

NATIONAL WATER QUALITY NETWORK - SUPPLEMENT 2

Plankton Population Dynamics

from a study conducted JULY 1, 1959-JUNE 30, 1961

By Louis G. Williams, Ph. D.

U.S. DEPARTMENT OF
HEALTH, EDUCATION, AND WELFARE
Public Health Service
Division of Water Supply and Pollution Control
Washington 25, D.C.

RELATED PUBLICATIONS

National Water Quality Network
Annual Compilation of Data, October 1, 1957-September 30, 1958
Public Health Service Publication No. 663 (1958 Edition)

National Water Quality Network
Statistical Summary of Selected Data, October 1, 1957-September 30, 1958
Public Health Service Publication No. 663—Supplement 1

National Water Quality Network
Annual Compilation of Data, October 1, 1958-September 30, 1959
Public Health Service Publication No. 663 (1959 Edition)

National Water Quality Network
Annual Compilation of Data, October 1, 1959-September 30, 1960
Public Health Service Publication No. 663 (1960 Edition)

FOREWORD

The chemical, physical and biological characteristics of surface water are inter-related phenomena. Making greater use of the stream biota to determine existing, and to forecast future, water quality in the stream offers promising possibilities. Plankton studies within the National Water Quality Network have included extensive work designed to permit application of the principle of diatom species diversity to the development of water quality indices. The studies required development of new laboratory analytical techniques, as well as preliminary application of the methodology to surface water samples from the many diverse Network sampling points.

Published herein are data from samples collected in the 2-year period July 1959 through June 1961 at 65 of the Network stations. While this work is continuing within the Network program, it is hoped that the material here presented will enable workers in this field to evaluate the techniques described by applying them more broadly.

RICHARD S. GREEN *Chief, Basic Data Branch*
Division of Water Supply and Pollution Control

Plankton Population Dynamics

CONTENTS

	Page
Related Publications.	ii
Foreword.	iii
The National Water Quality Network.	1
Water Quality Parameters.	2
Network Map.	3
Introduction to the Plankton Studies.	4
Network Sampling Stations and Cooperating Agencies.	5
Equipment, Materials and Methods.	9
Proportional Counting of Diatoms.	10
Biotic Characterization of Waterways.	11
Distribution of Most Abundant Diatom Species.	13
Diatom Species Occurring at the Study Stations.	14
Occurrence of the Four Most Abundant Diatom Species.	15
Green Flagellates at 48 Stations.	17
Pictorial Reference	
Protozoa, Rotifers, Crustacea.	18
Algae and Flagellates.	19
Diatoms.	20
Planktonic Green Algae, Mississippi River	21
Relative Abundance of Diatoms, Other Algae and Rotifers in the Ohio River.	22
Rotifer Averages at the Study Stations.	23
Explanation of Plankton Study Sampling Station Charts.	24

Charts of Sampling Stations

Station	Page	Station	Page	Station	Page
ANIMAS RIVER		LAKE MICHIGAN		OHIO RIVER	
Cedar Hill, N. Mex.	26	Milwaukee, Wis.	46	Cairo, Ill.	69
APALACHICOLA RIVER		LAKE SUPERIOR		Evansville, Ind.	70
Chattahoochee, Fla.	27	Duluth, Minn.	47	Cincinnati, Ohio	71
ARKANSAS RIVER		LAKE SUPERIOR, ST. MARY'S RIVER		Huntington, W. Va.	72
Pendleton Ferry, Ark.	28	Sault Ste. Marie, Mich.	48	East Liverpool, Ohio	73
Ponca City, Okla.	29	HUDSON RIVER		POTOMAC RIVER	
Coolidge, Kans.	30	Paughkeepsie, N.Y.	49	Great Falls, Md.	74
CHATTAHOOCHEE RIVER		ILLINOIS RIVER		Williamsport, Md.	75
Columbus, Ga.	31	Peoria, Ill.	50	RED RIVER (NORTH)	
Atlanta, Ga.	32	KANAWHA RIVER		Grand Forks, N. Dak.	76
COLORADO RIVER		Winfield, W. Va.	51	RED RIVER (SOUTH)	
Yuma, Ariz.	33	KLAMATH RIVER		Alexandria, La.	77
Page, Ariz.	34	Keno, Oreg.	52	Index, Tex.	78
Loma, Colo.	35	LITTLE MIAMI RIVER		Denison, Tex.	79
COLUMBIA RIVER		Cincinnati, Ohio	53	RIO GRANDE RIVER	
Clatskanie, Oreg.	36	MISSISSIPPI RIVER		Brownsville, Tex.	80
Bonneville, Oreg.	37	E. St. Louis, Ill.	54	Laredo, Tex.	81
Pasco, Wash.	38	Burlington, Iowa	55	El Paso, Tex.	82
Wenatchee, Wash.	39	Dubuque, Iowa	56	ST. LAWRENCE RIVER	
DELAWARE RIVER		St. Paul, Minn.	57	Massena, N.Y.	83
Philadelphia, Pa.	40	New Orleans, La.	58	SAVANNAH RIVER	
Marlins Creek Pa.	41	Delta, La.	59	Port Wentworth, Ga.	84
GREAT LAKES		W. Memphis, Ark.	60	N. Augusta, S.C.	85
LAKE ERIE, NIAGARA RIVER		Cape Girardeau, Mo.	61	SCHUYLKILL RIVER	
Buffalo, N.Y.	42	MISSOURI RIVER		Philadelphia, Pa.	86
LAKE HURON, DETROIT RIVER		St. Louis, Mo.	62	SNAKE RIVER	
Detroit, Mich.	43	Kansas City, Kans.	63	Wawawai, Wash.	87
LAKE HURON, ST. CLAIR RIVER		St. Joseph, Mo.	64	Weiser, Idaho	88
Port Huron, Mich.	44	Omaha, Nebr.	65	TENNESSEE RIVER	
LAKE MICHIGAN		Yankton, S. Dak.	66	Chattanooga, Tenn.	89
Gary, Ind.	45	Bismarck, N. Dak.	67	YELLOWSTONE RIVER	
		Williston, N. Dak.	68	Sidney, Mont.	90

The National Water Quality Network

The Public Health Service program for providing fundamental information on the quality of the Nation's waters stems from Public Law 660, approved July 9, 1956, as amended by Public Law 87-88, July 20, 1961. Section 4(c) thereof states: ". . . the Secretary [of Health, Education, and Welfare] shall, in cooperation with other Federal, State, and local agencies having related responsibilities, collect and disseminate basic data on chemical, physical, and biological water quality insofar as such data or other information relate to water pollution and the prevention and control therof."

To fulfill this responsibility, the National Water Quality Network collects, interprets, and disseminates:

- a. Information on changes in water quality at key points in river systems, as such quality may be affected by changes in water use and development.
- b. Continuous information on the nature and extent of pollutants affecting water quality.
- c. Data which will be useful in the development of comprehensive water resources programs.
- d. Data which will assist State, interstate, and other agencies in their water pollution control programs, and in the selection of sites for legitimate water uses.

Some 50 sampling stations were established when the program started, October 1, 1957. By January 1, 1962, the number had grown to 102.

Each sampling location satisfied one or more of the following criteria:

- a. Major waterways used for public water supply, propagation of fish and wildlife, recreational purposes, and agricultural, industrial, and other legitimate uses.
- b. Interstate, coastal, and international boundary waters.
- c. Waters on which activities of the Federal Government may have an impact.

Sampling station sites are fixed only after consultation with local, State, Federal and other agencies having related interests.

Active local participation is important in this operation. It assures maximum development of all information valuable both locally and nationally. Program costs are shared by the Federal Government and State and local agencies, those of the latter through contributions of laboratory and sampling manpower. Specifically, the State and local agencies perform most of the conventional chemical analyses and collect samples for the newer, more complex examinations. The Public Health Service, in turn, performs the more complex determinations and makes the results available to the participants. In addition, the consultation, training facilities, and other resources of the Public Health Service are available to the cooperating agencies.

Locations of sampling stations in operation as of January 1, 1962, are shown on page 3. Descriptions of the stations, participating agencies, and other pertinent information are presented on pages 5-8.

Only after careful screening of needs in water resource development was a pattern set for analyses of water samples. All Network samplings are examined for:

- a. Radioactivity.
 - (1) Gross alpha.
 - (2) Gross beta
 - (3) Strontium 90
- b. Plankton populations.
- c. Coliform organisms.
- d. Organic chemicals
- e. Biochemical, chemical, and physical measurements, including biochemical oxygen demand (B.O.D.), dissolved oxygen (D.O.), chemical oxygen demand (C.O.D.), chlorine demand, ammonia nitrogen, hydrogen ion concentration (pH), color turbidity, temperature, alkalinity (or acidity), hardness, chloride, sulfate, phosphates, and total dissolved solids.

f. Trace elements.

Samples for groups a, c, and e are collected and analyzed weekly. Samples for organic chemicals are collected monthly, while the schedule for plankton organism examinations is semimonthly. Strontium 90 analyses are made on composites of weekly samples accumulated over a 3-month period. Trace elements are determined

on 2-month composites of weekly samples. New parameters which are developed and found significant are included as the program continues.

Water Quality Parameters

In the assessment of water quality, all of the legitimate purposes for which raw waters can be used, and which may be affected by pollution, must be considered. These may range from the minimum requirements necessary for navigation to the ultimate in water quality demanded for special industrial processing. Quality needs differ considerably, therefore, according to water use.

For domestic use water must be free of disease organisms, clear, colorless, taste- and odor-free, and must have a relatively low dissolved mineral content. Agricultural water is judged primarily on its mineral content, especially with respect to the ratio between sodium and other cations, and the presence of boron. Water for fish propagation and recreational purposes must be relatively free from domestic and industrial pollution and must be able to sustain an active flora of the smaller aquatic organisms on which fish and wildlife feed. Industrial water quality demands run the gamut from the complete absence of minerals to a requirement of low temperature, the critical factor in water used for cooling. The effects of radioactive materials on these uses have not yet been fully appraised.

National Water Quality Network Sampling Stations

Introduction to the Plankton Studies

Although many water quality and water pollution studies have been made of rivers, there has been relatively little investigation of plankton in relation to water quality. This supplemental report presents information on the plankton populations found at 65 selected stations of the National Water Quality Network. Findings reported are based upon semimonthly samplings over a 2-year period ending June 30, 1961.

Plankton are composed of algae and other plant and animal organisms, and they do have an important relationship to the quality of the water in which they live. Always present in lakes and streams, these minute organisms are vital to water's self purification process. They take up and concentrate radionuclides from the water and when the cells die, they release radionuclides in the water.

Plankton also provide food for fish and other aquatic life. They sometimes cause taste and odor problems in water supplies. They may hinder water treatment by clogging filters. Often they become so abundant as to cause a nuisance in recreational areas and deplete oxygen in the water during decomposition. Because they exhibit population dynamics, plankton can serve as important indicators of water quality. For example, pollutants in the water may alter drastically the normal population patterns of plankton—an effect which may be observed through plankton population studies.

The data herein documented will be especially valuable because

identification and enumeration of the organisms were given uniform treatment, making comparisons relevant. Most other studies deal only with the larger net plankton and are not year-round studies.

In 1957 when the Network program was inaugurated, 16 sampling stations were in use on a monthly basis. At this time all diatoms including empty shells were included in the total counts. By 1959 the sampling schedule became semimonthly and the inert diatom shells were counted, separated and excluded from the total phytoplankton counts. The clump count procedure is used to tally the plankton organisms per ml. This includes all of the preservable algae larger than bacteria. In this method each single cell and natural clump or colony is recognized as a unit. From these data one may use a factor to determine other standard units.

All plankton which can be recognized in the preserved samples are being identified. These include fungi, sheathed bacteria, protozoa, crustaceans, rotifers, nematodes, and other invertebrates. Although these represent a small segment of the total population, their presence is noted for possible future use in studies of their relationship to water quality.

Much of the emphasis in the plankton program has been on diatoms. Both in total population and number of species they constitute the largest planktonic group in the rivers and Great Lakes. They are important indicators of water quality and its variations.

SAMPLING STATIONS AND COOPERATING AGENCIES

STATION	MILES ABOVE MOUTH	DESCRIPTION	SAMPLED BY	OTHER COOPERATING AGENCIES
ANIMAS RIVER above Cedar Hill, N. Mex.	33	Heizer Ranch at natural gas pipeline crossing.	San Juan County Health Dept.	New Mexico Dept. of Public Health
APALACHICOLA RIVER at Chattahoochee, Fla.	105	Jim Woodruff Dam Powerhouse	U.S. Army Corps of Engineers Florida State Hospital, Chattahoochee, Florida.	Florida State Board of Health
ARKANSAS RIVER at Pendleton Ferry, Ark. at Ponca City, Okla.	45 646	Ferry Landing, South Shore Old U.S. Highway No. 60 Bridge (formerly at Osage Station, Okla. Gas and Electric Co.)	Arkansas State Water Pollution Control Commission Ponca City Water Dept.	Arkansas State Board of Health Oklahoma State Dept. of Health
at Coolidge, Kans.	1,099	U.S. Geological Survey Stream Gaging Station	U.S. Geological Survey	Kansas State Board of Health Colorado State Dept. of Health
CHATTAHOOCHEE RIVER at Columbus Ga. at Atlanta, Ga.	160 303	Columbus Water Dept. Plant Intake Atlanta Water Dept. Plant Intake	Columbus Water Dept. Atlanta Water Dept.	Georgia State Dept. of Public Health Georgia State Dept. of Public Health
COLORADO RIVER at Yuma, Ariz. at Page, Ariz.	91 775	Arizona Water Co. Intake Page Water Plant Intake	Arizona Water Co. U.S. Bureau of Reclamation	Arizona State Dept. of Health Arizona State Dept. of Health
near Loma, Colo.	1,150	Pumping Station at E.R. Smith Farm	Mesa County (Colorado) Dept. of Public Health	Utah State Dept. of Health Colorado State Dept. of Public Health
COLUMBIA RIVER near Clatskanie, Oreg.	53	Beaver Army Terminal U.S. Army Transp., Supply and Maintenance Command	U.S. Army U.S. Public Health Service	
at Bonneville Dam, Wash., Oreg.	145	Bonneville Dam Powerhouse	U.S. Army Corps of Engineers	Oregon State Sanitary Authority Washington State Dept. of Health Washington State Pollution Control Commission
at Pasco, Wash.	327	Municipal Water Plant Intake	Pasco Water Dept.	Washington State Dept. of Health Washington State Pollution Control Commission
at Wenatchee, Wash.	465	Plant Intake, Aluminum Co. of America	Aluminum Co. of America Chelan-Douglas County Health Dept.	Washington State Dept. of Health Washington State Pollution Control Commission

SAMPLING STATIONS AND COOPERATING AGENCIES—Continued

STATION	MILES ABOVE MOUTH	DESCRIPTION	SAMPLED BY	OTHER COOPERATING AGENCIES
DEL AWARE RIVER at Philadelphia, Pa.	110	Municipal Water Plant Intake (Toresdale Plant)	Philadelphia Water Dept.	Pennsylvania State Dept. of Health
at Martins Creek, Pa.	191	at Martins Creek Steam Electric Station	Pennsylvania Power and Light Co	Pennsylvania State Dept. of Health
GREAT LAKES Lake Erie, Niagara River at Buffalo, N.Y.	—	Municipal Water Plant Intake	Buffalo Water Dept. Erie County (N.Y.) Health Dept.	New York State Dept. of Health
Lake Huron, Detroit River at Detroit, Mich.	29	Municipal Water Plant Intake (Water Works Park)	Detroit Board of Water Commissioners	Michigan State Dept. of Health Michigan State Water Resources Commission
Lake Huron St. Clair River at Port Huron, Mich	38	Municipal Water Plant Intake	City of Port Huron, Michigan	Michigan State Dept. of Health International Joint Commission Michigan State Water Resources Board
Lake Michigan at Gary, Ind	—	Gary-Hobart Water Corp. Intake	Gary-Hobart Water Corp.	Indiana State Board of Health
Lake Michigan at Milwaukee, Wis.	—	Municipal Water Plant Intake	City of Milwaukee, Wisconsin	Wisconsin State Board of Health
Lake Superior at Duluth, Minn	—	Municipal Water Plant Intake	Duluth Water, Gas and Sewage Treatment Dept.	Minnesota State Dept. of Health
Lake Superior, St. Mary's River at Sault Ste. Marie, Mich.	48	Municipal Water Plant Intake	Sault Ste. Marie Water Dept.	Michigan State Dept. of Health
HUDSON RIVER below Poughkeepsie, N.Y.	70 (est)	International Business Machine Corp. Plant Intake	International Business Machine Corp.	New York State Dept. of Health
ILLINOIS RIVER at Peoria, Ill.	166	Peoria Water Works Co. Plant Intake	Peoria Water Works Co.	Illinois State Dept. of Public Health
KANAWHA RIVER at Winfield Dam, W. Va.	30	Winfield Dam Power Plant	West Virginia Water Resources Commission	Kanawha Valley Power Company West Virginia State Dept. of Health
KLAMATH RIVER at Keno, Oreg	220	one mile below Copco Hydro-generating Plant	City of Klamath Falls Klamath County Health Dept.	California-Oregon Power Company
LITTLE MIAMI RIVER at Cincinnati, Ohio	2	Robert A. Taft Sanitary Engineering Center Raw Water Intake	Public Health Service	City of Cincinnati, Ohio
MISSISSIPPI RIVER at East St. Louis, Ill. at Burlington, Iowa at Dubuque, Iowa	1,166 1,369 1,549	East St. Louis Water Co. Intake Municipal Water Plant Intake U.S. Army Corps of Engineers Lock and Dam #11	East St. Louis Water Co. Burlington Water Dept. Dubuque Water Dept.	Illinois State Dept. of Public Health Iowa State Dept. of Health Iowa State Dept. of Health
at Lock and Dam #3 below St. Paul, Minn.	1,757	U.S. Army Corps of Engineers Lock and Dam #3	U.S. Army Corps of Engineers Minneapolis-St. Paul Sanitary District	Minnesota State Dept. of Health

