

2006 Submission:
Hydrogen-Oxygen PEM Regenerative Fuel Cell
Development at NASA Glenn Research Center

David J. Bents, Vincent J. Scullin, NASA Glenn Research Center

B.J. Chang, Donald W. Johnson, Christopher P. Garcia, QSS Group

Ian J. Jakupca, Analex Corp.

Contact: David J. Bents, NASA Glenn Research Center, Cleveland Ohio USA 216 433 6135

Preferred Format: oral

Topic: Testing and Modeling

Subtopic: closed cycle hydrogen-oxygen PEM regenerative fuel cell

The closed-cycle hydrogen-oxygen PEM regenerative fuel cell (RFC) at NASA Glenn Research Center has demonstrated multiple back to back contiguous cycles at rated power, and round trip efficiencies up to 52 percent. It is the first fully closed cycle regenerative fuel cell ever demonstrated (entire system is sealed: nothing enters or escapes the system other than electrical power and heat). During FY2006 the system has undergone numerous modifications and internal improvements aimed at reducing parasitic power, heat loss and noise signature, increasing its functionality as an unattended automated energy storage device, and in-service reliability. It also serves as testbed towards development of a 600 W-hr/kg flight configuration, through the successful demonstration of lightweight fuel cell and electrolyser stacks and supporting components.

This paper updates the FY2006 experimental effort and highlights the performance achieved to date.
Continuing test operations focus on:

- 1.) Increasing the number of contiguous uninterrupted charge discharge cycles
- 2.) Increasing the performance envelope boundaries
- 3.) Operating the RFC as an energy storage device on a regular basis
- 4.) Characterizing system performance with smaller and lighter weight basic components
- 5.) Instrumentation and in situ fluid sampling strategies to monitor health and anticipate breakdowns
- 6.) Continued development of fully automated operation and system health monitoring

The RFC has demonstrated its potential as an energy storage device for aerospace solar power systems such as solar electric aircraft, lunar and planetary surface installations; any airless environment where minimum system weight is critical. Its development process continues on a path of risk reduction for the flight system NASA will eventually need for the manned lunar outpost.

END OF ABSTRACT

Glenn Research Center

Hydrogen-Oxygen PEM Regenerative Fuel Cell Development at NASA Glenn Research Center

David Bents

NASA GRC

Electrochemistry Branch
Cleveland OH USA

Prepared for 2006 Fuel Cell Seminar
Honolulu HI

Glenn Research Center

PEM Hydrogen-Oxygen Regenerative Fuel Cell at NASA Glenn Research Center

Built up at NASA GRC during FY 2002 - 2003

First closed loop demonstration Sep. 2003

Coordinated operation of fuel cell and electrolyser subsystems
as integrated electrical energy storage system
generate and store H₂ and O₂ reactant gasses
produce electrical power from stored H₂ and O₂
system is completely sealed: nothing goes in, nothing escapes
other than electrical power and waste heat
Closed loop operation at full power Jun 2004.
Further development testing July 2004-July 2005
Demonstrated 5 contiguous back to back charge-discharge cycles at full power
without breakdown or degradations under semi autonomous control July 2005.
New reactant recirculation loop pumps, thermal control improvements made
during FY2006, unattended operation demonstrated April 2006
Next step: Complete characterization tests with next generation
fuel cell and electrolyser stacks

Hydrogen – Oxygen Regenerative Fuel Cell

electrolysis mode (charge)

fuel cell mode (discharge)

DJB
13 Mar 00

Why RFC's offer promise

- Key technology that enables future NASA missions
 - Solar energy storage of choice for day/night cycles > 4 hr
- Technical performance appears achievable

Mars Rover Solar Aircraft
W/ regenerative fuel cell

Mars Base Camp, solar
W/ regenerative fuel cell

Lunar Base, solar
W/ regenerative fuel cell

NASA Glenn Research Center

Comparison of Energy Storage Devices (12 hr/12 hr cycle)

Advanced
Propulsion
& On-Board
Technology
Division

Design Groundrules for Closed Loop Regenerative Fuel Cell Test Rig

1. Meet or exceed national safety standards for systems utilizing pressurized Hydrogen and Oxygen
2. Use commercial off-the-shelf and fabricated components to build working rig initially.
3. Provide flexibility to incorporate flight-like components later
4. Include additional sensors for data collection.
5. Provide O₂ and H₂ venting capabilities
6. Provide N₂ purging and vacuum charging as service interfaces not part of the rig.
7. Provide capability for collecting gas and water grab samples.

