Algorithms

Chapter 6
Algorithms Involving Sequences & Sets
Part 2
(pp. 119~127)

Sorting

method	average	worst	stability	extra space
bucket	O(n)	O(m)	stable	O(m)
radix	O(nlog _p k)	O(nlog _p k)	stable	O(nxp)
		~O(n)		
insertion	O(n ²)	$O(n^2)$	stable	O(1)
selection	O(n ²)	$O(n^2)$	unstable	O(1)
bubble	$O(n^2)$	$O(n^2)$	stable	O(1)
merge	O(nlogn)	O(nlogn)	stable	O(n)
quick	O(nlogn)	$O(n^2)$	unstable	O(logn)~O(n)
heap	O(nlogn)	O(nlogn)	unstable	O(1)

M. K. Shan, CS, NCCU

Bucket Sort & Radix Sort

Bucket Sort

- Bucket sort
 - ☐ allocate sufficient number of buckets &
 - put element in corresponding buckets
 - at the end, scan the buckets in order & collect all elements
 - \square n elements, ranges from 1 to m \rightarrow m buckets
 - \square O(m+n)
 - ☐ Best case: O(n), Worst case: O(m)

To sort 6, 2, 8, 3, 5

		2	3		5	6		8	
0	1	2	3	4	5	6	7	8	9
	To sort 6, 2, 8, 3, 6, 5, 2, 6								
		2	1		1	3		1	
				4	_		_	0	•

Radix Sort

- Drawback of bucket sort: waste buckets (space)
- Radix sort
 - ☐ use several passes of bucket sort
 - ☐ more than one number could fall into the same bucket
- Two approaches
 - ☐ most significant bit (MSB): radix-exchange sort
 - □ least significant bit (LSB): straight-radix sort

針對n筆資料(數值介於0~999),如何利用10個Buckets,經三個回合來排序? 先根據個位數,還是先根據百位數?

Radix-Exchange Sort

- Given n elements represented by k-digits
 - □ hypothesis: we know how to sort elements with left k-digits
 - □ induction
 - use bucket sort

Radix-Exchange Sort (Cont.)

■ Given (64, 8, 216, 512, 27, 729, 0, 1, 343, 125)

Straight-Radix Sort

- Given n elements represented by k-digits
 - \square Hypothesis: sort elements with \le k digits (right k-1 digits)
 - □ Induction
 - ignore the most significant bit & sort the n elements according to their k-1 least significant bits
 - scan all the elements & use bucket sort on the most significant bit
 - collect all the buckets in order

Straight-Radix Sort (Cont.)

■ Given (64, 8, 216, 512, 27, 729, 0, 1, 343, 125)

0	1	512	343	64	125	216	27	8	729
0	1	2	3	4	5	6	7	8	9

 \Rightarrow (0, 1, 512, 343, 64, 125, 216, 27, 8, 729)

 \Rightarrow (0, 1, 8, 512, 216, 125, 27, 729, 343, 64)

Straight-Radix Sort (Cont.)

 \Rightarrow (0, 1, 8, 512, 216, 125, 27, 729, 343, 64)

 \Rightarrow (0, 1, 8, 27, 64, 125, 216, 343, 512, 729)

```
Algorithm Straight-Radix(X, n, k);
Input: X (array of n elements with k digits, base p)
Output:X
begin
  all elements are initially in a global queue GQ
  for i:=1 to d do
     initialize queue Q[i] to be empty;
  for i:=k downto 1 do
     while GQ is not empty do
        dequeue x from GQ;
        d:= the i-th digit of x;
        enqueue x into Q[d];
      for t:=1 to p do
         enqueue Q[t] into GQ;
   for i:=1 to n do
      dequeue X[i] from GQ
```

針對n筆資料(數值介於0~999), 如何利用7個Buckets來做Radix Sort? 共需幾個回合?

Insertion Sort

Insertion Sort

- \blacksquare Hypothesis: we know how to sort n-1 elements
- Induction on the *n*-th element
 - 1. sort *n*-1 elements
 - 2. put the *n*-th element in its correct place by scanning the *n*-1 sorted elements

Insertion Sort (cont.)

