Teoria dei Sistemi e Controllo Ottimo e Adattativo (C. I.) Teoria dei Sistemi (Mod. A)

Docente: Giacomo Baggio

Lez. 4: Equilibri, stabilità, linearizzazione

Corso di Laurea Magistrale in Ingegneria Meccatronica

A.A. 2021-2022

Nella scorsa lezione

- ▶ Esempi di modelli di stato lineari
- ightharpoonup Funzione di trasferimento ightarrow spazio di stato
- ▷ Esempi di modelli di stato non lineari

In questa lezione

- ▶ Traiettorie di stato di un sistema
- ▶ Punti di equilibrio di un sistema (con e senza ingressi)
- ▶ Linearizzazione di sistemi non lineari (con e senza ingressi)

Traiettorie di stato e ritratto di fase

$$\dot{x}(t)=f(x(t)), \ \ t\in\mathbb{R}_{+}$$
 (t.c.) $x(t+1)=f(x(t)), \ t\in\mathbb{Z}_{+}$ (t.d.)

Traiettoria di stato del sistema relativa a c.i. $x(0) = x_0$: $\{x(t) \in \mathbb{R}^n, t \geq 0\}$

Ritratto di fase del sistema = insieme delle traiettorie di stato $\forall x_0 \in \mathbb{R}^n$

Traiettorie di stato e ritratto di fase: esempi

Sistema lineare tempo invariante scalare $(f \in \mathbb{R})$:

$$\dot{x}(t) = fx(t), \ t \in \mathbb{R}_{+} \qquad (t.c.)$$

$$x(t+1) = fx(t), \ t \in \mathbb{Z}_{+} \qquad (t.d.)$$

$$x(t) = e^{ft}x_{0} \qquad (t.c.)$$

$$x(t) = f^{t}x_{0} \qquad (t.d.)$$

$$x(t) = f^{t}x_{0} \qquad (t.d.)$$

$$x(t) = f^{t}x_{0} \qquad (t.d.)$$

Traiettorie di stato e ritratto di fase: esempi

Dinamica preda-predatore $(\alpha, \beta, \gamma, \delta > 0)$:

$$\begin{cases} \dot{x}_1(t) = \alpha x_1(t) - \beta x_1(t) x_2(t) \\ \dot{x}_2(t) = \gamma x_1(t) x_2(t) - \delta x_2(t) \end{cases}$$

In questa lezione

- ▶ Traiettorie di stato di un sistema
- ▶ Punti di equilibrio di un sistema (con e senza ingressi)
- ▶ Linearizzazione di sistemi non lineari (con e senza ingressi)

Punti di equilibrio

$$\dot{x}(t) = f(x(t)), \ t \in \mathbb{R}_{+}$$
 (t.c.) $x \in \mathbb{R}^{n} \longrightarrow \overline{X} \in \mathbb{R}^{n} eq. \Longrightarrow f(\overline{X}) = 0$

$$x(t+1) = f(x(t)), \ t \in \mathbb{Z}_{+} \text{ (t.d.)} \qquad \overline{X} \in \mathbb{R}^{n} eq. \Longrightarrow \overline{X} = f(\overline{X})$$

Definizione: $\bar{x} \in \mathbb{R}^n$ è detto punto di equilibrio del sistema se preso $x_0 = \bar{x}$, $x(t) = \bar{x}, \quad \forall t \geq 0.$

$$\dot{x} = Fx$$
, $F \in \mathbb{R}^{n \times n}$: $\bar{x} \in \mathbb{R}^n \in \mathbb{Q}$. $\longrightarrow F \bar{x} = 0 \longrightarrow \bar{x} \in \text{Ker } F$

$$\begin{cases} v \in \mathbb{R}^n : Fv = 0 \\ v \in \mathbb{R}^n : Fv = 0 \end{cases}$$

$$x(t+1) = Fx(t) : \bar{x} \in \mathbb{R}^n \in \mathbb{Q}. \longrightarrow \bar{x} = F \bar{x}$$

$$(F-\bar{I}) \bar{x} = 0 \longrightarrow \bar{x} \in \text{Ker } (F-\bar{I})$$

G. Baggio

Lez. 4: Equilibri, stabilità, linearizzazione

3 Marzo 2022

Punti di equilibrio

$$\dot{x}(t) = f(x(t)), \ t \in \mathbb{R}_+$$
 (t.c.) \bar{x} equilibrio $\iff f(\bar{x}) = 0$

$$x(t+1) = f(x(t)), \ t \in \mathbb{Z}_+$$
 (t.d.) \bar{x} equilibrio $\iff \bar{x} = f(\bar{x})$

