Assignment-1-Part-2

October 24, 2018

1 ELEN 6885 Reinforcement Learning coding assignment

```
In [1]: import numpy as np
    import random
    import matplotlib.pyplot as plt
    import gym
```

1.1 1. Incremental Implementation of Average

We've finished the incremental implementation of average for you. Please call the function estimate with 1/step step size and fixed step size to compare the difference between this two on a simulated Bandit problem. (2 pts)

```
In [2]: from RLalgs.utils import estimate
        random.seed(6885)
        numTimeStep = 10000
        q_h = np.zeros(numTimeStep + 1) # Q Value estimate with 1/step step size
        q_f = np.zeros(numTimeStep + 1) # Q value estimate with fixed step size
        FixedStepSize = 0.5 #A large number to exaggerate the difference
        for step in range(1, numTimeStep + 1):
            if step < numTimeStep / 2:</pre>
                r = random.gauss(mu = 1, sigma = 0.1)
            else:
                r = random.gauss(mu = 3, sigma = 0.1)
            #TIPS: Call function estimate defined in ./RLalgs/utils.py
            ###############################
            # YOUR CODE STARTS HERE
            q_f[step] = estimate(q_f[step-1], FixedStepSize, r) # NewEstimate = OldEstimate +
            q_h[step] = estimate(q_h[step-1],1/step, r)
            # YOUR CODE ENDS HERE
            #####################################
```

```
q_h = q_h[1:]
q_f = q_f[1:]
```

RLalgs is a package containing Reinforcement Learning algorithms Epsilon-Greedy, Policy Iterat

Plot the two Q value estimate (Please include a title, labels on both axes, and legends) (3 pts)

Out[3]: <function matplotlib.pyplot.show>

1.2 2. ϵ -Greedy for Exploration

In Reinforcement Learning, we are always faced with the dilemma of exploration and exploitation. ϵ -Greedy is a trade-off between them. You are gonna implement Greedy and ϵ -Greedy. We combine these two policies in one function by treating Greedy as ϵ -Greedy where $\epsilon=0$. Edit the function epsilon_greedy in ./RLalgs/utils.py (5 pts)

```
In [4]: from RLalgs.utils import epsilon_greedy
      np.random.seed(6885) #Set the seed to cancel the randomness
      q = np.random.normal(0, 1, size = 5)
       #############################
       # YOUR CODE STARTS HERE
      greedy_action = epsilon_greedy(q,0,6885) #Use epsilon = 0 for Greedy
       e_greedy_action = epsilon_greedy(q, 0.1 ,6885) #Use epsilon = 0.1 and pass the paramet
       # YOUR CODE ENDS HERE
       print('Values:')
      print(q)
      print('Greedy Choice =', greedy_action)
      print('Epsilon-Greedy Choice =', e_greedy_action)
Values:
Greedy Choice = 0
Epsilon-Greedy Choice = 0
```

You should get the following results. Values: [0.61264537 0.27923079 -0.84600857 0.05469574 -1.09990968] Greedy Choice = 0

1.3 3. Frozen Lake Environment

```
In [5]: env = gym.make('FrozenLake-v0')
```

1.3.1 3.1 Derive Q value from V value

Edit function action_evaluation in ./RLalgs/utils.py TIPS: $q(s, a) = \sum_{s',r} p(s', r|s, a)(r + \gamma v(s'))$ (5 pts)

```
In [6]: from RLalgs.utils import action_evaluation
       v = np.ones(16)
        q = action_evaluation(env = env.env, gamma = 1, v = v)
        print('Action values:')
       print(q)
Action values:
ΓΓ1.
                        1.
                                  1.
                                             ٦
 [1.
            1.
                        1.
                                   1.
                                             ]
                                             ٦
 [1.
            1.
                        1.
                                   1.
```

```
[1.
              1.
                                        1.
                                                    1
                           1.
Г1.
                                                    ٦
              1.
                           1.
                                        1.
Г1.
              1.
                           1.
                                        1.
                                                    ]
[1.
              1.
                           1.
                                        1.
                                                    1
Г1.
              1.
                           1.
                                        1.
[1.
                                         1.
              1.
                           1.
[1.
              1.
                           1.
                                        1.
                                                    1
Г1.
              1.
                           1.
Γ1.
                                        1.
                                                    1
              1.
                           1.
Г1.
              1.
                           1.
                                        1.
                                                    1
[1.
              1.
                                        1.
                                                    ٦
                           1.
[1.
              1.33333333 1.33333333 1.333333333
[1.
                                                    ]]
                           1.
                                        1.
```

