The process of executing inferencing application with LNE on LG AloT board is as follows.

- Step 1 : Creating neural network model and training it with data
- Step 2 : Converting the neural network model to format acceptable by the LNE(.lne)
- Step 3: Download .lne to LG AloT board
- Step 4 : Executing inferencing application with LNE using .lne, then validating the network model

Figure 1. Executing inferencing application on LG AloT board

In this document, we are going to show how "LNE Converter & Mapper", that converts neural networks into a format acceptable to LNE, works.

[Prerequisites]

- 1. Creating neural network model and training it with data using with Caffe or Tensorflow Lite
 - ✓ Caffe *.prototxt, *.caffemodel
 - ✓ Tflite *.tflite
- 2. Prepare input data to be used for quantization
 - ✓ Caffe LMDB (*.prototxt)
 - ✓ Tensorflow Lite Image directory

3. Fill "Ine.json" with neural network information

```
"caffe": {
   "prototxt": path to the caffe prototxt,
   "caffemodel": path to the caffe caffemodel
}
or
"tflite" : {
 "tflite_model": path to tflite_model,
 "input_dir": path to input_dir of tflite_model
},
"input" : {
 "image": {
   "color_fmt" : "RGB" or "BGR" or "GRAY", (Enter same values for mean r,g,b when color_fmt is GRAY)
   "mean r": mean value of R,
   "mean_g": mean value of G,
   "mean_b": mean value of B,
   "scale": scale value,
   "input_type": "UINT8" or "FLOAT32"
 or
  "raw": {
   "input_type" : "FLOAT32" or "UINT8"
},
"input_data_type": "NHWC" or "NCHW"
"output_data_type": "NHWC" or "NCHW"
"quant_loop": Integer value for quantization,
"version":"1.0" or "2.0"
```

Figure 2. json format used by LNE Converter & Optimizer

Figure 1. Network model conversion

LNE Converter and Optimizer can be performed using "compile.sh" script provided in LG AI SDK.

\$./compile.sh

Note) The script parses the Ine.json file to get a trained model and other values.

Therefore, Ine.json modification is required before the script execution.

