



# Microarray Layout and the Quadratic Assignment Problem

Sérgio A. de Carvalho Jr. 1,2,3 Sven Rahmann 1,2

<sup>1</sup>Algorithms and Statistics for Systems Biology, Genome Informatics, Technische Fakultät, Universität Bielefeld, Germany

<sup>2</sup>International NRW Graduate School in Bioinformatics and Genome Research

<sup>3</sup>Graduiertenkolleg Bioinformatik

German Conference on Bioinformatics, 2006

## Outline

- 1 Introduction to Microarray Layout
- Conflict Index Model
- 3 New Approach: Quadratic Assignment Problem (QAP)

## Outline

Introduction

•0000

- 1 Introduction to Microarray Layout
- Conflict Index Model
- 3 New Approach: Quadratic Assignment Problem (QAP)

Introduction

00000

# High-Density Oligonucleotide Microarrays



00000



- Probes are synthesized on the chip in a series of steps
- Each step appends a particular nucleotide to selected regions
- Selection occurs by exposure to light directed by a mask

| $p_1$                 | $p_2$ | $p_3$ |
|-----------------------|-------|-------|
| ACT                   | CTG   | GAT   |
| <i>p</i> <sub>4</sub> | $p_5$ | $p_6$ |
| TCC                   | GAC   | GCC   |
| p <sub>7</sub>        | $p_8$ | $p_9$ |
| TAC                   | CGT   | AAT   |

| S =               | ACGTACGTACGT |
|-------------------|--------------|
|                   |              |
| $\varepsilon_2 =$ |              |
| $\epsilon_3 =$    |              |
| $\varepsilon_4 =$ |              |
| $\varepsilon_5 =$ |              |
| $\varepsilon_6 =$ |              |
| ε <sub>7</sub> =  |              |
|                   |              |
| <b>5</b> 0 —      |              |

QAP Formulation

Introduction

00000

| $p_1$    | <b>p</b> <sub>2</sub> | $p_3$          |
|----------|-----------------------|----------------|
| ACT      | CTG                   | GAT            |
| $p_4$    | $p_5$                 | $p_6$          |
|          |                       |                |
| TCC      | GAC                   | GCC            |
| $\rho_7$ | p <sub>8</sub>        | p <sub>9</sub> |

```
S = ACGTACGTACGT
```

Introduction

00000

| P <sub>1</sub> ACT    | P <sub>2</sub>     | p <sub>3</sub> GAT |
|-----------------------|--------------------|--------------------|
| <b>Р</b> <sub>4</sub> | p <sub>5</sub> GAC | p <sub>6</sub>     |
| P <sub>7</sub>        | P <sub>8</sub>     | P <sub>9</sub> AAT |

```
S = ACGTACGTACGT
\mathcal{E}_1 = A - - - - -
```

| $p_1$ | $p_2$       | $p_3$                 |
|-------|-------------|-----------------------|
| ACT   | CTG         | GAT                   |
| $p_4$ | $p_5$       | <b>p</b> <sub>6</sub> |
| TCC   | <b>G</b> AC | GCC                   |
| $p_7$ | $p_8$       | $p_9$                 |
| TAC   | CGT         | AAT                   |

```
S = ACGTACGTACGT
\mathcal{E}_1 = A - - - - - -
\varepsilon_2 = -C -----
\varepsilon_3 = --G-----
\mathcal{E}_{5} = --G------
\varepsilon_6 = --G------
\varepsilon_8 = -CG-----
\mathcal{E} \circ = \Delta - - - - - - -
```

| $p_1$                 | <i>p</i> <sub>2</sub> | <b>p</b> <sub>3</sub> |
|-----------------------|-----------------------|-----------------------|
| ACT                   | CTG                   | GAT                   |
| <i>p</i> <sub>4</sub> | $p_5$                 | $p_6$                 |
| TCC                   | GAC                   | GCC                   |
| <i>p</i> <sub>7</sub> | <i>p</i> <sub>8</sub> | <b>p</b> <sub>9</sub> |
| TAC                   | CGT                   | AAT                   |

```
S = ACGTACGTACGT
\mathcal{E}_1 = A - - - - - - -
\varepsilon_2 = -C -----
\varepsilon_3 = --G-----
\mathcal{E}_4 = ---T
\mathcal{E}_{5} = --G-----
\varepsilon_6 = --G------
\mathcal{E}_7 = ---T
\varepsilon_8 = -CGT - - - - -
\mathcal{E} \circ = \Delta - - - - - - -
```

