oppgave1

Øving 1: Algoritmer og Datastrukturer

Innhold

- <u>Oppgavebeskrivelse</u>
- Algoritme
- <u>Tidskompleksitet</u>
- <u>Tidsmålinger</u>
- Konklusjon

Oppgavebeskrivelse

Oppgaven gir endring i kurs på en aksje fra dag til dag. Algoritmen skal finne hvilken dag du burde kjøpe og selge for å få best fortjeneste.

Algoritme

For hver dag:

- 1. Adderer endring i pris (input) til en variabel som lagrer den samlede prisen
- 2. Om prisen er det laveste den har vært er dagen en kandidat for å kjøpe, dette er globalMin, localMax = pris
- 3. Den høyeste prisen etter globalMin blir oppdatert settes som salgsdagen om bestProfit=localMax-globalMin er høyest

```
#include <iostream>
#include <chrono>

using namespace std;

int main()
{
    int n;
    cin >> n;
    auto start = chrono::high_resolution_clock::now();
    int bestProfit = 0;
```

```
int globalMin = 0;
    int minDay = 0;
    int buyAtDay = 0;
    int sellAtDay = 0;
    int price = 0;
    for (int i = 0; i < n; i++)
        int priceChange;
        cin >> priceChange;
        price += priceChange;
        if (price < globalMin)</pre>
            globalMin = price;
            minDay = i;
        }
        if (price - globalMin > bestProfit)
            bestProfit = price - globalMin;
            buyAtDay = minDay;
            sellAtDay = i;
        }
        bestProfit = max(bestProfit, price - globalMin);
    }
    auto end = chrono::high_resolution_clock::now();
    auto duration = chrono::duration_cast<chrono::microseconds>(end - start);
    cout << "You make the best profit by buying at day " << buyAtDay << " and</pre>
selling at day " << sellAtDay << ".\nYour profit is then " << bestProfit << endl;</pre>
    cout << "Time taken with n=" << n << " is " << duration.count() << " \,
microseconds." << endl;
    return 0;
}
```

Tidskompleksitet

Den verste og beste asymptotiske effektiviteten er n, altså har algoritmen en tidskompleksitet på ($\Theta(n)$) siden den har én for-loop som kjører over alle dagene.

Tidsmålinger

Input er generert med generateInput.cpp og skrevet til input.txt. Målingene er gjort med chrono.

(N)	KJØRETID (MIKROSEKUNDER)
10000	6783
100000	74655
1000000	619350

Konklusjon

Etter å ha utført en praktisk tidsmåling med chrono ser vi at målingene stemmer overens med den teoretiske tidskompleksiteten altså O(n) og $\Theta(n)$.