

Multivariate SPC: control chart for the mean

Assume to be interested in monitoring more than a single variable. We want to simultaneously control all the quality characteristics. Let's apply the known methods for monitoring the variable means.

Multivariate SPC

Control limit computation:

$$P\{Allarme_{1} | In Controllo_{1}\} = \alpha_{1}$$

$$P\{Allarme_{2} | In Controllo_{2}\} = \alpha_{2}$$

Assume variables to be independent and:

$$\alpha_1 = \alpha_2 = \alpha$$

 $P\{Allarme | proc. in controllo\} = 1 - (1 - \alpha)(1 - \alpha)$

Figure 10-1 Control charts for inner (\overline{x}_1) and outer (\overline{x}_2) bearing diameters.

Generally speaking, for p tests on independent variables:

$$\alpha' = 1 - (1 - \alpha)^p$$

$$\alpha = 1 - (1 - \alpha')^{1/p}$$

A few examples:

$$\alpha = 0.05 \begin{cases} p = 2 & \alpha' = 0.0975 & ARL = 10 \\ p = 3 & \alpha' = 0.143 & ARL = 7 \\ p = 4 & \alpha' = 0.185 & ARL = 6 \end{cases}$$

We expected

ARL=20

Quality Data Analysis

3

Multivariate SPC

The problem gets more complicated if variables are dependent.

In this case one has to use the Bonferroni's inequality or to determine the joint probability density function.

"familywise"
$$\alpha$$
 $\alpha \leq \sum_{i=1,..., p} \alpha_i$

Bonferroni's inequality

If \forall test *i* we choose $\alpha_i = \alpha/p$

 $\Rightarrow \alpha' \le p \alpha/p = \alpha$ being α' the Type I error for the whole set of p tests

Quality Data Analysis

4

Δ

Multivariate random variables

Consider a *p*-component vector, i.e. a vector of *p* random variables $x' = [x_1, x_2, ..., x_p]$

Expected value $\mu' = E(x) = [E(x_1), E(x_2), ..., E(x_p)] = [\mu_1, \mu_2, ..., \mu_p]$

Variance-Covariance Matrix
$$V(x) = E[(x - E(x))(x - E(x))'] = \Sigma = \begin{bmatrix} \sigma_1^2 & \sigma_{12} & \dots & \sigma_{1p} \\ \sigma_{12} & \sigma_2^2 & \dots & \sigma_{2p} \\ \sigma_{12} & \sigma_2^2 & \dots & \sigma_{2p} \\ \dots & \dots & \dots & \dots \\ \sigma_{1p} & \sigma_{2p} & \dots & \sigma_{p} \end{bmatrix}$$
 Product between a constant vector and a random vector:

Product between a constant vector and a random vector:

Scalar
$$(1xp)(px1)V(\mathbf{a}'\mathbf{x}) = E[(\mathbf{a}'\mathbf{x} - E(\mathbf{a}'\mathbf{x}))(\mathbf{a}'\mathbf{x} - E(\mathbf{a}'\mathbf{x}))'] =$$

$$= E[(\mathbf{a}'\mathbf{x} - \mathbf{a}'E(\mathbf{x}))(\mathbf{a}'\mathbf{x} - \mathbf{a}'E(\mathbf{x}))'] = \mathbf{a}'E[(\mathbf{x} - E(\mathbf{x}))(\mathbf{a}'(\mathbf{x} - E(\mathbf{x})))'] =$$

$$= \mathbf{a}'E[(\mathbf{x} - E(\mathbf{x}))(\mathbf{x} - E(\mathbf{x}))']\mathbf{a} = \mathbf{a}'\Sigma\mathbf{a}$$

Quality Data Analysis

correlation
$$\rho_{ij} = \frac{\text{cov}(x_i x_j)}{\sqrt{V(x_i)V(x_j)}} \qquad \mathbf{P} = \begin{bmatrix}
1 & \rho_{12} & \dots & \rho_{1p} \\
\rho_{12} & 1 & \dots & \rho_{2p} \\
\dots & \dots & \dots & \dots \\
\rho_{1p} & \rho_{2p} & \dots & 1
\end{bmatrix}$$

