University of Southern California Ming Hsieh Department of Electrical Engineering EE 348L - Electronic Circuits Spring 2016

Homework 4 Solutions

5.6
$$k_n = 5 \text{ mA/V}^2$$
, $V_{tn} = 0.5 \text{ V}$,
small v_{DS}
 $i_D = k_n (v_{GS} - V_t) v_{DS} = k_n v_{OV} v_{DS}$
 $g_{DS} = \frac{1}{r_{DS}} = k_n v_{OV}$

V _{GS} (V)	V _{ov} (V)	g _{OS} (mA/V)	r_{DS} (Ω)
0.5	0	0	8
1.0	0.5	2.5	400
1.5	1.0	5.0	200
2.0	1.5	7.5	133
2.5	2.0	10	100

5.10
$$L_{\min} = 0.25 \, \mu \text{m}$$

$$t_{ox} = 6 \text{ nm}$$

$$\mu_n = 460 \frac{\text{cm}^2}{\text{V} \cdot \text{s}} = 460 \times 10^{-4} \frac{\text{m}^2}{\text{V} \cdot \text{s}}$$

(a)
$$C_{ox} = \frac{\epsilon_{ox}}{t_{ox}} = \frac{34.5 \text{ pF/m}}{6 \text{ nm}}$$

$$= 5.75 \times 10^{-3} \, \frac{F}{m^2} \left(\frac{pF}{\mu m^2} \right)$$

$$k_n' = \mu_n C_{ox} = 265 \,\mu\text{A/V}^2$$

(b) For
$$\frac{W}{L} = \frac{20}{0.25}$$
, $k_n = 21.2 \text{ mA/V}^2$

$$\therefore 0.5 \text{ mA} = I_D = \frac{1}{2} k_{\pi} V_{OV}^2$$

$$V_{oV} = 0.22 \text{ V}$$

$$V_{GS} = 0.72 \text{ V}$$

$$V_{DS} \ge 0.22 \text{ V}$$

(c)
$$g_{DS} = \frac{1}{100 \Omega} = k_n V_{OV}$$

$$V_{ov} = 0.47 \text{ V}.$$

$$V_{GS} = 0.97 \text{ V}.$$

L (μm)	0.5	0.25	0.18	0.13
t _{ax} (nm)	10	5	3.6	2.6
$C_{ox}\left(\frac{fF}{\mu m^2}\right)$ $\epsilon_{ox} = 34.5 \text{ pF/m}$	3.45	6.90	9.58	13.3
$k'_n \left(\frac{\mu A}{V^2}\right)$ $(\mu_n = 500 \text{ cm}^2/\text{V} \cdot \text{s})$	173	345	479	665
$k_{\pi}\left(\frac{\text{mA}}{\text{V}^2}\right)$				
for $\frac{W}{L} = 10$	1.73	3.45	4.79	6.65
$A(\mu m^2)$ for $\frac{W}{L} = 10$	2.50	0.625	0.324	0.169
$V_{DD}(\mathbf{V})$	5	2.5	1.8	1.3
$V_t(V)$	0.7	0.5	0.4	0.4
$I_D(\text{mA})$ for $V_{GS}=V_{DS}=V_{DD}, I_D=rac{1}{2}k_n(V_{DD}-V_t)^2$	16	6.90	4.69	2.69
$P(\text{mW})$ $P = V_{DD}I_D$	80	17.3	8.44	3.50
$\frac{P}{A}\left(\frac{\text{mW}}{\text{\mu m}^2}\right)$	32	27.7	26.1	20.7
Devices Chip	n	<u>4n</u>	7.72n	14.8n

5.17 For triode-region operation with v_{DS} small,

$$i_D \simeq k_n (v_{GS} - V_t) v_{DS}$$

Thus

$$r_{DS} \equiv \frac{v_{DS}}{i_D} = \frac{1}{k_n(v_{GS} - V_t)}$$

$$1 = \frac{1}{k_n(1.2 - 0.8)} = \frac{1}{0.4 k_n}$$

$$\Rightarrow k_n = 2.5 \text{ mA/V}$$

$$r_{DS} = \frac{1}{2.5(V_{GS} - 0.8)} \quad (k\Omega)$$

$$0.2 = \frac{1}{2.5(V_{GS} - 0.8)}$$

 $\Rightarrow V_{GS} = 2.8 \text{ V}$

For a device with twice the value of W, k_n will be twice as large and the resistance values will be half as large: 500 Ω and 100 Ω , respectively.

