Chapter - 1: Fundamentals of Group Theory

Definition .1 (Group) A non-empty set G, along with a binary operation denoted by *, is defined to constitute a group if the following conditions are met:

- 1. For all $a, b \in G$, it holds that $a * b \in G$ (Closure).
- 2. For all $a,b,c \in G$, the equation a*(b*c)=(a*b)*c is satisfied (Associative Law).
- 3. There exists an element $e \in G$ such that a * e = e * a = a for all $a \in G$ (Existence of an Identity).
- 4. For each $a \in G$, there exists an element $b = a^{-1} \in G$ such that b * a = a * b = e (Existence of an Inverse).

Definition .2 (Abelian Group) A group G is classified as an abelian (or commutative) group if, for all $a, b \in G$, the equation a * b = b * a holds true (Commutative Law).

Example 1.0.1 1. $(\mathbb{Z},+)$, the set of integers with addition as the binary operation, forms a group.

- 2. $(\mathbb{R},+)$, the set of real numbers with addition as the binary operation, constitutes a group.
- 3. $(\mathbb{R} \{0\}, *)$, the set of non-zero real numbers under multiplication as the binary operation, also constitutes a group.

Note 1 All of the above groups are abelian groups.

Definition .3 (Finite (Infinite) Group) A group G is termed a finite (infinite) group if the set G is finite (infinite).

Example 1.0.2 (Finite Group) 1. Consider $G = \{-1, 1\}$ equipped with the multiplication of real numbers; then G forms a group (abelian), and it is also a finite group.

2. Let $G = S_3$, a set consisting of all injective maps on the set $\{1,2,3\}$ onto itself, using map composition as the binary operation. G is a finite group.

Example 1.0.3 (Infinite Group) $(\mathbb{Z},+)$, $(\mathbb{R},+)$, and $(\mathbb{R}-\{0\},*)$ are all infinite groups.

Definition .4 (Order of a Group) For a finite group G, the order of the group, denoted as |G|, is defined as the number of elements in G.

Note 2 If G has an infinite number of elements, then G possesses infinite order.

Example 1.0.4 1. The group $G = \{1, -1\}$ has an order 2.

- 2. The group $G = S_3$ has an order 6.
- 3. The group $(\mathbb{Z},+)$ has an infinite order.

Proposition .1 If G is a group under the operation *, then

- 1. the identity e of G is unique.
- 2. for any $a \in G$, the inverse a^{-1} is uniquely determined.
- 3. $(a^{-1})^{-1} = a$ for all $a \in G$.
- 4. $(a * b)^{-1} = b^{-1} * a^{-1}$.

Hint(s):

1. Let e_1 and e_2 be two identities. Then,

$$e_1 * e_2 = e_2 * e_1 = e_2$$
 and
 $e_2 * e_1 = e_1 * e_2 = e_1 \Rightarrow e_1 = e_2$.

2. If b and c in G are inverses of $a \in G$, then a * b = b * a = e, a * c = c * a = e $\Rightarrow a * b = a * c \Rightarrow b * (a * b) = b * (a * c)$

$$\Rightarrow (b*a)*b = (b*a)*c \Rightarrow e*b = e*c$$
$$\Rightarrow b = c.$$

3. Exercise.

4. Exercise.

Exercise 1 For any elements a,b,c belonging to the group G, if the equation a*b=a*c holds true, then it implies that b = c. This is referred to as the left cancellation law. Similarly, applying cancellation from the right leads to the right cancellation law.

- 1. Is $(\mathbb{Z}, -)$ a group? Hint: $1 (2 3) \neq (1 2) 3$.
- 2. Investigate whether the structures $(\mathbb{Z},*)$, $(\mathbb{Q},*)$, $(\mathbb{R},*)$, and $(\mathbb{C},*)$ are groups or not.
- 3. Consider

$$U(n) = \{x \in \mathbb{N} : 1 \le x \le n \text{ and } (x,n) = 1\}$$

= the set of positive numbers less than n and relatively prime to n.

Verify whether $(U(n), \times_n)$ forms a group, where \times_n represents multiplication modulo n, i.e., $a \times_n b = a$ $b \pmod{n}$.

- 4. Similarly, investigate whether $(\mathbb{Z}_n, +_n)$ is a group. Here, $\mathbb{Z}_n = \{\bar{0}, \bar{1}, \bar{2}, \dots, n-1\}$, and $\bar{0} = \{x \in \mathbb{Z} \mid x\%n = 0, i.e., x = nk \text{ for some } k\}$,
 - $\bar{1} = \{x \in \mathbb{Z} \mid x\%n = 1 \text{ , i.e., } x = 1 + nk \text{ for some } k\}, \text{ and so on. }$

The operation $+_n$ is defined as $a+_nb=a+b \pmod n$ ($a\equiv b \pmod n$) $\Leftrightarrow n|a-b\Leftrightarrow a-b=nk$ for some k).

- 5. Find U(8), determine the identity element, and find the inverse of all elements in U(8). Perform the same tasks for $(\mathbb{Z}_8, +_8)$.
- 6. Let $G = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : ad bc \neq 0, a, b, c, d \in \mathbb{Z} \right\}$. Determine if G is a group:
 - (a) under addition of matrices
 - (b) under multiplication of matrices

Repeat the process, after replacing the condition $ad - bc \neq 0$ with ad - bc = 1.

7. Is \mathbb{Z}_{10} a group under multiplication modulo 10? If not, identify the reason and generalize it to \mathbb{Z}_n (the general case).

1.1. Quaternion group

Definition .5 (Quaternion Group) The quaternion group Q_8 is defined as $Q_8 = \{\pm 1, \pm i, \pm j, \pm k\}$, where $i^2 = j^2 = 1$ $k^2 = -1$, and the following relations hold:

$$i \cdot j = k$$
, $j \cdot i = -k$
 $j \cdot k = i$, $k \cdot j = -i$
 $k \cdot i = j$, $i \cdot k = -j$

Note 3
$$(-1) \cdot (-1) = 1$$
 and $(-1) \cdot a = a \cdot (-1) = -a$ for all $a \in Q_8$.

Exercise 2 Provide a composition table for Q_8 .

1.1.1. Subgroups

Definition .6 (Subgroup) Let G be a group. The subset H of G is a subgroup of G if H is non-empty, and for all $x, y \in H$:

- 1. $xy \in H$, and
- 2. $x^{-1} \in H$

In other words, H forms a group under the same operation as G.

