PHẢN ỨNG OXI HÓA – KHỬ

A. PHẦN LÍ THUYẾT

I. ĐỀ TỰ LUYỆN PHẦN LÍ THUYẾT

1.1. Phần tự luận

- Câu 1: Xác định chất oxi hóa, chất khử, quá trình oxi hóa, quá trình khử trong các phản ứng sau:
 - a) $Ag^+ + Fe^{2+} \longrightarrow Ag + Fe^{3+}$
 - b) $3Hg^{2+} + 2Fe \longrightarrow 3Hg + 2Fe^{3+}$
 - c) $2As + 3Cl_2 \longrightarrow 2AsCl_3$
 - d) $Al + 6H^+ + 3NO_3^- \longrightarrow Al^{3+} + 3NO_2 + 3H_2O$
- **Câu 2:** Nước oxi già có tính oxi hóa mạnh, do khả năng oxi hóa của hydrogen peroxide (H₂O₂).
 - a) Từ công thức cấu tạo H-O-O-H, hãy xác định số oxi hóa của mỗi nguyên tử.
 - b) Nguyên tử nguyên tố nào gây nên tính oxi hóa của H_2O_2 . Viết các quá trình oxi hóa, quá trình khử minh họa.
- **Câu 3:** Xăng E₅ là một loại xăng sinh học, được tạo thành khi trộn 5 thể tích ethanol (C₂H₅OH) với 95 thể tích xăng truyền thống, giúp thay thế một phần nhiên liệu hóa thạch, phù hợp với xu thế phát triển chung trên thế giới và góp phần đảm bảo an ninh năng lượng quốc gia. Viết phương trình đốt cháy ethanol tạo thành CO₂ và H₂O. Phản ứng này có phải là phản ứng oxi hóa khử hay không? Nó thuộc loại phản ứng cung cấp hay tích trữ năng lượng?
- **Câu 4:** Trong môi trường acid, anion dichromate (Cr₂O₇²⁻) có màu da cam sẽ bị khử thành cation Cr³⁺ có màu xanh. Phản ứng này được sử dụng để kiểm tra nồng độ ethanol trong hơi thở của tài xế. Trong máy kiểm tra hơi thở, K₂Cr₂O₇ sẽ oxi hóa ethanol (C₂H₅OH) thành ethanal (CH₃CHO), nên có sự đổi màu từ da cam sang xanh theo phương trình hóa học:

 $3CH_3CH_2OH + K_2Cr_2O_7 + 4H_2SO_4 \longrightarrow 3CH_3CHO + Cr_2(SO_4)_3 + K_2SO_4 + 7H_2O$ Xác định chất oxi hóa và chất khử trong phản ứng trên?

Câu 5: Trong không khí ẩm, Fe(OH)₂ màu trắng xanh chuyển dần thành Fe(OH)₃ màu nâu đỏ:

 $Fe(OH)_2 + O_2 + H_2O \longrightarrow Fe(OH)_3$

- a) Hãy xác định các nguyên tử có sự thay đổi số oxi hóa.
- b) Viết quá trình oxi hóa, quá trình khử.
- c) Dùng mũi tên biểu diễn sự chuyển electron từ chất khử sang chất oxi hóa.
- **Câu 6:** Xét phản ứng sản xuất Cl_2 trong công nghiệp: $NaCl + H_2O \xrightarrow{dpdd mn} NaOH + Cl_2 + H_2$
 - a) Xác định các nguyên tử có sự thay đổi số oxi hóa. Chỉ rõ chất oxi hóa, chất khử.

- b) Lập phương trình hóa học của phản ứng theo phương pháp thăng bằng electron.
- Câu 7: Viết các quá trình nhường hay nhận electron của các biến đổi trong các dãy sau:

a)
$$S^{-2} \longrightarrow S^0 \longrightarrow S^{+4} \longrightarrow S^{+6} \longrightarrow S^{+4}$$

b)
$$N^{-3} \longrightarrow N^0 \longrightarrow N^{+2} \longrightarrow N^{+4} \longrightarrow N^{+5} \longrightarrow N^{+2}$$

- **Câu 8:** Một số loại xe ô tô được trang bị một thiết bị an toàn là túi chứa một lượng nhất định hợp chất ion sodium azide bị phân hủy rất nhanh, giải phóng khí N₂ và nguyên tố Na, làm túi phồng lên, bảo vệ được người trong xe tránh khỏi thương tích. Viết PTHH của phản ứng xảy ra và xác định đây có phải là phản ứng oxi hóa khử không? Vì sao? Xác định số oxi hóa của mỗi nguyên tử trong NaN₃.
- Câu 9: Điền vào chỗ trống trong đoạn thông tin sau:

Phản ứng $Fe_2O_3 + CO \longrightarrow Fe + CO_2$ xảy ra trong quá trình luyện gang từ quặng hematite là phản ứng...(1)...vì có sự thay đổi...(2)...của các nguyên tố C và Fe. CO là...(3)..., trong đó C^{+2} ...(4)...electron và Fe_2O_3 là...(5)..., trong đó mỗi Fe^{+3} ...(6)...electron.

Câu 10: Hãy xác định chất khử, chất oxi hóa trong các phản ứng hóa học dưới đây:

a)
$$2HNO_3 + 3H_3AsO_3 \longrightarrow 2NO + 3H_3AsO_4 + H_2O$$

b)
$$NaI + 3HOC1 \longrightarrow NaIO_3 + 3HC1$$

c)
$$2KMnO_4 + 5H_2C_2O_4 + 3H_2SO_4 \longrightarrow 10CO_2 + K_2SO_4 + 2MnSO_4 + 8H_2O_4$$

d)
$$6H_2SO_4 + 2A1 \longrightarrow Al_2(SO_4)_3 + 3SO_2 + 6H_2O$$

1.2. Đáp án phần tự luận

Câu 1: Xác định chất oxi hóa, chất khử, quá trình oxi hóa, quá trình khử trong các phản ứng sau:

a)
$$Ag^+ + Fe^{+2} \longrightarrow Ag + Fe^{+3}$$

b)
$$3Hg^{+2} + 2Fe \longrightarrow 3Hg + 2Fe^{+3}$$

c)
$$2As + 3Cl_2 \longrightarrow 2AsCl_3$$

d)
$$Al + 6H^{+} + 3NO_{3}^{-} \longrightarrow Al^{+3} + 3NO_{2} + 3H_{2}O$$

Đáp án:

a)
$$Ag^+ + Fe^{+2} \longrightarrow Ag + Fe^{+3}$$

- Chất K: Fe⁺² (số oxi hóa tăng +2 → +3); chất OXH: Ag⁺ (số oxi hóa giảm +1 → +3)

-
$$Ag^+ + 1e \longrightarrow Ag (QT K); Fe^{+2} \longrightarrow Fe^{+3} + 1e (QT OXH)$$

b)
$$3Hg^{+2} + 2Fe \longrightarrow 3Hg + 2Fe^{+3}$$

- Chất K: Fe (số oxi hóa tăng 0 → +3); chất OXH: Hg⁺² (số oxi hóa giảm +2 → 0)

-
$$Hg^{+2}$$
 + $2e$ \longrightarrow Hg (QT K); Fe^0 \longrightarrow Fe^{+3} + $3e$ (QT OXH)

c)
$$2As + 3Cl_2 \longrightarrow 2AsCl_3$$

- Chất K: As (số oxi hóa tăng 0 → +3); chất OXH: Cl (số oxi hóa giảm 0 → -1)

-
$$Cl_2 + 2.1e \longrightarrow 2Cl^-$$
 (QT K); $As^0 \longrightarrow As^{+3} + 3e$ (QT OXH)

- d) $Al + 6H^+ + 3NO_3^- \longrightarrow Al^{+3} + 3NO_2 + 3H_2O_3$
- Chất K: Al (số oxi hóa tăng $0 \longrightarrow +3$); chất OXH: NO_3^- (số oxi hóa giảm +5 $\longrightarrow +4$)

$$-N^{+5} + 1e \longrightarrow N^{+4} (QT K); Al^0 \longrightarrow Al^{+3} + 3e (QT OXH)$$

- Câu 2: Nước oxi già có tính oxi hóa manh, do khả năng oxi hóa của hydrogen peroxide (H_2O_2) .
 - a) Từ công thức cấu tạo H-O-O-H, hãy xác định số oxi hóa của mỗi nguyên tử.
 - b) Nguyên tử nguyên tố nào gây nên tính oxi hóa của H₂O₂. Viết các quá trình oxi hóa, quá trình khử minh họa.

Đáp án:

- a) $H^{-1}O^{-1}O^{-1}H^{-1}$
- b) Nguyên tử O¹⁻ gây nên tính oxi hóa của H₂O₂.

$$O^{-1} + 1e \longrightarrow O^{-2} (QT K)$$

Câu 3: Xăng E₅ là một loại xăng sinh học, được tạo thành khi trôn 5 thể tích ethanol (C₂H₅OH) với 95 thể tích xăng truyền thống, giúp thay thế một phần nhiên liệu hóa thạch, phù hợp với xu thế phát triển chung trên thế giới và góp phần đảm bảo an ninh năng lương quốc gia. Viết phương trình đốt cháy ethanol tao thành CO2 và H₂O. Phản ứng này có phải là phản ứng oxi hóa – khử hay không? Nó thuộc loại phản ứng cung cấp hay tích trữ năng lượng?

Đáp án:

$$\overset{^{-2}}{C_2}\,H_5OH + 3\overset{^{0}}{O_2} \, \xrightarrow{\ t^0 \ } 2\overset{^{+4}}{C}\overset{^{-2}}{O_2} \, + 3H_2O$$

Do có sự thay đổi số oxi hóa của C và O, nên phản ứng trên thuộc phản ứng oxi hóa – khử. Phản ứng trên thuộc loại phản ứng cung cấp năng lượng.

Câu 4: Trong môi trường acid, anion dichromate $(Cr_2O_7^{2-})$ có màu da cam sẽ bị khử thành cation Cr³⁺ có màu xanh. Phản ứng này được sử dụng để kiểm tra nồng độ ethanol trong hơi thở của tài xế. Trong máy kiểm tra hơi thở, K₂Cr₂O₇ sẽ oxi hóa ethanol (C₂H₅OH) thành ethanal (CH₃CHO), nên có sự đổi màu từ da cam sang xanh theo phương trình hóa học:

 $3CH_3CH_2OH + K_2Cr_2O_7 + 4H_2SO_4 \longrightarrow 3CH_3CHO + Cr_2(SO_4)_3 + K_2SO_4 + 7H_2O_4$ Xác định chất oxi hóa và chất khử trong phản ứng trên?

$$\underbrace{\frac{\mathbf{D\acute{a}p\ \acute{a}n:}}{\mathbf{D\acute{a}p\ \acute{a}n:}}}_{C.K} + \underbrace{\frac{\mathbf{K}_{2}\overset{+6}{Cr_{2}}O_{7}}{C.OXH}}_{C.OXH} + 4H_{2}SO_{4} \longrightarrow 3\overset{-1}{C_{2}}H_{4}O + \overset{+3}{Cr_{2}}(SO_{4})_{3} + K_{2}SO_{4} + 7H_{2}O$$

Câu 5: Trong không khí ẩm, Fe(OH)₂ màu trắng xanh chuyển dần thành Fe(OH)₃ màu nâu đỏ:

$$Fe(OH)_2 + O_2 + H_2O \longrightarrow Fe(OH)_3$$

- a) Hãy xác định các nguyên tử có sự thay đổi số oxi hóa.
- b) Viết quá trình oxi hóa, quá trình khử.

c) Dùng mũi tên biểu diễn sự chuyển electron từ chất khử sang chất oxi hóa.

Đáp án:

a)
$$\underbrace{\text{Fe}(\text{OH})_2}_{\text{C.K}} + \underbrace{\overset{0}{\text{O}_2}}_{\text{C.OXH}} + \text{H}_2\text{O} \longrightarrow \underbrace{\text{Fe}(\text{OH})_3}_{\text{+3}}$$

b)
$$Fe^{+2} \longrightarrow Fe^{+3} + 1e (QT OXH); \stackrel{0}{O}_{2} + 2.2e \longrightarrow 2O^{-2} (QT K)$$

- Câu 6: Xét phản ứng sản xuất Cl_2 trong công nghiệp: $NaCl + H_2O \xrightarrow{dpdd mn} NaOH + Cl_2$ $+ H_2$
 - a) Xác định các nguyên tử có sự thay đổi số oxi hóa. Chỉ rõ chất oxi hóa, chất khử.
 - b) Lập phương trình hóa học của phản ứng theo phương pháp thăng bằng electron.

Đáp án:

a) Na
$$\overset{-1}{\text{Cl}}$$
 + $\overset{+1}{\text{H}_2}$ O \longrightarrow NaOH + $\overset{0}{\text{Cl}_2}$ + $\overset{0}{\text{H}_2}$

b)
$$\begin{vmatrix} 1x \\ 1x \end{vmatrix} \begin{vmatrix} 2Cl^{-} \longrightarrow Cl_{2} + 2.1e \text{ (QT OXH)} \\ 2H^{+} + 2.1e \longrightarrow H_{2} \text{ (QT K)} \end{vmatrix}$$

$$2\text{Na}\overset{-1}{\text{Cl}} + 2\overset{+1}{\text{H}_2}\text{O} \longrightarrow 2\text{NaOH} + \overset{0}{\text{Cl}_2} + \overset{0}{\text{H}_2}$$

Câu 7: Viết các quá trình nhường hay nhận electron của các biến đổi trong các dãy sau:

a)
$$S^{-2} \longrightarrow S^0 \longrightarrow S^{+4} \longrightarrow S^{+6} \longrightarrow S^{+4}$$

b)
$$N^{-3} \longrightarrow N^0 \longrightarrow N^{+2} \longrightarrow N^{+4} \longrightarrow N^{+5} \longrightarrow N^{+2}$$

a)
$$S^{-2} \longrightarrow S^0 \longrightarrow S^{+4} \longrightarrow S^{+6} \stackrel{\underline{\underline{\mathbf{Dáp án:}}}}{\longrightarrow} S^{+4}$$

$$+ S^{-2} \longrightarrow S^{0} + 2e;$$
 $+ S^{0} \longrightarrow S^{+4} + 4e;$
 $+ S^{+4} \longrightarrow S^{+6} + 2e;$ $+ S^{+6} + 2e \longrightarrow S^{+4}.$

$$+ S^{+4} \longrightarrow S^{+6} + 2e$$
: $+ S^{+6} + 2e \longrightarrow S^{+4}$

b)
$$N^{-3} \longrightarrow N^0 \longrightarrow N^{+2} \longrightarrow N^{+4} \longrightarrow N^{+5} \longrightarrow N^{+2}$$

$$+ N^{-3} \longrightarrow N^0 + 3e;$$
 $+ N^0 \longrightarrow N^{+2} + 2e;$

$$+ N^{+2} \longrightarrow N^{+4} + 2e;$$
 $+ N^{+4} \longrightarrow N^{+5} + 1e;$

$$+ N^{+5} + 3e \longrightarrow N^{+2}$$
.

Câu 8: Môt số loại xe ô tô được trang bị một thiết bị an toàn là túi chứa một lượng nhất định hợp chất ion sodium azide bị phân hủy rất nhanh, giải phóng khí N_2 và nguyên tố Na, làm túi phồng lên, bảo vê được người trong xe tránh khỏi thương tích. Viết PTHH của phản ứng xảy ra và xác định đây có phải là phản ứng oxi hóa – khử không? Vì sao? Xác định số oxi hóa của mỗi nguyên tử trong NaN₃.

Đáp án:

 $\stackrel{_{+1}}{Na}\stackrel{_{-1/3}}{N_3}\longrightarrow \stackrel{_{0}}{Na}+\stackrel{_{0}}{N_2}$ (đây là phản ứng oxi hóa – khử do có sự thay đổi số oxi hóa của nguyên tố Na và N).

Câu 9: Điền vào chỗ trống trong đoạn thông tin sau:

Phản ứng $Fe_2O_3 + CO \longrightarrow Fe + CO_2$ xảy ra trong quá trình luyện gang từ quặng hematite là phản ứng...(1)...vì có sự thay đổi...(2)...của các nguyên tố C và Fe. CO là...(3)..., trong đó C^{+2} ...(4)...electron và Fe_2O_3 là...(5)..., trong đó mỗi Fe^{+3} ...(6)...electron.

Đáp án:

- (1) oxi hóa khử; (2) số oxi hóa; (3) chất khử; (4) nhường 2; (5) chất oxi hóa; (6) nhận 3
- Câu 10: Hãy xác định chất khử, chất oxi hóa trong các phản ứng hóa học dưới đây:
 - a) $2HNO_3 + 3H_3AsO_3 \longrightarrow 2NO + 3H_3AsO_4 + H_2O$
 - b) $NaI + 3HOC1 \longrightarrow NaIO_3 + 3HC1$
 - c) $2KMnO_4 + 5H_2C_2O_4 + 3H_2SO_4 \longrightarrow 10CO_2 + K_2SO_4 + 2MnSO_4 + 8H_2O_4$
 - d) $6H_2SO_4 + 2A1 \longrightarrow Al_2(SO_4)_3 + 3SO_2 + 6H_2O$

Đáp án:

a)
$$2 \underbrace{H \overset{+5}{N} O_3}_{C.OXH} + 3 \underbrace{H_3 \overset{+3}{As} O_3}_{C.K} \longrightarrow 2 \overset{+2}{N} O + 3 H_3 \overset{+5}{As} O_4 + H_2 O$$

b)
$$\underset{C.K}{\text{Na I}} + 3\underbrace{\text{HOCl}}_{\text{C.OXH}} \longrightarrow \text{Na IO}_3 + 3\text{HCl}$$

c)
$$2\underbrace{K \stackrel{+7}{Mn} O_4}_{C,OXH} + 5\underbrace{H_2 \stackrel{+3}{C_2} O_4}_{C,K} + 3H_2SO_4 \longrightarrow 10\stackrel{+4}{C}O_2 + K_2SO_4 + 2MnSO_4 + 8H_2O$$

d)
$$6\underbrace{H_2 \overset{+6}{\text{SO}_4}}_{\text{COXH}} + 2\overset{0}{\text{Al}}_{\text{C.K}} \longrightarrow \overset{+3}{\text{Al}_2}(\text{SO}_4)_3 + 3\overset{+4}{\text{SO}_2} + 6H_2O$$

1.3. Phần trắc nghiệm (30 câu)

Câu 1: Số oxi hóa là một số đại số đặc trưng cho đại lượng nào sau đây của nguyên tử trong phân tử?

A. Hóa trị. tử.

B. Điện tích.

C. Khối lượng.

D. Số hiệu nguyên

Câu 2: (Đề THPT QG - 2018) Nguyên tố chromium (Cr) có số oxi hóa +6 trong hợp chất nào sau đây?

A. $Cr(OH)_3$.

 $\underline{\mathbf{B}_{\bullet}}$ Na₂CrO₄.

 $\mathbf{C.}$ $\mathbf{Cr}_2\mathbf{O}_3$.

D. NaCrO₂.

Câu 3: Chromium(VI) oxide là chất rắn, màu đỏ thẫm, vừa là acidic oxide, vừa là chất oxi hóa mạnh. Số oxi hóa của chromium (Cr) trong oxide trên là

A. 0.

B. +6.

C. +2.

D. +3.

Câu 4: Cho các hợp chất sau: NH₃, NH₄Cl, HNO₃, NO₂. Số hợp chất chứa nguyên tử nitrogen có số oxi hóa –3 là

A. 1.

B. 3.

C. 2.

D. 4.

Câu 5: Cho các phân tử sau: H₂S, SO₃, CaSO₄, Na₂S, H₂SO₄. Số oxi hóa của nguyên tử S trong các phân tử trên lần lượt là

 $2NaCl + Br_2$.

C. $3CaCl_2 + 2K_3PO_4 \longrightarrow Ca_3(PO_4)_2 + 6KCl$. **D.** CaO + 2HCl \longrightarrow CaCl₂ + H₂O.

1.4. Đáp án phần trắc nghiệm

1	2	3	4	5	6	7	8	9	10
В	В	В	C	D	A	В	В	C	В
11	12	13	14	15	16	17	18	19	20
A	В	C	A	A	A	D	В	D	В
21	22	23	24	25	26	27	28	29	30
В	A	C	A	D		В	A	A	D, B

Câu 27: Phản ứng oxi hóa - khử: (c), (e) và (g).

Câu 28: Phản ứng kèm sư thay đổi số oxi hóa: (b).

Câu 29: Phản ứng HCl thể hiện tính khử: (a) và (b).

