Discrete Probability Spaces

C. Durso

Probability Spaces

- Common question in inference: Is there an effect in the data, or are they consistent with chance (null hypothesis)?
- Testing a null hypothesis requires calculation of the probability that data as extreme as the observed data occur under the null hypothesis.
- Probability distributions are essential to hypothesis testing.

Probability Spaces

- Some discrete probability distributions are in the standard Computer Science curriculum. Others are less familiar.
- Few, if any, continuous distributions are in the standard Computer Science curriculum.

Discrete Probability Spaces

- A discrete probability space (S, M, P) consists of:
 - The **sample space**: a finite or countable set, *S*, the set of possible outcomes
 - The set of events: a set M of subsets to S
 - The **probability function**: a function P from M to the real numbers in the interval [0,1]
- Example: Model the result of rolling a fair die as a discrete probability space: $S = \{1, 2, 3, 4, 5, 6\}$, M is the power set of S, and $P(A) = \frac{1}{6}|A|$.

Conditions on M

- The empty set and S itself must be elements of M. If $\{A_1, A_2\} \subseteq M$ then
 - $A_1 \cup A_2 \in M$
 - $\overline{A_1} \in M$
- Further, if $\{A_1, A_2, ... A_n, ...\} \subseteq M$, then $\bigcup_{i=1}^{\infty} A_i \in M$. Note that this implies that M is closed under countable union, complementation, and intersection.
- In practice, M will usually be the power set of S.

Conditions on P

- $P: M \rightarrow [0,1]$
- $P(\phi) = 0$
- P(S) = 1
- If $A, B \in M$ are disjoint, then $P(A) + P(B) = P(A \cup B)$
- If $\{A_1, A_2, ... A_n, ...\} \subseteq M$ and the A_i 's are pairwise disjoint, then

$$P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$$

Density f

If, for every $x \in S$ we have that $\{x\} \in M$, we define the density f associated with (S, M, P).

Definition

The discrete probability density function $f: S \rightarrow [0,1]$ is defined by the relation $f(x) = P(\{x\})$.

Independence

Definition

Events A and B in a probability space (S, M, P) are **independent** if $P(A \cap B) = P(A)P(B)$.

Definition

Events $\{A_1, A_2, ... A_n\}$ are **mutually independent** if, for any subset

$$\{B_1, B_2, \dots B_n\} \subseteq \{A_1, A_2, \dots A_n\}, P(\cap_{i=1}^k B_i) = \prod_{i=1}^k P(B_i)$$

Example

In the fair die example, the sets {1,2,3} and {2,4} are independent:

$$P(\{1,2,3\}) = \frac{1}{2}, P(\{2,4\}) = \frac{1}{3}, P(\{2\}) = \frac{1}{6} = (\frac{1}{2})(\frac{1}{3}).$$

Discrete Random Variables

C. Durso

Discrete Random Variables

- For a discrete probability space (S, M, P) for which M is the power set of S, any function $X: S \to \mathbb{R}$ is called a **discrete random variable**.
- Such a discrete random variable gives rise to a discrete probability space with sample space equal to the range of X and the set of events equal to the power set of the range of X.
- The probability function is determined by the density, $f(x) = P(\{s \in S | X(s) = x\})$.

Example: Bernoulli Trial

Definition

A Bernoulli Trial with probability of success p is a discrete probability space with

- $S = \{\text{success, failure}\}$
- M is the power set of S
- f(success) = p, f(failure) = 1 p

Example: Multiple Bernoulli Trials

Define a discrete probability space to model the experiment of n repetitions of independent Bernoulli trials with probability of success p:

- *S* is the set of all sequences of n total successes and failures, $(a_1, a_2, ... a_n)$ where $a_i \in \{\text{success, failure}\}$ for all i.
- M is the power set of S.
- P is defined by the density f with $f((a_1, a_2, ... a_n)) = p^k (1 p)^{n-k}$ when there are k successes in $(a_1, a_2, ... a_n)$.

