No. 11 C_{4h} 4/m [tetragonal] (polar)

表 1 rank 0

No.	irrep.	(tag)	mul.	comp.	harmonics	(tag)	definition
1	A_g	Ag	_	_	$\mathbb{Q}_0^{(h,A_g)}$	$\mathtt{Qh}(\mathtt{0},\mathtt{Ag},,)$	C_0

表 2 rank 1

No.	irrep.	(tag)	mul.	comp.	harmonics	(tag)	definition
2	A_u	Au	-	-	$\mathbb{Q}_1^{(h,A_u)}$	$\mathtt{Qh}(\mathtt{1},\mathtt{Au},,)$	C_0
3	E_u	Eu	_	0	$\mathbb{Q}_{1,0}^{(h,E_u)}$	$\mathtt{Qh}(\mathtt{1},\mathtt{Eu},,\mathtt{0})$	C_1
4	E_u	Eu	_	1	$\mathbb{Q}_{1,1}^{(h,E_u)}$	$\mathtt{Qh}(\mathtt{1},\mathtt{Eu},,\mathtt{1})$	S_1

表 3 rank 2

No.	irrep.	(tag)	mul.	comp.	harmonics	(tag)	definition
5	A_g	Ag	-	-	$\mathbb{Q}_2^{(h,A_g)}$	$\mathtt{Qh}(\mathtt{2},\mathtt{Ag},,)$	C_0
6	B_g	Bg	1	_	$\mathbb{Q}_2^{(h,B_g,1)}$	$\mathtt{Qh}(\mathtt{2},\mathtt{Bg},\mathtt{1},)$	C_2
7	B_g	Bg	2	_	$\mathbb{Q}_2^{(h,B_g,2)}$	$\mathtt{Qh}(\mathtt{2},\mathtt{Bg},\mathtt{2},)$	S_2
8	E_g	Eg	_	0	$\mathbb{Q}_{2,0}^{(h,E_g)}$	$\mathtt{Qh}(\mathtt{2},\mathtt{Eg},,\mathtt{0})$	S_1
9	E_g	Eg	_	1	$\mathbb{Q}_{2,1}^{(h,E_g)}$	$\mathtt{Qh}(\mathtt{2},\mathtt{Eg},,\mathtt{1})$	$-C_1$

表 4 rank 3

No.	irrep.	(tag)	mul.	comp.	harmonics	(tag)	definition
10	A_u	Au	_	_	$\mathbb{Q}_3^{(h,A_u)}$	Qh(3, Au,,)	C_0
11	B_u	Bu	1	_	$\mathbb{Q}_3^{(h,B_u,1)}$	$\mathtt{Qh}(\mathtt{3},\mathtt{Bu},\mathtt{1},)$	S_2
12	B_u	Bu	2	_	$\mathbb{Q}_3^{(h,B_u,2)}$	$\mathtt{Qh}(\mathtt{3},\mathtt{Bu},\mathtt{2},)$	C_2
13	E_u	Eu	1	0	$\mathbb{Q}_{3,0}^{(h,E_u,1)}$	$\mathtt{Qh}(3,\mathtt{Eu},1,0)$	$-\frac{\sqrt{6}C_1}{4} + \frac{\sqrt{10}C_3}{4}$
14	E_u	Eu	1	1	$\mathbb{Q}_{3,1}^{(h,E_u,1)}$	$\mathtt{Qh}(3,\mathtt{Eu},1,1)$	$-\frac{\sqrt{6}S_1}{4} - \frac{\sqrt{10}S_3}{4}$
15	E_u	Eu	2	0	$\mathbb{Q}_{3,0}^{(h,E_u,2)}$	$\mathtt{Qh}(3,\mathtt{Eu},2,0)$	$-\frac{\sqrt{10}C_1}{4} - \frac{\sqrt{6}C_3}{4}$
16	E_u	Eu	2	1	$\mathbb{Q}_{3,1}^{(h,E_u,2)}$	$\mathtt{Qh}(3,\mathtt{Eu},2,1)$	$-\frac{\sqrt{10}S_1}{4} + \frac{\sqrt{6}S_3}{4}$

表 5 rank 4

No.	irrep.	(tag)	mul.	comp.	harmonics	(tag)	definition
17	A_g	Ag	1	_	$\mathbb{Q}_4^{(h,A_g,1)}$	$\mathtt{Qh}(\mathtt{4},\mathtt{Ag},\mathtt{1},)$	$\frac{\sqrt{21}C_0}{6} + \frac{\sqrt{15}C_4}{6}$
18	A_g	Ag	2	_	$\mathbb{Q}_4^{(h,A_g,2)}$	$\mathtt{Qh}(\mathtt{4},\mathtt{Ag},\mathtt{2},)$	$\frac{\sqrt{15}C_0}{6} - \frac{\sqrt{21}C_4}{6}$
19	A_g	Ag	3	_	$\mathbb{Q}_4^{(h,A_g,3)}$	$\mathtt{Qh}(\mathtt{4},\mathtt{Ag},\mathtt{3},)$	S_4
20	B_g	Bg	1	_	$\mathbb{Q}_4^{(h,B_g,1)}$	$\mathtt{Qh}(\mathtt{4},\mathtt{Bg},\mathtt{1},)$	$-C_2$
21	B_g	Bg	2	_	$\mathbb{Q}_4^{(h,B_g,2)}$	$\mathtt{Qh}(\mathtt{4},\mathtt{Bg},\mathtt{2},)$	S_2
22	E_g	Eg	1	0	$\mathbb{Q}_{4,0}^{(h,E_g,1)}$	$\mathtt{Qh}(\mathtt{4},\mathtt{Eg},\mathtt{1},\mathtt{0})$	$\frac{\sqrt{2}\left(-\sqrt{7}S_1 - S_3\right)}{4}$
23	E_g	Eg	1	1	$\mathbb{Q}_{4,1}^{(h,E_g,1)}$	$\mathtt{Qh}(\mathtt{4},\mathtt{Eg},\mathtt{1},\mathtt{1})$	$\frac{\sqrt{14}C_1}{4} - \frac{\sqrt{2}C_3}{4}$
24	E_g	Eg	2	0	$\mathbb{Q}_{4,0}^{(h,E_g,2)}$	$\mathtt{Qh}(4,\mathtt{Eg},2,\mathtt{0})$	$\frac{\sqrt{2}\left(-S_1+\sqrt{7}S_3\right)}{4}$
25	E_g	Eg	2	1	$\mathbb{Q}_{4,1}^{(h,E_g,2)}$	$\mathtt{Qh}(4,\mathtt{Eg},2,1)$	$\frac{\sqrt{2}C_1}{4} + \frac{\sqrt{14}C_3}{4}$

