Announcements

- Midterm 2
 - Next Wednesday Nov 9 at 7:00 pm
 - Covers everything up to last Thursday (nothing this week)
 - OK to bring a two sided, handwritten cheat sheet.
- Adam's Office Hours moved (permanently).
 - Will be Thursday 11:30 12:30, 329 Soda

CS 188: Artificial Intelligence

Perceptrons

Instructors: Adam Janin, Josh Hug --- University of California, Berkeley

Summary From Last Time

- Can perform classification by creating a Bayes Net model and performing probabilistic inference
- The Naïve Bayes model assumes all features to be independent given the class label
- Can infer parameters (values for our CPTs) using "training data"
- Smoothing our estimates is important in real systems
 - Zero probabilities in our CPTs is a particularly deadly type of overfitting
 - Use "held-out" data to tune smoothing hyperparameters

Features

Errors, and What to Do

Examples of errors

Dear GlobalSCAPE Customer,

GlobalSCAPE has partnered with ScanSoft to offer you the latest version of OmniPage Pro, for just \$99.99* - the regular list price is \$499! The most common question we've received about this offer is - Is this genuine? We would like to assure you that this offer is authorized by ScanSoft, is genuine and valid. You can get the . . .

. . . To receive your \$30 Amazon.com promotional certificate, click through to

http://www.amazon.com/apparel

and see the prominent link for the \$30 offer. All details are there. We hope you enjoyed receiving this message. However, if you'd rather not receive future e-mails announcing new store launches, please click . . .

What to Do About Errors?

- Need more features— words aren't enough!
 - Have you emailed the sender before?
 - Have 1K other people just gotten the same email?
 - Is the sending information consistent?
 - Is the email in ALL CAPS?
 - Do inline URLs point where they say they point?
 - Does the email address you by (your) name?
- Can add these information sources as new variables in the NB model
- This lecture: A new type of classifier which is trained by reacting to errors.

_c Very Brief Vector Review

- Suppose we have vectors $\mathbf{a} = \langle 4, 2 \rangle$, $\mathbf{b} = \langle 1, 3 \rangle$
 - What will **c** = **a** + **b** look like?
 - What will $\mathbf{d} = \mathbf{a} \mathbf{b}$ look like?

_c Very Brief Vector Review

- Suppose we have vectors $\mathbf{a} = \langle 4, 2 \rangle$, $\mathbf{b} = \langle 1, 3 \rangle$
 - What will **c** = **a** + **b** look like?
 - $\mathbf{c} = \langle 5, 5 \rangle$
 - What will $\mathbf{d} = \mathbf{a} \mathbf{b}$ look like?

Very Brief Vector Review

- Suppose we have vectors $\mathbf{a} = \langle 4, 2 \rangle$, $\mathbf{b} = \langle 1, 3 \rangle$
 - What will **c** = **a** + **b** look like?
 - $\mathbf{c} = \langle 5, 5 \rangle$
 - What will $\mathbf{d} = \mathbf{a} \mathbf{b}$ look like?
 - $\mathbf{d} = \langle 3, -1 \rangle$

_c Very Brief Vector Review

- Suppose we have vectors $\mathbf{w} = \langle 4, 2 \rangle$ and $\mathbf{f} = \langle 1, 3 \rangle$, what is $\mathbf{w} \cdot \mathbf{f}$?
 - 4*1 + 3*2 = 10
 - Angle between vectors is < 90, so dot product is > 0.
- Reminder:
 - $\mathbf{w} \cdot \mathbf{f} = \|\mathbf{w}\| \|\mathbf{f}\| \cos(\theta)$
 - $\mathbf{w} \cdot \mathbf{f} = \sum_{i=1}^{n} w_i f_i$

_c Very Brief Vector Review

- Suppose we have vectors $\mathbf{w} = \langle -3, 4, 2 \rangle$ and $\mathbf{f} = \langle 1, 0, 1.5 \rangle$, what is $\mathbf{w} \cdot \mathbf{f}$?
 - -3*1 + 4*0 + 2*1.5 = 0
 - Angle between the vectors is 90 degrees, so dot product is zero.
- Reminder: $\mathbf{w} \cdot \mathbf{f} = ||\mathbf{w}|| \, ||\mathbf{f}|| \cos(\theta)$
- Vector plotting app (to visualize):
 - https://academo.org/demos/3d-vector-plotter/

Error-Driven Classification

Linear Classifiers

Feature Vectors (from last time)

f(x)Hello, **SPAM** Do you want free printr cartriges? Why pay more when you can get them ABSOLUTELY FREE! Just

Some (Simplified) Biology

- Very loose inspiration: human neurons
 - Don't get too excited, the metaphor is pretty far from reality.