When you run the shell script, you can check the operation of the LNE Converter & Optimizer through the screen below.

```
No training layer information.
Pre-Processing (Weight/Bias) Time = 13
Loaded model ./output/squeezenet/squeezenet modified.tflite
[Trainging Mode] = POST
[0] Current input = dnn database/database/imagenet/ILSVRC2012 val 00000006.jpg
[1] Current input = dnn database/database/imagenet/ILSVRC2012 val 000000008.jpg
[2] Current input = dnn_database/database/imagenet/ILSVRC2012_val_00000004.jpg
[3] Current input = dnn_database/database/imagenet/ILSVRC2012_val_00000010.jpg
[4] Current input = dnn_database/database/imagenet/ILSVRC2012_val_00000002.jpg
[5] Current input = dnn_database/database/imagenet/ILSVRC2012_val_00000009.jpg
[6] Current input = dnn_database/database/imagenet/ILSVRC2012_val_00000003.jpg
[7] Current input = dnn database/database/imagenet/ILSVRC2012 val 00000007.jpg
[8] Current input = dnn_database/database/imagenet/ILSVRC2012_val_00000005.jpg
[9] Current input = dnn_database/database/imagenet/ILSVRC2012_val_00000001.jpg
Q-value adjustment times (2)
[0] TensorID[0], Type[4], optQ[14], Buffer Access(Offset, Size) = (0, 150528)
[0] TensorID[4], Type[2], optQ[13]
[0] TensorID[2], Type[3], optQ[11]
[0] TensorID[3], Type[4], optQ[11], refQ[11], Buffer Access(Offset, Size) = (0, 1204224)
[1] TensorID[3], Type[4], optQ[11], Buffer Access(Offset, Size) = (0, 1204224)
[1] TensorID[90], Type[4], optQ[11], refQ[-1], Buffer Access(Offset, Size) = (1204224, 290400)
[2] TensorID[90], Type[4], optQ[11], Buffer Access(Offset, Size) = (1204224, 290400)
[2] TensorID[17], Type[2], optQ[13]
[2] TensorID[15], Type[3], optQ[9]
[2] TensorID[16], Type[4], optQ[10], refQ[9], Buffer Access(Offset, Size) = (1494624, 48400)
[3] TensorID[16], Type[4], optQ[10], Buffer Access(Offset, Size) = (1494624, 48400)
[3] TensorID[11], Type[2], optQ[13]
[3] TensorID[9], Type[3], optQ[10]
[3] TensorID[10], Type[4], optQ[11], refQ[10], Buffer Access(Offset, Size) = (1543024, 193600)
[4] TensorID[16], Type[4], optQ[10], Buffer Access(Offset, Size) = (1494624, 48400)
[4] TensorID[14], Type[2], optQ[13]
[4] TensorID[12], Type[3], optQ[8]
[4] TensorID[13], Type[4], optQ[11], refQ[8], Buffer Access(Offset, Size) = (1736624, 193600)
[5] TensorID[10], Type[4], optQ[11], Buffer Access(Offset, Size) = (1543024, 193600)
[5] TensorID[13], Type[4], optQ[11], Buffer Access(Offset, Size) = (1736624, 193600)
[5] TensorID[8], Type[4], optQ[11], refQ[-1], Buffer Access(Offset, Size) = (1930224, 387200)
[6] TensorID[8], Type[4], optQ[11], Buffer Access(Offset, Size) = (1930224, 387200)
[6] TensorID[27], Type[2], optQ[14]
[6] TensorID[25], Type[3], optQ[11]
[6] TensorID[26], Type[4], optQ[11], refQ[11], Buffer Access(Offset, Size) = (2317424, 48400)
[7] TensorID[26], Type[4], optQ[11], Buffer Access(Offset, Size) = (2317424, 48400)
[7] TensorID[21], Type[2], optQ[14]
[7] TensorID[19], Type[3], optQ[11]
[7] TensorID[20], Type[4], optQ[11], refQ[11], Buffer Access(Offset, Size) = (2365824, 193600)
[8] TensorID[26], Type[4], optQ[11], Buffer Access(Offset, Size) = (2317424, 48400)
[8] TensorID[24], Type[2], optQ[13]
[8] TensorID[22], Type[3], optQ[10]
[8] TensorID[23], Type[4], optQ[11], refQ[10], Buffer Access(Offset, Size) = (2559424, 193600)
[9] TensorID[20], Type[4], optQ[11], Buffer Access(Offset, Size) = (2365824, 193600)
```

```
MAP] squeezenet mapping...
Net name squeezenet
Make layer:data of type Data
Make layer:Conv0_fused of type ConvolutionReLU
Make layer:Poolingl of type Pooling
Make layer:Conv2_fused of type ConvolutionReLU
Make layer:Conv3_fused of type ConvolutionReLU
Make layer:Conv4_fused of type ConvolutionReLU
Make layer:Concat5 of type Concat
Make layer:Conv6_fused of type ConvolutionReLU
Make layer:Conv7_fused of type ConvolutionReLU
Make layer:Conv8_fused of type ConvolutionReLU
Make layer:Concat9 of type Concat
Make layer:Convl0 fused of type ConvolutionReLU
Make layer:Convll_fused of type ConvolutionReLU
Make layer:Convl2_fused of type ConvolutionReLU
Make layer:Concatl3 of type Concat
Make layer:Pooling14 of type Pooling
Make layer:Convl5 fused of type ConvolutionReLU
Make layer:Conv16_fused of type ConvolutionReLU
Make layer:Conv17_fused of type ConvolutionReLU
Make layer:Concat18 of type Concat
Make layer:Conv19 fused of type ConvolutionReLU
Make layer:Conv20_fused of type ConvolutionReLU
Make layer:Conv21_fused of type ConvolutionReLU
Make layer:Concat22 of type Concat
Make layer:Conv23 fused of type ConvolutionReLU
Make layer:Conv24_fused of type ConvolutionReLU
Make layer:Conv25_fused of type ConvolutionReLU
Make layer:Concat26 of type Concat
Make layer:Conv27 fused of type ConvolutionReLU
Make layer:Conv28_fused of type ConvolutionReLU
Make layer:Conv29_fused of type ConvolutionReLU
Make layer:Concat30 of type Concat
Make layer:Pooling31 of type Pooling
Make layer:Conv32 fused of type ConvolutionReLU
Make layer:Conv33_fused of type ConvolutionReLU
Make layer:Conv34_fused of type ConvolutionReLU
Make layer:Concat35 of type Concat
Make layer:Conv36 fused of type ConvolutionReLU
Make layer:Pooling37 of type Pooling
Set layer Pooling37 as output layer!
Param offset = 2498432
End YML parsing!
 Called with args:
Namespace(c_file='squeezenet.c', h_file='squeezenet.h', o_file='squeezenet_inout_info.txt', r_file='squeezenet.run')
  file name: squeezenet.c
file name: squeezenet.h
make: Entering directory '/home/ejlim/dql/lne_ddk/output/squeezenet/dql/build'
riscv32-unknown-elf-gcc -I/home/ejlim/dql/lne_ddk/libnmprt_240/build/output/include -I/home/ejlim/dql/lne_ddk/output/squeezenet -
DMNP_HWREV-240 -DNUM_TILES=4 -DNUM_TILESTS=8 -DMBLOBO_SIZE=8192 -DMBLOB1_SIZE=8192 -DMBLOB2_SIZE=8192 -DMBLOB2_SIZE=8192 -DMBLOB3_SIZE=0 -DTSM_SIZE
=0 -DDDR_BASE=0x00000000 -march=rv32imxnmp -mabi=ilp32 -mcmodel=medany -02 -flto -fuse-linker-plugin -ffast-math -fno-common -Wa
11 -o squeezenet.elf /home/ejlim/dql/lne_ddk/libnmprt_240/build/output/lib/crt0-generic-240.0 /home/ejlim/dql/lne_ddk/output/squ
eezenet/squeezenet_EVB.c -nostdlib -Wl, --defsym= _intmem_size=2048 -T /home/ejlim/dql/lne_ddk/libnmprt_240/build/output/lib/ldscr
ipts/generic-240.ld -Wl, -Map=squeezenet.map -L/home/ejlim/dql/lne_ddk/libnmprt_240/build/output/lib -lgcc -lnmprt-240
riscv32-unknown-elf-objdomp -drSgx squeezenet.elf > squeezenet.dis
riscv32-unknown-elf-objcopy -O binary -j .text squeezenet.elf squeezenet.text.bin
riscv32-unknown-elf-objcopy -O binary -j .rodata* -j .eh_frame* -j .tdata -j *_array -j .data* -j .sdata squeezenet.elf squeezenet
.tdata.bin
```