- For N elements A[0], ...A[n-1], insertion sort consists of (n-1) passes (Pass 1 through n-1).
- In pass p, A[p] is moved left until its correct place is found among the first (p+1) elements, i.e., A[p] is inserted into the correct place among A[0],..A[p-1].
- movements: $O(n^2)$, comparison: $O(n^2)$
- **■** improvement
 - □ use binary search in finding correct place
 - \square comparison: O(nlogn), movement: O(n^2)

Example of Insertion Sort

Origi	nal
after	pass 1
afetr	pass 2
after	pass 3
afetr	pass 4
after	pass 5

A[0]	A [1]	A[2]	A[3]	A[4]	A[5]
34	8	64	51	32	21
8	34	64	51	32	21
8	34	64	51	32	21
8	34	51	64	32	21
8	32	34	51	64	21
8	21	32	34	51	64

Example of Insertion Sort (Cont.)

Detail (for example, doing pass 4 after pass 3)

Origi	nal
after	pass 1
afetr	pass 2
after	pass 3
doing	pass 4

afetr	pass	4
after	pass	5

M. K. Shan, CS, NCCU

Algorithm of Insertion Sort

```
void InsertionSort(ElemenType A[], int N)
   int j,p;
   Element Type Tmp;
   for (P=1; P < N; p++)
      Tmp=A[P];
      for (j=P; j>0 && A[j-1] > Tmp; j--)
          A[j]=A[j-1];
      A[j]=Tmp;
   };
```

Selection Sort

Selection Sort

- \blacksquare Hypothesis: we know how to sort n-1 elements
- Induction on a special *n*-th numbers
 - 1. sort n-1 elements
 - 2. select the minimal element from unsorted as the *n*-th element
 - 3. put in correct place by swapping
- movement: O(n-1), comparison: $O(n^2)$

Selection Sort (cont.)

- For N elements A[0], ...A[n-1], selection sort consists of (N-1) passes (Pass 0 through N-2).
- In pass P, select the smallest element from unsorted element (i.e., A[P],..A[N-1]), exchange with A[P]
- movement: O(n-1), comparison: $O(n^2)$

Example of Selection Sort

Origi	nal
after	pass 0
afetr	pass 1
after	pass 2
afetr	pass 3
after	pass 4

A[0]	A [1]	A[2]	A[3]	A[4]	A[5]
34	8	64	51	32	21
8	34	64	51	32	21
8	<u>21</u>	64	51	32	34
8	21	<u>32</u>	51	64	34
8	21	32	34	64	5 1
8	21	32	34	51	64

Example of Selection Sort (Cont.)

■ Detailed (for example, doing pass 3 after pass 2)

Original	
after pass 0	
afetr pass 1	
after pass 2	
doing pass	2

A[0]	A[1]	A[2]	A[3]	A[4]	A[5]
34	8	64	51	32	21
<u>8</u>	34	64	51	32	21
<u>8</u> 8	<u>21</u>	64	51	32	34
8	21	<u>32</u>	51	64	34
8	21	32	5 1	64	34 min
				ex	change

afetr pass 3 after pass 4

8	21	32	<u>34</u>	64	51
8	21	32	34	51	64

Algorithm of Selection Sort

```
void SelectionSort(ElemenType A[], int N)
   int j,p;
   Element Type Min;
   for (P=0; P \le N-2; P++)
      Min=P;
      for (j=P+1; j \le N-1; j++)
          if (A[j] < A[Min])
            Min=j;
      exchange (A[P], A[Min]);
   };
```

Bubble Sort

Bubble Sort

- For N elements A[0], ...,A[N-1], Bubble sort consists of (N-1) passes (Pass 0 through N-2).
- In pass P, adjacent elements in A[P], ..,A[N-1] are compared & exchanging if necessary.
- After pass P, the first P elements have been in correct position.

Example of Bubble Sort

Detailed (for example, doing pass 0)

	A[0]	A[1]	A[2]	A[3]	A[4]	A[5]
Original	34	8	64	51	<u>32</u> ←	21)
doing pass 0	34	8	64	<u>51</u> ←	-(21)	32
	34	8	<u>64</u> ←	-(21)	51	32
	34	8	-(21)	64	51	32
	34-	-8	21	64	51	32
after pass 0	8	34	21	64	51	32
afetr pass 1	8	<u>21</u>	34	32	64	51
after pass 2	8	21	<u>32</u>	34	51	64
afetr pass 3	8	21	32	<u>34</u>	51	64
after pass 4	8	21	32	34	<u>51</u>	64 M. K. Sha

Algorithm of Bubble Sort

```
void BubbleSort(ElemenType A[], int N)
   int j,p;
   Element Type Min;
   for (P=0; P \le N-2; P++)
       for (j=N-1; j \ge P; j--)
          if (A[j+1] > A[j])
            exchange (A[j+1], A[j]);
   };
```

有人說Bubble Sort 也是一種Selection Sort, 你認為呢?