SAMPLING STATIONS AND COOPERATING AGENCIES—Continued

STATION	MILES ABOVE MOUTH	DESCRIPTION	SAMPLED BY	OTHER COOPERATING AGENCIES
at New Orleans, La.	105	Municipal Water Plant Intake	New Orleans Sewage and Water Board	Louisiana State Dept. of Health
at Delta, La. (formerly at Vicksburg, Miss.)	433	River Landing, Delta Casting Yard, U.S. Corps of Engineers	Mississippi State Board of Health	Louisiana State Dept. of Health
at West Memphis, Ark.	726	Barge Terminal, Oklahoma-Mississippi River Products Lines, Inc.	Memphis (Tennessee) Light, Gas and Water Division	Arkansas State Board of Health
at Cape Girardeau, Mo.	1,020	Missouri Utilities Co. Water Intake	Missouri Utilities Co.	Tennessee State Dept. of Public Health
MISSOURI RIVER				Missouri State Dept. of Public Health and Welfare
at St. Louis, Mo.	36	Water Plant Intake, St. Louis County Water Co. and Howard Bend Plant, City of St. Louis	St. Louis County Water Dept. St. Louis Water Dept.	Missouri State Dept. of Public Health and Welfare
at Kansas City, Kans.	385	Municipal Water Plant Intake	Kansas City (Kansas) Board of Public Utilities	Kansas State Board of Health
at St. Joseph, Mo.	471	St. Joseph Water Co. Intake	St. Joseph Water Co.	Missouri State Dept. of Public Health and Welfare
at Omaha, Nebr.	642	Metropolitan Utilities Dist. Water Plant Intake	Metropolitan Utilities District	Nebraska State Dept. of Health
at Yankton, S. Dak.	841	Municipal Water Plant Intake	Yankton Water Dept.	South Dakota State Board of Health
at Bismarck, N. Dak.	1,377	Municipal Water Plant Intake	Bismarck Water Dept.	North Dakota State Dept. of Health
at Williston, N. Dak.	1,644	Municipal Water Plant Intake	Williston Water Dept.	
OHIO RIVER				
at Cairo, Ill.	3	Cairo Water Co. Intake	Cairo Water Co.	Illinois State Dept. of Public Health
at Evansville, Ind.	190	Municipal Water Plant Intake	Evansville Water Dept.	Indiana State Board of Health
at Cincinnati, Ohio	518	Municipal Water Plant Intake	Cincinnati Water Dept.	Ohio State Dept. of Health
at Huntington, W. Va.	677	Huntington Water Co. Intake	Huntington Water Corp.	West Virginia State Dept. of Health
at East Liverpool, Ohio	941	Municipal Water Plant Intake	East Liverpool Water Dept.	Ohio State Dept. of Health
POTOMAC RIVER				
at Great Falls, Md.	126	Washington, D.C. Water Plant Intake	U.S. Army Corps of Engineers	Maryland State Dept. of Health
at Williamsport, Md.	212	Hagerstown Municipal Water Plant Intake	Hagerstown Water Dept.	Maryland State Dept. of Health
RED RIVER (North)				
at Grand Forks, N. Dak.	296	Municipal Water Plant Intake	Grand Forks City Water Dept.	North Dakota State Dept. of Health
RED RIVER (South)				
at Alexandria, La.	122	Pumping Station on Levee near City Wells	Alexandria Water Dept.	Louisiana State Dept. of Health
at Index, Ark.	485	U.S. Highway No. 71 Bridge	Texarkana Water and Sewer Systems Arkansas State Water Pollution	Arkansas State Board of Health

SAMPLING STATIONS AND COOPERATING AGENCIES—Continued

STATION	MILES ABOVE MOUTH	DESCRIPTION	SAMPLED BY	OTHER COOPERATING AGENCIES
RIO GRANDE at Brownsville, Tex.	40	Brownsville Filtration Plant Plant #1 Intake	Brownsville Water Dept.	Texas State Dept. of Health
at Laredo, Tex.	356	Municipal Water Plant Intake	Laredo Water Dept.	Texas State Dept. of Health
at El Paso, Tex.	1,234	Municipal Water Plant Intake	El Paso Public Service Board	Texas State Dept. of Health
ST. LAWRENCE RIVER at Massena, N.Y.	422	Aluminum Foundry Plant Intake	Chevrolet Motor Div., General Motors Corp., Aluminum Foundry	New York State Dept. of Health
SAVANNAH RIVER at Port Wentworth, Ga.	22	State Highway No. 17 Bridge	Union Bag-Camp Paper Co. U.S. Army Corps of Engineers Chatham County Health Dept. North Augusta Water Dept.	Georgia State Dept. of Public Health
at North Augusta, S.C.	217	Municipal Water Plant Intake		South Carolina State Dept. of Health
SCHUYLKILL RIVER at Philadelphia, Pa.	10	Municipal Water Plant Intake	Philadelphia Water Dept.	Pennsylvania State Dept. of Health
SNAKE RIVER at Wawawai, Wash.	111 (est)	Pumping Station at I. E. Wilson Farm	Washington State College	Washington State Dept. of Health
at Weiser, Idaho	354	Municipal Water Plant Intake	Weiser Water Dept.	Idaho State Board of Health
TENNESSEE RIVER at Chattanooga, Tenn.	467 (est)	City Water Company Intake	City Water Company of Chat- tanooga	Tennessee State Dept. of Public Health
YELLOWSTONE RIVER at Sidney, Mont.	30	Intake-Lewis and Clark Station Montana-Dakota Utilities Co.	Montana-Dakota Utilities Co.	Montana State Board of Health

Equipment, Materials and Methods

Samples of raw water are collected semimonthly from each Network station and sent for processing to the Public Health Service's Water Quality Laboratory, Cincinnati, Ohio. Each sample is taken directly from the river or lake, or from a continuously flowing intake (as at a water treatment plant) receiving the river or lake water.

The sample, consisting of three liters of untreated water, is added to 100 ml. of preservative (thimerosal, 0.16 percent, plus Lugol's solution, 1 percent) in a polyethylene sample bottle. The Lugol's solution stains parts of the cells making identification easier. It also aids in settling the plankton since the iodine causes some of them to lose gas and, therefore, their buoyancy. This preservative has been found to be effective for approximately 1 month during the warm seasons and longer during cool weather. One gram of sodium borate is added for each gram of thimerosal to help keep the thimerosal in solution.

Three analyses, each requiring one liter, are performed per sample: (1) the genera of phytoplankters are identified and enumerated using the Sedgwick-Rafter slide technique; (2) the genera of microinvertebrates, mostly rotifers and crustaceans, are settled, identified to genus and counted in a special microslide; and (3) the diatoms are settled, washed and made into a permanent hyrax slide from which are made proportional counts of the species and some of the varieties. These determinations are also used to qualitative to genus the diatoms recorded in the Sedgwick-Rafter (step one) procedure and to make the proportional counts in step three.

Phytoplankters counted in the Sedgwick-Rafter slide include forms, measuring four microns or more. Clump counts are made

of fungi and sheathed bacteria. The Sedgwick-Rafter counts for total algae that were alive when collected are made as clump counts in which each single-celled individual or natural clump or colony of cells is enumerated as one. Diatom shells without chromatophores are tallied separately from preserved diatoms with chromatophores.

Because tiny centric and pennate diatoms cannot be adequately identified to genus from the Sedgwick-Rafter slide, their determination is dependent on accurate identification during proportional counting from permanent hyrax slides. However, all other algae are determined to genus, including the colonial diatoms *Melosira*, *Asterionella*, *Fragilaria* and *Tabellaria*. These diatoms form natural aggregates or colonies and can be recognized in a Sedgwick-Rafter cell. All other diatoms, however, are counted only as centrics or pennates since identification, even to genus, is often obscure with the resolution and magnification (200X) available in the Sedgwick-Rafter method. The identification and relative abundance of various diatom species are determined from a permanent hyrax slide and these findings are used to identify the genera of the diatoms in each Sedgwick-Rafter count.

In concentrating by centrifugation of raw samples low in phytoplankton a moderate proportion of buoyant forms is lost, broken apart or so compacted with their spines or gelatinous secretions that they cannot be redistributed randomly for counting under the microscope. For these reasons most of the quantitation of phytoplankters has been obtained from unconcentrated or undiluted raw water samples. The count is in a Sedgwick-Rafter slide using 20-power objectives and 10-power oculars, and is accomplished by

counting two lengthwise strips (about 500 microns) the width of the Whipple square.

These two strips represent a volume of about 0.05 ml. To obtain the number of plankters per ml., a factor of 20 to 22 is used, varying with the correction for preservative dilution and differences in calibration of the microscopes. Precise techniques have been developed for obtaining representative and geometrically accurate one-ml. samples for counting in the Sedgwick-Rafter slide.

For the rare occasions where concentrations of phytoplankton were necessary, settling proved to be the best method, affording the least loss or distortion of organisms. Furthermore, this concentration technique has the advantage of allowing the sediment to be washed with distilled water to free it of colloidal material and some of the silt particles, which interfere with optics in some of the turbid samples.

Identification of diatom species and their proportional census is done from incinerated frustules of diatoms settled and washed from a liter of sample. The washed sediment containing the diatoms is dried on a warming table on a number one coverglass, and this sediment is ashed in place on the coverslip on a red-hot hotplate. This method does not appear to change the minute identification markings of the siliceous cell walls and enables the two valves (epitheca and hypotheca), as well as the groups of cells attached to one another, to remain in a natural grouping, so that Sedgwick-Rafter counts and proportional counts can be matched.

Chemical cleaning was abandoned because bubbling separates the valves, distorts natural cell grouping, and tends to inflate the actual count. Permanent slide mounts are made with hyrax medium. The technique of settling, washing in distilled water, and mounting does not appear to alter the uniformity of the diatom species composition. Proportional counts are made with 90-power oil immersion apochromatic objectives and 10-power oculars containing a Whipple micrometer grid. Random strip counts are made until the total number of units reaches 200 to 300. Higher counts are necessary when one or two species are overwhelmingly abundant.

Identification to species is facilitated by the described techniques

in settling, washing and hyrax preparation, and by the use of the best optical lenses available.

Proportional counting of diatoms from permanent slides is on a modified unit-area basis, in which each single cell or each portion of a natural aggregate occupying up to 300 square microns is tallied as one unit, cells or aggregates occupying from 300 to 1,000 square microns as two, those 1,000 to 2,500 square microns as three, those 2,500 to 5,000 square microns as four, and those over 5,000 square microns as five. The Whipple grid makes this scaling simple. This system gives a slight weighting to the larger specimens and colonies, which are seldom numerically abundant, but it is basically the same as the Sedgwick-Rafter count used for enumerating the other phytoplankters. About 95 percent of the cells or clumps naturally fall into size class one or two.

Proportional Counting

The numbers and kinds of diatoms obtained from the one-liter sample aliquot usually provide sufficient organisms for a kinds-to-numbers determination. This involves identifying and counting enough diatoms of the four most abundant species and the remainder. For this analysis, counting of great numbers was found unnecessary; the percentages of the total diatom count are determined for the four most numerous species after counting only about 250 or so individuals. Further counting does not significantly change the proportion of the total population thus found to be represented by the four predominant species.

This more rapid method of determining the species diversity by using diatoms was developed because of the large number of samples processed from the National Water Quality Network. A trained counter requires about 45 minutes to read an average slide.

Some generalizations about community dynamics are possible because a separate tally is maintained for each species. The diatom charts (pages 15 and 16), showing the relative occurrence of the four species most abundant at 65 stations, dramatically show the distribution and species character of the Network.

Biotic Characterization of Waterways

The organisms most abundant at any sampling station at any given time are the most reliable key to conditions of the environment. Species present in relatively lower numbers may not be reliable for this purpose because they sometimes represent organisms washed into the stream from ponds, creeks and other minor aquatic habitats. Furthermore, the flowing together of two unlike principal streams may produce a segment of mixing water containing organisms that do not represent true environmental conditions. Surviving healthy organisms become reliable indicators when they continue to multiply in the new water mixture and become predominant.

The four most abundant diatom species reflect in most situations the environmental conditions in the streams and Great Lakes. They were used during this investigation to indicate differences in water quality and other environmental conditions. Rare organisms are frequently encountered in streams that receive biota from other streams or lakes with unlike environments. Relatively dense, healthy plankton populations of several species, however, are very useful, because they usually represent favorable environmental conditions.

In analyzing the plankton from the same rivers and lakes for over three years, one is impressed with the "personality" of each river and many of its stations, based on the kinds of dominant biota each supports. The person engaged in plankton identification and enumeration soon learns to recognize many of the rivers and even individual stations by the characteristic plankton each produces. The table on page 13, wherein letters are used to show the presence

of individual species, reveals the similarities among stations on a given stream. For example, similarities are noted between the stations of the Great Lakes and between those of the Columbia River. Also, the Southeast, the Northeast, the Southwest, and the upper and lower Mississippi River each have their characteristic diatom floras.

A decided marine influence at three of the Network stations is evidenced by the brackish diatoms always present. These are Poughkeepsie, New York on the Hudson River; Port Wentworth, Georgia on the Savannah River; and Philadelphia, Pennsylvania on the Delaware River. In addition, the diatoms of Port Wentworth include species typical of the South Atlantic coastal waters.

Some other coastal stations have shown marine influence after periods of low rainfall, which allows brackish water to back up during periods of high tide. *Cyclotella striata* is the most common species from these stations, but brackish species of *Coscinodiscus denarius* are also numerous.

Diatoms found in large numbers in all major drainage basins and the Great Lakes are *Diatoma vulgare*, *Fragilaria crotonensis*, *Melosira ambigua*, *Melosira granulata*, and *Stephanodiscus hantzschii*.

Diatoms characteristic of the Great Lakes (absent or extremely rare at river stations) are *Cyclotella comta*, *Cyclotella kutzningiana*, *Melosira binderana*, *Melosira islandica* and *Rhizosolenia eriense*.

Diatoms characteristic of the Arkansas, Colorado and Rio Grande rivers (arid regions with waters of high calcium carbonate hardness and often with high dissolved salts) are *Amphiprora alata*, *Amphiprora paludosa*, *Amphora ovalis*, *Biddulphia laevis*, *Caloneis amphisbaena*,

Pleurosigma delicatula, *Surirella brightwellii* and *Surirella striatula*. In the Red River (south) *Diploneis smithii* dominate.

Certain diatoms dominate for short periods at widely separated stations, but are characteristic for these stations by their abundance and high fidelity. The Southeast is represented by *Cyclotella pseudostelligera* and *Melosira distans* variety *alpigena*. Buffalo, New York and Peoria, Illinois are identified by the high incidence of *Stephanodiscus niagarae*. While *Tabellaria fenestrata* is widely distributed, it overwhelmingly dominates at Gary, Indiana.

In the Ohio River, except East Liverpool, Ohio, two species of *Melosira* are abundant: *M. ambigua* and *M. granulata*. A large centric diatom *Stephanodiscus niagarae* variety *magnifica* is characteristic of the Klamath River. The Colorado, Snake and Yellowstone rivers often have fossil species of diatoms.

The stations with the highest counts (productivity) are Peoria, Illinois; Ponca City, Oklahoma; St. Paul, Minnesota; Keno, Oregon and Grand Forks, North Dakota.

While Gary, Indiana has the highest productivity of the Great Lakes stations, its counts are low when compared with those of high productive river stations. In general the lowest production stations are on the Great Lakes and in the Southeast.

Most of the 65 stations represented in this report have their highest counts during February–May. Only 13 of the 65 had their highest counts during October–January.

High temperatures and impounded water promote dense populations of blue-green algae in the late summer and early fall at several stations such as Cincinnati on the Ohio River.

Heavy turbidity drastically reduces the planktonic biota, particularly evident in the lower Missouri river.

Achnanthes minutissima, reported by ecologists to be an indicator of high dissolved oxygen, is common in the headwaters of the Columbia River.

Asterionella formosa and *Diatoma elongatum* become abundant during cold water seasons.

Distribution of Most Abundant Species of Diatoms

Stations

RIVERS	1	2	3	4	5	6	7	8
	kPN	kdP	PVm	mPA				
ne	ZAW	kdL						
	kLY							
	Chj	kXL	kXL					
	Qdf	bhD	Bxg					
je	MIZ	IcP	FEB					
ch)	IMQ	MIc	MIc					
	QdI	QkT	QTi	dTI	IVd			
	Okd	Odb	Oda	dcI	cdL	DLe	LKD	
ri	QdT	QdI	QdT	Qdc	dQI	IQT	QdT	dIQ
	TQJ							
	dWL	ALG						
	SKH	SQY						
zes	dQe							
	NeR	PdU	PmO	Umx	Pmd	mPA	mQR	

Key to Species

A	<i>Achnanthes minutissima</i>
B	<i>Amphiprora paludosa</i>
C	<i>Anomoeoneis exilis</i>
D	<i>Asterionella formosa</i>
E	<i>Biddulphia laevis</i>
F	<i>Caloneis amphisbaena</i>
G	<i>Cocconeis placentula</i>
H	<i>Coscinodiscus denarius</i>
I	<i>Cyclotella meneghiniana</i>
J	<i>Cyclotella striata</i>
K	<i>Cymatosira beligica</i>
L	<i>Diatoma vulgare</i>
M	<i>Diploneis smithii</i>
N	<i>Fragilaria capucina</i>
O	<i>Fragilaria construens</i>
P	<i>Fragilaria crotensis</i>
Q	<i>Melosira ambigua</i>
R	<i>Melosira binderana</i>
S	<i>Melosira distans alpigena</i>
T	<i>Melosira granulata</i>
U	<i>Melosira islandica</i>
V	<i>Melosira varians</i>
W	<i>Navicula cryptocephala</i>
X	<i>Navicula viridula</i>
Y	<i>Navicula</i> sp.
Z	<i>Nitzschia lanceolate group</i>
a	<i>Nitzschia linearis</i>
b	<i>Nitzschia palea</i> type
c	<i>Stephanodiscus astriacea minutula</i>
d	<i>Stephanodiscus hantzschii</i>
e	<i>Stephanodiscus niagarae</i>
f	<i>Surirella brightwellii</i>
g	<i>Surirella ovata</i>
h	<i>Surirella stiatula</i>
i	<i>Synedra acus</i>
j	<i>Synedra tabulata</i>
k	<i>Synedra ulna</i>
l	<i>Synedra vaucheriae</i>
m	<i>Tabellaria fenestrata</i>
x	Other entity

These are the three species occurring most frequently in the one year period ending June 1 at each of the plankton study stations in 15 Network waterways (including the Great Lakes as a single unit). This three-species identification affords a simple, quick comparison of the important diatoms and demonstrates the distinct "personalities" of the sampling stations. Each three-letter symbol represents a station and the stations (except the Great Lakes) are read in upstream sequence beginning at the river mouth.

