Introdução ao Aprendizado de Máquina

Profa. Samira Santos da Silva

(UEMG)

21 de Outubro de 2020

Sumário

Introdução

Conceitos Iniciais

Extração de Features

Aprendizagem

Demonstração

Extra

Sumário

Introdução

Conceitos Iniciais

Extração de Features

Aprendizagem

Demonstração

Extra

O que é Aprendizagem de Máquina?

Aprendizagem de Máquina ou Machine Learning (ML)

- Area da Inteligência Artificial onde desenvolve-se algoritmos para ensinar uma máquina a desempenhar determinadas tarefas.
- Um algoritmo de ML recebe um conjunto de dados de entrada e, baseado nos padrões encontrados, gera saídas.
- Cada entrada possui suas features.
 - Extrair as features dos dados é o ponto inicial para um algoritmo de ML.

História

História

- ▶ O termo "machine learning" foi criado por Arthur Samuel, engenheiro do MIT, em 1959.
- Ele descrevia este conceito como "um campo de estudo que dá aos computadores a habilidade de aprender sem terem sido programados para tal".
- Samuel trabalhava em um projeto para criar uma **máquina autônoma** com estas características.

História

História

Figura: Arthur Samuel e um IBM 700 na década de 1950.

História

História

- Mas foi somente com o advento da Internet que ML começou a tornar forma.
- Com tanta informação coletada e armazenada na Web, foi necessário meios de organizar esse conteúdo gigantesco de forma automatizada.

- Existem diversas aplicações para Machine Learning.
- Alguns exemplos: Reconhecimento de Padrões, Recomendação, Mineração de Texto, Análise de Sentimentos, etc.

Reconhecimento de Padrões

- Atribuir uma classe (padrão) a um conjunto de dados desconhecidos.
- Exemplos:
 - Reconhecimento de padrões em imagens.
 - Reconhecimento de padrões em textos.
 - Reconhecimento de padrões em áudios.

Reconhecimento de Padrões

Recomendação

- Um sistema de recomendação combina técnicas computacionais para selecionar itens personalizados com base nos interesses dos usuários e conforme o contexto no qual estão inseridos.
- Ex. de itens: livros, filmes, notícias, música, vídeos, anúncios, links patrocinados, produtos de uma loja virtual, etc.
- ► Recomendações são exibidas de acordo com um "score" (nota).

Recomendação

Mineração de Textos

- Explorar grandes quantidades de dados à procura de padrões consistentes para detectar relacionamentos sistemáticos entre variáveis gerando informação.
- Ex: Supermercado pode minerar seus dados de compras e acabar percebendo que quem compra cerveja geralmente compra fraldas.
 - Então por que não colocar cervejas e fraldas próximos?

Mineração de Textos

Análise de Sentimentos

- Processo para conseguir identificar sentimentos embutidos em textos (geralmente de mídias sociais).
 - É positivo?
 - É negativo?

1 - Indicar a qualidade de um vinho

2 - Escolher o melhor filme para o seu final de semana

3 - Tirar motoristas de grandes congestionamentos

4 - Reconhecimento de placas de carro em imagens

5 - Reconhecimento de Faces no Facebook

Gary Chavez added a photo you might ... be in.

about a minute ago · 🔐

6 - Exibição de Postagens do seu Interesse

7 - Previsão de Derrame

8 - Carros Autônomos

Sumário

Introdução

Conceitos Iniciais

Extração de Features

Aprendizagem

Demonstração

Extra

- Feature é uma característica que descreve um objeto.
- Qualquer atributo de um objeto pode ser tratado como feature: um número, um texto, uma data, um booleano etc.

- No objeto Pessoa, vemos vários atributos que o descreve.
- Esses atributos são suas features:

- ▶ Na tabela abaixo, temos um conjunto maior de dados, onde:
 - ► Cada coluna é uma feature que descreve a linha;
 - Cada linha é uma entrada e tem seu conjunto de features.

Nome	Data de Nascimento			Peso	Altura	Sexo
				F650	Allura	Sexu
Pessoa 1	05	02	1982	85	1,72	М
Pessoa 2	13	10	1990	60	1,50	F
Pessoa 3	05	01	1972	75	1,63	М

- As features são as entradas dos algoritmos de ML.
- Quanto mais detalhes o algoritmo tiver sobre uma entrada, mais facilmente achará padrões nos dados.
- Features **ruins** podem prejudicar o desempenho do algoritmo.
- Features **boas** são a chave para o sucesso de um algoritmo.

