

# DETECTING IMPLICIT BIAS IN POLICE TRAFFIC STOPS

Unit 3 Supervised Learning Capstone Presentation By Mark Ferguson July 2018

#### **DATASET DETAILS**

#### Source:

- Connecticut Racial Profiling Prohibition Project
- Ctrp3.ctdata.org

#### Details:

- Oct 1st, 2013 to Sep 30, 2015
- 850,000 rows
- Subject details: Age, race, sex, residency
- LE details: Officer ID, police dept.
- Stop details: Time, reason, vehicle searched, contraband, outcome of stop

#### **HYPOTHESES**

- Two hypotheses arise from an initial look at the data
- This study will test these hypotheses using various statistical techniques

#### **HYPOTHESIS 1**

Implicit racial bias plays a role in at least some aspects of some interactions on the road between police and motorists.



The outcome of interactions between police and motorists can be statistically modeled and predicted as a function of demographic factors, specifically race.



#### DATA CLEANING

#### Main Issues:

- Missingness, e.g. most location fields null
- Questionable Data subject ages ranged from 0 to 250+
- Large number of object fields with hundreds of possible values

#### Corrective Measures:

- Remove columns that were mostly null
- Set outlying ages to the mean value
- Set object fields to 'category' datatype

Original Dataset Shape: (857895, 42)

Final Dataset Shape: (817091, 23)

CT: 2016 Population, 2013 - 15 Traffic Stops by Race



1b. Race and Sex Distribution



#### 2. Age Distribution

2013-15 CT Traffic Stops by Age



2013-15 CT Traffic Stops by (log) Age



Age of Subject (log scale)

#### 2a. Age Distribution







### t-Tests

- Outcomes were coded as either 0 or 1.
- The expected values of these outcomes were then computed for each race group.



- These expected values were then compared vs. the overall population mean.
- t-tests were conducted to determine whether these differences vs. the population mean were statistically significant or not.
- P-value threshold: 0.05.

#### t-TEST RESULTS

- Considering Stops for (Initially) Non-investigative Reasons:
- Q. In what percentage of these stops do searches occur?

| Racial Groups: — |  |
|------------------|--|
|------------------|--|

Mean of Overall Population: 3.0%

| Group         | Mean:<br>p-value < 0.05 |
|---------------|-------------------------|
| Black Male    | 0.069208                |
| Latino Male   | 0.061417                |
|               | 0.030127                |
| White Male    | 0.026879                |
| Latina Female | 0.023390                |
| Black female  | 0.019927                |
| Native Male   | 0.014036                |
| Asian Male    | 0.012159                |
| White Female  | 0.011926                |
| Native Female | 0.010169                |
| Asian Female  | 0.006298                |

#### t-TEST RESULTS

- Searches from Non-Investigative Stops
- Q. In what percentage of these searches is contraband found?

| Racial Groups: | <b></b> |
|----------------|---------|
|                |         |

| Group         | Mean:<br>p-value < 0.05 |  |  |
|---------------|-------------------------|--|--|
| White Male    | 0.368033                |  |  |
|               | 0.312563                |  |  |
| Black Male    | 0.270601                |  |  |
| Latino Male   | 0.243375                |  |  |
| Latina Female | 0.239003                |  |  |
| Asian Male    | 0.226087                |  |  |
| Black Female  | 0.209476                |  |  |
| Native Male   | 0.135135                |  |  |

#### t-TEST RESULTS

- In stops for some less-serious reason, e.g. defective lights:
- Q. What is the split between punitive and non-punitive outcomes?

| Racial Groups: ———                                  | Group        | Mean:<br>p-Value < 0.05 |  |
|-----------------------------------------------------|--------------|-------------------------|--|
|                                                     | White Female | 0.065579                |  |
|                                                     | Asian Female | 0.078431                |  |
|                                                     | Black Female | 0.084977                |  |
|                                                     | Native Male  | 0.092                   |  |
|                                                     | White Male   | 0.093603                |  |
|                                                     | Asian Male   | 0.094318                |  |
| Mean of Overall ——————————————————————————————————— |              | 0.135881                |  |
| Population: 13.6%                                   | Latino Male  | 0.197874                |  |

# **Supervised Learning**

Various supervised learning techniques were used to model and better understand these police interactions, and the factors that influence their outcomes.



