Auktionen und Märkte Einführung in Mechanismus Design

Groh / von Wangenheim

Universität Bonn, Wintersemester 2024/2025

Beziehung zwischen Teil I und Teil II

in I:

- es geht um das Lösen von Spielen
- ▶ Problem: es gibt zu viele Spiele; man kann nicht alle lösen . . .

in II:

- umgekehrte Herangehensweise: zu welchen Performances kann man ein Spiel (=einen Mechanismus) finden, das diese Performance impliziert (=implementiert)
- es geht um das Konstruieren von Spielen=Mechanismus Design

Beispiele für Mechanismen

Anmerkung: wir erlauben sowohl allgemeinere Mechanismen als auch ein allgemeineres Setting als in Teil I

Beispiele für Mechanismen:

- EPA, ZPA, HA, EA mit/ohne RP/Eintrittsgeld
- merkwürdige oder komplizierte Auktionen; z.B.
 - Drittpreisauktion
 - dritthöchstes Gebot gewinnt
 - Preis steigt wie in EA bis nur noch zwei Bieter aktiv sind, danach fällt Preis wie in HA
 - dynamische Auktionen, bei denen bieten Geld kostet
- Lotterie (Bieter kaufen Lose)
- Verhandlungen
- zuerst Auktion, dann Verhandlungen mit Gewinner
- _ ..

Vorgehensweise in Teil II

- 1. Setting + Beschreibung von Mechanismen: Abschnitt II.1
- 2. Was man mit komplizierten Mechanismen machen kann, kann man auch mit "einfachen" Mechanismen machen: Abschnitt II.2
- 3. Beschreibung was man mit einfachen Mechanismen machen kann: Abschnitt II.3
- 4. Auswahl (Was will man machen?):
 - (a) Kriterium Erlösmaximierung: Abschnitte II.4 und II.5
 - (b) Kriterium Effizienz: Abschnitt II.6

Zur Erinnerung: Struktur des Problems in Teil I

Setting: Soll die Realität beschreiben

- 1 Objekt, n Bieter
- Was ist den Bietern das Objekt wert?
- Wer weiß was?
- Nutzenfunktionen?

Auktionsform: Soll die Spielregeln beschreiben

- Wie läuft die Auktion/Gebotsabgabe ab?
- Wer gewinnt in Abhängigkeit der Gebote? (→ Allokationsregel)
- Wer zahlt was in Abhängigkeit der Gebote? (→ Zahlungsregel)

Setting und Auktionsform gemeinsam definieren ein Spiel.

Das spieltheoretische **Gleichgewichtskonzept** macht eine Vorhersage welche Gebote die (rationalen) Spieler abgeben.

Im GG liefert dies dies dann eine **Performance**:

- Wer gewinnt in Abhängigkeit der WS? (→ Allokationsperformance)
- Wer zahlt was in Abhängigkeit der WS? (→ Zahlungsperformance)

Struktur des Problems

Unser Setting ab sofort:

- 1 Objekt, n Spieler
- IPV: unabhängige private Wertschätzungen
- nicht notwendig symmetrisch: $\tilde{v}_i \sim F_i(\cdot)$ mit Dichte $f_i(\cdot) > 0$
- Spieler sind risikoneutral

Mechanismen

Mechanismus:
$$\{(B_i, q_i^M, t_i^M)\}_{i=1}^n$$
 B_i

Menge aller möglicher Nachrichten von Spieler i

= Menge aller möglicher Verhaltensweisen von Spieler i , nachdem er seine Information gelernt hat

 $q_i^M(b_1, \dots, b_n)$

Wahrscheinlichkeit, mit der Spieler i das Objekt erhält als Funktion aller gewählter Nachrichten

 $(q_i^M(b_1, \dots, b_n) \in [0, 1] \text{ und } \sum_i q_i^M(b_1, \dots, b_n) = 1 \text{ bzw.} \le 1)$
 $t_i^M(b_1, \dots, b_n)$

(erwartete) Zahlung von Spieler i als Funktion aller gewählter Nachrichten

 $(t_i^M(b_1, \dots, b_n) \in \mathbb{R})$

Payoff von Spieler i: $q_i^M(b_1, ..., b_n) \cdot v_i - t_i^M(b_1, ..., b_n)$

Anmerkungen zu den Zahlungen

- Zwei Arten von Unsicherheit sind für einen Spieler relevant:
 - 1 Unsicherheit, da man das Verhalten der anderen nicht kennt
 - 2 alle andere Arten von Unsicherheit (bspw. die Unsicherheit aus dem Münzwurf beim Tie-Breaking oder die Unsicherheit beim Spielen einer Lotterie)

Das 'erwartete' bei der Zahlung $t_i^M(b_1, \ldots, b_n)$ bezieht sich hier nur auf die zweite Art von Unsicherheit.

Die Zahlungen k\u00f6nnen sowohl positiv als auch negativ sein.
 Negative Zahlungen entsprechen Transfers an den Spieler.

Allokations- und Zahlungsregel

Was entspricht der Allokations- und der Zahlungsregel aus dem ersten Teil der Veranstaltung?

