Общие сведения

Блок №1, 1 семестр.

Поля и линейные пространства

Лекция №1

Обозначения

 \forall -любое

 \exists - cywecmeyem

∈ -принадлежит

∉-не принадлежит

Обозначения

Заглавные латинские буквы (А, ...)- множества Прописные латинские буквы (a,b...) элементы множества П-пересечение множеств ×-декартово произведение множеств

Поле

Определение. Множество К называется полем, если в нем введены две бинарные операции: сложение $+: K \times K \to K$ и умножение $\cdot: K \times K \to K$ удовлетворяющие аксиомам:

1. Коммутативность сложения $a+b=b+a, \ \forall a,b \in K$

2. Ассоциативность сложения

$$(a+b)+c = a + (b+c), \ \forall a,b,c \in K$$

3. Существование нуля:

$$\exists \ 0 \in K : \ a+0=a, \ \forall a \in K$$

4. Существование противоположного элемента:

$$\forall a \in K \ \exists b \in K : a+b=0$$

$$(b := -a)$$

5.Коммутативность умножения:

$$ab = ba, \ \forall a, b \in K$$

6.Ассоциативность умножения

$$(ab)c = a(bc) \quad \forall a,b,c \in K$$

7. Дистрибутивность:

$$a(b+c) = ab+ac, \ \forall a,b,c \in K$$

8. Существование единицы:

$$\exists 1 \in K, 1 \neq 0 : 1 \cdot a = a, \forall a \in K$$

9.Существование обратного элемента

$$\forall a \in K, a \neq 0 \ \exists b \in K : a \cdot b = 1 \ (b := a^{-1})$$

Простейшие свойства поля

- 1. Нулевой элемент единственный
- 2. Противоположный элемент единственный.
- 3. Единичный элемент единственный.
- 4. Обратный элемент единственный.

Определение вычитания и деления в поле

Определение.

$$a-b := a + (-b)$$

$$\frac{a}{b} := a \cdot b^{-1}$$

Замечание. Такое определение корректно, благодаря единственности противоположного и обратного элемента.

Примеры полей

- Множество R вещественных чисел является полем
- Множество Q рациональных чисел является полем.
- Множество $F_2 = \{0,1\}$ из двух элементов является полем

Линейное пространство.

Определение. Множество V называется линейным пространством над полем K, если в нем введены две бинарные операции: сложение $+: V \times V \to V$ и умножение на число из поля $: K \times V \to V$ удовлетворяющие аксиомам:

1.Коммутативность сложения

$$\overline{a} + \overline{b} = \overline{b} + \overline{a}, \ \forall \overline{a}, \overline{b} \in V$$

2. Ассоциативность сложения:

$$(\overline{a} + \overline{b}) + \overline{c} = \overline{a} + (\overline{b} + \overline{c}), \ \forall \overline{a}, \overline{b}, \overline{c} \in V$$

3.Существование нуля:

$$\exists \overline{0} \in V : \overline{a} + \overline{0} = \overline{a}, \ \forall \overline{a} \in V$$

4.Существование противоположного

элемента:
$$\forall \overline{a} \in V \ \exists \overline{b} \in V : \overline{a} + \overline{b} = \overline{0}$$

5.Умножение на 1 из поля:

$$1 \cdot \overline{a} = \overline{a}, \ \forall \overline{a} \in V$$

- 6. Дистрибутивность : $(\alpha + \beta)\overline{a} = \alpha \overline{a} + \beta \overline{a}$
- 7. $\alpha(\overline{a} + \overline{b}) = \alpha \overline{a} + \alpha \overline{b}$
- 8. $\alpha(\beta \overline{a}) = (\alpha \beta) \overline{a}, \ \forall \alpha, \beta \in K, \forall \overline{a}, \overline{b} \in V$

Простейшие следствия из аксиом ЛП

- 1. Нулевой элемент единственный.
- 2. Противоположный вектор единственный.

Определение:
$$\overline{a} - \overline{b} := \overline{a} + (-\overline{b})$$

$$3.0 \cdot \overline{a} = \overline{0}, \ \forall \overline{a} \in V$$

$$4. -\overline{a} = (-1)\overline{a}, \ \forall \overline{a} \in V$$

5.
$$\alpha \cdot \overline{0} = \overline{0}, \forall \alpha \in K$$

Линейная зависимость и линейная независимость систем векторов

Лекция №2

Линейная комбинация векторов

V- ЛП
$$\overline{a}_1, \overline{a}_2...\overline{a}_n \in V$$
 — набор векторов $\alpha_1, \alpha_2...\alpha_n \in K$ — набор чисел

Определение. Выражение вида

$$\alpha_1 \overline{a_1} + \alpha_2 \overline{a_2} + \dots + \alpha_n \overline{a_n} = \sum_{i=1}^n \alpha_i \overline{a_i}$$

называется линейной комбинацией векторов

Линейная оболочка векторов

Определение. Пусть $a_1, a_2, \dots a_n$ - система векторов. Множество всех линейных комбинаций данной системы векторов называют линейной оболочкой системы векторов: $<\overline{a_1},\overline{a_2}\dots\overline{a_n}>$

Выражение вектора через линейную комбинацию

Определение. Если некоторый вектор $a \in V$ представлен в виде

$$\overline{a} = \alpha_1 \overline{a}_1 + \alpha_2 \overline{a}_2 + \ldots + \alpha_n \overline{a}_n$$

