捷運盃 Inno Idea 新創提案競賽

綠悠遊-綠色旅遊一手掌握! 提案企劃書

厚隊編號:	(主辦單位填寫)
 	

團隊名稱:中央綠遊今

中 華 民 國 113 年 7 月 25 日 **捷運盃 Inno Idea 新創提案競賽**

提案摘要

提案作品名	綠悠遊-綠色旅遊一手掌握!
稱	
提案主題	□智慧運輸服務(□台北車站站內導航)
	□創新商業模式
	■AI 應用
企劃摘要	為促進地方觀光旅遊發展,並推動綠色旅遊,以
(200 ⇔ ₼)	「搭捷運玩台北」為企劃概念,結合生成式 AI 自動推薦
(300字內)	環保餐廳、綠色景點、環保旅宿,省去旅客查詢環保餐
	廳或住宿商家的搜尋時間,由 AI 幫助旅客規劃旅遊路
	徑、交通方式,安排捷運一日綠色旅遊行程,同步計算
	碳足跡,讓民眾或旅客更容易實現減碳新生活。
	我們希望在台北捷運 Go 的應用程式上,增加「綠悠
	遊」功能,當使用者進入綠悠遊介面後,即可以透過對話
	機器人,自動規劃綠色旅遊行程,且此功能串連「環保集
	點」App,完成旅遊目標即可以自動累積綠色點數,綠色
	點數可用兌換合作商家優惠、捐贈、或回饋於次月搭乘捷
	運的儲值金,達到推廣捷運多元用途並促進減碳、發展綠
	色產業鏈之目的。

壹、背景與動機

我國國家發展委員會於 2022 年 3 月公布「臺灣 2050 淨零排放路徑及策略總說明」,該策略旨在通過科技研發和氣候法制的推動,實現以下四大目標。

1. 安全能源:確保能源的穩定供應與安全性。

2. 強化產業:提升產業競爭力與綠色轉型。

3. 永續生活:推動綠色生活方式,提升民眾的環保意識。

4. 韌性社會:增強社會的抗風險能力與適應力。

其中「永續生活」倡導改變民眾生活型態,將綠色意識實踐於日常生活中,基於此精神,我們希望推廣「輕鬆搭捷運綠色旅遊」的概念,旨在讓民眾在台北觀光時優先選擇捷運作為交通工具。

隨著智慧型手機與網際網路的普及,許多人在旅遊前使用搜尋網站或旅 遊網站查找旅遊資料,面對不熟悉的地方,如何規劃出最省時有效率的旅遊路 線,蒐羅各地景點與美食、安排適當的交通工具,都是一大考驗。

貳、企劃目的

本企劃旨在利用「台北捷運 Go App」中的「旅遊趣」功能,新增一項創新的綠色觀光路線規劃服務,在規劃行程時,優先推薦綠色景點、環保餐廳、環保標章旅館作為旅遊目的。企劃主要目標如下:

(一) 構建智能綠色旅遊平台

結合「生成式 AI」技術,串連大型語言模型與環境部「淨零綠生活網站」,開發智能規劃旅遊行程的平台。使用者透過簡單的文字或語音搜尋,即可以輕鬆查詢目的地周邊的環保餐廳、環保旅宿、綠色商店和旅遊景點名單,生成旅遊地圖,自動規劃捷運等交通路線,讓行程碳足跡一目了然。

(二)促進綠色產業鏈發展

遊客出示捷運電子乘車證明兌換合作商家優惠,深入推廣「輕鬆搭捷運緣色旅遊」的概念,吸引本國國民與國外遊客選擇環保友善的綠色旅遊行程。加速觀光產業鏈(如旅宿、餐飲、零售業等)的綠色轉型,並在周邊區域觀光發展的影響下,同時帶動捷運人流與客運量,創造永續旅遊需求。

