

第 七章 假设检验

■ 1960-1980, 在美国南方有好几起案件引起争议, 有人指出陪审团的选择存在种族歧视, 陪审团名单上的黑人很少

纯属

巧合

■ 证据表明: 50%的合格公民是黑人,80人的预备陪审员名单上只有4名黑人

■假设<u>陪审员是随机选</u>出的,80人的陪审团中黑人数量就应该服从二项分布B(80,0.5)

■ 而最多有4名黑人的 概率是

$$P(X \le 4) = 1.37 \times 10^{-18}$$

■ 这是随机?

例. 体重指数BMI是目前国际上常用的衡量人体胖瘦程度以及是否健康的一个标准. 专家指出,健康成年人的BMI取值应在18.55-24.99之间.

某种减肥药广告宣称,连续使用该种减肥药一个星期便可达到减肥的效果.

为了检验其说法是否可靠,随机抽取9位试验者 (要求BMI指数超过25、年龄在20-25岁女生), 先让每位女生记录没有服用减肥药前的体重,然 后让每位女生服用该减肥药,服药期间,要求每 位女生保持正常的饮食习惯,连续服用该减肥药 1周后,再次记录各自的体重.

测得服减肥药前后的体重差值(服药前体重-服药后体重)(单位: kg):

1.5, 0.6, -0.3, 1.1, -0.8, 0, 2.2, -1.0, 1.4

问题:根据目前的样本资料能否认为该减肥药广告中的宣称是可靠的?

什么是假设检验?

1. 概念

- 1. 事先对总体参数或分布形式作出某种假设
- 2. 然后利用样本信息来判断原假设是否成立

2. 类型

- 1. 参数假设检验
- 2. 分布假设检验

3. 特点

- 采用逻辑上的反证法
- 依据统计上的小概率原理

原假设和备择假设

■ 什么是原假设? (Null Hypothesis)

待检验的假设,又称"0假设"

- 表示为 H₀
 - H₀: µ = 某一数值
 - 例如, H_0 : $\mu = 3190(克), \mu \ge 3910(克), 或 \mu \le 3910(克)$
- 什么是备择假设? (Alternative Hypothesis)
 与原假设对立的假设
- 表示为 H₁
 - H₁: μ ≠ 某一数值
 - 例如, H_1 : $\mu \neq 3910(克)$, $\mu < 3910(克)$, 或 $\mu > 3910(克)$

假设检验的过程

假设检验的过程是一个四步曲.

第一步, 建立两个完全对立的假设:

原假设(零假设)H₀, 备择假设(对立假设)H₁。

原假设与备择假设是不对称的!

决定谁是原假设,依赖于立场、惯例、方便性.

决定谁是原假设,依赖于立场、惯例、方便性.

1. 保护原假设.如果错误地拒绝假设A比错误地拒绝假设B带来更严重的后果——A选作原假设!

例如: 假设A:新药有某种毒副作用, 假设B:新药无某种毒副作用.

"有毒副作用"错误地当成"无毒副作用"比"无毒副作用"错误地当成"有毒副作用"带来的后果更严重。

2. 原假设为维持现状.为解释某些现象或效果的存在性,原假设常取为"无效果"、"无改进"、"无差异"等,拒绝原假设表示有较强的理由支持备择假设.

例1中原假设H₀:药物没有减肥效果. 备择假设H₁:药物有减肥效果.

3. 原假设取简单假设.只有一个参数(或分布)的假设称 为简单假设.如果只有一个假设是简单假设,将其取为 原假设.

参数假设的形式

设0是反映总体指标某方面特征的量,是我们感兴趣的参数. 一般参数0的假设有三种情形:

$$H_0$$
: $\theta = \theta_0$, H_1 : $\theta < \theta_0$ (左边检验)

$$H_0$$
: $\theta = \theta_0$, H_1 : $\theta > \theta_0$ (右边检验)

$$H_0$$
: $\theta = \theta_0$, H_1 : $\theta \neq \theta_0$ (双边检验)

如何检验假设?

根据收集的资料,针对假设,给出检验方法,然后对 假设进行判断。

判断方法有二种: 临界值法. P_值法.

