Statistical analysis of the association between creatinine and weight

By Kieran Arasu

The task

- Primary predictor variable is weight.
- Primary outcome variable is creatinine levels (micromoles/L) on admission
- Task is to investigate associations between each variable (except ICU_stay and hosp_stay) and creatinine levels.
- Weight cannot be excluded from any multivariable regression model.

Variables				
Age				
Sex				
Respiratory				
Cardiovascular				
Weight				
SBP_high				
SBP_low				
HR				
Nurse				
Creat				
ICU_Stay				
Hosp_Stay				

Initial analysis

- After some minor data formatting.
- Multivariable analysis of ALL predictor variables (excluding ID, ICU_Stay and hosp_stay.)

```
Variables VIF

weight 1.401264

sex2Female 1.516968

respiratory2Yes 1.127650

cardiovascular2Yes 1.124349

SBP_high 3.939949

SBP_low 3.937077

HR 1.017902

nurse2Yes 1.062789
```

```
#data formatting,
hosp2022$sex2 <- factor(hosp2022$sex, labels = c("Male", "Female"))
hosp2022$respiratory2 <- factor(hosp2022$respiratory, labels = c("No", "Yes"))
hosp2022$cardiovascular2 <- factor(hosp2022$cardiovascular, labels = c("No", "Yes"))
hosp2022$nurse2 <- factor(hosp2022$nurse, labels = c("No", "Yes"))</pre>
```

```
Call:
lm(formula = creat ~ weight + age + sex2 + respiratory2 + cardiovascular2 +
   SBP_high + SBP_low + HR + nurse2, data = hosp2022)
Coefficients:
                    Estimate Std. Error t value Pr(>|t|)
(Intercept)
                   15.912807 6.493141 2.451
                    0.455422 0.034884 13.055
weight
                              0.092315 11.279
                                                 <2e-16 ***
sex2Female
                  -28.860929
                             0.887132 -32.533
                                                 <2e-16 ***
respiratory2Yes
                    0.636269 1.092304
                                         0.583
                                                0.5603
cardiovascular2Yes
                   0.294462
                              0.788696
                                         0.373
                                                 0.7089
SBP_high
                    0.022939
                              0.027392
                                         0.837
                                                 0.4025
                              0.023885 -0.478
                                                0.6325
SBP_low
                   -0.011425
                              0.014283
                                         0.578
                                                 0.5633
                    0.008255
nurse2Yes
                              0.836659
                                         1.007 0.3141
                    0.842403
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
Residual standard error: 16.1 on 1990 degrees of freedom
Multiple R-squared: 0.5531,
                              Adjusted R-squared: 0.551
F-statistic: 273.6 on 9 and 1990 DF, p-value: < 2.2e-16
```

Univariate analyses of all Predictor variable (Respiratory and cardiovascular)

- First, predictor variables with no discernable association.
- Multivariable analysis of ALL predictor variables.

Variables				
Age				
Sex				
Respiratory				
Cardiovascular				
Weight				
SBP_high				
SBP_low				
HR				
Nurse				
Creat				


```
lm(formula = creat ~ cardiovascular2, data = hosp2022)
Residuals:
   Min
            1Q Median
                            3Q
-67.868 -18.367 -1.868 16.633 110.633
Coefficients:
                  Estimate Std. Error t value Pr(>|t|)
                  101.8680
                               0.6799 149.823 <2e-16 ***
cardiovascular2Yes 0.4987
                               1.1103 0.449 0.653
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 24.04 on 1998 degrees of freedom
Multiple R-squared: 0.0001009, Adjusted R-squared: -0.0003995
F-statistic: 0.2017 on 1 and 1998 DF, p-value: 0.6534
```

Univariate analyses of all Predictor variable (SBP_High and SBP_Low)

- O First, predictor variables with no discernable association.
- No significant relationship found between systolic blood pressure (min and max) and creatinine levels.

Univariate analyses of all Predictor variable (HR and Nurse Program)

- HR and Nurse have significant relationship with creatinine.
- If they are independent predictors of creatinine, they should be included in the final model.