то говорят, что вектор \overline{a} линейно выражается через вектора $\overline{a_1},\overline{a_2}...\overline{a_n}$

Линейная зависимость

Определение. Система векторов называется

 $\overline{a_1}, \overline{a_2}...\overline{a_n}$ линейно зависимой, если существует <u>ненулевой</u> набор чисел

 $\lambda_1, \lambda_2, \dots \lambda_n$ таких, что

$$\lambda_1 \overline{a}_1 + \lambda_2 \overline{a}_2 + \dots + \lambda_n \overline{a}_n = \overline{0}$$

Линейная независимость

Определение. Система векторов $a_1, a_2 ... a_n$ называется линейно независимой, если

$$\lambda_1 a_1 + \lambda_2 a_2 + \dots + \lambda_n a_n = 0$$

тогда и только тогда, когда все числа $\lambda_1, \dots \lambda_n$ равны нулю.

Алгебраические свойства систем линейных векторов.

- 1. Если система векторов содержит нулевой вектор, то она линейно зависима.
- 2. Если часть системы векторов (подсистема) линейно зависима, то и вся система векторов тоже линейно зависима.
- 3. Система векторов линейно зависима тогда и только тогда, когда существует вектор, линейно выражающийся через остальные вектора

Геометрические свойства систем векторов.

- 1. Система состоящая из одного вектора линейно зависима тогда и только тогда, когда этот вектор нулевой.
- 2. Система состоящая из двух векторов линейно зависима тогда и только тогда, когда вектора коллинеарны.
- 3. Система состоящая из трех векторов линейно зависима тогда и только тогда, когда три вектора компланарны.

Базис линейного пространства

Замечание. В ЛП V базис определяется не единственным образом (можно выбрать несколько базисов), но количество базисных векторов n остается неизменной величиной.

Размерность линейного пространства

Определение. Количество векторов в базисе называется размерностью линейного пространства V.

Обозначение. dimV=n.

Координаты вектора в базисе

Из определения базиса ЛП V следует, что любой вектор в этом ЛП линейно выражается через базисные векторы :

$$\overline{x} = \alpha_1 \overline{e}_1 + \alpha_2 \overline{e}_2 + \ldots + \alpha_n \overline{e}_n$$

Определение. Координатами вектора х называются коэффициенты в разложении по базисным векторам: $\bar{\chi} = (\alpha_1, \alpha_2 ... \alpha_n)$

Координаты вектора в базисе

Замечание. Координаты вектора х зависят от выбора базиса. В разных базисах у одного и того же вектора х разные координаты.

Системы координат

Лекция №3

Координаты точки М

Чтобы определить координаты произвольной точки M, принадлежащей плоскости, нужно определить координаты вектора OM. Координаты вектора — это коэффициенты в разложении по базисным векторам.

Декартова система координат

Выберем на плоскости произвольным образом точку O, эту точку будем называть началом координат. От этой точки отложим два равных по длине перпендикулярных вектора, обозначим их \bar{i} и \bar{j} Набор (O,\bar{i},\bar{j})

задает декартову систему координат на плоскости.

Оси координат

Для большей наглядности вводят понятие осей координат. Через точку *О* в направлении вектора *і* проводят прямую с заданным направлением (ось ОХ), в направлении вектора *ј* проводят прямую с заданным направлением (ось ОҮ). Вся плоскость разбивается на квадраты. Чтобы определить координаты точки достаточно спроецировать вектор на ось ОХ и ось ОҮ.

Координаты на плоскости

Декартовы координаты в пространстве

Декартова система координат в пространстве состоит из начала координат (точки *O*), и трех равных по длине взаимно перпендикулярных векторов *i, j, k*. Ось ОХ направлена вдоль вектора *i*, ось ОУ направлена вдоль вектора *j* , ось ОХ направлена вдоль вектора *k*.

Правая тройка векторов

Набора O, i, j, k достаточно для того, чтобы определить координаты произвольной точки M пространства . Однако, как правило, на систему координат налагают ещё одно условие: если смотреть из конца вектора k , поворот от вектора i к вектору jдолжен происходить против часовой стрелки.

Аффинная система координат

Аффинная система координат на плоскости состоит из начала координат (точки О) и двух неколлинеарных векторов e_1 и e_2 . Ось ОХ направлена вдоль вектора e_1 , ось ОҮ направлена вдоль вектора *е*₂. Координаты произвольной точки М определяются как координаты вектора *ОМ*. При этом всю плоскость можно разбить на параллелограммы, помогающие определить координаты точки.

Аффинная система координат на плоскости

Аффинная система координат в пространстве

В пространстве аффинная система координат состоит из начала координат (точки *O*) и трех некомпланарных векторов *e*₁ , *e*₂ и *e*₃. Ось ОХ направлена вдоль вектора *e*₁ , ось ОҮ направлена вдоль вектора *e*₂, ось ОХ направлена вдоль вектора *e*₃.

Полярная система координат

Чтобы задать полярную систему координат на плоскости, достаточно выбрать начало координат (точку O) и из этой точки провести луч (полярную ось). Координатами произвольной точки М являются два числа ρ и ф, где ρ- это расстояние от точки O до точки M, а ϕ - это угол поворота полярной оси против часовой стрелки до луча *ОМ*.

Полярная система координат

Переход от декартовой системы координат к полярной

