Tilastollinen päättely

1. kurssikokeen uusinta, 23.1.2014, klo 16-18

Tentissä saa olla mukana kirjoitusvälineet ja laskin.

- 1. Tarkastellaan tilastollista mallia $f_Y(y; \theta)$, jossa $\theta = (\theta_1, \dots, \theta_d)$ on tuntematon d-ulotteinen parametri. Määrittele ja selitä seuraavat käsitteet:
 - (a) Uskottavuusyhtälö.
 - (b) Havaittu informaatio.
 - (c) Parametrien ortogonaalisuus.
- 2. Oletetaan, että Y_1, \ldots, Y_n on riippumaton otos jakaumasta $G(3, 1/\theta)$, jonka tiheysfunktio on

 $f(y;\theta) = \begin{cases} \frac{1}{2}\theta^{-3}y^2 \exp(-\frac{y}{\theta}), & \text{kun } y > 0\\ 0, & \text{muulloin,} \end{cases}$

jossa $\theta > 0$. Johda parametrin θ suurimman uskottavuuden estimaattori $\hat{\theta}$. Laske pistemääräfunktio ja Fisherin informaatio. Osoita, että estimaattori $\hat{\theta}$ on harhaton ja että sen varianssi yhtyy harhattomien estimaattorien varianssin alarajaan (informaatioepäyhtälö).

3. Havaintoja vastaavat satunnaismuuttujat Y_1, \ldots, Y_n ovat riippumattomia ja noudattavat kukin jatkuvaa jakaumaa, jonka tiheysfunktio on

$$f(y; \alpha, \beta) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} y^{-\alpha - 1} \exp\left(-\frac{\beta}{y}\right), \quad y > 0, \quad \alpha > 0, \quad \beta > 0.$$

Oletetaan, että α on tunnettu. Muodosta tämän mallin logaritminen uskottavuusfunktio $l(\beta; \mathbf{y})$ ja johda huolellisesti perustellen parametrin β suurimman uskottavuuden estimaatti $\hat{\beta}$, kun aineisto on $\mathbf{y} = (y_1, \dots, y_n)$.

4. Oletetaan, että havaintoja vastaavat satunnaismuuttujat Y_1, \ldots, Y_n ovat riippumattomia ja noudattavat kukin jatkuvaa jakaumaa, jonka tiheysfunktio on

$$f(y; \alpha, \beta) = \frac{\alpha \beta^{\alpha}}{y^{\alpha+1}}, \quad y \ge \beta, \alpha > 0, \ \beta > 0.$$

(a) Osoita, että jakauman odotusarvo on

$$E(Y) = \frac{\alpha\beta}{\alpha - 1}$$
, kun $\alpha > 1$.

(b) Oletetaan, että β on tunnettu ja tiedetään, että $\alpha > 1$. Johda parametrin α momenttiestimaattori.

Muistin tueksi

Satunnaismuuttuja X noudattaa gammajakaumaa parametrein κ ja λ , jos sen tiheysfunktio on muotoa

$$f_X(x; \kappa, \lambda) = \begin{cases} \frac{\lambda^{\kappa}}{\Gamma(\kappa)} y^{\kappa - 1} e^{-\lambda y}, & \text{kun } x > 0, \\ 0, & \text{muulloin.} \end{cases}$$

Tällöin merkitään $X \sim G(\kappa, \lambda)$, jossa $\kappa > 0$ ja $\lambda > 0$. Gammajakauman odotusarvo on κ/λ ja varianssi κ/λ^2 . Kun $X_1, \ldots, X_k \perp \!\!\!\perp$ ja $X_i \sim G(\kappa_i, \lambda)$, niin $\sum_{i=1}^k X_i \sim G(\sum_{i=1}^k \kappa_i, \lambda)$.