A.3 Stage réussite octobre 2023

A.3.1 Pratique de récupération

La pratique de récupération consiste à reconstruire, à partir de notre mémore à long terme, quelque chose que nous avons appris par le passé, en y pensant au moment présent.

Ex	ercice 8 Sans relire vos notes de cours, répondez aux questions suivantes.
1.	La forme réduite ordonnée d'une fonction quadratique est
2.	Les racines d'une fonction quadratiques sont les solutions de l'équation
3.	Les racines de la fonction définie par $f(x) = 3(2x - 5)(3x + 4)$ sont $r_1 = \dots$ et $r_2 = \dots$
4.	La fonction quadratique définie sur \mathbb{R} par $f(x) = 2(x+3)^2 + 5$, est donnée par sa forme
	f admet pour (A) maximum (B) minimum $y = \dots$, qui est atteint pour $x = \dots$
=	
Э.	La fonction quadratique définie sur \mathbb{R} par $f(x) = -2x(x+5)$, est donnée par sa forme
	qui sont $r_1 = \ldots$ et $r_2 = \ldots$
	Commme $a cdots 0$, f admet un (A) maximum (B) minimum
6.	La fonction quadratique définie sur $\mathbb R$ par $f(x)=-(x-2)(x+3)$, atteint son (A) maximum
	(B) minimum en $x = \dots$ L'extremum est égal à
7	La forme factorisée de la fonction définie par $f(x) = -(5x+1)(-x+4)$ est
1.	
	Commme $a cdots 0$, f admet un (A) maximum (B) minimum
8.	Proposer une expression d'une fonction quadratique ayant deux racines 5 et -1 et qui a un
	maximum sur \mathbb{R} .

A.3.2 Savoir-faire 1 : étude du sens de variation d'une fonction quadratique

■ Exemple A.4 — variation à partir de la forme réduite.

Étudier le sens de variation des fonction g définie sur \mathbb{R} par $g(x) = -3x^2 - 8x + 2$.

Il faut (1) déterminer la forme canonique (2) dresser le tableau de variation en justifiant par le signe de a (3) conclure en précisant la valeur du maximum ou minimum.

Solution. a = -3 < 0 ()

$$\Delta = b^{2} - 4ac = (-8)^{2} - 4(-3)(2) = 92 \qquad g(x) = -3x^{2} - 8x + 2$$

$$\alpha = \frac{-b}{2a} = \frac{-(-8)}{2(-3)} = \frac{-4}{3} \qquad = a(x - \alpha)^{2} + \beta$$

$$\beta = \frac{-\Delta}{4a} = \frac{-92}{4(-3)} = \frac{92}{12} = \frac{23}{3} \qquad = -3(x - (-3))^{2} + \frac{23}{3}$$

$$= -3(x + 3)^{2} + \frac{23}{3}$$

$$= -3(x + 3)^{2} + \frac{23}{3}$$

 $\therefore \frac{23}{3}$ est le maximum de g atteint pour x = -3

■ Exemple A.5 — et si on nous donne la forme factorisée?.

Étuder le sens de variation de la fonction f définie sur \mathbb{R} par f(x) = 3(x-9)(x+1)

Solution.

$$a = 3 > 0 \ (\smile)$$

deux racines
$$r_1 = -1$$
 et $r_2 = 9$.

