

Mining Quantitative Associations

- Mining associations with numerical attributes
 - Ex.: Numerical attributes: age and salary
- Methods
 - Static discretization based on predefined concept hierarchies
 - Data cube-based aggregation
 - Dynamic discretization based on data distribution
 - Clustering: Distance-based association
 - ☐ First one-dimensional clustering, then association
 - Deviation analysis:
 - \square Gender = female \Rightarrow Wage: mean=\$7/hr (overall mean = \$9)

Mining Extraordinary Phenomena in Quantitative Association Mining

- Mining extraordinary (i.e., interesting) phenomena
 - \Box Ex.: Gender = female \Rightarrow Wage: mean=\$7/hr (overall mean = \$9)
 - LHS: a subset of the population
 - RHS: an extraordinary behavior of this subset
- The rule is accepted only if a statistical test (e.g., Z-test) confirms the inference with high confidence
- Subrule: Highlights the extraordinary behavior of a subset of the population of the super rule
 - \blacksquare Ex.: (Gender = female) ^ (South = yes) \Rightarrow mean wage = \$6.3/hr
- Rule condition can be categorical or numerical (quantitative rules)
 - \blacksquare Ex.: Education in [14-18] (yrs) \Rightarrow mean wage = \$11.64/hr
- Efficient methods have been developed for mining such extraordinary rules (e.g., Aumann and Lindell@KDD'99)