Towards an online MIP calibration

Paul Filip*, David Schmidt

Outline

- Overview of current (WCD) online calibration
- Rate/Threshold relationship from T3 histos
- Caveat: muonBuffer and showerBuffer
- Expected performance with T1-preselection
- Summary and outlook

Current (WCD) calibration

- WCD offline calibration
 - Fit muon hump in histogram

WCD online calibration

- Calibration trigger with threshold k, that satisfies:
 - Threefold coinc. of 0.7 k
 - >1 PMT above 1.0 k
- Iteratively adjust threshold until 70 Hz rate is reached
- Threshold equals $k \approx 2.5 I_{\rm VEM}$
- Accurate to ~2%
- See alsp GAP2023-049

Setting up rate/threshold relationship

- 870,000 SSD histograms from SD-1500 T3s in Jun/Dec 2023
- Bootstrap muon events according to histo to estimate $I_{
 m histo}^{
 m SSD}$

- Characteristic shape
- Scale differs due to gain
- $I_{ ext{MIP}}$ determined by:
 - Weather
 - Electronics
 - ???
- Does there exist a stable rate/threshold relationship?

MIP → Rate

- ullet Fit parabola to histogram to obtain "true" $I_{
 m histo}^{
 m SSD}$
- For threshold t in $\{1.0, ..., 5.0\}$ $I_{\mathrm{bisto}}^{\mathrm{SSD}}$:
 - Count histo entries above t
 - Per station: remove outliers at 3σ
 - Per station: take mean of samples
 - Divide by histogram acquisition time (61s)
 - Average across all stations

- Systematic: station-to-station fluctuations ~20%
- Statistical: Poisson error on counts above threshold

MIP ← Rate

- Adjust threshold t [ADC] of SB trigger until rate converges to f Hz
- $I_{\mathrm{rate}}^{\mathrm{SSD}}$ given as kt (read off k,f from plot)
- Compare $I_{
 m rate}^{
 m SSD}$ and "true" $I_{
 m histo}^{
 m SSD}$

MIP ← Rate

- Adjust threshold t [ADC] of SB trigger until rate converges to f Hz
- given as kt (read off k,f from plot)
- Compare $I_{
 m rate}^{
 m SSD}$ and "true" $I_{
 m histo}^{
 m SSD}$
- Strong EM influence at low thresholds
- Best correlation at intermediate values
- Larger sampling error at very high thresholds

09/04/2024

MIP ← Rate

Similar behaviour across large projected temperature ranges

Performance of simple rate-based algorithm

- Small bias (<3%) for all considered thresholds
- Error of ~6% for selected rate/threshold relationships

- Rate/threshold relationships derived from muonBuffer events
 - Require >30 ADC above baseline (uncalibrated, >500 Hz)

- Online calibration performed on showerBuffer events
 - Require WCD-T1 (e.g. threefold coinc. of $>1.75I_{\rm rate}^{\rm WCD}$, $\sim 100~{\rm Hz}$)
- Much easier implementation of SSD online calibration if it works on T1-preselected traces → but lower rate! Higher error!

- Rate/threshold relationships derived from muonBuffer events
 - Require >30 ADC above baseline (uncalibrated, >500 Hz)

- Online calibration performed on showerBuffer events
 - Require WCD-T1 (e.g. threefold coinc. of $>1.75I_{\rm rate}^{\rm WCD}$, $\sim 100~{\rm Hz}$)

 Much easier implementation of SSD online calibration if it works on T1-preselected traces → but lower rate! Higher error!

stimate from UUB randoms

- Build SSD pulse height histogram for stations that have:
 - Online calibration functioning for all 3 PMTs
 - Fluctuations of $I_{\rm rate}^{\rm WCD}$ before/after DAQ <5%
 - Jump in $I_{
 m rate}^{
 m WCD}$ before after DAQ <10%

10/12 stations

8/12 stations

4/12 stations

- Build SSD pulse height histogram from events that have:
 - T1 trigger in WCD trace
 - Coincident SSD signal with T1 latch bin

~100 Hz

~1-2%?

12/20

T1 preselection: statistical error

• Rate drops by factor ~ 100 , associated Poissonian error becomes 5% ($\sim 1.5\%$ before), not great, not terrible...

T1 preselection: systematic error

- Compare station-to-station fluctuations in T1 probability
- Analyze spread in region that showed minimal error

- ~10% fluctuation in Rol
- In line with expectations from T3 histograms
- Larger contribution to error on $I_{\rm rate}^{\rm SSD}$ due to shallower rate profile!

T1 preselection: expected total error

Constanza

 $\pm 5.8\%$

Summary and outlook

- Rate based algorithm for SSD online calibration shows small bias and acceptable precision for muonBuffer events
- T1-preselection simplifies implementation in station software
- Stricter selection criteria increase total error: ~10%
- · Remains to be seen if presented method is precise enough
 - For monitoring: yes
 - For triggers: unsure
- Next step: first tests with dedicated stations

BACKUP

Possible implementation strategies

Method	(+)	(-)	error
Rate-based w/ T1-preselection	Easy implementation	Large error	>10%
Rate-based w/o T1-preselection	Small error	Requires refactoring of local station software	>5%
Fitting histogram at station level	Small error	No redundancy in case fitting strategy fails	~2%
WCD independent means of estimation	Independent of WCD	Likely large fluctuations	???

Uub randoms rate correction

Normalize counts by factor mean_rate / 100 Hz

No T1 preselection: expected total error

