Module 2: Application Layer (Lecture – 4)

Dr. Nirnay Ghosh
Assistant Professor
Department of Computer Science & Technology
IIEST, Shibpur

Domain Name System (DNS)

- DNS services other than hostname-to-IP address translation
 - Host aliasing
 - A host with complicated hostname (canonical hostname) can have one or more alias names
 - Alias name: typically more mnemonic than canonical hostnames
 - Example: relay1.west-coast.enterprise.com (canonical name) can have enterprise.com or www.enterprise.com as alias names
 - DNS can be invoked by an application to obtain canonical hostname for a supplied alias hostname as well as the IP address of the host
 - Load distribution
 - Performs load distribution among replicated servers (e.g., replicated Web servers) running on different end system and each having different IP address
 - DNS database contains the list of replicated servers
 - In response to typical name-to-address translation query, DNS server responds with the entire set of IP addresses – changes the ordering of the addresses with each reply
 - Client typically sends HTTP request message to the IP

 1/31/2ddress listed first in the set distributes traffic among replicated servers
 Computer Networks (Module 5)

- DNS: both service and protocol
 - Service: a simple straight-forward name-toaddress translation service
 - Complex in nature, consists of a large number of DNS servers distributed across the globe/Internet
 - Protocol: an application-layer protocol that specifies how the DNS servers and querying hosts communicate
- Why is DNS distributed by design?
 - Centralized DNS server: does not scale
 - A single point of failure: if the DNS server crashes, so does the entire Internet
 - Traffic volume: has to handle all DNS queries across the Internet
 - Distant centralized database: cannot be "close" to all querying clients - significant delays for clients who far away
 - Maintenance: have to maintain a huge database for all Internet hosts – need to update frequently to account for every new join and leave

DNS: A distributed, hierarchical data

- DNS: uses a large number of databases; organized in a hierarchical fashion; distributed around the world
- No single DNS server has all of the mappings for all hosts in the Internet
- Three classes of DNS servers are organized hierarchically (see fig.):
 - Root DNS servers
 - Top-level domain (TLD) DNS servers
 - Authoritative DNS servers
- Root DNS Servers
 - 13 root DNS servers exist in the Internet (as of 2012)
 - Each server is actually a network of replicated servers for both security and reliability

Portion of the Hierarchy of DNS Servers

DNS: A distributed, hierarchical database

- Top-level Domain (TLD) DNS Servers
 - Responsible for top level domains com, org, net, edu, gov, and all country top-level domains (uk, fr, ca, jp, in, etc.)
 - Verisign Global Registry: maintains the TLD servers for the "com" top-level domain
 - Educause: maintains the TLD servers for the "edu" top-level domain
- Authoritative DNS Servers
 - Contain organization-specific DNS records
 - Map the names of publicly accessible hosts (such as Web servers and mail servers) on the Internet to IP addresses
 - Most universities and large companies implement and maintain their own primary and secondary (backup) authoritative DNS servers
 - Alternatively, the organizations can pay to have these records stored in the authoritative DNS server of some service provider

Fig.1: Interaction of various DNS Servers (Iterative)

- Local DNS Server
 - Does not strictly belong to the hierarchy of servers, but is nevertheless central to the DNS architecture
 - Each ISP (e.g., a university, company, etc.) has a local DNS server (also called default name server)
 - When a host connects an ISP, the ISP provides the IP address of one or more of its local DNS servers (typically through DHCP)
 - Local DNS server: close to the host
 - Acts as a proxy to a host's DNS query and forwards it into the DNS server hierarchy

DNS: A distributed, hierarchical database

Local DNS Server

- Makes use of both recursive and iterative queries
- In Fig. 1, query sent from the requesting host (cis.poly.edu) to the local DNS server (dns.poly.edu) is recursive - query asks the local DNS server to obtain mapping on behalf of the host
 - The rest of the queries are iterative as all the replies are directly returned to the local DNS server
- Fig. 2 shows a DNS query chain for which all of the queries are recursive
- In practice, the queries typically follow the pattern in Fig. 1
 - Query from the requesting host to the local DNS server is recursive, and the remaining queries are iterative