5.19 For $V_{GS} = V_{DS} = 1$ V, the MOSFET is operating in saturation,

$$I_D = \frac{1}{2}k_n(V_{GS} - V_t)^2$$

$$0.4 = \frac{1}{2}k_n(1 - V_t)^2$$
(1)

$$0.1 = \frac{1}{2}k_n(0.8 - V_t)^2 \tag{2}$$

Dividing Eq. (1) by Eq. (2) and taking square roots gives

$$2 = \frac{1 - V_t}{0.8 - V_t}$$

$$\Rightarrow V_t = 0.6 \text{ V}$$

Substituting in Eq. (1), we have

$$0.4 = \frac{1}{2}k_n \times 0.4^2$$

$$\Rightarrow k_n = 5 \text{ mA/V}^2$$

5.24 (a) Refer to Fig. P5.24. For saturation-mode operation of an NMOS transistor, $v_{DG} \ge -V_{tn}$; thus $v_{DG} = 0$ results in saturation-mode operation. Similarly, for a

p-channel MOSFET, saturation-mode operation is obtained for $v_{GD} \ge -|V_{\psi}|$, which includes $v_{GD} = 0$. Thus, the diode-connected MOSFETs of Fig. P5.24 have the i-v relationship

$$i = \frac{1}{2}k'\left(\frac{W}{L}\right)(v - |V_t|)^2 \qquad (1)$$

where k' represents k'_n in the NMOS case and k'_p in the PMOS case.

5.27
$$V_{DS} = V_D - V_S$$
 $V_{GS} = V_G - V_S$
 $V_{OV} = V_{GS} - V_t = V_{GS} - 1.0$

According to Table 5.1, three regions are possible.

Case	v_{S}	V_G	V _D	V_{GS}	V _{OV}	V _{DS}	Region of operation
a	+1.0	+1.0	+2.0	0	-1.0	+1.0	Cutoff
b	+1.0	+2.5	+2.0	+1.5	+0.5	+1.0	Sat.
с	+1.0	+2.5	+1.5	+1.5	+0.5	+0.5	Sat.
d	+1.0	+1.5	0	+0.5	-0.5	-1.0	Sat.*
e	0	+2.5	1.0	+2.5	+1.5	+1.0	Triode
f	+1.0	+1.0	+1.0	0	-1.0	0	Cutoff
g	-1.0	0	0	+1.0	0	+1.0	Sat.
h	-1.5	0	0	+1.5	+0.5	+1.5	Sat.
i	-1.0	0	+1.0	+1.0	0	+2.0	Sat.
j	+0.5	+2.0	+0.5	+1.5	+0.5	0	Triode

^{*} With the source and drain interchanged.

5.28 The cutoff-saturation boundary is determined by $v_{GS} = V_t$, thus $v_{GS} = 0.4$ V at the boundary.

The saturation–triode boundary is determined by $v_{GD} = V_t$, and $v_{DS} = V_{DD} = 1$ V, and since $v_{GS} = v_{GD} + v_{DS}$, one has $v_{GS} = 0.4 + 1.0 = 1.4$ V at the boundary.

5.40 PMOS with $V_{tp} = -1 \text{ V}$

Case	Vs	V_G	V_D	V_{SG}	$ V_{OV} $	V _{SD}	Region of operation
a	+2	+2	0	0	0	2	Cutoff
b	+2	+1	0	+1	0	2	Cutoff-Sat.
c	+2	0	0	+2	1	2	Sat.
d	+2	0	+1	+2	1	1	Sat-Triode
e	+2	0	+1.5	+2	1	0.5	Triode
f	+2	0	+2	+2	1	0	Triode

5.44

Since $V_{DG} > 0$, the MOSFET is in saturation.

$$I_{D} = \frac{1}{2} \mu_{\pi} C_{ox} \frac{W}{L} V_{OV}^{2}$$

$$0.1 = \frac{1}{2} \times 0.4 \times \frac{5}{0.4} \times V_{OV}^{2}$$

$$\Rightarrow V_{OV} = 0.2 \text{ V}$$

$$V_{GS} = V_{t} + V_{OV} = 0.5 + 0.2 = 0.7$$

$$V_{S} = 0 - V_{GS} = -0.7 \text{ V}$$

$$R_{S} = \frac{V_{S} - (-1)}{I_{D}} = \frac{-0.7 + 1}{0.1} = 3 \text{ k}\Omega$$

$$R_{D} = \frac{1 - V_{D}}{I_{D}} = \frac{1 - 0.3}{0.1} = \frac{0.7}{0.1} = 7 \text{ k}\Omega$$

5.55 (a) Refer to Fig. P5.55(a): Assuming saturation-mode operation, we have

$$I_D = \frac{1}{2} k_n V_{OV}^2$$

$$2 = \frac{1}{2} \times 4 V_{ov}^2$$

$$\Rightarrow V_{OV} = 1 \text{ V}$$

$$V_{GS} = |V_t| + V_{OV} = 1 + 1 = 2 \text{ V}$$

$$V_1 = 0 - V_{GS} = -2 \text{ V}$$

$$V_2 = 5 - 2 \times 2 = +1 \text{ V}$$

Since $V_{DG} = +1$ V, the MOSFET is indeed in saturation.

