UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS DEPARTAMENTO DE EXPRESSÃO GRÁFICA

ELEMENTOS DE GEOMETRIA

GEOMETRIA PLANA E ESPACIAL

3ª edição

PROF^A. DEISE MARIA BERTHOLDI COSTA
PROF. JOSÉ LUIZ TEIXEIRA
PROF. PAULO HENRIQUE SIQUEIRA
PROF^A. LUZIA VIDAL DE SOUZA

UFPR Curitiba - 2012

SUMÁRIO

Capítulo 1 - Axiomática	004
1.1. Edificação Racional da Geometria	
1.2. Postulados do Desenho Geométrico	
1.3. Axiomas de incidência	008
1.4. Axiomas de ordem	009
1.5. Axiomas sobre medição de segmentos	
1.6. Axiomas sobre medição de ângulos	
1.7. Congruência de triângulos	
1.8. Desigualdades Geométricas	
1.9. O axioma das paralelas. Estudo do paralelogramo.	
Relações métricas nos quadriláteros	029
1.10. Semelhança de triângulos. Estudo do triângulo retângulo.	
Teorema de Pitágoras. Relações Trigonométricas	038
Capítulo 2 - Lugares geométricos	
2.1. A circunferência como lugar geométrico	
2.2. A mediatriz como lugar geométrico	
2.3. As paralelas como lugar geométrico	
2.4. A bissetriz como lugar geométrico	
2.5. Os ângulos e a circunferência	
2.6. Ângulo central	
2.7. Ângulo inscrito	
2.8. Ângulo de segmento	
2.9. Arco capaz	
2.10. Ângulos excêntrico interior e exterior	
2.11. Ângulo circunscrito	
2.12. Relações métricas nos segmentos	
2.13. Terceira e quarta proporcionais	
2.14. Propriedades no triângulo retângulo	
2.15. Teorema das bissetrizes	
2.16. Circunferência de Apolônio	074
2.17. Segmento áureo	
2.18. Potência de ponto em relação a uma circunferência	079
2.19. Propriedades dos quadriláteros	082
Capítulo 3 - Relações métricas nos triângulos	084
3.1. Pontos notáveis: circuncentro, baricentro, incentro e	
ortocentro. Os ex-incentros	084
3.2. Pontos da circunferência circunscrita	
3.3. Reta de Simson	
5.4. Neta de Euler	093
Capítulo 4 - Relações métricas na circunferência	098
4.1. Retificação e desretifição da circunferência	
4.2. Retificação de arcos de circunferência	

4.3. Divisão da circunferência em arcos iguais - Processos Exatos	105
4.4. Divisão da circunferência em arcos iguais - Processos Aproximados	111
4.5. Polígonos estrelados	117
Capítulo 5 - Áreas	119
5.1. Axiomas	119
5.2. Equivalência de áreas	121
Capítulo 6 - Geometria espacial de posição	126
6.1. Conceitos primitivos e postulados	126
6.2. Posições relativas de duas retas	127
6.3. Determinação de um plano	129
6.4. Posições relativas de reta e plano	130
6.5. Posições relativas de dois planos	131
6.6. Posições relativas de três planos	
6.7. Ângulo entre reta e plano	
6.8. Ângulo entre dois planos	137
6.9. Ângulo diedro	138
6.10. Triedros	140
6.11. Ângulos poliédricos	141
6.12. Estudo dos poliedros. Soma dos ângulos da face de um poliedro.	
Poliedros de Platão. Poliedros regulares	142
Capítulo 7 - Geometria espacial métrica	150
7.1. Estudo do prisma	150
7.2. Pricípio de Cavalieri	154
7.3. Estudo da pirâmide	157
7.4. Estudo do octaedro regular	163
7.5. Estudo do icosaedro regular	163
7.6. Estudo do dodecaedro regular	165
7.7. Estudo do cilindro	
7.8. Estudo do cone	169
7.9. Estudo da esfera	172
Referências Bibliográficas	177

1.1. EDIFICAÇÃO RACIONAL DA GEOMETRIA

A Geometria foi organizada de forma dedutiva pelos gregos.

Deduzir ou demonstrar uma verdade é estabelecê-la como consequência de outras verdades anteriormente estabelecidas. No entanto, num caminho de retrocesso, chegaremos a um ponto de partida, a uma verdade impossível de se deduzir de outra mais simples.

AXIOMAS X TEOREMAS

Esta é a estrutura da Geometria, desde "Elementos" de Euclides, escrito no século III A.C., onde ele tentou definir os conceitos fundamentais.

Atualmente, a Geometria aceita por normas:

- Enunciar, sem definição, os conceitos fundamentais.
- Admitir, sem demonstração, certas propriedades que relacionam estes conceitos, enunciando os axiomas correspondentes.
 - Deduzir logicamente as propriedades restantes.

O que são os axiomas?

São afirmações tantas vezes provadas na prática, que é muito pouco provável que alguém delas duvide. Deverão ser o menor número possível.

RELAÇÕES ENTRE PROPOSIÇÕES

As proposições (ou teoremas) podem ser escritas na forma $p \Rightarrow q$, onde p e q são chamados de hipótese e tese respectivamente.

Entre as proposições deduzidas (ou teoremas) podem ocorrer as seguintes relações:

a) Recíproca:

Um teorema se diz recíproco de outro quando a sua hipótese e tese são, respectivamente, a tese e a hipótese do outro.

Exemplos:

• <u>Direto</u>: Se dois lados de um triângulo são desiguais, então ao maior lado opõe-se o maior ângulo.

• Recíproco: Se dois ângulos de um triângulo são desiguais, então ao maior ângulo opõe-se o maior lado.

<u>Observação</u>: Nem todos os teoremas recíprocos são verdadeiros. Assim, por exemplo:

- <u>Direto</u>: Todos os ângulos retos são iguais.
- Recíproco: Todos os ângulos iguais são retos.

b) Teorema Contrário:

É a proposição obtida pela negação da hipótese e tese de um teorema.

Exemplos:

- <u>Teorema</u>: Todo ponto da bissetriz de um ângulo é equidistante dos lados.
- <u>Teorema contrário</u>: Todo ponto que não pertence à bissetriz de um ângulo não é equidistante dos lados.

Observação: o teorema contrário nem sempre é verdadeiro.

- <u>Teorema</u>: Dois ângulos opostos pelo vértice são iguais.
- <u>Teorema contrário</u>: Dois ângulos que não são opostos pelo vértice não são iguais.

c) Contra-positiva:

A contra-positiva de um teorema tem por hipótese a negação da tese do teorema e tem como tese a negação da hipótese do teorema.

Exemplo:

- <u>Teorema</u>: Se um triângulo é isósceles, então os ângulos da base são iguais.
- Contra-positiva: Se os ângulos da base de um triângulo não são iguais, então o triângulo não é isósceles com esta base.

Observação: A contra-positiva de um teorema sempre é verdadeira.

DEMONSTRAÇÃO

O que é uma demonstração?

Consiste num sistema de silogismos, por meio dos quais a veracidade da afirmação é deduzida a partir dos axiomas e das verdades anteriormente demonstradas.

O que é um silogismo?

O silogismo é uma reunião de três proposições: a maior, a menor e a conclusão.

Exemplos:

- a) Todos os homens são mortais.
 - Eu sou homem.
 - Logo, sou mortal.

b) A Terra é esférica. (Argumentação x fatos x dedução)

Verifica-se que, todos os corpos que, em diferentes posições, projetam sombra redonda, têm a forma esférica. A Terra, durante os eclipses lunares, projeta sobre a lua sombra redonda. Consequentemente, a Terra tem a forma de uma esfera.

TÉCNICAS DE DEMONSTRAÇÃO

A demonstração de um teorema consiste em efetuar um conjunto de raciocínios dirigidos exclusivamente para provar que é verdadeiro o fato afirmado pela proposição.

Para demonstrarmos proposições condicionais do tipo $p \Rightarrow q$ podemos usar:

a) Forma Direta:

Admitimos como verdade (ou válida) a proposição p, chamada de hipótese, e através de definições, propriedades, relações, etc, pré-estabelecidos, concluímos a validade da proposição q, chamada de tese.

b) Contra-positiva:

Neste caso, reescrevemos a proposição p \Rightarrow q na forma equivalente \sim q \Rightarrow \sim p e aplicamos a forma direta na contra-positiva. Ou seja, partimos da negação da tese para concluirmos a negação da hipótese.

c) Redução ao Absurdo (RAA):

A redução ao absurdo consiste em provar que a negação do condicional $p \Rightarrow q$ é uma contradição. Isto é, \sim (p \Rightarrow q) \equiv p \wedge \sim q \equiv F. Ou seja, partimos da negação da tese e procuramos encontrar uma contradição com a hipótese.

Observação: RAA é muito utilizado para provar unicidade.

PARA QUE A DEMONSTRAÇÃO?

Princípio da Razão Suficiente: Todas as afirmações deverão ser fundamentadas.

Através da experiência, observação, ou de raciocínios lógicos (silogismos).

Báskara no livro "Lilaváti" apresenta a demonstração de um teorema apenas com uma figura e uma palavra: VÊ.

Para se compreender o que está "escrito", é necessário pensar, raciocinar, deduzir. Será que existem afirmações suficientemente claras, que sejam evidentes?

Exemplos: - Folha de Moebius;

- Congruência de dois triângulos, conhecidos 2 lados e um ângulo.

O que não é necessário demonstrar? A axiomática.

1.2. Postulados do Desenho Geométrico

Assim como no estudo da Geometria se aceitam, sem definir, certas noções primitivas e sem demonstrar certas proposições primitivas (ou postulados, ou axiomas), no estudo do Desenho é necessário aceitar certos postulados que tornam a matéria objetiva, isto é, independente da opinião do estudante.

<u>1º POSTULADO</u> - Os únicos instrumentos permitidos no Desenho Geométrico, além do lápis, papel, borracha e prancheta, são: a régua não graduada e os compassos comum e de pontas secas.

A graduação da régua ou "escala" só pode ser usada para colocar no papel os dados de um problema ou eventualmente para medir a resposta, a fim de conferi-la.

- <u>2º POSTULADO</u> É proibido em Desenho Geométrico fazer contas com as medidas dos dados; todavia, considerações algébricas são permitidas na dedução (ou justificativa) de um problema, desde que a resposta seja depois obtida graficamente obdecendo aos outros postulados.
- <u>3º Postulado</u> Em Desenho Geométrico é proibido obter respostas "à mão livre", bem como "por tentativas".

PARTE I - GEOMETRIA PLANA

As figuras geométricas elementares, no plano, são os pontos e as retas. O plano é constituído de pontos e as retas são subconjuntos de pontos do plano. Pontos e retas do plano satisfazem a cinco grupos de axiomas que serão a seguir estudados.

1.3. OS AXIOMAS DE INCIDÊNCIA

AXIOMA 1.1. Qualquer que seja a reta, existem pontos que pertencem à reta e pontos que não pertencem à reta.

AXIOMA 1.2. Dados dois pontos distintos, existe uma única reta que contém estes pontos.

Quando duas retas têm um ponto em comum, diz-se que elas se interceptam, ou que concorrem ou que se cortam naquele ponto.

PROPOSIÇÃO: Duas retas distintas ou não se interceptam ou se interceptam em um único ponto.

Prova:

Sejam m e n duas retas distintas. A interseção destas duas retas não pode conter dois ou mais pontos, pois pelo Axioma 1.2 elas coincidiriam.

Logo, a interseção de m e n é vazia ou contém apenas um ponto.

Observação: Imaginamos um plano como a superfície de uma folha de papel que se estende infinitamente em todas as direções. Nela um ponto é representado por uma pequena marca produzida pela ponta de um lápis. O desenho de uma parte da reta é feito com o auxílio de uma régua.

Ao estudarmos geometria é comum fazermos o uso de desenhos. Porém os desenhos devem ser considerados apenas como um instrumento de ajuda à nossa intuição.

Notação: Utilizaremos letras maiúsculas A, B, C, ... para designar pontos, e letras minúsculas a, b, c, ... para designar retas.

1.4. OS AXIOMAS DE ORDEM

A figura dada abaixo apresenta uma reta e três pontos A, B e C desta reta. O ponto C localiza-se entre A e B, ou os pontos A e B estão separados pelo ponto C.

Notação: Utilizaremos a notação A-C-B para denotar que o ponto C está entre A e B.

A noção de que um ponto localiza-se entre dois outros pontos é uma relação, entre pontos de uma mesma reta, que satisfaz aos axiomas apresentados a seguir.

AXIOMA 2.1. Dados três pontos de uma reta, um e apenas um deles localiza-se entre os outros dois.

<u>DEFINIÇÃO</u>: O conjunto constituído por dois pontos A e B e por todos os pontos P tais que A-P-B é chamado de segmento AB. Os pontos A e B são denominados extremos ou extremidades do segmento.

Notação: AB.

Muitas figuras planas são construídas usando-se segmentos. A mais simples delas é o triângulo que é formado por três pontos que não pertencem a uma mesma reta e pelos três segmentos determinados por estes três pontos. Os três pontos são chamados vértices do triângulo e os segmentos são os lados.

Definição: Se A e B são pontos distintos, o conjunto constituído pelos pontos do segmento AB e por todos os pontos P, tais que A-B-P é chamado de semi-reta de origem A, que contém o ponto B.

Notação: AB.

Observação: Dois pontos A e B determinam duas semi-retas, que contém AB.

AXIOMA 2.2. Dados os pontos A e B, sempre existem: um ponto C tal que A-C-B e um ponto D tal que A-B-D.

<u>DEFINIÇÃO</u>: Sejam uma reta m e um ponto A que não pertence a m. O conjunto constituído pelos pontos de m e por todos os pontos B tais que A e B estão em um mesmo lado da reta m é chamado de semi-plano determinado por m que contém A.

AXIOMA 2.3. Uma reta m determina dois semi-planos distintos, cuja interseção é a reta m.

<u>DEFINIÇÃO</u>: Um subconjunto do plano é convexo se o segmento ligando quaisquer dois de seus pontos está totalmente contido nele.

Exemplos:

1.5. OS AXIOMAS SOBRE MEDIÇÃO DE SEGMENTOS

AXIOMA 3.1. Para cada par de pontos corresponde um número maior ou igual a zero. Este número é zero se e somente se os pontos são coincidentes. (conceito de distância ou comprimento).

AXIOMA 3.2. Existe uma correspondência biunívoca entre os números reais e os pontos de uma reta. A diferença entre estes números mede a distância entre os pontos correspondentes. (conceito de coordenada).

AXIOMA 3.3. Se A-C-B, então $\overline{AC} + \overline{CB} = \overline{AB}$.

PROPOSIÇÃO: Se em \overrightarrow{AB} considerarmos o segmento \overrightarrow{AC} tal que $\overrightarrow{AC} < \overrightarrow{AB}$, então A-C-B. **Prova:**

Como A é origem de \overrightarrow{AB} não pode existir a relação B-A-C. Se A-B-C, então pelo Axioma 3.3, teríamos $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$ e como consequência $\overrightarrow{AB} < \overrightarrow{AC}$. Mas esta desigualdade é contrária à hipótese de que $\overrightarrow{AC} < \overrightarrow{AB}$. Portanto, teremos A-C-B.

<u>DEFINIÇÃO</u>: O ponto médio do segmento \overline{AB} é um ponto C tal que A-C-B e $\overline{AC} = \overline{CB}$.

EXERCÍCIO: Prove que um segmento tem apenas um ponto médio.

<u>Observação</u>: A noção de distância é uma das noções mais básicas da Geometria. Ela satisfaz as seguintes propriedades:

- 1. Para quaisquer dois pontos A e B do plano, temos que $\overline{AB} > 0$, e $\overline{AB} = 0$ se e somente se A \equiv B.
- 2. Para quaisquer dois pontos A e B temos que $\overline{AB} = \overline{BA}$.
- 3. Para quaisquer três pontos do plano A, B e C, tem-se $\overline{AC} < \overline{AB} + \overline{BC}$. A igualdade ocorre se e somente quando A-C-B (Desigualdade Triangular).

<u>Definição</u>: Sejam A um ponto do plano e r um número real positivo. A circunferência de centro A e raio r é o conjunto constituído por todos os pontos B do plano, tais que $\overline{AB} = r$. Todo ponto C tal que $\overline{AC} < r$ é dito interno à circunferência. Todo ponto D tal que $\overline{AD} > r$ é externo à circunferência.

1.6. OS AXIOMAS SOBRE MEDIÇÃO DE ÂNGULOS

DEFINIÇÃO: Chamamos de ângulo a figura formada por duas semi-retas com a mesma origem.

DEFINIÇÃO: Ângulo raso é formado por duas semi-retas distintas de uma mesma reta.

AXIOMA 3.4. Todo ângulo tem uma medida em graus maior ou igual a zero. A medida de um ângulo é zero se e somente se ele é constituído por duas semi-retas coincidentes. Todo ângulo raso mede 180°.

DEFINIÇÃO: Uma semi-reta n divide um semi-plano determinado por uma reta m quando ela estiver contida no semi-plano e sua origem for um ponto da reta que o determina.

AXIOMA 3.5. É possível colocar, em correspondência biunívoca, os números reais entre zero e 180, e as semi-retas de mesma origem que dividem um dado semi-plano, de tal forma que a diferença entre estes números seja a medida do ângulo formado pelas semi-retas correspondentes.

 $\underline{\textbf{DEFINIÇÃO}}\text{: Considere as semi-retas de mesma origem } \overrightarrow{OA} \text{, } \overrightarrow{OB} \text{ e } \overrightarrow{OC} \text{. Se } \overrightarrow{AB} \cap \overrightarrow{OC} = P \text{, então}$ OC divide o ângulo convexo AÔB.

AXIOMA 3.6. Se OC divide um ângulo $A\hat{O}B$, então $A\hat{O}B = A\hat{O}C + C\hat{O}B$.

DEFINIÇÃO: Quando AÔC = CÔB então \overrightarrow{OC} é chamada bissetriz de AÔB.

EXERCÍCIO: Construir a bissetriz do ângulo AÔB.

DEFINIÇÕES: Dois ângulos são:

a) consecutivos: quando possuem o mesmo vértice e têm um lado comum. Exemplo: AÔB e CÔB;

b) adjacentes: quando são também consecutivos e não têm pontos internos comuns. Exemplo: AÔC e CÔB;

- c) complementares: quando a soma de suas medidas é igual a 90°;
- d) suplementares: quando a soma de suas medidas é igual a 180°;
- e) replementares: quando a soma de suas medidas é igual a 360°.

O suplemento de um ângulo é o ângulo adjacente ao ângulo dado, obtido pelo prolongamento de um de seus lados.

DEFINIÇÃO: Quando duas retas distintas se interceptam, formam-se quatro ângulos. Os ângulos AÔB e DÔC são opostos pelo vértice. Do mesmo modo o são os ângulos AÔD e BÔC.

PROPOSIÇÃO: Ângulos opostos pelo vértice têm a mesma medida.

Prova:

Se AÔB e DÔC são ângulos opostos pelo vértice, então têm o mesmo suplemento: AÔD.

Logo,
$$\begin{cases} A\hat{O}B + A\hat{O}D = 180^{\circ} \\ D\hat{O}C + A\hat{O}D = 180^{\circ} \end{cases} \Rightarrow A\hat{O}B = D\hat{O}C$$

DEFINIÇÃO: Um ângulo cuja medida é 90º é chamado de ângulo reto.

O suplemento de um ângulo reto é também um ângulo reto. Quando duas retas se interceptam, se um dos quatro ângulos formados por elas for reto, então todos os outros também o serão. Neste caso diremos que as retas são perpendiculares.

TEOREMA: Por qualquer ponto de uma reta passa uma única perpendicular a esta reta.

Prova:

a) Existência. Dada uma reta m e um ponto A sobre ela, as duas semi-retas determinadas por A formam um ângulo raso.

Considere um dos semi-planos determinados pela reta m. De acordo com o Axioma 3.5, entre todas as semi-retas com origem A, que dividem o semi-plano fixado, existe uma cuja coordenada será o número 90. Esta semi-reta forma ângulos de 90º com as duas semi-retas determinadas pelo ponto A sobre a reta m. Portanto, ela é perpendicular a reta m.

b) <u>Unicidade</u>. Suponha que existam duas retas n e n' passando por A e perpendiculares a m. Fixe um dos semi-planos determinados por m. As interseções das retas n e n' com este semi-plano são semi-retas que formam um ângulo α e formam outros dois ângulos β e γ com as semi-retas determinadas pelo ponto A em m.

Como n e n' são perpendiculares a m, então $\beta = \gamma = 90^{\circ}$. Por outro lado, devemos ter $\alpha + \beta + \gamma = 180^{\circ}$. Logo, $\alpha = 0^{\circ}$ e as retas n e n' coincidem.

<u>EXERCÍCIO</u>: Prove que se uma reta r intercepta um lado de um triângulo e não passa por um vértice, então r intercepta outro lado do triângulo.

1.7. CONGRUÊNCIA DE TRIÂNGULOS

DEFINIÇÃO: Os segmentos \overline{AB} e \overline{CD} são congruentes quando \overline{AB} = \overline{CD} . Os ângulos \hat{A} e \hat{C} são congruentes quando têm a mesma medida.

Observação: Com esta definição, as propriedades da igualdade de números passam a valer para a congruência de segmentos e de ângulos. Logo, um segmento é sempre congruente a ele mesmo e se dois segmentos são congruentes a um terceiro, então são congruentes entre si.

<u>DEFINIÇÃO</u>: Dois triângulos são congruentes se for possível estabelecer uma correspondência biunívoca entre seus vértices de modo que lados e ângulos correspondentes sejam congruentes.

Observação: Quando escrevemos $\triangle ABC = \triangle DEF$ significa que os triângulos ABC e DEF são congruentes e que a congruência leva A em D, B em E e C em F.

AXIOMA 4. Se $\overline{AB} = \overline{DE}$, $\hat{A} = \hat{D}$ e $\overline{AC} = \overline{DF}$, então $\triangle ABC = \triangle EFG$.

Este axioma é conhecido como o primeiro caso de congruência de triângulos: Lado-Ângulo-Lado (LAL).

<u>Observação</u>: Note que, de acordo com a definição de congruência de triângulos, para verificar se dois triângulos são congruentes temos que testa seis relações: congruência dos três pares de lados e congruência dos três pares de ângulos correspondentes. O axioma 4 afirma que é suficiente verificar apenas três delas, ou seja:

$$\begin{cases} \overline{AB} = \overline{DE} \\ \hat{A} = \hat{D} \\ \overline{AC} = \overline{DF} \end{cases} \Rightarrow \begin{cases} \overline{AB} = \overline{DE}, \overline{BC} = \overline{EF}, \overline{AC} = \overline{DF} \\ \hat{A} = \hat{D}, \hat{B} = \hat{E}, \hat{C} = \hat{F} \end{cases}$$

TEOREMA: Se $\hat{A} = \hat{D}$, $\overline{AB} = \overline{DE}$ e $\hat{B} = \hat{E}$, então ΔABC = ΔEFG.

Este é o segundo caso de congruência de triângulos: Ângulo-Lado-Ângulo (ALA).

Prova:

Considere G um ponto da semi-reta \overrightarrow{AC} tal que $\overrightarrow{AG} = \overrightarrow{DF}$.

Comparando os triângulos $\triangle ABG$ e $\triangle DEF$ temos que, pelo Axioma 4, $\triangle ABG = \triangle DEF$ ($\overline{AB} = \overline{DE}, \hat{A} = \hat{D}, \overline{AG} = \overline{DF}$).

Como consequência, temos que $A\hat{B}G = \hat{E}$. Por hipótese, $\hat{E} = A\hat{B}C$, logo $A\hat{B}G = A\hat{B}C$ e, portanto, as semi-retas \overrightarrow{BG} e \overrightarrow{BC} coincidem.

Então $G \equiv C$ e, portanto, coincidem os triângulos ΔABC e ΔABG . Como já provamos que $\Delta ABG = \Delta EFG$ então $\Delta ABC = \Delta EFG$.

<u>**DEFINIÇÃO:**</u> Um triângulo é isósceles quando tem dois lados congruentes. Estes lados chamam-se laterais e o terceiro lado chama-se base.

PROPOSIÇÃO: Se um triângulo é isósceles, então os ângulos da base são iguais.

Prova:

Seja $\triangle ABC$ um triângulo isósceles de base \overline{BC} . Logo $\overline{AB} = \overline{AC}$.

Queremos provar que $\hat{B} = \hat{C}$. Vamos comparar o triângulo ABC com ele mesmo, fazendo corresponder os vértices da seguinte maneira: $A \Leftrightarrow A$, $B \Leftrightarrow C$ e $C \Leftrightarrow B$.

Pela hipótese temos que $\overline{AB} = \overline{AC}$ e $\overline{AC} = \overline{AB}$. Como $\hat{A} = \hat{A}$, pelo Axioma 4 temos uma correspondência que define $\Delta ABC = \Delta ACB$. Portanto, lados e ângulos correspondentes são congruentes, ou seja, $\hat{B} = \hat{C}$.

Proposição: Se num triângulo os ângulos da base são iguais, então o triângulo é isósceles.

Seja ABC um triângulo tal que $\hat{B} = \hat{C}$. Vamos provar que ele é isósceles, ou seja, que $\overline{AB} = \overline{AC}$.

Vamos comparar o triângulo ABC com ele mesmo, fazendo corresponder os vértices como na prova da proposição anterior, isto é, $A \Leftrightarrow A$, $B \Leftrightarrow C$ e $C \Leftrightarrow B$.

Como $\hat{B}=\hat{C}$ e $\hat{C}=\hat{B}$, por hipótese, e $\overline{BC}=\overline{CB}$ esta correspondência define uma congruência pelo caso **ALA**. Logo, lados e ângulos correspondentes são congruentes, ou seja, $\overline{AB}=\overline{AC}$ e o triângulo é isósceles.

Proposição: Em um triângulo isósceles a mediana relativa à base é também bissetriz e altura.

Prova:

Considere ΔABC um triângulo isósceles de base BC e mediana relativa à base AD. Devemos provar que BÂD = DÂC (bissetriz) e que $B\widehat{D}A = 90^{\circ}$ (altura).

Como $\overline{BD} = \overline{DC}$ (pois \overline{AD} é a mediana relativa ao lado \overline{BC}), $\overline{AB} = \overline{AC}$ (pois o triângulo é isósceles de base \overline{BC}) e $\hat{B} = \hat{C}$ (de acordo com a proposição anterior), então $\triangle ABD = \triangle ACD$ pelo critério LAL.

Logo, lados e ângulos correspondentes são congruentes, ou seja, BÂD = DÂC e BDA = ADC. A primeira igualdade nos diz que \overline{AD} é bissetriz de ângulo BÂC.

Como BDC é ângulo raso e BDA + ADC = BDC = 180°. Como BDA = ADC então concluímos que $BDA = ADC = 90^{\circ}$. Portanto \overline{AD} é perpendicular a \overline{BC} , ou seja, é a altura do triângulo ABC em relação à sua base.

TEOREMA: Se dois triângulos têm três lados correspondentes congruentes então os triângulos são congruentes.

Este é o terceiro caso de congruência de triângulos: Lado-Lado (LLL).

Prova:

Sejam ABC e DEF dois triângulos tais que $\overline{AB} = \overline{DE}$, $\overline{BC} = \overline{EF}$, $\overline{AC} = \overline{DF}$. Vamos provar que $\triangle ABC = \triangle DEF$.

Construa a partir da semi-reta BC e no semi-plano oposto ao que contém o ponto A, um ângulo igual a \hat{F} . No lado deste ângulo que não contém o ponto B, marque G tal que $\overline{CG} = \overline{DF}$ e ligue B a G.

Como $\overline{BC} = \overline{EF}$ (hipótese), $\overline{CG} = \overline{DF}$ (construção) e BĈG = \hat{F} (construção), então $\Delta GBC =$ ΔDEF por LAL. Logo lados e ângulos correspondentes são congruentes. Deste modo, GB = ED, mas $\overline{ED} = \overline{AB}$ pela hipótese. Portanto, $\overline{GB} = \overline{AB}$.

Agora vamos mostrar que $\Delta GBC = \Delta ABC$. Trace \overline{AG} . Como $\overline{AC} = \overline{GC} = \overline{DF}$ e $\overline{AB} = \overline{BG} = \overline{DE}$ então ΔAGC e ΔAGB são isósceles de base \overline{AG} . Portanto $B\widehat{G}A = B\widehat{A}G$ e $A\widehat{G}C = G\widehat{A}C$, e concluímos que $B\widehat{G}C = B\widehat{A}C$. Pelo primeiro caso de congruência de triângulos podemos concluir que $\Delta GBC = \Delta ABC$. Como já tínhamos provado que $\Delta GBC = \Delta DEF$, concluímos que $\Delta ABC = \Delta EFG$.

EXERCÍCIOS

- 01. Mostre que as bissetrizes de um ângulo e do seu suplemento são perpendiculares.
- 02. Sabendo-se que os ângulos α e β são iguais, mostre que $\overline{AC} = \overline{BC}$.

- 03. Sabendo-se que $\overline{AB} = \overline{AC}$ e $\overline{BD} = \overline{CE}$, mostre que:
 - a) $\triangle ACD = \triangle ABE$
 - b) $\Delta BCD = \Delta CBE$

04. Considere $\overline{AC} = \overline{AD}$ e \overline{AB} bissetriz de CÂD. Prove que $\triangle ACB = \triangle ADB$.

05. Sabendo-se que A é ponto médio dos segmentos \overline{CB} e \overline{CE} , prove que $\triangle ABD = \triangle ACE$.

06. Os ângulos e Ĉ são retos, e o segmento \overline{DE} corta \overline{AC} no ponto médio B de \overline{AC} . Mostre que $\overline{AD} = \overline{CE}$.

07. Na figura dada abaixo, sabe-se que $\overline{OC} = \overline{OB}$, $\overline{OD} = \overline{OA}$ e $B\hat{OD} = C\hat{OA}$. Mostre que $\overline{CD} = \overline{AB}$.

08. O ângulo CMA é reto e M é o ponto médio de \overline{AB} . Mostre que $\overline{AC} = \overline{BC}$.

09. Na figura dada abaixo, os triângulos ABD e BCD são isósceles, com base BD .Prove que os ângulos ABC e ADCsão iguais.

10. Na figura dada abixo, a região X representa um lago. Descreva um processo pelo qual será possível medir a distância entre os pontos A e B. Qualquer medida fora do lago é possível.

11. Na figura abaixo temos $\overline{AD} = \overline{DE}$, $\hat{A} = D\hat{E}C$ e $A\hat{D}E = B\hat{D}C$. Mostre que $\triangle ADB = \triangle EDC$.

12. Mostre que, se um triângulo tem os lados congruentes, então tem também os três ângulos congruentes. A recíproca é verdadeira? Prove ou dê um contra-exemplo.

<u>DEFINIÇÃO</u>: Um triângulo que possui os três lados congruentes é chamado de triângulo equilátero.

- 13. Mostre que num triângulo isósceles ABC, com base BC a bissetriz do ângulo é perpendicular à base (ou o que é o mesmo: é a altura) e é também mediana.
- 14. Supondo-se que ABD e BCD são triângulos isósceles com base \overline{BD} , prove que $\widehat{ABC} = \widehat{ADC}$ e que AC é bissetriz do ângulo BCD.

16. Na construção acima é realmente necessário que as circunferências tenham raio \overline{AB} (ou pode-se utilizar um raio r qualquer)? Justifique a resposta.

17. Mostre que, na construção descrita no exercício 14, a reta que determina o ponto médio de \overline{AB} é perpendicular a \overline{AB} .

<u>DEFINIÇÃO</u>: A mediatriz de um segmento AB é uma reta perpendicular ao segmento e que passa pelo seu ponto médio.

18. Utilize a idéia da construção descrita no exercício 14 e proponha um método de construção de uma perpendicular a uma reta dada passando por um ponto desta reta. Justifique a construção.

19. Demonstre ou dê um contra exemplo caso a sentença seja verdadeira ou falsa: Dados dois triângulos ABC e EFG, se $\hat{A} = \hat{E}$, $\overline{AB} = \overline{EF}$ e $\overline{BC} = \overline{FG}$, então os triângulos são congruentes. É um quarto caso (ALL) de congruência de triângulos?

20. Construir FÊG = BÂC. Justifique a construção.

⁺C

1.8. DESIGUALDADES GEOMÉTRICAS

<u>**DEFINIÇÃO:**</u> Se ABC é um triângulo, os seus ângulos ABC, BCA e CÂB, formados pelos lados, são chamados de ângulos internos ou simplesmente de ângulos do triângulo. Os suplementos destes ângulos são chamados de ângulos externos do triângulo.

<u>TEOREMA DO ÂNGULO EXTERNO</u>: Todo ângulo externo de um triângulo é maior do que qualquer um dos ângulos internos a ele não adjacentes.

Prova:

Na semi-reta \overrightarrow{BC} marque um ponto F tal que B-C-F. Devemos provar que $A\widehat{CF} > \hat{A}$ e $A\widehat{CF} > \hat{B}$. Vamos inicialmente provar que $A\widehat{CF} > \hat{A}$.

Considere o ponto médio M do segmento \overline{AC} . Na semi-reta \overline{BM} , marque um ponto D tal que $\overline{BM} = \overline{MD}$ e trace \overline{CD} . Compare os triângulos ΔBMA e ΔDMC . Como $\overline{AM} = \overline{MC}$ (pois M é médio de \overline{AC}), $\overline{BM} = \overline{MD}$ (construção) e BMA = DMC (ângulos opostos pelo vértice), temos que $\Delta BMA = \Delta DMC$ (LAL). Consequentemente, lados e ângulos correspondentes são congruentes, ou seja, $\hat{A} = M\hat{CD}$. Como a semi-reta \overline{CD} divide o ângulo $A\hat{CF}$ então $M\hat{CD} < A\hat{CF}$. Portanto, $\hat{A} < A\hat{CF}$.

