Introduction to Bottom-Up Parsing

Outline

- Review LL parsing
- Shift-reduce parsing
- The LR parsing algorithm
- Constructing LR parsing tables

Compiler Design 1 (2011)

_

Top-Down Parsing: Review

- Top-down parsing expands a parse tree from the start symbol to the leaves
 - Always expand the leftmost non-terminal

nt * int + int

Top-Down Parsing: Review

- Top-down parsing expands a parse tree from the start symbol to the leaves
 - Always expand the leftmost non-terminal

- The leaves at any point form a string $\beta A \gamma$
 - β contains only terminals
 - The input string is $\beta b \delta$
 - The prefix β matches
 - The next token is b

int * int + int

Compiler Design 1 (2011)

3 Compiler Design 1 (2011)

4

Top-Down Parsing: Review

- Top-down parsing expands a parse tree from the start symbol to the leaves
 - Always expand the leftmost non-terminal

- The leaves at any point form a string $\beta A \gamma$
 - β contains only terminals
 - The input string is $\beta b \delta$
 - The prefix β matches
 - The next token is b

Compiler Design 1 (2011)

Top-Down Parsing: Review

- Top-down parsing expands a parse tree from the start symbol to the leaves
 - Always expand the leftmost non-terminal

- The leaves at any point form a string βΑγ
 - β contains only terminals
 - The input string is $\beta b \delta$
 - The prefix β matches
 - The next token is b

Compiler Design 1 (2011)

6

Predictive Parsing: Review

- · A predictive parser is described by a table
 - For each non-terminal A and for each token b we specify a production A $\rightarrow \alpha$
 - When trying to expand A we use $A \rightarrow \alpha$ if b follows next
- Once we have the table
 - The parsing algorithm is simple and fast
 - No backtracking is necessary

Constructing Predictive Parsing Tables

- 1. Consider the state $S \rightarrow^* \beta A \gamma$
 - With b the next token
 - Trying to match $\beta b \delta$

There are two possibilities:

- b belongs to an expansion of A
 - Any $A \rightarrow \alpha$ can be used if b can start a string derived from α
 - We say that $b \in First(\alpha)$

Or...

Constructing Predictive Parsing Tables (Cont.)

2. b does not belong to an expansion of A

- The expansion of A is empty and b belongs to an expansion of γ
- Means that b can appear after A in a derivation of the form $S \rightarrow^* \beta Ab\omega$
- We say that $b \in Follow(A)$ in this case
- What productions can we use in this case?
 - Any $A \rightarrow \alpha$ can be used if α can expand to ϵ
 - We say that $\varepsilon \in First(A)$ in this case

Computing First Sets

Definition

First(X) = { b |
$$X \rightarrow^* b\alpha$$
 } \cup { $\varepsilon \mid X \rightarrow^* \varepsilon$ }

Algorithm sketch

- 1. First(b) = { b }
- 2. $\varepsilon \in \text{First}(X)$ if $X \to \varepsilon$ is a production
- 3. $\epsilon \in \text{First}(X)$ if $X \to A_1 \dots A_n$ and $\varepsilon \in First(A_i)$ for $1 \le i \le n$
- 4. First(α) \subseteq First(X) if X \rightarrow A₁ ... A_n α and $\varepsilon \in First(A_i)$ for $1 \le i \le n$

Compiler Design 1 (2011)

9

Compiler Design 1 (2011)

10

First Sets: Example

Recall the grammar

$$E \rightarrow TX$$

 $T \rightarrow (E) \mid int Y$

$$X \rightarrow + E \mid \varepsilon$$

 $Y \rightarrow * T \mid \varepsilon$

First sets

First(() = {() First(T) = {int, (} First()) = {})} First(E) = {int, (} First(int) = {int} First(X) = {+,
$$\epsilon$$
} First(+) = {+}

First(
$$X$$
) = {+, ϵ

First(
$$Y$$
) = {*, ε }

Computing Follow Sets

Definition

Follow(X) = { b |
$$S \rightarrow^* \beta X b \delta$$
 }

Intuition

- If $X \rightarrow A$ B then First(B) \subseteq Follow(A) and $Follow(X) \subset Follow(B)$
- Also if $B \to^* \varepsilon$ then $Follow(X) \subset Follow(A)$
- If S is the start symbol then \$ ∈ Follow(S)

Computing Follow Sets (Cont.)

