The Role of Lexical Analysi Regular Definition Digression: Lexical Ambiguit The Problem of String Tokenizatio

Lexical Analysis

Lecture 2

Objectives

By the end of this lecture you should be able to:

- **1** Identify the role of lexical analysis in a compiler.
- ② Design regular definitions for regular languages.
- Oesign action-augmented regular definitions for regular languages.
- Oesign fallback DFA with actions for regular languages.

Outline

- The Role of Lexical Analysis
- 2 Regular Definitions
- 3 Digression: Lexical Ambiguity
- 4 The Problem of String Tokenization

Outline

- The Role of Lexical Analysis
- 2 Regular Definitions
- 3 Digression: Lexical Ambiguity
- 4 The Problem of String Tokenization

What It Does

Main Function

- **1** Partition the input stream into lexemes.
- 2 Generate a token for each lexeme.

Auxiliary Function

Ignores substrings which are insignificant for the compiling process.

• e.g., comments and white spaces.

Other Possible Functions

- Macro expansion.
- Keeping track of line numbers for informative error messages.

What It Does

Main Function

- **1** Partition the input stream into lexemes.
- **2** Generate a token for each lexeme.

Auxiliary Function

Ignores substrings which are insignificant for the compiling process.

• e.g., comments and white spaces.

Other Possible Functions

- Macro expansion.
- Keeping track of line numbers for informative error messages

What It Does

Main Function

- Partition the input stream into lexemes.
- **2** Generate a token for each lexeme.

Auxiliary Function

Ignores substrings which are insignificant for the compiling process.

• e.g., comments and white spaces.

Other Possible Functions

- Macro expansion.
- Keeping track of line numbers for informative error messages.

Connection to the Rest of the System

- A token is a tuple of the form $\langle L, A \rangle$ or $\langle L \rangle$, where
 - L is the name of a lexical category, and
 - A is an attribute.
- Lexical categories are terminals from the parser perspective.
- Attributes carry semantically-relevant information about the particular instance of L encountered.
- No attributes are needed if *L* is a single-instance category. (Hence, the second form)
- An instance of a lexical category is called a lexeme.

- A token is a tuple of the form $\langle L, A \rangle$ or $\langle L \rangle$, where
 - L is the name of a lexical category, and
 - A is an attribute.
- Lexical categories are terminals from the parser perspective.
- Attributes carry semantically-relevant information about the particular instance of L encountered.
- No attributes are needed if *L* is a single-instance category. (Hence, the second form)
- An instance of a lexical category is called a lexeme.

- A token is a tuple of the form $\langle L, A \rangle$ or $\langle L \rangle$, where
 - L is the name of a lexical category, and
 - A is an attribute.
- Lexical categories are terminals from the parser perspective.
- Attributes carry semantically-relevant information about the particular instance of L encountered.
- No attributes are needed if *L* is a single-instance category. (Hence, the second form)
- An instance of a lexical category is called a lexeme.

- A token is a tuple of the form $\langle L, A \rangle$ or $\langle L \rangle$, where
 - L is the name of a lexical category, and
 - A is an attribute.
- Lexical categories are terminals from the parser perspective.
- Attributes carry semantically-relevant information about the particular instance of *L* encountered.
- No attributes are needed if *L* is a single-instance category. (Hence, the second form)
- An instance of a lexical category is called a lexeme.

- A token is a tuple of the form $\langle L, A \rangle$ or $\langle L \rangle$, where
 - L is the name of a lexical category, and
 - A is an attribute.
- Lexical categories are terminals from the parser perspective.
- Attributes carry semantically-relevant information about the particular instance of L encountered.
- No attributes are needed if *L* is a single-instance category. (Hence, the second form)
- An instance of a lexical category is called a lexeme.

- A token is a tuple of the form $\langle L, A \rangle$ or $\langle L \rangle$, where
 - L is the name of a lexical category, and
 - A is an attribute.
- Lexical categories are terminals from the parser perspective.
- Attributes carry semantically-relevant information about the particular instance of *L* encountered.
- No attributes are needed if *L* is a single-instance category. (Hence, the second form)
- An instance of a lexical category is called a lexeme.

- A token is a tuple of the form $\langle L, A \rangle$ or $\langle L \rangle$, where
 - L is the name of a lexical category, and
 - A is an attribute.
- Lexical categories are terminals from the parser perspective.
- Attributes carry semantically-relevant information about the particular instance of L encountered.
- No attributes are needed if *L* is a single-instance category. (Hence, the second form)
- An instance of a lexical category is called a lexeme.

- The set of instances of a lexical category constitute a language.
- Typically, this language is regular.
- A pattern for a particular lexical category is a description of the form of lexemes in that language.
- This description is sometimes a simple enumeration of the lexemes.
 - As in natural languages.
- May also be described by some kind of grammar; typically a regular grammar or, equivalently, a regular expression.

