F19 STA 100 A01 Discussion 07

Yishan Huang 2019/11/12

Discussion Time: Tuesday 8:00 - 8:50 am, Haring Hall 1204.

Notes: https://github.com/Hahahuo-13316/sta100-a01-fall19

Office hour: Tuesday 12:00 - 1:00 pm, Mathematical Sciences Building 1117.

Email: yishuang@ucdavis.edu

Quiz: This Friday.

Confidence intervals

Confidence interval for population mean μ

• Assume a population that is normally distributed with mean μ and standard deviation, σ , which are both unknown. Take a population with sample size n as Y_1, Y_2, \ldots, Y_n , then we know that

$$\frac{\bar{Y} - \mu}{s / \sqrt{n}} \sim t_{n-1},$$

where s is the estimate of σ

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (Y_{i} - \bar{Y})^{2}$$

and the denominator s/\sqrt{n} is the standard error of the sample mean μ . And, t_{n-1} is the Student's t-distribution with (n-1) degrees of freedom.

- A confidence interval of μ with **confidence level** (1α) is an interval calculated by the sample that, when the sample is randomly taken from the population, the probability that μ lies in the interval is (1α) .
- How to find a confidence interval? We know that

$$\mathbb{P}\left(-t_{n-1}^{(\alpha/2)} \le \left|\frac{\bar{Y} - \mu}{s/\sqrt{n}}\right| \le t_{n-1}^{(\alpha/2)}\right) = 1 - \alpha.$$

That is,

$$\mathbb{P}\left(\mu \text{ within } \bar{Y} \pm t_{n-1}^{(\alpha/2)} \cdot \frac{s}{\sqrt{n}}\right) = 1 - \alpha.$$

Hence, the $(1-\alpha)$ confidence interval of μ is

$$\left[\bar{Y} - t_{n-1}^{(\alpha/2)} \cdot \frac{s}{\sqrt{n}}, \ \bar{Y} + t_{n-1}^{(\alpha/2)} \cdot \frac{s}{\sqrt{n}}\right].$$

• For large sample $(n \ge 30)$, we can substitute the student t-distribution with (n-1) degrees of freedom, by the standard normal distribution. That is, the interval is like

$$\left[\bar{Y} - z^{(\alpha/2)} \cdot \frac{s}{\sqrt{n}}, \ \bar{Y} + z^{(\alpha/2)} \cdot \frac{s}{\sqrt{n}}\right].$$

- How to interpret the confidence interval? We are $(1-\alpha)\cdot 100\%$ percent confident that the mean of the population μ is between [a,b] (if [a,b] is the confidence interval that you have calculated). We should notice that $(1-\alpha)\cdot 100\%$ is not the probability that [a,b] contains μ , because when the sample fixed, the interval is also fixed and hence has no more randomness.
- In this course, unless further announced, the population follows normal distribution so we could always use the formula above.
- If we need some specified precision, we can use the form above to solve n. For example, if we need to find the smallest n such that the length of (1α) confidence interval of μ is less than 0.2, then we can do

 $2 \cdot z^{(\alpha/2)} \cdot \frac{s}{\sqrt{n}} \le 0.2$, i.e., $n \ge (10s \cdot z^{(\alpha/2)})^2$.

A special case: confidence interval of a proportion

• Let p be that proportion, then it is a special case where all the Y_i can only take value within $\{0,1\}$. If the sample size is large, then although the population is not normally distributed, we could still assume that and hence the $(1-\alpha)$ confidence interval is

$$\hat{p} \pm z^{(\alpha/2)} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}.$$

Where \hat{p} is the proportion in that sample.

Confidence interval for difference

• The standard error of $\bar{Y}_1 - \bar{Y}_2$ is

$$SE_{\bar{Y}_1 - \bar{Y}_2} = \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}},$$

and the $(1-\alpha)$ confidence interval of $\mu_1 - \mu_2$ is

$$(\bar{Y}_1 - \bar{Y}_2) \pm z^{(\alpha/2)} \cdot \operatorname{SE}_{\bar{Y}_1 - \bar{Y}_2}.$$