Merge Sort

Merge Sort

- Hypothesis: we know how to sort n/2 elements
- Induction
 - □ sort two n/2 elements
 - □ merge
- ■Merge sort
 - ☐ merge two sorted lists
 - □ recursive algorithm
 - ☐ Divide-and-conquer strategy
 - ☐ drawback: merging step requires additional storage

Example of Merge Sort

M. K. Shan, CS, NCCU

Example of Merge

 0
 1
 2
 3
 4
 5
 6
 7

 7
 8
 11
 14
 4
 6
 8
 23

Algorithm of Merge Sort

```
int Center;
if (Left < Right)
{
    Center = (Left + Right)/2;
    MergeSort(A, Tmp, Left, Center);
    MergeSort(A, Tmp, Center+1, Right);
    Merge(A, Tmp, Left, Center+1, Right);</pre>
```

Algorithm of Merge

```
void Merge( ElementType A[], TmpArray[],
            int Lpos, int Rpos, int RightEnd)
 int i, LeftEnd, NumElements, TmpPos;
  LeftEnd = Rpos - 1; TmpPos = Lpos;
  NumElements = RightEnd - Lpos + 1;
  while (Lpos <= LeftEnd && Rpos <= RightEnd)
      if (A[Lpos] \leq A[Rpos])
           TmpArray[TmpPos++] = A[Lpos++];
      else TmpArray TmpPos++ ] = A Rpos++ ];
  while (Lpos <= LeftEnd) /* Copy rest of first half */
        TmpArray[TmpPos++] = A[Lpos++];
   while( Rpos <= RightEnd ) /* Copy rest of second half */
        TmpArray[TmpPos++] = A[Rpos++];
  for( i = 0; i < NumElements; i++, RightEnd--)
       A[RightEnd] = TmpArray[RightEnd];
                                                  M. K. Shan, CS, NCCU
```

Merge Sort時間複雜度? 如何分析?

Analysis of Merge Sort

- Recurrence Relation: T(1)=1, T(N)=2T(N/2)+N
- Solution 1 $\frac{T(N)}{N} = \frac{T(N/2)}{N/2} + 1$

$$\frac{T(N/2)}{N/2} = \frac{T(N/4)}{N/4} + 1$$

$$\frac{T(N/4)}{N/4} = \frac{T(N/8)}{N/8} + 1$$

•••

$$\frac{T(2)}{2} = \frac{T(1)}{1} + 1$$

$$\Rightarrow \frac{T(N)}{N} = \frac{T(1)}{1} + \log N$$

$$\Rightarrow T(N) = N \log N + N = O(N \log N)$$

Analysis of Merge Sort (Cont.)

- Recurrence Relation: T(1)=1, T(N)=2T(N/2)+N
- Solution 2 T(N) = 2T(N/2) + N

$$: 2T(N/2) = 2(2(T(N/4)) + N/2) = 4T(N/4) + N$$

$$\Rightarrow T(N) = 4T(N/4) + 2N$$

$$: 4T(N/4) = 4(2(T(N/8)) + N/4) = 8T(N/8) + N$$

$$\Rightarrow T(N) = 8T(N/8) + 3N$$

$$\Rightarrow T(N) = 2^k T(N/2^k) + k * N$$

Using $k = \log N$

$$\Rightarrow T(N) = NT(1) + N \log N = N \log N + N = O(N \log N)$$
M. K. Shan, CS, NCCU

Quick Sort

Quick Sort

- the fastest known sorting algorithm in practice
- divide-and-conquer recursive strategy
- basic algorithm
 - 1. Pick an element ν as pivot
 - 2. Partition two groups S1 & S2, $\forall x \in S1, x < v, \forall y \in S2, y > v$
 - 3. Recursively quick sort S1 and S2

Quick Sort (Cont.)

Quick Sort (Cont.)

13	81	<mark>92</mark>	43	65	31	57	26	75	0
13	26	57	43	0	31	65	81	75	92
13	0	26	43	31	57	65	81	75	92
0	13	26	43	31	57	65	81	75	92
0	13	26	31	43	57	65	81	75	92
0	13	26	31	43	57	65	75	92	81
0	13	26	31	43	57	65	75	81	92

Pivot的選擇會影響 Quick Sort 的速度嗎? 什麼是好的 Pivot? 如何選擇好的 Pivot? 如何快速地找出好的 Pivot?

