EM0005/EIG0048 | ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA | 1º ANO - 1º SEMESTRE

Prova sem consulta. Duração: 2h (20m de tolerância).

2ª Prova de Reavaliação

- * Não são consideradas as folhas sem identificação. Justifique convenientemente todos os cálculos que efetuar;
- * A desistência só é possível após 1 hora do início da prova;
- * Não é possível a utilização de máquinas de calcular gráficas nem de microcomputadores;
- * Resolva cada um dos grupos utilizando folhas de capa distintas.

GRUPO I

1) [9,2] Considere as transformações lineares $R \in L(\mathbb{R}^4, \mathbb{R}^3)$, em que R(x, y, z, w) = (x - z, x + w, 2x - z + w), $S \in L(\mathbb{R}^3, \mathbb{R}^3)$ é representada pela matriz

$$S = m(S) = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 0 & -1 \\ 2 & 1 & -1 \end{bmatrix}$$

em relação à base canónica, E_3 , para o espaço \mathbb{R}^3 , e $T \in L(\mathbb{R}^3, \mathbb{R}^2)$, tal que

$$T = m(T) = \begin{bmatrix} 2 & 1 & 1 \\ -1 & 2 & 0 \end{bmatrix}_{U, E_2}$$

é a representação matricial em relação às bases $U = \{(0,1,0),(0,0,1),(1,0,0)\} \subset \mathbb{R}^3$ e E_2 , base canónica para o espaço \mathbb{R}^2 . Seja a base $V = \{(2,1),(1,1)\} \subset \mathbb{R}^2$.

- **a)** Obtenha o núcleo e o contradomínio de *R*. Para cada um destes subespaços, indique uma base e conclua em relação à sua dimensão.
- **b**) Mostre que S é injetiva e determine a sua transformação inversa.
- c) Usando o cálculo matricial, obtenha as matrizes $T_{\rm U,V} = m(T)_{\rm U,V}$, representação matricial de T em relação às bases U e V, e $T_{\rm E_3,V} = m(T)_{\rm E_3,V}$, representação matricial de T em relação às bases E₃ e V.
- **d**) Determine a matriz $m(TR)_{E_4,V}$, representação matricial de TR em relação às bases E_4 , base canónica para o espaço \mathbb{R}^4 , e V.
- 2) [1,3] Considere a transformação linear $S: V \to W$ e o conjunto $U = \{u_1, u_2, ..., u_k, u_{k+1}, ..., u_n\} \subset V$. Mostre que se $U_1 = \{u_1, u_2, ..., u_k\}$ é uma base para N(S) e se $U_2 = \{S(u_{k+1}), ..., S(u_n)\}$ é uma base para S(V), então U é uma base para V.

(continua no verso)

EM0005/EIG0048 | ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA | 1º ANO - 1º SEMESTRE

Prova sem consulta. Duração: 2h (20m de tolerância).

2ª Prova de Reavaliação

GRUPO II

3) [2,8] Calcule, indicando todas as operações efetuadas, o determinante da matriz real

$$\mathbf{F} = \begin{bmatrix} 1 & 5 & -k & 1 \\ 1 & k & 4 & 1-k \\ 1 & 2 & -3 & -1 \\ -1 & -2 & 4 & 1 \end{bmatrix}$$

Obtenha o valor de k para que $5|F| = |F^2|$.

4) [5,5] Seja a transformação linear $H: \mathbb{R}^3 \to \mathbb{R}^3$ representada pela matriz

$$H = m(H) = \begin{bmatrix} \beta & -2 & -1 \\ -2 & 6 & 2 \\ -1 & \alpha & 3 \end{bmatrix}$$

em relação à base canónica, E, para o espaço \mathbb{R}^3 .

- a) Sendo $\alpha = 2$ e $\beta = 3$, calcule os valores próprios de H e os respetivos espaços próprios; indique, para cada um desses subespaços, uma base e a dimensão.
- **b**) Relativamente à matriz definida em a), mostre, justificando devidamente, que a função H admite uma base, V, de vetores próprios para o espaço \mathbb{R}^3 . Obtenha a matriz $H_{V,V}$ que representa H em relação à base V e apresente as expressões matriciais que comprovam que H e $H_{V,V}$ são matrizes semelhantes.
- c) Obtenha os valores de α e β de forma que H possua um valor próprio nulo e a soma dos seus valores próprios seja igual a 12.
- 5) [1,2] Seja A uma matriz quadrada de ordem n e não singular. Defina Cof A, matriz dos cofatores de A, e mostre que $\begin{bmatrix} Cof A \end{bmatrix}^T = Cof A^T$.