Comparison tables: BBOB 2009 noisy testbed in 2-D

The BBOBies

November 20, 2009

Abstract

This document provides tabular results of the workshop for Black-Box Optimization Benchmarking at GECCO 2009, see http://coco.gforge.inria.fr/doku.php?id=bbob-2009. More than 30 algorithms have been tested on 24 benchmark functions in dimensions between 2 and 40. A description of the used objective functions can be found in [13, 8]. The experimental set-up is described in [12].

The performance measure provided in the following tables is the expected number of objective function evaluations to reach a given target function value (ERT, expected running time), divided by the respective value for the best algorithm. Consequently, the best (smallest) value is 1 and the value 1 appears in each column at least once. See [12] for details on how ERT is obtained. All numbers are computed with no more than two digits of precision.

Table 1: 02-D, running time excess ERT/ERT_{best} on f_{101} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

		rget	est/D	3 [15]	[IDEA [4]	UOA [23]	AcG [9]	BFGS [22]	1A-ES [14]	[A-ES [2]	DASA [18]	0 [11]	SO [5]	UOA [23]	4L [20]	1 IDEA [4]	hain [19]	um) [16]	OA [23]	ES [1]	[9]	nnds [7]	Carlo [3]	MA-ES [21]	'IT [17]	rcia) [10]
		Δ ftarget	ERT_{best}/Γ	ALPS [15]	AMaLGaM IDE	avg NEWUOA	BayEDAcG [9]	BFG	BIPOP-CMA-ES	(1+1)-CMA-ES	DAS	DEPSO [11	EDA-PSO [5]	full NEWUOA [23]	GLOBAL [20	iAMaLGaM IDEA [MA-LS-Chain	MCS (Neum)	NEWUOA [2	(1+1)	PSC	PSO_Bounds [7]	Monte Carlo [3]	IPOP-SEP-CMA-ES [21	SNOBFIT [17]	VNS (Garcia)
		1e-07	11.3	250	12	1.6	190		13	7.2	51	44	59	-	17	8.4	26	1200	1.9	7.5	130	330	17e-6/1e6	9.5	1.9	15
		1e-05	9.77	190	9.6	1.7	170		11	6.1	46	37	31	-	17	7.2	27	210	7	9	88	240	3.1e5	2.8	1.6	15
	SO	1e-04	8.43	160	8.8	1.9	190		9.3	6.3	45	34	27	-	19	9.9	30	21	2.3	5.9	73	180	1.8e4	7.3	1.2	15
	moderate Gauss	1e-03	7.17	120	8.1	7	160	14e-2/4e3	8.5	5.8	49	34	22	1.1	22	6.5	29	1.2	2.5	5.3	52	110	3100	6.2	-1	16
	mode	1e-02	5.57	28	7.4	2.3	150	1e4	7.7	5.5	46	26	18	1.4	27	5.9	22	1.5	2.3	5.2	31	40	330	6.3	П	17
nsion	Sphere	1e-01	ro	32	ಬ	2.1	110	1900	5.8	3.9	40	20	13	1.4	22	4	13	1.2	2.1	3.5	13	11	34	4.3	Н	14
by dimension	$101 \mathrm{ S}$	1e+00	4	4.9	5.6	1.7	4.9	250	2.2	73	33	5.4	3.9	1.3	6.2	1.9	5.1	1.1	1.8	2.3	3.6	2.6	3.7	1.9	-	9
		1e + 01	6.0	1.6	7	3.2	77	140	5.3	3.3	57	2.7	1.4	3.2	1.4	2.2	2.4	П	2.4	3.3	2.3	2.8	1.9	2.9	7	5.6
value d		1e + 02	0.5	1	П	1	1	1	1	1	1	1	П	1	П	-	П	1	П	1	-	П	П	1	-	
ach this		1e + 03	0.5	1	1	Т	1	1	1	Т	1	П	П	1	1	1	П	1	1	1	П	н	П	1	П	1
action evaluations to reach this value divided		Δ ftarget	$\text{ERT}_{\text{best}}/ ext{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$_{ m BayEDAcG}$	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)
nct																										

Table 2: 02-D, running time excess ERT/ERT_{best} on f_{102} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

			Δ ftarget	$_{ m best/D}$	S [15]	M IDEA [4]	VUOA [23]	BayEDAcG [9]	BFGS [22]	MA-ES [14]	MA-ES [2]	DASA [18]	SO [11]	EDA-PSO [5]	full NEWUOA [23]	GLOBAL [20]	AMaLGaM IDEA [4]	Chain [19]	MCS (Neum) [16]	JOA [23])-ES [1]	[9] O	PSO_Bounds [7]	Monte Carlo [3]	POP-SEP-CMA-ES [21]	FIT [17]	arcia) [10]
			Δft	ERT	ALPS	AMaLGaM IDE	avg NEWUOA	BayEI	BFC	BIPOP-CMA-ES	(1+1)-CMA-ES	DAS	DEP	EDA-	full NEV	GLOE	iAMaLGa	MA-LS-Chain	MCS (N	NEWL	(1+1)	PS	PSO_B	Monte	IPOP-SEP-	SNOBFIT [VNS (Garcia)
			1e-07	15.5	190	8.7	2.8	22		9.4	5.3	47	34	43	-	11	6.7	19	3600	4.4	5.4	06	240	12e-6/1e6	7.5	4.3	12
			1e-05	12.5	150	8.1	3.4	88		8.6	4.9	44	28	27	П	13	9	21	350	5.2	4.9	64	180	2.6e5	8.9	4.5	12
			1e-04	11.1	120	7.1	3.7	92		2.8	4.5	44	24	22	П	15	5.5	22	200	5.8	4.4	20	140	1.1e4	9.9	1.7	11
		e unif	1e-03	9.57	91	9	4.1	86		6.9	4.3	44	24	17	н	17	4.8	21	1.4	9.9	4	40	85	3100	6.2	1.4	12
0		e moderate uni	1e-02	8.3	89	ಬ	4.4	71	11e-2/4e3	5.5	3.8	43	17	12	-	18	4.3	15	1.2	7	3.2	19	32	140	5.8	П	12
107	nsion	$\mathbf{Spher}\epsilon$	1e-01	5.37	20	4.4	5.6	6	1e3	4.7	က	20	13	6.6	1.5	18	4.1	11	1.1	9.3	3.2	Π	14	22	4.9	-	12
Sec	oy dime	102																									7
, , ,	this value divided by dimension		1e + 01	6.0	2.1	2.5	4	1.8	66	3.6	2.4	70	2.7	1.7	4	2.8	2.7	2.4	П	7.1	2.5	က	3.2	71	5.3	77	2.6
	value d		1e + 02	0.5	1	1.1	1.2	Т	П	1	Н	13	1	1		Н	1	1	П	1	П	Н	1.1	Н	П	Н	-
	ch this		1e+03	0.5	1	1	П	1	п	1	1	1	1	-		1	1	1	П	П	1	П		П	1	П	Н
0	nction evaluations to reach		$\Delta { m ftarget}$	${ m ERT_{best}/D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$_{ m BayEDAcG}$	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)
	nctic																										

Table 3: 02-D, running time excess ERT/ERT_{best} on f_{103} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

on e	on evaluations to reach	tnis va	uue aivi	idea by	dimensi	on	,					
				10	$3 \mathrm{Sphe}$	ere mo	Sphere moderate	e Cauchy	hy			
	Δ ftarget	1e+03	1e + 02	1e + 01	$1e+\tilde{0}0$	1e-01	1e-02	1e-03	1e-04	1e-05	1e-07	Δ ftarget
	$_{ m ERT_{best}/D}$	0.5	0.5	6.0	3.93	4.7	4.7	4.7	4.9	4.9	6.77	${ m ERT_{best}/D}$
	ALPS	1	1	3.1	4.6	44	110	190	310	420	0049	ALPS [15]
	AMaLGaM IDEA	1	1	1.5	2.3	5.6	7.8	12	16	180	340	AMaLGaM IDEA [4]
	avg NEWUOA	1	Н	3.1	1.8	2.1	က	4.1	4.4	7.1	6.9	avg NEWUOA [23]
	$_{ m BayEDAcG}$	1	1.1	$^{2.6}$	2.2	81	180	190	200	210	270	$\overline{\mathrm{BayEDAcG}}$ [9]
	BFGS	1	1	8.6	3.5	4.5	4.6	4.6	4.4	4.4	3.2	BFGS [22]
	BIPOP-CMA-ES	1	1	3.9	3.1	9	6.6	14	17	24	24	BIPOP-CMA-ES [14]
	(1+1)-CMA-ES	1	Н	2.1	1.7	4	9	13	30	22	150	(1+1)-CMA-ES [2]
	DASA	1	1	42	22	37	130	260	1e3	3e3	1.9e4	DASA [18]
	DEPSO	1	1	1.6	2.7	13	24	34	62	88	230	DEPSO [11]
	EDA-PSO	1	1	2.2	3.4	8.9	20	31	09	200	1.3e4	EDA-PSO [5]
	full NEWUOA	1	Н	3.3	1.5	1.5	1.6	1.6	1.6	1.7	1.2	full NEWUOA [23]
	GLOBAL	1	1	7	3.1	23	30	34	33	39	52	GLOBAL [20]
	iAMaLGaM IDEA	-1	П	2.5	2.6	4.1	6.7	9.5	13	230	860	iAMaLGaM IDEA [4]
	MA-LS-Chain	П	П	2.7	3.8	14	27	47	09	72	63	MA-LS-Chain [19]
	MCS (Neum)	-1	1	Н	Н	1.3	1.9	1.9	1.9	100	120	MCS (Neum) [16]
	NEWUOA	П	П	3.2	1.6	2.1	3.1	4.2	4.9	6.4	7.8	NEWUOA [23]
	(1+1)-ES	1	1	2.1	1.5	4.2	7.2	11	36	28	290	(1+1)-ES [1]
	PSO	П	1.1	3.4	3.4	11	37	100	240	220	2.8e4	PSO [6]
	PSO_Bounds	-1	1	2.5	3.8	17	55	210	3400	2200	4.3e4	PSO_Bounds [7]
	Monte Carlo	П	П	2.4	က	34	320	3700	3.2e4	3.1e5	96e-7/1e6	Monte Carlo [3]
_	POP-SEP-CMA-ES	1	1	4.2	3.3	5.3	7.9	11	14	18	19	IPOP-SEP-CMA-ES [21]
	SNOBFIT	-	П	2.4	Н	-	П	П	П	-	П	SNOBFIT [17]
	VNS (Garcia)	1	П	5.6	6.7	14	21	24	56	59	29	VNS (Garcia) [10]

Table 4: 02-D, running time excess ERT/ERT_{best} on f_{104} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

Table 5: 02-D, running time excess ERT/ERT_{best} on f_{105} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

	Δ ftarget	${ m ERT_{best}/D}$	ALPS [15]	AMaLGaM IDEA [4]	avg NEWUOA [23]	BayEDAcG [9]	BFGS [22]	BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]	DASA [18]	DEPSO [11]	EDA-PSO [5]	full NEWUOA [23]	GLOBAL [20]	iAMaLGaM IDEA [4]	MA-LS-Chain [19]	MCS (Neum) [16]	NEWUOA [23]	(1+1)-ES $[1]$	PSO [6]	PSO_Bounds [7]	Monte Carlo [3]	IPOP-SEP-CMA-ES [21]	SNOBFIT [17]	VNS (Garcia) [10]
	1e-07	202	38	9	390			4.1	9.9	5.6e4	150	09	48	-	7.9	8.7		110	2e3	19	22		6	34	14
	1e-05	198	26	9	200			3.8 8.0	6.7	2300	18	41	17	1	∞	8.7	43e-5/3e4	41	220	13	39	14e-5/1e6	9.1	22	12
if	1e-04	195	19	5.9	22			3.6	6.7	1200	7.4	53	14	1	œ	8.6	300	42	85	9.1	31	7400	9.5	12	12
derate unif	1e-03	190	13	5.9	29	12e-2/2e3	32e-2/3e3	3.6	9.9	350	5.8	19	11	-	∞	9.9	120	22	31	6.4	19	550	9.3	7.6	8.2
ck mc	1e-02	186	∞	5. 8.	9.8	71	220	5.6	3.9	100	3.3	8.7	8.3	П	œ	4.7	56	6.3	10	3.6	8.7	89	9.3	5.6	8.2
senbro	1e-01	178	3.7	5.6	2.3	14	71	1.1	7	52	1.5	7	2.2	П	7.2	1.6	3.2	3.1	3.1	1.8	2.3	8.3	6.4	1.6	3.5
105 Rosenbrock mode	1e+00	7.37	22	120	13	59	340	5.7	16	300	14	12	19	15	24	11	1	16	18	11	8.8	32	53	6.1	13
Г	_	2.7																							
	1e+02	2	က	1.7	3.7	2.3	54	1.6	2.5	29	3.4	3.5	3.3	2.8	2.4	က	-	2.7	2.3	2.5	2.8	2.6	2.9	1.8	3.9
	1e+03	9.0	2.2	1.4	6.4	3.9	64	3.8	3.2	53	2.3	4.3	4.8	3.3	2.7	4.3	П	6.3	3.9	3.2	2.9	3.7	9	2.3	9.5
	$\Delta { m ftarget}$	$\text{ERT}_{ ext{best}}/ ext{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$_{ m BayEDAcG}$	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 6: 02-D, running time excess ERT/ERT_{best} on f_{106} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

		\sim 07 Δ ftarget	325 ERT $_{ m best}/{ m D}$		27 AMaLGaM IDEA [4]	av	Ř		M	16 $(1+1)$ -CMA-ES [2]	7/8e5 DASA [18]		e3 EDA-PSO [5]	1 full NEWUOA [23]	1.9 GLOBAL [20]	43 iAMaLGaM IĎEÁ [4]	2.1 MA-LS-Chain [19]	5/3e4 MCS (Neum) [16]		(1+1)-ES [1]		130 PSO_Bounds [7]	5/1e6 Monte Carlo [3]	IPOF	5/3e3 SNOBFIT [17]	11
			245																							
							٥-																-			
	Cauchy	1e-04	206	22	11	3.3	66e-3/2e	1.8	2.6	v	260	18	27	1.1	1	15	2.4	210	3.2	06	37	99	8300	2.3	28	0
	moderate (176	14	11	3.2	160	1.8	2.6	က	150	10	19	П	1.1	16	2.3	92	3.2	19	∞	52	1500	2.5	12	2 1
		1e-02	140	8.2	13	2.1	92	2.1	8.8	1.7	160	5.6	12	Н	1.3	17	2.5	39	2.3	8.7	ಬ	11	130	5.9	7.7	00
noisu	nbrock	1e-01	69.5	7.2	16	2.1	17	2.2	3.3	1.2	100	5.1	5.1	П	2.1	16	2.9	œ	7	3.3	4.1	7.3	20	4.4	5.6	Of Cr
y dimension	106 Rosenbrock	1e+00	9.7	15	5.8	4.5	31	13	17	6.4	160	19	9.3	5.1	11	61	10	Н	6.1	10	6	11	22	11	6.9	14
divided by	10	1e+01	2.7	10	4.6	3.7	6.1	13	œ	ъ	96	17	5	25	7.4	5.2	5.7	Н	2.6	5.1	3.3	10	6.3	5.2	3.5	0
\sim			2																							
ach this		1e + 03	9.0	3.2	$^{2.6}$	4.6	2.4	16	4.1	3.2	26	4.4	3.1	8	2.5	2.7	4.2	П	3.1	5.6	2.8	3.3	3.2	4	2.3	0
nction evaluations to reach this value		Δ ftarget	$\text{ERT}_{\text{best}}/ ext{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	BayEDAcG	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 7: 02-D, running time excess ERT/ERT_{best} on f_{107} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

oon evaluations to reac	acn this va	uns value divided	iaea by	107 dimensi	Ħ.	$_{ m I}^{ m I}$	nss				
$\Delta { m ftarget}$	1e + 03	1e + 02	1e+01	1e+00	1e-01	1e-02	1e-03	1e-04	1e-05	1e-07	Δ ftarget
${ m ERT_{best}/D}$	0.5	0.5	6.0	9.9	13.9	26.7	78.8	101	128	211	${ m ERT_{best}/D}$
ALPS	1	1	2.6	3.5	12	6.6	12	15	16	15	ALPS [15]
AMaLGaM IDEA	1	1	2.3	1.7	2.3	-	1	1	1	1.9	AMaLGaM İDEA [4]
avg NEWUOA	П	1	14	32	24	13	15	31	45	80	avg NEWUOA [23]
$\operatorname{BayEDAcG}$	П	1.1	2.4	1.2	4	4.2	4.4	4.7	4.7	4.4	BayEDAcG [9]
BFGS	1	1	86	110	300	880	099	520	410	65e-3/4e3	BFGS [22]
BIPOP-CMA-ES	П	1	12	3.6	2.9	1.2	1.2	1.2	1.2	П	BIPOP-CMA-ES [14]
(1+1)-CMA-ES	П	1	35	7.2	7.7	5.9	2.4	2.3	3.7	6.3	(1+1)-CMA-ES [2]
DASA	1	1	210	130	330	190	440	250	1400	4100	DASA [18]
DEPSO	1	1	2.9	4.8	6.5	က	3.8	3.7	3.6	3.1	DEPSO [11]
EDA-PSO	1	1.1	1.7	2.9	4.9	2.2	4.4	6.4	9.3	6.6	EDA-PSO [5]
full NEWUOA	П	1	12	9.7	21	6.9	9.6	18	19	28	full NEWUOA [23]
GLOBAL	1	1.1	2.6	2.7	6.9	4.8	4.4	4	4.6	∞	GLOBAL [20]
iAMaLGaM IDEA	1	1	2.5	47	33	8.4	6.2	2	11	8.9	iAMaLGaM IDEA [4]
MA-LS-Chain	П	1	2.3	1.6	4.6	8.8	3.8	3.9	4.5	က	MA-LS-Chain [19]
MCS (Neum)	Н	1	Н	Н	п	18	22	170	1400	86e-6/3e4	MCS (Neum) [16]
NEWUOA	н	П	56	20	31	17	20	37	82	83	NEWUOA [23]
(1+1)-ES	П	1	8.2	8.1	8.3	4.3	3.6	3.3	3.2	4.6	(1+1)-ES [1]
PSO	П	П	77	2.3	4.2	3.2	4.9	6.2	7.1	8.9	PSO [6]
PSO_Bounds	Н	1	1.7	2.1	5.1	5.2	8. 5.	16	19	20	PSO_Bounds [7]
Monte Carlo	н	П	2.1	2.8	13	19	280	2400	1.8e4	7e4	Monte Carlo [3]
IPOP-SEP-CMA-ES	П	1	41	16	8.5	2.7	2.1	1.8	2.1	1.5	IPOP-SEP-CMA-ES [21]
SNOBFIT	П	П	2.1	1.1	9.9	9.9	6.5	6.2	6.4	7.3	SNOBFIT [17]
VNS (Garcia)	Н	1	2.6	80	42	18	16	12	10	6.3	VNS (Garcia) [10]

Table 8: 02-D, running time excess ERT/ERT_{best} on f_{108} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

	1e+03 1 0.5 1	1e+02 0.5 1.1	1e+01 0.9 2.5 1.9	1e+00 15 1 1 42	1e-01 101 1.9 32 20	1e-02 713 1.3 6.2 18	1e-02 1e-03 713 1710 1.3 1.1 6.2 4.3 18 16	1e-04 2610 1.6 4.4 14e-3/6e3	1e-05 3680 1.9 5.9	1e-07 7990 1.5 7.3	Aftarget ERThest/D ALPS [15] AMaLGaM IDEA [4] avg NEWUOA [23]
BayEDAcG BFGS BIPOP-CMA-ES			3.1 29 55	10 6.8 10	8 1 4 2 α 2 7 α α	18 5 7 7 7	16 7 11	86e-3/2e3 43e-3/800 1			BayEDAcG [9] BFGS [22] BIPOP-CMA-ES [14] (1±1)-CMA-FS [2]
DEPSO EDA-PSO			2.4 2.4 1.9	2.9 1.1	88 1.9	2.4 1	11 100 5.4 1.2	20 300 26e-4/2e3 1.3	2300	99e-6/6e5 1.2	(1+1)-CMA-ED [2] DASA [18] DEPSO [11] EDA-PSO [5]
full NEWUOA GLOBAL iAMaLGaM IDEA MA-LS-Chain			62 1.7 2.5 2.7	53 1.3 48	42 1.3 20 1.6	42 1.2 8 1	22e-3/7e3 4.8 9.8 1	11 1.4	34e-4/2e3 9.9 1.4	. · 8	full NEWUOA [23] GLOBAL [20] iAMaLGaM IDEA [4] MA-LS-Chain [19]
$\begin{array}{c} \text{ICS (Neum)} \\ \text{NEWUOA} \\ \text{(1+1)-ES} \end{array}$			1 120 36	3.3 56 9.4	2.8 9 6	5.5 3.4	11 25 3.9	140 $13e-3/6e3$ 14	43e-5/3e4 31	400	MCS (Neum) [16] $NEWUOA [23]$ $(1+1)-ES [1]$
PSO PSO_Bounds Monte Carlo			8.4 7.8 8.4	1.1 1.1 1.3	1.3	1.3	1.9 5.6 8.9	3.3 5 66	2.6 4.6 480	1.8 2.8 17e-6/1e6	PSO [6] PSO_Bounds [7] Monte Carlo [3]
P-SEP-CMA-ES SNOBFIT VNS (Garcia)			600 1.3 2.6	73 1.2 46	29 3.6 16	6.5 8.4 7.8	4.5 10 5.4	4.5 14 3.7	5.5 58e-4/3e3 3	19	IPOP-SEP-CMA-ES [21] SNOBFIT [17] VNS (Garcia) [10]

