

NBA 5420: Investment and Portfolio Management Class 3: Arbitrage Pricing

Professor Matt Baron February 10, 2016

Topics

- Futures and Swaps
 - How forward and futures contracts work
 - Hedging vs. speculating
 - Relationship between futures and spot prices
- Options
 - Put-call parity
 - Binomial option pricing model
 - Black-Scholes

No Arbitrage / Law of One Price

- If two contracts yield identical cash flows in all future states of the world, then their price today must be equal.
 - Otherwise, an arbitrageur would...
 - Buy the one with the lower price
 - Short the one with the higher price
 - No risk involved
 - Since all future cash flows would perfectly cancel each other out in all future states of the world

No Arbitrage / Law of One Price

Example:

Sunny Rainy

Contract 1: P = 10, Cash flows: -1 or +2

Contract 2: P = 11, Cash flows: -1 or +2

FUTURES

2/17/2016 5

Forward contracts

- Agreement today for purchase in the future. Traders agree on:
 - Asset to be delivered (called the <u>underlying asset</u>)
 - Date of delivery AND payment
 - Amount of payment (called the forward price)
- Both parties are protected from price fluctuations, which are often substantial. For example:
 - Oil producers (Exxon-Mobil) worried the price will go down.
 - Oil consumers (airlines) worried the price will go up.
 - Therefore, they agree to lock in a price today for delivery and payment a year from now.

Futures contracts

- Formalize and standardize forward contracts, providing a matching mechanism for buyers and sellers.
 - Standard terms
 - Contract size
 - Acceptable grade of commodity
 - Delivery date
 - Place of delivery, etc.
- 2. Most importantly, minimize counterparty risk
 - Requiring initial margin accounts on both sides
 - Transferring money on a day to day basis
 - Requiring the loser to meet margins on a daily basis

Underlying asset

- The asset that can be bought/sold with the derivative is called the underlying asset.
- Futures / Swaps / Options are written on a variety of assets:
 - stocks, indexes, bonds,
 - interest rates, futures,
 - foreign currencies, commodities, etc.

Long and short positions

- The <u>long</u> position commits to **buy** the commodity at the delivery date
 - Benefits if the price of underlying goes up
- The short position commits to sell the commodity at the delivery date
 - Benefits if the price of underlying goes down
- Although it is common to talk of purchases and sales of futures contracts, a futures contract is not really "bought" or "sold" like a bond or stock
 - The contract is entered into by mutual agreement
 - No money changes hand when the contract is signed.

Term structure

- Various expirations (or maturities):
- If you want to hold a position in a commodity long-term:
 - You just 'roll-over' your position from one front-month contract (usually the most liquid) to the next

Month	Options	Charts	Last	Change	
MAR 2016	ОРТ	•	33.74	+0.52	
APR 2016	OPT	al	35.41	+0.70	
MAY 2016	ОРТ	•	36.86	+0.83	
JUN 2016	ОРТ	al	38.06	+0.97	
JUL 2016	ОРТ	•	38.99	+1.04	
AUG 2016	OPT	al	39.62	+0.99	
SEP 2016	ОРТ	•	40.34	+1.16	
OCT 2016	OPT	al	40.72	+1.09	
NOV 2016	ОРТ	1	41.08	+1.02	
DEC 2016	ОРТ	1	41.67	+1.16	

Trading futures

- In practice, trading futures feels like buying (or shorting) the underlying
 - To buy a futures that trades at \$100, you put \$100 cash into your margin account.
 - Then, if the futures price goes up to \$110, you sell.
 - Your margin account now has \$110 in it. Profit = \$10.
- Actually, a leveraged bet: In practice, you don't have to put up 100% margins, more like 10%
 - You need \$10 down to buy that \$100 contract of oil.
 - If the futures price goes up to \$110, you've doubled your money (made \$10 on the original \$10)
 - 10-1 leveraged bet

Margins on S&P 500 futures

Trading futures

- Usually, traders don't hold to expiration (and take delivery)
 - They close out their position by selling
- Suppose you are an oil consumer (airlines) trying to hedge oil risk.
 - Oil (both spot and futures price) is currently at \$100.
 - Buy a futures: if oil goes up to \$110, then you make \$10 in the futures
 - Then, when you buy a barrel of oil for \$110, effective price of oil is \$100
 - (= \$110 \$10)
 - Equivalent to locking in a price of \$100

Trading futures

- Works because the offsetting positions (long and short) over the trading day (to various anonymous counterparties) are **netted out** by the exchange
 - The exchange automatically transfers cash between margin accounts (on a daily basis) as the future price fluctuates.
 - Also, contracts now often "cash settled" (rather than by "physical delivery").