Diatom Species Occurring at the Study Stations*

October 1959–June 1961

<i>Achnanthes lanceolata</i> Bréb.	<i>Fragilaria brevistriata</i> Grun.	<i>Nitzschia filliformis</i> (W. Smith) Hust.
<i>Achnanthes minutissima</i> Kütz.	<i>Fragilaria capucina</i> Desm.	<i>Nitzschia fonticola</i> Grun.
<i>Amphipora alata</i> Kütz.	<i>Fragilaria construens</i> (E.) Grun.	<i>Nitzschia holsatica</i> Hust.
<i>Amphipora paludosa</i> W. Smith	<i>Fragilaria cratonensis</i> Kütton	<i>Nitzschia hungarica</i> Grun.
<i>Amphora ovalis</i> Kütz.	<i>Fragilaria leptostauron</i> (Ehr.) Hust.	<i>Nitzschia linearis</i> W. Smith
<i>Anomooneis exilis</i> (Kütz.) Cleve	<i>Fragilaria pinnata</i> Ehr.	<i>Nitzschia parvula</i> Levis
<i>Asterionella formosa</i> Hassall	<i>Fragilaria virescens</i> Ralfs.	<i>Nitzschia sigma</i> (Kütz.) W. Smith
<i>Bacillaria paradoxa</i> Gmelin	<i>Frustulia vulgaris</i> Thwaites	<i>Nitzschia sigmoides</i> (Ehr.) W. Smith
<i>Biddulphia laevis</i> Ehr.	<i>Gomphonema herculeana</i> (Ehr.) Cleve	<i>Nitzschia tryblionella</i> Hantzsch
<i>Caloneis amphistaena</i> (Bory) Cleve	<i>Gomphonema olivaceum</i> (Lyngb.) C. Ag.	<i>Pinnularia borealis</i> Ehr.
<i>Ceratoneis arcus</i> Kütz	<i>Gomphonema parvulum</i> Kütz.	<i>Pleurosigma delicatulum</i> W. Smith
<i>Cocconeis pediculus</i> Ehr.	<i>Gyrosigma kutzinii</i> (Grun.) Cleve	<i>Rhoicosphenia curvata</i> (Kütz.) Grun.
<i>Cocconeis placentula</i> Ehr.	<i>Hantzschia amphioxys</i> (Ehr.) Grun.	<i>Rhizosolenia eriensis</i> H. L. Smith
<i>Coscinodiscus rothii</i> (Ehr.) Grun.	<i>Melosira ambigua</i> (Grun.) O. Müller	<i>Rhopalodia gibba</i> (Ehr.) O. Müller
<i>Cyclotella atomus</i> Hust.	<i>Melosira binderana</i> Kg.	<i>Stephanodiscus astraea</i> (Ehr.) Grun.
<i>Cyclotella comta</i> (Ehr.) Kütz.	<i>Melosira distans</i> (Ehr.) Kütz. var. <i>alpigena</i> Grun.	var. <i>minutula</i> (Kütz.) Grun.
<i>Cyclotella glomerata</i> Bachm.	<i>Melosira granulata</i> (Ehr.) Ralfs.	<i>Stephanodiscus dubius</i> (Fricke) Hust.
<i>Cyclotella kutziniana</i> Thwaites	<i>Melosira islandica</i> O. Müller	<i>Stephanodiscus hantzschii</i> Grun.
<i>Cyclotella meneghiniana</i> Kütz	<i>Melosira varians</i> C. A. Agardh	<i>Stephanodiscus niagarae</i> Ehr.
<i>Cyclotella pseudostelligera</i> Hust.	<i>Meridion circulare</i> (Grev.) C. A. Ag.	var. <i>magnifica</i> Fricke
<i>Cyclotella stelligera</i> Cl. & Grun.	<i>Navicula canalis</i> Patrick	<i>Stephanodiscus tenuis</i> Hust.
<i>Cyclotella stitata</i> (Kg.) Grun.	<i>Navicula contenta</i> Grun.	<i>Surirella angustata</i> Kütz.
<i>Cymatopleura solea</i> (Bréb.) W. Smith	<i>Navicula cryptocephala</i> Kütz.	<i>Surirella brightwellii</i> W. Smith
<i>Cymatopleura beligica</i> Grunow	<i>Navicula cuspidata</i> Kütz.	<i>Surirella ovata</i> Kütz.
<i>Cymbella affinis</i> Kütz	<i>Navicula hungarica</i> Grun.	<i>Surirella striatula</i> Turpin
<i>Cymbella tumida</i> (Breb.) Heurck	<i>Navicula mucilosa</i> Kütz.	<i>Synedra acus</i> Kütz.
<i>Cymbella ventricosa</i> Kütz.	<i>Navicula notha</i> Wallace	<i>Synedra pulchella</i> Kütz.
<i>Diatsma anceps</i> (Ehr.) Grunow	<i>Navicula tripunctata</i> (Mull.) Bory	<i>Synedra nana</i> Meister
<i>Diatoma elongatum</i> C. A. Agardh	<i>Navicula viridula</i> Kütz.	<i>Synedra tabulata</i> (C. Ag.) Kütz.
<i>Diatoma vulgare</i> Bory	<i>Nitzschia acicularis</i> (Kütz.) W. Smith	<i>Synedra ulna</i> (Nitzsch.) Ehr.
<i>Diploneis smithii</i> (Bréb.) Cleve	<i>Nitzschia apiculata</i> (Gregory) Grun.	<i>Synedra vaucheriae</i> Kütz.
<i>Epithemia turgida</i> (Ehr.) Kütz.	<i>Nitzschia denticula</i> Grun.	<i>Tabellaria fenestrata</i> (Lyngb.) Kütz.
<i>Epithemia sorex</i> Kütz.	<i>Nitzschia dissipata</i> (Kütz.) Grun.	<i>Tabellaria flocculosa</i> (Roth) Kütz.
<i>Eunotia pectinalis</i> (Kütz.) Raben.		

*Each species listed occurred one or more times in aggregate samplings as one of the four most abundant recorded at study stations in the 15 waterways involved.

Occurrence of Four Most Abundant Diatom Species

OCURRENCE AS ONE OF THE FOUR
MOST ABUNDANT SPECIES OF DIATOMS

- - 1 to 25 PERCENT OF THE TIME
- △ - 26 to 50 PERCENT OF THE TIME
- ▲ - 51 to 75 PERCENT OF THE TIME
- - 76 to 100 PERCENT OF THE TIME

RIVER STATION

ANIMAS CEDAR HILL
ATLANTICOCULA CHATTahoochee

ARKANSAS PHILDETON FERRY
POORCA CITY
COOLIDGE

CHATTahoochee COLUMBUS
ATLANTA

COLORADO YRDA
PAGE
LOMA

COLombIA CLATSASKIE
BONNEVILLE
PASTO
CHINATCHEE

DELAWARE PHILADELPHIA
MARTINS CREEK

GREAT LAKES BUFFALO
MILWAUKEE
DETROIT
DULUTH
GARY
SAULT STE. MARIE
PORT HURON

HUDSON PUGHKEE RIVER
PEORIA

ILLINOIS WINFIELD
KANAWHA KENO

KLAMATH CINCINNATI

LITTLE MIAMI E. ST. LOUIS
BURLINGTON
DUGUARD
(lower) ST. PAUL
NEW ORLEANS
DELTA
WEST MEMPHIS
CAPE GIRARDEAU

MISSOURI ST. LOUIS
KANSAS CITY
ST. JOSEPH
OMAHA
YANKEE
BISMARCK
WILLISTON

OHIO CAIRO
EVANSVILLE
CINCINNATI
HUNTINGTON
EAST LIVERPOOL

POTOMAC GREAT FALLS
WILLIAMSPORT

RFD (North) GRAND FORKS

RFD (South) ALEXANDRIA
INDEX
DENISON

RIO GRAND BRUNSVILLE
LAREDO
EI PASO

ST. LAWRENCE MASSNA

SAVANNAH PORT WYNTHORPE
NORTH AUGUSTA

SCHUYLKILL PHILADELPHIA

SHAWA WAWAHAI
WIFSHR

TENNESSEE CHATTANOOGA

YELLOWSTONE SIDNEY

Occurrence of Four Most Abundant Diatom Species (continued)

THE ITEM IS OUT OF THE FLOOR
SIGHT AT 10:45 AM. 4 PECLES OF DIAMONDS

Tabellaria fenestrata Tabellaria floccosa

Green Flagellates at 48 Stations

Because of the interest of some researchers in the use of green flagellate algae as potential indicators of organic enrichment, the compilation below is presented.

Semimonthly samples were used, beginning with the second sample in July 1960 through September 1961. Only those stations having uninterrupted sampling for this period are included. Average green flagellate counts for 48 stations for the 15-month period are shown below.

River	Station	Counts/ ml	River	Station	Counts/ ml
Missouri	Yankton, S. Dak.	2,050	Mississippi	Delta, La.	80
Mississippi	Minneapolis, Minn.	481	Animas	Cedar Hill, N. Mex.	72
Arkansas	Ponca City, Okla.	466	Mississippi	W. Memphis, Ark.	69
Ohio	E. Liverpool, Ohio	417	Colorado	Loma, Colo.	67
Missouri	Omaha, Nebr.	375	Arkansas	Pendleton Ferry, Ark.	57
Chattahoochee	Columbus, Ohio	258	Hudson	Poughkeepsie, N.Y.	51
Ohio	Evansville, Ind.	252	Delaware	Martins Creek, Pa.	51
Missouri	St. Joseph, Mo.	226	Tennessee	Chattanooga, Tenn.	51
Rio Grande	Brownsville, Tex.	211	Red River (S)	Denison, Tex.	46
Ohio	Cincinnati, Ohio	196	Colorado	Yuma, Ariz.	40
Missouri	Kansas City, Kans.	176	Arkansas	Coolidge, Kans.	37
Kanawha	Winfield, W. Va.	167	Missouri	Bismarck, N. Dak.	37
Yellowstone	Sidney, Mont.	164	Colorado	Parker Dam, Ariz.-Calif.	36
Missouri	St. Louis, Mo.	162	Columbia	Bonneville, Oreg.	35
Red River (S)	Index, Tex.	145	Columbia	Clatskanie, Oreg.	33
Potomac	Great Falls, Md.	139	Mississippi	New Orleans, La.	31
Snake	Wawawai, Wash.	138	Ohio	Cairo, Ill.	29
Apalachicola	Chattahoochee, Fla.	137	Lake Michigan	Gary, Ind.	18
Colorado	Page, Ariz.	134	Lake Erie	Buffalo, N.Y.	15
Ohio	Huntington, W. Va.	116	Lake Huron	Port Huron, Mich.	12
Missouri	Williston, N. Dak.	112	Lake Huron	Detroit, Mich.	10
Mississippi	Dubuque, Iowa	89	Lake Superior	Duluth, Minn.	3
Savannah	Port Wentworth, Ga.	83	Lake Superior	Sault Ste. Marie, Mich.	2
Mississippi	Cape Girardeau, Mo.	82	Colorado	Boulder City, Nev.	2

MICROINVERTEBRATES

1-PROTOZOA

2-ROTIFERS

3-CRUSTACEA

1-BLUE-GREEN ALGAE

Agmenellum (Merismopodium)

Anabaena

Anacystis (Microcystis)

Aphanizomenon

Oscillatoria

Phormidium

2-GREEN ALGAE

3-GREEN FLAGELLATES

Chlamydomonas

4-OTHER PIGMENTED FLAGELLATES

DIATOMS

CENTRIC

Cyclotella meneghiniana

Cyclotella stelligera

Cyclotella kutzningiana

Melosira binderiana

Melosira varians

PENNATE

Achnanthes minutissima

Caloneis amphibiaena

Cymbella tumida

Diatoma vulgare

Diploneis smithii

Synedra ulna

Sutirella ovata

Gomphonema olivaceum

Stephanodiscus astraeanus

Stephanodiscus hantzschii

Melosira ambigua

Melosira granulata

Asterionella formosa

Cocconeis placentula

Fragilaria crotonensis

Fragilaria capucina

Navicula gracilis

Nitzschia palea

Tabellaria fenestrata

Planktonic Green Algae, Mississippi River—1959

LEGEND: AVERAGE NO. GENERA / ml AVERAGE COUNT / ml AVERAGE COUNT / ml OVERLAP

Similarities or differences between sampling stations can be observed through separate reporting of the three major groups, diatoms, green flagellates, and rotifers. Charted above are planktonic green algae (nonflagellates) 4-month averages for the year 1959 at eight Mississippi River stations. The count decreases successively station by station downstream from St. Paul, Minn. to New Orleans, La. The average count per ml. for the whole year was 2,087 at St. Paul and 151 at New Orleans.

*Relative Abundance of Diatoms, Other Algae and Rotifers, Ohio River
 National Water Quality Network Samples—
 May 1960–June 1961*

Production by planktonic algae and consumption by planktonic rotifers has an important bearing on water quality. Wastes discharged into rivers may produce problems from overproduction by diatoms and other algae and underconsumption by microinvertebrates as the natural self-purification process takes place. To maintain water of high quality a balance of production and consumption is a desirable objective of stream management. A graphical presentation of this relationship for 5 sampling stations on the Ohio River is shown. Along the Ohio River the highest standing crops were observed during the late summer and early fall when flow rates are the lowest. Cincinnati, the midpoint station between the headwaters and river mouth, had the highest productivity of the 5 sampling stations.

Average Number of Rotifers Per Liter*

July 1960 through June 1961

River	Station	Count	River	Station	Count
Animas	Cedar Hill, N. Mex.	14.7	Mississippi (Lower)	New Orleans, La.	0.5
Apalachicola	Chattahoochee, Fla.	34.2		Delta, La.	0.8
Arkansas	Pendleton Ferry, Ark.	11.9		W. Memphis, Ark.	3.7
	Ponca, City, Okla.	39.0		Cape Girardeau, Mo.	2.8
Chattahoochee	Coolidge, Kans.	4.5	Missouri	St. Louis, Mo.	0
	Columbus, Ga.	125.2		Kansas City, Kans.	0
Colorado	Atlanta, Ga.	3.4		St. Joseph, Mo.	0.1
	Yuma, Ariz.	2.0		Omaha, Nebr.	0.5
	Page, Ariz.	2.0	Ohio	Yankton, S. Dak.	27.3
Columbia	Loma, Colo.	0.6		Bismarck, N. Dak.	4.8
	Clatskanie, Oreg.	46.8		Williston, N. Dak.	0.9
	Bonneville Dam, Wash.-Oreg.	18.9	Potomac	Cairo, Ill.	3.0
	Pasco, Wash.	3.9		Evansville, Ind.	71.0
Delaware	Wenatchee, Wash.	3.7		Cincinnati, Ohio	58.0
	Philadelphia, Pa.	9.0		Huntington, W. Va.	28.0
Great Lakes	Martins Creek, Pa.	6.3		E. Liverpool, Ohio	13.0
	Buffalo, N.Y.	66.1		Great Falls, Md.	2.9
	Detroit, Mich.	16.2		Williamsport, Md.	1.4
	Port Huron, Mich.	22.2	Red (No.)	Grand Forks, N. Dak.	175.9
	Gary, Ind.	16.2	Red (So.)	Alexandria, La.	48.8
Hudson	Milwaukee, Wis.	8.3		Index, Tex.	8.0
Illinois	Duluth, Minn.	1.3	Rio Grande	Denison, Tex.	6.0
	Sault Ste. Marie, Mich.	7.7		Brownsville, Tex.	137.2
	Poughkeepsie, N.Y.	8.0		Laredo, Tex.	0.1
Kanawha	Peoria, Ill.	242.2	St. Lawrence	El Paso, Tex.	2.1
Klamath	Winfield, W. Va.	6.1	Savannah	Massena, N.Y.	16.0
Little Miami	Keno, Oreg.	161.3		Port Wentworth, Ga.	1.0
Mississippi (Upper)	Cincinnati, Ohio	85.2	Schuylkill	N. Augusta, S.C.	2.0
	E. St. Louis, Ill.	45.0	Snake	Philadelphia, Pa.	13.0
	Burlington, Iowa	18.0		Wawawai, Wash.	4.7
	Dubuque, Iowa	42.0	Tennessee	Weiser, Idaho	18.8
	St. Paul, Minn.	242.0		Chattanooga, Tenn.	22.5
			Yellowstone	Sidney, Mont.	0.8

*Semimonthly samples from 65 Stations of the National Water Quality Network.

Explanation Of Sampling Station Charts

A. BAR GRAPH—Percent Occurrence and Relative Abundance of Diatoms.

The quality of surface waters at a given time may be indicated by the kinds and numbers of organisms they support. One effect of enrichment is a decrease in the diversity of the diatom species. The identification and relative abundance of the predominant diatom species is basic to the determination of their species diversity.

The bar graph, "Diatoms—Present Occurrence," lists those species of diatoms which appeared first, second, third or fourth in abundance in semimonthly samples taken during the period designated at 65 stations of the National Water Quality Network for the year beginning July 1, 1960. For those species in first or second place at any time, the graph presents the percent of the time they occurred as either first, second, third or fourth in abundance. For instance, in the Columbia River at Clatskanie, Oregon, *Synedra ulna* was the number one species 19 percent of the time, was in first or second place 32 percent of the time, was among the first three predominant species 51 percent of the time, and was among the first four 76 percent of the time. Species which never occurred in first or second place, but which did occur in third or fourth are listed, but their percent occurrence is not shown.

The percent occurrence in no way reflects the actual population density. A species second in abundance, for example, may be present in only small numbers; another may have occurred in large numbers in some samples, but because it was not among the first four, would not be listed.

Both the bar and circle graphs (see B, p. 25) deal with the same

DIATOMS COUNTS / ml.	CIRCLE SIZE
0-1000	SMALL
1001-3000	MEDIUM
3001-OR OVER	LARGE

sampling period. The bar graph includes species names and comprises one year's collection of data.

B. CIRCLE GRAPH—Diatoms, Species Diversity (See diagram at left).

While the bar graph is designed to show the percent occurrence and names of the four most abundant species for a year, the circle graph indicates the species diversity of diatoms at each of the 24 (semimonthly) sampling times for the year July 1960 through June 1961. Semimonthly samples are represented by radial lines extending from the perimeter of the circle. The short radial lines with month designations represent the second semimonthly samples normally taken during the third week of the month. The longer lines represent the first of the semimonthly samples. The months are recorded consecutively clockwise.

A total diatom population range is expressed in the size of the circle. Three circle sizes are used. A small circle (4 cm. in diameter) represents a diatom count of between zero and 1,000 per ml., a medium circle (6 cm. in diameter), between 1,001 and 3,000 per ml., and a large circle (8 cm.) above 3,001.

A total diatom population of any sample is represented as a percent by the radius designated for that sample. The percent of diatoms, other than the four most abundant species in a population, is determined by the distance from the center of the circle to a point on the radius. A quartile scale is given on a vertical radius of each circle. The central blank portion of the circle is formed by radially plotting percent of diatoms other than the four most abundant species. Sections shaded by the smaller dots represent samples not analyzed. Species diversity is indicated by the extension of the white area from the center of circle. Thus a line drawn to connect these points on the 24 radii inscribes a figure or pattern which may be characteristic for each station. As the central clear area extends outward greater species diversity is indicated. Correspondingly, less diversity is indicated as the outer dark area increases.

The perimeter is divided into evenly spaced sampling times and each circle graph shows the fluctuations in species diversity between

the 24 sampling times during the year. For example, species diversity is relatively great at Wawawai, Washington on the Snake River and relatively low at Grand Forks, North Dakota on the Red River. Many of the 65 circle graphs suggest seasonal patterns, with the least species diversity in late summer and fall. At Clatskanie, Oregon on the Columbia River, species diversity is greater during the winter months than the summer months.

C. LOGARITHMIC LINE GRAPH—Total Live Phytoplankton Counts.

Total live phytoplankton counts are plotted beginning with July 1959 for those stations that were in operation at that time. Counts are presented in a logarithmic scale on the vertical axis. The counts exclude the inert diatom shells. A summary of average seasonal total live phytoplankton counts is also presented. Seasonal periods averaged extend from June-September, October-January, and February-May.

D. TABLE OF ZOOPLANKTON

Four genera of rotifers were found to be very common in the major waterways of the United States by this study. The occurrence of these genera during the period July 1960 to July 1961 is presented with average counts per liter per sample. Column one presents the number of occurrences of all rotifers present in all samples. The second column gives the average count per liter based on all samples, whether or not rotifers were present.

Similar treatment is given copepods, cladocerans, nauplii, nematodes and other invertebrate metazoans.

E. TABLE OF MOST ABUNDANT GENERA OF ALGAE

The most abundant genera of algae are recorded in tabular form, the criterion for inclusion being occurrence in numbers 150 per ml. or more. The percent occurrence in these numbers is presented. The table is broken down into major groups (blue-greens, greens, green flagellates, other pigmented flagellates, diatoms—centric and pennate). This permits comparisons among these major groups of algae.

