AER525 Etr 2086S

Askinment - Spolly#ionits

= Q cx> tion 11

I'm agaga a tor a mostivix to be a nuthation matrix must"..

- bee specialise
 hause columns/romes whoich are until vectors
 b have columns/ross whoich hre manify mily orthb500%A
- have a determinant of magnilitede one be invertible whethe its inverse is egus(1 t, its 4-onspase

AT Ririsis raillid

- = RE is most ruplid addrings frages Gree most exist very byes = #10e ||detorR2) | # | - Rit # PrT
- -e R3 is anallid
- Ray is not vatlid columns frots ere and unit vertors - \$ Le | rd = t (6 Pr) | f = 1
- + R5 is Aut rzalid it is 4961 57=, nae Crannort inve++)
- +0 NC is val;

+0 Question 2

Find the transformantian between each formace "n,...s{urn..

$$\frac{2}{6} = R \cos(6) = \left[\begin{array}{c|c} \frac{1}{6} & \cot(5) \\ \frac{1}{6} & \cos(5) \end{array} \right]$$

$$\frac{1}{6} = R \cos(6) = \left[\begin{array}{c|c} \frac{1}{6} & \cot(5) \\ \frac{1}{6} & \cos(5) \end{array} \right]$$

$$\frac{1}{6} = R \cos(6) = \left[\begin{array}{c|c} \frac{1}{6} & \cos(5) \\ \frac{1}{6} & \cos(5) \end{array} \right]$$

$$\frac{1}{6} = \left[\begin{array}{c|c} \frac{1}{6} & \cos(5) \\ \frac{1}{6} & \cos(5) \end{array} \right]$$

$$\frac{1}{6} = \left[\begin{array}{c|c} \frac{1}{6} & \cos(5) \\ \frac{1}{6} & \cos(5) \end{array} \right]$$

$$\frac{1}{2} = \frac{1}{2} \left(\frac{1}{2} \right) \left(\frac{1}{2$$

$$\frac{dT}{dt} = \mathbb{D}(20) = \begin{bmatrix} \frac{1}{0}R & \frac{1}{0}\rho_{000} \\ \frac{1}{0} & \frac{1}{0} & \frac{1}{0} & \frac{1}{0} & \frac{1}{0} \\ \frac{1}{0} & \frac{1}{0} & \frac{1}{0} & \frac{1}{0} \\ \frac{1}{0} & \frac{1}{0} & \frac{1}{0} & \frac{1}{0} \end{bmatrix}$$

or compound the healtrinion Compounds to als in Chinpton 2:

Durasotion 3

An orthogophal martxix has the interested ting property ty that its inverse is equal the iles transpose (; it must be 57 targe to be orthogonal!)

5that by soffing the product of our given mattrices expure to a mattrix k:

 $k = R_1, R_2, R_2, R_3$ (33)1)

Reanll that

 $R_{k}R_{k}T: I_{k}$ $R_{k}R_{k}I=I_{k}$, ... $R_{k}R_{k}I=I_{k}$

TT, We Could post-Anutilistiply bothsisteds by the trots pose of thee list antility your may trix on the high t= Land Side. Pepest.

KRJ= P; Pz ... Rw-, Px RxT

KRJ= R; Rz ... Rx-, Px RxT

KRJR; RR ... Rxx-r

KRJR; RRRr ... Rxx-r

knymit, "Riku = I

We court soo thank MT = PLTRAT, ... Pit PT is also da orthogo, wil matrix (kT=KN))+he-tsore fore the productoff orthogo, what some is also an orthogonal matrix x

+0 (DV4)*160" 44

We seak \$6 fi.ind the equivershert ample =^xix, is represent into of £ BB rotated roll. Fille 40 £AB3
="Still + Ly 9ind; An fire

We know AG lies Working A RB and All lies catering At the unit vectors in Hlosse direthornes.

$$A3 = 10 \\
A3 =$$

The Signal PB I we find as unit vestor mutch lly on the gorial is Air and Are, From linear olystan, there are probablich echieses thisis.

You our verify #hap through acre mutically orathogotated today #hap the doll produced (^ %s. lish = 0 , A * xig if 20 = d; ...)

From chapters 2, we know

$$fn = [n\{u^i_{i,j}^i, u^i_{i,j}^i\}] = [n, u^i_{i,j}^i, u^i_{i,j}^i] = [n, u^i_{i,j}^i, u^i_{i,j}^i]$$

Asso from Chapter Z, ute known the representation of angle = 6.8.15 from A rad tablatan mutting is

$$\Theta = \cos^{-1}\left(\frac{r_{11} + r_{22} + r_{33} - 1}{2}\right) = \cos^{-1}\left(\frac{2/3 + 2/3 + 2/3}{2}\right) = 60^{\circ}$$

Therefore the and "AND representation of EDB re(#7,1% to EAS) is a 600 00 #24-bign about E'13 = 1/31 Kill.] T.

-	1		a; -1	d'i	Θ,
	1	o	0	0	⊝ l
	12.	900	O	0	90°+0°
	3	o	at ₂	0	© 3
* taiss	is	one of	Acoty possible	so(انتا	trivot's

At-66

	≪,'·I	6A. 1	d ,	Θ,
1	O	0	ď۲	0
Z	O	6 Al	0	9 rz
3	o	6 Z_	0	<i>O</i> g

* That's is one of many possible sellutions

c))

, 	≪ ₁ ,-1	۵,-1	ď.	Θ,
1	o	0	dfı	0
Ł	ම්ගිය	0	dą	906
3	- 90 8	0	d3	0

X=This is one of tany possible suluthbrus

 $\mathbf{q})$

, 	≪;	مزرا	٩٠٠	Θ,
1	0	0	0	0,
Z	0	0	dį	0
3	d‰	6 ₹2	d3,	0

* Thiss is one of Arany possible solutions

A I * 9

* Assyning fraeses

=DHH = finble

Δ λ	₩-j-1	0j-,;_r	q ."	6 ;
1	o	0	0	€ 1
Z	O	Ο	dą	0
3	90 ỏ	l ą	0	6 , 3
Ч	= g ⊗o	Øş	0	8 14
5	O	Rly	0	0

*ATTYTIS 15 one of Ammy passible failer assignations

+ Link Tita" (sn Auftur Sions

$$\frac{3}{4} \mp \begin{bmatrix} e_{4}t & -5\frac{1}{2}t & 0 & 0 \\ -5\frac{1}{2}q - q - c_{4} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

=> The Winen41ic 200 do (from £08 +0 153

wordere