Vamos provar que $A\widehat{C}F > \widehat{B}$. Na semi-reta \overrightarrow{AC} marque um ponto G tal que A-C-G.

Considere o ponto médio N do segmento \overline{BC} . Na semi-reta \overline{AN} , marque um ponto E tal que $\overline{AN} = \overline{NE}$ e trace \overline{CE} . Compare os triângulos ΔBNA e ΔCNE . Como $\overline{BN} = \overline{NC}$ (pois N é médio de \overline{BC}), $\overline{AN} = \overline{NE}$ (construção) e BNA = CNE (ângulos opostos pelo vértice), temos que $\Delta BNA = \Delta CNE$ (LAL). Consequentemente, lados e ângulos correspondentes são congruentes, ou seja, $\hat{B} = NCE$. Como a semi-reta \overline{CE} divide o ângulo BCG, então NCE < BCG. Logo, $\hat{B} < BCG$, mas BCG = ACF (ângulos opostos pelo vértice). Portanto, $\hat{B} < ACF$.

<u>Proposição</u>: A soma das medidas de quaisquer dois ângulos internos de um triângulo é menor que 180°.

Prova:

Vamos mostrar que $\hat{A} + \theta < 180^{\circ}$. Considere θ o ângulo externo deste triângulo com vértice em C. Pela proposição anterior temos que $\theta > \hat{A}$.

Como θ e \hat{C} são suplementares, então $\theta + \hat{C} = 180^{\circ}$.

Portanto, $\hat{A} + \hat{C} < \theta + \hat{C} = 180^{\circ}$.

COROLÁRIO: Todo triângulo possui pelo menos dois ângulos internos agudos.

Prova:

Se um triângulo possuísse dois ângulos não agudos, sua soma seria maior ou igual a 180°, o que não pode ocorrer de acordo com a proposição anterior.

<u>COROLÁRIO</u>: Se duas retas distintas m e n são perpendiculares a uma terceira, então m e n não se interceptam.

Prova:

Se m e n se interceptassem teríamos um triângulo com dois ângulos retos, o que é absurdo pelo corolário anterior.

Proposição: Por um ponto fora de uma reta passa uma e somente uma reta perpendicular à reta dada.

Prova:

a) Existência. Seja m uma reta e A um ponto fora desta reta. Tome sobre m os pontos B e C distintos e trace AB. Se AB já é perpendicular a m, terminamos a construção.

Caso contrário, considere, no semi-plano que não contém A, uma semi-reta com vértice B formando com a semi-reta BC um ângulo congruente a ABC. Nesta semi-reta tome um ponto A' tal que $\overline{BA'} = \overline{BA}$. Temos que $\overline{AA'}$ é perpendicular \overline{m} à reta m, pois o triângulo $\Delta ABA'$ é isósceles de base $\overrightarrow{AA'}$. Como $\overrightarrow{ABC} = \overrightarrow{CBA'}$ então \overrightarrow{BC} é bissetriz do ângulo $\widehat{ABA'}$. Portanto, BC é perpendicular a $\overline{AA'}$.

b) Unicidade. Se existissem duas retas distintas passando pelo ponto A, ambas perpendiculares à reta m teríamos um triângulo com dois ângulos retos, o que é absurdo, pois todo triângulo possui pelo menos dois ângulos internos agudos.

SIMETRIA EM RELAÇÃO A UMA RETA

<u>DEFINIÇÃO</u>: Um ponto P é simétrico de outro ponto Q em relação a uma reta r quando PM = MQ e PQ é perpendicular a r, sendo que M pertence à reta r. (Simetria Axial)

Observação: Dado um ponto P e uma reta r, a perpendicular a r passando por P intercepta r em um ponto M

> chamado <u>pé da perpendicular</u> baixada do ponto P à reta r. Se A é qualquer outro ponto de r, o segmento PA é dito oblíquo relativamente a r. O segmento AM é chamado de projeção de PA sobre a reta r. É uma conseqüência da proposição seguinte que AP > AM e que AP > PM. O número PM é chamado de <u>distância</u> do ponto P à reta r. Dado um triângulo ABC dizemos que o lado <u>BC opõe-se ao ângulo Â</u> ou, de maneira equivalente, que <u>o ângulo é oposto ao lado BC</u>.

Proposição: Se dois lados de um triângulo não são congruentes então seus ângulos opostos não são iguais e o maior ângulo é oposto ao maior lado.

Prova:

Considere um triângulo ∆ABC sendo BC≠ AC. Logo podemos supor que BC < AC. Devemos mostrar que $\hat{B} \neq \hat{A}$ e que \hat{B} é o maior ângulo (pois este é oposto ao maior lado).

a) Mostraremos inicialmente que os ângulos opostos não são iguais, ou seja, que B≠Â.

Da hipótese temos que $\overline{BC} \neq \overline{AC}$, logo o triângulo $\triangle ABC$ não é isósceles de base \overline{AB} e, portanto, os ângulos da base não são iguais. Logo, $\hat{B} \neq \hat{A}$.

b) Mostraremos agora que $\hat{B} > \hat{A}$.

Determine sobre a semi-reta \overrightarrow{CA} um ponto D, tal que $\overrightarrow{CD} = \overrightarrow{BC}$. Como $\overrightarrow{BC} < \overrightarrow{AC}$ então D pertence ao segmento \overline{AC} e como consequência a semi-reta \overline{BD} divide o ângulo \hat{B} . Portanto temos que $\hat{CBA} > \hat{CBD}$ (1).

Como o triângulo $\triangle CBD$ é isósceles de base \overline{BD} (construção $\overline{CB} = \overline{CD}$) temos que $C\widehat{BD} =$ CDB (2).

Pelo teorema do ângulo externo temos que CDB > CÂB (3).

De (1), (2) e (3) temos que: $\hat{CBA} > \hat{CBD} = \hat{CDB} > \hat{CAB}$, ou seja, $\hat{B} > \hat{A}$.

Analogamente, podemos provar que ao menor lado opõe-se o menor ângulo.

PROPOSIÇÃO: Se dois ângulos de um triângulo não são congruentes, então seus lados opostos não são iguais e o maior lado é oposto ao maior ângulo.

Prova:

Consideremos um triângulo $\triangle ABC$ tal que $\hat{B} \neq \hat{A}$, vamos supor que $\hat{B} > \hat{A}$. Devemos mostrar que $\overline{BC} \neq \overline{AC}$ e que \overline{AC} é o maior lado (pois este é oposto ao maior ângulo).

a) Mostraremos inicialmente que os lados BC e AC não são iguais.

Da hipótese temos que $\hat{B} \neq \hat{A}$. Logo, podemos concluir que o triângulo ΔABC não é isósceles de base AB e, portanto, os lados não são iguais. Desta forma, $\overline{BC} \neq \overline{AC}$.

b) Agora vamos mostrar que BC < AC.

Sabemos que B > Â. Podemos observar que, existem três possibilidades que podem ocorrer: BC > AC, BC < AC ou $\overline{BC} = \overline{AC}$.

Se $\overline{BC} > \overline{AC}$ então, pela proposição anterior, deveríamos ter $\hat{A} > \hat{B}$, o que contraria a hipótese.

Do mesmo modo, se ocorresse BC = AC o triângulo seria isósceles e $\hat{A} = \hat{B}$ o que está em desacordo com a hipótese (provado no item a).

Logo, deve ocorrer BC < \overline{AC} .

TEOREMA: Em todo triângulo, a soma dos comprimentos de dois lados é maior do que o comprimento do terceiro lado.

Prova:

Dado um triângulo ΔABC mostraremos que AB + BC > AC.

Considere o ponto D na semi-reta AB tal que BD = BC. Portanto, o triângulo Δ BCD é isósceles de base \overline{CD} . Logo, $B\widehat{CD} = B\widehat{D}C$ (1).

Como $\overline{AD} = \overline{AB} + \overline{BD}$ então D-B-A e a semireta \overrightarrow{CB} divide o ângulo AĈD. Portanto, AĈD> BĈD (2).

De (1) e (2) temos que, no triângulo \triangle ACD, AĈD > BĈD. Mas pela proposição anterior temos que ao maior ângulo opõe-se o maior lado, ou seja, $\overline{AD} > \overline{AC}$. Mas $\overline{AD} = \overline{AB} + \overline{BD} =$ AB + BC e, portanto, AB + BC > AC.

<u>DEFINIÇÃO</u>: Um triângulo que possui um ângulo reto é chamado <u>triângulo retângulo</u>. O lado oposto ao ângulo reto é chamado <u>hipotenusa</u>, e os outros dois lados são denominados catetos.

EXERCÍCIO: Mostre que num triângulo retângulo:

- a) A hipotenusa é sempre menor que a soma dos catetos.
- b) A hipotenusa é sempre maior que qualquer cateto.
- c) Os ângulos opostos aos catetos são agudos.

EXERCÍCIOS

01. Dados reta r, pontos P e Q, pede-se: obter sobre r um ponto A, tal que $\overline{PA} + \overline{AQ}$ seja mínimo. Justifique a resolução.

02. Na figura abaixo somente as medidas dos ângulos estão corretas. Responda as questões, justificando-as.

a) Os triângulos ABC e DCB são congruentes?

- b) Qual o maior lado do triângulo ABC?
- c) Qual o menor lado do triângulo DBC?

03. Se, no problema anterior, os ângulos fossem os indicados abaixo, quais seriam as respostas?

- 04. Se um triângulo ABC é equilátero e D é um ponto tal que B-D-C, mostre que $\overline{\rm AD} > \overline{\rm BD}$.
- 05. Demonstre que: dados dois triângulos $\triangle ABC$ e $\triangle DEF$, se $\hat{A} = \hat{E}$, $\overline{AB} = \overline{DE}$ e $\hat{C} = \hat{F}$, então os triângulos são congruentes.

Este é o quarto caso de congruência de triângulos, chamado de **Lado-Ângulo-Ângulo Oposto - (LAAo)**

06. Sejam $\triangle ABC$ e $\triangle DEF$ dois triângulos retângulos cujos ângulo retos são \hat{C} e \hat{F} . Prove que se $\overline{AB} = \overline{DE}$ e $\overline{BC} = \overline{EF}$ então os triângulos são congruentes.

Este é o teorema de congruência de triângulos retângulos - (LLAr)

08. Prove que num triângulo isósceles ABC, de base \overline{BC} , a altura relativa ao vértice A é também mediana e bissetriz.

1.9. O AXIOMA DAS PARALELAS

AXIOMA 5. Por um ponto fora de uma reta m passa uma única reta paralela a reta m. (Unicidade)

Devemos observar que este axioma prescreve a unicidade, já que a existência de reta paralela a m, passando por um ponto dado, já era garantida.

<u>PROPOSIÇÃO</u>: Se a reta m é paralela a duas outras retas n_1 e n_2 , então n_1 e n_2 são paralelas ou coincidentes.

Prova:

Vamos supor que m seja paralela a n_1 e a n_2 , $n_1 \neq$ n_2 e que n_1 não seja paralela a n_2 .

Como n_1 e n_2 não coincidem e não são paralelas, então elas têm um ponto em comum P. Mas pelo ponto P m estão passando duas retas, n_1 e n_2 , que são distintas e paralelas a uma mesma reta m. O que contradiz o n_2 Axioma 5.

n₁ m n₂

<u>PROPOSIÇÃO</u>: Se uma reta m corta uma de duas paralelas, n₁ e n₂, então corta também a outra.

Prova:

Vamos supor que n_1 seja paralela a n_2 , m corta n_1 mas não corta n_2 .

Como m não corta n_2 então m e n_2 são paralelas. Assim, n_2 é paralela a m e a n_1 . Pela proposição anterior temos que m e n_1 são paralelas, o que contradiz a hipótese. Logo, m também corta n_2 .

PROPOSIÇÃO: Sejam m, n_1 , n_2 , $n_1 \neq n_2$, e os ângulos indicados $\angle 2$ e $\angle 6$ na figura abaixo. Se $\angle 2$ = \checkmark 6, então as retas n₁ e n₂ são paralelas.

Prova:

Vamos supor que $\angle 2 = \angle 6$ e que n₁ e n₂ não são paralelas. Como as retas são distintas, elas se interceptam em algum ponto P, formando então um triângulo.

Neste triângulo ∢2 é ângulo externo e ∢6 é um ângulo interno não adjacente ao ângulo ∢2 ou vice-versa. Assim, pelo teorema do ângulo externo teríamos $\angle 2 \neq \angle 6$, o $\frac{n_2}{2}$ que contradiz a nossa hipótese. Portanto, n₁ e n₂ não se interceptam.

<u>DEFINIÇÃO</u>: Quando duas retas (não necessariamente paralelas) são cortadas por uma transversal formam-se oito ângulos como indicados na figura abaixo.

Chamam-se ângulos:

correspondentes: $\angle 1 \in \angle 5$, $\angle 2 \in \angle 6$, $\angle 3 \in \angle 7$, $\angle 4 \in \angle 8$.

opostos pelo vértice: $\angle 2e \angle 4$, $\angle 1e \angle 3$, $\angle 5e \angle 7$, $\angle 6e \angle 8$.

internos : entre as retas n_1 e n_2 : 43, 44, 5 e 6.

externos : fora das retas n_1 e n_2 : $\swarrow 1$, $\swarrow 2$, $\swarrow 7$ e $\swarrow 8$.

colaterais: aqueles que estão de um mesmo lado da transversal:

colaterais internos: 43 e 46, 4e 5.

colaterais externos: 41 e 48, 42 e 47.

<u>alternos</u> : aqueles que estão em semi-planos opostos em relação à transversal:

<u>alternos internos</u>: 43 e 45, 44 e 46.

<u>alternos externos</u>: 41 e 47, 42 e 48.

PROPOSIÇÃO: Se ao cortarmos duas retas com uma transversal obtivermos $43 + 6 = 180^{\circ}$, então as retas são paralelas.

Prova:

Pela hipótese temos que $43 + 46 = 180^{\circ}$, mas como 42 = 43 são suplementares, então $\angle 2 + \angle 3 = \angle 3 + \angle 6 = 180^{\circ}$, $\log 0 \angle 2 = \angle 6$. Pela proposição anterior temos que as retas são paralelas.

<u>Proposição</u>: Se duas retas paralelas são cortadas por uma transversal, então os ângulos correspondentes são iguais.

Prova:

Sejam n_1 e n_2 retas paralelas cortadas pela trans- n_2 versal m nos pontos A e B, respectivamente.

Considere uma reta n passando pelo ponto A e formando com a transversal quatro ângulos iguais aos ângulos correspondentes formados pela reta n_2 com a mesma transversal.

De acordo com a 1^a proposição da página 30, n e n_2 são paralelas. Mas pela hipótese temos que n_1 e n_2 são paralelas. Portanto n e n_1 também são paralelas e concorrem num mesmo ponto A, logo n e n_1 são coincidentes.

Portanto, n_1 forma com a reta m ângulos iguais aos correspondentes formados por n_2 com a reta m.

COROLÁRIO: Se os ângulos alternos internos (ou externos) são congruentes, então $n_1 \parallel n_2$.

Prova: Exercício

COROLÁRIO: Se $n_1 \parallel n_2$ então os ângulos alternos internos (ou externos) são congruentes.

Prova: Exercício

TEOREMA: A soma dos ângulos internos de um triângulo é igual a 180°.

Prova:

Pelo vértice A, construa n_1 paralela a BC $\equiv n_2$.

Considere os ângulos como indicados na figura ao lado. Como as retas AB e AC são transversais às paralelas n_1 e n_2 então os ângulos alternos internos são iguais, ou seja, $\gamma = \delta$ e $\beta = \theta$. Como $\alpha + \delta + \theta = 180^{\circ}$, temos que $\alpha + \beta + \gamma = 180^{\circ}$.

COROLÁRIO:

- a) A soma das medidas dos ângulos agudos de um triângulo retângulo é 90°.
- b) Cada ângulo de um triângulo equilátero mede 60°.
- c) A medida de um ângulo externo de um triângulo é igual à soma das medidas dos ângulos internos não adjacentes.
- d) A soma dos ângulos internos de um quadrilátero é 360°.

TEOREMA: Se n_1 e n_2 são paralelas, então todos os pontos de n_1 estão à mesma distância de n_2 .(a recíproca é verdadeira)

Prova:

Sejam n_1 e n_2 retas paralelas. Sobre n_1 consideremos dois pontos A e B, e deles baixemos perpendiculares à n_1 reta n_2 . Sejam A' e B' respectivamente os pés destas perpendiculares. Devemos provar que $\overline{AA'} = \overline{BB'}$.

Vamos unir A e B'. Considere os triângulos $\Delta AA'B'$ e $\Delta B'BA$. Como AB' é comum, $A'\hat{B}'A = B'\hat{A}B$ (pois são

ângulos alternos internos relativos à transversal AB') e A'ÂB' = AB'B (pois são ângulos complementares, respectivamente, B'ÂB e A'B'A), logo os triângulos Δ AA'B' e Δ B'BA são congruentes pelo critério **ALA**. Portanto, lados e ângulos correspondentes são congruentes, ou seja, $\overline{AA'} = \overline{BB'}$.

EXERCÍCIO: Refazer o exercício 5 da página 28 utilizando o fato de que a soma dos ângulos internos de um triângulo é 180°.

PARALELOGRAMO

<u>DEFINIÇÃO</u>: Paralelogramo é um quadrilátero cujos lados opostos são paralelos.

PROPOSIÇÃO: Em todo paralelogramo lados e ângulos opostos são congruentes.

Prova:

Seja ABCD um paralelogramo. Considere a diagonal \overline{BD} . Como AB e DC são paralelas cortadas por \overline{BD} , então $A\hat{B}D = B\hat{D}C$ (ângulos alternos internos) e como AD e BC são paralelas cortadas por \overline{BD} , então $A\hat{D}B = D\hat{B}C$. Como \overline{BD} é comum, podemos concluir que os triângulos ADB e CBD são congruentes pelo critério **ALA**. Logo, lados e ângulos correspondentes são congruentes, ou seja,

$$\overrightarrow{AD} = \overrightarrow{BC}$$
, $\overrightarrow{AB} = \overrightarrow{CD}$ e $\widehat{A} = \widehat{C}$.

Temos ainda que $\hat{D} = A\hat{D}B + B\hat{D}C = D\hat{B}C + A\hat{B}D = \hat{B}$. Logo, $\hat{D} = \hat{B}$.

Proposição: As diagonais de um paralelogramo se interceptam em um ponto que é o ponto médio das duas diagonais.

Prova:

Seja ABCD um paralelogramo com as diagonais AC e BD. Seja M o ponto de interseção das diagonais. Devemos provar que DM = MB e AM = MC.

Como AB e DC são paralelas cortadas A pelas transversais AC e BD, então determinam

ângulos alternos internos iguais, ou seja, $BÂM = M\hat{C}D$ e $A\hat{B}M = M\hat{D}C$. Como AB = CD (lados do paralelogramo) então ΔAMB = ΔCMD pelo critério ALA. Logo lados e ângulos correspondentes são congruentes, ou seja, AM = MC e BM = MD.

PROPOSIÇÃO: Se os lados opostos de um quadrilátero são congruentes então o quadrilátero é um paralelogramo.

Prova:

Seja ABCD um quadrilátero com AB = CD e BC = AD. Devemos provar que ABCD é um paralelogramo, ou seja, que AB || CD e BC || AD.

Considere a diagonal BD do quadrilátero. Nos triângulos ABD e CDB temos que BD é

lado comum, $\overline{AB} = \overline{CD}$ (hipótese) e $\overline{BC} = \overline{AD}$ (hipótese). Logo, os triângulos são congruentes pelo critério LLL, e lados e ângulos correspondentes são congruentes. Ou seja, CDB = ABD e $\hat{CBD} = \hat{ADB}$. A primeira igualdade garante que AB || DC e a segunda garante que BC || AD. Logo, ABCD é um paralelogramo.

PROPOSIÇÃO: Se dois lados opostos de um quadrilátero são congruentes e paralelos, então o quadrilátero é um paralelogramo.

Prova:

Seja ABCD um quadrilátero com AD || BC e AD = BC. Devemos provar que ABCD é um paralelogramo. De acordo com a proposição anterior, se provarmos que $\overline{AB} = \overline{CD}$, então o quadrilátero será um paralelogramo.

Considere a diagonal BD e os triângulos ADB e CBD. Como AD || BC são cortadas pela transversal BD então os ângulos alternos internos são iguais, ou seja, ADB = DBC. Como $\overline{AD} = \overline{BC}$ (hipótese) e \overline{BD} é lado comum, então $\triangle ADB = \triangle CBD$ pelo critério LAL. Logo, lados e ângulos correspondentes são congruentes, ou seja, AB = CD. Pela proposição anterior, ABCD é um paralelogramo.

TEOREMA: O segmento ligando os pontos médios de dois lados de um triângulo é paralelo ao terceiro lado e tem metade do seu comprimento.

Prova:

 \overline{AB} e \overline{AC} respectivamente. Devemos provar que DE || BC e que $\overline{DE} = \frac{1}{2}\overline{BC}$.

Determine na semi-reta \overrightarrow{ED} um ponto F tal que $\overrightarrow{FD} = \overrightarrow{DE}$. Como $\overrightarrow{AD} = \overrightarrow{BD}$ (D é ponto médio de \overrightarrow{AB}) e $A\widehat{D}E = F\widehat{D}B$ (ângulos opostos pelo vértice), então $\Delta ADE = \Delta FDB$ por LAL. Como consequência temos que $D\widehat{F}B = A\widehat{E}D$ e $\overline{FB} = \overline{AE}$.

Como $\overline{FB} = \overline{AE}$ e $\overline{AE} = \overline{EC}$ (E é ponto médio de \overline{AC}), temos que $\overline{FB} = \overline{EC}$.

Logo, FB e EC são paralelos (pois BFD e DÊA são ângulos alternos internos congruentes) e têm o mesmo comprimento. Como, todo quadrilátero que possui dois lados opostos paralelos e congruentes é um paralelogramo, concluímos que FBCE é um paralelogramo. Portanto, DE \parallel BC e têm o mesmo comprimento. Como D é ponto médio de \overline{FE} , então $\overline{DE} = \frac{1}{2} \overline{BC}$.

<u>PROPOSIÇÃO</u>: Suponha que três retas paralelas a, b e c, cortam as retas m e n nos pontos A, B e C e nos pontos A', B' e C', respectivamente. Se $\overline{AB} = \overline{BC}$, então $\overline{A'B'} = \overline{B'C'}$.

Prova:

Considere uma reta m' paralela à reta m que passa por B'. Esta reta corta as retas a e c nos pontos D e E.

Como ABB'D e BCEB' são paralelogramos (pois têm lados opostos paralelos) então $\overline{DB'} = \overline{AB}$ e $\overline{BE'} = \overline{BC}$. Além disso, como $\overline{AB} = \overline{BC}$ por hipótese, então concluímos que $\overline{DB'} = \overline{B'E}$.

Temos que $D\hat{B}'A' = C'\hat{B}'E$ (opostos pelo vértice) e $B'\hat{D}A' = B'EC'$ (alternos internos determinados pela transversal DE e as retas paralelas a e c).

Logo, $\Delta A'DB' = \Delta C'EB'$ pelo critério **ALA**. Portanto, $\overline{A'B'} = \overline{B'C'}$.

<u>COROLÁRIO</u>: Suponha que k retas paralelas a_1 , a_2 , ..., a_k cortam duas retas m e n nos pontos A_1 , A_2 , ..., A_k e nos pontos A'_1 , A'_2 , ..., A'_k respectivamente.

Se
$$\overline{A_1 A_2} = \overline{A_2 A_3} = ... = \overline{A_{k-1} A_k}$$
, então $\overline{A_1' A_2'} = \overline{A_2' A_3'} = ... = \overline{A_{k-1}' A_k'}$.

Este corolário é uma generalização da proposição anterior.

<u>TEOREMA DE TALES</u>: Se um feixe impróprio de retas é interceptado por um feixe próprio de retas, então a razão entre dois segmentos quaisquer de uma delas é igual à razão entre os segmentos respectivamente correspondentes na outra reta do mesmo feixe.

Prova:

Considere que os segmentos $\overline{A_1A_2}$ e $\overline{A_3A_4}$ sejam comensuráveis. Então sexiste um segmento u que é submúltiplo de ambos. Logo, existem números p e q, tais que $\overline{A_1A_2}$ = pu e $\overline{A_3A_4}$ = qu.

Portanto,
$$\frac{\overline{A_1 A_2}}{\overline{A_3 A_4}} = \frac{p}{q}$$
.

Conduzindo retas s_1 , s_2 , s_3 ,..., $\frac{1}{s_5}$ $\frac{1}{s_5}$ pelos pontos de divisão dos segmentos $\frac{1}{s_5}$ $\frac{1}{s_6}$ $\frac{1}{s_6$

partes de comprimento u', tais que $\overline{B_1B_2} = pu'$ e $\overline{B_3B_4} = qu'$.

Concluímos então que $\frac{B_1B_2}{\overline{B_3B_4}} = \frac{p}{q}$. De modo análogo, podemos demonstrar que $\overline{A_1A_2} = \overline{C_1C_2}$, a para quaisquer segmentos determinados pelas paralelas usadas para definir o

 $\frac{A_1A_2}{\overline{A_3A_4}} = \frac{C_1C_2}{\overline{C_3C_4}}, e \text{ para quaisquer segmentos determinados pelas paralelas usadas para definir o par de segmentos } \overline{A_1A_2} \text{ e } \overline{A_3A_4} \,.$

Exemplo: O baricentro divide as medianas na razão $\frac{\overline{AG}}{m_a} = \frac{\overline{BG}}{m_b} = \frac{\overline{CG}}{m_c} = \frac{2}{3}$.

EXERCÍCIOS

01. Na figura abaixo, O é o ponto médio de \overline{AD} e \hat{B} = \hat{C} . Se B, O e C são colineares, mostre que $\Delta ABO = \Delta DCO$.

<u>**DEFINIÇÃO:**</u> Um segmento ligando dois pontos de uma circunferência e passando por seu centro chama-se diâmetro.

02. Na figura abaixo, o ponto O é o centro da circunferência, AB é um diâmetro e C é outro ponto da circunferência. Mostre que $\beta = 2\alpha$.

03. Mostre que se os ângulos opostos de um quadrilátero são congruentes, então o quadrilátero é um paralelogramo.

04. Mostre que se as diagonais de um quadrilátero se interceptam em um ponto que é ponto médio de ambas, então o quadrilátero é um paralelogramo.

<u>Definição</u>: Um retângulo é um quadrilátero que tem todos os seus ângulos retos.

- 05. Mostre que todo retângulo é um paralelogramo.
- 06. Mostre que as diagonais de um retângulo são congruentes.
- 07. Mostre que se as diagonais de um paralelogramo são congruentes, então o paralelogramo é um retângulo.

<u>DEFINIÇÃO</u>: Um losango (ou rombo) é um quadrilátero que tem todos os seus lados congruentes.

- 08. Mostre que todo losango é um paralelogramo.
- 09. Mostre que as diagonais de um losango cortam-se em ângulo reto e são bissetrizes dos seus ângulos.
- 10. Mostre que um paralelogramo cujas diagonais são perpendiculares é um losango.

<u>**DEFINIÇÃO:**</u> Um quadrado é um quadrilátero que tem os quatro ângulos retos e os quatro lados congruentes.

- 11. Prove que um quadrado é um retângulo e que é também um losango.
- 12. Mostre que se as diagonais de um quadrilátero são congruentes e se cortam em um ponto que é ponto médio de ambas, então o quadrilátero é um retângulo. Se, além disso, as diagonais são perpendiculares uma a outra, então o quadrilátero é um quadrado.
- <u>DEFINIÇÃO</u>: Um trapézio é um quadrilátero em que dois lados opostos são paralelos. Os lados paralelos de um trapézio são chamados de bases e os outros dois são chamados de laterais. Um trapézio escaleno tem suas laterais não congruentes. Um trapézio retângulo (ou bi-retângulo) tem dois ângulos retos. Um trapézio isósceles tem as laterais congruentes.
- 13. Seja ABCD um trapézio de base AB. Se ele é isósceles, mostre que $\hat{A} = \hat{B}$ e $\hat{C} = \hat{D}$.

- 14. Mostre que as diagonais de um trapézio isósceles são congruentes.
- 15. Prove que o segmento ligando os pontos médios das laterais de um trapézio escaleno é paralelo às bases e que seu comprimento é a média aritmética dos comprimentos das bases.

Dica: Considere o ponto E como sendo a interseção das retas AB e DN, prove que ΔDNC = ΔENB (ALA). Considere também o triângulo ΔDAE e o segmento MN.

- 16. Prove que os pontos médios dos lados de um quadrilátero qualquer são vértices de um paralelogramo.
- 17. Prove que a soma dos ângulos internos de um polígono de n lados é (n − 2).180°.

1.10. Semelhança de Triângulos

<u>DEFINIÇÃO</u>: Dois triângulos são semelhantes se for possível estabelecer uma correspondência biunívoca entre seus vértices de modo que ângulos correspondentes sejam iguais e lados correspondentes sejam proporcionais.

Ou seja, se ABC e EFG são dois triângulos semelhantes e se $A \Leftrightarrow E$, $B \Leftrightarrow F$ e $C \Leftrightarrow G$ é a correspondência que estabelece a semelhança, então valem simultaneamente as seguintes igualdades:

$$\Delta ABC \sim \Delta EFG \iff \begin{cases} \hat{A} = \hat{D}, \hat{B} = \hat{E}, \hat{C} = \hat{F}, \\ \frac{\overline{AB}}{\overline{DE}} = \frac{\overline{BC}}{\overline{EF}} = \frac{\overline{AC}}{\overline{DF}} \end{cases}$$

Observação: O quociente comum entre as medidas dos lados correspondentes é chamado de razão de proporcionalidade entre os dois triângulos.

EXERCÍCIO: Dois triângulos congruentes são semelhantes. Justifique a afirmação e indique a razão de proporcionalidade.

PROPRIEDADES DA SEMELHANÇA DE DOIS TRIÂNGULOS:

a) Reflexiva: ΔABC ~ ΔABC

b) Simétrica: $\triangle ABC \sim \triangle DEF \Leftrightarrow \triangle DEF \sim \triangle ABC$

c) Transitiva: $\triangle ABC \sim \triangle DEF \in \triangle DEF \sim \triangle GHI \Rightarrow \triangle ABC \sim \triangle GHI$

TEOREMA: Se $\hat{A} = \hat{D}$ e $\hat{B} = \hat{E}$, então $\triangle ABC \sim \triangle DEF$.

Este é conhecido como o segundo caso de semelhança de triângulos (AAA ou AA).

Prova:

Como a soma dos ângulos de um triângulo é 180°, então as igualdades $\hat{A} = \hat{D}$ e $\hat{B} = \hat{E}$ acarretam em $\hat{C} = \hat{F}$. Resta provar que os lados correspondentes são proporcionais.

Considere o ponto G na semi-reta \overrightarrow{EF} tal que $\overrightarrow{DG} = \overrightarrow{AB}$. Construa a reta paralela a $\overline{\text{EF}}$ que passa por G, determinando o ponto H em $\overline{\text{DF}}$. Logo, temos $\Delta \text{DGH} = \Delta \text{ABC}$ ($\hat{A} = \hat{D}$, $\overline{AB} = \overline{DG}$ e $\hat{B} = \hat{E} = D\hat{G}H$ sendo que esta última igualdade deve-se ao paralelismo de GH e EF). Logo, AB = DG e AC = DH.

Como HG é paralela a EF, e ambas são cortadas pelas retas DE e DF então determinam segmentos proporcionais, ou seja, $\frac{\overline{DG}}{\overline{DF}} = \frac{\overline{DH}}{\overline{DF}}$.

Como $\overline{AB} = \overline{DG}$ e $\overline{AC} = \overline{DH}$ então substituindo na igualdade acima temos $\frac{\overline{AB}}{\overline{DE}} = \frac{\overline{AC}}{\overline{DE}}$.

De maneira análoga demonstramos que $\frac{AB}{\overline{DF}} = \frac{BC}{\overline{FF}}$

TEOREMA: Se
$$\hat{A} = \hat{D}$$
 e $\frac{\overline{AB}}{\overline{DE}} = \frac{\overline{AC}}{\overline{DF}}$ então ΔABC ~ ΔDEF.

Este é conhecido como primeiro caso de semelhança de triângulos (LAL).

Prova:

Construa um triângulo ΔGHI tal que $\overline{GH}=\overline{DE}$, $\hat{G}=\hat{A}$ e $\hat{H}=\hat{B}$. Logo por \overline{AAA} temos que $\Delta ABC\sim \Delta GHI$. Portanto, os lados correspondentes são proporcionais: $\frac{\overline{AB}}{\overline{GH}}=\frac{\overline{AC}}{\overline{GI}}$. Como $\overline{GH}=\overline{DE}$, então $\frac{\overline{AB}}{\overline{EF}}=\frac{\overline{AC}}{\overline{GI}}$. Porém, pela hipótese sabemos que $\frac{\overline{AB}}{\overline{DE}}=\frac{\overline{AC}}{\overline{DF}}$, e podemos concluir que $\overline{GI}=\overline{DF}$.

Portanto, $\Delta DEF = \Delta GHI$ ($\overline{DF} = \overline{GI}$, $\hat{D} = \hat{G}$ e $\overline{DE} = \overline{GH} - \mathbf{LAL}$). Como $\Delta ABC \sim \Delta GHI$ e $\Delta DEF = \Delta GHI$, temos que $\Delta ABC \sim \Delta DEF$.

TEOREMA: Se
$$\frac{\overline{AB}}{\overline{DE}} = \frac{\overline{BC}}{\overline{EF}} = \frac{\overline{AC}}{\overline{DF}}$$
, então ΔABC ~ ΔDEF.

Este é o terceiro caso de semelhança de triângulos (LLL).

