Задача А. Неточное совпадение

Имя входного файла: inexact-matching.in Имя выходного файла: inexact-matching.out

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Даны строки p и t. Требуется найти все вхождения строки p в строку t в качестве подстроки с точностью до возможного несовпадения одного символа.

Формат входных данных

Первая строка входного файла содержит p, вторая — t ($1 \leqslant |p|, |t| \leqslant 10^6$). Строки состоят из букв латинского алфавита.

Формат выходных данных

В первой строке выведите количество вхождений строки p в строку t. Во второй строке выведите в возрастающем порядке номера символов строки t, с которых начинаются вхождения p. Символы нумеруются с единицы.

inexact-matching.in	inexact-matching.out
aaaa	4
Caaabdaaaa	1 2 6 7

Задача В. Под-бор

Имя входного файла: trie.in
Имя выходного файла: trie.out
Ограничение по времени: 2 секунды
Ограничение по памяти: 256 мегабайт

Даны бор и несколько строк, найдите сумму количеств вхождений этих строк в этот бор.

Формат входных данных

В первой строке входного файла записано единственное число n, $1 \le n \le 100\,000$ — количество вершин бора. В следующих n строках описаны вершины бора. В (i+1)-й строке описаны дети i-й вершины: число k_i ее детей, затем k_i пар из номера вершины-ребёнка и символа, написанного на соответствующем ребре. Номер родителя всегда меньше номера ребёнка; корнем бора является вершина номер 1.

В (n+2)-й строке записано количество m $(1 \le m \le 100\,000)$ строк для поиска. В следующих m строках перечислены сами строки. Входные строки непусты, а их суммарная длина не превышает $100\,000$ символов.

Все символы, написанные на рёбрах, а также все символы, составляющие строки — маленькие латинские буквы.

Формат выходных данных

Выведите одно число — сумму количеств вхождений.

trie.in	trie.out
7	9
2 2 a 4 b	
23 a 6 b	
0	
1 5 b	
1 7 b	
0	
0	
4	
b	
bb	
bbb	
bb	

Задача С. Вирусы

Имя входного файла: virus.in
Имя выходного файла: virus.out
Ограничение по времени: 1 секунда
Ограничение по памяти: 256 мегабайт

Комитет По Исследованию Бинарных Вирусов обнаружил, что некоторые последовательности единиц и нулей являются кодами вирусов. Комитет изолировал набор кодов вирусов. Последовательность из единиц и нулей называется безопасной, если никакой ее подотрезок (т.е. последовательность из соседних элементов) не является кодом вируса. Сейчас цель комитета состоит в том, чтобы установить, существует ли бесконечная безопасная последовательность из единиц и нулей.

Формат входных данных

Первая строка входного файла virus.in содержит одно целое число N, равное количеству всех вирусных кодов. Каждая из следующих n строк содержит непустое слово, составленное из символов 0 и 1 — код вируса. Суммарная длина всех слов не превосходит 30000.

Формат выходных данных

Первая и единственная строка выходного файла должна содержать слово:

- ТАК если бесконечная, безопасная последовательность из нулей и единиц сушествует;
- NIE в противном случае.

virus.in	virus.out
3	NIE
01	
11	
00000	
3	TAK
011	
11	
0000	

Задача D. Вася и Циклические Сдвиги

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Однажды Василий проголодался и пошел на кухню подкрепиться. Но каково было его удивление, когда, открыв холодильник, он обнаружил там не привычные продукты, а строку! Причем не просто строку, а зацикленную, прямо как бублик (ассоциации с едой часто приходят Васе в голову, когда он голоден). Загадочная строка заинтересовала любопытного, но все еще голодного Василия, и он начал ее вертеть в руках. Например, если вертеть строку abacaba, то можно получить следующие строки:

- abacaba
- bacabaa
- acabaab
- cabaaba
- abaabac
- baabaca
- aabacab

И тут Василия осенило: если он сможет посчитать, сколько раз в процессе кручения строки получается лексикографически минимальная строка, то еда магическим образом появится в холодильнике (странные идеи часто приходят Васе в голову, когда он голоден). Помогите Васе, иначе он так и будет сидеть голодным.

