Линейная алгебра и геометрия

Глава I. Векторное пространство

§1. Векторное пространство, размерность, изоморфизм

Определение. Множество V называется векторным пространством над полем F, если заданы операции + и \cdot : $V \times V \to V$, $F \times V \to V$ и выполнены следующие аксиомы:

- 1. $\forall v_1, v_2, v_3 \in V$ выполнено $(v_1 + v_2) + v_3 = v_1 + (v_2 + v_3)$
- 2. $\exists \vec{0} \in V: \ \forall v \in V$ выполнено $v + \vec{0} = v$
- 3. $\forall v \in V \ \exists -v \in V : v + (-v) = \vec{0}$
- 4. $\forall v_1, v_2 \in V$ выполнено $v_1 + v_2 = v_2 + v_1$
- 5. $\forall \alpha, \beta \in F, v \in V$ выполнено $(\alpha\beta)v = \alpha(\beta v)$
- 6. $\forall v \in V$ выполнено $1 \cdot v = v$
- 7. $\forall \alpha, \beta \in F, v \in V$ выполнено $(\alpha + \beta)v = \alpha v + \beta v$
- 8. $\forall \alpha \in F, v_1, v_2 \in V$ выполнено $\alpha(v_1 + v_2) = \alpha v_1 + \alpha v_2$

Утверждение. Линейным операциям над векторами соотвествует такие же операции над их координатами:

1.
$$x = eX$$
, $y = eY \Rightarrow x + y = e(X + Y)$

2.
$$\lambda x = e(\lambda X)$$

$$x = \sum_{i=1}^{n} x_i e_i = (e_1, e_2, ..., e_n) \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = eX$$

Определение. $\varphi: V \to W$ линейно, если:

- 1. $\forall v_1, v_2 \in V$ выполнено $\varphi(v_1 + v_2) = \varphi(v_1) + \varphi(v_2)$
- 2. $\forall v \in V, \lambda \in F$ выполнено $\varphi(\lambda v) = \lambda \varphi(v)$

Определение. φ называется *изоморфизмом*, если φ линейно и биективно.

Следствие. Если φ линейное отображение, то $\varphi(\vec{0}_V) = \varphi(\vec{0}_W)$

Доказательство.

$$\vec{0}_V + \vec{0}_V = \vec{0}_V \Rightarrow \varphi(\vec{0}_V + \vec{0}_V) = \varphi(\vec{0}_V) + (-\varphi(\vec{0}_V)) \Rightarrow \varphi(\vec{0}_V) = \vec{0}_W \Leftrightarrow dimV = dimW$$

Следствие. $dimV = n \Leftrightarrow V \cong F^n$, где F^n пространство столбцов высоты n. (" \cong "Чубаров обозначает изоморфность)

Доказательство. \Leftarrow Пусть $V \cong W$ изоморфизм $\Rightarrow dimV = dimW$. По условию $\exists \varphi : V \to W$ изоморфизм. Фиксируем базис $(e_1, e_2, ..., e_n)$ в V и покажем, что

 $\varphi(e_1), \varphi(e_2), ..., \varphi(e_n)$ базис в W.

1.
$$\varphi(e_1), \varphi(e_2), ..., \varphi(e_n)$$
 - ЛНЗ и $\sum_{i=1}^n \lambda_i \varphi(e_i) = \vec{0}_W \Rightarrow \sum_{i=1}^n \varphi(\lambda_i e_i) = \vec{0}_W,$ φ - инъективно, но $\varphi(\vec{0}_V) = \vec{0}_W \Rightarrow \sum_{i=1}^n \lambda_i e_i = \vec{0}_V \Rightarrow$ все $\lambda_i = 0$

2. $\varphi(e_1), \varphi(e_2), ..., \varphi(e_n)$ - полная система: $\forall w \in W \; \exists v \in V : \varphi(v) = w$, так как φ - сюръективна. $\Rightarrow \exists x_1, x_2, ..., x_n \in F; \; v = \sum_{i=1}^n x_i e_i \Rightarrow \varphi(v) = w = \sum_{i=1}^n x_i \varphi(e_i) \Rightarrow \varphi(e_1), \varphi(e_2), ..., \varphi(e_n)$ - базис в W.

 \Longrightarrow Пусть dimV=dimW=n. Построим изоморфизм. Фиксируем базис $e=(e_1,e_2,...,e_n)$ в V и $f=(f_1,f_2,...,f_n)$ в W. Положим: $\varphi(e_i)=f_i$. Достроим φ до линейного отображения, так что $\forall v\in V$ выполнено $v=\sum_{i=1}^n x_ie_i$. Тогда

$$\varphi(v)=\varphi(\sum_{i=1}^n x_ie_i)=\sum_{i=1}^n x_i\varphi(e_i)=\sum_{i=1}^n x_if_i$$
. Таким образом, φ линейно.

Замена базиса

Пусть $dimV = n, e = (e_1, ..., e_n)$ - старый базис, $e' = (e'_1, ..., e'_n)$ - новый базис. Пусть известно, что $\forall e'_j$ выполнено

$$e'_{j} = \sum_{i=1}^{n} c_{ij} e_{i} = e \begin{pmatrix} c_{1j} \\ \vdots \\ c_{nj} \end{pmatrix} \Leftrightarrow e' = e C_{e \to e'},$$

где $C = (c_{ij}).$

Лемма. 1. $det C \neq 0$

2.
$$C_{e'\to e} = C_{e\to e'}^{-1}$$

Теорема. Пусть e, e' два базиса в пространстве V, X_e и $X_{e'}$ столбцы координат одного и тоже вектора. Тогда $X_e = CX_{e'}$

Доказательство. $\forall x \in V$ выполнено

$$x = eX_e = e'X_{e'} = eC_{e \rightarrow e'}X_{e'} = e(C_{e \rightarrow e'}X_{e'})$$

§2. Подпространство

Определение. Подмножество U в пространстве V называется nodnpocmpancmвом в V, если:

- 1. $\forall U \neq 0$
- 2. $\forall u_1, u_2 \in U$ выполнено $u_1 + u_2 \in U$
- 3. $\forall u \in U, \lambda \in F$ выполнено $\lambda u \in U$

Способы задания подпространства:

- 1. $U = \langle a_1, a_2, ..., a_n \rangle$
- 2. dimV = n, $W = \{v = eX | AX = 0\}$

Определение. Линейная оболочка векторов $a_1, a_2, ..., a_n \in V$ – это $\{\lambda_1 a_1 + \lambda_2 a_2 + ... + \lambda_n a_n | \lambda_i \in F\}$

Лемма. 1. $\langle a_1, a_2, ..., a_m \rangle := U$ — подпространство в V 2. $dim\ U = rk\{a_1, a_2, ..., a_m\}$

Доказательство. Если $dim\ U=n,$ то фиксируем базис и составляем матрицу из столбцов координат $a_1,a_2,...,a_m$:

$$A = (a_1^{\uparrow}, a_2^{\uparrow}, ..., a_m^{\uparrow}) \sim \begin{pmatrix} a_{1j_1} & \dots & & \\ 0 & a_{1j_2} & \dots & & \\ & \ddots & & & \\ 0 & 0 & \dots & a_{rj_r} & \dots \\ & \ddots & & & \\ 0 & 0 & \dots & \dots & \\ 0 & 0 & \dots & \dots \end{pmatrix}$$

Элементарными преобразованиями строк приводим матрицу A к ступенчатому виду и получаем, что столбцы $a_{j_1}, a_{j_2}, ..., a_{j_r}$ составляют бызис в U.

Лемма. Любую ЛНЗ систему векторов в $V(dimV < \infty)$ можно можно дополнить до базиса пространства V.

Алгоритм: Пусть $a_1, a_2, ..., a_m$ - ЛНЗ, m < n = dimV, известны координаты этих векторов в некотором базисе. Тогда $rk(a_1^{\uparrow}, a_2^{\uparrow}, ..., a_m^{\uparrow}) = m$. Составим матрицу столбцов из них и припишем столбцы E порядка n:

$$(A|E_n) \sim \begin{pmatrix} \text{Выделим базисные столбцы} \\ \Im.\Pi. \ \text{строк в } A|E_n, \\ \text{включая столбцы A} \end{pmatrix} \sim rk(A|E_n) = n$$

Вывод: к $a_1, a_2, ..., a_m$ надо добавить единичные столбцы, вошедшие в базис матрицы $A|E_n$.

П

Операции с блочными матрицами

Определение. *Блочная матрица* – матрица, разбитая на подматрицы, которые обозначаются отдельными буквами.

Пример:

1.
$$A = \begin{pmatrix} 3 & -1 & 2 & 0 \\ 2 & 1 & -1 & 4 \end{pmatrix} = (A_1|A_2)$$
 - блочная строка.

$$2. \ B = egin{pmatrix} 1 & 0 \ 0 & -1 \ 1 & 3 \ 4 & -2 \end{pmatrix} = egin{pmatrix} B_1 \ - \ B_2 \end{pmatrix}$$
 - блочный столбец.

- 1. Линейная оболочка.
- 2. ОСЛУ.

Теорема. Способы 1 и 2 равносильны, если $dimV < \infty$

Доказательство. $2 \Longrightarrow 1$: строим ФСР. AX = 0. Проводим элементарные преобразования строк, перенумеровывая неизвестные, таким образом чтобы привести матрицу к следующему виду:

$$A \overset{\mathfrak{I}.\Pi.}{\underset{\text{строк}}{\sim}} \begin{pmatrix} \overbrace{1 \ \dots \ 0 \ a_{1j} \ \dots} \\ \vdots \ \ddots \ \vdots \ \vdots \ \vdots \\ 0 \ \dots \ 1 \ a_{rj} \ \dots \\ 0 \ \dots \ 0 \ 0 \ \dots \end{pmatrix}, r+1 \leq j \leq n$$

Возвращаемся к уравнениям: $x_i = -\sum_{j=r+1}^n a_{ij}x_j$, где $1 \le i \le r$, а $(x_{r+1},...,x_n)$ – свободные неизвестные. В векторном виде:

$$X = \begin{pmatrix} x_1 \\ \vdots \\ x_r \\ x_{r+1} \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} -\sum_{j=r+1}^{n} a_{1j}x_j \\ \vdots \\ -\sum_{j=r+1}^{n} a_{1j}x_j \\ \vdots \\ x_{r+1} \\ \vdots \\ x_n \end{pmatrix} = x_{r+1} \begin{pmatrix} Y_1 \\ -a_{1,r+1} \\ \vdots \\ -a_{r,r+1} \\ 1 \\ \vdots \\ 0 \end{pmatrix} + \dots + x_n \begin{pmatrix} Y_n \\ -a_{1,n} \\ \vdots \\ -a_{r,n} \\ 0 \\ \vdots \\ 1 \end{pmatrix}$$

где $Y_1,...,Y_n$ – фундаментальная система решений, т.е. базис пространства решений AX=0.

Составим матрицу из столбцов ФСР.

$$arPhi = egin{pmatrix} -a_{1,r+1} & \dots & -a_{1,n} \\ \vdots & & & \vdots \\ -a_{r,r+1} & \dots & -a_{r,n} \\ 1 & & 0 \\ \vdots & \ddots & \vdots \\ 0 & & 1 \end{pmatrix} = egin{pmatrix} -B \\ \overline{E_{n-r}} \end{pmatrix} - \ \mbox{фундаментальная матрица.}$$

В общем случае фундаметальная матрица – это матрица, имеющая n-r=n-rkA ЛНЗ столбцов, которые являются решениями системы AX=0, где $A\sim (E_r|B)$ без нулевых уравнений.

 $1 \Longrightarrow 2$. Даны ЛНЗ векторы $c_1, c_2, ..., c_m$ в V.

Нужно найти такую матрицу $A_{p\times n}$, чтобы $W=\{X\in F^n|AX=0\}$, где X столбец координат произвольного вектора из $U=\langle c_1,c_2,...,c_m\rangle$ Если составить матрицу из столбцов $c_1,c_2,...,c_m$, то оно должна стать фундаметальной матрицей для ОСЛУ: AX=0.

<u>1 этап:</u> Векторы $c_1, c_2, ..., c_m$ расписать по строкам:

$$\begin{pmatrix} \vec{c}_1 \\ \vdots \\ \vec{c}_m \end{pmatrix} \overset{\text{9.II.}}{\sim} (E_m | \underbrace{B})$$

$$\text{n-m}$$

 $\underline{2}$ этап: $\Phi = \left(\frac{E_m}{B^T}\right) \leadsto A = (-B^T|E_{n-m})$ – искомая матрица системы. Значит, p = n - m.

Замечание. Столбец
$$\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$
 принадлежит $c_1, ..., c_m \Leftrightarrow rk\left(c_1^{\uparrow}, ..., c_m^{\uparrow} \middle| \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}\right) = rk(c_1^{\uparrow}, ..., c_m^{\uparrow})$

Доказательство. Составить матрицу:

$$rk\left(c_{1}^{\uparrow},...,c_{m}^{\uparrow}|\begin{pmatrix}x_{1}\\ \vdots\\ x_{n}\end{pmatrix}\right) \overset{9.\Pi.}{\underset{\text{строк}}{\sim}} \left(\begin{array}{c|cccc}c_{11} & & & & & & \\ & \ddots & & & \vdots\\ & & c_{mm} & & & \\\hline 0 & \dots & 0 & \sum a_{m+1,j}x_{j}\\ \vdots & \ddots & \vdots & & \vdots\\ 0 & \dots & 0 & \sum a_{n,j}x_{j}\end{array}\right),$$

где суммы $\sum a_{i,j}x_j := 0$, где i = m+1,...,n.

§3. Пересечение и сумма подпространств.

Утверждение. Пусть U_i – семейство подпространств векторного пространства V. Тогда $\bigcap_{i\in I} U_i$ – подпространство V.

Доказательство.

1.
$$\vec{0}_V \in U_i, \ \forall i \in I \Rightarrow \vec{0}_V \in \bigcap_{i \in I} U_i$$

$$2.\forall x, y \in U_i, \ \forall i \in I \Rightarrow x + y \in U_i, \forall i \in I \Rightarrow (x + y) \in \bigcap_{i \in I} U_i$$

$$3. \forall x \in U_i, \ \forall i \in I, \ \forall \lambda \in F \Rightarrow \lambda x \in U_i, \forall i \in I \Rightarrow \lambda x \in \bigcap_{i \in I} U_i$$

 $U_1 \bigcup U_2$ может быть подпространством: $u_1 + u_2 \notin U_1 \bigcup_{i=1}^{i \in I} U_2$

Определение. Суммой подпространств $U_1, ..., U_m \subset V$ называется множество $U_1 + ... + U_m = \{u_1 + ... + u_m | u_i \in U_i\}.$

Утверждение. $U_1 + ... + U_m$ – подпр-во в $V, dim(U_1 + ... + U_m) \leqslant \sum_{i=1}^n dim \ U_i$

Доказательство. Если $e_1,...,e_m$ – базисы в этих подпространствах, то

$$U_1 + ... + U_m = \langle e_1, ..., e_m \rangle : U_1 = \sum_{i=1}^{n_1} \lambda_{1i} e_{1i}, ..., U_m = \sum_{j=1}^{n_m} \lambda_{mj} e_{mj} \Rightarrow$$

 $U_1 + ... + U_m$ – линейная комбинация этих векторов.

Формула Грассмана. Если U_1, U_2 – конечные подпространства V, то $dim(U_1+U_2)=dim\ U_1+dim\ U_2-dim(U_1\cap U_2)$

Доказательство. $dim\ U_1=n_1,\ dim\ U_2=n_2,\ dim(U_1\cap U_2)=r.$

Выберем $e_1,...,e_r$ — базис в $U_1\cap U_2$. Дополним их до базиса в U_1 векторами $a_{r+1},...,a_{n_1}$, в U_2 векторами $b_{r+1},...,b_{n_2}$

Утверждение. $\{a_i, b_j, c_k\}$ – базис $U_1 + U_2$ (их количество $n_1 + n_2 - r$).

Доказательство. Ясно, что это полная система. Докажем ЛНЗ:

Допустим
$$\sum_{i=r+1}^{n_1} \alpha_i a_i + \sum_{j=r+1}^{n_2} \beta_j b_j + \sum_{k=1}^r \gamma_k c_k = 0 \implies$$

$$\underbrace{\sum \alpha_i a_i + \sum \gamma_k c_k}_{\in U_1} = \underbrace{-\sum \beta_j b_j}_{\in U_1 \cap U_2} \Longrightarrow$$

$$\gamma'_{k} := -\sum \beta_{j} b_{j} = \sum \gamma'_{r} c_{r} \implies \sum \beta_{j} b_{j} + \sum \gamma'_{k} c_{k} = 0 \stackrel{\text{JIH3}}{\Longrightarrow} \beta_{j} = 0, \forall j = r+1, ..., n_{2};$$

$$\gamma'_{k} = 0 \implies \sum \alpha_{i} a_{i} + \sum \gamma_{k} c_{k} = 0 \stackrel{\text{JIH3}}{\Longrightarrow} \alpha_{i} = 0, \ \forall i = r+1, ..., n; \gamma_{k} = 0, \ \forall k = 1, ..., r.$$

П

П

Алгоритм вычисления базисов в $U_1 + U_2, \ U_1 \cap U_2 \ (dim V \leqslant \infty).$

Замечание.
$$U_1+U_2=\langle a_1,...,a_{n_1},b_1,...,b_{n_2}\rangle$$

Доказательство. Можно составить матрицу из столбцов координат и $\Im.\Pi$. строк выявить базисные столбцы в этой расширенной матрице.

Вектор
$$v \in U_1 \cap U_2 \iff \exists x_i, y_i \in F : v = \sum_{i=1}^{n_1} x_i a_i = \sum_{j=1}^{n_2} y_j b_j$$
, т.е.

 $(x_1,...,x_{n_1},-y_1,...,-y_{n_2})$ – решение ОСЛУ с той же самой матрицей. Базис $U_1\cap U_2$ будет давать ФСР (ее часть соответственно $\{a_i\}$ или $\{b_i\}$).

1. Составить матрицу:

Элементарными преобразованиями строк приводим к улучшенному ступенчатому виду. Ветокторы-столбцы $a_1, ..., a_{n_1}, b_1, ..., b_{n_2}$ – базис $U_1 + U_2$.

- 2. Вычислить $dim(U_1 \cap U_2) = n_1 + n_2 m$ (это количество столбцов b_j не вошедших в базис суммы). $m = n_1 + k = dim(U_1 + U_2)$.
- 3. Выразить векторы $b_{k+1},...,b_{n_2}$ через базисы: $b_l = \sum_{i=1}^m \alpha_{il} a_i + \sum_{i=1}^k \beta_{sl} b_s \Pi H 3$ $\iff b_l \sum_{i=1}^k \beta_{sl} b_s = \sum_{i=1}^k \alpha_{il} a_i \in U_1 \cap U_2$ (Их количество $dim(U_1 \cap U_2)$).

§4. Прямая сумма

Пусть V – векторное пространство над полем $F, U_1, ..., U_k$ – подпр-ва в V.

Определение. Сумма $U_1 + ... + U_k$ ($k \ge 2$) называется *прямой суммой подпространств* $U_1, ..., U_k$, если $\forall u$ из суммы представляется в виде $u = u_1 + ... + u_k$ единственным образом.

Обозначение: $U_1 \oplus ... \oplus U_k$

Примеры:

- 1. $U_1 = \{A \in M_n(\mathbb{R}) | A^T = A\}$ симметричные матрицы
- 2. $U_1 = \{B \in M_n(\mathbb{R}) | B^T = -B\}$ кососимметричные матрицы

Утверждение. $M_n(\mathbb{R}) = U_1 \oplus U_2$, где U_1 – пространство симметричных матриц, а U_2 – пространство кососимметричная матриц.

Теорема. Следующие условия равносильны:

- 1. $U_1 + U_2 = U_1 \oplus U_2$
- 2. $U_1 \cap U_2 = \{0\}$
- 3. $dim(U_1 + U_2) = dim \ U_1 + dim \ U_2$
- 4. Базис в $U_1 + U_2$ объединение базисов слагаемых.

Доказательство.

 $1 \Rightarrow 2: \forall u \in U_1 + U_2$ выполнено $u = u_1 + u_2$ – единственным образом. Допустим противное: пусть $\exists u_0 \in U_1 \cap U_2, \ u_0 \neq 0 \Longrightarrow u_0 = \underbrace{u_0}_{\in U_1} + \underbrace{0}_{\in U_2} = \underbrace{0}_{\in U_1} + \underbrace{u_0}_{\in U_2}$. Противоречие единственности $\Longrightarrow U_1 \cap U_2 = \{0\}$.

 $2 \Rightarrow 3$: По формуле Грассмана.

 $3\Rightarrow 4$: Ясно, что $U_1+U_2=\langle a_1,...,a_{n_1},b_1,...,b_{n_2}\rangle$ – эти векторы ЛНЗ, если

$$\exists \sum_{i=1}^{n_1} \alpha_i a_i + \sum_{j=1}^{n_2} \beta_j b_j = 0 \Longrightarrow \underbrace{\sum_{i=0}^{n_1} \alpha_i a_i}_{=0} = -\underbrace{\sum_{i=0}^{n_1} \beta_i b_j}_{=0} = \{0\} \in U_1 \cap U_2$$

 $4\Rightarrow 1: \forall u=u_1+u_2=\sum\limits_{i=1}^{n_1}x_ia_i+\sum\limits_{j=1}^{n_2}y_jb_j$ раскладывается по базису единственным образом $\Rightarrow u_1,u_2$ единственны.

Теорема. Для $U_1,...,U_k$ $(k\geqslant 2)$ следующие условия равносильны:

- 1. $U_1 + ... + U_k = U_1 \oplus ... \oplus U_k$
- 2. $\forall i=1,...,k$ выполнено $U_i\cap (\sum\limits_{j\neq i}U_j)=\{0\}$
- 3. $dim(U_1 + ... + U_k) = dim \ U_1 + ... + dim \ U_k$
- 4. Базис в $U_1 + ... + U_k$ объединение базисов слагаемых.

Утверждение. Для любого пространства $U \subset V \exists$ подпространство $W \subset V$: $V = U \oplus W$, где W – прямое дополнение к U.

$$\mathcal{A}$$
оказательство. Пусть $e_1,...,e_k$ – базис в U , тогда \exists векторы $e_{k+1},...,e_n$ ($n=dimV$) : $\{e_1,...,e_n\}$ – базис в V , тогда $W:=\langle e_{k+1},...,e_n\rangle$

Факторпространство

Пусть V – векторное пространство, $U \subseteq V$ – подпространство.

Скажем, что векторы v_1 и $v_2 \in V$ сравнимы по модулю, если $v_1 - v_2 \in U$, то есть $v_1 \equiv v_2 \pmod{U}$.

Утверждение. Отношение: $v_1 \sim v_2 \iff u_1 - u_2 \in U$ является отношением эквивалентности на V.

Класс эквивалентности вектора v:

$$\vec{v} = \{v + u \mid \forall u \in U\} = v + U$$
$$V = \bigsqcup_{v \in V} (v + V)$$

Сравним с видом решения системы $AX = b: X = X_r + Y$ – частное решение + общее решение однородной ассоциированной AY = 0. Классы эквивалентности множества решений AX = b.

<u>Обозначим:</u> V/U — множество классов эквивалентности (смежных классов по U).

Термин: V/U – факторпространство V по U

Определим сложение классов: $(v_1 + U) + (v_2 + U) := v_1 + v_2 + U$

Определим умножение классов на скаляр $\lambda \in F: \lambda(v+U) := \lambda v + U$

Утверждение. Множество с введенными операциями является векторным пространством.

Утверждение. 1. Если
$$dimV < \infty$$
, то $dim(V/U) = dimV - dim\ U$ 2. $(U \oplus W)/U \cong W$

Доказательство. Пусть $V=U\oplus W$

2. І способ: Построим отображение: $\forall v \in V \; \exists ! \; u, w, \;$ такие что

 $f: v = u + w \mapsto v + U, \ f$ – линейная. f – сюръективна: w + u = f(w).

f – инъективна, так как если $w_1+u=w_2+u\Rightarrow w_1-w_2\in U.$

II способ: W имеет единственный общий вектор с любым смежным классом по $U.\ \forall x \in V = U \oplus W \ \exists !\ u \in U,\ v \in V \colon v = u + w \Longrightarrow$ Рассмотрим v + u = w + (u + U) = w + U. Построим отображение $\varphi: V/U \mapsto W$ по правилу $\varphi(w + U) = w,$ причем φ – линейное.

Тогда
$$\varphi((w_1+U)+(w_2+U))=\varphi(w_1+w_2+U)=w_1+w_2=\varphi(w_1+U)+\varphi(w_2+U).$$
 $\forall \lambda \in F, \varphi(\lambda w+U)=\lambda w=\lambda \varphi(w+U). \ \varphi$ – биективное, $\forall w \in W,$ то $\varphi(w+U)=w,$ если $\varphi(w+U)=0 \in W \Longrightarrow w+U=U \Longrightarrow v=0 \Longrightarrow$

0 – единственный.

1. Рассмотрим базис V, составленный из базисов слагаемых:

$$\underbrace{e_1,...,e_{n_1}}_{\text{Базис в U}},\underbrace{e_{n_1+1},...,e_n}_{\text{Базис в W}} (n=dimV)$$

$$\forall v \in V: v = \sum_{i=1}^{n_1} x_i e_i + \sum_{j=n_1+1}^n x_j e_j \Rightarrow \overline{v} = \sum_{j=n_1+1}^n x_j \overline{e_j}$$

Т.е. смежные классы векторов
$$e_{n_1+1},...,e_n$$
 — полная система в V/U . Они ЛНЗ если $\sum_{j=n_1+1}^n x_j\overline{e_j}=\overline{0}=U\Longrightarrow \sum_{j=n_1+1}^n x_je_j\in U\cap W=\{0\}\Longrightarrow$ Все $\lambda_j=0\Longrightarrow \{\overline{e}_{n_1+1},...,\overline{e_n}\}$ — базис V/U .

Замечание. Если
$$v=egin{pmatrix} x_1\\ \vdots\\ x_{n_1}\\ x_{n_1+1}\\ \vdots\\ x_n \end{pmatrix}$$
 , то $\overline{v}=egin{pmatrix} x_{n_1+1}\\ \vdots\\ x_n \end{pmatrix}$

Внешняя прямая сумма пространств: Пусть $V_1, ..., V_m$ – векторные пространства над полями F.

Обозначение: $V=V_1+...+V_m=\{(v_1,...,v_m)|v_i\in V_i,1\leq i\leq m\},\ V$ — внешняя прямая сумма пространств.

Замечание. Пространство $V = V_1 + ... + V_m$ можно превратить в прямую сумму подпространств: рассмотрим $U_i = \{(0_{V_1}, ..., v_i, ..., 0_{V_m}) | v_i \in V_i\} \subset V$. $(v_1,...,v_m)=(v_1,0,...,0)+(0,v_2,0,...,0)+... \Longrightarrow V=U_1\oplus...\oplus U_m$

В факторпространстве $V/U: \overline{0} = U$ и $-\overline{v} = \overline{(-v)}$

Определение. dim(V/U) – коразмерность пространства U в пространстве V. Если $dimV < \infty$, то $codim_V(U) = dimV - dim\ U$.

§5. Линейные функции и сопряженное (двойственное) пространство.

Пусть V – векторное пространство над полем F.

Определение. Функция $f: V \mapsto F$ называется линейной если:

1.
$$\forall v_1, v_2 \in V \Longrightarrow f(v_1 + v_2) = f(v_1) + f(v_2)$$

2.
$$\forall v \in V, \lambda \in F \Longrightarrow f(\lambda v) = \lambda f(v)$$

Определение. Ядро функции: $Kerf = \{v \in V | f(v) = 0\}$

Образ функции $Imf = f(V) = \{\alpha \in F | \exists v \in V : f(v) = \alpha\}$

Утверждение. Kerf — подпространство в V. Если $f \not\equiv 0$, то Kerf имеет коразмерность 1 в V.

Доказательство.

$$\forall v_1, v_2 \in Kerf, \lambda, \mu \in F \Longrightarrow f(\lambda v_1 + \mu v_2) = \lambda f(v_1) + \mu f(v_2) = 0$$

<u>Обозначим:</u> $V^* = \{f: V \mapsto F\}$, где f – линейная функция.

Определим на V^* операции сложения: $\forall f_1, f_2 \in V^*$ выполнено $(f_1 + f_2)(v) := f_1(v) + f_2(v)$. Умножение на элемент поля: $\forall f \in V^*, \lambda \in F$ выполнено $(\lambda f)(v) := \lambda f(v)$

Термин: V^* – пространство сопряженное к V.

Теорема. Если dimV = n, то $dimV^* = n \Longrightarrow V^* \cong V$.

Доказательство. Введем в V базис $e_1, ..., e_n, \forall v \in V : v = \sum_{i=1}^n x_i e_i$.

Тогда
$$\forall f \in V^*, f(v) = \sum_{i=1}^n x_i f(e_i) = \sum_{i=1}^n f(e_i) f_i(v) = (\sum_{i=1}^n f(e_i) f_i)(v), \forall v \in$$

$$V.~(f(e_1),...,f(e_n))$$
 – строка коэффициентов функций $f.~f=\sum_{i=1}^n f(e_i)f_i(v)=0$

$$\sum_{i=1}^n a_i f_i(v)$$
. Таким образом $V^* = \langle f_1, ..., f_n \rangle$. Они ЛНЗ, если $\exists \lambda_1, ..., \lambda_n \in F$:

$$\underbrace{\sum_{i=1}^{n} \lambda_i f_i}_{\widetilde{f}} = 0. \ \widetilde{f}(e_j) = \sum_{i=1}^{n} \lambda_i f_i(e_j) = \lambda_j = 0, \ 1 \le j \le n. \ f_i(e_j) = \begin{cases} 1, j = i \\ 0, j \ne i \end{cases} \implies$$

$$\lambda_1 = \dots = \lambda_n = 0.$$

Примеры:

 $1.V = \mathbb{R}[x], x_0 \in \mathbb{R}$ – фиксированная точка. $f: p(x) \mapsto p(x_0)$.

Рассмотрим $V_n = \{p(x) | deg \ p \neq n\}, \forall n \in \mathbb{N}.$

Определим $Kerf = \{p(x) \mid p(x_0) = 0\}$. Базис: $(x - x_0), (x - x_0)^2, ..., (x - x_0)^n$.

2.dimV=n, пусть $e_1,...,e_n$ – базис в $V.\ \forall v\in V,v=\sum\limits_{i=1}^n x_ie_i.$ Рассмотрим $f_i(v)=x_i$ – i-ая координатная функция.

Определение. Обозначим $f_i := e^i, \ 1 \le i \le n. \ \{e^1,...,e^n\}$ – базис в V^* , двойственный (биортогональный) к базису $e_1,...,e_n$.

По построению
$$e^i(e_j) = \begin{cases} 1, j=i \\ 0, j \neq i \end{cases}$$
 (символ Кронекера)

Разложение $\forall v \in V$ по базису $e_1, ..., e_n$ имеет вид $v = \sum_{i=1}^n e^i(v) \ e_i$

Утверждение. Строки коэффициентов линейных функций: $f(v) = \sum_{i=1}^{n} a_i x_i$ изменяются при переходе к новому базису по формулам: $\vec{a} = (a_1, ..., a_n)$, $\vec{a'} = \vec{a} C_{e \to e'}$

Доказательство.
$$f(v) = \vec{a'}x'^{\uparrow}$$
. Знаем, что $X = CX' \iff \vec{a}(CX') = \vec{a'}X' \iff (\vec{a} C)X' = \vec{a'}X'$, верно $\forall x' \in F^n$.

Примеры взаимных базисов:

Пусть $V = \mathbb{R}_n[x] = \{p(x) = a_0 + a_1x + ... + a_nx^n | n \in \mathbb{N}, \ a_i \in \mathbb{R}\}$ 1. С базисом: $1, \frac{x-x_0}{1!}, ..., \frac{(x-x_0)^n}{k!}, \ x_0 \in \mathbb{R}$ – фиксированное число.

$$p(x) = \sum_{k=0}^{n} \frac{p^{(k)}(x_0)}{k!} (x - x_0)^k$$

Можно рассмотреть линейные функции $\delta^{(k)}:\delta^{(k)}(p):=p^{(k)}(x_0),\ k=0,...,n.$ $\{\delta^{(k)},k=0,...,n\}$ – базис в V^* двойственный к тейлоровскому базису.

2. $V = \mathbb{R}_n[x]$. Пусть $x_0, ..., x_n$ – попарно различные числа. Рассмотрим линейные функции $\varphi_k(p) = p(x_k), \ k = 0, ..., n$.

$$\forall p(x) = \sum_{k=0}^{n} p(x_k) l_k(x), \quad l_k(x_i) = \delta_{ik}, \quad l_k(x) = \frac{\prod_{i \neq k} (x - y_i)}{\prod_{i \neq k} (x_k - x_i)}$$

<u>Обозначение:</u> $V^{**} = (V^*)^*$ – второе сопряженное

Теорема. Если $dimV < \infty$, то $V^{**} \cong V$, причем изоморфизм не зависит от базиса.

Доказательство. Построим отображение $\varphi: V \mapsto V^{**}, \forall v \in V:$

 $\varphi(v) := \varphi_v, \ \varphi_v \in V^{**}. \ \varphi_v(f) := f(v), \ \forall f \in V^*.$ Ясно что φ – линейное отображение: $\forall f \in V^* \ \varphi_{v_1+v_2}(f) = f(v_1+v_2) = \varphi_{v_1}(f) + \varphi_{v_2}(f), \ \text{и} \ \forall \lambda \in F$ $\varphi_{\lambda v}(v) = f(\lambda v) = \lambda f(v) = \lambda \varphi_v(f)$

 φ – инъективное отображение $\iff Ker \varphi = 0$:

 $Ker \varphi = \{v \in V | f(v) = 0, \ \forall f \in V^*\} = \{0\}$. Таким образом, $\varphi : V \longmapsto W$ – инъективное линейное отображение. Но $dim V = dim (V^*)^* \Longrightarrow \varphi$ – сюръективное отображение.

 $\Pi o \partial p o \delta h e e$: если $\varphi: V \longmapsto W$ – инъективное линейное отображение и dim V = dim W, то оно сюръективно: $\exists e_1, ..., e_n$ – базис в V, тогда $\varphi(e_1), ..., \varphi(e_n)$ – ЛНЗ $\Longrightarrow \varphi(e_1), ..., \varphi(e_n)$ – базис в W. Рассмотрим $\lambda_1 \varphi(e_1) + ... + \lambda_n \varphi(e_n) = 0_W \Longleftrightarrow \varphi(\lambda_1 e_1 + ... + \lambda_n e_n) = 0_W$. Но $\varphi(0_V) = 0_W$.

Инъективность $\Longrightarrow \underbrace{\lambda_1 e_1 + ... + \lambda_n e_n}_{\text{ЛНЗ}} = 0_V \Longrightarrow \lambda_1 = ... = \lambda_n = 0.$

Теорема. Векторы $a_1,...,a_k \in V$ – ЛНЗ $(dimV < \infty) \exists f_1,..,f_k \in V^* : det(f_i(a_i)) \neq 0.$

Доказательство.

