

FACULTAD DE CIENCIAS EXACTAS, INGENIERÍA Y AGRIMENSURA ESCUELA DE CIENCIAS EXACTAS Y NATURALES DEPARTAMENTO DE CIENCIA DE LA COMPUTACIÓN COMPLEMENTOS DE MATEMÁTICA II

Práctica 1: Relaciones

Relaciones funcionales

- 1. Determinar si cada una de las siguientes relaciones es una función. En caso de que lo sea, determinar su imagen:
 - a) $\mathcal{R}_1 = \{(x, y) \in \mathbb{Z} \times \mathbb{Z} : y = x^2 + 7\}.$
 - **b)** $\mathcal{R}_2 = \{(x, y) \in \mathbb{R} \times \mathbb{R} : y^2 = x\}.$
 - c) $\mathcal{R}_3 = \{(x, y) \in \mathbb{R} \times \mathbb{R} : y = 3x + 1\}.$
- 2. Sea f una relación funcional. Demostrar que f^{-1} es una relación funcional si y solo si f es inyectiva.
- **3.** Mostrar que la composición de relaciones coincide con la composición de funciones en el sentido usual. Es decir, si $f: A \to B$ y $g: B \to C$ son funciones, entonces la relación dada por $g \circ f = \{(a,c) \in A \times C : \exists b \in B, f(a) = b \land g(b) = c\}$ es una función.
- **4.** Sea $f:A\to B$ función y $A'\subseteq A$. Determinar si las siguientes afirmaciones son verdaderas o falsas:
 - a) Si f es inyectiva (resp. sobreyectiva), entonces $f_{|A'}$ es inyectiva (resp. sobreyectiva).
 - b) Si $f_{|A'|}$ es inyectiva (resp. sobreyectiva), entonces f es inyectiva (resp. sobreyectiva).
- **5.** Mostrar que hay una correspondencia biyectiva entre las relaciones de A en B y las funciones de A en $\mathcal{P}(B)$.

Relaciones en un conjunto

- 6. En cada uno de los siguientes casos, determinar si la relación \mathcal{R} en \mathbb{Z} es reflexiva, simétrica, antisimétrica, o transitiva.
 - a) $x\mathcal{R}y \Leftrightarrow x = y^2$.
 - **b)** $x\mathcal{R}y \Leftrightarrow x > y$.
 - c) $x\mathcal{R}y \Leftrightarrow x \geq y$.
 - d) $x\mathcal{R}y \Leftrightarrow x+y \text{ es par.}$
 - e) $x\mathcal{R}y \Leftrightarrow x-y$ es impar.
- 7. Sea \mathcal{R} y \mathcal{S} relaciones en A. Determinar la validez de los siguientes enunciados:
 - a) Si \mathcal{R} y \mathcal{S} son reflexivas, entonces:
 - i. $\mathcal{R} \cup \mathcal{S}$ es reflexiva.
 - ii. $\mathcal{R} \cap \mathcal{S}$ es reflexiva.
 - iii. $\mathcal{R} \circ \mathcal{S}$ es reflexiva.

Práctica 1: Relaciones Página 1

- b) Repetir el ejercicio anterior sustituyendo "reflexiva" por simétrica, antisimétrica, o transitiva.
- c) Si \mathcal{R} es reflexiva (resp. simétrica, antisimétrica, transitiva), entonces \mathcal{R}^{-1} también lo es.
- 8. Sean \mathcal{R} y \mathcal{S} relaciones en A tal que $\mathcal{R} \subseteq \mathcal{S}$, y sea $A' \subseteq A$. Determinar si las siguientes afirmaciones son verdaderas o falsas:
 - a) Si \mathcal{R} es reflexiva (resp. simétrica, antisimétrica, o transitiva), entonces \mathcal{S} también lo es.
 - b) Si \mathcal{S} es reflexiva (resp. simétrica, antisimétrica, o transitiva), entonces \mathcal{R} también lo es.
 - c) Si \mathcal{R} es reflexiva (resp. simétrica, antisimétrica, o transitiva), entonces $\mathcal{R}_{|A'\times A'|}$ también lo es.

Relaciones de equivalencia

- $\bf 9.$ Analizar en cada caso si la relación dada en el conjunto A es de equivalencia. En caso de serlo, describir su conjunto cociente:
 - a) $A = \mathbb{Z}, x \sim y \Leftrightarrow x y$ es un entero par.
 - **b)** $A = \mathbb{R}, x \sim y \Leftrightarrow xy > 0.$
 - c) $A = \mathbb{R}, x \sim y \Leftrightarrow xy > 0.$
 - **d)** $A = \mathbb{R} \times \mathbb{R}$, $(a, b) \sim (c, d) \Leftrightarrow a + d = c + b$.
- **10.** Sea \sim una relación de equivalencia en A y $a, b \in A$. Demostrar:
 - a) $\overline{a} \neq \emptyset$.
 - **b)** $a \sim b$ si y solo si $\overline{a} = \overline{b}$.
 - c) $a \nsim b$ si v solo si $\overline{a} \cap \overline{b} = \emptyset$.
- 11. Demostrar que hay una correspondencia biyectiva entre relaciones de equivalencia en A y particiones de A.
- 12. Considerar en \mathbb{Z} la relación de congruencia módulo n, esto es, $x \sim y \Leftrightarrow x y$ es múltiplo de n.
 - a) Mostrar que \sim es una relación de equivalencia.
 - **b)** Mostrar que \sim induce la partición $\mathbb{Z} = \overline{0} \cup \overline{1} \cup \ldots \cup \overline{n-1} = \bigcup_{i=0}^{n-1} \overline{i}$.
- 13. Dada una función $f: A \to B$, mostrar que

