Edited by James Amidei

NOTE: I changed the code so that the values for each of the initial velocities would be displayed simultaneously.

Central Force and Elliptical Orbit

In this section, elliptical orbit due gravitational force is discussed. The Cartesian and polar coordinates are used.

Cartesian Coordinates

The gravitational force between two masses M and m at distance r is given by

$$\vec{F}_G = -G \frac{Mm}{r^2} \hat{r}$$

The x and y components of the gravitational force are given by

$$F_{Gx} = -G\frac{Mm}{r^2}\cos\theta = -G\frac{Mm}{r^2}\frac{x}{r} = -(GMm)\frac{x}{r^3} = -(GMm)\frac{x}{r^3}$$

$$-(GMm)\frac{x}{(x^2 + y^2)^{3/2}}$$

$$F_{Gy} = -G\frac{Mm}{r^2}\sin\theta = -G\frac{Mm}{r^2}\frac{y}{r} = -GMm\frac{y}{r^3} = -(GMm)\frac{y}{(x^2 + y^2)^{3/2}}$$

The Newton's seconds law in x and y direction is given by

$$-(GMm)\frac{x}{(x^2+y^2)^{3/2}} = ma_x$$

$$-(GMm)\frac{y}{(x^2+y^2)^{3/2}} = ma_y$$

The above equations yields

$$a_x = \frac{-GMx}{(x^2 + y^2)^{3/2}}$$

$$a_y = \frac{-GMy}{(x^2 + y^2)^{3/2}}$$

The Euler-Cromer method x and y is given by

$$v_x(t_{i+1}) = v_x(t_i) + a_x(t_i)\Delta t = v_x(t_i) - \left(\frac{GMx(t_i)}{\left(x^2(t_i) + y^2(t_i)\right)^{3/2}}\right)\Delta t$$
$$x(t_{i+1}) = x(t_i) + v_x(t_{i+1})\Delta t$$

$$v_{y}(t_{i+1}) = v_{y}(t_{i}) + a_{y}(t_{i})\Delta t = v_{y}(t_{i}) - \left(\frac{GMy(t_{i})}{\left(x^{2}(t_{i}) + y^{2}(t_{i})\right)^{3/2}}\right)\Delta t$$
$$y(t_{i+1}) = y(t_{i}) + v_{y}(t_{i+1})\Delta t$$