 \Longrightarrow Дополним векторы до базиса V: $a_1,...,a_k,...,a_n$

По нему строим $f_1,...,f_n$ – двойственный базис. Тогда $f_j(a_i)=\delta_{ij}$. по определению $f_j(a_i)=E\Longrightarrow det(f_j(a_i))\neq 0$

 \leftarrow Пусть $P := (f_j(a_i)), \ P \in Mat_{k \times k}$. Предположим, что P – невырожденная, тогда $(a'_1,...,a'_k) = (a_1,...,a_k)P^{-1}$

$$(f_j(a_i')) = \begin{pmatrix} f_1 \\ \vdots \\ f_k \end{pmatrix} (a_1' \cdot \dots \cdot a_k') = \begin{pmatrix} f_1 \\ \vdots \\ f_k \end{pmatrix} (a_1 \cdot \dots \cdot a_k) P^{-1} = PP^{-1} = E \Longrightarrow$$

 $a'_1, ..., a'_k - \Pi H 3 \Longrightarrow a_1, ..., a_k - \Pi H 3.$

Глава II. Линейные отображения и операторы §1. Линейные отображения, их матрицы. Ядро и образ.

Пусть V, V' – векторные пространства над полем F.

Определение. $\varphi: V \longmapsto V'$ – линейное отображение, если:

1. $\forall v_1, v_2 \in V : \varphi(v_1 + v_2) = \varphi(v_1) + \varphi(v_2)$

2. $\forall v \in V, \lambda \in F : \varphi(\lambda v) = \lambda \varphi(v)$

Следствие. $\varphi(0_V) = 0_{V'}$

 $\varphi:V\longmapsto V$ – линейный оператор на V.

Определение. Ядро линейного отображения $\varphi: V \longmapsto V' \ (V \longmapsto V)$. $Ker \varphi = \{v \in V | \ \varphi(v) = 0_{V'}\}$ (в частности, $0_V \in Ker \varphi$).

Образ линейного отображения φ (или множество значений φ) – это $Im\varphi = \varphi(V) = \{v' \in V' | \exists v \in V : \varphi(v) = v'\}.$

Утверждение. 1. $Ker\varphi$ - подпространство в V.

2. $Im\varphi$ - подпространство в V'.

Доказательство.

1. $0_V \in Ker \varphi$, если $\varphi(v_1) = \varphi(v_2) = 0_{V'}$, то $\varphi(v_1 + v_2) = \varphi(v_1) + \varphi(v_2) = 0_{V'}$, и, если $\lambda \in F$, то $\varphi(\lambda v_1) = \lambda \varphi(v_1) = 0_{V'}$.

2. $0_{V'} \in Im\varphi$, если $v_1' = \varphi(v_1)$, $v_2' = \varphi(v_2)$, то $v_1' + v_2' = \varphi(v_1) + \varphi(v_2) = \varphi(v_1 + v_2)$ и, если $\forall \lambda \in F$, то $\lambda v_1' = \varphi(\lambda v_1) \in Im\varphi$

Теорема. Если $dimV < \infty$, то $dimIm\varphi = dimV - dimKer\varphi$

Доказательство. Если фикс. базис $e_1,...,e_n$ в V, то $Im\varphi=\langle \varphi(e_1),...,\varphi(e_n)\rangle$

$$\forall v \in V : v = \sum_{i=1}^{n} x_i e_i \Longrightarrow \varphi(v) = \sum_{i=1}^{n} x_i \varphi(e_i)$$
. В частности, $dim Im \varphi = m \le n$.

Выберем базис в $Im\varphi: f_1, ..., f_m. \ \forall j = 1, ..., m \ \exists a_j \in V: \ \varphi(a_j) = f_j.$

Поймем, что векторы $a_1,...,a_m$ – ЛНЗ. $\exists \alpha_1,...,\alpha_m \in F$

Допустим, что
$$\alpha_1 a_1, ..., \alpha_m a_m = 0 \Longrightarrow \varphi(\sum_{j=1}^m \alpha_j a_j) = \sum_{j=1}^m \alpha_j \varphi(a_j) = \sum_{j=1}^m \alpha_j f_j = 0_{V'}$$

Т.к.
$$f_j - \Pi H3 \Longrightarrow \alpha_j = 0, \ \forall_j = 1, ..., m$$

Возьмем произвольный $v' \in Im\varphi: \ v' = \sum_{j=1}^m \beta_j f_j$

По определению образа $\exists v \in V : \varphi(v) = v'$

14

Тогда рассмотрим $\varphi(v-\sum\limits_{j=1}^m\beta_ja_j)=v'-\sum\limits_{j=1}^m\beta_jf_j=0_{V'}\Longrightarrow v-\sum\limits_{j=1}^m\beta_ja_j\in Ker\varphi$ Выберем базис в $Ker\varphi: \{b_1,...,b_r\}\Longrightarrow$

$$v - \sum_{j=1}^{m} \beta_j a_j = \sum_{k=1}^{r} \gamma_k b_k \Longrightarrow v = \sum_{j=1}^{m} \beta_j a_j + \sum_{k=1}^{r} x_k b_k$$

Если взять v произвольным, $v' = \varphi(v)$ – разлагается по базису $f_1, ..., f_m$ в $Im\varphi$, то предыдущие выкладки остаются в силе $\Longrightarrow \forall v \in V$ – линейная комбинация векторов $\{a_j; b_k\}$. Эти векторы ЛНЗ в $V \Longrightarrow$ базис в $V \Longrightarrow dimV = m + r$. Допустим, что

$$\exists \beta_j, \ \gamma_j: \ \sum_{j=1}^m \beta_j a_j + \sum_{k=1}^r \gamma_k b_k = 0_V \Longrightarrow \varphi(\sum_j + \sum_k) = \sum_{j=1}^m \beta_j f_j + 0 = 0_{V'} \Longrightarrow$$
$$\gamma_j = 0, \ j = 1, ..., m \Longrightarrow \underbrace{\sum_{k=1}^r \gamma_k b_k}_{\text{IIH3}} = 0 \Longrightarrow \gamma_k = 0, \ k = 1, ..., r.$$

Пусть $e = e_1, ..., e_n$ – базис в $V, \ \forall v \in V: \ v = \sum_{j=1}^n x_j e_j \Longrightarrow \varphi(v) = \sum_{j=1}^n x_j \varphi(e_j).$ Если в V' задан базис $f = \{f_1, ..., f_m\}$ и известно разложение векторов $\varphi(e_j)$ по этому базису, $\varphi(e_j) = \sum_{i=1}^m a_{ij} f_i$, то можно вычислить $\varphi(v)$.

 $A_{\varphi,e,f}=(a_{ij})$ – матрица линейного отображения φ в паре базисов e и f. Таким образом, столбцы матрицы A_{φ} – столбцы координат $\varphi(e_1),...,\varphi(e_m)$ в базисе f. Для $\varphi:V\longmapsto V$ по умолчанию f=e (второй базис равен первому), остается $A_{\varphi,e}$ – матрица линейного оператора φ в базисе e

 $V \mapsto V^{**} = (V^*)^*$ – канонический изоморфизм.

 $\langle f|v
angle$ – значение функционала f на векторе v

 $\langle f|$ - bra-vector

 $|v\rangle$ – ket-vector.

Теорема.

- 1. Если $dimV < \infty, \ \varphi: V \mapsto V'$ линейное отображение, то $dimIm\varphi = dimV dimKer\varphi$
- 2. $Im\varphi \cong V/Ker\varphi$

Доказательство.

1. Пусть $dim Im \varphi = m \leq dim V'$, выберем в образе $Im \varphi$ базис $f_1, ..., f_m$.

$$\forall j, \ 1 \leq j \leq m, \ \exists \ e_j \in V : \varphi(e_j) = f_j.$$

$$\forall v \in V : v' = \varphi(v) = \sum_{j=1}^{m} \lambda_j f_j = \varphi\left(\sum_{j=1}^{m} \lambda_j e_j\right) \Longrightarrow \varphi(v - v_1) = 0, \text{ r.e. } v - v_1 \in Ker\varphi.$$

Выберем в $Ker\varphi$ базис: $c_1,...,c_r$ $(r=dimKer\varphi)\Longrightarrow v-v_1=\sum\limits_{k=1}^r\mu_kc_k\Longrightarrow$

$$v = \sum_{i=1}^{m} \lambda_{i} e_{i} + \sum_{k=1}^{r} \mu_{k} c_{k} \Longrightarrow V = \langle e_{1}, ..., e_{m}, c_{1}, ..., c_{r} \rangle$$

$$e_1,...,e_m,c_1,...,c_r$$
 – ЛНЗ, если: $\exists \ \varepsilon_j,\gamma_k \in F : \varphi(\sum_{j=1}^m \varepsilon_j e_j + \sum_{k=1}^r \gamma_k e_k) = 0_V \Longrightarrow$

$$\sum_{j=1}^{m} \underbrace{\varepsilon_{j} f_{j}}_{\text{JH3}} = 0_{V'} \Longrightarrow \varepsilon_{j} = 0, \ 1 \le j \le m \Longrightarrow \sum_{k=1}^{r} \underbrace{\gamma_{k} e_{k}}_{\text{JH3}} = 0 \Longrightarrow \gamma_{k} = 0, \ 1 \le k \le r.$$

2. % Rem: Если $U\subseteq V,$ то $V/U=\overline{v}\equiv \{v+u|\ u\in U\}=v+U$ – факторпространство V по U, где $Ker\varphi:=U$

Рассмотрим отображение $\pi: V/U \mapsto Im\varphi \subseteq V', \ \pi(\overline{v}) = \varphi(v).$

Корректность определения: если $v_1 \in V : \overline{v_1} = \overline{v}$, то $v_1 = v + u_1$,

где
$$u_1 \in U = Ker \varphi \Longrightarrow \varphi(v_1) = \varphi(v) + \underbrace{\varphi(u_1)}_{\equiv 0} \Longrightarrow \pi(\overline{v_1}) = \pi(\overline{v})$$

 π – линейное отображение:

$$\pi(\overline{v_1} + \overline{v_2}) = \pi(\overline{v_1} + \overline{v_2}) = \varphi(v_1 + v_2) = \varphi(v_1) + \varphi(v_2) = \pi(\overline{v_1}) + \pi(\overline{v_2}), \ \forall v \in V, \lambda \in F.$$
$$\pi(\lambda \overline{v}) = \pi(\overline{\lambda v}) = \varphi(\lambda v) = \lambda \varphi(v) = \lambda \pi(\overline{v})$$

 π – биективное:

Сюръективность: $\forall v' \in Im\varphi \; \exists \; v \in V : \varphi(v) = v' \Longrightarrow \pi(\overline{v}) = \varphi(v) = v'.$ Инъективность: допустим, что $\pi(\overline{v_1}) = \pi(\overline{v_2}) \Longrightarrow \varphi(v_1) = \varphi(v_2) \Longrightarrow v_2 - v_1 \in Ker\varphi \Longrightarrow \exists \; u \in U = Ker\varphi : v_2 = v_1 + u \Longrightarrow \overline{v_2} = \overline{v_1}$

Матрицы линейного отображения $\varphi: V \mapsto V'$

 $\forall v = \sum_{j=1}^{n} x_j e_j$. $e = (e_1, ..., e_n)$ – базис в V, $f = (f_1, ..., f_m)$ – базис в V', $(dimV = n, dimV' = m) \Longrightarrow$

$$\varphi(v) = \sum_{j=1}^{n} x_j \varphi(e_j) = \sum_{j=1}^{n} x_j \sum_{j=1}^{m} a_{ij} f_i = \sum_{j=1}^{m} (\sum_{j=1}^{n} a_{ij} x_j) f_i \quad (1)$$

Если
$$\varphi(e_j) = \sum_{i=1}^m a_{ij} f_i$$
, $(a_{ij}) = A_{\varphi,e,f}$.

Обозначение:
$$y = \varphi(v), \ v = eX_e^{\uparrow} \Longrightarrow y = \varphi(v) = fY_f^{\uparrow} = \sum_{i=1}^m y_i f_i.$$

$$(1) \Longrightarrow Y_e^{\uparrow} = A_{\varphi,e,f} X_e^{\uparrow} \quad (2)$$

 $Ker\varphi = \{v = eX_e^{\uparrow} | \varphi(v) = 0\}$. Согласно формуле (2), $v \in Ker\varphi \iff$

 $A_{\varphi,e,f}X_e^{\uparrow}=0$ — ОСЛУ с матрицей $A_{\varphi}\Longrightarrow dimKer \varphi=n-rkA_{\varphi}$

Но $Im\varphi = \langle \varphi(e_1), ..., \varphi(e_n) \rangle$ – линейная оболочка столбцов матрицы $A_{\varphi} \Longrightarrow dim Im\varphi = rkA_{\varphi}$. Получили матричное доказательство формулы для $dim Im\varphi$.

Лемма. Линейное отображение $\varphi:V\mapsto V'$ инъективно $\Longleftrightarrow Ker\varphi=\{0\}$ (и $\Longrightarrow \varphi(V)\cong V$)

Доказательство.

 \Longrightarrow : φ - инъективно. Знаем, что $\varphi(0_V)=0_{V'}$, а т.к. φ инъективно, то 0_V , единственный вектор из $V, \mapsto 0_{V'} \Longrightarrow Ker \varphi = \{0_V\}$.

 \Leftarrow : Пусть $\varphi(v_1) = \varphi(v_2) \Longrightarrow \varphi(v_1 - v_2) = 0_{V'} \Longrightarrow v_1 - v_2 \in Ker\varphi = \{0\} \Longrightarrow v_1 = v_2$

 ${f 3aдaчa:}$ Пусть $\varphi:\ V\mapsto V',\ A_{\varphi,e,f}$ – матрица $\varphi.$ При каких усл. на $A_{\varphi}:$

 $1.\varphi$ инъективно?

 $2.\varphi$ сюръективно?

 $3.\varphi$ биективно?

Примеры:

1. $V = \mathbb{R}_n[x] = \{a_0 + a_1x + ... + a_nx^n \mid a_i \in \mathbb{R}\}$ – пространство многочленов степени $\leq n$. Рассмотрим базис: $1, \frac{x}{1!}, ..., \frac{x^n}{n!}$

$$\frac{x^2}{2!}\mapsto \frac{x}{1!};\; \varphi(e_j)=e_{j-1},\; 1\leq j\leq n.$$
 $arphi=rac{d}{dx},\; rac{d}{dx}:V\mapsto V\;\;\; ($ либо $V'=\mathbb{R}_{n-1}[x])$

 $Ker\varphi = \{const\}, Im\varphi = \mathbb{R}_{n-1}[x]$

$$A_{\varphi,e} = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 1 \\ 0 & 0 & 0 & \dots & 0 \end{pmatrix}$$

Жорданова клетка порядка n+1 с диагональным элементом $\lambda=0$.

2. Пусть $V = U_1 \oplus U_2$ – прямая сумма подпространств.

Определим $\varphi: V \mapsto V, \ \forall v = u_1 + u_2, \ \varphi(v) = u_1$ – проектирование V на подпространство $U_1 \mid\mid U_2$.

 φ – линейный оператор. $Ker \varphi = U_2, \ Im \varphi = U_1$

Если $dim\ U_1 = k,\ dim\ U_2 = n - k.$

Рассмотрим
$$\underbrace{e_1,...,e_k}_{\text{базис }U_1},\underbrace{e_{k+1},...,e_n}_{\text{базис }U_2}\Longrightarrow A_{\varphi,e}=\begin{pmatrix}E_k&0\\0&0\end{pmatrix}$$

Вычисление матрицы $A_{\varphi,e,f}$:

 $\overline{A_{\varphi}e_{i}^{\uparrow}}$ – j-й столбец матрицы A_{φ} в базисе f, где $1\leq j\leq n$.

Рассмотрим задачу: даны ЛНЗ векторы $a_1,...,a_n$ в V и некоторые векторы $b_1,...,b_n$ в V'. Найти матрицу линейного отображения $\varphi:V\mapsto V'$ такого, чтобы $\varphi(a_i)=b_i,\ 1\leq i\leq n.$

По формуле,
$$b_j^{\uparrow} = A_{\varphi} a_j^{\uparrow}$$
, $1 \leq j \leq n \iff A_{\varphi}(a_1^{\uparrow},...,a_n^{\uparrow}) = (b_1^{\uparrow},...,b_n^{\uparrow})$
Уравнение вида: $XA = B, \ det A \neq 0 \Longrightarrow X = BA^{-1}$

$$\frac{\left(A\right)}{B} \overset{\mathfrak{I}.\Pi.}{\overset{\sim}{\sim}} \left(\frac{E}{X}\right) \Longrightarrow X = A_{\varphi,e,f}$$

$$(A^T|B^T) \overset{\mathfrak{I}.\Pi.}{\overset{\sim}{\sim}} (E|X^T)$$

Изменение матрицы линейного отображения (оператора) при замене базисов:

Пусть $e, e': e' = eC_{e \to e'}$ в V и $f, f': f' = fD_{f \to f'}$ в V'.

Ho
$$X_{e'}: X_e = C_{e \to e'} X_{e'}$$
 (3) $D_{f \to f'} Y_{f'} = A_{\varphi,e,f} C_{e \to e'} X_{e'}$
 $Y_{f'}: Y_f = D_{f \to f'} Y_{f'}$ (3') $Y_{f'} = (D^{-1} A_{\varphi} C) X_{e'}$ (*)

(*) Сравним это с формулой:

$$Y_{f'} = A_{\varphi,e',f'}, \ \forall X \in F^n, Y \in F^m \Longrightarrow A_{\varphi,e',f'} = D_{f\to f'}^{-1} A_{\varphi,e,f} C_{e\to e'}$$

В качестве X по очереди взять столбцы E_n , в качестве Y – столбцы E_m .

Если $\varphi: V \longmapsto V$ – линейный оператор, e, e' – базисы, $C = C_{e \to e'}$, то $a_{\varphi,e'} = C^{-1}A\varphi, e\ C\ (*)$

Термин: Две матрицы называются подобными, если

$$\exists C: A' = C^{-1}AC \ (detC \neq 0)$$

Утверждение. Если A и A' подобные, то |A'| = |A| и rkA' = rkA.

$$(*) \iff CA' = AC$$
. Составим матрицу $(C|AC) \stackrel{\mathfrak{I}.\Pi.}{\sim} (E|A')$.

§2. Действия над линейными отображениями и операторами.

$$arphi, \psi: V \longmapsto V'$$
 –линейное. $\forall v \in V \ (arphi + \psi)(v) := arphi(v) + \psi(v)$ $\forall \lambda \in F \ (\lambda arphi)(v) := \lambda arphi(v)$

Утверждение.

- $1.\mathcal{L}(V,V')$ является векторным пространством над F
- 2. Если dimV = n, dimV' = m, то $\mathcal{L}(V, V') \cong M_{m \times n}(F)$

Доказательство. 1. "Очевидно".

2. Если фиксировать базисы e в V, f в V', то $\forall \varphi \longleftrightarrow A_{\varphi,e,f},$ причем:

$$A_{\varphi+\psi} = A_{\varphi} + A_{\psi}, \ A_{\lambda\varphi} = \lambda A_{\varphi}$$

Если X – столбец координат вектора $v, v' = \varphi(v), Y$ – столбец координат v'. $Y = A_{\omega}X$,

$$\widetilde{Y}$$
 – столбец координат вектора $\psi(v)$, то $\widetilde{Y} = A_{\psi}X$, $(\varphi + \psi)(v) = \varphi(v) + \psi(v) \Longrightarrow \varphi(v) + \psi(v)$ имеет столбец координат $Y + \widetilde{Y} = A_{\varphi}X + A_{\psi}X = (A_{\varphi} + A_{\psi})X = A_{\varphi + \psi}X \Longrightarrow \varphi \longmapsto A_{\varphi,e,f}$ – изоморфизм $(dim\mathcal{L}(V, V') = n \cdot m)$

Умножение (композиция) линейных отображений (операторов):

Пусть
$$V \stackrel{\psi}{\longmapsto} V' \stackrel{\varphi}{\longmapsto} V''$$

Утверждение. Если φ , ψ – линейные, то $\varphi \cdot \psi$ – линейное

В частности, для линейных операторов: $\varphi \cdot \psi$ – линейный оператор в этом же пространстве.

Обозначим: $\mathcal{L}(V)$ – множество всех линейных операторов на V.

Теорема. С операциями $+, \lambda\cdot, u\cdot \mathcal{L}(V)$ является [линейной] алгеброй; если dimV=n, то $L(V)\cong M_n(F)$

(A – линейная алгебра, если на A заданы операции $+,\cdot,\lambda\cdot$, такие что

- 1. A_{+} кольцо ассоциативное
- 2. $A_{+,\lambda}$. векторное пространство
- 3. $\lambda(ab) = (\lambda a)b, \ \forall \lambda \in F, \ a, b \in A.$

Доказательство. 1, 2 уже проверены.

3. $\forall v \in V$, $(\lambda(ab))(v) = \lambda((ab)(v)) = \lambda a(b(v)) = (\lambda a)(b(v)) \Longrightarrow \lambda(ab) = (\lambda a)b$, для $a,b \in \mathcal{L}(V)$.

Геометрическое доказательство неравенства $rk(AB) \leq \begin{cases} rkA \\ rkB \end{cases}$

(для любых матриц A, B, т.ч. $\exists AB$).

Доказательство. Если $A_{m\times n}$, $B_{n\times p}$, то $\mathbb{R}^p \xrightarrow{B} \mathbb{R}^n \xrightarrow{A} \mathbb{R}^m$ $rk(AB) = dim(AB(\mathbb{R}^p)) \leq dimB(\mathbb{R}^p)$

$$A(\mathbb{R}^n) \supseteq (AB)(\mathbb{R}^p) \Longrightarrow rk(AB) = dim Im(AB) \le dim ImA = rkA.$$

Случай равенства. Если $|A| \neq 0$, то A задает изоморфизм между \mathbb{R}^n и $\mathbb{R}^m \Longrightarrow dim B(\mathbb{R}^p) = dim (AB(\mathbb{R}^p))$, т.е. rkB = rkAB

Многочлены от линейного оператора:

Пусть $p(t) = a_0 t^m + a_1 t_{m-1} + ... + a_{m-1} t + a_m, \ \forall a_i \in F, \ i = 0, ..., m.$ Тогда $p(\varphi) = a_0 \varphi^m + a_1 \varphi^{m-1} + ... + a_{m-1} \varphi + a_m \varepsilon$

 $\varepsilon(v) = v, \forall v \in V$ – тождественный оператор.

Многочлен p(t) – аннулирующий многочлен оператора φ , если $p(\varphi)=0$ (нулевой оператор).

Теорема. Для любого оператора $\varphi: V_n \longmapsto V_n$ существует аннулирующий многочлен степени $\leq n^2-1$.

Доказательство. Т.к. $dim \mathcal{L}(V) = n^2$, то операторы, $\varphi^0 = \varepsilon, \varphi, \varphi^2, ..., \varphi^{n^2} - ЛЗ.$ $\Longrightarrow \exists a_0, a_1, ..., a_{n^2} \in F, \ a_0\varepsilon + a_1\varphi + ... + a_{n^2}\varphi^{n^2} = 0 \Longrightarrow p(t) = a_0 + a_1t + ... + a_{n^2}t^{n^2}$ – аннулирующий для φ .

§3. Инвариантные пространства.

Пусть $\varphi: V \longmapsto V$ – линейный оператор.

Определение. Подпространство $U \subseteq V$ называется uнвариантым относительно φ (или для φ , или φ -инвариантным), если $\forall u \in U \Longrightarrow \varphi(u) \in U$, т.е. $\varphi(U) \subseteq U$.

Определение. Ограничение (сужение) оператора φ на инвариантное подпространство U – это оператор.

Обозначение: $\varphi|_U: U \longmapsto U$, а именно, $\forall u \in U: \varphi|_U(u) := \varphi(u)$

Примеры:

1. $\varphi = \frac{d}{dx} : \mathbb{R}[x] \longmapsto \mathbb{R}[x], \ p(x) \longmapsto p'(x)$ Для $\forall n = 0, 1, ..., \ \mathbb{R}_n[x] = \{p(x) | deg \ p(x) \leq n\}$ являются инвариантными подпространствами

Вопрос: есть ли другие инвариантные подпространства?

2. φ – проектирование (проектор) $V \longmapsto V = U_1 \oplus U_2$ $\varphi(u_1 + u_2) = u$ на U_1 вдоль U_2 .

Инвариантные: U_1, U_2 , а также $U_1' \oplus U_2'$, для $\forall U_1' \subseteq U_1, \ U_2' \subseteq U_2$.

Теорема. Если $\varphi:V\longmapsto V$, то φ -инвариантными являются:

- $Ker\varphi$
- $Im\varphi$
- Любое пространство $U \colon Im \varphi \subseteq U \subseteq V$
- $\forall k = 1, 2, ..., Ker \varphi^k$
- $Im\varphi^k$

Теорема. Если $U_1, ..., U_k - \varphi$ -инвариантные, то φ -инвариантные:

- $U_1 + ... + U_k$
- $U_1 \cap ... \cap U_k$

Доказательство.

- $\forall v = u_1 + ... + u_k \Longrightarrow \varphi(v) = \varphi(u_1) + ... + \varphi(u_k) \in U_1 + ... + U_k$
- $\forall w \in U_i, i = 1, ..., k \Longrightarrow \varphi(w) \in U_i, i = 1, ..., k \Longrightarrow \varphi(w) \in \bigcap_{i=1}^k U_i$

Лемма. (Вид матрицы A_{φ} при наличии инвариантов подпространства)

1. Пусть $U_1 - \varphi$ -инвариантное пространство, $\{0\} \neq U_1 \neq V$. Тогла в $V \exists$ базис. в котором

$$A_{arphi}=egin{pmatrix} B & D \ m imes m & (n-m) imes (n-m) \ 0 & C \ m imes m & (n-m) imes (n-m) \end{pmatrix}$$
 , причем $B=A_{arphi|_{U_1}}, \quad dim U_1=m$

2. Пусть $V = U_1 \oplus U_2$, причем U_1, U_2 – ненулевые инвариантные подпространства, тогда в $V \exists$ базис, в котором

$$A_{arphi}=egin{pmatrix} B & 0 \ 0 & C \end{pmatrix}$$
, причем $C=A_{arphi|U_2}$

Доказательство.

- 1. Надо взять $e_1,...,e_m$ базис в U_1 , дополнить его произвольно до базиса в V. Тогда для $j=1,...,m,\ \varphi(e_j)\in U_1,\ \varphi(e_j)=\sum\limits_{i=1}^m b_ie_i$
- 2. Если базис $e_1, ..., e_m$ пространства U_1 объединить с базисом $e_{m+1}, ..., e_n$ пространства U_2 , то в полученном базисе $A_{\varphi} = \begin{pmatrix} B & 0 \\ 0 & C \end{pmatrix}$

Утверждение. Верное и обратное

§4. Собственные векторы и собственные значения линейных операторов.

Теорема. Пусть $\varphi: U \longmapsto U$ – линейный оператор, $U \supseteq Im\varphi \Longrightarrow \varphi(U) \subseteq U$ Доказательство. $\forall u \in U, \ \varphi(u) \in Im\varphi \subseteq U \Longrightarrow \varphi(u) \in U, \ \forall u \in U$

Определение. Вектор $x \in V$ называется собственным вектором оператора φ , если $x \neq 0$ и $\exists \lambda \in F : \varphi(x) = \lambda x$ (1). Это λ называется собственным значением оператора φ (x – собственный вектор с собственным значением λ).

Для данного собственного значения $\lambda \in F$ обозначается

$$V_{\lambda} = \{x \in V | \varphi(x) = \lambda x\}$$
 (2)

(Множество собственных векторов с добавленным 0). V_{λ} – подпространство в V.

Определение. V_{λ} называется *собственным подпространством* оператора φ , отвечающим собственному значению λ .

Утверждение. 1. $V_{\lambda} = Ker(\varphi - \lambda \varepsilon), (\varepsilon$ – тождественный оператор). 2. V_{λ} – φ -инвариантное подпространство.

Доказательство. 1. $v \in Ker(\varphi - \lambda \varepsilon) \iff \varphi(v) = \lambda v \iff v \in V_{\lambda}$. 2. Возьмем $x \in V_{\lambda} \implies \varphi(x) = \lambda x \in V_{\lambda}$

Замечание: если $\varphi(x) = \lambda x \ (x \neq 0), \ \varphi^2(x) = \lambda^2 x, ..., \varphi^m(x) = \lambda^m x \Longrightarrow$ для любого многочлена $p(t) = a_0 + a_1 t + ... + a_n t^n \ (a_i \in F), \ p(\varphi)(x) = p(\lambda) x.$ В частности, если p(t) – аннулирующий многочлен для φ , т.е. $p(\varphi) = 0$, то $p(\lambda) = 0$.

Примеры:

1. $\varphi = \frac{d}{dx} \cdot V = C^{\infty}(\mathbb{R}), \ \forall f(x) \longmapsto f'(x)$. Возьмем $f(x) = e^{\lambda x} \Longrightarrow (e^{\lambda x})' = \lambda e^{\lambda x}$, т.е. $e^{\lambda x}$ — собственная функция для φ . Для $\forall \lambda \in \mathbb{R}$ $\exists !$ функция $f(x) : f'(x) = \lambda f(x)$

Пусть f(x) – та функция, рассмотрим $g(x) = f(x)e^{-\lambda x}$,

$$g'(x) = f'(x)e^{-\lambda x} - \lambda f(x)e^{-\lambda x} = \lambda f(x)e^{-\lambda x} - \lambda f(x)e^{-\lambda x} = 0$$
на $\mathbb{R} \Longrightarrow g(x) \equiv C$
$$\Longrightarrow f(x) = Ce^{\lambda x} \ (\forall C \neq 0) \Longrightarrow dimV_{\lambda} = 1.$$

Теорема. Пусть $x_1,...,x_m \in V$ – собственные для φ с попарно различными собственными значениями $\lambda_1,...,\lambda_m$. Тогда $x_1,...,x_m$ ЛНЗ.

Доказательство. Индукция по m:

База: m = 1 – по определению сам себе ЛНЗ.

Шаг: пусть m > 1 и векторы в количестве (m-1) ЛНЗ:

$$\alpha_1 x_1 + \dots + \alpha_{m-1} x_{m-1} + \alpha_m x_m = 0$$
 (I).

Подествуем на равенство I оператором $\varphi: \alpha_1 \varphi(x_1) + ... + \alpha_m \varphi(x_m) = 0 \iff \alpha_1 \lambda_1 x_1 + ... + \alpha_{m-1} \lambda_{m-1} x_{m-1} + \alpha_m \lambda_m x_m = 0$ (II).

Вычтем из II равенство I, умноженное на λ_m :

 $lpha_1(\lambda_1-\lambda_m)x_1+...+lpha_{m-1}(\lambda_{m-1}-\lambda_m)x_{m-1}=0$. По предположению индукции $lpha_i(\lambda_i-\lambda_m)=0,\ \forall i=1,...,m-1\Longrightarrow lpha_i=0\Longrightarrow lpha_m=0$

Следствие. Допустим, что dimV = n и φ имеет n различных собственных значений $\lambda_1, ..., \lambda_n$, тогда отвечающие им собственные векторы оператора φ образуют базис в V [собственный базис].

Обратим внимание, что в этом базисе $e_1,..,e_n$ матрица A_{φ} – диагональная:

$$A_{\varphi} = \begin{pmatrix} \lambda_1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \lambda_n \end{pmatrix}$$

Причем $\varphi(e_j) = \lambda_j e_j \Longrightarrow$ в координатах это значит, что

$$A_{\varphi} \begin{pmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ \lambda_{j} \\ \vdots \\ 0 \end{pmatrix} \Longrightarrow A_{\varphi} = \begin{pmatrix} \lambda_{1} & 0 & & \\ & \lambda_{2} & \ddots & \\ & & \ddots & 0 \\ & & & \lambda_{n} \end{pmatrix}$$

Следствие. Пусть $\lambda_1,...,\lambda_m$ – попарно различные собственные значения оператора φ , тогда сумма $V_{\lambda_1}+...+V_{\lambda_m}=V_{\lambda_1}\oplus...\oplus V_{\lambda_m}$

Вычисление собственных значений и собственных векторов с помощью A_{φ} :

Пусть $dimV=n,\ e=(e_1,...,e_n)$ – некоторый базис в $V,\ A_{\varphi,e}$ – матрица оператора $\varphi.$

По определению: $\varphi(x) = \lambda x, \ x \neq 0.$

В координатах: $A_{\varphi}X = \lambda X \iff (A_{\varphi} - \lambda E)X = 0$ (3), $X \neq 0$.

Для того чтобы система (3) имела хотя бы одно ненулевое решение, необходимо, чтобы $det(A_{\varphi}-\lambda E)=0$ (4)

 λ – корень характеритического уравнения (4). (Собственными значениями будут только корни $\lambda \in F$).

Раскроем
$$det(A_{\varphi} - \lambda E) = \begin{vmatrix} a_{11} - \lambda & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} - \lambda & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} - \lambda \end{vmatrix} =$$

 $=(a_{11}-\lambda)\cdot\ldots\cdot(a_{nn}-\lambda)+($ слагаемые сетепени $\leq n-1$ по $\lambda)=$

$$= (-\lambda)^n + \sum_{i=1}^n a_{ii} (-\lambda)^{n-1} + \dots + |A|$$

Лемма. Характеристический многочлен матрицы A_{φ} не зависит от выбора базиса.

Доказательство. Пусть
$$e'=eC$$
 – новый базис, тогда матрица
$$A_{\varphi,e'}=C^{-1}A_{\varphi,e}C\Longrightarrow |A_{\varphi,e'}-\lambda E|=|C^{-1}A_{\varphi}C-\lambda(C^{-1}C)|=|C^{-1}(A_{\varphi}-\lambda E)C|=|C^{-1}||A_{\varphi}-\lambda E||C|=|A_{\varphi}-\lambda E|$$

Определение. $\chi_{\varphi}(\lambda) = |A_{\varphi} - \lambda E|$ – характеристический многочлен (в любом базисе) оператора φ .

§5. Диагонализируемость линейных операторов.

Пусть $\varphi: V \longmapsto V$ – линейный оператор, dimV = n.

Определение. Скажем, что матрица оператора φ диагонализируема, если \exists базис e в V, в котором A_{φ} диагональна.

$$A_{\varphi,e} = \begin{pmatrix} \lambda_1 & 0 \\ & \ddots & \\ 0 & \lambda_n \end{pmatrix} = diag(\lambda_1, ..., \lambda_n)$$

Термины: для характеритического корня $\lambda \in F$:

- 1. геометрическая кратность λ , $\varepsilon\kappa m(\lambda) = dim V_{\lambda}$,
- 2. алгебраическая кратность λ это его кратность как корня характеритического многочлена $(ankp(\lambda))$.

Лемма. $dimV_{\lambda} \leq ankp(\lambda)$

Доказательство. Пусть $dim V_{\lambda} = m, \ ann p(\lambda) = k,$ нужно доказать, что $m \leq k$ Выберем базис в $V_{\lambda}: e_1,...,e_m$ и дополним его до базиса в V, векторами $e_{m+1},...,e_n$

В этом базисе:
$$n-m$$

$$A_{\varphi,e} = \begin{pmatrix} \lambda & 0 & \dots & 0 & B \\ 0 & \lambda & \dots & 0 & B \\ \vdots & \vdots & & \vdots & & \vdots \\ 0 & 0 & \dots & \lambda & & & \\ \hline 0 & \dots & \dots & 0 & & & \\ \vdots & & & \vdots & & C \\ 0 & \dots & \dots & 0 & & & \\ |A_{\varphi} - tE| = \begin{pmatrix} \lambda - t & 0 & & & \\ & \ddots & & & & \\ 0 & & \lambda - t & & & \\ \hline & 0 & & \lambda - t & & & \\ \hline & 0 & & & C - tE \end{pmatrix} = (\lambda - t)^m \cdot |C - tE| = 0$$

 λ может быть корнем $|C-tE| \Longrightarrow a \imath \kappa p(\lambda) \ge m$

Замечание. $dimV_{\lambda_j} = n - rk(A_{\varphi} - \lambda_j E)$.