$$\alpha = \frac{-b}{2a} = \frac{r_1 + r_2}{2} = \frac{(-1) + 9}{2} = 4$$

$$\beta = f(\alpha) = 3(4 - 9)(4 + 1) = -75$$

$$\beta = f(\alpha) = 3(4 - 9)(4 + 1) = -75$$

$$\beta = f(\alpha) = 3(4 - 9)(4 + 1) = -75$$

$$\beta = f(\alpha) = 3(4 - 9)(4 + 1) = -75$$

$$\beta = f(\alpha) = 3(4 - 9)(4 + 1) = -75$$

$$\beta = f(\alpha) = 3(4 - 9)(4 + 1) = -75$$

$$\beta = f(\alpha) = 3(4 - 9)(4 + 1) = -75$$

$$\beta = f(\alpha) = 3(4 - 9)(4 + 1) = -75$$

$$\beta = f(\alpha) = 3(4-9)(4+1) = -75$$

$$\therefore -75 \text{ est le minimum de } f \text{ atteint pour } x = 4$$

$$g(x) = 3(x-9)(x+1)$$

$$= a(x - \alpha)^2 + \beta$$

$$=3(x-4)^2+(-75)$$

$$-75)$$
 f

Exercice 9 Dresser dans chaque cas, le tableau de variation des fonctions quadratiques données par leur forme canonique.

7

1.
$$f(x) = \frac{1}{2}(x-1)^2 + 2$$

2.
$$f(x) = \frac{\tilde{2}}{3}(x-1)^2 - 3$$

3.
$$f(x) = \frac{1}{2}(x+1)^2 + \frac{1}{2}$$

3.
$$f(x) = \frac{1}{2}(x+1)^2 + \frac{1}{2}$$

4. $f(x) = \frac{1}{2}(x+2)^2 - 1$

Exercice 10 Déterminer la forme canonique puis dresser le tableau de variation :

1.
$$f(x) = 6x^2 + 3x - 14$$

3.
$$f(x) = -2(x-6)(x-10)$$

2.
$$f(x) = -3x^2 + 9x + 12$$

4.
$$f(x) = 4(x+3)(x+6)$$

Exercice 11 Même consignes, avec les variantes suivantes :

1.
$$f(x) = 2 - 4(x - 8)^2$$

3.
$$f(x) = 4x^2 + 9$$

2.
$$f(x) = 4x(5x + 30)$$

4.
$$f(x) = (12 - 3x)(2x - 8)$$

A.3.3 Savoir faire 2 : déterminer les racines d'une fonction quadratique

■ Exemple A.6 — factoriser pour déterminer les racines.

Déterminer les racines de f et g définies sur \mathbb{R} par f(x) = (8x - 3)(x + 1) et $g(x) = x^2 + 8x + 12$.

solution.

$$(8x-3)(x+1) = 0$$

$$8x-3 = 0 \quad \text{ou} \quad x+1 = 0$$

$$x = \frac{3}{8} \quad \text{ou} \quad x = -1$$

$$\mathscr{S} = \{\frac{3}{8}; -1\}$$

f(x) = 0

q(x) = 0

(8x-3)(x+1) = 0 $x^2 + 8x + 12 = 0$ $x^2 + 8x + 12 = 0$ $x^2 + 8x + 12 = 0$ x + 1 = 0

Exercice 12 Déterminer les racines des fonctions quadratiques suivantes par factorisation.

1.
$$f(x) = (3x - 5)(5x - 1)$$

4.
$$f(x) = x^2 + x - 6$$
 (somme/produit)

5. $f(x) = 4x^2 - 4x + 1$ (identité remarquable)

2.
$$f(x) = (x+3)(x+7)$$

3. $f(x) = 3x^2 - 5x$

(facteur commun) 6.
$$f(x) = (x-5)^2 - 3$$

 $\mathcal{S} = \{-6; -2\}$

(identité remarquable)

Exercice 13 — la forme factorisée.

Déterminer pour chaque fonction sa forme factorisée $a(x-r_1)(x-r_2)$ et préciser les racines.

1)
$$f(x) = -3(2x - 6)(x + 3)$$

3)
$$f(x) = 5x(2x-1)$$

2)
$$f(x) = 2(5x - 2)(3x - 7)$$

4)
$$f(x) = x^2 - 5$$

■ Exemple A.7 — déterminer les racines pour déduire la forme factorisée.

Déterminer la forme factorisée de $f(x) = x^2 - 2x - 5$.

solution. $\Delta = (-2)^2 - 4(1)(-5) = 24 > 0$.

f admet deux racines $r_1 = \frac{-(-2) + \sqrt{24}}{2(1)} = 1 + \sqrt{6}$ et $r_2 = \frac{-(-2) - \sqrt{24}}{2(1)} = 1 - \sqrt{6}$.