Correlation matrix

Bivariate nomal distribution:

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2} - \infty < x < +\infty$$

$$\left(\frac{x-\mu}{\sigma}\right)^2 = (x-\mu)(\sigma^2)^{-1} (x-\mu) \longrightarrow (x-\mu)'(\Sigma)^{-1} (x-\mu)$$

$$f(x) = \frac{1}{(2\pi)^{p/2} |\Sigma|^{1/2}} e^{-\frac{1}{2}(x-\mu)'(\Sigma)^{-1}(x-\mu)} - \infty < x_j < +\infty \quad j=1,2,...,p$$

Quality Data Analysis

Some relevant results

Remind:

$$X \sim N(\mu, \sigma^2)$$

$$\frac{\left(X-\mu\right)^2}{\sigma^2}=Z^2\sim\chi^2(1)$$

$$\overline{X} \sim N(\mu, \frac{\sigma^2}{n})$$

$$n\frac{\left(\overline{X}-\mu\right)^2}{\sigma^2}=Z^2\sim\chi^2(1)$$

Multivariate case:

$$\mathbf{X}_{i} \sim N_{p}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$$
 proven that
$$(i = 1, 2, ..., n)$$

$$X_i \sim N_p(\mu, \Sigma)$$
 proven that $(X - \mu)'\Sigma^{-1}(X - \mu) = Z_1^2 + Z_2^2 + ... + Z_p^2 \sim \chi^2(p)$

Has been proven that

$$\overline{\mathbf{V}} = M \left(\frac{1}{2} \left(\frac{1}{2} \right) \right)$$

$$\overline{\mathbf{X}} \sim N_{p}(\boldsymbol{\mu}, (1/n)\boldsymbol{\Sigma}) \qquad n(\overline{\mathbf{X}} - \boldsymbol{\mu})'\boldsymbol{\Sigma}^{-1}(\overline{\mathbf{X}} - \boldsymbol{\mu}) = Z_{1}^{2} + Z_{2}^{2} + ... + Z_{p}^{2} \sim \chi^{2}(p)$$

Quality Data Analysis

Case p=2

$$\overline{\mathbf{x}}' = \begin{bmatrix} \overline{x_1} & \overline{x_2} \end{bmatrix} \\
\boldsymbol{\mu}' = \begin{bmatrix} \mu_1 & \mu_2 \end{bmatrix} \qquad \boldsymbol{\Sigma} = \begin{bmatrix} \sigma_1^2 & \sigma_{12} \\ \sigma_{12} & \sigma_2^2 \end{bmatrix} \rightarrow \boldsymbol{\Sigma}^{-1} = \frac{1}{|\boldsymbol{\Sigma}|} \begin{bmatrix} \sigma_2^2 & -\sigma_{12} \\ -\sigma_{12} & \sigma_1^2 \end{bmatrix}$$

By solving the matrix multiplications, $n(\overline{x} - \mu)'\Sigma^{-1}(\overline{x} - \mu) \sim \chi^2(p)$

We got:

$$n\left[\overline{x}_{1}-\mu_{1} \quad \overline{x}_{2}-\mu_{2}\right]\frac{1}{\sigma_{1}^{2}\sigma_{2}^{2}-\sigma_{12}^{2}}\begin{bmatrix}\sigma_{2}^{2} & -\sigma_{12}\\-\sigma_{12} & \sigma_{1}^{2}\end{bmatrix}\begin{bmatrix}\overline{x}_{1}-\mu_{1}\\\overline{x}_{2}-\mu_{2}\end{bmatrix}\sim\chi^{2}(p)$$

Thus, the statistical quantity:

$$\chi_0^2 = \frac{n}{\sigma_1^2 \sigma_2^2 - \sigma_{12}^2} \left[\sigma_2^2 (\overline{x}_1 - \mu_1)^2 - 2\sigma_{12} (\overline{x}_1 - \mu_1) (\overline{x}_2 - \mu_2) + \sigma_1^2 (\overline{x}_2 - \mu_2)^2 \right]$$

