the online leneptron Algorithm and Linear Support Vector Machines (Séparateurs linéaires à Vaste Marge)

Alain Rakotomamonjy

Université de Rouen - Criteo Al Lab

19 novembre 2021

Plan

- Discrimination linéaire
 - Formulation
 - Séparateur linéaire et maximisation de la marge
 - · Perceptron
- Résolution du problème SVM
 - Problème primal et Lagrangien
 - Problème dual de SVM
- 3 SVM pour les problèmes non-séparable linéairement
- SVM en pratique

Séparateur linéaire

But

- $\mathcal{D} = \{(x_i, y_i) \in \mathcal{X} \times \{-1, 1\}\}_{i=1\cdots n}$: ensemble de points étiquetés
- Construire à partir de $\mathcal D$ une fonction $f:\mathcal X\to\{-1,1\}$ ou $f:\mathcal X\to\mathbb R$ qui permet de prédire la classe -1 ou 1 d'un point $x\in\mathcal X$

Image contenant un bus

Image contenant un train

Séparateur linéaire

But

- $\mathcal{D} = \{(x_i, y_i) \in \mathcal{X} \times \{-1, 1\}\}_{i=1\cdots n}$: ensemble de points étiquetés
- Construire à partir de $\mathcal D$ une fonction $f:\mathcal X\to\{-1,1\}$ ou $f:\mathcal X\to\mathbb R$ qui permet de prédire la classe -1 ou 1 d'un point $x\in\mathcal X$

Fonction de décision (Scorreg fun chion)

- ullet On suppose l'espace des entrées $\mathcal{X}=\mathbb{R}^d$
- Fonction de décision : $f: \mathbb{R}^d \to \mathbb{R}$ telle que si

$$f(x) < 0$$
 affecter x à la classe -1
 $f(x) > 0$ affecter x à la classe 1

Fonction de décision linéaire :

$$f(x) = w^{\top}x + b, \qquad w \in \mathbb{R}^d, b \in \mathbb{R}$$

Définition

Problème linéairement séparable

Les points $\{(x_i, y_i)\}$ sont linéairement séparables si il existe un hyperplan qui permet de discriminer correctement l'ensemble des données. Dans le cas contraire, on parle d'exemples non séparables linéairement.

Discrimination linéaire en 2D

Trouver une fonction linéaire séparant les points des classes 1 et 2

- Frontière de décision : $w^{T}x + b = 0$
- Plusieurs frontières possibles
- Toutes les fonctions de décision se valent-elles?

Quelle solution choisir?

Choisir celle qui maximise la marge entre les points des classes

Notion de géométrie

Distance d'un point à la frontière de décision

Soit $H(w,b) = \{z \in \mathbb{R}^d \mid f(z) = w^\top z + b = 0\}$ un hyperplan et soit $x \in \mathbb{R}^d$. La distance du point x à l'hyperplane H est $d(x,H) = \frac{|w^\top x + b|}{\|w\|} = \frac{|f(x)|}{\|w\|}$

La marge

Hyperplan canonique

• Un hyperplan est dit canonique par rapport aux données $\{x_1,\cdots,x_N\}$ si $\min_{x_i}|w^{\top}x_i+b|=1$

Marge

La marge géométrique est $M = \frac{2}{\|w\|}$

Hyperplan canonique optimal

- Maximiser la marge
- Classer correctement chaque point i.e. $\forall i, y_i f(x_i) \geqslant 1$

The Perceptron Algorithm (online) For honogenous linear lassifier $f(x) = \omega^T x$ (no b for now) t←o $\omega_{o} \leftarrow 0$ Repeat receive Xt predict ije = sign(wixe) receire y+ E4-1,14 if ye + ye then $\omega_{t+1} \leftarrow \omega_t + y_t + x_t$ de wt +1 2 we Thn (Block, Norikoff) Assume 112+11<R for all t, y+=1-1,14 Assume there exist canonical hyperplane wo classifing data perfectly passing through the origin with half margin $p = \frac{1}{11\omega * 11}$ then, the number of inistakes to of perception 15 at most 15 pz Step 1) After an update (a prediction enor), WHAN is "more aligned" to with < 0 = + ye 2 , ~* > = < we, w* > + y < x , w*> because will is canonical > < \u_+, \u^*>+1 Unrolling, we get <u+, u*>>> te I no of mistakes