Linear Classifiers

- Inputs are feature values
- Each feature has a weight
- Sum is the activation

$$\operatorname{activation}_{\mathbf{w}}(\mathbf{x}) = \sum_{i} w_{i} f_{i}(\mathbf{x}) = \mathbf{w} \cdot \mathbf{f}(\mathbf{x})$$

- If the activation is:
 - Positive, output +1
 - Negative, output -1

Decision Rules

Binary Decision Rule

- If we have two classes (i.e. need to make binary decision):
 - Have a weight vector for the "positive" class, e.g. spam

W

■ For any given input x, perceptron calculates activation level on that input's features.

$$activation_{\mathbf{w}}(\mathbf{x}) = \mathbf{w} \cdot \mathbf{f}(\mathbf{x})$$

- If activation is positive, perceptron believes it has seen the positive class.
 - Sort of like this: https://www.youtube.com/watch?v=17op92W7voE

$$y = \begin{cases} +1, & \text{if activation}_{\mathbf{w}}(\mathbf{x}) \ge 0 \\ -1, & \text{if activation}_{\mathbf{w}}(\mathbf{x}) < 0 \end{cases}$$

Binary Decision Rule: Geometric Interpretation #1

 Classification rule: if angle between weight vector and feature vector < 90, assume the positive class.

Bias Trick

- Suppose we want to take into account that one class is inherently more likely:
 - Set first entry of weight vector to a so-called "BIAS" value.
 - Set first entry of feature vector to 1, regardless of input.
- Net effect of this trick is to add a constant offset to our activation.
 - Similar to a y-intercept in slope-intercept form of a line.

$$\operatorname{activation}_{\mathbf{w}}(\mathbf{x}) = \sum_{i=0}^{\infty} w_i f_i(\mathbf{x}) = \mathbf{w} \cdot \mathbf{f}(\mathbf{x})$$

$$= BIAS * 1 + \sum_{i=1}^{\infty} w_i f_i(x)$$

Binary Decision Rule: Geometric Interpretation #2

- In the space of feature vectors
 - Examples are points
 - Any weight vector is a hyperplane
 - One side corresponds to y = +1
 - Other corresponds to y = -1

Find the Separating Hyperplane (line)

- In the space of feature vectors
 - Examples are points
 - Any weight vector is a hyperplane
 - One side corresponds to y = +1
 - Other corresponds to y = -1

$\underline{\hspace{1cm}}$		
BIAS	:	-3
free	:	4
money	:	2

Draw the line that separates "ham" from "spam", and label the two resulting half-planes.

Hint: when is $\mathbf{f} \cdot \mathbf{w} = 0$?

Binary Decision Rule: Geometric Interpretation #2

- In the space of feature vectors
 - Examples are points
 - Any weight vector is a hyperplane
 - One side corresponds to y = +1
 - Other corresponds to y = -1

Missing Piece: Learning the Weight Vector

- Need a procedure for learning.
 - Input: huge number of labeled feature vectors
 - Output: weight vector

Weight Updates

Learning: Binary Perceptron

- Start with weights = 0
- For each training instance:
 - Classify with current weights

If wrong: adjust the weight vector

Learning: Binary Perceptron

- Start with weights = 0
- For each training instance:
 - Classify with current weights

$$y = \begin{cases} +1 & \text{if } \mathbf{w} \cdot \mathbf{f}(x) \ge 0 \\ -1 & \text{if } \mathbf{w} \cdot \mathbf{f}(x) < 0 \end{cases}$$

- If correct (i.e., y=y*), no change!
- If wrong: adjust the weight vector by adding the feature vector if $y^* = 1$ and subtract if $y^* = -1$.

