STA 365: Applied Bayesian Statistics

Boris Babic Assistant Professor, University of Toronto

Week 6B: Hypothesis Testing

- Recall that everything on the Bayesian approach goes through the posterior distribution
- HT is not exception. We'll want to identify hypotheses, derive their posterior distributions, and then consider some test statistics.
- But on the Bayesian approach, the rationale for doing this is less obvious. We already have the full posterior.
- The epistemology underlying Bayesianism (confirmation of hypotheses by evidence) is very different from the epistemology underlying classical NHST (falsification of hypotheses by evidence).
- However, you may want to perform hypothesis tests for various reasons and as such we look at how to do so.

• Set up: $X_1,...,X_n = \mathbf{X} \in \mathbf{Z} \stackrel{\text{iid}}{\sim} f(\mathbf{x}|\theta), \ \theta \in \Theta \subset \mathbb{R}.$

$$H: \theta \in \Theta_0, \Theta_0 \subset \Theta$$

$$K: \theta \in \Theta_1, \Theta_1 \subset \Theta$$

$$\Theta_0 \cap \Theta_1 = \emptyset$$

$$\Theta_0 \cup \Theta_1 = \Theta$$
 is not necessary.

- Goal: To decide if $\theta \in \Theta_0$ or $\theta \in \Theta_1$
- Define:

$$H_0: \theta \in \Theta_0 \to \mathsf{Null}$$

$$H_1: \theta \in \Theta_1 o \mathsf{Alternate}$$

Introduction

Error Probabilities

	H_0 True	H_1 True
H_0	✓	Type II error
H_1	Type I error	✓

$$P(Type I) = \alpha$$

 $P(Type II) = \beta$

• Test (NP Framework): To choose a decision function for testing H_0 vs. H_1 is to partition Z into A and R, where $A \cap R = \emptyset$ and $A \cup R = Z$.

$$\alpha = \Pr{\mathbf{X} \in R | \theta \in \Theta_0}$$

$$\beta = \Pr{\mathbf{X} \in A | \theta \in \Theta_1}$$

- Steps in applying the NP framework:
- Choose α close to zero (e.g., $\alpha = 0.01$).
- Restrict attention to tests $T = \{\delta(\mathbf{X}) : \Pr(\mathbf{X} \in R | \theta \in \Theta_0) \leq \alpha\}.$
- among all tests in T choose $\arg\min_{\delta}\Pr(\mathbf{X}\in A|\theta\in\Theta_1)$.

• Simple vs simple:

$$H_0: \theta = \theta_0 \in \Theta$$

$$H_1: \theta = \theta_1 \in \Theta$$

$$\Theta = \{\theta_0, \theta_1\}, \theta_1 > \theta_0$$

• NP Lemma: A post powerful level α test (i.e, that minimizes β), is of the form

$$R = \{ \mathbf{X} \in Z : LR \le k \}$$

where

$$LR = \frac{f(\mathbf{x}|H_0)}{f(\mathbf{x}|H_1)} = \frac{f(\mathbf{x}|\theta_0)}{f(\mathbf{x}|\theta_1)} = \frac{1}{\Lambda}$$

Example: Normal Distribution

Suppose $X_1,...,X_n \stackrel{\mathrm{iid}}{\sim} \mathrm{N}(\theta,\sigma^2)$ where σ^2 is known. Consider testing $H_0:\theta=\theta_0$ vs $H_1:\theta=\theta_1$ where $\theta_1>\theta_0$.

