Cross-Validation

Problem

Split the dataset $\mathbf{A} = [\mathbf{a}_1, \mathbf{a}_2, ..., \mathbf{a}_N]$ of \mathbf{N} objects, each of which belongs to one of the \mathbf{M} classes $(\forall \mathbf{i}: 1 \leq \mathbf{a}_i \leq \mathbf{M})$, into \mathbf{K} disjoint parts. Each object must fall into exactly one part. Splitting must satisfy several constraints.

Sizes balance constraint

Let cnt(s) is the number of objects belonging to the s part, then $\forall s,t$: $|cnt(s) - cnt(t)| \le 1$

Classes distribution balance constraint

Let cnt(s,c) is the number of objects with class c belonging to the s part, then $\forall s,t,c$: $|cnt(s,c) - cnt(t,c)| \le 1$

Randomness of splitting constraint

All possible splitting should be equiprobable. To be sure in that, for the same input run splitting several times and check that:

- 1. For each object probability of being in any part is equally distributed.
- 2. For each pair of objects probability of being together in the same part is equally distributed.

Example

Let N = 10, M = 4, K = 3, and $A = [a_0 = 1, a_1 = 1, a_2 = 1, a_3 = 1, a_4 = 2, a_5 = 2, a_6 = 2, a_7 = 3, a_8 = 3, a_9 = 4]$ Then:

- The splitting $S_1 = [a_0, a_1, a_2]$, $S_2 = [a_3, a_4, a_5]$, $S_3 = [a_6, a_7, a_8, a_9]$ satisfy the first constraint but it isn't satisfy the second.
- The splitting $S_1 = [a_0, a_1, a_4, a_7, a_9]$, $S_2 = [a_2, a_5, a_8]$, $S_3 = [a_3, a_6]$ satisfy the second constraint but it isn't satisfy the first.
- The splitting $S_1 = [a_0, a_1, a_4, a_7]$, $S_2 = [a_2, a_5, a_8]$, $S_3 = [a_3, a_6, a_9]$ satisfy the both constraints.