

Machine Intelligence 2 1.3 Kernel PCA

Prof. Dr. Klaus Obermayer

Fachgebiet Neuronale Informationsverarbeitung (NI)

SS 2017

Kernel Principal Component Analysis

Goal: extraction of nonlinear features

Kernel Principal Component Analysis: motivation

- standard PCA: two directions with high variance
- but: only one "interesting" manifold (nonlinear combination of the elementary features)

Kernel Principal Component Analysis: intuition

Agenda

- ① data preprocessing: nonlinear transformation into an "appropriate" feature space $\underline{\phi}: \underline{\mathbf{x}} \mapsto \underline{\phi}_{(\mathbf{x})}$
- 2 application of standard (linear) PCA

Projections & Kernels

relevant feature spaces may be extremely high-dimensional

- interesting structure in correlations (of high order) between pixel values
- suitable feature space: space spanned by all d^{th} -order monomials

example:
$$d=2$$

$$\underline{\phi}_{(\mathbf{x})} = (1, \mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N, \mathbf{x}_1^2, \mathbf{x}_1 \mathbf{x}_2, \mathbf{x}_2^2, \mathbf{x}_1 \mathbf{x}_3, \mathbf{x}_2 \mathbf{x}_3, \mathbf{x}_3^2, \dots, \mathbf{x}_N^2)^T$$

- \blacksquare dimensionality $O(N^d)$ prohibits "direct" application of this idea
- application of the kernel trick to avoid this problem (cf. MI I)

PCA & scalar products

eigenvalue problem of PCA:

$$\underline{\mathbf{Ce}}_k = \lambda_k \underline{\mathbf{e}}_k$$

expansion of the eigenvectors:

$$\underline{\mathbf{e}}_k = \sum_{eta=1}^p a_k^{(eta)} \underline{\mathbf{x}}^{(eta)}$$
 PC in feature Space

PCs always lie in the subspace spanned by the (centered) data.

eigenvectors $\underline{\mathbf{e}}_k \in \mathbb{R}^N$, coefficients $\underline{\mathbf{a}}_k \in \mathbb{R}^p$: potential problem: $p \gg N$

PCA & scalar products

eigenvalue problem:

$$\underline{\mathbf{Ce}}_k = \lambda_k \underline{\mathbf{e}}_k$$

ansatz:

$$\underline{\mathbf{e}}_k = \sum_{\beta=1}^p a_k^{(\beta)} \underline{\mathbf{x}}^{(\beta)} \qquad \underline{\mathbf{C}} = \frac{1}{p} \sum_{\alpha=1}^p \underline{\mathbf{x}}^{(\alpha)} \left(\underline{\mathbf{x}}^{(\alpha)}\right)^T$$
centered data

scalar product

$$\frac{1}{p} \sum_{\alpha,\beta=1}^{p} a_k^{(\beta)} \left[\left(\underline{\mathbf{x}}^{(\alpha)} \right)^T \underline{\mathbf{x}}^{(\beta)} \right] \underline{\mathbf{x}}^{(\alpha)} = \lambda_k \sum_{\beta=1}^{p} a_k^{(\beta)} \underline{\mathbf{x}}^{(\beta)}$$

Multiply from left with $\left(\underline{\mathbf{x}}^{(\gamma)}\right)^T$, $\gamma = 1, \dots, p$:

 $\frac{1}{p} \sum_{\alpha,\beta=1}^{p} a_k^{(\beta)} \overbrace{\left[\left(\underline{\mathbf{x}}^{(\alpha)}\right)^T\underline{\mathbf{x}}^{(\beta)}\right]}^{\text{scalar product}} \underbrace{\left[\left(\underline{\mathbf{x}}^{(\gamma)}\right)^T\underline{\mathbf{x}}^{(\alpha)}\right]}^{\text{scalar product}} = \lambda_k \sum_{\beta=1}^{p} a_k^{(\beta)} \underbrace{\left[\left(\underline{\mathbf{x}}^{(\gamma)}\right)^T\underline{\mathbf{x}}^{(\beta)}\right]}^{\text{scalar product}}$

$$\left(\underline{\mathbf{x}}^{(\alpha)}\right)^T\underline{\mathbf{x}}^{(\beta)} =: K_{\alpha\beta}$$

in matrix notation:

$$\underline{\mathbf{K}}^2 \underline{\mathbf{a}}_k = p\lambda_k \underline{\mathbf{K}} \underline{\mathbf{a}}_k$$

 $\mathbf{K}: p \times p$ matrix of scalar products between data, $K_{lphaeta} = \left(\mathbf{\underline{x}}^{(lpha)}\right)^T \mathbf{\underline{x}}^{(eta)}$

 λ_k : variance along principal component $\underline{\mathbf{e}}_k$ igspace

 $\underline{\mathbf{a}}_k$: Principal Component, represented in the basis $\Big\{\underline{\mathbf{x}}^{(lpha)}\Big\}, lpha = 1, \dots, p$

 $\underline{\mathbf{K}}$ is symmetric and positive semidefinite \Rightarrow transformed eigenvalue problem:

$$\underline{\mathbf{K}}\underline{\mathbf{a}}_k = p\lambda_k\underline{\mathbf{a}}_k$$

a_k ist nicht PC!