Follows a chi squared distribution with 2 degrees of freedom:

$$\chi_0^2 \sim \chi^2(2)$$

Quality Data Analysis

ا ۵

S

Being known that:

$$\chi_0^2 = \frac{n}{\sigma_1^2 \sigma_2^2 - \sigma_{12}^2} \left[\sigma_2^2 (\overline{x}_1 - \mu_1)^2 - 2\sigma_{12} (\overline{x}_1 - \mu_1) (\overline{x}_2 - \mu_2) + \sigma_1^2 (\overline{x}_2 - \mu_2)^2 \right] \sim \chi^2(2)$$

A joint control region is applicable:

Alarm if:
$$\chi_0^2 > \chi_\alpha^2(2)$$

The above inequality corresponds to an elliptic region in the bivariate space spanned by \bar{x}_1 and \bar{x}_2

Such ellipse if referred to as 'control ellipse'

The equation of the control ellipse is:

$$\left(\frac{\overline{x_1} - \mu_1}{\sigma_1}\right)^2 + \left(\frac{\overline{x_2} - \mu_2}{\sigma_2}\right)^2 - 2\frac{\sigma_{12}}{\sigma_1\sigma_2}\left(\frac{\overline{x_1} - \mu_1}{\sigma_1}\right)\left(\frac{\overline{x_2} - \mu_2}{\sigma_2}\right) = \frac{\sigma_1^2 \sigma_2^2 - \sigma_{12}^2}{\sigma_1^2 \sigma_2^2} \frac{\chi_\alpha^2(2)}{n}$$

Quality Data Analysis

Region A: out-of-control not signaled by traditional charts

Region B: false out-of-control signaled

Region C: 'twice' false out-of-control (because of \bar{x}_1 and \bar{x}_2) signaled

Quality Data Analysis

13

χ² control chart

A statistical control scheme can be implemented directly into the plane \overline{x}_1 - \overline{x}_2 by using the control ellipse:

- But the information about the temporal sequence would be lost;
- It would be difficult to depict the control region for 3 variables, and even impossible for larger numbers of variables

A control chart can be designed to monitor the quantity χ_0^2 by using the control limit $\chi_\alpha^2(p)$. In the most general case:

$$oldsymbol{\mu}' = [\mu_1, \ \mu_2, \ \dots, \mu_p]$$
 $oldsymbol{\overline{x}} = egin{bmatrix} \overline{x}_1 \\ \overline{x}_2 \\ \vdots \\ \overline{x}_p \end{bmatrix}$

 $\chi_0^2 = n(\overline{\mathbf{x}} - \boldsymbol{\mu})' \boldsymbol{\Sigma}^{-1} (\overline{\mathbf{x}} - \boldsymbol{\mu}) \quad \text{scalare}$ $1 \text{xp} \quad \text{pxp} \quad \text{px1}$

Figure 10-6 A chi-square control chart for p=2 quality characteristics.

Assume we don't know μ and Σ and we m samples of size n to be used in design phase

Estimators
$$\mu \longrightarrow \overline{S}$$
 (considering m samples) $\Sigma \longrightarrow S$

For each sample k (k=1,...,m):

$$\chi_{0k}^{2} = n(\overline{x}_{k} - \mu)' \Sigma^{-1}(\overline{x}_{k} - \mu) \longrightarrow T_{k}^{2} = n(\overline{x}_{k} - \overline{\overline{x}})' S^{-1}(\overline{x}_{k} - \overline{\overline{x}})$$
1xp pxp px1

The T^2 statistic is referred to as Hotelling's statistic and it follows the F distribution (not the squared chi distribution), corrected by a constant

Quality Data Analysis

19

In particular:

- Phase 1 (design phase)

$$T_k^2 = n(\overline{x}_k - \overline{\overline{x}})' S^{-1}(\overline{x}_k - \overline{\overline{x}}) \sim c_1(m, n, p) F(p, m(n-1) - (p-1))$$

$$c_{1}(m, n, p) = \frac{p(n-1)(m-1)}{m(n-1) - (p-1)} \Rightarrow UCL = c_{1}(m, n, p)F_{\alpha}(p, m(n-1) - (p-1))$$

$$LCL = 0$$

- Phase 2 (future observations):

