

Inteligência Artificial Aplicada

UniSenai PR-São José dos Pinhais

Busca em largura (BFS – Breadth-First Search)

BFS - 1

Dado o grafo não ponderado a seguir, <u>encontre o caminho a partir do nó A</u> utilizando o algoritmo BFS.

BFS - 2

Dado o grafo não ponderado a seguir, <u>encontre o caminho a partir do nó A</u> utilizando o algoritmo BFS.

BFS - 3

Elabore o grafo e utilize o algoritmo BFS para demonstrar o caminho para percorrer todos os bairros, nos seguintes pontos de partida: a) Centro; b) Iná;

e c) Campo Largo da Roseira.

	Centro	Afonso Pena	São Domingos	Costeira	Guatupê	Braga	Iná	Boneca do Iguaçu	Campo Largo da Roseira
Centro	0	1	0	1	0	0	0	1	0
Afonso Pena	1	0	1	0	1	0	0	0	0
São Domingos	0	1	0	0	0	1	0	0	0
Costeira	1	0	0	0	1	0	1	0	0
Guatupê	0	1	0	1	0	0	0	0	1
Braga	0	0	1	0	0	0	0	0	0
Iná	0	0	0	1	0	0	0	0	0
Boneca do Iguaçu	1	0	0	0	0	0	0	0	0
Campo Largo da Roseira	0	0	0	0	1	0	0	0	0

Busca A* (A – estrela)

- Ideia principal: Algoritmo heurístico que prioriza caminhos mais promissores.
 - Fórmula: f(n) = g(n) + h(n)

A*- caminho no Google Maps

Situação: você está indo de casa para a universidade e quer o caminho mais rápido.

Passos:

- 1. Você pode pegar ruas menores (menos trânsito) ou avenidas (mais rápidas, mas podem estar congestionadas).
- 2. O Google Maps calcula custo real (distância já percorrida) e custo estimado (quanto falta).
- 3. O melhor caminho é aquele com menor custo total.

Grafos

- **Vértices (ou nós)** → pontos no mapa (ex: cidades, células em um grid).
- Arestas → conexões entre os pontos (ex: estradas, caminhos possíveis).
- Peso das arestas → custo do movimento entre os nós (ex: distância, tempo).

Fila de Prioridade (*Heap*)

• Estrutura de dados baseada em árvore usada para gerenciar prioridades de forma eficiente.

• Utiliza-se para sempre acessar o nó com menor custo primeiro.

Funções

 $g(n) \rightarrow Custo do caminho do início até o nó atual n.$

 $h(n) \rightarrow$ Estimativa heurística do custo do nó atual n até o objetivo.

 $f(n) = g(n) + h(n) \rightarrow Soma dos custos acima, usada para priorizar a busca.$

- 1. Adicionar o nó inicial à lista de nós a serem explorados;
- 2. Repetir os seguintes passos até encontrar o objetivo ou esgotar os caminhos possíveis:
 - * Escolher o nó com menor f(n) (soma dos custos)
 - * Se for o objetivo, termina.
 - st Caso contrário, expande os vizinhos do nó, calculando $m{g}(m{n})$, $m{h}(m{n})$ $m{e}$ $m{f}(m{n})$,
 - * Se um vizinho tem um custo menor do que uma versão anterior dele, atualizar os custos.
 - * Mover o nó explorado para a lista de nós já processados.
- 3. Retornar o caminho encontrado.

A*-1 Determine o caminho ótimo a partir da cidade A até a cidade E, levando em consideração as distâncias diretas entre as cidades.

Heurísticas					
Cidade	h (n) - Estimativa até E				
Α	20				
В	25				
С	30				
D	5				
E	0				

A*-2 São Paulo (SP) até Salvador (SSA).

Heurísticas						
Cidad	h(n) - Estimativa até SSA					
е	(km)					
SP	1500					
RJ	1200					
ВН	900					
BSB	1100					
CWB	1700					
SSA	0					