參、企劃設計概念及解決方案及效益

一、目標對象

如圖 1 說明,主要客群為一般旅客、職場人士、銀髮族、年輕人,並擴大目標客群,包括:環保意識強的年輕小資族、科技愛好人士、喜好環保生活的家庭、國內外自助行遊客。

圖 1. 目標市場細分說明

二、解決痛點

(一) 現況分析

- 1.「台北捷運 Go」App 客群
 - 有捷運使用需求的國內外旅客。
 - 需要安排個人時間規劃的使用者。

2. 「旅遊趣」功能

- ▶ 作為台北捷運 Go App 的一個子功能。
- ▶ 提供基本的旅遊資訊和優惠,包含主題地圖和玩樂情報。

▶ 與部分旅遊業者合作提供優惠。

(二)痛點分析-旅遊趣之侷限性

- 1. 旅遊行程與玩樂情報功能
 - 主要聚焦於一般商家優惠的外部網站資訊。
 - 介面呈現固定資訊,無法客製化顯示可能有興趣的商家。
 - 無旅遊規劃服務,需自行查找交通方式。
 - 缺少直覺化操作介面,包括分類、搜尋、儲存喜好等功能。
- 2. 多元旅客之旅遊交通需求
 - 非中文母語人士之旅客無法使用捷運 App 查看推薦景點。
 - 沒有景點的周邊交通地圖,需自行打開 Google 地圖查找。
- 3. 淨零碳排與綠色旅遊趨勢
 - 旅遊趣缺乏綠色商家資訊。
 - 民眾難以量化自己的行為對環境的影響。
 - 缺乏獎勵機制來鼓勵用戶選擇綠色旅遊。

三、核心技術

(一) AI 技術

- 串接 GPT-4 o API:提供高度智能化和個性化的 AI 對話體驗。
- 本土模型:使用 Trustworthy AI Dialogue Engine (TAIDE) 為台灣本地大型語言模型數據集,使用其數據集使語言模型能參考本地內容,並且應用 system prompt 調整 AI 回答內容。
- RAG 模型:使用 Retrieval-Augmented Generation (RAG)模型,將 LLM 與知識檢索相結合,提升回答的準確性和相關性。
- 自動標註:利用 LLM 進行自動標註資料,解決冷啟動問題,增強推薦系統的初始效果。

(二)旅遊推薦系統之冷啟動處理

- 自動標註和數據增強:通過 Prompt Learning 方式,自動標註資料並進行數據增強 (Data Augmentation),利用對比學習 (Contrastive Learning)計算資料之間的正負樣本距離,實現資料的自動分類。
- 自我監督學習:使用自我監督學習(Self-Supervised Learning),將標註 資料設為錨點(Anchor),對其他資料進行分類,解決資料不足和不平 衡問題。

(三) 關聯式推薦

- 多代理強化學習 (Multi-Agent Reinforcement Learning):計算不同類別 特徵間的相似度,利用交叉熵 (Cross Entropy)計算權重,提升推薦效 果的精確性。
- 個性化推薦:根據用戶偏好和行為數據,動態生成個性化的旅遊路線和景點推薦,並結合環保指標,提供綠色旅遊建議。

(四) App 功能模組

功能模組	支援技術	說明	
搜尋	多條件搜尋	React Native 可以輕鬆實現搜索功能,並提供實時 搜索建議和多條件篩選。	
	本地數據處理	使用 Redux 和本地數據庫(如 SQLite)來存儲和處理搜索數據,提升搜索效率。	
聊天	即時通信	通過集成 Socket.io 或 Firebase Realtime Database,實現實時聊天功能。	
	語音輸入	利用 React Native 的原生模組,實現語音識別和語音輸入功能,提升用戶體驗。	
旅遊推薦	個性化推薦	通過後端的 AI 算法,將個性化的推薦結果傳遞到 前端,並在 APP 中友好展示。	
即時更新		React Native 支持即時數據更新,確保推薦內容的時效性。	
碳足跡 計算	即時計算	前端可以通過與後端 API 交互,實時獲取和顯示 碳足跡數據。	
	可視化展示	使用 React Native 的圖表庫(如 Victory 或 React Native Chart Kit)來可視化展示碳足跡數據。	
環保積 分系統	積分管理	前端通過 Redux 管理用戶的積分數據,並提供積分 查詢和兌換功能。	