Note 4 We denote $H \le G$ to represent that H is a subgroup of G.

Example 1.1.1 1. $\mathbb{Z} \leq \mathbb{Q}$ and $\mathbb{Q} \leq \mathbb{R}$ under addition.

- 2. For any group G, the groups H = G and $H = \{e\}$ are trivial subgroups of G.
- 3. Let $G = D_{2n}$ and $H = \{1, r, r^2, \dots, r^{n-1}\}$, where H represents the set of rotations in G.
- 4. In the quaternion group $G = Q_8$, the subgroups $H_1 = \{\pm 1, \pm i\}$, $H_2 = \{\pm 1, \pm j\}$, $H_3 = \{\pm 1, \pm k\}$, and $H_4 = \{\pm 1\}$ are examples of subgroups of Q_8 .

Proposition .2 (Finite Subgroup Test) If H is a non-empty finite subset of G, then H is a subgroup of G if it is closed under the operation of G.

Hint(s): The closure property of H and the fact that H is finite imply that for any $a \in H$, there exists an integer m such that $a^m = e$, and thus $a^{-1} = a^{m-1}$ (since $a^i = a^j$ implies $a^{i-1} = e$). Hence, the proof follows.

Example 1.1.2 1. For any group G and $a \in G$, the set $\langle a \rangle = \{a^i : i \in \mathbb{Z}\}$ is a subgroup of G.

- 2. In the group U(10), the subgroup < 3 > is equal to U(10).
- 3. In the group \mathbb{Z}_{10} , the subgroup $\langle 2 \rangle = \{0, 2, 4, 6, 8\}$.
- 4. In the group \mathbb{Z} , the subgroup $\langle -1 \rangle = \mathbb{Z}$.
- 5. In the dihedral group D_n , the subgroup $\langle r \rangle$ represent the set of rotations.

Exercise 3 Prove that the set of even integers is a subgroup of the group of all integers under addition.

Note 5 The operation of H and G must be the same.

Example 1.1.3 1. The subset $\mathbb{Q} - \{0\}$ under multiplication is not a subgroup of \mathbb{R} under addition.

- 2. The set \mathbb{Z}^+ is not a subgroup of \mathbb{Z} under addition.
- 3. The group D_6 is not a subgroup of D_8 (as D_6 is not even a subset of D_8).

Exercise 4 If H is a subgroup of G and K is a subgroup of H, then K is also a subgroup of G.

Exercise 5 *If* H *and* K *are subgroups of* G, *then* $H \cap K$ *is also a subgroup of* G.

Exercise 6 Is the union of subgroups a subgroup?

Definition .7 (Cartesian (Direct) Product) Let A and B be two groups. Their direct product is defined as

$$A * B = \{(a,b): a \in A, b \in B\}$$

with some suitable binary operation on A * B.

For instance, if (A, *) and (B, \circ) are two groups, and for $(a,b), (c,d) \in A * B$, we have $(a,b)(c,d) = (a*c,b\circ d)$, then A*B is also a group.

Exercise 7 1. Determine whether the following subsets of A * B are subgroups of A * B.

- (a) $\{(a,1): a \in A\}$
- (b) $\{(1,b):b\in B\}$
- (c) $\{(a,a): a \in A\}$, where A = B.
- 2. Prove that $H = \{x \in D_n, x^2 = 1\}$ is not a subgroup of D_n (for $n \ge 3$).

1.2. Centralizers and Normalizers

Definition .8 (Centralizer) Let $\phi \neq A \subseteq G$. We define

$$C_G(A) = \{ g \in G : ga = ag \ \forall \ a \in A \}$$

This subset of G is called the centralizer of A in G, meaning it contains elements in G that can commute with all elements of A.

Exercise 8 *Let* $\phi \neq A \subseteq G$. *Prove that* $C_G(A)$ *is a subgroup of* G.

Hint(s): To show that $x, y \in C_G(A) \Rightarrow xy^{-1} \in C_G(A)$ and that $C_G(A)$ is a non-empty set, observe that $ax = xa \Rightarrow a = xax^{-1}$ and $ay = ya \Rightarrow a = yay^{-1}$. It's clear that $e \in G \Rightarrow e \in C_G(A)$. Then, $(xy)a(xy)^{-1} = (xy)a(y^{-1}x^{-1}) = xax^{-1} = a$. In particular, if $A = \{a\}$ for some $a \in G$, then we write $C_G(A) = \{x \in G : ax = xa\}$. It's evident that $a^n \in C_G(a) \ \forall n \in \mathbb{Z}$.

Example 1.2.1 (Centralizer) 1. Determine $C_{O_8}(i)$ for $Q_8 = \{\pm 1, \pm i, \pm j, \pm k\}$.

2. Calculate $C_{S_3}((123))$ and $C_{S_3}((12))$.

Definition .9 (Center) The set

$$Z(G) = \{ g \in G : xg = gx \ \forall \ x \in G \}$$

is known as the Center of G.

Note 6 $Z(G) = C_G(G)$, therefore Z(G) is also a subgroup of G.

Proposition .3 If G is abelian, then Z(G) = G.

Let's define a set $gAg^{-1} = \{gag^{-1} : a \in A\}.$

Definition .10 (Normalizer) The normalizer of A in G is defined as the set

$$N_G(A) = \{g \in G : gA = Ag \ (or) \ gAg^{-1} = A\}$$

Remark 1 1. If $g \in C_G(A) \Rightarrow g \in N_G(A)$. Thus, $C_G(A) \subseteq N_G(A)$.

2. $N_G(A)$ is also a subgroup of G.

Proposition .4 For an abelian group G, $N_G(A) = C_G(A) = G$ holds for any subset $A \subset G$.

Exercise 9 1. Find $C_{D_8}(A)$, where $A = \{1, r, r^2, r^3\}$.

2. If $A \subseteq B$, then $C_G(B) \subseteq C_G(A)$.

Definition .11 (Stabilizer) The set

$$G_s = \{g \in G : g.s = s\}$$

is known as the stabilizer of s in G.

Proposition .5 The stabilizer of s is a subgroup of G.

