac{dW_s}{ds} ds$, i.e.

7.2 Stochastic integration

Definition. A process $(H_t)_{0 \le t \le T}$ is a simple process if it can be written as

$$H_t(\omega) = \sum_{i=1}^p \phi_i(\omega) \mathbb{I}_{\left(t_{i-1},t_j\right]}(t),$$

where 0 = $t_0 < t_1 < \dots < t_p = T$ and ϕ_i is $\mathcal{F}_{t_{i-1}}$ -measurable

Definition. A stochastic integral of a simple pracess $H = (H_t)_{0 \le t \le T}$ is a process $\left(\int_0^t H_S dW_S\right)_{0 \le t \le T}$ given by

$$\int_0^t H_s dW_s = \sum_{i=1}^p \phi_i \left(W_{t_i \wedge t} - W_{t_{i-1} \wedge t} \right)$$

where $a \wedge b = \min\{a, b\}$

- Note that in particular \(\int_0^t \) 1 dW_S = W_t.
- Given a $(\mathcal{F}_t)_{0 \le t \le T}$ -Brownian motion $(W_t)_{0 \le t \le T}$ and a $(\mathcal{F}_t)_{0 \le t \le T}$ -adapted process $(H_t)_{0 \le t \le T}$, one is able to define the stochastic integral $\left(\int_0^t H_s dW_s\right)_{0 \le t \le T}$ as soon as $\int_0^T H_s^2 dW_s < \infty$.
- the general concept extends that for simple processes.

7.3 Ito's lemma Definition. Let $(\Omega, \mathcal{F}, \mathbb{P}, \mathbb{F})$ be a filtered probability space and $(W_t)_{0 \le t \le T}$ a $\mathbb F$ -Brownian motion. An $\mathbb R$ -valued process $(X_t)_{0 \le t \le T}$ is called an Itoprocess if it can be written as

$$X_t = X_0 + \int_0^t K_s ds + \int_0^t H_s dW_s$$

- where $\trianglerighteq X_0$ is \mathcal{F}_0 -measurable, $(K_t)_0 < t < T$ and $(H_t)_0 < t < T$ are $(\mathcal{F}_t)_0 < t < T$ -adapted processes,
- $-\int_{0}^{t} |K_{s}| ds < \infty$ \mathbb{P} -a.s.,
- Derivative "shorthanded" version: $dX_t = K_t dt + H_t dW_t$

 - dX_t is an increment of the process X_t Brownian motion itself is and Ito process, where W_0 is zero, $K_s=0$ and $H_{\circ} = 1$

All this yields:

$$dY_t = \frac{\partial f}{\partial t}\left(t,X_t\right)dt + \frac{\partial f}{\partial x}\left(t,X_t\right)dX_t + \frac{1}{2}\frac{\partial^2 f}{\partial x^2}\left(t,X_t\right)d\langle X\rangle_t, \ (3)$$

where the differentials are formally computed according to the following rules

$$dt \cdot dt = dt \cdot dW_t = dW_t \cdot dt = 0$$
 and $dW_t \cdot dW_t = dt$

Financial relevance of Ito's lemma: Think of X_t as some underlying financial asset and of $Y_t = f(t, X_t)$ as a new product obtained from the underlying by a possibly nonlinear transformation f.

Then the Ito lemma (3) shows us how the financial product reacts to changes in the underlying. The important message of Ito's lemma is then that when using stochastic models (for X_t), a simple linear approximation is not good enough, one must also account for the second order behavior of X_t .

The trajectories of Brownian motion are of infinite variation (and finite quadratic variation) and the classical chain rule does not apply.

