

TNF-4 Production (% Control = 5D)

Title: "Methods of Inhibiting Alcohol Consumption"
Inventors: Eric Garver et al.
U.S. Patent Appl. No.: 09/932,300
Attorney Docket No. 9855-3U2 Cust # 570

İ	_	2	8	4	Ŋ	9	7	∞	თ
Name of ASO	ı	I	0796	2755	1906	2350	3004	3208	3466
Motif containing	ı	1	0 N	YES	YES	YES	YES	YES	YES
LPS stimulation	0	YES	YES	YES	YES	YES	YES	YES	YES
TNF- α inhibition	1	ł	48%	92%	80%	18%	77%	%	O Z
TNF-a mRNA				88.					
18S rRNA									

Fig. 3

4/16

acccagcctt	gacccaaaca	tcaacggact	tgtctggaag	gttttga	tggcccag	ttgatgc	acagaag	ggaagt	ataaaggcag	accagctaag	atcccct	ccctctctcc	ggccgaggag	tcagcct	ctttggagtg	(1)	gtgcgctgat	gagatgtggc	acatggaagg	tat	aacaagtgat	gagagatggg	GGAaagag	acacctcagg		tcagccctct
ctgctaccc	ctccccgcag	$^{\circ}$	tcctgcatcc	tggaggcaat	atcagtca	atc	aagaaaccg	ccacc	ccaGGGAcat	acagcagagg	gc	cacggcttca	ggagct	t t	gca	tcatccactc	gat	gcagaaa	gatgtctggc	aatgaacaag	tggGGGAaga	cagctaagga	aagacactca	agaaaaccag	tttaagggtg	ctctctctaa
caggcttgtc	ccagctcctt	tccaacccgt	tctatcttt	ccaaaagaaa	tcctacacac	tgGGGAgtgt	ccgcgatgga	agctcatggg	tcctctcgcc	ctcagcaagg	aaaacaaccc	catactgacc	atgatccGGG	b	acgctcttct	tggccagcct	agatGGGAtg	gaaagacgGG	ggagagacag	tgaatgaatg	agaagagaga	GGAaatatga	tggcacacag	gaatggagag	ctgttcctcc	CCCCAGGGAC
cccggctgtc	caccaagccc	agcttttccc	cagttctagt	gacctggtcc	gcctccaggg	gcaGGGAgga	atccccgccc	cctccagatg	ttccccgccc	cagacgctcc	acccccctg	cttcctctca	cactgaaagc	ggggcccag	aggcgccacc	ggtgagtgcc	agaGGGAgag	aaaacatgga	agagaaagat	agtgaatgaa	gtggggtgtg	agaaagagcG	atagggtgtc	atacacagat	aggcagccag	cccaacagtt
tgatttcact	tcaagcctgc	gactcaacac	aagcccctcc	acagaccaca	Acggggttca	cggaatcgga	aactttccaa	υ	gaatgattct	acccagccag	gcaactacag	ggcaggttct	acaccatgag	agaagacagg	atcgt	agaGGGAaga	gagacgcaag	gagagagaa	Aagac	gtgtgtatgg	ggagacagat	atggtgagac	agagaagaag	<u>t</u> ggaaggtga	aggc	tctccttc <u>tc</u>
aattccg	ŭ	Ø	gctttct	ttagaaggaa	ggcatgG	accccc	gtgtccc	gcagggcc	ccgctggt	gttggca	GGGAgaga	aagctgcc	tggaaag	tacca	tctccttc	taggaaca	GGGAaatg	GGGAGGGA	gagatgG	gctcacta	ataagata	tgaataaa	gagataag	gttgaatg	taagagc	gtta
-	61	\sim	ω	4	301	9	2	ω	4	0	9	$^{\circ}$	ω	4	0	9	02	08	ずり	20	26	32	300	44	50	56

