Intercepts of the Quadratic

Casel: $\Delta>0$ $r_{1,2}=\frac{-b\pm\sqrt{b^2-4\,ac}}{2a} \text{ computes the } r-\text{intercepts of multiplicity 1.}$ $s\,(0)=c \text{ computes the single } s-\text{intercept.}$

Given a quadratic $s(r) = a r^2 + b r + c$ compute its discriminant \triangle :

s(0) = c computes the single s-intercept.

Example 1.

$s(r) = -r^2 - 3 r + 10$ compute its discriminant \triangle : $\triangle = 49 > 0$

 $\triangle = \sqrt{b^2 - 4ac}$

 $r_{1,2}=2,-5$ s(0)=10 s-intercept.

Example 2.

△=0

 $s(r) = -2 r^2 + 4 r - 2$ compute its discriminant \triangle :

$s(r) = -9 r^2 + 126 r - 490$ compute its discriminant \triangle : $\triangle = -1764 < 0$

