Mineração de Dados

Victor H. A. Alicino

Conteúdo

- 1. Base de Dados escolhida
- 2. Sobre o Titanic
- 3. Sobre a Base de Dados
- 4. Limpeza de Dados
- 5. Algoritmo Escolhido
- 6. Considerações Finais
- 7. Referências

Base de Dados escolhida

Titanic Challenge | Disponível no Kaggle

Titanic - Machine Learning from Disaster

Start here! Predict survival on the Titanic and get familiar with ML basics

Sobre o Titanic

Sobre a base de dados

Ela está dividida em 3 arquivos:

- train.csv
- test.csv
- gender_submission.csv

Sobre a base de dados

Variable	Definition	Key
survival	Survival	0 = No, 1 = Yes
pclass	Ticket class	1 = 1st, 2 = 2nd, 3 = 3rd
sex	Sex	
Age	Age in years	
sibsp	# of siblings / spouses aboard the Titanic	
parch	# of parents / children aboard the Titanic	
ticket	Ticket number	
fare	Passenger fare	
cabin	Cabin number	
embarked	Port of Embarkation	C = Cherbourg, Q = Queenstown, S = Southampton

Fonte: Kaggle

TRAIN.CSV

As primeiras 9 linhas

```
PassengerId, Survived, Pclass, Name, Sex, Age, SibSp, Parch, Ticket, Fare, Cabin, Embarked 1,0,3, "Braund, Mr. Owen Harris", male, 22,1,0,A/5 21171,7.25,,S 2,1,1, "Cumings, Mrs. John Bradley (Florence Briggs Thayer)", female, 38,1,0,PC 17599,71,2833,C85,C 3,1,3, "Heikkinen, Miss. Laina", female, 26,0,0,STON/O2. 3101282,7.925,,S 4,1,1, "Futrelle, Mrs. Jacques Heath (Lily May Peel)", female, 35,1,0,113803,53.1,C123,S 5,0,3, "Allen, Mr. William Henry", male, 35,0,0,373450,8.05,,S 6,0,3, "Moran, Mr. James", male,,0,0,330877,8.4583,,Q 7,0,1, "McCarthy, Mr. Timothy J", male,54,0,0,17463,51.8625,E46,S 8,0,3, "Palsson, Master. Gosta Leonard", male,2,3,1,349909,21.075,,S 9,1,3, "Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg)", female,27,0,2,347742,11.1333,,S
```


TEST.CSV

As primeiras 9 linhas

```
PassengerId, Pclass, Name, Sex, Age, SibSp, Parch, Ticket, Fare, Cabin, Embarked 892,3, "Kelly, Mr. James", male, 34.5,0,0,330911,7.8292, Q 893,3, "Wilkes, Mrs. James (Ellen Needs)", female, 47,1,0,363272,7, S 894,2, "Myles, Mr. Thomas Francis", male, 62,0,0,240276,9.6875, Q 895,3, "Wirz, Mr. Albert", male, 27,0,0,315154,8.6625, S 896,3, "Hirvonen, Mrs. Alexander (Helga E Lindqvist)", female, 22,1,1,3101298,12.2875, S 897,3, "Svensson, Mr. Johan Cervin", male, 14,0,0,7538,9.225, S 898,3, "Connolly, Miss. Kate", female, 30,0,0,330972,7.6292, Q 899,2, "Caldwell, Mr. Albert Francis", male, 26,1,1,248738,29, S 900,3, "Abrahim, Mrs. Joseph (Sophie Halaut Easu)", female, 18,0,0,2657,7.2292, C
```


GENDER_SUBMISSION.CSV

As primeiras 9 linhas

```
PassengerId, Survived
892,0
893,1
894,0
895,0
896,1
897,0
898,1
899,0
900,1
```


Removida as seguintes colunas

- O arquivo "test.csv" não possuía a coluna "Survived", esses atributos estavam presentes em "gender_submission.csv", porém para a realizar os testes no WEKA usando esse arquivo, foi necessário trazer essa coluna para o "test.csv"
- Também foi criado um arquivo "ext_train.csv" que possui todos as instâncias dos arquivos "train" e "test"
- Os arquivos "train.csv", "test.csv" e "ext_train.csv" foram convertidos para ARFF usando o WEKA


```
second_step > train.arff
      @relation train
  2
      @attribute Survived {0, 1}
  3
      @attribute Pclass numeric
      @attribute Sex {male,female}
      @attribute Age numeric
      @attribute SibSp numeric
      @attribute Parch numeric
  8
      @attribute Fare numeric
      @attribute Embarked {S,C,Q}
 10
```