ANIMAS RIVER
CEDAR HILL, NEW MEXICO

DIVERSITY - SPECIES DIVERSITY

FIRST 4 MOST ABUNDANT

ALL OTHER SPECIES

NO ANALYSIS MADE

ZOOPLANKTON

Samples analyzed 19
July 1960 to July 1961

	Samples with Animals	Average count per liter per sample
Rotifers	12	14.7
Keratella	2	0.3
Polyarthra	2	0.1
Brachionus	1	0.1
Synchaeta	0	0
Other genera	7	14.2
Cladocerans		
nauplii	2	0.1
copepods	0	0
cladocerans	0	0
Nematodes		0
Other invertebrate metazoans		0

MOST ABUNDANT
GENERA OF ALGAE

Percent frequency of counts
150 per ml. or more
From Feb. 1960 to May 1961

Diatoms

Pennate	
Achnanthes	14
Fragilaria	14
Gomphonema	7
Navicula	17
Nitzschia	35
Surirella	60
Synedra	71

APALACHICOLA RIVER
CHATTahoochee, FLORIDA

Semimonthly Samples
from July 1960 to July 1961

Others in first 4 species
but not in first 2

Cyclotella stelligera
Fragilaria crotonensis
Melosira granulata
Velosira italica
Nitzschia palea type
Synedra ulna

RELATIVE ABUNDANCE

DIATOMS - SPECIES DIVERSITY

ZOOPLANKTON

Samples analyzed 18
Aug. 1960 to July 1961

Samples with Animals	Average count per liter per sample
----------------------	------------------------------------

Rotifers:	17	34.2
Keratella	16	10.7
Polyarthra	13	8.3
Brachionus	4	0.8
Synchaeta	8	2.4
Other genera	14	13.6

Crustaceans.		
nauplii	3	0.4
copepods	1	0.1
cladocerans	3	0.2
Nematodes		1.0
Other invertebrate metazoans	0	

MOST ABUNDANT
GENERA OF ALGAE

Percent frequency of counts
150 per ml. or more
From March 1960 to May 1961

Green algae
Scenedesmus 9

Green flagellates
Phacus 4
Trachelomonas 9

Other pigmented flagellates
Chromulina 0

Diatoms
Centric
Cyclotella 28
Melosira 42
Stephanodiscus 28

Pennate
Asterionella 14
Navicula 4
Nitzschia 4
Synedra 9

ARKANSAS RIVER
PENDLETON FERRY, ARKANSAS

DIATOMS - SPECIES DIVERSITY

- FIRST 4 MOST ABUNDANT
- ALL OTHER SPECIES
- NO ANALYSIS MADE

ZOOPLANKTON

Samples analyzed 13
July 1960 to July 1961

	Samples with Animals	Average count per liter per sample
Rotifers.	6	11.9
Keratella	2	0
Polyarthra	4	0.5
Brachionus	2	10.9
Synchaeta	0	0
Other genera	2	0.5
Crustaceans.		
nauplii	1	0
copepods	2	0.5
cladocerans	1	0
Nematodes	5	
Other invertebrate metazoans	0	

MOST ABUNDANT
GENERA OF ALGAE

Percent frequency of counts
150 per ml or more
From May 1959 to May 1961

Blue-green algae	Anacystis	3
Green algae	Oocystis	3
	Scenedesmus	3
	Solenastrum	3
	Stichococcus	3
Green flagellates	Chlamydomonas	16
	Buglena	3
	Trachelomonas	11
Diatoms		
Centric	Cyclotella	32
	Melosira	16
	Stephanodiscus	24
Pennate	Amphipora	3
	Asterionella	3
	Navicula	5
	Nitzschia	11
	Synedra	24

ARKANSAS RIVER
PONCA CITY, OKLAHOMA

Semimonthly Samples
from July 1960 to July 1961

DIATOMS - PERCENT OCCURRENCE
0 10 20 30 40 50 60 70

ZOOPLANKTON

Samples analyzed 22
July 1960 to July 1961

Samples with Average count
Animals per liter
per sample

Rotifers:	7	39.0
Keratella	4	0.6
Polyarthra	1	0.3
Brachionus	5	36.0
Synchaeta	2	0
Other genera	2	1.4

MOST ABUNDANT
GENERA OF ALGAE

Percent frequency of counts
150 per ml. or more
From May 1959 to May 1961

Blue-green algae	
Agmenellum	3
Anacyclis	5
Aphanizomenon	3
Gomphocapsula	5
Oscillatoria	3
Phormidium	3

Green algae	
Actinostroma	16
Amidostromus	11
Chlorella-type	3
Dictyoclophaeum	3
Golenkinia	1
Lagerholmia	3
Micractinium	3
Oocystis	3
Peltastroma	5
Scenedesmus	24

Green flagellates	
Chlamydomonas	49
Puglana	5
Trachelomonas	5

Other pigmented flagellates	
Gymnodinium	3
Peridinium	3

Diatoms	
Centric	
Stephanodiscus	3
Cyclotella	73
Vallesia	22
Stephanodiscus	39

Femate	
Amphiprora	19
Gomphonema	8
Meridion	3
Ophora	3
Navicula	54
Nitzschia	54
Surirella	32
Synedra	25

ARKANSAS RIVER
COOLIDGE, KANSAS

500 depth samples
from July 1959 to July 1961

DIATOMS - PERCENT OCCURRENCE

DIATOMS - SPECIES DIVERSITY

ZOOPLANKTON

Samples analyzed 20
July 1960 to July 1961

Samples with Animals	Average count per liter per sample
Rotifers.	4.5
Keratella	0
Polyarthra	0
Brachionus	1
Synchaeta	0
Other genera	4.0
Crustaceans.	
nauplii	0.5
copepods	0
cladocerans	0
Nematodes	2
Other invertebrate metazoans	0

MOST ABUNDANT
GENERA OF ALGAE

Percent frequency of counts
150 per ml. or more
From May 1959 to May 1961

Blue-green algae	
Agmenellum	3
Aphanizomenon	3

Green algae	
Scenedesmus	6

Green flagellates	
Chlamydomonas	3

Other pigmented flagellates	
Peridinium	3

Diatoms	
Centric	
Cyclotella	18
Melosira	3

Pennate	
Achnanthes	3
Amphiprora	38
Amphora	9
Caloneis	3
Cocconeis	3
Gomphonema	9
Gyrosigma	3
Navicula	82
Nitzschia	62
Pleurosigma	6
Staurocoleis	3
Surirella	32
Synedra	41

CHATTahoochee RIVER
COLUMBUS, GEORGIA

Semimonthly Samples
from July 1960 to July 1961

DIATOMS - SPECIES DIVERSITY

■ FIRST 4 MOST ABUNDANT

■ ALL OTHER SPECIES

■ NO ANALYSIS MADE

ZOOPLANKTON

Samples analyzed 21
July 1960 to July 1961

	Samples with Animals	Average count per liter per sample
Rotifers.	16	125.2
Keratella	15	25.6
Polyarthra	13	37.9
Brachionus	2	0.1
Synchaeta	4	2.2
Other genera	12	59.4
Crustaceans.		
nauplii	6	3.2
copepods	6	1.9
cladocerans	8	5.6
Nematodes		2.0
Other invertebrate metazoans	0	

MOST ABUNDANT
GENERA OF ALGAE

Percent frequency of counts
150 per ml. or more
From October 1959 to May 1961

Blue-green algae	
<i>Anacystis</i>	3
<i>Raphidiopsis</i>	3
Green algae	
<i>Scenedesmus</i>	9
Green flagellates	
<i>Chlamydomonas</i>	9
<i>Trachelomonas</i>	6
Other pigmented flagellates	
<i>Chromulina</i>	18
<i>Peridinium</i>	3

Diatoms

Centric	
<i>Cyclotella</i>	15
<i>Melosira</i>	15
<i>Stephanodiscus</i>	15

Pennate

<i>Asterionella</i>	3
<i>Fragilaria</i>	3
<i>Nitzschia</i>	6
<i>Synedra</i>	9

CHATTahoochee RIVER
ATLANTA, GEORGIA

Six-monthly Samples
from July 1960 to July 1961

DIATOMS - PERCENT OCCURRENCE

DIATOMS - SPECIES DIVERSITY

ZOOPLANKTON

Samples analyzed 22
July 1960 to July 1961

	Samples with Animals	Average count per liter per sample
Rotifers:	13	3.4
Keratella	8	1.1
Polyarthra	5	1.0
Brachionus	1	0
Synchaeta	2	0.1
Other genera	11	1.2
Crustaceans		
nauplii	3	0.3
copepods	0	0
cladocoeans	3	0.3
Nematodes		0
Other invertebrate metazoans	0	

MOST ABUNDANT
GENERA G F ALGAE

Percent frequency of counts
150 per ml. or more
From June 1960 to June 1961

TOTAL LIVE PHYTOPLANKTON COUNTS

Months Average count/ml.

June-Sept.	237
Oct.-Jan.	271
Feb.-May	394

Green flagellates
Phacotus 4

Other pigmented flagellates
Chromulina 9

Diatoms
Centric 18
Cyclotella 13
Melosira 4

Pennate
Asterionella 13

COLORADO RIVER
YUMA, ARIZONA

Semimonthly Samples
from July 1960 to July 1961

ZOOPLANKTON

Samples analyzed 23
July 1960 to July 1961

Samples with Animals	Average count per liter per sample	Most Abundant Genera of Algae
Rotifers: 9	2.0	Blue-green algae
Keratella 5	0	Anacystis 5
Polyarthra 3	0	Chlorophytes 3
Brachionus 5	0.5	
Synchaeta 5	0	
Other genera 7	1.5	
Crustaceans: 7	1	
nauplii 5	0	
copepods 5	0	
cladocerans 2	0	
Nematodes 2	0	
Other invertebrate metazoans 0	0	
Percent frequency of counts 150 per ml. or more from May 1959 to May 1961		
Blue-green algae		
Anacystis 5		
Chlorophytes 3		
Green algae		
Ankistrodecmus 3		
Scenedesmus 5		
Diatoms		
Centric 16		
Cyclotella 16		
Stephanodiscus 11		
Pennate		
Aulacoseira 8		
Anomooneis 13		
Fragilaria 8		
Navicula 11		
Nitrochla 11		
Synedra 29		

TOTAL LIVE PHYTOPLANKTON COUNTS

Months	Average count/ml.
June-Sept.	1,404
Oct.-Jan.	713
Feb.-May	686

COLORADO RIVER
PAGE, ARIZONA

Semimonthly Samples
from July 1960 to July 1961

	RELATIVE ABUNDANCE	
<i>Synedra ulna</i>		FIRST
<i>Cyclotella meneghiniana</i>		SECOND
<i>Surirella brightwellii</i>		THIRD
<i>Navicula sp.</i>		FOURTH
<i>Surirella ovata</i>		
<i>Gomphonema clivaceum</i>		
<i>Bidulphia laevis</i>		Others in first 4 species but not in first 2
<i>Stephanodiscus hantzschii</i>		
<i>Fragilaria construens</i>		
<i>Epithemia turgida</i>		
<i>Diatoma anceps</i>		

Caloneis amphibiaena
Gymnella affinis
Distoma elongatum
Epithemia soror
Nitzschia palea type
Rhopalodia gibba
Synedra vaucheriae

FIRST 4 MOST ABUNDANT
ALL OTHER SPECIES
NO ANALYSIS MADE

ZOOPLANKTON

Samples analyzed 18
July 1960 to July 1961

	Samples with Animals	Average count per liter per sample
Rotifers:	9	2.0
Keratella	5	0
Polyarthra	3	0
Brachionus	5	0.5
Synchaeta	5	2.0
Other genera	4	1.5
Crustaceans.		
nauplii	7	1.0
copepods	5	0
cladocerans	2	0
Nematodes		0
Other invertebrate metazoans		0

MOST ABUNDANT
GENERA OF ALGAE

Percent frequency of counts
150 per ml. or more
From Dec. 1959 to May 1961

Green Algae
Ankistrodesmus 3
Scenedesmus 9

Green flagellates
Chlamydomonas 6

Diatoms
Centric 22
Cyclotella 19
Stephanodiscus

Pennate
Cyclotella 6
Diatoma 6
Epithemia 3
Fragilaria 6
Gomphonema 3
Navicula 9
Nitzschia 12
Surirella 9
Synedra 38

TOTAL LIVE PHYTOPLANKTON COUNTS

Months	Average count/ml.
June-Sept.	1,870
Oct.-Jan.	781
Feb.-May	1,031

COLORADO RIVER LOMA, COLORADO

Semimonthly Samples
for July 1960 to July 1961

ZOOPLANKTON

Samples analyzed 19
July 1960 to July 1961

Samples with Animals	Average count per liter per sample
Rotifers:	0.6
Keratella	0
Polyarthra	0
Brachionus	0
Synchaeta	0.6
Other genera	0.6

MOST ABUNDANT GENERA OF ALGAE

Percent frequency of counts
150 per ml. or more
From May 1959 to May 1961

Blue-green algae	Percent frequency of counts
Anacystis	2
Tetradesmus	2

Diatoms	Percent frequency of counts
Centric	50
Cyclotella	5
Stephanodiscus	5

Other	Percent frequency of counts
Pennate	2
Achnanthes	22
Cocconeis	15
Cymbella	52
Diatoma	36
Fragilaria	2
Gomphonema	52
Navicula	62
Nitzschia	16
Surirella	19
Synedra	75
Stauroeis	2
Opephora	2

TOTAL LIVE PHYTOPLANKTON COUNTS

Months Average count/ml.

Month	Average count/ml.
June-Sept.	1,870
Oct.-Jan.	1,616
Feb.-May	3,539

FIRST 4 MOST ABUNDANT
ALL OTHER SPECIES
NO ANALYSIS MADE

COLUMBIA RIVER
CLATSASKIE, OREGON

Others in first 4 species
but not in first 2

Fragilaria construens
Melosira ambigua
Melosira granulata
Stephanodiscus astraea var. minutula
Synedra sp.

DIATOMS - SPECIES DIVERSITY

Legend:

- FIRST 4 MOST ABUNDANT
- ALL OTHER SPECIES
- NO ANALYSIS MADE

ZOOPLANKTON

Samples analyzed 22
July 1960 to July 1961

Samples with	Average count per liter
Animals	per sample
Rotifers	46.8
Keratella	23.0
Polyarthra	12.0
Brachionus	2.7
Synchaeta	0.6
Other genera	8.5
Crustaceans	
nauplii	1.0
copepods	0.6
cladocerans	1.0
Nematodes	0
Other invertebrate metazoans	0

MOST ABUNDANT
GENERA G F ALGAE

Percent frequency of counts
150 per ml. or more
From May 1959 to May 1961

Blue-green algae	
Anacystis	3
Phormidium	3
Green algae	
chlorella-type	3
Stichococcus	6
Diatoms	
Centric	
Cyclotella	19
Melosira	32
Stephanodiscus	31
Pennate	
Achnanthes	6
Asterionella	19
Fragilaria	25
Navicula	9
Synedra	19
Tabellaria	6

COLUMBIA RIVER
BONNEVILLE, OREGON

Sediment samples
from July 1960 to July 1961

ZOOPLANKTON

Samples analyzed 21
July 1960 to July 1961

Samples with Average count
Animals per liter/sample

Rotifers	10	18.9
Keratella	10	12.0
Polyarthra	6	3.0
Brachionus	4	0.8
Synchaeta	2	0.6
Other genera	8	3.3
Crustaceans:		
nauplii	3	0
copepods	2	0
cladocerans	2	0
Other invertebrate metazoans	0	0

MOST ABUNDANT
GENERA OF ALGAE

Incident frequency of counts
150 per ml. or more
July 1959 to July 1961

Blue-green algae
Anabaena 3
Phormidium 6

Diatoms
Centric
Cyclotella 23
Melosira 26
Stephanodiscus 29

Pennate
Achnanthes 3
Asterionella 31
Diatoma 3
Fragilaria 29
Navicula 11
Nitzschia 6
Synedra 29
Tabellaria 11

COLUMBIA RIVER
PASCO, WASHINGTON

DIATOMS - SPECIES DIVERSITY

■ FIRST 4 MOST ABUNDANT

□ ALL OTHER SPECIES

▨ NO ANALYSIS MADE

ZOOPLANKTON

Samples analyzed 19
July 1960 to July 1961

Samples with Animals	Average count per liter per sample
Rotifers.	14
Keratella	6
Polyarthra	7
Brachionus	2
Synchaeta	3
Other genera	8
Crustaceans.	
nauplii	2
copepods	2
cladocerans	1
Nematodes	0
Other invertebrate metazoans	0

MOST ABUNDANT GENERA OF ALGAE

Percent frequency of counts
150 per ml. or more
From May 1959 to May 1961

Blue-green algae	
Phormidium	3
Diatoms	
Centric	
Cyclotella	6
Melosira	31
Stephanodiscus	11
Pennate	
Achnanthes	9
Asterionella	31
Fragilaria	14
Nitzschia	9
Synedra	23
Tabellaria	34

COLUMBIA RIVER
WENATCHEE, WASHINGTON

Semimonthly Samples
from July 1960 to July 1961

DIATOMS - SPECIES DIVERSITY

■ FIRST 4 MOST ABUNDANT
□ ALL OTHER SPECIES
■ NO ANALYSIS MADE

ZOOPLANKTON

Samples analyzed 17
July 1960 to July 1961

Samples Average count
with per liter
Animals per sample

Rotifers:	8	3.7
Keratella	6	1.7
Polyarthra	1	0
Brachionus	0	0
Synchaeta	1	0
Other genera	8	2.7

Crustaceans:		
nauplii	1	0
copepods	0	0
cladocerans	2	0

Nematodes	0	
Other invertebrate metazoans	0	

MOST ABUNDANT
GENERA OF ALGAE

Percent frequency of counts
150 per ml. or more
From May 1959 to May 1961

Diatoms		
Centric		
Cyclotella	7	
Melosira	10	
Pennate		
Achnanthes	10	
Asterionella	31	
Fragilaria	7	
Nitzschia	3	
Synedra	14	
Tabellaria	45	

TOTAL LIVE PHYTOPLANKTON COUNTS

Months	Average count/ml.
June-Sept.	115
Oct.-Jan.	210
Feb.-May	865

DELAWARE RIVER
PHILADELPHIA, PA

Astericella formosa
Cyclotella renghiniiana
Cocconeis placentula
Nitzschia talea type

DIATOMS - SPECIES DIVERSITY

- FIRST 4 MOST ABUNDANT
- ALL OTHER SPECIES
- NO ANALYSIS MADE

ZOOPLANKTON

Samples analyzed 18
July 1960 to July 1961

	Samples with Animals	Average count per liter per sample
Rotifers.	6	9.0
Keratella	2	0.
Polyarthra	1	1.0
Brachionus	1	0.8
Synchaeta	1	0
Other genera	5	7.2
Crustaceans.		
nauplii	0	0
copepods	0	0
cladocerans	0	0
Nematodes		1.0
Other invertebrate metazoans	0	

MOST ABUNDANT
GENERA OF ALGAE

Percent frequency of counts
150 per ml. or more
From May 1959 to May 1961

Blue-green algae	
Anacystis	14
Green algae	
Actinostrium	5
Adicatralaeum	5
Chlorella-type	5
Oocystis	5
Scenedesmus	14
Green flagellates	
Chlamydomonas	5
Other pigmented flagellates	
Ochromonas	5
Diatoms	
Centric	
Cyclotella	33
Melosira	10
Pennate	
Asterionella	5
Frullaria	5
Gomphonema	5
Navicula	5
Syndra	50

DELAWARE RIVER
MARTINS CREEK, PENNSYLVANIA

Semimonthly Samples
from July 1960 to July 1961

DIATOMS - PERCENT OCCURRENCE

Achnanthes minutissima

Melosira varians

Synedra vaucheriæ

Diatoma vulgare

Cymbella ventricosa

Synedra ulna

Asterionella formosa

Ceratoneis arcus

Nitzschia palea type

Cocconeis placentula

Achnanthes sp.

