EPC Gen-2 RFID Tag Baseband Processor IP Core in Verilog

INTRODUCTION	1
PART NO	1
FEATURES	1
STANDARD SPECIFICATIONS	2
VERILOG MODULES / FILES	2
PINS	3
BLOCK DIAGRAM	3
NOTES	4
DELIVERABLES	4
INTEGRATION GUIDE	4
DEVELOPER	5
LICENSE	5

Introduction

A low-cost low-power baseband processor IP core for EPC Gen-2 UHF RFID Tag written in Verilog language.

Part No

Angelia RFID TAG - EPC C1G2 - No 001 v1.0

FEATURES

It is operated in the lowest frequency (see FM0 and Miller Encoder/Decoder) with clock gating, and operand isolation.

It is improved by TSMC 180 nm CMOS standard process.

To use it, you need a memory (ROM or RAM)

STANDARD SPECIFICATIONS

EPC™ Radio-Frequency Identity Protocols Generation-2 UHF RFID

Specification for RFID Air Interface Protocol for Communications at 860 MHz – 960 MHz

Version 2.0.0 Ratified

Verilog Modules / Files

NAME DESCRIPTION

bb_proc baseband processor, top module cmd_buf command buffer, serial to parallel

cmd_proc command processor, processes received commands

crc16 CRC-16 encoder/decoder crc5 CRC-5 encoder/decoder

crg clock/reset generator, timing control fm0_enc FM0 encoder, operates in the lowest freq.

frmgen frame generator, generates preamble, backscattered data, end-of-signaling

fs_detector frame-sync detector mem_if memory interface

miller_enc Miller encoder, operates in the lowest freq. prng 16-bit Pseudorandom number generator

rx receiver

two_dff_sync synchronizer, synchronizes signals from clock domain A to B

tx transmitter

Test Bench

bb_proc_tb: an example of the communication between a Reader and a single Tag

Scripts

bb_proc_syn: for synthesis bb_proc_apr: for APR

ROM Code File

rom_code: 64x16, 64 words and 16 bits per word

Pins

Input PIE code (pie_code)
Input delayed PIE code (clk_dpie)

Clock signal in 200 KHz generated by Multivinrator to generate the clock signal in BLF. (clk_200K) rst is generated by POR circuit in our analog front-end circuit to reset the baseband processor. (rst)

Output the backscattered data after processing and computing to control the backscatter circuit in our analog front-end circuit. (bs_data)

Output signals package_complete and crc_check_pass are not necessary for our RFID Tag design.

Block Diagram

Notes

This design is improved by TSMC 180 nm CMOS standard process. For tapeout, I suggest you to generate an EEPROM.

Deliverables

Verilog source code

Verilog testbenches

Test bench Scripts

Synopsys synthesis scripts Synthesized by Synopsys Design Compiler

Synopsys IC Compiler APR by Synopsys IC Compiler

Design specification

Integration Guide

See INTEGRATION GUIDE.pdf

Developer

Mark Chen
Angelia Technology / ICTech
http://www.angelia.eu.org

License

See "License Agreement".