Definizione: $\bar{x} \in \mathbb{R}^n$ è detto punto di equilibrio del sistema se preso $x_0 = \bar{x}$,

$$x(t) = \bar{x}, \quad \forall t \geq 0.$$

Punti di equilibrio

$$\dot{x}(t) = f(x(t)), \ t \in \mathbb{R}_+$$
 (t.c.) $ar{x}$ equilibrio $\iff f(ar{x}) = 0$ $x(t+1) = f(x(t)), \ t \in \mathbb{Z}_+$ (t.d.) $ar{x}$ equilibrio $\iff ar{x} = f(ar{x})$

Definizione: $\bar{x} \in \mathbb{R}^n$ è detto punto di equilibrio del sistema se preso $x_0 = \bar{x}$,

$$x(t) = \bar{x}, \quad \forall t \geq 0.$$

Caso lineare:
$$\bar{x}$$
 equilibrio \iff $\bar{x} \in \ker F = \{x \in \mathbb{R}^n : Fx = 0\}$ (t.c.) $\bar{x} \in \ker(F - I) = \{x \in \mathbb{R}^n : (F - I)x = 0\}$ (t.d.)

1.
$$\dot{x} = x(1-x)$$
 \longrightarrow $\bar{x} \in \mathbb{R}$ eq \iff $\bar{x}(1-\bar{x}) = 0$ $\bar{x} = 1$

G. Baggio

$$\overline{x} \in \mathbb{R} \text{ eq} \iff \overline{x} (1-\overline{x})$$

3. $\dot{x} = \begin{bmatrix} -1 & 0 \\ 0 & 2 \end{bmatrix} x \longrightarrow \bar{x} \in \mathbb{R}^1 \text{ eq.} \iff \bar{x} = 0 \\ \bar{x} = \begin{bmatrix} \bar{x}_1 \\ \bar{x}_2 \end{bmatrix} \qquad \begin{cases} -\bar{x}_1 = 0 \\ 2\bar{x}_2 = 0 \end{cases} \longrightarrow \bar{x} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

 $\mathbf{4.} \ \dot{x} = \begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix} x \longrightarrow \overline{x} \in \mathbb{R}^2 \text{ eq } \iff \overline{x} = 0 \quad \begin{cases} -\overline{x}_1 = 0 \\ 0 = 0 \end{cases} \longrightarrow \overline{x} = \begin{bmatrix} 0 \\ d \end{bmatrix} \text{ de } \mathbb{R}$ $\approx \text{ equilibri.}$

Lez. 4: Equilibri, stabilità, linearizzazione

2. $\dot{x} = x^2 + 1 \longrightarrow \bar{x} \in \mathbb{R} \text{ eq.} \iff \bar{x}^2 + 1 = 0 \longrightarrow \bar{x}^2 = -1 \longrightarrow \bar{x} = \pm i \longrightarrow \bar{x} \text{ equilibri}$

3 Marzo 2022

Punti di equilibrio: esempi

1.
$$\dot{x} = x(1-x)$$
 \Longrightarrow due equilibri: $\bar{x} = 0, 1$

2.
$$\dot{x} = x^2 + 1$$
 \Longrightarrow nessun equilibrio

3.
$$\dot{x} = \begin{bmatrix} -1 & 0 \\ 0 & 2 \end{bmatrix} x \implies \text{unico equilibrio: } \bar{x} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

4.
$$\dot{x} = \begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix} x \implies \text{ infiniti equilibri: } \bar{x} = \begin{bmatrix} 0 \\ \alpha \end{bmatrix}, \ \alpha \in \mathbb{R}$$