Теорема. (критерий диагонализируемости)

Для оператора $\varphi: V \longmapsto V$ следующие условия равносильны:

- 1. A_{φ} диагональна в некотором базисе.
- 2. В $V \exists$ базис из собственных векторов оператора φ (собственный базис).
- 3. $\chi_{\varphi}(\lambda) = det(A_{\varphi} \lambda E) = (\lambda_1 \lambda)^{k_1} \cdot ... \cdot (\lambda_s \lambda)^{k_s}$ Все характеритические корни $\lambda_i \in F$, и для $\forall i, \ \underbrace{dim V_{\lambda_i}}_{\mathit{ekp}\lambda_i} = \underbrace{k_i}_{\mathit{ane}(\lambda_i)}$

4.
$$V_{\lambda_1} \oplus ... \oplus V_{\lambda_s} = V$$

Доказательство. $1. \Longrightarrow 2$

Если
$$A_{\varphi,e}=egin{pmatrix} \lambda_1 & & 0 \\ & \ddots & \\ 0 & & \lambda_n \end{pmatrix}$$
, то координаты вектора

$$\varphi(e_i) = \begin{pmatrix} \lambda_1 & & 0 \\ & \ddots & \\ 0 & & \lambda_n \end{pmatrix} \begin{pmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ \lambda_i \\ \vdots \\ 0 \end{pmatrix} = \lambda_i \begin{pmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{pmatrix}, \text{ r.e. } \varphi(e_i) = \lambda_i e_i$$

$$2. \Longrightarrow 1.$$

Если e – собственный базис для $\varphi,\ \varphi(e_i)=\lambda_i e_i,$ то i-й столбец матрицы $A_{\varphi,e}$

равен
$$\begin{pmatrix} 0 \\ \vdots \\ \lambda_i \\ \vdots \\ 0 \end{pmatrix}$$
, матрица составленная из этих столбцов, и есть $diag(\lambda_1,...,\lambda_n)$ 1. и $2.\Longleftrightarrow 3.$

Пусть в базисе e матрица A_{φ} диагональна.

Занумеруем векторы следующим образом:

$$\underbrace{e_1,...,e_{p_1}}_{\lambda_1},\underbrace{e_{p_1+1},...,e_{p_1+p_2}}_{\lambda_2},...$$
 и т.д.

Ясно, что $e_1, ..., e_{p_1} \in V_{\lambda_1}, \ e_{p_1+1}, ..., e_{p_1+p_2} \in V_{\lambda_2} \Longrightarrow dim V_{\lambda_i} \ge p_i.$ По построению, $\sum_{i=1}^s p_i = n = \sum_{i=1}^s k_i \Longrightarrow \sum_{i=1}^s (p_i - k_i) = 0 \Longrightarrow \text{ все } p_i = k_i$

Обратно: пусть $\forall i, \ p_i = dim V_{\lambda_i} = k_i^{i-1}(*).$

Возьмем базисы в собственных подпространствах, объединим их \Longrightarrow получим всего $\sum_{i=1}^{s} p_i = \sum_{i=1}^{s} k_i = n = dimV.$

Остается понять, что все эти векторы ЛНЗ. Это следует из теоремы: если векторы $x_1, ..., x_s$ отвечают попарно различным собственным значениям, то они ЛНЗ.

В линейных комбинации собственных векторов $\underbrace{\alpha_{11}e_1+...+\alpha_{1p_1}e_{p_1}}_{x_1}+...=0$ $x_1+x_2+...+x_s=0$, что в силу ЛНЗ $\Longrightarrow x_1=...=x_s=0$, но x_i – линейная комбинация базисных векторов из $V_{\lambda_i}\Longrightarrow$ все $\alpha_{ij}=0$

На самом деле установили, что 4. \iff 3.

Рассуждение (*) показывает, что базис в $V_{\lambda_1} + ... + V_{\lambda_s}$ – базис в V.

Кроме того, этот базис – собственный, так что $4. \Longrightarrow 2.$

Примеры применения диагонализируемости:

1. Для решения системы AX = b, A – квадратная матрица.

Пусть известно, что матрица
$$C$$
, такая что $A' = C^{-1}AC = \begin{pmatrix} \lambda_1 & 0 \\ & \ddots & \\ 0 & & \lambda_n \end{pmatrix}$

Сделаем замену переменных: X = CY.

Тогда
$$(AC)Y = b \Longleftrightarrow (C^{-1}AC)Y = C^{-1}b = b'$$

Система равносильна системе:

$$\begin{cases} \lambda_1 y_1 = b_1', \\ \dots, \quad \text{если } |A| = \lambda_1 \cdot \dots \cdot \lambda_n \neq 0, \text{ то } Y = \begin{pmatrix} \frac{b_1'}{\lambda_1} \\ \vdots \\ \frac{b_n'}{\lambda_n} \end{pmatrix}, \quad X = CY. \end{cases}$$

2. Матрицу A порядка n возвести в степень $m \in \mathbb{N}$, если известно, что $C^{-1}AC = diag(\lambda_1, ..., \lambda_n) = A' \Longrightarrow A = CA'C^{-1} \Longrightarrow$

$$A^{m} = \underbrace{(CA'C^{-1}) \cdot \dots \cdot (CA'C^{-1})}_{m} = C(A')^{m}C^{-1} = C \begin{pmatrix} \lambda_{1}^{m} & 0 \\ & \ddots & \\ 0 & \lambda_{n}^{m} \end{pmatrix} C^{-1}$$

§6. Аннурующие многочлены линейного оператора. Теорема Гамильтона-Кели. Минимальный многочлен.

Многочлен $p(t) = a_0 + a_1 t + ... + a_m t^m \in F[t]$ – аннулирующий многочлен для φ , если $p(\varphi) = a_0 \varepsilon + a_1 \varphi + ... + a_m \varphi^m = 0$.

Было доказано, что \exists аннулирующий многочлен степени $\leq n^2$ (n = dimV).

Замечание. Пусть x – собственный вектор для $\varphi: \varphi(x) = \lambda x, \ p(t)$ – аннулирующий многочлен для φ , тогда $p(\lambda) = 0$

В самом деле, $\forall k=1,2,...$ $\varphi^k(x)=\lambda^k x \Longrightarrow p(\varphi)(x)=a_0x+a_1\lambda x+...+a_m\lambda^m x=p(\lambda)x$, т.к. $x\neq 0\Longrightarrow p(\lambda)=0$

 $\mu(t)$ – минимальный многочлен для φ , если $\mu(\varphi)=0$ и $deg\mu(t)$ минимальная среди степеней всех аннулирующих многочленов.

Утверждение. 1. Любой аннулирующий p(t) делится на минимальный $\mu(t)$ 2. $\mu(t)$ единственен, если потребовать, чтобы старший коэффициент $\mu(t)$ был равен 1.

Доказательство.

$$1.p(t) = \mu(t)q(t) + r(t) \Longrightarrow p(\varphi) = \mu(\varphi)q(\varphi) + r(\varphi) \Longrightarrow r(\varphi) = 0$$
, но $\deg r < \deg \mu \Longrightarrow r = 0$

2. Если $\mu'(t)$ – еще один минимальный многочлен, то $\mu(t)|\mu'(t)$ и $\mu'(t)|\mu(t)$ (по пункту 1) $\Longrightarrow \mu' = \alpha\mu, \ \alpha \neq 0, \alpha \in F$. По условию старший коэффициент равен $1 \Longrightarrow \alpha = 1$

Многочленная матрица

$$\begin{pmatrix} a_{11}(\lambda) & \dots & a_{1n}(\lambda) \\ \dots & \dots & \dots \\ a_{n1}(\lambda) & \dots & a_{nn}(\lambda) \end{pmatrix}$$

Ее можно представить в виде матричного многочлена. $(a_{ij}(\lambda))$ – многочлены от λ .

Теорема Гамильтона-Кэли. Для любого линейного оператора $\chi_{\varphi}(\varphi) = 0$. Равносильно: Если $\chi_{\varphi}(\lambda) = det(A_{\varphi} - \lambda E)$, то $\chi_{\varphi}(A_{\varphi}) = 0$.

 Доказательство. Пусть $A=A_{arphi}$. Рассмотрим характеристический многочлен $\chi_A(\lambda) = \sum_{i=0}^n p_i \lambda^i, \ p_i \in F \Longrightarrow \chi_A(A) = \sum_{i=0}^n p_i A^i, \ (A^0 \equiv E)$

Составим присоединенную матрицу для $(A - \lambda E)$:

 $D(\lambda) = (d_{ji}(\lambda))$ такой что $d_{ji} = (A - \lambda E)_{ij}$

$$(A - \lambda E)D(\lambda) = \begin{pmatrix} |A - \lambda E| & 0 \\ & \ddots & \\ 0 & |A - \lambda E| \end{pmatrix} = \chi_{\varphi}(\lambda)E$$

 $d_{ij}(\lambda)$ – многочлены степени $\leq (n-1)$

<u>Обозначим:</u> $D(\lambda) = \sum_{i=0}^{n-1} D_i \lambda^i$, D_i – числовые матрицы.

Имеем
$$\chi_A(\lambda)E = (A - \lambda E) \sum_{i=0}^{n-1} D_i \lambda^i = \sum_{i=0}^{n-1} A D_i \lambda^i - \sum_{i=0}^{n-1} D_i \lambda^{i+1} =$$

$$= AD_0 + \sum_{i=0}^{n-1} (AD_i - D_{i-1}) \lambda^i - D_{n-1} \lambda^n$$

$$= AD_0 + \sum_{i=1}^{n-1} (AD_i - D_{i-1})\lambda^i - D_{n-1}\lambda^n$$

$$\begin{cases} \lambda^0 : p_0 E = AD_0 \\ \lambda^1 : p_1 E = AD_1 - D_0 \\ \vdots \\ \lambda^i : p_i E = AD_i - D_{i-1} \\ \vdots \\ \lambda^{n-1} : p_{n-1} E = AD_{n-1} - D_{n-2} \\ \lambda^n : p_n E = -D_{n-1} \end{cases} \times A^i + \longrightarrow \chi_A(A) = 0$$

Утверждение. Если λ – собственное значение оператора φ , p(t) – аннулирующий многочлен для φ , то $p(\lambda) = 0$. В частности, все корни характеристического многочлена являются корнями минимального аннулирующего многочлена.

Пусть v – собственный для $\varphi: \varphi(v) = \lambda v \Longrightarrow \varphi^k(v) = \lambda^k v \Longrightarrow p(\varphi)(v) =$ $p(\lambda)v = 0, \ v \neq 0 \Longrightarrow p(\lambda) = 0.$

§7. Жорданова нормальная форма матрицы линейного оператора.

Жорданова клетка порядка k с собственным значением $\lambda_0 \in F$

$$J_K(\lambda_0) = \begin{pmatrix} \lambda_0 & 1 & & 0 \\ & \ddots & \ddots & \\ & & \ddots & 1 \\ 0 & & & \lambda_0 \end{pmatrix}$$

Пусть в базисе $e_1, ..., e_k, k$ -мерного пространства:

$$A_{\varphi} = J_k(\lambda_0) \Longrightarrow |A_{\varphi} - tE| = (\lambda_0 - t)^k,$$

 φ имеет единственный вид с точностью до пропорциональности собственного вектора e_1 :

$$(A_{arphi}-\lambda_0 E)X=0\Longleftrightarrow egin{cases} x_1-$$
 любой $x_2=0 \ x_3=0 \ \ldots \ x_k=0 \end{cases} \Longrightarrow v=lpha e_1, \ lpha
eq 0$

Кроме того:

$$\begin{cases} \varphi(e_1) = \lambda_0 e_1, \\ \varphi(e_2) = e_1 + \lambda_0 e_2, \\ \dots \\ \varphi(e_i) = e_{i-1} + \lambda_0 e_i, \end{cases} \iff \begin{cases} Be_1 = 0, \\ Be_2 = e_1, \\ \dots \\ Be_i = e_{i-1}, \ (i = 1, \dots, k), \end{cases}$$

где $B = J_k(\lambda_0) - \lambda_0 E = J_k(0)$

$$Be_k = e_{k-1} \ (*)$$

т.д.

 $\{e_k, Be_k, B^2e_k, ..., B^{k-1}e_k\}$ – жорданова цепочка длины k.

Лемма. Пусть для некоторого вектора $v \neq 0$ построена цепочка длины $k: v, Bv, ..., B^{k-1}v \neq 0, \ B^kv = 0.$ Тогда векторы $\{v, Bv, ..., B^{k-1}v\}$ ЛНЗ.

Доказательство. Рассмотрим $\alpha_1 v + \alpha_2 B v + ... + \alpha_k B^{k-1} v = 0$ и докажем, что все $\alpha_i = 0$.

$$B^{k-1} \cdot | \Longrightarrow \alpha_1 \underbrace{B^{k-1} v}_{\neq 0} + \alpha_2 B^k v + \dots = 0 \Longrightarrow \alpha_1 = 0$$

На оставшееся равенство подействуем, B^{k-2} : $\alpha_2 B^{k-1} v + \underbrace{\dots}_0 = 0 \Longrightarrow \alpha_2 = 0$ и

<u>Терминология:</u> в (*) вектор e_2 - присоединенный к e_1 (1-й присоединенный), e_3 - присоединенный к e_2 и т.д.

Определение. $\langle v, Bv, ..., B^{k-1}v \rangle = Z_k(v)$ – циклическое подпространство размерности k, порожденное вектором v. (В этой цепочке вектор $B^{k-1}v \neq 0$ – собственный для B)

Упражнение. Для жордановой клетки характеристическая и минимальная матрицы совпадают. Для каких еще матриц они совпадают?

Жорданова матрица

$$J=egin{pmatrix} J_{k_1}(\lambda_1)| & 0 \ & \ddots & \ 0 & |\overline{J_{k_p}(\lambda_p)} \end{pmatrix}$$
 — клеточно-диагональная матрица

 $k_1+\ldots+k_p=n$ $\chi(J)=\prod_{i=1}^p\chi(J_{k_i})=(\lambda_1-t)^{k_1}\cdot\ldots\cdot(\lambda_p-t)^{k_p}$ (некоторые λ_i могут совпадать). $J=A_{\varphi}$ в базисе, составленном из жордановых цепочек для каждой жордановой клетки.

Теорема Жордана. Пусть все характеристические корни линейного оператора $\varphi: V \longmapsto V$ над полем F(dimV = n) принадлежат F. Тогда:

- 1. $V = \bigoplus_{i=1}^{p} Z_i$ прямая сумма циклических подпространств.
- 2. В V существует базис (Жорданов базис), в котором

$$A_{\varphi} = J = \begin{pmatrix} J_{k_1}(\lambda_1) & 0 \\ & \ddots & \\ 0 & J_{k_p}(\lambda_p) \end{pmatrix}$$

Т.е. для любой $A_{n\times n}$ \exists невырожденная матрица $C:\ C^{-1}AC=J,\ AC=CJ$

Корневые подпространства

Пусть $\varphi: V \longmapsto V$, λ – собственное значение для φ .

Определение. Вектор $v \in V - \lambda$ -корневой для φ , если $\exists m \in \mathbb{N}$: $(\varphi - \lambda \varepsilon)^m(v) = 0$. Наименьшее такое значение h называется высотой вектора v, т.е. $(\varphi - \lambda \varepsilon)^{h-1}v \neq 0$, $(\varphi - \lambda \varepsilon)^h v = 0$. Тогда v порождает жорданову цепочку длины h: $\{v, (\varphi - \lambda \varepsilon)v, ..., (\varphi - \lambda \varepsilon)^{h-1}v\}$.

Утверждение. $\{v \in V : v - \text{корневой для данного } \lambda\}$ – подпространство в V.

Доказательство. 0 является корневым. $B = \varphi - \lambda \varepsilon$

Если
$$v_1$$
: $B^{m_1}v_1=0$; v_2 : $B^{m_2}v_2=0$, то $B^{\max(m_1,m_2)}(v_1+v_2)=0$.

$$\forall \lambda \in F, \ B^m v = 0 \Longrightarrow B^m (\lambda v) = \lambda V^m v = 0$$
 – доказано.

Это подпространство корневое подпространство, отвечающее собственному значению λ , обозначим: $V^{(\lambda)} = \mathcal{K}_{\lambda}$.

Теорема. Пусть $\chi_{\varphi}=(\lambda_1-t)^{k_1}\cdot\ldots\cdot(\lambda_s-t)^{k_s}$ – каноническое разложение. Тогда:

1.
$$V = \mathcal{K}_{\lambda_1} \oplus ... \oplus \mathcal{K}_{\lambda_s}$$
, где $\mathcal{K}_{\lambda_i} = \{v \in V \mid \exists k : (\varphi - \lambda_i \varepsilon)^k v = 0\}$

2.
$$\mathcal{K}_{\lambda_i} = Ker(\varphi - \lambda_i \varepsilon)^{k_i}$$

3. \mathcal{K}_{λ_i} - инвариантные подпространства, $dim \mathcal{K}_{\lambda_i} = k_i$

Доказательство. Многочлены $(\lambda_1-t)^{k_1},...,(\lambda_s-t)^{k_s}$ попарно взаимно просты. Дробь $\frac{1}{\chi_{\varphi}(t)}$ можно представить в виде:

$$\frac{1}{\chi_{\varphi}(t)} = \frac{f_1(t)}{(t - \lambda_1)^{k_1}} + \dots + \frac{f_s(t)}{(t - \lambda_s)^{k_s}} \mid \cdot \chi_{\varphi}(t) \text{ или же } \prod_{i=1}^s (t - \lambda_i)^{k_i}$$

$$\underbrace{(t - \lambda_2)^{k_2} \cdot \dots \cdot (t - \lambda_s)^{k_s} f_1(t)}_{q_1(t)} + \dots + \underbrace{(t - \lambda_1)^{k_1} \cdot \dots \cdot (t - \lambda_{s-1})^{k_{s-1}} f_s(t)}_{q_s(t)} = 1$$

$$q_1(t) + \dots + q_s(t) = 1, \text{ где } q_i(t) = \prod_{j \neq i} (t - \lambda_i)^{k_i} \cdot f_i(t) \Longrightarrow$$

$$q_1(\varphi) + \dots + q_s(\varphi) = \varepsilon \mid \cdot v \in V$$

$$\forall v = \underbrace{q_1(\varphi)v}_{v_1} + \dots + \underbrace{q_s(\varphi)v}_{v_s} = v_1 + \dots + v_s \Longrightarrow$$

$$V = \text{Im } q_1(\varphi) + \dots + \text{Im } q_s(\varphi), \ v_i \in \text{Im } q_i(\varphi)$$

Обратим внимание, что Im $q_i(\varphi) = Q_i$

Для вектора $v_i\in {\rm Im}\ q_i(\varphi)=Q_i$ выполнено $(\varphi-\lambda_i\varepsilon)^{k_i}v_i=0$ в силу Теоремы Гамильтона-Кэли.

Имеем: $V = Q_1 + ... + Q_s \subseteq \mathcal{K}_{\lambda_1} + ... + \mathcal{K}_{\lambda_s}, \quad Q_i \subseteq \mathcal{K}_{\lambda_i} \Longrightarrow V = \mathcal{K}_{\lambda_1} + ... + \mathcal{K}_{\lambda_i}$ Осталось проверить, что эта сумма прямая.

Нужно показать, что если $v \in \mathcal{K}_{\lambda_i} \cap \sum_{i \neq j} \mathcal{K}_{\lambda_j}$, то v = 0.

По выбору, $(\varphi - \lambda_i \varepsilon)^{k_i} v = 0 \Longrightarrow (\varphi - \lambda_i \varepsilon)^n v = 0$, где $n = \dim V$.

Если
$$v_j \in \mathcal{K}_{\lambda_j}$$
, то $(\varphi - \lambda_j \varepsilon)^n v_j = 0 \Longrightarrow (\prod_{j \neq i} (\varphi - \lambda_j \varepsilon)^n) v = 0$

Т.к. многочлены $(t-\lambda_i)^n$ и $\prod_{j\neq i}(t-\lambda_j)^n$ взаимно просты \Longrightarrow $\exists u(t),\ w(t)$ - многочлены, такие что

$$u(t)(t-\lambda_i)^n + w(t) \prod_{j\neq i} (t-\lambda_j)^n = 1 \Longrightarrow$$

$$u(\varphi)(\varphi-\lambda_i)^n + w(\varphi) \prod_{j\neq i} (\varphi-\lambda_j)^n = \varepsilon \Longrightarrow$$

$$u(\varphi) \underbrace{(\varphi-\lambda_i)^n}_0 v + w(\varphi) \underbrace{\prod_{j\neq i} (\varphi-\lambda_j)^n}_0 v = v \Longrightarrow$$

$$v = 0 \Longrightarrow \text{сумма } \mathcal{K}_{\lambda_1} + \ldots + \mathcal{K}_{\lambda_s} - \text{прямая.}$$

Итак: $V = \mathcal{K}_{\lambda_1} \oplus ... \oplus \mathcal{K}_{\lambda_s}$, причем $\mathcal{K}_{\lambda_i} = Q_i = q_i(\varphi)V = \operatorname{Ker}(\varphi - \lambda_i \varepsilon)^{k_i}$ (Учесть, что $Q_i \subseteq \operatorname{Ker}(\varphi - \lambda_i \varepsilon)^{k_i} \subseteq \mathcal{K}_{\lambda_i}$, доказано, что $Q_i = \mathcal{K}_{\lambda_i}$) \Longrightarrow $\mathcal{K}_{\lambda_i} = \operatorname{Ker}(\varphi - \lambda_i \varepsilon)^{k_i}$

Размерность. Выберем в V базис, составленный из базисов корневых подпространств. В этом базисе:

$$A_{arphi}=egin{pmatrix} \underline{A_1} & 0 \\ & \ddots & \\ 0 & \overline{A_s} \end{pmatrix},$$
 где $A_i=arphi|_{\mathcal{K}_{\lambda_i}}$ порядка $d_i=\mathrm{dim}\mathcal{K}_{\lambda_i}$

Матрица A_i имеет собственное значение λ_i , (если $\exists v \in \mathcal{K}_{\lambda_i} \cap V_{\lambda_j}, \ i \neq j \Longrightarrow v = 0$) $\Longrightarrow d_i = k_i = \dim \mathcal{K}_{\lambda_i}$

Существование базиса, составленного из жордановых цепочек, достаточно доказать для каждого оператора $\psi_i = (\varphi - \lambda_i \varepsilon)|_{\mathcal{K}_i}$

Определение. Оператор $\psi: V \longmapsto V, \ \psi \neq 0$ называется *нильпотентным*, если $\exists m \in \mathbb{N}: \ \psi^m = 0$. Если d -наименьшее значение, при котором $\psi^d = 0 \ (\psi^{d-1} \neq 0)$, то d-показатель (индекс) нильпотентного оператора ψ .

Будем считать, что $V = \mathcal{K}_{\lambda_i}$, φ имеет на нем единственное собственное значение λ_i , тогда ψ_i — нильпотентный оператор: $\psi_i^{\dim V} = 0$. (Далее индекс i не будем писать). Обозначение: $B = A - \lambda_i E$ — матрица оператора $\psi_i = \psi$

Теорема. Для нильпотентного оператора $\psi: V \longmapsto V$ существует базис из жордановых цепочек.

Доказательство. Пусть $\dim V=n$, показатель нильпотентности равен d. Тогда образы $Im\psi\supset Im\psi^2\supset\ldots\supset Im\psi^{d-1}\supset Im\psi^d=0$ образуют строго убывающую цепочку.

Обозначим: $r = dim V_0 = dim Ker \psi$ и рассмотрим подпространства:

$$\underbrace{Ker\psi}_{R_0=V_0}\supseteq \underbrace{Im\psi\cap Ker\psi}_{R_1}\supseteq \ldots \supseteq \underbrace{Im\psi^{d-1}\cap Ker\psi}_{R_{d-1}}\supseteq \{0\}$$

$$R_0 = V_0 \supseteq R_1 \supseteq \dots \supseteq R_{d-1} \supseteq R_d = \{0\}$$

Обозначим: $dimR_0 = dimKer\psi = r = p_d$

$$dim R_{d-1} = p_1, dim R_{d-2} = p_2$$
 и т.д. $dim R_1 = p_{d-1}$.

Выберем в $Ker\psi=V_0$ базис, составленный подпространствами:

 $R_{i} = \operatorname{Im} B^{i} \cap \operatorname{Ker} B$ $\begin{pmatrix} (1) & & \\ \\ 1 & \dots & \\ \\ P_{1} \end{pmatrix} \begin{pmatrix} (1) & & \\ \\ P_{1}+1 & \dots & \\ P_{2}+1 & \dots & \\ P_{d-1} & & \\ R_{1} \setminus R_{2} & V_{0} \setminus R_{1} \end{pmatrix}$ $R_{d-1} \quad R_{d-2} \setminus R_{d-1} \quad R_{1} \setminus R_{2} \quad V_{0} \setminus R_{1}$

Векторы $e_1^{(1)},...,e_{p_1}^{(1)}\in \text{Im}\psi^{d-1}\Longrightarrow$ каждый из них имеет (d-1) присоединенный вектор. Например, $e_1^{(1)}=\psi(e_1^{(2)}),\ e_1^{(2)}=\psi(e_1^{(3)})$ и т.д. $e_1^{(p-2)}=\psi(e_1^{(p-1)}),$ т.о. векторы $\{e_1^{(p-1)},e_1^{(p-2)},...,e_1^{(1)}\}$ образует жорданову цепочку длины p.

Эта цепочка имеет вид:

$$\{e_1^{(p-1)}, \psi(e_1^{(p-1)}), \psi^2(e_1^{(p-1)}), ..., \psi^{p-1}(e_1^{(p-1)}) = e_1^{(1)}\}, \quad \psi(e_1^{(1)}) = 0$$

Таким образом, получаем некоторое количество жордановых цепочек длин $\leq d$. Векторы всех этих цепочек образуют базис в V.

Лемма. Пусть есть t жордановых цепочек

$${a_1, \psi(a_1), ..., \psi^{l_1-1}(a_1)}, \ \psi^{l_1}(a_1) = 0$$

.....

$$\{a_t, \psi(a_t), ..., \psi^{l_t-1}(a_t)\}, \ \psi^{l_t}(a_t) = 0$$

Причем конечные векторы этих цепочек ЛНЗ. Тогда все векторы этих цепочек ЛНЗ. Кроме того, общее количество векторов в объединении цепочек равно $dimV \Longrightarrow$ объединение всех цепочек из диаграммы – базис пространства V.

Доказательство. Индукция по общему количеству векторов в цепочках.

База: когда все цепочки имеют длину 1, т.е. $a_1, ..., a_t$ – собственные, ЛНЗ.

Предположение индукции: \exists хотя бы одна цепочка длины > 1.

Запишем линейную комбинацию:

$$\alpha_{11}a_1 + \alpha_{12}\psi(a_1) + \dots + \alpha_{1,l_1}\psi^{l_1-1}(a_1) + \dots + \alpha_{t,1}a_t + \alpha_{t,2}\psi(a_t) + \dots + \alpha_{t,l_t}\psi^{l_t-1}(a_t) = 0$$

Подействуем оператором ψ :

$$\alpha_{11}\psi(a_1) + \dots + \alpha_{1,l_1-1}\psi^{l_1-1}(a_1) + \dots + \alpha_{t,1}\psi(a_t) + \dots + \alpha_{t,l_t-1}\psi^{l_t-1}(a_t) = 0$$

Эти векторы принадлежат цепочкам длины $l_1 - 1, ..., l_t - 1$ (либо какие-то обратятся в 0)

По предположению индукции $\alpha_{11} = ... = \alpha_{1,l_1-1} = ... = \alpha_{t,1} = \alpha_{t,l_1-1} = 0 \Longrightarrow$

$$\alpha_{a,l_1} \psi^{l_1-1}(a_1) + \dots + \alpha_{t,l_t} \psi^{l_t-1}(a_t) = 0 \text{ } \Pi \text{H3} \Longrightarrow$$

П

остальные коэффициенты равны 0

B — нильпотентный оператор, $B^d=0 \neq B^{d-1} \Longrightarrow$ максимальная длина (высота) жордановой цепочки равняется d.

$$R_i = \operatorname{Im} B^i \cap \operatorname{Ker} B, \ i = 1, ..., d - 1$$

Базис $Ker B = R_0$

Общее число векторов в цепочках равно $\dim V$ (в котором действует B):

$$dp_1 + (d-1)p_2 + \dots + 2p_{d-1} + p_d =$$

$$= (p_1 + \dots + p_d) + (p_1 + \dots + p_{d-1}) + \dots + (p_1 + p_2) + p_1 =$$

$$= \dim R_0 + \dim R_1 + \dots + \dim R_{d-2} + \dim R_{d-1}$$

$$\sum_{i=0}^{d-1} \dim(\operatorname{Im} B^i \cap \operatorname{Ker} B) = \sum_{i=0}^{d-1} (\dim \operatorname{Ker} B^{i+1} - \dim \operatorname{Ker} B^i) =$$

$$= \dim \operatorname{Ker} B^d = \dim V$$

Нужно доказать, что $\dim(\operatorname{Im} B^i \cap \operatorname{Ker} B) = \dim \operatorname{Ker} B^{i+1} - \dim \operatorname{Ker} B^i$

$$\operatorname{Im}(B^{i} \cap \operatorname{Ker}B) = \operatorname{Ker}(B|_{\operatorname{Im}B^{i}}) \Longrightarrow$$

$$\operatorname{dim}(\operatorname{Im}B^{i} \cap \operatorname{Ker}B) = \operatorname{dim}\operatorname{Im}B^{i} - \operatorname{dim}ImB^{i+1} =$$

$$= n - \operatorname{dim}\operatorname{Ker}B^{i} - (n - \operatorname{dim}\operatorname{Ker}B^{i+1}) =$$

$$= \operatorname{dim}\operatorname{Ker}B^{i+1} - \operatorname{dim}\operatorname{Ker}B^{i}$$

$$\operatorname{dim}\operatorname{Ker}\varphi = \operatorname{dim}V - \operatorname{dim}\operatorname{Im}\varphi \Longrightarrow \varphi = B|_{\operatorname{Im}B^{i}}$$

Единственность жордановой формы

Если $A \sim \mathcal{J}$ и $A \sim \mathcal{J}'$, то \mathcal{J} и \mathcal{J}' могут отличаться только упорядочиваниями жордановых клеток.

Нужно доказать, что \forall собственного значения $\lambda_j \; \exists m : 1 \leq m \leq d_j, \; N(m, \lambda_j)$ опеределено по A единственным образом.

Рассмотрим оператор $B=A-\lambda_j E$, достаточно для матрицы B доказать единственность N(m,0) :

$$N(m,0) = \dim R_{m-1} - \dim R_m =$$

$$= (\dim \operatorname{Ker} B^m - \dim \operatorname{Ker} B^{m-1}) - (\dim \operatorname{Ker} B^{m+1} - \dim \operatorname{Ker} B^m) =$$

$$= 2\dim \operatorname{Ker} B^m - \dim \operatorname{Ker} B^{m-1} - \dim \operatorname{Ker} B^{m+1} =$$

$$= 2(n - rkB^m) - (n - rkB^{m-1}) - (n - rkB^{m+1}) =$$

$$= rkB^{m-1} - 2rkB^m + rkB^{m+1}$$

Эти ранги не зависят от базиса.

Доказательство Теоремы Жордана в общем случае:

Пусть $\varphi: V \longmapsto V$, A_{φ} – его матрица, $\chi_{\varphi}(t) = (\lambda_1 - t)^{k_1} \cdot ... \cdot (\lambda_s - t)^{k_s}$, $(\lambda_i \in F)$ Тогда $V = \bigoplus_{i=1}^s \mathcal{K}_{\lambda_i}$, $\mathcal{K}_{\lambda_i} = \operatorname{Ker}(\varphi - \lambda_i \varepsilon)^{k_i}$ корневые подпространства.

В базисе, согласованном с разложением,

$$\begin{pmatrix}
\underline{A_1} \\
|\underline{\overline{A_2}}| \\
& \ddots \\
|\overline{A_s}
\end{pmatrix}$$

 $\forall i=1,...,s,\ A_i=A_{\varphi|_{\mathcal{K}(\lambda_i)}}$ имеет единственное собственное значение λ_i . Оператор $(\varphi-\lambda_i\varepsilon)$ – нильпотентный оператор \Longrightarrow для него, по Теореме для нильпотентных операторов \exists базис в $\mathcal{K}(\lambda_i)$ из жордановых цепочек. Тогда объ-

единение базисов всех подпространств нужный базис.

s

Теорема. Пусть $\chi_A(t)=(-1)^n\prod_{i=1}^s(t-\lambda_i)^{k_i},\ d_i$ —максимальный размер жордановой клетки, отвечающей корню λ_i , тогда $\mu_A(t)=\prod_{i=1}^s(t-\lambda_i)^{d_i}$ — минимальный многочлен.

Доказательство.

Если p(t) – аннулирующий многочлен для φ (для матрицы A), тогда $\forall i \ p(\lambda_i) = 0$, если $x_i \neq 0$: $\varphi(x_i) = \lambda_i x_i$, то

$$p(\varphi(x_i)) = p(\lambda_i) \underbrace{x_i}_{\neq 0} = 0 \Longrightarrow p(\lambda_i) = 0$$

Для одной жордановой клетки $\mathcal{J}_m(\lambda_i)$ $(1 \neq m \neq d_i)$

$$A - \lambda_i E = \begin{pmatrix} 0 & 1 & & 0 \\ & \ddots & \ddots & \\ & & \ddots & 1 \\ & & & 0 \end{pmatrix} \Longrightarrow (A - \lambda_i E)^2 = \begin{pmatrix} 0 & 0 & 1 & & 0 \\ & \ddots & \ddots & \ddots & \\ & & & \ddots & \ddots & 1 \\ & & & & \ddots & 0 \\ & & & & & 0 \end{pmatrix}$$

И т.д. $\Longrightarrow (A - \lambda_i E)^m = 0$

Для $m=d_i$ наименьшая степень $q: (A-\lambda_i E)^q=0$ равна $d_i\Longrightarrow \mu_A(t): (t-\lambda_i)^{d_i}\Longrightarrow \mu_A(t)=\prod_{i=1}^s (t-\lambda_i)^{d_i}$

Следствие. A_{φ} диагонализируема \iff все характеристические корни имеют в μ_{φ} кратность равную 1.

Некоторые применения жордановой формы

1. К решению СЛУ AX = b, $A_{(n \times n)}$

Пусть уже найдена матрица
$$C$$
: $C^{-1}AC = \mathcal{J} = \begin{pmatrix} \mathcal{J}_1(\lambda_1) & 0 \\ & \ddots & \\ 0 & \mathcal{J}_l(\lambda_l) \end{pmatrix}$

Сделаем замену переменных:

$$X = CY \Longrightarrow A(CY) = b \Longrightarrow (C^{-1}AC)Y = C^{-1}b = b'$$

Для каждой клетки

$$\begin{pmatrix} \lambda & 1 & & 0 \\ & \ddots & \ddots & \\ & & \ddots & 1 \\ & & & \lambda \end{pmatrix} \Longrightarrow \begin{cases} \lambda y_1 + y_2 = b_1' \\ \dots \\ \lambda_n = b_n' \end{cases}$$

Легко дорешать, найдя Y найдем X = CY

2. К вычислению функций от матрицы.