The orbit of is an ellipse and the equation of an ellipse is given by

$$\frac{(x+f)^2}{a^2} + \frac{y^2}{b^2} = 1$$

where a and b are semimajor and semiminor axes and f is the focal length.

```
| import math
In [22]:
             import numpy as np
             import matplotlib.pyplot as plt
             #Gravity, Orbital motion
             GM=4*np.pi**2 #AU^3/yr^2
             r0=1
                    #AU
             theta0 D=0
             theta0 = theta0_D*np.pi/180
             #v0=1.5*np.sqrt(2)*np.pi #2*np.pi
             v0_values = [2*np.pi, 2.5*np.pi, np.sqrt(2)*np.pi, 1.5*np.sqrt(2)*np.pi]
             del t=0.001
             n=5000
             t=np.zeros(n+1)
             x_array = np.zeros((len(v0_values), n+1))
             vx_array = np.zeros((len(v0_values), n+1))
             ax_array = np.zeros((len(v0_values), n+1))
             y_array = np.zeros((len(v0_values), n+1))
             vy_array = np.zeros((len(v0_values), n+1))
             ay_array = np.zeros((len(v0_values), n+1))
             Flag T=1
             for index, v0 in enumerate(v0_values):
                 x = np.zeros(n+1)
                 vx = np.zeros(n+1)
                 ax = np.zeros(n+1)
                 y = np.zeros(n+1)
                 vy = np.zeros(n+1)
                 ay = np.zeros(n+1)
                 x[0]=r0*np.cos(theta0)
                 y[0]=r0*np.sin(theta0)
                 vx[0]=v0*np.sin(theta0)
                 vy[0]=v0*np.cos(theta0)
                 ax[0] = -GM*x[0]/r0**3
                 ay[0] = -GM*y[0]/r0**3
                 # Euler-Cromer Method Method
                 for i in range(0,n):
                     t[i+1]=(i+1)*del_t
                     #x-direction:
                     vx[i+1]=vx[i]+ax[i]*del_t
                     x[i+1]=x[i]+vx[i+1]*del_t
                     #y-direction:
                     vy[i+1]=vy[i]+ay[i]*del_t
                     y[i+1]=y[i]+vy[i+1]*del_t
                     del_x=x[i+1]-x[i]
```

```
if x[i+1] == 0 or (x[i+1] \le abs(del x) and x[i+1] >= -abs(del x)):
            c=y[i+1]
        #if Flag_T==1 and t[i]>0 and np.sign(y[i+1]) != np.sign(y[i]) :
             T=t[i+1]+t[i]
             FLag_T= 0
        if Flag_T==1 and t[i]>0 and np.sign(y[i+1]) != np.sign(y[i]) and >
            T=t[i+1]#+t[i]
            Flag_T= 0
        r=np.sqrt(x[i+1]**2+y[i+1]**2)
        ax[i+1]=-GM*x[i+1]/r**3
        ay[i+1]=-GM*y[i+1]/r**3
    x_{array}[index, :] = x
    vx_array[index,:] = vx
    ax_array[index,:] = ax
    y_array[index, :] = y
    vy_array[index,:] = vy
    ay_array[index,:] = ay
plt.figure(figsize=(12,10))
print('Plots for position and velocity using the Euler-Cromer method')
plt.subplot(2,2,1)
for i, v0 in enumerate(v0_values):
    plt.plot(t, x_array[i,:], label=f'$v_0$={v0}')
plt.xlabel('t')
plt.ylabel('x')
plt.title('x')
plt.legend()
plt.subplot(2,2,2)
for i, v0 in enumerate(v0_values):
    plt.plot(t, vx_array[i,:], label=f'$v_0$={v0}')
plt.xlabel('t')
plt.ylabel('v_x')
plt.title('v_x')
#plt.legend()
plt.subplot(2,2,3)
for i, v0 in enumerate(v0 values):
    plt.plot(t, y_array[i,:], label=f'$v_0$={v0}')
plt.xlabel('t')
plt.ylabel('y')
plt.title('v')
#plt.legend()
plt.subplot(2,2,4)
for i, v0 in enumerate(v0_values):
    plt.plot(t, vy_array[i,:], label=f'$v_0$={v0}')
plt.xlabel('t')
plt.ylabel('v_y')
plt.title('v_y')
```

```
#plt.legend()
plt.show()

plt.figure()
for i, v0 in enumerate(v0_values):
    plt.plot(x_array[i,:], y_array[i,:], label=f'$v_0$={v0}')
plt.grid()
plt.xlabel('x')
plt.ylabel('y')
plt.title('Euler-Cromer Method')
plt.legend(loc="upper left")
```

Plots for position and velocity using the Euler-Cromer method

Out[22]: <matplotlib.legend.Legend at 0x255ccc20b90>

The Polar Coordinates

The gravitational force between two masses M and m at distance r in polar coordinates is given by

$$-G\frac{Mm}{r^2} = \frac{d^2r}{dt^2} - r\left(\frac{d\theta}{dt}\right)^2$$
$$0 = r\frac{d^2\theta}{dt^2} + 2\frac{dr}{dt}\frac{d\theta}{dt}$$