Market manipulation (not recommended!)

- Here's how to "corner the market":
 - 1. Buy a long position in copper futures
 - 2. Secretly buy up much of the world's copper in the spot market, pushing the price up.
 - The world will mistake this for fundamental demand
 - 3. Convert your long futures position to a short position
 - Making a big profit from your long futures position
 - Dump your physical copper and send the price of copper plummeting
 - Exit your short positions (making a big profit)
 - Get prosecuted and go to jail

A modern "corner"

What Happened Next?

- 1. Porsche settled 5% of VW options to ease the short squeeze. VW shares fell 44.2%
- 2. Porsche reported a profit of €6.8 billion from the VW options trade, compared to €1 billion from car sales

Market manipulation (not recommended!)

- More recently, a popular way of manipulating the market is "hammering the close"
 - Buying up a lot of the underlying (usually equity) to manipulate the price of the underlying just as the futures / derivative contract is about to expire.

(This is also illegal.)

Notation

```
t = current date
```

T = delivery date specified by contract (maturity or expiration)

 S_T = spot price of the underlying at time T

 $F_{t,T}$ = market price of the contract at t for delivery at T

Payoff Diagram for Futures

- Payoff to long = $(S_T K)$, Payoff to short = $(K S_T)$
- K = the price at which you buy/sell the futures
- So this is a zero-sum game
 - Payoff to long + Payoff to short = 0.

No arbitrage pricing

Two equivalent ways of locking in the price of oil for a year as an oil consumer:

- 1. Buy a futures contract
 - Oil (both spot and futures price) is currently at \$100.
 - Buy a futures: if futures goes up to \$110, then you make \$10 in the futures
 - Then, when you buy a barrel of oil for \$110, effective price of oil is \$100 (= \$110 - \$10)
 - Equivalent to locking in a price of \$100
- 2. Buy a barrel of oil now for \$100 and store it for a year
 - Assuming (for simplicity) no storage costs or interests costs

No arbitrage pricing

 This suggests a no-arbitrage pricing formula (adding back in potential storage costs and interest costs):

$$Futures_{t,T} = Spot_t (1+r)^{T-t} - D$$

 Where D represents: storage costs, dividends, convenience yield, etc. (paid at time T)

- Formula suggests that the futures price is essentially equivalent to the spot price (adjusting for interest & storage costs).
 - So speculating on the futures is essentially the same as speculating on the spot – but without actually having to deal with barrels of oil

Contango vs. Backwardation

Contango: Futures_{t,T} > Spot_t

(upward sloping term structure)

Backwardation: Futures_{t,T} < Spot_t

(downward sloping term structure)

Contango vs. Backwardation

- Keynes thought that contango vs. backwardation was driven by whether the long or the short was more risk-averse
 - i.e. willing to pay a higher risk-premium to lock in the forward price
- Most people still believe this, but it's <u>actually in direct conflict</u> with noarbitrage pricing:

$$Futures_{t,T} = Spot_t (1+r)^{T-t} - D$$

- The no-arbitrage formula says the futures-spot spread just depends on interest and storage costs
- The arbitrage strategy from the previous slide doesn't involve taking any risk, so there shouldn't be any risk premium built into the futures-spot spread (unless the commodity is not storable)

Contango vs. Backwardation

- Technical aside:
 - Now, there could be a risk premium in the spot price depending on who (the consumer or producer) is more risk-averse
 - The spot price would appreciate (or depreciate) over time, and the futures would appreciate (or depreciate) in parallel.
 - But the futures-spot spread would NOT depend on the riskpremium because it is pinned down by no-arbitrage

