Lógica

Mauro Polenta Mora

CLASE 8 - 27/03/2025

Deducción natural

Introducción

Tenemos dos formas de trabajar para justificar la válidez de un razonamiento.

- **Justificación semántica** ($\Gamma \models \alpha$): probar que la veracidad de las hipótesis implica la veracidad de la conclusión.
- Justificación sintáctica $(\Gamma \vdash \alpha)$: demostrar la conclusión a partir de las hipótesis usando pasos claramente definidos y explicitados.

Justificación sintáctica

- $(\Gamma \vdash \beta)$:
 - Demostrar la conclusión β a partir de las hipótesis de Γ usando pasos claramente definidos y explicitados.
- Qué es una demostración?
 - Es una prueba formal.
 - La correción de la demostración depende de su forma y no del significado.
 - Cumple reglas precisas de construcción.

Pruebas formales

- Cómo probamos usualmente?
 - Sostenenemos hipótesis iniciales (las podemos dar como dato en todo instante de la prueba).
 - Encadenamos pasos simples de deducción que nos permite llegar a la conclusión.
- Por qué pruebas formales?
 - Porque podemos compilar las pruebas hechas, y asegurar su corrección o detectar errores mediante el análisis de su estructura.

Ejemplo

En deducción natural, las demostraciones se formalizan mediante árboles:

$$\frac{\frac{[\alpha \wedge \beta]^{1}}{\beta} E_{\wedge_{2}} \frac{[\alpha \wedge \beta]^{1}}{\alpha} E_{\wedge_{1}}}{\frac{\beta \wedge \alpha}{\alpha \wedge \beta \rightarrow \beta \wedge \alpha} I \rightarrow^{1}}$$

Figure 1: Figura 1

Reglas de construcción de pruebas

- Construyen una prueba a partir de subpruebas más simples.
- Manejan correctamente las hipótesis (hipótesis globales) y supuestos (hipótesis locales) en cada etapa de la prueba.

El análisis de corrección de una prueba formal puede mecanizarse, y lo ha sido. Existen asistentes y verificadores automáticos de pruebas para el cálculo proposicional.

En general para cada conectivo se definen:

- Reglas de introducción: Indican como probar una fórmula con ese conectivo.
- Reglas de eliminación: Indican como utilizar una fórmula con ese conectivo.

Reglas de introducción

Conjunción (A)

• Hipótesis: $\delta_1, \dots, \delta_n$.

• Tesis: $\alpha \wedge \beta$

• Demostración:

- Probar α usando $\delta_1, \dots, \delta_n$.
- Probar β usando $\delta_1, \dots, \delta_n$.
- Luego, hemos probado $\alpha \wedge \beta$ usando $\delta_1, \dots, \delta_n$.

$$rac{lpha eta eta}{lpha \wedge eta}$$
 1 \wedge

Figure 2: Figure 2

Implica (\rightarrow)

• Hipótesis: $\delta_1, \dots, \delta_n, [\alpha]^k$.

- Tesis: $\alpha \to \beta$
- Demostración:
 - Supongamos α
 - Probar β usando δ_1,\dots,δ_n y α
 - Luego, hemos probado $\alpha \to \beta$ usando $\delta_1, \dots, \delta_n$.

$$\frac{\beta}{\alpha \to \beta} I^{\to^{(k)}}$$

Figure 3: Figura 3

Disyunción (V)

- Hipótesis: $\delta_1, \dots, \delta_n$.
- Tesis: $\alpha \vee \beta$
- Demostración:
 - Opción 1:
 - * Probar α usando δ_1,\dots,δ_n
 - * Luego, hemos probado $\alpha \vee \beta$ usando $\delta_1, \dots, \delta_n.$
 - Opción 2:
 - * Probar β usando δ_1,\dots,δ_n
 - * Luego, hemos probado $\alpha \vee \beta$ usando $\delta_1, \dots, \delta_n.$

$$\frac{\alpha}{\alpha \vee \beta} I \vee_1 \frac{\beta}{\alpha \vee \beta} I \vee_2$$

Si y sólo si (\leftrightarrow)

- Hipótesis: $\delta_1, \dots, \delta_n$.
- Tesis: $\alpha \leftrightarrow \beta$
- Demostración:
 - Directo: Supongamos α y probamos β usando $\delta_1,\dots,\delta_n,[\alpha]^k.$
 - Reciproco: Supongamos β y probamos α usando $\delta_1, \dots, \delta_n, [\beta]^k$.
 - Luego, hemos probado que $\alpha \leftrightarrow \beta$ usando $\delta_1, \dots, \delta_n$.