Others in first 4 species
but not in first 2

Navicula cryptocephala

Navicula tripunctata

Nitzschia lanceolata group

Synedra pulchella

DIATOMS - SPECIES DIVERSITY

FIRST 4 MOST ABUNDANT

ALL OTHER SPECIES

NO ANALYSIS MADE

MOST ABUNDANT
GENERAL OF ALGAE

Percent frequency of counts
150 per ml. or more
From May 1959 to May 1961

Green algae
Scenedesmus 6

Green flagellates
Chlamydomonas 3
Chlorobranchis 3

Other pigmented flagellates
Chromulina 3

Diatoms
Centric
Cyclotella 6
Melosira 9
Stephanodiscus 3

Pennate
Achnanthes 6
Asterionella 16
Ceratoneis 6
Cocconeis 3
Cymbella 13
Diatoma 16
Fragilaria 6
Navicula 6
Nitzschia 3
Synedra 25

ZOOPLANKTON

Samples analyzed 23
July 1960 to July 1961

Samples with Animals	Average count per liter per sample
----------------------	------------------------------------

Rotifers:	16	6.3
<i>Keratella</i>	10	1.6
<i>Polyarthra</i>	5	0.4
<i>Brachionus</i>	1	0
<i>Synchaeta</i>	5	0.4
Other genera 12		3.9

Crustaceans:		
<i>nauplii</i>	2	0.1
<i>copepods</i>	3	0.1
<i>cladocerans</i>	1	0.1

Nematodes		2
-----------	--	---

Other invertebrate metazoans		0
------------------------------	--	---

J A S O N D J F M A M J J
(1959) (1960) (1961)

GREAT LAKES, LAKE ERIE, NIAGARA RIVER
BUFFALO, NEW YORK

Seminonthly Samples
from July 1960 to July 1961

ZOOPLANKTON

Samples analyzed 23
July 1960 to July 1961

Animals	Samples with	Average count per liter per sample
Rotifers	23	66.1
Keratella	23	27.5
Polyarthra	20	30.0
Brachionus	4	0.6
Synchaeta	5	1.0
Other genera	18	6.9

Crustaceans:

nauplii	11	4.5
copepods	11	3.5
cladocerans	10	4.9

Nematodes

Other invertebrate metazoans	1.0
Other invertebrate metazoans	0

MOST ABUNDANT GENERA OF ALGAE

Percent frequency of counts
150 per ml. or more
From May 1959 to May 1961

Diatoms	
Centric	
<i>Cyclotella</i>	5
<i>Melosira</i>	7
<i>Stephanodiscus</i>	17

Pennate	
<i>Asterionella</i>	2
<i>Diatoma</i>	2

TOTAL LIVE PHYTOPLANKTON COUNTS

Months	Average count/ml.
June-Sept.	113
Oct.-Jan.	415
Feb.-May	220

GREAT LAKES, LAKE HURON, DETROIT RIVER
DETROIT, MICHIGAN

Semimonthly Samples
from July 1960 to July 1961

DIATOMS - SPECIES DIVERSITY

■ FIRST 4 MOST ABUNDANT
■ ALL OTHER SPECIES
■ NO ANALYSIS MADE

ZOOPLANKTON

Samples analyzed 23
July 1960 to July 1961

	Samples with Animals	Average count per liter per sample
Rotifers:	19	6.3
Keratella	14	3.4
Polyarthra	4	0.9
Brachionus	4	0.8
Synchaeta	5	0.4
Other genera	13	0.8
Crustaceans:		
nauplii	6	0.6
copepods	13	0.9
cladocerans	4	1.9
Nematodes		1.
Other invertebrate metazoans	0	

MOST ABUNDANT
GENERA OF ALGAE

Percent frequency of counts
150 per ml. or more
from May 1959 to May 1961

Diatoms
Centric
Cyclotella 5
Stephanodiscus 5

Pennate
Asterionella 17
Diatoms 17
Fragilaria 12
Synedra 12
Tabellaria 10

TOTAL LIVE PHYTOPLANKTON COUNTS

Months	Average count/ml.
June-Sept.	244
Oct.-Jan.	396
Feb.-May	74

GREAT LAKES, LAKE HURON, ST CLAIR RIVER
PORT HURON, MICHIGAN

Semimonthly Samples
from July 1960 to July 1961

DIATOMS - PERCENT OCCURRENCE

Fragilaria construens

Fragilaria crotonensis

Tabellaria fenestrata

Fragilaria pinnata

Cyclotella kutzningiana

RELATIVE ABUNDANCE

Fragilaria capucina

Cyclotella sp.

Others in first 4 species
but not in first 2

Achnanthus minutissima

Amphora ovalis

Cyclotella ocellata

Diatoma elongatum

Diatoma vulgare

Fragilaria leptostauron

Synedra acus

DIATOMS - SPECIES DIVERSITY

FIRST 4 MOST ABUNDANT

ALL OTHER SPECIES

NO ANALYSIS MADE

ZOOPLANKTON

Samples analyzed 24
July 1960 to July 1961

Samples with Animals	Average count per liter per sample
----------------------	------------------------------------

Rotifera:	20	22.2
Keratella	14	12.0
Polyarthra	9	4.5
Brachionus	5	0.5
Synchaeta	4	0.5
Others	16	4.7

Crustacea:		
Nauplii	11	2.3
Copepods	16	6.1
Cladocera	11	2.3

Other invertebrate metazoans 0

MOST ABUNDANT
GENERA OF ALGAE

Percent frequency of counts
150 per ml. or more
From May 1960 to May 1961

Diatoms

Centric	
Cyclotella	4
Stephanodiscus	4
Pennate	
Asterionella	8
Diatoma	4
Fragilaria	13

TOTAL LIVE PHYTOPLANKTON COUNTS

Months Average count/ml

June-Sept.	114
Oct.-Jan.	291
Feb.-May	547

GREAT LAKES, LAKE MICHIGAN

GARY, INDIANA

Others in first 4 species but not in first 2

Cyclotella comta
Diatoma vulgaris
Fragilaria capucina
Fragilaria sp.
Melosira ambigua
Synedra ulna

DIATOMS - SPECIES DIVERSITY

■ FIRST 4 MOST ABUNDANT

□ ALL OTHER SPECIES

■ NO ANALYSIS MADE

ZOOPLANKTON

Samples analyzed 21
July 1960 to July 1961

	Samples with Animals	Average count per liter per sample
Rotifers:	17	16.2
Keratella	11	6.8
Polyarthra	5	0.7
Brachionus	5	1.6
Synchaeta	2	0
Other genera	15	7.1
Crustaceans:		
nauplii	6	0
copepods	7	0
cladocerans	6	2.7
Nematodes		0
Other invertebrate metazoans		0

MOST ABUNDANT GENERA OF ALGAE

Percent frequency of counts
150 per ml. or more
From May 1959 to May 1961

Blue-green algae	
Anacyclis	3
Green algae	
Oocystis	3
Diatoms	
Centric	
Cyclotella	25
Melosira	56
Haizocolenia	3
Stephanodiscus	21
Pennate	
Asterionella	16
Diatoma	3
Fragilaria	18
Nitzschia	3
Synechla	32
Tabellaria	54

GREAT LAKES, LAKE MICHIGAN
MILWAUKEE, WISCONSIN

Others in first 4 species
but not in first 2

Asterionella formosa
Cyclotella comta
Cyclotella kutziniana
Fragilaria capucina
Stephanodiscus "michiganiana"
Tabellaria flocculosa
Synedra ulna

ZOOPLANKTON

Samples analyzed 19
July 1960 to July 1961

Samples with Animals	Average count per liter per sample
Rotifers: 16	8.3
Keratella 11	2.2
Polyarthra 5	2.2
Brachionus 8	1.1
Synchaeta 4	0.7
Other genera 13	2.1
Crustaceans	
nauplii 9	2.1
copepods 13	2.9
cladocerans 6	0.8
Nematodes	0
Other invertebrate metazoans	0.8

MOST ABUNDANT
GENERA OF ALGAE

Percent frequency of counts
150 per ml. or more
From Sept. 1960 to Sept. 1961

TOTAL LIVE PHYTOPLANKTON COUNTS	
Months	Average count/ml.
June-Sept.	1,019
Oct.-Jan.	792
Feb.-May	1,113

COUNT / ml

S O N D J F M A M / J J (1960) (1961)

DIATOMS	
Centric	
Cyclotella	15
Melosira	15
Stephanodiscus	55
Pennate	
Fragilaria	10
Synedra	20
Tabellaria	10

GREAT LAKES, LAKE SUPERIOR
DULUTH, MINNESOTA

Semimonthly Samples
from July 1960 to July 1961

DIATOMS - PERCENT OCCURRENCE

RELATIVE ABUNDANCE

FIRST

SECOND

THIRD

FOURTH

Others in first 4 species
but not in first 2

Cyclotella comta

Cyclotella stelligera

Fragilaria sp.

Melosira ambigua

Rhizosolenia c.

Synedra acus

Synedra sp.

FIRST 4 MOST ABUNDANT

ALL OTHER SPECIES

NO ANALYSIS MADE

ZOOPLANKTON

Samples analyzed 2h
July 1960 to July 1961

Samples with Animals	Average count per liter per sample
Rotifers: 8	1.3
Keratella 8	0.3
Polyarthra 1	0
Brachionus 0	0
Synchaeta 2	0.2
Others 5	0.8

Crustaceans:

nauplii 3	0.3
copepods 4	0.3
cladocerans 2	0.2

Other invertebrate metazoans 0

THERE WERE NO GENERA OF
ALGAE WITH COUNTS OVER
150 per ml.

TOTAL LIVE PHYTOPLANKTON COUNTS

Months	Average count/ml.
June-Sept.	77
Oct.-Jan.	69
Feb.-May	107

GREAT LAKES, LAKE SUPERIOR, ST MARY'S RIVER
SAULT STE. MARIE, MICHIGAN

Semimonthly Samples
from July 1960 to July 1961

RELATIVE ABUNDANCE

FIRST

SECOND

THIRD

FOURTH

THERE WERE NO GENERA OF
ALGAE WITH COUNTS OVER
150 per ml.

ZOOPLANKTON

Samples analyzed 23
July 1960 to July 1961

Animals	Samples with	Average count per liter per sample
Rotifers:	15	7.7
<i>Keratella</i>	14	2.3
<i>Polyarthra</i>	6	1.3
<i>Brachionus</i>	3	0.1
<i>Synchaeta</i>	4	0.8
Other genera	9	4.4

Crustaceans:

<i>nauplii</i>	5	0.9
<i>copepods</i>	6	0.9
<i>cladocerans</i>	3	0.2

Other invertebrate metazoa 0

TOTAL LIVE PHYTOPLANKTON COUNTS

Months	Average count/ml.
June-Sept.	71
Oct.-Jan.	91
Feb.-May	117

FIRST 4 MOST ABUNDANT

ALL OTHER SPECIES

NO ANALYSIS MADE

HUDSON RIVER
POUGHKEEPSIE, NEW YORK

Semimonthly Samples
from July 1960 to July 1961

Melosira granulata

Melosira ambigua

Cyclotella striata
(brackish)

Coscinodiscus denarius
(brackish)

Synedra ulna

Cyclotella meneghiniana

Stephanodiscus hantzschii

Navicula peregrina
(brackish)

Diatoma vulgare

Others in first 4 species
but not in first 2

Melosira distans var. *alpigena*

Melosira varians

RELATIVE ABUNDANCE

FIRST

SECOND

THIRD

FOURTH

ZOOPLANKTON

Samples analyzed 22
July 1960 to July 1961

	Samples with Animals	Average count per liter per sample
Rotifers	17	8.0
Keratella	12	2.1
Polyarthra	3	0.2
Brachionus	4	0.2
Synchaeta	2	0.1
Other genera	14	5.4
Crustaceans		
nauplii	7	0.6
copepods	5	0.6
cladocerans	5	0.6
Nematodes		2
Other invertebrate metazoans	0	

JANUARY
1961

DIATOMS - SPECIES DIVERSITY

MOST ABUNDANT
GENERA OF ALGAE

Percent frequency of counts

150 per ml, or more

From May 1959 to May 1961

Blue-green algae

Anacystis 3

Green algae

Scenedesmus 6

Tetraselmis 3

Diatoms

Centric 6

Coscinodiscus 26

Cyclotella 31

Melosira 3

Stephanodiscus 9

Pennate

Synedra 9

TOTAL LIVE PHYTOPLANKTON COUNTS

Months	Average count/ml.
June-Sept.	868
Oct.-Jan.	604
Feb.-May	432

ILLINOIS RIVER
PEORIA, ILLINOIS

Semimonthly Samples
from July 1960 to July 1961

DIATOMS - PERCENT OCCURRENCE

ZOOPLANKTON

Samples analyzed 21
July 1960 to July 1961

Animals	Samples	Average count per liter per sample
Rotifers	19	242.2
Keratella	14	84.
Polyarthra	13	52.
Brachionus	4	33.
Synchaeta	12	11.
Other genera	17	85.

MOST ABUNDANT
GENERA OF ALGAE

Percent frequency of counts
150 per ml. or more
From March 1960 to May 1961

Blue-green algae	Percent
Anabaena	8
Thormidium	4

Green algae	Percent
Actinophyllum	33
Alkalistradiformis	29
Uloricella-type	8
Chlorococcum	4
Golenkinia	13
Microctenium	8
Scenedesmus	38
Montella	4

Green flagellates	Percent
Chlamydomonas	79
Huglenia	11
Gontium	4
Lepidodiscus	8
Trachelomonas	16

Other pigmental flagellates	Percent
Chromalina	33

Diatom	Percent
Centric	50
Cyclotella	42
Melosira	42
Stephanodiscus	92

Pennate	Percent
Asterionella	25
Diatoma	13
Micula	4
Gongylonema	4
Invicula	13
Nitzschia	50
Burkella	8
Synedra	33

FIRST 4 MOST ABUNDANT

ALL OTHER SPECIES

NO ANALYTIC DATA

KANAWHA RIVER
WINFIELD DAM, WEST VIRGINIA

Semimonthly Samples
from July 1960 to July 1961

DIATOMS - PERCENT OCCURRENCE

Others in first 4 species
but not in first 2

Fregilaria orotonensis
Hantzschia palea type
Synedra vaucherieae

ZOOPLANKTON

Samples analyzed 21
July 1960 to July 1961

Samples with
Average count
Animals per liter
per sample

Rotifers.	5	6.1
Keratella	1	0.1
Polyarthra	1	0.1
Blachionus	2	0.1
Synchaeta	0	0
Others	2	5.8

Crustacea:		
Nauplii	0	0
Copepods	0	0
Gladiocera	0	0
Nematodes		1
Other invertebrate metazoans		0

HOST ABUNDANT
GENERA OF ALGAE

Percent frequency of counts
150 per ml. or more
From February 1960 to May 1961

Green algae	
Ankistrodesmus	7
Chlorococcum	3
Scenedesmus	3
Stigeoclonium	3

Green flagellates	
Chlamydomonas	11

Other pigmented Flagellates	
Chromulina	3

Diatoms	
Centric	
Cyclotella	15
Stephanodiscus	7

KLAMATH RIVER
KENO, OREGON

Semi-monthly Samples
November 1960 to July 1961

Stephanodiscus hantzschii

Fragilaria construens

Fragilaria brevistriata

Synedra ulna

Others in first 4 species
but not in first 2

Fragilaria capicina

Melosira ambigua

Litochla lanceolatae group

Stephanodiscus dubius

Stephanodiscus niaparae

Stephanodiscus niaparae var. *magnifica*

Stephanodiscus sp.

FIRST 4 MOST ABUNDANT

ALL OTHER SPECIES

ZOOPLANKTON

Samples analyzed 18
Nov. 1960 to August 1961

Samples with
Average count
Animals per liter
per sample

ROTIFERS	18	161.3
Keratella	17	39.8
Polyarthra	13	39.8
Brachionus	14	28.2
Synchaeta	10	2.1
Other genera	15	51.4

Crustaceans.	
nauplii	8
copepods	7
cladocerans	4

Nematodes	0
Other invertebrate metazoans	0

MOST ABUNDANT
GENERA OF ALGAE

Percent frequency of counts
150 per ml. or more
From Nov. 1960 to August 1961

Blue-green algae	
Anacystis	16
Phormidium	5

Green algae	
Dictyosphaerium	11
Scenedesmus	11

Green flagellates	
Chlamydomonas	5
Trachelomonas	27

Other pigmented flagellates	
Chromulina	11

Diatoms	
Centric	
Cyclotella	11
Melosira	5
Stephanodiscus	100

Pennate	
Asterionella	5
Cymbella	5
Diatoma	6
Fragilaria	61
Navicula	15
Nitzschia	27
Suriellia	5
Synedra	16

LITTLE MIAMI RIVER
CINCINNATI, OHIO

Semimonthly Samples
from July 1960 to July 1961

Stephanodiscus hantzschii

Gomphonema olivaceum

Cyclotella meneghiniana

Diatoma vulgare

Navicula cryptocephala

Surirella ovata

Synedra ulna

Nitzschia sp.

Gomphonema sp.

Diatoma elongatum

Fragilaria construens

RELATIVE ABUNDANCE

FIRST

SECOND

THIRD

FOURTH

Others in first 4 species
but not in first 2

Cyclotella atomus

Cyclotella pseudostelligera

Fragilaria capucina

Navicula sp.

Nitzschia palea type

Nitzschia sp.

