Versuch EV

Praktikum zur physikalischen Chemie I

Verfasser 1: Maxim Gilsendegen

E-Mail-Adresse: 182513@stud.uni-stuttgart.de

Verfasser 2: Jonathan Käfer

E-Mail-Adresse: 184262@stud.uni-stuttgart.de

Gruppennummer: 26

Assistent: Michael Herbst Abgabedatum: 6.6.2023

Inhaltsverzeichnis

1	Aufgabenstellung	1
2	Theorie	1
	2.1 Reaktionsmechanismus	. 1
	2.2 Reaktionsgeschwindigkeit	. 1
	2.2.1 Leitfähgikeit	. 2
	2.3 Arrhenius-Gleichung	. 2
3	Durchführung	2
4	Messwerte	4
5	Auswertung	6
	5.1 Geschwindigkeitskonstante	. 6
	5.2 Aktivierungsenergie	. 12
	5.3 Geschwindigkeitskonstante bei 373 K, bzw. 100 °C	. 12
	5.4 Halbwertszeit und Viertelwertszeit	. 13
6	Fehlerbetrachtung	14
7	Zusammenfassung	14
8	Literatur	15

1 Aufgabenstellung

In diesem Versuch soll mit Hilfe der Leitfähigkeit die Geschwindigkeitskonstante der Reaktion bei unterschiedlichen Temperaturen ermittelt werden. Es soll ebenso die Konzentrationsabhängigkeit der Halbwertszeit, die Aktivierungsenergie sowie die Geschwindigkeitskonstante bei 373 K, bzw. etwa 100°C berechnet werden.

2 Theorie

2.1 Reaktionsmechanismus

Durch die basische Esterverseifung wird im Versuch Essigsäureethylester verseift. Als Base wird Kaliumhydroxid genutzt. Die Produkte der Verseifung sind Ethanol und ein Acetat-Ion.

$$CH_3CO_2C_2H_5 + KOH \longrightarrow CH_3CO_2K + C_2H_5OH$$
 (1)

Der dazugehörige Mechanismus sieht wie folgt aus:

Abb.1: Reaktionsmechanismus der Esterverseifung. [1]

In Abbildung 1 kann der Reaktionsmechanismus zur Esterverseifung durch die Elektronenpaarpfeile nachvollzogen werden, wobei ${\rm O}^{18}$ ein Tracer ist, welcher im Versuch selber nicht verwendet wird, hingegen würde einfach O geschrieben werden.

2.2 Reaktionsgeschwindigkeit

Für die berechnung der Reaktionsgeschwindigkeit k wird folgende Gleichung benötigt, wobei gilt $[Ester](0) = [OH^-](0)$.

$$-\frac{d[\text{Ester}]}{dt} = k \cdot [\text{Ester}] \cdot [\text{OH}^{-}] = k \cdot [\text{Ester}]^{2}$$
 (2)

nach Separation und Integration ergibt sich hieraus

$$\frac{1}{[\text{Ester}](t)} - \frac{1}{[\text{Ester}](0)} = kt \tag{3}$$

2.2.1 Leitfähgikeit

Da Acetationen eine geringere Leitfähigkeit besitzen, als die Hydroxid-Ionen, welche sie ersetzen, nimmt die Leitfähigkeit im Laufe der Reaktion ab.

$$\frac{[\text{Ester}](t)}{[\text{Ester}](0)} = \frac{L(t) - L(\infty)}{L(0) - L(\infty)} \tag{4}$$

 $L(\infty)$ ist hierbei die Endleitfähigkeit, der zuletzt festgehaltene Wert in der jeweiligen Tabelle der Messungen und L(0) ist die Leitfähigkeit zum Zeitpunkt t=0.

