Bookdown-dokumetti - testi 1

Jussi Hirvonen

2020-10-03 (Versio 3.05)

Sisällys

1	Bookdown-paketin testidokumentti	5
2	Johdanto 2.1 Alkutoimia	
3	Voiko rmd-dokumentin ensimmäisellä rivillä olla toisen tason otsikko?	9
4	Kaavat ja matemattiset merkinnät 4.1 Kahden luokittelumuuttuja taulukko	11 11
5	Taulukot ja kuvat5.1Taulukoita5.2Korrespondenssianalyysin numeeriset tulokset taulukoina5.3Kuvat	15
б	Bookdown ia Rmarkdown	19

Bookdown-paketin testidokumentti

Esimerkki Rmarkdownin ja bookdown-paketin käytöstä. Kuvat, taulukot ja kaavat numeroidaan ja niihin voi viitata tekstissä. Lähdeviitteet toimivat, myös ne joissa on ääkkösiä. Viiteiden järjestys on gitbook (html)- formaatissa ei kuin pdf-tiedostossa (ns. "skandit").

A sample document using RMarkdown with bookdown-package to do statistical analysis and publish a report in html and pdf formats.

Johdanto

2.1 Alkutoimia

Ero YAML-headerissa lang-parametri (lang: fi). (verrattuna bookdown-demoon). Bookdown-demossa lisäksi output: pdf_document, mutta lienee tarpeeton kun kaksi outputformaattia annettu output.yaml-tiedostossa

Bookdown - formaatissa "juuritiedoston" indexBD.Rmd tekstit eivät tulostu jos siellä ei ole luvun (chapter) aloittavaa ensimmäisen tason otsikkoa. Siellä on YAML-headeri (metadata).

Lisää YAML-parametreja voi antaa tiedostoissa _bookdown.yml ja _output.yml. Nämä lienee välittyvät Pandocille?

Bookdown - demon esimerkkitiedostot ovat nämä:

ouput.yml (huomaa, että $_$ - merkki jätetty pois!) (tässä oli bookdown-demopaketin yml-tiedostot, poistin 3.7.2018)

2.2 Tärkeimmät ohjelmistot

```
system("pdflatex --version")
## [1] 0
rmarkdown::pandoc_version()
```

[1] '2.7.3'

Viimeinen rivi kertoo pandoc-version. **20.9.2019** Pandoc-versio tulostuu oikein, mutta pdf-latex - komennon tulosteesta vain viimeinen rivi. Tässä konsolilta kopioitu 7.6.2020

MiKTeX-pdfTeX 2.9.7338 (1.40.21) (MiKTeX 2.9.7400 64-bit) Copyright (C) 1982 D. E. Knuth, (C) 1996-2020 Han The Thanh TeX is a trademark of the American Mathematical Society. using bzip2 version 1.0.6, 6-Sept-2010 compiled with curl version 7.61.1; using libcurl/7.61.1 WinSSL compiled with expat version 2.2.6; using expat_2.2.6 compiled with jpeg version 9.3 compiled with liblzma version 50020042; using 50020042 compiled with libpng version 1.6.37; using 1.6.37 compiled with libressl version LibreSSL 2.8.2; using LibreSSL 2.8.2 compiled with MiKTeX Application Framework version 4.7414; using 4.7414 compiled with MiKTeX Archive Extractor version 1.6882; using 1.6882 compiled with MiKTeX Package Manager version 9.7414; using 9.7414 compiled with poppler version 0.60.1 compiled with uriparser version 0.9.2 compiled with zlib version 1.2.11; using 1.2.11

2.3 Muutoksia, tilannetietoja ja puutteita

Tulostusformaatteina testataan gitbook ¹ ja pdf_book. Molemmat ovat html-paketteja, ja tarvitsevat ehkä r-datahakemistosta (omalta koneelta) libs-hakemiston jQuery- ja Gitbook-paketit (javaskriptiä ja css-tyylitiedostoja) edit: gitbook on html/CSS/javascript-paketti (3.10.20).

test1_preamble.tex -tiedostolla voi säätää Tex-asetuksia. Tuo ei toimi, mutta simple peambe.tex - toimii (luvun nimi pois sivun ylälaidasta).

Lähdeluettelossa Å tulee heti A - kirjaimen jälkeen gitbook-versiossa. PDF-tiedostossa taas Å-alkuinen sukunimi sijoittuu vähän toisin virheellisesti. Ikävä juttu!

 $^{^1{\}rm Virheilmoitukset}$ ovat aika hyödyttömiä. Tähän alkuun sopisi kuvaus perusideoista ja tekstin muotoiluista. Alaviitteistä esimerkiksi.

Voiko rmd-dokumentin ensimmäisellä rivillä olla toisen tason otsikko?

Lisätään tiedosto 011-test_johd.Rmd, ja katsotaan toimiiko. Tämä helpottaisi isomman dokumentin rakentamista. Tässä Bookdown kokoaa tiedostot "aakkosjärjestyksessä", mutta ne voi myös luetella eksplisiittisesti bookdown.yml-tiedostossa.

"Warning message:In split_chapters(output, gitbook_page, number_sections, split_by, : You have 7 Rmd input file(s) but only 6 first-level heading(s). Did you forget first-level headings in certain Rmd files?"

Mutta näyttäisi toimivan, jätetään kuitenkin pois (13.7.2019). Voi aiheuttaa hämminkiä viitteissä, sisällysluettelossa ja muussakin.

Kaavat ja matemattiset merkinnät

Kaavat on esitettävä bookdown-paketin määrityksillä. Viittausnimien on oltava yksikäsitteisiä koko dokumentissa, jos käytetään "merge and knit" menetelmää. Jos taas jokainen lapsidokumentti on "itsenäinen" ("knit and merge"), tämä koskee vain kyseistä dokumenttia (kts. Bookdown - webkirja).

Kaavoissa iso ongelma heinäkuussa oli tämä:

equation-tägien välissä ei saa olla tyhjiä rivejä!

4.1 Kahden luokittelumuuttuja taulukko

Kahden luokittelumuuttujan riippuvuutta voidaan testata χ^2 - testillä. Testisuure saadaan laskemalla yhteen jokaisen solun havaittujen ja odotetettujen (riippumattomuushypoteesi) frekvenssien erotukset muodossa

$$\chi^2 = \frac{(havaittu - odotettu)^2}{odotettu} \tag{4.1}$$

Tämä voidaan esittää ca:han sopivammalla tavalla parilla muunnoksella, jolloin saamme riveittäin vastaavat termit rivisummalla painotettuna:

$$rivisumma \times \frac{(havaittu\ riviprofiili-odotettu\ riviprofiili)^2}{odotettu\ riviprofiili} \hspace{1cm} (4.2)$$

Kun jaamme nämä tekijät havaintojen kokonaismäärällä n, rivisumma muuntuu rivin massaksi, ja niiden summa muotoon $\frac{\chi^2}{n}$.

$$\frac{\chi^2}{n} = \phi^2 \tag{4.3}$$

Tunnusluku ϕ^2 on korrespondenssianalyysissä kokonaisinertia (total inertia). Se kuvaa, kuinka paljon varianssia taulukossa on ja on riippumaton havaintojen lukumäärästä. Tilastotieteessä tunnusluvulla on useita vaihtoehtoisia nimiä (esim. mean square contingency coefficient), ja sen neliöjuurta kutsutaan ϕ -kertoimeksi.

Tässä siirrytään kahden luokittelumuuttujan taulukosta suhteellisten frekvenssien taulukkoon, ja pieni pohdinta taulukoista yleensä olisi paikallaan. Yhtälöihin voi viitata (4.1) . Kokeillaan vielä, toimivatko kirjallisuusviittet, kuten tärkeä lähde(Greenacre, 2017).

Taulukot ja kuvat

Tähän taulukoita ja kuvia, esimerkkiaineistoilla.