Step 2) After an update (classification en-) 11 Wet, 112 = < w+ytat, w+ ytat> = 11 we 112 + 2 ye (w+, x+) + 11 y+ x+1 because mis classification at This step < 11 w= 112+ R2 => 110+112 = to R2 $t \leq \langle \omega_{t}, \omega^{*} \rangle \leq ||\omega_{t}|| \cdot ||\omega^{*}|| \leq ||\omega^{*}|| \leq ||\omega^{*}|| \cdot ||\omega^{*}||$ Conchy-schwartz ||t|| R $\implies \sqrt{\xi_0} \leqslant \frac{R}{\rho} \implies \xi \leqslant \frac{R^2}{\rho^2}$

Exercise:
Rewrite perception algo for non homogenous hyperplans
wix +b =

Marge et borne de généralization

Borne VC

Risque sur une classe de fonction \mathcal{H} . Avec une prob $1-\delta$

$$R(h) \leq R_{emp}(h) + C\sqrt{\frac{D(\log(2N/D) + 1) + \log(4\delta)}{N}}$$

où D est la VC dimension de \mathcal{H}

VC dim de la classe des fonctions linéaires à marge ρ

Soit \mathcal{H} la classe de fonction $f(x) = w^{\top}x + b$ à une marge ρ des exemples d'apprentissage alors

$$D \le 1 + \min\left(d, \frac{R^2}{\rho^2}\right)$$

R, rayon d'une boule contenant les données d'apprentsisages.

Formulation du problème de maximisation de marge

Séparateur à vaste marge (SVM) : formulation

- $\mathcal{D} = \{(x_i, y_i) \in \mathbb{R}^d \times \{-1, 1\}\}_{i=1}^n$: points linéairement séparables
- Objectif: trouver une fonction de décision $f(x) = w^{T}x + b$ qui maximise la marge et discrimine correctement les points de ${\mathcal D}$

min_{w,b} $\frac{1}{2} \|w\|^2$ maximisation de la marge s.c. $y_i(w^\top x_i + b) \ge 1$ $\forall i = 1, \dots, n$ tous les points bien classés

Le Lagrangien du problème SVM

Problème primal de SVM

roblème primal de SVM
$$\min_{w \in \mathbb{R}^d, b \in \mathbb{R}} \frac{1}{2} \|w\|^2 \\ \text{s.c.} \qquad y_i(w^\top x_i + b) \geq 1 \quad \forall i = 1, \cdots, n \quad \text{i.e.} \quad y_i(w) = 1, \cdots, n \quad y_i(w)$$

- contraintes d'inégalités i.e. n paramètres α_i
- Lagrangien

$$L(w,b,\alpha) = \frac{1}{2} \|w\|^2 - \sum_{i=1}^n \alpha_i (y_i(w^\top x_i + b) - 1)$$

$$\frac{dL}{d\omega} = \omega - \sum_{i=1}^n \alpha_i (y_i(w^\top x_i + b) - 1)$$

$$\frac{dL}{d\omega} = \sum_{i=1}^n \alpha_i (y_i(w^\top x_i + b) - 1)$$

Le problème dual

Condition de stationnarité

ationnarité
$$L = \frac{1}{2} \left\langle \sum_{i} \alpha_{i} \gamma_{i} \alpha_{i} \right\rangle \sum_{j} \alpha_{j} \gamma_{i} \alpha_{j} - \sum_{j} \alpha_{i} (\gamma_{i} (\sum_{j} \alpha_{j} \gamma_{j} \alpha_{j} + \delta_{j}) - 1)$$
$$\frac{\partial L(w, b, \alpha)}{\partial b} = 0 \qquad \frac{\partial L(w, b, \alpha)}{\partial w} = 0$$

Soit:

$$\sum_{i=1}^{n} \alpha_i y_i = 0 \qquad \mathbf{w} = \sum_{i=1}^{n} \alpha_i y_i x_i$$

