1 Fields

Fields are an abstract structure that describes sets of "numbers" and their operations.

Definition 1.1 (Fields)

A set \mathcal{F} together with two binary operations

•
$$+: \mathcal{F} \times \mathcal{F} \to \mathcal{F}$$
 (Addition)

•
$$\cdot : \mathcal{F} \times \mathcal{F} \to \mathcal{F}$$
 (Multiplication)

•
$$x + (y + z) = (x + y) + z$$
 (Associativity)

•
$$x(yz) = (xy)z$$
 (Associativity)

•
$$x + y = y + x$$
 (Commutatitivity)

•
$$xy = yx$$
 (Commutatitivity)

•
$$\exists 0 \in \mathcal{F} \text{ such that } x + 0 = x \ \forall x \in \mathcal{F}$$
 (Neutral additive element)

•
$$\exists 1 \in \mathcal{F}$$
 such that $x \cdot 1 = x \ \forall x \in \mathcal{F}$ (Neutral scalar multiplication element)

•
$$\forall x \in \mathcal{F} \exists -x \in \mathcal{F} \quad x + (-x) = 0$$
 (Additive Inverse)

•
$$\forall x \in \mathcal{F} \exists -x \in \mathcal{F} \quad x + (-x) = 0$$
 (Additive Inverse)
• $\forall y \in \mathcal{F} \setminus \{0\} \exists y^{-1} \exists \mathcal{F} \quad yy^{-1} = 1$ (Multiplicative inverse)
• $x(y+z) = xy + xz$ (Distributivity)

•
$$x(y+z) = xy + xz$$
 (Distributivity)

Example of fields: Rational numbers \mathbb{Q} , real numbers \mathbb{R} and complex numbers \mathbb{C} . Another example is the set $\mathcal{F} = \{0,1\}$. The set $\mathbb{Q}(\sqrt{2}) = \{a + b\sqrt{2} : a, b \in \mathbb{Q}\}$ is also an example.

Definition 1.2

For any field \mathcal{F} we denote the set of n-tuples by \mathcal{F}^n . We define two important operations

- Addition: Given two elements $x = (x_1, \ldots, x_n)$ $y = (y_1, \ldots, y_n)$ $x + y = (x_1 + \cdots + y_n)$
- Scalar multiplication: Given an element $\lambda \in \mathcal{F}$ and a *n*-tuple $x \in \mathcal{F}^n$ we define $\lambda x := (\lambda x_1, \dots, \lambda x_n)$

We often write $0 \in \mathcal{F}^n$ for the *n*-tuple consisting of *n* zeros.

Let
$$x \in \mathcal{F}^n$$
 we define $-x := (-x_1, \dots, -x_n)$ and we see that $x + (-x) = 0$.

For any $x \in \mathcal{F}^n$ we have 0 + x = x

2 Vector Spaces

Definition 2.1 (Vector Space)

Let V be a set and \mathcal{F} be a field.

Let $+: V \times V \to V$ and $\cdot: \mathcal{F} \times V \to V$ be two binary operations. We say V is a vector space (with respect to these operations) over \mathcal{F} , or an \mathcal{F} -vector space (VS) if

- Addition is commutative: $\forall u, v \in V \quad u+v=v+u$.
- Addition is associative: $\forall u, v, w \in V \quad u + (v + w) = (u + v) + w$.
- Multiplication is associative: $\forall \lambda, \mu \in \mathcal{F} \ \forall v \in V \quad (\lambda \mu)v = \lambda(\mu v).$
- Neutral additive: $\exists 0 \in V \text{ such that } \forall v \in V \quad 0 + v = v.$
- Inverse addition: $\forall v \in V \exists -v \in V \quad v + (-v) = 0.$
- Neutral scalar multiplication: $1 \in \mathcal{F}$ it holds that $1 \cdot v = v \quad v \in V$.
- Distributivity: $\forall u, v \in V \ \forall \lambda \mu \in \mathcal{F} \ \lambda(u+v) = \lambda u + \lambda v \text{ and } (\lambda + \mu)v = \lambda v + \mu v.$

