第六单元 碳及碳的氧化物

注:本单元的课题按照物质分类,和课本上的略有不同

课题1 碳单质

一、物理性质和用途

物质	物理性质	用途
金刚石	自然界最硬、熔点高	切割
石墨	有滑腻感, 能导电	做润滑剂、做电极
木炭、活性炭	有吸附性	净化、吸附
炭黑		做墨
C_{60}		超导、润滑等

- 性质不同的原因: 原子的排列方式不同 (结构决定性质)
- 性质决定用途

二、化学性质

- 常温下,碳的化学性质稳定
- 高温下,碳具有可燃性
 - 。 完全燃烧: $C+O_2 \stackrel{\text{\frac{slm}}}{\longrightarrow} CO_2$ (红色火焰, 放热)
 - 。 不完全燃烧: $2\,\mathrm{C} + \mathrm{O}_2 \stackrel{\mathrm{f.M.}}{\longrightarrow} 2\,\mathrm{CO}$
- 高温下,碳具有还原性
 - 。 $\mathrm{C} + 2\,\mathrm{CuO} \stackrel{\mathrm{\ddot{a}ll}}{\longrightarrow} 2\,\mathrm{Cu} + \mathrm{CO}_2 \uparrow$ (黑色固体变为红色固体)

课题2 一氧化碳

一、物理性质

- 无色、无味的气体
- 密度略小于空气
- 难溶于水

二、化学性质

- 毒性 (⇒需有尾气处理)
 - 。 CO 极易与血红蛋白结合,导致缺氧
- 可燃性
 - \circ 2 CO + O₂ $\stackrel{\text{i.m.}}{\longrightarrow}$ 2 CO₂ (有蓝色火焰,放热)
- 还原性
 - 。 $\mathrm{CO} + \mathrm{CuO} \xrightarrow{\Delta} \mathrm{Cu} + \mathrm{CO}_2$ (黑色固体变为红色固体)
 - 。 $3\operatorname{CO} + \operatorname{Fe_2O_3} \stackrel{\operatorname{\ddot{a}ll}}{\longrightarrow} 2\operatorname{Fe} + 3\operatorname{CO_2}$ (红色固体变为黑色固体)

课题3 二氧化碳

一、物理性质

- 无色、无味的气体
- 密度大于空气
- 能溶于水

二、化学性质

- 不可燃、不助燃
- 能与水反应
 - $\circ \ CO_2 + H_2O \longrightarrow H_2CO_3$
 - 。 碳酸能使干燥石蕊试纸变红
 - 。 碳酸不稳定,易分解为 H_2O 和 CO_2
- 能与石灰水反应
 - \circ CO₂ + Ca(OH)₂ \longrightarrow CaCO₃ ↓ + H₂O (澄清石灰水变浑浊)

三、用途

用途	所用性质
灭火	不可燃不助燃,密度大于空气
人工降雨	固体 CO_2 (干冰) 升华吸热
碳酸饮料	能溶于水,且能与水反应
气体肥料	CO_2 参加光合作用

四、制备

1. 原理: $CaCO_3 + 2HCl \longrightarrow CaCl_2 + H_2O + CO_2 \uparrow$

2. 药品: 大理石、稀盐酸

3. 装置

发生装置:长颈漏斗(添加液体)、锥形瓶 收集装置:集气瓶、玻璃片(向上排空气)

第七单元 燃料及其应用

课题1 燃烧与灭火

一、燃烧

- 1. 燃烧
 - 通常情况下,可燃物与助燃物 (通常为氧气) 发生的一种发光、放热的剧烈氧化反应
- 2. 燃烧的条件
 - 可燃物
 - 与氧气接触
 - 达到燃烧所需的最低温度 (着火点)

二、灭火

原理	方法
清除可燃物	关闭燃气阀门、隔离带等
隔绝氧气	盖上锅盖、灭火器等
降温至着火点下	用水扑灭

三、易燃物和易爆物

- 1. 爆炸
 - 短时间内聚积大量的热,使气体的体积迅速膨胀而引起爆炸
- 2. 化学爆炸的条件
 - 有限空间
 - 急剧燃烧
- 3. 安全措施、有关图标

当心易燃物

当心爆炸物

当心氧化物

禁止烟火

禁止燃放鞭炮

禁止吸烟

禁止放易燃物

课题2 燃料的合理利用与开发

- 一、化学反应中的能量变化
- 放热反应
 - 。 燃烧、 CO_2 与 H_2 反应、金属与酸反应、缓慢氧化等
- 吸热反应
 - 。 $C 与 CO_2$ 反应、氯化铵与氢氧化钡反应等

