Bhoris Dhanjal

Calculus IV

Contents

1	Functions of several variables						
	1.1	Examples of functions of several variables	1				
	1.2	Non-existence of limit by 2 path test	1				
	1.3	Existence of limit with ε, δ definition	2				
	1.4	Continuity	3				
	1.5	Polar Coordinates	4				
		1.5.1 Limits in Polar coordinates	5				
		1.5.2 Epsilon-delta with polar coordinates	5				
	1.6	Algebra of limits	5				
	1.7	General multivariate limit	5				
		1.7.1 Uniqueness of limit in \mathbb{R}^n	6				
2	Differentiation						
3	Apr	olications	8				

Chapter 1

Functions of several variables

1.1 Examples of functions of several variables

$$f(x,y) = x + y \log x$$
 $f: \mathbb{R}^2 \to \mathbb{R}$ Scalar valued function $f(x,y) = (x^2y,\cos x,e^x - 9)$ $f: \mathbb{R}^2 \to \mathbb{R}^3$ Vector valued function

Clearly, $f: \mathbb{R} \to \mathbb{R}$ is a particular case of scalar valued function.

1.2 Non-existence of limit by 2 path test

For a function $f: \mathbb{R} \to \mathbb{R}$ the limit exists if limit value is the same along all possible paths, i.e. left hand and right hand limit are equivalent.

For a multivariate function the 2 path test can be used to show non existence of a limit.

Example 1.1. Show that $\lim_{(x,y)\to(0,0)} \frac{2xy^2}{x^2+y^2}$ doesn't exist.

Proof. Consider $x = my^2$ and let $y \to 0$, then

$$\lim_{y \to 0} f(my^2, y) = \lim_{y \to 0} \frac{2my^4}{(m^2 + 1)y^2} = \frac{2m}{1 + m^2}$$

Therefore, the limit value varies for different values of m.

Example 1.2. Show that $\lim_{(x,y)\to(0,0)} \frac{x+y}{x-y}$ doesn't exist.

Proof. Consider first along x axis (i.e. y = 0)

$$\lim_{x \to 0} \frac{x}{x} = 1$$

Consider now along y axis (i.e. x = 0)

$$\lim_{y \to 0} \frac{y}{-y} = -1$$

Since the limit is not path independent we can say the limit does not exist. \Box

Example 1.3. Show that $\lim_{(x,y)\to(0,0)} \frac{x^2y}{x^4+y^2}$ doesn't exist.

Proof. Along x and y axis the limits are both zero. Consider instead the path $y = x^2$

$$\lim_{x \to 0} \frac{x^4}{2x^4} = \frac{1}{2}$$

Since the limit is not path independent it does not exist.

Example 1.4. Show that the $\lim_{(x,y)\to(0,0)} \frac{x^2}{x^2+y^2-2x}$ doesn't exist.

Proof. Along x, y axis the limit is 0. Consider the path $y = \sqrt{2x}$

$$\lim_{x \to 0} \frac{x^2}{x^2} = 1$$

Since the limit is not path independent it does not exist.

1.3 Existence of limit with ε, δ definition

Recall the single variable definition of a limit,

Definition 1.5 (Limit of a single valued function). For a function $f: \mathbb{R} \to \mathbb{R}$, $\lim_{x\to a} f(x) = L \iff \forall \varepsilon > 0, \exists \delta \text{ such that } 0 < |x-a| < \delta \implies |f(x)-L| < \varepsilon$

Definition 1.6 (Limit of a multivariate function). For a function $f: \mathbb{R}^2 \to \mathbb{R}$, $\lim_{(x,y)\to(a,b)} f(x) = L \iff \forall \varepsilon > 0, \exists \delta \text{ such that}$

$$0<||(x,y)-(a,b)||_2<\delta\implies|f(x,y)-L|<\varepsilon$$

, alternatively

$$\sqrt{(x-a)^2 + (x-b)^2} < \delta \implies |f(x,y) - L| < \varepsilon$$

Example 1.7. Show that $\lim_{(x,y)\to(0,0)} \frac{x-y}{1+x^2+y^2} = 0$

Proof. Let $\varepsilon > 0$, consider

$$|f(x,y) - L| = |f(x,y)| = \left| \frac{x - y}{1 + x^2 + y^2} \right|$$

= $\frac{|x - y|}{1 + x^2 + y^2}$

since $1 + x^2 + y^2 \ge 1$

$$\leq |x - y|$$

$$\leq |x| + |y|$$

$$\leq \sqrt{x^2 + y^2} + \sqrt{x^2 + y^2} = 2\sqrt{x^2 + y^2}$$

Therefore, if $2\sqrt{x^2+y^2}<\varepsilon \implies |f(x,y)-L|<\varepsilon$ so take $\delta=\varepsilon/2$.

Example 1.8 (H.W). Show that $\lim_{(x,y)\to(0,0)} \frac{xy^2}{x^2+y^2} = 0$

Proof. Let $\varepsilon > 0$, consider

$$|f(x,y) - L| = \left| \frac{xy^2}{x^2 + y^2} - 0 \right| = \frac{|x|y^2}{x^2 + y^2}$$

$$= \frac{|x|}{\frac{x^2}{y^2} + 1}$$

$$\leq |x|$$

$$\leq \sqrt{x^2 + y^2} < \varepsilon \implies |f(x,y) - L| < \varepsilon$$

So we can just pick $\delta = \varepsilon$.

