CSCI699: Theory of Machine Learning

Fall 2021

Lecture 5: VC Dimension

Instructor: Vatsal Sharan Scribe: Berk Tinaz

Today

• We will talk about the VC dimension.

Recap: In previous classes, we showed that for hypothesis classes \mathcal{H} with finite size $|\mathcal{H}|$,

- \mathcal{H} is PAC learnable with $n_{\mathcal{H}}(\epsilon, \delta) = \mathcal{O}\left(\frac{\log(|\mathcal{H}|/\delta)}{\epsilon}\right)$ samples (with the realizability assumption).
- \mathcal{H} is agnostic-PAC learnable with $n_{\mathcal{H}}(\epsilon, \delta) = \mathcal{O}\left(\frac{\log(|\mathcal{H}|/\delta)}{\epsilon^2}\right)$ samples.

What about when size of \mathcal{H} is infinite?

- Discretization: One way to handle infinite size is by discretizing it.
 - Think about a linear classifier in \mathbb{R}^d . For a 32-bit system $\implies (2^{32})^d$ possible classifiers which is large but finite!
- VC dimension gives a nice way to handle ∞ classes.

1 Vapnik-Chervonenkis (VC) Dimension

Shattering

Definition 1 (Restriction & Shattering). The **restriction** of a hypothesis class \mathcal{H} to a set of examples $C = \{c_1, \ldots, c_n\} \in \mathcal{X}$ is a subset of $\{0, 1\}^{|C|}$, given by $\mathcal{H}_C = \{(h(c_1), \ldots, h(c_n)), \forall h \in \mathcal{H}\}$. We say that \mathcal{H} shatters C if $|\mathcal{H}_C| = 2^{|C|}$.

Basically, shattering indicates that all possible labelings are realized when \mathcal{H} labels the set C.

Corollary 2 (of No Free-lunch Theorem). Let \mathcal{H} be a hypothesis class and assume there exists a set $C \subseteq \mathcal{X}$ of size 2n such that \mathcal{H} shatters C. Then, \exists a distribution D over $\mathcal{X} \times \{0,1\}$ and a predictor $h^* \in \mathcal{H}$ such that $R(h^*) = 0$, but for any learning algorithm A, $\mathbb{P}_{S \sim D^n}[R(A(S)) \ge 1/8] \ge 1/7$.

In short, if \mathcal{H} shatters a set of size 2n then one cannot learn with just n examples. Can we do something if C is such that $|\mathcal{H}_C| \ll 2^{|C|}$?

<u>Idea</u>: For any distribution supported on C, the real hypothesis space under consideration is actually \mathcal{H}_C . Moreover, because of the construction, \mathcal{H}_C is finite. Therefore, if $|\mathcal{H}_C|$ is small, then maybe one can learn.

Definition 3 (VC Dimension). The VC dimension of a hypothesis class \mathcal{H} , denoted by VCdim(\mathcal{H}) is the size of the largest set $C \subseteq \mathcal{X}$ that can be shattered by \mathcal{H} . If \mathcal{H} can shatter sets of arbitrary size, then VCdim(\mathcal{H}) = ∞ .

How to show $VCdim(\mathcal{H}) = d$?

- 1. Check if there exists some set C of size d that can be shattered by \mathcal{H} .
- 2. Check that no set of size d+1 is shattered by \mathcal{H} .

Examples

• Example 1 (Threshold functions): Let x = [0,1], $\mathcal{H} = \{h_{\delta}(x) = \mathbb{1}(x \geq \delta), \delta \in [0,1]\}$. \mathcal{H} are set of thresholds in \mathbb{R} .

Claim: $VCdim(\mathcal{H}) = 1$.

Figure 1: Setup in the first row is used to show that \mathcal{H} can shatter a set C of size 1. Setup in the second row is used to show that $VCdim(\mathcal{H}) < 2$. To realize all possible labelings for |C| = 2, one requires reverse thresholds.

To verify the claim, we will use the 2-step approach depicted above. As a first step, we will check if there is a set C of size 1 that can be shattered by \mathcal{H} . Select any point x, e.g. x = 1/3. We can see that for $\delta \leq 1/3$, $h_{\delta}(x) = 1$ and similarly for $\delta > 1/3$, $h_{\delta}(x) = 0$. Hence, all possible labeling are realized for |C| = 1. For visualization, refer to first row of Figure 1.

Now we have to check that \mathcal{H} can't shatter any set C with |C| = 2. To see this, pick two points $x_1 = a$ and $x_2 = b$ such that $a, b \in [0, 1]$ and without loss of generality (w.l.o.g.) assume a < b. Then, for $\delta \leq a$ we have $h_{\delta}(a) = h_{\delta}(b) = 1$. For, $a < \delta \leq b$ we have $h_{\delta}(a) = 0, h_{\delta}(b) = 1$. Finally, for $b < \delta$ we have $h_{\delta}(a) = h_{\delta}(b) = 0$. Notice that with this hypothesis class \mathcal{H} , we can't get the labeling $h_{\delta}(a) = 1, h_{\delta}(b) = 0$ for any $\delta \in [0, 1]$ (which requires a reverse threshold as can be seen in second row of Figure 1). Therefore, \mathcal{H} does not shatter C with |C| = 2. Hence, claim is proven.

