page - 1 - NIVEAU : 1 SM

COURS Nº 6

PRODUIT SCALAIRE (plan)

I. RAPPEL:

01. Définition :

- <u>l.</u> \vec{u} et \vec{v} deux vecteurs du plan tel que $\vec{u} = \overrightarrow{AB}$ et $\vec{v} = \overrightarrow{AC}$. le produit scalaire de \vec{u} et \vec{v} est noté \vec{u} . \vec{v} tel que :
- Si $\vec{v} = \vec{0}$ ou $\vec{u} = \vec{0}$ on a : $\vec{u} \cdot \vec{v} = 0$.
- Si $\vec{v} \neq \vec{0}$ et $\vec{u} \neq \vec{0}$ et H la projection orthogonale de C sur la droite (AB) ($A \neq B$ car $\vec{u} \neq \vec{0}$) alors

- $\overrightarrow{\mathbf{u}}.\overrightarrow{\mathbf{v}} = \overrightarrow{\mathbf{AB}}.\overrightarrow{\mathbf{AC}} = \overrightarrow{\mathbf{AB}} \times \overrightarrow{\mathbf{AH}}$ si $\overrightarrow{\mathbf{AB}}$ et $\overrightarrow{\mathbf{AH}}$ ont même sens.
- $\overrightarrow{u} \cdot \overrightarrow{v} = \overrightarrow{AB} \cdot \overrightarrow{AC} = -\overrightarrow{AB} \times \overrightarrow{AH}$ si \overrightarrow{AB} et \overrightarrow{AH} ont les sens opposés.
- **2.** $\vec{u} \cdot \vec{u} = \vec{u}^2 = \overrightarrow{AB}^2 \ge 0$ est appelé le carré scalaire de $\vec{u} \cdot \overrightarrow{AB}$ ou de \overrightarrow{AB} .
- **3.** Le nombre réel positif $\sqrt{\vec{u}.\vec{u}}$ est appelé la norme du vecteur $\vec{u} = \overrightarrow{AB}$ et on note $||\vec{u}|| = \sqrt{\vec{u}^2}$ ou

$$\|\overrightarrow{AB}\| = AB$$
 (remarque $\overrightarrow{u}^2 = \|\overrightarrow{u}\|^2$).

02. Propriétés

Soient \vec{u} et \vec{v} et \vec{w} trois vecteurs du plan tel que : $\vec{u} = \overrightarrow{AB}$ et $\vec{v} = \overrightarrow{AC}$ et $\alpha \in \mathbb{R}$.

<u>l.</u> La forme trigonométrique du produit scalaire (avec $\overrightarrow{AB} \neq \overrightarrow{0}$ et $\overrightarrow{AC} \neq \overrightarrow{0}$) tel que

$$(\overrightarrow{u}, \overrightarrow{v}) = (\overrightarrow{AB}, \overrightarrow{AC}) \equiv \alpha (2\pi) \text{ est} : \overrightarrow{AB}.\overrightarrow{AC} = \overrightarrow{AB} \times \overrightarrow{AC} \cos \alpha \text{ ou encore } \overrightarrow{u}.\overrightarrow{v} = ||\overrightarrow{u}|| \times ||\overrightarrow{v}|| \cos \alpha.$$

- **2.** Symétrie du produit scalaire : $\vec{\mathbf{u}} \cdot \vec{\mathbf{v}} = \vec{\mathbf{v}} \cdot \vec{\mathbf{u}}$.
- Linéarité du produit scalaire : $\begin{cases} (\vec{u} + \vec{v}) \cdot \vec{w} = \vec{u} \cdot \vec{w} + \vec{v} \cdot \vec{w} \\ \vec{w} \cdot (\vec{u} + \vec{v}) = \vec{w} \cdot \vec{u} + \vec{w} \cdot \vec{v} \\ (\alpha \vec{u}) \cdot \vec{v} = \vec{u} \cdot (\alpha \vec{v}) = \alpha \times (\vec{u} \cdot \vec{v}) \end{cases}$
- **4.** Positivité du produit scalaire : $\overrightarrow{\mathbf{u}}^2 \ge 0$.
- **5.** produit scalaire est non dégénéré : $\vec{u} \cdot \vec{u} = 0 \Leftrightarrow \vec{u} = \vec{0}$.
- **6.** orthogonalité de deux vecteurs \vec{u} et \vec{v} : $\vec{u} \perp \vec{v} \Leftrightarrow \vec{u} \cdot \vec{v} = 0$

03. Base et repère (orthonormé direct) Définitions :

- \vec{i} et \vec{j} deux vecteurs non colinéaires du plan (P) . le couple $\vec{B} = (\vec{i}, \vec{j})$ s'appelle base du plan . on dit que le plan (P) est rapporté à la base $\vec{B} = (\vec{i}, \vec{j})$ (ou encore le plan (P) est muni à la base $\vec{B} = (\vec{i}, \vec{j})$)
- O est un point de (P) et $B = (\vec{i}, \vec{j})$ est une base de (P) le triplet $R = (O, \vec{i}, \vec{j})$ s'appelle repère de (P).

 on dit que le plan est rapporté au repère $R = (O, \vec{i}, \vec{j})$ (ou encore le plan est muni d'un repère R)

page - 2 - NIVEAU: 1 SM

COURS Nº 6

PRODUIT SCALAIRE (plan)

 $\mathbf{B} = (\vec{\mathbf{i}}, \vec{\mathbf{j}})$ est une base orthonormée si et seulement si $\vec{\mathbf{i}} \cdot \vec{\mathbf{j}} = 0$ et $\|\vec{\mathbf{i}}\| = \|\vec{\mathbf{j}}\| = 1$. Dans ce cas le repère $\mathbf{R} = (\mathbf{O}, \vec{\mathbf{i}}, \vec{\mathbf{j}})$ est appelé repère orthonormé.