II. TỔNG ÔN LÍ THUYẾT CHƯƠNG 4 (40 CÂU)

Câu 1: (Đề THPT QG - 2018) Số oxi hóa của chromium (Cr) trong hợp chất K₂Cr₂O₇ là $A_{\bullet} + 2$. **B.** +3. **C.** +6. **D.** +4.

Câu 2: Số oxi hóa của nguyên tử S trong hợp chất SO₂ là

A. +2.

B. +4.

C. +6.

D. -1.

Câu 3: Cho các chất sau: C₂H₆, CH₄O và C₂H₄. Số oxi hóa trung bình của nguyên tử C trong các phân tử trên lần lượt là

 A_{\cdot} -3, -2, -2.

B. -3, -3, -2. **C.** -2, -2, -2.

 \mathbf{D}_{\bullet} -3, -2, -3.

Câu 4: Hợp chất nào sau đây chứa hai loại nguyên tử iron (Fe) với số oxi hóa +2 và +3?

A. FeO.

B. Fe_3O_4 .

C. $Fe(OH)_3$.

D. Fe₂O₃.

Câu 5: Chromium (Cr) có số oxi hóa +2 trong hợp chất nào sau đây?

A. $Cr(OH)_3$.

B. Na_2CrO_4 .

C. CrCl₂.

D. Cr_2O_3 .

Câu 6: Thuốc tím chứa ion permanganate (MnO₄) có tính oxi hóa mạnh, được sử dụng để sát trùng, diệt khuẩn trong y học, đời sống và nuôi trồng thủy sản. Số oxi hóa của manganse trong ion permanganate là

 $A_{\bullet} + 2$.

 $B_{*} + 3$.

C. +7.

D. +6.

Câu 7: Cho các phân tử sau: N₂, NH₃, HNO₃. Số oxi hóa của nguyên tử N trong các phân tử trên lần lượt là

A. 0, -3, -4.

B. 0, +3, +5.

C. -3, -3, +4.

D. 0, -3, +5.

Câu 8: Trong hợp chất SO₃, số oxi hóa của sulfur (S) là

A. +2.

B. +3.

C. +5.

D. +6.

Câu 9: Trong phản ứng oxi hóa – khử, chất nhường electron được gọi là

A. chất khử.

B. chất oxi hóa.

C. acid.

D. base.

Câu 10: Phản ứng kèm theo sự cho và nhận electron được gọi là phản ứng

A. đốt cháy.

B. phân hủy.

C. trao đổi.

D. oxi hóa – khử.

	A. chất khử.	B. acid.	C. base.	<u>D.</u> chất oxi hóa.
Câu 22	Chlorine vừa đóng v nào sau đây?	vai trò chất oxi hóa,	vừa đóng vai trò chấ	ất khử trong phản ứng
	A. $2Na + Cl_2 \xrightarrow{t^0}$	2NaCl.	B. $H_2 + Cl_2 \xrightarrow{as}$	2HCl.
	C. $2\text{FeCl}_2 + \text{Cl}_2 = \frac{t^0}{2}$	\rightarrow 2FeCl ₃ .	<u>D.</u> 2NaOH + Cl ₂ –	→ NaCl + NaClO +
	H_2O .			
Câu 23	Thực hiện các phản	_		
	(a) $C + O_2 \xrightarrow{t^0} CC$			
	(b) $4Al + 3C \xrightarrow{t^0}$			
	(c) C + CO ₂ $\xrightarrow{t^0}$ 2	CO		
	(d) CaO + 3C $\xrightarrow{t^0}$	$CaC_2 + CO$	_	_
	Phản ứng trong đó ca là	arbon vừa đóng vai t	rò chất oxi hóa, vừa	đóng vai trò chất khử
	A. (a).	B. (b).	C. (c).	<u>D.</u> (d).
Câu 24	Phản ứng nào dưới đ	tây NH3 không đóng	g vai trò là chất khử?	?
	A. $4NH_3 + 5O_2 - \frac{t^0, x}{2}$	$\stackrel{\text{tt}}{\longrightarrow} 4\text{NO} + 6\text{H}_2\text{O}.$		
	B. $2NH_3 + 3Cl_2$	\rightarrow N ₂ + 6HCl.		
	C. $2NH_3 + 3CuO$	$\xrightarrow{t^0} 3Cu + N_2 + 3H_2$	O.	
	\mathbf{D}_{\cdot} 2NH ₃ + H ₂ O ₂ + M	$MnSO_4 \longrightarrow MnO_2 +$	$-(NH_4)_2SO_4.$	
Câu 25	Trong phản ứng: 3N	$O_2 + H_2O \longrightarrow 2H^2$	$NO_3 + NO. NO_2$ đón	g vai trò
	A. là chất oxi hoá.	,	,	
	B. là chất oxi hoá, nh	hưng đồng thời cũng	g là chất khử.	
	C. là chất khử.	1, a / a 2 a 2 a 2 a 1, a 2 a a	12 -1-64 1-1-4	
	D. không là chất oxi			
Câu 26	Cho phản ứng: 2Na (Na)	$+ Cl_2 \longrightarrow 2NaCl.$	Trong phản ứng nà	ày, nguyên tử sodium
	A. bị oxi hoá.		B. vừa bị oxi hoá,	vừa bị khử.
	C. bị khử.		D. không bị oxi ho	á, không bị khử.
Câu 27	Cho phản ứng: Zn +	$CuCl_2 \longrightarrow ZnCl_2$	+ Cu. Trong phản ứn	ng này, 1 mol Cu ⁺²
	A. đã nhận 1 mol ele	ectron.	B. đã nhận 2 mol e	lectron.
	C. đã nhường 1 mol	electron.	D. đã nhường 2 mơ	ol electron.
Câu 28	Trong phản ứng dướ 2NO ₂ + 2NaOH -	ri đây, vai trò của N0 → NaNO₃ + NaN0	_	
	A. chỉ bị oxi hoá.	5	B. chỉ bị khử.	
	C. không bị oxi hóa,	, không bị khử.		vừa bị khử.

Câu 29: (Đề TSCĐ - 2008)Cho phản ứng hóa học: $Fe + CuSO_4 \longrightarrow FeSO_4 + Cu$. Trong

phản ứng trên xảy ra

	A. sự oxi hóa Fe và s <u>C.</u> sự oxi hóa Fe và s			Fe ²⁺ và sự oxi hóa Cu. Fe ²⁺ và sự khử Cu ²⁺ .			
_							
2	A. Sn ²⁺ là chất khử, ($Cr^{3+} + 3Sn$. Nha Cr^{3+} là chất oxi	ận xét nào sau đây hóa. B. Cr là chá	về phản ứng trên là đúng? ất oxi hóa, Sn ²⁺ là chất khử.			
_				hất khử, Sn ²⁺ là chất oxi hóa.			
	(Đề TSCĐ - 2010) N crong phản ứng nào s	•	ong vai trò vừa là	chất khử, vừa là chất oxi hoá			
A	$\mathbf{A. S} + 2\mathbf{Na} \xrightarrow{\mathfrak{t}^0} \mathbf{Na_2S}.$						
]	B. S + 6HNO ₃ $\xrightarrow{t^0}$	$H_2SO_4 + 6NC$	$O_2 + 2H_2O$.				
	$C. S + 3F_2 \xrightarrow{t^0} SF$	6•					
<u>]</u>	<u>D.</u> 4S + 6NaOH _(đặc) -	$\xrightarrow{t^0}$ 2Na ₂ S +	$Na_2S_2O_3 + 3H_2O.$				
Câu 32: ((Đề TSĐH A - 2013) Cho phương	trình hóa học:				
	$aAl + bHNO_3 \longrightarrow 0$	_		a: b là			
A	A. 1: 3.	B. 2: 3.	C. 2: 5.	<u>D.</u> 1: 4.			
-			_	FeO là 3 thì hệ số của HNO ₃			
A	A. 6.	B. 8.	C. 4.	<u>D.</u> 10.			
8	(Đề TSĐH A - 2013 aFeSO ₄ + bK ₂ Cr ₂ O ₇ Γỉ lệ a: b là			$K_2SO_4 + fCr_2(SO_4)_3 + gH_2O.$			
<u> 4</u>	<u>A.</u> 6: 1.	B. 2: 3.	C. 3: 2.	D. 1: 6.			
t t	Γi lệ giữa số nguyên	n tử chlorine (cò chất khử tron	Cl) đóng vai trò c	$H \xrightarrow{t^0} KC1 + KC1O_3 + H_2O$. chất oxi hóa và số nguyên tử hóa học của phản ứng đã cho $\mathbf{D.} 1: 3$.			
Câu 36.	Γhực hiện các phản ι						
	(a) $S + O_2 \xrightarrow{t^0} SO$		(b) $Hg + S \longrightarrow$	H ₀ S·			
((c) $H_2 + S \xrightarrow{t^0} H_2S$ Số phản ứng sulfur (S;	(d) $S + 3F_2 \xrightarrow{t^0}$				
	A. 1.	B. 2.	C. 3.	D. 4.			
I	Phản ứng S đóng vai	trò chât oxi hơ	óa: (b) và (c).				
(Cho các phản ứng sa (a) $Ca(OH)_2 + Cl_2 - Choole (b) 2NO_2 + 2NaOH + Choo$	\longrightarrow CaOCl ₂ +					

Câu 40	trong các mangane manganit nhau từ + 1. Cho ca trong các A. +2, -2 2. Phản ứ A. MnO ₂ B. Mn + <u>C.</u> 2HCl	iên nhiê c kim lo se là h te (MnC) +2 tới +7 ác chất lầu 2, -4, +8 frng nào + 4HC) O2	n manganese oại chuyển ausmanite (DOH). Mang 7. sau: Mn, Mn lượt là 8. $\underline{\mathbf{B}}$ 0, +4 sau đây \mathbf{kho} 1 $\overset{\iota^0}{\longrightarrow}$ MnC $\overset{\bullet}{\longrightarrow}$ MnC $\overset{\bullet}{\longrightarrow}$ MnC $\overset{\bullet}{\longrightarrow}$ $\overset{\bullet}{\longrightarrow}$ MnC $\overset{\bullet}{\longrightarrow}$ $\overset{\bullet}{\longrightarrow}$ $\overset{\bullet}{\longrightarrow}$ MnC $\overset{\bullet}{\longrightarrow}$ $\overset{\bullet}{$	e (Mn) là ng tiếp, chỉ sa Mn ₃ O ₄), py anese tồn ta nO_2 , MnCl ₂ +, +2, +7. \mathbf{ng} có sự tha $Cl_2 + Cl_2 + 2$ + + $+$ 2O. $\longrightarrow 3I_2 + 2$	guyên tố t lu Fe và yrolusite ại ở rất nh , KMnO ₄ , C. 0, +4, ay đổi số c	Ti. Các (MnO ₂) hiều trại . Số oxi , –2, +7. oxi hóa c	khoáng , brauni ng thái s hóa của D. 0,	vật ch te (Mng ố oxi ho nguyêr +2, -4,	ính của ${}_{2}O_{3}$) và óa khác ${}_{1}$ tố Mn ${}_{2}$
Câu 40	Trong this trong các mangane manganit nhau từ + 1. Cho các trong các A. +2, -2 2. Phản ứ A. MnO ₂ B. Mn + C. 2HCl D. 6KI + 1	iên nhiên kie kim le se là he (MnC) +2 tới +7 ác chất lầu 2, -4, +8 fing nào 2 + 4HCl O ₂	n manganese oại chuyển ausmanite (DOH). Mang 7. sau: Mn, Mn lượt là 8. $\underline{\mathbf{B}}$ 0, +4 sau đây $\mathbf{khô}$ 1 $\overset{{}_{0}}{\longrightarrow}$ MnCl ₂ $\overset{{}_{0}}{\longrightarrow}$ MnCl ₂ $\overset{{}_{0}}{\longrightarrow}$ MnCl ₂ $\overset{{}_{0}}{\longrightarrow}$ 4 $\overset{{}_{0}}{\longrightarrow}$ MnCl ₂ $\overset{{}_{0}}{\longrightarrow}$ 4 $\overset{{}_{0}}{\longrightarrow}$ 4 $\overset{{}_{0}}{\longrightarrow}$ 4 $\overset{{}_{0}}{\longrightarrow}$ $\overset{{}_{0$	e (Mn) là ng tiếp, chỉ sa Mn ₃ O ₄), py anese tồn ta hO_2 , MnCl ₂ h, +2, +7. h có sự tha hO_2 có sự tha hO_3 có sự tha hO_4 chu	guyên tố t u Fe và yrolusite ai ở rất nh , KMnO ₄ , C. 0, +4, ay đổi số co cH ₂ O.	Ti. Các (MnO ₂) hiều trại . Số oxi . –2, +7. oxi hóa c	khoáng, brauning thái s hóa của D. 0, của nguy	vật ch te (Mng ố oxi ho nguyêr +2, -4, rên tố M	ính của ${}_{2}O_{3}$) và óa khác ${}_{1}$ tố Mn ${}_{2}$ -7 . ${}_{1}$ ${}_{2}$ ${}_{3}$
Câu 40	Trong this trong các mangane manganit nhau từ + 1. Cho ca trong các A. +2, -2 2. Phản ứ A. MnO ₂ B. Mn + C. 2HCl	iên nhiê c kim lo se là h te (MnC) +2 tới +7 ác chất lầu 2, -4, +8 frng nào + 4HC) O2	n manganese oại chuyển ausmanite (DOH). Mang 7. sau: Mn, Mn lượt là 8. $\underline{\mathbf{B}}$. 0 , $+4$ sau đây $\mathbf{khô}$ \mathbf{h} $$	e (Mn) là ng tiếp, chỉ sa Mn ₃ O ₄), py anese tồn ta nO_2 , MnCl ₂ +, +2, +7. \mathbf{ng} có sự tha $2l_2 + Cl_2 + 2l_3$ $2l_4 + H_2O$.	guyên tố t lu Fe và yrolusite ại ở rất nh , KMnO ₄ , C. 0, +4, ay đổi số c	Ti. Các (MnO ₂) hiều trại . Số oxi , –2, +7. oxi hóa c	khoáng , brauni ng thái s hóa của D. 0,	vật ch te (Mng ố oxi ho nguyêr +2, -4,	ính của ${}_{2}O_{3}$) và óa khác ${}_{1}$ tố Mn ${}_{2}$
Câu 40	Trong this trong các mangane manganit nhau từ + 1. Cho ca trong các A. +2, -2 2. Phản ứ A. MnO ₂ B. Mn +	iên nhiê c kim lo se là h te (MnC + 2 tới + 7 ác chất c chất lầu 2, -4, +8 trng nào c + 4HC lo 2	n manganese oại chuyển ausmanite (DOH). Mang 7. sau: Mn, Mn 1 lượt là \mathbf{B}_{\cdot} 0, +4 sau đây khô \mathbf{b}_{\cdot} MnC \mathbf{b}_{\cdot} MnC.	e (Mn) là ng tiếp, chỉ sa Mn ₃ O ₄), py anese tồn ta nO_2 , MnCl ₂ +, +2, +7. \mathbf{ng} có sự tha $Cl_2 + Cl_2 + 2$	guyên tố t tu Fe và yrolusite ại ở rất nh , KMnO ₄ , C. 0, +4, ay đổi số c	Ti. Các (MnO_2) hiều trại . Số oxi $-2, +7$.	khoáng , brauni ng thái s hóa của D. 0,	vật ch te (Mng ố oxi ho nguyêr +2, -4,	ính của ${}_{2}O_{3}$) và óa khác ${}_{1}$ tố Mn ${}_{2}$
Câu 40	Trong this trong các mangane manganit nhau từ + 1. Cho các trong các A. +2, -2 2. Phản ứ A. MnO ₂	iên nhiê c kim lo se là h te (MnC -2 tới +7 ác chất c chất lầi 2, -4, +8 rng nào c + 4HC	n manganese oại chuyển ausmanite (OOH). Mang 7. sau: Mn, Mn n lượt là sau đây khô l — t⁰ → MnC	e (Mn) là ng tiếp, chỉ sa Mn ₃ O ₄), py anese tồn ta nO_2 , MnCl ₂ A_1 , +2, +7. ng có sự tha	guyên tố t tu Fe và yrolusite ại ở rất nh , KMnO ₄ , C. 0, +4, ay đổi số c	Ti. Các (MnO_2) hiều trại . Số oxi $-2, +7$.	khoáng , brauni ng thái s hóa của D. 0,	vật ch te (Mng ố oxi ho nguyêr +2, -4,	ính của ${}_{2}O_{3}$) và óa khác ${}_{1}$ tố Mn ${}_{2}$
Câu 40	Trong this trong các manganit nhau từ + 1. Cho các trong các A. +2, -2 2. Phản ứ	iên nhiê c kim lo se là h te (MnC -2 tới +7 ác chất c chất lầi 2, -4, +8 rng nào	n manganese oại chuyển ausmanite (OOH). Mang 7. sau: Mn, Mn n lượt là 8. <u>B.</u> 0, +4 sau đây khô	e (Mn) là ng tiếp, chỉ sa Mn ₃ O ₄), py anese tồn ta nO_2 , MnCl ₂ A_1 , +2, +7. ng có sự tha	guyên tố t tu Fe và yrolusite ại ở rất nh , KMnO ₄ , C. 0, +4, ay đổi số c	Ti. Các (MnO_2) hiều trại . Số oxi $-2, +7$.	khoáng , brauni ng thái s hóa của D. 0,	vật ch te (Mng ố oxi ho nguyêr +2, -4,	ính của ${}_{2}O_{3}$) và óa khác ${}_{1}$ tố Mn ${}_{2}$
Câu 40	Trong this trong các mangane manganit nhau từ + 1. Cho các trong các A. +2, -2	iên nhiê c kim lo se là h te (MnC + 7 tới + 7 ác chất c chất lầu 2, -4, +8	n manganese oại chuyển ausmanite (OOH). Mang 7. sau: Mn, Mn n lượt là 8. <u>B.</u> 0, +4	e (Mn) là ng tiếp, chỉ sa Mn ₃ O ₄), pg anese tồn ta nO ₂ , MnCl ₂	guyên tố t tu Fe và yrolusite ai ở rất nh , KMnO ₄ .	Ti. Các (MnO_2) hiều trại . Số oxi $-2, +7$.	khoáng , brauni ng thái s hóa của D. 0,	vật ch te (Mng ố oxi ho nguyêr +2, -4,	ính của ${}_{2}O_{3}$) và óa khác ${}_{1}$ tố Mn ${}_{2}$
Câu 40	Trong this trong các mangane manganit nhau từ + 1. Cho các trong các	iên nhiê c kim lo se là h te (MnC +2 tới +7 ác chất c chất lầi	n manganese oại chuyển ausmanite (OOH). Mang 7. sau: Mn, Mi n lượt là	e (Mn) là ng tiếp, chỉ sa Mn ₃ O ₄), py anese tồn ta nO ₂ , MnCl ₂	guyên tố t u Fe và yrolusite ại ở rất nl	Ti. Các (MnO ₂) hiều trại . Số oxi	khoáng , brauni ng thái s hóa của	vật ch te (Mng ố oxi ho nguyêr	ính của 2O ₃) và óa khác n tố Mn
Câu 40	Trong this trong các mangane manganit nhau từ +	iên nhiê c kim lo se là h te (MnC +2 tới +7 ác chất	n manganese oại chuyển ausmanite (OOH). Mang 7. sau: Mn, Mi	e (Mn) là ng tiếp, chỉ sa Mn ₃ O ₄), py anese tồn ta	guyên tố t u Fe và yrolusite ại ở rất nl	Ti. Các (MnO ₂) hiều trại	khoáng , brauni ng thái s	vật ch te (Mn ₂ ố oxi h	ính của 2O ₃) và óa khác
Câu 40	Trong this trong các mangane manganit nhau từ +	iên nhiê c kim lo se là h te (MnC +2 tới +7	n manganese oại chuyển ausmanite (OOH). Mang 7.	e (Mn) là ng tiếp, chỉ sa Mn ₃ O ₄), py anese tồn ta	guyên tố t u Fe và yrolusite ại ở rất nl	Ti. Các (MnO ₂) hiều trại	khoáng , brauni ng thái s	vật ch te (Mn ₂ ố oxi h	ính của 2O ₃) và óa khác
Câu 40	Trong this trong các mangane manganit	iên nhiê c kim lo se là h te (MnC	n manganese oại chuyển ausmanite (OOH). Mang	e (Mn) là ng tiếp, chỉ sa Mn ₃ O ₄), p	guyên tố t u Fe và yrolusite	Ti. Các (MnO ₂)	khoáng , brauni	vật ch te (Mn	ính của ₂ O ₃) và
Câu 40	Trong this trong các mangane	iên nhiê c kim lo se là h	n manganese oại chuyển ausmanite (e (Mn) là ng tiếp, chỉ sa Mn ₃ O ₄), p	guyên tố t u Fe và yrolusite	Ti. Các (MnO ₂)	khoáng , brauni	vật ch te (Mn	ính của ₂ O ₃) và
Câu 40	Trong thi	iên nhiê c kim lo	n manganese oại chuyển	e (Mn) là ng tiếp, chỉ sa	guyên tố t u Fe và	Ti. Các	khoáng	vật ch	ính của
Câu 40	Trong thi	iên nhiê	n manganese	e (Mn) là ng	guyên tố t	•	-		
					_			_	
		. 11/71 41.	â hiân tính a	: 1. / /1. \	(L) 61				
	<u>A.</u> 2.	***	B. 1.		C. 4.		D. 3.		
		ứng tron	ng đó HCl the	ễ hiện tính ơ					
			$InO_4 \longrightarrow 2$	0		$_{2} + 8H_{2}O$	Э.		
	` '		\longrightarrow 2AlCl ₃						
	` '		$r_2O_7 \longrightarrow 2$		$Cl_3 + 3Cl_2$	+ 7H ₂ O.			
			\rightarrow FeCl ₂ +]		11/0.				
Cau 39	•		$2 \longrightarrow MnC$						
Cân 30	,		008) Cho cá						
		g Cl đón	g vai trò chấ	t oxi hóa: (d			٠, ١٠		
	A. 1.	ung cili	B. 2.	ai aio ciiai 0	C. 3.		D. 4.		
	· í		2KCI + 3O ₂ orine đóng va	,	xi hóa là				
	` '		$\longrightarrow \text{FeCI}_3$ $2\text{KCl} + 3\text{O}_2$						
	` /		\longrightarrow 5KC \longrightarrow FeCl ₃	1 + KClO ₃ -	+ 3H ₂ O				
			$I \xrightarrow{t^0} 5KC$. 211.0				
Cau 38		-	ıản ứng sau: l₂	Cla + HaO					
CI^ 20				<i>a</i>), (0), (c),	(u) va (c).				
	A. 2. Số phản 1	írna ovi	B. 3. hóa – khử: (a) (b) (c)	C. 4.		<u>D.</u> 5.		
	-	ung oxi	hóa – khử là		C 4		D 7		
	Số nhản 1	írna ovi	1 / 11 9 11						
	,		KCl + KCl						
	(e) 4KCl	$O_3 \longrightarrow$		O_4 .					

