Math 415 - Lecture 32

Complex numbers and eigenvectors

Textbook reading: first part of Chapter 5.5

Suggested practice exercises: 5.5 1, 2, 3

Khan Academy video: Complex Numbers (part 1)

Strang lecture: Lecture 21: Eigenvalues and eigenvectors

1 Review

1.1 Properties of eigenvectors and eigenvalues

- If $A\mathbf{x} = \lambda \mathbf{x}$ then \mathbf{x} is an eigenvector of A with eigenvalue λ . All eigenvectors (plus 0) with eigenvalue λ form eigenspace of λ .
- λ is an eigenvalue of $A \iff \det(A \lambda I) = 0$. Why? Because $A\mathbf{x} = \lambda \mathbf{x} \iff (A \lambda I)\mathbf{x} = \mathbf{0}$. By the way: this means that the eigenspace of λ is just $\operatorname{Nul}(A \lambda I)$.
- E.g. if $A = \begin{bmatrix} 3 & 2 & 3 \\ 0 & 6 & 10 \\ 0 & 0 & 2 \end{bmatrix}$ then $\det(A \lambda I) = (3 \lambda)(6 \lambda)(2 \lambda)$.
- Eigenvectors $\mathbf{x}_1, \dots, \mathbf{x}_m$ of A corresponding to different eigenvalues are independent.
- By the way:
 - product of eigenvalues = determinant
 - sum of eigenvalues = "trace" (sum of diagonal entries)

2 Eigenbasis?

2.1 Number of (independent) eigenvectors

An $n \times n$ matrix A has up to n different eigenvalues. Namely, the roots of degree n characteristic polynomial $det(A - \lambda I)$.

- For each eigenvalue λ , A has at least one eigenvector. That is because $Nul(A \lambda I)$ has dimension at least one.
- If λ has multiplicity m, then A has up to m (independent) eigenvectors for λ .

Ideally, we would like to find a total of n (independent) eigenvectors for A. This would give an **EIGENBASIS**. Why can there be no more than n independent eigenvectors?!

Two sources of trouble: eigenvalues can be

- complex numbers (that is, not enough real roots), or
- repeated roots of the characteristic polynomial.

2.2 Trouble I: complex eigenvalues

Example 1. Find the eigenvectors and eigenvalues of $A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$. Geometrically, what is the trouble?

Observe that $A \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -y \\ x \end{bmatrix}$, i.e. multiplication by A is a rotation by 90° (counter-clockwise). There is no vector that parallel after rotation by 90° . Thus A has no eigenvector!

3 Complex numbers review

Definition. $\mathbb{C} = \{x + iy \mid x, y \in \mathbb{R}\}\$

- $i = \sqrt{-1}$, or $i^2 = -1$.
- Any point in \mathbb{R}^2 can be viewed as a complex number: $\binom{x}{y} \leftrightarrow x + iy$

Definition. Let z = x + iy be a complex number

Real part The real part of z, denoted $\Re(z)$ is defined by $\Re(z) = x$.

Imaginary part The imaginary part of z, denoted Im(z) is defined by Im(z) = y.

Complex conjugate The complex conjugate of z, denoted \overline{z} , is defined by $\overline{z} = x - iy$.

Absolute value The absolute value, or magnitude of z, denoted |z| or ||z||, is given by $|z| = \sqrt{x^2 + y^2}$.

${\bf Adding\ complex\ numbers}$

Definition. Given z = x + iy, w = u + iv, we define

$$z + w = (x + u) + i(y + v)$$

Remark. This corresponds exactly to addition of vectors in \mathbb{R}^2 .

Multiplying complex numbers

Definition. Given z = x + iy, w = u + iv, we define

$$zw = (x + iy)(u + iv)$$

= $xu + x(iv) + (iy)u + (iy)(iv)$
= $(xu - yv) + i(xv + yu)$

Absolute value and complex conjugate

Remark. • $\overline{\overline{z}} = z$

- $\bullet |z|^2 = z\overline{z}$
- $|z| = |\overline{z}|$

Proof.

$$z\overline{z} = (x+iy)(x-iy)$$

$$= x^2 - x(iy) + (iy)x - (iy)(iy)$$

$$= x^2 + y^2$$

П

3.1 Complex Linear Algebra

Until now we took as our scalars the real numbers. In particular we used the vector space \mathbb{R}^n of column vectors

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}.$$

If c is a real number (a scalar) we defined

$$c\mathbf{x} = \begin{bmatrix} cx_1 \\ cx_2 \\ \vdots \\ cx_n \end{bmatrix}.$$

Now we want to use **COMPLEX** scalars. We need a new context to make sense of this.

