

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
19 April 2001 (19.04.2001)

PCT

(10) International Publication Number
WO 01/27288 A1

BA

(51) International Patent Classification⁷: C12N 15/54,
9/12, C07K 16/40, G01N 33/50, C12Q 1/68

(21) International Application Number: PCT/US00/28518

(22) International Filing Date: 13 October 2000 (13.10.2000)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
09/417,822 14 October 1999 (14.10.1999) US

(71) Applicant: ICOS CORPORATION [US/US]; 22021
20th Avenue, S.E., Bothell, WA 98021 (US).

(72) Inventors: LOUGHNEY, Kate; 7301 34th Avenue, N.E.,
Seattle, WA 98115 (US). KEEGAN, Kathleen, S.; 5812
West Mercer Way, Mercer Island, WA 98040 (US).

(74) Agent: WILLIAMS, Joseph, A., Jr.; Marshall, O'Toole,
Gerstein, Murray & Borun, 6300 Sears Tower, 233 South
Wacker Drive, Chicago, IL 60606-6402 (US).

(81) Designated States (*national*): AE, AG, AL, AM, AT, AU,
AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ,
DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR,
HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR,
LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ,
NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM,
TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.

(84) Designated States (*regional*): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian
patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,
IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG,
CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

- *With international search report.*
- *Before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments.*

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

A1
WO 01/27288

(54) Title: ATR-2 CELL CYCLE CHECKPOINT

(57) Abstract: Polynucleotides encoding novel Atr-2 cell cycle checkpoint polypeptides are disclosed, along with expression constructs comprising the polynucleotides, host cells transformed with the expression constructs, methods to make the Atr-2 polypeptides using the host cells, Atr-2 polypeptides, and binding partners of the Atr-2 polypeptides.

- 1 -

ATR-2 CELL CYCLE CHECKPOINT

FIELD OF THE INVENTION

The present invention relates to novel polynucleotides encoding cell
5 cycle checkpoint polypeptides.

BACKGROUND

The mitotic cell cycle is the process by which a cell creates an exact copy of its chromosomes and then segregates each copy into two cells. The sequence
10 of events of the cell cycle is carefully regulated such that cell division does not occur until the cell has completed DNA replication and, DNA replication does not occur until cells have completed mitosis. If a cell is exposed to DNA damage, the damage is repaired before the cell undergoes cell division. Regulation of these processes ensures that an exact copy of DNA is propagated to the daughter cells. The cell cycle has been
15 divided into four phases: G1, S, G2, and M. During the G1 phase, cells undergo activities that prepare for DNA replication. S, or synthesis, phase begins as cells initiate DNA replication and ends with the formation of two identical copies of each chromosome. G2, the stage that begins after replication is complete, is when cells ensure that they contain components needed for mitosis. M phase, or mitosis, is the
20 stage at which the cells divide each identical chromosome into two daughter cells.

Cells have mechanisms for sensing correct cell cycle progression and exposure to DNA damage, and proteins involved in these sensing mechanisms are termed checkpoints. Checkpoints signal cell cycle arrest to allow for completion of relevant events or repair of DNA damage. There are checkpoints that monitor
25 progression through the cycle at G1, S, G2, and M. DNA damage checkpoints also exist at these stages of the cell cycle. Failure to correct DNA damage may signal the cell to undergo programmed cell death or apoptosis.

Members of the phosphatidylinositol kinase (PIK)-related family of kinases are involved in cell cycle checkpoints and DNA damage repair. To date, five
30 PIK-related protein kinases have been identified. Genes in this family, which includes ATM, ATR, FRAP and DNA-PKcs, encode large proteins (280-450 kD) that exhibit

- 2 -

homology to kinases at the carboxy terminus. While the predicted amino acid sequences of the kinase domains are most closely related to lipid kinases, all have been shown to function as protein kinases, and, presumably, each of these proteins participate in a signal transduction cascade leading to cell cycle arrest, cell cycle progression, and/or DNA repair.

The ataxia-telangiectasia mutated (ATM) gene product has been shown to play a role in a DNA damage checkpoint in response to ionizing radiation (IR). Patients lacking functional ATM develop the disease ataxia-telangiectasia (A-T). Symptoms of A-T include extreme sensitivity to irradiation, cerebellar degeneration, oculocutaneous telangiectasias, gonadal deficiencies, immunodeficiencies, and increased risk of cancer [Lehman and Carr, *Trends in Genet.* 11:375-377 (1995)]. Fibroblasts derived from these patients show defects in G1, S, and G2 checkpoints [Painter and Young, *Proc. Natl. Acad. Sci. (USA)* 77:7315-7317 (1980)] and are defective in their response to irradiation. ATM is thought to sense double strand DNA damage caused by irradiation and radiomimetic drugs, and to signal cell cycle arrest so that the damage can be repaired.

The DNA-stimulated protein kinase, DNA-PKcs has been demonstrated to play an important role in repair of double strand breaks. Mice defective in DNA-PK demonstrate immunodeficiencies and sensitivity to irradiation. In addition, these mice are defective in V(D)J recombination. These results suggest that DNA-PK plays a role in repairing normal double strand DNA breaks generated during V(D)J recombination, as well as double strand breaks generated by DNA damaging agents. While DNA-PK defective cells have not been shown to be deficient in cell cycle checkpoints, it is reasonable to assume that the cell cycle must arrest, if only transiently, in order to repair double strand breaks.

ATR has been found to act as a checkpoint protein stimulated by agents that cause double strand DNA breaks, agents that cause single strand DNA breaks, and agents that block DNA replication [Cliby, *et al.*, *EMBO J.* 17:159-169 (1998); Wright, *et al.*, *Proc. Natl. Acad. Sc. (USA)* 95:7445-7450 (1998)]. Overexpression of ATR in muscle cells on iso-chromosome 3q results in a block to differentiation, gives rise to abnormal centrosome numbers and chromosome instability, and abolishes the G1

arrest in response to irradiation [Smith, *et al.* *Nat. Genetics* 19:39-46 (1998)]. Overexpression of a dominant negative mutant of ATR sensitizes cells to irradiation and cisplatin [Cliby, *et al.*, *supra*] and the cells fail to arrest in G2 in response to irradiation. ATR is found associated with chromosomes in meiotic cells where DNA breaks and abnormal DNA structures that persist as a result of the process of meiotic recombination [Keegan, *et al.*, *Genes Dev.* 10:2423-2437 (1996)]. These data suggest that ATR, like ATM, senses DNA damage and effects a cell cycle arrest in order to allow for DNA repair.

FRAP, the target of the potent immunosuppressant rapamycin, has been demonstrated to be involved in the control of translation initiation and progression through the G1 phase of the cell cycle in response to nutrients [Kuruvilla and Shrieber, *Chemistry and Biology* 6:R129-R136 (1999)]. FRAP regulates translation initiation by phosphorylation of the p70^{S6K} protein kinase and the 4E-BP1 translation regulator. While ATM, ATR, and DNA-PK are thought to sense lesions in nucleic acids, FRAP is thought to sense intracellular levels of amino acids pools. In cells lacking proper nutrients that are amino acid starved, uncharged amino acid levels rise. FRAP may sense these uncharged amino acids, become activated, and signal G1 cell cycle arrest [Kuruvilla and Shrieber, *supra*]

In yeast, Tor1p and Tor2p proteins show significant homology to FRAP. Both Tor1p and Tor2p are sensitive to rapamycin and both are involved in initiation of translation as well as G1 progression in response to nutrient conditions. Tor2p also plays a role in organization of actin cytoskeleton, but this activity is not blocked by rapamycin. These observations suggest that Tor2p stimulates two distinct signal transduction pathways.

An additional PIK-related family member, TRRAP, was recently identified as a member of a protein complex containing the cell cycle regulators, c-myc and E2F-1 [McMahon *et al.*, *Cell* 94:363-374 (1998)]. While TRRAP shows significant sequence homology to the protein kinase domain of the other PIK-related kinases, the protein lacks critical residues required for protein kinase activity. Studies have failed to show protein kinase activity, but others have shown that TRRAP contains a histone acetyltransferase (HAT) activity. Interestingly, overexpression of TRRAP

- 4 -

dominant inhibiting mutants or anti-sense constructs of TRRAP blocked oncogenic transformation of cultured cells transformed by c-myc or the viral oncogene, E1A [McMahon *et al.*, *supra*]. These results suggest that TRRAP also plays an important role in regulating cell cycle progression and preventing oncogenesis.

5 In general, the proteins in this family of kinases play important roles in surveillance of DNA and cell cycle progression in order to insure genetic integrity from generation to generation. All cancer cells have a dysfunctional cell cycle and continue through the cell cycle in an inappropriate manner, either by failing to respond to negative growth signals or by failing to die in response to the appropriate signal. In
10 addition, most cancer cells lack genomic integrity and often have an increased chromosome count compared to normal cells. Inhibitors of cell cycle checkpoints or DNA damage repair in combination with the cytotoxic agents may force cancer cells to die by forcing them to continue to progress through the cell cycle in the presence of DNA damaging agents such that they undergo catastrophic events that lead to cell
15 death. Further, inhibitors of cell cycle progression may act to inhibit activation of cells involved in an inflammatory response and therefore inhibit inflammation.

Thus there exists a need in the art to identify additional members of the family of PIK-related kinases, and in particular, those that play roles in regulation of cell cycle progression, cell cycle checkpoints, and DNA damage repair.

20

BRIEF DESCRIPTION OF THE INVENTION

The present invention provides purified and isolated Atr-2 polypeptides. In one aspect, the Atr-2 polypeptide comprises the amino acid sequence set out in SEQ ID NO: 2. The invention also provides mature Atr-2 polypeptides, preferably encoded
25 by a polynucleotide comprising the sequence set out in SEQ ID NO: 1. Atr-2 polypeptides of the invention include those encoded by a polynucleotide selected from the group consisting of: a) the polynucleotide set out in SEQ ID NO: 1; b) a polynucleotide encoding a polypeptide encoded by the polynucleotide of (a), and c) a polynucleotide that hybridizes to the complement of the polynucleotide of (a) or (b)
30 under moderately stringent conditions.

The invention also provides polynucleotides encoding Atr-2

polypeptides. In one aspect, the Atr-2 encoding polynucleotide comprises the sequence set forth in SEQ ID NO: 1. The invention also provides polynucleotides encoding a human Atr-2 polypeptide selected from the group consisting of: a) the polynucleotide set out in SEQ ID NO: 1; b) a polynucleotide encoding a polypeptide encoded by the 5 polynucleotide of (a), and c) a polynucleotide that hybridizes to the complement of the polynucleotide of (a) or (b) under moderately stringent conditions. Polynucleotides of the invention include DNA molecules, cDNA molecules, genomic DNA molecules, as well as wholly or partially chemically synthesized DNA molecule. The invention further provide fragments of polynucleotides of the invention, and preferably fragments 10 of the polynucleotide set out in SEQ ID NO: 1.

Antisense polynucleotides which specifically hybridize with the complement of a polynucleotide of the invention are also provided.

The invention further provides expression constructs comprising a polynucleotide of the invention, as well as host cells transformed or transfected with 15 an expression construct of the invention.

Method for producing an Atr-2 polypeptide are also provided, comprising the steps of: a) growing a transformed or transfected host cell of the invention under conditions appropriate for expression of the Atr-2 polypeptide and b) isolating the Atr-2 polypeptide from the host cell or medium of the host cell's growth.

20 The invention also provides antibodies specifically immunoreactive with a polypeptide of the invention. Preferably, the antibodies are monoclonal antibodies. Hybridomas which produce the antibodies are also provided, as are anti-idiotype antibodies specifically immunoreactive with an antibody of the invention.

25 The invention further provides methods to identify a binding partner compound of an Atr-2 polypeptide comprising the steps of: a) contacting the Atr-2 polypeptide with a compound under conditions which permit binding between the compound and the Atr-2 polypeptide; and b) detecting binding of the compound to the Atr-2 polypeptide. Preferably, the binding partner modulates activity of the Atr-2 polypeptide. In one aspect the binding partner inhibits activity of the Atr-2 30 polypeptide, and in another aspect, binding partner enhances activity of the Atr-2 polypeptide.

The invention also provide methods to identify a binding partner compound of an Atr-2-encoding polynucleotide of the invention steps of: a) contacting the Atr-2-encoding polynucleotide with a compound under conditions which permit binding between the compound and the Atr-2-encoding polynucleotide; and b) detecting binding of the compound to the Atr-2-encoding polynucleotide. Preferably, the specific binding partner modulates expression of an Atr-2 polypeptide encoded by the Atr-2-encoding polynucleotide. In one aspect, the binding partner compound inhibits expression of the Atr-2 polypeptide, while in another aspect, the binding partner compound enhances expression of the Atr-2 polypeptide.

10 The invention further provides compounds identified by methods of the invention, as well as compositions comprising a compound identified by a method of the invention and a pharmaceutically acceptable carrier.

DETAILED DESCRIPTION OF THE INVENTION

15 In brief, the present invention provides purified and isolated polynucleotides encoding Atr-2 polypeptides. The invention includes both naturally occurring and non-naturally occurring Atr-2-encoding polynucleotides. Naturally occurring polynucleotides of the invention include distinct gene species within the Atr-2 family, including, for example, allelic and splice variants, as well as species homologs
20 (or orthologs) expressed in cells of other animals. Non-naturally occurring Atr-2 encoding polynucleotides include analogs or variants of the naturally occurring products, such as insertion variants, deletion variants, substitution variants, and derivatives, as described below. In a preferred embodiment, the invention provides a polynucleotide comprising the sequence set forth in SEQ ID NO: 1. The invention also
25 embraces polynucleotides encoding the amino acid sequence set out in SEQ ID NO: 2. A presently preferred polypeptide of the invention comprises the amino acid sequence set out in SEQ ID NO: 2. Anti-sense polynucleotides are also provided.

30 The invention also provides expression constructs (or vectors) comprising polynucleotides of the invention, and host cells comprising a polynucleotide or an expression construct of the invention. Methods to produce a polypeptide of the invention are also comprehended. The invention further provides antibodies,

preferably monoclonal antibodies, specifically immunoreactive with a polypeptide of the invention, as well as hybridomas that secrete the antibodies.

The invention also provides Atr-2 polypeptides encoded by a polynucleotide of the invention. Atr-2 polypeptides include naturally and non-naturally occurring species. The invention further provides binding partner compounds that interact with an Atr-2 polypeptide of the invention. Methods to identify binding partner compounds are also provided, as well as methods to identify modulators of Atr-2 polypeptide biological activity.

The invention also provides materials and methods to regulate expression of Atr-2 including ribozymes, anti-sense polynucleotides, and compounds that form triplet helix.

Gene therapy techniques are also provided to modulate disease states associated with Atr-2 expression and/or biological activity.

The invention also provides compositions, and preferably pharmaceutical compositions, comprising an Atr-2 polypeptide, an Atr-2 antibody, a modulator of Atr-2 expression or biological activity, or a combination of these compounds. When compositions of the invention, and in particular pharmaceutical compositions, are used for therapeutic or prophylactic intervention, the compounds can include one or more pharmaceutically acceptable carriers. Methods of packaging a composition of the invention, as well as methods for delivery and therapeutic treatment are also provided.

In one aspect, the invention provides novel purified and isolated human polynucleotides (e.g., DNA sequences and RNA transcripts, both sense and complementary anti-sense strands, including splice variants thereof) encoding the human Atr-2 polypeptides. DNA sequences of the invention include genomic and cDNA sequences as well as wholly or partially chemically synthesized DNA sequences. Genomic DNA of the invention comprises the protein coding region for a polypeptide of the invention and includes allelic variants of the preferred polynucleotide of the invention. Genomic DNA of the invention is distinguishable from genomic DNAs encoding polypeptides other than Atr-2 in that it includes the Atr-2 protein coding region found in Atr-2-encoding cDNA of the invention. Genomic DNA of the invention can be transcribed into RNA, and the resulting RNA transcript may undergo

one or more splicing events wherein one or more introns (*i.e.*, non-coding regions) of the transcript are removed, or "spliced out." "Peptide nucleic acids (PNAs)" [Corey, *TIBTech* 15:224-229 (1997)] encoding a polypeptide of the invention are also contemplated. PNAs are DNA analogs containing neutral amide backbone linkages that are resistant to DNA degradation enzymes and which bind to complementary sequences at higher affinity than analogous DNA sequences as a result of the neutral charge on the backbone of the molecule. RNA transcripts that can be spliced by alternative mechanisms, and therefore be subject to removal of different RNA sequences but still encode an Atr-2 polypeptide, are referred to in the art as splice variants which are embraced by the invention. Splice variants comprehended by the invention therefore are encoded by the same DNA sequences but arise from distinct mRNA transcripts. Allelic variants are known in the art to be modified forms of a wild type gene sequence, the modification resulting from recombination during chromosomal segregation or exposure to conditions which give rise to genetic mutation. Allelic variants, like wild type genes, are inherently naturally occurring sequences (as opposed to non-naturally occurring variants which arise from *in vitro* manipulation).

The invention also comprehends cDNA that is obtained through reverse transcription of an RNA polynucleotide encoding Atr-2, followed by second strand synthesis of a complementary strand to provide a double stranded DNA.

"Chemically synthesized" as used herein and understood in the art, refers to polynucleotides produced by purely chemical, as opposed to enzymatic, methods. "Wholly" chemically synthesized DNA sequences are therefore produced entirely by chemical means, and "partially" synthesized DNAs embrace those wherein only portions of the resulting DNA were produced by chemical means.

A preferred DNA sequence encoding a human Atr-2 polypeptide is set out in SEQ ID NO: 1. The worker of skill in the art will readily appreciate that the preferred DNA of the invention comprises a double stranded molecule, for example, the molecule having the sequence set forth in SEQ ID NO: 1 along with the complementary molecule (the "non-coding strand" or "complement") having a sequence deducible from the sequence of SEQ ID NO: 1 according to Watson-Crick base pairing rules for DNA. In addition, single stranded polynucleotides, including RNA as well

as coding and noncoding DNAs, are also embraced the invention. Also preferred are polynucleotides encoding the Atr-2 polypeptide of SEQ ID NO: 2.

The invention further embraces species, preferably mammalian, homologs of the human Atr-2 DNA. Species homologs (also known in the art as orthologs), in general, share at least 35%, at least 40%, at least 45%, at least 50%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 98%, or at least 99% homology with a human DNA of the invention. Percent sequence "homology" with respect to polynucleotides of the invention is defined herein as the percentage of nucleotide bases in the candidate sequence that are identical to nucleotides in the Atr-2 sequence after aligning the sequences and introducing gaps, if necessary, to achieve the maximum percent sequence identity as discussed below.

The polynucleotide sequence information provided by the invention makes possible large scale expression of the encoded Atr-2 polypeptide by techniques well known and routinely practiced in the art. Polynucleotides of the invention also permit identification and isolation of polynucleotides encoding related Atr-2 polypeptides by well known techniques including Southern and/or Northern hybridization, polymerase chain reaction (PCR), and variations of PCR. Examples of related polynucleotides include human and non-human genomic sequences, including allelic variants, as well as polynucleotides encoding polypeptides homologous to Atr-2 and structurally related polypeptides sharing one or more biological, immunological, and/or physical properties of Atr-2.

The disclosure of a full length polynucleotide encoding an Atr-2 polypeptide makes readily available to the worker of ordinary skill in the art every possible fragment of the full length polynucleotide. The invention therefore provides fragments of Atr-2-encoding polynucleotides comprising at least 10 to 20, and preferably at least 15, consecutive nucleotides of a polynucleotide encoding Atr-2, however, the invention comprehends fragments of various lengths. Preferably, fragment polynucleotides of the invention comprise sequences unique to the Atr-2-encoding polynucleotide, and therefore hybridize under highly stringent or moderately stringent conditions only (*i.e.*, "specifically" or "exclusively") to polynucleotides

- 10 -

encoding Atr-2, or Atr-2 fragments thereof, containing the unique sequence. Polynucleotide fragments of genomic sequences of the invention comprise not only sequences unique to the coding region, but also include fragments of the full length sequence derived from introns, regulatory regions, and/or other non-translated 5 sequences. Sequences unique to polynucleotides of the invention are recognizable through sequence comparison to other known polynucleotides, and can be identified through use of alignment programs routinely utilized in the art, e.g., those made available in public sequence databases.

The invention also provides fragment polynucleotides that are conserved 10 in one or more polynucleotides encoding members of the Atr-2 family of polypeptides.

Such fragments include sequences characteristic of the family of Atr-2 polynucleotides, and are also referred to as "signature sequences." The conserved signature sequences are readily discernable following simple sequence comparison of polynucleotides encoding members of the Atr-2 family. Fragments of the invention can 15 be labeled in a manner that permits their detection, including radioactive and non-radioactive labeling.

Fragment polynucleotides are particularly useful as probes for detection of full length or other fragment Atr-2 polynucleotides. One or more fragment polynucleotides can be included in kits that are used to detect the presence of a 20 polynucleotide encoding Atr-2, or used to detect variations in a polynucleotide sequence encoding Atr-2, including polymorphisms, and particularly single nucleotide polymorphisms. Kits of the invention optionally include a container and/or a label.

The invention also embraces naturally or non-naturally occurring Atr-2-encoding polynucleotides that are fused, or ligated, to a heterologous polynucleotide 25 to encode a fusion (or chimeric) protein comprising all or part of an Atr-2 polypeptide. "Heterologous" polynucleotides include sequences that are not found adjacent, or as part of, Atr-2-encoding sequences in nature. The heterologous polynucleotide sequence can be separated from the Atr-2-coding sequence by an encoded cleavage site that will permit removal of non-Atr-2 polypeptide sequences from the expressed fusion protein.

Heterologous polynucleotide sequences can include those encoding epitopes, such as 30 poly-histidine sequences, FLAG[®] tags, glutathione-S-transferase, thioredoxin, and/or

maltose binding protein domains, that facilitate purification of the fusion protein; those encoding domains, such as leucine zipper motifs, that promote multimer formation between the fusion protein and itself or other proteins; and those encoding immunoglobulins or fragments thereof that can enhance circulatory half-life of the
5 encoded protein.

The invention also embraces DNA sequences encoding Atr-2 species that hybridize under highly or moderately stringent conditions to the non-coding strand, or complement, of the polynucleotide in SEQ ID NO: 1. Atr-2-encoding polynucleotides of the invention include a) the polynucleotide set out in SEQ ID NO: 2; b)
10 polynucleotides encoding a polypeptide encoded by the polynucleotide of (a), and c) polynucleotides that hybridize to the complement of the polynucleotides of (a) or (b) under moderately or highly stringent conditions. Exemplary high stringency conditions include a final wash in 0.2X SSC/0.1% SDS at 65°C to 75°C, and exemplary moderate stringency conditions include a final wash at 2X to 3X SSC/0.1% SDS at
15 65°C to 75°C. It is understood in the art that conditions of equivalent stringency can be achieved through variation of temperature and buffer, or salt concentration as described in Ausubel, *et al.* (Eds.), Protocols in Molecular Biology, John Wiley & Sons (1994), pp. 6.0.3 to 6.4.10. Modifications in hybridization conditions can be empirically determined or precisely calculated based on the length and the percentage
20 of guanosine/cytosine (GC) base pairing of the probe. The hybridization conditions can be calculated as described in Sambrook, *et al.*, (Eds.), Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press: Cold Spring Harbor, New York (1989), pp. 9.47 to 9.51.

Autonomously replicating recombinant expression constructs such as
25 plasmid and viral DNA vectors incorporating Atr-2-encoding sequences are also provided. Expression constructs wherein Atr-2-encoding polynucleotides are operatively linked to an endogenous or exogenous expression control DNA sequence and a transcription terminator are also provided. Expression control DNA sequences include promoters, enhancers, and/or operators, and are generally selected based on
30 the expression systems in which the expression construct is to be utilized. Preferred promoter and enhancer sequences are generally selected for the ability to increase gene

expression, while operator sequences are generally selected for the ability to regulate gene expression. It is understood in the art that the choice of host cell is relevant to selection of an appropriate regulatory sequence. Expression constructs of the invention may also include sequences encoding one or more selectable markers that permit identification of host cells bearing the construct. Expression constructs may also include sequences that facilitate, and preferably promote, homologous recombination in a host cell. Preferred constructs of the invention also include sequences necessary for replication in a host cell.

Expression constructs are preferably utilized for production of an encoded protein, but may also be utilized to amplify the construct itself when other amplification techniques are impractical.

According to another aspect of the invention, host cells are provided, including prokaryotic and eukaryotic cells, comprising a polynucleotide of the invention in a manner which permits expression of the encoded Atr-2 polypeptide. Polynucleotides of the invention may be introduced into the host cell as part of a circular plasmid, or as linear DNA comprising an isolated protein coding region or a viral vector. Methods for introducing DNA into the host cell well known and routinely practiced in the art include transformation, transfection, electroporation, nuclear injection, or fusion with carriers such as liposomes, micelles, ghost cells, protoplasts, and other transformed cells. Expression systems of the invention include bacterial, yeast, fungal, plant, insect, invertebrate, and mammalian cells systems.

Host cells of the invention are a valuable source of immunogen for development of antibodies specifically, *i.e.*, exclusively, immunoreactive with Atr-2. Host cells of the invention are also useful in methods for large scale production of Atr-2 polypeptides wherein the cells are grown in a suitable culture medium and the desired polypeptide products are isolated from the cells or from the medium in which the cells are grown by purification methods known in the art, *e.g.*, conventional chromatographic methods including immunoaffinity chromatography, receptor affinity chromatography, hydrophobic interaction chromatography, lectin affinity chromatography, size exclusion filtration, cation or anion exchange chromatography, high pressure liquid chromatography (HPLC), reverse phase HPLC, and the like. Still

other methods of purification include those wherein the desired protein is expressed and purified as a fusion protein having a specific tag, label, or chelating moiety that is recognized by a specific binding partner or agent. The purified protein can be cleaved to yield the desired protein, or be left as an intact fusion protein. Cleavage of the 5 fusion component may produce a form of the desired protein having additional amino acid residues as a result of the cleavage process.

Knowledge of Atr-2-encoding DNA sequences allows for modification of cells to permit, or increase, expression of endogenous Atr-2. Cells can be modified (e.g., by homologous recombination) to provide increased Atr-2 expression by 10 replacing, in whole or in part, the naturally occurring Atr-2 promoter with all or part of a heterologous promoter so that the cells express Atr-2 at higher levels. The heterologous promoter is inserted in such a manner that it is operatively linked to Atr-2-encoding sequences. See, for example, PCT International Publication No. WO 94/12650, PCT International Publication No. WO 92/20808, and PCT International 15 Publication No. WO 91/09955. It is also contemplated that, in addition to heterologous promoter DNA, amplifiable marker DNA (e.g., ada, dhfr, and the multifunctional CAD gene which encodes carbamyl phosphate synthase, aspartate transcarbamylase, and dihydroorotate) and/or intron DNA may be inserted along with the heterologous promoter DNA. If linked to the Atr-2 coding sequence, amplification 20 of the marker DNA by standard selection methods results in co-amplification of the Atr-2 coding sequences in the cells.

The DNA sequence information provided by the present invention also makes possible the development through, e.g. homologous recombination or "knock-out" strategies [Capechi, *Science* 244:1288-1292 (1989)], of animals that fail 25 to express functional Atr-2 or that express a variant of Atr-2. Such animals are useful as models for studying the *in vivo* activities of Atr-2 and modulators of Atr-2.

The invention also provides purified and isolated mammalian Atr-2 polypeptides encoded by a polynucleotide of the invention. Presently preferred is a human Atr-2 polypeptide comprising the amino acid sequence set out in SEQ ID NO: 30 2. Mature Atr-2 polypeptides are also provided, wherein leader and/or signal sequences are removed. The invention also embraces Atr-2 polypeptides encoded by

a DNA selected from the group consisting of : a) the polynucleotide set out in SEQ ID NO: 1; b) polynucleotides encoding a polypeptide encoded by the polynucleotide of (a), and c) polynucleotides that hybridize to the complement of the polynucleotides of (a) or (b) under moderate or high stringency conditions.

5 The invention also embraces polypeptides have at least 99%, at least 95%, at least 90%, at least 85%, at least 80%, at least 75%, at least 70%, at least 65%, at least 60%, at least 55% or at least 50% identity and/or homology to the preferred polypeptide of the invention. Percent amino acid sequence "identity" with respect to the preferred polypeptide of the invention is defined herein as the percentage of amino acid residues in the candidate sequence that are identical with the residues in the Atr-2 sequence after aligning both sequences and introducing gaps, if necessary, to achieve the maximum percent sequence identity, and not considering any conservative substitutions as part of the sequence identity. Percent sequence "homology" with respect to the preferred polypeptide of the invention is defined herein as the percentage of amino acid residues in the candidate sequence that are identical with the residues in the Atr-2 sequence after aligning the sequences and introducing gaps, if necessary, to achieve the maximum percent sequence identity, and also considering any conservative substitutions as part of the sequence identity.

10

15

In one aspect, percent homology is calculated as the percentage of amino acid residues in the smaller of two sequences which align with identical amino acid residue in the sequence being compared, when four gaps in a length of 100 amino acids are introduced to maximize alignment [Dayhoff, in Atlas of Protein Sequence and Structure, Vol. 5, p. 124, National Biochemical Research Foundation, Washington, D.C. (1972), incorporated herein by reference].

20 Preferred methods to determine identity and/or similarity are designed to give the largest match between the sequences tested. Methods to determine identity and similarity are codified in publicly available computer programs. Preferred computer program methods to determine identity and similarity between two sequences include, but are not limited to, the GCG program package, including GAP (Devereux, J., et al., Nucleic Acids Research 12(1):387 (1984); Genetics Computer Group, University of Wisconsin, Madison, WI), BLASTP, BLASTN, and FASTA (Atschul,

25

30

- 15 -

S.F. et al., J. Molec. Biol. 215:403-410 (1990). The BLAST X program is publicly available from the National Center for Biotechnology Information (NCBI) and other sources (BLAST Manual, Altschul, S., et al. NCB NLM NIH Bethesda, MD 20894; Altschul, S., et al., J. Mol. Biol. 215:403-410 (1990). The well known Smith Waterman algorithm may also be used to determine identity.

By way of example, using the computer algorithm GAP (Genetics Computer Group, University of Wisconsin, Madison, WI), two polypeptides for which the percent sequence identity is to be determined are aligned for optimal matching of their respective amino acids (the "matched span", as determined by the algorithm). A gap opening penalty (which is calculated as 3 X the average diagonal; the "average diagonal" is the average of the diagonal of the comparison matrix being used; the "diagonal" is the score or number assigned to each perfect amino acid match by the particular comparison matrix) and a gap extension penalty (which is usually 1/10 times the gap opening penalty), as well as a comparison matrix such as PAM 250 or BLOSUM 62 are used in conjunction with the algorithm. A standard comparison matrix (see Dayhoff et al., in: *Atlas of Protein Sequence and Structure*, vol. 5, supp.3 [1978] for the PAM250 comparison matrix; see Henikoff et al., *Proc. Natl. Acad. Sci. USA*, 89:10915-10919 [1992] for the BLOSUM 62 comparison matrix) is also used by the algorithm.

Preferred parameters for polypeptide sequence comparison include the following:

Algorithm: Needleman and Wunsch, *J. Mol. Biol.* 48:443-453 (1970),
Comparison matrix: BLOSUM 62 from Henikoff and Henikoff, *Proc. Natl. Acad. Sci. USA* 89:10915-10919 (1992).

Gap Penalty: 12

Gap Length Penalty: 4

Threshold of Similarity: 0

The GAP program is useful with the above parameters. The aforementioned parameters are the default parameters for polypeptide comparisons (along with no penalty for end gaps) using the GAP algorithm.

