Estimation of Dynamic Discrete Choice Models by Maximum Likelihood and Simulated Method of Moments

Model

Figure: Decision Tree

Agent Behavior

- ► Objective
- Constraints
 - Institution
 - Information

Value Function

$$V(s \mid \mathcal{I}(s)) = Y(s) + \max_{s' \in \Omega(s)} \left\{ \frac{1}{1+r} \left(-C(s', s) + \mathbb{E}[V(s' \mid \mathcal{I}(s')) \mid \mathcal{I}(s)] \right) \right\}$$

Policy Function

$$s' = egin{array}{ll} \hat{s}' & ext{if} & \mathbb{E}\left[V(\hat{s}') \, ig| \, \mathcal{I}(s)
ight] - C(\hat{s}',s) > \mathbb{E}\left[V(ilde{s}') \, ig| \, \mathcal{I}(s)
ight] \ & ilde{s}' & ext{otherwise} \end{array}$$

Objects of Interest

- ▶ Net Return
- ► Gross Return

Net Return

$$NR(\hat{s}', \tilde{s}', s) = \frac{\mathbb{E}\left[V(\hat{s}') - V(\tilde{s}') \,\middle|\, \mathcal{I}(s)\right] - C(\hat{s}', s)}{\mathbb{E}\left[V(\tilde{s}') \,\middle|\, \mathcal{I}(s)\right]}$$

Gross Return

$$GR(\hat{s}', \tilde{s}', s) = rac{\mathbb{E}\left[\left. ilde{V}(\hat{s}') - \tilde{V}(\tilde{s}') \, \middle| \, \mathcal{I}(s)
ight]}{\mathbb{E}\left[\left. ilde{V}(\tilde{s}') \, \middle| \, \mathcal{I}(s)
ight]}$$

Parametrization

- Benefits
- Costs
- Measurements

Functional Forms

$$Y(s) = X(s)'\beta_s + \theta'\alpha_s + \epsilon(s) \quad \forall \quad s \in \mathcal{S}$$

$$C(\hat{s}', s) = Q(\hat{s}', s)'\delta_{\hat{s}', s} + \theta'\varphi_{\hat{s}', s} + \eta(\hat{s}', s) \quad \forall \quad s \in \mathcal{S}^c$$

$$M(j)$$
 = $X(j)'\kappa_j + \theta'\gamma_j + \nu(j)$ $\forall j \in M$

Distributions of Unobservables

Individual Likelihood

$$\int_{\underline{\Theta}} \left[\prod_{j \in M} \underbrace{f\left(M(j) \mid D, \theta; \psi\right)}_{\text{Measurement}} \times \prod_{s \in \mathcal{S}} \left\{ \underbrace{f\left(Y(s) \mid D, \theta; \psi\right)}_{\text{Outcome}} \underbrace{\Pr\left(G(s) = 1 \mid D, \theta; \psi\right)}_{\text{Transition}} \right\}^{\mathbb{I}\left\{s \in \Gamma\right\}} \right] dF(\theta)$$

Results

Table: Cross Section Model Fit

	Average Earnings		State Frequencies	
State	Observed	ML	Observed	ML
High School Graduates	4.29	3.84	0.30	0.32
High School Dropouts	2.29	2.59	0.17	0.14
Early College Graduates	6.73	7.46	0.29	0.29
Early College Dropouts	4.55	3.87	0.12	0.12
Late College Graduates	4.84	6.22	0.06	0.07
Late College Dropouts	4.89	4.88	0.06	0.06

Objects of Interest

- Choice Probabilities
- ► Gross Return
- ▶ Net Return
- Schooling Attainment

Figure: Choice Probability, Early College Enrollment

Figure: Gross Return, Early College Enrollment

Figure: Net Return, Early College Enrollment

Figure: Schooling Attainment by Cognitive Skills

Figure: Schooling Attainment by Non-Cognitive Skills

Monte Carlo Study

Synthetic Agents	5,000
Structural Parameters	192
Free Parameters	138

Simulated Method of Moments

Criterion Function

$$\underset{\psi}{\operatorname{arg\,min}} \quad \Lambda(\psi) = \left[\check{f} - \hat{f}(\psi)\right]' W^{-1} \left[\check{f} - \hat{f}(\psi)\right]$$

, where
$$\hat{f}(\psi) = \frac{1}{R} \sum_{r=1}^{R} \hat{f}_r(u_r; \psi)$$

Number of Moments 250

Number of Replications 50

Weighting Matrix Diagonal Matrix with Variances

Optimization Algorithm TAO POUNDerS

Moment Conditions

- Benefit Equations
 - Means
 - Standard Deviations
 - Ordinary Least Squares Models
- Cost Equations
 - ► State Frequencies
 - Linear Probability Models