Problème dual : problème de programmation quadratique
 En remplacant ces valeurs dans le Lagrangien, on obtient :

$$\max_{\{\alpha_i\}} \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_i \alpha_j y_i y_j x_i^{\top} x_j$$
s.c.
$$\alpha_i \geq 0, \quad \forall i = 1, \cdots, n \quad \text{carstaints: } h_i(\omega) \leq 0$$

$$\sum_{i=1}^{n} \alpha_i y_i = 0$$

Les vecteurs supports

- Résoudre le dual pour trouver les n paramètres $\{\alpha_i\}_{i=1}^n$
- On obtient deux types de paramètres α_i
 - Pour un point x_j , si $y_j(w^\top x_j + b) > 1$ alors $\alpha_j = 0$
 - Pour un point x_i , si $y_i(w^\top x_i + b) = 1$ alors $\longrightarrow \alpha_i \ge 0$
- Solution : $w = \sum_{i=1}^{n} \alpha_i y_i x_i$. w n'est défini que par les points tels que $y_i(w^{\top}x_i + b) = 1$. On les appelle **vecteurs supports**

SVM linéairement séparable en pratique

Calcul de w

- Utiliser les données $\mathcal{D} = \{(x_i, y_i)\}_{i=1}^n$ pour résoudre le dual \longrightarrow On obtient les paramètres $\{\alpha_i\}_{i=1}^n$
- En déduire la solution $w = \sum_{i=1}^{n} \alpha_i y_i x_i$

Calcul de b

• Les $\alpha_i > 0$ correspondent aux points supports qui vérifient la relation

$$y_i(w^\top x_i + b) = 1$$

• En déduire la valeur de b

La fonction de décision

$$f(x) = w^{\top}x + b = \sum_{i=1}^{n} \alpha_i y_i x_i^{\top} x + b$$

Cas non séparable

Que se passe-t-il si les données ne sont pas linéairement séparable?

Relacher les contraintes

- Relâcher $y_i(w^\top x_i + b) \ge 1$
- Accepter $y_i(w^\top x_i + b) \ge 1 \xi_i$ avec $\xi_i \ge 0$ le terme "d'erreur"
- Inclure la somme des "erreurs" $\sum_{i=1}^{n} \xi_i$ dans le problème de SVM

Cas non séparable : formulation

SVM : cas non-séparable

$$\min_{w,b,\{\xi_{i}\}} \quad \frac{1}{2} ||w||^{2} + C \sum_{i=1}^{n} \xi_{i}$$
s.c.
$$y_{i}(w^{\top}x_{i} + b) \geq 1 - \xi_{i} \quad \forall i = 1, \dots, n$$

$$\xi_{i} \geq 0 \qquad \forall i = 1, \dots, n$$

- C est à fixer par l'utilisateur!

Cas non séparable : le problème dual

Le lagrangien

$$L(w, b, \xi, \alpha, \nu) = \frac{1}{2} ||w||^2 + C \sum_{i=1}^{n} \xi_i - \sum_{i=1}^{n} \alpha_i (y_i (w^\top x_i + b) - 1 + \xi_i) - \sum_{i=1}^{n} \nu_i \xi_i$$

avec $\alpha_i \geq 0$, $\nu_i \geq 0$, pour tout $i = 1, \dots, n$

Conditions d'optimalité de stationnarité

$$\frac{\partial L(w,b,\xi_i,\alpha)}{\partial b} = 0 \qquad \frac{\partial L(w,b,\xi_i,\alpha)}{\partial w} = 0 \qquad \frac{\partial L(w,b,\xi_i,\alpha)}{\partial \xi_k} = 0$$

ce qui donne

$$\sum_{i=1}^{n} \alpha_{i} y_{i} = 0 \qquad \qquad w = \sum_{i=1}^{n} \alpha_{i} y_{i} x_{i}, \qquad C - \alpha_{i} - \nu_{i} = 0, \ \forall i = 1, \cdots, n$$

Cas non séparable : la solution

Le problème dual

$$\max_{\{\alpha_i\}} \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_i \alpha_j y_i y_j x_i^{\top} x_j$$
s.c.
$$0 \le \alpha_i \le C, \quad \forall i = 1, \dots, n$$

$$\sum_{i=1}^{n} \alpha_i y_i = 0$$

Theorem [Solution d'un SVM linéaire : cas non séparable]

Soit un problème de SVM linéaire non-séparable de fonction de décision $f(x) = w^{\top}x + b$. Le vecteur w est défini par $w = \sum_{i=1}^{n} \alpha_i y_i x_i$ où les coefficients α_i sont solution du problem dual ci-dessus.

Qu'est-ce qui a changé? Rien sauf les contraintes sur α_i qui sont maintenant $0 \le \alpha_i \le C$.