- Target variable: punitive/non-punitive outcome, defined as 1 (ticket, arrest, summons) or 0 (warning, no warning).
- Techniques Used:

Logistic Regression (Standard, L2, L1) K-Nearest Neighbors Classifier Random Forest Classifier PCA with Random Forest Gradient Boosting



Support Vector Machines

- abandoned modeling with this technique due to chronic slowness



#### **TESTING ROUND 1**

- 1 % sample of dataset (approx. 8,170 records)
  - All features used as well as dummies
  - Where applicable, input parameters were varied
  - Models evaluated on accuracy, consistency, and efficiency
  - The best predictors/ parameters are shown for each.

| Madal                     | Dovomotovo      | Re             | esults       |  |
|---------------------------|-----------------|----------------|--------------|--|
| Model                     | Parameters      | R <sup>2</sup> | Run Time     |  |
| KNN Classifier            | N = 10          | 0.6461         | 15.2 minutes |  |
| Logistic Regression       | C = 1E9         | 0.70094        | 2.8 minutes  |  |
| Ridge (L2 Reg)            | C = 0.1         | 0.74676        |              |  |
| LASSO (L1 Reg)            | C = 1           | 0.75536        |              |  |
| Random Forest             | n = 10          | 0.71594        | 0.56 minutes |  |
| Classifier                | Max depth: None | 0.71594        |              |  |
| PCA with Random<br>Forest | 20 Components   | 0.64916        | 0.07 minutes |  |
|                           | 50 Estimators   |                |              |  |
| Gradient Boosting         | Max Depth 10    | 0.75327        | 15.4 minutes |  |
|                           | Loss: Deviance  |                |              |  |

#### **TESTING ROUND 2**

- 10 % of dataset (81,709 records)
- Successively fewer features used optimal results at 100 (Top 50 +ve and top 50 -ve correlators vs. target variable).
- Models judged on precision, recall, consistency, AUC, efficiency.

| Model                | Parameters         | Results        |        |           |        |        |           |          |
|----------------------|--------------------|----------------|--------|-----------|--------|--------|-----------|----------|
|                      |                    | R <sup>2</sup> | SD     | Precision | Recall | AUC    | Run Time  |          |
| Ridge<br>(L2 Reg)    | C = 0.1            | 0.7415         | 0.0046 | 0.74      | 0.79   | 0.7396 | 3.5 min   |          |
| LASSO<br>(L1 Reg)    | C = 1              | 0.7413         | 0.0047 | 0.74      | 0.78   | 0.7394 |           |          |
| RFC                  | n = 10             |                |        |           |        |        |           |          |
|                      | Max depth:<br>None | 0.7403         | 0.0058 | 0.74      | 0.77   | 0.7376 | 0.29 min  |          |
| Gradient<br>Boosting | 50 Estimators      | 0 Estimators   |        |           |        |        |           |          |
|                      | Max Depth 10       | 0.7478         | 0.0048 | 0.0048    | 0.75   | 0.78   | 0.7448    | 13.0 min |
|                      | Loss: Deviance     |                |        |           |        |        |           |          |
| PCA w/<br>RFC        | 30<br>Components   | 0.7376         | 0.0054 | 0.64      | 0.68   | 0.6230 | 0.02 min  |          |
| KNN<br>Classifier    | n = 250            | 0.7378         | 0.0058 | 0.76      | 0.73   | 0.7306 | 14.93 min |          |

#### **OBSERVATIONS**

- Preferred model: Gradient Boosting Classifier offered best combination of precision, recall, AUC and efficiency.
- Accuracy seems to plateau around 75%.
- $\sim$  69% accuracy can be achieved with as few as 10 highly correlated variables.
- Race is a factor in traffic stop outcomes but not a top one.

# HEAT MAP - TOP 100 CORRELATORS (50+ve, 50 -ve) vs. OUTCOME

Mostly Low Co-Linearity Among Variables



#### **SELECTED CORRELATORS vs. TRAFFIC STOP OUTCOME**

#### Positive:

- 1. State Police
- 2. Reason Vehicle
- 26. Month September
- 36. Month May
- 38. Ethnicity Hispanic
- 43. Race Latino
- 50. Race Black

#### Negative:

- 1. Reason Defective Lights
- 2. Reason Equipment
- 4. Reason Stop Sign
- 24. Race White

#### **RANDOM FOREST FEATURE IMPORTANCES**

Feature Importances taken from top 50 and bottom 50 correlators – Top 15 Shown



### **Conclusions**

- Some implicit bias does seem to be at play.
- Black drivers are stopped at a higher rate than their proportion of the CT population (14.1% vs. 11.5%)
- Black and Latino males are more likely to be searched even when the stop is for a non-investigative reason
- Searches of white males most likely to yield contraband
- Females (most of all white) more likely to be let off for minor infractions. Least likely by far: Latino males
- Race 'black' or 'latino' correlates positively with punitive outcomes.
- Race 'white' correlates negatively with punitive outcomes.
- Some other features/ factors more influential than race.



# **Suggestions for Further Study**

- Run models on entire dataset.
- Fully investigate the role of geographical (lat, long) location.
- Look at consistency among depts, officers.
- Compare CT with other states, parts of the country.

# **Thank You**

• Questions?