Definition. \mathbb{C}^n is the (complex) vector space of *complex* column vectors $\mathbf{z} = \begin{bmatrix} z_1 \\ z_2 \\ \vdots \\ z_n \end{bmatrix}$, where z_1, z_2, \dots, z_n are complex numbers.

- Now multiplication by a complex scalar makes sense.
- We can define subspaces, span, independence, basis, dimension for \mathbb{C}^n in the usual way.
- We can multiply complex vectors by complex matrices. Column space and Null space still make sense.
- The only difference is the dot product, you need to use the complex conjugate to get a good notion of length. (Later more.)

4 Back to eigenvectors

Example 2. Find the complex eigenvectors and eigenvalues of $A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$. Now, we can use complex numbers!

Solution (continued).

- $\det(A \lambda I) = \begin{vmatrix} -\lambda & -1 \\ 1 & -\lambda \end{vmatrix} = \lambda^2 + 1$ So the eigenvalues are $\lambda_1 = i$ and $\lambda_2 = -i$.
- $\bullet \ \, \lambda_1 = i : \begin{bmatrix} -i & -1 \\ 1 & -i \end{bmatrix} \mathbf{x} = \mathbf{0} \implies \mathbf{x}_1 = \begin{bmatrix} i \\ 1 \end{bmatrix}$ Let us check $\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} i \\ 1 \end{bmatrix} = \begin{bmatrix} -1 \\ i \end{bmatrix} = i \begin{bmatrix} i \\ 1 \end{bmatrix}$
- $\bullet \ \, \lambda_2 = -i: \, \begin{bmatrix} i & -1 \\ 1 & i \end{bmatrix} \mathbf{x} = \mathbf{0} \implies \mathbf{x}_2 = \begin{bmatrix} -i \\ 1 \end{bmatrix}$

Summary: We had $A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$.

- Eigenvalues: i, -i These are conjugates!
- Eigenvectors: $\mathbf{x}_1 = \begin{bmatrix} i \\ 1 \end{bmatrix}$ and $\mathbf{x}_2 = \begin{bmatrix} -i \\ 1 \end{bmatrix}$ These are also conjugates!

Theorem 1. If A is a matrix with real entries and λ is a **complex eigenvalue**, then $\bar{\lambda}$ is also a complex eigenvalue. Furthermore, if \mathbf{x} is an eigenvector with eigenvalue λ , then $\bar{\mathbf{x}}$ is an eigenvector with eigenvalue $\bar{\lambda}$.

Proof. Observe that $\bar{A} = A$. Thus

$$A\bar{x} = \bar{A}\bar{x} = \bar{A}(Ax) = \bar{A}(\lambda x) = \bar{\lambda}\bar{x}.$$

Thus \bar{x} is an eigenvector of A to the eigenvalue $\bar{\lambda}$.

Remark. Note that we are using vectors in \mathbb{C}^2 , instead of vectors in \mathbb{R}^2 . Works pretty much the same!

Example 3. Find the eigenvectors and eigenvalues of $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$. What is the trouble?

Solution.

- $\det(A \lambda I) = \begin{vmatrix} 1 \lambda & 1 \\ 0 & 1 \lambda \end{vmatrix} = (1 \lambda)^2$ So: $\lambda = 1$ is the only eigenvalue (it has multiplicity 2).
- $\lambda = 1 : \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \mathbf{x} = \mathbf{0} \implies \mathbf{x}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ So the eigenspace is span $\left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right\}$. Only dimension 1!
- Trouble: We can not find an **Eigenbasis** for this matrix. This kind of problem cannot really be fixed. We have to lower our expectations and look for generalized eigenvectors. These are solutions to $(A \lambda I)^2 \mathbf{x} = \mathbf{0}, (A \lambda I)^3 \mathbf{x} = \mathbf{0}, \dots$