

AD-R127 415 MODELING OF DIFFUSE PHOTOMETRIC SIGNATURES OF 1/3
UNCLASSIFIED SATELLITES FOR SPACE OBJECT. (U) AIR FORCE INST OF TECH
 WRIGHT-PATTERSON AFB OH SCHOOL OF ENGI... J D RASK
 DEC 82 AFIT/GSO/PH/82D-3 F/G 22/3 NL

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

1

AD A 127 415

MODELING OF DIFFUSE PHOTOMETRIC SIGNATURES
OF SATELLITES FOR SPACE OBJECT IDENTIFICATION

THESIS

AFIT/GSO/PH/82D-3

John D. Rask
Capt USAF

DTIC FILE COPY

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY (ATC)
AIR FORCE INSTITUTE OF TECHNOLOGY

This document has been approved
for public release and sales in
its entirety is unlimited.

Wright-Patterson Air Force Base, Ohio

CR APR 28 1983

29 04 28 111

E

DTIC
SELECTED
S D

AFIT/GSO/PH/82D-3

MODELING OF DIFFUSE PHOTOMETRIC SIGNATURES
OF SATELLITES FOR SPACE OBJECT IDENTIFICATION

THESIS

AFIT/GSO/PH/82D-3

John D. Rask
Capt USAF

Approved for public release; distribution unlimited

DTIC
ELECTED
APR 28 1983
S E D

AFIT/GSO/PH/82D-3

MODELING OF DIFFUSE PHOTOMETRIC SIGNATURES
OF SATELLITES FOR SPACE OBJECT IDENTIFICATION

THESIS

Presented to the Faculty of the School of Engineering
of the Air Force Institute of Technology
Air University
in Partial Fulfillment of the
Requirements for the Degree of
Master of Science

Accession For	
NTIS GRA&I	<input checked="" type="checkbox"/>
DTIC TAB	<input type="checkbox"/>
Unannounced	<input type="checkbox"/>
Justification	
By _____	
Distribution/ _____	
Availability Codes	
Dist	Avail and/or Special
A	

by

John D. Rask, B.A.

Capt USAF

Graduate Space Operations

December 1982

Approved for public release; distribution unlimited

Preface

The purpose of this study was to provide the groundwork for development of a computer program which could serve as an aid to tactical space object identification and analysis using photometric satellite signatures, in support of the mission of the ADC Intelligence Center (ADIC) in the NORAD Cheyenne Mountain Complex in Colorado Springs. I would like to thank Lt John Mertens, electro-optical space object identification analyst at the ADIC, who provided the photometric signature data and much other information needed for completion of this project.

I would like to thank my advisors, Maj Jim Lange and Maj Mike Wallace of the Air Force Institute of Technology, for the excellent guidance and encouragement they provided during the course of this study. Special thanks go to Mr. Scott Rulong of the Aeronautical Systems Division Computer Center, who spent many long hours helping me digitize photometric signatures.

Finally, I would like to express my gratitude to my wife, Joanna, whose patience and understanding meant so much during the completion of this thesis.

John D. Rask

TABLE OF CONTENTS

	Page
Preface	11
List of Figures.	v
List of Tables	vii
List of Symbols.	viii
Abstract	xi
I Introduction and Background	1
Photometric Space Object Identification.	1
Photometric Analysis Capability at the ADIC.	2
Operational Limitations of the Photometric Data	
Analysis Module (PDAM)	7
PDAM Diffuse Analysis	7
Real World SOI Requirements vs PDAM Capabilities	16
Statement of the Problem	17
Scope of the Project	17
General Approach	18
Sequence of Presentation	19
II Theory of Satellite Photometry.	20
Equivalent Stellar Magnitude	20
Observed Irradiance	23
Diffuse Reflected Irradiance	24
Sun-Satellite-Sensor Geometry.	28
III Program "Satellite Identification (SATID)" Functional	
Description	41
The Mainline Program, SATID.	41
The Subroutines	46

	Page
IV Satellite Models and Validation Results	69
Model Descriptions	69
Initial Model Configurations	71
Model B1 Validation.	71
V Results of the Satellite Identification Experiment	93
VI Conclusions and Recommendations.	117
Conclusions	117
Operational Recommendations.	118
Recommendations for Future Research.	119
Bibliography	120
Appendix A: Program SATID Code Listing and Supplementary Material.	123
Appendix B: Solar Paddle Obscuration Algorithm Used by Subroutines GEOM1, CASES, and AREAS	191
Appendix C: The Subroutine CONE Conic Irradiance Approximation Algorithm	204

LIST OF FIGURES

<u>Figure</u>		<u>Page</u>
I-1	The PDAM Shape Library.	8
I-2	PDAM Diffuse Parameter Estimation	11
I-3	Deep Space and Low Earth Orbits	13
II-1	Specular and Diffuse Reflection	25
II-2	Phase Angle and Sensor and Solar Aspect Angles.	30
II-3	Geocentric-Inertial(I,J,K), Topocentric(S,E,Z), and Body-Centered(r,VC,H) Coordinate Frames	31
II-4	Phase Angle Effects	32
II-5	Ellipsoidal Earth Model	36
II-6	Line-of-Sight Obscuration	40
III-1	SATID Logic Flow.	52
III-2	ELSET Logic Flow.	54
III-3	ANGLES Logic Flow	56
III-4	ELIPS1 and 2 Logic Flow	57
III-5	CASES Logic Flow.	58
III-6	AREAS1, 2 and 3 Logic Flow.	60
III-7	CP123 Logic Flow.	61
III-8	CONE Logic Flow	62
III-9	SIGA1 Logic Flow.	63
III-10	SIGB1 Logic Flow.	64
III-11	SIGC1 Logic Flow.	65
III-12	SIGD1 Logic Flow.	66
III-13	COMPAR Logic Flow	67
IV-1	General Model Configurations.	70

<u>Figure</u>	<u>Page</u>
IV-2 Photometric Signature of a Stable Payload	77
B-1 Paddle Obscuration Geometry	192
C-1 Conic Approximation Geometry.	207
C-2 Conic Approximation Vectors	208

LIST OF TABLES

<u>Table</u>		<u>Page</u>
I-1	Photometric SOI Sensors	3
I-2	NORAD SOI Sensors	4
I-3	Comparison of SOI Data Information Content.	5
I-4	Effects of Orbit and Satellite Dynamics on the Diffuculty of Diffuse Analysis	15
II-1	Factors Influencing Photometric Signatures.	21
II-2	Diffuse Irradiance Equations for Simple Shapes.	29
II-3	WGS-72 Astrodynamic Constants	34
IV-1	Model B-1 Validation Results	76
IV-2	Signature 3883a Output.	78
IV-3	Signature 3883b Output.	81
IV-4	Signature 3893a Output.	84
IV-5	Signature 3893b Output.	87
IV-6	Signature 3925 Output	90
V-1	Results of the Satellite Identification Experiment. . .	95
V-2	Signature 3914 Output	96
V-3	Signature 3917 Output	99
V-4	Signature 3898 Output	102
V-5	Signature 3885 Output	105
V-6	Signature 3867 Output	108
V-7	Signature 3888 Output	112
V-8	Signature 3845 Output	114

LIST OF SYMBOLS

Roman Letter Symbols

A	-	Area(m^2)
\hat{A}	-	Satellite Longitudinal Axis Vector
$\hat{\textcircled{A}}$	-	Angstrom Units(10^{-8} cm)
a	-	Semimajor Axis of Ellipse
b	-	Semiminor Axis of Ellipse
\hat{n}	-	Normal Vector to Conic Surface
c	-	Constant
d	-	Diameter(m)
d_i	-	Deviation at the i th data Point
\bar{d}	-	Mean Deviation
E	-	Irradiance(W/m^2)
E _E	-	Topocentric East Point Coord Axis
e	-	Eccentricity
\hat{H}	-	Orbital Angular Momentum Vector
H	-	Height, or Y-Coord of Ellipse Center
I	-	Radiant Intensity(W/sr)
I _E	-	Geocentric-Inertial Coord Axis to First Point of Aries
J	-	Geocentric-Inertial Coord Axis
K	-	Geocentric-Inertial Coord Axis
k	-	X-Coord of Ellipse Center
L	-	Radiance($W/m^2\cdot sr$), or Sensor Latitude
T	-	Line-of-Sight Vector
H	-	Radiant Exitance(W/m^2)
M_V	-	Equivalent Stellar Magnitude in the Visible
H(t _i)	-	The i th Measured Data Point

Roman Letter Symbols

m	-	Slope
\mathbf{n}	-	General Normal Vector
n	-	Number of Data Points
\mathbf{P}	-	PDAM Diffuse Parameter Vector
p	-	Arbitrary Parameter
$\overline{\mathbf{PA}}$	-	Paddle Axis Vector
$\overline{\mathbf{PE}}$	-	Paddle Edge Vector
$\overline{\mathbf{R}}$	-	Sensor Position Vector
$\overline{\mathbf{r}}$	-	Orbital Radius Vector
r	-	Slant Range from Sensor to Target
r1	-	Cylinder 1 Radius
r2	-	Cylinder 2 Radius
$\overline{\mathbf{s}}$	-	Topocentric South Point Coord Axis
$\hat{\mathbf{s}}$	-	Unit Vector in the Direction of the Sun
$\mathbf{s}(t_i, \tilde{p})$	-	The ith Synthetic Data Point
SSR	-	Sum of the Squares of the Residuals
t	-	General Limit of Integration, or time
$\overline{\mathbf{v}}$	-	Orbital Velocity Vector
$\overline{\mathbf{v}_C}$	-	Circular Velocity Vector
\mathbf{l}'	-	Solar Paddle Width
x	-	Perpendicular Distance from the Earth's Rotational Axis to the Sensor
z	-	Perpendicular Distance from the Earth's Equatorial Plane to the Sensor
$\overline{\mathbf{z}}$	-	Topocentric Zenith Coord Axis

Greek Letter Symbols

α	-	Sensor Aspect Angle
β	-	Solar Aspect Angle
γ	-	Conic Half Angle
ζ	-	Angle Between \overline{PA} and \overline{T}
η	-	Projected Solar Paddle Tilt Angle
θ	-	Sidereal Time, or a Function of α , β and ϕ
λ	-	Wavelength
λ_e	-	Eastern Longitude of Sensor
ε	-	Angle Between \overline{PE} and \overline{T}
μ	-	Mean
ρ	-	Reflectivity
σ	-	Standard Deviation
τ	-	Transmissivity of a Medium
Γ	-	First Point of Aries
Φ	-	Power(Watts)
ϕ	-	Phase Angle
ψ	-	Projected Solar Paddle Rotation Angle
Ω	-	Solid Angle(Steradians)

MODELING OF DIFFUSE PHOTOMETRIC SIGNATURES
OF SATELLITES FOR SPACE OBJECT IDENTIFICATION

Abstract

The diffuse reflective characteristics of four types of low earth orbit satellites were mathematically modeled using phase functions for ideal Lambertian surfaces. A FORTRAN computer program was developed to generate simulated signatures and compare them point by point to real signatures to obtain a sum of the squares of the residuals (SSR), in order to perform pattern recognition and satellite identification.

Photometric signatures collected by the Satellite Identification and Tracking Unit (SITU), St. Margarets, Canada were received from the ADC Intelligence Center in the NORAD Cheyenne Mountain Complex in Colorado Springs, Colorado. One set of signatures was used to validate the computer model of one satellite type, and the others were used to test the program's ability to identify the satellite. The tested model involved line-of-sight obscuration of some parts by others, relative motion of body parts, and for phase shadowing.

The program was able to correctly identify the modeled satellite, as long as the phase angle remained small, generally less than ninety degrees. For larger phase angles, the true signatures diverged significantly from simulated signatures. In every case, the signatures predicted using the Lambertian assumption were dimmer than the measured signatures at larger phase angles.

Photometric pattern recognition of satellites using phase function models appears to be feasible, but satellite models contained in an operationally useful computer program must be valid for any viewing geometry, and should therefore account for the non-Lambertian behavior of illuminated surfaces where viewed at large phase angles, or away from normal incidence.

I. INTRODUCTION AND BACKGROUND

Photometric Space Object Identification

Space Object Identification (SOI) The secondary missions of the North American Aerospace Defense Command (NORAD) are space track, to maintain current orbital elements and provide reentry predictions for all man-made space objects, and SOI, to determine the physical and dynamic characteristics of satellites in near earth or deep space orbits (Ref 21). SOI sensors include the majority of the NORAD space track radars, two contractor operated wideband coherent radars, and two satellite tracking astronomical observatories which employ photoelectric photometers to collect time vs. amplitude plots, or signatures, of the sunlight reflected from the satellites. One facility also collects photographic images of satellites in low earth orbit (altitude<1000km). This paper is solely concerned with the analysis of visible light photometric signatures of satellites and their application to the NORAD/ADCOM SOI mission. Table I-1 describes the two currently operating dedicated photometric SOI sensors, and some characteristics of the soon to be operational Ground-Based Electro-Optical Deep Space Surveillance (GEODSS) system (Ref 10, Ref 11). Table I-2 lists all of the SOI sensors.

The Application of Satellite Photometry to SOI No single SOI data type can provide an exhaustive description of all satellite characteristics of interest, but an integrated approach, employing inputs from a variety of sources is necessary (Ref 16:6). Some contributions of

photometric signatures to the overall picture are unique.

Table I-3 lists some of the information content of photometric signatures compared to radar signatures (Ref 7, Ref 14).

Photometric Analysis Capability At the ADIC

In 1977, the General Electric Company, under SAMSO contract, published the results of a system requirements and functional description study of a proposed SOI Central Analysis System (SOICAS) (Ref 19 and Ref 20). A reason for the SOICAS studies was recognition that, at that time, SOI analytical capabilities in general were inadequate to satisfy either the tactical time constraints of the ADCOM space defense mission or the data analysis resolution requirements (Ref 20: I-1-1). While great strides have been made since then in the analysis and processing of radar data, the situation has remained essentially unchanged for photometric analysis, despite the acquisition in 1977 of an operational photometric analysis software package, the Photometric Data Analysis Module (PDAM), developed by the AVCO Systems Division of AVCO - Everett Research Laboratories (Ref 7:iv).

PDAM Capabilities According to the SOI analyst PDAM training course, "PDAM is an interactive software package integrated on the HIS 6060 computer in the ADIC, which has as its main purpose the analysis of photometric signatures (specular and diffuse), from which estimates of target configuration/shape, size, orientation, surface properties (and) motion are obtained (Ref 14:18)." The software package contains three

TABLE I-1 Photometric SOI Sensors

Sensor	Maui Optical Tracking and Identification Facility (Motif). Maui, Hawaii	Satellite Identification and Tracking Unit (Situ). St. Margarets, New Brunswick, Canada	Ground Based Electro-Optical Deep Space Surveillance System (GEODSS). HI, NM, Korea, Atlantic, Mideast
Main Telescope	48" Cassegrain Reflector with 10" Finder	24" Cassegrain Reflector	2 40" Folded Optics Cassegrain Reflectors
Main Scope Sensors	Low Light Level TV Photoelectric Photometer Infrared Radiometer (3 to 20 microns with 7 filters)	Photoelectric Photometer	SIT Vidicon Tube ITEK Video Camera RCA Ga As Photometer
Auxiliary Telescope Sensors	48" Cassegrain Reflector	None	One 15" Folded Schmidt Reflector
Sampling Rate		100 Hz	100-1000 Hz
Visual Magnitude Limit for Search			+ 16.5 or + 19.0 if position and motion known
Mount	Equatorial on an Azimuth Table. Hydrostatic bearings	4-Axis Modified	Baker-Nunn

<u>Location</u>	<u>Type</u>	<u>Data</u>	<u>Type</u>
Ascension Is.	C-Band Tracking Radar	Narrowband	Radar Signature
Antigua Is.	C-Band Tracking Radar	Narrowband	Radar Signature
Clear, Ak.	UHF Tracking Radar	Narrowband	Radar Signature
Concrete, N.D. (PAR)	UHF Phased Array Radar	Narrowband	Radar Signature
Diyarbakir, Turkey	UHF Tracking Radar	Narrowband	Radar Signature
Eglin AFB, FL	UHF Phased Array Radar	Narrowband	Radar Signature
Kwajalein Is. (ALCOR)	C-Band Coherent Tracking Radar	Wideband	Radar Images
Millstone, Ma. (Haystack)	X-Band Coherent Tracking Radar	Wideband	Radar Images
Shemya Is. (COBRA DANE)	L-Band Phased Array Radar	Narrowband	Radar Signature
Maui, Hi. (MOTIF)	Telescope and Electro-Optical Sensors	Photometric Signatures, Infrared Signatures, Optical Images	
St. Margaret's, N.B. Canada (SITU)	Telescope and Electro-Optical Sensor	Photometric Signatures	

TABLE I-2
Norad SOI Sensors

Sensor		Photometry	
Target Information	Radar Signatures	Specular	Diffuse
Size	Yes	Yes, for Specular Surface	Yes
Presence of Small Features	Yes, if large enough for radar resolution	Yes, very small features visible if sufficiently reflective	No
Size of small features	Yes, if large enough for radar resolution	Yes, min and max sizes obtainable true size obtainable if reflectivity is known	No
Rotation Rates	Yes, if slower than radar prf.	Yes	Yes
Rotation Axis	Yes	Yes	Yes
Orientation of stable sat	Yes, with multiple signatures available	Only if orientation of a specular feature with respect to sat is known	Can be estimated
Orientation of small features	Yes, if speculars appear on more than one track	Yes, for multiple identifiable speculars	
Surface Reflectivity	No	Yes	Yes
Surface Curvature	No	No	Yes

TABLE I-3 Comparison of SOI Data Information Content

operating phases for photometric signature analysis (Ref 14:40-41).

The preprocessing phase enables an analyst to retrieve any photometric signature from the Intelligence Data Handling System (IDHS) signature wraparound file, or from a disk containing permanently stored data. The signature may be displayed in whole or in part with the vertical (stellar magnitude) scale selected by the analyst. The analyst may edit out portions of the signal not desired for analysis (noisy parts, stars, gaps in data) and save portions for later specular and diffuse analysis (Ref 14:40-41). In practice, this portion of the PDAM program has proven to be extremely valuable and easy to use.

Specular and Diffuse analysis make up the second, and most important phase of a PDAM analysis (Ref 14:40). The specular and diffuse reflection components of a signature are analyzed separately to yield very different kinds of information, and the two signature components are separately stored by the analyst during preprocessing (Ref 14:33-34). The specular signature component is used to determine the rotational period of spinning or tumbling objects, the surface area of specularly reflecting surfaces (flat plate or cylinder), curvature of specularly reflecting spherical segments, the orientation of surface normals, and angular momentum vector direction (Ref 14:147 and Ref 15). The diffuse components can be used to obtain an estimate of an object's size, shape, orientation, rotational period and angular momentum vector direction (Ref 14:25).

The third phase of a PDAM analysis is the results summary, which provides a detailed tabulation of the results of all specular and diffuse analysis performed on a particular signature, including a graphics line drawing of the satellite model obtained from the analysis (Ref 14: 40).

Operational Limitations of PDAM

Operational experience with PDAM has shown it to be an effective analytical tool for specular analysis, but it rarely yields SOI information through diffuse analysis which could not be more easily or quickly extracted from radar signatures, at least for low earth orbit satellites. The reason for this becomes clear when we compare the PDAM approach to diffuse analysis with real world SOI analysis requirements.

PDAM Diffuse Analysis

The diffuse analysis module allows the analyst to select a satellite model from a shape library containing 18 simple combinations of shapes, each of which has well understood diffuse light scattering characteristics (Ref 14:134). Figure I-1 depicts the PDAM shape library (Ref 14: 265-282). Each library shape is characterized by a number of parameters which specify the dimensions and reflectivities of features, and the orientation of the body as a whole in either an inertial or a body-fixed coordinate frame (Ref 7:81). The parameter values selected by the analyst for a given shape constitute the parameter vector, \vec{P} for the diffuse satellite model (Ref 7:81).

<u>Shape Number</u>	<u>Shape Description</u>	<u># of P-Vector Parameters</u>	<u>Illustration</u>
1	Sphere	1	○
2	Flat Plate	3	□
3	Cylinder	4	□□
4	Cone	4	△
5	Cyl-Plt	5	□△
6	Cone-Plt	5	△□
7	Cone-Cyl	5	△□□
8	Cone-Plt-Cyl	6	△□□□
9	Cylinder-Spher Endcaps	4	□□□○
10	Sphere-Plt	4	○□□□
11	Cyl-1 Frustum	6	□□□□□□
12	Cyl-2 Frustums	6	□□□□□□
13	Cyl-Rocket Nozzle	6	□□□□□□
14	Cyl-Frust-Noz	7	□□□□□□□
15	Sphere*	2	○○
16	Cyl-Flat Side Plt	8	□□□□□□□□
17	Cyl-Edge Side Plt	8	□□□□□□□□
18	Cyl-Paddle	8	□□□□□□□□

*This sphere differs from shape 1 in that the analyst can vary the ratio of specular to diffuse reflectivities. Model 1 includes only diffuse, assuming a perfect lambertian sphere.

Figure I-1
The PDAM Shape Library

The analyst uses a three-fold approach to diffuse analysis, beginning with choice of a library shape. If there is no a priori knowledge of the satellite shape, all 18 of the library shapes should be chosen in turn (Ref 7:80). Once the P-vector components are specified, the program executes two iteration loops, or three, in the case of unknown satellite orientation, and calculates the best parameter values for the chosen shape through successive comparison of measured signature data points to data points synthetically calculated from the satellite model composite phase function (Ref 7:36). The program then calculates a weighted mean square error criterion for the chosen shape. The analyst wishes to minimize the sum of the squares of residuals function (SSR), given by

$$SSR = \frac{1}{\sigma} \sum_{i=1}^n [S(t_i, \bar{P}) - M(t_i)]^2$$

n is the number of observations,

$M(t_i)$ is the i th data point of the measured signature,

$S(t_i, \bar{P})$ is the i th synthetic data point (Ref 14:132), and

σ is given by

$$\sigma = \sqrt{\frac{\sum_{i=1}^n (d_i - \bar{d})^2}{n-1}} \quad \text{where}$$

$$d_i = S(t_i, \bar{P}) - M(t_i) \quad \text{and}$$

$$\bar{d} = \frac{\sum_{i=1}^n d_i}{n}$$

The program calculates the gradient of the SSR function with respect to each parameter and iteratively solves for each parameter, (Ref 14:132):

$$\text{grad(SSR)} = \frac{1}{\sigma} \sum_{i=1}^n 2 \left[S(t_i, \bar{P}) - M(t_i) \right] \left[\frac{\partial S(t_i, \bar{P})}{\partial P} \right]$$

An iterative process is used instead of equating grad (SSR) to zero and solving for P , because $S(t_i, \bar{P})$ has a non-linear dependence on P (Ref 14: 132).

The new \bar{P} vector is given by

$$\bar{P}_{\text{new}} = \bar{P}_{\text{old}} + \Delta \bar{P}$$

The function minimization algorithm used here is the Jacobson Gradient Method (Ref 7:81-A). Finally, an error matrix describing error associated with each of the analyst's input parameters and the total SSR, including convergence or non-convergence of the iteration process is output in a results summary (Ref 14:132).

The analyst repeats the above process for a single library shape, altering the input parameters until a converging solution with minimum SSR for that shape is obtained, or until it is determined that the chosen shape will not allow a convergent solution.

The third step in PDAM diffuse analysis is selection of the shape which yields the minimum SSR with respect to the real data, the P -vector components, being the ones which produced the best data fit for the chosen shape (Ref 7:81). Figure I-2 summarizes the diffuse analysis

Figure I-2 PDAM Diffuse Parameter Estimation

model parameter estimation process (Ref 18:16 and Ref 14:131).

Intrinsic Limitations of Diffuse Analysis The diffuse signature of a satellite is dependent upon sun-target-observer geometry, target size and shape, the reflective properties of target surface materials, and target dynamics (Ref 14:111). Each of these factors imposes limitations on the utility of diffuse data.

The combination of sun-target-observer geometry and target dynamics has the greatest influence on a diffuse signature. The easiest case to analyze is the rotating satellite in low earth orbit. From Figure I-3 we can see that the greatest time rate of change of sensor aspect angle, α and phase angle, ϕ , occurs for the low earth orbit, spinning/tumbling case. This greatly reduces the possibility that more than one set of model parameters will produce a signature which closely matches the real data (Ref 14:19). The most difficult case, on the other hand, is the stable satellite in geosynchronous orbit. Phase angle and aspect angle both change very slowly, and many redundant solutions are possible (Ref 14:19). In PDAM, many parameter sets may produce a converging solution with respect to the signature of a stable object (Ref 7:105). Table I-4 summarizes the effect of different geometries on the difficulty of achieving a good solution (Ref 14:128).

When neither the size nor the reflectivity of a target are known, these two parameters must be taken together as a product of reflectivity and projected area, unless multispectral data are available to determine reflectivity (ref 7:81).

Figure I-3 Deep Space and Low Earth Orbits

The diffuse analysis limitation which is most responsible for the previously mentioned limited usefulness of PDAM in the operational environment becomes obvious upon inspection of Figure I-1. Many actual satellite shapes cannot be closely approximated by any member of the shape library. In general, the simple shape library approach is accurate for very simple satellites, but is useful only for obtaining estimates of gross shape and orientation of more complex objects (Ref 18:78) unless the models are more sophisticated. When the true satellite configuration does not closely match a library shape, diffuse analysis results may be meaningless. Determining the size, shape and altitude of a satellite from the photometric time history of the brightness of an unresolved point source is further complicated by noise in the observations, the lack of true independence between separate observations, and the impossibility of fully describing a complex object uniquely with a few parameters (Ref 18:59).

Orbit	Dynamics		Tumbling or Precessing
	3-Axis or Earth Oriented	Spin	
low earth (ALT 1000km)	large $d\phi/dt$ small $d\alpha/dt$ large $d\beta/dt$ intermediate difficulty	same as 3-axis but also good for specular analysis	large $d\phi/dt$ large $d\alpha/dt$ large $d\beta/dt$ easiest diffuse case
deep space (ALT 1000km)	small $d\phi/dt$ small $d\alpha/dt$ small $d\beta/dt$ long tracks possible toughest diffuse case	same as 3-axis but also good for specular analysis	small $d\phi/dt$ large $d\alpha/dt$ large $d\beta/dt$ case of intermediate difficulty. Long tracks possible

ϕ is phase angle, the angle between the sun direction and line of sight.

α is sensor aspect angle, the angle between the satellite longitudinal axis of symmetry and the sensor line of sight

β is solar aspect angle, the angle between the satellite longitudinal axis of symmetry and the sun direction

Table I-4
Effects of Orbit and Satellite Dynamics on
the Difficulty of Diffuse Analysis

Real World SOI Requirements vs. PDAM Capabilities

At present, there is rarely a need to use PDAM to obtain gross estimates of the size, shape and orientation of unknown objects because other data sources are available which yield more definitive results.

The utility of PDAM in this role will probably increase, however, when the Eastern hemisphere GEODSS sensors become operational. In the meantime, PDAM is not useful as an identification aid for known types of satellites because of the generality of its shape library.

When the GEODSS system comes on line, it is likely that the opportunities for an electro-optical sensor to detect newly launched objects will increase, and photometric analysis software capable of performing pattern recognition for early mission identification could be very useful. Such software might also be useful for identification of uncorrelated targets (Ref 23, Ref 10).

The early research in satellite photometry, which laid the groundwork for the PDAM program, was based upon a choice between two possible approaches to analysis of photometric satellite signatures (Ref 18:60). The approach chosen for PDAM was to consider a family of simple shapes and combinations of shapes, and to ask what the dimensions and reflectivity of the selected shape would have to be to produce the observed signature, beginning with no a priori knowledge of the true satellite shape (Ref 18:60).

The other approach is to consider a family of known target satellite shapes, and to predict the photometric signature which would be observed by a sensor if the known shape selected were an accurate model of the satellite, and to compare the actual data to predicted signatures for all of the known shapes, in order to select the best match (Ref 18:60). Such an approach amounts to pattern recognition, which may be loosely defined as "any automatic system which does tasks labeled detection, recognition, identification or classification (Ref 16:2)." Gamache and La Rosa recognized the value and feasibility of this approach in their signature prediction study of cylindrical, solar cell covered geosynchronous satellites (Ref 13:209-211).

Statement of the Problem

This thesis proposes that both of the above approaches to diffuse analysis are necessary to fulfill the ADCOM photometric data analysis mission at the ADIC, and seeks to demonstrate that photometric pattern recognition is possible for stable payloads which yield purely diffuse signatures.

Scope of the Project

The goals of this thesis project are to:

1. Mathematically model the diffuse light scattering characteristics of several stable foreign payloads with sufficient accuracy that the models can be used for pattern recognition purposes.

2. Validate and verify the diffuse models using open source and intelligence information to obtain accurate physical and dynamic characteristics, and statistical comparisons with actual signatures collected by the NORAD photometric sensors.
3. Write a FORTRAN program which will automatically compare a real signature to a series of synthetic signatures for each satellite model, and select the model which produces the signature most closely matching the original.

The project is restricted to diffuse data on stable objects in low earth orbit, because the stable, diffuse case is of the greatest intelligence interest, and because more signatures and satellite configurations are available for low earth orbit, thus making validation of the models easier.

General Approach

1. Collect photometric signatures with their position and velocity vectors. These were obtained with the cooperation of the photometric analyst at the ADIC.
2. Write an orbit prediction and sensor look angles computer program.
3. Develop diffuse satellite scattering models and incorporate them into the computer program to generate synthetic signatures.
4. Add a statistical data comparison subroutine to the computer program.

5. Digitize NORAD photometric signatures and use them to validate satellite models.
6. Use the completed computer program to automatically identify satellite signatures.

Sequence of Presentation

The thesis is organized as follows:

1. Introduction and Background, Chapter I
2. Theory of Satellite Photometry, Chapter II
3. Brief Functional Description of the Computer Program, Chapter III
4. Satellite Models and Validation Results, Chapter IV
5. Results of the Pattern Recognition Experiment, Chapter V.
6. Conclusions and Recommendations, Chapter VI.
7. Appendices

II. THEORY OF SATELLITE PHOTOMETRY

Photometry is the measurement of the irradiance of light emitted from a source. Applied to earth satellites it is "the measurement and interpretation of the solar energy reflected from an orbiting body and the time variation of the reflected energy (Ref 7:5)." Satellite photometry employs the instrumentation and data gathering techniques of astronomical photometry, and suffers from the same environmental and instrumental sources of measurement error. The principal difference between the two is the nature of the objects observed.

The intensity of sunlight reflected from a satellite is dependent upon sun-satellite-sensor geometry, the reflectivities of satellite components and the satellite's motion. Measurement of this intensity is affected by the atmosphere, optics and electronics associated with the photometer (Ref 9:2). The high angular velocity of satellite against the sky background is an additional complication. The astronomer need be concerned only with slow changes in line of sight air mass, sky brightness and atmospheric stability during the period of observation. A satellite however, may cross many degrees of sky, resulting in a rapidly changing background. Table II-1 lists the factors influencing satellite signatures (Ref 7:19-26, Ref 9:9, Ref 3:76, 408).

Equivalent Stellar Magnitude Satellite photometry employs the astronomical stellar magnitude scale, originated by Hipparchus over

FACTOR	CHARACTERISTIC	EFFECT
<u>TARGET</u>		
	Size	Amplitude
	Shape	Waveform
	Reflectivity	Amplitude
<u>GEOMETRY</u>		
	Orbit	Amplitude
	Sun-Target-Sensor Geometry	Amplitude
	Target Dynamics	Waveform Complexity, Periodicity
<u>SKY BACKGROUND</u>		
	Sky Brightness	
	Airglow Artificial Light Zodiacal Light, etc.	Amplitude
	Star Field	
	Milky Way Nebulae Stars, etc.	Amplitude, Waveform
	Weather	
	Cirrus Aurora Winds Haze	Amplitude

TABLE II-1 Factors Influencing Photometric Signatures

2000 years ago, and in common use by astronomers since the second century A.D. (Ref 2:5). In 1856, N.R. Pogson standardized the scale by defining a difference of 5 magnitudes as equalling a difference in photon flux of 100 times (Ref 2:5). Therefore, a difference in intensity of one magnitude is the same as a flux ratio of $100^{1/5} = 10^{2/5}$. Comparing the intensities of two objects of magnitudes M_1 and M_2 , if $M_2 - M_1 = n$ magnitudes, the irradiance ratio

$$\frac{E_1}{E_2} = (10^{2/5})^n , \log_{10}\left(\frac{E_1}{E_2}\right) = \frac{2}{5}(M_2 - M_1) \therefore$$

$$M_1 = M_2 - 2.5 \log_{10}\left(\frac{E_1}{E_2}\right)$$

(Ref 2:5,25) In satellite photometry magnitude M_2 becomes the exoatmospheric solar magnitude (-26.78), E_1 is the observed irradiance from the satellite and E_2 is the solar irradiance in the visible bandpass. The expression for equivalent stellar magnitude of a satellite is

$$M = -26.78 - 2.5 \log_{10}\left(\frac{E}{E_0}\right) \text{ where } E \text{ is}$$

reflected irradiance, and E_0 is solar irradiance in the visible bandpass (616 w/in² from 3800 to 7600 Å) (Ref 7:6-12). In the stellar magnitude scale, greater brightness is represented by smaller numbers. The brightest star in the sky other than the sun (sirius) has a magnitude of -1.58. The faintest stars visible to the naked eye have a magnitude of about +6.0 (Ref 7:4).

Observed Irradiance The total irradiance of an object seen through the atmosphere in a bandpass λ_1 to λ_2 is given by (Ref 2:26),

$$E = \int_{\lambda_1}^{\lambda_2} \tau_a(\lambda) \tau_o(\lambda) \tau_f(\lambda) E(\lambda) d\lambda$$

where $\tau_a(\lambda)$ is atmospheric transmission,

$\tau_o(\lambda)$ is transmission of the optics

$\tau_f(\lambda)$ is transmission of filters, and

$E(\lambda)$ is exoatmospheric flux.

Sometimes, all of the quantities in the integral having to do with optics and the detector are combined into an overall detector response function, $R(\lambda)$, leading to the expression (Ref 9:4),

$$E = \int_{\lambda_1}^{\lambda_2} \tau_a(\lambda) R(\lambda) E(\lambda) d\lambda$$

This project deals with data which have been corrected for atmospheric extinction and background radiation at the sensor, so satellite signature predictions are for the exoatmospheric case.

The final general expression for observed irradiance becomes (Ref 7:12),

$$E = \int_{\lambda_1}^{\lambda_2} E(\lambda) R(\lambda) d\lambda$$

Diffuse Reflected Irradiance This section presents the basic principles of diffuse reflection and introduces the diffuse phase functions of the simple shapes which are combined to form the satellite models.

Diffuse reflection occurs when a surface has irregularities which are large with respect to the wavelength of incident radiation and the radiation is reflected in all directions, or isotropically (Ref 4:65). Most surfaces exhibit both diffuse and specular reflection to some degree. Figure II-1 illustrates specular and diffuse reflection properties.

Lambert defined a perfect diffuse reflector as one which has constant radiance, L ($\text{W/M}^2\text{-sr}$), regardless of the angle of reflection from the surface normal (Ref 3:95). In other words, the radiance of the surface as seen by a sensor is not dependent upon the viewing angle, if the surface fills the entire field of view (Ref 3:531). Since satellites are at great distances from earth based sensors they do not fill the entire field of view and may be considered point sources for photometry (Ref 3:535-537).

Point source irradiance is governed by the inverse square and cosine laws of irradiance. If P is a point source of radiant intensity I and distance r from some surface element dA , and the normal to dA is an angle θ from the direction of P , then the radiant flux incident over dA is

Figure II-1 Specular and Diffuse Reflection

$$d\Phi = I d\Omega$$

where $d\Omega$ is the solid angle subtended by dA from P (Ref 3:93). By the definition of solid angle,

$$d\Omega = \frac{dA}{r^2}$$

if the normal to dA lies along a radius r , or

$$d\Omega = \frac{dA \cos\theta}{r^2}$$

if the normal is an angle θ from the direction of P (Ref 3:94). By definition, irradiance, E is given by (Ref 3:92).

$$E = \frac{\partial \Phi}{\partial A}$$

so that

$$E = \frac{I dA \cos\theta}{r^2 dA} = \frac{I \cos\theta}{r^2}$$

(Ref 3:94), which expresses the cosine and inverse square laws of irradiance. The inverse square law holds for a point source (Ref 3:94). We can now derive an expression for the reflected irradiance of a diffusely reflecting flat plate as a function of viewing and illumination angles.

The power incident upon a flat plate satellite at one astronomical unit (A.U.), the mean distance from the earth to the sun, is

$$\Phi_i = E_0 A \cos\beta \text{ (Watts)}$$

where E_0 is the solar irradiance in the visible bandpass at 1 A.U. w/ m^2 , A is plate area (m^2), and β is the angle between the plate

normal and the direction of the sun (Ref 7:15). The power reflected from the plate in the direction of the sensor is

$\Phi_r = \Phi_i \rho \cos \alpha$ where ρ is the diffuse reflectivity in the visible bandpass, and α is the angle between the plate normal and the sensor line of sight (Ref 7:15). Combining these gives the power reflected in the direction of the sensor,

$$\Phi_r = E_0 \rho A \cos \beta \cos \alpha$$

The radiant exitance from the plate is (Ref 3:92),

$$M = \frac{\partial \Phi_r}{\partial A} = E_0 \rho \cos \beta \cos \alpha$$

and radiance, L is given by

$$L = \frac{M}{\pi} = \frac{E_0 \rho \cos \beta \cos \alpha}{\pi}$$

assuming a Lambertian source. Since the satellite is a point source (Ref 3:536), reflected irradiance, E_r is

$$E_r = \frac{\pi L a^2}{r^2}$$

where a is the radius of a circular flat plate and r is the slant range from the sensor (Ref 3:535-536). Therefore, the point source reflected irradiance is

$$E_r = \frac{E_0 \rho A \cos \beta \cos \alpha}{\pi r^2} \text{ (W/m}^2\text{)}$$

The portion of the irradiance equation which contains the sun-satellite-sensor geometry is called the "phase function" of the flat plate, $F_p(\alpha, \beta)$. In general,

$$E_r = E_s \rho A F(\alpha, \beta, \phi)$$

where ϕ is the phase angle. For a flat plate,

$$F_p(\alpha, \beta) = \frac{\cos \beta \cos \alpha}{\pi r^2}$$

This is the simplest of the phase functions used to determine the integrated reflected irradiance of the shapes used to model the diffuse reflection characteristics of satellites. Diffuse irradiance equations for simple shapes are summarized in Table II-2 (Ref 7).

Sun-Satellite-Sensor Geometry

Phase Angle, and Sensor and Solar Aspect Angles In order to use the irradiance equations given in Table II-2, the sensor and solar aspect angles, α and β respectively, and the phase angle, ϕ , must be known. To determine α , β and ϕ at some instant in time, we must know the position of the satellite in its orbit, the position of the sensor, the position of the sun and the orientation of the satellite's principal axes within a single coordinate frame. Angles α , β and ϕ are illustrated in Figure II-2, and Figure II-3 shows the three coordinate frames which enter into the orbit prediction problem.

To emphasize the effect that the phase angle can have on a signature, Figure II-4 depicts two satellites in high-inclination low earth

SHAPE	IRRADIANCE
	$E = \frac{E_0 P A \cos \alpha \cos \beta}{\pi r^2}$
	$E = \frac{E_0 d^2}{r^2} \left\{ \frac{\rho_s}{16} + \frac{\rho_d}{6\pi} \left[\sin \phi + (\pi - \phi) \cos \phi \right] \right\}$ <p> d = diameter ρ_s = specular reflectivity ρ_d = diffuse reflectivity </p>
	$E = \frac{E_0 \rho d h}{4\pi r^2} \sin \alpha \sin \beta [\sin \theta + (\pi - \theta) \cos \theta],$ $\theta = \cos^{-1} \left[\frac{\cos \phi - \cos \alpha \cos \beta}{\sin \alpha \sin \beta} \right]$ <p> d = diameter h = height </p>
	Approximation- Appendix C.

TABLE II-2 Diffuse Irradiance Equations for Simple Shapes

Figure II-2 Phase Angle and Sensor and Solar Aspect Angles

Figure II-3 Geocentric-Inertial(I, J, K), Topocentric(S, E, Z) and Body-Centred(r, v_c, h) Coordinate Frames

Figure II-4 Phase Angle Effects

orbits, visible simultaneously to a sensor, S. The sensor is in darkness about one hour before dawn. The sensor's local horizon intersects the plane of orbit 2 at points C and E. The arc DF marks the intersection of the plane of orbit 2 with the cone of the earth's shadow. Satellite 1 (SAT 1) is sunlit for the entire time it is above the sensor horizon, but it is illuminated from behind and ϕ is large so the observed diffuse irradiance is small. SAT 2 enters the earth's shadow at point D, but while it is visible, ϕ is small, so observed diffuse irradiance is high, since most of the portion of the satellite facing the sensor is illuminated.

Obtaining Phase Angle and Aspect Angles This paper uses the universal variable formulation for time of flight to solve the orbit prediction problem (Ref 1:191-212). Radius and velocity vectors, and epoch time were provided for each photometric signature received from the ADIC. Since these vectors are epoched during the time of track, and the tracks are from one to three minutes long, it was not deemed necessary to account for orbital perturbations or to advance the sun position from its position at start of track. Sun positions were interpolated from the 1982 Astronomical Almanac (Ref 17). Astrodynamic constants are from the DOD World Geodetic System, 1972 (Ref 8). Table II-3 lists applicable WGS-72 constants.

The vectors obtained from the orbit prediction calculation are the radius vector, \bar{r} and the velocity vector \bar{v} , in the geocentric-inertial

ASTRODYNAMIC CONSTANT	VALUE
One Earth Radius (Canonical distance unit):	6378.135 km
Oblateness of the Reference Ellipsoid:	.08181881066
Canonical Time Unit:	13.44683295 min
Earth Gravitational Parameter:	$3.986002 \times 10^5 \frac{\text{km}^3}{\text{sec}^2}$
Earth Angular Rotation Rate:	$7.292115147 \times 10^{-4} \frac{\text{rad}}{\text{sec}}$

Table II-3 NGS-72 Astrodynamical Constants

coordinate system (refer to Figure II-3). We can obtain the unit vector in the direction of the sun through a simple spherical rectangular coordinate transformation, if we know its position in right ascension (RA) and declination (DEC). Right ascension is measured in degrees eastward from the first point of Aries along the celestial equator, and declination is measured north or south from the celestial equator.

$$\hat{S} = [\cos(\text{DEC}) \cos(\text{RA})] \hat{i} + [\cos(\text{DEC}) \sin(\text{RA})] \hat{j} + [\sin(\text{DEC})] \hat{k}$$

where \hat{i} , \hat{j} and \hat{k} are the unit vectors defining the axes of the geocentric-inertial coordinate system.

The sensor position vector is found using the WGS-72 ellipsoidal earth model. Referring to Figure II-5 (Ref 1:95),

$$x = \left| \frac{a_e}{\sqrt{1-e^2 \sin^2 L}} + h \right| \cos L ;$$

$$z = \left| \frac{a_e(1-e^2)}{\sqrt{1-e^2 \sin^2 L}} + h \right| \sin L \quad \text{where}$$

a_e is one equatorial earth radius, e is the eccentricity of the reference ellipsoid, L is sensor latitude and h is the sensor's altitude above sea level (Ref 1:98). The sensor position vector, \bar{R} is given by

$$\bar{R} = (x \cos \theta) \hat{i} + (x \sin \theta) \hat{j} + z \hat{k},$$

$$\theta = \theta_g + \lambda_E \quad \text{where}$$

Figure II-5 Ellipsoidal Earth Model

Θ is local sidereal time, Θ_g is Greenwich sidereal time, and λ_E is the eastern longitude of the sensor (Ref 1:99).

At any point in time,

$$\Theta_g = \Theta_{g_0} + (1.0027379093)(2\pi)(D) \quad \text{radians,}$$

where Θ_{g_0} is Greenwich sidereal time at 0^h U.T. on the first of January.
 D is the number of days which have elapsed since 1 January, and 1.002737-
9063 is one day of mean solar time (Ref 1:101-104).

The sensor line of sight vector may be found easily, knowing \bar{r} and \bar{R} . From Figure II-3,

$$\bar{r} = \bar{R} + \bar{\lambda} \quad \therefore$$
$$\bar{\lambda} = \bar{r} - \bar{R}$$

The remaining vector needed to determine α and β is the one defining the longitudinal axis of symmetry of the satellite. Many payloads of intelligence interest have a known nominal orientation in the body-centered coordinate frame. A coordinate transformation from the body frame to the geocentric-inertial frame provides the needed vector which we will call $\bar{A} = (\alpha_i) \hat{i} + (\alpha_j) \hat{j} + (\alpha_k) \hat{k}$.

To obtain the sensor aspect angle α , we use

$$\alpha = \cos^{-1} \left(\frac{\bar{\lambda} \cdot \bar{A}}{|\bar{\lambda}| |\bar{A}|} \right)$$

The solar aspect angle is given by

$$\beta = \cos^{-1} \left(\frac{\bar{s} \cdot \bar{A}}{|\bar{s}| |\bar{A}|} \right)$$

phase angle, ϕ is given by

$$\phi = 180 - \cos^{-1} \left(\frac{\bar{I} \cdot \bar{S}}{|\bar{I}| |\bar{S}|} \right)$$

Other Viewing Geometry Considerations The phase functions for simple shapes given in Table II-2 account for the phase shadowing of the objects based upon solar and sensor aspect angles. When the basic shapes are combined to form a more complex satellite model, the model photometric signature cannot be determined, in general, by a simple linear combination of the irradiances of components. The total irradiance is complicated by the casting of shadows on some components by others, and by line-of-sight obscuration of some parts by others. These effects are significant in diffuse signatures when they involve components which have large surface areas, such as solar paddles. Small protrusions and surface features are generally not significant to the diffuse signature component.

This thesis models a satellite which has two large, sun-tracking solar paddles which strongly influence the observed signature. Figure II-6 illustrates a hypothetical series of satellite images as seen by a sensor on a pass for which the paddles are illuminated. As sensor

aspect angle changes, the paddle away from the sensor becomes more and more obscured by the main body. Part of the paddle closest to the sensor also obscures part of the cylindrical body. The effects are significant because the surface areas involved are large.

The satellite model contained in the subroutine SIGB1, described in Chapter III, attempts to account for the portion of the spaceward solar paddle which is obscured by the main satellite body. The development of the algorithm for doing this is given in Appendix B.

Figure II-6 Line-of-Sight Obscuration

III. PROGRAM "SATELLITE IDENTIFICATION (SATID)"

FUNCTIONAL DESCRIPTION

Program SATID is written in standard FORTRAN 77 (Ref 6). The coded listing appears in Appendix A, along with supplementary information.

The Mainline Program, SATID:

Inputs The following quantities are required inputs to program SATID:

1. Greenwich sidereal time at 0^h U.T. on 1 January of the current year. This input is necessary only once per year, and is used to calculate Greenwich and local sidereal times at the time of track in order to determine the sensor position vector.
2. The alphabetic sensor code of the sensor which collected the data being analyzed. The codes used in SATID are the ones in current use at the ADIC. The program uses sensor code to select the applicable sensor longitude, latitude and altitude above sea level. Only the MOTIF and SITU codes are currently implemented.
3. The pattern number assigned to the data being analyzed. This number is assigned to the data at the ADIC, and permanently identifies the data for later retrieval from permanent storage. SATID uses the number to identify the data for the analyst in the output.

4. A geocentric-inertial radius vector in canonical units of WGS-72 earth radii.
5. A velocity vector in WGS-72 earth radii per day. The more usual units of earth radii per universal time unit were not used because vectors provided by the ADIC were in earth radii per day. The program converts to the other units before performing orbit predictions.
6. The epoch time of the input vectors. Items 4,5, and 6 are used in the orbit prediction calculations.
7. The right ascension and declination of the sun, in radians, at the start of track. These are used to determine a unit vector in the direction of the sun for irradiance calculations.
8. The desired time increment between observations, in canonical time units. The program can use any time increment, but it was kept at one observation per second for this thesis. The increment is used to update time of flight.
9. The number of observations, or data points to be read into the program. This determines the number of synthetic data points to be created by the program.
10. A satellite photometric signature in digital form.

Outputs Program SATID provides the following outputs:

1. Identifying information including the sensor by name, the pattern number, and the start time in U.T.

2. Keplerian orbital elements and the right ascension and declination of the orbit normal.
3. The following items in parallel columns:
 - a. Seconds since start of track
 - b. Azimuth of the satellite with respect to the sensor
 - c. Elevation of the satellite with respect to the sensor.
 - d. Start range of the satellite from the sensor in kilometers. Items a through d were used for comparison with look angles provided by NORAD to confirm that input radius and velocity vectors were correct and that the orbit prediction algorithms worked.
 - e. Right ascension of the line of sight.
 - f. Declination of the line of sight. Items e and f may be used to determine if an unusual feature on the input signature is attributable to the satellite or to something in the background star field.
 - g. Phase angle.
 - h. Four sets of synthetic data points corresponding to the four currently implemented satellite models, SIGA1, SIGB1, SIGC1 and SIGD1. Units are absolute visual magnitudes. The term absolute refers to normalization of all magnitudes to a range of 1000 kilometers.
 - i. A listing of data points from the true signature, TRUSIG.
4. A statistical results summary in tabular form. The columns correspond to the four satellite models. The rows are, beginning with row 1:
 - a. The mean deviation, mu, between true and synthetic data points.

- b. The standard deviation, SIGMA, between true and synthetic signatures.
- c. The sum of the squares of the residuals, SSR, for each satellite model. The model with the minimum SSR provides the best match to the true data.

Program Logic Figure III-1 is a logic flow chart of the mainline program intended to clarify this narrative description of the tasks performed by SATID.

The input satellite signature is loaded into a one-dimensional array of 1000 points capacity, TRUSIG. The first major computational task of the program, after reading input data and performing unit conversions, is the calculation of Keplerian orbital elements from the input vectors. The mainline calls subroutine ELSET which uses the method described in Bate, Mueller and White (Ref 1:61-67) to compute orbital elements.

A large DO-loop contains all further computational tasks with the exception of the statistical results summary calculations. The DO-loop control variable, N, is set to the number of observations in the input signature, in this case, the number of seconds of track to be analyzed. The loop counter, M, goes from 1 to N. The following calculations are performed for each second of track (or value of M) inside the large loop:

1. Time of flight is incremented from M-1 to M seconds. If M=1, time of flight is zero and later computations are based on the original input vectors. The first input data point occurs at

delta time zero.

2. New radius and velocity vectors are calculated using the universal variable formulation for time of flight (Ref 1:191-212).
3. Current sensor position and line of sight vectors are calculated as described in Chapter II.
4. Sensor look angles are calculated using simple rectangular spherical coordinate transformations to determine azimuth and elevation. A decision structure corrects azimuth for the appropriate quadrant. Range is obtained from the magnitude of the line of sight vector. Phase angle is the angle between the previously determined line of sight and the sun vector.
5. A second DO-loop within the first contains the absolute visual magnitude calculations for each satellite model. The loop control variable, Q' is set to the number of satellite models currently in the program. In this case, Q' is 4. The loop counter, Q, goes from 1 to Q'. If Q equals 1, the program calls subroutine SIGA1. SIGA1 stands for "signature of model type A1," where A is an arbitrarily assigned designator for a type of soviet satellite, and 1 indicates it is a "first generation" object. SIGA1 calculates the absolute visual magnitude of the type A1 satellite, and stores the point in an array called SUNA1, for "simulated signature of type A1." The inner loop calls each satellite model synthetic signature generation subroutine in turn, and

a magnitude is calculated by each, and is stored in a corresponding simulated signature array.

When each satellite signature model subroutine has calculated and stored a magnitude, the flow returns to the large DO-loop, the loop counter, M is incremented by 1, and the entire process described in 1 through 5 above is repeated for the next second of track.

When the large DO-loop is complete, the simulated signature arrays are complete and the mainline program calls the subroutine COMPAR, which compares the true signature, point by point, to each simulated signature and outputs the statistical results summary table.

The Subroutines

The following are very brief subroutine descriptions and the top-level logic flow diagrams for some of them:

Subroutine ELSET ELSET stands for "element set," and calculates the Keplerian orbital elements and the right ascension and declination of the orbit normal. The logic flow diagram is Figure III-2.

Subroutine ANGLES ANGLES calculates the sensor aspect angle (ALPHA) and solar aspect angle (BETA) of an earth-center stabilized satellite, and the sensor and solar aspect angles (ALPHAH and BETAH) of an horizon-stabilized satellite. The earth-center stabilized object has its long axis along the orbital radius vector, and the horizon-stabilized object has its long axis parallel to the vector formed by the cross product of the orbit normal and the radius vector. ANGLES is called by the simulated signature generation subroutines, for irradiance calculations.

The logic flow diagram is Figure III-3.

Subroutine ELIPS1 and 2 ELIPS1 calculates the Y-coordinates of points on the ellipses formed by the projection of cylinder endplate perimeters into the optical image plane, corresponding to the X-coordinates of solar paddle corner points which lie inside the sides of cylinder 1 defined in Figure B-1. ELIPS2 does the same for cylinder 2. These coordinates are used in the plane analytic geometry calculations of subroutine GEOM1. The logic flow is Figure III-4.

Subroutine GEOM1 GEOM1 uses the line of sight vector, sun vector, and the orbital radius vector, along with type B1 satellite dimensions, to define the geometry necessary to calculate the solar paddle area which is both illuminated and visible to the sensor, even though part of one paddle is obscured by the body of the satellite. The approach is to establish an image plane coordinate system with the projection of the radius vector defining the Y-axis and with the X-axis perpendicular to the Y-axis and positive to the sensor's right. The edges of all body parts are projected into the image plane and critical points, such as paddle corners and ellipse centers are located. The subroutine also locates the points of intersection of important lines and ellipses, and creates equations for ellipses, and point-slope form line equations. GEOM1 is called by SIGB1. The GEOM1 output is used by subroutines CASES, AREAS, AREAS1, AREAS2, and AREAS3.

Subroutine Cases CASES identifies which of five viewing geometries

applies to the type B1 satellite, concerning the paddle obscuration calculation. Case zero refers to zero paddle corner points visible to the sensor. Case 1 is one corner point visible, and so on to case 4, which is all four corners visible. CASES is called by subroutine SIGB1. Figure III-5 shows the logic flow.

Subroutines AREAS1, 2 and 3 These short subroutines evaluate integrals to obtain the area between two curves. Limits of integration are defined in the logic of subroutine AREAS, which repeatedly calls these subroutines. AREAS1 computes the area between two lines, AREAS2, between a line and an ellipse, and AREAS3 between two ellipses. Figure III-6 shows the logic flow for all three.

Subroutine CP123 CP123 stands for "corner points one, two and three." This subroutine performs an area computation which must often be repeated for CASE 3, when three corner points are visible. CP123 is called by AREAS. The flow diagram is Figure III-7.

Subroutine AREAS AREAS calculates the partial paddle area visible to the sensor for a type B1 satellite. The subroutine determines area based upon the case identified by CASES, and further decision logic which identifies subcases within each case. The output is the area of the paddle, APAD, which is actually the product of the sensor aspect angle to the paddle normal (ALPHAP), times the true visible paddle area. AREAS is called by subroutine SIGB1.

Subroutine CONE CONE approximates the diffuse irradiance of a cone

or a truncated cone. The conic is modeled by 200 flat strips which are triangular for a pure cone and trapezoidal for a truncated cone. CONE is called by SIGC1, and receives its inputs from the SIGC1 satellite model parameters, including reflectivity, half-angle, cone height, slant length, base radius, and nose radius when applicable. The output of CONE is an approximate diffuse irradiance for a conic satellite component. Although SIGC1 is now the only subroutine to call CONE, any future subroutine could use CONE if the appropriate vector defining the conic axis of symmetry is input from the calling subroutine. The irradiance algorithm is described in Chapter II. Figure III-8 shows logic flow.

Subroutines SIGA1, SIGB1, SIGC1, and SIGD1. The four satellite model subroutines calculate individual irradiances for each component of the satellite model using the phase functions presented in Table II-2. The component irradiances are summed and the absolute visual magnitude is calculated. The magnitude is then read into the simulated signature array for the appropriate satellite model, the array element subscript corresponding to the current value of the large DO-loop counter variable, M, described in the paragraph on mainline program logic.

All of the satellite model subroutines call subroutine ANGLES, except for SIGD1 which models a sphere and requires only the phase angle, which is calculated in the mainline. SIGB1 must determine the observed irradiance of both an unobscured solar paddle and a solar paddle which may be partially obscured by the main body of the satellite with respect

to the sensor. It calculates main body irradiance, unobscured paddle irradiance and obscured paddle irradiance. To obtain the latter, the exposed paddle area is determined by subroutine calls to GEOM1, CASES and AREAS. SIGC1 contains a conic component, and must therefore call subroutine CONE. Logic flow diagrams are given in Figures III-9 through III-12.

Subroutine COMPAR COMPAR performs statistical comparison of the deviations between the simulated signatures and the input true signatures. COMPAR deals with the simulated signatures sequentially, beginning with SIMA1. The subroutine begins with a large DO-loop which has the number of satellite models, Q', as its loop control variable, and the model number, Q, as the loop counter. When Q=1, the program compares the true signature to SIMA1, when Q equals 2, the comparison is with SIMB1, and so on. The simulated signatures are loaded into COMPAR's working array, SIMSIG, then each data point in the true signature array, TRUSIG, is subtracted from its counterpart in SIMSIG.

$d_i = s_i - m_i$ where s_i is the ith simulated data point, m_i is the ith measured data point, and d_i is the deviation. The deviations are stored in an array named DEVSIG. The DEVSIG array elements are then summed and divided by the number of points, N, to yield mean deviation, $\mu(\mu)$.

$$\mu = \frac{\sum_{i=1}^n d_i}{n}$$

As mean deviations are determined for each model, they are stored in array MEAN. The squares of the deviations in DEVSIG are then computed and summed, and standard deviation, SIGMA is calculated, and loaded into array STDEV.

$$\sigma = \left(\frac{\sum_{i=1}^n d_i^2}{n-1} - n\mu^2 \right)^{1/2}$$

Finally, COMPAR calculates the sum of the squares of residuals for each model, SSR, and loads them into array SMSR.

$$SSR = \frac{1}{\sigma} \sum_{i=1}^n d_i^2$$

The arrays MEAN, STDEV and SMSR are strictly for output of the statistical results summary table. Figure III-13 is the COMPAR logic flow diagram.

Figure III-1-1 SATID Logic Flow

Figure III-1-2 SATID Logic Flow
53

Figure III-2-1 ELSET Logic Flow

Figure III-2-2 ELSET Logic Flow

Figure III-3 ANGLES Logic Flow

Figure III-4 ELIPS1 and 2 Logic Flow

Figure III-5-1 CASES Logic Flow

Figure III-5-2 CASES Logic Flow

Figure III-6 AREAS1, 2 and 3 Logic Flow

Figure III-7 CP123 Logic Flow

Figure III-8 CONE Logic Flow

Figure III-9 SIGA1 Logic Flow

Figure III-10 SIGB1 Logic Flow

Figure III-11 SIGC1 Logic Flow

Figure III-12 SIGD1 Logic Flow

Figure III-13-1 COMPAR Logic Flow

Figure III-13-2 COMPAR Logic Flow

IV. SATELLITE MODELS AND VALIDATION RESULTS

Model Descriptions

Three types of foreign satellites were modeled. These are described in detail in the classified addendum to this thesis. To keep this thesis unclassified, none of the actual signatures are identified by mission class or by the object number assigned by the NORAD Space Computational Center (SCC) in Colorado Springs. The models were given arbitrary alphanumeric designators having no relationship to similar designators employed by the ADC Intelligence Center. These designators appear within the names of the satellite model subroutines. The letter in the designator refers to a mission class. The number refers to a variant of the mission class.

Model A1 Model A1 components are a cylinder and a flat plate. The cylinder's longitudinal axis remains aligned with the orbital radius vector, and the components have different reflectivities. General configuration is given in Figure IV-1A.

Model B1 Model B1 components include three cylinders and five flat plates, two of which represent sun-tracking solar paddles. Shadowing of components by other components, and obscuration of one solar paddle by the main body are modeled. This is the most complex of the four models, and the only model validated using actual signature data. This model long axis also remains aligned with the orbital radius vector (Figure IV-1B).

A

B

C

Figure IV-1 General Model Configurations

The purpose of model B1 was to develop and test an algorithm for computing diffuse irradiance of an object with complex geometry, causing partial obscuration and shadowing of some parts by others.

Model C1 Model C1 components are two cylinders, one flat plate and a cone. The body long axis is aligned with the vector formed by the cross product of the orbital angular momentum vector and the radius vector. If the orbit were circular, this would be the velocity vector. Such a configuration simulates horizon stability in a minimum drag configuration. Figure IV-1C gives general shape and orientation.

Model D1 This model is an arbitrary sphere which does not directly correspond to any actual satellite. The phase function for this model is not restricted to diffuse reflection, but includes the specular component, which is always present for a sphere. The ratio of specular to diffuse reflectivities for this model was chosen to be three to one.

Initial Model Configurations

Estimates of physical and dynamic characteristics of satellites were provided by the ADC Intelligence Center. All models are simplifications of these estimates. From initial estimates, model B1 was refined by comparison with actual signatures. Other models are not validated by data, and represent only rough approximations to actual configurations.

Model B1 Validation

The Data Model B1 was validated using five high quality photometric

signatures collected by the Satellite Identification and Tracking Unit (SITU), St. Margaret's, New Brunswick, Canada. Although data from the Maui Optical Tracking and Identification facility (MOTIF) were collected, the orbital radius and velocity vectors provided were invalid, and the MOTIF signatures could not be used.

The signatures provided by the ADIC were not in digital form, but were in the form of time versus stellar magnitude plots. Figure IV-2 shows one of the plots used to validate model B1. To make them usable by program SATID, the signatures were digitized at the ASD computer center, using a Gould 3054 X-Y recorder and the MODCOMP classic data analysis computer. The signatures were digitized at one point per second of time, or one hertz sampling rate. For near linear diffuse data, a one to three hertz sampling rate is considered adequate (Ref 9: 15). The data points were recorded on tape and then output on punch cards. Each punch card contained a maximum of three data points, and the delta time from start of track for each point. Table IV-1 is a summary of signature data used to validate model B1.

Procedure The validation procedure was to run program SATID with each of the five signatures, and to alter model B1 input parameters between runs in order to minimize the SIGB1 SSR value. The reflectivity of the main satellite body was the parameter changed, since dimensions were considered to be fixed and solar paddle reflectivities are well known (Ref 7:18).

Sources of Error A nonzero SSR for a validated model is a result of many sources of error, including:

1. Inaccurate model dimensions, configuration or orientation
2. Contributions to irradiance by unmodeled features
3. Non-uniform surface coatings of features which are modeled
4. The degree to which true surfaces depart from the Lambertian assumption.
5. Inaccuracies in sky background corrections and sensor calibrations
6. Noise in the data
7. Unaccounted for X-Y recorder bias introduced in the digitizing process
8. Differences among individual spacecraft of the same type, such as alterations in surface reflectivity as the surface is exposed to the space environment, or differences when manufactured.

The first through the fourth sources of error above could be decreased somewhat by more elaborate modeling, but since the purpose of the models is to enable the software to correctly identify satellites, they need only be sufficiently accurate to allow an analyst to distinguish between types with some degree of confidence.

Two categories of signatures emerged during the validation phase. Category I signatures could be matched well by the simulated signatures when diffuse reflectivities were in the range typical for satellite materials. Antireflection coated silicon solar cells have a diffuse

reflectivity of about .06, and unpolished aluminum lies in the .2 to .3 range (Ref 7:18). The reflectivities which yielded the smallest SSR for model B1 were .06 to .08 for the solar paddles and .42 to .45 for the other main body components. Specular reflectivity for unpolished aluminum is about .42 (Ref 7:18), so this value for the diffuse model seems a little high. The satellite may be painted, or it may have a slightly glossy surface. Signatures which fall into this category are summarized in Table IV-1. These simulated signatures exhibit the behavior expected using diffuse phase functions, with magnitude dimming as phase angle increases. The true signatures dimmed with increasing phase angle also, but at a slower rate, making the synthetic signatures too dim at the end of track. Tables IV-2 through IV-7 are actual computer output for these signatures.

The category II signatures could not be well matched by simulated signatures of model B1. Reflectivities required to reduce SSR were very high, ranging from .6 to almost 1.0 for main body components. The slope of all simulated signatures had to follow the increasing phase angle, dimming magnitude rule, but the true data often behaved exactly the opposite, becoming slightly brighter as phase angle increased. These signatures are summarized in Table IV-1. For the sake of comparison, SSR values are given for reflectivities the same as those for category I. Some category II tracks are actually the last half of long category I tracks. Suffix a indicates the first half of a track, and suffix b

the last half.

Table IV-1 suggests that the critical factor in determining category I and category II results is the phase angle. The best matches of simulated and actual signatures occur for tracks with small to moderate (30 to 90 degrees) phase angles. The category II tracks all have moderate to large (90 to 130 degrees) phase angles. A plausible explanation is that the B1 satellite is far from being a perfect Lambertian reflector, and that its non-Lambertian behavior becomes more obvious as sensor aspect angle diverges from normal incidence. The reflective properties of many natural surfaces are approximately Lambertian near normal incidence. If the B1 satellite's surface is glossy to some degree, we would expect the Lambertian assumption to break down at large phase angles.

Pattern Number	Track Length	Begin Phase	End Phase	SSR		
				A1	B1	C1
C 3883a	90	29	66	967.2	27.4	488.8
A 3883b	121	57	94	770.7	126.2	931.1
I 3893a	90	58	79	1144.1	94.9	117.1
C 3893b	45	87	97	364.2	251.9	19.0
A 3910b	101	113	126	1157.5	1211.1	101.2
II 3925	71	126	107	1027.2	671.9	26.5
						330.7

TABLE IV-1
Model B1 Validation Results

Figure II-2 Photoretric Signature of a Stable Payload

SENSOR: SITU, ST MARGARETS, NS, CANADA

PATTERN NUMBER: 3683

START TIME: 82 199 2 11 55.0 UT

SEMI-MAJOR AXIS: 7146.7615601
SEMILATUS RECTUM: 7146.918591936
ECCENTRICITY: .0161430917007
INCLINATION: 81.18664916535
RA OF ASCENDING NODE: 251.5278516055
RA OF ORBIT NORMAL: 161.527516055
DEC OF ORBIT NORMAL: 8.81331085461
ARGUMENT OF PERIGEE: 203.2554767439
TRUE ANOMALY: 194.3375306622
ARGUMENT OF LAT AT EPOCH: 41.59300766612
TRUE LONGITUDE AT EPOCH: 293.1208592117
ORBITAL PERIOD(MINUTES): 100.2553038024

SEC	AZ	EL	BACKGROUND			PHASE	ABSOLUTE VISUAL MAGNITUDE				
			RANGE	RA/LS	DEC/LS		SIGA1	SIGB1	SIGC1	SIGD1	TRUSIG
0.0	141.903	42.945	1223.666	280.403	5.964	29.182	5.713	3.919	3.413	6.154	4.010
1.0	141.926	43.271	1217.925	280.406	6.248	29.477	5.715	3.923	3.414	6.155	4.015
2.0	141.950	43.595	1212.217	280.324	6.535	23.774	5.716	3.927	3.415	6.156	4.010
3.0	141.973	43.922	1206.542	280.241	6.824	30.074	5.717	3.931	3.416	6.157	4.015
4.0	141.995	44.252	1200.901	280.156	7.115	30.377	5.719	3.936	3.417	6.159	4.010
5.0	142.014	44.584	1195.293	280.071	7.409	30.682	5.721	3.940	3.419	6.160	4.000
6.0	142.040	44.918	1189.721	275.985	7.705	30.990	5.722	3.945	3.420	6.161	4.025
7.0	142.061	45.225	1184.183	275.897	8.004	31.300	5.724	3.950	3.421	6.162	4.045
8.0	142.093	45.555	1179.680	275.804	8.306	31.613	5.726	3.954	3.423	6.164	4.055
9.0	142.104	45.936	1173.213	275.720	8.610	31.929	5.727	3.959	3.424	6.165	4.010
10.0	142.125	46.283	1167.762	279.630	8.916	32.248	5.729	3.964	3.426	6.166	4.210
11.0	142.145	46.631	1162.388	275.538	9.226	32.570	5.731	3.969	3.427	6.166	4.200
12.0	142.165	46.952	1157.030	275.446	9.537	32.894	5.733	3.975	3.429	6.169	4.235
13.0	142.184	47.336	1151.710	275.353	9.852	33.221	5.735	3.980	3.430	6.170	4.210
14.0	142.203	47.652	1146.424	279.258	10.169	33.550	5.737	3.985	3.432	6.172	4.185
15.0	142.222	47.951	1141.185	275.162	10.488	33.833	5.739	3.991	3.433	6.173	4.235
16.0	142.240	48.113	1135.980	279.066	10.811	34.214	5.741	3.996	3.435	6.175	4.300
17.0	142.258	48.777	1130.814	274.968	11.135	34.537	5.743	4.002	3.437	6.176	4.275
18.0	142.275	49.145	1125.638	276.869	11.463	34.838	5.745	4.008	3.438	6.178	4.220
19.0	142.292	49.516	1120.603	278.768	11.793	35.242	5.747	4.014	3.440	6.179	4.210
20.0	142.303	49.885	1115.558	274.667	12.126	35.589	5.750	4.020	3.442	6.181	4.230
21.0	142.324	50.265	1110.554	274.564	12.462	35.938	5.752	4.027	3.444	6.182	4.310
22.0	142.333	50.644	1105.592	276.466	12.801	36.231	5.755	4.033	3.446	6.184	4.315
23.0	142.353	51.026	1100.672	277.355	13.142	36.647	5.757	4.039	3.447	6.186	4.245
24.0	142.367	51.411	1095.795	276.245	13.486	37.005	5.760	4.046	3.449	6.187	4.355
25.0	142.381	51.798	1090.960	276.141	13.832	37.367	5.762	4.053	3.451	6.189	4.300
26.0	142.395	52.189	1086.173	274.032	14.182	37.731	5.765	4.060	3.453	6.191	4.320
27.0	142.405	52.583	1081.423	277.922	14.534	38.099	5.768	4.067	3.456	6.192	4.415
28.0	142.417	52.979	1076.721	277.810	14.889	38.469	5.770	4.074	3.458	6.194	4.360
29.0	142.427	53.370	1072.064	277.656	15.246	38.842	5.773	4.082	3.460	6.196	4.395
30.0	142.437	53.761	1067.453	277.562	15.607	39.219	5.776	4.089	3.462	6.198	4.390
31.0	142.446	54.167	1062.888	277.466	15.970	39.598	5.779	4.097	3.464	6.200	4.465
32.0	142.454	54.595	1058.369	277.349	16.336	39.980	5.783	4.105	3.467	6.201	4.320
33.0	142.461	55.007	1053.898	277.229	16.705	40.366	5.786	4.113	3.469	6.203	4.310
34.0	142.467	55.481	1049.474	277.109	17.074	40.754	5.789	4.122	3.472	6.205	4.480
35.0	142.472	55.838	1045.099	276.987	17.451	41.146	5.792	4.130	3.474	6.217	4.515
36.0	142.477	56.255	1040.772	276.863	17.828	41.540	5.796	4.139	3.477	6.209	4.370
37.0	142.480	56.662	1036.495	276.735	18.208	41.938	5.799	4.148	3.479	6.211	4.375
38.0	142.482	57.106	1032.267	276.611	18.590	42.338	5.803	4.157	3.482	6.213	4.485
39.0	142.483	57.537	1026.085	276.482	18.976	42.741	5.807	4.166	3.485	6.215	4.400
40.0	142.483	57.970	1023.963	276.352	19.364	43.148	5.810	4.175	3.487	6.217	4.465
41.0	142.485	58.405	1019.660	276.220	19.755	43.557	5.814	4.185	3.490	6.220	4.365
42.0	142.487	58.843	1015.864	276.056	20.148	43.970	5.818	4.195	3.493	6.222	4.430
43.0	142.487	59.264	1011.893	275.951	20.544	44.385	5.822	4.205	3.496	6.224	4.420
44.0	142.488	59.721	1007.975	275.813	20.943	44.804	5.826	4.215	3.499	6.226	4.455
45.0	142.488	61.175	1004.111	275.674	21.345	45.225	5.831	4.226	3.502	6.228	4.445
46.0	142.492	60.625	1000.300	275.533	21.749	45.650	5.835	4.237	3.505	6.231	4.360
47.0	142.492	61.074	996.544	275.350	22.156	46.077	5.839	4.248	3.508	6.233	4.410
48.0	142.492	61.534	992.943	275.247	22.566	46.507	5.844	4.259	3.512	6.235	4.475
49.0	142.492	61.942	987.19W	275.154	22.978	46.940	5.849	4.271	3.514	6.234	4.400

50.0	142.391	62.454	985.609	274.549	23.393	47.376	5.853	4.283	3.518	6.240
51.0	142.383	62.918	982.076	274.743	23.810	47.815	5.858	4.295	3.525	6.243
52.0	142.451	63.385	976.601	274.645	24.230	48.257	5.863	4.307	3.525	6.245
53.0	142.335	63.855	975.163	274.490	24.652	46.702	5.868	4.320	3.529	6.247
54.0	142.309	64.328	971.823	274.332	25.077	49.149	5.674	4.333	3.533	6.250
55.0	142.281	64.803	968.522	274.172	25.504	49.600	5.679	4.347	3.536	6.253
56.0	142.249	65.261	965.280	274.010	25.934	50.053	5.884	4.360	3.540	6.255
57.0	142.214	65.762	962.098	273.046	26.366	50.509	5.890	4.374	3.544	6.258
58.0	142.176	66.245	958.976	273.670	26.800	50.967	5.896	4.389	3.548	6.260
59.0	142.135	66.731	955.915	273.510	27.237	51.426	5.901	4.403	3.552	6.263
60.0	142.087	67.220	952.914	273.339	27.676	51.832	5.907	4.419	3.556	6.266
61.0	142.040	67.711	949.976	273.165	28.117	52.359	5.914	4.434	3.561	6.269
62.0	141.986	68.205	947.100	272.983	28.560	52.828	5.920	4.450	3.565	6.271
63.0	141.928	68.701	944.286	272.609	29.006	53.299	5.926	4.466	3.569	6.274
64.0	141.864	69.199	941.535	272.627	29.453	53.774	5.933	4.483	3.574	6.277
65.0	141.795	69.600	938.847	272.442	29.903	54.250	5.939	4.500	3.578	6.280
66.0	141.723	70.203	936.224	272.255	30.354	54.729	5.946	4.518	3.583	6.283
67.0	141.633	70.709	933.665	272.069	30.808	55.210	5.953	4.536	3.587	6.286
68.0	141.551	71.217	931.171	271.871	31.263	55.694	5.960	4.554	3.592	6.288
69.0	141.455	71.726	928.742	271.675	31.720	56.160	5.967	4.573	3.597	6.291
70.0	141.351	72.236	926.378	271.476	32.179	56.663	5.975	4.593	3.602	6.294
71.0	141.236	72.752	924.061	271.275	32.639	57.155	5.982	4.613	3.607	6.297
72.0	141.115	73.268	921.849	271.069	33.101	57.651	5.990	4.633	3.612	6.300
73.0	140.981	73.786	919.685	270.860	33.565	58.145	5.998	4.654	3.617	6.304
74.0	140.835	74.305	917.588	270.649	34.030	56.642	6.006	4.676	3.623	6.307
75.0	140.676	74.627	915.558	270.434	34.496	59.140	6.014	4.698	3.628	6.310
76.0	140.503	75.350	913.596	270.215	34.964	59.641	6.023	4.721	3.634	6.313
77.0	140.313	75.874	911.703	269.993	35.433	60.143	6.031	4.745	3.639	6.316
78.0	140.104	76.400	909.376	269.768	35.903	60.647	6.040	4.770	3.645	6.317
79.0	139.875	76.926	908.121	269.536	36.375	61.152	6.049	4.795	3.651	6.322
80.0	139.623	77.457	906.434	269.306	36.847	61.660	6.058	4.821	3.657	6.326
81.0	133.344	77.986	904.016	269.069	37.320	62.168	6.067	4.847	3.663	6.329
82.0	133.035	78.517	903.267	268.828	37.794	62.679	6.077	4.875	3.669	6.332
83.0	133.691	79.049	901.789	268.584	38.269	63.130	6.086	4.903	3.675	6.336
84.0	133.308	79.562	900.380	268.345	38.745	63.703	6.096	4.933	3.681	6.339
85.0	137.874	80.115	899.042	268.003	39.221	64.218	6.106	4.963	3.687	6.342
86.0	137.393	80.645	897.774	267.826	39.698	64.733	6.116	4.995	3.694	6.346
87.0	136.344	81.183	896.577	267.565	40.175	65.250	6.127	5.027	3.700	6.349
88.0	135.219	81.717	895.451	267.299	40.652	65.767	6.138	5.061	3.707	6.352
89.0	135.500	82.250	894.356	267.029	41.130	66.286	6.148	5.096	3.714	6.356

STATISTICAL RESULTS SUMMARY

SIGNAL	SIGH1	SIGH2	MODEL	SIGD1
MU:	1.057	-0.154	-0.944	1.771
IGMA:	•143	•157	•167	•244
SSR:	361.187	270.454	408.050	1164.877

SENSOR: SITU, ST MARGARET'S, NH, CANADA

PATTERN NUMBER: 3483

START TIME: 32 1:5 2 13 24. UT

SEMI-MAJOR AXIS: 7244.547553555
SEMI-LATUS RECTUM: 7344.512127765
ECCENTRICITY: .0343425357
INCLINATION: 11.23664530103
RA OF ASCENDING NODE: 251.5416003214
PA OF ORBIT NORMAL: 161.516.03214
DEC OF ORBIT NORMAL: +763355.604572
ARGUMENT OF PERIGEE: 153.955754713
TRUE ANOMALY: 246.044.0614652
ARGUMENT OF LAT A - EPOCH: 46.753.511.6654
TRUE LONGITUDE AT EPOCH: 254.3354514.7
ORBITAL PERIOD(MINUTE): 102.2776437715

DELTA SEC	A2	EL	HACKGPGLD			PHASE	ABSOLUTE VISUAL MAGNITUDE			TRUSIG
			RANGE	RADS	DECLOS		SIGNAL	SIGB1	SIGC1	
50.0	95.614	54.669	1055.0305	251.7330	33.6663	57.314	6.021	4.491	3.397	6.298
51.0	55.022	54.966	1652.449	247.734	34.360	57.708	6.027	4.505	3.401	6.301
52.0	94.417	55.237	1049.542	25.763	34.036	68.143	6.033	4.520	3.404	6.304
53.0	33.411	55.507	1047.107	257.634	35.173	54.621	6.034	4.535	3.408	6.307
54.0	53.172	55.774	1644.326	257.640	35.622	55.060	6.045	4.551	3.412	6.309
55.0	92.531	56.038	1041.605	297.776	36.066	57.502	6.051	4.566	3.415	6.312
56.0	51.477	56.293	1054.945	297.712	36.215	59.746	6.057	4.582	3.419	6.315
57.0	41.211	56.557	1058.347	257.556	36.564	60.392	6.063	4.599	3.423	6.318
58.0	58.532	56.812	1033.049	257.587	37.415	67.839	6.070	4.615	3.427	6.320
59.0	69.639	57.063	1031.334	257.025	37.268	61.265	6.076	4.632	3.432	6.323
60.0	43.134	57.311	1028.521	247.664	36.323	61.741	6.083	4.650	3.436	6.326
61.0	68.415	57.555	1026.570	251.104	38.773	62.194	6.089	4.667	3.440	6.329
62.0	87.665	57.795	1024.242	257.144	37.234	62.650	6.096	4.685	3.445	6.332
63.0	86.937	58.057	1022.057	257.144	39.698	63.107	6.103	4.704	3.449	6.335
64.0	26.134	58.263	1019.996	254.0225	46.160	63.565	6.109	4.722	3.454	6.338
65.0	45.452	58.460	1017.793	249.0267	40.624	64.026	6.116	4.742	3.458	6.341
66.0	64.222	58.713	1015.766	247.310	41.069	64.466	6.123	4.761	3.463	6.344
67.0	63.421	58.930	1013.735	256.355	41.556	64.952	6.130	4.781	3.468	6.347
68.0	63.011	59.142	1011.994	291.337	42.024	65.417	6.137	4.801	3.473	6.350
69.0	62.186	59.345	1010.055	258.441	42.493	65.883	6.144	4.822	3.478	6.351
70.0	41.347	59.551	1008.282	298.456	49.965	66.351	6.152	4.843	3.483	6.356
71.0	30.496	59.747	1006.574	256.532	43.437	66.421	6.159	4.864	3.488	6.359
72.0	73.631	59.937	1004.632	256.577	43.911	67.292	6.166	4.886	3.494	6.362
73.0	75.754	60.121	1003.355	293.626	44.386	67.764	6.174	4.909	3.499	6.365
74.0	77.164	60.276	1001.045	294.675	44.862	63.237	6.181	4.932	3.504	6.369
75.0	76.962	60.470	1000.402	298.724	45.339	69.711	6.188	4.955	3.510	6.372
76.0	59.341	60.634	999.025	294.774	45.818	65.187	6.196	4.979	3.516	6.375
77.0	75.122	60.792	997.714	254.925	46.297	69.664	6.204	5.003	3.521	6.378
78.0	74.195	60.943	996.471	254.676	46.777	70.141	6.211	5.028	3.527	6.381
79.0	73.237	61.066	995.295	259.625	47.258	70.619	6.219	5.053	3.533	6.384
80.0	72.271	61.222	994.165	259.683	47.740	71.094	6.226	5.079	3.539	6.388
81.0	71.361	61.351	993.144	259.037	48.223	71.579	6.234	5.105	3.545	6.391
82.0	70.551	61.472	992.169	291.033	48.707	72.060	6.242	5.132	3.551	6.394
83.0	69.343	61.545	991.263	259.150	49.191	72.541	6.250	5.160	3.558	6.397
84.0	68.341	61.651	990.423	259.625	49.675	73.023	6.257	5.188	3.564	6.400
85.0	67.343	61.767	989.652	29.266	50.161	73.506	6.265	5.216	3.571	6.404
86.0	66.532	61.877	988.791	259.327	50.646	73.969	6.273	5.245	3.577	6.407
87.0	65.314	61.951	988.312	29.318	51.132	74.472	6.261	5.275	3.584	6.410
88.0	64.224	62.030	987.744	257.450	51.615	74.956	6.289	5.306	3.591	6.414
89.0	63.251	62.094	987.244	221.514	52.105	75.441	6.297	5.337	3.598	6.417
90.0	62.226	62.147	986.311	277.637	52.672	75.925	6.304	5.369	3.605	6.420
91.0	61.151	62.155	986.446	29.646	53.179	76.409	6.312	5.402	3.612	6.423
92.0	60.146	62.167	986.150	25.714	53.565	76.844	6.320	5.435	3.619	6.427
93.0	59.102	62.243	985.520	27.743	54.052	77.371	6.329	5.470	3.626	6.430
94.0	58.171	62.271	985.744	50.147	54.464	77.100	6.337	5.495	3.634	6.446
95.0	57.235	62.354	985.954	30.134	54.877	77.343	6.345	5.515	3.644	6.455

AD-A127 415 MODELING OF DIFFUSE PHOTOMETRIC SIGNATURES OF 2/3
UNCLASSIFIED SATELLITES FOR SPACE OBJECT. (U) AIR FORCE INST OF TECH
UNCLASSIFIED WRIGHT-PATTERSON AFB OH SCHOOL OF ENGI. J D RASK
UNCLASSIFIED DEC 82 AFIT/GSO/PH/82D-3 F/G 22/3 NL

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

140.0	51.794	62.223	56.205	30.1.315	57.454	60.766	6.3h.3	5.653	5.150
141.0	50.754	62.112	56.516	30.1.352	57.935	61.248	6.3h.3	5.688	5.150
142.0	49.724	62.133	56.512	30.1.414	57.422	61.730	6.3h.3	5.622	5.150
143.0	49.734	62.075	56.335	30.1.572	57.905	62.212	6.406	5.662	5.150
144.0	47.685	62.005	56.744	30.1.661	57.342	62.632	6.414	5.712	5.150
145.0	45.672	61.935	56.415	30.1.754	50.1.665	63.172	6.421	5.762	5.150
146.0	45.667	61.653	56.061	30.0.647	60.350	63.651	6.429	6.011	5.235
147.0	44.660	61.763	56.9767	30.0.945	60.829	64.129	6.437	6.063	5.235
148.0	43.640	61.665	56.537	30.1.045	61.306	64.606	6.444	6.117	5.235
149.0	42.707	61.555	59.1.377	30.1.147	61.765	65.092	6.452	6.173	5.250
150.0	41.730	61.446	59.2.278	30.1.252	62.262	65.557	6.453	6.290	5.250
151.0	40.776	61.324	59.3.246	30.1.361	62.737	66.031	6.467	6.392	5.310
152.0	39.820	61.196	59.4.277	30.1.472	63.211	66.504	6.475	6.477	5.370
153.0	39.841	61.061	59.5.372	30.1.586	63.640	66.976	6.492	6.471	5.420
154.0	37.954	60.915	59.6.531	30.1.704	64.155	67.446	6.494	6.400	5.420
155.0	37.635	60.770	59.7.753	30.1.826	64.625	68.915	6.497	6.493	5.425
156.0	36.134	60.614	59.8.036	30.1.951	65.053	69.392	6.505	6.409	5.425
157.0	35.242	60.452	10.0.386	30.2.051	65.566	69.395	6.512	6.428	5.415
158.0	34.363	60.244	10.0.1746	30.2.214	66.025	69.513	6.519	6.437	5.415
159.0	33.497	60.110	10.0.3.261	30.2.352	66.489	66.776	6.527	6.447	5.385
160.0	32.644	59.931	10.0.4.871	30.2.444	66.951	60.238	6.534	6.484	5.395
161.0	31.804	59.745	10.0.6.36	30.2.641	67.411	60.638	6.542	6.011	5.345
162.0	30.977	59.555	10.0.7.052	30.2.793	67.869	61.156	6.549	6.076	5.385
163.0	30.163	59.359	10.0.9.767	30.2.951	68.326	61.612	6.556	6.063	5.385
164.0	29.363	59.157	10.1.1.543	30.3.114	68.780	92.067	6.564	6.049	5.385
165.0	28.576	58.952	10.1.3.376	30.3.224	69.233	92.520	6.571	7.115	5.385
166.0	27.802	58.741	10.1.5.273	30.3.459	69.683	92.971	6.578	7.140	5.385
167.0	27.042	58.527	10.1.7.226	30.3.691	70.132	93.423	6.586	7.165	5.385
168.0	26.296	58.306	10.1.9.237	30.3.830	70.573	93.867	6.593	7.190	5.385
169.0	25.563	58.044	10.2.1.306	30.4.026	71.023	94.312	6.600	7.214	5.385
170.0	24.843	57.857	10.2.3.432	30.4.231	71.465	94.755	6.606	7.239	5.385

STATISTICAL RESULTS SUMMARY

SIGNAL	SIGB1	SIGC1	SIGD1
MU:	1.244	-1.112	-1.433
IGMA:	0.163	1.070	0.179
SSR:	773.709	126.223	531.048

699.789

SENSOR: SITU, ST MARGARET'S, NB, CANADA

PATTERN NUMBER: 3893

START TIME: 82 190 4 48 0. UT

SEMI-MAJOR AXIS: 7247.9260951¹¹
SEMI-LATUS RECTUM: 7247.139619976
ECCENTRICITY: .01041603818637
INCLINATION: 82.76342948229
RA OF ASCENDING NODE: 273.1169974047
RA OF ORBIT NORMAL: 183.1169974047
DEC OF ORBIT NORMAL: 7.236570517714
ARGUMENT OF PERIGEE: 217.7311792643
TRUE ANOMALY: 184.8049981287
ARGUMENT OF LAT AT EPOCH: 42.536178053
TRUE LONGITUDE AT EPOCH: 315.6531754977
ORBITAL PERIOD(MINUTES): 102.3481393015