If we also allow reverse thresholds, i.e. $\mathbb{1}(x < \delta)$, then one can show that $VCdim(\mathcal{H}) = 2$.

• Example 2 (Axis-aligned rectangles): Let $\mathcal{X} = \mathbb{R}^2$ and define,

$$\mathcal{H}_{a_1,a_2,b_1,b_2}(x_1,x_2) = \mathbb{1} (a_1 \le x_1 \le b_1 \& a_2 \le x_2 \le b_2)$$

Claim: $VCdim(\mathcal{H}) = 4$.

Similar to the previous example, let us first show that there is a set C of size 4 that can be shattered by \mathcal{H} . Consider the points in the first row of Figure 2 (points organized in diamond shape). Notice that we can enclose any subset of these points with a rectangle. Therefore, all labelings can be realized with \mathcal{H} .

To see that \mathcal{H} cannot shatter any set C with size 5, consider the case in the second row of Figure 2. Pick 5 distinct points and label left-most point c_1 , right-most point c_2 , bottom-most point c_3 , and top-most point c_4 . Last point c_5 can be anywhere in the tightest rectangle fitted to the first 4 points. We would like to label first 4 points 1 but the last point 0. For the first 4 points to be labeled 1, \mathcal{H} must enclose them with the rectangle. However, due to construction, c_5 must also be in that rectangle which means it can't be labeled 0. Therefore, desired labeling cannot be realized. Hence, $\operatorname{VCdim}(\mathcal{H}) < 5$ which proves the claim.

Figure 2: Setup in the first row is used to show that \mathcal{H} can shatter a set C of size 4. Setup in the second row is used to show that $VCdim(\mathcal{H}) < 5$.

• Example 3 (Finite classes): For any finite hypothesis class \mathcal{H} , we have $VCdim(\mathcal{H}) \leq \log(|\mathcal{H}|)$. This is because for any set C, $|\mathcal{H}_C| \leq |\mathcal{H}|$. Therefore, if $2^{|C|} > |\mathcal{H}|$, then we cannot shatter C.

2 VC Theorem

Theorem 4 (VC Theorem). Let \mathcal{H} be a hypothesis class with $VCdim(\mathcal{H}) = d < \infty$. Then there is an absolute constant c > 0 such that \mathcal{H} has uniform convergence property with,

$$n_{\mathcal{H}}^{VC}(\epsilon, \delta) = c \cdot \frac{d \cdot log(d/\epsilon) + log(1/\epsilon)}{\epsilon^2}$$

Corollary 5. \mathcal{H} is agnostic-PAC learnable with $\mathcal{O}\left(\frac{d \cdot log(d/\epsilon) + log(1/\epsilon)}{\epsilon^2}\right)$ samples.

Note:

- (1) It is also possible to show that $n_{\mathcal{H}}^{VC}(\epsilon, \delta) \leq c \cdot \frac{d + \log(1/\delta)}{\epsilon^2}$. For $d = \log(|\mathcal{H}|)$, this bound reduces to $c \cdot \frac{\log(|\mathcal{H}|/\delta)}{\epsilon^2}$ which boils down to the $\mathcal{O}\left(\frac{\log(|\mathcal{H}|/\delta)}{\epsilon^2}\right)$ sample complexity that we derived earlier for agnostic-PAC learning.
- (2) The result above is for binary classification with 0/1 loss. Later, we will see how to generalize to other losses beyond 0/1 loss.

Proof Outline:

- 1) For any set $C \subseteq \mathcal{X}$, effective size of restriction of \mathcal{H} on C (\mathcal{H}_C) is approximately $|C|^d$ $(|\mathcal{H}_C| \approx |C|^d)$.
- 2) We want small "effective size" which will be good when we are using union bound to get VC result.

Step 1: Polynomial growth of \mathcal{H}_C

Definition 6 (Growth function). The growth function of \mathcal{H} , $T_{\mathcal{H}} : \mathbb{N} \to \mathbb{N}$, is defined as

$$T_{\mathcal{H}}(n) = \max_{C \subset \mathcal{X}, |C| = n} |\mathcal{H}_C|$$

If $VCdim(\mathcal{H}) = d$, then $T_{\mathcal{H}}(n) = 2^n, \forall n \leq d$. Sauer's Lemma gives a good upper bound $\forall n > d$.