二、化石燃料

- 1. 概念
 - 由古代生物的遗骸经一系列变化形成的不可再生能源
- 2. 煤
 - 1. 主要成分: C
 - 2. 综合利用
 - 方式: 干馏 (化学变化) ——隔绝空气加强热
 - 产物: 焦炭、煤焦油、煤气

- 3. 石油
 - 1. 主要成分: C、H
 - 2. 综合利用
 - 方式:分馏(物理变化)——利用石油中各成分的沸点不同
 - 产物: 沥青、石蜡、润滑油、柴油、煤油、航空煤油、汽油、溶剂油
- 4. 天然气
 - 1. 主要成分: CH₄ (甲烷)
 - 2. 物理性质
 - 。 无色、无味的气体
 - 。 密度比空气小
 - 。 极难溶于水
 - 3. 化学性质
 - 可燃性 (燃烧前需验纯)
 - ullet $\mathrm{CH_4} + 2\,\mathrm{O_2} \stackrel{\text{点燃}}{\longrightarrow} \mathrm{CO_2} + 2\,\mathrm{H_2O}$ (淡蓝色火焰,放热)

三、燃料的充分燃烧

- 1. 条件
 - 有足够的空气
 - 燃料与空气有足够大的接触面
- 2. 不充分燃烧的危害
 - 降低燃料的利用率,浪费资源
 - 污染空气

四、使用燃料对环境的影响

- 燃料中的杂质燃烧产生污染物
 - 。 煤燃烧排出的 SO_2 、 NO_2 导致酸雨
- 燃料燃烧不充分产生污染物
 - 。 C 不充分燃烧产生 CO
- 未燃烧的碳氢化合物及炭粒、尘粒等形成浮沉

五、能源的利用与开发

- 1. 乙醇
 - 1. 成分: C₂H₅OH
 - 2. 物理性质
 - 。 无色、特殊香味的液体
 - 。 密度比水小
 - 。 与水以任意比例互溶
 - 3. 化学性质
 - 。 可燃性
 - lacktriangledown $\mathbf{C}_2\mathbf{H}_5\mathbf{OH} + 3\,\mathbf{O}_2 \stackrel{\text{\text{s}}\xspace}{\longrightarrow} 3\,\mathbf{H}_2\mathbf{O} + 2\,\mathbf{CO}_2$ (淡蓝色火焰,放热)

2. 氢气

- 1. 物理性质
 - 。 无色、无味的气体
 - 。 相同状况下密度最小的气体
 - 。 难溶于水
- 2. 化学性质
 - 。 可燃性
 - $2 \, \mathrm{H}_2 + \mathrm{O}_2 \stackrel{\mathrm{glm}}{\longrightarrow} 2 \, \mathrm{H}_2 \mathrm{O}$ (有淡蓝色火焰,放热)
 - 。 还原性
 - lacktriangledown $\mathrm{CuO} + \mathrm{H_2} \xrightarrow{\mathrm{\ddot{a}}} \mathrm{Cu} + \mathrm{H_2O}$ (黑色固体变为红色固体)
- 3. 制备
 - 。 原理: $Zn + H_2SO_4 \longrightarrow H_2 \uparrow + ZnSO_4$
 - 药品: 锌粒、稀硫酸
 - 。 装置
 - 发生装置: 启普发生器
 - 收集装置:集气瓶、玻璃片(向下排空气)/水槽、集气瓶(排水法)
- 3. 其他新能源
 - 太阳能、核能、风能、地热能、生物质能、水能等

第八单元 金属材料

课题1 金属材料

- 一、金属材料的发展史
- 商朝,开始使用青铜器
- 春秋时期,铁
- 100多年前,铝
- 现在年产量:铁>铝>铜
- 二、金属的物理性质
- 1. 金属的物理性质

共性 (通常情况下)	特例
常温下为固体	汞为液态
银白色,有金属光泽	铜为紫红色,金为黄色
熔沸点较高	
密度和硬度较大	
良好的导电、导热性	
良好的延展性	

2. "金属之最"

• 地壳中含量最高:铝(Al)

• 人体中含量最高: 钙 (Ca)

• 世界年产量最高:铁 (Fe)

• 导电导热性最好:银(Ag)

密度最大: 锇 (Os) 密度最小: 锂 (Li)熔点最高: 钨 (W) 熔点最低: 汞 (Hg)

• 硬度最大: 铬 (Cr)

