LOGICKÉ SYSTÉMY

2014-2015

Ing. Adam Jaroš, PhD - prednášky, cvičenia

Ing. Michal Chovanec -cvičenia

Katedra technickej kybernetiky

Web predmetu: http://frtk.fri.uniza.sk

ÚVOD DO KOMBINAČNÝCH LOGICKÝCH OBVODOV

Diskrétny systém má konečný počet stavov, v ktorých sa môže nachádzať.

Príklad 1.1

Nech je daný logický systém, ktorý má dva vstupné signály $x1 \in \{0,1,2\}$, $x2 \in \{3,4\}$. Zapíšte všetky symboly vstupnej abecedy.

Riešenie

Všetky symboly vstupnej abecedy $\{3, 0; 3, 1; 3, 2; 4, 0; 4, 1; 4, 2\}$ sú zapísané ako množina usporiadaných dvojíc v poradí x2, x1.

My sa budeme zaoberať výlučne *diskrétnymi systémami*, kde každý vstupný a výstupný symbol môže nadobúdať len dve hodnoty.

Označujeme ich *log.* 0 a *log.* 1. Takéto systémy nazývame *číslicové logické systémy* alebo skrátene *logické systémy*.

ROZDELENIE LOGICKÝCH SYSTÉMOV

Uveďme si niekoľko základných hľadísk. Polovodičové integrované obvody (IO).

Prvá úroveň je z hľadiska vstupno-výstupnej transformácie signálov.

Druhá úroveň je z hľadiska *technickej realizácie*.

Tretia úroveň z hľadiska činnosti v čase.

KOMBINAČNÉ LOGICKÉ SYSTÉMY

Princíp dekompozície zložitého logického systému s viacerými výstupmi na množinu jednoduchých logických systémov, pričom každý z nich má práve jeden výstup.

SPÔSOBY ZÁPISU SPRÁVANIA SA KOMBINAČNÝCH OBVODOV

Najčastejšie spôsoby zápisu správania sa kombinačných logických obvodov.

Pravdivostná tabuľka

Definícia logického systému pravdivostnou tabuľkou predstavuje tabuľkový zápis, kde uvedieme priradenie hodnôt výstupným signálom pre všetky kombinácie vstupných signálov - *úplný zápis*.

V reálnych prípadoch často nie je potrebné uvádzať všetky vstupné kombinácie, vtedy sa jedná o *skrátený zápis*.

		1441	
H_1	H_2	H_3	Výsledok
N	N	N	Z
N	N	A	Z
N	A	N	Z
N	A	A	P
A	N	N	Z
A	N	A	P
A	A	N	P
A	A	A	P

Príklad 1.2 Hlasovací systém pre troch hlasujúcich – častý prípad označíme M3 Označenie kladnej voľby použite symbol *A*, pre negatívnu voľbu *N*. Výstupný symbol pre prijaté rozhodnutie nech je *P* a pre zamietnuté rozhodnutie *Z*.

SPÔSOBY ZÁPISU SPRÁVANIA SA KOMBINAČNÝCH OBVODOV

Publikačný spôsob zápisu

Publikačný spôsob definície logického systému zapisujeme pomocou dekadického ekvivalentu, ktorý vyjadrujeme symbolom de. Uveďme si definíciu *príkladu 1.2* v publikačnom zápise:

$$deV \rightarrow 0 = \{0, 1, 2, 4\},\$$

kde

Z znamená log. 0 P znamená log. 1

čísla v zátvorke predstavujú poradové čísla riadkov, kedy bol výsledok hlasovania *Z*.

Pozn. vstupné hodnoty v tabuľke sú usporiadané podľa binárneho kódu vzostupne. Zápis čítame "*dekadický ekvivalent, kedy hodnota výstupnej premennej vedie na nulu*".

H ₁	H ₂	H_3	Výsledok
N	N	N	Z
N	N	A	Z
N	A	N	Z
N	A	A	P
A	N	N	Z
A	N	A	P
A	A	N	P
A	A	A	P

SPÔSOBY ZÁPISU SPRÁVANIA SA KOMBINAČNÝCH OBVODOV

Karnaughova mapa

Predstavuje grafickú reprezentáciu *úplnej pravdivostnej tabuľky*. Popisuje vždy len jednu závislú premennú y = f(x1...xn). Má toľko polí, koľko je možností

vstupných premenných, t.j. 2^n.

Karnaughovu mapu použijeme len pre malý počet premenných.

Vytvorenie K-mapy

Karnaughovu mapu *n*-premenných vytvoríme z mapy o jednu premennú menšiu a to preklopením mapy podľa ľubovoľnej hrany.

ZÁKLADNÉ LOGICKÉ ČLENY – LOGICKÉ HRADLÁ

Pred návrhom číslicových logických systémov musí byť zrejmé akú súčiastkovú základňu máme k dispozícii.

Logické členy, hradlá

Jedná sa o polovodičové súčiastky zostavené z tranzistorov, ktoré k svojej činnosti potrebujú zdroj napájania.

