MAS291 - HOMEWORK

Nguyen Dang Loc - SE160199

2-14

An order for an automobile can specify either an automatic or a standard transmission, either with or without air conditioning, and with any one of the four colors red, blue, black, or white.

Describe the set of possible orders for this experiment.

Solve:

 $\begin{array}{ccc} A \text{ - automatic transmission} & R \text{ - red} \\ S \text{ - standard transmission} & B \text{ - blue} \\ W \text{ - with air conditioning} & X \text{ - black} \\ O \text{ - without air conditioning} & F \text{ - white} \\ \end{array}$

Possible orders:

 $S = \{AWR, AWB, AWX, AWF, AOR, AOB, AOX, AOF, \\ SWR, SWB, SWX, SWF, SOR, SOB, SOX, SOF\}$

MAS291 - HOMEWORK 1

2-80

Suppose that a patient is selected randomly from the those described in Exercise 2-57.

	Complete Response	Total
Ribavirin plus interferon alfa	16	21
Interferon alfa	6	19
Untreated controls	0	20

Let A denote the event that the patient is in the group treated with interferon alfa, and let B denote the event that the patient has a complete response. Determine the following probabilities.

a)P(A) b)P(B) $c)P(A\cap B)$ $d)P(A\cup B)$ $e)P(A'\cup B)$

Solve:

$$|S| = 60$$

a)
$$P(A) = 19/60 \approx 0.317$$

b)
$$P(B)=22/60pprox0.367$$

c)

 $A \cap B$: Patient who is treated with interferon alfa and has a complete response $P(A \cap B) = 6/60 = 0.1$

d)

 $A \cup B$: Patient who is treated with interferon alfa or has a complete response $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ $= 19/60 + 22/60 - 6/60 \approx 0.583$

e)

 $A' \cup B$: Patient who isn't treated with interferon alfa or has a complete response $A' \cap B$: Patient who isn't treated with interferon alfa and has a complete response According to the table: $|A' \cap B| = 16$

$$P(A' \cap B) = 16/60$$

 $P(A' \cup B) = P(A') + P(B) - P(A' \cap B)$
 $= 1 - P(A) + P(B) - P(A' \cap B)$
 $= (1 - 19/60) + 22/60 - 16/60$
 ≈ 0.783

2-112

Suppose A and B are mutually exclusive events. Construct a Venn diagram that contains the three events A, B and C such that $P(A \mid C) = 1$ and $P(B \mid C) = 0$.

Solve:

$$P(A|C) = P(A \cap C)/P(C) = 1$$

$$\Rightarrow P(A \cap C) = P(C)$$

$$\Rightarrow A \cap C = C$$

$$P(B|C) = P(B \cap C)/P(C) = 0$$

$$\Rightarrow B \cap C = \emptyset$$

MAS291 - HOMEWORK 3