

PyAudit: Python Data Audit Library API

Release 1.00

Wenqiang Feng and Ming Chen

CONTENTS

1	Prefa	ice					3
	1.1	About .		 		 	. 3
		1.1.1	About this API	 		 	. 3
		1.1.2	About the author	 		 	. 3
	1.2	Feedbac	ek and suggestions	 		 	. 4
2	How	to Install	1				5
	2.1	Install w	vith pip	 		 	. 5
	2.2	Install fr	rom Repo	 		 	. 5
		2.2.1	Clone the Repository	 		 	. 5
		2.2.2	Install	 		 	. 5
			Uninstall				
		2.2.4	Test	 	 •	 	. 6
3	Pytho	on Data A	Audit Functions				11
	3.1		unctions	 		 	
		3.1.1	dtypes_class				
		3.1.2	missing_rate				
			zero_rate				
			feature_variance				
			freq_items_df				
			feature_len				
			correlation matrix				
	3.2		ry Functions				
	5.2		numeric_summary				_
			category_summary				_
4	Andi	ting Dem	ans.				17
•	4.1	_	g in one function				
	4.2	_	g function by function				
5	Main	Referen	nce.				27

Bibliography	29
Python Module Index	31
Index	33

Welcome to our **PyAudit: Python Data Audit Library API!** The PDF version can be downloaded from HERE.

You can install the PyAudit from [PyPI](https://pypi.org/project/PyAudit):

pip install PyAudit

CONTENTS 1

2 CONTENTS

CHAPTER

ONE

PREFACE

Chinese proverb

Good tools are prerequisite to the successful execution of a job. – old Chinese proverb

1.1 About

1.1.1 About this API

This document is the API book for our PyAudit: Python Data Audit Library [PyAudit] API. The PDF version can be downloaded from HERE. You may download and distribute it. Please be aware, however, that the note contains typos as well as inaccurate or incorrect description.

The API assumes that the reader has a preliminary knowledge of python programing and Linux. And this document is generated automatically by using sphinx.

1.1.2 About the author

Wengiang Feng

- Sr. Data Scientist and PhD in Mathematics
- University of Tennessee at Knoxville
- Webpage: http://web.utk.edu/~wfeng1/
- Email: von198@gmail.com

• Ming Chen

- Data Scientist and PhD in Genome Science and Technology
- University of Tennessee at Knoxville

- Email: ming.chen0919@gmail.com

• Biography

Wenqiang Feng is Data Scientist within DST's Applied Analytics Group. Dr. Feng's responsibilities include providing DST clients with access to cutting-edge skills and technologies, including Big Data analytic solutions, advanced analytic and data enhancement techniques and modeling.

Dr. Feng has deep analytic expertise in data mining, analytic systems, machine learning algorithms, business intelligence, and applying Big Data tools to strategically solve industry problems in a cross-functional business. Before joining DST, Dr. Feng was an IMA Data Science Fellow at The Institute for Mathematics and its Applications (IMA) at the University of Minnesota. While there, he helped startup companies make marketing decisions based on deep predictive analytics.

Dr. Feng graduated from University of Tennessee, Knoxville, with Ph.D. in Computational Mathematics and Master's degree in Statistics. He also holds Master's degree in Computational Mathematics from Missouri University of Science and Technology (MST) and Master's degree in Applied Mathematics from the University of Science and Technology of China (USTC).

Declaration

The work of Wenqiang Feng was supported by the IMA, while working at IMA. However, any opinion, finding, and conclusions or recommendations expressed in this material are those of the author and do not necessarily reflect the views of the IMA, UTK and DST.

1.2 Feedback and suggestions

Your comments and suggestions are highly appreciated. I am more than happy to receive corrections, suggestions or feedbacks through email (Wenqiang Feng: von198@gmail.com and Ming Chen: ming.chen0919@gmail.com) for improvements.

CHAPTER

TWO

HOW TO INSTALL

2.1 Install with pip

You can install the PyAudit from [PyPI](https://pypi.org/project/PyAudit):