Remark

 \mathbf{K} is positive semidefinite.

For an arbitrary vector $\underline{\mathbf{y}}$: (beliebig)

$$\underline{\mathbf{y}}^{T}\underline{\mathbf{K}}\underline{\mathbf{y}} = \sum_{\alpha,\beta=1}^{p} y^{(\alpha)} \left(\underline{\mathbf{x}}^{(\alpha)}\right)^{T}\underline{\mathbf{x}}^{(\beta)} y^{(\beta)} \\
= \left(\sum_{\alpha=1}^{p} y^{(\alpha)}\underline{\mathbf{x}}^{(\alpha)}\right)^{2} \\
> 0$$

- → only non-negative eigenvalues (but potentially 0)
- → solutions of the transformed eigenvalue problem before differ only by components corresponding to PCs with zero eigenvalues

Normalization

$$\underline{\underline{\mathbf{e}}}_{k} = \sum_{\beta=1}^{p} a_{k}^{(\beta)} \underline{\underline{\mathbf{y}}}^{(\beta)}$$

$$\underline{\underline{\underline{\mathbf{e}}}}_{k} = \sum_{\alpha,\beta=1}^{p} a_{k}^{(\alpha)} \left(\underline{\mathbf{x}}^{(\alpha)}\right)^{T} \underline{\mathbf{x}}^{(\beta)} a_{k}^{(\beta)}$$

$$= \underline{\mathbf{a}}_{k}^{T} \underline{\mathbf{K}} \underline{\mathbf{a}}_{k} = p \lambda_{k} \underline{\mathbf{a}}_{k}^{2} \stackrel{!}{=} 1$$

$$\underline{\underline{\mathbf{a}}}_{k}^{\text{norm.}} = \frac{1}{\sqrt{p \lambda_{k}}} \underline{\underline{\mathbf{a}}}_{k}$$

P: number of Data points Comes from The Definition of The covariance matrix

Projecting onto PCs

feature extraction:

$$u_k(\underline{\mathbf{x}}) = \underline{\mathbf{e}}_k^T \cdot \underline{\mathbf{x}}$$

$$= \sum_{\beta=1}^{p} a_k^{(\beta)} \underbrace{\left[\left(\underline{\mathbf{x}}^{(\beta)}\right)^T \cdot \underline{\mathbf{x}}\right]}_{\text{scalar product}}$$

Centered Data does Not imply centered feature Space?

The kernel trick

Allows work in high dimensional space

$$\underline{\phi}: \underline{\mathbf{x}} \xrightarrow{\mathsf{nonlinear\ transformation}} \underline{\phi}_{(\underline{\mathbf{x}})}$$

Kernel trick

- \Rightarrow formulate PCA in feature space (replace $\underline{\mathbf{x}}^{(lpha)}$ by $\underline{\phi}_{(\mathbf{x}^{(lpha)})}$)
- ⇒ replace all scalar products by "kernel functions"

Mercer's theorem

Every **positive semidefinite definite** kernel k corresponds to a scalar product in some metric feature space (cf. MI I).

If a linear method can be formulated solely in terms of scalar products, a nonlinear version can be derived without an explicit projection into the (high-dimensional) feature space!

Mercer's theorem

Statement of the theorem

Every **positive semidefinite** kernel k corresponds to a scalar product in some metric feature space.

Consider

- lacksquare $D\subset\mathbb{R}^N$ compact subset of data space
- $\mathbf{k}: D \times D \to \mathbb{R}$ is a continuous and symmetric function ("kernel")
- \blacksquare T_k is the corresponding integral operator

$$T_k: L_{2(D)} \to L_{2(D)},$$

 $(T_k f)_{(\underline{\mathbf{x}})} := \int_D k_{(\underline{\mathbf{x}},\underline{\mathbf{x}}')} f_{(\underline{\mathbf{x}}')} d\underline{\mathbf{x}}$

with eigenvalues λ_j and normalized eigenfunctions $\psi_j \in L_{2(D)}$

Mercer's theorem: Condition and its consequences

Essential part

If T_k is positive semidefinite, i.e.

$$\langle T_k f, f \rangle = \int_{D \times D} k_{(\underline{\mathbf{x}}, \underline{\mathbf{x}}')} f_{(\underline{\mathbf{x}})} f_{(\underline{\mathbf{x}}')} d\underline{\mathbf{x}} d\underline{\mathbf{x}}' \ge 0 \quad \forall f \in L_{2(D)}$$

then
$$k_{(\underline{\mathbf{x}},\underline{\mathbf{x}}')} = \sum_{j=1}^{M} \lambda_j \psi_{j(\underline{\mathbf{x}})} \psi_{j(\underline{\mathbf{x}}')}$$
 with $\lambda_j \geq 0$

k corresponds to a scalar product in a M-dim. space: \searrow

$$\underline{\phi} : \underline{\mathbf{x}} \mapsto \left(\sqrt{\lambda_1} \psi_{1(\underline{\mathbf{x}})}, \sqrt{\lambda_2} \psi_{2(\underline{\mathbf{x}})}, \dots, \sqrt{\lambda_M} \psi_{M(\underline{\mathbf{x}})},\right)^T$$

$$\implies k_{(\underline{\mathbf{x}},\underline{\mathbf{x}}')} = \underline{\phi}_{(\mathbf{x})}^T \underline{\phi}_{(\mathbf{x}')} \qquad (\text{with } M \leq \infty)$$

Common kernel functions

$$k_{(\mathbf{x},\mathbf{x}')} = (\mathbf{\underline{x}}^T \mathbf{\underline{x}}' + 1)^d$$

$$k_{(\underline{\mathbf{x}},\underline{\mathbf{x}}')} = \exp\left\{-\frac{\left(\underline{\mathbf{x}}-\underline{\mathbf{x}}'\right)^2}{2\sigma^2}\right\}$$

$$k_{(\underline{\mathbf{x}},\underline{\mathbf{x}}')} = \tanh\left\{\underbrace{K\underline{\mathbf{x}}^T\underline{\mathbf{x}}' + \theta}_{\text{ln Original Space}}\right\}$$

polynomial kernel of degree d $\underline{\textit{image processing (pixel correlation)}}$

RBF-kernel with range σ infinite dimensional feature space

 $\frac{\text{neural network}}{\textit{not necessarily positive definite}} \text{ kernel with parameters } K \text{ and } \theta$

Centering the kernel matrix

$$\frac{1}{p} \sum_{\alpha=1}^{p} \underline{\mathbf{x}}^{(\alpha)} \stackrel{!}{=} \underline{\mathbf{0}} \longrightarrow \frac{1}{p} \sum_{\alpha=1}^{p} \underline{\phi}_{\left(\underline{\mathbf{x}}^{(\alpha)}\right)} = \underline{\mathbf{0}}$$

"centered" feature vectors:

$$\underbrace{\phi_{\left(\underline{\mathbf{x}}^{(\alpha)}\right)}}_{\text{"centered"}} = \underbrace{\widetilde{\phi}_{\left(\underline{\mathbf{x}}^{(\alpha)}\right)}}_{\left(\underline{\mathbf{x}}^{(\alpha)}\right)} - \frac{1}{p} \sum_{\gamma=1}^{p} \underbrace{\widetilde{\phi}_{\left(\underline{\mathbf{x}}^{(\gamma)}\right)}}_{\text{uncentered feature vectors}}$$

Centering the kernel matrix

$$K_{\alpha\beta} = \underline{\phi}_{\left(\underline{\mathbf{x}}^{(\alpha)}\right)}^{T} \cdot \underline{\phi}_{\left(\underline{\mathbf{x}}^{(\beta)}\right)}$$

$$= \left(\widetilde{\underline{\phi}}_{\left(\underline{\mathbf{x}}^{(\alpha)}\right)}^{T} - \frac{1}{p} \sum_{\gamma=1}^{p} \widetilde{\underline{\phi}}_{\left(\underline{\mathbf{x}}^{(\gamma)}\right)}^{T}\right) \left(\widetilde{\underline{\phi}}_{\left(\underline{\mathbf{x}}^{(\beta)}\right)}^{T} - \frac{1}{p} \sum_{\delta=1}^{p} \widetilde{\underline{\phi}}_{\left(\underline{\mathbf{x}}^{(\delta)}\right)}^{T}\right)$$

