Frühjahr 15 Themennummer 3 Aufgabe 5 im Bayerischen Staatsexamen Analysis (vertieftes Lehramt)

(a) Zeigen Sie: Es gibt keine holomorphe Funktion $f: \mathbb{D}\setminus\{0\} \to \mathbb{C}$ mit der Eigenschaft $f(z)^3 = z$ für alle $z \in \mathbb{D}\setminus\{0\}$.

Hinweis: Wenden Sie zunächst den Riemannschen Hebbarkeitssatz an.

(b) Gibt es eine holomorphe Funktion $f:\mathbb{C}\to\mathbb{C}\setminus\{0\}$, die den beiden Bedingungen |f(z)|=2 für alle $z\in\partial\mathbb{D}$ und

$$\frac{1}{2\pi} \int_0^{2\pi} f(e^{it}) \, \mathrm{d}t = 1$$

genügt?

Hinweis: Maximumprinzip für $\frac{1}{f}$ bzw. Minimumprinzip für f.

Lösungsvorschlag:

- (b) Nein. Aus der Mittelwerteigenschaft holomorpher Funktionen, bzw. der Cauchyschen Integralformel folgt für $\gamma:[0,2\pi]\to\mathbb{C}, \gamma(t)=e^{it}$ nämlich

$$f(0) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(z)}{z} dz = \frac{1}{2\pi i} \int_{\gamma} \frac{f(e^{it})}{e^{it}} i e^{it} dz = \frac{1}{2\pi} \int_{0}^{2\pi} f(e^{it}) dt = 1,$$

also |f(0)|=1. Weil f per Voraussetzung keine Nullstelle besitzt, muss |f| ein Minimum auf $\overline{\mathbb{D}}$ besitzen und darf es nur am Rand annehmen. Aus den Voraussetzungen würde aber |f(0)|=1<|f(z)| für alle $z\in\partial\mathbb{D}$ folgen, ein Widerspruch. Demnach gibt es keine solche Funktion.

 $\mathcal{J}.\mathcal{F}.\mathcal{B}.$