FUNDAMENTOS INGENIERÍA ELÉCTRICA EXAMEN FINAL ENERO DE 2024

NOMBRE						FIRMA			
GRADO:	□ Eléctrico	□ Electrónico	□ Mecánico	□ Diseño	GRIII	PO: □ A	ПВ	ПС	

Ejercicio 1 (1 punto) Para el circuito de corriente continua de la figura, determina la potencia suministrada por las fuentes y la energía almacenada en el condensador y en las bobinas sabiendo que el coeficiente de acoplamiento de las bobinas es 1.

Potencia fuente 6V (W)	
Potencia fuente 5A (W)	
Energía bobinas (J)	
Energía condensador (J)	

Ejercicio 2 (1.25 puntos) Plantea las ecuaciones de nudos del circuito de la figura. Incluye variables y ecuaciones adicionales si son necesarias. Resuelve el sistema y determina i y la potencia generada por las tres fuentes.

Ejercicio 3 (1.25 puntos) Determina de manera independiente la tensión y resistencia Thevenin y la intensidad Norton.

Ejercicio 4 (1 punto) El circuito de la figura se encuentra en régimen sinusoidal permanente a una frecuencia de 1000 rad/s. Sabiendo que el voltímetro marca 50V, calcula la potencia activa y reactiva que cede la fuente.

Potencia activa (W)	
Potencia reactiva (VAr)	

Ejercicio 5 (1.25 puntos) Sabiendo que el amperímetro marca 10A, encuentra la lectura del voltímetro y el valor de X para que la fuente de alterna trabaje con factor de potencia unitario.

V =	[V]
X =	$[\Omega]$

Ejercicio 6 (1.25 puntos) Para el circuito de corriente alterna de la figura, determina V_2 sabiendo que $V_1 = 100$ V y que R=X.

$$V_2 = [V]$$

Ejercicio 7 (1.75 puntos) Se tiene un red trifásica equilibrada de secuencia directa a 50Hz. La carga 1 consume 11kW con un factor de potencia de 0.8 (ind). La carga 2 consume 15kVA con un factor de potencia de 0.5 (ind). La carga 3 consume 3kW y genera 3.7kVAr. Si $V_1 = 380$ V y $Z_l = 0.2 + 0.4j$ Determina las medidas A, V_2 , W_1 , W_2 , W_3 y la capacidad de la batería de condensadores dispuesta en triángulo (C^{Δ}) para llevar al conjunto de las tres cargas a un factor de potencia de 0.94 (ind).

Amperímetro A [A]	Voltímetro V_2 [V]	Vatímetro W_1 [W]	
Vatímetro W_2 [W]	Vatímetro W_3 [W]	Condensador C^{Δ} [μ F]	

Ejercicio 8 (1.25 puntos) En el circuito de la figura se tiene un RTE de secuencia directa. Se sabe que la carga consume 1kW con un factor de potencia 0.8 (ind) y que $W_1 = 900$ W. Hallar la lectura del amperímetro A, la lectura del voltímetro V y la impedancia de la carga si está conectada el triángulo Z^{Δ} .

		* (A) 2j (V)
RTE	b	$\stackrel{\text{2j}}{\longleftarrow}$ CTE
	c	2j 012

Amperímetro A [A]	
Voltímetro V [V]	
Impedancia Z^{Δ} $[\Omega]$	