Example 2.1

- a) \mathcal{F}^n is an \mathcal{F} -VS, it holds that $\forall n \in \mathbb{N}$ especially \mathcal{F} is an \mathcal{F} -VS.
 - b) $V = \{0\} \subseteq \mathcal{F} \text{ is an } \mathcal{F}\text{-VS}.$
 - c) $\mathcal{F}^{\infty} := \{(x_1, x_2, \dots) : x_i \in \mathcal{F} \mid i \in \mathbb{N} \}$, the set of all infinite sequences is an $\mathcal{F}\text{-VS}$
- d) Let $V := \{f : S \to \mathcal{F}\}$ be the set of functions from a set S into \mathcal{F} then V is an \mathcal{F} -VS with $f, g \in V$ for which $(f + g)(s) := f(s) + g(s) \forall s \in S$. Similarly $\forall \lambda \in \mathcal{F} \quad (\lambda f)(s) = \lambda(f(s))$. Sometimes you will see this notation:

$$V = \mathcal{F}^S$$

Example. $\mathbb{R}^{[0,1]}$.

Theorem 2.1

Let V be an $\mathcal{F}\text{-VS}$. Then the additive neutral element is unique.

Proof 2.1

Suppose there is another additive neutral element: 0 and 0' are both neutral. Then

$$0 = 0 + 0'$$
 since $0'$ is neutral
= $0'$ since 0 is neutral

Hence 0 = 0' and there is an unique neutral.

Theorem 2.2

Let V be an $\mathcal{F}\text{-VS}$. Then every element in V has a unique additive inverse.

Proof 2.2

Let $v \in V$ and suppose w and w' are both additive inverse for v.

$$w' = 0 + w' = (w + v) + w' = w + (v + w') = w + 0 = w$$

September 9, 2019

We will from now on decide the unique inverse of v be -v and write w + (-v) := w - v.

Theorem 2.3

Let V be an \mathcal{F} -VS. Then $\forall v \in V$

$$0 \in \mathcal{F} \quad v = 0 \in V$$

Proof 2.3

We see that

$$0 \cdot v = (0+0)v = 0v + 0v$$

Add -0v on both sides

$$0 = 0v$$
.

Theorem 2.4

Theorem 2.4 Let V be an \mathcal{F} -VS. Then $\forall \lambda \in \mathcal{F}$

$$\lambda \cdot 0 = 0.$$

$$\lambda 0 = \lambda (0+0) = \lambda 0 + \lambda 0$$

Add $-\lambda 0$ on both sides

$$0 = \lambda 0$$
.

Theorem 2.5

Let V be an \mathcal{F} -VS and $-1 \in \mathcal{F}$ is the additive inverse of the multiplicative neutral in \mathcal{F} . Then

$$(-1)v = -v \quad \forall v \in V$$

Proof 2.5

$$1 \cdot v + (-1)v = (1-1) \cdot v = 0v = 0$$

by Theorem 2.3.

For any VS V the subset $\{0\}$ is also a VS. We generalise this notion.

Definition 2.2 (Subspaces)

Let V be an \mathcal{F} -VS then a subset $U \subseteq V$ is called a subspace if U is also an \mathcal{F} -VS with respect to the same operations.

Theorem 2.6 (Proposition)

A subset $U \subseteq V$ of an $\mathcal{F}\text{-VS }V$ is a subspace iff (=if and only if)

- $0 \in U$
- $\bullet \ \forall u, w \in U \ u + w \in U$
- $\bullet \ \forall \lambda \in \mathcal{F} \ \forall u \in U \ \lambda u \in U$

Proof 2.6

 \Rightarrow If U is a VS then all these conditions hold.

 \Leftarrow Condition 1 implies neutral additive of VS.

By condition 3 we know that $(-1)u \in U$, (-1)u = -u and thereby implies the additive inverse of VS.

Example 2.2

1) For any VS V, $\{0\}$ and V itself are subspaces.

2) The set of all polynomials with coefficients in some field \mathcal{F} is a VS, called $\mathcal{F}[x]$. For every $0 \leq d \in \mathbb{N}_0$ the set of polynomials of degree at most d is a subspace.

- 3) We have seen that $\mathbb{R}^{[0,1]}$ is a \mathbb{R} -VS. The sets of continuous or differentiable functions form subspaces.
- 4) We can classify all subspaces of \mathbb{R}^3 in a hierarchy: $\mathbb{R}^3 >$ planes containing the origin > lines going through the origin > $\{0\}$.