pip install PyAudit

2.2 Install from Repo

2.2.1 Clone the Repository

git clone https://github.com/runawayhorse001/PyAudit.git

2.2.2 Install

cd PyAudit
pip install -r requirements.txt
python setup.py install

2.2.3 Uninstall

pip uninstall statspy

2.2.4 Test

```
cd PyAudit/test
python test.py
```

test.py

```
from PyAudit.basics import missing_rate, zero_rate, dtypes_class
from PyAudit.basics import feature_variance, freq_items_df, feature_len
from PyAudit.basics import corr_matrix, numeric_summary, category_
⇔summary
import pandas as pd
import os, sys
output = os.path.abspath(os.path.join(sys.path[0])) + '/output'
print (output)
d = \{'A': [1, 0, None, 3],
     'B': [1, 0, 0, 0],
     'C': ['a', None, 'c', 'd']}
# create DataFrame
df = pd.DataFrame(d)
print (missing_rate(df))
print (zero_rate(df))
print (feature_variance(df))
print(df)
print (feature_len(df))
print (numeric_summary(df, output))
print(category_summary(df, output))
print(corr_matrix(df, output))
d = {
    'num': list('1223334444'),
    'cat': list('wxxyyyzzzz')
df = pd.DataFrame(d)
df = df.astype({"num": int, "cat": object})
print(freq_items_df(df, top_n=4))
# read df
df = pd.read_csv('Heart.csv', dtype={'Sex': bool})
print (df.head(5))
(num_fields, cat_fields, bool_fields, data_types, type_class) = dtypes_
⇔class(df)
```

```
print (num_fields)
print (cat_fields)
print (bool_fields)
print (data_types)
print (type_class)
print (missing_rate(df))
print (zero_rate(df))

print (freq_items_df(df, top_n=4))
print (feature_len(df))
print (numeric_summary(df, output))
print (category_summary(df, output))
print (corr_matrix(df, output))
```

Results:

```
feature missing_rate
                 0.25
       Α
1
       В
                 0.00
                 0.25
       С
 feature zero_rate
       A 0.333333
1
       В
         0.750000
       C 0.000000
 feature feature variance
       Α
1
       В
                      0.5
                      1.0
2
       С
        Sex
               ChestPain RestBP Chol ... Oldpeak Slope
  Age
                                                            Са
     Thal AHD
                             145
                                   233 ...
                                                2.3
 63
      True
                 typical
                                                           0.0
0
   fixed
           No
   67
        True asymptomatic
                             160
                                   286 ...
                                                1.5
                                                           3.0
→ normal Yes
                                                           2.0 _
        True asymptomatic
                             120
                                   229 ...
                                                2.6
⇔reversable Yes
3
   37
        True
               nonanginal
                             130
                                   250
                                                3.5
                                                           0.0
→ normal No
 41 False
               nontypical
                             130
                                   204 ...
                                                1.4
                                                        1 0.0
→ normal No
[5 rows x 14 columns]
['Age', 'RestBP', 'Chol', 'Fbs', 'RestECG', 'MaxHR', 'ExAng', 'Oldpeak
→', 'Slope', 'Ca']
['ChestPain', 'Thal', 'AHD']
```

['S	Sex']		
	feature	dtypes	
0	Age	int64	
1	Sex	bool	
2	ChestPain	object	
3	RestBP	int64	
4	Chol	int64	
5	Fbs	int64	
6	RestECG	int64	
7	MaxHR	int64	
8	ExAng	int64	
9	Oldpeak	float64	
10	Slope	int64	
11	Ca	float64	
12	Thal	object	
13	AHD	object	
10	feature	dtypes	class
0	Age	int64	numeric
1	Sex	bool	bool
2	ChestPain	object	category
3	RestBP	int64	numeric
4	Chol	int64	numeric
	Fbs	int64	
5			numeric
6	RestECG	int64	numeric
7	MaxHR	int64	numeric
8	ExAng	int64	numeric
9	Oldpeak	float64	numeric
10	Slope	int64	numeric
11	Ca	float64	numeric
12	Thal	object	category
13	AHD	object	category
	feature	missing_	rate
0	Age	0.00	
1	Sex	0.00	
2	ChestPain	0.00	
3	RestBP	0.00	0000
4	Chol	0.00	0000
5	Fbs	0.00	0000
6	RestECG	0.00	0000
7	MaxHR	0.00	0000
8	ExAng	0.00	0000
9	Oldpeak	0.00	
10	Slope	0.00	
11	Ca	0.01	
12	Thal	0.00	

PyAudit: Python Data Audit Library API, Release 1.00

(continued from previous page)

13 AHD 0.000000

Process finished with exit code 0

CHAPTER

THREE

PYTHON DATA AUDIT FUNCTIONS

3.1 Basic Functions

3.1.1 dtypes_class

```
PyAudit.basics.dtypes_class (df_in) numerical, categorical and bool name list in the DataFrame
```

Parameters df_in - input pandas DataFrame

Returns numerical, categorical and bool name list

Author Wenqiang Feng and Ming Chen

Email von198@gmail.com

3.1.2 missing_rate

```
PyAudit.basics.missing_rate (df\_in) calculate missing rate for each feature in the DataFrame
```