 $\mathbf{B} = (\vec{\mathbf{i}}, \vec{\mathbf{j}})$ est une base orthonormée directe si et seulement si $\mathbf{B} = (\vec{\mathbf{i}}, \vec{\mathbf{j}})$ est une base orthonormée et

 $|\vec{i}, \vec{j}| = \frac{\pi}{2} (2\pi) \cdot |\vec{i}| = |\vec{j}| = 1$. Dans ce cas le repère $\vec{R} = (\vec{O}, \vec{i}, \vec{j})$ est appelé repère orthonormé direct

II. L'expression analytique du produit scalaire et la norme d'un vecteur dans un repère orthonormé :

 \triangle Remarque : dans toute la suite du chapitre le plan (P) est rapporté à un repère $\mathbf{R} = (\mathbf{O}, \vec{\mathbf{i}}, \vec{\mathbf{j}})$

orthonormé direct

 \triangle L'expression analytique de : $\overrightarrow{u}.\overrightarrow{v}$ et $\|\overrightarrow{u}\|$ et AB

01. Activité :

$$\vec{\mathbf{u}}(\mathbf{x},\mathbf{y}) = \vec{\mathbf{x}} + \vec{\mathbf{y}}\vec{\mathbf{j}}$$
 et $\vec{\mathbf{v}}(\mathbf{x}',\mathbf{y}') = \vec{\mathbf{x}}'\vec{\mathbf{i}} + \vec{\mathbf{y}}'\vec{\mathbf{j}}$ deux vecteurs du plan (P).

- Let Calculer: $\vec{u} \cdot \vec{v}$ en fonction de x et y et x' et y'
 puis $|\vec{u}| |\vec{u} \cdot \vec{v}$ en fonction de x et y.
- **2.** Donner une condition nécessaire et suffisante en fonction de x et y et x' et y' tel que $\overrightarrow{u} \perp \overrightarrow{v}$.

4. Donner la propriété .

02. Propriété :

 $\vec{u}(x,y) = x\vec{i} + y\vec{j}$ et $\vec{v}(x',y') = x'\vec{i} + y'\vec{j}$ deux vecteurs du plan (P) . on a :

•
$$\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}} = \begin{pmatrix} \mathbf{x} \\ \mathbf{y} \end{pmatrix} \cdot \begin{pmatrix} \mathbf{x'} \\ \mathbf{y'} \end{pmatrix} = (\mathbf{x}, \mathbf{y}) \cdot (\mathbf{x'}, \mathbf{y'}) = \mathbf{x}\mathbf{x'} + \mathbf{y}\mathbf{y'}.$$

 $\cdot . \| \vec{\mathbf{u}} \| = \sqrt{\mathbf{x}^2 + \mathbf{y}^2} .$

 $\vec{u} \perp \vec{v} \Leftrightarrow xx' + yy' = 0$.

03. Exemple:

On donne : $\vec{u}(2,-4)$ et $\vec{v}(-1,2)$ et A(1,0) et B(-1,0) .

- $\mathbf{\underline{L}}$ Calculer: $\overrightarrow{\mathbf{u}}.\overrightarrow{\mathbf{v}}$ et $\|\overrightarrow{\mathbf{u}}\|$ et \mathbf{AB} .
- **2.** Déterminer un vecteur $\vec{w}(x,y)$ unitaire et colinéaire avec \vec{v} (c.à.d. $||\vec{v}|| = 1$).
- **3.** Montrer que : le triangle ABC est rectangle en A tel que : A(1,3) et B(3,1) et C(-3,-1).
- 4. Déterminer un vecteur directeur de la hauteur issue du sommet A.
- B. Cordonnée d'un vecteur repérage polaire :
- **01.** Activité :

page - 3 - NIVEAU: 1 SM

COURS Nº 6

PRODUIT SCALAIRE (plan)

 $\vec{u} = \vec{OM} = \vec{x} + \vec{y} = ||\vec{u}||[(\cos\theta).\vec{1} + (\sin\theta).\vec{j}]$

 $\vec{u}(x,y) = x\vec{i} + y\vec{j}$ est un vecteur de (P) et M est un point de (P) tel que $\vec{OM} = \vec{u}(x,y) = x\vec{i} + y\vec{j}$ et

$$(\vec{i},\vec{u}) \equiv \theta [2\pi].$$

- **<u>l.</u>** Montrer que $(\vec{u}, \vec{j}) \equiv \frac{\pi}{2} \theta [2\pi]$.
- 2. Calculer : i.u et j.u de deux façons différentes .
- **3.** On déduit que : $\mathbf{x} = \|\vec{\mathbf{u}}\| \cos(\vec{\mathbf{i}}, \vec{\mathbf{u}})$ et $y = \|\vec{u}\| \sin(\vec{i}, \vec{u})$.
- 4. On déduit une autre écriture du vecteur u .
- 5. Donner la propriété .

Vocabulaire : l'angle (\vec{i}, \vec{u}) est appelé angle polaire du vecteur \vec{u} et θ la mesure de l'angle polaire de \vec{u}

ť

02. Propriété :

 $\vec{\mathbf{u}}(\mathbf{x},\mathbf{y}) = \mathbf{x}\vec{\mathbf{i}} + \mathbf{y}\vec{\mathbf{j}}$ est un vecteur non nul de (\mathbf{P}) et $(\vec{\mathbf{i}},\vec{\mathbf{u}}) \equiv \theta$ $[2\pi]$, on a :

•
$$\mathbf{x} = \|\vec{\mathbf{u}}\|\cos(\vec{\mathbf{i}},\vec{\mathbf{u}})$$
 et $\mathbf{y} = \|\vec{\mathbf{u}}\|\sin(\vec{\mathbf{i}},\vec{\mathbf{u}})$.

