Fair and Ethical Admissions: Mitigating Bias with Data-Driven Solutions

A Case of iLink University

Team- "**Data Ninjas**"
Team Members:
Sushant Magar and Karan Shrestha
SAS Hackathon, 2024

Problem Overview

Challenge

- Biases in historical admissions data
- Preferences for legacy admissions
- Disparities related to demographic factors like gender and cultural identity

<u>Impact</u>

- Perpetuates unfairness
- Leads to an underrepresentation of certain demographic groups
- Undermines diversity within the M.S. in Analytics program

<u>Goal</u>

- Develop a data-driven, ethical admissions process
- Mitigate bias and promote fairness
- Ensure evaluation of all applicants based on their true potential

Data Discovery (EDA)

Dataset Overview

Dataset Size: 1,000 applicants

Target Variable: Admitted (Yes = 1, No = 0)

 Admission Breakdown: 80% not admitted, 20% admitted

Feature Engineering Applied to

- Test Scores: Categorized into 'Low,' 'Average,' 'High'
- Work Experience, Recommendations

Key Findings

- High Test Scores: 52% admission rate
- Weak Recommendations: Only 2.5% admission rate

Frequency Percent of Standardized Test Score by Admission Status

Frequency Percent

Standardized Test Score (Catergory)

Admission Status

Admitted Not Admitted

Data Discovery (EDA)

Bias Indications:

- Cultural Bias: White, Non-Hispanic admitted at 14%, Asians at 3.7%.
- Regional Bias: Americas 10%, APAC 2.9%, EMEA 6.9%.
- Underrepresentation: Black and Hispanic rates lower than White, Non-Hispanic.

Data Discovery (EDA)

Bias Indications:

- Legacy Bias: Legacy admitted at 48%, non-legacy at 16%.
- Gender Bias: Males admitted more often than females.
- Rejection Rates: Non-legacy 74%, legacy 52%.

Frequency Percent of Legacy Admission Code grouped by Admission Status

Frequency of Admission Status by Gender

Initial Model Building

Model Strategies and Pipeline Design

- Pipeline 1: Logistic Regression, Forest, Gradient Boosting.
- Pipeline 2: SVM (RBF kernel), Neural Networks, Decision Trees.
- Variable Selection: Applied to Logistic Regression, SVM, and Neural Networks to optimize performance.
- Exclusion of Mission Statement: Omitted due to subjectivity and missing data.

The Champion Model

Forest Model: Outperformed others with high accuracy, KS, and AUC.

Class Imbalance: 20% admitted; adjusted by sorting predictions by probability to meet the target of 40 students.

Bias Indicators: Disparities detected in cultural identity, gender, and legacy status, prompting bias assessment.

Model Comparison

BIAS Assessment: Identifying Inequities

- Performance Bias: Significant disparities in TPR across groups (e.g., 75% for White, 0% for Asian).
- Prediction Bias: Model more likely to favor specific groups (e.g., White over Asian, male over female).
- Next Steps: Address biases to ensure fairer outcomes.

Country RegionCultural Identity

Rebuilding The Model

Rebuilding the Model for Fairness

- To ensure fairness, we removed key biased variables: Gender, Cultural Identity, Country/Region, and Legacy Admission.
- This action aimed to eliminate skewed predictions and provide an equitable admissions process across all groups.
- The rebuilt model focused solely on meritdriven variables, reducing the risk of biased decision-making.

