

Politechnika Bydgoska im. J.J. Śniadeckich w Bydgoszczy Wydział Telekomunikacji, Informatyki i Elektrotechniki Zakład Informatyki Stosowanej i Inżynierii Systemów

Przedmiot	Fizyka		Kierunek/ Tryb	IS / ST
Nr. ćwiczenia	A1			
Imię i nazwisko:	Nikodem Gębicki			
Numer lab.	8	Data oddania sprawozdania:	1.06.2023	

Karta pomiarowa

Wydział: NTLiA Kierunek: Jimforma Semestr: II		John Strain, Social Low	Data: <u>8.05.202</u>
Wzór roboczy: $\lambda = \sqrt[3]{ S_2 - S_4 } \qquad \forall = 1$	2f/92-8a/	POMIAROWA	
Wyniki pomiarów, wartości tablicowe: P. 2.5 kHz 23 / 95 22/ 94 20/100 24/88 24/88 24/88 28/94 25/86 28/94 25/88	2,75 kHz 67/99 60/10 66/99 62/98 63/110 61/98 69/99 61/98 64/99 60/116	3 kH ₂ 281 99 90/88 22/90 22/86 20/86 25/82 24/86 25/86 27/86	Doktadności przyrządów, doktadności odcznu wartości tabilcowych: Anna 1 Hz
Obliczona wartość wyznaczonej wielkoś	ici fizycznej:		Podpis prowadzącego:

Wstęp teoretyczny

Pojecie fali, rodzaje fal, równanie fali

Fala jest zjawiskiem, które polega na przenoszeniu energii z jednego miejsca do drugiego bez transportu materii. Fale mogą występować w różnych środowiskach, takich jak powietrze, woda czy ośrodek materialny. Podstawowe rodzaje fal to fale mechaniczne, elektromagnetyczne i materii. Równanie falowe jest matematycznym opisem zachowania się fali i opisuje jej rozchodzenie się w czasie i przestrzeni.

Fala stojąca – jak powstaje, rysunek z zaznaczonymi miejscami charakterystycznymi:

Fala stojąca powstaje, gdy dwie fale o tej samej amplitudzie i częstotliwości poruszają się w przeciwnych kierunkach i nakładają się na siebie. Powstające w ten sposób miejsca charakterystyczne to węzły i brzuchy. Węzeł to punkt, w którym amplituda fali jest minimalna, podczas gdy brzuch to punkt, w którym amplituda jest maksymalna.

Wzór na prędkość fali – wyprowadzenie

Prędkość fali jest zależna od rodzaju fali i ośrodka, w którym się rozchodzi. W przypadku fal mechanicznych, prędkość fali (ν) jest związana z długością fali (λ) i częstotliwością (f) wzorem:

 $v = \lambda * f$

Co to jest dźwięk, na czym polega jego rozchodzenie się w przestrzeni

Dźwięk to mechaniczna fala longitudinalna, która rozchodzi się poprzez środowisko, takie jak powietrze czy woda. Dźwięk powstaje w wyniku drgań cząsteczek ośrodka, które są przenoszone jako fala ciśnienia. Podstawowymi parametrami dźwięku są amplituda (określająca głośność), częstotliwość (określająca wysokość tonu) i czas trwania. Dźwięk rozchodzi się w przestrzeni w postaci fal kulistych, które rozprzestrzeniają się we wszystkich kierunkach od źródła dźwięku.

Cel ćwiczenia

Celem ćwiczenia jest wyznaczenie długości generowanych fal dźwiękowych oraz prędkości rozchodzenia się dźwięku w powietrzu.

Wyniki pomiarów, obliczenia i rachunek niepewności Wyniki pomiarów i niepewności Uc(s1) Uc(s2)