DNS Caching

- Exploits caching in order to improve the delay performance and to reduce the number of DNS messages in the Internet
- Local DNS server can cache a received mapping (from hostname to IP address) in its memory
- If a query arrives for the name hostname, the DNS server can provide the desired IP address from its local cache (even if the DNS server is not authoritative for the hostname)
- Discards cache information after period of time as mapping between hostname and IP address is not permanent
- Local DNS server can also cache IP addresses of TLD servers by passes visit to the root DNS servers in the query chain Computer Networks (Module 5)

Fig.2: Recursive Queries in DNS

DNS Resource Records

- DNS distributed databases store resource records (RR) including RRs that provide hostname-to-IP address mappings
- Each DNS reply message carries one or more resource records
- Resource record: a four-tuple containing the following fields: (Name, Value, Type, TTL)
- TTL: time-to-live of the resource record determines when a resource record should be removed from the cache
- Different types of resource records that are replied back through DNS messages are tabularized below:

Туре	Name	Value	Response Message (Example)
А	Hostname	IP address	relay1.bar.foo.com, 145.37.93.126, A
NS	Domain (foo.com)	Hostname of an authoritative DNS server that knows how to obtain the IP addresses for the hosts in the domain	foo.com, dns.foo.com, NS
CNAME	Alias hostname	Canonical hostname	foo.com, relay1.bar.foo.com, CNAME
MX	Alias hostname of a mail server	Canonical hostname of the mail server	foo.com, mail.bar.foo.com, MX

DNS Messages

- Header section (12-bytes)
 - Identification (16-bit): identifies the query copied into the reply message to a query for client's convenience
 - Flags: consists of a number of flags; some of them are:
 - A 1-bit query/reply flag: query (0) or reply (1)
 - A 1-bit authoritative flag: set in a reply message if a DNS server is an authoritative server for a queried name
 - A 1-bit recursive-desired flag: set when a client (host or DNS server) desires that the DNS server performs recursion if it doesn't have the record
 - A 1-bit recursion-available field: set in a reply if the DNS server supports recursion
 - Four "number-of" fields: number of occurrences of the four types of data sections that follow the header
- Question section: contains information about the query that is being made
 - Name field (contains the name being queried)
 - Type field (type of question being asked about the name)

DNS Message Format

- Answer section: contains the resource records for the name that was originally queried
 - Resource record Type, Value, TTL
 - A reply can have multiple RRs in the answer since a hostname can have multiple IP addresses (e.g., replicated Web server)
- Authority section: contains information of other authoritative servers
- Additional section: contains other helpful records
 - Reply to MX query providing the canonical hostname of a mail server
 - Type A record IP address of the canonical hostname of the mail server

Inserting Records into the DNS Database

- For any new startup company, the first step is to register its domain name
- Registrar: commercial entity that verifies the uniqueness of the domain name
 - Accredited by the Internet Corporation for Assigned Names and Numbers (ICANN)
 - Responsible for entering the domain name into the DNS database at the cost of fees
- Organization needs to provide the registrar with the names and IP addresses of its primary and secondary authoritative DNS servers
- Registrar makes sure that a Type NS (name) record and a Type A (IP address) record are entered into the corresponding TLD servers (e.g., "com")
- Example: for a startup domain *somecompany.com*, following RRs are entered -
 - (somecompany.com, dns1. somecompany.com, NS)
 - (dns1. somecompany.com, 212.212.212.1, A)
 - (dns2.somecompany.com, 212.212.212.2, A)
- Type A RR for the Web server (www.somecompany.com) and the Type MX RR for the mail server (mail.somecompany.com) are entered into the authoritative DNS servers
 - Configured statically by the system manager