

Two-Part Project Focusing on Threat Mitigation in ML Systems

Part 1: Detecting Data Poisoning and Adversarial Attacks in Machine Learning

In this part of the project you investigate training-time (data poisoning) and inference-time (adversarial) vulnerabilities in ML models through controlled experiments. You will work on a dataset, build a machine-learning model, test it for vulnerabilities.

-Part 1 Phases:

Phase 1: Dataset Selection and Preprocessing

- 1. Select a suitable dataset for your project. It could be a standard dataset like MNIST, CIFAR-10, or one relevant to your domain.
- 2. Implement preprocessing pipeline: Normalization, train-test splits (70-30

Phase 2: Building a Machine Learning Model

- 3. Choose a machine learning model architecture (deep neural network, convolutional neural network...).
- 4. Train on clean data with validation-based early stopping
- 5. Establish baseline performance metrics (Accuracy and Confusion Matrix)

Phase 3: Training-Time Attacks (Data Poisoning)

- 6. Poisoning Attack Implementation
 - Inject malicious samples into training data using one of:
 - Label-flipping attacks
 - Any of the clean-label backdoor attacks
 - maintain attack budget (<15% training data contamination)

7. Poisoned Model Evaluation

- Retrain model on contaminated dataset
- Compare performance degradation on:
 - Clean test set
 - Poisoned validation samples
 - Original validation set

Phase 4: Inference-Time Attacks (Adversarial Examples)

8. Adversarial Attack Generation

- Implement two distinct attack methods:
 - White-box: FGSM/PGD/C&W/DeepFool
 - Black-box: Surrogate model
- Generate adversarial test sets with controlled perturbation budgets ($\varepsilon \le 0.1$)

9. Attack Impact Analysis

- Quantify robustness drop using:
 - Adversarial success rate
 - Confidence score distributions
 - Per-class vulnerability analysis

Phase 5: Comprehensive Evaluation

10. Cross-Attack Susceptibility

- Test poisoned model against unseen attack vectors
- Analyze transferability between attack methods

11. Vulnerability Report

- Create visualization: Security Curve for accuracy with both perturbations number and number of poisoned samples.
- Document failure modes and high-risk decision boundaries

Part 2: Defending Against Data Poisoning and Adversarial Attacks in Machine Learning

This part aims to develop defenses to safeguard the mode from Part 1

-Part 2 Phases:

Phase 1: Poisoning Defense Implementation

- 1. Choose one Data Sanitization Techniques for example:
 - Implement anomaly detection (Isolation Forest/MAD)
 - Apply spectral signature analysis for poisoned sample removal
- 2. And one method of Robust Training Methods for example:
 - Integrate regularization (Dropout/Weight Clipping)
 - Explore differentially private training

Phase 2: Adversarial Defense Strategies

- 3. Input Preprocessing Defenses
 - Test randomized smoothing techniques
- 4. Model Hardening
 - Apply adversarial training with PGD examples
 - Explore certified robustness methods (IBP/RS-Certify)

Phase 3: Defense Evaluation

- 5. Quantitative Analysis
 - Compare metrics before/after defenses:
 - Clean data accuracy preservation
 - Attack success rate reduction
 - Computational overhead
- 6. Qualitative Analysis
 - Visualize decision boundary changes
 - Conduct gradient sensitivity analysis

Phase 4: Reporting & Advanced Exploration

- 7. Documentation Requirements
 - Technical report (5-10 pages) covering:
 - Threat models & attack mechanics
 - Defense implementation details
 - Statistical evidence for robustness claims

Submission Requirements

Submit the following file in a zipped folder to the project submission folder.

- Complete Python implementation with modular codebase
- Final report PDF following academic paper format or Presentation deck (technical & non-technical versions)

Grading Criteria:

Criteria	Mark
Technical Depth & Methodology	30%
Defense Effectiveness Metrics	25%
Analysis & Critical Evaluation	20%
Code Quality & Reproducibility	15%
Presentation Clarity & Engagement	10%