INTEGRATED AM/FM RADIO RECEIVER CIRCUIT

The TBA570A is for use in small low-cost a.m. portable receivers as well as in high quality battery or mains-fed a.m. and a.m./f.m. receivers.

The IC incorporates: a.m. mixer, oscillator, i.f. amplifier, a.g.c. amplifier, a.m. detector and capacitor, f.m./i.f. limiting amplifier and stable base bias for f.m. frontend, and an audio preamplifier and driver.

The unique integrated audio part has an internally limited bandwidth (18 kHz) and negligible h.f. radiation back to the ferrite rod. This makes the TBA570A ideally suitable for small size a.m. receivers because print layout is not critical. The driver stage can directly drive complementary output stages (P_O = 6 W max.), or operate as a post amplifier (V_O = 500 mV).

In its standard applications, the TBA570A can replace the TBA570.

QUICK REFERENCE DA	QUICK REFERENCE DATA					
Applicable supply voltage range of receiver	v_P	2, 7	to 18	V		
Ambient temperature	Tamb		25	°C		
Supply voltage at pin 8	v ₈₋₁₆	nom.	5,3	V		
Total quiescent current except output stages, driver stage TR30 and f.m. front-end	I _{tot}	typ.	9	m A		
A.M. performance (at pin 2)						
R.F. input voltage: $S/N = 26 \text{ dB}$ for $P_0 = 50 \text{ mW}$ (adjustable)	$egin{array}{c} v_i \ v_i \end{array}$	typ. typ.		μV μV		
A.G.C. range; change of r.f. input voltage for 10 dB expansion in audio range		typ.	65	₫B		
R.F. signal handling: $d_{tot} = 10\%$; $m = 0, 8$		typ.	150	mV		
F.M. performance (at pin 2)						
R.F. input voltage; 3 dB before limiting	v_i	typ.	50	μV		
Audio performance						
Output driver current (peak value)	I_{11M}	<	100	mA		
Input impedance (at pin 12)	Z ₁₂₋₁₆	typ.	100	$\mathbf{k}\Omega$		

PACKAGE OUTLINES

TBA570A : 16-lead DIL: plastic (SOT-38). TBA570AQ: 16-lead QIL: plastic (SOT-58).

*

ППП

CIRCUIT DIAGRAM

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

V v_{11-9} max. 18 Pin 11 voltage 8 V v_{8-16} max. Pin 8 voltage 100 mA Pin 11 current (peak value) I_{11M} max. see derating curve below Total power dissipation oС -55 to +125 T_{stg} Storage temperature Operating ambient temperature: $V_{8;4;7;1-16} = 8 \text{ V}$; $I_{11M} = 100 \text{ mA}$; see also derating curve below $^{\circ}C$ -20 to +85Tamb

DESIGN DATA

Characteristics of integrated components are determined by process and layout data. Pins not under measuring condition should not be connected.

Voltages with respect to pin 9 and 16 (tolerated minimum: 0 V)

Pins 1 and 7	$V_{1-9(16)} V_{7-9(16)}$	max.	18	V
Pin 4	$V_{4-9(16)}$	max.	8	V
Pin 8	V ₈ -9(16)	max.	8	V
Pin 3	$v_{3-9(16)}$	max.	3	V
Pin 5	V ₅₋₉₍₁₆₎	max.	4	v
Pin 14	V ₁₄ -9(16)	max.	1	V
Currents (tolerated minimum: 0 mA)				
Pins 2, 6, 12, 13 and 15	$\left\{egin{array}{c} I_{2};I_{6};I_{12}\ I_{13};I_{15} \end{array}\right\}$	max.	80	μΑ
Pin 10	I ₁₀	max.	5	mA

TBA570A TBA570AQ

D.C. C	HARACTERISTICS	at Tamb =	25 °C
--------	----------------	-----------	-------

