第十章 羧酸及其羧酸衍生物 (1)

主要内容

- ■羧酸的结构、命名
- 羧酸的制备(氧化法、Grignard试剂法、腈 水解法)
- 腈的碱性及酸性水解机理

一. 羧酸的结构、命名

酰基(acyl)

羧基 (carboxyl)

■羧酸的命名

 $\begin{array}{c} \mathsf{CH_2COOH} \\ \mathsf{I} \\ \mathsf{HO-CCOOH} \\ \mathsf{CH_2COOH} \end{array}$

丁二酸

顺丁烯二酸

2-羟基丙烷-1,2,3-三羧酸

邻苯二甲酸

琥珀酸

马来酸

柠檬酸

β-羰基丁酸

H₂N-CHCOOH | CH₂COOH

α-氨基丁二酸

o(末端) CH₂(CH₂)9COOH I Br

∞-溴代十一酸

乙酰乙酸

二. 羧酸制备方法

1. 氧化法

2. Grignard试剂 + CO₂

$$R-X \xrightarrow{Mg} RMgX \xrightarrow{CO_2} (RCO_2)_2Mg \xrightarrow{H_2O} RCO_2H$$

制备比 RX 多一碳的羧酸

> 亲核加成机理

3. 腈类化合物的水解(酸性水解和碱性水解)

$$R-CN \qquad \left\{ \begin{array}{c} H \\ \hline H_2O, \Delta \\ \hline OH \\ \hline H_2O \end{array} \right\} \qquad R-COOH$$

例:

BrCH₂CH₂Br
$$\xrightarrow{\text{2 NaCN}}$$
 NCCH₂CH₂CN $\xrightarrow{\text{H}_2\text{O}}$ HOOCCH₂CH₂COOH $\xrightarrow{\text{T工設}}$ CICH₂COONa $\xrightarrow{\text{NaCN}}$ NCCH₂COONa $\xrightarrow{\text{(1) NaOH}}$ HOOCCH₂COOH $\xrightarrow{\text{(2) H}_2\text{O / H}^+}$ 内工設

$$C_3H_7CHO$$
 $\xrightarrow{\text{HCN}}$ C_3H_7CH-CN $\xrightarrow{\text{H}_2O, HCI}$ $C_3H_7CH-COOH$ α —羟基酸

$$C_3H_7CHO$$
 \xrightarrow{HCN} C_3H_7CH — CN $\xrightarrow{H_2O, HCI}$ C_3H_7CH — $COOH$ Δ C_3H_7CH — $COOH$ Δ α —氨基酸

■ 腈的酸催化水解机理(了解)

$$R-CN \xrightarrow{H^+} R-C = NH \xrightarrow{h_2O} R-C = NH \xrightarrow{H_2O} R-C = NH_2$$

$$R-C-NH_2 \xrightarrow{H_2O} R-C-NH_2 \xrightarrow{HO} R-C-NH_3$$

$$R-C-NH_2 \xrightarrow{HO} R-C-NH_3$$

$$R-C-NH_3 \xrightarrow{HO} R-C-NH_4 \xrightarrow{HO} R-C-NH_3$$

■ 腈的碱催化水解机理 (了解)

小结

- 羧酸的结构及命名
- 羧酸的几种常用制法(氧化法、Grignard试剂法、 腈类化合物水解法)
- 腈的酸性及碱性水解机理