ルベーグ積分の定義

1. 単関数とその積分

単関数の定義

集合 E 上の非負値関数 ϕ が**単関数**であるとは、有限個の非負実数 a_1,a_2,\ldots,a_n と互いに素な可測集合 E_1,E_2,\ldots,E_n が存在して、

$$\phi(x) = \sum_{i=1}^n a_i \chi_{E_i}(x)$$

と表されることである。ここで χ_{E_i} は集合 E_i の特性関数である。

単関数の積分

可測集合 E 上の非負単関数 $\phi(x) = \sum_{i=1}^n a_i \chi_{E_i}(x)$ に対して、そのルベーグ積分を

$$\int_E \phi\, d\mu = \sum_{i=1}^n a_i \mu(E_i\cap E)$$

で定義する。ここで μ は測度である。

2. 非負可測関数の積分

非負可測関数のルベーグ積分

可測集合 E 上の非負可測関数 f に対して、そのルベーグ積分を

$$\int_E f \, d\mu = \sup \left\{ \int_E \phi \, d\mu : 0 \leq \phi \leq f, \phi$$
 は単関数 $ight\}$

で定義する。

可積分性

非負可測関数 f が E 上で**可積分**であるとは、 $\int_E f \, d\mu < +\infty$ が成り立つことである。

3. 一般の可測関数の積分

正部と負部

可測関数 f に対して、その**正部** f^+ と**負部** f^- を

$$f^+(x) = \max\{f(x), 0\}, \quad f^-(x) = \max\{-f(x), 0\}$$

で定義する。このとき $f=f^+-f^-$ かつ $|f|=f^++f^-$ が成り立つ。

一般の可測関数のルベーグ積分

可測集合 E 上の可測関数 f に対して、 f^+ と f^- がともに E 上で可積分であるとき、f は E 上で**可積分**であるといい、そのルベーグ積分を

$$\int_E f\,d\mu = \int_E f^+\,d\mu - \int_E f^-\,d\mu$$

で定義する。

4. 重要な性質

線形性

f,g が可積分ならば、任意の実数 a,b に対して

$$\int_E (af+bg)\,d\mu = a\int_E f\,d\mu + b\int_E g\,d\mu$$

単調性

 $f \leq g$ a.e. かつ両関数が可積分ならば

$$\int_E f \, d\mu \le \int_E g \, d\mu$$

可測集合の分割

 $E=E_1\cup E_2$ かつ $E_1\cap E_2=\emptyset$ ならば

$$\int_E f\,d\mu = \int_{E_1} f\,d\mu + \int_{E_2} f\,d\mu$$

5. 収束定理

単調収束定理(Monotone Convergence Theorem)

非負可測関数列 $\{f_n\}$ が単調増加し、 $f_n o f$ a.e. ならば

$$\lim_{n o\infty}\int_E f_n\,d\mu=\int_E f\,d\mu$$

疲労収束定理(Fatou's Lemma)

非負可測関数列 $\{f_n\}$ に対して

$$\int_E \liminf_{n o\infty} f_n\,d\mu \leq \liminf_{n o\infty} \int_E f_n\,d\mu$$

優収束定理(Dominated Convergence Theorem)

可測関数列 $\{f_n\}$ が f に a.e. 収束し、可積分関数 g が存在して $|f_n| \leq g$ a.e. が全ての n に対して成り立つならば

$$\lim_{n o\infty}\int_E f_n\,d\mu=\int_E f\,d\mu$$