表 6 rank 5

No.	irrep.	(tag)	mul.	comp.	harmonics	(tag)	definition
26	A_u	Au	1	-	$\mathbb{Q}_{5}^{(h,A_{u},1)}$	$\mathtt{Qh}(\mathtt{5},\mathtt{Au},\mathtt{1},)$	S_4
27	A_u	Au	2	_	$\mathbb{Q}_5^{(h,A_u,2)}$	$\mathtt{Qh}(5,\mathtt{Au},2,)$	C_0
28	A_u	Au	3	_	$\mathbb{Q}_{5}^{(h,A_{u},3)}$	$\mathtt{Qh}(\mathtt{5},\mathtt{Au},\mathtt{3},)$	C_4
29	B_u	Bu	1	_	$\mathbb{Q}_5^{(h,B_u,1)}$	$\mathtt{Qh}(\mathtt{5},\mathtt{Bu},\mathtt{1},)$	$-S_2$
30	B_u	Bu	2	_	$\mathbb{Q}_{5}^{(h,B_{u},2)}$	$\mathtt{Qh}(5,\mathtt{Bu},2,)$	C_2
31	E_u	Eu	1	0	$\mathbb{Q}_{5,0}^{(h,E_u,1)}$	$\mathtt{Qh}(\mathtt{5},\mathtt{Eu},\mathtt{1},\mathtt{0})$	$\frac{\sqrt{15}C_1}{8} - \frac{\sqrt{70}C_3}{16} + \frac{3\sqrt{14}C_5}{16}$
32	E_u	Eu	1	1	$\mathbb{Q}_{5,1}^{(h,E_u,1)}$	$\mathtt{Qh}(\mathtt{5},\mathtt{Eu},\mathtt{1},\mathtt{1})$	$\frac{\sqrt{15}S_1}{8} + \frac{\sqrt{70}S_3}{16} + \frac{3\sqrt{14}S_5}{16}$
33	E_u	Eu	2	0	$\mathbb{Q}_{5,0}^{(h,E_u,2)}$	$\mathtt{Qh}(5,\mathtt{Eu},2,0)$	$\frac{\sqrt{2}\left(\sqrt{42}C_1 + 9C_3 + \sqrt{5}C_5\right)}{16}$
34	E_u	Eu	2	1	$\mathbb{Q}_{5,1}^{(h,E_u,2)}$	$\mathtt{Qh}(5,\mathtt{Eu},2,1)$	$\frac{\sqrt{2}\left(\sqrt{42}S_1 - 9S_3 + \sqrt{5}S_5\right)}{16}$
35	E_u	Eu	3	0	$\mathbb{Q}_{5,0}^{(h,E_u,3)}$	$\mathtt{Qh}(5,\mathtt{Eu},3,0)$	$\frac{\sqrt{7}C_1}{4} - \frac{\sqrt{6}C_3}{8} - \frac{\sqrt{30}C_5}{8}$
36	E_u	Eu	3	1	$\mathbb{Q}_{5,1}^{(h,E_u,3)}$	$\mathtt{Qh}(5,\mathtt{Eu},3,1)$	$\frac{\sqrt{7}S_1}{4} + \frac{\sqrt{6}S_3}{8} - \frac{\sqrt{30}S_5}{8}$