Algorithm sketch

- 1. $\$ \in Follow(S)$
- 2. First(β) { ϵ } \subseteq Follow(X)
 - For each production $\mathbf{A} \to \alpha \times \beta$
- 3. $Follow(A) \subseteq Follow(X)$
 - For each production $A \rightarrow \alpha \times \beta$ where $\epsilon \in \text{First}(\beta)$

Follow Sets: Example

Recall the grammar

$$E \rightarrow TX$$
 $X \rightarrow + E \mid \varepsilon$
 $T \rightarrow (E) \mid \text{int } Y$ $Y \rightarrow * T \mid \varepsilon$

Follow sets

Compiler Design 1 (2011) 13 Compiler Design 1 (2011) 14

Constructing LL(1) Parsing Tables

- Construct a parsing table T for CFG G
- For each production $A \rightarrow \alpha$ in G do:
 - For each terminal $b \in First(\alpha)$ do
 - T[A, b] = α
 - If $\varepsilon \in \text{First}(\alpha)$, for each $b \in \text{Follow}(A)$ do
 - T[A, b] = α
 - If $\varepsilon \in \text{First}(\alpha)$ and $\$ \in \text{Follow}(A)$ do
 - $T[A, \$] = \alpha$

Constructing LL(1) Tables: Example

Recall the grammar

$$E \rightarrow TX$$
 $X \rightarrow + E \mid \varepsilon$
 $T \rightarrow (E) \mid \text{int } Y$ $Y \rightarrow * T \mid \varepsilon$

- Where in the line of Y we put $Y \rightarrow^* T$?
 - In the lines of First(*T) = { * }
- Where in the line of Y we put $Y \to \epsilon$?

16

- In the lines of Follow(Y) = { \$, +,)}

Notes on LL(1) Parsing Tables

- If any entry is multiply defined then G is not LL(1)
 - If G is ambiguous
 - If G is left recursive
 - If G is not left-factored
 - And in other cases as well
- For some grammars there is a simple parsing strategy: Predictive parsing
- Most programming language grammars are not LL(1)
- Thus, we need more powerful parsing strategies

Bottom Up Parsing

Compiler Design 1 (2011)

17

Bottom-Up Parsing

- Bottom-up parsing is more general than topdown parsing
 - And just as efficient
 - Builds on ideas in top-down parsing
 - Preferred method in practice
- Also called LR parsing
 - L means that tokens are read left to right
 - R means that it constructs a rightmost derivation!

An Introductory Example

- LR parsers don't need left-factored grammars and can also handle left-recursive grammars
- Consider the following grammar:

$$E \rightarrow E + (E) \mid int$$

- Why is this not LL(1)?
- Consider the string: int + (int) + (int)

20

Compiler Design 1 (2011)

19 Compiler Design 1 (2011)

The Idea

 LR parsing reduces a string to the start symbol by inverting productions:

str w input string of terminals repeat

- Identify β in str such that $A \rightarrow \beta$ is a production (i.e., str = $\alpha \beta \gamma$)
- Replace β by A in str (i.e., str w = α A γ)

until str = 5 (the start symbol)

OR all possibilities are exhausted

A Bottom-up Parse in Detail (1)

$$int + (int) + (int)$$

A Bottom-up Parse in Detail (2)

Compiler Design 1 (2011)

int + (int) + (int)

A Bottom-up Parse in Detail (3)

Compiler Design 1 (2011)

21

24

Compiler Design 1 (2011) 23 Compiler Design 1 (2011)

A Bottom-up Parse in Detail (4)

A Bottom-up Parse in Detail (5)

28

Compiler Design 1 (2011)