Proof: It is evident that if $x, y \in G_s$, then x.s = s and y.s = s. Also,

1.
$$(xy)s = x(ys) = x(s) = s$$

2.
$$y^{-1}(s) = y^{-1}(ys) = (y^{-1}y)s = 1.s = s$$

Therefore, $xy \in G_s$ and $y^{-1} \in G_s$. Consequently, G_s is a subgroup of G.

1.3. Cyclic Groups

Consider a group G and an element $x \in G$. One way to define a subgroup of G is by collecting all the possible powers of x, i.e.,

$$H = \{x^n : n \in \mathbb{Z}\}$$

where $x \in G$ is fixed.

Definition .12 (Cyclic Group) A group G is referred to as a cyclic group if it is generated by a single element, i.e., $\exists x \in G$ such that $\forall y \in G$, $y = x^n$ for some $n \in \mathbb{Z}$.

The element x is called a generator of G. We write $G = \langle x \rangle$. A cyclic group may have more than one generator. For instance, if $H = \langle x \rangle$, then $H = \langle x^{-1} \rangle$ since $(x^{-1})^n = (x^n)^{-1} = x^{-n}$.

Example 1.3.1 Consider a set G of 7^{th} roots of unity with the binary operation of multiplication, i.e., $G = \{1, \omega, \omega^2, \dots, \omega^6 : \omega^7 = 1\}$. In this case, G forms a group. Moreover, G is a cyclic group generated by ω , thus $G = \langle \omega \rangle$. Here, ω is a generator of G but not the only one. ω^2 can also generate the entire group G. Similarly, $\omega^3, \omega^4, \omega^5, \omega^6$ are also generators of G.

Exercise 10 Let $G = \{1, x, x^2, \dots, x^8 : x^9 = 1\}$. Find the following:

- 1. Generators of G.
- 2. Order of all elements of G.

Exercise 11 If G is a cyclic group, then G is an abelian group.

Note 7 The converse may not hold true. For example, consider the K_4 group.

Proposition .6 If |G| = |x| = n, then $|x^a| = \frac{n}{(n.a)}$.

Hint(s): Let $y = x^a$ and $(n,a) = d \Rightarrow d|n,d|a \Rightarrow n = db$ and a = dc where (b,c) = 1. Consider $y^b = (x^a)^b = x^{ab} = x^{dcb} = (x^n)^c = 1$. Hence, |y||b. Let |y| = k. Also, $x^{ak} = y^k = 1 \Rightarrow n|ak \Rightarrow db|dck \Rightarrow b|ck \Rightarrow b|k$ $((b,c) = 1) \Rightarrow b||y|$. Therefore, $|y| = b \Rightarrow |x^a| = \frac{n}{d} = \frac{n}{(n,a)}$.

Note 8 If $x \in G$ is a generator of G (finite cyclic group), it can generate all elements of G, implying $O(x) \ge O(G)$; but $O(x) \le O(G) \Rightarrow O(x) = O(G)$.

Proposition .7 If $G = \langle x \rangle$, then x^a is also a generator, and |G| = n if and only if (a, n) = 1.

Hint(s): x^a is a generator of G if and only if $O(x^a) = O(x) = n \Leftrightarrow \frac{n}{(a,n)} = n \Leftrightarrow (a,n) = 1$. Thus, the number of generators of a cyclic group of order n is $\phi(n)$, where ϕ is Euler's ϕ -function.

Exercise 12 1. Every subgroup of a cyclic group is cyclic.

- 2. Find all the generators of \mathbb{Z}_{12} .
- 3. Find a subgroup of D_8 that is not cyclic. Find all the cyclic subgroups of D_8 .
- 4. Check whether U(10) is a cyclic group.

1.4. Symmetric Groups

Definition .13 (Symmetric Group) Given a finite set $S = \{1, 2, \dots, n\}$, let S_n be the set of all bijections from S to itself, i.e., the set of all permutations of S. Under function composition \circ , which is a binary operation on S_n , associative, permutation S_n is the identity of S_n , and inverses exist for all $\sigma \in S_n$. This group is called the symmetric group on the set S_n .

Note 9 1. The set S can also be infinite.

2. S_n , for finite n, is also called the finite symmetric group of degree n.

Since there are n! permutations of $S = \{1, 2, \dots, n\}$, then $|S_n| = n!$ since permutation is an injective map. Thus, there are n choices for 1, n-1 choices for 2 once 1 is fixed, and so on. In total, n! such maps are possible.

To efficiently notate elements of S_n , a cyclic decomposition known as cycles is used.

Definition .14 (Cycle) The cycle $(a_1 \ a_2 \cdots a_m)$ is the permutation that sends $a_i \rightarrow a_{i+1}$ for $1 \le i \le m-1$, and $a_m \rightarrow a_1$.

Example 1.4.1 (1 2 3) represents $1 \to 2$, $2 \to 3$, and $3 \to 1$.

In general, the numbers from 1 to n will be rearranged and grouped into k cycles of the form (all a_i 's distinct)

 $(a_1 \ a_2 \cdots a_{m_1})(a_{m_1+1} \cdots a_{m_2}) \cdots (a_{m_{k-1}} \cdots a_{m_k})$ for an element $\sigma \in S_n$. The action of σ will be as follows:

 $\sigma(x) = \begin{cases} \text{the integer appearing immediately to the right of } x \text{ if } x \text{ is not followed immediately by a right parenthesis} \\ \text{the integer at the start of the cycle ending with } x \text{ if } x \text{ is followed immediately by a right parenthesis} \end{cases}$

The product of all the cycles is called the cycle decomposition of σ .

Example 1.4.2 (Cycle-decomposition) In S_{13} , consider $\sigma = (1\ 12\ 8\ 10\ 4)(2\ 13)(3)(5\ 11\ 7)(6\ 9)$.

Note 10 1. The length of a cycle is the number of integers that appear in it.

- 2. A cycle of length t is called a t-cycle.
- 3. Two cycles are called disjoint if they have no numbers in common (they can commute).

In σ above, there are 5 disjoint cycles: a 5-cycle, a 2-cycle, a 1-cycle, a 3-cycle, and another 2-cycle. For our convenience, we will not write a 1-cycle in-cycle decomposition. That is, if any integer is missing in the cycle decomposition, it is understood that σ fixes that integer. The identity permutation has the cycle decomposition $(1)(2)\cdots(n)$ and is denoted by 1.

1.5. Cosets and Lagrange's Theorem

Definition .15 (Left coset) Let G be a group, and let H be a subset of G. For any $a \in G$, define

$$aH = \{ah : h \in H\}$$

When H is a subgroup of G, the set aH is called a left coset of H in G.