Preferred parameters for nucleic acid molecule sequence comparison

include the following:

Algorithm: Needleman and Wunsch, J. Mol Biol. 48:443-453 (1970)

Comparison matrix: matches = +10, mismatch = 0

Gap Penalty: 50

5 Gap Length Penalty: 3

The GAP program is also useful with the above parameters. The aforementioned parameters are the default parameters for nucleic acid molecule comparisons.

Other exemplary algorithms, gap opening penalties, gap extension 10 penalties, comparison matrices, thresholds of similarity, etc. may be used by those of skill in the art, including those set forth in the Program Manual, Wisconsin Package, Version 9, September, 1997. The particular choices to be made will depend on the specific comparison to be made, such as DNA to DNA, protein to protein, protein to DNA; and additionally, whether the comparison is between pairs of sequences (in 15 which case GAP or BestFit are generally preferred) or between one sequence and a large database of sequences (in which case FASTA or BLASTA are preferred).

Certain alignment schemes for aligning two amino acid sequences may result in matching of only a short region of the two sequences, and this small aligned 20 region may have very high sequence identity even though there is no significant relationship between the two full length sequences. Accordingly, in a preferred embodiment, the selected alignment method will result in an alignment that spans at least about 66 contiguous amino acids of the claimed full length polypeptide.

Polypeptides of the invention may be isolated from natural cell sources or may be chemically synthesized, but are preferably produced by recombinant 25 procedures involving host cells of the invention. Use of mammalian host cells is expected to provide for such post-translational modifications (e.g., glycosylation, truncation, lipidation, and phosphorylation) as may be needed to confer optimal biological activity on recombinant expression products of the invention. Glycosylated and non-glycosylated form of Atr-2 polypeptides are embraced.

30 The invention also embraces variant (or analog) Atr-2 polypeptides.

In one example, insertion variants are provided wherein one or more

amino acid residues supplement an Atr-2 amino acid sequence. Insertions may be located at either or both termini of the protein, or may be positioned within internal regions of the Atr-2 amino acid sequence. Insertional variants with additional residues at either or both termini can include for example, fusion proteins and proteins including 5 amino acid tags or labels. Insertion variants include Atr-2 polypeptides wherein one or more amino acid residues are added to a fragment of an Atr-2 amino acid sequence. Variant products of the invention also include mature Atr-2 products, *i.e.*, Atr-2 polypeptide products wherein leader or signal sequences are removed, and additional 10 amino terminal residues have been inserted. The additional amino terminal residues may be derived from another protein, or may include one or more residues that are not identifiable as being derived from a specific protein. Atr-2 products with an additional methionine residue at position -1 (Met¹-Atr-2) are contemplated, as are Atr-2 products with additional methionine and lysine residues at positions -2 and -1 (Met²-Lys⁻¹-Atr-2). Variants of Atr-2 with additional Met, Met-Lys, Lys residues (or one or more 15 basic residues in general) are particularly useful for enhanced recombinant protein production in bacterial host cell. Heterologous amino acid sequences can also include protein transduction domains that target the lipid bilayer of a cell membrane and permit protein transduction into cells in an indiscriminate manner [Schwarze, *et al.*, *Science* 285.:1569-1572 (1999)]. Fusion polypeptides of this type are particularly well suited 20 for delivery to the cytoplasm and nucleus of cells, and also to cells across the blood-barrier.

The invention also embraces Atr-2 variants having additional amino acid residues which result from use of specific expression systems. For example, use of commercially available vectors that express a desired polypeptide as part of 25 glutathione-S-transferase (GST) fusion product provides the desired polypeptide having an additional glycine residue at position -1 after cleavage of the GST component from the desired polypeptide. Variants which result from expression in other vector systems are also contemplated.

Insertional variants also include fusion proteins wherein the amino 30 and/or carboxy termini of the Atr-2- polypeptide is fused to another polypeptide. Examples of other polypeptides are immunogenic polypeptides, proteins with long

circulating half life such as immunoglobulin constant regions, marker proteins (e.g., fluorescent, chemiluminescence, enzymes, and the like) proteins or polypeptide that facilitate purification of the desired Atr-2 polypeptide, and polypeptide sequences that promote formation of multimeric proteins (such as leucine zipper motifs that are useful in dimer formation/stability). Fusion proteins wherein an Atr-2 polypeptide is conjugated to a hapten or other agent to improve, *i.e.*, enhance, immungenicity, are also provided.

In another aspect, the invention provides deletion variants wherein one or more amino acid residues in an Atr-2 polypeptide are removed. Deletions can be effected at one or both termini of the Atr-2 polypeptide, or with removal of one or more residues within the Atr-2 amino acid sequence. Deletion variants, therefore, include all fragments of an Atr-2 polypeptide. Disclosure of the complete Atr-2 amino acid sequences necessarily makes available to the worker of ordinary skill in the art every possible fragment of the Atr-2 polypeptide.

The invention also embraces polypeptide fragments of the sequence set out in SEQ ID NO: 2 wherein the fragments maintain biological, immunological, physical, and/or chemical properties of an Atr-2 polypeptide. Fragments comprising at least 5, 10, 15, 20, 25, 30, 35, or 40 consecutive amino acids of SEQ ID NO: 2 are comprehended by the invention. Preferred polypeptide fragments display antigenic and/or biological properties unique to or specific for the Atr-2 family of polypeptides. Fragments of the invention having the desired biological and immunological properties can be prepared by any of the methods well known and routinely practiced in the art.

In still another aspect, the invention provides substitution variants of Atr-2 polypeptides. Particularly preferred variants include dominant negative mutants that lack kinase activity. Substitution variants include those polypeptides wherein one or more amino acid residues of an Atr-2 polypeptide are removed and replaced with alternative residues. In one aspect, the substitutions are conservative in nature, however, the invention embraces substitutions that are also non-conservative. Conservative substitutions for this purpose may be defined as set out in Tables A, B, or C below.

Variant polypeptides include those wherein conservative substitutions have been introduced by modification of polynucleotides encoding polypeptides of the

- 19 -

invention. Amino acids can be classified according to physical properties and contribution to secondary and tertiary protein structure. A conservative substitution is recognized in the art as a substitution of one amino acid for another amino acid that has similar properties. Exemplary conservative substitutions are set out in Table A (from 5 WO 97/09433, page 10, published March 13, 1997 (PCT/GB96/02197, filed 9/6/96), immediately below, wherein amino acids are listed by standard one letter designations.

**Table I
Conservative Substitutions I**

	<u>SIDE CHAIN CHARACTERISTIC</u>	<u>AMINO ACID</u>
	Aliphatic	
	Non-polar	G A P I L V
15	Polar - uncharged	C S T M N Q
	Polar - charged	D E K R
20	Aromatic	H F W Y
	Other	N Q D E

Alternatively, conservative amino acids can be grouped as described in Lehninger, [Biochemistry, Second Edition; Worth Publishers, Inc. NY:NY (1975), pp.71-77] as 25 set out in Table B, immediately below.

**Table B
Conservative Substitutions II**

	<u>SIDE CHAIN CHARACTERISTIC</u>	<u>AMINO ACID</u>
30	Non-polar (hydrophobic)	
	A. Aliphatic:	A L I V P
35	B. Aromatic:	F W
	C. Sulfur-containing:	M
	D. Borderline:	G
	Uncharged-polar	
40	A. Hydroxyl:	S T Y
	B. Amides:	N Q
	C. Sulfhydryl:	C
	D. Borderline:	G
	Positively Charged (Basic):	K R H
	Negatively Charged (Acidic):	D E

45

- 20 -

As still another alternative, exemplary conservative substitutions are set out in Table C, immediately below.

Table C
Conservative Substitutions III

5

10

15

20

25

<u>Original Residue</u>	<u>Exemplary Substitution</u>
Ala (A)	Val, Leu, Ile
Arg (R)	Lys, Gln, Asn
Asn (N)	Gln, His, Lys, Arg
Asp (D)	Glu
Cys (C)	Ser
Gln (Q)	Asn
Glu (E)	Asp
His (H)	Asn, Gln, Lys, Arg
Ile (I)	Leu, Val, Met, Ala, Phe,
Leu (L)	Ile, Val, Met, Ala, Phe
Lys (K)	Arg, Gln, Asn
Met (M)	Leu, Phe, Ile
Phe (F)	Leu, Val, Ile, Ala
Pro (P)	Gly
Ser (S)	Thr
Thr (T)	Ser
Trp (W)	Tyr
Tyr (Y)	Trp, Phe, Thr, Ser
Val (V)	Ile, Leu, Met, Phe, Ala

30

The invention also provides derivatives of Atr-2 polypeptides.

Derivatives include Atr-2 polypeptides bearing modifications other than insertion, deletion, or substitution of amino acid residues. Preferably, the modifications are covalent in nature, and include for example, chemical bonding with polymers, lipids, other organic, and inorganic moieties. Derivatives of the invention may be prepared

to increase circulating half-life of a Atr-2 polypeptide, to improve targeting capacity for the polypeptide to desired cells, tissues, or organs, and/or to modulate (increase or decrease) biological and/or immunological activity.

The invention further embraces Atr-2 products covalently modified or derivatized to include one or more water soluble polymer attachments such as polyethylene glycol, polyoxyethylene glycol, polypropylene glycol or any of the many other polymers well known in the art, including, for example, monomethoxy-polyethylene glycol, dextran, cellulose, or other carbohydrate based polymers, poly-(N-vinyl pyrrolidone)-polyethylene glycol, propylene glycol homopolymers, a polypropylene oxide/ethylene oxide co-polymer, polyoxyethylated polyols (e.g., glycerol) and polyvinyl alcohol, as well as mixtures of these polymers. Particularly preferred are Atr-2 products covalently modified with polyethylene glycol (PEG) subunits. Water soluble polymers may be bonded at specific positions, for example at the amino terminus of the Atr-2 products, or randomly attached to one or more side chains of one or more amino acid residues in the polypeptide.

The invention further comprehends Atr-2 polypeptides having combinations of insertions, deletions, substitutions, or derivatizations.

Also comprehended by the present invention are antibodies (e.g., monoclonal and polyclonal antibodies, single chain antibodies, chimeric antibodies, bifunctional/bispecific antibodies, humanized antibodies, human antibodies, bispecific antibodies, and complementary determining region (CDR)-grafted antibodies/proteins, including compounds which include CDR and/or antigen-binding sequences, which specifically recognize a polypeptide of the invention) and other binding proteins specific for Atr-2 products or fragments thereof. Preferred antibodies of the invention are human antibodies which are produced and identified according to methods described in WO93/11236, published June 20, 1993, which is incorporated herein by reference in its entirety. Antibody fragments, including Fab, Fab', F(ab')₂, and Fv, are also provided by the invention. The term "specific for" indicates that the variable regions of the antibodies of the invention recognize and bind Atr-2 polypeptides exclusively (*i.e.*, able to distinguish Atr-2 polypeptides from the family of ATR polypeptides despite sequence identity, homology, or similarity found in the family of

polypeptides), but may also interact with other proteins (for example, *S. aureus* protein A or other antibodies in ELISA techniques) through interactions with sequences outside the variable or CDR regions of the antibodies, and in particular, in the constant region of the molecule. Screening assays to determine binding specificity or exclusivity of an antibody of the invention are well known and routinely practiced in the art. For a comprehensive discussion of such assays, see Harlow *et al.* (Eds), Antibodies A Laboratory Manual; Cold Spring Harbor Laboratory; Cold Spring Harbor , NY (1988), Chapter 6. Antibodies that recognize and bind fragments of the Atr-2 polypeptides of the invention are also contemplated, provided that the antibodies are first and foremost specific or exclusive for, as defined above, Atr-2 polypeptides. As with antibodies that are specific for full length Atr-2 polypeptides, antibodies of the invention that recognize Atr-2 fragments are those which can distinguish Atr-2 polypeptides from the family of ATR polypeptides despite inherent sequence identity, homology, or similarity found in the family of proteins.

Antibodies of the invention can be produced using any method well known and routinely practiced in the art, using any polypeptide, or immunogenic fragment thereof, of the invention. Immunogenic polypeptides can be isolated from natural sources, from recombinant host cells, or can be chemically synthesized. Protein of the invention may also be conjugated to a hapten such as keyhole limpet hemocyanin (KLH) in order to increase immunogenicity. Methods for synthesizing such peptides are known in the art, for example, as in R. P. Merrifield, *J. Amer. Chem. Soc.* 85: 2149-2154 (1963); J. L. Krstenansky, *et al.*, *FEBS Lett.* 211:10 (1987). Antibodies to a polypeptide of the invention can also be prepared through immunization using a polynucleotide of the invention, as described in Fan *et al.*, *Nat. Biotech.* 17:870-872 (1999). DNA encoding a polypeptide may be used to generate antibodies against the encoded polypeptide following topical administration of naked plasmid DNA or following injection, and preferably intramuscular injection, or the DNA.

Non-human antibodies may be humanized by any methods known in the art. In one method, the non-human CDRs are inserted into a human antibody or consensus antibody framework sequence. Further changes can then be introduced into

the antibody framework to modulate affinity or immunogenicity.

Antibodies of the invention further include plastic antibodies or molecularly imprinted polymers (MIPs) [Haupt and Mosbauch, *TIBTech* 16:468-475] (1998)]. Antibodies of this type are particularly useful in immunoaffinity separation, 5 chromatography, solid phase extraction, immunoassays, for use as immunosensors, and for screening chemical or biological libraries. A typical method of preparation is described in Haupt and Mosbauch [*supra*]. Advantages of antibodies of this type are that no animal immunization is required, the antibodies are relatively inexpensive to produce, they are resistant to organic solvents, and they are reusable over long period 10 of time.

Antibodies of the invention can also include one or more labels that permit detection of the antibody, and in particular, antibody binding. Labels can include, for example, radioactivity, fluorescence (or chemiluminescence), one of a high affinity binding pair (*e.g.*, biotin / avidin), enzymes, or combinations of one or more 15 of these labels.

Antibodies of the invention are useful for, for example, therapeutic purposes (by modulating activity of Atr-2), diagnostic purposes to detect or quantitate Atr-2, as well as purification of Atr-2. Kits comprising an antibody of the invention for any of the purposes described herein are also comprehended. In general, a kit of 20 the invention also includes a control antigen for which the antibody is immunospecific. Kits of the invention optionally include a container and/or a label.

The DNA and amino acid sequence information provided by the present invention also makes possible the systematic analysis of the structure and function of Atr-2. DNA and amino acid sequence information for Atr-2 also permits identification 25 of binding partner compounds with which an Atr-2 polypeptide or polynucleotide will interact. Methods to identify binding partner compounds include solution assays, *in vitro* assays wherein Atr-2 polypeptides are immobilized, and cell based assays. Identification of binding partner compounds of Atr-2 polypeptides provides potential targets for therapeutic or prophylactic intervention in pathologies associated with Atr-2 30 biological activity.

Specific binding proteins can be identified or developed using isolated

or recombinant Atr-2 products, Atr-2 variants or analogs, or cells expressing such products. Binding proteins are useful for purifying Atr-2 products and detection or quantification of Atr-2 products in fluid and tissue samples using known immunological procedures. Binding proteins are also manifestly useful in modulating (*i.e.*, blocking, 5 inhibiting, or stimulating) biological activities of Atr-2, especially those activities involved in signal transduction or biological pathways in general wherein Atr-2 participates directly or indirectly.

In solution assays, methods of the invention comprise the steps of (a) contacting an Atr-2 polypeptide with one or more candidate binding partner compounds 10 and (b) identifying the compounds that bind to the Atr-2 polypeptide. Identification of the compounds that bind the Atr-2 polypeptide can be achieved by isolating the Atr-2 polypeptide/binding partner complex, and separating the Atr-2 polypeptide from the binding partner compound. An additional step of characterizing the physical, biological, and/or biochemical properties of the binding partner compound is also 15 comprehended in another embodiment of the invention. In one aspect, the Atr-2 polypeptide/binding partner complex is isolated using a antibody immunospecific for either the Atr-2 polypeptide or the candidate binding partner compound. In another aspect, the complex is isolated using a second binding partner compound that interacts with either the Atr-2 polypeptide or the candidate binding partner compound.

In still another embodiment, either the polypeptide Atr-2 or the candidate binding partner compound comprises a label or tag that facilitates its isolation, and methods of the invention to identify binding partner compounds include a step of isolating the Atr-2 polypeptide/binding partner complex through interaction 20 with the label or tag. An exemplary tag of this type is a poly-histidine sequence, generally around six histidine residues, that permits isolation of a compound so labeled 25 using nickel chelation. Other labels and tags, such as the FLAG[®] tag (Eastman Kodak, Rochester, NY), thioredoxin, and/or maltose binding protein, each of which is well known and routinely used in the art and are embraced by the invention.

In an *in vitro* assay, methods of the invention comprise the steps of (a) contacting an immobilized Atr-2 polypeptide with a candidate binding partner compound and (b) detecting binding of the candidate compound to the Atr-2 30

polypeptide. In an alternative embodiment, the candidate binding partner compound is immobilized and binding of the Atr-2 polypeptide is detected. Immobilization is accomplished using any of the methods well known in the art, including covalent bonding to a support, a bead, or a chromatographic resin, as well as non-covalent, high affinity interaction such as antibody binding, or use of streptavidin/biotin binding wherein the immobilized compound includes a biotin or streptavidin moiety. Detection of binding can be accomplished (i) using a radioactive label on the compound that is not immobilized, (ii) using of a fluorescent label on the non-immobilized compound, (iii) using an antibody immunospecific for the non-immobilized compound, (iv) using a label on the non-immobilized compound that excites a fluorescent support to which the immobilized compound is attached, as well as other techniques well known and routinely practiced in the art.

In cell based assays of the invention to identify binding partner compounds of an Atr-2 polypeptide, methods comprise the steps of contacting an Atr-2 polypeptide in a cell with a candidate binding partner compound and detecting binding of the candidate binding partner compound to the Atr-2 polypeptide. A presently preferred method uses the dihybrid assay as previously described [Fields and Song, *Nature* 340:245-246 (1989); Fields, *Methods: A Companion to Methods in Enzymology* 5:116-124 (1993); U.S. Patent 5,283, 173 issued February 1, 1994 to Fields, *et al.*]. Modifications and variations on the di-hybrid assay (also referred to in the art as "two-hybrid" assay) have previously been described [Colas and Brent, *TIBTECH* 16:355-363 (1998)] and are embraced by the invention.

Agents that modulate (*i.e.*, increase, decrease, or block) Atr-2 activity or expression may be identified by incubating a putative modulator with an Atr-2 polypeptide or polynucleotide and determining the effect of the putative modulator on Atr-2 activity or expression. The selectivity, or specificity, of a compound that modulates the activity of Atr-2 can be evaluated by comparing its effects on Atr-2 or an Atr-2-encoding polynucleotide to its effect on other compounds. Cell based methods, such as di-hybrid assays to identify DNAs encoding binding compounds and split hybrid assays to identify inhibitors of Atr-2 polypeptide interaction with a known binding polypeptide, as well as *in vitro* methods, including assays wherein an Atr-2

polypeptide, Atr-2-encoding polynucleotide, or a binding partner are immobilized, and solution assays are contemplated by the invention.

Selective modulators may include, for example, antibodies and other proteins or peptides which specifically bind to an Atr-2 polypeptide or an Atr-2-encoding nucleic acid, oligonucleotides which bind to an Atr-2 polypeptide or an Atr-2 gene sequence, and other non-peptide compounds (*e.g.*, isolated or synthetic organic and inorganic molecules) which specifically react with an Atr-2 polypeptide or underlying nucleic acid. Preferably, modulators of the invention will bind specifically or exclusively to an Atr-2 polypeptide or Atr-2-encoding polynucleotide, however, modulators that bind an Atr-2 polypeptide or an Atr-2-encoding polynucleotide with higher affinity or avidity compared to other compounds are also contemplated. Mutant Atr-2 polypeptides which affect the enzymatic activity or cellular localization of the wild-type Atr-2 polypeptides are also contemplated by the invention. Presently preferred targets for the development of selective modulators include, for example: (1) regions of an Atr-2 polypeptide which contact other proteins, (2) regions that localize an Atr-2 polypeptide within a cell, (3) regions of an Atr-2 polypeptide which bind substrate, (4) allosteric regulatory binding site(s) of an Atr-2 polypeptide, (5) phosphorylation site(s) of an Atr-2 polypeptide as well as other regions of the protein wherein covalent modification regulates biological activity and (6) regions of an Atr-2 polypeptide which are involved in multimerization of subunits. Still other selective modulators include those that recognize specific Atr-2-encoding and regulatory polynucleotide sequences. Modulators of Atr-2 activity may be therapeutically useful in treatment of diseases and physiological conditions in which Atr-2 activity is known or suspected to be involved.

Methods of the invention to identify modulators include variations on any of the methods described above to identify binding partner compounds, the variations including techniques wherein a binding partner compound has been identified and the binding assay is carried out in the presence and absence of a candidate modulator. A modulator is identified in those instances where the level of binding between an Atr-2 polypeptide and a binding partner compound changes in the presence of the candidate modulator compared to the level of binding in the absence of the

candidate modulator compound. A modulator that increases binding between an Atr-2 polypeptide and the binding partner compound is described as an enhancer or activator, and a modulator that decreases binding between the Atr-2 polypeptide and the binding partner compound is described as an inhibitor. *In vitro* methods of the invention are particularly amenable to high throughput assays as described below.

In addition to the assays described above which can be modified to identify binding partner compounds, other methods are contemplated which as designed to more specifically identify modulators. In one aspect, methods of the invention comprehend use of the split hybrid assay as generally described in WO98/13502, published April 2, 1998. The invention also embraces variations on this method as described in WO95/20652, published August 3, 1995.

The invention also comprehends high throughput screening (HTS) assays to identify compounds that interact with or inhibit biological activity (*i.e.*, inhibit enzymatic activity, binding activity, *etc.*) of an Atr-2 polypeptide. HTS assays permit screening of large numbers of compounds in an efficient manner. Cell-based HTS systems are contemplated, including melanophore assays to investigate receptor-ligand interaction, yeast-based assay systems, and mammalian cell expression systems [Jayawickreme and Kost, *Curr. Opin. Biotechnol.* 8:629-634 (1997)]. Automated (robotic) and miniaturized HTS assays are also embraced [Houston and Banks, *Curr. Opin. Biotechnol.* 8:734-740 (1997)]. HTS assays are designed to identify "hits" or "lead compounds" having the desired property, from which modifications can be designed to improve the desired property. Chemical modification of the "hit" or "lead compound" is often based on an identifiable structure/activity relationship (SAR) between the "hit" and the Atr-2 polypeptide.

There are a number of different libraries used for the identification of small molecule modulators, including, (1) chemical libraries, (2) natural product libraries, and (3) combinatorial libraries comprised of random peptides, oligonucleotides or organic molecules.

Chemical libraries consist of structural analogs of known compounds or compounds that are identified as "hits" or "leads" via natural product screening. Natural product libraries are collections from microorganisms, animals, plants, or

marine organisms which are used to create mixtures for screening by: (1) fermentation and extraction of broths from soil, plant or marine microorganisms or (2) extraction of plants or marine organisms. Natural product libraries include polyketides, non-ribosomal peptides, and variants (non-naturally occurring) variants thereof. For a 5 review, see *Science* 282:63-68 (1998). Combinatorial libraries are composed of large numbers of peptides, oligonucleotides or organic compounds as a mixture. They are relatively easy to prepare by traditional automated synthesis methods, PCR, cloning or proprietary synthetic methods. Of particular interest are peptide and oligonucleotide 10 combinatorial libraries. Still other libraries of interest include peptide, protein, peptidomimetic, multiparallel synthetic collection, recombinatorial, and polypeptide libraries. For a review of combinatorial chemistry and libraries created therefrom, see Myers, *Curr. Opin. Biotechnol.* 8:701-707 (1997).

Identification of modulators through use of the various libraries described herein permits modification of the candidate "hit" (or "lead") to optimize the 15 capacity of the "hit" to modulate activity.

Also made available by the invention are anti-sense polynucleotides which recognize and hybridize to polynucleotides encoding Atr-2. Full length and fragment anti-sense polynucleotides are provided. The worker of ordinary skill will appreciate that fragment anti-sense molecules of the invention include (i) those which 20 specifically or exclusively recognize and hybridize to Atr-2-encoding RNA (as determined by sequence comparison of DNA encoding Atr-2 to DNA encoding other molecules) as well as (ii) those which recognize and hybridize to RNA encoding variants of the Atr-2 family of proteins. Antisense polynucleotides that hybridize to RNA encoding other members of the ATR family of proteins are also identifiable 25 through sequence comparison to identify characteristic, or signature, sequences for the family of molecules. Identification of sequences unique to Atr-2-encoding polynucleotides, as well as sequences common to the family of ATR-encoding polynucleotides, can be easily deduced through use of any publicly available sequence database, or through use of commercially available sequence comparison programs. 30 After identification of the desired sequences, isolation through restriction digestion or amplification using any of the various polymerase chain reaction techniques well known

in the art can be performed. Anti-sense polynucleotides are particularly relevant for regulating expression of Atr-2 by those cells expressing Atr-2 mRNA. Antisense molecules are generally from about 5 to about 100 nucleotide in length, and preferably are about 10 to 20 nucleotides in length. Antisense nucleic acids capable of specifically binding to Atr-2 expression control sequences or Atr-2 RNA are introduced into cells, e.g., by a viral vector or colloidal dispersion system such as a liposome.

The anti-sense nucleic acid binds to the Atr-2-encoding target nucleotide sequence in the cell and prevents transcription or translation of the target sequence. Phosphorothioate and methylphosphonate anti-sense oligonucleotides are specifically contemplated for therapeutic use by the invention. The anti-sense oligonucleotides may be further modified by poly-L-lysine, transferrin polylysine, or cholesterol moieties at their 5' end.

The invention further contemplates methods to modulate Atr-2 expression through use of ribozymes. For a review, see Gibson and Shillitoe, *Mol. Biotech.* 7:125-137 (1997). Ribozyme technology can be utilized to inhibit translation of Atr-2 mRNA in a sequence specific manner through (i) the hybridization of a complementary RNA to a target mRNA and (ii) cleavage of the hybridized mRNA through nuclease activity inherent to the complementary strand. Ribozymes can be identified by empirical methods but more preferably are specifically designed based on accessible sites on the target mRNA [Bramlage, et al., *Trends in Biotech* 16:434-438 (1998)]. Delivery of ribozymes to target cells can be accomplished using either exogenous or endogenous delivery techniques well known and routinely practiced in the art. Exogenous delivery methods can include use of targeting liposomes or direct local injection. Endogenous methods include use of viral vectors and non-viral plasmids.

Ribozymes can specifically modulate expression of Atr-2 when designed to be complementary to regions unique to a polynucleotide encoding Atr-2. "Specifically modulate" is intended to mean that ribozymes of the invention recognize only (i.e., exclusively) a polynucleotide encoding Atr-2. Similarly, ribozymes can be designed to modulate expression of all or some of the ATR family of proteins. Ribozymes of this type are designed to recognize polynucleotide sequences conserved

- 30 -

in all or some of the polynucleotides which encode the family of Atr-2 proteins. Preferred ribozymes bind to an Atr-2-encoding polynucleotide with a higher degree of specificity than to other polynucleotides.

The invention further embraces methods to modulate transcription of Atr-2 through use of oligonucleotide-directed triple helix formation. For a review, see Lavrovsky, *et al.*, *Biochem. Mol. Med.* 62:11-22 (1997). Triple helix formation is accomplished using sequence specific oligonucleotides which hybridize to double stranded DNA in the major groove as defined in the Watson-Crick model. Hybridization of a sequence specific oligonucleotide can thereafter modulate activity of DNA-binding proteins, including, for example, transcription factors and polymerases. Preferred target sequences for hybridization include promoter and enhancer regions to permit transcriptional regulation of Atr-2 expression. In addition to use of oligonucleotides, triple helix formation techniques of the invention also embrace use of peptide nucleic acids as described in Corey, *TIBTECH* 15:224-229 (1997). Oligonucleotides which are capable of triple helix formation are also useful for site-specific covalent modification of target DNA sequences. Oligonucleotides useful for covalent modification are coupled to various DNA damaging agents as described in Lavrovsky, *et al.* [*supra*].

Mutations in the Atr-2 gene can result in loss of normal function of the Atr-2 gene product and underlie Atr-2-related human disease states. The invention therefore comprehends gene therapy to restore Atr-2 activity in treating those disease states described herein. Delivery of a functional Atr-2 gene to appropriate cells is effected *ex vivo*, *in situ*, or *in vivo* by use of vectors, and more particularly viral vectors (*e.g.*, adenovirus, adeno-associated virus, or a retrovirus), or *ex vivo* by use of physical DNA transfer methods (*e.g.*, liposomes or chemical treatments). See, for example, Anderson, *Nature*, supplement to vol. 392, no. 6679, pp.25-20 (1998). For additional reviews of gene therapy technology, see Friedmann, *Science*, 244: 1275-1281 (1989); Verma, *Scientific American*: 68-84 (1990); and Miller, *Nature*, 357: 455-460 (1992). Alternatively, it is contemplated that in some human disease states, preventing the expression of, or inhibiting the activity of, Atr-2 will be useful in treating the disease states. It is contemplated that anti-sense therapy or gene therapy

(for example, wherein a dominant negative Atr-2 mutant is introduced into a target cell type) could be applied to negatively regulate the expression of Atr-2.

The invention also provide compositions comprising modulators of Atr-2 biological activity. Preferably, the compositions are pharmaceutical compositions. 5 The pharmaceutical compositions optionally may include pharmaceutically acceptable (*i.e.*, sterile and non-toxic) liquid, semisolid, or solid diluents that serve as pharmaceutical vehicles, excipients, or media. Any diluent known in the art may be used. Exemplary diluents include, but are not limited to, polyoxyethylene sorbitan monolaurate, magnesium stearate, methyl- and propylhydroxybenzoate, talc, alginates, 10 starches, lactose, sucrose, dextrose, sorbitol, mannitol, gum acacia, calcium phosphate, mineral oil, cocoa butter, and oil of theobroma.

The pharmaceutical compositions can be packaged in forms convenient for delivery. The compositions can be enclosed within a capsule, sachet, cachet, gelatin, paper, or other container. These delivery forms are preferred when compatible 15 with entry of the immunogenic composition into the recipient organism and, particularly, when the immunogenic composition is being delivered in unit dose form. The dosage units can be packaged, *e.g.*, in tablets, capsules, suppositories or cachets.

The pharmaceutical compositions may be introduced into the subject to be treated by any conventional method including, *e.g.*, by intravenous, intradermal, 20 intramuscular, intramammary, intraperitoneal, intrathecal, intraocular, retrobulbar, intrapulmonary (*e.g.*, aerosolized drug solutions) or subcutaneous injection (including depot administration for long term release); by oral, sublingual, nasal, anal, vaginal, or transdermal delivery; or by surgical implantation, *e.g.*, embedded under the splenic capsule, brain, or in the cornea. The treatment may consist of a single dose or a 25 plurality of doses over a period of time.

