第8章b: 平面及其方程

数学系 梁卓滨

2019-2020 学年 II

提要

- 平面的法向量
- 平面方程
- 平面夹角
- 点到平面的距离

Outline

定义 垂直于平面的向量称为该平面的法向量.

定义 垂直于平面的向量称为该平面的法向量.如: \overrightarrow{n} ,

定义 垂直于平面的向量称为该平面的 法向量 . 如: \overrightarrow{n} , $\overrightarrow{n_1}$,

定义 垂直于平面的向量称为该平面的 法向量 . 如: \overrightarrow{n} , $\overrightarrow{n_1}$, $\overrightarrow{n_2}$

定义 垂直于平面的向量称为该平面的 法向量 . 如: \overrightarrow{n} , $\overrightarrow{n_1}$, $\overrightarrow{n_2}$ 注 1 任意两个法向量是平行的.

定义 垂直于平面的向量称为该平面的 法向量 . 如: \overrightarrow{n} , $\overrightarrow{n_1}$, $\overrightarrow{n_2}$ 注 1 任意两个法向量是平行的.

定义 垂直于平面的向量称为该平面的 法向量 . 如: \overrightarrow{n} , $\overrightarrow{n_1}$, $\overrightarrow{n_2}$

注1 任意两个法向量是平行的.

$$(A, B, C) = \overrightarrow{n}$$

$$\downarrow$$

$$M_0(x_0, y_0, z_0)$$

 $M \in \Pi$

 $M \in \Pi$

 $M \in \Pi$ $\overrightarrow{M_0 M} \perp \overrightarrow{n}$

 $M \in \Pi$

 $\overrightarrow{\overline{M_0M}} \perp \overrightarrow{\overline{n}}$

 $\overrightarrow{M_0M} \cdot \overrightarrow{n} = 0$

$$M \in \Pi$$

$$\overrightarrow{M_0M} \perp \overrightarrow{n}$$

$$\overrightarrow{M_0M}\cdot\overrightarrow{n}=0$$

$$A(x-x_0) + B(y-y_0) + C(z-z_0) = 0$$

$$M \in \Pi$$

$$\overrightarrow{M_0 M} \perp \overrightarrow{n}$$

$$\downarrow \downarrow$$

$$\overrightarrow{M_0M} \cdot \overrightarrow{n} = 0$$

$$A(x-x_0) + B(y-y_0) + C(z-z_0) = 0$$

$$Ax + By + Cz + D = 0$$
, $D = -(Ax_0 + By_0 + Cz_0)$

 $(A, B, C) = \overrightarrow{n}$ $M_0(x_0, y_0, z_0)$ M(x, y, z)

$$M \in \Pi$$

$$\overrightarrow{M_0M} \perp \overrightarrow{n}$$

$$\overrightarrow{M_0M} \cdot \overrightarrow{n} = 0$$

$$\updownarrow$$

$$A(x-x_0) + B(y-y_0) + C(z-z_0) = 0$$

$$\Pi \qquad \stackrel{M_0(x_0, y_0, z_0)}{\mathring{M}(x, y, z)}$$

$$= 0$$

 $(A, B, C) = \overrightarrow{n}$

$$\mathbf{\dot{z}}$$
 计算法向量 \overrightarrow{n} 的通常方法:

Ax + By + Cz + D = 0, $D = -(Ax_0 + By_0 + Cz_0)$

$$M \in \Pi$$

$$\overrightarrow{M_0M} \perp \overrightarrow{n}$$

$$\overrightarrow{M_0M} \cdot \overrightarrow{n} = 0$$

$$\updownarrow$$

$$A(x-x_0) + B(y-y_0) + C(z-z_0) = 0$$

$$(A, B, C) = \overrightarrow{n}$$

$$M_0(x_0, y_0, z_0)$$

$$M(x, y, z)$$

$$= 0$$

$$\mathbf{\dot{z}}$$
 计算法向量 \overrightarrow{n} 的通常方法:

Ax + By + Cz + D = 0, $D = -(Ax_0 + By_0 + Cz_0)$

$$M \in \Pi$$

$$\overrightarrow{M_0M} \perp \overrightarrow{n}$$

$$\overrightarrow{M_0M} \cdot \overrightarrow{n} = 0$$

$$\updownarrow$$

$$A(x-x_0) + B(y-y_0) + C(z-z_0) = 0$$

$$(A, B, C) = \overrightarrow{n}$$

$$M_0(x_0, y_0, z_0)$$

$$M(x, y, z)$$

$$= 0$$

 \mathbf{i} 计算法向量 \mathbf{n} 的通常方法:

Ax + By + Cz + D = 0, $D = -(Ax_0 + By_0 + Cz_0)$

例1 设平面 Π 过点 M_1 (2, -1, 4), M_2 (-1, 3, -2), M_3 (0, 2, 3), 求 Π 方程.