Definition 2.3

Let U_1, U_2, \ldots, U_m be subspaces of a VS V. Then we define their sum. $U_1 + \cdots + U_m := \{u_1 + \cdots + u_m : u_i \in U_i\}$

$$U_1 + \dots + U_m := \{u_1 + \dots + u_m : u_i \in U_i\}$$

Theorem 2.7 (Proposition)

Finite sums of subspaces are subspaces again.

Proof 2.7

We only need to show this for two subspaces.

Let $U_1, U_2 \subseteq V$ be subspaces. Then since $0 \in U_1$ and $0 \in U_2 \Rightarrow 0 + 0 = 0 \in U_1 + U_2$. Let $u_1 + u_2, u_1' + u_2' \in U_1 + U_2$ then $u_1 + u_2 + u_1' + u_2' = (u_1 + u_1') + (u_2 + u_2') \in U_1 + U_2$ Let $\lambda \in \mathcal{F}$ then

$$\lambda(u_1 + u_2) = \lambda u_1 + \lambda u_2 \in U_1 + U_2.$$

Theorem 2.8 (Proposition)

Let $U_1, U_2 \subseteq V$ be subspaces, then $U_1 + U_2$ is the smallest subspace of V containing

We see that $U_1 \subseteq U_1 + U_2$ because $\forall u_1 \in U_1 \quad u_1 + 0 = u_1 \in U_1 + U_2$, the same applies

Assume there exists $W \subseteq U_1 + U_2$ that contains U_1 and U_2 . Then there must exist an element $u_1 + u_2 \notin W$. But $u_1 \in W$ and $u_2 \in W \to W$ is not a subspace.

EX: Functions and reals can be split into subspaces of even and odd reals.

EX:
$$L_1, L_2$$
 lies in \mathbb{R}^n $L_1 + L_2 = \begin{cases} P \text{ plane} \\ L_1 \text{ if } L_1 = L_2 \end{cases}$

EX: P is a plane in \mathbb{R}^3 and L is a line in \mathbb{R}^3 :

$$P + L = \begin{cases} \mathbb{R}^3 & \text{if } L \subsetneq P \\ P & \text{if } L \subseteq P \end{cases}$$

Definition 2.4 (Direct Sum) Let $U_1, \ldots, U_m \subseteq V$ be subspaces. Then their sum is called a direct sum if $U_1 + \cdots + U_m$ has a unique representation as a sum $u_1 + \cdots + u_m$. We then write $U_1 \oplus \cdots \oplus U_m$ for

Theorem 2.9 (Proposition)

The sum $U_1 + \cdots + U_m$ is direct iff there is a unique way to write 0 as a sum $u_1 + \cdots + u_m$.

Proof 2.9

 \Rightarrow check

If the sum is not direct then there exists an element that has two different represen-

$$u_1 + \dots + u_m = u_1' + \dots + u_m'$$

where not all $u_i = u'_i$. Then

$$(u_1 - u'_1) + (u_2 - u'_2) + \dots + (u_m - u'_m) = 0$$

and at least one different $u_i - u'_i \neq 0$.

Theorem 2.10 (Lemma)

U+W is direct iff

$$U \cap W = \{0\}$$

⇒: Let $v \in U \cap W$ and $v \neq 0$ then 0

$$0 + 0 = 0 = v + (-v)$$

and hence the sum is not direct.
$$\Leftarrow: \ 0 = u + w \Rightarrow -u \in U - w \in W \Rightarrow u = w = 0$$

3 Bases and Dimension

A list is an n-tuple.