DELTA SEC	AZ	FL	BACKGROUND			PHASE	ABSOLUTE VISUAL MAGNITUDE					
			RANGE	RACS	DECLOS		SIGA1	SIGB1	SIGC1	SIGD1	TRUSIG	
0.0	250.056	30.668	1612.354	23.434	9.902	58.376	5.928	4.268	4.447	6.305	3.935	
1.0	250.424	30.640	1613.276	23.6240	10.089	58.639	5.932	4.275	4.451	6.307	3.920	
2.0	250.793	30.611	1614.231	23.6047	10.276	58.902	5.935	4.282	4.455	6.308	3.945	
3.0	251.169	30.581	1615.220	23.7853	10.463	59.164	5.939	4.288	4.459	6.310	4.030	
4.0	251.539	30.549	1616.242	23.76660	10.649	59.426	5.943	4.295	4.463	6.312	4.025	
5.0	251.907	30.517	1617.299	23.7467	10.834	59.687	5.946	4.302	4.467	6.313	4.065	
6.0	252.275	30.484	1618.388	23.7274	11.019	59.948	5.950	4.310	4.471	6.315	4.015	
7.0	252.642	30.449	1619.511	23.7080	11.203	60.208	5.954	4.317	4.476	6.316	4.100	
8.0	253.008	30.414	1620.666	23.6287	11.387	60.468	5.958	4.324	4.480	6.318	4.050	
9.0	253.374	30.374	1621.855	23.6695	11.570	60.727	5.961	4.331	4.484	6.320	4.015	
10.0	253.739	30.340	1623.077	23.6502	11.753	60.986	5.965	4.338	4.488	6.321	4.130	
11.0	254.101	30.302	1624.331	23.6309	11.935	61.244	5.969	4.345	4.493	6.323	4.125	
12.0	254.464	30.263	1625.617	23.6117	12.117	61.501	5.972	4.353	4.497	6.325	4.165	
13.0	254.825	30.223	1626.936	23.5924	12.296	61.759	5.976	4.360	4.501	6.326	4.085	
14.0	255.186	30.182	1628.286	23.5732	12.478	62.015	5.980	4.367	4.506	6.328	4.095	
15.0	255.545	30.140	1629.671	23.5540	12.658	62.271	5.984	4.375	4.510	6.330	4.615	
16.0	255.904	30.091	1631.086	23.5346	12.837	62.527	5.988	4.382	4.514	6.331	4.625	
17.0	256.261	30.054	1632.533	23.5156	13.015	62.781	5.992	4.390	4.519	6.333	4.710	
18.0	256.614	30.019	1634.011	23.4964	13.193	63.036	5.995	4.397	4.523	6.335	4.600	
19.0	256.973	29.964	1635.521	23.4773	13.370	63.289	5.999	4.405	4.527	6.336	4.670	
20.0	257.327	29.917	1637.062	23.4551	13.547	63.542	6.003	4.412	4.532	6.338	4.620	
21.0	257.681	29.870	1638.634	23.4390	13.723	63.795	6.007	4.420	4.536	6.339	4.615	
22.0	259.033	29.822	1640.237	23.4199	13.898	64.046	6.011	4.428	4.541	6.341	4.655	
23.0	259.386	29.773	1641.871	23.4004	14.072	64.298	6.015	4.435	4.545	6.343	4.170	
24.0	259.739	29.723	1643.536	23.3817	14.246	64.548	6.019	4.443	4.550	6.344	4.315	
25.0	259.083	29.673	1645.231	23.3626	14.420	64.798	6.023	4.451	4.554	6.346	4.385	
26.0	259.433	29.621	1646.956	23.3436	14.592	65.047	6.026	4.459	4.559	6.348	4.245	
27.0	259.777	29.569	1648.711	23.3245	14.764	65.296	6.030	4.467	4.563	6.349	4.135	
28.0	260.122	29.516	1650.497	23.3055	14.935	65.544	6.034	4.475	4.568	6.351	4.100	
29.0	260.467	29.463	1652.312	23.2665	15.106	65.791	6.038	4.482	4.572	6.352	4.215	
30.0	260.810	29.408	1654.156	23.24675	15.276	66.037	6.042	4.490	4.577	6.354	4.150	
31.0	261.152	29.353	1656.030	23.2486	15.445	66.283	6.046	4.498	4.582	6.356	4.190	
32.0	261.492	29.297	1657.934	23.2297	15.613	66.528	6.050	4.507	4.586	6.357	4.125	
33.0	261.832	29.240	1659.866	23.2107	15.781	66.773	6.054	4.515	4.591	6.359	4.000	
34.0	262.170	29.183	1661.827	23.1918	15.948	67.016	6.058	4.523	4.596	6.360	3.920	
35.0	262.507	29.125	1663.817	23.1730	16.114	67.259	6.062	4.531	4.600	6.362	4.050	
36.0	262.843	29.067	1665.836	23.1541	16.279	67.502	6.066	4.539	4.605	6.364	4.045	
37.0	263.176	29.007	1667.883	23.1353	16.444	67.743	6.070	4.547	4.610	6.365	4.040	
38.0	263.511	28.946	1669.958	23.1165	16.608	67.984	6.074	4.556	4.614	6.367	3.975	
39.0	263.844	28.886	1672.061	23.0977	16.771	68.224	6.078	4.564	4.619	6.368	4.075	
40.0	264.174	28.824	1674.192	23.0789	16.934	68.463	6.082	4.572	4.624	6.370	3.965	
41.0	264.504	28.762	1676.350	23.0602	17.095	68.702	6.086	4.581	4.629	6.372	3.895	
42.0	264.832	28.699	1678.537	23.0415	17.256	68.940	6.091	4.589	4.633	6.373	4.030	
43.0	265.166	28.636	1680.750	23.0228	17.417	69.177	6.095	4.598	4.638	6.375	4.040	
44.0	265.495	28.572	1682.971	23.0041	17.576	69.413	6.099	4.606	4.643	6.376	4.005	
45.0	265.816	28.507	1685.250	22.9855	17.735	69.648	6.103	4.615	4.648	6.378	3.935	
46.0	266.133	28.442	1687.552	22.9666	17.893	69.893	6.107	4.624	4.653	6.379	3.905	
47.0	266.455	28.377	1689.873	22.9483	18.050	70.117	6.111	4.632	4.658	6.381	3.930	
48.0	266.776	28.310	1692.220	22.9297	18.206	70.350	6.115	4.641	4.663	6.383	4.015	
49.0	267.095	28.243	1694.594	22.9111	18.362	70.582	6.119	4.647	4.670	6.384	3.995	

50.0	267.414	28.176	1696.993	226.926	18.517	70.814	6.123	4.653	4.672	6.386	J-900
51.0	267.730	28.108	1699.418	228.741	18.671	71.045	6.128	4.667	4.677	6.387	J-995
52.0	268.066	28.040	1701.869	228.557	18.824	71.275	6.132	4.676	4.662	6.389	4.115
53.0	268.360	27.971	1704.346	228.373	18.977	71.504	6.136	4.685	4.687	6.390	4.050
54.0	268.673	27.901	1706.847	228.183	19.129	71.732	6.140	4.694	4.692	6.392	4.090
55.0	269.985	27.831	1709.374	227.005	19.280	71.960	6.144	4.703	4.697	6.393	4.100
56.0	269.295	27.761	1711.926	227.821	19.430	72.187	6.148	4.712	4.702	6.395	4.095
57.0	269.604	27.690	1714.502	227.634	19.579	72.412	6.152	4.721	4.707	6.396	4.120
58.0	269.911	27.618	1717.103	227.455	19.728	72.638	6.157	4.730	4.717	6.398	4.100
59.0	270.216	27.547	1719.725	227.272	19.875	72.862	6.161	4.739	4.717	6.399	4.095
60.0	270.523	27.474	1722.378	227.050	20.022	73.085	6.165	4.748	4.722	6.401	4.180
61.0	270.826	27.402	1725.052	226.908	20.169	73.308	6.169	4.758	4.727	6.402	4.205
62.0	271.129	27.329	1727.749	226.726	20.314	73.530	6.173	4.767	4.732	6.404	4.020
63.0	271.430	27.255	1730.470	226.545	20.459	73.751	6.178	4.776	4.737	6.405	4.070
64.0	271.729	27.181	1733.215	226.364	20.602	73.971	6.182	4.786	4.743	6.407	4.130
65.0	272.029	27.107	1735.982	226.183	20.745	74.190	6.186	4.795	4.748	6.408	4.020
66.0	272.325	27.032	1738.773	226.003	20.886	74.408	6.190	4.805	4.753	6.410	4.090
67.0	272.621	26.957	1741.587	225.823	21.029	74.626	6.195	4.814	4.758	6.411	4.220
68.0	272.915	26.881	1744.423	225.643	21.170	74.843	6.199	4.824	4.763	6.413	4.020
69.0	273.208	26.806	1747.282	225.463	21.310	75.059	6.203	4.833	4.768	6.414	4.030
70.0	273.500	26.729	1750.164	225.264	21.449	75.274	6.207	4.843	4.774	6.416	3.950
71.0	273.791	26.653	1753.067	225.082	21.587	75.488	6.211	4.852	4.779	6.417	4.110
72.0	274.980	26.576	1756.992	224.927	21.724	75.702	6.216	4.862	4.784	6.419	4.225
73.0	274.368	26.499	1758.940	224.749	21.861	75.914	6.220	4.872	4.789	6.420	4.235
74.0	274.659	26.422	1761.908	224.571	21.997	76.125	6.224	4.882	4.795	6.421	4.320
75.0	274.940	26.344	1764.899	224.393	22.132	76.336	6.229	4.892	4.800	6.423	4.270
76.0	275.224	26.266	1767.910	224.216	22.266	76.546	6.233	4.902	4.805	6.424	4.130
77.0	275.506	26.187	1770.943	224.039	22.399	76.755	6.237	4.911	4.810	6.426	4.110
78.0	275.788	26.109	1773.996	223.863	22.532	76.964	6.241	4.921	4.816	6.427	4.105
79.0	276.064	26.030	1777.071	223.687	22.664	77.171	6.246	4.932	4.821	6.428	4.100
80.0	276.347	25.951	1780.165	223.511	22.795	77.377	6.250	4.942	4.826	6.430	4.110
81.0	276.624	25.871	1783.281	223.335	22.925	77.583	6.254	4.952	4.832	6.431	4.135
82.0	276.900	25.792	1786.416	223.160	23.054	77.788	6.258	4.962	4.837	6.433	4.115
83.0	277.175	25.712	1789.571	222.986	23.183	77.992	6.263	4.972	4.842	6.434	4.125
84.0	277.449	25.632	1792.746	222.811	23.311	78.195	6.267	4.982	4.848	6.435	4.150
85.0	277.721	25.552	1795.941	222.637	23.438	78.397	6.271	4.993	4.853	6.437	4.280
86.0	277.992	25.471	1799.155	222.464	23.564	78.599	6.276	5.003	4.859	6.438	4.215
87.0	278.262	25.390	1802.369	222.291	23.690	78.799	6.280	5.014	4.864	6.439	4.225
88.0	278.531	25.310	1805.642	222.116	23.814	78.999	6.284	5.024	4.870	6.441	4.340
89.0	278.798	25.228	1808.913	221.945	23.938	79.198	6.289	5.035	4.875	6.442	4.360

STATISTICAL RESULTS SUMMARY

SIGNAL	SATELLITE MODEL	SIGC1	SIGD1
MU:	1.963	•444	•510
IGMA:	•307	•309	•310
SSR:	1144.059	94.993	117.108
			1462.571

SENSOR: SITU, ST MARGARETS, NB, CANADA

PATTERN NUMBER: 3893

START TIME: 62 190 + 50 0. 01

SEMI-MAJOR AXIS: 7331.559711823
SEMI-LATUS RECTUM: 7331.541553133
ECCENTRICITY: .001573780202989
INCLINATION: 82.54090729649
RA OF ASCENDING NODE: 272.8548138933
RA OF ORBIT NORMAL: 182.8548138933
DEC OF ORBIT NORMAL: 7.459092703511
ARGUMENT OF PERIGEE: 16.93461322562
TRUE ANOMALY: 32.32662057956
ARGUMENT OF LAT AT EPOCH: 49.-4614380539
TRUE LONGITUDE AT EPOCH: 322.-3162476987
ORBITAL PERIOD(MINUTES): 104.124728263

DELTA SEC	AZ	EL	RANGE	BACKGROUND		PHASE	ABSOLUTE MAGNITUDE				SIGD1	SIGC1	TRUSIG
				RACS	DECLOS		SIGA1	SIGB1	SIGC1				
119.0	283.979	38.099	1412.159	221.598	36.708	87.151	6.360	5.941	4.761	6.496	5.130		
120.0	289.307	37.927	1416.070	221.307	38.829	87.407	6.366	5.965	4.768	6.497	5.175		
121.0	283.631	37.760	1420.006	221.016	38.947	87.662	6.371	5.988	4.776	6.499	5.175		
122.0	283.953	37.594	1423.966	220.726	39.064	87.915	6.377	6.012	4.783	6.501	5.175		
123.0	290.272	37.427	1427.950	220.436	39.180	88.167	6.383	6.036	4.790	6.502	5.175		
124.0	290.587	37.261	1431.957	220.148	39.293	88.417	6.388	6.060	4.798	6.504	5.175		
125.0	293.900	37.095	1435.988	219.860	39.406	89.666	6.394	6.085	4.805	6.506	5.175		
126.0	291.210	36.929	1440.042	219.573	39.517	89.913	6.400	6.110	4.812	6.507	5.175		
127.0	291.517	36.764	1444.116	219.267	39.626	89.156	6.405	6.136	4.820	6.509	5.175		
128.0	291.921	36.598	1448.217	219.002	39.734	89.402	6.411	6.162	4.827	6.511	5.175		
129.0	292.123	36.433	1452.339	218.718	39.841	89.645	6.417	6.188	4.834	6.512	5.175		
130.0	292.422	36.269	1456.482	218.434	39.946	89.986	6.423	6.215	4.842	6.514	5.235		
131.0	292.718	36.104	1460.647	218.152	40.050	90.125	6.428	6.232	4.849	6.515	5.235		
132.0	293.012	35.940	1464.833	217.870	40.152	90.363	6.434	6.238	4.857	6.517	5.220		
133.0	293.303	35.776	1469.040	217.589	40.253	90.529	6.440	6.245	4.864	6.518	5.115		
134.0	293.591	35.613	1473.268	217.309	40.352	90.634	6.445	6.251	4.872	6.520	5.115		
135.0	293.877	35.449	1477.517	217.030	40.450	91.068	6.451	6.258	4.879	6.521	5.115		
136.0	294.161	35.286	1481.786	216.752	40.547	91.299	6.457	6.264	4.887	6.523	5.115		
137.0	294.441	35.124	1486.075	216.475	40.642	91.530	6.462	6.270	4.894	6.524	5.115		
138.0	294.720	34.962	1490.384	216.198	40.736	91.759	6.468	6.277	4.901	6.525	4.915		
139.0	294.996	34.800	1494.712	215.923	40.828	91.986	6.474	6.283	4.909	6.527	4.915		
140.0	295.270	34.639	1499.059	215.649	40.920	92.212	6.480	6.289	4.917	6.529	4.915		
141.0	295.541	34.478	1503.426	215.375	41.009	92.437	6.485	6.295	4.924	6.530	5.055		
142.0	295.810	34.317	1507.811	215.103	41.098	92.660	6.491	6.302	4.932	6.532	5.155		
143.0	296.076	34.157	1512.215	214.831	41.185	92.981	6.497	6.304	4.939	6.533	5.055		
144.0	296.341	33.998	1516.637	214.561	41.271	93.102	6.502	6.314	4.947	6.535	5.055		
145.0	296.603	33.838	1521.077	214.291	41.356	93.320	6.508	6.320	4.954	6.536	5.055		
146.0	296.863	33.680	1525.535	214.022	41.440	93.538	6.514	6.326	4.962	6.537	5.055		
147.0	297.121	33.521	1530.011	213.755	41.522	93.754	6.519	6.332	4.969	6.539	5.115		
148.0	297.376	33.363	1534.504	213.488	41.603	93.968	6.525	6.338	4.977	6.540	5.115		
149.0	297.630	33.206	1539.013	213.223	41.683	94.191	6.531	6.344	4.985	6.542	5.115		
150.0	297.881	33.049	1543.540	212.958	41.761	94.333	6.537	6.350	4.992	6.543	5.115		
151.0	298.131	32.892	1548.083	212.695	41.839	94.603	6.542	6.356	5.000	6.544	5.115		
152.0	298.138	32.736	1552.643	212.432	41.915	94.912	6.548	6.361	5.007	6.546	5.115		
153.0	298.623	32.581	1557.218	212.171	41.990	95.020	6.554	6.367	5.015	6.553	5.115		
154.0	298.867	32.426	1561.810	211.910	42.063	95.226	6.559	6.373	5.023	6.544	5.040		
155.0	299.108	32.271	1566.417	211.651	42.136	95.431	6.565	6.379	5.030	6.544	5.040		
156.0	299.347	32.117	1571.040	211.393	42.208	95.635	6.571	6.384	5.038	6.551	5.140		
157.0	299.585	31.964	1575.678	211.136	42.278	95.837	6.577	6.390	5.046	6.552	5.140		
158.0	299.820	31.811	1580.331	210.879	42.347	96.038	6.582	6.395	5.053	6.553	5.140		
159.0	300.054	31.659	1584.999	210.624	42.416	96.239	6.588	6.401	5.061	6.555	5.140		
160.0	300.286	31.507	1589.661	210.370	42.483	96.436	6.594	6.407	5.065	6.556	5.250		
161.0	300.516	31.355	1594.378	210.117	42.549	96.633	6.599	6.412	5.077	6.557	5.250		
162.0	300.744	31.204	1599.089	209.865	42.614	96.829	6.605	6.418	5.084	6.558	5.310		
163.0	300.971	31.054	1603.814	209.614	42.678	97.024	6.611	6.423	5.092	6.560	5.310		
164.0	301.196	30.904	1608.553	209.365	42.740	97.217	6.616	6.428	5.100	6.561	5.310		

STATISTICAL RESULTS SUMMARY

	SATELLITE MODEL		
	SIGNAL	SIGG1	SIGG1
AU:	1.360	1.138	-0.199
			1.402
IGMA:	.235	.242	.141
			.227
SSR:	364.164	251.978	19.032
			393.179

SEMI-MAJOR AXIS: 7253.570138494
SEMI-LATUS RECTUM: 7253.474872664
ECCENTRICITY: .0C3624037390926
INCLINATION: 81.2722408H056
RA OF ASCENDING NODE: 174° 50' 75.20" 5555
RA OF ORBIT NORMAL: 84° 50' 7520855.52
DEC OF ORBIT NORMAL: 8° 7' 27759119.416
ARGUMENT OF PERIGEE: 125.4138816538
TRUE ANOMALY: 4.323830547807
ARGUMENT OF LAT AT EPGCH: 129.7377122016
TRUE LONGITUDE AT EPOCH: 304.2452330572
ORBITAL PERIOD(MINUTES): 102.4677120797

SENSOR: SITU, ST MARGARETS, NB, CANADA

PATTERN NUMBER: 3925

START TIME: 82 193 7 2 30. UT

DELTA SEC	AZ	EL	RANGE	BACKGROUND		PHASE	ABSOLUTE VISUAL MAGNITUDE				
				RALOS	OFCLOS		SIGA1	SIGB1	SIGC1	SIGD1	TRUSIG
143.0	68.426	32.056	1430.835	50.543	36.903	126.903	8.239	8.555	6.103	6.713	6.030
144.0	68.725	32.200	1426.782	50.280	36.789	126.646	8.228	8.537	6.094	6.712	6.030
145.0	69.026	32.344	1422.749	50.015	36.674	126.470	8.217	8.518	6.085	6.711	6.030
146.0	69.330	32.488	1418.739	49.750	36.557	126.253	8.206	8.499	6.075	6.710	6.030
147.0	69.636	32.633	1414.749	49.483	36.439	126.035	8.195	8.480	6.066	6.709	6.030
148.0	69.945	32.777	1410.782	49.216	36.320	125.815	8.184	8.461	6.057	6.709	6.030
149.0	70.256	32.922	1406.837	48.949	36.199	125.593	8.173	8.442	6.047	6.708	6.030
150.0	70.570	33.067	1402.914	48.680	36.076	125.370	8.163	8.423	6.038	6.707	6.030
151.0	70.887	33.212	1399.013	48.411	35.953	125.145	8.152	8.404	6.029	6.706	6.030
152.0	71.206	33.357	1395.136	48.141	35.827	124.919	8.141	8.385	6.019	6.705	6.030
153.0	71.527	33.502	1391.282	47.870	35.700	124.692	8.130	8.366	6.010	6.704	6.030
154.0	71.852	33.647	1387.451	47.598	35.572	124.453	8.120	8.346	6.000	6.703	6.030
155.0	72.179	33.792	1383.645	47.326	35.442	124.232	8.109	8.327	5.991	6.702	6.030
156.0	72.508	33.937	1379.862	47.053	35.311	124.000	8.098	8.308	5.982	6.701	6.030
157.0	72.841	34.082	1376.104	46.779	35.178	123.767	8.088	8.288	5.972	6.700	6.030
158.0	73.176	34.227	1372.370	46.505	35.044	123.532	8.077	8.269	5.963	6.700	6.030
159.0	73.514	34.372	1368.661	46.230	34.908	123.295	8.067	8.249	5.953	6.699	6.030
160.0	73.855	34.517	1364.976	45.954	34.771	123.057	8.056	8.230	5.944	6.698	6.030
161.0	74.194	34.662	1361.320	45.678	34.632	122.817	8.046	8.210	5.934	6.697	6.030
162.0	74.545	34.806	1357.686	45.401	34.491	122.576	8.035	8.191	5.925	6.696	6.030
163.0	74.894	34.951	1354.082	45.123	34.349	122.333	8.025	8.171	5.915	6.695	6.030
164.0	75.247	35.095	1350.503	44.845	34.206	122.089	8.014	8.151	5.906	6.694	6.030
165.0	75.602	35.239	1346.950	44.566	34.060	121.843	8.004	8.131	5.896	6.693	6.030
166.0	75.960	35.383	1343.425	44.286	33.913	121.595	7.993	8.111	5.897	6.691	6.030
167.0	76.321	35.527	1339.927	44.006	33.765	121.346	7.983	8.091	5.877	6.690	6.030
168.0	76.685	35.671	1336.456	43.725	33.615	121.095	7.973	8.071	5.867	6.689	6.030
169.0	77.052	35.814	1333.014	43.444	33.463	120.843	7.962	8.051	5.858	6.688	6.030
170.0	77.422	35.957	1329.600	43.162	33.310	120.530	7.952	8.031	5.848	6.687	6.030
171.0	77.796	36.100	1326.214	42.879	33.155	120.334	7.942	8.011	5.839	6.686	6.000
172.0	78.172	36.242	1322.858	42.596	32.999	120.077	7.931	7.991	5.829	6.685	6.000
173.0	78.552	36.384	1319.531	42.313	32.841	119.819	7.921	7.971	5.819	6.684	6.005
174.0	78.934	36.526	1316.233	42.029	32.681	119.559	7.911	7.951	5.810	6.683	6.105
175.0	79.320	36.667	1312.965	41.744	32.520	119.297	7.901	7.930	5.800	6.681	5.985
176.0	79.709	36.807	1309.727	41.459	32.357	119.034	7.890	7.910	5.791	6.680	5.985
177.0	80.101	36.948	1306.520	41.174	32.192	118.770	7.880	7.890	5.781	6.679	5.985
178.0	80.497	37.087	1303.344	40.888	32.026	118.503	7.870	7.869	5.771	6.678	5.985
179.0	80.995	37.227	1300.199	40.601	31.858	118.236	7.860	7.849	5.762	6.677	5.985
180.0	81.297	37.365	1297.085	40.315	31.686	117.966	7.849	7.828	5.752	6.675	5.925
181.0	81.702	37.503	1294.064	40.027	31.517	117.695	7.839	7.807	5.742	6.674	5.925
182.0	82.111	37.640	1290.954	39.740	31.344	117.423	7.829	7.787	5.733	6.673	5.925
183.0	82.522	37.777	1287.937	39.452	31.169	117.149	7.819	7.766	5.723	6.671	5.925
184.0	82.938	37.913	1284.952	39.163	30.993	116.373	7.809	7.745	5.713	6.670	5.925
185.0	83.356	38.048	1282.001	38.874	30.815	116.596	7.799	7.725	5.703	6.669	5.925
186.0	83.178	38.183	1279.083	38.685	30.636	116.317	7.788	7.704	5.694	6.668	5.925
187.0	84.203	38.317	1276.199	38.296	30.454	116.037	7.778	7.683	5.684	6.666	5.925
188.0	84.631	38.450	1273.349	38.006	30.271	115.756	7.768	7.662	5.674	6.665	5.925

189.0	38.582	1270.533	37.716	30.087	115.472	7.758	7.641	5.665	6.663
190.0	38.713	1267.752	37.426	29.901	115.188	7.748	7.620	5.655	6.662
191.0	38.843	1265.006	37.135	29.713	114.901	7.738	7.599	5.645	6.661
192.0	38.972	1262.296	36.844	29.523	114.613	7.728	7.578	5.635	6.659
193.0	39.100	1259.621	36.553	29.332	114.324	7.718	7.557	5.626	6.658
194.0	39.224	1256.982	36.261	29.139	114.033	7.707	7.536	5.616	6.656
195.0	39.354	1254.380	35.970	28.944	113.741	7.697	7.515	5.606	6.655
196.0	39.482	1251.814	35.678	28.748	113.447	7.687	7.494	5.597	6.653
197.0	39.610	1249.285	35.386	28.550	113.152	7.677	7.472	5.587	6.652
198.0	39.725	1246.794	35.094	28.351	112.956	7.667	7.451	5.577	6.650
199.0	39.847	1244.340	34.802	28.149	112.557	7.657	7.430	5.567	6.649
200.0	39.967	1241.924	34.509	27.947	112.258	7.647	7.409	5.558	6.647
201.0	40.086	1239.547	34.217	27.742	111.957	7.637	7.387	5.548	6.646
202.0	40.203	1237.208	33.924	27.536	111.655	7.627	7.366	5.538	6.644
203.0	40.319	1234.908	33.631	27.329	111.351	7.617	7.345	5.528	6.643
204.	40.434	1232.647	33.338	27.119	111.046	7.607	7.323	5.519	6.641
2, 5,	40.547	1230.425	33.045	26.908	110.739	7.597	7.302	5.509	6.639
2, 6,	40.659	1228.244	32.752	26.696	110.431	7.587	7.281	5.499	6.638
207.0	40.769	1226.103	32.459	26.482	110.122	7.577	7.259	5.489	6.636
208.0	40.877	1224.002	32.166	26.266	109.911	7.566	7.238	5.480	6.634
209.	40.984	1221.942	31.873	26.049	109.499	7.556	7.217	5.470	6.633
210.	41.092	1219.923	31.590	25.831	109.186	7.546	7.195	5.460	6.631
211.0	41.193	1217.945	31.287	25.610	108.972	7.536	7.174	5.451	6.629
212.0	41.294	1216.009	30.995	25.389	108.556	7.526	7.152	5.441	6.628
213.0	41.394	1214.115	30.702	25.165	108.239	7.516	7.131	5.431	6.626
214.0	41.492	1212.264	30.409	24.941	107.921	7.506	7.110	5.422	6.624

STATISTICAL RESULTS SUMMARY

	SIGA1	SATELLITE MODEL SIGB1	SIGC1	SIGD1
MU:	1.930	1.912	-0.173	.737
IGMA:	.262	.403	.116	.120
SSR:	1027.188	671.919	26.483	330.706

V. RESULTS OF THE SATELLITE IDENTIFICATION EXPERIMENT

Table V-1 lists the signatures which program SATID was used to identify. These signatures, or portions of signatures, were not used in model validation. The table shows that most results are consistent with the findings of the validation runs. Signatures with small to moderate phase angles resulted in the smallest SSR for model B1, and the slopes of simulated and actual signatures were compatible. Signatures with large phase angles did not yield small SSR's for model B1, but misidentified the satellite as model C1.

The important quantity is not the value of the SSR for model B1 by itself, since this will vary with track length and signature quality, but the model B1 SSR value compared to those of other models for the same track. Signature 3845 illustrates an important point for any photometric analysis. Although the B1 SSR is quite low compared to those for A1 and D1, the C1 SSR is lower still. Two factors have probably combined to cause the misidentification. First, the phase angles are in the range for which the Lambertian assumption begins to break down significantly for the B1 satellite. Second, the viewing and illumination geometry have created a coincidental situation in which the reflectivity-area product of the diffuse C1 model, and the actual B1 satellite are almost the same. Tracks which undergo relatively small changes of phase angle, only about ten degrees in this case, are especially susceptible to such ambiguity. The possibility of multiple

solutions is always present with photometric data. If SATID were a validated, operational program, the results for signature 3845 would not eliminate model B1 as the possible solution. Both low SSR models would have to be considered possibilities, and the ambiguity would have to be resolved by using results obtained from data collected later, other types of sensors, or other indicators.

Pattern Number	Track Length	Beginning Phase	Ending Phase	SSR				10
				A1	B1	C1	D1	
3867	101	59	115	329.3	53.7	193.2	174.3	B1
3885	76	73	87	430.5	15.8	452.2	434.5	B1
3914a	90	78	89	1643.3	350.0	475.1	1688.2	B1
3898	90	99	113	718.7	210.6	163.2	422.7	C1
3917b	79	114	129	722.9	485.8	78.1	287.8	C1
3845	90	87	96	579.6	42.8	12.5	363.6	C1

TABLE V-1
Results of the Satellite Identification Experiment

SEMI MAJOR AXIS: 7270.973216313
SEMI LATUS RECTUM: 7270.516116991
ECCENTRICITY: .007928828347424
INCLINATION: 82.53608613492
RA OF ASCENDING NODE: 271.2399086437
RA OF ORBIT NORMAL: 181.2399086437
DEC OF ORBIT NORMAL: 7.463915865076
ARGUMENT OF PERIGEE: 207.6080790536
TRUE ANOMALY: 198.8897605523
ARGUMENT OF LAT AT EPOCH: 46.49783960587
TRUE LONGITUDE AT EPOCH: 317.7377482496
ORBITAL PERIOD(MINUTES): 102.8367006027

SENSOR: SITU, ST MARGARETS, NB, CANADA

PATTERN NUMBER: 3914

START TIME: 82 192 5 24 47. UT

DELTA SEC	AZ	EL	BACKGROUND			PHASE	ABSOLUTE VISUAL MAGNITUDE				TRUSIG
			RANGE	RALOS	DECLOS		SIGA1	SIGB1	SIGC1	SIGD1	
0.0	277.064	15.363	2311.065	220.425	15.931	78.152	6.306	4.916	5.047	6.435	4.230
1.0	277.272	15.318	2313.902	220.315	16.039	78.296	6.309	4.922	5.052	6.436	4.230
2.0	277.478	15.272	2316.752	220.205	16.148	78.439	6.312	4.928	5.056	6.437	4.230
3.0	277.685	15.226	2319.614	220.096	16.256	78.582	6.316	4.934	5.061	6.438	4.230
4.0	277.892	15.180	2322.489	219.987	16.363	78.724	6.319	4.940	5.066	6.439	4.230
5.0	278.095	15.134	2325.376	219.878	16.470	78.866	6.322	4.946	5.070	6.440	4.230
6.0	278.300	15.088	2328.275	219.769	16.577	79.008	6.325	4.952	5.075	6.441	4.230
7.0	278.504	15.042	2331.186	219.661	16.683	79.149	6.329	4.959	5.079	6.442	4.230
8.0	278.707	14.995	2334.110	219.553	16.788	79.289	6.332	4.965	5.084	6.443	4.230
9.0	279.910	14.949	2337.046	219.445	16.894	79.429	6.335	4.971	5.089	6.444	4.230
10.0	279.112	14.902	2339.993	219.337	16.998	79.569	6.339	4.977	5.093	6.445	4.230
11.0	279.313	14.856	2342.952	219.229	17.103	79.708	6.342	4.983	5.098	6.446	4.230
12.0	279.514	14.809	2345.923	219.122	17.207	79.847	6.345	4.990	5.103	6.447	4.230
13.0	279.715	14.762	2348.905	219.014	17.310	79.985	6.349	4.996	5.107	6.447	4.230
14.0	279.915	14.715	2351.899	218.907	17.413	80.123	6.352	5.002	5.112	6.448	4.230
15.0	260.114	14.668	2354.904	218.801	17.516	80.261	6.355	5.006	5.117	6.449	4.230
16.0	260.313	14.621	2357.921	218.694	17.618	80.398	6.359	5.015	5.121	6.450	4.230
17.0	260.511	14.574	2360.949	218.588	17.720	80.534	6.362	5.021	5.126	6.451	4.230
18.0	260.709	14.527	2363.987	218.481	17.821	80.671	6.365	5.027	5.131	6.452	4.230
19.0	260.906	14.479	2367.037	218.376	17.922	80.806	6.368	5.034	5.136	6.453	4.230
20.0	281.102	14.432	2370.098	218.270	18.023	80.941	6.372	5.040	5.140	6.454	4.230
21.0	281.298	14.385	2373.169	218.164	18.123	81.076	6.375	5.047	5.145	6.455	4.230
22.0	281.493	14.337	2376.251	218.059	18.223	81.211	6.378	5.053	5.150	6.456	4.230
23.0	281.688	14.289	2379.344	217.954	18.322	81.344	6.382	5.059	5.155	6.457	4.230
24.0	281.882	14.242	2382.447	217.849	18.421	81.478	6.385	5.066	5.160	6.458	4.230
25.0	282.076	14.194	2385.560	217.744	18.519	81.611	6.388	5.072	5.164	6.458	4.230
26.0	282.269	14.146	2388.684	217.640	18.617	81.744	6.392	5.079	5.169	6.459	4.230
27.0	282.461	14.098	2391.818	217.536	18.715	81.876	6.395	5.085	5.174	6.460	4.230
28.0	282.653	14.050	2394.962	217.431	18.812	82.007	6.398	5.092	5.179	6.461	4.230
29.0	282.845	14.002	2398.116	217.328	18.908	82.139	6.402	5.098	5.184	6.462	4.230
30.0	263.036	13.954	2401.280	217.224	19.005	82.269	6.405	5.105	5.189	6.463	4.230
31.0	283.226	13.906	2404.453	217.121	19.101	82.400	6.409	5.111	5.193	6.464	4.230
32.0	283.416	13.858	2407.637	217.017	19.196	82.530	6.412	5.118	5.198	6.465	4.230
33.0	283.605	13.810	2410.830	216.914	19.291	82.659	6.415	5.124	5.203	6.466	4.230
34.0	283.794	13.762	2414.033	216.812	19.386	82.788	6.419	5.131	5.208	6.466	4.230
35.0	283.982	13.713	2417.245	216.709	19.480	82.917	6.422	5.137	5.213	6.467	4.230
36.0	284.169	13.665	2420.466	216.607	19.574	83.045	6.425	5.144	5.218	6.468	4.230
37.0	284.356	13.617	2423.696	216.505	19.667	83.173	6.429	5.151	5.223	6.469	4.230
38.0	284.543	13.568	2426.936	216.403	19.760	83.300	6.432	5.157	5.228	6.470	4.230
39.0	284.729	13.520	2430.185	216.301	19.853	83.427	6.435	5.164	5.233	6.471	4.230
40.0	284.914	13.471	2433.443	216.199	19.945	83.554	6.439	5.170	5.238	6.472	4.230
41.0	285.099	13.423	2436.709	216.098	20.037	83.680	6.442	5.177	5.243	6.472	4.230
42.0	285.284	13.374	2439.985	215.997	20.128	83.805	6.446	5.184	5.248	6.473	4.230

43.0	285.468	13.326	2443.269	215.896	20.219	83.931	6.474	5.253
44.0	285.651	13.277	2446.562	215.796	20.310	84.055	6.452	5.197
45.0	285.834	13.228	2449.863	215.695	20.400	84.180	6.436	5.204
46.0	286.016	13.180	2453.173	215.595	20.489	84.304	6.459	5.211
47.0	286.198	13.131	2456.491	215.495	20.579	84.427	6.462	5.218
48.0	286.379	13.082	2459.817	215.395	20.668	84.550	6.466	5.224
49.0	286.560	13.034	2463.151	215.296	20.756	84.673	6.469	5.231
50.0	286.740	12.985	2466.494	215.196	20.844	84.793	6.473	5.238
51.0	286.920	12.936	2469.844	215.097	20.932	84.917	6.476	5.245
52.0	287.099	12.887	2473.203	214.998	21.020	85.038	6.479	5.252
53.0	287.277	12.838	2476.569	214.899	21.107	85.159	6.483	5.259
54.0	287.455	12.790	2479.943	214.801	21.193	85.280	6.486	5.265
55.0	287.633	12.741	2483.324	214.702	21.279	85.400	6.490	5.272
56.0	287.810	12.692	2486.713	214.604	21.365	85.519	6.493	5.279
57.0	287.987	12.643	2490.110	214.506	21.450	85.639	6.497	5.286
58.0	288.163	12.594	2493.514	214.409	21.535	85.756	6.500	5.293
59.0	288.339	12.545	2496.925	214.311	21.620	85.876	6.503	5.300
60.0	288.514	12.497	2500.344	214.214	21.704	85.994	6.507	5.307
61.0	288.688	12.448	2503.769	214.117	21.788	86.112	6.510	5.314
62.0	288.863	12.399	2507.202	214.020	21.872	86.229	6.514	5.321
63.0	289.036	12.350	2510.642	213.923	21.955	86.346	6.517	5.328
64.0	289.209	12.301	2514.088	213.827	22.037	86.462	6.521	5.335
65.0	289.382	12.252	2517.541	213.731	22.120	86.578	6.524	5.343
66.0	289.554	12.203	2521.001	213.635	22.202	86.694	6.527	5.350
67.0	289.726	12.154	2524.468	213.539	22.283	86.809	6.531	5.357
68.0	289.897	12.106	2527.941	213.443	22.364	86.924	6.534	5.364
69.0	290.068	12.057	2531.421	213.348	22.445	87.038	6.538	5.371
70.0	290.238	12.008	2534.907	213.252	22.526	87.152	6.541	5.378
71.0	290.408	11.959	2538.399	213.157	22.606	87.266	6.545	5.385
72.0	290.577	11.910	2541.898	213.063	22.685	87.379	6.549	5.393
73.0	290.746	11.861	2545.403	212.968	22.765	87.492	6.552	5.400
74.0	290.914	11.813	2548.914	212.874	22.844	87.604	6.555	5.407
75.0	291.082	11.764	2552.431	212.780	22.922	87.716	6.559	5.415
76.0	291.250	11.715	2555.953	212.686	23.000	87.828	6.562	5.422
77.0	291.416	11.666	2559.482	212.592	23.076	87.939	6.565	5.429
78.0	291.583	11.617	2563.016	212.498	23.156	88.050	6.569	5.437
79.0	291.749	11.569	2566.556	212.405	23.233	88.160	6.572	5.444
80.0	291.915	11.520	2570.102	212.312	23.310	88.270	6.576	5.451
81.0	292.080	11.471	2573.653	212.219	23.386	88.380	6.579	5.459
82.0	292.244	11.423	2577.210	212.126	23.462	88.489	6.583	5.466
83.0	292.408	11.374	2580.772	212.034	23.538	88.598	6.586	5.474
84.0	292.572	11.325	2584.339	211.941	23.613	88.706	6.590	5.481
85.0	292.736	11.277	2587.912	211.849	23.688	88.815	6.593	5.489
86.0	292.898	11.228	2591.490	211.757	23.763	88.922	6.597	5.496
87.0	293.061	11.180	2595.073	211.666	23.837	89.030	6.600	5.504
88.0	293.223	11.131	2598.650	211.574	23.911	89.137	6.604	5.511
89.0	293.384	11.083	2602.253	211.483	23.984	89.243	6.607	5.519

STATISTICAL RESULTS SUMMARY

SIGNAL	SATELLITE MODEL SIGBI	SATELLITE MODEL SIGCI	SIGNAL SIGBI	SIGNAL SIGCI
NU:	2.052	.003	.062	2.071
IGMA:	.231	.172	.143	.229

SENSOR: STJU, ST MARGARET'S, NB, CANADA

PATTERN NUMBER: 3:17

START TIME: 92 192 6 36 54. UT

SUPERMAJOR AXIS: 7259.31440606
SEMILATUS RECTUM: 7259.296149114
ECCENTRICITY: .001607634345678
INCLINATION: A1.21533912585
RA OF ASCENDING NODE: 332.1667712659
RA OF ORBIT NORMAL: 242.1667712659
DEC OF ORBIT NORMAL: 8.78466087415
ARGUMENT OF PERIGEE: 33.75834941527
TRUE ANOMALY: 13.08770462348
ARGUMENT OF LAT AT EPOCH: 46.84605403^F74
TRUE LONGITUDE AT EPOCH: 379.01282530⁹7
ORBITAL PERIOD(MINUTES): 102.5894665498