Under the assumption that m* samples during the design phase

$$T_k^2 = n(\overline{x}_k - \overline{\overline{x}})' \quad S^{-1}(\overline{x}_k - \overline{\overline{x}}) \sim c_2(m^*, n, p) F(p, m^*(n-1) - (p-1))$$

$$c_{2}(m^{*}, n, p) = \frac{p(n-1)(m^{*}+1)}{m^{*}(n-1) - (p-1)} \Rightarrow UCL = c_{2}(m^{*}, n, p)F_{\alpha}(p, m^{*}(n-1) - (p-1))$$

$$LCL = 0$$

Quality Data Analysis

Quality Engineering

It is possible to prove that, for large values of *m*:

$$c_1(m,n,p)F_{\alpha}(p,m(n-1)-(p-1))\to \chi_{\alpha}^2(p)$$

Remind that:

$$\lim_{v_2 \to \infty} F(v_1, v_2) = \frac{\chi^2(v_1)}{v_1}$$

Quality Data Analysis

21

21

Fire word an indicated	Sample	Sample Sample Means			Variances and Covariances			Statistics	
Example: ultimate	Number k	Tensile Strength (\bar{x}_{1k})	Diameter (\bar{x}_{2k})	S_{1k}^2	S_{2k}^2	S_{12k}	T_k^2	$ S_k $	
tensile strenght and	1	115.25	1.04	1.25	0.87	0.80	2.16	0.45	
terisile strengift and	2	115.91	1.06	1.26	0.85	0.81	2.14	0.41	
diameter of a textile	3	115.05	1.09	1.30	0.90	0.82	6.77	0.50	
diameter of a textile	4	116.21	1.05	1.02	0.85	0.81	8.29	0.21	
fiber	5	115.90	1.07	1.16	0.73	0.80	1.89	0.21	
l liber	6	115.55	1.06	1.01	0.80	0.76	0.03	0.23	
n=10; m=20; p=2.	7	114.98	1.05	1.25	0.78	0.75	7.54	0.41	
11 10, 111 20, p 2.	8	115.25	1.10	1.40	0.83	0.80	3.01	0.52	
	9	116.15	1.09	1.19	0.87	0.83	5.92	0.35	
	10	115.92	1.05	1.17	0.86	0.95	2.41	0.10 0.54	
	11	115.75	0.99	1.45	0.79 0.82	0.78	1.13 9.96	0.36	
	12	114.90	1.06	1.24	0.82	0.81	3.86	0.36	
	13	116.01 115.83	1.05	1.26	0.33	0.72	1.11	0.17	
	14 15	115.83	1.11	1.17	0.76	0.73	2.56	0.33	
	16	115.63	1.04	1.24	0.89	0.82	0.70	0.42	
	17	115.47	1.03	1.20	0.91	0.70	0.19	0.65	
	18	115.58	1.05	1.18	0.83	0.79	0.00	0.36	
	19	115.72	1.06	1.31	0.89	0.76	0.35	0.59	
	20	115.40	1.04	1.29	0.85	0.68	0.62	0.63	
			$\bar{x}_2 = 1.06$	$\overline{S}_{1}^{2} = 1.23$	$\overline{S}_{2}^{2} = 0.83$	$\overline{S}_{12} = 0.79$	0.02		
	Averages	$\bar{\bar{x}}_1 = 115.59$	$x_2 = 1.06$	$S_{1} = 1.23$	$S_{2}^{z} = 0.83$	$S_{12} = 0.79$			
$p = 2 \to T^2 = \frac{n}{\overline{S_1}^2 \overline{S_2}^2}$	$\overline{\overline{S_{12}}^2} \left[\overline{S_2} \right]$	$\sigma_2^2 (\overline{x_1} - \mu_1)^2 - 2$ $\sigma_2^2 (\overline{x_1} - \overline{x_1})^2 - 2\overline{S}$ $\frac{0}{(0.79)^2} [0.$	$\overline{x_1} = \overline{x_1} = \overline{x_1}$	$\overline{x_2} - \overline{\overline{x_2}} +$	$\overline{S_1}^2(\overline{x_2} -$	$\frac{=}{x_2}$) ²) ²		
Quality Data Analysis $-2(0.79)(\overline{x}_1-115.59)(\overline{x}_2-1.06)]$									

No out-of-control data.