Compositions are generally administered in doses ranging from 1 $\mu\text{g}/\text{kg}$ to 100 mg/kg per day, preferably at doses ranging from 0.1 mg/kg to 50 mg/kg per day, and more preferably at doses ranging from 1 to 20 mg/kg/day. The composition may be administered by an initial bolus followed by a continuous infusion to maintain 30 therapeutic circulating levels of drug product. Those of ordinary skill in the art will readily optimize effective dosages and administration regimens as determined by good

medical practice and the clinical condition of the individual patient. The frequency of dosing will depend on the pharmacokinetic parameters of the agents and the route of administration. The optimal pharmaceutical formulation will be determined by one skilled in the art depending upon the route of administration and desired dosage. See
5 for example, Remington's Pharmaceutical Sciences, 18th Ed. (1990, Mack Publishing Co., Easton, PA 18042) pages 1435-1712, the disclosure of which is hereby incorporated by reference. Such formulations may influence the physical state, stability, rate of *in vivo* release, and rate of *in vivo* clearance of the administered agents. Depending on the route of administration, a suitable dose may be calculated
10 according to body weight, body surface area or organ size. Further refinement of the calculations necessary to determine the appropriate dosage for treatment involving each of the above mentioned formulations is routinely made by those of ordinary skill in the art without undue experimentation, especially in light of the dosage information and assays disclosed herein, as well as the pharmacokinetic data observed in the human
15 clinical trials discussed above. Appropriate dosages may be ascertained through use of established assays for determining blood levels dosages in conjunction with appropriate dose-response data. The final dosage regimen will be determined by the attending physician, considering various factors which modify the action of drugs, e.g. the drug's specific activity, the severity of the damage and the responsiveness of the
20 patient, the age, condition, body weight, sex and diet of the patient, the severity of any infection, time of administration and other clinical factors. As studies are conducted, further information will emerge regarding the appropriate dosage levels and duration of treatment for various diseases and conditions.

It will be appreciated that the pharmaceutical compositions and treatment
25 methods of the invention may be useful in the fields of human medicine and veterinary medicine. Thus, the subject to be treated may be a mammal, preferably human, or other animals. For veterinary purposes, subjects include, for example, farm animals including cows, sheep, pigs, horses, and goats, companion animals such as dogs and cats; exotic and/or zoo animals; laboratory animals including mice, rats, rabbits,
30 guinea pigs, and hamsters; and poultry such as chickens, turkeys, ducks and geese.

Association of Atr-2 with cell cycle progression makes compositions of

the invention, including for example an Atr-2 polypeptide, an inhibitor thereof, an antibody, or other modulator of Atr-2 expression or biological activity, useful for treating any of a number of conditions. For example, aberrant Atr-2 activity can be associated with various forms of cancer in, for example, adult and pediatric oncology,

5 including growth of solid tumors/malignancies, myxoid and round cell carcinoma, locally advanced tumors, metastatic cancer, human soft tissue sarcomas, cancer metastases, including lymphatic metastases, squamous cell carcinoma of the head and neck, esophageal squamous cell carcinoma, oral carcinoma, blood cell malignancies, including multiple myeloma, leukemias, effusion lymphomas (body cavity based lymphomas), thymic lymphoma lung cancer, including small cell carcinoma, non-small cell cancers, breast cancer, including small cell carcinoma and ductal carcinoma, gastrointestinal cancers, including stomach cancer, colon cancer, colorectal cancer, polyps associated with colorectal neoplasia, pancreatic cancer, liver cancer, urological cancers, including bladder cancer, including primary superficial bladder tumors,

10 invasive transitional cell carcinoma of the bladder, and muscle-invasive bladder cancer, prostate cancer, malignancies of the female genital tract, including ovarian carcinoma, primary peritoneal epithelial neoplasms, cervical carcinoma, uterine endometrial cancers, and solid tumors in the ovarian follicle, kidney cancer, including renal cell carcinoma, brain cancer, including intrinsic brain tumors, neuroblastoma, astrocytic

15 brain tumors, gliomas, metastatic tumor cell invasion in the central nervous system, bone cancers, including osteomas, skin cancers, including malignant melanoma, tumor progression of human skin keratinocytes, and squamous cell cancer, hemangiopericytoma, and Kaposi's sarcoma. Still other conditions include aberrant apoptotic mechanisms, including abnormal caspase activity; aberrant enzyme activity

20 associated with cell cycle progression, include for example cyclins A, B, D and E; alterations in viral (e.g., Epstein-Barr virus, papillomavirus) replication in latently infected cells; chromosome structure abnormalities, including genomic stability in general, unrepaired chromosome damage, telomere erosion (and telomerase activity), breakage syndromes including for example, Sjogren's syndrome and Nijmegen

25 breakage syndrome; embryonic stem cell lethality; abnormal embryonic development; sensitivity to ionizing radiation; acute immune complex alveolitis; and Fanconi anemia.

The invention is exemplified by the following examples. Example 1 relates to identification of cDNAs encoding proteins related to PIK kinase. Example 2 describes identification of additional sequences in an Atr-2-encoding cDNA. Example 3 addresses Northern analysis of Atr-2 expression. Example 4 described chromosomal localization of an Atr-2 gene. Example 5 relates to production of anti-Atr-2 polypeptide antibodies. Example 6 describes expression of Atr-2 in mammalian cells. Example 7 describes kinase activity of a truncated form of Atr-2.

Example 1
Identification of a cDNA Encoding a PIK-Related Protein

In an attempt to identify novel genes within the checkpoint kinase family, several searches of the National Center for Biotechnology Information (NCBI) EST database were carried out. In the first search, the DNA query sequences were those encoding PI3 kinase (GenBank[®] Accession No: Z46973), P110 kinase α (GenBank[®] Accession No: U79143), P110 kinase β (GenBank[®] Accession No: S67334), P110 kinase γ (GenBank[®] Accession No: X83368), P110 kinase δ (GenBank[®] Accession No: U86453), FRAP (GenBank[®] Accession No: L34075), ATR (GenBank[®] Accession No: Y09077), ATM (GenBank[®] Accession No: U26455), TRRAP (GenBank[®] Accession No: AF076974), PI3 kinase with C2 domain (GenBank[®] Accession No: AJ000008), PI4 kinase (GenBank[®] Accession No: AB005910), PI4 kinase/230 (GenBank[®] Accession No: AF021872), and DNA-PKcs (GenBank[®] Accession No: U34994). A blastn search was performed and a list of EST sequences corresponding to these query sequences was generated. In the second search, protein query sequences were P110 beta, FRAP, ATR, ATM, TRAPP, and DNA-PKcs and a tblastn search was performed. Those ESTs identified in the first search were subtracted from the results of the second search and the remaining sequences were analyzed.

One Genbank[®] EST, designated AI050717, was identified with a DNA sequence that was not identical to any of the query sequences and was not present in the non-redundant portion of GenBank[®]. When the predicted amino acid sequence for AI050717 was aligned with the query sequences, the highest homology was in the

kinase domains of the query sequences. The protein encoded by AI050717 showed the most similarity to a putative kinase in *C. elegans* designated CE08808.

In an attempt to isolate a full length cDNA corresponding to AI050717, PCR was carried out on a Quickclone[®] human testis cDNA library (Clontech) to first amplify the AI050717 sequence. Two forward and two reverse primers were designed based on the sequence of AI050717 as set out in SEQ ID NOs: 9 to 12.

19F	GGGCGGAACCATCACAAATCT	SEQ ID NO: 9
22F	CGGAACCATCACAAATCTTAC	SEQ ID NO: 10
299R	CGTTGTTGCCATCGTTGTA	SEQ ID NO: 11
312R	TAAGGCAGCTTCCCGTTGTT	SEQ ID NO: 12

PCR was carried out in a reaction including 1X Perkin Elmer PCR buffer, 1.5 mM MgCl₂, 0.16 mM dNTPs, 1 ng human testis cDNA, and primers as indicated below. Reaction tubes were first heated to 94°C for two minutes, and reactions were initiated with addition of 0.5 μl AmpliTaq[®] polymerase. PCR conditions included a first incubation at 94°C for five minutes, followed by 30 cycles of 94°C for one minute, 60°C for one minute, and 72°C for one minute, followed by incubation at 72°C for seven minutes. Individual reactions included 100 ng of each primer pairs 19F/299R, 19F/312R, 22F/299R and 22F/312R. Aliquots from each reaction were separated on an agarose gel and ethidium bromide staining indicated that no amplification products were obtained.

Nested PCR was carried out on products obtained in the first reactions using primer pairs 19F/312R and 22F/312R as templates. Reaction conditions were modified and amplifications repeated using primer pair 22F/299R in an initial incubation at 94°C for five minutes, followed by 30 cycles of 94°C for 30 seconds, 55°C for 30 seconds, and 72°C for 30 seconds. The amplification reaction included 1X Perkin Elmer PCR buffer, 1.5 mM MgCl₂, 330 ng primer 22F, 330 ng primer 299R, 320 nM NTPs, 0.5 U Taq polymerase, and 1 μl from the first PCR amplifications utilizing primer pairs 19F/312R and 22F/312R. An aliquot from each reaction was separated on an agarose gel and ethidium bromide staining indicated that

- 36 -

both reactions gave a 277 bp product. The amplification product was purified with QIAquick[®] PCR Purification kit and eluted into 40 μ l H₂O.

The fragment was subcloned into pCR3.1 T/A vector (Invitrogen) in separate reactions that included 1 μ l PCR product, 1 μ l 10X ligation buffer, 2 μ l vector, 5.5 μ l H₂O, and 1 μ l T4 DNA ligase. Ligation was carried out overnight at 15°C. Five μ l of each ligation reaction was transformed into TOP10F' cells (Invitrogen) and the transformation mixture was plated. Each ligation, and a control mixture, resulted in approximately 200 colonies. Twelve colonies from each plate were picked and PCR carried out to screen for the expected insert. Results indicated that none of the colonies included an insert.

The ligation reaction was then repeated as described above except that the vector was first denatured at 65°C for two min, and then quenched on ice. The remainder of the procedure was carried out as described above. No significant increase in number of colonies was detected in the transformation derived from the ligation of vector and PCR fragment compared to the transformation using vector alone.

While these experiments generated PCR products of the correct size, they failed to produce a cDNA clone representing the sequences of AI050717. Therefore, a different approach was undertaken using a Marathon[®] cDNA cloning system (Clontech) wherein PCR reactions were carried out to extend the sequences in AI050717 at the same time as attempting to obtain the full length AI050717 clone.

Using primers described above designed to amplify an AI1050717 sequence, PCR was carried out to extend the EST 3' sequence in order to determine if the EST was part of a cDNA containing a functional kinase domain. PCR was carried out using primer pair 19F and AP1 (Marathon cDNA Cloning System, Clontech) with Marathon[®] testis cDNA as template.

AP-1 CCATCCTAATACGACTCACTATAAGGGC SEQ ID NO: 13

A stock reaction mixture was prepared including 36.5 μ l H₂O, 5 μ l 10X cDNA polymerase buffer, 0.5 μ l 20 mM dNTPs, and 1 μ l Advantage[®] polymerase. Two reactions were set up, each including a constant amount of AP1 primer, but one

including 250 ng 19F primer (reaction 1), and another including 500 ng 19F primer (reaction 2). Amplification conditions included a first incubation at 94°C for five min, followed by 30 cycles of 94°C for 30 sec, 60°C for 30 sec, and 68°C for two min. An aliquot from each reactions was removed and separated on an agarose gel and staining indicated smears in all three lanes.

PCR was then repeated using primer 22F and AP1 and template DNA from the first reactions 1 and 2. Stock reaction mixture included 93 μ l H₂O, 15 μ l 10X cDNA polymerase buffer, 1.5 μ l 20 mM dNTPs, and 3 μ l Advantage[®] polymerase. Each reaction included 37.5 μ l of the stock mixture and either (i) 5 μ l primer 22F, 1 μ l primer AP1, and 1 μ l reaction 1, (ii) 5 μ l primer 22F, 1 μ l primer AP1, and 1 μ l reaction 2, and (iii) 5 μ l primer 22F, 5 μ l 299R, and 1 μ l reaction 1. Reaction conditions included an initial incubation at 94°C for five min, followed by 30 cycles of 94°C for 30 sec, 55°C for 30 sec, and 68°C for 30 sec. Agarose gel separation of the amplification products still showed smears in lanes from reactions (i) and (ii), while a band of approximately 300 fragment was detected in the reaction (iii) which was presumed to represent the sequences in the AI050717 EST.

In an attempt to clone this approximately 300 bp fragment, PCR was repeated using amplification products from the previously described reactions using Marathon[®] and Quickclone DNA as template. Each amplification reaction included 1 μ l from either of the previous the Marathon[®] or Quickclone reactions, 5 μ l primer 22F, 5 μ l primer 299R, 5 μ l 10X cDNA polymerase buffer, 0.4 μ l 20 mM dNTPs, and 1 μ l polymerase. Reaction conditions included an initial incubation at 94°C for five min, followed by 30 cycles of 94°C for 30 sec, 55°C for 30 sec, and 68°C for 30 sec. Ligation into pCR3.1 was carried out at 15°C overnight using the amplification products with 2 μ l heat denatured vector, 1 μ l 10X ligation buffer, 5.5 μ l H₂O and 1 μ l ligase. Transfections with each reaction mixture were carried out, the transfection mixtures plated, colonies picked and plasmid minipreps carried out on the picked colonies. Plasmid from each miniprep was digested with EcoRI and separated on agarose gel. All picked colonies were found to include an insert of the expected size. Sequence analysis confirmed that this insert contained sequence from nucleotide 22 to 299 of AI050717.

Extension of the AI050717 Clone

In an attempt to isolate a more complete cDNA clone including sequences in AI050717, additional PCR amplifications were carried out using a testis cDNA library as template.

Primers 19F, -22F, 299R, and 312R were redesigned to have higher melting temperatures for use at high annealing temperatures required for Touchdown[®] PCR. In Touchdown[®] PCR, the initial annealing temperature prior to amplification at 72°C serves to increase the specificity of annealing of the primers to the cDNA of interest. The temperature is then decreased to allow for an increase in the specific PCR product. The redesigned primers are set out in SEQ ID NOs: 14 to 17.

19Fext	GGGCAGGAACCATCACAAATCTTACC	SEQ ID NO: 14
22Fext	CGGACCCATCACAAATCTTACCGACT	SEQ ID NO: 15
299Rext	CGTTGTTGCCATCGTTGTAAAGAC	SEQ ID NO: 16
312Rext	TAAGGCAGCTTCCCGTTGTTGCCA	SEQ ID NO: 17

A stock reaction mixture was prepared including 94.5 μl H₂O, 15 μl 10X cDNA polymerase buffer, 1.5 μl dNTPs, and 3 μl Advantage[®] polymerase. Reactions included 38 μl of the stock mixture and either (i) 1 μl testis Marathon[®] cDNA, 5 μl primer 19Fext, and 1 μl primer AP1 (the 3' reaction), or (ii) 1 μl testis Marathon[®] cDNA, 5 μl primer 299Rext, and 1 μl primer AP1 (the 5' reaction). Touchdown PCR was performed under conditions including an initial incubation at 94°C for one min, followed by five cycles of 94°C for 30 sec and 72°C for three min, five cycles of 94°C for 30 sec and 70°C for three min, 25 cycles of 94°C for 30 sec and 68°C for three min, then a holding step at 4°C. An aliquot from each reaction was separated on an agarose gel and no amplification products were detected upon staining.

The PCR was repeated using nested primers and DNA from the previous 3' and 5' reactions as template. A stock reaction mixture was first prepared including 94.5 μl H₂O, 15 μl 10X cDNA polymerase PCR buffer, 1.5 μl 20 mM dNTPs and 3 μl Advantage[®] polymerase. Each amplification included 38 μl of the stock mixture and either (i) 1 μl of the previous 3' reaction mixture, 5 μl primer 22Fext and 1 μl primer

AP2 (for the 3' extension, this primer anneals to the 3' end of all cDNAs in a Marathon[®] library), (ii) 1 μ l of the previous 5' reaction mix, 5 μ l primer 19AS, and 1 μ l primer AP2 (the 5' extension), or (iii) 1 μ l of the previous 3' reaction mix, 5 μ l primer 22Fext, and 5 μ l primer 299Rext (the control reaction).

AP-2

ACTCACTATAGGGCTCGAGCGGC

SEQ ID NO: 18

Amplification conditions were as described in the above Touchdown[®] PCR. Results indicated that the control reaction produced significant product, but smears were detected in the 3' and 5' reaction lanes. When the PCR was repeated using 2 μ l of each primer, the same results were detected.

Amplification products were then ligated into pCR3.1 T/A vector in a reaction carried out as described above, the ligation products were transformed into TOP10F' cells, and the cells were plated. In transformation with the vector alone, approximately 200 colonies were detected, while with transformation with the ligation products from the 3' and 5' amplifications, approximately 200 and 150 colonies, respectively, were detected. In view of the high numbers of colonies observed in the absence of insert, the PCRs, ligations, transfections and platings were repeated, and the same results were obtained in the second attempt.

Colonies were then screened for plasmids bearing inserts using PCR with primers 22Fext and 299Rext. A stock reaction mixture was prepared including 100 μ l Perkin Elmer PCR buffer, 100 μ l 10X MgCl₂, 8 μ l 20 mM dNTPs, 100 μ l primer 22Fext, 100 μ l 299Rext, 10 μ l AmpliTaq[®] polymerase, and 582 μ l H₂O. Forty eight colonies from the 3' reaction were individually placed in 20 μ l of the stock reaction mixture, and PCR performed under conditions including an initial incubation at 94°C for one min, followed by 35 cycles of 94°C for 30 sec, 60°C for 30 sec, and 72°C for 30 sec, and a final hold at 4°C. The reaction products were separated on agarose gels and all colonies picked were found to include inserts.

Twenty colonies arising from the 3' extension reaction were picked, the cells grown overnight in two ml media, and plasmids isolated from the cells using a Wizard[®] Miniprep kit. Isolated plasmids were digested with EcoRI and the digestion

- 40 -

products were separated on an agarose gel. Plasmids were precipitated from those preparations showing the largest inserts on the gel and the inserts were sequenced.

Example 2
Extension of the Atr-2 cDNA 3' of the AI050717 Sequence

3' Extension

Sequence analysis of the 3' extended cDNAs showed that clone 2 (SEQ ID NO: 43), which contained an approximately 1.2 kb insert, contained sequences at one end that were similar to those found at the ends of the kinase domain of PIK-related kinases and were highly related to the *C. elegans* PIK (CE08808). In particular, the predicted amino acid sequence encoded by this clone demonstrated that the kinase domain contained homologous amino acids found in the PIK-related kinases that have protein kinase activity. This observation was different from what was found in TRRAP and Tra1, both of which lack some of the conserved amino acids and are therefore thought to lack protein kinase activity.

In order to determine if the AI050717 sequences and the kinase domains sequences were contiguous, several more primers were designed to amplify the product directly.

Primer 15158	CCACCTCCACCAATAGAGAGCACCAGC	SEQ ID NO: 19
Primer 15156	GCTCTGCTTGCTCTCGGCCTGCTG	SEQ ID NO: 20
Primer 15157	GGACTTGCTCGTCTTGCTCTCGGC	SEQ ID NO: 21

PCR amplification was carried out in reactions containing 5 μ l Marathon[®] testis cDNA, 100 ng each primer pair 22Fext and 15157 or 22Fext and 15158, 1X cDNA polymerase reaction buffer, 0.2 mM dNTPs, 1 μ l Advantage[®] cDNA polymerase mix, and 39.5 μ l H₂O. Touchdown[®] PCR was performed as previously described. A 10 μ l aliquot of each reaction mixture was separated on a 2% agarose gel and results showed that both reactions yielded products of approximately 1 kb. A 2 μ l aliquot was removed from each reaction and ligated into pCR3.1 TA cloning vector at 14°C for 20 hrs and the ligation mixtures transformed into TOP10F' bacteria. Nine colonies from each

ligation were picked, cultures grown, and plasmid DNA isolated. The plasmid DNA was digested with *Eco*RI and most clones were found to contain an insert of the expected size.

Sequence analysis demonstrated that the PCR product generated from primers 22Fext and 15157 yielded the largest clone, which was designated 22F/57. The predicted amino acid sequence demonstrated that this clone contained all sequences found in the kinase domain of PIK-related kinases.

To further extend the 3' end of the clone, a primer was designed based on the 3' end of clone 22F/57.

3'E2F

GTCTATGGTGGAGGTGGCCAGCAG.

SEQ ID NO: 22

This primer and the AP2 primer were used in nested PCR to amplify additional cDNA sequences 3' to 22F/57. A 50 μ l PCR reaction mix was prepared containing 0.5 μ l the reaction mixture generated by PCR of Marathon^{*} testis cDNA with primers 19F and AP1, 1X cDNA polymerase reaction buffer, 0.2 mM dNTPs, 100 ng each of the primers 3'E2F and AP2, and 1 μ l Advantage^{*} polymerase mix. Touchdown^{*} PCR was performed as previously described. Amplification products were separated on an agarose gel and ranged in size from approximately 200 bp to approximately 3 kb. Bands representing the highest molecular weight products were excised from the gel, purified, and ligated into pCR2.1^{*} using a TOPO TA cloning^{*} vector. The resulting construct was transformed into TOP10 cells and one-tenth of the transformation mixture was plated onto agar plates. When no colonies were obtained, the remainder of the transformation mix was plated and five colonies were subsequently isolated.

PCR was repeated using 0.5 μ l and 1 μ l of template and either 1 or 2 μ l of primer 3'E2F. Touchdown^{*} PCR with performed with the first five cycles at 75°C instead of 72°C. Reaction products were separated on an agarose gel and showed a distribution ranging from about 100 bp to 3 kb. Approximately 0.5 μ l of the reaction mixture generated using 0.5 μ l of template and 2 μ l of 3'E2F was ligated into pCR2.1^{*} using a TOPO TA^{*} cloning vector. The ligation mixture was transformed

- 42 -

into TOP10 bacteria and the bacteria plated onto agar plates. The reaction yielded hundreds of colonies.

These colonies and the colonies generated by ligation of the gel purified PCR products described above were screened for inserts using PCR. Five colonies were identified that contained inserts and plasmid DNA was prepared from each. Two of the clones, 3'E2F-1 and 3'E2F-28 contained inserts of about 1.8 kb.

Sequence analysis of the clones demonstrated that the 3'E2F-28 clone (SEQ ID NO: 41) showed very high sequence homology, at both nucleotide and amino acid levels, to a partial cDNA sequence designated KIAA0421 found in the GenBank® database (Accession Number AB007881). The KIAA clones were identified as part of a sequencing project to identify large cDNAs in the brain [Ishikawa *et al.*, *DNA Res.* 4:307-313(1997)]. KIAA0421 was described as a 5717 bp cDNA isolated from a human male brain cDNA library, and encoding a protein related (by amino acid homology) to Lambda/iota Interacting Protein (LIP) [Dias-Meco *et al.*, *Mol. Cell Biol.*, 16:105-114(1996)], a protein that interacts with the atypical protein kinase C isotype λ/ι . KIAA0421 sequences surrounding the LIP-related region are similar to sequences in the kinase domains of PIK-related kinases; the KIAA0421 region upstream of the LIP-homologous domain is identical to the kinase domain of Atr-2 and the sequence downstream of the LIP domain is most similar to the carboxy terminus of the *C. elegans* PIK-related kinase that is most closely related to Atr-2. These clones may present the 3' end of the Atr-2 coding sequence.

In an attempt to isolate clones that contained these sequences, several primers were designed.

KIDrev	GATGTCAATCTTCGCCAAGCTATGG	SEQ ID NO: 23
SLQrev	GCTGCAGGCTTGTCTTACAAC	SEQ ID NO: 24
MCSrev	GCAAGCTCTAACTCAGACACTG	SEQ ID NO: 25
SSArev	GCAGATGACGTTGGACTCGAAC	SEQ ID NO: 26
MARQrev	CTACTGTCTTGCCATTCACACC	SEQ ID NO: 27

PCR reactions were prepared with using 100 ng of each of these primers

- 43 -

in combination with the 369f primer, 2.5 μ l Marathon[®] testis cDNA, 1X cDNA polymerase buffer, 0.2 mM dNTPs and 1 μ l Advantage[®] polymerase. Touchdown[®] PCR was performed and the products were separated on a 1.2% agarose gel. Amplification products were obtained from reactions containing KIDrev, MCSrev and MARQrev primers but not from reactions using SLQrev and SSArev primers. Further, only the amplification product from the reaction containing the KIDrev primer was the expected size; all other amplification products were smaller than expected. Two μ l of the products from each reaction was ligated into pCR2.1[®] using a TOPO TA cloning kit (Invitrogen), each ligation mixture was transformed into TOP10, and the transformed cells were plated on agar plates. Plasmid DNA was isolated from these colonies and the sequences was analyzed.

Sequence analysis demonstrated that the clones derived from the 369f/KIDrev amplification started and ended at the expected positions with respect to the sequence of KIAA0421. The amplification products from PCR using the 369f/MARQrev primers started at sequences farther downstream than expected, but ended at the position predicted by the design of the primers. The products derived from PCR using the 369f/MCSrev primers showed no homology to KIAA0421, suggesting that the primers did not anneal in a sequence-specific manner. Two additional primers, RLLfor and TRTrev, were designed to repeat the PCR in order to obtain sequences of this region.

RLLfor	CAGACTACTACATGCTCAGTACGG	SEQ ID NO: 28
TRTrev	CCAGGTTTATGGCTTCTGCAGTTCTTG	SEQ ID NO: 29

PCR reactions were prepared containing using 100 ng each of RLLfor and TRTrev primers, 2.5 μ l Marathon[®] testis cDNA, 1X cDNA polymerase buffer, 0.2 mM dNTPs and 1 μ l Advantage[®] polymerase. Touchdown[®] PCR was carried out, the products were separated on a 1.2% agarose gel, and a product of the expected size was obtained. Two μ l of these products was ligated to pCR2.1[®] using a TOPO TA cloning[®] kit (Invitrogen), the ligation mixture was transformed into TOP10 bacteria, and the transformed cells were plated on agar. Plasmid DNA was isolated from these colonies

- 44 -

and the sequences determined. These clones contained the expected sequences as predicted by the primers used in the reaction.

5' Extension

In order to extend the 5' AI050717 sequence, a first PCR was carried out in a reaction containing 100 ng each of primers 299ext and AP1, 1 ng of Marathon^{*} testis cDNA, 1X cDNA polymerase buffer, 0.2 mM dNTPs and 1 μ l Advantage^{*} polymerase. Touchdown^{*} PCR was performed as described above. A second nested PCR was then performed on the products of the first PCR using 19AS, an anti-sense primer that corresponded to the 5' sequence of AI050717.

Primer 19AS GGTAAAGATTGTGATGGTTCCGCC SEQ ID NO: 30

The nested PCR reaction mixture contained 100 ng each of primers 19AS and AP2, 1 μ l of the primary PCR reaction (above), 1X cDNA polymerase buffer, 0.2 mM dNTPs and 1 μ l Advantage^{*} polymerase. Touchdown^{*} PCR was performed and the products were separated on an agarose gel. A smear ranging in size from 500 bp to 6 kb was observed. Approximately two μ l of the reaction mix was ligated into pCR3.1 for 20 hours at 15°C and the ligation mixture transformed into TOP10F' *E. coli*. Eighteen colonies were cultured, and plasmid DNA was prepared and digested with EcoRI. Five clones contained inserts released by EcoRI ranging from 200 to 500 bp in size. Sequence analysis of these clones demonstrated that the longest clone containing sequences contiguous with Atr-2 was 243 bp in length. This sequence was used to design another primer, designated 5'E2R, for extending the 5' end of Atr-2.

5'E2R GCACGTTTCTGTGCTCTCTGTTGC SEQ ID NO: 31

Nested PCR was carried out in a reaction containing 100 ng each of primers 5'E2R and AP2, 1 μ l of the PCR reaction derived from the PCR on testis cDNA with primer pair 299Rext and AP1 (SEQ ID NOs: 16 and 13), 1X cDNA polymerase buffer, 0.2 mM dNTPs and 1 μ l Advantage^{*} polymerase. Touchdown^{*}

- 45 -

PCR was performed and the products were separated on an agarose gel. A smear was observed on the gel with a prominent band at 600 bp and a minor band at about 1 kb. Two μ l of the reaction mixture was ligated into pCR3.1, and the ligation mixture transformed into TOP10F' bacteria. After plating, 30 colonies were screened for inserts using PCR with the M13 vector primer and primer 5'E2R. Most colonies contained inserts. The colonies containing the largest inserts were cultured and plasmid DNA subjected to sequencing.

Sequence analysis demonstrated that clone 5'E2#2 contained the largest insert and showed significant homology to the *C. elegans* PIK-related clone and FRAP. Since this cDNA showed an open reading frame through its entire sequence, it was expected that the clone did not encode an initiating methionine. As a result, another primer designated STDrev was designed to further extend the 5' end of the cDNA.

STDrev: GGCCATCCACAATCATGTCATCAGTGCTC

SEQ ID NO: 32

Touchdown^{*} PCR was carried out in a mixture containing 100 ng of 5'E2R and AP1, 1 μ l Marathon^{*} testis cDNA, 1X cDNA polymerase buffer, 0.2 mM dNTPs and 1 μ l Advantage^{*} polymerase. One μ l of the first amplification mixture was used as template in a second nested Touchdown PCR reaction containing 100 ng each of primers STDrev and AP2, 1X cDNA polymerase buffer, 0.2 mM dNTPs and 1 μ l Advantage^{*} polymerase and amplification products were separated on an agarose gel. A smear ranging from 200 bp to 2 kb was observed, with prominent bands at 200 bp, 600 bp and 1 kb. Two μ l of the amplification mixture was ligated into vector pCR2.1^{*} using a TOPO TA cloning^{*} kit (Invitrogen), the ligation mixture transformed into TOP10, and the transformed bacteria plated on agar plates. Sixteen colonies were isolated and plasmid DNA prepared and digested with EcoRI to determine insert sizes. Five plasmids containing the largest inserts were sequenced.

Sequence analysis of these clones revealed that the longest clone, 5'E3#1 (SEQ ID NO: 42) contained about 1200 bp of additional Atr-2-encoding sequence. Blastx analysis of the predicted amino acid sequence of the clones demonstrated that none of the clones showed significant homology to any sequences in the nonredundant

- 46 -

database of GenBank[®]. The fact that the longest clone from this PCR included an open reading frame suggested that this clone did not contain the initiating methionine residue.

In an effort to identify additional 5' sequences, another primer, PIRrev, was designed for use in RACE reactions.

PIRrev

CTAATTCCATGAGATGGCTTCTAATTGG SEQ ID NO: 33

A PCR reaction was prepared containing 100 ng of PIRrev and AP2 primers, 1 μ l of the amplification product from PCR using primers STDrev and AP1, 1X cDNA polymerase buffer, 0.2 mM dNTPs and 1 μ l Advantage[®] polymerase. Touchdown[®] PCR was performed and the products were separated on a 1.2% agarose gel. A smear was detected ranging from 200 bp to 2 kb. Two μ l were ligated into pCR2.1[®] using a TOPO TA[®] cloning kit (Invitrogen), the ligation mixture was transformed into TOP10 bacteria, and the transformed cells were plated on agar. Eighteen colonies were selected for plasmid preparation and the sequence of five plasmid DNAs, each containing EcoRI fragments larger than 0.5 kb, was analyzed. The largest of these clones contained approximately 800 bp. Blastx analysis revealed significant homology to two partial coding sequences in the nonredundant database, KIAA0020 (accession number AAC31670) and a sequence obtained by sequencing artificial chromosomes derived from human chromosome 16 (human Chromosome 16 BAC clone CIT987-SK-A-61E3, accession number AC003007). The homology to the chromosome 16 clone correlated with chromosomal mapping data demonstrating the localization of Atr-2 to chromosome 16p12 (see Example 4).

Using this sequence, another primer designated CECrev, was designed to further extend the 5' sequence.

CECrev

CGGCAATTGAGATGTAGCACTCAC SEQ ID NO: 34

A PCR reaction was prepared containing 100 ng of CECrev and AP2, 1 μ l of the product derived from PCR with primers STD rev and AP1, 1X cDNA

- 47 -

polymerase buffer, 0.2 mM dNTPs and 1 μ l Advantage^{*} polymerase. Touchdown^{*} PCR was performed and the products were separated on a 1.2% agarose gel. A smear of products ranging from 200 bp to 8 Kb was observed. Two μ l of the reaction was ligated to pCR2.1^{*} using a TOPO TA^{*} cloning kit (Invitrogen), the ligation mixture was transformed into TOP10 cells, and the cells were plated on agar. Eighteen white colonies were selected and DNA from clones with the five largest EcoRI inserts were sequenced. These clones also showed significant homology to KIAA0220 and the chromosome 16 BAC clone, but none encoded the initiating methionine.