Example: Random Variable

- Given the previous discrete probability space modeling the sequence of successes and failures in n independent Bernoulli trials with probability of success p, define the random variable $X: S \to \mathbb{R}$ by $X((a_1, a_2, ... a_n))$ equals the count of successes in $(a_1, a_2, ... a_n)$.
- The probability of the event $\{s|X(s)=k\}$ for $k\in\{0,1,2,...n\}$ is $\binom{n}{k}p^k(1-p)^{n-k}$
 - Every sequence with k successes has probability $p^k(1-p)^{n-k}$
 - There are $\binom{n}{k}$ sequences with k successes: $\binom{n}{k}$ counts possibilities for locations of successes

Example: Binomial Distribution

- This gives rise to a new probability space $(\tilde{S}, \tilde{M}, \tilde{P})$.
 - The set of outcomes equal to $\{0,1,2,...n\}$
 - The set of events equal to the power set of the set of outcomes
 - The density function of $f(k) = \binom{n}{k} p^k (1-p)^{n-k}$
- This is known as the binomial distribution
- Binomial(n, p). This is a family of discrete distributions with two parameters. Think of the number of heads in n independent tosses of a possibly biased coin with p equal to the probability of heads.

Plot of a Binomial Distribution

Cumulative Distribution

For a discrete probability space (S, M, P) with $S \subseteq \mathbb{R}$ and M equal to the power set of S, we define the cumulative distribution of (S, M, P).

Definition

The cumulative distribution of (S, M, P) is the function $F: \mathbb{R} \to [0,1]$ by $F(t) = P(\{x \in S | x \leq t\})$.

Example of Cumulative Distribution

Cumulative distribution of binomial(3,0.5)

Definition of Continuous Probability Distributions

C. Durso

Continuous Probability Spaces

- A continuous probability space (S, M, P) consists of:
 - The **sample space**: a *measurable* set, $S \subseteq \mathbb{R}$, the set of possible outcomes
 - The **set of events**: a set M of subsets of \mathbb{R} , usually all measurable sets
 - The **probability function**: a function *P* from *M* to the real numbers in the interval [0,1]
- Example: Model the selection of a value in [0,1] in which any value is equally likely. M includes all intervals in S, and P([a,b]) = b a for all a,b with $0 \le a \le b \le 1$.

Conditions on M, Continuous

- The empty set and S itself must be elements of M. If $\{A_1, A_2\} \subseteq M$ then
 - $A_1 \cup A_2 \in M$
 - $\overline{A_1} \in M$
- Further, if $\{A_1, A_2, ... A_n, ...\} \subseteq M$ then $\bigcup_{i=1}^{\infty} A_i \in M$. Note that this implies that M is closed under countable union, complementation, and intersection.
- In practice, M will include all intervals in S.
 Typically, M is all Lebesgue measurable sets.

Conditions on P, Continuous

- For a continuous probability space, there exists a measurable function f such that, for any $A \in M$, the value of P(A) equals $\int_A f(x)dx$.
 - For all $x, f(x) \ge 0$
 - $\int_{\mathbb{R}} f(x) dx = 1$
 - If $x \notin S$ then f(x) = 0

Example: Uniform Distribution on [0,1]

The uniform distribution on [0,1] has:

- S = [0,1]
- M is the set of Lebesgue measurable subsets of $\mathbb R$

•
$$f(x) = \begin{cases} 1 & x \in [0,1] \\ 0 & x \notin [0,1] \end{cases}$$

Probability of an Interval

Under the uniform distribution,

- if $0 \le a \le b \le 1$, then the P((a,b)) = $\int_a^b 1 dx = x \begin{vmatrix} b \\ a \end{vmatrix} = b a$
- if $0 \le t \le 1$, then the $P((-\infty, t)) = \int_0^t 1 dx = t$

Density Function

Density function for uniform distribution

Cumulative Distribution

General Uniform Distribution

More generally, the uniform distribution on [a, b] has

$$f(x) = \begin{cases} \frac{1}{b-a} & x \in [a,b] \\ 0 & x \notin [a,b] \end{cases}$$

 This gives us a parametrized family of probability distributions Uniform(a, b) with two parameters.

Definition of Normal Distributions

C. Durso

Standard Normal Distribution

Standard Normal distribution, continuous distribution Normal(0,1):

- $S = \mathbb{R}$,
- $f(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right)$
 - Why does this have to be multiplied by $\frac{1}{\sqrt{2\pi}}$?
 - This keeps the integral over \mathbb{R} equal to 1.

Standard Normal Density

Density of the Normal distribution

Cumulative Density of Standard Normal

Standard Normal distribution

Normal (μ, σ^2)

Set center and spread by specifying μ and σ^2

- Sample space $S = \mathbb{R}$,
- $f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$
 - Why does this have to be multiplied by $\frac{1}{\sqrt{2\pi\sigma^2}}$?

Verify Integral

Use the change of variable $u = \frac{x-\mu}{\sigma}$, $du = \frac{1}{\sigma}dx$