Optimisation combinatoire et convexe : projet voyageur de commerce

Nathanaël Courant et David Saulpic

1 Commentaires généraux

Nous avons codé deux heuristiques :

nearest_neig.py Une gloutonne qui consiste à partir d'un noeud aléatoire, choisir le plus proche voisin de ce noeud, et itérer ce procédé (en considérant seulement les voisins non encore visité).

heuristic_kruskal.py Une autre qui part d'un arbre couvrant minimal et qui construit le cycle associé au parcours en profondeur de cet arbre.

La première des deux heuristiques est la meilleure dans la grande majorité des exemples que nous avons testé. C'est donc elle que nous utilisons pour initialiser la recherche dans le programme linéaire dual.

En dehors de cela, nous avons également codé :

parser.py S'occupe de charger les données de TSPLIB et de produire les matrices d'adjacence.

exact.py Résolution exacte du voyageur de commerce en $O(n^22^n)$, fonctionne pour les instances de taille inférieure ou égale à 24 sans problème.

min_cut.py Implémente l'algorithme de Stoer-Wagner pour calculer une coupe minimum.

separation.py Implémente la méthode du primal pour trouver une borne inférieure.

separation_dual.py Implémente la méthode du dual.

2 Résultats sur TSPLIB

test	nearest_neig	heuristic_kruskal	Primal	Dual	Valeur exacte
burma14.tsp	4048	4271, 0s	3323.0, 0s	3323.0, 0s	3323
gr17.tsp	2187	2523	2085.0, 0.6s	2085.0, 0.6s	2085
gr21.tsp	3333	3841	2707.0, 0.3s	2707.0, 0.2s	2707
eil51.tsp	511	542	422.5, 28.9s	422.5, 3.6s	426
gr24.tsp	1553	1660	1272.0, 0.8s	1272.0, 0.7s	1271
gr48.tsp	6098	7297	4959.0, 43s	4959.0, 8.5s	5046
dantzig 42.tsp	956	960	697.0, 16s	697.0, 6.6s	699
brazil 58.tsp	30774	29438	25354.5, 84s	25354.5, 21s	25395
berlin52.tsp	8980	10096	7542.0, 15s	7542.0, 7s	7542
bayg29.tsp	2005	2117	1608.0, 4.4s	1608.0, 1.8s	1610
bays29.tsp	2258	2514	2013.5, 2.7	2013.5, 0.9s	2020
ulysses 22.tsp	10586	8399	7013.0, 1.6s	7013.0, 1.7s	7013
st70.tsp	830	866	-	670.0, 31.8s	675
pr76.tsp	153462	140738	-	105120.0, 74s	108159
rd100.tsp	9938	10660	-	7873, 186s	7910
pr107.tsp	46680	58544	-	44176, 345s	44303
bier 127.tsp	135737	154509	-	117164.5, 692s	118282
ch150.tsp	8191	8869	-	6476.5, *	6528
brg180.tsp	12360	80970	-	961,42, 24349s	1950
d198.tsp	18240	19629	-	15490, *	15780
* , noun con dour tosts le solver ID que nous utilisans (seinu etimise) e eu un problème. Le vele					

^{* :} pour ces deux tests, le solver LP que nous utilisons (scipy.otimize) a eu un problème. La valeur que nous donnons est donc la dernière borne inférieure prouvée que nous avons.

3 Réponses aux questions

Même avec les contraintes supplémentaires sur les coupes, le programme linéaire n'est pas entier : en effet, considérons le graphe suivant :

Les annotations a|b sur les arêtes signifient que le coût de l'arête est de a, et que la variable x_e correspondante a pour valeur b dans la solution optimale du programme linéaire. On s'aperçoit que la valeur optimale de ce programme linéaire est donc de 3/2: il ne peut donc pas être entier.

On peut également remarquer que pour toute coupe S de V, et pour toute solution entière x du problème initial, $\sum_{e \in \delta(S)} x_e$ est paire. En particulier, si $|\delta(S)|$ est impair, $\sum_{e \in \delta(S)} x_e \leq |\delta(S)| - 1$. On vient donc d'obtenir une classe d'inégalités linéaires satisfaites par toute solution entière du problème, mais pas par les solutions fractionnaires comme on a pu le constater avec l'exemple ci-dessus.