One can view Ito's formula as a purely analytical result which brovides an extension of the chain rule for $f \circ x$ to functions x that have a nonzero quadratic variation

7.4 Black-Scholes Model Assumptions on the assets

- r_f is constant, known and same for all maturities
- log return of stock prices follows an Ito process with constant drift (μ) and volatility (Normal dis.) (also implies Geometric brownian motion)
- · considering only Euro options and no dividends

Assumptions on the market

- · arbitrage free, complete, perfectly liquid and divisible
- frictionless (No TC)
- · delta hedhing is performed continuosly

Formula of B-S derived by Ito

$$S_t = S_0 \cdot \exp\left(\left(\mu - \frac{1}{2}\sigma^2\right)t + \sigma W_t\right)$$

If we want to achieve zero randomness in self financing portfolio, which looks like this: $d\Pi_t = \frac{\partial V}{\partial t}(t,S_t)\,dt + \frac{\partial V}{\partial S}(t,S_t)\,dS_t + \frac{1}{2}\,\sigma^2 S_t^2\,\frac{\partial^2 V}{\partial S^2}(t,S_t)\,dt - \theta_t dS_t$ Then we have to choose the proper weight theta of the short leg so the gain offset each

other. This is achieved when: $\theta_t = \frac{\partial V}{\partial S}(t, S_t) := \Delta_V$

· rebalanced continuosly: dynamic delta hedging

After setting up the initial portfolio, the first der of the portfolio value is:

$$d\Pi_{t} = \left(\frac{\partial V}{\partial t}\left(t, S_{t}\right) + \frac{1}{2}\sigma^{2}S_{t}^{2}\frac{\partial^{2}V}{\partial S^{2}}\left(t, S_{t}\right)\right)dt.$$

Black scholes Partial differentail equaiton (PDE)

We should know the proof. Consult L06,s.37-41. B-S PDE =

$$\frac{\partial V}{\partial t}\left(t,S_{t}\right)+\frac{1}{2}\sigma^{2}S_{t}^{2}\frac{\partial^{2}V}{\partial S^{2}}\left(t,S_{t}\right)+rS_{t}\frac{\partial V}{\partial S}\left(t,S_{t}\right)-rV\left(t,S_{t}\right)=0$$

B-S does not depend on μ!!

7.5 Black-scholes by Martingale

$$C\left(t,S_{t}\right)=S_{t}\Phi\left(d_{1}\right)-Ke^{-r\left(T-t\right)}\Phi\left(d_{2}\right)$$

$$d_1 = \frac{\ln\left(\frac{S_t}{K}\right) + \left(r + \frac{\sigma^2}{2}\right)(T - t)}{\sigma\sqrt{T - t}}$$

$$d_2 = d_1 - \sigma \sqrt{T - t}$$

 $\Phi(\cdot)$ denotes the cdf of a $\mathcal{N}(0,1)$ distributed random variable

$$\Phi(x) := \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{s^2}{2}} ds$$

Alternatively, we can derive it using the put-call parity relation

$$C(t, S_t) - P(t, S_t) = S_t - K \cdot e^{-r(T-t)}$$
.

The put option price is

$$P\left(t,S_{t}\right)=K\cdot e^{-r\left(T-t\right)}\cdot\Phi\left(-d_{2}\right)-S_{t}\cdot\Phi\left(-d_{1}\right).$$

8 Risk measures

Risk is "any event or action that may adversely affect an organization's ability to achieve its objectives and execute its strategies

Approaches to Risk measurement:

- notional-amount approach: the risk of a portfolio is defined as the (weighted) sum of the notionl values of the individual securities
- factor sensitivity measures: give the change in portfolio value for a given predertmined change in one of the underlying risk factors
- scenario-based risk measures: one considers a number of future scenarios and measures the maximum loss of the portfolio under these scenarios
- risk measures based on loss distributions: stat. quantities describin characteristics of the loss distribution of the portfolio

In our (CARM) interpreation, risk measures how much capital to inject to become adequately capitalized (under some regulations)

Three pillar concept under Basel 2

- minimal capital charge: requirements for the calculation of the regulatory capital to ensure that a bank holds sufficient capital for its credit risk in the banking book its market risk in the trading book and operational risk
- supervisory review process: local regulators review the check and balances put in place for capital adequacy assessments, ensure that banks have adequate reg capital and perform stress tests of a bank's capital adequacy
- market discipline: banks are required to make their risk management processes more transparent

Reasons for Corp Risk management (turning M&M upside down)

- RM can reduce taxes
- RM is beneficial coz of better access to cap, markets
- RM increases value in presence of bankrupcy costs (lower excepted value coz of lower P(default))
- RM reduces impact of costly external financing

8.1 Acceptance set Definition. A set A of random variables is called an acceptance set if

 $\triangleright A$ is non-trivial, i.e. $A \neq \emptyset$ and $A \subseteq X$, $\triangleright A$ is monotone, i.e. $X \in A$, $Y > X \Longrightarrow Y \in A$ (if X us acceptable and Y=X+100, X is

By Y > X we mean either $Y(\omega) > X(\omega)$ for all $\omega \in \Omega$, or \mathbb{P} -almost surely. The acceptance set is specified by the regulator.

