This quiz is worth a total of **100 points**.

In accordance with the Georgia Institute of Technology Honor Code, I have neither given nor received aid on this quiz.

Signature:

Please make sure all of your answers are contained within the answer boxes or the fill-in lines.

Do not write your work in the answer boxes. You have been provided with extra paper for your scratch work. You will **NOT** be given credit for showing work. Having anything except the answer inside the boxes or above the fill-in lines reduces autograder performance and might cause incorrect results.

Make sure to write your name, username, and answers legibly. You will not receive credit for illegible answers.

Digital Logic: Truth Table from Expression

1. Complete the empty entries in the truth table with respect to the following boolean expression.

$$S = (A \& B) \mid C$$

A	В	С	S
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Digital Logic: Truth Table from Circuit

2. Complete the empty entries in the following truth table with respect to the circuit shown below.

Note: The 0 indicates a zero constant.

A	В	С	OUT
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	0

Short Answer

- 3. For the following questions please answer in the space provided.
 - (a) Given a multiplexer with n select bits, what's the maximum number of outputs?

(b) Given a decoder with n select bits, what's the maximum number of outputs?

2^n

(c) Find an expression equivalent to (!A & !B) with ≤ 2 bitwise operators (!,&,|)

! (A

Multiple Choice

4. For the following questions please fill-in the appropriate circle.

 \bigcirc AND

- OR
- \bigcirc XOR \bigcirc ADD

- (a) Which operator should one use to set bits? (b) Which operator should one use to clear bits?
- AND
- \bigcirc OR
- \bigcirc XOR XOR
- \bigcirc ADD

- (c) Which operator should one use to toggle bits?
- \bigcirc AND
- \bigcirc OR
- \bigcirc ADD

16

16

10

16

15

Digital Logic: Adding and Subtracting

5. Consider the following diagram of a 4-bit adder-subtractor composed of four 1-bit full-adders. When the sel input is 0 the circuit should compute the operation A + B. When the sel input is 1 the circuit should compute the operation A - B.

Hint: The sel input is connected both to the marked components and to the c_{in} of the first adder.

Which component should be inserted for the boxes with ?'s: \(\rightarrow\) AND \(\rightarrow\) OR \(\begin{array}{c} \rightarrow\) ADD

Bitmasking

- 6. Write a function which extracts all bits less than and excluding the bit i from a 32-bit 2's complement integer such that:
 - num is a 32-bit 2's complement integer
 - i is the index bit with a range of (0, 32)

For example, if i = 4 you would return the 4-bit number num[3 : 0] (i.e. bits $\{3,2,1,0\}$).

This must be completed in one line without multiplication, addition, subtraction, division or modulus. All right shifts must be signed.

Note: Make sure your answer is of the form "return ...;"

```
public static int lowerBits(int num, int i)
{
   return ((num) & ~(~0x0 << i));
}</pre>
```

Digital Logic: Circuit from Expression

7. Consider the following boolean expression with three inputs and one output: $Z = \overline{(\overline{A} \mid (B \& \overline{C}))}$. Draw the corresponding circuit. You are allowed (but not required) to simplify the expression! You may use any of the following symbols: NOT (\triangleright) AND (\triangleright) OR (\triangleright) XOR (\triangleright). Warning: If we cannot distinguish between your gates, you will receive NO credit.

Α

B

С