Более формально, вам дана строка. *Циклическим сдвигом* строки s длины n называется строка, полученнная из исходной путем отбрасывания первых $0 \le k < n$ символов и приписывания их в конец. Необходимо посчитать, сколько раз среди всех циклических сдвигов строки встречается лексикографически минимальный циклический сдвиг.

Формат входных данных

Единственная строка входного файла содержит строку S, найденную Василием. Она непуста, состоит из маленьких латинских букв, и её длина не превосходит $10\,000\,000$.

Формат выходных данных

Выведите единственное число — искомое количество минимальных циклических сдвигов.

Примеры

стандартный ввод	стандартный вывод
aaaa	4
abacaba	1

Замечание

В первом примере минимальным циклическим сдвигом является строка **aaaa**. Во втором примере минимальным циклическим сдвигом является строка **aabacab**.

Тесты к этой задаче состоят из шести групп.

- Тесты 1-2. Тесты из условия, эта группа оценивается в ноль баллов.
- Тесты 3–9. В тестах этой группы $|S| \le 100$. Эта группа оценивается в 20 баллов.
- Тесты 10–18. В тестах этой группы $|S| \leq 10^4$. Эта группа оценивается в 20 баллов.

- Тесты 19–27. В тестах этой группы $|S| \leqslant 10^5$. Эта группа оценивается в 20 баллов.
- В тестах этой группы $|S| \leq 10^6$. Эта группа оценивается в 20 баллов. Решение будет тестироваться на тестах этой группы **offline**, т. е. после окончания тура.
- В тестах этой группы дополнительные ограничения отсутствуют. Эта группа оценивается в 20 баллов. Решение будет тестироваться на тестах этой группы offline, т.е. после окончания тура.

Баллы за каждую группу тестов ставятся только при прохождении **всех** тестов группы. Тестирование на тестах каждой группы производится только в случае прохождения всех тестов из **всех предыдущих** групп.

Задача Е. Чтение строк

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 512 мегабайт

Дано дерево T состоящее из n вершин (пронумерованных целыми числами от 1 до n). В каждой вершине записана некоторая буква. Корень дерева расположен в вершине 1.

Рассмотрим поддерево дерево T_v некоторой вершины v. Вдоль любого просто пути, начинающегося в v и заканчивающегося в некоторой вершине $u \in T_v$ (возможно, в самой v), можно прочитать некоторую строку. Обозначим количество **различных** строк, которые можно прочитать таким способом как $\mathrm{dif}(v)$.

Дополнительно: для каждой вершины v дано целое число c_v . Нас интересуют вершины, в которых значение $\mathrm{dif}(v)+c_v$ как можно больше.

Вы должны вычислить две величины — максимальное значение $dif(v) + c_v$ и количество вершин v с максимальным $dif(v) + c_v$.

Формат входных данных

В первой строке входных данных записано единственное целое число $n\ (1\leqslant n\leqslant 300\,000)$ — количество вершин в дереве T.

Во второй строке записано n целых чисел c_i ($0 \le c_i \le 10^9$).

В третьей строке записана строка s, состоящая из n строчных букв английского алфавита, — i-й символ этой строки соответствует букве, записанной в вершине i.

Далее следует n-1 строка с описанием рёбер дерева T. Каждая из них содержит два целых числа u и v ($1 \le u, v \le n$), обозначающих ребро, которое соединяет вершины u и v.

Гарантируется, что входные данные описывают дерево.

Формат выходных данных

Выведите два числа — значение $m = \max(\text{dif}(i) + c_i)$ для всех $1 \le i \le n$ и количество вершин v, для которых $m = \text{dif}(v) + c_v$.

стандартный ввод	стандартный вывод
10	51
1 2 7 20 20 30 40 50 50 50	3
cacabbcddd	
1 2	
6 8	
7 2	
6 2	
5 4	
5 9	
3 10	
2 5	
2 3	
6	6
0 2 4 1 1 1	2
raaaba	
1 2	
2 3	
2 4	
2 5	
3 6	

Замечание

В первом примере дерево выглядит следующим образом:

Наборы строк, которые могут быть прочитаны из вершин:

Наконец, значения $dif(v) + c_v$ таковы:

Во втором примере значения dif(1..n) таковы: (5,4,2,1,1,1).Раздичные строки, которые можно прочитать из вершины 2 таковы: a,aa,aaa,ab; обратите внимание, что aa может быть прочитано как на пути до вершины 3, так и на пути до вершины 4.