- Grande parte do trabalho em ML consiste em trabalhar os dados e gerar boas features em cima deles.
 - Engenharia de features ou feature engineering.
- Existem diversas técnicas para gerar features:
 - Conhecendo a natureza dos dados;
 - Aplicando matemática e estatística para criá-las em cima dos dados.

Sumário

Introdução

Conceitos Iniciais

Extração de Features

Aprendizagem

Demonstração

Extra

Extração de Features

Extração de Features

- ► Tem o **objetivo** retirar de imagens, vídeos, textos ou aúdios informações que descrevem esses tipos de mídia.
- O resultado da extração de características é um vetor de atributos descrevendo cada objeto.
- Existem métodos adequados para cada tipo de mídia.

Extração de Features Imagens

- Na extração de features em imagens, por exemplo, existem descritores especializados em representar:
 - Cores dos Objetos;
 - Formas dos Objetos;
 - Textura dos Objetos;
 - Relacionamentos entre Objetos;
 - etc.

Descrição de Cor - Exemplo: Histograma

- ▶ Vetor $[h_1, ..., h_n]$ onde cada h_j contém a quantidade de pixels de cor j na imagem.
- Para comparação de histogramas utiliza-se:

$$D(H,H') = \frac{\sum_{i} min(h_{i},h'_{i})}{\sum_{i} h'_{i}}$$

Descrição de Forma - Exemplo: Algoritmo detector de bordas

Curvaturas obtidas a partir do contorno, com redução de mudanças (ruídos) na curvatura.

Descrição de Textura - Exemplo: Haralick Features

Haralick propõe o uso de 14 medidas estatísticas como features.

Haralick et al.(199) Contrast Correlation Difference entropy Difference variance Energy Entropy Information measure of correlation 2 Information measure of correlation 1 Max correlation coefficient Sum average Sum entropy Sum variance Variance

Sumário

Introdução

Conceitos Iniciais

Extração de Features

Aprendizagem

Demonstração

Extra

Aprendizagem

Aprendizagem Supervisionada x Não-supervisionada

- ► Tendo nossas **features em mãos** podemos aplicar **diversos algoritmos de aprendizado** nelas.
- Existem dois grandes grupos de algoritmos em ML: os de aprendizagem supervisionada e os de aprendizagem não-supervisionada.

Aprendizagem Supervisionada

- ► Tem-se um conjunto de entradas A que já possuem as saídas.
- Deseja-se prever a saída de um conjunto de entrada B.
- Se A é um conjunto de tamanho considerável, conhecer suas saídas permite com seja possível encontrar padrões que relacionam entradas com saídas.
- Assim, é possível prever as saídas do conjunto B com base nesses padrões previamente encontrados.

Aprendizagem Supervisionada

- Algoritmos que realizam este procedimento s\u00e3o denominados supervisionados.
- Algoritmos supervisionados são divididos em dois grupos: classificação e regressão.

Classificação

- É quando queremos prever uma classificação.
- As classes utilizadas no aprendizado devem ser as mesmas dos dados cujas classes são desconhecidas.

Classificação - Ex: classificar um e-mail como spam ou não spam.

- Coletou-se vários e-mails já classificados como spam ou não spam;
- ► Treinou-se um algoritmo que seria capaz de encontrar os padrões determinantes para cada uma das classes;
- Teria-se um algoritmo capaz de ler um novo e-mail e classificar como spam ou não baseado em suas características.

Regressão

- Quando queremos prever um valor e não uma classe.
- Os dados usados no aprendizado possuem também valores ao invés de classes.

Regressão - Ex: determinar o preço de uma casa

- Coletou-se as features de várias casas e os seus preços (bolinhas azuis);
- ▶ Treinou-se um algoritmo capaz de criar uma relação entre as features da casa e o seu preço(linha vermelha);
- Logo, esse algoritmo é capaz de determinar o preço de uma nova casa (bolinhas amarelas) baseado em suas características.

Regressão

- No treinamento supervisionado, sempre utilizase dados com saídas semelhantes as que desejamos encontrar.
 - No exemplo 1: vários e-mails rotulados como spam e não spam foram usados no treinamento.
 - No exemplo 2: várias casas com seus preços foram usadas nos treinamento.