By using the Phase II limit advocated by Montgomery we have UCL=15.16.

If we used the χ^2 approximation we would get UCL=13.816, close to the Phase I limit, but different from the Phase II limit.

Quality Data Analysis

23

Problem:

23

When a control limit violation occurs, how to search for an assignable cause?

We could exploit univariate control charts (one for each variable), with Bonferroni's control limits, i.e., by replacing $Z_{\alpha/2}$ with $Z_{\alpha/(2p)}$

A different approach consists of decomposing the T^2 statistic into components that reflect the contribution of each individual variable.

If T^2 is the current value of the statistic, and $T^2_{(i)}$ is the value of the statistic for all process variables except the ith one, then:

$$d_i = T^2 - T_{(i)}^2$$
 is an indicator of the relative contribution of the ith variable.

Thus, when an out-of-control signal is generated, we can compute the values of d_i for each process variable and to search for assignable causes associated to the variables for which are relatively large.

Quality Data Analysis

T² control chart

(1, -1, 0)

Example:

$$\mathbf{p} = 3 \qquad \mathbf{\Sigma} = \begin{bmatrix} 1 & 0.9 & 0.9 \\ 0.9 & 1 & 0.9 \\ 0.9 & 0.9 & 1 \end{bmatrix} \qquad \boldsymbol{\mu}' = [0, 0, 0] \qquad \qquad \mathbf{y}_{ij} = \frac{x_{ij} - \mu_j}{\sqrt{(m-1)\sigma_j^2}}$$

Standardized vars:

0

$$y_{ij} = \frac{x_{ij} - \mu_j}{\sqrt{(m-1)\sigma_j^2}}$$

Observation Vector
 Control Chart Statistic

$$d_i = T^2 - T_{(i)}^2$$
 y'
 $T_0^2 (= \chi_0^2)$
 d_1
 d_2
 d_3
 $(2, 0, 0)$
 $(2, 0, 0)$
 $(2, 0, 0)$
 $(2, 0, 0)$
 $(2, 0, 0)$
 $(2, 0, 0)$
 $(2, 0, 0)$
 $(2, 0, 0)$
 $(2, 0, 0)$
 $(2, 0, 0)$
 $(2, 0, 0)$
 $(2, 0, 0)$
 $(2, 0, 0)$
 $(2, 0, 0)$
 $(2, 0, 0)$
 $(2, 0, 0)$
 $(2, 0, 0)$
 $(2, 0, 0)$
 $(2, 0, 0)$
 $(2, 0, 0)$
 $(2, 0, 0)$
 $(2, 0, 0)$
 $(2, 0, 0)$
 $(2, 0, 0)$
 $(2, 0, 0)$
 $(2, 0, 0)$
 $(2, 0, 0)$
 $(2, 0, 0)$
 $(2, 0, 0)$
 $(2, 0, 0)$
 $(2, 0, 0)$
 $(2, 0, 0)$
 $(2, 0, 0)$
 $(2, 0, 0)$
 $(2, 0, 0)$
 $(2, 0, 0)$
 $(2, 0, 0)$
 $(2, 0, 0)$
 $(2, 0, 0)$
 $(2, 0, 0)$
 $(2, 0, 0)$
 $(2, 0, 0)$
 $(2, 0, 0)$
 $(2, 0, 0)$
 $(2, 0, 0)$
 $(2, 0, 0)$
 $(2, 0, 0)$
 $(2, 0, 0)$
 $(2, 0, 0)$
 $(2, 0, 0)$
 $(2, 0, 0)$
 $(2, 0, 0)$
 $(2, 0, 0)$
 $(2, 0, 0)$
 $(2, 0, 0)$
 $(2, 0, 0)$
 $(2, 0, 0)$
 $(2, 0, 0)$
 $(2, 0, 0)$
 $(2, 0, 0)$

