Solution for PS8-1.

- a. $27 \times 37 = 999$, by the product principle.
- **b.** $52 \times 51 = 2652$, by the generalized product principle.
- c. |1000/3| + |1000/5| |1000/15| = 467, by the generalized sum principle.

Solution for PS8-2.

- a. Let C be the set of ways in which we can answer a single question on the test. Then the set of choices for the entire test is C^{10} . So we apply the product principle.
 - (a) In this case, |C| = 4, so the number of ways is $4^{10} = 1048576$.
 - (b) Here |C| = 5—one of the choices is to leave an answer blank—so the number of ways is $5^{10} = 9765625$.
- b. Consider natural numbers below 10⁹, padded up to nine digits by adding zeros as needed. Let

$$S = \{0, 1, 2, \dots, 10^9 - 1\},\,$$

 $A = \{n \in S : n' \text{s padded decimal representation contains a '1'} \},$

 $B = \{n \in S : n' \text{s padded decimal representation does not contain a '1'} \}.$

Every number in *B* can be thought of as a sequence of 9 characters, with each character drawn from $\{0, 2, 3, 4, 5, 6, 7, 8, 9\}$, a set of size 9. By the product principle, $|B| = 9^9$.

Since $A \cap B = \emptyset$, by the sum principle, |S| = |A| + |B|. Therefore, $|A| = |S| - |B| = 10^9 - 9^9$.

The question asks about numbers in the set $(S - \{0\}) \cup \{10^9\}$. The number 0 does not contain the digit '1', so there's nothing to take away, but the number 10^9 does contain the digit '1', so we need to add one to this figure. This gives a final answer of

$$10^9 - 9^9 + 1 = 612579512$$
.

Solution for PS8-3. Let a_k denote the sum of all multiples of k between 1 and 1000. Repeatedly using the basic summation formula $1 + 2 + \cdots + n = n(n+1)/2$, we obtain

$$a_3 = 3 + 6 + \dots + 999 = 3(1 + 2 + \dots + 333) = 3 \times \frac{333 \times 334}{2} = 166833;$$

 $a_5 = 5 + 10 + \dots + 1000 = 5(1 + 2 + \dots + 200) = 5 \times \frac{200 \times 201}{2} = 100500;$
 $a_{15} = 15 + 30 + \dots + 990 = 15(1 + 2 + \dots + 66) = 15 \times \frac{66 \times 67}{2} = 33165.$

The desired answer is $a_3 + a_5 - a_{15} = 166833 + 100500 - 33165 = 234168$. We subtracted a_{15} because numbers which are multiple of both 3 and 5—i.e., multiples of lcm(3,5) = 15—are included twice when we write $a_3 + a_5$.

Solution for PS8-4. Using the sum principle, it's $62^6 + 62^7 + 62^8 - 52^6 - 52^7 - 52^8 = 167410949583040$.

Solution for PS8-5. Let $s(n) := n^6 + n^7 + n^8$; this is the number of six-to-eight character strings where each character is drawn from a set of size n.

By the generalized sum principle, the desired answer is s(62) - s(52) - 2s(36) + s(10) + 2s(26).

Solution for PS8-6.

- a. For any arbitrary choices of x and y, we can always choose z in such a way that x + y + z is even. More precisely, if x + y is odd then we choose z to be odd, else we choose z to be even. Thus, choosing a 3-tuple $(x, y, z) \in T$ can be seen as making the following sequence of choices:
 - Choose *x* freely from *D*. There are 10 choices.
 - Choose *y* freely from *D*. There are 10 choices.

• Choose z from $\{1,3,5,7,9\}$ if x + y is odd; else choose z from $\{0,2,4,6,8\}$. There are exactly 5 choices in each case.

Thus, by the generalized product principle, $|T| = 10 \times 10 \times 5 = 500$.

b. Let the *n* digits be $x_1, x_2, ..., x_n$ (from left to right). Then we want to find number of choices for $x_1, ..., x_n$ such that $1 \le x_1 \le 9$; for each $i \in \{2, 3, ..., n\}$, $0 \le x_i \le 9$; and $x_1 + x_2 + \cdots + x_n$ is even.

Now, for any arbitrary choices of $x_1, \ldots x_{n-1}$, we can always choose x_n in such a way that $x_1 + x_2 + \cdots + x_n$ is even. More precisely, if $x_1 + \cdots + x_{n-1}$ is odd, then we choose x_n to be odd, else we choose x_n to be even. Hence for each list of choices of $x_1, \ldots x_{n-1}$, there are exactly 5 choices of x_n such that $x_1 + x_2 + \cdots + x_n$ is even. By the generalized product principle, the total number of choices for all the digits is

$$9 \times 10^{n-2} \times 5 = 45 \times 10^{n-2}$$

since there are 9 choices for x_1 , and 10 choices for each of $x_2, \dots x_{n-1}$.

