

BCA 3RD SEMSESTER

COPUTER ORIENTED NUMERICAL METHOD
DCA2101

(set:- I)

1) Question) Find Taylor's series of the function $f(x)=3x^5-2x^4+15x^3+13x^2-12x-5$ at point c=2. Answer :-

We know Taylor's series expansion of function at the point x0 is

$$f(x) = f(x0) + f'(x0)(x - x0) + f''(x0) 2!(x - x0) 2 + \dots + f(n)(x0) n!(x - x0) n$$

So at $x0 = 2$, we have

$$f(x) = f(2) + f'(2)(x - 2) + f''(2) / 2! (x - 2) 2 + \dots + f(n) (2) / n! (x - 2)$$

$$n \dots ..(1)$$

$$f(x) = 3x 5 - 2x 4 + 15x 3 + 13x 2 - 12x - 5$$

$$f(2) = 3(32) - 2(16) + 15(8) + 13(4) - 12(2) - 5 = 207$$

$$f'(x) = 15x 4 - 8x 3 + 45x 2 + 26x - 12$$

$$f'(2) = 15(16) - 8(8) + 45(4) + 26(2) - 12 = 396$$

$$f''(x) = 60x \ 3 - 24x \ 2 + 90x + 26$$

$$f''(2) = 60(8) - 24(4) + 90(2) + 26 = 590$$

$$f'''(x) = 180x \ 2 - 48x + 90$$

$$f'''(2) = 180(4) - 48(2) + 90 = 714$$

$$f iv(x) = 360x - 48$$

$$f iv(2) = 360(2) - 48 = 672$$

$$f v(x) = 360$$

$$f v(2) = 360$$

$$f vi(x) = 0$$

$$f vi(2) = 0$$

Putting these values in (1), we get

$$f(x) = 207 + 396(x - 2) + 590(x - 2) 2 / 2! + 714(x - 2) 3 / 3! + 672(x - 2) 4 / 4! + 360(x - 2) 5 / 5!$$

$$f(x) = 207 + 396(x - 2) + 295(x - 2) + 119(x - 2) + 28(x - 2) + 4 + 3(x - 2) + 300(x - 2) + 30$$

2) Question) Evaluate $\sqrt{12}$ to four decimal places by Newton's-Raphson formula.

Answer :-

Let x- =
$$\sqrt{12}$$

$$X^2 = 12$$

$$X^2 - 12 = 0$$

Iterative egn. for Newton - Raphson method is

$$\chi_{n=1} = \chi_n - \frac{f(xn)}{f'(xn)}$$

$$X_{n=1} = x_n - \frac{(x^2n-12)}{2}$$

$$X_1 = x_0 - \frac{(xo^2 - 12)^2}{2}$$

$$X_{n=1} = x_n - \frac{(x^2 - 12)}{2x}$$

$$X_1 = x_0 - \frac{(xo^2 - 12)}{2xo}$$

$$= 3.5. \frac{[(3.5)^2 - 12]}{2 \times 3.5}$$

$$\Rightarrow$$
 3.4643 first equation

$$X_1 = x_1 - \frac{(x1^2 - 12)}{2x1}$$

$$X1 \rightarrow 3.4643$$

$$\Rightarrow \quad 3.4643 \cdot \frac{((3.4643)^2 - 12)}{2 \cdot 3.4643}$$

$$\Rightarrow \quad 3.4643 \cdot \frac{1.37449}{6.9286}$$

- \Rightarrow 34643 0.19837 = 3.266 and
- 3) Question) Slove the system of equation by matrix inversion method X + y + z = 1

$$X + 2y + 3z = 6$$

$$X + 3y + 4z = 6$$

Answer :- A
$$x = 3$$

$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 3 & 4 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} \rightarrow \begin{bmatrix} 1 \\ 6 \\ 6 \end{bmatrix}$$

$$A^+ = \frac{a \times 8}{141}$$

$$A^{+} = \frac{a \times 8}{|A|}$$

$$|A| \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 3 & 4 \end{bmatrix}$$

$$\Rightarrow 1(D-9)-1(4-3)+(3-2)$$

$$= -1-1-1-1$$

$$A^{1} = \begin{bmatrix} -1 & 1 & 1 \\ 1 & 3 & 2 \\ 1 & 2 & 1 \end{bmatrix}$$

Ad-join

$$\begin{bmatrix}
-1 & 1 & 1 \\
1 & 3 & 2 \\
1 & 2 & 1
\end{bmatrix}$$

$$A^{1} \begin{bmatrix} -1 & -1 & -1 \\ -1 & -3 & -2 \\ -1 & -2 & -1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 \\ 6 \\ 6 \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} \begin{bmatrix} -1 & -1 & -1 \\ -1 & -3 & -2 \\ -1 & -2 & -1 \end{bmatrix} \quad \begin{bmatrix} -11 \\ -31 \\ -19 \end{bmatrix} \text{ ans }$$

(set:- II)

4) Question) From the following table , estimate the number of students who obtained marks bwteen 40 and 45 .

