

## LONDON CAPITAL COMPUTER COLLEGE

## Advanced Diploma in Programming (602) – Advanced Operating System Principles

| Prerequisites: Programming skills and | Corequisites: A pass or higher in Diploma in |
|---------------------------------------|----------------------------------------------|
| Operating System knowledge.           | Programming or equivalence.                  |

Aim: This course will cover both basic and some advanced operating systems concepts, focusing primarily on processors. The emphasis will be on understanding general concepts that are applicable to a wide range of operating systems, rather than a discussion of the features of any one specific system, including Process Management, Storage Management, I/O Systems, Protection and Security, Encryption, Extensible Operating Systems, and Fault Tolerance, and two case studies: Linux and Windows. The aim of the course is to provide candidates with knowledge of modern operating system abstractions, implementation technique issues. An operating system consists of programs and data that manage computer hardware and allow efficient execution of application software. The course provides understanding of operating systems concepts and knowledge about various aspects of operating system design and implementation. A special emphasis is laid on distributed operating systems and services provided by them. Topics covered include: Structure and Organization of Operating Systems; Distributed Operating Systems Concepts; Processes and Scheduling; Communication; Virtual Memory and Distributed Shared Memory; File Systems and Input/Output Systems; Protection and Security; Distributed Operating System Services; multiprogramming, multitasking, and multithreading.

Required Materials: Student study materials

Supplementary Materials: Recommended textbooks and lecture notes.

**Special Requirements:** The course has a lot of abstract information; hence extra reading out of class-time is necessary

| Intended Learning Outcomes:                        | Assessment Criteria:                          |  |  |
|----------------------------------------------------|-----------------------------------------------|--|--|
| 1. Explore how the components of an                | 1.1 Define the functions of an operating      |  |  |
| operating system are all created to enable various | system                                        |  |  |
| parts of computer to work concurrently and         | 1.2 Outline the operating system architecture |  |  |
| demonstrate the main components of modern          |                                               |  |  |
| operating system.                                  |                                               |  |  |
| 2. Outline Hardware Components including           | 2.1 Analyse computer hardware components      |  |  |
| mainboards, processors, clocks, memory             | 2.2 Analyse computer programming              |  |  |
| hierarchy, registers and describe the difference   | languages generations                         |  |  |
| between computer hardware and system software      | 2.3 Identify high-level language features     |  |  |
| concepts.                                          |                                               |  |  |
| 3. Demonstrate how the implementation of           | 3.1 Distinguish process vs thread             |  |  |
| threads and processes differs from one operating   | 3.2 Identify the process/thread states        |  |  |
| system to another.                                 | 3.3 Analyse the operating system              |  |  |
|                                                    | process/thread operations                     |  |  |
|                                                    | 3.4 Outline challenges of synchronising       |  |  |
|                                                    | concurrent processes and threads              |  |  |
|                                                    | 3.5 Describe mutual exclusion                 |  |  |
|                                                    | 3.6 Describe concurrent programming           |  |  |
| 4. Describe how deadlocks can be                   | 4.1 Identify causes of deadlocks              |  |  |
| prevented by constraining requests for resources.  | 4.2 Be able to prevent, detect and recover    |  |  |
| 7                                                  | deadlocks                                     |  |  |
|                                                    | 4.3 Analyse deadlock algorithms               |  |  |
| 5. Describe the main purposes of                   | 5.1 Describe goals of processor scheduling    |  |  |

