

Winning Space Race with Data Science

Fransiskus Adikara January, 6th, 2025

Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

Executive Summary

- Summary of methodologies
 - Data Collection through API
 - Data Collection with Web Scraping
 - Data Wrangling
 - Exploratory Data Analysis with SQL
 - Exploratory Data Analysis with Data Visualization
 - Interactive Visual Analytics with Folium
 - Machine Learning Prediction
- Summary of all results
 - Exploratory Data Analysis result
 - Interactive analytics in screenshots
 - Predictive Analytics result

Introduction

Project background and context

SpaceX is the most successful company of the commercial space age, making space travel affordable. The company advertises Falcon 9 rocket launches on its website, with a cost of 62 million dollars; other providers cost upward of 165 million dollars each, much of the savings is because SpaceX can reuse the first stage. Therefore, if we can determine if the first stage will land, we can determine the cost of a launch. Based on public information and machine learning models, we are going to predict if SpaceX will reuse the first stage.

Problems you want to find answers

- How do variables such as payload mass, launch site, number of flights, and orbits affect the success of the first stage landing?
- Does the rate of successful landings increase over the years?
- What is the best algorithm that can be used for binary classification in this case?

Methodology

Executive Summary

- Data collection methodology:
 - Data was collected by performing web scraping to gather historical launch records of Falcon 9 from the Wikipedia page titled <u>List of Falcon 9 and Falcon Heavy launches</u>.
- Perform data wrangling
 - Exploratory Data Analysis (EDA) to identify patterns in the data and establish the labels needed for training supervised models.
- Perform exploratory data analysis (EDA) using visualization and SQL
- Perform interactive visual analytics using Folium and Plotly Dash
- Perform predictive analysis using classification models
 - Classification models were built using algorithms like Logistic Regression, SVM, Decision Trees, and KNN.
 Hyperparameters were optimized using GridSearchCV with cross-validation to enhance model
 performance. Models were evaluated using metrics such as accuracy and confusion matrices. The bestperforming model was selected based on test data results

Data Collection

- The SpaceX datasets were collected from publicly available records detailing past missions, including launch sites, payload masses, booster types, and outcomes (success or failure). These datasets underwent cleaning and transformation to ensure accuracy and usability.
- Key features like payload mass and launch outcomes were retained for analysis. Visualizations and exploratory data analysis highlighted patterns, such as the impact of payload size on success. Processed data was then used in interactive dashboards and predictive models to understand and optimize mission success factors.

Data Collection – SpaceX API

Data Collection - Scraping

Data Wrangling

- We performed exploratory data analysis and determined the training labels.
- We calculated the number of launches at each site, and the number and occurrence of each orbits
- We created landing outcome label from outcome column and exported the results to csv.

EDA with Data Visualization

• We explored the data by visualizing the relationship between flight number and launch Site, payload and launch site, success rate of each orbit type, flight number and orbit type, the launch success yearly trend.

EDA with SQL

Performed SQL queries:

- Displaying the names of the unique launch sites in the space mission
- Displaying 5 records where launch sites begin with the string 'CCA'
- Displaying the total payload mass carried by boosters launched by NASA (CRS)
- Displaying average payload mass carried by booster version F9 v1.1
- Listing the date when the first successful landing outcome in ground pad was achieved
- Listing the names of the boosters which have success in drone ship and have payload mass greater than 4000 but less than 6000
- Listing the total number of successful and failure mission outcomes
- Listing the names of the booster versions which have carried the maximum payload mass
- Listing the failed landing outcomes in drone ship, their booster versions and launch site names for the months in year 2015
- Ranking the count of landing outcomes (such as Failure (drone ship) or Success (ground pad))
 between the date
- 2010-06-04 and 2017-03-20 in descending order

Build an Interactive Map with Folium

- We marked all launch sites, and added map objects such as markers, circles, lines to mark the success or failure of launches for each site on the folium map.
- We assigned the feature launch outcomes (failure or success) to class 0 and 1.i.e., 0 for failure, and 1 for success.
- Using the color-labeled marker clusters, we identified which launch sites have relatively high success rate.
- We calculated the distances between a launch site to its proximities. We answered some question for instance:
 - Are launch sites near railways, highways and coastlines.
 - Do launch sites keep certain distance away from cities.

