TD Arbre de Décision ESP-UCAD

Dr. Mamadou Camara mamadou.camara@esp.sn

2022-2023

Table des matières

1	$\mathbf{A}\mathbf{p}$	prentissage supervisé :							
		Les arbres de décision							
	1.1	TD rpart							
		TD Gain							
	1.3	Mode de transport							
2 Annexe									
	2.1	Mode de transport [Master Recherche SI]							
		TD sur le critère de gain [DIC]							
	2.3	DS DM 2021 Semestre 2 : Partitionnements (15 points)							

Chapitre 1

Apprentissage supervisé : Les arbres de décision

1.1 TD rpart

Le package rpart de R permet de construire l'arbre ci-dessous.

— Définir et interpréter les informations contenues dans le sous-arbre nsplit=2 de cet arbre .

— Définir et interpréter les informations contenues dans l'arbre suivant.

— Expliquer les différences de représentation entre ces deux arbres de décisions.

1.2 TD Gain

Calculer le gain d'information au niveau du partitionnement qui utilise la variable "Working hours per week" (i.e. nombre d'heures travaillées par semaine).

1.3 Mode de transport

— Calculer un gain d'information avec l'attribut "car ownership" avec l'hypothèse d'un arbre binaire.

	Attributes				
Gender	Car ownership	Travel Cost (\$)/km	Income Level	Transportation mode	
Male	0	Cheap	Low	Bus	
Male	1	Cheap	Medium	Bus	
Female	1	Cheap	Medium	Train	
Female	0	Cheap	Low	Bus	
Male	1	Cheap	Medium	Bus	
Male	0	Standard	Medium	Train	
Female	1	Standard	Medium	Train	
Female	1	Expensive	High	Car	
Male	2	Expensive	Medium	Car	
Female	2	Expensive	High	Car	

Chapitre 2

Annexe

2.1 Mode de transport [Master Recherche SI]

— Calculer un gain d'information avec l'attribut "niveau de revenu" avec l'hypothèse d'un arbre binaire.

	Attributes				
Gender	Car ownership	Travel Cost (\$)/km	Income Level	Transportation mode	
Male	0	Cheap	Low	Bus	
Male	1	Cheap	Medium	Bus	
Female	1	Cheap	Medium	Train	
Female	0	Cheap	Low	Bus	
Male	1	Cheap	Medium	Bus	
Male	0	Standard	Medium	Train	
Female	1	Standard	Medium	Train	
Female	1	Expensive	High	Car	
Male	2	Expensive	Medium	Car	
Female	2	Expensive	High	Car	

2.2 TD sur le critère de gain [DIC]

Considérons un arbre à construire à partir des données suivantes :

En vous positionnant à la racine de l'arbre, calculer le gain d'information pour la variable Humidité. L'arbre n'est pas binaire.

- 1. Dessiner le partitionnement avec la variable Humidité
- 2. Calculer l'entropie sur la racine
- 3. Calculer l'entropie sur les sous-nœuds
- 4. Calculer le gain

2.3 DS DM 2021 Semestre 2 : Partitionnements (15 points)

Considérons les quatre scénarios de partitionnement ci-après :

- 1. la variable est discrète & l'arbre est binaire
- 2. la variable est discrète & l'arbre n'est pas binaire
- 3. la variable est continue & faire la discrétisation
- 4. la variable est continue & ne pas faire la discrétisation

Considérons les trois lignes de la figure ci-après (i.e. a, b & c).

Traiter les questions suivantes :

- $1.\$ Définir chacun des éléments qui a se trouvent sur la figure :
 - A, color, a1, ar, red, ..., orange, income, low, medium, high
 - A, split_point, income, 42000
 - A, SA, color, red, green
- 2. Faire la correspondance entre les scénarios listés ci-dessus et les lignes présentes dans la figure.
- 3. Considérons maintenant la règle générale selon laquelle une variable explicative correspond à une option de partitionnement. Dire, pour chaque scénario, si c'est la règle générale qui s'applique ou une exception à cette règle.
- 4. Éventuellement, expliquer exception en question en utilisant un exemple issu ou non de l'énoncé de cet exercice.