四、創新亮點

(一)使用情境

一般出遊會使用 Google 地圖,來規劃旅遊行程,包括查詢旅遊景點、餐廳、交通方式等,需要分項目查詢,無法透過文字指令規劃行程。比如在搜尋欄位輸入以下文字:「我想規劃台北淡水一日遊,早上8:00 搭乘北捷從木柵出發,一行人有六個人,人員包含:六歲小孩兩位、七十歲老人兩位、五十歲大人兩位,中午餐廳想吃日式料理,下午想要騎腳踏車,晚上想要吃景觀餐廳,價位平均在一人 1000 內。」

遊客使用我們的綠悠遊平台,即可完成複雜搜尋及客製化條件搜尋,平台除了會優先推薦環保商家外,還能夠計算當天搭乘大眾交通工具所累積的碳足跡,供使用者查看。且使用者在完成旅遊目標後,可以額外領取回饋點數,點數可以用於兌換商家優惠。

(二)平台特色

1. 智能旅遊一鍵規劃

如圖 2 所示,利用大型語言模型 (GPT-4o) 和台灣本土 AI 模型 (TAIDE) 提供高度個性化的捷運綠色旅遊建議,分析並推薦運沿線的環保餐廳、綠色景點和環保旅宿。並根據用戶消費行為和環保偏好的歷史資料,來提供使用者個性化的綠色消費建議。

2. 碳足跡遊戲化

智能推薦低碳路線,整合捷運與其他綠色交通方式(如共享單車), 系統會實時計算用戶旅程的碳排放,並提供減排建議。根據使用者的 歷史交通習慣、減碳量,由 AI 生成個人的每日/週/月挑戰,鼓勵用戶 完成探索環保景點和參與生態保護等活動,達成綠色目標,兌換獎勵 點數,如圖 3 所示。

圖 2. AI 旅行詳細規劃圖

圖 3. 用戶旅程地圖

(三)平台創新功能

功能模組	子功能	說明
搜尋	進階搜尋	支援多條件篩選,如地點、評價、價格範圍、環 保等級等,提供更精確的搜尋結果。
	搜尋建議	根據使用者輸入的關鍵字,即時提供智能搜尋建 議,提升搜尋效率和用戶體驗。
聊天	AI 聊天助手	集成式 AI 助手,提供即時旅遊資訊、路線規劃和問題解答,支持語音輸入和多語言對話
	對話歷史	儲存使用者的聊天記錄,方便查看歷史對話內容 和 AI 建議。
旅遊 個性化推薦 推薦		根據使用者的個人偏好、歷史行為和環保指標, 提供個性化的旅遊路線和景點推薦。
	即時推薦	根據當前位置和即時數據(如天氣、人流量等),動態調整推薦內容。
碳足跡 計算	碳足跡計算	根據使用者的出行方式(如步行、搭乘捷運等) 和行程距離,即時計算碳足跡。
	減碳建議	提供減碳的交通建議,如選擇綠色交通方式、參 觀環保景點等。
環保積 分系統	積分累積	使用者在使用 APP 進行綠色旅遊、參觀環保景點或消費綠色商家時,可以獲得環保積分。
	積分兌換	使用者可以使用積分兌換各種優惠或獎品,如折 扣券、禮品。

五、競爭力分析

Google Map 是許多人規劃旅遊常用之應用程式,本平台與其比較如下:

功能/特點	綠悠遊	Google Map
地圖覆蓋範圍	專注於台北捷運網絡	全球覆蓋
路線規劃	專注於綠色和低碳路線	提供多種交通方式,但 不特別強調環保
個性化推薦	高度個性化,考慮環保 因素	有一定程度的個性化, 但不針對環保需求
碳足跡追蹤	有	無
本地商家合作	和環保商家深度合作	廣泛的商家信息,但不 專注於環保