三、合金

1. 合金

- 在金属中加热熔合金属或非金属,形成的具有金属特性的物质
- 合金是混合物,各物质以单质形式存在
- 2. 性质(相较于原来的金属)
 - 熔点低
 - 强度、硬度大
 - 抗腐蚀性能强
- 3. 常见的合金
 - 生铁: 含碳 $2\% \sim 4.3\%$; 机械性能硬而脆、无韧性、可铸不可锻
 - 钢: 含碳 $0.03\% \sim 2\%$; 坚硬、强度高、韧性好、易加工
 - 铝合金:密度小、硬度大、抗腐蚀性强
 - 钛合金:熔点高、密度小、可塑性好、易于加工、强度大、抗腐蚀性能非常好

课题2 金属的化学性质

一、与氧气反应

- 镁、铝在常温下就能与氧气反应
 - $\circ 2 \operatorname{Mg} + \operatorname{O}_2 \longrightarrow 2 \operatorname{MgO}$
 - \circ 4 Al + 3 O₂ \longrightarrow 2 Al₂O₃
 - 氧化铝为一层致密的薄膜,防止铝被进一步氧化
- 铁、铜在常温下几乎不与氧气反应,但在高温时能与氧气反应

$$\circ \ \ 3\,Fe + 2\,O_2 \stackrel{\text{{\rm f.M.}}}{\longrightarrow} Fe_3O_4$$

$$\circ 2 Cu + O_2 \longrightarrow 2 CuO$$

• 金即使在高温时也不与氧气反应

二、与酸(盐酸/稀硫酸)反应

与酸反应的物质	反应的化学方程式	反应现象
镁	$\mathrm{Mg} + 2\mathrm{HCl} \longrightarrow \mathrm{MgCl}_2 + \mathrm{H}_2 \uparrow \ \mathrm{Mg} + \mathrm{H}_2\mathrm{SO}_4 \longrightarrow \mathrm{MgSO}_4 + \mathrm{H}_2 \uparrow$	固体变少,迅速产生大量气泡,放热
锌	$ ext{Zn} + 2 ext{HCl} \longrightarrow ext{ZnCl}_2 + ext{H}_2 \uparrow \\ ext{Zn} + ext{H}_2 ext{SO}_4 \longrightarrow ext{ZnSO}_4 + ext{H}_2 \uparrow $	固体变少,产生大量气泡
铁	$\mathrm{Fe} + 2\mathrm{HCl} \longrightarrow \mathrm{FeCl_2} + \mathrm{H_2} \uparrow \ \mathrm{Fe} + \mathrm{H_2SO_4} \longrightarrow \mathrm{FeSO_4} + \mathrm{H_2} \uparrow$	固体变少,产生少量气泡, 溶液逐渐由无色变为浅绿色
铜	不发生反应	无明显现象

• 结论: Mg、Zn、Fe 能置换出盐酸里的氢,Cu 不能; 金属活动性: Mg > Zn > Fe > Cu

三、与盐溶液反应

1. 常见反应

反应的化学方程式	反应现象
$\mathrm{Fe} + \mathrm{CuSO}_4 \longrightarrow \mathrm{Cu} + \mathrm{FeSO}_4$	铁丝表面有红色固体析出,溶液由蓝色变为浅绿色
$\mathrm{Cu} + 2\mathrm{AgNO}_3 \longrightarrow \mathrm{Cu(NO}_3)_2 + 2Ag$	铜丝表面有银白色固体析出,溶液由无色变为蓝色
$2\mathrm{Al} + 3\mathrm{CuSO_4} \longrightarrow 3\mathrm{Cu} + \mathrm{Al_2(SO_4)_3}$	铝丝表面有红色固体析出,溶液由蓝色变为无色
不发生反应	无明显现象

2. 特殊颜色

物质	颜色
+2 Cu 盐溶液	蓝色
+2 Fe 盐溶液	浅绿色
+3 Fe 盐溶液	黄色

四、金属活动性

钾	钙	钠	镁	铝	锌	铁	锡	铅	氢	铜	汞	银	铂	金
K	Ca	Na	Mg	Al	Zn	Fe	Sn	Pb	Η	Cu	Hg	Ag	Pt	Au

- 金属的位置越靠前,它的活动性就越强
- 位于氢前面的金属能置换出盐酸、稀硫酸中的氢(反应剧烈程度不同,活动性强的剧烈)
- 位于前面的金属能把位于后面的金属从它们的盐溶液中置换出来(反应剧烈程度相同)
- 当一种金属单质同时与多种金属的盐溶液发生反应时,推断盐溶液中金属活动性最弱的先发生反应