- The set of instances of a lexical category constitute a language.
- Typically, this language is regular.
- A pattern for a particular lexical category is a description of the form of lexemes in that language.
- This description is sometimes a simple enumeration of the lexemes.
 - As in natural languages.
- May also be described by some kind of grammar; typically a regular grammar or, equivalently, a regular expression.

- The set of instances of a lexical category constitute a language.
- Typically, this language is regular.
- A pattern for a particular lexical category is a description of the form of lexemes in that language.
- This description is sometimes a simple enumeration of the lexemes.
 - As in natural languages.
- May also be described by some kind of grammar; typically a regular grammar or, equivalently, a regular expression.

- The set of instances of a lexical category constitute a language.
- Typically, this language is regular.
- A pattern for a particular lexical category is a description of the form of lexemes in that language.
- This description is sometimes a simple enumeration of the lexemes.
 - As in natural languages.
- May also be described by some kind of grammar; typically a regular grammar or, equivalently, a regular expression.

- The set of instances of a lexical category constitute a language.
- Typically, this language is regular.
- A pattern for a particular lexical category is a description of the form of lexemes in that language.
- This description is sometimes a simple enumeration of the lexemes.
 - As in natural languages.
- May also be described by some kind of grammar; typically a regular grammar or, equivalently, a regular expression.

- The set of instances of a lexical category constitute a language.
- Typically, this language is regular.
- A pattern for a particular lexical category is a description of the form of lexemes in that language.
- This description is sometimes a simple enumeration of the lexemes.
 - As in natural languages.
- May also be described by some kind of grammar; typically a regular grammar or, equivalently, a regular expression.

Example

Example

Lexical Category	Pattern
if	{if, If, iF, IF}
else	{else,,ELSE}
comp	{>,<,>=,<=,==,!=}
id	any letter followed by letters or digits
num	any numeric literal
lit	any string between " and "
lp	()
rp	(1)

- Input: if (x > 10) printf("Yes") else printf("No")
- Output:

$$\begin{split} & [\langle \textbf{if} \rangle, \langle \textbf{lp} \rangle, \langle \textbf{id}, 1 \rangle, \langle \textbf{comp}, > \rangle, \langle \textbf{num}, 10 \rangle, \langle \textbf{rp} \rangle, \\ & \langle \textbf{id}, 2 \rangle, \langle \textbf{lp} \rangle, \langle \textbf{lit}, \texttt{Yes} \rangle, \langle \textbf{rp} \rangle, \\ & \langle \textbf{else} \rangle, \langle \textbf{id}, 2 \rangle, \langle \textbf{lp} \rangle, \langle \textbf{lit}, \texttt{No} \rangle, \langle \textbf{rp} \rangle] \end{split}$$

Outline

- 1 The Role of Lexical Analysis
- 2 Regular Definitions
- 3 Digression: Lexical Ambiguity
- 4 The Problem of String Tokenization

Regular Expressions

Definition

R is a regular expression over alphabet Σ if R is

- $\mathbf{0}$ a for some $a \in \Sigma$,
- $\mathbf{2}$ ε ,
- **6** Ø.
- $(R_1 \cup R_2)$, where R_1 and R_2 are regular expressions,
- $(R_1 \circ R_2)$, where R_1 and R_2 are regular expressions, or
- (R_1^*) , where R_1 is a regular expression.
 - Note:
 - $L(a) = \{a\}; L(\varepsilon) = \{\varepsilon\}; L(R^*) = (L(R))^*.$
 - $L(R_1 \otimes R_2) = L(R_1) \otimes L(R_2)$, for $\otimes \in \{\cup, \circ\}$.

Regular Expressions

Definition

R is a regular expression over alphabet Σ if *R* is

- **1** a for some $a \in \Sigma$,
- $\mathbf{2}$ ε ,
- **6** Ø,
- $(R_1 \cup R_2)$, where R_1 and R_2 are regular expressions,
- $(R_1 \circ R_2)$, where R_1 and R_2 are regular expressions, or
- (R_1^*) , where R_1 is a regular expression.
 - Note:
 - $L(a) = \{a\}; L(\varepsilon) = \{\varepsilon\}; L(R^*) = (L(R))^*.$
 - $L(R_1 \otimes R_2) = L(R_1) \otimes L(R_2)$, for $\otimes \in \{\cup, \circ\}$.

- $R_1|R_2 = R_1 \cup R_2.$
- $\bullet \ R_1R_2 = R_1 \circ R_2.$
- $R^+ = R \circ R^*$.
- $\Sigma = a_1 | a_2 | \dots | a_n$, where $\Sigma = \{a_1, a_2, \dots, a_n\}$.
- R? = $R|\varepsilon$.
- $[a_1 a_2 \dots a_n] = a_1 |a_2| \dots |a_n$, where $\{a_1, a_2, \dots, a_n\} \subseteq \Sigma$.
- $[a_1 a_n] = [a_1, a_2, \dots, a_n]$, provided that $\langle a_1, a_2, \dots, a_n \rangle$ is a natural permutation of $\{a_1, a_2, \dots, a_n\}$.