In a further effort to isolate sequences including the start codon, another primer, MTWfor, was designed using the sequence data obtained from the KIAA0220 and chromosome 16 BAC clones to span the initiating methionine.

MTWfor

ATGACTTGGGCTTGGAAGTAGCTGTT SEQ ID NO: 35

Touchdown^{*} PCR was carried out using 100 ng each of MTWfor and PIRrev, 1 μ l Marathon^{*} testis cDNA, 1X cDNA polymerase buffer, 0.2 mM dNTPs and 1 μ l Advantage^{*} polymerase, and a product of approximately 2 kb was obtained. Two μ l of the reaction was ligated into pCR2.1^{*} using a TOPO TA^{*} cloning kit (Invitrogen), the ligation mixture was transformed into TOP10 bacteria, and the transformed cells were plated on agar. Six white colonies were selected and restriction digestion demonstrated that five of the six contained 2 kb inserts. Sequence analysis on three of the clones indicated that they encoded the initiating methionine of the KIAA0220 and chromosome 16 BAC clones and also contained sequences previously found in the Atr-2-encoding sequence.

In order to confirm that the combined cDNA encoded a single Atr-2 coding region, PCR was carried out to generate two overlapping clones spanning the complete protein coding region. A new primer, MTWfor2, was synthesized as a forward primer to amplify the 5' end of the cDNA.

MTWfor2

GGACACGAGGAACTGTTAATGACTTGGGC SEQ ID NO: 36

Separate amplification reactions were carried out using 100 ng of primers MTWfor2/312rev-ext and primers 22Fext/MRQrev, 5 μ l Marathon[®] testis cDNA, 1X cDNA polymerase buffer, 0.2 mM dNTPs and 1 μ l Advantage[®] polymerase. Touchdown[®] PCR was performed and the products were separated on a 1.2% agarose gel. Amplification products of the expected size were observed, along with a smear of smaller size products. The bands of the expected size were isolated and the DNA eluted and ligated into pCR2.1[®] using a TOPO TA[®] cloning kit (Invitrogen). The ligation reaction was used to transform TOP10 bacteria and the bacteria were plated on agar. Plasmid DNA was isolated from resulting colonies and sequences of three individual clones from each ligation reaction were analyzed.

The sequences from three Atr-2 mtw-312rev clones are set out in SEQ ID NOs: 6, 7, and 8, and the sequences from three Atr-2 22F-MARQ clones are set out in SEQ ID NOs: 3, 4, and 5, respectively, were used to deduce a consensus cDNA sequence encoding Atr-2. Clones p22F-MARQ.3 and pMTW-312R.5 were deposited on October 1, 1999, under terms of the Budapest Treaty with the American Type Culture Collection, 10801 University Blvd., Manassas, VA 20110-2209, and assigned Accession Numbers PTA-810 and PTA-811, respectively. The consensus polynucleotide and deduced amino acid sequences are set out in SEQ ID NOs: 1 and 2, respectively. The entire Atr-2-encoding clone was 8838 bp in length and predicted to encode a protein of 2930 amino acids. PFAM analysis, a program designed to identify proteins motifs, identified the PIK-related kinase domain but no other motifs.

The Atr-2 protein coding domain begins with a methionine residue at nucleotide 31 and ends with a stop codon at nucleotide 8821. The full length protein is 2930 amino acids in length. Amino acids 1 to 546 are 95% identical to the protein encoded by KIAA0220. Further, amino acids 1629 to 2930 are 100% identical to KIAA0421 and amino acids 2152 to 2930 are 100 % identical to the Lambda/iota interacting protein, LIP. The PIK-related kinase domain is between amino acid residues 1413 to 1695 and there is between 39% and 48% identity in this region with the kinase domains of the PIK-related kinases FRAP, Tor1, Tor2, and the *C. elegans* PIK-related kinase SMG-1 (Table 1). In addition, the carboxy termini of these proteins also show a significant degree of conservation (Table 1). Interestingly in Atr-2, the kinase domain is

- 49 -

separated from the carboxy terminus by a large sequence which includes the LIP domain.

Table 1
Atr-2 Amino Acid Homologies

	Kinase Domain	Carboxy Terminus
<i>C. elegans</i> SMG-1	48	36
<i>S. cerevisiae</i> FRAP	37	42
<i>S. cerevisiae</i> Tor1p	37	40
Human Tor2p	39	42
Human Atr	33	28
Human Atm	33	37
Human DNAPK	25	ND

Atr-2 is most closely related to the *C. elegans* protein SMG-1. Mutants of the SMG-1 gene indicate that the encoded protein is involved in mRNA surveillance in a pathway called nonsense mediated mRNA decay (NMD). Proteins in this pathway appear to monitor aberrant mRNAs and target them for elimination to avoid translation of deleterious proteins [Culbertson, *et al.*, *Trends in Genet.* 15:74-80 (1999)]. SMG-2, another *C. elegans* protein involved in this pathway is phosphorylated in cells and its phosphorylation is dependent on SMG-1 [Page, *et al.*, *Mol. Cell. Biol.* 9:5943-5951 (1999)].

There are many human diseases and cancers in which mutations in genes lead to premature chain termination presumably through the NMD pathway. These diseases include ataxia-telangiectasia, breast cancers caused by mutation in the BRCA-1 gene, β -thalassemia, Marfan syndrome, and gyrate dystrophy. It is possible that inhibition of the NMD pathway could lead to the production and accumulation of the particular gene products thus alleviating the symptoms of these disease. Alternatively, in diseases in which truncated proteins are produced and block protein activity by acting in a dominant negative fashion, gene therapy using proteins in the NMD

- 50 -

pathway may be of therapeutic value. The similarity between Atr-2 and SMG-1 indicates that Atr-2 may be involved in the onset or maintenance of any of these disease states.

Example 3
Northern Analysis

In order to assess expression of Atr-2, hybridization with Multiple Tissue Northern blots (Clontech) was performed. A stock hybridization mixture was prepared including 5X SSPE, 10X Denhardt's, 100 μ g/ml salmon sperm DNA, 50% formamide and 2 % SDS. Prehybridization in this mixture was first carried out for five hours at 42°C. A hybridization probe was prepared using PCR in a reaction containing 4 μ l 10 Perkin Elmer PCR buffer, 4 μ l 10 MgCl₂, 4 μ l 2 mM dATP and dGTP and 10 μ M dCTP and dTTP, 10 μ Ci each ³²P- α CTP and ³²P- α TTP, 1 μ l primer 22F, 1 μ l 299R, 1 μ l template DNA from human testis PCR reaction derived from primers 19F and 312R (Example 1) and 24.5 μ l H₂O. Reaction conditions included an initial incubation at 94°C for five min, followed by 25 cycles of 94°C for 15 sec, 60°C for 15 sec, and 72°C for 30 sec. Unincorporated nucleotides were removed from the reaction mixture using a NucTrap[®] column, pre-wet with 70 μ l STE. The PCR mixture was removed from under the oil film, the volume brought up to 70 μ l with STE, and the resulting mixture applied to the column. The column was eluted with 70 μ l STE twice, radioactivity was determined using a 2 μ l aliquot, the remaining probe boiled, and 25 μ l of the probe added to the prehybridization mixture. Hybridization was carried out overnight at 42°C. The blot was washed one time for 15 min at room temperature in 2X SSC/0.1% SDS, and twice for 15 min at 55°C in 0.1X SSC/0.1% SDS. Autoradiography was carried out four days.

Results indicated low levels of message greater than 9.5 kb in all tissues tested, with slightly higher levels in skeletal muscle, heart peripheral blood, thymus, and spleen.

- 51 -

Example 4
Chromosomal Localization of the Atr-2 Gene

In an attempt to determine whether Atr-2 was associated with any known disease genes, chromosome mapping of Atr-2 was carried out using the Stanford Radiation Hybrid Panel (Research Genetics, Huntsville AL).

In this method, a human lymphoblastoid RM cell line was irradiated with 10,000 rad of X-rays and fused with a non-irradiated thymidine-resistant hamster cell line (A3). Fusion created 83 independent somatic hybrid cell lines containing chromosomes lacking successive regions with about 500 kb resolution. The radiation hybrids were screened for the presence of Atr-2 by PCR.

To determine whether the PCR primers chosen for the screen would hybridize to human DNA and not hamster DNA, a first PCR reaction was performed using either human (RM) or hamster (A3) genomic DNA. A reaction mixture was prepared containing 100 ng each of primer 22F and either of primers 299R or 312R, 1X AmpliTaq[®] buffer, 1.5 mM MgCl₂, 0.16 mM dNTPs, 0.25 U AmpliTaq[®] and 100 ng of genomic DNA. PCR was carried out with an initial cycle at 94°C for 30 sec, followed by 30 cycles of 94°C for 30 sec, 55°C for 30 sec, 72°C for 30 sec, a cycle of 72°C for 7 min and a final 4°C hold cycle. The products from these reaction were separated on an agarose gel.

PCR of the human genomic DNA yielded a strong band at about 750 bp that was also present, although in lower amounts, in the hamster genomic DNA. These bands were gel purified and sequenced with the 22F and 299R primers. Sequence analysis indicated that the amplification product contained Atr-2 sequences separated by intron sequences.

To an attempt to eliminate the PCR product seen in the hamster DNA, the reaction was repeated using Advantage[®] polymerase and Touchdown[®] PCR. PCR was carried out in a reaction mixture containing 100 ng of either human or hamster genomic DNA, 100 ng each of primer 22Fext and either of primers 299Rext or 312Rext, 1X cDNA polymerase buffer, 0.2 mM dNTPs, and 1U Advantage[®] polymerase. Touchdown[®] PCR was carried out with an initial cycle of 94°C for one min followed by five cycles of 94°C for 30 sec and 75°C for 2.5 min, five cycles of

- 52 -

94°C for 30 sec and 70°C for 2.5 min, 25 cycles of 94°C for 30 sec and 60°C for 2.5 min, and a final holding step at 4°C. The reaction products were separated on an agarose gel which revealed a major band of about 750 bp in the human genomic DNA sample with either set of primers, but only trace amounts of the same size product in the hamster DNA. These PCR conditions were then used to screen the radiation panel and the amplification products were separated on agarose gels. The resulting pattern of PCR products was forwarded to the radiation hybrid server at the Stanford Human Genome Center (rhserv@shgc.stanford.com) for analysis.

Atr-2 mapped to chromosome 16. The sequence mapped closest to SHGC-20000942, SHGC-9643 and SHGC-37696. Search of the chromosome 16 with these markers revealed that this location is 16p12. This chromosomal location correlates with the identity of the 5' end of the Atr-2 coding sequence with a partial sequence derived from sequencing of chromosome 16 (see Example 1).

Example 5 **Production of Antibodies to Atr-2**

In an effort to generate antibodies that recognize Atr-2, two regions of Atr-2 were expressed as GST fusion proteins. The first fusion construct encoded the entire kinase domain, a region comprised of both conserved amino acids and unique amino acids in comparison to kinase domains of other PIK-related kinases. Sequences amplified in PCR using primers 22f and 15157 were ligated into the *Eco*RI site of pGEX-3X and the ligation mixture was used to transform the bacterial strain, TOP10F'. Six colonies were generated and sequence analysis of the clones revealed that the Atr-2 protein coding sequences were in-frame with GST coding sequences, suggesting that a GST-Atr-2 fusion protein should be produced from the transformed bacteria upon induction with IPTG. Induction of these bacteria, however, did not show large amounts of GST-Atr-2 fusion protein.

In an effort to improve expression, the pGEX-Atr-2 plasmid was transformed into the bacterial strain, BL21 Supercodon (Stratagene). The GST fusion protein is purified using glutathione agarose and used as immunogen in mice and rabbits to generate monoclonal antibodies and polyclonal antibodies.

- 53 -

The second GST fusion construct encoded sequences within the kinase domain of Atr-2 that are unique to Atr-2 when compared to Atr, Atm, DNA-PK, FRAP, and TRRAP. Two primers, MFA-F and TQS-R, were designed.

MFA-F	CATGTTGCTACAATTAATGCCAAG	SEQ ID NO: 37
TQS-R	GACTGCGTAACCTCTCCACCATT	SEQ ID NO: 38

A 50 μ l PCR reaction was prepared containing 100 ng each of MFA-F and TQS-R primers, 75 ng pCR2.1^{*}, primers 22F/57, 1X cDNA polymerase buffer, 0.2 mM dNTPs and 1 μ l Advantage^{*} polymerase. PCR included an initial denaturation cycle at 94^oC for 30 sec, followed by 25 cycles of: 60^oC for 30 sec and 72^oC for one min, and a final holding step at 4^oC. A PCR product of approximately 450 bp was obtained, the fragment was ligated into pCR2.1^{*} using the TOPO TA cloning^{*} system and the ligation mixture was transformed into TOP10. Twelve colonies were chosen for plasmid preparation and one was found to include an EcoRI fragment of the correct size. Sequence analysis showed that there was a single nucleotide difference that resulted in changing a valine residue to an asparagine residue. As this change was unlikely to affect antibody production, this clone, called pCR2.1MFA/TQS, was selected for further cloning.

The pCR2.1MFA/TQS expression construct was digested with EcoRI and subcloned into the EcoRI site of pGEX-3X to give plasmid pGEX-MFA/TQS. The ligation mixtures were transformed into TOP10F' and approximately 250 colonies were obtained. Eleven colonies were chosen for plasmid preparation and three appeared to have inserts of the correct size. Induction of these bacteria containing this plasmid however, did not result in large amounts of GST fusion protein.

In an effort to improve expression, the pGEX-MFA/TQS plasmid was transformed into the bacterial strain, BL21 Supercodon (Stratagene). The GST fusion protein is purified using glutathione agarose and used as immunogen in mice and rabbits to generate monoclonal antibodies and polyclonal antibodies.

- 54 -

Example 6
Expression of Atr-2 in Mammalian Cells

In order to determine whether Atr-2 encoded a protein with kinase activity, a region containing the putative kinase domain was subcloned into the mammalian expression vector, pCIneo (Promega, Madison, WI). PCR was carried out using 2.5 μ l Marathon testis cDNA (Clontech), 1X cDNA polymerase buffer, 0.2 mM dNTPs, 1 μ l Advantage polymerase, and 100 ng each of primers atr2-STDF and atr2-3'KQS. Touchdown PCR was carried out as described above. To add a FLAG epitope tag, 1 μ l of the resulting PCR reaction was used in a nested PCR using primer ATR2-TLRfor (SEQ ID NO: 39), which includes nucleotides encoding the FLAG peptide sequences and ATR-2 specific nucleotides, and primer ATR2-KDrev (SEQ ID NO: 40).

ATR2-TLRfor SEQ ID NO: 39
CTAGCTAGCGGATCCGAATCACACAGCTCACCAACCATTGGACT-
ATAAAGATGACGATGACAAGGGAACATTGCTGC GGTTGCTC

ATR2-KDrev SEQ ID NO: 40
GCGTGTCA GACTCATCCTGCTGTCCAGTCCACCAAG

The nested PCR was carried in a 50 μ l reaction with AmpliTaq[®] polymerase (Perkin Elmer) under the following condition: 94°C for 5 min, followed by 25 cycles of 94°C for 30 sec, 55°C for 30 sec, 72°C for 30 sec, a final step of 72°C for 7 min, and a final holding step at 4°C. The amplification products were separated using a low melting point agarose gel and a band of 2034 bp was isolated and purified using a QIAquick[®] extraction kit (QIAGEN). The fragment was digested with *Nhe*I and *Sall* and ligated into the mammalian expression vector pCIneo previously digested with the same two enzymes. The ligation reaction was transformed into *E. coli* strain XL1 blue (Stratagene) and the cells were plated. PCR was carried out on 30 selected colonies using primers ATR2TLRfor and ATR2KDrev in order to screen for the Atr2 insert.

Colonies were picked into 40 μ l water and 5 μ l of the resulting mixture was added to 20 μ l of a PCR mixture containing 100 ng each primer, 0.2 mM dNTPs, 1X AmpliTaq[®] reaction buffer, 1.5 mM MgCl₂, and 1 U AmpliTaq[®] polymerase.

- 55 -

Reaction conditions included an initial incubation at 94°C for five min, followed by 30 cycles of 94°C for 45 sec, 55°C for 45 sec, 72°C for 45 sec, a next step at 72°C for 10 min, and a final holding step at 4°C. Reaction products were separated on an agarose gel.

Five reactions resulted in a band of the correct size and the sequence of the bands from two of these reactions was confirmed. One clone, A3, was determined to have the correct sequence and designated pCIneoFLAGATR2. This clone was transfected into 293T cells using Superfect[®] reagent (QIAGEN) according to the manufacturer's suggested protocol. Cells were harvested at 48 hr following transfection and lysed in 0.25 ml of lysis buffer containing 20 mM HEPES, pH 7.5, 1 mM Na₃VO₄, 5 mM NaF, 25 mM β-glycerophosphate, 2 mM EGTA, 2 mM EDTA, 0.5% Triton[®] X-100, 1 mM DDT and 1 tablet protease inhibitor cocktail (Boehringer Mannheim) for each 10 ml of lysis buffer. Cell lysates were immunoprecipitated using 1 µg anti-FLAG[®] M2 antibody (Sigma) for 2 hr at 4°C. Twenty µl protein A beads (Pierce) were incubated with the lysate-antibody mixture for an additional 2 hr at 4°C. The beads were washed twice with lysis buffer, followed by three washed in PBS. To confirm expression of the FLAG[®]-tagged Atr-2 protein, one third of the immunoprecipitation was separated on a Novex gel. Proteins were transferred to a PVDF membrane and the membrane was blocked in 5% milk/TBS/0.5% Tween-20 for one hr at room temperature. The membrane was incubated first with the anti-FLAG[®] M2 antibody and then with a secondary anti-mouse IgG-horse radish peroxidase (HRP) conjugated antibody. (Santa Cruz Biotechnology SC-2005). The membrane was washed three times in TBS with 0.05% Tween-20 and enhanced chemiluminescence reagents (New England Nuclear) identified a proteins with the expected size of 73 kDa.

Full length and truncated versions of Atr-2 is expressed in a baculovirus vector in SF9 insect cells. The coding region of Atr-2 contained within pCIneo FLAGATr-2 was reconstructed into baculovirus vectors. To construct a plasmid that expressed recombinant Atr-2 in baculovirus, pCIneoFLAGATR2 was digested with *Bam*HI and *Sal*II, and pFastBac (Gibco BRL) previously digested with the same two enzymes. The resulting expression construct was transformed into the bacterial strain, XL1 Blue (Stratagene). The resulting plasmid is recombined into a hybrid plasmid-

baculovirus, called a bacmid, in bacteria and transfected into the insect cell line, SF9. Once expressed in insect cells, a monoclonal antibody that recognizes the FLAG[®] tag (Eastman Kodak) is used to purify large quantities of the FLAG[®]-Atr-2 fusion protein. Activity of the protein is assayed as follows.

Infected insect cells are harvested 24-48 hours post-infection and lysed in lysis buffer (see above). Expressed FLAG[®]-Atr-2 fusion protein is purified using a column containing anti-FLAG[®] M2 affinity resin (Sigma). The column is washed with 20 column volumes of lysis buffer and then with 5 column volumes of 0.5 M lithium chloride, 50 mM Tris, pH 7.6, and 1 mM DTT. The column is eluted with either 0.1 M glycine, pH 3.0, followed by neutralization, or by competitive elution with the FLAG[®] peptide. The activity of the kinase is determined by performing a kinase assay.

Purified protein is incubated in optimal buffer conditions such as, 10 mM Hepes, pH 7.4, 10 mM MnCl₂, 50 mM NaCl, 10 mM MgCl₂, and 0.5 mM DTT. The reaction is carried out in the presence or absence of an exogenous substrate, such as lipid or peptide, along with 5 μ Ci γ -³²P-ATP (4 Ci/mM) for 10 minutes at 30°C.

The enzymatic assay is also used to screen for potential inhibitor or activator compounds. Small molecule chemical libraries, peptide and peptide mimetics, defined chemical entities, oligonucleotides, and natural product libraries (as described herein) are screened for modulators of kinase activity.

Example 7 ATR-2 Kinase Activity

In order determine if the Atr-2 fragment subcloned in Example 6 possessed kinase activity, 293T cells were transfected with the pCIneoFLAGATR2 expression construct (Example 6) using Superfect[®] (QIAGEN). After 48 hr, cells were harvested and lysed in 0.5 ml lysis buffer (Example 6), and the lysates were precleared by incubation with 50 μ l protein A beads for 2 hr at 4°C. The supernatant was immunoprecipitated with 6 μ g anti-M2 antibody for one hr at 4°C and the sample was divided into five aliquots. One hundred μ l of the mixture was combined with 10 μ l protein A beads for three hr at 4°C, after which the beads were washed twice with lysis

- 57 -

buffer and three times in kinase buffer containing 10 mM HEPES, pH 7.4, 10 mM MnCl₂, 50 mM NaCl, 10 mM MgCl₂, and 5 mM DTT.

In the kinase assay, 10 µl protein A beads was mixed with 10 µl PKA and PKC inhibitors from a p79^{S6} kinase assay kit (Upstate Biotechnology Inc., Lake Placid, NY) and 10 µl ATP mixture containing kinase buffer (above) with 10 mM ATP, 3 µCi ³²P-ATP, plus or minus 6µg myelin basic protein as substrate. Reactions were incubated at 30°C for 30 min and 20 µl of the reaction mixture was spotted onto P81 paper. The P81 paper was washed three times in 150 mM phosphoric acid and dried, and Cerenkov radiation measured.

The results demonstrated that the 73 kDa Atr-2 truncated protein encoded kinase activity that was able to phosphorylate the Atr-2 protein itself and the exogenous myelin basic protein substrate. Further, the Atr-2 kinase did not phosphorylate PHAS-1 or histone H1, suggesting substrate specificity for the kinase.

Numerous modifications and variations in the invention as set forth in the above illustrative examples are expected to occur to those skilled in the art. Consequently only such limitations as appear in the appended claims should be placed on the invention.

What is claimed is:

1. A purified and isolated Atr-2 polypeptide.
2. The polypeptide according to claim 1 comprising the amino acid sequence set out in SEQ ID NO: 2.
3. A purified and isolated mature Atr-2 polypeptide encoded by a polynucleotide comprising the sequence set out in SEQ ID NO: 1.
4. A purified and isolated Atr-2 polypeptide encoded by a polynucleotide selected from the group consisting of
 - a) the polynucleotide set out in SEQ ID NO: 1;
 - b) a polynucleotide encoding a polypeptide encoded by the polynucleotide of (a), and
 - c) a polynucleotides that hybridizes to the complement of the polynucleotide of (a) or (b) under moderately stringent conditions.
5. A polynucleotide encoding the polypeptide according to claim 1, 2, 3, or 4.
6. The polynucleotide according to claim 5 comprising the sequence set forth in SEQ ID NO: 1.
7. A purified and isolated polynucleotide encoding a human Atr-2 polypeptide selected from the group consisting of:
 - a) the polynucleotide set out in SEQ ID NO: 1;
 - b) a polynucleotide encoding a polypeptide encoded by the polynucleotide of (a), and
 - c) a polynucleotide that hybridizes to the complement of the polynucleotide of (a) or (b) under moderately stringent conditions.

- 59 -

8. The polynucleotide of claim 7 which is a DNA molecule.
9. The DNA of claim 8 which is a cDNA molecule.
10. The DNA of claim 8 which is a wholly or partially chemically synthesized DNA molecule.
11. A purified and isolated polynucleotide comprising the sequence set out in SEQ ID NO: 1 or a fragment thereof.
12. A purified and isolated anti-sense polynucleotide which specifically hybridizes with the complement of the polynucleotide of claim 7.
13. An expression construct comprising the polynucleotide according to claim 7.
14. A host cell transformed or transfected with the expression construct according to claim 13
15. A method for producing an Atr-2 polypeptide comprising the steps of:
 - a) growing the host cell according to claim 14 under conditions appropriate for expression of the Atr-2 polypeptide and
 - b) isolating the Atr-2 polypeptide from the host cell or medium of the host cell's growth.
16. An antibody specifically immunoreactive with the polypeptide according to claim 1, 2, 3, or 4.
17. The antibody according to claim 16 which is a monoclonal antibody.

- 60 -

18. A hybridoma which produces the antibody according to claim 17.
19. A purified and isolated anti-idiotype antibody specifically immunoreactive with the antibody according to claim 18.
20. A method to identify a binding partner compound of the Atr-2 polypeptide according to claim 1, 2, 3, or 4 comprising the steps of:
 - a) contacting the Atr-2 polypeptide with a compound under conditions which permit binding between the compound and the Atr-2 polypeptide; and
 - b) detecting binding of the compound to the Atr-2 polypeptide.
21. The method according to claim 20 wherein the binding partner modulates activity of the Atr-2 polypeptide.
22. The method according to claim 21 wherein the compound inhibits activity of the Atr-2 polypeptide.
23. The method according to claim 21 wherein the compound enhances activity of the Atr-2 polypeptide.
24. A method to identify a binding partner compound of the Atr-2-encoding polynucleotide according to claim 7 comprising the steps of:
 - a) contacting the Atr-2-encoding polynucleotide with a compound under conditions which permit binding between the compound and the Atr-2-encoding polynucleotide; and
 - b) detecting binding of the compound to the Atr-2-encoding polynucleotide.
25. The method according to claim 24 wherein the specific binding partner modulates expression of an Atr-2 polypeptide encoded by the Atr-2-encoding

polynucleotide.

26. The method according to claim 25 wherein the compound inhibits expression of the Atr-2 polypeptide.

27. The method according to claim 25 wherein the compound enhances expression of the Atr-2 polypeptide.

28. A compound identified by the method according to claim 20 or 24.

29. A composition comprising the compound according to claim 28 and a pharmaceutically acceptable carrier.

SEQUENCE LISTING

<110> Keegan, Kathy

<120> ATR-2

<130> 27866/35633

<140>

<141>

<160> 43

<170> PatentIn Ver. 2.0

<210> 1

<211> 8838

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (31)..(8820)

<220>

<223> ATR-2 Full Length

<400> 1

ggacacgagg aaactgttaa tgacttggc atg act tgg gct ttg gaa gca gct 54
Met Thr Trp Ala Leu Glu Ala Ala
1 5

gtt tta atg aag aag tct gaa aca tac gca cct tta ttc tct ctt ccg 102
 Val Leu Met Lys Lys Ser Glu Thr Tyr Ala Pro Leu Phe Ser Leu Pro
 10 15 20

tct ttc cat aaa ttt tgc aaa ggc ctt tta gcc aac act ctc gtt gaa	150
Ser Phe His Lys Phe Cys Lys Gly Leu Leu Ala Asn Thr Leu Val Glu	
25 . 30 35 40	

gat gtg aat atc tgt ctg cag gca tgc agc agt cta cat gct ctg tcc 198
 Asp Val Asn Ile Cys Leu Gln Ala Cys Ser Ser Leu His Ala Leu Ser
 45 50 55

tct tcc ttg cca gat gat ctt tta cag aga tgt gtc gat gtt tgc cgt 246
 Ser Ser Leu Pro Asp Asp Leu Leu Gln Arg Cys Val Asp Val Cys Arg
 60 65 70

gtt caa cta gtg cac agt gga act cgt att cga caa gca ttt gga aaa 294
 Val Gln Leu Val His Ser Gly Thr Arg Ile Arg Gln Ala Phe Gly Lys
 75 80 85

ctg ttg aaa tca att cct tta gat gtt gtc cta agc aat aac aat cac 342
 Leu Leu Lys Ser Ile Pro Leu Asp Val Val Leu Ser Asn Asn Asn His
 90 . . . 95 . . . 100

aca gaa att caa gaa att tct tta gca tta aga agt cac atg agt aaa 390
 Thr Glu Ile Gln Glu Ile Ser Leu Ala Leu Arg Ser His Met Ser Lys
 105 110 115 120

gca cca agt aat aca ttc cac ccc caa gat ttc tct gat gtt att agt 438

Ala Pro Ser Asn Thr Phe His Pro Gln Asp Phe Ser Asp Val Ile Ser			
125	130	135	
ttt att ttg tat ggg aac tct cat aga aca ggg aag gac aat tgg ttg		486	
Phe Ile Leu Tyr Gly Asn Ser His Arg Thr Gly Lys Asp Asn Trp Leu			
140	145	150	
gaa aga ctg ttc tat agc tgc cag aga ctg gat aag cgt gac cag tca		534	
Glu Arg Leu Phe Tyr Ser Cys Gln Arg Leu Asp Lys Arg Asp Gln Ser			
155	160	165	
aca att cca cgc aat ctc ctg aag aca gat gct gtc ctt tgg cag tgg		582	
Thr Ile Pro Arg Asn Leu Leu Lys Thr Asp Ala Val Leu Trp Gln Trp			
170	175	180	
gcc ata tgg gaa gct gca caa ttc act gtt ctt tct aag ctg aga acc		630	
Ala Ile Trp Glu Ala Ala Gln Phe Thr Val Leu Ser Lys Leu Arg Thr			
185	190	195	200
cca ctg ggc aga gct caa gac acc ttc cag aca att gaa ggt atc att		678	
Pro Leu Gly Arg Ala Gln Asp Thr Phe Gln Thr Ile Glu Gly Ile Ile			
205	210	215	
cga agt ctc gca gct cac aca tta aac cct gat cag gat gtt agt cag		726	
Arg Ser Leu Ala Ala His Thr Leu Asn Pro Asp Gln Asp Val Ser Gln			
220	225	230	
tgg aca act gca gac aat gat gaa ggc cat ggt aac aac caa ctt aga		774	
Trp Thr Ala Asp Asn Asp Glu Gly His Gly Asn Asn Gln Leu Arg			
235	240	245	
ctt gtt ctt ctt ctg cag tat ctg gaa aat ctg gag aaa tta atg tat		822	
Leu Val Leu Leu Gln Tyr Leu Glu Asn Leu Glu Lys Leu Met Tyr			
250	255	260	
aat gca tac gag gga tgt gct aat gca tta act tca cct ccc aag gtc		870	
Asn Ala Tyr Glu Gly Cys Ala Asn Ala Leu Thr Ser Pro Pro Lys Val			
265	270	275	280
att aga act ttt ttc tat acc aat cgc caa act tgt cag gac tgg cta		918	
Ile Arg Thr Phe Phe Tyr Thr Asn Arg Gln Thr Cys Gln Asp Trp Leu			
285	290	295	
acg cgg att cga ctc tcc atc atg agg gta gga ttg ttg gca ggc cag		966	
Thr Arg Ile Arg Leu Ser Ile Met Arg Val Gly Leu Leu Ala Gly Gln			
300	305	310	
cct gca gtg aca gtg aga cat ggc ttt gac ttg ctt aca gag atg aaa		1014	
Pro Ala Val Thr Val Arg His Gly Phe Asp Leu Leu Thr Glu Met Lys			
315	320	325	
aca acc agc cta tct cag ggg aat gaa ttg gaa gta acc att atg atg		1062	
Thr Thr Ser Leu Ser Gln Gly Asn Glu Leu Glu Val Thr Ile Met Met			
330	335	340	
gtg gta gaa gca tta tgt gaa ctt cat tgt cct gaa gct ata cag gga		1110	
Val Val Glu Ala Leu Cys Glu Leu His Cys Pro Glu Ala Ile Gln Gly			
345	350	355	360
att gct gtc tgg tca tca tct att gtt gga aaa aat ctt ctg tgg att		1158	
Ile Ala Val Trp Ser Ser Ser Ile Val Gly Lys Asn Leu Leu Trp Ile			
365	370	375	

aac tca gtg gct caa cag gct gaa ggg agg ttt gaa aag gcc tct gtg Asn Ser Val Ala Gln Gln Ala Glu Gly Arg Phe Glu Lys Ala Ser Val 380 385 390	1206
gag tac cag gaa cac ctg tgt gcc atg aca ggt gtt gat tgc tgc atc Glu Tyr Gln Glu His Leu Cys Ala Met Thr Gly Val Asp Cys Cys Ile 395 400 405	1254
tcc agc ttt gac aaa tcg gtg ctc acc tta gcc aat gct ggg cgt aac Ser Ser Phe Asp Lys Ser Val Leu Thr Leu Ala Asn Ala Gly Arg Asn 410 415 420	1302
agt gcc agc ccg aaa cat tct ctg aat ggt gaa tcc aga aaa act gtg Ser Ala Ser Pro Lys His Ser Leu Asn Gly Glu Ser Arg Lys Thr Val 425 430 435 440	1350
ctg tcc aaa ccg act gac tct tcc cct gag gtt ata aat tat tta gga Leu Ser Lys Pro Thr Asp Ser Ser Pro Glu Val Ile Asn Tyr Leu Gly 445 450 455	1398
aat aaa gca tgt gag tgc tac atc tca att gcc gat tgg gct gct gtg Asn Lys Ala Cys Glu Cys Tyr Ile Ser Ile Ala Asp Trp Ala Ala Val 460 465 470	1446
cag gaa tgg cag aac gct atc cat gac ttg aaa aag agt acc agt agc Gln Glu Trp Gln Asn Ala Ile His Asp Leu Lys Ser Thr Ser Ser 475 480 485	1494
act tcc ctc aac ctg aaa gct gac ttc aac tat ata aaa tca tta agc Thr Ser Leu Asn Leu Lys Ala Asp Phe Asn Tyr Ile Lys Ser Leu Ser 490 495 500	1542
agc ttt gag tct gga aaa ttt gtt gaa tgt acc gag cag tta gaa ttg Ser Phe Glu Ser Gly Lys Phe Val Glu Cys Thr Glu Gln Leu Glu Leu 505 510 515 520	1590
tta cca gga gaa aat atc aat cta ctt gct gga gga tca aaa gaa aaa Leu Pro Gly Glu Asn Ile Asn Leu Leu Ala Gly Gly Ser Lys Glu Lys 525 530 535	1638
ata gac atg aaa aaa ctg ctt cct aac atg tta agt ccg gat ccg agg Ile Asp Met Lys Lys Leu Leu Pro Asn Met Leu Ser Pro Asp Pro Arg 540 545 550	1686
gaa ctt cag aaa tcc att gaa gtt caa ttg tta aga agt tct gtt tgt Glu Leu Gln Lys Ser Ile Glu Val Gln Leu Leu Arg Ser Ser Val Cys 555 560 565	1734
ttg gca act gct tta aac ccg ata gaa caa gat cag aag tgg cag tct Leu Ala Thr Ala Leu Asn Pro Ile Glu Gln Asp Gln Lys Trp Gln Ser 570 575 580	1782
ata act gaa aat gtg gta aag tac ttg aag caa aca tcc cgc atc gct Ile Thr Glu Asn Val Val Lys Tyr Leu Lys Gln Thr Ser Arg Ile Ala 585 590 595 600	1830
att gga cct ctg aga ctt tct act tta aca gtt tca cag tct ttg cca Ile Gly Pro Leu Arg Leu Ser Thr Leu Thr Val Ser Gln Ser Leu Pro 605 610 615	1878
gtt cta agt acc ttg cag ctg tat tgc tca tct gct ttg gag aac aca Val Leu Ser Thr Leu Gln Leu Tyr Cys Ser Ser Ala Leu Glu Asn Thr	1926