 $A_n^m, m \in \mathbb{N}$

$$A = CYC^{-1} = C \begin{pmatrix} \underline{\mathcal{I}_1} & 0 \\ & \ddots & \\ 0 & |\overline{\mathcal{J}_l} \end{pmatrix} C^{-1} \Longrightarrow A^m = C \begin{pmatrix} \mathcal{J}_1 & 0 \\ & \ddots & \\ 0 & \mathcal{J}_l \end{pmatrix} C^{-1}$$

Для одной клетки:

$$\mathcal{J}_{n}(\lambda) = \begin{pmatrix} \lambda & 1 & 0 \\ & \ddots & \ddots \\ & & \ddots & 1 \\ & & \lambda \end{pmatrix} = \lambda E + \begin{pmatrix} 0 & 1 & 0 \\ & \ddots & \ddots \\ & & \ddots & 1 \\ & & 0 \end{pmatrix} = \lambda E + B, \ B^{n} = 0 \neq B^{n-1}$$

$$\Longrightarrow A^{m} = C \begin{pmatrix} \mathcal{J}_{1}^{m} & 0 \\ & \ddots & \\ 0 & \mathcal{J}_{l}^{m} \end{pmatrix} C^{-1}, \ \mathcal{J}_{n}^{m}(\lambda) = (\lambda E + B)^{m}$$

$$\mathcal{J}_{n}^{m}(\lambda) = (\lambda E + B)^{m} = \sum_{k=0}^{m} C_{m}^{k} \lambda^{k} B^{m-k}$$

Для $m=\frac{1}{2}$ – вычислить \sqrt{A} (нужно, чтобы $\sqrt{\lambda_j}$ были определены)

$$\mathcal{J}_n(\lambda) = (\lambda E + B)^{\frac{1}{2}} = (\sqrt{\lambda}(E + \frac{1}{\lambda}B)^{\frac{1}{2}}) = \sqrt{\lambda}(E + \frac{1}{2}X + C_{\frac{1}{2}}^2X^2 + \dots)$$

$$(1+x)^{\frac{1}{2}} = \sum_{k=0}^{\infty} C_{\frac{1}{2}}^k x^k$$

$$C_{\frac{1}{2}}^1 = \frac{1}{2}, \quad C_{\frac{1}{2}}^2 = \frac{\frac{1}{2}(\frac{1}{2}-1)}{2!}, ..., C_{\frac{1}{2}}^k = \frac{\frac{1}{2}(\frac{1}{2}-1)...(\frac{1}{2}-k+1)}{k!}$$

Экспонента: $e^A \stackrel{?!}{=} E + tA + t^2 \frac{A}{2!} + ...$

$$A = C\mathcal{J}C^{-1} \Longrightarrow e^A = C \begin{pmatrix} e^{\mathcal{J}_1} & 0 \\ & \ddots & \\ 0 & e^{\mathcal{J}_l} \end{pmatrix} C^{-1}$$

Для одной клетки порядка n:

$$\mathcal{J}_n(\lambda) = \lambda E + B \Longrightarrow e^{\mathcal{J}_n(\lambda)} = e^{\lambda E + B} = e^{\lambda E} e^B = e^{\lambda} E e^B$$

$$e^{B} = E + B + \frac{B^{2}}{2!} + \dots + \frac{B^{n-1}}{(n-1)!} = \begin{pmatrix} 1 & 1 & \frac{1}{2!} & \dots & \frac{1}{(k-1)!} \\ & 1 & 1 & \ddots & \vdots \\ & & \ddots & \frac{1}{2!} \\ & & & \ddots & 1 \end{pmatrix}$$

$$(e^{tA})' = Ae^{tA}$$

Формула: $\det(e^A) = e^{\operatorname{tr} A}$

Теорема. Для любого линейного оператора $\varphi: V \longmapsto V$ над $\mathbb{R} \; (\dim V < \infty)$ существует одномерное или двумерное инвариантное подпространство.

Доказательство. Пусть \exists собственное значение λ_0 , тогда и $\exists x_0 \in V, \ x_0 \neq 0$, т.ч. $\varphi(x_0) = \lambda_0 x_0 \Longrightarrow \langle x_0 \rangle = U$ – инвариантное подпространство.

Комплексному корню отвечает двумерное инвариантное подпространство.

Допустим, что $\lambda_1 = \alpha + i\beta \in \mathbb{C}$ – корень $\chi_{\varphi}(\lambda) \Longrightarrow \overline{\lambda_1} = \alpha - i\beta$ – тоже корень $\Longrightarrow \chi_{\varphi}(\lambda) = (\lambda - \lambda_1)(\lambda - \overline{\lambda_1})f(\lambda) = (\lambda^2 - 2\alpha\lambda + (\alpha^2 + \beta^2))f(t), \ f(\lambda) \in \mathbb{R}[\lambda]$ φ с помощью (вещественной) матрицы A_{φ} действует в \mathbb{R}^n :

$$\forall x \in \mathbb{R}, \ X \longmapsto A_{\varphi}X$$

Рассмотрим оператор φ в \mathbb{C}^n по формуле: $\forall Z \longmapsto A_{\varphi}Z$

В
$$\mathbb{C}^n$$
 \exists вектор $Z_1: A_{\varphi}Z_1 = \lambda_1 Z_1$

$$Z_1 = X_1 + iY_1, \ X_1, Y_1 \in \mathbb{R}^n$$

$$A_{\varphi}X_1+iA_{\varphi}Y_1=(\alpha X_1-\beta Y_1)+i(\beta X_1+\alpha Y_1)\Longrightarrow \begin{cases} A_{\varphi}X_1=\alpha X_1-\beta Y_1\\ A_{\varphi}Y_1=\beta X_1+\alpha Y_1 \end{cases}\Longrightarrow U=\langle X_1,Y_1\rangle\subset\mathbb{R}^n$$
 — двумерное инвариантное подпространство для φ . Допустим, что $Y_1=\mu X_1\Longrightarrow A_{\varphi}X_1=(\alpha-\beta\mu)X_1\Longrightarrow X_1$ — собственный вектор. $\Longrightarrow X_1,\ Y_1$ — ЛНЗ, $\dim U=2$

Глава III. Билинейные и квадратичные функции. Пространства с формами. §1. Билинейные функции.

Определение. Функция $f: V \times V \longmapsto F$ называется билинейной, если:

- 1. $f(\alpha_1 x_1 + \alpha_2 x_2, y) = \alpha_1 f(x_1, y) + \alpha_2 f(x_2, y), \ \forall x_1, x_2, y \in V, \ \alpha_1, \alpha_2 \in F$
- 2. По *y*.

Примеры:

1. V = R[a, b]

$$(f(x),g(x))\longmapsto\int\limits_a^bf(x)g(x)dx=\int\limits_a^bg(x)f(x)dx$$
— симметричная

2. $V = M_n(F)$

$$f_1(X,Y) = \text{tr}(XY), \ f_2(X,Y) = \text{tr}(XY^T)$$

Выражение f(x,y) в координатах.

Пусть
$$e$$
 – базис в $V, x = \sum_{i=1}^n x_i e_i, \ y = \sum_{j=1}^n y_j e_j \Longrightarrow$

$$f(x,y) = f(\sum_{i=1}^n x_i e_i, \sum_{j=1}^n y_j e_j) = \sum_{i,j} \underbrace{f(e_i e_j)}_{f_{ij}} x_i y_j$$
 – билинейная форма. (1)

Обозначение: $B_e = (f_{ij})$ – матрица билинейной формы f(x,y) в базисе e. Выражение (1) можно записать в виде $f(x,y) = X^T B_e Y$ (2).

Изменение матрицы билинейной формы при замене базиса:

Пусть
$$e' = eC_{e \to e'}$$
, тогда $X = CX'$, $Y = CY'$ подставим в (2). $X^T B_e Y = (CX')^T B_e (CY') = (X')^T (C^T B_e C) Y' \stackrel{?!}{=} (X')^T B_{e'} Y', \ \forall X', Y' \in F^n$ Если $X' = E_i$, $Y' = E_j$, то $(X')^T DY' = d_{ij}$, $\forall i, j \Longrightarrow B_{e'} = C^T B_e C$ (3)

Следствие. 1. $\mathrm{rk}B' = \mathrm{rk}B$, т.к. $|C| \neq 0$ 2. $|B'| = |B||C|^2$

Если $F = \mathbb{R}$ и $|B| \neq 0$, то |B'| и |B| имеют одинаковый знак.

В силу следствия 1, ${\rm rk}B$ можно называть рангом билинейной функции $f(x,y),\ {\rm rk}f$

Назовем левым ядром билинейной функции f(x,y):

$$\mathrm{Ker}_{\scriptscriptstyle\Pi} f = \{x \in V: \ f(x,y) = 0, \forall y \in V\}$$
 $x \in \mathrm{Ker}_{\scriptscriptstyle\Pi} f \Longleftrightarrow egin{cases} f(x,e_1) = 0 \\ \dots & -\mathrm{OC}\Pi\mathrm{Y} \ \mathrm{c} \ \mathrm{матрицей} \ B \\ f(x,e_n) = 0 \end{cases}$

Число ЛНЗ решений равно n - rkB = n - rkf.

Определение. f(x,y) симметричная, если $\forall x,y \in V: \ f(x,y) = f(y,x)$

Определение. g(x,y) кососимметричная, если $\forall x,y \in V: \ f(x,y) = -f(y,x)$

Теорема. Если char $F \neq 2$, то любая билинейная функция f(x,y) единственным образом представляется в виде: $f(x,y) = f_+(x,y) + f_-(x,y)$

Доказательство.

$$\begin{cases} f(x,y) = f_{+}(x,y) + f_{-}(x,y) \\ f(x,y) = f_{+}(x,y) - f_{-}(x,y) \end{cases}$$
$$f_{+}(x,y) = \frac{f(x,y) + f(y,x)}{2}, \quad f_{-}(x,y) = \frac{f(x,y) - f(y,x)}{2}$$

§2. Квадратичные функции (формы).

Обратим внимание, что если $f(x,y) = f_{+}(x,y) + f_{-}(x,y)$, то

$$f(x,x) = f_{+}(x,x) + f_{-}(x,x), \text{ char } F \neq 2 \Longrightarrow f_{-}(x,x) = 0$$

f и f_{+} порождают одну и ту же функцию.

Теорема. Для любой квадратичной функции k(x) существует единственная билинейная симметричная функция f(x,y), т.ч. f(x,x) = k(x)

Доказательство. Пусть f(x,y) = f(y,x)

Рассмотрим
$$k(x+y) = f(x+y,x+y) = f(x,x) + f(x,y) + f(y,x) + f(y,y) = f(x,x) + 2f(x,y) + f(y,y), \ \forall x,y \in V \Longrightarrow f(x,y) = \frac{k(x+y) - k(x) - k(y)}{2}$$

Координатная запись:

$$k(x) = X^T B_e X = \sum_{i,j} b_{ij} x_i x_j = \sum_{i,j} b_{ii} x_i^2 + 2 \sum_{i < j} b_{ij} x_i x_j, \ b_{ij} = b_{ji}, \ \forall i, j, \ (2)$$

Договоримся, что матрица квадратичной формы (2) совпадает с матрицей B.

$$k(x_1, x_2) = 3x_1^2 - 4x_1x_2 + 25x_2^2, \qquad B \stackrel{?}{=} \begin{pmatrix} 3 & 2 \\ -2 & 25 \end{pmatrix}$$

Упрощение квадратичной формы

Термин: Диагональная квадратичная форма:

$$k(x) = \alpha_1 x_1^2 + \dots + \alpha_n x_n^2 = \alpha_1 x_1^2 + \dots + \alpha_r x_r^2$$

(При подходящей нумерации переменных). $(x=(x_1,...,x_n))$ Если $\mathrm{rk} f = rk = k = r \leq n$

$$B = \begin{pmatrix} \alpha_1 & & & & 0 \\ & \ddots & & & \\ & & \alpha_r & & \\ & & & 0 & \\ & & & \ddots & \\ 0 & & & 0 \end{pmatrix}$$

Термин: $(F = \mathbb{R}) \ k(x)$ имеет канонический вид, если

$$k(x) = \sum_{i=1}^{p} x_i^2 - \sum_{i=p+1}^{p+q} x_i^2, \ (p+q = \text{rk } k = r)$$

Если $F = \mathbb{C}$, то канонический вид будет

$$\sum_{i=1}^{r} x_i^2$$

Над \mathbb{R} : замена $y_i = \sqrt{|\alpha_i|}x_i, \ 1 \le i \le r, \ y_i = x_i, \ i = r+1,...,n$ Тогда k(x) равен каноническому виду.

Над
$$\mathbb{C}$$
: $\forall i = 1, ..., r \ y_i = \sqrt{|\alpha_i|} x_i$

Алгоритм Лагранжа (метод выделения квадратов.)

Пусть
$$k(x_1,...,x_n)=b_{11}x_1^2+...+b_{nn}x_n^2+2b_{12}x_1x_2+...+2b_{1n}x_1x_n+...$$
 Основной случай: $b_{11}\neq 0\Longrightarrow$

$$b_{11}(x_1^2 + 2x_1 \sum_{i=2}^n \frac{b_{1i}}{b_{11}} x_i) + \dots = b_{11}(x_1^2 + 2x_1(\sum_{i=2}^n \frac{b_{1i}}{b_{11}} x_i) + (\sum_{i=2}^n \frac{b_{1i}}{b_{11}} x_i)^2) -$$

$$\underbrace{-\frac{1}{b_{11}}(\sum_{i=2}^{n}b_{1i}x_{i})^{2} + 2\sum_{1 < i < j}b_{ij}x_{i}x_{j}}_{k_{1}(x_{2},...,x_{n})} = b_{11}(x_{1} + \sum_{i=2}^{n}\frac{b_{1i}x_{i}}{b_{11}})^{2} + k_{1}(x_{2},...,x_{n})$$

Замена: $y_1 = x_1 + \sum_{i=2}^n \frac{b_{1i}}{b_{11}} x_i$, остальные пока не заменяем.

Особый случай: $\tilde{b_{ii}} = 0, \ \forall i = 1, ..., n$

T.K. $k(x) \not\equiv 0 \Longrightarrow \exists i, j: b_{ij} \neq 0$

Подготовительная замена:

$$\begin{cases} x_i = x'_i - x'_j \\ x_j = x'_i + x'_j \end{cases} \implies 2b_{ij}x_ix_j = 2b_{ij}((x'_i)^2 - (x'_j)^2) \Longrightarrow \text{ перейти к основ. случаю}$$

Заммечание: можно сделать такую замену: $\begin{cases} x_i = \tilde{x}_i + \tilde{x}_j \\ x_j = \tilde{x}_j \end{cases}$

Закон инерции для квадратичных форм над $\mathbb R$

Если в некотором базисе e квадратичная форма $k(x_1,...,x_n) = \sum_{i=1}^p x_i^2 - \sum_{i=p+1}^{p+q} x_i^2$, а в базисе f: $k(y_1,...,y_n) = \sum_{i=1}^s y_i^2 - \sum_{i=s+1}^{s+t} y_i^2$, то p = s, q = t

Замечание. $p+q=s+t={
m rk}\ k$, так что достаточно доказать, что p=s

Доказательство. От противного. Допустим, что p>s

Рассмотрим два подпространства: $L_1 = \langle e_1, ..., e_p \rangle$, $L_2 = \langle f_{s+1}, ..., f_n \rangle$

Обратим внимание, что если $x \in L_1, \ x \neq 0$, то $k(x) > 0; \ \forall y \in L_2: \ k(y) \leq 0$

$$\dim L_1 + \dim L_2 = p + (n - s) = n + (p - s) > n \Longrightarrow$$

$$L_1 \cap L_2 \neq \{0\}: n \ge \dim(L_1 + L_2) = \underbrace{\dim L_1 + \dim L_2}_{>n} - \dim(L_1 \cap L_2) \Longrightarrow$$
$$\dim(L_1 \cap L_2) > 0$$

Ho $\forall v \in L_1 \cap L_2, \ v \neq 0: \ k(v) > 0$ и k(v) < 0 – противоречие \Longrightarrow p > s не может быть.

Доупустим, что s>p, тогда рассмотрим $L_1'=\langle e_{p+1},...,e_n\rangle,\,L_2'=\langle f_1,...,f_s\rangle$

$$n - p + s = n + (s - p) > n \Longrightarrow L'_1 \cap L'_2 \neq \{0\}$$

$$\forall u \in L_1' \cap L_2', \ u \neq 0: \ k(u) > 0, \ k(u) < 0 \Longrightarrow$$

$$p = s \Longrightarrow q = t$$

§3. Знакоопределенные квадратичные формы.

Пусть k(x) – квадратичная форма на пр-ве V над полем F, $\mathrm{char} F \neq 2$. f(x,y) – полярная билинейная форма, $f(x,y) = f(y,x), \ f(x,x) \equiv k(x)$. Скажем, что $u \perp v$, если f(u,v) = 0.

Скажем, что базис $e_1, ..., e_n$ в пространстве V ортогональный,

если
$$f(e_i, e_j) = 0, \ \forall i \neq j$$

Замечание. Форма является симметрической \iff ее матрица является симметрической.

Если
$$B = \begin{pmatrix} b_{11} & \dots & b_{ii} & \dots & b_{1n} \\ \vdots & & \vdots & & \vdots \\ b_{1i} & \dots & b_{ii} & \dots & b_{in} \\ \hline \vdots & & \vdots & & \vdots \\ b_{1n} & \dots & b_{in} & \dots & b_{nn} \end{pmatrix}$$
, то $B = B^T$

Главный угловой минор порядка
$$i$$
 матрицы B : $\begin{vmatrix} b_{11} & \dots & b_{1i} \\ \vdots & & \vdots \\ b_{1i} & \dots & b_{ii} \end{vmatrix}$

Теорема Якоби. Пусть B – матрица квадратичной формы k(x) (в данном базисе e) и все главные миноры этой матрицы отличны от 0: $\Delta_1 \Delta_2 \cdot ... \cdot \Delta_n \neq 0$. Тогда в пространстве V существует базис $e' = \{e'_1, ..., e'_n\}$, в котором

$$k=rac{\Delta_1}{\Delta_0}y_1^2+rac{\Delta_2}{\Delta_1}y_2^2+...+rac{\Delta_n}{\Delta_{n-1}}y_n^2$$
 (по договренности $\Delta_0=1$)

Доказательство. Процесс ортогонализации – последовательное построение векторов, начиная с $e'_1 = e_1$, чтобы векторы были ортогональными друг другу.

Это включает требования: $\forall m \geq 2$

1.
$$f(e'_i, e'_j) = 0, \ \forall i \neq j, \ 1 \leq i, j \leq m$$

2.
$$\langle e'_1, ..., e'_m \rangle = \langle e_1, ..., e_m \rangle$$

Берем $e_1' = e_1$, e_2' ищем в виде $e_2' = e_2 - \lambda e_1'$

$$f(e'_2, e'_1) = f(e_2 - \lambda e'_1, e'_1) = f(e_2, e'_1) - \lambda f(e'_1, e'_1) = f(e_2, e_1) - \lambda k(e'_1)$$
$$\lambda = \frac{f(e_2, e_1)}{k(e'_1)}, \ k(e'_2) = f(e_2 - \lambda e'_1, e_2 - \lambda e'_1) = f(e_2, e_2) - 2\lambda f(e_2, e'_1) + \lambda^2 k(e'_1)$$

Матрица перехода от $e_1, e_2 \longmapsto e_1'e_2'$

$$C_{2} = \begin{pmatrix} 1 & -\lambda \\ 0 & 1 \end{pmatrix} \qquad \Delta'_{2} = k(e'_{1})k(e'_{2}) = \Delta_{2} \Longrightarrow k(e'_{2}) = \frac{\Delta_{2}}{\Delta_{1}}$$

$$B' = \begin{pmatrix} f(e'_{1}, e'_{1}) & f(e'_{1}, e'_{2}) & \dots \\ f(e'_{2}, e'_{1}) & f(e'_{2}, e'_{2}) & \dots \\ \dots & \dots & \dots \end{pmatrix} \sim \begin{pmatrix} f(e'_{1}) & 0 & \dots \\ 0 & f(e'_{2}) & \dots \\ \dots & \dots & \dots \end{pmatrix}$$

$$B' = \begin{pmatrix} B'_{2} \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ \dots & \dots \end{pmatrix} \qquad B'_{2} = C_{2}^{T} B_{2} C_{2}, \ |B'_{2}| = \Delta'_{2} = |C_{2}|^{2} |B_{2}| = |B_{2}| = \Delta_{2}$$

Рекурсия. Пусть векторы $e_1,...,e_{m-1}$ $(m\geq 2)$ уже построены, исходя из условий (1), (2) процесса ортогонализации. Вектор e'_m будем искать в виде:

$$e'_m = e_m - \sum_{i=1}^{m-1} \lambda_i e'_i$$
, чтобы $f(e'_m, e'_j) = 0$, $\forall j = 1, ..., m-1$
$$f(e'_m, e'_j) = f(e_m - \sum_{i=1}^{m-1} \lambda_i e'_i, e'_j) = f(e_m, e'_j) - \sum_{i=1}^{m-1} \lambda_i f(e'_i, e'_j) = 0$$
 $f(e'_i, e'_j) = 0$, $i \neq 0 \Longrightarrow$ останется $f(e_m, e'_j) - \lambda_i f(e'_j, e'_j) = 0$

Это можно проделать вплоть до $m=n\Longrightarrow \lambda_i=\frac{f(e_m,e_j')}{k(e_j')},\ 1\le j\le m-1$ Новая матрица:

$$B' = \begin{pmatrix} k(e'_1) & & \\ & \ddots & \\ & & k(e'_n) \end{pmatrix} = C^T B C \Longrightarrow |B'| = |C|^2 |B| = |B|$$
 или $\Delta'_n = \Delta_n$

Тогда $\Delta'_n = k(e'_1) \cdot \ldots \cdot k(e'_n) = \Delta_n$

Применим индукцию для $m \leq n-1 \Longrightarrow k(e'_1) \cdot ... \cdot k(e_{n-1'}) = \Delta_{n-1} \Longrightarrow k(e'_n) = \frac{\Delta_n}{\Delta_{n-1}}$

Следствия из теоремы Якоби: (для $\Delta_1 \cdot ... \cdot \Delta_n$, над \mathbb{R} : $\mathrm{rk} = n$,) p (положительный индекс инерции) равен числу сохранений знака, а q (отрицательный индекс инерции) – числу перемен знака в последовательности $\Delta_0, ..., \Delta_n$

$$k(y_1, ..., y_n) = \sum_{m=1}^{n} \frac{\Delta_m}{\Delta_{m-1}} y_m^2$$

Квадратичная форма k(x) является:

- Положительно определенной на V, если $\forall v \neq 0, \ k(v) > 0$
- ullet Отрицательно определенной, если $\forall v \neq 0, \ k(v) < 0$
- Неотрицательно опеределенная, если $\forall v \neq 0, \ k(v) \geq 0$
- Неположительно опеределенная, если $\forall v \neq 0, \ k(v) \leq 0$

Лемма. Квадратичная форма является:

- 1. Положительно определенной $\iff p = n, \ q = 0$
- 2. Отрицательно определенной $\iff p=0, \ q=n$
- 3. Неотрицательно определенной $\iff q = 0, \ p > 0$
- 4. Неположительно определенной $\iff p = 0, \ q > 0$
- 5. Неопределенной $\iff p > 0, \ q > 0$

Критерий Сильвестра.
$$k>0\Longleftrightarrow \Delta_1>0,...,\Delta_n>0$$

$$k<0\Longleftrightarrow (-1)^i\Delta_i>0,\ \forall i=1,...,n$$

Доказательство. Докажем для k>0, для k<0 – аналогично.

$$\longleftarrow$$
 Дано, что $\forall i, \ \Delta_i > 0 \Longrightarrow k > 0$

По теореме Якоби \exists замена координат X=CY, что $k=\sum\limits_{i=1}^{n}\frac{\Delta_{i}}{\Delta_{i-1}}y_{i}^{2}$

По условию,
$$\forall i, \ \frac{\Delta_i}{\Delta_{i-1}} > 0 \Longrightarrow p = n \Longrightarrow k > 0$$
 $\Longrightarrow k > 0 \Longrightarrow \text{все } \Delta_i > 0$

Из условия
$$\Delta_n > 0$$
, т.к. $\underbrace{\Delta'_n}_{>0} = \Delta_n |C|^2$, известно, что $p=n$

$$\forall i$$
 рассмотрим $k(y_1,...,y_i,0,...,0) \neq 0 \Longrightarrow$ для нее $\Delta_i = |B_i|$

Примеры применения критерия Сильвестра

$$f(x,y) = f(x_0,y_0) + \frac{1}{2}d^2f(x_0,y_0) + o((\Delta x^2 + \Delta y^2))$$

$$(x_0,y_0) - \text{точка экстремума.} \Longrightarrow f_x'(x_0,y_0) = f_y'(x_0,y_0) = 0$$

$$d^2f(x_0,y_0) = f_{xx}''(M_0)(\Delta x)^2 + 2f_{xy}''(M_0)\Delta x\Delta y + f_{yy}''(M_0)(\Delta y)^2$$

$$\begin{vmatrix} f_{xx}'' & f_{xy}'' \\ f_{yx}'' & f_{yy}'' \end{vmatrix} \qquad (x_0,y_0) - \text{точка минимума} \Longleftrightarrow d^2f(x_0,y_0) > 0$$

§4. Евклидовы пространства.

Определение. Пространство \mathcal{E} над \mathbb{R} называется евклидовым, если на \mathcal{E} задано скалярное произведение (x,y) – симметричная билинейная форма, т.ч. соотвествующая квадратичная функция $(x,x)>0, \ x\in\mathcal{E}, \ x\neq 0$. (В геометрии, $\dim \varepsilon<\infty$)

Примеры:

1. В
$$C[a, b]$$
, $(f(x), g(x)) = \int_a^b f(x)g(x)dx$

$$(f, f) = \int_a^b f^2(x)dx > 0, \text{ где } f \not\equiv 0$$
2. В $M_n(\mathbb{R})$

$$(X, Y) = tr(XY^T)$$

$$(X, X) = tr(XX^T) = \sum_{i,j=1}^n x_{ij}^2$$

$$(XX^T)_{ii} = (x_{i1} \cdot \dots \cdot x_{in}) \begin{pmatrix} x_{i1} \\ \vdots \\ x_{in} \end{pmatrix} = x_{i1}^2 + \dots + x_{in}^2$$

Неравенство Коши-Буняковского-Шварца.

Пусть \mathcal{E} — евклидово пространство, тогда $\forall x,y\in\mathcal{E}\ |(x,y)|\leq |x||y|$ (1) Более того, если выполняется равенство, то $x\mid\mid y$.

Доказательство. Если x=0 или y=0, то (1) имеет вид 0=0. Можно считать, что $x\neq 0,\ y\neq 0$.

Рассмотрим функцию:

$$f(t) = (y - tx, y - tx) = (y, y) - 2t(x, y) + t^{2}(x, x), \ \forall t \in \mathbb{R} \Longleftrightarrow$$
$$\frac{\Delta}{4} = (x, y)^{2} - |x|^{2}|y|^{2} \le 0 \Longrightarrow (x, y)^{2} \le |x|^{2}|y|^{2} \Longleftrightarrow$$

$$|(x,y)| \le |x||y|$$

Равенство означает, что

$$\Delta = 0 \Longrightarrow \exists ! \ t = t_0 : \ (y - t_0 x, y - t_0 x) = 0 \Longrightarrow y = t_0 x \Longrightarrow y \mid\mid x.$$

Следствие. $\forall x, y \in \mathcal{E}: |x+y| \leq |x| + |y|$ (2)

Доказательство. (2)
$$\iff |x+y|^2 \le |x|^2 + 2(x,y) + |y|^2 \le |x|^2 + 2|x||y| + |y|^2$$

Определение. Если $x \neq 0, \ y \neq 0$, то опеределим угол α между x и y:

$$\cos \alpha = \frac{(x,y)}{|x||y|}$$
 (3), $\alpha = \arccos \frac{(x,y)}{|x||y|}$

Определение. Векторы $a_1, ..., a_m \in \mathcal{E}$ – ортогональная система, если $(a_i, a_j) = 0, \ \forall i \neq j \ \text{и} \ (a_i, a_i) = 1, \forall i = 1, ..., m.$

Утверждение. Ортогональная система ненулевых векторов ЛНЗ.

Доказательство. Пусть $\lambda_1 a_1 + ... + \lambda_m a_m = 0 \mid \cdot a_i \Longrightarrow$

$$\lambda_1 \underbrace{(a_1, a_i)}_{=0} + \dots + \lambda_i (a_i, a_i) + \dots + \lambda_m \underbrace{(a_m, a_i)}_{=0} = 0 \Longrightarrow$$
$$\lambda_i (a_i, a_i) = 0 \Longrightarrow \lambda_i = 0, \ \forall i = 1, \dots, m.$$

Теорема. В конечномерном евклидовом пространстве существует ортогональный (более сильное утверждение: ортонормированный) базис.

(Существование ортогонального базиса было доказано при доказательстве теоремы Якоби – процесс ортогонализации).

Если $a_1, ..., a_m$ – ортогональный базис, то $\frac{a_1}{|a_1|}, ..., \frac{a_n}{|a_n|}$ – ортогональный базис. Запись скалярного произведения (x, y) в координатах:

пусть $e = \{e_1, ..., e_n\}$ – базис в \mathcal{E}

$$\left(\sum_{i=1}^{n} x_i e_i, \sum_{j=1}^{n} y_j e_j\right) = \sum_{i,j=1}^{n} (e_i, e_j) x_i y_i = X^T G_e Y \tag{4}$$

Обознач. $G_e = ((e_i, e_j))$ – матрица Грама базиса $e_1, ..., e_n$, она симметрическая, причем положительно определенная.

$$G$$
 явл. матрицей Грама $\Longleftrightarrow egin{cases} G^T = G \ \Delta_1,...,\Delta_n > 0 \end{cases}$

Если базис ортонормированный то $G_e = E$, тогда $(x, y) = \sum_{i=1}^n x_i y_i$ Разложение любого вектора x по ортонормированному базису e:

$$x = \sum_{i=1}^{n} (x, e_i)e_i$$

§5 Ортогональное дополнение.

Определение. Пусть \mathcal{E} – евклидово пространство, $\emptyset \neq U \subseteq \mathcal{E}$, тогда ортогональное дополонение к U в \mathcal{E} – это подмножество $U^{\perp} = \{y \in \mathcal{E} | (x,y) = 0, \forall x \in U\}$

Заметим, что если $U \neq 0$, то U подпространство в \mathcal{E} :

$$0 \in U^{\perp}, \ (x, y_1) = 0, \ (x, y_2) = 0 \Longrightarrow$$
$$(x, \alpha_1 y_1 + \alpha_2 y_2) = \alpha_1 \underbrace{(x, y_1)}_{=0} + \alpha_2 \underbrace{(x, y_2)}_{=0} = 0 \Longrightarrow \alpha_1 y_1 + \alpha_2 y_2 \in U^{\perp}$$

Теорема. Если dim $\mathcal{E}=n,\ U\subseteq\mathcal{E}$ – подпространство в $\mathcal{E},$ то

1. $dimU + dimU^{\perp} = dim\mathcal{E} = n$

2.
$$\mathcal{E} = U \oplus U^{\perp}$$

Доказательство. $U \cap U^{\perp} = \{0\}$: если $v \in U \cap U^{\perp} \Longrightarrow (v, v) = 0 \Longrightarrow v = 0$ Выберем базис в $U: e_1, ..., e_m \ (dim U = m, \ 0 < m < n).$

$$y \in U^{\perp} \iff (y, e_i) = 0, \ \forall 1 \le i \le m$$

⇒ по определению.

$$\longleftarrow$$
 если $(y, e_i) = 0$, $\forall i = 1, ..., m$ и $\sum_{i=1}^m x_i e_i \Longrightarrow (x, y) = \sum_{i=1}^m x_i (e_i, y) = 0$

Получается, что U^{\perp} – подпространство решений ОСЛУ:

$$\begin{cases} (e_1, y) = 0 \\ \dots \\ (e_m, y) = 0 \end{cases} \implies \dim U^{\perp} = n - m \implies \dim U^{\perp} + \dim U = n \implies \mathcal{E} = U \oplus U \perp$$

Это означает, что объединив О.Н.Б. пространства U и О.Н.Б. пространства U^{\perp} , получим О.Н.Б в \mathcal{E} (О.Н.Б. - ортонормированный базис).

$$x = x_{\parallel} + x_{\perp}, \ x_{\parallel} \in U, \ x_{\perp} \in U^{\perp}$$

 $x_{||}$ – ортогональная проекция вектора x на U.

 x_{\perp} – ортогональная проекция вектора x на U^{\perp} .

Конкретно разложение вектора $x \in \mathcal{E}$ на сумму проекции и составляющей.

1 способ. Выбрать О.Н.Б. в
$$\varepsilon$$
, $\underbrace{e_1,...,e_m}_{\text{О.Н.Б в }U},\underbrace{e_{m+1},...,e_n}_{\text{О.Н.Б в }U^\perp}$

$$\forall x = \underbrace{\sum_{i=1}^{m} (x, e_i)e_i}_{x_{||}} + \underbrace{\sum_{i=m+1}^{n} (x, e_i)e_i}_{x_{\perp}}$$

 $\underline{2}$ способ. Пусть $a_1,...,a_m$ – произвольный базис в U.

Искать разложение x в виде:

$$x = \sum_{i=1}^{m} \alpha_i a_i + x_{\perp} \mid \cdot a_j \Longrightarrow (x, a_j) = \sum_{i=0} \underbrace{(a_i, a_j)}_{=0} \alpha_i + \underbrace{(x_{\perp}, a_j)}_{=0}$$

Эта система имеет единственное решение $(\alpha_1,...,\alpha_m)$. Матрица этой системы – это $G_{a_1,...,a_m}$

Определение. Угол между вектором x и подпространством U – угол между x и $x_{||}, ~ \rho(x,U):=||x_{\perp}$

"Теорема" Пифагора.

$$x = y + z, \ y \in U, \ z \in U^{\perp} \Longrightarrow |x|^2 = |y|^2 |z|^2$$
$$(x, x) = (y + z, y + z) = |y|^2 + 2\underbrace{(y, z)}_{0} + |z|^2$$

Утверждение. $\min\{|x-v|:\ v\in U\}=|z|$

$$x-v=(x-y)+(y-v)=z+\underbrace{(y-v)}_{\in U}$$

$$|x-v|^2=|z|^2+|y-v|^2\geq |z|^2, \ \text{равенство} \Longleftrightarrow x=y \underset{\text{док-ть}}{\Longrightarrow} \alpha\leq \beta, \ \forall v\in U$$

Свойства операции \bot : $(\forall U \subseteq V \longmapsto U^{\perp}, \dim \mathcal{E} < \infty)$

1.
$$(U^{\perp})^{\perp} = U$$

2.
$$(U_1 + U_2)^{\perp} = U_1^{\perp} \cap U_2^{\perp}$$

3.
$$(U_1 \cap U_2)^{\perp} = U_1^{\perp} + U_2^{\perp}$$

Доказательство.