20.00

14.74 14.74

Quality Data Analysis

25

Individual observations

In some SPC applications (e.g., chemical industry) the size of the sample is n=1. In this case, the Hotelling's statistic is defined as follows:

$$n = 1$$
 $T^2 = (\mathbf{x} - \overline{\mathbf{x}})' \mathbf{S}^{-1} (\mathbf{x} - \overline{\mathbf{x}})$

$$UCL = \frac{p(m+1)(m-1)}{m^2 - mp} F_{\alpha,p,m-p}$$

$$LCL = 0$$

The Phase II control limits are:

$$LCL = 0$$

When the number of samples (individuals) is very large (m>100)the following Phase II control limits may be used:

$$UCL = \frac{p(m-1)}{m-p} F_{\alpha,p,m-p}$$
or
$$UCL = \chi^{2}_{\alpha,p}$$

Some authors suggest the use of Beta distribution for Phase I control limit computation.

$$\begin{cases} UCL = \frac{(m-1)^2}{m} \beta_{\alpha, p/2, (m-p-1)/2} \\ LCL = 0 \end{cases}$$

Quality Data Analysis

Individual observations

A relevant issue in the presence of individual observations is the variance-covariance matrix **\(\Sigma\)** estimation

$$\mathbf{S}_1 = \frac{1}{m-1} \sum_{i=1}^m (\mathbf{x}_i - \overline{\mathbf{x}}) (\mathbf{x}_i - \overline{\mathbf{x}})'$$

The 'usual' estimator (long period) is:

This estimator is particularly sensitive to outliers or out-of-control data in the original sample of *m* observations

Alternative:

Iternative:
$$\mathbf{v}_i = \mathbf{x}_{i+1} - \mathbf{x}_i \qquad i = 1, 2, \dots, m-1$$

$$\mathbf{V} = \begin{bmatrix} \mathbf{v}_1 \\ \mathbf{v}_2' \\ \vdots \\ \mathbf{v}_{m-1}' \end{bmatrix}$$

A different estimator (short period) is:

$$\mathbf{S}_2 = \frac{1}{2} \frac{\mathbf{V}'\mathbf{V}}{(m-1)}$$

Quality Data Analysis

27

27

Example (Sullivan e Woodall - 1996) Composition:

L=percentage classified as large M=percentage classified as medium S=percentage classified as small

Control chart just on the first two components (sum=100%)

$$\overline{\mathbf{x}}' = [5.682, 88.22]$$

$$\mathbf{S}_1 = \begin{bmatrix} 3.770 & -5.495 \\ -5.495 & 13.53 \end{bmatrix}$$

$$\mathbf{S}_2 = \begin{bmatrix} 1.562 & -2.093 \\ -2.093 & 6.721 \end{bmatrix}$$

Individual observations

Table 10-2 Example from Sullivan and Woodall (1996) Using the Data from Holmes and Mergen (1993) and the T^2 Statistics Using Estimators \mathbf{S}_1 and \mathbf{S}_2

