Math 571 Homework Assignment 2

- 1. A topological space X is said to be *totally disconnected* if a subspace $Y \subset X$ is connected if and only if $Y = \{x\}$ consists of only a single point $x \in X$. Show that if X is discrete (that is, all subsets of X are open) then X is totally disconnected. Find an example of a totally disconnected space which is not discrete.
- 2. Let X be a simply ordered set equipped with the order topology. Show that if X is connected then X is a continuum.
- 3. Show that a metric $d: X \times X \to \mathbb{R}$ on a set X determines a coarsest topology \mathcal{U} on X for which the distance function $d: X \times X \to \mathbb{R}$ is continuous, and give an explicit basis for this topology. Recall that a function $f: X \to Y$ between metric spaces is said to be *continuous* at x if, for all $\varepsilon > 0$ there exists a $\delta > 0$ such that if $d(x, x') < \delta$ then $d(f(x), f(x')) < \varepsilon$; show that f is continuous (in the sense of topology) if and only if it is continuous at x for all $x \in X$. Finally, show that every compact subspace of a metric space is closed and bounded, and find an example of a metric space for which there exists a closed and bounded subspace which is not compact.
- 4. Let X be a compact space, Y a Hausdorff space, and $f: X \to Y$ a continuous function. Show that f is a closed map (that is, f sends closed sets to closed sets), and also that the projection $p: X \times Y \to Y$ is a closed map.
- 5. Let $f:W\to X$ and $g:W\to Y$ be continuous functions. The pushout $X\coprod_W Y$ of f and g is the quotient of the disjoint union $X\coprod_W Y$ by the equivalence relation generated by the relation $x\sim y$ if there exists a $w\in W$ such that x=f(w) and y=g(w). Show that $X\coprod_W Y$ comes equipped continuous functions $i:X\to X\coprod_W Y$ and $j:Y\to X\coprod_W Y$ such that $i\circ f=j\circ g$, and is universal amongst topological spaces Z equipped with continuous functions $i':X\to Z$ and $j':Y\to Z$ such that $i'\circ f=j'\circ g$ in the following sense: given any such space Z, there exists a unique continuous function $k:X\coprod_W Y\to Z$ such that $i'=k\circ i$ and $j'=k\circ j$.