Assignment 3: Chapter 21, Chapter 22 & Chapter 23

Deadline

Sunday, December 27th, 2020 ... before 5:00 pm

Notes

- 1. Attempt all the questions given for each chapter in an A4 Size Paper.
- 2. Clear mention on the title page your assignment no., Section, name and registration id.
- 3. Submit your assignments in Google Classroom by scanning your assignments in a single PDF using Cam scanner or MS Lens before the deadline.
- 4. Plagiarism will result in zero marks as well as black listing of the student.
- 5. You should verify your answers through the answer key which will be uploaded 2 days before the deadline.

Chapter 21: Electric Charge

P1.

Calculate Electric Force and Gravitational Force for each of the following situations;

- a. A proton and neutron inside the nucleus. Comment on your findings.
- b. Two protons in a nucleus; Comment on your findings.
- c. An electron and proton in an atom. Compare the results with that of part b.
- d. Two human beings, one standing at North Pole and the other at the South Pole. Assume that the mass of each person is 50 kg, and is carrying a net charge of 10^{-9} C.
- e. Earth and Moon (assume charge on Earth = 3 C, and on Moon = -2 C). Which force is stronger and why?

P2.

Which force (Electrostatic or Gravitational) is more dominant at

- a. Nucleus level,
- b. Atomic level
- c. In our daily routines i.e. at earth
- d. At solar system level

P3.

In Figure, particle 1 of charge +1.0 μ C and particle 2 of charge -3.0 μ C are held at separation L = 10.0 cm on an x-axis. If particle 3 of unknown charge q_3 is to be located such that the net electrostatic force on it from particles 1

 $\begin{array}{c|c}
& 2 \\
& \downarrow \\$

and 2 is zero, what must be the (a) x and (b) y coordinates of particle 3?

P4.

In Figure shown, the particles have charges q1=q2=100 nC and q3=q4=200 nC, and distance a=5.0 cm. What are the (a) x and (b) y components of the net electrostatic force on particle 3?

P5.

Three point charges are located at the corners of an equilateral triangle, as shown in Figure -1 . Calculate the net electric force on the 7 μ C charge.

Figure 1

P6.

A point charge $q_1 = -9 \,\mu\text{C}$ is at x=0 , while $q_2 = 4\mu\text{C}$ is at x=1 m. At what point, besides infinity, would the net force on a positive charge q3 be zero?

P7.

At what separation would the force between a proton and an electron be 1 N?

P8.

In Fig. 2a, particles 1 and 2 have charge 20.0 mC each and are held at separation distance d = 1.50 m. (a) What is the magnitude of the electrostatic force on particle 1 due to particle 2? In Fig2b Particle 3 of charge 20.0 mC is positioned so as to complete an equilateral triangle. (b) What is the magnitude of the net electrostatic force on particle 1 due to particles 2 and 3?

Figure 2

P9.

In figure-3, particles 1 and 2 of chagre $q_1 = q_2 = +3.2 \times 10^{-19}$ C are on a y axis at distance d = 17cm from the origin. Particles 3 of chagre $q_3 = +6.4 \times 10^{-19}$ C is moved gradually along the x axis from x=0 to x=+5m. At what values of x will the magnitude of the electrostatics force on the third particles from the other two particles be (a) minimum and (b) maximum?

Figure 3

P10.

The electron and the proton in a hydrogen atom are 0.53×10^{-10} m apart. Compare the electrostatic and gravitational forces between them.

P11.

A proton orbits with a speed v = 294 km/s just outside a charged sphere of radius r = 1.13cm. Find the charged sphere. ($e = 1.6 \times 10^{-19}$ C and $m = 1.67 \times 10^{-27}$)

P12.

Find the net force on charge q_1 due to the three other charges in figure 4. Take q_1 = -5 μ C , q_2 = -8 μ C, q_3 = 15 μ C and q_4 = -16 μ C

Figure 4

P13.

Three charges lie on a straight line as shown in Figure 5 . Find the resultant force on (a) the -2 μ C charge, (b) the 5 μ C charge.

Figure 5

P14.

Three-point charges are held at the corner of an equilateral triangle as shown in Figure 6. Take Q= 2μ C and L=3cm. What is the resultant force exerted on the charge (a) 3Q and (b) -2Q

Figure 6

Chapter 22: Electric Field

P15.

On a clear day there is an electric field of approximately 100N/C directed vertically down at the earth's surface. Compare the electrical and gravitational forces on an electron.

P16.

A point charge Q_1 =20 μ C is at (-d, 0) while Q_2 =-10 μ C is at (+d,0). Find the resultant field strength at a point with coordinates (x, y). Take d= 1m and x=y=2m.

P17.

A proton travels a distance of a 4cm parallel to a uniform electric field E= 10^3 i $\frac{N}{c}$ as shown in Figure 7. If its initial velocity is 10^5 m/s. Find its final velocity.

Figure 7

P18.

What is the magnitude of a point charge that would create an electric field of 1 N/C at a at point 1 m away?

P19.

Four point charges are located at the corner of a square of side "L" as shown in Figure 8. Find the electric field strength at the point (a) A and (b) B

Figure 8

P20.

Two particles are fixed to an x axis: particle 1 of charge $-2x \cdot 10^{-7}$ C at x=6cm and particle 2 of charge $+2 \times 10^{-7}$ C at x = 21cm. Mid way between the particles, what is their net electric field in unit-vector notation?

P21.

In Figure 9 , particle 1 of charge q_1 = -5q and particle 2 of charge q_2 = +2q are fixed to an x-axis . As a multiple of distance L , at what coordinate on the axis is the net electric field of the particles is zero ?

Figure 9

P22.

What is the electric field strength needed to balance the weight of the following particles near the Earth's surface :(a) an electron and (b) a proton.

P23.

In Figure 10 the three particles are fixed in place and have charges $q_1=q_2=+e$ and $q_3=+2e$. Distance $a=6\mu m$. What are the (a) magnitude and (b) direction of the net field at point "P" due to the particles?

Figure 10

Chapter 23: Gauss' Law

P24.

A circular plate has a radius of 12 cm. The plane of the plate is set at a 30° angle to a uniform fields E= 450N/C, as shown in Figure 11. What is the flux through the plate.

Figure 11

P25.

Two charges q1 = 6 μ C and q2 = -8 μ C are within a spherical surface of radius 5 cm. What is the total flux through the surface?

P26.

An isolated conductor of arbitrary shape carries a net charge +10 μC. Inside the conductor is a hollow cavity within which is a point charge $q = +3 \mu C$. What is the charge (a) on the cavity wall and (b) on the outer surface of the conductor?

P27.

A point charge of 1.8 mC is at the center of a Gaussian cube 55 cm on edge. What is the net electric flux through the surface?

P28.

A uniform charged conducting sphere of 1.2 m diameter has a surface charge density of 8.1 μ C /m².(a) Find the net charge on the sphere (b) what is the total electric flux leaving the surface of the sphere?

P29.

An infinite line of charge produces a field of 4.52 x 104 N/C at a distance of 1.96m. Calculate the linear charge density.

P30.

A 60 μC charge is at the center of a cube of side 10 cm. (a) what is the total flux through the cube ?(b) What is the flux through the face ? (c) would your answers to (a) or (b) change if the charge were not at the center?

P31.

A spherical conductor of radius 8cm has a uniform surface charge density 0.1 nC/m^2 . Find the electric field (a) at the surface (b) at a distance 10 cm from the center.