Punti di equilibrio in presenza di ingressi

$$\dot{x}(t) = f(x(t), u(t)), \ t \in \mathbb{R}_+$$
 (t.c.) $\dot{x} = Fx + Gu$

$$x(t+1) = f(x(t), u(t)), \ t \in \mathbb{Z}_+$$
 (t.d.) $x(t+1) = Fx(t) + Gu(t)$

$$u(t)$$
 costante, $u(t) = \bar{u}, \, \forall t \geq 0$

$$\bar{x} \text{ equilibrio} \iff \begin{cases} f(\bar{x}, \bar{u}) = 0 \implies F\bar{x} + G\bar{u} = 0 \\ \bar{x} = f(\bar{x}, \bar{u}) \implies \bar{x} = F\bar{x} + G\bar{u} \end{cases}$$
 (t.c.)

G. Baggio

Lez. 4: Equilibri, stabilità, linearizzazione

LINEARI

3 Marzo 2022

Punti di equilibrio in presenza di ingressi

$$\dot{x}(t) = f(x(t), u(t)), t \in \mathbb{R}_+$$
 (t.c.)

$$x(t+1) = f(x(t), u(t)), t \in \mathbb{Z}_{+}$$
 (t.d.)

$$u(t)$$
 costante, $u(t) = \bar{u}$, $\forall t \geq 0$

$$\bar{x}$$
 equilibrio \iff

$$\bar{x}=f(\bar{x},\bar{u})$$

caso lineare

$$f(ar{x},ar{u})=0 \hspace{1cm} Far{x}=-Gar{u} \ ar{x}=f(ar{x},ar{u}) \hspace{1cm} (F-I)ar{x}=-Gar{u}$$

$$=-G\bar{u}$$

(t.c.)

(t.d.)

Punti di equilibrio in presenza di ingressi: esempi

1.
$$\dot{x} = \bar{u}, \ \bar{u} \neq 0$$
 $\xrightarrow{\zeta_{\tau}}$ $\xrightarrow{$

note

G. Baggio

Lez. 4: Equilibri, stabilità, linearizzazione

Punti di equilibrio in presenza di ingressi: esempi

1.
$$\dot{x} = \bar{u}, \ \bar{u} \neq 0$$

2.
$$\dot{x} = \begin{bmatrix} 0 & 0 \\ 0 & -1 \end{bmatrix} x + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \bar{u} \implies \text{infiniti equilibri } \bar{x} = \begin{bmatrix} \alpha \\ \bar{u} \end{bmatrix}, \ \alpha \in \mathbb{R}$$

3.
$$\begin{cases} x_1(t+1) = x_2(t) \\ x_2(t+1) = x_1^2(t) + \bar{u} \end{cases} \implies \text{un equilibrio } \bar{x} = \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} \text{ se } \bar{u} = \frac{1}{4} \end{cases}$$

nessun equilibrio se
$$\bar{u}>\frac{1}{4}$$
 un equilibrio $\bar{x}=\begin{bmatrix}\frac{1}{2}\\\frac{1}{2}\end{bmatrix}$ se $\bar{u}=\frac{1}{4}$

due equilibri
$$\bar{x} = \begin{bmatrix} \frac{1 \pm \sqrt{1 - 4\bar{u}}}{2} \\ \frac{1 \pm \sqrt{1 - 4\bar{u}}}{2} \end{bmatrix}$$
 se $\bar{u} < \frac{1}{4}$

In questa lezione

- ▶ Traiettorie di stato di un sistema
- ▶ Punti di equilibrio di un sistema (con e senza ingressi)
- ▶ Linearizzazione di sistemi non lineari (con e senza ingressi)

Stabilità semplice
$$\dot{x} = f(x)$$
 $x(t+1) = f(x(t))$

Definizione: Un punto di equilibrio $\bar{x} \in \mathbb{R}^n$ è detto semplicemente stabile se $\forall \varepsilon > 0$.