Parameters df_in – input pandas DataFrame

Returns missing rate

Author Wenqiang Feng and Ming Chen

Email von198@gmail.com

```
>>> import pandas as pd
>>> d = {'A': [1, 0, None, 3],
        'B': [1, 0, 0, 0],
        'C': ['a', None, 'c', 'd']}
>>> # create DataFrame
>>> df = pd.DataFrame(d)
>>> from PyAudit.basics import missing_rate
>>> missing_rate(df)
        feature missing_rate
      0 A
                   0.25
      1
             В
                       0.00
      2
             С
                       0.25
```

3.1.3 zero_rate

```
PyAudit.basics.zero_rate(df_in) calculate the percentage of 0 value for each feature in the DataFrame
```

Parameters df_in – input pandas DataFrame

Returns zero rate

Author Wenqiang Feng and Ming Chen

Email von198@gmail.com

3.1.4 feature_variance

```
PyAudit.basics.feature_variance (df_in) calculate the variance for each feature
```

Parameters df_in – input pandas DataFrame

Returns feature variance

Author Wenqiang Feng and Ming Chen

Email von198@gmail.com

```
>>> import pandas as pd
>>> d = {'A': [1, 0, None, 3],
         'B': [1, 0, 0, 0],
         'C': ['a', None, 'c', 'd']}
>>> # create DataFrame
>>> df = pd.DataFrame(d)
>>> from PyAudit.basics import zero_rate
>>> zero_rate(df)
         feature feature_variance
       0
              Α
                                1.0
                                0.5
       1
               В
               С
       2
                                1.0
```

3.1.5 freq_items_df

```
PyAudit.basics.freq_items_df(df_in, top_n=3)
```

find out the top n values and the corresponding frequency for each feature

Parameters

- **df_in** input pandas DataFrame
- top_n the number of the top values

Returns top n values and the corresponding frequency for each feature

Author Wenqiang Feng and Ming Chen

Email von198@gmail.com

3.1.6 feature_len

PyAudit.basics.feature_len(df_in)

find out the min and max length of values for each feature

Parameters df_in – input pandas DataFrame

Returns min and max length DataFrame

Author Wenqiang Feng and Ming Chen

Email von198@gmail.com

```
>>> d = {'A': [1, 0, None, 3],
         'B': [1, 0, 0, 0],
>>>
         'C': ['a', None, 'c', 'd']}
>>>
>>> # create DataFrame
>>> df = pd.DataFrame(d)
>>> print(df)
         A B
                  C
   0 1.0 1
                  а
   1 0.0 0 None
    2 NaN 0
    3 3.0 0
                  d
>>> print(feature_len(df))
    feature min_length max_length
  0
         Α
                      3
                      1
                                  1
 1
          В
  2
          C
                      1
                                  4
```

3.1.7 correlation matrix

PyAudit.basics.corr_matrix (*df_in*, *output_dir*) generate correlation matrix for numerical dataframe

Parameters

- **df_in** input pandas DataFrame
- output_dir output path

Returns correlation matrix

Author Wenqiang Feng and Ming Chen

Email von198@gmail.com

3.2 Summary Functions

3.2.1 numeric summary

PyAudit.basics.numeric_summary (*df_in*, *output_dir*, *top_n=4*, *deciles=False*) generate statistical summary for numerical DateFrame

Parameters

- **df_in** input pandas DataFrame
- output_dir output files directory
- top_n the number of the top item to show
- deciles flag for percentiles style

Returns statistical summary for numerical data

Author Wengiang Feng and Ming Chen

Email von198@gmail.com

```
>>> d = {'A': [1, 0, None, 3],
         'B': [1, 0, 0, 0],
>>>
         'C': ['a', None, 'c', 'd']}
>>> # create DataFrame
>>> df = pd.DataFrame(d)
>>> print (numeric_summary (df))
      feature data_type min_digits ... zero_rate pos_rate
→rate
             float64
                                 3 ... 0.333333 0.666667
   Α
           Α
→ 0.0
           В
                 int64
                                         0.750000 0.250000
   В
→ 0.0
```

3.2.2 category_summary

PyAudit.basics.category_summary (*df_in*, *output_dir*, *top_n=4*) generate statistical summary for numerical DateFrame

Parameters

- **df_in** input pandas DataFrame
- output_dir output files directory
- top_n the number of the top item to show

Returns statistical summary for numerical data

Author Wenqiang Feng and Ming Chen

Email von198@gmail.com

CHAPTER

FOUR

AUDITING DEMOS

The following demos are designed to show how to use PyAudit to aduit pd.DataFrame.