如圖 4 所示,將平台價值分為 AI 個性化程度與環保導向兩維度,比較知名旅遊平台在淨零碳排與生成式 AI 趨勢下的價值。

圖 4. 市場定位分析圖

六、市場擴張潛力

(一) 市場規模分析

市場潛力	說明		
用戶數量	1. 台北市日均捷運乘客量約 195.8 萬人次。考慮重複乘客、智能 手機普及率和 APP 下載意願,潛在日活用戶可達 10-15 萬。 2. 台灣年國內旅遊人次約 1.7 億,如獲得 1%市場份額,潛在用戶可 達 170 萬。		
地理擴張	 優先關注台北市及周邊地區(約700萬人口),再逐步擴展到其他 五都。 亞洲主要智慧城市(如東京、首爾、新加坡等)人口總計超 過5000萬,國際擴張潛力巨大。 		

技術創新 潛力	說明	
AI 技術 應用	 全球 AI 市場預計到 2025 年將達到 1900 億美元。在交通和旅遊領域的 AI 應用有望佔據重要份額。 通過 AI 優化,目標將用戶的旅行規劃時間縮短 30-40%,提升用戶體驗。具體效果需通過 A/B 測試驗證 	
物聯網 集成	預計到 2025 年,全球將有超過 750 億個 IoT 設備。結合 IoT 技術,APP 可提供更精準的環境數據和交通資訊。	
區塊鏈 應用	區塊鏈技術可確保綠色行為認證的可信度。建議進行小規模的區塊鏈試點項目,驗證其在綠色行為認證中的實際效果。	

社會和經濟影響潛力	說明		
環保貢獻	保守估計,如果 APP 能夠影響 10 萬日活用戶,每年可減少約 13,000 噸碳排放。透過推廣綠色旅遊,有潛力影響超過 100 萬 人的旅遊習慣,促進可持續旅遊發展。		
城市規劃影響	APP 收集的匿名化數據可以為城市規劃提供寶貴參考,潛在 影響整個大台北地區 700 萬人口的生活質量。		
綠色積分經濟	假設 30%的 30 萬月活躍用戶參與綠色積分計劃,按每用戶每月 100 元消費計算,年交易額可達 1.08 億元。		

(二)擴張潛力分析

参考圖 5 與圖 6 的圖片說明,從三個層面(市場擴張、技術與服務創新、商業模式)來分析擴張潛力,先說明計畫如何在市場擴張,再探討技術與商業模式之擴張潛力。

1. 未來市場擴張

目標	說明		
用戶擴張	包括:環保意識強的通勤族、尋求永續發展旅遊體驗的國		
	內外遊客、教育機構(利用 APP 進行環境教育)。		
地理擴張	短期:完善台北捷運網絡覆蓋的綠色旅遊生態系統		
	中期:擴展到台灣其他擁有捷運系統的城市		
	▶ 長期:將 AI 綠色捷運旅遊模式推廣到其他智慧城市		

2. 未來技術與服務創新

目標	說明		
服務擴張	1. 開發 AI 驅動的企業綠色通勤解決方案。 2. 拓展到其他形式的綠色交通工具(如電動公車、共享電動車)。		
技術擴張	1. 利用物聯網裝置整合環境監測數據,提供全面資訊。 2. 開發基於區塊鏈的綠色行為認證系統。 3. 探索 AI 在預測和優化城市綠色交通流量方面的應用。		

3. 未來商業模式

目標	說明		
	1. 與綠色企業合作,與致力於永續發展的企業合作,提		
擴展合作夥	供專屬優惠或體驗活動。		
伴網絡	2. 與國際環保組織合作,如世界自然基金會(WWF)等組		
	織合作,增加國際影響力。		
	1. 建立可兌換實際商品或服務的綠色積分經濟系統。		
商業模式創	2. 企業提供員工通勤分析和獎勵方案的企業訂閱服務。		
新	3. 在保護隱私的前提下,將使用者的旅遊行為數據以匿		
	名儲存的方式,作為城市規劃的參考。		

