${\rm CSC6780}$ - Data Science; Assignem
t7

Jesse Annan \parallel ID: 002708111

March 29, 2023

Question 1

$$\mathbf{P}(event) = \frac{\#coinflips \ \ \mathbf{C}ombination \ \ \#exactheads}{2^{\#coinflips}}$$

(a) Let A:= the probability that exactly two of them will get heads.

$$\mathbf{P}(A) = \frac{3\mathbf{C}2}{2^3} = \frac{3}{8}$$

(b) Let B:= the probability that exactly eight eight of them will get heads.

$$\mathbf{P}(B) = \frac{20\mathbf{C}8}{2^{20}} \approx 0.12013435$$

(c) Let C:= the probability that at least four of them will get heads.

$$\mathbf{P}(C) = 1 - \mathbf{P}(\le 3 \text{ people getting heads})$$
$$= 1 - \left[\frac{20\mathbf{C}0}{2^{20}} + \frac{20\mathbf{C}1}{2^{20}} + \frac{20\mathbf{C}2}{2^{20}} + \frac{20\mathbf{C}3}{2^{20}} \right]$$

$$P(C) \approx 0.99871159$$

Question 2

ID	HEADACHE	FEVER	VOMITING	MENINGITIS
1	true	true	false	false
2	false	${ m true}$	false	false
3	${ m true}$	false	${ m true}$	false
4	${ m true}$	false	true	false
5	false	${ m true}$	false	true
6	${ m true}$	false	true	false
7	${ m true}$	false	true	false
8	${ m true}$	false	true	true
9	false	${ m true}$	false	false
10	${ m true}$	false	${ m true}$	true

Let $\mathbf{H}:=$ HEADACHE, $\mathbf{F}:=$ FEVER, $\mathbf{V}:=$ VOMITING, $\mathbb{M}:=$ MENINGITIS, $\mathbf{M}_T:=$ MENINGITIS = True, $\mathbf{M}_F:=$ MENINGITIS = False

(a) **P**(**V**= True) =
$$\frac{6}{10}$$

(b) **P**(**H**= True) =
$$\frac{3}{10}$$

(c)

$$\mathbf{P}(\mathbf{H}=\text{True},\ \mathbf{V}=\text{False}) = \mathbf{P}(\mathbf{V}=\text{False} \mid \mathbf{H}=\text{True})$$

$$\times \mathbf{P}(\mathbf{H}=\text{True})$$

$$= \frac{1}{7} \times \frac{7}{10}$$

$$\mathbf{P}(\mathbf{H}=\text{True},\ \mathbf{V}=\text{False}) = \frac{1}{10}$$

(d)
$$\mathbf{P}(\mathbf{V}=\text{False} \mid \mathbf{H}=\text{True}) = \frac{1}{7}$$

(e)
$$\mathbf{P}(\mathbb{M}\mid\mathbf{F}=\mathrm{True},\,\mathbf{V}=\mathrm{False})=(\mathbf{P}(\mathbf{M}_T\mid\mathbf{F}=\mathrm{True},\,\mathbf{V}=\mathrm{False})\;,\;\mathbf{P}(\mathbf{M}_F\mid\mathbf{F}=\mathrm{True},\,\mathbf{V}=\mathrm{False}))$$

$$\begin{split} \mathbf{P}(\mathbf{M}_T \mid \mathbf{F} = \text{True}, \, \mathbf{V} = \text{False}) &= \frac{\mathbf{P}(\mathbf{F} = \text{True}, \, \mathbf{V} = \text{False} \mid \mathbf{M}_T) \times \mathbf{P}(\mathbf{M}_T)}{\mathbf{P}(\mathbf{F} = \text{True}, \, \mathbf{V} = \text{False})} \\ &= \frac{\mathbf{P}(\mathbf{F} = \text{True} \mid \mathbf{M}_T) \times \mathbf{P}(\mathbf{V} = \text{False} \mid \mathbf{F} = \text{True}, \, \mathbf{M}_T) \times \mathbf{P}(\mathbf{M}_T)}{\mathbf{P}(\mathbf{V} = \text{False} \mid \mathbf{F} = \text{True}) \times \mathbf{P}(\mathbf{F} = \text{True})} \\ &= \frac{1/3 \times 1 \times 3/10}{1 \times 4/10} \end{split}$$

$$P(M_T \mid F= \text{True}, V= \text{False}) = 0.25$$

$$\begin{aligned} \mathbf{P}(\mathbf{M}_F \mid \mathbf{F} = \text{True}, \, \mathbf{V} = \text{False}) &= \frac{\mathbf{P}(\mathbf{F} = \text{True}, \, \mathbf{V} = \text{False} \mid \mathbf{M}_F) \times \mathbf{P}(\mathbf{M}_F)}{\mathbf{P}(\mathbf{F} = \text{True}, \, \mathbf{V} = \text{False})} \\ &= \frac{\mathbf{P}(\mathbf{F} = \text{True} \mid \mathbf{M}_F) \times \mathbf{P}(\mathbf{V} = \text{False} \mid \mathbf{F} = \text{True}, \, \mathbf{M}_F) \times \mathbf{P}(\mathbf{M}_F)}{\mathbf{P}(\mathbf{V} = \text{False} \mid \mathbf{F} = \text{True}) \times \mathbf{P}(\mathbf{F} = \text{True})} \\ &= \frac{3/7 \times 1 \times 7/10}{1 \times 4/10} \end{aligned}$$

$$P(M_F \mid F= \text{True}, V= \text{False}) = 0.75$$

$$\mathbf{P}(\mathbb{M} \mid \mathbf{F} = \text{True}, \mathbf{V} = \text{False}) = (0.25, 0.75)$$