2.3 Arrhenius-Gleichung

Die Arrhenius-Gleichung beschreibt den Zusammenhang zwischen der Temperatur T und der Gleichgewichtskonstante k, sie lautet

$$k = A \cdot e^{-\frac{E_A}{RT}} \tag{5}$$

$$\ln(k) = -\frac{E_A}{RT} + \ln(A) \tag{6}$$

Hierbei ist Gleichung 6 die Gleichung 5 logarithmiert. R ist die allgemeine Gaskonstante, T die Temperatur, E_A die Aktivierungsenergie und A der maximale Wert für die Geschwindigkeitskonstante, auch Frequenzfaktor oder Stoßfaktor genannt

Es ist zu erkennen, dass bei steigender Temperatur die Reaktionsgeschwindigkeit zunimmt.

3 Durchführung

Zu Beginn wird aus 10 molarer Essigsäureethylester Lösung 100 ml 0,1 molare Lösung hergestellt. Hierzu wird 0,1 ml der Essigsäureethylester Lösung mit 100 ml demineralisiertem Wasser verdünnt. In einem Bescherglas wurde 50 ml der Essigsäureethylester Lösung und 50 ml 0,1 molare Kalilauge gegeben. diese wurden zu beginn auf 22°C, in der zweiten Messung auf 28°C und in der dritten Messung auf 36°C erwärmt und anschließend unter rühren in einem Wasserbad auf Temperatur gehalten. Es wurde zu beginn alle 5 Sekunden die Leitfähigkeit ermittelt, später alle 20 Sekunden und letztlich alle 60 Sekunden. Die

erste Probe wurde nach Beendung der Messung auf die beiden höheren Temperaturen erwärmt und die Leitfähigkeit gemessen. Ebenso wurde die Leitfähigkeit einer 0,05 molaren Kalilauge gemessen, da diese der Startleitfähigkeit der verdünnten 0,1 molaren Kalilauge entspricht.

4 Messwerte

Tab.1: Aufgetragene Messwerte nach der Zeit der jeweiligen Temperaturen.

		22°C	28,1°C	35.1°C
t[s]	$t[\min]$	$L[\frac{\text{mS}}{\text{cm}}]$	$L[\frac{\mathrm{mS}}{\mathrm{cm}}]$	$L[\frac{\mathrm{mS}}{\mathrm{cm}}]$
0		24.9	24.4	23.8
5			23.3	24.2
10				22.8
15				22.2
20		24.1	22.4	21.8
25				21.4
30		23.3	21.7	21.1
35			21.4	20.7
40		22.6	21	20.4
45			20.7	20.1
50		22.1	20.5	19.76
55			20.2	19.56
60	1		19.9	19.33
75		21	19.18	18.69
90		20.4	18.32	18.16
105		19.9	17.89	17.7
120	2	19.5	17.45	17.26
150		18.6	16.7	16.67
180	3	18	16	16.17
210		17.4	15.43	15.77
240	4	16.9	15	15.43
270		16.5	14.61	
300	5	16.1	14.26	14.95
360	6	15.5	13.7	14.61
420	7	14.9	13.3	14.36
480	8	14.5	12.97	14.14
540	9	14.1	12.69	14.02
600	10	13.8	12.46	13.89
660	11	13.6	12.27	13.8

		22°C	28,1°C	35.1°C
t[s]	$t[\min]$	$L[\frac{\text{mS}}{\text{cm}}]$	$L[\frac{\text{mS}}{\text{cm}}]$	$L[\frac{\text{mS}}{\text{cm}}]$
720	12	13.4	12.11	13.72
780	13	13.2	11.96	13.66
840	14	13	11.86	13.61
900	15	12.8	11.75	13.57
960	16	12.7	11.65	13.53
1020	17	12.55	11.49	13.5
1080	18	12.4	11.41	13.47
1140	19	12.32	11.36	13.44
1200	20	12.23	11.3	13.41
1260	21	12.14	11.25	
1320	22	12.06	11.2	
1380	23	11.98	11.16	
1440	24	11.91	11.12	
1500	25	11.85	11.08	
1560	26	11.79	11.02	
1620	27	11.73	10.99	
1680	28	11.67	10.96	
1740	29	11.62		
1800	30	11.57		
1860	31	11.53		
1920	32	11.49		
1980	33	11.45		
2040	34	11.41		
2100	35	11.37		
2160	36	11.34		
2200	37	11.31		
2280	38	11.28		
2340	39	11.25		
2400	40	11.22		
∞		10.41	10.33	10.22

