Particle spectrograph

Wave operator and propagator

					1 _		
$\tau_1^{\#2}_{\alpha}$	0	0	0	$\frac{12ik}{(3+4k^2)^2t_1}$	$\frac{12 i \sqrt{2} k}{(3+4 k^2)^2 t_1}$	0	$\frac{24 k^2}{(3+4 k^2)^2 t_1}$
$\tau_{1}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}{}_{lpha}$	0	0	0	$\frac{6\sqrt{2}}{(3+4k^2)^2t_1}$	$\frac{12}{(3+4k^2)^2t_1}$	0	$-\frac{12i\sqrt{2}k}{(3+4k^2)^2t_1}$
$\sigma_{1^{-}}^{\#1}{}_{\alpha}$	0	0	0	$\frac{6}{(3+4k^2)^2t_1}$	$\frac{6\sqrt{2}}{(3+4k^2)^2t_1}$	0	$-\frac{12ik}{(3+4k^2)^2t_1}$
$\tau_{1}^{\#1}_{+}$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$\frac{ik}{(1+k^2)^2t_1}$	$\frac{k^2}{(1+k^2)^2 t_1}$	0	0	0	0
$\sigma_{1}^{\#2}$	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{1}{(1+k^2)^2 t_1}$	$-\frac{ik}{(1+k^2)^2t_1}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{+}\alpha\beta$	0	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{i\sqrt{2}k}{t_1+k^2t_1}$	0	0	0	0
	$r_1^{#1} + \alpha \beta$	$r_1^{\#2} + \alpha \beta$	$[t_1^{\#1} + \alpha \beta]$	$\sigma_{1}^{\#1} +^{lpha}$	$\sigma_{1}^{\#2} +^{\alpha}$	$\tau_{1}^{\#1} +^{\alpha}$	$\tau_1^{\#2} +^{\alpha}$

Quadratic (Tree) Lagrangian density	$-rac{1}{3}t_1\;\omega_{_{_{_{}}}}^{lpha_{_{}}}\;\omega_{_{_{_{_{}}}}lpha_{_{_{}}}}^{}-t_1\;\omega_{_{_{_{_{}}}}}^{},\;\omega_{_{_{_{_{}}}}\lambda}^{}+f^{lphaeta}\;\tau_{_{_{_{}}}eta}+\omega^{lphaeta\chi}\;\sigma_{lphaeta\chi}+$	$rac{2}{3}r_2\partial^{eta}\omega^{etalpha}_{\kappa}\partial_{eta}\omega^{\kappa}_{eta} - rac{1}{3}r_2\partial_{eta}\omega^{\kappa}_{eta}\partial_{\kappa}\omega^{lphaetaeta} - rac{2}{3}r_2\partial_{eta}\omega^{\kappa}_{eta}\partial_{\kappa}\omega^{etaeta} - rac{2}{3}r_2\partial_{eta}\omega^{\kappa}_{eta}\partial_{\kappa}\omega^{etaeta}\partial_{\kappa}\omega^{etaeta} - rac{2}{3}r_2\partial_{eta}\omega^{\kappa}\partial_{\kappa}\omega^{etaeta}\partial_{\kappa}\omega^{eta}\partial_{\kappa}$	$\tfrac{1}{2}t_1\partial^\alpha f_{\theta \kappa}\partial^\kappa f_{\alpha}^{\theta} - \tfrac{1}{2}t_1\partial^\alpha f_{\kappa \theta}\partial^\kappa f_{\alpha}^{\theta} - \tfrac{1}{2}t_1\partial^\alpha f^\lambda_{\kappa}\partial^\kappa f_{\alpha \lambda} + \tfrac{1}{3}t_1\omega_{\kappa \alpha}^{\alpha}\partial^\kappa f'_{,} +$	$rac{1}{3}t_1\;\omega_{\kappa\lambda}^{\lambda}\;\partial^{\kappa}f'_{}'+rac{2}{3}t_1\;\partial^{lpha}f_{lpha}\;\partial^{\kappa}f'_{}'-rac{1}{3}t_1\;\partial_{\kappa}f^{}_{\lambda}\;\partial^{\kappa}f'_{}'+2t_1\;\omega_{\kappa\theta}\;\partial^{\kappa}f'^{\theta}-$	$rac{1}{3}t_1\;\omega_{/lpha}^{\;\;\;lpha}\partial^{\kappa}f_{'\;\kappa}^{'\;\; -rac{1}{3}}t_1\;\omega_{/\lambda}^{\;\;\;\lambda}\partial^{\kappa}f_{\;\;\kappa}^{\;\;\; +rac{1}{2}}t_1\partial^{lpha}f_{\;\;\kappa}^{\lambda}\partial^{\kappa}f_{\;\lambdalpha}^{\;\;\; +rac{1}{2}}t_1\partial_{\kappa}f_{\;\;eta}^{\;\;\;\lambda}\partial^{\kappa}f_{\;\lambda}^{\;\;\; +}$	$rac{1}{2}t_1\partial_\kappa f^\lambda_{\theta}\partial^\kappa f_{\lambda}^{\theta} - rac{1}{3}t_1\partial^\alpha f^\lambda_{\alpha}\partial^\kappa f_{\lambda\kappa} + rac{1}{3}r_2\partial_\kappa \omega^{lphaeta heta}\partial^\kappa \omega_{lphaeta heta} +$	$rac{2}{3} r_2 \partial_\kappa \omega^{ heta lpha eta} \partial^\kappa \omega_{lpha eta eta} - rac{2}{3} r_2 \partial^eta \omega_{}^{ lpha \lambda} \partial_\lambda \omega_{lpha eta}^{ \prime} + rac{2}{3} r_2 \partial^eta \omega_{ \lambda}^{ lpha} \partial_\lambda \omega_{lpha eta}^{ \prime}$	
5	3.	N ΙΝ	7 7	HI ω	HI W	7 7	W 17	

