Fundamental Questions 7

1. Let
$$\mathbf{u}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$
, $\mathbf{u}_2 = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}$, $\mathbf{u}_3 = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$, $\mathbf{v}_1 = \begin{bmatrix} 4 \\ 6 \\ 7 \end{bmatrix}$, $\mathbf{v}_2 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$, $\mathbf{v}_3 = \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}$

- (a) Find the transition matrix from $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ to $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$.
- (b) If $\mathbf{x} = \mathbf{v}_1 + 2\mathbf{v}_2 3\mathbf{v}_3$, determine the coordinate of \mathbf{x} with respect to $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$.
- 2. Let A be a 4×5 matrix and U be the reduced row-echelon form of A. If

$$\mathbf{a}_1 = \begin{bmatrix} 2\\1\\-3\\-2 \end{bmatrix}, \quad \mathbf{a}_2 = \begin{bmatrix} -1\\2\\3\\1 \end{bmatrix}, \quad \mathbf{a}_4 = \begin{bmatrix} 1\\-1\\2\\-1 \end{bmatrix}, \quad U = \begin{bmatrix} 1 & 0 & 2 & 0 & -1\\0 & 1 & 3 & 0 & -2\\0 & 0 & 0 & 1 & 5\\0 & 0 & 0 & 0 & 0 \end{bmatrix}.$$

- (a) Find \mathbf{a}_3 and \mathbf{a}_5 .
- (b) Find a basis for Null(A).
- (c) Find a basis for Col(A).
- 3. Let $E = \{(5,3)^T, (3,2)^T\}$ and let $\mathbf{x} = (1,1)^T, \mathbf{y} = (1,-1)^T$, and $\mathbf{z} = (10,7)^T$. Determine the values of $[\mathbf{x}]_E, [\mathbf{y}]_E$, and $[\mathbf{z}]_E$.
- 4. Given

$$\mathbf{v_1} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \mathbf{v_2} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}, S = \begin{bmatrix} 3 & 5 \\ 1 & -2 \end{bmatrix}$$

find vectors \mathbf{w}_1 and \mathbf{w}_2 so that S will be the transition matrix from $\{\mathbf{w}_1, \mathbf{w}_2\}$ to $\{\mathbf{v}_1, \mathbf{v}_2\}$.

- 5. In each of the following, determine the dimension of the subspace of \mathbb{R}^3 spanned by the given vectors.
 - (a)

$$\begin{bmatrix} 1 \\ -2 \\ 2 \end{bmatrix}, \begin{bmatrix} 2 \\ -2 \\ 4 \end{bmatrix}, \begin{bmatrix} 3 \\ -3 \\ 6 \end{bmatrix}$$

(b)

$$\left[\begin{array}{c}1\\1\\1\end{array}\right], \left[\begin{array}{c}1\\2\\3\end{array}\right], \left[\begin{array}{c}2\\3\\1\end{array}\right]$$

(c)

$$\begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix}, \begin{bmatrix} -2 \\ 2 \\ -4 \end{bmatrix}, \begin{bmatrix} 3 \\ -2 \\ 5 \end{bmatrix}, \begin{bmatrix} 2 \\ -1 \\ 3 \end{bmatrix}$$

6. Let
$$A = \begin{bmatrix} 1 & 2 & 2 & 3 & 1 & 4 \\ 2 & 4 & 5 & 5 & 4 & 9 \\ 3 & 6 & 7 & 8 & 5 & 9 \end{bmatrix}$$

- (a) Compute the reduced row echelon form U of A. Write the nonpivot columns of U as a linear combination of the pivot columns of U.
- (b) Give a basis for $\operatorname{Col} A$. Show that you can write the columns of A as linear combinations of your basis vectors. (Be smart about it you can do this without solving any system of linear equations.)

7. Let
$$A = \begin{bmatrix} 1 & 5 & 0 & -1 & 3 & 7 \\ -1 & -5 & 2 & 0 & -8 & -12 \\ -2 & -10 & 2 & 2 & -11 & -19 \\ 1 & 5 & -6 & 2 & 18 & 22 \end{bmatrix}$$
.

Give a basis for $\operatorname{Col} A$ and $\operatorname{Null} A$.

8. Suppose Null
$$A = \text{Span} \left\{ \begin{bmatrix} 1 \\ 5 \\ 0 \\ -1 \\ 6 \end{bmatrix} \right\}$$
.

- (a) What do you know about the size of A?
- (b) Give a linear dependence relation for the columns of A.
- 9. Given an $m \times n$ matrix A, and an $n \times n$ matrix B.
 - (a) What are the columns of AB?
 - (b) Show that $\operatorname{Col} AB \subseteq \operatorname{Col} A$.
 - (c) Give an example of A and B where the subset inequality is strict, i.e., $\operatorname{Col} AB \neq \operatorname{Col} A$ (you can choose m and n).