$$= \widetilde{\underline{\phi}}_{\left(\underline{\mathbf{x}}^{(\alpha)}\right)}^{T} \widetilde{\underline{\phi}}_{\left(\underline{\mathbf{x}}^{(\beta)}\right)}^{T} - \frac{1}{p} \sum_{\delta=1}^{p} \widetilde{\underline{\phi}}_{\left(\underline{\mathbf{x}}^{(\alpha)}\right)}^{T} \widetilde{\underline{\phi}}_{\left(\underline{\mathbf{x}}^{(\delta)}\right)}^{T}$$

$$- \frac{1}{p} \sum_{\gamma=1}^{p} \widetilde{\underline{\phi}}_{\left(\underline{\mathbf{x}}^{(\gamma)}\right)}^{T} \widetilde{\underline{\phi}}_{\left(\underline{\mathbf{x}}^{(\beta)}\right)}^{T} + \frac{1}{p^{2}} \sum_{\gamma,\delta=1}^{p} \widetilde{\underline{\phi}}_{\left(\underline{\mathbf{x}}^{(\gamma)}\right)}^{T} \widetilde{\underline{\phi}}_{\left(\underline{\mathbf{x}}^{(\delta)}\right)}^{T}$$

$$= \underbrace{\widetilde{K}_{\alpha\beta}}_{=k\left(\underline{\mathbf{x}}^{(\alpha)},\underline{\mathbf{x}}^{(\beta)}\right)} - \underbrace{\frac{1}{p}\sum_{\delta=1}^{p}\widetilde{K}_{\alpha\delta}}_{\text{row avg.}} - \underbrace{\frac{1}{p}\sum_{\gamma=1}^{p}\widetilde{K}_{\gamma\beta}}_{\text{col. avg.}} + \underbrace{\frac{1}{p^2}\sum_{\gamma,\delta=1}^{p}\widetilde{K}_{\gamma\delta}}_{\text{matrix avg.}}$$

Centering & projections

For data points $\mathbf{x}^{(\alpha)}$ we have onto the k-th PC (in feature space):

$$u_k\left(\underline{\phi}_{(\underline{\mathbf{X}}^{(\alpha))}}\right) = \sum_{\beta=1}^p a_k^{(\beta)} K_{\beta\alpha} \quad \leftarrow \text{use centered kernel matrix and normalized eigenvector!}$$

More generally, for new/arbitrary $\mathbf{x}^{(\alpha)}$ the projection is computed as:

"just a longer forumula" --> Falls Data point "außerhalb" liegt

$$u_k\left(\underline{\phi}_{(\underline{\mathbf{x}}^{(\alpha)})}\right) = \sum_{\beta=1}^{P} a_k^{(\beta)} \underline{\phi}_{\left(\underline{\mathbf{x}}^{(\beta)}\right)}^T \underline{\phi}_{\left(\underline{\mathbf{x}}^{(\alpha)}\right)} \qquad \leftarrow \text{centered feature vectors}$$

$$= \sum_{\beta=1}^{p} a_k^{(\beta)} \left(\left[\widetilde{\underline{\phi}}_{(\underline{\mathbf{x}}^{(\beta)})} - \frac{1}{p} \sum_{\gamma=1}^{p} \widetilde{\underline{\phi}}_{(\underline{\mathbf{x}}^{(\gamma)})} \right]^T \left[\widetilde{\underline{\phi}}_{(\underline{\mathbf{x}}^{(\alpha)})} - \frac{1}{p} \sum_{\delta=1}^{p} \widetilde{\underline{\phi}}_{(\underline{\mathbf{x}}^{(\delta)})} \right] \right)$$

 $= \sum_{\beta=1}^{p} a_k^{(\beta)} \left(\left[\underline{\widetilde{\phi}}_{\left(\underline{\mathbf{x}}^{(\beta)}\right)} - \frac{1}{p} \sum_{\gamma=1}^{p} \underline{\widetilde{\phi}}_{\left(\underline{\mathbf{x}}^{(\gamma)}\right)} \right]^T \left[\underline{\widetilde{\phi}}_{\left(\underline{\mathbf{x}}^{(\alpha)}\right)} - \frac{1}{p} \sum_{\delta=1}^{p} \underline{\widetilde{\phi}}_{\left(\underline{\mathbf{x}}^{(\delta)}\right)} \right] \right)$ $= \sum_{\beta=1}^{p} a_k^{(\beta)} \left(k(\underline{\mathbf{x}}^{(\beta)}, \underline{\mathbf{x}}^{(\alpha)}) - \frac{1}{p} \sum_{\delta=1}^{p} \widetilde{K}_{\beta\delta} - \frac{1}{p} \sum_{\gamma=1}^{p} k(\underline{\mathbf{x}}^{(\gamma)}, \underline{\mathbf{x}}^{(\alpha)}) + \frac{1}{p^2} \sum_{\gamma, \delta=1}^{p} \widetilde{K}_{\gamma\delta} \right)$