Table 9: 02-D, running time excess ERT/ERT_{best} on f_{109} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

ction evaluations to reach this value divided by	en triis V.	alue div.	ided by			2	;				
				FOT	' 2 '	re Caucily	CIIJ			1	
Δ ftarget	1e+03	1e+02	1e+01	1e+00	1e-01	1e-0.5	1e-03	1e-04	1e-05	1e-07	Δ ftarget
${ m ERT}_{ m best}/{ m D}$	0.5	0.5	0.0	4.77	6.3	33.6	34	48.2	48.2	48.2	${ m ERT}_{ m best}/{ m D}$
ALPS	1	1	3.1	4.3	22	11	09	330	2400	7.5e4	ALPS [15]
AMaLGaM IDEA	1	1	2.5	ಣ	4.6	14	36	54	100	290	AMaLGaM IDEA [4]
avg NEWUOA	П	П	3.3	2.6	15	7	6	11	15	31	avg NEWUOA [23]
${f BayEDAcG}$	Н	П	2.7	4.5	12	9.5	13	12	17	28	BayEDAcG [9]
BFGS	1	1	15	8.3	9.2	1.4	1.4	П	П	П	BFGS [22]
BIPOP-CMA-ES	П	П	3.2	77	4.1	1.5	2.3	2.1	3.4	5.4	BIPOP-CMA-ES [14]
(1+1)-CMA-ES	П	П	4	2.5	9.3	16	61	240	3e3	49e-6/1e4	(1+1)-CMA-ES [2]
DASA	1	П	96	210	470	440	2200	4.2e4	1.9e5	15e-5/6e5	DASA [18]
DEPSO	1	1	2.8	5.6	18	7.5	13	23	22	15e-6/2e3	DEPSO [11]
EDA-PSO	П	П	2.3	3.1	8.8 8.8	4.8	45	490	3800	13e-6/1e5	EDA-PSO[5]
full NEWUOA	П	П	4	1.2	3.3	Н	П	1.5	1.5	1.5	full NEWUOA [23]
GLOBAL	1	1	2.1	2.4	18	2.8	12	21	61	15e-6/2e3	GLOBAL [20]
iAMaLGaM IDEA	1	1	2.8	1.8	က	13	59	35	100	320	iAMaLGaM IDEA [4]
MA-LS-Chain	Н	П	2.5	2.4	10	4.5	9.4	11	16	23	MA-LS-Chain [19]
MCS (Neum)	П	н	П	-		15	35	31	38	87	MCS (Neum) [16]
NEWUOA	1	1	3.3	3.6	12	5.6	10	13	22	36	NEWUOA [23]
(1+1)-ES	П	П	3.4	1.8	4.6	3.1	31	140	820	5e4	(1+1)-ES $[1]$
PSO	Н	П	က	2.2	12	9.4	510	1100	4700	17e-6/1e5	PSO [6]
PSO_Bounds	П	П	1.7	2.1	12	230	1500	8200	1.4e4	2.9e4	PSO_Bounds [7]
Monte Carlo	1	1	2.5	2.4	23	28	490	3e3	6.7e4	15e-6/1e6	Monte Carlo [3]
IPOP-SEP-CMA-ES	П	П	3.3	2.5	3.8	1.4	2.4	2.4	3.3	4.5	IPOP-SEP-CMA-ES [21]
SNOBFIT	Н	П	1.7	П	5.6	1.6	16	24	39	210	SNOBFIT [17]
VNS (Garcia)	П	Н	2.6	ಬ	11	က	4.1	3.8	4.7	6.2	VNS (Garcia) [10]

Table 10: 02-D, running time excess ERT/ERT_{best} on f_{110} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

	Δ ftarget	${ m ERT_{best}/D}$	ALPS [15]	AMaLGaM İDEA [4]	avg NEWUOA [23]	BayEDAcG [9]	BFGS [22]	BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]	DASA [18]	DEPSO [11]	EDA-PSO [5]	full NEWUOA [23]	GLOBAL [20]	iAMaLGaM IDEA [4]	MA-LS-Chain [19]	MCS (Neum) [16]	NEWUOA [23]	(1+1)-ES $[1]$	PSO [6]	PSO_Bounds [7]	Monte Carlo [3]	IPOP-SEP-CMA-ES [21]	SNOBFIT [17]	VNS (Garcia) [10]
	1e-07	4580	2.4	2.4	12e-4/5e3	·		1.5	32	2100	17e-6/2e3	2.6		٠	1.3	1.9		٠	49	1.6	က	65e-6/1e6	П	•	3.2
	1e-05	4200	1.4	2.6	5.9			1.3	5.8	270	1.4	1.9			1.4	1		19e-4/5e3	8.6	1.2	2.2	3600	1.1	57e-4/3e3	2.3
SS	1e-04	2180	1.8	4.9	11			2.4	5.8	190	1	2.9		10e-3/800	2.5	1.8	18e-4/3e4	36	7.2	1.3	2.8	099	2.1	16	3.3
prock Gauss	1e-03	1160	2.3	9.2	8.9	13e-2/2e3	52e-2/2e3	3.4	2.4	100	1	3.3	62e-4/6e3	6.1	4.1	2.2	93	9.1	6.4	1.4	3.1	180	3.8	5.3	5.5
${f Rosen k}$	1e-02	651	2.1	16	က	44	41	5.5	8.7	47	П	3.2	8.5	7	9.9	2.1	10	4.4	8.7	1.5	8.8	22	4.4	3.4	6
	1e-01	312	1.5	22	2.2	10	43	4	1.7	32	п	1.6	2.8	1.3	6	1.2	1.9	2.9	1.6	1.1	7	5.9	4.5	8.7	7.3
in the second	1e+00	17.1	7.1	29	5.1	19	88	13	9.3	110	6.9	6.4	17	4.7	22	8.		15	6.9	9.9	12	11	28	7.8	5.3
	1e+01	3.57	8.9	4.2	11	5.7	62	4.1	3.2	150	11	5.3	56	4.9	100	6.1		16	4.9	8.	7.5	5.5	4.8	5.6	5.9
100	1e + 02	2.2	7	73	10	1.7	34	3.5	2.5	140	1.6	1.7	17	77	1.8	2.4	П	15	5.9	1.9	2.1	2.7	4.2	2.4	3.5
Caci	1e + 03	9.0	2.8	4.2	3.8	2.4	41	6.2	3.4	130	2.2	2.5	21	2.7	2.4	ಣ	1	22	3.9	3.1	2.9	3.1	4.3	3.1	9.5
rancolon evaluations to reach this value divided by	Δ ftarget	${ m ERT_{best}/D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	${ m BayEDAcG}$	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 11: 02-D, running time excess ERT/ERT_{best} on f_{111} , in italics is given the median function value and the median number of

fingtion evaluations to reach this vialue divided by dimension	s to read	oh this r	zalna dir	rided by	dimension)				
		CITIO III		ided by	111 R	osenbr	111 Rosenbrock unif				
$\Delta { m ftarget}$	1e+03	1e+02	1e + 01	1e+00	1e-01	1e-02	1e-03		1e-05		$\Delta ext{ftarget}$
${ m ERT_{best}/D}$	9.0	3.73	12.1	59.4	359	2710	6360	14600	30900	84600	$\text{ERT}_{\text{best}}/ ext{D}$
ALPS	2.9	1.8	1.9	4.1	2.7	1.1	1		1		ALPS [15]
AMaLGaM IDEA	2.2	1	1	9.2	8.3	6.3	5.5		3.2		AMaLGaM İDEA [4]
avg NEWUOA	72	48	45	29	53	33	26e-2/6e3				avg NEWUOA [23]
BayEDAcG	8. 8.	1.1	77	6.4	36	10	35e-2/2e3				BayEDAcG [9]
BFGS	7.8	8.4	7.7	8.2	59e-2/700						BFGS [22]
BIPOP-CMA-ES	4.5	2.6	7.3	9	2.4	1.5	4.2		3.1		BIPOP-CMA-ES [14]
(1+1)-CMA-ES	4.1	1.8	7.4	6.5	4	3.6	7.6		64e-4/1e4		(1+1)-CMA-ES [2]
DASA	230	110	120	91	88	33	110		90e-5/6e5		DASA [18]
DEPSO	1.7	2.6	3.3	5.7	5.7	11	28e-3/2e3				DEPSO[11]
EDA-PSO	2.1	1.7	1.4	2.1	2.2	1.1	4.7		6.4		EDA-PSO [5]
full NEWUOA	94	37	26	27	31	35	15e-2/7e3				full NEWUOA [23]
GLOBAL	1.7	1.4	1.9	2.5	2.4	1.8	3.5				GLOBAL [20]
iAMaLGaM IDEA	1.9	1.6	1.4	28	21	10	6.2		3.1		iAMaLGaM IDEA [4]
MA-LS-Chain	3.4	1.8	1.7	1.3	2.2	1	1.2		2.2		MA-LS-Chain [19]
MCS (Neum)	1	2.4	1.4	1	4.3	5.5	56				MCS (Neum) [16]
NEWUOA	140	33	21	22	19	11	68e-3/6e3				NEWUOA [23]
(1+1)-ES	46	12	14	11	5.6	2.1	5.7		21		(1+1)-ES [1]
PSO	2.2	1.2	1.9	73	П	4.2	4.6		5.6		PSO [6]
PSO_Bounds	2.6	1.6	1.7	1.3	21	3.2	2.3		2.3		PSO_Bounds [7]
Monte Carlo	3.9	1.6	1.5	2.7	5.5	4.3	28		480		Monte Carlo [3]
IPOP-SEP-CMA-ES	4.6	1.8	11	16	7.4	2.6	2.8		4.6		IPOP-SEP-CMA-ES [21]
SNOBFIT	ಬ	2.4	2.8	4.2	10	6.4	5.6		1.2		SNOBFIT [17]
VNS (Garcia)	9.2	2.1	78	62	22	5.6	4.1		2.5		VNS (Garcia) [10]

Table 12: 02-D, running time excess ERT/ERT_{best} on f_{112} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

			•	•	112 R	12 Rosenbrock	Cauchy	hy			
$\Delta { m ftarget}$	1e + 03	1e + 02	1e+01	1e+00	1e-01	1e-02	1e-03	1e-04	1e-05	1e-07	Δ ftarget
${ m ERT_{best}/D}$	9.0	2	2.7	7.3	312	522	222	618	989	992	${ m ERT}_{ m best}/{ m D}$
ALPS	2.3	2.9	9.2	15	1.6	3.5	9.7	78	880	4.7e4	ALPS [15]
AMaLGaM IDEA	2.7	1.7	4.3	64	14	11	26	32	26	91	AMaLGaM İDÉA [4]
avg NEWUOA		2.2	5.1	11	1.1	4.6	22	120	19e-4/5e3		avg NEWUOA [23]
${ m BayEDAcG}$	2.4	2.5	4.5	27	4.8	88e-3/2e3	•				BayEDAcG $[9]$
BFGS	33	27	36	47	3.4	12	16	29	39	14e-3/4e3	BFGS [22]
BIPOP-CMA-ES		က	37	44	1.7	1.6	1.7	1.7	1.7	1.7	BIPOP-CMA-ES [14]
(1+1)-CMA-ES	3.4	77	4.3	13	1.9	က	13	110	52e-5/1e4		(1+1)-CMA-ES [2]
DASA	43	23	140	160	56	71	270	3400	19e-5/7e5		DASA [18]
DEPSO	3.6	4	7.4	13	1.2	3.8	8.7	34e-4/2e3			DEPSO [11]
EDA-PSO	က	2.2	8.1	9.5	1.9	9	23	290	2100	12e-5/1e5	EDA-PSO [5]
full NEWUOA	6.9	က	3.1	16	1.3	2.5	7.4	13	25	53	full NEWUOA [23]
GLOBAL	3.3	2.5	8.1	16	1.2	က	5.9	7.7	7	10e-3/1e3	GLOBAL [20]
iAMaLGaM IDEA	1.9	1.7	4	100	14	19	35	65	29	100	iAMaLGaM IDEA [4]
MA-LS-Chain	2.1	2.5	6.3	7.7	1	1.7	2.8	3.8	3.9	9.2	MA-LS-Chain [19]
MCS (Neum)	Н	Н	1	П	7.7	31	87	11e-4/3e4			MCS (Neum) [16]
NEWUOA	5.1	2.7	ಬ	13	1.2	1.7	6.6	110	100	70e-5/5e3	NEWUOA [23]
(1+1)-ES	2.8	2.1	3.4	15	1.9	4.5	16	92	800	18e-7/1e6	(1+1)-ES [1]
PSO	1.8	2.1	8.1	9.2	1.6	4.6	88	360	920	41e-5/1e5	PSO [6]
PSO_Bounds	2.2	2.1	6.2	8. 8.	1.7	6.2	46	230	1100	10e-5/1e5	PSO_Bounds [7]
Monte Carlo	3.1	2.4	5.9	14	5.6	28	300	2800	0086	17e-5/1e6	Monte Carlo [3]
IPOP-SEP-CMA-ES	3.4	2.7	5.4	9.4	1.1	1	Н	1.1	1	1	IPOP-SEP-CMA-ES [21]
SNOBFIT	2.9	77	2.9	10	2.2	4	62	58	12e-3/3e3		SNOBFIT [17]
VNS (Garcia)	9.2	3.9	9.5	14	1.3	1		1	1	1	VNS (Garcia) [10]