$T_{2,i}^{2}$	$T_{1,i}^{2}$	$S = x_{i,3}$	$M = x_{i,2}$	$L = x_{i,1}$	i	$T_{2,i}^{2}$	$T_{1,i}^{2}$	$S = x_{i,3}$	$M = x_{i,2}$	$L = x_{i, 1}$	i
3.261	1.594	9.0	83.6	7.4	29	6.439	4.496	1.0	93.6	5.4	1
1.743	0.912	8.4	84.8	6.8	30	4.227	1.739	4.2	92.6	3.2	2
0.266	0.110	6.6	87.1	6.3	31	2.200	1.460	3.1	91.7	5.2	3
0.166	0.077	6.7	87.2	6.1	32	7.643	4.933	9.6	86.9	3.5	4
0.564	0.255	6.1	87.3	6.6	33	5.565	2.690	6.7	90.4	2.9	5
2.069	1.358	9.0	84.8	6.2	34	2.258	1.272	3.3	92.1	4.6	6
0.448	0.203	6.1	87.4	6.5	35	1.676	0.797	4.1	91.5	4.4	7
0.317	0.193	7.2	86.8	6.0	36	0.645	0.337	4.7	90.3	5.0	8
0.590	0.297	6.4	88.8	4.8	37	4.797	2.088	6.5	85.1	8.4	9
0.464	0.197	5.3	89.8	4.9	38	1.471	0.666	6.1	89.7	4.2	10
0.353	0.242	7.3	86.9	5.8	39	3.057	1.368	3.7	92.5	3.8	11
2.928	1.494	9.0	83.8	7.2	40	1.986	0.951	3.9	91.8	4.3	12
0.198	0.136	5.2	89.2	5.6	41	2.688	1.105	4.6	91.7	3.7	13
2.062	1.079	8.6	84.5	6.9	42	2.317	1.019	5.9	90.3	3.8	14
2.477	1.096	8.2	84.4	7.4	43	7.262	3.099	2.9	94.5	2.6	15
6.666	2.854	6.8	84.3	8.9	44	7.025	3.036	2.8	94.5	2.7	16
17.666	7.677	6.9	82.2	10.9	45	6.189	3.803	3.4	88.7	7.9	17
10.321	6.677	2.0	89.8	8.2	46	1.997	1.167	8.8	84.6	6.6	18
3.869	2.708	2.9	90.4	6.7	47	1.824	0.751	5.3	90.7	4.0	19
1.235	0.888	4.0	90.1	5.9	48	7.811	3.966	7.3	90.2	2.5	20
5.914	2.424	7.7	83.6	8.7	49	3.247	1.486	3.5	92.7	3.8	21
0.470	0.261	5.6	88.0	6.4	50	5.403	2.357	5.7	91.5	2.8	22
4.731	1.995	6.9	84.7	8.4	51	4.959	2.094	5.3	91.8	2.9	23
11.259	4.732	9.8	80.6	9.6	52	3.800	1.721	6.1	90.6	3.3	24
4.303	2.891	1.9	93.0	5.1	53	1.791	0.914	5.5	87.3	7.2	25
1.609	0.989	3.6	91.4	5.0	54	14.372	9.226	13.7	79.0	7.3	26
2.495	1.770	8.8	86.2	5.0	55	4.904	2.940	10.4	82.6	7.0	27
0.166	0.102	6.9	87.2	5.9	56	4.771	3.310	10.5	83.5	6.0	28

Individual observations

Example (Sullivan e Woodall – 1996)

$$\overline{\mathbf{x}}' = [5.682, 88.22]$$

$$\mathbf{S}_1 = \begin{vmatrix} 3.770 & -5.495 \\ -5.495 & 13.53 \end{vmatrix}$$

$$\mathbf{S}_2 = \begin{bmatrix} 1.562 & -2.093 \\ -2.093 & 6.721 \end{bmatrix}$$

$$\bar{\mathbf{x}}'_{1-24} = [4.23, 90.8]$$

$$\overline{\mathbf{x}}_{25-56}' = [6.77, 86.3]$$

29

Quality Data Analysis

29

Latent Structure methods (briefly)

Problem: The control-charting schemes previously presented become less and less effective as the number of monitoring variables (p) increases

(satisfactory performances for $p \le 10$).

Example: Multivariate control chart

The ARL value when the process is out-of-control increases as *p* increases

Consider PCA and then control chart on the retained components

p	δ	0.05	0.10
		H = 7.35	8.64
2	0.0	199.93	199.98
	0.5	26.61	28.07
	1.0	11.23	10.15
_	1.5	7.14	6.11
	2.0	5.28	4.42
	3.0	3.56	2.93
		H = 11.22	12.73
4	0.0	199.84	200.12
_	0.5	32.29	35.11
	1.0	13.48	12.17
_	1.5	8.54	7.22
	2.0	6.31	5.19
	3.0	4.23	3.41
		H = 14.60	16.27
6	0.0	200.11	200.03
_	0.5	36.39	40.38
	1.0	15.08	13.66
_	1.5	9.54	8.01
	2.0	7.05	5.74
	3.0	4.72	3.76
		H = 20.72	22.67
10	0.0	199.91	199.95
_	0.5	42.49	48.52
L	1.0	17.48	15.98
	1.5	11.04	9.23
	2.0	8.15	6.57
	3.0	5.45	4.28
		H = 27.82	30.03
15	0.0	199.95	199.89
_	0.5	48.20	56.19
	1.0	19.77	18.28
	1.5	12.46	10.41
	2.0	9.20	7.36
	3.0	6.16	4.78

Quality Data Analysis

30