Aprendizagem Não-supervisionada

- ► Tem-se um conjunto de entradas B sem as saídas que deseja-se.
- Com base nas características desses dados, é possível gerar
 - Um agrupamento;
 - Processá-los a fim de gerar novas formas de expressar essas características.
- Algoritmos não-supervisionados podem ser divididos em dois grupos: redução de dimensionalidade e clusterização.

- Reduzir um conjunto de dados de alta dimensão para um número menor de dimensões de forma que represente o máximo possível os dados originais.
- A dimensão é a quantidade de features consideradas.
- Deve-se remover features que s\(\tilde{a}\)o irrelevantes ou redundantes.

- ▶ O objeto Pessoa contém 65 features, ou seja, **65 dimensões**.
- Após passar essas features pelo algoritmo, reduzimos a 2 dimensões.
- As novas features 1 e 2 representam o máximo possível as 65 features originais.

- É possível fazer a mesma redução pra várias pessoas.
- Com 2 features é possível enxergar melhor a distribuição dos dados.
- Pessoas com mesmas características podem ficar mais próximas nesse tipo de representação. Enquanto pessoas muito diferentes ficam mais distantes.

- ▶ Reduzimos para 2 dimensões para **melhor visualização**.
- Entretanto, algoritmos são capazes de lidar com quantas dimensões forem necessárias.
- Esse tipo de técnica pode ser usada para facilitar a análise dos dados, como no exemplo.

- ► Também utilizado quando features de alta dimensão impedem algoritmos de funcionarem corretamente.
- Isso ocorre, principalmente, se número de features > número de entradas.
 - Mal da dimensionalidade.
- Nesse caso, reduz-se features para um número mais aceitável e então faz-se o treinamento normalmente.

Clusterização

- Agrupamento dos dados baseado em suas características.
- Os grupos formados são chamados de clusters.
- Poderíamos querer agrupar dados em 3 grupos.
- Um algoritmo de clusterização seria capaz de analisar os dados e identificar esses grupos baseado nas características desses dados.

Clusterização

É uma técnica muito poderosa e tem uma aplicabilidade muito alta.

Clusterização - Exemplos

- ▶ Identificação de clientes similares e com isso ser mais assertivo ao oferecer um novo produto;
- Agrupamento de pacientes com os mesmos sintomas;
- Classificação de documentos;
- Qualquer agrupamento de uma grande quantidade de dados baseado em suas características.

Sumário

Introdução

Conceitos Iniciais

Extração de Features

Aprendizagem

Demonstração

Extra

Base de Dados: Iris Dataset

Iris Dataset

- ▶ Problema proposto: através das características fornecidas de uma flor, descobrir de qual dos 3 tipos de flores se trata.
- ▶ 150 entradas.
- 4 features.

Iris Virginica

Iris Versicolor

Base de Dados: Iris Dataset

Iris Dataset

▶ Features: Comprimento da Sépala, Largura da Sépala, Comprimento da Pétala, Largura da Pétala.

	SepalLength	SepalWidth	PetalLength	PetalWidth	Species
0	5.1	3.5	1.4	0.2	Iris-setosa
1	4.9	3.0	1.4	0.2	Iris-setosa
2	4.7	3.2	1.3	0.2	Iris-setosa
3	4.6	3.1	1.5	0.2	Iris-setosa
4	5.0	3.6	1.4	0.2	Iris-setosa

SVM

- Algoritmo de classificação supervisionado que tenta criar uma linha (ou fronteira) que melhor separa os dados.
- Tipicamente, chamamos esta "linha" de "hiperplano".
- O melhor hiperplano é que resulta em maior distância marginal.

SVM

- Vetores de suporte são calculados para então escolher o melhor hiperplano.
- Vetores de suporte são pontos que estão mais próximos das linhas. A distância entre esses pontos é chamada de margem.
- O algoritmo escolhe um hiperplano que tem uma margem maior.