620	625	630	
gtt tct aac aga ctt tca aca gag gac tgt ctt att cca ctc ttc agt Val Ser Asn Arg Leu Ser Thr Glu Asp Cys Leu Ile Pro Leu Phe Ser	635 640	645	1974
gaa gct tta cgt tca tgt aaa cag cat gac gtg agg cca tgg atg cag Glu Ala Leu Arg Ser Cys Lys Gln His Asp Val Arg Pro Trp Met Gln	650 655	660	2022
gca tta agg tat act atg tac cag aat cag ttg ttg gag aaa att aaa Ala Leu Arg Tyr Thr Met Tyr Gln Asn Gln Leu Leu Glu Lys Ile Lys	665 670	675	2070
gaa caa aca gtc cca att aga agc cat ctc atg gaa tta ggt cta aca Glu Gln Thr Val Pro Ile Arg Ser His Leu Met Glu Leu Gly Leu Thr	685 690	695	2118
gca gca aaa ttt gct aga aaa cga ggg aat gtg tcc ctt gca aca aga Ala Ala Lys Phe Ala Arg Lys Arg Gly Asn Val Ser Leu Ala Thr Arg	700 705	710	2166
ctg ctg gca cag tgc agt gaa gtt cag ctg gga aag acc acc act gca Leu Leu Ala Gln Cys Ser Glu Val Gln Leu Gly Lys Thr Thr Ala	715 720	725	2214
cag gat tta gtccaa cat ttt aaa aaa cta tca acc caa ggt caa gtg Gln Asp Leu Val Gln His Phe Lys Lys Leu Ser Thr Gln Gly Gln Val	730 735	740	2262
gat gaa aaa tgg ggg ccc gaa ctt gat att gaa aaa acc aaa ttg ctt Asp Glu Lys Trp Gly Pro Glu Leu Asp Ile Glu Lys Thr Lys Leu Leu	745 750	755	2310
tat aca gca ggc cag tca aca cat gca atg gaa atg ttg agt tct tgt Tyr Thr Ala Gly Gln Ser Thr His Ala Met Glu Met Leu Ser Ser Cys	765 770	775	2358
gcc ata tct ttc tgc aag tct gtg aaa gct gaa tat gca gtt gct aaa Ala Ile Ser Phe Cys Lys Ser Val Lys Ala Glu Tyr Ala Val Ala Lys	780 785	790	2406
tca att ctg aca ctg gct aaa tgg atc cag gca gaa tgg aaa gag att Ser Ile Leu Thr Leu Ala Lys Trp Ile Gln Ala Glu Trp Lys Glu Ile	795 800	805	2454
tca gga cag ctg aaa cag gtt tac aga gct cag cac caa cag aac ttc Ser Gly Gln Leu Lys Gln Val Tyr Arg Ala Gln His Gln Gln Asn Phe	810 815	820	2502
aca ggt ctt tct act ttg tct aaa aac ata ctc act cta ata gaa ctg Thr Gly Leu Ser Thr Leu Ser Lys Asn Ile Leu Thr Leu Ile Glu Leu	825 830	835	2550
cca tct gtt aat acg atg gaa gaa gag tat cct cgg atc gag agt gaa Pro Ser Val Asn Thr Met Glu Glu Glu Tyr Pro Arg Ile Glu Ser Glu	845 850	855	2598
tct aca gtg cat att gga gtt gga gaa cct gac ttc att ttg gga cag Ser Thr Val His Ile Gly Val Gly Glu Pro Asp Phe Ile Leu Gly Gln	860 865	870	2646

ttg tat cac ctg tct tca gta cag gca cct gaa gta gcc aaa tct tgg Leu Tyr His Leu Ser Ser Val Gln Ala Pro Glu Val Ala Lys Ser Trp 875 880 885	2694
gca gcg ttg gcc agc tgg gct tat agg tgg ggc aga aag gtg gtt gac Ala Ala Leu Ala Ser Trp Ala Tyr Arg Trp Gly Arg Lys Val Val Asp 890 895 900	2742
aat gcc agt cag gga gaa ggt gtt cgt ctg ctg cct aga gaa aaa tct Asn Ala Ser Gln Gly Glu Gly Val Arg Leu Leu Pro Arg Glu Lys Ser 905 910 915 920	2790
gaa gtt cag aat cta ctt cca gac act ata act gag gaa gag aaa gag Glu Val Gln Asn Leu Leu Pro Asp Thr Ile Thr Glu Glu Lys Glu 925 930 935	2838
aga ata tat ggt att ctt gga cag gct gtg tgt cgg ccg gcg ggg att Arg Ile Tyr Gly Ile Leu Gly Gln Ala Val Cys Arg Pro Ala Gly Ile 940 945 950	2886
cag gat gaa gat ata aca ctt cag ata act gag agt gaa gac aac gaa Gln Asp Glu Asp Ile Thr Leu Gln Ile Thr Glu Ser Glu Asp Asn Glu 955 960 965	2934
gaa gat gac atg gtt gat gtt atc tgg cgt cag ttg ata tca agc tgc Glu Asp Asp Met Val Asp Val Ile Trp Arg Gln Leu Ile Ser Ser Cys 970 975 980	2982
cca tgg ctt tca gaa ctt gat gaa agt gca act gaa gga gtt att aaa Pro Trp Leu Ser Glu Leu Asp Glu Ser Ala Thr Glu Gly Val Ile Lys 985 990 995 1000	3030
gtg tgg agg aaa gtt gta gat aga ata ttc agc ctg tac aaa ctc tct Val Trp Arg Lys Val Val Asp Arg Ile Phe Ser Leu Tyr Lys Leu Ser 1005 1010 1015	3078
tgc agt gca tac ttt act ttc ctt aaa ctc aac gct ggt caa att cct Cys Ser Ala Tyr Phe Thr Phe Leu Lys Leu Asn Ala Gly Gln Ile Pro 1020 1025 1030	3126
tta gat gag gat gac cct agg ctg cat tta agt cac aga gtg gaa cag Leu Asp Glu Asp Asp Pro Arg Leu His Leu Ser His Arg Val Glu Gln 1035 1040 1045	3174
agc act gat gac atg att gtg atg gcc aca ttg cgc ctg ctg cgg ttg Ser Thr Asp Asp Met Ile Val Met Ala Thr Leu Arg Leu Leu Arg Leu 1050 1055 1060	3222
ctc gtg aag cac gct ggt gag ctt cg ^g cag tat ctg gag cac ggc ttg Leu Val Lys His Ala Gly Glu Leu Arg Gln Tyr Leu Glu His Gly Leu 1065 1070 1075 1080	3270
gag aca aca ccc act gca cca tgg aga gga att att ccg caa ctt ttc Glu Thr Thr Pro Thr Ala Pro Trp Arg Gly Ile Ile Pro Gln Leu Phe 1085 1090 1095	3318
tca cgc tta aac cac cct gaa gtg tat gtg cgc caa agt att tgt aac Ser Arg Leu Asn His Pro Glu Val Tyr Val Arg Gln Ser Ile Cys Asn 1100 1105 1110	3366
ctt ctc tgc cgt gtg gct caa gat tcc cca cat ctc ata ttg tat cct Leu Leu Cys Arg Val Ala Gln Asp Ser Pro His Leu Ile Leu Tyr Pro	3414

1115	1120	1125	
gca ata gtg ggt acc ata tcg ctt agt agt gaa tcc cag gct tca gga Ala Ile Val Gly Thr Ile Ser Leu Ser Ser Glu Ser Gln Ala Ser Gly			3462
1130	1135	1140	
aat aaa ttt tcc act gca att cca act tta ctt ggc aat att caa gga Asn Lys Phe Ser Thr Ala Ile Pro Thr Leu Leu Gly Asn Ile Gln Gly			3510
1145	1150	1155	1160
gaa gaa ttg ctg gtt tct gaa tgt gag gga gga agt cct cct gca tct Glu Glu Leu Leu Val Ser Glu Cys Glu Gly Ser Pro Pro Ala Ser			3558
1165	1170	1175	
cag gat agc aat aag gat gaa cct aaa agt gga tta aat gaa gac caa Gln Asp Ser Asn Lys Asp Glu Pro Lys Ser Gly Leu Asn Glu Asp Gln			3606
1180	1185	1190	
gcc atg atg cag gat tgt tac agc aaa att gta gat aag ctg tcc tct Ala Met Met Gln Asp Cys Tyr Ser Lys Ile Val Asp Lys Leu Ser Ser			3654
1195	1200	1205	
gca aac ccc acc atg gta tta cag gtt cag atg ctc gtg gct gaa ctg Ala Asn Pro Thr Met Val Leu Gln Val Gln Met Leu Val Ala Glu Leu			3702
1210	1215	1220	
cgc agg gtc act gtg ctc tgg gat gag ctc tgg ctg gga gtt ttg ctg Arg Arg Val Thr Val Leu Trp Asp Glu Leu Trp Leu Gly Val Leu Leu			3750
1225	1230	1235	1240
caa caa cac atg tat gtc ctg aga cga att cag cag ctt gaa gat gag Gln Gln His Met Tyr Val Leu Arg Arg Ile Gln Gln Leu Glu Asp Glu			3798
1245	1250	1255	
gtg aag aga gtc cag aac aac acc tta cgc aaa gaa gag aaa att Val Lys Arg Val Gln Asn Asn Asn Thr Leu Arg Lys Glu Glu Lys Ile			3846
1260	1265	1270	
gca atc atg agg gag aag cac aca gct ttg atg aag ccc atc gta ttt Ala Ile Met Arg Glu Lys His Thr Ala Leu Met Lys Pro Ile Val Phe			3894
1275	1280	1285	
gct ttg gag cat gtg agg agt atc aca gcg gct cct gca gaa aca cct Ala Leu Glu His Val Arg Ser Ile Thr Ala Ala Pro Ala Glu Thr Pro			3942
1290	1295	1300	
cat gaa aaa tgg ttt cag gat aac tat ggt gat gcc att gaa aat gcc His Glu Lys Trp Phe Gln Asp Asn Tyr Gly Asp Ala Ile Glu Asn Ala			3990
1305	1310	1315	1320
cta gaa aaa ctg aag act cca ttg aac cct gca aag cct ggg agc agc Leu Glu Lys Leu Lys Thr Pro Leu Asn Pro Ala Lys Pro Gly Ser Ser			4038
1325	1330	1335	
tgg att cca ttt aaa gag ata atg cta agt ttg caa cag aga gca cag Trp Ile Pro Phe Lys Glu Ile Met Leu Ser Leu Gln Gln Arg Ala Gln			4086
1340	1345	1350	
aaa cgt gca agt tac atc ttg cgt ctt gaa gaa atc agt cca tgg ttg Lys Arg Ala Ser Tyr Ile Leu Arg Leu Glu Glu Ile Ser Pro Trp Leu			4134
1355	1360	1365	

gct gcc atg act aac act gaa att gct ctt cct ggg gaa gtc tca gcc Ala Ala Met Thr Asn Thr Glu Ile Ala Leu Pro Gly Glu Val Ser Ala 1370 1375 1380	4182
aga gac act gtc aca atc cat agt gtg ggc gga acc atc aca atc tta Arg Asp Thr Val Thr Ile His Ser Val Gly Gly Thr Ile Thr Ile Leu 1385 1390 1395 1400	4230
ccg act aaa acc aag cca aag aaa ctt ctc ttt ctt gga tca gat ggg Pro Thr Lys Thr Lys Pro Lys Lys Leu Leu Phe Leu Gly Ser Asp Gly 1405 1410 1415	4278
aag agc tat cct tat ctt ttc aaa gga ctg gag gat tta cat ctg gat Lys Ser Tyr Pro Tyr Leu Phe Lys Gly Leu Glu Asp Leu His Leu Asp 1420 1425 1430	4326
gag aga ata atg cag ttc cta tct att gtg aat acc atg ttt gct aca Glu Arg Ile Met Gln Phe Leu Ser Ile Val Asn Thr Met Phe Ala Thr 1435 1440 1445	4374
att aat cgc caa gaa aca ccc cgg ttc cat gct cga cac tat tct gta Ile Asn Arg Gln Glu Thr Pro Arg Phe His Ala Arg His Tyr Ser Val 1450 1455 1460	4422
aca cca cta gga aca aga tca gga cta atc cag tgg gta gat gga gcc Thr Pro Leu Gly Thr Arg Ser Gly Leu Ile Gln Trp Val Asp Gly Ala 1465 1470 1475 1480	4470
aca ccc tta ttt ggt ctt tac aaa cga tgg caa caa cgg gaa gct gcc Thr Pro Leu Phe Gly Leu Tyr Lys Arg Trp Gln Gln Arg Glu Ala Ala 1485 1490 1495	4518
tta caa gca caa aag gcc caa gat tcc tac caa act cct cag aat cct Leu Gln Ala Gln Lys Ala Gln Asp Ser Tyr Gln Thr Pro Gln Asn Pro 1500 1505 1510	4566
gga att gta ccc cgt cct agt gaa ctt tat tac agt aaa att ggc cct Gly Ile Val Pro Arg Pro Ser Glu Leu Tyr Ser Lys Ile Gly Pro 1515 1520 1525	4614
gct ttg aaa aca gtt ggg ctt agc ctg gat gtg tcc cgt cgg gat tgg Ala Leu Lys Thr Val Gly Leu Ser Leu Asp Val Ser Arg Arg Asp Trp 1530 1535 1540	4662
cct ctt cat gta atg aag gca gta ttg gaa gag tta atg gag gcc aca Pro Leu His Val Met Lys Ala Val Leu Glu Leu Met Glu Ala Thr 1545 1550 1555 1560	4710
ccc ccg aat ctc ctt gcc aaa gag ctc tgg tca tct tgc aca aca cct Pro Pro Asn Leu Leu Ala Lys Glu Leu Trp Ser Ser Cys Thr Thr Pro 1565 1570 1575	4758
gat gaa tgg tgg aga gtt acg cag tct tat gca aga tct act gca gtc Asp Glu Trp Trp Arg Val Thr Gln Ser Tyr Ala Arg Ser Thr Ala Val 1580 1585 1590	4806
atg tct atg gtt gga tac ata att ggc ctt gga gac aga cat ctg gat Met Ser Met Val Gly Tyr Ile Ile Gly Leu Gly Asp Arg His Leu Asp 1595 1600 1605	4854
aat gtt ctt ata gat atg acg act gga gaa gtt gtt cac ata gat tac Asn Val Leu Ile Asp Met Thr Thr Gly Glu Val Val His Ile Asp Tyr	4902

1610	1615	1620	
aat gtt tgc ttt gaa aaa ggt aaa agc ctt aga gtt cct gag aaa gta Asn Val Cys Phe Glu Lys Gly Lys Ser Leu Arg Val Pro Glu Lys Val 1625 1630 1635 1640			4950
cct ttt cga atg aca caa aac att gaa aca gca ctg ggt gta act gga Pro Phe Arg Met Thr Gln Asn Ile Glu Thr Ala Leu Gly Val Thr Gly 1645 1650 1655			4998
gta gaa ggt gta ttt agg ctt tca tgt gag cag gtt tta cac att atg Val Glu Gly Val Phe Arg Leu Ser Cys Glu Gln Val Leu His Ile Met 1660 1665 1670			5046
cgg cgt ggc aga gag acc ctg ctg acg ctg gag gcc ttt gtg tac Arg Arg Gly Arg Glu Thr Leu Leu Thr Leu Leu Glu Ala Phe Val Tyr 1675 1680 1685			5094
gac cct ctg gtg gac tgg aca gca gga ggc gag gct ggg ttt gct ggt Asp Pro Leu Val Asp Trp Thr Ala Gly Gly Glu Ala Gly Phe Ala Gly 1690 1695 1700			5142
gct gtc tat ggt gga ggt ggc cag cag gcc gag agc aag cag agc aag Ala Val Tyr Gly Gly Gln Gln Ala Glu Ser Lys Gln Ser Lys 1705 1710 1715 1720			5190
aga gag atg gag cga gag atc acc cgc agc ctg ttt tct tct aga gta Arg Glu Met Glu Arg Glu Ile Thr Arg Ser Leu Phe Ser Ser Arg Val 1725 1730 1735			5238
gct gag att aag gtg aac tgg ttt aag aat aga gat gag atg ctg gtt Ala Glu Ile Lys Val Asn Trp Phe Lys Asn Arg Asp Glu Met Leu Val 1740 1745 1750			5286
gtg ctt ccc aag ttg gac ggt agc tta gat gaa tac cta agc ttg caa Val Leu Pro Lys Leu Asp Gly Ser Leu Asp Glu Tyr Leu Ser Leu Gln 1755 1760 1765			5334
gag caa ctg aca gat gtg gaa aaa ctg cag ggc aaa cta ctg gag gaa Glu Gln Leu Thr Asp Val Glu Lys Leu Gln Gly Lys Leu Leu Glu Glu 1770 1775 1780			5382
ata gag ttt cta gaa gga gct gaa ggg gtg gat cat cct tct cat act Ile Glu Phe Leu Glu Gly Ala Glu Gly Val Asp His Pro Ser His Thr 1785 1790 1795 1800			5430
ctg caa cac agg tat tct gag cac acc caa cta cag act cag caa aga Leu Gln His Arg Tyr Ser Glu His Thr Gln Leu Gln Thr Gln Gln Arg 1805 1810 1815			5478
gct gtt cag gaa gca atc cag gtg aag ctg aat gaa ttt gaa caa tgg Ala Val Gln Glu Ala Ile Gln Val Lys Leu Asn Glu Phe Glu Gln Trp 1820 1825 1830			5526
ata aca cat tat cag gct gca ttc aat aat tta gaa gca aca cag ctt Ile Thr His Tyr Gln Ala Ala Phe Asn Asn Leu Glu Ala Thr Gln Leu 1835 1840 1845			5574
gca agc ttg ctt caa gag ata agc aca caa atg gac ctt ggt cct cca Ala Ser Leu Leu Gln Glu Ile Ser Thr Gln Met Asp Leu Gly Pro Pro 1850 1855 1860			5622

agt tac gtg cca gca aca gcc ttt ctg cag aat gct ggt cag gcc cac Ser Tyr Val Pro Ala Thr Ala Phe Leu Gln Asn Ala Gly Gln Ala His 1865 1870 1875 1880	5670
ttg att agc cag tgc gag cag ctg gag ggg gag gtt ggt gct ctc ctg Leu Ile Ser Gln Cys Glu Gln Leu Glu Gly Glu Val Gly Ala Leu Leu 1885 1890 1895	5718
cag cag agg cgc tcc gtg ctc cgt ggc tgt ctg gag caa ctg cat cac Gln Gln Arg Arg Ser Val Leu Arg Gly Cys Leu Glu Gln Leu His His 1900 1905 1910	5766
tat gca acc gtg gcc ctg cag tat ccg aag gcc ata ttt cag aaa cat Tyr Ala Thr Val Ala Leu Gln Tyr Pro Lys Ala Ile Phe Gln Lys His 1915 1920 1925	5814
cga att gaa cag tgg aag acc tgg atg gaa gag ctc atc tgt aac acc Arg Ile Glu Gln Trp Lys Thr Trp Met Glu Glu Leu Ile Cys Asn Thr 1930 1935 1940	5862
aca gta gag cgt tgt caa gag ctc tat agg aaa tat gaa atg caa tat Thr Val Glu Arg Cys Gln Glu Leu Tyr Arg Lys Tyr Glu Met Gln Tyr 1945 1950 1955 1960	5910
gct ccc cag cca ccc cca aca gtg tgt cag ttc atc act gcc act gaa Ala Pro Gln Pro Pro Thr Val Cys Gln Phe Ile Thr Ala Thr Glu 1965 1970 1975	5958
atg acc ctg cag cga tac gca gca gac atc aac agc aga ctt att aga Met Thr Leu Gln Arg Tyr Ala Ala Asp Ile Asn Ser Arg Leu Ile Arg 1980 1985 1990	6006
caa gtg gaa cgc ttg aaa cag gaa gct gtc act gtg cca gtt tgt gaa Gln Val Glu Arg Leu Lys Gln Glu Ala Val Thr Val Pro Val Cys Glu 1995 2000 2005	6054
gat cag ttg aaa gaa att gaa cgt tgc att aaa gtt ttc ctt cat gag Asp Gln Leu Lys Glu Ile Glu Arg Cys Ile Lys Val Phe Leu His Glu 2010 2015 2020	6102
aat gga gaa gaa gga tct ttg agt cta gca agt gtt att att tct gcc Asn Gly Glu Gly Ser Leu Ser Leu Ala Ser Val Ile Ile Ser Ala 2025 2030 2035 2040	6150
ctt tgt acc ctt aca agg cgt aac ctg atg atg gaa ggt gca gcg tca Leu Cys Thr Leu Thr Arg Arg Asn Leu Met Met Glu Gly Ala Ala Ser 2045 2050 2055	6198
agt gct gga gaa cag ctg gtt gat ctg act tct cgg gat gga gcc tgg Ser Ala Gly Glu Gln Leu Val Asp Leu Thr Ser Arg Asp Gly Ala Trp 2060 2065 2070	6246
ttc ttg gag gaa ctc tgc agt atg agc gga aac gtc acc tgc ttg gtt Phe Leu Glu Glu Leu Cys Ser Met Ser Gly Asn Val Thr Cys Leu Val 2075 2080 2085	6294
cag tta ctg aag cag tgc cac ctg gtg cca cag gac tta gat atc ccg Gln Leu Leu Lys Gln Cys His Leu Val Pro Gln Asp Leu Asp Ile Pro 2090 2095 2100	6342
aac ccc atg gaa gcg tct gag aca gtt cac tta gcc aat gga gtt tat Asn Pro Met Glu Ala Ser Glu Thr Val His Leu Ala Asn Gly Val Tyr	6390

2105	2110	2115	2120	
acc tca ctt cag gaa ttg aat tcg aat ttc cgg caa atc ata ttt cca Thr Ser Leu Gln Glu Leu Asn Ser Asn Phe Arg Gln Ile Ile Phe Pro 2125		2130	2135	6438
gaa gca ctt cga tgt tta atg aaa ggg gaa tac acg tta gaa agt atg Glu Ala Leu Arg Cys Leu Met Lys Gly Glu Tyr Thr Leu Glu Ser Met 2140	2145		2150	6486
ctg cat gaa ctg gac ggt ctt att gag cag acc acc gat ggc gtt ccc Leu His Glu Leu Asp Gly Leu Ile Glu Gln Thr Thr Asp Gly Val Pro 2155	2160		2165	6534
ctg cag act cta gtg gaa tct ctt cag gcc tac tta aga aac gca gct Leu Gln Thr Leu Val Glu Ser Leu Gln Ala Tyr Leu Arg Asn Ala Ala 2170	2175	2180		6582
atg gga ctg gaa gaa aca cat gct cat tac atc gat gtt gcc aga Met Gly Leu Glu Glu Thr His Ala His Tyr Ile Asp Val Ala Arg 2185	2190	2195	2200	6630
cta cta cat gct cag tac ggt gaa tta atc caa ccg aga aat ggt tca Leu Leu His Ala Gln Tyr Gly Glu Leu Ile Gln Pro Arg Asn Gly Ser 2205	2210		2215	6678
gtt gat gaa aca ccc aaa atg tca gct ggc cag atg ctt ttg gta gca Val Asp Glu Thr Pro Lys Met Ser Ala Gly Gln Met Leu Leu Val Ala 2220	2225		2230	6726
ttc gat ggc atg ttt gct caa gtt gaa act gct ttc agc tta tta gtt Phe Asp Gly Met Phe Ala Gln Val Glu Thr Ala Phe Ser Leu Leu Val 2235	2240		2245	6774
gaa aag ttg aac aag atg gaa att ccc ata gct tgg cga aag att gac Glu Lys Leu Asn Lys Met Glu Ile Pro Ile Ala Trp Arg Lys Ile Asp 2250	2255	2260		6822
atc ata agg gaa gcc agg agt act caa gtt aat ttt ttt gat gat gat Ile Ile Arg Glu Ala Arg Ser Thr Gln Val Asn Phe Phe Asp Asp Asp 2265	2270	2275	2280	6870
aat cac cgg cag gtg cta gaa gag att ttc ttt cta aaa aga cta cag Asn His Arg Gln Val Leu Glu Ile Phe Phe Leu Lys Arg Leu Gln 2285	2290		2295	6918
act att aag gag ttc ttc agg ctc tgt ggt acc ttt tct aaa aca ttg Thr Ile Lys Glu Phe Phe Arg Leu Cys Gly Thr Phe Ser Lys Thr Leu 2300	2305		2310	6966
tca gga tca agt tca ctt gaa gat cag aat act gtg aat ggg cct gta Ser Gly Ser Ser Leu Glu Asp Gln Asn Thr Val Asn Gly Pro Val 2315	2320		2325	7014
cag att gtc aat gtg aaa acc ctt ttt aga aac tct tgt ttc agt gaa Gln Ile Val Asn Val Lys Thr Leu Phe Arg Asn Ser Cys Phe Ser Glu 2330	2335	2340		7062
gac caa atg gcc aaa cct atc aag gca ttc aca gct gac ttt gtg agg Asp Gln Met Ala Lys Pro Ile Lys Ala Phe Thr Ala Asp Phe Val Arg 2345	2350	2355	2360	7110

cag ctc ttg ata ggg cta ccc aac caa gcc ctc gga ctc aca ctg tgc Gln Leu Leu Ile Gly Leu Pro Asn Gln Ala Leu Gly Leu Thr Leu Cys 2365 2370 2375	7158
agt ttt atc agt gct ctg ggt gta gac atc att gct caa gta gag gca Ser Phe Ile Ser Ala Leu Gly Val Asp Ile Ile Ala Gln Val Glu Ala 2380 2385 2390	7206
aag gac ttt ggt gcc gaa agc aaa gtt tct gtt gat gat ctc tgt aag Lys Asp Phe Gly Ala Glu Ser Lys Val Ser Val Asp Asp Leu Cys Lys 2395 2400 2405	7254
aaa gcg gtg gaa cat aac atc cag ata ggg aag ttc tct cag ctg gtt Lys Ala Val Glu His Asn Ile Gln Ile Gly Lys Phe Ser Gln Leu Val 2410 2415 2420	7302
atg aac agg gca act gtg tta gca agt tct tac gac act gcc tgg aag Met Asn Arg Ala Thr Val Leu Ala Ser Ser Tyr Asp Thr Ala Trp Lys 2425 2430 2435 2440	7350
aag cat gac ttg gtg cga agg cta gaa acc agt att tct tct tgt aag Lys His Asp Leu Val Arg Arg Leu Glu Thr Ser Ile Ser Ser Cys Lys 2445 2450 2455	7398
aca agc ctg cag cgg gtt cag ctg cat att gcc atg ttt cag tgg caa Thr Ser Leu Gln Arg Val Gln Leu His Ile Ala Met Phe Gln Trp Gln 2460 2465 2470	7446
cat gaa gat cta ctt atc aat aga cca caa gcc atg tca gtc aca cct His Glu Asp Leu Leu Ile Asn Arg Pro Gln Ala Met Ser Val Thr Pro 2475 2480 2485	7494
ccc cca cgg tct gct atc cta acc agc atg aaa aag aag ctg cat acc Pro Pro Arg Ser Ala Ile Leu Thr Ser Met Lys Lys Leu His Thr 2490 2495 2500	7542
ctg agc cag att gaa act tct att gcg aca gtt cag gag aag cta gct Leu Ser Gln Ile Glu Thr Ser Ile Ala Thr Val Gln Glu Lys Leu Ala 2505 2510 2515 2520	7590
gca ctt gaa tca agt att gaa cag cga ctc aag tgg gca ggt ggt gcc Ala Leu Glu Ser Ser Ile Glu Gln Arg Leu Lys Trp Ala Gly Gly Ala 2525 2530 2535	7638
aac cct gca ttg gcc cct gta cta caa gat ttt gaa gca acg ata gct Asn Pro Ala Leu Ala Pro Val Leu Gln Asp Phe Glu Ala Thr Ile Ala 2540 2545 2550	7686
gaa aga aga aat ctt gtc ctt aaa gag agc caa aga gca agt cag gtc Glu Arg Arg Asn Leu Val Leu Lys Glu Ser Gln Arg Ala Ser Gln Val 2555 2560 2565	7734
aca ttt ctc tgc agc aat atc att cat ttt gaa agt tta cga aca aga Thr Phe Leu Cys Ser Asn Ile Ile His Phe Glu Ser Leu Arg Thr Arg 2570 2575 2580	7782
act gca gaa gcc tta aac ctg gat gcg gcg tta ttt gaa cta atc aag Thr Ala Glu Ala Leu Asn Leu Asp Ala Ala Leu Phe Glu Leu Ile Lys 2585 2590 2595 2600	7830
cga tgt cag cag atg tgt tcg ttt gca tca cag ttt aac agt tca gtg Arg Cys Gln Gln Met Cys Ser Phe Ala Ser Gln Phe Asn Ser Ser Val	7878

