

USN: IRVAIALOUS

Department of Artificial Intelligence and Machine Learning

Course Code: 21AI34 Date: Maximum Marks: 50 Sem: III Semester **Duration**: 90 Minutes Foundation of Cyber-Physical Systems Improvement Test BTCO M SL. No Questions 5 2 1 Discuss Traditional Centralized Sensor Network. 1 3 1 5 b) · Illustrate the working of Dynamic Transducer. 2 3 5 Consider Smart City as a CPS application and discuss how Cognitive 2 Radios (CR) Sensing Networks are useful in Smart Cities. 2 2 With a neat sketch discuss the working principle of Light Emitting Diode 5 (LED) 2 2 5 a). Explain Smart Sensor Network Architecture. 3 2 2 5 Discuss the working principle of Solenoids. 2 3 5 Summarize the piezoelectric actuators. b). Illustrate the working principle of Relays with a real-world example. 2 5 1 2 1 5 Discuss the Standard IoT protocols Stack. 5 a) 3 1 Illustrate Typical Underwater Sensor System Architecture. 5 Improvement Quiz CO M BTQuestion SL. No 1 1 1 Define Distributed Sensor Networks. 1 What is the role of Control Environment in Traditional Centralized Sensor Network? 2 2 2 List the characteristics of Compressive Wireless Sensing Network. 2 1 3 2 1 1 Write the IEEE 802.15.4 Standard Packet Frame Format. 4 Identify the applications of Cognitive Radios (CR) Sensing Networks. 2 1 5 1 1 What is Ubiquitous Sensor Network? 6 1 1 What is the need of IETF 6LoWPAN adaptation layer? 1 7

1

1

3

How we can fit Internet of Things into CPS.

l	J	SI	V	•	

Department of Artificial Intelligence and Machine Learning

Course Code: 21Al33

Sem:III

Date: 21-Mar-2023
Duration: 90 Minutes

IMPROVEMENT TEST

Data Structures and Data Analysis (DSDA) Answer all the Questions

SL	. No	Ouestions	M	BT	CO
1		Write a program that performs the following:	10	03	01
-		a. Creates a singly linked list of integers			
		b. Display the list			
		c. Delete all the nodes which have the key and display the list after deletion,			
		or display the key not found in the list			
2	a)	Consider an array of 06 integers used to implement a circular queue. Write	04	02	01
	,	the status of the circular queue, along with front and rear pointer values, after			
- 1		the following operations:			
		a. insert 3 b. insert 4,5 c. delete 3 d. insert 6,7,8,9 e. insert 10	06	03	01
Γ	b)	By using a stack of type characters, write a C program to check the given string	00	\ 03	\ 01
	,	has a matching number of curly brackets;			
		EXAMPLE: {{AAABBBBCCC}} Output: It is Balanced	04	03	02
3	a)	Discuss the concept of FIFO of data by considering any real-world application.	04		
-		Discuss the following;	06	02	01
	b)	1 Static versus Dynamic Memory allocation			
		2 Marita of a doubly-linked list over a singly-linked list	-	- 02	02
_		1. 145 set of garize the customers of a Bank to increase the credit illing.	05	03	02
4	a)	Propose a sound approach to do the above. Assume some relevant attributes			
				- 02	- 02
		Write a cognitive map of at least ten attributes to recommend a video to a	05	03	02
	b)	viewer on any video-sharing platform.	_		- 02
		vy to the freeto on various dimensions of data quality.	05	02	02
5	<u>a)</u>	Define and give examples for the following types of attributes	05	02	03
	b)	Define and give examples for the following system. Nominal b. Ordinal c Numeric			
		a. Nominal b. Ordinal c Numeric			

Course	Apply the knowledge of data structures in providing solutions to some software development
CO1	Apply the knowledge of data structures in providing solutions
	requirements.
CO ₂	Perform data analysis of some real-world scientific/business use cases and present are formally size of industry. Investigate appropriate data structures and understand requirements in solving some problems of industry.
CO3	Investigate appropriate data structures and understand requirement
	and society. Use data analysis tools to illustrate the principles of data interpretation, statistical analysis, and graphical
CO4	Use data analysis tools to illustrate the principles of data messpecially
	visualizations of the datasets. Appraise data structures and analysis knowledge to build a successful career as an AIML engineer, work in
CO5	Appraise data structures and analysis knowledge to build a successful early
	teams, and communicate their ideas effectively.