Arquivo: train.arff

- Coluna 4 (Age) - 177 valores faltantes (20%)

Arquivo: test.arff

- Coluna 3 (Age) 86 valores faltantes (20%)
- Coluna 6 (Fare) 1 valor faltante (0%)

Arquivo: ext_train.arff

- Coluna 4 (Age) 263 valores faltantes (20%)
- Coluna 7 (Fare) 1 valor faltante (0%)
- Coluna 8 (Embarked) 1 valor faltante (0%)

- Ocorrência dos valores faltantes não segue um padrão
- Método para tratamento escolhido: Imputação de Dados
- Método de imputação de dados escolhida: KNN

Não encontrei imputação de dados por KNN no WEKA

Aplicando o ReplaceMissingValues do WEKA


```
third_step >
          train.arff
      @relation train
      @attribute Survived {0, 1}
      @attribute Pclass numeric
      @attribute Sex numeric
      @attribute Age numeric
      @attribute SibSp numeric
      @attribute Parch numeric
      @attribute Fare numeric
  9
      @attribute Embarked {S,C,Q}
 10
```

- Convertido "Sex" para 'numeric'
 - 0 Masculino
 - 1 Feminino

Algoritmo escolhido

J48 • Árvore de Decisão

- Fácil interpretação
- A base contém dados categóricos

Caso base

train.arff | J48 | Testado com test.arff

Precisão: 87,4%

Falsos Positivos: 18%

Pereceu	Sobreviveu
251	15
38	114

Removendo o atributo 'Embarked'

train_minus_embarked.arff | J48 | Testado com test.arff

Precisão: 95,1%

Falsos Positivos: 4,6%

Matriz de Confusão

Pereceu	Sobreviveu
251	15
6	146

train_minus_embarked.arff | J48 | Testado com cross-validation

Precisão: 81,93%

Falsos Positivos: 22,3%

Pereceu	Sobreviveu
488	61
100	242

Testando com apenas 4 atributos

train_minus_embarked.arff | J48 | Testado com test.arff

Precisão: 93,3%

Falsos Positivos: 10,9%

Matriz de Confusão

Pereceu	Sobreviveu
263	15
25	127

train_minus_embarked.arff | J48 | Testado com cross-validation

Precisão: 79,1%

Falsos Positivos: 25%

Pereceu	Sobreviveu
475	74
110	232

Testando com apenas 4 atributos

Possível overfitting

train_minus_embarked.arff | J48 | Testado com test.arff

Precisão: 93,3%

Falsos Positivos: 10,9%

Matriz de Confusão

Pereceu	Sobreviveu
263	15
25	127

train_minus_embarked.arff | J48 | Testado com cross-validation

Precisão: 79,1%

Falsos Positivos: 25%

Pereceu	Sobreviveu
475	74
110	232

Comparando com a realidade

- Birkenhead Drill
 "Mulheres e crianças primeiro"
- 72% das mulheres sobreviveram
- 50% das crianças sobreviveram
- Apenas 16% dos homens sobreviveram

Dificuldades encontradas

- Não conhecer as implementações dos algoritmos no WEKA
- Não conseguir realizar a imputação de dados da forma que gostaria no WEKA

Considerações finais

 Apesar da alta possibilidade do modelo com a melhor precisão aqui mostrado (95%) estar apresentando overfit, o mesmo apresenta 80% de precisão nos dados reais do acidente

Referências

Titanic: Demographics of the Passengers. Disponível em: http://www.icyousee.org/titanic.html.

HMS Birkenhead and the Birkenhead Drill - Women and Children First. Disponível em:

https://www.historic-uk.com/CultureUK/Women-Children-First/.

Titanic Survivors. Disponível em: https://titanicfacts.net/titanic-survivors/.

Titanic Passengers and Crew Complete List. Disponível em:

https://www.kaggle.com/datasets/aliaamiri/titanic-passengers-and-crew-complete-list.

Titanic - Machine Learning from Disaster. Disponível em: https://www.kaggle.com/competitions/titanic.

Obrigado