Distâncias Heterogêneas

George Darmiton da Cunha Cavalcanti Tiago Buarque Assunção de Carvalho {gdcc, tbac}@cin.ufpe.br

Bases de Dados Heterogêneas

E se o vetor de atributos da base não for puramente categórico nem puramente numérico?

Solução 1

 Converter todos valores categórico para números ou todos os valores numéricos para categóricos

Solução 2

- Distâncias Heterogêneas
- Fazer uso de distâncias que trabalhem com os dois tipos de dados ao mesmo tempo.

Distâncias Heterogêneas

Combina duas funções de distâncias: uma pra atributos numéricos e outra para atributos categóricos.

```
HEOM (Euclidiana + Hamming)
HVDM (Euclidiana + VDM)
DVDM (VDM<sub>discretizado</sub> + VDM)
IVDM (VDM<sub>interpolado</sub> + VDM)
```


HEOM (Heterogeneous Euclidian-Overlap Metric)

- Distância Euclidiana para atributos numéricos
- Distâncias de Hamming para atributos categóricos

$$HEOM(x, y) = \sqrt{\sum_{a=1}^{n} heom_a(x_a, y_a)^2}$$

$$heom_a(x_a, y_a) = \begin{cases} 1, se \ x_a \otimes y_a \ \'e \ desconhecido \\ 0, se \ x_a \wedge y_a \ \~s\~ao \ desconhecidos \\ h_a(x_a, y_a), se \ a \ \'e \ categ\'orico \\ dif_a(x_a, y_a), se \ a \ \'e \ num\'erico \end{cases}$$

$$h_a(x_a, y_a) = \begin{cases} 1, & se \ x_a \neq y_a \\ 0, & se \ x_a = y_a \end{cases}$$

$$dif_a(x_a, y_a) = \frac{|x_a - y_a|}{\max(a) - \min(a)}$$

HVDM

(Heterogeneous Value Difference Metric)

- Distância Euclidiana para atributos numéricos
- VDM para atributos categóricos

$$HVDM(x, y) = \sqrt{\sum_{a=1}^{n} hvdm_a(x_a, y_a)^2}$$

$$hvdm_a(x_a, y_a) = \begin{cases} 1, se \ x_a \otimes y_a \ \'e \ desconhecido \\ 0, se \ x_a \wedge y_a \ \~s\~ao \ desconhecidos \\ vdm_a(x_a, y_a), se \ a \ \'e \ categ\'orico \\ dif_a(x_a, y_a), se \ a \ \'e \ num\'erico \end{cases}$$

$$vdm_a(x, y) = \sum_{c=1}^{C} |P_{a, x, c} - P_{a, y, c}|^q$$

$$dif_a(x_a, y_a) = \frac{|x_a - y_a|}{\max(a) - \min(a)}$$

DVDM

(Discretized Value Difference Metric)

- VDM_{discretizado} para atributos numéricos
- VDM para atributos categóricos

$$DVDM(x, y) = \sqrt{\sum_{a=1}^{n} dvdm_a(x_a, y_a)^2}$$

$$dvdm_a(x_a, y_a) = \begin{cases} 1, se \ x_a \otimes y_a \ \'e \ desconhecido \\ 0, se \ x_a \wedge y_a \ \~s\~ao \ desconhecidos \\ vdm_a(discretize(x_a), discrestize(y_a)), \ para \ os \ outros \ casos \end{cases}$$

$$vdm_a(x, y) = \sum_{c=1}^{C} |P_{a, x, c} - P_{a, y, c}|^q$$

IVDM

(Interpolated Value Difference Metric)

- VDM_{interpolado} para atributos numéricos
- VDM para atributos categóricos

$$IVDM(x, y) = \sqrt{\sum_{a=1}^{n} ivdm_a(x_a, y_a)^2}$$

$$ivdm_{a}(x_{a}, y_{a}) = \begin{cases} 1, se \ x_{a} \otimes y_{a} \ \'e \ desconhecido \\ 0, se \ x_{a} \wedge y_{a} \ \~a\~o \ desconhecidos \\ vdm_{a}(x_{a}, y_{a}), se \ a \ \'e \ categ\'orico \\ \sum_{c=1}^{C} \left| P_{a,c}(x_{a}) - P_{a,c}(y_{a}) \right|^{2}, se \ a \ \'e \ num\'erico \end{cases}$$

$$P_{a,c}(x_a) = P_{a,u,c} + \left(\frac{x - meio_{a,u}}{meio_{a,u+1} - meio_{a,u}}\right) \times \left(P_{a,u+1,c} - P_{a,u,c}\right)$$

$$u = discretize(x_a)$$

$$meio_{a,u} = \min(a) + \left(\max(a) - \min(a)\right) \times \left(u + 0.5\right)$$

$$vdm_a(x, y) = \sum_{c=1}^{C} |P_{a, x, c} - P_{a, y, c}|^q$$

Exemplo

Hepatitis

- 2 classes, 155 padrões (32 + 123)
- 20 atributos numéricos e categóricos
- Algumas instâncias possuem atributos com valor desconhecido

KNN - [sem peso]

	k = 1	k = 2	k = 3	k = 5	k = 6	k = 11	k = 16	k = 21	k = 31
НЕОМ	59,68	62,39	62,77	66,9	66	64,97	65,94	66,97	68,77
HVDM	59,16	64.19	62,71	63,87	65.68	66,06	66,65	67.48	63,87
DVDM	57,55	60,84	60,13	61,55	63,03	63,42	63,68	63,94	62,84
IVDM	58,77	63,1	63,81	65.16	64	63,16	64,65	64.65	63,42

KNN - [com peso]

Hepatt	k = 1	k = 2	k = 3	k = 5	k = 6	k = 11	k = 16	k = 21	k = 31
HEOM	59,68	59,68	59,68	60,97	61,48	64	66,65	65,74	67,61
HVDM	59,16	59,16	59,16	62,84	63,94	63,42	65,29	65.74	67.23
DVDM	57,55	57,29	57,29	58,84	59,03	61,87	62,65	63,1	63,23
IVDM	58,77	58,77	58,77	61,42	62,19	63,81	64,32	64,39	64,06

Referências

- D. R. Wilson and T. R. Martinez, "Improved Heterogeneous Distance Functions,"
 Journal of Artificial Intelligence Research, vol.6, pp.1-34, 1997.
- Hui Wang, "Nearest Neighbor by Neighborhood Counting", IEEE Transactions
 on Pattern Analysis and Machine Intelligence, vol.28, no.6, pp. 942-953, 2006.
- UCI Machine Learning Repository
 - http://archive.ics.uci.edu/ml/
 - Repositório de base de dados amplamente utilizada para comparar resultados