C. l'inégalité de Cauchy – Schwarz - l'inégalité triangulaire :

01. Activité:

Soient u et v deux vecteurs de (P).

- **1.** Montrer que : $|\vec{\mathbf{u}} \cdot \vec{\mathbf{v}}| \le ||\vec{\mathbf{u}}|| \times ||\vec{\mathbf{v}}||$.
- $\underline{\mathbf{2}}$ ($\vec{\mathbf{u}}$ et $\vec{\mathbf{v}}$ sont colinéaires) $\Leftrightarrow |\vec{\mathbf{u}}.\vec{\mathbf{v}}| = |\vec{\mathbf{u}}| \times |\vec{\mathbf{v}}|$.
- **3.** Montrer que : $\|\vec{\mathbf{u}} + \vec{\mathbf{v}}\| \le \|\vec{\mathbf{u}}\| + \|\vec{\mathbf{v}}\|$.
- 4 Donner la propriété .

Laurent Schwartz en 1970. Mathématicien Français) 5 mars 1915 4 juillet 2002 (à 87 ans))

Médaille Fields (1950)

Augustin Louis Cauchy en 1840

Son nom est sur la liste des soixante-douze noms de savants inscrits sur la tour

Correction:

 $\underline{\mathbf{l}} \quad \text{Montrons que}: |\overrightarrow{\mathbf{u}}, \overrightarrow{\mathbf{v}}| \leq |\overrightarrow{\mathbf{u}}| \times |\overrightarrow{\mathbf{v}}|$

 2^{ieme} cas: $\vec{u} \neq \vec{0}$ et $\vec{v} \neq \vec{0}$, on a:

$$\begin{split} \left|\cos\left(\overrightarrow{\overrightarrow{u}},\overrightarrow{v}\right)\right| &\leq 1 \Leftrightarrow \left\|\overrightarrow{u}\right\| \times \left\|\overrightarrow{v}\right\| \left|\cos\left(\overrightarrow{\overrightarrow{u}},\overrightarrow{v}\right)\right| \leq 1 \times \left\|\overrightarrow{u}\right\| \times \left\|\overrightarrow{v}\right\| \\ &\Leftrightarrow \left\|\overrightarrow{u}\right\| \times \left\|\overrightarrow{v}\right\| \left|\cos\left(\overrightarrow{\overrightarrow{u}},\overrightarrow{v}\right)\right\| \leq \left\|\overrightarrow{u}\right\| \times \left\|\overrightarrow{v}\right\| \\ &\Leftrightarrow \left|\overrightarrow{u}.\overrightarrow{v}\right| \leq \left\|\overrightarrow{u}\right\| \times \left\|\overrightarrow{v}\right\| \end{split}$$

page - 4 - NIVEAU : 1 SM

COURS Nº 6

PRODUIT SCALAIRE (plan)

D'où : $|\vec{u}.\vec{v}| \le ||\vec{u}|| \times ||\vec{v}||$. s'appelle l'inégalité de Cauchy – Schwarz

2. Montrons que : $(\vec{u} \text{ et } \vec{v} \text{ sont colinéaires }) \Leftrightarrow |\vec{u}.\vec{v}| = ||\vec{u}|| \times ||\vec{v}||$

On pose :

$$(1): \left\| \overrightarrow{u} \right\| \times \left\| \overrightarrow{v} \right\| \left| \cos \left(\overrightarrow{u}, \overrightarrow{v} \right) \right\| = \left\| \overrightarrow{u} \right\| \times \left\| \overrightarrow{v} \right\|$$

Donc:
$$(1) \Leftrightarrow \left| \cos \left(\overrightarrow{u}, \overrightarrow{v} \right) \right| = 1$$

 $\Leftrightarrow \left(\cos \left(\overrightarrow{u}, \overrightarrow{v} \right) = 1 \text{ ou } \cos \left(\overrightarrow{u}, \overrightarrow{v} \right) = -1 \right)$
 $\Leftrightarrow \left(\overrightarrow{u}, \overrightarrow{v} \right) = 2k\pi \text{ ou } \left(\overrightarrow{u}, \overrightarrow{v} \right) = \pi + 2k\pi$
 $\Leftrightarrow \left(\overrightarrow{u} \text{ et } \overrightarrow{v} \text{ son linaires} \right)$

3. Montrons que : $\|\vec{\mathbf{u}} + \vec{\mathbf{v}}\| \le \|\vec{\mathbf{u}}\| + \|\vec{\mathbf{v}}\|$

D'après l'inégalité de Cauchy – Schwarz on a :

$$(2) : |\vec{\mathbf{u}}.\vec{\mathbf{v}}| \leq ||\vec{\mathbf{u}}|| \times ||\vec{\mathbf{v}}||$$

$$(2) \Leftrightarrow 2 \times |\vec{\mathbf{u}}.\vec{\mathbf{v}}| \leq 2 \times |\vec{\mathbf{u}}| \times |\vec{\mathbf{v}}|$$

$$\Leftrightarrow |\vec{\mathbf{u}}|^{2} + |\vec{\mathbf{v}}|^{2} + 2|\vec{\mathbf{u}}.\vec{\mathbf{v}}| \leq |\vec{\mathbf{u}}|^{2} + |\vec{\mathbf{v}}|^{2} + 2|\vec{\mathbf{u}}| \times |\vec{\mathbf{v}}|$$

$$\Leftrightarrow (\vec{\mathbf{u}} + \vec{\mathbf{v}})^{2} \leq (||\vec{\mathbf{u}}|| + ||\vec{\mathbf{v}}||)^{2} \quad (\vec{\mathbf{u}}^{2} = ||\vec{\mathbf{u}}||^{2})$$

$$\Leftrightarrow ||\vec{\mathbf{u}} + \vec{\mathbf{v}}||^{2} \leq (||\vec{\mathbf{u}}|| + ||\vec{\mathbf{v}}||)^{2}$$

$$\Leftrightarrow ||\vec{\mathbf{u}} + \vec{\mathbf{v}}|| \leq ||\vec{\mathbf{u}}|| + ||\vec{\mathbf{v}}|| \quad (\text{les deux nombres } ||\vec{\mathbf{u}}|| + ||\vec{\mathbf{v}}|| \text{ et } ||\vec{\mathbf{u}} + \vec{\mathbf{v}}|| \text{ sont positifs })$$