ake: Leaving directory '/home/ejlim/dql/lne_ddk/output/squeezenet/dql/build'

```
./params/convl relu weight.bin
./params/convl relu bias.bin
./params/fire2 squeeze relu weight.bin
./params/fire2 squeeze relu bias.bin
./params/fire2 elxl relu weight.bin
./params/fire2 elxl relu bias.bin
./params/fire2 e3x3 relu weight.bin
./params/fire2 e3x3 relu bias.bin
./params/fire3_squeeze_relu_weight.bin
./params/fire3_squeeze_relu_bias.bin
./params/fire3_elxl_relu_weight.bin
./params/fire3_elxl_relu_bias.bin
./params/fire3_e3x3_relu_weight.bin
./params/fire3 e3x3 relu bias.bin
./params/fire4_squeeze_relu weight.bin
./params/fire4_squeeze_relu_bias.bin
./params/fire4_elxl_relu_weight.bin
./params/fire4_elx1_relu_bias.bin
./params/fire4_e3x3_relu_weight.bin
./params/fire4_e3x3_relu_bias.bin
./params/fire5_squeeze_relu_weight.bin
./params/fire5_squeeze_relu_bias.bin
./params/fire5_elx1_relu_weight.bin
./params/fire5_elx1_relu_bias.bin
./params/fire5_e3x3_relu_weight.bin
./params/fire5_e3x3_relu_bias.bin
./params/fire6_squeeze_relu_weight.bin
./params/fire6_squeeze_relu_bias.bin
./params/fire6_elxl_relu_weight.bin
./params/fire6_elx1_relu_bias.bin
./params/fire6_e3x3_relu_weight.bin
./params/fire6_e3x3_relu_bias.bin
./params/fire7_squeeze_relu_weight.bin
./params/fire7_squeeze_relu_bias.bin
./params/fire7_elx1_relu_weight.bin
/params/fire7_elx1_relu_bias_bin
```

```
[FLATBUFFER] LNE model creating...
LNE Model Information
LNE HW Information
LNE HW version: 240
LNE Quantization mode: FIXEDP16
_____
LNE Network Information
firmware size: 16296
parameter size: 2498386
The number of layers: 40
Input Info
data format: NHWC
number: 0
shape: [1, 224, 224, 3]
q value: 14
type: UINT8
mean value(channel order) 123.68 116.78 103.94
scale: 0.003921569
Output Info
data format: NHWC
number: 0
shape: [1, 1, 1, 1001]
q value: 9
type: FLOAT32
LNE model name : squeezenet.lne
```

```
[Validator] Validator_cfg creating...

------
Validator_cfg created
```