Table 13: 02-D, running time excess ERT/ERT $_{\rm best}$ on f_{113} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

113 Sten-ellipsoid Gauss

	Δ ftarget	ERT_{best}/D	ALPS [15]	AMaLGaM IDEA [4]	avg NEWUOA [23]	BayEDAcG [9]	BFGS [22]	BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]	DASA [18]	DEPSO [11]	EDA-PSO [5]	full NEWUOA [23]	GLOBAL [20]	iAMaLGaM IDEA [4]	MA-LS-Chain [19]	MCS (Neum) [16]	NEWUOA [23]	(1+1)-ES $[1]$	PSO [6]	PSO_Bounds [7]	Monte Carlo [3]	IPOP-SEP-CMA-ES [21]	SNOBFIT [17]	VNS (Garcia) [10]
	1e-07	438	4.1	П	13	20		2.5	4.4	380	1.6	7.3	15	1.7	2.1	2.3	57	14	3.7	1.6	ಬ	130	5.3	5.1	8.6
	1e-05	87.1	13	1	33	69		12	19	220	7.1	25	47	9.7	10	6.6	92	42	15	5.9	13	160	27	20	43
	1e-04	87.1	13	1	33	69		12	19	220	7.1	22	47	9.2	10	6.6	92	42	15	5.9	13	160	22	20	43
nss	1e-03	87.1	13	П	33	69		12	19	220	7.1	22	47	9.7	10	6.6	92	42	15	5.9	13	160	27	20	43
psoid Ga	$^{-}$ 1e-02	8.69	11	1	19	26	60e-2/3e3	14	17	009	.v. 8.v.	19	26	5.7	13	7.2	37	29	8.9	5.1	11	54	27	20	52
tep-elli	1e-01	43.7	12	П	9.7	30	260	13	11	380	5.2	8.9	17	5.5	20	5.6	6.1	16	6.4	3.6	4.3	18	32	10	63
113 S1	1e+00	15.7	4.3	1.1	6.1	2.3	91	6.4	7.4	180	5.4	2.2	4.8	4.1	1	2.6	1.2	5.8	5.7	2.6	77	4.7	13	4	22
	1e + 01	2.37	2.2	2.3	9.5	2.4	81	5.1	12	220	4.3	2.5	11	4.2	2.9	2.6	1	12	13	4.7	3.4	2.9	4.2	1.8	2.7
	1e + 02	1.07	1.6	1.6	13	1.3	24	4.1	21	120	1.8	1.9	11	1.9	1.6	1	1.3	8.7	10	1.8	1.6	1.6	3.3	1.1	2.2
	1e+03	0.5	1	1.3	2.1	1.3	26	1.1	40	9.2	1.7	1.7	2.5	7	1.6	1.1	1.4	2.4	9.3	1.4	1.2	1.6	1.8	1	1
	Δ ftarget	$\overline{\mathrm{ERT}_{\mathrm{best}}}/\mathrm{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$\operatorname{BayEDAcG}$	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 14: 02-D, running time excess ERT/ERT_{best} on f_{114} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

Table 15: 02-D, running time excess ERT/ERT_{best} on f_{115} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension $f_{115} = f_{115}

Table 16: 02-D, running time excess ERT/ERT_{best} on f_{116} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

Δftarget L16 Ellipsoid Gauss Hasel Described to the control of the c	director evaluations to reach time v	o to read	v cilio io	arme	divided by		,				
						Ilipsoi	d Gauss				
3.27 6.77 24.6 50.3 77.6 103 138 165 521 894 1.8 3.1 3.6 14 23 33 45 56 30 27 1.8 3.1 3.6 14 23 33 45 56 30 27 2.8 3.1 3.2 10 1.1 1.2 2.7 1.2 1	$\Delta { m ftarget}$	1e + 03	1e+02	1e+01	1e+00	$1\bar{e}$ -02	1e-03	1e-04	1e-05	1e-07	$\Delta { m ftarget}$
1.8 3.1 3.6 14 23 34 56 30 27 1.7 1.6 1.2 1 1 1 1 1 1 1 I <td>${ m ERT_{best}/D}$</td> <td>3.27</td> <td>6.77</td> <td>24.6</td> <td>50.3</td> <td>103</td> <td>138</td> <td>165</td> <td>521</td> <td>894</td> <td>$\text{ERT}_{ ext{best}}/ ext{D}$</td>	${ m ERT_{best}/D}$	3.27	6.77	24.6	50.3	103	138	165	521	894	$\text{ERT}_{ ext{best}}/ ext{D}$
1.7 1.6 1.2 1 2 2 4 1 1<	ALPS	1.8	3.1	3.6	14	33	45	56	30	27	ALPS [15]
7.9 6.2 12 15 32 98 130 480 $14e-3/5e3$. 2.8 5.2 9.7 63 110 280 $28e-1/2e3$. . 1.9 9.4 15 61 $62e-1/1e3$. . . 1.9 9.4 15 61 $62e-1/1e3$. . . 1.9 9.4 15 61 62 9 49 110 . . 1.7 1.7 8.1 11 29 49 110 420 270 160 4.8 47 43 130 500 1.3e4 1.8e4 29e-5/7e5 . 1.4 4.7 43 16 14 16 26 3.7 3.6 3.7 3.6 3.7 3.6 3.6 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 <td>AMaLGaM IDEA</td> <td>1.7</td> <td>1.6</td> <td>1.2</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>AMaLGaM IDEA [4]</td>	AMaLGaM IDEA	1.7	1.6	1.2	1	1	1	1	1	1	AMaLGaM IDEA [4]
2.8 5.2 9.7 63 110 280 $28e-1/2e3$.	avg NEWUOA	7.9	6.2	12	15	86	130	480	14e-3/5e3		avg NEWUOA [23]
30 35 60 410 $59e-1/1e3$.	BayEDAcG	2.8	5.2	9.7	63	280	28e-1/2e3				BayEDAcG [9]
1.9 9.4 15 61 62 51 39 33 11 6.5 B 1.7 1.7 8.1 11 29 49 110 420 270 160 4.8 4.7 8.3 13 50 163 190 1.3e4 1.8e4 29e-5/7e5 160 1.9 3.6 5.1 18 30 46 64 76 29 27 160 8.3 15 11 17 44 110 320 11e-3/6e3 . . . 8.3 15 17 44 110 320 11e-3/6e3 . . . 1.4 3.5 11 23 43 49 51 4.1 2.5 1.5 2.4 3.7 3.2 12 3.2 43 49 50 3.2 1.5 1.5 5.4 4.6 6.3 18 38 110	BFGS	30	35	09	410						BFGS [22]
1.7 8.1 11 29 49 110 420 270 160 48 47 43 130 500 163 1900 1.3e4 1.8e4 29e-5/7e5 1.4 45 6.5 13 15 15 14 16 26 1.9 3.6 5.1 18 30 46 64 76 29 77 8.3 15 17 44 110 320 11e-3/6e3 .	BIPOP-CMA-ES	1.9	9.4	15	61	51	39	33	11	6.5	BIPOP-CMA-ES [14]
48 47 43 130 500 1e3 1900 1.3e4 1.8e4 $29e-5/7e5$ 1.4 4.2 6.8 13 15 24 31 41 18 16 1.9 3.6 5.1 18 30 46 64 7 29 27 1.4 4.1 18 30 46 64 7 29 27 1.4 4.1 3.5 8.3 12 37 28 16 17 4.1 2.5 27 1.2 1.8 6.7 24 10 14 12 4.1 2.5 18 18 2.4 3.7 3.3 11 23 44 49 51 22 1.5 1.5 5.4 4.6 6.3 18 38 10 46-3/5e3 <td>(1+1)-CMA-ES</td> <td>1.7</td> <td>1.7</td> <td>8.1</td> <td>11</td> <td>49</td> <td>110</td> <td>420</td> <td>270</td> <td>160</td> <td>(1+1)-CMA-ES [2]</td>	(1+1)-CMA-ES	1.7	1.7	8.1	11	49	110	420	270	160	(1+1)-CMA-ES [2]
1.4 4.2 6.8 13 15 24 31 41 18 16 8.3 36 5.1 18 30 46 64 76 29 27 1.3 3.5 5.1 18 30 46 16 76 29 27 1.4 4.1 13 44 110 320 $16-3/6e3$. . 2.4 4.1 3.5 8.3 12 27 28 18 18 2.4 3.7 3.3 11 23 49 51 22 15 15 5.4 3.7 3.2 12 23 24e-3/3e4 5.9 3.7 3.2 12 20 64 130 84 79 28 20 5.3 3.7 3.9 410 280 270 920 4.1e4 80e-5/4e6 . 2	DASA	48	47	43	130	1e3	1900	1.3e4	1.8e4	29e-5/7e5	DASA [18]
1.9 3.6 5.1 18 30 46 64 76 29 27 8.3 15 11 17 44 110 320 $11e-3/6e3$. . 1.4 15 14 110 320 $11e-3/6e3$. . 1.4 1.8 6.7 24 12 31 9.8 18 2.4 3.7 3.3 11 23 43 49 51 2.5 15 5.4 4.6 6.3 18 86 730 $24e-3/8e4$. . . 5.4 4.6 6.3 18 86 770 $24e-3/5e3$. . . 5.4 4.6 6.3 18 10 $24e-3/8e3$ 5.3 3.7 3.9 120 64 130 280 28 20 30 2.3 3.4 3.2 <	DEPSO	1.4	4.2	8.9	13	24	31	41	18	16	DEPSO [11]
8.3 15 11 17 44 110 320 $11e-3/6e3$ 1.4 4.1 3.5 8.3 12 37 28 31 9.8 18 1.2 1.8 6.7 12 14 12 4.1 2.5 18 2.4 3.7 3.3 11 23 43 49 51 2.5 15 15 5.4 4.6 6.3 18 86 730 $24e-3/3e4$	EDA-PSO	1.9	3.6	5.1	18	46	64	92	29	27	EDA-PSO [5]
1.4 4.1 3.5 8.3 12 37 28 31 9.8 18 1.2 1.8 6.7 24 23 19 14 12 4.1 2.5 18 2.4 3.7 3.3 11 23 43 49 51 2.5 15 15 5.4 4.6 6.3 18 38 110 $24e-3/3e4$ 5.9 3.7 3.2 12 20 64 130 $50e-3/5e3$ 2.3 3.7 5.9 3.5 120 64 130 $50e-3/5e3$ 2.3 3.7 5.9 3.5 120 100 84 79 28 20 3.4 3.5 2.0 2.0 4.1e4 $80e-5/1e6$ 4 6.5 8.9 48 100 $12e-2/3e3$	full NEWUOA	8.3	15	11	17	110	320	11e-3/6e3			full NEWUOA [23]
1.2 1.8 6.7 24 23 19 14 12 4.1 2.5 i_i 2.4 3.7 3.3 11 23 43 49 51 22 15 i_i 1 1 13 38 10 $24e^{-3}/3e^4$ i_i i_i i_i 5.4 4.6 6.3 18 38 10 i_i i_i i_i 2.3 3.7 5.9 35 120 64 130 i_i i_i i_i 2.3 3.7 5.9 35 120 i_i i_i i_i i_i 2.3 3.7 410 280 270 9200 i_i i_i i_i 3 5.5 29 270 9200 i_i i_i i_i 1.7 1.6 8.9 48 100 i_i i_i i_i 1.8 4 67	GLOBAL	1.4	4.1	3.5	8. 8.	37	28	31	8.6	18	GLOBAL [20]
2.4 3.7 3.3 11 23 43 49 51 22 15 1 1 1 13 86 730 $24e^{-3}/3e4$ 5.4 4.6 6.3 18 38 110 570 $50e^{-3}/5e3$ 2.3 3.7 3.2 12 20 64 130 84 790 280 1500 2.3 3.7 5.9 35 120 100 84 79 28 20 3.4 3 113 410 280 230 190 180 82 63 63 1.7 1.6 5.5 29 280 2700 9200 $4.1e4$ $80e-5/1e6$. 1.7 1.6 8.9 48 100 $12e-2/3e3$ 12 3.9 IPO 1.8 4 67 75 55 39 35 </td <td>iAMaLGaM IDEA</td> <td>1.2</td> <td>1.8</td> <td>6.7</td> <td>24</td> <td>19</td> <td>14</td> <td>12</td> <td>4.1</td> <td>2.5</td> <td>iAMaLGaM IDEA [4]</td>	iAMaLGaM IDEA	1.2	1.8	6.7	24	19	14	12	4.1	2.5	iAMaLGaM IDEA [4]
1 1 1 1 13 86 730 $24e-3/3e4$ <td>MA-LS-Chain</td> <td>2.4</td> <td>3.7</td> <td>3.3</td> <td>11</td> <td>43</td> <td>49</td> <td>51</td> <td>22</td> <td>15</td> <td>MA-LS-Chain [19]</td>	MA-LS-Chain	2.4	3.7	3.3	11	43	49	51	22	15	MA-LS-Chain [19]
5.4 4.6 6.3 18 38 110 570 $50e-3/5e3$ 5.9 3.7 3.2 12 20 64 130 500 350 1500 2.3 3.7 5.9 35 120 100 84 79 28 20 3.4 3.4 3.9	MCS (Neum)	1	1	П	13	730	24e-3/3e4				MCS (Neum) [16]
5.9 3.7 3.2 12 20 64 130 500 350 1500 2.3 3.7 5.9 35 120 100 84 79 28 20 3.4 3 13 410 280 230 180 82 63 2 5.5 5.5 280 2700 9200 4.1e4 $80e-5/1e6$. 1.7 1.6 5 8.9 48 100 120 $12e-2/3e3$. . 1.8 4 67 75 55 50 39 35 13 16	NEWUOA	5.4	4.6	6.3	18	110	570	50e-3/5e3			NEWUOA [23]
2.33.75.935120100847928203.4313410280230190180826312.55.529280270092004.164 $80e-5/1e6$.1.71.658.94810012e-2/3e36.53.9IPC1.846775555039351316	(1+1)-ES	5.9	3.7	3.2	12	64	130	200	350	1500	(1+1)-ES [1]
3.4313410280230190180826322.55.529280 2700 9200 $4.1e4$ $80e-5/1e6$.1.71.6540413224 20 6.5 3.9IPO1.71.658948100120 $12e-2/3e3$ 3.9IPO1.846775555039351316	PSO	2.3	3.7	5.9	35	100	84	79	28	20	PSO [6]
22.55.52928027009200 $4.1e4$ $80e-5/1e6$.118.1174041322420 6.5 3.9II1.71.658.948100120 $12e-2/3e3$ 1.846775555039351316	PSO_Bounds	3.4	က	13	410	230	190	180	82	63	PSO_Bounds [7]
11 8.1 17 40 41 32 24 20 6.5 3.9 II 1.7 1.6 5 8.9 48 100 120 $12e-2/3e3$	Monte Carlo	77	2.2	5.5	29	2700	9200	4.1e4	80e-5/1e6		Monte Carlo [3]
1.71.658.948100120 $12e-2/3e3$ 1.846775555039351316	POP-SEP-CMA-ES	11	8.1	17	40	32	24	20	6.5	3.9	IPOP-SEP-CMA-ES [21]
1.8 4 67 75 55 50 39 35 13 16 °	SNOBFIT	1.7	1.6	5	8.9	100	120	12e-2/3e3			SNOBFIT [17]
	VNS (Garcia)	1.8	4	29	75	50	39	35	13	16	VNS (Garcia) [10]