2605

2610

2615

tct gag tta gag ctt cgt tta cag aga gtg gac act ggt ctt gaa Ser Glu Leu Glu Leu Arg Leu Leu Gln Arg Val Asp Thr Gly Leu Glu 2620	2625	2630	7926
cat cct att ggc agc tct gaa tgg ctt ttg tca gca cac aaa cag ttg His Pro Ile Gly Ser Ser Glu Trp Leu Leu Ser Ala His Lys Gln Leu 2635	2640	2645	7974
acc cag gat atg tct act cag agg gca att cag aca gag aaa gag cag Thr Gln Asp Met Ser Thr Gln Arg Ala Ile Gln Thr Glu Lys Glu Gln 2650	2655	2660	8022
cag ata gaa acg gtc tgt gaa aca att cag aat ctg gtt gat aat ata Gln Ile Glu Thr Val Cys Glu Thr Ile Gln Asn Leu Val Asp Asn Ile 2665	2670	2675	8070
aag act gtg ctc act ggt cat aac cga cag ctt gga gat gtc aaa cat Lys Thr Val Leu Thr Gly His Asn Arg Gln Leu Gly Asp Val Lys His 2685	2690	2695	8118
ctc ttg aaa gct atg gct aag gat gaa gaa gct gct ctg gca gat ggt Leu Leu Lys Ala Met Ala Lys Asp Glu Glu Ala Ala Leu Ala Asp Gly 2700	2705	2710	8166
gaa gat gtt ccc tat gag aac agt gtt agg cag ttt ttg ggt gaa tat Glu Asp Val Pro Tyr Glu Asn Ser Val Arg Gln Phe Leu Gly Glu Tyr 2715	2720	2725	8214
aaa tca tgg caa gac aac att caa aca gtt cta ttt aca tta gtc cag Lys Ser Trp Gln Asp Asn Ile Gln Thr Val Leu Phe Thr Leu Val Gln 2730	2735	2740	8262
gct atg ggt cag gtt cga agt caa gaa cac gtt gaa atg ctc cag gaa Ala Met Gly Gln Val Arg Ser Gln Glu His Val Glu Met Leu Gln Glu 2745	2750	2755	8310
atc act ccc acc ttg aaa gaa ctg aaa aca caa agt cag agt atc tat Ile Thr Pro Thr Leu Lys Glu Leu Lys Thr Gln Ser Gln Ser Ile Tyr 2765	2770	2775	8358
aat aat tta gtg agt ttt gca tca ccc tta gtc acc gat gca aca aat Asn Asn Leu Val Ser Phe Ala Ser Pro Leu Val Thr Asp Ala Thr Asn 2780	2785	2790	8406
gaa tgt tcg agt cca acg tca tct gct act tat cag cca tcc ttc gct Glu Cys Ser Ser Pro Thr Ser Ser Ala Thr Tyr Gln Pro Ser Phe Ala 2795	2800	2805	8454
gca gca gtc cgg agt aac act ggc cag aag act cag cct gat gtc atg Ala Ala Val Arg Ser Asn Thr Gly Gln Lys Thr Gln Pro Asp Val Met 2810	2815	2820	8502
tca cag aat gct aga aag ctg atc cag aaa aat ctt gct aca tca gct Ser Gln Asn Ala Arg Lys Leu Ile Gln Lys Asn Leu Ala Thr Ser Ala 2825	2830	2835	8550
gat act cca cca agc acc gtt cca gga act ggc aag agt gtt gct tgt Asp Thr Pro Pro Ser Thr Val Pro Gly Thr Gly Lys Ser Val Ala Cys 2845	2850	2855	8598

agt cct aaa aag gca gtc aga gac cct aaa act ggg aaa gcg gtg caa	8646
Ser Pro Lys Lys Ala Val Arg Asp Pro Lys Thr Gly Lys Ala Val Gln	
2860 2865 2870	
gag aga aac tcc tat gca gtg agt gtg tgg aag aga gtg aaa gcc aag	8694
Glu Arg Asn Ser Tyr Ala Val Ser Val Trp Lys Arg Val Lys Ala Lys	
2875 2880 2885	
tta gag ggc cga gat gtt gat ccg aat agg agg atg tca gtt gct gaa	8742
Leu Glu Gly Arg Asp Val Asp Pro Asn Arg Arg Met Ser Val Ala Glu	
2890 2895 2900	
cag gtt gac tat gtc att aag gaa gca act aat cta gat aac ttg gct	8790
Gln Val Asp Tyr Val Ile Lys Glu Ala Thr Asn Leu Asp Asn Leu Ala	
2905 2910 2915 2920	
cag ctg tat gaa ggt tgg aca gcc tgg gtg tgaatggcaa gacagtag	8838
Gln Leu Tyr Glu Gly Trp Thr Ala Trp Val	
2925 2930	

<210> 2
<211> 2930
<212> PRT
<213> Homo sapiens

<400> 2	
Met Thr Trp Ala Leu Glu Ala Ala Val Leu Met Lys Lys Ser Glu Thr	
1 5 10 15	
Tyr Ala Pro Leu Phe Ser Leu Pro Ser Phe His Lys Phe Cys Lys Gly	
20 25 30	
Leu Leu Ala Asn Thr Leu Val Glu Asp Val Asn Ile Cys Leu Gln Ala	
35 40 45	
Cys Ser Ser Leu His Ala Leu Ser Ser Ser Leu Pro Asp Asp Leu Leu	
50 55 60	
Gln Arg Cys Val Asp Val Cys Arg Val Gln Leu Val His Ser Gly Thr	
65 70 75 80	
Arg Ile Arg Gln Ala Phe Gly Lys Leu Leu Lys Ser Ile Pro Leu Asp	
85 90 95	
Val Val Leu Ser Asn Asn His Thr Glu Ile Gln Glu Ile Ser Leu	
100 105 110	
Ala Leu Arg Ser His Met Ser Lys Ala Pro Ser Asn Thr Phe His Pro	
115 120 125	
Gln Asp Phe Ser Asp Val Ile Ser Phe Ile Leu Tyr Gly Asn Ser His	
130 135 140	
Arg Thr Gly Lys Asp Asn Trp Leu Glu Arg Leu Phe Tyr Ser Cys Gln	
145 150 155 160	
Arg Leu Asp Lys Arg Asp Gln Ser Thr Ile Pro Arg Asn Leu Leu Lys	
165 170 175	
Thr Asp Ala Val Leu Trp Gln Trp Ala Ile Trp Glu Ala Ala Gln Phe	
180 185 190	

Thr Val Leu Ser Lys Leu Arg Thr Pro Leu Gly Arg Ala Gln Asp Thr
 195 200 205
 Phe Gln Thr Ile Glu Gly Ile Ile Arg Ser Leu Ala Ala His Thr Leu
 210 215 220
 Asn Pro Asp Gln Asp Val Ser Gln Trp Thr Thr Ala Asp Asn Asp Glu
 225 230 235 240
 Gly His Gly Asn Asn Gln Leu Arg Leu Val Leu Leu Leu Gln Tyr Leu
 245 250 255
 Glu Asn Leu Glu Lys Leu Met Tyr Asn Ala Tyr Glu Gly Cys Ala Asn
 260 265 270
 Ala Leu Thr Ser Pro Pro Lys Val Ile Arg Thr Phe Phe Tyr Thr Asn
 275 280 285
 Arg Gln Thr Cys Gln Asp Trp Leu Thr Arg Ile Arg Leu Ser Ile Met
 290 295 300
 Arg Val Gly Leu Leu Ala Gly Gln Pro Ala Val Thr Val Arg His Gly
 305 310 315 320
 Phe Asp Leu Leu Thr Glu Met Lys Thr Thr Ser Leu Ser Gln Gly Asn
 325 330 335
 Glu Leu Glu Val Thr Ile Met Met Val Val Glu Ala Leu Cys Glu Leu
 340 345 350
 His Cys Pro Glu Ala Ile Gln Gly Ile Ala Val Trp Ser Ser Ser Ile
 355 360 365
 Val Gly Lys Asn Leu Leu Trp Ile Asn Ser Val Ala Gln Gln Ala Glu
 370 375 380
 Gly Arg Phe Glu Lys Ala Ser Val Glu Tyr Gln Glu His Leu Cys Ala
 385 390 395 400
 Met Thr Gly Val Asp Cys Cys Ile Ser Ser Phe Asp Lys Ser Val Leu
 405 410 415
 Thr Leu Ala Asn Ala Gly Arg Asn Ser Ala Ser Pro Lys His Ser Leu
 420 425 430
 Asn Gly Glu Ser Arg Lys Thr Val Leu Ser Lys Pro Thr Asp Ser Ser
 435 440 445
 Pro Glu Val Ile Asn Tyr Leu Gly Asn Lys Ala Cys Glu Cys Tyr Ile
 450 455 460
 Ser Ile Ala Asp Trp Ala Ala Val Gln Glu Trp Gln Asn Ala Ile His
 465 470 475 480
 Asp Leu Lys Lys Ser Thr Ser Thr Ser Leu Asn Leu Lys Ala Asp
 485 490 495
 Phe Asn Tyr Ile Lys Ser Leu Ser Ser Phe Glu Ser Gly Lys Phe Val
 500 505 510
 Glu Cys Thr Glu Gln Leu Glu Leu Leu Pro Gly Glu Asn Ile Asn Leu
 515 520 525

Leu Ala Gly Gly Ser Lys Glu Lys Ile Asp Met Lys Lys Leu Leu Pro
 530 535 540

 Asn Met Leu Ser Pro Asp Pro Arg Glu Leu Gln Lys Ser Ile Glu Val
 545 550 555 560

 Gln Leu Leu Arg Ser Ser Val Cys Leu Ala Thr Ala Leu Asn Pro Ile
 565 570 575

 Glu Gln Asp Gln Lys Trp Gln Ser Ile Thr Glu Asn Val Val Lys Tyr
 580 585 590

 Leu Lys Gln Thr Ser Arg Ile Ala Ile Gly Pro Leu Arg Leu Ser Thr
 595 600 605

 Leu Thr Val Ser Gln Ser Leu Pro Val Leu Ser Thr Leu Gln Leu Tyr
 610 615 620

 Cys Ser Ser Ala Leu Glu Asn Thr Val Ser Asn Arg Leu Ser Thr Glu
 625 630 635 640

 Asp Cys Leu Ile Pro Leu Phe Ser Glu Ala Leu Arg Ser Cys Lys Gln
 645 650 655

 His Asp Val Arg Pro Trp Met Gln Ala Leu Arg Tyr Thr Met Tyr Gln
 660 665 670

 Asn Gln Leu Leu Glu Lys Ile Lys Glu Gln Thr Val Pro Ile Arg Ser
 675 680 685

 His Leu Met Glu Leu Gly Leu Thr Ala Ala Lys Phe Ala Arg Lys Arg
 690 695 700

 Gly Asn Val Ser Leu Ala Thr Arg Leu Leu Ala Gln Cys Ser Glu Val
 705 710 715 720

 Gln Leu Gly Lys Thr Thr Ala Gln Asp Leu Val Gln His Phe Lys
 725 730 735

 Lys Leu Ser Thr Gln Gly Gln Val Asp Glu Lys Trp Gly Pro Glu Leu
 740 745 750

 Asp Ile Glu Lys Thr Lys Leu Leu Tyr Thr Ala Gly Gln Ser Thr His
 755 760 765

 Ala Met Glu Met Leu Ser Ser Cys Ala Ile Ser Phe Cys Lys Ser Val
 770 775 780

 Lys Ala Glu Tyr Ala Val Ala Lys Ser Ile Leu Thr Leu Ala Lys Trp
 785 790 795 800

 Ile Gln Ala Glu Trp Lys Glu Ile Ser Gly Gln Leu Lys Gln Val Tyr
 805 810 815

 Arg Ala Gln His Gln Gln Asn Phe Thr Gly Leu Ser Thr Leu Ser Lys
 820 825 830

 Asn Ile Leu Thr Leu Ile Glu Leu Pro Ser Val Asn Thr Met Glu Glu
 835 840 845

 Glu Tyr Pro Arg Ile Glu Ser Glu Ser Thr Val His Ile Gly Val Gly
 850 855 860

Glu Pro Asp Phe Ile Leu Gly Gln Leu Tyr His Leu Ser Ser Val Gln
 865 870 875 880

Ala Pro Glu Val Ala Lys Ser Trp Ala Ala Leu Ala Ser Trp Ala Tyr
 885 890 895

Arg Trp Gly Arg Lys Val Val Asp Asn Ala Ser Gln Gly Glu Gly Val
 900 905 910

Arg Leu Leu Pro Arg Glu Lys Ser Glu Val Gln Asn Leu Leu Pro Asp
 915 920 925

Thr Ile Thr Glu Glu Glu Lys Glu Arg Ile Tyr Gly Ile Leu Gly Gln
 930 935 940

Ala Val Cys Arg Pro Ala Gly Ile Gln Asp Glu Asp Ile Thr Leu Gln
 945 950 955 960

Ile Thr Glu Ser Glu Asp Asn Glu Glu Asp Asp Met Val Asp Val Ile
 965 970 975

Trp Arg Gln Leu Ile Ser Ser Cys Pro Trp Leu Ser Glu Leu Asp Glu
 980 985 990

Ser Ala Thr Glu Gly Val Ile Lys Val Trp Arg Lys Val Val Asp Arg
 995 1000 1005

Ile Phe Ser Leu Tyr Lys Leu Ser Cys Ser Ala Tyr Phe Thr Phe Leu
 1010 1015 1020

Lys Leu Asn Ala Gly Gln Ile Pro Leu Asp Glu Asp Asp Pro Arg Leu
 1025 1030 1035 1040

His Leu Ser His Arg Val Glu Gln Ser Thr Asp Asp Met Ile Val Met
 1045 1050 1055

Ala Thr Leu Arg Leu Leu Arg Leu Leu Val Lys His Ala Gly Glu Leu
 1060 1065 1070

Arg Gln Tyr Leu Glu His Gly Leu Glu Thr Thr Pro Thr Ala Pro Trp
 1075 1080 1085

Arg Gly Ile Ile Pro Gln Leu Phe Ser Arg Leu Asn His Pro Glu Val
 1090 1095 1100

Tyr Val Arg Gln Ser Ile Cys Asn Leu Leu Cys Arg Val Ala Gln Asp
 1095 1110 1115 1120

Ser Pro His Leu Ile Leu Tyr Pro Ala Ile Val Gly Thr Ile Ser Leu
 1125 1130 1135

Ser Ser Glu Ser Gln Ala Ser Gly Asn Lys Phe Ser Thr Ala Ile Pro
 1140 1145 1150

Thr Leu Leu Gly Asn Ile Gln Gly Glu Glu Leu Leu Val Ser Glu Cys
 1155 1160 1165

Glu Gly Gly Ser Pro Pro Ala Ser Gln Asp Ser Asn Lys Asp Glu Pro
 1170 1175 1180

Lys Ser Gly Leu Asn Glu Asp Gln Ala Met Met Gln Asp Cys Tyr Ser
 1185 1190 1195 1200

Lys Ile Val Asp Lys Leu Ser Ser Ala Asn Pro Thr Met Val Leu Gln
 1205 1210 1215
 Val Gln Met Leu Val Ala Glu Leu Arg Arg Val Thr Val Leu Trp Asp
 1220 1225 1230
 Glu Leu Trp Leu Gly Val Leu Leu Gln Gln His Met Tyr Val Leu Arg
 1235 1240 1245
 Arg Ile Gln Gln Leu Glu Asp Glu Val Lys Arg Val Gln Asn Asn Asn
 1250 1255 1260
 Thr Leu Arg Lys Glu Glu Lys Ile Ala Ile Met Arg Glu Lys His Thr
 265 1270 1275 1280
 Ala Leu Met Lys Pro Ile Val Phe Ala Leu Glu His Val Arg Ser Ile
 1285 1290 1295
 Thr Ala Ala Pro Ala Glu Thr Pro His Glu Lys Trp Phe Gln Asp Asn
 1300 1305 1310
 Tyr Gly Asp Ala Ile Glu Asn Ala Leu Glu Lys Leu Lys Thr Pro Leu
 1315 1320 1325
 Asn Pro Ala Lys Pro Gly Ser Ser Trp Ile Pro Phe Lys Glu Ile Met
 1330 1335 1340
 Leu Ser Leu Gln Gln Arg Ala Gln Lys Arg Ala Ser Tyr Ile Leu Arg
 345 1350 1355 1360
 Leu Glu Glu Ile Ser Pro Trp Leu Ala Ala Met Thr Asn Thr Glu Ile
 1365 1370 1375
 Ala Leu Pro Gly Glu Val Ser Ala Arg Asp Thr Val Thr Ile His Ser
 1380 1385 1390
 Val Gly Gly Thr Ile Thr Ile Leu Pro Thr Lys Thr Lys Pro Lys Lys
 1395 1400 1405
 Leu Leu Phe Leu Gly Ser Asp Gly Lys Ser Tyr Pro Tyr Leu Phe Lys
 1410 1415 1420
 Gly Leu Glu Asp Leu His Leu Asp Glu Arg Ile Met Gln Phe Leu Ser
 425 1430 1435 1440
 Ile Val Asn Thr Met Phe Ala Thr Ile Asn Arg Gln Glu Thr Pro Arg
 1445 1450 1455
 Phe His Ala Arg His Tyr Ser Val Thr Pro Leu Gly Thr Arg Ser Gly
 1460 1465 1470
 Leu Ile Gln Trp Val Asp Gly Ala Thr Pro Leu Phe Gly Leu Tyr Lys
 1475 1480 1485
 Arg Trp Gln Gln Arg Glu Ala Ala Leu Gln Ala Gln Lys Ala Gln Asp
 1490 1495 1500
 Ser Tyr Gln Thr Pro Gln Asn Pro Gly Ile Val Pro Arg Pro Ser Glu
 505 1510 1515 1520
 Leu Tyr Tyr Ser Lys Ile Gly Pro Ala Leu Lys Thr Val Gly Leu Ser
 1525 1530 1535

Leu Asp Val Ser Arg Arg Asp Trp Pro Leu His Val Met Lys Ala Val
 1540 1545 1550

 Leu Glu Glu Leu Met Glu Ala Thr Pro Pro Asn Leu Leu Ala Lys Glu
 1555 1560 1565

 Leu Trp Ser Ser Cys Thr Thr Pro Asp Glu Trp Trp Arg Val Thr Gln
 1570 1575 1580

 Ser Tyr Ala Arg Ser Thr Ala Val Met Ser Met Val Gly Tyr Ile Ile
 585 1590 1595 1600

 Gly Leu Gly Asp Arg His Leu Asp Asn Val Leu Ile Asp Met Thr Thr
 1605 1610 1615

 Gly Glu Val Val His Ile Asp Tyr Asn Val Cys Phe Glu Lys Gly Lys
 1620 1625 1630

 Ser Leu Arg Val Pro Glu Lys Val Pro Phe Arg Met Thr Gln Asn Ile
 1635 1640 1645

 Glu Thr Ala Leu Gly Val Thr Gly Val Glu Gly Val Phe Arg Leu Ser
 1650 1655 1660

 Cys Glu Gln Val Leu His Ile Met Arg Arg Gly Arg Glu Thr Leu Leu
 665 1670 1675 1680

 Thr Leu Leu Glu Ala Phe Val Tyr Asp Pro Leu Val Asp Trp Thr Ala
 1685 1690 1695

 Gly Gly Glu Ala Gly Phe Ala Gly Ala Val Tyr Gly Gly Gly Gln
 1700 1705 1710

 Gln Ala Glu Ser Lys Gln Ser Lys Arg Glu Met Glu Arg Glu Ile Thr
 1715 1720 1725

 Arg Ser Leu Phe Ser Ser Arg Val Ala Glu Ile Lys Val Asn Trp Phe
 1730 1735 1740

 Lys Asn Arg Asp Glu Met Leu Val Val Leu Pro Lys Leu Asp Gly Ser
 745 1750 1755 1760

 Leu Asp Glu Tyr Leu Ser Leu Gln Glu Gln Leu Thr Asp Val Glu Lys
 1765 1770 1775

 Leu Gln Gly Lys Leu Leu Glu Ile Glu Phe Leu Glu Gly Ala Glu
 1780 1785 1790

 Gly Val Asp His Pro Ser His Thr Leu Gln His Arg Tyr Ser Glu His
 1795 1800 1805

 Thr Gln Leu Gln Thr Gln Gln Arg Ala Val Gln Glu Ala Ile Gln Val
 1810 1815 1820

 Lys Leu Asn Glu Phe Glu Gln Trp Ile Thr His Tyr Gln Ala Ala Phe
 825 1830 1835 1840

 Asn Asn Leu Glu Ala Thr Gln Leu Ala Ser Leu Leu Gln Glu Ile Ser
 1845 1850 1855

 Thr Gln Met Asp Leu Gly Pro Pro Ser Tyr Val Pro Ala Thr Ala Phe
 1860 1865 1870

Leu Gln Asn Ala Gly Gln Ala His Leu Ile Ser Gln Cys Glu Gln Leu
 1875 1880 1885

 Glu Gly Glu Val Gly Ala Leu Leu Gln Gln Arg Arg Ser Val Leu Arg
 1890 1895 1900

 Gly Cys Leu Glu Gln Leu His His Tyr Ala Thr Val Ala Leu Gln Tyr
 905 1910 1915 1920

 Pro Lys Ala Ile Phe Gln Lys His Arg Ile Glu Gln Trp Lys Thr Trp
 1925 1930 1935

 Met Glu Glu Leu Ile Cys Asn Thr Thr Val Glu Arg Cys Gln Glu Leu
 1940 1945 1950

 Tyr Arg Lys Tyr Glu Met Gln Tyr Ala Pro Gln Pro Pro Thr Val
 1955 1960 1965

 Cys Gln Phe Ile Thr Ala Thr Glu Met Thr Leu Gln Arg Tyr Ala Ala
 1970 1975 1980

 Asp Ile Asn Ser Arg Leu Ile Arg Gln Val Glu Arg Leu Lys Gln Glu
 985 1990 1995 2000

 Ala Val Thr Val Pro Val Cys Glu Asp Gln Leu Lys Glu Ile Glu Arg
 2005 2010 2015

 Cys Ile Lys Val Phe Leu His Glu Asn Gly Glu Glu Gly Ser Leu Ser
 2020 2025 2030

 Leu Ala Ser Val Ile Ile Ser Ala Leu Cys Thr Leu Thr Arg Arg Asn
 2035 2040 2045

 Leu Met Met Glu Gly Ala Ala Ser Ser Ala Gly Glu Gln Leu Val Asp
 2050 2055 2060

 Leu Thr Ser Arg Asp Gly Ala Trp Phe Leu Glu Glu Leu Cys Ser Met
 065 2070 2075 2080

 Ser Gly Asn Val Thr Cys Leu Val Gln Leu Leu Lys Gln Cys His Leu
 2085 2090 2095

 Val Pro Gln Asp Leu Asp Ile Pro Asn Pro Met Glu Ala Ser Glu Thr
 2100 2105 2110

 Val His Leu Ala Asn Gly Val Tyr Thr Ser Leu Gln Glu Leu Asn Ser
 2115 2120 2125

 Asn Phe Arg Gln Ile Ile Phe Pro Glu Ala Leu Arg Cys Leu Met Lys
 2130 2135 2140

 Gly Glu Tyr Thr Leu Glu Ser Met Leu His Glu Leu Asp Gly Leu Ile
 145 2150 2155 2160

 Glu Gln Thr Thr Asp Gly Val Pro Leu Gln Thr Leu Val Glu Ser Leu
 2165 2170 2175

 Gln Ala Tyr Leu Arg Asn Ala Ala Met Gly Leu Glu Glu Glu Thr His
 2180 2185 2190

 Ala His Tyr Ile Asp Val Ala Arg Leu Leu His Ala Gln Tyr Gly Glu
 2195 2200 2205

Leu Ile Gln Pro Arg Asn Gly Ser Val Asp Glu Thr Pro Lys Met Ser
 2210 2215 2220

 Ala Gly Gln Met Leu Leu Val Ala Phe Asp Gly Met Phe Ala Gln Val
 225 2230 2235 2240

 Glu Thr Ala Phe Ser Leu Leu Val Glu Lys Leu Asn Lys Met Glu Ile
 2245 2250 2255

 Pro Ile Ala Trp Arg Lys Ile Asp Ile Ile Arg Glu Ala Arg Ser Thr
 2260 2265 2270

 Gln Val Asn Phe Phe Asp Asp Asp Asn His Arg Gln Val Leu Glu Glu
 2275 2280 2285

 Ile Phe Phe Leu Lys Arg Leu Gln Thr Ile Lys Glu Phe Phe Arg Leu
 2290 2295 2300

 Cys Gly Thr Phe Ser Lys Thr Leu Ser Gly Ser Ser Ser Leu Glu Asp
 305 2310 2315 2320

 Gln Asn Thr Val Asn Gly Pro Val Gln Ile Val Asn Val Lys Thr Leu
 2325 2330 2335

 Phe Arg Asn Ser Cys Phe Ser Glu Asp Gln Met Ala Lys Pro Ile Lys
 2340 2345 2350

 Ala Phe Thr Ala Asp Phe Val Arg Gln Leu Leu Ile Gly Leu Pro Asn
 2355 2360 2365

 Gln Ala Leu Gly Leu Thr Leu Cys Ser Phe Ile Ser Ala Leu Gly Val
 2370 2375 2380

 Asp Ile Ile Ala Gln Val Glu Ala Lys Asp Phe Gly Ala Glu Ser Lys
 385 2390 2395 2400

 Val Ser Val Asp Asp Leu Cys Lys Lys Ala Val Glu His Asn Ile Gln
 2405 2410 2415

 Ile Gly Lys Phe Ser Gln Leu Val Met Asn Arg Ala Thr Val Leu Ala
 2420 2425 2430

 Ser Ser Tyr Asp Thr Ala Trp Lys Lys His Asp Leu Val Arg Arg Leu
 2435 2440 2445

 Glu Thr Ser Ile Ser Ser Cys Lys Thr Ser Leu Gln Arg Val Gln Leu
 2450 2455 2460

 His Ile Ala Met Phe Gln Trp Gln His Glu Asp Leu Leu Ile Asn Arg
 465 2470 2475 2480

 Pro Gln Ala Met Ser Val Thr Pro Pro Pro Arg Ser Ala Ile Leu Thr
 2485 2490 2495

 Ser Met Lys Lys Lys Leu His Thr Leu Ser Gln Ile Glu Thr Ser Ile
 2500 2505 2510

 Ala Thr Val Gln Glu Lys Leu Ala Ala Leu Glu Ser Ser Ile Glu Gln
 2515 2520 2525

 Arg Leu Lys Trp Ala Gly Gly Ala Asn Pro Ala Leu Ala Pro Val Leu
 2530 2535 2540

Gln Asp Phe Glu Ala Thr Ile Ala Glu Arg Arg Asn Leu Val Leu Lys
 545 2550 2555 2560

 Glu Ser Gln Arg Ala Ser Gln Val Thr Phe Leu Cys Ser Asn Ile Ile
 2565 2570 2575

 His Phe Glu Ser Leu Arg Thr Arg Thr Ala Glu Ala Leu Asn Leu Asp
 2580 2585 2590

 Ala Ala Leu Phe Glu Leu Ile Lys Arg Cys Gln Gln Met Cys Ser Phe
 2595 2600 2605

 Ala Ser Gln Phe Asn Ser Ser Val Ser Glu Leu Glu Leu Arg Leu Leu
 2610 2615 2620

 Gln Arg Val Asp Thr Gly Leu Glu His Pro Ile Gly Ser Ser Glu Trp
 625 2630 2635 2640

 Leu Leu Ser Ala His Lys Gln Leu Thr Gln Asp Met Ser Thr Gln Arg
 2645 2650 2655

 Ala Ile Gln Thr Glu Lys Glu Gln Gln Ile Glu Thr Val Cys Glu Thr
 2660 2665 2670

 Ile Gln Asn Leu Val Asp Asn Ile Lys Thr Val Leu Thr Gly His Asn
 2675 2680 2685

 Arg Gln Leu Gly Asp Val Lys His Leu Leu Lys Ala Met Ala Lys Asp
 2690 2695 2700

 Glu Glu Ala Ala Leu Ala Asp Gly Glu Asp Val Pro Tyr Glu Asn Ser
 705 2710 2715 2720

 Val Arg Gln Phe Leu Gly Glu Tyr Lys Ser Trp Gln Asp Asn Ile Gln
 2725 2730 2735

 Thr Val Leu Phe Thr Leu Val Gln Ala Met Gly Gln Val Arg Ser Gln
 2740 2745 2750

 Glu His Val Glu Met Leu Gln Glu Ile Thr Pro Thr Leu Lys Glu Leu
 2755 2760 2765

 Lys Thr Gln Ser Gln Ser Ile Tyr Asn Asn Leu Val Ser Phe Ala Ser
 2770 2775 2780

 Pro Leu Val Thr Asp Ala Thr Asn Glu Cys Ser Ser Pro Thr Ser Ser
 785 2790 2795 2800

 Ala Thr Tyr Gln Pro Ser Phe Ala Ala Ala Val Arg Ser Asn Thr Gly
 2805 2810 2815

 Gln Lys Thr Gln Pro Asp Val Met Ser Gln Asn Ala Arg Lys Leu Ile
 2820 2825 2830

 Gln Lys Asn Leu Ala Thr Ser Ala Asp Thr Pro Pro Ser Thr Val Pro
 2835 2840 2845

 Gly Thr Gly Lys Ser Val Ala Cys Ser Pro Lys Lys Ala Val Arg Asp
 2850 2855 2860

 Pro Lys Thr Gly Lys Ala Val Gln Glu Arg Asn Ser Tyr Ala Val Ser
 865 2870 2875 2880