表 7 rank 6

No.	irrep.	(tag)	mul.	comp.	harmonics	(tag)	definition
37	A_g	Ag	1	_	$\mathbb{Q}_6^{(h,A_g,1)}$	Qh(6, Ag, 1,)	$\frac{\sqrt{2}C_0}{4} - \frac{\sqrt{14}C_4}{4}$
38	A_g	Ag	2	_	$\mathbb{Q}_6^{(h,A_g,2)}$	$\mathtt{Qh}(6,\mathtt{Ag},2,)$	$\frac{\sqrt{14}C_0}{4} + \frac{\sqrt{2}C_4}{4}$
39	A_g	Ag	3	_	$\mathbb{Q}_6^{(h,A_g,3)}$	$\mathtt{Qh}(6,\mathtt{Ag},3,)$	S_4
40	B_g	Bg	1	_	$\mathbb{Q}_6^{(h,B_g,1)}$	$\mathtt{Qh}(6,\mathtt{Bg},1,)$	$\frac{\sqrt{11}C_2}{4} - \frac{\sqrt{5}C_6}{4}$
41	B_g	Bg	2	_	$\mathbb{Q}_6^{(h,B_g,2)}$	$\mathtt{Qh}(6,\mathtt{Bg},2,)$	$\frac{\sqrt{5}C_2}{4} + \frac{\sqrt{11}C_6}{4}$
42	B_g	Bg	3	_	$\mathbb{Q}_6^{(h,B_g,3)}$	$\mathtt{Qh}(6,\mathtt{Bg},3,)$	S_6
43	B_g	Bg	4	_	$\mathbb{Q}_6^{(h,B_g,4)}$	$\mathtt{Qh}(6,\mathtt{Bg},4,)$	S_2
44	E_g	Eg	1	0	$\mathbb{Q}_{6,0}^{(h,E_g,1)}$	$\mathtt{Qh}(6,\mathtt{Eg},1,0)$	$\frac{\sqrt{3}S_1}{4} - \frac{\sqrt{30}S_3}{8} - \frac{\sqrt{22}S_5}{8}$
45	E_g	Eg	1	1	$\mathbb{Q}_{6,1}^{(h,E_g,1)}$	$\mathtt{Qh}(6,\mathtt{Eg},1,1)$	$-\frac{\sqrt{3}C_1}{4} - \frac{\sqrt{30}C_3}{8} + \frac{\sqrt{22}C_5}{8}$
46	E_g	Eg	2	0	$\mathbb{Q}_{6,0}^{(h,E_g,2)}$	$\mathtt{Qh}(6,\mathtt{Eg},2,0)$	$\frac{3\sqrt{22}S_1}{16} + \frac{\sqrt{55}S_3}{16} + \frac{\sqrt{3}S_5}{16}$
47	E_g	Eg	2	1	$\mathbb{Q}_{6,1}^{(h,E_g,2)}$	$\mathtt{Qh}(6,\mathtt{Eg},2,1)$	$-\frac{3\sqrt{22}C_1}{16} + \frac{\sqrt{55}C_3}{16} - \frac{\sqrt{3}C_5}{16}$
48	E_g	Eg	3	0	$\mathbb{Q}_{6,0}^{(h,E_g,3)}$	$\mathtt{Qh}(6,\mathtt{Eg},3,0)$	$\frac{\sqrt{10}S_1}{16} - \frac{9S_3}{16} + \frac{\sqrt{165}S_5}{16}$
49	E_g	Eg	3	1	$\mathbb{Q}_{6,1}^{(h,E_g,3)}$	$\mathtt{Qh}(6,\mathtt{Eg},3,1)$	$-\frac{\sqrt{10}C_1}{16} - \frac{9C_3}{16} - \frac{\sqrt{165}C_5}{16}$

表 8 $\operatorname{rank} 7$

No.	irrep.	(tag)	mul.	comp.	harmonics	(tag)	definition
50	A_u	Au	1	_	$\mathbb{Q}_7^{(h,A_u,1)}$	$\mathtt{Qh}(7,\mathtt{Au},\mathtt{1},)$	S_4
51	A_u	Au	2	-	$\mathbb{Q}_7^{(h,A_u,2)}$	$\mathtt{Qh}(7,\mathtt{Au},2,)$	C_0
52	A_u	Au	3	_	$\mathbb{Q}_7^{(h,A_u,3)}$	$\mathtt{Qh}(7,\mathtt{Au},3,)$	C_4
53	B_u	Bu	1	-	$\mathbb{Q}_7^{(h,B_u,1)}$	$\mathtt{Qh}(7,\mathtt{Bu},1,)$	$\frac{\sqrt{78}S_2}{12} + \frac{\sqrt{66}S_6}{12}$
54	B_u	Bu	2	-	$\mathbb{Q}_7^{(h,B_u,2)}$	$\mathtt{Qh}(7,\mathtt{Bu},2,)$	$\frac{\sqrt{66}S_2}{12} - \frac{\sqrt{78}S_6}{12}$
55	B_u	Bu	3	_	$\mathbb{Q}_7^{(h,B_u,3)}$	$\mathtt{Qh}(7,\mathtt{Bu},3,)$	C_6
56	B_u	Bu	4	_	$\mathbb{Q}_7^{(h,B_u,4)}$	$\mathtt{Qh}(7,\mathtt{Bu},4,)$	C_2
57	E_u	Eu	1	0	$\mathbb{Q}_{7,0}^{(h,E_u,1)}$	$\mathtt{Qh}(7,\mathtt{Eu},1,0)$	$-\frac{5\sqrt{7}C_1}{32} + \frac{3\sqrt{21}C_3}{32} - \frac{\sqrt{231}C_5}{32} + \frac{\sqrt{429}C_7}{32}$
58	E_u	Eu	1	1	$\mathbb{Q}_{7,1}^{(h,E_u,1)}$	$\mathtt{Qh}(7,\mathtt{Eu},1,1)$	$-\frac{5\sqrt{7}S_1}{32} - \frac{3\sqrt{21}S_3}{32} - \frac{\sqrt{231}S_5}{32} - \frac{\sqrt{429}S_7}{32}$
59	E_u	Eu	2	0	$\mathbb{Q}_{7,0}^{(h,E_u,2)}$	$\mathtt{Qh}(7,\mathtt{Eu},2,0)$	$-\frac{3\sqrt{33}C_1}{32} - \frac{\sqrt{11}C_3}{32} + \frac{25C_5}{32} + \frac{\sqrt{91}C_7}{32}$
60	E_u	Eu	2	1	$\mathbb{Q}_{7,1}^{(h,E_u,2)}$	$\mathtt{Qh}(7,\mathtt{Eu},2,1)$	$-\frac{3\sqrt{33}S_1}{32} + \frac{\sqrt{11}S_3}{32} + \frac{25S_5}{32} - \frac{\sqrt{91}S_7}{32}$
61	E_u	Eu	3	0	$\mathbb{Q}_{7,0}^{(h,E_u,3)}$	$\mathtt{Qh}(7,\mathtt{Eu},3,0)$	$-\frac{\sqrt{858}C_1}{64} - \frac{3\sqrt{286}C_3}{64} - \frac{5\sqrt{26}C_5}{64} - \frac{\sqrt{14}C_7}{64}$
62	E_u	Eu	3	1	$\mathbb{Q}_{7,1}^{(h,E_u,3)}$	$\mathtt{Qh}(7,\mathtt{Eu},3,1)$	$-\frac{\sqrt{858}S_1}{64} + \frac{3\sqrt{286}S_3}{64} - \frac{5\sqrt{26}S_5}{64} + \frac{\sqrt{14}S_7}{64}$
63	E_u	Eu	4	0	$\mathbb{Q}_{7,0}^{(h,E_u,4)}$	$\mathtt{Qh}(7,\mathtt{Eu},4,0)$	$\frac{\sqrt{2}\left(-15\sqrt{3}C_1+19C_3-\sqrt{111}C_5-\sqrt{1001}C_7\right)}{64}$
64	E_u	Eu	4	1	$\mathbb{Q}_{7,1}^{(h,E_u,4)}$	$\mathtt{Qh}(7,\mathtt{Eu},4,1)$	$-\frac{15\sqrt{6}S_1}{64} - \frac{19\sqrt{2}S_3}{64} - \frac{\sqrt{22}S_5}{64} + \frac{\sqrt{2002}S_7}{64}$

