Diagonalisation et chaînes de Markov

le 17 janvier 2017

1 Diagonalisation avec Scilab

Exercice 1 (Première diagonalisation)

Soit U_n la matrice de $\mathcal{M}_n(\mathbb{R})$ dont les coefficients sont : $u_{i,j} = \begin{cases} 0 \text{ si } i = j \text{ (sur la diagonale)} \\ 1 \text{ si } i \neq j \text{ (partout ailleurs)} \end{cases}$

- 1. Définir une fonction Scilab matriceU(n) qui retourne U_n . (on écrira : $U_n = (?) I_n$.)

 On choisit M = 1/3 * matriceU(4).
- **2.** Dessiner le graphe de Markov dont M est la matrice.

3. Valeurs propres

- a) Trouver le spectre de U_4 grâce à la commande spec(M).
- **b)** 1 est-il valeur propre de M?
- c) Vérifier que l'autre « les autres » valeurs propres sont dans le segment]-1;1[.
- 4. a) Trouver la diagonalisation $M = PDP^{-1}$ de M avec la syntaxe [P,D] = spec(M).
 - **b)** Calculer D^{99} . Définir S la matrice limite de D^n quand $n \to \infty$?
 - c) Calculer M^{99} . Vérifier que l'on a : $\lim_{n\to\infty} M^n = P \cdot \left(\lim_{n\to\infty} D^n\right) \cdot P^{-1}$.

Exercice 2 (Apparition de nombres complexes)

- **1.** Définir dans Scilab la matrice suivante : $R = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$.
- 2. Vérifier que $R^2=-I_2$. En déduire qu'un polynôme annulateur de R est X^2+1 .
- 3. Quelles sont les valeurs propres possibles pour R? Que donne la commande spec(R)?

2 Convergence de chaînes de Markov

2.1 Vecteurs de probabilités

Définition

Un vecteur de probabilités est un état probabiliste sur l'espace d'états fini $E = \{e_1, \dots, e_n\}$. C'est une suite finie de réels $\vec{p} = (p_i)_{i=1\dots n}$ telle que : $\begin{cases} \forall i = 1 \dots n, \ p_i \geqslant 0 \ (\textit{positivit\'e}) \\ \sum_{i=1}^n p_i = 1 \ (\textit{proba. totale}) \end{cases}$

▶ Espace des vecteurs de proba

Les vecteurs de probabilités forment un tétraèdre de dimension n-1

▶ États déterministes

Les états eux-mêmes correspondent à la base canonique : $e_1 \leftrightarrow (1,0,\ldots)$, etc.

Les états déterministes forment les sommets de ce tétraèdre.

▶ Moyennes d'états déterministes Tous les vecteurs probabilistes s'écrivent comme une moyenne pondérée (un barycentre) des états déterministes.

Équiprobabilité

La situation d'équiprobabilité correspond au vecteur $(\frac{1}{n}, \dots, \frac{1}{n}) = \frac{1}{n} (e_1 + \dots + e_n)$, soit le centre de gravité (isobarycentre) du tétraèdre.

2.2 Convergence d'une chaîne de Markov

Une chaîne de Markov est un processus stochastique

(une famille de variables aléatoires liées entre elles) C'est une suite $X_0, X_1, \dots X_n \dots$ de va à valeurs dans

un ensemble d'états $E = \{e_1, e_2, e_3 \ldots\}.$

Ces va sont liées par les probabilités conditionnelles, dite de **transition** $\mathbb{P}_{[X_t=e_i]}(X_{t+1}=e_i)$

(probabilité de passer de l'état j à l'instant t à l'état i en t+1) Le graphe des transitions entre les états E_1, E_2, E_3 est

décrit par la matrice de transition : $P = \begin{bmatrix} p_{11} & p_{21} & p_{31} \\ p_{12} & p_{22} & p_{32} \\ p_{13} & p_{23} & p_{33} \end{bmatrix}$

Caractère Markovien

C'est la propriété que cette probabilité conditionnelle ne change pas si on ajoute des conditions portant sur les états passés $X_{t-1}, X_{t-2}, \dots, X_1, X_0$.

On s'intéresser particulièrement aux chaînes de Markov:

- ▶ à espace d'état fini
- ▶ homogènes : $\mathbb{P}(X_{t+1} = e_i | X_t = e_j) = p_{i,j}$ ne dépend pas de $t \in \mathbb{N}$.

Proposition 1 (Évolution du vecteur de proba:)

Si $V_t = (\mathbb{P}(X_t = e_1), \mathbb{P}(X_t = e_2), \dots, \mathbb{P}(X_t = e_n))$ est le vecteur décrivant la probabilité de chaque état au temps t, alors on a (formule des probabilités totales)

$$\forall t \in \mathbb{N}, \quad V_{t+1} = PV_t,$$

 $\forall t_0, t \in \mathbb{N}, \quad V_{t_0+t} = P^tV_{t_0} \quad (V_0 : vecteur \ proba \ initial)$

2.3 Convergence des chaînes de Markov

Exemple de convergence

La convergence de la dynamique de la matrice de

transition
$$P = \begin{bmatrix} 0.75 & 0.05 & 0.2 \\ 0.2 & 0.7 & 0.1 \\ 0.05 & 0.25 & 0.7 \end{bmatrix}$$

Le $\vec{\text{vp}}$ associé à la valeur propre 1 est $\vec{V}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$.

Aussi la distribution stationnaire est uniforme.

Exercice 3 (Marche de Bernoulli symétrique amortie)

Soient $p, q \in]0; 1[$ tels que p + q = 1. (p. ex. p = 10%)

On s'intéresse au graphe Markovien ci-contre :

1. Donner la matrice de transition T de ce graphe.

(On écrira $T = p \cdot M + q \cdot I_4$.)

Soit C la matrice obtenue par l'appel :

(voir le fichier circulante.sci)

- **2.** Écrire la matrice M en fonction de C et C^{-1} .
- 3. Trouver le spectre de la matrice M (spec(M).
- 4. Trouver le sous-espace propre associé à la vp 1.

(kernel(M - eye))

- 5. Quel est l'état stationnaire de la chaîne de Markov?
- **6.** Vérifier que les autres vp de M sont dans]-1;1[.
- 7. Que dire des valeurs propres de T?
- 8. Y-a-t'il convergence vers l'état stationnaire?