5 Auswertung

5.1 Geschwindigkeitskonstante

Um die Esterkonzentration zum Zeitpunkt t zu berechnen, wird Formel 4 verwendet und nach der Konzentration des Esters zum Zeitpunkt t umgeformt. Hierbei ist zu beachten, dass die Leitfähigkeit $L(0) = 24.90 \, \frac{\text{mS}}{\text{cm}}$ den Wert der Leitfähigkeit der $0.05 \, \text{M}$ KOH-Lösung beträgt, die Konzentration [Ester](0)= $0.05 \, \frac{\text{mol}}{1}$ und $L(\infty) = 10.41 \, \frac{\text{mS}}{\text{cm}}$.In der Folgenden Formel wird die Esterkonzentration mit eingesetzten Werten für t=15s berechnet:

$$[\text{Ester}](15) = \frac{L(15) - L(\infty)}{L(0) - L(\infty)} \cdot [\text{Ester}](0) = \frac{12.80 \frac{\text{mS}}{\text{cm}} - 10.41 \frac{\text{mS}}{\text{cm}}}{24.90 \frac{\text{mS}}{\text{cm}} - 10.41 \frac{\text{mS}}{\text{cm}}} \cdot 0.05 \frac{\text{mol}}{\text{l}} = 0.0428 \frac{\text{mol}}{\text{l}}$$

Für den Kehrwert bei t = 15s gilt:

$$\frac{1}{c(15)} = \frac{1}{o.0428 \frac{mol}{l}} = 23.3644 \frac{l}{mol}$$

Weitere Ergebnisse sind in Tabellen 2 und 3 festgehalten

Tab.2: Konzentrationen des Esters in Abhängigkeit von der Zeit nach den Temperatur aufgetragen.

			Konzentration $c[\frac{\text{mol}}{1}]$	
t[s]	$t[\min]$	Ester 22°C	Ester 28,1°C	Ester 35,1°C
0				
5			0.921819474	1.029455081
10				0.926362297
15				0.882179676
20		0.94478951	0.857853589	0.852724595
25				0.823269514
30		0.88957902	0.808102345	0.801178203
35			0.786780384	0.771723122
40		0.841269841	0.758351102	0.749631811
45			0.73702914	0.727540501
50		0.806763285	0.722814499	0.702503682
55			0.701492537	0.687776141
60	1		0.680170576	0.67083947
75		0.730848861	0.628997868	0.62371134
90		0.689440994	0.567874911	0.584683358
105		0.654934438	0.537313433	0.550810015
120	2	0.627329193	0.506041222	0.518409426
150		0.565217391	0.452736318	0.474963181
180	3	0.523809524	0.402985075	0.43814433
210		0.482401656	0.362473348	0.408689249
240	4	0.4478951	0.331911869	0.38365243
270		0.420289855	0.304193319	-0.75257732
300	5	0.39268461	0.279317697	0.348306333
360	6	0.351276743	0.239516702	0.323269514
420	7	0.309868875	0.21108742	0.304860088
480	8	0.28226363	0.187633262	0.288659794
540	9	0.254658385	0.167732765	0.27982327
600	10	0.233954451	0.151385928	0.270250368
660	11	0.220151829	0.137882018	0.263622975
720	12	0.206349206	0.126510306	0.257731959
780	13	0.192546584	0.115849325	0.253313697

