YF-B4 流量传感器技术文档

产品特点:

- 1. 本产品外观轻巧灵便,体积小,便于安装.
- 2. 叶轮内部镶有不锈钢珠, 永远耐磨.
- 3. 用灌封胶封装, 防止进水, 永不老化.
- 4. 所有原材料均有符合 ROSH 检测标准

一、产品简介:

水流量传感器主要由塑料阀体、水流转子组件和霍尔传感器组成。它装在热水器进水端,用于检测进水流量,当水通过水流转子组件时,磁性转子转动并且转速随着流量变化而变化,霍尔传感器输出相应脉冲信号,反馈给控制器,由控制器判断水流量的大小,进行调控。

二、 使用注意事项

- ❖ 严禁剧烈冲击以及化学物质的侵蚀。
- ❖ 严禁抛掷或碰撞。

❖ 水平或者垂直安装都可以

❖ 介质温度不宜超过 100° C。

安装方向示意图

三、输出波形图:

四、 引出线方式:

五、技术参数

	5.	适用于全自动燃气热水器					
基本参数	1、最低额定工作电压	DC 5V-24V					
	2、最大工作电流	15 mA (DC 5V)					
	3、工作电压范围	DC 5~24 V					
	4、负载能力	≤10 mA (DC 5V)					
	5、使用温度范围	≤80°C					
	6、使用湿度范围	5%~90%RH(无结霜状态)					
	7、允许耐压	水压 1.75Mpa 以下					
	8、保存温度	-25~+80°C					
	9、保存湿度	25%~95%RH					
	1、输出脉冲高电平	>DC 4.5 V (输入电压 DC 5 V)					
	2、输出脉冲低电平	<dc (输入电压="" 0.5="" 5="" dc="" td="" v="" v)<=""></dc>					
	3、精 度	1 c. 251 /min 50					
	(流量脉冲输出)	$1{\sim}25 \text{L/min}{\pm}5\%$					
	4、输出脉冲占空比	50±10%					
	5、输出上升时间	0. 04 μ S					
	6、输出下降时间	0. 18 μ S					
11	7、流量-脉冲特性	水平测试脉冲频率(Hz)=[11*Q]±5%(水平测试) (Q 为流量 L/min)					
技 术	8、耐冲击	产品包装好,从 50cm 高度 X、Y、Z 方向自由落下至混凝土表面无异常,精度变化 5%以内。					
要	9、绝缘电阻	霍尔传感器与铜阀体之间的绝缘电阻 100MΩ以上。(DC 500V)					
求	10、耐热性	在 80±3℃环境中放置 48h , 返回常温 1-2h 无异常,且零件无裂纹、 松驰、膨胀、变形等现象,精度变化 10%以内。					
	11、耐寒性	在-20±3℃环境中放置 48h , 返回常温 1-2h 无异常,且零件无裂纹、 松驰、膨胀、变形等现象,精度变化 10%以内。					
	12、耐湿性	在 40±2℃, 相对湿度 90%~95%RH 环境中放置 72h 取出后 , 绝缘电阻 1MΩ以上。					
	13、拉拔强度	在引出线上施加 1 分钟 10N 的拉力,无松脱、拉断现象,且性能无变化。					
	14、耐久性	在常温下,从进水口通入 0.1MPa 水压,以接通 1S,断开 0.5S 为一循环,试验 30 万次无异常。					