USN:	
UDIN.	

Department of Artificial Intelligence and Machine Learning

M-Marks, BT-Blooms Taxonomy Levels, CO-Course Outcomes

- 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.			CO2	CO3	CO4	CO5	L1	L2	L3	L4	L5
Marks	Particulars	CO1	COZ	COS	00.	Total Times	E A COLOR	20	30		
Distribution	Max Marks	26	24	-	_		1919 per				

Course Code: 21AI33

Sem: III

Date: 21-Mar-2023

Duration: 20 Minutes

IMPROVEMENT QUIZ

Data Structures and Data Analysis (DSDA)

Answer all the Questions.

SL.	Questions	M	BL	CO
No	:0	02	02	01
1	Why are stacks used in implementing recursion?	02	01	03
2	Give a real-world application of a doubly-linked list.	02	02	01
3	Write a cognitive map for the shopping domain.	02	02	01
4	Define the Explanation finding.	02	02	02
5	Give example for association analysis.	•		

	•			Charles and Charle				~ ~	т 2	14	L5	
	Destinulars	CO1	CO2	CO3	CO4	CO5	L1	L2	L3	L4	113	
Marks	Particulars	06	02	02			02	08				
Distribution	Max Marks		,									

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Academic year 2022-2023 (Odd Sem)

DEPARTMENT OF

BIO TECHNOLOGY

Date	20 th March 2023	Maximum Marks	10+25
Course Code	21BT32A	Duration	20 Min (Q) + 60Min (T)
Sem	3 rd Sem	CIE II & Q	uiz II
	ENVIRONMENTAL T	ECHNOLOGY	

Instructions: Part A should be answered in first two pages of answer scripts. All questions are compulsory.

PART A

Q. No	Question	Marks	CO	BTL
1	On standard silica scale, the turbidity in drinking water should be limited to	1	3	1
2	The process of lagooning is primarily a means of	1	3	1
3	Human being can hear range of sound frequency between	1	2	1
4	The term Environmental Risk Vigilance is associated to which state of India?	1	4	2
5	In general the per capita water amount available worldwide is	1	3	2

PART B

Q. No	Question	Marks	CO	BTL
1	What are the minor and major sources of biomedical wastes and mention the mitigation measures for the same?	5	3	2
2	Waste disposal is a menace in developing and under developed countries. How does it can be made pleasantry?	5	3	2
3	Elucidate on the E waste and its management.	5	4	2
4	How does environmental design help in sustainable development goals?	5	4	2
5	Explicate on the LEED concept in India.	5	2	2

BT-Blooms Taxonomy, CO-Course Outcomes, M-Marks

B1 Bicomo remensar			,									
	F	Particulars	CO1	CO2	CO3	CO4	L1	L2	L3	L4	Ľ5	L6
Marks Distribution	Test	Max Marks	-	6	13	11	5	20	10	-	-	-

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

IRNA1 APOUS

Academic year 2022-2023 (Odd Semester)

DEPARTMENT OF

CSE/ISE/AIML

Date	23 rd March 2023	Maximum Marks	60
Course Code	21CS36	Duration	110 Mins
Sem	III	CIE - III	
DI	SCRETE MATHEMATIC	CLA STRUCTURES	