Alternate Solution for PS8-6.

- **a.** Let $A = \{1, 3, 5, 7, 9\}$ be the set of odd digits and let $B = \{0, 2, 4, 6, 8\}$ be the set of even digits. We break T into four pairwise disjoint subsets, each of which is a Cartesian product. So the product principle applies to each subset.
 - $T_1 = \{(x, y, z) \in D^3 : x, y, \text{ and } z \text{ are even}\} = B \times B \times B$. Then $|T_1| = |B| \times |B| \times |B| = 5 \times 5 \times 5 = 125$.
 - $T_2 = \{(x, y, z) \in D^3 : x \text{ and } y \text{ are odd, } z \text{ is even}\} = A \times A \times B$. Then $|T_2| = |A| \times |A| \times |B| = 125$.
 - $T_3 = \{(x, y, z) \in D^3 : x \text{ and } z \text{ are odd}, y \text{ is even}\} = A \times B \times A$. Then $|T_3| = 125$ as well.
 - $T_4 = \{(x, y, z) \in D^3 : y \text{ and } z \text{ are odd, } x \text{ is even}\} = B \times A \times A$. Then $|T_4| = 125$ as well.
- **b.** Same as above.

Solution for PS8-7.

- **a.** $4 \times 3 \times 2 \times 1 = 4! = 24$, by the generalized product principle.
- **b.** *n*!, by the generalized product principle.

Solution for PS8-8.

- a. If we color one of the 1s red, and the other black, then we have four distinct symbols, leading to 4! = 24 permutations.
 - Now consider the function f that maps a colored permutation to an ordinary (uncolored) permutation of (1,1,4,9) by "removing the colors." This f is a 2-to-1 correspondence. So, by the division principle, the number of permutations of (1,1,4,9) is 24/2=12.
- **b.** We can either reason directly, or follow the steps of Problem 15.27 ("The Tao of BOOKKEEPER") from the [LLM] book. Then we apply similar logic to the word "CONDESCENDENCE". This 14-letter word has 3 Cs, 3 Ns, 2 Ds, 4 Es, 1 O, and 1 S. Therefore, it has

$$\frac{14!}{3! \cdot 3! \cdot 2! \cdot 4! \cdot 1! \cdot 1!} = 50\,450\,400$$

anagrams.

Solution for PS8-9.

- **a.** 2^{mn} , since each relation is just a subset of $A \times B$.
- **b.** n^m , by the generalized product principle (choosing a function means making a sequence of |A| choices).
- **c.** $n(n-1)\cdots(n-m+1)$, by the generalized product principle. Note that this equals 0 when m>n.
- **d.** If m = n then n!, else 0.

Solution for PS8-10. For a palindrome of length n, where n is even, we can arbitrarily choose the first n/2 bits and then the last n/2 bits are automatically fixed. Thus, there are 2 choices for each of the first n/2 bits, and then 1 choice for each remaining bit. This leads to $2^{n/2}$ possible palindromes.

If n is odd, then we can arbitrarily choose the first (n+1)/2 bits and then the last (n-1)/2 bits are automatically fixed. As before, this leads to $2^{(n+1)/2}$ possible palindromes.

We can combine these two cases and say that the number of *n*-bit palindromes for any natural number *n* is $2^{\lceil n/2 \rceil}$.

Solution for PS8-11.

- **a.** $\binom{13}{10}$. This is pretty much the definition of "*n* choose *k*."
- **b.** $13 \times 12 \times \cdots \times 4 = \frac{13!}{3!}$, by the generalized product principle.
- c. $\binom{13}{10} \binom{11}{10}$, subtracting off sets of 10 players chosen solely from the 11 students.

Solution for PS8-12.

- a. $\binom{10}{4}$, since this amounts to choosing the 4 locations (out of 10) where the 1s will occur.
- **b.** $\binom{10}{1} + \binom{10}{2} + \binom{10}{3} + \binom{10}{4}$, by applying the previous observation four times.
- c. $\binom{10}{4} + \binom{10}{5} + \binom{10}{6} + \binom{10}{7} + \binom{10}{8} + \binom{10}{9} + \binom{10}{10}$, along similar lines.
- **d.** $\binom{10}{5}$, along similar lines.

Solution for PS8-13.

- *a*. 5040.
- **b.** 1440.
- *c*. 240.
- **d.** 2640.