Rhoicosphenia curvata

DIATOMS - SPECIES DIVERSITY

FIRST 4 MOST ABUNDANT

ALL OTHER SPECIES

NO ANALYSIS MADE

ZOOPLANKTON

Samples analyzed 20
July 1960 to July 1961

Samples with
Average count
Animals per liter
per sample

Rotifers:	12	85.2
Keratella	4	4.0
Polyarthra	1	0.1
Brachionus	3	59.5
Synchaeta	4	1.4
Others	9	20.2

Crustacea:	
Nauplii	2
Copepods	0
Cladocera	0

Nematodes	1
Other invertebrate metazoans	0

MOST ABUNDANT
GENERA OF ALGAE

Percent frequency of counts
150 per ml. or more
October 1960 to September 1961

Green algae	
Lagerheimia	5
Oocystis	5

Green flagellates	
Chlamydomonas	20
Phacus	5
Trachelomonas	15

Other pigmented flagellates	
Chrysococcus	5

Diatoms	
Centric	
<i>Cyclotella</i>	35
<i>Melosira</i>	5
<i>Stephanodiscus</i>	45

Pennate	
<i>Diatoma</i>	10
<i>Navicula</i>	20
<i>Nitzschia</i>	20
<i>Surirella</i>	5
<i>Synedra</i>	15

MONTHS AVERAGE COUNT/ML

June-Sept. 1,973

Oct.-Jan. 3,281

Feb.-May 1,365

J A S O N D J F M A M J (1959)

J A S O N D J F M A M J (1960)

J A S O N D J F M A M J (1961)

MISSISSIPPI RIVER
E ST LOUIS, ILLINOIS

ZOOPLANKTON

Samples analyzed 19
July 1960 to July 1961

	Samples with Animals	Average count per liter per sample
Rotifers	15	45.0
Keratella	11	21.0
Polyarthra	6	4.0
Brachionus	9	8.0
Synchaeta	5	2.0
Other genera	11	10.0
Crustaceans:		
nauplii	4	0.3
copepods	5	0.8
cladocerans	2	0.1
Nematodes		3.0
Other invertebrate metazoans		0

MOST ABUNDANT
GENERA OF ALGA

Percent frequency of counts
1'0 per ml. or more
From 'May 1959 to 'May 1961

Blue-green algae	
<i>Anacystis</i>	5
Green algae	
<i>Actinophyllum</i>	2
<i>Ankistrodesmus</i>	5
<i>Scenedesmus</i>	5

Green flagellates
Chlamydomonidae 17
Trachomonidae 1

Diatoms	
Centric	
<i>Co. cinctilinum</i>	2
<i>Cyclotella</i>	38
<i>Microcilia</i>	67
<i>Stephanodiscus</i>	88

Pennate	
<i>Asterionella</i>	19
<i>Gyronigma</i>	2
<i>Navicula</i>	10
<i>Nitzschia</i>	14
<i>Suniella</i>	2
<i>Syneira</i>	38

MISSISSIPPI RIVER
BURLINGTON, IOWA

Semimonthly Samples
from July 1960 to July 1961

DIATOMS - SPECIES DIVERSITY

■ FIRST 4 MOST ABUNDANT

■ ALL OTHER SPECIES

■ NO ANALYSIS MADE

ZOOPLANKTON

Samples analyzed 18
July 1960 to July 1961

Samples with Animals	Average count per liter per sample
----------------------	------------------------------------

Rotifers	14	18.0
Keratella	13	6.
Polyarthra	10	2.
Brachionus	9	8.
Synchaeta	5	2.
Other genera	9	0

Crustaceans,		
nauplii	4	0.3
copepods	5	0.8
cladocerans	2	0.5
Nematodes		2.
Other invertebrate metazoans		0

MOST ABUNDANT
GENERA OF ALGAE

Percent frequency of counts
150 per ml. or more
From May 1959 to May 1961

Blue-green algae	
Anabaena	16
Oscillatoria	3

Green algae	
Actinastrum	3
Ankistrodesmus	5
Chlorella-type	5
Hieracium	3
Oscyathis	3
Scenedesmus	16
Stichococcus	3

Green flagellate algae	
Chlamydomonas	21
Phacus	3
Trachelomonas	5

Other pigmented flagellates	
Chromalina	3

Diatoms	
Centric	29
Cyclotella	66
Melosira	100

Pennate	
Asterionella	11
Cymatopleura	3
Diatoma	3
Fragilaria	5
Gyrosigma	3
Navicula	6
Nitzschia	3
Surirella	5
Synedra	29

1960

1961

MISSISSIPPI RIVER
DUBUQUE, IOWA

Months Average count/ml.

ZOOPLANKTON

Samples analyzed 12
July 1960 to July 1961

Samples with Animals	Average Count per liter per sample
Rotifers	42
Keratella	30
Polyarthra	2
Brachionus	5
Synchaeta	1
Other genera	4

Crustaceans:	
nauplii	5.9
copepods	3.8
cladocerans	0.5

Nematodes	
Others	1

M O S T A B U N D A N T	
G E N E R A	O F A L G A E

Percent frequency of counts
150 per ml. or more
From May 1959 to May 1961

Blue-green algae	
Anabaena	5
Anacystis	13
Aphanizomenon	8

Green algae	
chlorrella-type	
Scenedesmus	3
Schroderinia	3
Stichococcus	3

Green flagellates	
Chlamydomonas	18
Trachelomonas	3

Other pigmented flagellates	
Chromulina	3

Diatoms	
Centric	
Cyclotella	5
Meiosira	66
Stephanodiscus	87

Pennate	
Asterionella	5
Diatoma	3
Fragilaria	8
Navicula	5
Nitzschia	5

MISSISSIPPI RIVER
ST. PAUL, MINNESOTA

Sedimental Samples
from July 1960 to July 1961

Cocconeis pediculus
Cyclotella atomus
Melosira sp.
Nitzschia sp.
Stephanodiscus antraea
var. minutula
Synedra acus
S.
S.

FIRST 4 MOST ABUNDANT
ALL OTHER SPECIES

ZOOPLANKTON

Samples analyzed 22
July 1960 to July 1961

Samples with Average count
Animals per liter/sample

	Samples with Animals	Average count per liter/sample
Rotifers:	23	242
Keratella	23	56
Polyarthra	19	28
Brachionus	5	52
Synchaeta	14	16
Other genera	20	90

	Samples with Animals	Average count per liter/sample
Crustacea:		
nauplii	16	15
copepods	12	16
cladocerans	8	3
Nematodes		1
Other metazoan invertebrates		0

MOST ABUNDANT
GENERA OF ALGAE

Percent frequency of counts
150 per ml. or more
From May 1959 to May 1961

	Percent frequency of counts
Blue-green algae	
Agmenellum	14
Anacystis	46
Aphanizomenon	7
Gomphosphaeria	2
Lyngbya	2
Oscillatoria	23
Phormidium	5

	Percent frequency of counts
Green algae	
Actinastrum	14
Ankistrodesmus	34
Chlorella-type	14
Cruigenia	5
Coenococcus	20
Micractinium	14
Oocystis	2
Palmelloccoccus	2
Scenedesmus	57
Staurastrum	2
Stichococcus	5

	Percent frequency of counts
Green flagellates	
Chlamydomonas	45
Euglena	7
Trachelomonas	23

	Percent frequency of counts
Other pigmented flagellates	
Chromalina	23
Cryptomonas	2
Dinobryon	5
Gymnodinium	5

	Percent frequency of counts
Diatoms	
Centric	
Cyclotella	34
Melosira	45
Stephanodiscus	95

	Percent frequency of counts
Pennate	
Asterionella	9
Cocconeis	2
Cymatopleura	2
Diatoma	2
Navicula	18
Nitzschia	30
Synedra	43

MISSISSIPPI RIVER
NEW ORLEANS, LOUISIANA

Bi-monthly Samples
From July 1960 to July 1961

DIATOMS - SPECIES DIVERSITY

- ████████ FIRST 4 MOST ABUNDANT
- ██████ ALL OTHER SPECIES
- █████ NO ANALYSIS MADE

ZOOPLANKTON

Samples analyzed 24
July 1960 to July 1961

Samples with Animals	Average count per liter per sample
Rotifers.	0.5
Keratella	0.4
Polyarthra	0
Brachionus	0.1
Synchaeta	0
Other genera	0

Crustaceans	
nauplii	0.1
copepods	0
cladocerans	0
Nematodes	3
Other invertebrate metazoa	0

MOST ABUNDANT
GENERA OF ALGAE

Percent frequency of counts
150 per ml. or more
From May 1959 to May 1961

Green algae	
chlorella-type	2
Scenedesmus	2

Diatoms	
Centric	
Cyclotella	9
<i>Melosira</i>	47
<i>Stephanodiscus</i>	51

Pennate	
<i>Synedra</i>	4

TOTAL LIVE PHYTOPLANKTON COUNTS

Months Average count/ml.

June-Sept. 667
Oct.-Jan. 846
Feb.-May 1,070

MISSISSIPPI RIVER
DELTA, LOUISIANA

Sedimental Samples
from July 1960 to July 1961

Coscinodiscus rothii
Melosira italica
Melosira varians
Hitzschia palea type
Synedra acus

DIATOMS - SPECIES DIVERSITY

- [Hatched] FIRST 4 MOST ABUNDANT
- [Solid] ALL OTHER SPECIES
- [Dotted] NO ANALYSIS MADE

ZOOPLANKTON

Samples analyzed 20
July 1960 to July 1961

	Samples with Animals	Average count per liter per sample
Rotifers	6	0.8
Keratella	4	0.4
Polyarthra	1	0.1
Brachionus	2	0.3
Synchaeta	0	0
Other genera	2	0
Crustaceans.		
nauplii	2	0.2
copepods	3	0.3
cladocerans	0	0
Nematodes		6.
Other invertebrate metazoans	0	

MOST ABUNDANT
GENERA OF ALGAE

Percent frequency of counts
150 per ml. or more
From May 1959 to May 1961

Green flagellates
Chlamydomonas 3

Diatoms
Centric
Cyclotella 7
Melosira 44
Stephanodiscus 67

Pennate
Fragilaria 3
Synedra 15

MISSISSIPPI RIVER
WEST MEMPHIS, ARKANSAS

Seminonthly Samples
from July 1960 to July 1961

FIRST 4 MOST ABUNDANT

ALL OTHER SPECIES

NO ANALYSIS MADE

ZOOPLANKTON

Samples analyzed 21
July 1960 to July 1961

	Samples with Animals	Average count per liter per sample
Rotifers	8	3.7
Keratella	5	1.4
Polyarthra	6	0.5
Brachionus	5	1.5
Synchaeta	1	0
Crustaceans:		
nauplii	2	0.1
copepods	2	0.1
cladocerans	2	0.1
Nematodes		2.0
Other invertebrate metazoans	0	

MOST ABUNDANT
GENERA OF ALGAE

Percent frequency of counts
150 per ml. or more
From May 1959 to May 1961

Green algae
Scenedesmus 6

Green flagellates
Chalmydomonas 2
Phacus 2
Trachelomonas 2

Other pigmented flagellates
Chromulina 2

Diatoms
Centric
Cyclotella 10
Melosira 54
Stephanodiscus 77

Pennate
Asterionella 2
Synedra 27

TOTAL LIVE PHYTOPLANKTON COUNTS

Months	Average count/ml.
June-Sept.	1,259
Oct.-Jan.	2,030
Feb.-May	2,217

MISSISSIPPI RIVER
CAPE GIRARDEAU, MISSOURI

Bimonthly Samples
from July 1960 to July 1961

DIATOMS - PERCENT OCCURRENCE

RELATIVE ABUNDANCE

FIRST

SECOND

THIRD

FOURTH

Others in first 4 species
but not in first 2

Coscinodiscus rothii

Melosira sp.

Nitzschia linearis

Nitzschia palea type

Surirella brightwellii

FIRST 4 MOST ABUNDANT

ALL OTHER SPECIES

NO ANALYSIS MADE

ZOOPLANKTON

Samples analyzed 19
July 1960 to July 1961

	Samples with Animals	Average count per liter per sample
Rotifers	7	2.8
Keratella	4	1.0
Polyarthra	4	0
Brachionus	6	1.2
Synchaeta	2	0
Other genera	3	0.8

Crustaceans:

nauplii

copepods

cladocerans

Nematodes

Other invertebrate metazoans

HOST ABUNDANT
GENERA OF ALGAE

Percent frequency of counts
150 per ml or more
From May 1959 to May 1961

Green algae

<i>Scenedesmus</i>	7
<i>Tetradesmus</i>	2

Green flagellates

<i>Chlamydomonas</i>	5
----------------------	---

Other pigmented flagellates

<i>Chromulina</i>	2
-------------------	---

Diatoms

Centric	
<i>Cyclotella</i>	20
<i>Melosira</i>	39
<i>Stephanodiscus</i>	73

Pennate

<i>Asterionella</i>	5
<i>Diatoma</i>	2
<i>Gyrosigma</i>	2
<i>Navicula</i>	2
<i>Nitzschia</i>	5
<i>Surirella</i>	7
<i>Synedra</i>	20

MISSOURI RIVER
ST LOUIS, MISSOURI

Others in first 4 series
not in first 2

Centrotria viridis

Leptocylindrus

Navicula sp.

Stichococcus major

Spirula triquetrella

DIATOMS - SPECIES DIVERSITY

FIRST 4 MOST ABUNDANT

ALL OTHER SPECIES

NO ANALYSIS MADE

ZOOPLANKTON

Samples analyzed 23
July 1960 to July 1961

Samples with Animals	Average count per liter per sample
Rotifers.	0
Keratella	0
Polyarthra	0
Brachionus	0
Synchaeta	0
Other genera	1
Crustaceans:	
nauplii	1
copepods	3
cladocerans	0
Nematodes	2
Other invertebrate metazoans	0

MOST ABUNDANT

Percent frequency of counts
150 per ml. or more
From May 1959 to May 1961

Green algae
Ankistrodesmus 2
Scenedesmus 4

Green flagellates
Chlamydomonas 4
Trachomonas 2

Diatoms
Centric
Cyclotella 6
Halosira 6
Stephanodiscus 53

Leiomeata
Asterionella 1
Brigilaria 2
Gomphonema 2
Hayneula 2
Synedra 23

MISSOURI RIVER
KANSAS CITY, KANSAS

Others in first 4 species
but not in first 2

Amphipora paludosa
Fragilaria capucina
Nitzschia acicularis
Nitzschia linearis
Nitzschia sp.
Rhopalodia gibba
Synedra ulna

DIATOMS - SPECIES DIVERSITY

■ FIRST 4 MOST ABUNDANT
□ ALL OTHER SPECIES
□ NO ANALYSIS MADE

ZOOPLANKTON

Samples analyzed 18
July 1960 to July 1961

Samples with
Average count
per liter
per sample

Rotifers	0	0
Keratella	0	0
Polyarthra	0	0
Brachionus	0	0
Synchaeta	0	0
Others	0	0
Crustacea:		
nauplii	0	0
Copepods	0	0
Cladocera	0	0
Nematodes	0	2
Other invertebrate metazoan	0	

MOST ABUNDANT
GENERA OF ALGAE

Percent frequency of counts
150 per ml. or more
From May 1959 to May 1961

Green algae	
Ankistrodesmus	2
Scenedesmus	13
Green Flagellates	
Chlamydomonas	17
Phacus	2
Trachelomonas	2
Diatoms	
Centric	
Cyclotella	13
Melosira	9
Stephanodiscus	57
Pennate	
Asterionella	6
Fragilaria	11
Gomphonema	2
Navicula	6
Nitzschia	11
Surirella	4
Synedra	21

MISSOURI RIVER
ST JOSEPH, MISSOURI

MOS T ABUNDANT GENERA OF ALGAE	
Percent frequency of counts 150 per ml. or more from May 1959 to May 1961	
Blue-green algae	
Anacystis	2
Green algae	
Actinostrom	2
Aukistisodermus	6
Scenedesmus	14
Green flagellates	
Chlamydomonas	16
Euglena	2
Trachelomonas	10
Bacillaria	
Centric	
Cyclotella	18
Melosira	16
Stephanodiscus	73
Pennate	
Asterionella	14
Ringulina	16
Navicula	4
Nitzschia	16
Syndra	22

MISSOURI RIVER
OMAHA, NEBRASKA

ZOOPLANKTON

Samples analyzed 20
July 1960 to July 1961

Samples with Animals	Average count per liter per sample
Rotifers	0.5
Keratella	0.1
Polyarthra	0.1
Brachionus	0.3
Synchaeta	0
Other genera	0

RELATIVE ABUNDANCE	FIRST
<i>Stephanodiscus hantzschii</i>	85
<i>Stephanodiscus astraea</i> var. <i>minutula</i>	55
<i>Cyclotella meneghiniana</i>	45
<i>Stephanodiscus</i> sp.	35
<i>Fragilaria crotonensis</i>	25
<i>Asterionella formosa</i>	20
<i>Surirella ovata</i>	15
<i>Nitzschia linearis</i>	15
Others in first 4 species but not in first 2	10
<i>Cymbella tumida</i>	5
<i>Diatoma vulgare</i>	5
<i>Melosira ambigua</i>	5
<i>Melosira granulata</i>	5
<i>Navicula tripunctata</i>	5
<i>Nitzschia palea</i> type	5
<i>Stephanodiscus niagarae</i>	5

RELATIVE ABUNDANCE	SECOND
<i>Stephanodiscus hantzschii</i>	85
<i>Stephanodiscus astraea</i> var. <i>minutula</i>	55
<i>Cyclotella meneghiniana</i>	45
<i>Stephanodiscus</i> sp.	35
<i>Fragilaria crotonensis</i>	25
<i>Asterionella formosa</i>	20
<i>Surirella ovata</i>	15
<i>Nitzschia linearis</i>	15
Others in first 4 species but not in first 2	10
<i>Cymbella tumida</i>	5
<i>Diatoma vulgare</i>	5
<i>Melosira ambigua</i>	5
<i>Melosira granulata</i>	5
<i>Navicula tripunctata</i>	5
<i>Nitzschia palea</i> type	5
<i>Stephanodiscus niagarae</i>	5

RELATIVE ABUNDANCE	THIRD
<i>Stephanodiscus hantzschii</i>	85
<i>Stephanodiscus astraea</i> var. <i>minutula</i>	55
<i>Cyclotella meneghiniana</i>	45
<i>Stephanodiscus</i> sp.	35
<i>Fragilaria crotonensis</i>	25
<i>Asterionella formosa</i>	20
<i>Surirella ovata</i>	15
<i>Nitzschia linearis</i>	15
Others in first 4 species but not in first 2	10
<i>Cymbella tumida</i>	5
<i>Diatoma vulgare</i>	5
<i>Melosira ambigua</i>	5
<i>Melosira granulata</i>	5
<i>Navicula tripunctata</i>	5
<i>Nitzschia palea</i> type	5
<i>Stephanodiscus niagarae</i>	5

RELATIVE ABUNDANCE	FOURTH
<i>Stephanodiscus hantzschii</i>	85
<i>Stephanodiscus astraea</i> var. <i>minutula</i>	55
<i>Cyclotella meneghiniana</i>	45
<i>Stephanodiscus</i> sp.	35
<i>Fragilaria crotonensis</i>	25
<i>Asterionella formosa</i>	20
<i>Surirella ovata</i>	15
<i>Nitzschia linearis</i>	15
Others in first 4 species but not in first 2	10
<i>Cymbella tumida</i>	5
<i>Diatoma vulgare</i>	5
<i>Melosira ambigua</i>	5
<i>Melosira granulata</i>	5
<i>Navicula tripunctata</i>	5
<i>Nitzschia palea</i> type	5
<i>Stephanodiscus niagarae</i>	5

MOST ABUNDANT
GENERA OF ALGAE

Percent frequency of counts
150 per ml. or more
From May 1959 to May 1961

Green algae	
<i>Ankistrodesmus</i>	7
chlorocystis-type	2
<i>Oocystis</i>	2
<i>Scenedesmus</i>	11
<i>Selenastrum</i>	2
<i>Stichococcus</i>	2

Green flagellates	
<i>Chlamydomonas</i>	24
<i>Trachelomonas</i>	7

Other pigmented flagellates	
<i>Chrysococcus</i>	2

Diatoms	
Centric	
<i>Cyclotella</i>	7
<i>Melosira</i>	17
<i>Stephanodiscus</i>	85

Pennate	
<i>Asterionella</i>	22
<i>Diatoma</i>	2
<i>Navicula</i>	2
<i>Nitzschia</i>	17
<i>Surirella</i>	7
<i>Synedra</i>	22

MISSOURI RIVER
YANKTON, SOUTH DAKOTA

From May 1959 to July 1961

1960
JULY

1961
JANUARY

DIATOMS - SPECIES DIVERSITY

FIRST 4 MOST ABUNDANT

ALL OTHER SPECIES

ZOOPLANKTON

Samples analyzed 74
July 1960 to July 1961

	Samples with Animals	Average count per liter per sample
Rotifers.	16	27.3
Keratella	8	20.9
Polyarthra	6	1.5
Brachionus	4	0.6
Synchaeta	6	2.0
Other genera	11	2.3
Crustaceans.		
nauplii	10	3.9
copepods	10	6.5
cladocerans	3	2.0
Nematodes		0
Other invertebrate metazoans		0

TOTAL LIVE PHYTOPLANKTON COUNTS

Months Average count/ml.

