# CMPT 165 Graphics – Part 1

June 12<sup>th</sup>, 2015

# Today's Agenda

- File formats
  - Pro's and Con's
- Terminologies:
  - Image resolution
  - Color-depth
  - Color dithering
  - Compression
- Notes on coursework
  - Caution on academic dishonesty
  - Assignment 1 marking scheme

# **Image Graphics – Part 1**

# File formats for storing graphics

Today we'll focus on these:

- GIF
- JPEG
- PNG
- •

Each use different strategies to store image data

...But what is image data?

### **Pixels**

- Picture elements = <u>Pixel</u> (px)
- E.g.
  - Take screenshot of "We ha" (PrtScn button on keyboard)
  - A grid of pixels is stored:



- Each emits an amount of intensity (in physics, defined as amount of power transmitted through a surface)
  - High vs. low (strong vs. weak)

# Image resolution

- Image resolution: refers to total number of pixels an image has
  - Represented as # of pixel columns by # of rows (width X height)
  - Historically:
    - High resolution: 1024 X 765 pixels
    - Lower resolution: any thing less



- Higher resolution → larger file size
- Unit of file size: bytes (kilo-, mega-, giga-)
  - E.g. 8MP camera

(MP:  $\underline{\text{m}}$ ega-byte  $\underline{\text{p}}$ ixel  $\rightarrow$  1 Mega =  $10^{6}$ )

- Photo size: 3,264 X 2,448 pixels
  - $(3,264 \times 2,448)$  pixels X 1 bytes/pixel = 7,990,272 bytes  $\rightarrow$  ~8 MB
  - Quite large!

# Image resolution

• Pixelation: artifacts you seen when you "zoom in"



- There are countless computer algorithms to address this problem
  - Learn about them in, e.g., these courses:
    - Image processing (CMPT 419)
    - Computer graphics (CMPT 361)

### **Pixels**

Each pixel is indexed by x-, y- coordinates





- Function notation: image f
  - f(x,y) gives a color intensity
  - E.g.

$$f(0,0) = \#000 \text{ (white)}$$

$$f(17,17) = \#FA0 \text{ (orange)}$$

# Examining pixels in image editor



$$f(x,y) = \#000$$

Each pixel refers to color info, i.e. not coordinates!

# **Storing images**

- Pixel: intensity value of a light source
- Each pixel has (x,y) coordinates
- Image: grid of pixels
- Using fewer bits to store each pixel is desirable...
  - Why? Smaller file size!
- How to store these info?
  - Depends on file format
    - Choice of color model & color-depth
    - Compression scheme (to reduce file size)
    - ...

### **RGB Model & Color Depth**

- Additive model: 3 channels of Red, Blue, Green
- Color depth: number of bits to represent a pixel

• In CSS, we can specify with a 24-bit color code:

e.g. #RRGGBB

Q: why 24?

A: 24-bit=8 bits X 8 bits X 8 bits

- In actual files, depends on format used:
  - Some formats use 5 bits to encode each channel:  $2^{(5x3)} = 2^{15}$
  - Some formats only use 8-bit for <u>all 3 channels</u>:  $2^{(8)} = 256$

# **Storing colors**

24-bit (256 X 256 X 256 colors)



known as monochrome (mono=1, chrome=color)

...Can be any color

1-bit?



4-bit color (2<sup>4</sup>=16 shades)



# **Examples**

#### Color-depth of 7-bit → colormap of 128 choices:





# **Examples**

#### Color-depth of 7-bit → colormap of 128 choices:





### Indexed color



https://upload.wikimedia.org/wikipedia/commons/9/93/256colour.png

| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
|---|---|---|---|---|---|---|----|----|----|
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 17 | 17 | 17 |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 17 | 29 | 29 |



# Size/quality trade-off

- Fewer bits to store each pixel

|             | GIF   | JPEG            | PNG    |
|-------------|-------|-----------------|--------|
| Color depth | 8-bit | 24-bit or 8-bit | 24-bit |

- Methods to deal with this trade-off:
  - Color-dithering
  - Compression

# **Color dithering**

- Dithering: use of special patterns that involves interlacing a number of colors to allow perception of more color
- Allows viewer to perceive more colors
- E.g. 2 colors: Fig. 5.2 of Study Guide



# **Color dithering**

24-bit (256 X 256 X 256 colors)



1-bit with dithering:



# **Color dithering**

24-bit (256 X 256 X 256 colors)



4-bit with dithering:



Examples from <a href="https://en.wikipedia.org/wiki/Dither">https://en.wikipedia.org/wiki/Dither</a>

# Size/quality trade-off

- Fewer bits to store each pixel

  - $\odot$   $\rightarrow$  quality suffers

- Methods to deal with this trade-off:
  - Color-dithering
  - Compression

### Compression

- Compression: a method to reduce file size
  - Many compression algorithms (computer programs) exist
  - Algorithms work by exploiting some properties of the image
    - E.g. leverage redundancies in pixels





Photo by L. Tang

### Compression

Compression ratio:

FILESIZE\_BEFORE : FILESIZE\_AFTER

- Higher generally preferred... more compact
- 2 categories:
  - Lossless: no loss of data
  - 2. Lossy: involves loss of data...

    - At expense of lower image quality ☺

|             | GIF                  | JPEG              | PNG                  |
|-------------|----------------------|-------------------|----------------------|
| Compression | Lossless compression | Lossy compression | Lossless compression |



You may choose compression ratio (% of original file size)

### **Transparency**

#### **Opacity?**

- Amount of light absorbed by a medium
- High opacity → Low transparency

Three ways to handle transparency info:

- Don't store
- 2. 1-bit for each pixel (on or off)



Figure 5.4: Various types of transparency in images

- 3. As an additional channel (8-bit for each pixel)  $\rightarrow$  known as alpha channel
  - Various levels of opacity

|              | GIF   | JPEG | PNG   |
|--------------|-------|------|-------|
| Transparency | 1-bit | None | 8-bit |

### **Animation**

#### "Motion picture"

- Motion is achieved by playing a series of static images (frames)
- Storing animation in graphics → store all frames in single file

|                     | GIF | JPEG | PNG |
|---------------------|-----|------|-----|
| Supports animation? | Yes | No   | Yes |

#### Creating animated graphics file:

- Online GIF-creators:
  - https://imgflip.com/images-to-gif
  - <a href="http://gifmaker.me/">http://gifmaker.me/</a>
  - **—** ...
- PNG animation: use PhotoShop

# **Summary**

### 3 file formats discussed so far:

|                          | GIF                  | JPEG              | PNG                  |
|--------------------------|----------------------|-------------------|----------------------|
| Color depth              | 8-bit                | 24-bit or 8-bit   | 24-bit               |
| Compression              | Lossless compression | Lossy compression | Lossless compression |
| Support for transparency | 1-bit                | N/A               | 8-bit                |
| Support for Animation?   | Yes                  | N/A               | Yes                  |

# **Today's Summary**

#### Key Terminologies:

#### **Image resolution**

Pixel, bits, unit of bytes Intensity vs. coordinates

#### **Color-depth**

Monochrome, 8-, 16-, 24-bit, etc.

Opacity, transparency, alpha channel

#### **Color dithering**

#### Compression

Lossy vs lossless

# Image editing software

- Popular editing:
  - MS Paint (Windows)
  - Adobe Photoshop (Mac and Windows)
  - Pixelmator (Mac)
  - GIMP (Mac, Windows, and Linux)

# Finding images

- Paid picture services: no need to cite, pay \$1-2
  - E.g. Stock Xchange, Fotolia, Shutterstock, Dreamstime
- Google Image
  - "Free to use or share"
  - "Free to use or share, even commercially"
- Websites where you don't need any permissions for using images in blog posts:
  - <u>Flickr, freeimages, morgueFile, FreeFoto, FreeDigitalPhotos, Creative</u> Commons, <u>Pixabay</u>
- Who owns it? http://www.tineye.com/
- Don't forget to caption your figures!

# Example of citing an image



Image by Irene Suchocki via Etsy Shop

# **Questions?**

### Notes on coursework

- Exercises: use exact phrases when asked
  - E.g. Lab 4 asked for 99 cents, not 75 cents!?

- Lateness
  - Submitting URL and modifying files after deadline is considered late. We will check them!
  - Penalty for lateness: 10% each day late; not accepted after more than 2 days late

### **Testing your assignments**

(optional but highly encouraged)

1) Try on various browsers. Any critical problems?

- 2) Show to your friends, gather their feedback
- 3) Look for comments with common concern, e.g. "I didn't know how to get back to page X" "I find this hard to read"
- 4) Modify your webpages accordingly

# **Questions?**