Univariate analyses of all Predictor variable (Age and Sex)

- No significant relationship for Age
- O Significant relationship for Sex
- However, very significant relationship was noted earlier.

```
Call:
lm(formula = creat ~ weight + age + sex2 + respiratory2 + cardiovascular2 +
   SBP_high + SBP_low + HR + nurse2, data = hosp2022)
Residuals:
            1Q Median
-46.935 -10.626 -1.198 9.427 81.045
Coefficients:
                    Estimate Std. Error t value Pr(>|t|)
(Intercept)
                             6.493141
weiaht
                             0.092315 11.279
sex2Female
respiratory2Yes
cardiovascular2Yes
                                                 0.4025
SBP_high
                               0.027392
SBP_low
                              0.023885 -0.478
                                                 0.6325
                                                 0.5633
nurse2Yes
                    0.842403
                              0.836659
                                         1.007
                                                 0.3141
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
Residual standard error: 16.1 on 1990 degrees of freedom
Multiple R-squared: 0.5531, Adjusted R-squared: 0.551
F-statistic: 273.6 on 9 and 1990 DF, p-value: < 2.2e-16
```

```
Age vs Creatine Levels on admission

200

(Tsaper 100)

50

Age (Years)
```


Univariate analyses of all Predictor variable (Weight)

- Very significant relationship
- No homoscedasticity

Variables					
Age					
Sex					
Respiratory					
Cardiovascular					
Weight					
\$BP_high					
SBP_low					
HR					
Nurse					
Creat					

Post-Univariate analyses

- Primary predictor variable is weight.
- Primary outcome variable is creatinine levels (micromoles/L) on admission
- After investigating each predictor variable, the following variables will be included into an initial regression model.

```
lm(formula = creat ~ weightc + agec + sex2 + HRc + nurse2, data = hosp2022)
```

```
Variables Tolerance VIF

1 weightc 0.7150674 1.398470

2 agec 0.9675732 1.033513

3 sex2Female 0.6614188 1.511901

4 HRc 0.9828138 1.017487

5 nurse2Yes 0.9423922 1.061129
```


Initial Model

The model provides the following results:

```
lm(formula = creat ~ weightc + agec + sex2 + HRc + nurse2, data = hosp2022)
Residuals:
           1Q Median
   Min
-47.559 -10.703 -1.157 9.411 81.077
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
weightc
            0.456902 0.034829 13.119
                                      <2e-16 ***
                                      <2e-16 ***
agec
            1.042740 0.092241 11.305
sex2Female -28.852277 0.885115 -32.597 <2e-16 ***
            0.008238 0.014271 0.577
                                       0.564
HRC
            0.853641 0.835501 1.022
                                       0.307
nurse2Yes
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 16.09 on 1994 degrees of freedom
Multiple R-squared: 0.5527, Adjusted R-squared: 0.5516
F-statistic: 492.8 on 5 and 1994 DF, p-value: < 2.2e-16
```

- As can be noted, weight, sex and age still have a significant relationship with creatinine levels.
- HR and Nurse variable have no significant relationship.

Building on the initial Model

- Sex is actively confounding weight (and other variables) (associated with both weight and creatinine levels)
- In the dataset, Men are both heavier and take more creatinine.
- Therefore it should be kept in the regression model and be adjusted for.

Variable Pruning (HR)

 When adjusting for sex, the HR predictor variable has no significant relationship with creatinine intake.

It also has no significant interaction with weight in the initial model.

Variable Pruning (Nurse)

 When adjusting for sex, the nurse predictor variable has no significant relationship with creatinine levels.

 It also has no significant interaction with weight in the initial model.

```
lm(formula = creat ~ weightc + agec + sex2 + HRc + nurse2 + weightc *
   nurse2. data = hosp2022)
                    Estimate Std. Error t value Pr(>|t|)
(Intercept)
                  115.750836
                               0.771662 150.002
                                                   <2e-16 ***
weightc
                    0.428451
                               0.039959 10.722
                                                   <2e-16 ***
                    1.038224
                               0.092268 11.252
                                                   <2e-16 ***
agec
                               0.885498 -32.638
                                                   <2e-16 ***
sex2Female
                  -28.900681
                    0.007974
                               0.014269
                                           0.559
                                                    0.576
HRC
nurse2Yes
                    0.706493
                              0.841403
                                           0.840
                                                    0.401
                               0.065696
                                           1.451
                                                    0.147
weightc:nurse2Yes
                    0.095331
```


Variable adjustments (age)

Apparent association between age and weight.