Marks	30-40	50-60	60-70	70-80
No. of students	31	42	35	31

X	X	Δ	Δ^2	Δ^3	Δ^4
40	31	40			
50	73	42 51	9		
60	124	35	-16	-25	37
70	159	31	4	12	
80	190				

Now we need to find the no of students whose marks is less than 45 From the above table we have,

$$y0 = 31, \Delta y0 = 42, \qquad \Delta 2y0 = 9, \qquad \Delta 3y0 = -25, \qquad \Delta 4y0 = 37$$

$$\Delta$$
 2y0 = 9,

$$\Delta 3y0 = -25$$

$$\Delta 4y0 = 37$$

Taking
$$x0 = 40$$
, $x = 45$, $h = 10$

We have

$$x = x0 + ph$$

or,
$$45 = 40 + p10$$

or,
$$p = 0.5$$

Using Newton's forward interpolation formula, we get,

$$y(x) = y0 + p \Delta y0 + p(p-1) 2! \Delta 2y0 + p(p-1)(p-2)3! \Delta 3y0 + p(p-1)(p-2)(p-3) 4! \Delta 4y0$$

$$y(45) = 31 + 0.5(42) + 0.5(0.5-1) 2!$$
 (9) + 0.5(0.5-1)(0.5-2) 3! (-25) + 0.5(0.5-1)(0.5-2)(0.5-3) 4! (37)

$$= 31 + 21 - 1.125 + 1.5625 - 1.4453$$

Therefore y(45) = 47.87 The no of students with marks less than 45 is 47.87, that is 48. But the no of students with marks less than 40 is 31. Hence the no of students getting marks between 40 and 45 is = 48 - 31 = 17 students.

5. Question) The population of a certain town is show in the following table

Year x	1931	1941	1951	1961	1971
Population y	40.62	60.80	79.95	103.56	132.65

Answer:- Here h = 10,

Since the rate if the growth of the population is dy/dx,

We have to find dy dx at x = 1961, which lies nearer to the end value if the table.

Hence we choose the origin at x = 1971 and we use Newton backward interpolation formula for derivative where,

$$P = \frac{x - x0}{10} = \frac{1961 - 1971}{10} = -1$$

The backward difference table

Year (x)	Population (y)	Vγ	∇ ²y	∇ 3y	∇ 4y
1931	40.62	20.18			
1941	60.80		-1.03	5.40	
1951	79.95	19.15	4.46	5.49	-4.47
1961	103.56	23.61	5.48	1.02	
1971	132.65	29.09			

So, by Newton interpolation formula for derivative we have

$$\frac{dy}{dx} = \left[\nabla y_4 + \frac{(2p+1)}{2} \nabla^2 y_4 + \frac{(3p^2+6p+2)}{2} \nabla^3 y_4 + \frac{(2p^3+9p^2+11p+3)}{2} \nabla^4 y_4 + \dots \right]$$

$$\left(\frac{dy}{dx}\right) p = -1 \frac{1}{10} \left[29.09 - \left(\frac{1}{2}\right) (5.48) + \frac{3(-1)^2+6(-1)+2}{6} \times 1.02 + \frac{2(-1)^3+9(-1)^2+11(-1)+3}{6} (4.47) \right]$$

$$\Rightarrow \frac{1}{10} \left[29 - 2.74 - 0.17 + 0.3725 \right]$$

$$\Rightarrow 2.65$$

6. Question) Use fourth order Runge-Kutta method to fined y at x = 0.1, given

that
$$\frac{dy}{dx} = 3e^{x} + 2y$$
, $y(0) = 0$ and $h = 0.1$

Answer: The fourth order Runge-Kutta formula is defined by

$$y_i + 1 = y_i + 1/6 [K_1 + 2K_2 + 2K_3 + K_4],$$

where $i = 0, 1, 2, 3,$

$$K_1 = hf(x_i, y_i)$$

$$K_2 = hf(x_i + h/2, y_i + k_1/2)$$

$$K_3 = hf(x_i + h/2, y_i + k_2/2)$$

$$K_4 = hf(x_i + h, y_i + K_3)$$

This method is most commonly used and is often referred to as Runge-Kutta method only. The error of the method is of order $O(h^5)$.

Given
$$f(x, y) = 3e^x + 2y$$
, $x_0 = 0$, $y_0 = 0$ and $h = 0.1$.

$$K_1 = hf(x_0, y_0) = (0.1) f(0, 0) = (0.1) [3_e0 + 2 \times 0] = 0.3.$$

$$K_2 = hf(x_0 + h/2, y_0 + k_1/2) = (0.1)f(0.05, 0.15)$$

$$= (0.1)[3e^{0.05}+2(0.15)] = 0.3454$$

$$K_3 = hf(x_0 + h/2, y_0 + k_2/2) = (0.1) f(0.05, 0.1727)$$

$$= (0.1)[3e^{0.05}+2(0.1727)] = 0.3499.$$

$$K_4 = hf(x0 + h, y0 + K3) = (0.1) f(0.1, 0.3499)$$

$$= (0.1)[3e^{0.1}+2(0.3499)] = 0.4015.$$

Substituting these values in $y(x_0+h)$

=
$$y_0 + 1/6 [K_1 + 2K_2 + 2K_3 + K_4]$$
,

$$= 0 + 1/6 [0.3 + 2(0.3454) + 2(0.3499) + 0.4015]$$

$$y(0.1) = 0.3487$$