Fig. 4A

$\mathbf{\alpha}$
4
bi
;=

ttaga	gGĞĞ	ctttt	agccc	Д.	gaget	gccag	gctcg	ct	ccaa	addd	υ + υ +	ν (γ () () t	ני ע	deder	GGAtc	atccc	adada	ata	ct	gan	7 6 6	י ארני) + (ָ ל ל ל	אוני מאל	t g
tagat	ctto	ctcag	cctgt	t	cgct	tcatg	gcaga	acta	b	מ מי		יני מיני מיני	א כ ל ל	2 1 2 1 2 0	מט	ctttG	cccca	gaatt	gaaa	tcaa		Ctag	taaa	101 100 100 100 100 100 100 100 100 100))) (אור אור אור	gatt
gggtt	ttg	agggt	acaag	gctag	aggac	gaacg	ggtgg	ct	aaccd	gtacc	ccctc	שממ	π	ງ ຸດ))	gtcta	ccctg	aaaqa	a	aaqaa	tagaa	\t	tt	T T	ט ו	11 (t
attct	aaagt	gttta	gagtg	gagg	gaga	actca	gtgg	tct	ggctg	gata	tac	gacc	9900) { } }	ששעי	ggcago	gcctc	tcaa	accacc	ccact	acatci	Ιď	Caga	tta	. +	attt	gcct
tccta	aattt	aggaa	acccc	aactt	caatg	읪	ccgga	cactg	ccagt	ccagc	ccaad	ത	g	מ מ	ri I	gtctg	caaac	tctgg	acaaq	ggcaa		sttga	tatít	tttat	ata	aC	tct
ctctt	3GGA	tttct	ctcga	cttgg	ggaga	ttagt	aggaa	ggcca	agct	gataa	aggg	t, C	CCC	400 t	7	ccga	cttcc	cctctt	aagca	gtgctg	tgat	g	g	w	atgaat	ctc	tggc
caaac	cagtg	tα	atctt	tgtgt	aactt	aggcc	aggac	gacat	agggg	u	O	tagac	g	10+	֓֝֝֝֝֜֜֜֜֜֓֓֓֓֓֓֓֓֜֜֜֓֓֓֓֓֓֓֓֓֜֜֜֓֓֓֓֓֓֡֓֜֜֡֓֡֓֡֓֜֡֓֡֓֡֓֡֓֡֡֡֡֓֜֡֓֡֓֡֡֡֓֜֡֡֡֡֡֡	acttt	ccaac	ctcaa	acttt	gtgaa	cagct	tgctg	tctct	gctcc	tacad	gcctt	gcccc
gtctc	ggaag	agggg	ggatc	gagga	ggcag	agcac	cagag	gaacc	agctg	ggagc	ggtcct	(1	g	aaaa	ו ות	tag	aacat	acacc	ttaga	gcaca	gccta	cagaa'	ttcc	agcca	att	gagete	tgta
gtaagt	gt	al B	cttca	gctct	tggta	ggaac	acaga	agagt	cctca	ggcgt	tccca	atcag	ccctd	ctGGG		act	ggacg	ttcag	caagc	ggcct	ctggg	ctggc	taggc	catgg	tttat	tgtag	ttccc
gtcag	tac	Ы	ctcct	taaga	gctga	tgga	GGAtg	tgtgg	caaac	ccaat	tctac	acacc	agagcc	ctat	0000	o o o	agga	cctcc	gaacc	б	ctca	tggtt	gacct	ctccc	tatta	cccaa	ggctgi
aggc	ggtt	gatg	tctct	gtag	dcccd	g	GGAtgtG	cagga	tcca	cctgg	acta	caccc	catc	gcc	+ 0 0	ว ถื ว	cctg	taccc	д	agga	ccag	gcctt	aagtg	cago	t	gGGGA	caata
9	๗ -	gat	ctt	tgtt	Ы	aa	10	agggc	S	gccct	Ţ	ctcct	tctgc	tatga	100	ช วา - ช -	Ы. Ц	ttat	tag	attc	gcc	GGGA	gacac	agcc	ttat	tcctg	tgaa
62	1681	7 0) 	8	92	დ დ	04	10	10	22	28	34	40	46	J C	у п И С	α O	64	0/	9/	$\mathcal{L}_{\mathcal{L}}$	ω Μ	94	0	90	12	<u>∞</u>

		attc	aactctGGGA	GGGAatttcc	ctcagggcat	3601
ttacctctcc	a con	aaacaagagc	atcccccagg		agcccaacag	3541
acataaaca	tggagaccct	cctagggccc	T	ccca	atccctcgga	48
aggcttta	ctctctccac	tccctaagtc	GGGAagaagc	tcttgtgggt	atctgcctct	3421
ttaattct	cttcttggaa	acatggtctc	tagaaaagaa	aaagtttgct	ggcgagaaat	3361
att	taatcgccct	gttgtgtctg	ccccagGGGA	agcctctgct	ctcattgctg	3301
ccaactgtca	gatttggtga	aaacaatgct	taagttgtct	ttatctgat	tttaaaata	324T

Fig. 4C

Cumulative Ethanol Consumption (g/kg)