Table 17: 02-D, running time excess ERT/ERT_{best} on f_{117} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

				taca by	11	17 Ellipsoid unif	l unif				
$\Delta { m ftarget}$	1e+03	1e + 02	1e+01	1e+00	1e-01	$1e-\overline{0}2$	1e-03	1e-04	1e-05	1e-07	Δ ftarget
$\text{ERT}_{ ext{best}}/ ext{D}$	4.77	17.4	83.7	673	3230	0969	14100	14900	18200	21600	ERT_{best}/D
ALPS	1.6	1.8	1.6	1.1	1.1	1	1.3	2.4	2.8	7.9	ALPS [15]
AMaLGaM IDEA	1.7	1.3	4.9	6.6	4.5	4.6	2.6	2.5	2.9	4.1	AMaLGaM IDEA [4]
avg NEWUOA	15	32	24	10	8.4	78e-2/6e3			-		avg NEWUOA [23]
$\operatorname{BayEDAcG}$	2.4	2.6	17	42	78e-1/2e3			·			BayEDAcG [9]
BFGS	9.8	5.3	4.9	6.2	2.7	40e-1/600					BFGS [22]
BIPOP-CMA-ES	2.2	5.4	6.7	% %	2.1	1.6	1	П	1	1	BIPOP-CMA-ES [14]
(1+1)-CMA-ES	9.5	4.5	ಬ	1.8	2.1	10	10	32e-3/1e4	-		(1+1)-CMA-ES [2]
DASA	06	80	28	51	46	120	310	71e-4/6e5	-		DASA [18]
DEPSO	П	4.1	3.6	1.9	4.1	46e-2/2e3					DEPSO [11]
EDA-PSO	1.3	2.6	1.2	9	2.4	2.5	4.6	9.6	17	21	EDA-PSO [5]
full NEWUOA	55	41	25	14	31	14	87e-2/7e3				full NEWUOA [23]
GLOBAL	1.4	1	2.3	1.3	1.9	1.8	25e-2/2e3				GLOBAL [20]
iAMaLGaM IDEA	43	12	11	5.7	4.5	3.4	· 61		3.3	6.5	iAMaLGaM IDEA [4]
MA-LS-Chain	1.3	1.1	1.2	1	1	1.7	1.9	12	27e-4/1e4		MA-LS-Chain [19]
MCS (Neum)	1.4	1.2	1	1.4	4.2	8.4	27e-3/3e4		-		MCS (Neum) [16]
NEWUOA	43	22	29	12	26	97e-2/6e3					NEWUOA [23]
(1+1)-ES	3.1	9	6.2	2.3	1.9	4	8.2		26	099	(1+1)-ES [1]
PSO	1.4	1.3	4.6	52	12	13	11	16	24	99	PSO [6]
PSO_Bounds	2.5	1.1	1.6	52	21	17	21		37	29	PSO_Bounds [7]
Monte Carlo	1.5	-	2.8	3.2	4.4	31	120		10e-4/1e6		Monte Carlo [3]
IPOP-SEP-CMA-ES	22	27	10	5.3	2.8	1.9	1.2		4	39e-4/1e4	IPOP-SEP-CMA-ES [21]
SNOBFIT	2.1	1.2	3.5	2.6	5.1	2.5	51e-2/3e3				SNOBFIT [17]
VNS (Garcia)	1.3	1.3	41	11	5.6	4.5	3.8	12	29	410	VNS (Garcia) [10]

Table 18: 02-D, running time excess ERT/ERT_{best} on f_{118} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

	Cauchy	1e-04 $1e-05$ $1e-07$	326 388 486 E	630 $2400 44e-7/2e6$	6.2 14	220 90e-5/5e3		54 45	2.3 2.1 1.9 E	460 98e-5/1e4 . (1+	1.5e4 $43e-5/7e5$	92 30e-3/2e3 .	510 1800 12e-5/1e5	60 220	4.1 4.9	9.7 14	3 3.8 3.9 1	1100 $27e-4/3e4$.	71 190 $11e-4/5e3$	1200	650 $1200 33e-5/1e5$	2200 88e-5/1e5 .	64e-5/1e6	1.6 1.4	110 95 32e-4/3e3	1
					·																			H		ĺ
																							٠	4 1.5	32e-4,	1
	auchy	•																								1
	llipsoid C ϵ	e-02 1e-0	252 292	12 60			110 71e-2/																			1 1
diffiension	118 E	1e-01 1	66.2	20																					4.1	3.4
videa by			51.5				28										6.2									3.7
is value divided p			5 10.5																							1 14
		1e+03 1e+	2.1 2.	6.3	4.4	2.4	3.1 7.	17 2	3.5	2.8	16 1	5.4	2.8	2.3	3.6	3.1 5.	5.7 7.	-	2.1	3.6	2.1	3.2 7.	2.6	4.1 9.	1.7 2.2	2.9
nunction evaluations to reach th		Δ ftarget	$\text{ERT}_{\text{best}}/ ext{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$\overline{ ext{BayEDAcG}}$	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 19: 02-D, running time excess ERT/ERT_{best} on f_{119} , in italics is given the median final function value and the median number of function avaluations to reach this value divided by dimension