	$f_{1^-}^{\#2} \alpha$	0	0	0	<i>ikt</i> 1 3	$\frac{1}{3}\bar{l}\sqrt{2}kt_1$	0	2 k ² t <u>1</u> 3
	$f_{1^-}^{\# 1} \alpha$	0	0	0	0	0	0	0
	$\omega_{1}^{\#2}{}_{lpha}$	0	0	0	$\frac{t_1}{3\sqrt{2}}$	<u>†1</u> 3	0	$-\frac{1}{3}\bar{l}\sqrt{2}kt_1$
	$\omega_{1^{-}}^{\#1}{}_{\alpha}$	0	0	0	1 1 6	$\frac{t_1}{3\sqrt{2}}$	0	$-\frac{1}{3}$ \bar{l} kt_1
	$f_{1}^{\#1}\alpha\beta$	$-\frac{ikt_1}{\sqrt{2}}$	0	0	0	0	0	0
:	$\omega_1^{\#2}{}_+ \alpha eta$	$-\frac{t_1}{\sqrt{2}}$	0	0	0	0	0	0
;	$\omega_{1}^{\#1}{}_{lphaeta}$ ι	- <u>t1</u> 2	$-\frac{t_1}{\sqrt{2}}$	$\frac{ikt_1}{\sqrt{2}}$	0	0	0	0
		$_{1}^{\#1}$ $\dagger^{\alpha\beta}$	$_{1}^{\#2}+^{\alpha\beta}$	$_{1}^{#1}+^{\alpha\beta}$	$\omega_{1}^{\#1} +^{lpha}$	$\omega_1^{\#2} +^{lpha}$	$\epsilon_{1}^{\#1} +^{lpha}$	$f_{1}^{#2} +^{\alpha}$

	$\sigma_{2^{+}\alpha\beta}^{\sharp 1}$	$ au_2^{\#1}{}_{lphaeta}$	$\sigma_{2}^{\#1}{}_{\alpha\beta\chi}$
$\sigma_{2}^{\#1} \dagger^{\alpha\beta}$	$\frac{2}{(1+2k^2)^2t_1}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0
$ au_{2}^{\#1} \dagger^{lphaeta}$	$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0
$\sigma_2^{\#1} \dagger^{lphaeta\chi}$	0	0	$\frac{2}{t_1}$

$\tau_0^{\#1}$	0	o O	0	O		
$\sigma_{0}^{\#1}$	U	0	0	C		
	+	- 	+ ;; +	+	-	
	Q#1	0 # 1	0 . 1 #2	ئ = د		
		, ,#1	r #1	∠ #2	. #1	
	_	$\omega_{0^{+}}$	$f_{0^{+}}^{#1}$	⁷ 0 ⁺	$\omega_0^{#1}$	
$\omega_0^{\#1}$	†	0	0	0	0	
-#1						

0

τ^{#2}₀+

Source constraints/gauge generators						
SO(3) irreps	Multiplicities					
$\tau_{0+}^{\#2} == 0$	1					
$\tau_{0+}^{\#1} == 0$	1					
$\sigma_{0^{+}}^{\#1} == 0$	1					
$\tau_{1}^{\#2\alpha} + 2 i k \sigma_{1}^{\#1\alpha} == 0$	3					
$\tau_{1}^{\#1\alpha} == 0$	3					
$\sigma_{1}^{\#1\alpha} == \sigma_{1}^{\#2\alpha}$	3					
$\tau_{1+}^{\#1\alpha\beta} + i k \sigma_{1+}^{\#2\alpha\beta} == 0$	3					
$\tau_{2+}^{\#1\alpha\beta} - 2 \bar{i} k \sigma_{2+}^{\#1\alpha\beta} == 0$	5					
Total constraints:	20					

	$\omega_{2}^{\#1}{}_{lphaeta}$	$f_{2}^{\#1}{}_{\alpha\beta}$	$\omega_{2^{-}\alpha\beta\chi}^{\#1}$
$\omega_{2}^{\#1} \dagger^{\alpha\beta}$	<u>t</u> 1 2	$-\frac{ikt_1}{\sqrt{2}}$	0
$f_{2^{+}}^{#1} \dagger^{\alpha\beta}$	$\frac{i k t_1}{\sqrt{2}}$	$k^2 t_1$	0
$\omega_2^{#1} \dagger^{lphaeta\chi}$	0	0	<u>t</u> 1 2

 $0 \quad k^2 r_2 - t_1$

Massive and massless spectra

(No massless particles)

Unitarity conditions