			Konzentration $c[\frac{\text{mol}}{1}]$	
t[s]	$t[\min]$	Ester 22°C	Ester 28,1°C	Ester 35,1°C
900	15	0.164941339	0.100923952	0.246686303
960	16	0.158040028	0.093816631	0.243740795
1020	17	0.147688061	0.082444918	0.241531664
1080	18	0.137336094	0.076759062	0.239322533
1140	19	0.131815045	0.073205402	0.237113402
1200	20	0.125603865	0.068941009	0.234904271
1260	21	0.119392685	0.065387349	
1320	22	0.113871636	0.061833689	
1380	23	0.108350587	0.05899076	
1440	24	0.103519669	0.056147832	
1500	25	0.099378882	0.053304904	
1560	26	0.095238095	0.049040512	
1620	27	0.091097308	0.046908316	
1680	28	0.086956522	0.044776119	
1740	29	0.083505866		
1800	30	0.08005521		
1860	31	0.077294686		
1920	32	0.074534161		
1980	33	0.071773637		
2040	34	0.069013112		
2100	35	0.066252588		
2160	36	0.064182195		
2200	37	0.062111801		
2280	38	0.060041408		
2340	39	0.057971014		
2400	40	0.055900621		

Tab.3: Kehrwerte der Ergebnisse aus Tabelle 2.

	140.	o. Item werte der I	Ergebnisse aus Tabelle Kehrwert $\frac{1}{c} \left[\frac{1}{\text{mol}} \right]$	2.
t[s]	$t[\min]$	Ester 22°C	Ester 28,1°C	Ester 35,1°C
0	t J		,	,
5			1.084811103	0.971387697
10				1.079491256
15				1.133555927
20		1.058436815	1.165700083	1.172711572
25				1.214669052
30		1.12412723	1.237467018	1.248161765
35			1.27100271	1.295801527
40		1.188679245	1.318650422	1.333988212
45			1.356798457	1.374493927
50		1.239520958	1.383480826	1.423480084
55			1.425531915	1.453961456
60	1		1.470219436	1.490669594
75		1.368271955	1.589830508	1.603305785
90		1.45045045	1.760951189	1.710327456
105		1.52687039	1.861111111	1.815508021
120	2	1.594059406	1.976123596	1.928977273
150		1.769230769	2.208791209	2.105426357
180	3	1.909090909	2.481481481	2.282352941
210		2.072961373	2.758823529	2.446846847
240	4	2.232665639	3.012847966	2.606525912
270		2.379310345	3.287383178	-1.328767123
300	5	2.546572935	3.580152672	2.871035941
360	6	2.84675835	4.175074184	3.093394077
420	7	3.227171492	4.737373737	3.280193237
480	8	3.542787286	5.329545455	3.464285714
540	9	3.926829268	5.961864407	3.573684211
600	10	4.274336283	6.605633803	3.70027248
660	11	4.542319749	7.25257732	3.793296089
720	12	4.846153846	7.904494382	3.88
780	13	5.193548387	8.63190184	3.947674419
840	14	5.594594595	9.196078431	4.005899705
900	15	6.062761506	9.908450704	4.053731343

			Kehrwert $\frac{1}{c} \left[\frac{1}{\text{mol}} \right]$	
t[s]	$t[\min]$	Ester 22°C	Ester 28,1°C	Ester 35,1°C
960	16	6.327510917	10.65909091	4.102719033
1020	17	6.771028037	12.12931034	4.140243902
1080	18	7.281407035	13.02777778	4.178461538
1140	19	7.586387435	13.66019417	4.217391304
1200	20	7.961538462	14.50515464	4.257053292
1260	21	8.375722543	15.29347826	
1320	22	8.781818182	16.17241379	
1380	23	9.229299363	16.95180723	
1440	24	9.66	17.81012658	
1500	25	10.0625	18.76	
1560	26	10.5	20.39130435	
1620	27	10.97727273	21.31818182	
1680	28	11.5	22.33333333	
1740	29	11.97520661		
1800	30	12.49137931		
1860	31	12.9375		
1920	32	13.41666667		
1980	33	13.93269231		
2040	34	14.49		
2100	35	15.09375		
2160	36	15.58064516		
2200	37	16.1		
2280	38	16.65517241		
2340	39	17.25		
2400	40	17.8888889		

Trägt man die Kehrwerte der Konzentration gegen die Zeit auf, so ergeben sich für die Messungen bei unterschiedlichen Temperaturen die Abbildungen 2, 3 und 4. Die Steigung der Trendlinien entspricht der Geschwindigkeitskonstante k.