June-Sept. 2,230

Oct.-Jan. 805

Feb.-May 2,407

MOST ABUNDANT
GENERA OF ALGAE

Percent frequency of counts
150 per ml. or more
From May 1959 to May 1961

Blue-green algae	
Anacystis	2
Green algae	
Ankistrodesmus	7
chlorella-type	4
Scenedesmus	4
Selenastrum	1
Green flagellates	
Chlamydomonas	11
Euglena	2
Trachelomonas	13
Other pigmented flagellates	
Gymnodinium	2
Diatoms	
Centric	
Cyclotella	4
Melosira	2
Stephanodiscus	72
Pennate	
Asterionella	26
Cocconeis	2
Gymnophora	4
Diatoma	11
Gomphonema	2
Navicula	4
Nitzschia	9
Pleurosigma	2
Synedra	9

MISSOURI RIVER
BISMARCK, NORTH DAKOTA

Semimonthly Samples
from July 1960 to July 1961

1960
JULY
M A

JANUARY
1961
D

DIATOMS - SPECIES DIVERSITY

ZOOPLANKTON

Samples analyzed 19
July 1960 to July 1961

	Samples with Animals	Average count per liter per sample
Rotifers	8	4.8
Keratella	3	0.5
Polyarthra	5	3.2
Brachionus	1	0.1
Synchaeta	0	0
Crustaceans		
nauplii	9	5.6
copepods	6	2.1
cladocerans	1	1.1
Nematodes		2.0
Other invertebrate metazoans	0	

HOST ABUNDANT
GENERA OF LIGAE

Percent frequency of counts
150 per ml. or more
From May 1959 to May 1961

Diatoms	
Centric	
Stephanodiscus	9
Pennate	
Asterionella	3
Synedra	6

MISSOURI RIVER
WILLISTON, NORTH DAKOTA

ZOOPLANKTON

Samples analyzed 24
July 1960 to July 1961

	Samples with Animals	Average count per liter per sample
Rotifers.	8	0.9
Keratella	1	0.0
Polyarthra	1	0
Brachionus	1	0
Synchaeta	1	0
Other genera	3	0
Crustaceans.		
nauplii	1	0
copepods	3	0.5
cladocerans	0	0
Nematodes		1
Other metazoan invertebrates		none

MOST ABUNDANT
GENERA OF ALGA

Percent frequency of counts
150 per ml. or more
From May 1959 to May 1961

Blue-green algae	
Anacystis	6
Aphanizomenon	3
Green algae	
Actinanthrum	3
Ankistrodesmus	3
Oocystis	3
Scenedesmus	5
Green flagellates	
Chlamyomonas	6
Trachelomonas	6
Diatoms	
Centric	
Cyclotella	8
Stephanodiscus	47
Pennate	
Aulacoseira	36
Cymbella	6
Diatoms	22
Fragilaria	17
Navicula	25
Nitzschia	25
Ceratium	3
Synedra	44

OHIO RIVER
CAIRO, ILLINOIS

Semimonthly Samples
from July 1960 to July 1961

Others in first 4 species
but not in first 2

Cyclotella atomus
Cymbella affinis
Fragilaria crotonensis
Melosira distans var. *alpigena*
Nitzschia palea type
Surirella ovata

DIATOMS - SPECIES DIVERSITY

■ FIRST 4 MOST ABUNDANT
□ ALL OTHER SPECIES
▨ NO ANALYSIS MADE

ZOOPLANKTON

Samples analyzed 24
July 1960 to July 1961

	Samples with Animals	Average count per liter per sample
Rotifers	9	3.0
Keratella	6	2.0
Polyarthra	1	0
Brachionus	5	1.0
Synchaeta	1	0
Other genera	3	0
Crustaceans:		
nauplii	0	0
copepods	1	0.1
cladocerans	8	0.6
Nematodes		2.0
Other invertebrate metazoans	0	

MOST ABUNDANT
GENERA OF ALGAE

Percent frequency of counts
150 per ml. or more
From May 1959 to May 1961

Blue-green algae
Anacystis 6

Green algae
Ankistrodesmus 4
chlorella-type 2
Scenedesmus 4
Stichococcus 2

Green flagellates
Chlamydomonas 2
Trachelomonas 2

Other pigmented flagellates
Chromulina 2

Diatoms
Centric
Cyclotella 38
Melosira 40
Stephanodiscus 22

Pennate
Gemphonema 4
Nitzschia 2
Synedra 32

TOTAL LIVE PHYTOPLANKTON COUNTS

OHIO RIVER
EVANSVILLE, INDIANA

samples
from July 1959 to July 1961

Melosira ambigua

Symedra ulna

Melosira granulata

Symedra acus

Cyclotella meneghiniana

Stephanodiscus hantzschii

Melosira distans

v. r. alpigena

Asterionella formosa

Others in first 4 species
but not in first 2

Cryptopleura solea

Matma vulgaris

Fragilaria crotonensis

Surirella ovata

DIATOMS - SPECIES DIVERSITY

FIRST 4 MOST ABUNDANT

ALL OTHER SPECIES

NO ANALYSIS MADE

ZOOPLANKTON

Samples analyzed 21
July 1960 to July 1961

Samples with Animals	Average count per liter per sample
-------------------------	--

MOST ABUNDANT
GENERAL OF ALGAE

Percent frequency of counts
150 per ml. or more
From May 1959 to May 1961

Crustacea:		
Nauplii	5	1.7
Copepoda	7	1.7
Cladocera	6	1.4
Nematodes		5
Other invertebrate metazoans		0

Blue-green algae

Anabaena	3
----------	---

Anacystis	15
-----------	----

Aphanizomenon	4
---------------	---

Oscillatoria	6
--------------	---

Green algae

Actinostrum	3
-------------	---

Antistreptidemus	4
------------------	---

Dictyosphaerium	3
-----------------	---

Golenkinia	3
------------	---

Micracanthium	3
---------------	---

Oocystis	3
----------	---

Radiococcus	3
-------------	---

Scenedesmus	15
-------------	----

Spirogyra	3
-----------	---

Tetradesmus	3
-------------	---

Tetrasium	3
-----------	---

Ulothrix	4
----------	---

Westella	3
----------	---

Green flagellates

Chlamydomonas	9
---------------	---

Trachelomonas	3
---------------	---

Other pigmented flagellates

Chromulina	9
------------	---

Diatoms

Centric	
---------	--

Cyclotella	3
------------	---

Melosira	70
----------	----

Stephanodiscus	36
----------------	----

Pennate	
---------	--

Asterionella	9
--------------	---

Gomphonema	3
------------	---

Navicula	3
----------	---

Surirella	3
-----------	---

Synedra	48
---------	----

OHIO RIVER
CINCINNATI, OHIO

Seminonthly Samples
from July 1960 to July 1961

Melosira ambigua

Melosira granulata

Synedra acus

Cyclotella meneghiniana

Synedra ulna

Stephanodiscus hantzschii

Melosira varians

Synedra nana

Surirella ovata

Fragilaria crotonensis

Others in first 4 species
but not in first 2

Gomphonema parvulum

Gyrosigma kutzinigii

Melosira distans var. *alpigena*

Hantzschia palea type

Pinnularia sp.

DIATOMS - SPECIES DIVERSITY

FIRST 4 MOST ABUNDANT

ALL OTHER SPECIES

NO INDIVIDUALS COUNTED

RELATIVE ABUNDANCE

FIRST
 SECOND
 THIRD
 FOURTH

ZOOPLANKTON

Samples analyzed 21
July 1960 to July 1961

	Samples with Animals	Average count per liter per sample
Rotifers.	12	58.0
Keratella	10	39.7
Polyarthra	10	5.6
Brachionus	9	6.6
Synchaeta	4	3.5
Other genera	8	11.1
Crustaceans		
nauplii	6	1.3
copepods	6	2.0
cladocerans	7	2.0
Nematodes		2.0
Other invertebrate metazoans	0	

MOST ABUNDANT

GENERA OF ALGAE

Percent frequency of counts

150 per ml. or more

From May 1959 to May 1961

Blue-green algae

<i>Arabescus</i>	9
<i>Acacytis</i>	27
<i>Aphanizome</i>	9
<i>Arthrospira</i>	2
<i>Oscillatoria</i>	18
<i>Phormidium</i>	4
<i>Raphidiopsis</i>	2

Green algae

<i>Actinostichus</i>	4
<i>Antistrophus</i>	13
<i>Chlorella-type</i>	20
<i>Chlorococcus</i>	7
<i>Dictyosphaerium</i>	1
<i>Dimorphococcus</i>	2
<i>Golenkinia</i>	1
<i>Oocystis</i>	4
<i>Palmitococcus</i>	2
<i>Scenedesmus</i>	27

Green flagellates

<i>Chlamydomonas</i>	20
<i>Trachelomonas</i>	11

Other pigmented flagellates

<i>Chromulina</i>	11
-------------------	----

Diatoms

<i>Centric</i>	42
<i>Cyclotella</i>	49
<i>Melosira</i>	69
<i>Stephanodiscus</i>	18

Pennate

<i>Asterionella</i>	7
<i>Cymbella</i>	4
<i>Diatoma</i>	2
<i>Gomphonema</i>	7
<i>Navicula</i>	16
<i>Nitzschia</i>	11
<i>Lyngbya</i>	69

OHIO RIVER
HUNTINGTON, WEST VIRGINIA

Semimonthly Samples
From July 1960 to July 1961

Melosira ambigua
Melosira granulata

Cyclotella meneghiniana

Synedra ulna

Synedra acus

Stephanodiscus hantzschii

Melosira varians

Asterionella formosa

Diatoma elongatum

Pinnularia sp.

Others in first 4 species
but not in first 2

Cyclotella pseudostelligera

Achnanthes minutissima

Diatoma vulgare

Melosira distans

var. alpigena

JULY 1960

JANUARY 1961

DIATOMS - SPECIES DIVERSITY

FIRST 4 MOST ABUNDANT

ALL OTHER SPECIES

ZOOPLANKTON

Samples analyzed 21
July 1960 to July 1961

Samples with
Average count
Animals per liter
per sample

Rotifers 13 28
Keratella 12 20
Polyarthra 10 6
Brachionus 9 2
Synchaeta 7 1
Other genera 8 0

Crustaceans:
nauplii 6 1.1
copepods 5 2.0
cladocerans 6 1.3
Nematodes 0
Other invertebrate metazoans 0

MOST ABUNDANT
GENERA OF ALGAE

Percent frequency of counts
150 per ml. or more
From May 1959 to May 1962

Blue-green algae
Anabaena 7
Anacystis 24
Comphosphaeria 4
Oscillatoria 7
Raphidiopsis 2

Green algae
Actinostrum 4
Ankistrodesmus 24
Chlorella-type 9
Coelastrum 2
Dictyosphaerium 4
Golenkinia 9
Kirchneriella 2
Lagerheimia 2
Macractinium 2
Oocystis 4
Scenedesmus 36
Selenastium 2
Staurastrum 2
Tetradesmus 7

Green flagellates
Chlamydomonas 20
Phacus 2
Trachelomonas 4

Other pigmented flagellates
Chromulina 7
Chrysococcus 2

Diatoms
Centric
Cyclotella 47
Melosira 64
Stephanodiscus 20

Pennate
Asterionella 9
Diatoma 4
Fragilaria 2
Gomphonema 2
Navicula 11
Nitzschia 11
Surirella 2
Synedra 60

OHIO RIVER
EAST LIVERPOOL, OHIO

Semimonthly Samples
from July 1960 to July 1961

Others in first 4 species
but not in first 2

Achnanthes minutissima
Cocconeis placentula
Diatoma elongatum
Diatoma vulgare
Fragilaria capucina
Frustulula vulgaris
Navicula cryptocephala
Navicula sp.
Nitzschia sp.
Nitzschia sp.

DIATOMS - SPECIES DIVERSITY

FIRST 4 MOST ABUNDANT
ALL OTHER SPECIES
NO ANALYSIS MADE

ZOOPLANKTON

Samples analyzed 20
July 1960 to July 1961

Samples with Animals	Average count per liter per sample
Rotifers: 10	13.0
Keratella 5	1.0
Polyarthra 4	1.0
Brachionus 7	3.4
Synchaeta 2	3.0
Other genera 7	4.6
Crustaceans. naupili 6	1.7
copepods 4	4.0
cladocerans 1	1.0
Nematodes	1.0
Other invertebrate metazoans 0	

MOST ABUNDANT
GENERA OF ALGAE

Percent frequency of counts
150 per ml. or more
From May 1959 to May 1961

Blue-green algae	
Anacyclis	13
Calothrix	2
Gomphosphaeria	9
Oscillatoria	2
Green algae	
Actinastrum	7
Ankistrodesmus	20
chlorocella-type	11
Closterium	4
Coslastrum	2
Dictyosphaerium	2
Golenkinia	4
Micractinium	2
Palmeilococcus	2
Scenedesmus	24
Tetradesmus	11
Tetraspora	2
Green flagellates	
Chlamydomonas	28
Trachalomonas	4
Other pigmented flagellates	
Chromulina	9
Diatoms	
Centric	
Cyclotella	24
Melosira	9
Stephanodiscus	9
Pennata	
Asterionella	4
Diatoma	2
Gomphonema	4
Navicula	13
Nitzschia	7
Synedra	17

TOTAL LIVE PHYTOPLANKTON

POTOMAC RIVER
GREAT FALLS, MARYLAND

RELATIVE ABUNDANCE

Category	Species	Count
FIRST	Crustaceans:	0
	nauplii	0
	copepods	1
SECOND	cladocerans	0
	Nematodes	3
	Other invertebrate metazoans	0
THIRD		
FOURTH		

MOST ABUNDANT
GENERA OF ALGAE

Percent frequency of counts
150 per ml or more
From May 1959 to May 1961

Blue-green algae
Agnmenellum 6
Anacytis 14

Green algae
Actinostrom 3
Ankistrodesmus 6
Chlorella-type 6
Closterium 3
Coccolastrium 3
Crucigenia 3
Dictyosphaerium 3
Oocystis 6
Pediastrum 6
Scenedesmus 28
Staurastrum 3

Green flagellates
Chlamydomonas 11

Other pigmented flagellates
Chromulina 6

Diatoms
Centric
Cyclotella 28
Melosira 6
Stephanodiscus 28

Perimate
Cymbella 3
Diatoma 6
Gomphonema 3
Navicula 17
Nitzschia 11
Surirella 3
Synedra 31

POTOMAC RIVER
WILLIAMSPORT, MD.

Seasonal July samples
From July 1960 to July 1961

Cymbella ventricosa
Gomphonema parvulum
Navicula cryptocephala
Navicula hungarica
Navicula sp.
Nitzschia palea type
Synedra vaucheriae

DIATOMS - SPECIES DIVERSITY

■ FIRST 4 MOST ABUNDANT
□ ALL OTHER SPECIES
■ NO ANALYSIS MADE

ZOOPLANKTON

Samples analyzed 20
July 1960 to July 1961

Samples with Animals	Average count per liter per sample
Rotifers	1.4
Keratella	0
Polyarthra	0
Brachionus	0
Synchaeta	0
Other genera	1.1
Crustaceans	0.1
nauplii	1
copepods	0
cladocerans	1
Nematodes	0
Other invertebrate metazoans	0

MOST ABUNDANT
GENERA OF ALGAE

Percent frequency of counts
150 per ml. or more
From May 1959 to May 1961

Blue-green algae <i>Anacystis</i>	3
Green flagellates <i>Chlamydomonas</i>	6
Diatoms	
Centric <i>Cyclotella</i>	11
Stephanodiscus	6
Pennate	
<i>Achnanthes</i>	3
<i>Cymbella</i>	14
<i>Navicula</i>	9
<i>Synedra</i>	23

RED RIVER (NORTH)
GRAND FORKS, NORTH DAKOTA

Seimonthly Samples
1 ft. - 5 ft., 1.10 to July 1, 1961

Others in first 4 species
but not in first 2

Asterionella formosa
Cyclotella meneghiniana
Fragilaria construens
Nitzschia sp.
Stephanodiscus niagarae
Syndra ulna

JANUARY
1961

DIATOMS - SPECIES DIVERSITY

- FIRST 4 MOST ABUNDANT
- ALL OTHER SPECIES
- NO ANALYSIS MADE

TOTAL LIVE PHYTOPLANKTON COUNTS	
Months	Average count/ml.
June-Sept.	1,798
Oct.-Jan.	13,221
Feb.-May	24,015

ZOOPLANKTON

Samples analyzed 18
Nov. 1960 to Aug. 1961

Samples with Animals	Average count per liter per sample
----------------------	------------------------------------

Rotifers	13	175.9
Keratella	9	63.0
Polyarthra	8	42.6
Brachionus	5	47.7
Synchaeta	9	3.0
Other genera	9	19.6

Crustaceans		
nauplii	6	49.1
copepods	5	6.0
cladocerans	2	0

Nematodes	2.0
-----------	-----

Other invertebrate metazoans 0

HOST ABUNDANT
GENERA OF ALGAE

Percent frequency of counts
150 per ml. or more
From Sept. 1960 to July 1961

Blue-green algae	
Oscillatoria	5
Raphidiopsis	5

Green algae	
Ankistrodesmus	11
Dictyosphaerium	5
Scenedesmus	29

Green flagellates	
Chlamydomonas	31
Phacus	4
Trachelomonas	28

Other pigmented flagellates	
Chromatina	6
Peridinium	4

Diatoms	
Centric	
Cyclotella	11
Helosira	17
Stephanodiscus	94

Pennate	
Asterionella	5
Cymatopleura	5
Cymbella	7
Gomphonema	6
Nitzschia	17
Pleurosigma	5
Synedra	36

RED RIVER (SOUTH)
ALEXANDRIA, LOUISIANA

Others in first 4 species
but not in first 2

Amphipora sp.
Eunotia sp.
Nitzschia sicularis
Oophora sp.
Stephanodiscus hantzschii
Stephanodiscus

DIATOMS - SPECIES DIVERSITY

FIRST 4 MOST ABUNDANT
ALL OTHER SPECIES
NO ANALYSIS MADE

ZOOPLANKTON

Samples analyzed 17
July 1960 to July 1961

Samples with
Average count
Animals per liter
per sample

Rotifers:	13	48.8
Keratella	3	43.9
Polyarthra	3	1.5
Brachionus	1	0
Synchaeta	0	0
Others	9	6.3
Crustacea.		
Nauplii	0	0
Copepods	1	0
Cladocera	0	0
Nematodes		1
Other invertebrate metazoans		0

MOST ABUNDANT
GENERA OF ALGAE

Percent frequency of counts
150 per ml. or more
From May 1959 to May 1961

Blue-green algae
Arenicellum 16
Anabaena 13
Anacystis 19
Arthospira 3
Oscillatoria 13
Phormidium 6
Spirulina 3

Green algae
Ankistrodesmus 16
Chlorococcus 3
Crucigenia 3
Oocystis 19
Scenedesmus 10
Staurastrum 3
Tetraselmis 3

Green flagellates
Chlamydomonas 13
Trachelomonas 3

Diatoms
Centric
Coscinodiscus 3
Cyclotella 35
Melosira 13
Stephanodiscus 16

Pennate
Cerconotis 6
Diploneis 16
Navicula 6
Nitzschia 16
Synedra 29

RED RIVER (SOUTH)
INDEX, TEXAS

Bi-monthly Samples
from July 1960 to July 1961

RELATIVE ABUNDANCE

FIRST

SECOND

THIRD

FOURTH

Others in first 4 species
but not in first 2

Heddulphia laevis
Cyclotella sp.
Melosira ambigua
Havilcula sp.
Hantzschia acicularis
Hantzschia dissipata
Stephanodiscus sp.
Surirella anustata

