Spam Email Classification

By Gautam S

Project Goal & Workflow

∩1 Goal

Using the UCI Spambase dataset, we'll build an effective machine learning model to classify emails as Spam or Ham.

Exploratory Data Analysis (EDA)

Data Preprocessing & Feature Engineering

Model Training and Selection

Final Evaluation on Unseen Data

01

Exploratory Data Analysis

EDA: Spam Emails Use Specific Keywords

Exploratory Data Analysis reveals that spam emails frequently contain specific keywords, highlighting patterns in their content.

EDA: Spam Emails Emphasize Urgency & Money

Spam emails often leverage psychological triggers, using words that convey urgency and financial gain to entice recipients.

EDA: Spam Relies on Excessive Capitalization

A common characteristic of spam emails is the overuse of capitalization, a tactic to grab attention and emphasize certain words.

Preprocessing

Preprocessing: Can We Simplify the Features?

Principal Component Analysis (PCA) showed some class separation, but also significant overlap, indicating that reducing to 2 components loses too much critical information.

Significant Overlapping

03

Model Training

Model Training & Results

Two models, Logistic Regression and XGBoost, were tested across three data variations: Raw, Scaled, and PCA

	Data	Model	Accuracy	Precision
	Scaled	XGBoost	0.9490	0.9965
	Scaled	Logistic Regression	0.9294	0.9209
	Raw	Logistic Regression	0.9283	0.9160
	PCA	XGBoost	0.8283	0.8160
	PCA	Logistic Regression	0.8599	0.8534
0				

Performance of Different Models

Conclusion & Next Step

Best Model

XGBoost Classifier on raw data achieved the highest accuracy (94.9%) and precision (93.7%).

Key Takeaway

Feature scaling and PCA did not improve XGBoost performance, indicating raw features hold the most signal.

Q&A

Thank You