| $\rho_1$ | $p_2$ | $p_3$ |
|----------|-------|-------|
| ACT      | CTG   | GAT   |
| $p_4$    | $p_5$ | $p_6$ |
| TCC      | GAC   | GCC   |
| $p_7$    | $p_8$ | $p_9$ |
| TAC      | CGT   | AAT   |

| ρ <sub>1</sub><br>ACT | ρ <sub>2</sub> CTG | p <sub>3</sub> GAT |
|-----------------------|--------------------|--------------------|
| P <sub>4</sub> TCC    | P <sub>5</sub> GAC | p <sub>6</sub> GCC |
| ρ <sub>7</sub> TAC    | P <sub>8</sub>     | P <sub>9</sub> AAT |

```
S = ACGTACGTACGT
\varepsilon_1 = A - - - C - T - - - -
\varepsilon_2 = -C - - - T - G -
\mathcal{E}_3 = --G-A--T---
\varepsilon_4 = ---T-C---C--
\varepsilon_5 = --G-A----C--
\varepsilon_6 = --G - -C - - -C - -
\mathcal{E}_7 = ---TAC-----
\varepsilon_8 = -CGT - - - - -
\mathcal{E} \circ = A - - A - - - T
e'_{0} = A - - - - - A - T
```

Right-most: 
$$\mathcal{E}_{9}^{"} = ---A--A--T$$
  
Left-most:  $\mathcal{E}_{9}^{"} = A--A-T---$ 

00000

## Unintended Illumination Problem



- Untargeted spots can be accidentally activated
  - Diffraction of light
  - Internal reflection
- Production of defective probes
- More likely near the borders between masked and unmasked spots: border conflict

## Border Length Minimization Problem (Hannenhalli et al., 2002)

Find arrangement of the probes and embeddings with minimum number of border conflicts over all masks

## Outline

- Conflict Index Model

#### Motivation

- Border Length measures the quality of a particular mask
  - We are more interested in a per-probe measure
- Practical considerations:
  - a) Stray light might damage probes as far as three cells away from the targeted spot
  - b) Imperfections in the middle of a probe are more harmful than in its extremities



# ATGACTACCATGCAGTACAACATAC

## Definition

Introduction

#### Conflict Index of a probe p

$$\mathcal{C}(oldsymbol{
ho}) := \sum_{t=1}^T \Bigl( \omega(oldsymbol{
ho},t) \sum_{oldsymbol{nbs},oldsymbol{
ho}'} \delta(oldsymbol{
ho},oldsymbol{
ho}',t) \Bigr)$$

#### Distance-dependent weights

$$\delta(p, p', t) := \begin{cases} (d(p, p'))^{-2} & \text{if } p' \text{ is unmasked at step } t, \\ 0 & \text{otherwise,} \end{cases}$$

where d(p, p') is the Euclidean distance between the spots of p and p'.

| 0.06 | 0.08 | 0.10 | 0.11 | 0.10 | 0.08 | 0.06 |
|------|------|------|------|------|------|------|
| 0.08 | 0.13 | 0.20 | 0.25 | 0.20 | 0.13 | 0.08 |
| 0.10 | 0.20 | 0.50 | 1.00 | 0.50 | 0.20 | 0.10 |
| 0.11 | 0.25 | 1.00 | р    | 1.00 | 0.25 | 0.11 |
| 0.10 | 0.20 | 0.50 | 1.00 | 0.50 | 0.20 | 0.10 |
| 0.08 | 0.13 | 0.20 | 0.25 | 0.20 | 0.13 | 0.08 |
| 0.06 | 0.08 | 0.10 | 0.11 | 0.10 | 0.08 | 0.06 |

#### Definition

## Conflict Index of a probe p

$$\mathcal{C}(p) := \sum_{t=1}^{T} \left( \omega(p, t) \sum_{p'} \delta(p, p', t) \right)$$



#### Position-dependent weights

$$\omega(p,t) := \left\{ egin{array}{ll} c \cdot \exp\left(\theta \cdot \lambda(p,t)\right) & \text{if } p \text{ is masked at step } t, \\ 0 & \text{otherwise,} \end{array} \right.$$

where

$$\lambda(p,t) := 1 + \min(b_{p,t}, \ell_p - b_{p,t}),$$

 $b_{p,t}$  denotes the number of nucleotides synthesized up to and including step t,  $\ell_p$  is the length of probe p, c>0 and  $\theta>0$  are constants.