Pour tout $x \in \mathbb{R}$: $f(x) = a(x-r_1)(x-r_2) = 1(x-(1+\sqrt{6}))(x-(1-\sqrt{6})) = (x-1-\sqrt{6})(x-1+\sqrt{6})$.

Exercice 14 Sans calculs supplémentaires, écrire la forme factorisée de chaque fonction :

1. $f(x) = 5x^2 - 60x + 135$ sachant que 3 et 9 sont des racines

2. $f(x) = -4x^2 + 32x - 28$ sachant que 1 et 7 sont des racines

3. $f(x) = -4x^2 + 24x + 108$ sachant que -3 et 9 sont des racines

Exercice 15 Déterminer les racines et déduire la forme factorisée de $f(x) = a(x - r_1)(x - r_2)$.

8

1)
$$f(x) = 4x^2 + 8x - 1$$

3)
$$f(x) = 2x^2 - 4x + 1$$

2)
$$f(x) = 3x^2 - 4x - 1$$

4)
$$f(x) = 2x^2 - 8xm + 5m^2$$

A.3.4 Savoir faire 3 : étude de signe et résolution d'inéquations

■ Exemple A.8 — résoudre une inéquation quadratique de la forme f(x) > 0.

Résoudre dans \mathbb{R} l'inéquation $2x^2 + 3x - 6 \ge 0$.

On pose $f(x) = 2x^2 + 3x - 6$. Il faut (1) déterminer la forme factorisée si elle existe (2) dresser le tableau de signe de f (3) donner l'ensemble de solution.

solution.
$$\Delta = (3)^2 - 4(2)(-6) = 57 > 0$$

f a deux racines distinctes $r = \frac{-3 \pm \sqrt{57}}{4}$

$$f(x) = a(x - r_1)(x - r_2)$$
$$= 2(x - \frac{-3 - \sqrt{57}}{4})(x - \frac{-3 + \sqrt{57}}{4})$$

■ Exemple A.9 — et si aucune racine?. Résoudre dans $\mathbb R$ l'inéquations $-2x^2+4x-3\leqslant 0$.

solution. $\Delta = (4)^2 - 4(-2)(-3) = -10 < 0$

f n'a pas de racines reeles ni factorisable.

■ Exemple A.10 — et si une racine unique?. Résoudre dans $\mathbb R$ l'inéquations $3x^2 + 24x + 48 > 0$.

solution. $\Delta = (24)^2 - 4(3)(48) = 0$

f a une racine double.

$$r = \frac{-b}{2a} = \frac{-24}{2(3)} = -4$$

$$f(x) = a(x - r)^2 = 3(x + 4)^2$$

Exercice 16 Résoudre dans \mathbb{R} les inéquations suivantes :

1.
$$x^2 - 4x - 1 > 0$$

$$2. \ 3x^2 - 5x + 9 > 0$$

3.
$$-5x^2 + 8x + 2 < 0$$

4. $9x^2 - 12x + 4 \le 0$

$$4. \ 9x^2 - 12x + 4 \leqslant 0$$

Exercice 17 Même consignes avec les variantes suivantes :

1.
$$2x + 3 \ge x^2$$

2.
$$x^2 - 3x < 0$$

3.
$$4x^2 \ge 12$$

3.
$$4x^2 \ge 12$$

4. $2(x-3)^2 - 5 < 10$

A.3.5 Savoir-faire 4 : Résolution d'(in)équations par changement de variable

■ Exemple A.11 Résoure dans $\mathbb R$ par un changement de variable $-2(x-2)^2+7(x-2)+15=0$.