五、置换反应

• 由一种单质与一种化合物反应,生成另一种单质和另一种化合物的反应

课题3 金属资源的利用与保护

一、金属的存在形式

• 单质(游离态): 极少数很不活泼的金属, 如金、银

• 化合物(化合态):大多数金属

。 赤铁矿: Fe_2O_3 ; 磁铁矿: Fe_3O_4 ; 菱铁矿: $FeCO_3$; 铝土矿: Al_2O_3 ; 黄铜矿: $CuFeS_2$; 辉铜矿: Cu_2S

二、铁的冶炼

1. 实验室还原铁

1. 原理: $\operatorname{Fe_2O_3} + 3\operatorname{CO} \xrightarrow{\operatorname{\overline{\mathsf{a}}}} 2\operatorname{Fe} + 3\operatorname{CO}_2$

2. 装置:玻璃管 (放 Fe_2O_3) 、导管 (通 CO, 导出 CO_2) ,澄清石灰水 (验证是否有 CO_2 生成)、酒精喷灯 (加热)、酒精灯 (点燃 CO, 尾气处理)

3. 步骤

1. 先通 CO, 再点燃尾气处理的酒精灯(防止爆炸)、再点燃酒精喷灯(防止爆炸)

2. 先熄灭酒精喷灯,再停止通 CO (防止石灰水倒吸、铁粉再次被氧化)

4. 现象:红色固体变黑,澄清石灰水变浑浊

2. 工业炼铁

1. 原料:铁矿石、焦炭、石灰石、空气

○ 焦炭: 提供 CO 和热量

。 石灰石: 炉渣, 将矿石中的 SiO_2 转化为炉渣

2. 设备: 高炉

3. 原理

$$\circ \ \ \mathrm{C} + \mathrm{O}_2 \stackrel{\text{filter}}{\longrightarrow} \mathrm{CO}_2$$

$$\circ \ CO_2 + C \xrightarrow{\bar{n}\underline{\mathbb{A}}} 2 CO$$

$$\circ \ \operatorname{Fe}_2\operatorname{O}_3 + 3\operatorname{CO} \xrightarrow{\operatorname{\underline{\mathsf{R}}} \operatorname{\underline{\mathsf{H}}}} 2\operatorname{Fe} + 3\operatorname{CO}_2$$

三、金属的腐蚀与防护

- 1. 铁制品生锈的条件——实验
 - 控制变量,对比试验

实验编号	有无 〇 ₂	有无 H ₂ O	现象
1	有	有	生锈
2	无	有	不生锈
3	有	无	不生锈

- n 个变量, n+1次实验
 - \circ 1,2 \Rightarrow 需要 O_2
 - \circ 1,3 ⇒ 需要 H_2O

2. 金属锈蚀的条件

- 有能发生反应的物质,反应物互相接触
- 生成物不会对反应起阻碍作用
- 3. 防止金属锈蚀的方法
 - 保持表面干燥、清洁
 - 在表面覆盖保护层(如刷漆、浸油、镀耐腐蚀的金属)
 - 改变其内部结构 (如制成合金)

四、金属资源保护

- 1. 必要性
 - 金属资源储量有限,且不能再生
 - 废弃金属的随意丢弃不仅会浪费金属,还会污染环境
- 2. 方法
 - 防止金属的腐蚀
 - 回收利用金属
 - 合理开采矿物
 - 寻找金属的代用品

第九单元 溶液

课题1 溶液的形成

一、溶液

- 1. 概念
 - 一种或几种物质分散到另一种物质里,形成均一的、稳定的混合物
- 2. 组成
 - 溶质:被溶解的物质——气体、液体、固体
 - 溶剂:能溶解其他物质的物质 —— 通常是水,一般还有酒精、汽油
- 3. 溶液、溶质、溶剂的关系
 - $\mathbf{m}_{\tilde{\mathbf{m}}\tilde{\mathbf{m}}} = \mathbf{m}_{\tilde{\mathbf{m}}\tilde{\mathbf{m}}} + \mathbf{m}_{\tilde{\mathbf{m}}\tilde{\mathbf{m}}}$
 - V_{溶液} < V_{溶质} + V_{溶剂}
- 4. 溶质与溶剂的判断

体系	溶剂
固/气+液	液体
液+液(有水)	水
液+液 (无水)	量多的液体

5. 形成

- 在溶剂分子的作用下,溶质的分子(或离子)均匀分散到溶剂分子之间
- 二、溶解时的温度变化
- 1. 例子
 - 无明显现象: NaCl
 - 吸热: NH₄NO₃ (硝酸铵)
 - 放热: NaOH
- 2. 原因(自主拓展)
 - 吸热:维持晶体结构的作用力被打断,分子或离子向溶液中扩散,这个过程消耗能量(解离能)
 - 放热:溶质中的分子或离子跟溶剂分子结合,这个过程放出能量(溶剂化能)