Definition 3.1 (2.3 and 2.5)

Let $\mathbf{v}_1, \dots, \mathbf{v}_m$ be a list of vectors in an \mathcal{F} -VS. Then for any $\lambda_i \in \mathcal{F}$ we call $\lambda_1 \mathbf{v}_1 + \dots + \lambda_m \mathbf{v}_m$ $\lambda_m \mathbf{v}_m$ a linear combination of $\mathbf{v}_1, \dots, \mathbf{v}_m$. (Note that λ_i can be zero)

The set of all linear combinations is called the span of $\mathbf{v}_1, \dots, \mathbf{v}_m$ and denoted span $(\mathbf{v}_1, \dots, \mathbf{v}_m)$. For consistency we let $span() = \{0\}.$

Theorem 3.1 (Proposition 2.7)

Let $\mathbf{v}_1, \dots, \mathbf{v}_m$ is a list of vectors. Then $\mathrm{span}(\mathbf{v}_i)$ is a subspace and it is the smallest subspace containing all \mathbf{v}_i .

Proof 3.1

We show that span is a subspace.

- 1. $0 \in \operatorname{span}(\mathbf{v}_i)$, just let $\lambda_i = 0 \ \forall i$ 2. $\sum_{i=1}^m \lambda_i \mathbf{v}_i + \sum \mu_i \mathbf{v}_i = \sum (\lambda_i + \mu_i) \mathbf{v}_i \in \operatorname{span}(\mathbf{v}_i)$ 3. $\sum \lambda_i \mathbf{v}_i = \sum (\mu \lambda_i) \mathbf{v}_i \in \operatorname{span}(\mathbf{v}_i)$

$$\mathbf{v}_i = 0\mathbf{v}_1 + 0\mathbf{v}_2 + \dots + 1\mathbf{v}_i + \dots + 0\mathbf{v}_m \in \operatorname{span}(\mathbf{v}_i)$$

Assume $W \subseteq \operatorname{span}(\mathbf{v}_i)$ such that $\mathbf{v}_i \in W \ \forall i$. Then $\exists x \in \operatorname{span}(\mathbf{v}_i) \backslash W \quad x = \sum \lambda_i \mathbf{v}_i \in W$ which is a contradiction.

Definition 3.2 (2.17)

We say a list \mathbf{v}_i of vectors is <u>linearly independent</u> if $0 = \lambda_1 \mathbf{v}_1 + \dots + \lambda_m \mathbf{v}_m \Rightarrow \forall \lambda_i = 0.$

$$0 = \lambda_1 \mathbf{v}_1 + \dots + \lambda_m \mathbf{v}_m \Rightarrow \forall \, \lambda_i = 0$$

Theorem 3.2 (Lemma 20)

A list \mathbf{v}_i is linearly independent iff every vector in span (\mathbf{v}_i) has a unique representation as a linear combination.

Proof 3.2

$$\Rightarrow (\text{direct proof}) \text{ Assume that } \sum \lambda_i \mathbf{v}_i = \sum \mu_i \mathbf{v}_i \text{ then}$$

$$\sum (\lambda_i - \mu_i) \mathbf{v}_i = 0 \Rightarrow \lambda_i - \mu_i = 0 \Rightarrow \lambda_i = \mu_i$$

because \mathbf{v}_i is linear independent.

Remark:

- 1. If a list \mathbf{v}_i is linearly dependent then there exist λ_i not all zero, such that $\sum \lambda_i \mathbf{v}_i = 0$
- 2. A single **v** is linearly dependant iff $\mathbf{v} = 0$. Because then $1\mathbf{v} = 1 \cdot 0 = 0$, note that $1 \in \mathcal{F}, v \in V, 0 \in V.$

Definition 3.3 (2.27)

Let V be an \mathcal{F} -VS. Then

- 1. A list \mathbf{v}_i such that $V = \operatorname{span}(\mathbf{v}_i)$ is called a generating set (spanning set). If the list is finite (always assumed here) then we say V is finitely generated.
- 2. A list \mathbf{v}_i is called a basis for V if it is a linearly independent generating set.

Example 3.1

1.

$$\lambda_1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} + \lambda_2 \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Rightarrow \lambda_1 = 0 = \lambda_2$$

- 2. Let $V = \mathcal{F}^n$ and denote by e_i the vector with a one in the *i*-th coordinate and zero elsewhere.
- 3. Let $V = \mathbb{R}[x]^{\leq m} (= \mathcal{P}_m(\mathbb{R}))$ then $1, x, x^2, \dots, x^m$ are a basis with m+1 elements.

The $e_1, \ldots e_n$ are the so-called standard basis vectors.