Illustrations

Résolution d'un SVM pour C=0.01 petit et C=1000 grand

Le choix de C influence la solution : C petit \rightarrow marge grande ; C grand \rightarrow marge petite

En pratique

Elements d'entrée

Données étiquetées : $\{(x_i, y_i) \in \mathbb{R}^d \times \{-1, 1\}\}_{i=1}^n$

Méthodologie

- ① Centrer les données : $\{x_i\}_{i=1}^n \longrightarrow \{x_i = x_i \bar{x}\}_{i=1}^n$
- ② Fixer le paramètre C > 0 du SVM
- 3 Utiliser un solveur pour résoudre le problème dual et obtenir les $\alpha_i \neq 0$, les points supports x_i correspondants et le biais b
- **4** En déduire la fonction de décision : $f(x) = \sum_{i \in SV} \alpha_i y_i x_i^\top x + b$
- Evaluer l'erreur de généralisation du SVM obtenu (validation croisée ...).
 Recommencer à partir de l'étape 2 si elle n'est pa satisfaisante.

Solveurs de SVM

- LibSVM http://www.csie.ntu.edu.tw/~cjlin/libsvm/
- ScikitLearn (Python) http://scikit-learn.org/stable/modules/svm.html

. . .

Réglage du paramètre C: une procédure pratique

- Ensemble d'apprentissage : pour calculer w et b
- Ens. de validation : évaluer l'erreur de classification pour différents *C*
- Ens. de test : évaluation du "meilleur modèle"

Sélection de modèle : réglage de C function $C \leftarrow \texttt{tuneC}(X, Y, \texttt{options})$

- Split the data $(X_a, Y_a, X_v, Y_v) \leftarrow \text{SplitData}(X, Y, \text{options})$
- Pour différentes valeurs de C
 - $(w,b) \leftarrow \text{TrainLinearSVM}(X_a, Y_a, C, options)$
 - $error \leftarrow EvaluateError(X_v, Y_v, w, b)$

Exemple

- Les valeurs de C choisies sur une échelle logarithmique
- pour chaque C, on apprend un SVM et on calcule son erreur de validation
- Le minimum de la courbe d'erreur correspond à la "meilleure" valeur C^*
- Le SVM correspond est sur la figure de droite

Relation between soft-svm, Hinge-lass,
and Hinge-Loss Perception.
soft-sun (sun with slack variable)
$\int \min \frac{1}{2} \ \omega\ ^2 + C \underset{(z)}{\overset{N}{\geq}} \xi_i$
$y:(\langle \omega, x: \rangle + b) \geq 1 - \zeta;$
$\int_{0}^{\infty} \frac{1}{2} dx$
constraints on fi:
$\begin{cases} \xi : > 0 \\ \xi : > 1 - \gamma_i(<\omega, \alpha; > + b) = 1 - \gamma_i \leq i $
cuido this optimisation sub-problem:
$min \geq 7$
this is also the solution on ?i to the original public.
the seft SUN puller because: min $\frac{1}{2} \ \omega\ ^2 + C \geq \max(0, 1-y; (\langle \omega, n \rangle + b))$ $\omega = \frac{1}{2} \ \omega\ ^2 + C \leq \max(0, 1-y; (\langle \omega, n \rangle + b))$
min 1/2 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
wheo Phiye(si, yi)=max(2/1-yisi

(st, y) = max (0, - yst)

SGD on the obsichin function

 $\nabla_{\omega} \left(\frac{1}{2c} ||\omega||^2 + \sum_{i} l^{ii} y(x_i, y_i) \right) = \frac{\omega}{c} + \sum_{i=1}^{N} {\binom{0}{i}} y_i^{i} x_i^{i} dx$

if $M_{t} < \omega_{t}, x_{t} > < 1$ $\omega_{t+1} \leftarrow \omega_{t} + \alpha y_{t} x_{t} - \alpha \omega_{t}$ $\omega_{t} + 1 \leftarrow \omega_{t} - \alpha \omega_{t}$ $\omega_{t} + 1 \leftarrow \omega_{t} - \alpha \omega_{t}$

SGD of seft SVM

Conclusions

- Construction d'un hyperplan optimal au sens de la maximisation de la marge
- Une analyse théorique poussée montre que maximiser la marge équivaut à minimiser une borne sur l'erreur de généralisation.
- Le cas non linéaire (où on cherche une fonction de décision non-linéaire) peut être traité grâce aux noyaux.
- Généralisation possible au cas où on a plusieurs classes
- Algorithme de classification très utilisé en pratique ...