$$\overrightarrow{n} = \overrightarrow{M_1 M_2} \times \overrightarrow{M_1 M_3} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \end{vmatrix}$$

$$\overrightarrow{n} = \overrightarrow{M_1 M_2} \times \overrightarrow{M_1 M_3} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ -3 & 4 & -6 \end{vmatrix}$$

$$\overrightarrow{n} = \overrightarrow{M_1 M_2} \times \overrightarrow{M_1 M_3} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ -3 & 4 & -6 \\ -2 & 3 & -1 \end{vmatrix}$$

$$\overrightarrow{n} = \overrightarrow{M_1 M_2} \times \overrightarrow{M_1 M_3} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ -3 & 4 & -6 \\ -2 & 3 & -1 \end{vmatrix}$$
$$= \begin{vmatrix} \overrightarrow{i} - \end{vmatrix} \qquad \begin{vmatrix} \overrightarrow{j} + \end{vmatrix} \qquad \begin{vmatrix} \overline{k} \end{vmatrix}$$

$$\overrightarrow{n} = \overrightarrow{M_1 M_2} \times \overrightarrow{M_1 M_3} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ -3 & 4 & -6 \\ -2 & 3 & -1 \end{vmatrix}$$
$$= \begin{vmatrix} 4 & -6 \\ 3 & -1 \end{vmatrix} \overrightarrow{i} - \begin{vmatrix} \overrightarrow{j} + \end{vmatrix}$$

$$\overrightarrow{n} = \overrightarrow{M_1 M_2} \times \overrightarrow{M_1 M_3} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ -3 & 4 & -6 \\ -2 & 3 & -1 \end{vmatrix}$$
$$= \begin{vmatrix} 4 & -6 \\ 3 & -1 \end{vmatrix} \overrightarrow{i} - \begin{vmatrix} -3 & -6 \\ -2 & -1 \end{vmatrix} \overrightarrow{j} + \begin{vmatrix} \overrightarrow{j} & \overrightarrow{k} & -1 \\ -2 & -1 \end{vmatrix} \overrightarrow{j} + \begin{vmatrix} \overrightarrow{j} & -1 & -1 \\ -2 & -1 & -1 \end{vmatrix} \overrightarrow{j} + \begin{vmatrix} \overrightarrow{j} & -1 & -1 \\ -2 & -1 & -1 \end{vmatrix}$$

<mark>例 1</mark> 设平面 Π 过点 M₁ (2, -1, 4), M₂ (-1, 3, -2), M₃ (0, 2, 3), 求 Π 方程.

$$\overrightarrow{n} = \overrightarrow{M_1 M_2} \times \overrightarrow{M_1 M_3} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ -3 & 4 & -6 \\ -2 & 3 & -1 \end{vmatrix}$$
$$= \begin{vmatrix} 4 & -6 \\ 3 & -1 \end{vmatrix} \overrightarrow{i} - \begin{vmatrix} -3 & -6 \\ -2 & -1 \end{vmatrix} \overrightarrow{j} + \begin{vmatrix} -3 & 4 \\ -2 & 3 \end{vmatrix} \overrightarrow{k}$$

$$\overrightarrow{n} = \overrightarrow{M_1 M_2} \times \overrightarrow{M_1 M_3} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ -3 & 4 & -6 \\ -2 & 3 & -1 \end{vmatrix}$$

$$= \begin{vmatrix} 4 & -6 \\ 3 & -1 \end{vmatrix} \overrightarrow{i} - \begin{vmatrix} -3 & -6 \\ -2 & -1 \end{vmatrix} \overrightarrow{j} + \begin{vmatrix} -3 & 4 \\ -2 & 3 \end{vmatrix} \overrightarrow{k} = 14 \overrightarrow{i} + 9 \overrightarrow{j} - \overrightarrow{k}$$

解 1. 求一个法向量: 取

$$\overrightarrow{n} = \overrightarrow{M_1 M_2} \times \overrightarrow{M_1 M_3} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ -3 & 4 & -6 \\ -2 & 3 & -1 \end{vmatrix}$$

$$= \begin{vmatrix} 4 & -6 \\ 3 & -1 \end{vmatrix} \overrightarrow{i} - \begin{vmatrix} -3 & -6 \\ -2 & -1 \end{vmatrix} \overrightarrow{j} + \begin{vmatrix} -3 & 4 \\ -2 & 3 \end{vmatrix} \overrightarrow{k} = 14 \overrightarrow{i} + 9 \overrightarrow{j} - \overrightarrow{k}$$

2. 平面方程:

$$14(x-0) + 9(y-2) - (z-3) = 0$$

$$\overrightarrow{n} = \overrightarrow{M_1 M_2} \times \overrightarrow{M_1 M_3} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ -3 & 4 & -6 \\ -2 & 3 & -1 \end{vmatrix}$$

$$= \begin{vmatrix} 4 & -6 \\ 3 & -1 \end{vmatrix} \overrightarrow{i} - \begin{vmatrix} -3 & -6 \\ -2 & -1 \end{vmatrix} \overrightarrow{j} + \begin{vmatrix} -3 & 4 \\ -2 & 3 \end{vmatrix} \overrightarrow{k} = 14 \overrightarrow{i} + 9 \overrightarrow{j} - \overrightarrow{k}$$

2. 平面方程:

$$14(x-0) + 9(y-2) - (z-3) = 0 \Rightarrow 14x + 9y - z - 15 = 0$$

例2 设平面 $\Pi \parallel x$ 轴,且过 M_1 (4, 0, -2), M_2 (5, 1, 7), 求 Π 方程.

