

Universidade de Coimbra

Faculdade de Ciências e Tecnologia

Licenciatura em Engenharia Informática

ATD - 2018/2019

2º Ano – 2º Semestre

FCTUC FACULDADE DE CIÊNCIAS
E TECNOLOGIA
UNIVERSIDADE DE COIMBRA

RELATÓRIO

Mini-Projeto

		Colmbra, 26 de maio de 2019
2017256831	Maria Beatriz Delgado Gomes Santos Vieira	uc2017256831@student.uc.pt
2017265598	Maria Olímpia Machado Dias	uc2017265598@student.uc.pt
2016241755	Pedro Afonso Almeida	uc2016241755@student.uc.pt

Índice

Introdução	. 3
Desenvolvimento	
Exercício 4	
Exercício 4.1	
Exercício 4.2	
Exercício 4.3	12
Exercício 4.4	
Exercício 4.5	
Conclusão	

Introdução

Este projeto foi realizado no âmbito da cadeira Análise e Transformação de Dados lecionada no segundo ano da licenciatura em Engenharia Informática pela Faculdade de Ciências e Tecnologia da Universidade de Coimbra.

Com este trabalho, pretendíamos adquirir conhecimentos subjacentes à análise em frequência de sinais recolhidos por acelerómetros, que podem ser encontrados em telemóveis modernos com o objetivo de classificar movimentos estatísticos, dinâmicos e de transição devido a movimentos humanos.

A linguagem utilizada para a realização deste mini-projeto foi *Matlab*.

Desenvolvimento

Inicialmente começou-se pela importação dos 10 ficheiros de dados correspondentes à PL1, contendo cada um dos ficheiros os dados respetivos a movimentos de diferentes seres humanos.

Figura 1 - Representação do Sinal para um dos ficheiros

O sinal é dividido em diferentes atividades representadas para cada eixo, x, y e z, nomeadamente em atividades dinâmicas (W, W-U, WD), estáticas (SIT, STAND, LAY) e de transição (STAND-SIT, SIT-STAND, STAND-LIE, LIE-STAND, SIT-LIE e LIE-SIT) para

além de um sinal de ruído que é representado a preto no sinal. As diferentes representações gráficas foram desenvolvidas na função gráficos.m. O seguimento da análise do sinal para as restantes alíneas continuou na função analiseGrafica.m.

Exercício 4

→ Calcule a DFT de cada porção do sinal associado a uma atividade.

Para a realização desta meta calculamos a DFT para cada atividade dos sinais com base na função fft e fftshift, disponíveis em matlab, na função dFT.m. Nas figuras 1, 2 e 3 está representado o cálculo da DFT para as diferentes atividades do user 1.

Figura 2 - DFT eixo X

Figura 3 - DFT eixo Y

Figura 4 - DFT eixo Z

Exercício 4.1

→ Compare diferentes tipos de janela. Qual o efeito dos diferentes tipos? Justifique.

Para a resolução desta alínea utilizamos as janelas Hamming, Hann e Blackman.

<u>Atividade Dinâmica – Walking</u>

Figura 5 - Aplicação de janelas em X na atividade Walking

Figura 7 - Aplicação de janelas em Z na atividade Walking

<u>Atividade Estática – LAY</u>

Figura 8 - Aplicação de janelas em X na atividade Lay

Figura 9 - Aplicação de janelas em Y na atividade Lay

Figura 10 - Aplicação de janelas em Z na atividade Lay

<u>Atividade Transição – STAND-SIT</u>

Figura 11 - Aplicação de janelas em X na atividade Stand-Sit

Figura 12 - Aplicação de janelas em Y na atividade Stand-Sit

Figura 13 - Aplicação de janelas em Z na atividade Stand-Sit

Ao analisar as diferentes janelas dos 3 tipos de atividades, dinâmica (*Walking*), estática (*LAY*) e de transição (*STAND-SIT*), verificamos que para o caso da janela de *Hamming* esta atenua o sinal na atividade dinâmica, na atividade de transição e na atividade estática do mesmo modo.

Quanto à janela de *Hann* é possível verificar que a atenuação do sinal é muito semelhante à janela de *Blackman* em todas as atividades. Sendo que a janela que apresenta menos *rifle effect* é a janela de *Blackman*.

Verificamos, ainda, o teoricamente comprovado, de que nestas três atividades, a janela de *Hamming* desce mais rápido do que a janela de *Blackman*, por outro lado atenua menos a banda de sinal a cortar.