D	A	A	C	D	В	A	C	A	D
21	22	23	24	25	26	27	28	29	30
D	D	D	D	В	A	В	D	C	C
31	32	33	34	35	36	37	38	39	40
D	D	D	A	В	В	D	В	A	B, C

Câu 36: Phản ứng S đóng vai trò chất oxi hóa: (b) và (c).

Câu 37: Số phản ứng oxi hóa – khử: (a), (b), (c), (d) và (e).

Câu 38: Phản ứng Cl đóng vai trò chất oxi hóa: (c) và (d).

Câu 39: Phản ứng HCl thể hiện tính oxi hóa: (b) và (d).

B. PHẦN BÀI TẬP

I. DẠNG 1: XÁC ĐỊNH SỐ OXI HÓA

1.1. Phương pháp – Công thức vận dụng

a) Số oxi hóa của một nguyên tử trong phân tử là điện tích của nguyên tử nguyên tố đó nếu giả định cặp electron chung thuộc hẳn về nguyên tử của nguyên tố có độ âm điện lớn hơn.

b) Quy tắc xác định số oxi hóa

- Quy tắc 1: Số oxi hóa của nguyên tử trong các đơn chất bằng 0.
- Quy tắc 2: Trong một phân tử, tổng số oxi hóa của nguyên tử bằng 0.
- $Quy \, t\check{ac} \, 3$: Trong đa số các hợp chất, số oxi hóa của hydrogen bằng +1, trừ các hydride kim loại (NaH, CaH₂,...). Số oxi hóa của oxygen bằng -2, trừ OF₂ và các peroxide, superoxide (H₂O₂, Na₂O₂, KO₂,...). Kim loại kiềm (IA) luôn có số oxi hóa +1, kim loại kiềm thổ (IIA) có số oxi hóa +2, aluminium (Al) có số oxi hóa +3.
- Quy tắc 4: Trong các ion, số oxi hóa của nguyên tử (đối với ion đơn nguyên tử) hay tổng số oxi hóa các nguyên tử (đối với ion đa nguyên tử) bằng điện tích ion đó.

	U .
Chất/ion	Số oxi hóa
Đơn chất	0
Ion đơn nguyên tử	Điện tích ion
Hợp chất	0
Ion đa nguyên tử	Điện tích ion
IA	+1
IIA	+2
Al	+3
Hydrogen (trừ các hydride kim loại: NaH, CaH ₂ ,)	+1
Oxygen (trừ OF_2 và các peroxide, superoxide: H_2O_2 ,	_2
Na ₂ O ₂ , KO ₂ ,)	<u>-2</u>

1.2. Bài tập vận dụng

- **Câu 1:** Xác định số oxi hóa của mỗi nguyên tử nguyên tố trong các chất hoặc ion sau: Al₂O₃; CaF₂; Fe₂O₃; Na₂CO₃; KAl(SO₄)₂; NO₃; NH₄⁺; MnO₄⁻
- Câu 2: Xác định số oxi hóa của mỗi nguyên tử trong các phân tử và ion sau đây:
 a) H₂SO₃;
 b) Al(OH)₄⁻;

	c) NaAlH ₄ ;	d) NO_2^- .		
Câu 3:	Tính số oxi hóa của nguyên tử đánh	h dấu * trong các chất và ion dưới đây:		
	a) K ₂ Cr ₂ O ₇ ; KMnO ₄ ; KClO ₄ ; NH ₄ N	O_3		
	b) AlO ₂ ; PO ₄ ³⁻ ; ClO ₃ ; SO ₄ ²⁻			
Câu 4:	Xác định số oxi hóa của nguyên tử a) Fe, FeO, Fe ₂ O ₃ , Fe(OH) ₃ , Fe ₃ O ₄ b) S, H ₂ S, SO ₂ , SO ₃ , H ₂ SO ₄ , Na ₂ SO ₅			
Câu 5:	Xác định số oxi hóa của các nguyên tố trong các chất và ion sau: a) Fe, N ₂ , SO ₃ , H ₂ SO ₄ , CuS, Cu ₂ S, Na ₂ O ₂ , H ₃ AsO ₄ . b) Br ₂ , O ₃ , HClO ₃ , KClO ₄ , NaClO, NH ₄ NO ₃ , N ₂ O, NaNO ₂ . c) MnO ₂ , K ₂ MnO ₄ , K ₂ Cr ₂ O ₇ , K ₂ CrO ₄ , Cr ₂ (SO ₄) ₃ , NaCrO ₂ . d) FeS ₂ , FeS, F ₂ O, Fe ₂ O ₃ , Fe ₃ O ₄ . e) Br ⁻ , PO ₄ ³⁻ , MnO ₄ ⁻ , ClO ₃ ⁻ , H ₂ PO ₄ ⁻ , SO ₄ ²⁻ , NH ₄ ⁺ .			
1.3. Đá	p án – Hướng dẫn giải			
Câu 1:	Xác định số oxi hóa của mỗi ngu Al ₂ O ₃ ; CaF ₂ ; Fe ₂ O ₃ ; Na ₂ CO ₃ ; KAlo	yên tử nguyên tố trong các chất hoặc ion sau: (SO ₄) ₂ ; NO ₃ ; NH ₄ ; MnO ₄		
		Giải:		
	$\stackrel{+3}{\text{Al}_2}$ $\stackrel{+2}{\text{O}_3}$; $\stackrel{-1}{\text{Ca}}$ $\stackrel{+3}{\text{Fe}_2}$ $\stackrel{+3}{\text{O}_3}$; $\stackrel{+1}{\text{Na}_2}$ $\stackrel{+4}{\text{CO}_3}$; $\stackrel{+1}{\text{K}}$ $\stackrel{+3}{\text{A}_2}$	$(\overset{+6}{\mathrm{S}}\overset{-}{\mathrm{O}}_{4})_{2}; \overset{+5}{\mathrm{N}}\overset{-}{\mathrm{O}}_{3}; \overset{-3}{\mathrm{N}}\overset{+7}{\mathrm{H}_{4}}; \overset{+7}{\mathrm{Mn}}\overset{-}{\mathrm{O}}_{4}$		
Câu 2:	Xác định số oxi hóa của mỗi nguyế	èn tử trong các phân tử và ion sau đây:		
	a) H ₂ SO ₃ ;	b) Al(OH) ₄ ;		
	c) NaAlH ₄ ;	d) NO_2^- .		
		Giải:		
	a) $H_2 \stackrel{+4}{S} O_3$;	b) Al(OH) ₄ ;		
	c) Na Al H ₄ ;	d) NO_{2}^{-}		
Câu 3:	Tính số oxi hóa của nguyên tử đán	h dấu * trong các chất và ion dưới đây:		
	a) $K_2 Cr_2 O_7$; $K Mn O_4$; $K Cl O_4$; $N H_4 N$	O_3		
	b) AlO ₂ ; PO ₄ ³⁻ ; ClO ₃ ; SO ₄ ²⁻			
		Giải:		
	a) $K_2 \operatorname{Cr}_2^{+6} O_7$; $K \operatorname{Mn} O_4$; $K \operatorname{Cl} O_4$; $N H_4 N$	O_3		
	b) AlO_2^- ; PO_4^{3-} ; ClO_3^- ; SO_4^{2-}			

Câu 4: Xác định số oxi hóa của nguyên tử Fe và S trong các chất sau:

a) Fe, FeO, Fe₂O₃, Fe(OH)₃, Fe₃O₄.

 $b) \ S, \ H_2S, \ SO_2, \ SO_3, \ H_2SO_4, \ Na_2SO_3.$

Giải:

- a) $\stackrel{0}{\text{Fe}}$, $\stackrel{+2}{\text{Fe}}$ O, $\stackrel{+3}{\text{Fe}}$ O₃, $\stackrel{+2}{\text{Fe}}$ (OH)₃, $\stackrel{+2}{\text{Fe}}$ O₄ ($\stackrel{+2}{\text{Fe}}$ O. $\stackrel{+3}{\text{Fe}}$ O₃)
- b) $\overset{0}{S}$, $\overset{-2}{H_2}\overset{+4}{S}$, $\overset{+4}{S}O_2$, $\overset{+6}{S}O_3$, $\overset{+6}{H_2}\overset{+6}{S}O_4$, $\overset{+4}{Na_2}\overset{+4}{S}O_3$

Câu 5: Xác định số oxi hóa của các nguyên tố trong các chất và ion sau:

- a) Fe, N₂, SO₃, H₂SO₄, CuS, Cu₂S, Na₂O₂, H₃AsO₄.
- b) Br₂, O₃, HClO₃, KClO₄, NaClO, NH₄NO₃, N₂O, NaNO₂.
- c) MnO₂, K₂MnO₄, K₂Cr₂O₇, K₂CrO₄, Cr₂(SO₄)₃, NaCrO₂.
- d) FeS₂, FeS, F₂O, Fe₂O₃, Fe₃O₄.
- e) Br⁻, PO₄³⁻, MnO₄⁻, ClO₃⁻, H₂PO₄⁻, SO₄²⁻, NH₄⁺.

Giải:

- a) Fe, $\stackrel{0}{N_2}$, $\stackrel{+6}{S}O_3$, $\stackrel{+6}{H_2}\stackrel{+6}{S}O_4$, $\stackrel{+2}{Cu}\stackrel{-2}{S}$, $\stackrel{+1}{Cu_2}\stackrel{-2}{S}$, $Na_2\stackrel{-1}{O_2}$, $\stackrel{+5}{H_3}\stackrel{As}{As}O_4$
- $b) \,\, \overset{\scriptscriptstyle 0}{\textrm{Br}}_{2}, \,\, \overset{\scriptscriptstyle 0}{\textrm{O}}_{3}, \,\, \overset{\scriptscriptstyle +5}{\textrm{H}}\overset{\scriptscriptstyle +5}{\textrm{ClO}}_{3}, \,\, \overset{\scriptscriptstyle +7}{\textrm{K}}\overset{\scriptscriptstyle +7}{\textrm{ClO}}_{4}, \,\, \overset{\scriptscriptstyle +1}{\textrm{Na}}\overset{\scriptscriptstyle +1}{\textrm{ClO}}, \,\, \overset{\scriptscriptstyle -3}{\textrm{N}}\overset{\scriptscriptstyle +5}{\textrm{N}}\overset{\scriptscriptstyle +5}{\textrm{O}}_{3}, \,\, \overset{\scriptscriptstyle +1}{\textrm{N}}\overset{\scriptscriptstyle +2}{\textrm{O}}, \,\, \overset{\scriptscriptstyle +3}{\textrm{Na}}\overset{\scriptscriptstyle +3}{\textrm{NO}}_{2}$
- c) $\stackrel{+4}{\text{Mn}} O_2$, $\stackrel{+6}{\text{K}_2} \stackrel{+6}{\text{Mn}} O_4$, $\stackrel{+6}{\text{K}_2} \stackrel{+6}{\text{Cr}_2} O_7$, $\stackrel{+6}{\text{K}_2} \stackrel{+6}{\text{Cr}} O_4$, $\stackrel{+3}{\text{Cr}_2} (SO_4)_3$, $\stackrel{+3}{\text{Na}} \stackrel{+3}{\text{Cr}} O_2$
- $d) \,\, \overset{_{+2}}{\text{Fe}} S_2, \,\, \overset{_{+2}}{\text{Fe}} S, \,\, \overset{_{+2}}{\text{Fe}} O, \,\, \overset{_{+3}}{\text{Fe}} {}_2 \, O_3, \,\, Fe_3 O_4 \,\, (\overset{_{+2}}{\text{Fe}} O. \overset{_{+3}}{\text{Fe}} {}_2 \, O_3)$
- e) Br^{-} , $\stackrel{+5}{P}O_{4}^{3-}$, $\stackrel{+7}{Mn}O_{4}^{-}$, $\stackrel{+5}{Cl}O_{3}^{-}$, $H_{2}\stackrel{+5}{P}O_{4}^{-}$, $\stackrel{+6}{S}O_{4}^{2-}$, $\stackrel{-3}{N}H_{4}^{+}$

II. DẠNG 2: LẬP PHƯƠNG TRÌNH PHẢN ỨNG OXI HÓA – KHỬ

2.1. Phương pháp – Công thức vận dụng

1. Khái niệm

Chất khử	Chất oxi hóa
Nhường electron	Nhận electron
Số oxi hóa tăng	Số oxi hóa giảm
Bị oxi hóa	Bị khử
Quá trình oxi hóa	Quá trình khử
Sự oxi hóa	Sự khử
Nhường electron	Nhận electron
-1 2 /	

Phản ứng oxi hóa – khử

b) Phản ứng oxi hóa – **khử** là phản ứng hóa học, trong đó có sự chuyển dịch electron giữa các chất phản ứng hay có sự thay đổi số oxi hóa của một số nguyên tử trong phân tử.

Trong phản ứng oxi hóa – khử luôn xảy ra đồng thời quá trình oxi hóa và quá trình khử.

2. Lập phương trình phản ứng oxi hóa – khử theo phương pháp thăng bằng electron

Nguyên tắc của phương pháp: Tổng số electron chất khử nhường = Tổng số electron chất oxi hóa nhận

Để lập phương trình hóa học của phản ứng oxi hóa – khử theo phương pháp thăng bằng electron, ta thực hiện qua 4 bước như ví dụ dưới đây:

$$NH_3 + O_2 \longrightarrow NO + H_2O$$

- **Bước 1:** Xác định số oxi hóa của các nguyên tử có sự thay đổi số oxi hóa trong phản ứng, từ đó xác định định chất oxi hóa và chất khử (khử tăng, o giảm). $\stackrel{-3}{N} H_3 + \stackrel{0}{O_2} \longrightarrow \stackrel{+2}{NO} + H_2O$ C.K. C.OXH

$$O_2^0 + 2.2e \longrightarrow 2O^{-2} (QT.K)$$

$$N^{-3} \longrightarrow N^{+2} + 5e (QTOXH)$$

- Bước 2: Viết quá trình oxi hóa và quá trình khử (chất khử cho, chất o nhận)
O₂⁰ + 2.2e → 2O⁻² (QT.K)
N⁻³ → N⁺² + 5e (QTOXH)
- Bước 3: Xác định hệ số thích hợp vào các quá trình sao cho tổng electron chất khử nhường bằng tổng electron chất oxi hóa nhận (đưa chéo số electron nhường,

nhận và rút gọn). $5x \begin{vmatrix} O_2^0 + 2.2e & \longrightarrow 2O^{-2} \\ 4x \end{vmatrix} \stackrel{O_2^0}{N^{-3}} & \longrightarrow N^{+2} + 5e$ - **Bước 4:** Đặt các hệ số vào sơ đồ phản ứng. Cân bằng số lượng nguyên tử của các nguyên tố còn lại.

$$4NH_3 + 5O_2 \longrightarrow 4NO + 6H_2O$$

2.2. Bài tấp vân dung

- Câu 1: Cân bằng các phản ứng oxi hóa khử sau (dạng cơ bản)
 - (1) $Fe_2O_3 + CO \longrightarrow Fe + CO_2$
 - (2) $NH_3 + O_2 \longrightarrow NO + H_2O$
 - (3) $NaBr + Cl_2 \longrightarrow NaCl + Br_2$
 - (4) $Cr(OH)_3 + Br_2 + OH^- \longrightarrow CrO_4^{2-} + Br^- + H_2O$
 - (5) $H^+ + MnO_4^- + HCOOH \longrightarrow Mn^{2+} + H_2O + CO_2$
 - (6) $Br_2 + KI \longrightarrow I_2 + KBr$
 - (7) $NO_2 + O_2 + H_2O \longrightarrow HNO_3$
 - (8) $C + HNO_3 \longrightarrow CO_2 + NO + H_2O$
 - (9) $SO_2 + Br_2 + H_2O \longrightarrow H_2SO_4 + HBr$
 - (10) $H_2S + O_2 \longrightarrow S + H_2O$
 - (11) $P + HNO_3 \longrightarrow H_3PO_4 + NO_2 + H_2O$
 - $(12) H_2S + SO_2 \longrightarrow S + H_2O$
- Câu 2: Cân bằng các phản ứng oxi hóa khử sau (dạng môi trường):
 - (1) $HCl + PbO_2 \longrightarrow PbCl_2 + Cl_2 + H_2O$
 - (2) $KMnO_4 + HCl \longrightarrow KCl + MnCl_2 + Cl_2 + H_2O$
 - (3) $HCl + MnO_2 \longrightarrow MnCl_2 + Cl_2 + H_2O$
 - (4) $KMnO_4 + KNO_2 + H_2SO_4 \longrightarrow MnSO_4 + KNO_3 + K_2SO_4 + H_2O_4$
 - (5) $Fe_3O_4 + HNO_3 \longrightarrow Fe(NO_3)_3 + NO + H_2O$
 - (6) $H_2C_2O_4 + KMnO_4 + H_2SO_4 \longrightarrow CO_2 + MnSO_4 + K_2SO_4 + H_2O_4$
 - (7) Zn + HNO₃ \longrightarrow Zn(NO₃)₂ + NO + H₂O

(8)
$$K_2Cr_2O_7 + HCl \longrightarrow KCl + CrCl_3 + Cl_2 + H_2O$$

$$(9) \; Cu + H_2SO_4 \, {}_{(\textrm{\scriptsize d\check{a}c})} \longrightarrow \; CuSO_4 + SO_2 + H_2O$$

(10) Al +
$$H_2SO_4$$
 (đặc) $\xrightarrow{t^0}$ Al₂(SO_4)₃ + SO_2 + H_2O

$$(11) Mg + HNO_3 \longrightarrow Mg(NO_3)_2 + NH_4NO_3 + H_2O$$

(12) Fe + HNO₃
$$\longrightarrow$$
 Fe(NO₃)₃ + NO₂ + H₂O

(13)
$$Zn + HNO_3 \longrightarrow Zn(NO_3)_2 + N_2O + H_2O$$

Câu 3: Cân bằng các phản ứng oxi hóa – khử sau (phản ứng tự oxi hóa – khử và nội oxi hóa – khử):

$$(1) Cu(NO_3)_2 \longrightarrow CuO + NO_2 + O_2$$

(2)
$$Cl_2 + KOH \longrightarrow KCl + KClO_3 + H_2O$$

(3)
$$NO_2 + NaOH \longrightarrow NaNO_2 + NaNO_3 + H_2O$$

(4)
$$Cl_2 + KOH \longrightarrow KCl + KClO + H_2O$$

$$(5) \text{ KClO}_3 \longrightarrow \text{KCl} + \text{O}_2$$

(6)
$$KMnO_4 \longrightarrow K_2MnO_4 + MnO_2 + O_2$$

(7)
$$NaNO_3 \longrightarrow NaNO_2 + O_2$$

(8)
$$NH_4NO_3 \longrightarrow N_2O + H_2O$$

Câu 4: Cân bằng các phản ứng oxi hóa – khử sau (dạng phức tạp):