Predicted -, was +:
$$\mathbf{w}^{\text{new}} = \mathbf{w}^{\text{old}} + \mathbf{f}$$

Predicted +, was -: $\mathbf{w}^{\text{new}} = \mathbf{w}^{\text{old}} - \mathbf{f}$

Suppose $y^*(x)$ = ham, a.k.a. -1 But we predicted y(x) = spam/+1

Examples: Perceptron

- Separating plane jumps fairly erratically before settling down.
 - In each image, we're seeing what happened AFTER updating weight.

Multiclass Decision Rule

- If we have multiple classes:
 - One weight vector for each class:
 - Can think of all vectors forming a matrix.

$$\mathbf{w}_{\mathbf{y}}$$

$$W = \begin{bmatrix} w_1 \\ w_2 \\ ... \\ w_L \end{bmatrix}$$

Score (activation) of a class y:

$$activation_{\mathbf{w}_{\mathbf{y}}}(\mathbf{x}) = \mathbf{w}_{\mathbf{y}} \cdot \mathbf{f}(\mathbf{x})$$

Prediction highest score wins

$$y = \arg\max_{y} \mathbf{w_y} \cdot \mathbf{f}(x)$$

 $\mathbf{w_1} \cdot \mathbf{f}$ biggest

Binary = multiclass where the negative class has weight zero

Geometry Warning!

- In the multiclass case, angle is not the only determining factor.
 - Magnitude of weight vectors matter!

Learning: Multiclass Perceptron

- Start with all weights = 0
- Pick up training examples one by one
- Predict with current weights

$$y = \arg\max_{y} \mathbf{w_y} \cdot \mathbf{f}(x)$$

- If correct, no change!
- If wrong: subtract f from wrong answer, add f to correct answer, all other weight vectors unchanged.

Wrong:
$$\mathbf{w_y} = \mathbf{w_y} - \mathbf{f}(x)$$

Correct:
$$\mathbf{w}_{\mathbf{y}^*} = \mathbf{w}_{\mathbf{y}^*} + \mathbf{f}(x)$$

Perceptron Demo

"win the vote"

"win the election"

"win the game"

w_{SPORTS}

BIAS : 1
win : 0
game : 0
vote : 0
the : 0

$w_{POLITICS}$

BIAS : 0
win : 0
game : 0
vote : 0
the : 0

w_{TECH}

BIAS : 0
win : 0
game : 0
vote : 0
the : 0

Demo: Multiclass Perceptron

- See webcast.
- Or try it yourself by downloading https://drive.google.com/file/d/0B3UAx
 DgZnbC X1h6QnhScVlVVEk/view
 - (won't display in browser, you have to actually download it and open it locally)

Properties of Perceptrons

- Separability: true if there exists some set of parameters that gets the training set perfectly correct (i.e. there exists a separating hyperplane)
- Convergence: if the training data is separable, perceptron will eventually converge (binary case)
- Mistake Bound: can mathematically compute the maximum number of mistakes (binary case) as a function of the margin or degree of separability [well beyond scope of this course]

mistakes
$$<\frac{k}{\delta^2}$$

Separable

Non-Separable

Examples: Perceptron

Non-Separable Case

Improving the Perceptron

Problems with the Perceptron

- Noise: if the data isn't separable, weights might thrash
 - Averaging weight vectors over time can help (averaged perceptron)

- Overtraining: test / held-out accuracy usually rises, then falls
 - Overtraining is a kind of overfitting

Fixing the Perceptron

- Idea: adjust the weight update to mitigate these effects
- Issue: when we saw x, predicted y, but answer was y^* , we did the "lazy" thing, causing huge swings:
 - Added $\mathbf{f}(x)$ to $\mathbf{w}_{\mathbf{v}^*}$
 - Subtracted f(x) from w_y
- MIRA*: choose an update size that fixes the current mistake... $[w_1]$
- ... but, minimizes the change to $\mathbf{W} = \begin{bmatrix} w_2 \\ ... \\ w_L \end{bmatrix}$

- To do this:
 - Still going to change only w_y and w_{y^*} i.e. bystander vectors like w_5 are left untouched.
 - Still going to change in the same direction, just by less!

Fixing the Perceptron

- Idea: adjust the weight update to mitigate these effects
- MIRA*: choose an update size that fixes the current mistake...
- ... but, minimizes the change to $\mathbf{W} = \begin{bmatrix} w_1 \\ w_2 \\ ... \\ w_I \end{bmatrix}$
- Handy idea: Define τ to be how much we want to use $\mathbf{f}(x)$, i.e.

