

MODEL OSI DAN TCP/IP Protokol

- Konsep Dasar Komunikasi Data
 - Konsep Protokol Jaringan
 - OSI Model
 - Enkapsulasi dan Dekapsulasi
 - TCP/IP Model
 - Protocol Suite TCP/IP

KONSEP DASAR

Pengirim

- Komunikasi adalah cara untuk menyampaikan atau menyebarluaskan data, informasi, berita, pikiran atau pendapat dalam berbagai bentuk.
- Pertukaran data (dalam bentuk 0 dan 1) antara dua piranti melalui media transmisi tertentu.

Penerima

Komponen utamanya: pengirim (source), penerima (receiver), pesan (message), media transmisi, protokol.

Standart Komunikasi Data

- Dua konsep dalam komunikasi data:
 - Enkapsulasi-Dekapsulasi
 - menggambarkan cara data dimodifikasi selama dia berjalan dari lapisan ke lapisan.
 - sisi penerima membutuhkan proses dekapsulasi untuk merubah ke bentuk semula.
 - Persamaan Protokol kedua komputer harus menggunakan protokol yang sesuai satu sama lain pada tiap lapisan.

Protokol Jaringan

- Seperangkat aturan-aturan yang mengatur proses komunikasi dalam jaringan komputer.
- Aturan-aturan yang digunakan dalam jaringan sehingga perangkat jaringan yang berbeda platform dapat saling berkomunikasi.

Pekerjaan Protokol

- Melakukan deteksi ada-tidaknya koneksi fisik perangkat jaringan.
- Melakukan metode "jabat-tangan" (handshaking).
- Negosiasi berbagai macam karakteristik hubungan.
- Mengawali dan mengakhiri suatu hubungan (koneksi).
- Menentukan format pesan yang digunakan.
- Mendeteksi kerugian pada hubungan jaringan dan langkah-langkah yang dilakukan selanjutnya.

OSI MODEL

OSI MODEL

- Open System Interconnection (OSI)
- sebuah model arsitektural jaringan yang dikembangkan oleh badan International Organization for Standardization (ISO) di Eropa pada tahun 1977.
- model ini disebut dengan model "Model tujuh lapis OSI" (OSI seven layer model).

STIKOM

FUNGSI LAYER

- mengurangi kompleksitas
- standarisasi antarmuka
- memfasilitasi teknik modular (bongkar-pasang)
- memastikan teknologi saling beroperasi
- mempercepat evolusi
- menyederhanakan proses 'learning' perangkat.

STIKONA

Application 6 Presentation 5 Session Transport Network 3 Data Link **Physical**

Network Process to Applications

Data Representation

Interhost Communication

End-to-End Connections

Data Delivery

Access to Media

Binary Transmission

 mendefinisikan spesifikasi listrik, mekanik, prosedural, dan fungsional untuk mengaktifkan, mempertahankan, dan menonaktifkan physical link.

Network Process to Applications

Data Representation

Interhost Communication

End-to-End Connections

Data Delivery

- Access to Media

 menentukan bagaimana data diformat untuk transmisi dan mengendalikan bagaimana akses ke jaringan.
- memberikan deteksi error

Network Process to Applications

Data Representation

Interhost Communication

End-to-End Connections

Data Delivery

- me-routing-kan paket data.
- memilih jalur terbaik untuk kirim data
- memberikan alamat logika dan seleksi jalur

STICOM

Network Process to Applications

Data Representation

Interhost Communication

End-to-End Connections

- menangani transportasi antara host
- memastikan reliabilitas transport data
- menetapkan, mempertahankan, dan mengakhiri sirkuit virtual
- memberikan kehandalan melalui deteksi kesalahan dan pemulihan kontrol aliran informasi

Application 6 Presentation 5 Session Transport Network Data Link **Physical**

Network Process to Applications

Data Representation

Interhost Communication

 menetapkan, mengelola, dan mengakhiri sesi antara aplikasi

Network Process to Applications

Data Representation

- memastikan data yang dapat dibaca oleh sistem penerima
- data format
- penataan kembali struktur data
- melakukan negosiasi sintaks 'transfer data' untuk layer aplikasi
- menyediakan enkripsi

Network Processes to Applications

- menyediakan layanan jaringan untuk proses aplikasi (seperti electronic mail, transfer file, dan terminal emulasi)
- menyediakan otentikasi pengguna

DATA ENCAPSULATION

proses pemberian informasi (berupa header atau trailer) data menjadi paket data (PDU = Protocol Data Unit) sebelum dikirimkan ke layer selanjutnya.