Saturation voltage of driver stage I_C = 50 mA: I_B = 2,5 mA	V _{11-16sat}	typ.	1,0 1,5		
Collector breakdown voltage of driver stage I_{C} = 25 mA; R_{BE} = 7 $k\Omega$	V ₁₁ -16(BR)	>	18	v	
D.C. current gain of driver stage $I_{\rm C}$ = 50 ${\rm mA}$	h_{FE}	>	25		
Total quiescent current except driver stage collector current; f.m. front-end;					
discrete output stages: $V_{8-16} = 5, 3 \text{ V}$ $V_{8-16} = 4, 2 \text{ V}$	$I_{ ext{tot}}$	typ. typ.	9 8	mA mA	
Applicable supply voltage range of receiver	v_{p}	2,7	to 18	V 1)	
Base bias voltage for f.m. front-end total external load current at pin 2: $-I_2 = 150 \mu A$	v ₂₋₁₆	typ.	1, 2	v	
A.C. CHARACTERISTICS at $T_{amb} = 25 \text{ °C}$; $V_{8-16} = 5, 3 \text{ V}$; I_E (TR9) = 1 mA					
	0.45	1 1 1	10 7	MHz	

			0, 45	1	10,7	MHz
Input conductance at pin 2	gie	typ.	-	0, 4	0,5	mA/V
Output conductance at pin 1		typ.				μA/V
Input conductance at pin 15	g _{ie}	typ.	0,35	-	0,7	mA/V

 $^{^{}m l}$) Adjustable by a dropping resistor in the V_P-line; see also maximum tolerated voltages for pins 1, 4, 7 and 8 in design data on page 3.

Fig. 1 Output stage for $V_p = 9 V$ or 6 V (resistor values between parentheses).

v_{P}	R_{L}	P_{O} at $d_{tot} = 10\%$
9 V	4Ω	1,8 W
6 V	4Ω	0,6 W

Fig. 2 Output stage for $V_P = 14, 4 V$;

especia	ılly u	sed in car radi os
v_P	R_{L}	P_O at $d_{tot} = 10\%$
14 4 37	40	5 5 W

. .

Fig. 3 Output stage for $V_P = 16 \text{ V}$. $\frac{V_P - R_L - P_0 \text{ at } d_{tot} = 10\%}{16 \text{ V} - 4\Omega - 6,8 \text{ W}}$

Fig. 4 Post amplifier for V_{o} = 500 mV and V_{p} = 6 V.

- *In circuit on page 5 volume control resistor (100 kΩ) and capacitor (100 nF) on pin 12 should be omitted.
- **Capacitor value depends on load.

111

TBA570A TBA570AQ

COIL DATA (in circuit on page 5)

High quality AM/FM receiver (for portable and mains-fed applications)

A.M.-I.F. coils $(f_0 = 455 \text{ kHz})$

I.F. bandpass filter:

L9 N1 = 284, 5
$$\mu$$
H **L10** N1 = 680 μ H

$$Q_0 = 100$$

N1/N2 = 40

$$Q_0 = 100$$

$$N2/N3 = 1$$

$$N2/N1 = 74$$

$$|\mathbf{Z_T}| = 3 \, \mathrm{k}\Omega$$

$$(N2 + N1)/N3 = 10, 7$$

F.M.-I.F. coils $(f_0 = 10, 7 \text{ MHz})$

Second i.f. bandpass filter:

Ratio detector:

L7 N1 + N2 = 2,
$$7\mu$$
H **L8**

$$N1 = 2,7 \mu H$$
 L11 $N1 = 2,7 \mu H$
 $Q_0 = 90$ $Q_0 = 85$

N1/N2 = 2, 2

L12 N2 + N3 = 3, 25
$$\mu$$
H

$$Q_0 = 100$$

 $kQ_{L6-L7} = 1, 2$

$$N_1/N_2 = 5, 5$$

$$Q_0 = 85$$

 $kQ_{L11-L12} = 0,7$

$$Q_0 = 85$$

 $(N2 + N3)/N1 = 6$
 $N2 = N3$

N1/N2 = 1,75

Low-cost 2-band AM portable receiver (see page 9)

L1

$$N1 = 11
N2 = 2$$

wire:1,10

 $C1 = 430 \, pF$

wire: 0, 1 Ø

N1 = 60

L1 and L2 on ferrite rod; 10 mmØ;