Prova:

Considere o triângulo GHI tal que $\hat{G} = \hat{A}$, $\overline{GH} = \overline{DE}$ e $\overline{GI} = \overline{DF}$.

Logo, podemos conclui da hipótese que $\frac{AB}{\overline{GH}} = \frac{AC}{\overline{GI}}$, e como $\hat{H} = \hat{A}$ temos que $\Delta ABC \sim \Delta GHI$. Portanto, lados correspondentes são proporcionais, ou seja, $\frac{\overline{AB}}{\overline{GH}} = \frac{\overline{BC}}{\overline{HI}}$ (1).

Da hipótese temos que
$$\frac{\overline{AB}}{\overline{DE}} = \frac{\overline{BC}}{\overline{EF}}$$
, mas $\overline{DE} = \overline{GH}$ (construção), então $\frac{\overline{AB}}{\overline{GH}} = \frac{\overline{BC}}{\overline{EF}}$

Comparando esta última expressão com (1) temos que $\overline{HI} = \overline{EF}$.

Logo, $\Delta DEF = \Delta GHI$ ($\overline{DE} = \overline{GH}$, $\overline{EF} = \overline{HI}$ e $\overline{DF} = \overline{GI}$). Como $\Delta ABC \sim \Delta GHI$ temos que $\Delta ABC \sim \Delta DEF$.

<u>DEFINIÇÃO</u>: Dados dois segmentos p e q, a média aritmética entre eles é um segmento x tal que x = (p + q)/2 e a média geométrica (ou média proporcional) entre eles, é um segmento y, tal que $y = \sqrt{p.q}$.

<u>PROPOSIÇÃO</u>: Em todo triângulo retângulo a altura relativa ao vértice do ângulo reto é média geométrica (ou proporcional) entre as projeções dos catetos sobre a hipotenusa. Os catetos são médias geométricas entre a hipotenusa e as suas projeções sobre a hipotenusa.

Prova:

Seja ABC um triângulo retângulo com ângulo reto no vértice A. Trace a altura \overline{AH} = h do vértice A ao lado \overline{BC} . As projeções dos catetos b e c são os segmentos \overline{CH} = m e \overline{BH} = n.

Como \overline{AH} é perpendicular a \overline{BC} , então os triângulos ΔHBA e ΔHAC são retângulos.

Como
$$\hat{B} + \hat{C} = 90^{\circ} e \hat{B} + B\hat{A}H = 90^{\circ}$$
, então $B\hat{A}H = \hat{C}$.

Temos que
$$\hat{B} + \hat{C} = 90^{\circ} e \hat{C} + H\hat{A}C = 90^{\circ}$$
, então $H\hat{A}C = \hat{B}$.

Logo, Δ HBA ~ Δ HAC por **AAA**, e estes triângulos são semelhantes ao triângulo Δ ABC. Logo, podemos escrever as expressões que traduzem a proporcionalidade dos lados:

$$-\Delta ABC \sim \Delta HBA$$
 $\Rightarrow \frac{a}{c} = \frac{b}{h} = \frac{c}{n} \Rightarrow c^2 = a.n$

$$A \Leftrightarrow H, B \Leftrightarrow B \in C \Leftrightarrow A$$

$$-\Delta ABC \sim \Delta HAC$$
 $\Rightarrow \frac{a}{b} = \frac{b}{m} = \frac{c}{h} \Rightarrow b^2 = a.m$

$$A \Leftrightarrow H$$
, $B \Leftrightarrow A \in C \Leftrightarrow C$

$$-\Delta HBA \sim \Delta HAC$$
 $\Rightarrow \frac{b}{c} = \frac{m}{h} = \frac{h}{n} \Rightarrow h^2 = m.n$

$$H \Leftrightarrow H, B \Leftrightarrow C e A \Leftrightarrow A$$

<u>TEOREMA DE PITÁGORAS</u>: Em todo triângulo retângulo o quadrado do comprimento da hipotenusa é igual à soma dos quadrados dos comprimentos dos catetos.

Prova:

Considere um triângulo ABC retângulo em A. Devemos mostrar que $a^2 = b^2 + c^2$.

Na proposição anterior foi provado que $\triangle ABC \sim \triangle HBA \sim \triangle HAC$ e portanto que $b^2 = a.m$ e $c^2 = a.n$. Somando membro a membro as duas expressões temos que:

$$b^2 + c^2 = a.m + a.n = a(m + n) = a.a = a^2$$
.

Ou seja, $a^2 = b^2 + c^2$.

EXERCÍCIO: Prove a recíproca do teorema de Pitágoras.

<u>DEFINIÇÃO</u>: Considere os triângulos ΔOAB e ΔOCD retângulos em B e D. Com as medidas dos lados destes triângulos podemos definir as seguintes razões trigonométricas:

1. tangente de
$$\alpha = \tan(\alpha) = \frac{\overline{AB}}{\overline{OB}} = \frac{\overline{CD}}{\overline{OD}} = \frac{\text{cateto oposto}}{\text{cateto adjacente}}$$

2. seno de
$$\alpha = \text{sen}(\alpha) = \frac{\overline{AB}}{\overline{OA}} = \frac{\overline{CD}}{\overline{OC}} = \frac{\text{cateto oposto}}{\text{hipotenusa}} \text{ e}$$

3. cosseno de
$$\alpha = \cos(\alpha) = \frac{\overline{OB}}{\overline{OA}} = \frac{\overline{OD}}{\overline{OC}} = \frac{\text{cateto adjacente}}{\text{hipotenusa}}$$
.

Ao considerar uma circunferência de raio unitário, podemos encontrar as relações trigonométricas conforma mostram as figuras a seguir.

$$Como\ tan(\alpha) = \frac{\overline{AM}}{\overline{OA}} = \frac{\overline{AM}}{\overline{OM}} \cdot \frac{\overline{OM}}{\overline{OA}} = \frac{sen(\alpha)}{cos(\alpha)}, \ temos\ que\ \frac{tan(\alpha)}{sen(\alpha)} = \frac{1}{cos(\alpha)} \ (1).$$

Temos que
$$\triangle OMA \sim \triangle OPT$$
, ou seja, $\frac{\overline{PT}}{\overline{AM}} = \frac{\overline{OT}}{\overline{OA}}$ (2).

Mas $\overline{OA} = \cos(\alpha)$, $\overline{OT} = 1$ e $\overline{AM} = \sin(\alpha)$. Substituindo estes segmentos em (2), obtemos a relação (1), ou seja, $\overline{PT} = \tan(\alpha)$.

Outras relações trigonométricas são as seguintes:

4. secante de
$$\alpha = \sec(\alpha) = \frac{1}{\cos(\alpha)} = \frac{\text{hipotenusa}}{\text{cateto adjacente}}$$
,

5. cotangente de
$$\alpha = \cot g(\alpha) = \frac{\cos(\alpha)}{\sin(\alpha)} = \frac{\text{cateto adjacente}}{\text{cateto oposto}} e$$

6. cossecante de
$$\alpha = \csc(\alpha) = \frac{1}{\sin(\alpha)} = \frac{\text{hipotenusa}}{\text{cateto oposto}}$$
.

Como $\triangle OMR \sim \triangle MAO$, temos $\frac{\overline{OM}}{\overline{AM}} = \frac{\overline{OR}}{\overline{OM}}$.

Temos que $\overline{OM} = 1$ e $\overline{AM} = \operatorname{sen}(\alpha)$, ou seja, $\overline{OR} = \frac{1}{\operatorname{sen}(\alpha)} = \cot g(\alpha)$.

Outra semelhança é entre os triângulos $\Delta OMA \sim \Delta OSM$, logo $\frac{\overline{OM}}{\overline{OA}} = \frac{\overline{OS}}{\overline{OM}}$.

Temos as medidas de $\overline{OM} = 1$ e $\overline{OA} = \cos(\alpha)$, ou seja, $\overline{OS} = \frac{1}{\cos(\alpha)} = \sec(\alpha)$.

Como
$$\triangle OBM \sim \triangle ONQ$$
, temos que $\frac{\overline{ON}}{\overline{OB}} = \frac{\overline{NQ}}{\overline{BM}}$.

Temos que
$$\overline{ON} = 1$$
, $\overline{OB} = \operatorname{sen}(\alpha)$ e $\overline{BM} = \cos(\alpha)$, ou seja, $\overline{NQ} = \frac{\cos(\alpha)}{\operatorname{sen}(\alpha)} = \cot g(\alpha)$.

EXERCÍCIOS

01. Na figura abaixo D e E são pontos médios de \overline{AB} e \overline{AC} , respectivamente. Mostre que ΔADE e ΔABC são semelhantes.

- 02. Prove que se um triângulo retângulo tem ângulos agudos de 30° e 60° então seu menor cateto mede metade do comprimento da hipotenusa.
- 03. Mostre que dois triângulos equiláteros são sempre semelhantes.
- 04. Mostre que são semelhantes dois triângulos isósceles que têm iguais os ângulos opostos à base.
- 05. Na figura abaixo temose que ΔBDA ~ ΔABC, sendo a semelhança a que leva B em A, D em B e A em C. Prove que o triângulo BDA é isósceles.

- 06. Prove que as alturas (ou as medianas, ou as bissetrizes) correspondentes em triângulos semelhantes estão na mesma razão que os lados correspondentes.
- 07. Prove que a bissetriz de um ângulo de um triângulo divide o lado oposto em segmentos proporcionais aos outros dois lados. Isto é, se ABC é o triângulo e BD é a bissetriz do ângulo

$$\hat{B}$$
, sendo D um ponto do lado \overline{AC} , então $\frac{\overline{AD}}{\overline{DC}} = \frac{\overline{AB}}{\overline{BC}}$.

Dica: trace pelo ponto A uma reta r paralela a BD, que intercepta a semi-reta \overrightarrow{CB} em um ponto E formando triângulos semelhantes.

- 08. Se dois triângulos têm lados correspondentes paralelos, então prove que são semelhantes.
- 09. Usando as definições trigonométricas, prove as relações trigonométricas:

a)
$$sen^2(\alpha) + cos^2(\alpha) = 1$$

b)
$$\cos(90^{\circ} - \alpha) = \sin(\alpha)$$
, onde $0 < \alpha < 90^{\circ}$

c)
$$sen(90^{\circ} - \alpha) = cos(\alpha)$$
, onde $0 < \alpha < 90^{\circ}$

d)
$$tan^2(\alpha) + 1 = sec^2(\alpha)$$

e)
$$1 + \cot g^2(\alpha) = \csc^2(\alpha)$$

f)
$$sen(45^\circ) = sen(45^\circ) = \frac{\sqrt{2}}{2}$$

g)
$$tan(45^{\circ}) = 1$$

h) sen(60°) =
$$\frac{\sqrt{3}}{2}$$

i)
$$\cos(60^{\circ}) = \frac{1}{2}$$

j)
$$\tan(60^{\circ}) = \sqrt{3}$$

k)
$$sen(30^{\circ}) = \frac{1}{2}$$

1)
$$\cos(30^\circ) = \frac{\sqrt{3}}{2}$$

m)
$$\tan(30^{\circ}) = \frac{\sqrt{3}}{3}$$

CAPÍTULO 2: LUGARES GEOMÉTRICOS

Os problemas em Desenho Geométrico resumem-se em encontrar pontos, e para determinar um ponto basta obter o cruzamento entre duas linhas.

<u>DEFINIÇÃO</u>: Um conjunto de pontos do plano constitui um lugar geométrico (L.G.) em relação a uma determinada propriedade P quando satisfaz às seguintes condições:

- a) Todo ponto que pertence ao lugar geométrico possui a propriedade P;
- b) Todo ponto que possui a propriedade P pertence ao lugar geométrico.

Observação: Na resolução de problemas, procuramos construir graficamente uma determinada figura, mas que satisfaça as condições impostas (ou propriedades). Geralmente, estas condições impostas são lugares geométricos construtíveis com régua e compasso. O emprego de figuras que constituem lugares geométricos nas resoluções de problemas gráficos é chamado de Método dos Lugares Geométricos.

2.1. LUGAR GEOMÉTRICO 1 - CIRCUNFERÊNCIA

LG 01: O lugar geométrico dos pontos do plano situados a uma distância constante r de um ponto fixo O é a CIRCUNFERÊNCIA de centro O e raio r.

Notação: CIRCUNF(O,r).

EXERCÍCIO: Construir um triângulo ABC, dados os três lados a, b e c.

Para se provar que uma determinada figura F é um lugar geométrico dos pontos do plano que têm uma propriedade P, temos que demonstrar dois teoremas:

- a) todo ponto de F tem a propriedade P;
- b) todo ponto que tem a propriedade P pertence a F.

É importante frisar a necessidade de demonstrar os dois teoremas, pois um só deles não garante que a figura F seja um lugar geométrico.

No caso da circunferência, temos que:

- a) todo ponto da circunferência (de centro O e raio r) equidista do ponto O segundo uma distância r;
- b) todo ponto que equidista de O segundo uma distância r pertence à circunferência de centro O e raio r.

2.2. LUGAR GEOMÉTRICO 2 - MEDIATRIZ

LG 02: O lugar geométrico dos pontos do plano equidistantes de dois pontos A e B dados é a MEDIATRIZ do segmento \overline{AB} .

Considere dois pontos fixos A e B. Sejam P e Q dois pontos tais que $\overline{AP} = \overline{PB} = \overline{AQ} = \overline{QB}$. Como P e Q possuem a mesma propriedade, e por eles passa uma única reta m então veremos que m possuirá a mesma propriedade de P e Q.

<u>Observação</u>: Lembre-se que esta construção nos fornece a mediatriz de \overline{AB} , pois como $\overline{AP} = \overline{PB} = \overline{AQ} = \overline{QB}$, o quadrilátero APBQ é um losango e, portanto, as suas diagonais cortam-se em ângulo reto e no ponto médio das mesmas.

Mostraremos que a mediatriz é um lugar geométrico:

 $\underline{\mathbf{1}^{a} \text{ parte}}$: Todo ponto da mediatriz de \overline{AB} é equidistante de A e B. **Prova**:

Nos triângulos XAM e XBM temos $\overline{AM} = \overline{BM}$ (M é ponto médio pela hipótese), A $\hat{M}X = B\hat{M}X$ (ambos são retos pela hipótese) e \overline{XM} é lado comum. Portanto, $\Delta XAM = \Delta XBM$ por LAL, logo, lados e ângulos correspondentes são congruentes, ou seja, $\overline{XA} = \overline{XB}$.

 $\underline{2^a \text{ parte}}$: Todo ponto equidistante de A e B pertence à mediatriz de $\overline{\text{AB}}$.

Prova:

Seja Y um ponto equidistante de A e B. Traçamos por Y a reta r perpendicular a \overline{AB} e vamos provar que r é a mediatriz de \overline{AB} isto é, que r passa pelo ponto médio de \overline{AB} .

Seja M o ponto de interseção de r e \overline{AB} . Como \overline{YM} é a altura relativa à base \overline{AB} do triângulo isósceles ΔYAB , então \overline{YM} também é mediana, isto é, M é o ponto médio de \overline{AB} . Assim, a reta r é perpendicular a \overline{AB} e passa pelo ponto médio do mesmo, isto é, r é a mediatriz de \overline{AB} . Logo, Y pertence à mediatriz de \overline{AB} .

Portanto, a mediatriz é um lugar geométrico.

EXERCÍCIOS

01. Traçar a mediatriz do segmento \overline{AB} dado abaixo, nas seguintes condições:

a)
$$P \in r$$
;

03. Traçar a circunferência que passe pelos pontos A, B e C dados.

^C

μB

04. Construir um ângulo reto.

2.3. LUGAR GEOMÉTRICO 3 - RETAS PARALELAS

31			_
			1
			_]
2			_

LG 03: O lugar geométrico dos pontos do plano equidistantes de uma reta dada deste plano compõe-se de duas retas PARALELAS à reta dada e construídas à mesma distância d da reta considerada.

Vamos mostrar que é um lugar geométrico:

Seja
$$F = s_1 \cup s_2$$
, onde $s_1 \parallel r$ e dist $(s_1, r) = d$, $s_2 \parallel r$ e dist $(s_2, r) = d$.

<u>1ª parte</u>: Todos os pontos de F distam d da reta r.

Prova:

Seja X um ponto de F. Então $X \in s_1$ ou $X \in s_2$, ou seja, $dist(X, r) = dist(s_1, r)$ ou $dist(X, r) = dist(s_1, r)$ $dist(s_2, r)$. Portanto, dist(X, r) = d.

<u>**2**</u>^a <u>parte</u>: Todos os pontos que distam d da reta r pertencem à F.

Prova:

Seja Y um ponto que dista d da reta r, \underline{r} ou seja, dist(Y, r) = d. Logo, dist(Y, r) = dist (s_1, r) ou dist(Y, r) = dist (s_2, r) e assim $Y \in s_1$ ou $Y \in s_2$. Portanto, $Y \in F$.

Logo, $F = s_1 \cup s_2 \acute{e}$ um lugar geométrico.

<u>Observação</u>: Nas demonstrações das duas partes utilizamos a ideia das distâncias entre duas retas paralelas e da distância de ponto à reta. As passagens podem ser detalhadas utilizando-se retângulos.

EXERCÍCIOS

01. Traçar pelo ponto P uma reta paralela a reta r dada de duas maneiras distintas.

02. Traçar paralelas a distância d da reta r.

03. Construir um triângulo MNP com a mesma área do triângulo ABC dado, em que a base será o lado a.

2.4. LUGAR GEOMÉTRICO 4 - BISSETRIZ

LG 04: O lugar geométrico dos pontos do plano equidistantes de duas retas concorrentes dadas, compõe-se de duas outras retas, perpendiculares entre si e BISSETRIZES dos ângulos formados pelas retas dadas.

Observação: As retas b₁ e b₂ assim construídas como mostra a figura acima são bissetrizes dos

ângulos formados pelas retas dadas (pois, para b_1 temos que $\Delta O13 = \Delta O23$ por LLL, ou seja, lados e ângulos correspondentes são congruentes: $1\hat{O}3 = 3\hat{O}2$).

Mostraremos que é um lugar geométrico:

Sejam r e s as retas concorrentes, Ob₁ e Ob₂ as bissetrizes dos ângulos formados por r e s, e F = $Ob_1 \cup Ob_2$.

<u>1ª parte</u>: Todo ponto de F equidista dos lados desse ângulo (rÔs).

Prova:

Seja X um ponto que pertence a F. Logo, $X \in b_1$ ou $X \in b_2$.

Como as distâncias de X aos lados do ângulo são medidas segundo segmentos perpendiculares então $\overline{XA} = dist(X, r)$ e $\overline{XB} = dist(X, s)$.

Nos triângulos ΔΧΟΑ e ΔΧΟΒ temos que ΟΧ é lado comum, XÔA = XÔB (por hipótese X pertence

à bissetriz) e $OBX = OAX = 90^{\circ}$. Assim, pelo critério **LAAo**, $\Delta XOA = \Delta XOB$. Logo, $\overline{XA} = \overline{XB}$, ou seja, X equidista de r e s.

<u>2ª parte</u>: Todo ponto que é equidistante dos lados de um ângulo pertence à F.

Prova:

Considere um ponto Y equidistante de r e s, e a semi-reta \overrightarrow{OY} . Provaremos que \overrightarrow{OY} é a bissetriz do ângulo formado pelas retas.

Como Y é equidistante de r e s, teremos dist(Y, r) = dist(Y, s). Considere dist(Y, r) = YC e dist(Y, s) = YD. Assim temos que $YC = \overline{YD}$.

Nos triângulos ΔΥΟC e ΔΥΟD, temos: OY é lado comum, YC = YD (hipótese) e $\hat{YCO} = \hat{YDO} = 90^{\circ}$.

Assim, pelo caso especial de congruência de triângulos retângulos LLAr, concluímos que $\triangle YOC = \triangle YOD$ são congruentes. Logo, $Y\hat{O}C = Y\hat{O}D$, ou seja, OY é bissetriz. Assim temos que $Y \in Ob_1$ ou $Y \in Ob_2$, portanto, $Y \in F$.

<u>DEFINIÇÃO</u>: A tangente a uma circunferência é a reta que intercepta a circunferência num único ponto. O ponto comum é chamado ponto de tangência.

PROPOSIÇÃO: Se uma reta é tangente a uma circunferência, então ela é perpendicular ao raio que une o centro ao ponto de tangência.

Prova:

Considere o ponto de tangência T e um ponto $P \neq T$ da reta tangente t tal que $OP \perp t$. Provaremos que os pontos P e T devem ser coincidentes.

Determine na reta t um ponto T' tal que T-P-T' e $\overline{PT} = \overline{PT'}$. Como \overline{OP} é um lado em comum, $\hat{OPT} = \hat{OPT}' = 90^{\circ} \text{ e } \overline{PT} = \overline{PT}', \text{ temos que } \overline{OT} = \overline{OT}'.$ Como OT mede o raio da circunferência, OT' também mede o raio, ou seja, T' é um ponto da circunferência. Contradição, pois desta forma a tangente t possui dois pontos da circunferência. Logo, P e T coincidem, e PT⊥t.

PROPOSIÇÃO: Se uma reta é perpendicular a um raio em sua extremidade, então a reta é tangente à circunferência.

Prova:

Considere uma reta t perpendicular ao raio OT. Determine um ponto P qualquer de t. Provaremos que este ponto não pertence ao círculo de centro O e raio OT.

Como t \perp \overline{OT} , temos que:

$$\overline{OT}^2 + \overline{PT}^2 = \overline{OP}^2$$

Portanto, podemos concluir que \overline{OT} < \overline{OP} , ou seja, P será sempre externo à circunferência. Logo, T é o único ponto da reta t que pertence à circunferência, o que prova que t é tangente.

EXERCÍCIOS

01. Obter um ponto P equidistante das retas r e s e que pertença à reta a.

02. Traçar circunferências de raio d, tangentes às semi-retas Or e Os dadas.

03. Traçar a bissetriz do ângulo formado pelas retas concorrentes r e s, sem usar o ponto de interseção das mesmas.

04. Construir os ângulos notáveis: 90°, 45°, 22°30′, 11°15′, 60°, 30°, 15°, 120°, 150°.

05. Dados os pontos B e C e uma circunf(D,d), construir um triângulo ABC, conhecendo o lado b e sabendo-se que o vértice A está na circunferência dada.

06. Dados os pontos A e B e uma distância r. Construir uma circunferência que passa por A e B e que tem raio igual a r.

07. Construir um retângulo de lados $\overline{AB} = 5$ cm e $\overline{BC} = 3$ cm.

08. Dados os pontos B e C e uma circunf(D,d), construir um triângulo ABC isósceles, de base \overline{BC} , sabendo-se que o vértice A pertence à circunferência dada.

09. Dadas três retas a, b e c, concorrentes duas a duas, construir uma circunferência tangente às retas b e c, sabendo-se que seu centro pertence à reta a.

10. Construir uma circunferência inscrita ao triângulo ABC dado.

11. Construir circunferências de raio d dado, tangentes às retas concorrentes a e b dadas.

2.5. ÂNGULOS E CIRCUNFERÊNCIA

DEFINIÇÃO: Considere uma circunferência de centro O e raio r.

- CORDA é qualquer segmento que tem as extremidades em dois pontos da circunferência.
- DIÂMETRO é qualquer corda que passa pelo centro de uma circunferência.
- Dois pontos A e B de uma circunferência dividem-na em duas partes, AMB e ANB. Cada parte denomina-se ARCO CIRCULAR ou simplesmente ARCO e os pontos A e B são os extremos.

Notação: Os arcos definidos na figura ao lado são AMB e ANB. Quando os arcos são designados com apenas duas letras fica convencionado:

- a) as duas letras são as que indicam os seus extremos;
- b) a representação vale somente para o menor arco. Assim, para representar o arco AMB (o menor dos arcos da figura acima) podemos escrever AB.

A corda que une os extremos de um arco subtende o arco. Quando não se especifica qual deles, considera-se o menor.

2.6. ÂNGULO CENTRAL

DEFINIÇÃO: Ângulo central é todo o ângulo que possui o vértice no centro da circunferência e cada um de seus lados contém um raio da mesma.

Observações:

- A medida angular de um arco de circunferência é a medida do ângulo central correspondente.
- O arco interceptado por um ângulo central é correspondente a esse ângulo, ou ele é o arco que corresponde ao ângulo central.

2.7. ÂNGULO INSCRITO

DEFINIÇÃO: Ângulo inscrito é todo ângulo que possui seu vértice sobre a circunferência e cada um de seus lados contém uma corda da mesma.

Observações:

- O arco interceptado por um ângulo inscrito é correspondente a esse ângulo ou, mais frequentemente, ele é chamado arco que o ângulo enxerga.
- Quando os lados de um ângulo inscrito e de um ângulo central cortam-se sobre os mesmos pontos sobre a mesma circunferência então eles são ditos ângulos correspondentes.

Considere uma circunferência de centro O e três pontos, A, B e P, sobre a mesma. Devemos mostrar que $\hat{APB} = \frac{\hat{AOB}}{2}$.

1º Caso: O ponto O pertence ao lado do ângulo inscrito

Como O pertence ao segmento \overline{PB} então este é um diâmetro da circunferência.

Como PO e OA são raios da circunferência, então $\overline{PO} = \overline{OA} = r$. Logo, o triângulo ΔPOA é isósceles de base PA e, portanto, possuem os ângulos da base congruentes, $P\hat{A}O = A\hat{P}O$.

Sabemos que a medida de um ângulo externo de um triângulo é igual à soma dos ângulos internos não adjacentes, ou seja, $A\hat{O}B = P\hat{A}O + A\hat{P}O = 2A\hat{P}B$.

Considere a semi-reta PO que intercepta a circunferência em um ponto C. Logo, $\hat{APB} = \hat{APC} + \hat{CPB}$.

Pelo caso anterior, sabemos que quando um dos lados de um ângulo inscrito contém o centro da circunferência então a sua medida é metade do ângulo central correspondente.

Logo,
$$\hat{APC} = \frac{1}{2}\hat{AOC} + \hat{CPB} = \frac{1}{2}\hat{COB}$$
.

Portanto, podemos concluir que $\hat{APB} = \hat{APC} + \hat{CPB} = \frac{1}{2}\hat{AOC} + \frac{1}{2}\hat{COB} = \frac{1}{2}\hat{AOB}$.

3º Caso: O ponto O é externo ao ângulo inscrito

Considere a semi-reta \overrightarrow{PO} , que intercepta a circunferência em um ponto D. Logo, $A\hat{P}B = A\hat{P}D - D\hat{P}B$.

Mas pelo primeiro caso temos que quando um dos lados de um ângulo inscrito contém o centro da circunferência então a sua medida é metade do ângulo central correspondente. Logo, $\hat{APD} = \frac{1}{2}\hat{AOD}$ e $\hat{DPB} = \frac{1}{2}\hat{DOB}$.

Assim,
$$A\hat{P}B = A\hat{P}D - D\hat{P}B = \frac{1}{2}A\hat{O}D - \frac{1}{2}D\hat{O}B = \frac{1}{2}A\hat{O}B$$

2.8. ÂNGULO DE SEGMENTO

<u>DEFINIÇÃO</u>: Ângulo de segmento (ou ângulo semi-inscrito) é o ângulo formado por uma corda e a tangente à circunferência conduzida por uma das extremidades da corda.

Observação:

O arco interceptado por um ângulo de segmento também é chamado arco correspondente a esse ângulo.

<u>PROPOSIÇÃO</u>: A medida de um ângulo de segmento é igual à metade da medida do ângulo central correspondente.

Prova:

Considere a figura anterior. Devemos provar que $B\hat{A}C = \frac{A\hat{O}B}{2}$.

No triângulo $\triangle AOB$ temos que $O\hat{A}B + \hat{B} + A\hat{O}B = 180^{\circ}$ (1).

Como $\overline{OA} = \overline{OB} = raio$, temos que o triângulo ΔAOB é isósceles de base \overline{AB} , logo $O\hat{A}B = \hat{B}$ (2).

De (1) e (2) temos que:

$$\hat{OAB} + \hat{OAB} + \hat{AOB} = 180^{\circ}$$
, ou $\hat{OAB} = \frac{(180^{\circ} - \hat{AOB})}{2} = 90^{\circ} - \frac{\hat{AOB}}{2}$ (3).

Como a reta t é tangente à circunferência então:

$$\hat{OAC} = \hat{OAB} + \hat{BAC} = 90^{\circ} \text{ ou } \hat{OAB} = 90^{\circ} - \hat{BAC}$$
 (4).

Logo, de (3) e (4) temos que
$$90^{\circ} - \frac{A\hat{O}B}{2} = 90^{\circ} - B\hat{A}C$$
, e portanto $B\hat{A}C = \frac{A\hat{O}B}{2}$.

Evidentemente pode-se dizer que o ângulo de segmento, assim como o ângulo inscrito, tem suas medidas iguais à metade do ângulo central correspondente.

2.9. LUGAR GEOMÉTRICO 5 - ARCO CAPAZ

Considere uma Circunf(O,r) e três pontos P, A e B da mesma. Fazendo o ponto P percorrer o arco APB, a medida do ângulo central não se altera, logo a medida do ângulo inscrito correspondente também não se altera.

LG 05: O lugar geométrico dos pontos do plano que enxergam um segmento AB segundo um ângulo de medida α constante é o par de ARCOS CAPAZES do ângulo α descrito sobre o segmento AB.

Considere o par de arcos \widehat{ACB} e \widehat{ADB} . Seja $F = \widehat{ACB} \cup \widehat{ADB}$.

<u>**1**</u>^a parte: Todo ponto do arco capaz do ângulo α enxerga AB segundo o ângulo α .

Prova:

Se X pertence a F então AXB é ângulo inscrito, logo $A\hat{X}B = \frac{A\hat{O}B}{2}$, ou seja, $A\hat{X}B = \alpha$.

2a parte: Todo ponto que enxerga AB segundo o ângulo α pertence a um dos arcos capazes do ângulo α .

Prova:

A demonstração será feita pela contra-positiva, ou seja, vamos tomar um ponto que não pertence a qualquer um dos arcos capazes e provar que ele não vê AB segundo o ângulo α.

Seja um ponto P ∉ F (P pode ser externo ou interno a

F). Considere Y o ponto de interseção de \overline{AP} (ou \overline{BP}) com F. Temos que Y \in F, então $A\hat{Y}B = \alpha$ (provado na primeira parte).

Assim, no triângulo ΔYBP (considerando os dois casos), pelo teorema do ângulo externo temos:

$$A\hat{P}B > A\hat{Y}B = \alpha$$
 (para P interno a F)

ou

$$A\hat{P}B < A\hat{Y}B = \alpha$$
 (para P externo a F)

Nos dois casos, temos que $\hat{APB} > \alpha$ ou $\hat{APB} < \alpha$, ou seja, $\hat{APB} \neq \alpha$.

Portanto, o par de arcos capazes é o lugar geométrico.

EXERCÍCIO: Construir o par de arcos capazes de um segmento \overline{AB} segundo um ângulo α .

2.10. ÂNGULO EXCÊNTRICO INTERIOR E EXTERIOR

<u>**DEFINIÇÃO:**</u> Ângulo excêntrico interior é o ângulo formado por duas cordas de uma circunferência que se cortam no interior da circunferência, porém, fora do centro.

<u>TEOREMA</u>: O ângulo excêntrico interior tem por medida a semi-soma dos arcos compreendidos entre os lados e seus prolongamentos.

Prova:

Seja A PB um ângulo excêntrico interior. Prolongando A P
 e B P obtemos os pontos C e D sobre a circunferência.

Devemos provar que
$$\hat{APB} = \frac{\hat{AOB} + \hat{COD}}{2}$$
.

Determine o segmento \overline{AC} . O ângulo \widehat{APB} é um dos ângulos externos do triângulo \widehat{APAC} , logo, $\widehat{APB} = \widehat{PAC} + \widehat{PCA}$ (1).

Como PÂC e PĈA são ângulos inscritos, temos que:

$$P\hat{A}C = \frac{\hat{COD}}{2}$$
 (2) e $P\hat{C}A = \frac{\hat{AOB}}{2}$ (3).

Logo, substituindo (2) e (3) em (1) podemos concluir que:

$$A\hat{P}B = \frac{A\hat{O}B}{2} + \frac{C\hat{O}D}{2} = \frac{A\hat{O}B + C\hat{O}D}{2}.$$

<u>DEFINIÇÃO</u>: Ângulo excêntrico exterior é o ângulo que possui o vértice fora da circunferência e cujos lados são secantes à mesma.

<u>TEOREMA</u>: O ângulo excêntrico exterior tem por medida a semidiferença dos arcos compreendidos entre os seus lados.

Prova:

Seja APB um ângulo excêntrico interior.

Devemos mostrar que
$$A\hat{P}B = \frac{A\hat{O}B - C\hat{O}D}{2}$$
.

Unindo A e C temos um triângulo Δ ACP. Como AĈB é um dos ângulos externos desse triângulo, temos que AĈB = PÂC + APB ou APB = AĈB – PÂC (1).

Como PÂC e AĈB são ângulos inscritos, temos que PÂC =
$$\frac{D\hat{O}C}{2}$$
 (2) e AĈB = $\frac{A\hat{O}B}{2}$ (3).

Substituindo (2) e (3) em (1) podemos concluir que

$$A\hat{P}B = \frac{A\hat{O}B}{2} - \frac{D\hat{O}C}{2} = \frac{A\hat{O}B - D\hat{O}C}{2}.$$

2.11. ÂNGULO CIRCUNSCRITO

<u>DEFINIÇÃO</u>: Ângulo circunscrito é o ângulo cujo vértice é um ponto exterior à circunferência e cujos lados são formados por duas tangentes à circunferência.

TEOREMA: Considere uma circunferência e um ângulo circunscrito de vértice P. Sejam A e B os pontos de tangência dos lados do ângulo na circunferência, então $\overline{AP} = \overline{BP}$ e a medida do ângulo circunscrito \hat{P} é igual ao suplementar do menor arco determinado por A e B.

