# BACHELOR THESIS PROJECT

# CONCRETE CRACK DETECTION AND QUANTIFICATION USING COMPUTER VISION

**Under the supervision of Prof. Damodar Maity** 

Kolathuru Vishnu Vardhan 21CE3AI13

# **OBJECTIVE**

- Automate crack detection to eliminate time-consuming and error-prone manual inspections
- Provide a scalable solution for large-scale infrastructure by analyzing datasets quickly
- Quantify cracks by measuring dimensions to prioritize repairs effectively
- Deliver real-time detection for faster responses and proactive maintenance

# **SCOPE OF WORK**

- Develop an automated system using YOLO for accurate crack detection and localization in concrete structures
- Quantify detected cracks by measuring their dimensions (length, width, area) to assess severity
- Ensure the system works effectively, and consistently for monitoring large structures

# LITERATURE REVIEW & INSIGHTS

#### **Traditional Methods:**

- Manual inspections are subjective, slow, and error-prone
- Basic **image processing** techniques like edge detection struggle under complex conditions like poor lighting or rough surfaces

#### **Machine Learning (ML):**

- SVM models improved crack detection by automating classification
- However, manual feature extraction reduced flexibility, and these models struggled with diverse environments and complex backgrounds

#### Deep Learning (DL):

- DL models like ResNet, R-FPANet, and YOLOv5 automate feature extraction, achieving high accuracy and precise crack measurements
- YOLOv5 excels in real-time crack detection and localization, making it ideal for large-scale monitoring

# **RESEARCH GAPS**

- Struggles with irregular cracks compared to linear ones
- Limited ability to handle large datasets and changing environmental conditions
- Resource-intensive models like YOLOv5 are less efficient for extended training or deployment

# **OUR APPROACH**

- Chose YOLO for simultaneous classification and localization, unlike traditional methods that separate these tasks
- Offers fast and accurate real-time crack detection with minimal processing delay
- More effective than both traditional CNNs and rule-based OpenCV techniques
- Capable of handling cracks of different sizes and orientations under real-world conditions

# **WORKFLOW**

#### 1.Data Collection

- Downloaded from the public METU image database on Kaggle
- Two classes: cracked and uncracked areas
- Dataset size: 40,000 images (227 x 227 pixels), 20,000 images per class
- For training the YOLO model, a subset of 1,900 images was selected

#### **Cracked areas**



**Uncracked areas** 



# 2.Data Preprocessing

- Resize (Stretch to 256x256): YOLO models work best with images sized at 256x256, 640x640, etc., as these dimensions are optimized for their architecture
- RGB to Black and White Conversion: Reduces computational complexity and lets the model focus on essential features like edges and patterns

#### 3. Data Annotation

Tool Used: Roboflow, which generated labels in the .txt format:

0 0.502203 0.621145 0.995595 0.220264

#### **Explanation:**

- 0: Class label (0 indicates "cracked" in this case)
- 0.502203 and 0.621145: Coordinates of the object's center (X, Y), normalized between 0 and 1
- 0.995595 and 0.220264: Width and height of the bounding box, respectively, normalized between 0 and 1

#### **Annotated Image**



# 4.Data Augmentation

- Used flipping, rotations (-10° to +10°), and cropping with 10% zoom to diverse crack orientations and perspectives
- Increased dataset from around 1,900 to 3,300 images, improving model accuracy and robustness

# Methodology

#### **Determine Optimal Background Image %:**

Used YOLOv10n to find the best BG%
 (1-10%) by training for 50 epochs with batch size 64



#### Find Optimal Batch Size:

 After fixing the optimal BG%, tested batch sizes 64, 32, 16, 8 on YOLOv10n for 30 epochs

**Find Optimal Model:** 

Based on a trade-off between Precision,
 Recall, mAP@50, mAP@50-95, and training
 time, we determined the best model, BG%, and batch size for crack detection

#### **Experiment with YOLOv10 Variants:**

With optimal BG% and batch size, trained
 YOLOv10n, s, m, I models for 100
 epochs