Part - A									
Sl. No.	Questions	M	BT	СО					
1	Let A={1,2,3,4,5,6,7}, How many symmetric relations are there on A? How many antisymmetric relations are there on A?	2	L2	CO1					
2	Let $A=\{1,2,3,4\}$ and R be the relation on A defined as $R=\{(1,1), (1,2), (2,3), (3,3), (3,4)\}$. Draw the directed graph for R^4 .	1	L3	CO2					
3	Let $A=\{1,2,3,4\}$ and R be the relation on A defined as $R=\{(1,2), (1,4), (3,3), (4,1)\}$. Find the smallest relation containing R that is	1	L1	CO1					
4	symmetric and transitive. Find the upper bounds of {3,5} and lower bounds of {15, 45} in the POSET ({3, 5, 9, 15, 24, 45},).	2	L2	CO1					
5	Let A and B are sets with $ A =m$ and $ B =n$ where $m \ge n$. If $k \ge 2$ with $1 \le k \le n$.	1	L3	CO2					
6	How many functions 1.A >B are after such that $f^1(\{6,7,8\})=\{1,2\}$? How many functions f:A >B are there such that $f^1(\{6,7,8\})=\{1,2\}$?	1	L3	CO2					
7	there such that $f'(0,7,0) = \begin{cases} x+7 & x \le 0 \\ -2x+5 & 0 < x < 3 \\ x-1 & 3 \le x \end{cases}$ What is $f^1(6)$?	1	L2	CO2					
8	Let f and g are functions $R \rightarrow R$, where $g(x)=1-x+x^2$ and $f(x)=ax+b$. If	1	L2	CO3					
0	$(gof)(x)=9x^2-9x+3$. Find a and b.		0 -	_					

Institution Affiliated to Visvesvaraya Technological University, Belagavi

Academic year 2022-2023 (Odd Semester)

,	Academic year 2022-2023 (Odd Semester)			
	PART B			CO
	Questions	M	BT	CO
QNo. 1. a	Let A={1,2,3,4,5,6}X{1,2,3,4,5,6}. Define R on A by (a, b) R (c, d), II ab=cd. i. Verify that R is an equivalence relation on A. ii. Verify that R is an equivalence classes [(1, 1)], [(2, 2)], [(3, 2)]	07	Ļ2	CO3
	ii. Determine the equivalence edge and [(4, 3)]. Draw the Hasse diagram for the inclusion on the set P(S) where	03	L3	CO1
1. b	Draw the Hasse diagram for the second control of the second contro	05	L2	CO2
2. a	S= $\{a, b, c, d\}$. If f:A \rightarrow B, g:B \rightarrow C and h:C \rightarrow D, then (hog)of=ho(gof). Prove this. Prove that a function f:A \rightarrow B is invertible if and only if it is one to one	05	L2	CO2
2. b	Prove that a function 1.17 p and onto. Show that there exists an equivalent DFA for the given NFA-ε. Show that there exists an equivalent DFA for the NFA-ε whose transition diagram as Draw the equivalent DFA for the NFA-ε whose transition diagram as shown below. Interpret the symbol ^ as ε.			
3.		10	L3	CO4
4.a	If (G, *) is a group, then prove the following. i. (G, *) contains only one identity element. ii. In (G, *) every element has only one inverse.	06	L4	CO3
	iii. In $(G, *)$, $(a*b)^{-1}=b^{-1}*a^{-1}$ for all $a,b \in G$. Let G be the set of all nonzero real numbers and let $a*b=(ab)/2$. Show	04	L2	COI
4. b 5. a	that $(G, *)$ is an Abelian group. Let $E:W \to C$ be an encoding function with the set of messages $W Z_2^m$ and the set of code words $E(W)=C Z_2^n$, where $m < n$ and $k \in \mathbb{Z}^+$. Prove that we can construct a decoding function $D: Z_2^n \to W$ that corrects all transmission errors of weight $\leq k$ if and only if the minimum distance	04	L3	CO2
5. b	between the code words is at reast $2k+1$. Define the encoding function E: $\mathbb{Z}_2^3 \rightarrow \mathbb{Z}_2^6$ by means of the parity check matrix $H = \begin{pmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 \end{pmatrix}$ i. Determine all the code words. ii. Does this code correct all single errors in transmission?	06	L4	СО

			BT-Blo	ooms Tax	konomy,	CO-Cou	irse Outc	omes, M	-Marks		1.5	L6
Marks	Pa	rticulars	CO1	CO2	CO3	CO4	L1	L2	L3	L4	LIS	-
Dietribution	Test	Max	12	18	20	10	1	27	20	12	-	