В	С	D	E	F	G	Н
Lp.	2,5	kHz	2,75	kHz	3 k	:Hz
Lp.	s1 [m]	s2 [m]	s1 [m]	s2 [m]	s1 [m]	s2 [m]
1	0,23	0,9	0,57	0,99	0,28	0,79
2	0,22	0,94	0,6	1,2	0,3	0,88
3	0,2	1	0,56	0,99	0,22	0,9
4	0,27	0,88	0,62	0,98	0,22	0,86
5	0,27	0,88	0,63	1,15	0,2	0,86
6	0,28	0,88	0,61	0,98	0,28	0,82
7	0,28	0,97	0,59	0,99	0,27	0,86
8	0,28	0,88	0,61	0,98	0,25	0,86
9	0,28	0,98	0,54	0,99	0,27	0,82
10	0,27	0,88	0,6	1,16	0,29	0,8
AVG	0,258	0,919	0,593	1,041	0,258	0,845
	AVG - s1	AVG - s2	AVG - s1	AVG - s2	AVG - s1	AVG - s2
1	0,028	0,019	0,023	0,051	-0,022	0,055
2	0,038	-0,021	-0,007	-0,159	-0,042	-0,035
3	0,058	-0,081	0,033	0,051	0,038	-0,055
4	-0,012	0,039	-0,027	0,061	0,038	-0,015
5	-0,012	0,039	-0,037	-0,109	0,058	-0,015
6	-0,022	0,039	-0,017	0,061	-0,022	0,025
7	-0,022	-0,051	0,003	0,051	-0,012	-0,015
8	-0,022	0,039	-0,017	0,061	0,008	-0,015
9	-0,022	-0,061	0,053	0,051	-0,012	0,025
10	-0,012					
	(AVG - s1)^2	(AVG - s2)^2	(AVG - s1)^2	(AVG - s2)^2	(AVG - s1)^2	(AVG - s2)^2
1	0,000784	0,000361	0,000529	0,002601	0,000484	0,003025
2	0,001444	0,000441	4,9E-05	0,025281	0,001764	0,001225
3	0,003364	0,006561	0,001089	0,002601	0,001444	0,003025
4	0,000144	0,001521	0,000729	0,003721	0,001444	0,000225
5	0,000144	0,001521	0,001369	0,011881	0,003364	0,000225
6	0,000484	0,001521	0,000289	0,003721	0,000484	0,000625
7	0,000484	0,002601	9E-06	0,002601	0,000144	0,000225
8	0,000484	0,001521	0,000289	0,003721	6,4E-05	0,000225
9	0,000484	0,003721	0,002809	0,002601	0,000144	0,000625
10	0,000144	0,001521	4,9E-05	0,014161	0,001024	0,002025
Ua	8,8E-05	2,4E-04	8,0E-05	8,1E-04	1,2E-04	1,3E-04
Ub	5,8E-03	5,8E-03	5,8E-03	5,8E-03	5,8E-03	5,8E-03
Uc	5,8E-03	5,8E-03	5,8E-03	5,8E-03	5,8E-03	5,8E-03

$$egin{align} U_C(s1) &= \sqrt{(U_A^2(s1) + U_B^2(s1))} \ &U_A(s1) &= \sqrt{rac{\sum (s-s_n)^2}{90}} \ &U_B(s1) &= rac{0,01}{\sqrt{3}} \ &U_A(s2) &= \sqrt{rac{\sum (s-s_n)^2}{90}} \ &U_B(s2) &= rac{0,01}{\sqrt{3}} \ &U_C(s2) &= \sqrt{(U_A^2(s2) + U_B^2(s2))} \ &U_C(s2) &= \sqrt{(U_A^2(s2) + U_A^2(s2))} \ &U_C(s$$

Obliczone wartości i niepewności

oblication was tooler i mepewines					
J	K	L	M		
	λ - 2,5 kHz [m]	λ - 2,75 kHz [m]	λ - 3 kHz [m]		
	1,3	0,90	1,2		
U(λ)	1,6E-02	1,6E-02	1,6E-02		
	1,3 ± 1,6E-02 m	0,90 ± 1,6E-02 m	1,2 ± 1,6E-02 m		
	υ - 2,5 kHz [m/s	υ - 2,75 kHz [m/s]	υ - 3 kHz [m/s]		
	331	246	352		
U(v)	4,1	4,5	4,9		
	331 ± 4,1 m/s	246 ± 4,5 m/s	352 ± 4,9 m/s		

$$U(\lambda) = \sqrt{(rac{2*s1-2*s2}{|s1-s2|}*U_C(s1))^2 + (rac{2*s2-2*s1}{|s2-s1|}*U_C(s2))^2}$$
 $U(v) = \sqrt{(rac{2f*s1-2f*s2}{|s1-s2|}*U_C(s1))^2 + (rac{2f*s2-2f*s1}{|s2-s1|}*U_C(s2))^2}$

Wartości tablicowe

Prędkość dźwięku przy różnych temperaturach powietrza[3]

temperaturach powietrza				
Temperatura (°C)	Prędkość (m/s)			
-40	306,5			
-30	312,9			
-20	319,3			
-10	325,6			
0	331,8			
10	337,8			
15	340,3			
20	343,8			
30	349,6			
40	355,3			

Wnioski

Na podstawie maksymalnych wychyleń fali i zastosowanej częstotliwości obliczyć można długość fali oraz prędkość rozchodzenia się dźwięku w powietrzu.

Prędkość dźwięku jest zależna od temperatury otoczenia.