- $R_1|R_2 = R_1 \cup R_2.$
- $R_1R_2 = R_1 \circ R_2$.
- $R^+ = R \circ R^*$.
- $\Sigma = a_1 | a_2 | \dots | a_n$, where $\Sigma = \{a_1, a_2, \dots, a_n\}$.
- R? = $R|\varepsilon$.
- $[a_1 a_2 \dots a_n] = a_1 |a_2| \dots |a_n$, where $\{a_1, a_2, \dots, a_n\} \subseteq \Sigma$.
- $[a_1 a_n] = [a_1, a_2, \dots, a_n]$, provided that $\langle a_1, a_2, \dots, a_n \rangle$ is a natural permutation of $\{a_1, a_2, \dots, a_n\}$.

- $R_1|R_2 = R_1 \cup R_2.$
- $R_1R_2 = R_1 \circ R_2$.
- \bullet $R^+ = R \circ R^*$.
- $\Sigma = a_1 | a_2 | \dots | a_n$, where $\Sigma = \{a_1, a_2, \dots, a_n\}$.
- \bullet $R? = R|\varepsilon$.
- $[a_1 a_2 \dots a_n] = a_1 |a_2| \dots |a_n$, where $\{a_1, a_2, \dots, a_n\} \subseteq \Sigma$.
- $[a_1 a_n] = [a_1, a_2, \dots, a_n]$, provided that $\langle a_1, a_2, \dots, a_n \rangle$ is a natural permutation of $\{a_1, a_2, \dots, a_n\}$.

- $\bullet R_1 | R_2 = R_1 \cup R_2.$
- $R_1R_2 = R_1 \circ R_2$.
- \bullet $R^+ = R \circ R^*$.
- $\Sigma = a_1 | a_2 | \dots | a_n$, where $\Sigma = \{a_1, a_2, \dots, a_n\}$.
- R? = $R|\varepsilon$.
- $[a_1a_2...a_n] = a_1|a_2|...|a_n$, where $\{a_1, a_2,...,a_n\} \subseteq \Sigma$.
- $[a_1 a_n] = [a_1, a_2, \dots, a_n]$, provided that $\langle a_1, a_2, \dots, a_n \rangle$ is a natural permutation of $\{a_1, a_2, \dots, a_n\}$.

- $R_1 | R_2 = R_1 \cup R_2.$
- $R_1R_2 = R_1 \circ R_2$.
- $R^+ = R \circ R^*.$
- $\Sigma = a_1 | a_2 | \dots | a_n$, where $\Sigma = \{a_1, a_2, \dots, a_n\}$.
- $R? = R|\varepsilon$.
- $[a_1 a_2 \dots a_n] = a_1 |a_2| \dots |a_n$, where $\{a_1, a_2, \dots, a_n\} \subseteq \Sigma$.
- $[a_1 a_n] = [a_1, a_2, \dots, a_n]$, provided that $\langle a_1, a_2, \dots, a_n \rangle$ is a natural permutation of $\{a_1, a_2, \dots, a_n\}$.

- $\bullet R_1 | R_2 = R_1 \cup R_2.$
- $R_1R_2 = R_1 \circ R_2$.
- \bullet $R^+ = R \circ R^*$.
- $\Sigma = a_1 | a_2 | \dots | a_n$, where $\Sigma = \{a_1, a_2, \dots, a_n\}$.
- $R? = R|\varepsilon$.
- $[a_1a_2...a_n] = a_1|a_2|...|a_n$, where $\{a_1, a_2,...,a_n\} \subseteq \Sigma$.
- $[a_1 a_n] = [a_1, a_2, \dots, a_n]$, provided that $\langle a_1, a_2, \dots, a_n \rangle$ is a natural permutation of $\{a_1, a_2, \dots, a_n\}$.

- $R_1|R_2 = R_1 \cup R_2.$
- $R_1R_2 = R_1 \circ R_2$.
- \bullet $R^+ = R \circ R^*$.
- $\Sigma = a_1 | a_2 | \dots | a_n$, where $\Sigma = \{a_1, a_2, \dots, a_n\}$.
- $R? = R|\varepsilon$.
- $[a_1 a_2 \dots a_n] = a_1 |a_2| \dots |a_n$, where $\{a_1, a_2, \dots, a_n\} \subseteq \Sigma$.
- $[a_1 a_n] = [a_1, a_2, \dots, a_n]$, provided that $\langle a_1, a_2, \dots, a_n \rangle$ is a natural permutation of $\{a_1, a_2, \dots, a_n\}$.