Niekoľko logických hradiel je vždy umiestnených v pevnom puzdre s vývodmi, ktoré slúžia k prepájaniu hradiel medzi sebou, tak ako to určuje štrukturálna/elektrická schéma.

ZÁKLADNÉ LOGICKÉ ČLENY – LOGICKÉ HRADLÁ

My budeme používať z pohľadu zložitosti obvody tzv. nízkej integrácie (zložitosti).

A circuit in the making

With a photolithography process the design is copied onto a silicon wafer.

3. Add circuit

The circuit is transferred to a wafer. There are multiple circuits per wafer.

4. Trim excess Any empty sections

on the wafer are cut.

5. Terminals

The circuit terminals are welded on.

6. Plastic shell

Finally the protective plastic casing is mounted.

Negácia alebo inverzia (skratka INV alebo NOT)

Najjednoduchšie logické hradlo. Má jeden vstup a jeden výstup. Existuje verzia s trojstavovým výstupom, vtedy pribudne riadiaci vstup.

Zápis logickej funkcie: $y = \overline{x}$

Schématická značka:

Buffer (skratka BUF)

Má jeden vstup a jeden výstup. Existuje verzia s trojstavovým výstupom, vtedy pribudne riadiaci vstup. Z logického hľadiska neplní žiadnu funkciu, môže slúžiť na oddelenie signálov, posilnenie signálu alebo ako oneskorenie.

Zápis logickej funkcie: y = x

Logický súčet (skratka OR)

Funkcia má dva a viac vstupov a jeden výstup.

Zápis logickej funkcie:

$$y = x_1 + x_2 + \dots + x_n$$

$$y = x_1 \lor x_2 \lor \dots \lor x_n$$

Logický súčin (skratka AND)

Funkcia má dva a viac vstupov a jeden výstup.

Zápis logickej funkcie:

$$y = x_1 \cdot x_2 \cdot \dots \cdot x_n$$

Negácia logického súčtu (skratka NOR), Pierceova funkcia

Funkcia má dva a viac vstupov a jeden výstup. K zápisu často používame symbol: \(\begin{align*} (\textit{Pierceov operátor}), ktorý sprehľadňuje zápis. \end{align*}

Ak je operátor aplikovaný na celý logický výraz, potom je zhodný s negáciou.

Zápis logickej funkcie:

$$y = \overline{x_1 + x_2 + \dots + x_n}$$

$$y = \overline{x_1 \lor x_2 \lor \dots \lor x_n} = x_1 \downarrow x_2 \downarrow \dots \downarrow x_n$$

Negácia logického súčinu (skratka NAND), Shafferova funkcia

Funkcia má dva a viac vstupov a jeden výstup. K zápisu často používame symbol: (*Shafferov operátor*), ktorý sprehľadňuje zápis. Ak je operátor aplikovaný na celý logický výraz, potom je zhodný s negáciou.

Ak je operátor aplikovaný na celý logický výraz, potom je zhodný s negáciou.

Zápis logickej funkcie:

$$y = \overline{x_1 \cdot x_2 \cdot \ldots \cdot x_n} = x_1 |x_2| \ldots |x_n$$

Neekvivalencia, nerovnoznačnosť (skratka XOR, eXclusive OR)

Funkcia má dva alebo viac vstupov a jeden výstup.

Zápis logickej funkcie:

$$y = x_1 \oplus x_2 \oplus ... \oplus x_n$$

pre dve premenné:

$$y = x_1 \oplus x_2 = \overline{x}_1 \cdot x_2 + x_1 \cdot \overline{x}_2$$

EKVIVALENTNÉ ZAPOJENIA

Schematické značky základných logických členov zakreslené s použitím AND, OR a NOT.

FÁZY VÝVOJA ČÍSLICOVÉHO LOGICKÉHO SYSTÉMU

Jednotlivé fázy vývoja výrobku sú určené stavom vývoja technológií, voľbou použitých nástrojov ako aj skúsenosťami riešiteľa.

BOOLEOVA ALGEBRA

Pravidlá Booleovej algebry.

a.a=a

Zákon absorpcie:

$$a+a.b=a$$

a.(a+b)=a

Zákon absorpcie negácie:

$$a + \bar{a}$$
. $b = a + b$

 $a.(\bar{a}+b)=a.b$

Distributívny zákon:

$$a+(b.c)=(a+b).(a+c)$$

a.(b+c)=a.b+a.c

Napr.:
$$a+(a.b)=a$$

(a.b)=a a.(a+b)=a

$$a.b + \bar{a}.b = b$$

 $(a+b).(\bar{a}+b)=b$

Neutrálnosť nuly a jednotky:

$$a+0=a$$

a.1 = a

Agresívnosť nuly a jednotky:

$$a+1=1$$

a.0 = 0

Zákon vylúčenia tretieho:

$$a + \bar{a} = 1$$

 $a.\bar{a}=0$

De Morganove zákony:

$$\overline{a+b} = \bar{a}.\bar{b}$$

 $\overline{a.b} = \overline{a} + \overline{b}$