圖 5. 綠色積分生態系統圖

圖 6. 綠悠遊 App 詳細綠色積分系統流程圖

七、獲利模式

依照商業模式設計範本面來說明「綠悠遊」的產品獲利模式。

導向	構面	說明
供給或資源導向	關鍵合作夥 伴	台北捷運 Go App、綠色景點、環保餐廳、環 保旅店、環保標章旅行社
	關鍵活動	快速客製化生成旅遊規劃服務,取代民眾上網查資料與詢問旅社專人的繁瑣流程。
	關鍵資源	捷運廣告看板、台北捷運 Go App,臺北捷運公司開放資料、環境部淨零綠生活網站
價值導向	價值主張	只需要在對話中輸入旅遊需求,從搜尋結果 中也能客製化篩選條件
需求導向	顧客關係	設計自動化服務,顧客和 AI 回饋旅程體驗, 提升 AI 嚮導的推薦準確度。
	通路	下載台北捷運 Go App 於下方欄位的「旅遊 趣」按鈕進入即可使用該 AI 嚮導服務。
	目標客群	有觀光需求、需要國語/台語/英語語音對話、 不擅長收集旅遊資料、喜歡綠色生活的概 念、喜歡嘗試新科技,所有年齡範圍的國內 外旅客。
財務導向	成本結構	變動成本如網路費、廣告費、客戶服務等 固定成本如管理者薪資、產品設計、佣金等
	收益流	周邊銷售所得、餐券/住宿券交易手續費、旅 行社佣金、台北捷運票、一日遊票券、平台 訂閱費

台北捷運招商周邊商家進駐廣告,店主向北捷提供其綠色相關報告,審 核後會加入合作商家名單中,北捷提供 App 的廣告版面與 AI 嚮導的推薦次 數,而消費者可持電子乘車紀錄至商家消費兌換優惠。

八、成本效益分析

(一) 資金規劃

專案系統開發採用軟體工程,工作項目包括:1.需求訪談與分析 2.系統分析與設計 3.雛型開發展示及確認 4.程式開發 5.單元測試 6.系統整合測試 7.使用者測試 8.管理者教育訓練 9.使用者教育訓練 10.技術移轉訓練,開發所需相關事項如下:

項目	子項目	金額小計(NTD)
軟體需求	作業系統、網頁設計、資料庫建置、地圖設計等 開發人員薪資	800,000
硬體需求	CPU、風扇、RAM、記憶體、硬碟、主機板、電源購置費用等	1,200,000
維運需求	派駐資訊人員提供系統維護服務,定時檢查、優化系統的各項功能	250,000
教育訓練	確認相關人員具有系統之使用知識,舉辦使用者教育訓練等	120,000
人事成本	專案主持人、專員、助理、企劃人員等薪資等	1,250,000
其他費用	會議租借、資料購買、問券、訪談聘請專家顧 問、員工差旅費等	100,000
忽言十		3,720,000

目前雙北市共 1200 家環保餐廳、65 家綠色商店、222 家環保旅宿,推估第一年約 50%業者有意願進駐綠悠活系統,商家進駐費用固定為\$8,000/年,收入為 5,944,000 元。

ROI = (5,944,000 - 3,720,000) / 3,720,000 = 59.78% 投資報酬率為正值,因此團隊建議執行此系統開發企劃。

肆、可行性評估及導入程序方法與流程說明

一、可行性分析

面向	說明		
經濟可行性	同上述「成本效益分析」內容。		
技術可行性	同上述「核心技術」內容。		
法律可行性	 法律要求 資料隱私:需符合個人資料保護法。 智慧財產產權:確保所有使用的技術和內容不侵犯他人智慧財產權。 合規性評估 合約管理:與所有合作方簽署合法有效的合作協議。 		
社會和文化 可行性	 社會環境 ▶ 科技接受度:台灣民眾對新科技接受度高,有利於 AI 功能的推廣,特別是在智慧城市和綠色科技的倡導下。 ▶ 本地旅遊興起:疫情後本地旅遊需求增加,為「輕鬆搭捷運綠色旅遊」提供了良好的市場環境。 		
	文化價值觀 創新精神:契合台灣社會鼓勵創新的文化氛圍。 環保責任:台灣民眾支持推廣捷運和「環保餐廳」、 「環保標章旅館」的綠色旅遊模式。		

二、導入方法與流程

(一) 導入流程

導入流程	構面	說明
系統規劃	檢視現有系 統	檢視並梳理原本系統的內部流程、資訊數據 接點及原始資料
	定義問題	快速客製化生成旅遊規劃服務,取代民眾上 網查資料與詢問旅社專人的繁瑣流程。