表 9 rank 8

No.	irrep.	(tag)	mul.	comp.	harmonics	(tag)	definition
65	A_g	Ag	1	-	$\mathbb{Q}_8^{(h,A_g,1)}$	$\mathtt{Qh}(\mathtt{8},\mathtt{Ag},\mathtt{1},)$	$\frac{\sqrt{33}C_0}{8} + \frac{\sqrt{21}C_4}{12} + \frac{\sqrt{195}C_8}{24}$
66	A_g	Ag	2	_	$\mathbb{Q}_8^{(h,A_g,2)}$	$\mathtt{Qh}(8,\mathtt{Ag},2,)$	$-\frac{\sqrt{286}C_0}{32} + \frac{\sqrt{182}C_4}{16} + \frac{\sqrt{10}C_8}{32}$
67	A_g	Ag	3	_	$\mathbb{Q}_8^{(h,A_g,3)}$	$\mathtt{Qh}(8,\mathtt{Ag},\mathtt{3},)$	$-\frac{\sqrt{210}C_0}{32} - \frac{\sqrt{330}C_4}{48} + \frac{\sqrt{6006}C_8}{96}$
68	A_g	Ag	4	_	$\mathbb{Q}_8^{(h,A_g,4)}$	$\mathtt{Qh}(\mathtt{8},\mathtt{Ag},\mathtt{4},)$	S_8
69	A_g	Ag	5	_	$\mathbb{Q}_8^{(h,A_g,5)}$	$\mathtt{Qh}(8,\mathtt{Ag},5,)$	S_4
70	B_g	Bg	1	_	$\mathbb{Q}_8^{(h,B_g,1)}$	$\mathtt{Qh}(\mathtt{8},\mathtt{Bg},\mathtt{1},)$	C_6
71	B_g	Bg	2	_	$\mathbb{Q}_8^{(h,B_g,2)}$	$\mathtt{Qh}(8,\mathtt{Bg},2,)$	C_2
72	B_g	Bg	3	_	$\mathbb{Q}_8^{(h,B_g,3)}$	$\mathtt{Qh}(8,\mathtt{Bg},3,)$	S_6
73	B_g	Bg	4	_	$\mathbb{Q}_8^{(h,B_g,4)}$	$\mathtt{Qh}(\mathtt{8},\mathtt{Bg},\mathtt{4},)$	S_2
74	E_g	Eg	1	0	$\mathbb{Q}_{8,0}^{(h,E_g,1)}$	$\mathtt{Qh}(8,\mathtt{Eg},1,0)$	$-\frac{\sqrt{715}S_1}{32} - \frac{\sqrt{273}S_3}{32} - \frac{\sqrt{35}S_5}{32} - \frac{S_7}{32}$
75	E_g	Eg	1	1	$\mathbb{Q}_{8,1}^{(h,E_g,1)}$	$\mathtt{Qh}(8,\mathtt{Eg},1,1)$	$\frac{\sqrt{715}C_1}{32} - \frac{\sqrt{273}C_3}{32} + \frac{\sqrt{35}C_5}{32} - \frac{C_7}{32}$
76	E_g	Eg	2	0	$\mathbb{Q}_{8,0}^{(h,E_g,2)}$	$\mathtt{Qh}(8,\mathtt{Eg},2,0)$	$-\frac{\sqrt{77}S_1}{32} + \frac{5\sqrt{15}S_3}{32} - \frac{3\sqrt{13}S_5}{32} - \frac{\sqrt{455}S_7}{32}$
77	E_g	Eg	2	1	$\mathbb{Q}_{8,1}^{(h,E_g,2)}$	$\mathtt{Qh}(8,\mathtt{Eg},2,1)$	$\frac{\sqrt{77}C_1}{32} + \frac{5\sqrt{15}C_3}{32} + \frac{3\sqrt{13}C_5}{32} - \frac{\sqrt{455}C_7}{32}$
78	E_g	Eg	3	0	$\mathbb{Q}_{8,0}^{(h,E_g,3)}$	$\mathtt{Qh}(8,\mathtt{Eg},3,0)$	$-\frac{\sqrt{858}S_1}{64} + \frac{\sqrt{910}S_3}{64} + \frac{7\sqrt{42}S_5}{64} + \frac{3\sqrt{30}S_7}{64}$
79	E_g	Eg	3	1	$\mathbb{Q}_{8,1}^{(h,E_g,3)}$	$\mathtt{Qh}(8,\mathtt{Eg},3,1)$	$\frac{\sqrt{858}C_1}{64} + \frac{\sqrt{910}C_3}{64} - \frac{7\sqrt{42}C_5}{64} + \frac{3\sqrt{30}C_7}{64}$
80	E_g	Eg	4	0	$\mathbb{Q}_{8,0}^{(h,E_g,4)}$	$\mathtt{Qh}(8,\mathtt{Eg},4,0)$	$-\frac{\sqrt{70}S_1}{64} + \frac{3\sqrt{66}S_3}{64} - \frac{\sqrt{1430}S_5}{64} + \frac{\sqrt{2002}S_7}{64}$
81	E_g	Eg	4	1	$\mathbb{Q}_{8,1}^{(h,E_g,4)}$	$\mathtt{Qh}(8,\mathtt{Eg},4,1)$	$\frac{\sqrt{70}C_1}{64} + \frac{3\sqrt{66}C_3}{64} + \frac{\sqrt{1430}C_5}{64} + \frac{\sqrt{2002}C_7}{64}$