Picking the Pivot

- A poor way: the smallest or the largest element
- A safe maneuver: choose pivot randomly with the cost of random number generation.
- Median-of-Three Partitioning:
 - □ base choice: the median value (how to find?)
 - □ estimate:
 - pick three elements randomly and use the median.
 - use the median of the left, right, and center element.

Quick Sort (Cont.)

13	81	92	43	65	31	57	26	75	0
13	26	57	43	0	31	65	81	75	92
13	0	26	43	31	57	65	81	75	92
0	13	26	43	31	57	65	81	75	92
0	13	26	31	43	57	65	81	75	92
0	13	26	31	43	57	65	75	92	81
0	13	26	31	43	57	65	75	81	92

選出好的 Pivot後, 如何做 Partition? 如何快速地找出好的 Pivot?

Partitioning Strategy

pivot=median(A[0], A[9], A[4])=A[4]=6

Improvement of Quicksort

- Quick sort doesn't perform well for small array
- Use insertion sort for small array when quick sort recursively.

```
ElementType Median3 (ElementType A[], int Left, int Right)
{
    int Center = (Left + Right) / 2;
     if (A[Left] > A[Center])
       Swap(&A[Left], &A[Center]);
    if (A[Left] > A[Right])
      Swap( &A | Left |, &A | Right | );
    if (A Center | > A | Right | > A |
      Swap(&A[Center], &A[Right]);
    Swap( &A | Center |, &A | Right - 1 | );
    return A[Right - 1];
}
```

```
void QuickSort( ElementType A[], int Left, int Right )
 int i, j; ElementType Pivot;
  if ( Left + Cutoff <= Right )
    Pivot = Median3(A, Left, Right);
     i = Left+1; j = Right - 2;
     for (;;)
     \{ while (A[i] < Pivot) i++;
         while (A[j] > Pivot) j--;
         if (i < j) Swap (&A[i], &A[j]);
        else break;
     Swap( &A[i], &A[Right - 1]);
     QuickSort(A, Left, i - 1);
     QuickSort(A, i + 1, Right);
  else InsertionSort(A + Left, Right - Left + 1);
```

Quick Sort與Merge Sort都是Divide & Conquer, 為什麼Quick Sort不需要額外O(n)的空間, 而Merge Sort需要額外O(n)的空間?

Example of Merge Sort

M. K. Shan, CS, NCCU

Quick Sort (Cont.)

13	81	<mark>92</mark>	43	65	31	57	26	75	0
13	26	57	43	0	31	65	81	75	92
13	0	26	43	31	57	65	81	75	92
0	13	26	43	31	57	65	81	75	92
0	13	26	31	43	57	65	81	75	92
0	13	26	31	43	57	65	75	92	81
0	13	26	31	43	57	65	75	81	92

Quick Sort時間複雜度? 如何分析?

Analysis of Quick Sort

- Recurrence Relation: T(N)=T(i)+T(N-i-1)+cN
 - \square Worst case(O(N²)): T(0)=1, T(N)=T(N-1)+cN, N > 1
 - \square Best case(O($N \log N$)): T(N)=2T(N/2)+cN
 - \square Average case(O($N \log N$)):

$$T(N)=T(i)*Avg(T(i))+T(N-i-1)*Avg(T(N-i-1))+cN$$

$$\Rightarrow T(N) = \frac{2}{N} \left[\sum_{j=0}^{N-1} T(j) \right] + cN$$

Lower Bound for Sorting (Complexity of Sorting Problem)

Lower Bound for Sorting:

有沒有比O(nlogn)還要快的Sorting演算法?

(Sorting Problem有多難?)

General Lower Bound for Sorting

- Comparison-based Sorting Algorithm
- \square O(MlogN) $\Theta(MlogN)$ $\Omega(MlogN)$
- Proved by decision tree

Decision Tree for Sorting Three Element

Proof of Lower Bound of Sorting

- \blacksquare A binary tree T of depth d has at most 2^d leaves
- \blacksquare A binary tree with L leaves have depth at least $\lceil \log L \rceil$
- Any comparison-based sorting algorithm requires at least $\lceil \log(N!) \rceil$ comparisons in the worst case.
- Any comparison-based sorting algorithm requires $\Omega(N\log N)$ comparisons.

$$(\log(N!) >= (N/2)*\log(N/2))$$

Heap Sort

Heaps

- Heaps (Priority Queue)
 - ☐ Structure property: complete binary tree
 - * complete binary tree: height \[\log N \]
 - * array implementation of heap
 - □ Order property: for each node X, the key in the parent of X is smaller than or equal to the key in X.

