# Data Workshop #4 Bike Sharing Demand

<u>dataworkshop.eu</u>

### DataWorkshop.eu

Data Workshop Intro Goal Approach Prerequisite Success metric How to join?



### About me



### Vladimir Alekseichenko

Love analyze data





### Disclaimer

Data Workshop [all time] focuses on the intuition and practical tips.

For a formal treatment, see something else\*.

\* papers or classical machine learning books

### Environment

github.com/dataworkshop/prerequisite

github.com/dataworkshop/bike\_sharing\_demand

### Packages

### github.com/dataworkshop/prerequisite

\$ python run.py

xqboost-0.4 - OK

matplotlib-1.5.1 - OK

```
$ python run.py
seaborn-0.7.0 - OK
xgboost-0.4 - OK
matplotlib-1.5.1 - OK
IPython-4.1.2 - OK
numpy-1.11.0 - OK
pandas-0.18.0 - OK
sklearn-0.17.1 - OK
```

All right, you are ready to go on Data Workshop!

```
IPython-4.1.2 - OK
numpy-1.11.0 - OK
pandas-0.18.0 - OK
sklearn-0.17.1 - OK
```

seaborn-0.6 should be upgraded to seaborn-0.7

RECOMENDATION (without upgrade some needed features could be missing) pip install --upgrade seaborn

```
$ python run.py
seaborn-0.7.0 - OK
xgboost - missing
matplotlib-1.5.1 - OK
IPython-4.1.2 - OK
numpy-1.11.0 - OK
pandas-0.18.0 - OK
sklearn-0.17.1 - OK
```

#### REOUIRED

```
Please install those packages before Data Workshop: xgboost
pip install xgboost
More info how to install xgboost: http://xgboost.readthedocs.org/en/latest/build.html
```

### jupyter notebook

```
$ jupyter notebook
[I 22:17:17.650 NotebookApp] The port 8888 is already in use, trying another random port.
[I 22:17:17.650 NotebookApp] The port 8889 is already in use, trying another random port.
[I 22:17:17.651 NotebookApp] The port 8890 is already in use, trying another random port.
[I 22:17:17.651 NotebookApp] The port 8891 is already in use, trying another random port.
[I 22:17:17.657 NotebookApp] Serving notebooks from local directory: /Users/vova/src/github/dataworkshop/titanic/vladimir/tmp
[I 22:17:17.657 NotebookApp] 0 active kernels
[I 22:17:17.657 NotebookApp] The IPython Notebook is running at: http://localhost:8892/
[I 22:17:17.657 NotebookApp] Use Control-C to stop this server and snut down all kernels (twice to skip confirmation).
```





### Motivation

# Big Picture

#### **Understand Business & Data**

Read and explore data



| Chanel_ID | Client_ID | Product_ID | Demand |
|-----------|-----------|------------|--------|
| 1         | 3         | 2          | 10     |
| 1         | 3         | 5          | 15     |
| 3         | 3         | 6          | 12     |

#### **Feature Engineering**

Create a new ones based on already exists



| Chanel_ID | Client_ID | Product_ID | <br>Demand | DemandLog |
|-----------|-----------|------------|------------|-----------|
| 1         | 3         | 2          | <br>10     | 2.303     |
| 1         | 3         | 5          | <br>15     | 2.708     |
| 3         | 3         | 6          | <br>12     | 2.485     |

#### **Feature Selection**

Select only useful features



| Client_ID | Product_ID | /     | DemandLog |
|-----------|------------|-------|-----------|
| 3         | 2          | \/    | 2.303     |
| 3         | 5          | \(\)\ | 2.708     |
| 3         | 6          |       | 2.485     |

#### **Model Selection**

Find the best model(s)



model A

model B

model C

model D

model E

### **Tuning Hyperparameters**Find the best hyperparameters for given model



#### **Ensemble Modeling**

Combine few models into one more better









# Understand Business & Data

### Understand Metric

### Simple points about metrics

- Range
- Outliers
- Negative & Positive

### RMSLE

#### **Basic RMSLE Pattern**



### Validation

### Generalization



# Overfitting



## Summary

### Three things

if you can remember only three...

- Understand your business and data
- Understand expected success by metric[s]
- Experiment a lot

# Thank you