Compiler Design 1 (2011)

A Bottom-up Parse in Detail (6)

A rightmost derivation in reverse

Important Fact #1

Important Fact #1 about bottom-up parsing:

An LR parser traces a rightmost derivation in reverse

Compiler Design 1 (2011) 27 Compiler Design 1 (2011)

Where Do Reductions Happen

Important Fact #1 has an interesting consequence:

- Let $\alpha\beta\gamma$ be a step of a bottom-up parse
- Assume the next reduction is by using $A \rightarrow \beta$
- Then γ is a string of terminals

Why? Because $\alpha A \gamma \rightarrow \alpha \beta \gamma$ is a step in a right-most derivation

Notation

- Idea: Split string into two substrings
 - Right substring is as yet unexamined by parsing (a string of terminals)
 - Left substring has terminals and non-terminals
- · The dividing point is marked by a !
 - The I is not part of the string
- Initially, all input is unexamined: $1x_1x_2 \dots x_n$

Compiler Design 1 (2011)

29

Compiler Design 1 (2011)

20

Shift-Reduce Parsing

Bottom-up parsing uses only two kinds of actions:

Shift

Reduce

Shift

Shift: Move I one place to the right

- Shifts a terminal to the left string

$$E + (I int) \Rightarrow E + (int I)$$

In general:

$$ABC \mid xyz \Rightarrow ABCx \mid yz$$

Compiler Design 1 (2011) 31 Compiler Design 1 (2011) 32

Reduce

Reduce: Apply an inverse production at the right end of the left string

- If $E \rightarrow E + (E)$ is a production, then

$$E + (\underline{E} + (\underline{E})) \Rightarrow E + (\underline{E})$$

In general, given $A \rightarrow xy$, then:

Shift-Reduce Example

Compiler Design 1 (2011)

33

Shift-Reduce Example

 $E \rightarrow E + (E) \mid int$

I int + (int) + (int)\$ shift int I + (int) + (int)\$ reduce $E \rightarrow int$

Shift-Reduce Example

I int + (int) + (int)\$ shift int I + (int) + (int)\$ reduce $E \rightarrow$ int E I + (int) + (int)<math>\$ shift 3 times $E \rightarrow E + (E) \mid int$

 $E \rightarrow E + (E) \mid int$

E /
int + (int)+ (int)

```
int + ( int ) + ( int )
```

Shift-Reduce Example

$E \rightarrow E + (E) \mid int$

```
I int + (int) + (int)$ shift
int I + (int) + (int) \Rightarrow reduce \to int
EI+(int)+(int)$ shift 3 times
E + (int I) + (int)$ reduce E \rightarrow int
```

Shift-Reduce Example

```
I int + (int) + (int)$ shift
int I + (int) + (int) \Rightarrow reduce \to int
EI+(int)+(int)$ shift 3 times
E + (int I) + (int)$ reduce E \rightarrow int
E + (E I) + (int)$ shift
```

```
int + ( int ) + ( int )
```

 $E \rightarrow E + (E) \mid int$

 $E \rightarrow E + (E) \mid int$

Shift-Reduce Example

$E \rightarrow E + (E) \mid int$

```
I int + (int) + (int)$ shift
int I + (int) + (int) \Rightarrow reduce \to int
EI+(int)+(int)$ shift 3 times
E + (int I) + (int)$ reduce E \rightarrow int
E + (E I) + (int)$ shift
E + (E) I + (int)$ reduce E \rightarrow E + (E)
```


Shift-Reduce Example

```
I int + (int) + (int)$ shift
int I + (int) + (int) \Rightarrow reduce \to int
EI+(int)+(int)$ shift 3 times
E + (int I) + (int)$ reduce E \rightarrow int
E + (E I) + (int)$ shift
E + (E) I + (int)$ reduce E \rightarrow E + (E)
EI+(int)$
                      shift 3 times
```