(1)
$$Fe_xO_y + H_2SO_4 \longrightarrow Fe_2(SO_4)_3 + SO_2 + H_2O$$

$$(2) \ FeS_2 + O_2 \longrightarrow Fe_2O_3 + SO_2$$

(3)
$$FeS_2 + HNO_3 \longrightarrow Fe(NO_3)_3 + H_2SO_4 + NO + H_2O$$

(4)
$$Cu_2S + HNO_3 \longrightarrow Cu(NO_3)_2 + CuSO_4 + NO + H_2O$$

$$(5) M + HNO_3 \longrightarrow M(NO_3)_n + NO + H_2O$$

(6)
$$Al + HNO_3 \longrightarrow Al(NO_3)_3 + N_xO_y + H_2O$$

(7)
$$R + H_2SO_4$$
 (đặc) $\longrightarrow R_2(SO_4)_n + SO_2 + H_2O$

(8)
$$Fe_xO_y + HNO_3 \longrightarrow Fe(NO_3)_3 + NO_2 + H_2O_3$$

2.3. Đáp án – Hướng dẫn giải

Câu 1: Cân bằng các phản ứng oxi hóa – khử sau (dạng cơ bản)

(1)
$$\underbrace{\overset{+3}{\text{Fe}_2}\text{O}_3}_{\text{C.OXH}} + \overset{+2}{\text{CO}}_{\text{C.K}} \longrightarrow \text{Fe} + \text{CO}_2$$

$$\begin{array}{c|cccc}
1x & 2Fe^{+3} + 2.3e & \longrightarrow 2Fe^{0} \\
3x & C^{+2} & \longrightarrow C^{+4} + 2e
\end{array}$$

$$Fe_2O_3 + 3CO \longrightarrow 2Fe + 3CO_2$$

$$(2) \stackrel{-3}{\overset{-3}{N}} \underset{C.K}{\overset{+2}{\overset{-2}{N}}} \xrightarrow{C.OXH} \stackrel{0}{\longrightarrow} \stackrel{+2}{\overset{-2}{\overset{-2}{N}}} + \underset{2}{\overset{+2}{\overset{-2}{\overset{-2}{N}}}}$$

$$4NH_3 + 5O_2 \longrightarrow 4NO + 6H_2O$$

(3) NaBr +
$$\overset{0}{\text{Cl}_2} \longrightarrow \text{NaCl} + \overset{0}{\text{Br}_2}$$

$$\begin{vmatrix} 1x & Cl_2 + 2.1e & \longrightarrow 2Cl^- \\ 1x & 2Br^- & \longrightarrow Br_2 + 2.1e \end{vmatrix}$$

$$2NaBr + Cl_2 \longrightarrow 2NaCl + Br_2$$

$$(4) \underbrace{\overset{^{+3}}{Cr}(OH)_3}_{C.K} + \overset{^{0}}{Br}_2_{C.OXH} + OH^- \longrightarrow \overset{^{+6}}{Cr}O_4^{2-} + Br^- + H_2O$$

$$\begin{array}{c|c} 3x & Br_2 + 2.1e & \longrightarrow 2Br^- \\ 2x & Cr^{+3} & \longrightarrow Cr^{+6} + 3e \end{array}$$

$$2x || Cr^{+3} \longrightarrow Cr^{+6} + 3e^{-3}$$

$$2Cr(OH)_3 + 3Br_2 + 10OH^- \longrightarrow 2CrO_4^{2-} + 6Br^- + 8H_2O$$

(5)
$$H^+ + \stackrel{+7}{Mn}O_4^- + \stackrel{+2}{HCOOH} \longrightarrow \stackrel{+2}{Mn} + \stackrel{+2}{H_2O} + \stackrel{+4}{CO_2}$$

$$2x | Mn^{7+} + 5e \longrightarrow Mn^{2+}$$

$$5x \mid C^{2+} \longrightarrow C^{4+} + 2e$$

$$6H^{+} + 2MnO_{4}^{-} + 5HCOOH \longrightarrow 2Mn^{2+} + 8H_{2}O + 5CO_{2}$$

(6)
$$\overset{-1}{K}\overset{1}{I} + \overset{0}{Br_2} \longrightarrow \overset{-1}{K}\overset{-1}{Br} + \overset{0}{I_2}$$

$$1x || Br_2 + 2.1e \longrightarrow 2Br^-$$

$$1x \mid 2I^- \longrightarrow I_2 + 2.1e$$

$$2KI + Br_2 \longrightarrow 2KBr + I_2$$

$$(7) \stackrel{\text{\tiny +4}}{\text{\tiny NO}_2} + O_2 + O_2 + O_3$$

$$\stackrel{\text{\tiny +5}}{\text{\tiny -2}} O_3$$

$$\stackrel{\text{\tiny +5}}{\text{\tiny -2}} O_3$$

$$4x \mid N^{+4} \longrightarrow N^{+5} + 1e$$

$$4NO_2 + O_2 + 2H_2O \longrightarrow 4HNO_3$$

$$(8) \overset{0}{\overset{C}{\overset{}_{C.K}}} + \underbrace{\overset{+5}{\overset{}_{N}O_{3}}}_{\overset{C.OXH}} \longrightarrow \overset{+4}{\overset{}_{C}O_{2}} + \overset{+2}{\overset{}_{N}O} + \overset{+2}{\overset{}_{N}O} + \overset{+2}{\overset{}_{N}O}$$

$$4x || N^{+5} + 1e \longrightarrow N^{+4}$$

$$1x \mid C \longrightarrow C^{+4} + 4e$$

$$C + 4HNO_3 \longrightarrow 4CO_2 + NO + 2H_2O$$

(9)
$$\overset{+4}{\text{S}} \overset{0}{\text{O}_2} + \overset{0}{\text{Br}_2} + \overset{0}{\text{H}_2} \overset{-1}{\text{O}} \longrightarrow \overset{+6}{\text{H}_2} \overset{-1}{\text{S}} \overset{-1}{\text{O}_4} + \overset{-1}{\text{HBr}}$$

$$\begin{vmatrix} 1x \\ 1x \end{vmatrix} Br_2 + 2.1e \longrightarrow 2Br^-$$

$$\begin{vmatrix} 1x \\ S^{+4} & \longrightarrow S^{+6} + 2e \end{vmatrix}$$

$$1x \mid S^{+4} \longrightarrow S^{+6} + 2e$$

$$SO_2 + Br_2 + 2H_2O \longrightarrow H_2SO_4 + 2HBr$$

(10)
$$H_2\overset{-2}{S} + \overset{0}{O_2} \longrightarrow \overset{0}{S} + H_2\overset{-2}{O}$$

$$\begin{array}{c|c}
1x & O_2 + 2.2e \longrightarrow 2O^{-2} \\
2x & S^{-2} \longrightarrow S^0 + 2e
\end{array}$$

$$2x \mid S^{-2} \longrightarrow S^0 + 2\epsilon$$

$$2H_2S + O_2 \longrightarrow 2S + 2H_2O$$

(11)
$$\stackrel{0}{\underset{C.K}{P}} + \underbrace{H\overset{+5}{\underset{NO_3}{NO_3}}}_{C.OXH} \longrightarrow H_3 \stackrel{+5}{\underset{P}{P}O_4} + \stackrel{+4}{\underset{NO_2}{NO_2}} + H_2O$$

$$5x \mid N^{+5} + 1e \longrightarrow N^{+4}$$

$$1x \mid\mid P \longrightarrow P^{+5} + 5e$$

$$P + 5HNO_3 \longrightarrow H_3PO_4 + 5NO_2 + H_2O$$

$$(12) \text{ H}_2\overset{-2}{\text{S}} + \overset{+4}{\text{S}}\text{O}_2 \longrightarrow \overset{0}{\text{S}} + \text{H}_2\text{O}$$

$$1x \mid \mid S^{+4} + 4e \longrightarrow S^0$$

$$\begin{array}{c|cccc}
1x & S^{+4} + 4e & \longrightarrow & S^0 \\
2x & S^{-2} & \longrightarrow & S^0 + 2e
\end{array}$$

$$2H_2S + SO_2 \longrightarrow 3S + 2H_2O$$

Câu 2: Cân băng các phản ứng oxi hóa – khử sau (dạng môi trường):

(1)
$$\overset{-1}{\text{HCl}} + \overset{+4}{\text{PbO}_2} \longrightarrow \overset{+2}{\text{PbCl}_2} + \overset{0}{\text{Cl}_2} + \overset{0}{\text{Cl}_2} + \text{H}_2\text{O}$$

$$1x || Pb^{+4} + 2e \longrightarrow Pb^{+2}$$

$$|1x| 2Cl^- \longrightarrow Cl_2 + 2.1e$$

$$4HCl + PbO_2 \longrightarrow PbCl_2 + Cl_2 + 2H_2O$$

(2)
$$\underbrace{\operatorname{K} \overset{+7}{\operatorname{Mn}} \operatorname{O}_{4}}_{\operatorname{C.OXH}} + \overset{-1}{\operatorname{H}} \overset{-1}{\operatorname{Cl}_{1}} \longrightarrow \operatorname{KCl} + \overset{+2}{\operatorname{Mn}} \operatorname{Cl}_{2} + \overset{0}{\operatorname{Cl}_{2}} + \operatorname{H}_{2} \operatorname{O}$$

$$2x \mid Mn^{+7} + 5e \longrightarrow Mn^{+}$$

$$2KMnO_4 + 16HCl \longrightarrow 2KCl + 2MnCl_2 + 5Cl_2 + 8H_2O$$

(3)
$$\underset{C.K}{\text{HCl}} + \underbrace{\underset{C.OXH}{\overset{+4}{\text{Mn}}}O_2} \longrightarrow \underset{Mn}{\overset{+2}{\text{Cl}_2}} + \overset{0}{\text{Cl}_2} + \underset{2}{\text{H}_2O}$$

$$1x \mid Mn^{+4} + 2e \longrightarrow Mn^{+2}$$

$$|1x| 2Cl^- \longrightarrow Cl_2 + 2.1e$$

$$4HCl + MnO_2 \longrightarrow MnCl_2 + Cl_2 + 2H_2O$$

$$(4) \underbrace{K \overset{+7}{Mn} O_4}_{C.OXH} + \underbrace{K \overset{+3}{N} O_2}_{C.K} + H_2 SO_4 \longrightarrow \overset{+2}{Mn} SO_4 + K \overset{+5}{N} O_3 + K_2 SO_4 + H_2 O$$

$$5x \mid N^{+3} \longrightarrow N^{+5} + 2\epsilon$$

$$2KMnO_4 + 5KNO_2 + 3H_2SO_4 \longrightarrow 2MnSO_4 + 5KNO_3 + K_2SO_4 + 3H_2O_4 + 2MnSO_4 + 2MnSO_5 + 2MnSO$$

(5)
$$\underbrace{\overset{+8/3}{\text{Fe}_3}\text{O}_4}_{\text{C.K}} + \underbrace{\overset{+5}{\text{MNO}_3}}_{\text{C.OXH}} \longrightarrow Fe(\text{NO}_3)_3 + \overset{+2}{\text{NO}} + \text{H}_2\text{O}$$

$$1x \mid \mid N^{+5} + 3e \longrightarrow N^{+2}$$

$$3x || 3Fe^{+8/3} \longrightarrow 3Fe^{+3} + 1e$$

$$3Fe_3O_4 + 28HNO_3 \longrightarrow 3Fe(NO_3)_3 + NO + 14H_2O$$

(12)
$$F_{\text{C.K}}^{0} + \underbrace{H \overset{+5}{N} O_{3}}_{\text{C.OXH}} \longrightarrow F_{\text{e}}(NO_{3})_{3} + \overset{+4}{N} O_{2} + H_{2}C_{3}$$

$$\begin{array}{c|c} 3x & N^{+5} + 1e \longrightarrow N^{+4} \\ 1x & Fe^0 \longrightarrow Fe^{+3} + 3e \end{array}$$

$$Fe + 6HNO_3 \longrightarrow Fe(NO_3)_3 + 3NO_2 + 3H_2O$$

(13)
$$Z_{n}^{0} + \underbrace{H_{N}^{+5}O_{3}}_{C.OXH} \longrightarrow Z_{n}^{+2}(NO_{3})_{2} + N_{2}O + H_{2}O$$

Câu 3: Cân băng các phản ứng oxi hóa – khử sau (phản ứng tự oxi hóa – khử và nội oxi hóa – khử):

$$(1) \underbrace{Cu(\overset{+5}{N}\overset{-2}{O_3})_2}_{C.K+C.OXH} \longrightarrow CuO + \overset{+4}{N}O_2 + \overset{0}{O_2}$$

$$\begin{vmatrix} 4x & N^{+5} + 1e & \longrightarrow N^{+4} \\ 1x & 2O^{-2} & \longrightarrow O_2 + 2.2e \end{vmatrix}$$

$$1x \parallel 2O^{-2} \longrightarrow O_2 + 2.2e$$

$$2Cu(NO_3)_2 \longrightarrow CuO + 4NO_2 + O_2$$

(2)
$$\overset{0}{\text{Cl}_2}$$
 + KOH \longrightarrow KCl + KClO₃ + H₂O

$$5x || Cl^0 + 1e \longrightarrow Cl^-$$

$$1x \parallel Cl^0 \longrightarrow Cl^{+5} + 5e$$

$$3Cl_2 + 6KOH \longrightarrow 5KCl + KClO_3 + 3H_2O$$

(3)
$$\stackrel{^{+4}}{N}O_2 + NaOH \longrightarrow Na\stackrel{^{+3}}{N}O_2 + Na\stackrel{^{+5}}{N}O_3 + H_2O$$
 $\stackrel{^{-5}}{C.K+OXH}$

$$1x \mid N^{+4} \longrightarrow N^{+5} + 1e$$

$$2NO_2 + 2NaOH \longrightarrow NaNO_2 + NaNO_3 + H_2O$$

(4)
$$\overset{0}{\text{Cl}_2}$$
 + KOH \longrightarrow K $\overset{-1}{\text{Cl}}$ + K $\overset{+1}{\text{Cl}}$ O + H₂O

$$|1x| Cl^0 + 1e \longrightarrow Cl^-$$

$$||x||| Cl^0 \longrightarrow Cl^{+1} + 1e$$

$$Cl_2 + 2KOH \longrightarrow KCl + KClO + H_2O$$

$$(5) \underbrace{K \overset{+5}{\text{Cl}} \overset{-2}{\text{O}_3}}_{\text{C.K+OXH}} \longrightarrow K \overset{-1}{\text{Cl}} + \overset{0}{\text{O}_2}$$

$$2x | Cl^{+5} + 6e \longrightarrow Cl^{-1}$$

$$\begin{array}{c|c} 2x & Cl^{+5} + 6e \longrightarrow Cl^{-} \\ 3x & 2O^{-2} \longrightarrow O_2 + 2.2e \end{array}$$

$$2KClO_3 \longrightarrow 2KCl + 3O_2$$

(6)
$$\underbrace{\operatorname{KMn}^{+7} O_4}_{C \text{ K+OXH}} \longrightarrow \operatorname{K}_2 \operatorname{Mn} O_4 + \operatorname{Mn} O_2 + O_2$$

$$1x||2Mn^{+7} + 4e \longrightarrow Mn^{+6} + Mn^{+4}$$

$$1x \mid 2O^{-2} \longrightarrow O_2 + 2.2e$$

$$2KMnO_4 \longrightarrow K_2MnO_4 + MnO_2 + O_2$$

(7)
$$\underbrace{Na\overset{+5}{N}\overset{-2}{O_3}}_{C.K+OXH}$$
 \longrightarrow $Na\overset{+3}{N}O_2 + \overset{0}{O_2}$

$$\begin{array}{c|cccc}
2x & N^{+5} + 2e & \longrightarrow N^{+3} \\
1x & 2O^{-2} & \longrightarrow O_2 + 2.2e \\
2NaNO_3 & \longrightarrow 2NaNO_2 + O_2
\end{array}$$

(8)
$$\underbrace{\overset{-3}{N}H_4\overset{+5}{N}O_3}_{C.K+OXH} \longrightarrow \overset{+1}{N}_2O + H_2O$$

$$NH_4NO_3 \longrightarrow N_2O + 2H_2O$$

Câu 4: Cân bằng các phản ứng oxi hóa – khử sau (dạng phức tạp):

$$(1) \underbrace{\overset{_{+2y/x}}{\operatorname{Fe}_{x}} \operatorname{O}_{y}}_{\operatorname{C.K}} + \underbrace{\operatorname{H}_{2} \overset{_{+6}}{\operatorname{S}} \operatorname{O}_{4}}_{\operatorname{C.OXH}} \longrightarrow \overset{_{+3}}{\operatorname{Fe}_{2}} (\operatorname{SO}_{4})_{3} + \overset{_{+4}}{\operatorname{S}} \operatorname{O}_{2} + \operatorname{H}_{2} \operatorname{O}$$

$$\begin{array}{c|cccc} (3x - 2y)x & S^{+6} + 2e & \longrightarrow S^{+4} \\ 1x & 2Fe_x^{+2y/x} & \longrightarrow 2xFe^{+3} + 2.(3x - 2y)e \end{array}$$

$$2Fe_{x}O_{y} + (6x - 2y)H_{2}SO_{4} \longrightarrow xFe_{2}(SO_{4})_{3} + (3x - 2y)SO_{2} + (6x - 2y)H_{2}O$$

(2)
$$\stackrel{+2}{\text{Fe}} \stackrel{-1}{\text{S}_2} + \stackrel{0}{\text{O}_2} \longrightarrow \stackrel{+3}{\text{Fe}_2} \stackrel{-2}{\text{O}_3} + \stackrel{+4}{\text{S}} \stackrel{0}{\text{O}_2}$$

$$\begin{vmatrix} 11x \\ 2x \end{vmatrix} \begin{vmatrix} O_2 + 2.2e \longrightarrow 2O^{-2} \\ 2 \stackrel{+2}{Fe} \stackrel{-1}{S_2} \longrightarrow 2Fe^{3+} + 4S^{+4} + 22e \end{vmatrix}$$

$$4FeS_2 + 11O_2 \longrightarrow 2Fe_2O_3 + 8SO_2$$

(3)
$$Fe S_2^{-1} + \underbrace{H \overset{+5}{N} O_3}_{C.OXH} \longrightarrow Fe(NO_3)_3 + H_2 \overset{+6}{S} O_4 + \overset{+2}{N} O + H_2 O$$

$$FeS_2 + 8HNO_3 \longrightarrow Fe(NO_3)_3 + 2H_2SO_4 + 5NO + 2H_2O$$

$$(4) \ \overset{+1}{\overset{-1}{\text{Cu}_2}} \overset{-2}{\overset{-2}{\text{S}}} \ + \ \underbrace{\overset{+5}{\text{M NO}_3}}_{\overset{-}{\text{C.OXH}}} \ \longrightarrow \ \overset{+2}{\text{Cu}} (\text{NO}_3)_2 + \ \text{Cu} \overset{+6}{\overset{-5}{\text{S}}} \text{O}_4 + \ \overset{+2}{\overset{-7}{\text{NO}}} \ + \ \text{H}_2 \text{O}$$

$$\begin{array}{c|c} 10x & N^{+5} + 3e \longrightarrow N^{+2} \\ 3x & Cu_2 & S \longrightarrow 2Cu^{+2} + S^{+6} + 10e \end{array}$$

$$3Cu_2S + 16HNO_3 \longrightarrow 3Cu(NO_3)_2 + 3CuSO_4 + 10NO + 8H_2O$$

(5)
$$\stackrel{0}{\underset{C.K}{M}} + \underbrace{H \stackrel{+5}{\underset{NO_3}{NO_3}}}_{C.OXH} \longrightarrow \stackrel{+n}{\underset{M(NO_3)_n}{M(NO_3)_n}} + \stackrel{+2}{\underset{NO}{NO}} + H_2O$$

$$\begin{array}{c|c} nx & N^{+5} + 3e \longrightarrow N^{+2} \\ 3x & M^0 \longrightarrow M^{+n} + ne \end{array}$$

$$3M + 4nHNO_3 \longrightarrow 3M(NO_3)_n + nNO + 2nH_2O$$

(6)
$$\underset{C.K}{\text{Al}} + \underbrace{\underset{+5}{\text{H}}\underset{N}{\text{O}_3}}_{\text{C.K}} \longrightarrow \underset{-}{\text{Al}}(\text{NO}_3)_3 + \underset{-}{\overset{+2y/x}{\text{N}}}_x \text{O}_y + \text{H}_2\text{O}$$

$$\begin{array}{l} 3x \\ (3x-2y)x \end{array} \Big\| \begin{array}{l} xN^{+5} + (3x-2y)e \longrightarrow N_x^{+2y/x} \\ Al^0 \longrightarrow Al^{+3} + 3e \\ (3x-2y)Al + (12x-6y)HNO_3 \longrightarrow (3x-2y)Al(NO_3)_3 + 3N_xO_y + (6x-3y)H_2O \\ (7) \begin{array}{l} R \\ C.K \end{array} + \underbrace{H_2 \overset{+6}{S}O_4}_{C.OXH} \longrightarrow \overset{+n}{R}_2(SO_4)_n + \overset{+4}{S}O_2 + H_2O \\ nx \\ 2x \end{array} \Big\| \begin{array}{l} S^{+6} + 2e \longrightarrow S^{+4} \\ R^0 \longrightarrow R^{+n} + ne \end{array}$$

$$2R + 2nH_2SO_4$$
 (đặc) $\longrightarrow R_2(SO_4)_n + nSO_2 + 2nH_2O$

$$(8) \underbrace{\overset{_{+2y/x}}{Fe}_{x}O_{y}}_{C.K} + \underbrace{\overset{_{+5}}{N}O_{3}}_{C.OXH} \longrightarrow Fe(NO_{3})_{3} + \overset{_{+4}}{N}O_{2} + H_{2}O$$

$$\begin{array}{c|c} (3x - 2y)x & N^{+5} + 1e \longrightarrow N^{+4} \\ 1x & Fe_x^{+2y/x} \longrightarrow xFe^{+3} + (3x - 2y)e \end{array}$$

$$Fe_xO_y + (6x - 2y)HNO_3 \longrightarrow xFe(NO_3)_3 + (3x - 2y)NO_2 + (3x - y)H_2O_3$$

III. DANG 3: PHẢN ỨNG OXI HÓA – KHỬ VÀ ỨNG DUNG

3.1. Bài tập vận dụng

Câu 1: Đèn xì oxygen – acetylene có cấu tạo gồm hai ống dẫn khí: một ống dẫn khí oxygen, một ống dẫn khí acetylene như hình dưới. Khi đèn hoạt động, hai khí này được trộn vào nhau để thực hiện phản ứng đốt cháy theo sơ đồ: C₂H₂ + O₂ — CO₂ + H₂O

Phản ứng tỏa nhiệt lớn, tạo ra ngọn lửa có nhiệt độ đạt đến 3000 ⁰C nên được dúng để hàn cắt kim loại. Hãy xác định chất oxi hóa, chất khử và lập phương trình hóa học của phản ứng trên theo phương pháp thăng bằng electron.