$$\begin{split} f(\mathbf{x}|\theta) &= \prod_{i=1}^n \left[\frac{1}{2\pi\sigma^2} \exp\left\{ -\frac{(x_i - \theta)^2}{2\sigma^2} \right\} \right] \\ \frac{f(\mathbf{x}|\theta_1)}{f(\mathbf{x}|\theta_0)} &= \frac{\exp\left\{ -\sum_{i=1}^n \frac{(x_i - \theta_1)^2}{2\sigma^2} \right\}}{\exp\left\{ -\sum_{i=1}^n \frac{(x_i - \theta_0)^2}{2\sigma^2} \right\}} \\ &= \exp\left\{ -\sum_{i=1}^n \frac{(x_i - \theta_1)^2}{2\sigma^2} + \sum_{i=1}^n \frac{(x_i - \theta_0)^2}{2\sigma^2} \right\} \\ &= \exp\left\{ \frac{\sum_{i=1}^n (x_1 - \theta_0)^2 - \sum_{i=1}^n (x_1 - \theta_1)^2}{2\sigma^2} \right\} \\ &= \exp\left\{ \frac{n(\theta_0^2 - \theta_1^2) + 2\sum_{i=1}^n x_i(\theta_1 - \theta_0)}{2\sigma^2} \right\} \\ &\to \frac{n(\theta_0^2 - \theta_1^2) + 2\sum_{i=1}^n x_i(\theta_1 - \theta_0)}{2\sigma^2} > \log k \\ &\to \sum_{i=1}^n x_i > k^* \to \alpha = \Pr\left(\sum_{i=1}^n X_i > k^* |\theta_0 \right) \\ &\to \frac{k^*/n - \theta_0}{\sigma/\sqrt{n}} = z_\alpha \to k^* = n(\theta_0 + z_\alpha \frac{\sigma}{\sqrt{n}}) \end{split}$$

- $H_0: \mu = 0$ vs. $H_1: \mu = 1.645, X \sim N(\mu, 1), n = 1.$
- $\alpha = 0.05$. $R = \{LR \le k\} = \{X \in Z : x \ge c\}$
- c = 1.645

p-value approach:

- Do not choose α a priori.
- Instead, observe a sample, compute a p-value, and then let a decision maker decide based on personal choice of α.

Example

- Suppose that you toss a coin 12 times, obtaining 9 heads and three tails. If X_i corresponds to an outcome of the coin toss, then $Y = \sum X_i \stackrel{\text{iid}}{\sim} \text{Bin}(n,\theta)$.
- Let $H_0: \theta = 0.5$. That is, you want to test if the coin is fair.
- Compute the *p*-value.

Example |

Let
$$Y = \sum X_i$$
. Then

$$Y \sim \text{Binomial}(n, \theta)$$

$$\begin{split} P(Y \geq 9 | \theta = 0.5, n = 12) &= \sum_{y=9}^{12} \binom{12}{y_i} \left(\frac{1}{2}\right)^{y_i} \left(\frac{1}{2}\right)^{12 - y_i} \\ &= \left[\binom{12}{3} + \binom{12}{2} + \binom{12}{1} + \binom{12}{0}\right] \left(\frac{1}{2}\right)^{12} \\ &= \frac{299}{4096} \approx 0.07 \end{split}$$

The result is not statistically significant. Thus we cannot reject the hypothesis that the coin is fair.

- Suppose the experiment was performed by your RA.
- You now learn there was a mix up.
- You thought you told the RA to toss the coin 12 times.
- But your RA actually tossed it until observing 3 tails.
- As it happens, it took 12 tosses to get 3 tails.
- Should this matter? The evidence is what it is isn't it?
- But now n is random and Y is fixed.
- Thus, a result more extreme than (9,3) is no longer (10,2), (11,1), and (12,0). Rather, it is (10,3), (11,3), (12,3), and so on.
- We have to re-calculate the p-value.