Performance Metrics Before and After Bias Adjustment 4.67 Before Bias Adjustment After Bias Adjustment 2.83 1 -0.88 0.81 0.81 0.65 0.64 0.65 0.57 0.38 Metrics

The Trade Offs: Performance Vs. Fairness

Compromised Performance

- Accuracy dropped by 6.7%, indicating it's slightly less precise in predicting admissions.
- F1 Score decreased by 27.6%, showing a reduced ability to balance precision and recall, meaning the model struggles more to predict true admissions and avoid false positives.
- Cumulative Lift also declined, indicating the model is now less effective at identifying top candidates compared to random guessing

The Trade Offs: Performance Vs. Fairness

Improved Fairness

Metric	Before Bias Adjustment	After Bias Adjustment	Comments
True Positive Rate (TPR)	Max difference: 0.75 (Cultural Identity: White vs Asian)	Max difference: 0.5 (Cultural Identity: Black vs Other)	Improved parity across groups, indicating better balance in positive admissions predictions.
False Positive Rate (FPR)	Max difference: 0.16 (Cultural Identity: White vs Asian)	Max difference: 0.11 (Cultural Identity: Other vs Black)	Reduced disparity in incorrect positive predictions, which indicates fewer false admissions across groups.
Accuracy	Max difference: 0.14 (Cultural Identity)	Max difference: 0.24 (Cultural Identity)	Slight increase in accuracy disparity; however, the fairness trade-off often leads to such variations.
Area Under ROC (AUC)	Max difference: 0.21 (Legacy Admission)	Max difference: 0.07 (Legacy Admission)	AUC parity significantly improved , indicating better balanced performance post-adjustment.
Kolmogorov-Smirnov (KS)	Max difference: 0.78 (Gender: Male vs Female)	Max difference: 0.59 (Gender: Male vs Female)	Reduced KS disparity, indicating improved model fairness in distinguishing admitted vs. non-admitted students across genders.
Predicted Probability	Max difference: 0.304 (Cultural Identity: White vs Asian)	Max difference: 0.084 (Cultural Identity: White vs Black)	Significantly reduced prediction bias, showing a much more equitable model in terms of admissions predictions.

Admissions: Before vs. After Bias Adjustment

Shifts in Diversity and Representation

Cultural Identity

- More equitable admissions process that actively recognizes and includes underrepresented groups post adjustment.
- ✓ Representation of Asian applicants increased significantly from 12.5% to 45%, while White applicants decreased from 72.5% to 35%.

Country Region

- Commitment to global diversity, ensuring that students from various regions contribute to a richer academic environment.
- Admissions from the Americas dropped from 65% to 37.5%, while representation from the APAC region rose from 12.5% to 45%.

Comparison of Country Region Before and After Bias Adjustment

Admissions: Before vs. After Bias Adjustment

Shifts in Diversity and Representation

Legacy Admission

- ✓ move towards a merit-based admissions process, prioritizing qualifications over legacy status, which enhances fairness and inclusivity.
- ✓ Percentage of legacy students admitted dropped from 30% to 10%, while non-legacy admissions increased from 70% to 90%.

Gender

- ✓ Male admissions rose from 57.5% to 62.5%, while female admissions decreased from 42.5% to 37.5%.
- ✓ The reduction in female admissions highlights a cost of fairness that the university must address through policies aimed at ensuring gender equality and representation.

Merit-Based Admissions: Reinforcing Bias Adjustment

Stronger Academic Performance:

Increased average standardized test scores postadjustment, emphasizing high-achieving candidates.

Relevant Work Experience:

Rise in mean years of work experience, favoring candidates with practical skills.

Additional Considerations:

Strength of Recommendation: Consistent importance of peer and mentor support.

Analytics Work Experience: Increased focus on candidates with specialized skills.

Diverse Perspectives:

Prioritizing merit fosters a well-rounded student body, enriching the academic environment.

Bringing Fairness to Admissions: A Balanced Approach

Mission

Removing bias for fair, merit-based admissions

Key Wins

- Increased representation for underrepresented groups
- Reduced legacy admissions
- Balanced academic standards with fairness

The Human Touch

SOPs and Mission Statements matter!

Call to Action

- Combining data and human judgment for a better future
- Standardized assessments or situational judgment tests for soft skills and cultural competency
- Project-based for practical evidence of skills and experience beyond personal narratives
- Gather behavioral data from how applicants interact with application platforms