Câu 2: Trong quá trình luyện gang từ quặng chứa Fe₂O₃, ban đầu không khí nóng được nén vào lò cao, đốt cháy hoàn toàn than cốc kèm theo tỏa nhiệt mạnh:

$$C + O_2 \xrightarrow{t^0} CO_2$$

Khí CO₂ đi lên phía trên, gặp các lớp than cốc và bị khử thành CO:

$$CO_2 + C \xrightarrow{t^0} CO$$

Tiếp đó, khí CO khử Fe₂O₃ thành Fe theo phản ứng tổng quát:

$$Fe_2O_3 + CO \xrightarrow{t^0} Fe + CO_2$$

Lập phương trình hóa học ở trên, chỉ rõ chất oxi hóa, chất khử.

- Câu 3: Xét các phản ứng hóa học xảy ra trong các quá trình sau:
 - a) Luyện gang từ quặng hematite đỏ:

$$Fe_2O_3 + CO \xrightarrow{t^0} FeO + CO_2;$$
 $FeO + CO \xrightarrow{t^0} Fe + CO_2$

b) Luyện zinc (Zn) từ quặng Blend:

$$ZnS + O_2 \xrightarrow{t^0} ZnO + SO_2;$$
 $ZnO + C \xrightarrow{t^0} Zn + CO$

c) Sản xuất xút, chlorine từ dung dịch sodium chloride (NaCl):

$$NaCl + H_2O \xrightarrow{\quad dpdd \ mn \quad} NaOH + Cl_2 + H_2$$

d) Đốt cháy ethanol có trong xăng E5:

$$C_2H_5OH + O_2 \xrightarrow{\ t^0 \ } CO_2 + H_2O$$

Hãy chỉ ra các phản ứng oxi hóa – khử, lập phương trình hóa học của các phản ứng đó theo phương pháp thăng bằng electron và chỉ rõ chất oxi hóa, chất khử.

Câu 4: Xét phản ứng trong giai đoạn đầu của quá trình Ostwald:

$$NH_3 + O_2 \xrightarrow{t^0} NO + H_2O$$

- a) Cân bằng phản ứng trên theo phương pháp thăng bằng electron.
- b) Trong công nghiệp, cần trộn 1 thể tích khí ammonia (NH₃) với bao nhiều thể tích không khí để thực hiện phản ứng trên. Biết không khí chứa 21% thể tích oxygen và các thể tích khí đo ở cùng điều kiện về nhiệt độ và áp suất.
- Câu 5: Copper(II) sulfate được dùng để diệt tảo, rong rêu trong nước bể bơi; dùng để pha chế thuốc Bordoux (trừ bệnh mốc sương trên cây cà chua, khoai tây; bệnh thối thân trên cây ăn quả, cây công nghiệp),...

Trong công nghiệp, copper(II) sulfate thường được sản suất bằng cách ngâm đồng phế liệu trong dung dịch acid H₂SO₄ loãng và sục không khí:

$$Cu + O_2 + H_2SO_4 \longrightarrow CuSO_4 + H_2O$$
 (1)

- a) Lập phương trình hóa học của phản ứng (1) theo phương pháp thăng bằng electron, chỉ rõ chất oxi hóa, chất khử.
- b) Copper(II) sulfate còn được điều chế bằng cách cho copper phế liệu tác dụng với sulfuric acid đặc, nóng:

$$Cu + H_2SO_4 \xrightarrow{t^0} CuSO_4 + SO_2 + H_2O$$
 (2)

Trong hai cách trên, cách nào sử dụng ít sulfuric acid hơn, cách nào ít gây ô nhiễm môi trường hơn?

Câu 5: Gỉ sét là quá trình oxi hóa kim loại, mỗi năm phá hủy khoảng 25% iron (Fe) thép. Gỉ sét được hình thành do kim loại iron (Fe) trong gang hay thép kết hợp với oxygen khi có mặt nước hoặc không khí ẩm. Trên bề mặt gang hay thép bị gỉ hình thành những lớp xốp và giòn dễ vỡ, thường có màu nâu, nâu đỏ hoặc đỏ. Lớp gỉ này không có tác dụng bảo vệ iron (Fe) ở phía trong. Sau thời gian dài, bất kì khối iron (Fe) nào cũng sẽ bị gỉ hoàn toàn và phân hủy. Thành phần của iron (Fe) gỉ gồm Fe(OH)₂, Fe₂O₃.nH₂O.

Một số phản ứng xảy ra trong quá trình gỉ iron (Fe):

$$Fe + O_2 + H_2O \longrightarrow Fe(OH)_2$$
 (1)

$$Fe + O_2 + H_2O + CO_2 \longrightarrow Fe(HCO_3)_2$$
 (2)

$$Fe(HCO_3)_2 \longrightarrow Fe(OH)_2 + CO_2$$
 (3)

$$Fe(OH)_2 + O_2 + H_2O \longrightarrow Fe_2O_3.nH_2O$$
 (4)

- a) Phản ứng nào ở trên là phản ứng oxi hóa khử?
- b) Xác định sự thay đổi số oxi hóa của các nguyên tố, nêu rõ chất khử, chất oxi hóa.
- c) Cân bằng phản ứng trên bằng phương pháp thăng bằng electron.
- **Câu 6:** Rượu gạo là một thức uống có cồn lên men được chưng cất từ gạo theo truyền thống. Rượu gạo được làm từ quá trình lên men tinh bột gạo đã được chuyển thành đường. Vi khuẩn là nguồn gốc của các enzyme chuyển đổi tinh bột thành đường. Nhiệt độ phù hợp để lên men rượu khoảng 20 25 0 C.

Phản ứng thủy phân và phản ứng lên men:

- $(1) \; (C_6 H_{10} O_5)_n + H_2 O \longrightarrow C_6 H_{12} O_6;$
- $(2) \ C_6H_{12}O_6 \xrightarrow{\quad t^0, \ \text{enzyme} \ } C_2H_5OH + CO_2.$
- a) Phản ứng nào ở trên là phản ứng oxi hóa khử? Giải thích.
- b) Trong phản ứng oxi hóa khử, em hãy xác định số oxi hóa của các nguyên tố, nêu rõ chất oxi hóa, chất khử. Cân bằng phản ứng trên bằng phương pháp thăng bằng electron.
- Câu 7: Dưới tác dụng của chất xúc tác, glucose tạo thành các sản phẩm khác nhau:
 - Lên men tạo thành ethanol:

$$\underbrace{C_6 H_{12} O_6}_{\text{(glucose)}} \xrightarrow{\text{enzyme}} \underbrace{C_2 H_5 O H}_{\text{ethanol}} + CO_2 \tag{1}$$

- Ethanol lên men tạo thành acetic acid:

$$\underbrace{C_2H_5OH}_{\text{ethanol}} + O_2 \xrightarrow{\text{enzyme}} \underbrace{CH_3 - COOH}_{\text{acetic acid}} + H_2O$$
 (2)

a) Cho biết vai trò của các chất trong các phản ứng (1) và (2).

- b) Tính lượng glucose cần dùng để thu được 1 lít acetic acid 1M. Giả sử hiệu suất của cả quá trình là 50%.
- Câu 8: Ion Ca⁺² cần thiết cho máu của người hoạt động bình thường. Nồng độ ion calcium không bình thường là dấu hiệu của bệnh. Để xác định nồng độ ion calcium, người ta lấy mẫu máu, sau đó kết tủa ion calcium dưới dạng calcium oxalate (CaC₂O₄) rồi cho calcium oxalate tác dụng với dung dịch potassium permanganate trong môi trường acid theo phản ứng sau:

$$KMnO_4 + CaC_2O_4 + H_2SO_4 \longrightarrow CaSO_4 + K_2SO_4 + MnSO_4 + CO_2 + H_2O_4$$

- a) Lập phương trình hóa học của phản ứng xảy ra bằng phương pháp thăng bằng electron.
- b) Giả sử calcium oxalate kết tủa từ 1 mL máu một người tác dụng vừa hết với 2,05 mL dung dịch potassium permanganate (KMnO₄) 4,88.10⁻⁴M. Xác định nồng độ ion calcium trong máu người đó bằng đơn vị mg Ca⁺²/100 mL máu.
- Câu 9: Sodium peroxide (Na₂O₂), potassium superoxide (KO₂) là những chất oxi hóa mạnh, dễ dàng hấp thụ khí carbon dioxide và giải phóng khí oxygen. Do đó, chúng được sử dụng trong bình lặn hoặc tàu ngầm để hấp thụ khí carbon dioxide và cung cấp khí oxygen cho con người trong hô hấp theo các phản ứng sau:

$$Na_2O_2 + CO_2 \longrightarrow Na_2CO_3 + O_2$$

$$KO_2 + CO_2 \longrightarrow K_2CO_3 + O_2$$

- a) Cân bằng các phản ứng biết rằng nguyên tử oxygen trong Na₂O₂, KO₂ là nguyên tố tự oxi hóa khử.
- b) Theo nghiên cứu, khi hô hấp, thể tích khí carbon dioxide một người thải ra xấp xỉ thể tích oxygen hít vào. Cần trộn bao nhiều Na_2O_2 và KO_2 theo tỉ lệ số mol như thế nào để thể tích khí CO_2 hấp thụ bằng thể tích khí O_2 sinh ra?
- Câu 10: Khí thiên nhiên nén (CNG Compressed Natural Gas) có thành phần chính là methane (CH₄), là nhiêu liệu sạch, thân thiện với môi trường. Xét phản ứng đốt cháy methane trong buồng đốt động cơ xe buýt sử dụng nhiên liệu CNG: CH₄ + O₂ —^{t⁰} → CO₂ + H₂O
 - a) Xác định các nguyên tử có sự thay đổi số oxi hóa. Viết quá trình oxi hóa, quá trình khử.
 - b) Lập phương trình hóa học của phản ứng theo phương pháp thăng bằng electron.
- Câu 11: Trên thế giới, zinc (Zn) được sản xuất chủ yếu từ quặng zinc blende có thành phần chính là ZnS. Ở giai đoạn đầu của quá trình sản xuất, quặng zinc blende được nung trong không khí để thực hiện phản ứng: ZnS + O₂ ¹⁰ → ZnO + SO₂
 - a) Xác định các nguyên tử có sự thay đổi số oxi hóa. Viết quá trình oxi hóa, quá trình khử.
 - b) Lập phương trình hóa học của phản ứng theo phương pháp thăng bằng electron.
- **Câu 12:** Khí đốt hóa lỏng thường được gọi là gas, có thành phần gồm propane (C_3H_8) và butane (C_4H_{10}) . Xét phản ứng đốt cháy butane khi đun bếp gas:

$$C_4H_{10} + O_2 \xrightarrow{t^0} CO_2 + H_2O$$

- a) Xác định các nguyên tử có sự thay đổi số oxi hóa. Chỉ rõ chất oxi hóa, chất khử.
- b) Lập phương trình hóa học của phản ứng theo phương pháp thăng bằng electron.
- Câu 13: Trong công nghiệp, một lượng zinc (Zn) được sản xuất theo phương pháp nhiệt luyện ở $1200\,^{0}$ C theo phản ứng: ZnO + C $\xrightarrow{t^{0}}$ Zn + CO
 - a) Xác định các nguyên tử có sự thay đổi số oxi hóa. Viết quá trình oxi hóa, quá trình khử.
 - b) Lập phương trình hóa học của phản ứng theo phương pháp thăng bằng electron.
- **Câu 14:** Zinc chloride (ZnCl₂) được ứng dụng rất rộng rãi trong nhiều ngành công nghiệp khác nhau như dệt may, chế biến, chất trợ dung trong luyện kim và ngành hóa chất tổng hợp. Nó được dùng để mạ zinc (Zn) lên iron (Fe), được bôi vào khuôn trước khi đúc, đánh bóng thép, là hóa chất làm sạch bề mặt kim loại trước khi hàn. Viết phương trình hóa học của phản ứng điều chế zinc chloride bằng một phản ứng oxi hóa khử và một phản ứng không phải là phản ứng oxi hóa khử.

3.2. Đáp án – Hướng dẫn giải

Câu 1: Đèn xì oxygen – acetylene có cấu tạo gồm hai ống dẫn khí: một ống dẫn khí oxygen, một ống dẫn khí acetylene như hình dưới. Khi đèn hoạt động, hai khí này được trộn vào nhau để thực hiện phản ứng đốt cháy theo sơ đồ: C₂H₂ + O₂ — CO₂ + H₂O

Phản ứng tỏa nhiệt lớn, tạo ra ngọn lửa có nhiệt độ đạt đến 3000 °C nên được dúng để hàn cắt kim loại. Hãy xác định chất oxi hóa, chất khử và lập phương trình hóa học của phản ứng trên theo phương pháp thăng bằng electron.

Giải:

$$\begin{array}{c|c}
\stackrel{-1}{C_2} H_2 + O_2 & \xrightarrow{t^0} \stackrel{+4}{C}O_2 + H_2O \\
\stackrel{C.K}{C.K} & \stackrel{C.OXH}{\longrightarrow} 2C^{+4} + 2.5e \\
5X & O_2 + 2.2e & \longrightarrow 2O^{-2}
\end{array}$$

$$\begin{array}{c|c}
\stackrel{-1}{C_2} H_2 + 5O_2 & \xrightarrow{t^0} 4CO_2 + 2H_2O_2$$

Câu 2: Trong quá trình luyện gang từ quặng chứa Fe₂O₃, ban đầu không khí nóng được nén vào lò cao, đốt cháy hoàn toàn than cốc kèm theo tỏa nhiệt mạnh:

$$C + O_2 \xrightarrow{t^0} CO_2$$

Khí CO₂ đi lên phía trên, gặp các lớp than cốc và bị khử thành CO:

$$CO_2 + C \xrightarrow{t^0} CO$$

Tiếp đó, khí CO khử Fe₂O₃ thành Fe theo phản ứng tổng quát:

$$Fe_2O_3 + CO \xrightarrow{t^0} Fe + CO_2$$

Lập phương trình hóa học ở trên, chỉ rõ chất oxi hóa, chất khử.

Giải:

1)
$$\overset{0}{\overset{}{\text{C}}} + \overset{0}{\overset{}{\overset{}{\text{O}_2}}} \xrightarrow{\overset{t^0}{\overset{}{\text{COXH}}}} \overset{+4}{\overset{}{\text{CO}_2}}$$

$$\begin{vmatrix} 1x \\ 1x \end{vmatrix} \begin{vmatrix} C^0 & \longrightarrow C^{+4} + 4e \\ O_2 + 2.2e & \longrightarrow 2O^{-2} \end{vmatrix}$$

$$|X| |O_2 + 2.2e \longrightarrow 2O$$

$$C + O_2 \xrightarrow{t^0} CO_2$$

2)
$$\overset{+4}{\text{CO}}_2 + \overset{0}{\text{C}} \xrightarrow{t^0} \overset{+2}{\text{CO}}$$

$$\begin{array}{c|cccc}
1x & C^0 & \longrightarrow & C^{+2} + 2e \\
1x & C^{+4} + 2e & \longrightarrow & C^{+2}
\end{array}$$

$$CO_2 + C \xrightarrow{t^0} 2CO$$

3)
$$\underbrace{\overset{+3}{\text{Fe}_2}\text{O}_3}_{\text{C.OXH}} + \overset{+2}{\text{CO}} \longrightarrow \text{Fe} + \overset{+4}{\text{CO}}_2$$

$$1x \mid 2Fe^{+3} + 2.3e \longrightarrow 2Fe^{0}$$

$$3x \mid C^{+2} \longrightarrow C^{+4} + 2e$$

$$Fe_2O_3 + 3CO \longrightarrow 2Fe + 3CO_2$$

Câu 3: Xét các phản ứng hóa học xảy ra trong các quá trình sau:

a) Luyện gang từ quặng hematite đỏ:

$$Fe_2O_3 + CO \xrightarrow{t^0} FeO + CO_2;$$

$$FeO + CO \xrightarrow{t^0} Fe + CO_2$$

b) Luyện zinc (Zn) từ quặng Blend:

$$ZnS + O_2 \xrightarrow{t^0} ZnO + SO_2;$$
 $ZnO + C \xrightarrow{t^0} Zn + CO$

$$ZnO + C \xrightarrow{t^0} Zn + CO$$

c) Sản xuất xút, chlorine từ dung dịch sodium chloride (NaCl):

$$NaCl + H_2O \xrightarrow{dpdd mn} NaOH + Cl_2 + H_2$$

d) Đốt cháy ethanol có trong xăng E5:

$$C_2H_5OH + O_2 \xrightarrow{t^0} CO_2 + H_2O$$

Hãy chỉ ra các phản ứng oxi hóa – khử, lập phương trình hóa học của các phản ứng đó theo phương pháp thăng bằng electron và chỉ rõ chất oxi hóa, chất khử.

Giải:

a)

1)
$$\underbrace{\overset{+3}{\text{Fe}_2}\text{O}_3}_{\text{C.OXH}} + \overset{+2}{\text{CO}} \longrightarrow \overset{+2}{\text{Fe}}\text{O} + \overset{+4}{\text{CO}_2}$$

$$1x \mid 2Fe^{+3} + 2.1e \longrightarrow 2Fe^{+2}$$

$$1x \mid C^{+2} \longrightarrow C^{+4} + 2e$$

$$Fe_2O_3 + CO \longrightarrow 2FeO + CO_2$$

2)
$$\stackrel{+2}{\text{FeO}} + \stackrel{+2}{\text{CO}} \longrightarrow \text{Fe} + \stackrel{+4}{\text{CO}}_2$$
 $|1x| | Fe^{+2} + 2e \longrightarrow Fe^0$
 $|1x| | C^{+2} \longrightarrow C^{+4} + 2e$

FeO + CO $\longrightarrow \text{Fe} + \text{CO}_2$
b)

1) $|2n| = |2n| = |2n|$

$$NH_3 + O_2 \xrightarrow{t^0} NO + H_2O$$

 $C_2H_5OH + 3O_2 \xrightarrow{t^0} 2CO_2 + 3H_2O$

 $\begin{array}{c|cccc}
2x & C^{-2} & \longrightarrow & C^{+4} + 6e \\
3x & O_2 + 2.2e & \longrightarrow & 2O^{-2}
\end{array}$

- a) Cân bằng phản ứng trên theo phương pháp thăng bằng electron.
- b) Trong công nghiệp, cần trộn 1 thể tích khí ammonia (NH₃) với bao nhiều thể tích không khí để thực hiện phản ứng trên. Biết không khí chứa 21% thể tích oxygen và các thể tích khí đo ở cùng điều kiện về nhiệt độ và áp suất.