An acceptance set is called: (L08, 17 for pictures)

- cone if $X_T \in \mathcal{A} \Longrightarrow \forall \lambda > 0 : \lambda X_T \in \mathcal{A}$ convex if $X_T, Y_T \in \mathcal{A} \Longrightarrow \forall \lambda \in [0,1] : \lambda X_T + (1-\lambda)Y_T \in \mathcal{A}$

8.2 VaR $VaR_{\alpha}(X) = -\mu - \sigma\phi^{-1}(\alpha)$

• Finding var: order the outcomes (returns/cap positions) in a decreasing order. Start from the first and add probabilites until they are stricly greater than α . Once they are, take the corresponsing $X_n * -1$ and that is VaR at level alpha.

Remarks

- \bullet VaR does not account for severity of losses with prob 1 α
- VaR does not account for diversification
- VaR is not convex, hence not coherent might penalize diversification
- Simon Johnson (MIT):" VaR misses everything that matters when it matters"

8.3 Expected shortfal ES

$$\mathcal{A}_{\mathrm{ES}_{\alpha}} := \left\{ X \in \mathcal{X} \mid \frac{1}{\alpha} \int_{0}^{\alpha} \mathrm{VaR}_{\beta}(X) \mathrm{d}\beta \leq 0 \right\}$$

$$ES_{\alpha}(X) = -\mu + \frac{\sigma}{\alpha} \Phi' \left(\Phi^{-1}(\alpha)\right)$$

An acceptance set \mathcal{A} is said to be coherent if it is

- convex: $X, Y \in \mathcal{A}, 0 < \lambda < 1 \Longrightarrow \lambda X + (1 \lambda)Y \in \mathcal{A},$
- conic: $X \in A$, $\lambda \ge 0 \Rightarrow \lambda X \in A$ Financial interpretation:
- Convexity means that portfolios of acceptable positions are still acceptable,
- i.e. acceptability is preserved by diversification.
- Conicity means that acceptability is independent of the position size.

9 Mean-variance Portfolio/Optimization MVP

• we are risk averse but like money. Described by utility functions. Second deriv is < 0. Thus, function mus be increasing and convave (slide 5)

9.1 Diversification principle

$$X = \left\{ \begin{array}{ll} 2m & \text{coin shows heads} \\ 0 & \text{coin shows tails.} \end{array} \right. \quad Y = \left\{ \begin{array}{ll} 0 & \text{coin shows heads} \\ 2m & \text{coin shows tails.} \end{array} \right.$$

Play both at once. Invest $\frac{m}{2}$ in either game, total of m invested. The new payoff is given by

$$\frac{1}{2}X + \frac{1}{2}Y = \begin{cases} m & \text{coin shows heads} \\ m & \text{coin shows tails.} \end{cases}$$

So in either case, we get our money back! The payoff is constant. Hence,

Expectation:
$$\mathbb{E}\left[\frac{1}{2}(X+Y)\right] = \frac{1}{2} \cdot m + \frac{1}{2} \cdot m = m$$
 Variance:
$$\mathbb{V}\left[\frac{1}{2}(X+Y)\right] = \frac{1}{2} \cdot m^2 + \frac{1}{2} \cdot m^2 - m^2 = 0$$

We achieved diversification because of perfect negative correlation, which is a necessary

$$\rho x, Y := \operatorname{corr}(X, Y) := \frac{\operatorname{Cov}(X, Y)}{\sqrt{\mathbb{V}[X]\mathbb{V}[Y]}} := \frac{\mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])]}{m \cdot m}$$

$$= \frac{\mathbb{E}\left[XY - mX - mY + m^2\right]}{m^2} = \frac{\mathbb{E}[XY] - m^2 - m^2 + m^2}{m^2}$$

$$= \frac{0 - m^2}{m^2} = -1$$

9.2 Always to remember assumptions

- · preference to increase consumption
- risk-aversion
- · therefore, utility functions are concave
- an investor maximies the portfolio's expected return for a given level of variance or vice versa, minimses the variance for a given level of

