Deena 20104016

In [1]: import pandas as pd
import numpy as np
import matplotlib.pyplot as pp

Problem Statement

LINEAR REGRESSION

In [2]: a = pd.read_csv("16_Sleep_health_and_lifestyle_dataset.csv")

Out[2]:

	Person ID	Gender	Age	Occupation	Sleep Duration	Quality of Sleep	Physical Activity Level	Stress Level	BMI Category	Blo Press
0	1	Male	27	Software Engineer	6.1	6	42	6	Overweight	126
1	2	Male	28	Doctor	6.2	6	60	8	Normal	125
2	3	Male	28	Doctor	6.2	6	60	8	Normal	125
3	4	Male	28	Sales Representative	5.9	4	30	8	Obese	140
4	5	Male	28	Sales Representative	5.9	4	30	8	Obese	140
369	370	Female	59	Nurse	8.1	9	75	3	Overweight	140
370	371	Female	59	Nurse	8.0	9	75	3	Overweight	140
371	372	Female	59	Nurse	8.1	9	75	3	Overweight	140
372	373	Female	59	Nurse	8.1	9	75	3	Overweight	140
373	374	Female	59	Nurse	8.1	9	75	3	Overweight	140

374 rows × 13 columns

HEAD

In [3]:

Out[3]:

	Person ID	Gender	Age	Occupation	Sleep Duration	Quality of Sleep	Physical Activity Level	Stress Level	BMI Category	Bloo Pressur
0	1	Male	27	Software Engineer	6.1	6	42	6	Overweight	126/8
1	2	Male	28	Doctor	6.2	6	60	8	Normal	125/8
2	3	Male	28	Doctor	6.2	6	60	8	Normal	125/8
3	4	Male	28	Sales Representative	5.9	4	30	8	Obese	140/9
4	5	Male	28	Sales Representative	5.9	4	30	8	Obese	140/9

Data Cleaning and Preprocessing

In [4]

Out[4]:

	Person ID	Gender	Age	Occupation	Sleep Duration	Quality of Sleep	Physical Activity Level	Stress Level	BMI Category	Bloo Pressur
0	1	Male	27	Software Engineer	6.1	6	42	6	Overweight	126/8
1	2	Male	28	Doctor	6.2	6	60	8	Normal	125/8
2	3	Male	28	Doctor	6.2	6	60	8	Normal	125/8
3	4	Male	28	Sales Representative	5.9	4	30	8	Obese	140/9
4	5	Male	28	Sales Representative	5.9	4	30	8	Obese	140/9

In [5]:

Out[5]:

	Person ID	Age	Sleep Duration	Quality of Sleep	Physical Activity Level	Stress Level	Heart Rate	Di
count	374.000000	374.000000	374.000000	374.000000	374.000000	374.000000	374.000000	3
mean	187.500000	42.184492	7.132086	7.312834	59.171123	5.385027	70.165775	68.
std	108.108742	8.673133	0.795657	1.196956	20.830804	1.774526	4.135676	16 ⁻
min	1.000000	27.000000	5.800000	4.000000	30.000000	3.000000	65.000000	300
25%	94.250000	35.250000	6.400000	6.000000	45.000000	4.000000	68.000000	560
50%	187.500000	43.000000	7.200000	7.000000	60.000000	5.000000	70.000000	700
75%	280.750000	50.000000	7.800000	8.000000	75.000000	7.000000	72.000000	800
max	374.000000	59.000000	8.500000	9.000000	90.000000	8.000000	86.000000	1000

To display heading

In [7]:

Out[7]: <seaborn.axisgrid.PairGrid at 0x1e3cefcbfa0>

In [8]:

Out[8]: <seaborn.axisgrid.FacetGrid at 0x1e3d1ce9ac0>

In [9]:

Out[9]: <AxesSubplot:>

TO TRAIN THE MODEL - MODEL BUILDING

```
In [10]: x = a[['Physical Activity Level']]
```

In [11]: # to split my dataset into training and test data
from sklearn.model_selection import train_test_split

```
from sklearn.linear_model import LinearRegression
         lr = LinearRegression()
Out[12]: LinearRegression()
         coeff = pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
Out[13]:
                              Co-efficient
           Physical Activity Level
                                0.014773
```

prediction= lr.predict(x_test)

Out[14]: <matplotlib.collections.PathCollection at 0x1e3d4569c10>

In [15]:

Out[15]: -0.066605336372759

RIDGE & LASSO

```
from sklearn.linear_model import Ridge,Lasso
         rr=Ridge(alpha=10)
Out[16]: Ridge(alpha=10)
In [17]:
Out[17]: -0.06659494374799602
```

In [18]: la=Lasso(alpha=10)

Out[18]: Lasso(alpha=10)

In [19]:
Out[19]: -0.026683842505199618

6 of 6