放宽条件的模型汇总

			-	
概念	背景	后果	检验	修正
多重共线性: X间高度相关 =完全~、近似~	模型设定失误 经济变量存在共同趋势 样本资料限制 (当前条件下无法找 到满足不相关的样本 数据)	破坏经典假设2 ⇒破坏最小方差性 ⇒t检验失效、 预测失效 参数估计不合理 完全共线性下 参数估	存在 简单相关系数法 单元,计算两个变量的相 关系数r 综合统计检验法 多元,如果R ² 和F比较 大,t比较小 范围 判定系数检验法 对每一个解释变量,用其他验验 逐步回归法 检验&解决,逐个引入变量,对图解 量,如果R ² 显著改善,引入,否则不 方差膨胀因子	逐步回归法
异方差性: μ的方差不同		破坏经典假设4 ⇒破坏最小方 差性 ⇒t检验失效、 预测失效	$VIF = 1/(1-R^2)$ 图示法(注意区分纵坐标) X-Y散点图 $X-\tilde{e}_i^2$ 散点图 B-P检验 ¹ 残差可以由解释变量线性表示 用 X 对 e_i^2 回归 LM统计量 White检验 ² 第一步:OLS得到 e_i 第二步:用二次项对 e_i^2 进行回归 LM统计量	WLS加权最小二 乘 ³ 异方差稳健标准 误 ⁴
内生解释变量: X和μ相关 相关 同期相关、异期相关	联立因果、互为因果 遗漏相关解释变量 解释变量存在测量误	破坏无偏性 ⁵ (只有这个不 是破坏最小方 差性!)	Hausman检验 ⁶ 第一步:对内生解释变量 进行回归,取残差 第二步:将残差加入原模 型	工具变量法 ⁸ 相关、外生、与 其他解释变量不 高度相关

⇒OLS估计量

失效

过度识别的约束检验7

第一步: 2SLS, 记录残差

第二步: 用所有工具变量 及外生变量进行回归

LM统计量

2SLS 9: 讨度识

牛解释变量 第二步:用 \hat{X} 替

第一步: 估计内

换X进行回归

模型设定偏误

遗漏解释变量(如果 遗漏了相关的X,就是 内生性)

误选无关变量(无 偏,但影响最小方差 性)