9.3 Var-Covar matrix

• Finally, we need one more ingredient. The covariance between two returns $\ell, m \in \{1, \ldots, M\}$ is defined as $Cov(R_{T,\ell}, R_{T,m}) =$ $\sum_{n=1}^{N} p_n \left(R_{T,\ell} \left(\omega_n \right) - \mathbb{E} \left[R_{T,\ell} \right] \right) \left(R_{T,m} \left(\omega_n \right) - \mathbb{E} \left[R_{T,m} \right] \right)$ We assemble the individual covariances in the covariance matrix $\operatorname{Cov}\left(\mathbf{R}_{T}\right)\in\mathbb{R}^{M imes M}$ of the

$$\begin{bmatrix} \operatorname{Cov}\left(R_{T,1},R_{T,1}\right) & \operatorname{Cov}\left(R_{T,1},R_{T,2}\right) & \cdots & \operatorname{Cov}\left(R_{T,1},R_{T,M}\right) \\ \operatorname{Cov}\left(R_{T,2},R_{T,1}\right) & \operatorname{Cov}\left(R_{T,2},R_{T,2}\right) & \cdots & \operatorname{Cov}\left(R_{T,2},R_{T,M}\right) \\ \vdots & \vdots & \ddots & \vdots \\ \operatorname{Cov}\left(R_{T,M},R_{T,1}\right) & \operatorname{Cov}\left(R_{T,M},R_{T,2}\right) & \cdots & \operatorname{Cov}\left(R_{T,M},R_{T,M}\right) \\ \mathbf{Note\ that\ } \operatorname{Cov}\left(R_{T,m},R_{T,m}\right) = \mathbb{V}\left[R_{T,m}\right], \text{ and thus, the diagonal of } \\ \operatorname{Cov}\left(\mathbf{R}_{T}\right) \text{ is the\ variance\ vector, diag}\left(\operatorname{Cov}\left(\mathbf{R}_{T}\right)\right) = \mathbb{V}\left[R_{T}\right]. \\ \end{bmatrix}$$

9.4 Implementation portfolio is a linear combination of all individual assets. Coefficient α denote the weights. We investing all our wealth, i.e. sum of alphas = 1 Simple return of the portfolio:

$$\begin{split} R_T^\alpha &= \frac{P_T^\alpha}{P_0^\alpha} - 1 = \frac{\sum_{m=1}^M \frac{\alpha_m W}{P_{0,m}} P_{T,m}}{W} - \sum_{m=1}^M \alpha_m \\ &= \sum_{m=1}^M \alpha_m \underbrace{\left(\frac{P_{T,m}}{P_{0,m}} - 1\right)}_{=R_{T,m}} = \sum_{m=1}^M \alpha_m R_{T,m}. \end{split}$$

$$\mathbb{E}\left[\boldsymbol{R}_{T}^{\alpha}\right] = \sum_{n=1}^{N} p_{n} R_{T}^{\alpha}\left(\omega_{n}\right)$$

Portfolio's return as linear combination of individual expectations.

Showing that expectation of the portfolio's returns

Based on the result from the previous exercise, we can write R_T^{α} as the linear combination of the individual returns,

$$\begin{split} \mathbb{E}\left[\boldsymbol{R}_{T}^{\alpha}\right] &= \sum_{n=1}^{N} p_{n} \boldsymbol{R}_{T}^{\alpha}\left(\boldsymbol{\omega}_{n}\right) = \sum_{n=1}^{N} p_{n} \sum_{m=1}^{M} \alpha_{m} \boldsymbol{R}_{T,m}\left(\boldsymbol{\omega}_{n}\right) \\ &= \sum_{m=1}^{M} \alpha_{m} \underbrace{\sum_{n=1}^{N} p_{n} \boldsymbol{R}_{T,m}\left(\boldsymbol{\omega}_{n}\right)}_{=\mathbb{E}\left[\boldsymbol{R}_{T,m}\right]} = \sum_{m=1}^{M} \alpha_{m} \mathbb{E}\left[\boldsymbol{R}_{T,m}\right] = \boldsymbol{\alpha}^{T} \mathbb{E}\left[\mathbf{R}_{T}\right]. \end{split}$$