		Δ ftarget	${ m ERT_{best}/D}$	ALPS [15]	AMaLGaM IDEA [4]	avg NEWUOA [23]	BayEDAcG [9]	BFGS [22]	BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]	DASA [18]	DEPSO [11]	EDA-PSO [5]	full NEWUOA [23]	GLOBAL [20]	iAMaLGaM IDEA [4]	MA-LS-Chain [19]	MCS (Neum) [16]	NEWUOA [23]	(1+1)-ES [1]	PSO [6]	PSO_Bounds [7]	Monte Carlo [3]	IPOP-SEP-CMA-ES [21]	SNOBFIT [17]	VNS (Garcia) [10]
		1e-07	5040	8.5	П	67e-6/5e3	18e-5/2e3		က	9.9	1800	79e-7/2e3	32	32e-5/6e3	32e-5/700	1.6	2.1	٠	15	11	47	45	٠	1.2	7.4	9.9
		1e-05	2380	1.9	1.2	8.9	3.9		7	2.4	009	П	2.9	38	7	2.1	Н		33	3.3	4.4	4	18e-5/1e6	1.7	2.6	2.4
	s Gauss	1e-04	950	2.9	2.5	9.9	4.4		က	က	330	1	4.4	15	2.2	က	1.3	18e-4/3e4	19	3.1	1.3	4.1	2500	2.8	4	2.9
	ent power	1e-03	520	3	3.3	5.9	2.1	13e-2/4e3	1.6	1.6	200	1	3.1	11	1.6	4.5	1.4	150	7.1	1.1	1.5	3.6	380	1.3	2.7	2.5
on	ij	1e-02	88	2	12	14	4	220	-	7.2	360	3.7	4.9	13	4.3	12	4.3	40	23	3.6	3.5	5.5	22	3.8	4	1.8
dimension	Sum of		35.5		13	œ	4.4	160	1.2	7.9	170	3.6	5.6	4.8	4.1	7.8	5.6	1.2	8.6	7.3	2.2	3.3	8.9	п	3.2	2.8
led by o	119 S	1e+00	5.37	1.8	28	18	6.3	28	2.9	12	280	2.2	2.3	8.7	2.3	2.1	5.6	П	15	22	က	7	2.1	2.5	1.3	4.2
ue divic		1e+01	0.7	1.6	1.7	2.9	1.4	43	3.8	1.5	91	1.6	1.2	3.2	1.6	1.4	1.7	-	3.1	11	77	7	1.7	1.7	1.9	2.1
this val		1e + 02	0.5	1.5	П	1.4	1.3	12	2.3	П	-	П	1.3	1.6	1.3	1.1	1.2	-	2.6	77	1.1	1.1	1.4	1.2	1.3	-
o reach		1e + 03	0.5	1	Н	Н			Н				Н		Н	Н	-	н	Н	П	Н		Н	П	-	1
function evaluations to reach this value		Δ ftarget	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	${ m BayEDAcG}$	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 20: 02-D, running time excess ERT/ERT_{best} on f_{120} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

		Δ ftarget	${ m ERT_{best}/D}$	ALPS [15]	AMaLGaM IDEA [4]	avg NEWUOA [23]	BayEDAcG [9]	BFGS [22]	BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]	DASA [18]	DEPSO [11]	EDA-PSO [5]	full NEWUOA [23]	GLOBAL [20]	iAMaLGaM IDEA [4]	MA-LS-Chain [19]	MCS (Neum) [16]	NEWUOA [23]	(1+1)-ES [1]	PSO [6]	PSO_Bounds [7]	Monte Carlo [3]	IPOP-SEP-CMA-ES [21]	SNOBFIT [17]	VNS (Garcia) [10]
		1e-07	94300	6.1	21			-	П		89e-5/6e5		10e-6/1e5			160	99e-6/1e4			50e-7/1e6	12e-6/1e5	29e-6/1e5	-			260
		1e-05	37700	1.3	6.9				П		230		4.2			17	3.9			22	4.2	4.9	16e-5/1e6	36e-5/1e4		8.1
;	nnif	1e-04	13000		7.1		·		1.2	57e-4/1e4	210		2.3		٠	14	1.1	38e-4 /3e4		22	3.1	5.8	250	11	٠	3.3
	ent powers unif	$\overline{1}e-03$		l		94e-3/6e3								44e-3/7e3	13e-3/2e3	15	1.8	41	98e-3/6e3	10	5.8	6.5	56	ъ	19e-3/3e3	4.9
sion	120 Sum of different	1e-02	1260	1.2	7.3	15	21e-2/2e3	9.2	1.1	6	73	4	1.4	92	3.8	14	1	14	34	5.3	2	7	5.9	5.1	3.9	5.9
dimension	0 Sun	1e-01		7			22							17	1.1	56	1	3.1	41	4.8	39	1.1	2.5	14	7	20
nded by	12	1e+00	2.67	1.1	1.3	74	3.1	20	11	13	310	3.2	Н	22	2.1	22	2.2	3.8	61	25	2.4	က	2.5	35	2.6	4
alue div		1e+01	0.7	1.9	1.2	37	1.1	9.2	4.4	2.6	98	1.5	1.8	48	1.5	1.3	1.6	1	48	11	77	1.4	1.5	က	1.7	2.1
h this v		1e+02	0.5	1.1	1.3	9.2	-	7	73	1.1	75	1	1.2	20	1.1	1.2	1.2	1	3.1	7	1.3	1.3	1.3	1.3	1.3	П
to reac		1e + 03	0.5	1	1	П	П	П	-	П	П	1	1	П	-	П	1	П	1	П	1	П	-	П	-	1
function evaluations to reach this v		Δ ftarget	${ m ERT_{best}/D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$\operatorname{BayEDAcG}$	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 21: 02-D, running time excess ERT/ERT_{best} on f_{121} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

menon evaluations to reach	reach c	iiis valut	anvide.	u by um	ν						
			٠.	$121~\mathrm{Sum}$		of different		ers Cauchy			
Δ ftarget	1e + 03	1e + 02	1e+01	1e+00	1e-01	1e-02	1e-03	1e-04		1e-07	
$\text{ERT}_{\text{best}}/\text{D}$	0.5	0.5	0.7	3.53	21	71.8	164	376	260	851	H
ALPS	1	1.4	7	2	9.2	18	90	089		50e-7/2e6	
AMaLGaM IDEA	П	1.1	1.4	2.7	1.4	22	30	29		160	AMaLGaM İDEA [4]
avg NEWUOA	П	1.6	2.6	5.7	4.4	6.3	22	35			avg NEWUOA [23]
$\operatorname{BayEDAcG}$	П	1.1	1.3	4.7	8.6	4.8	4.7	10	53	28e-5/2e3	BayEDAcG [9]
BFGS	П	9.6	22	34	16	15	27	46	48	78e-5/4e3	BFGS [22]
BIPOP-CMA-ES	П	1.5	3.1	3.5	1.4	1	1.3	1.4	7	2.6	BIPOP-CMA-ES [14]
(1+1)-CMA-ES	н	1.2	3.4	7.9	14	21	61	190	62e-5/1e4		(1+1)-CMA-ES [2]
DASA	П	14	160	270	230	880	2200	12e-4/6e5			DASA [18]
DEPSO	Н	1.6	2.5	4.2	5.1	4.1	5.4	22	38e-5/2e3		DEPSO [11]
EDA-PSO	Н	1	1.6	4	3.2	15	180	1800	55e-5/1e5		EDA-PSO [5]
full NEWUOA	П	2.1	4	1.6	1.7	1.5	8.9	15	25	34e-6/5e3	full NEWUOA [23]
GLOBAL	Н	1.3	1.8	2.6	9.2	5.2	10	21	59e-5/2e3		GLOBAL [20]
iAMaLGaM IDEA	Н	1.4	1.7	2.5	15	11	22	32	64	250	iAMaLGaM IDEA [4]
MA-LS-Chain	П	1.3	1.6	4.5	4	4.1	4.4	4.2	7.1	38	MA-LS-Chain [19]
MCS (Neum)	Н	1	П	н	Н	66	510	23e-4/3e4			MCS (Neum) [16]
NEWUOA	Н	1.6	2.7	4.4	ಣ	7.6	14	22	120	40e-5/5e3	NEWUOA [23]
(1+1)-ES	П	1.6	3.2	4.8	4.3	8.6	28	320	5500	16e-6/1e6	(1+1)-ES [1]
PSO	П	1.3	1.6	3.3	6.2	88	310	1900	2500	32e-5/1e5	PSO [6]
PSO_Bounds	Н	1.2	2.5	က	7.4	240	400	410	1200	21e-5/1e5	PSO_Bounds [7]
Monte Carlo	Н	1.3	1.6	2.6	9.4	20	830	1.3e4	2.7e4	27e-5/1e6	Monte Carlo [3]
IPOP-SEP-CMA-ES	П	1.2	3	5.2	1.8	1.1	Н	-1	1.2	П	IPOP-SEP-CMA-ES [21]
SNOBFIT	П	1.1	1.9	1.9	2.5	11	73	24e-4/3e3	-		SNOBFIT [17]
VNS (Garcia)	П	1	2.1	6.5	4.1	1.7	1.6	1.1	П	1:1	VNS (Garcia) [10]

Table 22: 02-D, running time excess ERT/ERT_{best} on f_{122} , in italics is given the median final function value and the median number of

		7 Δ ftarget	0 ERT _{best} /D		⋖	av	BayEDAcG [9]	BFGS [22]	BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]			Н	full NEWUOA [23]			MA-LS-Chain [19]				PSO [6]	Д		IPOP-SEP-CMA-ES [21]		VNS (Garcia) [10]
			4780						1								က									59
		1e-0	2180	4.1	2.9		•		П		٠	6.9	6		٠	9	2.7	٠	•	2100	4.8	7.8	٠	1.6	•	16
		1e-04	1680	3.9	2.9				1	48e-4/1e4	87e-4/6e5	2.1	8.7			6.3	2.4			570	4.8	6.2		7	75e-4/3e3	6.9
	Gauss	1e-03	1120	4.3	3.7	11e-2/5e3	16e-3/2e3		П	09	2700	1.9	9.7	59e-3/6e3		7.5	2.7	18e-3/3e4	99e - 3/5e3	65	5.6	6.9	79e-4/1e6	2.5	6.1	6.1
	naffer F7 (1e-02	705	4	4.8	55	9.7		1	9.3	096	1.5	8.6	62	64e-3/1e3	7.8	3.1	240	54	16	7	6.1	1400	2.4	3.1	6.9
dimension	$122~\mathrm{Sc}$	1e-01	261	4.4	9.9	33	3.4	47e-2/3e3	1	9.2	300	77	8.9	20	3.3	9.9	3.6	23	30	7.2	11	3.6	28	ಬ	3.2	15
value divided by		1e+00	47.7	2.9	14	9.7	3.2	40	77	5.1	170	2.6	1.2	7	1.7	19	2.1	н	16	3.5	3.5	1.3	2.9	15	2.2	27
alue di		1e+01	1.47	7	2.2	14	1.7	46	8.7	16	320	П	8.7	11	1.8	1.7	1.7	1.4	9.7	21	2.5	1.7	2.4	3.9	1.8	2.5
		1e+02	0.5	1.2	1.1	1.3	1.1	3.8	1.2	1.9	30	1.3	1.6	1.4	1	1.3	1.4	1	1.7	40	1.1	1.1	-1	2.3	1.3	П
to read		1e + 03	0.5	1	П	п	1.1	-	П	п	-	-	П	п	1	П	П	1	П	1.1	1	1	-	1	П	П
function evaluations to reach this v		$\Delta { m ftarget}$	$\text{ERT}_{ ext{best}}/ ext{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	BayEDAcG	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 23: 02-D, running time excess ERT/ERT_{best} on f_{123} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

