True/False: Suppose you learn a word embedding for a vocabulary of 60000 words. Then the embedding vectors could be 60000 dimensional, so as to capture the full range of variation and meaning in those words. False		1 point
True		
2.True/False: t-SNE is a linear transformation that allows us to solve analogies on word vectors.		1 point
False		
True		
3.Suppose you download a pre-trained word embedtext. You then use this word embedding to train are is happy from a short snippet of text, using a small	n RNN for a language task of recognizing if someone	1 point
x (input text)	y (happy?)	
I'm feeling wonderful today!	1	
I'm bummed my cat is ill.	0	
Really enjoying this!	1	
Then even if the word "ecstatic" does not appear in be expected to recognize "I'm ecstatic" as deserving False	in your small training set, your RNN might reasonably ing a label $y=1$.	
True		
4. Which of these equations do you think should hold	d for a good word embedding? (Check all that apply)	1 point
$\square e_{man} - e_{woman} \approx e_{king} - e_{queen}$		
5.True/False: The most computationally efficient formula for Python to get the embedding of word 1021, if C is an embedding matrix, and o_{1021} is a one-hot vector corresponding to word 1021, is $C^T * o_{1021}$. False		1 point
○ True		
6.When learning word embeddings, words are automatically generated along with the surrounding words.True		1 point
○ False		
7.True/False: In the word2vec algorithm, you estimate P(t c), where t is the target word and c is a context word. t and c are chosen from the training set to be nearby words.True		1 point
○ False		
8.Suppose you have a 10000 word vocabulary, and are learning 500-dimensional word embeddings. The word2vec model uses the following softmax function:		1 point

$P(t \mid c) = \frac{e^{\theta_t^T e_c}}{\sum_{t'=1}^{10000} e^{\theta_{t'}^T e_c}}$	
--	--

Which of these statements are correct? Check all that apply.	
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	
\square After training, we should expect θ_t to be very close to e_c when t and c are the same word.	
9.Suppose you have a 10000 word vocabulary, and are learning 500-dimensional word embeddings. The GloVe model minimizes this objective:	1 point
$\min \sum_{i=1}^{10,000} \sum_{j=1}^{10,000} f(X_{ij}) (\theta_i^T e_j + b_i + b_j' - \log X_{ij})^2$	
Which of these statements are correct? Check all that apply.	
\square Theoretically, the weighting function $f(.)$ must satisfy $f(0) = 0$.	
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	
$\ \ \ \ \ \ \ \ \ \ \ \ \ $	
$\ \square \ heta_i$ and e_j should be initialized to 0 at the beginning of training.	
10. You have trained word embeddings using a text dataset of t_1 words. You are considering using these word embeddings for a language task, for which you have a separate labeled dataset of t_2 words. Keeping in mind that using word embeddings is a form of transfer learning, under which of these circumstances would you expect the word embeddings to be helpful?	1 point
\bigcirc When t_1 is equal to t_2	
\bigcirc When t_1 is larger than t_2	
\bigcirc When t_1 is smaller than t_2	