•
$$\mathbf{w}_{\mathbf{y}}^{\text{new}} = \mathbf{w}_{\mathbf{y}}^{\text{old}} - \tau \mathbf{f}(\mathbf{x})$$

•
$$\mathbf{w}_{\mathbf{y}^*}^{\text{new}} = \mathbf{w}_{\mathbf{y}^*}^{\text{old}} + \tau \mathbf{f}(x)$$

Sanity Check Question

- Idea: adjust the weight update to mitigate these effects
- MIRA*: choose an update size that fixes the current mistake...
- ... but, minimizes the change to $\mathbf{W} = \begin{bmatrix} w_1 \\ w_2 \\ ... \\ w_t \end{bmatrix}$
- Handy idea: Define τ to be how much we want to use $\mathbf{f}(x)$, i.e.
 - $\mathbf{w}_{\mathbf{y}}^{\text{new}} = \mathbf{w}_{\mathbf{y}}^{\text{old}} \tau \mathbf{f}(\mathbf{x})$
 - $\mathbf{w}_{\mathbf{y}^*}^{\text{new}} = \mathbf{w}_{\mathbf{y}^*}^{\text{old}} + \tau \mathbf{f}(x)$
- What happens if we set $\tau = 0$? $\tau = 1$?

Sanity Check Question

- Idea: adjust the weight update to mitigate these effects
- MIRA*: choose an update size that fixes the current mistake...
- ... but, minimizes the change to $\mathbf{W} = \begin{bmatrix} w_1 \\ w_2 \\ ... \\ w_I \end{bmatrix}$
- Handy idea: Define τ to be how much we want to use $\mathbf{f}(x)$, i.e.

•
$$\mathbf{w}_{\mathbf{y}}^{\text{new}} = \mathbf{w}_{\mathbf{y}}^{\text{old}} - \tau \mathbf{f}(\mathbf{x})$$

•
$$\mathbf{w}_{\mathbf{y}^*}^{\text{new}} = \mathbf{w}_{\mathbf{y}^*}^{\text{old}} + \tau \mathbf{f}(x)$$

- What happens if we set $\tau = 0$? $\tau = 1$?
 - $\tau = 0$: Our algorithm never learns.
 - $\tau = 1$: We have the original perceptron algorithm, which shoves too hard.

Measuring Fixed Mistake

- Idea: adjust the weight update to mitigate these effects
- MIRA*: choose an update size that fixes the current mistake...
- ... but, minimizes the change to $\mathbf{W} = \begin{bmatrix} w_1 \\ w_2 \\ ... \\ w_t \end{bmatrix}$
- Handy idea: Define τ to be how much we want to use $\mathbf{f}(x)$, i.e.
 - $\mathbf{w}_{\mathbf{y}}^{\text{new}} = \mathbf{w}_{\mathbf{y}}^{\text{old}} \tau \mathbf{f}(\mathbf{x})$
 - $\mathbf{w}_{\mathbf{y}^*}^{\text{new}} = \mathbf{w}_{\mathbf{y}^*}^{\text{old}} + \tau \mathbf{f}(x)$

Give an expression that indicates we've fixed the current mistake.

Measuring Fixed Mistake

- Idea: adjust the weight update to mitigate these effects
- MIRA*: choose an update size that fixes the current mistake...
- ... but, minimizes the change to $\mathbf{W} = \begin{bmatrix} w_1 \\ w_2 \\ ... \\ w_t \end{bmatrix}$
- Handy idea: Define τ to be how much we want to use $\mathbf{f}(x)$, i.e.
 - $\mathbf{w}_{\mathbf{y}}^{\text{new}} = \mathbf{w}_{\mathbf{y}}^{\text{old}} \tau \mathbf{f}(\mathbf{x})$
 - $\mathbf{w}_{\mathbf{v}^*}^{\text{new}} = \mathbf{w}_{\mathbf{v}^*}^{\text{old}} + \tau \mathbf{f}(x)$

Give an expression that indicates we've fixed the current mistake.

$$\mathbf{w}_{\mathbf{y}^*}^{\text{new}} \cdot \mathbf{f}(x) \ge \mathbf{w}_{\mathbf{y}}^{\text{new}} \cdot \mathbf{f}(x)$$

Measuring Change in W

- Idea: adjust the weight update to mitigate these effects
- MIRA*: choose an update size that fixes the current mistake...
- ... but, minimizes the change to $\mathbf{W} = \begin{bmatrix} \mathbf{w_1} \\ \dots \end{bmatrix}$

Handy idea: Define τ to be how much we want to use $\mathbf{f}(x)$, i.e.