	Δ ftarget	${ m ERT_{best}/D}$	ALPS [15]	AMaLGaM IDEA [4]	avg NEWUOA [23]	BayEDAcG [9]	BFGS [22]	BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]	DASA [18]	DEPSO [11]	EDA-PSO [5]	full NEWUOA [23]	GLOBAL [20]	iAMaLGaM IDEA [4]	MA-LS-Chain [19]	MCS (Neum) [16]	NEWUOA [23]	(1+1)-ES [1]	PSO [6]	PSO_Bounds [7]	Monte Carlo [3]	IPOP-SEP-CMA-ES [21]	SNOBFIT [17]	VNS (Garcia) [10]
	1e-07		29e-6/2e6					1				•		•	11e-4/1e6	•				•		•		•	
	1e-05	5e4	340	98e-5/1e6				1							300					58e-4/1e5	47e-4/1e5				21e-5/1e7
	1e-04	0	40	240				1							520				57e-4/1e6	51	26			21e-2/3e3	930
7 unif	1e-03		7.6	20				1	16e-2/1e4			81e-4/1e5			130	32e-3/1e4			350		36	12e-3/1e6		1.9	45
123 Schaffer F7 u	1e-02	12400	1.6	13	46e-2/6e3			1	5.8	40e-3/6e5	19e-2/2e3	6.5	36e-2/7e3	16e-2/2e3	25	12	58e-3/3e4	44e-2/6e3	38	7	6.1	160	92e-3/1e4	2.9	5.7
123	1e-01	3190	1	9	28	10e-1/2e3	53e-2/800	1.2	6.6	52	2.1	1.2	31	1.4	7.6	1.2	8.7	28	4.9	3.9	5.9	5.3	4.7	2.6	5.1
	1e+00	106	1.2	22	24	23	7.1	5.2	7.7	22	2.7	1.4	27	1.3	57	1.2	1.8	32	8.7	3.2	1.2	П	23	က	46
	1e+01	1.57	1.6	1.7	99	2.6	6.4	52	20	130	1.7	1.6	73	1.7	2.1	2.3	П	26	99	2.4	2.3	1.8	74	1.2	2.1
	1e + 02	0.5	1.1	1.3	9.2	1.5	1	1.1	1.9	4.1	1.2	1.1	11	1.4	1.4	1.3	1	1	2.2	1.1	1.3	1.2	1.3	1.4	П
	1e+03	0.5	Т	1	П	Н	Н	1	П	Н	Н	1	1.1	Н	1.1	1	П	Н	Н	1.1	1.1	Н	Н	Н	н
	Δ ftarget	${ m ERT_{best}/D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$_{ m BayEDAcG}$	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 24: 02-D, running time excess ERT/ERT_{best} on f_{124} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension 134 Schoffen F7 Comban

	Δ ftarget	$\text{ERT}_{\text{best}}/ ext{D}$	ALPS [15]	AMaLGaM IDEA [4]	avg NEWUOA [23]	BayEDAcG [9]	BFGS [22]	BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]	DASA [18]	DEPSO [11]	EDA-PSO [5]	full NEWUOA [23]	GLOBAL [20]	iAMaLGaM IDEA [4]	MA-LS-Chain [19]	MCS (Neum) [16]	NEWUOA [23]	(1+1)-ES [1]	PSO [6]	PSO_Bounds [7]	Monte Carlo [3]	IPOP-SEP-CMA-ES [21]	SNOBFIT [17]	VNS (Garcia) [10]
	1e-07	4510		450		٠		3.1		٠					670	٠							П		340
	1e-05	2800		44		٠		1.5		٠					110	٠							-		220
	1e-04	1740				15e-4/2e3		1.1	17e-3/1e4						41	14e-3/1e4			10e-4/1e6	13e-3/1e5		78e-4/1e6	1		30
Cauchy	1e-03	966	3900	23	98e-3/5e3	9.4		1	140		79e-4/2e3	18e-3/1e5	17e-3/5e3	98e-3/1e3	30	140		33e-3/5e3	2e3	470				32e-3/3e3	21
ffer F7 Ca	1e-02	340			61			1	88	32e-3/6e5	8.9	1300	49	24	23	42	68e-3/3e4	46	36	260	430	2900	1.6	110	22
124 Schaffer F7	1e-01	158	5.8	8.3	22	2.8	53e-2/4e3	1	5.7	220	4.2	9.5	9.1	6.7	9.2	2.6	92	14	9	13	110	84	1.5	8.2	13
•	1e+00	31.8	2.2	11	9.3	3.3	28	က	4.9	170	4	7	5.4	2.8	5.6	2.1	-	6.5	5.6	1.8	1.8	5.9	2.5	3.5	26
	1e+01	1.77	1.5	1.4	12	1.6	48	3.3	1.9	110	1.4	П	2.5	1.2	1.9	7		5.6	10	1.3	1.4	1.4	4.9	2.1	1.9
	1e + 02	0.5	1.4	1.1	1.7	1.3	17	1.4	2.4	9	1.1	1.1	1.8	-	1.3	1.3	-	2.5	1.6	1.3	1.3	1.1	1.1	1.3	-
	1e + 03	0.5	1.1	1	1	1	1	П	1	1.6	П	П	1	П	1.1	1	П	П	1.1	П	П	П	1	П	1
	$\Delta { m ftarget}$	${ m ERT_{best}/D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$_{ m BayEDAcG}$	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 25: 02-D, running time excess ERT/ERT_{best} on f_{125} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

this value divided by dimension	125 Griewank-Rosenbrock Gauss	1e+00 $1e-01$ $1e-02$ $1e-03$ $1e-04$ $1e-05$	0.5 0.5 0.5 74.3 575 1230 1930 3780 ERT $_{\rm best}/{\rm D}$	4.3 77 3.6 1.5 1.3 1.6 1.6	3.3 38 1 13 7.7 5.5 2.9 A	46 1.8 2.7 2.4 2.3	5.5 32 1.5 1 2 3.4 49e-6/2e3	87 730 40 49 46 59e-4/4e3	5.1 34 1.9 3 2.2 1.9	3.5 84 4 4.4 2.9	280 2400 64 91 89 120	5.6 120 2.5 1.7 1 1	3.9 52 1.4 1.9 1.9 2.4	7.3 66 2.5 3.5 2.8	4.7 56 2.3 1.4 1 1.5	4.7 500 13 20 11	5.6 44 2 4 2.3 2.1	1 1 1.2 8 10 13	6.1 77 1.4 2.6 2.1 2.6 10	22 130 5.5 4.2 3.7 3 6.5	5.1 43 2.2 7.4 5.8 6.1 3.5	4 32 1.6 2.5 2.5 1.8	4.1 53 3.2 4.4 6.5 12	2.7 200 4.3 5.4 3.6 3.3	4.9 31 4.2 4.3 2.9 2.4	77 77 77 77 77 77 77 77 77 77 77 77 77
zided by din	125 G																									
value di		1e + 02	0.5	1	1	П	1	1	1	П	1	1	1	П	1	1	1	1	1	1	1	1	1	1	1	
		1e + 03	0.5	1	1	-	1	1	1	-	1	1	1	-	-1	1	1	1	1	-1	1	1	1	1	П	
ction evaluations to reach		Δ ftarget	${ m ERT_{best}/D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	BayEDAcG	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VINIC (Comoio)

Table 26: 02-D, running time excess ERT/ERT_{best} on f_{126} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

	Δ ftarget	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS [15]	AMaLGaM İDEA [4]	avg NEWUOA [23]	BayEDAcG [9]	BFGS [22]	BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]	DASA [18]	DEPSO [11]	EDA-PSO [5]	full NEWUOA [23]	GLOBAL [20]	iAMaLGaM IDEA [4]	MA-LS-Chain [19]	MCS (Neum) [16]	NEWUOA [23]	(1+1)-ES [1]	PSO [6]	PSO_Bounds [7]	Monte Carlo [3]	IPOP-SEP-CMA-ES [21]	SNOBFIT [17]	VNS (Garcia) [10]
	1e-0.7	18200	1.4	5.3		26e-3/2e3		2.5	27e-5/1e4	42	1.6	3.2		17e-4/2e3	8.4	1	19e-6/3e4		∞	4.2	2.6	13	8.2	7	5.4
	1e-05	5530	7	9.1	18e-4/6e3	5.1		2.6	6.2	89	2.6	2.8		1.5	14	1	7.1		8.3	6.9	4.1	4.2	v	3.1	5.4
k unif	1e-04	3410	1.2	7.1	7.8	8.2		77	7.4	09	4.2	2.2	27e-4 /7e3	1.3	10	1	4.3	32e-4 /6e3	8.9	7.8	4.4	2.4	9.9	ಬ	6.4
Rosenbroc	1e-01 $1e-02$ $1e-03$	1710	1.6	10	11	7.6	95e-4/900	1.5	3.9	59	3.3	1.5	17	2.4	8.6	1	3.4	52	4.7	11	4.6	1.6	7.4	10	7
vank-1	1e-02	151	1.3	8.3	15	37	7.7	1.4	1.9	20	3.6	1.2	8.9	1.7	20	1.3	1.6	15	2.2	1.2	-	1.8	2.8	5.9	17
Griev	1e-01	0.5	47	41	029	340	170	42	230	3400	64	33	260	22	096	53	П	009	230	22	51	31	590	26	29
126 126	1 1e+00	0.5	4.6	22	95	3.6	17	4.8	2.8	420	4.7	3.5	130	3.7	4.7	6.3	1	200	39	5.2	6.7	5.9	18	6.9	2.5
ranc divided by difficultation 126 Griewa	1e+01	0.5	1	1.1	26	1.1	77	1	1.1	3.7	1.2	1.2	19	1.1	1.1	1.3	1	2.1	2.1	1.3	1.1	П	1.1	1.3	1.2
מ	1e+02	0.5	1	1	1	П	1	1	1	1	1	1	П	-	1	1	1	1	1	1	1	1	1	П	н
O I Cacil	1e+03	0.5	1	1	1	П	1	1	1	-	1	1	1	П	1	1	1	1	1	П	1	1	1	П	н
	Δ ftarget	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	${ m BayEDAcG}$	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 27: 02-D, running time excess ERT/ERT_{best} on f_{127} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

	T COCCIT OF		127 Griewan	127 Gri	iewan	ewank-Rosenbrock	nbroc	k Cauchy			
	1e+03	1e + 02	1e+01	1e+00	1e-01	1e-02	1e-03	1e-04	1e-05	1e-07	$\Delta ext{ftarget}$
	0.5	0.5	0.5	0.5	0.5	93	593	2010	3390	3640	ERT_{best}/D
ALPS	1	1	1.1	6.3	43	7	3.7	4	7.1	06	ALPS [15]
AMaLGaM IDEA	1	1	1.3	4.7	28	11	16	8.4	9.6	17	AMaLGaM İDÉA [4]
γ	П	П	1.3	7.2	72	1.6	3.5	1.8	2.5	16e-6/5e3	avg NEWUOA [23]
7 5	1	1	1.1	6.1	20	П	П	1	4.1	62e-6/2e3	BayEDAcG [9]
	1	1	5.2	54	580	15	45	27	16e-4/4e3		BFGS [22]
-ES	-1	1	1.1	5.3	32	1.9	8.8	7	1.7	2.2	BIPOP-CMA-ES [14]
(1+1)-CMA-ES	1	1	1.1	6.5	140	5.1	12	8.4	14	25e-5/1e4	(1+1)-CMA-ES [2]
	1	1	14	170	2200	98	210	130	440	2400	DASA [18]
	1	1	1.3	3.1	27	1.7	1.6	2.1	7	4	DEPSO [11]
_	-1	1	1.3	3.7	40	2.1	6.4	7.9	12	120	EDA-PSO [5]
full NEWUOA	1	1	1.4	13	84	7	5.3	3.7	7.2	22	full NEWUOA [23]
	1	1	1.3	5.7	99	2.4	7.7	16e-4/2e3			GLOBAL [20]
DEA	-1	1	1.1	2.8	27	7.9	10	11	13	38	iAMaLGaM IDEA [4]
ain	П	1	1.1	7.3	44	1.3	3.3	1.9	3.2	20	MA-LS-Chain [19]
m)	1	1	1	-	П	3.2	5.6	5.8	6.4	42e-7/3e4	MCS (Neum) [16]
A	П	1	2.1	6.2	92	1.8	4.9	3.8	2.8	6	NEWUOA [23]
70	1	1	1.9	6.3	64	2.5	7.1	5.4	8.4	88	(1+1)-ES $[1]$
	П	1	1.4	4.3	35	2.5	30	19	16	98	PSO [6]
ds.	1	1	1	7.5	44	1.4	88	47	37	130	PSO_Bounds [7]
:lo	1	1	1.1	4.4	56	2.7	6.1	4.9	11	110	Monte Carlo [3]
IA-ES	1	1	1.1	4.9	47	8.8	3.7	1.6	П	1	IPOP-SEP-CMA-ES [21]
SNOBFIT	П	1	1	4.7	36	3.8	11	5.5	11	10	SNOBFIT [17]
VNS (Garcia)	-	н	1.2	2.5	48	7.5	26	12	œ	12	VNS (Garcia) [10]