例2 设平面 $\Pi \parallel x$ 轴,且过 M_1 (4, 0, -2), M_2 (5, 1, 7), 求 Π 方程.

例2 设平面 $\Pi \parallel x$ 轴,且过 M_1 (4, 0, -2), M_2 (5, 1, 7), 求 Π 方程.

$$\overrightarrow{n} = \overrightarrow{M_1 M_2} \times \overrightarrow{i} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \end{vmatrix}$$

$$\overrightarrow{n} = \overrightarrow{M_1 M_2} \times \overrightarrow{i} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ 1 & 1 & 9 \end{vmatrix}$$

$$\overrightarrow{n} = \overrightarrow{M_1 M_2} \times \overrightarrow{i} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ 1 & 1 & 9 \\ 1 & 0 & 0 \end{vmatrix}$$

$$\overrightarrow{n} = \overrightarrow{M_1 M_2} \times \overrightarrow{i} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ 1 & 1 & 9 \\ 1 & 0 & 0 \end{vmatrix}$$
$$= \begin{vmatrix} |\overrightarrow{i} - | & |\overrightarrow{j} + | & |\overrightarrow{k} \end{vmatrix}$$

$$\overrightarrow{n} = \overrightarrow{M_1 M_2} \times \overrightarrow{i} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ 1 & 1 & 9 \\ 1 & 0 & 0 \end{vmatrix}$$
$$= \begin{vmatrix} 1 & 9 \\ 0 & 0 \end{vmatrix} \overrightarrow{i} - \begin{vmatrix} \overrightarrow{j} + \end{vmatrix} \qquad |\overrightarrow{k}|$$

$$\overrightarrow{n} = \overrightarrow{M_1 M_2} \times \overrightarrow{i} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ 1 & 1 & 9 \\ 1 & 0 & 0 \end{vmatrix}$$
$$= \begin{vmatrix} 1 & 9 \\ 0 & 0 \end{vmatrix} \overrightarrow{i} - \begin{vmatrix} 1 & 9 \\ 1 & 0 \end{vmatrix} \overrightarrow{j} + \begin{vmatrix} \overrightarrow{k} \end{vmatrix}$$

$$\overrightarrow{n} = \overrightarrow{M_1 M_2} \times \overrightarrow{i} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ 1 & 1 & 9 \\ 1 & 0 & 0 \end{vmatrix}$$
$$= \begin{vmatrix} 1 & 9 \\ 0 & 0 \end{vmatrix} \overrightarrow{i} - \begin{vmatrix} 1 & 9 \\ 1 & 0 \end{vmatrix} \overrightarrow{j} + \begin{vmatrix} 1 & 1 \\ 1 & 0 \end{vmatrix} \overrightarrow{k}$$

$$\overrightarrow{n} = \overrightarrow{M_1 M_2} \times \overrightarrow{i} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ 1 & 1 & 9 \\ 1 & 0 & 0 \end{vmatrix}$$
$$= \begin{vmatrix} 1 & 9 \\ 0 & 0 \end{vmatrix} \overrightarrow{i} - \begin{vmatrix} 1 & 9 \\ 1 & 0 \end{vmatrix} \overrightarrow{j} + \begin{vmatrix} 1 & 1 \\ 1 & 0 \end{vmatrix} \overrightarrow{k} = 9 \overrightarrow{j} - \overrightarrow{k}$$

解 1. 求一个法向量: 取

$$\overrightarrow{n} = \overrightarrow{M_1 M_2} \times \overrightarrow{i} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ 1 & 1 & 9 \\ 1 & 0 & 0 \end{vmatrix}$$
$$= \begin{vmatrix} 1 & 9 \\ 0 & 0 \end{vmatrix} \overrightarrow{i} - \begin{vmatrix} 1 & 9 \\ 1 & 0 \end{vmatrix} \overrightarrow{j} + \begin{vmatrix} 1 & 1 \\ 1 & 0 \end{vmatrix} \overrightarrow{k} = 9 \overrightarrow{j} - \overrightarrow{k}$$

2. 平面方程:

$$0(x-4) + 9(y-0) - (z+2) = 0$$

解 1. 求一个法向量: 取

$$\overrightarrow{n} = \overrightarrow{M_1 M_2} \times \overrightarrow{i} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ 1 & 1 & 9 \\ 1 & 0 & 0 \end{vmatrix}$$
$$= \begin{vmatrix} 1 & 9 \\ 0 & 0 \end{vmatrix} \overrightarrow{i} - \begin{vmatrix} 1 & 9 \\ 1 & 0 \end{vmatrix} \overrightarrow{j} + \begin{vmatrix} 1 & 1 \\ 1 & 0 \end{vmatrix} \overrightarrow{k} = 9 \overrightarrow{j} - \overrightarrow{k}$$