Tahap 1: (PDU = Data) Build the Data

Proses perubahan format aplikasi menjadi PDU yang disebut sebagai DATA, yang dapat dikirimkan melalui media jaringan.

Tahap 2:

Package the data for end-to-end transport

Proses pengumpulan data yang akan dikirimkan menjadi paket data yang disebut dengan SEGMENT.

Tahap 3: (PDU=Packets)

(PDU = Segments)

Add the network IP address to the header

Pemberian informasi (Network Header) alamat logical (IP Address) asal dan tujuan paket data.

Tahap 4: (PDU=Frames) Add the data link layer header and trailer

Pemberian informasi (Frame Header and Trailer) paket data mengenai perangkat jaringan yang terhubung langsung (directly-connected).

Tahap 5: (PDU=Bits) Convert to bits for transmission

Proses konversi paket digital menjadi signal-signal listrik agar paket data dapat dikirimkan melalui media.

DATA ENCAPSULATION CONT.

DATA ENCAPSULATION CONT.

Sender

User Data

7	Application
6	Presentation
5	Session
4	Transport
3	Network
2	Data Link
1	Physical

							_	
					L7 HDR	User Data		
				L6 HDR	L7 HDR	User Data		
			L5 HDR	L6 HDR	L7 HDR	User Data		
		L4 HDR	L5 HDR	L6 HDR	L7 HDR	User Data		
	L3 HDR	L4 HDR	L5 HDR	L6 HDR	L7 HDR	User Data		
L2 HDR	L3 HDR	L4 HDR	L5 HDR	L6 HDR	L7 HDR	User Data	FCS	
Bits							301P 063	

HDR = Header

DATA DE-ENCAPSULATION

Receiver

User Data

Application							
Presentation							
Session							
Transport							
Network							
Data Link							
Physical							

					L7 HDR	User Data		
				L6 HDR	L7 HDR	User Data		
			L5 HDR	L6 HDR	L7 HDR	User Data		
		L4 HDR	L5 HDR	L6 HDR	L7 HDR	User Data		
	L3 HDR	L4 HDR	L5 HDR	L6 HDR	L7 HDR	User Data		
L2 HDR	L3 HDR	L4 HDR	L5 HDR	L6 HDR	L7 HDR	User Data	FCS	
Bits							301D DRA	

HDR = Header

PROSES DATA

TCP/IP MODEL

- Transmission Control Protocol/Internet Protocol
- standar komunikasi data yang digunakan oleh komunitas internet dalam proses tukarmenukar data dari satu komputer ke komputer lain di dalam jaringan Internet.
- protokol ini berupa kumpulan protokol (protocol suite).
- data diimplementasikan dalam bentuk perangkat lunak (software) di sistem operasi. Istilah yang diberikan kepada perangkat lunak ini adalah TCP/IP stack.

TCP/IP STACK

- Mendefinisikan empat lapisan
- Menggunakan nama yang berbeda untuk Lapisan 1 sampai 3
- Menggabungkan Lapisan 5 sampai 7 ke dalam lapisan aplikasi tunggal

Application

Transport

Internet

Network Access

01P 964

TCP/IP STACK CONT.

TCP/IP STACK CONT.

PROTOCOL SUITE - LAYER 1

- Ethernet
- Token Ring
- Frame Relay
- ATM (Asynchronous Transfer Mode)

Ethernet

- metode akses digunakan Ethernet disebut CSMA/CD (Carrier Sense Multiple Access /Collision Detection).
- bekerja dengan memperhatikan network atau jaringan sebelum dilakukan transformasi atau transmisi data.
- apabila jalur sibuk maka dia akan menunggu melakukan pengiriman data hingga jalur bersih dari data, metode ini dikenal dengan koalisi (tidak akan berpengaruh pada kecepatan transmisi dari network).

Token Ring

- metode akses melalui sebuah Token dalam sebuah lingkaran seperti cincin.
- sinyal Token bergerak berputar dalam sebuah lingkaran (cincin) dalam jaringan dan bergerak dari satu komputer ke komputer lainnya.
- jika pada persinggahan di salah satu komputer terdapat data yang ingin ditransmisikan, Token akan mengirimkan data ke tempat yang di inginkan tersebut.

Frame Relay

mengirimkan informasi melalui Wide Area Network (WAN) yang membagi informasi menjadi frame atau paket.

masing-masing frame mempunyai alamat yang digunakan oleh jaringan untuk menentukan tujuan.

frame-frame akan melewati switch dalam jaringan frame relay dan dikirimkan melalui "virtual circuit" sampai tujuan.