Question 3

ID	OCCUPATION	GENDER	AGE	POLICY TYPE	PREF CHANNEL
1	lab tech	female	43	planC	email
2	farmhand	female	57	$\operatorname{plan}A$	phone
3	biophysicist	$_{\mathrm{male}}$	21	$\operatorname{plan} A$	email
4	sheriff	female	47	planB	phone
5	painter	$_{\mathrm{male}}$	55	planC	phone
6	manager	$_{\mathrm{male}}$	19	$\operatorname{plan}A$	email
7	geologist	$_{\mathrm{male}}$	49	planC	phone
8	messenger	$_{\mathrm{male}}$	51	planB	email
9	nurse	female	18	planC	phone

(a) Bins = 3 $young: \{18, 19, 21\}$ $middle-aged: \{43, 47, 49\}$ $mature: \{51, 55, 57\}$ Defining the range of the **AGE** column by averaging the ends from the above three levels:

 $\begin{array}{cccc} & \text{young} & \leq & 32 \\ 32 & < & \text{middle-age} & \leq & 50 \end{array}$

50 < mature

	0.0000000000000000000000000000000000000	~~~~			
ID	OCCUPATION	GENDER	\mathbf{AGE}	POLICY TYPE	PREF CHANNEL
1	lab tech	female	middle-aged	planC	email
2	farmhand	female	mature	$\operatorname{plan} A$	phone
3	biophysicist	$_{\mathrm{male}}$	young	$\operatorname{plan} A$	email
4	sheriff	female	middle-aged	planB	phone
5	painter	$_{\mathrm{male}}$	mature	planC	phone
6	manager	$_{\mathrm{male}}$	young	$\operatorname{plan} A$	email
7	geologist	$_{\mathrm{male}}$	middle-aged	planC	phone
8	messenger	$_{\mathrm{male}}$	mature	planB	email
9	nurse	female	young	planC	phone

(b) Take out "ID" and "OCCUPATION"

This is because both ID and OCCUPATION have too many unique levels which will create a high dimensionality problem for any model.

(c) Let $\mathbf{G} := \mathbf{GENDER}$, $\mathbf{A} := \mathbf{AGE}$, $\mathbf{PT} := \mathbf{POLICY}$ TYPE, $\mathbf{PC} := \mathbf{PREF}$ CHANNEL

```
\mathbf{P}(\mathbf{PC} = \text{email}) = \frac{4}{9}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                P(PC = phone) =
\mathbf{P}(\mathbf{PC} = \mathbf{email}) = \frac{9}{4}
\mathbf{P}(\mathbf{PT} = \mathbf{planA} \mid \mathbf{PC} = \mathbf{email}) = \frac{2}{4}
\mathbf{P}(\mathbf{PT} = \mathbf{planB} \mid \mathbf{PC} = \mathbf{email}) = \frac{1}{4}
\mathbf{P}(\mathbf{PT} = \mathbf{planC} \mid \mathbf{PC} = \mathbf{email}) = \frac{1}{4}
                                                                                                                                                                                                                                                                                                                                                                                                            P(PT = planA \mid PC = phone) =
                                                                                                                                                                                                                                                                                                                                                                                                              P(PT = planB \mid PC = phone) =
                                                                                                                                                                                                                                                                                                                                                                                                              P(PT = planC \mid PC = phone) =
 \mathbf{P}(\mathbf{G} = \text{male} \mid \mathbf{PC} = \text{email}) = \frac{3}{4}
                                                                                                                                                                                                                                                                                                                                                                                                                                        P(G = male \mid PC = phone) =
   \mathbf{P}(\mathbf{G} = \text{female} \mid \mathbf{PC} = \text{email}) = \mathbf{P}(\mathbf{G} = \mathbf{PC} = \mathbf{PC
                                                                                                                                                                                                                                                                                                                                                                                                                       P(G = female \mid PC = phone) =
 P(G = \text{female} \mid PC = \text{email}) = \frac{1}{4}

P(A = \text{young} \mid PC = \text{email}) = \frac{2}{4}
                                                                                                                                                                                                                                                                                                                                                                                                                            P(A = young | PC = phone) =
   \mathbf{P}(\mathbf{A} = \text{middle-age} \mid \mathbf{PC} = \text{email}) = \frac{1}{4}
                                                                                                                                                                                                                                                                                                                                                                                P(A = middle-age \mid PC = phone) =
   P(A = mature \mid PC = email) =
                                                                                                                                                                                                                                                                                                                                                                                                                 P(A = mature \mid PC = phone)
```