solution. On pose t = x - 2, t vérifie :

$$-2t^2 + 7t + 15 = 0$$

$$\Delta = (7)^2 - 4(-2)(15) = 169$$

$$t_1 = \frac{-(7) + \sqrt{169}}{2(-2)} \quad t_2 = \frac{-(7) - \sqrt{169}}{2(-2)}$$
 2 solutions

$$t_1 = \frac{-3}{2} \quad t_2 = 5$$

$$x - 2 = \frac{-3}{2} \quad x - 2 = 5$$

$$x = \frac{1}{2} \quad x = 7$$
substtuer pour retrouver une équation pour x

Exercice 18 Résoudre par un changement de variable idoine les équations suivantes

1.
$$(2x-3)^2 - 3(2x-3) - 4 = 0$$

2.
$$5(2x+3)^2 + 3(2x+3) - 2 = 0$$

3.
$$(x-1)^2 - k(x-1) = 0$$

4.
$$\frac{5}{x^2} - \frac{2}{x} - 7 = 0$$

$$5. \ 3x + 9\sqrt{x} + 6 = 0$$

6.
$$4x - 8\sqrt{x} + 3 = 0$$

■ Exemple A.12 — équations bicarrées. Résoudre dans $\mathbb R$ l'équation $x^4-5x^2+4=0$.

$$x^4 - 5x^2 + 4 = 0$$

$$(x^2)^2 - 5x^2 + 4 = 0$$

On pose
$$t = x^2$$
 $t^2 - 5t + 4 = 0$

$$t = 1$$
 ou $t = 5$

$$x^2 = 1$$
 ou $x^2 = 5$

$$(t-1)(t-5)=0 \\ t=1 \quad \text{ou} \quad t=5 \\ x^2=1 \quad \text{ou} \quad x^2=5 \\ x=1 \quad \text{ou} \quad -1 \quad x=\sqrt{5} \quad \text{ou} \quad -\sqrt{5} \\ \mathcal{S}=\{1;-1;\sqrt{5};-\sqrt{5}\}$$
 resoudre pour t

Exercice 19 Résoudre les équations bicarrées suivantes

$$1. \ 2x^4 - 10x^2 - 12 = 0$$

2.
$$3x^4 + 18x^2 = 0$$

$$3. \ 4x^4 + 52x^2 + 160 = 0$$

$$4. \ x^4 - 12x^2 + 22 = 0$$

A.3.6 Savoir-faire 5 : factorisation par identification des coefficients

Théorème A.2 — admis. Soit P un polynôme de degré n.

Si $r \in \mathbb{R}$ est une racine de P alors P est factorisable par (x - r).

Il existe un polynôme de degré n-1 tel que pour tout $x \in \mathbb{R}$: P(x) = (x-r)Q(x).

Exemple A.13 Factoriser le polynôme $f(x) = 3x^2 + 10x + 8$

solution. $f(-2) = 3(-2)^2 + 10(-2) + 8 = 0$, f est factorisable par (x - (-2)) = (x + 2).

On cherche Q(x) = ax + b tel que : pour tout $x \in \mathbb{R}$ $3x^2 + 10x + 8 = (x+2)(ax+b)$ pour tout $x \in \mathbb{R}$ $3x^2 + 10x + 8 = ax^2 + (b+2a)x + 2b$ développer pour tout $x \in \mathbb{R}$ $3x^2 + 10x + 8 = ax^2 + (b+2a)x + 2b$ par identifie

a = 3 b + 2a = 10 2b = 8

$$\therefore f(x) = 3x^2 + 10x + 8 = (x+2)(3x+4)$$

Exercice 20 Factoriser les fonctions quadratiques suivantes en identifiant une racine évidente.

1. $f(x) = 2x^2 - 3x - 2$

3.
$$f(x) = 2x^2 - 5x + 3$$

2. $f(x) = 3x^2 + 14x + 8$

4.
$$f(x) = 4x^2 + 5x + 1$$

Exemple A.14 Factoriser le polynôme $f(x) = -x^3 - 8x^2 - x + 42$ en vérifiant que 2 est une racine.

solution. $f(2) = (2)^3 - 8(2)^2 - (2) + 42 = 0$, f est factorisable par (x - (2)) = (x - 2).

Il existe un polynôme de degré 2 $Q(x) = ax^2 + bx + c$ tel que :

pour tout $x \in \mathbb{R}$ $-x^3 - 8x^2 - x + 42 = (x-2)(ax^2 + bx + c)$

 $\begin{array}{ll} \text{pour tout } x \in \mathbb{R} & -x^3 - 8x^2 - x + 42 = (x-2)(ax^2 + bx + c) \\ \text{pour tout } x \in \mathbb{R} & -x^3 - 8x^2 - x + 42 = ax^3 + (-2a+b)x^2 + (-2b+c)x + (-2)c \end{array} \right) \begin{array}{l} \textit{développer} \\ \textit{par identification des} \end{array}$

a=-1 -2a+b=-8 -2b+c=-1 -2c=42 coefficients il faut

$$a = -1$$
 $b = -10$ $c = -21$

$$\therefore f(x) = -x^3 - 8x^2 - x + 42 = (x - 2)(-x^2 - 10x - 21)$$

Exercice 21 Soit la fonction cubique définie sur \mathbb{R} par $f(x) = -2x^3 + 8x^2 + 6x - 36$.

- 1. Montrer que f(-2) = 0
- 2. Trouver le polynôme $Q(x) = ax^2 + bx + c$ tel que f(x) = (x+2)Q(x)
- 3. Résoudre dans \mathbb{R} l'équation f(x) = 0.

Exercice 22 Soit la fonction cubique définie sur $\mathbb R$ par $f(x)=-x^3+x^2+x-1$.

- 1. Montrer que f(-1) = 0
- 2. Trouver le polynôme $Q(x) = ax^2 + bx + c$ tel que f(x) = (x+1)Q(x)
- 3. Résoudre dans \mathbb{R} l'équation f(x) = 0.

A.3.7 Savoir-faire 6 : problèmes inverses

Les problèmes inverses consistent à déterminer l'expression d'une fonction quadratique $f(x)=ax^2+bx+c$ ou l'équation d'une parabole $y=ax^2+bx+c$ à partir de quelques informations. Typiquement on cherche à déterminer en premier une forme canonique, ou une forme factorisée.

■ Exemple A.15 Déterminer l'équation de la parabole ci-dessous :

On cherche la forme canonique de \mathscr{P} : $y = a(x - \alpha)^2 + \beta$.

Sommet de la parabole est S(3, -2), donc $\alpha = 3$ et $\beta = -2$.

Pour tout $x : y = a(x - \alpha)^2 + \beta = a(x - 3)^2 + (-2)$, avec a > 0.

$$A(0;16) \in \mathscr{P} \iff f(0) = 16 \iff a(0-3)^2 - 2 = 16 \iff 9a - 2 = 16.$$

$$\therefore a = 2 \text{ et } \mathscr{P} \colon y = 2(x-3)^2 - 2$$

■ Exemple A.16 Déterminer une expression de la fonction quadratique f, dont les racines sont -3 et -2 et tel que f(-1) = 6

solution. On cherche l'expresion factorisée de $f(x) = a(x - r_1)(x - r_2)$.

Sachant que $r_1 = -3$ et $r_2 = -2$, alors pour tout $x \in \mathbb{R}$: f(x) = a(x+3)(x+2).

Sachant que f(-1) = 6, a vérifie l'équation a(-1+3)(-1+2) = 6.

$$2a = 6$$

 $\therefore a = 3$ et pour tout $x \in \mathbb{R}$: f(x) = 3(x+3)(x+2).

Exercice 23 Déterminer une expression (factorisée ou canonique) de la fonction quadratique f dans chaque cas

- 1. 2 est le maximum de f atteint pour x = -4. De plus f(-2) = 0.
- 2. 0 et -3 sont deux racines de f, et f(1) = 4.
- 3. -6 est le minimum de f atteint pour x = 4. De plus f(7) = 1.
- 4. f admet une unique racine -1. De plus f(2) = -3.

