ECE 697B (667)

Spring 2003

Synthesis and Verification of Digital Systems

BDD-based Bi-decomposition
BDS system

Outline

- Review of current decomposition methods
 - Algebraic
 - Boolean
- Theory of BDD decomposition [C. Yang 1999]
 - − Bi-decomposition $F = D \Theta Q$
 - Boolean AND/OR Decomposition
 - Boolean XOR Decomposition
 - MUX Decomposition
- Logic optimization based on BDD decomposition

Functional Decomposition – previous work

- Ashenhurst [1959], Curtis [1962]
 - Tabular method based on cut: bound/free variables
 - BDD implementation:
 - Lai *et al.* [1993, 1996], Chang *et al.* [1996]
 - Stanion *et al.* [1995]
- Roth, Karp [1962]
 - Similar to Ashenhurst, but using cubes, covers
 - Also used by SIS
- Factorization based
 - SIS, algebraic factorization using cube notation
 - Bertacco et al. [1997], BDD-based recursive bidecomp.

Drawbacks of Traditional Synthesis Methods

- Weak Boolean factorization capability.
- Difficult to identify XOR and MUX decomposition.
- Separate platforms for Boolean operations and factorization.
- Our goal: use a common platform to carry out both Boolean operations and factorization: BDD's

What is wrong with Algebraic Division?

- Divisor and quotient are orthogonal!!
- Better factored form might be:

$$(q_1 + q_2 + ... + q_n) (d_1 + d_2 + ... + d_m)$$

 $-g_i$ and d_i may share same or opposite literals

• Example:

```
SOP form: F = abg + acg + adf + aef + afg + bd + ce + be + cd. (23 lits)

Algebraic: F = (b + c)(d + e + ag) + (d + e + g)af. (11 lits)

Boolean: F = (af + b + c)(ag + d + e). (8 lits)
```

First work, Karplus [1988]: 1-dominator

• Definition: *1-dominator* is a node that belongs to every path from root to terminal *1*.

• 1-dominator defines <u>algebraic</u> conjunctive (AND) decomposition: F = (a+b)(c+d).

Karplus: 0-dominator

• Definition: *O-dominator* is a node that belongs to every path from root to terminal *O*.

• *O-dominator* defines <u>algebraic</u> disjunctive (OR) decomposition: F = ab + cd.

Bi-decomposition based on Dominators

- We can generalize the concept of algebraic decomposition and dominators to:
 - Generalized dominators
 - <u>Boolean</u> bi-decompositions (AND, OR, XOR)
- Bi-decomposition: $F = D \Theta Q$
- First, let's review fundamental theorems for Boolean division and factoring.

Boolean Division

Definitions

- G is a Boolean divisor of F if there exist H and R such that F = G H + R, and $G H \neq 0$.
- *G* is said to be a *factor* of *F* if, in addition, R=0, that is: F=GH.

where H is the quotient, R is the remainder.

Note: H and *R* may not be unique.

Boolean Factor - Theorem

Theorem:

Boolean function G is a *Boolean factor* of Boolean function F iff $F \subseteq G$, (i.e. FG' = 0, or $G' \subseteq F'$).

Proof:

- \Rightarrow : *G* is a Boolean factor of *F*. Then $\exists H$ s.t. F = GH; Hence, $F \subseteq G$ (as well as $F \subseteq H$).
- $\Leftarrow: F \subseteq G \Rightarrow F = GF = G(F + R) = GH.$ (Here *R* is any function $R \subseteq G'$.)

Notes:

- Given *F* and *G*, *H* is <u>not</u> unique.
- To get a small H is the same as getting a small F + R. Since RG = 0, this is the same as minimizing (simplifying) f with DC = G'.

Boolean Division - Theorem

Theorem:

G is a *Boolean divisor* of F if and only if $F G \neq 0$.

Proof.

 \Rightarrow : F = GH + R, $GH \neq 0 \Rightarrow FG = GH + GR$. Since $GH \neq 0$, $FG \neq 0$.

 \Leftarrow : Assume that $FG \neq 0$. F = FG + FG' = G(F + K) + FG'. (Here $K \subseteq G'$.) Then F = GH + R, with H = F + K, R = FG'. Since $GH = FG \neq 0$, then $GH \neq 0$.

Note

f has many divisors. We are looking for a g such that f = gh + r, where g, h, r are simple functions. (simplify f with DC = g')

Boolean Division

Goal : for a given F, find D and Q such that $F = Q \cdot D$.

$$F = e + bd$$
, $D = e + d$, $Q = e + b$

Conjunctive (AND) Decomposition

- Conjunctive (AND) decomposition: F = D Q.
- Theorem:

Boolean function F has conjunctive decomposition iff $F \subseteq D$. For a given choice of D, the quotient Q must satisfy: $F \subseteq Q \subseteq F + D'$.

• For a given pair (F,D), this provides a recipe for Q.

Boolean Division ⇒ AND decomposition

Given function F and divisor $D \supseteq F$, find Q such that:

$$F \subseteq Q \subseteq F + D'$$
.

$$F = e + bd$$
, $D = e + d$, $Q = e + b \subseteq F + D'$

AND Decomposition (F = D Q): Example

• Recall: given (F,D), quotient Q must satisfy: $F \subseteq Q \subseteq F + D'$.

ECE 667 - Synthesis & Verification - Lecture 14

Disjunctive (OR) Decomposition

- Disjunctive (*OR*) decomposition: F = G + H.
- Theorem:

Boolean function F has disjunctive decomposition iff $F \supseteq G$. For a given choice of G, the term H must satisfy: $F' \subseteq H' \subseteq F' + G$.

Dual to conjunctive decomposition.

• For a given (F,G), this provides a recipe for H.

Boolean AND/OR Bi-decompositions

Conjunctive (AND) decomposition

If
$$D \supseteq F$$
, $F = FD = QD$.

Disjunctive (OR) decomposition

If
$$G \subseteq F$$
, $F = F + G = H + G$.

• *D*, *G* = generalized dominators

Generalized Dominator D

Generalized Dominator G

Boolean Division Based on Generalized Dominator

ECE 667 - Synthesis & Verification - Lecture 14

Special Case: 1-dominator

$$F = (a+b)(c+d)$$

Special Case: *0-dominators*

$$F = ab + cd$$

Algebraic XOR Decomposition

Algebraic XOR Decomposition: x-dominators

Boolean XOR Decomposition: Generalized x-dominators

Given F and G, there exists $H: F = G \otimes H$; $H = F \otimes G$.

MUX Decomposition

Simple MUX decomposition

Complex MUX decomposition

Functional *MUX* Decomposition - example

Synthesis Flow

Factoring Tree Processing:

A Complete Synthesis Example

A Complete Synthesis Example (Decompose function g)

A Complete Synthesis Example (Decompose function *h*)

A Complete Synthesis Example (Sharing Extraction)

Conclusions

- BDD-based *bi-decomposition* is a good alternative to traditional, algebraic logic optimization
 - Produces Boolean decomposition
 - Several types: AND, OR, XOR, MUX
- BDD decomposition-based logic optimization is fast.
- Stand-alone BDD decomposition scheme is not amenable to large circuits
 - Global BDD too large
 - Must partition into network of BDDs (local BDDs)