5.2. Let L and M be observables and $|\Psi\rangle$ a normalized simultaneous eigenvector of L and M. Set (i) $\overline{L} = L - \langle L \rangle I$ and $\overline{M} = M - \langle M \rangle I$.

1) Show that
$$\Delta L^2 = \left\langle \overline{L}^2 \right\rangle$$
 and $\Delta M^2 = \left\langle \overline{M}^2 \right\rangle$

2) Show that
$$\left[\overline{L},\overline{M}\right] = \left[L,M\right]$$

3) Show that (5.13)
$$\Delta L \Delta M \ge \frac{1}{2} |\langle \Psi | [L, M] | \Psi \rangle|$$

Solution. Recall that if $\left\{\lambda\right\}_{\lambda\in\Lambda}$ is the set of eigenvalues of an observable L then

(ii)
$$\langle L \rangle^{(4.11)} = \sum_{\lambda} \lambda P_L(\lambda)$$

where $P_L(\lambda)$ is the probability that λ is the outcome of measurement L.

Notation: In the book, equation (4.11) used $P(\lambda)$ because L was obvious. However, in this problem we have L, L^2 , and \overline{L} . For the sake of clarity, we write $P_L(\lambda)$ rather than $P(\lambda)$.

It is straight-forward to check that the eigenvalues and eigenvectors of L^2 are $\left\{\lambda^2\right\}$ and $\left\{\left|\lambda\right>\right\}$, respectively. Since $\mathsf{P}_{\!_{L^2}}\!\left(\lambda^2\right) = \mathsf{P}_{\!_{L}}\!\left(\lambda\right)$,

(iii)
$$\langle L^2 \rangle = \sum_{\lambda} \lambda^2 P_L(\lambda)$$
.

1) Let $\left\{\lambda\right\}$ and $\left\{\mu\right\}$ be the sets of eigenvalues of L and M, respectively. Define (iv) $\overline{\lambda}=\lambda-\left\langle L\right\rangle$ and $\overline{\mu}=\mu-\left\langle M\right\rangle$.

Claim $\{\overline{\lambda}\}$, $\{|\lambda\rangle\}$, $\{\overline{\mu}\}$, and $\{|\mu\rangle\}$ are the eigenvalues and eigenvectors of \overline{L} and \overline{M} :

$$\overline{L}|\lambda\rangle \stackrel{(i)}{=} (L - \langle L \rangle I)|\lambda\rangle = L|\lambda\rangle - \langle L \rangle I|\lambda\rangle = \lambda|\lambda\rangle - \langle L \rangle|\lambda\rangle = (\lambda - \langle L \rangle)|\lambda\rangle \stackrel{(iv)}{=} \overline{\lambda}|\lambda\rangle$$
 and similarly for M .

By (i), the distribution of \overline{L} is simply the distribution of L shifted by $\langle L \rangle$ to have a mean of zero. Therefore, since $\{\overline{\lambda}\}$ are the eigenvalues of \overline{L} ,

(v)
$$P_{\overline{L}}(\overline{\lambda}) = P_L(\lambda)$$
,

(vi) $\Delta L=$ Standard deviation of L= Standard deviation of $\overline{L}=\Delta \overline{L}$ and similarly

(vii)
$$\Delta M = \Delta \overline{M}$$
.

Hence

$$\left(\Delta L\right)^2 = \text{Variance of L} = \sum_{\lambda} \left(\lambda - \left\langle L\right\rangle\right)^2 \mathsf{P}_L\left(\lambda\right) \stackrel{(\text{iv, v})}{=} \sum_{\lambda} \overline{\lambda}^2 \mathsf{P}_{\overline{L}}\left(\overline{\lambda}\right) \stackrel{(\text{iii})}{=} \left\langle \overline{L}^2\right\rangle \quad \checkmark$$
 and similarly for M .

2)
$$\overline{LM} \stackrel{(i)}{=} (L - \langle L \rangle I) (M - \langle M \rangle I) = LM + \langle L \rangle \langle M \rangle I - \langle L \rangle M - \langle M \rangle L$$

$$\overline{ML} \stackrel{(i)}{=} (M - \langle M \rangle I) (L - \langle L \rangle I) = ML + \langle M \rangle \langle L \rangle I - \langle L \rangle M - \langle M \rangle L$$

Subtracting, we get

(viii)
$$[\overline{L},\overline{M}] = \overline{L}\overline{M} - \overline{M}\overline{L} = LM - ML = [L,M]$$

3)
$$\Delta L \Delta M = \Delta \overline{L} \Delta \overline{M} \ge \frac{1}{2} \langle \Psi | [\overline{L}, \overline{M}] | \Psi \rangle = \langle \Psi | [L, M] | \Psi \rangle$$

(*) The book showed that this inequality, 5.13, holds because $\left\langle \overline{L}\right\rangle$ = 0 = $\left\langle \overline{M}\right\rangle$.

Note. I did not use step 1) in the proof of steps 2) and 3). Hence I also did not use (ii) - (v).