$$\exists \, \delta > 0 \, \, \text{tale che}$$

normal Euclidean
$$\|\mathbf{x}\| = \sqrt{\sum_{i=1}^n \mathbf{x}_i^{:1}}$$
 $\|\mathbf{x}_0 - \bar{\mathbf{x}}\| \le \delta \implies \|\mathbf{x}(t) - \bar{\mathbf{x}}\| \le \varepsilon, \ \forall t \ge 0.$

Stabilità asintotica

atronttivite >> Stabilité semplice

Definizione: Un punto di equilibrio $\bar{x} \in \mathbb{R}^n$ è detto asintoticamente stabile se:

- \bullet \bar{x} è semplicemente stabile e
- $\lim_{t\to\infty} x(t) = \bar{x}$ per ogni $x_0\in\mathbb{R}^n$ "sufficientemente vicino" a \bar{x} .

G. Baggio

Lez. 4: Equilibri, stabilità, linearizzazione

(a traffivité)

Stabilità semplice e asintotica: osservazioni

1. Le definizioni di stabilità semplice/asintotica hanno carattere locale. Se la condizione (ii) della stabilità asintotica vale per ogni $x_0 \in \mathbb{R}^n$ allora si parla di stabilità asintotica globale.

Stabilità semplice e asintotica: osservazioni

- **1.** Le definizioni di stabilità semplice/asintotica hanno carattere locale. Se la condizione (ii) della stabilità asintotica vale per ogni $x_0 \in \mathbb{R}^n$ allora si parla di stabilità asintotica globale.
- **2.** Per sistemi lineari si può parlare di stabilità del sistema invece che del punto di equilibrio. Infatti, con un opportuno cambio di variabile, si può sempre "spostare" l'equilibrio in $\bar{x} = 0$.

G. Baggio Lez. 4: Equilibri, stabilità, linearizzazione

In questa lezione

- ▶ Traiettorie di stato di un sistema
- ▶ Punti di equilibrio di un sistema (con e senza ingressi)
- ▶ Linearizzazione di sistemi non lineari (con e senza ingressi)

$$\dot{x}=f(x),\ t\in\mathbb{R}_{+}$$

sistema scalare, $\bar{x} \in \mathbb{R}$ punto di equilibrio

$$\dot{x} = f(x), t \in \mathbb{R}_+$$

sistema scalare, $\bar{x} \in \mathbb{R}$ punto di equilibrio

$$\delta_x \triangleq x - \bar{x} \implies \text{scostomento dell'equilibrio}$$

$$f(x) = \overbrace{f(\bar{x})}^{=0} + \frac{d}{dx} f(\bar{x}) \delta_x + \frac{1}{2} \frac{d^2}{dx^2} f(\bar{x}) \delta_x^2 + \dots \approx \overbrace{f(\bar{x})}^{=0} + \frac{d}{dx} f(\bar{x}) \delta_x$$

$$\implies \text{es parrione in serie di Taylor altorno a } \bar{x}$$

$$\dot{x} = f(x), t \in \mathbb{R}_+$$

sistema scalare, $\bar{x} \in \mathbb{R}$ punto di equilibrio

$$\delta_x \triangleq x - \bar{x}$$

$$f(x) = f(\bar{x}) + \frac{\mathsf{d}}{\mathsf{d}x} f(\bar{x}) \delta_{x} + \frac{1}{2} \frac{\mathsf{d}^{2}}{\mathsf{d}x^{2}} f(\bar{x}) \delta_{x}^{2} + \ldots \approx f(\bar{x}) + \frac{\mathsf{d}}{\mathsf{d}x} f(\bar{x}) \delta_{x}$$