Build a Dashboard with Plotly Dash

- Launch Sites Dropdown List: Added a dropdown list to enable Launch Site selection.
- Pie Chart showing Success Launches (All Sites/Certain Site): Added a pie chart to show the total successful launches count for all sites and the Success vs. Failed counts for the site, if a specific Launch Site was selected.
- Slider of Payload Mass Range: Added a slider to select Payload range.
- Scatter Chart of Payload Mass vs. Success Rate for the different Booster Versions: Added a scatter chart to show the correlation between Payload and Launch Success

Predictive Analysis (Classification)

Results

- The exploratory data analysis (EDA) involved examining the SpaceX dataset to uncover patterns in the features influencing mission success. I plotted distribution charts for payload, rocket booster versions, and launch success outcomes to understand correlations. Interactive analytics, powered by Folium and Plotly Dash, allowed the visualization of launch site locations, payload ranges, and launch success across multiple sites. This provided an intuitive interface to explore how payload and site impact mission outcomes.
- In terms of predictive analysis, I applied several classification models, such as Logistic Regression, SVM, Decision Trees, and KNN. I evaluated these models with performance metrics like accuracy and cross-validation. The best performing model was the Support Vector Machine (SVM), achieving the highest accuracy when predicting mission outcomes based on features like payload, booster type, and launch site. The interactive demo offered a user-friendly way to experiment with different inputs, making analysis accessible and actionable.

Flight Number vs. Launch Site

- The earliest flights all failed while the latest flights all succeeded.
- The CCAFS SLC 40 launch site has about a half of all launches.
- VAFB SLC 4E and KSC LC 39A have higher success rates.
- It can be assumed that each new launch has a higher rate of success.

Payload vs. Launch Site

- For every launch site the higher the payload mass, the higher the success rate.
- Most of the launches with payload mass over 7000 kg were successful.
- KSC LC 39A has a 100% success rate for payload mass under 5500 kg too

Success Rate vs. Orbit Type

- Orbits with 100% success rate: - ES-L1, GEO, HEO, SSO
- Orbits with 0% success
 rate: SO
- Orbits with success rate between 50% and 85%:
 - GTO, ISS, LEO, MEO, PO

Flight Number vs. Orbit Type

• In the LEO orbit the Success appears related to the number of flights; on the other hand, there seems to be no relationship between flight number when in GTO orbit.

Payload vs. Orbit Type

• Heavy payloads have a negative influence on GTO orbits and positive on GTO and Polar LEO (ISS) orbits.

Launch Success Yearly Trend

• The success rate since 2013 kept increasing till 2020

All Launch Site Names

• We used the key word DISTINCT to show only unique launch sites from the

SpaceX data.

```
%%sql
  SELECT DISTINCT "Launch Site"
  FROM SPACEXTABLE;
* sqlite:///my_data1.db
Done.
  Launch_Site
  CCAFS LC-40
  VAFB SLC-4E
   KSC LC-39A
 CCAFS SLC-40
```

Launch Site Names Begin with 'CCA'

We used the query above to display 5 records where launch sites begin with `CCA`

```
%sql select * from SPACEXDATASET where launch site like 'CCA%' limit 5;
```

* ibm_db_sa://wzf08322:***@0c77d6f2-5da9-48a9-81f8-86b520b87518.bs2io90108kqb1od8lcg.databases.appdomain.cloud:31198/bludb Done.

DATE	timeutc_	booster_version	launch_site	payload	payload_masskg_	orbit	customer	mission_outcome	landing_outcome
2010- 06-04	18:45:00	F9 v1.0 B0003	CCAFS LC- 40	Dragon Spacecraft Qualification Unit	0	LEO	SpaceX	Success	Failure (parachute)
2010- 12-08	15:43:00	F9 v1.0 B0004	CCAFS LC- 40	Dragon demo flight C1, two CubeSats, barrel of Brouere cheese	0	(ISS)	NASA (COTS) NRO	Success	Failure (parachute)
2012- 05-22	07:44:00	F9 v1.0 B0005	CCAFS LC- 40	Dragon demo flight C2	525	l .	NASA (COTS)	Success	No attempt
2012- 10-08	00:35:00	F9 v1.0 B0006	CCAFS LC- 40	SpaceX CRS-1	500	LEO (ISS)	NASA (CRS)	Success	No attempt
2013- 03-01	15:10:00	F9 v1.0 B0007	CCAFS LC- 40	SpaceX CRS-2	677	LEO (ISS)	NASA (CRS)	Success	No attempt