Val Trp Lys Arg Val Lys Ala Lys Leu Glu Gly Arg Asp Val Asp Pro
 2885 2890 2895

Asn Arg Arg Met Ser Val Ala Glu Gln Val Asp Tyr Val Ile Lys Glu
 2900 2905 2910

Ala Thr Asn Leu Asp Asn Leu Ala Gln Leu Tyr Glu Gly Trp Thr Ala
 2915 2920 2925

Trp Val
 2930

<210> 3
 <211> 4651
 <212> DNA
 <213> Homo sapiens

<220>
 <223> p22F-MARQ.1

<400> 3
 gaattcggccc ttcggAACCA tcacaatctt accgactaaa accaAGCCAA agaaACTTCT 60
 ctttcttgga tcagatggga agagctatcc ttatctttc aaaggactgg aggatttaca 120
 tctggatgag agaataatgc agttcctatc tattgtaat accatgtttg ctacaattaa 180
 tcGCCAAGAA acacCCCGGT tccatgctcg acactattct gtaacaccac taggaacaag 240
 atcaggacta atccagtggg tagatggagc cacaccctta tttggtcttt acaaACGATG 300
 gcaacaacgg gaagctgcct tacaAGCACA aaaggCCCAA gattcctacc aaactcctca 360
 gaatcctgga attgtacccc gtcctagtga actttattac agtaaaATTG gcccTGCTTT 420
 gaaaACAGTT gggcttagcc tggatgtgtc ccgtcgggat tggcctcttc atgtaatgaa 480
 ggcagtattg gaagagttaa tggaggCCAC acCCCCGAAT ctccTTGCCA aagagctctg 540
 gtcatcttgc acaacacactg atgaatggtg gagagttacg cagtcttatg caagatctac 600
 tgcagtcatg tctatggttg gatacataat tggccttgga gacagacatc tggataatgt 660
 tcttatagat atgacgactg gagaAGTTGT tcacatagat tacaatgttt gctttgaaaa 720
 aggtAAAAGC CTTAGAGTTc CTGAGAAAGT acCTTTcGA atgacacaaa acattgaaac 780
 agcactgggt gtaactggag tagaaggTGT atttaggCTT tcATGTGAGC aggttttaca 840
 cattatgcgg cgtggcagag agaccctgct gacgctgctg gaggcTTTG tgtacgaccc 900
 tctggTggac tggacagcag gaggcggaggc tgggtttgct ggtgctgtct atggTggagg 960
 tggccagcag gcccagAGCA agcAGAGCAA gagAGAGATg gagcggAGAGA tcacCCGAG 1020
 CCTGTTTCT TCTAGAGTAG CTGAGATTAAG ggtGAactgg ttAAAGAATA gagatgAGAT 1080
 gctggTTGTG CTTCCCAAGT tggacggTAG CTTAGATGAA tacctaAGCT tgcaAGAGCA 1140
 actgacAGAT gtggAAAAAC tgcaggGCAA actactggAG gaaatAGAGT ttctAGAAGG 1200

agctgaaggg gtggatcatc cttctatac tctgcaacac aggtattctg agcacacc 1260
actacagact cagcaaagag ctgttcagga agcaatccag gtgaagctga atgaatttga 1320
acaatggata acacatttac aggctgcatt caataattta gaagcaacac agcttgcaag 1380
cttgcttcaa gagataagca cacaatgga ctttggtcct ccaagttacg tgccagcaac 1440
agccttctg cagaatgctg gtcaggccc cttgattagc cagtgcgagc agctggaggg 1500
ggaggttgt gctctcctgc agcagaggcg ctccgtgctc cgtggctgtc tggagcaact 1560
gcatcaactat gcgaccgtgg ccctgcagta tccgaaggcc atatttcaga aacatcgaat 1620
tgaacagtgg aagacctgga tggaagagct catctgtaac accacagtag agcgttgtca 1680
agagctctat agaaaatatg aaatgcaata tgctccccag ccaccccaa cagtgtgtca 1740
gttcatcaact gccactgaaa tgaccctgca gcgatacgca gcagacatca acagcagact 1800
tattagacaa gtggaacgct tgaaacagga agctgtcaact gtgccagttt gtgaagatca 1860
gttgaagaa attgaacggtt gcattaaagt tttccttcat gagaatggag aagaaggatc 1920
ttttagtcta gcaagtgtta ttatttctgc cttttgtacc cttacaaggc gtaacctgat 1980
gatggaaggt gcagcgtcaa gtgctggaga acagctggtt gatctgactt ctcggatgg 2040
agcctggttc ttggaggaac tctgcagttt gaggcgaaac gtcacctgct tggttcagtt 2100
actgaagcag tgccacctgg tgccacagga cttagatatc ccgaacccca tggaaagcgtc 2160
tgagacagtt cacttagcca atggagtgtt tacctcaactt caggaattga attcgaattt 2220
ccggcaaatc atatttccag aagcacttcg atgtttaatg aaagggaaat acacgttaga 2280
aagtatgctg catgaactgg acggtcttat tgagcagacc accgatggcg ttcccctgca 2340
gactctagtg gaatctcttc aggctactt aagaaacgca gctatggac tggaaagaaga 2400
aacacatgct cattacatcg atgttgcag actactacat gctcagtgac gtgaattaat 2460
ccaaccgaga aatggttcag ttgatgaaac accaaaaatg tcagctggcc agatgcttt 2520
ggtagcattc gatggcatgt ttgctcaagt tgaaactgct ttcagcttat tagttgaaaa 2580
gttgaacaag atggaaattc ccatagcttgc gcaaagattt gacatcataa gggagccag 2640
gagtactcaa gttaattttt ttgatgatga taatcaccgg caggtgctag aagagatttt 2700
ctttctaaaa agactacaga ctattaagga gttcttcagg ctctgtggta cttttctaa 2760
aacattgtca ggatcaagtt cacttgaaga tcagaatact gtgaatggc ctgtacagat 2820
tgtcaatgtg aaaacccttt ttagaaactc ttgtttcagt gaagacaaa tggccaaacc 2880
tatcaaggca ttcacagctg actttgtgag gcagctttg ataggctac ccaaccaagc 2940
cctcggactc acactgtgca gttttatcag tgctctgggt gtagacatca ttgctcaagt 3000
agaggcaaag gactttggtg ccgaaagcaa agtttctgtt gatgatctct gtaagaaagc 3060

ggtggAACAT AACATCCAGA TAGGAAAGTT CTCTCAGCTG GTTATGAACA GGGCAACTGT 3120
 GTTAGCAAGT TCTTACGACA CTGCCTGGAA GAAGCATGAC TTGGTGCAGA GGCTAGAAAC 3180
 CAGTATTCTC TCTTGTAAGA CAAGCCTGCA GCAGGTTCAAG CTGCATATTG CCAATGTTCA 3240
 GTGGCAACAT GAAGATCTAC TTATCAATAG ACCACAAGCC ATGTCAGCCA CACCTCCCCC 3300
 ACGGTCTGCT ATCCTAACCA GCATAAAAAA GAAGCTGCAT ACCCTGAGCC AGATTGAAAC 3360
 TTCTATTGCG ACAGTTCAAGG AGAAGCTAGC TGCACTTGAA TCAAGTATTG AACAGCGACT 3420
 CAAGTGGGCA GGTGGTCCA ACCCTGCATT GGCCCCTGTA CTACAAGATT TTGAAGCAAC 3480
 GATAGCTGAA AGAAGAAATC TTGTCCTAA AGAGAGCAA AGAGCAAGTC AGGTCACATT 3540
 TCTCTGCAGC AATATCATTG ATTGAAAG TTTACGAACA AGAACTGCAG AAGCCTAAAC 3600
 CCTGGATGCG GCGTTATTTG AACTAATCAA GCGATGTCAG CAGATGTGTT CGTTGATC 3660
 ACAGTTAAC AGTTCACTGT CTGAGTTAGA GCTTCGTTA TTACAGAGAG TGGACACTGG 3720
 TCTTGAAACAT CCTATTGGCA GCTCTGAATG GCTTTGTCA GCACACAAAC AGTTGACCCA 3780
 GGATATGTCT ACTCAGAGGG CAATTCAAGAC AGAGAAAGAG CAGCAGATAG AACCGGTCTG 3840
 TGAAACAATT CAGAACTGGT TTGATAATAT AAAGACTGTG CTCACTGGTC ATAACCGACA 3900
 GCTTGGAGAT GTCAAACATC TCTTGAAGC TATGGCTAAG GATGAAGAAG CTGCTCTGGC 3960
 AGATGGTAA GATGTTCCCT ATGAGAACAG TGTAGGCAAG TTTTGGGTG AATATAAATC 4020
 ATGGCAAGAC AACATTCAAA CAGTTCTATT TACATTAGTC CAGGCTATGG GTCAGGTTCG 4080
 AAGTCAGAA CACGTTAAA TGCTCCAGGA AATCACTCCC ACCTGAAAG AACTGAAAAC 4140
 ACAAAAGTCAG AGTATCTATA ATAATTAGT GAGTTTGCA TCACCCTTAG TCACCGATGC 4200
 ACAAAATGAA TGTCGAGTC CAACGTCATC TGCTACTTAT CAGCCATCCT TCGCTGCAGC 4260
 AGTCCGGAGT AACACTGGCC AGAAGACTCA GCCTGATGTC ATGTCACAGA ATGCTAGAAA 4320
 GCTGATCCAG AAAATCTTG CTACATCAGC TGATACTCCA CCAAGCACCG TTCCAGGAAC 4380
 TGGCAAGAGT GTTGCTTGTA GTCCTAAAAA GGCAGTCAGA GACCCTAAAA CTGGGAAAGC 4440
 GGTGCAAGAG AGAAACTCCT ATGCAGTGAG TGTGTGGAAG AGAGTGAAG CCAAGTTAGA 4500
 GGGCCGAGAT GTTGATCCGA ATAGGAGGAT GTCAGTTGCT GAACAGGTTG ACTATGTCAT 4560
 TAAGGAAGCA ACTAATCTAG ATAACATTGGC TCAAGCTGTAT GAAGGTTGGA CAGCCTGGGT 4620
 GTGAATGGCA AGACAGTGAAG AGGGCGAATT C 4651

<210> 4
 <211> 4610
 <212> DNA
 <213> Homo sapiens

<220>
 <223> p22F-MARQ1.2

<400> 4
gaattcgccc ttcggAACCA tcacaatctt accgactaaa accaAGCCAA agaaACTTCT 60
ctttcttGGA tcAGATGGGA agagCTATCC ttATCTTTC aaaggACTGG aggATTACA 120
tctggatGAG agaATAATGC agtTCCTATC tattGTGAAT accATGTTG ctACAATTAA 180
tcGCCAAGAA acACCCCGGT tccATGCTCG acACTATTCT gtaACACCAC tagGAACAAG 240
atcaggACTA atCCAGTGGG tagATGGAGC cacACCCCTTA tttGGTCTTT acaaACGATG 300
gcaACAACGG gaAGCTGCCT tacaAGCACA aaAGGCCAA gattCCTACC aaACTCCTCA 360
gaatCCTGGA attGTACCCC gtcCTAGTGA actTTATTAC agtaAAAATTG gCCCTGCTTT 420
ggcAGTATTG gaAGAGTTA tgGAGGCCAC ACCCCCCGAAT ctCCCTGCCA aAGAGCTCTG 540
gtCATCTGC acaACACCTG atGAATGGTG gagAGTTACG cAGTCTTATG caAGATCTAC 600
tgcAGTCATG tCTATGGTTG gataCATAAT tgGCCTTGGA gacAGACATC tggATAATGT 660
tCTTATAGAT atGACGACTG gagaAGTTGT tcACATAGAT tacaATGTTT gCTTGAaaa 720
aggtaAAAGC ctTAGAGTTC ctGAGAAAGT acCTTTcGA atGACACAAA acATTGAAAC 780
agcACTGGGT gtaACTGGAG tagAGGTGT attAGGCTT tcATGTGAGC aggtTTTACA 840
cattATGCAG cgtGGCAGAG agACCCCTGCT gacGCTGCTG gaggCCTTGT tGTACGACCC 900
tctGGTGGAC tggACAGCAG gaggCGAGGC tggGTTGCT ggtGCTGTCT atGGTGGAGG 960
tggCCAGCAG gCCGAGAGCA agcAGAGCAA gagAGAGATG gagCGAGAGA tcACCCGCAg 1020
cctGTTTCT tCTAGAGTAG ctGAGATTAA ggtGAACTGG ttTAAGAATA gagATGAGAT 1080
gctGGTTGTG ctTCCCAAGT tggACGGTAG ctTAGATGAA tacCTAAGCT tgCAAGAGCA 1140
actGACAGAT gtGAAAAAAC tgcAGGGCAA actACTGGAG gaaATAGAGT ttCTAGAAGG 1200
agCTGAAGGG gtGGATCATC ctTCTCATAc tctGCAACAC aggtATTCTG agcACACCCa 1260
actACAGACT cAGCAAAGAG ttGTTCAAGGA agCAATCCAG gtGAAGCTGA atGAATTGA 1320
acaATGGATA acACATTATC aggCTGCATT caATAATTa gaAGCAACAC agCTTGCAAG 1380
cttGCTTCAA gagATAAGCA cacAAATGGA cttGGTCTCt ccaAGTTACG tgCCAGCAAC 1440
agCCTTCTG cagaATGCTG gtcAGGGCCA ctTGATTAGC cagtGCGAGC agCTGGAGGG 1500
ggAGGTTGGT gctCTCCTGC agcAGAGGCG ctCCGTGCTC cgtGGCTGTC tggAGCAACT 1560
gcATCACTAT gcaACCgtgg ccctGCAgta tccGAAGGCC atATTcAGA aACATCGAAT 1620
tgaACAGTGG aAGACCTGGA tggAAAGAGCT catCTGTAAc accACAGTAG agCGTTGTCA 1680
agAGCTCTAT agGAAATATG aaATGCAATA tgCTCCCCAG ccACCCCAA cAGTGTGTCA 1740
gttcatcaCT gCcACTGAAA tgACCCtGCA gCGATAcGCA gcAGACATCA acAGCAGACT 1800
tattAGACAA gtGGAACGCT tgAAACAGGA agCTGTCACT gtGCCAGTTt gtGAAGATCA 1860

gttggaaagaa attgaacgtt gcattaaagt tttccttcat gagaatggag aagaaggatc 1920
tttgagtcta gcaagtgtta ttatttctgc cctttgtacc cttacaaggc gtaacctgat 1980
gatggaaaggt gcagcgtcaa gtgctggaga acagctggtt gatctgactt ctccggatgg 2040
agcctggttc ttggaggaac tctgcagttt gagcggaaac gtcacctgct tggttcagtt 2100
actgaagcag tgccacactgg tgccacagga cttagatatc ccgaacccca tggaaagcgtc 2160
tgagacagtt cacttagcca atggagtgtt tacctcactt caggaatttga attcgaattt 2220
ccggcaaatc atatttccag aagcacttcg atgttaatg aaaggggaat acacgttaga 2280
aagtatgctg catgaactgg acggctttat tgagcagacc accgatggcg ttcccctgca 2340
gactctagtg gaatctcttc aggcttactt aagaaacgca gctatggac tggaaagaaga 2400
aacacatgct cattacatcg atgttgccag actactacac gtcagttacg gtgaatttt 2460
ccaaaccgaga aatggttcag ttgatgaaac accaaaaatg tcagctggcc agatgcttt 2520
ggtagcattc gatggcatgt ttgctcaagt taaaactgct ttcaagttt tagttgaaaa 2580
gttgaacaag atggaaattc ccatagcttgcgaaagatt gacatcataa gggaaagccag 2640
gagtaactcaa gttaaatttt ttgatgatga taatcaccgg caggtgctag aagagattt 2700
ctttctaaaa agactacaga ctattaagga gttcttcagg ctctgtggta cttttctaa 2760
aacattgtca ggatcaagtt cacttgaaga tcagaatact gtgaatggc ctgtacagat 2820
tgtcaatgtt aaaaaccttt ttagaaactc ttgtttcagt gaagacaaa tggccaaacc 2880
tatcaaggca ttcacagctg actttgttag gcagctcttgc ataggctac ccaaccaagc 2940
cctcggactc acactgtgca gttttatcag tgctctgggt gtagacatca ttgctcaagt 3000
agaggcaaag gactttggtg ccgaaagcaa agtttctgtt gatgatctt gtaagaaagc 3060
ggtggaaacat aacatccaga taggaaagtt ctctcagctg gttatgaaca gggcaactgt 3120
gttagcaagt tcttacgaca ctgcctggaa gaagcatgac ttggtgcgaa ggctagaaac 3180
cagtatttct tcttgaaga caagcctgca gcgggttcag ctgcatttttgc ccatgtttca 3240
gtggcaacat gaagatctac ttatcaatag accacaaggc atgtcagttca cacctcccc 3300
acggtctgct atcctaacca gcataaaaaa gaagctgcat accctgagcc agattgaaac 3360
ttctattgct acagttcagg agaagctagc tgcacttggaa tcaagtatttgc aacagcgtact 3420
caagtggca ggtggtgcca accctgcatt ggccccctgta ctacaagatt ttgaagcaac 3480
gatagctgaa agaagaaatc ttgtccttaa agagagccaa agagcaagtc aggtcacatt 3540
tctctgcagc aatatcatttgc attttggaaag tttacgaaaca agaactgcag aagccttaaa 3600
cctggatgct gcgttatttgc aactaatcaa gcgtatgttgcag cagatgtgtt cgtttgcattc 3660
acagtttaac agacactggt cttgaacatc ctattggcag ctctgttgc 3720

cacacaaaaca gttgacccag gatatgtcta ctcagaggc aattcagaca gagaaagagc 3780
 agcagataga aacggtctgt gaaacaattc agaatctggt tgataatata aagactgtgc 3840
 tcactggtca taaccgacag cttggagatg tcaaacatct cttgaaagct atggctaagg 3900
 atgaagaagc tgctctggcg gatggtgaag atgttcccta tgagaacagt gttaggcagt 3960
 ttttgggtga atataaatca tggcaagaca acattcaaac agttctattt acatttagtcc 4020
 aggctatggg tcaggttcga agtcaagaac acgttggaaat gctccaggaa atcactccca 4080
 ccttggaaaga actgaaaaca caaagtcaga gtatctataa taatttagtg agttttgcat 4140
 cacccttagt caccgatgca acaaatgaat gttcgagtcc aacgtcatct gctacttatac 4200
 agccatcctt cgctgcagca gtccgagtaa cactggccag aagactcagc ctgatgtcat 4260
 gtcacagaat gctagaaagc tgatccagaa aaatcttgct acatcagctg atactccacc 4320
 aagcaccgtt ccaggaactg gcaagagtgt tgcttgtagt cctaaaaagg cagtcagaga 4380
 ccctaaaaact gggaaagcgg tgcaagagag aaactcctat gcagtggatgt tggaaagag 4440
 agtggaaagcc aagtttagagg gccgagatgt tgatccgaat aggaggatgt cagttgctga 4500
 acaggttgac tatgtcatta aggaagcaac taatcttagat aacttggctc agctgtatga 4560
 aggttggaca gcctgggtgc gaatggcaag acagtagaaag ggcgaattcc 4610

<210> 5
 <211> 4651
 <212> DNA
 <213> Homo sapiens

<220>
 <223> p22F.MARQ.3

<400> 5
 ggaattcgcc ctccggaacc atcacaatct taccgactaa aaccaagcca aagaaacttc 60
 tctttcttgg atcagatggg aagagctatc cttatctttt caaaggactg gaggattac 120
 atctggatga gagaataatg cagttcctat ctattgtaa taccatgttt gctacaattt 180
 atcgccaaga aacacccccgg ttccatgctc gacactattc tgtaacacca ctaggaacaa 240
 gatcaggact aatccagtgg gtagatggag ccacaccctt atttggcttt tacaaacgat 300
 ggcaacaacg ggaagctgcc ttacaagcac aaaaggccca agattcctac caaactcctc 360
 agaatcctgg aattgtaccc cgtccttagt aacttttatta cagtaaaatt gcccctgctt 420
 tgaaaacagt tggcttagc ctggatgtgt cccgtcggga ttggcctctt catgtaatga 480
 aggcagtatt ggaagagtta atggaggcga caccggcga tctccttgcc aaagagctct 540
 ggtcatcttgc cacaacacact gatgaatggt ggagagttac gcagtcattt gcaagatcta 600
 ctgcagtcat gtctatggtt ggatacataa ttggccttgg agacagacat ctggataatg 660

ttcttataga tatgacgact ggagaagttg ttcacataga ttacaatgtt tgctttgaaa 720
aaggtaaaag ccttagagtt cctgagaaag tacctttcg aatgacacaa aacattgaaa 780
cagcactggg tctaactgga gtagaaggta tatttaggtt ttcatgtgag caggtttac 840
acattatgcg gcgtggcaga gagaccctgc tgacgctgct ggaggcctt gtgtacgacc 900
ctctggtgga ctggacagca ggaggcgagg ctgggttgc tggtgctgca tatggtgag 960
gtggccagca gcccgagagc aagcagagca agagagagat ggagcgagag atcacccgca 1020
gcctgtttc ttctagagta gctgagatta aggtgaactg gtttaagaat agagatgaga 1080
tgctggttgt gcttcccaag ttggacggta gcttagatga atacctaagc ttgcaagagc 1140
aactgacaga tgtggaaaaa ctgcaggca aactactgga ggaaatagag tttctagaag 1200
gagctgaagg ggtggatcat ccttctcata ctctgcaaca caggtattct ggcacaccc 1260
aactacagac tcagcaaaga gctgttcagg aagcaatcca ggtgaagctg aatgaattt 1320
aacaatggat aacacattat caggctgcat tcaataattt agaagcaaca cagcttgcaa 1380
gcttgcttca agagataagc acacaaatgg accttggtcc tccaagttac gtgccagcaa 1440
cagcctttct gcagaatgct ggtcaggccc acttgattag ccagtgcgag cagctggagg 1500
gggaggttgg tgctctcctg cagcagggc gctctgtgct ccgtggctgt ctggagcaac 1560
tgcatcaacta tgcaaccgtg gccctgcagt atccgaaggc catatttcag aaacatcgaa 1620
ttgaacagtg gaagacctgg atggaagagc tcatactgtaa caccacagta gagcgttgc 1680
aagagctcta taggaatat gaaatgcaat atgctccccca gccaccccca acagtgtgtc 1740
atgtcatcac tgccactgaa atgaccctgc agcgatacgc agcagacatc aacagcagac 1800
ttattagaca agtggAACgc ttgaaacagg aagctgtcac tgcgtccagg ttgtgaagatc 1860
atgtgaaaga aattgaacgt tgcattaaag ttttccttca tgagaatgga gaagaaggat 1920
ctttgagtct agcaagtgtt attatttcgt ccctttgtac ctttacaagg cgtaacctga 1980
tgatggaaagg tgcaagcgtca agtgctggag aacagctggt tgatctgact tctcgggatg 2040
gagcctgggtt ctggaggaa ctctgcagta tgagcggaaa cgtcacctgc ttggttcagt 2100
tactgaagca gtgccacctg gtgccacagg acttagatat cccgaacccc atggaagcgt 2160
ctgagacagt tcacttagcc aatggagtgt atacctcaact tcaggaattt aattcgaatt 2220
tccggcaaat catatttcca gaagcacttc gatgttaat gaaaggggaa tacacgttag 2280
aaagtatgct gcatgaactg gacggcttta ttgagcagac caccgatggc gttccctgt 2340
agactctagt ggaatctctt caggcctact taagaaacgc agctatggga ctggaagaag 2400
aaacacatgc tcattacatc gatgttgcca gactactaca tgctcagtac ggtgaattaa 2460
tccaaaccgag aaatggttca gttgatgaaa cacccaaaat gtcagctggc cagatgctt 2520

tggtagcatt cgatggcatg tttgctcaag ttgaaactgc tttcagctta ttagttgaaa 2580
agttgaacaa gatggaaatt cccatacgctt ggcgaaagat tgacatcata agggaaagcca 2640
ggagtaactca agttaatttt tttgatgatg ataatcaccg gcaggtgcta gaagagattt 2700
tctttctaaa aaaactacag actattaagg agttcttcag gctctgtggt acctttctta 2760
aaacattgtc aggatcaagt tcacttgaag atcagaatac tgtgaatggg cctgtacaga 2820
ttgtcaatgt gaaaaccctt tttagaaact ctgtttcag tgaagaccaa atggccaaac 2880
ctatcaaggc attcacagct gactttgtga ggcagctt gatagggcta cccaaaccaag 2940
ccctcggaact cacactgtgc agtttatca gtgctctggg tgttagacatc attgctcaag 3000
tagaggcaaa ggacttttgtt gccgaaagca aagtttctgt tgatgatctc tgtaagaaag 3060
cggtggaca taacatccag ataggaaagt tctctcagct gtttatgaac agggcaactg 3120
tgtagcaag ttcttacgac actgccttgg aagaagcatga cttggtgca aggctagaaa 3180
ccagttttc ttcttgcata acaagcctgc agcgggttca gctgcatatt gccatgtttc 3240
agtggcaaca tgaagatcta cttatcaata gaccacaagc catgtcagtc acacccccc 3300
cacggtctgc tatcctaacc agcatgaaaa agaagctgca taccctgagc cagattgaaa 3360
cttctattgc aacagttcag gagaagctag ctgcacttga atcaagtatt gaacagcgcac 3420
tcaagtggc aggtggtgcc aaccctgcatt tgccccctgt actacaagat tttgaagcaa 3480
cgatagctga aagaagaaat cttgtcctta aagagagcca aagagcaagt caggtcacat 3540
ttctctgcag caatatcatt cattttgaaa gtttacgaac aagaactgca gaagccttaa 3600
acctggatgc ggcgttattt gaactaatca agcgatgtca gcagatgtgt tcgtttgcatt 3660
cacagttaa cagttcagtg tctgagttag agcttcgttt attacagaga gtggacactg 3720
gtcttgcata tccttattggc agctctgaat ggctttgtc agcacacaaa cagttgaccc 3780
aggatatgtc tactcagagg gcaattcaga cagagaaaga gcagcagata gaaacggct 3840
gtgaaacaat tcagaatctg gttgataata taaagactgt gctcactggc cataaccgac 3900
agcttggaga tgtcaaacat ctcttgcata agtggctaa ggttgcata gctgctctgg 3960
cagatggta agatgttccc tatgagaaca gtgttaggc gttttgggt gaatataat 4020
catggcaaga caacattcaa acagttctat ttacattgt ccaggctatg ggtcagggttc 4080
gaagtcaaga acacgttgc atgctccagg aaatcactcc cacctgaaa gaactgaaaa 4140
cacaaggatca gagtatctat aataatttag tgagtttgc atcaccctta gtcaccgatg 4200
caacaaatga atgttcgagt ccaacgtcac ctgctgctta tcagccatcc ttgcgtgcag 4260
cagtccggag taacactggc cagaagactc agcctgtatgt catgtcacag aatgcttagaa 4320
agctgatcca gaaaaatctt gctacatcag ctgatactcc accaagcacc gttccaggaa 4380

ctggcaagag tggcgttgc agtcctaaaa ggcagtcaga gaccctaaaa ctggaaaggc 4440
 ggtgcaagag agaaaactcct atgcagttag tttgttggaaag agagtgaaag ccaagttaga 4500
 gggccgagat gttgatccga ataggaggat gtcagttgttgc gaacagggttgc actatgtcat 4560
 taaggaagca actaatcttag ataacttggc tcagctgtat gaaggtttggc cagcctgggt 4620
 gtgaatggca agacagttaga agggcgaatt c 4651

<210> 6
 <211> 4495
 <212> DNA
 <213> Homo sapiens

<220>
 <223> pMTW-312r.3

<400> 6
 gaattcgccc ttggacacga ggaaactgtt aatgacttgg gcttttggaaag cagctgtttt 60
 aatgaagaag tctgaaacat acgcacccctt attctctctt ccgtcttcc ataaattttg 120
 caaaggcctt ttagccaaca ctctcggttga agatgtgaat atctgtctgc aggcatgcag 180
 cagtctacat gctctgtcctt cttccttgcc agatgtatctt ttacagagat gtgtcgatgt 240
 ttgccgtgtt caactagtgc acagtggAAC tcgtattcga caagcatttggaaactgtt 300
 gaaatcaatt ccttttagatg ttgtcctaag caataacaat cacacagaaa ttcaagaaat 360
 ttcttttagca ttaagaagcc acatgagtaa agcacaagt aatacattcc acccccaaga 420
 ttctctgtat gttatttagtt ttatTTTgtt tgggaaactct catagaacag ggaaggacaa 480
 ttggttggaa agactgttct atagctgcc aagactggat aagcgtgacc agtcaacaat 540
 tccacgcaat ctcctgaaga cagatgtgtt cctttggcag tggccatat gggagctgc 600
 acaattcaact gttctttcttca agctgagaac cccactgggc agagctcaag acaccccttcca 660
 gacaattgaa ggtatcatttca aggtctcgca agctcacaca ttaaacccttgc atcaggatgt 720
 tagtcagtgg acaactgcag acaatgttgc aggcattgtt aacaaccaac tttagacttgt 780
 tcttcttcttgc cagtatctgg aaaatctggaa gaaattaatg tataatgtcat acgagggatgt 840
 tgctaatgca ttaacttcac ctccttcaaggat cattagaact tttttctata ccaatcgcca 900
 aacttgcag gactggctaa cgccggattcg actctccatc atgagggttag gattgttggc 960
 aggcacgcct gcagtgcacag tgagacatgg ctttgacttg cttacagaga tgaaaacaac 1020
 cagcctatctt cagggaaatg aattggaaatg aaccattatg atgggttgc aagcattatg 1080
 tgaacttcat tgccttgcag ctatacagggtt aattgtgttc tggcatcat ctattgttgg 1140
 aaaaaatctt ctgtggatta actcagtggc tcaacagggtt gaaggaggtt tgaaaaggc 1200
 ctctgtggag taccaggaac acctgtgtgc catgacaggtt gttgattgtt gcatctccag 1260

cttgacaaa tcggtgctca ccttagccaa tgctggcgt aacagagcca gcccgaaca 1320
ttctctgaat ggtgaatcca gaaaaactgt gctgtccaaa ccgactgact cttcccccta 1380
ggttataaat tatttagaa ataaagcatg tgagtgcac atctcaattt ccgattggc 1440
tgctgtgcag gaatggcaga acgctatcca tgacttgaaa aagagtacca gtagcacttc 1500
cctcaacctg aaagctgact tcaactatat aaaatcatta agcagcttg agtctggaaa 1560
atttgttcaa tgtaccgagc agttagaatt gttaccagga gaaaatatca atctacttgc 1620
tggaggatca aaagaaaaaa tagacatgaa aaaactgctt cctaacatgt taagtccgga 1680
tccgagggaa ctgcagaaat ccattgaagt tcaattgtt aagttctg tttgtttggc 1740
aactgcttta aacccgatag aacaagatca gaagtggcag tctataactg aaaatgtgg 1800
aaagtacttgc aagcaaacat cccgcacatcg tattggaccc ctgagacttt ctactttac 1860
agtttcacag tctttgccag ttctaaagtac cttgcagctg tattgctcat ctgctttgg 1920
gaacacagtt tctaacagac tttcaacaga ggactgtctt attccactct tcagtgaagc 1980
tttacgttca tgtaaacagc atgacgtgag gccatggatg caggcattaa ggtataactat 2040
gtaccagaat cagttgttgg agaaaattaa agaacaaca gtcccaatta gaagccatct 2100
catgaaatttta ggtctaaacagc cagcaaaattt tgcttagaaaa cgagggatg tgcctttgc 2160
aacaagactg ctggcacagt gcagtgaagt tcagctgggaa aagaccacca ctgcacagga 2220
tttagtccaa catttaaaaa aactatcaac ccaaggtaa gtggatgaaa aatggggcc 2280
cgaacttgat attgaaaaaa ccaaattgtt ttatacagca ggccagtcaa cacatgcaat 2340
ggaaatgttgc agttcttgc ccatatctt ctgcagctt gtgaaagctg aatatgcagt 2400
tgctaaatca attctgacac tggctaaatg gatccaggca gaatggaaag agatttcagg 2460
acagctgaaa caggtttaca gagctcagca ccaacagaac ttcacaggc tttctacttt 2520
gtctaaaaac atactcaactc taatagaact gccatctgtt aatacgatgg aagaagagta 2580
tcctcggatc gagagtgaat ctacagtgc tattggagtt ggagaacctg acttcatttt 2640
gggacagttg tatcacctgt cttcagtc ggcacccgtaa gtagccaaat cttggcagc 2700
gttggccagc tggcttata ggtggggcag aaaggtggtt gacaatgcca gtcagggaga 2760
aggtgttcgt ctgctgccta gagaaaaatc tgaagttcag aatctacttc cagacactat 2820
aactgaggaa gagaaagaga gaatatatgg tattcttggc caggctgtgt gtcggccggc 2880
ggggatttcag gatgaagata taacacttca gataactgag agtgaagaca acgaagaaga 2940
tgacatgtttt gatgttatct ggcgtcagtt gatatacgc tgcccatggc tttcagaact 3000
tgatgaaagt gcaactgaag gagttattaa agtgtggagg aaagttgttag atagaatatt 3060
cagcctgtac aaactcttgc agtgcata cttacttgc cttaaactca acgctggc 3120

aattcctta gatgaggatg accctaggct gcatttaagt cacagagtgg aacagagcac 3180
 tcatgacatg attgtatgg ccacattgcg cctgctgccc ttgctcgta agcatgctgg 3240
 ttagcttcgg cagtatctgg agcacggctt ggagacaaca cccactgcac catggagagg 3300
 aattattccg caactttct cacgcttaaa ccaccctgaa gtgtatgtgc gccaaagtat 3360
 ttgtAACCTT ctctgccgtg tggctcaaga ttccccacat ctcatattgt atcctgcaat 3420
 agtgggtacc atatcgctta gtatgtatc ccaggcttca ggaaataaat tttccactgc 3480
 aattccaaact ttacttggca atattcaagg agaagaattt ctggtttctg aatgtgaggg 3540
 aggaagtccct cctgcacatc aggatagcaa taaggatgaa cctaaaagtg gattaaatga 3600
 agaccaagcc atgatgcagg attgttatag caaaaattgtt gataagctgt cctctgcaaa 3660
 cccccccatg gtattacagg ttcagatgtc cgtggctgaa ctgcgcaggg tcactgtgt 3720
 ctgggatgag ctctggctgg gagttttgtc gcaacaacac atgtatgtcc tgagacgaat 3780
 tcagcagctt gaagatgagg tgaagagagt ccagaacaac aacacccctac gcaaagaaga 3840
 gaaaaatttgc atcatgaggg agaagcacac agctttgtatg aagcccatcg tatttgcttt 3900
 ggagcatgtg aggagtatca cagcggctcc tgcagaaaca cctcatgaaa aatggtttca 3960
 ggataactat ggtgtatgcca ttgaaaatgc cctagaaaaaa ctgaagactc cattgaaccc 4020
 tgcaaaggctt gggagcagct ggattccatt taaagagata atgctaagtt tgcaacagag 4080
 agcacagaaa cgtgcaagtt acatcttgcg tcttgaagaa atcagtccat ggtggctgc 4140
 catgactaac actgaaattt ctcttcctgg ggaagtctca gccagagaca ctgtcacaat 4200
 cccatagtgtg ggcggAACCA tcacaatctt accgactaaa accaagccaa agaaaacttct 4260
 ctttcttggta tcagatggga agagctatcc ttatcttttc aaaggactgg aggatttaca 4320
 tctggatgag agaataatgc agttccatc tattgtaat accatgttttgc ctacaattaa 4380
 tcgccaagaa acaccccggt tccatgctcg acactattct gtaacaccac taggaacaag 4440
 atcaggacta atccagtggtt tagatggatc cacaccctta tttggcttt acaab 4495