Prova:

Parte a: Provar que $\overline{AP} = \overline{BP}$.

Considere o triângulo $\triangle APB$. Como \overline{PA} é tangente à circunferência em A e \overline{AB} é uma corda da circunferência, temos que BÂP é um ângulo de segmento e, portanto,

$$B\hat{A}P = \frac{A\hat{O}B}{2} (1)$$

Analogamente, \overline{BP} é tangente à circunferência no ponto B e \overline{AB} é uma corda da circunferência. Temos também que $A\hat{B}P$ é um ângulo de segmento e, portanto,

$$A\hat{B}P = \frac{A\hat{O}B}{2} (2).$$

Como AOBP um quadrilátero temos que a soma dos seus ângulos internos vale 360°, ou seja, $O\hat{A}P + O\hat{B}P + A\hat{O}B + B\hat{P}A = 360°$. Temos que $O\hat{A}P = O\hat{B}P = 90°$, então $A\hat{O}B + B\hat{P}A = 180°$, ou seja, $A\hat{P}B = 180° - A\hat{O}B$.

<u>Observação</u>: Poderíamos também provar o item a mostrando que $\Delta PAO = \Delta PBO$ por **LLAr**.

- 01. Construir os arcos capazes do segmento $\overline{AB}=5$ cm segundo os ângulos de 60°, 45°, 135° e 120°.
- 02. Considere a figura dada abaixo. Quanto vale α em função de β ?

Observação: Se quisermos o arco capaz de 120º, basta construir o de 60º e tomar o outro arco.

- 03. Uma semi-circunferência é um arco capaz de _____o, pois o ângulo central correspondente mede _____o. Construa o arco capaz de 90º de um segmento AB. Descreva o processo de construção.
- 04. Dados os pontos A, B e C encontrar um ponto P do qual possamos ver os segmentos AB e \overline{BC} segundo ângulos constantes α e β respectivamente.

06. Traçar uma perpendicular ao segmento \overline{AB} por um ponto P, sem prolongar o segmento.

07. Construir um triângulo ABC conhecendo: $\overline{BC} = 5.5$ cm, $h_a = 4$ cm e $\hat{A} = 60^{\circ}$.

- 08. Prove que o diâmetro é a maior corda da circunferência.
- 09. Prove que o diâmetro perpendicular a uma corda divide-a ao meio.
- 10. Prove que o diâmetro que divide ao meio uma corda é perpendicular a essa corda.

2.12. Relações Métricas nos Segmentos

PROPORCIONALIDADE NOS SEGMENTOS

Considere um feixe de retas paralelas cortadas por um feixe de retas concorrentes.

TEOREMA DE TALES: Um feixe de retas paralelas divide um feixe de retas concorrentes segundo segmentos proporcionais.

EXERCÍCIOS

01. Dividir o segmento $\overline{AB} = 8$ cm em n partes iguais.

02. Dividir um segmento $\overline{AB} = 8.4$ cm em partes proporcionais aos segmentos dados abaixo.

03. Dividir um segmento $\overline{AB} = 11$ cm em partes proporcionais a números dados a = 2,3, b = 3 e c = 1/2.

04. Dividir um segmento $\overline{AB} = 9$ cm por um ponto P numa razão dada k = -7/2.

05. Dividir um segmento $\overline{AB} = 7$ cm por um ponto Q numa razão dada k = 7/2.

- 06. Obter os conjugados harmônicos do segmento $\overline{AB} = 7 \text{cm}$ na razão dada k = 5/3. (terceiro e quarto harmônicos).

2.13. TERCEIRA E QUARTA PROPORCIONAIS

QUARTA PROPORCIONAL A TRÊS SEGMENTOS (OU NÚMEROS) DADOS

<u>DEFINIÇÃO</u>: Dados três segmentos (ou números) a, b e c, a quarta proporcional aos três segmentos é um segmento (ou número) x, tal que, na ordem dada, eles a seguinte proporção:

$$\frac{a}{b} = \frac{c}{x}$$

EXERCÍCIO: Dados a, b e c obter a quarta proporcional nesta ordem.

TERCEIRA PROPORCIONAL A DOIS SEGMENTOS (OU NÚMEROS) DADOS

<u>**DEFINIÇÃO:**</u> Dados dois segmentos (ou números) a e b, a terceira proporcional aos dois segmentos é um segmento x, tal que, na ordem dada, eles formem a seguinte proporção:

$$\frac{a}{b} = \frac{b}{x}$$

EXERCÍCIO: Obter a terceira proporcional aos segmentos a e b, nessa ordem.

2.14. Propriedades no Triângulo Retângulo

EXERCÍCIO: Construir um triângulo retângulo sendo dadas as projeções m e n dos catetos b e c, respectivamente.

EXERCÍCIO: Construir um triângulo retângulo sendo dadas a hipotenusa a e a projeção m do cateto b sobre a hipotenusa.

Recordando:

$$h^2 = m.n$$

$$b^2 = a.m$$

$$c^2 = a.n$$

PROPOSIÇÃO: Em todo triângulo retângulo a altura do vértice do ângulo reto é média geométrica (ou proporcional) entre as projeções dos catetos sobre a hipotenusa.

PROPOSIÇÃO: Em todo triângulo retângulo os catetos são médias geométricas entre a hipotenusa e as suas projeções sobre a hipotenusa.

MÉDIA GEOMÉTRICA OU MÉDIA PROPORCIONAL

<u>DEFINIÇÃO</u>: Dados dois segmentos p e q, a média geométrica (ou média proporcional) entre eles, é um segmento x, tal que:

$$\frac{p}{x} = \frac{x}{q}$$
 ou $x^2 = p.q$ ou $x = \sqrt{p.q}$.

EXERCÍCIOS

01. Obter a média geométrica entre os segmentos p e q dados.

02. Dados p e q obter x, tal que $x^2 = p^2 + q^2$.

03. Dados p e q obter x, tal que $x^2 = p^2 - q^2$.

04. Dados p, q e r obter x tal que $x^2 = p^2 + q^2 - r^2$.

05. Dados p, q e r obter um segmento x tal que $x^2 = p^2 + q^2 + r^2$.

06. Dado o segmento p = 4.3 cm, obter:

a)
$$x = p\sqrt{2}$$
.

b)
$$y = p\sqrt{3}$$
.

c)
$$z = p\sqrt{5}$$
.

d)
$$t = p\sqrt{10}$$
.

e) w =
$$p\sqrt{11}$$
.

07. Dado o segmento p, obter y tal que:
$$\frac{y}{\sqrt{3}} = \frac{p}{\sqrt{5}}$$
.

08. Dado o segmento p do exercício anterior, obter t, x, y, z tais que $\frac{t}{1} = \frac{x}{\sqrt{2}} = \frac{y}{\sqrt{3}} = \frac{z}{\sqrt{4}} = \frac{p}{\sqrt{5}}$.

2.15. TEOREMA DAS BISSETRIZES

<u>TEOREMA</u>: Em um triângulo, a bissetriz de um ângulo divide o lado oposto em dois segmentos, os quais são proporcionais aos outros dois lados.

Seja um triângulo ΔMAB . Considere a bissetriz interna b_i do ângulo \hat{M} . Seja P o ponto de interseção da reta b_i com o lado \overline{AB} . Queremos mostrar que $\frac{\overline{AP}}{\overline{PB}} = \frac{b}{a}$.

Como b_i é bissetriz interna do ângulo \hat{M} temos que $\hat{AMP} = \hat{PMB} = \alpha$. Considere a semi-reta \overline{AM} e trace por B uma reta paralela à bissetriz b_i , obtendo um ponto B' sobre a semi-reta \overline{AM} . Sejam os ângulos $\alpha_1 = \hat{MBB}$ 'e $\alpha_2 = \hat{MB}$ 'B.

Como PM e BB' são paralelas (por construção) cortadas pela transversal MB então determinam ângulos alternos internos congruentes, ou seja, $\alpha = \alpha_1$ (1).

E como PM e BB' são paralelas (por construção) cortadas pela transversal MB' então determinam ângulos correspondentes congruentes, ou seja, $\alpha = \alpha_2$ (2).

De (1) e (2) temos que
$$\alpha = \alpha_1 = \alpha_2$$
.

No triângulo $\Delta MBB'$ temos dois ângulos internos congruentes ($\alpha_1 = \alpha_2$) então ele é isósceles de base $\overline{BB'}$ e, portanto, $\overline{MB} = \overline{MB'}$ (3).

Como temos as retas AB e AB' concorrentes e cortadas pelas paralelas MP e BB' então pelo teorema de Tales temos que $\frac{\overline{AP}}{\overline{PB}} = \frac{\overline{AM}}{\overline{MB}'}$. Mas de (3) temos que $\overline{MB} = \overline{MB'}$ e, portanto, $\frac{\overline{AP}}{\overline{PB}} = \frac{\overline{AM}}{\overline{MB}}$ ou $\frac{\overline{AP}}{\overline{PB}} = \frac{b}{a}$.

Seja um triângulo ΔMAB . Considere o prolongamento do lado \overline{AM} e um ponto C tal que A-M-C. Sejam b_e a bissetriz externa do triângulo relativa ao ângulo \hat{M} , e Q o ponto de interseção da reta b_e com a reta AB. Queremos mostrar que $\overline{\frac{AQ}{OB}} = \frac{b}{a}$.

Como b_e é bissetriz externa do ângulo \hat{M} temos que $\hat{BMQ} = \hat{QMC}$. Trace por B uma reta paralela à bissetriz b_e , obtendo um ponto B' sobre a semi-reta \overline{AM} . Sejam os ângulos $\beta_1 = \hat{BBM}$ e $\beta_2 = \hat{BBM}$.

Como BB' e MQ são paralelas (por construção) cortadas pela transversal MB então determinam ângulos alternos internos congruentes, ou seja, $\beta = \beta_1$ (1).

E como BB' e MQ são paralelas (por construção) cortadas pela transversal MB' então determinam ângulos correspondentes congruentes, ou seja, $\beta = \beta_2$ (2).

De (1) e (2) temos que
$$\beta = \beta_1 = \beta_2$$
.

No triângulo $\Delta MBB'$ temos dois ângulos congruentes ($\beta_1 = \beta_2$) então ele é isósceles de base $\overline{BB'}$ e, portanto, $\overline{MB} = \overline{MB'}$ (3).

Como temos as retas AQ e AM concorrentes e cortadas pelas paralelas MQ e BB' então pelo teorema de Tales temos que $\frac{\overline{AQ}}{\overline{BQ}} = \frac{\overline{AM}}{\overline{MB}'}$. Mas de (3) podemos concluir que $\overline{MB} = \overline{MB'}$ e, portanto, $\frac{\overline{AQ}}{\overline{BQ}} = \frac{\overline{AM}}{\overline{MB}}$ ou $\frac{\overline{AQ}}{\overline{BQ}} = \frac{b}{a}$.

Observações:

- a) As duas bissetrizes b_i e b_e formam ângulo de 90°, pois os ângulos interno e externo, do triângulo ΔMAB relativos ao vértice M são suplementares.
- b) Como $\frac{\overline{AP}}{\overline{PB}} = \frac{b}{a}$ e $\frac{\overline{AQ}}{\overline{QB}} = \frac{b}{a}$ temos que P e Q são os conjugados harmônicos de A e B na razão $\frac{b}{a}$.

2.16. LUGAR GEOMÉTRICO 6 - CIRCUNFERÊNCIA DE APOLÔNIO

Considere um segmento \overline{AB} e uma razão $\frac{b}{a}$.

LG 06 : O lugar geométrico dos pontos do plano cuja razão das distâncias a dois pontos fixos A e B é constante e igual a $\frac{b}{a}$ compõe-se de uma circunferência, cujo diâmetro é o segmento \overline{PQ} , onde P e Q são os conjugados harmônicos de A e B na razão $\frac{b}{a}$.

Mostraremos que é um lugar geométrico:

Prova:

 $\underline{\mathbf{1}^{\mathbf{a}} \ \mathbf{parte}}$: todo ponto M que satisfaz a relação $\underline{\frac{\overline{MA}}{\overline{MB}}} = \frac{b}{a}$ pertence à circunferência de diâmetro \overline{PQ} .

Considere os pontos P e Q conjugados harmônicos de \overline{AB} na razão $\frac{b}{a}$. Determine os pontos X e Y na semi-reta \overline{AM} tais que $\overline{MX} = \overline{MY} = \overline{MB}$.

Temos que $\frac{\overline{MA}}{\overline{MB}} = \frac{b}{a} = \frac{\overline{MA}}{\overline{MX}} = \frac{\overline{AP}}{\overline{PB}}$. Pelo teorema de Tales podemos concluir que

$$\overline{MP} \parallel \overline{BX}$$
. Como $\frac{\overline{MA}}{\overline{MB}} = \frac{b}{a} = \frac{\overline{MA}}{\overline{MY}} = \frac{\overline{AQ}}{\overline{OB}}$, podemos concluir que $\overline{MQ} \parallel \overline{BY}$.

Pelo teorema das bissetrizes podemos concluir que \overrightarrow{MQ} é bissetriz de \overrightarrow{BMX} e \overrightarrow{MP} é bissetriz de \overrightarrow{AMB} , o que implica que $\overrightarrow{PMB} + \overrightarrow{BMQ} = 90^{\circ}$. Logo, M pertence ao arco capaz de 90° em \overline{PQ} que é a circunferência de Apolônio de \overline{AB} na razão $\frac{b}{a}$.

<u>2^a parte</u>: todo ponto M da circunferência de diâmetro \overline{PQ} satisfaz a relação $\frac{\overline{MA}}{\overline{MB}} = \frac{b}{a}$.

Considere os pontos P e Q conjugados harmônicos de \overline{AB} na razão $\frac{b}{a}$ e um ponto M pertencente à circunferência com diâmetro \overline{PQ} . Determine os segmentos $\overline{BX} \parallel \overline{PM}$ e $\overline{BY} \parallel \overline{QM}$.

Pelo teorema de Tales, temos que $\frac{\overline{AP}}{\overline{PB}} = \frac{\overline{MA}}{\overline{MX}} = \frac{b}{a}$ (1) e $\frac{\overline{AQ}}{\overline{QB}} = \frac{\overline{MA}}{\overline{MY}} = \frac{b}{a}$ (2), ou seja, $\frac{\overline{MA}}{\overline{MY}} = \frac{\overline{MA}}{\overline{MX}}$. Logo, podemos concluir que $\overline{MX} = \overline{MY}$, ou seja, M é ponto médio de \overline{XY} .

Como $P\hat{M}Q = 90^{\circ}$, e os segmentos $\overline{BX} \parallel \overline{PM} = \overline{BY} \parallel \overline{QM}$ determinam $X\hat{B}Y = 90^{\circ}$. Logo, B pertence ao arco capaz de 90° do segmento \overline{PQ} , e $\overline{BM} = \overline{MX} = \overline{MY} = \text{raio}$ do arco capaz de 90° .

Portanto, substituindo $\overline{BM} = \overline{MX} = \overline{MY}$ em (1) e (2) teremos $\frac{\overline{AP}}{\overline{PB}} = \frac{\overline{MA}}{\overline{MB}} = \frac{b}{a}$ e $\frac{\overline{AQ}}{\overline{QB}} = \frac{\overline{MA}}{\overline{MB}} = \frac{b}{a}$, ou seja, M satisfaz a relação $\frac{\overline{MA}}{\overline{MB}} = \frac{b}{a}$.

EXERCÍCIOS

01. Dados os pontos A e B, construir o lugar geométrico dos pontos M tais que $\frac{\overline{MA}}{\overline{MB}} = \frac{7}{2}$.

02. Dados os pontos A e B, construir o lugar geométrico dos pontos M tais que $\frac{\overline{MA}}{\overline{MB}} = \frac{3}{5}$.

03. Construir um triângulo ABC, dados a = 2,8cm, h_a = 2,2cm e $\frac{b}{c}$ = $\frac{3}{5}$.

2.17. SEGMENTO ÁUREO DE UM SEGMENTO DADO

<u>Definição</u>: Dado um segmento \overline{AB} dizemos que se efetua uma divisão áurea de \overline{AB} por meio de um ponto P quando esse ponto divide o segmento em duas partes desiguais, tal que a maior (esta é o segmento áureo) é média geométrica entre a menor e o segmento todo.

Logo, o segmento \overline{AP} é áureo do segmento dado \overline{AB} quando $\overline{AP}^2 = \overline{AB}.\overline{PB}$ ou é o mesmo que $\frac{\overline{AP}}{\overline{AB}} = \frac{\overline{PB}}{\overline{AP}}$.

Assim, dado um segmento \overline{AB} queremos obter o seu segmento áureo \overline{AP} .

Considere o segmento \overline{AB} de medida a. Como queremos a medida do segmento áureo de \overline{AB} , seja $\overline{AP} = x$ a medida que deve ser determinada. Logo, $\overline{PB} = a - x$.

Como \overline{AP} deve ser áureo de \overline{AB} , então deve satisfazer a seguinte relação: $\overline{AP}^2 = \overline{AB}.\overline{PB}$ ou $x^2 = a.(a-x)$

$$\therefore x^2 = a^2 - a.x$$
$$\therefore x^2 + a.x - a^2 = 0$$

Portanto, a solução desta equação é:

$$x = \frac{-a \pm \sqrt{a^2 + 4a^2}}{2} \Rightarrow \begin{cases} x' = \frac{-a + a\sqrt{5}}{2} = \frac{a\sqrt{5}}{2} - \frac{a}{2} \\ x'' = \frac{-a - a\sqrt{5}}{2} = -\frac{a\sqrt{5}}{2} - \frac{a}{2} \end{cases}$$

Destas duas raízes apenas x' é considerada, pois tem medida menor que $a = \overline{AB}$. Para determinarmos a medida do segmento áureo devemos obter um segmento com a medida x, ou seja, obter os segmentos de medidas: $\frac{a\sqrt{5}}{2}$ e $\frac{a}{2}$. Estas medidas são hipotenusa e cateto de um triângulo retângulo de catetos a e $\frac{a}{2}$.

CONSTRUÇÃO 1: Obter o segmento áureo de um segmento dado \overline{AB} .

Procedimento:

- Por uma das extremidades do segmento \overline{AB} traçar uma reta perpendicular;
- obter o ponto médio M de \overline{AB} ;
- sobre a perpendicular obter o ponto C tal que $\overline{BC} = \frac{a}{2}$;
- unir A e C : $\overline{AC} = \frac{a\sqrt{5}}{2}$ (pelo teorema de Pitágoras);
- descrever uma circunferência de centro em C e raio $\frac{a}{2}$, obtendo sobre \overline{AC} um ponto D tal que $\overline{AD} = \frac{a\sqrt{5}}{2} \frac{a}{2}$;
- transportar o segmento \overline{AD} sobre \overline{AB} tal que $\overline{AD} = \overline{AP}$;
- \overline{AP} é áureo de \overline{AB} .

Observações:

- a) Segundo Euclides é dividir um segmento em média e extrema razão.
- b) A existência de duas raízes indica que existem dois pontos P e P' que dividem o segmento \overline{AB} em duas partes desiguais, tal que a maior seja média geométrica entre a menor e o segmento todo. Ou seja, $\overline{AP}^2 = \overline{AB}.\overline{PB}$ e $\overline{AP'}^2 = \overline{AB}.\overline{P'B}$, porém, somente o segmento \overline{AP} é dito segmento áureo de \overline{AB} , e o segmento $\overline{AP'}$ é áureo de $\overline{P'B}$.
- c) Veremos a seguir que o segmento \overline{AB} é áureo do segmento $\overline{AC} + \overline{CD}$.

 $\underline{\text{Construção 2:}} \text{ Dado um segmento } \overline{\text{AQ}} \text{ obter } \overline{\text{AB}}, \text{ sabendo-se que } \overline{\text{AQ}} \text{ \'e \'aureo de } \overline{\text{AB}}.$ Considerações:

Conhecemos agora a medida do segmento áureo \overline{AQ} . Fazendo \overline{AQ} = x e \overline{AB} = a, então \overline{PB} = (a – x).

Como \overline{AQ} é áureo de \overline{AB} então pela definição devemos ter: $\overline{AQ}^2 = \overline{AB}.\overline{QB}$, ou seja, $x^2 = a.(a-x)$.

$$x^2 + ax - a^2 = 0$$

$$\therefore a^2 - a.x - x^2 = 0.$$

Portanto, a solução desta equação é:

$$a = \frac{x \pm \sqrt{x^2 + 4x^2}}{2} \Rightarrow \begin{cases} a' = \frac{x + x\sqrt{5}}{2} = \frac{x\sqrt{5}}{2} + \frac{x}{2} \\ a'' = \frac{x - x\sqrt{5}}{2} = -\frac{x\sqrt{5}}{2} + \frac{x}{2} \end{cases}$$

Apenas a primeira raiz a' é considerada, assim, para obter a medida de \overline{AB} basta construir um triângulo retângulo, onde x e $\frac{x}{2}$ são catetos e $\frac{x\sqrt{5}}{2}$ será a hipotenusa.

2.18. POTÊNCIA DE UM PONTO EM RELAÇÃO A UMA CIRCUNFERÊNCIA

<u>TEOREMA</u>: Considere uma circunferência qualquer de centro O e raio r, e um ponto P. Por P podemos traçar infinitas retas cortando a circunferência nos pontos A e B, C e D, E e F, etc. Denomina-se potência de ponto com relação a uma circunferência, a relação:

$$PA.PB = PC.PD = PE.PF = ... = k$$

onde, para cada posição para P existe uma constante k, chamada potência do ponto P em relação à Circunf(O,r).

Prova:

1º Caso: P é externo à circunferência

Considere duas secantes quaisquer passando por P e cortando a circunferência nos pontos A, B, C e D.

Sejam os triângulos ΔPAD e ΔPCB . Como $A\hat{P}D = B\hat{P}C$ (pois é comum) e $\hat{B} = \hat{D}$ (ângulos inscritos numa mesma circunferência que enxergam

uma mesma corda \overline{AC} temos que $\Delta PAD \sim \Delta PCB$. Logo, os lados correspondentes são

proporcionais:
$$\frac{\overline{PA}}{\overline{PC}} = \frac{\overline{PD}}{\overline{PB}}$$
 ou $\overline{PA}.\overline{PB} = \overline{PC}.\overline{PD} = k$.

2º Caso: P é interno à circunferência

Considere duas secantes quaisquer passando por P e cortando a circunferência nos ponto A, B, C e D.

Sejam os triângulos $\triangle APD$ e $\triangle CPB$. Como $\triangle APD$ = $\triangle BPC$ (ângulos opostos pelo vértice) e $\hat{B} = \hat{D}$ (pois B e D pertencem ao arco capaz da corda BD), temos que $\Delta PAD \sim \Delta PCB$. Logo, os lados correspondentes são proporcionais, ou seja, $\frac{\overline{PA}}{\overline{PC}} = \frac{\overline{PD}}{\overline{PR}}$ ou $\overline{PA}.\overline{PB} =$ $\overline{PC}.\overline{PD} = k$.

Observação: Se P é externo e uma das retas é tangente a circunferência num ponto T então $\overline{PT}^2 = \overline{PA} \overline{PB}$

De fato, considerando uma reta tangente à circunferência num ponto T e uma secante à mesma, temos dois triângulos ΔPTA e ΔPBT , onde $\hat{P} = \hat{P}$ (ângulo comum), $A\hat{T}P = T\hat{B}P$ (ângulos de segmento e inscrito relativos a uma mesma corda AT). Portanto, ΔΡΤΑ ~ ΔΡΒΤ, e os lados correspondentes são proporcionais, ou seja, $\frac{\overline{PA}}{\overline{PT}} = \frac{\overline{PT}}{\overline{PR}}$ ou $\overline{PT}^2 = \overline{PA}.\overline{PB}.$

Observações:

- a) Se P é externo à circunferência, a potência k é positiva;
- b) Se P é interno à circunferência, a potência k é negativa;
- c) Se P é ponto da circunferência então a potência k é nula;
- d) Para cada posição do ponto P a potência possui um valor k.

<u>Observação</u>: Na figura do 2° caso, chamando $\overline{PA} = a$, $\overline{PB} = a'$, $\overline{PC} = b$ e $\overline{PD} = b'$, podemos escrever: a.a' = b.b' = k ou $a' = \frac{k}{a}$ e $b' = \frac{k}{b}$. Ou seja, os segmentos a' e a, b' e b são inversamente proporcionais com relação a uma constante k. Se k = 1 então $a' = \frac{1}{a}$. Assim, conhecidos segmentos, podemos obter os seus inversos.

EXERCÍCIOS

01. Dados os segmentos \overline{AB} , a e b, dividir \overline{AB} em partes inversamente proporcionais aos segmentos a e b: \overline{AB} = 6,5cm, a = 3cm e b = 2cm.

02. Traçar tangentes à circunferência dada, que passem pelo ponto P dado, sem usar o centro da mesma.

03. Justificar a obtenção do segmento áureo utilizando o conceito de potência de ponto em uma circunferência.

2.19. Propriedades dos Quadriláteros

QUADRILÁTERO INSCRITÍVEL

PROPOSIÇÃO: Um quadrilátero ABCD, convexo, é inscritível quando $\hat{A} + \hat{C} = 180^{\circ}$ ou $\hat{B} + \hat{D} = 180^{\circ}$ 180°.

Prova:

Seja um quadrilátero ABCD inscritível, ou seja, seus vértices pertencem a uma mesma circunferência.

Considere o ângulo central BÔD = β . Logo, $\hat{A} = \frac{\beta}{2}$ (pois é ângulo inscrito na circunferência relativo ao ângulo central BÔD = β). Assim, $\hat{C} = \frac{360^{\circ} - \beta}{2}$ (pois \hat{C} é ângulo inscrito na circunferência relativo ao ângulo central $360^{\circ} - \beta$).

Logo,
$$\hat{A} + \hat{C} = \frac{\beta}{2} + \frac{360^{\circ} - \beta}{2} = 180^{\circ}$$
.

E como $\hat{A} + \hat{B} + \hat{C} + \hat{D} = 360^{\circ}$, então $\hat{B} + \hat{D} = 180^{\circ}$.

A recíproca desta proposição é verdadeira.

QUADRILÁTERO CIRCUNSCRITÍVEL

PROPOSIÇÃO: Um quadrilátero ABCD é circunscritível quando a soma dos lados opostos são iguais $\overline{AB} + \overline{CD} = \overline{BC} + \overline{AD}$.

Prova:

ra.

Seja ABCD um quadrilátero circunscrito a uma circunferência, ou seja, seus quatro lados são tangentes à circunferência.

Sejam P, Q, R e S os pontos de tangência de Erro!respectivamente. Pela potência do ponto A em relação à circunferência, temos: $\overline{AP}^2 = \overline{AS}^2 \Rightarrow$ $\overline{AP} = \overline{AS}$. Analogamente para os outros vértices temos: $\overline{BP} = \overline{BQ}$, $\overline{CQ} = \overline{CR}$ e $\overline{DR} = \overline{DS}$ (1).

$$\frac{\text{Temos que, por (1), } \overline{AB} + \overline{CD} = \overline{AP} + \overline{BP}}{+ \overline{CR} + \overline{DR} = \overline{AS} + \overline{BQ} + \overline{CQ} + \overline{DS} = \overline{AD} + \overline{BC}}.$$

A recíproca desta proposição é verdadei-

EXERCÍCIOS

01. Determine o valor de x e y. Justifique a resposta.

- 02. Em uma circunferência duas cordas se cortam, os segmentos de uma medem 3cm e 6cm respectivamente; um dos segmentos da outra corda mede 2cm. Calcular o outro segmento.
- 03. Provar as recíprocas das proposições anteriores.

CAPÍTULO 3: RELAÇÕES MÉTRICAS NOS TRIÂNGULOS

3.1. Pontos Notáveis

1º CIRCUNCENTRO: O

Considere um triângulo ABC e as mediatrizes mAB, m_{BC} e m_{AC}.

PROPRIEDADE: As mediatrizes dos lados de um triângulo interceptam-se em um mesmo ponto O que está a igual distância dos vértices do triângulo.

Prova:

Sejam m_{AB}, m_{BC} e m_{AC} mediatrizes dos lados \overline{AB} , BC e \overline{AC} do triângulo ABC.

Seja O o ponto tal que $\{O\} = m_{AB} \cap m_{AC}$.

Assim, temos que $O \in m_{AB} \Rightarrow \overline{OA} = \overline{OB}$ (pela propriedade de mediatriz)

e
$$O \in m_{AC} \Rightarrow \overline{OA} = \overline{OC}$$
 (pela propriedade de mediatriz)

Logo, pela propriedade transitiva, temos $\overline{OB} = \overline{OC}$, e com isto, o ponto O é equidistante dos pontos B e C, ou seja, O pertence a mediatriz de BC, ou $O \in m_{BC}$.

Portanto,
$$\{O\} \in m_{AB} \cap m_{BC} \cap m_{AC} e | \overline{OA} = \overline{OB} = \overline{OC}$$
.

<u>DEFINIÇÃO</u>: O circuncentro de um triângulo é o ponto de encontro de suas mediatrizes.

Como O é equidistante dos pontos A, B e C então ele é centro de uma circunferência que circunscreve o triângulo ABC.

Observação: Dependendo da posição do circuncentro podemos classificar os triângulos quanto aos ângulos.

<u>DEFINIÇÃO</u>: Ceviana é um segmento que une um vértice dum triângulo a qualquer ponto do lado oposto.

2º BARICENTRO: G

Considere um triângulo ABC e as medianas ma, mb e mc.

<u>PROPRIEDADE</u>: As três medianas de um triângulo interceptam-se num mesmo ponto G, que divide cada mediana em duas partes, tais que, a parte que tem o vértice é o dobro da outra.

Prova:

$$\begin{array}{c} \text{Devemos provar que } \overline{AM_{_a}} \, \cap \, \overline{BM_{_b}} \, \cap \, \overline{CM_{_c}} = \{G\} \\ \text{e que } \overline{BG} = 2\overline{GM_{_b}} \, , \, \overline{CG} = 2\overline{GM_{_c}} \, \text{ e } \overline{AG} = 2\overline{GM_{_a}} \, . \end{array}$$

Seja X o ponto tal que $\overline{BM_b}$ intercepta $\overline{CM_c}$.

Considere o segmento $\overline{M_bM_c}$, que é paralelo ao lado \overline{BC} e mede a metade de \overline{BC} (1). Assim, temos que os ângulos alternos internos são congruentes, ou seja, $M_b\hat{M}_cX=X\hat{C}B$ e $M_c\hat{M}_bX=X\hat{B}C$.

Portanto, $\Delta M_c X M_b \sim \Delta C X B$ (possuem dois pares de ângulos congruentes). Assim, temos que os lados correspondentes são proporcionais, então, por (1), $\frac{\overline{M_b X}}{\overline{XB}} = \frac{\overline{M_c X}}{\overline{GX}} = \frac{\overline{M_c M_b}}{\overline{BC}} = \frac{1}{2}$, ou seja, $\overline{BX} = 2.\overline{X}\overline{M_b}$ e $\overline{CX} = 2.\overline{X}\overline{M_c}$ (2).

Seja Y o ponto tal que \overline{AM}_a intercepta \overline{CM}_c .

Consideremos agora, o segmento $\overline{M_cM_a}$, que é paralelo ao lado \overline{AC} e mede a metade de \overline{AC} (3). Assim, temos que os ângulos alternos internos são congruentes, ou seja, $M_c\hat{M}_aY=Y\hat{AC}$ e $M_a\hat{M}_cY=Y\hat{C}A$.

Portanto, $\Delta M_c Y M_a \sim \Delta C Y A$ (possuem dois pares de ângulos congruentes). Assim, temos que os lados correspondentes são proporcionais, então, por (3), $\frac{\overline{M_a Y}}{\overline{Y} A} = \frac{\overline{M_c Y}}{\overline{Y} C} = \frac{\overline{M_c M_a}}{\overline{AC}} = \frac{1}{2}$, ou seja, $\overline{AY} = 2.\overline{Y} \overline{M_a}$ e $\overline{CY} = 2.\overline{Y} \overline{M_c}$ (4).

Comparando (2) e (4) temos que \overline{CX} =2. \overline{XM}_c e \overline{CY} =2. \overline{YM}_c , ou $\frac{\overline{CX}}{\overline{M}_cX}$ = $\frac{1}{2}$ e $\frac{\overline{CY}}{\overline{M}_cY}$ = $\frac{1}{2}$, logo X \equiv Y.

Assim, chamando este ponto $X \equiv Y$ de G temos que $\overline{AM_a} \cap \overline{BM_b} \cap \overline{CM_c} = \{G\}$ e $\overline{BG} = 2\overline{GM_b}$, $\overline{CG} = 2\overline{GM_c}$ e $\overline{AG} = 2\overline{GM_a}$.

<u>DEFINIÇÃO</u>: O baricentro de um triângulo é o ponto de interseção das suas medianas.

EXERCÍCIOS

01. Construir o triângulo ABC, dados em situação o baricentro G e os vértices B e C.

+ G B⁺ +c

02. Construir o triângulo ABC, dados: a = 6cm, $m_b = 4cm$ e $m_c = 5cm$.

03. Construir o triângulo ABC, dados: a = 6 cm, b = 7 cm e $m_c = 5 \text{cm}$.

3º INCENTRO: I

 $Considere \ um \ triângulo \ ABC \ e \ as \ bissetrizes \ b_a, \\ b_b \ e \ b_c.$

<u>PROPRIEDADE</u>: As três bissetrizes de um triângulo interceptam-se em um mesmo ponto que está a igual distância dos lados do triângulo.

Prova:

Sejam b_a , b_b e b_c , bissetrizes dos ângulos Â, \hat{B} e \hat{C} do triângulo ABC.

Seja I o ponto tal que $\{I\} = b_b \cap b_c$.