Total Payload Mass

 We calculated the total payload carried by boosters from NASA as 45596 using the query below

```
Display the total payload mass carried by boosters launched by NASA (CRS)
```

Average Payload Mass by F9 v1.1

2928.4

- Calculate the average payload mass carried by booster version F9 v1.1
- We calculated the average payload mass carried by booster version F9 v1.1 as 2928.4

```
Display average payload mass carried by booster version F9 v1.1

task_4 = '''

SELECT AVG(PayloadMassKG) AS Avg_PayloadMass
FROM SpaceX
WHERE BoosterVersion = 'F9 v1.1'

create_pandas_df(task_4, database=conn)

avg_payloadmass
```

First Successful Ground Landing Date

• We observed that the dates of the first successful landing outcome on ground pad was 22nd December 2015

Successful Drone Ship Landing with Payload between 4000 and 6000

 We used the WHERE clause to filter for boosters which have successfully landed on drone ship and applied the AND condition to determine successful landing with payload mass greater than 4000 but less than 6000

```
task_6 = '''
    SELECT BoosterVersion
    FROM SpaceX
    WHERE LandingOutcome = 'Success (drone ship)'
        AND PayloadMassKG > 4000
        AND PayloadMassKG < 6000
        '''
    create_pandas_df(task_6, database=conn)

boosterversion
0    F9 FT B1022
1    F9 FT B1026
2    F9 FT B1021.2
3    F9 FT B1031.2</pre>
```

Total Number of Successful and Failure Mission Outcomes

• We used wildcard like '%' to filter for WHERE MissionOutcome was a success

List the total number of successful and failure mission outcomes

or a failure.

```
task 7a = '''
        SELECT COUNT(MissionOutcome) AS SuccessOutcome
        FROM SpaceX
        WHERE MissionOutcome LIKE 'Success%'
task 7b = '''
        SELECT COUNT(MissionOutcome) AS FailureOutcome
        FROM SpaceX
        WHERE MissionOutcome LIKE 'Failure%'
print('The total number of successful mission outcome is:')
display(create_pandas_df(task_7a, database=conn))
print()
print('The total number of failed mission outcome is:')
create_pandas_df(task_7b, database=conn)
The total number of successful mission outcome is:
  successoutcome
            100
0
The total number of failed mission outcome is:
  failureoutcome
```

Boosters Carried Maximum Payload

• We determined the booster that have carried the maximum payload using a subquery in the WHERE clause and the MAX() function.

List the names of the booster_versions which have carried the maximum payload mass. Use a subquery task_8 = ''' SELECT BoosterVersion, PayloadMassKG FROM SpaceX WHERE PayloadMassKG = (SELECT MAX(PayloadMassKG) FROM SpaceX ORDER BY BoosterVersion create_pandas_df(task_8, database=conn) boosterversion payloadmasskg F9 B5 B1048.4 15600 F9 B5 B1048.5 15600 F9 B5 B1049.4 15600 F9 B5 B1049.5 15600 F9 B5 B1049.7 15600 5 F9 B5 B1051.3 15600 F9 B5 B1051.4 15600 F9 B5 B1051.6 15600 F9 B5 B1056.4 15600 F9 B5 B1058.3 15600 F9 B5 B1060.2 15600 11 F9 B5 B1060.3 15600

2015 Launch Records

• We used a combinations of the WHEREclause, LIKE, AND, and BETWEEN conditions to filter for failedlanding outcomes in drone ship, their booster versions, and launch site names for year 2015