2. 平面方程:

$$0(x-4) + 9(y-0) - (z+2) = 0 \Rightarrow 9y-z-2 = 0$$

$$\overrightarrow{n} = \overrightarrow{OM_0} \times \overrightarrow{i} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \end{vmatrix}$$

$$\overrightarrow{n} = \overrightarrow{OM_0} \times \overrightarrow{i} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ 4 & -3 & -1 \end{vmatrix}$$

$$\overrightarrow{n} = \overrightarrow{OM_0} \times \overrightarrow{i} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ 4 & -3 & -1 \\ 1 & 0 & 0 \end{vmatrix}$$

$$\overrightarrow{n} = \overrightarrow{OM_0} \times \overrightarrow{i} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ 4 & -3 & -1 \\ 1 & 0 & 0 \end{vmatrix}$$
$$= \begin{vmatrix} |\overrightarrow{i} - | & |\overrightarrow{j} + | \end{vmatrix}$$

$$\overrightarrow{n} = \overrightarrow{OM_0} \times \overrightarrow{i} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ 4 & -3 & -1 \\ 1 & 0 & 0 \end{vmatrix}$$
$$= \begin{vmatrix} -3 & -1 \\ 0 & 0 \end{vmatrix} \overrightarrow{i} - \begin{vmatrix} \overrightarrow{j} + \end{vmatrix}$$

$$\overrightarrow{n} = \overrightarrow{OM_0} \times \overrightarrow{i} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ 4 & -3 & -1 \\ 1 & 0 & 0 \end{vmatrix}$$
$$= \begin{vmatrix} -3 & -1 \\ 0 & 0 \end{vmatrix} \overrightarrow{i} - \begin{vmatrix} 4 & -1 \\ 1 & 0 \end{vmatrix} \overrightarrow{j} + \begin{vmatrix} 4 & -1 \\ 1 & 0 \end{vmatrix}$$

$$\overrightarrow{n} = \overrightarrow{OM_0} \times \overrightarrow{i} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ 4 & -3 & -1 \\ 1 & 0 & 0 \end{vmatrix}$$
$$= \begin{vmatrix} -3 & -1 \\ 0 & 0 \end{vmatrix} \overrightarrow{i} - \begin{vmatrix} 4 & -1 \\ 1 & 0 \end{vmatrix} \overrightarrow{j} + \begin{vmatrix} 4 & -3 \\ 1 & 0 \end{vmatrix} \overrightarrow{k}$$

$$\overrightarrow{n} = \overrightarrow{OM_0} \times \overrightarrow{i} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ 4 & -3 & -1 \\ 1 & 0 & 0 \end{vmatrix}$$
$$= \begin{vmatrix} -3 & -1 \\ 0 & 0 \end{vmatrix} \overrightarrow{i} - \begin{vmatrix} 4 & -1 \\ 1 & 0 \end{vmatrix} \overrightarrow{j} + \begin{vmatrix} 4 & -3 \\ 1 & 0 \end{vmatrix} \overrightarrow{k} = -\overrightarrow{j} + 3\overrightarrow{k}$$

解 1. 求一个法向量: 取

$$\overrightarrow{n} = \overrightarrow{OM_0} \times \overrightarrow{i} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ 4 & -3 & -1 \\ 1 & 0 & 0 \end{vmatrix}$$
$$= \begin{vmatrix} -3 & -1 \\ 0 & 0 \end{vmatrix} \overrightarrow{i} - \begin{vmatrix} 4 & -1 \\ 1 & 0 \end{vmatrix} \overrightarrow{j} + \begin{vmatrix} 4 & -3 \\ 1 & 0 \end{vmatrix} \overrightarrow{k} = -\overrightarrow{j} + 3\overrightarrow{k}$$

2. 平面方程:

$$0(x-0)-1\cdot(y-0)+3(z-0)=0$$

例 3 设平面 Π 包含 *x* 轴,且 过 *M*₀ (4, -3, -1), 求 Π 方程.

解 1. 求一个法向量:取

$$\overrightarrow{n} = \overrightarrow{OM_0} \times \overrightarrow{i} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ 4 & -3 & -1 \\ 1 & 0 & 0 \end{vmatrix}$$
$$= \begin{vmatrix} -3 & -1 \\ 0 & 0 \end{vmatrix} \overrightarrow{i} - \begin{vmatrix} 4 & -1 \\ 1 & 0 \end{vmatrix} \overrightarrow{j} + \begin{vmatrix} 4 & -3 \\ 1 & 0 \end{vmatrix} \overrightarrow{k} = -\overrightarrow{j} + 3\overrightarrow{k}$$

2. 平面方程:

$$0(x-0)-1\cdot(y-0)+3(z-0)=0 \Rightarrow y-3z=0$$

解 1. 求一个法向量: $\overrightarrow{n} = (0, 1, 0)$

$$\mathbf{M}$$
 1. 求一个法向量: \mathbf{M} \overrightarrow{n} = (0, 1, 0)

2. 平面方程:

$$0(x-2)+1\cdot (y+5)+0(z-3)=0$$

解 1. 求一个法向量:
$$\overrightarrow{n} = (0, 1, 0)$$

2. 平面方程:

$$0(x-2) + 1 \cdot (y+5) + 0(z-3) = 0$$

$$\Rightarrow y+5 = 0$$

$$\mathbf{m}$$
 1. 求一个法向量: \mathbf{m} \overrightarrow{n} = (0, 1, 0)

2. 平面方程:

$$0(x-2) + 1 \cdot (y+5) + 0(z-3) = 0$$

$$\Rightarrow y+5 = 0$$

- \mathbf{m} 1. 求一个法向量: \mathbf{n} = (0, 1, 0)
- 2. 平面方程:

$$0(x-2) + 1 \cdot (y+5) + 0(z-3) = 0$$

$$\Rightarrow y+5 = 0$$

<mark>例 5</mark> 问平面 Π:*Ax* + *By* = 1 平行于哪个 坐标轴?

$$\mathbf{m} = (0, 1, 0)$$

2. 平面方程:

$$0(x-2) + 1 \cdot (y+5) + 0(z-3) = 0$$

$$\Rightarrow y+5 = 0$$

例 5 问平面 Π : Ax + By = 1 平行于哪个 坐标轴?