Giải:

a)
$$\stackrel{-3}{N}H_3 + O_2 \longrightarrow \stackrel{+2}{N}O + H_2O$$

$$\begin{array}{c|c}
 & & \downarrow^{+2}-2 \\
 & & \downarrow^{-2} & \downarrow^{-2}
 \end{array}$$

$$\begin{array}{c|c}
 & & \downarrow^{+2}-2 \\
 & & \downarrow^{-2} & \downarrow^{-2}
 \end{array}$$

$$\begin{array}{c|c}
 & & \downarrow^{+2}-2 \\
 & & \downarrow^{-2} & \downarrow^{-2}
 \end{array}$$

$$\begin{array}{c|c}
 & & \downarrow^{+2}-2 \\
 & & \downarrow^{-2} & \downarrow^{-2}
 \end{array}$$

$$\begin{array}{c|c}
 & & \downarrow^{+2}-2 \\
 & & \downarrow^{-2} & \downarrow^{-2}
 \end{array}$$

$$\begin{array}{c|c}
 & & \downarrow^{-2} & \downarrow^{-2}
 \end{array}$$

$$4NH_3 + 5O_2 \longrightarrow 4NO + 6H_2O$$

b) Chọn
$$V_{NH_3} = 1 L \xrightarrow{PTHH} V_{O_2} = 5/4 V_{NH_3} = 1,2 L \longrightarrow V_{kk} = (100/21).1,2 \approx 5,7 L$$

Câu 5: Copper(II) sulfate được dùng để diệt tảo, rong rêu trong nước bể bơi; dùng để pha chế thuốc Bordoux (trừ bênh mốc sương trên cây cà chua, khoai tây; bênh thối thân trên cây ăn quả, cây công nghiệp),...

Trong công nghiệp, copper(II) sulfate thường được sản suất bằng cách ngâm đồng phế liêu trong dung dịch acid H₂SO₄ loãng và suc không khí:

$$Cu + O_2 + H_2SO_4 \longrightarrow CuSO_4 + H_2O$$
 (1)

- a) Lập phương trình hóa học của phản ứng (1) theo phương pháp thăng bằng electron, chỉ rõ chất oxi hóa, chất khử.
- b) Copper(II) sulfate còn được điều chế bằng cách cho copper phế liệu tác dụng với sulfuric acid đặc, nóng:

$$Cu + H_2SO_4 \xrightarrow{(d c)} \xrightarrow{t^0} CuSO_4 + SO_2 + H_2O$$
 (2)

Trong hai cách trên, cách nào sử dung ít sulfuric acid hơn, cách nào ít gây ô nhiễm môi trường hơn?

a)
$$Cu + O_2 + CuSO_4 \longrightarrow CuSO_4 + H_2O$$

$$\begin{array}{c|c} 1x & O_2^0 + 2.2e & \longrightarrow 2O^{-2} \\ 2x & Cu & \longrightarrow Cu^{+2} + 2e \end{array}$$

$$2Cu + O_2 + 2H_2SO_4 \longrightarrow 2CuSO_4 + 2H_2O$$

- b) Cách (1) ít gây ô nhiễm môi trường hơn do phản ứng (2) sinh ra khí SO₂ gây ô nhiễm môi trường và hiện tượng mưa axit.
- Câu 6: Gỉ sét là quá trình oxi hóa kim loại, mỗi năm phá hủy khoảng 25% iron (Fe) thép. Gi sét được hình thành do kim loại iron (Fe) trong gang hay thép kết hợp với oxygen khi có mặt nước hoặc không khí ẩm. Trên bề mặt gang hay thép bị gỉ hình thành những lớp xốp và giòn dễ vỡ, thường có màu nâu, nâu đỏ hoặc đỏ. Lớp gỉ này không có tác dung bảo vệ iron (Fe) ở phía trong. Sau thời gian dài, bất kì khối iron (Fe) nào cũng sẽ bị gỉ hoàn toàn và phân hủy. Thành phần của iron (Fe) gỉ gồm $Fe(OH)_2$, $Fe_2O_3.nH_2O$.

Một số phản ứng xảy ra trong quá trình gỉ iron (Fe):

$$Fe + O_2 + H_2O \longrightarrow Fe(OH)_2$$
 (1)

$$Fe + O_2 + H_2O + CO_2 \longrightarrow Fe(HCO_3)_2$$
 (2)

$$Fe(HCO_3)_2 \longrightarrow Fe(OH)_2 + CO_2$$
 (3)

$$Fe(OH)_2 + O_2 + H_2O \longrightarrow Fe_2O_3.nH_2O$$
 (4)

- a) Phản ứng nào ở trên là phản ứng oxi hóa khử?
- b) Xác định sự thay đổi số oxi hóa của các nguyên tố, nêu rõ chất khử, chất oxi hóa.
- c) Cân bằng phản ứng trên bằng phương pháp thăng bằng electron.

Giải:

(1)
$$2 \stackrel{0}{\text{Fe}} + \stackrel{0}{\text{O}_2} + 2 \text{H}_2 \text{O} \longrightarrow 2 \stackrel{+2}{\text{Fe}} \stackrel{-2}{\text{O}} \text{H})_2$$

(2)
$$2 \stackrel{0}{\text{Fe}} + \stackrel{0}{\text{O}_2} + 2 \text{H}_2 \text{O} + 5 \text{CO}_2 \longrightarrow 2 \stackrel{+2}{\text{Fe}} (\text{HCO}_3)_2$$

(4)
$$2 \stackrel{+2}{\text{Fe}} (OH)_2 + \stackrel{0}{O}_2 + (2n-4)H_2O \longrightarrow 2 \stackrel{+3}{\text{Fe}}_2 O_3.nH_2O$$

Câu 7: Rượu gạo là một thức uống có cồn lên men được chưng cất từ gạo theo truyền thống. Rượu gạo được làm từ quá trình lên men tinh bột gạo đã được chuyển thành đường. Vi khuẩn là nguồn gốc của các enzyme chuyển đổi tinh bột thành đường. Nhiệt độ phù hợp để lên men rượu khoảng 20 - 25 0 C.

Phản ứng thủy phân và phản ứng lên men:

$$(1) \; (C_6 H_{10} O_5)_n + H_2 O \longrightarrow C_6 H_{12} O_6;$$

$$(2) C_6H_{12}O_6 \xrightarrow{t^0, \text{ enzyme}} C_2H_5OH + CO_2.$$

- a) Phản ứng nào ở trên là phản ứng oxi hóa khử? Giải thích.
- b) Trong phản ứng oxi hóa khử, em hãy xác định số oxi hóa của các nguyên tố, nêu rõ chất oxi hóa, chất khử. Cân bằng phản ứng trên bằng phương pháp thăng bằng electron.

(2)
$$\underbrace{\overset{0}{\text{C}_6} \text{H}_{12} \text{O}_6}_{\text{C.K+C.OXH}} \xrightarrow{t^0, \text{ enzyme}} 2\overset{-2}{\text{C}_2} \text{H}_5 \text{OH} + 2\overset{+4}{\text{C}_0} \text{O}_2$$

Câu 8: Dưới tác dụng của chất xúc tác, glucose tạo thành các sản phẩm khác nhau:

- Lên men tạo thành ethanol:

$$\underbrace{C_6 H_{12} O_6}_{\text{(glu cose)}} \xrightarrow{\text{enzyme}} \underbrace{C_2 H_5 O H}_{\text{ethanol}} + CO_2 \tag{1}$$

- Ethanol lên men tạo thành acetic acid:

$$\underbrace{C_2H_5OH}_{\text{ethanol}} + O_2 \xrightarrow{\text{enzyme}} \underbrace{CH_3 - COOH}_{\text{acetic acid}} + H_2O$$
 (2)

- a) Cho biết vai trò của các chất trong các phản ứng (1) và (2).
- b) Tính lương glucose cần dùng để thu được 1 lít acetic acid 1M. Giả sử hiệu suất của cả quá trình là 50%.

Giải:

a)

(1)
$$\underbrace{\overset{0}{C_6} \overset{1}{H_{12}O_6}}_{C.K+C.OXH} \xrightarrow{t^0, \text{ enzyme}} 2\overset{-2}{C_2} \overset{1}{H_5OH} + 2\overset{+4}{CO_2}$$

(2)
$$\underbrace{\overset{-2}{C_2} \overset{}{H_5OH}}_{C.K} + \overset{0}{\overset{}{O_2}}_{C.OXH} \xrightarrow{enzyme} \overset{0}{C_2} \overset{}{H_4O_2} + \overset{-2}{H_2O}$$

b)
$$C_6H_{12}O_6 \xrightarrow{t^0, \text{ enzyme}} 2C_2H_5OH \xrightarrow{\text{enzyme}} 2CH_3COOH \atop 0,5*(100/50) \text{ mol} \longleftarrow 1 \text{ mol}$$

$$\Rightarrow$$
 $n_{C_6H_{12}O_6} = 1 \text{ mol } \longrightarrow m_{C_6H_{12}O_6} = 180 \text{ gam}$

Câu 9: Ion Ca⁺² cần thiết cho máu của người hoạt động bình thường. Nồng độ ion calcium không bình thường là dấu hiệu của bênh. Để xác định nồng đô ion calcium, người ta lấy mẫu máu, sau đó kết tủa ion calcium dưới dạng calcium oxalate (CaC₂O₄) rồi cho calcium oxalate tác dụng với dung dịch potassium permanganate trong môi trường acid theo phản ứng sau:

$$KMnO_4 + CaC_2O_4 + H_2SO_4 \longrightarrow CaSO_4 + K_2SO_4 + MnSO_4 + CO_2 + H_2O_4$$

- a) Lập phương trình hóa học của phản ứng xảy ra bằng phương pháp thăng bằng electron.
- b) Giả sử calcium oxalate kết tủa từ 1 mL máu một người tác dụng vừa hết với 2,05 mL dung dich potassium permanganate (KMnO₄) 4,88.10⁻⁴M. Xác định nồng độ ion calcium trong máu người đó bằng đơn vị mg Ca+2/100 mL máu.

Giải:

a)
$$2\underbrace{K \stackrel{+7}{Mn} O_4}_{C.OXH} + 5\underbrace{Ca \stackrel{+3}{C_2} O_4}_{C.K} + 8H_2SO_4 \longrightarrow 5CaSO_4 + K_2SO_4 + 2\stackrel{+2}{M}nSO_4 + 10\stackrel{+4}{C}O_2 + 8H_2O_4$$

b)
$$n_{KMnO_4} = 10^{-6} \text{ mol} \xrightarrow{PTHH} n_{CaC_2O_4} = 2,5.10^{-6} \text{ mol}$$

 $\longrightarrow m_{CaC_2O_4(100 \text{ mL},M)} = 2,5.10^{-6}.40.10^3.100 = 10 \text{ mg/}100 \text{ mL}$

Câu 10: Sodium peroxide (Na₂O₂), potassium superoxide (KO₂) là những chất oxi hóa mạnh, dễ dàng hấp thụ khí carbon dioxide và giải phóng khí oxygen. Do đó, chúng được sử dụng trong bình lặn hoặc tàu ngầm để hấp thụ khí carbon dioxide và cung cấp khí oxygen cho con người trong hô hấp theo các phản ứng sau:

$$Na_2O_2 + CO_2 \longrightarrow Na_2CO_3 + O_2$$

 $KO_2 + CO_2 \longrightarrow K_2CO_3 + O_2$

- a) Cân bằng các phản ứng biết rằng nguyên tử oxygen trong Na₂O₂, KO₂ là nguyên tố tư oxi hóa khử.
- b) Theo nghiên cứu, khi hô hấp, thể tích khí carbon dioxide một người thải ra xấp xỉ thể tích oxygen hít vào. Cần trộn bao nhiêu Na₂O₂ và KO₂ theo tỉ lệ số mol như thế nào để thể tích khí CO₂ hấp thụ bằng thể tích khí O₂ sinh ra?

Giải:

a) $2Na_2O_2 + 2CO_2 \longrightarrow 2Na_2CO_3 + O_2$ (1) $4KO_2 + 2CO_2 \longrightarrow 2K_2CO_3 + 3O_2$ (2)

b) Dựa vào phản ứng (1) và (2): Cần trộn Na₂O₂ và KO₂ theo tỉ lệ 1 : 2 thì thể tích khí CO₂ hấp thụ bằng thể tích khí O₂ sinh ra. PTHH:

$$Na_2O_2 + 2KO_2 + 2CO_2 \longrightarrow Na_2CO_3 + K_2CO_3 + 2O_2$$

- Câu 11: Khí thiên nhiên nén (CNG Compressed Natural Gas) có thành phần chính là methane (CH₄), là nhiêu liệu sạch, thân thiện với môi trường. Xét phản ứng đốt cháy methane trong buồng đốt động cơ xe buýt sử dụng nhiên liệu CNG: CH₄ + O₂ — t⁰ → CO₂ + H₂O
 - a) Xác định các nguyên tử có sự thay đổi số oxi hóa. Viết quá trình oxi hóa, quá trình khử.
 - b) Lập phương trình hóa học của phản ứng theo phương pháp thăng bằng electron.

Giải:

$$\begin{array}{cccc}
\stackrel{-4}{\text{C}}\text{H}_4 + & \stackrel{0}{\text{O}_2} & \longrightarrow & \stackrel{+4}{\text{C}}\text{O}_2 + & \text{H}_2\text{O} \\
\downarrow^{\text{C.K}} & \stackrel{\text{C.OXH}}{\text{C.OXH}} & \longrightarrow & \stackrel{+4}{\text{C}}\text{O}_2 + & \text{H}_2\text{O} \\
\downarrow^{\text{C.K}} & \downarrow^{\text{C.OXH}} & \longrightarrow & \stackrel{+4}{\text{C}}\text{O}_2 + & \text{H}_2\text{O} \\
\downarrow^{\text{C.OXH}} & \downarrow^{\text{C.OXH}} & \longrightarrow & \stackrel{+4}{\text{C}}\text{O}_2 + & \text{C.OXH} \\
\downarrow^{\text{C.OXH}} & \downarrow^{\text{C.OXH}} & \longrightarrow & \stackrel{+4}{\text{C}}\text{O}_2 + & \text{C.OXH} \\
\downarrow^{\text{C.OXH}} & \downarrow^{\text{C.OXH}} & \longrightarrow & \stackrel{+4}{\text{C}}\text{O}_2 + & \text{C.OXH} \\
\downarrow^{\text{C.OXH}} & \downarrow^{\text{C.OXH}} & \longrightarrow & \stackrel{+4}{\text{C.OXH}} & \longrightarrow & \stackrel{+4}{\text{C.OXH}} \\
\downarrow^{\text{C.OXH}} & \downarrow^{\text{C.OXH}} & \longrightarrow & \stackrel{+4}{\text{C.OXH}} & \longrightarrow & \stackrel{+4}{\text{C.OXH}} & \longrightarrow & \stackrel{+4}{\text{C.OXH}} \\
\downarrow^{\text{C.OXH}} & \downarrow^{\text{C.OXH}} & \longrightarrow & \stackrel{+4}{\text{C.OXH}} & \longrightarrow & \stackrel{+4}{\text{C.OXH}} & \longrightarrow & \stackrel{+4}{\text{C.OXH}} \\
\downarrow^{\text{C.OXH}} & \downarrow^{\text{C.OXH}} & \longrightarrow & \stackrel{+4}{\text{C.OXH}} & \longrightarrow & \stackrel{+4}{\text{C.OXH}} & \longrightarrow & \stackrel{+4}{\text{C.OXH}} \\
\downarrow^{\text{C.OXH}} & \downarrow^{\text{C.OXH}} & \longrightarrow & \stackrel{+4}{\text{C.OXH}} & \longrightarrow & \stackrel{+4}{\text{C.OXH}} & \longrightarrow & \stackrel{+4}{\text{C.OXH}} \\
\downarrow^{\text{C.OXH}} & \downarrow^{\text{C.OXH}} & \longrightarrow & \stackrel{+4}{\text{C.OXH}} & \longrightarrow & \stackrel{+4}{\text{C.OXH}} & \longrightarrow & \stackrel{+4}{\text{C.OXH}} \\
\downarrow^{\text{C.OXH}} & \downarrow^{\text{C.OXH}} & \longrightarrow & \stackrel{+4}{\text{C.OXH}} & \longrightarrow & \stackrel{+4}{\text{C.OXH}} & \longrightarrow & \stackrel{+4}{\text{C.OXH}} \\
\downarrow^{\text{C.OXH}} & \downarrow^{\text{C.OXH}} & \longrightarrow & \stackrel{+4}{\text{C.OXH}} & \longrightarrow & \stackrel{+4}{\text{C.OXH}} & \longrightarrow & \stackrel{+4}{\text{C.OXH}} \\
\downarrow^{\text{C.OXH}} & \downarrow^{\text{C.OXH}} & \longrightarrow & \stackrel{+4}{\text{C.OXH}} & \longrightarrow & \stackrel{+4}{\text{C.OXH}} & \longrightarrow & \stackrel{+4}{\text{C.OXH}} \\
\downarrow^{\text{C.OXH}} & \downarrow^{\text{C.OXH}} & \longrightarrow & \stackrel{+4}{\text{C.OXH}} & \longrightarrow & \stackrel{+4}{\text{C.OXH}} & \longrightarrow & \stackrel{+4}{\text{C.OXH}} \\
\downarrow^{\text{C.OXH}} & \downarrow^{\text{C.OXH}} & \longrightarrow & \stackrel{+4}{\text{C.OXH}} & \longrightarrow & \stackrel{+4}{\text{C.OXH}} & \longrightarrow & \stackrel{+4}{\text{C.OXH}} \\
\downarrow^{\text{C.OXH}} & \downarrow^{\text{C.OXH}} & \longrightarrow & \stackrel{+4}{\text{C.OXH}} & \longrightarrow$$

- Câu 12: Trên thế giới, zinc (Zn) được sản xuất chủ yếu từ quặng zinc blende có thành phần chính là ZnS. Ở giai đoạn đầu của quá trình sản xuất, quặng zinc blende được nung trong không khí để thực hiện phản ứng: ZnS + O₂ ^{t⁰} → ZnO + SO₂
 - a) Xác định các nguyên tử có sự thay đổi số oxi hóa. Viết quá trình oxi hóa, quá trình khử.
 - b) Lập phương trình hóa học của phản ứng theo phương pháp thăng bằng electron.

Giải:

$$Zn \stackrel{-2}{S} + O_{2} \longrightarrow Zn \stackrel{-2}{O} + \stackrel{+4}{S}O_{2}$$

$$2x | S^{-2} \longrightarrow S^{+4} + 6e (QT.OXH)$$

$$3x | O_{2} + 2.2e \longrightarrow 2O^{-2} (QT.K)$$

$$2ZnS + 3O_{2} \stackrel{t^{0}}{\longrightarrow} 2ZnO + 2SO_{2}$$

Câu 13: Khí đốt hóa lỏng thường được gọi là gas, có thành phần gồm propane (C_3H_8) và butane (C_4H_{10}) . Xét phản ứng đốt cháy butane khi đun bếp gas:

$$C_4H_{10}+O_2 \xrightarrow{\quad t^0\quad} CO_2+H_2O$$

- a) Xác định các nguyên tử có sự thay đổi số oxi hóa. Chỉ rõ chất oxi hóa, chất khử.
- b) Lập phương trình hóa học của phản ứng theo phương pháp thăng bằng electron.

Giải:

$$\underbrace{\overset{-10/4}{C}_{4}H_{10}}_{C.K} + \overset{0}{O_{2}}_{C.OXH} \longrightarrow \overset{+4-2}{C}O_{2} + H_{2}O$$

$$2x \mid C_{4}^{-2.5} \longrightarrow 4C^{+4} + 26e (QT.OXH)$$

$$13x \mid O_{2} + 2.2e \longrightarrow 2O^{-2} (QT.K)$$

$$2C_{4}H_{10} + 13O_{2} \xrightarrow{t^{0}} 8CO_{2} + 10H_{2}O$$

- Câu 14: Trong công nghiệp, một lượng zinc (Zn) được sản xuất theo phương pháp nhiệt luyện ở 1200 ⁰C theo phản ứng: ZnO + C ^{t⁰}→ Zn + CO
 - a) Xác định các nguyên tử có sự thay đổi số oxi hóa. Viết quá trình oxi hóa, quá trình khử.
 - b) Lập phương trình hóa học của phản ứng theo phương pháp thăng bằng electron.