$$\ker(f) \doteq \{(a, a') \in A \times A : f(a) = f(a')\}\$$

es una relación de equivalencia en A.

- 14. Dar una definición de $\ker(f)$ en términos de f, la composición y la inversa de relaciones.
- 15. Sea espar : $\mathbb{N} \to \mathbb{B}$ la función que retorna valor true en los pares y valor false en los impares. Calcular $\mathbb{N}/\ker(\texttt{espar})$.
- 16. Mostrar que toda relación de equivalencia es el kernel de una función.
- 17. Teorema de factorización. Dada una función $f:A\to B$ y una relación de equivalencia $\sim\subseteq\ker(f)$, probar que existe una única función $\tilde{f}:A/\sim\to B$ tal que $f=\tilde{f}\circ\pi$. Donde $\pi:A\to A/\sim$ se define como $\pi(a)=\overline{a}$ para todo $a\in A$.

2

Relaciones de preorden

- 18. Mostrar que las siguentes relaciones son preórdenes, y determinar si existen máximos y mínimos.
 - a) (\mathbb{Z}, \leq) .
 - **b)** $(\mathbb{Z}, |)$, donde $a|b \Leftrightarrow \exists c \in \mathbb{Z} : b = ac$.
 - c) $(\mathcal{P}(X), \subseteq)$ para todo conjunto X.
- 19. Lema de Yoneda. Sean (P, \leq) un conjunto preordenado. Mostrar:

$$(x \le y) \Leftrightarrow (\forall z. \ (z \le x) \Rightarrow (z \le y))$$

- **20.** Sea (A, \leq) un conjunto preordenado. Probar:
 - a) Si existe un elemento máximo, entonces todos los maximales son máximos.
 - b) Sea $B \subseteq A$. Si $a \in B$ es cota superior de B, entonces a es un elemento maximal de B. ¿Vale la recíproca?
- **21.** Mostrar que $(\mathcal{P}(X), \subseteq)$ satisface el axioma del supremo.
- **22.** ¿El axioma del supremo es una propiedad hereditaria? Es decir, si (A, \leq) es un conjunto preordenado que satisface el axioma del supremo y $B \subseteq A$, $\xi(B, \leq_{|B \times B})$ también lo satisface?
- **23.** Sea (A, \leq) un conjunto preordenado. Mostrar que (A, \leq) satisface el axioma del supremo si y solo si (A, \leq) satisface el axioma del ínfimo.

Relaciones de orden

- **24.** ¿Cuántas relaciones posibles hay en $A = \{a, b, c\}$? Responder la misma pregunta para: preórdenes, órdenes parciales, órdenes totales, y relaciones de equivalencia. ¿Y para un conjunto finito de n elementos?
- 25. Determinar si las siguientes expresiones son posets, y en caso afirmativo, si además son conjuntos totalmente ordenados.
 - a) $(\mathcal{P}(X),\subseteq)$.
 - **b**) $(\mathbb{Z}, |)$.
 - **c)** $(\mathbb{N}_0, |)$.
 - d) (Prop, D), donde Prop son las fórmulas del cálculo proposicional y $\phi D\psi \Leftrightarrow \{\phi\} \vdash \psi$.
- **26.** Sean (A, \leq_1) y (A, \leq_2) posets. Determinar si las siguientes relaciones determinan un orden parcial en A:

3

- **a**) $\leq_1 \cup \leq_2$.
- **b**) $\leq_1 \cap \leq_2$.
- 27. Sean (A, \leq_A) y (B, \leq_B) posets. Probar que los siguientes conjuntos son posets:

a) $(A \times B, \leq_{prod})$ donde:

$$(a,b) \leq_{prod} (a',b') \Leftrightarrow (a \leq_A a' \land b \leq_B b').$$

b) $(A \times B, \leq_{lex})$, donde

$$(a,b) \leq_{lex} (a',b') \Leftrightarrow (a <_A a' \lor (a = a' \land b \leq_B b')).$$

