Линейные модели и градиентный спуск

X — множество объектов

Y — множество допустимых ответов

 y^* — целевая функция, $y^*:X \to Y, y_i = y^*(x_i)$ известны только на **конечном** подмножестве объектов $x_1,...,x_m$ из X

Пары (x_i, y_i) — прецеденты

Совокупность пар таких пар при i из 1,...,m — обучающая выборка (X_{train})

a — **решающая функция** (алгоритм), которая любому объекту из X ставит в соответсвие допустимый ответ из Y и приближает целевую функцию y^*

 X_{test} — выборка прецедентов для тестирования построеннного алгоритма a

Для решения задачи обучения по прецедентам в первую очередь фиксируется восстанавливаемой зависимости.

X y* Features

Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket
1	0	3	Braund, Mr. Owen Harris	male	22	1	0	A/5 21171
2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Thayer)	female	38	1	0	PC 17599
3	1	3	Heikkinen, Miss. Laina	female	26	0	0	STON/02. 31012
4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35	1	0	113803
5	0	3	Allen, Mr. William Henry	male	35	0	0	373450
6	0	3	Moran, Mr. James	male		0	0	330877
7	0	1	McCarthy, Mr. Timothy J	male	54	0	0	17463
8	0	3	Palsson, Master. Gosta Leonard	male	2	3	1	349909

$$Y = \{0,1\}$$

Признак (feature) f объекта x — это результат измерения некоторой характеристики объекта. Формально признаком называется отображение $f: X \to D_f$, где D_f — множество допустимых значений признака. В частности, любой алгоритм $a: X \to Y$ также можно рассматривать как признак

Пусть дан набор признаков $f_1(x), ..., f_n(x)$.

Признаковое описание объекта x — вектор (одномерный массив) $(f_1,..,f_n)$. Совокупность признаковых описаний всех объектов выборки длины m, записанную в виде таблицы размера mn, называют матрицей объектов—признаков.

Как строится функция а?

Обучающая выборка — выборка, по которой производится настройка (оптимизация параметров) модели зависимости. Тестовая выборка — выборка, по которой оценивается качество построенной модели.

Функционал качества (обучение с учителем) — определяется как средняя ошибка ответов, выданных алгоритмом, по всем объектам выборки.

$$L(\hat{y},y) = I(\hat{y}
eq y),$$
 Минимизация функции ошибки

$$0$$
 1 $logloss = -rac{1}{l} \cdot \sum_{i=1}^{l} (y_i \cdot log(\hat{y}_i) + (1-y_i) \cdot log(1-\hat{y}_i))$

Линейные модели

Линейная регрессия

метод восстановления зависимости между двумя или более переменными

МОЁ ХОББИ: ЭКСТРАПОЛИРОВАТЬ

Одномерная линейная регрессия

(х,у) -- пары точек

Задача: построить предсказания по х для неизвестных у в предположении, что у(х) -- линейная функция

Чем характеризуется прямая?

Одномерная линейная регрессия

(х,у) -- пары точек

Задача: построить предсказания по х для неизвестных у в предположении, что у(х) -- линейная функция

$$y = Ax + B$$

Пример

Наша цель — предсказать объем годовых продаж для всех новых магазинов, зная их размеры.

$$y = Ax + B$$

$$a(x) = w_0 + \sum_{j=1}^{d} w_j x_j.$$

 w_j — веса признаков

 w_0 — смещение (bias)

$$y = Ax + B$$

Например: местоположение, экономическая ситуация и проч.

https://ppt-online.org/18494

Двумерная регрессия

$$y_1 = ax_1 + b + \varepsilon_1$$
$$y_2 = ax_2 + b + \varepsilon_2$$

......

$$y_n = ax_n + b + \varepsilon_n$$

houses = pd.read_csv("kc_house_data.csv")
houses.head()

	id	date	price	sedrooms	bathrooms	sqft_living	sqft_lot	floors	waterfront	view	 grade	sqft_above	sqft_baseme
0	7129300520	20141013T000000	221900.00	3	1.00	1180	5650	1.00	0	0	 7	1180	0
1	6414100192	20141209T000000	538000.00	3	2.25	2570	7242	2.00	0	0	 7	2170	400
2	5631500400	20150225T000000	180000.00	:	1.00	770	10000	1.00	0	0	 6	770	0
3	2487200875	20141209T000000	604000.00	l.	3.00	1960	5000	1.00	0	0	 7	1050	910
4	1954400510	20150218T000000	510000.00	3	2.00	1680	8080	1.00	0	0	 8	1680	0