LynnTech Gen4 Hydrogen-Oxygen PEM Fuel Cell Stack

Power output: 5.25 kW

Active Area: 200 cm²

Efficiency*: 70%

Pressure: 50-400 psi

Weight: 40.2 lbs

Dimensions: 10" Ø, 20" L

Power Density: 131 W/lb

Number of Cells: 64

Output Voltage: 50-54 V

Current: 100 A

H₂ Consumption: 45 SLM

O₂ Consumption: 22.5 SLM

*Efficiency is calculated based upon LHV of H₂

Fuel Cell Individual Cell Performance at 100A, 65 psig and 135°F

Glenn Research Center
Propulsion & On-Board Technology Division

Regenerative Fuel Cell - Fuel Cell Stack and Reactant Recirculation Loops

Lynntech Gen4 PEM Electrolyzer Stack

Power Input: 15 kW
Active Area: 200 cm²
Efficiency*: 71%
Output Pressure: 0-400 psi
Weight: 31.7 lbs
Dimensions: 10" Ø, 14" L
Power Density: 492 W/lb
Number of Cells: 60
Applied Voltage: 104 V
Current: 150 A
H₂ Production: 60 SLM
O₂ Production: 30 SLM

*Efficiency is calculated based on the LHV of H₂

Electrolyzer Individual Cell Performance
at 150 A, 245 psig and 140° F

Glenn Research Center

Regenerative Fuel Cell - Electrolyser / Reactant Regeneration

Glenn Research Center

Regenerative Fuel Cell - Reactant Gas Dryers and Storage

Ice Catcher

Ice-catcher Before
Preliminary Testing

Ice-catcher After
Preliminary Testing

Integrated Equipment Assembly

Big 135

Integrated Equipment Assembly inside

Integrated Equipment Assembly: Fuel Cell and

CONTROL / MONITOR INSTRUMENTATION

Instrument data collection, most control actuation through
National Instruments Field Point I / O modules

Ethernet Bus and multiport switching hubs accommodate
Field Point I / O and RS232 / RS485 serial connections.

Fiber optic data link control room to test site

PC-based National Instruments <Lab View> controller
3 redundant controller PC's, master-slave hierarchy
“RFC Day Cycle” program

Critical safety functions hard-wired / relay logic

Two extended day / night cycles, with interruptions

Regenerative Fuel Cell @ NASA GRC

- Closed loop operation at full power > 4 hrs operation - June 2004.
- Two (2) day/night cycles closed loop with SOA hardware (Short Stack) - April 2005.
- One day/night (charge/discharge) cycle at full power closed loop with SOA hardware - May 2005.
- Five (5) contiguous day/night cycles at full power closed loop with SOA hardware - June 2005

Glenn Research Center

Problems Solved

Advanced Propulsion
Technology
Division

- Mode Transition Pressure Swings due to Reactant Recombination
 - Scheduled control valves, volumes, and orifices
- Individual Cell Dropoff, Cell Dryout, Cell Flooding
 - Controlled temperatures, pressures, reactant recirculation
- Rapid Power Transitions Via Fuzzy Logic
 - Faster than a human operator
- Water Balance
 - Completely sealed, closed loop system
- Inert Contaminants
 - Venting / purging reduced to zero as reactants are refined over many cycles.

RFC round trip efficiency demonstration

RFC round trip efficiency demonstration

RFC round trip efficiency demonstration

Hydrogen and Oxygen Reactant Storage Pressure Profile

RFC round trip efficiency demonstration

Electrolyzer Cell Voltage and Efficiency Profile

RFC round trip efficiency demonstration

Fuel Cell Voltage and Efficiency Profile

Glenn Research Center

Summary

- **First Ever, Fully Closed Cycle Hydrogen-Oxygen Regenerative Fuel Cell**
- **Completed Multiple Contiguous Day / Night Closed Loop Cycles at Full Power with SOA Hardware**
- **50 PCT Round Trip Efficiency demonstrated**

Acknowledgements

Industry Contributors:

James Layton
Jeremy Steinshnider
Brad Fiebig
Oliver Murphy
Omo Velev

Other NASA Contributors:

Ken Gregg
Floyd Truskot
Paul Asmardy
Eunice Wong
Larry Smith
Pat Loyselle
Bruce Frankenfield
Scott Sargi
Bob Vanek

Systems Modeling Team

Joshua E. Freeh
David Jacqmin
Lisa L. Kohout
Paul Schmitz

AREA 5 Safety Committee

Joe Zoeceler, Chm
Michael Dyke
Dave Granter
Steve Wnuk
Pete Pachlhofer
Dennis Eichenberg
Jim Hritz
Robert Geil