Variance of the portfolio's returns (proof s.59)

$$\mathbb{V}\left[R_{T}^{\alpha}\right] = \sum_{\ell=1}^{M} \sum_{m=1}^{M} \alpha_{\ell} \alpha_{m} \operatorname{Cov}\left(R_{T,\ell}, R_{T,m}\right) = \boldsymbol{\alpha}^{\top} \operatorname{Cov}\left(\mathbf{R}_{T}\right) \boldsymbol{\alpha}$$

Constrained optimasation (Markowitz' port. optimization problem / MVO) $_{\rm M\text{-}V}$ $_{\rm is~a}$ constrained optimisation problem:

- minimise or maxise an objective function over all possible portfolio
- combinations, hence, over all possible weight vectors α
- The optimisations are subject to a set of constraints

C.

First way: minimize risk for set return MV-Min We only have a budget (wealth) and an objective constraint (fixing return). Arbitrary short-selling is allowed.

$$\mathcal{C}_{\mathrm{E}} = \left\{\mathbf{1}^{\top} \boldsymbol{\alpha} = 1, \quad \mathbb{E}\left[R_{T}^{\alpha}\right] \geq E^{*} \text{ for some fixed } E^{*} \in \mathbb{R}\right\}; \text{ where } E^{*} \text{is our required returns } \mathbf{E}_{T}^{*} = \mathbf{E}_{T}^{*}$$

Choosing too large required return can lead to empty set. In words, the first contraint (budget) requires alphas to sum up to 1. The second say expected return is no less than the target.

Second way: maximize return for set risk MV-Max

$$\mathcal{C}_{ ext{V}} = \left\{ \mathbf{1}^{ extsf{T}} \mathbf{\alpha} = 1, \quad \mathbb{V} \left[R_t^{\alpha}
ight] \leq \mathbf{V}^* \text{ for some fixed } V^* > 0
ight\} \ .$$

Example

Stock	Expected Return	Standard Deviation
A	$\mu_A = 10\%$	$\sigma_A = 5\%$
В	$\mu_B = 15\%$	$\sigma_B = 10\%$

Correlation $\rho = -1$

$$\mu = \left(\begin{array}{c} \mu_A \\ \mu_B \end{array} \right) = \left(\begin{array}{c} 0.1 \\ 0.15 \end{array} \right) \text{ and } \Sigma = \left(\begin{array}{c} \sigma_A^2 & \sigma_A \sigma_B \rho \\ \sigma_A \sigma_B \rho & \sigma_B^2 \end{array} \right) = \left(\begin{array}{c} 0.0025 & -0.005 \\ -0.005 & 0.01 \end{array} \right)$$

Setting the weights of the portfolio $\omega=(\omega_A,\omega_B)^{\top},$ the variance of the portfolio is given by

$$\begin{split} \sigma_p^2 &= \boldsymbol{\omega}^\top \boldsymbol{\Sigma} \boldsymbol{\omega} = \left(\begin{array}{cc} \boldsymbol{\omega}_A & \boldsymbol{\omega}_B \end{array} \right) \left(\begin{array}{cc} \sigma_A^2 & \sigma_A \sigma_B \rho \\ \sigma_A \sigma_B \rho & \sigma_B^2 \end{array} \right) \left(\begin{array}{cc} \boldsymbol{\omega}_A \\ \boldsymbol{\omega}_B \end{array} \right) \\ &= \boldsymbol{\omega}_A^2 \sigma_A^2 + 2 \boldsymbol{\omega}_A \boldsymbol{\omega}_B \sigma_A \sigma_B \rho + \boldsymbol{\omega}_B^2 \sigma_B^2 \\ &= \boldsymbol{\omega}_A^2 \cdot 0.0025 - \boldsymbol{\omega}_A \boldsymbol{\omega}_B \cdot 0.01 + \boldsymbol{\omega}_B^2 \cdot 0.01 \\ &= \left(0.05 \boldsymbol{\omega}_A - 0.1 \boldsymbol{\omega}_B \right)^2 \end{split}$$