Refer to Fig. P5.55(b): The transistor is operating in saturation, thus

$$I_D = \frac{1}{2} k_n V_{OV}^2$$

$$2 = \frac{1}{2} \times 4 \times V_{OV}^2 \Rightarrow V_{OV} = 1 \text{ V}$$

$$V_{GS} = 2 \text{ V}$$

$$\Rightarrow V_3 = 2 \text{ V}$$

Refer to Fig. P5.55(c): Assuming saturation-mode operation, we have

$$I_D = \frac{1}{2} k_p |V_{OV}|^2$$

$$2 = \frac{1}{2} \times 4 \times |V_{OV}|^2$$

$$\Rightarrow |V_{OV}| = 1 \text{ V}$$

$$V_{SG} = |V_t| + |V_{OV}| = 1 + 1 = 2 \text{ V}$$

$$V_4 = V_{SG} = 2 \text{ V}$$

$$V_5 = -5 + I_D \times 1.5$$

$$= -5 + 2 \times 1.5 = -2 \text{ V}$$

Since $V_{DG} < 0$, the MOSFET is indeed in saturation.

Refer to Fig. P5.55(d): Both transistors are operating in saturation at equal $|V_{OV}|$. Thus

$$2 = \frac{1}{2} \times 4 \times |V_{OV}|^2 \Rightarrow |V_{OV}| = 1 \text{ V}$$

$$V_{SG} = |V_t| + |V_{OV}| = 2 \text{ V}$$

$$V_6 = 5 - V_{SG} = 5 - 2 = 3 \text{ V}$$

$$V_7 = +5 - 2 V_{SG} = 5 - 2 \times 2 = 1 \text{ V}$$

(b) Circuit (a): The 2-mA current source can be replaced with a resistance R connected between the MOSFET source and the −5-V supply with

$$R = \frac{V_1 - (-5)}{2 \text{ mA}} = \frac{-2 + 5}{2} = 1.5 \text{ k}\Omega$$

Circuit (b): The 2-mA current source can be replaced with a resistance R,

$$R = \frac{5 - V_3}{2 \text{ mA}} = \frac{5 - 2}{2} = 1.5 \text{ k}\Omega$$

Circuit (c): The 2-mA current source can be replaced with a resistance R,

$$R = \frac{5 - V_4}{2 \text{ mA}} = \frac{5 - 2}{2} = 1.5 \text{ k}\Omega$$

Circuit (d): The 2-mA current source can be replaced with a resistance R,

$$R = \frac{V_7}{2 \text{ mA}} = \frac{1}{2} = 0.5 \text{ k}\Omega$$

We use the nearest 1% resistor, which is $499~\Omega$.

5.59 (a) Refer to the circuit in Fig. P5.59(a). Since the two NMOS transistors are identical and have the same I_D , their V_{GS} values will be equal. Thus

$$V_{GS} = \frac{3}{2} = 1.5 \text{ V}$$

$$V_2 = 1.5 \text{ V}$$

$$V_{OV} = V_{GS} - V_t = 1.0 \text{ V}$$

$$I_1 = I_D = \frac{1}{2} \mu_n C_{ox} \left(\frac{W}{L} \right) V_{OV}^2$$

$$=\frac{1}{2}\times270\times\frac{3}{1}\times1$$

- $= 405 \mu A$
- (b) Refer to the circuit in Fig. P5.59(b). Here Q_N and Q_P have the same $I_D = I_3$. Thus

$$I_3 = \frac{1}{2} \mu_n C_{ox} \left(\frac{W}{L} \right) V_{OVN}^2 \qquad (1)$$

$$I_3 = \frac{1}{2} \mu_p C_{ox} \left(\frac{W}{L} \right) V_{OVP}^2 \qquad (2)$$

Equating Eqs. (1) and (2) and using $\mu_{R}C_{ox} = 3\mu_{p}C_{ox}$ gives $3V_{OVN}^{2} = V_{OVP}^{2}$:

$$|V_{OVP}| = \sqrt{3} V_{OVN}$$

Now.

$$V_{GSN} = V_{OVN} + V_t = V_{OVN} + 0.5$$

$$V_{SGP} = |V_{OVP}| + |V_t| = \sqrt{3} V_{OVN} + 0.5$$

Rut

$$V_{SGP} + V_{GSN} = 3$$

$$(\sqrt{3} + 1)V_{OVN} + 1 = 3$$

$$\Rightarrow V_{OVN} = 0.732 \text{ V}$$

$$V_{OVP} = 1.268 \text{ V}$$

$$V_{GSN} = 1.232 \text{ V}$$

$$V_{SGP} = 1.768 \text{ V}$$

$$V_4 = V_{GSN} = 1.232 \text{ V}$$

$$I_3 = \frac{1}{2} \times 270 \times \frac{3}{1} \times 0.732^2 = 217 \,\mu\text{A}$$

(c) Refer to Fig. P5.59(c). Here the width of the PMOS transistor is made 3 times larger than that

of the NMOS transistor. This compensates for the factor 3 in the process transconductance parameter, resulting in $k_p = k_\pi$, and the two transistors are matched. The solution will be identical to that for (a) above with

$$V_5 = \frac{3}{2} = 1.5 \text{ V}$$

$$I_6 = 405 \,\mu\text{A}$$