Conclusion: $\|\vec{u} + \vec{v}\| \le \|\vec{u}\| + \|\vec{v}\|$. (. s'appelle l'inégalité triangulaire).

02. Propriété :

Soient u et v deux vecteurs de (P).

- $|\vec{\mathbf{u}}.\vec{\mathbf{v}}| \le |\vec{\mathbf{u}}| \times |\vec{\mathbf{v}}|$ (l'inégalité de Cauchy Schwarz).
- $(\vec{\mathbf{u}} \text{ et } \vec{\mathbf{v}} \text{ sont colinéaires }) \Leftrightarrow |\vec{\mathbf{u}} \cdot \vec{\mathbf{v}}| = ||\vec{\mathbf{u}}|| \times ||\vec{\mathbf{v}}||$
- $\|\vec{\mathbf{u}} + \vec{\mathbf{v}}\| \le \|\vec{\mathbf{u}}\| + \|\vec{\mathbf{v}}\|$ (l'inégalité triangulaire).

III. Formules de : $\sin(\overrightarrow{u}; \overrightarrow{v})$ et $\cos(\overrightarrow{u}; \overrightarrow{v})$:

<u>A.</u> Formules de : $\sin(\overrightarrow{u}; \overrightarrow{v})$ et $\cos(\overrightarrow{u}; \overrightarrow{v})$:

01. Activité :

page - 5 - NIVEAU: 1 SM

COURS N° 6 PRODUIT SCALAIRE (plan)

 $\vec{u}(x,y) = x\vec{i} + y\vec{j}$ et $\vec{v}(x',y') = x'\vec{i} + y'\vec{j}$ deux vecteurs non nuls de (P) . on pose $(\vec{u},\vec{v}) \equiv \alpha$ (2π) et le vecteur $\overrightarrow{w}(-y;x)$. (voir la figure)

- **L** Donner: $\cos(\overrightarrow{u}, \overrightarrow{v})$ en fonction de x et y et x' et y'.
- **2.** Calculer $\overrightarrow{v}.\overrightarrow{w}$ et $\det(\overrightarrow{u},\overrightarrow{v})$ et $\|\overrightarrow{u}\|$ et $\|\overrightarrow{w}\|$; quelle remarque peut-on tirer?
- **3.** Montrer que : $(\vec{v}, \vec{w}) = \frac{\pi}{2} \alpha (2\pi)$ (on peut utiliser $(\vec{u}; \vec{w}) = (\vec{u}; \vec{v}) + (\vec{v}; \vec{w}) : (2\pi)$).
- **<u>4.</u>** Donner l'expression trigonométrique de $\vec{v}.\vec{w}$ et on déduit que : $\sin\alpha$ (réponse :

$$\left(\sin\alpha = \frac{\overrightarrow{\mathbf{v}}.\overrightarrow{\mathbf{w}}}{\left\|\overrightarrow{\mathbf{v}}\right\|\left\|\overrightarrow{\mathbf{w}}\right\|} = \frac{\overrightarrow{\mathbf{v}}.\overrightarrow{\mathbf{w}}}{\left\|\overrightarrow{\mathbf{v}}\right\|\left\|\overrightarrow{\mathbf{u}}\right\|}\right).$$

 $\underline{\textbf{5.}} \ \ \text{on d\'eduit } \sin\alpha \ : en \ fonction \ de \ det \Big(\overset{\ }{u} ; \overset{\ }{v} \Big) \ et \ \left\| \overset{\ }{u} \right\| \ et \ \left\| \overset{\ }{w} \right\| \ ; puis \ en \ fonction \ de$

$$x \text{ et } y \text{ et } x' \text{ et } y' \text{ (réponse } \left(\sin \alpha = \frac{det\left(\vec{u}, \vec{v}\right)}{\left\|\vec{u}\right\| \times \left\|\vec{v}\right\|} \right) \text{) }.$$

02. propriété :

 $\vec{\mathbf{u}}(\mathbf{x},\mathbf{y}) = \mathbf{x}\vec{\mathbf{i}} + \mathbf{y}\vec{\mathbf{j}}$ et $\vec{\mathbf{v}}(\mathbf{x}',\mathbf{y}') = \mathbf{x}'\vec{\mathbf{i}} + \mathbf{y}'\vec{\mathbf{j}}$ deux vecteurs non nuls de (\mathbf{P}) avec $(\vec{\mathbf{u}},\vec{\mathbf{v}}) \equiv \alpha$ (2π) .

on a :
$$\cos \theta = \frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \|\vec{v}\|} = \frac{xx' + yy'}{\sqrt{x^2 + y^2} \sqrt{x'^2 + y'^2}}$$
 et $\sin \theta = \frac{\det(\vec{u}, \vec{v})}{\|\vec{u}\| \|\vec{v}\|} = \frac{xy' - yx'}{\sqrt{x^2 + y^2} \sqrt{x'^2 + y'^2}}$.