流量计的参数常数*流速(L/min)*时间(秒)得出的数据即脉冲个数

660 个脉冲一升水

六、流量脉冲特性参照表 F=11*Q									
流量	脉冲	误差	最小值	最大值	流量	脉冲	误差	最小值	最大值
2	22	± 1.020	22.44	21.56	6. 1	67. 1	± 3.2	68. 44	65. 76
2. 1	23. 1	± 1.021	23. 59	22.64	6. 2	68. 2	±3.3	69. 56	66. 90
2. 2	24. 2	± 1.022	24. 68	23. 72	6. 3	69. 3	± 3.4	70.69	67. 91
2. 3	25. 3	± 1.023	25.83	24. 79	6. 4	70. 4	± 3.5	71.81	69.06
2.4	26. 4	± 1.024	26. 93	25.87	6. 5	71.5	± 3.6	72. 93	70.07
2. 5	27. 5	± 1.025	28.08	26. 95	6.6	72.6	± 3.7	74. 05	71. 22
2.6	28.6	± 1.026	29. 17	28. 03	6. 7	73. 7	± 3.8	75. 17	72. 23
2. 7	29. 7	± 1.027	30. 32	29. 11	6.8	74.8	± 3.9	76. 30	73.38
2.8	30.8	± 1.028	31.42	30. 18	6. 9	75.9	± 3.10	77.42	74. 38
2.9	31.9	± 1.029	32.57	31. 26	7	77	± 3.11	78. 54	75. 54
3	33	± 1.030	33.66	32. 34	7. 1	78. 1	± 3.12	79.66	76. 54
3. 1	34. 1	± 1.031	34.82	33. 42	7. 2	79.2	± 3.13	80.78	77. 70
3. 2	35. 2	± 1.032	35. 90	34. 50	7. 3	80.3	± 3.14	81. 91	78. 69
3. 3	36. 3	± 1.033	37.06	35. 57	7.4	81.4	± 3.15	83. 03	79.85
3. 4	37.4	± 1.034	38. 15	36. 65	7. 5	82.5	± 3.16	84. 15	80.85
3. 5	38. 5	± 1.035	39. 31	37. 73	7.6	83.6	± 3.17	85. 27	82.01
3.6	39.6	± 1.036	40.39	38.81	7. 7	84.7	± 3.18	86. 39	83.01
3. 7	40.7	± 1.037	41.55	39.89	7.8	85.8	± 3.19	87. 52	84. 17
3.8	41.8	± 1.038	42.64	40.96	7. 9	86.9	± 3.20	88.64	85. 16
3.9	42.9	± 1.039	43.80	42.04	8	88	± 3.21	89. 76	86. 33
4	44	± 1.040	44.88	43. 12	8. 1	89. 1	± 3.22	90.88	87. 32
4. 1	45. 1	± 1.041	46.05	44. 20	8. 2	90.2	± 3.23	92.00	88. 49
4. 2	46. 2	± 1.042	47. 12	45. 28	8.3	91.3	± 3.24	93. 13	89. 47
4.3	47.3	± 1.043	48. 29	46. 35	8.4	92.4	± 3.25	94. 25	90.64
4.4	48.4	± 1.044	49. 37	47. 43	8.5	93. 5	± 3.26	95. 37	91.63
4.5	49.5	± 1.045	50.54	48.51	8.6	94.6	± 3.27	96. 49	92.80
4.6	50.6	± 1.046	51.61	49. 59	8.7	95. 7	± 3.28	97.61	93. 79
4.7	51.7	± 1.047	52. 79	50.67	8.8	96.8	± 3.29	98. 74	94.96
4.8	52.8	± 1.048	53.86	51.74	8.9	97. 9	± 3.30	99.86	95. 94
4. 9	53. 9	± 1.049	55.03	52.82	9	99	± 3.31	100.98	97. 12
5	55	± 1.050	56. 10	53. 90	9. 1	100. 1	± 3.32	102. 10	98. 10
5. 1	56. 1	± 1.051	57. 28	54. 98	9. 2	101.2	± 3.33	103. 22	99. 28
5. 2	57. 2	± 1.052	58.34	56.06	9.3	102.3	± 3.34	104. 35	100. 25
5. 3	58. 3	± 1.053	59. 52	57. 13	9. 4	103.4	± 3.35	105. 47	101.44
5. 4	59. 4	± 1.054	60.59	58. 21	9. 5	104. 5	± 3.36	106. 59	102.41
5. 5	60. 5	± 1.055	61.77	59. 29	9.6	105.6	± 3.37	107.71	103. 59
5. 6	61.6	± 1.056	62.83	60.37	9. 7	106. 7	± 3.38	108.83	104. 57
5. 7	62. 7	± 1.057	64.02	61.45	9.8	107.8	± 3.39	109.96	105. 75
5.8	63.8	± 1.058	65.08	62. 52	9.9	108.9	± 3.40	111.08	106. 72
5. 9	64. 9	± 1.059	66. 26	63.60	10	110	± 3.41	112. 20	107. 91

TEMPERATURE VS RESISTANCE TABLE Resistance 50k Ohms at 25deg. C

B Value 3950K at 25/50 deg. C

Temp	R		23/30 deg. R		R	Temn	R
Temp.		Temp.		Temp.		Temp.	
(deg. C)	(k Ohms)	(deg.	(kOhms)	(deg. C)	(kOhms)	(deg. C)	(kOhms)
-20	483.8463	C) 19	65 2505	58	12 2076	97	3.5959
			65.3595		13.2876		
-19	456.6244	20	62.4653	59	12.8090	98	3.4879
-18	431.1039	21	59.7148	60	12.3498	99	3.3836
-17	407.1685	22	57.1002	61	11.9093	100	3.2828
-16	384.7103	23	54.6141	62	11.4866	101	3.1855
-15	363.6294	24	52.2496	63	11.0809	102	3.0915
-14	343.8333	25	50.0000	64	10.6914	103	3.0007
-13	325.2361	26	47.8592	65	10.3174	104	2.9129
-12	307.7581	27	45.8214	66	9.9583	105	2.8280
-11	291.3257	28	43.8811	67	9.6133	106	2.7460
-10	275.8701	29	42.0331	68	9.2819	97	3.5959
-9	261.3276	30	40.2726	69	8.9634	98	3.4879
-8	247.6390	31	38.5950	70	8.6573	99	3.3836
-7	234.7494	32	36.9961	71	8.3631	100	3.2828
-6	222.6075	33	35.4716	72	8.0802		
-5	211.1656	34	34.0179	73	7.8082		
-4	200.3796	35	32.6312	74	7.5466		
-3	190.2080	36	31.3081	75	7.2950		
-2	180.6125	37	30.0455	76	7.0528		
-1	171.5571	38	28.8402	77	6.8198		
0	163.0086	39	27.6894	78	6.5956		
1	154.9356	40	26.5903	79	6.3797		
2	147.3091	41	25.5404	80	6.1719		
3	140.1019	42	24.5372	81	5.9717		
4	133.2887	43	23.5785	82	5.7790		
5	126.8458	44	22.6620	83	5.5933		
6	120.7510	45	21.7857	84	5.4144		
7	114.9837	46	20.9476	85	5.2420		
8	109.5245	47	20.9476	86	5.2420		
9	104.3552	48	19.3788	87	4.9158		
10	99.4589	49	18.6448	88	4.7614		
11	94.8197	50	17.9421	89	4.6125		
12	90.4228	51	17.2693	90	4.4689		
13	86.2542	52	16.6251	91	4.3305		
14	82.3008	53	16.0080	92	4.1969		
15	78.5505	54	15.4167	93	4.0680		
16	74.9916	55	14.8502	94	3.9436		
17	71.6135	56	14.3072	95	3.8236		
18	68.4060	57	13.7867	96	3.7078		