Second Attempt

$$P(N \ge 12 | \theta = 0.5, r = 3) = \sum_{n=12}^{\infty} {n_i - 1 \choose r - 1} .5^r .5^{n_i - r}$$

$$= \sum_{n=12}^{\infty} {n_i - 1 \choose 2} .5^{n_i}$$

$$= 1 - \sum_{n=1}^{11} {n_i - 1 \choose 2} .5^{n_i}$$

$$\approx 0.03$$

- Now the result is statistically significant!
- What if the RA stopped tossing the coin so that they can get a coffee?
 Sometimes there are ethical reasons to stop collecting data (HIV antiretroviral drug example)

• Priors:

$$\pi(H_0), \pi(H_1) = 1 - \pi(H_0)$$

Posteriors:

$$\pi(H_0|y) = \frac{\pi(H_0)f(y|H_0)}{\pi(H_0)f(y|H_0) + \pi(H_1)f(y|H_1)}$$

$$\pi(H_1|y) = \frac{\pi(H_1)f(y|H_1)}{\pi(H_1)f(y|H_1) + \pi(H_0)f(y|H_0)}$$

• Prior odds:

$$\Omega' = \frac{\pi(H_0)}{\pi(H_1)}$$

• Posterior odds:

$$\Omega'' = \frac{\pi(H_0|y)}{\pi(H_1|y)} = \frac{\pi(H_0)f(y|H_0)}{\pi(H_1)f(y|H_1)} \to \Omega'' = \Omega' \times LR$$

Bayesian Decision Theory

	H_0 True	H_1 True
Decide H_0	0	L_{II}
Decide H_1	L_I	0

$$E[Decide H_0] = 0 \times \pi(H_0|y) + L_{II} \times \pi(H_1|y)$$

$$E[Decide H_1] = L_I \times \pi(H_0|y) + 0 \times \pi(H_1|y)$$

Decide
$$H_1$$
 if $L_I \pi(H_0|y) < L_{II} \pi(H_1|y)$

Decide H_1 if

$$\Omega'' < \frac{L_{II}}{L_I}$$

$$\Omega' \times LR < \frac{L_{II}}{L_I}$$

$$LR < \frac{L_{II}/L_I}{\Omega'}$$

The last line suggests that only relative severity of each type of error is what matters.

Example

Let $X\sim N(\mu,1),\ n=1,\ H_0:\mu=0,H_1:\mu=1.645$ If $L_{II}/L_I=1/2$ and $\Omega'=1$, express the decision rule.

If X = 1, what will you do?

Solution

Decide
$$H_1$$
 if $LR < \frac{1}{2}$
$$LR = \frac{f(x|H_0)}{f(x|H_1)}$$

$$= \frac{\exp\left[-\frac{x^2}{2}\right]}{\exp\left[-\frac{(x-1.645)^2}{2}\right]}$$

$$= \exp\left[-\frac{x^2}{2} + \frac{(x-1.645)^2}{2}\right]$$

$$= \exp\left[\frac{(x-1.645)^2}{2} - \frac{x^2}{2}\right]$$

$$= \exp\left[\frac{(x-1.645)^2 - x^2}{2}\right]$$

$$= \exp\left[\frac{x^2 + 1.645^2 - 2x1.645 - x^2}{2}\right]$$

$$= \exp\left[\frac{1.645(1.645 - 2x)}{2}\right]$$

$$= \exp\left[\frac{1.645(1.645 - 2x)}{2}\right]$$

If x = 1, $LR \approx 0.7 \rightarrow \text{decide } H_0$.

$$H_0: \theta \leq \theta_0$$

 $H_1: \theta > \theta_0$
Priors:

$$\pi(H_0) = \int_{-\infty}^{\theta_0} f(\theta) d\theta$$
$$\pi(H_1) = \int_{\theta_0}^{\infty} f(\theta) d\theta$$

Posteriors:

$$\pi(H_0|y) = \int_{-\infty}^{\theta_0} f(\theta|y) d\theta$$
$$\pi(H_1|y) = \int_{\theta_0}^{\infty} f(\theta|y) d\theta$$

$$\Omega'' = \Omega' \times LR \rightarrow LR = \frac{\Omega''}{\Omega'} = BF$$

Example

- Let $X \sim N(\mu, 1)$, n = 1, $L_{II}/L_{I} = 1/2$.
- Let $\mu \sim N(\mu_0 = 0, \tau_0 = 3)$.
- Consider $H_0: \mu \leq 0$ vs $H_1: \mu > 0$.
- Suppose x = 1.
- What should you decide?