You should get Q values all equal to one except at State 14

Pseudo-codes of the following four algorithms can be found on Page 80, 83, 130, 131 of the Sutton's book

1.3.2 3.2 Model-based RL algorithms

In [7]: from RLalgs.utils import action_evaluation, action_selection, render

1.3.3 3.2.1 Policy Iteration

Edit the function policy_iteration and relevant functions in ./RLalgs/pi.py to implement the Policy Iteration Algorithm (15 pts)

```
In [9]: #Uncomment and run the following to evaluate your result, comment them when you genera \#Q = action\_evaluation(env = env.env, gamma = 1, v = V) \#policy\_estimate = action\_selection(Q) \#render(env, policy\_estimate)
```

1.3.4 3.2.2 Value Iteration

Edit the function value_iteration and relevant functions in ./RLalgs/vi.py to implement the Value Iteration Algorithm (10 pts)

```
In [10]: from RLalgs.vi import value_iteration
         V, policy, numIterations = value_iteration(env = env.env, gamma = 1, max_iteration = 1
         print('State values:')
         print(V)
         print("policy=",policy)
         print('Number of iterations to converge =', numIterations)
State values:
[0.82352937 0.82352936 0.82352935 0.82352935 0.82352938 0.
                       0.82352938 0.82352939 0.76470586 0.
0.52941174 0.
            0.88235293 0.94117646 0.
                                            1
policy= [0 3 3 3 0 0 0 0 3 1 0 0 0 2 1 0]
Number of iterations to converge = 500
In [11]: #Uncomment and run the following to evaluate your result, comment them when you gener
         \#Q = action_{evaluation}(env = env.env, gamma = 1, v = V)
         #policy_estimate = action_selection(Q)
         #render(env, policy_estimate)
```

1.3.5 3.3 Model free RL algorithms

In [12]: from RLalgs.ql import QLearning

1.3.6 3.3.1 Q-Learning

Edit the function QLearning in ./RLalgs/ql.py to implement the Q-Learning Algorithm (10 pts)

```
Q = QLearning(env = env.env, num_episodes = 1000, gamma = 1, lr = 0.1, e = 0.1)
        print('Action values:')
        print(Q)
Action values:
[[6.10895640e-04 2.29458529e-02 3.91062816e-04 2.49042429e-03]
 [5.45491449e-03 0.00000000e+00 2.20310930e-02 6.98618191e-03]
 [4.38825675e-02 1.51222461e-02 1.59740274e-02 1.91570255e-03]
 [1.98886788e-02 0.00000000e+00 0.00000000e+00 0.00000000e+00]
 [2.67950614e-02 4.78051419e-03 0.00000000e+00 4.06382555e-03]
 [0.00000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00]
 [4.21315633e-02 7.63872383e-02 5.95143231e-03 0.00000000e+00]
 [0.00000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00]
 [2.28528662e-04 2.83367451e-02 1.24973363e-03 0.00000000e+00]
 [1.20297389e-01 7.36709703e-02 8.22597921e-02 2.06216529e-02]
 [2.06687013e-01 8.85889802e-03 5.67941247e-02 2.07456919e-02]
 [0.00000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00]
 [0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00]
```

```
[1.31356405e-02 2.23795585e-01 6.99429619e-02 5.69381967e-02]
[1.06482335e-01 1.38108548e-01 5.37628427e-01 1.38212541e-01]
[0.00000000e+00 0.00000000e+00 0.00000000e+00]]
```

