

Data Collection and Preprocessing Phase

Date	8 July 2024
Team ID	SWTID1720092248
Project Title	Revolutionizing Liver Care: Predicting Liver Cirrhosis Using Advanced Machine Learning Techniques
Maximum Marks	6 Marks

Data Exploration and Preprocessing Template

Identifies data sources, assesses quality issues like missing values and duplicates, and implements resolution plans to ensure accurate and reliable analysis.

Section	Description
Data Overview	The data overview provides basic statistics, dimensions, and structure of the dataset. It includes the number of records, number of features, and data types of each feature
Univariate Analysis	Univariate analysis involves exploring individual variables to understand their distribution, central tendency (mean, median, mode), and dispersion (variance, standard deviation). Visualizations such as histograms and box plots are used to illustrate these statistics
Bivariate Analysis	Bivariate analysis examines the relationship between two variables. This includes calculating correlation coefficients and creating scatter plots to visualize potential linear or non-linear relationships between pairs of variables
Multivariate Analysis	Multivariate analysis explores patterns and relationships involving multiple variables simultaneously. Techniques such as principal component analysis (PCA) and multiple regression analysis are employed to understand the interactions between variables
Outliers and Anomalies	Identifying and treating outliers is crucial to ensure accurate analysis. This section involves detecting outliers using

	statistical methods (e.g., IQR, Z-scores) and deciding on appropriate treatments (e.g., removal, transformation)	
Data Preprocessing Code Screenshots		
Loading Data	<pre>#Reading csv file df = pd.read_csv('HealthCareData.csv') df.head()</pre>	
Handling Missing Data	# Drop column with more than a certain percentage of mixing values (e.g., 500) threshold = lan(eff * 0.5 eff = effdrops(calit-1, thresh-threshold) # Fill nemerical column with mean numerical_column of eff. select.eff.eques(calit-1p.,number), columns eff(numerical_column = eff.numerical_column.eff.numerical_column.eff. # Fill categorical columns with mode categorical_column = eff.cetegorical_column.eff.numerical_column.eff.numerical_column.eff.cetegoric	
Data Transformation	<pre>from sklearn.preprocessing import LabelEncoder le=LabelEncoder() for col in categorical_cols: df[col] = le.fit_transform(df[col]) df.head()</pre>	
Feature Engineering	Perform Oil Square Test for Categorical Variables # Function to perform Oil Square Test eff oil, square, Seat (Festiven): Size y, def, we = cold_square_state((extfeature), dest (traps)) size y, def, we = cold_square_state((extfeature), dest (traps)) size y, def, we = cold_square_state((extfeature), dest (traps)) size y, def, we = cold_square_state((extfeature)) size y, def, we = cold_square_state((extfeature)) size y, def, we = cold_square_state((extfeature)) for feature in categorical_features) size y, def, we = cold_square_state((extfeature)) for feature in categorical_features) size y, def, we = cold_square_state((extfeature)) for feature in categorical_features) size y, def, we = cold_square_state((extfeature)) for feature in data[target].unique()] f_val, p_val = f_oneway(*groups) return p_val	

	Combine Results
	<pre># Combine results all_results = {**chi_square_results, **anova_results}</pre>
	# Display all results all_results
	Filter Significant Features
	significance_level = 0.05 #(alpha-value)assumption significant_features = [feature for feature, p_value in all_results.items() if p_value < significance_level]
C D 1 D-4-	# Display significant features significant_features
Save Processed Data	