表 10 rank 9

No.	irrep.	(tag)	mul.	comp.	harmonics	(tag)	definition
82	A_u	Au	1	_	$\mathbb{Q}_9^{(h,A_u,1)}$	Qh(9, Au, 1,)	$\frac{\sqrt{102}S_4}{12} - \frac{\sqrt{42}S_8}{12}$
83	A_u	Au	2	_	$\mathbb{Q}_9^{(h,A_u,2)}$	$\mathtt{Qh}(9,\mathtt{Au},2,)$	$rac{\sqrt{42}S_4}{12} + rac{\sqrt{102}S_8}{12}$
84	A_u	Au	3	_	$\mathbb{Q}_9^{(h,A_u,3)}$	$\mathtt{Qh}(9,\mathtt{Au},3,)$	C_0
85	A_u	Au	4	_	$\mathbb{Q}_9^{(h,A_u,4)}$	$\mathtt{Qh}(9,\mathtt{Au},4,)$	C_8
86	A_u	Au	5	-	$\mathbb{Q}_9^{(h,A_u,5)}$	$\mathtt{Qh}(9,\mathtt{Au},5,)$	C_4
87	B_u	Bu	1	_	$\mathbb{Q}_9^{(h,B_u,1)}$	$\mathtt{Qh}(9,\mathtt{Bu},1,)$	$rac{\sqrt{3}S_{2}}{4} - rac{\sqrt{13}S_{6}}{4}$
88	B_u	Bu	2	_	$\mathbb{Q}_9^{(h,B_u,2)}$	$\mathtt{Qh}(9,\mathtt{Bu},2,)$	$-rac{\sqrt{13}S_2}{4} - rac{\sqrt{3}S_6}{4}$
89	B_u	Bu	3	_	$\mathbb{Q}_9^{(h,B_u,3)}$	$\mathtt{Qh}(9,\mathtt{Bu},3,)$	C_6
90	B_u	Bu	4	_	$\mathbb{Q}_9^{(h,B_u,4)}$	$\mathtt{Qh}(9,\mathtt{Bu},4,)$	C_2
91	E_u	Eu	1	0	$\mathbb{Q}_{9,0}^{(h,E_u,1)}$	$\mathtt{Qh}(9,\mathtt{Eu},1,0)$	$\frac{21\sqrt{5}C_1}{128} - \frac{\sqrt{2310}C_3}{128} + \frac{3\sqrt{286}C_5}{128} - \frac{3\sqrt{1430}C_7}{256} + \frac{\sqrt{24310}C_9}{256}$
92	E_u	Eu	1	1	$\mathbb{Q}_{9,1}^{(h,E_u,1)}$	$\mathtt{Qh}(9,\mathtt{Eu},1,1)$	$\frac{21\sqrt{5}S_1}{128} + \frac{\sqrt{2310}S_3}{128} + \frac{3\sqrt{286}S_5}{128} + \frac{3\sqrt{1430}S_7}{256} + \frac{\sqrt{24310}S_9}{256}$
93	E_u	Eu	2	0	$\mathbb{Q}_{9,0}^{(h,E_u,2)}$	$\mathtt{Qh}(9,\mathtt{Eu},2,0)$	$\frac{\sqrt{2}\left(\sqrt{4862}C_1 + 2\sqrt{4641}C_3 + 10\sqrt{85}C_5 + 7\sqrt{17}C_7 + 3C_9\right)}{256}$
94	E_u	Eu	2	1	$\mathbb{Q}_{9,1}^{(h,E_u,2)}$	$\mathtt{Qh}(9,\mathtt{Eu},2,1)$	$\frac{\sqrt{2} \left(\sqrt{4862} S_{1} - 2\sqrt{4641} S_{3} + 10\sqrt{85} S_{5} - 7\sqrt{17} S_{7} + 3S_{9}\right)}{256}$
95	E_u	Eu	3	0	$\mathbb{Q}_{9,0}^{(h,E_u,3)}$	$\mathtt{Qh}(9,\mathtt{Eu},3,0)$	$\frac{\sqrt{1001}C_1}{64} - \frac{\sqrt{78}C_3}{64} - \frac{3\sqrt{70}C_5}{64} + \frac{23\sqrt{14}C_7}{128} + \frac{3\sqrt{238}C_9}{128}$
96	E_u	Eu	3	1	$\mathbb{Q}_{9,1}^{(h,E_u,3)}$	$\mathtt{Qh}(9,\mathtt{Eu},3,1)$	$\frac{\sqrt{1001}S_1}{64} + \frac{\sqrt{78}S_3}{64} - \frac{3\sqrt{70}S_5}{64} - \frac{23\sqrt{14}S_7}{128} + \frac{3\sqrt{238}S_9}{128}$
97	E_u	Eu	4	0	$\mathbb{Q}_{9,0}^{(h,E_u,4)}$	$\mathtt{Qh}(9,\mathtt{Eu},4,0)$	$\frac{\sqrt{858}C_1}{64} + \frac{\sqrt{91}C_3}{32} - \frac{5\sqrt{15}C_5}{32} - \frac{21\sqrt{3}C_7}{64} - \frac{\sqrt{51}C_9}{64}$
98	E_u	Eu	4	1	$\mathbb{Q}_{9,1}^{(h,E_u,4)}$	$\mathtt{Qh}(9,\mathtt{Eu},4,1)$	$\frac{\sqrt{858}S_1}{64} - \frac{\sqrt{91}S_3}{32} - \frac{5\sqrt{15}S_5}{32} + \frac{21\sqrt{3}S_7}{64} - \frac{\sqrt{51}S_9}{64}$
99	E_u	Eu	5	0	$\mathbb{Q}_{9,0}^{(h,E_u,5)}$	$\mathtt{Qh}(9,\mathtt{Eu},5,0)$	$\frac{7\sqrt{22}C_1}{64} - \frac{3\sqrt{21}C_3}{32} + \frac{\sqrt{65}C_5}{32} + \frac{\sqrt{13}C_7}{64} - \frac{3\sqrt{221}C_9}{64}$
100	E_u	Eu	5	1	$\mathbb{Q}_{9,1}^{(h,E_u,5)}$	Qh(9, Eu, 5, 1)	$\frac{7\sqrt{22}S_1}{64} + \frac{3\sqrt{21}S_3}{32} + \frac{\sqrt{65}S_5}{32} - \frac{\sqrt{13}S_7}{64} - \frac{3\sqrt{221}S_9}{64}$