Giải:

Câu 15: Zinc chloride (ZnCl₂) được ứng dụng rất rộng rãi trong nhiều ngành công nghiệp khác nhau như dệt may, chế biến, chất trợ dung trong luyện kim và ngành hóa chất tổng hợp. Nó được dùng để mạ zinc (Zn) lên iron (Fe), được bôi vào khuôn trước khi đúc, đánh bóng thép, là hóa chất làm sạch bề mặt kim loại trước khi hàn. Viết phương trình hóa học của phản ứng điều chế zinc chloride bằng một phản ứng oxi hóa khử và một phản ứng không phải là phản ứng oxi hóa – khử.

Giải:

(1) Điều chế ZnCl₂ từ phản ứng oxi hóa – khử:

$$Zn + 2HCl \longrightarrow ZnCl_2 + H_2$$

(2) Điều chế ZnCl₂ từ phản ứng không phải oxi hóa – khử:

IV. DẠNG 4: PHƯƠNG PHÁP BẢO TOÀN SỐ MOL ELECTRON

4.1. Phương pháp – Công thức vận dụng

a) Công thức tính toán thường gặp

- Tính số mol chất khí ở điều kiện chuẩn (25°C, 1 bar)

$$n = \frac{m}{M} \longrightarrow m = n.M \longrightarrow M = \frac{m}{n}$$

$$C_M = \frac{n}{V} \longrightarrow n = C_M.V \longrightarrow V = \frac{n}{C_M}$$

- Nồng độ phần trăm của dung dịch

$$C\% = \frac{m_{ct}}{m_{dd}}.100 \longrightarrow m_{ct} = \frac{C\%.m_{dd}}{100} \longrightarrow m_{dd} = \frac{m_{ct}}{C\%}.100$$

- + C% nồng độ % của chất tan trong dung dịch.
- + m_{ct} khối lượng chất tan trong dung dịch (gam).
- + m_{dd} khối lượng dung dịch (gam).

b) Cách tính số mol electron

- $n_e = n_X.n$ (n là số electron nhường hoặc nhận).

+
$$Zn \longrightarrow Zn^{+2} + 2e \implies n_e = 2.n_{Zn}$$

+ Al
$$\longrightarrow$$
 Al⁺³ + 3e \Rightarrow n_e = 3.n_{Al}

$$+ Zn \longrightarrow Zn^{+2} + 2e \Rightarrow n_e = 2.n_{Zn}$$

$$+ Al \longrightarrow Al^{+3} + 3e \Rightarrow n_e = 3.n_{Al}$$

$$+ S^{+6} + 2e \longrightarrow S^{+4} (SO_2) \Rightarrow n_e = 2.n_{SO_2}$$

$$+ 2H^+ + 2.1e \longrightarrow H_2 \Rightarrow n_e = 2.n_{H_2}$$

$$+ 2H^+ + 2.1e \longrightarrow H_2 \implies n_e = 2.n_{H_2}$$

c) Phương pháp bảo toàn số mol electron

- Cơ sở của phương pháp: $\sum n_e (\text{nhường}) = \sum n_e (\text{nhận})$.
- Phạm vi áp dụng:
- + Có xảy ra phản ứng oxi hóa khử.
- + Có mối liên hệ giữa các chất ban đầu và sản phẩm của quá trình oxi hóa khử.
 - Luu ý:
 - + Có thể áp dụng bảo toàn electron cho một phương trình, nhiều phương trình hoặc toàn bộ quá trình.

- + Xác định chính xác chất khử và chất oxi hóa. Nếu xét cho một quá trình, chỉ cần xác định trạng thái đầu và trạng thái cuối số oxi hóa của nguyên tố, thường không quan tâm đến trạng thái số oxi hóa trung gian của nguyên tố.
- + Khi áp dụng phương pháp bảo toàn electron thường sử dụng kèm các phương pháp bảo toàn khác (bảo toàn khối lượng, bảo toàn nguyên tố,...).

4.2. Bài tập vận dụng

Câu 1: (Đề MH lần II - 2017) Hòa tan hoàn toàn 5,85 gam bột kim loại M vào dung dịch HCl, thu được 0,325 mol khí H₂. Kim loại M là

A. Mg.

B. Al.

C. Zn.

D. Fe.

Câu 2: (Đề THPT QG - 2015) Hòa tan hoàn toàn 6,5 gam Zn bằng dung dịch H₂SO₄ loãng, thu được V lít H₂ (đkc). Giá trị của V là

A. 2,24.

B. 3,36.

C. 1,12.

D. 4,48.

Câu 3: (Đề TSCĐ - 2014) Hòa tan hết 4,68 gam kim loại kiềm M vào H₂O dư, thu được 1,4874 lít khí H₂ (đkc). Kim loại M là

A. Rb.

B. Li.

C. K.

D. Na.

- **Câu 4:** Cho potassium iodide (KI) tác dụng với potassium permanganate (KMnO₄) trong dung dịch sulfuric acid (H₂SO₄), thu được 3,02 gam manganese(II) sulfate (MnSO₄), I₂ và K₂SO₄.
 - a) Tính số gam iodine (I₂) tạo thành.
 - b) Tính khối lượng potassium iodide (KI) đã tham gia phản ứng.
- **Câu 5:** Hòa tna 14 gam Fe trong dung dịch H₂SO₄ loãng, dư, thu được dung dịch X. Thêm dung dịch KMnO₄ 1M vào dung dịch X. Biết KMnO₄ có thể oxi hóa FeSO₄ trong môi trường H₂SO₄ thành Fe₂(SO₄)₃ và bị khử thành MnSO₄. Phản ứng xảy ra hoàn toàn.
 - a) Lập phương trình hóa học cho phản ứng oxi hóa khử trên.
 - b) Tính thể tích dung dịch KMnO₄ 1M đã phản ứng.
- **Câu 6:** Nitric acid (HNO₃) là hợp chất vô cơ, trong tự nhiên HNO₃ được hình thành trong những cơn mưa giông kèm sấm chớp. Nitric acid là một acid độc, ăn mòn và dễ gây cháy, là một trong những tác nhân gây mưa acid. Thực hiện thí nghiệm xác định công thức của một oxide của kim loại iron bằng nitric acid đặc, nóng, thu được 2,479 lít (đkc) khí màu nâu là nitrogen dioxide. Phần dung dịch đem cô cạn thì được 72,6 gam Fe(NO₃)₃. Giả sử phản ứng không tạo thành các sản phẩm khác.
 - a) Lập phương trình hóa học của phản ứng xảy ra bằng phương pháp thăng bằng electron.
 - b) Xác định công thức của iron oxide.
- Câu 7: Có nhiều vụ tai nạn giao thông xảy ra do người lái xe uống rượu. Theo luật định, hàm lượng ethanol trong máu người lái xe không vượt quá 0,02% theo khối lượng. Để xác định hàm lượng ethanol trong máu của người lái xe cần chuẩn độ bằng

- $K_2Cr_2O_7$ trong môi trường acid. Khi đó Cr^{+6} bị khử thành Cr^{+3} , ethanol (C_2H_5OH) bị oxi hóa thành acetaldehyde (CH_3CHO).
- a) Lập phương trình hóa học của phản ứng xảy ra bằng phương pháp thăng bằng electron.
- b) Khi chuẩn độ 25 gam huyết tương máu của một lái xe cần dùng 20 mL dung dịch $K_2Cr_2O_7$ 0,01M. Người lái xe đó có vi phạm luật hay không? Tại sao? Giả sử rằng trong thí nghiệm trên chỉ có ethanol tác dụng với $K_2Cr_2O_7$.
- **Câu 8:** Dẫn khí SO₂ vào 100 mL dung dịch KMnO₄ 0,02M đến khi dung dịch vừa mất màu tím. Phản ứng xảy ra theo sơ đồ:
 - $SO_2 + KMnO_4 + H_2O \longrightarrow H_2SO_4 + K_2SO_4 + MnSO_4$
 - a) Lập phương trình hóa học của phản ứng theo phương pháp thăng bằng electron.
 - b) Xác định thể tích khí SO₂ đã tham gia phản ứng ở điều kiện chuẩn.
- **Câu 9:** Đốt cháy hoàn toàn 2,52 gam hỗn hợp gồm Mg và Al cần vừa đủ 2,479 lít hỗn hợp khí X gồm O₂ và Cl₂ (đkc), thu được 8,84 gam chất rắn.
 - a) Tính phần trăm thể tích mỗi khí trong X.
 - b) Xác định số mol electron các chất khử cho và số mol electron các chất oxi hóa nhận trong quá trình phản ứng.
- **Câu 10:** Quặng pyrite có thành phần chính là FeS_2 được dùng làm nguyên liệu để sản xuất sulfuric acid. Xét phản ứng đốt cháy: $FeS_2 + O_2 \xrightarrow{t^0} Fe_2O_3 + SO_2$
 - a) Lập phương trình hóa học của phản ứng theo phương pháp thăng bằng electron.
 - b) Tính thể tích không khí (chứa 21% thể tích oxygen, ở điều kiện chuẩn) cần dùng để đốt cháy hoàn toàn 2,4 tấn FeS₂ trong quặng pyrite.
- **Câu 11:** Hàm lượng iron(II) sulfate được xác định qua phản ứng oxi hóa khử với potassium permanganate: $FeSO_4 + KMnO_4 + H_2SO_4 \longrightarrow Fe_2(SO_4)_3 + K_2SO_4 + MnSO_4 + H_2O$
 - a) Lập phương trình hóa học cảu phản ứng theo phương pháp thăng bằng electron. Chỉ rõ chất khử, chất oxi hóa.
 - b) Tính thể tích dung dịch KMnO₄ 0,02M để phản ứng vừa đủ với 20 mL dung dịch FeSO₄ 0,10M.
- Câu 12: Hỗn hợp ammonium perchlorate (NH₄ClO₄) và bột aluminium (Al) là nhiên liệu rắn của tàu vũ trụ con thoi theo phản ứng sau: NH₄ClO₄ → N₂ + Cl₂ + O₂ + H₂O Mỗi một lần phóng tàu con thoi tiêu tốn 750 tấn ammonium perchlorate. Giả sử tất cả oxygen sinh ra tác dụng với bột aluminium. Tính khối lượng Al phản ứng với oxygen và khối lượng aluminium oxide sinh ra.
- Câu 13: Cho 30,3 gam hỗn hợp Al và Zn tác dụng vừa đủ với 11,15 lít O₂ (đkc), thu được hỗn hợp các oxide.
 - a) Viết các PTHH của phản ứng xảy ra.
 - b) Tính khối lượng các oxide tạo thành.

- b) Xác đinh kim loai R.
- **Câu 24:** Cho 40 gam hỗn hợp Fe Cu tác dụng vừa đủ với dung dịch H₂SO₄ đặc, nóng, dư thu được 17,353 lít khí SO₂ (đkc, là sản phẩm khử duy nhất). Tính % khối lượng mỗi kim loại trong hỗn hợp.
- **Câu 25:** Cho 12,6 gam hỗn hợp X chứa Mg và Al được trộn theo tỉ lệ mol 3: 2 tác dụng vừa đủ với dung dịch H₂SO₄ đặc, nóng thu được khí SO₂ (đkc, là sản phẩm khử duy nhất).
 - a) Tính % khối lượng mỗi kim loại trong hỗn hợp X.
 - b) Tính thể tích khí SO₂ thu được ở điều kiện chuẩn.

4.3. Đáp án – Hướng dẫn giải

Câu 1: (Đề MH lần II - 2017) Hòa tan hoàn toàn 5,85 gam bột kim loại M vào dung dịch HCl, thu được 0,325 mol khí H₂. Kim loại M là

A. Mg. B. Al. C. Giải: $n_{H_2} = 0,45 \text{ mol}$ $M \longrightarrow M^{+n} + ne \mid 2H^+ + 2.1e \longrightarrow H_2$ $0,65/n \leftarrow 0,65 \mid 0,65 \leftarrow 0,325$ $\Rightarrow M_M = 9n \longrightarrow n = 3, M = 27 \text{ (Al)}$

Câu 2: (Đề THPT QG - 2015) Hòa tan hoàn toàn 6,5 gam Zn bằng dung dịch H₂SO₄ loãng, thu được V lít H₂ (đkc). Giá trị của V là

<u>**A**</u>. 2,24.

B. 3,36.

C. 1,12.

D. 4,48.

D. Fe.

Giải:

 $n_{Zn}=0,1 \ mol$

$$Zn \longrightarrow Zn^{+2} + 2e \parallel 2H^{+} + 2.1e \longrightarrow H_{2}$$

$$0,1 \longrightarrow 0,2 \parallel 0,2 \longrightarrow 0,1$$

$$\longrightarrow V_{H_{2}} = 2,479 L$$

Câu 3: (Đề TSCĐ - 2014) Hòa tan hết 4,68 gam kim loại kiềm M vào H₂O dư, thu được 1,4874 lít khí H₂ (đkc). Kim loại M là

A. Rb.

B. Li.

<u>C</u>. K.

D. Na.

Giải:

 $n_{H_2} = 0.06 \text{ mol}$

$$M \longrightarrow M^{+} + 1e \parallel 2H^{+} + 2.1e \longrightarrow H_{2}$$

$$0,06 \longleftarrow 0,12 \parallel 0,12 \longleftarrow 0,06$$

$$\longrightarrow M_{M} = 39 \text{ (K)}$$

Câu 4: Cho potassium iodide (KI) tác dụng với potassium permanganate (KMnO₄) trong dung dịch sulfuric acid (H₂SO₄), thu được 3,02 gam manganese(II) sulfate (MnSO₄), I₂ và K₂SO₄.

- a) Tính số gam iodine (I2) tạo thành.
- b) Tính khối lượng potassium iodide (KI) đã tham gia phản ứng.

$$n_{MnSO_{4}} = 0,02 \text{ mol}$$

$$10 \text{ K I}_{C.K}^{-1} + 2 \text{ K Mn O}_{4} + 8 \text{H}_{2} \text{SO}_{4} \longrightarrow 5 \text{ I}_{2} + 2 \text{ Mn SO}_{4} + 6 \text{K}_{2} \text{SO}_{4} + 8 \text{H}_{2} \text{O}$$

$$Mn^{+7} + 5e \longrightarrow Mn^{+2} \begin{vmatrix} 2I^{-} \longrightarrow I_{2} + 2.1e \\ 0,1 \longleftarrow 0,02 \end{vmatrix} 0,1 \longleftarrow 0,05 \longleftarrow 0,1$$
a) $m_{I_{2}} = 0,05.127.2 = 12,7 \text{ gam}$
b) $n_{KI} = n_{I_{2}} = 0,1 \longrightarrow m_{KI} = 166.0,1 = 16,6 \text{ gam}$

- Câu 5: Hòa tna 14 gam Fe trong dung dịch H₂SO₄ loãng, dư, thu được dung dịch X. Thêm dung dịch KMnO₄ 1M vào dung dịch X. Biết KMnO₄ có thể oxi hóa FeSO₄ trong môi trường H₂SO₄ thành Fe₂(SO₄)₃ và bị khử thành MnSO₄. Phản ứng xảy ra hoàn toàn.
 - a) Lập phương trình hóa học cho phản ứng oxi hóa khử trên.
 - b) Tính thể tích dung dịch KMnO₄ 1M đã phản ứng.

Giải:

$$\begin{array}{c} n_{Fe} = 0{,}25 \text{ mol} \\ a) \\ Fe + \overset{+1}{H_2}SO_4 \longrightarrow FeSO_4 + \overset{0}{H_2} \\ 10 FeSO_4 + 2K \overset{+7}{Mn}O_4 + 8H_2SO_4 \longrightarrow 5Fe_2 (SO_4)_3 + 2\overset{+2}{Mn}SO_4 + K_2SO_4 + 8H_2O \\ b) \xrightarrow{BT Fe} n_{FeSO_4} = n_{Fe} = 0{,}25 \text{ mol} \\ Mn^{+7} + 5e \longrightarrow Mn^{+2} \left\| \begin{array}{c} Fe^{2+} \longrightarrow Fe^{3+} & + 1e \\ 0{,}05 \longleftarrow 0{,}25 & 0{,}25 \end{array} \right. \\ n_{KMnO_4} = n_{Mn^{+7}} = 0{,}05 \text{ mol} \longrightarrow V_{KMnO_4} = 50 \text{ mL} \end{array}$$

- **Câu 6:** Nitric acid (HNO₃) là hợp chất vô cơ, trong tự nhiên HNO₃ được hình thành trong những cơn mưa giông kèm sấm chớp. Nitric acid là một acid độc, ăn mòn và dễ gây cháy, là một trong những tác nhân gây mưa acid. Thực hiện thí nghiệm xác định công thức của một oxide của kim loại iron bằng nitric acid đặc, nóng, thu được 2,479 lít (đkc) khí màu nâu là nitrogen dioxide. Phần dung dịch đem cô cạn thì được 72,6 gam Fe(NO₃)₃. Giả sử phản ứng không tạo thành các sản phẩm khác.
 - a) Lập phương trình hóa học của phản ứng xảy ra bằng phương pháp thăng bằng electron.
 - b) Xác định công thức của iron oxide.

$$n_{Fe(NO_3)_3} = 0.3 \text{ mol}; n_{NO_2} = 0.1 \text{ mol}$$

 $Fe_xO_y + (6x - 2y)HNO_3 \longrightarrow xFe(NO_3)_3 + (3x - 2y)NO_2 + (3x - y)H_2O_3$

$$\xrightarrow{\text{PTHH}} \frac{n_{\text{Fe(NO_3)_3}}}{n_{\text{NO_3}}} = \frac{x}{3x - 2y} = \frac{0.3}{0.1} \implies \frac{x}{y} = \frac{3}{4} \longrightarrow \text{CT oxide: Fe_3O_4}$$

- Câu 7: Có nhiều vụ tai nạn giao thông xảy ra do người lái xe uống rượu. Theo luật định, hàm lượng ethanol trong máu người lái xe không vượt quá 0,02% theo khối lượng. Để xác định hàm lượng ethanol trong máu của người lái xe cần chuẩn độ bằng K₂Cr₂O₇ trong môi trường acid. Khi đó Cr⁺⁶ bị khử thành Cr⁺³, ethanol (C₂H₅OH) bị oxi hóa thành acetaldehyde (CH₃CHO).
 - a) Lập phương trình hóa học của phản ứng xảy ra bằng phương pháp thăng bằng electron.
 - b) Khi chuẩn độ 25 gam huyết tương máu của một lái xe cần dùng 20 mL dung dịch $K_2Cr_2O_7$ 0,01M. Người lái xe đó có vi phạm luật hay không? Tại sao? Giả sử rằng trong thí nghiệm trên chỉ có ethanol tác dụng với $K_2Cr_2O_7$.

$$n_{K_2Cr_2O_7} = 2.10^{-4} \text{ mol}$$

a)
$$3\overset{-2}{C_2}H_5OH + K_2\overset{+6}{Cr_2}O_7 + 8H^+ \longrightarrow 3\overset{-1}{C_2}H_4O + 2\overset{+3}{Cr} + 2K^+ + 7H_2O$$

 $m_{C_2H_5OH} = 6.10^{-4}.46 = 0,0276 \; gam \longrightarrow \% \\ m_{C_2H_5OH(25 \; gam)} = 0,11\% > 0,02\% \; . \; \; V \\ \hat{a} y \; \; người \; lái xe vi phạm luật giao thông.$

Câu 8: Dẫn khí SO₂ vào 100 mL dung dịch KMnO₄ 0,02M đến khi dung dịch vừa mất màu tím. Phản ứng xảy ra theo sơ đồ:

$$SO_2 + KMnO_4 + H_2O \longrightarrow H_2SO_4 + K_2SO_4 + MnSO_4$$

- a) Lập phương trình hóa học của phản ứng theo phương pháp thăng bằng electron.
- b) Xác định thể tích khí SO₂ đã tham gia phản ứng ở điều kiện chuẩn.