#### **New Problem**

#### Conflict Index Minimization Problem

Find placement of the probes and embeddings such that

$$\sum_{p} \mathcal{C}(p) o \mathsf{min}$$

## Border Length and Conflict Index

#### Redefine $\delta$ and $\omega$ as

$$\delta(p,p',t) := \left\{ \begin{array}{l} 1 \quad \text{if } p' \text{ is a direct neighbor of } p \\ \quad \text{and is unmasked at step } t, \\ 0 \quad \text{otherwise} \end{array} \right.$$
 
$$\omega(p,t) := \left\{ \begin{array}{l} 1/2 \quad \text{if } p \text{ is masked at step } t, \\ 0 \quad \text{otherwise} \end{array} \right.$$

- Then  $\sum_{p} \mathcal{C}(p) = \sum_{t=1}^{T} \mathcal{B}_{t}$
- $\bullet$  Border length and conflict indices are equivalent for this choice of  $\delta$  and  $\omega$
- For our choices, they are not equivalent but still correlated
  - A good layout has low border lengths and conflict indices

### Outline

- 3 New Approach: Quadratic Assignment Problem (QAP)

### Previous Work: Place and Re-embed

The problem has been traditionally approached in two phases:

- 1) Placement of probes given a fixed embedding
- 2) Re-embedding of probes once a placement is fixed

#### Placement: Row-epitaxial (Kahng et al., 2003)

- Spots are filled in a pre-defined order
  - Select probe from a list Q such that conflicts with filled spots are minimized
- Restrict the maximum size of Q (e.g. Q = 20000)

## Re-embedding: several algorithms (Kahng et al., 2002, 2003)

- Based on the Optimum Single Probe Embedding (OSPE)
  - Re-embed a probe optimally in regards to its neighbors
  - Dynamic programming, like a sequence alignment

- The placement problem can be partitioned
  - Divide the chip into sub-regions; assign sub-sets of probes to each sub-region
  - Sub-regions are processed independently, and can be recursively partitioned
  - A placement algorithm is called on each final sub-region

### Pivot Partitioning (Carvalho & Rahmann, 2006)

- Alternate horizontal and vertical partitions
- Allow sub-regions to have different sizes









# Quadratic Assignment Problem (QAP)

#### Definition

Introduction

- Given  $n \times n$  real-valued matrices  $F = (f_{ij}) \ge 0$  and  $D = (d_{kl}) \ge 0$
- Find a permutation  $\pi$  of  $\{1, 2, \dots n\}$  such that

$$\sum_{i=1}^n \sum_{j=1}^n f_{ij} \cdot d_{\pi(i)\pi(j)} \to \min$$

#### Example: Facility Location Problem

- Assign n facilities to n locations
- $f_{ii}$ : flow of materials from facility i to j
- $d_{kl}$ : distance between locations k and l
- $\bullet$   $\pi$ : one-to-one assignment with minimum cost

#### QAP

- Given  $n \times n$  real-valued matrices F and D
- Find a permutation  $\pi$  of  $\{1, 2, ..., n\}$  such that

$$\sum_{i=1}^n \sum_{j=1}^n f_{ij} \cdot d_{\pi(i)\pi(j)} o \mathsf{min}$$

#### Placement as a QAP

- Given a set of probes with fixed embeddings
- Find placement on the chip such that

$$\sum_{k} \mathcal{C}(k) \to \min$$

## QAP Formulation of Placement Problem

#### Goal: find a placement with

$$\sum_k \mathcal{C}(k) \to \min$$

**QAP** Formulation

000000000

"Flow"  $f_{ii}$ : distance between spots i and j

$$f_{ij} := \begin{cases} (d(i,j))^{-2} & \text{if spot } j \text{ is "near" spot } i, \\ 0 & \text{otherwise} \end{cases}$$

"Distance"  $d_{kl}$ : conflicts between probes k and l

$$d_{kl} := \sum_{t=1}^{l} d_{klt},$$

 $d_{klt} := \left\{ egin{array}{ll} c \cdot \exp( heta \cdot \lambda(k,t)) & ext{if $k$ is masked and $l$ unmasked in step $t$,} \\ 0 & ext{otherwise} \end{array} 
ight.$ 

# **QAP** Heuristics

- The placement problem can be modeled as a QAP
- But QAP is known to be NP-hard
  - Generally impossible to solve (to optimality) for  $n \ge 20$
- Several heuristics exist