表 11 rank 10

No.	irrep.	(tag)	mul.	comp.	harmonics	(tag)	definition
101	A_g	Ag	1	_	$\mathbb{Q}_{10}^{(h,A_g,1)}$	Qh(10, Ag, 1,)	$\frac{\sqrt{390}C_0}{48} - \frac{\sqrt{22}C_4}{8} - \frac{\sqrt{1122}C_8}{48}$
102	A_g	Ag	2	_	$\mathbb{Q}_{10}^{(h,A_g,2)}$	$\mathtt{Qh}(\mathtt{10},\mathtt{Ag},\mathtt{2},)$	$\frac{11\sqrt{420189}C_0}{8988} + \frac{\sqrt{827645}C_4}{1498} - \frac{\sqrt{146055}C_8}{8988}$
103	A_g	Ag	3	-	$\mathbb{Q}_{10}^{(h,A_g,3)}$	$\mathtt{Qh}(\mathtt{10},\mathtt{Ag},\mathtt{3},)$	$\frac{3\sqrt{3213210}C_0}{11984} - \frac{83\sqrt{1498}C_4}{5992} + \frac{31\sqrt{76398}C_8}{11984}$
104	A_g	Ag	4	-	$\mathbb{Q}_{10}^{(h,A_g,4)}$	$\mathtt{Qh}(\mathtt{10},\mathtt{Ag},\mathtt{4},)$	S_8
105	A_g	Ag	5	-	$\mathbb{Q}_{10}^{(h,A_g,5)}$	$\mathtt{Qh}(\mathtt{10},\mathtt{Ag},\mathtt{5},)$	S_4
106	B_g	Bg	1	-	$\mathbb{Q}_{10}^{(h,B_g,1)}$	$\mathtt{Qh}(\mathtt{10},\mathtt{Bg},\mathtt{1},)$	$-\frac{\sqrt{85}C_{10}}{16} + \frac{\sqrt{1482}C_2}{48} + \frac{\sqrt{57}C_6}{48}$
107	B_g	Bg	2	-	$\mathbb{Q}_{10}^{(h,B_g,2)}$	$\mathtt{Qh}(\mathtt{10},\mathtt{Bg},\mathtt{2},)$	$\frac{\sqrt{370006}C_{10}}{749} + \frac{\sqrt{190995}C_2}{749}$
108	B_g	Bg	3	_	$\mathbb{Q}_{10}^{(h,B_g,3)}$	$\mathtt{Qh}(\mathtt{10},\mathtt{Bg},\mathtt{3},)$	$\frac{\sqrt{1209635}C_{10}}{11984} - \frac{19\sqrt{58422}C_2}{35952} + \frac{\sqrt{2247}C_6}{48}$
109	B_g	Bg	4	_	$\mathbb{Q}_{10}^{(h,B_g,4)}$	$\mathtt{Qh}(\mathtt{10},\mathtt{Bg},\mathtt{4},)$	S_{10}
110	B_g	Bg	5	_	$\mathbb{Q}_{10}^{(h,B_g,5)}$	$\mathtt{Qh}(\mathtt{10},\mathtt{Bg},\mathtt{5},)$	S_6
111	B_g	Bg	6	-	$\mathbb{Q}_{10}^{(h,B_g,6)}$	$\mathtt{Qh}(\mathtt{10},\mathtt{Bg},6,)$	S_2
112	E_g	Eg	1	0	$\mathbb{Q}_{10,0}^{(h,E_g,1)}$	$\mathtt{Qh}(\mathtt{10},\mathtt{Eg},\mathtt{1},\mathtt{0})$	$\frac{\sqrt{221}S_1}{32} - \frac{\sqrt{102}S_3}{32} - \frac{\sqrt{510}S_5}{32} - \frac{11\sqrt{6}S_7}{64} - \frac{\sqrt{38}S_9}{64}$
113	E_g	Eg	1	1	$\mathbb{Q}_{10,1}^{(h,E_g,1)}$	$\mathtt{Qh}(\mathtt{10},\mathtt{Eg},\mathtt{1},\mathtt{1})$	$-\frac{\sqrt{221}C_1}{32} - \frac{\sqrt{102}C_3}{32} + \frac{\sqrt{510}C_5}{32} - \frac{11\sqrt{6}C_7}{64} + \frac{\sqrt{38}C_9}{64}$
114	E_g	Eg	2	0	$\mathbb{Q}_{10,0}^{(h,E_g,2)}$	$\mathtt{Qh}(\mathtt{10},\mathtt{Eg},\mathtt{2},\mathtt{0})$	$\frac{\sqrt{2}\left(\sqrt{78}S_1 - 22S_3 + 10\sqrt{5}S_5 - \sqrt{17}S_7 - \sqrt{969}S_9\right)}{64}$
115	E_g	Eg	2	1	$\mathbb{Q}_{10,1}^{(h,E_g,2)}$	$\mathtt{Qh}(\mathtt{10},\mathtt{Eg},\mathtt{2},\mathtt{1})$	$-\frac{\sqrt{2}\left(\sqrt{78}C_1+22C_3+10\sqrt{5}C_5+\sqrt{17}C_7-\sqrt{969}C_9\right)}{64}$
116	E_g	Eg	3	0	$\mathbb{Q}_{10,0}^{(h,E_g,3)}$	$\mathtt{Qh}(\mathtt{10},\mathtt{Eg},\mathtt{3},\mathtt{0})$	$\frac{\sqrt{41990}S_1}{256} + \frac{\sqrt{4845}S_3}{128} + \frac{\sqrt{969}S_5}{128} + \frac{\sqrt{285}S_7}{256} + \frac{\sqrt{5}S_9}{256}$
117	E_g	Eg	3	1	$\mathbb{Q}_{10,1}^{(h,E_g,3)}$	$\mathtt{Qh}(\mathtt{10},\mathtt{Eg},\mathtt{3},\mathtt{1})$	$-\frac{\sqrt{41990}C_1}{256} + \frac{\sqrt{4845}C_3}{128} - \frac{\sqrt{969}C_5}{128} + \frac{\sqrt{285}C_7}{256} - \frac{\sqrt{5}C_9}{256}$
118	E_g	Eg	4	0	$\mathbb{Q}_{10,0}^{(h,E_g,4)}$	$\mathtt{Qh}(\mathtt{10},\mathtt{Eg},\mathtt{4},\mathtt{0})$	$\frac{9\sqrt{78}S_1}{256} - \frac{69S_3}{128} - \frac{\sqrt{5}S_5}{128} + \frac{43\sqrt{17}S_7}{256} + \frac{3\sqrt{969}S_9}{256}$
119	E_g	Eg	4	1	$\mathbb{Q}_{10,1}^{(h,E_g,4)}$	$\mathtt{Qh}(\mathtt{10},\mathtt{Eg},\mathtt{4},\mathtt{1})$	$-\frac{9\sqrt{78}C_1}{256} - \frac{69C_3}{128} + \frac{\sqrt{5}C_5}{128} + \frac{43\sqrt{17}C_7}{256} - \frac{3\sqrt{969}C_9}{256}$
120	E_g	Eg	5	0	$\mathbb{Q}_{10,0}^{(h,E_g,5)}$	$\mathtt{Qh}(\mathtt{10},\mathtt{Eg},\mathtt{5},\mathtt{0})$	$\frac{7\sqrt{3}S_1}{128} - \frac{7\sqrt{26}S_3}{128} + \frac{5\sqrt{130}S_5}{128} - \frac{7\sqrt{442}S_7}{256} + \frac{\sqrt{25194}S_9}{256}$
121	E_g	Eg	5	1	$\mathbb{Q}_{10,1}^{(h,E_g,5)}$	Qh(10, Eg, 5, 1)	$-\frac{7\sqrt{3}C_1}{128} - \frac{7\sqrt{26}C_3}{128} - \frac{5\sqrt{130}C_5}{128} - \frac{7\sqrt{442}C_7}{256} - \frac{\sqrt{25194}C_9}{256}$