1.
$$\forall u \in U, \ \forall v \in U^{\perp} \Longrightarrow (u, v) = 0 \Longrightarrow u \in (U^{\perp})^{\perp}$$

Равенство размерностей:

$$\dim U^{\perp} = n - \dim U, \ \dim(U^{\perp})^{\perp} = n - \dim U^{\perp} = \dim U \Longrightarrow U = (U^{\perp})^{\perp}$$

2. Возьмем
$$v \in U_1^{\perp} \cap U_2^{\perp}$$
, тогда $\forall w = u_1 + u_2$, $(v, w) = \underbrace{(v, u_1)}_0 + \underbrace{(v, u_2)}_0 \Longrightarrow$

$$v \in (U_1 + U_2)^{\perp} \Longrightarrow U_1^{\perp} \cap U_2^{\perp} \subseteq (U_1 + U_2)^{\perp}$$

Равенство размерностей:

$$\dim(U_1 + U_2)^{\perp} = n - \dim(U_1 + U_2) =$$

$$= n - (\dim U_1 + \dim U_2 - \dim(U_1 \cap U_2)) =$$

$$= n + \dim(U_1 \cap U_2) - \dim U_1 - \dim U_2 =$$

$$= (n - \dim U_1) + (n - \dim U_2) + \dim(U_1 \cap U_2) - n \Longrightarrow$$

$$\dim(U_1^{\perp} \cap U_2^{\perp}) = \dim U_1^{\perp} + \dim U_2^{\perp} - \dim(U_1^{\perp} \cap U_2^{\perp}) =$$

$$= n - \dim U_1 + n - \dim U_2 - \dim(U_1^{\perp} + U_2^{\perp})$$

$$\dim(U_1^{\perp} + U_2^{\perp}) \stackrel{?}{=} n - \dim(U_1 \cap U_2)$$

$$\dim(U_1^{\perp} + U_2^{\perp}) = \dim(U_1^{\perp} + \dim(U_2^{\perp}) - \dim(U_1^{\perp} \cap U_2^{\perp})$$

$$(U_1 + U_2) \perp \subseteq U_1^{\perp} \cap U_2^{\perp}$$

Если
$$v \in (U_1 + U_2)^{\perp} \Longrightarrow \begin{cases} (v, u_1) = 0, \forall u_1 \in U_1 \\ (v, u_2) = 0, \forall u_1 \in U_2 \end{cases} \Longrightarrow v \in U_1^{\perp} \cap U_2^{\perp}$$
3. $(U_1 \cap U_2)^{\perp} = U_1^{\perp} + U_2^{\perp} \Longleftrightarrow \underbrace{(U_1 \cap U_2)^{\perp \perp}}_{U_1 \cap U_2} \stackrel{?}{=} (U_1^{\perp} + U_2^{\perp}) = (\text{свойство 2}) = \underbrace{(U_1 \cap U_2)^{\perp}}_{U_1 \cap U_2} \stackrel{?}{=} (U_1^{\perp} + U_2^{\perp}) = (\text{свойство 2}) = \underbrace{(U_1 \cap U_2)^{\perp}}_{U_1 \cap U_2} \stackrel{?}{=} (U_1^{\perp} + U_2^{\perp}) = (\text{свойство 2}) = \underbrace{(U_1 \cap U_2)^{\perp}}_{U_1 \cap U_2} \stackrel{?}{=} (U_1^{\perp} + U_2^{\perp}) = \underbrace{(U_1 \cap U_2)^{\perp}}_{U_1 \cap U_2} \stackrel{?}{=} (U_1^{\perp} + U_2^{\perp}) = \underbrace{(U_1 \cap U_2)^{\perp}}_{U_1 \cap U_2} \stackrel{?}{=} (U_1^{\perp} + U_2^{\perp}) = \underbrace{(U_1 \cap U_2)^{\perp}}_{U_1 \cap U_2} \stackrel{?}{=} (U_1^{\perp} + U_2^{\perp}) = \underbrace{(U_1 \cap U_2)^{\perp}}_{U_1 \cap U_2} \stackrel{?}{=} (U_1^{\perp} + U_2^{\perp}) = \underbrace{(U_1 \cap U_2)^{\perp}}_{U_1 \cap U_2} \stackrel{?}{=} (U_1^{\perp} + U_2^{\perp}) = \underbrace{(U_1 \cap U_2)^{\perp}}_{U_1 \cap U_2} \stackrel{?}{=} (U_1^{\perp} + U_2^{\perp}) = \underbrace{(U_1 \cap U_2)^{\perp}}_{U_1 \cap U_2} \stackrel{?}{=} (U_1^{\perp} + U_2^{\perp}) = \underbrace{(U_1 \cap U_2)^{\perp}}_{U_1 \cap U_2} \stackrel{?}{=} (U_1^{\perp} + U_2^{\perp}) = \underbrace{(U_1 \cap U_2)^{\perp}}_{U_1 \cap U_2} \stackrel{?}{=} (U_1^{\perp} + U_2^{\perp}) = \underbrace{(U_1 \cap U_2)^{\perp}}_{U_1 \cap U_2} \stackrel{?}{=} (U_1^{\perp} + U_2^{\perp}) = \underbrace{(U_1 \cap U_2)^{\perp}}_{U_1 \cap U_2} \stackrel{?}{=} (U_1^{\perp} + U_2^{\perp}) = \underbrace{(U_1 \cap U_2)^{\perp}}_{U_1 \cap U_2} \stackrel{?}{=} (U_1^{\perp} + U_2^{\perp}) = \underbrace{(U_1 \cap U_2)^{\perp}}_{U_1 \cap U_2} \stackrel{?}{=} (U_1^{\perp} + U_2^{\perp}) = \underbrace{(U_1 \cap U_2)^{\perp}}_{U_1 \cap U_2} \stackrel{?}{=} (U_1^{\perp} + U_2^{\perp}) = \underbrace{(U_1 \cap U_2)^{\perp}}_{U_1 \cap U_2} \stackrel{?}{=} (U_1^{\perp} + U_2^{\perp}) = \underbrace{(U_1 \cap U_2)^{\perp}}_{U_1 \cap U_2} \stackrel{?}{=} (U_1^{\perp} + U_2^{\perp}) = \underbrace{(U_1 \cap U_2)^{\perp}}_{U_1 \cap U_2} \stackrel{?}{=} (U_1^{\perp} + U_2^{\perp}) = \underbrace{(U_1 \cap U_2)^{\perp}}_{U_1 \cap U_2} \stackrel{?}{=} (U_1^{\perp} + U_2^{\perp}) = \underbrace{(U_1 \cap U_2)^{\perp}}_{U_1 \cap U_2} \stackrel{?}{=} (U_1^{\perp} + U_2^{\perp}) = \underbrace{(U_1 \cap U_2)^{\perp}}_{U_1 \cap U_2} \stackrel{?}{=} (U_1^{\perp} + U_2^{\perp}) = \underbrace{(U_1 \cap U_2)^{\perp}}_{U_1 \cap U_2} \stackrel{?}{=} (U_1^{\perp} + U_2^{\perp}) = \underbrace{(U_1 \cap U_2)^{\perp}}_{U_1 \cap U_2} \stackrel{?}{=} (U_1^{\perp} + U_2^{\perp}) = \underbrace{(U_1 \cap U_2)^{\perp}}_{U_1 \cap U_2} \stackrel{?}{=} (U_1^{\perp} + U_2^{\perp}) = \underbrace{(U_1 \cap U_2)^{\perp}}_{U_1 \cap U_2} \stackrel{?}{=} (U_1^{\perp} + U_2^{\perp}) = \underbrace{(U_1 \cap U_2)^{\perp}}_{U_1 \cap U_2} \stackrel{?}{=} (U_1^{\perp} + U_2^{\perp}) = \underbrace{(U_1 \cap U_2)^{\perp}}_{U_1 \cap U_2} \stackrel{?}{=} (U_1^{\perp} + U_2^{\perp}) = \underbrace{(U_$

3.
$$(U_1 \cap U_2)^{\perp} = U_1^{\perp} + U_2^{\perp} \iff \underbrace{(U_1 \cap U_2)^{\perp \perp}}_{U_1 \cap U_2} \stackrel{?}{=} (U_1^{\perp} + U_2^{\perp}) = (\text{свойство } 2) = (U_1^{\perp})^{\perp} \cap (U_2^{\perp})^{\perp} = U_1 \cap U_2$$

Изоморфизм евклидовых пространств.

 $\varphi: \mathcal{E} \longmapsto \mathcal{E}'$ – изоморфизм евклидовых пространств \mathcal{E} и \mathcal{E}' , если

- 1. φ линейное отображение.
- $2. \varphi$ биекция.
- 3. $\forall x_1, x_2 \in \mathcal{E} \Longrightarrow (\varphi(x_1), \varphi(x_2)) = (x_1, x_2)$

Теорема. Если dim $\mathcal{E}=\dim\mathcal{E}'$, то \mathcal{E} и \mathcal{E}' изоморфны, т.е. существует изоморфизм $\varphi:\ \mathcal{E}\longmapsto\mathcal{E}'$

Доказательство. Выберем $e_1, ..., e_n$ – О.Н.Б. в $\mathcal{E}, e'_1, ..., e'_n$ – О.Н.Б. в \mathcal{E}' $\forall x = \sum_{i=1}^n x_i e_i$, определим $\varphi(x) = \sum_{i=1}^n x_i e'_i$ (в частности, $\varphi(e_i) = e'_i$) φ – линейный изоморфизм.

$$\forall x, y \in \mathcal{E}, (x, y) = \sum_{i=1}^{n} x_i y_i, \ (\varphi(x), \varphi(y)) = (\sum_i x_i e_i', \sum_j y_j e_j') = \sum_{i=1}^{n} x_i y_i = (x, y)$$

Теорема.

- 1. Пусть e, e' два О.Н.Б. в евклидовом пространстве $\mathcal{E}, C_{e \to e'} \Longrightarrow C_{e \to e'}^T = C_{e \to e'}^{-1}$ (ортогональная матрица).
- 2. Если e О.Н.Б., C ортогональная матрица, то eC = e' тоже О.Н.Б.

Доказательство.

1. Дано: e' – О.Н.Б. \Longrightarrow $(e_i, e_j) = \delta_{ij}$ (символ Кронекера)

$$(e_i, e_j) = (C^T C)_{ij} \Longrightarrow C^T C = E$$

2. $C_{e \to e'} = (e_1'^{\uparrow}...e_n'^{\uparrow})$ в базисе e. Т.к. базис e ортонормированный, то $(e_i',e_j') = e_i' \cdot e_j'^{\uparrow}$ – это (i,j) элемент произведения:

$$C^TC = E \Longrightarrow (e'_i, e'_j) = \delta_{ij} \Longrightarrow e' - \text{ O.H.B.}$$

Понятие объема п-мерного параллелепипеда.

Параллелепипед Π с ребрами $a_1, ..., a_n$ в n-мерном пространстве V.

$$\Pi = \{ \sum_{i=1}^{n} \alpha_i a_i \mid 0 \le \alpha_i \le 1, \ 1 \le i \le n \}$$

Будем считать, что $a_1, ..., a_n$ ЛНЗ.

В n-мерном евклидовом пространстве \mathcal{E}_n

Определение. Объемом n-мерного параллелепипеда V_n назывется произведение объема (n-1)-мерного основания $\Pi_{\{a_1,\dots,a_{n-1}\}}$ на высоту $|a_n^{\perp}|$

$$\Phi$$
ормула: $|a_n^{\perp}|^2 = \frac{\det G_{\{a_1,\dots,a_n\}}}{\det G_{\{a_1,\dots,a_{n-1}\}}}$

Доказательство. Ортогонализуем векторы $a_1,...,a_n$ – получим попарно ортогональные $b_1,...,b_n$ (в частности, $b_n\perp b_1,...,b_{n-1},\ \langle b_1,...,b_{n-1}\rangle=\langle a_1,...,a_{n-1}\rangle)$

$$G_{\{b_1,\dots,b_n\}} = C^T G_{\{a_1,\dots,a_n\}} C, \text{ при этом } C = \begin{pmatrix} 1 & * \\ & \ddots & \\ 0 & 1 \end{pmatrix} \Longrightarrow \det G_{\{b_1,\dots,b_n\}} = \det G_{\{a_1,\dots,a_n\}}$$
$$\frac{\det G_{\{a_1,\dots,a_n\}}}{\det G_{\{a_1,\dots,a_{n-1}\}}} = \frac{|b_1|^2 \dots |b_n|^2}{|b_1|^2 \dots |b_{n-1}|^2} = |b_n|^2 = |a_n^{\perp}|^2$$

Следствие. По индукции, $V_n^2 = \det G_{\{a_1,...,a_n\}}$

Следствие.

$$\rho^{2}(x,U) = \frac{\det G_{\{a_{1},...,a_{m},x\}}}{G_{\{a_{1},...,a_{m}\}}} (U = \langle a_{1},...,a_{m} \rangle \text{ ЛН3})$$

Следствие. Если известны координаты векторов $a_1, ..., a_n$ в О.Н.Б., то

$$V_n = |\det \begin{pmatrix} \vec{a}_1 \\ \vdots \\ \vec{a}_n \end{pmatrix}|$$

Доказательство. Т.к. базис ортонормированный, то

$$\begin{pmatrix} \vec{a}_1 \\ \vdots \\ \vec{a}_1 \end{pmatrix} (a_1^{\uparrow} ... a_n^{\uparrow}) = \det G_{\{a_1, ..., a_n\}} \Longrightarrow$$

$$V_n^2 = \det G_{\{a_1,\dots,a_n\}} = \left(\det \begin{pmatrix} \vec{a}_1 \\ \vdots \\ \vec{a}_n \end{pmatrix}\right)^2$$

§6. Линейный оператор в евклидовом пространстве

Пусть \mathcal{E} – евклидово пространство, $\varphi: \mathcal{E} \longmapsto \mathcal{E}'$

Определение. Оператор φ^* – сопряженный к φ :

$$\varphi^*: \mathcal{E} \longmapsto \mathcal{E}, \ \forall x, y \in \mathcal{E}: \ (\varphi(x), y) = (x, \varphi^*(y)) \ (1)$$

Определение. Оператор φ – самосопряженный, если

$$\varphi^* = \varphi$$
, T.e. $\forall x, y \in \mathcal{E} : (\varphi(x), y) = (x, \varphi(y))$

Определение. Оператор φ – ортогональный, если

$$\forall x, y \in \mathcal{E} : (\varphi(x), \varphi(y)) = (x, y)$$

Условия на матрицу A_{φ} :

1. (1) в координатах:

$$(A_{\varphi}X)^{T}G_{e}Y = X^{T}G_{e}(A_{\varphi^{*}}Y) \Longrightarrow$$

$$X^{T}(A_{\varphi}^{T}G_{e})Y = X^{T}(G_{e}A_{\varphi^{*}})Y, \ \forall X, Y \in F^{n} \Longrightarrow$$

$$A_{\varphi}^{T}G_{e} = G_{e}A_{\varphi^{*}} \Longrightarrow$$

$$A_{\varphi^{*}} = G^{-1}A_{\varphi}^{T}G_{e}$$

Если e – О.Н.Б., то $G_e = E$ и $A_{\varphi *} = A_{\varphi}^T$

2.
$$\varphi=\varphi^*$$
 – самосопряженный $\Longleftrightarrow (\varphi(x),y)=(x,\varphi(y)), \ \forall x,y\in\mathcal{E}$

$$(A_{\varphi}X)^T G_e Y = X^T G_e A_{\varphi} Y, \ \forall X, Y \in \mathbb{R}^n$$

$$X^{T}(A_{\varphi}^{T}G_{e})y = X^{T}(G_{e}A_{\varphi})Y \iff A_{\varphi}^{T}G_{e} = G_{e}A_{\varphi}$$

В О.Н.Б. $\Longleftrightarrow A_{\varphi}^T = A_{\varphi}$ – симметричная.

3.
$$\varphi$$
 – ортогональный $\Longleftrightarrow \forall x,y: \ (\varphi(x),\varphi(y))=(x,y) \Longleftrightarrow$

$$(A_{\varphi}X)^T G_e(A_{\varphi}Y) = X^T G_e Y$$

$$X^{T}(A_{\varphi}^{T}G_{e}A_{\varphi})Y \equiv X^{T}G_{e}Y \iff A_{\varphi}^{T}G_{e}A_{\varphi} = G_{e}$$

В О.Н.Б.: $A_{\varphi}^T A_{\varphi} = E, \ A_{\varphi}$ – ортогональныная.

Комментарий к определению φ^* :

 $\overline{\text{Пусть } \varphi:\ V \longmapsto W}$ – линейное отображение.

Тогда $\varphi^*: \underbrace{W^*}_{f \in} \longmapsto V^*$ определим по правилу: $\varphi^*(f)(v) = f(\varphi(v)), \ \forall v \in V$

Это φ^* – линейное отображение, в частности, для W=V, то $\varphi^*:V^*\longmapsto V^*$ – линейный оператор.

Утверждение. Если \mathcal{E} – евклидово пространство, то $\mathcal{E}^* \cong \mathcal{E}$.

Доказательство. Построение изоморфизма:

Выберем в
$$\mathcal{E}$$
 О.Н.Б. $e, \forall v \in \mathcal{E}: v = \sum_{i=1}^{n} x_i e_i$

$$\forall f \in \mathcal{E}^*, \ f(v) = \sum_{i=1}^n \underbrace{f(e_i)}_{a_i} x_i = \sum_{i=1}^n a_i x_i = (a_1, ..., a_n) \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = (a, v)$$

Т.к. базис ортонормированный и $a=\sum\limits_{i=1}^n a_ie_i,\ v=\sum\limits_{i=1}^n x_ie_i$

Т.е. для функции f найти такой вектор, что $f(v) = (a, v), \forall v \in \mathcal{E}$ $f \longleftrightarrow a$, можно "отождествить" \mathcal{E} и \mathcal{E}^*

Свойства операции сопряжения:

1.
$$(\varphi^*)^* = \varphi$$

2.
$$(\alpha \varphi + \beta \varphi)^* = \alpha \varphi^* + \beta \varphi^*$$

$$3. (\varphi \psi)^* = \psi^* \varphi^*$$

Доказательство. Достаточно доказать для матриц в О.Н.Б.

1.
$$A_{\varphi^*} = A_{\varphi}^T \Longrightarrow A_{\varphi^{**}} = (A_{\varphi^*})^T = A_{\varphi}^{TT} = A_{\varphi}$$

2. Очевидно.

3.
$$A_{(\varphi\psi)^*} = A_{\varphi\psi}^T = (A_{\varphi}A_{\psi})^T = A_{\psi}^T A_{\varphi}^T = A_{\psi^*} A_{\varphi^*}$$

Теорема. Пусть $\varphi: \mathcal{E} \longmapsto \mathcal{E}$ – линейный оператор. Тогда:

1. Если
$$\varphi(U) \subseteq U$$
, то $\varphi^*(U^{\perp}) \subseteq U^{\perp}$

2.
$$\operatorname{Im}\varphi = (\operatorname{Ker}\varphi^*)^{\perp}$$

3.
$$\operatorname{Ker}\varphi = (\operatorname{Im}\varphi^*)^{\perp}$$

Доказательство.

1. Пусть $x \in U, y \in U^{\perp}$. $\varphi^*(y) \subseteq U^{\perp} \iff$

$$0\stackrel{?}{=}(x,\varphi^*(y))=(\underbrace{\varphi(x)}_{\in U},y)=0\Longrightarrow \varphi^*\in U^\perp$$

2. Возьмем $y \in \text{Im}\varphi \Longrightarrow \exists x \in \mathcal{E}: \ y = \varphi(x)$

Возьмем $z \in \mathrm{Ker} \varphi^*$. Вычислим:

$$(y,z) = (\varphi(x),z) = (x,\underbrace{\varphi^*(z)}_0) = 0 \Longrightarrow$$

$$y \in (\operatorname{Ker}\varphi^*)^{\perp} \Longrightarrow \operatorname{Im}\varphi \subseteq (\operatorname{Ker}\varphi^*)^{\perp}$$

 $\dim \mathrm{Im} \varphi = \mathrm{rk} A_{\varphi}, \ \dim \mathrm{Ker} \varphi^* = n - \dim \mathrm{Im} \varphi^* = n - \mathrm{rk} A_{\varphi}.$ Ho $\mathrm{rk} A_{\varphi^*} = \mathrm{rk} A_{\varphi}$ (B O.H.B. $A_{\varphi^*} = A_{\varphi}^T$) \Longrightarrow

 $\dim(\mathrm{Ker}\varphi^*)^{\perp}=n-\dim\mathrm{Ker}\varphi^*=\mathrm{rk}A_{\varphi}\Longrightarrow$ размерности равны

3. $\operatorname{Ker}\varphi = (\operatorname{Im}\varphi^*)^{\perp} \iff (\operatorname{Ker}\varphi)^{\perp} = \operatorname{Im}\varphi^*$

Заменим φ на φ^* , тогда φ^* на φ^{**} в равенстве 2.

Тогда $(\mathrm{Ker}\varphi^*)^\perp = \mathrm{Im}\varphi$ в исходных обозначениях это дает $(\mathrm{Ker}\varphi)^\perp = \mathrm{Im}\varphi^*$

Следствие. (Теорема Фредгольца)

СЛУ AX = b (*) совместна $\iff \forall Y$ – решения сопряженной однородной системы $A^TY = 0$ выполняется условие: $Y^Tb = 0$, (т.е $Y \perp b$)

Система (*) совместна означает, что $b\in \mathrm{Im}\varphi$, если A – матрица оператора φ По $2,\,b\in \mathrm{Im}\varphi\Longleftrightarrow b\in (\mathrm{Ker}\varphi^*)^\perp$, т.е. $\forall Y:A^TY=0,\;(b,Y)=0$

§7. Самосопряженные операторы.

Определение. $\varphi: \mathcal{E} \longmapsto \mathcal{E}$ называется самосопряженным, если $\forall x,y \in \mathcal{E}: (\varphi(x),y) = (x,\varphi(y))$ (1)

Теорема. Пусть $\varphi: \mathcal{E} \longmapsto \mathcal{E}$ – самосопряженный оператор

- 1. Если $U \subseteq \mathcal{E} \varphi$ -инвариантное подпространство, то U^{\perp} также φ -инвариантно (это доказано для φ^*)
- 2. Все характеристические корни φ вещественные.
- 3. В ${\cal E}$ существует О.Н.Б. из собственных векторов оператора φ (в нем A_{φ} диагональна).

Доказательство.

2. Пусть λ_1 – характеристический корень для $\chi_{\varphi}(\lambda)$

Если $\lambda_1 \in \mathbb{R}$ – это собственное значение, и доказывать нечего. (С) Чубаров Если $\lambda_1 = \alpha + i\beta$, то существует двумерное инвариантное подпространство $U = \langle X, Y \rangle, \ X, Y \in \mathbb{R}^n.$

 $(x,y)|_{U}$ делает его евклидовым пространством.

 $(x,y\in U)$, соотвественно, $\varphi|_U$ будет самосопряженным оператором на $U\Longrightarrow$

в О.Н.Б.
$$e'_1, e'_2, \ A_{\varphi|_U} = A$$
, т.е. $A = \begin{pmatrix} a_{11} & a_{12} \\ a_{12} & a_{22} \end{pmatrix}$

$$\begin{vmatrix} a_{11} - \lambda & a_{12} \\ a_{12} & a_{22} - \lambda \end{vmatrix} = \lambda^2 - (a_{11} + a_{22})\lambda + a_{11}a_{22} - a_{12}^2$$

$$D = (a_{11} + a_{22})^2 - 4(a_{11}a_{22} - a_{12}^2) = (a_{11} - a_{22})^2 + 4a_{12}^2 \ge 0 \Longrightarrow \lambda \in \mathbb{R}$$

3. Индукция по $\dim \mathcal{E} = n$:

 $\dim \mathcal{E} = 1 \Longrightarrow \varphi(x) = \lambda x, \ \forall x \in \mathcal{E}$ – верно.

Для $\dim \mathcal{E} = n > 1$ предположение индукции: в (n-1)-мерном евклидовом пространстве самосопряженный оператор имеет О.Н.Б. из собственных векторов.

Фикс. одно собственное значение $\lambda_1 \in \mathbb{R}$, обозн. $U = \langle e_1 \rangle$, если $\varphi(e_1) = \lambda_1 e_1, \ |e_1| = 1$

Тогда U^{\perp} имеет размерность (n-1) является евклидовым относительно $(x,y)|_{U^{\perp}}$ и $\varphi|_{U^{\perp}}$ – самосопряженный \Longrightarrow в U^{\perp} \exists О.Н.Б. $e_2,...,e_n: \varphi(e_i)=\lambda_i e_i$ Тогда $e_1,...,e_n$ – нужный О.Н.Б.

Задача: Пусть φ — самосопряженное оператор в \mathcal{E} , $\varphi^2 = \varphi$ (идемпотентный оператор). Тогда либо $\varphi = \mathcal{E}$ или 0, либо φ — ортогональнное проектирование \mathcal{E} на некоторое подмножество.

§8. Ортогональные операторы.

Определение. Линейный оператор $\varphi : \mathcal{E} \longmapsto \mathcal{E}$ назывется ортогональным, если $\forall x, y \in \mathcal{E} : (\varphi(x), \varphi(y)) = (x, y)$

Заметим, что $|\varphi(x)| = |x|, \ \forall x \in \mathcal{E} \Longrightarrow \varphi$ – невырожденный.

Теорема. $\varphi: \mathcal{E} \longmapsto \mathcal{E}$ – ортогональный оператор.

- 1. Собственные векторы, отвечающие различным собственным значениям ортогональны.
- 2. Все характеристические корни ортогональльной матрицы $|\lambda| = 1$, вещественные только ± 1 .
- 3. Если $\varphi(U) \subseteq U$, то $\varphi(U^{\perp}) \subseteq U^{\perp}$

Доказательство.

3. Пусть $x \in U, y \in U^{\perp}, 0 = (x, y) = (\varphi(x), \varphi(y))$

Т.к. φ невырожденно, т.е. обратимо, то $\forall x \in U \ \exists z \in U \ (z = \varphi^{-1}(x))$

$$(x,y) = (\varphi^{-1}(x),y) = (\varphi(\varphi^{-1}(x)),\varphi(y)) = (x,\varphi(y)) \Longrightarrow \varphi(y) \in U^{\perp}$$

 φ^{-1} тоже ортогонален.

1. Пусть $\varphi(x) = \lambda_1 x, \ x \neq 0, \ \varphi(y) = \lambda_2 y, \ y \neq 0, \ \lambda_1 \neq \lambda_2$:

$$(\varphi(x), \varphi(y)) = \lambda_1 \lambda_2(x, y) = (x, y)$$

$$(x,y)(1-\underbrace{\lambda_1\lambda_2}_{-1})=0\Longrightarrow 2(x,y)=0\Longrightarrow (x,y)=0$$

2. Если λ – собственное значение, то $\lambda \in \{1, -1\}, \ \varphi(x) = \lambda x, \ x \neq 0$:

$$(\varphi(x), \varphi(x)) = \lambda^2(x, x) = \underbrace{(x, x)}_{\neq 0} \Longrightarrow \lambda^2 = 1, \ \lambda = \pm 1$$

Если $\lambda_1 = \alpha + i\beta$, $(\beta \neq 0)$ – корень матрицы A_{φ} , то рассмотрим оператор $\varphi^{\mathbb{C}}: \mathbb{C}^n \longmapsto \mathbb{C}^n$, $(\dim V = n)$

$$\varphi^{\mathbb{C}}(z) = \lambda_1 z, \ z = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

$$((1,i),(1,i)) \stackrel{?!}{=} 1 \cdot 1 + i \cdot i$$

Введем в \mathbb{C}^n скалярное произведение векторов X,Y :

$$(X,Y) := \sum_{i=1}^{n} x_i \overline{y_i} \Longrightarrow (X,X) = \sum_{i=1}^{n} |x_i|^2$$

При этом, $(Y,X) = \overline{(X,Y)}$, в частности, $\forall \lambda \in \mathbb{C}$, $(X,\lambda Y) = \overline{\lambda}(X,Y)$ Пусть $x \in \mathbb{C}^n$ – собственный для $\varphi^{\mathbb{C}}$, т.е. $A_{\varphi}X = \lambda_1 X$, вычислим

$$(\varphi^{\mathbb{C}}(x), \varphi^{\mathbb{C}}(x)) = (x, x)$$
$$(\lambda_1 X, \lambda_1 X) = \lambda_1 \overline{\lambda_1}(X, X) \Longrightarrow |\lambda_1|^2 = 1, \ |\lambda| = \pm 1$$

Определение. Матрица называется канонической, если

 $A = \begin{pmatrix} \Phi_1 & & & & & \\ & \ddots & & & & \\ & & \Phi_s & & & \\ & & & 1 & & \\ & & & \ddots & & \\ & & & 1 & & \end{pmatrix}$

Теорема. Для любого ортогонального оператора в \mathcal{E}_n существует ортонормированный базис, в котором матрица A_{φ} имеет канонический вид, при этом числа p,q,s и углы α_k (k=1,...,s) для φ опеределяется единственным образом, с точностью до порядка следования клеток.

Доказательство. Допустим, что φ имеет хотя бы одно вещественное собственное значение. Рассмотрим $U = \mathcal{E}_1 \oplus \mathcal{E}_{-1}$ (прямая сумма собственных подпространств). Обозначим за $p := \dim \mathcal{E}_1, \ q := \dim U_{-1} \Longrightarrow \dim U = p + q$.

U — инвариантное подпространство, тогда $\mathcal{E} = U^{\perp} \oplus U$, U^{\perp} также инвариантно, и $\varphi|_{U^{\perp}}$ не имеет вещественных собственных значений. Возьмем одно из них $\lambda_1 = \cos \alpha_1 + i \sin \alpha_1 \sim L_1$.

$$A_{\varphi|_{L_1}} = \begin{pmatrix} \cos \alpha_1 & -\sin \alpha_1 \\ \sin \alpha_1 & \cos \alpha_1 \end{pmatrix}$$

Индукция по размерности s (если $s \neq 0$), $\dim U^{\perp} = 2s$.

Рассмотрим подпространство: L_1^{\perp} в пространстве U^{\perp} , его размерность равна 2s-2.

По предположению индукции, в L_1^{\perp} в U^{\perp} существует О.Н.Б., в котором матрица ограничения оператора φ имеет вид

$$\begin{pmatrix} \Phi_2 & 0 \\ & \ddots & \\ 0 & \Phi_n \end{pmatrix}$$

Пример: Пусть $A^T = A^{-1}$ 3-го порядка. Хотим найти матрицу

$$A \stackrel{?}{\sim} A' = \begin{pmatrix} \cos \alpha & -\sin \alpha & 0\\ \sin \alpha & \cos \alpha & 0\\ 0 & 0 & \lambda_1 \end{pmatrix}, \ \lambda_1 = \pm 1$$

$$|A'| = \begin{vmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{vmatrix} \lambda_1 = \lambda_1 = \pm 1$$

Зная, что можно вычислить собственный вектор \Longrightarrow он дает ось поворота (м.б. с симметрией, если $\lambda_1=-1$)

$$\operatorname{tr} A = \operatorname{tr} A' = 2\cos\alpha + \lambda_1 \Longrightarrow \cos\alpha = \frac{\operatorname{tr} A - \lambda_1}{2}$$

Можно выбрать правый О.Н.Б. e_1, e_2 в плоскости, $\perp e_3, \ \varphi(e_3) = \lambda_1 e_3, \ |e_3| = 1$. Общий случай: $\varphi : \mathcal{E} \longmapsto \mathcal{E}$.

Лемма. Если φ невырожденная, то все собственные значения оператора $\varphi^* \cdot \varphi$ положительны.

Теорема. Любой невырожденный оператор φ может быть представлен в виде произведения (причем единственным образом) $\varphi = \theta \cdot \psi$, где θ – ортогональный оператор, а ψ – самосопряженный со всеми положительными собственными значениями $\lambda > 0$.

Доказательство. Пусть μ – собственное значение оператора $\varphi^* \cdot \varphi$, $(\varphi^* \cdot \varphi)(x) = \mu x, \ x \neq 0$ Вычислим: $((\varphi^* \cdot \varphi)(x), x) = \mu(x, x)$

$$(\underbrace{\varphi(x)}_{\neq 0}, \varphi(x)) > 0 \Longrightarrow \mu = \frac{(\varphi(x), \varphi(x))}{(x, x)} > 0$$

Матричная формулировка: любую невырожденную вещественную матрицу A можно представить, причем единственным образом, в виде A=BC, где $B^T=B^{-1},\ C^T=C$, с положительными собственными значениями.

Такое разложение называется полярным разложением оператора (матрицы). Можно выбрать О.Н.Б. $e_1, ..., e_n$ в \mathcal{E} , тогда $A = A_{\varphi}, \ B = B_{\theta}, \ C = C_{\psi}$. Доказательство матричного варианта:

Пусть задача решена:

$$A = BC \Longrightarrow A^T = C^T B^T = C B^{-1} \Longrightarrow A^T A = C B^{-1} B C = C^2$$

Т.к. матрица $A^TA=C^2$ – симметричная, она задает самосопряженный линейный оператор, т.е. существует О.Н.Б. $e_1',...,e_n'$, в котором

$$(A^T A)' = \begin{pmatrix} \mu_1 & 0 \\ & \ddots & \\ 0 & & \mu_n \end{pmatrix}$$
 все $\mu_i > 0$, по лемме.

Хотим найти матрицу C', чтобы

$$(C')^2 = \begin{pmatrix} \mu_1 & 0 \\ & \ddots & \\ 0 & \mu_n \end{pmatrix} \Longrightarrow C' = \begin{pmatrix} \pm \sqrt{\mu_1} & 0 \\ & \ddots & \\ 0 & \pm \sqrt{\mu_n} \end{pmatrix}$$

С учетом требования положительности

$$C'=egin{pmatrix} \lambda_1&&0\\&\ddots&\\0&&\lambda_n \end{pmatrix},\;\lambda_i=\sqrt{\mu_i}>0-\;$$
единственная такая матрица.

Пусть T – (ортогональная) матрица перехода от базиса e к базису e', тогда

$$T^{-1}(A^T A)T = \begin{pmatrix} \mu_1 & 0 \\ & \ddots \\ 0 & \mu_n \end{pmatrix} \Longrightarrow C = TC'T^{-1} = T \begin{pmatrix} \lambda_1 & 0 \\ & \ddots \\ 0 & \lambda_n \end{pmatrix} T \Longrightarrow$$

$$B = AC^{-1}$$
 — эта матрица оргональная

$$B^{T} = (C^{-1})TA^{T} = C^{-1}A^{T} \Longrightarrow B^{T}B = (C^{-1}A^{T})(AC^{-1}) = C^{-1}(\underbrace{A^{T}A}_{C^{T}})C^{-1} = E$$

Замечание. Можно также представить A в виде A = C'B'. Вопрос: можно ли утверждать, что B' = B или C' = C?

Рассмотрим разложение
$$A=BC$$
, где $C=T\begin{pmatrix} \lambda_1 & 0 \\ & \ddots & \\ 0 & \lambda_n \end{pmatrix}T^{-1}$

$$A = (BT)diag(\lambda_1, ..., \lambda_n)T^{-1} = D \cdot diag(\lambda_1, ..., \lambda_n)F,$$
BCC > 0

где F, D – ортогональное сингулярное разложение.

