Análise 2

Homicídios, roubos e furtos de veículos por 100mil habitantes - análise exploratória no município de São paulo (2000 - 2010)

Raul de Sá Durlo* 27 outubro 2017

Abstract

1 Introdução

Aqui eu vou escrever a introdução

2 Metodologia

Aqui eu vou falar da metodologia, com fórmulas

^{*}Mestre em Economia - Unesp/FCLAr

3 Resultados

3.1 Município de São Paulo - Todos os distritos

3.1.1 A taxa de homicídio em 2003 e em 2013 em São Paulo

Taxa de homicídios por 100000 hab (2003 e 2013)

 $grafbox plot \hbox{-} 1.bb$

grafbarra03-1.bb

Taxa de homicídios por 100000 hab (2003 e 2013)

grafbarra13-1.bb

Taxa de homicídios por 100000 hab (2003 e 2013) Distritos MSP – Seccional 1 (Centro)

3.2 Município de São Paulo - Seccionais

3.2.1 1 - Seccional Centro

Taxa de homicídios por 100000 hab (2003 e 2013)

grafbarra1-1.bb

3.2.2 2 - Seccional Sul

Taxa de homicídios por 100000 hab (2003 e 2013)

grafbarra2-1.bb

3.2.3 3 - Seccional Oeste

Taxa de homicídios por 100000 hab (2003 e 2013)

grafbarra3-1.bb

3.2.4 4 - Seccional Oeste

Taxa de homicídios por 100000 hab (2003 e 2013)

grafbarra4-1.bb

3.2.5 5 - Seccional Leste

Taxa de homicídios por 100000 hab (2003 e 2013)

grafbarra5-1.bb

3.2.6 6 - Seccional Santo Amaro

Taxa de homicídios por 100000 hab (2003 e 2013)

grafbarra6-1.bb

3.2.7 7 - Seccional Itaquera

Taxa de homicídios por 100000 hab (2003 e 2013)

grafbarra7-1.bb

3.2.8 8 - Seccional São Mateus

Taxa de homicídios por 100000 hab (2003 e 2013)

grafbarra8-1.bb

3.3 Análise bivariada

	(1)	(2)	(3)	(4)	(5)	
(Intercept)	51.540 **	35.554 **	25.440 ***	-51.053 *	10.934 ***	12.
. ((16.844)	(10.884)	(5.146)	(21.929)	(1.726)	(1
$\log(\text{dados}2013\$\text{jov}1524)$	15.251 *					
log(dados2013\$baixopadrao)	(6.391)	-3.679 *				
log(dados2013#balxopadrao)		(1.651)				
log(dados2013\$rendamedia)		(1.031)	-7.593 **			
iog(dados2010¢1ciidaiiicdia)			(2.715)			
log(dados2013\$dprendamedia)			,	26.612 **		
,				(9.322)		
dados2013\$favela					0.000	
1 (1 1 20124 ()					(0.000)	
$\log(\text{dados}2013\$\text{eformais})$						((
log(dados2013\$mandato)						(1
108(4440520194114114440)						
$\log(\text{dados}2013\$\text{flagrante})$						
$\log(\text{dados}2013\$\text{densidade})$						
N	80	80	80	80	80	
R2	0.068	0.060	0.091	0.095	0.002	(
logLik	-304.030	-304.380	-303.027	-302.874	-306.749	-30
AIC	614.061	614.759	612.053	611.749	619.498	618

^{***} p < 0.001; ** p < 0.01; * p < 0.05.

4 Discussão

Aqui tem que discutir o resultado com outros trabalhos semelhantes

5 Conclusão

 $\acute{\rm E}$ só para fechar o assunto

6 Referencias bibliográficas