Futures contracts

- Commodities
 - Energy: Crude Oil (WTI or Brent) & Natural Gas
 - Grains: Corn & Soybeans
 - Metals: Gold and copper
 - "Softs": Cotton, Cocoa, Sugar, Coffee
 - Electricity
- Non-commodities
 - Eurodollar
 - E-mini S&P 500
 - EUR/USD & JPY/USD
 - Swaps (as a result of Dodd-Frank)

Example: WTI Crude (traded at the CME)

- Oil Benchmark: WTI crude
 - Based on the spot price of Light Sweet Crude traded at Cushing, OK
 - Still useful for oil consumers/producers of other grades
 - Even though the price for different grades can vary somewhat relative to the benchmark.

	Volume										Open Interest	
	Venue Detail			Trade Type Detail								
Month	Globex	Open Outcry	PNT / ClearPort	Total Volume	Block Trades	EFP	EFR	EFS	TAS	Deliveries	At Close	Change
MAR 16	611,564	28	6,518	618,110	3,080	1,169	0	0	25,671	0	605,746	-3,085
APR 16	175,868	0	2,589	178,457	2,192	2	0	0	9,915	0	209,740	4,291
MAY 16	85,443	0	739	86,182	343	1	0	0	820	0	128,020	9,585

Futures Exchanges

- Two major futures exchanges
 - CME (merger of CME, CBOT, NYMEX, COMEX, etc.)
 - ICE (merger of IPE [Brent], NYBOT [softs], etc.)
- Other exchanges: London Metal Exchange, Shanghai metal exchange
- Recent trend is exchange consolidation:
 - Multiple venues historically → CME and ICE today
 - Opposite trend from equities:
 - 3 major venues historically (NYSE, NASDAQ, AMEX)
 - → 30+ venues today (NYSE Arca, ISE, BATS, Turquoise, IEX, etc.)

SWAPS

2/17/2016 28

Class announcements

As I said in an email last week,
 Problem Set 3 not due this Friday

 Due date pushed back a week to: Friday, February 26

2. I removed a problem, so please re-download Problem Set 3 from Blackboard.

Various kinds of swaps

Amounts outstanding of over-thecounter (OTC) derivatives

(in Billions of USD)

Breakdown by Interest Rate Instruments

Interest rate swaps

- Derivatives are also commonly used by both financial and nonfinancial firms when they raise capital.
 - A Japanese firm might want to borrow yen at a floating rate.
 However, there might be more demand for its debt from dollar-based investors who want to be paid a fixed rate.

- Banks use interest-rate derivatives to manage potential mismatches between their assets (loans) and their liabilities (checking accounts, for instance).
 - Banks often have assets with a fixed rate of interest but pay a floating rate on their liabilities.
 - Or they could purchase options that, for example, "cap" what they might be forced to pay out, or put a "floor" on the rate they would receive.

Interest rate swaps

Credit Default Swaps (CDS)

- The CDS seller insures the buyer against some bond defaulting
 - The buyer of the CDS makes a series of payments (the CDS "fee" or "spread") to the seller
- In exchange, the buyer receives a payoff if the loan defaults.
 - Traditionally, in the event of default, seller of the CDS pays the full par value of the bond and takes possession of it

Credit Default Swaps (CDS)

Credit Default Swaps (CDS)

- However, in many cases, anyone can purchase a CDS, even buyers who do not hold the bond:
- No direct <u>insurable interest</u>
 - Some critics assert that this should be banned
 - Buying fire insurance on your neighbor's house? Pure speculation, not a hedge.
- In this case, a protocol exists to hold a <u>credit event auction</u> to determine the recovery payment

Hedging vs. Speculating

- Hedging:
 - If used properly, futures, options, swaps, and other 'synthetics' can reduce risk in the world (or smooth it out over more investors)
 - Oil producers (Exxon-Mobil) worried the price will go down.
 - Oil consumers (airlines) worried the price will go up.
 - Therefore, they agree to lock in a price today
- Speculating:
 - People with different beliefs place bets.
 - Now, someone is going to win and someone is going to lose.
 - So aggregate risk has increased
 - Relative to before, when no money was changing hands = zero risk
- Dick Thaler and Selena Gomez explain:
 - https://www.youtube.com/watch?v=sD3ZSqCKOCg