Assim, temos que $I \in b_b \Rightarrow dist(I, BA) = dist(I, BC)$ (pela propriedade de bissetriz)

e I \in $b_c \Rightarrow dist(I, CA) = dist(I, CB)$ (pela propriedade de bissetriz)

Logo, pela propriedade transitiva, temos que dist(I, BA) = dist(I, CA), e com isto, o ponto I é equidistante das retas BA e CA, ou seja, I pertence a bissetriz de BÂC, ou $I \in b_a$.

Portanto, $\{I\} = ba \cap b_b \cap b_c$ e dist(I, AB) = dist(I, BC) = dist(I, AC).

<u>DEFINIÇÃO</u>: O incentro de um triângulo é o ponto de encontro de suas bissetrizes.

Observações:

- a) o incentro de um triângulo é o centro da circunferência inscrita a esse triângulo;
- b) as bissetrizes externas de dois ângulos encontram-se com a bissetriz interna do ângulo oposto; estes pontos de interseção, Ia, Ib e Ic, são chamados de ex-incentros;
- c) os ex-incentros são equidistantes de um lado do triângulo e dos prolongamentos dos outros dois;
- d) os ex-incentros são centros de circunferências que tangenciam um lado do triângulo e os prolongamentos dos outros dois.

4º ORTOCENTRO: H

Considere um triângulo ABC e as alturas ha, hb e hc.

PROPRIEDADE: As três retas suportes das alturas de um triângulo interceptam-se em um mesmo ponto H.

Prova:

Devemos mostrar que o ponto H é único.

Sejam H_a, H_b e H_c os pés das alturas do triângulo. Traçar pelos vértices do triângulo retas paralelas aos lados, obtendo os pontos M, N e P. Temos, então, que o quadrilátero ABCN é um paralelogramo, logo AN = BC.

Da mesma forma, o quadrilátero PACB também é um paralelogramo, logo PA = BC. Assim, como $\overline{AN} = \overline{BC}$ e $\overline{PA} = \overline{BC}$ então $\overline{AN} = \overline{PA}$, ou seja, A é ponto médio de \overline{PN} .

Como $\overline{PN} \parallel \overline{BC}$ e $\overline{AH_a} \perp \overline{BC}$, então $\overline{AH_a} \perp \overline{PN}$. Sendo A ponto médio de \overline{PN} e $AH_a \perp PN$, então AH_a é mediatriz de PN. Analogamente, BH_b e CH_c são mediatrizes de PM e MN, respectivamente.

Considerando o triângulo MNP, as mediatrizes AH_a , BH_b e CH_c dos lados do triângulo interceptam-se em um mesmo ponto H, pois o circuncentro é único.

Portanto o ponto H é único.

<u>DEFINIÇÃO</u>: O ponto de interseção das retas suportes das alturas de um triângulo é o ortocentro do triângulo. O triângulo formado pelos pés das alturas chama-se triângulo órtico ou pedal.

<u>TEOREMA</u>: As alturas do triângulo fundamental ABC são as bissetrizes do triângulo órtico $H_aH_bH_c$.

Prova:

Devemos provar que $H_cH_aA = AH_aH_b$.

Considere as alturas do triângulo ABC, determinando os pontos H_a , H_b e H_c e $H_a\hat{H}_aH=\alpha$ e $H_b\hat{H}_aH=\beta$.

Os pontos H_c e H_b enxergam \overline{BC} segundo ângulo de 90°, então H_c e H_b pertencem à Circunf(M_a , $\overline{M_aB}$).

Assim, $H_c \hat{B} H_b = H_c \hat{C} H_b = \gamma$ por serem ângulos inscritos de uma mesma circunferência que enxergam a mesma corda $\overline{H_c H_b}$.

Os pontos H_a e Hb enxergam \overline{HC} segundo ângulo de 90° , então HH_aCH_b é um quadrilátero inscritível (pois a soma de dois ângulos opostos é 180°), onde \overline{HC} é o diâmetro da circunferência circunscrita.

Assim, $H\hat{H}_aH_b=H\hat{C}H_b=\gamma=\beta$ (1) por serem ângulos inscritos de uma mesma circunferência que enxergam o mesmo arco $\overline{HH_b}$.

Os pontos H_c e H_a vêem \overline{HB} segundo ângulo de 90°, então existe uma circunferência que passa pelos quatro pontos, sendo \overline{HB} o diâmentro da mesma. Construa esta circunferência.

Assim, $H_c\hat{B}H=H_c\hat{H}_aH=\gamma=\alpha$ (2) por serem ângulos inscritos de uma mesma circunferência que enxergam uma mesma corda $\overline{HH_c}$.

Logo, de (1) e (2) temos que $H\hat{H}_aH_b = H\hat{H}_aH_c$ ou $A\hat{H}_aH_b = A\hat{H}_aH_c$.

Observação: É muito importante notar que todo triângulo não retângulo possui um único triângulo órtico. Porém, um mesmo triângulo HaHbHc é órtico de quatro triângulos diferentes, entre os quais um é acutângulo e os outros três são obtusângulos. Somente o triângulo acutângulo é denominado triângulo fundamental do triângulo órtico.

EXERCÍCIOS

01. Construir o triângulo ABC (acutângulo), dados, em situação Ha, Hb e Hc.

$$^{^{\dagger}}\mathrm{H_{a}}$$

 H_b

02. Construir o triângulo ABC (obtuso em B), dados, em situação Ha, Hb e Hc.

3.2. PONTOS DA CIRCUNFERÊNCIA CIRCUNSCRITA

TEOREMA: Os simétricos do ortocentro com relação aos lados do triângulo pertencem à circunferência circunscrita ao triângulo.

Devemos provar que: A' é simétrico de H em relação a BC.

Como A'H $\perp \overline{BC}$, então falta provar que $\overline{HH_a} = \overline{H_aA'}$ (analogamente $\overline{HH_c} = \overline{H_cC'}$ e $\overline{HH_b} = \overline{H_bB'}$).

Basta provar a congruência dos triângulos ΔHCHa e ΔCHa. Como temos $H\hat{H}_aH_c = A'\hat{H}_aC = 90^\circ e \overline{H_aC}$ comum, falta provarmos que $\hat{HCH}_a = \hat{A'CH}_a$ para que os \hat{B} triângulos sejam congruentes por (ALA).

Temos que $\beta = B\hat{C}A' = B\hat{A}A' = \gamma$, pois são ângulos inscritos numa mesma circunferência relativos ao mesmo arco BA'. (1)

Além disso, os pontos H_c e H_a

Assim, $H_c \hat{A} H_a = \gamma$ e $H \hat{C} H_a = \alpha$ são ângulos inscritos em uma mesma circunferência relativos ao mesmo arco H_cH_a . Portanto, $\gamma = H_c\hat{A}H_a = H_c\hat{C}H_a = \alpha$ (2).

De (1) e (2) temos que
$$\alpha = H_c \hat{C} H_a = A' \hat{C} H_a = \beta$$
.

Logo, $\Delta HCH_a = \Delta A'CH_a$, ou seja, os lados e os ângulos correspondentes são congruentes: $\overline{HH_a} = \overline{H_aA'}$ e como $\overline{HH_a} \perp \overline{BC}$ então A' é simétrico de H em relação ao lado \overline{BC} .

A demonstração é análoga para os outros lados do triângulo.

SEIS PONTOS NOTÁVEIS DA CIRCUNFERÊNCIA CIRCUNSCRITA

Considere um triângulo ABC e a circunferência circunscrita ao mesmo.

As mediatrizes do triângulo interceptam a circunferência circunscrita nos pontos B'a, B'b, B'c, B"a, B"b e B"c; e também interceptam os lados nos seus pontos médios Ma, Mb e Mc.

Considere as bissetrizes do triângulo b_a, b_b e b_c.

PROPRIEDADES:

a) As mediatrizes e bissetrizes encontram-se nos pontos B'a, B'b e B'c sobre a circunferência circunscrita.

Não é coincidência, pois para B'a:

- Como B'_a pertence à mediatriz de \overline{BC} , então $\overline{BB'_a} = \overline{CB'_a}$. Como $\overline{BO} = \overline{B'_aO} = \overline{CO} = r$, então $\Delta BOB'_a = \Delta B'_aOC$ por LLL. Logo, $B\hat{O}B'_a = B'_a\hat{O}C$ e, portanto, os arcos BB'_a e B'_aC são congruentes. Assim a mediatriz divide o arco BC em duas partes iguais (1).
- O ponto A está no arco capaz da corda BC e, como $B\hat{A}B'_a = B'_a\hat{A}C = \alpha$ (pois b_a é a bissetriz de BAC) temos que os ângulos centrais correspondentes são congruentes, ou seja, $BOB'_a = B'_aOC$ = 2α. Portanto, os arcos BB'_a e B'_aC são congruentes. Assim a bissetriz também divide o arco BC em duas partes iguais (2).
- Logo, de (1) e (2) temos que a bissetriz e a mediatriz encontram-se no mesmo ponto B'a.
- A demonstração é análoga para os outros pontos.

b) AB"_a, BB"_b e CB"_c são bissetrizes externas do triângulo ABC.

Considere a reta AB"a.

- $\overline{B_a''B_a'}$ é um diâmetro da circunferência circunscrita, pois B_a' e B_a'' são pontos da mediatriz do lado BC.
- O ângulo B'aÂB"a é inscrito na circunferência relativa ao diâmetro $\overline{B_a''B_a'}$, então A está no arco capaz de 90°, ou seja, $B'_a \hat{A} B''_a = 90$ °.
- Logo, AB'_a ⊥ AB''_a, e como AB'_a é bissetriz interna do ângulo Â, então AB''_a é bissetriz externa do ângulo Â.
- Portanto, traçando também BB"_b e CB"_c teremos as bissetrizes externas do triângulo que encontram-se nos respectivos ex-incentros.
- Podemos observar que BI \perp I_cI_a, CI \perp I_aI_b e AI \perp I_cI_b.

c) B"a, B"b e B"c são pontos médios dos lados do triângulo IaIbIc.

Considere o ponto B"a:

- B e C enxergam I_bI_c segundo um ângulo reto, logo estão no arco capaz de 90º de I_bI_c, ou seja o quadrilátero I_cBCI_b é inscritível.
- Logo o centro da circunferência circunscrita pertence ao diâmetro IcIb, e deve pertencer à mediatriz de BC, logo B"a é o centro desta circunferência, e portanto IcB"a = B"aIb ou seja, B"a é o ponto médio de I_cI_b.
- A demonstração é análoga para B"_b e B"_c.

d) B'a, B'b e B'c são pontos médios dos segmentos formados pelos ex-incentros e pelo incentro. Considere o ponto B'a:

- B e C enxergam $\overline{\mathrm{II}_{\mathrm{a}}}$ segundo um ângulo reto, logo estão no arco capaz de 90° de $\overline{\mathrm{II}_{\mathrm{a}}}$, ou seja, o quadrilátero IBIaC é inscritível.
- Logo, o centro da circunferência circunscrita pertence ao diâmetro $\overline{\mathrm{II}_{\mathrm{a}}}$, e deve pertencer a mediatriz de \overline{BC} . Portanto, B'_a é o centro desta circunferência, ou seja, $\overline{I_a}B'_a = \overline{B'_a}I$.
- A demonstração é análoga para B'_b e B'_c.

Observação: Esta circunferência é denominada CIRCUNFERÊNCIA DOS NOVE PONTOS ou DE EULER ou ainda DE FEUERBACH, onde: A, B e C são os pés das alturas \overline{AI}_a , \overline{BI}_b e $\overline{\text{CI}}_c$; B'_a , B'_b e B'_c são os pontos médios de $\overline{\text{II}}_a$, $\overline{\text{II}}_b$ e $\overline{\text{II}}_c$; e B''_a , B''_b e B''_c são os pontos médios de $\overline{I_bI_c}$, $\overline{I_aI_c}$ e $\overline{I_aI_b}$.

Considere um triângulo ABC e a circunferência circunscrita ao mesmo.

Arbitrar um ponto P sobre a circunferência, exceto um dos vértices do triângulo. Traçar pelo ponto P perpendiculares aos lados do triângulo ABC, obtendo sobre as retas suportes dos lados os pontos T, S e R.

TEOREMA: Os pés das perpendiculares aos lados de um triângulo ABC, traçadas por um ponto P, pertencente à circunferência circunscrita ao triângulo e não coincidente com um dos vértices, determinam uma reta, denominada reta de Simson.

Prova:

Devemos mostrar que T, S e R estão alinhados, ou seja, $T\hat{S}R = 180^{\circ}$.

Como o ponto S pertence ao lado \overline{AC} , então $A\hat{S}C = 180^{\circ}$. Logo, basta mostrar que $T\hat{S}R = A\hat{S}C$. Como $T\hat{S}R = T\hat{S}A + \alpha'$ e $A\hat{S}C = T\hat{S}A + \alpha$, então é suficiente mostrar que $\alpha = \alpha'$. Estes ângulos serão iguais somente se TSR for uma reta.

Vamos chamar $\hat{TPC} = \beta$ e $\hat{RPA} = \beta'$.

Os pontos R e S enxergam \overline{PA} segundo ângulo reto, logo o quadrilátero ARSP é inscritível com diâmetro \overline{PA} . Assim, temos que $\beta' = \alpha'$ (1), pois são ângulos inscritos em uma mesma circunferência relativos à mesma corda \overline{AR} .

Os pontos T e S enxergam \overline{PC} segundo ângulo reto, logo PSCT é inscritível com diâmetro \overline{PC} . Logo, podemos concluir que $\beta = \alpha$ (2), pois são ângulos inscritos em uma mesma circunferência relativos à mesma corda \overline{TC} .

O quadrilátero PABC é inscritível na circunferência de centro O, então a soma dos ângulos opostos é igual a 180°, ou seja, $\hat{CPA} + \hat{B} = 180^\circ$ ou $\hat{CPA} = 180^\circ - \hat{B}$ (3).

Os pontos T e R enxergam \overline{PB} segundo ângulo reto, logo PTBR é inscritível com diâmetro \overline{PB} . Desta forma, a soma dos ângulos opostos é igual a 180°, ou seja, TPR + \hat{B} = 180°, ou seja, TPR = 180° – \hat{B} (4).

De (3) e (4) temos que TPR = CPA. Mas, como CPA = CPR + β' e TPR = β + CPR, então β' = β . Logo, de (1) e (2) temos que α' = α .

Portanto, TŜR = 180° , ou seja, os pontos T, S e R estão alinhados e com isto TSR é uma reta.

3.4. Reta de Euler

<u>TEOREMA</u>: O circuncentro, o baricentro e o ortocentro de um mesmo triângulo pertencem a uma mesma reta, denominada reta de Euler.

Prova:

Considere um triângulo ABC e as mediatrizes e medianas relativas aos lados a e b do triângulo.

Obter o circuncentro O e o baricentro G. A reta OG é a reta de Euler.

Obter sobre esta reta o ponto H tal que $\overline{GH} = 2\overline{GO}$.

Vamos provar que o ponto H é o ortocentro do triângulo. Logo, devemos mostrar que H é o encontro das alturas do triângulo ABC.

Traçar a reta AH obtendo H_a . Vamos provar que AH \perp BC.

Temos que $\Delta GHA \sim \Delta GOM_a$, pois $\overline{GH} = 2\overline{GO}$ (construção), $\hat{G} = \hat{G}$ (ângulos opostos pelo vértice) e $\overline{AG} = 2\overline{GM}_a$ (propriedade do baricentro). Logo, $\alpha = \beta$, e como são alternos internos então $AH_a \parallel OM_a$.

 $Mas\,OM_a\perp BC, então\,\,\overline{AH_a}\,\perp\,\overline{BC}\,.\,Portanto,\,\,\overline{AH_a}\,\,\acute{e}\,\,altura\,\,do\,\,triângulo\,\,ABC\,\,relativa\,\,ao\,\,lado\,\,\overline{BC}\,\,(1).$

Traçar a reta BH obtendo H_b . Vamos provar que BH \perp AC.

Temos que $\Delta GHB \sim \Delta GOM_b$, pois $\overline{GH} = 2\overline{GO}$ (construção), $\hat{G} = \hat{G}$ (ângulos opostos pelo vértice) e $\overline{BG} = 2\overline{GM}_b$ (propriedade do baricentro). Logo, $\gamma = \delta$, e como são alternos internos então $BH_b \parallel OM_b$.

 $Mas\,OM_b\perp AC\,ent\~ao\,\,\overline{BH_b}\,\perp\overline{AC}\,.\,Portanto,\,\overline{BH_b}\,\,\acute{e}\,\,altura\,do\,tri\^angulo\,ABC\,relativa\,ao\,lado\,\,\overline{AC}\,\,(2).$

De (1) e (2) temos que H é o ponto de interseção das alturas $\overline{AH_a}$ e $\overline{BH_b}$, logo H só pode ser o ortocentro do triângulo considerado.

<u>Observação</u>: Conhecidas as posições de dois dos pontos O, G e H, é possível obter a posição do outro, pois:

- O, G e H estão sobre uma mesma reta;

$$-\frac{\overline{OG}}{\overline{OH}} = \frac{1}{2}$$
.

EXERCÍCIOS

- 01. Construir um triângulo ABC sendo dadas a medida do lado a, a altura e a mediana relativas a este lado.
- 02. Construir um triângulo ABC sendo dados a medida do lado a, o ângulo B e o raio da circunferência circunscrita ao mesmo.
- 03. Construir um triângulo ABC sendo dados a medida do lado a, o ângulo B e o raio da circunferência inscrita ao mesmo.
- 04. Considerando os quatro pontos notáveis de um triângulo, responda:
 - a) Quais os que podem ser externos ao triângulo?
 - b) Qual o que pode ser ponto médio de um lado?
 - c) Qual o que pode ser vértice do triângulo?
- 05. Num triângulo ABC, os ângulos \hat{A} e \hat{B} medem respectivamente 86° e 34°. Determine o ângulo agudo formado pela mediatriz relativa ao lado \overline{BC} e pela bissetriz do ângulo \hat{C} .

- 06. Em um triângulo ABC os ângulos e B medem respectivamente 70° e 60°. Determine a razão entre os dois maiores ângulos formados pelas interseções das três alturas.
- 07. Determine as medidas dos três ângulos obtusos formados pelas mediatrizes de um triângulo equilátero.
- 08. As três bissetrizes de um triângulo ABC se encontram num ponto I. Determine as medidas dos ângulos AÎB, AÎC e BÎC em função dos ângulos Ĉ, B̂ e Â, respectivamente.
- 09. As bissetrizes externas de um triângulo ABC formam um triângulo $I_aI_bI_c$. Prove que o ângulo $I_c\hat{I}_aI_b$ que se opõe ao lado \overline{BC} é o complemento da metade do ângulo Â.
- 10. Seja P o ponto de tangência da circunferência inscrita no triângulo ABC, com o lado \overline{AB} . Se $\overline{AB} = 7$ cm, $\overline{BC} = 6$ cm e $\overline{AC} = 8$ cm, quanto vale \overline{AP} ?
- 11. Considere um triângulo ABC de lados $\overline{AB} = c$, $\overline{AC} = b$ e $\overline{BC} = a$, e sejam P, Q e R os pontos em que os lados \overline{BC} , \overline{AC} e \overline{AB} tangenciam a circunferência inscrita. Provar que $\overline{AR} = \overline{AQ}$ = p a, $\overline{BP} = \overline{BR} = p b$ e $\overline{CQ} = \overline{CP} = p c$, onde p é o semi-perímetro do triângulo, ou seja, 2p = a + b + c.

CAPÍTULO 4: RELAÇÕES MÉTRICAS NA CIRCUNFERÊNCIA

4.1. RETIFICAÇÃO E DESRETIFICAÇÃO DA CIRCUNFERÊNCIA

Retificar uma circunferência consiste em obter o seu perímetro, ou seja, obter o comprimento C tal que C = $2\pi r$.

Problema: Obter o lado l de um quadrado cuja área seja igual à de um círculo de raio r conhecido, utilizando apenas régua e compasso. (Este é conhecido como o problema da quadratura do círculo).

Como as áreas devem ser iguais então devemos ter $l^2 = \pi r^2$, logo, l é média geométrica entre πr e r.

Em 1882, C.L.F.Lindemann (1852-1939) demonstrou que a quadratura do círculo é impossível utilizando apenas régua e compasso, ou seja, que é impossível obter graficamente o valor πr .

Assim, vários matemáticos desenvolveram processos que dão valores bastante aproximados para a construção do segmento de medida πr .

RESULTADOS APROXIMADOS EM PROBLEMAS DE CONSTRUÇÕES GEOMÉTRICAS

Ao desenharmos uma figura, por mais precisos que sejam os traços, cometemos erros gráficos, já que a linha desenhada possui espessura.

Por exemplo, a construção de um ângulo de 75° é teoricamente exata ($75^{\circ} = 60^{\circ} + 15^{\circ}$), entretanto a execução dos traçados pode acarretar erros (tanto menores quanto maior for o capricho do desenhista). Tais erros, porém, são insignificantes e desprezíveis na prática.

Um processo é chamado aproximado (ou aproximativo) quando existe nele um erro teórico.

Um determinado processo é considerado conveniente quando o erro teórico é tão pequeno que pode ser considerado desprezível.

O erro teórico é dado pela seguinte expressão:

Et = valor obtido - valor real

Arquimedes adotou para π o valor $\pi' = \frac{22}{7} = 3 + \frac{1}{7} = 3,1428571...$

Logo, o valor aproximado para o perímetro de uma circunferência de raio r é:

Et = valor obtido – valor real =
$$\frac{22}{7}$$
 – 3,141592... \approx +0,001.

Esse valor aproxima-se de π por excesso, na ordem de 0,001, isto é, $\frac{22}{7}$ excede π na ordem de um milésimo, ou seja, ele é exato até a segunda casa decimal.

Só para termos uma idéia, para uma circunferência de 1m de diâmetro, o valor $\frac{22}{7}$ para π acarreta um erro por excesso (sobra) em torno de 1mm. Nas dimensões em que trabalhamos, o erro é tão pequeno que não pode ser medido com a régua milimetrada.

2º DESRETIFICAÇÃO DA CIRCUNFERÊNCIA

 $\underline{\textbf{EXERCÍCIO}}$: Dada a medida $\overline{\textbf{AB}}$, construir a circunferência com este semi-perímetro.

A

3º Processo de Kochansky ou da Tangente de 30º

Procedimento:

- traçar um diâmetro \overline{AB} arbitrário e, pela extremidade B, traçar a reta t tangente à circunferência;
- construir por O uma reta s que forma 30° com \overline{AB} . A reta s intercepta t em um ponto C;
- sobre a semi-reta \overrightarrow{CB} marcar a partir de C o segmento \overrightarrow{CD} = 3r;
- o segmento \overline{AD} tem comprimento aproximadamente igual a πr , isto é, \overline{AD} é a retificação da semicircunferência.

Justificativa:

No triângulo \triangle ABD, retângulo em B, temos:

$$\overline{AD}^2 = \overline{AB}^2 + \overline{BD}^2$$

$$\therefore \overline{AD}^2 = (2r)^2 + (3r - r \tan(30^\circ))^2$$

$$\therefore \overline{AD}^2 = 4r^2 + \left(3r - r \frac{\sqrt{3}}{3}\right)^2$$

$$\therefore \overline{AD}^2 = 4r^2 + 9r^2 - 2r^2 \sqrt{3} + \frac{r^2}{3}$$

$$\therefore \overline{AD} = r\sqrt{\frac{40}{3} - 2\sqrt{3}} = r.3,141533... = r\pi'$$

O processo de Kochansky fornece o valor exato para π até a quarta casa decimal e somente na quinta casa aparece o erro.

Et = $\pi' - \pi = 3,14153... - 3,14159... \cong -0,00006$, ou seja, o erro cometido é por falta e é da ordem de 0,00006.

Se pudéssemos aplicar o processo de Kochansky para retificar uma circunferência de

10m de diâmetro, teríamos um erro por falta da ordem de seis décimos de milímetros.

4º OUTROS PROCESSOS.

a)
$$\pi' = \sqrt{2} + \sqrt{3}$$

 $C'=2\pi'r=2r(\sqrt{2}+\sqrt{3})=2(r\sqrt{2}+r\sqrt{3})=2l_4+2l_3$, onde l_4 é o lado do quadrado inscrito na circunferência de raio r e l_3 é o lado do triângulo inscrito na circunferência de raio r. Os segmentos $r\sqrt{2}$ e $r\sqrt{3}$ podem ser obtidos também através da construção de triângulos retângulos.

Et =
$$\pi' - \pi = \sqrt{2} + \sqrt{3} - 3,14159... = 3,14626... - 3,14159... \approx +0,0046.$$

b)
$$\pi' = 3 + \frac{\sqrt{2}}{10}$$

$$C' = 2\pi' r = 2r \left(3 + \frac{\sqrt{2}}{10}\right) = 6r + r \frac{\sqrt{2}}{5} = 3d + \frac{1}{5}l_4$$
, onde l_4 é o lado do quadrado inscrito na

circunferência de diâmetro d. O segmento $\sqrt{2}$ pode ser obtido também através da construção de um triângulo retângulo.

Et =
$$\pi' - \pi = 3 + \frac{\sqrt{2}}{10} - 3,14159... = 3,14142... - 3,14159... = -0,00017.$$

4.2. RETIFICAÇÃO DE ARCOS DE CIRCUNFERÊNCIA

Retificar um arco de circunferência consiste em construir um segmento de reta cujo comprimento seja igual ao comprimento do arco. Estudaremos a seguir processos aproximados para a retificação de arcos de circunferência.

1º PROCESSO DE ARQUIMEDES.

Seja AB um arco de medida não superior a 90°. A sua retificação é obtida da seguinte forma:

- traçar a reta AO;
- construir por A a reta t perpendicular à reta OA;

- traçar a semi-circunferência obtendo o ponto C sobre a semi-reta \overrightarrow{AO} ;
- obter o ponto E sobre \overrightarrow{AO} , externamente à circunferência, tal que $\overrightarrow{EC} = \frac{AO}{4} = \frac{r}{4}$;
- a reta conduzida por E e B intercepta a reta t no ponto F;
- o segmento \overline{AF} é o arco AB retificado.

Verificação do erro teórico cometido

Para justificar o processo de retificação de arcos devemos calcular o erro teórico cometido e mostrar que ele é desprezível. Como Et = valor obtido - valor real = 1' - 1, devemos obter o valor de 1'.

- considere o ângulo central $A\hat{O}B = 1.0$ em radianos.
- o comprimento do arco AB é $l = \theta.r$;
- vamos determinar o comprimento do segmento $\overline{AF} = 1'$;
- por B, traçar uma perpendicular a OA, obtendo G;
- no triângulo $\triangle OGB$ temos \overline{OG} = $r.cos\theta$ e \overline{GB} = $r.sen\theta$;
- temos que $\Delta EBG \sim \Delta EFA$ ($\hat{E} = \hat{E}$ e $\hat{G} = \hat{A} = 90^{\circ}$). Logo temos $\frac{FA}{\overline{BG}} = \frac{EA}{\overline{EG}}$ (1);

- onde:
$$\overline{FA} = 1'$$
;
 $\overline{BG} = r.sen\theta$;
 $\overline{EG} = \frac{3}{4}r + r + r.cos\theta = \frac{r}{4}(7 + 4.cos\theta)$
 $\overline{EA} = \frac{3}{4}r + 2r = \frac{11}{4}r$

- substituindo as expressões acima em (1), vem:

$$\frac{l'}{r.\operatorname{sen}\theta} = \frac{\frac{11}{4}r}{\frac{r}{4}(7+4.\cos\theta)}, \text{ ou } \boxed{l' = \frac{11r.\operatorname{sen}\theta}{7+4.\cos\theta}}$$

- esta expressão permite calcular o comprimento l' do segmento AF em função do ângulo θ . Podemos montar uma tabela de valores de l' em função de alguns valores de θ , para comparálos com o valor real l:

θ	1'	1	1'-1
$\pi/9$ (20°)	0,34968r	0,34906r	0,000 62 r
$\pi/6$ (30°)	0,52560r	0,52359r	0,00 2 01r
$\pi/4$ (45°)	0,79139r	0,78539r	0,00 6 00r
$\pi/3$ (60°)	1,05847r	1,04719r	0,0 1 128r
$5\pi/12 \ (75^{\circ})$	1,32231r	1,30899r	0,0 1 332r
$\pi/2$ (90°)	1,57142r	1,57079r	0,000 6 3r

A tabela mostra que para arcos de até 45º o erro é mínimo. Por exemplo, para 30º o erro é da ordem de 2 milésimos por excesso.

Se r = 1 cm então Et = 0.002 cm = 0.02 mm.

Entre 45º e 75º o erro teórico aumenta, mas ainda assim podemos desprezá-lo. Por exemplo, para 75º o erro é da ordem de 1 centésimo.

Por fim, à medida que o arco se aproxima de 90°, o Et diminui novamente. Para 90° ele é da ordem de 6 décimos de milésimos.

2º RETIFICAÇÃO DE ARCOS ENTRE 90º E 180º.

3º RETIFICAÇÃO DE ARCOS MAIORES QUE 180º.

EXERCÍCIOS

- 01. Desretificar um arco de comprimento l = 2,5cm de uma circunferência de raio r = 2cm.
- 02. Dividir o arco AB, de raio r e amplitude α , em três partes iguais.
 - a) $r = 3cm e \alpha = 75^{\circ}$;
 - b) $r = 3.5 \text{cm e } \alpha = 120^{\circ}$.
- 03. Dividir o arco AB, de raio r e amplitude α em partes proporcionais a 3, 1 e 2.
 - a) $r = 3.5 \text{cm e } \alpha = 135^{\circ};$
 - b) $r = 3cm e \alpha = 120^{\circ}$.
- 04. Sejam duas circunferências tangentes num ponto A, sendo o raio de uma maior que o da outra. Consideremos um ponto B sobre uma delas. Suponha que a circunferência que contém o arco AB role sem escorregar sobre a outra circunferência, com o seu centro seguindo o sentido horário. Determine graficamente o ponto em que B toca pela primeira vez a circunferência fixa.

- 05. Determine graficamente a medida aproximada em graus de um arco de 2cm de comprimento em uma circunferência de 2,5cm de raio.
- 06. Numa circunferência de raio r qualquer, define-se um radiano (1rad) como sendo o arco cujo comprimento é igual ao raio r. Determine graficamente a medida aproximada, em graus, de um arco de 1rad.

Sugestão: use r = 4cm.

4.3. DIVISÃO DA CIRCUNFERÊNCIA EM ARCOS IGUAIS: PROCESSOS EXATOS

Dividir a circunferência em partes iguais é o mesmo que construir polígonos regulares. Isso porque os pontos que dividem uma circunferência num número n (n > 2) qualquer de partes iguais são sempre vértices de um polígono regular inscrito na mesma.

Se dividirmos uma circunferência em n partes iguais, teremos também a divisão da mesma em 2n partes, bastando para isso traçar bissetrizes.

Estudaremos processo exatos e aproximados para a divisão da circunferência.

1º DIVISÃO DA CIRCUNFERÊNCIA EM n = 2, 4, 8, 16, ... = 2.2^m Partes; m ∈ N

Para dividir a circunferência em duas partes iguais, basta traçar um diâmetro. Para obter a divisão em 4, 8, 16,..., traçamos bissetrizes.

O lado de um polígono regular de n lados é denotado por l_n.

Medida de l₄: considerando o triângulo retângulo isósceles de cateto r, temos que a hipotenusa é o l_4 , logo sua medida é $r\sqrt{2}$.

n	ÂNGULO CÊNTRICO	Polígono Regular
2	180°	2 arcos capazes de 90º
4	90°	Quadrado
8	45°	Octógono
16	22,5°	Hexadecágono
32	11,25°	Triacontadígono

Dividindo a circunferência em n partes iguais, estamos dividindo o ângulo central de 360° em n partes também iguais. Logo, o ângulo cêntrico (vértice no centro e lados passando por vértices consecutivos do polígono) correspondente à divisão da circunferência em n partes iguais medirá $\frac{360^\circ}{n}$.

2º DIVISÃO DA CIRCUNFERÊNCIA EM n = 3, 6, 12, ... = 3.2^m PARTES; $m ∈ \mathbb{N}$

Medida de l_6 : considere AB um arco que seja a sexta parte da circunferência, logo este medirá 60° . Assim, deduzimos que o triângulo ΔOAB é equilátero, isto é, o comprimento da corda \overline{AB} é igual ao raio da circunferência. Portanto $l_6 = r$.

Logo, com raio r igual ao da circunferência, descrevemos sucessivamente os arcos: centro em um ponto A qualquer da circunferência obtendo B; centro em B obtendo C e assim por diante.

Unindo os pontos A, C e E teremos um triângulo equilátero inscrito na circunferência. Basta notar que o ângulo central correspondente a corda \overline{AC} vale $120^{\circ} = 360^{\circ}/3$.

n	ÂNGULO CÊNTRICO	Polígono Regular
3	120°	Triângulo equilátero
6	60°	Hexágono
12	30°	Dodecágono
24	15°	Icositetrágono
48	7,5°	Tetracontoctógono

3º DIVISÃO DA CIRCUNFERÊNCIA EM $n = 5, 10, 20, ... = 5.2^m$ PARTES; $m \in \mathbb{N}$

TEOREMA: O lado do decágono regular inscrito em uma circunferência é o segmento áureo do raio.

O ângulo central correspondente de um decágono regular é $36^{\circ} = \frac{360^{\circ}}{10}$.

Considere um arco \overline{AB} , cujo ângulo central seja de 36°. Logo, a corda \overline{AB} tem a medida l_{10} . Devemos mostrar que $l_{10}^2 = r$ ($r - l_{10}$).

O triângulo $\triangle AOB$ é isósceles (seus lados são raios da circunferência), logo os ângulos da base são iguais $\hat{A} = \hat{B}$, e como $\hat{O} = 36^{\circ}$, então $\hat{A} + \hat{B} + \hat{O} = 0$ 180° ou $\hat{A} = \frac{180^{\circ} - 36^{\circ}}{2}$. Portanto, $\hat{A} = 72^{\circ}$.