解 平行于 z 轴。

$$\mathbf{m}$$
 1. 求一个法向量: \mathbf{m} \overrightarrow{n} = (0, 1, 0)

2. 平面方程:

$$0(x-2) + 1 \cdot (y+5) + 0(z-3) = 0$$

$$\Rightarrow y+5 = 0$$

例 5 问平面 Π : Ax + By = 1 平行于哪个 坐标轴?

解平行于 z轴。

这是因为: Π 的一个法向量为 (A, B, 0),与 z 轴垂直

$$\mathbf{M}$$
 1. 求一个法向量: \mathbf{M} \overrightarrow{n} = (0, 1, 0)

2. 平面方程:

$$0(x-2) + 1 \cdot (y+5) + 0(z-3) = 0$$

$$\Rightarrow y+5 = 0$$

例 5 问平面 Π : Ax + By = 1 平行于哪个 坐标轴?

解平行于 z轴。

这是因为: Π 的一个法向量为 (A, B, 0),与 z 轴垂直($(A, B, 0) \cdot (0, 0, 1) = 0$)

例 4 设平面 Π 平行于 xoz 坐标面,且过 (2, -5, 3),求平面 Π 方程.

\mathbf{m} 1. 求一个法向量: \mathbf{n} = (0, 1, 0)

2. 平面方程:

$$0(x-2) + 1 \cdot (y+5) + 0(z-3) = 0$$

$$\Rightarrow y+5 = 0$$

解平行于 z 轴。

这是因为: Π 的一个法向量为 (A, B, 0),与 z 轴垂直 $((A, B, 0) \cdot (0, 0, 1) = 0)$

$$\cos\theta=\cos\left(\angle(\overrightarrow{n_1},\,\overrightarrow{n_2})\right)$$

$$\cos\theta=\cos\left(\angle(\overrightarrow{n_1},\,\overrightarrow{n_2})\right)$$

$$\cos\theta=\cos\left(\angle(\overrightarrow{n_1},\,\overrightarrow{n_2})\right)$$

$$\cos\theta = \left|\cos\left(\angle(\overrightarrow{n_1}, \overrightarrow{n_2})\right)\right|$$

$$\cos \theta = \left| \cos \left(\angle (\overrightarrow{n_1}, \overrightarrow{n_2}) \right) \right|$$
$$= \left| \frac{\overrightarrow{n_1} \cdot \overrightarrow{n_2}}{|\overrightarrow{n_1}| \cdot |\overrightarrow{n_2}|} \right|$$

$$\cos \theta = \left| \cos \left(\angle (\overrightarrow{n_1}, \overrightarrow{n_2}) \right) \right|$$
$$= \left| \frac{\overrightarrow{n_1} \cdot \overrightarrow{n_2}}{|\overrightarrow{n_1}| \cdot |\overrightarrow{n_2}|} \right|$$

例1 求平面 x-y+2z-6=0 和 2x+y+z-5=0 的夹角

$$\cos \theta = \left| \cos \left(\angle (\overrightarrow{n_1}, \overrightarrow{n_2}) \right) \right|$$
$$= \left| \frac{\overrightarrow{n_1} \cdot \overrightarrow{n_2}}{|\overrightarrow{n_1}| \cdot |\overrightarrow{n_2}|} \right|$$

例1 求平面
$$x-y+2z-6=0$$
 和 $2x+y+z-5=0$ 的夹角

解

$$\overrightarrow{n_1} = (), \overrightarrow{n_2} = ()$$

$$\cos \theta = \frac{|\overrightarrow{n_1} \cdot \overrightarrow{n_2}|}{|\overrightarrow{n_1}| \cdot |\overrightarrow{n_2}|}$$

$$\cos \theta = \left| \cos \left(\angle (\overrightarrow{n_1}, \overrightarrow{n_2}) \right) \right|$$
$$= \left| \frac{\overrightarrow{n_1} \cdot \overrightarrow{n_2}}{|\overrightarrow{n_1}| \cdot |\overrightarrow{n_2}|} \right|$$

例1 求平面
$$x-y+2z-6=0$$
 和 $2x+y+z-5=0$ 的夹角

解

$$\overrightarrow{n_1} = (1, -1, 2), \qquad \overrightarrow{n_2} = ($$

$$\cos \theta = \frac{|\overrightarrow{n_1} \cdot \overrightarrow{n_2}|}{|\overrightarrow{n_1}| \cdot |\overrightarrow{n_2}|}$$