Exercice 24 Déterminer une équation de la parabole \mathscr{P} dans chaque cas. On cherchera une équation sous la forme $y = a(x - r_1)(x - r_2)$ ou $y = a(x - \alpha)^2 + \beta$.

- 1. S(-2;4) est le sommet de la parabole et $A(0,1) \in \mathscr{P}$.
- 2. $\mathscr P$ coupe l'axe des ordonnées en A(0,2) et l'axe des abscisses en B(3;0) et C(-1;0).
- 3. S(3;-1) est le sommet de la parabole et $A(0,2) \in \mathscr{P}$.

Exercice 25 Soit une fonction quadratique définie sur \mathbb{R} par $f(x) = ax^2 + bx + c$. Sachant que f(0) = 4, f(1) = -5 et f(-2) = -8, déterminer a, b et c.

A.3.8 Savoir-faire 7 : résolution de systèmes et intersection de courbes

■ Exemple A.17 — problèmes d'intersection et systèmes. Déterminer les coordonnées des points d'intersection de la parabole \mathscr{D} : $y = 2x^2 + 12x - 29$ et la droite d: y = -8x + 19

Le point M(x;y) est intersection de \mathscr{P} et d alors :

$$\begin{cases} y = -8x + 19 & \text{car } M(x;y) \in d \\ y = 2x^2 + 12x - 29 & \text{car } M(x;y) \in \mathscr{P} \end{cases}$$

$$\iff \begin{cases} y = -8x + 19 \\ -8x + 19 = 2x^2 + 12x - 29 \end{cases}$$

$$\iff \begin{cases} y = -8x + 19 \\ 0 = 2x^2 + 20x - 48 \end{cases}$$

$$\Delta = (-20)^2 - 4(2)(-48) = 784 > 0$$

deux valeurs possible pour \boldsymbol{x}

$$\iff \begin{cases} y = -8x + 19 \\ x = 2 \text{ ou } x = -12 \end{cases}$$

$$\iff (x = 2; y = 3) \text{ ou } (x = -12; y = 115)$$

Exercice 26 Déterminer les coordonnées des points d'intersection de :

- 1. La parabole \mathscr{P} : $y = -x^2 + 3x + 9$ et la droite d: y = 2x 3
- 2. La parabole \mathscr{P} : $y = -x^2 + 4x 7$ et la droite d: y = 5x 4
- 3. La parabole \mathscr{P} : $y = 2x^2 x + 3$ et la parabole \mathscr{P} : $y = x^2 + x + 2$.

Exercice 27

Vérifiez vos réponses à l'aide de la numworks, en tracant les courbes de l'exercice précédent.

Exercice 28

Nous avons représenté une droite d et une parabole \mathscr{P} . Déterminer pour chaque représentation les coordonnées des points d'intersection de d et de \mathscr{P} en suivant la démarche indiquée :

- 1. Déterminer l'équation de la droite d.
- 2. Déterminer l'équation de la parabole ${\mathcal P}$ (savoir faire 6)
- 3. Écrire le système vérifiée par les coordonnées des points d'intersection et le résoudre.

13

A.3.9 Savoir-faire 8 : résolution d'(in)équations se ramenant à des quadratiques

Pour résoudre les inéquations produit et quotient :

- 1. Transformer en une comparaison à zéro
- 2. Mettre au même dénominateur et factoriser en terme quadratique ou affine.
- 3. Déterminer les racines des facteurs (affines ou quadratiques) et reporter les sur le tableau de signe.
- 4. Compléter le tableau de signe et justifier le signe des facteurs affines et des facteurs quadratiques.
- 5. Conclure.
- Exemple A.18 Résoudre dans \mathbb{R} l'inéquation $\frac{x^2 6x + 5}{-x^2 + 3x 2} \leq 0$.

solution.