Definition

A regular definition $\mathfrak{R}(\Sigma, D)$ over alphabets Σ and D is a finite sequence $\langle P_1, \ldots, P_n \rangle$ of pairs $P_i = \langle D_i, R_i \rangle$, where

- $D = \{D_1, \ldots, D_n\}.$
- $D \cap \Sigma = \emptyset$.
- |D| = n.
- R_i is a regular expression over $\Sigma \cup \{D_1, \dots, D_{i-1}\}$, for 1 < i < n.

Note:

Definition

A regular definition $\mathfrak{R}(\Sigma, D)$ over alphabets Σ and D is a finite sequence $\langle P_1, \dots, P_n \rangle$ of pairs $P_i = \langle D_i, R_i \rangle$, where

- $D = \{D_1, \ldots, D_n\}.$
- $D \cap \Sigma = \emptyset$.
- |D| = n.
- R_i is a regular expression over $\Sigma \cup \{D_1, \ldots, D_{i-1}\}$, for 1 < i < n.

Note:

Definition

A regular definition $\mathfrak{R}(\Sigma, D)$ over alphabets Σ and D is a finite sequence $\langle P_1, \ldots, P_n \rangle$ of pairs $P_i = \langle D_i, R_i \rangle$, where

- $D = \{D_1, \ldots, D_n\}.$
- $D \cap \Sigma = \emptyset$.
- |D| = n.
- R_i is a regular expression over $\Sigma \cup \{D_1, \ldots, D_{i-1}\}$, for 1 < i < n.

Note:

Definition

A regular definition $\mathfrak{R}(\Sigma, D)$ over alphabets Σ and D is a finite sequence $\langle P_1, \dots, P_n \rangle$ of pairs $P_i = \langle D_i, R_i \rangle$, where

- $D = \{D_1, \ldots, D_n\}.$
- $D \cap \Sigma = \emptyset$.
- |D| = n.
- R_i is a regular expression over $\Sigma \cup \{D_1, \dots, D_{i-1}\}$, for 1 < i < n.

Note:

Regular Definition

Definition

A regular definition $\mathfrak{R}(\Sigma, D)$ over alphabets Σ and D is a finite sequence $\langle P_1, \dots, P_n \rangle$ of pairs $P_i = \langle D_i, R_i \rangle$, where

- $D = \{D_1, \ldots, D_n\}.$
- $D \cap \Sigma = \emptyset$.
- |D| = n.
- R_i is a regular expression over $\Sigma \cup \{D_1, \dots, D_{i-1}\}$, for 1 < i < n.

Note:

• D_i is a (user-defined) shorthand for a regular expression over Σ .

Regular Definition

Definition

A regular definition $\mathfrak{R}(\Sigma, D)$ over alphabets Σ and D is a finite sequence $\langle P_1, \ldots, P_n \rangle$ of pairs $P_i = \langle D_i, R_i \rangle$, where

- $D = \{D_1, \ldots, D_n\}.$
- $D \cap \Sigma = \emptyset$.
- |D| = n.
- R_i is a regular expression over $\Sigma \cup \{D_1, \dots, D_{i-1}\}$, for 1 < i < n.

Note:

• D_i is a (user-defined) shorthand for a regular expression over Σ .

Example 1

Example (C Identifiers)

$$\begin{array}{lll} \textit{letter}_ & \longrightarrow & [A - Za - z] \mid _\\ \textit{digit} & \longrightarrow & [0 - 9]\\ \textit{id} & \longrightarrow & \textit{letter}_(\textit{letter}_|\textit{digit})^* \end{array}$$

Example 2

Example (Unsigned Numeric Literals)

```
\begin{array}{ccc} \textit{digit} & \longrightarrow & [0-9] \\ \textit{digits} & \longrightarrow & \textit{digit}^+ \\ \textit{opFrac} & \longrightarrow & (.\,\textit{digits})? \\ \textit{opExp} & \longrightarrow & (\mathbb{E}\ [+-]?\,\textit{digits})? \\ \textit{number} & \longrightarrow & \textit{digits}\,\textit{opFrac}\,\textit{opExp} \end{array}
```

- Write a regular definition where, for each of the n lexical categories of our language L, there is a pair $\langle D_i, R_i \rangle$, where D_i is the category name and R_i is its pattern.
 - That this can be done is a non-trivial, but practically-valid, assumption.
- ② For each D_i ($1 \le i \le n$) compile a corresponding regular expression R_i .
 - How?
- ① Construct the expression $R = (R_1|R_2|\cdots|R_n)^+$. ② L(R) ② L is the set of *lexically-correct* strings of our language
- 4 Convert *R* into an equivalent NFA.
- **o** Convert the NFA into an equivalent DFA.

- Write a regular definition where, for each of the n lexical categories of our language L, there is a pair $\langle D_i, R_i \rangle$, where D_i is the category name and R_i is its pattern.
 - That this can be done is a non-trivial, but practically-valid, assumption.
- ② For each D_i ($1 \le i \le n$) compile a corresponding regular expression R_i .
 - How?
- ① Construct the expression $R = (R_1|R_2|\cdots|R_n)^+$. ② L(R) ② L is the set of *lexically-correct* strings of our language
- 4 Convert *R* into an equivalent NFA.
- Sonvert the NFA into an equivalent DFA.

