מבוא לתורת הקבוצות – תרגיל 9

להגשה עד ליום חמישי ה־19 בינואר 2012

- לכל אחד מיחסי השקילות הבאים (אין צורך להוכיח שמדובר ביחס שקילות), תארו את קבוצת המנה וחשבו את עוצמתה:
 - $\mathbb{R} \setminus \{(0,0)\}$ שהוגדר בתרגיל 5, שאלה 9, מעל S
- מעל \mathbb{Z} , כאשר לכל $p\left(m\right)$, $m\in\mathbb{Z}$ היחס אות מעל $P=\left\{ (m,n)\in\mathbb{Z}^2\mid p\left(m\right)=p\left(n\right)\right\}$ הנו הטבעי המינימלי הגדול מ־1 המחלק את מ
 - \mathbb{Q} מעל $Z=\left\{(q,r)\in\mathbb{Q}^2\mid q-r\in\mathbb{Z}
 ight\}$ מעל (ג)
 - $\mathbb R$ שהוגדר בתרגיל 4, שאלה 6, מעל V

$$\mathcal{P}\left(\mathbb{N}
ight)$$
 מעל $D=\left\{ \left(x,y
ight)\in\left(\mathcal{P}\left(\mathbb{N}
ight)
ight)^{2}\mid\left|x\right|=\left|y\right|
ight\}$ מעל (ה)

$$\mathcal{P}\left(\mathbb{N}
ight)$$
 מעל $D=\left\{ \left(x,y
ight)\in\left(\mathcal{P}\left(\mathbb{N}
ight)
ight)^{2}\mid\left|x\triangle y\right|<\aleph_{0}
ight\}$ מעל א היחס \star (1)

 \mathbb{N}^2 מעל מעל היחס הבא מעל 2.

$$R = \left\{ \left(\left(k, \ell \right), \left(m, n \right) \right) \in \left(\mathbb{N}^2 \right)^2 \mid k + n = \ell + m \right\}$$

- (א) הוכיחו כי R הנו יחס שקילות.
- (n,0) או מהצורה ($n\geq 1$ עבור (0,n) איבר מהצורה שני שקילות שקילות כב בכל הוכיחו (ב) הוכיחו (עבור ($n\geq 1$), וחשבו את ($n\geq 1$), וחשבו את (עבור (עבור (
 - (ג) נגדיר פעולת חיבור \oplus על קבוצת המנה \mathbb{N}^2/R באופן הבא:

$$[(k,\ell)] \oplus [(m,n)] = [(k+m,\ell+n)]$$

הוכיחו כי מוגדרת היטב. במילים אחרות, הראו כי תוצאת הפעולה הנ"ל אינה תלויה הוכיחו כי מוגדרת היטב. במילים אחרות, או $(k',\ell')\,R\,(k,\ell)$ אז בבחירת הנציגים; כלומר, אם הוכיחו ($(k',\ell')\,R\,(k,\ell)$ אם

$$[(k',\ell')] \oplus [(m',n')] = [(k,\ell)] \oplus [(m,n)]$$

(ד) נגדיר פעולה חד־מקומית \mathcal{S} על קבוצת המנה \mathbb{N}^2/R באופן הבא:

$$\mathcal{S}\left([m,n]\right) = [(m+1,n)]$$

הוכיחו כי \mathcal{S} מוגדרת היטב.

באופן הבא: \mathbb{N}^2/R המנה \mathcal{N} על קבוצת המנה \mathcal{N} באופן הבא:

$$\mathcal{N}\left([m,n]\right) = [(n,m)]$$

הוכיחו כי \mathcal{N} מוגדרת היטב.

:באופן הבא $\varphi: \mathbb{N}^2/R \to \mathbb{Z}$ באופן הבא (ו)

$$\varphi\left([m,n]\right) = m - n$$

- .i הוכיחו כי φ מוגדרת היטב.
 - \mathbf{i} . הוכיחו כי φ הנה הפיכה.
- \mathbb{Z} עם \mathbb{Z} בעזרת arphi, מהי המשמעות של הפעולות \mathbb{R} עם \mathbb{Z} עם \mathbb{Z} בעזרת arphi, מהי המשמעות של הפעולות

 $^{0 \}in \mathbb{N}$ הניחו כי

 $T = \mathbb{Z} \times (\mathbb{Z} \setminus \{0\})$ נגדיר את היחס הבא מעל 3.

$$R = \left\{ \left(\left(k, \ell \right), \left(m, n \right) \right) \in T \mid \frac{k}{\ell} = \frac{m}{n} \right\}$$

- .א) הוכיחו כי R הנו יחס שקילות
- - הבא: T/R באופן על קבוצת חיבור \oplus על חיבור פעולת נגדיר נגדיר נגדיר אופן אופן (ג)

$$[(k,\ell)] \oplus [(m,n)] = [(kn + \ell m, \ell n)]$$

הוכיחו כי \oplus מוגדרת היטב.

באופן הבא: T/R באופן על כפל \odot על כפל (ד)

$$[(k,\ell)] \odot [(m,n)] = [(km,\ell n)]$$

הוכיחו כי ⊙ מוגדרת היטב.

:הבא: $\psi:T/R o \mathbb{Q}$ הבא: נגדיר פונקציה

$$\psi\left([m,n]\right) = \frac{m}{n}$$

- .i הוכיחו כי ψ מוגדרת היטב.
 - .ii הוכיחו כי ψ הנה הפיכה.
- \mathbb{Q} עם \mathbb{Q} עם \mathbb{Q} עם \mathbb{Q} בעזרת ψ , מהי המשמעות של הפעולות T/R עם \mathbb{Q} . iii