 This would mean age is a confounder for weight, however after adjusting for sex.

There is no association. This means age is an independent predictor of creatinine levels and should be included in the model.

Building on the initial Model

Age

- A spurious association was generated for both HR and Nurse due to sex acting as a confounder.
- No interaction with weight therefore, they can be removed and not be adjusted for.

Interaction term

Interaction term

Final Model with interaction terms

```
lm(formula = creat ~ weightc + sex2 + agec + weightc * sex2 +
    weightc * agec, data = hosp2022)
Residuals:
    Min
             10 Median
                                    Max
-46.825 -10.626 -1.162
                          9.105 80.112
Coefficients:
                     Estimate Std. Error t value Pr(>|t|)
(Intercept)
                   117.406747
                                0.595680 197.097 < 2e-16 ***
weightc
                     0.300870
                                0.049462 6.083 1.41e-09 ***
sex2Female
                   -28.952324
                                0.854299 -33.890 < 2e-16
                     1.043665
                                0.091452 11.412 < 2e-16 ***
agec
weightc:sex2Female
                    0.307998
                                0.069817 4.411 1.08e-05 ***
                     0.023191
                                0.007522
                                           3.083 0.00208 **
weightc:agec
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 15.97 on 1994 degrees of freedom
Multiple R-squared: 0.5598,
                                Adjusted R-squared: 0.5587
F-statistic: 507.1 on 5 and 1994 DF, p-value: < 2.2e-16
(Intercept)
                116.238527459 118.57496705
weightc
                 0.203868278
                             0.39787230
sex2Female
                -30.627735869 -27.27691254
                 0.864313454
                             1.22301653
weightc:sex2Female 0.171074754
                             0.44492054
weightc:agec
                 0.008439499
                             0.03794278
```

Variables Age* Sex* Respiratory Cardiovascular Weight SBP high SBP low HR Nurse Creat ICU_Stay Hosp_Stay

Model Comparison

```
Initial Model: Creat = \beta_0 + \beta_1 (weight) + \beta_2(age) + \beta_3(Sex) + \beta_4(HR) + \beta_5(Nurse)
```

Final Model: $Creat = \beta_0 + \beta_1 (weight) + \beta_2 (age) + \beta_3 (Sex) + \beta_4 (weight * age) + \beta_5 (weight * sex)$

Final Model (Rearranged): Creat =
$$\beta_0 + \beta_2(age) + \beta_3(Sex) + (weight)(\beta_1 + \beta_4(age) + \beta_5(sex))$$

Model	Adj.R ²	AIC	BIC
Initial	0.5516	16797.56	16836.77
Final	0.5587	16765.62	16804.82

Higher values for \mathbb{R}^2 means the model is a better fit.

Lower values for both AIC and BIC are indicative of a better model.

Summary of results

Final Model: Creat = 117.40 - 28.95(Sex) + 1.044(age) + weight(0.30 + 0.308(sex) + 0.023(age))

	Coefficients (LCI – UCI)	Std.Error	t-Value	p-value
β	117.40 (116.24, 118.57)	0.596	197.097	<0.0001***
Weightc (eta_1)	0.30 (0.20, 0.40)	0.05	-2.370	<0.0001***
Sex (β ₂)	-28.95 (-30.63, -27.28)	0.85	-33.890	<0.0001***
Age (eta_3)	1.044 (0.86, 1.22)	0.09	11.412	<0.0001***
Weight*Sex (eta_4)	<mark>0.308</mark> (0.17, 0.44)	0.07	4.411	<0.0001***
Weight*Age (eta_5)	0.023 (0.01-0.03)	0.008	3.083	<0.002**

 R^2 : 0.5598

This model accounts for 55.98% of variability of creatinine

- In summary, there is a very significant association between weight and creatinine levels (p-value <0.0001).
- For every 1Kg increase in weight. The mean creatinine levels on admission increase by 0.30 micromoles/L.
- Weight also has significant interactions with sex and age to increase this effect.
- For every one-year increase of age, this effect increases by 0.023. Females also increase this effect of weight by 0.308.
- A male with an average weight and age would have 117.40 micromole/L on admission.