- ATM (Asynchronous Transfer Mode)
 - ATM tidak melibatkan routing.
 - ATM Switch membentuk koneksi point to point antara kedua ujung transmisi, dan data mengalir langsung dari sumber ke tujuan.
 - ATM menggunakan sel (cell) berukuran tetap.
 - ATM dirancang untuk transmisi media berkecepatan tinggi seperti E3, SONET, dan T3.

= 53-byte cells

Protocol Suite – Layer 2

- ICMP (Internet Control Message Protocol)
- IGMP (Internet Group Management Protocol)
- ARP (Address Resolution Protocol)

STIKONA

- ICMP (Internet Control Message Protocol)
 - protokol yang bertugas mengirimkan pesan-pesan kesalahan dan kondisi lain yang memerlukan perhatian khusus.
 - Ada 2 pesan dalam ICMP:
 - ICMP Error Message (dihasilkan jika terjadi kesalahan jaringan)
 - ICMP Query Message (dihasilkan jika pengirim paket mengirimkan informasi tertentu yang berkaitan dengan kondisi jaringan).

- IGMP (Internet Group Management Protocol)
 - protokol yang digunakan untuk menginformasikan router-router IP tentang keberadaan group-group jaringan multicast.
 - setelah mengetahui bahwa terdapat beberapa host dalam jaringan yang terhubung, router akan menyebarkan informasi ini dengan menggunakan protokol IGMP kepada router lainnya.

STIKOM

- ARP (Address Resolution Protocol)
 - yang bertanggungjawab dalam melakukan resolusi alamat IP ke dalam alamat Media Access Control (MAC Address)
 - Intinya setiap komputer atau device yang akan berkomunikasi pasti akan melakukan transaksi atau tukar menukar informasi terkait antara IP dan MAC address.

IP Pengirim: 132.96.11.2 Ethernet Address:0:80:ad:17:96:34

IP Target: 132.96.11.1

Ethernet Address:0:80:48:e3:d2:69

Protocol Suite – Layer 3

TCP (Transmission Control Protocol)

UDP (User Datagram Protocol)

UDP/TCP

UDP/TCP

- TCP berusaha secara seksama untuk mengirimkan data ke tujuan, memeriksa kesalahan, mengirimkan ulang data bila diperlukan dan mengirimkan pesan kesalahan ke lapisan atas hanya bila TCP tidak berhasil mengadakan komunikasi.
- UDP adalah protokol datagram yang tidak menjamin pengiriman data atau perlindungan duplikasi
 - proses pada lapisan atas harus bertanggung jawab untuk mendeteksi data yang hilang atau rusak dan mengirim ulang data tersebut jika diperlukan

PROTOCOL SUITE – LAYER 4

- Telnet
- FTP
- SMTP
- DNS
- RIP
- SNMP

- Telnet (Telecommunication network)
 - sebuah protokol jaringan yang digunakan di koneksi Internet atau Local Area Network.
 - TELNET dikembangkan pada 1969 dan distandarisasi sebagai IETF STD 8, salah satu standar Internet pertama.
- FTP (File Transfer Protocol)
 - standar untuk pentransferan berkas (file) computer antar mesin-mesin dalam sebuah internetwork.
- SMTP (Simple Mail Transfer Protocol)
 - Protokol untuk pengiriman surat elektronik atau email di Internet

- POP3 (Post Office Protocol)
 - protokol yang digunakan untuk mengambil email dari email server.
- IMAP (Internet Message Access Protocol)
 - IMAP memungkinkan pengguna memilih pesan email yang akan ia ambil, membuat folder di server, mencari pesan e-mail tertentu, bahkan menghapus pesan e-mail yang ada.
- HTTP (Hypertext Transfer Protocol)
 - protokol yang digunakan oleh WWW (World Wide Web), mendefinisikan bagaimana suatu pesan bisa diformat dan dikirimkan dari server ke client.

HTTPS

- HTTPS adalah versi aman dari HTTP, menyediakan autentikasi dan komunikasi tersandi.
- HTTPS menyandikan data menggunakan protokol SSL (Secure Socket layer) atau protokol TLS (Transport Layer Security).
- SSH (Secure Shell)
 - protocol jaringan yang memungkinkan pertukaran data secara aman antara dua komputer.
- SSL (Secure Socket Layer)
 - sistem yang digunakan untuk mengenkripsi pengiriman informasi pada internet