(d) Query: GENDER = female, AGE = 30, POLICY = planA

```
\begin{array}{|c|c|c|c|} \mathbf{P}(\mathbf{PC}=\mathrm{email}) = \frac{4}{9} & \mathbf{P}(\mathbf{PC}=\mathrm{phone}) = \frac{5}{9} \\ \mathbf{P}(\mathbf{PT}=\mathrm{planA} \mid \mathbf{PC}=\mathrm{email}) = \frac{2}{4} & \mathbf{P}(\mathbf{PT}=\mathrm{planA} \mid \mathbf{PC}=\mathrm{phone}) = \frac{1}{5} \\ \mathbf{P}(\mathbf{A}=\mathrm{young} \mid \mathbf{PC}=\mathrm{email}) = \frac{1}{4} & \mathbf{P}(\mathbf{G}=\mathrm{female} \mid \mathbf{PC}=\mathrm{phone}) = \frac{3}{5} \\ \mathbf{P}(\mathbf{A}=\mathrm{young} \mid \mathbf{PC}=\mathrm{phone}) = \frac{1}{5} \end{array}
```

```
\begin{array}{l} \mathbf{P}(\mathbf{PC}=\text{ email} \mid \mathbf{PT}=\text{ planA}, \, \mathbf{G}=\text{ female}, \, \mathbf{A}=\text{ young}) = \frac{1}{4} \times \frac{2}{4} \times \frac{2}{4} \times \frac{4}{9} = \frac{1}{36} \approx 0.02777 \\ \mathbf{P}(\mathbf{PC}=\text{ phone} \mid \mathbf{PT}=\text{ planA}, \, \mathbf{G}=\text{ female}, \, \mathbf{A}=\text{ young}) = \frac{3}{5} \times \frac{1}{5} \times \frac{1}{5} \times \frac{5}{9} = \frac{1}{75} \approx 0.01333 \\ \end{array}
```

Query Prediction: "email"

Word	Word-document counts for the entertainment dataset:						
fun 415	is 695	machine 35	christmas 0	family 400	learning 70		
Word-document counts for the education dataset:							
fun 200	is 295	machine 120	christmas 0	family 10	learning 105		

(a) Query: "machine learning is fun"

 $\begin{array}{lll} \textbf{P}(\text{entertainment}) & = & \frac{700}{1000} \\ \textbf{P}(\text{machine} \mid \text{entertainment}) & = & \frac{35}{700} \\ \textbf{P}(\text{learning} \mid \text{entertainment}) & = & \frac{70}{700} \\ \textbf{P}(\text{is} \mid \text{entertainment}) & = & \frac{695}{700} \\ \textbf{P}(\text{fun} \mid \text{entertainment}) & = & \frac{415}{700} \\ \textbf{P}(\text{education}) & = & \frac{300}{1000} \\ \textbf{P}(\text{machine} \mid \text{education}) & = & \frac{120}{300} \\ \textbf{P}(\text{learning} \mid \text{education}) & = & \frac{105}{300} \\ \textbf{P}(\text{fun} \mid \text{education}) & = & \frac{295}{300} \\ \textbf{P}(\text{fun} \mid \text{education}) & = & \frac{200}{300} \\ \end{array}$

case 1: $\frac{700}{1000} \times \frac{35}{700} \times \frac{70}{700} \times \frac{695}{700} \times \frac{415}{700} \approx 0.00206179$

case 2: $\frac{300}{1000} \times \frac{120}{300} \times \frac{105}{300} \times \frac{295}{300} \times \frac{200}{300} \approx 0.02753333$

Query Prediction: "education"

(b) Query: "christmas family fun"

 $\begin{array}{lll} \mathbf{P}(\text{entertainment}) & = & \frac{700}{1000} \\ \mathbf{P}(\text{christmas} \mid \text{entertainment}) & = & 0 \\ \mathbf{P}(\text{family} \mid \text{entertainment}) & = & \frac{400}{700} \\ \mathbf{P}(\text{fun} \mid \text{entertainment}) & = & \frac{415}{700} \\ \mathbf{P}(\text{education}) & = & \frac{300}{1000} \\ \mathbf{P}(\text{christmas} \mid \text{education}) & = & 0 \\ \mathbf{P}(\text{family} \mid \text{education}) & = & \frac{10}{300} \\ \mathbf{P}(\text{fun} \mid \text{education}) & = & \frac{200}{200} \\ \end{array}$

case 1: $\frac{700}{1000} \times 0 \times \frac{400}{700} \times \frac{415}{700} = 0$

case 2: $\frac{300}{1000} \times 0 \times \frac{10}{300} \times \frac{200}{300} = 0$

Query Prediction: N/A

(c)