	13	21	16	24	31	19	68	65	26	32	
0	1	2	3	4	5	6	7	8	9	10	11


```
void Insert( ElementType X, PriorityQueue H )
  int i;
  if(IsFull(H))
   Error("Priority queue is full");
   return;
 for (i = ++H->Size; H->Elements[i/2]>X; i/= 2)
      H\rightarrow Elements[i] = H\rightarrow Elements[i/2];
 H\rightarrow Elements[i] = X;
```



```
ElementType DeleteMin(PriorityQueue H)
  int i, Child;
  ElementType MinElement, LastElement;
  if (IsEmpty(H)) {
     Error("Priority queue is empty");
     return H->Elements 0 1;
  MinElement = H->Elements [1];
  LastElement = H->Elements | H->Size-- ];
  for(i = 1; i * 2 \le H->Size; i = Child) {
     Child = i * 2;
     if (Child!= H->Size && H->Elements| Child + 1]
                          < H->Elements | Child | )
        Child++;
     if (LastElement > H->Elements | Child | )
        H->Elements[i] = H->Elements[Child];
     else
       break;
  H->Elements[i] = LastElement;
  return MinElement;
                                                M. K. Shan, CS, NCCU
```

Complexity of Heap Operations

- Insertion: precolate up, O(logN)
- DeleteMin: precolate down, O(logN)
- Can heap be used in sorting? Complexity?

Heap 是找最小(或最大),可以運用來做Sorting嗎?

Heap Sort

Algorithm (Increasing order)

Step 1: Build heap (Min-heap)

Step 2: for (i=0; i <N; i++)

DeleteMin;

Heap Sort有可能 不需額外O(n)的空間嗎? (hint: 利用Max-Heap由小排到大)

Improvement of Heap Sort

- Drawback of previous heap sort: extra array to store output
- Algorithm (Increasing order)

Step 1: Build heap (Max-heap)

Step 2: for (i=0; i <N; i++)

DeleteMax;

Building Heap

- Approaches
 - □ Top down
 - Hypothesis: array [1..i] is a heap
 - □ Bottom up
 - Hypothesis: all trees represented by array A[i+1..n] satisfy the heap condition

Top Down

Bottom Up

```
Building Heap (ElementType A[], int N)
{
  int i;
  for (i=N/2; i >=0; i--)
     PercDown(A, i, N)
}
```


針對Large Structure Data (例如500萬筆資料, 每筆資料有10000個欄位), 如何減少排序時, 10000個欄位資料交換的時間?

Sorting Large Structures

Sorting Large Structures

- Sorting large structure
 - ☐ swapping two structures can be a very expensive operation

	No	Color	Size	A1	A2	•••	A1000
1	103	Red	10	• • •	• • •	• • •	
2	302	Blue	5	• • •	• • •	• • •	
3	205	Blue	30	• • •	• • •	•••	
4	236	Green	90	• • •	• • •	•••	
5	282	White	20	• • •	• • •	• • •	

Sorting Large Structures (cont.)

- Solution: indirect sorting
 - ☐ To have the input array contain pointers to the structures
 - ☐ Sort by comparing the keys the pointers point to, swapping pointers when necessary.

	No	Color	Size	A1	A2	•••	A1000			Size
1	103	Red	10	•••	• • •	• • •	•••		2	5
2	302	Blue	5	• • •	• • •	• • •	•••	K	1	10
3	205	Blue	30	•••	•••	• • •	• • •	R /	5	20
4	236	Green	90	•••	•••	• • •	• • •	K	3	30
5	282	White	20	•••	• • •	•••	•••		4	90

Sorting

method	average	worst	stability	extra space
bucket	O(n)	O(m)	stable	O(m)
radix	O(nlog _p k)	O(nlog _p k)	stable	O(nxp)
		~O(n)		
insertion	O(n ²)	$O(n^2)$	stable	O(1)
selection	$O(n^2)$	$O(n^2)$	unstable	O (1)
bubble	$O(n^2)$	$O(n^2)$	stable	O (1)
merge	O(nlogn)	O(nlogn)	stable	O(n)
quick	O(nlogn)	$O(n^2)$	unstable	O(logn)~O(n)
heap	O(nlogn)	O(nlogn)	unstable	O(1)

M. K. Shan, CS, NCCU