N2 = 4wire: 20 x 0,03 length = 10 cm

L3

N2 N1

 $N = 284, 5\mu H$ $f_m = 452 \text{ kHz}$

 $Q_0 = 100$

 $N_P = 284, 5 \mu H f_m = 452 kHz$ $N_P/N_S = 16,7 Q_O = 100$

C1 = 430 pFwire: 0, 10

core material: 7 MN(C)

core material: 7 MN(C)

L5

 $N1 + N2 = 127 \mu H$ f_m = 1 MHz L6 (N1+N2)/N2=58 $Q_0=100$

 $(N1+N2)/N3 = 4, 8 C_D = 200 pF$

wire: 0, 1 Ø

core matérial : 7 BR

 $(N1+N2)/N2 = 20 Q_0 = 90$ (N1+N2)/N3 = 4 $C_D = 40 pF$ wire: 0, 10

 $N1 + N2 = 13 \mu H$ f_m = 7 MHz

core material: 119 AM(C)

Note

In the circuit on page 9 for L3 and L4 a similar coil to L9 in the circuit on page 5 can be used with the following exceptions:

L3: secondary windings N2 and N3 are not used.

L4: secondary windings N2 and N3 are connected in series.

When using a resistor between pins 2 and 15 (see dashed resistor in circuit on page 9), signal handling is improved.

January 1977

Note: C1 and C6 max. 385 pF.

APPLICATION INFORMATION at $T_{amb} = 25$ °C

A.M. performance			5, 3 V ¹)	4, 2 V	2)
R.F. input voltage: $S/N = 26$ dB (notes 3 and 4) for $P_0 = 50$ mW (adjustable):	v_i	typ.	18	10	μV
notes 3, 4 and 5	v_i	typ.	2	2	μV
R.F. input voltage for 10 mV (a.f.) across volume control (notes 3 and 4)	v_i	typ.	2,7	4,5	μV
A.F. voltage across volume control at 100 μV (r.f.) input voltage (notes 3 and 4)	v_{o}	typ.	70	70	mV
Signal-to-noise ratio at 1 mV (r.f.) input voltage (notes 3 and 4)	S/N	typ.	46	47	dВ
A.G.C. range (change in r.f. input voltage for 10 dB expansion in audio range); notes 3 and 4		typ.	60	60	đB
R.F. signal handling capability at 80% modulation; $\rm d_{\mbox{tot}} < 10\%$ (note 3)		typ.	150	7	mV
Harmonic distortion of h.f. part over most of a.g.c. range; m = 0,3; f _m = 1 kHz (note 6)	d _{tot}	typ.	1	1	%
I.F. selectivity	s_9	typ.	33	16	dΒ
I.F. bandwidth (3 dB)	В	typ.	5	5,5	kHz

Notes

- 1. See circuits on pages 5,6 and 7 (high quality AM/FM receiver).
- 2. See circuit on page 9 (low-cost 2-band AM portable receiver).
- 3. a. A.F. signal: measured across volume control.
 - b. R.F. signal: measured at pin 2 with the aerial circuit connected (source resistance about $1 k\Omega$).
 - c. $f_0 = 1 \text{ MHz}$; $f_m = 1 \text{ kHz}$.
- 4. m = 0, 3.
- 5. A.M. sensitivity for P_0 = 50 mW can be adjusted by means of the a.c. feedback network in the audio part e.g.: V_1 = 1,5 μV for P_O = 50 mW (S/N ≈ 4 dB).
- 6. Distortion can be decreased to 0,7% by connecting a resistor of 270 $k\Omega$ between pins 2 and 15.