Shift-Reduce Example

```
E \rightarrow E + (E) \mid int
```

Shift-Reduce Example

```
E \rightarrow E + (E) \mid int
I int + (int) + (int)$ shift
int I + (int) + (int) \Rightarrow reduce \to int
EI+(int)+(int)$
                       shift 3 times
E + (int I) + (int)$ reduce E \rightarrow int
                       shift
E + (E | ) + (int)$
E + (E) I + (int)$
                       reduce E \rightarrow E + (E)
EI+(int)$
                       shift 3 times
E + (int 1 )$
                       reduce E \rightarrow int
E + (E | )$
                       shift
                                                       ( int ) + (
```

Shift-Reduce Example

$E \rightarrow E + (E) \mid int$

```
I int + (int) + (int)$ shift
int I + (int) + (int) \Rightarrow reduce \to int
EI+(int)+(int)$
                      shift 3 times
E + (int I) + (int)$ reduce E \rightarrow int
E + (E | ) + (int)$
                      shift
E + (E) I + (int)$
                      reduce E \rightarrow E + (E)
EI+(int)$
                       shift 3 times
E + (int 1 )$
                       reduce E \rightarrow int
E + (E | )$
                       shift
                       reduce E \rightarrow E + (E)
E + (E) | $
                                           int + ( int )+ (
```

Shift-Reduce Example

The Stack

- Left string can be implemented by a stack
 - Top of the stack is the I
- · Shift pushes a terminal on the stack
- Reduce pops 0 or more symbols off of the stack (production RHS) and pushes a nonterminal on the stack (production LHS)

Key Question: To Shift or to Reduce?

<u>Idea</u>: use a finite automaton (DFA) to decide when to shift or reduce

- The input is the stack
- The language consists of terminals and non-terminals
- We run the DFA on the stack and we examine the resulting state X and the token tok after in
 - If X has a transition labeled tok then shift
 - If X is labeled with "A $\rightarrow \beta$ on tok" then reduce

Compiler Design 1 (2011) 45 Compiler Design 1 (2011) 4

LR(1) Parsing: An Example

Representing the DFA

- Parsers represent the DFA as a 2D table
 - Recall table-driven lexical analysis
- · Lines correspond to DFA states
- Columns correspond to terminals and nonterminals
- Typically columns are split into:
 - Those for terminals: action table
 - Those for non-terminals: goto table

Compiler Design 1 (2011) 48

Representing the DFA: Example

The table for a fragment of our DFA:

	int	+	()	\$	Ε
3			s4			
4	<i>s</i> 5					g6
5		$r_{\text{E}} ightarrow _{ ext{int}}$		$r_{E^{ o}int}$		
6	s8		s7			
7		$r_{E^{ ightarrowE+(E)}}$			$r_{\text{E}} \rightarrow \text{E+(E)}$	
		ב בי(ב)			ב בי(ב)	

The LR Parsing Algorithm

- After a shift or reduce action we rerun the DFA on the entire stack
 - This is wasteful, since most of the work is repeated
- Remember for each stack element on which state it brings the DFA
- LR parser maintains a stack

```
\langle \text{sym}_1, \text{state}_1 \rangle \dots \langle \text{sym}_n, \text{state}_n \rangle
state<sub>k</sub> is the final state of the DFA on sym<sub>1</sub> ... sym<sub>k</sub>
```

Compiler Design 1 (2011)

49

50

The LR Parsing Algorithm

```
Let I = w$ be initial input

Let j = 0

Let DFA state 0 be the start state

Let stack = \langle dummy, 0 \rangle

repeat

case action[top_state(stack), I[j]] of

shift k: push \langle I[j++], k \rangle

reduce X \rightarrow A:

pop |A| pairs,

push \langle X, Goto[top_state(stack), X]\rangle

accept: halt normally

error: halt and report error
```

LR Parsers

- Can be used to parse more grammars than LL
- Most programming languages grammars are LR
- · LR Parsers can be described as a simple table
- There are tools for building the table
- How is the table constructed?

Compiler Design 1 (2011) 51 Compiler Design 1 (2011) 5