Preprocessing Auto-Orient: Applied

Resize: Stretch to 256x256

# **Object Detection Metrics**

#### **Precision:**

Measures how many of the detected cracks are actual cracks

#### Recall:

Measures how many of the actual cracks are detected

#### mAP@50:

Evaluate the model's ability to detect cracks with at least 50%
 Intersection over Union (IoU) between predicted and actual bounding boxes. A high mAP@50 indicates accurate and reliable detection

#### mAP@50-95:

A stricter metric that averages mAP across IoU thresholds from 0.50 to
 0.95, testing both detection and localization precision

#### **Most Important Metric for Crack Detection?**

• Focus on mAP@50 as it directly measures detection accuracy, which is critical for ensuring cracks are reliably identified in practical scenarios.



# **Model Insights**

#### Table 1 (50 epochs)

| BG Image % | Time (Hrs) | Precision | Recall | mAP@50 | mAP@50-95 |
|------------|------------|-----------|--------|--------|-----------|
| 1          | 0.266      | 0.72      | 0.704  | 0.767  | 0.583     |
| 2          | 0.29       | 0.81      | 0.702  | 0.818  | 0.632     |
| 3          | 0.3        | 0.798     | 0.706  | 0.812  | 0.632     |
| 4          | 0.302      | 0.76      | 0.729  | 0.8    | 0.622     |
| 5          | 0.306      | 0.774     | 0.688  | 0.789  | 0.612     |
| 6          | 0.311      | 0.741     | 0.691  | 0.783  | 0.598     |
| 7          | 0.315      | 0.81      | 0.703  | 0.809  | 0.618     |
| 8          | 0.307      | 0.758     | 0.743  | 0.814  | 0.621     |
| 9          | 0.303      | 0.796     | 0.686  | 0.799  | 0.61      |
| 10         | 0.299      | 0.802     | 0.7    | 0.814  | 0.64      |

#### From the insights of Table 1:

- YOLOv10n trained with various Background Image % at batch size 64 for 50 epochs
- Optimal background percentage set at 2% for best performance and training time
- Added 56 uncracked images to training set, totaling 2,856 images

#### Table 2 (30 epochs)

| Batch Size | Time (Hrs) | Precision | Recall | mAP@50 | mAP@50-95 |
|------------|------------|-----------|--------|--------|-----------|
| 64         | 0.171      | 0.788     | 0.651  | 0.788  | 0.632     |
| 32         | 0.229      | 0.732     | 0.699  | 0.782  | 0.604     |
| 16         | 0.346      | 0.703     | 0.722  | 0.769  | 0.596     |
| 8          | 0.519      | 0.774     | 0.692  | 0.786  | 0.602     |

Batch size of 64 identified as optimal from insights in Table 2

#### From the insights of Table 3:

- YOLOv10I: Best metrics but longer training time
- YOLOv10m: Strong performance and 30% faster than YOLOv10I

#### Table 3 (100 epochs)

| Model    | Time (Hrs) | Precision | Recall | mAP@50 | mAP@50-95 |
|----------|------------|-----------|--------|--------|-----------|
| YOLOv10n | 0.532      | 0.805     | 0.701  | 0.806  | 0.629     |
| YOLOv10s | 0.583      | 0.784     | 0.742  | 0.822  | 0.631     |
| YOLOv10m | 0.77       | 0.799     | 0.763  | 0.832  | 0.685     |
| YOLOv10I | 1.003      | 0.812     | 0.759  | 0.839  | 0.69      |

#### **Need for Improvement:**

 Metrics are not up to the mark, prompting the need to modify the dataset

# Dataset Enhancement Techniques

#### **Contrast Improvement:**

 CLAHE enhances crack visibility and robustness to lighting changes

#### Thresholding:

• Otsu's Thresholding clearly segments cracks from the background

#### **Image Cleaning:**

 Removes noise, focusing on significant cracks for better detection

#### **Benefits:**

- Cracks are more visible
- Improved performance under varying lighting
- Cleaner data may reduce training time
- Enhancements boost crack detection performance