Kirjallisuutta on myös (Roux and Rouanet, 2004), ja (Greenacre and Hastie, 1987) esittelee geometrisen tulkinnan peruskäsitteet yksinkertaisen kahden luokittelumuuttujan korrespondenssianalyysin avaulla. Mitenköhän skandit toimivat lähteissä, bib-tiedostossa on niitä myös escape-muodossa (katso esim. (Älli Åhlgren, 1994), kritiikkiä on esittänyt (Ahlgren, 1994))

Viitteet saa tulostusasetuksilla yhdelle sivulle, oletuksena on viitteiden esittäminen jokaisen sivun alareunassa.

5.1 Taulukoita

Tästä poistettu koodilohko data_1, ei tarvita jos ca-paketti on ladattu. Ja alaviiva on aikanakin ref-labeleissa kielletty. Koodilohkojen nimissä taitaa olla sallittu?

Taulukot tulostetaan funktiolla knitr::kable(). Taulukko numeroidaan ja se saa automaattisesti labelin etutunnisteella 'tab', ja siihen liitetään chunk-label (esim alla tab:smoketable1).

Tämä koodipätkä ei antaa yhden kappaleen esikatselussa virheilmoituksen, "smoke"-dataa ei löydy.

```
knitr::kable(smoke[,1:4], booktabs = TRUE,
   caption = 'CA-paketin smoke-data (keinotekoinen)'
)
# Taulukkoon viittaaminen tekstissä \@ref(label)
```

Taulukossa 5.1 on kahden luokittelumuuttujan keinotekoinen esimerkkiaineisto tupakonnin määrästä henkilöstöryhmittäin (SM = senior managemet, JM =

Taulukko 5.1: CA-paketin smoke-data (keinotekoinen)

	none	light	medium	heavy
SM	4	2	3	2
JM	4	3	7	4
SE	25	10	12	4
$_{ m JE}$	18	24	33	13
SC	10	6	7	2

Taulukko 5.2: Riviprofiilit ja keskiarvoprofiili

	none	light	medium	heavy	none	light	medium	heavy
SM	0.364	0.182	0.273	0.182	0.316	0.233	0.321	0.13
$_{ m JM}$	0.222	0.167	0.389	0.222				
SE	0.490	0.196	0.235	0.078				
$_{ m JE}$	0.205	0.273	0.375	0.148				
SC	0.400	0.240	0.280	0.080				

junior management, SE ja JE vastaavasti ryhmälle employee, SC = secretary).

Useampi taulukko saadaan taulukkoympäristöön (table environment) yhdistämällä data-objektit listaksi.

```
# riviprofitlit
smoke.rpro <- smoke / rowSums (smoke)
# keskiarvoprofitli
smoke.avrpro <- colSums(smoke) / sum(smoke)
knitr::kable(
  list(smoke.rpro, t(smoke.avrpro) ), digits = 3,
  caption = 'Riviprofitlit ja keskiarvoprofitli', booktabs = TRUE
)</pre>
```

Taulukossa 5.2 on laskettu jokaisen rivin riviprofiilit. Ne saadan kun rivin luvut jaetaan rivin summalla. Yhden rivin taulukossa on esitetty riviprofiilien keskikarvo, sarakesummat jaettuna koko taulukon havaintojen lukumäärällä. Sen prosenttiluvut kertovat tupakoititapojen jakauman koko henkilöstössä.

Jos PDF-tulostuksessa ei haluta ns. kelluvaa taulukkoa (float), voi kablefunktiossa käyttää LaTeXin pakettia longtable. Silloin on myös muistettava ottaa paketti käyttöön (usepackage{}) LaTeX - pohjatiedostossa (preamble).

Pandoc tukee monia Markdownin taulukkotyyppejä. Viittaaminen vaaati labeloidun otsikon, ja sen on oltava otsikkotestin alussa määrämuotoisena (esim. ab:hienotaulu). Tämä vaatii tarkkuutta, jos taulukon pitää toimia html- ja

5.2 Korrespondenssianalyysin numeeriset tulokset taulukoina

Korrespondenssianalyysin idea on vähentää aineiston dimensioita, ja esittää taulukon rivien ja sarakkeiden riippuvuudet yleensä kaksiulotteisena karttana.

