Hasso-Plattner-Institut Potsdam 24. November 2015

Moritz Eissenhauer

Lösung zu Übungsblatt 6

Lösung zu Aufgabe 2

a)

ZZ. Sort ist Korrekt (für $j > i \ge 0$)

Beweis. Seien x und y beliebige Elemente in A mit $i \leq ind(x) \leq j$ und $i \leq ind(y) \leq j$, wobei ind(x) der Index von x in A ist.

Zeige: Falls x < y dann ist nach Ausführung von sort ind(x) < ind(y) ($\Leftrightarrow A$ ist sortiert von i bis j). (I)

Induktiv über j-i:

Induktions Vorraussetzung: Falls j-i=1 dann ist j=i+1 und der erste if-Block wird betreten. Wegen den Bedingungen oben ist entweder $A[i]=x \wedge A[j]=y$ oder $A[j]=x \wedge A[i]=y$. Für den ersten Fall ist A[j] < A[i] = False, nichts wird getauscht und ind(x) < ind(y) gilt. Für den zweiten Fall ist A[j] < A[i] = True, A[i] und A[j] werden getauscht und ind(x) < ind(y) gilt.

Dannach wird unmittelbar returnt, (I) gilt also für j - i = 1.

Induktions Behauptung: (I) gilt für $j - i \le n, n \ge 1$ beliebig.

Induktions Schritt: Zeige (I) gilt für $j - i \le n \Rightarrow$ (I) gilt für $j - i \le n + 1$.

Sei j - i = n + 1.

Da $n \ge 1$ gilt j = i + 1 nicht und der **if**-Block wird nicht betreten. l wird auf j - i + 1 = n + 1 gesetzt. Das heißt $\lfloor \frac{l}{3} \rfloor > 1$ also ist $\lceil j - \frac{l}{3} \rceil - i \le n$. Der Aufruf in Zeile 8 sortiert die Elemente i bis inklusive $\lceil j - \frac{l}{3} \rceil$.

Es gilt auch $j - \lfloor i + \frac{l}{3} \rfloor \le n$, also sortiert Zeile 9 $\lfloor i + \frac{l}{3} \rfloor$ bis i. Das Teilarray von i bis exklusive $\lfloor i + \frac{l}{3} \rfloor$ ist also duch 8 sortiert und $\lfloor i + \frac{l}{3} \rfloor$ bis j durch 9. Insbesondere gilt auch das alle Elemente im Teilarray $j - \lfloor i + \frac{l}{3} \rfloor$ bis j größer sind als alle anderen.

Mit Zeile 10 wird wieder i bis $j - \lfloor i + \frac{l}{3} \rfloor$ sortiert, das heißt das gesamte Array ist sortiert. \square

b)

Für j - i = n lässt sich die Laufzeit als

$$T(1) = c$$

$$T(n) = 3T(\frac{2n}{3}) + c$$
(1)

Mit dem Mastertheorem Fall a erhällt man:

$$\log_b a > 2$$

$$f(n) = c \in \mathcal{O}(n^2)$$

$$\Rightarrow T(n) \in \Theta(n^{\log_b a})$$

$$\Leftrightarrow T(n) \in \Theta(n^{\log_{1.5} 3})$$
(2)

Lösung zu Aufgabe 3

 \mathbf{a}

ZZ. Genericsort ist korrekt

Beweis. Für x, y beiebige ganze Dezimalzahlen mit k (beliebig, fest) stellen gilt

$$x \neq y \Rightarrow \exists 1 \le j \le k : x_j \neq y_j \tag{3}$$

Für das kleinste dieser j gilt dann $x_j < y_j \Rightarrow : x < y$. Da die Zahlen in absteigender Reihenfolge sortiert werden und das Sortierverfahren X stabil ist, steht $x \in A$ genau dann vor $x \neq y \in A$ wenn für die kleinste Stelle j an der sich x und y unterscheiden $x_j < y_j$ gilt. \square

b)

Nach der ersten for-Schleife stehen in B am index i die Anzahl der Vorkommen von i in A. Nach der zweiten schleife steht am Index i Anzahl der Vorkommen aller $x \leq i$ in A minus eins. Das is Äquivalent zu dem jeweils letzten Index im sortierten array, der den wert i hat.

Der Algorithmus sortiert auch korrekt (aber nicht stabil) wenn die Schleife aufsteigend läuft weil nur die reihenfolge geändert wird wann welcher Wert in C geschrieben wird, aber trotzdem Die gleichen Werte an die entsprechenden Stellen geschrieben werden.

 $\mathbf{c})$

Anmerkung: Es is schwierig die Reienfolge der elemente von der der Schlüssel zu unterscheiden, wenn die Elemente selbst die Schlüssel sind.

ZZ. Linearsort ist stabil

Beweis. In der dritten Schleife wird ein wert x in C zuerst and die letzte stelle aller x im sortierten array geschrieben.

Wenn das erste mal der Wert x in A gelesen wird wird er also an die Letzte Stelle aller x in C geschrieben. Der Index an den das nächste x geschrieben wird wird dann um eins verringert. Da die Schleife rückwärts läuft wird also immer das n-letzte x an die n-letzte Stelle der aller x geschrieben. Die reihenfolge bleibt also gleich.

d)

ZZ. Es gibt im worst case $\Omega(n^2)$ Vertauschungen.

Beweis. Wenn für alle $i < \frac{n}{2}$ gilt A[2i] > A[2i+1] dann wird zuerst beim ersten Durchlauf der äuseren Schleife bei jedem zweiten Element getauscht, also werden $\frac{n}{2}$ Vertauschungen vorgenommen. Beim jedem weiteren Durchgang wird jeweils eine Vertauschung weniger vorgenommen. Die Beschriiebene Form lässt sich für alle l > 1 und n herstellen.

Die gesamtzahl der Vertauschungen ist also $n^{\frac{n}{2}} \in \Omega(n^2)$.

e) Die Laufzeit von Genericsort mit Bubblesort als Subroutine X ist $T_G(k, n) = kT_{Bubble}(n)$ wobei T_{Bubble} die Laufzeit von Bubblesort ist. $T_G(k, n)$ ist somit ein $\Theta(kn^2)$.

f)

Die Lufzeit von Linearsort ist $f_1(n) + f_2(z) + f_3(n) + c$ wobei f_i die Laufzeit für die *i*-te Schleife ist. f_1 und f_3 sind in $\Theta(n)$, f_2 ist in $\Theta(z)$. Damit ist die gesamtlaufzeit $\Theta(n+z)$. ZZ. Für z = cn gilt die Laufzeit ist in O(n)

Beweis. Die Laufzeit für z beliebig ist in $\Theta(n+z)$, die Laufzeit für z=cn ist damit in $\Theta(n+cn)=\Theta(n)\cup\mathcal{O}(n)$

g) Die Laufzeit für Genericsort mit Linearsort als Subroutine ist $T_G(k,n) = kT_{Linear}(n,z)$ mit z = 10. $T_G(k,n)$ ist also in $\Theta(kn)$.