#### **Grayscale Image**

**Enhanced Image** 









**Cleaned Image** 

Otsu's Thresholding







 Next, we'll find the best YOLOv10 detection model by optimizing Background Image % and Batch Size, using the same approach as with unenhanced images

#### Table 4 (50 epochs)

| BG Image % | Time (Hrs) | Precision | Recall | mAP@50 | mAP@50-95 |
|------------|------------|-----------|--------|--------|-----------|
| 1          | 0.259      | 0.769     | 0.718  | 0.837  | 0.652     |
| 2          | 0.26       | 0.792     | 0.756  | 0.856  | 0.659     |
| 3          | 0.269      | 0.779     | 0.728  | 0.837  | 0.661     |
| 4          | 0.28       | 0.78      | 0.775  | 0.864  | 0.676     |
| 5          | 0.282      | 0.755     | 0.755  | 0.841  | 0.655     |
| 6          | 0.286      | 0.792     | 0.785  | 0.863  | 0.648     |
| 7          | 0.284      | 0.767     | 0.755  | 0.837  | 0.619     |
| 8          | 0.288      | 0.852     | 0.727  | 0.869  | 0.678     |
| 9          | 0.288      | 0.659     | 0.728  | 0.755  | 0.562     |
| 10         | 0.311      | 0.782     | 0.74   | 0.84   | 0.645     |

#### Table 5 (50 epochs)

| Batch Size | Time (Hrs) | Precision | Recall | mAP@50 | mAP@50-95 |
|------------|------------|-----------|--------|--------|-----------|
| 64         | 0.28       | 0.78      | 0.775  | 0.864  | 0.676     |
| 32         | 0.34       | 0.766     | 0.777  | 0.865  | 0.666     |
| 16         | 0.495      | 0.723     | 0.775  | 0.834  | 0.641     |

#### Table 6 (100 epochs)

| Model    | Time (Hrs) | Precision | Recall | mAP@50 | mAP@50-95 |
|----------|------------|-----------|--------|--------|-----------|
| YOLOv10n | 0.618      | 0.822     | 0.741  | 0.861  | 0.669     |
| YOLOv10s | 0.613      | 0.798     | 0.764  | 0.847  | 0.664     |
| YOLOv10m | 0.753      | 0.84      | 0.779  | 0.883  | 0.731     |
| YOLOv10I | 1.014      | 0.821     | 0.808  | 0.891  | 0.737     |
| YOLOv10x | 1.356      | 0.844     | 0.8    | 0.883  | 0.74      |

# **Insights Summary**

#### From Table 4:

- YOLOv10n trained with various Background
   Image % at batch size 64 for 50 epochs
- Set at 4% for best performance and training time
- Added 112 uncracked images, totaling 2,912 images

#### From Table 5:

• Batch size of 64 identified as optimal (50 epochs)

#### From Table 6:

• The **best model** obtained is **YOLOv10I**, achieving strong performance metrics: Precision: 82.1% Recall: 80.8%,

mAP@50: 89.1%, and mAP@50-95: 73.7%

# Strategies to Enhance Model Performance

- 1. Train the current best model for additional epochs
- 2. Increase the dataset size
- 3. Consider using the newly released YOLOv11 models for improved speed and performance, featuring better architecture and training optimizations that enhance feature extraction and detection accuracy

# STRATEGY EVALUATION

#### 1. Train the current best model for additional epochs

#### Table 7

| Epochs | Time (Hrs) | Precision | Recall | mAP@50 | mAP@50-95 |
|--------|------------|-----------|--------|--------|-----------|
| 50     | 0.28       | 0.78      | 0.775  | 0.864  | 0.676     |
| 100    | 0.618      | 0.822     | 0.741  | 0.861  | 0.669     |
| 200    | 1.205      | 0.783     | 0.775  | 0.853  | 0.661     |

#### From the insights of Table 7:

- YOLOv10n trained with 4%
   Background Image at batch size
   64 for various epochs
- Recall improved with more epochs, but precision and mAP declined, likely due to overfitting