Let $\mathbf{v}_1, \ldots, \mathbf{v}_m$ be linearly dependent. Then $\exists j$ such that $\mathbf{v}_j \in \operatorname{span}(\mathbf{v}_1, \ldots, \mathbf{v}_{j-1})$ and $\mathbf{v}_1, \ldots, \mathbf{v}_m$ without \mathbf{v}_j spans the same space.

Proof 3.3

Since \mathbf{v}_i is linearly dependent $\exists \lambda_i \in \mathcal{F}$, not all zero such that $\sum_{i=1}^m \lambda_i \mathbf{v}_i = 0$. Let j be the max index such that $\lambda_j \neq 0$. Then

$$\sum_{i=1}^{j-1} -\frac{\lambda_i}{\lambda_j} \mathbf{v}_i = \mathbf{v}_j \Rightarrow \mathbf{v}_j \in \operatorname{span}(\mathbf{v}_1, \dots, \mathbf{v}_{j-1}). \tag{1}$$

Let $\sum_{i=1}^{m} \mu_i \mathbf{v}_i \in \text{span}(\mathbf{v}_i)$. Substitute equation (1) for \mathbf{v}_j

$$\mu_1 \mathbf{v}_1 + \dots + \mu_j \mathbf{v}_j + \dots + \mu_m \mathbf{v}_m = \mu_1 \mathbf{v}_1 + \dots + \mu_j \left(\sum_{i=1}^{j-1} -\frac{\lambda_i}{\lambda_j} \mathbf{v}_i \right) + \dots + \mu_m \mathbf{v}_m$$

$$= \left(\mu_1 - \frac{\mu_j \lambda_1}{\lambda_j} \right) \mathbf{v}_1 + \left(\mu_2 - \frac{\mu_j \lambda_2}{\lambda_j} \right) \mathbf{v}_2 + \dots + \left(\mu_{j-1} - \frac{\mu_j \lambda_{j-1}}{\lambda_j} \right) \mathbf{v}_{j-1} + \mu_{j+1}$$

Theorem 3.4 (Steinitz)

Let V be a finitely generated VS. Then the length of any linear independent list is smaller or equal to the length of any generating list.

Proof 3.4

Let $\mathbf{u}_1, \ldots, \mathbf{u}_m$ be linearly independent and $\mathbf{w}_1, \ldots, \mathbf{w}_n$ a generating set.

$$\operatorname{span}(\mathbf{w}_i) = V, \mathbf{u}_1 \in V.$$

Then $(\mathbf{u}_1\mathbf{w}_1,\dots,\mathbf{u}_1\mathbf{w}_m)$ is linearly dependent. Then for $\sum \lambda_j\mathbf{w}_j=\mathbf{u}_1$ wlog $\lambda_1\neq 0 \Rightarrow \frac{1}{\lambda_1}\mathbf{u}_1-\frac{\lambda_2}{\lambda_1}\mathbf{w}_2-\frac{\lambda_m}{\lambda_1}=\mathbf{w}_1$ (without loss of generality) point being

$$\operatorname{span}(\mathbf{u}_1, \mathbf{w}_2, \dots, \mathbf{w}_n) = \operatorname{span}(\mathbf{w}_1, \dots, \mathbf{w}_n) = V.$$

The new list $S_1 = (\mathbf{u}_1, \mathbf{w}_2, \dots, \mathbf{w}_n)$ also spans V. Then $(\mathbf{u}_1, \mathbf{u}_2, \mathbf{w}_2, \dots, \mathbf{w}_n)$ and

$$\mathbf{u}_2 = \lambda_1 \mathbf{u}_1 + \lambda_2 \mathbf{w}_2 + \dots + \lambda_n \mathbf{w}_n$$

assume $\lambda_2 \neq 0$ and thus an element \mathbf{w}_2 can be pulled out of the set without loss:

$$\Rightarrow S_2 = (\mathbf{u}_1, \mathbf{u}_2, \mathbf{w}_3, \dots, \mathbf{w}_n)$$

also spans V and we can keep going.

Remark: This shows that no list that is bigger than a generating set can be linearly independent. Also any list that is shorter than a linearly independent list can not generate the whole space.