1.4 Continuity

Definition 1.9 (Continuity). A function $f : \mathbb{R}^2 \to \mathbb{R}$ is said to be continuous at a point (a,b) if $\forall \varepsilon > 0, \exists \delta > 0$ such that,

$$0 < ||(x,y) - (a,b)||_2 < \delta \implies |f(x,y) - f(a,b)| < \varepsilon$$

provided f(a,b) exists. Alternatively,

$$\lim_{(x,y)\to(a,b)} f(x,y) = f(a,b)$$

Note that, we can show the function is discontinuous if

- 1. f(a,b) doesn't exist.
- 2. $\lim_{(x,y)\to(a,b)} f(x,y)$ doesn't exist.
- 3. Both exist but are not equal to each other.

Example 1.10. Show that the given function is continuous at (0,0) where,

$$f(x,y) = \begin{cases} xy\left(\frac{x^2 - y^2}{x^2 + y^2}\right) & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

Proof. Here, f(0,0) = 0. Clearly we have that $|x^2 - y^2| \le |x^2 + y^2|$. Let $\varepsilon > 0$,

$$|f(x,y) - L| = \left| xy \frac{x^2 - y^2}{x^2 + y^2} - 0 \right|$$
$$= |x||y| \left| \frac{x^2 - y^2}{x^2 + y^2} \right|$$
$$\le |x||y|$$

$$\leq \sqrt{x^2 + y^2} \sqrt{x^2 + y^2} = x^2 + y^2$$

So when $x^2 + y^2 < \varepsilon \implies |f(x,y) = f(0,0)| < \varepsilon$ so we take $\delta = \sqrt{\varepsilon}$.

Example 1.11. Show that the given function is discontinuous at (0,0) where,

$$f(x,y) = \begin{cases} \frac{2xy}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

Proof. content...

1.5 Polar Coordinates

The polar coordinates r(the radial coordinate) and θ (the angular coordinate), are defined in terms of cartesian coordinates as below.

$$x = r\cos\theta, y = r\sin\theta$$
$$r = \sqrt{x^2 + y^2}, \theta = \arctan\left(\frac{y}{x}\right)$$

1.5.1 Limits in Polar coordinates

Use polar coordinates when you are over (0,0)

Example 1.12. Show that $\lim_{(x,y)\to(0,0)} \frac{2xy}{x^2+y^2}$

Proof. Put $x = r \cos \theta$ and $y = r \sin \theta$

$$f(x,y) = \frac{2xy}{x^2 + y^2} \iff f(r,\theta) = \frac{2r^2 \cos \theta \sin \theta}{r^2} = 2\cos \theta \sin \theta$$
$$\lim_{r \to 0} f(r,\theta) = \lim_{r \to 0} 2\cos \theta \sin \theta = 2\cos \theta \sin \theta$$

Which depends on θ .

1.5.2 Epsilon-delta with polar coordinates

Definition 1.13. $\forall \varepsilon > 0 \exists \delta > 0 s.t.$

Example 1.14. Show that $\lim_{(x,y)\to(0,0)} \frac{x^3}{x^2+v^2}$

Proof.

$$f(r,\theta) = \frac{r^3 \cos^3 \theta}{r^2} = r(\cos \theta)^3 \tag{1.1}$$

Let $\varepsilon > 0$, consider $|f(r,\theta) - L| = |r||\cos\theta|^3 \le |r|$. So we can set $\delta = \varepsilon$

Example 1.15. Find the domain and range of $g(x,y) = \sqrt{9-x^2-y^2}$

Proof. The sqrt interior must be positive so take $x^2 + y^2 \le 9$, so its a circle of radius 3 centered at 0. So the domain is the circle. The range is $\{z \mid 0 \le z \le 3\} = [0,3]$

1.6 Algebra of limits

1.7 General multivariate limit

Theorem 1.16 (Limit of a function $f : \mathbb{R}^n \to \mathbb{R}$). For a function $f : \mathbb{R}^n \to \mathbb{R}$, $\lim_{x\to a} f(x) = L$ if and only if $\forall \varepsilon > 0$ there exists $\delta > 0$ such that

$$0 < ||x - a||_n < \delta \implies |f(x) - L| < \varepsilon$$

Definition 1.17 (ε - neighbourhood). $B(a, \varepsilon)$ open ball of radius ε around α .

$$0 \le ||x - a||_n < \varepsilon$$

Definition 1.18 (Deleted ε neighbourhood). $B(a, \varepsilon) - \{a\}$

Definition 1.19 (Alternate definition of a limit). For a function $f : \mathbb{R}^n \to \mathbb{R}$, $\lim_{x\to a} f(x) = L$ if and only if $\forall \varepsilon > 0$ there exists $\delta > 0$ such that

$$x \in B * (a, \delta) \implies |f(x) - L| < \varepsilon$$

Definition 1.20 (Bounded function). Let E be a non-empty subset of \mathbb{R}^n . The function $f: E \to \mathbb{R}$ is said to be bounded in some δ -neighbourhood of point $p \in \mathbb{R}^n$ if there exists M > 0 in \mathbb{R} such that

Definition 1.21 (Relation between bounded function and limit of a function in \mathbb{R}^n). Let $f: \mathbb{R}^n \to \mathbb{R}$ and $p \in \mathbb{R}^n$. Let f(p) be defined. If $\lim_{x \to p} f(x)$ exists then f is bounded in some neighbourhood of point p.

The converse of 1.21 isn't true.

Theorem 1.22 (Uniqueness of limit in \mathbb{R}^n). Let $f: \mathbb{R}^n \to \mathbb{R}$ and $p \in \mathbb{R}^n$. If $\lim_{x \to p} f(x)$ exists then it is unique.

Chapter 2

Differentiation

Chapter 3

Applications