List the failed landing_outcomes in drone ship, their booster versions, and launch site names for in year 2015

```
task_9 = '''

SELECT BoosterVersion, LaunchSite, LandingOutcome
FROM SpaceX
WHERE LandingOutcome LIKE 'Failure (drone ship)'
AND Date BETWEEN '2015-01-01' AND '2015-12-31'

create_pandas_df(task_9, database=conn)

boosterversion launchsite landingoutcome

0 F9 v1.1 B1012 CCAFS LC-40 Failure (drone ship)

1 F9 v1.1 B1015 CCAFS LC-40 Failure (drone ship)
```

Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

- We selected Landing outcomes and the COUNTof landing outcomes from the data and used the WHERE clause to filter for landing outcomes BETWEEN 2010-06-04 to 2010-03-20.
- We applied the GROUP BY clause to group the landing outcomes and the ORDER BY clause to order the grouped landing outcome in descending order

Rank the count of landing outcomes (such as Failure (drone ship) or Success (ground pad))

```
task_10 = '''
    SELECT LandingOutcome, COUNT(LandingOutcome)
    FROM SpaceX
    WHERE DATE BETWEEN '2010-06-04' AND '2017-03-20'
    GROUP BY LandingOutcome
    ORDER BY COUNT(LandingOutcome) DESC
    '''
create_pandas_df(task_10, database=conn)
```

	landingoutcome	count
0	No attempt	10
1	Success (drone ship)	6
2	Failure (drone ship)	5
3	Success (ground pad)	5
4	Controlled (ocean)	3
5	Uncontrolled (ocean)	2
6	Precluded (drone ship)	1
7	Failure (parachute)	1

<Folium Map Screenshot 1>

<Folium Map Screenshot 2>

- From the colour-labeled markers we should be able to easily identify which launch sites have relatively high success rates.
 - Green Marker = Successful Launch
 - Red Marker = Failed Launch
- Launch Site KSC LC-39A has a very high Success Rate.

<Folium Map Screenshot 3>

- From the visual analysis of the launch site KSC LC-39A we can clearly see that it is:
 - relative close to railway (15.23 km)
 - relative close to highway (20.28 km)
 - relative close to coastline (14.99 km)
- Also the launch site KSC LC-39A is relative close to its closest city Titusville (16.32 km).
- Failed rocket with its high speed can cover distances like 15-20 km in few seconds. It could be potentially dangerous to populated areas.

< Dashboard Screenshot 1>

The chart clearly shows that from all the sites, KSC LC-39A has the most successful launches

< Dashboard Screenshot 2>

KSC LC-39A has the highest launch success rate (76.9%) with 10 successful and only 3 failed landings.

< Dashboard Screenshot 3>

0.2

The charts show that payloads between 2000 and 5500 kg have the highest success rate.

Payload Mass (kg)

Classification Accuracy

- Based on the scores of the Test Set, we can not confirm which method performs best.
- Same Test Set scores may be due to the small test sample size (18 samples).
 Therefore, we tested all methods based on the whole Dataset.
- The scores of the whole Dataset confirm that the best model is the Decision Tree Model. This model has not only higher scores, but also the highest accuracy

Scores and Accuracy of the Test Set

	LogReg	SVM	Tree	KNN
Jaccard_Score	0.800000	0.800000	0.800000	0.800000
F1_Score	0.888889	0.888889	0.888889	0.888889
Accuracy	0.833333	0.833333	0.833333	0.833333

Scores and Accuracy of the Entire Data Set

	LogReg	SVM	Tree	KNN
Jaccard_Score	0.833333	0.845070	0.882353	0.819444
F1_Score	0.909091	0.916031	0.937500	0.900763
Accuracy	0.866667	0.877778	0.911111	0.855556

Confusion Matrix

Examining the confusion matrix, we see that logistic regression can distinguish between the different classes. We see that the major problem is false positives.

Conclusions

- Decision Tree Model is the best algorithm for this dataset.
- Launches with a low payload mass show better results than launches with a larger payload mass.
- Most of launch sites are in proximity to the Equator line and all the sites are in very close proximity to the coast.
- The success rate of launches increases over the years.
- KSC LC-39A has the highest success rate of the launches from all the sites.
- Orbits ES-L1, GEO, HEO and SSO have 100% success rate.