11 / 16

FIGURE 9

12 / 16

FIGURE 10

H4-II-E-C3 TRANSDUCTION

GCTTTATCTG	CTAAGCTCCG	CTCAGTTCAG	CATGCTGCGC
GCCGCACTCA	GCACCGCCCG	CCGTGGGCCA	CGCCTGAGCC
GCCTGCTGTC	CGCCGCCGCC	ACCAGCGCGG	TGCCAGCCCC
CAACCAGCAG	CCCGAGGTCT	TCTGCAACCA	GATCTTCATT
AACAATGAGT	GGCATGATGC	TGTCAGCAAG	AAAACATTCC
CCACCGTCAA	CCCTTCCACG	GGGGAGGTCA	TCTGCCAGGT
AGCCGAAGGG	AACAAGGAGG	<u>A</u> CGTAGACAA	GGCAGTGAAG
GCCGCTCAGG	CAGCCTTCCA	GCTGGGCTCG	CCCTGGCGCC
GCATGGATGC	ATCTGACAGG	GGCCGGCTGT	TGTACCGATT
GGCTGATCTC	ATCGAACGGG	ACCGGACCTA	CCTGGCGGCC
TTGGAGACCC	TGGACAACGG	CAAGCCTTAT	GTCATCTCCT
ACCTGGTGGA	TTTGGACATG	GTTCTGAAAT	GTCTCCGCTA
TTATGCTGGC	TGGGCTGACA	AGTACCACGG	GAAAACCATT
CCCATCGATG	GCGACTTCTT	CAGCTACACC	CGCCACGAGC
CTGTGGGCGT	GTGTGGACAG	ATCATTCCGT	GGAACTTCCC
GCTCCTGATG	CAAGCCTGGA	AGCTGGGCCC	TGCCTTGGCA
ACTGGAAACG	TGGTGGTGAT	GAAAGTGGCC	GAGCAGACAC
CGCTCACTGC	ACTCTACGTG	GCCAACTTGA	TCAAGGAGGC
AGGCTTCCCC	CCTGGTGTGG	TCAATATTGT	TCCTGGATTC
GGCCCTACCG	CCGGGGCTGC	CATCGCGTCC	CACGAGGATG
TGGACAAAGT	GGCCTTCACA	GGTTCCACTG	AGGTTGGTCA
CCTAATCCAG	GTTGCCGCCG	GGAGCAGCAA	TCTCAAGAGA
GTAACCCTGG	AACTGGGGGG	AAAGAGCCCC	AATATCATCA
TGTCAGACGC	TGACATGGAC	TGGGCTGTGG	AACAGGCCCA
CTTTGCCCTG	TTCTTCAACC	AGGGCCAGTG	CTGTTGTGCG
GGCTCCCGGA	CCTTCGTGCA	GGAGGATGTG	TATGATGAAT
TCGTGGAACG	CAGTGTGGCC	CGGGCCAAGT	CTCGGGTGGT
CGGGAACCCT	TTCGACAGCC	GGACGGAGCA	GGGGCCGCAG
GTGGATGAGA	CTCAGTTTAA	GAAGATCCTG	GGCTATATCA
AGTCAGGACA	ACAAGAAGGG	GCGAAGCTGC	TGTGCGGTGG
GGGCGCCGCC	GCAGACCGTG	GTTACTTCAT	CCAGCCCACC
GTGTTCGGAG	ACGTCAAAGA	TGGCATGACC	ATCGCCAAGG
AGGAGATCTT	CGGACCAGTG	ATGCAGATCC	TCAAATTCAA
GACCATTGAG	GAGGTTGTGG	GGCGAGCCAA	TAATTCCAAG
TACGGGCTGG	CTGCCGCTGT	CTTCACAAAG	GACCTGGACA
AGGCCAATTA	CCTGTCCCAA	GCTCTGCAGG	CTGGGACTGT
GTGGATCAAC	TGCTACGATG	TGTTTGGGGC	CCAGTCCCCA
TTTGGTGGCT	ATAAGATGTC	GGGGAGCGGC	AGGGAGCTGG
GCGAGTATGG	CCTGCAGGCC	TACACGGAAG	TGAAGACGGT
CACCGTCAAA	GTGCCACAGA	AGAACTCGTA	AAGTGGCGTG

Fig. 11A

CAGGCTTCCT	CAGCCAGCGC	CCAAAAACCC	AACAAGATCC
	CACCACCAAG		
AAAACCCCTT	CACCAAAGCG	TCTTGGGCCA	AGAAAGTCAG
	ACAGGGCAGG		
	GTAAACTGGG		
	CGCACGCACA		
	CTGGTTCCAC		
AGCAATAAA			