DELTA SEC	AZ	FL	BACKGROUND			PHASE	ABSOLUTE VISUAL MAGNITUDE				
			RANGE	RA/LOS	DECLOS		SIGA1	SIGB1	SIGC1	SIGD1	TRUSIG
113.0	85.842	23.666	1749.266	3h .957	19.757	114.073	7.470	7.099	6.285	6.657	6.195
114.0	65.652	23.778	1744.688	3h .056	19.987	114.262	7.478	7.114	6.287	6.657	6.090
115.0	65.421	23.890	1740.142	39.236	20.217	114.451	7.486	7.130	6.288	6.658	6.075
116.0	85.148	24.001	1735.630	39.377	20.448	114.641	7.494	7.145	6.290	6.659	5.985
117.0	84.954	24.112	1731.153	39.519	20.680	114.832	7.502	7.160	6.291	6.660	6.150
118.0	84.717	24.223	1726.711	39.662	20.913	115.024	7.510	7.176	6.293	6.661	6.270
119.0	84.479	24.333	1722.304	39.806	21.147	115.216	7.518	7.192	6.294	6.662	6.150
120.0	84.231	24.443	1717.933	39.952	21.381	115.408	7.526	7.208	6.295	6.663	6.075
121.0	83.997	24.553	1713.596	40.098	21.617	115.601	7.535	7.224	6.297	6.664	6.060
122.0	83.753	24.662	1709.296	40.246	21.854	115.795	7.543	7.240	6.298	6.665	5.970
123.0	83.508	24.771	1705.032	40.395	22.091	115.989	7.552	7.257	6.299	6.666	6.190
124.0	83.261	24.880	1700.803	40.545	22.330	116.194	7.560	7.274	6.301	6.667	6.105
125.0	83.012	24.988	1696.611	40.696	22.569	116.379	7.569	7.290	6.302	6.668	6.075
126.0	82.761	25.096	1692.456	40.849	22.809	116.575	7.578	7.307	6.303	6.669	6.045
127.0	82.508	25.203	1688.336	41.002	23.050	116.772	7.586	7.325	6.305	6.670	6.030
128.0	82.256	25.310	1684.257	41.157	23.292	116.968	7.595	7.342	6.306	6.671	6.150
129.0	81.997	25.417	1680.213	41.313	23.535	117.166	7.604	7.360	6.307	6.672	6.135
130.0	81.739	25.523	1676.207	41.471	23.778	117.364	7.613	7.378	6.308	6.673	6.120
131.0	81.478	25.628	1672.239	41.629	24.023	117.562	7.622	7.396	6.309	6.673	6.105
132.0	81.217	25.733	1668.308	41.789	24.268	117.760	7.631	7.414	6.310	6.674	6.090
133.0	80.954	25.838	1664.416	41.950	24.514	117.960	7.641	7.433	6.312	6.675	6.075
134.0	80.684	25.942	1660.562	42.113	24.761	118.159	7.650	7.451	6.313	6.676	5.955
135.0	80.421	26.045	1656.747	42.277	25.008	118.353	7.659	7.470	6.314	6.677	6.045
136.0	80.152	26.14°	1652.971	42.442	25.257	118.560	7.669	7.489	6.315	6.678	6.030
137.0	79.881	26.250	1649.234	42.606	25.506	118.760	7.678	7.508	6.316	6.679	6.015
138.0	79.608	26.359	1645.537	42.776	25.756	118.951	7.688	7.528	6.317	6.680	6.000
139.0	79.333	26.453	1641.879	42.945	26.007	119.163	7.698	7.548	6.318	6.681	6.120
140.0	79.057	26.553	1638.260	43.116	26.259	119.365	7.707	7.568	6.319	6.682	6.105
141.0	78.779	26.653	1634.682	43.268	26.511	119.557	7.717	7.588	6.320	6.683	6.045
142.0	78.493	26.752	1631.144	43.462	26.764	119.769	7.727	7.608	6.321	6.683	6.135
143.0	78.217	26.850	1627.646	43.637	27.018	119.972	7.737	7.629	6.322	6.684	6.150
144.0	77.933	26.948	1624.190	43.813	27.272	120.175	7.747	7.650	6.322	6.685	6.135
145.0	77.646	27.045	1620.773	43.991	27.528	120.378	7.758	7.671	6.323	6.686	6.120
146.0	77.360	27.141	1617.398	44.170	27.783	120.582	7.768	7.692	6.324	6.687	6.075
147.0	77.071	27.236	1614.065	44.351	28.040	120.786	7.778	7.714	6.325	6.688	6.060
148.0	76.781	27.331	1610.772	44.534	28.297	120.990	7.789	7.736	6.326	6.683	6.045
149.0	76.495	27.425	1607.522	44.717	28.555	121.194	7.799	7.758	6.326	6.690	6.015
150.0	76.193	27.516	1604.313	44.903	28.814	121.398	7.810	7.780	6.327	6.691	5.725
151.0	75.897	27.610	1601.146	45.073	29.073	121.603	7.821	7.802	6.328	6.691	6.090
152.0	75.604	27.701	1598.022	45.279	29.332	121.808	7.832	7.825	6.329	6.692	6.075
153.0	75.306	27.792	1594.940	45.469	29.593	122.012	7.943	7.846	6.330	6.693	6.060
154.0	74.999	27.881	1591.701	45.661	29.853	122.217	7.954	7.871	6.330	6.694	6.045
155.0	74.696	27.970	1588.504	45.855	30.115	122.422	7.965	7.895	6.330	6.695	6.030
156.0	74.391	28.056	1585.551	46.050	30.377	122.627	7.976	7.919	6.331	6.696	6.015
157.0	74.044	28.145	1583.041	46.247	30.639	122.832	7.987	7.943	6.332	6.697	6.000
158.0	73.716	28.231	1580.174	46.445	30.902	123.037	7.999	7.967	6.332	6.698	5.785
159.0	73.467	28.316	1577.351	46.646	31.166	123.243	7.910	7.992	6.333	6.699	5.970
160.0	73.155	28.400	1574.572	46.846	31.429	123.444	7.922	8.016	6.333	6.700	5.955
161.0	72.842	28.483	1571.837	47.052	31.694	123.653	7.934	8.042	6.334	6.700	5.940
162.0	72.527	28.565	1568.146	47.254	31.959	123.854	7.945	8.067	6.334	6.701	5.925

163.0	72.211	2.645	1566.495	47.645	32.224	124.062	7.957	8.092	6.334	6.702	5.910
164.0	71.433	2.872	1563.897	47.674	32.489	124.267	7.969	8.118	6.335	6.703	5.895
165.0	71.574	2.640	1561.855	47.655	32.755	124.472	7.982	8.145	6.335	6.703	5.890
166.0	71.253	2.882	1558.826	47.048	33.022	124.676	7.994	8.171	6.336	6.704	5.865
167.0	70.930	2.495	1556.358	48.313	33.288	124.891	8.006	8.198	6.336	6.705	5.850
168.0	70.606	2.034	1553.936	49.530	33.555	125.085	8.019	8.225	6.336	6.706	5.865
169.0	70.281	2.910	1551.559	48.749	33.822	125.286	8.031	8.252	6.336	6.707	5.840
170.0	69.954	2.918	1549.227	48.970	34.090	125.492	8.044	8.280	6.337	6.707	5.855
171.0	69.625	2.925	1546.940	49.192	34.358	125.695	8.057	8.307	6.337	6.708	5.840
172.0	69.295	2.932	1544.700	49.417	34.626	125.898	8.070	8.336	6.337	6.709	5.825
173.0	69.964	2.939	1542.505	49.643	34.894	126.101	8.083	8.364	6.337	6.710	5.810
174.0	69.631	2.946	1540.357	49.872	35.162	126.303	8.096	8.393	6.337	6.710	5.805
175.0	69.297	2.952	1538.254	50.103	35.430	126.505	8.110	8.422	6.337	6.711	5.800
176.0	67.362	2.959	1536.198	50.335	35.699	126.707	8.123	8.451	6.337	6.712	5.865
177.0	67.525	2.659	1534.188	50.570	35.968	126.908	8.137	8.481	6.337	6.713	5.855
178.0	67.287	29.722	1532.225	50.807	36.237	127.109	8.151	8.511	6.337	6.713	5.940
179.0	66.943	29.784	1530.309	51.046	36.505	127.303	8.165	8.541	6.337	6.714	6.045
180.0	66.606	29.845	1528.439	51.288	36.774	127.508	8.179	8.571	6.337	6.715	6.030
181.0	66.266	29.904	1526.616	51.531	37.043	127.707	8.193	8.602	6.337	6.716	6.015
182.0	65.923	29.962	1524.840	51.777	37.312	127.906	8.207	8.633	6.337	6.716	6.000
183.0	65.579	3.019	1523.112	52.025	37.581	128.104	8.222	8.664	6.337	6.717	5.985
184.0	65.234	30.074	1521.430	52.275	37.850	128.301	8.236	8.696	6.337	6.718	5.970
185.0	64.881	30.128	1519.796	52.527	38.116	128.498	8.251	8.728	6.337	6.718	5.955
186.0	64.541	30.180	1518.209	52.782	38.387	128.694	8.266	8.760	6.336	6.719	5.940
187.0	64.193	30.231	1516.670	53.039	38.655	128.889	8.281	8.793	6.336	6.720	5.925
188.0	63.843	30.280	1515.179	53.299	38.924	129.083	8.297	8.826	6.336	6.721	5.910
189.0	63.493	30.329	1513.735	53.560	39.192	129.277	8.312	8.859	6.336	6.721	5.895
190.0	63.142	30.375	1512.338	53.825	39.459	129.470	8.328	8.892	6.335	6.722	5.880
191.0	62.733	30.420	1510.990	54.091	39.727	129.652	8.344	8.926	6.335	6.723	5.865
192.0	62.437	30.464	1509.689	54.360	39.994	129.853	8.360	8.960	6.334	6.723	6.030

STATISTICAL RESULTS SUMMARY

	SIGNAL	SIGNAL	SATELLITE MODEL	SIGC1	SIGC1
MU:	1.050	1.080	.310	.679	
IGMA:	.391	.650	.109	.131	
SSR:	722.690	485.0816	76.108	297.902	

SENSOR: SITU, ST MARGARET'S, NB, CANADA

PATTERN NUMBER: 3698

START TIME: 82 150 6 43 31. UT

SEMITIAJOR AXIS: 7105.434435274
SEMI LATUS RECTUM: 7102.500225955
ECCENTRICITY: .019971943.3044
INCLINATION: 61.26113459572
RA OF ASCENDING NODE: 334.14h09m30.6s
RA OF ORBIT NORMAL: 244.14086930.6s
DEC OF ORBIT NORMAL: 8.7388654042.5
ARGUMENT OF PERIGEE: 226.1874170245
TRUE ANOMALY: 174.96486176.3
ARGUMENT OF LAT AT EPOCH: 41.15227873.385
TRUE LONGITUDE AT EPOCH: 375.30109810.6
ORBITAL PERIOD(MINUTES): 99.34463016422

DELTA SEC	AZ	EL	BACKGROUND			PHASE	ABSOLUTE VISUAL MAGNITUDE						
			DANGE	RACS	DECLOS		SIGA1	SIGB1	SIGC1	SIGD1	SIGE1	SIGF1	TRUSIG
0.0	107.0566	18.371	1991-116	27.720	2-283	99.772	7.047	6.137	6.152	6.577	6.000		
1.0	106.959	15.504	1984-240	27.841	2-449	99.891	7.051	6.144	6.153	6.577	6.000		
2.0	106.852	18.637	1977-381	27.902	2-616	100.011	7.055	6.150	6.155	6.578	5.940		
3.0	106.743	16.770	1970-541	27.964	2-784	100.0132	7.060	6.156	6.156	6.579	5.940		
4.0	106.634	18.904	1963-714	26.026	2-953	100.0253	7.064	6.157	6.163	6.579	5.940		
5.0	106.523	19.034	1956-913	28.088	3-123	100.375	7.069	6.169	6.159	6.580	5.940		
6.0	106.411	19.172	1950-127	28.151	3-294	100.498	7.074	6.176	6.160	6.581	5.940		
7.0	106.297	15.307	1943-359	28.215	3-466	100.621	7.078	6.183	6.161	6.582	5.945		
8.0	106.183	19.443	1936-609	28.278	3-639	100.745	7.083	6.190	6.163	6.582	5.945		
9.0	106.067	19.579	1929-679	28.342	3-814	100.870	7.088	6.196	6.164	6.583	5.945		
10.0	105.949	19.715	1923-167	28.407	3-989	100.996	7.092	6.203	6.165	6.584	5.945		
11.0	105.831	19.852	1916-475	28.472	4-165	101.122	7.097	6.210	6.166	6.585	5.945		
12.0	105.711	19.969	1905-802	28.537	4-343	101.249	7.102	6.218	6.168	6.585	5.945		
13.0	105.595	20.127	1903-148	28.603	4-521	101.376	7.107	6.225	6.169	6.586	5.945		
14.0	105.466	20.266	1896-514	28.669	4-701	101.505	7.112	6.232	6.170	6.587	5.946		
15.0	105.344	20.404	1889-899	28.735	4-882	101.634	7.117	6.239	6.171	6.584	5.946		
16.0	105.219	20.543	1883-305	28.802	5-064	101.763	7.122	6.247	6.172	6.589	5.946		
17.0	105.092	20.663	1876-731	28.870	5-247	101.894	7.127	6.254	6.173	6.589	5.946		
18.0	104.964	20.823	1873-177	28.938	5-431	102.025	7.132	6.262	6.174	6.590	5.946		
19.0	104.835	20.963	1863-644	28.006	5-616	102.157	7.137	6.270	6.175	6.591	5.946		
20.0	104.704	21.104	1857-132	28.075	5-803	102.290	7.142	6.277	6.176	6.592	5.946		
21.0	104.572	21.246	1850-572	28.145	5-990	102.423	7.147	6.285	6.177	6.592	5.946		
22.0	104.434	21.388	1844-170	28.214	6-179	102.557	7.152	6.293	6.178	6.593	5.946		
23.0	104.303	21.530	1837-721	28.285	6-369	102.692	7.157	6.301	6.179	6.594	5.946		
24.0	104.166	21.673	1831-294	28.355	6-560	102.828	7.163	6.310	6-180	6-595	5.946		
25.0	104.024	21.816	1824-888	28.427	6-752	102.964	7.168	6-318	6-181	6-596	5.946		
26.0	103.883	21.959	1818-504	28.499	6-946	103.101	7.174	6-326	6-181	6-597	5.946		
27.0	103.747	22.103	1812-142	29.571	7-140	103.239	7.179	6-335	6-182	6-597	5.946		
28.0	103.605	22.248	1805-802	29.644	7-336	103.376	7-184	6-343	6-183	6-598	5.946		
29.0	103.460	22.393	1799-485	29.717	7-533	103.517	7-190	6-352	6-184	6-599	5.946		
30.0	103.314	22.536	1793-191	25.791	7-732	103.657	7-196	6-361	6-184	6-600	5.946		
31.0	103.167	22.684	1786-920	25.855	7-931	103.798	7-201	6-370	6-185	6-601	5.946		
32.0	103.017	22.830	1781-672	29.940	8-132	103.940	7-207	6-379	6-186	6-601	5.946		
33.0	102.867	22.977	1774-447	30.015	8-334	104.082	7-213	6-388	6-186	6-602	5.946		
34.0	102.714	23.124	1768-245	30.091	8-537	104.225	7-219	6-397	6-187	6-603	5.946		
35.0	102.560	23.271	1762-068	30.168	8-741	104.369	7-224	6-406	6-187	6-604	5.946		
36.0	102.419	23.419	1755-914	30.245	8-947	104.514	7-230	6-416	6-188	6-605	5.946		
37.0	102.266	23.567	1749-785	30.322	8-154	104.660	7-236	6-425	6-188	6-606	5.946		
38.0	102.087	23.716	1743-630	30.401	9-362	104.806	7-242	6-435	6-189	6-606	5.946		
39.0	101.926	23.865	1737-600	30.479	9-572	104.953	7-248	6-445	6-189	6-607	5.946		
40.0	101.763	24.014	1731-544	30.559	9-783	105.101	7-254	6-455	6-190	6-608	5.946		
41.0	101.599	24.164	1725-514	30.639	9-995	105.250	7-261	6-465	6-190	6-609	5.946		
42.0	101.432	24.314	1719-504	30.715	10-208	105.399	7-267	6-475	6-190	6-610	5.946		
43.0	101.265	24.465	1713-524	30.800	10-423	105.549	7-273	6-485	6-191	6-611	5.946		
44.0	101.093	24.616	1707-576	30.862	10-639	105.700	7-279	6-495	6-191	6-612	5.946		
45.0	100.921	24.767	1701-64H	30.965	10-856	105.852	7-286	6-506	6-191	6-612	5.946		
46.0	100.747	24.913	1695-747	31.04H	11-075	106.004	7-292	6-517	6-191	6-613	5.946		
47.0	100.571	25.071	1685-672	31.131	11-295	106.158	7-299	6-527	6-191	6-614	5.946		
48.0	100.393	25.223	1684-024	31.216	11-516	106.312	7-305	6-538	6-192	6-615	5.946		
49.0	100.211	25.376	1674-202	31.300	11-739	106.467	7-312	6-549	6-192	6-616	5.946		

STATISTICAL RESULTS SUMMARY

MU:	1.676	• 920	• 554	• 986	• 911
SIGA1	SIGB1	SATELLITE	MODEL	SIGC1	SIGD1

SSR: 113-670 210-662 133-236 122-672

SENCR: 11TU. 31 MA-GAKI TS. 1.B. CA AUA

PATTERN NUMBER: 1465

START TIME: 62 129 2 47 41.0 UT

SEMITMAJOR AXIS: 7331.471 105 2
SEMILATUS RECTUM: 7331.51996073
ECCENTRICITY: .0016439255.615
INCLINATION: H2=5413799d 51
RA OF ASCENDING NODE: 275.717155003.
RA OF ORBIT NORMAL: 183.717155063.
DEC OF ORBIT NORMAL: 7.4586230114.6
ARGUMENT OF PERIGEE: 19.6163670.53
TRUE ANOMALY: 21.0951172 745
ARGUMENT OF LAT AT EPOCH: 4b.6052A43.276
TRUE LONGITUDE AT EPOCH: 322.52254393.6b
ORBITAL PERIOD(MINUTE): 104.1313771161

DELTA SEC	AZ	EL	BACKGROUND			PHASE	VISUAL MAGNITUDE			TRIGDI
			RANGE	RALOS	SIGNAL		SIGHTI	SIGCCI	SIGGCI	
24.0	77.070	24.241	1442.540	344.057	26.052	71.599	6.252	6.775	3.763	5.040
25.0	76.822	24.333	1644.727	344.216	26.278	73.438	6.256	6.889	3.764	5.040
26.0	76.514	24.424	1646.952	344.377	26.504	74.096	6.260	5.010	3.766	5.040
27.0	76.331	24.515	1837.213	344.542	26.731	74.334	6.264	5.011	3.768	5.040
28.0	76.092	24.605	1633.511	344.706	26.959	74.594	6.265	5.023	3.770	5.041
29.0	75.843	24.695	1629.847	344.872	27.186	74.844	6.272	5.034	3.772	5.041
30.0	75.594	24.784	1126.220	345.034	27.415	75.037	6.277	5.046	3.774	5.040
31.0	75.342	24.873	1622.631	345.206	27.644	75.352	6.281	5.057	3.775	5.041
32.0	75.090	24.961	1619.075	345.375	27.873	75.608	6.285	5.069	3.777	5.041
33.0	74.836	25.045	1715.566	345.546	28.163	75.956	6.289	5.081	3.779	5.040
34.0	74.580	25.136	1812.090	345.717	28.334	76.121	6.293	5.094	3.781	5.041
35.0	74.323	25.222	1810.653	345.890	28.565	76.360	6.298	5.106	3.783	5.042
36.0	74.065	25.307	1665.255	346.065	28.797	76.639	6.302	5.119	3.785	5.040
37.0	73.105	25.392	1601.895	346.241	29.029	76.939	6.306	5.132	3.787	5.042
38.0	73.544	25.477	1798.574	346.414	29.262	77.154	6.311	5.145	3.790	5.040
39.0	73.282	25.560	1795.293	346.596	29.495	77.421	6.315	5.158	3.792	5.040
40.0	73.014	25.643	1792.050	346.776	29.729	77.664	6.314	5.171	3.794	5.040
41.0	72.752	25.725	1788.847	346.957	29.963	77.947	6.324	5.185	3.796	5.040
42.0	72.445	25.807	1785.643	347.140	30.198	78.211	6.328	5.199	3.798	5.040
43.0	72.117	25.888	1782.559	347.324	30.433	78.476	6.333	5.213	3.800	5.040
44.0	71.944	25.968	1779.475	347.510	30.669	78.742	6.337	5.227	3.803	5.040
45.0	71.577	26.047	1776.431	347.697	30.905	79.004	6.342	5.241	3.805	5.040
46.0	71.405	26.126	1773.427	347.885	31.141	73.277	6.347	5.256	3.807	5.040
47.0	71.131	26.203	1770.464	348.075	31.378	79.545	6.351	5.271	3.810	5.040
48.	70.356	26.280	1767.541	348.267	31.615	79.814	6.356	5.286	3.812	5.040
49.0	70.540	26.357	1764.659	348.460	31.852	80.084	6.361	5.301	3.814	5.040
50.0	70.302	26.432	1761.816	348.655	32.090	80.355	6.365	5.321	3.817	5.040
51.0	70.123	26.506	1759.017	349.851	32.326	80.626	6.370	5.247	3.819	5.040
52.0	69.743	26.580	1756.254	349.043	32.566	80.996	6.375	5.263	3.822	5.040
53.0	69.462	26.653	1753.549	349.246	32.805	81.171	6.380	5.286	3.824	5.040
54.0	69.174	26.725	1750.864	349.449	33.044	81.445	6.384	5.297	3.827	5.040
55.0	68.895	26.796	1748.224	349.651	33.283	81.719	6.389	5.314	3.830	5.040
56.0	68.610	26.866	1745.636	349.856	33.523	81.934	6.394	5.332	3.832	5.040
57.0	68.324	26.935	1743.046	350.062	33.762	82.270	6.399	5.350	3.835	5.040
58.0	68.036	27.004	1740.575	350.263	34.002	82.546	6.404	5.366	3.836	5.040
59.0	67.747	27.071	1738.104	350.471	34.243	82.824	6.409	5.386	3.840	5.040
60.0	67.457	27.136	1735.683	350.683	34.483	83.101	6.414	5.405	3.843	5.040
61.0	67.166	27.203	1733.300	350.892	34.723	83.380	6.417	5.424	3.846	5.040
62.0	66.874	27.261	1730.660	351.116	34.964	81.653	6.424	5.444	3.847	5.040
63.0	66.583	27.331	1727.663	351.352	35.205	83.931	6.431	5.464	3.848	5.040
64.0	66.296	27.394	1726.403	351.550	35.446	84.214	6.434	5.484	3.849	5.040
65.0	65.991	27.456	1724.176	351.750	35.687	84.500	6.440	5.505	3.857	5.040
66.0	65.693	27.516	1722.024	351.951	35.926	84.712	6.445	5.526	3.860	5.040
67.0	65.395	27.576	1719.902	352.214	36.169	85.064	6.450	5.548	3.863	5.040
68.0	65.097	27.634	1717.420	352.459	36.410	85.347	6.455	5.570	3.866	5.040
69.0	64.797	27.692	1715.760	352.666	36.652	85.633	6.461	5.592	3.870	5.040

70.0	64.436	27.74r	1713.765	352.0415	36.0493	85.914	6.0466	5.615	3.673	6.0437	5.0265
71.0	64.194	27.503	1711.833	353.126	37.134	86.136	6.471	5.639	3.676	6.461	5.0265
72.0	63.891	27.657	1709.524	353.355	37.375	86.463	6.477	5.663	3.879	6.491	5.0265
73.0	63.587	27.511	1708.059	353.543	37.616	86.769	6.482	5.687	3.962	6.493	5.0415
74.0	65.283	27.963	1706.238	353.824	37.857	87.055	6.484	5.712	3.986	6.495	5.0415
75.0	62.977	28.013	1704.461	354.067	3.028	47.341	6.493	5.738	3.899	6.497	5.0415

STATISTICAL RESULTS SUMMARY

	SATELLITE	MODEL	SIGG1	SIGG1	SIGG1
SIGAI					
MU:	1.2220		•150	-1.327	1.303
IGMA:	•160		•114	•203	•204
SSR:	430.491		15.925	452.201	434.509

SENSOR: SITU, ST MARGARET'S, NB, CANADA

PATTERN NUMBER: 3567

START TIME: 82 146 2 30 5. UT

SEMI-MAJOR AXIS: 6871.061135615
SEMILATUS RECTUM: 6670.343162914
ECCENTRICITY: .010222145522204
INCLINATION: 98.13610117365
RA OF ASCENDING NODE: 25.153652604
RA OF ORBIT NORMAL: 165.1532592604
DEC. OF ORBIT NORMAL: -8.136101174666
ARGUMENT OF PERIGEE: 249.7H6051.
TRUE ANOMALY: 154.64L3660266
ARGUMENT OF LAT AT EPOCH: 43.4251732046
TRUE LONGITUDE AT EPOCH: 302.5R30.324014
ORBITAL PERIOD(MINUTES): 94.4702437065

DELTA SEC	AZ SEC	EL	RANGE	RALES	BACKGROUD	DECLOS	PHASE	SIGA1	SIGB1	VISUAL MAGNITUDE	SIGC1	SIGD1	TPUS:6
0.0	214.606	44.419	777.136	236.995	6.276	53.293	6.055	4.470	4.649	5.311	4.465		
1.0	215.687	44.536	775.428	236.315	6.691	60.015	6.06H	4.492	4.656	6.315	4.415		
2.0	216.746	44.643	774.652	225.745	7.107	60.746	6.077	4.514	4.663	5.321	4.495		
3.0	217.841	44.740	773.661	225.129	7.522	61.476	6.016	4.537	4.670	6.325	4.425		
4.0	218.997	44.826	772.676	225.545	7.937	62.207	6.096	4.566	4.675	6.327	4.415		
5.0	223.111	44.901	771.677	227.365	8.352	62.540	6.105	4.584	4.685	5.334	4.430		
6.0	221.229	44.366	771.204	227.355	8.767	63.673	6.115	4.602	4.653	6.337	4.450		
7.0	222.351	45.026	770.655	226.733	9.136	64.406	6.125	4.634	4.700	6.343	5.050		
8.0	223.475	45.063	770.235	226.126	9.533	65.143	6.135	4.659	4.708	6.341	5.125		
9.0	224.601	45.095	769.947	225.560	10.004	65.879	6.145	4.685	4.716	6.353	4.70		
10.0	225.727	45.116	769.782	224.875	10.414	65.615	6.155	4.712	4.724	6.351	5.005		
11.0	226.857	45.126	769.743	224.254	10.823	67.351	6.165	4.739	4.739	6.363	5.150		
12.0	227.985	45.125	769.331	223.626	11.230	68.086	6.176	4.767	4.741	6.364	5.105		
13.0	229.112	45.113	770.045	223.061	11.635	69.921	6.186	4.795	4.750	6.372	5.149		
14.0	230.237	45.089	770.386	222.373	12.038	69.556	6.197	4.824	4.758	6.377	5.145		
15.0	231.360	45.055	770.852	221.743	12.434H	70.289	6.207	4.854	4.767	6.382	5.180		
16.0	232.477	45.016	771.444	221.113	12.837	71.021	6.218	4.864	4.776	6.387	5.215		
17.0	233.594	44.954	772.002	220.441	13.232	71.751	6.224	4.845	4.745	6.392	5.190		
18.0	234.704	44.686	773.062	219.849	13.625	72.439	6.240	4.847	4.775	6.397	5.165		
19.0	235.803	44.811	773.967	219.217	14.015	73.207	6.259	4.980	4.804	6.402	5.203		
20.0	236.907	44.723	775.056	218.564	14.402	73.931	6.261	5.013	4.813	6.407	5.325		
21.0	237.993	44.626	776.264	217.550	14.786	74.653	6.272	5.047	4.823	6.411	5.315		
22.0	233.062	44.515	777.601	217.317	15.166	75.373	6.264	5.082	4.833	6.416	5.165		
23.0	240.155	44.401	779.055	216.684	15.543	76.070	6.295	5.116	4.843	6.421	5.169		
24.0	241.225	44.275	780.650	216.051	15.916	76.703	6.306	5.154	4.853	6.426	5.225		
25.0	242.293	44.139	762.326	215.416	16.265	77.514	6.317	5.192	4.863	6.431	5.245		
26.0	243.331	43.954	764.136	214.706	16.650	78.221	6.324	5.230	4.873	6.436	5.300		
27.0	244.367	43.840	766.066	214.155	17.011	79.924	6.340	5.270	4.884	6.441	5.405		
28.0	245.397	43.676	793.115	213.524	17.366	79.624	6.351	5.310	4.894	6.445	5.415		
29.0	246.413	43.506	790.276	212.495	17.721	80.315	6.362	5.352	4.905	6.450	5.175		
30.0	247.413	43.330	792.555	212.266	18.069	81.011	6.374	5.355	4.915	6.454	5.360		
31.0	248.411	43.144	794.945	211.639	18.413	81.698	6.386	5.395	4.926	6.462	5.400		
32.0	249.392	42.951	797.447	211.014	18.753	82.330	6.397	5.484	4.937	6.464	5.520		
33.0	251.361	42.761	900.061	210.350	19.067	83.058	6.408	5.531	4.948	6.463	5.525		
34.0	251.311	42.544	802.784	205.767	19.417	93.732	6.420	5.579	4.959	6.473	5.445		
35.0	252.261	42.331	805.615	205.147	19.743	94.400	6.431	5.629	4.971	6.477	5.475		
36.0	253.132	42.112	807.553	206.526	20.063	95.063	6.443	5.680	4.982	6.482	5.540		
37.0	254.103	41.867	911.597	207.512	20.374	85.722	6.454	5.734	4.993	6.486	5.539		
38.0	255.061	41.656	814.746	207.24	20.669	86.374	6.466	5.749	5.005	6.493	5.621		
39.0	255.035	41.421	817.936	207.275	20.995	87.022	6.477	5.766	5.017	6.495	5.625		
40.0	255.783	41.162	821.361	206.874	21.255	87.669	6.485	5.826	5.026	6.498	5.621		
41.0	257.647	40.935	824.005	205.472	21.551	88.331	6.493	5.884	5.040	6.503	5.670		
42.0	258.494	40.666	825.355	204.666	21.861	88.932	6.512	6.034	5.052	6.507	5.679		
43.0	259.336	40.432	832.001	204.257	22.167	89.557	6.524	6.102	5.064	6.511	5.685		
44.0	259.935	40.142	835.754	203.775	22.447	90.177	6.535	6.154	5.076	6.516	5.705		
45.0	260.372	39.915	839.595	203.675	22.722	90.751	6.547	6.192	5.084	6.521	5.715		
46.0	261.774	39.651	843.529	202.494	22.952	91.334	6.557	6.234	5.103	6.524	5.710		
47.0	262.355	39.384	847.555	201.676	23.256	92.010	6.570	6.266	5.126	6.527	5.700		
48.0	263.327	39.115	851.671	201.311	23.514	92.596	6.582	6.294	5.125	6.531	5.701		
49.0	264.046	39.043	853.716	201.733	23.773	93.166	6.593	6.270	5.117	5.535	5.700		

50.0	264.332	3.569	560.161	230.151	24.629	93.770	24.629	5.150	6.231	6.695	6.150	6.531	6.700
51.0	265.525	3.529	564.546	1.97.571	24.267	9.4.347	6.616	6.513	5.662	6.543	6.110	6.543	6.110
52.0	266.217	4.015	629.005	15.6.074	24.507	9.4.919	6.628	6.534	5.675	6.546	6.145	6.546	6.145
53.0	266.995	7.735	673.554	1.13.443	24.742	9.5.465	6.634	6.535	5.617	6.551	6.045	6.551	6.045
54.0	267.692	4.454	676.182	19.7.0.61	24.9.73	9.6.044	6.651	6.76	6.220	6.553	6.010	6.553	6.010
55.0	269.376	4.173	882.445	12.7.322	9.6.557	6.662	6.37	6.213	6.557	6.015	6.557	6.015	
56.0	269.349	36.870	887.675	19.6.761	25.410	9.7.104	6.674	6.414	5.225	6.550	6.136	6.550	6.136
57.0	269.710	36.606	892.539	19.6.216	25.634	9.7.686	6.685	6.434	5.238	6.564	6.065	6.564	6.065
58.0	270.559	36.322	897.476	15.5.672	25.645	9.8.220	6.697	6.452	5.251	6.567	6.201	6.567	6.201
59.0	271.537	36.037	902.472	19.5.136	26.051	9.9.743	6.704	6.474	5.264	6.571	6.150	6.571	6.150
60.0	271.624	35.752	907.575	14.4.573	26.253	9.9.272	6.720	6.498	5.277	6.575	6.215	6.575	6.215
61.0	272.244	35.467	912.730	19.4.061	26.450	9.9.769	6.731	6.518	5.280	6.577	6.235	6.577	6.235
62.0	272.446	35.162	917.967	19.3.531	26.642	1.0.0.231	6.743	6.534	5.363	6.593	6.105	6.593	6.105
63.0	273.441	34.897	923.266	19.3.036	26.831	1.0.0.334	6.754	6.557	5.316	6.593	6.215	6.593	6.215
64.0	274.923	34.612	926.632	15.2.436	27.014	1.0.1.302	6.766	6.576	5.329	6.606	5.50	6.606	5.50
65.0	274.599	34.324	934.065	19.1.970	27.194	1.0.1.795	6.777	6.595	5.342	6.619	6.075	6.619	6.075
66.0	275.164	34.044	939.562	19.1.459	27.369	1.0.2.282	6.788	6.614	5.355	6.642	5.75	6.642	5.75
67.0	275.714	33.766	945.124	15.0.753	27.546	1.0.2.763	6.800	6.633	5.366	6.655	6.016	6.655	6.016
68.0	276.264	33.474	950.746	19.0.451	27.707	1.0.3.238	6.811	6.651	5.381	6.657	6.120	6.657	6.120
69.0	276.799	33.196	956.434	14.9.952	27.865	1.0.3.737	6.822	6.670	5.394	6.662	6.055	6.662	6.055
70.0	277.326	32.915	962.179	18.8.460	28.026	1.0.4.170	6.833	6.688	5.407	6.663	6.055	6.663	6.055
71.0	277.943	32.635	967.984	18.8.571	28.183	1.0.4.628	6.845	6.706	5.420	6.665	6.075	6.665	6.075
72.0	278.352	32.356	973.346	18.8.487	28.334	1.0.5.040	6.856	6.724	5.433	6.663	6.135	6.663	6.135
73.0	278.952	32.079	975.765	18.8.038	28.461	1.0.5.527	6.867	6.741	5.446	6.661	6.115	6.661	6.115
74.0	279.349	31.802	985.735	18.7.533	28.624	1.0.5.968	6.878	6.759	5.459	6.662	6.120	6.662	6.120
75.0	279.427	31.527	991.763	18.7.063	28.764	1.0.6.433	6.889	6.776	5.473	6.664	6.110	6.664	6.110
76.0	280.303	31.243	997.245	18.6.597	28.905	1.0.6.833	6.901	6.793	5.486	6.664	6.110	6.664	6.110
77.0	280.770	30.956	1003.563	18.6.136	29.033	1.0.7.258	6.910	6.810	5.496	6.663	6.110	6.663	6.110
78.0	281.233	30.702	1010.167	18.5.680	29.162	1.0.7.677	6.923	6.827	5.512	6.662	6.200	6.662	6.200
79.0	281.582	30.446	1016.402	18.5.220	29.288	1.0.8.031	6.934	6.844	5.525	6.662	6.235	6.662	6.235
80.0	283.835	2.115	1022.685	18.4.751	29.411	1.0.8.459	6.945	6.860	5.538	6.662	6.315	6.662	6.315
82.0	282.565	2.050	1025.016	18.4.333	29.530	1.0.9.503	6.956	6.877	5.552	6.662	6.140	6.662	6.140
83.0	282.395	2.064	1035.94	18.3.695	29.646	1.0.9.301	6.967	6.893	5.565	6.662	6.220	6.662	6.220
84.0	283.419	2.037	1041.817	18.3.465	29.759	1.0.9.695	6.978	6.909	5.578	6.664	6.225	6.664	6.225
85.0	283.835	2.085	1046.207	18.3.036	29.869	1.1.0.033	6.989	6.925	5.591	6.664	6.315	6.664	6.315
86.0	284.644	2.059	1054.75b	18.2.611	29.976	1.1.0.467	7.000	6.940	5.604	6.664	6.370	6.664	6.370
87.0	285.047	2.034	1061.353	18.2.151	30.0.60	1.1.0.845	7.010	6.956	5.617	6.664	6.345	6.664	6.345
88.0	285.439	2.085	1067.550	18.1.774	30.1.01	1.1.1.215	7.021	6.971	5.631	6.664	6.410	6.664	6.410
89.0	285.423	2.053	1068.588	18.1.363	30.2.79	1.1.1.354	7.032	6.987	5.644	6.664	6.310	6.664	6.310
90.0	285.020	2.052	1069.964	18.0.955	30.3.75	1.1.1.952	7.043	7.002	5.654	6.665	6.400	6.665	6.400
91.0	286.576	27.332	1070.974	18.0.154	30.4.550	1.1.2.657	7.054	7.017	5.667	6.664	6.455	6.664	6.455
92.0	287.044	27.047	1101.153	17.7.751	31.4.646	1.1.3.01h	7.075	7.037	5.686	6.664	6.511	6.664	6.511
93.0	287.732	26.635	1104.364	17.7.361	31.5.731	1.1.3.354	7.096	7.061	5.709	6.665	6.375	6.665	6.375
94.0	287.663	26.574	1115.230	17.7.943	31.6.614	1.1.3.716	7.107	7.076	5.723	6.665	6.420	6.665	6.420
95.0	288.032	26.514	1122.132	17.7.601	31.7.464	1.1.4.043	7.117	7.097	5.740	6.665	6.501	6.665	6.501
96.0	288.361	26.411	1122.062	17.7.223	31.8.972	1.1.4.377	7.121	7.104	5.749	6.665	6.429	6.665	6.429
97.0	288.732	25.973	1136.356	17.7.652	31.9.642	1.1.4.726	7.125	7.116	5.762	6.665	6.440	6.665	6.440
98.0	289.032	25.635	1143.090	17.7.410	32.0.122	1.1.5.031	7.132	7.132	5.775	6.665	6.460	6.665	6.460
99.0	289.232	25.401	1150.075	17.7.115	32.1.193	1.1.5.351	7.149	7.149	5.792	6.665	6.455	6.665	6.455
100.0	289.617	25.167	1157.141	17.6.533	32.1.262	1.1.5.555	7.159	7.160	5.801	6.665	6.499	6.665	6.499

STATISTICAL RESULTS SUMMARY

	SATELLITE MODEL	SIGNAL	SIGG1	SIGD1
MU:	at 25	•245	-•666	•744
IGMA:	•224	•379	•209	•413
SSR:	323•252	53•706	1,3•163	174•260

SENSOR: SITU, ST MARGARET'S, NB, CANADA

PATTERN NUMBER: 3888

START TIME: 02 189 4 33 22. UT

SEMI-MAJOR AXIS: 7213.363019359
SEMI-LATUS RECTUM: 7211.651077204
ECCENTRICITY: .01540549455736
INCLINATION: 82.6942959741
RA OF ASCENDING NODE: 274.056623749
RA OF ORBIT NORMAL: 184.056623749
DEC OF ORBIT NORMAL: 7.10571002591
ARGUMENT OF PERIGEE: 241.5928606213
TRUE ANOMALY: 171.8590813725
ARGUMENT OF LAT AT EPOCH: 53.49154199378
TRUE LONGITUDE AT EPOCH: 327.5485657428
ORBITAL PERIOD(MINUTES): 101.6169137416

DELTA SEC	AZ	FL	RANGE	RALCS	BACKGROUND			ABSOLUTE VISUAL MAGNITUDE			SIGD1	TRUSIG
					DECLOS	PHASE	SIGA1	SIGB1	SIGC1			
0.0	332.593	45.009	1276.856	203.327	70.950	109.204	6.714	7.848	4.789	6.631	5.820	
1.0	332.615	44.721	1281.933	202.538	70.820	109.440	6.721	7.451	4.799	6.632	5.810	
2.0	332.633	44.436	1287.030	201.761	70.820	109.675	6.728	7.855	4.810	6.634	5.830	
3.0	332.662	44.152	1292.148	200.995	70.751	109.908	6.735	7.658	4.820	6.635	5.745	
4.0	332.685	43.871	1297.287	200.241	70.679	110.138	6.743	7.861	4.830	6.636	5.795	
5.0	332.719	43.592	1302.447	195.499	70.605	110.367	6.750	7.865	4.840	6.637	5.830	
6.0	332.734	43.314	1307.626	191.768	70.528	110.593	6.757	7.868	4.850	6.639	5.810	
7.0	332.757	43.040	1312.826	198.049	70.449	110.818	6.764	7.871	4.861	6.640	5.825	
8.0	332.784	42.767	1316.045	197.341	70.367	111.040	6.771	7.875	4.871	6.641	5.740	
9.0	332.810	42.496	1323.284	196.645	70.284	111.261	6.779	7.878	4.881	6.642	5.790	
10.0	332.836	42.227	1328.541	195.961	70.198	111.479	6.786	7.881	4.891	6.643	5.810	
11.0	332.862	41.960	1333.817	195.288	70.111	111.696	6.793	7.885	4.901	6.644	5.875	
12.0	332.889	41.696	1339.111	194.626	70.021	111.911	6.800	7.688	4.912	6.645	5.790	
13.0	332.916	41.433	1344.424	193.975	69.930	112.124	6.808	7.891	4.922	6.647	5.840	
14.0	332.943	41.172	1349.754	193.336	69.837	112.335	6.815	7.894	4.932	6.648	5.755	
15.0	332.971	40.914	1355.101	192.707	69.743	112.544	6.822	7.898	4.942	6.649	5.835	
16.0	332.993	40.657	1360.466	192.089	69.647	112.752	6.829	7.901	4.953	6.650	5.870	
17.0	333.027	40.402	1365.847	191.462	69.550	112.957	6.837	7.904	4.963	6.651	5.905	
18.0	333.056	40.148	1371.244	190.865	69.451	113.161	6.844	7.907	4.973	6.652	5.920	
19.0	333.085	39.893	1376.653	190.299	69.351	113.363	6.851	7.910	4.984	6.653	5.970	
20.0	333.114	34.646	1382.098	189.723	69.250	113.563	6.858	7.914	4.994	6.654	5.795	
21.0	333.143	34.402	1387.534	189.157	69.148	113.761	6.866	7.917	5.004	6.655	5.925	
22.0	333.173	34.157	1392.994	188.601	69.045	113.958	6.873	7.920	5.014	6.656	5.930	
23.0	333.203	34.913	1398.470	188.055	68.940	114.153	6.880	7.923	5.025	6.657	5.945	
24.0	333.233	34.671	1403.961	187.519	68.835	114.346	6.886	7.926	5.035	6.659	5.760	
25.0	333.264	34.431	1409.466	186.992	68.725	114.538	6.895	7.930	5.045	6.659	5.360	
26.0	333.295	34.193	1414.485	186.474	68.622	114.728	6.902	7.933	5.055	6.661	5.875	
27.0	333.326	37.957	1420.514	185.966	68.514	114.916	6.909	7.936	5.066	6.661	5.880	
28.0	333.357	37.722	1426.066	185.466	68.405	115.103	6.917	7.939	5.076	6.662	5.215	
29.0	333.388	37.485	1431.627	184.975	68.296	115.288	6.924	7.942	5.086	6.663	6.025	

STATISTICAL RESULTS SUMMARY

SIGA1	SIGB1	SIGC1	SIGD1
MU:	• 73	2.050	• 002
IGMA:	• 151	• 355	• 161
SSR:	149.352	327.70	134.364
			120.101

SEMI-MAJOR AXIS: 7585.6415610⁰
SEMI-MINOR AXIS: 7558.33953⁻574
ECCENTRICITY: .05993⁻06611462
INCLINATION: 90.27803066172
RA OF ASCENDING NODE: 250.42122 6263
RA OF ORBIT NORMAL: 160.42122⁻6263
DEC OF ORBIT NORMAL: -.2780366617237
ARGUMENT OF PERIGEE: 124.223425009⁰
TRUE ANOMALY: 276.593477248
ARGUMENT OF LAT AT EPOCH: 42.31640225673
TRUE LONGITUDE AT EPOCH: 293.23613145
ORBITAL PERIOD(MINUTE): 109.5841612⁻05

