ASSIGNMENT -4

RETAIL STORE STOCK INVENTORY ANALYTICS

TEAM ID: PNT2022TMID11384

Answer the questions or complete the tasks:

1. DOWNLOAD THE DATA SET:

https://drive.google.com/file/d/1slv-7x7CE0zAPAt0Uv-6pbO2ST2LVp5u/view

2. LOADING THE DATASET

1, L	UADII	NG THE D	ATASET						
in in in	nport nport nport	seaborn oad the d	np ib.pyplot as sns ataset						
	ata = ata.he		csv(' <mark>abalo</mark>	ne.csv')					
	ata.he	ead()				Shucked weight	Viscera weight	Shell weight	Rings
	Sex	ead() Length				Shucked weight 0.2245	Viscera weight 0.1010	Shell weight 0.150	Rings
da	Sex	Length	Diameter	Height	Whole weight	153	17		- 8
0 1	Sex	Length 0.455 0.350	Diameter 0.365 0.265	Height	Whole weight 0.5140	0.2245	0.1010 0.0485	0.150	15
0 1 2	Sex) M	Length 0.455 0.350 0.530	Diameter 0.365 0.265 0.420	Height 0.095 0.090	Whole weight 0.5140 0.2255	0.2245 0.0995	0.1010 0.0485	0.150 0.070	15 7

3. PERFORM THE VISUALIZATION

4. PERFORM DESCRIPTIVE STATISTICS ON THE DATASET

5. CHECK FOR MISSING VALUES AND DEAL WITH THEM

6. FIND THE OUTLIERS AND REPLACE THEM OUTLIERS

7. CHECK FOR CATEGORICAL COLUMNS AND PERFORM ENCODING

8. SPLIT THE DATA INTO DEPENDENT AND INDEPENDENT VARIABLES

```
8.SPLIT THE DATA INTO DEPENDENT AND INDEPENDENT VARIABLES
x=data.drop(columns= ['Rings'])
y=data['Rings']
x
       Sex Length Diameter Height Whole weight Shucked weight Viscera weight Shell weight
   0 1 0.455 0.365 0.095 0.5140 0.2245 0.1010 0.1500
        1 0.350 0.265 0.090
                                0.2255
                                           0.0995
   2 0 0.530 0.420 0.135 0.6770 0.2565 0.1415 0.2100
         1 0.440
                  0.365 0.125
                                 0.5160
                                            0.2155
   4 2 0.330 0.255 0.080 0.2050 0.0895 0.0395 0.0550
   4172 0 0.565 0.450 0.165 0.8870 0.3700 0.2390 0.2490
   4173
                  0.440 0.135
   4174 1 0.600 0.475 0.205 1.1760
                                          0.5255
                                                               0.3080
                                                       0.2875
   4175 0 0.625
                 0.485 0.150
                                 1.0945
                                           0.5310
                                                       0.2610
                                                                 0.2960
   4176 1 0.710 0.555 0.195 1.9485 0.9455 0.3765 0.4950
   4177 rows × 8 columns
         9
10
7
        ..
11
10
9
10
12
Rings, Length: 4177, dtype: int64
```

9. SCALE THE INDEPENDENT VARIABLES

11. BUILD THE MODEL

10. SPLIT THE DATA INTO TRAINING AND TESTING

```
10.SPLIT THE DATA INTO TRAINING AND TESTING

[ ] from sklearn.model_selection import train_test_split
    x_train, x_test, y_train, y_test = train_test_split(x,y, test_size = 0.2)
    print(x_train.shape, x_test.shape)

(3341, 8) (836, 8)
```

```
11.BUILD THE MODEL

[ ] from sklearn.linear_model import LinearRegression

MLR=LinearRegression()
```

12. TRAIN THE MODEL

```
12.TRAIN THE MODEL

[ ] MLR.fit(x_train,y_train)

LinearRegression()
```

13. TEST THE MODEL

```
① y_pred=NLR.predict(x_test)
y_pred
② array([14.44666767, 7.40745222, 10.78252097, 6.67673552, 8.36060517,
9.931373711, 7.5379131, 8.27735969, 12.08060319, 12.29838434,
8.29574382, 10.00474082, 10.11213838, 20.4456516, 18.4028657,
9.04140145, 8.15149249, 11.17728349, 7.8817167, 9.23627153,
7.22475315, 10.05460627, 8.06954084, 5.182478641, 8.4747472,
11.28292888, 11.08504627, 7.77967711, 9.23899781, 8.48185467,
6.59464356, 9.0556273, 9.01579937, 10.159581, 10.19746124, 8.4747472,
11.28292888, 11.08506262, 7.73530868, 11.08012272, 9.44667903,
9.44418147, 7.4766047, 11.18558831, 13.0247444, 9.226265344,
11.99434293, 10.43123452, 10.2767995, 6.11983576, 6.7951823,
10.05528377, 8.53264124, 8.64305494, 9.92171555, 7.89216892,
6.07840864, 9.4446424, 9.9846442, 9.85339978, 8.6755204, 8.0879124,
10.96333799, 7.27673389, 7.60319648, 6.64672865, 31.12749717,
7.90163657, 12.47507082, 7.37144115, 6.5972567, 8.20579124,
8.64657198, 6.53963896, 6.45664389, 8.75786142, 8.18193399,
8.64657198, 6.35963896, 6.45664389, 8.75786142, 8.18193399,
8.64657138, 6.35963896, 6.45664389, 8.75786124, 7.75074245, 9.11285711295,
13.43047766, 7.39556291, 15.7252517, 6.65972567, 8.2367526, 8.8772516, 7.39556291, 15.7252517, 6.65972567, 8.2367526, 8.7725161, 10.15130117, 10.33317090, 8.890774, 7.756742459,
11.28527425, 13.06151677, 13.0633673, 11.7756974, 7.7451752, 7.9111298, 8.15751611, 7.40099784, 8.57641189, 7.99613517, 10.81561127, 9.4256379, 9.80713187, 10.02024844, 9.50202831, 13.15226337, 7.80209981, 10.1513017, 10.20195302, 12.16193172, 9.9512437, 10.06718084,
```