

The prelab portion of this lab has to be completed at home and presented to a TA at the <u>BEGINNING</u> of your lab section. The prelab may contain written assignments and/or assignments to implement on your own Arduino kit. Before starting each lab, present your work papers and/or your working implementations to a TA and get their signature and keep this sheet for your records. Prelabs are <u>INDIVIDUAL</u> assignments. The lab portions may be worked on in groups of two.

Lab #4 - Prelab/Home Portion

- 1) Look up the tone() function (https://www.arduino.cc/en/Reference/Tone) and answer the following:
 - a. What is the minimum frequency the function can produce **on the Arduino UNO**?
 - b. What is the maximum frequency the function can produce **on the Arduino UNO**?
 - c. What kind of wave does the function produce?
- 2) Attach the piezo buzzer to your Arduino (one pin should be attached to a PWM pin, the other to GND). Load Listing 5-1 and insure you are hearing the melody. If the volume is low, consider using a transistor switch to allow for an external voltage (9V) to drive the buzzer.
- 3) **Read the lab part 1 and part 2 assignments.** Draw a flowchart that describes how the program should work (the approach of reading characters from the serial port, getting the correct pattern for each incoming character, and then play the correct Morse code tones). Your flowchart should consist of a series of goals, the decisions involved in reaching each goal, and the actions taken after each decision.

Lab #4 Assignment

Part 1. Write a program that will read a single human readable character from the serial monitor and send back a string that represents the Morse code pattern for that character.

Morse Code Table (*=dit, _=dah)

Character	Pattern	Character	Pattern
A/a	* _	S/s	* * *
B/b	* * *	T/t	_
C/c	_ * _ *	U/u	* * _
D/d	_ * *	V/v	* * * _
E/e	*	W/w	*
F/f	* * _ *	X/x	_ * * _
G/g	*	Y/y	_ *
H/h	* * * *	\mathbf{Z}/\mathbf{z}	* *
I/i	* *		
J/j	*		
K/k	_ * _		
L/l	* * * *		
M/m			
N/n	_ *		
0/o			
P/p	* *		
Q/q	* _		
R/r	* *		

Some notes of how to design your program:

- Patterns can be represented as an array of characters like this:

- In order to save some typing time, we've included the declarations for the pattern array on the next page.
- The pattern array first index goes from 0 up to 25 (26 element). For example, pattern[2][]="_*_*", where pattern[2][1]= ***.
- From the ASCII table on Page 6, you can notice the following:
 - The characters A,B,C,D,E,...,Z have the following decimal representation 65,66,67,68,69,...,90. [Increment of 1]
 - By subtracting 65 from each character (if it was between A and Z), the result is a number between 0 and 25 (26 character), this number can be used as the first index for the array. For the second index, use a for loop.

EGR-2800: Design and Analysis of Electromechanical Systems Lab #4 – Serial Communication and Sounds


```
char pattern[26][7]={
"*_", //A,a
" ***",//B,b
" * *",//C,c
"**", //D,d
"*", //E,e
"** *",//F,f
" *", //G,g
"****",//H,h
"**", //I,i
"* ",//J,j
"_*_", //K,k
"* **",//L,1
" ", //M,m
" *", //N,n
"- <u>"</u>, //o,o
"* *",//P,p
"_*_",//Q,q
"*_*", //R,r
"***", //S,s
"_", //T,t
"** ", //U,u
"*** ",//V,v
"*__", //W,w
" ** ",//x,x
"-* _",//Y,y
" **" //Z,z
};
const int piezoPin = 9;
char c;
int index1=0,index2=0;
void setup() {
  // put your setup code here, to run once:
  Serial.begin(9600);
  delay(100);
  Serial.println("Ready!");
  pinMode(piezoPin,OUTPUT);
}
void loop() {
  // put your main code here, to run repeatedly:
  if(Serial.available())
  {
 // Cont on Nxt page
```



```
c=Serial.read();
    index1=-1;
    //between A and Z
    if(c>='A'&&c<='Z')</pre>
      index1=c-65;
    else
      //between a and z
      /*code goes here*/
      //space
      /*code goes here*/
      //new line (Enter)
      //code goes here*/
      // Not a char
      /*code goes here*/
    }
    if(index1>=0&&index1<=25)//if it's a valid character</pre>
      for(index2=0;index2</*code goes here*/;/*code goes here*/)</pre>
      {
        //dit
        if (pattern[index1][index2]==/*code goes here*/)
          dit();
        }
        //dah
        /*code goes here*/
        //null [Each string must end with a null -check ASCII table-]
        /*code goes here*/
        delay(300);//space between Dit and Dah
     delay(100);//space between Letters
  }
void dit()
  /*code goes here*/
void dah()
  /*code goes here*/
```