FeR

Sistema linearizzato attorno a \bar{x} :

$$\dot{\delta}_{x} = \frac{\mathsf{d}}{\mathsf{d}x} f(\bar{x}) \, \delta_{x}$$

Linearizzazione attorno ad un equilibrio
$$\dot{x}=f(x)=\begin{bmatrix}f_1(x)\\\vdots\\f_n(x)\end{bmatrix},\ t\in\mathbb{R}_+\quad\text{sistema n-dim., $\bar{x}\in\mathbb{R}^n$ punto di equilibrio}$$

$$\dot{x}=f(x)=egin{bmatrix} f_1(x) \ dots \ f_n(x) \end{bmatrix}$$
, $t\in\mathbb{R}_+$ sistema n -dim., $ar{x}\in\mathbb{R}^n$ punto di equilibrio

$$\delta_x \triangleq x - \bar{x}$$

$$f(x) = f(\bar{x}) + J_f(\bar{x})\delta_x + \ldots \approx f(\bar{x}) + J_f(\bar{x})\delta_x$$

$$J_f(x) = \left\lfloor rac{\partial f_i(x)}{\partial x_j}
ight
floor_{i=1,\dots,n} \in \mathbb{R}^{n imes n} = ext{Jacobiano di } f = 0$$

$$J_{f}(x) = \left[\frac{\partial f_{i}(x)}{\partial x_{j}}\right]_{\substack{i=1,\dots,n \\ j=1,\dots,n}}^{e \in \mathbb{R}^{n \times n}} = \text{Jacobiano di } f = \begin{bmatrix} \frac{\partial f_{1}}{\partial x_{1}} & \cdots & \frac{\partial f_{1}}{\partial x_{n}} \\ \frac{\partial f_{n}}{\partial x_{n}} & \cdots & \frac{\partial f_{n}}{\partial x_{n}} \end{bmatrix} \in \mathbb{R}^{n \times n}$$

$$\dot{x}=f(x)=egin{bmatrix} f_1(x) \ dots \ f_n(x) \end{bmatrix}$$
, $t\in\mathbb{R}_+$ sistema n -dim., $ar{x}\in\mathbb{R}^n$ punto di equilibrio

$$\delta_x \triangleq x - \bar{x}$$

$$f(x) = f(\bar{x}) + J_f(\bar{x})\delta_x + \ldots \approx f(\bar{x}) + J_f(\bar{x})\delta_x$$

$$J_f(x) = \left[\frac{\partial f_i(x)}{\partial x_j}\right]_{\substack{i=1,\dots,n\\i=1}} \in \mathbb{R}^{n \times n} = \text{Jacobiano di } f$$

Sistema linearizzato attorno a \bar{x} :

$$\dot{\delta}_{\scriptscriptstyle X} = J_f(\bar{x})\,\delta_{\scriptscriptstyle X}$$

1.
$$\dot{x} = \sin x$$
 $\bar{x} = 0$ $\bar{x} = \pi$

2.
$$\dot{x} = \alpha x^3$$
, $\alpha \in \mathbb{R}$, $\bar{x} = 0$

3.
$$\begin{cases} \dot{x}_1 = -x_2 + x_1 x_2^2 \\ \dot{x}_2 = x_1 + x_2^5 \end{cases} \quad \begin{bmatrix} \bar{x}_1 \\ \bar{x}_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

1.
$$\dot{x} = \sin x$$
 $\ddot{\bar{x}} = 0$ \Rightarrow $\dot{\delta}_x = \delta_x$ $\dot{\delta}_x = -\delta_x$, $\delta_x \triangleq x - \pi$

2.
$$\dot{x} = \alpha x^3$$
, $\alpha \in \mathbb{R}$, $\bar{x} = 0$ \Longrightarrow $\dot{\delta}_x = 0$

3.
$$\begin{cases} \dot{x}_1 = -x_2 + x_1 x_2^2 \\ \dot{x}_2 = x_1 + x_2^5 \end{cases} \begin{bmatrix} \bar{x}_1 \\ \bar{x}_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \implies \dot{\delta}_x = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \delta_x$$

note

Linearizzazione attorno ad un equilibrio in presenza di ingressi

$$\dot{x} = f(x, u), t \in \mathbb{R}_+$$

sistema n-dim., $\bar{x} \in \mathbb{R}^n$ punto di equilibrio relativo all'ingresso costante $\bar{u} \in \mathbb{R}^m$