 $\theta =$

$$\cos \theta = \left| \cos \left(\angle (\overrightarrow{n_1}, \overrightarrow{n_2}) \right) \right|$$
$$= \left| \frac{\overrightarrow{n_1} \cdot \overrightarrow{n_2}}{|\overrightarrow{n_1}| \cdot |\overrightarrow{n_2}|} \right|$$

例1 求平面
$$x-y+2z-6=0$$
 和 $2x+y+z-5=0$ 的夹角

解

$$\overrightarrow{n_1} = (1, -1, 2), \qquad \overrightarrow{n_2} = (2, 1, 1)$$

$$\cos \theta = \frac{|\overrightarrow{n_1} \cdot \overrightarrow{n_2}|}{|\overrightarrow{n_1}| \cdot |\overrightarrow{n_2}|}$$

$$\theta =$$

$$\cos \theta = \left| \cos \left(\angle (\overrightarrow{n_1}, \overrightarrow{n_2}) \right) \right|$$
$$= \left| \frac{\overrightarrow{n_1} \cdot \overrightarrow{n_2}}{|\overrightarrow{n_1}| \cdot |\overrightarrow{n_2}|} \right|$$

例 1 求平面
$$x-y+2z-6=0$$
 和 $2x+y+z-5=0$ 的夹角

$$\overrightarrow{n_1} = (1, -1, 2), \qquad \overrightarrow{n_2} = (2, 1, 1)$$

$$\cos \theta = \frac{|\overrightarrow{n_1} \cdot \overrightarrow{n_2}|}{|\overrightarrow{n_1}| \cdot |\overrightarrow{n_2}|} = \frac{|1 \cdot 2 + (-1) \cdot 1 + 2 \cdot 1|}{\sqrt{1^2 + (-1)^2 + 2^2} \cdot \sqrt{2^2 + 1^2 + 1^2}}$$

 $\theta =$

$$\cos \theta = \left| \cos \left(\angle (\overrightarrow{n_1}, \overrightarrow{n_2}) \right) \right|$$
$$= \left| \frac{\overrightarrow{n_1} \cdot \overrightarrow{n_2}}{|\overrightarrow{n_1}| \cdot |\overrightarrow{n_2}|} \right|$$

例 1 求平面
$$x-y+2z-6=0$$
 和 $2x+y+z-5=0$ 的夹角

解

$$\overrightarrow{n_1} = (1, -1, 2), \qquad \overrightarrow{n_2} = (2, 1, 1)$$

$$\cos \theta = \frac{|\overrightarrow{n_1} \cdot \overrightarrow{n_2}|}{|\overrightarrow{n_1}| \cdot |\overrightarrow{n_2}|} = \frac{|1 \cdot 2 + (-1) \cdot 1 + 2 \cdot 1|}{\sqrt{1^2 + (-1)^2 + 2^2} \cdot \sqrt{2^2 + 1^2 + 1^2}} = \frac{1}{2}$$

$$\theta =$$

$$\cos \theta = \left| \cos \left(\angle (\overrightarrow{n_1}, \overrightarrow{n_2}) \right) \right|$$
$$= \left| \frac{\overrightarrow{n_1} \cdot \overrightarrow{n_2}}{|\overrightarrow{n_1}| \cdot |\overrightarrow{n_2}|} \right|$$

例 1 求平面
$$x-y+2z-6=0$$
 和 $2x+y+z-5=0$ 的夹角

$$\overrightarrow{n_1} = (1, -1, 2), \qquad \overrightarrow{n_2} = (2, 1, 1)$$

$$\cos \theta = \frac{|\overrightarrow{n_1} \cdot \overrightarrow{n_2}|}{|\overrightarrow{n_1}| \cdot |\overrightarrow{n_2}|} = \frac{|1 \cdot 2 + (-1) \cdot 1 + 2 \cdot 1|}{\sqrt{1^2 + (-1)^2 + 2^2} \cdot \sqrt{2^2 + 1^2 + 1^2}} = \frac{1}{2}$$

例2 设平面 Π 过点 $M_1(1, 1, 1), M_2(0, 1, -1)$,且与平面 $\Pi': x + y + z = 0$ 垂直,求 Π 方程。

例2 设平面 Π 过点 $M_1(1, 1, 1), M_2(0, 1, -1)$,且与平面 $\Pi': x + y + z = 0$ 垂直,求 Π 方程。

例2 设平面 Π 过点 $M_1(1, 1, 1), M_2(0, 1, -1)$,且与平面 $\Pi': x + y + z = 0$ 垂直,求 Π 方程。

例 2 设平面 Π 过点 $M_1(1, 1, 1), M_2(0, 1, -1)$,且与平面 $\Pi': x + y + z = 0$ 垂直,求 Π 方程。

$$\overrightarrow{n} = \overrightarrow{M_1 M_2} \times \overrightarrow{n'}$$

例 2 设平面 Π 过点 $M_1(1, 1, 1), M_2(0, 1, -1)$,且与平面 $\Pi': x + y + z = 0$ 垂直,求 Π 方程。

$$\overrightarrow{n} = \overrightarrow{M_1 M_2} \times \overrightarrow{n'}$$

例 2 设平面 Π 过点 $M_1(1, 1, 1), M_2(0, 1, -1)$,且与平面 $\Pi': x + y + z = 0$ 垂直,求 Π 方程。

$$\overrightarrow{n} = \overrightarrow{M_1 M_2} \times \overrightarrow{n'} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ -1 & 0 & -2 \\ 1 & 1 & 1 \end{vmatrix}$$

<mark>例 2</mark> 设平面 Π 过点 $M_1(1, 1, 1), M_2(0, 1, -1)$,且与平面 $\Pi': x + y + z = 0$ 垂直,求 Π 方程。

$$\overrightarrow{n} = \overrightarrow{M_1 M_2} \times \overrightarrow{n'} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ -1 & 0 & -2 \\ 1 & 1 & 1 \end{vmatrix}$$

$$= \begin{vmatrix} |\overrightarrow{i} - | & |\overrightarrow{j} + | \end{vmatrix}$$

<mark>例 2</mark> 设平面 Π 过点 $M_1(1, 1, 1), M_2(0, 1, -1)$,且与平面 $\Pi': x + y + z = 0$ 垂直,求 Π 方程。

$$\overrightarrow{n} = \overrightarrow{M_1 M_2} \times \overrightarrow{n'} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ -1 & 0 & -2 \\ 1 & 1 & 1 \end{vmatrix}$$
$$= \begin{vmatrix} 0 & -2 \\ 1 & 1 \end{vmatrix} \overrightarrow{i} - \begin{vmatrix} \overrightarrow{j} + \end{vmatrix}$$

<mark>例 2</mark> 设平面 Π 过点 $M_1(1, 1, 1), M_2(0, 1, -1), 且与平面$ Π': <math>x + y + z = 0 垂直,求 Π 方程。

$$\overrightarrow{n} = \overrightarrow{M_1 M_2} \times \overrightarrow{n'} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ -1 & 0 & -2 \\ 1 & 1 & 1 \end{vmatrix}$$
$$= \begin{vmatrix} 0 & -2 \\ 1 & 1 \end{vmatrix} \overrightarrow{i} - \begin{vmatrix} -1 & -2 \\ 1 & 1 \end{vmatrix} \overrightarrow{j} + \begin{vmatrix} -1 & 0 & 0 \end{vmatrix}$$

<mark>例 2</mark> 设平面 Π 过点 $M_1(1, 1, 1), M_2(0, 1, -1)$,且与平面 $\Pi': x + y + z = 0$ 垂直,求 Π 方程。

$$\overrightarrow{n} = \overrightarrow{M_1 M_2} \times \overrightarrow{n'} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ -1 & 0 & -2 \\ 1 & 1 & 1 \end{vmatrix}$$
$$= \begin{vmatrix} 0 & -2 \\ 1 & 1 \end{vmatrix} \overrightarrow{i} - \begin{vmatrix} -1 & -2 \\ 1 & 1 \end{vmatrix} \overrightarrow{j} + \begin{vmatrix} -1 & 0 \\ 1 & 1 \end{vmatrix} \overrightarrow{k}$$

<mark>例 2</mark> 设平面 Π 过点 $M_1(1, 1, 1), M_2(0, 1, -1)$,且与平面 $\Pi': x + y + z = 0$ 垂直,求 Π 方程。

$$\overrightarrow{n} = \overrightarrow{M_1 M_2} \times \overrightarrow{n'} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ -1 & 0 & -2 \\ 1 & 1 & 1 \end{vmatrix}$$
$$= \begin{vmatrix} 0 & -2 \\ 1 & 1 \end{vmatrix} \overrightarrow{i} - \begin{vmatrix} -1 & -2 \\ 1 & 1 \end{vmatrix} \overrightarrow{j} + \begin{vmatrix} -1 & 0 \\ 1 & 1 \end{vmatrix} \overrightarrow{k} = 2 \overrightarrow{i} - \overrightarrow{j} - \overrightarrow{k}$$

<mark>例 2</mark> 设平面 Π 过点 $M_1(1, 1, 1), M_2(0, 1, -1), 且与平面$ Π': <math>x + y + z = 0 垂直,求 Π 方程。

解 1. 求一个法向量:

$$\overrightarrow{n} = \overrightarrow{M_1 M_2} \times \overrightarrow{n'} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ -1 & 0 & -2 \\ 1 & 1 & 1 \end{vmatrix}$$
$$= \begin{vmatrix} 0 & -2 \\ 1 & 1 \end{vmatrix} \overrightarrow{i} - \begin{vmatrix} -1 & -2 \\ 1 & 1 \end{vmatrix} \overrightarrow{j} + \begin{vmatrix} -1 & 0 \\ 1 & 1 \end{vmatrix} \overrightarrow{k} = 2 \overrightarrow{i} - \overrightarrow{j} - \overrightarrow{k}$$