DIATOMS - SPECIES DIVERSITY

- FIRST 4 MOST ABUNDANT
- ALL OTHER SPECIES
- NO ANALYSIS MADE

ZOOPLANKTON

Samples analyzed 23
July 1960 to July 1961

	Samples with Animals	Average count per liter per sample
Rotifers	11	8.0
Keratella	8	3.5
Polyarthra	5	0
Brachionus	6	1.7
Synchaeta	4	1.6
Other genera	6	1.2
Crustaceans		
nauplii	0	0
copepods	1	0
cladocerans	0	0
Nematodes		3
Other invertebrate metazoan	0	

HOST
GENERA
OF
ALGAE

Percent frequency of counts
100 per ml. or more
from Sept. 1959 to July 1961

Blue-green algae	
Agmenellum	70
Anabaena	5
Anacyclis	20
Aphanizomenon	2
Geophyphelia	2
Oscillatoria	2
Raphidiopsis	2
Green algae	
Actinastrum	5
Antistrofotrichum	11
Chlorococcus	5
Chlosterium	2
Coelostrium	8
Cruigenia	11
Dictyosphaerium	2
Lagerheimia	1
Coerulina	45
Scenedesmus	37
Tetradema	8
Tetrastrum	2
Green flagellates	
Chlamydomonas	31
Flagella	5
Tiachelomonas	11
Other pigmented flagellates	
Chromulina	5
Diatoms	
Centro	
Cyclotella	34
Volvox	5
Microcoleus	20
Stephanodiscus	20

RED RIVER (SOUTH)
DENISON, TEXAS

Semimonthly samples
from July 1960 to July 1961

Others in first 4 species
but not in first 2

Chaetoceros sp.
Coscinodiscus rothii
Nitzschia dissipata
Nitzschia palea type
Stephanodiscus astraea
Synedra ulna
Synedra vanherterae

ZOOPLANKTON

Samples analyzed 22
July 1960 to July 1961

Samples with Animals	Average count per liter per sample
Ricifers	12
Keratella	8
Polyarthra	1
Brachionus	3
Synchaeta	3
Others	7
Cladocera	11
Nauplii	9
Copepods	8
Other invertebrate metazoans	0

M O S T A B U N D A N T G E N E R A O F A L G A E

Percent frequency of counts
150 per ml. or more
From May 1957 to May 1961

Blue-green algae	
Anabaena	3
Anacystis	8
Oscillatoria	3
Green algae	
Chlorogonium	11
Oocystis	37
Tetrastrum	3
Green flagellates	
Chlamydomonas	18
Phacus	3
Trachelomonas	3
Diatoms	
Centric	
Coscinodiscus	3
Cyclotella	16
Melosira	3
Stephanodiscus	5
Pennate	
Cocconeis	5
Diploneis	29
Synedra	5

RIO GRANDE
BROWNSVILLE, TEXAS

Horizontally samples
from Jul. 1959 to July 1961

Diploneis smithii

Stephanodiscus astraea

Surirella striatula

Cyclotella reneghiniana

Amphiprora sp.

Synedra acus

Amphiprora paludosa

Synedra ulna

Nitzschia palea type

Anomooneis evilis

Nitzschia sp.

Melosira ambigua

1960
JULY

JANUARY 1961
DIATOMS - SPECIES DIVERSITY
FIRST 4 MOST ABUNDANT
ALL OTHER SPECIES
NO ANALYSIS MADE

MOST ABUNDANT
GENERA OF ALGAE

Percent frequency of counts

150 per ml. or more

From Sept. 1959 to May 1961

Blue-green algae

<i>Agmenellum</i>	28
<i>Anacystis</i>	21

Green algae

<i>Ankistrodesmus</i>	32
<i>Chlorococcum</i>	4
<i>Cosmarium</i>	4
<i>Crucigenia</i>	4
<i>Nannochloris</i>	4
<i>Oocystis</i>	20
<i>Scenedesmus</i>	52
<i>Sphaerocystis</i>	4
<i>Tetradesmus</i>	8

Green flagellates

<i>Chlamydomonas</i>	12
<i>Frachelomonas</i>	8

Diatoms

Centric	
<i>Cyclotella</i>	28
<i>Stephanodiscus</i>	20

Pennate	
<i>Amphipleura</i>	4
<i>Amphiprora</i>	10
<i>Amphora</i>	4
<i>Anomooneis</i>	4
<i>Coccconeis</i>	12
<i>Diploneis</i>	32
<i>Fragilaria</i>	12
<i>Navicula</i>	36
<i>Nitzschia</i>	44
<i>Pleurosigma</i>	4
<i>Surirella</i>	12
<i>Synedra</i>	68

RIO GRANDE,
LAREDO, TEXAS

Sedimental Samples
from July 1960 to July 1961

JANUARY 1961

DIATOMS - SPECIES DIVERSITY

Hatched bar = FIRST 4 MOST ABUNDANT

White bar = ALL OTHER SPECIES

Blank bar = NO ANALYSIS MADE

ZOOPLANKTON

Samples analyzed 18
July 1960 to July 1961

Samples with Animals	Average count per liter
----------------------	-------------------------

Rotifers	1	0.1
Keratella	1	0.1
Polyarthra	0	0
Brachionus	0	0
Synchaeta	0	0
Other genera	0	0
Crustaceans:		
nauplii	0	0
copepods	0	0
cladocerans	0	0
Nematodes	5	
Other invertebrate metazoans	0	

MOST ABUNDANT
GENERA OF ALGAE

Percent frequency of counts
150 per ml. or more
From May 1959 to May 1961

Blue-green algae

Agmenellum	3
Anacyclis	3
Oscillatoria	3

Green algae

Ankistrodesmus	11
chlorella-type	3
Closterium	6
Dictyosphaerium	3
Gloeocystis	3
Gocystis	3
Scenedesmus	17

Green flagellates

Chlamydomonas	6
Other pigmented flagellates	
Dinobryon	3

Diatoms

Centric	
Cyclotella	36
Stephanodiscus	33

Pennate

Cocconeis	6
Cymbella	3
Fragilaria	17
Navicula	22
Nitzschia	22
Pleurosigma	3
Synedra	39

RIO GRANDE
EL PASO, TEXAS

Seminently samples
from July 1960 to July 1961

Caloneis amphibiaena

Biddulphia laevis

Amphiprora paludosus

Navicula canalis

Gomphonema olivaceum

Others in first 4 species
but not in first 2

Amphiprora alata

Diatoe vulgaris

Navicula hungarica

Navicula sp.

Nitzschia lanceolatae group

Nitzschia sigma

Nitzschia sp.

Stephanodiscus hantzschii

Synedra ulna

RELATIVE ABUNDANCE

FIRST

SECOND

THIRD

FOURTH

1960 JULY

DIATOMS - SPECIES DIVERSITY

FIRST 4 MOST ABUNDANT

ALL OTHER SPECIES

NO ANALYSIS MADE

ZOOPLANKTON

Samples analyzed 10
July 1960 to July 1961

Samples with Animals	Average count per liter per sample
----------------------	------------------------------------

Rotifers:	2	2.1
Keratella	1	0.7
Polyarthra	0	0
Brachionus	0	0
Synchaeta	0	0
Other genera	2	1.4

Crustaceans.		
nauplii	0	0
copepods	1	0.2
cladocerans	1	0.2
Nematodes		2.0
Other invertebrate metazoa	0	

MO ST ABUNDANT
GENERA OF ALGAE

Percent frequency of counts
150 per ml. or more
From May 1959 to May 1961

Blue-green algae
Anacystis 13

Green algae
chlorella-type 7
Chlorococcum 7
Lagerhaimia 7
Scenedesmus 13

Green flagellates
Chlamydomonas 20
Buglena 26
Trachelomonas 7

Diatoms
Centric
Biddulphia 13
Cyclotilla 66
Meiosira 13
Stephanodiscus 33

Pennate
Amphiprora 26
Asterionella 7
Caloneis 33
Cocconeis 13
Gomphonema 7
Navicula 33
Nitzschia 47

ST LAWRENCE RIVER
MASSENA, NEW YORK

Tabellaria fenestrata

Melosira binderiana

Fragilaria crotensis

Asterionella formosa

Rhizosolenia eriensis

Achnanthes minutissima

Cocconeis pediculus

Others in first 4 species
but not in first 2

Cocconeis placentula

Cymbella ventricosa

Diatoma elongatum

Fragilaria capucina

Melosira islandica

Stephanodiscus astraea

var. *minutula*

Stephanodiscus hantzschii

DIATOMS - SPECIES DIVERSITY

FIRST 4 MOST ABUNDANT

ALL OTHER SPECIES

NO ANALYSIS MADE

ZOOPLANKTON

Samples analyzed 16
July 1960 to July 1961

Samples with Animals	Average count per liter per sample
Rotifers.	16.0
Keratella	7.3
Polyarthra	0.8
Brachionus	1.1
Synchaeta	0.6
Other genera	10.8

Crustaceans:

nauplii	3	0.7
copepods	4	0.3
cladocerans	3	0.3

Nematodes

Other invertebrate metazoans 0

MOST ABUNDANT
GENERA OF ALGAE

Percent frequency of counts
150 per ml. or more
From April 1960 to August 1961

Green algae
Ankistrodesmus 10

Diatoms
Centric
Melosira 21
Stephanodiscus 31

Pennate
Asterionella 10
Fragilaria 5
Tabellaria 15

SAVANNAH RIVER
PORT WENTWORTH, GEORGIA

Semimonthly Samples
from July 1960 to July 1961

DIATOMS - SPECIES DIVERSITY

■ FIRST 4 MOST ABUNDANT
□ ALL OTHER SPECIES
■ NO ANALYSIS MADE

ZOOPLANKTON

Samples analyzed 22
July 1960 to July 1961

	Samples with Animals	Average count per liter per sample
Rotifers	9	1.0
Keratella	3	0
Polyarthra	4	0
Brachionus	1	0
Synchaeta	0	0
Other genera	3	0
Crustaceans		
nauplii	0	0
copepods	4	0.2
cladocerans	1	0.1
Nematodes		1.0
Other invertebrate metazoans	0	

HOST GENERA OF ALGAE

Percent frequency of counts
150 per ml. or more
From May 1959 to May 1961

	TOTAL LIVE PHYTOPLANKTON COUNTS
Months	Average count/ml.
June-Sept.	904
Oct.-Jan.	207
Feb.-May	259

Blue-green algae	
Anacystis	2
Green algae	
Ankistrodesmus	2
Green flagellates	
Chlamydomonas	0
Diatoms	
Centric	
Cyclotella	7
Melosira	17
Stephanodiscus	2
Pennate	
Synedra	9

SAVANNAH RIVER
NORTH AUGUSTA, SOUTH CAROLINA

Semimonthly Samples
from July 1960 to July 1961

DIATOMS - SPECIES DIVERSITY

FIRST 4 MOST ABUNDANT

ALL OTHER SPECIES

NO ANALYSIS MADE

ZOOPLANKTON

Samples analyzed 15
July 1960 to July 1961

	Samples with Animals	Average count per liter per sample
Rotifers.	6	2.0
Keratella	4	1.0
Polyarthra	4	1.0
Brachionus	0	0
Synchaeta	0	0
Crustaceans:		
nauplii	3	0.4
copepods	2	0.2
cladocerans	0	0
Nematodes		0
Other invertebrate metazoans	0	

MOST ABUNDANT GENERA OF ALGAE

Percent frequency of counts
150 per ml. or more
From May 1959 to May 1961

Blue-green algae	Anacystis	4
Diatoms		
Centric		
Cyclotella		9
Pennate		
Synedra		9

TOTAL LIVE PHYTOPLANKTON COUNTS

Months	Average count/ml.
June-Sept.	422
Oct.-Jan.	186
Feb.-May	408

SCHUYLKILL RIVER
PHILADELPHIA, PENNSYLVANIA

Semimonthly Samples
from July 1960 to July 1961

Nitzschia palea type

Melosira varians

Cyclotella meneghiniana

Synedra ulna

Synedra vaucheriae

Stephanodiscus hantzschii

Nitzschia sp.

Diatoma vulgare

Fragilaria crotonensis

Melosira ambigua

Navicula sp.

Others in first 4 species
but not in first 2

Cocconeis placentula

Navicula cryptocephala

Navicula canaliculata

Surirella angustata

Synedra vaucheriae

Synedra sp.

RELATIVE ABUNDANCE

FIRST

SECOND

THIRD

FOURTH

DIATOMS - SPECIES DIVERSITY

FIRST 4 MOST ABUNDANT

ALL OTHER SPECIES

ZOOPLANKTON

Samples analyzed 13

July 1960 to July 1961

Samples with Animals	Average count per liter per sample
----------------------	------------------------------------

Rotifers:	9	13.0
Keratella	2	0.5
Polyarthra	0	0
Brachionus	1	0.2
Synchaeta	1	0.1
Other genera	6	12.2

Crustaceans:		
nauplii	2	2.0
copepods	2	1.0
cladocerans	4	2.1
Nematodes		8.0
Other invertebrate metazoans	0	

TOTAL LIVE PHYTOPLANKTON COUNTS

Months	Average count/ml.
June-Sept.	1,033
Oct.-Jan.	1,486
Feb.-May	1,431

MOST ABUNDANT

GENERA OF ALGAE

Percent frequency of counts
150 per ml. or more
From January 1960 to May 1961

Green algae
Scenedesmus 11

Diatoms
Centric
Cyclotella 16
Melosira 5
Stephanodiscus 22

Pennate
Achnanthes 5
Diatoma 11
Gomphonema 5
Navicula 22
Nitzschia 33
Surirella 11
Synedra 33

SNAKE RIVER
WAWAWAI, WASHINGTON

Semimonthly Samples
from July 1960 to July 1961

DIATOMS - SPECIES DIVERSITY

FIRST 4 MOST ABUNDANT
ALL OTHER SPECIES
NO ANALYSIS MADE

ZOOPLANKTON

Samples analyzed 21
July 1960 to July 1961

	Samples with Animals	Average count per liter per sample
Rotifers	14	4.7
Keratella	10	2.0
Polynartha	2	0.5
Brachionus	4	0
Synchaeta	4	0
Other genera	7	2.2
Crustaceans		
nauplii	1	0
copepods	0	0
cladocerans	0	0
Nematodes		1
Other invertebrate metazoans	0	

MOST ABUNDANT
GENERA OF ALGAL

Percent frequency of counts
150 per ml. or more
From May 1959 to May 1961

Green flagellates	
Chlamydomonas	3
Diatoms	
Centric	
Cyclotella	16
Meiosira	8
Stephanodiscus	22
Pennate	
Achnanthes	11
Asterionella	8
Cymbella	1
Diatoma	8
Gomphonema	3
Navicula	24
Nitzschia	19
Synedra	30

TOTAL LIVE PHYTOPLANKTON COUNTS

Months	Average count/ml.
June-Sept.	1,067
Oct.-Jan.	536
Feb.-May	1,296

SNAKE RIVER
WEISER, IDAHO

Sediment samples
from July 1960 to July 1961

Synedra ulna

Stephanodiscus hantzschii

Diatoma vulgare

Fragilaria crotonensis

Navicula tripunctata

Melosira granulata

Stephanodiscus niagarae

Stephanodiscus astraea
var. *minutula*

Others in first 4 species
but not in first 2

Asterionella formosa

Melosira ambigua

Navicula viridula

Nitzschia dissipata

DIATOMS - SPECIES DIVERSITY

ZOOPLANKTON

Samples analyzed 13
July 1960 to July 1961

Samples with Animals	Average count per liter per sample
----------------------	------------------------------------

Rotifers	12	18.8
Keratella	9	10.9
Polyarthra	5	1.8
Brachionus	8	1.0
Synchaeta	4	1.8
Other genera	10	16.6
Crustaceans		
nauplii	2	0.5
copepods	2	0
cladocerans	2	0
Nematodes		1
Other invertebrate metazoans		0

MOST ABUNDANT
GENERA OF ALGAE

Percent frequency of counts
150 per ml or more
From May 1959 to May 1961

Blue-green algae	
Anacyclis	4
Oscillatoria	4
Green algae	
Microcystium	4
Scenedesmus	7

Green flagellates	
Chlamydomonas	22
Euglena	4

Other pigmented flagellates
Chromalina 7

Diatoms	
Centric	
Biddulphia	4
Cyclotella	52
Melosira	30
Stephanodiscus	63

Pennate	
Achnanthes	11
Asterionella	7
Cocconeis	14
Cymatopleura	4
Cymbella	7
Diatoma	30
Fragilaria	37
Gomphonema	4
Navicula	63
Nitzschia	44
Syndra	85
Tabellaria	4

TENNESSEE RIVER
CHATTANOOGA, TENNESSEE

Semimonthly Samples
from July 1960 to July 1961

Achnanthos minutissima
Aleurionella formosa
Cocconeis placentula
Cyclotella pseudostellifera
Fragilaria crotonensis
Microcylindra holstica
Stephanodiscus niagarae
Melosira sp.

DIATOMS - SPECIES DIVERSITY

■ FIRST 4 MOST ABUNDANT
□ ALL OTHER SPECIES
▨ NO ANALYSIS MADE

ZOOPLANKTON

Samples analyzed 22
July 1960 to July 1961

Samples with Animals	Average count per liter per sample
Rotifers.	18
Keratella	15
Polyarthra	9
Brachionus	4
Synchaeta	7
Other genera 11	3.0
Crustaceans.	
nauplii	3
copepods	2
cladocerans	2
Nematodes	2
Other invertebrate metazoans	0

HOST ABUNDANT
GENERA OF ALGAE

Percent frequency of counts
150 per ml. or more
From May 1959 to May 1961

Green algae	
<i>Scenedesmus</i>	2
Diatoms	
Centric	
<i>Cyclotella</i>	2
<i>Melosira</i>	25
<i>Stephanodiscus</i>	18
Pennate	
<i>Asterionella</i>	2
<i>Fragilaria</i>	2
<i>Syndra</i>	7

TOTAL LIVE PHYTOPLANKTON COUNTS

Months Average count/ml.

Month	Average count/ml.
June-Sept.	558
Oct.-Jan.	393
Feb.-May	729

YELLOWSTONE RIVER
SIDNEY, MONTANA

Periodically Sampled
From July 1960 to July 1961

ZOOPLANKTON

Samples analyzed 22
July 1960 to July 1961
Samples with Average count
Animals per liter per sample

		MOST ABUNDANT
Rotifers:	5	0.8
Keratella	2	0.2
Polyarthra	1	0
Brachionus	0	0
Synchaeta	1	0.1
Other genera	3	0.5

		Percent frequency of counts 150 per ml. or more
Crustaceans		
nauplii	2	0.2
copepods	0	0
cladocerans	0	0

		From May 1959 to May 1961
Nematodes	2.	
Other invertebrate metazoans	0	

GENERAL ALGAE

		Percent frequency of counts 150 per ml. or more
Blue-green algae		
Anacystis	8	
Gomphosphaeria	3	

Green algae

Actinostrium	5
Ankistrodesmus	11
Gloeocystis	3
Oocystis	5
Scenedesmus	18
Tetradesmus	3

Green flagellates

Chlamydomonas	8
Trachelomonas	5

DIATOMS

Centric	
Cyclotella	26
Stephanodiscus	18

PENNATE

Caloneis	3
Cocconeis	3
Cymbella	11
Diatoma	13
Epithemia	3
Fragilaria	16
Gomphonema	8
Navicula	53
Nitzschia	34
Surirella	11
Synedra	55