MC202: Estruturas de Dados

Professores Cid C. de Souza e Hélio Pedrini Instituto de Computação - UNICAMP - 2° semestre de 2009 Turmas A, B, C e D - $1^{\frac{10}{2}}$ Prova (15/10/2009)

Nome:		
RA:	Turma:	

Questão	Valor	Nota
1	2,0	
2	2,0	
3	2,0	
4	2,0	
5	2,0	
Total	10,0	

Instruções: A duração da prova é de 110 minutos. Não é permitida consulta a qualquer material. Somente serão consideradas respostas nos espaços indicados. Use os versos das folhas como rascunho. Nas questões que solicitam que seja completada uma função cujo esboço já é fornecido, cada retângulo deverá conter uma única expressão, ou então, um único comando simples em linguagem C, conforme o contexto.

1. Considere uma fila simples <u>sem</u> nó-cabeça. Suponha que os elementos da fila estivessem indexados começando pelo índice zero. Deseja-se computar a soma dos elementos de índice <u>ímpar</u>. Por exemplo, numa fila contendo os elementos $\{2,1,21,15,13,23,17,5,3\}$ (nesta ordem) esta soma seria 44(=1+15+23+5). Considere a definição dos registros da fila e o trecho do programa principal dados a seguir. Note que os valores das variáveis somaRec e somaIter são inicializados como sendo nulos.

Os cabeçalhos das rotinas chamadas por este programa são dados a seguir. Escreva o procedimento recursivo de modo a que a recursão seja caudal (*tail recursion*). O procedimento iterativo deve remover a recursão caudal e não pode fazer uso de pilhas. Em <u>ambos</u> os procedimentos você está <u>impedido</u> de usar variáveis locais.

<pre>void SomaImparRec(Fila p, int *soma){</pre>	void SomaImparIter(Fila p, int *soma){

os-o) Reconstrua rdem: C K L lem: C A K I	Z A F D W	ENYBM	a a partir dos	seus percurso	os em pós-ord	em e in-orde
b) Ir	ndique a pré-c	ordem para a	árvore obtid	a acima:			
<u> </u>							

3. Nesta questão você deverá executar duas inserções e duas remoções de chaves da árvore AVL mostrada abaixo. Desenhe em cada um dos retângulos em branco a árvore resultante da operação correspondente, seguindo estritamente os algoritmos explicados em aula. Essas operações devem ser executadas sempre na árvore original.

(34)	
insira 18	insira 87
remova 20	remova 67
Temova 20	Tellova 07

4. Usando <u>exclusivamente</u> as operações vistas em sala de aula para árvores B, responda os itens abaixo. Suponha que todas as árvores do enunciado têm grau mínimo $3 \ (t = 3)$.

4.1 Considere a árvore B esquematizada abaixo.

Indique no quadro a seguir a quantidade de operações de split que serão realizadas ao se **inserir** na árvore **original** a chave de valor: (a) 19; (b) 56 e (c) 85.

Pelo menos uma das chaves acima requer mais de um split para ser inserida. Escolha uma destas chaves, insira na árvore <u>original</u> e mostre no quadro abaixo a árvore resultante desta operação. Não deixe de indicar claramente qual foi a chave que você inseriu.

4.2 Considere a árvore B esquematizada abaixo. Desenhe no quadro apropriado a árvore B obtida desta árvore ao ser removida a chave 6.

4.3 Considere a árvore B esquematizada abaixo. Desenhe no quadro apropriado a árvore B obtida da árvore **original** ao ser removida a chave indicada em cada um dos três casos abaixo.

remove 9		
remove 6		
remove 17		

5. Um caminho zigzag direito (esquerdo) a partir de um nó t de uma árvore binária é uma seqüência de nós ($t = t_0, t_1, t_2, \ldots, t_q$) onde t_{i+1} é filho direito (esquerdo) de t_i para todo i par e filho esquerdo (direito) de t_i para todo i ímpar. O comprimento do caminho zigzag é igual ao tamanho da seqüência menos uma unidade, ou seja, q (a seqüência começa de zero).

A altura zigzag direita (esquerda) de um nó t de uma árvore binária é o comprimento do maior caminho zigzag direito (esquerdo) que começa em t. A altura zigzag direita (esquerda) de uma árvore binária é dada pela altura zigzag direita (esquerda) de sua raiz. Convenciona-se que as alturas zigzag direita e esquerda de uma árvore vazia são ambas iguais a -1. Na figura abaixo vê-se uma árvore com as alturas zigzag esquerda e direita indicadas (na ordem) ao lado dos respectivos nós.

Complete a rotina <u>recursiva</u> ZIGZAG abaixo que calcula as *alturas zigzag esquerda e direita* (segundo e terceiro parâmetros de entrada, respectivamente) de uma árvore binária com raiz em um nó apontado pela variável t (primeiro parâmetro da entrada). Os registros da árvore são definidos por: