On sum over states (SOS)

Pierre Beaujean

October 30, 2024

On the ground of perturbation theory, the SOS expression of Orr and Ward [1] (see also Bishop [2]) states that any component of any nonlinear optical tensor $\chi^{(n)}(-\omega_{\sigma};\omega_{1},...)$ (of order n)¹ is given by:

$$\chi_{ijk...(\text{n times})}^{(n)}(-\omega_{\sigma};\omega_{1},...) = \hbar^{-n+1} \sum_{\mathcal{P}} \sum_{a_{1},a_{2}...a_{n-1}} \frac{\mu_{0a_{1}}^{i} \mu_{a_{1}a_{2}}^{j} \dots \mu_{a_{n-1}0}^{n}}{\prod_{0 < i < n} (\omega_{a_{i}} - \omega_{\sigma} + \sum_{0 < j < i} \omega_{j})}, \qquad (1)$$

where $i, j, k \dots$ are the Cartesian coordinates x, y, z (in the molecular frame), $\omega_1, \omega_2 \dots$, the (optical) input frequencies of the laser for the NLO process (with $\omega_{\sigma} = \sum_{0 < i < n} \omega_i$), $|a_1\rangle$, $|a_2\rangle$, ..., the electronic states of the system **including the ground state** (with $\hbar\omega_{a_i}$ the excitation energy from ground state, noted $|0\rangle$, to $|a_i\rangle$), $\mu^r_{a_ia_j} = \langle a_i|\hat{r}|a_j\rangle$ the transition dipole moment from state a_i to a_j (it corresponds to the dipole moment of electronic state a_i when i=j), and $\sum_{\mathcal{P}}$ the sum of the different permutations over each pair $(i, \omega_{\sigma}), (j, \omega_1), \dots$

In particular, one has:

$$\alpha_{ij}(-\omega;\omega) = \hbar^{-1} \sum_{\mathcal{P}} \sum_{a_1} \frac{(ij)_{a_1}}{\omega_{a_1} - \omega},$$

$$\beta_{ijk}(-\omega_{\sigma};\omega_1,\omega_2) = \hbar^{-2} \sum_{\mathcal{P}} \sum_{a_1,a_2} \frac{(ijk)_{a_1a_2}}{(\omega_{a_1} - \omega_{\sigma})(\omega_{a_2} - \omega_{\sigma} + \omega_1)},$$

$$\gamma_{ijkl}(-\omega_{\sigma};\omega_1,\omega_2,\omega_3) = \hbar^{-3} \sum_{\mathcal{P}} \sum_{a_1,a_2,a_3} \frac{(ijkl)_{a_1a_2a_3}}{(\omega_{a_1} - \omega_{\sigma})(\omega_{a_2} - \omega_{\sigma} + \omega_1)(\omega_{a_2} - \omega_{\sigma} + \omega_1 + \omega_2)},$$

with the expression for the polarizability $\alpha = \chi^{(1)}$, the first hyperpolarizability, $\beta = \chi^{(2)}$, and the second hyperpolarizability, $\gamma = \chi^{(3)}$, and where the notation of Bishop [2] for the numerator $(ijkl)_{a_1a_2a_3} = \mu^i_{0a_1}\mu^j_{a_1a_2}\mu^k_{a_2a_3}\mu^l_{a_30}$ is used. Any of these expression leads to divergences (singularities) when the denominator is zero. This is referred to as **secular divergence** if this is due to the fact that any $|a_i\rangle = |0\rangle$ (and thus $\omega_{a_i} = 0$), but it can also happen if any of the optical frequencies (or a combination of them) matches $\omega_{a_i} \neq 0$, which one generally refers to as **resonance** [2]. While the latter are inherent to perturbation theory and can be "cured" by introducing damping factors (although the correct way to do so is still debated [3]), the former are purely mathematical, since they can actually be avoided.

 $^{^{1}}$ I'm aware that χ is generaly used to refer to the nonlinear susceptibility, the macroscopic equivalent of what I'm discussing here, but I needed a greek letter.

References

- [1] B.J. Orr and J.F. Ward. Perturbation theory of the non-linear optical polarization of an isolated system. *Mol. Phys.*, 20:513–526, 1971.
- [2] David M. Bishop. Explicit nondivergent formulas for atomic and molecular dynamic hyperpolarizabilities. *The Journal of Chemical Physics*, 100(9):6535–6542, May 1994.
- [3] Jochen Campo, Wim Wenseleers, Joel M. Hales, Nikolay S. Makarov, and Joseph W. Perry. Practical Model for First Hyperpolarizability Dispersion Accounting for Both Homogeneous and Inhomogeneous Broadening Effects. *The Journal of Physical Chemistry Letters*, 3(16):2248–2252, August 2012.