- Write a regular definition where, for each of the n lexical categories of our language L, there is a pair $\langle D_i, R_i \rangle$, where D_i is the category name and R_i is its pattern.
 - That this can be done is a non-trivial, but practically-valid, assumption.
- **②** For each D_i $(1 \le i \le n)$ compile a corresponding regular expression R_i .
 - How?
- ⑤ Construct the expression $R = (R_1|R_2|\cdots|R_n)^+$. ◦ $L(R) \supseteq L$ is the set of *lexically-correct* strings of our language
- Onvert R into an equivalent NFA.
- **o** Convert the NFA into an equivalent DFA.

- Write a regular definition where, for each of the n lexical categories of our language L, there is a pair $\langle D_i, R_i \rangle$, where D_i is the category name and R_i is its pattern.
 - That this can be done is a non-trivial, but practically-valid, assumption.
- **②** For each D_i $(1 \le i \le n)$ compile a corresponding regular expression R_i .
 - How?
- ⑤ Construct the expression $R = (R_1|R_2|\cdots|R_n)^+$. ◦ $L(R) \supseteq L$ is the set of *lexically-correct* strings of our language
- Onvert R into an equivalent NFA.
- **o** Convert the NFA into an equivalent DFA.

- Write a regular definition where, for each of the n lexical categories of our language L, there is a pair $\langle D_i, R_i \rangle$, where D_i is the category name and R_i is its pattern.
 - That this can be done is a non-trivial, but practically-valid, assumption.
- **②** For each D_i $(1 \le i \le n)$ compile a corresponding regular expression R_i .
 - How?
- **3** Construct the expression $R = (R_1|R_2|\cdots|R_n)^+$.
 - $L(R) \supseteq L$ is the set of *lexically-correct* strings of our language.
- 4 Convert *R* into an equivalent NFA.
- **o** Convert the NFA into an equivalent DFA.

- Write a regular definition where, for each of the n lexical categories of our language L, there is a pair $\langle D_i, R_i \rangle$, where D_i is the category name and R_i is its pattern.
 - That this can be done is a non-trivial, but practically-valid, assumption.
- **②** For each D_i $(1 \le i \le n)$ compile a corresponding regular expression R_i .
 - How?
- **3** Construct the expression $R = (R_1|R_2|\cdots|R_n)^+$.
 - $L(R) \supseteq L$ is the set of *lexically-correct* strings of our language.
- Onvert R into an equivalent NFA.
- 5 Convert the NFA into an equivalent DFA.

- Write a regular definition where, for each of the n lexical categories of our language L, there is a pair $\langle D_i, R_i \rangle$, where D_i is the category name and R_i is its pattern.
 - That this can be done is a non-trivial, but practically-valid, assumption.
- **②** For each D_i $(1 \le i \le n)$ compile a corresponding regular expression R_i .
 - How?
- **3** Construct the expression $R = (R_1|R_2|\cdots|R_n)^+$.
 - $L(R) \supseteq L$ is the set of *lexically-correct* strings of our language.
- Convert *R* into an equivalent NFA.
- **(5)** Convert the NFA into an equivalent DFA

- Write a regular definition where, for each of the n lexical categories of our language L, there is a pair $\langle D_i, R_i \rangle$, where D_i is the category name and R_i is its pattern.
 - That this can be done is a non-trivial, but practically-valid, assumption.
- **②** For each D_i $(1 \le i \le n)$ compile a corresponding regular expression R_i .
 - How?
- **3** Construct the expression $R = (R_1|R_2|\cdots|R_n)^+$.
 - $L(R) \supseteq L$ is the set of *lexically-correct* strings of our language.
- Convert *R* into an equivalent NFA.
- **o** Convert the NFA into an equivalent DFA.

But . . .

- This can only *recognize* lexically-correct programs.
- It does not split the input into lexemes and does not generate a stream of tokens.
- Need to augment this procedure with mechanisms to do so.

Outline

- 1 The Role of Lexical Analysis
- Regular Definitions
- 3 Digression: Lexical Ambiguity
- 4 The Problem of String Tokenization

Lexical Ambiguity

- When scanning a program from left to right, we do not know where a potential lexeme ends.
- This is caused by two types of *lexical ambiguity*:
 - **1** There is more than one way to split the program into lexemes.
 - 2 For a fixed splitting, there is more than one stream of tokens that can be generated.
- The first kind of ambiguity occurs when one lexeme is a proper prefix of another.
- The second occurs when a lexeme matches the patterns of more than one lexical category.

