Семестровая работа

1. Сколько времени занимает считывание диска с 800цилиндрами,каждый из которых содержит 5 дорожек по 32сектора? Сначала считываются все сек-тора дорожки0,начиная с сектора0,затем все сектора дорожки1,начиная с сектора0 и т.д. Оборот совершается за 20мс, поиск между соседними цилиндрами занимает10мс, а в случае расположения считываемых данных в разных частях диска—до 50мс. Переход от одной дорожки цилиндра к другой происходит мгновенно. Решение:

Темпинский объем во вострой в темпинский в

2. Представьте, что вы записываете часть операционной системы, отвечающую за управление диском. Логически вы представляете себе диск как последовательность блоков от 0 на внутренней стороне до какого-либо максимума снаружи. Когда создаются файлы, вам приходится размещать свободные сектора. Вы можете двигаться от наружного края внутрь или наоборот. Имеет ли значение, какую стратегию выбрать? Поясните свой ответ.

Решение:

Мне кажется двигаться от наружного края к внутреннему выгоднее, потому что идите нахуй

3. Система адресации LBA использует 24 бита для обращения к сектору. Каков максимальный объем диска,с которым она может работать?

. Решение:

 $2^{24} = 16777216$ — кол — во секторов. Один сектор как правило содержит 512 Мбайт. Следовательно, максимальный объём диска составляет кол-во секторов*объём одного сектора = 8589934592Мбайт = 8388608Гбайт = 8192Тбайт = 81Мбайт

4. Чтобы вместить фильм длительностью 133 минуты на односторонний DVD с одним слоем, требуется небольшая компрессия. Вычислите, насколько нужно сжать фильм. Предполагается, что для записи дорожки изображения нужно 3,5Гбайт, разрешающая способность изображения 720х480 пикселов с 24-битным цветом и в секунду меняется 30 кадров.

Решение:

Кол-во пикселей (разрешение) N = 720*480 = 345600

Размер одного кадра $R = N^*$ размер (вес) одного пикселя = 345600^*246 ит = 82944006ит = 10368006айт = 1012,5Кбайт

Размер одной секунды изображения V = R*30кадров = 30375Кбайт

Размер изображения фильма X = V*133*60c = 242392500Кбайт $\approx 231\Gamma$ байт

Фильм надо сжать на 231-3,5 = 227,5 Гбайт, но обычно вычисляется величина отношение размеров (она более информативна). Следовательно, фильм необходимо сжать в 231/3,5 = 66 раз.

5. Предположим, что центральный процессор (CPU) содержит кэш-память первого и второго уровня со временем доступа 5нс и 10 нс соответственно. Время доступа к основной памяти составляет 50нс. Если 20% от всех обращений к памяти приходится на долю кэш-памяти первого уровня, а 60%—на долю кэш-памяти второго уровня, то каково среднее время доступа?

Решение:

 p_1 – вероятность при запросе оказаться в кэше первого уровня. p_1 = 1 т.к. при любом запросе мы сначала оказываемся на кэш-пямяти первого уровня.

 p_2 – вероятность при запросе оказаться в кэше второго уровня. p_2 = 1 - 0.2 = 0.8 кэш-память первого уровня обрабатывает только 20% запросов, остальные попадают в кэш-память второго уровня.

 p_3 — вероятность при запросе оказаться в основной памяти. $p_3 = p_2 - 0.6 = 0.2$ если запрос был не найден в кэш-памяти то он попадает в основную память.

```
\langle t \rangle = t_1 p_1 + t_2 p_2 + t_3 p_3 = 5 \text{Hc} * 1 + 10 \text{Hc} * 0.8 + 50 \text{Hc} * 0.2 = 23 \text{Hc}
```

6. На рисунке приведена временная диаграмма процесса считывания на синхронной шине. Предположим, что тактовый генератор работает с частотой 40МГц, а T_{AD} возросло до 16нс. Можно ли при этом продолжать использовать микросхемы памяти на 40нс?

7.1. Компьютер содержит двухуровневую кэш-память. Предположим, что 80%

обращений к памяти—удачные обращения в кэш-память первого уровня, 15%—в кэш-память второго уровня, а 5%—промахи кэша. Время доступа составляет 5нс, 15нс и 60нс соответственно, причем время доступа в кэш-память второго уровня и в основную память отсчитывается с того момента, как стало известно, что они нужны (например, доступ к кэш-памяти второго уровня не может начаться, пока не произойдет промах кэш-памяти первого уровня). Каково среднее время доступа?

Решение данной задачи аналогично решению задачи 5. Следовательно <t> = $t_1p_1 + t_2p_2 + t_3p_3 = 5$ нс*1 + 15нс*0.2 + 60нс*0.05 = 11нс

7.2. Компьютер с конвейером из пяти стадий при обработке условных переходов простаивает следующие три цикла. Насколько эти простаивания снизят производительность, если 20% команд являются условными переходами? Другие причины простаиваний не учитывайте.

