

#### Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

# «Московский государственный технический университет имени Н. Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н. Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»

КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»

#### ОТЧЕТ

по по домашнему заданию по курсу «Анализ Алгоритмов» на тему: «Графовые модели алгоритмов»

| Студент  | <u>ИУ7-53Б</u><br>(Группа) | (Подпись, дата) | Лысцев Н. Д. (И. О. Фамилия)     |
|----------|----------------------------|-----------------|----------------------------------|
| Преподав | атель                      | (Подпись, дата) | Волкова Л. Л.<br>(И. О. Фамилия) |

## СОДЕРЖАНИЕ

| 1            | Графовые модели алгоритмов |                               |    |  |  |
|--------------|----------------------------|-------------------------------|----|--|--|
| 2            | Выполнение задания         |                               |    |  |  |
|              | 2.1                        | Средства реализации           | 4  |  |  |
|              | 2.2                        | Код программы                 | 4  |  |  |
|              | 2.3                        | Графовые модели программы     | 5  |  |  |
|              | 2.4                        | Возможность распараллеливания | 14 |  |  |
| $\mathbf{C}$ | ПИС                        | ОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ  | 15 |  |  |

## 1 Графовые модели алгоритмов

Программа представлена в виде графа — набора вершин и множества соединяющих их дуг. Вершины — операторы, срабатывания операторов. Дуги — отношения.

Существует два типа отношений:

- информационное отношение отношение по передаче данных;
- операционное отношение отношение по передаче управления.

Выделяют четыре графовых модели:

- граф управления модель, в которой вершинами являются операторы, а дугами — операционные отношения;
- информационный граф модель, в которой вершинами являются операторы, а дугами информационные отношения;
- операционная история модель, в которой вершинами являются срабатывания операторов, а дугами операционные отношения;
- **информационная история** модель, в которой вершинами являются срабатывания операторов, а дугами информационные отношения.

#### 2 Выполнение задания

#### 2.1 Средства реализации

В качестве языка программирования был выбран C + + [1].

#### 2.2 Код программы

В листинге 2.1 и 2.2 представлена реализация алгоритма составления файла словаря с количеством употреблений каждой N-граммы букв из одного слова в тексте на русском языке.

Листинг 2.1 — Реализация алгоритма составления файла словаря с количеством употреблений каждой N-граммы букв из одного слова в тексте на русском языке (начало)

```
void processText(std::vector<std::wstring> &vecStrText, const int
  ngram, std::map<std::wstring, int> &ngramCounts)
{
    for (int i = 0; i < (int) vecStrText.size(); ++i) // 1
        size_t startPos = 0; // 2
        size_t endPos = 0; // 3
        while (endPos != std::wstring::npos) // 4
        {
            endPos = vecStrText[i].find(L', ', startPos); // 5
            std::wstring word = vecStrText[i].substr(startPos,
               endPos - startPos); // 6
            if (static_cast<int>(word.size()) < ngram) // 7</pre>
            {
                startPos = endPos + 1; // 8
                                        // 9
                continue;
            }
            std::vector<std::wstring> ngrams; // 10
```

Листинг 2.2 — Реализация алгоритма составления файла словаря с количеством употреблений каждой N-граммы букв из одного слова в тексте на русском языке (конец)

## 2.3 Графовые модели программы

На рисунке 2.1 представлен граф управления.



Рисунок 2.1 – Граф управления

На рисунке 2.2 представлен информационный граф.



Рисунок 2.2 – Информационный граф

На рисунках 2.3 и 2.4 представлена операционная история.



Рисунок 2.3 – Операционная история (начало)



Рисунок 2.4 – Операционная история (конец)

На рисунках 2.5 и 2.6 представлена информационная история.



Рисунок 2.5 – Информационная история (начало)



Рисунок 2.6 – Информационная история (конец)

## 2.4 Возможность распараллеливания

В качестве способа распараллеливания можно разделить строки файла между потоками и запустить обработку частей текста в отдельных потоках, а затем объединить результаты.

### СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

1. Справочник по языку C++ [Электронный ресурс]. — Режим доступа: https://learn.microsoft.com/ru-ru/cpp/cpp-language-reference?view= msvc-170 (дата обращения: 28.09.2022).