Examples

Example (Artificial Languages)

Let
$$R = (a \mid abb \mid a*b^+)*.$$

- The string aabb could be split as [a, abb] or as [aabb].
- 2 The string abb matches both abb and $a*b^+$.

Example (Programming Languages)

- $\langle = \text{ is either } [\langle \mathbf{comp}, < \rangle, \langle \mathbf{comp}, = \rangle] \text{ or } [\langle \mathbf{comp}, < = \rangle].$
- if is either $[\langle \mathbf{if} \rangle]$ or $[\langle \mathbf{id}, ? \rangle]$.

Examples

Example (Artificial Languages)

Let
$$R = (a \mid abb \mid a*b^+)*.$$

- The string aabb could be split as [a, abb] or as [aabb].
- 2 The string abb matches both abb and $a*b^+$.

Example (Programming Languages)

- <= is either $[\langle \mathbf{comp}, < \rangle, \langle \mathbf{comp}, = \rangle]$ or $[\langle \mathbf{comp}, < = \rangle]$.
- if is either $[\langle \mathbf{if} \rangle]$ or $[\langle \mathbf{id}, ? \rangle]$.

Common Disambiguation Strategies

- For the first type of ambiguity, opt for the splitting with the longest possible prefix lexeme:
 - If $[l_{11}, l_{21}, \dots, l_{n1}]$ and $[l_{12}, l_{22}, \dots, l_{m2}]$ are two splittings with $|l_{i1}| > |l_{i2}|$ and $l_{i1} = l_{i2}$ for $1 \le j < i$, choose the first.
- For the second type, opt for the lexical category whose pattern appears earlier in the regular definition.
 - If the lexeme matches p_i and p_j , where i < j, choose $\langle D_i, p_i \rangle$.

Outline

- 1 The Role of Lexical Analysis
- 2 Regular Definitions
- 3 Digression: Lexical Ambiguity
- 4 The Problem of String Tokenization

Action-Augmented Regular Definitions

Definition

An action-augmented regular definition is a triple $\langle \mathfrak{R}(\Sigma, D), \mathcal{C}, \mathcal{A} \rangle$, where

- $\Re(\Sigma, D)$ is a regular definition,
- \circ $\mathcal{C} \subseteq D$, and
- A is a function which maps every $c \in C$ to some *action*.
- An action is an algorithm which possibly returns some value and side-affects some data structures (the symbol table, for example).

Example

Example

In the sequel, *lex* is the lexeme matching a pattern.

$$ws \longrightarrow [\t^n]^+ \\ \mathcal{A}(ws) = \{\} \\ letter_ \longrightarrow [A - Za - z] |_{_} \\ digit \longrightarrow [0 - 9] \\ id \longrightarrow letter_(letter_|digit)^* \\ \mathcal{A}(id) = \{return(\langle \mathbf{id}, consultTable(lex)\rangle)\} \\ number \longrightarrow (digit)^+ (. digit^+)? (E [+-]? digit^+)? \\ \mathcal{A}(number) = \{return\langle \mathbf{num}, lex\rangle\}$$

Fallback DFA with Actions

Definition

A fallback DFA with actions is a 6-tuple $\langle Q, \Sigma, \delta, q_0, F, A \rangle$, where

- Q, Σ, δ, q_0 , and F are as usual; and
- A maps every $q \in Q$ into an action.

- A fallback DFA with actions consists of a finite control, an infinite (to the right) tape, a stack, and two heads: L and R.
- Both heads are read-only heads.
- Initially, both heads point at the left-most tape cell, where the input starts.
- R can move only to the right.
- L can move to the right and to the left as explained in the sequel.

- A fallback DFA with actions consists of a finite control, an infinite (to the right) tape, a stack, and two heads: L and R.
- Both heads are read-only heads.
- Initially, both heads point at the left-most tape cell, where the input starts.
- R can move only to the right.
- L can move to the right and to the left as explained in the sequel.

- A fallback DFA with actions consists of a finite control, an infinite (to the right) tape, a stack, and two heads: L and R.
- Both heads are read-only heads.
- Initially, both heads point at the left-most tape cell, where the input starts.
- R can move only to the right.
- L can move to the right and to the left as explained in the sequel.

- A fallback DFA with actions consists of a finite control, an infinite (to the right) tape, a stack, and two heads: L and R.
- Both heads are read-only heads.
- Initially, both heads point at the left-most tape cell, where the input starts.
- R can move only to the right.
- L can move to the right and to the left as explained in the sequel.

- A fallback DFA with actions consists of a finite control, an infinite (to the right) tape, a stack, and two heads: L and R.
- Both heads are read-only heads.
- Initially, both heads point at the left-most tape cell, where the input starts.
- R can move only to the right.
- L can move to the right and to the left as explained in the sequel.

