PHAS1040 WAVES

Part 1: Vibrations and non-electromagnetic waves (strings, water waves, sound waves)

WEEKS 7-11 Semester 1

Dr S.D. Connell
1.12e Bragg Building
s.d.a.connell@leeds.ac.uk

Part 2: Optics
WEEKS 1-5? Semester 2

Professor S.D. Evans

Tuesday 1pm WORKSHOP Roger Stevens LT 02/Chem Eng LT B

Tuesday 4pm LECTURE Roger Stevens LT 02

Thursday 3pm LECTURE Roger Stevens LT 22

Recommended text:

Physics for scientists and engineers, Tipler & Mosca

Vibrations - Chapter 14

Waves - Chapter 15

Sound - Chapters 15, 16

Further Reading:

Vibrations and Waves in Physics I G Main

Vibrations and Waves A P French

Vibrations and Waves Gough, Richards & Williams

Week		
1	Simple Harmonic Motion	Damped SHM
2	Driven Oscillations	Resonance
3	Travelling Waves, Harmonic waves	Energy and Power of a wave
4	Reflection, Transmission and impedance of waves	Superposition/ Interference
5	Longitudinal waves, sound + seismic waves	The Doppler Effect, shock waves

Driven and damped simple harmonic motion

Harmonic 1D standing wave

Harmonic 2D standing wave

½ k_BT per mode

librations = small rotational oscillations due to constraints of adjacent molecules

Vibrating bonds in molecules, Simple Harmonic Motion. Example here is water, and the multiple vibrational modes add to the other degrees of freedom (3 x translational and 3 x rotational), resulting in very high heat capacity – see Voice Thermo lectures.

These vibrational modes are high frequency, visible using Infra-Red Spectroscopy

Travelling waves

Mechanical wave

Seismic waves

Sound Waves

Sounds waves are longitudinal compression travelling waves

Casimir effect (1948)
Standing wave of vacuum fluctuations

Shock wave

Transverse travelling wave

Shock wave of the Tycho Type 1a supernova

Nov 2nd 1572.

Nov 16th brighter than Venus

Remnant rediscovered in x-ray at Jodrell Bank 1952

Time lapse taken by Chandra x-ray observatory in orbit

Oscillatory Motion

If the net force on an object acts always towards the equilibrium position (a restoring force), a back and forth motion results: periodic or oscillatory motion, or vibration.

Familiar examples of periodic motion

Pendulum Guitar string

Molecules in a solid Air molecules in sound wave

A special type of oscillation occurs if

restoring force ∞ displacement of object :

simple harmonic motion (SHM).

An object moves with simple harmonic motion (SHM) when the acceleration of the object is proportional to its displacement and in the opposite direction.

Simple Harmonic Motion

Example: Mass on a spring = x (without gravity) Force on mass = F

Derive an expression for the motion of the mass! x = ?

Consider an oscillating pen:

The general equation for the curve traced out by the pen is

$$x = A \cos (\omega t + \delta)$$

 $(\omega t + \delta)$ is the phase of the motion ω is the angular frequency δ is the phase constant

of offsets the oscillation along the time axis.

$$F = -k \cdot x$$

Hooke's law

$$F = m \cdot a = m \frac{d^2x}{dt^2}$$

Equation of motion

$$\Rightarrow \frac{d^2x}{dt^2} + \frac{k}{m}x = 0$$

What function is proportional to its second derivative with opposite sign?

= differential equation, i.e.
$$-k_{x} = \frac{d^{2}x}{dt^{2}}$$
, a function of its own derivative, how to solve?

Try:

$$x = A\cos\omega t$$
 $\Rightarrow \frac{dx}{dt} = -A\omega\sin\omega t$ $\Rightarrow \frac{d^2x}{dt^2} = -A\omega^2\cos\omega t$

$$-A\omega^2\cos\omega t + \frac{k}{m}A\cos\omega t = 0 \quad \text{if} \quad \omega^2 = \frac{k}{m} \Rightarrow \omega = \sqrt{\frac{k}{m}}$$

$$\omega^2 = \frac{k}{m} \Rightarrow \omega = \sqrt{\frac{k}{m}}$$

$$x = A\cos\omega t$$
, $x = A\sin\omega t$, $x = A\cos(\omega t + \delta)$ are all solutions

An object moves with simple harmonic motion (SHM) when the acceleration of the object is proportional to its displacement and in the opposite direction.

The displacement x is given by:
$$X = A \cos(\omega + \delta)$$

ω is the angular frequency and has units of rad.s⁻¹

 $(\omega t + \delta)$ is the phase of the motion

 δ is the phase constant

Time taken for one complete oscillation is the **period** T.

The **frequency** of oscillation, f = 1/T in s^{-1} or Hertz.

The distance from equilibrium to maximum displacement is the **amplitude** of oscillation, A.

The period T is defined by
$$x(t) = x(t+T)$$

$$x = A\cos(\omega t + \delta) = A\cos(\omega(t+T) + \delta)$$

$$\cos(\omega t + \delta) = A\cos(\omega(t+T) + \delta)$$

$$\cos(\omega t + \omega t + \delta)$$

Relationship between ω , f and the parameters k and m:

$$\omega = \frac{2\pi}{T} = 2\pi f \quad \text{for SHM}$$

$$\omega^2 = \frac{\mathbf{k}}{\mathbf{m}} \Rightarrow \omega = \sqrt{\frac{\mathbf{k}}{\mathbf{m}}}$$

&
$$T = 2\pi \sqrt{\frac{m}{k}}$$
 for mass on spring

IMPORTANT RESULTS: Period of SHM does not depend on the amplitude!

Amplitude A and phase constant δ are fixed by the initial position x_o and initial velocity v_o

Aside, where does this come from?

$$T = 2\pi \sqrt{\frac{m}{k}}$$
 for mass on spring

Comes from Newton's 2nd law

Same as slide 13, only more clear

$$F = ma$$

$$-kx = m\frac{d^2x}{dt^2}$$

$$-kA\cos(\omega t) = m\frac{d^2A\cos(\omega t)}{dt^2}$$

$$-kA\cos(\omega t) = -m\omega^2A\cos(\omega t)$$

$$k = m\omega^2$$

and rearrange