三、乳化现象

- 乳浊液:不溶性小液滴分散到液体里形成的不稳定的混合物
- 乳化作用:将不溶性大油珠分散成细小的液滴,而不聚集成油珠
- 乳化剂:能防止小液滴聚集的物质,具有乳化作用

课题2 溶解度

- 一、饱和溶液与不饱和溶液
- 1. 定义

- 饱和溶液:在一定的温度下,向一定量的溶剂中加入某种物质,当溶质不能继续溶解时,所得到的溶液叫做该溶质的饱和溶液
- 不饱和溶液:在一定的温度下,向一定量的溶剂中加入某种物质,当溶质还能继续溶解时,所得到的溶液叫做该溶质的不饱和溶液

2. 判断

- 看有无不溶溶质
- 继续加少量该溶质, 看是否能溶解
- 3. 溶液的互相转化
 - 不饱和溶液 → 饱和溶液:蒸发溶剂、改变温度(一般降温)、蒸发溶剂
 - 饱和溶液 → 不饱和溶液:增加溶剂、改变温度(一般升温)
 - 例外: Ca(OH)2 温度越高,溶解越少
- 4. 结晶
 - 结晶:溶液中的溶质以晶体形式析出的过程
 - 方式
 - 。 蒸发结晶:冷却热饱和溶液
 - 举例:海水晒盐降温结晶:蒸发溶剂举例: KNO₃
- 5. 溶解性
 - 物质溶解在溶剂中的能力
 - 内因:溶质的种类
 - 外因:溶剂的种类、温度
- 二、固体溶解度
- 1. 定义
 - 在一定温度下,某固态物质在 100g 溶剂里达到<mark>饱和状态时所溶解的质量</mark>(单位: g)
- 2. 溶解度与溶解性的关系

溶解性	易溶	可溶	微溶	难溶
溶解度 (20℃/g)	> 10g	> 1g	< 1g	< 0.01g

3. 受温度的影响

- 大多数固体物质的溶解度随温度的升高而增大,如 KNO₃
- 少数固体物质的溶解度受温度的影响较小,如 NaCl
- 极少数固体物质的溶解度随温度的升高而减小,如 $Ca(OH)_2$
- 4. 应用
 - 判断选用什么方式进行结晶
 - 。 降温结晶:溶解度随温度升高而增大溶解度的物质
 - 。 蒸发结晶:溶解度受温度影响不大的物质

5. 溶解度曲线包含的信息

• 曲线: 曲线越陡, 溶解度受温度影响越大

• 点:某物质在该温度下的溶解度

• 交点: 两种物质在该温度下的溶解度相同

• 平移:溶液的转化

三、气体的溶解度

- 1. 定义
 - 在压强为 101KPa 和一定温度时,气体溶解度在 1体积水里达到饱和状态时的气体体积
- 2. 影响气体溶解性的因素
 - 温度↑,溶解性↓
 - 压强 ↑,溶解性 ↑

课题3 溶液的浓度

- 一、溶质的质量分数
- 1. 感知溶液的浓与稀

2. 溶质的质量分数

$$ullet c\% = rac{\mathrm{m}_{\mathrm{lpha}\mathrm{ff}}}{\mathrm{m}_{\mathrm{lpha}\mathrm{ft}}} imes 100\% = rac{\mathrm{m}_{\mathrm{lpha}\mathrm{ff}}}{\mathrm{m}_{\mathrm{lpha}\mathrm{ft}} + \mathrm{m}_{\mathrm{lpha}\mathrm{fl}}} imes 100\%$$

3. 饱和溶液中的溶质的质量分数

$$\bullet \ \ c\% = \frac{S}{S+100 \mathrm{g}} \times 100\%$$

二、配置溶液

1. 实验原理

$$ullet c\% = rac{\mathrm{m}_{\mathrm{lpha}\mathrm{ff}}}{\mathrm{m}_{\mathrm{lpha}\mathrm{ft}}} imes 100\% = rac{\mathrm{m}_{\mathrm{lpha}\mathrm{ff}}}{\mathrm{m}_{\mathrm{lpha}\mathrm{ff}} + \mathrm{m}_{\mathrm{lpha}\mathrm{fl}}} imes 100\%$$