B. l'aire (ou surface) d'un triangle et d'un parallélogramme :

01. Activité :

Dans le plan (P) on considère un triangle ABC non aplati et H la projection orthogonale de C sur la droite (AB).

- **L** Donner la surface S de ABC.
- **2.** Exprimer S en fonction de $\left|\sin\left(\left(\overrightarrow{AB},\overrightarrow{AC}\right)\right)\right|$.
- **3.** Exprimer S en fonction de $det(\overrightarrow{AB}, \overrightarrow{AC})$.
- 4. On déduit la surface du parallélogramme ABCD.

02. Propriété :

ABC est un triangle dans le plan (P).

- La surface S_{ABC} du tringle ABC est : $S_{ABC} = \frac{1}{2} |\det(\overrightarrow{AB}, \overrightarrow{AC})|$.
- La surface S_{ABCD} du tringle ABC est : $S_{ABCD} = \det(\overrightarrow{AB}, \overrightarrow{AC})$.

droite D(A, n)

vecteur normal

vecteur directeur

page - 6 - NIVEAU: 1 SM

COURS Nº 6

PRODUIT SCALAIRE (plan)

0

IV. La droite dans le plan (étude analytique):

A. vecteur normal:

01. Activité:

 $D(A, \vec{u})$ est une droite dans le plan (P). Que remarquez-vous?

02. Définition :

 $D(A, \vec{u})$ est une droite dans le plan (P).

Tout vecteur \vec{n} non nul orthogonale au vecteur directeur \vec{u} de la droite $D(A, \vec{u})$ s'appelle vecteur normal à la droite $D(A, \vec{u})$.

03. remarque:

- Les vecteurs $\vec{\alpha n}$ (avec $\vec{\alpha \neq 0}$) sont normaux à la droite $D(\vec{A}, \vec{u})$.
- \vec{n} et \vec{n} sont normaux à la droite $D(\vec{A}, \vec{u})$ donc \vec{n} et \vec{n} sont colinéaires.
- $\vec{n}(a,b)$ normal à la droite (D) équivaut $\vec{u}(-b,a)$ est un vecteur directeur à la droite (D) .
 - **B.** Ensemble des points M tel que \overrightarrow{n} . $\overrightarrow{AM} = 0$

01. Activité :

A est un point de (P) et \vec{n} est un vecteur non nul de (P).

<u>l.</u> Déterminer l'ensemble des points M(x,y) de (P) tel que $\overrightarrow{n}.\overrightarrow{AM} = 0$.

02. Propriété :

l'ensemble des points M(x,y) de (P) tel que \vec{n} . $\vec{AM} = 0$ est la droite $D(A,\vec{n})$ passant par A dont le vecteur normal est \vec{n} .

 $\underline{\mathbf{C}}_{\bullet}$ Equation cartésienne de la droite $\mathbf{D}(\mathbf{A}, \vec{\mathbf{n}})$:

01. Activité :

 $D(A,\vec{u})$ est une droite dans le plan (P) tel que $A(x_A,y_A)$ et $\vec{n}(a,b)$ est un vecteur normal de $D(A,\vec{u})$; M(x,y) est un point de (P).

- **L** Montrer que: $M(x,y) \in D(A,n) \Rightarrow ax + by + c = 0$; on détermine c.
- 2. On étudier la réciproque : E est l'ensemble des points M(x,y) de (P) tel que ax + by + c = 0 avec $(a,b) \neq (0,0)$ montrer que l'ensemble E est la droite $D(A,\vec{n})$.

02. Propriété et définition :

- M(x,y) est un point de (P) appartient à la droite $D(A(x_A,v); \vec{n}(a,b))$ si et seulement si ax+by+c=0 et $(a,b)\neq (0,0)$ et c=-ax
- ax + by + c = 0 s'appelle l'équation cartésienne de la droite $D(A, \vec{n})$

page - 7 - NIVEAU: 1 SM

COURS N° 6

PRODUIT SCALAIRE (plan)

03. Remarque:

Pour l'équation cartésienne (D) : ax + by + c = 0 on a :

- $\vec{n}(a,b)$ vecteur normal à la droite (D) .
- $\vec{u}(-b,a)$ vecteur directeur à la droite (D).

04. Application :

- **L** Donner l'équation cartésienne de la droite $D\left(A\begin{pmatrix}2\\0\end{pmatrix}; \vec{n}\begin{pmatrix}1\\5\end{pmatrix}\right)$.
- **2.** On considère le triangle ABC tel que A(2,1) et B(0,1) et C(-2,3).
 - ${\color{red} {\bf a.}}$ Déterminer les équations cartésiennes du la médiatrice de ${\color{gray} {f [AC]}}$.
 - $\underline{\mathbf{b}}_{\underline{\mathbf{c}}}$ Déterminer Ω le centre du cercle circonscrit au triangle ABC .

Correction:

- $\underline{\underline{l}}_{\bullet} \quad \text{Equation cart\'esienne de la droite } D \left(A \binom{2}{0}; \vec{n} \binom{1}{5} \right) \text{. On a :}$
- $\vec{n}(1,5)$ est un vecteur normal à la droite (D) donc une équation est de le forme (D): 1x + 5y + c = 0.
- Le point $A \in (D)$ donc : $A(2,0) \in (D): 1 \times 2 + 5 \times 0 + c = 0$ d'où c = -2.

Conclusion: Equation cartésienne est (D): 1x+5y-2=0.

- 2. les équations cartésiennes du la médiatrice de [AB] et [AC] .
 - a. Equation cartésienne de (D_1) la médiatrice de [AB] .
- (D_1) médiatrice de [AB] donc $(AB) \perp (D_1)$ d'où \overrightarrow{AB} est normal à la droite (D_1) .
- I(1,1) est le milieu de $\begin{bmatrix}AB\end{bmatrix}$ donc $\begin{pmatrix}D_1\end{pmatrix}$ passe par I .