<210> 7
 <211> 4534
 <212> DNA
 <213> Homo sapiens

<220>
 <223> pMTW-312r.5

<400> 7
 gaattcgccc ttggacacga ggaaactgtt aatgacttgg gctttggaaag cagctgtttt 60
 aatgaagaag tctgaaacat acgcacccctt attctctctt ccgtcttcc ataaattttt 120
 ccaaggccctt ttagccaaca ctctcggttga agatgtaat atctgtctgc aggcatgcag 180

cagtctacat gctctgtcct cttccttgcc agatgatctt ttacagagat gtgtcgatgt 240
ttgccgtgtt caactagtgc acagtggAAC tcgtattcga caagcatttG gaaaactgtt 300
gaaatcaatt ccttagatG ttgtcctaAG caataacaat cacacagAAA ttcaagaaat 360
ttcttagca ttaagaagtc acatgagtaa agcaccaagt aatacattcc accccaaga 420
tttctctgat gttattagtt ttatTTgtA tggAACTct catagaacAG ggaaggacAA 480
ttggtggAA agactgttct atagctGCCA gagactggat aagcgtgacc agtcaacaat 540
tccacgcaat ctccGAAGA cagatgtGT ccttggcAG tggccatAT gggagctgc 600
acaattcact gttcttcta agctgagaAC cccactggc agagctcaag acacTTCCA 660
gacaattgaa ggtatcattc gaagtctcgc agtcacaca ttAAaccctg atcaggatgt 720
tagtcagtgg acaactgcag acaatgatga aggccatggt aacaaccaac ttagacttgt 780
tcttcttctg cagtatctgg aaaatctgga gaaattaatg tataatgcAT acgagggatg 840
tgctaATgca ttaacttcAC ctcccAaggT cattagaACT ttTTTctata ccaatcgCCa 900
aacttgcAG gactggctAA cgCGGATTcG actctccATC atgagggtAG gattgttggc 960
aggccagcct gcagtgacAG tgagacatgg ctttgacttg cttacagaga tgAAAACAAC 1020
cagcctatct cagggGAATg aattggAAgt aaccattatg atgggtggTAG aagcattatg 1080
tgaacttcat tgtcctgaag ctatacaggG aattgctgtc tggTCatcat ctattgttgg 1140
aaaaaatctt ctgtggatta actcagtggc tcaacaggct gaaggaggT ttgAAAAGGC 1200
ctctgtggag taccAGGAAC acctgtgtgc catgacaggT gttgattgct gcatctccAG 1260
ctttgacaaa tcggtgctcA ccttagccAA tgctggcgt aacagtGCCA gcccGAAACA 1320
ttctctgaat ggtGAATcCA gaaaaactgt gctgtccAAA ccgactgact ctTcccctGA 1380
ggttataaaat tatttaggAA ataaAGCATg tgagtgcTAC atctcaattG ccgattggc 1440
tgctgtgcAG gaatggcAGA acgctatcCA tgacttgAAA aagagtactA gtagcacttc 1500
cctcaacctg aaagctgact tcaactatAT aaaatcatta agcagcttG agtctggAAA 1560
atTTgttGAA tgtaccgAGC agttagaatt gttaccAGGA gaaaatATcA atctacttgc 1620
tggaggatcA aaagaaaaAA tagacatgAA AAAACTGCTT cctaACATGT taagtccgGA 1680
tccgaggGAA ctTCAGAAAT ccattgAAgt tcaattgttA agaagtctg tttgtttggc 1740
aactgcttTA aacccgataG aacaAGATcA gaagtggcAG tctataACTG AAAATGTGGT 1800
aaagtacttG aagcaaACAT cccgcatcgc tattggacct ctgagacttt ctactttaAC 1860
agtttcacAG tcttgcAG ttctaaGTAC cttgcAGctG tattgctcat ctgctttggA 1920
gaacacagtt tctaACAGGC tttcaacAGA ggactgtctt attccactct tcagtGAAGc 1980
tttacgttca tgtaaacAGc atgacgtgag gccatggatG caggcattAA ggtataactat 2040

gtaccagaat cagttgttgg agaaaattaa agaacaaaca gtcccaatta gaagccatct 2100
catggaatta ggtctaacag cagcaaaatt tgctagaaaa cgagggaatg tgtcccttgc 2160
aacaagactg ctggcacagt gcagtgaagt tcagctggg aagaccacca ctgcacaggaa 2220
tttagtccaa cattttaaaa aactatcaac ccaaggtaa gtggatgaaa aatgggggcc 2280
cgaacttgat attgaaaaaaaa ccaaattgct ttatacagca ggccagtcaa cacatgcaat 2340
ggaaatgtt agttcttgc ccatacttt ctgcaagtct gtgaaagctg aatatgcagt 2400
tgctaaatca attctgacac tggctaaatg gatccaggca gaatggaaag agatttcagg 2460
acagctgaaa caggtttaca gagctcagca ccaacagaac ttcacaggc tttctacttt 2520
gtctaaaaac atactcactc taatagaact gccatctgtt aatacgatgg aagaagagta 2580
tcctcggatc gagagtgaat ctacagtgc tattggagtt ggagaacctg acttcatttt 2640
gggacagttg tatcacctgt cttcagtaca ggcacctgaa gtagccaaat cttgggcagc 2700
gttggccagc tggcctata ggtggggcag aaaggtggtt gacaatgcca gtcagggaga 2760
aggtgttcgt ctgctgccta gagaaaaatc tgaagttcag aatctacttc cagacactat 2820
aactgaggaa gagaagaga gaatatatgg tattcttgc caggctgtgt gtcggccggc 2880
ggggattcag gatgaagata taacacttca gataactgag agtgaagaca acgaagaaga 2940
tgacatggtt gatgttatct ggcgtcagtt gatatacgc tgcccatggc tttcagaact 3000
tgatgaaagt gcaactgaag gagttattaa agtgtggagg aaagttgttag atagaatatt 3060
cagcctgtac aaactctttt gcagtgcata ctttactttc cttaaactca acgctggc 3120
aattccttta gatgaggatg accctaggct gcatttaagt cacagagtgg aacagagcac 3180
tgatgacatg attgtgatgg ccacattgcg cctgctgcgg ttgctcgtga agcacgctgg 3240
tgagcttcgg cagtatctgg agcacggctt ggagacaaca cccactgcac catggagagg 3300
aattattccg caactttct cacgcttaaa ccaccctgaa gtgtatgtgc gccaaagtat 3360
ttgtAACCTT ctctgccgtg tggctcaaga ttccccacat ctcatattgt atcctgcaat 3420
agtgggtacc atatcgctt gtagtgaatc ccaggcttca ggaaataaat ttccactgc 3480
aattccaaact ttacttggcg atattcaagg agaagaattt ctggttctg aatgtgaggg 3540
aggaagtccct cctgcacatc aggatagcaa taaggatgaa cctaaaagtg gattaaatga 3600
agaccaagcc atgatgcagg attgttacag caaaattgtt gataagctgt cctctgcaaa 3660
ccccaccatg gtattacagg ttcagatgct cgtggctgaa ctgcgcaggc tcactgtgct 3720
ctgggatgag ctctggctgg gagtttgct gcaacaacac atgtatgtcc tgagacgaat 3780
tcagcagctt gaagatgagg tgaagagagt ccagaacaac aacacccatc gcaaagaaga 3840
gaaaattgca atcatgaggg agaagcacac agctttgatg aagcccatcg tatttgcttt 3900

ggagcatgtg aggagtatca cagcgctcc tgcagaaaaca cctcatgaaa aatggttca 3960
 ggataactat ggtgatgcc a ttgaaaatgc cctagaaaaa ctgaagactc cattgaaccc 4020
 tgcaaaggctt gggaggcagct ggattccatt taaagagata atgctaagtt tgcaacagag 4080
 agcacagaaa cgtgcaagtt acatcttgcg tcttgaagaa atcagtccat ggttggctgc 4140
 catgactaac actgaaaattt ctcttcctgg ggaagtctca gccagagaca ctgtcacaat 4200
 ccatagtgtg ggcggaacca tcacaatctt accgactaaa accaagccaa agaaaacttct 4260
 ctcttccttgg a tcagatggga agagctatcc ttatctttc aaaggactgg aggatttaca 4320
 tctggatgag agaataatgc agttcctatc tattgtgaat accatgtttt ctacaattaa 4380
 tcgccaagaa acacccccgtt tccatgtcg acactattct gtaacaccac taggaacaag 4440
 atcaggacta atccagtgccc tagatggac cacaccctta tttggctttt acaaacgatg 4500
 gcaacaacgg gaagctgcct taaagggcga attc 4534

<210> 8
 <211> 4535
 <212> DNA
 <213> Homo sapiens

<220>
 <223> pMTW-312r.7

<400> 8
 gaattcggccc ttggacacga ggaaactgtt aatgacttgg gcttttggaaag cagctgtttt 60
 aatgaagaag tctgaaacat acgcacccctt attctcttcc ccgtctttcc ataaattttt 120
 caaaggcctt ttagccaaca ctctcggttga agatgtgaat atctgtctgc aggcatgcag 180
 cagtctacat gctctgtcctt ctcccttgcc agatgtatctt ttacagagat gtgtcgatgt 240
 ttggccgtt caactagtgc acagtggAAC tcgtattcga caagcatttggaaaactgtt 300
 gaaatcaatt ccttttagatg ttgtcctaag caataacaat cacacagaaa ttcaagaaat 360
 ttcttttagca ttaagaagtc acatgagtaa agcaccaagt aatacattcc acccccaaga 420
 tttctctgat gttatttagtt ttatTTTGTt tggaaactct catagaacag ggaaggacaa 480
 ttgggttggaa agactgttct atagctgcca gagactggat aagcgtgacc agtcaacaat 540
 tccacgcaat ctcctgaaga cagatgtgtt ccttggcag tggccatat gggaaagctgc 600
 acaattcaact gttcttcta agctgagaac cccactgggc agagctcaag acaccttcca 660
 gacaattgaa ggtatcattc gaagtctcgac agctcacaca ttaaaccctt atcaggatgt 720
 tagtcagtgg acaactgcag acaatgatga aggccatggt aacaaccaac tttagacttgt 780
 tcttcttctg cagtatctgg aaaatctgg aaaaattatgt tataatgcat acgaggatg 840
 tgctaatgca ttaacttcac ctcccaaggt cattagaact tttttctata ccaatcgcca 900

aacttgcag gactggctaa cgccgattcg actctccatc atgagggttag gattgttggc 960
aggccagcct gcagtgacag tgagacacgg ctttgacttg cttacagaga taaaacaac 1020
cagcctatct cagggaatg aattggaagt aaccattatg atgggttag aagcattatg 1080
tgaacttcat tgtcctgaag ctatacaggg aattgctgtc tggcatcat ctattgttgg 1140
aaaaaatctt ctgtggatta actcagtggc tcaacaggct gaaggaggt ttgaaaaggc 1200
ctctgtggag taccaggaac acctgtgtgc catgacaggt gttgattgct gcatctccag 1260
ctttgacaaa tcggtgctca ccttagccaa tgctggcgt aacagtgcc a cccgaaaca 1320
ttctctgaat ggtgaatcca gaaaaactgt gctgtccaaa ccgactgact cttccctga 1380
ggttataaat tatttagaa ataaagcatg tgagtgc tac atctcaattg ccgattggc 1440
tgctgtgcag gaatggcaga acgctatcca tgacttgaaa aagagtacca gtagcacttc 1500
cctcaacctg aaagctgact tcaactatat aaaatcatta agcagcttg agtctggaaa 1560
atttgttcaa tgtaccgagc agttagaatt gttaccagga gaaaatatca atctacttgc 1620
tggaggatca aaagaaaaaa tagacatgaa aaaactgctt ccta acatgt taagtccgga 1680
tccgagggaa cttcagaaat ccattgaagt tcaattgtta agaaggctg tttgttggc 1740
aactgcttta aacccgatag aacaagatca gaagtggcag tctataactg aaaatgtggt 1800
aaagtacttgc aagcaa acat cccgc atcgc tattggac ctgagacttt ctactttaac 1860
agtttgc acag tcttgc cag ttctaa gtac cttgc agctg tattgctcat ctgcttgg 1920
gaacacagtt tcta acagac tttca acaga ggactgtctt attccactct tc agtgaagc 1980
tttacgttca tgtaa acagc atgacgtgag gccatggatg caggcattaa ggtataactat 2040
gtaccagaat cagttgttgg agaaaattaa agaaca aaca gtc cca attttaa gaagccatct 2100
catggaatttta ggtctaa acag cagcaaaattt tgct tagaaaaa cgaggaaatg tgc tttgc 2160
aacaagactg ctggcacagt gcagtgaagt tc agtgggaa aagaccacca ctgc acagg 2220
tttagtccaa cattttaaaa aactatcaac ccaagg tcaaa gtggatgaaa aatggggcc 2280
cgaacttgat attgaaaaaa ccaaaattgct ttatacagca ggccag tcaaa cacatgcaat 2340
ggaaatgttgc agttttgttgc ccatatctt ctgca agtct gtgaa agctg aatatgc agt 2400
tgctaaatca attctgacac tggctaaatg gatccaggca gaatggaaag agat ttcagg 2460
acagctgaaa caggttaca gagctcagca ccaacagaac ttcacaggc tttctacttt 2520
gtctaaaaac atactcactc taatagaact gcatctgtt aatacgtgg aagaagagta 2580
tcctcgatc gagagtgaat ctacagtgc tattggatgg ggagaacctg acttcatttt 2640
gggacagttg tattcacctgt cttcag taca ggacac tgaat gtc caa at tttttt 2700
gttggccagc tggcttata ggtggccag aaggtggtt gacaatgcca gtcagg gaga 2760

aggtgttcgt ctgctgccta gagaaaaatc tgaagtttag aatctacttc cagacactat 2820
 aactgaggaa gagaaagaga gaatatatgg tattcttggc caggctgtgt gtcggccggc 2880
 ggggattcag gatgaagata taacacttca gataacttag agtgaagaca acgaagaaga 2940
 tgacatggtt gatgttatct ggcgtcagtt gatatacg tgcggcatggc ttccagaact 3000
 ttagtggaaatg gcaactgaag gagttattaa agtgtggagg aaagttgttag atagaatatt 3060
 cagcctgtac aaactctctt gcagtcata cttaacttca acgctggta 3120
 aattccctta gatgaggatg accctaggct gcatttaagt cacagagtgg aacagagcac 3180
 ttagtgcacatg attgtgatgg ccacattgcg cctgctgcgg ttgctcgtga agcacgctgg 3240
 tgagcttcgg cagtatctgg agcacggctt ggagacaaca cccactgcac catggagagg 3300
 aattattccg caactttctt cacgcttaaa ccaccctgaa gtgtatgtgc gccaaagtat 3360
 ttgttaacctt ctctgccgtg tggctcaaga ttccccacat ctcataattgt atcctgcaat 3420
 agtgggtacc atatcgctta gtagtgaatc ccaggcttca ggaataaaat ttccactgc 3480
 aattccaact ttacttggca atattcaagg agaagaattt ctggtttctg aatgtgaggg 3540
 aggaagtccct cctgcacatc aggatagcaa taaggatgaa cctaaaatgt gattaaatga 3600
 agaccaagcc atgatgcagg attgtacag caaaattgtt gataagctgt cctctgcaaa 3660
 ccccaccatg gtattacagg ttcagatgct cgtggctgaa ctgcgcaggg tcactgtgct 3720
 ctgggatgag ctctggctgg gagtttgct gcaacaacac atgtatgtcc tgagacgaat 3780
 tcagcagctt gaagatgagg tgaagagagt ccagaacaac aacaccccttca gcaaagaaga 3840
 gaaaatttgc atcatgaggg agaagcacac agctttgatg aagcccatcg tatttgcattt 3900
 ggagcatgtg aggagtatca cagcggctcc tgcagaaaca cctcatgaaa aatggtttca 3960
 ggataactat ggtgtatgcca ttgaaaatgc cctagaaaaa ctgaagactc cattgaaccc 4020
 tgcaaaggctt gggagcagct ggattccatt taaagagata atgctaagtt tgcaacagag 4080
 agcacagaaa cgtgcaagtt acatcttgcg tcttgaagaa atcagtccat ggttggctgc 4140
 catgactaac actgaaatttgc ctcttgcgtt ggaagtctca gccagagaca ctgtcacaat 4200
 cccatagtgtg ggcggAACCA tcacaatctt accgactaaa accaagccaa agaaaacttct 4260
 ctttcttggc tcagatggc agagctatcc ttatcttttc aaaggactgg aggatttaca 4320
 tctggatgag agaataatgc agttccatc tattgtaat accatgttttgc tacaattaa 4380
 tcgccaagaa acaccccggt tccatgctcg acactattct gtaacaccac taggaacaag 4440
 atcaggacta atccagtggg tagatggc acaccccttca ttggctttt acaaacgatg 4500
 gcaacaacgg gaagctgcct taaagggcga attcc 4535

<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer 19F

<400> 9
gggcggaacc atcacaatct

20

<210> 10
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer 22F

<400> 10
cggaaccatc acaatcttac

20

<210> 11
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer 299R

<400> 11
cgttgttgcc atcggttgta

20

<210> 12
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer 312R

<400> 12
taaggcagct tcccggttgtt

20

<210> 13
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer AP-1

<400> 13
ccatcctaatt acgactcaact atagggc

27

<210> 14
<211> 24
<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: primer 19Fext

<400> 14

gggcggaacc atcacaatct tacc

24

<210> 15

<211> 25

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: primer 22Fext

<400> 15

cggacccatc acaatttac cgact

25

<210> 16

<211> 25

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: primer 299Rext

<400> 16

cgttgttgcc atcgtttgc aagac

25

<210> 17

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: primer 312Rext

<400> 17

taaggcagct tcccggtt gcca

24

<210> 18

<211> 23

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: primer AP-2

<400> 18

actcactata gggctcgagc ggc

23

<210> 19

<211> 27

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: primer 15158

<400> 19

ccacacctcac caatagagag caccagg

27

<210> 20

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: primer 15156

<400> 20

gctctgcggcgtt gcttcggcct gctg

24

<210> 21

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: primer 15157

<400> 21

ggacttgctc gtcttgctct cggc

24

<210> 22

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: primer 3'E2F

<400> 22

gtctatggtg gaggtggcca gcag

24

<210> 23

<211> 26

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: primer KIDrev

<400> 23

gatgtcaatc tttcgccaag ctatgg

26

<210> 24

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: primer SLQrev

<400> 24
gctgcaggct tgtcttacaa c

21

<210> 25
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer MCSrev

<400> 25
gcaagctcta actcagacac tg

22

<210> 26
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer SSArev

<400> 26
gcagatgacg ttggactcga ac

22

<210> 27
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer MARQrev

<400> 27
ctactgtctt gccattcaca cc

22

<210> 28
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer RLLfor

<400> 28
cagactacta catgctcagt acgg

24

<210> 29
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer TRTrev

<400> 29
ccaggttat ggcttctgca gttcttg

27

<210> 30
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer 19AS

<400> 30
ggtaagattg tgatggttcc gccc

24

<210> 31
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer 5'E2R

<400> 31
gcacgtttct gtgctctctg ttgc

24

<210> 32
<211> 29
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer STDrev

<400> 32
ggccatccac aatcatgtca tcagtgtc

29

<210> 33
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer PIRrev

<400> 33
ctaattccat gagatggctt ctaattgg

28

<210> 34
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer CECrev

<400> 34
cgccaattga gatgttagcac tcac

24

<210> 35 .

<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer MTWfor

<400> 35
atgacttggg ctttggaaagt agctgttg 28

<210> 36
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer MTWfor2

<400> 36
ggacacgagg aaactgttaa tgacttgggc 30

<210> 37
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer MFA-F

<400> 37
catgttgct acaattaatc gccaaag 26

<210> 38
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer TSQ-R

<400> 38
gactgcgtaa ctctccacca ttc 23

<210> 39
<211> 83
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer ATR2-LTRfor

<400> 39
ctagcttagcg gatccgaatc acacagctca ccaccatgga ctataaagat gacgatgaca 60
agggAACATT GCTGCGGTTG CTC 83

<210> 40
<211> 35
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer
ATR2-LDrev

<400> 40
gcgtgtcaga ctcatcctgc tgtccagtcc accag

35

<210> 41
<211> 660
<212> DNA
<213> Homo sapiens

<220>
<223> 3'E2F#28

<400> 41
gatctgactt ctcggatgg agcctggttc ttggaggaac tctgcagtat gagcgaaac 60
gtcacctgct tggttcagtt actgaagcag tgccacctgg tgccacagga cttagatatc 120
ccgaacccca tggaagcgtc tgagacagtt cacttagcca atggagtgtac tacctcaatt 180
caggaattga attcgaattt ccggcaaatac atatttccag aagcacttcg atgtttaatg 240
aaagggaat acacgttaga aagtatgctg catgaactgg acggctttat tgagcagacc 300
accgatggcg ttcccctgca gactctagtg gaatctcttc aggccactt aagaaacgca 360
gctatggac tggaagaaga aacacatgct cattacatcg atgttgccag actactacat 420
gctcagttacg gtgaattaat ccaaccgaga aatggttcag ttgatgaaac accaaaaatg 480
tcagctggcc agatgtttt ggttagcattc gatggcatgt ttgctcaagt tgaaactgct 540
ttcagcttat tagtgaaaa gttgaacaag atggaaattc ccatacgttg gcgaaagatt 600
gacatcataa gacctgccccg ggcggccgct cgagccctat agttagtaag ggcgaattcc 660

<210> 42
<211> 1207
<212> DNA
<213> Homo sapiens

<220>
<223> 5'E3#1

<400> 42
cggccgccag tgtgctggaa ttccgccttg gccatccaca atcatgtcat cagtgccttg 60
ttccactctg tgacttaat gcagcctagg gtcacccctca tctaaaggaa tttgaccagc 120
gtttagttt aggaaagtaa agttagcact gcaagagagt ttgtacaggc tgaatattct 180
atctacaact ttcccccaca ctttaataac tccttcagtt gcactttcat caagttctga 240

aagccatggg cagcttgata tcaactgacg ccagataaca tcaaccatgt catcttcttc 300
 gttgtcttca ctctcagttt tctgaagtgt tataatcttca tcctgaatcc ccgcggccg 360
 acacacagcc tgtccaagaa taccatatat totctccttc ttccctcag ttatagtgtc 420
 tggaagtaga ttctgaactt cagattttc tctaggcage agacgaacac ttctccctg 480
 actggcattt tcaaccaccc ttctgccccca cctataagcc cagctggcca acgctgccc 540
 agatttggct acttcagggtg cctgtactga aggtaggtga tacaactgtc caaaaatgaa 600
 gtcaggttctt ccaactccaa tatgcactgt agattcactc tcgatccgag gataactcttc 660
 ttccatcgta ttaacagatg gcagttctat tagagttagt atgttttagt acaaagtaga 720
 aagacctgtg aagttctgtt ggtgctgagc tctgtaaacc tgttttagt gtcctgaaat 780
 ctcttccat tctgcctgga tccatttagc cagtgtcaga attgatttagt caactgcata 840
 tttagtccatc acagacttgc agaaagatata ggcacaagaa ctcaacattt ccattgcattg 900
 tgttgactgg cctgctgtat aaagcaattt ggtttttca atatcaagtt cggggccccca 960
 ttttcatcc acttgaccc ttggatag tttttaaaaa tgttggacta aatcctgtgc 1020
 agtggggc tttccagct gaacttcact gcactgtgcc agcagtcttgc ttgcaaggga 1080
 cacattccct cgttttctag caaatttgc tgctgtttaga cctaattcca tgagatggct 1140
 tctaatttggg actgtttgtt cttaattttt ctccaaacaac tgattctgga cctgccccggg 1200
 cggccgc
1207

<210> 43
<211> 443
<212> DNA
<213> Homo sapiens

<220>
<223> ATR2-23'

<400> 43
tctactgcag tcatgtctat gggtggatac ataattggcc ttggagacag acatctggat 60
aatgttctta tagatatgac gactggagaa gttgttcaca tagattacaa tgtttgc 120
aaaaaaggta aaagccttag agttccttagaa aaagtacttt ttcgaatgac aaaaaacatt 180
gaaacagcac tgggtgtaac tggagtagaa ggtgtatata ggcttcattg tgagcagggt 240
ttacacatta tgcggcgtgg cagagagacc ctgctgacgc tgctggaggc ctttgttac 300
gaccctctgg tggactggac agcaggaggc gaggctgggt ttgctggtgc tgtctatgg 360
ggaggtggcc agcaggccga gagcaagcag agcaagaccc gccccggccg cgcctcgagc 420
cctatagtga gtaagccgaa ttc
443

A. CLASSIFICATION OF SUBJECT MATTER

IPC 7 C12N15/54 C12N9/12 C07K16/40 G01N33/50 C12Q1/68

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 7 C12N C07K G01N C12Q

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

BIOSIS, EPO-Internal, EMBL

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	<p>DIAZ-MECO M T ET AL: "Lambda-interacting protein, a novel protein that specifically interacts with the zinc finger domain of the atypical protein kinase C isotype lambda/ iota and stimulates its kinase activity in vitro and in vivo" MOLECULAR AND CELLULAR BIOLOGY, vol. 16, no. 1, January 1996 (1996-01), pages 105-114, XP002161203 WASHINGTON US page 106 -page 107; figure 3 abstract</p> <p>---</p> <p>-/-</p>	11,12, 16-20

 Further documents are listed in the continuation of box C. Patent family members are listed in annex.

° Special categories of cited documents :

- 'A' document defining the general state of the art which is not considered to be of particular relevance
- 'E' earlier document but published on or after the International filing date
- 'L' document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- 'O' document referring to an oral disclosure, use, exhibition or other means
- 'P' document published prior to the International filing date but later than the priority date claimed

- 'T' later document published after the International filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- 'X' document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- 'Y' document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- '&' document member of the same patent family

Date of the actual completion of the International search

23 February 2001

Date of mailing of the International search report

07/03/2001

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Espen, J

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT		
Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	<p>ISHIKAWA K -I ET AL: "PREDICTION OF THE CODING SEQUENCES OF UNIDENTIFIED HUMAN GENES. VIII. 78 NEW cDNA CLONES FROM BRAIN WHICH CODE FOR LARGE PROTEINS IN VITRO" DNA RESEARCH, JP, UNIVERSAL ACADEMY PRESS, vol. 4, 31 October 1997 (1997-10-31), pages 307-313, XP002066665 ISSN: 1340-2838 Accession numbers AB007881 (043305) and D86974 (043332)</p> <p>---</p>	11
A	<p>KEEGAN KATHLEEN S ET AL: "The Atr and Atm protein kinases associate with different sites along meiotically pairing chromosomes." GENES & DEVELOPMENT, vol. 10, no. 19, 1996, pages 2423-2437, XP000616408 ISSN: 0890-9369 cited in the application</p> <p>-----</p>	

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

Continuation of Box I.2

Claims Nos.: partly: 28,29

Present claims 28 and 29 relate to a compound defined by reference to a desirable characteristic or property, namely said compound being either a binding partner of the ATR-2 polypeptide or a binding partner of the ATR-2 encoding polynucleotide

The claims cover all compounds having this characteristic or property, whereas the application provides support within the meaning of Article 6 PCT and/or disclosure within the meaning of Article 5 PCT for only a very limited number of such compounds. In the present case, the claims so lack support, and the application so lacks disclosure, that a meaningful search over the whole of the claimed scope is impossible. Independent of the above reasoning, the claims also lack clarity (Article 6 PCT). An attempt is made to define the compound by reference to a result to be achieved. Again, this lack of clarity in the present case is such as to render a meaningful search over the whole of the claimed scope impossible. Consequently, the search has been carried out for those parts of the claims which appear to be clear, supported and disclosed, namely those parts relating to compounds comprising antibodies binding to the ATR-2 polypeptide and the antisense-/(oligo)nucleotides binding to the ATR-2-encoding polynucleotide (SEQ ID NO 1) or its complement.

The above comment also applies to claim 29.

The applicant's attention is drawn to the fact that claims, or parts of claims, relating to inventions in respect of which no international search report has been established need not be the subject of an international preliminary examination (Rule 66.1(e) PCT). The applicant is advised that the EPO policy when acting as an International Preliminary Examining Authority is normally not to carry out a preliminary examination on matter which has not been searched. This is the case irrespective of whether or not the claims are amended following receipt of the search report or during any Chapter II procedure.