•
$$\mathbf{w}_{\mathbf{y}}^{\mathbf{new}} = \mathbf{w}_{\mathbf{y}}^{\mathbf{old}} - \tau \mathbf{f}(\mathbf{x})$$

•
$$\mathbf{w}_{\mathbf{y}^*}^{\text{new}} = \mathbf{w}_{\mathbf{y}^*}^{\text{old}} + \tau \mathbf{f}(x)$$

- Give an expression that indicates we've fixed the current mistake. $\mathbf{w}_{\mathbf{v}^*}^{\mathbf{new}} \cdot \mathbf{f}(x) \geq \mathbf{w}_{\mathbf{v}}^{\mathbf{new}} \cdot \mathbf{f}(x)$
- Give an expression that computes the change in \mathbf{W} (hard question with obvious answer!).

Measuring Change in W

- Idea: adjust the weight update to mitigate these effects
- MIRA*: choose an update size that fixes the current mistake...
- ... but, minimizes the change to $\mathbf{W} = \begin{bmatrix} w_1 \\ w_2 \\ ... \\ w_t \end{bmatrix}$
- Handy idea: Define τ to be how much we want to use $\mathbf{f}(x)$, i.e.
 - $\mathbf{w}_{\mathbf{y}}^{\text{new}} = \mathbf{w}_{\mathbf{y}}^{\text{old}} \tau \mathbf{f}(\mathbf{x})$
 - $\mathbf{w}_{\mathbf{y}^*}^{\text{new}} = \mathbf{w}_{\mathbf{y}^*}^{\text{old}} + \tau \mathbf{f}(x)$

- Give an expression that indicates we've fixed the current mistake. $\mathbf{w}^{\mathbf{new}}_{\mathbf{y}^*} \cdot \mathbf{f}(x) \geq \mathbf{w}^{\mathbf{new}}_{\mathbf{y}} \cdot \mathbf{f}(x)$
- Give an expression that computes the change in W. $\sum_{i=1}^{n} ||w_i^{new} w_i^{ol}||$
 - There are many other reasonable answers!

MIRA

- Idea: adjust the weight update to mitigate these effects
- MIRA*: choose an update size that fixes the current mistake...
- ... but, minimizes the change to w

$$\min_{\mathbf{W}} \sum_{i=0}^{L} \|\mathbf{w}_{i}^{\text{new}} - \mathbf{w}_{i}^{\text{old}}\|$$

s.t.
$$\mathbf{w}_{\mathbf{y}^*}^{\text{new}} \cdot \mathbf{f}(\mathbf{x}) \ge \mathbf{w}_{\mathbf{y}}^{\text{new}} \cdot \mathbf{f}(\mathbf{x})$$

We saw x, predicted y, but y^* was the right answer, so we adjust weights as:

$$\mathbf{w}_{\mathbf{y}}^{\text{new}} = \mathbf{w}_{\mathbf{y}}^{\text{old}} - \tau \mathbf{f}(x)$$
$$\mathbf{w}_{\mathbf{y}^*}^{\text{new}} = \mathbf{w}_{\mathbf{y}^*}^{\text{old}} + \tau \mathbf{f}(x)$$

Slight Reframing of MIRA

- Idea: adjust the weight update to mitigate these effects
- MIRA*: choose an update size that fixes the current mistake...
- ... but, minimizes the change to w

$$\min_{\mathbf{W}} \frac{1}{2} \sum_{i=0}^{L} \left\| \mathbf{w}_{i}^{\text{new}} - \mathbf{w}_{i}^{\text{old}} \right\|^{2}$$

s.t.
$$\mathbf{w}_{\mathbf{y}^*}^{\text{new}} \cdot \mathbf{f}(\mathbf{x}) \ge \mathbf{w}_{\mathbf{y}}^{\text{new}} \cdot \mathbf{f}(\mathbf{x}) + 1$$

- This version of MIRA does a couple of slightly different things:
 - Insists that we correct by an arbitrary margin of 1.
 - Minimizes square of norm (doesn't change algorithm, but...)

