Лабораторная работа № 1

Вариант № 2-а

Моделирование случайных величин

Цель работы

Исследовать алгоритмы генерации случайных величин в среде Matlab. Научиться вычислять значения выборочных характеристик случайной величины.

Задание

Постройте график зависимости значения выборочной дисперсии от числа реализаций СВ. Так же отобразите на графике значение дисперсии, вычисленное на основе соотношений из таблицы 1

2	Биномиальное распределение	B:n, p	$p(x) = C_n^x p^x (1-p)^{n-x},$	$B:n, p \sim \sum_{i=1}^{n} (B_i:1, p),$
			THE $x \in \{0.1.2.\}$ $Cx = \frac{n!}{n!}$	где $B:1, p \sim \begin{cases} 1, & \alpha \leq p, \\ 0, & \alpha > p \end{cases}$
			m = np, $D = np(1-p)$	(0, u>p

Код программы (внесённые изменения в шаблон кода выделены)

%%% Вычисление выборочных характеристик гауссовской случайной величины (ГСВ)

clear all

%% 1. Задание исходных данных

% Параметры генерации

n = 10; % число реализаций равномерной случайной величины для генерации одной реализации биномиальной СВ

 $\frac{p = 0.5}{N}$ вероятность положительного исхода в каждой реализации N = 1000; % число реализаций

%% 2. Вычисление значений статистических характеристик ГСВ m = n * p; % мат. ожидание

%% 3. Генерация реализаций случайной величины % Генерация реализаций стандартной РСВ

```
alf = rand(n, N); % матрица из N столбцов по n элементов
% Генерация реализаций ГСВ
x = sum(alf \le p); % сумма по столбцам матрицы alf \le p
% 4. Вычисление выборочных характеристик
M = mean(x); \% выборочное среднее
D = var(x); % выборочная дисперсия
% Вывод значений теоретических и выборочных характеристик
disp('Среднее значение (теоретическое)');
disp(m);
disp('Среднее значение (выборочное)');
disp(M);
ms = zeros(1, N);
for k = 1 : N
  ms(k) = mean(x(1 : k)); % среднее первых k реализаций
end
figure; hold on; % создание графического окна
plot(1: N, ms); % отображение зависимости выборочных средних от числа
реализаций СВ
plot(1: N, m * ones(1, N), 'g'); % отображение значения мат. ожидания
title('Выборочное среднее от числа реализаций'); % подпись
legend(['Выборочное математическое ожидание = 'num2str(M)], ...
['Teopeтическое математическое ожидание = ' num2str(m)]); % легенда
```

Результаты выполнения задания

Графики зависимости выборочной дисперсии от числа реализаций СВ:

Рисунок 1 - N = 1000

Рисунок 2 - N = 2500

Рисунок 3 - N = 5000

Выводы

- 1. Из полученных графиков видно, что с увеличением числа реализаций СВ ошибка между теоретической средней величиной и выборочной средней величиной уменьшается, что означает, что большее число реализаций обеспечивает более точную оценку показателей средней величины.
 - 2. Оптимальное число реализаций CB N = 1000.

На графике на рисунке 1 видно, что уже после 800 реализаций ошибка становится достаточно маленькой, так как линии теоретической средней величиной и выборочной средней величиной максимально сближаются.