The above equations can be written as following

$$\frac{d^2r}{dt^2} = -G\frac{Mm}{r^2} + r\left(\frac{d\theta}{dt}\right)^2$$
$$\frac{d^2\theta}{dt^2} = -\frac{2}{r}\frac{dr}{dt}\frac{d\theta}{dt}$$

or

$$\frac{dr}{dt} = v_r$$

$$\frac{d\theta}{dt} = \omega$$

$$\frac{dv_r}{dt} = -G\frac{Mm}{r^2} + r\omega^2$$

$$\frac{d\omega}{dt} = -\frac{2}{r}v_r\omega$$

Using Finite-Difference Method, we have

$$v_r(t_{i+1}) = v_r(t_i) + a_r(t_i)\Delta t = v_r(t_i) + \left(-G\frac{Mm}{r^2(t_i)} + r(t_i)\omega^2(t_i)\right)\Delta t$$

$$\omega(t_{i+1}) = \omega(t_i) + \alpha(t_i)\Delta t = \omega(t_i) + \left(-\frac{2}{r(t_i)}v_r(t_i)\omega(t_i)\right)\Delta t$$

$$r(t_{i+1}) = r(t_i) + v_r(t_{i+1})\Delta t$$

$$\theta(t_{i+1}) = \theta(t_i) + \omega(t_{i+1})\Delta t$$

The equation or orbit in polar coordinate is given by

$$r(\theta) = \frac{c}{1 + e\cos\theta}$$

where e is eccentricity and for an ellipse is 0 < e < 1 and for a circle is e = 1 and c is given by

$$r\left(\frac{\pi}{2}\right) = \frac{c}{1 + e\cos\left(\frac{\pi}{2}\right)}$$

The above equation yields

$$c = r\left(\frac{\pi}{2}\right)$$

The minimum and maximum r (i.e. $r_{min}=r(\theta=0), r_{max}=r(\theta=\pi)$) are given by

