S2 S1 S0 pensors 6/6/6 Design enample: gumballa I trap door Sz=1 iff a gumball is too large Design a logic function t=1 $S_1 = 1$ when a gumball is both 50=1 (too small & too light) or (too large)

=> intuitive: t=S1S0+S2

=> derivation: by truth table, Borlean algebra

Terminology

product term: any AND term: xy, x, x, x2x3

sum-of-product form: any sum of product terms. ab+ab

Canonical SOP from: a unique form of expression of a function where each product term is a mintern

minterm . a product term that includes all of the input to a function

1.e. a 3-input function

•				
YOW X	42	minterm	f	maxterm
00	00	x y z	1	x+y+z
10	01	X y Z	1	x + y + \(\frac{2}{2}\)
20	10	x y Z	1	x + y + z
30	1 1	₹ y z	1	x+y+2
4 1	00	xyz	0	x+y+2 €
51	0 1	xyz	0	7+y+z ←
6 1	10	x y Z	1	<u>*</u>
71	1 1	x y 2	,	x+y+2
1		1 0 -	•	x+y+2

Canonical SOP $= \overline{\chi} \overline{y} + \overline{\chi} \overline{u} = \overline{\chi} \overline{u} =$ = x y2+xy2+xy2+xy2+xy2+xy2 $= \overline{x}\overline{y} + \overline{x}y + xy$ simplified -= 7+4

Product of sum form: any product of sum terms: $(\pi+\overline{y})(\pi+\overline{y})$ Canonical POS: When each sum term is a maxterm maxterm: a sum term that includes all of the imputs of a function back to the previous example, the function can also be fully described by covering all rows in the truth table where f=0 $\overline{f}(\pi,y,z)=\overline{f}=\pi(4,5)=\pi\overline{y}\overline{z}+\pi\overline{y}\overline{z}$ by Semorgan's theorem $f(\pi,y,z)=(\overline{\pi}+y+\overline{z})(\overline{\pi}+y+\overline{z}) \Leftarrow \text{Canonical Pos form}$

- max terms

let's use Brolean adjetra to simplify this POS form $f(x,y,z) = \bar{\chi} + y$ (combining rule)

Work away points:

to describe a function in SOP form - sunn up all minterms in a truth table where the function is equal to I

to describe the same function in Pos form - AND all maxterns in a truth table where the function is equal to o

SOP form Bolean algebra Pos form

Intro to Verilog

Verilos: a karewore descriptive language

call

y

$$Z = x\overline{y} + \overline{x}y$$
 (sop form)

pheyword for declaration

module $Z \log ic$ (input x, y , output Z);

cassign $Z = (x \cdot 4 \cdot 1y) + (1x \cdot 4y)$