D'où:
$$M(x;y) \in (D) \Leftrightarrow \overrightarrow{IM}.\overrightarrow{AB} = 0$$

$$\Leftrightarrow \binom{x-1}{y-1} \cdot \binom{-2}{0} = 0$$

$$\Leftrightarrow x-1=0$$

Donc: $(D_1): x-1=0$

- $\underline{\mathbf{b}}_{\!\scriptscriptstyle \perp}$ Equation cartésienne de $\left(\mathbf{D}_{\!\scriptscriptstyle 1}\right)$ la médiatrice de $\left[\mathbf{A}\mathbf{C}\right]$.
- $\bullet \ \big(\mathbf{D}_{\!_{2}}\big) \ \text{m\'ediatrice de} \ \big[\mathbf{AC}\big] \ \text{donc} \ \big(\mathbf{AC}\big) \bot \big(\mathbf{D}_{\!_{1}}\big) \ \text{d'où} \ \overrightarrow{\mathbf{AC}} \ \text{est normal \`a la droite} \ \big(\mathbf{D}_{\!_{2}}\big) \ .$
- J(-1,2) est le milieu de [AC] donc (D_2) passe par J.

$$D'où: M(x;y) \in (D') \Leftrightarrow \overrightarrow{JM}.\overrightarrow{BC} = 0$$

$$\Leftrightarrow \binom{x+1}{y-2} \cdot \binom{-2}{2} = 0$$

$$\Leftrightarrow -2(x+1)+2(y-2)=0$$

$$\Leftrightarrow -2x + 2y - 6 = 0$$

Donc:
$$(D_2): -x + y - 3 = 0$$

 $\underline{\underline{\textbf{b}}}$ On détermine Ω le centre du cercle circonscrit au triangle ABC. On sait que l'intersection des médiatrices est le centre du cercle circonscrit au triangle ABC.

Donc:
$$\Omega(x,y) \in (D) \cap (D') \Leftrightarrow \begin{cases} x-1=0 \\ -x+y-3=0 \end{cases}$$

$$\Leftrightarrow \begin{cases} x=1 \\ y=4 \end{cases}$$

D'où: $\Omega(1,4)$

Conclusion: $\Omega(1,4)$ est le centre du cercle circonscrit au triangle ABC.

<u>D.</u> Orthogonalité de deux droites (D) et (D') :

01. Activité:

 $\underline{\underline{\mathbf{L}}}$ $D(A, \vec{\mathbf{u}})$ et $D'(B, \vec{\mathbf{u}})$ deux droites de (P) dont-on a les vecteurs directeurs.

Déterminer une condition nécessaire et suffisante tel que $(D') \perp (D)$.

2. $D(A, \vec{n})$ et $D'(B, \vec{n'})$ deux droites de (P) dont-on a les vecteurs normaux.

Déterminer une condition nécessaire et suffisante tel que $(D') \perp (D)$.

02. Propriété :

On considère les droites (D) et (D') d'équations cartésiennes : (D) : ax + by + c = 0 et

(D'): a'x+b'y+c'=0 tel que $\vec{n}(a,b)$ et $\vec{n'}(a',b')$ sont les vecteurs normaux respectivement à

(D) et (D') . on a : (D')
$$\perp$$
 (D) \Leftrightarrow $\begin{pmatrix} a \\ b \end{pmatrix}$. $\begin{pmatrix} a' \\ b' \end{pmatrix} = 0 \Leftrightarrow aa' + bb' = 0$.

03. Application :

Déterminer une équation cartésienne d'une droite (D') orthogonale à (D) tel que :

(D):
$$2x+y-3=0$$
.

 $lue{L}$ Distance d'un point à une droite (D).

01. Activité :

Comment on détermine la plus petite distance du point A à la droite (D) ?

02. Définition :

 $D(A, \vec{u})$ est une droite du plan (P) et A est un point de (P) et H sa projection orthogonale

sur (D) . la distance AH est appelée la distance de A à (D) et on note d(A,(D)) = d = AH.

03. Activité :

 $D(A, \vec{u})$ est une droite du plan (P) tel que son équation cartésienne est (D): ax + by + c = 0 et $A(x_A, y_A)$ est un point de (P) et $H(x_H, y_H)$ sa projection orthogonale sur (D).

page - 9 - NIVEAU : 1 SM

COURS Nº 6

PRODUIT SCALAIRE (plan)

- **1.** Montrer que $\mathbf{c} = -\mathbf{a}\mathbf{x}_{\mathbf{H}} \mathbf{b}\mathbf{y}_{\mathbf{H}}$ puis $\left| \overrightarrow{\mathbf{n}} \cdot \overrightarrow{\mathbf{AH}} \right| = \left| \mathbf{a}\mathbf{x}_{\mathbf{A}} + \mathbf{b}\mathbf{y}_{\mathbf{A}} + \mathbf{c} \right|$.
- **2.** Montrer que $|\overrightarrow{\mathbf{n}}.\overrightarrow{\mathbf{AH}}| = |\mathbf{a}\mathbf{x}_{\mathbf{A}} + \mathbf{b}\mathbf{y}_{\mathbf{A}} + \mathbf{c}|$.
- 3. On déduit AH en fonction de a et b et x_A et y_A .

04. Propriété:

La distance du point $A(x_A, y_A)$ de (P) à une droite d'équation

cartésienne (D) :
$$ax + by + c$$
 est : $d(A;D) = \frac{|ax_A + by_A + c|}{\sqrt{a^2 + b^2}}$.

