Automi e Linguaggi Formali

a.a. 2016/2017

LT in Informatica 17 Marzo 2017

Espressioni Regolari

Le espressioni regolari sono un metodo alternativo per descrivere i linguaggi regolari, costruite utilizzando

- un insieme di costanti di base:
 - lacksquare per la stringa vuota
 - Ø per il linguaggio vuoto
 - $\mathbf{a}, \mathbf{b}, \dots$ per i simboli $a, b, \dots \in \Sigma$
- collegati da operatori:
 - + per l'unione
 - · per la concatenazione
 - * per la chiusura di Kleene
- raggruppati usando le parentesi:
 - **(**)

Espressioni regolari: esercizi

- Scrivere una espressione regolare per tutte stringhe binarie che cominciano e finiscono per 1
- 2 Scrivere una espressione regolare per le stringhe binarie che contengono almeno tre 1 consecutivi
- 3 Scrivere una espressione regolare per le stringhe binarie che contengono almeno tre 1 (anche non consecutivi)
- 4 Scrivere una espressione regolare per stringhe di testo che descriva le date in formato GG/MM/AAAA

Equivalenza tra FA e RE

Sappiamo già che DFA, NFA, e ε -NFA sono tutti equivalenti.

Gli FA sono equivalenti alle espressioni regolari:

- A Per ogni espressione regolare R esiste un ε -NFA A, tale che L(A) = L(R)
- Per ogni DFA A possiamo costruire un'espressione regolare R, tale che L(R) = L(A)

Da RE a ε -NFA: esercizi

- 5 Trasformiamo $(0+1)^*1(0+1)$ in arepsilon-NFA
- 6 Scrivere un'espressione regolare per rappresentare il linguaggio sull'alfabeto $\{a, b, c\}$ che contiene
 - tutte le stringhe che iniziano con *a* e sono composte solo di *a* oppure *b*;
 - la stringa *c*
- 7 Trasformare l'espressione regolare dell'esercizio 6 in ε -NFA