Abb.2: Kehrwert der Konzentration über
t bei $22^{\circ}\mathrm{C.^{[1]}}$

Abb.3: Kehrwert der Konzentration über t bei 28,1°C.^[1]

Abb.4: Kehrwert der Konzentration über
t bei 35,1°C. $^{[1]}$

Nach Abbildung 2 ist bei 22 °C $k=0.0069\frac{1}{\text{mol·s}}$, nach Abbildung 3 bei 28.1°C ist $k=0.0121\frac{1}{\text{mol·s}}$ und nach Abbildung 3 ist bei 35.1°C $k=0.0029\frac{1}{\text{mol·s}}$, diese Werte wurden jeweils aus den Steigungen gezogen, diese ist in den jeweiligen Geradengleichungen die Gleichgewichtskonstante k.

5.2 Aktivierungsenergie

Abb.5: $\ln(k)$ über $\frac{1}{T}$ aufgetragen.^[1]

Durch die Steigung des Graphen lässt sich die Aktivierungsenergie berechnen.

$$E_A = -m \cdot R = -45.154 \,\mathrm{K} \cdot 8.3145 \,\frac{\mathrm{J}}{\mathrm{K} \cdot \mathrm{mol}} = -375.4329 \,\frac{\mathrm{J}}{\mathrm{mol}}$$
 (7)

Nach dieser Berechnung beträgt die Aktivierungsenergie $E_A = -375.4329 \frac{\text{J}}{\text{mol}}$.

5.3 Geschwindigkeitskonstante bei 373 K, bzw. 100 °C

Um die Geschwindigkeitskonstante der Reaktion bei 373 K, bzw. 100 °C zu berechnen, wird die Temperatur in die geradengleichung eingesetzt. Die Formel lautet:

$$ln(k) = \frac{45,154 \,\mathrm{K}}{373 \,\mathrm{K}} - 6,7275 = -6,6064 \tag{8}$$

Löst man den natürlichen Logarithmus auf, so ergibt sich:

$$k = e^{-6,6064} \frac{1}{\text{mol} \cdot \text{s}} = 0,014 \frac{1}{\text{mol} \cdot \text{s}}$$
 (9)

Somit ist bei 373 K, bzw. 100 °C die Geschwindigkeitskonstante $k=0.014\,\frac{1}{\mathrm{mol\cdot s}}$

5.4 Halbwertszeit und Viertelwertszeit

Die Definition der Halbwertzeit lautet:

$$[Ester](t_{\frac{1}{2}}) = \frac{1}{2}[Ester](0)$$

$$\tag{10}$$

Durch einsetzen in Gleichung 3 ergibt sich folgende Gleichung:

$$\frac{2}{[\text{Ester}](0)} - \frac{1}{[\text{Ester}](0)} = kt_{\frac{1}{2}}$$
 (11)

Somit lässt sich die Halbwertszeit berechnen:

$$t_{\frac{1}{2}}(22^{\circ}\text{C}) = \frac{1}{[\text{Ester}](0) \cdot k} = \frac{1}{0.05 \, \frac{\text{mol}}{1} \cdot 0.0069 \, \frac{1}{\text{mol} \cdot \text{s}}} = 2898.55 \,\text{s}$$
 (12)

Analog dazu:

$$t_{\frac{1}{2}}(28.1^{\circ}\text{C}) = 1652.89\,\text{s}$$
 (13)

$$t_{\frac{1}{2}}(35.1^{\circ}\text{C}) = 6896.55\,\text{s}$$
 (14)

(15)

