International Rectifier

Advanced Process Technology

- Surface Mount (IRF9540NS)
- Low-profile through-hole (IRF9540NL)
- 175°C Operating Temperature
- Fast Switching
- P-Channel
- Fully Avalanche Rated

Description

Fifth Generation HEXFETs from International Rectifier utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET Power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in a wide variety of applications.

The D^2 Pak is a surface mount power package capable of accommodating die sizes up to HEX-4. It provides the highest power capability and the lowest possible on-resistance in any existing surface mount package. The D^2 Pak is suitable for high current applications because of its low internal connection resistance and can dissipate up to 2.0W in a typical surface mount application.

The through-hole version (IRF9540L) is available for low-profile applications.

HEXFET® Power MOSFET

Absolute Maximum Ratings

			11.74
	Parameter	Max.	Units
$I_D @ T_C = 25^{\circ}C$	Continuous Drain Current, V _{GS} @ -10V®	-23	
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ -10V®	-16	A
I _{DM}	Pulsed Drain Current ① ⑤	-76	
P _D @T _A = 25°C	Power Dissipation	3.8	W
P _D @T _C = 25°C	Power Dissipation	140	W
	Linear Derating Factor	0.91	W/°C
V_{GS}	Gate-to-Source Voltage	± 20	V
E _{AS}	Single Pulse Avalanche Energy@®	430	mJ
I _{AR}	Avalanche Current①	-11	А
E _{AR}	Repetitive Avalanche Energy①	14	mJ
dv/dt	Peak Diode Recovery dv/dt 3 5	-5.0	V/ns
$T_{\rm J}$	Operating Junction and	-55 to + 175	
T _{STG}	Storage Temperature Range		∞
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)	

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JC}$	Junction-to-Case		1.1	0044/
$R_{\theta JA}$	Junction-to-Ambient (PCB Mounted,steady-state)**		40	°C/W

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions	
$V_{(BR)DSS}$	Drain-to-Source Breakdown Voltage	-100			V	V_{GS} = 0V, I_D = -250 μ A	
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		-0.11		V/°C	Reference to 25°C, $I_D = -1$ mA \odot	
R _{DS(on)}	Static Drain-to-Source On-Resistance			0.117	Ω	$V_{GS} = -10V, I_D = -11A \oplus$	
V _{GS(th)}	Gate Threshold Voltage	-2.0		-4.0	V	$V_{DS} = V_{GS}, I_{D} = -250 \mu A$	
9 _{fs}	Forward Transconductance	5.3			S	V _{DS} = -50V, I _D = -11A _③	
I _{DSS}	Drain-to-Source Leakage Current			-25	μА	V _{DS} = -100V, V _{GS} = 0V	
1055	Brain to obtaine Edukage Garrent			-250	μΛ	V_{DS} = -80V, V_{GS} = 0V, T_{J} = 150°C	
1	Gate-to-Source Forward Leakage			100	nA	V _{GS} = 20V	
I _{GSS}	Gate-to-Source Reverse Leakage			-100	IIA I	V _{GS} = -20V	
Qg	Total Gate Charge			97		I _D = -11A	
Q _{gs}	Gate-to-Source Charge			15	nC	$V_{DS} = -80V$	
Q _{gd}	Gate-to-Drain ("Miller") Charge			51		V_{GS} = -10V, See Fig. 6 and 13 \oplus \odot	
t _{d(on)}	Turn-On Delay Time		15			V _{DD} = -50V	
t _r	RiseTime		67		no	I _D = -11A	
t _{d(off)}	Turn-Off Delay Time		51		ns	$R_G = 5.1\Omega$	
t _f	Fall Time		51			R_D = 4.2 Ω , See Fig. 10 \oplus	
L _S	Internal Source Inductance		7.5		nH	Between lead,	
						and center of die contact	
C _{iss}	Input Capacitance		1300			V _{GS} = 0V	
Coss	Output Capacitance		400		pF	$V_{DS} = -25V$	
C _{rss}	Reverse Transfer Capacitance		240		1	f = 1.0MHz, See Fig. 5®	