Table 28: 02-D, running time excess ERT/ERT_{best} on f_{128} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

		1e-07 Δ ftarget	$_{ m 310}$ ERT $_{ m best}/{ m D}$	6.2 ALPS [15]	9.9 AMaLGaM İDEA [4]	32 avg NEWUOA [23]	45 BayEDAcG [9]	. BFGS [22]	5.5 BIPOP-CMA-ES [14]	2 (1+1)-CMA-ES [2]	400 DASA [18]	2.4 DEPSO [11]	5.8 EDA-PSO [5]	15 full NEWUOA [23]	1 GLOBAL [20]	21 iAMaLGaM IDEA [4]	3.2 MA-LS-Chain [19]	82 MCS (Neum) [16]	4		2.3 PSO [6]	29 PSO_Bounds [7]	540 Monte Carlo [3]	14 IPOP-SEP-CMA-ES [21]	5.6 SNOBFIT [17]	16 VNS (Garcia) [10]
			297	4.5	6	9.7	18		5.4	1.8	180	1.9	4.6	11	1	22	3	8. 8.	14	2.7	1.5	28	31	14	3.6	17
		1e-04	205	4.9	13	8.7	14	20e-3/4e3	7.7	2.6	100	2.4	4.9	13	1	32	3.7	1.9	16	3.5	1.5	38	24	18	4.4	24
	auss	1e-03	194	2.7	12	7.4	11	270	6.7	2.5	22	2.5	5.6	10	1	33	3.2	1.1	8.6	3.7	1.2	38	8.	17	8.8	25
	Gallagher Gauss	1e-02	157	2.3	14	7.9	5.2	09	5.1	က	72	2.4	1.7	10	-	41	1.8	1.1	8.6	3.7	1.2	46	3.2	21	က	29
on	Gallag	1e-01	67.2	2.2	32	9.3	3.4	29	8.4	6.7	140	4.4	2.5	13	-	79	2.1	1.9	9.2	7.5	1.6	110	1.8	41	3.3	59
dimensi	128	1e+00	20.7	2.2	47	21	4.8	65	7.8	16	170	3.9	3.5	21	1	110	1.5	2.1	17	11	2.4	1.9	1.4	28	4.7	73
ach this value divided by dimension	•	1e+01	6.0	1.3	1	5.9	1.1	12	1.3	1.9	20	1	1.1	3.1	1.5	1	1.7	1.4	1.9	1.8	1.5	1.3	1.1	1	1.9	Н
lue divi		1e + 02	0.5	1	1	П	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	П	П
this va		1e + 03	0.5	1	1	П	П	1	1	П	1	1	1	н	1	1	1	н	1	1	П	1	1	1	1	П
tion evaluations to reach		Δ ftarget	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$\overline{ ext{BayEDAcG}}$	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 29: 02-D, running time excess ERT/ERT_{best} on f_{129} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

Table 30: 02-D, running time excess ERT/ERT_{best} on f_{130} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

	Δ ftarget	${ m ERT_{best}/D}$	ALPS [15]	AMaLGaM IDEA [4]	avg NEWUOA [23]	BayEDAcG [9]	BFGS [22]	BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]	DASA [18]	DEPSO [11]	EDA-PSO [5]	full NEWUOA [23]	GLOBAL [20]	iAMaLGaM IDEA [4]	MA-LS-Chain [19]	MCS (Neum) [16]	NEWUOA [23]	(1+1)-ES [1]	PSO [6]	PSO_Bounds [7]	Monte Carlo [3]	IPOP-SEP-CMA-ES [21]	SNOBFIT [17]	VNS (Garcia) [10]
	1e-07	2220	15	8.1	6.9	13	22	1.2	4.7	200	2.3	140	6.2	1.1	13	1	20	9.9	9	20	83	38	1.1	7.4	11
	1e-05	988	4.1	20	7.5	10	20	က	4	320	2.2	21	3.8	П	21	2.1	17	4.7	3.9	110	130	15	8.8	8.1	17
	1e-04	824	1.3	17	3.9	6.7	12	3.2	3.1	120	1.2	15	2.1	П	22	1.7	4.3	3.6	3.1	110	110	4	5.9	2.1	14
chy	1e-03	399	1.5	17	3.6	9.7	12	6.5	3.1	63	1.8	7.3	3.9	1.4	27	2.5	Н	3.8	2.5	150	170	4.1	5.9	7	24
30 Gallagher Cauchy	1e-02	248	1.5	16	5.6	11	14	10	1.8	29	1.8	6.2	3.1	1.5	38	2.1		3.7	2.4	110	200	2.1	7.9	1.1	34
ıllaghe	1e-01	99.2	1	39	3.7	6	15	21	4.3	88	5.6	2.2	ಬ	1.4	72	1.6	1.1	5.4	4.1	110	160	1.5	14	1.4	09
130 Ga	1e+00	22.6	1	45	8.2	2.9	22	24	11	85	2.3	7	10	2.3	98	2.4	2.5	8.6	8.9	330	77	1.6	7.8	2.4	160
•	1e+01	0.767	1.7	1.2	3.2	1.3	13	1.4	1.6	09	77	1.6	2.3	1.3	1.5	1.5	1.7	8.7	2.5	1.7	1.7	1.3	1	1	1.2
	1e + 02	0.5	1	1	П	1	1	1	-1	1	1	1		Н	1	1	П	1	П	1	П	Н	1	1	1
	1e+03	0.5	1	П	П	П	-	П	Н	П	-	П	н	Н	-	П	-	1	н	П	-	Н	П	П	-
	Δ ftarget	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$_{ m BayEDAcG}$	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

References

- [1] Anne Auger. Benchmarking the (1+1)-ES with one-fifth success rule on the BBOB-2009 noisy testbed. In Rothlauf [24], pages 2453–2458.
- [2] Anne Auger and Nikolaus Hansen. Benchmarking the (1+1)-CMA-ES on the BBOB-2009 noisy testbed. In Rothlauf [24], pages 2467–2472.
- [3] Anne Auger and Raymond Ros. Benchmarking the pure random search on the BBOB-2009 noisy testbed. In Rothlauf [24], pages 2485–2490.
- [4] Peter A. N. Bosman, Jörn Grahl, and Dirk Thierens. AMaLGaM IDEAs in noisy black-box optimization benchmarking. In Rothlauf [24], pages 2351–2358.
- [5] Mohammed El-Abd and Mohamed S. Kamel. Black-box optimization benchmarking for noiseless function testbed using an EDA and PSO hybrid. In Rothlauf [24], pages 2263–2268.
- [6] Mohammed El-Abd and Mohamed S. Kamel. Black-box optimization benchmarking for noiseless function testbed using particle swarm optimization. In Rothlauf [24], pages 2269–2274.
- [7] Mohammed El-Abd and Mohamed S. Kamel. Black-box optimization benchmarking for noiseless function testbed using PSO_Bounds. In Roth-lauf [24], pages 2275–2280.
- [8] S. Finck, N. Hansen, R. Ros, and A. Auger. Real-parameter black-box optimization benchmarking 2009: Presentation of the noisy functions. Technical Report 2009/21, Research Center PPE, 2009.
- [9] Marcus R. Gallagher. Black-box optimization benchmarking: results for the BayEDAcG algorithm on the noisy function testbed. In Rothlauf [24], pages 2383–2388.
- [10] Carlos García-Martínez and Manuel Lozano. A continuous variable neighbourhood search based on specialised EAs: application to the noisy BBObenchmark 2009 testbed. In Rothlauf [24], pages 2367–2374.
- [11] José García-Nieto, Enrique Alba, and Javier Apolloni. Particle swarm hybridized with differential evolution: black box optimization benchmarking for noisy functions. In Rothlauf [24], pages 2343–2350.
- [12] N. Hansen, A. Auger, S. Finck, and R. Ros. Real-parameter black-box optimization benchmarking 2009: Experimental setup. Technical Report RR-6828, INRIA, 2009.
- [13] N. Hansen, S. Finck, R. Ros, and A. Auger. Real-parameter black-box optimization benchmarking 2009: Noisy functions definitions. Technical Report RR-6869, INRIA, 2009.
- [14] Nikolaus Hansen. Benchmarking a bi-population CMA-ES on the BBOB-2009 noisy testbed. In Rothlauf [24], pages 2397–2402.

- [15] Gregory S. Hornby. The Age-Layered Population Structure (ALPS) evolutionary algorithm, July 2009. Noisy testbed.
- [16] Waltraud Huyer and Arnold Neumaier. Benchmarking of MCS on the noisy function testbed. http://www.mat.univie.ac.at/~neum/papers.html, 2009. P. 988.
- [17] Waltraud Huyer and Arnold Neumaier. Benchmarking of SNOBFIT on the noisy function testbed. http://www.mat.univie.ac.at/~neum/papers.html, 2009. P. 987.
- [18] Peter Korosec and Jurij Silc. A stigmergy-based algorithm for black-box optimization: noisy function testbed. In Rothlauf [24], pages 2375–2382.
- [19] Daniel Molina, Manuel Lozano, and Francisco Herrera. A memetic algorithm using local search chaining for black-box optimization benchmarking 2009 for noisy functions. In Rothlauf [24], pages 2359–2366.
- [20] László Pál, Tibor Csendes, Mihály Csaba Markót, and Arnold Neumaier. BBO-benchmarking of the GLOBAL method for the noisy function testbed. http://www.mat.univie.ac.at/~neum/papers.html, 2009. P. 985.
- [21] Raymond Ros. Benchmarking sep-CMA-ES on the BBOB-2009 noisy testbed. In Rothlauf [24], pages 2441–2446.
- [22] Raymond Ros. Benchmarking the BFGS algorithm on the BBOB-2009 noisy testbed. In Rothlauf [24], pages 2415–2420.
- [23] Raymond Ros. Benchmarking the NEWUOA on the BBOB-2009 noisy testbed. In Rothlauf [24], pages 2429–2434.
- [24] Franz Rothlauf, editor. Genetic and Evolutionary Computation Conference, GECCO 2009, Proceedings, Montreal, Québec, Canada, July 8-12, 2009, Companion Material. ACM, 2009.