APPLICATION INFORMATION (continued) at $T_{amb} = 25 \text{ °C}$; $V_{8-16} = 5, 3 \text{ V}$

Measured in the circuit on page 5

F.M. performance

Sensitivity for an f.m. signal 3 dB before limiting at 75 Ω aerial input of f.m. front-end (note 1) at pin 2; first i.f. (notes 2 and 6)	$egin{smallmatrix} {\sf V}_i \\ {\sf V}_i \end{bmatrix}$	typ.	3, 5 50	μV μV
Sensitivity for 26 dB S/N ratio at 75 Ω aerial input of f.m. front-end (note 1)	v_i	typ.	2, 5	μ ؆
A.F. output voltage across volume control at an i.f. signal beyond limiting (note 2)	v_{o}	typ.	120	mV
Signal-to-noise ratio over most of signal range (note 2)	S/N	typ.	65	dВ
A.M. suppression over most of signal range (note 3)	·	typ.	60	dB
I.F. selectivity (note 4)	s ₃₀₀	typ.	43	dB
I.F. bandwidth (3 dB; note 4)	В	typ.	150	kHz
A.F. signal distortion 3 dB before i.f. limiting (note 5)	d _{tot}	typ.	0,8	%

Notes

- 1. Aerial e.m.f. (Vi) at $\rm f_0$ = 98 MHz: $\rm R_S$ = 50 $\rm \Omega$; $\rm \Delta f$ = ±22,5 kHz; $\rm f_m$ = 1 kHz.
- 2. $f_0 = 10,7$ MHz; $\Delta f = \pm 22,5$ kHz: $f_m = 1$ kHz.
- 3. A.M. signal: m = 0, 3; $f_m = 1000 \text{ Hz}$.

F.M. signal: $f_0 = 10, 7 \text{ MHz}$; $\Delta f = \pm 75 \text{ kHz}$; $f_m = 400 \text{ Hz}$.

Carrier simultaneously modulated with a.m. and f.m.

- 4. Including ratio detector.
- 5. f_O = 98 MHz; Δf = ±40 kHz; f_m = 1 kHz.
- 6. Pin 3 by-passed to ground with a capacitor of 220 nF.

TBA570A TBA570AQ

AUDIO PERFORMANCE

Distortion before clipping (note 1	d_{tot}	typ. 0	, 5	%			
Input impedance (note 2)					typ.	90	$k\Omega$
Noise output power: volume cont	rol at n	nin. (note	3)	$P_{\mathbf{n}}$	typ.	10	nW
Overall fidelity: flat within 3 dB	(obtaina	able values	s)		35 Hz to	15	kHz
Open loop voltage gain					typ.	62	dB
V_{P}	v	4,5	6	9	14.4		16
$R_{ m L}$	Ω	8	4	4	4	T	4
P_O at $d_{tot} = 10\%$	W	0, 22	0,6	1,8	5, 5		6.8
P_O at onset of clipping: $d_{tot} = 1\%$	W	0,15	0, 4	1, 2	4		4.8
V_i for $d_{tot} = 10\%$ (pin 12)	mV	14	16	25	50		45
V_i for $P_O = 50$ mW (pin 12)	mV	5.5	4,5	4	3, 5		3,5
Output transistors		BC327 BC337	BC368 BC369	BC368 BC369	BD329 BD330		BD329 BD330
Circuit diagrams on page 6,7 or	9	page 9	Fig. 1	Fig.1	Fig. 2		Fig. 3

Post-amplifier (see Fig. 4 on page 7)

Output voltage

: 500 mV

Audio gain (adjustable): 5

Distortion

: 0, 2%

Notes

- 1. Measured at 1 kHz and a negative feedback of 16 dB.
- 2. At the maximum tolerated value of resistance-tap/bleeder at pin 12.
- 3. Measured at a bandwidth of 60 Hz to 15 kHz, pin 12 being connected via a capacitor of 32 μ F to pin 9: $R_T = 4 \Omega$.

APPLICATION INFORMATION (continued)

Typical a.g.c. curves for AM reception (circuit diagram on page 5)

A.F. voltage across volume control as a function of r.f. voltage at pin 2.

^{*)} Slider at lower end.

APPLICATION INFORMATION (continued)

Typical S/N curves for FM reception (circuit diagram on page 5)

A.F. voltage across volume control as a function of aerial e.m.f. from a source with $R_S=50\ \Omega$ to the 75 Ω input of the f.m. front-end.

^{*)} Slider at lower end.