1.3.7 3.3.2 SARSA

Edit the function SARSA in ./RLalgs/sarsa.py to implement the SARSA Algorithm. (10 pts)

```
In [16]: from RLalgs.sarsa import SARSA
         Q = SARSA(env = env.env, num_episodes = 2000, gamma = 1, lr = 0.1, e = 0.1)
         print('Action values:')
         print(Q)
Action values:
[[0.19283373 0.14601927 0.15075225 0.13176006]
 [0.03524757 0.05637272 0.04663125 0.15656155]
            0.05541737 0.07252648 0.05926315]
 [0.05424932 0.03222373 0.00936301 0.01550972]
 [0.20630603 0.16537498 0.09368401 0.10780817]
             0.
                        0.
                                    0.
 [0.20751778 0.07660365 0.07512893 0.02749119]
 [0.
             0.
                        0.
                                    0.
 [0.07431331\ 0.10325834\ 0.14378254\ 0.26714383]
 [0.15602657 0.28779959 0.22637807 0.11348312]
 [0.34755293 0.25485939 0.21197539 0.10551269]
 [0.
             0.
                        0.
                                   0.
 ΓΟ.
             0.
                        0.
                                    0.
                                              1
 [0.11976931 0.2196419 0.46745267 0.23700168]
 [0.35447934 0.68133434 0.55132055 0.56614678]
 [0.
             0.
                        0.
                                    0.
                                              ]]
```

```
In [17]: #Uncomment the following to evaluate your result, comment them when you generate the 
#policy_estimate = action_selection(Q)
#render(env, policy_estimate)
```

1.3.8 3.3.1 Human

You can play this game if you are interested. See if you can get the frisbee either with or without the model.

1.4 4. Exploration VS. Exploitation

Try to reproduce Figure 2.2 (the upper one is enough) of the Sutton's book based on the experiment described in Chapter 2.3 Extra credit (3 pts)

```
In [19]: # # Do the experiment and record average reward acquired in each time step
         # ################################
         # # YOUR CODE STARTS HERE
         # Returns the action-value for each action at the current time step
         def Qt(actions):
             results = [0.0 if actions[i][1] == 0 else actions[i][0] / float(actions[i][1]) for
             return results
         # The reward for selecting an action
         def get_reward(true_values, action_index):
             estimated = np.random.normal(true_values[action_index], size=1)[0]
             return estimated
         def epoch_greedy(k, epsilon, iterations):
             true_values = np.random.normal(size=k)
             # actions[i] is the ith action
             # actions[i][0] is the sum of rewards for action i
             # actions[i][1] is the no. of times action i has been taken
             actions = [[0.0, 0] \text{ for } j \text{ in } range(k)]
             rewards = []
             for it in range(iterations):
                 prob = np.random.rand(1) #random.random()
                 if prob > epsilon:
                     action_index = np.argmax(Qt(actions))
                     action_index = np.random.randint(0, k)
                 reward = get_reward(true_values, action_index)
                 # Update
                 rewards.append(reward)
                 action = actions[action_index]
                 action[0] += reward
                 action[1] += 1
             return rewards
         # Returns the mean reward for each iteration across
         # epochs executions
         def run_experiment(k, epsilon, iters, epochs):
             rewards = []
             for i in range(epochs):
                 rewards.append(epoch_greedy(k, epsilon, iters))
             # Compute the mean reward for each iteration
             means = np.mean(np.array(rewards), axis=0)
             return means
         # # YOUR CODE ENDS HERE
         # ##################################
```

```
In [20]: # Plot the average reward
         #############################
         # YOUR CODE STARTS HERE
         e_0_01 = run_experiment(10, 0.01, 1000, 2000)
         e_0_1 = run_experiment(10, 0.1, 1000, 2000)
         e_0 = run_experiment(10, 0, 1000, 2000)
         x_axis = range(1, 1001)
         plt.plot(x_axis, e_0_01, c='blue', label=' = 0.01')
         plt.plot(x_axis, e_0_1, c='red', label=' = 0.1')
         plt.plot(x_axis, e_0, c='green', label=' = 0')
         plt.xlabel('Steps')
         plt.ylabel('Average reward')
         plt.legend()
         plt.show()
         # YOUR CODE ENDS HERE
         ##############################
```

1.4 1.2 1.0 Average reward 0.8 0.6 0.4 $\epsilon = 0.01$ 0.2 $\epsilon = 0.1$ 0.0 $\epsilon = 0$ 200 400 600 800 0 1000 Steps

You should get a result that Greedy behaves well at the beginning, but then surpassed by $\epsilon\text{-}\text{Greedy}$ with $\epsilon=0.1$