SVM

- Ao receber uma amostra desconhecida, verifica-se que lado da margem ela está e sua distância.
- Desta forma, é possível determinar sua classe.

from sklearn import datasets

from sklearn import datasets

iris= datasets.load_iris()

print(iris.target)

print(iris.target)
print(iris.data.shape)

<pre>print(iris.target)</pre>
print(iris.data.shape)
<pre>print(iris.target.shape)</pre>

from sklearn.model_selection import train_test_split

```
from sklearn.model_selection import train_test_split
```

```
X_train, X_test, y_train, y_test = train_test_split (iris.data,
iris.target, test_size=0.4, random_state=0)
```

```
from sklearn.model_selection import train_test_split
```

```
X_train, X_test, y_train, y_test = train_test_split (iris.data,
iris.target, test_size=0.4, random_state=0)
```

from sklearn import svm

```
clf = svm.SVC(kernel= 'linear', C=1).fit(X_train, y_train)
```

```
clf = svm.SVC(kernel= 'linear', C=1).fit(X_train, y_train)
```

```
print(clf.score(X_test, y_test))
```

Parâmetro C do SVM

Algoritmo de Clusterização: K-Means

K-means

- O K-means é um algoritmo do tipo não-supervisionado, ou seja, que não trabalha com dados rotulados.
- Seu objetivo é encontrar similaridades entre os dados e agrupá-los conforme o nº de clusters passado pelo argumento k.
- Seu processo é composto por 4 etapas.

1 - Inicialização

- O algoritmo gera de forma aleatória K centróides dentre dados (pontos) existentes.
- Centróides são os pontos centrais dos clusters.

2 - Atribuição ao cluster

- É computada a distância entre cada ponto e cada centróide.
- Cada ponto é atribuído ao cluster cuja distância ao seu centróide seja a menor.
- Cálculo de distância: Euclidiana.

3 - Movimentação de centróides

- ► Recálculo dos centróides.
- Faz-se a média dos pontos de cada cluster e o ponto médio será o novo centróide.

4 - Otimização

- As fases 2 e 3 são **repetidas** até o cluster se tornar **estático** ou **algum critério de parada** tenha sido atingido.
- Por fim, o K-means chega ao fim da sua execução dividindo os dados no número de clusters especificado pelo argumento k.

from sklearn import datasets

from sklearn import datasets

iris= datasets.load_iris()

from sklearn.cluster import KMeans

```
from sklearn.cluster import KMeans
```

```
kmeans = KMeans(n_clusters = 3, init = 'random')
```

```
from sklearn.cluster import KMeans
```

```
kmeans = KMeans(n_clusters = 3, init = 'random')
```

```
kmeans.fit(X)
```

print(kmeans.cluster_centers_)

distance = kmeans.fit_transform(X)

```
print(kmeans.cluster_centers_)
```


labels = kmeans.labels_

```
labels = kmeans.labels_
print(labels)
```

Execução do Algoritmo K-Means - Visualização de Dados

```
import matplotlib.pyplot as plt
plt.scatter(X[:, 0], X[:,1], s = 100, c = kmeans.labels_)
plt.scatter(kmeans.cluster_centers_[:, 0],
kmeans.cluster_centers_[:, 1], s = 300, c = 'red',label = 'Centroides')
plt.title('Clusteres e Centroides do Dataset Iris')
plt.xlabel('Comprimento da Sépala')
plt.ylabel('Largura da Sépala')
plt.legend()
plt.show())
```

Execução do Algoritmo K-Means - Visualização de Dados

Sumário

Introdução

Conceitos Iniciais

Extração de Features

Aprendizagem

Demonstração

Extra

Extra

- Existem diversas formas de se aplicar ML, diferentes linguagens e bibliotecas.
- Optamos por trabalhar com a linguagem Python através da biblioteca SciKit Learn, que é uma poderosa biblioteca que possui algoritmos de ML implementados.
- Além disso, utilizamos a biblioteca Matplotlib para visualizar gráficos 2D.

Instalação Bibliotecas no Ubuntu

No terminal do Ubuntu digite:

- sudo apt install python-pip
- ▶ pip install -U scikit-learn
- pip install matplotlib
- python nomedoarquivo.py

Perguntas

Agradecimentos

Agradecimentos

- ► Ao IFSULDEMINAS pelo convite.
- ► A todos presentes!

Informações e Contatos

Contatos

- Slides e códigos disponibilizados no GitHub: https://github.com/samirasilva/ MinicursoIntroML2020
- ► E-mail: samirapgti@gmail.com

Mais informações

- Curso da Udacity: "Introdução ao Aprendizado de Máquina"
 - https://br.udacity.com/course/intro-to-machine-learningud120

Agradecimentos

THANK YOU!