Machine Intelligence 2

18 / 29

① calculation of the un-normalized kernel matrix

$$\widetilde{K}_{\alpha\beta} = k(\underline{\mathbf{x}}^{(\alpha)}, \underline{\mathbf{x}}^{(\beta)}), \qquad \alpha, \beta = 1, \dots, p$$

centering of the Kernel Matrix

$$\sum K_{\alpha\beta} = \widetilde{K}_{\alpha\beta} - \frac{1}{p} \sum_{\delta=1}^{p} \widetilde{K}_{\alpha\delta} - \frac{1}{p} \sum_{\gamma=1}^{p} \widetilde{K}_{\gamma\beta} + \frac{1}{p^2} \sum_{\gamma,\delta=1}^{p} \widetilde{K}_{\gamma\delta}$$

- lacktriangle solve the eigenvalue problem $\frac{1}{p} \mathbf{K} \widetilde{\mathbf{a}}_k = \lambda_k \widetilde{\mathbf{a}}_k$
- normalization of eigenvectors to unit length

$$\underline{\mathbf{a}}_k = \frac{1}{\sqrt{p\lambda_k}} \underline{\widetilde{\mathbf{a}}}_k$$

calculation of projections

Comments

- - → projections onto PCs are uncorrelated
 - $\rightarrow \lambda_k$: variance of the data along PC k (in feature space)
- #PCs typically exceed #dimensions in the original space
- expansion of PCs into data points is <u>not</u> sparse

 - \rightarrow use expansions with less data points q < p

Comments

p*p

- lacksquare $p\gg N$: kernel matrices may be very large
 - → only eigenvectors with largest eigenvalues are of interest
 - \rightsquigarrow use specialized (iterative) routines (e.g. ARPACK via eigs)
 - ⇒ analysis is performed in feature space (not data space)
- kernel PCA can be used for feature extraction & dimensionality reduction
 - e.g. solve classification problems in feature space
- lacksquare optimal kernel parameters $(\sigma, d, \text{ etc.})$ depend on data & task
 - selection via cross-validation possible for classification tasks
 - no general measure-of-goodness of the PC projections available
- custom kernels can be used (any positive definite kernel matrix)

Application: feature extraction

0123456789

_									
test error (%) for different polynomial kernels									
# of component		1	2	3	4	5	6	7	T
	32	9.6	8.8	8.1	8.5	9.1	9.3	10.8]
	64	8.8	7.3	6.8	67	6.7	7.2	7.5	
	128	8.6	5.8	5.9	100 m	5.8	6.0	6.8	
	256	8.7	5.5	5.3	5.2	5.2	5.4	5.4	
	512	n.a.	4.9	4.6	4.4	5.1	4.6	4.9	
	1024	n.a.	4.9	4.3	4.4	4.6	4.8	4.6]
	2048	n.a.	4.9	4.2	4.1	4.0	4.3	4.4]

- Test error rates on the USPS handwritten digit database
- linear SVMs trained on nonlinear Principal Components
- nonlinear PCs extracted by PCA with a polynomial kernel (degrees 1 through 7)
- dimensionality of the space is 256 (16x16 pixel images)

Source: Schölkopf, 2002

Reconstruction

- reconstruction in data space non-trivial
 - data space is mapped to a low-dim. manifold in feature space

- lacksquare problem: in general there is no "pre-image" $\underline{ ilde{\mathbf{x}}}$ s.t. $\psi=\phi(\underline{ ilde{\mathbf{x}}})$
- solution: calculation of approximate "pre-images":

$$\underline{\tilde{\mathbf{x}}} = \underset{\underline{\mathbf{x}}}{\operatorname{argmin}} \left\| \underline{\phi}(\underline{\mathbf{x}}) - \underline{\psi} \right\|^2$$

■ algorithms: Schölkopf & Smola, ch. 18 (e.g. impl. in scikit-learn)

Application: denoising

- Denoising of USPS data
- First row: original data (digits); Second row: noise added to original digits (Gaussian and "speckle")
- Following five rows: reconstruction of the noisy digits achieved with linear PCA using n=1,4,16,64,256 components
- Last five rows: reconstruction of the noisy digits achieved with Kernel PCA using the same number of components
- dimensionality of the space is 256 (16×16 pixel images)

Source: Schölkopf, 2002

Parabola example: PCA

Parabola example: kPCA with polynomial kernel

Parabola example: kPCA with RBF-kernel

Parabola example: dimension reduction