Similarly, $Ha = \{ha : h \in H\}$ is called a right coset of H in G.

Note 11 In general, Ha (or) aH is not a subgroup of G.

Example 1.5.1 Let $G = S_3$, and $H = \{(1), (13)\}$. Then the left cosets of H in G are

$$e * H = H$$

$$(1 2) * H = \{(1 2), (1 3 2)\}$$

$$(1 3) * H = H$$

$$(2 3) * H = \{(2 3), (1 2 3)\}$$

$$(1 2 3) * H = \{(1 2 3), (2 3)\}$$

$$(1 3 2) * H = \{(1 3 2), (1 2)\}$$

Therefore, $(1\ 3\ 2)*H = (1\ 2)*H$, $(2\ 3)*H = (1\ 2\ 3)*H$, $e*H = (2\ 3)*H$.

In total, there are three left cosets of H in G.

Exercise 13 1. Let $G = D_4$, and $H = \{e, r^2\}$. Find all the right cosets of H in G.

2. Let $H = \{0,3,6\}$ in \mathbb{Z}_9 under the operation of addition modulo 9. Find all the left cosets of H in \mathbb{Z}_9 .

Proposition .8 (Properties of Cosets) Let H be a subgroup of G, and let $a, b \in G$, then

- 1. $a \in aH$.
- 2. aH = H if and only if $a \in H$.
- 3. $aH = bH (or) aH \cap bH = \emptyset$.
- 4. aH = bH if and only if $a^{-1}b \in H$.
- 5. |aH| = |bH|.
- 6. aH = Ha if and only if $H = aHa^{-1}$.

7. aH is a subgroup of G if and only if $a \in H$ i.e., aH = H.

Hint(s):

- 1. Since H is a subgroup, then $e \in H \Rightarrow ae = a \in aH$.
- 2. Suppose $aH = H \Rightarrow a = ae \in aH = H$. Conversely, suppose $a \in H \Rightarrow \forall h \in H$, $ah \in H$ (closure property) $\Rightarrow aH \subseteq H$. Also, let $h \in H \Rightarrow a^{-1}h \in H$ (as $a \in H \Rightarrow a^{-1} \in H$). Therefore, $h = eh = aa^{-1}h = a(a^{-1}h) \in aH \Rightarrow H \subseteq aH$. Hence, aH = H.
- 3. Suppose $aH \cap bH \neq \emptyset$. Let $x \in aH \cap bH$, then $\exists h_1, h_2 \in H$ such that $x = ah_1$ and $x = bh_2$. Thus, $a = xh_1^{-1}$ and so $a = (bh_2)h_1^{-1}$. Therefore, $aH = (bh_2h_1^{-1})H = b(h_2h_1^{-1})H = bH$ as $h_2h_1^{-1} \in H$.
- 4. By Property 2.
- 5. Since |aH| = |H| as $\{ah_1, ah_2, \dots, ah_m\}$ has distinct elements in H. Also |bH| = |H|. Therefore, |aH| = |bH|.

1.6. Cosets and Lagrange's Theorem

Theorem .1 (Lagrange's Theorem) If G is a finite group and H is a subgroup of G, then |H| divides |G|. Moreover, the number of distinct left (right) cosets of H in G is $\frac{|G|}{|H|}$.

Hint(s): Let a_1H, a_2H, \dots, a_rH denote the distinct left cosets of H in G. Now, for all $a \in G$, we have $aH = a_iH$ for some $1 \le i \le r$. Also, since $a \in aH \Rightarrow \forall x \in G \Rightarrow x \in a_1H \cup a_2H \cup \dots \cup a_rH \Rightarrow G \subseteq a_1H \cup a_2H \cup \dots \cup a_rH$ but $a_1H \cup a_2H \cup \dots \cup a_rH \subseteq G$ as $a_iH \subseteq G \ \forall a_i \in G$. Therefore, $G = a_1H \cup a_2H \cup \dots \cup a_rH$.

We know that, $|aH| = |bH| \ \forall \ a,b \in G \ and \ aH \cap bH = \emptyset \ if \ aH \neq bH \Rightarrow |G| = |a_1H| + |a_2H| + \dots + |a_rH| = r|H| \Rightarrow r = \frac{|G|}{|H|}$.

Corollary .2 $|a| |G| \forall a \in G$.

Hint(s): When $H = \langle a \rangle$, then |H| = |a|.

Corollary .3 Every group of prime order is cyclic.

Corollary .4 $a^{|G|} = e \ \forall \ a \in G$.

Hint(s): Since $|G| = |a| \cdot k \Rightarrow a^{|G|} = a^{k|a|} = e^k = e$.

Note 12 In general, the converse of Lagrange's theorem is not true. If $n \mid |G|$, then G may not have a subgroup of order $n \ (n \in \mathbb{Z})$.

Example 1.6.1 Let $G = A_4$, where A_4 is the alternating group of order 12. Now $6 \mid 12 = |G|$. If possible, assume that H is a subgroup of A_4 of order 6. A_4 has eight elements of order 3, which are

$$A_4 = \left\{ \begin{array}{l} 1, (1\ 2)(3\ 4), (1\ 3)(2\ 4), (1\ 4)(2\ 3), (1\ 2\ 3), (1\ 2\ 4) \\ (1\ 3\ 4), (2\ 3\ 4), (1\ 3\ 2), (1\ 4\ 2), (1\ 4\ 3), (2\ 4\ 3) \end{array} \right\}$$

elements of order 8 are all 3-cycles. The order of H is 6, implying that all 3-cycles do not belong to H. There exists $\sigma \in A_4$ such that σ is a 3-cycle and $\sigma \notin H$ ($\sigma \notin H \Leftrightarrow \sigma^2 \notin H$ and $\sigma^3 = 1$). The cosets of H in A_4 are H, σH , $\sigma^2 H$. But the total number of cosets of H in A_4 is 2, i.e., $\frac{|A_4|}{|H|} = 2$. Equality of any two cosets out of these three implies that $\sigma H = H \Leftrightarrow \sigma \in H$, which is a contradiction to our assumption.

1.7. Homomorphisms and Quotient Groups

Definition .16 (Homomorphism) Let (G,*) and (H,\circ) be groups. A map $\phi: G \to H$ such that

$$\phi(x * y) = \phi(x) \circ \phi(y) \ \forall \ x, y \in G$$

is called a homomorphism.