Numeeriset tulokset ovat tärkeitä diagnostiikassa ja kartan laadun varmistuksessa. Niistä näkee myös täsmällisesti, mitkä rivit ja sarakkeet määrittävät koordinaatiston.

```
smokeCA <- ca(smoke)</pre>
#temp1 <- smokeCA tämä kai tarpeeton ? (4.12.2018)
numres1CA1 <- summary(smokeCA)</pre>
#str(smokeCA)
#knitr::kable( smokeCA,
# digits = 3,
# caption = 'Riviprofillit ja keskiarvoprofilli', booktabs = TRUE
#)
#str(temp1)
#stargazer(temp2$rows, type = "text", title = "CA-tuloksia")
# LateX-tulostuksessa float vaatii jotain tällaista:Table: (\#tab:cataul1)
#str(temp2)
#str(temp2$scree)
#temp2$scree
numres1CA1
##
## Principal inertias (eigenvalues):
##
##
   dim
          value
                     % cum%
                                scree plot
##
          0.074759 87.8 87.8 *************
   1
          0.010017 11.8 99.5
##
          0.000414
                    0.5 100.0
##
##
   Total: 0.085190 100.0
##
##
## Rows:
##
       name
             mass qlt inr
                                k=1 cor ctr
                                              k=2 cor ctr
        SM | 57
                   893
                         31 | -66 92
                                          3 | -194 800 214 |
         JM |
               93 991 139 |
                               259 526
                                        84 | -243 465 551 |
## 3 l
        SE |
              264 1000 450 | -381 999 512 |
                                              -11
                                                        3 I
                                                     1
## 4 |
        JE l
              456 1000
                        308 | 233 942 331 |
                                               58 58 152 l
## 5 l
        SC I
              130 999
                         71 | -201 865 70 |
                                               79 133 81 I
```

Taulukko 5.3: Korrespondenssianalyysin diagnostiikkaa - rivit

name	mass	qlt	inr	k=1	cor	ctr	k=2	cor	ctr
SM	57	893	31	-66	92	3	-194	800	214
$_{ m JM}$	93	991	139	259	526	84	-243	465	551
SE	264	1000	450	-381	999	512	-11	1	3
$_{ m JE}$	456	1000	308	233	942	331	58	58	152
SC	130	999	71	-201	865	70	79	133	81

```
##
## Columns:
       name
                     qlt
                           inr
                316 1000
## 1 | none |
                           577 l
                                 -393 994
                                           654 l
                                                   -30
                                                            29 I
       lght
                233
                     984
                            83 |
                                   99 327
                                            31
                                                   141 657 463 |
## 3 | medm |
                321
                     983
                           148 |
                                  196 982 166 |
                                                     7
                                                         1
                                                              2 |
                                  294 684 150 | -198 310 506 |
## 4 | hevy |
                130
                     995
                           192 |
```

Taulukot ovatkin aika vaikeita, tulostiedoista! Stargazer toki tekee monenlaista, mutta kun kyse on hyvin yksinkertaisista tulostaulukoista kablen pitäisi toimia.

Kokeillaan summary(smokeCA) - listan dataframe-olioden tulostusta kablella. Voisi harkita funktiota, joka poimii CA:n tuloslistasta sopivat objektit kablefunktiolle? Stargazer taas vaatisi (luultavasti) jonkun ehdollisen tulostuksen (PDF ja html)?

```
knitr::kable( numres1CA1$rows,
    digits = 3,
    caption = 'Korrespondenssianalyysin diagnostiikkaa - rivit', booktabs = TRUE
)
```

Rivien ja sarakkeiden diagnotiikkataulukot eivät mahdu rinnakkain, siksi ne tulostetaan erikseen.

```
knitr::kable( numres1CA1$columns,
         digits = 3,
         caption = 'Korrespondenssianalyysin diagnostiikkaa - sarakkeet', booktabs = TRUE
)
```

Taulukoiden 5.3 ja 5.4 luvut on kerrottu tuhannella ("per milles").