$$r_{min} = \frac{c}{1 + e}$$

$$r_{max} = \frac{c}{1 - e}$$

The semimajor and semiminor axes and focal length are given by

$$a = \frac{c}{1 - e^2}$$

$$b = \frac{c}{\sqrt{1 - e^2}}$$

$$f = a\epsilon$$

. From above equations, the ratio of $\frac{a}{b}$ is given by

$$\frac{b}{a} = \sqrt{1 - e^2}$$

.

```
In [30]:
          | import math
             import numpy as np
             import matplotlib.pyplot as plt
             #Gravity, Orbital motion
             GM=4*np.pi**2 #AU^3/yr^2
             r0=1
                    #AU
             theta0 D=0
             theta0=theta0_D*np.pi/180
             vr0=0
             omega0_values = [2*np.pi, 2.5*np.pi, np.sqrt(2)*np.pi, 1.5*np.sqrt(2)*np.pl
             del_t=0.001
             n=4000
             t=np.zeros(n+1)
             r_array = np.zeros((len(omega0_values),n+1))
             vr array = np.zeros((len(omega0 values),n+1))
             ar_array = np.zeros((len(omega0_values),n+1))
             theta_array = np.zeros((len(omega0_values),n+1))
             omega_array = np.zeros((len(omega0_values),n+1))
             alpha_array = np.zeros((len(omega0_values),n+1))
             x_array = np.zeros((len(omega0_values),n+1))
             y_array = np.zeros((len(omega0_values),n+1))
             for index, omega0 in enumerate(omega0 values):
                 r = np.zeros(n+1)
                 vr = np.zeros(n+1)
                 ar = np.zeros(n+1)
                 theta = np.zeros(n+1)
                 omega = np.zeros(n+1)
                 alpha = np.zeros(n+1)
                 x = np.zeros(n+1)
                 y = np.zeros(n+1)
                 r[0]=r0
                 theta[0]=theta0
                 vr[0]=vr0
                 omega[0]=omega0
                 ar[0]=-GM/r[0]**2+r[0]*omega[0]**2
                 alpha[0]=-2*vr[0]*omega[0]/r[0]
                 x[0]=r[0]*np.cos(theta[0])
                 y[0]=r[0]*np.sin(theta[0])
                 # Euler-Cromer Method Method
                 for i in range(0,n):
                     t[i+1]=(i+1)*del_t
```

```
#r:
        vr[i+1]=vr[i]+ar[i]*del_t
        r[i+1]=r[i]+vr[i+1]*del_t
        #theta:
        omega[i+1]=omega[i]+alpha[i]*del_t
        theta[i+1]=theta[i]+omega[i+1]*del_t
        ar[i+1]=-GM/r[i+1]**2+r[i+1]*omega[i+1]**2
        alpha[i+1]=-2*vr[i+1]*omega[i+1]/r[i+1]
        x[i+1]=r[i+1]*np.cos(theta[i+1])
       y[i+1]=r[i+1]*np.sin(theta[i+1])
        del_theta=theta[i+1]-theta[i]
        if theta[i+1] == np.pi / 2 or (theta[i+1] <= np.pi / 2 + abs(del_t
            c = y[i+1]
   r_array[index,:] = r
   vr_array[index,:] = vr
    ar_array[index,:] = ar
   theta_array[index,:] = theta
   omega_array[index,:] = omega
   alpha_array[index,:] = alpha
   x_{array}[index,:] = x
   y_array[index,:] = y
plt.figure(figsize=(12, 10))
print('Plots for position and velocity using the Euler-Cromer method')
plt.subplot(2, 2, 1)
for i, omega0 in enumerate(omega0_values):
    plt.plot(t, r_array[i,:], label=f'$\omega_0$={omega0}')
plt.xlabel('t')
plt.ylabel('r')
plt.title('r')
plt.legend(loc='upper left')
plt.subplot(2, 2, 2)
for i, omega0 in enumerate(omega0_values):
   plt.plot(t, vr_array[i, :], label=f'$\omega_0$={omega0}')
plt.xlabel('t')
plt.ylabel('$vr$')
plt.title('vr')
plt.subplot(2, 2, 3)
for i, omega0 in enumerate(omega0_values):
    plt.plot(t, theta_array[i, :], label=f'$\omega_0$={omega0}')
plt.xlabel('t')
plt.ylabel('theta')
plt.title('theta')
plt.subplot(2, 2, 4)
for i, omega0 in enumerate(omega0_values):
    plt.plot(t, omega_array[i, :], label=f'$\omega_0$={omega0}')
plt.xlabel('t')
```

```
plt.ylabel('omega')
plt.title('omega')

plt.show()

plt.figure()
for i, v0 in enumerate(v0_values):
    plt.plot(x_array[i,:], y_array[i,:], label=f'$v_0$={v0}')
plt.grid()
plt.xlabel('x')
plt.ylabel('y')
plt.title('Euler-Cromer Method')
plt.legend(loc="upper left")
```

Plots for position and velocity using the Euler-Cromer method

Out[30]: <matplotlib.legend.Legend at 0x255cc267290>


```
In [67]:
             r_min=min(r)
             r_max=max(r)
             y_min=min(y)
             y_max=max(y)
             a=(r_min+r_max)/2
             b=(abs(max(y))+abs(min(y)))/2
             print('a=',a,' \nb=',b,'\nf=',f, '\ne=', e, '\nc=',c, '\nT=',T)
             print()
             f=a-r_min
             e=np.sqrt(1-(b/a)**2)
             f=a*e
             a=c/(1-e**2)
             b=c/np.sqrt(1-e**2)
             print('Verification: \n f = a*e =', f, '\n a = c/(1-e^2) =', a, '\n b = c/s
             print()
             # Kepler's third law: T^2=4*pi^2/GM a^3#
             T=np.sqrt((4*np.pi**2/GM)*a**3)
             print('Kepler third law: \ T = sqrt((4*pi^2)/GM)*a^3) = ',T)
             a= 1.1459517844092808
             b= 1.1361673024811265
             f= 0.14943009390204837
             e= 0.13039823833345407
             c= 1.1277083297636659
             T= 1.2287608286825058
             Verification:
              f = a*e = 0.14943009390204837
              a = c/(1-e^2) = 1.1472152340824107
              b = c/sqrt(1-e^2) = 1.1374199644399199
             Kepler third law:
              T = sqrt((4*pi^2)/GM)*a^3) = 1.2287608286825058
 In [ ]:
```