- 2. 实验步骤
 - 1. 计算:想要的 c%, $\mathbf{m}_{\mathrm{RR}} \Rightarrow \mathbf{m}_{\mathrm{RR}}$, \mathbf{m}_{RR}
 - 2. 称量,量取:用天平称量溶质,量筒量取溶剂,加入烧杯中(先固后液)
 - 3. 溶解:用玻璃棒不断搅拌,加快溶解
 - 4. 装瓶贴标签
- 3. 误差分析
 - $\mathrm{m}_{\mathrm{ar{m}}}\downarrow \;\Rightarrow\; c\downarrow$
 - $\mathbf{m}_{\text{sol}} \downarrow \Rightarrow c \uparrow$

第十单元 酸和碱

课题1 常见的酸和碱

一、酸和碱

1. 酸

• 常见: 盐酸 HCl, 硫酸 H₂SO₄, 硝酸 HNO₃, 碳酸 H₂CO₃, 醋酸 CH₃COOH

• 组成: H⁺ + 酸根 (阳离子只有 H⁺)

2. 碱

• 常见: 氢氧化钠 NaOH,氢氧化钙 $Ca(OH)_2$,氢氧化钙 KOH、氢氧化钡 $Ba(OH)_2$ 、二水合 氨 $NH_3 \cdot H_2O$

• 组成: 金属/铵根离子 + OH-

二、酸碱指示剂

1. 概念

• 能跟酸或碱的溶液起作用而显示不同颜色的物质

2. 常见指示剂及其变色规律

指示剂	酸性溶液	中性溶液	碱性溶液
紫色石蕊溶液	红色	紫色	蓝色
无色酚酞溶液	无色	无色	红色

三、溶液的导电性

• 酸和碱溶液均可导电,因为有带电微粒 (阴、阳离子)

四、常见的酸

1. 浓盐酸 (HCl)

1. 成分

。 氯化氢 (HCl) 气体的水溶液

2. 物理性质

- 。 无色、有刺激性气味的液体
- 具有挥发性 (稀盐酸没有)
 - 敞口放置在空气中,会挥发出氯化氢气体,与水蒸气结合结合成盐酸小液滴,瓶口出现白雾
 - 溶液的质量下降,溶质的质量分数下降
 - 需密闭保存

3. 用途

- 。 用于金属表面除锈等
- 。 用于制造药物等
- 。 人体胃液中含有盐酸,可以帮助消化

2. 浓硫酸 (H₂SO₄)

- 1. 成分
 - 浓度为 98% 的 H₂SO₄溶液
- 2. 物理性质
 - 。 无色的粘稠油状液体
 - 具有吸水性 (稀盐酸没有)
 - 敞口放置在空气中,会吸收空气中的水蒸气
 - 溶液的质量上升,溶质的质量分数下降
 - 需密封保存
- 3. 化学性质
 - 。 具有脱水性
 - 能使纸、布、木材、皮肤等有机物脱水炭化
 - 若不慎将浓硫酸沾到皮肤或衣服上,应立即用大量水冲洗,然后再涂上 $3\%\sim5\%$ 的碳酸氢钠($NaHCO_3$)溶液
- 4. 用途
 - 用于生产化肥、农药、火药、染料以及冶炼金属、精炼石油、金属除锈等
 - 。 常用做干燥剂
 - 不能干燥碱性碱性气体
- 5. 稀释
 - o 现象: 稀释时会放大量热
 - 操作:应将浓硫酸沿着烧杯的内壁慢慢注入水中,并用玻璃棒不断搅拌,在烧杯中进行

五、酸的化学性质

- 1. 与酸碱指示剂作用
 - 。 紫色石蕊遇酸变红
 - 。 无色酚酞遇酸不变色
- 2. 与氢前金属反应生成盐和氧气(反应条件:金属活动性顺序表中氢前的金属与盐酸、稀硫酸)
 - \bullet Fe + 2 HCl \longrightarrow FeCl₂ + H₂ \uparrow
 - $\circ \ \operatorname{Zn} + \operatorname{H}_2 \operatorname{SO}_4 \longrightarrow \operatorname{ZnSO}_4 + \operatorname{H}_2 \uparrow$
- 3. 与金属氧化物反应生成盐和水
 - Fe₂O₃ + 6 HCl → 2 FeCl₃ + 3 H₂O (铁钉逐渐溶解,溶液由无色变黄)
 - $\circ \ \mathrm{CuO} + 2\,\mathrm{HCl} \longrightarrow \mathrm{CuCl}_2 + \mathrm{H}_2\mathrm{O}$
 - $\circ \ \mathrm{CuO} + \mathrm{H_2SO_4} \longrightarrow \mathrm{CuSO_4} + \mathrm{H_2O}$
- 4. 与碳酸盐反应生成盐、水和二氧化碳
 - \circ CaCO₃ + 2 HCl \longrightarrow CaCl₂ + H₂O + CO₂ \uparrow
 - \circ Na₂CO₃ + 2 HCl \longrightarrow 2 NaCl + H₂O + CO₂ \uparrow
 - $\circ \operatorname{CaCO}_3 + \operatorname{H}_2\operatorname{SO}_4 \longrightarrow \operatorname{CaSO}_4 + \operatorname{H}_2\operatorname{O} + \operatorname{CO}_2 \uparrow$
 - $\circ \operatorname{Na_2CO_3} + \operatorname{H_2SO_4} \longrightarrow \operatorname{Na_2SO_4} + \operatorname{H_2O} + \operatorname{CO_2} \uparrow$