- A fallback DFA with actions operates like the standard DFA, moving only L, and pushing every state it enters into the stack with every transition.
- This continues until the DFA runs out of input.
- If it runs out of input in state $q_a \in F$, it executes $A(q_a)$ and halts
- If it runs out of input in $q_r \notin F$, it
 - ontinues to simultaneously pop the stack and move L one step to the left until the stack gets empty or some $a_n \in F$ is popped.
 - \bigcirc In the first case, the DFA executes $A(q_r)$ and halts.
 - In the second case it does the following

- A fallback DFA with actions operates like the standard DFA, moving only L, and pushing every state it enters into the stack with every transition.
- This continues until the DFA runs out of input.
- If it runs out of input in state $q_a \in F$, it executes $A(q_a)$ and halts
- If it runs out of input in $q_r \notin F$, it
 - ontinues to simultaneously pop the stack and move L one step to the left until the stack gets empty or some $a_n \in F$ is popped.
 - \bigcirc In the first case, the DFA executes $A(q_r)$ and halts.
 - In the second case it does the following:

- A fallback DFA with actions operates like the standard DFA, moving only L, and pushing every state it enters into the stack with every transition.
- This continues until the DFA runs out of input.
- If it runs out of input in state $q_a \in F$, it executes $A(q_a)$ and halts.
- If it runs out of input in $q_r \notin F$, it
 - ocontinues to simultaneously pop the stack and move L one step to the left until the stack gets empty or some $a_n \in F$ is popped.
 - \bigcirc In the first case, the DFA executes $A(q_r)$ and halts.
 - In the second case it does the following:

- A fallback DFA with actions operates like the standard DFA, moving only L, and pushing every state it enters into the stack with every transition.
- This continues until the DFA runs out of input.
- If it runs out of input in state $q_a \in F$, it executes $A(q_a)$ and halts.
- If it runs out of input in $q_r \notin F$, it
 - ① continues to simultaneously pop the stack and move L one step to the left until the stack gets empty or some $q_a \in F$ is popped.
 - ② In the first case, the DFA executes $A(q_r)$ and halts.
 - In the second case it does the following
 - Executes $A(q_a)$ (with lex being the string extending from R to L)
 - Moves L one step to the right.

© Haythem O. Ismail

- \bigcirc Moves R to where L is.
- Empties the stack
 - 40.

- A fallback DFA with actions operates like the standard DFA, moving only L, and pushing every state it enters into the stack with every transition.
- This continues until the DFA runs out of input.
- If it runs out of input in state $q_a \in F$, it executes $A(q_a)$ and halts.
- If it runs out of input in $q_r \notin F$, it
 - \bigcirc continues to simultaneously pop the stack and move L one step to the left until the stack gets empty or some $q_a \in F$ is popped.

- A fallback DFA with actions operates like the standard DFA, moving only L, and pushing every state it enters into the stack with every transition.
- This continues until the DFA runs out of input.
- If it runs out of input in state $q_a \in F$, it executes $A(q_a)$ and halts.
- If it runs out of input in $q_r \notin F$, it
 - ① continues to simultaneously pop the stack and move L one step to the left until the stack gets empty or some $q_a \in F$ is popped.
 - 2 In the first case, the DFA executes $A(q_r)$ and halts.
 - In the second case it does the following.
 - **1** Executes $A(q_a)$ (with *lex* being the string extending from R to L)
 - Moves L one step to the right.
 - \bigcirc Moves R to where L is.
 - Empties the stack.
 - Litters q_0 .

- A fallback DFA with actions operates like the standard DFA, moving only L, and pushing every state it enters into the stack with every transition.
- This continues until the DFA runs out of input.
- If it runs out of input in state $q_a \in F$, it executes $A(q_a)$ and halts.
- If it runs out of input in $q_r \notin F$, it
 - continues to simultaneously pop the stack and move L one step to the left until the stack gets empty or some $q_a \in F$ is popped.
 - 2 In the first case, the DFA executes $A(q_r)$ and halts.
 - In the second case it does the following.
 - ① Executes $A(q_a)$ (with lex being the string extending from R to L).
 - Moves L one step to the right.
 - \bigcirc Moves R to where L is.
 - Empties the stack.
 - Enters a_0 .

- A fallback DFA with actions operates like the standard DFA, moving only L, and pushing every state it enters into the stack with every transition.
- This continues until the DFA runs out of input.
- If it runs out of input in state $q_a \in F$, it executes $A(q_a)$ and halts.
- If it runs out of input in $q_r \notin F$, it
 - continues to simultaneously pop the stack and move L one step to the left until the stack gets empty or some $q_a \in F$ is popped.
 - 2 In the first case, the DFA executes $A(q_r)$ and halts.
 - 3 In the second case it does the following.
 - Executes $A(q_a)$ (with *lex* being the string extending from R to L).
 - Moves L one step to the right
 - \bigcirc Moves R to where L is.
 - Empties the stack.
 - Enters q_0 .