We saw x, predicted y, but y^* was the right answer, so we adjust weights as:

$$\mathbf{w}_{\mathbf{y}}^{\text{new}} = \mathbf{w}_{\mathbf{y}}^{\text{old}} - \tau \mathbf{f}(x)$$
$$\mathbf{w}_{\mathbf{y}^*}^{\text{new}} = \mathbf{w}_{\mathbf{y}^*}^{\text{old}} + \tau \mathbf{f}(x)$$

Minimum Correcting Update

$$\min_{\mathbf{W}} \frac{1}{2} \sum_{i=0}^{L} \left\| \mathbf{w}_{i}^{\text{new}} - \mathbf{w}_{i}^{\text{old}} \right\|^{2}$$

s.t.
$$\mathbf{w}_{\mathbf{y}^*}^{\text{new}} \cdot \mathbf{f}(\mathbf{x}) \ge \mathbf{w}_{\mathbf{y}}^{\text{new}} \cdot \mathbf{f}(\mathbf{x}) + 1$$

$$\min_{\mathbf{\tau}} \sum_{i=0}^{L} \|\mathbf{\tau} \mathbf{f}(x)\|^2$$

s.t.
$$\mathbf{w}_{\mathbf{y}^*}^{\mathbf{new}} \cdot \mathbf{f}(\mathbf{x}) \ge \mathbf{w}_{\mathbf{y}}^{\mathbf{new}} \cdot \mathbf{f}(\mathbf{x}) + 1$$

$$\left(\mathbf{w}_{\mathbf{y}^*}^{\text{old}} + \mathbf{\tau}\mathbf{f}(\mathbf{x})\right) \cdot \mathbf{f}(\mathbf{x}) = \left(\mathbf{w}_{\mathbf{y}}^{\text{old}} - \mathbf{\tau}\mathbf{f}(\mathbf{x})\right) \cdot \mathbf{f}(\mathbf{x}) + 1$$

$$\mathbf{w}_{y}^{\text{new}} = \mathbf{w}_{y}^{\text{old}} - \tau \mathbf{f}(x)$$

$$\mathbf{w}_{y^{*}}^{\text{new}} = \mathbf{w}_{y^{*}}^{\text{old}} + \tau \mathbf{f}(x)$$

min not τ =0, or would not have made an error, so min will be where equality holds

Minimum Correcting Update

$$\left(\mathbf{w}_{\mathbf{y}^*}^{\mathbf{old}} + \mathbf{\tau}\mathbf{f}(\mathbf{x})\right) \cdot \mathbf{f}(\mathbf{x}) = \left(\mathbf{w}_{\mathbf{y}}^{\mathbf{old}} - \mathbf{\tau}\mathbf{f}(\mathbf{x})\right) \cdot \mathbf{f}(\mathbf{x}) + 1$$

(solve for τ , just algebra)

$$\tau = \frac{\left(\mathbf{w}_{y}^{\text{old}} - \mathbf{w}_{y^{*}}^{\text{old}}\right) \cdot \mathbf{f}(x) + 1}{2\mathbf{f}(x) \cdot \mathbf{f}(x)}$$

- Or in English:
 - Shove the weight vector for the right prediction in the direction of the input-under-test, using \(\tau\) to say how hard
 - Shove the weight vector for the wrong prediction away from the input-under-test, using τ to say how hard
 - The equation above lets us calculate a better τ than the one we used before, which was 1.

$$\mathbf{w}_{\mathbf{y}}^{\text{new}} = \mathbf{w}_{\mathbf{y}}^{\text{old}} - \tau \mathbf{f}(x)$$
$$\mathbf{w}_{\mathbf{y}^*}^{\text{new}} = \mathbf{w}_{\mathbf{y}^*}^{\text{old}} + \tau \mathbf{f}(x)$$

min not τ =0, or would not have made an error, so min will be where equality holds

Maximum Step Size

- In practice, don't want updates that are too large
 - Example may be labeled incorrectly
 - You may not have enough features
 - Solution: cap the maximum possible value of τ with some constant C

$$\tau = \min\left(\frac{\left(\mathbf{w}_{y}^{old} - \mathbf{w}_{y^{*}}^{old}\right) \cdot \mathbf{f}(x) + 1}{2\mathbf{f}(x) \cdot \mathbf{f}(x)}, C\right)$$

- Corresponds to an optimization that assumes non-separable data
- Usually converges faster than perceptron
- Usually better, especially on noisy data (i.e. data with mislabeled values)

Linear Separators

Which of these linear separators is optimal?