Г	id	date	price	edrooms	bathrooms	sqft_living	sqft_lot	floors	waterfront	view	***	grade	sqft_above	sqft_baseme
0	7129300520	20141013T000000	221900.00)	1.00	1180	5650	1.00	0	0	***	7	1180	0
1	6414100192	20141209T000000	538000.00	3	2.25	2570	7242	2.00	0	0		7	2170	400
2	5631500400	20150225T000000	180000.00	2	1.00	770	10000	1.00	0	0	484	6	770	0
3	2487200875	20141209T000000	604000.00	1	3.00	1960	5000	1.00	0	0		7	1050	910
4	1954400510	20150218T000000	510000.00	3	2.00	1680	8080	1.00	0	0		8	1680	0

$$a(x) = w_0 + \sum_{j=1}^d w_j x_j.$$

	id	date	price	ædrooms	bathrooms	sqft_living	sqft_lot	floors	waterfront	view	***	grade	sqft_above	sqft_basem
D	7129300520	20141013T000000	221900.00	3	1.00	1180	5650	1.00	0	0		7	1180	0
1	6414100192	20141209T000000	538000.00	3	2.25	2570	7242	2.00	0	0		7	2170	400
2	5631500400	20150225T000000	180000.00	2	1.00	770	10000	1.00	0	0		6	770	0
3	2487200875	20141209T000000	604000.00	1	3.00	1960	5000	1.00	0	0	***	7	1050	910
4	1954400510	20150218T000000	510000.00	3	2.00	1680	8080	1.00	0	0		8	1680	0

$$y = (y_1, \dots, y_{\ell})$$
$$x = (x_1, \dots, x_{\ell})$$
$$w = (w_1, \dots, w_d)$$

$$y = (y_1, \dots, y_{\ell})$$
 $y = a(x)$ $= w_0 + \sum_{j=1}^{d} w_j x_j$.
 $x = (x_1, \dots, x_{\ell})$

$$X = \{(x_1, y_1), \dots, (x_{\ell}, y_{\ell})\}\$$

	id	date	price	pedrooms	bathrooms	sqft_living	sqft_lot	floors	waterfront	view	***	grade	sqft_above	sqft_baseme
0	7129300520	20141013T000000	221900.00	3	1.00	1180	5650	1.00	0	0		7	1180	0
1	6414100192	20141209T000000	538000.00	3	2.25	2570	7242	2.00	0	0		7	2170	400
2	5631500400	20150225T000000	180000.00	:	1.00	770	10000	1.00	0	0	***	6	770	0
3	2487200875	20141209T000000	604000.00		3.00	1960	5000	1.00	0	0		7	1050	910
4	1954400510	20150218T000000	510000.00	3	2.00	1680	8080	1.00	0	0		8	1680	0

$$\overline{y} = (y_1, \ldots, y_\ell)$$

$$\overline{x} = (x_1, \dots, x_\ell)$$

$$\overline{w} = (w_1, \dots, w_d)$$

Скалярное произведение

$$X = \{(x_1, y_1), \dots, (x_{\ell}, y_{\ell})\}\$$

$$\overset{\star}{y}=a(x)=w_0$$

$$\overset{*}{y} = a(x) = w_0 + \sum_{j=1}^{a} w_j x_j.$$

$$\dot{y} = a(x) = w_0 + \langle \overline{w}, \overline{x} \rangle$$

$$(x_{\ell},y_{\ell})$$

https://ppt-online.org/18494

Фиктивная переменная (случай 2х параметров, n наблюдений)

$$\mathbf{X}\boldsymbol{\omega} = \begin{pmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \ddots \\ 1 & x_n \end{pmatrix} \begin{pmatrix} b \\ a \end{pmatrix} = \begin{pmatrix} ax_1 + b \\ ax_2 + b \\ \vdots & \vdots \\ ax_n + b \end{pmatrix}$$

$$\vec{y} = X\vec{w} + \epsilon,$$

$$\omega = \binom{b}{a}$$

$$\mathbf{X} = \begin{bmatrix} 1 & x_2 \\ \vdots & \ddots \\ 1 & x_n \end{bmatrix}$$

Линейная регрессия

$$\vec{y} = X\vec{w} + \epsilon,$$

где

- $oldsymbol{ec{y}} \in \mathbb{R}^n$ объясняемая (или целевая) переменная;
- w вектор параметров модели (в машинном обучении эти параметры часто называют весами);
- X матрица наблюдений и признаков размерности n строк на m+1 столбцов (включая фиктивную единичную колонку слева) с полным рангом по столбцам: $\mathrm{rank}\,(X)=m+1$;

Обучение линейной регрессии

Построение прогноза

Метод наименьших квадратов (одномерный случай)

Функция потерь — квадратичная:

$$\mathscr{L}(a,y)=(a-y)^2$$

Метод обучения — метод наименьших квадратов:

Эмпирический риск
$$Q(w) = \sum\limits_{i=1}^\ell ig(a(x_i,w)-y_iig)^2
ightarrow \min_w$$

Как можно минимизировать эмпирический риск?

http://www.machinelearning.ru

http://www.machinelearning.ru

МНК (многомерный случай) то, что нам выдал Реальные значения

$$Q(\alpha, X^{\ell}) = \sum_{i=1}^{\ell} (f(x_i, \alpha) - y_i)^2 = \|F\alpha - y\|^2 \rightarrow \min_{\alpha}.$$

$$f(x, lpha) = \sum_{j=1}^n lpha_j f_j(x), \qquad lpha \in \mathbb{R}^n.$$
 Квадратичная норма

Матричные обозначения:

$$F_{\ell \times n} = \begin{pmatrix} f_1(x_1) & \dots & f_n(x_1) \\ \dots & \dots & \dots \\ f_1(x_\ell) & \dots & f_n(x_\ell) \end{pmatrix}, \quad y_{\ell \times 1} = \begin{pmatrix} y_1 \\ \dots \\ y_\ell \end{pmatrix}, \quad \alpha_{n \times 1} = \begin{pmatrix} \alpha_1 \\ \dots \\ \alpha_n \end{pmatrix}.$$

http://www.machinelearning.ru

Метод градиентного спуска

$$Q(\alpha, X^{\ell}) = \sum_{i=1}^{\ell} (f(x_i, \alpha) - y_i)^2 = ||F\alpha - y||^2 \rightarrow \min_{\alpha}.$$

Нужно подобрать вектор параметров Минимизируем ошибку путем минимизации функции!

Поиск минимума функции

Многомерный случай

http://www.machinelearning.ru

Локальный минимум

Градиентный спуск (GD)

$$Q(w) = \sum_{i=1}^{\ell} \mathscr{L}_i(w) \to \min_{w}$$

Сумма функции ошибки

Численная минимизация методом градиентного спуска:

$$w^{(0)} :=$$
 начальное приближение:

$$w^{(t+1)} := w^{(t)} - h \cdot \nabla Q(w^{(t)}),$$

где h — градиентный шаг, называемый также темпом обучения Learning raid – шаг спуска

$$w^{(t+1)} := w^{(t)} - h \sum_{i=1}^{\ell} \nabla \mathcal{L}_i(w^{(t)}).$$

Ускорения сходимости к минимуму?

- 1. Брать по одной новой паре (x,y) и сразу обновлять вектор весов
- 2. Просматривать не в одном порядке, а в случайном

$$GD+1)+2)=SGD$$

(стохастический градиентный спуск)

Problems?

Problems?

http://www.machinelearning.ru

Что делать?

- 1. Регуляризация: штраф за увеличение нормы вектора весов
- 2. Отбор признаков

Коэффициент регуляризации весов

$$Q_{\tau}(\alpha) = \|F\alpha - y\|^2 + \frac{1}{\sigma} \|\alpha\|^2,$$

где $au = rac{1}{\sigma}$ — неотрицательный *параметр регуляризации*.

Связь линейного классификатора и нейрона

Линейный классификатор

Как из линейной регрессии сделать линейную классификацию?

$$a(x) = w_0 + \sum_{j=1}^{d} w_j x_j$$

Линейный классификатор

Как из линейной регрессии сделать линейную классификацию?

$$a(x) = w_0 + \sum_{j=1}^{d} w_j x_j$$

$$a(x, w) = \operatorname{sign}\langle x, w \rangle = \operatorname{sign} \sum_{j=1}^{n} w_j f_j(x)$$

Линейный классификатор как модель нейрона

Линейная модель нейрона МакКаллока-Питтса [1943]:

$$a(x, w) = \sigma(\langle w, x \rangle) = \sigma\left(\sum_{j=1}^{n} w_j f_j(x) - w_0\right).$$

 $\sigma(z)$ — функция активации (например, sign), w_j — весовые коэффициенты синаптических связей, w_0 — порог активации,

XOR-проблема

Как провести разделяющую гиперплоскость?

XOR-проблема

Как провести разделяющую гиперплоскость?

Линейный классификатор как модель нейрона

Линейная модель нейрона МакКаллока-Питтса [1943]:

$$a(x, w) = \sigma(\langle w, x \rangle) = \sigma\left(\sum_{j=1}^{n} w_j f_j(x) - w_0\right)$$

 $\sigma(z)$ — функция активации (например, sign), w_j — весовые коэффициенты синаптических связей, w_0 — порог активации,

Биологический нейрон человека

XOR-проблема

Как провести разделяющую гиперплоскость?