Allokations regel: (q_1^M, \dots, q_n^M)

Zahlungsregel: (t_1^M, \dots, t_n^M)

Beispiele: Mechanismen

a) EPA

- (1) $B_i = \mathbb{R}_+$
- (2) $q_i^M(b_1,\ldots,b_n) = \begin{cases} 1 & \text{wenn } b_i > \max_{j \neq i} b_j \\ 0 & \text{wenn } b_i < \max_{j \neq i} b_j \end{cases}$
- (3) $t_i^M(b_1, \dots, b_n) = \begin{cases} b_i & \text{wenn } b_i > \max_{j \neq i} b_j \\ 0 & \text{wenn } b_i < \max_{j \neq i} b_j \end{cases}$

b) ZPA

- (1), (2) wie bei EPA
- (3) $t_i^M(b_1, \dots, b_n) = \begin{cases} \max_{j \neq i} b_j & \text{wenn } b_i > \max_{j \neq i} b_j \\ 0 & \text{wenn } b_i < \max_{j \neq i} b_j \end{cases}$

Lotterie

- (1) $B_i = \{0, 1, 2, ...\}$ (2) $q_i^M(b_1, ..., b_n) = \begin{cases} 0 & \text{wenn } b_i = 0\\ \frac{b_i}{b_1 + \cdots + b_n} & \text{wenn } b_i > 0 \end{cases}$
- (3) $t_i^M(b_1,...,b_n) = b_i \cdot p$ (p=Preis eines Loses)

Spiel und Gleichgewicht

- Setting + Mechanismus definieren ein Spiel G
- Strategie von Spieler i: $b_i(v_i)$

Gleichgewichtskonzept

Die Strategienkombination $\sigma = (b_1(v_1), \ldots, b_n(v_n))$ beschreibt ein Bayesianisches Nash-Gleichgewicht (BNGG) von Spiel G, wenn für jeden Spieler i und für jede WS v_i die Nachricht $b_i = b_i(v_i)$ "im Durchschnitt" optimal ist, wenn sich die anderen Bieter bzgl. $b_1(v_1), \ldots, b_{i-1}(v_{i-1}), \ldots, b_{i+1}(v_{i+1}), \ldots, b_n(v_n)$ verhalten.

Performance

Performance von Gleichgewicht σ in Spiel G:

Allokationsperformance:

$$q_i(v_1,...,v_n) = q_i^M(b_1(v_1),...,b_n(v_n))$$

Zahlungsperformance:

$$t_i(v_1, \ldots, v_n) = t_i^M(b_1(v_1), \ldots, b_n(v_n))$$

Wording: Das Gleichgewicht σ in Spiel G implementiert die oben beschriebene Performance.

Anmerkung: Off ist die Frage, ob eine bestimmte Performance implementierbar ist. Die Frage ist dann, ob es ein Spiel und ein GG gibt, das diese Performance implementiert.

Beispiele: Performance

betrachte: $n = 2, \tilde{v} \sim U[0, 1]$

Welche Performance implementiert $\sigma = (\frac{1}{2}v_1, \frac{1}{2}v_2)$ in der EPA?

•
$$q_1(v_1, v_2) =$$

$$\begin{cases}
1 & \text{wenn } v_1 > v_2 \\
\frac{1}{2} & \text{wenn } v_1 = v_2 \\
0 & \text{wenn } v_1 < v_2
\end{cases}$$
, $q_2(v_1, v_2)$ analog

•
$$t_1(v_1, v_2) = \begin{cases} \frac{1}{2}v_1 & \text{wenn } v_1 > v_2 \\ \frac{1}{4}v_1 & \text{wenn } v_1 = v_2 \\ 0 & \text{wenn } v_1 < v_2 \end{cases}$$
, $t_2(v_1, v_2)$ analog

Welche Performance implementiert $\sigma = (v_1, v_2)$ in der ZPA?

• $q_1(v_1, v_2)$ und $q_2(v_1, v_2)$ wie bei EPA oben

•
$$t_1(v_1, v_2) = \begin{cases} v_2 & \text{wenn } v_1 > v_2 \\ \frac{1}{2}v_2 & \text{wenn } v_1 = v_2 \\ 0 & \text{wenn } v_1 < v_2 \end{cases}$$
, $t_2(v_1, v_2)$ analog

Beispiele: Performance

Welche Performance implementiert $\sigma = (100,0)$ in der ZPA?

- $q_1(v_1, v_2) = 1$, $q_2(v_1, v_2) = 0$
- $t_1(v_1, v_2) = t_2(v_1, v_2) = 0$

Das Mechanismus Design Problem

Wir wollen zwei Probleme lösen:

- Wir wollen aus der Menge aller möglichen Mechanismen und aller möglichen zugehörigen Gleichgewichte die Kombination aus Mechanismus und Gleichgewicht finden, die zum höchstmöglichen erwarteten Erlös des Verkäufers führt.
- 2. Wir wollen einen Mechanismus konstruieren, der zu **Effizienz** führt. Da dies für das hier betrachtete Setting sehr einfach ist—zB führt eine ZPA zu Effizienz—werden wir das zweite Problem für ein nochmals allgemeineres Setting lösen.