$$\frac{\beta}{\alpha \vee \beta} I^{\leftrightarrow^{(k)}}$$

Figure 4: Figura 6

Negación (¬)

- Hipótesis: $\delta_1, \dots, \delta_n, [\alpha]^k$.
- Tesis: $\neg \alpha$
- Demostración:
 - Supongamos α y probamos una contradicción usando $\delta_1,\dots,\delta_n,[\alpha]^k.$
 - Luego, hemos probado $\neg \alpha$ usando $\delta_1, \dots, \delta_n.$

Figure 5: Figure 7

Reglas de eliminación

Conjunción (A)

- Hipótesis: $\delta_1, \dots, \delta_n$.
- Tesis: α
- Demostración:
 - Probamos $\alpha \wedge \beta$ usando $\delta_1, \dots, \delta_n.$
 - Luego, hemos probado α usando $\delta_1, \dots, \delta_n$. Simétricamente para β .

$$\frac{\alpha \wedge \beta}{\alpha} E \wedge_1$$

Figure 6: Figura 8

Figure 7: Figura 9

Implica (\rightarrow)

- Hipótesis: $\delta_1, \dots, \delta_n$.
- Tesis: β
- Demostración:
 - Probamos $\alpha \to \beta$ usando $\delta_1, \dots, \delta_n$.
 - Probamos α usando $\delta_1, \dots, \delta_n.$
 - Luego, probamos β usando $\delta_1,\dots,\delta_n.$

$$\frac{\alpha \to \beta \qquad \alpha}{\beta} \to B \to B$$

Figure 8: Figura 10

Disyunción (V)

- Hipótesis: $\delta_1,\ldots,\delta_n,[\alpha]^k$ y $\delta_1,\ldots,\delta_n,[\beta]^k.$
- Tesis: δ
- Demostración:
 - Probamos $\alpha \vee \beta$ usando $\delta_1, \dots, \delta_n.$
 - Caso A. Probamos δ usando $\delta_1, \dots, \delta_n$ y $\alpha.$
 - Caso B. Probamos δ usando $\delta_1, \dots, \delta_n$ y $\beta.$
 - Luego, probamos δ usando $\delta_1, \dots, \delta_n$

$$\frac{\alpha \vee \beta \qquad \delta \qquad \delta}{\delta} E^{\vee^{(k)}}$$

Figure 9: Figura 11

Si y sólo si (\leftrightarrow)

- Hipótesis: $\delta_1, \dots, \delta_n$
- Tesis: β
- Demostración:

- Probamos $\alpha \leftrightarrow \beta$ usando $\delta_1, \dots, \delta_n.$
- Probamos α usando $\delta_1, \dots, \delta_n.$
- Luego, probamos β usando $\delta_1, \dots, \delta_n$.
- Simétricamente para α .

$$\frac{\alpha \leftrightarrow \beta}{\beta} \qquad \xrightarrow{E \leftrightarrow_1} \qquad \frac{\alpha \leftrightarrow \beta}{\alpha} \qquad \xrightarrow{E \leftrightarrow_2}$$

Negación (¬)

- Hipótesis: $\delta_1, \dots, \delta_n$.
- Tesis: Absurdo.
- Demostración:
 - Probamos $\neg \alpha$ usando $\delta_1, \dots, \delta_n$.
 - Probamos α usando $\delta_1, \dots, \delta_n$.
 - Luego, hemos probado \perp usando $\delta_1, \dots, \delta_n$.

Figure 10: Figura 14

Absurdo (\bot)

- Hipótesis: $\delta_1, \dots, \delta_n$.
- Tesis: α .
- Demostración (por reducción al absurdo):
 - Supongamos $\neg \alpha$
 - Llegamos a una contradicción usando $\delta_1, \dots, \delta_n$ y $[\neg \alpha]^k$.
 - Luego, hemos probado α usando $\delta_1,\dots,\delta_n.$

Figure 11: Figura 15

- Demostración:
 - Llegamos a una contradicción usando $\delta_1, \dots, \delta_n$.
 - Luego, hemos probado α usando δ_1,\dots,δ_n

$$\frac{\perp}{\alpha}$$
 $E\perp$

Figure 12: Figura 16