L'hopital 2 (forklaring)

Vi har at

$$\lim_{x \to a} \frac{g}{f} = \lim_{x \to a} \frac{\frac{1}{f}}{\frac{1}{g}}$$

Da $\lim_{x\to a}f=\lim_{x\to a}g=\infty$, må $\lim_{x\to a}\frac{1}{f}=\lim_{x\to a}\frac{1}{g}=0$. Av Lhopital
1?? har vi da at

$$\lim_{x \to a} \frac{g}{f} = \lim_{x \to a} \frac{\frac{1}{f^2} f'}{\frac{1}{g^2} g'}$$

Multipliserer vi begge sider med $\lim_{x\to a}\frac{f^2}{g^2},$ får vi at

$$\lim_{x \to a} \frac{f}{g} = \lim_{x \to a} \frac{f'}{g'}$$

Eksempel

Gitt funksjonen

$$f(x) = \sin x \quad , \quad x \in [-2, 4]$$

- a) Finn infleksjonspunktene til f.
- **b)** Finn vendepunktene til f.

Svar

a) Infleksjonspunktene finner vi der hvor f''(x) = 0:

$$f''(x) = 0$$
$$(\sin x)'' = 0$$
$$-\sin x = 0$$

Av $x \in D_f$ er det x=0 og $x=\pi$ som oppfyller kravet fra ligningen over. For å finne ut om f'' skifter fortegn i disse punktene, setter vi opp et fortegnsskjema:

1

f'' går altså fra positiv til negativ i x=0 og fra negativ til positiv i $x=\pi$. Dette betyr at f går fra konveks til konkav i x=0 og fra konkav til konveks i $x=\pi$.