1 Initial solutions for General Constraints: Artificial Variables

additional material: artif.pdf

When adding slack variables, we end up finding an initial feasible set of basic variables. But what happens when not all constraints are of the form "\le "?[1]

- 1. Make all right hand sides b_i of the constraint (in)equalities positive. If they are not, multiply the expression by (-1).
- 2. If we end up just with slack variables, they can be directly used as initial basic variables. If the expressions are of the type \geq the selection of initial basic variables is not trivial.
- 3. We then create **artificial variables**, as a trick to create a starting basic solution

$$\begin{array}{cccc} \text{maximize} & z=x_1+3x_2\\ & 2x_1-x_2 & \leq & -1\\ \text{subject to} & x_1+x_2 & = & 3\\ & x_1,x_2 & \geq & 0 \end{array}$$

By leaving the right hand side of the constraints positive and adding a surplus variable, we end up having

subject to
$$-2x_1 + x_2 - s_1 = 1$$
$$x_1 + x_2 = 3$$

and now we introduce the artificial variables to create an initial solution:

subject to
$$\begin{array}{rcl} -2x_1 + x_2 - s_1 + R_1 & = & 1 \\ x_1 + x_2 + R_2 & = & 3 \end{array}$$

with all variables non-negative. Recall that, in fact, $R_1 = R_2 = 0$, so they will be just used temporarily.

There are two main methods to solve the problem: the two-phase method, explained next, and the big-M method, that we are not explaining here.

- 1. First we will use the Simplex method to minimize the values of R_1 and R_2 .
- 2. If they reach the value of zero, there is a solution for the original problem. If not, there is no feasible solution to the original problem.

In the above example, we want to minimize the function $z_R = R_1 + R_2$ or, what is the same, we want to maximize the function $z_R = -R_1 - R_2$

	x_1	x_2	s_1	R_1	R_2	Solution
z_R	0	0	0	1	1	0
R_1	$\overline{-2}$	1	-1	1	0	1
R_2	1	1	0	0	1	3

Next, we transform the problem in order to get basic variables (columns of one 1 and the rest zeros). For example, by using the second and third row to make appear 0 in the first row for the artificial variables:

	x_1	x_2	s_1	R_1	R_2	Solution
z_R	1	-2	1	0	0	-4
R_1	-2	1	-1	1	0	1
R_2	1	1	0	0	1	3

We can solve this problem with the Simplex method, obtaining a tableau:

	x_1	x_2	s_1	R_1	R_2	Solution
z_R	0	0	0	1	1	0
x_2	0		-1/3			7/3
x_1	1	0	1/3	-1/3	1/3	2/3

which provides the optimal solution for Phase 1. This means that the original problem has solution (as $R_1 = R_2 = 0$). In Phase 2, we will replace the first row by the original maximization problem and leave out the artificial variables, solving the now standard Simplex problem:

	x_1	x_2	s_1	Solution
z	-1	-3	0	0
x_2	0	1	-1/3	7/3
x_1	1	0	1/3	2/3

that leads to

Draw the graphical solution of this problem and interpret the results.

References

[1] Michael Carter, Camille C Price, and Ghaith Rabadi. *Operations Research.* A Practical Introduction. Second Edition. CRC Press, 2019.