Parameter Perturbations

Figure: Parameter Perturbation, Cost

High School Graduation, State Frequency

Figure: Parameter Perturbation, Benefit

HS Graduates, Average Wages

HS Graduation, State Frequency

Model Fit

Table: Cross Section Model Fit

	Average Earnings		
State	True	ML	SMM
High School Graduates	3.87	3.87	3.86
High School Dropouts	2.51	2.52	2.53
Early College Graduates	6.80	6.78	6.86
Early College Dropouts	3.90	3.95	3.92
Late College Graduates	6.03	6.14	6.24
Late College Dropouts	5.10	5.07	5.08
RMSE		0.05	0.07

Table: Cross Section Model Fit

	State Frequencies		
State	True	ML	SMM
High School Graduates	0.32	0.32	0.33
High School Dropouts	0.14	0.14	0.13
Early College Graduates	0.29	0.29	0.29
Early College Dropouts	0.12	0.12	0.13
Late College Graduates	0.07	0.07	0.05
Late College Dropouts	0.06	0.06	0.07
RMSE	·	0.00	0.00

Figure: Function Value

Economic Implications

Table: Economic Implications

	Gross Return		
State	True	ML	SMM
High School Graduation	30%	41%	42%
Early College Graduation	88%	96%	96%
Late College Graduation	29%	28%	36%
RMSE		0.09	0.13

Table: Economic Implications

	Net Return		
State	True	ML	SMM
High School Graduation	63%	61%	212%
Early College Graduation	57%	51%	125%
Late College Graduation	14%	12%	38%
RMSE		0.05	0.75

Table: Standard Deviations

		$\hat{\sigma}_{\eta_{(\hat{s}',s)}}$	
State	True	ML	SMM
High School Graduation	0.27	0.24	0.85
Early College Graduation	0.61	0.59	1.49
Late College Graduation	0.61	0.59	1.49
RMSE		0.01	0.68

Tuning Parameters

- ► Moment Conditions
- Replications
- Optimization Algorithm

Moment Conditions

Table: Set of Moments

	Dynami	ic (Panel)	Moments	Cross Section Moments
Sets	Base	Alt. A	Alt. B	Base
		Benefit N	Models	
Means	✓	✓	✓	✓
Standard Deviations	✓	✓	✓	✓
Ordinary Least Squares	✓	✓	✓	✓
Correlations			✓	
		Choice N	/lodels	
State Frequencies	✓	✓	✓	✓
Linear Probability				
- cross section				\checkmark
- dynamic	✓	✓	✓	
Probit				
- dynamic		✓	✓	
Correlations			✓	

Table: Set of Moments

	Dynamic (Panel) Moments			Cross Section Moments
Sets	Base	Alt. A	Alt. B	Base
Overall Statistics				
Number of Moments	250	339	545	222
Number of Replications	50	50	50	50
Weighting Matrix	Diagonal Matrix with Variances			
Optimization Algorithm	TAO POUNDerS			
Quality of Fit Measures				
$\Lambda(\hat{\psi})$	218.32	277.80	447.60	632.07
$\Lambda(\psi^*)$	232.66	291.56	471.95	215.12

Table: Robustness of Economic Implications

		Dynam	ic (Panel)	Moments
State	True	Base	Alt. A	Alt. B
	Gross Return	n		
High School Graduation	30%	42%	37%	37%
Early College Graduation	88%	96%	72%	73%
Late College Graduation	29%	36%	18%	18%
	Net Return	ı		
High School Graduation	63%	212%	203%	194%
Early College Graduation	57%	125%	107%	112%
Late College Graduation	14%	38%	30%	35%

Table: Robustness of Economic Implications

		Cross Section Moments		
State	True	Base		
	Gross Return			
High School Graduation	30%	16%		
Early College Graduation	88%	57%		
Late College Graduation	29%	16%		
Net Return				
High School Graduation	63%	215%		
Early College Graduation	57%	79%		
Late College Graduation	14%	26%		

Replications

Figure: Role of Replications

Optimization Algorithm

TAO POUNDerS

Practical Optimization Using No Derivatives for Sums of Squares

Nonlinear Least-Squares

$$\Lambda(\psi) = \sum_{i=1}^{I} \bar{f}_i(\psi)^2 = \sum_{i=1}^{I} \left(\frac{\check{f}_i - \hat{f}_i(\psi)}{\hat{\sigma}_i}\right)^2$$

Derivative-Free Trust-Region Algorithm

$$\min\{m_k(\psi): ||\psi-\psi_k||_{\infty} \leq \Delta_k\}$$

Figure: Optimization Algorithms

Quality Assurance

Transparency, Recomputability, and Extensibility

http://www.policy-lab.org/sim-methods

- Documentation
 - Source Code
 - ► Test Suite
- Download

Conclusion

Philipp Eisenhauer

Mail eisenhauer@policy-lab.org

Web http://www.policy-lab.org/peisenha

Repository https://github.com/peisenha

Project http://www.policy-lab.org/sim-methods

Appendix

References