Решение:

8. Предположим, что компьютер вызывает до 20 команд заранее. Всреднем 4 из этих команд являются условными переходами,причем вероятность правильного прогнозирования каждого из этих условных переходов равно 90%. Какова вероятность, что предварительный вызов команд на правильном пути?

Решение:

- 9. Компьютер для считывания информации с диска использует канал прямого доступа к памяти. Диск содержит 64 сектора по 512 байтов на дорожке. Время оборота диска 16мс. Ширина шины 16 битов. Каждая передача шины занимает 500нс. В среднем для одной команды процессора требуется два цикла шины. Насколько скорость работы процессора замедляется из-за прямого доступа к памяти?
- 10. Вычислите логическое выражение (А & В) ∨ С для:
- •A 1101000010101101
- •B 111 1111100001111
- $\cdot C = 000000000100000.$

Решение:

A	1	1	0	1	0	0	0	0	1	0	1	0	1	1	0	1
В	1	1	1	1	1	1	1	1	0	0	0	0	1	1	1	1
A&B	1	1	0	1	0	0	0	0	0	0	0	0	1	1	0	1
С	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
A&BvC	1	1	0	1	0	0	0	0	0	0	1	0	1	1	0	1

- 11. Переделайте следующие формулы из обратной польской записи (форма ПОЛИЗ используемая для вычислений на стековой машине) в инфиксную запись:
- •AB+C+D x
- •AB/CD/+

•ABCDE+xx/

•ABCDExF/+G-H/x+

Решение: обламывает писать

- 12. Компьютер имеет 16 страниц виртуального адресного пространства и только 4 страничных кадра. Изначально память пуста. Программа обращается к виртуальным страницам в следующем порядке:0,7,2,7,5,8,9,2,4
- а. Какие из обращений вызовут ошибку с алгоритмом LRU?
- б. Какие из обращений вызовут ошибку с алгоритмом FIFO?

Решение:

ВС – виртуальная страница

О№ - номер ошибки (fault'a)

Цифрами 1,2,3,4 обозначены номера заполненных страничных кадров

	FIFO									LRU								
ВС	0	7	2	7	5	8	9	2	4	0	7	2	7	5	8	9	2	4
	1	2	3	2	4					1	2	3	2	4				
O1			3	2	4	1					2	3	2	4	1			
O2			3		4	1	2	3			2		2	4	1	3		
О3					4	1	2		3		2		2		1	3	4	
O4											2		2			3	4	1

13. Сегментированная память содержит страничные сегменты. Каждый виртуальный адрес содержит 2-битный номер сегмента, 2-битный номер страницы и11-битное смещение внутри страницы. Основная память содержит 32 Кбайт, которые разделены на страницы по 2Кбайт. Каждый сегмент разрешается либо только читать, либо читать и выполнять, либо читать и записывать, либо читать, записывать и выполнять. Таблицы страниц с указанием на защиту приведены ниже:

Сегмент	0	Сегмент	Сегмент 2	Сегмент 3					
Только для	чтения	Чтение/вы	полнение	Чтение/запись/ выполнение	Чтение/запись				
Вирту- альная страница	Странич- ный кадр	Вирту- альная страница	Странич- ный кадр		Вирту- альная странице	Странич- ный кадр 1			
0	9	0	На диске	Таблицы	0	14			
1	3	1	0	страниц нет	1	1			
2	На диске	2	15	в основной	2	6			
3	12	3	8	памяти	3	На диске			

Вычислите физический адрес для каждого из ниже перечисленных доступов к виртуальной памяти. Если происходит ошибка, скажите, какого она типа.

Сегмент	Страница	Смещение внутри страницы
0	1	1
1	1	10
3	3	2047
0	1	4
3	1	2
3	0	14
1	3	100
0	2	50
2	0	5
3	0	60
	0 1 3 0 3 3 1 0 2	0 1 1 3 3 0 1 3 0 2 2 2 0

Решение:

- 14. 1% определенной программы отвечает за 50% времени выполнения этой программы. Сравните следующие три стратегии с точки зрения времени программирования и времени выполнения. Предположим, что для написания программы на языке С потребуется 10 0 человеко-месяцев, а программу на языке ассемблера написать в 10 раз труднее, но зато она работает в 4 раза эффективнее.
- 1.Вся программа написана на языке C.
- 2.Вся программа написана на ассемблере.
- 3. Программа сначала написана на С, а затем нужный 1% программы переписан на ассемблере.

Решение:

	Затраты на программирование. [у.е.]	Время выполнения. [время]
1	100	4t
2	10*100 = 1000	t
3	100 + 1000/100 = 110	t/2 + 4t/2 = 2.5t