Example Turing Machine

ian.mcloughlin@atu.ie January 27, 2023

Language

$$A = \{0,1\}$$

$$A^* = \{\epsilon,0,1,00,01,10,11,000,\ldots\}$$

$$L = \{\epsilon,01,0011,000111,\ldots\}$$

$$A^* \setminus L = \{0,1,00,10,\ldots\}$$

$$\mathbb{N}_0 = \{0,1,2,3,\ldots\}$$

$$L = \{0^i 1^i | i \in \mathbb{N}_0\}$$

Turing machine

State	Input	Write	Move	Next
90	_	_	R	q_a
q_0	0	_	R	q_1
q_0	1	1	R	q_f
q_1	_	_	L	92
q_1	0	0	R	q_1
q_1	1	1	R	q_1
92	_	_	R	q_f
92	0	0	R	q_f
92	1	_	L	93
93	_	_	R	q_0
93	0	0	L	q_3
93	1	1	L	93

Example input

$$\begin{split} q_0000111 &\to q_100111 \to 0q_10111 \to 00q_1111 \\ &\to 001q_111 \to 0011q_11 \to 00111q_1 \to 0011q_21 \\ &\to 001q_31 \to 00q_311 \to 0q_3011 \to q_30011 \\ &\to q_3_0011 \to q_00011 \to q_1011 \to 0q_111 \\ &\to 01q_11 \to 011q_1 \to 01q_21 \to 0q_31 \\ &\to q_301 \to q_3_01 \to q_001 \to q_11 \\ &\to 1q_1 \to q_21 \to q_3 \to q_1 \to q_a \end{split}$$

Steps

$$q_0000111 \rightarrow \dots 13 \text{ steps} \dots \rightarrow q_00011$$

 $\rightarrow \dots 9 \text{ steps} \dots \rightarrow q_001 \rightarrow \dots 5 \text{ steps} \dots$
 $\rightarrow q_0 \rightarrow \dots 1 \text{ step} \dots \rightarrow q_a$ (28 total)

Simulation

n	0	2	4	6	8	10	12	14
f(n)	1	6	15	28	45	66	91	120

Sequence

OEIS¹ gives sequence formula:

$$a(i): \mathbb{N} \to \mathbb{N}_0 = i(2i-1)$$

So, a(1) = 1, a(2) = 6, a(3) = 15, and so on. We index as $2\mathbb{N} = \{0, 2, 4, 6, 8, 10, \ldots\}$. Transform:

$$h(n): 2\mathbb{N}_0 \to \mathbb{N} = \frac{n}{2} + 1.$$

So,
$$h(0) = 1$$
, $h(2) = 2$, $h(4) = 3$, and so on.

$$f(n): 2\mathbb{N}_0 \to \mathbb{N}_0 = a(h(n))$$

$$= \left(\frac{n}{2} + 1\right) \left(2\left(\frac{n}{2} + 1\right) - 1\right)$$

$$= \left(\frac{n}{2} + 1\right) (n + 2 - 1)$$

$$= \frac{1}{2} (n + 2) (n + 1)$$

$$= \frac{1}{2} \left(n^2 + 3n + 2\right)$$

So, f(n) is $O(n^2)$.

Justification

Is f(n) the correct formula for the number of steps taken for an accepted input of length n?

Each pass right and left across the *j* non-blank tape cells, the machine takes j + 1 steps right, followed by j steps left.

Start	End	Right	Left
000111	0011	7	6
0011	01	5	4
01	ϵ	3	2
ϵ	q_a	1	0

¹ OEIS Foundation Inc (2020). The On-Line Encyclopedia of Integer Sequences. https://oeis.org/A000384.

$$f(n) = (n+1) + n + \dots + 2 + 1 + 0$$

= $((n+1) + 0) + ((n) + 1) + \dots$
= $(\frac{n}{2} + 1) (n+1)$

Decider

Does the Turing Machine always halt and if so, does it reject in $O(n^2)$? Is $L \in \mathbf{P}$?