Dimensioiden ominaisarvot (eli niiden osuus kokonaisinertiasta) saadaan cafunktion tuloslistasta taulukoksi. Se esitetään joskus myös ns. scree - kuvana, jos dimensoita on paljon ja joudutaan pohtimaan kuinka monta valitaan (vaikea kysymys!).

```
knitr::kable( numres1CA1$scree,
    digits = 3,
```

Taulukko 5.4: Korrespondenssianalyysin diagnostiikkaa - sarakkeet

name	mass	qlt	inr	k=1	cor	ctr	k=2	cor	ctr
none	316	1000	577	-393	994	654	-30	6	29
lght	233	984	83	99	327	31	141	657	463
medm	321	983	148	196	982	166	7	1	2
hevy	130	995	192	294	684	150	-198	310	506

Taulukko 5.5: Korrespondenssianalyysin diagnostiikkaa - ominaisarvot

	values	values2	values3
1	0.075	87.756	87.756
2	0.010	11.759	99.515
3	0.000	0.485	100.000

```
caption = 'Korrespondenssianalyysin diagnostiikkaa - ominaisarvot', booktabs = TRUE
)
```

Taulukon 5.5 ensimmäinen sarake ominaisarvo, toinen ja kolmas ovat dimension osuus kokonaisinertiasta (osuus ja kumulatiivinen osuus).

5.3 Kuvat

chunk-optiot

fig.cap: R plot - kuvat figure-ympäristöön, automaattiset labelit (fig: + koodipätkän label) ja niihin voi viitata.

fig.asp oikeaan arvoon 1.

plot(smokeCA)

Kuviin (kuten 5.1) ja taulukoihin voi viitata tekstissä. Kuvan otsikko tulostuu kuvan alapuolelle, ehkä vähän huono idea?

Näköjään stargazer-kokeilu tulostusoptiolla "html" loi R-projektihakemistoon kansion ja sinne png-kuvan. finnish.ldf tiedoston muokkaus MikTeX:ssä tehty, mutta se ei vaikuta html-viiteotsikkoon. Korjattu "ehdollisessa viitesivussa" viitteet.Rmd jossa html-viiteluettelon otsikko annetaan.

Saisiko numeeristen tulosten scree-kuvan samalla tavalla kuvaksi?

Kuva 5.1: CA-kartta

Bookdown ja Rmarkdown

Bookdown- R-paketti "paketoi" RMarkdownin tulostutoiminnot (output) ja sen monet säädettävät optiot. Samat Rmd-dokumentit saadaan koottua moneen eri formaattiin: html- sivuiksi, PDF-dokumentiksi tai Ebook-kirjaksi. Kaikissa tulostusvaihtoehdoissa on monia eri vaihtoehtoja. Html-tulostuksessa voi valita yhden tai useamman html-sivun lisäksi gitbook- tai Tufte- vaihtoehdon. Ne on toteutettu css-tyylitiedostoilla ja JavaScript-kirjastoilla. Tässä on käytetty gitbook-formaattia.

LaTeX-formaatti renderöidään jollain LaTeX-vaihtoehdolla PDF-tiedostoksi. **To-Do** PDF-formaattejakin on useita variantteja, mikä niistä. Tässä vaihtoehdossa konfigurointimahdollisuudet ovat käytännössä rajattomat, sillä välitulosteena syntyvää TeX-tiedostoa voi muokata ja muuntaa sen sitten PDF-muotoon.

Prosessissa on monta vaihtetta, ja eri parametrien yhteisvaikutusta on vaikea hahmottaa.

knitr::include_graphics('BookdownProc.png')

Kuva 6.1: Tulostiedoston prosessointi - png

Perusopas bookdown paketin käyttöön on Yihui Xien "bookdown: Authoring Books and Technical Documents with R Markdown". Siinä pääidea on tuottaa yhdellä Rmd-koodilla kuvan 6.1 kolme vaihtoehtoista tulostiedostoa mahdollisimman yksinkertaisesti. Knitr- ohjelma "kutoo" Rmd-tiedoston r-koodilohkojen tulokset ja tekstin markdown-tiedostoksi (md). Rmd-tiedostojen YAML-asetukset

siirtyvät Pandocille, joka täydentää niillä omia mallitiedostojaan (template).