- A fallback DFA with actions operates like the standard DFA, moving only L, and pushing every state it enters into the stack with every transition.
- This continues until the DFA runs out of input.
- If it runs out of input in state $q_a \in F$, it executes $A(q_a)$ and halts.
- If it runs out of input in $q_r \notin F$, it
 - continues to simultaneously pop the stack and move L one step to the left until the stack gets empty or some $q_a \in F$ is popped.
 - 2 In the first case, the DFA executes $A(q_r)$ and halts.
 - In the second case it does the following.
 - Executes $A(q_a)$ (with *lex* being the string extending from R to L).
 - Moves L one step to the right.
 - \bigcirc Moves R to where L is.
 - 4 Empties the stack.
 - Enters a_0 .

- A fallback DFA with actions operates like the standard DFA, moving only L, and pushing every state it enters into the stack with every transition.
- This continues until the DFA runs out of input.
- If it runs out of input in state $q_a \in F$, it executes $A(q_a)$ and halts.
- If it runs out of input in $q_r \notin F$, it
 - continues to simultaneously pop the stack and move L one step to the left until the stack gets empty or some $q_a \in F$ is popped.
 - 2 In the first case, the DFA executes $A(q_r)$ and halts.
 - In the second case it does the following.
 - Executes $A(q_a)$ (with *lex* being the string extending from R to L).
 - Moves L one step to the right.
 - Moves R to where L is.
 - Empties the stack.
 - Enters q_0 .

- A fallback DFA with actions operates like the standard DFA, moving only L, and pushing every state it enters into the stack with every transition.
- This continues until the DFA runs out of input.
- If it runs out of input in state $q_a \in F$, it executes $A(q_a)$ and halts.
- If it runs out of input in $q_r \notin F$, it
 - continues to simultaneously pop the stack and move L one step to the left until the stack gets empty or some $q_a \in F$ is popped.
 - 2 In the first case, the DFA executes $A(q_r)$ and halts.
 - In the second case it does the following.
 - Executes $A(q_a)$ (with *lex* being the string extending from R to L).
 - Moves L one step to the right.
 - \bigcirc Moves R to where L is.
 - 4 Empties the stack.
 - Enters q_0 .

- A fallback DFA with actions operates like the standard DFA, moving only L, and pushing every state it enters into the stack with every transition.
- This continues until the DFA runs out of input.
- If it runs out of input in state $q_a \in F$, it executes $A(q_a)$ and halts.
- If it runs out of input in $q_r \notin F$, it
 - continues to simultaneously pop the stack and move L one step to the left until the stack gets empty or some $q_a \in F$ is popped.
 - 2 In the first case, the DFA executes $A(q_r)$ and halts.
 - In the second case it does the following.
 - Executes $A(q_a)$ (with *lex* being the string extending from R to L).
 - Moves L one step to the right.
 - \bigcirc Moves *R* to where *L* is.
 - 4 Empties the stack.
 - Enters q_0 .

- 1. Write an action-augmented regular definition where, for each of the n lexical categories of our language L, there is a pair $\langle D_i, R_i \rangle$, where D_i is the category name and R_i is its pattern, with $D_i \in \mathcal{C}$.
 - Actions should produce the appropriate tokens and update the symbol table as needed.

- 2. For each $c \in \mathcal{C}$ compile a corresponding regular expression R_c .
 - Each R_c is associated with the pair $\langle c, A(c) \rangle$.

- 3. Construct the regular expression $R = (R_{c_1}|R_{c_2}|\cdots|R_{c_m})$, where $C = \{c_1, c_2, \ldots, c_m\}$.
 - Note the absence of +.

- 4. Construct an NFA N which is equivalent to R, provided that
 - In constructing an NFA N_i equivalent to R_i , make sure that N_i has a unique accept state.
 - 2 The unique accept state of N_i has the label c_i .

- 5. Construct a fallback DFA with actions, *M*, which is equivalent to *N*, provided that
 - **1** For every $q_a \in F$, $A(q_a) = A(c_i)$, where
 - $\mathbf{0}$ $c_i \in q_a$ and
 - $oldsymbol{0}$ if $c_j \in q_a$, then $i \leq j$.
 - ② For every $q_r \notin F$, $A(q_a)$ is a suitable "error action."

Example (I)

Example (Action-Augmented Regular Definition)

$$\begin{array}{ccc} 2 & \longrightarrow & \text{a} \\ & & \mathcal{A}(2) = \{return(\langle \mathbf{2}, lex \rangle)\} \\ 6 & \longrightarrow & \text{abb} \\ & & \mathcal{A}(6) = \{return(\langle \mathbf{6}, lex \rangle)\} \\ 8 & \longrightarrow & \text{a*b}^+ \\ & & \mathcal{A}(8) = \{return(\langle \mathbf{8}, lex \rangle)\} \end{array}$$

Example (II)

Example (III)

Example (Fallback DFA with Actions)

© Aho et al. (2007)

What happens on input abba?