§9. Квадратичные формы на евклидовом пространстве.

Пусть k(x) = f(x, x) – квадратичная функция на евклидовом пространстве. f(x, y) – симметрическая билинейная форма, которая ее порождает.

Обозначим F – матрицу этой формы в некотором ортонормированном базисе.

Если ввести другой О.Н.Б. e' = eC, $C = C_{e \to e'}$ – ортогональная матрица.

Тогда $F' = C^T F C = C^{-1} F C$. Поэтому можно рассмотреть F как матрицу линейного оператора φ в базисе e, φ — самосопряженный.

По теореме, в \mathcal{E} существует О.Н.Б. e', в котором матрица этого оператора диагональная: $diag(\lambda_1, ..., \lambda_n)$.

$$F_{e'} = C^{-1}FC = C^TFC$$

Т.е. в базисе e', если сделать замену X = CY форма k приобретает вид:

$$k(y) = \lambda_1 y_1^2 + \dots + \lambda_n y_n^2$$

Причем $\lambda_1,...,\lambda_n$ – собственные значения матрицы F.

Базисные векторы $e_1',...,e_n'$ называют главными осями для квадратичной формы k(x).

Определение. Линейный оператор $\varphi: \mathcal{E} \longmapsto \mathcal{E}$ называется присоединенным к билинейной функции f(x,y), если:

$$\forall x, y \in \mathcal{E}f(x, y) = (x, \varphi(y))$$
 (1)

Утверждение. 1. Для любой билинейной функции f(x,y) существует единственный присоединенный оператор, удовлетворяющий тождеству (1)

2. Если $f(x,y) \equiv f(y,x)$, то φ – самосопряженный.

Доказательство. Пусть e – некоторый базис в $\mathcal{E},\;x=eX,\;y=eY\Longrightarrow$

$$f(x,y) = X^T F Y \equiv X^T (G_e A_\varphi) Y \iff F = G_e A_\varphi, \ A_\varphi = G_e^{-1} F \ (2)$$

Проверка самосопряженности для симметричности f(x, y):

$$\forall x, y \in \mathcal{E} \ (\varphi(x), y) = (y, \varphi(x)) = f(y, x) = f(x, y) = (x, \varphi(y))$$

Теорема. (О паре квадратичных форм).

Если $f(x),\ g(x)$ – квадратичные формы на $\mathcal E$ и g>0 , то в $\mathcal E$ существует такой базис e', что в новых координатах

$$f = \lambda_1 y_1^2 + \dots + \lambda_n y_n^2, \ g = y_1^2 + \dots + y_n^2$$

Доказательство.

Обозначим f(x,y) и g(x,y) – симметричные билинейные функции:

 $f(x,x)=f(x),\ g(x,x)=g(x),\ F$ и G их матрицы в некотором базисе e.

Можно ввести в пространстве ${\mathcal E}$ скалярное произведение (x,y):=g(x,y)

Пусть $\varphi: \mathcal{E} \longmapsto \mathcal{E}$ – линейный оператор, присоединенный к билинейной форме f(x,y), т.е. $\forall x,y: \ f(x,y)=g(x,\varphi(y))$

Т.к. оператор φ самосопряженный, то по основной теореме о самосопряженных операторах в пространстве \mathcal{E} существует базис из собственных векторов для φ ортонормированный относительно скалярного произведения g(x,y).

Пусть e' – этот базис, C – матрица перехода от e к e'

$$X = CY \Longrightarrow g(y) = y_1^2 + \dots + y_n^2 = (y, y)$$

$$F' = C^T F C; \quad F = G A_{\varphi}; \quad A'_{\varphi} = \begin{pmatrix} \lambda_1 & 0 \\ & \ddots & \\ 0 & \lambda_n \end{pmatrix}$$

$$G' = C^T G C = E \Longrightarrow G C = (C^T)^{-1}$$

Тогда

$$C^{-1}A_{\varphi}C = C^{-1}G^{-1}FC = C^{T}FC = \begin{pmatrix} \lambda_{1} & 0 \\ & \ddots & \\ 0 & \lambda_{n} \end{pmatrix} \Longrightarrow$$
$$f(y) = \lambda_{1}y_{1}^{2} + \dots + \lambda_{n}y_{n}^{2}$$

Замечание. $\lambda_1,...,\lambda_n$ – собственные значения матрицы $A_{\varphi}=G^{-1}F$, т.е. они являются корнями уравнения $|A_{\varphi}-\lambda E|=0$, т.е.

$$|G^{-1}F - \lambda E| = 0 \Longleftrightarrow |GG^{-1}F - \lambda G| = |F - \lambda G| = 0$$

 $(\lambda$ -уравнение пары матриц F, G)

Для каждого корня λ_i надо решить систему уравнений

$$(G^{-1}F - \lambda_i E)X = 0 \iff (F - \lambda_i G)X = 0$$

Пример применения:

Найти наибольшие и наименьшие значения квадратичной формы f(x) в \mathbb{R}^n при условии, что g(x)=1, где g(x) – положительно опеределенная квадратичная форма.

 $\underline{\mbox{Peшение:}}$ Можно найти такую замену переменных X=CY, что

$$f(x) = \lambda_1 y_1^2 + ... + \lambda_n y_n^2$$
 $g(y) = y_1^2 + ... + y_n^2 = 1$ – единичная сфера в \mathbb{R}^n

Ответ: $f_{\max} = \max \lambda_i$, $f_{\min} = \min \lambda_i$ (додумать)

§10. Полуторалинейные функции (формы.)

Пусть V – векторное пространство над полем $\mathbb C.$

Определение. Функция $\beta:\ V \times V \longmapsto \mathbb{C}$ называется полуторалинейной, если

- 1. $\forall x_1, x_2, y \in V$ вып. $\beta(x_1 + x_2, y) = \beta(x_1, y) + b(x_2, y)$ и $\forall \lambda \in \mathbb{C}$ вып. $\beta(\lambda x, y) = \lambda \beta(x, y)$. Линейность по 1 аргументу.
- 2. $\beta(x, y_1 + y_2) = \beta(x, y_1) + \beta(x, y_2)$ и $\beta(x, \lambda y) = \overline{\lambda}\beta(x, y)$

В координатах:

$$\beta(x,y) = \beta(\sum_{i=1}^{n} x_i e_i, \sum_{j=1}^{n} y_j e_j) = \sum_{i,j=1}^{n} \beta(x_i e_i, y_j e_j) = \sum_{i,j=1}^{n} \beta(e_i, e_j) x_i \overline{y_j}$$

 $B_e = (eta(e_i,e_j))$ – матрица формы eta в базисе e.

$$\beta(x,y) = X^T B_e \overline{Y} \tag{1}$$

Квадратичная форма $q := \beta(x, x) \not\equiv 0$.

$$q(x) = \sum_{i,j=1}^{n} b_{ij} x_i \overline{x_j}$$

Если $\beta_{ij}=0$, при $i\neq j$, остается $b_{ij}=\beta(e_i,e_j)$

$$q(x) = \sum_{i=1}^{n} b_{ii} x_i \overline{(x_i)} = \sum_{i=1}^{n} b_{ii} |x_i|^2$$

Эрмитова форма (или эрмитово симметричная)

 $\forall x,y \in V$ вып. $\beta(y,x) = \overline{\beta(x,y)}$

Тогда $\beta(x,x) = \overline{\beta(x,x)}$, т.е. $\forall x \in V$ вып. $q(x) = \beta(x,x) \in \mathbb{R}$

<u>Задача.</u> Для термитово квадратичной формы q(x) существует единственная форма $\beta(x,y):\beta(x,x)=q(x)\;\forall x\in V.$

Замечание. $\beta(x,y)$ эрмитова $\iff B_e^T = \overline{B_e} \iff \overline{B_e^T} = B_e$

Теорема. (О приведении эрмитово квадратичной формы к каноническому (нормальному) виду).

Для любой эрмитовой формы (полуторалинейной) существует базис, в котором $\beta(x,y) = \sum_{i=1}^n b_{ii} x_i \overline{y_i}$. Точнее,

$$\beta(x,y) = x_1 \overline{y_1} + \dots + x_p \overline{y_p} - x_{p+1} \overline{y_{p+1}} - \dots - x_{p+q} \overline{y_{p+q}},$$

где $p+q=\mathrm{rk}B$. Соотвественно $q(x)=|x_1|^2+\ldots+|x_p|^2-|x_{p+1}|^2-\ldots-|x_{p+q}|^2$ (q и p единствененны).

Определение. Эрмитова квадратичная форма положительно опеределенная, если $q(x) > 0 \ \forall x \neq 0$. Отрицательно опеределенная, если $q(x) < 0 \ \forall x \neq 0$. (Критерий Сильвестра сохранятеся без изменений).

§11. Унитарные (эрмитовы) пространства.

Определение. Векторное пространство \mathcal{H} над полем \mathbb{C} называется унитарным, если на этом \mathcal{H} задано скалярное произведение (x,y) полуторалинейная форма (полуторалинейная по 2 аргументу), эрмитова: $(y,x) = \overline{(x,y)}$ и $(x,x) > 0, \ \forall x \neq 0.$

Определение. $|x| = \sqrt{(x,x)}$ – длина вектора. Неравенство КБШ: $\forall x,y \in \mathcal{H}: \ |(x,y)| \leq |x| \cdot |y| \cos \varphi(x,y) = \frac{(x,y)}{|x|\cdot |y|} \in \mathbb{C}$ $(x,y) = 0 \iff x \perp y$

Теорема. (Ортогонализация).

В ${\cal H}$ существует ортогональный (и ортонормированный) базис.

Изменение матрицы полуторалинейной формы.

При замене базиса: $B' = C^T B \overline{C}$ $\beta(x,y) = X^T B \overline{Y}$ — в исходном базисе.

$$X = CX', \ Y = CY' \Longrightarrow$$

$$\beta(x,y) = (CX')^T B \overline{(CY')} = (X')^T (C^T B \overline{C}) \overline{Y'} \equiv (X')^T B' \overline{Y'} \Longrightarrow$$

$$B' = C^T B \overline{C}$$

Теорема. Если e и e' два О.Н.Б., то матрица перехода $C_{e\to e'}$ унитарно, т.е. если ее подвергнуть эрмитову сопряжению, то она превратится в обратную: $C_{e\to e'}^* = \overline{C}_{e\to e'}^T = C_{e\to e'}^{-1}$

Доказательство. По определению матрица перехода, $C=(e_1'^{\uparrow},...,e_n'^{\uparrow})\Longrightarrow$

$$C^{T} = \begin{pmatrix} e_{1}' \\ \vdots \\ e_{n}' \end{pmatrix} \Longrightarrow C^{T} \overline{C}_{ij} = e_{i}' e_{j}'^{\uparrow}$$

Т.к. базис e О.Н., то $e_i'e_j'^{\uparrow}=(e_i'e_j')$

Т.к. базис e' О.Н., то $(e'_i e'_j) = \delta_{ij} \Longrightarrow$

$$C^T\overline{C} = E \Longrightarrow \overline{C^T\overline{C}} = \overline{E} = E \Longrightarrow \overline{C}^TC = E \Longrightarrow \overline{C}^T = C^{-1}$$

Процесс ортогонализации:

Если попарно ортогональные векторы $e_1',...,e_{k-1}'$ $(k\geq 2)$ уже построены, то

$$e'_{k} = e_{k} - \sum_{i=1}^{k-1} \lambda_{i} e_{i} \mid \cdot e'_{j}$$
 справа $(1 \leq j \leq k-1) \Longrightarrow$

$$(e'_{k}, e'_{j}) = (e_{k}, e'_{j}) - \sum_{i=1}^{k-1} (\lambda_{i} e'_{i}, e'_{j}) = (e'_{k}, e'_{j}) - \lambda_{j} (e'_{j}, e'_{j}) \Longrightarrow$$

$$\operatorname{pr}_{\langle e'_{1}, \dots, e'_{k-1} \rangle}(e_{k}) = \sum_{i=1}^{k-1} \frac{(e_{k}, e'_{i})}{(e'_{i}, e'_{i})} e'_{i}$$

$$U^{\perp} = \{ u \in \mathcal{H} | (x, y) = 0, \ \forall x \in U \}$$
$$U \subset \mathcal{H}, \ \mathcal{H} = U \oplus U^{\perp}$$

§12. Линейный операторы в унитарном пространстве.

Пусть $\varphi: \mathcal{H} \longmapsto \mathcal{H}$ — линейный оператор (над \mathbb{C}).

1. Сопряженный оператор: $\forall x, y \in \mathcal{H} : (\varphi(x), y) = (x, \varphi^*(y))$ Матрица A_{φ^*} (в О.Н.Б.):

$$(\varphi(x), y) = (A_{\varphi}X)^T \overline{Y} = X^T A_{\varphi} \overline{Y}^T = X^T \overline{(A_{\varphi^*}Y)} = X^T \overline{A_{\varphi^*}} \overline{Y}$$
$$\forall X, Y \in \mathbb{C} \Longrightarrow \overline{A_{\varphi^*}} = A_{\varphi}^T \Longleftrightarrow A_{\varphi^*} = \overline{A_{\varphi}}^T = A_{\varphi}^*$$

2. Самосопряженный: $\varphi^* = \varphi \Longleftrightarrow A_{\varphi} = A_{\varphi}^*$ (в любом О.Н.Б.), т.е. A_{φ} эрмитова. 3.Унитарный:

$$\forall x,y \in \mathcal{H}: \ (\varphi(x),\varphi(y)) = (x,y) \Longleftrightarrow$$
 в любом О.Н.Б.
$$(A_{\varphi}X)^T \overline{(A_{\varphi}Y)} = X^T (A_{\varphi}^T \overline{A}_{\varphi}) \overline{Y} = X^T \overline{Y}, \ \forall X,Y \in \mathbb{C} \Longleftrightarrow A_{\varphi}^T \overline{A}_{\varphi} = E \Longleftrightarrow A_{\varphi}^* A_{\varphi} = E, \ \text{т.e.} \ A_{\varphi} - \text{унитарна.}$$

Следствие. Если φ – унитарный оператор, то $|{
m det} A_{\varphi}|=1$

Доказательство.

$$|E| = |\overline{A}_{\varphi}^T A_{\varphi}| = |\overline{A}_{\varphi}||A_{\varphi}| = |\overline{A}_{\varphi}||A_{\varphi}| = |\det A_{\varphi}|^2 = 1 \iff |\det A_{\varphi}| = 1$$

Свойства операторов:

Теорема. Если $\varphi: \mathcal{H} \longmapsto \mathcal{H}$ – самосопряженный оператор, то

- 1. Собственные значения $\lambda \in \mathbb{R}$
- 2. Собственные векторы, овечающие различным собственным значениям перпендикулярны.
- 3. Если $U\subset \mathcal{H}$ инвариантно относительно φ , то U^{\perp} инвариантно.
- 4. В ${\cal H}$ существует О.Н.Б. из собственных векторов для φ , и в нем

$$A_{\varphi} = \begin{pmatrix} \lambda_1 & 0 \\ & \ddots & \\ 0 & & \lambda_n \end{pmatrix}, \ \forall i = 1, ..., n, \ \lambda_i \in \mathbb{R}$$

Доказательство.

1. Если $x \in \mathcal{H}, \ x \neq 0 : \ \varphi(x) = \lambda x$, то

$$\begin{cases} (\varphi(x), x) = (\lambda x, x) = \lambda(x, x) \\ (x, \varphi(x)) = (x, \lambda x) = \overline{\lambda}(x, x) \end{cases} \implies \overline{\lambda} = \lambda \in \mathbb{R}$$

2. Пусть
$$\varphi(x) = \lambda x, \ x \neq 0, \ \varphi(y) = \mu y, \ y \neq 0, \ \lambda \neq \mu \stackrel{?}{\Longrightarrow} (x,y) = 0$$
Вычислим
$$\begin{cases} (\varphi(x), y) = \lambda(x, y) \\ (x, \varphi(y)) = (x, \mu y) = \overline{\mu}(x, y) = \mu(x, y) \end{cases} \Longrightarrow$$

$$(x,y)\underbrace{(\lambda-\mu)}_{\neq 0} = 0 \Longrightarrow (x,y) = 0$$

- 3. Пусть $x\in U,\ y\in U^\perp$. Надо доказать, что $(x,\varphi(y))=0$ По опр. $(x,\varphi(y))=(\varphi(x),y)=0$
- 4. Пусть $\lambda_1, ..., \lambda_s$ все различные собственные значения для φ . Возьмем, $U = \mathcal{H}_{\lambda_1}$ собственное подпространство оно инвариантно. $\Longrightarrow U^{\perp}$ также инвариантно, $\mathcal{H} = U \oplus U^{\perp}$, собственные значения $\varphi|_{U^{\perp}}$ это $\lambda_2, ..., \lambda_s$.

Индукция по $\dim \mathcal{H}$: в U^{\perp} существует О.Н.Б., составленный из О.Н. базисов $\mathcal{H}_{\lambda_2},...,\mathcal{H}_{\lambda_s}$. В U надо взять О.Н.Б. (произвольный базис ортогонализовать и нормировать).

Теорема. Если $\varphi: \mathcal{H} \longmapsto \mathcal{H}$ – унитарный оператор, то

- 1. Все собственные значения оператора φ , $|\lambda|=1$
- 2. Собственные векторы, овечающие различным собственным значениям перпендикулярны.
- 3. Если $\varphi(U) = U$, то $\varphi(U^{\perp}) = U^{\perp}$
- 4. В \mathcal{H} существует О.Н.Б. из собственных векторов для φ , и в нем

$$A_{\varphi} = \begin{pmatrix} e^{i\alpha_1} & 0 \\ & \ddots & \\ 0 & e^{i\alpha_n} \end{pmatrix}, \ \alpha_i \in \mathbb{R}$$

Доказательство.

1. Если $\varphi(x) = \lambda x, \ x \neq 0$, то

$$(\varphi(x), \varphi(x)) = \lambda \overline{\lambda}(x, x) = (x, x) \neq 0 \Longrightarrow \lambda \overline{\lambda} = |\lambda|^2 = 1 \Longrightarrow |\lambda| = 1$$

2. Если $\varphi(x) = \lambda x$, $\varphi(y) = \mu y$, $x, y \neq 0$, $\lambda \neq \mu$:

$$(\varphi(x),\varphi(y)) = \lambda \overline{\mu}(x,y) = (x,y) \Longrightarrow (x,y)(\lambda \overline{\mu}_{\neq 0} - 1) = 0 \Longrightarrow (x,y) = 0$$

Либо (x,y)=0, либо $\lambda\overline{\mu}=1$, т.е. $\mu=\lambda$ – противоречие.

$$(\lambda \neq \iff \overline{\lambda} \neq \overline{\mu} \implies \lambda \overline{\lambda} \neq \lambda \overline{\mu} \neq 1)$$

3. Пусть $x\in U,\ y\in U^\perp,$ надо доказать, что $(x,\varphi(y))=0$ Вычислим

$$(\varphi^{-1}(x), y) = (\varphi(\varphi^{-1}(x)), \varphi(y)) = (x, \varphi(y)) = 0$$

Т.к. $x \in U$, то $\varphi^{-1}(x) \in U$

Комментарий: унитарный оператор невырожден (обратим).

В О.Н.Б. A_{φ} унитарна $\Longrightarrow | \det A_{\varphi} | = 1 \neq 0$

По определению подпространства, $\varphi|_U:U\longmapsto U\Longrightarrow \varphi|_U$ биективно, в частности, если $x \in U$, то $\varphi^{-1}(x) \in U$

4. Дословно повторяет доказательство п.4 теоремы для самосопряженного оператора (с заменой $\lambda \in \mathbb{R}$ на $|\lambda| = 1$).

Теорема. (О полярном разложении). Любая невырожденная матрица $A \in$ $M_n(\mathbb{C})$ единственным образом представляется в виде произведения: $A = B \cdot U$, где $B^* = B$ – эрмитова матрица с положительными собственными значениями, U — унитарная матрица.

Второй вариант полярного разложения:

$$\underbrace{A^*}_{A^T} = U^*B^* = U^{-1}B \Longrightarrow AA^* = B^2$$
, и т.д., а также $A = U'B'$

Теорема. Для любой эрмитово квадратичной формы q(x) на унитарном пространстве существует О.Н.Б., в котором эта форма имеет вид: $q = \lambda_1 |y_1|^2 + ... +$ $\lambda_n |y_n|^2$, где $\lambda_1,...,\lambda_n$ – собственные значения матрицы B.

Глава IV. Аффинные пространства. §1. Основные определения и свойства.

Определение. Аффинное пространство – это пара (\mathbb{A}, V), где \mathbb{A} – множетсво точек, V – векторное протсранство (над полем F), и выполнены следующие аксиомы: опеределена операция "прибавления" (откладывания) вектора к точке, т.е. $\forall p \in \mathbb{A}, v \in V$ определим единственную точку $q \in \mathbb{A} : q = p + v$,

$$(\mathbb{A} \times V \longmapsto \mathbb{A})$$

- 1. $\forall p \in \mathbb{A}, \ \forall u, v \in V : \ p + (u + v) = (p + u) + v$
- $2. \forall p \in \mathbb{A}, \ p+0=p$
- 3. $\forall p, q \in \mathbb{A} \exists v \in V : p + v = q \text{ (обозн. } v = \overrightarrow{pq} \text{)}$

Заметим, что размерностью пространства А, считается размерность пространства V. Из аксиомы 3 следует, что имеется биекци между \mathbb{A} и V.

Фиксируем $p, \forall v \in V, \{p+v \mid v \in V\}.$

Пример: $\mathbb{A}=V,$ точки-радиус-векторы. Если q=p+v, то $v=\overrightarrow{pq},$ а также можно писать v = q - p.

Аффинная система координат: $\{0;e\},\ e$ – базис в V.

 $\forall p \in \mathbb{A}$ – координаты точки p – это координаты вектора \overrightarrow{Op} в базисе e. Если $p(x_1,...,x_n),\ q(y_1,...,y_n),$ то

$$\overrightarrow{pq} = q - p = \sum_{i=1}^{n} (y_i - x_i)e_i$$

Вместо системы координат можно задать координаты каких-либо точек $p_0,...,p_n$ в общем положении (аффинно независимые), т.е. векторы $\overrightarrow{p_0p_1},...,\overrightarrow{p_0p_n}$ ЛНЗ

(является базисом в V).

Определение. Барицентрическая комбинация точек $p_0,...,p_m$ $(m \le n = \dim \mathbb{A} = \dim V)$ с коэффициентами $\lambda_0,...,\lambda_m \in F$ с условием: $\sum_{i=0}^m \lambda_i = 1$. Определим $\forall p \in \mathbb{A}$

$$\sum_{i=0}^{m} := p + \sum_{i=0}^{m} \lambda_i \overrightarrow{pp_i} = p + \sum_{i=0}^{m} \lambda_i (p_i - p)$$
 (1)

Лемма. Выражение (1) не зависит от выбора точки p (при усл., что $\sum_{i=0}^{m} \lambda_i = 1$).

Доказательство. Возьмем точку q=p+v, для некоторого $v\in V$. Тогда

$$q + \sum_{i=0}^{m} \lambda_i \overrightarrow{qp_i} = q + \sum_{i=0}^{m} \lambda_i (p_i - q) = q + \sum_{i=0}^{m} \lambda_i (p_i - p - v) =$$

$$= p + v + \sum_{i=0}^{m} \lambda_i (p_i - p) - \sum_{i=0}^{m} \lambda_i v = \sum_{i=0}^{m} \lambda_i (p_i - p)$$

Если m=n и векторы $\overrightarrow{p_0p_1},...,\overrightarrow{p_0p_n}$ ЛНЗ, то любая точка $p=\sum\limits_{i=0}^n x_ip_i$, причем $\sum\limits_{i=0}^n x_i=1$, точка $\overrightarrow{p_0p}$ имеет координаты $(x_1,...,x_n)$, то $x_0=1-\sum\limits_{i=0}^n x_i,$ $(x_0,...,x_n)$ – барицентрические координаты точки p.

Изменение декартовых координат точек при замене системы координат.

Пусть $\{O;e\}$ – старая система координат, точка з имеет координаты X (столбец координат), $\{O',e'\}$ – новая система координат, $e'=eC_{e\to e'}$

$$O'\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = X^0 \Longrightarrow X = CX' + X^0 \qquad (2)$$

$$\overrightarrow{OP} = \overrightarrow{OO'} + \overrightarrow{O'P} \Longrightarrow X = X^0 + CX'$$

Можно ввести "аффинную матрицу перехода"

$$\widetilde{C} = \begin{pmatrix} C & X^0 \\ 0 & 1 \end{pmatrix}$$

и "аффинный столбец"

$$\widetilde{X} = \begin{pmatrix} X \\ 1 \end{pmatrix},$$

тогда

$$\widetilde{C}\widetilde{X}' = CX' + X^0 = \widetilde{X}$$

Таким образом, равентсво (2) $\iff \widetilde{C}\widetilde{X}' = \widetilde{X}$ (2')

§2. Аффинные подпространства (плоскости или линейные многообразия).

<u>Наболюдение:</u> Пусть (\mathbb{A},V) – аффинное пространство, и в некоторой системе координат рассмотрим множество точек, координаты которых удовлетворяют совметсной системе линейных уравнений: AX=b.

$$X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$
 – координаты точки $p; A_{n \times n}; b \in F^n$

Тогда любое решение представляется в виде $X = X_{\text{част}} + Y_{\text{одн}}$, где $Y_{\text{одн}}$ – общее решение соотвествующее ассоциированной ОСЛУ AY = 0.

Обозн. $U\{u=\sum_{i=1}^n y_ie_i\mid AY=0\}$ – подпространство в V, и $\pi:=\{p_0+u\mid u\in U\}=p_0+U$ – смежный класс пространства V/U, если отождествить p_0 с ее радиус-вектором.

Определение. Аффинная плоскость $\pi = p_0 + U$, где U – некоторое подпространство в V, $p_0 \in \mathbb{A}$ (U – направляющая плоскость для π). Если $\dim U = m$, то при m = 0 – одна точка, при m = 1 – прямая с направляющим вектором a, если m = n - 1 – гиперплоскость.

Утверждение. Для любой точки $q \in \pi$, $p + U = p_0 + U = \pi$ (т.е. определение плоскости π не зависит от выбора начальной точки).

Доказательство. $q = p_0 + u_0, u_0 \in U$

$$q = q + U = p_0 + (u_0 + U) = p_0 + U$$

U можно определить как $\{pq \mid \forall p, q \in \pi\}$ и $\overline{pq} = q - p = u_0 - u_1 \in U$.

Следствие. Для аффинной плоскости $\pi = p_0 + U$ существует система уравнений AX = b, множество решений которой (в координатах) совпадает с π .

Доказательство. Введем систему координат $\{O,e\}$, пусть $\dim U=m$. Как известно, существует матрица $A_{m\times n}$, такая что $U=\{AY=0\}$. Если p_0 имеет координаты в виде столбца X^0 , то обозначим $b=AX^0$. Для любой точки $p\in\pi$ имеем: $p=p_0+U$, т.е. в координатах:

$$X = X^0 + Y \Longrightarrow AX = AX^0 + AY = b + 0 = b$$

Взаимное расположение двух плоскостей.

Пусть $\pi_1 = p_1 + U_1$, $\pi_2 = p_2 + U_2$, $U_1, U_2 \subseteq V$.

Определение. $\pi_1, \ \pi_2$ называются параллельными:

В узком смысле, если $U_1 = U_2$ (направляющие подпространства совпадают).

В широком смысле, если $U_1 \subseteq U_2$ или $U_2 \subseteq U_1$.

Утверждение. $\pi = \pi_1 \cap \pi_2$ либо пусто, либо является плоскостью с направляющим подпространством $U = U_1 \cap U_2$, точнее $\pi = r + U$, где $r \in \pi_1 \cap \pi_2$.

Доказательство. Если $\pi_1 \cap \pi_2 = \pi \neq \emptyset$, возьмем точку $r \in \pi_1 \cap \pi_2$, тогда

$$\pi_1 = r + U_1, \ \pi_2 = r + U_2 \Longrightarrow \pi_1 \cap \pi_2 = r + (U_1 \cap U_2)$$

Возьмем точку $d \in \pi_1 \cap \pi_2 \Longrightarrow d = r + u_1 = r + u_2, \ u_1 \in U_1, \ u_2 \in U_2 \Longrightarrow$

$$u_1 = u_2 \in U_1 \cap U_2 \Longrightarrow d \in r + (U_1 \cap U_2)$$

Таким образом, либо $\pi_1 \cap \pi_2 = \emptyset$, либо $\dim(\pi_1 \cap \pi_2) = \dim(U_1 \cap U_2)$

В общем случае, $\pi_1 \cup \pi_2$ плоскостью не будет.

Определение. Аффинная оболочка плоскостей π_1 , π_2 : $\langle \pi_1, \pi_2 \rangle$ – наименьшее по включению плоскость, содержащая обе эти плоскости.

Утверждение. $\langle \pi_1, \pi_2 \rangle = p_0 + \{\overrightarrow{p_1 p_2} \mid p_1 \in \pi_1, p_2 \in \pi_2\}, p_0 \in \pi_1$ или $p_0 \in \pi_2$.

Доказательство. Таким образом, $\langle \pi_1, \pi_2 \rangle$ — плоскость, с направляющим подпространством вида $U = \langle p_1 p_2 \mid p_1 \in \pi_1, p_2 \in \pi_2 \rangle$. Если $p \in \langle \pi_1, \pi_2 \rangle$, то точки вида $p_0 + \overrightarrow{p_1 p_2}$ принадлежат любой плоскости, содержащей $\langle \pi_1, \pi_2 \rangle \Longrightarrow p_0 + U$ — наименьшая плоскость, содержащая $\langle \pi_1, \pi_2 \rangle$.

Теорема. $\langle \pi_1, \pi_2 \rangle = p_1 \mid \langle \overrightarrow{p_1 p_2}, U_1 + U_2 \rangle$

- 1. $\pi_1 \cap \pi_2 \neq \emptyset \iff \overrightarrow{p_1p_2} \in U_1 + U_2$ и при этом $\dim \langle \pi_1, \pi_2 \rangle = \dim(U_1 + U_2)$.
- 2. $\pi_1 \cap \pi_2 = \emptyset$, to $\dim \langle \pi_1, \pi_2 \rangle = \dim(U_1 + U_2) + 1$.

Доказательство. Обозначим $\pi = p_1 + \langle \overline{p_1} \overline{p_2}, U_1 + U_2 \rangle$.

Ясно, что $\pi_1 \subseteq \pi$, $\pi_2 \subseteq \pi \Longrightarrow \langle \pi_1, \pi_2 \rangle \subseteq \pi$ (как наименьшая плоскость.)

Обратное включение $\langle \pi_1, \pi_2 \rangle = p_1 + W, \ W \subseteq V$

Т.к. $p_2 \in \langle \pi_1, \pi_2 \rangle \Longrightarrow \overrightarrow{p_1 p_2} \in W$. Также ясно, что $\forall u_1 \in U_1, \ p_1 + u_1 \in \pi_1 \subseteq \pi$ и $\forall u_2 \in U_2, \ p_2 + u_2 \in \pi_2 \subseteq \pi \Longrightarrow \overrightarrow{p_1 p_2} + u_2 \in W \Longrightarrow u_2 \in W$.

Таким образом, $\langle \overrightarrow{p_1p_2}, U_1 + U_2 \rangle \subseteq W \Longrightarrow \pi \subseteq \langle \pi_1, \pi_2 \rangle$ – доказали равенство.

- 1. Если $\pi_1 \cap \pi_2 \neq \varnothing$, то $\overrightarrow{p_1p_2} \in U_1 + U_2$: $\exists p \in \pi_1 \cap \pi_2 ra\langle \overrightarrow{p_1p_2}, U_1 + U_2 \rangle = U_1 + U_2$
- 2. Если $\pi_1 \cap \pi_2 = \emptyset$, то $\overrightarrow{p_1p_2} \not\in U_1 + U_2 \Longrightarrow \dim\langle \overrightarrow{p_1p_2}, U_1 + U_2 \rangle = \dim(U_1 + U_2) + 1$

Утверждение. Для двух плоскостей $\pi_1, \pi_2 \subset \mathbb{A}$ возможно одно из трех расположений:

- 1. $\pi_1 \cap \pi_2 \neq \emptyset$,
- 2. $\pi_1 \cap \pi_2 = \emptyset$ и $\pi_1 || \pi_2$,
- 3. Не выполнены 1. и 2. пункты: $\pi_1 \cap \pi_2 = \emptyset$ и $\pi_1 \not \mid \pi_2$ скрещиваются.

§3. Аффинные отображения.

Пусть \mathbb{A}_1 , \mathbb{A}_2 – аффинные пространства над векторными пространствами V_1 , V_2 (поле F над которым они определены одно и тоже).

Определение. отображение $\Phi: \mathbb{A}_1 \longmapsto \mathbb{A}_2$ – называется аффинным (или аффинно линейным), если существует линейное отображение линейных пространств $\varphi: V_1 \longmapsto V_2$, т.ч. $\forall a, b \in \mathbb{A}_{\mathbb{H}}: \overline{\Phi(a)\Phi(b)} = \varphi(\overrightarrow{ab})$ (1) Эквивалентно: $\Phi(b) = \Phi(a) + \varphi(\overrightarrow{ab})$ (1')

Замечание. Если фиксировать точку a, а точку $b \in \mathbb{A}_1$ менять, то вектор \overrightarrow{ab} может быть любыи вектором из $V_1 \Longrightarrow$ для отображения Φ его линейная часть определена однозначно: $\forall v \in V_1 \; \exists ! b \in \mathbb{A} : \; \overrightarrow{ab} = \overrightarrow{v} \Longrightarrow \varphi(v) = \overline{\Phi(a)\Phi(b)}$ опеределена однозначно.

Теорема.

- 1. Пусть $\mathbb{A}_1 \xrightarrow{\Phi_1} \mathbb{A}_2 \xrightarrow{\Phi_2} \mathbb{A}_3$, Φ_1, Φ_2 аффинные отображения, тогда $\Phi_2 \circ \Phi_1$ аффинное отображение с линейной частью $\Phi_1 \cdot \Phi_2$.
- $2. \Phi : \mathbb{A}_1 \longmapsto \mathbb{A}_2$ биективно (невырождено) \iff его линейная часть φ биективна, притом Φ^{-1} имеет линейную часть Φ^{-1} .

Координатная запись: $\Phi: \mathbb{A}_1 \longmapsto \mathbb{A}_2$ – аффинное отображение.

$$\{p_1; e\}$$
 – c.k. b $\mathbb{A}_1 \dim A_1 = n$,

$$\{p_2; e\}$$
 – с.к. в $\mathbb{A}_2 \dim A_2 = m$,

X — столбец координат любой точки $p \in A_1, X_0$ — столбец координат точки $\Phi(p_1)$ в системе координат $\{p_2; f\}, A = A_{\varphi}$ — матрица отображения φ в базисах e, f, Y — столбец координат точки $\Phi(p)$.