Linearizzazione attorno ad un equilibrio in presenza di ingressi

$$\dot{x} = f(x, u), t \in \mathbb{R}_+$$

sistema n-dim., $\bar{x} \in \mathbb{R}^n$ punto di equilibrio relativo all'ingresso costante $\bar{u} \in \mathbb{R}^m$

$$\delta_x \triangleq x - \bar{x}, \ \delta_u \triangleq u - \bar{u}$$

$$f(x,u) = f(\bar{x},\bar{u}) + J_f^{(x)}(\bar{x},\bar{u})\delta_x + J_f^{(u)}(\bar{x},\bar{u})\delta_u + \dots$$

$$J_f^{(x)}(x,u) = \left[\frac{\partial f_i(x,u)}{\partial x_j}\right]_{\substack{i=1,\ldots,n\\j=1,\ldots,n\\i=1,\ldots,n}} \in \mathbb{R}^{n\times n}, \quad J_f^{(u)}(x,u) = \left[\frac{\partial f_i(x,u)}{\partial u_j}\right]_{\substack{i=1,\ldots,n\\j=1,\ldots,m\\i=1,\ldots,m}} \in \mathbb{R}^{n\times n}$$

Linearizzazione attorno ad un equilibrio in presenza di ingressi

$$\dot{x} = f(x, u), t \in \mathbb{R}_+$$

sistema *n*-dim.. $\bar{x} \in \mathbb{R}^n$ punto di equilibrio relativo all'ingresso costante $\bar{u} \in \mathbb{R}^m$

$$\delta_{x} \triangleq x - \bar{x}, \ \delta_{u} \triangleq u - \bar{u}$$

$$f(x,u) = f(\bar{x},\bar{u}) + J_f^{(x)}(\bar{x},\bar{u})\delta_x + J_f^{(u)}(\bar{x},\bar{u})\delta_u + \dots$$

$$J_f^{(x)}(x,u) = \left[\frac{\partial f_i(x,u)}{\partial x_j}\right]_{\substack{i=1,\ldots,n\\j=1,\ldots,n}} \in \mathbb{R}^{n \times n}, \quad J_f^{(u)}(x,u) = \left[\frac{\partial f_i(x,u)}{\partial u_j}\right]_{\substack{i=1,\ldots,n\\j=1,\ldots,m}} \in \mathbb{R}^{n \times n}$$

G. Baggio

Lez. 4: Equilibri, stabilità, linearizzazione

3 Marzo 2022

Teoria dei Sistemi e Controllo Ottimo e Adattativo (C. I.) Teoria dei Sistemi (Mod. A)

Docente: Giacomo Baggio

Lez. 4: Equilibri, stabilità, linearizzazione

Corso di Laurea Magistrale in Ingegneria Meccatronica

A.A. 2021-2022

⊠ baggio@dei.unipd.it

$$\begin{cases} x_{1}(t+1) = x_{2}(t) \\ x_{2}(t+1) = x_{1}^{2}(t) + \bar{u} \end{cases}$$

$$\begin{array}{c}
\overline{X} \in \mathbb{R}^{2} \text{ equilibrio} \iff \begin{cases}
\overline{X}_{1} = \overline{X}_{2} \\
\overline{X}_{2} = \overline{X}_{1}^{2} + \overline{u}
\end{cases}$$

$$\begin{array}{c}
\overline{X}_{1} = \overline{X}_{2} \\
\overline{X}_{1} = \overline{X}_{1} + \overline{u}
\end{cases}$$

$$\begin{array}{c}
\overline{X}_{1} = \overline{X}_{2} \\
\overline{X}_{1} = \overline{X}_{2} + \overline{u}
\end{cases}$$

$$\begin{array}{c}
\overline{X}_{1} = \overline{X}_{2} \\
\overline{X}_{1} = \overline{X}_{2} + \overline{u}
\end{cases}$$

$$\begin{array}{c}
\overline{X}_{1} = \overline{X}_{2} \\
\overline{X}_{1} = \overline{X}_{2} + \overline{u}
\end{cases}$$

$$\begin{array}{c}
\overline{X}_{1} = \overline{X}_{2} \\
\overline{X}_{1} = \overline{X}_{2} + \overline{u}
\end{cases}$$

$$\begin{array}{c}
\overline{X}_{1} = \overline{X}_{2} \\
\overline{X}_{1} = \overline{X}_{2} + \overline{u}
\end{cases}$$

$$\begin{array}{c}
\overline{X}_{1} = \overline{X}_{2} \\
\overline{X}_{1} = \overline{X}_{2} + \overline{u}
\end{cases}$$