}

}

{

}

<u>Part 2</u>. Write a function that processes the Morse code pattern by playing the correct tones for each character and also printing the Morse code pattern to the serial monitor.

• Your program should use these values for the lengths of the delays you'll encounter in this assignment

Type	Duration
Dit (short)	40 milliseconds
Dah (long)	200 milliseconds
Space between dits and dahs	300 milliseconds
Space between letters	100 milliseconds
Space between words	700 milliseconds

- Demonstrate your code using these test strings and compare them to the results produced by this website (http://morsecode.scphillips.com/translator.html)
 - a. ABC DEF GHI JKL MNO PQR STU VWX YZ
 - b. SMS
 - c. SOS SOS SOS SOS SOS

Part 3. Write a program that captures the transmission of a character from the Arduino over serial communication (UART) on an oscilloscope and explain the different parts of the waveform. Explain to the TA how you used the "trigger" function on the scope to capture the waveform.

Voltage Division:(v) Time Division:(us)

» Oct Chr	Dec Hex	Oct HTML	Chr	Dec Hex	Oct HTML	Chr	Dec Hex	Oct HTML	Chr
000 NULL	32 20	040	Space	64 40	100 @	@	_	140 `	,
	33 21	041 !		65 41	101 A	A			В
002 Start of Text	34 22		=	66 42	102 B	В		142 b	q
003 End of Text	35 23	043 #	#	67 43	103 C	U	66 63	143 c	U
004 End of Transmission	36 24	044 \$	₩.	68 44	104 D	۵			О
005 Enquiry	37 25	045 %	%	69 45	105 E	ш		145 e	O
	38 26		ಹ	70 46	106 F	ш		146 f	+
007 Bell	39 27	047 '	_	71 47	107 G	ŋ	103 67	147 g	0
010 Backspace	40 28	050 (_	72 48	110 H	I	104 68	150 h	ے
011 Horizontal Tab	41 29	051)	_	73 49	111 I	П	105 69	151 i	
	42 2A	052 *	*	74 4A	112 J	_	_	152 j	·-
013 Vertical Tab	43 2B	053 +	+	75 4B	113 K	¥		153 k	×
014 Form feed	44 2C	054 ,	-	4	114 L	_	108 6C	154 l	_
015 Carriage return	45 2D	055 -	ı	77 4D	115 M	Σ	109 6D	155 m	E
016 Shift Out	46 2E	056 .		78 4E	116 N	Z	110 6E	156 n	_
		057 /	_			0		157 o	0
020 Data Link Escape	48 30	060 0	0	80 50	120 P	۵	112 70	160 p	d
021 Device Control 1			- 1	81 51	121 Q	0		161 q	ь
	50 32	062 2	7	82 52	122 R	~		162 r	_
023 Device Control 3	51 33	063 3	2			S		163 s	S
	52 34		4	2		—			+
	53 35		2	2)			ם
	m		9	86 56		>	118 76	166 v	>
027 End of Trans. Block	\mathcal{C}		7	2	- 10	>			3
	26 38	070 8	∞	2		×	_	170 x	×
031 End of Medium			6	2		>			>
v 032 Substitute	\mathcal{C}	072 :		90 SA	132 Z	Z		172 z	Z
	29 3B					_	123 7B		-
	N	4	v	92 5C		_	124 7C	4	_
	\sim	2	П	2		_	125 7D		~
	62 3E	و	٨	94 SE	9	<	126 7E	6 	2
037 Unit Separator	3	077 ?	5	2	137 _	1	127 7F	177	Del

asciichars.com

Dec Hex Oct Chr