Out[]: <matplotlib.collections.PathCollection at 0x1a1b2a80b50>

ML LAB ASSIGNMENT

SUPRATIM NAG -- CSE-AIML/22/057 -- GROUP-B

Q-4:Implementation of Multivariate Linear Regression

(a)Using my own dataset containing information of BMI, Age,Cholesterol Level,Blood Pressure and Heart Rate. Spliting the dataset into training and test dataset in 80:20 ratio. Then training the Linear Regression model on the training dataset and predict the Age for test dataset. (Multivariate Linear Regression)

```
In [ ]: import pandas as pd
        import matplotlib.pyplot as plt
        from sklearn.model_selection import train_test_split
        from sklearn.linear_model import LinearRegression
In [ ]: file_path="C:\\Users\SUPRATIM NAG\OneDrive\Documents\ML\Personal_Datasets\Dataset.csv"
        df=pd.read_csv(file_path)
In [ ]: X = df[[ 'Blood Pressure', 'Cholesterol Levels', 'Heart Rate', 'BMI']]
        Y = df['Age']
In [ ]: X.head(5)
Out[ ]:
           Blood Pressure Cholesterol Levels Heart Rate BMI
         0
                      130
                                       250
                                                   72 28.0
         1
                      110
                                       150
                                                   76 24.0
         2
                      140
                                       200
                                                   80 30.0
         3
                      160
                                       220
                                                   88 32.0
         4
                      120
                                       180
                                                   74 27.0
In [ ]: Y.head(5)
Out[]: 0
              65
         1
              42
         2
              58
         3
              71
              35
         Name: Age, dtype: int64
In [ ]: plt.scatter(df['Blood Pressure'],df['Age'])
```


In []: plt.scatter(df['Cholesterol Levels'],df['Age'])

Out[]: <matplotlib.collections.PathCollection at 0x1a1b2b12810>

In []: plt.scatter(df['Heart Rate'],df['Age'])

Out[]: <matplotlib.collections.PathCollection at 0x1a1b2a8f510>

In []: plt.scatter(df['BMI'],df['Age'])

Out[]: <matplotlib.collections.PathCollection at 0x1a1b4d36490>

In []: x_train,x_test,y_train,y_test = train_test_split(X,Y,test_size=0.20)
len(x_train)

Out[]: **80**

In []: x_train

Out[]:		Blood Pressure	Cholesterol Levels	Heart Rate	ВМІ
	79	130	205	82	26.0
	85	145	245	90	32.0
	98	120	190	75	23.0
	50	130	220	85	28.0
	78	120	180	80	19.0
	29	125	180	80	25.0
	71	130	220	85	28.0
	25	140	220	85	32.0
	66	100	190	70	25.0
	34	100	120	80	21.0

80 rows × 4 columns

```
In [ ]: y_train
Out[ ]: 79
          85
                63
          98
                30
          50
                50
          78
                30
          29
                50
          71
                60
          25
                68
          66
                48
          34
                38
         Name: Age, Length: 80, dtype: int64
In [ ]: multi_var = LinearRegression()
         multi_var.fit(x_train,y_train)
Out[ ]:
          LinearRegression
         LinearRegression()
In [ ]: y_pred=multi_var.predict(x_test)
         y_pred
Out[]: array([58.01322814, 55.66418093, 57.0144665, 38.60591063, 56.51354561,
                 48.19670038,\ 63.9552295\ ,\ 52.07757406,\ 31.18817915,\ 44.62714621,
                 61.18601235, 33.26635952, 34.82613107, 51.87202483, 54.26950593, 47.11051299, 59.33642522, 39.59605936, 49.24595048, 57.98066282])
In [ ]: y_test
```

```
Out[ ]: 88
             42
             35
       8
        5
             60
        60
            52
        0
             65
        74
             35
        42
             60
        23
             52
        86
             32
        69
             45
        12
             60
        70
             30
        93
             30
        94
            50
        17
           70
            35
        4
        62
            65
        44
            35
        96
           70
        56 62
```

Name: Age, dtype: int64

In []: x_test

Out[]:		Blood Pressure	Cholesterol Levels	Heart Rate	вмі
	88	135	230	90	33.0
	8	140	180	85	30.0
	5	135	230	78	29.0
	60	105	185	80	26.0
	0	130	250	72	28.0
	74	125	190	80	27.0
	42	140	250	75	32.0
	23	130	200	75	27.0
	86	105	150	70	18.0
	69	120	200	80	25.0
	12	135	180	75	35.0
	70	110	150	70	18.0
	93	110	170	80	21.0
	94	130	220	80	27.0
	17	130	170	80	32.0
	4	120	180	74	27.0
	62	135	250	85	32.0
	44	110	150	65	23.0
	96	125	200	70	25.0
	56	130	230	70	30.0

```
In [ ]: r_sq=multi_var.score(X,Y)
        print(r_sq)
```

0.6303574846154316