Lemma 7 (Sauer's Lemma). $\forall n, \text{VCdim}(\mathcal{H}) = d$,

$$T_{\mathcal{H}}(n) \le \sum_{i=0}^{d} \binom{n}{i}$$

For n > d + 1, this implies:

$$T_{\mathcal{H}}(n) \leq \left(rac{n \cdot e}{d}
ight)^d$$
 (exponential to polynomial regime)

Proof. (of Step 1). We will instead show a stronger inequality. For any $C = \{c_1, \ldots, c_n\}$ & any \mathcal{H} ,

$$|\mathcal{H}_C| \le |\{B \subseteq C : \mathcal{H} \text{ shatters } B\}| \tag{1}$$

This is sufficient since if $VCdim(\mathcal{H}) = d$, \mathcal{H} cannot shatter any set B of size |B| > d. There are $\binom{n}{i}$ subsets of size i, hence, we will get our bound.

We will prove (1) by induction.

Base Step (n = 1): We have either,

- 1) $|\mathcal{H}_C| = 2^0 = 1$. Then, LHS = RHS in (1) since one labeling shatters $\{\emptyset\}$.
- 2) $|\mathcal{H}_C| = 2^1 = 2$. Then, again LHS = RHS as two labelings shatter $\{\{\emptyset\}, \{c_1\}\}$.

Induction Step: Assume that (1) holds for all sets of size k < n. Let $C = \{c_1, \ldots, c_n\}$ & $C' = \{c_2, \ldots, c_n\}$. Define,

$$Y_0 = \{(y_2, \dots, y_n) : (0, y_2, \dots, y_n) \in \mathcal{H}_C \text{ or } (1, y_2, \dots, y_n) \in \mathcal{H}_C\}$$
$$Y_1 = \{(y_2, \dots, y_n) : (0, y_2, \dots, y_n) \in \mathcal{H}_C \text{ and } (1, y_2, \dots, y_n) \in \mathcal{H}_C\}$$

<u>Claim</u>: $|\mathcal{H}_C| = |Y_0| + |Y_1|$. This is true because, (y_2, \ldots, y_n) is counted once in Y_0 , but counted again in Y_1 if can be shattered.

By induction we get,

$$|Y_0| \le |\{B \subseteq C' : \mathcal{H} \text{ shatters } B\}| = |\{B \subseteq C : c_1 \notin B \text{ and } \mathcal{H} \text{ shatters } B\}|$$

for Y_1 , define $\mathcal{H}' \subseteq \mathcal{H}$ to be:

$$\mathcal{H}^{'} = \left\{ h \in \mathcal{H}, \exists h^{'} \in \mathcal{H} \text{ such that } ((1 - h^{'}(c_{1}), h^{'}(c_{2}), \dots, h^{'}(c_{n})) = (h(c_{1}), h(c_{2}), \dots, h(c_{n})) \right\}$$

 $\mathcal{H}^{'}$ is the set of hypothesis for which that hypothesis that agrees everywhere in C except c_1 is also in \mathcal{H} .

Note:

- 1) If \mathcal{H}' shatters $B \subseteq C'$ then it also shatters $B \cup \{c_1\}$.
- 2) $Y_1 = \mathcal{H}'_{C'}$

Then,

$$|Y_{1}| = |\mathcal{H}'_{C'}| \leq \left| \{ B \subseteq C' : \mathcal{H}' \text{ shatters } B \} \right| \quad \text{(By induction hypothesis (1))}$$

$$= \left| \left\{ B \subseteq C' : \mathcal{H}' \text{ shatters } B \cup \{c_{1}\} \right\} \right|$$

$$= \left| \left\{ B \subseteq C : c_{1} \in B \text{ and } \mathcal{H}' \text{ shatters } B \right\} \right|$$

$$\leq \left| \{ B \subseteq C : c_{1} \in B \text{ and } \mathcal{H} \text{ shatters } B \} \right|$$

From previous claim:

$$|\mathcal{H}_C| = |Y_0| + |Y_1|$$

$$\leq |\{B \subseteq C : c_1 \notin B \text{ and } \mathcal{H} \text{ shatters } B\}| + |\{B \subseteq C : c_1 \in B \text{ and } \mathcal{H} \text{ shatters } B\}|$$

$$= |\{B \subseteq C : \mathcal{H} \text{ shatters } B\}|$$

which completes our proof.

Step 2: Symmetrization

Lemma 8. For a class \mathcal{H} with growth function $T_{\mathcal{H}}$,

$$\mathbb{E}_{S \sim D^n} \left[\sup_{h \in \mathcal{H}} |R(h) - \hat{R}_S(h)| \right] \le \sqrt{\frac{2 \cdot \log(2 \cdot T_{\mathcal{H}}(2n))}{n}}$$

Once we have this, we can use Markov's inequality to get a high probability statement such as:

$$\Pr\left[\sup_{h\in\mathcal{H}}|R(h)-\hat{R}_S(h)|>t\right]\leq \frac{\sqrt{\frac{2\cdot\log(2\cdot T_{\mathcal{H}}(2n))}{n}}}{t}$$

But instead, we will use McDiarmid's inequality to get an even better bound.