Definition .17 (Isomorphism) The map $\phi: G \to H$ is called an isomorphism, and G, H are called to be isomorphic if

1. ϕ is a homomorphism

2. ϕ is a bijection.

We write $G \cong H$ if G and H are isomorphic.

Definition .18 (Epimorphism) A homomorphism which is also surjective is called an epimorphism.

Definition .19 (Endomorphism) A homomorphism of a group G onto itself is called an endomorphism.

Definition .20 (Monomorphism) A homomorphism which is also injective is called a monomorphism.

Definition .21 (Automorphism) An isomorphism of a group G onto itself is called an automorphism.

Theorem .5 Let G and G' be any two groups with identities e and e' respectively, then

- 1. f(e) = e'
- 2. $f(x^{-1}) = (f(x))^{-1} \forall x \in G$

Hint(s):

- 1. Since $e * e = e \Rightarrow f(e * e) = f(e) \Rightarrow f(e) * f(e) = f(e) \Rightarrow f(e) = e'$.
- 2. We know that $x * x^{-1} = x^{-1} * x = e \Rightarrow f(x) * f(x^{-1}) = f(x^{-1}) * f(x) = e \Rightarrow f(x^{-1}) = (f(x))^{-1}$.

Definition .22 (Kernel) Let f be a homomorphism of a group G into a group G', then the kernel of f is the set

$$\ker(f) = \{x \in G : f(x) = e'\}$$

where e' is the identity in G'.

Definition .23 A subgroup N of G is said to be a normal subgroup of G if and only if for all $g \in G$ and $n \in N$, $gng^{-1} \in N$, and we denote it by $N \subseteq G$.

If $gNg^{-1} = \{gng^{-1} : n \in N\}$, then N is normal if and only if $gNg^{-1} \in N \Rightarrow g^{-1}(gNg^{-1})g \in gNg^{-1} \Rightarrow N \in gNg^{-1} \Rightarrow N = gNg^{-1} \Rightarrow Ng = gN$. Moreover, G has a normal subgroup N if and only if every left coset of N is a right coset of N in G. Conversely, if the left coset is also right, but both have g in common. Hence, they are Hg = gH only.

Definition .24 (Coset) The collection of all (right/left) cosets of N in G, where N is a normal subgroup of G, then

$$G/N = \{Na : a \in G\}$$

is a group under multiplication of cosets defined as

$$(Na)(Nb) = N(aN)b = N(Na)b = N(ab)$$

- 1. $\forall Na, Nb \in G/N \Rightarrow (Na)(Nb) = N(ab) \in G/N$, since $a, b \in G \Rightarrow ab \in G$.
- 2. The associative law can be verified easily.
- 3. $N = Ne \in G/N$ and $\forall X = Na \in G/N$ for $a \in G$, XN = (Na)(Ne) = N(ae) = Na = X. Similarly, $NX = X \Rightarrow Ne$ is the identity element of G/N.
- 4. $X = Na \in G/N$. Consider $Na^{-1} \in G/N$ so that $(Na)(Na^{-1}) = N(aa^{-1}) = Ne \Rightarrow Na^{-1} = (Na)^{-1} \in G/N$.

Hence G/N is a group.

Note 13 The above theory can be understood without assuming N to be a normal subgroup of G. However, when N is a normal subgroup of G, G/N is called the quotient group (or factor group) of G by N.

Clearly, $|G/N| = \frac{|G|}{|N|}$ (by Lagrange's Theorem).

Exercise 14 1. Any subgroup H of index 2 in G is a normal subgroup of G.

- *Hint(s):* Consider H, Hx, $xH \Rightarrow Hx = xH$.
- 2. The intersection of two normal subgroups of G is normal.

- 3. Let $H \subseteq G$ and $N \subseteq G$, then $H \cap N \subseteq G$.
- 4. If H is the only subgroup in the finite group G, then H is normal.

Theorem .6 Any finite cyclic group of order n is isomorphic to \mathbb{Z}_n , and any infinite cyclic group is isomorphic to \mathbb{Z} .

Hint(s): If a is a generator of the cyclic group, then define

$$f: G \to \mathbb{Z} \ (or) \ \mathbb{Z}_n$$

 $a^k \to k$

The map is an isomorphism and hence proves the result.

Corollary .7 Any two cyclic groups of the same order are isomorphic.

Note 14 We know that $\phi(x) = x^3$ is a one-to-one and onto map, but not a homomorphism as $\phi(x+y) = (x+y)^3 \neq x^3 + y^3$, so ϕ is not an isomorphism.

Example 1.7.1 We know that $U(10) \cong \mathbb{Z}_4$ and $U(5) \cong \mathbb{Z}_4$. Since U(10) and U(5) are cyclic groups of order 4, we have $U(10) \cong U(5)$. However, $U(10) \not\cong U(5)$, as $U(12) = \{1,5,7,11\}$, which is not a cyclic group. Moreover, if $\phi: U(10) \to U(12)$ is an isomorphism, then $\phi(9) = \phi(3).\phi(3) = (\phi(3))^2$ but $x^2 = 1$, $\forall x \in U(12) \Rightarrow \phi(9) = 2$. Also, $\phi(1) = 1 \Rightarrow \phi(9) = \phi(1)$, but $9 \neq 1$. This shows that ϕ is not a one-to-one map, which leads to a contradiction.

Theorem .8 (Cayley's Theorem) Every group is isomorphic to a group of permutations, i.e., for every group G, there exists a group \bar{G} of permutations and an isomorphism $f: G \to \bar{G}$.

Hint(s): We claim that $f: G \to \bar{G}$ can be defined as follows: choose $a \in G$ and define $f_a: G \to G$ by $f_a(x) = ax \ \forall \ x \in G$, where f_a is a permutation on G. Now define $f(a) = f_a \ \forall \ a \in G$.

Exercise 15 Verify whether f, defined above, is indeed an isomorphism.

