Mandelbrot and Julia Set

Jack Fineanganofo

Mandelbrot Set

- Fractal
- Set of complex numbers for which the function f(z) = z^2 + c does not diverge when iterated from 0
- Named after Benoit Mandelbrot, pioneer for fractal geometry
- The area is bounded to |z| = 2
- The closer one zooms into the image, the more intricate details are revealed
- Zooming into a certain z value can provide a picture of the infinite unique geometric shapes

Mandelbrot Image

- Increasing the iterations and image resolution can create a more finely detailed mandelbrot image
- Huge iterations can create even finer detail images allowing us to "zoom in" and visualize the unique patterns however takes more time

Enhanced Image: 10000 Iterations: 832.378 Seconds

Julia Set

- Fractal
- Iterative properties of more general expressions within the mandelbrot set
- Unlike mandelbrot, Julia sets c value within the mandelbrot formula f(z) = z^2 + c stays the same
- The c value provides different patterns

c = -0.8 + 0.156i

c = 0.285 + 0i

Julia Set Image

- Just like mandelbrot, increasing the iterations and image resolution can create a more finely detailed Julia image
- Just like mandelbrot, huge iterations can create even finer detail images allowing us to "zoom in" and visualize the unique patterns however takes more time

10000 Iterations 24.669331 secs

30000 Iterations : CUDA : 8.158948 Seconds

Speeds Comparison

Speeds

Speedup and Efficiency