05. Exemple :

$$(D'): -x+y-3=0 \text{ et } A(2,5) \text{ on a } d(A;D) = \frac{\left|-2+5-3\right|}{\sqrt{(-1)^2+1^2}} = 0 \text{ donc } A \in (D).$$

V. Le cercle étude analytique :

 $\underline{\underline{\mathbf{A}}}$ Equation cartésienne du cercle $C(\Omega(a,b);r)$.

01. Activité:

- $\Omega(a,b)$ est un point de (P) et $r \in \mathbb{R}^{+*}$, (r>0).
- **L** Compléter l'équivalence suivant on utilise a et b et x et y : $M(x,y) \in C(\Omega(a,b);r) \Leftrightarrow \cdots$

02. Propriété:

Tout cercle $C(\Omega(a,b);r)$ du plan (P) a pour équation cartésienne de la forme $(x-a)^2 + (y-b)^2 = r^2$ ou encore : $x^2 + y^2 - 2ax - 2by + c = 0$ avec $c = a^2 + b^2 - r^2$.

<u>03.</u> Exemple :

- ullet Donner équation cartésienne du cercle $\,\mathrm{C}ig(\Omegaig(0,0);1ig)\,.$
- Donner équation cartésienne du cercle de diamètre $\begin{bmatrix} AB \end{bmatrix}$ avec : A(1;0) et B(-1;0) .

01. Activité :

- M(x;y) est un point de (P); $C_{[AB]}$ est cercle de diamètre [AB] avec $A \neq B$.
 - **L** Trouver une condition nécessaire et suffisante pour que $M(x;y) \in C_{AB}$

02. Propriété :

Equation cartésienne du cercle de diamètre [AB] est : $M(x;y) \in C[A;B] \Leftrightarrow \overrightarrow{AM}.\overrightarrow{BM} = 0$.

03. Exemple :

 ${
m A(1;0)}$ et ${
m B(-1;0)}$ deux points de ${
m (P)}$. trouver équation cartésienne de ${
m C_{[AB]}}$.

Correction : On trouve équation cartésienne de $C_{[AB]}$.

On a:
$$M(x;y) \in C_{[A;B]} \Leftrightarrow \overrightarrow{AM}.\overrightarrow{BM} = 0$$
.

page - 10 - NIVEAU : 1 SM

COURS Nº 6

PRODUIT SCALAIRE (plan)

$$\Leftrightarrow {x-1 \choose y-0} \cdot {x+1 \choose y-0} = 0$$
$$\Leftrightarrow x^2 + y^2 - 1 = 0$$

Conclusion: $C_{[AB]}: x^2 + y^2 - 1 = 0$.

C. Le cercle passant par trois points :

Le cercle passant par trois A et B et C non alignés c'est le cercle circonscrit au triangle ABC tel que son centre Ω est l'intersections des médiatrices et son rayon est $r = \Omega A$.

D. Présentation paramétrique d'un cercle :

Ol. Activité:

 $C(\Omega(a,b);r)$ est un cercle du plan (P) rapporté au repère orthonormé (O,\vec{i},\vec{j}) tel que $\theta \in \mathbb{R}$;

$$(\overrightarrow{i}, \overrightarrow{\Omega M}) \equiv \theta : (2\pi)$$
.

 $\underline{\underline{\mathbf{l}}}$ Calculer: $\overrightarrow{\mathbf{J}}.\overrightarrow{\Omega \mathbf{M}}$; $\overrightarrow{\mathbf{i}}.\overrightarrow{\Omega \mathbf{M}}$.

 $\underline{\mathbf{2}}$ Déterminer les cordonnés du point M par rapport au repère $\left(O,\vec{i},\vec{j}\right)$.

$$\underline{3.} \quad \text{D'après } \overrightarrow{OM} = \overrightarrow{O\Omega} + \overrightarrow{\Omega M} \text{, montrer que : } \begin{cases} x = a + R\cos\theta \\ y = b + R\sin\theta \end{cases}.$$

02. Propriété :

 $C(\Omega(a,b);r)$ est un cercle du plan (P) rapporté au repère orthonormé (O,\vec{i},\vec{j}) tel que $\theta \in \mathbb{R}$;

$$(\overrightarrow{i}, \overrightarrow{\Omega M}) \equiv \theta : (2\pi)$$
; pour tout $M(x,y)$ du plan (P) on $a : \begin{cases} x = a + R \cos \theta \\ y = b + R \sin \theta \end{cases}$.

On l'appelle présentation paramétrique d'un cercle $\, Cigl(\Omega(a,b);rigr)$.

<u>03.</u> Exemple :

Donner présentation paramétrique d'un cercle trigonométrique lié au repère $\left(O,\vec{i},\vec{j}\right)$ ($C\left(O\left(0,0\right);1\right)$)

E. Etude l'ensemble des points :
$$\{M(x,y)/x^2+y^2+ax+by+c=0\}$$
 . (avec a et b et c de \mathbb{R})

01. Activité :

1 Trouver l'ensemble des points M(x,y) du plan (P) qui vérifie $x^2 + y^2 + ax + by + c = 0$.

2. Donner la propriété

02. Propriété :

l'ensemble des points M(x,y) du plan (P) qui vérifie $x^2 + y^2 + ax + by + c = 0$ est :

• Si
$$A = a^2 + b^2 - 4c < 0$$
 on a : $S = \emptyset$.