Asetuksia on useammassa paikassa. YAML- asetuksista bd-kirja kertoo näin: "More bookdown configuration options in _bookdown.yml are explained in Section 4.4. Besides these configurations, you can also specify some Pandocrelated configurations in the YAML metadata of the first Rmd file of the book, such as the title, author, and date of the book, etc." Tärkeintä on yksikertaisuus, lopullista ulkoasua voi hioa kun kokonaisuus on valmis.

Laajempi ja tarkempi opas ilmestyi 15.7.2018, kolmen kirjoittajan "R Markdown: The Definitive Guide". Siinä eri asetusten hierarkia on kuvattu tarkemmin ja selkeämmin. Tulostusvaihtoehtoja esitellään laajemmin, bookdown on vain yksi luku.

R Studiolla alkuun pääse helposti, kun lataa bookdown-paketin, ja luo uuden bookdown-projektin. Xien ensimmäisen kirjan alku-luvut ja uudemman teoksen johdattelut auttavat jatkoon.

Käytännön vinkkejä

- 1. Kuvasuhde pitää olla 1:1 . Ehkä hankalin juttu Rmarkdownin kanssa työskennellessä, mutta aina voi avata oman grafiikkaikkunan. Dataa analysoidessa voi tallentaa kuvat pdf-muodossa, lisäillä kommentteja yms. Lopullisessa dokumentissa kuvasuhden pitää erikseen tarkista, säätämiseen on monta vipua.
- 2. Bookdown-työskentelyssä pdf-tuloste ei ole kätevä, yleensä analyysiä hiotaan Rmd-tiedosto kerrallaan. R Studio voi yllättää aina joskus! Knitnapin takaa löytyy kuitenkin eri renderöintifuktiot kuin oikean laidan yläikkunan "Build Book" valikosta. Knitr-funktiota kannattaa käyttää, jos haluaa katsoa yhden Rmd-tiedoston tulostetta. Tarkista kuitenkin, että (a) Rmd-tiedostoon ei automaattisesti lisäillä YAML-headereita ja (b) projektin hakemistoon ei ilmesty ylimääräisiä Rmd-tiedostoja. Joskus bookdown R Studion kanssa kasaa yhden Rmd-tiedoston tulostuksessa "väliaikaiseksi" tiedostoksi koko dokumentin yhteen .Rmd -tiedostoon. Jos bookdown-projektiin kuuluvia Rmd-tiedostoja ei eksplitsiittisesti luetella (suositeltavaa, laita bookdown.yml tiedostoon lista) syntyy hassua sotkua.
- 3. Koko raportin tulostus html-muodossa käy kätevimmin "Build book" valikon html-book- funktiolla/formaatilla. Tämä pitää tsekata! (4.12.18)
- 4. Suositus: koko dokumentit tulostukset aina "puhtaalta pöydältä", käynnistä R uudelleen. Myös silloin, kun tulostat ensin vaikka gitbookin ja sitten pdf-tiedoston.

Windows-ympäristössä (Windows 10) MikTeXin kanssa voi tulla ongelmia, jos käytät konetta tavallisen käyttäjän oikeuksilla. Bookdown-paketin kanssa on kätevää käyttää tinytex - r-pakettia, ja konfiguroida oman koneen MikTeX - asennus asentamaan tarvittavat paketit "lennossa". Peruskäyttäjän omat paketit voivat vaatia päivitystä, mutta oikeudet eivät riitä. Pulman voi ratkaista, kun

käynnistää MikTeXin paketinhallintasovelluksen (jolla on monta nimeä, admin console jne) peruskäyttäjänä, ja katsoo mitä päivityksiä on tarjolla. Nämä paketit voi sitten asentaa admin-oikeuksilla.