#### 2.Increase the dataset size

#### Table 8

| Metric     | 2800 Images     | 3600 Images | Change |
|------------|-----------------|-------------|--------|
| Time (Hrs) | 0.281           | 0.345       | +23%   |
| Precision  | Precision 0.792 |             | -2.7%  |
| Recall     | Recall 0.756    |             | +2.9%  |
| mAP@50     | 0.856           | 0.846       | -1.2%  |
| mAP@50-95  | 0.659           | 0.656       | -0.5%  |

#### From the insights of Table 8:

- **Time** increased by **23**% with more data
- Recall improved by 2.9%, showing higher sensitivity to cracked regions
- Precision and mAP dropped slightly (around 2-3%), likely due to noise introduced by augmented images affecting clarity in crack detection

#### 3.Try YOLOv11 Model

#### Table 9 (100 epochs)

| Model | Time (Hrs) | Precision | Recall | mAP@50 | mAP50-<br>95 |
|-------|------------|-----------|--------|--------|--------------|
| M     | 0.778      | 0.851     | 0.781  | 0.901  | 0.747        |
| L     | 0.827      | 0.824     | 0.835  | 0.909  | 0.754        |

#### **Table 10** (100 epochs)

| Model        | Time<br>(hrs) | Precision | Recall | mAP50 | mAP50-<br>95 |
|--------------|---------------|-----------|--------|-------|--------------|
| YOLOv<br>10L | 1.014         | 0.821     | 0.808  | 0.891 | 0.737        |
| YOLOv<br>11L | 0.827         | 0.824     | 0.835  | 0.909 | 0.754        |

• YOLOv11L is chosen for its optimal time-performance tradeoff, as indicated in Table 9

#### From the insights of Table 10:

- YOLOv11L shows improvements in recall (+2.7%) and mAP@50 (+1.8%) over YOLOv10L
- It maintains similar precision and mAP@50-95 while offering a slightly faster training time

Table 11

| Epochs | Time (hrs) | Precision | Recall | mAP@50 | mAP@50-95 |
|--------|------------|-----------|--------|--------|-----------|
| 120    | 1.016      | 0.829     | 0.828  | 0.915  | 0.764     |
| 130    | 1.107      | 0.803     | 0.841  | 0.909  | 0.762     |
| 150    | 1.248      | 0.842     | 0.825  | 0.916  | 0.766     |

#### **Plan Summary:**

- Out of the three strategies
   training the current best model
   for additional epochs,
   increasing the data size, and
   trying the YOLOv11 model
- Strategy 3 (YOLOv11) yielded the best results

#### **Best Model:**

YOLOv11L (150 Epochs)

Precision: 84%

Recall: 82%

mAP@50: 92%

mAP@50-95: 77%

# **CRACK DETECTION RESULTS**





# **CRACK QUANTIFICATION**

Metrics: Area, perimeter, length, and width are derived from analyzing cleaned binary crack images.

- Area: No. of white pixels within the crack, representing its total size
- Perimeter: Boundary pixels outlining the crack.
- Length & Width: Major and minor axes of the bounding rectangle around the crack

#### In the figure

- White Pixels: Represent the crack region
- Green Boundary: Outlines the crack's contour
- Red Bounding Box: Indicates the crack's orientation & dimensions

#### **Quantified Measurements:**

• Crack Area: **2948.50 px**<sup>2</sup>

• Crack Perimeter: 707.03 px

• Crack Length: 225.89 px

• Crack Width: **53.33 px** 



# **DISCUSSION AND CONCLUSION**

- The project automates crack detection and measurement, cutting down the time spent on manual inspections and making monitoring more efficient
- YOLOv11 provides precise crack detection and measurement, helping to assess crack severity and prioritize repairs
- The solution can be scaled for large infrastructure projects, offering real-time crack detection over large areas

# **FUTURE WORK**

- Future work includes using **drones** to capture images of the entire structure for automated crack detection and quantification
- The software will sort cracks based on severity to prioritize repairs and minimize costs
- A key challenge is ensuring consistent image capture distance for accurate real-world measurements, preventing false analysis

# THANK YOU