#### GRASP (Li, Pardalos and Resende, 1994)

- Greedy Randomized Adaptive Search Procedure
- Comprised of two phases
  - 1) Construction: builds a random feasible solution
  - 2) Local search: search a local optimum in the neighborhood
- GRASP with Path-Relinking (Oliveira et al., 2004)

## Results on Small Artificial Chips

| Во | Border Length minimization |          |          |            |      |          |           |           |  |
|----|----------------------------|----------|----------|------------|------|----------|-----------|-----------|--|
|    |                            | Random   | Rov      | v-epitaxia | I    | GRASP w  | ith Path- | Relinking |  |
|    | Dim                        | Cost     | Cost     | Red.       | Time | Cost     | Red.      | Time      |  |
|    | 6×6                        | 1 989.20 | 1714.60  | 13.80      | 0.01 | 1 672.20 | 15.94     | 2.73      |  |
|    | 7×7                        | 2 783.20 | 2 354.60 | 15.40      | 0.02 | 2 332.60 | 16.19     | 6.43      |  |
|    | 8×8                        | 3 721.20 | 3 123.80 | 16.05      | 0.03 | 3 099.13 | 16.72     | 12.49     |  |
|    | $9 \times 9$               | 4762.00  | 3 974.80 | 16.53      | 0.05 | 3 967.20 | 16.69     | 25.96     |  |
|    | $10 \times 10$             | 5 985.20 | 4895.60  | 18.20      | 0.06 | 4 911.40 | 17.94     | 47.57     |  |
|    | $11 \times 11$             | 7 288.40 | 5 954.40 | 18.30      | 0.10 | 5 990.73 | 17.80     | 87.48     |  |
|    | 12×12                      | 8714.00  | 7 086.20 | 18.68      | 0.11 | 7 159.80 | 17.84     | 152.42    |  |

Dim: chip dimension Cost: total border length Red.: reduction in %

Time: running time in seconds

# Results on Small Artificial Chips

#### Conflict Index minimization

|                | Random | Row-epitaxial |      |      | GRASP  | with Path | -Relinking |
|----------------|--------|---------------|------|------|--------|-----------|------------|
| Dim            | Cost   | Cost          | Red. | Time | Cost   | Red.      | Time       |
| 6×6            | 524.28 | 495.15        | 5.56 | 0.05 | 467.08 | 10.91     | 3.68       |
| 7×7            | 558.25 | 521.90        | 6.51 | 0.07 | 489.32 | 12.35     | 8.84       |
| 8×8            | 590.51 | 551.84        | 6.55 | 0.09 | 515.69 | 12.67     | 19.48      |
| $9 \times 9$   | 613.25 | 568.62        | 7.28 | 0.11 | 533.79 | 12.96     | 38.83      |
| $10 \times 10$ | 628.50 | 576.49        | 8.28 | 0.11 | 539.69 | 14.13     | 73.09      |
| $11{	imes}11$  | 642.72 | 588.91        | 8.37 | 0.12 | 551.41 | 14.21     | 145.67     |
| 12×12          | 656.86 | 598.21        | 8.93 | 0.12 | 561.21 | 14.56     | 249.19     |

Dim: chip dimension

Cost: average conflict index

Red.: reduction in %

Time: running time in seconds

- QAP is good for small regions...
  - But not feasible for an entire microarray chip

- QAP is good for small regions...
  - But not feasible for an entire microarray chip
- Two applications:
  - 1) Combine it with a partitioning algorithm



Introduction

- QAP is good for small regions...
  - But not feasible for an entire microarray chip
- Two applications:
  - 1) Combine it with a partitioning algorithm
  - 2) Use it as a post-placement optimization inside a sliding-window











Introduction

- QAP is good for small regions...
  - But not feasible for an entire microarray chip
- Two applications:
  - 1) Combine it with a partitioning algorithm
  - 2) Use it as a post-placement optimization inside a sliding-window











## Summary

Introduction

- Conflict Index
  - New model for evaluating microarray layouts
- New approach to placement
  - Based on the Quadratic Assignment Problem
- Challenges
  - Faster or better QAP heuristics?
  - Adapt QAP for post-placement optimization
  - Formulation considering all embeddings

#### Auf Wiedersehen!

Introduction

#### More info on

http://gi.cebitec.uni-bielefeld.de/assb/chiplayout

#### **QAPLIB**

http://www.seas.upenn.edu/gaplib

- Thanks to Peter Hahn (University of Pennsylvania, USA)
- And thank you for your attention!