SENSOR: SITU, ST MARGARETS, N.B., CANADA

PATTERN NUMBER: 3F45

START TIME: 82 163 4 37 39. UT

DELTA SEC	AZ	FL	BACKGROUND			PHASE			ABSOLUTE VISUAL MAGNITUDE		
			RANGE	RA/LS	DEC/LS	SIGNAL	SIGNAL	SIGC1	SIGH1	SIGI1	SIGJ1
0.0	273.199	A-621	3107.835	197.703	H-461	87.902	6.498	5.012	5.030	5.095	5.000
1.0	273.372	b-577	3110.791	197.618	c-596	67.202	6.501	5.621	5.305	5.150	5.150
2.0	273.546	b-532	3113.757	197.533	p-634	67.314	6.505	5.629	5.329	5.447	5.340
3.0	273.714	b-486	3116.734	197.449	F-720	87.425	6.508	5.637	5.347	5.420	5.320
4.0	273.891	b-444	3119.720	197.364	H-806	97.536	6.511	5.645	5.559	5.400	5.340
5.0	274.063	H-400	3122.717	197.280	v-891	87.647	6.514	5.653	5.403	5.493	5.340
6.0	274.235	b-356	3125.724	197.195	b-761	87.756	6.517	5.662	5.409	5.447	5.340
7.0	274.406	c-311	3128.761	197.111	c-601	87.864	6.521	5.670	5.413	5.503	5.420
8.0	274.577	b-267	3131.767	197.026	S-146	87.978	6.524	5.678	5.417	5.501	5.450
9.0	274.749	b-223	3134.804	196.944	9.230	85.057	6.527	5.687	5.422	5.502	5.560
10.0	274.919	b-178	3137.850	196.860	9.314	88.197	6.530	5.695	5.427	5.503	5.690
11.0	275.084	H-134	3140.905	196.777	S-398	6H-306	6.533	5.704	5.432	5.504	5.570
12.0	275.254	b-089	3143.971	196.694	9.482	88.415	6.537	5.712	5.436	5.504	5.570
13.0	275.427	b-045	3147.045	196.611	9.585	88.523	6.540	5.441	5.503	5.560	5.560
14.0	275.596	b-000	3150.129	196.526	9.648	89.631	6.543	5.729	5.446	5.502	5.540
15.0	275.765	7.955	3153.223	196.445	9.731	88.734	6.546	5.738	5.441	5.506	5.535
16.0	275.933	7.911	3156.326	196.363	9.814	88.847	6.549	5.747	5.445	5.507	5.460
17.0	276.101	7.866	3159.437	196.281	9.896	88.959	6.553	5.756	5.460	5.502	5.341
18.0	276.268	7.821	3162.558	196.198	9.978	89.061	6.556	5.764	5.465	5.504	5.369
19.0	276.436	7.776	3165.684	196.116	10.060	89.166	6.559	5.773	5.470	5.502	5.390
20.0	276.603	7.731	3168.827	196.034	10.141	89.274	6.562	5.782	5.475	5.511	5.320
21.0	276.769	7.686	3171.975	195.953	10.223	89.381	6.566	5.791	5.479	5.513	5.120
22.0	276.935	7.641	3175.132	195.871	10.304	89.486	6.569	5.800	5.484	5.511	5.350
23.0	277.101	7.597	3178.297	195.790	10.384	89.592	6.572	5.809	5.489	5.512	5.350
24.0	277.267	7.552	3181.471	195.708	10.465	89.697	6.575	5.818	5.494	5.513	5.340
25.0	277.432	7.506	3184.654	195.627	10.545	89.802	6.579	5.827	5.499	5.513	5.663
26.0	277.597	7.461	3187.845	195.547	10.625	89.907	6.582	5.936	5.504	5.514	5.660
27.0	277.761	7.416	3191.044	195.466	10.705	90.012	6.585	5.945	5.508	5.514	5.661
28.0	277.925	7.372	3194.252	195.385	10.784	90.116	6.588	5.948	5.513	5.515	5.640
29.0	278.089	7.326	3197.468	195.305	10.863	90.220	6.592	5.950	5.516	5.516	5.650
30.0	279.252	7.281	3200.693	195.225	10.942	90.323	6.595	5.953	5.523	5.517	5.550
31.0	278.416	7.236	3203.925	195.143	11.021	90.427	6.598	5.956	5.528	5.521	5.540
32.0	278.578	7.191	3207.166	195.065	11.099	90.530	6.602	5.959	5.531	5.521	5.560
33.0	279.741	7.145	3210.415	194.985	11.177	90.633	6.605	5.962	5.538	5.512	5.570
34.0	279.903	7.100	3213.671	194.906	11.255	90.735	6.608	5.965	5.543	5.513	5.530
35.0	279.065	7.055	3216.936	194.827	11.333	90.837	6.611	5.971	5.548	5.521	5.570
36.0	279.226	7.005	3220.208	194.747	11.410	90.939	6.615	5.970	5.553	5.521	5.610
37.0	279.387	6.964	3223.480	194.666	11.488	91.041	6.618	5.973	5.558	5.521	5.620
38.0	279.548	6.915	3226.776	194.585	11.564	91.142	6.621	5.976	5.563	5.521	5.650
39.0	279.708	6.873	3230.071	194.501	11.641	91.249	6.625	5.981	5.566	5.523	5.630
40.0	279.869	6.828	3233.374	194.422	11.717	91.344	6.628	5.981	5.573	5.523	5.670
41.0	280.028	6.783	3236.684	194.354	11.794	91.445	6.631	5.984	5.578	5.524	5.620
42.0	280.188	6.737	3240.001	194.276	11.869	91.545	6.635	5.987	5.583	5.525	5.630
43.0	280.347	6.692	3243.326	194.194	11.945	91.645	6.638	5.990	5.588	5.521	5.650
44.0	280.506	6.646	3246.656	194.120	12.020	91.745	6.641	5.992	5.593	5.525	5.670
45.0	280.664	6.601	3249.997	194.042	12.095	91.844	6.645	5.995	5.598	5.526	5.670
46.0	280.822	6.556	J253.344	193.965	12.170	91.944	6.648	5.998	5.601	5.527	5.610
47.0	280.980	6.510	3256.697	193.847	12.245	92.042	6.651	6.001	5.608	5.621	5.620

48.0	281.13	6.465	3260.057	193.410	12.319	52.141	6.655	5.03	5.613	6.524
49.0	281.295	6.415	3263.424	193.733	12.393	52.238	6.658	5.406	5.618	6.527
50.0	281.452	6.374	3263.798	193.656	12.467	92.337	6.662	5.39	5.623	6.530
51.0	281.608	6.328	3270.179	193.579	12.541	92.435	6.665	5.612	5.628	6.531
52.0	281.765	6.283	3273.566	193.503	12.614	92.533	6.668	5.614	5.631	6.532
53.0	281.921	6.237	3276.961	193.426	12.687	92.630	6.672	5.917	5.639	6.532
54.0	282.076	6.192	3280.351	193.350	12.760	92.727	6.675	5.920	5.644	6.532
55.0	282.232	6.146	3283.768	193.274	12.833	92.824	6.678	5.922	5.649	6.531
56.0	282.387	6.101	3287.182	193.193	12.905	92.920	6.682	5.925	5.654	6.533
57.0	282.541	6.055	3290.602	193.122	12.977	93.016	6.685	5.928	5.659	6.534
58.0	282.696	6.010	3294.028	193.047	13.049	93.112	6.689	5.931	5.664	6.535
59.0	282.850	5.964	3297.460	192.971	13.121	93.202	6.692	5.933	5.669	6.535
60.0	283.003	5.919	3300.898	192.896	13.192	93.303	6.695	5.936	5.675	6.535
61.0	283.157	5.673	3304.343	192.421	13.263	93.398	6.699	5.939	5.680	6.537
62.0	283.310	5.828	3307.794	192.746	13.334	93.493	6.702	5.941	5.685	6.537
63.0	283.463	5.762	3311.250	192.671	13.405	93.587	6.706	5.944	5.684	6.537
64.0	283.615	5.737	3314.713	192.596	13.475	93.682	6.709	5.947	5.686	6.538
65.0	283.767	5.691	3318.161	192.522	13.545	93.776	6.713	5.949	5.701	6.538
66.0	283.919	5.646	3321.655	192.447	13.614	93.869	6.716	5.952	5.706	6.540
67.0	284.071	5.600	3325.135	192.373	13.685	93.963	6.719	5.954	5.705	6.541
68.0	284.222	5.555	3328.626	192.299	13.754	94.056	6.723	5.957	5.708	6.541
69.0	284.373	5.510	3332.111	192.225	13.824	94.149	6.726	5.960	5.722	6.541
70.0	284.524	5.464	3335.607	192.152	13.893	94.242	6.730	5.962	5.727	6.542
71.0	284.674	5.419	3339.105	192.071	13.961	94.334	6.733	5.965	5.732	6.543
72.0	284.824	5.373	3342.616	192.005	14.030	94.426	6.737	5.968	5.738	6.543
73.0	284.974	5.328	3346.125	191.931	14.098	94.514	6.740	5.970	5.743	6.544
74.0	285.123	5.282	3349.647	191.858	14.166	94.610	6.744	5.973	5.746	6.544
75.0	285.272	5.237	3353.170	191.775	14.234	94.701	6.747	5.975	5.754	6.545
76.0	285.421	5.192	3356.696	191.712	14.301	94.792	6.751	5.978	5.759	6.545
77.0	285.570	5.146	3360.231	191.640	14.369	94.883	6.754	5.981	5.765	6.546
78.0	285.719	5.101	3363.769	191.567	14.436	94.974	6.758	5.983	5.770	6.547
79.0	285.866	5.056	3367.312	191.495	14.502	95.064	6.761	5.986	5.775	6.547
80.0	286.014	5.010	3370.360	191.423	14.569	95.154	6.765	5.989	5.781	6.548
81.0	286.161	4.965	3374.413	191.351	14.635	95.244	6.768	5.991	5.786	6.549
82.0	286.308	4.920	3377.971	191.271	14.701	95.333	6.772	5.993	5.792	6.549
83.0	286.455	4.875	3381.533	191.207	14.767	95.423	6.775	5.996	5.797	6.549
84.0	286.602	4.829	3385.100	191.136	14.833	95.512	6.779	5.998	5.802	6.551
85.0	286.748	4.784	3388.671	191.064	14.896	95.600	6.782	6.001	5.806	6.551
86.0	286.894	4.739	3392.247	190.993	14.964	95.686	6.786	6.003	5.813	6.551
87.0	287.040	4.694	3395.828	190.922	15.029	95.777	6.789	6.006	5.819	6.552
88.0	287.185	4.649	3399.413	190.851	15.093	95.865	6.793	6.009	5.824	6.552
89.0	287.331	4.603	3403.002	190.780	15.158	95.953	6.797	6.011	5.830	6.553

STATISTICAL RESULTS SUMMARY

SIGNAL	SIGHT1	SIGHT2	SIGHT3	SIGHT4
MU:	•.977	•.260	-•.069	•.959
IGMA:	•.150	•.117	•.054	•.149
SSR:	579.600	42.7.1	12.436	363.500

VI. CONCLUSIONS AND RECOMMENDATIONS

Conclusions

The results of the satellite identification experiment show that it is feasible to perform pattern recognition of stable satellites employing diffuse reflection models of known satellite types, for geometries for which the Lambertian assumption is approximately true. Gamache and LaRosa reached a similar conclusion (Ref 13).

Limitations of the Method

1. Meaningful identification of satellites is achievable only when the satellite being observed has been modeled. It is possible for the signature of an unmodeled object could by chance exhibit a small SSR for one of the models on a given pass. However, it is unlikely that an unmodeled object will consistently yield a small SSR for a single model over several passes unless the object is in fact similar to the model.
2. The results of the satellite identification experiment show that the one validated Lambertian model is good only for small phase angles.

Applications An operational program performing pattern recognition from a model library could be used at sensors for early identification and reporting to the ADIC, or at the ADIC itself by the SOI technician on duty. The recognition process would not depend heavily on the experience of the operator. Multiple applications of a SATID type program include:

1. Early mission identification of newly launched payloads
2. Possible UCT identification

3. Monitoring resident space objects for changes in orientation, or configuration, or surface reflectivity due to aging or damage.
4. Indicating the presence of a design change in a known mission class.
5. Determining that an object which is tentatively identified from other sources is either not what the other sources say it is, or that some characteristic is non-nominal.

Operational Recommendations

1. Retain the PDAM program for use as an aid to determining gross size and shape of unknown satellites, but do not try to use it as a pattern recognition tool.
2. Develop another photometric analysis program for use at the ADIC, with basic structure similar to SATID. Improvements over SATID should include:
 - a. Adding the PDAM preprocessing module
 - b. Incorporating a more sophisticated orbit prediction algorithm
 - c. Developing diffuse models for the entire inventory of satellites of interest, and validating them using actual signatures. Diffuse phase functions must not assume perfect Lambertian reflection.

3. Evaluate the utility of having a SATID type program available at GEODSS sensors as well as the ADIC.

Recommendations for Future Research

1. An analysis is needed to determine a correlation between the relative magnitudes of the SSR's of validated models and correct identification of satellites by program SATID. This will require collection of many more signatures of the modeled satellites, and validation of the other three models. Such an analysis would reveal how accurate the satellite models must be if correct identification can be counted on for some desirable percentage (say 90%) of signatures processed, assuming the tracks are of modeled satellites.

The small number of signatures available to this thesis project made such a study impossible, even for model SIGB1, but the four satellites modeled were of such different sizes and shapes that the differences in SSR were large in most cases for which the model was valid, and the best fit to data could be easily selected by inspection. If research in this area is pursued further, and many more satellites are modeled, distinctions between more similar types may not be as obvious, hence the need for establishing quantitative measures of confidence in correct identification for each model individually.

2. Modeling of satellites without using the Lambertian reflecting surface assumptions should be attempted, so that models remain valid at high phase angles. An operational satellite identification computer program should retain its validity for any viewing geometry, so that minimal detailed post analysis by the operator is necessary.

References

1. Bate, Roger R., et. al., Fundamentals of Astrodynamics, New York: Dover Publications, Inc., 1971.
2. Henden, Arne A. and Ronald H. Kaitchuck, Astronomical Photometry, New York: Van Nostrand Reinhold Company, Inc., 1982.
3. Slater, Philip N., Remote Sensing, Optics and Optical Systems, Reading, MA: Addison-Wesley Publishing Company, Inc., 1980.
4. Hecht, Eugene and Zajac, Alfred, Optics, Reading, MA: Addison-Wesley Publishing Company, Inc., 1974.
5. Hines, William W. and Montgomery, Douglas C., Probability and Statistics in Engineering and Management Science (Second Edition), New York: John Wiley and Sons, 1972.
6. Balfour, A. and Marwick, D.H., Programming in Standard FORTRAN 77, New York: North-Holland, Inc., 1979.
7. Satellite Photometry, Wilmington, MA: AVCO Systems Division, January 31, 1977.
8. World Geodetic System, 1972. Washington: Defense Mapping Agency, U.S. Government Printing Office, 1974.
9. Sorvari, John M., "Photometry of Artificial Satellites, Application to the Ground Electro-Optical Deep Space Surveillance (GEODSS) Program," M.I.T. Lincoln Laboratory, Technical Note TN-1979-61, 1979.
10. Beatty, J. Kelley, "The GEODSS Difference," Sky and Telescope, Vol 63: pp 469-473 (May 1982).
11. Kissel, Kenneth E., Mayko, George E., "The Canadian Forces/NORAD Satellite Identification Sensor at St. Margarets," Air Force Avionics Lab, Wright-Patterson AFB, OH, Final Technical Report No., AFAL-TR-77-189, September, 1975 to August 1977.
12. Kissel, Kenneth E., "Diagnosis of Spacecraft Surface Properties and Dynamical Motions by Optical Photometry," Aerospace Research Labs, Wright-Patterson AFB, OH, Report No. ARL-69-0082, 1969.

References (Cont'd.)

13. Gamache, R.G., LaRosa, D., "A Technique for Photometric SOI Classification (U)," (Secret Report), AVCO Systems Division, Proceedings of the Ninth Annual NORAD Spacecraft Identification Conference (U), (Secret Document), July 1977.
14. Photometric Data Analysis Module SOI Analyst Training Course, Wilmington, MA: AVCO Systems Division, 1977.
15. Vanderburgh, Richard, Vigneron, Frank R., "Passive Optical Measurements of Alouette II Spin Dynamics," Aerospace Research Labs, Wright-Patterson AFB, OH, Report No. ARL-70-0253, 1970.
16. Vaselli, John, "Photometric Satellite Analysis (U)," (Secret Report), RADC Griffies AFB, NY, Final Report No. RADC-TR-76-57, April 1976.
17. Astronomical Almanac for the Year 1982, Washington: U.S. Naval Observatory, U.S. Government Printing Office, 1981.
18. Bentley, G., Blecher, R., LaRosa, D., Danis, N., "The Analysis and Interpretation of Photometric Data (U)," (Secret Report), AVCO Systems Division, Wilmington, MA, Final Report, May 1974.
19. "SOI Central Analysis System Requirements Trade Study, Vol I. Executive Summary (U)," (Secret Report), General Electric Company, Syracuse, NY, Electronic Systems Division, Final Report, October 1977.
20. "SOI Central Analysis System Requirements Trade Study, Vol II, System Design Studies (U)," (Secret Report), General Electric Company, Syracuse, NY, Electronic Systems Division, Final Report, October 1977.
21. Jensen, Allan R., "Space Object Identification Requirements in Support of the Tactical Assessment of Satellites (U)," (Secret Report), Proceedings of the Tenth Annual NORAD Spacecraft Identification Conference (U), (Secret Document), August 1978.

References (Cont'd.)

22. Posdamer, Jeffrey L., "Geometry of Orbiting Earth Satellites GOES)," Syracuse University, NY, Final Technical Report, January, 1978-July 1979.
23. Sorvari, John M., "The Use of Photometry as an Identification Aid During Search for Uncorrelated Targets (U)," (Secret Report), MIT Lincoln Laboratory, Lexington, MA, 15 February 1979.

Appendix A

Program SATID Code Listing and
Supplementary Material

VARIABLE NAME LISTS AND DEFINITIONS

The following variable name lists are arranged according to subroutine in alphabetical order. If a variable occurs in more than one subroutine, it is listed only in the first subroutine in which it is declared. Refer to the attached COMMON Block map to determine which variables are common to which subroutines.

The first column in the lists gives the FORTRAN variable name. The next column gives the variable type, Real(R), Integer(I), Character(CH) or Complex(CX). The Definition column contains a short description of the variable.

VARIABLE NAME DEFINITIONS

(SATID)

<u>NAME</u>	<u>TYPE</u>	<u>DEFINITION</u>
ALPHA	R	Sensor Aspect Angle(Earth-Center Stable)
ALPHAH	R	" " " (Horizon Stable)
ALT	R	Sensor Altitude Above Sea Level
AZ	R	Sensor Line-of-Sight Azimuth
ETA	P	Solar Aspect Angle(Earth-Center Stable)
ETAH	R	" " " (Horizon Stable)
C	R	Series Expansion in Universal Variable Formulation
DDD	I	Day Number
DECLOS	R	Declination of the Line-of-Sight
DECSUN	R	Declination of the Sun
DELTAT	R	Time Increment Between Orbit Position Predictions
DTDX	R	Time Derivative of T WRT Universal Variable X
EL	R	Sensor Line-of-Sight Elevation
E2	R	E-Component of Topocentric Radius Vector
F	R	Function in Universal Variable Formulation
FDOT	R	Time Derivative of F
G	R	Function in Universal Variable Formulation
GDOT	R	Time Derivative of G
GHO	I	Hour Part of Greenwich Sidereal Time at 0 ^h UT on 1 January 1982
G10	I	Minute Part of Above
GST	R	Greenwich Sidereal Time at Time of Observation
GST0	R	Greenwich Sidereal Time at 0 ^h UT on 1 January 1982 (Radians)

<u>NAME</u>	<u>TYPE</u>	<u>DEFINITION</u>
GSO	R	Second Part of Above
IH	I	Hour Part of Track Time
I	R	I-Component of Input Radius Vector
ICOUNT	I	Loop Counter
IDOT	R	I-Component of Input Velocity Vector
IDOT2	R	I-Component of Computed Velocity Vector
IDUPDY	R	I-Component of Input Velocity Vector(Earth radii per Day)
ISUN	R	I-Component of Sun Vector
ITER	R	Iteration loop Control Value
I2	R	I-Component of Computed Radius Vector
J	R	J-Component of Input Radius Vector
JDOT	R	J-Component of Input Velocity Vector
JDOT2	R	J-Component of Computed Velocity Vector
JDUPDY	R	J-Component of Input Velocity Vector(Earth radii per Day)
JSUN	R	J-Component of Sun Vector
J2	R	J-Component of Computed Radius Vector
K	R	K-Component of Input Radius Vector
KDOT	R	K-Component of Input Velocity Vector
KDOT2	R	K-Component of Computed Velocity Vector
KDUPDY	R	K-Component of Input Velocity Vector(Earth radii per Day)
KSUN	R	K-Component of Sun Vector
K2	R	K-Component of Computed Radius Vector
LAT	R	Sensor Latitude
LONG	R	Sensor Longitude
LST	R	Local Sidereal Time at Time of Observation

<u>NAME</u>	<u>TYPE</u>	<u>DEFINITION</u>					
I	I	Loop Counter					
MAG1	R	Magnitude of Model 1 Signature					
MAG2	R	" " " 2 "					
MAG3	R	" " " 3 "					
MAG4	R	" " " 4 "					
MTT	I	Minute Part of Track Time					
NPRIME	I	Loop Control Variable					
MU	R	Mean of the Deviations					
N	I	Loop Control Variable					
NPRIME	I	" " "					
P	I	" " "					
PHASE	R	Phase Angle					
PTRNO	I	Signature Pattern Number					
Q	I	Loop Counter					
QPRIME	I	Loop Control Variable					
R	R	Magnitude of the Orbital Radius Vector					
RALOS	P	Right Ascension of the Line-of Sight					
RASUN	P	Right Ascension of the Sun					
RATIO	R	Ratio of two Vector Components					
RDOTV	R	Dot Product of Radius and Velocity Vectors					
RC	R	E-Component of Sensor Position Vector					
RHOE	R	E-Component of Line-of-Sight Vector					
RHOI	R	I-Component of Line-of-Sight Vector					
RHOJ	R	J-Component of Line-of-Sight Vector					
RHOS	R	S-Component of Line-of-Sight Vector					

<u>NAME</u>	<u>TYPE</u>	<u>DEFINITION</u>
PH0Z	R	Z-Component of Line-of-Sight Vector
RI	R	I-Component of Sensor Position Vector
RJ	R	J-Component of Sensor Position Vector
RK	R	K-Component of Sensor Position Vector
RS	R	S-Component of the Sensor Position Vector
RZ	R	Z-Component of the Sensor Position Vector
RO	R	Magnitude of the Input Radius Vector
S	R	Series Expansion in the Universal Variable Formulation
SEC	R	Seconds of Time
SENSOR	CH	Alphabetic Sensor Code
SIGMA	R	Standard Deviation
SIMA1	R	Model A1 Signature Array(500)
SIMR1	R	Model R1 Signature Array(500)
SIMC1	R	Model C1 Signature Array(500)
SIMD1	R	Model D1 Signature Array(500)
SIA	R	Semimajor Axis of Orbit
SRNG	R	Slant Range
SS	R	Seconds Part of Track Time
SSR	R	Sum of the Squares of Residuals
S2	R	S-Component of Computed Radius Vector
T	R	Time Plus Time-of-Flight
TIME	R	Time of Observation
TOF	R	Time-of-Flight
TRUSIG	R	True Signature Array(1000)
TSURN	R	Variable in Newton Iteration for Universal Variable Determination

<u>NAME</u>	<u>TYPE</u>	<u>DEFINITION</u>
V0	R	Magnitude of Input Velocity Vector
X	R	Universal Variable for Time-of-Flight
XS	R	Perpendicular Distance From Earth's Rotational Axis to Sensor, Oblate Earth Model
YY	I	Year
Z	R	X Squared Divided by Semimajor Axis of Orbit
ZS	R	Perpendicular Distance from the Earth's Equatorial Plane to the Sensor, Oblate Earth Model
Z1	R	Square Root of Z
Z2	R	Intermediate Value in Hyperbolic Orbit Calculation
Z3	CX	" " " "

VARIABLE NAME DEFINITIONS

(ELSET)

<u>NAME</u>	<u>TYPE</u>	<u>DEFINITION</u>
ARGLAT	R	ARGUMENT OF LATITUDE AT EPOCH
ARGPER	R	Argument of Perigee
DECON	R	Declination of the Orbit Normal
ECCEN	R	Eccentricity
EDOTR	R	Dot Product of the Eccentricity Vector and the Radius Vector
EI	R	I-Component of the Eccentricity Vector
EJ	R	J-Component " " " "
EK	R	K-Component " " " "
HI	R	I-Component of the Angular Momentum Vector
HJ	R	J-Component " " " "
HK	R	K-Component " " " "
INC	R	Orbital Inclination
NDOTE	R	Dot Product of the Node Vector and the Eccentricity Vector
NDOTR	R	Dot Product of the Node Vector and the Radius Vector
NI	R	I-Component of the Node Vector
NJ	R	J-Component of the Node Vector (K-Comp always 0)
PERIOD	R	Orbital Period
RAAN	R	Right Ascension of the Ascending Node
RAON	R	Right Ascension of the Orbit Normal
SLR	R	Semi-Latus Rectum

<u>NAME</u>	<u>TYPE</u>	<u>DEFINITION</u>
SMAxis	R	Semimajor Axis of Orbit (km)
TRANOM	R	True Anomaly
TRULON	R	True Longitude at Epoch
VCI	P	I-Component of Circular Velocity Vector
VCJ	P	J-Component " " "
VCK	R	K-Component " " "

VARIABLE NAME DEFINITIONS

(ANGLES)

<u>NAME</u>	<u>TYPE</u>	<u>DEFINITION</u>
ECI	R	I-Component of the Radius Vector(Same as I2 in SATID. Renamed in COMMON/VECTR2/)
ECJ	R	Same as Above for J2
ECK	R	Same as Above for K2
LOSI	R	I-Component of the Line-of-Sight Vector(Same as RHOI in SATID. Renamed in COMMON/VECTR2/)
LOSS	R	Same as Above for RHQJ
LOSK	R	Same as Above for RHOK
PHI	R	Phase Angle(Same as PHASE in SATID. Renamed in COMMON/VECTR2/)
SUNI	R	I-Component of the Sun Vector(Same as ISUN in SATID. Renamed in COMMON/VECTR2/)
SUNJ	R	Same as Above for JSUN
SUNK	R	Same as Above for KSUN

VARIABLE NAME DEFINITIONS

(ELIPS1 AND ELIPS2)

<u>NAME</u>	<u>TYPE</u>	<u>DEFINITION</u>					
CIE	R	<u>Constant for Inner Edge Line Equation(Acronym)</u>					
CLE	R	"	"	<u>Lower</u>	"	"	"
COE	R	"	"	<u>Outer</u>	"	"	"
CUE	R	"	"	<u>Upper</u>	"	"	"
HL1	R	X-Coord of Ellipse 2 Center					
HL2	R	X-Coord of Ellipse 3 Center					
HU1	R	X-Coord of Ellipse 1 Center					
KL1	R	Y-Coord of Ellipse 2 Center					
KL2	R	Y-Coord of Ellipse 3 Center					
KU1	R	Y-Coord of Ellipse 1 Center					
LENC1	R	Length of Cylinder 1					
LENC2	R	"	"	"	2		
PADLEN	R	Paddle Length					
PADSEP	R	Separation of Paddle and Main Body					
PADWID	R	Paddle Width					
RADC1	R	Radius of Cylinder 1					
RADC2	R	"	"	"	2		
SLOPIN	R	<u>Slope of the Inner and Outer Edge Equations(Acronym)</u>					
SLOPLL	R	"	"	<u>Upper and Lower</u>	"	"	"
SMAJ1	R	Semimajor Axis of Ellipses 1 and 2					
SMAJ1S	R	Square of the Above					
SMAJ2	R	Semimajor Axis of Ellipse 3					
SMAJ2S	R	Square of the Above					

<u>NAME</u>	<u>TYPE</u>	<u>DEFINITION</u>
SMIN1	P	Semiminor Axis of Ellipses 1 and 2
SMIN2	P	" " " " 3
XCP	R	X-Coord of a Corner Point
XCP1	R	X-Coord of Corner Point 1
XCP1S	R	Square of the Above
XCP2	R	X-Coord of Corner Point 2
XCP2S	R	Square of the Above
XCP3	R	X-Coord of Corner Point 3
XCP3S	R	Square of the Above
XCP4	R	X-Coord of Corner Point 4
XCP4S	R	Square of the Above
XIEE2	R	X-Intercept of the <u>Inner Edge</u> with <u>Ellipse 2</u> (Acronym)
XIEE3	P	Same as Above for Ellipse 3
XLEE2	R	Same as Above for Lower Edge and Ellipse 2
XLEE3	R	Same as Above for Ellipse 3
XOEE2	P	Same as Above for Outer Edge, Ellipse 2
XOLE3	R	Same as Above for Ellipse 3
XUEE2	R	Same as Above for Upper Edge and Ellipse 2
XUEE3	R	Same as Above for Ellipse 3
YCP1	R	Y-Coord of Corner Point 1
YCP2	R	" " " " 2
YCP3	R	" " " " 3
YCP4	R	" " " " 4
YC2E2	R	Y-Coord of Intersection of Cyl 2 with Ellipse 2

<u>NAME</u>	<u>TYPE</u>	<u>DEFINITION</u>								
YE1CP	R	Y-Coord on Ellipse 1 Corresponding to the X-Coord of a Corner Point								
YE1CP1	P	"	"	"	"	"	"	for Corner Point 1		
YE1CP2	P	"	"	"	"	"	"	"	"	2
YE1CP3	R	"	"	"	"	"	"	"	"	3
YE1CP4	R	"	"	"	"	"	"	"	"	4
YE2CP1	R	"	"	"	"	2	"	"	"	1
YE2CP2	R	"	"	"	"	"	"	"	"	2
YE2CP3	R	"	"	"	"	"	"	"	"	3
YE2CP4	R	"	"	"	"	"	"	"	"	4
YE3CP	R	"	"	"	"	3	"	"	"	
YE3CP1	P	"	"	"	"	"	"	"	"	1
YE3CP2	R	"	"	"	"	"	"	"	"	2
YE3CP3	R	"	"	"	"	"	"	"	"	3
YE3CP4	R	"	"	"	"	"	"	"	"	4
YIIEC1	R	Y-Intercept of the <u>Inner Edge</u> with <u>Cylinder 1</u> (Acronym)								
YIIEC2	R	Same as Above for Cyl 2								
YIIEC2	R	Same as Above for Ellipse 2								
YIIEE3	R	Same as Above for Ellipse 3								
YILEC1	P	"	"	"	"	Lower Edge and Cyl 1				
YILEC2	R	"	"	"	"	"	"	"	"	2
YILEE2	R	"	"	"	"	"	"	"	"	Ellipse 2
YILFE3	R	"	"	"	"	"	"	"	"	3
YIOFC1	R	"	"	"	"	Outer	"	"	Cyl 1	

<u>NAME</u>	<u>TYPE</u>	<u>DEFINITION</u>								
YIOEC2	R	<u>Y-Intercept of the Outer Edge with Cyl 2</u>								
YIOEE2	R	"	"	"	"	"	"	"	"	Ellipse 2
YIOEE3	R	"	"	"	"	"	"	"	"	Ellipse 3
YIUEC1	R	"	"	"	"	Upper	"	"	Cyl 1	
YIUFC2	R	"	"	"	"	"	"	"	"	2
YIUFE2	R	"	"	"	"	"	"	"	"	Ellipse 2
YIUFE3	R	"	"	"	"	"	"	"	"	3

VARIABLE NAME DEFINITIONS

(GEOM1)

<u>NAME</u>	<u>TYPE</u>	<u>DEFINITION</u>						
CP1IC1	CH	Corner Point 1 In Cylinder 1 (Acronym)						
CP1IC2	CH	"	"	"	"	"	"	2
CP1IE1	CH	"	"	"	"	"	Ellipse	1
CP1IE2	CH	"	"	"	"	"	"	2
CP1IL3	CH	"	"	"	"	"	"	3
CP2IC1	CH	"	"	2	"	Cylinder	1	
CP2IC2	CH	"	"	"	"	"	"	2
CP2IE1	CH	"	"	"	"	"	Ellipse	1
CP2IE2	CH	"	"	"	"	"	"	2
CP2IE3	CH	"	"	"	"	"	"	3
CP3IC1	CH	"	"	3	"	Cylinder	1	
CP3IC2	CH	"	"	"	"	"	"	2
CP3IE1	CH	"	"	"	"	"	Ellipse	1
CP3IE2	CH	"	"	"	"	"	"	2
CP3IL3	CH	"	"	"	"	"	"	3
CP4IC1	CH	"	"	4	"	Cylinder	1	
CP4IC2	CH	"	"	"	"	"	"	2
CP4IE1	CH	"	"	"	"	"	Ellipse	1
CP4IE2	CH	"	"	"	"	"	"	2
CP4IE3	CH	"	"	"	"	"	"	3
BELTAY	R	Iteration Control Variable						
ETA	R	Projected Solar Paddle Tilt Angle						
N1I	R	I-Component of Normal Vector 1						
N1J	R	J-Component of Normal Vector 1						

<u>NAME</u>	<u>TYPE</u>	<u>DEFINITION</u>
N1K	R	K-Component of Normal Vector 1
N2I	R	I-Component of Normal Vector 2
N2J	R	J-Component of Normal Vector 2
N2K	R	K-Component of Normal Vector 2
N3I	R	I-Component of Normal Vector 3
N3J	R	J-Component of Normal Vector 3
N3K	R	K-Component of Normal Vector 3
PAI	R	I-Component of Paddle Axis Vector
PAJ	R	J-Component of Paddle Axis Vector
PAK	R	K-Component of Paddle Axis Vector
PEI	R	I-Component of Paddle Edge Vector
PEJ	R	J-Component of Paddle Edge Vector
PEK	R	K-Component of Paddle Edge Vector
PSI	R	Projected Solar Paddle Rotation Angle
XI	R	Angle Between Paddle Edge and Line-of-Sight
XPIV	R	X-Coord of Paddle Pivot Point
YLINE	R	Y-Coord of a Point on a Line
YPIV	R	Y-Coord of Paddle Pivot Point
ZETA	R	Angle Between Paddle Axis and Line-of-Sight

VARIABLE NAME DEFINITIONS

(CASES)

<u>NAME</u>	<u>TYPE</u>	<u>DEFINITION</u>
CASE0	CH	Case Zero, No Corner Points Visible to Sensor
CASE1	CH	Case One, One Corner Point Visible to Sensor
CASE2	CH	Case Two, Two Corner Points Visible to Sensor
CASE3	CH	Case Three, Three Corner Points Visible to Sensor
CASE4	CH	Case Four, All Corner Points Visible to Sensor

VARIABLE NAME DEFINITIONS

(AREAS1 AND AREAS2)

<u>NAME</u>	<u>TYPE</u>	<u>DEFINITIONS</u>
AREC	R	Area Between Two Ellipse Curves
ABLE	R	Area Between a Line and an Ellipse
ABLL	R	Area Between Two Lines
CONST	R	Constant
CONST1	R	Constant
CONST2	R	Constant
K	R	Y-Coord of an Ellipse Center
K1	R	" " " Ellipse A Center
K2	R	" " " " " B " "
SLOPE	R	Slope of a Line
SLOPE1	R	" " " "
SLOPE2	R	" " " "
SMAJA	R	Semimajor Axis of Ellipse A
SMAJB	R	" " " " " B
SMINA	R	Semiminor " " " " A
SMINB	R	" " " " " B
X1	R	Limit of Integration
X2	R	" " " "

VARIABLE NAME DEFINITIONS

(AREAS)

<u>NAME</u>	<u>TYPE</u>	<u>DEFINITION</u>
ALPHAP	R	Sensor Aspect Angle for a Plate
APAD	R	Area of Partially Obscured Paddle Visible to Sensor Projected Into the Image Plane
ARPAD	R	Area of an Unobscured Paddle Visible to Sensor

VARIABLE NAME DEFINITIONS

(CONE)

<u>NAME</u>	<u>TYPE</u>	<u>DEFINITION</u>
ALPHAI	R	Sensor Aspect Angle to a Conic Surface Element
ARINC	R	Incremental Surface Element Area
CASRAD	R	Conic Base Radius
BETAN	R	Solar Aspect Angle to a Conic Surface Element
CNI	R	I-Component of Conic Normal Vector
CNJ	R	J-Component Of Conic Normal Vector
CNK	R	K-Component of Conic Normal Vector
CON	CH	Pure Cone Flag
COMHIT	R	Cone Height
COUNT	I	Loop Counter
HAFANG	R	Conic Half Angle
IRcone	R	Irradiance of the Cone
NOSRAD	R	Nose Radius of Truncated Cone
OMEGA	R	Angle Between Adjacent Surface Element Normals
REFCON	R	Reflectivity of the Cone
SLEN	F	Slant Length of the Cone
TCON	CH	Truncated Cone Flag

VARIABLE NAME DEFINITIONS

(SIGA1)

<u>NAME</u>	<u>TYPE</u>	<u>DEFINITION</u>
AREAC	R	Cylinder Projected Area
AREAP	P	Plate Projected Area
IRCYL	R	Cylinder Irradiance
IRPLT	R	Plate Irradiance
LENGTH	P	Cylinder Length
RADIUS	R	Cylinder Radius
REFC	R	Cylinder Reflectivity
REFP	R	Plate Reflectivity
THETA	R	A Function of ALPHA, BETA and PHASE

VARIABLE NAME DEFINITIONS

(SIGP1)

<u>NAME</u>	<u>TYPE</u>	<u>DEFINITION</u>			
AREAC1	R	Area of Cylinder 1			
AREAC2	R	"	"	"	2
AREAC3	R	"	"	"	3
AREAP1	R	" " Plate 1			
AREAP2	R	"	"	"	2
AREAP3	R	"	"	"	3
BETDEG	R	BETA in Degrees			
IRBODY	R	Total Irradiance of Main Satellite Body			
IRCYL1	R	Cylinder 1 Irradiance			
IRCYL2	R	Cylinder 2 Irradiance			
IRCYL3	R	Cylinder 3 Irradiance			
IRPAD	R	Irradiance of a Paddle			
IRPLT1	R	"	" Plate 1		
IRPLT2	R	"	"	"	2
IRPLT3	R	"	"	"	3
REFC1	R	Reflectivity of Cylinder 1			
REFC2	R	"	"	"	2
REFC3	R	"	"	"	3
REFP1	R	"	" Plate 1		
REFP2	R	"	"	"	2
REFP3	R	"	"	"	3

VARIABLE NAME DEFINITIONS

(SIGC1)

<u>NAME</u>	<u>TYPE</u>	<u>DEFINITION</u>
IRC1	R	Irradiance of Cylinder 1
IRC2	R	" " " 2
IRPLT	R	" " the Plate
LEN1	R	Length of Cylinder 1
LCH2	R	" " " 2
PLTLEN	R	" " Plate
PLTHID	R	Width of Plate
RADIUS	R	Cylinder Radius
THETAH	R	A Function of ALPHAH, PETAH and PHI

VARIABLE NAME DEFINITIONS

(SIGD1)

<u>NAME</u>	<u>TYPE</u>	<u>DEFINITION</u>
DIAM	R	Diameter
DIFFREF	R	Diffuse Reflectivity
IRSPHI	R	Irradiance of the Sphere
SPECREF	R	Specular Reflectivity

VARIABLE NAME DEFINITIONS

(CONT'D)

<u>NAME</u>	<u>TYPE</u>	<u>DEFINITION</u>
DEVSIG	R	Array of Deviations(500)
SIMSIG	R	Working Array of Synthetic Signature Data(500)
SSR	R	Array of Model SSR's
STDEV	R	Array of Model SIGMA's(25)
MEAN	R	Array of Model Mean Deviations
SUMSQ	R	Sum of the Squares of Deviations

COMMON BLOCK MAP

```

PROGRAM STATIO
1      REAL I,J,K,IDOT,JDOT,KDOT,I2,J2,K2,I0DT2,J0DT2,K0DT2,TCF,
2      *TSUN,DELTAT,SMAX,X,DIX,ITER,C,S,R,RO,V0,ADOTV,F,6,FDOT,GDDT,
3      *LAT,LON,GST,LST,ALT,RI,RJ,JK,RHOJ,RHOK,S2,E2,ZZ,RS,RE,RZ,
4      *PHOS,RHGE,RHCG2,SDOT2,EDOT2,ZDOT2,DECUSN,JSUN,JSUN,MSUN,
5      *HALOS,DECLOS,SRNG,AZ,EL,PHASE,TIME,SS,Z,ZI,GST0,SEC,
6      *IDUPDY,JIDUPDY,KDUPDY,GHD,GS0,GM0,T,MAG1,MAG2,MAG3,MU,SIGMA,SSR
7      INTEGER N,M,YY,DDD,HH,MM,PTRNO,MPRIME,Q,QPRIME,NPRIME,P
8      COMPLEX Z3
9
10     CHARACTER SENSOR*MODEL*5
11     COMMON/VECTR1/I,J,K,IDOT,JDOT,KDOT,ADOTV,RO,V0
12     COMMON/VECTR2/RHOI,RHOJ,RHOK,I2,J2,K2,JSUN,JSUN,PHASE,MAG1,
13     *MAG2,MAG3,MAGA
14     COMMON/ANGLE/ALPHA,BETA,ALPHAH,BETAH
15     COMMON/COUNTRY/M,N,QPRIME
16     COMMON/SIGHTS/TRUSIG(1:1000),SIM1(1:500),SIMB1(1:500),
17     *SIMC1(1:500),SIMD1(1:500)
18     COMMON/STATS/MU,SIGMA,SSR
19     C
20     ENTER INPUT DATA
21     PTRA0=3510
22     N=102
23     YY=82
24     DDO=192
25     HH=3
26     MM=36
27     JJ=0,0
28     RASUN=1.520904175
29     DECSUN=-386756926.3
30     --.12992328
31     JE=.70476201
32     KE=.89210714
33     IDLPDV=37.612587
34     JDUPDY=70.192474
35     KDUPDY=61.168625
36     SENSOR=.B.
37     GM0=41.0
38     GS0=17.22229
39     DELTAT=1.239446309E-3
40     QPRIME=4
41     C LOAD TRUE SIGNATURE POINTS INTO ARRAY
42     P=2*N
43     NPRIME=1
44     READ*,(TRUSIG(ICOUNT),ICOUNT=NPRIME,P)
45     IF(SENSOR.EQ..B.)THEN
46     LAT=.0185494
47     LON=5.145052607
48     ALT=7.7922465E-6
49     ELSE IF(SENSOR.EQ..000)THEN
50     LAT=.3614311
51     LON=3.555964707
52     ALT=4.7653426E-4
53     END IF
54     C CONVERT VELOCITY VECTOR COMPONENTS FROM DU/DAY TO DU/TU
55     IDC=(IDUPDY/(24.0*60.0))/13.44663295

```

```

PROGRAM SATID    7474   OPT=0.ROUND= A/ S/ M/-D,-OS   FTN 5.1+564      11/26/82  18.30.27   PAGE  2

56      JDOT=(JDUPDY/(24.0+60.0))*13.446832*5
57      KDOT=(KDUPDY/(24.0+60.0))*13.44683295
58      C   CONVERT TIMES TO RADIAN
59      GSTC=(((GS0/60.0)+GM0)/60.0)*6H0)*15.0*2.0*ACOS(-1.0)/360.0
60      TIME=((((SS/60.0)+MM)/60.0)+HH)*15.0*2.0*ACOS(-1.0)/360.0
61      C   CALCULATE SEMIMAJOR AXIS OF ORBIT USING THE ENERGY EQUATION.
62      RO=SQRT(I**2+J**2+K**2)
63      SMA=1.0/(W0**2+2*KDOT**2)
64      RDOTV=I*IDOT+J*JDOT+K*KDOT
65      PRINT*
66      PRINT*
67      PRINT*
68      IF(SENSOR.EQ.'B')THEN
69      PRINT*, 'SENSOR: SITU, ST MARGARETS, NB, CANADA'
70      ELSE IF(SENSOR.EQ.'O')THEN
71      PRINT*, 'SENSOR: MOTIF, MAUI, HAWAII'
72      PRINT*, 'SENSOR: MOTIF, MAUI, HAWAII'
73      E'D IF
74      PRINT*
75      PRINT*, 'PATTERN NUMBER: ', PTRNO
76      PRINT*
77      PRINT*, 'START TIME:  YY,DDD,HH,MM,SS,  UT'
78      PRINT*
79      CALL ELSET
80      PRIN'*          BACKGROUND
81      PRINT*, 'DELTA
82      ABSOLUTE VISUAL MAGNITUDE'
83      PRINT*, ' SEC   AZ   EL   RANGE   RALOS   DECLOS   PHASE
84      *  SIGAI  SIGB1  SIGC1  SIGD1  TRUSIG'
85      PRINT*
86      C   CALCULATE STATE VECTORS BY INCREMENTS TO END OF TRACK
87      DO 10 M=1,N
88      IF(M.EQ.1)THEN
89      I2=I
90      J2=J
91      K2=K
92      IDOT2=IDOT
93      JDOT2=JDOT
94      KDOT2=KDOUT
95      TDF=0.0
96      SEC=SS
97      ELSE
98      MPRIME=M
99      TCF=(MPRIME-1)*DELTAT
100     X=TDF/SM
101     Z=X*2/SM
102     I*ER=1.0
103     C   CALCULATE X ITERATIVELY BY NEWTON'S METHOD.
104     5   IF(ITER.GT.1.0E-7)THEN
105     C   CALCULATE Z FOR PARABOLIC OR NEAR PARABOLIC ORBIT
106     IF(IZ.LT.0.01.AND.Z.GE.0.0)THEN
107     C=-Z/2.0+Z*2/720.0-Z*3/40320.0+Z*4/362880.0
108     -Z*5/4*79001600.0+Z*6/8.*1178291E10
109     S=1.0/6.0-2/120.0+Z*2/5040.0-Z*3/362880.0+
110     Z*4/39916800.0-Z*5/5227020800.0+Z*6/1.307674*E12
111     ELSE IF(Z.LT.0.001)THEN
112     C   CALCULATE Z FOR ELLIPTICAL ORBIT