Support Vector Machines

- Maximizing the margin: good according to intuition, theory, practice
- Only support vectors matter; other training examples are ignorable
- Support vector machines (SVMs) find the separator with max margin
 - Turns out that this is equivalent to minimizing the magnitudes of the weight vectors (!!)
- Basically, SVMs are MIRA where you optimize over all examples at once

MIRA, repeat until satisfied:

$$\min_{\mathbf{W}} \frac{1}{2} \|\mathbf{W}^{\text{new}} - \mathbf{W}^{\text{old}}\|^{2}$$
s.t.
$$\mathbf{w}_{\mathbf{y}^{*}}^{\text{new}} \cdot \mathbf{f}(\mathbf{x}) \ge \mathbf{w}_{\mathbf{y}}^{\text{new}} \cdot \mathbf{f}(\mathbf{x}) + 1$$

SVM, find the W such that: (via link)

$$\min_{\mathbf{W}} \frac{1}{2} \|\mathbf{W}\|^2$$
s.t. $\forall i, y : \mathbf{w}_{y^*} \cdot \mathbf{f}(\mathbf{x}_i) \ge \mathbf{w}_y \cdot \mathbf{f}(\mathbf{x}_i) + 1$

Classification: Comparison

Naïve Bayes

- Builds a model training data
- Gives prediction probabilities
- Strong assumptions about feature independence
- One pass through data (counting)

Perceptrons / MIRA:

- Makes less assumptions about data
- Mistake-driven learning
- Multiple passes through data (prediction)
- Often more accurate

Note to Future Prospective 189 Students

- We took it very easy on the linear algebra today!
- If you plan on taking 189, make sure you're feeling solid on linear algebra.
 - Refresh your math 54 (or equivalent knowledge).
- Not a bad idea to take Math 110 first, but not totally necessary.

MIRA, repeat until satisfied:

$$\min_{\mathbf{W}} \frac{1}{2} \|\mathbf{W}^{\text{new}} - \mathbf{W}^{\text{old}}\|^{2}$$
s. t. $\mathbf{w}_{\mathbf{y}^{*}}^{\text{new}} \cdot \mathbf{f}(\mathbf{x}) \ge \mathbf{w}_{\mathbf{y}}^{\text{new}} \cdot \mathbf{f}(\mathbf{x}) + 1$

SVM, find the W such that:

$$\min_{\mathbf{W}} \frac{1}{2} \|\mathbf{W}\|^2$$
s.t. $\forall i, y : \mathbf{w}_{y^*} \cdot \mathbf{f}(\mathbf{x}_i) \ge \mathbf{w}_y \cdot \mathbf{f}(\mathbf{x}_i) + 1$

Contest 2

Web Search

Extension: Web Search

- Information retrieval:
 - Given information needs, produce information
 - Includes, e.g. web search, question answering, and classic IR

 Web search: not exactly classification, but rather ranking

x = "Apple Computers"

Feature-Based Ranking

x = "Apple Computer"

Perceptron for Ranking

- lacktriangle Inputs x
- Candidates y
- Many feature vectors: f(x,y)
- lacktriangledown One weight vector: w
 - Prediction:

$$y = \operatorname{arg\,max}_y w \cdot f(x, y)$$

Update (if wrong):

$$w = w + f(x, y^*) - f(x, y)$$

Apprenticeship (time permitting)

Pacman Apprenticeship!

Examples are states s

- Candidates are pairs (s,a)
- "Correct" actions: those taken by expert
- Features defined over (s,a) pairs: f(s,a)
- Score of a q-state (s,a) given by:

$$w \cdot f(s, a)$$

 $\forall a \neq a^*,$ $w \cdot f(a^*) > w \cdot f(a)$

How is this VERY different from reinforcement learning?

Video of Demo Pacman Apprentice

Next: Kernels and Clustering