六、常见的碱

- 1. 氢氧化钠 (NaOH)
 - 1. 俗名
 - 烧碱、火碱、苛性钠
 - 2. 物理性质
 - 。 白色片状固体
 - 易溶于水 (溶于水放热)
 - 。 易吸收空气中的水分而潮解

3. 化学性质

- 。 具有很强的腐蚀性
 - 称量时需盛放在玻璃器皿中
 - 如果不慎将氢氧化钠沾到皮肤上,要立即用大量水冲洗,再涂上硼酸 (H₂BO₃) 溶液

4. 用途

- 广泛应用于肥皂、石油、造纸、纺织、印染等工业
- 。 去除油污
- 。 常用作干燥剂
 - 不能干燥酸性气体

2. 氢氧化钙 (Ca(OH)₂)

- 1. 俗名
 - 。 消石灰、熟石灰
 - (其水溶液是澄清石灰水、 当石灰水中存在较多未溶解的固体时, 称为石灰乳、石灰浆)

2. 物理性质

- 。 白色粉末状固体
- 。 微溶于水,溶解度随温度的升高而降低

3. 用途

- 。 配置农药波尔多液
- 。 树木防冻防虫
- 。 改良酸性土壤
- 。 用作建筑材料

4. 制取

 \circ CaO + H₂O \longrightarrow Ca(OH)₂ (放热)

七、碱的化学性质

- 1. 与酸碱指示剂作用
 - 。 紫色石蕊遇碱变蓝
 - 。 无色酚酞遇碱变红
- 2. 与非金属氧化物反应生成盐和水
 - \circ CO $_2$ + Ca(OH) $_2$ \longrightarrow CaCO $_3$ ↓ + H $_2$ O (澄清石灰水变浑浊)
 - 用于检验 CO₂
 - 氢氧化钙能与空气中的 CO₂ 反应而变质,所以氢氧化钙要密封保存
 - \circ CO₂ + 2 NaOH \longrightarrow Na₂CO₃ + H₂O (无明显现象)
 - 检验反应发生: $Na_2CO_3 + 2HCl \longrightarrow 2NaCl + H_2O + CO_2 \uparrow$ (产生气泡)
 - 用于吸收 CO₂
 - 氢氧化钠固体不仅易吸收空气中的水分,还可以吸收空气中的 CO_2 而变质,所以氢氧化 钠必须密封保存

$$\circ \operatorname{SO}_2 + \operatorname{Ca}(\operatorname{OH})_2 \longrightarrow \operatorname{CaSO}_3 + \operatorname{H}_2\operatorname{O}$$

- $\circ SO_2 + 2 NaOH \longrightarrow Na_2SO_3 + H_2O$
- \circ SO₃ + 2 NaOH \longrightarrow Na₂SO₄ + H₂O

课题2 酸碱中和反应

一、酸碱中和反应

- 1. 实验
 - 酸滴碱,验证 NaOH 的消耗
 - NaOH $\xrightarrow{\text{加酚酞}}$ 变红 $\xrightarrow{\text{逐滴加盐酸}}$ 恰好由红色变为无色 $\underset{\mathbb{R}{3}}{\text{ 6}}$
- 2. 定义
 - 酸和碱反应生成盐和水
- 3. 微观实质
 - $H^+ + OH^- \longrightarrow H_2O$
- 4. 能量变化
 - 放热
- 5. 应用
 - 农业: 用熟石灰改良酸性土壤
 - 工业: 处理酸性或碱性的工业废水
 - 医药:用含碱性药物 (氢氧化铝)治疗胃酸过多
 - 生活: 蚊虫叮咬涂稀氨水或肥皂水
- 6. 举例
 - $NaOH + HCl \longrightarrow NaCl + H_2O$
 - $2 \operatorname{NaOH} + \operatorname{H}_2 \operatorname{SO}_4 \longrightarrow \operatorname{Na}_2 \operatorname{SO}_4 + 2 \operatorname{H}_2 \operatorname{O}$
 - $Ca(OH)_2 + 2HCl \longrightarrow CaCl_2 + 2H_2O$
 - $Ca(OH)_2 + H_2SO_4 \longrightarrow CaSO_4 + 2H_2O$