Chart 9 Selected European sovereigns' CDS premia(a)

Counterparty Risk

- Counterparty risk is a huge issue with swaps
 - AIG nearly took down the financial system
- AIG got paid ~10 cents as an insurance premium for every \$100 in mortgage-backed securities (MBS) that it ensured against default.
 - They basically believed the probability of default was negligible.
 - But after Lehman's collapse, expected defaults spiked
 - And suddenly AIG was on the hook for \$100+ billion
 - Of course, it didn't have that money set aside, as is required for traditional insurance

Counterparty Risk

- Financial regulation (Dodd-Frank)
 - Put swaps on exchanges, limit issuance to situations where one party has a legitimate business need (hedging, not speculating)
 - Advantages: collateral, netting
 - Disadvantages: Will reduce size of swaps market (but this might be a good thing, since you probably shouldn't be selling insurance unless you have the collateral to pay up later)
 - We will talk a lot more about counterparty risk and swaps near the end of the course when we return to financial regulation

OPTIONS

2/17/2016 4

Calls and puts

- Call option
 - Gives its owner the right (but not the obligation) to buy the asset at a fixed price, called the strike price

- A put option
 - Gives its owner the right to sell the asset at a fixed price

American vs. European options

- European option:
 - Can exercise only at a fixed date, called the maturity or expiration date of the option.
- The American option
 - Gives the right to exercise at any time prior to, and including the expiration date. ("early exercise")
- Virtually all options traded in the US are American
 - Except for foreign currency options and S&P500 index options traded at the CBOE
 - But we will focus mainly on European options in subsequent slides because they are easier to analyze.

Notation

```
    t = today's date
    T = expiration
    S<sub>t</sub> = price of the underlying asset today
    S<sub>T</sub> = price of the underlying asset at expiration (a random variable)
    K = strike price
    r = the risk-free interest rate
```

 $C_{t,K}$ = price of a call option of strike K

 $P_{t,K}$ = price of a put option of strike K

Payoff Diagrams for Options

Price vs. Payoff

General notes about the price

- 1. Price always positive
 - Option always has upside potential, but no downside
- 2. Price always greater than final payoff for a given stock price
 - Because there's always 'optionality'
- 3. Price decreases as you approach expiration
 - Optionality decreases over time
- 4. American options are at least as valuable as their European counterparts
 - Having the extra option of early exercise is always a good thing, because you can always choose not to use it

Option Trading

- Both parties deal only with the clearinghouse, which guarantees contract performance and nets out buying / selling
- Option writers ("sellers") post margins to guarantee that they will fulfill their obligations.
 - Margin requirements apply only to the option writer.
 - Since the option buyer cannot harm the writer once the option price has been paid, which is always done in full at initiation.
- Like futures contracts, terms for options are standardized
 - This increases the depth of the trading in any particular option
 - Most trading is around at-the-money strikes

Put Call Parity

$$C = P + S - \frac{K}{(1+r)}$$

where C and P have the same K strike price

- <u>Proof</u>:
 - Use the payoff diagrams to show the payoffs on both sides of the equation are equal in every future state (S_T) of the world.
 - Therefore, by no arbitrage, the prices today must be equal
- Put-Call Parity does not apply to American options because of early exercise

Early exercise (American options)

- It is never optimal to early exercise an American call on a stock paying no dividend
- 2. It is sometimes optimal to early exercise an American call on a dividend paying stock just before the payment of a large dividend
 - Stock price will drop on the ex-dividend date by the dividend amount.
- 3. Early exercising an American **put** can be optimal whether the stock pays a dividend or not
 - Buying a put is like selling the stock but not receiving the proceeds (=K) until maturity.
 - Exercising early accelerates the repayment of the loan, and can be optimal.
 - Example: Suppose the firm goes bankrupt, so $S_t = 0$. You then want to exercise immediately because the stock price cannot go any lower.
 - There is no point in waiting: get K now (instead of at T).

How NOT to price options

Expected value pricing:

$$Price = E[S_T] = \int Prob \cdot S_T dS_T$$

- Why? Because the market risk premium is not built into the option price
 - We need to infer market probabilities and risk premia from stock valuations and transfer that into option pricing

A no-arbitrage pricing idea

- An option can be 'dynamically replicated' using stocks and bonds.
 - If the payoffs from the option and the 'dynamic portfolio' of stocks and bonds are equal in all future states of the world:
 - Then, by no-arbitrage, the price of the option must equal the price of the stock and bond portfolio

Black-Scholes (1973)

$$C(S,t) = N(d_1)S - N(d_2)Ke^{-r(T-t)}$$

$$d_1 = \frac{1}{\sigma\sqrt{T-t}} \left[\ln\left(\frac{S}{K}\right) + \left(r + \frac{\sigma^2}{2}\right)(T-t) \right]$$

$$d_2 = d_1 - \sigma\sqrt{T-t}$$

N() is the cumulative distribution function of the standard normal distribution

- T-t is time to maturity
- S is the spot price
- K is the strike price
- r is the risk-free interest rate
- σ is the (future) volatility of returns of the underlying asset
 which is both **unknown** and **assumed to be constant across time and strikes**

Black-Scholes

- Notice that the probabilities of the stock moving up or down are not used
 - This is a general fact about no arbitrage pricing
- Black-Scholes formula is a function of volatility
 - If volatility is efficiently priced, then derivatives are a way of transferring risk
 - From those that don't want → to those that do (in exchange for compensation)
 - If you believe that the underlying stock is efficiently priced, buying an option is equivalent to taking a bet on volatility

Implied volatility

- A measure of expected future market volatility
 - Use the B-S formula in reverse: take options prices as given & back out implied volatility
- Implied volatility is not constant across strikes (K)
 - Higher at more extreme strikes (the "volatility smile"),
 - Suggesting that tail risk is priced differently from normal volatility
 - Or that assumption of Normally Distributed stock returns used in B-S formula is not accurate
- Implied volatility is generally higher than future realized volatility, suggesting that investors get a premium for bearing volatility risk

Volatility smile

VIX

10 Year VIX and VXV

OPTIONAL MATERIAL ON OPTIONS (WILL NOT BE TESTED ON EXAMS)

2/17/2016 59

A binomial options example

- Assume r = 0.10.
- What is the price of a European put option on this stock (exercising at t=2) with strike price K=104?

A binomial options example

For no-arbitrage price, we want to build a 'replicating' stock/bond portfolio at t=0 that has the same payoff as the option in t=1 in both the 'up' and 'down' state

- Then the price of the option at t=0 would have to equal the price of the stock/bond portfolio at t=0
- Let x = number of stock shares, y = bonds
 - Note that bonds cost \$1 at t=0, payoff \$(1+r) at t=1

Step 0: Calculate the option payoff in each state at t=1

• Payoff of put = $max(0, K - S_T)$, which is max(0,104-120) = 0 in the 'up' state and max(0,104-80)=24 in the 'down' state

Step 1: Replicate the payoffs at t=1

- Setting the payoffs at t=1 of the stock/bond portfolio equal to the payoff of the option
 - 'Up' State: 120x + 1.1y = 0
 - 'Down' State: 80x + 1.1y = 24
- Solve for x and y: replicating portfolio needs x = -3/5 shares of stock and y = 720/11 dollars in bonds

A binomial options example

Step 2: Calculate the price at t=0

- From Step 1, we found the replicating portfolio needs x = -3/5 shares of stock and y = 720/11 dollars in bonds
- The price of the option at t=0 must equal the price of the replicating portfolio of stocks/bonds at t=0

```
Price of put P_t(S_t) = price of stock/bond portfolio
= 100 x + y
= 100 (-3/5) + 720/11
= 5.45
```

A binomial pricing formula

$$C = \frac{qC_u + (1-q)C_d}{1+r}$$

- Where $q = \frac{(1+r)-d}{u-d}$ is called the 'risk-neutral probability'
- u, d are the stock prices in the up and down states
- C_u and C_d are the payoffs of the option in the up/down states
- The probabilities of the stock moving up or down are NOT used in the final formula
 - This is a general fact about no arbitrage pricing