表 12 rank 11

No.	irrep.	(tag)	mul.	comp.	harmonics	(tag)	definition
122	A_u	Au	1	_	$\mathbb{Q}_{11}^{(h,A_u,1)}$	Qh(11, Au, 1,)	S_8
123	A_u	Au	2	_	$\mathbb{Q}_{11}^{(h,A_u,2)}$	$\mathtt{Qh}(\mathtt{11},\mathtt{Au},\mathtt{2},)$	S_4
124	A_u	Au	3	_	$\mathbb{Q}_{11}^{(h,A_u,3)}$	$\mathtt{Qh}(\mathtt{11},\mathtt{Au},\mathtt{3},)$	C_0
125	A_u	Au	4	_	$\mathbb{Q}_{11}^{(h,A_u,4)}$	$\mathtt{Qh}(\mathtt{11},\mathtt{Au},\mathtt{4},)$	C_8
126	A_u	Au	5	_	$\mathbb{Q}_{11}^{(h,A_u,5)}$	$\mathtt{Qh}(\mathtt{11},\mathtt{Au},\mathtt{5},)$	C_4
127	B_u	Bu	1	_	$\mathbb{Q}_{11}^{(h,B_u,1)}$	$\mathtt{Qh}(\mathtt{11},\mathtt{Bu},\mathtt{1},)$	$\frac{\sqrt{798}S_{10}}{48} + \frac{\sqrt{255}S_2}{24} + \frac{3\sqrt{6}S_6}{16}$
128	B_u	Bu	2	_	$\mathbb{Q}_{11}^{(h,B_u,2)}$	$\mathtt{Qh}(\mathtt{11},\mathtt{Bu},\mathtt{2},)$	$-\frac{\sqrt{210}S_{10}}{96} + \frac{\sqrt{969}S_2}{48} - \frac{\sqrt{570}S_6}{32}$
129	B_u	Bu	3	-	$\mathbb{Q}_{11}^{(h,B_u,3)}$	$\mathtt{Qh}(\mathtt{11},\mathtt{Bu},\mathtt{3},)$	$-\frac{\sqrt{646}S_{10}}{32} + \frac{\sqrt{35}S_2}{16} + \frac{\sqrt{238}S_6}{32}$
130	B_u	Bu	4	_	$\mathbb{Q}_{11}^{(h,B_u,4)}$	$\mathtt{Qh}(\mathtt{11},\mathtt{Bu},\mathtt{4},)$	C_{10}
131	B_u	Bu	5	_	$\mathbb{Q}_{11}^{(h,B_u,5)}$	$\mathtt{Qh}(\mathtt{11},\mathtt{Bu},\mathtt{5},)$	C_6
132	B_u	Bu	6	_	$\mathbb{Q}_{11}^{(h,B_u,6)}$	$\mathtt{Qh}(\mathtt{11},\mathtt{Bu},6,)$	C_2
133	E_u	Eu	1	0	$\mathbb{Q}_{11,0}^{(h,E_u,1)}$	$\mathtt{Qh}(\mathtt{11},\mathtt{Eu},\mathtt{1},\mathtt{0})$	512 512 512 512
134	E_u	Eu	1	1	$\mathbb{Q}_{11,1}^{(h,E_u,1)}$	$\mathtt{Qh}(\mathtt{11},\mathtt{Eu},\mathtt{1},\mathtt{1})$	012 012 012 012
135	E_u	Eu	2	0	$\mathbb{Q}_{11,0}^{(h,E_u,2)}$	$\mathtt{Qh}(11,\mathtt{Eu},2,0)$	$-\frac{\sqrt{41990}C_1}{512} + \frac{\sqrt{385}C_{11}}{512} - \frac{3\sqrt{4522}C_3}{512} + \frac{3\sqrt{4845}C_5}{512} + \frac{77\sqrt{19}C_7}{512} + \frac{39\sqrt{15}C_9}{512}$
136	E_u	Eu	2	1	$\mathbb{Q}_{11,1}^{(h,E_u,2)}$	$\mathtt{Qh}(\mathtt{11},\mathtt{Eu},\mathtt{2},\mathtt{1})$	$-\frac{\sqrt{41990}S_1}{512} - \frac{\sqrt{385}S_{11}}{512} + \frac{3\sqrt{4522}S_3}{512} + \frac{3\sqrt{4845}S_5}{512} - \frac{77\sqrt{19}S_7}{512} + \frac{39\sqrt{15}S_9}{512}$