Fig. 11B

GCTCTCGGTC	CGCTCGCTGT	CCGCTAGCCC	GCTGCGATGT
TGCGCGCTGC	CGCCGCTCGG	GCCCGCCTG	GCCGCCGCCT
CTTGTCAGCC	GCCGCCACCC	AGGCCGTGCC	TGCCCCCAAC
CAGCAGCCCG	AGGTCTTCTG	CAACCAGATT	TTCATAAACA
ATGAATGGCA	CGATGCCGTC	AGCAGGAAAA	CATTCCCCAC
CGTCAATCCG	TCCACTGGAG	AGGTCATCTG	TCAGGTAGCT
GAAGGGGACA	AGGAAGATGT	GGACAAGGCA	CGTGAAGGCC
GCCCGGGCGC	CTTCCAGCTG	GGCTCACCTT	GGCGCCGCAT
GGACGCATCA	CACAGCGGCC	GGCTGCTGAA	CCGCCTGGCC
GATCTGATCG	AGCGGGACCG	GACCTACCTG	GCGGCCTTGG
AGACCCTGGA	CAATGGCAAG	CCCTATGTCA	TCTCCTACCT
GGTGGATTTG	GACATGGTCC	TCAAATGTCT	CCGGTATTAT
GCCGGCTGGG	CTGATAAGTA	CCACGGGAAA	ACCATCCCCA
TTGACGGAGA	CTTCTTCAGC	TACACACGCC	ATGAACCTGT
GGGGGTGTGC	GGGCAGATCA	TTCCGTGGAA	TTTCCCGCTC
CTGATGCAAG	CATGGAAGCT	GGGCCCAGCC	TTGGCAACTG
GAAACGTGGT	TGTGATGAAG	GTAGCTGAGC	AGACACCCCT
CACCGCCCTC	TATGTGGCCA	ACCTGATCAA	GGAGGCTGGC
TTTCCCCCTG	GTGTGGTCAA	CATTGTGCCT	GGATTTGGCC
CCACGGCTGG	GGCCGCCATT	GCCTCCCATG	AGGATGTGGA
CAAAGTGGCA	TTCACAGGCT	CCACTGAGAT	TGGCCGCGTA
ATCCAGGTTG	CTGCTGGGAG	CAGCAACCTC	AAGAGAGTGA
CCTTGGAGCT	GGGGGGAAG	AGCCCCAACA	TCATCATGTC
AGATGCCGAT	ATGGATTGGG	CCGTGGAACA	GGCCCACTTC
GCCCTGTTCT	TCAACCAGGG	CCAGTGCTGC	TGTGCCGGCT
CCCGGACCTT	CGTGCAGGAG	GACATCTATG	ATGAGTTTGT
GGTGCGGAGC	GTTGCCCGGG	CCAAGTCTCG	GGTGGTCGGG
AACCCCTTTG	ATAGCAAGAC	CGAGCAGGG	CCGCAGGTGG
ATGAAACTCA	GTTTAAGAAG	ATCCTCGGCT	ACATCAACAC
GGGGAAGCAA	GAGGGGGCGA	AGCTGCTGTG	TGGTGGGGGC
ATTGCTGCTG	ACCGTGGTTA	CTTCATCCAG	CCCACTGTGT
TTGGAGATGT		ATGACCATCG	CCAAGGAGGA
GATCTTCGGG	CCAGTGATGC	AGATCCTGAA	GTTCAAGACC
ATAGAGGAGG	TTGTTGGGAG	AGCCAACAAT	TCCACGTACG
GGCTGGCCGC	AGCTGTCTTC	ACAAAGGATT	TGGACAAGGC
CAATTACCTG	TCCCAGGCCC	TCCAGGCGGG	CACTGTGTGG
GTCAACTGCT	ATGATGTGTT	TGGAGCCCAG	TCACCCTTTG
GTGGCTACAA	GATGTCGGGG	AGTGGCCGGG	AGTTGGGCGA
GTACGGGCTG	CAGGCATACA	CTGAAGTGAA	AACTGTCACA
GTCAAAGTGC	CTCAGAAGAA	CTCATAAGAA	TCATGCAAGC

Fig. 12A

TTCCTCCCTC	AGCCATTGAT	GGAAAGTTCA	GCAAGATCAG
CAACAAAACC	AAGAAAAATG	ATCCTTGCGT	GCTGAATATC
TGAAAAGAGA	AATTTTTCCT	ACAAAATCTC	TTGGGTCAAG
AAAGTTCTAG	AATTTGAATT	GATAAACATG	GTGGGTTGGC
TGAGGGTAAG	AGTATATGAG	GAACCTTTTA	AACGACAACA
ATACTGCTAG	CTTTCAGGAT	GATTTTTAAA	AAAŤAGATTC
AAATGTGTTA	TCCTCTCTCT	GAAACGCTTC	CTATAACTCG
AGTTTATAGG	GGAAGAAAA	GCTATTGTTT	ACAATTATAT
CACCATTAAG	GCAACTGCTA	CACCCTGCTT	TGTATTCTGG
GCTAAGATTC	ATTAAAAACT	AGCTGCTCT	

Fig. 12B