Roll No.: [22b3936]

Question 1.

Marks: 5.0

For the dc to dc converter shown in the Figure, the switch, S is operated with a a switching frequency of 5 kHz. The value of the inductor, L is 2.5 mH. Input voltage, $V_{\rm d}$ of the converter is maintained at 100 V. The output voltage, $V_{\rm 0}$ is maintained at a value of -150 V while a load resistance, $R_{\rm L}$ = 500 Ω is connected to the output terminals of the converter. Determine the duty cycle, δ with which the switch, S is operating. Assume that the output voltage of the regulator is ripple free as the output filter capacitor, C is significantly large.

Rubrics: No rubrics available.

CHAT

Roll No.: [22b3936]

Question 2.

Marks: 10.0

The input to the dc to dc converter circuit shown in the Figure is a current source having a constant magnitude, $I_{\rm s}$, and the converter is feeding a load, R. The switch, S is operated with a period, T and a duty cycle, δ . You can consider that the capacitor, C is large enough, so that the voltage across it can be assumed to be ripple free. Once the circuit has attained steady state of operation determine the following as a function of $I_{\rm s}$, δ and R:

- 1. Average capacitor voltage, $V_{\rm C}$. (7 marks)
- 2. Average output voltage, V_0 . (3 marks)

[Hint: This circuit was not discussed during lecture sessions. Apply the golden rules of steady state circuit analysis, and you will arrive at the expressions asked for]

Rubrics: No rubrics available.

Roll No.: [22b3936]

Question 3.

Marks: 5.0

Consider the converter circuit shown in the Figure - A. The switches S_1 and S_2 are turned on and off simultaneously with the switching,

frequency f_* (= \overline{T}), and with a duty cycle of d as shown in Figure - B. Assume that the current through the inductor is continuous. 1) Derive the expression of the output voltage, V_0 in terms of the given parameters when the circuit is operating at steady state. 2) Comment on the functionality of the circuit. (4+0.5+0.5 marks)

Rubrics: No rubrics available.

Marks: 10.0

Roll No.: [22b3936]

Question 4.

OF 6

Consider the flyback converter circuit shown in the figure. The switching frequency is maintained at 50 kHz, and the switch, S is operated with a duty cycle, δ = 0.25. The magnetizing inductance of the transformer, $L_{\rm m}$ = 250 μ H if seen from the side of the transformer which has $N_{\rm I}$ turns. The turns ratio of the transformer ($N_{\rm I}/N_{\rm 2}$) is 2. The output voltage of the converter is found to be 80 V. Find the load resistance, $R_{\rm L}$. Assume the value of the capacitor, C is large, and hence ripple in the output voltage can be neglected.

Rubrics: No rubrics available.

CHAT

Marks: 10.0

Roll No.: [22b3936]

Question 5.

Part A: A single phase full bridge inverter circuit shown in Figure A is to be operated to produce a square wave output voltage, v_o at a frequency of 1/T Hz. Considering the load to be capacitive (i.e. when the load is fed by a sinusoidal source having a frequency of 1/T Hz, the load current leads the sinusoidal source voltage by a certain angle once steady state is reached). Plot the following waveforms for a period, T, when the circuit has attained steady state (i.e. once the dc component of the load current has become zero):

- i) Gating pulses for the switches S1 to S4. (1 mark)
- ii) Output voltage vo across the load indicating its magnitude in terms of $V_{
 m d}$. (1 mark)
- iii) Approximate waveform of the output current, i_o . (1 mark)
- iv) Mark on i_o that you have drawn in iii), the devices that are conducting at every instant over the period, T. (2 marks)

<u>Part B:</u> Now consider that the inverter of Figure B is feeding an R-L load. Plot (along with the given waveforms of v_o) the gating pulses for the switches S_1 to S_4 of the inverter (Figure A) if the output voltage waveform, v_o , to be obtained is:

- i) as shown in Figure B. (3 marks)
- ii) as shown in Figure C. (2 marks)

Figure B

Figure C

Rubrics: No rubrics available.

The three phase inverter shown in the Figure is to be operated as a square wave inverter such that the fundamental component of v_{BC} lags that of v_{AB} by 120° and fundamental component of v_{CA} lags that of v_{BC} by 120° while gating pulse for each device is provided for 180° . The input dc voltage for the inverter, $V_{\rm d}$ is $600~{\rm V}$ (two dc voltage sources of magnitude $300~{\rm V}$ each are connected in series having their connecting point at 'O').

- a) Plot the gating pulses for the six switches, S_1 to S_6 along with $v_{Ao_1}v_{Bo_1}v_{AB_1}v_{An}$ when $\mathbf{Z_a} = (10+j0)~\Omega$, $\mathbf{Z_b} = (20+j0)~\Omega$, $\mathbf{Z_c} = (20+j0)~\Omega$ and the switch, **MS is closed**. Comment on the presence/absence of third harmonic component in v_{AB} and v_{An} giving proper justification. (3 marks)
- b) Plot the gating pulses for the six switches, S1 to S6 along with $v_{Ao}, v_{Bo}, v_{AB}, v_{An}$ when $\mathbf{Z_a} = (10 + j0) \Omega$, $\mathbf{Z_b} = (20 + j0) \Omega$, $\mathbf{Z_c} = (20 + j0) \Omega$ and the switch, **MS is open**. Comment on the presence/absence of third harmonic component in vAB and vAn giving proper justification. (7 marks)