137	E_u	Eu	3	0	$\mathbb{Q}_{11,0}^{(h,E_u,3)}$	$\mathtt{Qh}(\mathtt{11},\mathtt{Eu},\mathtt{3},\mathtt{0})$	$-\frac{5\sqrt{546}C_1}{256} + \frac{\sqrt{10659}C_{11}}{256} + \frac{11\sqrt{30}C_3}{256} + \frac{13\sqrt{7}C_5}{256} - \frac{3\sqrt{1785}C_7}{256} + \frac{3\sqrt{2261}C_9}{256}$
138	E_u	Eu	3	1	$\mathbb{Q}_{11,1}^{(h,E_u,3)}$	$\mathtt{Qh}(\mathtt{11},\mathtt{Eu},\mathtt{3},\mathtt{1})$	$-\frac{5\sqrt{546}S_1}{256} - \frac{\sqrt{10659}S_{11}}{256} - \frac{11\sqrt{30}S_3}{256} + \frac{13\sqrt{7}S_5}{256} + \frac{3\sqrt{1785}S_7}{256} + \frac{3\sqrt{2261}S_9}{256}$
139	E_u	Eu	4	0	$\mathbb{Q}_{11,0}^{(h,E_u,4)}$	$\mathtt{Qh}(\mathtt{11},\mathtt{Eu},\mathtt{4},\mathtt{0})$	$-\frac{\sqrt{29393}C_1}{512} - \frac{\sqrt{22}C_{11}}{1024} - \frac{9\sqrt{1615}C_3}{512} - \frac{5\sqrt{13566}C_5}{1024} - \frac{7\sqrt{1330}C_7}{1024} - \frac{9\sqrt{42}C_9}{1024}$
140	E_u	Eu	4	1	$\mathbb{Q}_{11,1}^{(h,E_u,4)}$	$\mathtt{Qh}(\mathtt{11},\mathtt{Eu},\mathtt{4},\mathtt{1})$	$-\frac{\sqrt{29393}S_1}{512} + \frac{\sqrt{22}S_{11}}{1024} + \frac{9\sqrt{1615}S_3}{512} - \frac{5\sqrt{13566}S_5}{1024} + \frac{7\sqrt{1330}S_7}{1024} - \frac{9\sqrt{42}S_9}{1024}$
141	E_u	Eu	5	0	$\mathbb{Q}_{11,0}^{(h,E_u,5)}$	$\mathtt{Qh}(\mathtt{11},\mathtt{Eu},\mathtt{5},\mathtt{0})$	$-\frac{15\sqrt{221}C_1}{512} - \frac{3\sqrt{2926}C_{11}}{1024} - \frac{\sqrt{595}C_3}{512} + \frac{53\sqrt{102}C_5}{1024} - \frac{105\sqrt{10}C_7}{1024} - \frac{61\sqrt{114}C_9}{1024}$
142	E_u	Eu	5	1	$\mathbb{Q}_{11,1}^{(h,E_u,5)}$	$\mathtt{Qh}(\mathtt{11},\mathtt{Eu},\mathtt{5},\mathtt{1})$	$-\frac{15\sqrt{221}S_1}{512} + \frac{3\sqrt{2926}S_{11}}{1024} + \frac{\sqrt{595}S_3}{512} + \frac{53\sqrt{102}S_5}{1024} + \frac{105\sqrt{10}S_7}{1024} - \frac{61\sqrt{114}S_9}{1024}$
143	E_u	Eu	6	0	$\mathbb{Q}_{11,0}^{(h,E_u,6)}$	$\mathtt{Qh}(\mathtt{11},\mathtt{Eu},6,\mathtt{0})$	$-\frac{21\sqrt{130}C_1}{512} - \frac{\sqrt{124355}C_{11}}{512} + \frac{57\sqrt{14}C_2}{512} - \frac{41\sqrt{15}C_5}{512} + \frac{17\sqrt{17}C_7}{512} + \frac{\sqrt{4845}C_9}{512}$
144	E_u	Eu	6	1	$\mathbb{Q}_{11,1}^{(h,E_u,6)}$	$\mathtt{Qh}(\mathtt{11},\mathtt{Eu},6,\mathtt{1})$	$-\frac{21\sqrt{130}S_1}{512} + \frac{\sqrt{124355}S_{11}}{512} - \frac{57\sqrt{14}S_2}{512} - \frac{41\sqrt{15}S_5}{512} - \frac{17\sqrt{17}S_7}{512} + \frac{\sqrt{4845}S_9}{512}$