15.7: Triple Integrals in Cylindrical & Spherical Coordinates

Cylindrical Coordinates

- Represent point P in space by ordered triples (r, θ, z) (r > 0)
- 1. r and θ are polar coordinates for the projection of P onto the xy-plane
- 2. z is the rectangular vertical coordinate

Usage

Should be used when...

- there is an axis of symmetry
- an integrand involves $x^2 + y^2$
- we're integrating over a circle (or part of) in the xy-plane

Very similar to using polar coordinates w/ double integrals, but with an added z component for triple integrals.

Spherical Coordinates

- Represent point P in space by ordered triples (ρ, ϕ, θ)
- 1. ρ is distance from P to the origin $(\rho \ge 0)$
- 2. ϕ is the angle \overrightarrow{OP} makes with the +z-axis $(0 \le \phi \le \pi)$
- 3. θ is the angle from cylindrical coordinates

Converting Rectangular to Spherical

$$ho^2 = x^2 + y^2 + z^2 = r^2 + z^2$$
 $r =
ho \sin \phi$
 $z =
ho \cos \phi$
 $x = r \cos \theta =
ho \sin \phi \cos \theta$
 $y = r \sin \theta =
ho \sin \phi \sin \theta$

Triple Integral Definition

$$\iiint_T dV = \iiint_T
ho^2 \sin \phi \, d
ho \, d\phi \, d heta$$

Why?

 ΔV is the curved box above. Assuming ΔV is a rectangular prism (which is converges to at small ΔV),

$$\Delta V = (\Delta
ho) \overbrace{(
ho \, \Delta \phi)}^{
m arclength \ from \ the \ top}^{
m arclength \ from \ the \ top}$$

$$=
ho r \, \Delta
ho \, \Delta \phi \, \Delta heta \ =
ho (
ho \sin \phi) \, \Delta
ho \, \Delta \phi \, \Delta heta \ =
ho^2 \sin \phi \, \Delta
ho \, \Delta \phi \, \Delta heta$$

$$dV = \rho^2 \sin \phi \, d\rho \, d\phi \, d\theta$$

15.8: Integration by Substitution

Double Integrals

Jacobian determinate or **Jacobian** of the coordinate transformation x = g(u, v), y = h(u, v):

$$J(u,v) = rac{\partial(x,y)}{\partial(u,v)} = egin{bmatrix} rac{\partial x}{\partial u} & rac{\partial x}{\partial v} \ rac{\partial y}{\partial v} & rac{\partial y}{\partial v} \end{bmatrix} = rac{\partial x}{\partial u} rac{\partial y}{\partial v} - rac{\partial y}{\partial u} rac{\partial x}{\partial v}$$

Substitution for Double Integrals:

Suppose f(x,y) is continuous over region R. Let G be preimage of R under transform x=g(u,v),y=h(u,v) (assumed to be one-to-one on interior of G). If functions g and g have continuous 1st partial derivatives within interior of G:

$$\iint_R f(x,y)\,dx\,dy = \iint_G f(g(u,v),h(u,v)) \overbrace{\left|rac{\partial(x,y)}{\partial(u,v)}
ight|}^{ ext{Jacobian}} du\,dv$$

Triple Integrals

Given x=g(u,v,w),y=h(u,v,w),z=k(u,v,w),

$$J(u,v,w) = rac{\partial(x,y,z)}{\partial(u,v,w)} = egin{bmatrix} rac{\partial x}{\partial u} & rac{\partial x}{\partial v} & rac{\partial x}{\partial w} \ rac{\partial y}{\partial u} & rac{\partial y}{\partial v} & rac{\partial y}{\partial w} \ rac{\partial z}{\partial u} & rac{\partial z}{\partial v} & rac{\partial z}{\partial w} \end{bmatrix}$$

- - -

$$egin{aligned} &\iiint_R f(x,y,z) \, dx \, dy \, dz \ &= \iiint_G f(g(u,v,w),h(u,v,w),k(u,v,w)) \left| rac{\partial (x,y,z)}{\partial (u,v,w)} \right| du \, dv \, dw \end{aligned}$$