$$\therefore \mathscr{S} =]-\infty; 1[\,\cup\,]1; 2[\,\cup\,[5; +\infty[$$

Exercice 29 Résouddre les inéquations produit et quotient suivantes.

$$1. \ \frac{x^2 + 2x + 6}{2x - 4} < 0$$

2.
$$(x^2 + 7x + 12)(-x - 5) \ge 0$$

3.
$$\frac{x-1}{-3x^2+3x+18} \le 0$$

3.
$$\frac{x-1}{-3x^2+3x+18} \le 0$$
4.
$$\frac{-4x^2+16x+20}{x^2+6x+10} < 0$$

A.3.10 Problèmes

Les problèmes suivants font appel à votre maitrise des savoir-faire précédents. À vous de décomposer le problème et de déterminer la démarche à suivre.

Autour de la représentation graphique

Exercice 30

La parabole \mathscr{P} : $y = -2x^2 + bx + c$ passe par les points A(0;4) et B(1;-2).

Déterminer les valeurs de b et c, et en déduire les coordonnées du sommet de la parabole.

Exercice 31

(d) est l'axe de symétrie de la parabole \mathscr{P} : $y=x^2+2x-1$. Soit le point $M(-3;b)\in \mathscr{P}$: $y=x^2+2x-1$. Déterminer les coordonées du point N symétrique de M par rapport à l'axe (d).

Exercice 32

La parabole \mathscr{P} : $y=ax^2+bx+c$ a pour axe de symétrie la droite d: x=-1. Sachant que l'ordonnée à l'origine est -3, déterminer a, b et c.

Exercice 33 La représentation graphique \mathscr{P} de la fonction définie sur \mathbb{R} par $f(x) = x^2 + bx + c$ passe par les points A(2;2) et B(5;2).

On note C et D les points d'intersection de $\mathscr P$ avec l'axe des abscisses.

- 1. Donner un système vérifié par a et b et en déduire l'expression de f.
- 2. Déterminer les coordonnées des points C et D puis l'aire du quadrilatère ABCD.

Équations à paramètre

Exercice 34 La parabole \mathscr{P} : $y = mx^2 + 2x + m - 4m^2$ passe par l'origine du repère O(0;0). Déterminer les valeurs possibles pour m et déduire les coordonnées du sommet de la parabole.

Exercice 35 La parabole \mathcal{P} : $y = x^2 - bx + 4$ admet un unique point d'intersection avec l'axe des abscisses. Déterminer les valeurs possibles pour b.

Exercice 36

On considère la parabole \mathscr{P} : $y=x^2$ et la droite d: $y=(m^2-1)x+m^2$.

Pour quelles valeurs de m, \mathscr{P} et d admettent deux points d'intersection?

Exercice 37

Déterminer selon la valeur du paramètre m, le nombre de solution des équations suivantes :

1.
$$-x^2 + m + 1 = 0$$
 | 2. $-4x^2 + mx + 3 = 0$

Mise en équation

Exercice 38 Un triangle rectangle a pour hypothénuse de longueur 17 et de périmètre 40. Trouver les longueurs des deux petits côtés.

Exercice 39

Un rectangle a pour aire $225\,\mathrm{cm}^2$. Sa longueur est $16\,\mathrm{cm}$ de plus que sa largeur. Trouvez la largeur.

Exercice 40

ABCD est un carré. M et N sont respectivement sur le segment [AB] et [BC]. On pose AM = BN = x.

- 1. Exprimer en fonction de x l'aire du triangle DMN.
- 2. Déterminez la position du point M pour laquelle l'aire du triangle MND soit minimale.

Exercice 41 — un problème d'optimisation.

Soit ABCD un carré de coté 5 cm. E, F, G et H sont des points appartenant aux cotés du carré tels que AE=BF=CG=DH=x. On admet que EFGH est aussi un carré.

- 1. Quelle est l'aire du quadrilatère *EFGH*?
- 2. Pour quelle valeur de x cette aire est-elle minimale? Quelle est la valeur de l'aire minimale?

