

MECÂNICA QUÂNTICA II – PARTÍCULAS IDÊNTICAS E TRANSFORMAÇÕES

Sandro Dias Pinto Vitenti

Departamento de Física – CCE – UEL

1. Considere um sistema de duas partículas idênticas e responda às questões abaixo:

- (a) Considere que o estado de uma partícula é descrito por $|a\rangle \in \mathbb{V}$. Utilize o produto tensorial para definir os dois possíveis espaços para os estados de duas partículas.
- (b) Definimos um estado separável de duas partículas como sendo da forma $|\psi\rangle = |a\rangle \otimes |b\rangle$. Os estados que não podem ser escritos dessa forma são chamados emaranhados. Os estados representando duas partículas idênticas podem ser separáveis? Justifique sua resposta.
- (c) Com base nas respostas dos itens anteriores, explique como podemos realizar experimentos em laboratório medindo o estado de uma partícula $|a\rangle$ sem considerar todas as outras partículas idênticas presentes no sistema.
- (d) Explique como podemos testar empiricamente se o estado de duas partículas é simétrico ou anti-simétrico. Descreva como a simetria e a anti-simetria estão relacionadas ao conceito de troca de partículas idênticas e como as técnicas experimentais podem ser usadas para medir os estados de duas partículas e verificar sua simetria.
- 2. Considere um grupo aditivo de transformações a um parâmetro, que é um mapa suave $\mathbb{R} \to \operatorname{Op}(\mathbb{V})$ dado por $\operatorname{T}(\epsilon)$ que satisfaz as seguintes propriedades:
 - $T(\epsilon_2)T(\epsilon_1) = T(\epsilon_1 + \epsilon_2)$, onde $\epsilon_1, \epsilon_2 \in \mathbb{R}$;
 - T(0) é a identidade, ou seja, T(0) = 1;
 - $T^{\dagger}(\epsilon)T(\epsilon) = 1$, onde T^{\dagger} é o adjunto de T.

Responda as seguintes questões:

- (a) Mostre que $T^{\dagger}(\epsilon) = T(-\epsilon)$.
- (b) Explique o conceito de gerador e mostre que o operador gerador é anti-Hermitiano. Como podemos definir um operador que seja Hermitiano?

- (c) Considere uma função dos operadores básicos \widehat{X} e \widehat{P} , $\Omega(\widehat{X}, \widehat{P})$. Explique como podemos reescrever a operação $T^{\dagger}(\epsilon)\Omega(\widehat{X},\widehat{P})T(\epsilon)$.
- 3. Considere o operador de inversão espacial Π , que inverte as coordenadas espaciais de um sistema. Prove que Π é um operador idempotente, ou seja, $\Pi^2 = \mathbb{1}$. Em termos de funções de onda, quais são as auto-funções do operador Π e seus autovalores correspondentes? Além disso, suponha que a Hamiltoniana do sistema é invariante sob inversão espacial, ou seja, $\Pi\widehat{H}\Pi = \widehat{H}$. Nesse caso, quais características da função de onda são conservadas? Explique.
- 4. Considere a álgebra dos geradores de rotação $\widehat{\mathbf{L}} \times \widehat{\mathbf{L}} = i\hbar \widehat{\mathbf{L}}$, e seja $\widehat{\mathbf{L}}^2$ o operador momento angular total e $\widehat{\mathbf{L}}_z$ o operador componente z do momento angular. Suponha que existem autoestados comuns $|\alpha\beta\rangle$ de $\widehat{\mathbf{L}}^2$ e $\widehat{\mathbf{L}}_z$, ou seja, $\widehat{\mathbf{L}}^2$ $|\alpha\beta\rangle = \alpha$ $|\alpha\beta\rangle$ e $\widehat{\mathbf{L}}_z$ $|\alpha\beta\rangle = \beta$ $|\alpha\beta\rangle$. Responda às seguintes perguntas:
 - (a) Explique por que podemos definir um autoestado simultâneo de \widehat{L}^2 e \widehat{L}_z .
 - (b) Defina os operadores de escada \widehat{L}_+ e \widehat{L}_- e calcule seus comutadores com \widehat{L}_i e \widehat{L}^2 .
 - (c) Mostre como os operadores de escada atuam nos estados $|\alpha\beta\rangle$.
 - (d) Se \widehat{L}_i são auto-adjuntos, mostre que deve existir uma relação entre α e β. Qual é o significado físico dessa relação?