Тогда $\Phi(p) = \Phi(p_1) + \varphi(\overrightarrow{p_1p}) = p_2 + \overrightarrow{p_2\Phi(p_1)} + \varphi(\overrightarrow{p_1p}) \Longrightarrow Y = X_0 + AX$ (2) В подробной записи: $y_i = x_i^0 + \sum_{i=1}^n a_{ij}x_j, \ i = 1, ..., m$ (2) $\Longrightarrow dy_i = \sum_{j=1}^n \alpha_{ij}dx_j$ Обозначим

$$DY = \begin{pmatrix} dy_1 \\ \vdots \\ dy_m \end{pmatrix} = A \cdot dX = A \cdot \begin{pmatrix} dx_1 \\ \vdots \\ dx_n \end{pmatrix}$$

Мы видим, что (в координатах) $\varphi = D\Phi, D\Phi: V_1 \longmapsto V_2$

Доказательство.

1. $\mathbb{A}_1 \xrightarrow{\Phi_1} \mathbb{A}_2 \xrightarrow{\Phi_2} \mathbb{A}_3$, Φ_1, Φ_2 – аффинные с линейными частями φ_1, φ_2 , то $\Phi_2 \circ \Phi_1$ – аффинное с линейной частью $\varphi_2 \circ \varphi_1$.

$$\forall a_1 \in \mathbb{A}_1, \ \forall v_1 \in V_1, \ \Phi_1(a_1 + v_1) = \Phi_1(a_1) + \varphi_1(v_1),$$

$$\Phi_2(\Phi_1(a_1 + v_1)) = \Phi_2(\Phi_1(a_1) + \varphi_1(v_1)) = \Phi_2(\Phi_1(a_1)) + \varphi_2(\varphi_1(v_1)) =$$

$$= (\Phi_2 \circ \Phi_1)(a_1) + (\varphi_2 \circ \varphi_1)(v_1) \Longrightarrow$$

 $\Phi_2 \circ \Phi_1$ — аффинное отображение, его линейная часть $\varphi_2 \circ \varphi_1$

2. $\mathbb{A}_1 \stackrel{\Phi}{\longmapsto} \mathbb{A}_2 \stackrel{\Phi^{-1}}{\longmapsto} \mathbb{A}_1$, Φ^{-1} – тоже аффинное? отображение Φ биективно \iff оно обратимо. Обозначим $\Phi' : \mathbb{A}_2 \longmapsto \mathbb{A}_1$,

$$\Phi'_0\Phi=\mathrm{Id}_{A_1}$$
 $\Phi(a_1+v)=\Phi(a_1)+\varphi(v),$ $\Phi'(\Phi(a_1+v))=\Phi'(\Phi(a_1))+(\varphi'\varphi)(v)=a_1+v\Longleftrightarrow$ $\varphi'\varphi=\mathrm{Id}=arepsilon,$ т.е. φ^{-1} – левый обратимый к φ

 $\Phi'(\Phi(a_1)) = a_1$, при условии, что φ обратимо, Φ' будет обратным к Φ , если $\Phi'(\Phi(a_1)) = a_1$, $\varphi' = \varphi^{-1}$ (нужно было бы рассмотреть также $\Phi \circ \Phi'$)

Замечание. Можно ввести $\widetilde{X} = \begin{pmatrix} X \\ 1 \end{pmatrix}, \ \widetilde{Y} = \begin{pmatrix} Y \\ 1 \end{pmatrix}$, блочную матрицу $\widetilde{A} = \begin{pmatrix} A & X_0 \\ 0 & 1 \end{pmatrix}$, тогда $(2) \Longleftrightarrow \widetilde{Y} = \widetilde{A} \cdot \widetilde{X}$ (3)

§4. Аффинные преобразования.

Определение. Аффинное преобразование $\Phi : \mathbb{A} \longrightarrow \mathbb{A}$ – это аффинное отображение \mathbb{A} в \mathbb{A} . Тогда вторая система координат совпадает с первой.

Примеры:

- 1. Параллельный перенос на вектор $v \in V$, $t_v(a) = a + v$, $\forall a \in \mathbb{A}$. Ясно, что линейная часть это Id. Очевидно, $\forall v_1, v_2$ выполнено $t_{v_1} \circ t_{v_2} = t_{v_1} \cdot t_{v_2} = t_{v_1+v_2}$
- 2. Гомотетия с центром в точке $0 \in \mathbb{A}$ и коэффициентом $\lambda \neq 0$:

$$\forall v \in V, \ \Phi(0+v) = 0 + \lambda v \Longrightarrow D\Phi = \lambda \cdot \mathrm{Id}$$

 $\lambda = -1$ – это центральная симметрия.

Теорема. Любое обратимое (невырожденное) аффинное преобразование Φ : $\mathbb{A} \longmapsto \mathbb{A}$ единственным образом представляется в виде композиции: $\Phi = t_v \circ \psi$, где a – фиксированная точка из \mathbb{A} , $\psi(a) = a$.

Доказательство. Обозначим $v = \overrightarrow{a\Phi(a)}$. Рассмотрим преобразование

$$\psi = t_v^{-1} \cdot \Phi = t_{-v} \cdot \Phi$$

Тогда $\psi(a) = t_{-v}(\Phi(a)) = \Phi(a) - v = a + v - v = a \Longrightarrow \Phi = t_v \cdot \psi$ Единственность: если $\Phi = t_v \cdot \psi = t_{v'} \cdot \psi', \ \psi(a) = \psi'(a) \Longrightarrow$

$$t_{v-v'} = \psi'\psi^{-1} \Longrightarrow t_{v-v'}(a) = a \Longrightarrow v - v' = 0 \Longrightarrow$$

 $v = v' \Longrightarrow t_v = t_{v'} \Longrightarrow \psi' = \psi$

Теорема. Для любых наборов точек $\{a_0, a_1, ..., a_n\}$ и $\{b_0, b_1, ..., b_n\}$ в п-мерном аффинном пространстве \mathbb{A} , причем таких, что $a_0, a_1, ..., a_n$ аффинно независимы (находятся в общем положении) существует единственное аффинное преобразование $\Phi: \mathbb{A} \longmapsto \mathbb{A}$, такое что $\Phi(a_i) = b_i$, при i = 0, ..., n. Если также точки $\{b_0, ..., b_n\}$ аффинно независимы, то Φ биективно (невырождено).

Доказательство. По условию, $\{\overrightarrow{a_0a_1},...,\overrightarrow{a_0a_n}\}$ – базис в пространсве V, то существует единствененный линейный оператор $\varphi:V\longmapsto V$, такой что $\varphi(\overrightarrow{a_0a_i})=\overrightarrow{b_0b_i}$, тогда искомое $\forall v\in V, \ \Phi(a_0+v)=b_0+\varphi(v)$. Если также векторы $\{\overrightarrow{b_0b_1},...,\overrightarrow{b_0b_n}\}$ – базис, то φ невырожденный оператор

Если также векторы $\{b_0b_1^{'},...,b_0b_n^{'}\}$ – базис, то φ невырожденный оператор $\Longrightarrow \Phi$ биективно.

§5. Аффинные евклидовы пространства (точечные евклидовы пространства.)

Определение. Аффинное пространство (\mathbb{A}, V) называется евклидовым (точечным) пространством, если V – евклидово векторное пространство.

Определение. Расстояние между точками $\rho(x,y) := |\overrightarrow{xy}| = \sqrt{(\overrightarrow{xy}, \overrightarrow{xy})}$

Упражение. Так введенное расстояние удовлетворяет всем условиям из определения метрики.

Можно рассматривать систему координат (O, e), где e — О.Н.Б. в V — она называется прямоугольной (ортонормированной) \Longrightarrow

$$\rho(x,y) = \sqrt{(y_1 - x_1)^2 + \dots + (y_n - x_n)^2}$$

Определение. Аффинные евклидовы пространства $(\mathbb{A}_1, V_1), (\mathbb{A}_2, V_2)$ называются изоморфными, если существует биективное аффинное отображение Φ : $\mathbb{A}_1 \longmapsto \mathbb{A}_2$, такое что $\forall a, b \in \mathbb{A}_1$, $\rho(\Phi(a), \Phi(b)) = \rho_1(a, b)$ такое Φ называется изоморфизмом.

Теорема. Если $\dim \mathbb{A}_1 = \dim \mathbb{A}_2 (=n)$, то они изоморфны.

Доказательство. Фиксируем в \mathbb{A}_1 и \mathbb{A}_2 прямоугольные системы координат: $\{O;e\},\ \{O',e'\}$. Определим линейное отображение $\varphi:V_1\longmapsto V_2$ по правилу: $\varphi(\sum_{i=1}^n x_ie_i):=\sum_{i=1}^n x_ie'_i$ – оно линейное и биективное, тогда можно определить отображение $\Phi:\mathbb{A}_1\longmapsto\mathbb{A}_2$, такое что $\Phi(a+v)=O'+\varphi(v)$, тогда $O'=\Phi(O)$. Для любой точки $a\in\mathbb{A}_1$, точка $a'=\Phi(a)$ будет иметь по построению те же координаты, что и точка a в системе координат своего пространства $\Longrightarrow \rho_1(a,b)=\sqrt{\sum_i (b_i-a_i)^2}=\rho_2(a',b')$

Утверждение. Верно и обратное.

Расстоние и угол между аффинными плоскостями:

Пусть
$$\pi_1 = p_1 + U_1$$
, $\pi_2 = p_2 + U_2$

Определение. Расстоние: $\rho(\pi_1, \pi_2) = \inf\{\rho(x, y) \mid x \in \pi_1, y \in \pi_2\}$ Угол: $\alpha(\pi_1, \pi_2) = \inf\{\alpha(u_1, u_2) \mid u_1 \in U_1, u_2 \in U_2\}$. В частности, $\pi_1 \perp \pi_2$, если этот угол равен $\frac{\pi}{2}$ радиан. **Теорема.** Если $\pi_1 = p_1 + U_1$, $\pi_2 = p_2 + U_2$, U_1, U_2 – подпространства в V, то $\rho(\pi_1, \pi_2)$ равно длине ортогональной составляющей вектора $\overrightarrow{p_1p_2}$ относительно $U_1 + U_2$. Замечание: если $\pi_1 \cap \pi_2 \neq \varnothing$, то $\overrightarrow{p_1p_2} \in U_1 + U_2 \Longrightarrow \overrightarrow{p_1p_2}_{\perp} = 0$, и $\rho(\pi_1, \pi_2) = 0$

Доказательство. Обозначим $W=U_1+U_2$, тогда $V=W\oplus W^\perp$, соотвественно $\forall v\in V,\ v=v_{||}+v_\perp$, где $v_{||}\in W$ — проекция, $v_\perp\in W^\perp$ — ортогональная составляющая. В качестве v возьмем $v=\overrightarrow{p_1p_2},\ \rho(\pi_1,\pi_2)\stackrel{?}{=}|v_\perp|$. Выберем для любой точки $x=p_1+u_1\in\pi_1,\ y=p_2+u_2\in\pi_2$

$$\begin{split} \rho^2(x,y) &= |x-y|^2 = |\overrightarrow{p_1p_2} + u_1 - u_2|^2 = |(v_{||} + \underbrace{u_2 - u_1}) + \underbrace{v_{\perp}}_{\in W^{\perp}}| = \\ &\stackrel{\text{Th. Пифагора}}{=} |v_{||} + u_2 - u_1|^2 + |v_{\perp}|^2 \geq |v_{\perp}|^2 \end{split}$$

Причем равенство достигается, если $v_{||}=u_1-u_2$, т.к. $v_{||}\in U_1+U_2$, то также $u_1\in U_1$ и $u_2\in U_2$ найдутся.

Ортогональные преобразования.

Определение. Пусть (\mathbb{A},V) – евклидово пространство. Аффинное преобразование $\Phi: \mathbb{A} \longmapsto \mathbb{A}$ называется ортогональным (или движением), если его линейная часть $\varphi = D\Phi$ – ортогональный оператор в V, т.е. $\forall a,b \in \mathbb{A}, \, \rho(\Phi(a),\Phi(b)) = \rho(a,b)$, т.е. $|\overline{\Phi(a)\Phi(b)}| = |\overrightarrow{ab}| \Longleftrightarrow \varphi$ сохраняет длины.

Из определения следует, что Φ биективно.

Задача. В определении требование аффинности можно отбросить. (Возникает третий термин: изометрия).

В прямоугольной системе координат $\{O,e\}$ пусть $X_0=\Phi(O),\ X$ — столбец координат произвольной точки, Y — столбец координат ее образа. Тогда

$$Y = AX + X_0$$
, причем матрица A ортогональна.

У ортогональной матрицы $\det A = \pm 1$, если $\det A = 1$, то Φ – собственное преобразование, если $\det A = -1$, то Φ – несобственное преобразование.

Теорема. (О разложении невырожденного аффинного преобразования.) Для любого движения $\Phi: \mathbb{A} \longmapsto \mathbb{A}$ с линейной частью φ найдется такой вектор $u \in V: \varphi(u) = u$ (остается неподвижным под действем φ), а $\Phi = t_u \cdot \psi$, где ψ имеет неподвижную точку. Замечание: не исключено, что u = 0.

Доказательство. Пусть $a \in \mathbb{A}$ – произвольная точка, обозначим $v = a\Phi(a)$. Обозначим $U = \{u \in V \mid \varphi(u) = u\}$ – подпространство неподвижных точек. Если существует $\lambda = 1$, то $U \neq \{0\}$ – собственное подпространство, иначе $U = \{0\}$. Обозначим $W = U^{\perp}$ (при $U \neq \{0\}$) $\Longrightarrow v = u + w$ для подходящих $u \in U, w \in W = U^{\perp}$. Рассмотрим преобразование $\psi = t_u^{-1} \cdot \Phi = t_{-u} \cdot \Phi$. Докажем, что у ψ есть неподвижная точка. Будем искать ее в виде b = a + w', где $w' \in U^{\perp}$. Вычислим значение ψ в этой точке

$$\psi(a + w') = (t_{-u} \cdot \Phi)(a + w') = t_{-u}(\Phi(a) + \varphi(w')) =$$

$$= t_{-u}(a + v + \varphi(w')) = a + v - u + \varphi(w') = a + w + \varphi(w') =$$

$$= a + w + w' + (\varphi(w') - w') \stackrel{?!}{=} a + w'$$

Это будет так если выполняется $\varphi(w')-w'=-w$, или что равносильно $(\varphi-\varepsilon)(w')=-w$. Но $(\varphi-\varepsilon)(w')=(\varphi-\varepsilon)|_w(w')$, на $W, \varepsilon=\mathrm{Id}$. Оператор $\varphi-\varepsilon$ обратим $\Longrightarrow w'=-(\varphi-\varepsilon)^{-1}(w)\Longrightarrow \psi(b)=b$.

Комментарий к теореме: Для любого аффинного преобразования $\Phi = t_u \cdot \psi$ (ψ имеет неподвижную точку.)

Из доказательства: если $\lambda=1,\,u$ – собственный вектор для $\varphi:\varphi(u)=u,$ $u\neq 0,$ то все точки прямой $l=b+\langle u\rangle$ неподвижны, т.к.

$$\psi(b) = b, \quad \psi(b + t_u) = \psi(b) + t\varphi(u) = \psi(b) + t_u = b + t_u$$

Эти наблюдения можно использовать, чтобы классифицировать движение при n=2 и 3.

§6. Аффинно-квадратичные функции. Квадрики.

Считаем, что $F = \mathbb{R}$ или \mathbb{C} (большинство результатов верно для любого поля F, $\mathrm{char} F \neq 2$).

Определение. $Q: \mathbb{A} \longmapsto F$ называется аффинно-квадратичной, если для любой точки $O \in \mathbb{A}$ существует квадратичная функция $q: V \longmapsto F$ и линейная функция $l: V \longmapsto F$, такие что $\forall v \in V$ выполнено:

$$Q(O + v) = Q(O) + q(v) + 2l(v)$$
 (1)

По определению $q \neq 0$

В аффинной системе координат $\{O; e\}$, в которой $a(x_1, ..., x_n)$:

$$Q(a) = Q(x_1, ..., x_n) = \sum_{i,j=1}^{n} b_{ij} x_i x_j + 2 \sum_{i=1}^{n} a_i x_i + c$$
 (2)

Где B – матрица квадратичной формы q в базисе e, c = Q(0), $\vec{a} = (a_1, ..., a_n)$ – коэффициенты формы l.

 $Q(x_1,...,x_n)$ – аффинно-квадратичная форма.

Изменение коэффициентов при замене системы координат.

$$\{O;e\}\longmapsto \{O',e'\}.\; X=\begin{pmatrix}x_1\\ \vdots\\ x_n\end{pmatrix}$$
 – координаты точки a в старой системе коорди-

нат, X' – в новой.

$$\widetilde{X} = \begin{pmatrix} X \\ 1 \end{pmatrix}$$
, вводили блочную матрицу перехода $\widetilde{C} = \begin{pmatrix} C & X_0 \\ 0 & 1 \end{pmatrix}$, где $C = C_{e \longmapsto e'}$, X_0 – столбец координат точки O' , $O = \underbrace{(0,...,0)}_{r}$.

Можно ввести блочную матрицу
$$\widetilde{B}=\begin{pmatrix} B & a^\uparrow\\ a^T & C \end{pmatrix},\ a^\uparrow=\begin{pmatrix} a_1\\ \vdots\\ a_n \end{pmatrix},\ a^T=\vec{a}$$

Тогда
$$\widetilde{B'} = \begin{pmatrix} B' & a'^{\uparrow} \\ a'^{T} & C' \end{pmatrix} = \widetilde{C}^T \widetilde{B} \widetilde{C}$$

При умножении блочных матриц: $B' = C^T B C$,

$$a'^{\uparrow} = C^T(BX_0 + a^{\uparrow}), c' = Q(x_1^0, ..., x_n^0) = Q(O')$$

Если базис не менять, то $C = E, a'^{\uparrow} = BX_0 + a$ (3)

Из (3) видно, что если $\exists X_0:\ BX_0=-a^\uparrow,$ то l'=0, и Q приобретает вид:

$$\forall v \in V$$
 выполнено $Q(O'+v) = Q(O') + q(-v) = Q(O') + q(v) = Q(O'+v)$

Точки O' + v и O' - v симметричны относительно точки O'.

Определение. Точка O' — центр квадратичной функции Q, если $\forall v \in V$: Q(O'+v)=Q(O'-v). Система для нахождения центра: $BX=-a^{\uparrow}$ (3) Обозначим C(Q) — множество центров, то

$$C(Q) = \begin{cases} \text{Единственная точка } O', \text{ если } \mathrm{rk}B = n \Longleftrightarrow |B| \neq 0 \\ \text{Является плоскотью } \dim = n - \mathrm{rk}B > 0 \\ \varnothing \end{cases}$$

Утверждение. Если O_1, O_2 – центры аффинно-квадратичных функций Q, то $Q(O_1) = Q(O_2)$.

Доказательство.
$$Q(O_2) = Q(O_1) + q(\overrightarrow{O_1O_2}) = Q(O_2) + q(\overrightarrow{O_2O_1}) + q(O_1O_2) \Longrightarrow$$

$$q(\overrightarrow{O_1O_2}) = -q(\overrightarrow{O_1O_2}) \Longrightarrow q(\overrightarrow{O_1O_2}) = 0 \text{ (char } F \neq 2) \Longrightarrow Q(O_2) = Q(O_1)$$

Теорема. Любую аффинно-квадратичную форму $Q: \mathbb{A} \longmapsto F$ можно привести заменой координат к одному из видов:

1.
$$Q(O + v) = \sum_{i=1}^{r} \alpha_i x_i^2 + \alpha_{r+1}$$
 (I)

2.
$$Q(O+v) = \sum_{i=1}^r \alpha_i x_i^2 + 2x_{r+1}$$
 (II), где $r = \text{rk}B$, причем $\prod_{i=1}^r \alpha_i \neq 0$

Доказательство. Для формы q(x) существует базис e', в котором

$$q(x') = \sum_{i=1}^{r} \alpha_i x_i'^2, \ r = \text{rk}B, \ \alpha_i \neq 0$$

Выберем другую точку O' и систему координат $\{O';e'\}$ запишем

$$Q(O' + v) = \sum_{i=1}^{r} \alpha_i x_i'^2 + 2 \sum_{j=1}^{n} a_j' x_j' + c'$$

Выделем квадраты по x_i' :

$$a_i(x_i'^2 + 2\frac{a_i'x_i'}{\alpha_i} + \frac{a_i'^2}{\alpha_i})$$

Делаем замену: $\widetilde{x_i}=x_i'+\frac{a_i'}{\alpha_i}, a\leq i\leq r$ и $\widetilde{x_i}=x_i, r+1\leq i\leq n$

$$Q(\widetilde{x_1}, ..., \widetilde{x_n}) = \sum_{i=1}^r \alpha_i \widetilde{x_i}^2 + 2 \sum_{i=r+1}^n a_i' \widetilde{x_i} + \widetilde{c}, \ \widetilde{c} = Q(O'')$$

Если $a_i' \neq 0, \ i=r+1,...,n,$ то O' – это центр, Q приобретает вид (I). Если $a_i' \neq 0,$ то можно положить:

$$\widetilde{\widetilde{x}}_{r+1} = \sum_{i=r+1}^{n} a_i' \widetilde{x}_i + \frac{\widetilde{c}}{\alpha} \Longrightarrow Q$$
 приобретает вид (II)

Следствие. Если $F = \mathbb{C}$, то можно делать все $\alpha_i = 1$, если $F = \mathbb{R}$, то можно получить вид:

$$\sum_{i=1}^{p} \widetilde{x_i}^2 - \sum_{i=p+1}^{r} \widetilde{x_i}^2 + \begin{cases} \widetilde{c} \\ 2\widetilde{x}_{r+1} \end{cases}$$

Случай евклидова пространства.

Теорема. Для любой аффино-квадратичной формы Q (над \mathbb{R}) сущетсвует О.Н. система координат $\{O';e'\}$ в которой $Q = \sum_{i=1}^r \lambda_i x_i'^2 + c, \ \lambda_i \neq 0$ – собственное значение матрицы В, либо $Q = \sum_{i=1}^r \lambda_i x_i'^2 + 2\lambda_{r+1} x_{r+1}', \ \text{где } \lambda_{r+1} > 0$. Такой вид единственный, с точностью до нумерации.

Доказательство. Существование: для оператора с матрицей B, существует О.Н.Б. e' из собственных векторов, в котором

$$B'=egin{pmatrix} \lambda_1 & & & & & & \\ & \ddots & & & & & \\ & & \lambda_r & & & \\ & & 0 & & & \\ & & & \ddots & \\ & & & 0 \end{pmatrix}-$$
 единственной с точностью до нумерации

Как и в доказательстве прошлой теоремы, после перехода к этому базису либо вид (I), либо вид

$$(II) \qquad Q = \sum_{i=1}^{r} \lambda_{i} \widetilde{x}_{i} + \sum_{i=r+1}^{n} a'_{i} \widetilde{x}_{i} + \widetilde{c}$$

$$\widetilde{\widetilde{x}}_{r+1} = \underbrace{\sqrt{(a'_{r+1})^{2} + \ldots + (a'_{n})^{2}}}_{\mu} (\sum_{i=r+1}^{n} \frac{a'_{i}}{\mu} \cdot \widetilde{\widetilde{x}}_{i} + \frac{\widetilde{\widetilde{c}}}{\mu}) \rightarrow \text{ вид (II)}$$

$$\widetilde{\widetilde{e}}_{r+1} = \frac{1}{\mu} (\sum_{i=r+1}^{n} e'_{i} a'_{i}), \qquad |\sum_{i=r+1}^{n} e'_{i} a'_{i}| = \sqrt{(a'_{r_{1}})^{2} + \ldots + (a'_{n})^{2}} = \mu$$

Единственность (прошлой) теоремы:

Сущетсвует О.Н. система координат, в которой либо

(I)
$$Q = \sum_{i=1}^r \lambda_i x_i^2 + c$$
, либо

(II)
$$Q = \sum_{i=1}^{r} \lambda_i x_i^2 + 2\mu x_{r+1}, \ \mu > 0 \ (r < n)$$

Доказательство единственности. $\lambda_1, ..., \lambda_r \neq 0$ однозначно с точностью до нумерации, т.к. это ненулевые собственные значения матрицы q(x),

(I) случай существование центра c = Q(O), О – любой центр.

Вид (I) не может превратиться в вид (II), т.к. (II) – нецентральный случай. Единственность числа μ в случае (II):

Допустим, что в одной системе координат $\{O; e\}$

$$Q=...+2\mu x_{r+1},\;$$
в другой с.к. $\{O';e'\}\;(e\;$ и $e'-$ О.Н.Б.) $Q=...+2\widetilde{\mu}\widetilde{x}_{r+1},\;$ причем $\widetilde{\mu}\neq\mu$

Матрица перехрда от базиса $e \ \kappa \ e'$ имеет блочный вид

$$C_{e \to e'} = \begin{pmatrix} C_1 & 0 \\ 0 & C_2 \end{pmatrix}$$
 $C_1 := C_{\{e_1, \dots, e_r\} \to \{e'_1, \dots, e'_r\}}$

 $\langle e_1,...,e_r\rangle = \langle e_1',...,e_r'\rangle$ – базис подпространства, порожденный собственными векторами $\lambda_1,...,\lambda_r$.

$$C_2 := C_{\{e_{r+1},\dots,e_n\} \to \{e'_{r+1},\dots,e'_n\}}$$

Обе матрицы ортогональные. Коэффициент линейной формы $2\mu x_{r+1}$ преобразуется по формуле:

$$\underbrace{(\widetilde{\mu}, 0, ..., 0)}_{n-r} = (\mu, 0, ..., 0) \cdot C_2, \ \mu > 0, \ \widetilde{\mu} > 0$$

Длина вектора при ортогональной замене сохраняется $\Longrightarrow |\widetilde{\mu}| = |\mu| > 0 \Longrightarrow \widetilde{\mu} = \mu.$

Квадрики (гиперповерхности 2-го порядка.)

Определение. Пусть $Q: \mathbb{A} \longmapsto F$ – аффинно-квадратичная функция [не являющаяся линейной]. Квадрика (гиперповерхность 2-го порядка), задаваемая функцией Q – это $S(Q) = \{a \in \mathbb{A} \mid Q(a) = 0\}$, если $S(Q) \neq \emptyset$

Утверждение. Любая прямая $\pi \subset \mathbb{A}$ либо принадлежит поверхности S = S(Q), либо пересекает ее не более, чем в двух точках.

Доказательство. $\forall a, \ b = a + tv, \ \pi || v \neq 0$

$$Q(a + tv) = Q(a) + q(tv) + 2l(tv) = t^{2}q(v) + 2tl(v) + Q(a) = 0$$

Либо это равенство тождественно, либо $q(v) \neq 0$ или $l(v) \neq 0 \Longrightarrow$ существует не более двух корней t.

Определение. Точка $O\in \mathbb{A}$ – центр квадрики, если для любого вектора $v\in V$ такого что $O+v\in S\Longrightarrow O-v\in S$. Точка O – вершина квадрики, если O – центр, принадлежащий этой поверхности, т.е. $O\in S$.

Утверждение. Если O – вершина, $a \in S$, $a \neq O$, то вся прямая проходящая через точки O и a принадлежит S.

Доказательство. Обозначим $v = \overrightarrow{Oa}$, и рассмотрим точку $O + t \cdot \overrightarrow{Oa} \in S \iff O - t \cdot \overrightarrow{Oa} \in S$. В частности, точки $O, \ a, \ a' = O - \overrightarrow{Oa} \in S$ – три различные точки на $S \Longrightarrow$ по прошлому утверждению, вся прямая $O + \langle v \rangle \subset S$.

Заметим, что

$$Q(O + v) = q(v) + 2l(v) + c = 0, \ c = Q(O) \Longrightarrow$$

 $Q(O - v) = q(v) - 2l(v) + c = 0$

 $\mathrm{char} F \neq 2 \Longrightarrow l(v) = 0$. Т.о., если O – центр квадрики $\Longrightarrow l(v) = 0$. Координаты центра совпадают с координатами центра Q(x).

Центр определятся системой уравнений:

$$\frac{\partial Q(x)}{\partial x_i}=0,\ i=1,...,n\Longleftrightarrow \frac{\partial q}{\partial x_i}+2a_i=0,\ \text{где }l(x)=\sum_{i=1}^n a_ix_i$$

Замечание. Квадрика, не являющаяся плоскостью, содержит хотя бы одну точку, которая не является вершиной. Если допустить, что вссе точки $a \in S$ являются вершинами, то любая прямая $(O,a) \subset S \Longrightarrow S$ является плоскотью.

Теорема. Если $|F|=\infty$ (char $F\neq 2$), то $S(Q_1)=S(Q_2)\Longrightarrow \exists \lambda\in F,\ \lambda\neq 0$: $Q_2=\lambda Q_1.$

Доказательство.

Если $Q_2 = \lambda Q_1, \lambda \neq 0$, то Q задает ту же поверхность, что и Q_1 .

Обратно: пусть $S=S(Q_1)=S(Q_2)$. Возьмем точку $O\in S$, не являющуюся вершиной. Имеем: $Q_1(O)=0,\ Q_2(O)=0$. Для $\forall v\in V$ запишем

$$Q_1(O+v) = q_1(v) + 2l_1(v), l_1 \neq 0$$

$$Q_2(O+v) = q_2(v) + 2l_2(v), l_2 \neq 0$$

Прямая $\pi = O + \langle v \rangle$ пересекает S в некоторой точке p = O + tv, если $t \in F$ – корень обоих уравнений

$$t^2 q_1(v) + 2t l_1(v) = 0$$

$$t^2 q_2(v) + 2t l_2(v) = 0$$

Один из этих корней $t_0 = O$, т.к. $O \in S$, второй t_1 .

$$t(tq_1(v) + 2l_1(v)) = 0$$

$$t(tq_2(v) + 2l_2(v)) = 0$$

Если $q_1(v)q_2(v) \neq 0 \Longrightarrow$

$$t_{1} = -\frac{2l_{1}(v)}{q_{1}(v)} = -\frac{l_{2}(v)}{q_{2}(v)} \Longrightarrow \frac{l_{1}(v)}{q_{1}(v)} = \frac{l_{2}(v)}{q_{2}(v)} \Longleftrightarrow$$
$$l_{1}(v)q_{2}(v) = \frac{l_{2}(v)q_{1}(v)}{q_{1}(v)q_{2}(v)} \Longrightarrow l_{1}(v)q_{1}(v)q_{2}^{2}(v) = l_{2}(v)q_{1}^{2}(v)q_{2}(v)$$

Последнее верно $\forall v \in V$ (даже если $q_1(v) = 0$ или $q_2(v) = 0$) – равенство двух многочленов от $x_1, ..., x_n$ как функций.

Т.к. F бесконечно, то это равносильно равенству многочленов $l_1q_1q_2^2 = l_1q_1^2q_2$ как алгебраических выражений. Кольцо многочленов над полем не имеет делителей $0 \Longrightarrow$ можно сократить последнее равенство на $q_1q_2 \Longrightarrow q_1l_2 = q_2l_1$ (*) (как равенство многочленов). Нам достаточно доказать, что $\exists \lambda \neq 0: l_2 = \lambda l_1$, из (*) $\Longrightarrow q_2 = \lambda q_1$. Допустим, что это не так, и l_1 , l_2 не пропорциональны, тогда они ЛНЗ в пространстве V^* , и их можно включить в дуальный базис, т.е. выбрать базис в V так, чтобы $l_1(v) = x_1$, $l_2(v) = x_2$, $\forall v = \sum_{i=1}^n x_i e_i$, тогда равенство (*) примет вид: $q_1(x)x_2 = q_2(x)x_1$ – равенство двух многочленов, где $x = (x_1, ..., x_n)$. Многочлен правой части делится на $x_1 \Longrightarrow$ многочлен $q_1(x)x_2 : x_1, x_1$ и x_2 взаимно просты $\Longrightarrow q_1(x) : x_1 \Longrightarrow q_1(v) = l(v)x_1 \Longrightarrow q_2(v) = l(v)x_2, \ l(v)$ – линейная форма, $l(v) \neq 0 \Longrightarrow$

$$Q_1(O + v) = (l(x) + 2)x_1$$

$$Q_2(O + v) = (l(x) + 2)x_2$$

Пусть $x_1 \equiv 0 \Longrightarrow Q_1(O+v) = 0$, т.е. S содержит плоскость $x_1 = 0$. Но $Q_2(O+v) = (l(x)+2)x_2 \not\equiv 0$ при $x_1 = 0$ – противоречие $\Longrightarrow l_2 = \lambda l_1$, $\lambda \not\equiv 0 \Longrightarrow q_2 = \lambda q_1 \Longrightarrow Q_2 = \lambda Q_1$

После теормы о том, что если $S(Q_1)=S(Q_2)\Longrightarrow Q_2=\lambda Q_1$, докажем, следующее утверждение.

Утверждение. Пусть S = S(Q) – квадрика. Точка $O \in \mathbb{A}$ – центр симметрии $S \iff l = 0.$ (Q(O + v) = q(v) + 2l(v) + Q(O)).

Доказательство.

 \Leftarrow Если l=0, то Q(O-v)=Q(O)+q(-v)=Q(O+v)=O, $\forall v\in V: O+v\in S$ $\Longrightarrow S: Q(O+v)=O$, а функция $Q_1(O+v)=Q(O-v)=q(v)-2l(v)+c$ задает ту же поверхность S, если O – центр симметрии $\Longrightarrow \exists \lambda \neq 0: Q_1=\lambda Q$, т.е. $\lambda q(v)+2\lambda l(v)+\lambda Q(O)=q(v)-2l(v)+Q(O)$ (разделим обе части на правую часть). Т.к. $q\neq 0$, то $\lambda=1\Longrightarrow l(v)=-l(v)$; т.к. $\mathrm{char} F\neq 2\Longrightarrow l=0$

Классификация квадрик.

Теорема. Заменой аффинной системы координат $\{O; e\}$ уравнение любой квадрики можно привести к только одному из следующих видов (char $F \neq 2$; коэффициенты определяются с точностью до нумерации):

I. (1)
$$\sum_{i=1}^{r} \alpha_i x_i^2 = 1 \ (r \le n)$$

(2) $\sum_{i=1}^{r} \alpha_i x_i^2 = 0 \ (r \le n - 1)$

І. – центральный случай

II. (нецентральный случай):
$$\sum_{i=1}^{r} \alpha_i x_i^2 + 2x_{r+1} = 0 \ (r \le n-1)$$
 где $\prod_{i=1}^{r} \alpha_i \ne 0$ во всех случаях (I), (II).

Доказательство. См. соотвествующую теорему о классификации аффинноквадратичных функций:

(I).
$$Q(O + v) = \sum_{i=1}^{r} \alpha_i x_i^2 + c$$

Если $c \neq 0$, то уравнение

$$\sum_{i=1}^{r} \alpha_i x_i^2 = -c \iff \sum_{i=1}^{r} (-\frac{\alpha_i}{c}) x_i^2 = 1, \ \widetilde{\alpha}_i = -\frac{\alpha_i}{c}$$

Остальное остается в силе.