1)
$$1-4\bar{u}<0 \rightarrow \bar{u}>1/4 \rightarrow \bar{\chi}_1^{(1,2)}$$
 honno mer parte immaginaria $\neq 0$

$$\begin{array}{c|c}
-(2) \\
X = \begin{bmatrix}
1 \pm \sqrt{1-4u} \\
2 \\
1 \pm \sqrt{1-4u}
\end{bmatrix}$$

$$\begin{array}{c|c}
2 & eq.
\end{array}$$

Definizione: Un punto di equilibrio $\bar{x} \in \mathbb{R}^n$ è detto asintoticamente stabile se:

- $oldsymbol{0}$ $ar{x}$ è semplicemente stabile e
- $\bigotimes_{t\to\infty} x(t) = \bar{x}$ per ogni $x_0 \in \mathbb{R}^n$ "sufficientemente vicino" a \bar{x} .

 $x(t+1) = \begin{cases} 2 \times (t) & |x(t)| < 1 \\ 0 & |x(t)| \ge 1 \end{cases}$

G. Baggio Lez. 4: Equilibri, stabilità, linearizzazione 3 Marzo 2022

x=0 equilibrio

X=0 atrative YxoER

$$\varepsilon = \frac{1}{2} \longrightarrow \frac{1}{2} \delta \quad t.c. \quad \|x_o - \overline{x}\| < S \implies \|x(t) - \overline{x}\| < \varepsilon$$

-> x non e semplicemente stabile

```
Linearizzazione attorno ad un equilibrio: esempi1.\ \dot{x}=\sin x \qquad \stackrel{\overline{x}}{\bar{x}}=0 \\ \overline{x}=\pi 2.\ \dot{x}=\alpha x^3, \quad \alpha\in\mathbb{R}, \, \bar{x}=0
```

2.
$$x = \alpha x^3$$
, $\alpha \in \mathbb{R}$, $x = 0$

3.
$$\begin{cases} \dot{x}_1 = -x_2 + x_1 x_2^2 \\ \dot{x}_2 = x_1 + x_2^5 \end{cases} \quad \begin{bmatrix} \bar{x}_1 \\ \bar{x}_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

G. Baggio Lez. 4: Equilibri, stabilità, linearizzazione 3 Marze

1)
$$\dot{x} = \sin x$$
 $\rightarrow \ddot{x} = 0$ \longrightarrow $\delta_{x} = x - \ddot{x} = x$ \longrightarrow $\delta_{x} = \cos \ddot{x} \delta_{x} = \delta_{x}$

$$\Rightarrow \ddot{y} = \pi \longrightarrow \delta_{x} = x - \pi \longrightarrow \dot{\delta}_{x} = \cos \ddot{x} \delta_{x} = -\delta_{x}$$

2)
$$\dot{x} = \lambda x^3$$
, $\lambda \in \mathbb{R}$, $\overline{x} = 0 \rightarrow \delta_x = x - \overline{x} \rightarrow \delta_x = 3\lambda \overline{x}^2 \delta_x = 0$

3)
$$\begin{cases} \dot{x}_1 = -x_1 + x_1 \\ \dot{x}_1 = x_1 + x_2 \end{cases} \quad \bar{x} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$J_{f}(x) = \begin{bmatrix} \frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{2}} \\ \frac{\partial f_{2}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{2}} \end{bmatrix} = \begin{bmatrix} x_{2}^{2} & -1 + 2x_{1}x_{2} \\ 1 & 5x_{2}^{4} \end{bmatrix}$$

$$J_{f}(\bar{x}) = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \longrightarrow \delta_{x} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \delta_{x}$$