Example 1.7.2 (Cayley's Theorem) Let $G = U(12) = \{1, 5, 7, 11\}$. Define the permutations $f_1 = \begin{pmatrix} 1 & 5 & 7 & 11 \\ 1 & 5 & 7 & 11 \end{pmatrix}$,

 $f_5 = \begin{pmatrix} 1 & 5 & 7 & 11 \\ 5 & 1 & 11 & 7 \end{pmatrix}, \ f_7 = \begin{pmatrix} 1 & 5 & 7 & 11 \\ 7 & 11 & 1 & 5 \end{pmatrix}, \ and \ f_{11} = \begin{pmatrix} 1 & 5 & 7 & 11 \\ 11 & 7 & 5 & 1 \end{pmatrix}.$ Now, let's define a map $f: U(12) \rightarrow \{f_1, f_5, f_7, f_{11}\}$ such that $1 \mapsto f_1, 5 \mapsto f_5, 7 \mapsto f_7$, and $11 \mapsto f_{11}$. This map is an isomorphism.

Definition .25 (Natural Homomorphism) Consider the map $\phi: G \to \frac{G}{N}$, where $N \unlhd G$, defined as $\phi(a) = Na$ for all $a \in G$. For any $a,b \in G$, we can see that $\phi(ab) = N(ab) = (Na)(Nb) = \phi(a)\phi(b)$. Furthermore, for any $X \in G/N$, where X = Na for some $a \in G$, there exists an $a \in G$ such that $\phi(a) = Na = X$. Thus, ϕ is a homomorphism from G onto G/N, and it's called the natural homomorphism.

Proposition .9 If $\phi: G \to G'$ is a homomorphism, then the kernel is defined as $\ker \phi := \{x \in G : \phi(x) = e'\}$, where e' is the identity of G'. The kernel K is a normal subgroup of G.

Hint(s): Let $x, y \in K$ where $K = \ker \phi$. This implies $\phi(x) = e' = \phi(y)$. Consider $\phi(xy^{-1}) = \phi(x)\phi(y^{-1}) = \phi(x)(\phi(y))^{-1} = e'.(e')^{-1} = e' \Rightarrow xy^{-1} \in K$. Now, for $g \in G$ and $k \in K$, it follows that $\phi(k) = e'$. Consider $\phi(gkg^{-1}) = \phi(g)\phi(k)(\phi(k))^{-1} = \phi(g)e'(\phi(g))^{-1} = \phi(g)(\phi(g))^{-1} = e' \Rightarrow gkg^{-1} \in K \Rightarrow K$ is normal.

Proposition .10 A homomorphism ϕ of G onto G' with kernel K is an isomorphism if and only if $K = \{e\}$.

Hint(s): Suppose ϕ is a homomorphism and $K = \{e\}$. Consider $\phi(a) = \phi(b)$ for some $a, b \in G$. Then, $\phi(a)(\phi(b))^{-1} = e' \Rightarrow \phi(a)\phi(b^{-1}) = e' \Rightarrow ab^{-1} \in K = \{e\} \Rightarrow ab^{-1} = e \Rightarrow a = b$. Thus, ϕ is one-to-one, which implies that ϕ is an isomorphism.

Theorem .9 Let ϕ be a homomorphism of G onto G' with kernel K. Then, $G/K \cong G'$.

Proof: Exercise.

Theorem .10 Let ϕ be a homomorphism of G onto G' with kernel K. Suppose $N \subseteq G$ and $N = \{x \in G : \phi(x) \in N\}$. Then, $G/N \cong G'/N$ or equivalently $G/N \cong \frac{G/K}{N/K}$.

Proof: Define a map $f: G \to \frac{G'}{\bar{N}}$ such that $a \mapsto \bar{N}\phi(a)$. The homomorphism property of f can be shown as $f(ab) = \bar{N}\phi(ab) = \bar{N}\phi(a)\phi(b) = \bar{N}\phi(a)\bar{N}\phi(b) = f(a).f(b)$. Additionally, for any $\bar{N}a' \in \frac{G'}{\bar{N}}$ where $a' \in G'$, we can find $a \in G$ such that $\phi(a) = a'$, resulting in $f(a) = \bar{N}\phi(a) = \bar{N}a'$. By the fundamental theorem, $G \to \frac{G'}{\bar{N}}$ is a homomorphism and onto map, so $\frac{G}{\ker f} \cong \frac{G'}{\bar{N}}$ where $\ker f = \{a \in G: f(a) = \bar{N}\} = N$. Hence the result.

Hint(s): Since $\ker \phi = K$ is a normal subgroup of G, prove that $\frac{N}{K}$ is a subgroup of $\frac{G}{K}$ (given $K \subseteq N$, then show it). Using the natural homomorphism $f: G \to \frac{G}{K}$ and $f^{-1}(\frac{N}{K}) = N$, apply the previous result to deduce $\frac{G}{N} \cong \frac{\frac{G}{K}}{\frac{N}{N}}$.

Proposition .11 (Product of Two Subgroups) Let H and K be two subgroups of a group G. The product of H and K is defined as

$$HK = \{hk : h \in H, k \in K\}$$

is a subgroup of G if and only if HK = KH.

Proof: Suppose HK is a subgroup of G. Consider $(kh)^{-1} = h^{-1}k^{-1} \in HK$ for $h \in H$, $k \in K$. $\Rightarrow (kh)^{-1} \in KH \Rightarrow kh \in HK \Rightarrow KH \subseteq HK$. Similarly, $HK \subseteq KH \Rightarrow KH = HK$.

Conversely, let HK = KH. Clearly, HK is non-empty as $e \in HK$. Let $x, y \in HK$, then $x = h_1k_1$ and $y = h_2k_2 \Rightarrow xy^{-1} = (h_1k_1)(h_2k_2)^{-1} = h_1k_1k_2^{-1}h_2^{-1}$. Also, $(k_1k_2^{-1})h_2^{-1} \in KH (= HK) \Rightarrow (k_1k_2^{-1})h_2 = h_3k_3 \in HK \Rightarrow xy^{-1} = h_1(h_3k_3) = (h_1h_3)k_3 \in HK \Rightarrow HK$ is a subgroup of G.

Corollary .11 1. If H and K are two subgroups of G, and either H or K is normal in G, then HK is a subgroup of G.