```

PROGRAM SATID 7474 OPT=0,ROUND= A/ S/ M/-D-/DS FTM 5.1⁰564 11/26/82 18.30.27 PAGE 3

```
113 C=(1-COS(SQRT(X**2/SMA)))/(X**2/SMA)
114 S=(SQRT(X**2/SMA)-SIN(SQRT(X**2/SMA)))/
     (SQRT(X**2/SMA+3))
115 + ELSE IF(Z.LT.0.0)THEN
116 C CALCULATE Z FOR HYPERBOLIC ORBIT
117 Z=-Z
118
119 Z1=SQRT(Z)
120 Z2=CMPLX(0.0,Z1)
121 C=((1-5*(EXP(Z2)-EXP(-Z2)))/22)/22*(1.5)
122 S=(1.5*(EXP(Z2)-EXP(-Z2))-22)/22*(1.5)
123 END IF
124 TSUBN=FDCTV*X**2*C*(1-R0/SMA)*X**3*S*R0*X
125 DTDX=X**2*C*ROOTV*X*(1-X**2*S/SMA)+R0*(1-X**2*C/SMA)
126 ITER=(TOF-TSUBN)/DTDX
127 X=X+ITER
128 Z=X**2/SMA
129 60 TO 5
130 END IF
131 C CALCULATE C AND S USING THE FINAL X.
132 IF(Z.LT.-.001.AND.Z.GE.0.0)THEN
133 C=.5-Z/24.0+Z**2/720.0-Z**3/40320.0+Z**4/3628800.0
134 + -Z**5/479001600.0+Z**6/8*7176291E10
135 S=1.0/6.0-Z/120.0+Z**2/5040.0-Z**3/362880.0+Z**4/
136 + 39916800.0-Z**5/6227020800.0+Z**6/1.3076744E12
137 ELSE IF(Z.GT.-.001)THEN
138 C=(1-COS(SQRT(X**2/SMA)))/(X**2/SMA)
139 S=(SQRT(X**2/SMA)-SIN(SQRT(X**2/SMA)))/(SQRT(X**2/SMA+3))
140 ELSE IF(Z.LT.0.0)THEN
141 Z=-Z
142 Z1=SQRT(Z)
143 Z2=CMPLX(0.0,Z1)
144 C=((1-5*(EXP(Z2)-EXP(-Z2)))/23)/23*(1.5)
145 S=(1.5*(EXP(Z2)-EXP(-Z2))-23)/23*(1.5)
146 END IF
147 C CALCULATE F AND G.
148 F=1-(X**2+C)/R0
149 G=T0F-X**3*S
150 C CALCULATE RADIUS VECTOR COMPONENTS AND MAGNITUDE.
151 I2=F*I+G*J+D0T
152 J2=F*J+G*I+D0T
153 K2=F*K+G*KD0T
154 R=SQRT(I2**2+J2**2+K2**2)
155 C CALCULATE FDOT AND GDOT.
156 FDOT=X*((X**2+S/SMA)-1)/(R0*R)
157 GDOT=1-X**2/C/R
158 C CALCULATE VELOCITY VECTOR COMPONENTS.
159 IDOT2=FDOT*I+GDOT*J+D0T*K+GDOT*KD0T
160 JDOT2=FDOT*J+GDOT*I+D0T*K+GDOT*KD0T
161 KDOT2=FDOT*K+GDOT*I+D0T*KD0T
162 END IF
163 C BEGIN THE VECTOR AND ANGLES CALCULATIONS
164 C CALCULATE SENSOR POSITION VECTOR (IJK)
165 T=TIME+TOF
166 GST=GST0+1.0*0.027379093*2.0*ACOS(-1.0)*(DD-1)+T/(2.0*ACOS(-1.0))
167 LST=GST+LON
168 XC=COS(LAT)*(ABS(1.0/SQRT(1.0-0.00161991066**2*(SIN(LAT)**2)))1/2)+ALT)
```

PROGRAM SATID 74/74 OPT=C,ROUND= A/ S/ M/-D,-DS FTN 5.1+564

11/26/82 18.30.27

PAGE 4

```

170 ZS=SIN(LAT)*ABS((1.0-.08181881065**2)/SQR((1.0-.08181881066**2
171 *SIN(LAT)**2)+ALT))
172 RI=X*S*COS(LST)
173 RJ=X*S*SIN(LST)
174 RK=ZS
175 C CALCULATE LINE-OF-SIGHT VECTOR, RHO (IJK).
176 RHOT=J2-RJ
177 RHOJ=R2-RK
178 C TRANSFORM RADIUS VECTOR TO TOPCENTRIC (SEZ) COORDINATES
179 S2=J2*SIN(LAT)*COS(LST)+J2*SIN(LAT)*SIN(LST)-K2*COS(LAT)
180 E2=-J2*SIN(LAT)*J2*COS(LST)
181 Z2=J2*COS(LAT)*COS(LST)*J2*COS(LAT)*K2*SIN(LAT)
182 C TRANSFORM SENSOR POSITION VECTOR TO TOPCENTRIC (SEZ) COORDINATES
183 RS=R*I*SIN(LAT)*COS(LST)+RJ*SIN(LAT)*SIN(LST)-RK*COS(LAT)
184 RE=RJ*SIN(LST)+RJ*COS(LST)
185 RZ=RJ*COS(LAT)*COS(LST)+RJ*COS(LAT)*RK*SIN(LAT)
186 C TRANSFORM LINE-OF-SIGHT VECTOR TO TOPCENTRIC (SEZ) COORDINATES
187 RMOS=S2-RS
188 RHOE=E2-RE
189 RHOZ=J2-RZ
190 C CALCULATE SATELLITE AZ, EL AND SLANT RANGE.
191 SRNG=SQRT((I2**2+J2**2+K2**2)+(RI**2+RJ**2+RK**2))
192 **-2.0*SQR((I2**2+J2**2+K2**2))**2+SQR((RI**2+RJ**2+RK**2))
193 **(I2+RI+J2+RJ+K2+RK)/SQRT((I2**2+J2**2+K2**2))
194 **SQR((RI**2+J2+RJ+K2+RK**2))**2)=6378.135
195 EL=90.0-(ACOS(RHOZ/SQRT(RMOS**2+RHOE**2+RHOZ**2)))
196 *(360.0/(2.0*ACOS(-1.0)))
197 IF(RHOS.EQ.0.0.AND.RHOE.GT.0.0)THEN
198 AZ=90.0
199 ELSE IF(RHOS.EQ.0.0.AND.RHOE.LT.0.0)THEN
200 AZ=270.0
201 ELSE
202 AZ=270.0/RHOE/RHOS
203 END IF
204 IF(RHOE.EQ.0.0.AND.RHOS.GT.0.0)THEN
205 AZ=180.0
206 ELSE IF(RHOE.EQ.0.0.AND.RHOS.LT.0.0)THEN
207 AZ=0.0
208 END IF
209 C CALCULATE AZIMUTHS BETWEEN 0.0 AND 90.0 DEGREES
210 IF(RHOE.GT.0.0.AND.RHOS.LT.0.0)THEN
211 AZ=-ATAN(RATIO)*360.0/(2.0*ACOS(-1.0))
212 C CALCULATE AZIMUTHS BETWEEN 90.0 AND 180.0 DEGREES
213 ELSE IF(RHOE.GT.0.0.AND.RHOS.GT.0.0)THEN
214 AZ=(ACOS(-1.0))-ATAN(RATIO)*360.0/(2.0*ACOS(-1.0))
215 C CALCULATE AZIMUTHS BETWEEN 180.0 AND 270.0 DEGREES
216 ELSE IF(RHOE.LT.0.0.AND.RHOS.GT.0.0)THEN
217 AZ=(ACOS(-1.0))-ATAN(RATIO)*360.0/(2.0*ACOS(-1.0))
218 C CALCULATE AZIMUTHS BETWEEN 270.0 AND 360.0 DEGREES
219 ELSE IF(RHOE.LT.0.0.AND.RHOS.LT.0.0)THEN
220 AZ=-ATAN(RATIO)*(360.0/(2.0*ACOS(-1.0)))*360.0
221 END IF
222 C CALCULATE THE RA AND DEC OF THE LINE-OF-SIGHT
223 IF(RHOI.EQ.0.0.AND.RHOJ.GT.0.0)THEN
224 RALOS=90.0
225 ELSE IF(RHOI.EQ.0.0.AND.RHOJ.LT.0.0)THEN

```

PROGRAM SATID 74/74 CPT=0.ROUND= A/ S/ M/-D,-DS FIN 5.1+564
 11/26/82 18.30.27 PAGE 5

```

227      RALOS=270.0
228      ELSE
229          RATIO=RHOJ/RHOI
230      END IF
231      IF (RHOJ.EQ.0.0.AND.RHOI.EQ.0.0)THEN
232          RALOS=0.0
233      ELSE IF (RHOJ.EQ.0.0.AND.RHOI.LT.0.0)THEN
234          RALOS=180.0
235      END IF
236      C CALCULATE RIGHT ASCENSION OF THE LOS BETWEEN 0.0 AND 90.0
237      IF (RHOI.GT.0.0.AND.RHOJ.GT.0.0)THEN
238          RALOS=(ATAN(RATIO))*360.0/(2.0*ACOS(-1.0))
239      C CALCULATE RIGHT ASCENSION BETWEEN 90.0 AND 180.0
240      ELSE IF (RHOI.LT.0.0.AND.RHOJ.GT.0.0)THEN
241          RALOS=(ATAN(RATIO))*(360.0/(2.0*ACOS(-1.0)))+180.0
242      C CALCULATE RIGHT ASCENSION BETWEEN 180.0 AND 270.0
243      ELSE IF (RHOI.LT.0.0.AND.RHOJ.LT.0.0)THEN
244          RALOS=(ATAN(RATIO))*(360.0/(2.0*ACOS(-1.0)))+180.0
245      C CALCULATE RIGHT ASCENSIONS BETWEEN 270.0 AND 360.0
246      ELSE IF (RHOI.GT.0.0.AND.RHOJ.LT.0.0)THEN
247          RALOS=(ATAN(RATIO))*(360.0/(2.0*ACOS(-1.0)))+360.0
248      END IF
249      DECLUS=90.0-(ACOS(RHOK)/(SQRT(RHOI**2+RHOJ**2+RHOK**2)))
250      C
251          ISUN=COS(DEC SUN)*COS(RASUN)
252          JSUN=COS(DEC SUN)*SIN(RASUN)
253          KSUN=SIN(DEC SUN)
254          PHASE=180.0-(360.0/(2.0*ACOS(-1.0)))*ACOS((RHOI*ISUN+RHOJ*JSUN+
255          *RHOK*KSUN)/(SQRT(RHOI**2+RHOJ**2+RHOK**2)*SQRT(ISUN**2+JSUN**2+
256          *KSUN**2)))
257      C BEGIN THE ABSOLUTE MAGNITUDE CALCULATIONS
258      DO 15 Q=1,0PRIME
259      IF (Q.EQ.1) THEN
260          CALL SIGAI
261      ELSE IF (Q.EQ.2) THEN
262          CALL SIGBI
263      ELSE IF (Q.EQ.3) THEN
264          CALL SIGC1
265      ELSE IF (Q.EQ.4) THEN
266          CALL SIGD1
267      END IF
268      CONTINUE
269      15      PRINT 9,TRUSIG2*(M-1),AZ,EL,SRNG,RALOS,DECLOS,PHASE,MAG1,MAG2,
270          *MAG3,MAG4,TRUSIG(2*M)
271          9      FORMAT (F6.1,F8.3,F8.3,F8.3,F8.3,F8.3,F7.3,F7.3)
272          *F7.3
273          10     CONTINUE
274          275     CALL COMPAR
275     END
276
  
```

```

1      SUBROUTINE ELSET
2      C CALCULATES KEPLERIAN ORBITAL ELEMENTS. GIVEN THE RADIUS AND
3      C VELOCITY VECTORS. ALSO CALCULATES RA AND DEC OF THE ORBIT
4      C NOR MAL
5      COMMON/VECTRL/I,J,K,JDOT,KDOT,SMAXIS,VCI,VCK
6      COMMON/MUNVEC/HI,MJ,HK,EI,EJ,EK,NI,NJ,SMAXIS,
7      *FEAL I,J,K,JDOT,KDOT,SMAXIS,VCI,VCK
8      *      RO,V0,RDOTH,DOT,ECCEN,SLR,INC,RAAN,
9      *      ARGPER,RAON,DECON,TRULON,PERIOD
10     *      CALCULATE COMPONENTS OF THE ANGULAR MOMENTUM VECTOR
11     HI=(J*KDOT-KDOT-J)
12     HJ=(-I*KDOT-IDOT-K)
13     HK=(I*JDOT-IDOT-J)
14     C CALCULATE THE COMPONENTS OF THE NODE VECTOR
15     I=-HJ
16     NJ=HI
17     C CALCULATE COMPONENTS OF THE ECCENTRICITY VECTOR
18     EI=(V0**2-1.0/R0)*I-RDOTH*IDOT
19     EJ=(V0**2-1.0/R0)*J-RDOTH*JDOT
20     EK=(V0**2-1.0/R0)*K-RDOTH*KDOT
21     C EXPRESS SEMIMAJOR AXIS IN KILOMETERS
22     SMAXIS=SMAXIS*6376.135
23     C CALCULATE SEMILATUS RECTUM
24     SLR=(HI**2+HJ**2+HK**2)*6378.135
25     C CALCULATE ECCENTRICITY
26     ECCEN=SQR(EI**2+EJ**2+EK**2)
27     C CALCULATE INCLINATION
28     INC=ACOS(HK/(SQRT(HI**2+HJ**2+HK**2)))*(360.0/(2.0*ACOS(-1.0)))
29     C CALCULATE RIGHT ASCENSION OF THE ASCENDING NODE
30     RAON=ACOS(NI/(SQRT(NI**2+NJ**2)))*(360.0/(2.0*ACOS(-1.0)))
31     IF(NJ.LT.0.0)THEN
32         RAAN=360.0-RAAN
33     END IF
34     C CALCULATE RA AND DEC OF ORBIT NORMAL
35     IF(HI.EQ.0.0.AND.HJ.GT.0.0)THEN
36         RAON=90.0
37     ELSE IF(HI.EQ.0.0.AND.HJ.LT.0.0)THEN
38         RAON=270.0
39     ELSE
40         RATIO=HJ/HI
41     END IF
42     IF(HJ.EQ.0.0.AND.HI.GT.0.0)THEN
43         RAON=0.0
44     ELSE IF(HJ.EQ.0.0.AND.HI.LT.0.0)THEN
45         RAON=180.0
46     END IF
47     IF(HI.GT.0.0.AND.HJ.GT.0.0)THEN
48         RAON=(ATAN(RATIO))*(360.0/(2.0*ACOS(-1.0)))
49     ELSE IF(HI.LT.0.0.AND.HJ.GT.0.0)THEN
50         RAON=(ATAN(RATIO))*(360.0/(2.0*ACOS(-1.0)))+180.0
51     ELSE IF(HI.LT.0.0.AND.HJ.LT.0.0)THEN
52         RAON=(ATAN(RATIO))*(360.0/(2.0*ACOS(-1.0)))+180.0
53     ELSE IF(HI.GT.0.0.AND.HJ.LT.0.0)THEN
54         RAON=(ATAN(RATIO))*(360.0/(2.0*ACOS(-1.0)))+360.0
55     END IF

```

SUBROUTINE ELSET 70/74 OPT=0 • ROUND= A/ S/ M/-D,-DS FTN 5.1•564 11/26/62 16:30:27 PAGE 2

```

56      DECON=90.0-IN
57      C     CALCULATE ARGUMENT OF PERIGEE
58      NDOE=NI+EJ+NJ+EJ
59      ARGPER=ACOS(NDOE/(SQR(NI+2*NJ+2)*ECCEN))+(360.0/(2.0*ACOS(
60      +1.0)))
61      IF(K.LT.0.0)THEN
62          ARGPER=360.0-ARGPER
63      END IF
64      C     CALCULATE THE TRUE ANOMALY
65      EDO=RJ+I+EJ+J+EK+K
66      TRANOM=ACOS(EDOTR/(ECCEN+R0))+(360.0/(2.0*ACOS(-1.0)))
67      IF(CRDOTV.LT.0.0)THEN
68          TRANOM=360.0-TRANOM
69      END IF
70      C     CALCULATE ARGUMENT OF LATITUDE AT EPOCH
71      NDOTR=NI+I+NJ+J
72      ARGLAT=ACOS(NDOTR/(SQR(NI+2+NJ+2)+R0))+(360.0/(2.0*ACOS(-1.0)))
73      IF(K.LT.0.0)THEN
74          ARGLAT=360.0-ARGLAT
75      END IF
76      C     CALCULATE TRUE LONGITUDE AT EPOCH
77      TRULON=RAAN+ARGLAT
78      C     CALCULATE PERIOD
79      PERIOD=(2.0*ACOS(-1.0))*(SQR(SMA))+(3)*13.44683295
80      PRINT *,"SEMI-MAJOR AXIS: ",SMA
81      PRINT *,"SEMITUS RECTUM: ",SLR
82      PRINT *,"ECCENTRICITY: ",ECCEN
83      PRINT *,"INCLINATION: ",INC
84      PRINT *,"RA OF ASCENDING NODE: ",RAAN
85      PRINT *,"RA OF ORBIT NORMAL: ",RAON
86      PRINT *,"DEC OF ORBIT NORMAL: ",DECON
87      PRINT *,"ARGUMENT OF PERIGEE: ",ARGPER
88      PRINT *,"TRUE ANOMALY: ",TRANOM
89      PRINT *,"ARGUMENT OF LAT AT EPOCH: ",ARGLAT
90      PRINT *,"TRUE LONGITUDE AT EPOCH: ",TRULON
91      PRINT *,"ORBITAL PERIOD(MINUTES): ",PERIOD
92      PRINT *
93      END
94

```

```

1      C SUBROUTINE MAGS
2      C CALCULATES THE SENSOR AND SCALAR ASPECT ANGLES AND THE
3      C COMPONENTS OF THE CIRCULAR VELOCITY VECTOR.
4      C COMMON/VECTOR2/LOS1,LCSJ,LOSK,ECL,ECK,SUNJ,SUNK,PHI,MAG1,
5      *MAG2,MAG3,MAG4
6      C COMMON/MCMEC/HJ,HK,VCI,Vcj,VCK
7      C COMMON/A,GLE/ALPHA,BETA,ALPHAH,BETAH
8      C REAL LOSJ,LCSJ,LOSK,ECL,ECK,SUMI,SUNJ,SUNK,PHI,ALPHA,
9      * BETA,ALPHAH,BETAH,HJ,HK,VCI,Vcj,VCK
10     C FIND THE SENSOR AND SOLAR ASPECT ANGLES FOR AN EARTH-CENTER
11     C STABLE OBJECT.
12     ALPHA=ACOS((LCL*LOS1+ECL*LOSJ+ECK*LOSK)/
13     *(SQRT((ECL**2+ECK**2+ECJ**2)*SQRT((LOS1**2+LOSJ**2+LOSK**2)))
14     *BETA=ACOS((-1.0)-ACOS((ECI*SUMI+ECL*SUNK+ECK*SUNK)/
15     *(SQRT((ECI**2+ECJ**2+ECK**2)*SQRT((SUMI**2+SUNK**2+SUNK**2)))
16     C FIND THE CIRCULAR VELOCITY VECTOR COMPONENTS
17     VCI=HJ*ECK-ECJ*HK
18     VCK=HJ*ECL-ECI*HK
19     C FIND THE SENSOR AND SOLAR ASPECT ANGLES FOR AN HORIZON
20     C STABLE OBJECT.
21     ALPHAH=ACOS((VCI*LOS1+Vcj*LOSJ+VCK*LOSK)/(SQRT(
22     *VCI**2+Vcj**2+VCK**2)*SQRT((LOS1**2+LOSJ**2+LOSK**2)))
23     *BETAH=ACCS((-1.0)-ACCS((VCI*SUNJ+Vcj*SUNK+VCK*SUNK)/
24     *(SQRT((VCI**2+Vcj**2+VCK**2)*SQRT((SUNJ**2+SUNK**2+SUNK**2)))
25     C FIND

```

```

1      SUBROUTINE ELIPS1
2      REAL YE1CP, YE2CP, YE3CP, SMIN1, SMAJ1, SMIN2, SMAJ2, XCP, KU1,
3      KL1, KL2
4      COMMON/GEMM/XCP1, YCP1, XCP2, YCP3, YCP4, YCP5, SLOP10, SLOPUL,
5      *ML1, *ML2, SMIN1, SMIN2, SMAJ1, SMAJ2, MU1, KU1,
6      *CIE, COE, CLE, YIUEC1, YIUEC2, YIUEE2, YIUEE3, YIUEC1, YIUEC2,
7      *YIUEE2, YIUEE3, YIUEC1, YIUEC2, YIUEE2, YIUEE3, YIUEC1, YIUEC2,
8      *YIUEC2, YIUEE2, YIUEE3, YIUEE2, YIUEE3, YIUEE2, YIUEE3, YIUEE2,
9      *XIEE3, XIEE2, XIEE3, YE1CP1, YE1CP2, YE1CP3, YE1CP4, YE2CP1,
10     *YE2CP2, YE2CP3, YE2CP4, YE3CP1, YE3CP2, YE3CP3, YE3CP4, XCP1S,
11     *XCP2, XCP3S, XCP4S, SMAJ1S, SMAJ2S, YC2E2, YE1CP4, YE2CP, YE3CP,
12     *XCP, ADC1, RADC2, PADSEP, PADLN, PADWID, LENC1, LENC2
13     YE1CP=KU1-(SMIN1/SMAJ1)*SQR(SMAJ1**2-XCP**2)
14     YE2CP=YE1CP-KU1+KL1
15     END

```

```

1      SUBROUTINE ELIPS2
2      REAL YE1CP, YE2CP, YE3CP, SMIN1, SMAJ1, SMIN2, SMAJ2, XCP, KU1,
3      KL1, KL2
4      COMMON/GEMM/XCP1, YCP1, XCP2, YCP3, YCP4, YCP5, SLOP10, SLOPUL,
5      *ML1, *ML2, SMIN1, SMIN2, SMAJ1, SMAJ2, MU1, KU1,
6      *CIE, COE, CLE, YIUEC1, YIUEC2, YIUEE2, YIUEE3, YIUEC1, YIUEC2,
7      *YIUEE2, YIUEE3, YIUEC1, YIUEC2, YIUEE2, YIUEE3, YIUEC1,
8      *YIUEC2, YIUEE2, YIUEE3, XIEE2, XIEE3, XIEE2, XIEE3, XIEE2,
9      *XIEE3, XIEE2, XIEE3, YE1CP1, YE1CP2, YE1CP3, YE1CP4, YE2CP1,
10     *YE2CP2, YE2CP3, YE2CP4, YE3CP1, YE3CP2, YE3CP3, YE3CP4, XCP1S,
11     *XCP2, XCP3S, XCP4S, SMAJ1S, SMAJ2S, YC2E2, YE1CP4, YE2CP, YE3CP,
12     *XCP, ADC1, RADC2, PADSEP, PADLN, PADWID, LENC1, LENC2
13     YE3CP=KL2-(SMIN2/SMAJ2)*SQR(SMAJ2**2-XCP**2)
14     END

```



```

56      SUBROUTINE GFM1    74 /74    OPT=0,ROUND= A/ S/ M/-D,-DS   FTN 5.1+5.2
57      *LOSJK=.02)*SQR(T(PET1=.02*PEJ=.02*PEK=.02))
58      XI=XI-.360*(12.6*ACOS(-1.0))
59      IF(XI.GE.90.0)THEN
60      XI=160.-XI
61      END IF
62      C   CALCULATE THE LOS-EC PLANE NORMAL. N1.
63      N1=LOSJ*ECK-ECK*LOSSJ
64      N1J=LOSI*ECK-ECT*LOSSK
65      NIK=LOSI*ECK-J-ECT*LOSSJ
66      C   CALCULATE THE PA-LOSS PLANE NORMAL, N2.
67      N2J=PAJ*LOSSK-LOSSJ*PAK
68      N2=PAI*LOSSK-LOSSJ*PAK
69      N2K=PAI*LOSSJ-LOSSI*PAJ
70      C   CALCULATE THE ANGLE BETWEEN N1 AND N2, PSI.
71      PSI=ACOS((N1I*N2I+N1J*N2J+N1K*N2K)/(SQR(T(N1I)**2+N1J**2
72      *N1K**2)*SQR(T(N2I)**2+N2J**2+N2K**2)))
73      PSI=PSI*.360.0/(2.*0.*ACOS(-1.0))
74      IF(PSI.GE.90.0)THEN
75          PSI=180.0-C-PSI
76      END IF
77      PSI=PSI*.2.*ACOS(-1.0)/360.0
78      C   CALCULATE THE LOS-PE PLANE NORMAL. N3
79      NJI=LOSJ*PEK-PEJ*LOSSK
80      NJJ=LOSI*PEK-PEI*LOSSK
81      NJK=LOSI*PEJ-PEI*LOSSJ
82      C   CALCULATE THE ANGLE BETWEEN N1 AND N3, ETA.
83      ETA=ACOS((N1I*N3I+N1J*N3J+N1K*N3K)/(SQR(T(N1I)**2+N1J**2
84      *N1K**2)*SQR(T(N3I)**2+N3J**2+N3K**2)))
85      ETA=ETA*.360.0/(2.*0.*ACOS(-1.0))
86      IF(ETA.GE.90.0)THEN
87          ETA=180.0-ETA
88      END IF
89      ETA=ETA*.2.*ACOS(-1.0)/360.0
90      C   LOCATE THE IMAGE PLANE X-Y COORDINATES OF THE PADDLE PIY
91      YPIV=SIN(PSI)*SIN(ZETA)*(RADC1*PADSEP)
92      YPIV=-COS(PSI)*SIN(ZETA)*(RADC1*PADSEP)
93      C   LOCATE THE IMAGE PLANE X-Y COORDINATES OF PADDLE CORNEPS
94      XCP1=XPIV*SIN(ETA)*SIN(XI)*PADW10/2.0
95      YCP1=YPIV*COS(ETA)*SIN(XI)*PADW10/2.0
96      XCP2=XPIV*XCP1+SIN(PSI)*SIN(ZETA)*PADLEN
97      YCP2=-COS(PSI)*SIN(ZETA)*PADLEN+VCPL
98      XCP3=XPIV-SIN(ETA)*SIN(XI)*PADW10/2.0
99      YCP4=YPIV-COS(ETA)*SIN(XI)*PADW10/2.0
100     XCP5=XPIV*.SI*(PSI)*SIN(ZETA)*PADLEN
101     YCP5=YCP4-COS(PSI)*SIN(ZETA)*PADLEN
102     C   THE COORDINATES OF THE CENTERS OF THE ELLIPSES FORMED IN
103     C   IMAGE PLANE BY THE PROJECTIONS OF CYLINDER ENDPLATE PERI
104     C   ARE GIVEN BY:
105     HU1=0.0
106     KU1=SIN(ALPHA)*LENCL1/2.0
107     HL1=J.0
108     KL1=-SIN(ALPHA)*LENCL1/2.0
109     HL2=0.0
110     KU2=-SIN(ALPHA)*(LENCL1/2.0)+LENCL2)
111     C   DETERMINE THE ELLIPSE SEMI-MAJOR AND SEMI-MINOR AXES.
112

```

```

113 SMAJ1=RADC1
114 SMIN2=COS(ALPHA)*RADC2
115 SMAJ2=RADC2
116 XCP1S=XCP1**2
117 XCP2S=XCP2**2
118 XCP3S=XCP3**2
119 XCP4S=XCP4**2
120 SMAJ1$=SMAJ1**2
121 SMAJ2$=SMAJ2**2
122 C DETERMINE THE SLOPES OF THE EQUATIONS OF THE LINES FORMED
123 C BY THE PADDLE EDGES, AND EVALUATE THE CONSTANTS TO OBTAIN THE
124 C POINT-SLOPE FORM FOR EQUATIONS OF THE LINES.
125 ETA=ETA•360.0/(2.0•ACOS(-1.0))
126 IF(ETA•NE.0.)THEN
127 ETA=ETA•2.0•ACOS(-1.0)/360.0
128 SLOP10=TAN(ACOS(-1.0)-ETA)
129 CIE=PIV-(SLOP10•XPIV)
130 CCE=YCP2-(SLOP10•XCP2)
131 SLOPUL=TAN(ACOS(-1.0)+PSI)
132 CUE=YCP2-(SLOPUL•XCP2)
133 CLE=YCP4-(SLOPUL•XCP4)
134 ELSE
135 ETA=ETA•2.0•ACOS(-1.0)/360.0
136 SLOPUL=0.0
137 CUE=YCP2
138 CLE=YCP4
139 C SLOP10 IS UNDEFINED IF SLOPUL=0.0.
140 END IF
141 C DETERMINE THE POINTS OF INTERSECTION OF THE PADDLE EDGES AND
142 C EXTENSIONS OF THE BODY SIDES.
143 VIEFC1=SLCPUL•RADC1+CUE
144 VIEFC1=SLCPUL•RADC1+CUE
145 VIEFC2=SLCPUL•RADC2+CUE
146 VIEFC2=SLCPUL•RADC2+CUE
147 IF(SLOPUL.NE.0.)THEN
148 VIEFC1=SLCP10*(-RADC1)+CIE
149 VIEFC1=SLCP10*(-RADC1)+CIE
150 VIEFC1=SLCP10•RADC1+CUE
151 VIEFC1=SLCP10•(-RADC1)+CUE
152 VIEFC2=SLCP10•RADC2+CIE
153 VIEFC2=SLCP10•(-RADC2)+CIE
154 VIEFC2=SLCP10•RADC2+CUE
155 VIEFC2=SLCP10•(-RADC2)+CUE
156 END IF
157 C DETERMINE THE INTERSECTION POINT OF ELLIPSE 2 WITH THE SIDE OF
158 C CYLINDER 2.
159 YC2E2=KL1-1$MIN1/SMAJ1•SORT(SMAJ1**2-RADC2**2)
160 C FIND THE Y-CORDINATES OF POINTS ON THE ELLIPSES FOR VALUES OF
161 C X CORRESPONDING TO CORNER POINTS WITHIN THE SIDES OF THE CYLINDERS.
162 CP1IE1=0
163 CP1IE2=0
164 CP1IE3=0
165 CP2IE1=0
166 CP2IE2=0
167 CP2IE3=0
168 CP3IE1=0
169 CP3IE2=0

```

```

170      CP3IE3=0.Y
171      CP4IE1=0.N
172      CP4IE2=0.N
173      CP4IE3=0.N
174      IF((XCP1S.LT.SMAJ1S))THEN
175          XCP=XCP1
176          CALL ELIPS1
177          YE1CP1=YE1CP
178          YE2CP1=YE2CP
179          IF((XCP1S.LT.SMAJ1S.AND.YCP1.GE.KU1.AND.YCP1.LT.YE1CP1))THEN
180              CP1IE1=0.Y
181          END IF
182          IF((XCP1S.LT.SMAJ1S.AND.YCP1.LT.KL1.AND.YCP1.GE.YE2CP1))THEN
183              CP1IE2=0.Y
184          END IF
185          END IF
186          IF((XCP1S.LT.SMAJ2S))THEN
187              XCP=XCP1
188              CALL ELIPS2
189              YE3CP1=YE3CP
190              IF((XCP1S.LT.SMAJ2S.AND.YCP1.LT.KL2.AND.YCP1.GE.YE3CP1))THEN
191                  CP1IE3=0.Y
192          END IF
193          IF((XCP1S.LT.SMAJ2S.AND.YIUEC2.LT.KL2.AND.YCP1.GE.YE3CP1))THEN
194              XIUEE3=XCP1
195              DELTAY=1.0
196              IF(DELTAY.GT.0.01)THEN
197                  YLINE=SLOPUL*XIUEE3+CUE
198                  XIUEE3=KL2-(CSMIN2/SMAJ2)*SQR(SMAJ2**2-YLINE-XIUEE3)
199                  XIUEE3=XIUEE3+.01
200          END IF
201          GU TO 75
202      END IF
203      END IF
204      END IF
205      IF((XCP2S.LT.SMAJ1S))THEN
206          XCP=XCP2
207          CALL ELIPS1
208          YE1CP2=YE1CP
209          YE2CP2=YE2CP
210          IF((XCP2S.LT.SMAJ1S.AND.YCP2.GE.KU1.AND.YCP2.LT.YE1CP2))THEN
211              CP2IE1=0.Y
212          END IF
213          IF((XCP2S.LT.SMAJ1S.AND.YCP2.LT.KL1.AND.YCP2.GE.YE2CP2))THEN
214              CP2IE2=0.Y
215          END IF
216          END IF
217          IF((XCP2S.LT.SMAJ2S))THEN
218              XCP=XCP2
219              CALL ELIPS2
220              YE3CP2=YE3CP
221              IF((XCP2S.LT.SMAJ2S.AND.YCP2.GE.YE3CP2))THEN
222                  CP2IE3=0.Y
223          END IF
224          END IF
225          IF((XCP3S.LT.SMAJ1S))THEN

```

SUBROUTINE GEOM1 74/74 OPT=0,ROUND= A/ S/ M/-D,-DS FTN 5.1+564 11/26/82 18.30.27 PAGE 5

```
CALL ELIPS1
Y1CP3=YE1CP
Y2CP3=YE2CP
IF(XCP3S.LT.SMAJ1S.AND.YCP3.GE.KU1.AND.YCP3.LT.YE1CP3)THEN
CP3IE1=0.Y
END IF
IF(XCP3S.LT.SMAJ1S.AND.YCP3.LT.KL1.AND.YCP3.GE.YE2CP3)THEN
CP3IE2=0.Y
END IF
END IF
IF(XCP3S.LT.SMAJ2S)THEN
XCP=XCP3
CALL ELIPS2
Y3CP3=YE3CP
IF(XCP3S.LT.SMAJ2S.AND.YCP3.LT.KL2.AND.YCP3.GE.YE3CP3)THEN
CP3IE3=0.Y
END IF
IF(XCP3S.LT.SMAJ2S.AND.YCP3.LT.YE3CP3.AND.Y10EE2.LT.KL2)THEN
X10EE3=XCP3
DELTAY=1.0
IF(DELTAY.GT..01)THEN
YLIN=SLOP10*X10EE3+C0E
Y10EE3=KL2-(SMIN2/SMAJ2)*SQRT(SMAJ2**2-X10EE3**2)
DELTAY=ABS(Y10EE3-YLINE)
X10EE3=X10EE3+.01
60 TO 79
E:D IF
END IF
END IF
IF(XCP4S.LT.SMAJ1S)THEN
XCP=XCP4
CALL ELIPS1
Y1CP4=YE1CP
YE2CP4=YE2CP
IF(XCP4S.LT.SMAJ1S.AND.YCP4.GE.KU1.AND.YCP4.LT.YE1CP4)THEN
CP4IE1=0.Y
E:D IF
IF(XCP4S.LT.SMAJ1S.AND.YCP4.LT.KL1.AND.YCP4.GE.YE2CP4)THEN
CP4IE2=0.Y
END IF
IF(XCP4S.LT.SMAJ1S.AND.YCP4.GE.YE2CP4.AND.Y1LEC1.LT.KL1)THEN
X1LEF2=XCP4
DELTAY=1.0
IF(DELTAY.GT..01)THEN
YLIN=SLOPUL*X1LEE2+CLE
Y1LEE2=KL1-(SMIN1/SMAJ1)*SQRT(SMAJ1**2-X1LEE2**2)
DELTAY=ABS(YLINE-Y1LEE2)
X1LEE2=X1LEE2+.01
60 TO 65
E:D IF
END IF
END IF
IF(XCP4S.LT.SMAJ2S)THEN
XCP=XCP4
CALL ELIPS2
Y3CP4=YE3CP
IF(XCP4S.LT.SMAJ2S.AND.YCP4.LT.KL2.AND.YCP4.GE.YF3CP4)THEN
```

```

SUBROUTINE GEOM1      74/74    OPT=0.HCUND= A/ S/ M/-D-/DS   FTM 5.1•564   11/26/92 18•30•27   PAGE 6

294          CP4IE3=•Y•
295          END IF
296          IF(XCP4S•LT•SMAJ2S•AND•YCP4•GE•YE3CP4•AND•YILEC2•LT•KL2)•HEN
297          X1LEE3=XCP4
298          DELTAY=1.0
299          67          IF(DELTAy•6T••01)THEN
300          YLINE=SLOPUL•X1LEE3•CLE
301          Y1LEE3=KL2-(SMIN2/SMAJ2)*SRT(SMAJ2••2-X1LEE3••2)
302          DELTAY=ABS(YLINE-Y1LEE3)
303          X1LEE3=X1LEE3+•01
304          60 TO 67
305          END IF
306          END IF
307          IF(YCP1.GT.KL2.AND.XCP4S.LT.SMAJ2S.AND.YCP4.LT.YE3CP4)THEN
308          X1EE3=XCP4
309          DELTAY=1.0
310          73          IF(DELTAy•6T••01)THEN
311          YLINE=SLOP10•X1EE3•CIE
312          Y1EE3=KL2-(SMIN2/SMAJ2)*SRT(SMAJ2••2-X1EE3••2)
313          DELTAY=ABS(YLINE-Y1EE3)
314          X1EE3=X1EE3+•01
315          60 TO 73
316          END IF
317          END IF
318          C CHECK EACH CORNER POINT TO SEE IF IT IS INSIDE A CYLINDER OR AN
319          C ELLIPSE.
320          C WHICH CORNER POINTS ARE IN CYLINDER 1?
321          IF(XCP1S.LT.SMAJ1S.AND.YCP1.LT.KU1.AND.YCP1.GE.KL1)THEN
322          CP1IC1=•Y•
323          ELSE
324          CP1IC1=•N•
325          END IF
326          IF(XCP2S.LT.SMAJ1S.AND.YCP2.LT.KU1.AND.YCP2.GE.KL1)THEN
327          CP2IC1=•Y•
328          ELSE
329          CP2IC1=•N•
330          END IF
331          IF(XCP3S.LT.SMAJ1S.AND.YCP3.LT.KU1.AND.YCP3.GE.KL1)THEN
332          CP3IC1=•Y•
333          ELSE
334          CP3IC1=•N•
335          END IF
336          IF(XCP4S.LT.SMAJ1S.AND.YCP4.LT.KU1.AND.YCP4.GE.KL1)THEN
337          CP4IC1=•Y•
338          ELSE
339          CP4IC1=•N•
340          END IF
341          C WHICH CORNER POINTS ARE IN CYLINDER 2?
342          IF(XCP2S.LT.SMAJ2S.AND.YCP2.LT.KL1.AND.YCP1.GE.KL2)THEN
343          CP2IC2=•Y•
344          ELSE
345          CP2IC2=•N•
346          END IF
347          IF(XCP2S.LT.SMAJ2S.AND.YCP2.LT.KL1.AND.YCP1.GE.KL2)THEN
348          CP2IC2=•Y•
349          ELSE

```

SUBROUTINE GEOM1 74/74 OPT=0,ROUND= A/ S/ M/-D,-DS FTN 5.1+564 11/26/82 18.30.27 PAGE 7

```

341      CP2IC2=0#
342      END IF
343      IF(XCP3S.LT.SMAJ2S.AND.YCP3.GE.KL2)THEN
344          CP3IC2=0Y
345      ELSE
346          CP3IC2=0N#
347      END IF
348      IF(XCP4S.LT.SMAJ2S.AND.YCP4.GE.KL2)THEN
349          CP4IC2=0Y
350      ELSE
351          CP4IC2=0N#
352      END IF
353      C   FIND THE INTERSECTIONS OF PADDLE EDGES WITH ELLIPSE PERIMETERS
354      C   WHEN APPLICABLE.
355      IF(XCP1S.LT.SMAJ1.AND.YIUEC2.GE.YC2E2.AND.YIUEC1.LT.KL1)THEN
356          XIUEE2=XCP1
357          DELTAY=1.0
358          IF(DELTAy.GT.-0.01)THEN
359              YLINE=SLOP1*XIUEE2+CUE
360              YIUEE2=KL1-(SMIN1/SMAJ1)*SQRT(SMAJ1**2-XIUEE2**2)
361              DELTAY=ABS(YLINE-YIUEE2)
362              XIUEE2=XIUEE2+0.01
363              GO TO 69
364          END IF
365      END IF
366      IF(XCP4S.LT.SMAJ1.AND.XCP1S.GE.SMAJ1.AND.YIUEC1.LT.KL1.AND.
367          *YIUEC2.GE.YC2E2)THEN
368          XIUEE2=XCP1
369          DELTAY=1.0
370          IF(DELTAy.GT.-0.01)THEN
371              YLINE=SLOP10*XIUEE2+CIE
372              YIUEE2=KL1-(SMIN1/SMAJ1)*SQRT(SMAJ1**2-XIUEE2**2)
373              DELTAY=ABS(YLINE-YIUEE2)
374              XIUEE2=XIUEE2-0.01
375              GO TO 71
376          END IF
377          IF(XCP3S.LT.SMAJ1.AND.YIUEC1.LT.KL1.AND.YIUEC2.GE.YC2E2)THEN
378              XIUEE2=XCP3
379              DELTAY=1.0
380              IF(DELTAy.GT.-0.01)THEN
381                  YLINE=SLOP10*XIUEE2+CIE
382                  YIUEE2=KL1-(SMIN1/SMAJ1)*SQRT(SMAJ1**2-XIUEE2**2)
383                  DELTAY=ABS(YLINE-YIUEE2)
384                  XIUEE2=XIUEE2+0.01
385                  GO TO 77
386          END IF
387          END IF
388      END IF

