Self-Supervised Learning with In-Domain and Out-of-Domain Image Classification

ECE 285 – Project Presentation

Agenda

- Introduction
- Method
- Datasets
- Experiments
- Conclusion

Introduction

Background

 Lack of labelled data and time consuming annotations

 Supervised models don't fully learn generalized visual representations for any downstream tasks

Dealing with few labelled scenarios

Solution and Plan

Self-Supervised Learning

 Contrastive Learning framework using data augmentations - SimCLR

 Plan to test sampling variations and transfer learning robustness

Method

Method - SimCLR

Simple Framework of Contrastive Learning for Visual Representations

Batch	1	2	3	4	5	6	 	 N
Augment 1	1a	2a	3a	4a	5a	6a	 	 Na
Augment 2	1b	2b	3b	4b	5b	6b	 	 Nb

In a batch of size N:
For 1 positive pair, there are 2(N-1 negative pairs)

Loss for one positive pair (i, j):

$$\ell_{i,j} = -\log \frac{\exp(\sin(\boldsymbol{z}_i, \boldsymbol{z}_j)/\tau)}{\sum_{k=1}^{2N} \mathbb{1}_{[k \neq i]} \exp(\sin(\boldsymbol{z}_i, \boldsymbol{z}_k)/\tau)}$$

Loss is calculated across all positive pairs in a given batch

Method - Architecture

Method – Data Augmention Strategies

Datasets

Datasets

CIFAR-10

60000 32x32 colour images in 10 classes, with 6000 images per class.

Caltech-101

101 classes, roughly 40-800 images totalling of 9k images (size 200-300)

Satellite Land Use

21 classes scene classification with 100 images (256x256) per class

Oxford Pets

37 category pet images with 200 images in each class

Brain Tumor MRI

Brain MRI scans of 7k images classified into 4 classes

Experiments

Experiments – Linear Evaluation

Evaluating linear-classifier freezing the pretrained representations

Method	Pretrained Data	Architecture	Top-1 Accuracy
Supervised	CIFAR-10	ResNet-50	82.1%
SimCLR v1 (Standard - Standard)	CIFAR-10	ResNet-50	58.3%
SimCLR v2.1 (Jigsaw - Standard)	CIFAR-10	ResNet-50	59.7%
SimCLR v2.2 (Jigsaw – Standard+Jigsaw)	CIFAR-10	ResNet-50	58.8%

Given same architecture, SimCLR achieves ~60% accuracies on CIFAR-10

Experiments – Comparing different augmentations

Evaluating linear-classifier freezing the pretrained representations

The loss curves show better convergence upon adding jigsaw augmentation

Model	Augment 1	Augment 2
V1	Standard	Standard
V2.1	Jigsaw	Standard
V2.2	Jigsaw	Standard + Jigsaw

Experiments – Semi-Supervised Evaluation

Finetuning CIFAR-10 with few labels

SimCLR v2.2

		Time raining Accuracy			
Method	Pretrained Data	1% Labels	10% Labels		
Supervised Baseline	-	29.7%	43.8%		
SimCLR v1	CIFAR-10	52.4%	70.5%		
SimCLR v2.1	CIFAR-10	52.4%	69.9%		

49.3%

Fine Tuning Accuracy

67.2%

Note that dropout has been added in the models to prevent overfitting

CIFAR-10

Experiments – Transfer Learning

Method	Caltech 101 (In domain)	Oxford Pets (natural images but out of domain for CIFAR10)	Satellite Land Use (out of domain)	Brain Tumor MRI (out of domain)	
Linear Evaluation					
Supervised	40.6%	11.3%	35.2%	81.1%	SimCLR performs better
SimCLR	49.0%	[17.2%]	[52.1%]	85.8%	indicating better representation learning
Fine-Tuning					
Random Init	65.8%	18.3%	49.3%	96.5%	
Supervised	76.3%	45.1%	63.1%	96.5%	SimCLR almost matches
SimCLR	73.0%	41.6%	58.8%	96.8%	performance

Experiments – Transfer Learning Deepdive

SimCLR has **better**validation performance
in linear evaluation

 SimCLR has almost equal performance in fine-tuning

Key Takeaways

- SimCLR helps learn good visual representations without any explicits labels
- **Jigsaw augmentations** while training helps for **better convergence** and feature representations
- SimCLR can be used as an effective semi-supervised learning technique
- SimCLR representations generalize well in both in-domain and out-of-domain datasets, and can be used as a **common feature extraction model**
- SimCLR works inpar with supervised models in standard transfer learning with fine-tuning approach

Thank You!