2. 平面方程:

$$2(x-1)-1\cdot(y-1)-1\cdot(z-1)=0$$

例 2 设平面 Π 过点
$$M_1(1, 1, 1), M_2(0, 1, -1), 且与平面Π': $x + y + z = 0$ 垂直,求 Π 方程。$$

解 1. 求一个法向量:

$$\overrightarrow{n} = \overrightarrow{M_1 M_2} \times \overrightarrow{n'} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ -1 & 0 & -2 \\ 1 & 1 & 1 \end{vmatrix}$$
$$= \begin{vmatrix} 0 & -2 \\ 1 & 1 \end{vmatrix} \overrightarrow{i} - \begin{vmatrix} -1 & -2 \\ 1 & 1 \end{vmatrix} \overrightarrow{j} + \begin{vmatrix} -1 & 0 \\ 1 & 1 \end{vmatrix} \overrightarrow{k} = 2 \overrightarrow{i} - \overrightarrow{j} - \overrightarrow{k}$$

2. 平面方程:

$$2(x-1)-1\cdot(y-1)-1\cdot(z-1)=0 \Rightarrow 2x-y-z=0$$

$$P_0(x_0, y_0, z_0)$$

 $P_0(x_0, y_0, z_0)$

· N

 $\Pi : Ax + By + Cz + D = 0$

 $P_0(x_0, y_0, z_0)$

$$P_0$$
 到 Π 的距离 = $|\overrightarrow{NP_0}|$

 $P_0(x_0, y_0, z_0)$

$$(x_1, y_1, z_1)P_1 \cdot \Pi : Ax + By + Cz + D = 0$$

$$P_0$$
 到 Π 的距离 = $|\overrightarrow{NP_0}|$

$$P_0$$
 到 Π 的距离 = $|\overrightarrow{NP_0}|$

$$P_0$$
 到 Π 的距离 = $|\overrightarrow{NP_0}|$

$$P_0$$
 到 Π 的距离 = $\left| \overrightarrow{NP_0} \right| = \left| (Prj_{\overrightarrow{n}} \overrightarrow{P_1 P_0}) e_{\overrightarrow{n}} \right|$

$$P_0$$
 到 Π 的距离 = $\left|\overrightarrow{NP_0}\right| = \left|(\operatorname{Prj}_{\overrightarrow{n}}\overrightarrow{P_1P_0})e_{\overrightarrow{n}}\right| = \frac{\left|\overrightarrow{P_1P_0}\cdot\overrightarrow{n}\right|}{|\overrightarrow{n}|}$

$$(x_1, y_1, z_1)P_1$$
 $\Pi: Ax + By + Cz + D = 0$

$$P_0$$
 到 Π 的距离 = $\left|\overrightarrow{NP_0}\right| = \left|(\operatorname{Prj}_{\overrightarrow{n}}\overrightarrow{P_1P_0})e_{\overrightarrow{n}}\right| = \frac{\left|\overrightarrow{P_1P_0}\cdot\overrightarrow{n}\right|}{|\overrightarrow{n}|}$

例 求点 $P_0(2, 1, 1)$ 到平面 $\Pi: x + y - z = 1$ 的距离。

解取P₁(1,0,0),则

$$P_0$$
 到 Π 的距离 = $\left|\overrightarrow{NP_0}\right| = \left|(\operatorname{Prj}_{\overrightarrow{n}}\overrightarrow{P_1P_0})e_{\overrightarrow{n}}\right| = \frac{\left|\overrightarrow{P_1P_0}\cdot\overrightarrow{n}\right|}{|\overrightarrow{n}|}$

解取
$$P_1(1, 0, 0)$$
,则 $\overrightarrow{P_1P_0} = ($), $\overrightarrow{n} = ($)

$$P_0$$
 到 Π 的距离 =
$$\frac{|\overrightarrow{P_1P_0} \cdot \overrightarrow{n}|}{|\overrightarrow{n}|}$$

$$P_0$$
 到 Π 的距离 = $\left|\overrightarrow{NP_0}\right| = \left|(\operatorname{Prj}_{\overrightarrow{n}}\overrightarrow{P_1P_0})e_{\overrightarrow{n}}\right| = \frac{\left|\overrightarrow{P_1P_0}\cdot\overrightarrow{n}\right|}{|\overrightarrow{n}|}$

解 取
$$P_1(1, 0, 0)$$
,则 $\overrightarrow{P_1P_0} = (1, 1, 1)$, $\overrightarrow{n} = ($

$$P_0$$
 到 Π 的距离 = $\frac{|\overrightarrow{P_1P_0}\cdot\overrightarrow{n}|}{|\overrightarrow{n}|} = \frac{1}{\sqrt{3}}$

$$P_0$$
 到 Π 的距离 = $\left|\overrightarrow{NP_0}\right| = \left|(\text{Prj}_{\overrightarrow{n}}\overrightarrow{P_1P_0})e_{\overrightarrow{n}}\right| = \frac{\left|\overrightarrow{P_1P_0}\cdot\overrightarrow{n}\right|}{|\overrightarrow{n}|}$

M
$$\mathbb{R} P_1(1, 0, 0), \ \mathbb{M} \overrightarrow{P_1 P_0} = (1, 1, 1), \qquad \overrightarrow{n} = (1, 1, -1)$$

$$P_0$$
 到 Π 的距离 = $\frac{|\overrightarrow{P_1P_0} \cdot \overrightarrow{n}|}{|\overrightarrow{n}|} = \frac{1}{\sqrt{3}}$