4.1 Auditing in one function

For example:

```
# import python libraries
import os
import sys
import pandas as pd
# import PyAudit module
from PyAudit.basics import auditing
# Audit output path
output = os.path.abspath(os.path.join(sys.path[0])) + '/output'
# load DataFrame
df = pd.read_csv('Heart.csv', dtype={'Sex': bool})
print (df.head(5))
# generate the audit results (.csv files in output folder)
num_summary, cat_summary, corr = auditing(df, output)
# the following is optional, since the .csv files are in the output...
-folder
print (num_summary)
print (cat_summary)
print(corr)
```

Result:

Ac	ge	Sex	ChestPain	RestBP	Chol		Oldpeak	Slope	Ca	
\hookrightarrow	-	AHD					-	-		
0 6		rue	typical	145	233	• • •	2.3	3	0.0	ш
↔	fixed			1.00	206		1 -	0	2 0	
	57 I normal		symptomatic	160	286	• • •	1.5	2	3.0	ш
			symptomatic	120	229		2.6	2	2.0	
⊶rev	versab								,	_
		rue	nonanginal	130	250	• • •	3.5	3	0.0	ш
	normal			1 2 0	0.04		1 4	1	0 0	
	11 Fa normal	lse No	nontypical	130	204	• • •	1.4	1	0.0	u
[5 rc	OWS X	14 col	umns]							
-			data_type	min_digi	its	. ze	ero_rate	pos_rat	e ne	g_
⇔rat	ce									
Age →0.0	1	Age	int64		4	. C	.000000	1.00000	0	u
RestI		RestBP	int64		4	. 0	.000000	1.00000	0	
→0.0		1100001	211001			•	••••	1.0000		ш
Chol		Chol	int64		5	. 0	.000000	1.00000	0	ш
→0. ()				2		051405	0 14051	_	
Fbs →0.0)	Fbs	int64		3		.851485	0.14851	5	ш
Rest		RestECG	int64		3	. 0	.498350	0.50165	0	ت -
→ 0.0)									
MaxHF		MaxHR	int64		4	. 0	.000000	1.00000	0	ш
⇔0.0 ExAnc		ExAng	int64		3	0	.673267	0.32673	2	
↔0.0		EXAIIG	111004		3		1.073207	0.32073	J	ш
Oldpe		ldpeak	float64		3	. 0	.326733	0.67326	7	
→ 0.0										
Slope		Slope	int64		3	. 0	.000000	1.00000	0	ш
→0.0 Ca	J	Ca	float64		3	0	.588629	0.41137	1	
→0. ()	oa	1100001		· • •	•	.000029	0.11137	_	ш
[10 3	COME S	: 21 co	lumnel							
LTO I	LOWS X		tunns; ture data_ty	/pe		ta	p_freqs	missing	rate	
Sex				ool			206 , 97]	_	00000	
Chest	Pain	Chest	Pain obje	ect	[144,	86,	50, 23]	0.0	00000	
Thal			Thal obje	ect	[1	66, 1	17, 18]	0.0	06601	
AHD			AHD obje	ect		[16	54, 139]	0.0	00000	
[4 rc)WS ¥	10 col	umnsl							
[1 10	7 VV D A	Ag	_	Cho	ol	01	.dpeak	Slope		ш
⇔Ca							-	(continues	on nevt	

```
Age
        1.000000 0.284946 0.208950 ... 0.203805 0.161770
→362605
RestBP 0.284946 1.000000 0.130120 ... 0.189171 0.117382
→098773
Chol
    0.208950 0.130120 1.000000 ... 0.046564 -0.004062
→119000
Fbs
   0.118530 0.175340 0.009841 ... 0.005747 0.059894
                                                          0.
→145478
RestECG 0.148868 0.146560 0.171043 ... 0.114133 0.133946 0.
→128343
MaxHR -0.393806 -0.045351 -0.003432 ... -0.343085 -0.385601 -0.
<del>→</del>264246
ExAng 0.091661 0.064762 0.061310 ... 0.288223 0.257748 0.
→145570
Oldpeak 0.203805 0.189171 0.046564 ... 1.000000 0.577537 0.
→295832
Slope 0.161770 0.117382 -0.004062 ... 0.577537 1.000000 0.
→110119
Ca 0.362605 0.098773 0.119000 ... 0.295832 0.110119 1.
→000000
[10 rows x 10 columns]
Process finished with exit code 0
```

and

4.2 Auditing function by function

For example:


```
# load DataFrame
df = pd.read_csv('Heart.csv', dtype={'Sex': bool})
print(df.head(5))

# generate the audit results (.csv files in output folder)
print(numeric_summary(df, output))
print(category_summary(df, output))
print(corr_matrix(df, output))
```