2. If G is abelian, then HK is a subgroup for H, $K \subseteq G$.

Theorem .12 If H and K are finite subgroups of a group G, then

$$O(HK) = \frac{O(H) \cdot O(K)}{O(H \cap K)}$$

Proof: Let $D = H \cap K$. If $K = \sum_{i=1}^{k} DK_i$ is the decomposition of K into disjoint right cosets of D in K (where D need not be normal), then $t = \frac{O(K)}{O(D)}$. Furthermore, $HK = H(\sum_{i=1}^{t} DK_i) = \sum_{i=1}^{t} HDK_i = \sum_{i=1}^{t} HK_i$. Verify that Hk_i , i = 1, 2, ..., t are pairwise disjoint and distinct. Since HK_i 's are all disjoint right cosets of H in HK,

$$O(HK) = t \cdot O(H)$$

$$= O(H) \cdot \frac{O(K)}{O(D)} = \frac{O(H) \cdot O(K)}{O(H \cap K)}$$

Theorem .13 (Second Isomorphism Theorem) Let H be a normal subgroup of a group G, and K be any subgroup of G. Then,

$$\frac{K}{H\cap K}\simeq \frac{HK}{K}$$

Proof: Firstly, $\frac{HK}{K}$ is well defined. Let us define the homomorphism:

$$f: K \to \frac{HK}{K}$$
$$k \mapsto Hk$$

Thus, f is a homomorphism. By the Fundamental Theorem, we have

$$\frac{K}{\ker f} \simeq \frac{HK}{H}$$

$$\ker f = \{x \in K : f(x) = H\} = \{x \in K : Hx = H\} = \{x \in K : x \in H\} = H \cap K$$

Hence the result.

Exercise 16 Let G be a group such that $\frac{G}{Z(G)}$ is cyclic. Show that G is abelian.

Hint(s): For $a,b \in G \Rightarrow aZ \in gZ > where Z = Z(G)$. Thus, $aZ = (gZ)^k = g^kZ$ and $bZ = g^lZ$, and so $ab = n_1g^kn_2g^l = n_1n_2g^{k+l}$ $ba = n_2g^ln_1g^k = n_1n_2g^{k+l}$

1.8. Conjugacy and Class Equation

Definition .26 Let G be a group, and $a,b \in G$. An element $a \in G$ is said to be a conjugate of b in G if there exists $c \in G$ such that $a = c^{-1}bc$.

Note 15 If a is a conjugate of b, then b is also a conjugate of a, as $b = (c^{-1})^{-1}ac^{-1}$ for $c^{-1} \in G$.

We denote $a \sim b$ if a is a conjugate of b. The relation \sim is an equivalence relation, i.e.,

- 1. $a \sim a$
- 2. $a \sim b \Rightarrow b \sim a$
- 3. $a \sim b$, $b \sim c \Rightarrow a \sim c$

Every equivalence relation on a set can divide it into equivalence classes, forming a partition of the set. Let [a] or $C_l(a)$ denote the conjugate class of a, i.e.,

$$C_{l}(a) = \{b \mid b \sim a\}$$

$$= \{x^{-1}ax \mid x \in G\}$$
only if $a \in Z(G)$.

Note 16 For a group G, $C_l(a) = \{a\}$ if and only if $a \in Z(G)$.

If G is a finite group, and $C_l(a_1), C_l(a_2), \ldots, C_l(a_n)$ are all the conjugate classes of G, let M be a set consisting of representatives of $C_l(a_i)$ for all i, i.e., $M = \{a_1, a_2, \ldots, a_n\}$. Let C_a denote the number of elements in $C_l(a)$, then $|G| = \sum_{a \in M} C_a$.

Recall $N(a) = \{x \in G \mid xa = ax\}$, which is the normalizer of a or the centralizer of a. We know that $N(a) = G \Leftrightarrow a \in Z(G)$ (the center of G), and N(a) is a subgroup of G. It's important to note that N(a) does not necessarily need to be a normal subgroup. We define a map:

$$\phi: \frac{G}{N(a)} \to C_l(a) \ by$$
$$xN(a) \mapsto x^{-1}ax$$

Thus, ϕ is well-defined, for $xN(a) = yN(a) \Rightarrow xy^{-1} \in N(a) \Rightarrow xy^{-1}a = axy^{-1} \Rightarrow x^{-1}ax = y^{-1}ay \Rightarrow \phi(xN(a)) = \phi(yN(a))$. It can be checked that ϕ is one-to-one and onto. Hence, there is a one-to-one correspondence between $\frac{G}{N(a)}$ and $C_l(a)$. This implies $\frac{O(G)}{O(N(a))} = C_a$. Therefore, we have

$$|G| = \sum_{a \in M} \frac{O(G)}{O(N(a))}$$

If $a \in Z(G) \Leftrightarrow N(a) = G \Leftrightarrow C_a = 1$, then

$$|G| = |Z(G)| + \sum_{a \notin Z(G)} \frac{O(G)}{O(N(a))}$$

The above equation is known as the **class equation** of a group G.

Example 1.8.1 Verifying the class equation for $G = S_3$. By referring to the composition table of S_3 , we have:

$$C_l((1\ 2)) = \{(1\ 2), (1\ 3), (2\ 3)\}$$
 and $N((1\ 2)) = \{1, (1\ 2)\}$
 $C_l((1\ 2\ 3)) = \{(1\ 2\ 3), (1\ 3\ 2)\}$ and $N((1\ 2\ 3)) = \{1, (1\ 2\ 3), (1\ 3\ 2)\}$
 $C_l(1) = \{1\} \Rightarrow so\ |Z(G)| = 1$

Since |G| = 6, we can compute: $\frac{O(G)}{O(N(1\ 2))} = \frac{6}{2} = 3$ and $\frac{O(G)}{O(N(1\ 2\ 3))} = \frac{6}{3} = 2$.

The class equation can be verified:

$$|G| = |Z(G)| + \sum_{a \notin Z(G)} \frac{O(G)}{O(N(a))}$$

$$6 = 1 + \frac{O(G)}{O(N(12))} + \frac{O(G)}{O(N(123))}$$

$$6 = 1 + 3 + 2$$

Exercise 17 Verify the class equation for D_4 , where D_4 is the dihedral group of order 8.

Exercise 18 For any permutations σ and τ belonging to the symmetric group S_n , the cycle types of $\sigma^{-1}\tau\sigma$ and τ are identical.

