Reducing the Complexity of Neural Networks

Samuel Jackson (slj11)

NNs in a Nutshell

- Inspired by synapses in the brain.
- Idea has been around for over 70 years¹.
- Each perceptron takes a weighted vector of inputs.
- Activation function determines output.

NNs in a Nutshell

- Perceptrons stacked into layers.
- Typically will have multiple layers.
- Training:
 - Feed forward examples through the network.
 - Back propagate error between actual and expected.

Reducing Complexity

- Modern networks have 1000s of weights.
- Huge amount of time and memory used.
- Idea: Can we reduce or compress the number of weights?
- There can be a high amount of redundancy¹
 - Sparsity: many weights are zero or nearly zero.

HashedNets¹

- Uses the "hash trick": A hash function randomly maps virtual weights to an array of real weights.
- Size of real weight array determines the amount of compression.
- To save memory inputs are hashed rather than weights.

HashedNets

Pros

- Can be trained using regular back propagation
- Compression size is a fixed parameter
- Is trained at a fixed size, rather than starting large and slimming down
- Can easily be combined with other approaches

Cons

- Random memory access on GPUs is not efficient.
- Compression size is a fixed parameter
- No results with more general image set, or other architectures (e.g. Convolutional, Recurrent)

Weight Pruning¹

- Very simple idea:
 - Learn a full network
 - Prune connections with a threshold
 - Prune unconnected neurons
 - Retrain the pruned layers
- Similar to Dropout² but with without probabilities.

- 1. Han, Song, et al. "Learning both weights and connections for efficient neural networks." arXiv preprint arXiv:1506.02626 (2015).
- 2. Srivastava, Nitish, et al. "Dropout: A simple way to prevent neural networks from overfitting." The Journal of Machine Learning Research 15.1 (2014): 1929-1958.

Weight Pruning

Pros

- Quite a simple technique
- Number of weights selected automatically
- Authors used Caffe¹ and well known architectures so results are very reproducible.
- "Better than random"

Cons

- Number of weights selected automatically.
- Requires growing a full network architecture first.

Low-Rank Decomposition¹

- Weight matrix is often very big (n_v x n_h)
- Can be decomposed into two smaller matrices
 - W = UV
 - Where **U** is of size $n_v \times n_a$ and **V** is of size $n_a \times n_h$
 - n_a Is parameter determining the space saving.
- Keep U fixed and learn only V
 - U becomes a "dictionary of bases"

 $= \bigcup_{v \in \mathcal{V}} n_a$

 n_a

- V becomes the parameters for linear combinations of U representing learned features.
- Many, many choices for U discussed by the authors.

Low-Rank Decomposition

Pros

- Many choices for U
- Authors propose an architecture that can use multiple U
- Doesn't require a full network to be learned.
- Independent of the choice of activation, regularisation, layer architecture etc.

Cons

- Complicated to implement
- Choice of n_a is not obvious.
- Choice of is U often not obvious

Thank You

Any Questions?