Result:

7)	0	Clarat Dada	D + DD	Q1 1		01-11-	01	Q -	
Age → Tì	Sex nal AHD	ChestPain	RestBP	Chol	• • •	Oldpeak	Slope	Ca	1
0 63	True	typical	145	233		2.3	3	0.0	
	xed No	071-00-							
1 67	True a	symptomatic	160	286		1.5	2	3.0	
→ norr	mal Yes								
2 67		symptomatic	120	229		2.6	2	2.0	1
	sable Ye:								
3 37	True	nonanginal	130	250	• • •	3.5	3	0.0	J
→ norr			1 0 0	0.0.4		1 4	-	0 0	
4 41	False	nontypical	130	204	• • •	1.4	1	0.0	1
→ norr	mal No								
[5 rows	x 14 col	ımnsl							
[0 IOWB		data_type	min diai	ts	. z∈	ero rate	pos_rate	e neo	T C
⇔rate			>				1		<i></i>
Age	Age	int64		4		0.000000	1.00000	0]
→ 0.0									
RestBP	RestBP	int64		4		0.000000	1.00000	0]
→0.0									
Chol	Chol	int64		5		0.00000	1.00000	0	u
→ 0.0						051405	0 14051	_	
Fbs	Fbs	int64		3		.851485	0.14851	5	1
→0.0 RestECG	RestECG	int64		3		.498350	0.501650	\cap	
→0.0	restrog	111004		J	•	7.490330	0.301030	J	J
MaxHR	MaxHR	int64		4	. (0.00000	1.00000	O.	
→0.0	-1011111	_11001		- ••				-]
ExAng	ExAng	int64		3		.673267	0.326733	3	
→ 0.0	-								
Oldpeak	Oldpeak	float64		3		.326733	0.67326	7	
→ 0.0									
Slope	Slope	int64		3		0.000000	1.00000	0	1
→ 0.0									

```
Ca
             Ca
                 float64
                                          0.588629 0.411371
\rightarrow 0.0
[10 rows x 21 columns]
            feature data_type ...
                                         top_freqs missing_rate
               Sex
                      bool ...
                                         [206, 97]
                                                       0.000000
                      object ... [144, 86, 50, 23]
ChestPain ChestPain
                                                       0.000000
                      object ... [166, 117, 18]
Thal
              Thal
                                                       0.006601
                                        [164, 139]
AHD
               AHD
                   object
                                                       0.000000
                             . . .
[4 rows x 10 columns]
            Age RestBP Chol ... Oldpeak
                                                     Slope
→Ca
Age
        1.000000 0.284946 0.208950
                                    ... 0.203805 0.161770 0.
<del>→</del>362605
RestBP 0.284946 1.000000 0.130120
                                    ... 0.189171 0.117382
→098773
                                    ... 0.046564 -0.004062
    0.208950 0.130120 1.000000
Chol
                                                           0.
→119000
Fbs 0.118530 0.175340 0.009841 ... 0.005747 0.059894 0.
→145478
RestECG 0.148868 0.146560 0.171043
                                   ... 0.114133 0.133946 0.
→128343
MaxHR -0.393806 -0.045351 -0.003432
                                   ... -0.343085 -0.385601 -0.
→264246
ExAng 0.091661 0.064762 0.061310 ... 0.288223 0.257748 0.
→145570
Oldpeak 0.203805 0.189171 0.046564 ... 1.000000 0.577537 0.
→295832
Slope 0.161770 0.117382 -0.004062 ... 0.577537 1.000000 0.
→110119
        0.362605 0.098773 0.119000 ... 0.295832 0.110119 1.
\rightarrow 000000
[10 rows x 10 columns]
Process finished with exit code 0
```

and

```
·//·
/;/*;/;/
.-'``;-');;.
/' .-. /*;;
```



```
\;;
                     .;;;,
/ 0
         \;
                  ,;*;;;*;,
         \_.-') __) --.;;;;*;;;
`""`;;\
          /-')<u></u>) <u>`</u>';;;;;
 ; *;;;
;;;;|
          0 | ;;*;;
  *;*;\|
                 0 / ;;;;;*
 ) \ | ;;;;;;
/ /` | ';;;*;
 |.
 ,;*;;;\/
             ;;;;;/
  '*wf*/
```

CHAPTER FIVE

MAIN REFERENCE

BIBLIOGRAPHY

[PyAudit] Wenqiang Feng and Ming Chen. Python Data Audit Library API, 2019.

30 Bibliography

PYTHON MODULE INDEX

p

PyAudit.basics, 11

INDEX