Hint(s): Let $\sigma, \tau \in S_n$, where $\tau = (a_1 a_2 \dots a_k)$ represents a k-cycle. Then prove it:

$$\sigma \tau \sigma^{-1} = (\sigma(a_1)\sigma(a_2)...\sigma(a_k)).$$

Exercise 19 Assume $\sigma, \tau \in S_n$ with $\tau = (a_1 a_2 \dots a_{m_1})(b_1 b_2 \dots b_{m_2}) \dots$ representing a finite product of disjoint cycles. Then,

$$\sigma \tau \sigma^{-1} = (\sigma(a_1)\sigma(a_2)\ldots\sigma(a_{m_1}))(\sigma(b_1)\sigma(b_2)\ldots\sigma(b_{m_2}))\ldots$$

1.8.1. Application(s) of Class Equation

Theorem .14 If $O(G) = p^n$ for some prime p and positive integer n, then $Z(G) \neq \{e\}$.

Proof: Since $O(G) = O(Z(G)) + \sum_{a \notin Z(G)} \frac{O(G)}{O(N(a))}$, i.e., $p^n = O(Z(G)) + \sum_{a \notin Z(G)} \frac{O(G)}{O(N(a))}$. Suppose, for the sake of contradiction, that $Z(G) = \{e\}$, meaning O(Z(G)) = 1. Therefore, for any $(e \neq)a \in G$, we have $N(a) \neq G$ and $N(a) \subseteq G$. This implies that $O(N(a)) \neq p^n$. Consequently, $\frac{O(G)}{O(N(a))} = p^t$, $t \ge 1$ (t = n - k). Since $\frac{O(G)}{O(N(a))}$ is divisible by p, O(Z(G)) should also be divisible by p, which contradicts the assumption that $p \nmid O(Z(G)) = 1$. Therefore, we conclude that $Z(G) \neq \{e\}$.

Corollary .15 Let $O(G) = p^2$. Then G is abelian.

Proof: Since $Z(G) \neq \{e\}$, we have O(Z(G)) = p or p^2 .

- 1. If $O(Z(G)) = p^2$, then Z(G) = G, and therefore, G is abelian.
- 2. If $O(Z(G)) \neq p^2$, then $O(Z(G)) = p \neq O(G)$. There exists $a \in G$ such that $a \notin Z(G)$, and so $N(a) \neq G$. Moreover, for $b \in Z(G)$, $b \in N(a) \Rightarrow Z(G) \subseteq N(a)$. However, $a \in N(a)$ but $a \notin Z(G)$, implying O(Z(G)) < O(N(a)), and thus $O(N(a)) = p^2 = O(G)$. This contradicts the fact that $N(a) \neq G$.

1.9. Generating Set

If we generalize the concept of a generator of a cyclic group, we obtain the concept of a generating set.

Definition .27 Let S be a subset of a group G. A subgroup H of G is said to be generated by S if

- *1. S* ⊆ *H*
- 2. If K is any subgroup of G such that $S \subseteq K$, then $H \subseteq K$ i.e., H is the smallest subgroup containing S.

We denote this subgroup H as $\langle S \rangle$.

Proposition .12 A subgroup H containing the set S of group G is said to be generated by S if it is the intersection of all subgroups of G containing S.

Proof: If $K = \cap H_i$ where $S \subseteq H_i$, and H_i 's are subgroups of G, then $K \subseteq H = \langle S \rangle$. Furthermore, K contains S since $S \subseteq H_i$, and since K is a subgroup, we have $H \subseteq K \Rightarrow H = K$.

The family of H_i is definitely not empty as $G = H_i$, since $G \subseteq G$ and $S \subseteq G$. For a subset S of G, G itself can be a subgroup generated by S, in which case S is called a set of generators for G. In particular, if $G = \langle a \rangle$ is a cyclic group, then $S = \{a\}$ is a set of generators for G. If $S \neq \emptyset$ is a subset of G, then

$$H = \langle S \rangle = \{ a_1 a_2 \cdots a_n : a_i \in S \text{ or } a_i^{-1} \in S \}$$

Exercise 20 Prove that H is a subgroup of a G containing S.

Example 1.9.1 1. Let A be the set of all transpositions in the symmetric group S_n . Then, A generates S_n .

- 2. Consider $S_3 = \{1, (1\ 2), (1\ 3), (2\ 3), (1\ 2\ 3), (1\ 3\ 2)\}$. Let $a = (1\ 2)$ and $b = (1\ 2\ 3)$. It follows that $S_3 = \langle A \rangle$, where $A = \{a,b\}$. Since $ba = (1\ 3)$, $ab = (2\ 3)$, and $b^2 = (1\ 3\ 2)$.
- 3. Let $G = \{\pm 1, \pm i, \pm j, \pm k\}$. Then, $G = \{\{i, j\}\}$.

Definition .28 Consider $H = \langle a^{-1}b^{-1}ab : a,b \in G \rangle$, where G is a group. H is called the commutator subgroup of G.

Exercise 21 1. Prove that H is a normal subgroup of G.

2. For any normal subgroup N of G, G/N is abelian if and only if $H \subseteq N$.

Hint(s):

- 1. To prove that H is a normal subgroup of G, consider $H = \langle a^{-1}b^{-1}ab : a,b \in G \rangle$. If $x \in H$, then $x = g_1g_2 \cdots g_r$ where each g_i is a commutator in G for all i. Thus, $x, y \in H \Rightarrow xy \in H$. Also, $(a^{-1}b^{-1}ab)^{-1} = b^{-1}a^{-1}ba$ is again a commutator. This shows that $x \in H$ implies $x^{-1} \in H$. For $x \in H$ and $a \in G$, consider $a^{-1}xa = a^{-1}(g_1g_2 \cdots g_r)a$. Each $a^{-1}g_ia$ is a commutator, and this shows that $a^{-1}xa \in H$. Hence, H is a normal subgroup of G.
- 2. Furthermore, if G/N is abelian (i.e., (aN)(bN) = (bN)(aN) for all $a,b \in G$), then $H \subseteq N$. Conversely, if $H \subseteq N$, then $a^{-1}b^{-1}ab \in N$ for all $a,b \in G$. This implies that G/N is abelian.

Proposition .13 A group G is abelian if and only if $H = \{e\}$, where H is the commutator subgroup of G.

For convenience, we write the commutator subgroup of G as G'.

Exercise 22 1. Prove that for $G = S_3$, we have $G' = A_3$.

- 2. Let $H, K \subseteq G$. If $H \subseteq K$, then $H' \subseteq K'$.
- 3. If N is a normal subgroup of a group G and $N \cap G' = \{e\}$, then $N \subseteq Z(G)$.