Следствие. Над $\mathbb C$ уравнение квадрики S приводится к одному из видов:

I. (1)
$$\sum_{i=1}^{r} x_i^2 = 1 \ (r \le n)$$

(2) $\sum_{i=1}^{r} x_i^2 = 0 \ (r \le n)$
II. $\sum_{i=1}^{r} x_i^2 = 2x_{r+1}, \ (r \le n-1)$

Доказательство. Согласно прошлой теореме:

$$\sum_{i=1}^{r} x_i^2 = \begin{cases} 1\\0\\2x_{r+1} \end{cases}$$

П

П

$$\begin{cases} \widetilde{x_i} = \sqrt{\alpha_i} x_i, \ 1 \le i \le r \\ \widetilde{x_i} = x_i, \ r+1 \le i \le n. \end{cases}$$

Следствие. Над \mathbb{R} заменой системы координат $\{O; e\}$ уравнение любой квадрики приводится к одному из видов:

I. (1)
$$\sum_{i=1}^{s} x_i^2 - \sum_{i=s+1}^{r} x_i^2 = 1 \ (s \le r)$$

(2)
$$\sum_{i=1}^{s} x_i^2 - \sum_{i=s+1}^{r} x_i^2 = 0, \ \frac{r}{2} \le s \le r$$

II.
$$\sum_{i=1}^{s} x_i^2 - \sum_{i=s+1}^{r} x_i^2 = -2x_{r+1}, \ \frac{r}{2} \le s \le r$$

(В случаях І. (2) и ІІ., если надо, уравнение можно умножить на (-1) и перенумеруем).

Названия в этой классификации:

- I. (1) при n = z = s эллипсоид; если 1 < n = r гиперболоид.
- I. (2) при r = n конус.
- II. при r = s = n-1 эллиптический параболоид. при s < r = n-1 гиперболический параболоид.
- I. при $r \leq n-1$, II при $r \leq n-2$ циллиндры.

Квадрики в аффинном евклидовом пространстве

Теорема. (Об ортогональной классификации квадрик). В аффинном евклидовом пространстве \mathcal{E} выбором подходящей ортонормированной системе координат, уравнение любой квадрики приводятся к одному (и только одному) каноническому типу:

I. (1)
$$\sum_{i=1}^{s} \frac{\tilde{x}_{i}^{2}}{\alpha_{i}^{2}} - \sum_{i=s+1}^{r} \frac{\tilde{x}_{i}^{2}}{\alpha_{i}^{2}} = 1, \ 0 < s \le r$$

(2) $\sum_{i=1}^{s} \frac{\tilde{x}_{i}^{2}}{\alpha_{i}^{2}} - \sum_{i=s+1}^{r} \frac{\tilde{x}_{i}^{2}}{\alpha_{i}^{2}} = 0, \ \frac{r}{2} \le s < r$
II. $\sum_{i=1}^{s} \frac{\tilde{x}_{i}^{2}}{\alpha_{i}^{2}} - \sum_{i=s+1}^{r} \frac{\tilde{x}_{i}^{2}}{\alpha_{i}^{2}} + 2x_{r+1} = 0 \ (\text{Bce } \alpha_{i} > 0, \ 1 \le i \le r)$

 $Haбросок\ доказательства.\ В подходящей ортонормированной системе координат <math>\{O;e\}$ уравнение Q приводится к виду:

(I)
$$Q = \sum_{i=1}^{r} \lambda_i x_i^2 + c$$
 либо (II) $\sum_{i=1}^{r} \lambda_i x_i^2 + 2\mu x_{r+1} \ (\mu > 0)$

(По теореме 2 из лекции от 3.05)

Пусть имеет место (I) и $c \neq 0$, тогда уравнение

$$\sum_{i=1}^{r} \lambda_i x_i^2 + c = 0$$
 разделим на $(-c) \Longrightarrow$

$$\sum_{i=1}^r rac{\lambda_i}{-c} x_i^2 = 1$$
, обозначим за $a_i := \sqrt{\left|rac{c}{\lambda_i}
ight|}$

Причем можно выбрать нумецию так, чтобы $\lambda_i c < 0$ при i=1,...,s и $\lambda_i c > 0$ при i>s \to вид $\mathrm{I.}(1)$

При c=0 просто $a_i=\frac{1}{\sqrt{|\lambda_i|}}\to$ вид $\mathrm{I.}(2).$

В случае (II) можно разделить уравнение на μ :

$$\sum_{i=1}^r \frac{\lambda_i x_i^2}{\mu} + 2x_{r+1} = 0, \text{ обозначим за } a_i := \sqrt{\left|\frac{\mu}{\lambda_i}\right|}$$

Выбрать нумерацию так, чтобы $\lambda_i \mu > 0$ при i = 1, ..., s и $\lambda_i \mu < 0$ при i > s.

Глава 5. Тензоры. §1. Базовые понятия.

Под тензором понимают геометрический объект, который задается матрицей (там было еще много слов которые я не успел записать).

Пусть V – векторное пространство над полем $F,\,\dim V=n<\infty$

 V^* — сопряженное ему пространство (пространство линейных функций на V). Известно, что $V^{**}\cong V$ (изоморфизм не зависит от базиса.)

Определение. Пусть $p, q \in \mathbb{N}_0$. Тензор типа (p,q) – это полилинейная функция $f: \underbrace{V \times ... \times V}_{p} \times \underbrace{V^* \times ... \times V^*}_{q} \longmapsto F. (f(v_1, ..., v_p; u_1, ..., u_q)$ линейна по каждому из аргументов). p+q – валентность тензора f (или ранг f), где p –

каждому из аргументов). p+q – валентность тензора f (или ранг f), где p – ковариантная валентность, q – контравариантная валентность. Если $pq \neq 0$, то f – смешанный тензор.

Обозначим $T_p^q(V) = T_p^q$ – множество тензоров типа (p,q).

Утверждение. T_p^q – векторное пространство.

Доказательство. Надо определить линейные операции.

Обозначим $\vec{v} = (v_1, ..., v_p), \ \vec{u} = (u_1, ..., u_q).$

Если $f_1, f_2 \in T_p^q$, положим

$$(f_1 + f_2)(\vec{v}, \vec{u}) := f_1(\vec{v}, \vec{u}) + f_2(\vec{v}, \vec{u})$$

$$\forall \lambda \in F, \ (\lambda f)(\vec{v}, \vec{u}) := \lambda f(\vec{v}, \vec{u})$$

С этими операциями $T_p^q(V)$ – векторное пространство.

Определение. Произведение тензоров: пусть $f_1 \in T_p^q$, $f_2 \in T_r^s$, тогда $f_1 \otimes f_2$: $\underbrace{V \times \ldots \times V}_{p+r} \times \underbrace{V^* \times \ldots \times V^*}_{q+s} \longmapsto F$, т.е. $f_1 \otimes f_2 \in T_{p+r}^{q+s}$

$$(f_1 \otimes f_2)(\underbrace{v_1,...,v_p,v_{p+1},...,v_{p+r}}_{\text{векторы } \in V};\underbrace{u_1,...,u_{q+s}}_{\text{ковекторы } \in V^*}) =$$

$$= f_1(v_1,...,v_p;u_1,...,u_q)f_2(v_{p+1},...,v_{p+r};u_{q+1},...,u_{q+s})$$

Свойства операции операции ⊗:

Утверждение. 1. $f_1 \otimes f_2$ – тензор типа (p+r, q+s)

- 2. $(f_1 \otimes f_2) \otimes f_3 = f_1 \otimes (f_2 \otimes f_3)$ ассоциативность.
- 3. $(\alpha f_1 + \beta f_2) \otimes f_3 = \alpha (f_1 \otimes f_3) + \beta (f_2 \otimes f_3)$ дистрибутивность.

Правило суммирования Эйнштейна.

Договоренность, что координаты вектора пишутся с верхними индексами, тогда разложение вектора по базису:

$$x = \sum_{i} x^{i} e_{i} \equiv x^{i} e_{i}$$

В последнем предполагается суммирование по i, ради сокращения записи. Коэффициенты линейной формы — с нижними индексами:

$$u(x,y) = \sum_{i} a_i x^i$$

Матрица линейного оператора обозначается $A=(a^i_j),$ где i – индекс строки, а j –индекс столбца.

$$\varphi(x) = AX = \sum_{i} a_{j}^{i} x^{j}$$

Отождествление тензоров малых валентностей (рангов) с геометрическими объектами.

Под тензором понимаем векторы, линейные формы, билинейные формы, операторы.

1.
$$T_1^0(V) = V^*$$

2.
$$T_0^1(V) = V^{**} = V$$

3. $T_2^0(V)$ – билинейная форма.

4.
$$T_1^1(V) \cong L(V)$$

Пусть f(v,u) – тензор типа (1,1). Изоморфизм между V^{**} и V задается правилом:

$$\forall v \in V, \ v \longmapsto \varepsilon_v \in V^{**}, \ \forall u \in V^*$$
 выполнено $\varepsilon_v(u) = u(v)$

(И наоборот, для $l \in V^{**}$ обозначим $v = y_v \in V$ – обратное отображение.) При фиксированном $v,\ f(v,u)$ – линейная функция на $V^{**} \Longrightarrow$

$$f(v, u) = \varepsilon_v(u) = u(v) = u(y_v) \tag{*}$$

Соответствие $v \mapsto v$ из условия (*) является линейным оператором. Для f существует единственый. φ

Наоборот, $\forall \varphi: V \longmapsto V$, функция $f(v,u):=u(\varphi(v))$, где $f: V \times V^* \longmapsto F$.

Построение базиса в пространстве $T^q_p(V)$.

Пусть $e = \{e_1, ..., e_n\}$ – базис в V, а $e^* = \{e^1, ..., e^n\}$ – дуальный базис в V^* .

Теорема. Тензоры

$$e^{i_1} \otimes ... \otimes e^{i_p} \otimes e_{j_1} \otimes ... \otimes e_{j_q} (i_1, ..., i_p, j_1, ..., j_q = \overline{1, n})$$

образуют базис в пространстве $T_p^q \Longrightarrow \dim T_p^q = n^{p+q}$

Доказательство. Любой тензор f разлагается по тензорам (**).

Пусть
$$v_1 = x_1^{i_1} e_{i_1}, ..., v_p = x_p^{i_p} e_{i_p}$$

$$u_1 = y_{j_1^1} e^{j_1}, ..., u_q = y_{j_q^q} e^{j_q}$$

$$f(v_1, ..., v_p; u_1, ..., u_q) = f(x_1^{i_1} e_{i_1}, ...; y_{j_1}^1 e^{j_1}, ...) =$$

Используя линейность по каждому аргументу получаем:

$$= x_1^{i_1} \cdot \dots \cdot x_p^{i_p} \cdot y_{j_1}^1 \cdot \dots \cdot y_{j_q}^q \cdot f(e_{i_1}, \dots, e_{i_p}; e^{j_1}, \dots, e^{j_q})$$

Заметим, что $f(e_{i_1},...,e_{i_p};e^{j_1},...,e^{j_q})=T^{j_1,...,j_q}_{i_1,...,i_p}$ – координаты тензора $f(\vec{v};\vec{u})$. Индексы должны быть "и сверху и снизу".

$$(e^{i_1} \otimes ... \otimes e^{i_p} \otimes e_{j_1} \otimes ... \otimes e_{j_q})(e_{i'_1}, ..., e_{i'_n}; e^{j'_1}, ..., e^{j'_q}) =$$

$$=e^{i_1}(e_{i_1'})\cdot\ldots\cdot e^{i_p}(e_{i_p'})\cdot e_{j_1}(e^{j_1'})\cdot\ldots\cdot e_{j_q}(e^{j_q'})=$$

$$=\delta^{i_1}_{i_1'}\cdot\ldots\cdot\delta^{i_p}_{i_p'}\cdot\delta^{j_1'}_{j_1}\cdot\ldots\delta^{j_q'}_{j_q}=\begin{cases} 1,(i_1,...,i_p)=(i_1',...,i_p')\text{ и }(j_1,...,j_p)=(j_1',...,j_p')\\ 0,\text{ иначе} \end{cases}$$

$$(e^{i_1'}\otimes e^{i_p'}\otimes e_{j_1'}\otimes\ldots\otimes e_{j_q'})(v_1,...,v_p;u_1,...,u_q)=$$

$$x_1^{i_1}\cdot\ldots\cdot x_p^{i_p}\cdot y_{j_1}^1\cdot\ldots\cdot y_{j_q}^q(e^{i_1'}\otimes e_{j_q'})(e_{i_1},...,e^{j_q})$$

Причем $(e^{i_i'}\otimes e_{j_q'})(e_{i_1},...,e^{j_q})$ раняется 1, только когда $(i_1,...,i_p)=(i_1',...,i_p')$ и $(j_1,...,j_p)=(j_1',...,j_p')$. Тогда

$$f(v_1,...,v_p;u_1,...,u_q) = T_{i_1,...,i_p}^{j_1,...,j_q}(e^{i_1} \otimes ... \otimes e^{i_p} \otimes e_{j_1} \otimes ... \otimes e_{j_q})(v_1,...,v_p;u_1,...,u_q)$$

 $T^{j_1,\dots,j_q}_{i_1,\dots,i_p}$ фактически являются координатами тензора f в системе тензоров (**). Тензоры (**) ЛНЗ: допустим, что коэффициенты $\Lambda^{j_1,\dots,j_q}_{i_1,\dots,i_p}$, такие что

$$\widetilde{f} = \Lambda_{i_1,\dots,i_p}^{j_1,\dots,j_q}(e^{i_1} \otimes \dots \otimes e^{i_p} \otimes e_{j_1} \otimes \dots \otimes e_{j_q}) = 0$$

Рассмотрим тензор $\widetilde{f}\equiv 0$, точнее

$$\widetilde{f}(e_{i_1},...,e_{i_p};e^{j_1},...,e^{j_q}) = \Lambda^{j_1,...,j_q}_{i_1,...,i_p} = 0$$

Для $\forall i_k, j_l$

Иземенение координат тензора при замене базиса.

Если $e=(e_1,...,e_n)$ – старый базис; $e'=(e'_1,...,e'_n)$ – новый базис в $V,\ e^*=(e^1,...,e^n)$ старый базис в $V^*,\ e'^*=(e'^1,...,e'^n)$ – новый базис в $V^*.$

$$x=x^ie_i=x'^{i'}e'_{i'},\quad x^i=c^i_{i'}x'^{i'},\quad (c^i_{i'})=C_{e o e'}$$
 $u=y_je^j=y'_{j'}e'^{j'},\quad y'_{j'}=y_jc^i_{j'}-$ ковариантный закон

(В общем у Гайфуллина расписано лучше)

Равносильно: $X' = C^{-1}X$, обозначим $D = C^{-1} \Longrightarrow x'^{i'} = d_i^{i'}x^i$ – контравариантный закон.

В старом базисе:

$$f = T_{i_1,...,i_p}^{j_1,...,j_q}(e^{i_1} \otimes ... \otimes e^{i_p} \otimes e_{j_1} \otimes ... \otimes e_{j_q})$$
$$T_{i_1,...,i_p}^{j_1,...,j_q} = f(e_{i_1},...,e_{i_p};e^{j_1},...,e^{j_q})$$

В новом базисе:

$$T_{i'_1,...,i'_n}^{'j'_1,...,j'_q} = f(e'_{i'_1},...,e'_{i'_p};e'^{j'_1},...,e'^{j'_q})$$

В координатах:

$$f(e_{i_{1}},...,e_{i_{p}};e^{j_{1}},...,e^{j_{q}}) = T_{i_{1},...,i_{p}}^{j_{1},...,j_{q}}x_{1}^{i_{1}}...x_{p}^{i_{p}} \cdot y_{j_{1}}^{1}...y_{j_{q}}^{q} =$$

$$= T_{i_{1},...,i_{p}}^{j_{1},...,j_{q}}c_{i_{1}'}^{i_{1}}x_{1}^{'i_{1}'}...x_{p}^{'i_{p}'} \cdot d_{j_{1}}^{j_{1}'}y_{1}^{'j_{1}}...d_{j_{q}}^{j_{q}'}y_{q}^{'j_{q}} =$$

$$= T_{i_{1},...,i_{p}'}^{'j_{1}',...,j_{q}'}x_{1}^{'i_{1}'}...x_{p}^{'i_{p}'} \cdot y_{j_{1}'}^{'1}...y_{j_{q}'}^{'q} \Longrightarrow$$

$$T_{i_{1},...,i_{p}'}^{'j_{1}',...,j_{q}}c_{i_{1}}^{i_{1}} \cdot ... \cdot c_{i_{p}'}^{i_{p}} \cdot d_{j_{1}}^{j_{1}'} \cdot ... \cdot d_{j_{q}}^{j_{q}'} \qquad (*)$$

(*) означает, что этот тензор (или эта матрица) p раз ковариантный и q раз контравариантный.

А теперь докажем то же самое, но методом Гайфуллина.

Формально, он проделывает же те шаги, но с более удобными обозначениями.

$$C_{e \to \overline{e}} : (\overline{e_1}, ..., \overline{e_n}) = (e_1, ..., e_n)C \Longrightarrow$$

$$\overline{c}_j = \sum_{i=1}^n e_i c_{ij} = \left| (c_{ij}) := (c_j^i) \right| = \sum_{i=1}^n e_i c_j^i = e_i c_i^j$$

Из-за хейта знак суммирования опущен.

Пусть $D := C^{-1}$. Тогда

$$e_{j} = \overline{e}_{i} \cdot d_{j}^{i}, \qquad e^{j} = c_{i}^{j} \cdot \overline{e}^{i}$$

$$f = T_{i_{1}, \dots, i_{p}}^{j_{1}, \dots, j_{q}} e^{i_{1}} \otimes \dots \otimes e^{i_{p}} \otimes e_{j_{1}} \otimes \dots \otimes e_{j_{q}} = \overline{T}_{a_{1}, \dots, a_{p}}^{b_{1}, \dots, b_{q}} \cdot \overline{e}^{a_{1}} \otimes \dots \otimes \overline{e}^{a_{p}} \otimes \overline{e}_{b_{1}} \otimes \dots \otimes \overline{e}_{b_{q}}$$

$$f = T_{i_{1}, \dots, i_{p}}^{j_{1}, \dots, j_{q}} \cdot c_{a_{1}}^{i_{1}} \cdot \overline{e}^{a_{1}} \otimes \dots \otimes c_{a_{p}}^{i_{p}} \cdot \overline{e}^{a_{p}} \otimes d_{j_{1}}^{b_{1}} \cdot \overline{e}_{b_{1}} \otimes \dots \otimes d_{j_{q}}^{b_{q}} \cdot \overline{e}_{b_{q}}$$

$$\overline{T}_{a_{1}, \dots, a_{p}}^{b_{1}, \dots, b_{q}} = T_{i_{1}, \dots, i_{p}}^{j_{1}, \dots, j_{q}} \cdot c_{a_{1}}^{i_{1}} \cdot \dots \cdot c_{a_{p}}^{i_{p}} \cdot d_{j_{1}}^{b_{1}} \cdot \dots \cdot d_{j_{q}}^{b_{q}}$$

§2. Свертка, симметризация и альтернирование.

След матрицы линейного оператора

$$\mathrm{tr}A=\sum a_i^i=a_i^a\in T_0^0$$
 — инвариант $T_p^q o T_{p-1}^{q-1},\ p,q\geq 1$

Пусть $f \in T_p^q$, $p, q \ge 1$ и $f = f(v_1, ..., v_p; u^1, ..., u^q)$ Выбирается $x \in [1, p], s \in [1, q]$, можно рассмотреть

$$\overline{f}(v_1,...,\widehat{v}_r,...,v_p;u^1,...,\widehat{u}^s,...,u^q)$$

Сначала для $v_r = e_k, \ u_s = e^k$

$$\overline{f}(e_1, ..., \widehat{e}_r, ..., e_p; e^1, ..., \widehat{e}^s, ..., e^q) = \sum_{k=1}^n e^k(e_k) \cdot f(e_1, ..., e_k, ..., e^1, ..., e^k, ..., e^q)$$

В матричном виде пусть $T^{j_1,\dots,j_q}_{i_1,\dots,i_p}$ – матрица координат тензора f, а \overline{T} – тензора $\overline{f}.$ Тогда

$$\overline{T}_{i_1,\dots,\hat{i}_r,\dots,i_p}^{j_1,\dots,\hat{j}_s,\dots,j_q}=T_{i_1,\dots,k,\dots,i_p}^{j_1,\dots,k,\dots,j_q}$$
 (по k подразумевается суммирование)

$$\operatorname{tr} A = \sum a_i^i = a_i^i \qquad \overline{f} := \operatorname{tr}_r^s(f)$$

Утверждение. $texttr_r^s: T_p^q(V) \longmapsto T_{p-1}^{q-1}(V)$ (если $p,q \ge 1$) – линейное отображение.

Можно свертывать по всем наборам верхних и нижних индексов m раз, где m:=min(p,q). Если p=q=m, то получится тензор типа (0,0), т.е. скаляр, который является инвариантным. Если же $p\neq q$, то получится не смешанный, а чистый тензор.

Пример: 1. $A=a^i_j,\ x=x^k\Longrightarrow A\otimes x=a^i_j\cdot\overbrace{x^k}^{b^{ik}_j}\in T^2_1$. Если свернуть этот тензор по нижнему индексу j и верхнему $k\colon \overline{b}^i=a^i_jx^j$ – образ x при действии линейного оператора с матрицей A.

2. $A=a^i_j,\ B=b^k_l,\ A,B\in T^1_1,\ A\otimes B=a^i_jb^k_l\ (i,j,k,l$ независимы) $\in T^2_2.$ Свертка этого тензора по индексу j и индексу k: $a^i_jb^j_l=(a\cdot B)^i_l$

Симметричность.

Для чистого тензора $T_p^0(V)$

$$f = f(v_1, ..., v_p)$$

Определим действие подстановки $\pi \in S_p$ по правилу:

$$\pi \circ f \equiv f_{\pi}(v_1, ..., v_p) = f(v_{\pi(1)}, ..., v_{\pi(p)})$$

Определение. Тензор f симметрический, если $\forall \pi \in S_p$ выполнено $f_p = f$. Операция симметризации:

$$Sym(f)(v_1, ..., v_p) = \frac{1}{p!} \sum_{\pi \in S_p} f_{\pi}(v_1, ..., v_p)$$

Аналогично можно определить симметричность и симметризацию на $T_0^q(V)$

Утверждение.

- 1. Если тензор f симметрический, то Sym(f) = f.
- 2. $Sym^2 = Sym$

Обозначим T_p^+ (соотвественно T_+^q) – пространство симметрических тензоров.

3. ImSym = T_p^+ (соотвественно T_+^q)

Таким образом Sym – проектор из T_p^0 на T_p^+ (соотвественно T_0^q на T_+^q)

Доказательство. Очевидно.

Альтернирование (или антисимметричность).

Определение. Тензор $f(v_1,...,v_p)$ – кососимметрический, если $\forall \pi \in S_p$ выполнено $f_{\pi}(v_1,...,v_p) = f(v_{\pi(1)},...,v_{\pi(p)}) = \operatorname{sgn}(\pi) f(v_1,...,v_p)$.

Считаем, что ${\rm char} F=0.$ Очевидно, что кососимметричность достаточно требовать для любой транспозиции.

Обозначение: $\Lambda^p(V)$ – пространство кососимметрических тензоров из T^0_p . Для кососимметрических тензоров типа (0,q) используется обозначение $\Lambda^q(V^*)$.

Операция альтернирования:

Определение. Alt
$$(f)(v_1,...,v_p):=rac{1}{p!}\sum_{\pi\in S_p}\mathrm{sgn}(\pi)f(v_{\pi(1)},...,v_{\pi(p)})$$

Утверждение.

- 1. Alt: $T^0_p \to T^0_p$ линейный отображение. Если $f \in \Lambda^p \Longrightarrow \mathrm{Alt}(f) = f$
- 2. $Alt^2 = Alt$
- 3. ImAlt = Λ^p
- 4. AltSym = Sym \circ Alt = 0

$$T_2^0(V) = \overbrace{T_2^+(V)}^{\text{симм. тенз.}} \oplus \overbrace{\Lambda^2(V)}^{\text{кососимм. тенз.}}$$

Но при $p \geq 3$ выполнено $T_p^+(V) \oplus \Lambda^p(V) \neq T_p^0(v)$

Тензорная алгебра пространства V.

Внешняя прямая сумма пространств: $V_1 \oplus ... \oplus V_k = \{v_1, ..., v_k \mid v_i \in V_i\}$ с покомпонентными линейными операциями.

$$\bigoplus_{i=1}^{\infty} V_i = \{ (v_1, v_2, \dots) \mid v_i \in V_i, \ i = 1, 2, \dots \}$$

Конечное число $v_i \neq 0$ – финитные последовательности.

Рассмотрим в W подпространства $\widetilde{V}_i = \{0,...,v_i,0,...|v_i \in V_i\}$. Тогда $\forall w \in W$:

 $w = \sum_{i} \widetilde{v}_{i}$, можно отождествить $v_{i} \equiv \widetilde{v}_{i}, V_{i} \equiv \widetilde{V}_{i}$.

Обозначим $T^*(V) = \bigoplus_{i=1}^{\infty} T_p^0(V)$ (внешняя прямая сумма, отождествленная с внутренней).

$$f \in T_p^0, \ g \in T_r^0 \Longrightarrow f \otimes g \in T_{p+r}^0$$

На пространстве $T^*(V)$ определены операции $+, \lambda \cdot, \otimes$, т.е. $T^*(V)$ – алгебра, ассоциативная с $1 \in F$, но не коммутативная. $T_0^0(V) \equiv F$.

В пространстве $T^+(V)$ можно ввести операцию симметрического произведения: $(T^+$ – множество всех симметрических тензоров).

Если $f \in T_p^+, g \in T_r^+ \Longrightarrow f \otimes g \in T_{p+r}$

$$f \lor g = \operatorname{Sym}(f \otimes g) = \frac{1}{(p+r)!} \sum_{\sigma \in S_{p+r}} f(v_{\sigma(1)}, ..., v_{\sigma(p)})$$

Тогда базис в пространстве T_p^+ будут образовывать тензоры $\{e^{i_1}\vee\ldots\vee e^{i_p}\}$ $\dim T_p^+=C_n^p$ по всем различным элементам $i_1\leq\ldots\leq i_p$. Обозначим $\Lambda(V^*)$ – кососимметрические тензоры в T_0^q

$$\Lambda(V^*) = \bigoplus_{q=0}^{\infty} \Lambda^q(V^*)$$

Внешнее (косое) произведение:

$$f \wedge g := \mathrm{Alt}(f \otimes g)$$
 по группе S_{q+s}

Базис в пространстве Λ^q образуют тензоры $\{e_{i_1} \wedge ... \wedge e_{i_q}\}$ по всем индексам: $1 \leq i_1 < ... < i_q \leq n$.

$$\dim \Lambda^q(V^*) = C_n^q$$
 при $q \leq n$, иначе 0

$$\Lambda(V^*) = \bigoplus_{q=0}^{\infty} \Lambda(V^*) \Longrightarrow \dim \Lambda(V^*) = 2^n$$

 $\Lambda(V^*)$ – внешняя алгебра или алгебра Грассмана.

Рассмотрим тензор типа $T_+^p(V)$ вида

$$T_{+}^{p}(V) = \langle \underbrace{e_{1} \vee ... \vee e_{1}}_{k_{1}} \vee ... \vee \underbrace{e_{n} \vee ... \vee e_{n}}_{k_{n}} \rangle \qquad (\sum_{i} k_{i} = p)$$

$$f \vee g = \operatorname{Sym}(f \otimes g) = g \vee f$$

$$f = T^{i_{1},...,i_{p}} \underbrace{e_{i_{1}} \vee ... \vee e_{i_{n}}}_{e_{1}^{k_{1}}...e_{n}^{k_{n}}}$$

$$e_1^{k_1}...e_n^{k_n}\longleftrightarrow x_1^{k_1}...x_n^{k_n}$$

Изоморфизм векторных пространств: $T^p_+\cong F[x_1,...,x_n]$ – однородные многочлены степени p.

 $\dim F[x_1,...,x_n]_p$ = количество неупорядоченных выборок объема p с повторениями из n элементов.

n+p-1 ячеек, p-1 нулей, количество C^p_{n+p-1}

Тензоры на евклидовых пространствах.

 $F = \mathbb{R}, \ V = \mathcal{E}$ – евклидово пространство, $\dim \mathcal{E} = n$.

На $\mathcal E$ задано скалярное произведение:

$$(x,y) = X^{T}G_{e}Y$$
, r.e. $(x,y) = x^{i}g_{ij}y^{i}$

Заметим, что $g_{ij} \in T_2^+(\mathcal{E})$, его называют ковариантным метрическим тензором.

Определение. $G_e^{-1} = g^{kl}$ – контравариантный метрический тензор.

Замечание. $G \cdot G^{-1} = E, \qquad g_{ij}g^{il} = \delta^l_i$

Опускание и подъем индекса.

Обозанчение: • – вакантное место для индекса. $T_p^q \to T_{p-1}^{q-1}$ по правилу $(p \ge 1)$:

$$a_k^{ij} = a_{\bullet \bullet k}^{ij \bullet} \to g_{li} a_{\bullet \bullet k}^{ij \bullet} = a_{l \bullet k}^{\bullet j \bullet}$$
 (1)

(1) – свертка тензора с ковариантным метрическим тензором.

Подъем индекса – свертки с g^{ij} :

$$a_{i \bullet l}^{\bullet j \bullet} \to g^{kl} a_{i \bullet l}^{\bullet j \bullet} = a_{i \bullet \bullet}^{\bullet j k}$$

Примеры:

1. Двойственность между пространством и его сопряженным пространством.

Пусть
$$f(x) = a_1 x_1 + ... + a_n x_n \longrightarrow a = G \cdot \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix}$$
. Тогда $a^i = g^{ij} a_j$

Можно написать и обратное соответсвие.

 $2.\ \beta(x,y)=(x,\varphi(y)),\ \varphi$ - линейный оператор, присоединенный к билинейной форме $\beta(x,y).$

$$A_{\varphi} = G^{-1}B, \qquad a_i^j = g^{ik}b_{kj}$$

Замечание. На \mathcal{E} можно рассматривать евклидовы тензоры. Тензору сопоставляется многомерная матрица только в О.Н.Б. (и заменять его только на О.Н.Б.)

На этом с тензорами мы закончим. А сейчас мы докажем рандомыне теоремы из разных тем курса.

Теорема. Пусть $\{\varphi_i|\ i\in I\}$ – семейство линейных операторов $\varphi_i:V\longmapsto V,$ $\dim V=n,\ F=\overline{F}$ (например $F=\mathbb{C}$), $\varphi_i\varphi_j=\varphi_j\varphi_i$. Тогда в V существует общий для них собственный вектор.

Доказательство. Индукция по n.

База: n = 1 – тривиально.

Пусть n > 1. Если все операторы скалярные, то для любого не равного нулю, вектор подходит. Допустим, что φ_1 не скалярный оператор и $\lambda_1 \in F$ – его собственное значение, тогда собственное подпространство

$$V_{\lambda_1} = \{v \in V \mid \varphi_1(v) = \lambda_1 v\} \neq \{0\}$$
 и $V_{\lambda_1} \neq V$

Покажем, что $V_{\lambda_1}=U$ инвариантно относительно всех φ_j . Рассмотрим $v\in V_{\lambda_1},\ v\neq 0,\ \varphi_1(\varphi_j(v))=\varphi_j(\varphi_1(v))=\lambda_1\varphi_j(v)\Longrightarrow \varphi_j(v)\in U.$ Тогда семейство операторов $\{\varphi_i|_U,\ i\in I\}$ удовлетворяет условию теоремы, $0<\dim U< n\Longrightarrow$ по предположению индукции, $\exists v_0\in U,\ v_0\neq 0$ – собственный для всех $\varphi_j|_U$ – он собственный для всех φ_j .

О классификации невырожденных кососимметрических билинейных форм.

 $\beta(x,y) = -\beta(x,y), \ \beta(x,y)$ – билинейная (char $F \neq 2$). В любом базисе матрица билинейной формы выглядит следующим образом:

$$B = \begin{pmatrix} 0 & b_{ij} \\ & \ddots & \\ -b_{ji} & 0 \end{pmatrix}$$

 $\operatorname{Ker}\beta(x,y)=\{y\in V|\ \beta(x,y)=0\},$ т.е. $(x\perp y).$ β – невырожденная, если $\operatorname{Ker}\beta=\{0\}\Longleftrightarrow \det B\neq 0.$

Если $B^T = -B^T$ и B имеет нечетный порядок, тогда $\det B = 0$.

Будем рассматривать невырожденные формы $\Longrightarrow n=2m,\ m\geq 1.$

Теорема. Если $\beta(x,y)$ – невырожденная кососимметрическая билинейная форма, $\dim V=n=2m\ (m\geq 1),$ то в V существует базис e' в котором

Доказательство.

Пусть $\beta \not\equiv 0$, тогда $\exists e_1, e_2 \in V: \ \beta(e_1, e_2) = b_{12} \not= 0 \Longrightarrow \beta(e_2, e_1) = -b_{12}$

$$B = \begin{pmatrix} 0 & b_{12} \\ b_{12} & 0 \end{pmatrix}$$

Можно взять $e_1' = \frac{e_1}{b_{12}} \Longrightarrow \beta(e_1', e_2) = 1, \ e_2' = e_2$

$$\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

Если m=1, то все готовою Если m>1, обозначим $U=\langle e_1',e_2'\rangle$, $W=U^\perp=\{y\in V|\ \beta(x,y)=0,\ \forall x\in U\}\Longrightarrow V=U\oplus W.$ U^\perp задается системой уравнений (они ЛНЗ)

$$\begin{cases} \beta(e'_1, y) = 0 \\ \beta(e'_2, y) = 0 \end{cases} \implies \dim W = n - 2 = 2(m - 1)$$

$$U \cap W = \{ y \in U | \beta(x, y) = 0, \forall x \in U \} \stackrel{?!}{\Longrightarrow} y = 0.$$

Но по предположению индукции существует базис $e_3',...,e_{2m}'$ в пространстве W в котором

B имеет нужный $e' = \{e'_1, e'_2, e'_3, ...\}$ вид.

Некоторые линейные и аффинные группы.

Сначала G=GL(V) – группа всех линейных невырожденных линейных операторов $\dim V<\infty$. Если Ввести базис, то $GL(V)\cong GL(n,F)$ – группа матриц $(n\times n)$ с $\det \neq A$.

- Специальная группа $SL(n, F) = \{A_{n \times n} : \det A = 1\}.$
- Общая (полная) линейная группа.

Пусть в V задана билинейная форма $\beta(x,y)$. Скажем, что линейный оператор φ сохраняет эту форму, если $\forall x,y \in V: \beta(\varphi(x),\varphi(y)) = \beta(x,y)$.

Обозначим, $G_{\beta} = \{ \varphi : \beta(x,y) = \beta(\varphi(x), \varphi(y)) \}.$

В частности, если $b(x,y)=x_1y_1+...+x_ny_n$, то G_b – группа ортогональных операторов. В О.Н.Б. $G_b=O(n,F)$ – группа ортогонаьльных матриц.

Если $\beta(x,y)=-\beta(x,y)$ — невырожденная билинейная форма (n=2m), то $G_{\beta}=\mathrm{Sp}(2m,F)$ — симплетическая группа.

В матричном виде:

$$X^{T}(A^{T}BA)Y = X^{T}BY \iff A^{T}BA = B$$

А имеет специфический вид, когда

В аффинном пространстве основная (полная) группа Aff(n) – группа аффинных всех преобразований аффинного пространства.

$$orall f=T_u\cdot\Phi,\;\Phi(O)=O$$
 $T=\{T_u|\;u\in V\}$ — подгруппа || переносов, $T\cong V$ $\{\Phi|\;\Phi(O)=O\}\cong \mathrm{GL}(n,F)$