残差图示法

RESET检验

先回归, 然后将 \hat{Y} 的若干次 幂引入模型重新估计

错误的函数形式

序列相关性: $Cov(\mu_i, \mu_i) \neq 0$ 经济变量固有惯性

破坏最小方差

图示法

注意横坐标是t还是 \tilde{e}_{t-1}

GLS 13

一阶序列相关: 自协 方差系数ρ

模型设定偏误

数据编造

⇒t检验失效、 预测失效

回归检验法 10

直接检验

杜宾DW检验 11 检验一阶自相关

拉格朗日乘数检验 12 检验高阶序列相关

广义差分法 14 消随机误差项

科克伦-奥科特迭 代法 随机误差项相关

系数的估计 先原模型算 μ ,给

 $<math>^{\text{出}\rho}$

再广义差分模型 算β

- $1. \ e_i^2 = \delta_0 + \delta_1 X_{i1} + \dots + \delta_k X_{ik} + \varepsilon_i, \ \ H_0: \delta_1 = \dots = \delta_k = 0, \ \ LM = n \cdot R_{e^2}^2 \dot{\sim} \chi^2(k) \ \boldsymbol{e}$
- $2.~e_i^2=lpha_0+lpha_1X_{i1}+lpha_2X_{i2}+lpha_3X_{i1}^2+lpha_4X_{i2}^2+lpha_5X_{i1}X_{i2}+arepsilon_i,~~H_0:lpha_1=\dots=lpha_5=0\,,~~LM=nR^2$ ن عن $lpha_1X_{i1}+lpha_2X_{i2}+lpha_3X_{i1}^2+lpha_4X_{i2}^2+lpha_5X_{i1}X_{i2}+arepsilon_i,~~H_0:lpha_1=\dots=lpha_5=0\,,~~LM=nR^2$
- 3. 如果发现 $Var(\mu_i) = \sigma_i^2 = f(X_{ij})\sigma^2$, 就在模型两遍同时除以f,假设方差存在指数函数形式 $\mu_i^2 = \sigma^2 \exp(\alpha_0 + \alpha_1 X_{i1} + \dots + \alpha_k X_{ik})$, 对模型 $\ln(\tilde{e}_i^2) = \delta_0 + \alpha_1 X_{i1} + \dots + \alpha_k X_{ik} + \nu_i$ 进行估计 \bullet
- 4. 为异方差满足无偏性和一致性(参数估计没问题),只需要修正方差。因此,用 e_i^2 代替 σ_i^2 (替换后满足大样本下一致性) $m \omega$
- 5. 正相关: 高估斜率、低估截距,负相关反之。 $E(\hat{\beta}_1) = E(\frac{x_i y_i}{\sum x_i^2}) = E(\beta_1 + \frac{\sum x_i \mu_i}{\sum x_i^2}) = \beta_1 + E(\sum \frac{x_i \mu_i}{\sum x_i^2}) \neq \beta_1$
- 6. 第一步: 找到一个工具变量 Z_2 , 对 X_i 估计, $X_i = \alpha_0 + \alpha_1 Z_{i1} + \alpha_2 Z_{i2} + \nu_i$ (和2SLS第一步相同); 第二步: 将上一步的残差加入原模型, OLS估计 $Y_i = \beta_0 + \beta_1 X_i + \beta_2 Z_{i1} + \delta \hat{\nu}_i + \varepsilon_i$
- 7. 第一步: $\tilde{\mu}_i = Y_i (\tilde{\beta}_0 + \tilde{\beta}_1 X_i + \tilde{\beta}_2 Z_i)$; 第二步: $\tilde{\mu}_i = \delta_0 + \delta_1 Z_{i1} + \delta_2 Z_{i2} + \delta_3 Z_i + \varepsilon_i$; 统计量: $J = nR^2 \sim \chi^2(1)$ (1表示多余的工具变量个数) $\boldsymbol{\omega}$
- 8. 正规方程组: $\sum_{i=1}^n z_i \mu_i = 0$; 估计量: $\tilde{\beta}_1 = \frac{\sum z_i y_i}{\sum z_i x_i}$ 。 大样本下一致,小样本有偏 $m \omega$
- 9. 原模型: $Y_i = \beta_0 + \beta_1 X_i + \beta_2 Z_i + \mu_i$; 第一阶段: $\hat{X}_i = \hat{\alpha}_0 + \hat{\alpha}_1 Z_{i1} + \hat{\alpha} Z_{i2} + \hat{\alpha}_3 Z_i$, 第二阶段: $Y_i = \hat{\beta}_0 + \hat{\beta}_1 \hat{X}_i + \hat{\beta}_2 Z_i + \mu_i$
- 10. 以 \tilde{e}_t 为被解释变量,选择各种可能的相关量(如 \tilde{e}_{t-1} 、 \tilde{e}_{t-2} 、 \tilde{e}_t^2 等)为解释变量,建立各种可能的回归方程,进行F检验 \bullet
- 11. 原模型: $Y_t = \beta_0 + \beta_1 X_{t1} + \beta_2 X_{t2} + \dots + \beta_k X_{tk} + \mu_t$; 零假设: $\mu_t = \rho \mu_{t-1} + \varepsilon_t + \rho = 0$; 统计量: $D.W. = \frac{\sum_{t=2}^n (\tilde{e}_t \tilde{e}_{t-1})^2}{\tilde{e}^2} \approx 2(1-\rho)$
- 12. 辅助模型: $Y_t = \beta_0 + \beta_1 X_{t1} + \dots + \beta_k X_{tk} + \rho_1 \mu_{t-1} + \dots + \rho_p \mu_{t-p} + \varepsilon_t$; 零假设: $\rho_1 = \dots = \rho_p = 0$; 统计量: $LM = nR^2 \sim \chi^2(p)$
- 13. $\hat{\beta}_{GLS} = (X'\Omega^{-1}X)^{-1}X'\Omega^{-1}Y$

14. 原模型: $Y_t = \beta_0 + \beta_1 X_t + \mu_t =$, 记为(1)式; 假设存在一阶自相关 $\mu_t = \rho \mu_{t-1} + \varepsilon_t$ 。将原模型滞后一期, $Y_{t-1} = \beta_0 + \beta_1 X_{t-1} + \mu_{t-1}$,记为(2)式,(1) $-\rho \times$ (2)得 $Y_t - \rho Y_{t-1} = \beta_0 (1-\rho) + \beta_1 (X_t - \rho X_{t-1}) + (\mu_t - \rho \mu_{t-1})$ 。估计 $\Delta Y_t = \beta_0' + \beta_1 \Delta X_t + \varepsilon_t$ 。因为差分过程中,损失了第一个观测值,作普莱斯-温斯特变换 $Y_1^* = \sqrt{1-\rho^2} Y_1$, $X_{1j}^* = \sqrt{1-\rho^2} X_{1j}$ 。代码: equation eq02.ls y c x ar(1) $\boldsymbol{\omega}$