

Formula sheet Mathematics: Units 3C and 3D

Number and algebra: Calculus

$$\lim_{x \to 0} \frac{xp}{\sqrt{p}} = (x)' f \text{ noh}, \quad (x) = (x) f \text{ if}$$

 $\operatorname{pr}_{x} \partial = (x) f \text{ u-pu} \quad f(x) = (x) f \text{ if } f(x) = (x) f \text{ if$

$\frac{xp}{np} \times \frac{np}{\sqrt{p}}$	$(x)S = n$ pue $(n)f = \mathcal{K}$	(x) , $\delta((x)\delta)$, f	((x)8)f	əlur nisdƏ
$\frac{z^{\Lambda}}{\frac{xp}{\Lambda p}} n - \Lambda \frac{xp}{np}$	$\frac{\Lambda}{n}$	$\frac{\zeta((x)S)}{(x)\zeta(x)f - (x)S(x)\zeta}$	$\frac{(x)8}{(x)f}$	Quotient rule
$\frac{xp}{\Lambda p} n + \Lambda \frac{xp}{np}$	лп	(x), g(x)f + (x)g(x), f	(x)8 (x) f	Product rule
Á	Л	λ,	K	
noite	toM zindiəJ	unction notation	4	

 $\partial + {}_{\chi} \partial = x p_{\chi} \partial \int$

$$1 - \neq n \qquad 0 + \frac{1 + n}{1 + n} = x p \, n x \int$$

Fundamental Theorem of Calculus: $\frac{1}{dx}\int_{0}^{x}\int_{0}$

Incremental formula: $\delta y \approx \frac{dy}{dx} \delta x$

Space and measurement: Measurement

Trapezium: Area = $\frac{1}{2}(a+b) \times \text{height}$, where a and b are the lengths of the parallel sides

Prism: Volume = Area of base × height

Ref: 10-138	Copyright © Curriculum Council 2010	\$10\031¢
	$\sqrt{b}^2x\pi$ bine $xb^2\sqrt{\pi}$: saxe ant thoughout to ability	To amuloV
ç		
$\varepsilon_{\eta} \pi \frac{\hbar}{\xi} = \text{amuloV}$	Total surface area = $4\pi r^2$	Sphere:
$y \times_{\xi} x \times \frac{\xi}{I} = \theta \text{milo} V$	Total surface area = $\pi rs + \pi r^2$, is the slant height	:əuoე
	Volume = $\frac{1}{3}$ × area of base × height	:bimsny q
$y \times_{\tau} \mathcal{U} = \operatorname{aunjo} \Lambda$	Total surface area = $2\pi r h + 2\pi r^2$	Cylinder:

MATHEMATICS: UNITS 3C AND 3D

2

FORMULA SHEET

Space and measurement: Rate

If
$$y' = ky$$
, then $y = Ae^{kx}$

Chance and data: Quantify chance

Probability Laws

$$P(A) + P(\overline{A}) = 1$$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$P(A \cap B) = P(A)P(B \mid A) = P(B)P(A \mid B)$$

Binomial distributions:

Mean: $\mu = np$ and standard deviation: $\sigma = \sqrt{np(1-p)}$

Chance and data: Represent data

Central Limit Theorem:

Mean of the sample means, \overline{X} , equals the population mean, μ

Standard deviation of the sample means equals $\frac{\sigma}{\sqrt{n}}$

where σ is the population standard deviation.

Chance and data: Interpret data

Infer the mean of a population from a sample using $\overline{x} - z \frac{\sigma}{\sqrt{n}} \le \mu \le \overline{x} + z \frac{\sigma}{\sqrt{n}}$

where z is the standard score for a confidence interval.

Note: Any additional formulas identified by the examination panel will be included in the body of the particular question.