二、溶液酸碱度的表示法——pH

- 1. pH 值与酸碱度对应
 - 范围: 通常 0 ~ 14
 - 酸性溶液: < 7 (越小酸性越强)
 - 中性溶液: = 7
 - 碱性溶液: > 7 (越大碱性越强)
- 2. 测定方法
 - 1. pH 试纸测定法
 - 。 不润湿, 不伸入待测液
 - 。 玻璃棒蘸取试液到试纸
 - 2. pH 计

第十一单元 盐 化肥

课题1 生活中常见的盐

一、盐

• 一类组成里含有金属离子和酸根离子的化合物

二、常见的盐

1. 氯化钠 (NaCl)

• 俗名: 食盐

• 物理性质: 白色固体, 易溶于水, 有咸味

• 化学性质: 水溶液呈中性

• 用途: 调味品、生理盐水、融雪剂等

• 粗盐提纯:溶解、过滤、蒸发

○ 溶解:玻璃棒搅拌,加快溶解

○ 过滤:玻璃棒引流,防止飞溅

蒸发:蒸发皿;玻璃棒搅拌,均匀受热,防止飞溅;较多固体析出时,停止加热,余热烘干,防止飞溅

2. 碳酸钠 (Na₂CO₃)

• 俗名: 纯碱、苏打

• 物理性质: 白色晶体, 风化成粉末, 易溶于水

• 化学性质: 水溶液呈碱性

• 用途:玻璃、造纸、纺织、洗涤、印染

3. 碳酸氢钠 (NaHCO₃)

• 俗名: 小苏打

• 物理性质: 白色粉末, 能溶于水

• 化学性质: 水溶液有弱碱性, 受热易分解

 $\circ \ \ 2\,\mathrm{NaHCO_3} \xrightarrow{\Delta} \mathrm{Na_2CO_3} + \mathrm{H_2O} + \mathrm{CO_2} \uparrow$

• 用途:治疗胃酸过多、做发酵粉

4. 碳酸钙 (CaCO₃)

• 大理石、石灰石的主要成分

• 物理性质: 多为灰白色矿物, 纯净物为白色矿物; 不溶于水, 能溶于酸

• 用途: 建筑材料、补钙剂

三、碳酸盐的化学性质

1. 与盐酸反应

- 。 $Na_2CO_3+2HCl\longrightarrow 2NaCl+H_2O+CO_2$ ↑ (产生大量气泡,固体很快溶解,澄清石灰水变浑浊)
- \circ NaHCO₃ + HCl \longrightarrow NaCl + H₂O + CO₂ ↑ (现象同上)

2. 与澄清石灰水反应

- \circ Na₂CO₃ + Ca(OH)₂ \longrightarrow CaCO₃ ↓ + 2 NaOH (澄清石灰水变浑浊)
 - 纯碱制烧碱

四、复分解反应

- 1. 定义
- 两种化合物互相交换成分, 生成另外两种化合物的反应
- 2. 表达式
- $AB + CD \rightarrow AD + CB$
- 3. 条件
 - 两种化合物互相交换成分,有沉淀或有气体或有水生成

附录 I 部分酸、碱和盐的溶解性表(室温)

阳离子	OH-	NO ₃	Cl ⁻	SO ₄ ²⁻	CO ₃ ²⁻
H⁺		溶、挥	溶、挥	溶	溶、挥
NH ₄ ⁺	溶、挥	溶	溶	溶	溶
K^{+}	溶	溶	溶	溶	溶
Na ⁺	溶	溶	溶	溶	溶
Ba ²⁺	溶	溶	溶	不	不
Ca ²⁺	微	溶	溶	微	不
Mg^{2+}	不	溶	溶	溶	微
Al ³⁺	不	溶	溶	溶	_
Mn ²⁺	不	溶	溶	溶	不
Zn ²⁺	不	溶	溶	溶	不
Fe ²⁺	不	溶	溶	溶	不
Fe ³⁺	不	溶	溶	溶	_
Cu ²⁺	不	溶	溶	溶	_
Ag^+	_	溶	不	微	不

说明:"溶"表示那种物质可溶于水,"不"表示不溶于水,"微"表示微溶于水, "挥"表示挥发性,"一"表示那种物质不存在或遇到水就分解了。

(附表: 部分酸、碱和盐的溶解性表 (室温) , 人教版化学书 P114)

- 4. 性质
 - 化合价不变