Source-Drain Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions	
ls	Continuous Source Current			22		MOSFET symbol	
	(Body Diode)	-2		-23	A	showing the	
I _{SM}	Pulsed Source Current		76		70		integral reverse
	(Body Diode) ①	-				-/6	
V _{SD}	Diode Forward Voltage			-1.6	V	T _J = 25°C, I _S = -11A, V _{GS} = 0V ④	
t _{rr}	Reverse Recovery Time		150	220	ns	$T_J = 25^{\circ}C, I_F = -11A$	
Q _{rr}	Reverse Recovery Charge		830	1200	nC	di/dt = -100A/µs ④ ⑤	
t _{on}	Forward Turn-On Time	Intrinsic turn-on time is negligible (turn-on is dominated by L _S +L _D)					

Notes:

- Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11)
- 4 Pulse width $\leq 300 \mu s;$ duty cycle $\leq 2\%.$
- ② Starting $T_J = 25$ °C, L = 7.1mH $R_G = 25\Omega$, $I_{AS} = -11A$. (See Figure 12)
- ③ Uses IRF9540N data and test conditions
- $\label{eq:loss} \begin{array}{l} \text{ } \\ \text{ }$
- ** When mounted on 1" square PCB (FR-4 or G-10 Material).
 For recommended footprint and soldering techniques refer to application note #AN-994.

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 8. Maximum Safe Operating Area

Fig 9. Maximum Drain Current Vs. Case Temperature

Fig 10a. Switching Time Test Circuit

Fig 10b. Switching Time Waveforms

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

Fig 12a. Unclamped Inductive Test Circuit

Fig 12b. Unclamped Inductive Waveforms

Fig 13a. Basic Gate Charge Waveform

Fig 12c. Maximum Avalanche Energy Vs. Drain Current

Fig 13b. Gate Charge Test Circuit

Peak Diode Recovery dv/dt Test Circuit

* Reverse Polarity of D.U.T for P-Channel

*** V_{GS} = 5.0V for Logic Level and 3V Drive Devices

Fig 14. For P-Channel HEXFETS

International IOR Rectifier

D²Pak Package Outline

2. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].

3. DIMENSION D & E DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.127 [.005"] PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTMOST EXTREMES OF THE PLASTIC BODY.

4. DIMENSION 61 AND c1 APPLY TO BASE METAL ONLY.

5. CONTROLLING DIMENSION: INCH.

D²Pak Part Marking Information

EXAMPLE: THIS IS AN IRF530S WITH

LOT CODE 8024

ASSEMBLED ON WW 02, 2000 IN THE ASSEMBLY LINE "L"

International TOR Rectifier

IRF9540NS/L

TO-262 Package Outline

İ					
SYM		N			
В	MILLIM	ETERS	INC	O T E S	
0 L	MIN.	MAX.	MIN.	MAX.	S
Α	4.06	4.83	.160	.190	
A1	2.03	2.92	.080	.115	
b	0.51	0.99	.020	.039	
ь1	0.51	0.89	.020	.035	4
b2	1.14	1.40	.045	.055	
С	0.38	0.63	.015	.025	4
с1	1.14	1.40	.045	.055	
c2	0.43	.063	.017	.029	
D	8.51	9.65	.335	.380	3
D1	5.33		.210		
Ε	9.65	10.67	.380	.420	3
E1	6.22		.245		
е	2.54 BSC		.100		
L	13.46	14.09	.530	.555	
L1	3.56	3.71	.140	.146	
L2		1.65		.065	

LEAD ASSIGNMENTS

<u>HEXFET</u>

1.- GATE

2.- DRAIN

3.- SOURCE

4. – DRAIN

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994
- 2. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
- 3. DIMENSION D & E DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.127 [.005"] PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTMOST EXTREMES OF THE PLASTIC BODY.

4. DIMENSION b1 AND c1 APPLY TO BASE METAL ONLY.

5. CONTROLLING DIMENSION: INCH.

TO-262 Part Marking Information

EXAMPLE: THIS IS AN IRL3103L

LOT CODE 1789

ASSEMBLED ON WW 19, 1997 IN THE ASSEMBLY LINE "C"

D²Pak Tape & Reel Information

- COMFORMS TO EIA-418.
- 2. CONTROLLING DIMENSION: MILLIMETER.

 3 DIMENSION MEASURED @ HUB.
- INCLUDES FLANGE DISTORTION @ OUTER EDGE.

International IOR Rectifier

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903