Lateral Stability Derivatives Sideslip, Coordinated Turn

Table 5.2 Summary—Lateral Derivatives

	C_{y}	C_{l}	C_n	
β	$*-a_F \frac{S_F}{S} \left(1 - \frac{\partial \sigma}{\partial \beta}\right)$	N.A.	$*a_F V_V \left(1 - \frac{\partial \sigma}{\partial \beta}\right)$	
$ \begin{bmatrix} \hat{p} \end{bmatrix} $	$*-a_F \frac{S_F}{S} \left(2 \frac{z_F}{b} - \frac{\partial \sigma}{\partial \hat{p}} \right)$	N.A.]
\int_{-1}^{2}	$*a_F \frac{S_F}{S} \left(2 \frac{l_F}{b} + \frac{\partial \sigma}{\partial \hat{r}} \right)$	$*a_F \frac{S_F}{S} \frac{z_F}{b} \left(2 \frac{l_F}{b} + \frac{\partial \sigma}{\partial \hat{r}} \right)$	$*-a_F V_V \left(2\frac{l_F}{b} + \frac{\partial \sigma}{\partial \hat{r}}\right)$	

*means contribution of the tail only, formula for wing-body not available; $V_F/V = 1$. N.A. means no formula available.

B derivatives

Cle Dihedral Effect

- 1) Wing Height
- 2) Dihedral Angle 3) Vertical Tail 4) Wing Sweep

$$C_{nF} = -C_{L_F} \frac{S_F}{S_b} \left(\frac{V_F}{V} \right)^2$$

$$\left(1-\frac{\partial\sigma}{\partial B}\right)$$

(ye (usually small) (similar derivation to Comp)

p derivatives

(p roll damping derivative (-)

Wing Effects

Toil Effect
$$\Delta \alpha_F = -\frac{pz_F}{u_0} + p\frac{\delta\sigma}{\delta p} = -\hat{p}\left(2\frac{z_F}{b} - \frac{\delta\sigma}{\delta \hat{p}}\right)$$

$$\left(\Delta C_n\right) = -\Delta C_{V_n} \frac{S_F}{b} = a_n V_n \hat{p}\left(2\frac{z_F}{b} + \frac{\delta\sigma}{\delta \hat{p}}\right)$$

$$(\Delta C_n)_{tail} = -\Delta C_{YF} \frac{S_F}{S} \frac{l_F}{b} = a_F V_V \hat{\rho} \left(2^{\frac{2}{b}F} + \frac{\partial \sigma}{\partial \hat{\rho}}\right)$$

$$(C_{n\rho})_{tail} = a_F V_V \left(2^{\frac{2}{b}F} + \frac{\partial \sigma}{\partial \hat{\rho}}\right)$$

Cyp (usually small) (Similar derivation to (Cnp) toil)

r-derivatives

$$\Delta \alpha_F = \frac{r \ell_F}{u_0} + r \frac{\partial \sigma}{\partial r}$$

$$= \hat{r} \left(2 \frac{\ell_F}{b} + \frac{\partial \sigma}{\partial \hat{r}} \right)$$

$$(C_{yr})_{ta.l} = a_F \frac{S_F}{S} \left(2 \frac{l_F}{b} + \frac{\delta \sigma}{\delta \hat{r}} \right)$$

$$(C_{lr})_{ta.l} = a_F \frac{S_F}{S} \frac{z_F}{b} \left(2 \frac{l_F}{b} + \frac{\delta \sigma}{\delta \hat{r}} \right)$$

$$(C_{nr})_{ta.l} = -a_F V_V \left(2 \frac{l_F}{b} + \frac{\delta \sigma}{\delta \hat{r}} \right)$$

$$(C_{nr})_{ta.l} = -a_F V_V \left(2 \frac{l_F}{b} + \frac{\delta \sigma}{\delta \hat{r}} \right)$$

$$(C_{nr})_{ta.l} = -a_F V_V \left(2 \frac{l_F}{b} + \frac{\delta \sigma}{\delta \hat{r}} \right)$$

$$(C_{nr})_{ta.l} = -a_F V_V \left(2 \frac{l_F}{b} + \frac{\delta \sigma}{\delta \hat{r}} \right)$$

$$(C_{nr})_{ta.l} = -a_F V_V \left(2 \frac{l_F}{b} + \frac{\delta \sigma}{\delta \hat{r}} \right)$$

Z steady flight conditions (not "level")

$$\Delta Y + mg \Delta \phi = 0$$

$$\Delta L = 0$$

$$\Delta N = 0$$
| Can incorporate |
| 1-engine out

$$\begin{bmatrix} Y_{\delta}, & O & mg \\ L_{\delta}, & L_{\delta}, & O \\ N_{\delta}, & N_{\delta}, & O \end{bmatrix} \begin{bmatrix} \delta_{r} \\ \delta_{a} \\ \Delta \phi \end{bmatrix} = -\begin{bmatrix} Y_{v} \\ L_{v} \\ N_{v} \end{bmatrix} \Delta v$$
invert

Steady Sideslip

It is convenient to express the sideslip as an angle instead of a velocity. To do so we recall that $\beta = v/u_0$, with u_0 given above as 112.3 fps. The solution of (7.8,4) is

$$\delta_r/\beta = .303$$
$$\delta_a/\beta = -2.96$$
$$\phi/\beta = .104$$

We see that a positive sideslip (to the right) of say 10° would entail left rudder of 3° and right aileron of 29.6° Clearly the main control action is the aileron displacement, without which the airplane would, as a result of the sideslip to the right, roll to the left. The bank angle is seen to be only 1° to the right so the sideslip is almost flat.

Coordinated Turn

$$\omega = \frac{u_0}{R}$$

$$a_n = \omega^2 R = \frac{u_0^2}{R}$$

$$\vec{\omega}_{\mathbf{E}} = \begin{bmatrix} 0 & 0 \\ 0 & \omega \end{bmatrix}$$

$$\vec{\omega}_{B} = R_{E}^{B} \vec{\omega}_{E} = \begin{bmatrix} c \\ a \\ r \end{bmatrix} = \begin{bmatrix} -\sin \theta \\ \sin \phi \cos \theta \\ \cos \phi \cos \theta \end{bmatrix} \omega$$

Since there is increased need for lift due to bank angle, involves both lat and lon dynamics

Lcos
$$\phi = mg \cos \theta$$

Lsin $\phi = m\frac{u_0^2}{R}$
= $m \omega u_0$
 $\tan \phi = \frac{Lsin \phi}{Lcos \phi} = \frac{m \omega u_0}{mg \cos \theta} = \frac{\omega u_0}{g \cos \theta}$