Giải:

$$n_{KMnO_{\star}} = 2.10^{-3} \text{ mol}$$

a)
$$5\overset{+4}{S}O_2 + 2K\overset{+7}{Mn}O_4 + 2H_2O \longrightarrow 2H_2\overset{+6}{S}O_4 + K_2SO_4 + 2\overset{+2}{Mn}SO_4$$

$$n_{SO_3} = n_{c^{+4}} = 0.1 \text{ mol} \longrightarrow V_{SO_3} = 2.479 \text{ L}$$

- **Câu 9:** Đốt cháy hoàn toàn 2,52 gam hỗn hợp gồm Mg và Al cần vừa đủ 2,479 lít hỗn hợp khí X gồm O₂ và Cl₂ (đkc), thu được 8,84 gam chất rắn.
 - a) Tính phần trăm thể tích mỗi khí trong X.
 - b) Xác định số mol electron các chất khử cho và số mol electron các chất oxi hóa nhận trong quá trình phản ứng.

$$\begin{split} n_{X} &= 0.1 \text{ mol}; \xrightarrow{\text{BTKL}} m_{X} = 8.84 - 2.52 = 6.32 \text{ gam} \\ Mg &\longrightarrow Mg^{+2} + 2e \mid\mid Cl_{2}(x) + 2.1e(2x) \longrightarrow 2Cl^{-} \\ Al &\longrightarrow Al^{+3} + 3e \mid\mid O_{2}(y) + 2.2e(4y) \longrightarrow 2O^{-2} \\ a) &\Rightarrow \begin{cases} \xrightarrow{n_{X}} x + y = 0.1 \\ \xrightarrow{m_{X}} 71x + 32y = 6.32 \end{cases} \Rightarrow \begin{cases} x = 0.08 \\ y = 0.02 \end{cases} \xrightarrow{\begin{cases} w V_{Cl_{2}} = 80\% \\ w V_{O_{2}} = 20\% \end{cases} \\ b) &\longrightarrow n_{a} = 2x + 4y = 0.24 \text{ mol} \end{split}$$

- **Câu 10:** Quặng pyrite có thành phần chính là FeS_2 được dùng làm nguyên liệu để sản xuất sulfuric acid. Xét phản ứng đốt cháy: $FeS_2 + O_2 \xrightarrow{t^0} Fe_2O_3 + SO_2$
 - a) Lập phương trình hóa học của phản ứng theo phương pháp thăng bằng electron.
 - b) Tính thể tích không khí (chứa 21% thể tích oxygen, ở điều kiện chuẩn) cần dùng để đốt cháy hoàn toàn 2,4 tấn FeS₂ trong quặng pyrite.

a)
$$4 \stackrel{+2}{Fe} \stackrel{-1}{S}_2 + 11 \stackrel{0}{O}_2 \longrightarrow 2 \stackrel{+3}{Fe}_2 O_3 + 8 \stackrel{+4}{S} O_2$$

b)
$$n_{FeS_2} = 2.10^4 \text{ mol}$$

$$FeS_{2} \longrightarrow Fe^{+3} + 2S^{+4} + 11e \qquad | O_{2} + 2.2e \longrightarrow 2O^{-2}$$

$$2.10^{4} \longrightarrow 2.2.10^{5} \qquad | 5.5.10^{4} \leftarrow 2.2.10^{5}$$

$$\Rightarrow n_{kk} = (100/21).n_{O_2} \longrightarrow V_{kk} = n_{kk}.24,79 = 6492619 L$$

- Câu 11: Hàm lượng iron(II) sulfate được xác định qua phản ứng oxi hóa − khử với potassium permanganate: FeSO₄ + KMnO₄ + H₂SO₄ → Fe₂(SO₄)₃ + K₂SO₄ + MnSO₄ + H₂O
 - a) Lập phương trình hóa học cảu phản ứng theo phương pháp thăng bằng electron. Chỉ rõ chất khử, chất oxi hóa.
 - b) Tính thế tích dung dịch KMnO $_4$ 0,02M để phản ứng vừa đủ với 20 mL dung dịch FeSO $_4$ 0,10M.

Giải:

$$n_{FeSO_4} = 2.10^{-3} \ mol$$

a)

$$10 \stackrel{+2}{\text{Fe}} \text{SO}_4 + 2 \stackrel{+7}{\text{Mn}} \text{O}_4 + 8 \text{H}_2 \text{SO}_4 \longrightarrow 5 \stackrel{+3}{\text{Fe}}_2 (\text{SO}_4)_3 + 2 \stackrel{+2}{\text{Mn}} \text{SO}_4 + \text{K}_2 \text{SO}_4 + 8 \text{H}_2 \text{O}$$

$$n_{KMnO_4} = n_{Mn^{+7}} = 4.10^{-4} \text{ mol } \longrightarrow V_{KMnO_4} = 20 \text{ mL}$$

Câu 12: Hỗn hợp ammonium perchlorate (NH₄ClO₄) và bột aluminium (Al) là nhiên liệu rắn của tàu vũ trụ con thoi theo phản ứng sau: NH₄ClO₄ → N₂ + Cl₂ + O₂ + H₂O Mỗi một lần phóng tàu con thoi tiêu tốn 750 tấn ammonium perchlorate. Giả sử tất cả oxygen sinh ra tác dụng với bột aluminium. Tính khối lượng Al phản ứng với oxygen và khối lượng aluminium oxide sinh ra.

$$\begin{split} &n_{\text{NH}_4\text{ClO}_4} = (300/47).10^6 \text{ mol} \\ &2\text{NH}_4\text{ClO}_4 \longrightarrow \text{N}_2 + \text{Cl}_2 + 2\text{O}_2 + 4\text{H}_2\text{O} \\ &4\text{Al} + 3\text{O}_2 \longrightarrow 2\text{Al}_2\text{O}_3 \\ &\xrightarrow{\text{PTHH (1)}} \text{n}_{\text{O}_2} = \text{n}_{\text{NH}_4\text{ClO}_4} \\ &\xrightarrow{\text{PTHH (2)}} \text{n}_{\text{Al}} = (4/3)\text{n}_{\text{O}_2} = (400/47).10^6 \text{ mol} \longrightarrow \text{m}_{\text{Al}} = 230 \text{ (tan)} \\ &\xrightarrow{\text{PTHH (2)}} \text{n}_{\text{Al}_2\text{O}_3} = (2/3)\text{n}_{\text{O}_3} = (200/47).10^6 \text{ mol} \longrightarrow \text{m}_{\text{Al}} = 434 \text{ (tan)} \end{split}$$

- **Câu 13:** Cho 30,3 gam hỗn hợp Al và Zn tác dụng vừa đủ với 11,15 lít O₂ (đkc), thu được hỗn hợp các oxide.
 - a) Viết các PTHH của phản ứng xảy ra.
 - b) Tính khối lượng các oxide tạo thành.
 - c) Tính % khối lượng mỗi kim loại trong hỗn hợp đầu.

Giải:

$$n_{O_2} = 0,45 \text{ mol}$$

a)
$$2Zn + O_2 \xrightarrow{t^0} 2ZnO$$

 $4Al + 3O_2 \xrightarrow{t^0} 2Al_2O_3$

$$\longrightarrow$$
 m_{oxide} = 30,3 - 0,45.32 = 15,9 gam

$$c) \Rightarrow \begin{cases} \xrightarrow{m_{kl}} 65a + 27b = 30,3 \\ \xrightarrow{BT e} 2a + 3b = 1,8 \end{cases} \Rightarrow \begin{cases} a = 0,3 \\ b = 0,4 \end{cases} \longrightarrow \begin{cases} \%m_{Zn} = 64,36\% \\ \%m_{Al} = 35,64\% \end{cases}$$

Câu 14: (Đề **TSCĐ - 2013**) Cho 8,6765 lít hỗn hợp khí X (đkc) gồm Cl₂ và O₂ phản ứng vừa đủ với 11,1 gam hỗn hợp Y gồm Mg và Al, thu được 30,1 gam hỗn hợp Z. Phần trăm khối lượng của Al trong Y là

D. 48,65%.

Giải:

$$n_x = 0.35 \text{ mol}; \xrightarrow{BTKL} m_x = 30.1 - 11.1 = 19 \text{ gam}$$

$$Mg (a) \longrightarrow Mg^{+2} + 2e (2a) \parallel Cl_2(x) + 2.1e (2x) \longrightarrow 2Cl^{-1}$$

Al (b)
$$\longrightarrow$$
 Al⁺³ + 3e (3b) O_2 (y) + 2.2e (4y) \longrightarrow 2O⁻²

$$\Rightarrow \begin{cases} \xrightarrow{n_x} x + y = 0.35 \\ \xrightarrow{m_x} 71x + 32y = 19 \end{cases} \longrightarrow \begin{cases} x = 0.2 \\ y = 0.15 \end{cases}$$

$$\Rightarrow \begin{cases} \xrightarrow{m_{Y}} 24a + 27b = 11,1 \\ \xrightarrow{BT e} 2a + 3b = 0,2.2 + 0,15.4 \end{cases} \Rightarrow \begin{cases} x = 0,35 \\ y = 0,1 \end{cases} \longrightarrow \%m_{Al} = 24,32\%$$

Câu 15: (Đề TSCĐ - 2009) Đốt cháy hoàn toàn 7,2 gam kim loại M (có hoá trị hai không đổi trong hợp chất) trong hỗn hợp khí X gồm Cl₂ và O₂. Sau phản ứng thu được

23,0 gam chất rắn và thể tích hỗn hợp khí đã phản ứng là 6,1975 lít (ở đkc). Kim loai M là

<u>A</u>. Mg.

B. Be.

C. Cu.

D. Ca.

$$n_X = 0.25 \text{ mol}; \xrightarrow{BTKL} m_X = 23 - 7.2 = 15.8 \text{ gam}$$

$$M \longrightarrow M^{+2} + 2e \left| \begin{array}{c} \operatorname{Cl}_2(x) + 2.1e(2x) \longrightarrow 2\operatorname{Cl}^- \\ \operatorname{O}_2(y) + 2.2e(4y) \longrightarrow 2\operatorname{O}^{-2} \end{array} \right|$$

$$\Rightarrow \begin{cases} \xrightarrow{n_X} x + y = 0.25 \\ \xrightarrow{m_X} 71x + 32y = 15.8 \end{cases} \longrightarrow \begin{cases} x = 0.2 \\ y = 0.05 \end{cases}$$

$$\xrightarrow{\text{BT e}} 2.n_{\text{M}} = 0.2.2 + 0.05.4 \implies n_{\text{M}} = 0.3 \longrightarrow M_{\text{M}} = 24 \text{ (Mg)}$$

Câu 16: (Đề THPT QG - 2017) Đốt cháy hoàn toàn m gam hỗn hợp X gồm Mg và Al cần vừa đủ 3,09875 lít khí O₂ (đkc), thu được 9,1 gam hỗn hợp hai oxide. Khối lượng của Mg trong X là

A. 5,1.

B. 2,4.

C. 2,7.

D. 3,9.

$$n_{O_2} = 0.125 \text{ mol}; \xrightarrow{BTKL} m_X = 9.1 - 0.125.32 = 5.1 \text{ gam}$$

Mg (a)
$$\longrightarrow$$
 Mg⁺² + 2e (2a) \parallel O₂ + 2.2e \longrightarrow 2O⁻²
Al (b) \longrightarrow Al⁺³ + 3e (3b) \parallel 0,125 \rightarrow 0,5

Al (b)
$$\longrightarrow$$
 Al⁺³ + 3e (3b) $0.125 \rightarrow 0.5$

$$\Rightarrow \begin{cases} \xrightarrow{\text{BT e}} 2a + 3b = 0.5 \\ \xrightarrow{m_X} 24a + 27b = 5.1 \end{cases} \Rightarrow \begin{cases} a = 0.1 \\ b = 0.1 \end{cases} \longrightarrow m_{Mg} = 2.4 \text{ gam}$$

- Câu 17: (Đề TSCĐ 2014) Đốt cháy 11,9 gam hỗn hợp gồm Zn, Al trong khí Cl₂ dư. Sau khi các phản ứng xảy ra hoàn toàn, thu được 40,3 gam hỗn hợp muối.
 - a) Tính thể tích khí Cl₂ (đkc) đã phản ứng.
 - b) Tính phần trăm khối lượng mỗi kim loại trong hỗn hợp đầu.

a)
$$\xrightarrow{\text{BTKL}}$$
 $m_{\text{Cl}_2} = 40.3 - 11.9 = 28.4 \text{ gam} \implies n_{\text{Cl}_2} = 0.4 \text{ mol} \longrightarrow V_{\text{Cl}_2} = 9.916 \text{ L}$

b)
$$\begin{array}{c|cccc} Zn & (a) & \longrightarrow & Zn^{+2} & + & 2e & (2a) \\ Al & (b) & \longrightarrow & Al^{+3} & + & 3e & (3b) \end{array} \parallel \begin{array}{cccc} Cl_2 & + & 2.1e & \longrightarrow & 2Cl^{-} \\ 0.4 & \longrightarrow & 0.8 \end{array}$$

$$\Rightarrow \begin{cases} \xrightarrow{\text{BT e}} 2a + 3b = 0.8 \\ \xrightarrow{m_{kl}} 65a + 27b = 11.9 \end{cases} \Rightarrow \begin{cases} a = 0.1 \\ b = 0.2 \end{cases} \longrightarrow \begin{cases} \% \, m_{z_n} = 54.6\% \\ \% \, m_{Al} = 45.4\% \end{cases}$$

- Câu 18: (Đề TSCĐ 2011) Đốt cháy hoàn toàn 17,4 gam hỗn hợp Mg và Al trong khí oxygen (du) thu được 30,2 gam hỗn hợp oxide.
 - a) Tính thể tích khí oxygen (đkc) đã tham gia phản ứng.
 - b) Tính khối lượng mỗi kim loại trong hỗn hợp đầu.

a)
$$\xrightarrow{\text{BTKL}}$$
 $m_{O_2} = 30.2 - 17.4 = 12.8 \text{ gam} \implies n_{O_2} = 0.4 \text{ mol} \longrightarrow V_{O_2} = 9.916 \text{ L}$

b)
$$Mg (a) \longrightarrow Mg^{+2} + 2e (2a) \parallel O_2 + 2.2e \longrightarrow 2O^{2-}$$

 $Al (b) \longrightarrow Al^{+3} + 3e (3b) \parallel 0,4 \longrightarrow 1,6$

$$\Rightarrow \begin{cases} \xrightarrow{BT e} 2a + 3b = 1,6 \\ \xrightarrow{m_{kl}} 24a + 27b = 17.4 \end{cases} \Rightarrow \begin{cases} a = 0,5 \\ b = 0,2 \end{cases} \xrightarrow{m_{Mg}} \begin{cases} m_{Mg} = 12 \text{ gam} \\ m_{Al} = 5,4 \text{ gam} \end{cases}$$

Câu 19: (Đề THPT QG - 2017) Cho 1,5 gam hỗn hợp X gồm Al và Mg phản ứng hết với dung dịch HCl dư, thu được 0,075 mol khí H₂. Khối lượng của Mg trong X là

A. 0,60 gam.

B. 0,90 gam.

C. 0,42 gam.

D. 0,48 gam.

$$\begin{array}{llll} \text{Mg (a)} & \longrightarrow \text{Mg}^{+2} + 2e \text{ (2a)} & 2\text{H}^{+} + 2.1e \longrightarrow \text{H}_{2} \\ \text{Al (b)} & \longrightarrow \text{Al}^{+3} + 3e \text{ (3b)} & 0.15 \leftarrow 0.075 \\ & \Rightarrow \begin{cases} \xrightarrow{\text{BT e}} & 2a + 3b = 0.15 \\ \xrightarrow{\text{m}_{kl}} & 24a + 27b = 1.5 \end{cases} \Rightarrow \begin{cases} a = 0.025 \\ b = 0.033 \end{cases} \longrightarrow \text{m}_{Mg} = 0.6 \text{ gam} \end{array}$$

Câu 20: (Đề MH lần I - 2017) Hòa tan hoàn toàn 13,8 gam hỗn hợp X gồm Al, Fe vào dung dịch H₂SO₄ loãng, thu được 11,1555 lít khí H₂ (đkc). Phần trăm về khối lượng của Al trong X là

A. 58,70%.

B. 20,24%. **C.** 39,13%.

D. 76,91%.

Giải:

$$n_{H_2} = 0.45 \text{ mol}$$

Fe (a)
$$\longrightarrow$$
 Fe⁺² + 2e (2a) \parallel 2H⁺ + 2.1e \longrightarrow H₂
Al (b) \longrightarrow Al⁺³ + 3e (3b) \parallel 0,9 \leftarrow 0,45
$$\Rightarrow \begin{cases} \xrightarrow{BT \ e} & 2a + 3b = 0.9 \\ \xrightarrow{m_{kl}} & 56a + 27b = 13.8 \end{cases} \Rightarrow \begin{cases} a = 0.15 \\ b = 0.2 \end{cases} \longrightarrow \%m_{Al} = 39,13\%$$

Câu 21: (Đề THPT QG - 2018) Cho 0,425 gam hỗn hợp X gồm Na và K vào nước dư, thu được 0,0075 mol khí H₂ (đkc). Khối lượng kim loại Na trong X là

A. 0,115 gam.

B. 0,230 gam.

C. 0,276 gam.

D. 0,345 gam.

$$Na (a) \longrightarrow Na^{+} + 1e (a) \begin{vmatrix} 2H^{+} + 2.1e \longrightarrow H_{2} \\ 0.015 \longleftarrow 0.0075 \end{vmatrix}$$

$$\Rightarrow \begin{cases} \xrightarrow{BT e} a + b = 0.015 \\ \xrightarrow{m_{X}} 23a + 39b = 0.425 \end{cases} \Rightarrow \begin{cases} a = 0.01 \\ b = 0.005 \end{cases} \longrightarrow m_{Na} = 0.23 \text{ gam}$$

Câu 22: Cho 2,34 gam kim loại M (hóa trị n) tác dụng với dung dịch H₂SO₄ (đặc, nóng, dư) thu được 3,2227 lít khí SO₂ (đkc, là sản phẩm khử duy nhất). Xác định kim loại M.

$$n_{SO_2} = 0.13 \text{ mol}$$

$$2\stackrel{0}{M} + 2nH_2\stackrel{+6}{S}O_4 \longrightarrow \stackrel{+n}{M_2}(SO_4)_n + n\stackrel{+4}{S}O_2 + 2nH_2O$$

$$M \longrightarrow M^{+n} + ne \mid S^{+6} + 2e \longrightarrow S^{+4}$$

$$0,26/n \leftarrow 0,26 \mid 0,26 \leftarrow 0,13$$

$$\Rightarrow M_{M} = 9n \longrightarrow n = 3; M = 27 \text{ (Al)}$$

- **Câu 23:** Cho 1,12 gam kim loại R tác dụng với dung dịch sulfuric acid đặc, nóng, dư thu được 0,7437 lít khí SO₂ (đkc, là sản phẩm khử duy nhất) và muối R₂(SO₄)₃.
 - a) Lập phương trình hóa học của phản ứng xảy ra bằng phương pháp thăng bằng electron.
 - b) Xác định kim loại R.

 $n_{SO_{2}} = 0.03 \text{ mol}$

a)
$$2R + 6H_2SO_4 \longrightarrow R_2(SO_4)_3 + 3SO_2 + 6H_2O$$

b)
$$R \longrightarrow R^{+3} + 3e \parallel S^{+6} + 2e \longrightarrow S^{+4}$$

 $0,02 \leftarrow 0,06 \parallel 0,06 \leftarrow 0,03$

- \Rightarrow M_R = 56 \longrightarrow Fe
- **Câu 24:** Cho 40 gam hỗn hợp Fe Cu tác dụng vừa đủ với dung dịch H₂SO₄ đặc, nóng, dư thu được 17,353 lít khí SO₂ (đkc, là sản phẩm khử duy nhất). Tính % khối lượng mỗi kim loại trong hỗn hợp.

Giải:

 $n_{SO_2} = 0,7 \text{ mol}$

$$\Rightarrow \begin{cases} \xrightarrow{\text{BT e}} 2a + 3b = 1,4 \\ \xrightarrow{\text{m}_{kl}} 64a + 56b = 40 \end{cases} \Rightarrow \begin{cases} a = 0.52 \\ b = 0.12 \end{cases} \xrightarrow{\text{M}_{Cu}} \begin{cases} \%m_{Cu} = 83.2\% \\ \%m_{Ee} = 16.8\% \end{cases}$$

- Câu 25: Cho 12,6 gam hỗn hợp X chứa Mg và Al được trộn theo tỉ lệ mol 3: 2 tác dụng vừa đủ với dung dịch H₂SO₄ đặc, nóng thu được khí SO₂ (đkc, là sản phẩm khử duy nhất).
 - a) Tính % khối lượng mỗi kim loại trong hỗn hợp X.
 - b) Tính thể tích khí SO₂ thu được ở điều kiện chuẩn.

a)
$$n_{Mg} = 3x$$
, $n_{Al} = 2x \xrightarrow{m_X} 24.3x + 27.2x = 12,6 \longrightarrow x = 0,1 \text{ mol}$

$$\longrightarrow$$
 %m_{Mg} = 57,14%; %m_{Al} = 42,86%

$$n_{SO_2} = n_{S^{+4}} = 0.6 \text{ mol } \longrightarrow V_{SO_2} = 14,874 \text{ L}$$