Theorem 3.5 (Basis)

A list of vectors is a basis for V iff every $\mathbf{v} \in V$ can be uniquely be written as a linear combination.

Proof 3.5

Lemma 20. If you can write every element uniquely then you can write zero uniquely.

Theorem 3.6

Let span($\mathbf{v}_1, \dots, \mathbf{v}_n$) = V. Then there is a subset of \mathbf{v}_i that is a basis.

Proof 3.6

We construct the basis in n-steps.

We add a vector \mathbf{v}_i to our basis if $\mathbf{v}_i \notin \operatorname{span}(\mathbf{v}_1, \dots, \mathbf{v}_{i-1})$. Let $\mathbf{w}_1, \dots, \mathbf{w}_m$ be the basis acquired this way. Assume

$$\sum \lambda_i \mathbf{w}_i = 0.$$

Let j be max such that $\lambda_j \neq 0$ then $\sum_{i=1}^{j-1} \lambda_i \mathbf{w}_i = \lambda_j \mathbf{w}_j$, contradiction.

Therefore \mathbf{w}_i is linearly independent and it still spans V.

Theorem 3.7 (Corollary)

Every finitely generated VS has a basis.

Theorem 3.8 (Corollary)

Every linearly independent set can be extended to a basis.

Proof 3.7

Let $(\mathbf{u}_1, \dots, \mathbf{u}_m)$ be linearly independent and let $(\mathbf{w}_1, \dots, \mathbf{w}_n)$ be a generated set. Then $(\mathbf{u}_1, \dots, \mathbf{u}_m, \mathbf{w}_1, \dots, \mathbf{w}_n)$ is a generating set. Use Theorem 3.6 to acquire a basis.

Theorem 3.9 (2.35)

Every basis of a finitely generated VS has the same length.

Let B_1 and B_2 be two bases. Since B_1 is linearly independent and B_2 generates V.

$$|B_1| \le |B_2|$$
$$|B_2| \le |B_1|$$
$$\Rightarrow |B_1| = |B_2|$$

Definition 3.4 (Dimension) Let V be an $\mathcal{F} ext{-VS}$. Then we define dimension as

$$\dim_{\mathcal{F}}(V) = \begin{cases} \text{length of the basis if } V \text{ is finitely generated} \\ \infty \quad \text{otherwise} \end{cases}$$

Theorem 3.10 (Corollary) Let $U \subseteq V$ be a subspace. Then $\dim(U) \leq \dim(V)$.

Proof 3.9

A basis of U is a linear set in V. Hence it is shorter or equal in length to any generating set of V, especially a basis of V.

Theorem 3.11 (Corollary 2.39)

A linearly independent list of size $\dim(V)$ is already a basis.

We can extend the list to a basis. But it is already of length $\dim(V)$ hence nothing is

Theorem 3.12 (Corollary 2.42)

Let $\dim(V) = n$ then every generating set of length n is already a basis.

Two sets A, B with size |A|, |B|. The union has size: $|A \cup B| = |A| + |B| - |A \cap B|$

Theorem 3.13

Let A, B be subspaces of a finite dimensional space V. Then $\dim(A+B) = \dim(A) + \dim(B) - \dim(A \cap B)$.

Proof 3.11

Let c_1, \ldots, c_l be a basis for $A \cap B$. We extend to a basis $c_1, \ldots, c_l, a_1, \ldots, a_m$ of A and to a basis $c_1, \ldots, c_l, b_1, \ldots, b_n$ of B.

We want to show that $c_i a_j b_k$ is a basis for A + B. This is a generating set, now we need to check that it is linearly independent.

Now let

$$0 = \sum \alpha_i a_i + \sum \beta_j b_j + \sum \mu_k c_k$$

$$-\sum \alpha_i a_i = \sum \beta_j b_j + \sum \mu_k c_k \in A \cap B$$

$$-\sum \alpha_i a_i = \sum \delta_k c_k$$

$$0 = \sum \alpha_i a_i + \sum \delta_k c_k$$

$$\Rightarrow \alpha_i = 0 \quad \delta_k = 0$$

$$\Rightarrow 0 = \sum (\beta_j b_j + \sum \gamma_k c_k)$$

$$\Rightarrow \beta_j = 0 \quad \gamma_k = 0$$