```

```

1      SUBROUTINE CASES
2      CHARACTER CP1IC1,CP1IC2,CP1IE1,CP1IE2,CP1IE3,
3          CP2IC1,CP2IC2,CP2IE1,CP2IE2,CP2IE3,
4          CP3IC1,CP3IC2,CP3IE1,CP3IE2,CP3IE3,
5          CP4IC1,CP4IC2,CP4IE1,CP4IE2,CP4IE3,
6          CASE0,CASE1,CASE2,CASE3,CASE4
7          COMMON/CASNBR/CASE0,CASE1,CASE2,CASE3,CASE4
8          COMMON/CFLAGS/CP1IC1,CP1IC2,CP1IE1,CP1IE2,CP1IE3,
9              CP2IC1,CP2IC2,CP2IE1,CP2IE2,CP2IE3,
10             CP3IC1,CP3IC2,CP3IE1,CP3IE2,CP3IE3,
11             CP4IC1,CP4IC2,CP4IE1,CP4IE2,CP4IE3
12             IF((CP1IC1.EQ."Y".OR.CP1IC2.EQ."Y".OR.CP1IE1.EQ."Y".OR.
13             CP1IE2.EQ."Y".OR.CP1IE3.EQ."Y").AND.(CP2IC1.EQ."Y".OR.
14             CP2IC2.EQ."Y".OR.CP2IE1.EQ."Y".OR.CP2IE2.EQ."Y".OR.
15             CP2IE3.EQ."Y").AND.(CP3IC1.EQ."Y".OR.CP3IC2.EQ."Y".OR.
16             CP3IE1.EQ."Y".OR.CP3IE2.EQ."Y".OR.CP3IE3.EQ."Y")
17             +.AND.(CP4IC1.EQ."Y".OR.CP4IE2.EQ."Y".OR.CP4IE3.EQ."Y")
18             +.CP4IC2.EQ."Y".OR.CP4IE1.EQ."Y".OR.CP4IE2.EQ."Y".OR.
19             +.CP4IE3.EQ."Y"))
20             CASE0="Y"
21             ELSE
22             CASE0="N"
23             END IF
24             IF((CP4IC1.EQ."Y".OR.CP4IC2.EQ."Y".OR.CP4IE1.EQ."Y".OR.
25             +CP4IE2.EQ."Y".OR.CP4IE3.EQ."Y").AND.(CP1IC1.EQ."N".AND.
26             +CP1IC2.EQ."N".AND.CP1IE1.EQ."N".AND.CP1IE2.EQ."N".AND.
27             +CP1IE3.EQ."N").AND.((CP3IC1.EQ."N".AND.CP3IC2.EQ."N".
28             +CP3IE1.EQ."N".AND.CP3IE2.EQ."N".AND.CP3IE3.EQ."N").AND.
29             +(CP2IC1.EQ."Y".OR.CP2IC2.EQ."Y".OR.CP2IE1.EQ."Y".OR.
30             +CP2IE2.EQ."Y".OR.CP2IE3.EQ."Y").OR.((CP2IC1.EQ."N".AND.
31             +CP2IC2.EQ."N".AND.CP2IE1.EQ."N".AND.CP2IE2.EQ."N".AND.
32             +CP2IE3.EQ."N").AND.(CP3IC1.EQ."Y".OR.CP3IC2.EQ."Y".OR.
33             +CP3IE1.EQ."Y".OR.CP3IE2.EQ."Y".OR.CP3IE3.EQ."Y")))THEN
34             CASE1="Y"
35             ELSE
36             CASE1="N"
37             END IF
38             IF((CP1IC1.EQ."N".AND.CP1IC2.EQ."N".AND.CP1IE1.EQ."N".AND.
39             +CP1IE2.EQ."N".AND.CP1IE3.EQ."N".AND.CP2IC1.EQ."N".AND.
40             +CP2IC2.EQ."N".AND.CP2IE1.EQ."N".AND.CP2IE2.EQ."N".AND.
41             +CP2IE3.EQ."N").AND.((CP3IC1.EQ."Y".OR.CP3IC2.EQ."Y".OR.
42             +CP3IE1.EQ."Y".OR.CP3IE2.EQ."Y".OR.CP3IE3.EQ."Y").AND.
43             +(CP4IC1.EQ."Y".OR.CP4IC2.EQ."Y".OR.CP4IE1.EQ."Y".OR.
44             +CP4IE2.EQ."Y".OR.CP4IE3.EQ."Y").OR.((CP2IC1.EQ."N".AND.
45             +CP2IC2.EQ."N".AND.CP2IE1.EQ."N".AND.CP2IE2.EQ."N".AND.
46             +CP2IE3.EQ."N".AND.CP3IC1.EQ."N".AND.CP3IC2.EQ."N".AND.
47             +((CP1IC1.EQ."Y".OR.CP1IE1.EQ."Y").AND.(CP3IC1.EQ."N".AND.
48             +CP1IE2.EQ."Y".OR.CP1IE3.EQ."Y").AND.(CP4IC1.EQ."Y".OR.
49             +CP4IC2.EQ."Y".OR.CP4IE1.EQ."Y").OR.CP4IE2.EQ."Y".OR.
50             +CP4IE3.EQ."Y"))).OR.((CP3IC1.EQ."N".AND.CP3IC2.EQ."N".AND.
51             +CP3IE1.EQ."N".AND.CP3IE2.EQ."N".AND.CP3IE3.EQ."N".AND.CP4IC1
52             ."EQ."N".AND.CP4IC2.EQ."N".AND.CP4IE1.EQ."N".AND.CP4IE3.EQ.
53             ."N").AND.((CP1IC1.EQ."Y".OR.CP1IC2.EQ."Y".OR.CP1IE1.EQ."Y".OR.
54             +CP1IE2.EQ."Y".OR.CP1IE3.EQ."Y").AND.(CP2IC1.EQ."Y".OR.CP2IC2.EQ.
55             ."Y"))

```

```

56      *Y*.OR.CP2IE1.EQ.*Y*.OR.CP2IE2.EQ.*Y*.OR.CP2IE3.EQ.*Y*)
57
58      CASE2=*Y*
59
60      ELSE
61      CASE2=0N0
62      END IF
63      IF(((CP1IC1.EQ.0N0.AND.CP1IC2.EQ.0N0.AND.CP1IE1.EQ.0N0.AND.
64      *CP1IE2.EQ.0N0.AND.CP1IE3.EQ.0N0.AND.CP2IC1.EQ.0N0.AND.
65      *CP2IC2.EQ.0N0.AND.CP2IE1.EQ.0N0.AND.CP2IE2.EQ.0N0.AND.
66      *CP2IE3.EQ.0N0.AND.CP3IC1.EQ.0N0.AND.CP3IC2.EQ.0N0.AND.
67      *CP3IE1.EQ.0N0.AND.CP3IE2.EQ.0N0.AND.CP3IE3.EQ.0N0.AND.
68      *CP4IC1.EQ.0Y0.OR.CP4IC2.EQ.0Y0.OR.CP4IE1.EQ.0Y0.OR.
69      *CP4IE2.EQ.0Y0.OR.CP4IE3.EQ.0Y0).OR.((CP2IC1.EQ.0N0.AND.
70      *CP2IC2.EQ.0N0.AND.CP2IE1.EQ.0N0.AND.CP2IE2.EQ.0N0.AND.CP2IE3
71      *EQ.0N0.AND.CP3IC1.EQ.0N0.AND.CP3IC2.EQ.0N0.AND.CP3IE1.EQ.
72      *0N0.AND.CP3IE2.EQ.0N0.AND.CP4IE2.EQ.0N0.AND.CP4IE3.EQ.0N0
73      *AND.CP4IC2.EQ.0N0.AND.CP4IE1.EQ.0N0.AND.CP4IE2.EQ.0N0.AND.
74      *CP4IE3.EQ.0N0).AND.(CP1IC1.EQ.0Y0.OR.CP1IC2.EQ.0Y0.OR.
75      *CP1IE1.EQ.0Y0.OR.CP1IE2.EQ.0Y0.OR.CP1IE3.EQ.0Y0))THEN
76
77      CASE3=*Y*
78
79      END IF
80      IF((CP1IC1.EQ.0N0.AND.CP1IC2.EQ.0N0.AND.CP1IE1.EQ.0N0.AND.
81      *CP1IE2.EQ.0N0.AND.CP1IE3.EQ.0N0.AND.CP2IC1.EQ.0N0.AND.
82      *CP2IC2.EQ.0N0.AND.CP2IE1.EQ.0N0.AND.CP2IE2.EQ.0N0.AND.
83      *CP2IE3.EQ.0N0.AND.CP3IC1.EQ.0N0.AND.CP3IC2.EQ.0N0.AND.
84      *CP3IE1.EQ.0N0.AND.CP3IE2.EQ.0N0.AND.CP3IE3.EQ.0N0.AND.
85      *CP4IC1.EQ.0N0.AND.CP4IC2.EQ.0N0.AND.CP4IE1.EQ.0N0.AND.
86      *CP4IE2.EQ.0N0.AND.CP4IE3.EQ.0N0)THEN
87
88      CASE4=*Y*
89
90      ELSE
91      CASE4=0N0
92      END IF
93

```

```

1 SUBROUTINE A-EASI
2   REAL X1,X2,SLOPE1,SLOPE2,CONST1,CONST2,ARLL
3   COMPCN/AREA/X1,X2,CONST1,CONST2,SLOPE1,SLOPE2,
4   K,KA,KB,SMIN,SMINA,SMAJ,SMAJB,ARLL,
5   ABLE,ABEF
6   SLOPE1=((X2**2/2.0+CONST1**2)-(X1**2/2.0+CONST1**2))
7   -SLOPE2=((X2**2/2.0+CONST2**2)-(X1**2/2.0+CONST2**2))
8 END

```

```

1 SUBROUTINE AREAS2
2   REAL X1,X2,CONST,SLOPE,K,SMIN,SMAJ,ARBLE
3   COMMON/AREA/X1,X2,CONST,CONST1,CONST2,SLOPE,SLOPE1,SLOPE2,
4   K,KA,KB,SMIN,SMINA,SMAJ,SMAJA,SMAJB,ABLL,
5   ABLE,ABEE
6   * ABLE=SLOPE*((X2**2/2.0+CONST*X2)-(X1**2/2.0+CONST*X1))
7   * -(K*X2**2*SMIN/(2.0*SMAJ))+(X2*SQR(SMAJ**2-SMIN**2)+
8   * SMAJ**2*A SIN(X2/SMAJ))-((K*X1*SMIN/(2.0*SMAJ))*(X1*SQR(
9   * SMAJ**2-SMIN**2)+SMAJ**2*A SIN(X1/SMAJ)))
10  END

```

```

1      SUBROUTINE AREAS3
2      REAL X1,X2,XA,XB,SMINA,SMINB,ABEE
3      COMMON/AREA/X1,X2,CONST,CONST2,SLOPE,SLOP2*,SLOPE2*
4      K,KA,KB,SMIN,SMINA,SMINB,SMAJ,SMAJB,ABLL,
5      ABLE,ABEE
6      ABEE=((KB**2+SMINB/(2.0*SMAJB))*(X2+SQRT(SMAJB**2-SMINB**2)-
7      SMAJB**2-ASIN(X2/SMAJB)))-(KB*X1+SMINB/(2.0*SMAJB))*(X1-
8      SQR((SMAJB**2-SMINB**2)+SMAJB**2*ASIN(X1/SMAJB)))
9      -((KZ*X2+SMINA/(2.0*SMAJA))*(X2+SQRT(SMAJA**2-SMINA**2)-
10     SMAJA**2-ASIN(X2/SMAJA)))-(KA*X1+SMINA/(2.0*SMAJA)-
11     (X1+SQR((SMAJA**2-SMINA**2)+SMAJA**2*ASIN(X1/SMAJA))))
```

```

1      SUBROUTINE CP123
2      REAL XCP1,YCP1,XCP2,YCP2,XCP3,YCP3,XCP4,YCP4,XCP5,YCP5,
3      *Y1CP2,YE1CP3,YE1CP4,YE2CP1,YE2CP2,YE2CP3,YE2CP4,YE3CP1,
4      *YE3CP2,YE3CP3,YE3CP4,YIUEC1,YIUEC2,YIUEE3,YIUEE2,
5      *XIUEE3,YILEC1,YILEC2,YILEE2,YILEE3,XILEE2,XILEE3,YILEC1,
6      *YIIEC2,YIIEE3,XIIEE2,YIIEE3,XIIEE2,YIIEC2,YIIEC2,YIIEE2,
7      *YIIEE3,XI0EE2,XI0EE3,RADC1,RADC2,SLOP10,SLOP11,SLOP12,SLOP13,
8      *CUE,X1,X2,CONST,CONST1,CONST2,SLOPE,SLOPE1,SLOPE2,SMAJ,
9      *SMAJ1,SMAJ2,SMIN2,K,KL1,KL2,APAD,ABLL,ABLE,
10     *ALPHAP,KA,KB,SMINA,SMINB,SMAJA,SMAJB,ABEE,ARPAD
11     COMMON/AREA/X1,X2,CONST,CONST1,CONST2,SLOPE,SLOPE1,SLOPE2,
12     *K,KA,KB,SMIN,SMINB,SMAJA,SMAJB,ABLL,
13     *ABLE,ABEE
14     COMMON/PLATE/ALPHAP,ARPAD,APAD
15     COMMON/GEOM/XCP1,YCP1,XCP2,YCP2,XCP3,YCP3,XCP4,YCP4,XCP5,YCP5,
16     *HL1,KL1,HL2,KL2,SMIN1,SMIN2,SMAJ1,SMAJ2,SLOP10,SLOPUL,
17     *CIE,COE,CUE,CLE,YIUEC1,YIUEC2,YIUEE3,YIUEE2,YIIEC1,YIIEC2,
18     *YILEE2,YILEE3,YIIEC1,YIIEC2,YIIEC2,YIIEE3,YIIEE2,YIIEC1,
19     *YI0EC2,YI0EE2,YI0EE3,YIUEE3,XIUEE2,XIUEE3,XIUEE2,XIUEE3,XIUEE2,
20     *XIIEE3,XI0EE2,XI0EE3,YIIEE3,YIIEC2,YIIEC2,YIIEE3,YIIEE2,
21     *YE2CP2,YE2CP3,YE2CP4,YE3CP1,YE3CP2,YE3CP3,YE3CP4,XCP1S,
22     *XCP2S,XCP3S,XCP4S,SMAJ1S,SMAJ2S,YC2E2,YE1CP,YE2CP,YE3CP,
23     *XCP,RADC1,RADC2,PADSEP,PADLEN,PADWID,LENC1,LENC2
24     IF(XCP3$=6E.XCP1$)THEN
25     X1=XCP3
26     X2=XCP2
27     SLOPE1=SLOPUL
28     SLOPE2=SLOP10
29     CONST1=CUE
30     CONST2=COE
31     CALL AREA$1
32     APAD=ABLL
33     X1=XCP1
34     X2=XCP3
35     SLOPE2=SLOPUL
36     CONST2=CLE
37     CALL AREA$1
38     APAD=APAD+ABLL
39     X1=RADC1
40     X2=XCP1
41     SLOPE1=SLOP10
42     CONST1=CIE
43     CALL AREA$1
44     APAD=APAD+ABLL
45     ELSE IF(XCP1$=6E.XCP3$)THEN
46     X1=XCP1
47     X2=XCP2
48     SLOPE1=SLOPUL
49     SLOPE2=SLOP10
50     CONST1=CUE
51     CONST2=CCE
52     CALL AREA$1
53     APAD=ABLL
54     X1=XCP3
55     X2=XCP1

```

```
SLOPE1=SLOP10
56
57 C2ISI1=CIE
58 CALL AREA_1
59 APAD=APAD+ABLL
60 X1=RADC1
61 X2=XCP3
62 SLOPE2=SLOPUL
63 CONST_=CLF
64 CALL AREA1
65 APAD=APAD+AHLL
66 END IF
67 END
```

```

1      SUBROUTINE AREAS
2      REAL XCP1,YCP1,XCP2,YCP2,XCP3,YCP3,XCP4,YCP4,YE1CP1,
3      *YE1CP2,YE1CP3,YE1CP4,YE2CP1,YE2CP2,YE2CP3,YE2CP4,YE3CP1,
4      *YE3CP2,YE3CP3,YE3CP4,YIUEC1,YIUEC2,YIUEC3,YIUEE3,XIUEE2,
5      *XIUEE3,YILEC1,YILEC2,YILEE2,YILEE3,YILEE2,YIIEE3,XIIEE2,
6      *YIIEE3,XIOEE2,XIOEE3,XIOEF3,RADC1,RADC2,SLOPIO,CIE,COE,CLE,
7      *CUE,X1,X2,CONST,CONST1,CONST2,SLOPE,SLOPE1,SLOPE2,SHAJ,
8      *SMIN,SHAJ1,SMIN1,SHAJ2,SMIN2,K,KL1,KL2,APAD,ABLL,ABLE,
9      *ALPHAP,KA,KH,SMINB,SMINA,SMAJA,SMAJB,ABEE,ARPAD
10     *CHARACTER CP1IC1,CP1IC2,CP1IE1,CP1IE2,CP1IE3,
11     *CP2IC1,CP2IC2,CP2IE1,CP2IE2,CP2IE3,
12     *CP3IC1,CP3IC2,CP3IE1,CP3IE2,CP3IE3,
13     *CP4IC1,CP4IC2,CP4IE1,CP4IE2,CP4IE3,
14     *CASE0,CASE1,CASE2,CASE3,CASE4,
15     *COMMON/VECTR2/LOS1,LOSJ,LOSK,ECI,ECJ,ECK,SUNI,SUNK,PMI,
16     *MAG1,MAG2,MAG3,MAG4
17     *COMMON/CASNHR/CASE0,CASE1,CASE2,CASE3,CASE4
18     *COMMON/AREA/X1,X2,CONST,CONST1,CONST2,SLOPE,SLOPE1,SLOPE2,
19     *K,KA,KB,SMIN,SMINA,SMINB,SMAJA,SMAJB,ABLL,
20     *ABLE,ABLE
21     *COMMON/GEOM/XCP1,YCP1,XCP2,YCP2,XCP3,YCP3,XCP4,YCP4,KU1,KU1,
22     *HL1,KL1,HL2,KL2,SMIN1,SMIN2,SMAJ1,SMAJ2,SLOPUL,
23     *CIE,COE,CUE,CLE,YIUEC1,YIUEC2,YIUEE2,YIUEE3,YILEC1,YILEC2,
24     *YILEE2,YILEE3,YILEC1,YILEC2,YIIEE2,YIIEE3,YIIEE4,YOEC1,
25     *YIIEE3,XIIEE2,YIIEE3,XIIEE4,YIIEE5,XIIEE2,XIIEE3,YIIEE2,
26     *XIIEE3,XIIEE4,YIIEE5,XIIEE6,YIIEE7,XIIEE2,YIIEE3,YIIEE2,
27     *YE2CP2,YE2CP3,YE2CP4,YE3CP1,YE3CP2,YE3CP3,YE3CP4,YE2CP1,
28     *XCP2S,XCP3S,XCP4S,SMAJ1S,SMAJ2S,YC2E2,YE1CP,YE2CP,YE3CP,
29     *XCP,RADC1,RADC2,PADSEP,PADELEN,PADEMD,LENCD,LENCD
30     *COMMON/PIV/XPIV,KI
31     *COMMON/PLATE/ALPHAP,ARPAD,APAD
32     *IF(CASE0.EQ.0.Y0)THEN
33     *APAD=0.0
34     *END IF
35     *IF(CASE1.EQ.0.Y0)THEN
36     *      C FIND THE PRODUCT OF THE COSINE OF THE PADDLE ALPHA AND THE AREA
37     *      C OF THE PADDLE WHICH IS VISIBLE TO THE SENSOR IF ONLY ONE CORNER
38     *      C IS VISIBLE
39     *      C IF(XCP2S.GE.SMAJ1S.AND.XCP1S.LT.SMAJ1S)THEN
40     *      X1=RADC1
41     *      X2=XCP2
42     *      SLOPE1=SLOPUL
43     *      SLOPE2=SLOPIO
44     *      CONST1=CUE
45     *      CONST2=COE
46     *      CALL AREA1
47     *      APAD=ABLL
48     *      ELSE IF(YIIEC1.LT.YC2E2)THEN
49     *          APAD=APAD
50     *      END IF
51     *      X1=RADC2
52     *      X2=RADC1
53     *      SLOPE=SLOPIO
54     *      CONST=COE
55

```

SUBROUTINE AFEAS 74/74 OPT=0,ROUND= A/ S/ M/-D-/DS FTN 5.1+564 11/26/82 18.30.27 PAGE 2

```

      K=KL1
      SMIN=SMIN1
      SMAJ=SMAJ1
      CALL AREAS2
      APAD=APAD+ABLE
  END IF
END IF
IF(XCP2S.LT.SMAJ1S.AND.XCP3S.GE.SMAJ2S)THEN
  X1=RADC2
  X2=XCP3
  SLOPE=SLOPUL
  CONST=CIE
  K=KL1
  SMIN=SMIN1
  SMAJ=SMAJ1
  CALL AREAS2
  APAD=APAD
  X1=XCP3
  X2=X10EE2
  SLOPE=SLOPIO
  CONST=COE
  CALL AREAS2
  APAD=APAD+ABLE
  X1=X10EE3
  X2=RADC2
  SLOPE=SLOPUL
  CONST=CLE
  K=KL2
  SMIN=SMIN2
  SMAJ=SMAJ2
  CALL AREAS2
  APAD=APAD+ABLE
ELSE IF(XCP2S.LT.SMAJ1S.AND.XCP3S.LT.SMAJ2S)THEN
  X1=XILEE3
  X2=XCP3
  SLOPE=SLOPUL
  CONST=CLE
  K=KL2
  SMIN=SMIN2
  SMAJ=SMAJ2
  CALL AREAS2
  APAD=APAD
  X1=XCP3
  X2=X10EE3
  SLOPE=SLOPIO
  CONST=COE
  CALL AREAS2
  APAD=APAD+ABLE
END IF
IF(CASE2.EQ.'Y')THEN
  IF(XCP2S.GE.SMAJ1S.AND.XCP3S.GE.SMAJ2S)THEN
    X1=XCP3
    X2=XCP2
    SLOPE1=SLOPUL
    SLOPE2=SLOPIO
  -->

```

```

113 CONST2=COE
114 CALL AREAS1
115 APAD=ABLL
116 X1=RADC1
117 X2=XCP3
118 SLOPE2=SLOPUL
119 CONST2=CLE
120 CALL AREAS1
121 APAD=APAD+ABLE
122 IF(YILEC1.GE.KL1)THEN
123 APAD=APAD
124 ELSE IF(YILEC2.GE.YC2E2.AND.YILEC1.LT.KL1)THEN
125 X1=XILEE2
126 X2=RADC1
127 SLOPE=SLOPUL
128 CONST=CLE
129 K=KL1
130 SMIN=SMIN1
131 SMAJ=SMAJ1
132 CALL AREAS2
133 APAD=APAD+ABLE
134 ELSE IF(YILEC1.LT.KL1.AND.YILEC2.LT.YC2E2)THEN
135 X1=RADC2
136 X2=RADC1
137 SLOPE=SLOPUL
138 CONST=CLE
139 K=KL1
140 SMIN=SMIN1
141 SMAJ=SMAJ1
142 CALL AREAS2
143 APAD=APAD+ABLE
144 ELSE IF(YILEC1.LT.KL1.AND.YILEC2.LT.KL2)THEN
145 X1=XILEE3
146 X2=RADC2
147 K=KL2
148 SMIN=SMIN2
149 SMAJ=SMAJ2
150 CALL AREAS2
151 APAD=APAD+ABLE
152 END IF
153 END IF
154 IF(XCP3S.LT.SMAJ1S.AND.XCP3S.GE.SMAJ2S.AND.CP3IE2.EQ.0.N
155 * .AND.CP3IEC2.EQ.0.N*.AND.XCP2S.GE.SMAJ1S)THEN
156 X1=RADC1
157 X2=XCP2
158 CONST1=CUE
159 CONST2=COE
160 SLOPE1=SLOPUL
161 SLOPE2=SLOPIO
162 CALL AREAS1
163 APAD=ABLL
164 IF(YILEC2.LT.YC2E2.AND.YILEC2.GE.KL2)THEN
165 X1=RADC2
166 X2=XCP3
167 SLOPE=SLOPUL
168 CONST=CLE
169 K=KL1

```

```

170      SMIN=SMIN1
171      SMAJ=SMAJ1
172      CALL AREAS2
173      APAD=APAD+ABLE
174      X1=XCP3
175      X2=RADC1
176      SLOPE=SLOP10
177      CONST=COE
178      CALL AREAS2
179      APAD=APAD+ABLE
180      ELSE IF(YILEC2.LT.KL2)THEN
181      X1=XILEE3
182      X2=RADC2
183      SLOPE=SLOPUL
184      CONST=CLE
185      K=KL2
186      SMIN=SMIN2
187      SMAJ=SMAJ2
188      CALL AREAS2
189      APAD=APAD+ABLE
190      X1=RADC2
191      X2=XCP3
192      K=KL1
193      SMIN=SMIN1
194      SMAJ=SMAJ1
195      CALL AREAS2
196      APAD=APAD+ABLE
197      X1=XCP3
198      X2=RADC1
199      SLOPE=SLOP10
200      CONST=COE
201      CALL AREAS2
202      APAD=APAD+ABLE
203      END IF
204      IF(XCP3S.LT.SMAJ2S.AND.XCP2S.GE.SMAJ1S.AND.CP3JC2.EQ."N"
205      .AND.CP3IE3.EQ."N")THEN
206      X1=RADC1
207      X2=XCP2
208      SLOPE1=SLOPUL
209      SLOPE2=SLOP10
210      CCHST1=CUE
211      CONST2=COE
212      CALL AREAS1
213      APAD=ABLL
214      X1=XILEE3
215      X2=XCP5
216      CONST=CLE
217      SLOPE=SLOPUL
218      K=KL2
219      SMIN=SMIN2
220      SMAJ=SMAJ2
221      CALL AREAS2
222      APAD=APAD+ABLE
223      X1=XCP3
224      X2=RADC2
225      SLOPE=SLOP10

```

```

227 CONST=COE
228 CALL AREAS2
229 APAD=APAD+ABLE
230 IF(YIUEC1.GE.-KL1)THEN
231 X1=RADC2
232 X2=RADC1
233 SLOPE=SLOPIO
234 CONST=COE
235 K=KL1
236 SMIN=SMIN1
237 SMAJ=SMAJ1
238 CALL AREAS2
239 APAD=APAD+ABLE
240 ELSE IF(YIUEC1.LT.-KL1.AND.YIUEC2.GE.YC2E2)THEN
241 X1=RADC2
242 X2=XIUEE2
243 SLOPE=SLOPIO
244 CONST=COE
245 K=KL1
246 SMIN=SMIN1
247 SMAJ=SMAJ1
248 CALL AREAS2
249 APAD=APAD+ABLE
250 X1=XIUEE2
251 X2=RADC1
252 SLOPE1=SLOPUL
253 SLOPE2=SLOPIO
254 CONST1=CUE
255 CONST2=COE
256 CALL AREAS1
257 APAD=APAD+ABLL
258 END IF
259 END IF
260 IF(XCP3S.LT.SMAJ2S.AND.CP3IE3.EQ."N".AND.CP3IE3.EQ."N".
261 +" AND.XCP2S.LT.SMAJ1S.AND.CP2IE1.EQ."N".AND.CP2IE2.EQ."N".AND.
262 CP2IE2.EQ."N".AND.CP2IE3.EQ."N")THEN
263 X1=XCP3
264 X2=RADC2
265 SLOPE=SLOPIO
266 CONST=COE
267 K=KL2
268 SMIN=SMIN2
269 SMAJ=SMAJ2
270 CALL AREAS2
271 APAD=ABLE
272 IF(YIUEC2.GE.SMAJ2S)THEN
273 X1=RADC1
274 X2=XCP2
275 SLOPE1=SLOPUL
276 SLOPE2=SLOPIO
277 CONST1=CUE
278 CONST2=COE
279 CALL AREAS1
280 APAD=APAD+ABLL
281 ELSE IF(YIUEC2.GE.YC'.2)THEN
282 K1=RADC2
283

```

SURROUNTING AREAS

7474 OPT=0,ROUND= A/ S/ M/-D,-DS

11/26/82 18.30.27

PAGE 6

```
284 X2=XIUEE2
285 SLOPE=SLOPIO
286 CONST=COE
287 K=KL1
288 SMIN=SMINI1
289 SMAJ=SMAJ1
290 CALL AREAS2
291 APAD=APAD+ABLE
292 X1=XIUEE2
293 X2=XCP2
294 SLOPE1=SLOPIO
295 SLOPE2=SLOPIO
296 CONST1=CUE
297 CONST2=COE
298 CALL AREAS1
299 APAD=APAD+ABLL
300 END IF
301 IF(XCP4S.LT.SMAJ2S)THEN
302 X1=XILEE3
303 X2=XCP3
304 SLOPE=SLOPUL
305 CONST=CLE
306 K=KL2
307 SMIN=SMIN2
308 SMAJ=SMAJ2
309 CALL AREAS2
310 APAD=APAD+ABLE
311 ELSE IF(XCP4S.GE.SMAJ2S.AND.XCP4S.LT.SMAJ1)THEN
312 X1=XILEE2
313 X2=XCP3
314 SLOPE=SLOPUL
315 CONST=CLE
316 K=KL1
317 SMIN=SMINI1
318 SMAJ=SMAJ1
319 CALL AREAS2
320 APAD=APAD+ABLE
321 X1=-RADC2
322 X2=XCP3
323 KA=KL2
324 KB=KL1
325 SMINA=SMIN2
326 SMINB=SMINI1
327 SMAJA=SMAJ2
328 SMAJB=SMAJ1
329 CALL AREAS3
330 APAD=APAD-ABEE
331 END IF
332 ELSE IF(XCP2S.LT.SMAJ2S.AND.XCP3S.LT.SMAJ2S)THEN
333 APAD=(XCP2-XCP3)*(YCP2-YCP3)/2.0)+ARS((YE2CP4
334 -YCP2)*(YE2CP2-YE2CP3))
335 END IF
336 END IF
337 IF(XCP4S.GE.SMAJ2S.AND.XCP3S.GE.SMAJ1)THEN
338 IF(XCP4S.LT.SMAJ1)THEN
339 X1=XILEE2
340 X2=XCP4
```

SUBROUTINE AREAS

7474 OPT=0,ROUND=A/S/H/-D,-DS

PAGE 7

FTN 5.1+564

```
341 SLOPE=SLOP10
342 CONST=CIE
343 K=K11
344 SMIN=SMIN1
345 SMAJ=SMAJ1
346 CALL AREAS2
347 APAD=ABLE
348 X1=XCP4
349 X2=RADC1
350 SLOPE=SLOPUL
351 CONST=CLE
352 CALL AREAS2
353 APAD=APAD+ABLE
354 ELSE IF(XCP4S.GE.SMAJ1S)THEN
355 X1=RADC1
356 X2=XCP4
357 SLOPE1=SLOP10
358 SLOPE2=SLOP10
359 CONST1=COE
360 CONST2=CIE
361 CALL AREAS1
362 APAD=ABLL
363 X1=XCP4
364 X2=XCP3
365 SLOPE2=SLOPUL
366 CONST2=CLE
367 CALL AREAS1
368 APAD=APAD+ABLL
369 E10 IF
370 END IF
371 IF(XCP4S.LT.SMAJ2S.AND.CP4IE3.FQ."N".AND.CP4IC2.EQ."N".AND.
372 *CP3IC2.EQ."N".AND.CP3IE3.EQ."N")THEN
373 APAD=((SLOP10*RADC2+C0E)-(XCP3-X10EC2)/2.0+
374 *(YCP3-YCP4)*(XCP3-XCP4)/2.0
375 E10 IF
376 IF(XCP1S.GE.SMAJ1S.AND.XCP2S.GE.SMAJ1S)THEN
377 X1=XCP1
378 X2=XCP2
379 SLOPE1=SLOPUL
380 SLOPE2=SLOP10
381 CONST1=CU
382 CONST2=COE
383 CALL AREAS1
384 APAD=ABLL
385 X1=RADC1
386 X2=XCF1
387 SLOPE1=SLOP10
388 CONST1=CIE
389 CALL AREAS1
390 APAD=APAD+ABLL
391 IF(YC1GFC2.GE.YC2EF2)THEN
392 APAD=APAD
393 ELSE IF(YI0EC2.LT.YC2E2)THEN
394 X1=RADC2
395 X2=RADC1
396 SLOPE=SLOP10
397 CONST=COE
```

SURROUNTAE AREAS 7474 OPT=0,ROUND= A/ S/ M/-D,-DS FTN 5.1+564 11/26/82 14.30.27 PAGE 8

```
398      K=KLI
399      SMIN=SMIN1
400      SMAJ=SMAJ1
401      CALL AREAS2
402      APAD=APAD+ABLE
403      END IF
404      END IF
405      END IF
406      IF(CASE3.EQ."Y")THEN
407        IF(XCP1S.GE.SMAJIS.AND.XCP2S.GE.SMAJIS.AND.XCP3S.GE.SMAJIS.AND.
408        + YILEC1.GE.KLI)THEN
409        CALL CP123
410        APAD=APAD
411        END IF
412        IF(XCP1S.GE.SMAJIS.AND.XCP2S.GE.SMAJIS.AND.YILEC2.GE.YC2E2.AND.
413        + YILEC1.LT.KLI.AND.XCP4S.LT.SMAJIS.AND.YCP4.GE.YE2CP4)THEN
414        CALL CP123
415        APAD=APAD
416        IF(XCP3S.GE.SMAJIS)THEN
417        X1=XILEE2
418        X2=RADC1
419        SLOPE=SLOPUL
420        CONST=CLE
421        K=KLI
422        SMIN=SMIN1
423        SMAJ=SMAJ1
424        CALL AREAS2
425        APAD=APAD+ABLE
426        ELSE IF(XCP3S.LT.SMAJIS)THEN
427        X1=XILEE2
428        X2=XCP3
429        SLOPE=SLOPUL
430        CONST=CLE
431        K=KLI
432        SMIN=SMIN1
433        SMAJ=SMAJ1
434        CALL AREAS2
435        APAD=APAD+ABLE
436        X1=XCP3
437        X2=RADC1
438        SLOPE=SLOPUL
439        CONST=COE
440        K=KLI
441        SMIN=SMIN1
442        SMAJ=SMAJ1
443        CALL AREAS2
444        APAD=APAD+AHLE
445        END IF
446        END IF
447        IF(XCP1S.GE.SMAJIS.AND.XCP2S.GE.SMAJIS.AND.YILEC2.LT.
448        + YC2E2.AND.YILEC2.GE.KL2.AND.XCP3S.GE.SMAJ2S)THEN
449        CALL CP123
450        APAD=APAD
451        IF(XCP3S.GE.SMAJIS)THEN
452        APAD=APAD
453        X1=RADC2
454        X2=RADC2
```

```

455
456 SLOPE=SLOPUL
457 CONST=CLE
458 K=KLI
459 SMAJ=SMINI
460 CALL AREAS2
461 APAD=APAD+ABLE
462 ELSE IF (XCP3S.LT.SMAJIS) THEN
463 X1=XCP3
464 X2=RADC1
465 SLOPE1=SLOPIO
466 SLOPE2=SLOPIO
467 CONST1=CIE
468 CONST2=CIE
469 CALL AREAS1
470 APAD=APAD+ABLE
471 X1=XCP3
472 X2=RADC1
473 SLOPE=SLOPIO
474 CONST=CCE
475 K=KLI
476 SMAJ=SMINI
477 SMAJ=SMAJ1
478 CALL AREAS2
479 APAD=APAD+ABLE
480 X1=RADC2
481 X2=XCP3
482 SLOPE=SLOPUL
483 CONST=CLE
484 CALL AREAS2
485 APAD=APAD+ABLE
486 END IF
487 IF (XCP1S.GE.SMAJIS.AND.XCP2S.GE.SMAJIS.AND.YILEC2.LT.
488 KL2.AND.CP3IE3.EQ."N".AND.CP3IC2.EQ."N".AND.CP3IE2.EQ."N")
489 THEN
490   CALL CP123
491 APAD=APAD
492 APAD=APAD
493 X1=RADC2
494 X2=SLOPUL
495 CONST=CLE
496 K=KLI
497 SMAJ=SMINI
498 SMAJ=SMAJ1
499 CALL AREAS2
500 APAD=APAD+ABLE
501 X1=XILE3
502 X2=RADC2
503 SLOPE=SLOPUL
504 CONST=CLE
505 K=KLI2
506 SMAJ=SMINI2
507 SMAJ=SMAJ2
508 CALL AREAS2

```

AD-A127 415

MODELING OF DIFFUSE PHOTOMETRIC SIGNATURES OF
SATELLITES FOR SPACE OBJECT. (U) AIR FORCE INST OF TECH
WRIGHT-PATTERSON AFB OH SCHOOL OF ENGI.. J D RASK
UNCLASSIFIED DEC 82 AFIT/GSO/PH/82D-3

3/3

F/G 22/3

NL


```

APAD=APAD+ABLE
ELSE IF(XCP3S.LT.SMAJ1S.AND.XCP3S.GE.SMAJ2S) THEN
  X1=XCP3
  X2=RADC1
  SLOPE1=SLOPIO
  SLOPE2=SLOPIO
  CONST1=CIE
  CONST2=COE
  CALL AREAS1
  APAD=APAD+ABLL
  X1=XCP3
  X2=RADC2
  SLOPE=SLOPIO
  CONST=COE
  K=KL1
  SHIN=SMINI
  SMAJ=SMAJ1
  CALL AREAS2
  APAD=APAD+ABLE
  X1=RADC2
  X2=XCP3
  SLOPE=SLOPUL
  CONST=CLE
  CALL AREAS2
  APAD=APAD+ABLE
  X1=XILEE3
  X2=RADC2
  K=KL2
  SHIN=SMIN2
  SMAJ=SMAJ2
  CALL AREAS2
  APAD=APAD+ABLE
  ELSE IF(XCP3S.LT.SMAJ2S) THEN
    X1=XCP3
    X2=RADC1
    SLOPE1=SLOPIO
    SLOPE2=SLOPIO
    CONST1=CIE
    CONST2=COE
    CALL AREAS1
    APAD=APAD+ABLL
    X1=RADC2
    X2=RADC1
    SLOPE=SLOPIO
    CONST=COE
    K=KL1
    SHIN=SMINI
    SMAJ=SMAJ1
    CALL AREAS2
    APAD=APAD+ABLE
    X1=XCP3
    X2=RADC2
    SLOPE=SLOPIO
    CONST=COE
    K=KL2
    SHIN=SMIN2
    SMAJ=SMAJ2

```

11/26/82 18:30:27 PAGE 11

FTN 5.1+564

OPT=0,ROUND= A/ S/ M/-D,-OS

SUBROUTINE AREAS

```
569      CALL AREAS2
570      APAD=APAD+ABLE
571      X1=XILEE3
572      X2=XCPC3
573      SLOPE=SLOPUP
574      CONST=CLE
575      CALL AREAS2
576      APAD=APAD+ABLE
577      END IF
578      END IF
579      IF(CASE4.EQ."Y")THEN
580          APAD=ARPAD+COS(ALPHAP)
581      END IF
582      IF(CASE0.EQ."W" .AND. CASE1.EQ."W" .AND. CASE2.EQ."W"
583      * .AND. CASE3.EQ."W" .AND. CASE4.EQ."W")THEN
584          PHI=PHI+2.0*ACOS(-1.0)/360.0
585          APAD=ARPAD+COS(PHI)-ABS(RADC1-XPIV)*PADWD*SIN(XI)
586          IF(APAD.LE.0.0)THEN
587              APAD=0.0
588          END IF
589          PHI=PHI+360.0/(2.0*ACOS(-1.0))
590          END IF
591      END IF
592
```

```

1      SUBROUTINE CONE
2      COMMON/MCNEC/HI,HJ,HK,VCI,VCJ,VCK
3      COMMON/VECTR2/LOST,LCSJ,LOSJ,ECI,ECJ,ECK,SUNI,SUNK
4      *MAG1,MAG2,MAG3,MAGA
5      COMMON/ANGLE/ALPHA,BETA,ALPHAH,BETAH
6      COMMON/CJNIC/HAFANG,CONHIT,SLEN,ARINC,CNI,CHJ,CMK,IRcone.
7      *BASRAD,NOSRAD,REFCON
8      COMMON/Tcone/CON,TCON
9      REAL HI,HJ,HK,VCI,VCJ,VCK,ECI,ECJ,ECK,
10     *SUNI,SUNK,SUMJ,SUMK,PHI,MAG1,MAG2,MAG3,MAGA,ALPHAH,
11     *BETAH,ALPHAN,BETAN,NOSRAD,HAFANG,CONHIT,SLEN,ARINC,CNI,
12     *CNJ,CMK,IRcone,BASRAD,CMEGA
13     CHARACTER CON,TCON
14
15     C   SET INCREMENTAL ANGLE OF SEPARATION BETWEEN CONIC NORMALS.
16     CMEGA=.0314159265
17     C   CALCULATE THE AREA OF A SURFACE INCREMENT.
18     IF(ICON.EQ.'Y')THEN
19       ARINC=(2.*C*ACOS(-1.0)*BASRAD/200.0)*CONHIT/2.0
20     ELSE IF(TCON.EQ.'Y')THEN
21       ARINC=((2.0*ACOS(-1.0)*BASRAD/200.0)-(2.0*ACOS(-1.0)
22     *NOSRAD/200.0))/SLEN/2.0
23
24     C   APPROXIMATE THE CONIC REFLECTED IRRADIANCE
25     COUNT=1
26     IRcone=0.0
27     IF((COUNT.LE.200)THEN
28       CNI=COS(HAFANG)*(COS(CMEGA)*ECI+SIN(CMEGA)*HI)+*
29       *SIN(HAFANG)*VCI
30       CNJ=COS(HAFANG)*(COS(CMEGA)*ECI+SIN(CMEGA)*HJ)+*
31       *SIN(HAFANG)*V CJ
32       CMK=COS(HAFANG)*(COS(CMEGA)*ECK+SIN(CMEGA)*HK)+*
33       *SIN(HAFANG)*VCK
34       ALPHAN=ACOS((CNI*LOSI+CNJ*LOSJ+CMK*SUNK)/
35       *(SQR(CNI)**2+CNJ**2+CMK**2)+SQR((LOSI**2+LCSJ**2+
36       *LOSK**2)))
37       BETAN=ACOS((-1.0)-ACOS((CNI*SUNI+CHJ*SUNK+CMK*SUNK)/
38       *(SQR(CNI)**2+CNJ**2+CMK**2)+SQR((SUNI**2+SUNK**2+
39       *SUNK**2)))
40       ALPHAN=ALPHAN*360.0/(2.0*ACOS(-1.0))
41       BETAN=BETAN*360.0/(2.0*ACOS(-1.0))
42     IF(ALPHAN.LT.90.0.AND.BETAN.LT.90.0)THEN
43       ALPHAN=ALPHAN*2.0*ACOS(-1.0)/360.0
44       BETAN=BETAN*2.0*ACOS(-1.0)/360.0
45       IRcone=IPcone*REFCON*ARINC*COS(ALPHAN)*COS(BETAN)/
46       *(ACOS(-1.0)*1.0E12)
47     END IF
48     COUNT=COUNT+1
49     OMEGA=OMEGA+OMEGA
50     GO TO 200
51   END IF
52   END

```

```

1 SUBROUTINE SIGA1
2   C CALCULATES THE ABSOLUTE VISUAL MAGNITUDE OF AN EARTH-CEN'ER
3   C STABLE CYLINDRICAL SATELLITE WITH ENDPLATES. RANGE IS NORMALIZED
4   C TO 1000 KILOMETERS
5   COMMON/VECTR2/LOSJ,LOSK,ECI,SECJ,ECK,SUMI,SUNJ,SUNK,PHI,MAG1,
6   *MAG2,MAG3,MAG4
7   COMMON/ANGLE/ALPHA,BETA,ALPHAM,BETAH
8   COMMON/COUNTR/M,N,QPRIME
9   COMMON/SIGAPTS/TRUSIG(1:1000),SIMAI(1:500),SIMBI(1:500),
10  *SIMC1(1:500),SIMD1(1:500)
11  COMMON/STATS/MU,SIGMA,SSR
12  REAL AREAC,AREAP,RADIUS,LENGTH,REFP,REFC,ALPHA,BETA,THETA,IRCYL,
13  *IRPLT,LOSJ,LOSK,ECI,ECJ,ECK,SUMI,SUNJ,SUNK,PHI,MAG1,MAG2,
14  *MAG3,MAG4
15  INTEGER N,QPRIME
16  C INPUT DATA FOR SIGA1
17  REF C= .06
18  REFP=.2C
19  RADIUS=1.0
20  LENGTH=2.5
21  C CALCULATE FLAT PROJECTED AREAS ALONG SURFACE NORMALS.
22  AREAC=2*RADIUS*LENGTH
23  AREAP=ACOS(-1.0)*RADIUS**2
24  C FIND OPTICAL VIEWING ANGLES, ALPHA AND BETA
25  CALL ANGLES
26  C CALCULATE THETA AND CYLINDER IRRADIANCE.
27  ALPHA=ALPHA*.360.0/(12.0*ACOS(-1.0))
28  BETA=BETA*.360.0/(12.0*ACOS(-1.0))
29  IF(ALPHA.NE.0.0.AND.BETA.NE.180.0.AND.BETA.NE.0.0)AND.
30  *BETA.NE.180.0)THEN
31  ALPHA=ALPHA*2.0*ACOS(-1.0)/360.0
32  BETA=BETA*2.0*ACOS(-1.0)/360.0
33  THETA=ACOS((COS(PHI)*2.0*ACOS(-1.0)/360.0)-COS(ALPHA)*COS(BETA))
34  */(SIN(ALPHA)*SIN(BETA))
35  IRCYL=REFC*AREAC*SIN(ALPHA)*SIN(BETA)*(SIN(THETA)*(ACOS(-1.0)
36  *-THETA)*COS(THETA))/(4.0*(ACOS(-1.0))*1.0E12)
37  ELSE
38  ALPHA=ALPHA*2.0*ACOS(-1.0)/360.0
39  BETA=BETA*2.0*ACOS(-1.0)/360.0
40  IRCYL=0.0
41  END IF
42  C CALCULATE ENDPLATE IRRADIANCE
43  IRPLT=REFP*AREAP*(COS(ALPHA)*COS(BETA)/(ACOS(-1.0)*1.0E12))
44  MAG1=-26.76-2.5*ALOG10(IRCYL+IRPLT)
45  SIMAI(M)=MAG1
46  END

