Xinyu Tan

1. Exchangeability with known model parameters

- (a) $p(y_1 = \mathbf{b}, y_2 = \mathbf{w}) = p(y_1 = \mathbf{w}, y_2 = \mathbf{b}) = 1/4$. Observations y_1 and y_2 are exchangable. We put the balls back, ergo y_1 and y_2 are independent.
- (b) y_1 and y_2 are exchangable, but not independent.
- (c) y_1 and y_2 are exchangable, but not independent. However, there are 1 million balls for each color, and we only take twice. Hence, we can act as if two observations are independent.

5. Mixtures of independent distributions

W.L.O.G, let's compute the covariance of θ_i and θ_i :

$$\begin{aligned} \mathbf{cov}(\theta_{i},\theta_{j}) &= \int_{\theta_{i}} \int_{\theta_{j}} p(\theta_{i},\theta_{j})(\theta_{i} - \mu_{i})(\theta_{j} - \mu_{j})d\theta_{i}d\theta_{j} \\ &= \int_{\alpha} \int_{\theta_{i}} \int_{\theta_{j}} p(\theta_{i},\theta_{j}|\alpha)p(\alpha)(\theta_{i} - \mu_{i})(\theta_{j} - \mu_{j})d\alpha d\theta_{i}d\theta_{j} \\ &= \int_{\alpha} \int_{\theta_{i}} \int_{\theta_{j}} p(\theta_{i}|\alpha)(\theta_{i} - \mu_{i})d\theta_{i}p(\theta_{j}|\alpha)(\theta_{j} - \mu_{j})d\theta_{j}p(\alpha)d\alpha \\ &= \int_{\alpha} \left(\int_{\theta} p(\theta|\alpha)(\theta - \mu)d\theta \right)^{2} p(\alpha)d\alpha \\ &> 0 \end{aligned}$$

- 7. Continuous mixture models

(a) We have

$$y|\theta \sim \frac{1}{y!}\theta^{y}e^{-\theta}$$
$$\theta|\alpha, \beta \sim \frac{\beta^{\alpha}}{\Gamma(\alpha)}\theta^{\alpha-1}e^{-\beta\theta}$$

Therefore, the prior predictive distribution of y:

$$p(y|\alpha,\beta) = \int_{\theta} p(y,\theta|\alpha,\beta)d\theta$$

$$= \int_{\theta} p(y|\theta)p(\theta|\alpha,\beta)d\theta$$

$$= \frac{\beta^{\alpha}}{y!\Gamma(\alpha)} \int \theta^{\alpha+y-1}e^{-(\beta+1)\theta}d\theta$$

$$= \frac{\Gamma(\alpha+y)}{y!\Gamma(\alpha)} \frac{\beta^{\alpha}}{(\beta+1)^{\alpha+y}} \int \frac{(\beta+1)^{\alpha+y}}{\Gamma(\alpha+y)} \theta^{\alpha+y-1}e^{-(\beta+1)\theta}d\theta$$

$$= \frac{\Gamma(\alpha+y)}{y!\Gamma(\alpha)} \left(\frac{\beta}{\beta+1}\right)^{\alpha} \left(\frac{1}{\beta+1}\right)^{y}$$

Hence, the negative binomial.

To calculate the mean and variance of $y|\alpha, \beta$, we have

$$\mathbb{E}(y) = \mathbb{E}\left(\mathbb{E}(y|\theta)\right) = \mathbb{E}(\theta) = \frac{\alpha}{\beta}$$

and

$$\mathbb{V}(y) = \mathbb{E}\left(\mathbb{V}(y|\theta)\right) + \mathbb{V}\left(\mathbb{E}(y|\theta)\right) = \mathbb{E}(\theta) + \mathbb{V}(\theta) = \frac{\alpha}{\beta^2}(\beta + 1)$$

(b) From Eq.(3.3), we have $\mu|\sigma^2,y\sim N(\bar{y},\sigma^2/n).$ Therefore,

$$\mathbb{E}(\sqrt{n}(\mu - \bar{y})/s) = \mathbb{E}\left(\mathbb{E}(\sqrt{n}(\mu - \bar{y})/s|\sigma^2)\right) = \mathbb{E}\left(\sqrt{n}\mathbb{E}(\mu - \bar{y}|\sigma^2, y)/s^2\right) = 0$$

and

$$\mathbb{V}(\sqrt{n}(\mu - \bar{y})/s) = \mathbb{E}\left(\mathbb{V}(\sqrt{n}(\mu - \bar{y})/s|\sigma^2)\right) + \mathbb{V}\left(\mathbb{E}(\sqrt{n}(\mu - \bar{y})/s|\sigma^2)\right)$$

$$= \mathbb{E}\left(\frac{n}{s^2}\mathbb{V}(\mu|\sigma^2, y)\right) + 0$$

$$= \mathbb{E}\left(\frac{n}{s^2}\frac{\sigma^2}{n}\right) \qquad \sigma^2|y \sim \text{Inv-}\chi^2(n - 1, s^2)$$

$$= \frac{n - 1}{n - 3}$$

- 9. Noninformative hyperprior distribution

(a)

(b) We have uniform distribution on $\left(\frac{\alpha}{\alpha+\beta}, (\alpha+\beta)^{-1/2}\right)$. Denote $u = \frac{\alpha}{\alpha+\beta}$ and $v = (\alpha+\beta)^{-1/2}$, then

$$p(\alpha,\beta) = p(u,v) \begin{vmatrix} \frac{\partial u}{\partial \alpha} & \frac{\partial u}{\partial \beta} \\ \frac{\partial v}{\partial \alpha} & \frac{\partial v}{\partial \beta} \end{vmatrix} = \begin{vmatrix} \beta/(\alpha+\beta)^2 & -\alpha/(\alpha+\beta)^2 \\ -\frac{1}{2}(\alpha+\beta)^{-3/2} & -\frac{1}{2}(\alpha+\beta)^{-3/2} \end{vmatrix} = -\frac{1}{2}(\alpha+\beta)^{-5/2}$$