Traçar a bissetriz de \hat{B} obtendo P sobre \overline{OA} . Como $P\hat{B}A = 36^{\circ}$ e $P\hat{A}B = 72^{\circ}$, então $B\hat{P}A = 72^{\circ}$. Logo, o triângulo ΔPBA é isósceles de base \overline{PA} , e com isto $\overline{BP} = \overline{BA} = 1_{10}$.

No triângulo ΔOPB , os ângulos da base são iguais. Logo, ele é isósceles de base \overline{OB} e seus lados são congruentes, ou seja, $\overline{OP} = \overline{BP} = l_{10}$ e, portanto, $\overline{PA} = r - l_{10}$. Como $\Delta OBA \sim \Delta BPA$ (pois tem dois ângulos congruentes), então os seus lados correspondentes são proporcionais, ou seja, $\frac{r}{l_{10}} = \frac{l_{10}}{r - l_{10}}$ ou $l_{10}^2 = r.(r - l_{10})$ ou seja, l_{10} é áureo de r.

EXERCÍCIO: Esta proporção pode ser obtida também pelo teorema das bissetrizes.

Assim, para dividir uma circunferência em 10 partes iguais, a construção seguinte se justifica.

Procedimento e Justificativa:

- traçar dois diâmetros perpendiculares entre si, \overline{AB} e \overline{CD} ;
- obter o ponto M médio de \overline{OA} ;
- unindo C e M temos que $\overline{CM} = \frac{r\sqrt{5}}{2}$, pois \overline{CM} é

hipotenusa de um triângulo retângulo de catetos r e $\frac{r}{2}$;

- como $l_{10} = \frac{r\sqrt{5} - r}{2}$, então devemos descrever um arco de centro M e raio \overline{MC} , obtendo um ponto E sobre a reta AO;

- logo,
$$\overline{EO} = l_{10}$$
 é áureo de r, pois $\overline{EO} = \overline{EM} - \overline{OM} = \frac{r\sqrt{5}}{2} - \frac{r}{2}$.

Observação: Para dividir uma circunferência em 5 partes iguais, basta dividí-la em 10 partes iguais e unir os vértices de 2 em 2. Porém, convém estudarmos uma propriedade que relaciona l_5 , l_6 e l_{10} , permitindo dividir diretamente em 5 partes, sem ter que dividir em 10 partes primeiro.

TEOREMA: Para uma mesma circunferência, o l_5 é hipotenusa de um triângulo retângulo cujos catetos são o l_6 e o l_{10} .

Observação: Por esta propriedade, a construção anterior nos fornece o l_5 , basta notar que o triângulo retângulo ΔEOC tem os catetos medindo $l_6 = r$ e l_{10} .

Prova:

Considere uma circunferência de centro O e raio r, com a corda $\overline{AB} = l_{10}$. Logo $A\hat{O}B = 36^{\circ}$, e como o triângulo ΔAOB é isósceles de base \overline{AB} , então $O\hat{A}B = O\hat{B}A = 72^{\circ}$. Seja C um ponto da semi-reta \overline{AB} tal que $\overline{AC} = r$. Logo $\overline{CB} = r - l_{10}$ (1).

Considerando a circunferência de centro A e raio r, como o ângulo central OÂC tem medida igual a 72°, então $\overline{OC} = l_5$ (basta notar que $72^\circ = \frac{360^\circ}{5}$ e que o raio desta última circunferência é r).

Conduzindo por C, a tangente CD à circunferência de centro O e raio r, temos um triângulo ΔODC , retângulo em D, onde o cateto $\overline{OD}=l_6=r$ e a hipotenusa $\overline{OC}=l_5$, assim, devemos mostrar que o cateto \overline{DC} é o l_{10} , ou seja, que \overline{DC} é áureo de $l_6=r$.

De acordo com a potência do ponto C em relação à circunferência de centro O e raio r, temos $\overline{CD}^2 = \overline{CB}.\overline{CA}$. Por (1) temos: $\overline{CD}^2 = (r - l_{10}).r$. Logo, pelo teorema anterior, temos que $\overline{CD} = l_{10}$.

Medida de l_5 : Como $l_5^2 = l_{10}^2 + l_6^2 \Rightarrow$

$$\begin{split} l_{5^2} &= \left(\frac{r\sqrt{5}}{2} - \frac{r}{2}\right)^2 + r^2 \Longrightarrow \\ l_{5^2} &= \frac{5r^2}{4} - \frac{2r^2\sqrt{5}}{4} + \frac{r^2}{4} + r^2 \Longrightarrow \\ l_{5^2} &= \frac{10r^2 - 2r^2\sqrt{5}}{4} \Longrightarrow \\ l_{5^2} &= \frac{r^2}{2} \left(5 - \sqrt{5}\right) \Longrightarrow \\ l_5 &= r\sqrt{\frac{5 - \sqrt{5}}{2}} \;. \end{split}$$

n	ÂNGULO CÊNTRICO	Polígono Regular
5	72°	Pentágono
10	36°	Decágono
20	18°	Icoságono
40	90	Tetracontágono

4° DIVISÃO DA CIRCUNFERÊNCIA EM $n = 15, 30, ... = 15.2^{m}$ PARTES; $m \in \mathbb{N}$

Considere uma circunferência de centro O e raio r. Obtenha as cordas AB = r (lado do hexágono regular inscrito) e $AC = l_{10}$ (lado do decágono regular inscrito). Temos então $A\hat{O}B =$ 60° e AÔC = 36°, logo BÔC = 60° – 36° = 24° que é o ângulo cêntrico de um polígono regular de 15 lados inscrito na circunferência. Logo BC = l₁₅.

n	ÂNGULO CÊNTRICO	POLÍGONO REGULAR
15	24°	Pentadecágono
30	12°	Triacontágono
60	6°	Hexacontágono

Observação: Teoricamente o problema é muito simples,

mas graficamente, devido ao grande número de operações que ele exige, costuma-se obter resultados ruins. Por esta razão, estudaremos mais adiante um processo aproximado para l₁₅ que fornece resultados gráficos melhores.

5º DIVISÃO DA CIRCUNFERÊNCIA EM $n = 17, 34, ... = 17.2^m$ Partes; $m \in \mathbb{N}$

Gauss (1796) demonstrou que é possível encontrar o ângulo $\frac{\pi}{17}$:

$$sen\left(\frac{\pi}{17}\right) = \frac{1}{8}\sqrt{34 - 2\sqrt{17} - 2\sqrt{2}\sqrt{17 - \sqrt{17}} - 2\sqrt{68 + 12\sqrt{17} + 2\sqrt{2}\left(\sqrt{17} - 1\right)\sqrt{17 - \sqrt{17}} - 16\sqrt{2}\sqrt{17 + \sqrt{17}}}\right)}$$

A construção para encontrar o lado do heptadecágono é devida a Johannes Erchinger:

- Trace o diâmetro \overline{AB} e o raio $\overline{OC} \perp \overline{AB}$;
- Determine em \overline{OC} o ponto D tal que $OD = \frac{r}{4}$;
- Encontre o ponto F em \overline{AB} tal que $\widehat{EDF} = \alpha = \frac{\widehat{ADO}}{4}$;
- Encontre o ponto G em \overline{AB} tal que $\widehat{FDG} = \frac{180^{\circ}}{4} = 45^{\circ}$;
- Determine o ponto H médio de \overline{AG} ;
- O ponto I é a interseção de \overline{OC} com a circunferência de centro em H e raio \overline{HG} ;
- O ponto J é a interseção de \overline{AB} com a circunferência de centro em E e raio \overline{EI} ;
- Trace as perpendiculares a \overline{AB} que passam por H e J;
- \overline{HL} e \overline{KJ} determinam na circunferência um arco com o dobro do tamanho correspondente da corda de l_{17} ;
- Fazendo a mediatriz de $\overline{\text{KL}}$ obtemos M na circunferência, tal que $\overline{\text{LM}} = \overline{\text{KM}} = l_{17}$.

n	Angulo Cêntrico	Polígono Regular
17	21,18°	Heptadecágono
34	10,59°	Triacontatetrágono
68	5,29°	Hexacontoctógono

4.4. DIVISÃO DA CIRCUNFERÊNCIA EM ARCOS IGUAIS: PROCESSOS APROXIMADOS

Foram vistos processos para a divisão da circunferência em n partes iguais, por exemplo, para n igual a 2, 3, 4, 5, 6, 8, 10, 12, 15,... É possível dividir uma circunferência em 7, 9, 11, 13,... partes iguais, completando a primeira sequência, porém estas divisões são aproximadas.

Para determinar o erro teórico que se comete nas construções das cordas l_7 , l_9 , l_{11} , l_{13} e l_{15} , vamos inicialmente determinar o lado de um polígono regular de n lados em função do ângulo central correspondente.

Consideremos uma circunferência dividida em n partes iguais, e a corda $\overline{AB} = l_n$ um dos lados do polígono regular inscrito na circunferência.

 $Seja\ 2\alpha\ o\ \ angulo\ central\ correspon-\ dente\ ao\ lado\ l_n$ $=\overline{AB}\ .\ Para\ cada\ l_n,\ temos\ um\ angulo\ central\ correspondente\ a\ \frac{360^\circ}{n}\ .$

Construindo a bissetriz do ângulo central $A\hat{O}B = 2\alpha$, obtemos o ponto M médio de \overline{AB} (pois o triângulo ΔAOB é isósceles de base \overline{AB} e a bissetriz relativa a base é também mediatriz), logo $\overline{AM} = \frac{l_n}{2}$.

Como a mediatriz é perpendicular ao lado do triângulo, então $\overline{AB} \perp \overline{OM}$, ou seja, o triângulo ΔAOM é retângulo em M. Além disso, $A\hat{O}B = \frac{360^\circ}{n}$ será divido em $A\hat{O}M = \frac{180^\circ}{n}$. No triângulo retângulo ΔAOM temos que:

$$\operatorname{sen}\left(\frac{180^{\circ}}{n}\right) = \frac{\frac{l_{n}}{2}}{r} \text{ ou } l_{n} = 2r.\operatorname{sen}\left(\frac{180^{\circ}}{n}\right)$$

1º Divisão da Circunferência em $n=7,14, ...=7.2^m$ Partes; $m\in\mathbb{N}$

Procedimento:

- Marcar sobre a circunferência um ponto D. Centro em D marcar MA = MB = r, sendo que A e B pertencem à circunferência;
- unir A e B, temos então que $\overline{AB} = l_3 = r\sqrt{3}$;
- unir O e D, determinando o ponto C sobre AB.
 Este ponto divide AB ao meio, pois pertence à mediatriz deste segmento, logo OC também é bissetriz e altura do triângulo ΔΑΟΒ, isósceles de

base
$$\overline{AB}$$
;

$$-1'_7 = \overline{AC} = \frac{1_3}{2}.$$

Medida de l'7 e l7:

Da fórmula geral temos: $l_7 = 2r. sen\left(\frac{180^\circ}{7}\right) \approx 0.86776r$ e como $l'_7 = l_3/2 = \frac{r\sqrt{3}}{2} \approx 10^\circ$

0,86602r. Desta forma, o erro teórico é dado por

$$Et = l'_7 - l_7 = -0.00174r$$

Ou seja, o erro é por falta e da ordem de dois milésimos, pois $0.0017 \cong 0.002$.

n	ÂNGULO CÊNTRICO	Polígono Regular
7	51,4°	Heptágono
14	25,7°	Tetradecágono
28	12,9°	Icosioctógono

2º DIVISÃO DA CIRCUNFERÊNCIA EM n = 9, 18, ... = 9.2^m Partes; m ∈ N

Procedimento:

- Traçar dois diâmetros \overline{AB} e \overline{CD} perpendiculares entre si. Prolongar \overline{AB} ;
- Traçar a circunferência com centro em C e raio CO = r, obtendo o ponto E na circunferência de centro O;
- Traçar a circunferência de centro em D e raio \overline{DE} , determinando na semi-reta \overline{BA} o ponto F;
- Traçar a circunferência de centro em F e raio FD = DE, obtendo sobre a semi-reta BA o ponto G;

$$-1'_9 = \overline{BG}$$
.

Medida de l'9 e l9:

O triângulo ΔCED é retângulo em E (pois este está no arco capaz de 90° de \overline{CD}), então pelo teorema de Pitágoras temos que $\overline{CD}^2 = \overline{CE}^2 + \overline{DE}^2$ ou $\overline{DE}^2 = \overline{CD}^2 - \overline{CE}^2$, onde $\overline{CD} = 2r$ e $\overline{CE} = r$, logo $\overline{DE} = r\sqrt{3}$.

Como $\overline{DE} = \overline{DF} = \overline{FG}$, então $\overline{DF} = \overline{FG} = r\sqrt{3}$.

O triângulo $\triangle ODF$ é retângulo em O, então aplicando o teorema de Pitágoras vem que $\overline{DF}^2 = \overline{DO}^2 + \overline{OF}^2 \Rightarrow \overline{OF}^2 = \overline{DF}^2 - \overline{DO}^2 \Rightarrow \overline{OF}^2 = \left(r\sqrt{3}\right)^2 - r^2 \Rightarrow \overline{OF}^2 = 3r^2 - r^2 \Rightarrow \overline{OF} = r\sqrt{2}$.

Como
$$\overline{GF} = \overline{GO} + \overline{OF}$$
 ou $\overline{GO} = \overline{GF} - \overline{OF}$, então $\overline{GO} = r\sqrt{3} - r\sqrt{2}$.

Assim,
$$l'_9 = \overline{BG} = r - \overline{GO} = r - (r\sqrt{3} - r\sqrt{2}) \approx 0.68216r$$

Da fórmula geral temos: $l_9 = 2r$. sen $\left(\frac{180^\circ}{9}\right) \cong 0,68404r$. Desta forma, o erro teórico é dado

$$Et = 1'_9 - 1_9 = -0.00188r.$$

Como 0,0018 \cong 0,002, podemos concluir que o erro é por falta e da ordem de dois milésimos.

n	ÂNGULO CÊNTRICO	Polígono Regular
9	40°	Eneágono
18	20°	Octadecágono
36	10°	Triacontahexágono

3º DIVISÃO DA CIRCUNFERÊNCIA EM $n = 11, 22, ... = 11.2^m$ Partes; $m \in \mathbb{N}$

Procedimento:

por:

- Traçar dois diâmetros \overline{AB} e \overline{CD} perpendiculares entre si;
- Obter o ponto M médio de um dos raios, por exemplo \overline{OA} . Logo, $\overline{OM} = \frac{r}{2}$;
- Unir M com C. Obter o ponto N médio de \overline{MC} ;

$$-1'_{11} = \overline{CN} = \overline{NM}.$$

<u>Medida de l₁₁= e l₁₁:</u>

Cálculo do valor de l'₁₁: O triângulo $\triangle OMC$ é retângulo em O. Logo, temos $\overline{CM}^2 = \overline{CO}^2 + \overline{OM}^2$

ou
$$\overline{\text{CM}} = \frac{\text{r}\sqrt{5}}{2}$$
. Então $l'_{11} = \overline{\text{CN}} = \frac{\overline{\text{CM}}}{2} = \frac{\text{r}\sqrt{5}}{4} \cong 0,55901\text{r}$.

Da fórmula geral temos:
$$l'_{11} = 2r$$
. sen $\left(\frac{180^{\circ}}{11}\right) \cong 0,56346r$. Temos então que o erro teórico

é dado por

$$Et = l'_{11} - l_{11} = -0.00445r$$

Ou seja, o erro é por falta e da ordem de quatro milésimos.

n	ÂNGULO	Polígono Regular
11	32,7°	Undecágono
22	16,3°	Icosidígono
44	8,2°	Tetracontatetrágono

4° Divisão da Circunferência em $n = 13, 26, ... = 13.2^{m}$ Partes; m ∈ N

Procedimento:

- Traçar dois diâmetros \overline{AB} e \overline{CD} perpendiculares entre si;
- Dividir um raio, por exemplo \overline{OA} , em quatro partes iguais, obtendo um segmento $\overline{OE} = \frac{r}{4}$;
- unir E e C, obtendo um ponto F sobre a circunferência;
- $-1'_{13} = \overline{\mathrm{DF}} \ .$

Medida de l'₁₃ e l₁₃:

Considere os triângulos retângulos ΔDFC (pois F está no arco capaz de 90° de \overline{DC}) e ΔEOC .

Como o ângulo \hat{C} é comum e $\hat{DFC} = \hat{EOC} = 90^{\circ}$, então $\Delta DFC \sim \Delta EOC$ pelo critério **AAA**. Desta semelhança temos que:

$$\frac{\overline{DF}}{\overline{OE}} = \frac{\overline{CD}}{\overline{EC}} \text{ ou } \frac{l'_{13}}{\frac{r}{4}} = \frac{2r}{\overline{EC}}$$

mas $\overline{AE}^2 = \left(\frac{r}{4}\right)^2 + r^2$, ou seja, $\overline{AE} = \frac{r\sqrt{17}}{4}$. Substituindo na expressão acima temos que:

$$\frac{l'_{13}}{\frac{r}{4}} = \frac{2r}{\frac{r\sqrt{17}}{4}} \text{ ou } l'_{13} = \frac{2r\sqrt{17}}{17} = 0.48507r$$

Da fórmula geral temos: $l'_{13} = 2r$. sen $\left(\frac{180^{\circ}}{13}\right) \cong 0,47863r$. Assim, o erro teórico é dado por

$$Et = l'_{13} - l_{13} = 0.00644r$$

Isto é, o erro é por excesso e da ordem de seis milésimos.

n	ÂNGULO CÊNTRICO	POLÍGONO REGULAR
13	27,69°	Tridecágono
26	13,84°	Icosihexágono
52	6,92°	Pentacontadígono

5º DIVISÃO DA CIRCUNFERÊNCIA EM $n = 15, 30, ... = 15.2^m$ Partes; $m \in \mathbb{N}$

Quando foi apresentada a construção do pentadecágono regular por um processo exato, foi feita uma observação de que o processo implica em muitos erros gráficos, e que existe uma construção aproximada deste polígono que nos dá resultados melhores, que será apresentada a seguir.

Procedimento:

- Traçar dois diâmetros \overline{AB} e \overline{CD} perpendiculares entre si;
- Com centro em C e raio \overline{CA} , obter um ponto E sobre \overline{CD} ;
- $-1'_{15} = \overline{OE}$.

Medida de l'₁₅ e l₁₅:

Como
$$\overline{AC} = r\sqrt{2}$$
, então $l'_{15} = \overline{CE} - \overline{CO} = \overline{CA} - \overline{CO} = r\sqrt{2} - r \cong 0,41421r$.

Da fórmula geral temos: $l_{15} = 2r$. sen $\left(\frac{180^{\circ}}{15}\right) \cong 0,41582r$. Assim, o erro teórico é dado por

$$Et = l'_{15} - l_{15} = -0.00161r$$

Isto é, o erro é por falta e da ordem de aproximadamente dois milésimos.

<u>Observação</u>: Podemos dividir a circunferência em n partes iguais retificando-a, obtendo o seu perímetro e dividindo-o e n partes iguais (aplicando o teorema de Tales), e depois desretificando uma das n partes sobre a circunferência. Note que este processo é aproximado.

6º DIVISÃO DA CIRCUNFERÊNCIA EM n = 19, 38, ... = 19.2^m Partes; m ∈ N

Procedimento:

- Traçar dois diâmetros \overline{AB} e \overline{CD} perpendiculares entre si;
- Dividir um raio, por exemplo \overline{OA} , em quatro partes iguais, obtendo um segmento $\overline{OE} = \frac{r}{4}$;
- Construir a mediatriz do raio \overline{OC} , e obter o ponto G, que é a interseção da paralela a CD, que passa pelo ponto E, com esta mediatriz;
- unir D e G, obtendo um ponto H sobre a circunferência;
- $-1'_{19} = \overline{CH}$.

<u>Medida de l'₁₉ e l₁₉:</u>

Considere os triângulos retângulos ΔDHC (pois H está no arco capaz de 90° de \overline{DC}) e ΔDFG . Como o ângulo \hat{D} é comum e $D\hat{F}G$ = $D\hat{H}C$ = 90°, então $\Delta DHC \sim \Delta DFG$ pelo critério **AAA**. Desta semelhança temos que:

$$\frac{\overline{HC}}{\overline{FG}} = \frac{\overline{DC}}{\overline{DG}} \text{ ou } \frac{l'_{19}}{\frac{r}{4}} = \frac{2r}{\overline{DG}}$$

mas $\overline{DG}^2 = \left(\frac{3}{2}r\right)^2 + \left(\frac{r}{4}\right)^2$, ou seja, $\overline{DG} = \frac{r\sqrt{37}}{4}$. Substituindo na expressão acima temos que:

$$\frac{l'_{19}}{\frac{r}{4}} = \frac{2r}{\frac{r\sqrt{37}}{4}} \text{ ou } l'_{19} = \frac{2r\sqrt{37}}{37} = 0,328798r$$

Da fórmula geral temos: $l'_{19} = 2r$. sen $\left(\frac{180^{\circ}}{19}\right) \cong 0,32919r$. Assim, o erro teórico é dado por

$$Et = l'_{19} - l_{19} = -0.000392r$$

Isto é, o erro é por falta e da ordem de 4 milésimos.

n	ÂNGULO CÊNTRICO	Polígono Regular
19	18,94°	Eneadecágono
38	9,47°	Triacontaoctógono
76	4,74°	Heptacontahexágono

4.5. POLÍGONOS ESTRELADOS

<u>DEFINIÇÃO</u>: Um polígono é estrelado quando possui ângulos alternadamente salientes e reentrantes, e os lados pertencem a uma linha poligonal fechada que é percorrida sempre no mesmo sentido.

TEOREMA: Pode-se obter tantos polígonos estrelados de n vértices quantos números p há, exceto a unidade, menores que a metade de n e primos com n.

De fato, basta considerar os números p menores que $\frac{n}{2}$, porque unir os pontos de p em p equivale a uni-los de (n-p) em (n-p); devemos excluir a unidade, porque unindo os

pontos consecutivos, obtém-se o polígono convexo; sendo p e n primos entre si, são necessários n lados para voltar ao ponto de partida, e assim devem ser encontrados cada ponto de divisão.

<u>DEFINIÇÃO</u>: Polígono regular estrelado é aquele que se forma de cordas iguais e onde os lados são iguais e os ângulos também são iguais.

Logo, o polígono estrelado regular é formado por uma linha poligonal contínua e se obtém quando, partindo de um ponto de divisão qualquer da circunferência, volta-se ao mesmo ponto de partida após as uniões p a p, isto é, pulando p divisões.

<u>Processo Geral de Construção</u>: Para obter um polígono regular estrelado de n vértices, devemos dividir a circunferência em n partes iguais, e unir os pontos de divisão de p em p, sendo que: $p < \frac{n}{2}$, $p \ne 1$ e p e n primos entre si.

Exemplos:

- a) Para n = 7: 3, 2 e 1 são menores do que $\frac{7}{2}$ = 3,5 : p = 3 ou p = 2.
- b) Para n = 8: 3, 2 e 1 são menores do que $\frac{8}{2}$ = 4 : p = 3.
- c) Para n = 15: 7, 6, 5, 4, 3, 2 e 1 são menores do que $\frac{15}{2}$ = 7,5 \therefore p = 7 ou p = 4 ou p = 2.

EXERCÍCIOS

- 01. Dada uma circunferência de centro O e raio r = 5cm, construir os seguintes polígonos regulares estrelados:
 - a) Pentágono (n = 5, p = 2);
 - b) Octógono (n = 8, p = 3);
 - c) Decágono (n = 10, p = 3).
 - d) Eneágono (n = 9, p = 2).
 - e) Eneágono (n = 9, p = 4).
- 02. Construir um heptágono regular estrelado inscrito num circunferência de centro O e raio r = 6cm.
- 03. Quantos polígonos regulares estrelados distintos podem ser traçados quando uma circunferência está dividida em 20, 24, 30 e 36 partes iguais?
- 04. Dado um segmento \overline{AB} , lado de um decágono regular, construir o decágono regular estrelado.
- 05. Considere o pentágono regular ABCDE. Prove que o lado \overline{AB} é paralelo à diagonal \overline{EC} .
- 06. Prove que as diagonais de um pentágono regular são congruentes.
- 07. Prove que o lado de um pentágono regular é o segmento áureo da diagonal do pentágono.
- 08. Construir um pentágono regular dado o lado l₅ = 4cm.

CAPÍTULO 5: ÁREAS

5.1. AXIOMAS

<u>DEFINIÇÃO</u>: Uma <u>região triangular</u> é um conjunto de pontos do plano formado por todos os segmentos cujas extremidades estão sobre os lados de um triângulo. O triângulo é chamado de <u>fronteira</u> da região triangular. O conjunto de pontos de uma região triangular que não pertencem a sua fronteira é chamado de <u>interior</u> da região triangular.

<u>**DEFINIÇÃO:**</u> Uma região poligonal é a reunião de um numero finito de regiões triangulares que duas a duas não têm pontos interiores em comum.

AXIOMA 6.1. A toda região poligonal corresponde um número maior do que zero.

AXIOMA 6.2. Se uma região poligonal é a união de duas ou mais regiões poligonais que duas a duas não tenham pontos interiores em comum, então sua área é a soma das áreas daquelas regiões.

AXIOMA 6.3. Regiões triangulares limitadas por triângulos congruentes têm áreas iguais.

AXIOMA 6.4. Se ABCD é um retângulo então a sua área é dada pelo produto: $\overline{AB}.\overline{BC}$.

<u>Proposição</u>: A área de um paralelogramo é o produto do comprimento de um dos seus lados pelo comprimento da altura relativa a este lado.

Prova:

Considere \overline{AB} uma base do paralelogramo. Prolongar a reta \overline{AB} e a partir dos vértices \overline{C} e \overline{D} traçar perpendiculares à reta \overline{AB} , obtendo os pontos \overline{E} e \overline{F} sobre a reta considerada. Logo $\overline{DE} = \overline{CF} = h$ representam a altura do paralelogramo relativa ao lado \overline{AB} .

Devemos mostrar que $\overline{AB}.\overline{DE}$ é a área do paralelogramo.

Como $\overline{AD} = \overline{BC}$ (lados paralelos de um paralelogramo), $\overline{DE} = \overline{CF} = h$ (altura do paralelogramo) e $A\widehat{E}D = B\widehat{F}C = 90^\circ$ (ângulos correspondentes em relação às paralelas), temos que $\Delta AED = \Delta BFC$. Logo suas áreas são iguais, e $\overline{AE} = \overline{BF}$.

Temos que $A_{ABCD} = A_{ADE} + A_{BCDE} = A_{BCF} + A_{BCDE} = A_{CDEF} = \overline{EF} = \overline{DE}$.

Mas $\overline{EF} = \overline{EB} + \overline{BF} = \overline{EB} + \overline{AE} = \overline{AB}$. Portanto $A_{ABCD} = \overline{AB}.\overline{DE}$.

<u>PROPOSIÇÃO</u>: A área de um triângulo é a metade do produto do comprimento de qualquer de seus lados pela altura relativa a este lado.

Prova:

Considere um triângulo ΔABC . Sejam $\overline{BC}=b$ sua base e $\overline{AH}=h$ a altura relativa ao lado \overline{BC} . Devemos mostrar que $A_{ABC}=\frac{b.h}{2}$.

Obter um ponto D tal que \overline{DC} = \overline{AB} e \overline{AD} = \overline{BC} . Logo, o ponto D estará em uma circunferência de centro C e raio \overline{AB} e em uma circunferência de centro A e raio \overline{BC} . Assim o polígono ABCD é um paralelogramo e A_{ABCD} = b.h (1).

 $Como\ \Delta ABC = \Delta CDA\ pelo\ critério\ \textbf{LLL}\ têm\ áreas\ iguais,\ ou\ seja,\ A_{ABCD} = A_{ABC} + A_{CDA} = \\ 2.A_{ABC} \Rightarrow A_{ABCD} = 2.A_{ABC} \Rightarrow A_{ABC} = \frac{b.h}{2}.$

5.2. EQUIVALÊNCIA DE ÁREAS

<u>DEFINIÇÃO</u>: Duas figuras são equivalentes quando possuem áreas iguais.

Notação: ≈

<u>PROPRIEDADE FUNDAMENTAL DA EQUIVALÊNCIA</u>: Considerar um triângulo ABC. Conduzir pelo vértice A uma reta r paralela ao lado \overline{BC} . Considerar os pontos A_1 , A_2 , A_3 ,... pertencentes à reta r. Os triângulos de base \overline{BC} comum e vértices A_1 , A_2 , A_3 ,... são todos equivalentes.

De fato, $A_{ABC} = A_{A_1BC} = A_{A_2BC} = ... = \frac{BC.h_a}{2} = \frac{a.h_a}{2}$, pois não foi alterada a medida da base e nem da altura.

EXERCÍCIOS

01. Construir um triângulo ABC equivalente ao triângulo MNP dado, sabendo-se que $\overline{BC} \equiv \overline{NP}$. M_+

02. Construir um triângulo ABC equivalente ao triângulo MNP dado, sabendo-se que $\overline{BC} \equiv \overline{NP}$ e $\hat{A} = 45^{\circ}$.

N[†]

03. Construir um triângulo ABC equivalente ao quadrilátero PQRS dado, sabendo-se que P≡A.

04. Construir um triângulo ABC equivalente ao quadrilátero PQRS dado, sabendo-se que o ponto A pertence ao segmento \overline{PS} .

05. Construir um triângulo ABC equivalente ao polígono dado sabendo-se que o ponto A pertence ao segmento $\overline{\text{PT}}$.

06. Construir um triângulo ABC equivalente ao polígono dado, sendo A≡P.

07. Construir um triângulo ABC equivalente ao triângulo MNP dado, sabendo-se que: \overline{BC} é colinear com \overline{NP} , $B \equiv N$ e $h_a < h_m$.

08. Construir um triângulo ABC equivalente a um triângulo MNP dado, sabendo-se que: \overline{BC} é colinear com \overline{NP} , $B \equiv N$ e $h_a > h_m$.

<u>Proposição</u>: A área de um trapézio é a metade do produto do comprimento de sua altura pela soma dos comprimentos de suas bases.

$$A_{ABCD} = \frac{h}{2} (\overline{AB} + \overline{CD})$$

Prova:

Seja ABCD um trapézio cujas bases são \overline{AB} e \overline{CD} . Logo $\overline{AB} \parallel \overline{CD}$. Considere a diagonal \overline{AC} que divide o trapézio em dois triângulos: ΔABC e ΔACD .

<u>**DEFINIÇÃO:**</u> Apótema de um polígono regular é o segmento com uma extremidade no centro do polígono e a outra no ponto médio de um lado.

<u>Proposição</u>: A área de um polígono regular de n lados, inscrito numa circunferência de raio r é igual à metade do produto do comprimento do apótema pelo comprimento do perímetro.

Prova:

Considere um polígono regular de n lados e os segmentos de extremidades em O que passam pelos vértices do polígono. Logo, o poligono fica dividido em n triângulos equivalentes, todos com a mesma altura a e a mesma base l_n.

$$\begin{split} & \text{Assim, a área de cada triângulo será: } A = \\ & \frac{a.l_n}{2} \text{. Como a área do polígono será a soma das} \\ & \text{áreas destes triângulos, então } A_{A_1A_2...A_n} = A_{OA_1A_2} + \\ & A_{OA_2A_3} + A_{OA_3A_4} + ... + A_{OA_{n-1}A_n} = n. \frac{a.l_n}{2} \text{. Mas n.l}_n \end{split}$$

é o perímetro 2p do polígono. Portanto, $A_{A_1A_2...A_n} = n.\frac{a.l_n}{2} = 2p.\frac{a}{2} = a.p$, onde p é o semiperímetro e a é o apótema do polígono.

<u>Proposição</u>: Considerando o número de vértices de um polígono regular tendendo ao infinito, a medida de l_n tende a zero, e o apótema do polígono tende ao raio da circunferência circunscrita. Logo, a área de um círculo de raio r é calculada da seguinte forma:

$$A = p.a = \pi r.r = \pi r^2$$

EXERCÍCIOS

- 01. Mostre que a área de um losango é igual à metade do produto dos comprimentos de suas diagonais.
- 02. Prove que se G é o baricentro de um triângulo ABC, então os triângulos Δ GAB, Δ GAC e Δ GBC são equivalentes. Prove que a área de cada um dos três triângulos é $\frac{1}{3}$ da área do triângulo dado.

- 03. Por um ponto arbitrário da diagonal de um paralelogramo, traçar retas paralelas aos lados, decompondo-o em 4 paralelogramos menores. Dois deles têm áreas iguais. Identifique-os e prove a afirmação.
- 04. Prove que a área do quadrado inscrito em uma circunferência é igual à metade da área do quadrado circunscrito à mesma circunferência.
- 05. Considere dois triângulos $\triangle ABC$ e $\triangle EFG$ semelhantes segundo uma razão k. Prove que A_{ABC} = $k^2.A_{EFG}$.

PARTE II - GEOMETRIA ESPACIAL

CAPÍTULO 6: GEOMETRIA ESPACIAL DE POSIÇÃO

6.1. CONCEITOS PRIMITIVOS E POSTULADOS

Adotaremos sem definir os conceitos primitivos de: ponto, reta e plano.

POSTULADOS DE EXISTÊNCIA

- I Numa reta e fora dela existem infinitos pontos.
- II Num plano e fora dele existem infinitos pontos.

POSTULADOS DE DETERMINAÇÃO

- I Dois pontos distintos determinam uma única reta.
- II Três pontos não colineares determinam um único plano.

POSTULADOS DA INCLUSÃO

- I Uma reta está contida num plano quando tem sobre o plano dois pontos.
- II Um ponto pertence a um plano quando este pertence a uma reta do plano.