Solution

Note that $\sigma_0^2=1/3$ and $\tau=1$. And $\mu|x\sim N(\mu_1,\sigma^2/\tau_1)$, where

$$\mu_1 = \frac{n\tau + \tau_0 \mu_0}{n + \tau_0} = \frac{1+0}{4} = 1/4$$

$$\tau_1 = 4$$

$$\Omega' = \frac{\pi(H_0)}{\pi(H_1)} = \frac{\pi(\mu \le 0)}{\pi(\mu > 0)} = \frac{\Pr\left(Z \le \frac{0 - 0}{1/\sqrt{1/3}}\right)}{\Pr\left(Z > \frac{0 - 0}{1/\sqrt{1/3}}\right)} = 1$$

$$\Omega'' = \frac{\pi(H_0|x)}{\pi(H_1|x)} = \frac{\pi(\mu \le 0|x)}{\pi(\mu > 0|x)} = \frac{\Pr\left(Z \le \frac{0 - 0.25}{0.5}\right)}{\Pr\left(Z > \frac{0 - 0.25}{0.5}\right)} = \frac{0.31}{0.69} = 0.45$$

Since $L_{II}/L_I=1/2$ and $\Omega''\leq 1/2$, decide H_1 .

Example

Suppose $X_1,...X_n \stackrel{\mathrm{iid}}{\sim} f(x|\theta)$. And consider

$$H_0: \theta = \theta_0$$
 vs. $H_1: \theta \neq \theta_0$.

Priors

• Priors:

$$\pi(H_0) = \pi_0 \text{ and } \pi(H_1) = \pi_1 \sim f_1(\theta)$$

Remaining Ingredients

· Likelihoods:

$$f(x|H_0) = f(x|\theta_0)$$

$$f(x|H_1) = \int_{-\infty}^{\infty} f(x|\theta) f_1(\theta) d\theta = f_1(x) \to \text{PPD under } H_1$$

Full predictive:

$$f(x) = \pi_0 f(x|\theta_0) + \pi_1 f_1(x)$$

Posteriors:

$$\pi(H_0|x) = \frac{\pi(H_0)f(x|H_0)}{\pi(H_0)f(x|H_0) + [1 - \pi(H_0)]f(x|H_1)}$$

$$= \frac{\pi_0 f(x|\theta_0)}{\pi_0 f(x|\theta_0) + \pi_1 f_1(x)}$$

$$= \frac{\pi_0 f(x|\theta_0)}{f(x)}$$

$$\pi(H_1|x) = \frac{\pi_1 f_1(x)}{f(x)}$$

Odds Ratios

$$\Omega'' = \Omega' \times LR$$

$$= \frac{\pi_0}{\pi_1} \frac{f(x|\theta_0)}{f_1(x)}$$

$$= \frac{\pi_0}{\pi_1} \times BF$$

Sufficient Statistics

Suppose y = g(x) is a SS so that $f(x|\theta) = f(y|\theta)f(x|y)$.

Then,

$$\pi(H_0|x) = \pi(H_0|y)$$

$$\pi(H_1|x) = \pi(H_1|y)$$

And,

$$\Omega'' = \frac{\pi_0}{\pi_1} \frac{f(y|\theta_0)}{f_1(y)}$$

Example

Let $X_1,...X_n \stackrel{\text{iid}}{\sim} N(\mu,\sigma_0^2)$ where σ_0^2 is known.

$$H_0: \mu = \mu_0 \text{ vs. } H_1: \mu \neq \mu_0$$

 $\pi_0 = \pi_1 = 1/2$

$$\pi_0 = \pi_1 = 1/2$$

$$Y = \overline{X} \sim N(\mu, \frac{\sigma_0^2}{n})$$

Prior on μ under H_1 :

$$f_1(\mu) \sim \mathrm{N}(\mu_0, \frac{\sigma^2}{n'})$$

where $\mu_0 = m'$.