Exercício 4.2

→ Para as atividades dinâmicas faça uma estatística do número de passos por minuto. Crie uma tabela de valores incluindo o valor médio e o desvio padrão.

Para as diversas atividades dinâmicas foram criados nove vetores, três para a atividade walking, três para a atividade walking-up e por fim três para a atividade walking-down, cada um contendo o número médio de passos por utilizador para cada eixo x, y e z, de cada atividade dinâmica. O número médio de passos de cada atividade foi calculado com o 1º pico de cada intervalo com a ajuda da função findpeaks e aplicando uma função thresholding para desperdiçar valores 40% menores do que o pico máximo, essas funções são aplicadas na função ponto4_2.m. Na função analiseGrafica.m foi calculada a média de cada um desses vetores, sendo ainda calculada a média do número de passos dos 10 ficheiros. Para cada um desses vetores foi ainda calculado o desvio padrão com base na função matlab std.

Número	Média Passos W eixo x	Desvio Padrão	Média Passos W eixo y	Desvio Padrão	Média Passos W eixo z	Desvio Padrão	Média Passos WU eixo x	Desvio Padrão	Média Passos WU eixo y
1	106.72	2.214	106.72	2.214	54.835	1.8238	90.748	1.615	90.748
2	102.43	1.4667	102.43	1.4667	51.589	2.8007	93.798	4.3043	93.798
3	105.89	0.64169	105.89	0.64169	53.999	1.1702	98.319	2.5763	48.414
4	110.14	3.3442	110.14	2.3442	56.157	0.36211	84.134	31.885	84.134
5	97.061	8.1406	97.061	8.1406	45.309	2.3296	93.224	10.618	93.224
6	103.38	1.2683	103.38	1.2683	52.868	0.10334	97.503	2.9778	97.503
7	114.07	1.8543	85.227	38.94	57.692	0	87.749	9.7645	74.993
8	119.05	4.232	88.151	39.462	59.137	1.5698	101.86	1.0768	101.86
9	102.51	2.5476	102.51	2.5476	52.356	3.32	96.651	4.1806	96.651
10	111.32	0.38725	111.32	0.38725	56.905	1.5644	103.11	2.5102	103.11
Média Total (min)	107.26		101.28		54.085		94.709		88.443

Figura 13 - Tabela Media/Desvios Padrões para as diferentes atividades

Número	Desvio Padrão	Média Passos WU	Desvio Padrão	Média Passos WD	Desvio Padrão	Média Passos WD	Desvio Padrão	Média Passos WD	Desvio Padrão
		eixo z		eixo x		eixo y		eixo z	
1	1.615	46.543	1.6507	108.27	8.4806	72.21	35.652	48.738	5.0222
2	4.3043	45.066	2.7113	102.52	5.4523	98.579	15.217	52.441	3.1832
3	2.7254	48.414	2.7254	102.66	14.852	66.802	18.239	42.224	8.1578
4	31.885	50.76	4.2997	108.39	6.5169	90.588	36.567	52.08	3.831
5	10.618	47.746	5.7196	104.57	3.3958	97.732	45.447	11.316	5.5143
6	2.9778	47.981	1.7545	90.297	16.332	58.687	25.34	27.796	13.786
7	31.823	43.141	4.5123	98.864	11.321	53.381	36.668	30.131	27.828
8	1.0768	51.361	3.0173	106.13	5.6933	14.877	4.0108	6.1592	1.6766
9	4.1806	46.024	1.9908	104.79	6.3328	77.328	48.493	52.904	5.9358
10	2.5102	52.856	0.24642	116.44	6.9555	116.44	6.9555	60.042	4.5168
Média Total (min)		47.959		104.29		74.663		39.483	

Figura 14 - Tabela Media/Desvios Padrões para as diferentes atividades

Exercício 4.3

→ Identifique características espectrais que permitam diferenciar atividades estáticas e de transição de atividades dinâmicas. Demonstre graficamente. Qual a performance em termos de sensibilidade e especificidade?

Para este caso, as caraterísticas espectrais avaliadas e comparadas, foram o primeiro pico relevante, o pico máximo e o último pico relevante para atividades estáticas e transição.

