Два шара массами $m_1 = 2.5$ кг и $m_2 = 1.5$ кг движутся навстречу друг другу со скоростями $v_1 = 6$ м/с и $v_2 = 2$ м/с.

Определить: 1) скорости шаров после удара, 2) кинетические энергии шаров до и после удара, 3) энергию, затраченную на деформацию шаров при ударе. Удар считать прямым, неупругим.

Ombem: 1)
$$u = 3 \text{ m/c}$$
,

2)
$$E_{\kappa 1} = 48$$
 Дж, $E_{\kappa 2} = 18$ Дж

3)
$$E_{\partial e \phi} = 30$$
 Дж

$$\int \int X : W' \Omega' - W^{5} \Omega^{5} = (W' + W^{5}) \Omega \implies \Omega = \frac{W' \Omega' - W^{5} \Omega^{5}}{W' \Omega' - W^{5} \Omega^{5}} = \frac{S' 2^{KL} + 1' 2^{KL}}{S' 2^{KL} + 1' 2^{KL}} = \frac{S' 2^{KL} + 1' 2^{KL}}{S' 2^{KL} + 1' 2^{KL}} = \frac{S' 2^{KL} + 1' 2^{KL}}{S' 2^{KL} + 1' 2^{KL}} = \frac{S' 2^{KL} + 1' 2^{KL}}{S' 2^{KL} + 1' 2^{KL}} = \frac{S' 2^{KL} + 1' 2^{KL}}{S' 2^{KL} + 1' 2^{KL}} = \frac{S' 2^{KL} + 1' 2^{KL}}{S' 2^{KL} + 1' 2^{KL}} = \frac{S' 2^{KL} + 1' 2^{KL}}{S' 2^{KL} + 1' 2^{KL}} = \frac{S' 2^{KL} + 1' 2^{KL}}{S' 2^{KL} + 1' 2^{KL}} = \frac{S' 2^{KL} + 1' 2^{KL}}{S' 2^{KL} + 1' 2^{KL}} = \frac{S' 2^{KL} + 1' 2^{KL}}{S' 2^{KL} + 1' 2^{KL}} = \frac{S' 2^{KL} + 1' 2^{KL}}{S' 2^{KL} + 1' 2^{KL}} = \frac{S' 2^{KL} + 1' 2^{KL}}{S' 2^{KL} + 1' 2^{KL}} = \frac{S' 2^{KL} + 1' 2^{KL}}{S' 2^{KL} + 1' 2^{KL}} = \frac{S' 2^{KL}}{S' 2^{KL}} = \frac{S' 2^{KL}}{$$

2)
$$E_{K1} = E_{K1.1} + E_{K1.2} = \frac{M_1 U_1^2}{2} + \frac{M_2 U_2^2}{2} = \frac{1}{2} (2.5 \text{kg} \cdot 36 \frac{M^2}{C^2} + 1.5 \text{kg} \cdot 4 \frac{M^2}{C^2}) = 48 \frac{11}{12} \text{m}$$

Шар массой m_1 , движущейся горизонтально с некоторой скоростью v_1 , столкнулся с неподвижным шаром массой m_2 . Шары абсолютно упругие, удар прямой. Какую долю ε своей кинетической энергии первый шар передал второму?

Omsem:
$$\varepsilon = \frac{4m_1m_2}{(m_1 + m_2)^2}.$$

$$W' L' + W^{5} \cdot O = W' L'_{1} + W^{5} L'_{2}$$

$$V_2^1 = \frac{2M_1}{M_1 + M_2} V_1 \implies E_{KZ'} = \frac{M_2}{2} \cdot \left(\frac{2M_1}{M_1 + M_2} V_1\right)^2$$

$$E_{K_1} = \frac{M_1 V_1^2}{2} = > \mathcal{E} = \frac{E_{K_2'}}{E_{K_1}} = \frac{M_2}{m_1 V_1^2} \cdot \left(\frac{2 M_1}{M_1 + M_2} V_1\right)^2 = > \mathcal{E} = \frac{4 M_1 M_2}{(M_1 + M_2)^2}$$

Упруго сталкиваются два одинаковых шара, причем один из них покоится, а второй налетает на него со скоростью $v_{I0}=0.5\,$ м/с. После соударения этот шар отлетает под углом $\theta=60^\circ$ к первоначальному направлению движения (рис. 4.1). В каком направлении полетит второй шар?

V₁₀
— V₁
— V₂
— V₁
— V₂
— V₂
— V₂
— V₂
— V₂
— V₂
— V₃
— V₄
— V₂
— V₂
— V₃
— V₄
— V₂
— V₃
— V₄
—

После удара:

Ombem: $\varphi = 30^{\circ}$

Рис. 4.1

3. C.U.
$$\Rightarrow mV_{10} = mV_{1} + mV_{2}$$

$$= \sqrt{V_{10}} = V_{1}^{2} + V_{2}^{2}$$

$$= \sqrt{V_{10}} = V_{1}^{2} + V_{2}^{2}$$

$$= \sqrt{V_{10}} = V_{1}^{2} + V_{2}^{2}$$

Тело массой m, двигаясь по инерции вверх вдоль наклонной плоскости, поднялось на высоту h. Какую работу совершила при этом сила трения? Угол наклона плоскости к горизонту равен β , а коэффициент трения тела о плоскость $-\mu$.

Omeem:
$$A_{mp} = -\mu mgh \cdot ctg(\beta)$$

Тело свободно падает с высоты h. Определить скорость этого тела в момент времени, когда его нулевого энергия потенциальная относительно уровня (рис. 4.2), расположенного на поверхности Земли, будет в 5 раз меньше кинетической энергии.

Omeem:
$$V = \sqrt{\frac{10}{6}gh}$$
.

$$E_{\Pi} = mq(h-S) (*)$$

$$E_{K} = \frac{m}{2}\sigma^{2}$$

$$V = V_{0} + \alpha t \implies V = qt$$

$$S = \frac{qt^{2}}{2} \implies t = \sqrt{\frac{2S}{q}}$$

$$\Rightarrow V = \sqrt{2Sq}$$

$$\Rightarrow V = \sqrt{2Sq}$$