

CS326 – Systems Security

Lecture 23 The Onion Router (TOR)

Elias Athanasopoulos athanasopoulos.elias@ucy.ac.cy

Recall: Basic Problem

Oscar can see the message (confidentiality)
Oscar can modify the message (integrity)

Recall: Cryptography

New Problem: Anonymity

Anonymous Communication

- Users can interact with other users over the Internet
 - MitM should not be able to infer who is talking to whom
- Is this a real problem?
 - Journalists and activists
 - Citizens of oppressive regimes
 - Minorities
 - People that do not want to be associated with certain activities (i.e., Alice belongs to political party X)

Simple Solution

Properties of Relay

- Needs a big set of senders
- Needs a big set of receivers
 - The larger the sets, the better for anonymous communication
- Needs time to process the messages
 - The longer it takes for the relay to output the messages, the better for anonymous communication
- Single point of failure
 - If you compromise the relay, all communications are compromised

Goals

- Anonymity for practical low-latency communications
 - Web browsing, etc.
- Defend a realistic threat model
 - Attacker cannot monitor all Internet links (global passive attacker)
 - Can observe some fraction of network traffic
 - Can generate, modify, delete, or delay traffic
 - Can operate onion routers of their own
 - Can compromise some fraction of the onion routers

The Onion Router (TOR)

How it works?

- Alice builds circuits of Onion Routers
- A circuit includes at least three Onion Routers
 - Default is three, but longer circuits are allowed
 - Three is not magic, it is a compromise
 - An attacker must control the first and the exit node for breaking TOR
- A circuit is a number (by default three) of encapsulated TLS tunnels

Onion

Three Cryptographic Keys (TLS session keys)

Onion Routing

Cells and Circuits

- Alice builds circuits by chaining TOR onion routers
- TOR traffic is composed by cells
 - Each cell is 512 bytes (both for headers and payload)
 - Each cell header has a circuit identifier (circID)
 - Cells can contain just control-data (i.e., extend the circuit) or payload to be relayed

Building a two-hop Circuit (simplified)

Directory Servers

Blocking TOR

- Blocking the directory authorities
- Blocking all the relay IP addresses in the directory
- Filtering based on Tor's network fingerprint
- Preventing users from finding the Tor software

Rendezvous Points

- Alice hides their identity when communicating with Bob
- It might be desirable for Bob to hide his identity, as well
- Bob can announce a *hidden service*
 - Announced in the directory servers (using cryptography)
 - Serviced by several TOR circuits that end up to Bob
- Alice can connect to the hidden service using TOR
 - Both parties are now anonymous
 - Alice must know about the service out of band

TOR Attacks

- Several active and passive attacks
- Traffic analysis
- Pollution with controlled ORs
- TOR is based on the voluntary effort of running legitimate ORs

Resources

- TOR project page
 - https://www.torproject.org
- TOR paper
 - https://svn.torproject.org/svn/projects/designpaper/tor-design.pdf