POSTULADO DA INTERSEÇÃO

 I - Se dois planos distintos têm um ponto em comum, então eles têm uma única reta em comum que passa por esse ponto.

POSTULADO DA SEPARAÇÃO DO ESPAÇO

- I Um plano α divide o espaço em duas regiões, I e II, que não contém α , tais que:
 - a) se $A \in I$ e $B \in II$, então $\overline{AB} \cap \alpha = \{C\}$;
 - b) se $A \in I$ e $B \in I$, então $\overline{AB} \cap \alpha = \emptyset$.

<u>DEFINIÇÃO</u>: Semi-espaço é a figura geométrica formada pela união de um plano com uma das regiões do espaço por ele dividido.

6.2. Posições Relativas de Duas Retas

<u>DEFINIÇÃO</u>: Duas retas são <u>concorrentes</u> se e somente se possuem um único ponto comum.

<u>DEFINIÇÃO</u>: Duas retas são paralelas se e somente se elas são coplanares (isto é, estão contidas no mesmo plano) e não possuem ponto comum.

AXIOMA 5. Por um ponto fora de uma reta existe uma única paralela à reta dada.

<u>DEFINIÇÃO</u>: Duas retas são reversas se e somente se não existe plano que as contenha.

Exemplos:

CONSTRUÇÃO DE RETAS REVERSAS

Sejam três pontos A, B e C não colineares, logo existe um plano α determinado por estes pontos. Considere a reta r definida pelos pontos A e B. Considere o ponto P fora de α e a reta s, determinada por P e C.

Logo, r e s são retas reversas.

De fato, existem duas possibilidades a considerar: ou r e s são coplanares ou r e s são reversas. Vamos considerar que r e s são coplanares (hipótese de redução ao absurdo). Então A, B, C e P são coplanares, ou seja, P está em α : isto é, contradiz a construção, que toma P fora de α . Logo, r e s não podem ser coplanares, ou seja, são reversas.

Assim duas retas no espaço podem ser:

Coplanares:

- coincidentes
- paralelas
- concorrentes ou secantes

Não coplanares:

- reversas

Exemplo: considere um paralelepípedo retângulo.

6.3. DETERMINAÇÃO DE UM PLANO

Um plano pode ser determinado de quatro formas:

1ª Por três pontos não colineares.

Este é o postulado da determinação do plano.

2ª Por uma reta e um ponto fora dela.

Esta forma de determinar um plano pode ser reduzida à anterior: para tanto, basta tomar dois pontos da reta e um ponto fora dela.

3ª Por duas retas concorrentes.

Também esta forma pode ser reduzida à primeira: basta tomar o ponto de interseção e um ponto de cada reta.

4^a Por duas retas paralelas e distintas.

Esta forma de determinar um plano decorre da própria definição de retas paralelas.

EXERCÍCIOS

- 01. Quantas retas passam por:
 - a) um ponto?
 - b) dois pontos distintos?
 - c) três pontos distintos?
- 02. Considerando a figura, classifique os seguintes conjuntos de pontos como: (1) colineares; (2) não-colineares mas coplanares ou (3) não-coplanares.
 - a) $\{A,B,C,D\}$
 - b) {C,F,E}
 - c) $\{A,B,E\}$
 - $d) \{A,D,E,F\}$
 - e) {B,C,D}

6.4. Posições Relativas de Reta e Plano

Considere os seguintes casos:

- O plano e a reta têm dois pontos em comum: a reta está contida ao plano. (Postulado da inclusão)
- O plano e a reta têm um único ponto em comum: a reta e o plano são secantes ou a reta intercepta o plano. O ponto de interseção da reta com o plano chama-se traço da reta com o plano. (Definição)
- O plano e a reta não têm ponto em comum: a reta é paralela ao plano. (Definição)

PROPRIEDADE: Se uma reta não contida num plano é paralela a uma reta desse plano, então ela é paralela a esse plano.

Se r, não contida em α , é paralela a s contida em α, então r e s são paralelas distintas e determinam o plano β .

Como r e s não têm ponto comum e s é a interseção de α e β, então r não tem ponto comum com α , ou seja, r é paralela a α .

EXERCÍCIO

01. Dadas as retas reversas r e s, determinar um procedimento para conduzir por s um plano paralelo a r.

6.5. Posições Relativas de Dois Planos

POSTULADO DA INTERSEÇÃO (recordando)

I - Se dois planos distintos têm um ponto comum, então eles têm uma única reta comum que passa por esse ponto.

<u>DEFINIÇÃO</u>: Dois planos são paralelos se e somente se eles coincidem ou não possuem ponto

Assim, quanto as suas posições relativas, dois planos podem ser:

- secantes (ou concorrentes);
- paralelos: coincidentes ou distintos.

PROPRIEDADE: Se um plano contém duas retas concorrentes, ambas paralelas a outro plano distinto, então esses planos são paralelos.

Prova:

Sejam a e b retas de β concorrentes num ponto O, e a e b paralelas a outro plano α , devemos provar que $\alpha \parallel \beta$.

Os planos α e β são distintos. Provaremos que eles são paralelos, usando RAA.

Considere que os planos α e β não são paralelos (hipótese da redução), logo, existe uma reta i tal que $i=\alpha\cap\beta$. Logo, temos:

para a reta a:

- a $\parallel \alpha$, então não pode ter pontos em comum com α ;
- a $\subset \beta$ e i = $\alpha \cap \beta$ a e i são coplanares (ou seja, a concorre com i ou a $\|$ i; logo, a $\|$ i pois se a concorresse com i em um ponto P, este ponto pertenceria a α , mas a $\|$ α .

para a reta b, analogamente:

- b
$$\parallel \alpha$$
, b ⊂ β , i = $\alpha \cap \beta \Rightarrow$ b \parallel i.

O fato de α e β serem concorrentes e ambas paralelas a i é um absurdo, pois contraria o axioma das paralelas (Postulado de Euclides).

Logo, α e β não têm ponto comum e, portanto, $\alpha \parallel \beta$.

6.6. POSIÇÕES RELATIVAS DE TRÊS PLANOS

Considere três planos α , β e γ , distintos dois a dois. Logo a posições relativas podem ser:

$$\begin{array}{l} -\alpha \parallel \beta \parallel \gamma \Rightarrow \\ \alpha \cap \beta = \varnothing, \, \beta \cap \gamma = \varnothing \, e \, \alpha \cap \gamma = \varnothing \Rightarrow \\ \alpha \cap \beta \cap \gamma = \varnothing. \end{array}$$

$$\begin{array}{l} -\alpha \parallel \gamma \Rightarrow \\ \alpha \cap \gamma = \varnothing, \, \alpha \cap \beta = \alpha \beta \ e \ \beta \cap \gamma = \beta \gamma \Rightarrow \\ \alpha \beta \parallel \beta \gamma, \, logo \ \alpha \cap \beta \cap \gamma = \varnothing. \end{array}$$

$$-\alpha \cap \beta = \alpha\beta, \ \alpha \cap \gamma = \alpha\gamma \ e \ \beta \cap \gamma = \beta\gamma \Rightarrow$$
$$\alpha\beta \parallel \alpha\gamma \parallel \beta\gamma, \log \alpha \cap \beta \cap \gamma = \emptyset.$$

ÂNGULOS DETERMINADOS POR DUAS RETAS

Um ângulo pode ser determinado por retas concorrentes ou por retas reversas.

<u>DEFINIÇÃO</u>: Os ângulos entre duas retas reversas são os ângulos formados por uma dessas retas e pela paralela à outra traçada por um dos pontos da primeira.

<u>DEFINIÇÃO</u>: Duas retas concorrentes são perpendiculares quando formam entre si quatro ângulos retos. Duas retas reversas são ortogonais quando formam ângulos retos.

6.7. ÂNGULO ENTRE RETA E PLANO

<u>DEFINIÇÃO</u>: Uma reta é perpendicular a um plano se e somente se ela é secante ao plano e perpendicular a todas as retas do plano que passam por seu traço.

CONSEQUÊNCIAS:

- 1. Uma reta perpendicular a um plano é ortogonal a todas as retas do plano que não passam por seu traço.
- 2. Uma reta perpendicular a um plano forma ângulo reto com todas as retas do plano.

<u>TEOREMA</u>: Se uma reta é perpendicular a duas retas concorrentes de um plano, então ela é perpendicular ao plano.

Hipótese: a e b são retas de α, a e b concorrem no ponto O e r é perpendicular às retas a e b.

Tese: r é perpendicular a α .

Prova:

- Considere o ponto P distinto de O em r e Q na semi-reta oposta a OP tal que $\overline{OP} = \overline{OQ}$. Sejam os pontos A na reta a e B em b, ambos distintos de O, e X no segmento \overline{AB} , distinto de A e de B. Devemos mostrar que r é perpendicular a OX \equiv s.
- Nos triângulos \triangle APO e \triangle AQO, temos:

$$\overline{OP} = \overline{OQ}$$
 (por construção),

$$A\hat{O}P = A\hat{O}Q = 90^{\circ} e$$

$$\overline{OA} = \overline{OA}$$
 (lado comum)

então $\triangle APQ = \triangle AQO$ por LAL.

Portanto,
$$\overline{AP} = \overline{AQ}$$
 (1)

Analogamente, para os triângulos $\triangle BPO$ e $\triangle BQO$, temos $\overline{BP} = \overline{BQ}$ (2).

- Nos triângulos $\triangle ABP$ e $\triangle ABQ$, temos:

$$\overline{AP} = \overline{AQ}$$
 de (1),
 $\overline{BP} = \overline{BQ}$ de (2) e
 $\overline{AB} = \overline{AB}$ (lado comum)
então $\Delta ABP = \Delta ABQ$ por LLL.
Portanto, PÂB = QÂB (3)

- Nos triângulos \triangle APX e \triangle AQX, temos:

$$\overline{AP} = \overline{AQ}$$
 de (1),
 $P\hat{A}B = Q\hat{A}B$ de (3) e
 $\overline{AX} = \overline{AX}$ (lado comum)
então $\Delta APX = \Delta AQX$.
Portanto, $\overline{PX} = \overline{QX}$ (4).

- Finalmente, nos triângulos ΔPOX e ΔQOX temos que

$$\overline{PX} = \overline{QX}$$
 de (4),
 $\overline{OP} = \overline{OQ}$ (por construção) e
 $\overline{OX} = \overline{OX}$ (lado comum)
então $\Delta POX = \Delta QOX$ por LLL.

- Assim, PÔX = QÔX, e, portanto, estes ângulos são ambos retos (pois PÔX + QÔX = 180°), ou seja: r \perp OX.

Generalizando: r é perpendicular ao plano α .

CONSEQUÊNCIAS:

- 1. Se uma reta é ortogonal a duas retas concorrentes de um plano, então ela é perpendicular a esse plano.
- 2. Se uma reta forma ângulo reto com duas retas concorrentes de um plano, então ela é perpendicular a esse plano.

<u>DEFINIÇÃO</u>: A projeção ortogonal de um ponto sobre um plano é o traço da perpendicular ao plano traçada por esse ponto. Δ ↓

$$\overline{AB} = dist(A, \alpha)$$

<u>DEFINIÇÃO</u>: A projeção ortogonal, sobre um plano, de uma reta oblíqua a ele é uma reta tal que cada um de seus pontos é projeção ortogonal de um ponto da reta dada sobre um plano.

<u>DEFINIÇÃO</u>: O ângulo formado entre um plano e uma reta oblíqua ao mesmo é o ângulo formado entre a reta oblíqua e a sua projeção ortogonal sobre o plano.

<u>**DEFINIÇÃO:**</u> A distância entre uma reta paralela a um plano e esse plano é a distância de um de seus pontos ao plano.

$$\overline{AB} = dist(r, \alpha)$$
, onde $\overline{AB} \perp \alpha$.

<u>DEFINIÇÃO</u>: Dadas duas retas reversas r e s, a distância entre elas é a distância que vai de uma dessas retas até o plano paralelo a ela que passa pela outra reta.

CONSTRUÇÃO DA PERPENDICULAR COMUM A DUAS RETAS REVERSAS

- dadas duas retas reversas, obtém-se por s, o plano $\alpha \parallel r$; este plano é definido por s e $r' \parallel r$;

- obtemos pelo ponto A (arbitrário) de r $\overline{AB} \perp \alpha$. Temos que $\overline{AB} \perp r$;
- obtemos em α a reta t por B, paralela à reta r. O ponto C é a interseção de t com s;
- traçamos $\overline{\text{CD}} \perp \alpha$. ABCD é um retângulo, assim $\overline{\text{CD}} \perp \text{r}$ e $\overline{\text{CD}} \perp \text{s}$.

6.8. ÂNGULOS ENTRE DOIS PLANOS

<u>DEFINIÇÃO</u>: Dois planos são perpendiculares entre si se e somente se um deles possui uma reta perpendicular ao outro.

<u>CONSEQUÊNCIA</u>: Considere dois planos quaisquer secantes. Conduzir um outro plano perpendicular à interseção dos primeiros.

Se um plano é perpendicular à interseção de dois planos então este plano é perpendicular a cada um desses planos.

<u>DEFINIÇÃO</u>: O ângulo entre dois planos é o ângulo formado por duas retas, uma de cada plano, perpendiculares à interseção dos dois planos.

6.9. ÂNGULO DIEDRO

<u>DEFINIÇÃO</u>: Ângulo diedro é o ângulo formado por dois semi-planos com mesma origem (reta de interseção dos dois) e que não sejam coplanares.

SEÇÃO RETA DE UM ÂNGULO DIEDRO

<u>DEFINIÇÃO</u>: Chama-se seção reta de um ângulo diedro à interseção do ângulo diedro com um plano perpendicular à sua aresta.

Analogamente a Geometria Plana, temos as seguintes classificações para diedro:

1. Dois diedros são consecutivos quando determinam ângulos consecutivos em sua seção reta.

2. Dois diedros são adjacentes quando determinam ângulos adjacentes em sua seção reta.

<u>Observação</u>: Chama-se diedro reto àquele cuja medida é 90°. Um diedro agudo tem medida entre 0° e 90°; um diedro obtuso, entre 90° e 180°.

3. Dois diedros são opostos pela aresta quando suas seções retas determinam ângulos opostos pelo vértice.

<u>DEFINIÇÃO</u>: Chama-se bissetor de um diedro o semi-plano que tem origem na aresta do diedro e que determina em sua seção reta a bissetriz de seu ângulo.

EXERCÍCIOS

- 01. De um ponto P, interior a um diedro, são traçadas duas semi-retas perpendiculares às faces. Sendo 100º a medida do diedro, calcule a medida do ângulo formado pelas semi-retas.
- 02. Calcule a medida de um diedro, sabendo-se que uma reta perpendicular a uma de suas faces forma com o bissetor desse diedro um ângulo de 20°.
- 03. Calcule o ângulo formado pelos diedros bissetores de dois diedros suplementares.

6.10. TRIEDROS

Triedro determinado pelas semi-retas \overrightarrow{Pa} , \overrightarrow{Pb} e \overrightarrow{Pc} é a interseção dos semi-espaços E_1 , E_2 e E_3 .

Notação: $P(a,b,c) = E_1 \cap E_2 \cap E_3$.

Elementos: P é o vértice;

as semi-retas \overrightarrow{Pa} , \overrightarrow{Pb} e \overrightarrow{Pc} são as arestas; a \hat{P} b, b \hat{P} c e a \hat{P} c são as faces ou os ângulos das faces.

PROPRIEDADES

1ª Em todo triedro, qualquer face é menor que a soma das outras duas.

Demonstração:

Supondo que a $\hat{P}c$ é a maior face do triedro P(a,b,c). Provaremos que a $\hat{P}c < a\hat{P}b + b\hat{P}c$. Para isto, construímos em a $\hat{P}c$ um ângulo b' $\hat{P}c = b\hat{P}c$ (1).

Tomando-se um ponto B em b e um ponto B' em b', tais que $\overline{PB} = \overline{PB'}$ e considerando uma seção ABC como indica a figura ao lado, temos:

1. Como $\Delta B'PC = \Delta BPC$, vem que $\overline{B'C} = \overline{BC}$;

2. No triângulo $\triangle ABC$ temos $\overline{AC} < \overline{AB} + \overline{BC} \Rightarrow \overline{AB'} + \overline{B'C} < \overline{AB} + \overline{BC} \Rightarrow \overline{AB'} < \overline{AB}$.

Considerando os triângulos $\Delta B'PA$ e ΔBPA ($\overline{PA} = \overline{PA}$, $\overline{PB} = \overline{PB'}$, $\overline{AB'} < \overline{AB}$) decorre que a $\hat{P}b' < a\hat{P}b$ (2).

Somando membro a membro (2) e (1), temos:

$$a\hat{P}b' + b'\hat{P}c < a\hat{P}b + b\hat{P}c \implies a\hat{P}c < a\hat{P}b + b\hat{P}c$$
.

Sendo a maior face menor que a soma das outras duas, concluímos que qualquer face de um triedro é menor que a soma das outras duas.

2ª A soma das medidas em graus das faces de um triedro qualquer é menor que 360°.

Demonstração:

Sendo a $\hat{P}b$, a $\hat{P}c$ e b $\hat{P}c$ as medidas das faces de um triedro P(a,b,c), provaremos que: a $\hat{P}b$ + a $\hat{P}c$ + b $\hat{P}c$ < 360°.

Para isso, considere a semi-reta $\overrightarrow{Pa'}$ oposta a \overrightarrow{Pa} . Observe que P(a',b,c) é um triedro e, pela propriedade anterior, $b\hat{P}c < b\hat{P}a' + c\hat{P}a'$ (1).

Os ângulos a $\hat{P}b$ e b $\hat{P}a'$ são adjacentes e suplementares, o mesmo ocorrendo com a $\hat{P}c$ e c $\hat{P}a'$.

Então temos que a $Pb + bPa' = 180^{\circ}$ e a $Pc + cPa' = 180^{\circ}$.

Somando as duas expressões, temos: $a\hat{P}b + a\hat{P}c + (b\hat{P}a' + c\hat{P}a') = 360^{\circ}$. Mas por (1) sabemos que $b\hat{P}c < b\hat{P}a' + c\hat{P}a'$, ou seja, temos $a\hat{P}b + a\hat{P}c + b\hat{P}c < 360^{\circ}$.

6.11. ÂNGULOS POLIÉDRICOS

<u>DEFINIÇÃO</u>: Dado <u>um número finito n</u> (n > 2) de semi-retas $\overrightarrow{Pa_1}$, $\overrightarrow{Pa_2}$, $\overrightarrow{Pa_3}$, ..., $\overrightarrow{Pa_n}$, de mesma origem P, tais que o plano de duas consecutivas ($\overrightarrow{Pa_1}$ e $\overrightarrow{Pa_2}$, $\overrightarrow{Pa_2}$ e $\overrightarrow{Pa_3}$, ..., $\overrightarrow{Pa_n}$ e $\overrightarrow{Pa_1}$) deixa as demais num mesmo semi-espaço, consideremos n semi-espaços E_1 , E_2 , E_3 , ..., E_n , cada um deles com origem no plano de duas semi-retas consecutivas e contendo as restantes.

 $\frac{\hat{A}ngulo\ poliédrico\ convexo}{\overrightarrow{Pa_1}$, $\overrightarrow{Pa_2}$, $\overrightarrow{Pa_3}$, ..., $\overrightarrow{Pa_n}$ é a interseção dos semi-espaços E_1 , E_2 , E_3 ,..., E_n .

$$P(a_1, a_2,...,a_n) = E_1 \cap E_2 \cap ... \cap E_n$$

EXERCÍCIOS

- 01. Verifique se existem os ângulos poliédricos cujas faces medem:
 - a) 70°, 80° e 130°
 - b) 90°, 120° 150°
 - c) 70°, 80°, 90° e 100°
- 02. Quais são os possíveis valores de x para que xº, 70º e 90º sejam faces de um triedro?
- 03. Se além das anteriores possuísse a condição: face x deve ser oposta ao maior diedro, qual seria a resposta?
- 04. Qual é o número máximo de arestas de um ângulo poliédrico cujas faces são todas de 50°?

6.12. POLIEDROS CONVEXOS

<u>DEFINIÇÃO</u>: Superfície poliédrica limitada convexa é a reunião de um número finito de polígonos planos e convexos (ou regiões poligonais convexas), tais que:

- a) dois polígonos não estão num mesmo plano;
- b) cada lado de um polígono é comum a dois e apenas dois polígonos;
- c) havendo lados de polígonos que estão em um só polígono, estes devem formar uma única poligonal fechada, plana ou não, chamada contorno;
- d) o plano de cada polígono deixa todos os outros polígonos num mesmo semi-espaço (condição de convexidade).

As superfícies poliédricas limitadas convexas que tem contorno são chamadas abertas. As que não têm, fechadas.

<u>Elementos</u>: as <u>faces</u> são os <u>polígonos</u>;

as <u>arestas</u> são os <u>lados dos polígonos</u>;

os <u>vértices</u> são os <u>vértices dos polígonos</u>;

os <u>ângulos</u> são os <u>ângulos dos polígonos</u>.

Exemplos:

<u>**DEFINIÇÃO:**</u> Um ponto é interior a uma superfície poliédrica convexa fechada (SPCF) quando uma semi-reta com origem neste ponto intercepta esta SPCF em apenas um ponto.

<u>DEFINIÇÃO</u>: Poliedro convexo é a união da superfície poliédrica convexa fechada (SPCF) com seus pontos internos.

RELAÇÃO DE EULER

PROPRIEDADE: Para todo poliedro convexo, ou para sua superfície, vale a relação

$$V - A + F = 2,$$

onde V é o número de vértices, A é o número de arestas e F é o número de faces do poliedro.

<u>Observação</u>: Para os poliedros abertos, vale a relação $V_a - A_a + F_a = 1$.

Exemplos:

POLIEDRO EULERIANO

<u>**DEFINIÇÃO:**</u> Os poliedros para os quais é válida a relação de Euler são chamados de poliedros Eulerianos.

Todo poliedro convexo é Euleriano, mas nem todo poliedro Euleriano é convexo.

SOMA DOS ÂNGULOS DAS FACES DE UM POLIEDRO CONVEXO

PROPRIEDADE: A soma dos ângulos de todas as faces de um poliedro convexo de V vértices é dada por: $S = (V - 2).360^{\circ}$.

De fato, sendo V o número de vértices, A o número de arestas e F o número de faces de um poliedro convexo, e sendo n_1 , n_2 , ..., n_F o número de lados de cada uma das faces, podemos calcular a soma dos ângulos de cada face. De acordo com o exercício 17 da página 38, temos:

$$\begin{split} S_1 &= (n_1 - 2).180^{\circ} \\ S_2 &= (n_2 - 2).180^{\circ} \\ ... \\ S_F &= (n_F - 2).180^{\circ} \\ S_1 + S_2 + ... + S_F &= (n_1 + n_2 + ... + n_F - 2F).180^{\circ} \\ \end{split}$$

 $S_1 + S_2 + ... + S_F$ é S, soma dos ângulos de todas as faces; e $n_1 + n_2 + ... + n_F$ é a soma de todos os lados das faces e é também o dobro do número de arestas, já que cada aresta é lado de duas faces. Assim,

$$S = (2A - 2F).180^{\circ}$$
 ou $S = (A - F).360^{\circ}$
Da relação de Euler: $V - 2 = A - F$.
Portanto, $S = (V - 2).360^{\circ}$.

EXERCÍCIOS

- 01. Qual é o número de vértices de um poliedro convexo que tem 30 arestas e 12 faces?
- 02. Um poliedro convexo de oito faces tem seis faces quadrangulares e duas hexagonais. Calcule o número de vértices.
- 03. Calcule a soma dos ângulos das faces de um poliedro convexo que possui 30 arestas e cujas faces são todas pentagonais.

POLIEDROS DE PLATÃO OU PLATÔNICOS

<u>DEFINIÇÃO</u>: Um poliedro é chamado poliedro de Platão, se e somente se, satisfaz as seguintes condições:

- a) todas as suas faces são polígonos com o mesmo número (n) de lados;
- b) todos os seus vértices são vértices de ângulos poliédri cos com o mesmo número (m) de arestas;
- c) é euleriano, ou seja, obdece à relação de Euler: V A + F = 2.

PROPRIEDADE: Existem cinco, e somente cinco, classes de poliedros de Platão.

Prova:

Seja um poliedro de Platão com: F faces, cada uma com n lados (n > 2); V vértices, sendo que cada um dos ângulos poliédricos tem m arestas (m > 2) e A arestas.

Logo, temos:

- (1) V A + F = 2 (pois é euleriano);
- (2) nF = 2A (pois cada uma das F faces tem n arestas e cada aresta está em duas faces);
- (3) mV = 2A (pois cada vértice V tem m arestas e cada aresta tem dois vértices como extremidades).

Substituindo (2) e (3) em (1) temos:
$$\frac{2A}{m} - A + \frac{2A}{n} = 2$$

Dividindo por 2A temos: $\frac{1}{m} - \frac{1}{2} + \frac{1}{n} = \frac{1}{A}$. Devemos verificar as condições de que n > 2 e m > 2.

Como A é o número de arestas, devemos ter, portanto: $\frac{1}{m} - \frac{1}{2} + \frac{1}{n} > 0$

Logo para cada n teremos valores para m, ou seja,

a) $n = 3 \Rightarrow$ faces triangulares

$$\frac{1}{m} - \frac{1}{2} + \frac{1}{3} > 0 \Rightarrow \frac{1}{m} - \frac{1}{6} > 0 \Rightarrow m < 6,$$

assim, m = 3; 4; ou 5 (pois m > 2 e inteiro)

b) $n = 4 \Rightarrow$ faces quadrangulares

$$\frac{1}{m} - \frac{1}{2} + \frac{1}{4} > 0 \Rightarrow \frac{1}{m} - \frac{1}{4} > 0 \Rightarrow m < 4,$$
assim, $m = 3$

c) $n = 5 \Rightarrow$ faces pentagonais

$$\frac{1}{m} - \frac{1}{2} + \frac{1}{5} > 0 \Rightarrow \frac{1}{m} - \frac{3}{10} > 0 \Rightarrow m < \frac{10}{3} \cong 3,333,$$
assim m = 3

d) Para $n \ge 6$ obtemos m sempre menor que 3, o que contradiz a condição inicial.

Há portanto, cinco classes de poliedros de Platão, são elas:

Primeira Classe: n = 3 e m = 3

Como $\frac{1}{m} - \frac{1}{2} + \frac{1}{n} = \frac{1}{A}$ então substituindo n = 3 e m = 3 temos A = 6. Como n.F = 2A, temos F = 4 e como m.V = 2A, temos V = 4.

Esta classe de poliedros de Platão inclui os poliedros que possuem quatro faces triangulares, conhecidos como <u>tetraedros</u> ("quatro faces", em grego).

Segunda Classe: n = 4 e m = 3

Analogamente, temos $\frac{1}{m} - \frac{1}{2} + \frac{1}{n} = \frac{1}{A}$, o que implica em A = 12, n.F = 2A : F = 6 e m.V = 2A, ou seja, V = 8.

Esta classe de poliedros de Platão inclui os poliedros que possuem seis faces quadrangulares, conhecidos como <u>hexaedros</u> ("seis faces").

Terceira Classe: n = 3 e m = 4

$$\frac{1}{m} - \frac{1}{2} + \frac{1}{n} = \frac{1}{A}, \text{ então A} = 12, \text{ n.F} = 2A :: F = 8 \text{ e}$$
 como m.V = 2A, temos V = 6.

Esta classe de poliedros de Platão inclui os poliedros que possuem oito faces triangulares, conhecidos como <u>octaedros</u> ("oito faces").

Quarta Classe: n = 5 e m = 3

$$\frac{1}{m} - \frac{1}{2} + \frac{1}{n} = \frac{1}{A}$$
, então A = 30, e n.F = 2A :. F = 12 e como m.V = 2A temos V = 20.

Esta classe de poliedros de Platão inclui os poliedros que possuem doze faces pentagonais, conhecidos como dodecaedros ("doze faces").

Quinta Classe: n = 3 e m = 5

$$\frac{1}{m} - \frac{1}{2} + \frac{1}{n} = \frac{1}{A}$$
, então $A = 30$, n. $F = 2A$ \therefore $F = 20$, e como m. $V = 2A$ temos $V = 12$.

Esta classe de poliedros de Platão inclui os poliedros que possuem vinte faces triangulares, conhecidos como icosaedros ("vinte faces").

Resumindo,

Classe	n	m	A	V	n	Nome
Primeira	3	3	6	4	4	Tetraedro
Segunda	4	3	12	8	6	Hexaedro
Terceira	3	4	12	6	8	Octaedro
Quarta	5	3	30	20	12	Dodecaedro
Quinta	3	5	30	12	20	Icosaedro

POLIEDROS REGULARES

<u>DEFINIÇÃO</u>: Um poliedro convexo é regular quando:

- a) suas faces são polígonos regulares e congruentes,
- b) seus ângulos poliédricos são congruentes.

PROPRIEDADE: Existem cinco, e somente cinco, tipos de poliedros regulares.

Prova:

Usando as condições para um poliedro ser regular, temos:

- a) suas faces são polígonos regulares e congruentes, então todas têm o mesmo número de arestas,
- b) seus ângulos poliédricos são congruentes, então todos têm o mesmo número de arestas.

Por estas conclusões temos que os poliedros regulares são poliedros de Platão e portanto, existem cinco e somente cinco tipos de poliedros regulares: tetraedro regular, hexaedro

regular, octaedro regular, dodecaedro regular e icosaedro regular.

CAPÍTULO 7 - GEOMETRIA ESPACIAL MÉTRICA

7.1. ESTUDO DO PRISMA

<u>DEFINIÇÃO</u>: Dados os planos α e β distintos e paralelos, o polígono $A_1A_2...A_n$ em α e o ponto B_1 em β, obtêm-se B_2 , B_3 , ..., B_n em β tais que $A_1B_1 \parallel A_2B_2 \parallel ... \parallel A_nB_n$.

Os pontos A₁, B₁, A₂, B₂, ...A_n, B_n são vértices de um poliedro denominado <u>prisma</u>.

<u>Elementos</u>: Os polígonos A₁A₂...A_n e B₁B₂...B_n são as bases do prisma;

A₁A₂ é uma aresta da base do prisma;

A₁B₁ é uma aresta lateral do prisma;

A₁B₁B₂A₂ é uma face lateral do prisma;

Observação: Os polígonos $A_1A_2...A_n\,$ e $B_1B_2...B_n\,$ são congruentes pois $\alpha \parallel \beta$ e as retas $A_1B_1,...,A_nB_n\,$ são paralelas.

SEÇÕES PLANAS NO PRISMA

<u>DEFINIÇÃO</u>: A interseção de um prisma com um plano paralelo às bases determina uma seção transversal.

Exemplo: $C_1C_2...C_n$.

O polígono determinado pela seção transversal é congruente as bases.

<u>DEFINIÇÃO</u>: A interseção de um prisma com um plano perpendicular às arestas laterais determina uma <u>seção reta</u> (ou ortogonal).

Exemplo: $D_1D_2...D_n$.

<u>DEFINIÇÃO</u>: A interseção de um prisma com um plano paralelo às aresta laterais determina uma <u>seção longitudinal</u>.

SUPERFÍCIES

<u>DEFINIÇÃO</u>: Superfície lateral é a reunião das faces laterais. A área desta superfície é chamada área lateral e indicada por A₁.

 $\underline{\textbf{DEFINIÇÃO}} : Superfície \ total \'e \ a \ reuni\~ao \ da \ superfície \ lateral \ com \ as \ bases. \ A \'area \ desta \ superfície \ \'e \ chamada \'area \ total \ e \ indicada \ por \ A_t.$

CLASSIFICAÇÃO

<u>DEFINIÇÃO</u>: Um prisma é <u>reto</u> quando as arestas laterais são perpendiculares às bases, ou seja, suas bases são seções retas.

Num prisma reto, as faces laterais são retângulos.

A altura h do prisma reto tem a medida do comprimento da aresta lateral.

<u>DEFINIÇÃO</u>: Um prisma é <u>oblíquo</u> quando não for reto.

A altura de um prisma oblíquo relaciona-se com o comprimento l da aresta lateral e o ângulo α de inclinação do prisma, que é o ângulo entre a aresta lateral e o plano da base.

<u>DEFINIÇÃO</u>: Um prisma é regular quando as suas bases são polígonos regulares.

NATUREZA DE UM PRISMA

Um prisma será triangular, quadrangular, pentagonal, hexagonal, etc, conforme sua base seja um triângulo, um quadrado, etc.

PARALELEPÍPEDO

<u>DEFINIÇÃO</u>: Um paralelepípedo é um prisma cujas bases são paralelogramos. A superfície total de um paralelepípedo é a reunião de seis paralelogramos.

<u>DEFINIÇÃO</u>: Um paralelepípedo reto é um prisma reto cujas bases são paralelogramos. A superfície total de um paralelepípedo reto é a reunião de quatro retângulos (faces laterais) com dois paralelogramos (bases).

<u>DEFINIÇÃO</u>: Um paralelepípedo reto-retângulo ou paralelepípedo retângulo, ou ortoedro é um prisma reto cujas bases são retângulos. A superfície total de um paralelepípedo retângulo é a reunião de seis retângulos.

<u>DEFINIÇÃO</u>: Um cubo é um paralelepípedo retângulo cujas arestas são congruentes.

