

Linear Regression

Linear regression was developed in the field of statistics

Borrowed by

Machine Learning

Linear Regression Is Used For what

Understanding The Relationship Between Input And Output Numerical Variables

Predict an observation's value (Y) based on the relationship

Types of Regression

Linear Regression

Single Input Variable (x) and Y variable

Multiple Linear Regression

Multiple Input Variables (X's) and Y variable

Assumptions of Linear Regression

- Variables should be continuous numeric variables
- No significant outliers or Missing values
- Linear relationship between the dependent and independent variables
- Predictor variables are **independent** of each other
- Residuals (aka prediction errors) are normally distributed
- Homoscedasticity

Example: Linear Regression

Α	В	С
No_Bedrooms	Total_Sqft	Price
4	1859	270897
3	2002	302404
3	1578	2519996
4	2277	197193
4	1749	207897
3	1672	196559
3	2365	434697
5	1741	64887
5	1745	143636

Imagine we are predicting **Price of a flat (Y)** depending upon **Number of bedrooms (X1)** and **Square feet area (X2)**

Example: Lets Work

Linear Regression Works on a Line Equation

Linear Regression

Linear Regression

SUM
$$(y - \hat{y})^2 \rightarrow min$$

Multiple Linear Regression

Simple Linear Regression

$$y = b_0 + b_1 x_1$$

Multiple Linear Regression

$$y = b_0 + b_1^* x_1 + b_2^* x_2 + ... + b_n^* x_n$$

Techniques To Train The Linear Regression

- Ordinary Least Squares
- Gradient Descent
- Regularized Linear Regression

Linear Regression Learning the Model

Simple Linear Regression

Ordinary Least Squares

- More than one input we can use Ordinary Least Squares
- Ordinary Least Squares procedure seeks to minimize the sum of the squared residuals

Gradient Descent

Learning rate (alpha) parameter that determines the size of the improvement step to take on each iteration

Regularized Linear Regression

Extensions of linear model called regularization methods.

Minimize error and also reduces complexity of the model

Types	Methodology
Lasso Regression: L1 regularization	OLS is modified to minimize the absolute sum of the coefficients
Ridge Regression: L2 regularization	OLS is modified to minimize the squared absolute sum of the coefficients

Making Predictions with Linear Regression

Predicting weight (y) from height (x)
Our linear regression model representation for this problem would be:

X variable is " Height " Y variable is " Weight "