Kokeillaan vielä PDF-kuvan liittämistä dokumenttiin. Ei näy html-tulosteessa.

```
knitr::include_graphics('BookdownProc.pdf')
```


Kuva 6.2: Tulostiedoston prosessointi - pdf

Testataan koodilohkojen listausta, näyttää toimivan mutta vaatii vielä säätämistä. Ohje löytyi Yihui Xienin blogista (luettu 26.10.2018).

```
# Tätä pakettilistaa ei ole pidetty täysin samana kuin capaper- tai
# Galku-projekteissa (3.10.20)
library(ca)
library(rgl)
library(haven)
library(dplyr)
library(knitr)
library(tidyverse)
library(lubridate)
library(rmarkdown)
library(ggplot2)
library(furniture)
# library(likert) ei käytetä, pois (3.10.20)
library(scales) # G_1_2 - kuva
library(reshape2) # G_1_2 - kuva
library(printr) #19.5.18 taulukoiden ja matriisien tulostukseen
# library(stargazer) # 28.5.2018, ei käytetetä joten pois (18.2.20)
library(bookdown)
library(tinytex)
system("pdflatex --version")
rmarkdown::pandoc_version()
knitr::kable(smoke[,1:4], booktabs = TRUE,
  caption = 'CA-paketin smoke-data (keinotekoinen)'
# Taulukkoon viittaaminen tekstissä \@ref(label)
# riviprofillit
```

```
smoke.rpro <- smoke / rowSums (smoke)</pre>
# keskiarvoprofiili
smoke.avrpro <- colSums(smoke) / sum(smoke)</pre>
knitr::kable(
  list(smoke.rpro, t(smoke.avrpro)
                                      ), digits = 3,
  caption = 'Riviprofiilit ja keskiarvoprofiili', booktabs = TRUE
smokeCA <- ca(smoke)</pre>
#temp1 <- smokeCA tämä kai tarpeeton ? (4.12.2018)
numres1CA1 <- summary(smokeCA)</pre>
#str(smokeCA)
#knitr::kable( smokeCA,
# digits = 3,
# caption = 'Riviprofiilit ja keskiarvoprofiili', booktabs = TRUE
#)
#str(temp1)
#stargazer(temp2$rows, type = "text", title = "CA-tuloksia")
# LateX-tulostuksessa float vaatii jotain tällaista:Table: (\#tab:cataul1)
#str(temp2)
#str(temp2$scree)
#temp2$scree
numres1CA1
knitr::kable( numres1CA1$rows,
    digits = 3,
    caption = 'Korrespondenssianalyysin diagnostiikkaa - rivit', booktabs = TRUE
)
knitr::kable( numres1CA1$columns,
    digits = 3,
    caption = 'Korrespondenssianalyysin diagnostiikkaa - sarakkeet', booktabs = TRUE
)
knitr::kable( numres1CA1$scree,
    digits = 3,
    caption = 'Korrespondenssianalyysin diagnostiikkaa - ominaisarvot', booktabs = TRU
plot(smokeCA)
str(numres1CA1$scree)
test2 <- as.table(numres1CA1$scree)</pre>
#str(test1$V1)
```

```
str(test2)
test2[[dimnames]]
# Vielä kokeilua!
knitr::include_graphics('BookdownProc.png')
knitr::include_graphics('BookdownProc.pdf')
```

[&]quot;New line" vaaditaan koodilohkon jälkeen.

Kirjallisuutta

- Ahlgren, A. (1994). Öljyntuotanto Hämeessä outo idea. Kluwer Academic Publishers, Dordrecht.
- Greenacre, M. and Hastie, T. (1987). The geometric interpretation of correspondence analysis. *Journal of the American Statistical Association*, 82(398):437–447. doi: 10.1080/01621459.1987.10478446.
- Greenacre, M. J. (2017). Correspondence analysis in practice. CRC Press, Boca Raton, Florida, third edition edition.
- Älli Åhlgren (1994). Öljyntuotanto Hämeessä. Kluwer Academic Publishers, Dordrecht.
- Roux, B. L. and Rouanet, H. (2004). Geometric data analysis: from correspondence analysis to structured data analysis. Kluwer Academic Publishers, Dordrecht.