Figura 16 – Comparação espectral entre atividades estáticas e de transição

Ao observar os gráficos, facilmente, podemos verificar que apenas na comparação dos valores do primeiro pico é que é possível "separar" as atividades estáticas das atividades de transição. Este facto, permite-nos concluir uma performance de 100% de sensibilidade e especificidade.

No que diz respeito ao gráfico referente à comparação do pico máximo já verificamos uma "mistura" dos dois tipos de atividade, existindo um *outlier* que diz respeito às atividades estáticas, sendo de esperar que estas tenham pouca variação, este *outlier* pode dizer respeito à atividade *SIT* em que existe uma variação no eixo X e Z anormal. Neste caso, permite-nos concluir uma performance de 80% de sensibilidade e especificidade pois não é possível separar a 100% estas atividades.

No caso do gráfico comparativo do último pico relevante, verificamos a existência de um *outlier* que diz respeito às atividades estáticas, este *outlier* pode dizer respeito à atividade *LAY* na qual se verifica uma variação maior em relação a Y e Z. A análise deste gráfico, permite-nos concluir uma performance de 40%/50% de sensibilidade e especificidade pois não é possível visualizar uma separação entre estas atividades.

No geral, verifica-se que a variação das atividades de transição é mais visível no eixo Z o que seria de esperar pois é este que é afetado quando o individuo mexe o corpo verticalmente, ora para se sentar, ora para se levantar, ora para se deitar.

Exercício 4.4

→ Identifique características espectrais que permitam diferenciar entre os diferentes tipos de atividades. Demonstre graficamente.

Tal como no exercício anterior, as caraterísticas espectrais avaliadas e comparadas, foram o primeiro pico relevante, o pico máximo e o último pico relevante para atividades estáticas, de transição e dinâmicas.

Figura 17 – Comparação espectral entre atividades estáticas, de transição e dinâmicas

Devido à existência de comparação das atividades anteriores com as atividades dinâmicas, verifica-se um aumento da escala dos gráficos apresentados.

Tal como no exercício anterior verificamos a possibilidade de uma "separação" dos três tipos de atividade na comparação do primeiro pico. Este facto, permite-nos concluir que o primeiro pico de cada atividade representa um bom comparador para estes casos, o primeiro pico relevante de cada tipo de atividade.

Em relação ao pico máximo e ao último pico torna-se mais difícil diferenciar os tipos de atividades o que nos leva a que a comparação destes dois não nos permitem tirar conclusões 100% corretas.

Podemos, assim, ordenar estes comparadores por ordem de eficiência, sendo o último pico o menos eficiente, o pico máximo o seguinte e o primeiro pico mais relevante o mais eficiente.

Verifica-se, ainda, variações mais elevadas no que toca às atividades dinâmicas o que seria já de esperar da análise dos gráficos representados no exercício 3.

Exercício 4.5

→ Identifique características espectrais que permitam diferenciar entre as atividades dinâmicas. Demonstre graficamente.

Nesta última alínea, as caraterísticas espectrais avaliadas e comparadas, foram o pico máximo e a frequência relativa a cada atividade dinâmica, *Walking*, *Walking Up* e *Walking Down*.

Figura 18 – Comparação espectral entre as diferentes atividades dinâmicas

Da análise feita da comparação em cada atividade por frequência verifica-se a variação dos três eixos do mesmo modo para a atividade Walking o que seria teoricamente o esperado pois quando um indíviduo caminha de modo normal tanto x, como y e como z estão a variar. A atividade Walking Down é a que apresenta maior variação dos eixos de seguida, sendo por último a menor variação da Walking Up pois devido à gravidade existe necessidade de balanço para subir, verificando-se essa variação em z no gráfico.

Analisando agora, a comparação das três atividades pelo pico máximo verificamos uma variação mínima do eixo z da atividade Walking Down comparativamente à variação da atividade Walking Up devido à explicação dada anteriormente, verificando-se também uma variação dos três eixos uniforme para a atividade Walking.

Concluímos que, tendo dois comparadores diferentes e obtendo os mesmos resultados que confirmam o teoricamente correto, que é possível distinguir as três atividades umas das outras.

Conclusão

Com este projeto foi possível consolidar os nossos conhecimentos no que toca à linguagem de programação MATLAB, e no que diz respeito à análise e transformação de sinais.

Foi possível diferenciar as diferentes atividades de cada tipo pois cada uma continha caraterísticas espetrais que o permitiam. Aplicamos ainda, diferentes tipos de janelas e analisamos o seu comportamento nas diferentes atividades.