	資源分配	捷運廣告看板、台北捷運 Go App,臺北捷運 公司開放資料、環境部淨零綠生活網站
系統分析	系統評估	只需要在對話中輸入旅遊需求,從搜尋結果 中也能客製化篩選條件
	可行性評估	評估技術相關可行性、預算經濟可行性及市 場可行性。
	風險評估	識別可能的風險並制定應對策略。
系統設計	參考上述核心技術之 APP 功能模組	
系統實施	部署準備	選擇部署平台:選擇合適的雲平台(如 AWS、Google Cloud、Azure)進行部署。 配置服務器:配置合適的服務器和網絡環 境,確保系統的安全性和可擴展性。
	部署步驟	前端部署:將 React Native 應用打包並發布到 App Store 和 Google Store 後端部署:使用 Docker 容器化後端應用,並 部署到雲平台,配置自動擴展和負載均衡。 資料庫部署:部署 MongoDB 和 Redis,確保 數據庫的高可用性和性能。

(二) 導入方法一滾動式導入

步驟	說明		
持續改進	定期更新:根據用戶反饋和市場需求,定期更新 APP,修復 BUG 並增加新功能。 用戶反饋機制:建立用戶反饋機制,鼓勵用戶提交意見和建議,並根據反饋進行產品改進。		
動態調整	數據驅動決策:通過數據分析,了解用戶行為和需求,動態調整開發和導入計劃。 迭代開發:採用敏捷開發方法,分階段進行開發和測試,每個迭代都進行回顧和優化。		

| 内部監控:在內部測試階段,通過持續集成和持續部署(CI/CD)
| 工具,監控開發進度和質量。
| 外部監控:在早期用戶測試階段,通過用戶反饋和數據分析工具,監控系統運行情況和用戶體驗。
| 開戶回饋:通過問卷調查、用戶訪談和數據分析,收集用戶對新系統的反饋。
| 內部反饋:定期進行內部評估,收集開發和運營團隊的反饋,找出改進點。
| 定期更新:根據收集到的反饋,定期發布新版本,修復已知問題,增加新功能,優化用戶體驗。

(三)未來落地執行時的策略分析

圖 7. APP 未來發展時間分析

伍、結論

「綠悠遊」是一個創新的智能綠色旅遊平台,針對現代都市旅遊中的痛點一繁瑣的行程規劃、缺乏環保意識和碎片化的旅遊體驗一提供了全面的解決方案。平台的特色是整合了智能碳足跡追蹤、環保積分獎勵和綠色消費指引,提升旅客的環保意識,透過遊戲化機制形成了良性循環的綠色旅遊生態。

在未來,將加入 AR 技術,提供沉浸式的綠色旅遊體驗,或是擴大服務範圍至 其他縣市,吸引更多使用者投入智能旅遊的計畫,希望能推動台灣綠色產業鏈 的數位轉型,成為綠色智慧城市的推手。

陸、參考資料

台北大眾捷運公司旅運量。取自

https://www.metro.taipei/cp.aspx?n=FF31501BEBDD0136

臺灣 2050 淨零排放路徑及策略總說明。取自

https://www.ndc.gov.tw/Content_List.aspx?n=DEE68AAD8B38BD76

環保署綠牛活選擇。取自

https://greenlifestyle.moenv.gov.tw/categories

柒、 團隊介紹

蔡嘉恩 / 中央大學資管所

- 第27屆國際資訊管理暨實務研討會 (IMP2022) 發表
- 2022 全國經營管理專題競賽獲獎 Cancer finding

蕭悠暄 / 中央大學資管所

- 2024 國泰金控綠色金融科技科 實習生
- 2022 凌網科技股份有限公司 實習生

龎皓倫 / 中央大學資管所

- 2024 中央大學資管系AI人工智慧及網頁 設計課程研究助理
- ◆ 2023-2024 ADML實驗室 進行 reinforcement learning 相關演算法及模 型開發研究

羅子珺 / 中央大學資管所

- 2024 國泰金控綠色金融科技科 實習生
- 2023 AI金融科技創新創意競賽 新創組