|                                                    | •     |                                             |
|----------------------------------------------------|-------|---------------------------------------------|
| scheduling algorithms and the rules that determine | 5.2   | Distinguish pre-emptive and nonpre-         |
| how and when processes are run.                    |       | emptive scheduling                          |
|                                                    | 5.3   | Describe different scheduling methods       |
|                                                    | 5.4   | Analyse memory organisation,                |
|                                                    |       | management and placement                    |
|                                                    |       |                                             |
| 6. Demonstrate how multitasking operating          | 6.1   | Identify the purpose of virtual memory      |
| systems extend their virtual memory management     | 6.2   | Describe paging                             |
| schemes to compensate for this scarcity of         | 6.3   | Describe segmentation                       |
| physical memory.                                   | 6.4   | Analyse paging replacement strategies       |
| physical memory.                                   | 6.5   | Outline the impact of page size             |
|                                                    | 0.0   | outline the impact of page size             |
| 7. Outline how Disk Space Management               | 7.1   | Analyse hard disk characteristics           |
| tools provide data that system administrators need | 7.2   | Define disk scheduling                      |
| to track disk space availability.                  | 7.3   | Explore disk scheduling strategies          |
| to track disk space availability.                  | 7.3   | Distinguish caching and buffering           |
|                                                    | 7.5   | Outline Redundant Arrays of                 |
|                                                    | 1.5   |                                             |
|                                                    |       | Independent Disks technology                |
| 8. Demonstrate how to design and apply             | 8.1   | Describe file biomerchical and              |
| 8 11 3                                             | 0.1   | Describe file hierarchical and              |
| database file system technologies.                 | 0.2   | organisational structure                    |
|                                                    | 8.2   | Describe file allocation and space          |
|                                                    | 0.2   | management                                  |
|                                                    | 8.3   | Describe data integrity and access          |
|                                                    |       | techniques                                  |
|                                                    | 8.4   | Describe database logical structure         |
|                                                    | 8.5   | Analyse relational database model           |
|                                                    |       |                                             |
| 9. Describe monitoring utilities and tuning        | 9.1   | Define system performance                   |
| tools for the Operating System, principles of      | 9.2   | Analyse system performance evaluation       |
| performance tuning and demonstrate the             |       | techniques                                  |
| performance tuning process.                        | 9.3   | Distinguish benchmarks vs simulation        |
|                                                    | 9.4   | Analyse processor design techniques         |
|                                                    | 9.5   | Discuss multiprocessor architecture         |
|                                                    | 9.6   | Explore multiprocessor scheduling           |
|                                                    |       | algorithms                                  |
|                                                    | 9.7   | Discuss load balancing                      |
|                                                    | 9.8   | Describe read/write lock operations         |
|                                                    |       | -                                           |
| 10. Describe issues pertaining to distributed      | 10.1  | Define networking topologies                |
| environments and demonstrate the basics of         | 10.2  | Explore networking protocols                |
| distributed systems design.                        | 10.3  | Analyse client/server model                 |
|                                                    | 10.4  | Identify attributes of a distributed system |
|                                                    | 10.5  | Analyse communication process in            |
|                                                    |       | distributed systems                         |
|                                                    | 10.6  | Outline characteristics of distributed file |
|                                                    |       | system                                      |
|                                                    | 10.7  | Define clustering                           |
|                                                    | 10.7  | Distinguish Java and .Net platforms         |
|                                                    | 10.9  | Outline distributed system security         |
|                                                    | 10.10 | Analyse security and authentication         |
|                                                    | 10.10 | protocols                                   |
|                                                    | 1     | protocots                                   |

**Methods of Evaluation:** A 3-hour written examination paper with five essay questions, each carrying 20 marks. Candidates are required to answer all questions. Candidates also undertake project/coursework in Advanced Operating System Principles with a weighting of 100%.

## Recommended Learning Resources: Advanced Operating System Principles

|                  | ravancea Operating System 1 interpres                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Text Books       | <ul> <li>Operations &amp; Process Management: Principles and Practice for Strategic Impact by Nigel Slack, Stuart Chambers and Alan Betts Robert Johnston ISBN-10: 0273684264</li> <li>Operating Systems Principles by Lubomir F. Bic and Alan C. Shaw ISBN-10: 0130266116</li> <li>Advanced Operating Systems: Distributed Data Bases and Multiprocessor Systems by Mukesh Singhal and Niranjan G. Shivaratri</li> </ul> |  |  |
| Study<br>Manuals | BCE produced study packs                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| CD ROM           | Power-point slides                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| Software         | Windows Operating System, Linux and Java Programming Languages                                                                                                                                                                                                                                                                                                                                                            |  |  |