

Presented By: Rami Taibah & Jie Wu

Advisor: Ray Larson

http://memorykloud.com/ischool | @memorykloud

When It all Began!

When It all Began!

What is the PROBLEM?

SO What can We DO

Option #1: Mobile Solution

Option #2: Analytics

HOW Did we Go About

Solutions Design

Android Mobile Application

Web Interface

Data Analytics

MOBILE Application DESIGN.

Contextual Interviews

Affinity Diagram

Contextual Inquiries

Affinity Diagram

Personas

Scenarios

Paper Prototype

Test

Balsamiq Prototype

Test

Functional Prototype

Test

Usability Testing

Personas Design

Brett

Designing Scenarios

Usability Testing

Personas

Personas

Scenarios

Paper Prototype

Test

Balsamiq Prototype

Test

Test

Test

Test

Paper Prototyping

Balsamiq Prototyping

Functional Prototyping

Formative Evaluation

Contextual Inquiries

Affinity Diagram

Personas

Scenarios

Paper Prototype

Test

Balsamiq Prototype

Test

Functional Prototype

Test

Usability Testing

Video Demo

The Web INTERFACE.

Web App

THE Technology Behind

Mobile App

Architecture

+ PYTHON

RESTFUL API

MySQL

Curation/Analytics

Database Schema

DATA Analytics SOLUTION.

Research Question

How can we group moments that are relevant together?

The Process

Data Collection

Corpus Pre-Processing

Text-Matrix Conversion

Dimension Reduction

Clustering

Classifica tion

Data Collection

- Sample tweets data on a single day 01/23/2011
- Twitter indices published by National Institute of Standards and Technology (NIST)
- Run Twitter-Corpus-Tools on Amazon EMR to crawl Twitter.com for content
- 100 MB raw tweets data.

Corpus Preprocessing

- Remove *null* entries
- Remove Non-English Texts (any tweet that contains non-ASCII code
- Remove stop words
- Remove words with length less than 4
- If the remaining non-duplicated word count is great than 15, we use that for our analysis

Text-Matrix Conversion

Goal: Tweets -> a document-term matrix

Generate a *tf-idf* (term frequency–inverse document frequency) matrix X

$$tf_{i,j} = \frac{n_{i,j}}{\sum_{k} n_{k,j}} \quad idf_i = \log \frac{|D|}{|\{j : t_i \in d_j\}|}$$

$$tfidf_{i,j} = tf_{i,j} \times idf_i$$

Expect 6432 * 2527 document-term matrix

Dimension Reduction

SVD (Singular Value Decomposition): s <- svd(X, 10, 10)

Convert X (n * p) 2-D matrix into U*d*V'

1		V1	V2	V3	V4	V5	V6	V7	V8	V9	V10
2	1	0.001672	-0.01169	0.003933	-0.01196	0.003382	-0.00541	0.002831	-9.15E-05	9.47E-05	-0.00333
3	2	0.002904	-0.00696	0.002683	-0.00756	-8.11E-05	-0.00318	-0.00156	-0.00043	-0.00072	0.000186
4	3	0.006987	0.000373	0.00017	-0.00167	-0.01275	0.001236	0.00037	0.01149	-0.01099	-0.00034
5	4	0.002969	-0.01467	0.001472	-0.00816	0.001616	-0.00455	0.000618	-0.00039	-0.00033	-0.00091
6	5	0.000685	-0.00444	0.001308	-0.00425	0.000998	-0.00199	0.000903	6.23E-05	-1.26E-05	-0.00075
7	6	0.001903	-0.00103	0.000447	-0.00206	-0.00558	-0.00047	-0.00495	0.000598	0.000196	-0.00049
8	7	0.001525	-0.01021	0.003603	-0.01057	0.003459	0.007594	0.001069	-2.09E-07	-7.64E-05	-0.00175
9	8	0.001183	-0.00834	0.002711	-0.00867	0.002401	-0.00363	0.001937	-1.03E-05	-4.68E-05	-0.00158
10	9	0.019443	0.002066	1.13E-05	-0.00054	0.00098	-0.00261	-0.02868	0.005674	-0.0045	-0.00105
11	10	0.002484	-0.0009	0.000247	-0.00177	-0.00597	-0.00027	-0.00554	0.001043	0.0013	-0.00041
12	11	0.001491	-0.00273	0.000974	-0.00305	-0.00059	-0.00121	-0.00125	-0.00014	-0.00031	0.000411
13	12	0.011583	-0.00259	0.001365	-0.00522	-0.00863	-0.00202	-0.01462	0.007955	0.007939	0.001302
14	13	0.002429	-0.01901	0.00822	-0.00341	0.002338	-0.00488	0.002216	-3.58E-05	-7.68E-05	0.000581

Clustering

Partitioning Algorithms K-means (k = 10)

Blue Cluster: indonesia, ujian, ngiler, makanan, maen

Green Cluster: packers, match, season, Chicago, #packers

Red Cluster: bitch, fight, hospital, hurt, jail, army

Classification

- Validation: check test data to see how good the clustering is.
- 10% testing, 90% training
- SVM (Support Vector Machine) algorithm is applied
- Confusion matrix after
 SVM

MemoryKloud Conclusions

- Mobile
 - Enhancing the APIs
 - Authentication & Invitation
 - Android & Website UI
 - iOS app
- Data Analytics
 - Limitations
 - Alternative Algorithms

Thanks!

Question?