- c) Si además (A, \leq_A) y (B, \leq_B) son conjuntos totalmente ordenados, ¿lo son también $(A \times B, \leq_{prod})$ y $(A \times B, \leq_{lex})$?
- d) Dados los posets $(\mathcal{P}(\{0\}),\subseteq)$ y $(\mathcal{P}(\{1,2\}),\subseteq)$, construir $(\mathcal{P}(\{0\})\times\mathcal{P}(\{1,2\}),\leq_{prod})$ y $(\mathcal{P}(\{0\})\times\mathcal{P}(\{1,2\}),\leq_{lex})$.
- e) Mostrar que $(\mathcal{P}(\{0\}) \times \mathcal{P}(\{1,\ldots,n\}), \leq_{prod}) \simeq (\mathcal{P}(\{0,\ldots,n\}), \subseteq)$.
- 28. Mostrar que si un poset tiene máximo (resp. mínimo), éste es único. ¿Vale para un preorden?
- 29. Probar que el conjunto de todos los elementos maximales (resp. minimales) de un conjunto ordenado, es una anticadena.
- **30.** Sea (P, \leq) un conjunto preordenado.
 - a) Construir un poset $(P/\sim, \preccurlyeq)$ donde $x \sim y \Leftrightarrow (x \leq y \land y \leq x)$, tal que la proyección al cociente $\pi: P \to P/\sim$ es morfismo de orden.
 - b) Aplicar esta construcción a los siguientes conjuntos preordenados:
 - i. Una relación de equivalencia \sim en un conjunto X vista como preorden.
 - ii. $(\mathbb{Z}, |)$. Mostrar que la construcción es isomorfa a $(\mathbb{N}_0, |)$.
 - iii. (Prop, D). Para este caso particular, la construcción se llama álgebra de Lindenbaum-Tarski.
- **31.** Sean (X, \leq_X) y (Y, \leq_Y) posets. Probar que son equivalentes:
 - **a)** $(X, \leq_X) \simeq (Y, \leq_Y)$.
 - **b)** Existe $f:(X,\leq_X)\to (Y,\leq_Y)$ morfismo de orden sobrevectivo tal que $f(a)\leq_Y f(b)\Rightarrow a\leq_X b$.
 - c) Existen $f:(X, \leq_X) \to (Y, \leq_Y)$ y $g:(Y, \leq_Y) \to (X, \leq_X)$ morfismos de orden tales que $f \circ g = id_Y$ y $g \circ f = id_X$, es decir, $g = f^{-1}$.
- **32.** Sea (A, \leq) poset. Para todo $a \in A$ se define:

$$A_a \doteq \{x \in A : x \le a\}$$

Sea $\mathcal{A} = \{A_a : a \in A\}$, mostrar que $(\mathcal{A}, \subseteq) \simeq (A, \leq)$.

- **33.** Definir un morfismo de orden biyectivo entre $(\mathbb{N}, |)$ y (\mathbb{N}, \leq) . ¿Son posets isomorfos?
- **34.** ¿Existe algún conjunto con dos órdenes totales distintos (salvo isomorfismo)? Ayuda: pensar en (\mathbb{N}, \leq) y (\mathbb{N}, \geq) . ¿Existe un orden total diferente a \leq y \geq para \mathbb{N} ? ¿Cuántos órdenes totales hay en \mathbb{N} ?
- **35.** Sean (X, \leq_X) y (Y, \leq_Y) posets. Una conexión de Galois es un par de funciones (f, g) con $f: X \to Y$ y $g: Y \to X$ tales que:

$$f(x) \leq_Y y \Leftrightarrow x \leq_X g(y) \ \forall \ x \in X, y \in Y.$$

4

- a) Probar que todo isomorfismo de orden f induce una conexión de Galois (f, f^{-1}) .
- b) Dada una función $f: A \to B$, probar que se puede construir una conexión de Galois entre $\mathcal{P}(A)$ y $\mathcal{P}(B)$ utilizando los operadores que calculan la imagen de f sobre un subconjunto de A y la imagen inversa de f sobre un subconjunto de B.
- c) Encontrar una conexión de Galois (id, g) entre (\mathbb{N}, \leq) y (\mathbb{Q}_0^+, \leq) , donde id es la inclusión.
- **d)** Dada una conexión de Galois (f,g) entre (X, \leq_X) y (Y, \leq_Y) , probar que $x \leq_X g(f(x))$ y $f(g(y)) \leq_Y y$ para todo $x \in X, y \in Y$.
- e) Dada una conexión de Galois (f,g) entre (X, \leq_X) y (Y, \leq_Y) , probar que f y g son morfismos de orden.
- 36. Determinar si los siguientes posets están bien ordenados:
 - (\mathbb{N}, \leq) .
 - (\mathbb{N}, \geq) .
 - (\mathbb{R}, \leq) .
 - (\mathbb{R}_0^+, \leq) .

37. ¿Es posible construir una relación de equivalencia \sim sobre posets tal que $(X, \leq_X) \sim (Y, \leq_Y) \Leftrightarrow (X, \leq_X) \simeq (Y, \leq_Y)$?

5