Suggested Solutions to the Quiz

20 points, 30 minutes. Closed books, notes, calculators. Indicate your reasoning, using clearly written words as well as math.

- 1. Consider a C^1 strictly quasiconcave utility function $u: \mathbb{R}^n_+ \to \mathbb{R}$ that has positive partial derivatives everywhere. Suppose it gives rise to a differentiable demand function x(p,m), and assume the indirect utility function v(p,m) is homogeneous of degree 1 in m.
 - (a) (2 pts) Define what it means for an arbitrary function $f : \mathbb{R}_+^k \to \mathbb{R}$ to be homogeneous of degree 1.

Soln: $f: \mathbb{R}_+^k \to \mathbb{R}$ is homogeneous of degree 1 iff for all $x \in \mathbb{R}_+^k$ and t > 0, f(tx) = tf(x).

(b) (5 pts) Prove that x(p, m) is homogeneous of degree 1 in m.

Soln: "Over-the-top" Proof. Since v(p, m) is homogeneous of degree 1 in m, $v_m(p, m)$ is homogeneous of degree 0 in m, and $v_{p_i}(p, m)$ is homogeneous of degree 1 in m. Hence, from Roy's identity,

$$x_i(p,tm) = -\frac{v_{p_i}(p,tm)}{v_m(p,tm)}$$
$$= -\frac{tv_{p_i}(p,m)}{v_m(p,m)} = tx_i(p,m).$$

This proves x(p, m) is homogeneous of degree 1 in m.

More Elementary (Better) Proof. For a continuous function of one variable, homogeneity of degree 1 is equivalent to linearity. Thus, a function $\bar{v}(p)$ exists such that $v(p,m) = \bar{v}(p)m$. Roy's identity now yields

$$x_i(p,m) = -\frac{v_{p_i}(p,m)}{v_m(p,m)} = \left(-\frac{\bar{v}_{p_i}(p)}{\bar{v}(p)}\right)m.$$

This is linear in m, so x(p, m) is homogeneous of degree 1 in m.

(c) (5 pts) Using (b), prove that for any $(p, m) \in \mathbb{R}^{n+1}$,

$$u(tx(p,m)) = tu(x(p,m)).$$

Soln: We have

$$u(tx(p,m)) = u(x(p,tm))$$
 (as x is homog deg 1 in m)
= $v(p,tm)$ (by the def of v)
= $tv(p,m)$ (as v is homog deg 1 in m)
= $tu(x(p,m))$ (by the def of v).

(d) (8 pts) Using (c) and the supporting hyperplane theorem, conclude that u is homogeneous of degree 1.

Soln: Fix $\bar{x} \in \mathbb{R}^n_{++}$ and t > 0. We shall prove $u(t\bar{x}) = tu(\bar{x})$. The continuity of u will then imply the same equality on the boundary of \mathbb{R}^n_{++} , so that u is indeed homogeneous of degree 1 on \mathbb{R}^n_+ .

From (c) we know u(tx(p,m)) = tu(x(p,m)) for all $(p,m) \in \mathbb{R}^{n+1}_{++}$. Therefore, to show that $u(t\bar{x}) = tu(\bar{x})$, it suffices to prove the existence of $(p,m) \in \mathbb{R}^{n+1}_{++}$ such that $x(p,m) = \bar{x}$. In two dimensions this is graphically obvious – we find p by finding the line through \bar{x} that is tangent to the upper contour set of \bar{x} , and then define m as $p \cdot \bar{x}$. So, let $\bar{u} := u(\bar{x})$ and

$$U := \{ y \in \mathbb{R}^n_+ : u(y) \ge \bar{u} \}.$$

Then U is closed because u is continuous, and it is convex because u is quasiconcave. Also, \bar{x} is a boundary point of U because u is strictly increasing. The supporting hyperplane theorem thus tells us that $p \in \mathbb{R}^n$ exists such that $p \neq 0$ and

$$p \cdot \bar{x} \le p \cdot y \text{ for all } y \in U.$$
 (1)

In other words,

$$\bar{x} \in \arg\min_{y \ge 0} p \cdot y \text{ such that } u(y) \ge \bar{u}.$$

Hence, $\bar{x} = h(p, \bar{u})$ and $p \cdot \bar{x} = e(p, \bar{u})$. Define $m := e(p, \bar{u})$. Then $m = p \cdot \bar{x} > 0$ if $p \in \mathbb{R}^n_{++}$, and in this case we have $h(p, \bar{u}) = x(p, m)$, and hence the desired result, $\bar{x} = x(p, m)$.

It remains only to show that $p \in \mathbb{R}^n_{++}$. Suppose $p_j < 0$ for some j. Define y by $y_i = \bar{x}_i$ if $i \neq j$, and $y_j = \bar{x}_j + 1$. Since u is monotonic, $y \in U$. However, $p_j < 0$ implies $p \cdot y . This contradiction of (1) implies <math>p \in \mathbb{R}^n_+$.

Now suppose $p_j = 0$ for some j. Defining y as above, we now have

$$p \cdot y = p \cdot \bar{x}$$
.

The strict monotonicity of u implies $u(y) > \bar{u}$. Since $\bar{x} \in \mathbb{R}^n_{++}$, we have $y \in \mathbb{R}^n_{++}$. Thus, since u is continuous, $\varepsilon > 0$ exists such that, letting $y_i' = y_i - \varepsilon$ for all i, we have $y' \in \mathbb{R}^n_{++}$ and $u(y') > \bar{u}$. This implies that $y' \in U$. We obtain

$$p \cdot y'$$

from $y' \ll y$, $p \in \mathbb{R}^n_+$, and $p \neq 0$. We conclude that $y' \in U$ and $p \cdot y' . As this contradicts (1), we have proved <math>p \in \mathbb{R}^n_{++}$.