Example

Posteriors:

$$f(y|h_0) = f(y|\mu_0)$$

$$f(y|h_1) = \int_{-\infty}^{\infty} f(y|\mu) f_1(\mu) d\mu = f_1(y)$$

$$f_1(y) = f_1(\overline{x}) \sim N(\mu_0, \frac{\sigma_0^2}{n} + \frac{\sigma_0^2}{n'})$$

Example

Posterior Odds:

$$\begin{split} \Omega'' &= \Omega' \times LR \\ &= \frac{\pi_0}{\pi_1} \frac{\frac{\sqrt{n}}{\sqrt{2\pi}\sigma_0} \exp\left[-\frac{1}{2\sigma_0^2} (\overline{x} - \mu_0)^2\right]}{\frac{1}{\sqrt{2\pi}\sqrt{\frac{\sigma_0^2}{n} + \frac{\sigma_0^2}{n^2}}} \exp\left[-\frac{1}{2} \frac{(\overline{x} - \mu_0)^2}{\frac{\sigma_0^2}{n} + \frac{\sigma_0^2}{n^2}}\right] \end{split}$$

Bayes Factor:

$$BF = \frac{f(y|H_0)}{f_1(y)}$$

$$= \sqrt{\frac{n+n'}{n'}} \exp\left[\left\{-\frac{1}{2} \frac{(x-\mu_0)^2}{\sigma_0^2/n}\right\} \left\{1 - \frac{n'}{n+n'}\right\}\right]$$

$$= \sqrt{\frac{n+n'}{n'}} \exp\left[-\frac{1}{2} z^2 \left\{1 - \frac{n'}{n+n'}\right\}\right]$$

Example: Special Case

Suppose $n'=1,\, n=15,\, \pi_0=\pi_1=1/2$ and z=1.96 Then.

$$BF = \sqrt{16/1} \exp[-1/2z^2(1 - 1/16)] = 0.66$$

$$\Omega'' = \frac{\pi_0''}{1 - \pi_0''} = \frac{\pi_0}{\pi_1} BF \to \pi_0'' = \frac{BF}{1 + BF} = 0.4$$

This is the posterior probability of the null hypothesis. Compare this to p-value of 0.05!

Extreme Result

$$BF = \sqrt{\frac{n+n'}{n'}} \exp[-1/2z^2(1 - \frac{n'}{n+n'})]$$

As $n \to \infty$, $BF \to \infty$

Lindley's Paradox

We can find a sample size and a sample result such that both of the following two conditions are satisfied:

- (1) A classical two tailed test reveals an arbitrarily small p-value, and
- (2) The LR/BF (and hence posterior odds ratio) is arbitrarily large.

In general,

$$f_1(\overline{x}) = f_1(y) = \int_{-\infty}^{\infty} f(\overline{x}|\theta) f_1(\theta) d\theta \le f(\overline{x}|\hat{\theta}_{MLE})$$

where $f(\overline{x}|\hat{\theta}_{MLE}) = \sup_{\theta} f(\overline{x}|\theta)$.

Let
$$\hat{\theta} = \overline{x}$$
. So $f_1(x) \leq \frac{\sqrt{n}}{\sqrt{2\pi}\sigma_0}$

$$BF = \frac{f(\overline{x}|\mu_0)}{f_1(x)} \ge \exp{-1/2z^2}$$

7	p-vilne	Bound on B	Bound on To
		0.258	0.205
1.645	0.1	0.146	0.128
1. 96	0.05		0.035
5.28	0.0	0.836	
3.29	0.001	0.004	460.0