ESTUDO DO PARALELEPÍPEDO RETÂNGULO

Consideremos um paralelepípedo retângulo. O mesmo possui 12 arestas, sendo 4 de comprimento a, 4 de comprimento b e 4 de E comprimento c. Assim, ele fica caracterizado por três medidas: a, b e c (comprimento, largura e altura).

a) diagonal

O paralelepípedo retângulo possui quatro diagonais. Como d é diagonal do paralelepípedo retângulo e $\overline{BD} \perp \overline{BF} = c$ então $d^2 = e^2 + c^2$ sendo e diagonal da face retangular, então $e^2 = a^2 + b^2$, logo, $d^2 = a^2 + b^2 + c^2$ ou $d = \sqrt{a^2 + b^2 + c^2}$.

b) área de uma face

A área de cada face é dada pelo produto de dois lados não paralelos, ou seja, $A_{ABCD} = A_{EFGH} = a.b$; $A_{ABFE} = A_{DCGH} = a.c$; $A_{ADHE} = A_{BCGF} = b.c$.

c) área total

É dada pela soma das áreas das faces, ou seja, $A_{ABCD} + A_{EFGH} + A_{ABFE} + A_{DCGH} + A_{ADHE} + A_{BCGF} = 2(a.b + a.c + b.c)$

d) volume

O volume de um sólido é um número real positivo associado a ele tal que:

- 1) sólidos congruentes têm o mesmo volume;
- 2) se um sólido S é a reunião de dois sólidos S_1 e S_2 que não têm pontos interiores comuns, então o volume de S é a soma dos volumes de S_1 com S_2 .

AXIOMA 7.1. O volume de um paralelepípedo retângulo de arestas a, b e c é V = a.b.c, ou seja, é dado pelo produto da área da base pela altura.

EXERCÍCIO: Dado um cubo de aresta l, calcule em função de l a diagonal, a área total e o volume do cubo.

7.2. Princípio de Cavalieri (ou Postulado de Cavalieri)

Dados alguns sólidos e um plano, se todo plano paralelo ao plano dado que intercepta um dos sólidos interceptar também os outros e se as seções assim obtidas tiverem áreas iguais, então os sólidos têm volumes iguais.

Quando as seções têm sempre a mesma área (seções equivalentes), os sólidos têm sempre o mesmo volume (sólidos equivalentes).

VOLUME DE UM PRISMA QUALQUER

Utilizando o princípio de Cavalieri, podemos calcular o volume de um prisma qualquer. São dados um paralelepípedo retângulo e um prisma tais que possuam bases equivalentes apoiadas em um plano α e alturas iguais.

Um plano β qualquer, paralelo ao plano α , intercepta os dois sólidos em suas seções transversais.

Como as seções transversais de um prisma são congruentes às suas bases e as bases dos dois prismas são equivalentes, as seções determinadas pelo plano β são equivalentes.

Assim, pelo princípio de Cavalieri, os sólidos são equivalentes.

Como o volume do paralelepípedo retângulo é dado pelo produto da área da base pela altura (a.b.h) e a área da base do paralelepípedo é a mesma que a do prisma, então <u>o volume do prisma é dado pelo produto da área da base pela altura</u>.

ESTUDO DO PRISMA REGULAR

Sabemos que um prisma é dito regular se e somente se ele é reto e sua base é um polígono regular.

1) Prisma Regular Triangular

a) área da base

É a área do triângulo equilátero de lado b.

$$b^2 = h_{\rm f}^2 + \left(\frac{b}{2}\right)^2$$

$$h_{f^2} = b^2 - \frac{b^2}{4}$$

$$\therefore h_{f^2} = \frac{3b^2}{4}$$

$$\therefore h_f = \frac{b\sqrt{3}}{2}$$

$$A_b = \frac{b.h_f}{2} = \frac{b^2\sqrt{3}}{4}$$

b) <u>área total</u>

$$A_t = A_1 + 2A_b$$

$$A_t = 3.(b.h) + 2.\left(\frac{b^2\sqrt{3}}{4}\right)$$

c) volume

$$V = A_b.h$$

$$V = \left(\frac{b^2 \sqrt{3}}{4}\right).h$$

2) Prisma Regular Hexagonal

a) área da base

É a área do hexágono regular de lado b.

$$A_b = p.a = (3b).a = 3b.a$$

b) área total

$$A_t = A_1 + 2A_b$$

 $At = 6(b.h) + 6b.a$

c) volume

$$V = A_b.h$$

$$V = 3b.a.h$$

3) Prisma Regular Quadrangular (Hexaedro Regular)

a) área da base

É a área do quadrado de lado b.

$$A_b = b^2$$

b) <u>área total</u>

$$A_t = A_l + 2A_b$$

$$At = 4.b^2 + 2.b^2 = 6.b^2$$

c) <u>volume</u>

$$V = A_b.h = A_b.b$$

$$V = b^2.b = b^3$$

EXERCÍCIOS

- 01. A aresta da base de um prisma regular hexagonal mede 4m; a altura desse prisma tem a mesma medida do apótema da sua base. Calcular a área total e o volume do prisma.
- 02. Calcular o volume de um prisma regular quadrangular cuja altura é o dobro da aresta da base e cuja área lateral mede 200cm².

- 03. Demonstre que as diagonais de um paralelepípedo retângulo são congruentes.
- 04. Calcular o volume de ar contido em um galpão cuja forma e dimensões são dadas pela figura abaixo.

7.3. ESTUDO DA PIRÂMIDE

Elementos: - O polígono A₁A₂...A_n é a base da pirâmide;

- $\overline{A_1A_2}$ é uma aresta da base da pirâmide;
- $\overline{VA_1}$ é uma aresta lateral da pirâmide;
- VA₁A₂ é uma face lateral da pirâmide;
- a distância h do ponto V ao plano α da base é a altura da pirâmide.

SEÇÃO TRANSVERSAL

<u>DEFINIÇÃO</u>: A interseção de uma pirâmide com um plano paralelo à base determina uma seção transversal.

Exemplo: B₁B₂...B_n.

RAZÃO DE SEMELHANÇA

Os polígonos $A_1A_2...A_n$ e $B_1B_2...B_n$ são semelhantes, e a razão de semelhança é igual a $k = \frac{VB_1}{VA_1} = \frac{B_1B_2}{A_1A_2} = \frac{VB_2}{VA_2} = ..., pois \ B_1B_2 \parallel A_1A_2 \Longrightarrow \Delta VB_1B_2 \sim \Delta VA_1A_2; \Delta VB_2B_3 \sim \Delta VA_2A_3; \Delta VV''B_3 \sim \Delta VV'A_3, ...$

SUPERFÍCIES

 $\underline{\textbf{DEFINIÇÃO}} : \textbf{Superfície lateral \'e a reunião das faces laterals da pirâmide. A \'area desta superfície \'e chamada \'area lateral e indicada por <math>A_l$.}

<u>DEFINIÇÃO</u>: Superfície total é a reunião da superfície lateral com a superfície da base dapirâmide. A área desta superfície é chamada área total e indicada por A_t .

CLASSIFICAÇÃO

<u>DEFINIÇÃO</u>: Uma pirâmide é reta quando o vértice V é equidistante dos vértices da base.

<u>**DEFINIÇÃO:**</u> Pirâmide regular é aquela cuja base é um polígono regular e a projeção ortogonal do vértice sobre o plano da base é o centro da base.

Em uma pirâmide regular as arestas laterais são congruentes e as faces laterais são triângulos isósceles.

<u>**DEFINIÇÃO:**</u> Chama-se apótema de uma pirâmide regular a altura de uma face lateral (relativa ao lado da base). Chama-se apótema da base o apótema do polígono da base.

NATUREZA DE UMA PIRÂMIDE

Uma pirâmide será triangular, quadrangular, pentagonal, hexagonal, etc, conforme sua base seja um triângulo, um quadrado, etc.

TETRAEDRO

DEFINIÇÃO: Tetraedro é uma pirâmide triangular.

DEFINIÇÃO: Tetraedro regular é um aquele que possui as seis arestas congruentes entre si.

VOLUME DE UMA PIRÂMIDE

Considere inicialmente um prisma triangular ABC-DEF. Este pode ser decomposto em três pirâmides triangulares.

- 1º) considere o triângulo ABC como base e D o vértice otendo a pirâmide ABCD;
- 2º) considere DEFC como a segunda pirâmide, sendo C o vértice;

As duas pirâmides têm em comum a aresta \overline{DC} . A base ABC é congruente a DEF, pela definição de prisma, e ainda $\overline{DA} = \overline{FC} = h$.

Logo, as duas pirâmides têm a mesma base e mesma altura, portanto, tem o mesmo volume.

- 3º) considere novamente a pirâmide ABCD, de vértice C;
- 4º) considere a outra pirâmide DEBC, de vértice C.

Estas duas pirâmides têm bases congruentes ($\Delta ABD = \Delta BED$ por **LLL**) e mesma altura. Logo possuem o mesmo volume.

Logo, o prisma ABCDEF ficou dividido em três pirâmides de volumes iguais. O volume de cada pirâmide é um terço do volume do prisma.

Portanto,
$$V = \frac{1}{3}A_b.h$$

Generalizando para qualquer pirâmide, temos o mesmo volume pelo princípio de Cavalieri.

ESTUDO DA PIRÂMIDE REGULAR

1) <u>Pirâmide Regular Triangular</u>

a) área da base

É a área do triângulo equilátero de lado b.

$$A_b = \frac{b \cdot h_b}{2} = \frac{b^2 \sqrt{3}}{4}$$

$$A_t = A_1 + A_b$$

$$\begin{split} A_l &= 3. \, \frac{b.h_f}{2} \\ h_f{}^2 &= \, a^2 - \left(\frac{b}{2}\right)^2 = a^2 - \frac{b^2}{4} \quad \therefore \ h_f = \frac{1}{2} \sqrt{4a^2 - b^2} \\ A_t &= \frac{3}{4} \, b \sqrt{4a^2 - b^2} + \left(\frac{b^2 \sqrt{3}}{4}\right) \end{split}$$

c) volume

$$V = \frac{1}{3} A_b.h$$

$$V = \left(\frac{b^2 \sqrt{3}}{12}\right).h$$

2) Tetraedro Regular

a) área da base

É a área do triângulo equilátero de lado a.

$$A_b = \frac{a.h_b}{2} = \frac{a^2\sqrt{3}}{4}$$

b) área total

$$A_t = 4.A_b = a^2 \sqrt{3}$$

c) volume

$$V = \frac{1}{3} A_b.h$$

$$\therefore h = \frac{a\sqrt{6}}{3}$$

$$\therefore V = \frac{1}{3} \frac{a^2 \sqrt{3}}{4} \frac{a \sqrt{6}}{3} = \frac{a^3 \sqrt{2}}{12}.$$

TRONCO DE PIRÂMIDE

<u>DEFINIÇÃO</u>: Dada uma pirâmide regular de vértice V, base $A_1A_2...A_n$ e altura H, considere a seção $B_1B_2...B_n$ paralela à base e à distância h do vértice V. Obtemos assim uma pirâmide regular de vértice V e base $B_1B_2...B_n$ semelhante a primeira.

O sólido obtido pela eliminação da pirâmide de altura h é chamado tronco de pirâmide.

<u>Elementos</u>: B₁B₂...B_n é a base menor b;

 $A_1A_2...A_n$ é a base maior B;

as faces laterais B₁A₁A₂B₂,... são trapézios;

a) <u>área lateral</u>

É dada pela soma das áreas de cada face, ou seja:

$$A_l = \, A_{B_1 A_1 A_2 B_2} + A_{B_2 A_2 A_3 B_3} + ... \, \, + A_{B_{n-1} A_{n-1} A_n B_n} \, .$$

Se o tronco de pirâmide for regular, ou seja, obtido através de uma seção transversal sobre uma pirâmide regular, então a altura da face do tronco de pirâmide regular é chamada de apótema do tronco da pirâmide regular.

b) volume

 $V=V_1-V_2$, onde V_1 é o volume da pirâmide $VA_1A_2..A_n$ e V_2 é o volume da pirâmide $VB_1B_2...B_n$.

7.4. ESTUDO DO OCTAEDRO REGULAR

<u>**DEFINIÇÃO**</u>: A seção equatorial de um octaedro regular é definida pelo quadrado que divide o octaedro em duas pirâmides congruentes.

<u>Exemplo</u>: O quadrado ABCD divide o octaedro regular nas piramides V-ABCD e U-ABCD.

a) área de uma face

É a área do triângulo equilátero de lado a.

$$A_b = \frac{a.h_a}{2} = \frac{a^2\sqrt{3}}{4}$$

b) área total

$$A_t = 8.A_b = 2a^2\sqrt{3}$$

c) volume

A altura das pirâmides definidas pela seção equatorial ABCD é dada por:

$$h^2 = a^2 - \overline{V'C}^2 = a^2 - \left(\frac{a\sqrt{2}}{2}\right)^2 = a^2 - \frac{2a^2}{4} = \frac{a^2}{2}$$

$$\therefore h = \frac{a\sqrt{2}}{2}$$

Portanto, o volume do octaedro é dado por:

$$V = 2.\frac{1}{3}A_{ABCD}.h = \frac{2}{3}a^2\frac{a\sqrt{2}}{2} = \frac{a^3\sqrt{2}}{3}$$

7.5. ESTUDO DO ICOSAEDRO REGULAR

a) área de uma face

É a área do triângulo equilátero de lado a.

$$A_f = \frac{a.h}{2} = \frac{a^2\sqrt{3}}{4}$$

b) área total

$$A_t = 20.A_f = 5a^2\sqrt{3}$$

c) volume

Considere uma seção transversal do icosaedro regular passando por duas arestas opostas $\overline{\text{CD}}$ e $\overline{\text{EF}}$, e pelos pontos médios A e B de outras arestas opostas. Desta forma, temos um retângulo CDEF com lados a e d.

Como d é a diagonal do pentágono regular de lado a, temos que d = a $\frac{\sqrt{5}+1}{2}$.

Como $\overline{AD} = \overline{AE} = \overline{BE} = \overline{BC} = h$, alturas das faces do icosaedro, temos que $h = a \frac{\sqrt{3}}{2}$.

Do triângulo retângulo de catetos e e $\frac{a}{2}$ temos: $\overline{OE}^2 = e^2 + \left(\frac{a}{2}\right)^2 = \left(\frac{d}{2}\right)^2 + \left(\frac{a}{2}\right)^2$ (1).

Do triângulo retângulo de catetos ap e $\frac{2}{3}$ h temos: $\overline{OE}^2 = ap^2 + \left(\frac{2}{3}a\right)^2$ (2).

Igualando (1) e (2), encontramos o apótema do icosaedro:

$$ap = \sqrt{\left(\frac{a}{2}\right)^2 + \left(\frac{d}{2}\right)^2 + \left(\frac{2}{3}a\right)^2} = \sqrt{\frac{a^2}{4} + \frac{a^2}{4}\left(\sqrt{5} + 1\right)^2 + \frac{4a^2}{9}} = \frac{3 + \sqrt{5}}{4\sqrt{3}}a$$

Portanto, o volume do icosadro regular será igual à soma do volume das 20 pirâmides com bases iguais às faces do icosaedro, e cujas alturas são iguais ao apótema ap. Esta ideia é a mesma que utilizamos para calcular a área de um polígono regular de n lados, na página 121.

$$V = 20.\frac{1}{3} A_{f}.ap = \frac{5a^{3}}{12} (3 + \sqrt{5}).$$

<u>DEFINIÇÃO</u>: Um anti-prisma é um poliedro com dois polígonos congruentes de n lados, denominados bases, com 2n triângulos que unem os vértices das bases. Quando os polígonos são regulares, e as laterais formarem triângulos equiláteros o anti-prima é denominado arquimediano.

Um icosaedro pode ser decomposto em um anti-prisma arquimediano pentagonal e duas pirâmides de bases pentagonais, conforme mostra a figura ao lado.

Uma outra forma de deduzir o volume do icosaedro utiliza o cálculo do volume do anti-prisma e das duas pirâmides. Porém, trata-se de uma dedução um pouco mais trabalhosa do que a mostrada neste trabalho.

7.6. ESTUDO DO DODECAEDRO REGULAR

a) área de uma face

É a área do pentágono regular de lado a.

$$A_f = 5.A_{AOB} = 5.\frac{a.ap}{2}$$

Temos que $\overline{EC} \parallel \overline{AB}$, e \overline{AB} é o segmento áureo de \overline{EC} .

Logo,
$$\overline{EC} = \overline{AB} \frac{\sqrt{5} + 1}{2}$$

$$\therefore \ \frac{\overline{EC}}{2} = \overline{NC} = \overline{AB} \frac{\sqrt{5} + 1}{4} = a \frac{\sqrt{5} + 1}{4}$$

$$\therefore \overline{DN}^2 = \overline{CD}^2 - \overline{NC}^2 = a^2 - \left(a\frac{\sqrt{5} + 1}{4}\right)^2$$

$$\therefore \overline{DN} = \frac{a}{4}\sqrt{10 - 2\sqrt{5}}$$

Como
$$\triangle$$
CND ~ \triangle OMA, então temos: $\frac{ap}{\overline{NC}} = \frac{\overline{AM}}{\overline{DN}}$, ou seja, $\frac{ap}{a\frac{\sqrt{5}+1}{4}} = \frac{\frac{a}{2}}{a\frac{\sqrt{10-2\sqrt{5}}}{4}}$.

$$\therefore ap = a \frac{\sqrt{10 - 2\sqrt{5}}}{6\sqrt{5} - 10}$$

Logo,
$$A_f = 5 \cdot \frac{a \cdot ap}{2} = 5a^2 \frac{\sqrt{10 - 2\sqrt{5}}}{12\sqrt{5} - 20}$$

b) área total

$$A_t = 12. A_f = 12.5 a^2 \frac{\sqrt{10 - 2\sqrt{5}}}{12\sqrt{5} - 20} = 15 a^2 \frac{\sqrt{10 - 2\sqrt{5}}}{3\sqrt{5} - 5}.$$

c) volume

O dodecaedro pode ser decomposto em um hexaedro regular, e outros seis sólidos, como mostra a figura abaixo.

A aresta do hexaedro tem tamanho igual à diagonal do pentágono regular, ou seja, $c = a \frac{\sqrt{5} + 1}{2}$. Considere um dos 6 sólidos formados EGCFBA. Este sólido pode ser decomposto em um prisma AE'G'-BC'F' e duas pirâmides de bases quadrangulares B-CC'F'F e A-EE'G'G. Estas pirâmides podem ser agrupadas, formando uma pirâmide com base quadrangular de medidas c e 2x.

Temos que $\overline{E'C'}=\overline{AB}=a$, logo $x=\frac{c-a}{2}$. Analisando os triângulos retângulos $\Delta BCC'$ e $\Delta BHC'$, temos:

$$b^2 = a^2 - x^2 = a^2 - \left(\frac{c - a}{2}\right)^2$$
 (1) $e^2 = b^2 + \left(\frac{c}{2}\right)^2 = h^2 + \frac{c^2}{4}$ (2).

Igualando (1) e (2) temos:

$$a^2 - \left(\frac{c-a}{2}\right)^2 = h^2 + \frac{c^2}{4}$$

$$h^2 = a^2 - \left(\frac{c-a}{2}\right)^2 - \frac{c^2}{4} = \frac{a^2}{4}$$

$$\therefore h = \frac{a}{2}$$
.

Logo, o volume do prisma AE'G'-BC'F' é dado por:

$$V_1 = \frac{\text{c.a.h}}{2} = a \frac{\sqrt{5} + 1}{2} \frac{a}{2} . a = \frac{a^3}{4} (\sqrt{5} + 1)$$

O volume da pirâmide de base quadrangular de lados 2x e c é dado por:

$$V_2 = \frac{c.(c-a).h}{3} = a\frac{\sqrt{5}+1}{2}\left(a\frac{\sqrt{5}+1}{2}-a\right)\frac{a}{6}.$$

Logo,
$$V_1 + V_2 = \frac{7 + 3\sqrt{5}}{24}a^3$$

Portanto, o volume do dodecaedro é dado por:

$$V = 6.(V_1 + V_2) + c^3 = 6.\frac{7 + 3\sqrt{5}}{24}a^3 + \left(a\frac{\sqrt{5} + 1}{2}\right)^3 = \frac{15 + 7\sqrt{5}}{4}a^3.$$

Corpos Redondos e Sólidos de Revolução

7.7. ESTUDO DO CILINDRO

<u>DEFINIÇÃO</u>: Cilindro circular é um prisma de base regular com o número de vértices das bases tendendo ao infinito. Quando as arestas são perpendiculares às bases, temos o cilindro circular reto.

Uma definição análoga para cilindros é a seguinte:

<u>**DEFINIÇÃO:**</u> Cilindro circular é um prisma de base regular com a medida da área de cada face lateral tendendo a zero.

Elementos: - as arestas são denominadas geratrizes do cilindro;

- suas bases são circunferências que estão contidas em planos paralelos;
- a reta que contém os centros das circunferências é o eixo do cilindro;
- a altura do cilindro é a distância dos planos das bases;
- R é o raio da base do cilindro.

O cilindro circular reto é um dos sólidos de revolução. A altura do cilindro circular reto é a geratriz do mesmo. Uma definição para este tipo de cilindros é a seguinte:

<u>**DEFINIÇÃO:**</u> Cilindro de rotação ou de revolução é o sólido gerado pela rotação de um retângulo em torno de um eixo que contém um de seus lados.

SEÇÕES DO CILINDRO DE REVOLUÇÃO

<u>**DEFINIÇÃO:**</u> Seção transversal de um cilindro de rotação é um círculo paralelo às bases e congruente a elas.

<u>**DEFINIÇÃO:**</u> Seção longitudinal ou meridiana de um cilindro de rotação é um retângulo de lados g e 2R que contém o eixo do cilindro.

Observação: Um cilindro circular é oblíquo quando a geratriz não é perpendicular ao círculo

da base. O cilindro circular oblíquo não é um cilindro de rotação.

<u>**DEFINIÇÃO:**</u> Cilindro equilátero é o que possui como seção meridiana um quadrado. No cilindro equilátero, g = 2R.

Área Total:

É dada pela soma da área lateral com a área das bases.

$$A_1 = 2\pi r.h e A_b = \pi r^2$$
, assim $A_t = A_1 + 2A_b = 2\pi r.h + 2\pi r^2 = 2\pi r(h + r)$.

Volume:

Como, por definição, um cilindro é um prisma com o número de vértices da base tendendo ao infinito, o volume do cilindro é calculado da mesma maneira do que o volume do prisma. Desta forma, o volume do cilindro é igual ao produto da área da base pela altura.

$$V = \pi R^2.h = \pi R^2.g$$

EXERCÍCIO: Deduzir o volume do cilindro utilizando o princípio de Cavalieri.

7.8. ESTUDO DO CONE

<u>DEFINIÇÃO</u>: Cone circular é a pirâmide de base regular cujo número de vértices da base tende ao infinito. Quando a pirâmide for reta, temos o cone circular reto.

- h é a altura do cone;
- sua base é uma circunferência:
- R é o raio da base do cone;
- no cone circular reto, $g^2 = h^2 + R^2$.

Uma definição análoga para cones é a seguinte:

<u>DEFINIÇÃO</u>: Cone circular é a pirâmide de base regular cuja medida da área de cada face lateral tende a zero.

O cone circulare reto é um sólido de revolução. Uma definição para este cone circular é dada da seguinte forma:

<u>**DEFINIÇÃO:**</u> Cone de rotação ou de revolução é o sólido gerado pela rotação de um triângulo retângulo em torno de um eixo que contém um de seus catetos.

SEÇÕES DO CONE DE REVOLUÇÃO

<u>DEFINIÇÃO</u>: Seção transversal de um cone de rotação é um círculo paralelo à base.

Da semelhança de triângulos temos: $\frac{H}{h} = \frac{R}{r}$

<u>**DEFINIÇÃO:**</u> Seção longitudinal ou meridiana de um cone de revolução é um triângulo isósceles de base 2R e lados g cuja altura é a altura do cone.

<u>Observação</u>: Um cone circular é oblíquo quando o eixo não é perpendicular ao círculo da base. O cone circular oblíquo não é um cone de rotação.

<u>DEFINIÇÃO</u>: Cone equilátero é o que tem por seção meridiana um triângulo equilátero. No cone equilátero, g = 2R.

Área Total:

É dada pela soma da área lateral com a área da base.

 $A_l = \frac{g^2 \theta}{2} \text{ (área do setor circular de raio g e comprimento } 2\pi R) e A_b = \pi R^2, assim A_t = A_l + \frac{g^2 \theta}{2}$

$$A_b = \frac{g^2 \theta}{2} + \pi R^2.$$

Volume:

Por definição, um cone circular é uma pirâmide de base regular com o número de vértices da base tendendo ao infinito. Por este motivo, o volume do cone é calculado do mesmo modo que o volume da pirâmide. Deste modo, o volume de um cone é igual a um terço do produto da área da sua base por sua altura, ou seja,

$$V = \frac{1}{3}\pi R^2 h.$$

EXERCÍCIO: Deduzir o volume de um cone utilizando o princípio de Cavalieri.

TRONCO DE CONE

DEFINIÇÃO: Dado um cone de revolução de vertice V, altura H e raio da base R, considere a seção transversal à distância d da base.
Obtemos assim um cone de revolução de vértice V, altura h = (H - d) e raio da base r.
O sólido obtido pela eliminação do cone de altura h é chamado tronco de cone, este possui duas bases circulares de raios r e R e altura d.

<u>Observação</u>: Na figura temos triângulos semelhantes, logo $\frac{H}{h} = \frac{R}{r}$ ou $\frac{h+d}{h} = \frac{R}{r}$.

Área Lateral:

A área lateral do tronco de cone é a diferença entre as áreas laterais dos dois cones semelhantes, ou seja, $A_1 = \frac{G^2\theta}{2} - \frac{g^2\theta}{2} = (G-g)\frac{\theta}{2}$.

Área Total:

A área total do tronco de cone é a soma da área lateral com a área das bases:

At =
$$(G-g)\frac{\theta}{2} + 2\pi r^2 + 2\pi R^2 = (G-g)\frac{\theta}{2} + 2\pi (r^2 + R^2)$$
.

Volume:

O volume do tronco de cone é a diferença entre os volumes dos dois cones semelhantes:

$$V = \frac{1}{3}\pi R^{2}H - \frac{1}{3}\pi r^{2}h = \frac{1}{3}\pi (R^{2}H - r^{2}h).$$

7.9. ESTUDO DA ESFERA

<u>**DEFINIÇÃO:**</u> Esfera é o lugar geométrico dos pontos com distância menor ou igual do que uma constante R de um ponto fixo O.

<u>Elementos</u>: - o ponto fixo O é denominado centro da esfera; - a distância constante R é o raio da esfera.

<u>DEFINIÇÃO</u>: A superfície esférica é o lugar geométrico dos pontos equidistantes de um ponto fixo O a uma distância R.

A esfera é um sólido de revolução. Outras definições para esfera e superfície esférica são as seguintes:

<u>DEFINIÇÃO</u>: Esfera é o sólido gerado pela rotação de um semi-círculo em torno de um eixo que contém o seu diâmetro.

<u>DEFINIÇÃO</u>: Superfície esférica é a superfície gerada pela rotação de uma semi-circunferência em torno de um eixo que contém o seu diâmetro.

SEÇÕES NA ESFERA

A seção de uma esfera de raio R por um plano a uma distância h de seu centro é um círculo de raio r tal que

$$R^2 = h^2 + r^2$$
, ou seja, $r^2 = R^2 - h^2$.

O círculo máximo da esfera tem raio igual ao da esfera.

A seção de uma superfície esférica de raio R por um plano a uma distância h de seu centro O é um circunferência de raio r tal que

$$R^2 = h^2 + r^2$$
.

A circunferência máxima da superfície esférica tem raio igual ao da superfície esférica.

VOLUME DA ESFERA

Para calcular o volume de uma esfera de raio R utilizamos o princípio de Cavalieri com um cilindro de altura $2R = \overline{AB} = \overline{A'B'}$ e base de raio R. Considere os cones circulares retos com vértices coincidentes V no interior do cilindro, alturas iguais a R e com as bases coincidentes com as bases do cilindro.

Considere o sólido gerado pela diferença entre o cilindro e os cones circulares. Usando o princípio de Cavalieri, a seção plana tranversal do cilindro que passa por A e A' define as bases coincidentes de um cone com o cilindro e o ponto A da esfera. Portanto, esta seção não possui área.

As demais seções de planos entre A e O definem círculos de raio r na esfera, e coroas circulares de raios R e h no sólido considerado. As áreas podem ser calculadas da seguinte forma:

$$A_{circulo} = \pi r^2 = \pi \left(R^2 - h^2\right)$$

$$A_{coroa} = \pi R^2 - \pi h^2 = \pi (R^2 - h^2)$$

Quando o plano passar por O e V, temos os círculos de raios R definidos na esfera e no sólido considerado. Entre O e B as seções planas são análogas.

Logo, para todos os planos paralelos à base do cilindro temos seções equivalentes, e o volume da esfera é igual ao volume do cilindro menos os volumes dos cones, ou seja,

$$V = \pi R^{2}.(2R) - 2\frac{1}{3}\pi R^{2}R = 2\pi R^{3} - \frac{2}{3}\pi R^{3} = \frac{4}{3}\pi R^{3}.$$

ÁREA DA SUPERFÍCIE ESFÉRICA

Para calcular a área da superfície de uma esfera de raio R, considere uma esfera com raio r < R. Suponha que as duas esferas sejam concêntricas, onde d = R - r.

A razão entre a diferença dos volumes e a diferença entre os raios aproxima-se da área da superfície quando d tende a zero. Os volumes da esfera maior e da menor são:

$$V_{M} = \frac{4}{3}\pi R^{3} \text{ e } V_{m} = \frac{4}{3}\pi r^{3} = \frac{4}{3}\pi (R - d)^{3} = \frac{4}{3}\pi (R^{3} - 3R^{2}d + 3Rd^{2} - d^{3}).$$

Subtraindo os volumes temos:

$$V_{M} - V_{m} = \frac{4}{3}\pi R^{3} - \frac{4}{3}\pi \left(R^{3} - 3R^{2}d + 3Rd^{2} - d^{3}\right) = \frac{4}{3}\pi \left(3R^{2}d - 3Rd^{2} + d^{3}\right).$$

A razão da diferença dos volumes pela diferença dos raios é:

$$\frac{V_{M}-V_{m}}{d} = \frac{4}{3}\pi (3R^{2}-3Rd+d^{2}).$$

Quanto menor for d, mais a razão fica mais próxima da área da superfície.

Quando d = 0, temos a área lateral:

$$A_1 = 4\pi R^2$$
.

CUNHA E FUSO

<u>**DEFINIÇÃO:**</u> Cunha esférica é o sólido obtido de uma rotação incompleta de um semi-círculo em torno de um eixo que contém o seu diâmetro.

O volume de uma cunha esférica é proporcional ao ângulo $\boldsymbol{\theta}$ da rotação que a gerou.

<u>DEFINIÇÃO</u>: Fuso esférico é a superfície obtida de uma rotação incompleta de uma semi-circunferência em torno de um eixo que contém o seu diâmetro.

A área do fuso esférico é proporcional ao ângulo $\,\theta\,$ da rotação que o gerou.

EXERCÍCIOS

01. Uma ampulheta repousa numa mesa como mostra a figura abaixo. (o cone B completamente cheio de areia). A posição da apulheta é invertida. Neste instante, cada cone contém a metade da areia, formando-se um cone mostrado na figura ao lado. Qual é a altura deste cone?

- 02. Um ponto luminoso está situado a uma distância d de uma esfera cujo raio é o dobro de d. Sabendo-se que o comprimento t do raio luminoso que tangencia a esfera é igual a $3\sqrt{5}$ cm:
 - calcular o volume V da esfera;
 - calcular a área lateral A da superfície cônica gerada pelos raios luminosos de comprimeto t que tangenciam a esfera;
 - calcular a área S da porção iluminada da esfera.
- 03. Num tronco de cone reto, os perímetros das bases são 16π cm e 8π cm e a geratriz mede 5 cm. Calcular o volume do tronco.
- 04. Se S é a área total de um cilindro circular reto de altura h, e se m é a razão direta entre a área lateral e a soma das áreas das bases, encontrar o valor de h em função dos dados.
- 05. Uma laranja pode ser considerada uma esfera de raio R, composta por 12 gomos exatamente iguais. Calcular a superfície total de cada gomo.
- 06. Se numa esfera de raio R, circunscrevemos um cone circular reto cuja geratriz é igual ao diâmetro da base, então a expressão do volume deste cone em função do raio da esfera é:
- 07. Considere o tetraedro regular inscrito em uma esfera de raio R, onde R mede 3 cm. Calcular a soma das medidas de todas as arestas do tetraedro.

REFERÊNCIAS BIBLIOGRÁFICAS

- 01. ADAM, Pedro Puig. Geometria Metrica. Nuevas Gráficas.
- 02. BARBOSA, João Lucas Marques. *Geometria Euclidiana Plana*. Sociedade Brasileira de Matemática. Rio de Janeiro.
- 03. BEZERRA, Manoel Jairo. Curso de Matemática. Companhia Editora Nacional. São Paulo.
- 04. CHAPUT, F. Ignace. Elementos de Geometria. F. Briguiet e Cia. Editros.
- 05. DOLCE, Osvaldo e POMPEO, José Nicolau. *Fundamentos de Matemática Elementar*. Vols 9 e 10. Atual Editora LTDA.
- 06. GONÇALVES Jr, Oscar. *Matemática por Assunto- Geometria Plana e Espacial*. Vol 6. Editora Scipione.
- 07. MARCONDES, Oswaldo. Geometria. Editora do Brasil S.A. São Paulo.
- 08. MARMO, Carlos M.B. Curso de Desenho. Editora Scipione.
- 09. PIERRO NETTO, Scipione di; GÔES, Célia Contin. *Matemática na Escola Renovada*. Vol 1, 2 e 3. Livreiros Editores.
- 10. PUTNOKI, José Carlos. *Elementos de Geometria e Desenho Geométrico*. Vol 1, 2 e 3. Editora Scipione.
- 11. RANGEL, Alcyr Pinheiro. *Poliedros*. Livros Técnicos e Científicos.
- 12. REZENDE, Eliane Quelho Frota; QUEIROZ, Maria Lucia Bontorim. *Geometria Euclidiana Plana e construções geométricas*. Editora da UNICAMP.