```

```

1 SUBROUTINE SIGBL
2 COMMON/GEOM/XCP1,YCP1,XCP2,YCP2,XCP3,YCP3,XCP4,YCP4,MU1,KUI,
3   *KL1,KL2,KL2,SMIN1,SMIN2,SMAJ1,SMAJ2,SL0P10,SL0PUL,
4   *CIE,COE,CLE,YIUEC1,YIUEC2,YIUEE2,YIUEE3,YILEC1,YILEC2,
5   *YIIEE2,YIIEE3,YIIEC1,YIIEC2,YIIEE2,YIIEE3,YIIEC1,
6   *YIIEC2,YIIEE2,YIIEE3,XIUEE3,XIUEE2,XIUEE3,XIUEE2,
7   *XIUEE3,XIUEE2,XIUEE3,XIUEE2,XIUEE3,XIUEE3,XIUEE2,
8   *YE2CP2,YE2CP3,YE2CP4,YE3CP1,YE1CP1,YE1CP2,YE3CP2,YE3CP1,
9   *XCP2S,XCP3S,XCP4S,SMAJ1S,SMAJ2S,YC2E2,YE1CP,YE2CP,YE3CP,
10  *XCP,RADC1,RADC2,PAUSEP,PADEPN,PAWID,LENC1,LENC2
11  COMMON/CASNBR/CASE0,CASE1,CASE2,CASE3,CASE4
12  COMMON/VECTR2/LOS1,LOSJ,LOSJ,ECI,ECJ,ECK,SUNI,SUNJ,SUNK,PHI,MAG1,
13  *MAG2,MAG3,MAG4
14  COMMON/PLATE/ALPHAP,ARPAD,APAD
15  COMMON/Angle/ALPHA,BETA,ALPHAM,BETAH
16  COMMON/COUNTR/M,N,QPRIME
17  COMMON/SIGPTS/TRUSIG(1:10000),SIMBL(1:5000),
18  *SIMC(1:500),SIMD(1:500)
19  COMMON/STATS/MU,SIGMA,SSR
20  COMMON/AREA/X1,X2,CONST,CONST2,SLOPE,SLOPE1,SLOPE2,
21  *K*KA*KB*SMIN1,SMIN2,SMIN3,SMIN4,SMAJ1,SMAJ2,SMAJ3,SMAJ4,ABLL,
22  *ABLE,ABEE
23  REAL LOS1,LOSJ,LOSJ,ECI,ECJ,ECK,SUNI,SUNJ,SUNK,PHI,AREAC1,
24  *AREAC2,AREAC3,RADC1,RADC2,RADC3,AREAP1,AREAP2,AREAP3,PAOLEN,
25  *PAWID,PAUSEP,ARPAD,PADEPN,REFC1,REFC2,REFC3,REFP1,REFP2,
26  *REFP3,APAR,REFPAR,IRCYL1,IRCYL2,IRCYL3,IRPAD,IRBODY,ALPHA,
27  *BETA,THETA,ALPHAP,BETAP,LENCL,LENCL2,LENCL3,IRPLT1,IRPLT2,
28  *INPLT3,BETD6,MAG1,MAG2,MAG3,MAG4,MU,SIGMA,SSR,XCP1,YCP1,
29  *XCP2,YCP3,XCP4,YCP5,XCP6,YCP7,XCP8,YCP9,XCP10,YCP11,YCP12,
30  *KL1,SMIN1,SMIN2,SMAJ1,SMAJ2,SL0P10,SL0PUL,CIE,COE,
31  *CIE,CLE,YIUEC1,YIUEC2,YIUEE2,YIUEE3,YILEC1,YILEC2,
32  *YIIEE2,YIIEE3,YIIEC1,YIIEC2,YIIEE2,YIIEE3,YIIEC1,
33  *XIUEE3,XIUEE2,XIUEE3,XIUEE2,XIUEE3,XIUEE2,XIUEE3,XIUEE2,
34  *YE2CP2,YE2CP3,YE2CP4,YE3CP1,YE1CP1,YE1CP2,YE3CP2,YE3CP1,
35  *XCP2S,XCP3S,XCP4S,SMAJ1S,SMAJ2S,YC2E2,YE1CP,YE2CP,YE3CP,
36  *XCP
37  CHARACTER CASE0,CASE1,CASE2,CASE3,CASE4
38  INTEGER N,QPRIME
39  SATELLITE MODEL INPUT PARAMETERS
40
41  REF C1=.42
42  REF C2=.42
43  REF C3=.42
44  PAOLEN=1.25
45  PAWID=.60
46  LENCL=2.4
47  REF P1=.20
48  RADC2=.50
49  LENCL2=1.25
50  REF P2=.20
51  RADC3=.25
52  LENCL3=.10
53  REF P3=.20
54  PAWID=2.4
55  PAOLEN=3.125

```

```

56      PADSEP=.10
57      C CALCULATE FLAT PROJECTED AREAS OF COMPONENTS ALONG SURFACE
58      C NORMALS. SHADOWS ARE MODELLED FOR ENDPLATES.
59      AREAC1=2.0*RADC1*LENC1
60      AREAC2=2.0*RADC2*LENC2
61      AREAC3=2.0*RADC3*LENC3
62      AREAP3=ACOS(-1.0)*RADC3**2-ACOS(-1.0)**0.04
63      AREAP2=ACOS(-1.0)*RADC2**2-(AREAP3+ACOS(-1.0)**0.04)
64      AREAP1=ACOS(-1.0)*RADC1**2-(AREAP2+AREAP3)
65      ARPAD=PADND*PADLEN
66      C FIND OPTICAL VIEWING ANGLES ALPHA AND BETA
67      C CALL ANGLES
68      C CALCULATE THETA AND CYLINDER IRRADIANCES
69      ALPHA=ALPHA*360.0/(2.0*ACOS(-1.0))
70      BETA=BETA*360.0/(2.0*ACOS(-1.0))
71      IF (ALPHA .NE. 0.0 .AND. ALPHA .NE. 180.0 .AND. BETA .NE. 0.0 .AND.
72      * BETA .NE. 180.0) THEN
73      ALPHA=ALPHA*2.0*ACOS(-1.0)/360.0
74      BETA=BETA*2.0*ACOS(-1.0)/360.0
75      THETA=ACOS((COS(PHI)*2.0*ACOS(-1.0)/360.0)-COS(ALPHA)*COS(BETA))
76      *(SIN(ALPHA)*SIN(BETA)))
77      IRCPY1=REFC1*AREAC1*SIN(ALPHA)*SIN(BETA)*(SIN(THETA)*(ACOS(-1.0)
78      *-THETA))*COS(THETA)/(4.0*ACOS(-1.0)*1.0E12)
79      IRCPY2=REFC2*AREAC2*SIN(ALPHA)*SIN(BETA)*(SIN(THETA)*(ACOS(-1.0)
80      *-THETA))*COS(THETA)/(4.0*ACOS(-1.0)*1.0E12)
81      IRCPY3=REFC3*AREAC3*SIN(ALPHA)*SIN(BETA)*(SIN(THETA)*(ACOS(-1.0)
82      *-THETA))*COS(THETA)/(4.0*ACOS(-1.0)*1.0E12)
83      ELSE
84      ALPHA=ALPHA*2.0*ACOS(-1.0)/360.0
85      BETA=BETA*2.0*ACOS(-1.0)/360.0
86      IRCPY1=0.0
87      IRCPY2=0.0
88      IRCPY3=0.0
89      END IF
90      C CALCULATE ENDPLATE IRRADIANCES
91      IRP1=REFP1*(AREAP1*1.344)*COS(ALPHA)*COS(BETA)/(ACOS(-1.0)*
92      *1.0E12)
93      BETDEG=BETTA*360.0/(12.0*ACOS(-1.0))
94      IF (BETDEG.GT.45.0) THEN
95      IRP12=REFP2*(AREAP2*1.308)*COS(ALPHA)*COS(BETA)/(ACOS(-1.0)
96      *1.0E12)
97      ELSE IF (BETDEG.LE.45.0) THEN
98      IRP12=REFP2*(AREAP2*(ACOS(-1.0)*RADC3*(.1*COS(BETA)+RADC3))
99      *(2.0-.0982))+COS(ALPHA)*COS(BETA)/(ACOS(-1.0)*1.0E12)
100     END IF
101     IRPLT3=REFP3*AREAP3*COS(ALPHA)*COS(BETA)/(ACOS(-1.0)*1.0E12)
102     C CALCULATE DIFFUSE IRRADIANCE OF ONE UNOBSCURED SOLAR PADDLE
103     IF (PHI.GE.90.0) THEN
104     IRPAD=0.0
105     ELSE IF (PHI.LT.90.0) THEN
106     ALPHAP=PHI*2.0*ACOS(-1.0)/360.0
107     BETAP=PHI*0.0
108     IRPAD=PADREF*ARPAD*COS(ALPHAP)*COS(BETAP)/
109     *(ACOS(-1.0)*1.0E12)
110     C CALCULATE THE EXPOSED PROJECTED AREA OF THE OTHER PADDLE.
111     CALL GEOM1
112     CALL CASES

```

SUBROUTINE SIGRI 74/74 SPT=0, NOUNO= A / S / M/-D,-DS FTN 5.1+564 11/26/82 18.30.27 PAGE 3

```
113      CALL AREA5
114      C      CALCULATE TOTAL PADDLE IRADIANCE
115      C      IRPAD=IPPAD+PADREF*PAD+COS(BETA)*((ACOS(-1.0))+1.0E12)
116      E.O. IF
117      C      COMBINE THE IRRADIANCES TO OBTAIN A TOTAL IRRADIANCE AND A
118      C      MAGNITUDE.
119      C      IPBODY=IPCYL1+IRPLT1+IRCYL2+IRPLT2+IRCYL3+IPPLT3
120      C      MAG2=-26.78-2.5*ALG610(IPBODY+IPPAD)
121      C      IRPH1(M)=MAG2
122      E.O.
```

```

1      SUBROUTINE SIGCL
2      C   CALCULATES THE VISUAL STELLAR MAGNITUDE OF AN HORIZON
3      C   STABLE TYPE C1 SATELLITE.
4      COMMON/TCONE/CON,TCCN
5      COMMON/CNIC/HAFANG,COMHIT,SLEN,ARINC,CNI,CNJ,CNK,IPCONE,
6      *BASRAD,NCRAD,PEFCON,
7      COMMON/HORVEC/HJ,HK,VCI,VCJ,LOSJ,LOSK,ECI,ECJ,ECK,VCK
8      COMMON/VECTR2/LOSI,LOSJ,LOSK,ECI,ECJ,ECK,SUNJ,SUNK,PHI,
9      *MAG1,MAG2,MAG3,MAG4
10     COMMON/ANGLE/ALPHA,BETA,ALPHAH,BETAH
11     COMMON/COUNTR/M,N,QPRIME
12     COMMON/SIGPTS/TRUSIG(1:1000),SIMAI(1:500),SIMBI(1:500),
13     *SIMC1(1:500),SIMD1(1:500)
14     COMMON/STATS/MU,SIGMA,SSR
15     REAL HJ,HK,VCI,VCJ,WCJ,WCK,LOSI,LOSJ,ECI,ECJ,ECK,
16     *SUNJ,SUNK,PH1,MAG1,MAG2,MAG3,MAG4,ALPHA,BETA,ALPHAH,
17     *BETAH,THETAH,OMEGA,MU,SIGMA,SSR,RADIUS,LEN1,LEN2,PLTWID,
18     *PLTLEN,HAFANG,COMHIT,SLEN,ARINC,CNI,CNJ,CNK,IPCONE,REF1,
19     *REF2,REFPLT,REFCON,IRC1,IRC2,IRPLT,NOSRAD,BASRAD
20     CHARACTER CON,TCON
21     INTEGER M,N,QPRIME
22     SATELITE MODEL INPUT PARAMETERS:
23
24     C   RADIUS=.6
25     C   REF1=.8
26     C   REF2=.02
27     C   REFPLT=.05
28     PLTLEN=10.0
29     PLTWID=.5
30     LEN1=4.5
31     LEN2=2.5
32     CON='W'
33     TCON='Y'
34     HAFANG=2101661565
35     COMMIT=2.0
36     SLEN=COMHIT/COS(HAFANG)
37     REFCON=.02
38     BASRAD=RADIUS
39     NOSRAD=.25
40
41     C   CALCULATE PLATE IRRADIANCE
42     C   IRPLT=REFPLT*PLTLEN*PLTWID*COS(ALPHA)*COS(BETA)/
43     *ACOS(-1.0*1.0E12)
44     C   CALCULATE CYLINDER IRRADIANCES
45     ALPHAH=ALPHAH+360.0/(2.0*ACOS(-1.0))
46     BETAH=BETAH+360.0/(2.0*ACOS(-1.0))
47     IF(ALPHAH.NE.0.0.AND.BETAH.NE.180.0.AND.BETAH.NE.0.0
48     *AND.BETAH.NE.180.0)THEN
49     ALPHAH=ALPHAH+2.0*ACOS(-1.0)/360.0
50     BETAH=BETAH+2.0*ACOS(-1.0)/360.0
51     THETAH=ACOS((COS(PHI)*2.0*ACOS(-1.0)/360.0)-COS(ALPHAH)*
52     *COS(BETAH))/(SIN(ALPHAH)*SIN(BETAH))
53     IRC1=REF1*2.0*RADIUS*LEN1*SIN(ALPHAH)*SIN(BETAH)*
54     *(COS(THETAH)*(ACOS(-1.0)-THETAH)*COS(THETAH))/
55     *(4.0*ACOS(-1.0)*1.0E12)

```

SUBROUTINE S16C1 74/14 OPT=0,POUND= A/ S/ M/-D,-DS FTN 5.0+564 11/26/82 1A.30.27 PAGE 2

```

56      IPC2=EF2*2.0*RADIUS*LEN2*SIN(ALPHAH)*SIN(BETAH)*
57      * (SIN(THETAH)*(ACOS(-1.0)-THETAH)*COS(THETAH))/*
58      * (4.0*(ACOS(-1.0))-1.0E12)
59      ELSE
60      ALPHAH=ALPHAH*2.0*ACOS(-1.0)/360.0
61      BETAH=BETAH*2.0*ACOS(-1.0)/360.0
62      IFC1=0.0
63      IPC2=0.0
64      END IF
65      C      CALCULATE CONIC IRRADIANCE
66      C      CALCULATE MAGNITUDE
67      IRCONE=0.0
68      MAG3=-26.78-2.5*ALOG10((IRC1+IRC2+IRPLT)+IRCONE)
69      S16C1(M)=MAG3
70      END
  
```

```

1      SUBROUTINE SIGDI
2      C   CALCULATES THE MAGNITUDE OF A SPHERICAL SATELLITE.
3      C   COMMON/VECTR2/LOSJ,LOSJK,ECJ,ECK,SUMJ,SUMK,PHI,MAG1,
4      C   *MAG2,MAG3,MAG4
5      C   COMMON/COUNTR/M,N,QPRIME
6      C   COMMON/SIGPTS/TRUST1(1:1000),SIMMA1(1:500),SIMBI1(1:500),
7      C   *SIMC1(1:500),SIMD1(1:500)
8      C   COMMON/STATS/MU,SIGMA,SSR
9      C   REAL LOSJ,LOSJK,ECJ,ECK,SUMJ,SUMK,PHI,MAG1,
10     C   *MAG2,MAG3,MAG4,MU,SIGMA,SSR,DIAM,SPEREF,DIFREF,IIRSPH
11     INTEGER N,M,QPRIME
12     C   SATELLITE MODEL INPUT PARAMETERS
13     DIAM=1.0
14     SPEREF=.6
15     DIFREF=.2
16     C   CALCULATE THE TOTAL IRRADIANCE AND VISUAL MAGNITUDE OF THE
17     C   SPHERE.
18     PHI=PHI*2.0*ACOS(-1.0)/360.0
19     IIRSPH=(DIAM**2/1.0E12)*(SPEREF/16.0*DIFREF/(16.0*ACOS(-1.0))*
20     C   SIN(PHI)*(ACOS(-1.0)-PHI)+COS(PHI))
21     PHI=PHI*360.0/(2.0*ACOS(-1.0))
22     MAG4=-26.76-2.5*ALOG10(IIRSPH)
23     SIMD1(M)=MAG4
24     END

```

```

1      SUBROUTINE COMPAR
2          REAL DEVSIG(1:500),SIMSIG(1:500)*MEAN(1:25)*STDEV(1:25)*
3          *SMSR(1:25)*SUMDEV,MU,SIGMA,SSR,SUMSQ
4          INTEGER N,L,Q,QPRIME
5          COMMON/COUNTR/M,N,QPRIME
6          COMMON/SIGPTS/TRUSIG(1:1000),SIMAI(1:500),SIMBI(1:500)*
7              SIMC1(1:500),SIMD1(1:500)
8          COMMON/STATS/MU,SIGMA,SSR
9          DO 123 Q=1,QPRIME
10         IF(Q.EQ.1)THEN
11             DO 111 L=1,N
12                 SIMSIG(L)=SIMAI(L)
13                 CONTINUE
14                 ELSE IF(Q.EQ.2)THEN
15                     DO 113 L=1,N
16                         SIMSIG(L)=SIMB1(L)
17                         CONTINUE
18                         ELSE IF(Q.EQ.3)THEN
19                             DO 115 L=1,N
20                                 SIMSIG(L)=SIMC1(L)
21                                 CONTINUE
22                                 ELSE
23                                     DO 114 L=1,N
24                                         SIMSIG(L)=SIMD1(L)
25                                         CONTINUE
26                                         END IF
27                                         DO 117 L=1,N
28                                             DEVSIG(L)=SIMSIG(L)-TRUSIG(2*L)
29                                             CONTINUE
30                                             SUMDEV=0.0
31                                             DO 119 L=1,N
32                                                 SUMDEV=SUMDEV+DEVSIG(L)
33                                                 CONTINUE
34                                                 MU=SUMDEV/(N+1.0)
35                                                 MEAN(Q)=MU
36                                                 SUMSQ=0.0
37                                                 DO 121 L=1,N
38                                                     SUMSQ=SUMSQ+DEVSIG(L)**2
39                                                     CONTINUE
40                                                     SIGMA=SQR((SUMSQ/(N+1.0))-MU**2)
41                                                     SDEV(Q)=SIGMA
42                                                     SSR=SUMSQ/SIGMA
43                                                     SMSR(Q)=SSR
44                                                     CONTINUE
45                                                     PRINT*
46                                                     PRINT*," STATISTICAL RESULTS SUMMARY"
47                                                     PRINT*
48                                                     PRINT*," SATELLITE MODEL"
49                                                     PRINT*," SIGAI      SIGC1      SIGD1"
50                                                     PRINT*
51                                                     PRINT 133,MEAN(1),MEAN(2),MEAN(3)
52                                                     FORMAT(" MU: ",F12.3,F12.3,F12.3)
53                                                     PRINT*
54                                                     PRINT*
55                                                     PRINT 135,STDEV(1),STDEV(2),STDEV(3),STDEV(4)

```

SUBROUTINE COMPAR 74/74 OPT=0,ROUND= A/ S/ M/-D+-DS FTN 5.1+564

```
135  FORMAT(“SIGMA: ”,F12.3,F12.3,F12.3)
56   PRINT*
57   PRINT*
58
59   PRINT 137,SMSR(1),SMSR(2),SMSR(3),SMSR(4)
60   FORMAT(“
61   SSR: ”,F12.3,F12.3,F12.3,F12.3)
137  END
```

11/26/82 18.30.27 PAGE 2

Appendix B

Solar Paddle Obscuration Algorithm Used by Subroutines

GEOM1, CASES and AREAS

The satellite model SIGB1 includes two sun-tracking solar paddles. Unless the satellite is observed on or near the meridian which passes through the sensor's south point, one solar paddle will be totally visible to the sensor, but the other will be partly blocked from view by the satellite's main body. This algorithm first determines the true orientation of the satellite and solar paddles with respect to the sensor, in three dimensions and then projects the points, lines and curves which define the outline of the satellite into a plane perpendicular to the line of sight vector, \bar{l} , referred to as the optical image plane. A two-dimensional x-y coordinate system is defined in the optical image plane with the y-axis always lying along the projection into the plane of the orbital radius vector, \bar{r} , and the x-axis orthogonal to y and positive to the sensor's right. The origin is located at the mid-point of the satellite's main body cylinder. Figure B-1 will be a helpful aid to visualization throughout the remainder of this algorithm description.

The projected exposed area calculation is performed after the program has determined the x-y coordinates of the paddle corners, equations for the lines and ellipses which define the satellite body, and the angles

Figure B-1 Paddle Obscuration Geometry

between the paddle edges and the x and y-axes. The algorithm proceeds as follows:

Determine Key Vectors

By the time GEOM1 is called, the line of sight, $\hat{\mathbf{I}}$, the orbital radius vector $\bar{\mathbf{r}}$, and the sun vector $\overline{\text{SUN}}$ are known. We must determine the paddle axis vector $\overline{\mathbf{PA}}$, and the paddle edge vector $\overline{\mathbf{PE}}$:

$\overline{\mathbf{PA}}$ is orthogonal to $\bar{\mathbf{s}}$, since $\bar{\mathbf{s}}$ is normal to the solar paddle, and to $\bar{\mathbf{r}}$, since $\bar{\mathbf{r}}$ is the body longitudinal axis of symmetry. Therefore:

$$\begin{aligned}\overline{\mathbf{PA}} &= \bar{\mathbf{r}} \times \overline{\text{SUN}} = \begin{bmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ r_i & r_j & r_k \\ \text{sun}_i & \text{sun}_j & \text{sun}_k \end{bmatrix} \\ &= (r_j \text{sun}_k - \text{sun}_j r_k) \hat{\mathbf{i}} - (r_i \text{sun}_k - \text{sun}_i r_k) \hat{\mathbf{j}} + (r_i \text{sun}_j - \text{sun}_i r_j) \hat{\mathbf{k}} \\ &= (\mathbf{PA}_i) \hat{\mathbf{i}} + (\mathbf{PA}_j) \hat{\mathbf{j}} + (\mathbf{PA}_k) \hat{\mathbf{k}}\end{aligned}$$

$\overline{\mathbf{PE}}$ is orthogonal to $\bar{\mathbf{s}}$ and to $\overline{\mathbf{PA}}$, therefore:

$$\begin{aligned}\overline{\mathbf{PE}} &= \overline{\text{SUN}} \times \overline{\mathbf{PA}} = \begin{bmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ \text{sun}_i & \text{sun}_j & \text{sun}_k \\ \mathbf{PA}_i & \mathbf{PA}_j & \mathbf{PA}_k \end{bmatrix} \\ &= (\text{sun}_j \mathbf{PA}_k - \mathbf{PA}_j \text{sun}_k) \hat{\mathbf{i}} - (\text{sun}_i \mathbf{PA}_k - \mathbf{PA}_i \text{sun}_k) \hat{\mathbf{j}} + (\text{sun}_i \mathbf{PA}_j - \mathbf{PA}_i \text{sun}_j) \hat{\mathbf{k}} \\ &= (\mathbf{PE}_i) \hat{\mathbf{i}} + (\mathbf{PE}_j) \hat{\mathbf{j}} + (\mathbf{PE}_k) \hat{\mathbf{k}}\end{aligned}$$

Determine Key Angles

Known angles at this point are sensor aspect angle, α and solar aspect angle, β . We must now find the angle between the paddle axis and the line of sight, ζ , the angle between the paddle edge vector and the line of sight, ξ , the projected paddle tilt angle, η , and the projected paddle rotation angle, ψ .

$$\zeta = \cos^{-1} \left[\frac{\mathbf{l}_i \cdot \mathbf{PA}_i + \mathbf{l}_j \cdot \mathbf{PA}_j + \mathbf{l}_k \cdot \mathbf{PA}_k}{|\mathbf{l}| |\mathbf{PA}|} \right]$$

$$\xi = \cos^{-1} \left[\frac{\mathbf{l}_i \cdot \mathbf{PE}_i + \mathbf{l}_j \cdot \mathbf{PE}_j + \mathbf{l}_k \cdot \mathbf{PE}_k}{|\mathbf{l}| |\mathbf{PE}|} \right]$$

ζ (zeta) and ξ (xi) will be used to obtain paddle dimensions projected into the optical image plane. Obtaining the angles ψ (psi) and η (eta) is less straightforward.

ψ may be viewed as the angle between two planes, both containing \mathbf{l} . The first plane contains \mathbf{l} and \bar{r} , and the second plane contains \mathbf{l} and $\bar{\mathbf{PA}}$. Since the sensor is looking down \mathbf{l} , it sees both planes edge-on. The lines of intersection of these two planes with the optical image plane are the two lines which we see as the projected paddle axis and radius vector, depicted in Figure B-1. To obtain ψ , the angle between these

two vectors in the image plane, we determine the angle between the two planes by finding their normals and the angle between them.

$$\bar{N}_1 = \bar{l} \times \bar{r} = \begin{bmatrix} \hat{i} & \hat{j} & \hat{k} \\ l_i & l_j & l_k \\ r_i & r_j & r_k \end{bmatrix}$$

$$\begin{aligned} &= (l_i r_k - r_j l_k) \hat{i} - (l_i r_k - r_i l_k) \hat{j} + (l_i r_j - r_i l_j) \hat{k} \\ &= (N_{1i}) \hat{i} + (N_{1j}) \hat{j} + (N_{1k}) \hat{k} \end{aligned}$$

Note that \bar{N}_1 is parallel to the x-axis. In like manner,

$$\bar{N}_2 = \bar{P}\bar{A} \times \bar{l} = (N_{2i}) \hat{i} + (N_{2j}) \hat{j} + (N_{2k}) \hat{k}$$

Therefore, ψ is given by

$$\psi = \cos^{-1} \left[\frac{(N_{1i})(N_{2i}) + (N_{1j})(N_{2j}) + (N_{1k})(N_{2k})}{|\bar{N}_1| |\bar{N}_2|} \right]$$

η may also be viewed as the angle between two planes containing \bar{l} . The first plane contains \bar{l} and $\bar{P}\bar{E}$ and the second contains \bar{l} and \bar{r} . We find the normal to the plane containing \bar{l} and $\bar{P}\bar{E}$ thusly:

$$\bar{N}_3 = \bar{l} \times \bar{P}\bar{E} = (N_{3i}) \hat{i} + (N_{3j}) \hat{j} + (N_{3k}) \hat{k}$$

and

$$\eta = \cos^{-1} \left[\frac{(N_{1i})(N_{3i}) + (N_{1j})(N_{3j}) + (N_{1k})(N_{3k})}{|\bar{N}_1| |\bar{N}_3|} \right]$$

Determine x-y Coordinates of Paddle Corners

First, locate the paddle pivot point depicted in Figure B-1. The x-coordinate will be called XPIV, and the y-coordinate will be called YPIV. Corner points will have coordinates XCP1, YCP1 through XCP4, YCP4. These are also the FORTRAN variable names for these points.

$XPIV = \sin \psi \sin \xi (r_1 + p)$ where r_1 is the main cylinder radius and p is the separation between the cylinder side and the inner edge of the paddle. Note that $\sin (r_1 + p)$ is the length in the optical image plane of the line segment from the origin to the pivot point.

$$YPIV = -\cos \psi \sin \xi (r_1 + p)$$

Next, we locate the paddle corners

$XCP1 = XPIV + \sin \eta \sin \xi (W/2)$ where W is paddle width, and $\sin \xi (W/2)$ is the length in the image plane of the line segment from the pivot to corner point 1.

$$YCP1 = YPIV + \cos \eta \sin \xi (W/2) \quad \text{and}$$

$XCP2 = XPIV + XCP1 + \sin \psi \sin \xi (L_p)$ where L_p is paddle length,
 $YCP2 = -\cos \psi \sin \xi (L_p) + YCP1$

$$XCP4 = XPIV - \sin \eta \sin \xi (W/2)$$

$$YCP4 = YPIV - \cos \eta \sin \xi (W/2)$$

$$XCP3 = XCP4 + \sin \psi \sin \xi (L_p)$$

$$YCP3 = YCP4 - \cos \psi \sin \xi (L_p)$$

Determine the Ellipse Equations

Projections of the cylinder ends onto the image plane form ellipses.

The general equation for an ellipse is

$$\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1 \quad \text{where } h \text{ and } k \text{ are the } x \text{ and } y\text{-coordinates}$$

of the ellipse center, a is the semi-major axis, and b is the semi-minor axis.

GEOM1 recognizes three ellipses, formed by the top and bottom ends of the main cylinder (ellipses 1 and 2), and by the bottom of the second cylinder (ellipse 3). GEOM1 labels the ellipse center coordinates in the following manner:

HU1 = the x -coordinate of the center of ellipse 1

KU1 = the y -coordinate of the center of ellipse 1

HL1 = the x -coordinate of the center of ellipse 2

KL1 = the y -coordinate of the center of ellipse 2

HL2 = the x -coordinate of the center of ellipse 3

KL2 = the y -coordinate of the center of ellipse 3

From Figure B-1, it is clear that the x -coordinates of all ellipse centers are zero. The y -coordinates are given by

$$KU1 = \sin \alpha (L1/2)$$

$$KL1 = -\sin \alpha (L1/2)$$

$$KL2 = -\sin \alpha ((L1/2) + L2)$$

where $L1$ is the length of cylinder 1
and $L2$ is the length of cylinder 2.

The general ellipse equation for all values of $h=0$ becomes:

$$\frac{x^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$$

and solving for y gives

$$y = k \pm \frac{b}{a} (a^2 - x^2)^{\frac{1}{2}}$$

The positive sign gives a y -coordinate on the top half of the ellipse, and the minus sign gives a y -coordinate on the bottom half of the ellipse.

Determine the Paddle Perimeter Line Equations

The general equation of a line in point-slope form is $y=mx+c$, where m is slope and c is a characteristic constant. The slope of the \overline{PE} vector projection in the image plane is,

$$m_{pe} = \tan(\pi - \eta)$$

GEOM1 labels m_{pe} as "SLOPIO" for "slope of the inner and outer edges." Similarly,

$$m_{pa} = \tan(\pi + \psi)$$

= "SLOPUL", for "slope of the upper and lower edges."

The constants for each edge of the paddle are evaluated using the point slope form, $c=y-mx$, and setting x and y equal to a known point on the applicable line segment. Expressed in FORTRAN variable names,

$$CIE = YPIV - (SLOPIO)(XPIV) = \text{constant for inner edge.}$$

$$COE = YCP2 - (SLOPIO)(XCP2) \quad " \quad " \quad \text{outer } "$$

$$CUE = YCP2 - (SLOPUL)(XCP2) \quad " \quad " \quad \text{upper } "$$

$$CLE = YCP4 - (SLOPUL)(XCP4) \quad " \quad " \quad \text{lower } "$$

Note that if SLOPUL=0, then SLOPIO is undefined and CUE=YCP2 and CLE=YCP4.

Determine the Intersection Points of Paddle Edges and Cylinder Sides

The lines through each pair of corner points intersect the lines through the cylinder sides at some points. These points are determined by using the point-slope form of the above line equations to find y-values for x equal to cylinder radii. This calculation is performed whether or not the paddle edge actually crosses a cylinder side.

Determine Other Critical Points

Other points critical to later area calculations are, 1) y-values of points on ellipses corresponding to the x-coordinates of corner points, when their absolute value is less than that of a cylinder radius, and 2) the intersections of paddle edge lines and ellipses under certain conditions. These points are used to establish the intervals of integration for area calculations in subroutine AREAS.

The former set of points is found by setting x equal to the x-coordinate of the corner point and solving for y in the equation for the ellipse. For example, in Figure B-1, the y-coordinate on the lower part of ellipse 2 for X=XCP4 is

$$y = KLL - \frac{b}{a} \left(a^2 - XCP4^2 \right)^{1/2} \quad \text{where } b = \cos \alpha(r1), \text{ and}$$

$a=r_1$. Subroutines ELIPS1 and ELIPS2 perform this calculation. The y-coordinate in this case is labelled YE2CP4 for "y-coordinate on ellipse 2, for corner point 4."

The latter set of points is calculated iteratively, if it is determined that a corner point actually lies inside one of the ellipses. For example, if

$$(XCP4)^2 < r_1^2, YCP4 < KLI \text{ and } YCP4 \geq YE2CP4$$

then we know that corner point 4 is inside the lower half of ellipse 2. The iteration scheme begins in GEOM1 at statement label 75.

GEOM1 assigns a value of yes (Y) or no (N) to a set of character variables which indicate whether or not corner points lie within cylinder 1, cylinder 2, or any of the three ellipses, i.e., if character variable CP4IE2='Y', "corner point 4 is inside ellipse 2." See the variable listings in Appendix A for definition of this and similar variable names which are designed as acronyms. These character variables are used by subroutines CASES and AREAS to determine which of five geometrical conditions (zero through 4 corner points visible to the sensor) applies at a point in time. The case governs which area calculation algorithm is used by subroutine AREAS.

Determine the Applicable Geometrical Case

Subroutine CASES contains a decision structure which assigns a value of Yes (Y) or no (N) to character variables CASE0, CASE1, CASE2, CASE3, and CASE 4. The number in each variable name refers to the number of paddle corner points visible to the sensor.

CASE0 means all corner points lie inside a cylinder or an ellipse in the optical image plane, and none are visible to the sensor.

CASE1 has two subcases. These either indicate that corner point two is visible and all the others are not; or that corner point three is visible and all the others are not.

CASE2 covers three subcases. Corners 1 and 2 can be visible and the other not, or corners 2 and 3 can be visible and the others not, or corners 3 and 4 can be visible and the others not.

CASE3 has two subcases. Only corner point one can be inside a cylinder or an ellipse and the others visible, or only corner point 4 can be inside or cylinder or an ellipse and the others visible.

CASE4 indicates that all corner points are visible.

Determine the Projected Paddle Surface and Visible to the Sensor

A sample calculation for the geometry in Figure B-1 will best illustrate the method, Figure B-1 is an example of CASE3. To determine the exposed paddle area, it is necessary to integrate to obtain the area enclose by exposed paddle boundaries. The area between two functions $f(x)$ and $g(x)$, over an interval (t_1, t_2) is given by

$$A = \int_{t_1}^{t_2} [f(x) - g(x)] dx = \int_{t_1}^{t_2} f(x) dx - \int_{t_1}^{t_2} g(x) dx$$

Figure B-1 requires integration over four intervals. Interval 1 is from $t_1=r_2$ to $t_2=r_1$, $f(x)$ is the equation of the line through corner points 3 and 4, and $g(x)$ is the equation of ellipse 2. Therefore,

$$A_1 = \int_{r_2}^{r_1} (m_p x + CLE) dx - \int_{r_2}^{r_1} \left[k + \frac{b}{a} (a^2 - x^2)^{\frac{1}{2}} \right] dx$$

$$= \left[\frac{m_p x^2}{2} + x(CLE) \right] \Big|_{r_2}^{r_1} - \left\{ kx + \frac{b}{2a} \left[x(a^2 - b^2)^{\frac{1}{2}} + a^2 \sin^{-1} \left(\frac{x}{a} \right) \right] \right\} \Big|_{r_2}^{r_1}$$

Interval 2 is from $t_1=r_1$ to $t_2=XCP1$, $f(x)$ is the equation of the line through corner points 1 and 4 and $g(x)$ is the equation of the line through corner points 3 and 4, so similarly, interval 3 is from $t_1=XCP1$ to $t_2=XCP3$, so that

$$A_2 = \int_{r_1}^{XCP1} (m_p x + CIE) dx - \int_{r_1}^{XCP1} (m_p x + CLE) dx$$

Interval 3 is from $t_1=XCP1$ to $t_2=XCP3$. Therefore,

$$A_3 = \left. \frac{m_p x^2}{2} + x(CUE) \right|_{XCP1}^{XCP3} - \left. \frac{m_p x^2}{2} + x(CLE) \right|_{XCP1}^{XCP3}$$

Finally, interval 4 is from $XCP3$ to $XCP2$, giving us

$$A_4 = \left. \frac{m_p x^2}{2} + x(CUE) \right|_{XCP3}^{XCP2} - \left. \frac{m_p x^2}{2} + x(COE) \right|_{XCP3}^{XCP2}$$

Total exposed projected paddle area is then

$$A_P = A_1 + A_2 + A_3 + A_4$$

Note that since this is a projected area, it would not have to be multiplied by $\cos\alpha$ in the irradiance equation, and irradiance is given by

$$E_p = \frac{\rho A_p \cos \beta}{\pi r^2} \quad \text{where } r \text{ is slant range}$$

The decision structure of subroutine AREAS determines the proper interval of integration for each case and subcase, based on the output of subroutines GEOM1 and CASES, and calls subroutines AREAS1, AREAS2, and AREAS3 to calculate projected paddle areas. The area determined is named APAD, and is used by subroutine SIGB1 in the calculation of total irradiance of the satellite.

Appendix C

The Subroutine CONE Conic Irradiance Approximation Algorithm

Because of the extreme complexity of the programming decision structure that would be necessary to evaluate the true conic phase function (Ref 7:), an iterative approximation is used by subroutine CONE to obtain diffuse conic irradiance. CONE will approximate irradiance for a pure cone or for a truncated cone.

The conic surface is approximated by 200 flat strips as depicted in Figure C-1. In Figure C-1, \bar{VC} is the circular velocity vector, \bar{CN}_1 is the first normal vector to a flat surface element which is calculated, and \bar{CN}_i is an arbitrary i th surface element normal. The angles α_i and β_i are the sensor and solar aspect angles measured from the normal to the i th surface element. The angle ω is the angle between adjacent surface element normals. For the number of surface elements, $n = 200$, $\omega = 1.8$ degrees. The angle γ is the conic half angle. The circular velocity, \bar{VC} , calculated by subroutine ANGLES, is given by

$$\bar{VC} = \bar{H} \times \bar{r}$$

where \bar{H} is the orbital angular momentum vector. The body-centered coordinate system is defined by the unit vectors, \hat{r} , \hat{vc} and \hat{H} . From Figure C-2 we see that unit vector \hat{CN}_1 , which lies in the \hat{r} , \hat{vc} plane, is given by

$$\hat{CN}_1 = (\cos \gamma) \hat{r} + (\sin \gamma) \hat{vc} + (0) \hat{H}$$

We can express \hat{CN}_i in terms of the geocentric-inertial frame, since we already know \hat{r} and \hat{vc} in that frame.

$$\hat{r} = (r_i)\hat{I} + (r_j)\hat{J} + (r_k)\hat{K} \quad \text{and}$$

$$\hat{vc} = (vc_i)\hat{I} + (vc_j)\hat{J} + (vc_k)\hat{K}. \quad \text{Therefore,}$$

$\hat{CN}_i = \cos\gamma(r_i + r_j + r_k) + \sin\gamma(vc_i + vc_j + vc_k)$ and
geocentric-inertial components of \hat{CN}_i are given by

$$\hat{CN}_{ii} = \cos\gamma(r_i) + \sin\gamma(vc_i)$$

$$\hat{CN}_{ij} = \cos\gamma(r_j) + \sin\gamma(vc_j), \quad \text{and}$$

$$\hat{CN}_{ik} = \cos\gamma(r_k) + \sin\gamma(vc_k)$$

\hat{CN}_i is the only one of the flat surface element normals which is in the \hat{r}, \hat{vc} plane at an angle γ from \hat{r} . To compute the components of the other 199 normal vectors, we perform a right-handed rotation of the body-frame about \hat{vc} by the incremental angle ω , to establish another vector, \hat{r}' , which will be an angle γ from the next normal vector, \hat{CN}_2 . \hat{CN}_2 will lie in the \hat{r}, \hat{vc} plane. \hat{r}' is given by

$$\hat{r}' = \cos\omega\hat{r} - \sin\omega\hat{H}$$

Geocentric-inertial components of \hat{r}' are,

$$r'_i = \cos\omega(r_i) - \sin\omega(H_i)$$

$$r'_j = \cos\omega(r_j) - \sin\omega(H_j)$$

$$r'_k = \cos\omega(r_k) - \sin\omega(H_k)$$

Finally, \hat{CN}_2 is given by

$$\hat{CN}_2 = (\cos \gamma) \hat{r}' + (\sin \gamma) \hat{v}_c, \quad \text{and}$$

$$CN_{2i} = \cos \gamma [\cos \omega(r_i) + \sin \omega(H_i)] + \sin \gamma (vC_i)$$

$$CN_{2j} = \cos \gamma [\cos \omega(r_j) + \sin \omega(H_j)] + \sin \gamma (vC_j)$$

$$CN_{2k} = \cos \gamma [\cos \omega(r_k) + \sin \omega(H_k)] + \sin \gamma (vC_k)$$

In subroutine CONE, the calculation of new normal vectors is done in a DO-loop which runs from 1 to 200. Each time a normal vector is determined, ω is added to the previous ω and \hat{r}' and \hat{CN}_i are calculated until a normal has been determined for each flat surface element. At each step, the sensor and solar aspect angles are calculated. If both α_i and β_i are less than 90 degrees, an irradiance is calculated for the surface element and it is added to total conic irradiance. If either α_i or β_i is greater than 90 degrees, no irradiance is calculated for that step in the loop. Total irradiance is given by

$$E_c = \sum_{i=1}^{200} E_i$$

where E_i is the irradiance of the i th surface element and E_c is total conic irradiance, called IRCON.

Subroutine CONE is currently configured for a conic which is axially aligned along \hat{v}_c , but it could easily be made general by allowing it to receive a different vector as input.

Figure C-1 Conic Approximation Geometry

Figure C-2 Conic Approximation Vectors

VITA

John D. Rask was born on 20 May 1949 in San Diego, California. He graduated from high school in Spring Valley, California in 1967 and attended San Diego State College from which he received the degree of Bachelor of Arts in Astronomy in June 1971. Upon graduation, he enlisted in the Air Force and served for four years as a Czechoslovakian linguist. In 1975 he completed OTS and entered the Space Systems career field as a Space Surveillance Officer with the 14th Missile Warning Squadron until September 1978. After a remote tour with the 13th Missile Warning Squadron at Clear, Alaska, he served as a Space Object Identification Analyst at the ADCOM Intelligence Center, Colorado, until entering the School of Engineering, Air Force Institute of Technology, in June 1981.

Permanent address: 5520 Hubner Rd.

San Diego, CA 92105

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER AFIT/GSO/PH/82D-3	2. GOVT ACQUISITION NO. <i>A127475</i>	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle) MODELING OF DIFFUSE PHOTOMETRIC SIGNATURES OF SATELLITES FOR SPACE OBJECT IDENTIFICATION		5. TYPE OF REPORT & PERIOD COVERED MS Thesis
7. AUTHOR(s) John D. Rask		6. PERFORMING ORG. REPORT NUMBER
9. PERFORMING ORGANIZATION NAME AND ADDRESS Air Force Institute of Technology (AFIT-EN) Wright-Patterson AFB, Ohio 45433		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
11. CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE December, 1982
		13. NUMBER OF PAGES
14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office)		15. SECURITY CLASS. (of this report) UNCLASSIFIED
		15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report) Approved for Public Release; Distribution Unlimited		
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)		
18. SUPPLEMENTARY NOTES Approved for public release: IAW AFR 190-17 <i>John D. Rask</i> John D. Rask Director, Research and Professional Development Air Force Institute of Technology (AFIT) Wright-Patterson AFB, OH 45433 7 APR 1983		
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Photometric Signatures Satellite Photometry Diffuse Photometric Signatures		
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) The diffuse reflection characteristics of four types of satellites were modeled assuming perfect Lambertian reflection. A FORTRAN program was developed to generate synthetic photometric signatures of the models and statistically compare them to actual data, in order to perform pattern recognition. Data were available for the most complex model, which accounted for phase shadowing, and obscuration of some body parts by others. One set of signatures was used to validate the satellite model, and others were used to test the program's		

~~UNCLASSIFIED~~

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

ability to correctly identify satellites. The program was able to correctly identify the satellite as long as the phase angle remained small, generally less than 90 degrees. For larger phase angles, the true signatures diverged significantly from synthetic signatures. Failure of the model at large phase angles was probably the result of the Lambertian assumption being untrue, with the difference becoming more noticeable as phase angle increased. Future research should attempt to model diffuse reflection not assuming Lambertian reflection.

~~UNCLASSIFIED~~

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

