A Glossary of Rings and Modules

Phil Hazelden

2012-02-04 Sat

1 Notation

2 Definitions

- **Algebra** If R is a commutative ring, an R-algebra is a ring A together with a structure map, a homomorphism $f: R \to A$ such that $f(R) \subset Z(A)$.
- **Cokernel** If $f: M \to N$ is an R-module homomorphism, $\operatorname{coker}(f) = N/\operatorname{im}(f)$.
- **Direct sum** If I is an index set and M_i : $i \in I$ are R-modules, then $\bigoplus_{i \in I} M_i = \{(x_i) \in \prod M_i : \text{ all but finitely many } x_i = 0\}$ is an R-module.
- **Group ring** R a ring and G a group. R[G] has elements $rg : r \in R, g \in G$ and multiplication (rg)(sh) = (rs)(gh).
- **Ideal** An ideal I of R is a subring which also has $ai, ia \in I$ for every $a \in R, i \in I$. R/I is another ring.
- **Module** A (left) R-module is an abelian group M with an operator $R \times M \to M$ which distributes over R- and M-addition and is associative with R-multiplication, and $1 \cdot x = x \forall X$. We can quotient a module by another module.
- **Product** If I is an index set and $M_i : i \in I$ are R-modules, $\prod_{i \in I} M_i$ is an R-module.
- **Representation** K a field, G a group; a K-representation of G is a K-vector space V with multiplication $v \mapsto gv$ linear and g(hv) = (gh)v. Equivalent to a K[G]-module.
- Ring We assume all rings have a 1. A division ring has all elements except 0 units (and the zero ring doesn't count); a field is a commutative division ring.
- **Tensor product** Given R-modules M, N, their tensor product is an R-module $M \otimes_R N$ together with an R-bilinear map $b: M \times N \to M \otimes_R N$
- Unit A unit of a ring is an element with both left and right inverses.