Analog zur Halbwertzeit kann die Viertelwertszeit mit dem Faktor $\frac{1}{4}$ berechnet werden, wobei nach einsetzen in die Gleichung der Zähler des Bruches um den Faktor 3 steigt, somit können die Werte wie folgt definiert werden:

$$t_{\frac{1}{4}}(22^{\circ}C) = 3 \cdot t_{\frac{1}{2}}(22^{\circ}C) = 3 \cdot 2898.55 \,\mathrm{s} = 8695.65 \,\mathrm{s}$$
 (16)

$$t_{\frac{1}{4}}(28.1^{\circ}\text{C}) = 4958.68\,\text{s}$$
 (17)

$$t_{\frac{1}{2}}(35.1^{\circ}\text{C}) = 20689.66\,\text{s}$$
 (18)

(19)

Die Werte können nicht graphisch bestätigt oder wiederlegt werden, da der Kehrwert von $0.025\,\frac{\text{mol}}{\text{l}}$, beziehungsweise der Kehrwert $40\,\frac{\text{l}}{\text{mol}}$ nicht in den Abbildungen abzulesen ist, selbiges gilt für den Kehrwert der Viertelzeit $80\,\frac{\text{l}}{\text{mol}}$.

6 Fehlerbetrachtung

Aufgrund von Ableseungenauigkeiten beziehungsweise Messungenauigkeiten beim Auftragen der Leitfähigkeiten, kam es zu mehreren kleineren Fehler, welche sich aufsummierten und somit die Auswertung beeinträchtigt haben. Hierbei ist auch festzuhalten, dass vor allem zu Beginn einige Werte nicht aufgenomen werden konnten, da sich die Leitfähigkeit schnell änderte. Dieses Problem zog sich durch die gesamte Messreihe. Außerdem kann es zu Fehler aufgrund von ungenauem Abmessen der Lösungen gekommen sein. Außerdem sind die Messungenauigkeiten der Geräte nicht zu vernachlässigen, die Temperatur könnte zum Beispiel von der angezeigten abweichen oder auch die Messgeräte verschmutzt sein.

7 Zusammenfassung

Im ersten Versuchsteil ergaben sich für die Temperaturen bei den Reaktionen folgende Geschwindigkeitskonstanten:

$$k(22C) = 0,0069 \frac{1}{\text{mol} \cdot \text{s}}$$
 (20)

$$k(28, 1C) = 0.0121 \frac{1}{\text{mol} \cdot \text{s}}$$
 (21)

$$k(35, 1C) = 0,0029 \frac{1}{\text{mol} \cdot \text{s}}$$
 (22)

Für die Aktivierungsenergie E_A ergab sich $E_A = -375,4329 \frac{\text{J}}{\text{mol}}$.

Bei der Geschwindigkeitskonstante k bei einer Temperatur von 373 K, bzw. 100°C ergibt sich $k=0,014\frac{1}{\text{mol·s}}$.

Für die Halbwertszeit $t_{\frac{1}{2}}$ der Reaktion ergeben sich:

$$t_{\frac{1}{2}}(22^{\circ}\text{C}) = 2898.55\,\text{s}$$
 (23)

$$t_{\frac{1}{2}}(28.1^{\circ}\text{C}) = 1652.89\,\text{s}$$
 (24)

$$t_{\frac{1}{2}}(35.1^{\circ}\text{C}) = 6896.55\,\text{s}$$
 (25)

(26)

für die Viertelwertszeiten der Reaktion:

$$t_{\frac{1}{4}}(22^{\circ}\text{C}) = 8695.65\,\text{s}$$
 (27)

$$t_{\frac{1}{4}}(28.1^{\circ}\text{C}) = 4958.68\,\text{s}$$
 (28)

$$t_{\frac{1}{4}}(35.1^{\circ}\text{C}) = 20689.66\,\text{s}$$
 (29)

(30)

8 Literatur

[1] Skript: Versuch EV Esterverseifung; 6.6.2023