• Si
$$A = a^2 + b^2 - 4c = 0$$
 on $a : S = \left\{ \Omega\left(-\frac{a}{2}; -\frac{b}{2}\right) \right\}$ (un point unique qui est $\Omega\left(-\frac{a}{2}; -\frac{b}{2}\right)$)

• Si
$$A = a^2 + b^2 - 4c > 0$$
 on $a : S = (C) = C \left(\Omega \left(-\frac{a}{2}; -\frac{b}{2} \right); r = \frac{\sqrt{a^2 + b^2 - 4c}}{2} \right)$ (un cercle).

page - 11 - NIVEAU : 1 SM

COURS Nº 6

PRODUIT SCALAIRE (plan)

F. Etude les positions relatives d'un cercle et une droite .

01. Activité:

Tracer les positions relatives d'une droites (D) et un cercle (C), puis donner les définitions et les propriétés.

02. Définitions et propriétés :

(D) est une droite du plan (P) et (C) est un cercle du plan (P) de centre Ω et de rayon r .

- (D) est à l'extérieure du cercle (C) ((D) et (C) sont disjoints (D) \cap (C) = \emptyset).
- (D) coupe le l'extérieure du cercle (C) si et seulement si $d(\Omega, (D)) > r$
- (D) coupe le cercle (C) en deux points A et B (D) \cap (C) = {A,B}).
- (D) coupe le cercle (C) si et seulement si $d(\Omega, D) < r$
- (D) est tangente au cercle (C) ((D) \cap (C)={A}).
 - (D) est tangente au cercle (C) si et seulement si $d(\Omega, (D)) = r$
 - **G.** Equation cartésienne d'une droite tangente à un cercle en un point A du cercle.

01. Activité :

 $D(A, \vec{u})$ est une droite du plan (P) et A est un point d'un cercle $C(\Omega, r)$ tel que (D) est tangente à (C).

- **1.** Trouver condition nécessaire et suffisante tel que M(x,y) appartienne à (D).
- $\underline{\mathbf{2}}$. On déduit l'équation cartésienne de $\mathbf{D}(\mathbf{A}; \vec{\mathbf{u}})$; puis donner la propriété .

02. Propriété :

l'équation cartésienne de la droite $D\!\left(A;\stackrel{
ightharpoonup}{u}
ight)$ tangente au cercle $C\!\left(\Omega,r
ight)$ en un point $A\!\left(x_{_A},y_{_A}
ight)$ de

$$C(\Omega, r)$$
 est: $\overrightarrow{\Omega A} \cdot \overrightarrow{u} = 0$ ou encore $\begin{pmatrix} x_A - a \\ y_A - b \end{pmatrix} \cdot \begin{pmatrix} x_u \\ y_u \end{pmatrix} = 0$

page - 12 - NIVEAU : 1 SM

COURS Nº 6

PRODUIT SCALAIRE (plan

03. Exemple :

Géométriquement donner l'équation cartésienne de la droite $D(A; \vec{u})$ qui tangente au cercle (C).

VI. Ensemble des points M du plan (P) tel que :

$$\overrightarrow{AM}.\overrightarrow{AB} = \mathbf{k}$$
; $\overrightarrow{MA}.\overrightarrow{MB} = \mathbf{k}$; $\overrightarrow{MA}^2 + \overrightarrow{MB}^2 = \mathbf{k}$;
 $\overrightarrow{MA}^2 - \overrightarrow{MB}^2 = \mathbf{k}$ avec $\mathbf{k} \in \mathbb{R}$.
 $1^{\text{er}} \cos : \overrightarrow{MA}.\overrightarrow{AB} = \mathbf{k}$; $(\overrightarrow{MA}.\overrightarrow{u} = \mathbf{k} \text{ et } \overrightarrow{u} \neq \overrightarrow{0})$.

A et B deux points de (P) tel que : AB = 6 et I est le milieu de [AB].

- **1.** Déterminer (E_1) l'ensemble des points M de (P) tel que $\overrightarrow{MA}.\overrightarrow{AB} = 0$.
- **2.** Déterminer (E_2) l'ensemble des points M de (P) tel que $\overrightarrow{AM}.\overrightarrow{AB} = -12$.
- **3.** Déterminer (E_3) l'ensemble des points M de (P) tel que $\overrightarrow{AM}.\overrightarrow{AB} = 18$.

$$2^{i\grave{e}me}$$
 cas: $\overrightarrow{MA}.\overrightarrow{MB} = k$.

- **1.** Déterminer (F_1) l'ensemble des points M de (P) tel que $\overrightarrow{MA}.\overrightarrow{MB} = 0$.
- **2.** Déterminer (F_2) l'ensemble des points M de (P) tel que $\overrightarrow{MA}.\overrightarrow{MB} = 7$.
- **3.** Déterminer (F_3) l'ensemble des points M de (P) tel que $\overrightarrow{AM}.\overrightarrow{MB} = -9$.
- **4.** Déterminer (F_4) l'ensemble des points M de (P) tel que $\overrightarrow{MA}.\overrightarrow{MB} = -10$.

$$3^{ieme}$$
 cas: $MA^2 + MB^2 = k$.

- **1.** Déterminer (G_1) l'ensemble des points M de (P) tel que $MA^2 + MB^2 = 68$.
- **2.** Déterminer (G_2) l'ensemble des points M de (P) tel que $MA^2 + MB^2 = 18$.
- 3. Déterminer (G_3) l'ensemble des points M de (P) tel que $MA^2 + MB^2 = 4$.

$$3^{i\text{ème}}$$
 cas: $MA^2 - MB^2 = k$.

- **L** Déterminer (H_1) l'ensemble des points M de (P) tel que $MA^2 MB^2 = 0$.
- 2. Déterminer (H_2) l'ensemble des points M de (P) tel que $MA^2 MB^2 = 36$.

▲ Remarque:

On peut étudier les 4 cas précédents dans le cas général c.à.d. $k \in \mathbb{R}$ et AB et on discute avec disjonction des cas .