例 减肥药有效?

还是无效?

设服用减肥药前后体重差值 $X \sim N(\mu, \sigma^2)$,并假定方差 $\sigma^2 = 0.36$.

检验假设: $H_0: \mu = 0, H_1: \mu > 0$,

注意到: \overline{X} 是 μ 的无偏估计, \overline{X} 的取值大小反映了 μ 的取值 大小, 当原假设成立时, \overline{X} 取值应偏小。因此

当 $\overline{X} \ge C$ 时,拒绝原假设 H_0 ,当 $\overline{X} < C$ 时,接受原假设 H_0 ,其中C是待定的常数.

如果统计量 $T = T(X_1, ..., X_n)$ 的取值大小和原假设 H_0 是否成立有密切联系,可将其称为对应假设问题的检验统计量,而对应于拒绝原假设 H_0 时,样本值的范围称为拒绝域,记为W,其补集 \overline{W} 称为接受域.

第二步:给出检验统计量,并确定拒绝域的形式.

本例中的检验统计量为 \overline{X} ,拒绝域为 $W = \{(X_1, \dots, X_n) : \overline{X} \geq C\}$

■ 如何选择C? 关键问题

一类、二类错误

由于样本的随机性,任一检验规则在应用时,都有可能发生错误的判断——两类错误.

	原假设为真	原假设不真
根据样本拒绝原假设	第1类错误	正确
根据样本接受原假设	正确	第11类错误

第1类错误: 拒绝真实的原假设(弃真).

第11类错误:接受错误的原假设(取伪).

一类、二类错误

- 犯第一类错误的概率: P(拒绝H0|H0)=a
- 犯第二类错误的概率: P(接受H0|H1)

Neyman-Pearson 原则:

首先控制犯第I类错误的概率不超过某个常数 $\alpha \in (0,1)$,再寻找检验,使得犯第II类错误的概率尽可能小. α 称为显著水平.

常取 $\alpha = 0.01$, 0.05, 0.1等.

临界值法

第三步,根据显著水平和统计量的分布确定临界值——临界值法

取显著水平 $\alpha = 0.05$,

犯第I类错误的概率可如下计算:

$$P\{\overline{X} \ge C \mid \mu = 0\} = P\left\{\frac{\overline{X}}{\sigma/\sqrt{n}} \ge \frac{C}{\sigma/\sqrt{n}} \mid \mu = 0\right\}$$

$$= 1 - \Phi\left(\frac{C}{\sigma/\sqrt{n}}\right) \le \alpha = 0.05. \quad (0.05 = \Phi(-z_{0.05}))$$

$$\Rightarrow \frac{C}{0.6/\sqrt{9}} \ge z_{0.05} = 1.645 \Rightarrow C \ge 0.329.$$

临界值法

根据Neyman-Pearson原则,为使犯第II类错误的概率 尽可能小,应取C=0.329.因此,拒绝域 $W=\{\overline{X}\geq 0.329\}$. 第四步:根据样本得出结论.

根据实际样本资料, 得 $\overline{x} = 0.522 > 0.329$.

当原假设H₀成立时,样本落在拒绝域的概率不超过 0.05,是小概率事件。

根据实际推断原理,有充分的理由拒绝原假设,认为 厂家的宣传是可靠的.

同理, 若 $\alpha = 0.01$, 拒绝域 $W = \{\overline{X} \ge 0.465\}$, 拒绝原假设.

P值法

第三'步: 计算最小显著水平——P_值法

P值: 当原假设H。 成立时,检验统计量 取比观察到的结果更 为极端的数值的概率.

$$P = P\{\overline{X} \ge \overline{x} = 0.522 \mid \mu = 0\}$$

$$= 1 - \Phi(\frac{0.522}{0.6 / \sqrt{9}}) = 0.0045$$

$$< \alpha = 0.05$$

概率这么小的事件! 竟然发生了!! 拒绝原假设!!!

第四'步:比较P_值与显著水平,得出结论.

P值法

P值与显著水平 α 的关系:

- (1) $\dot{a}P \leq \alpha$, 等价于样本落在拒绝域内, 因此, 拒绝原假设, 称检验结果在水平 α 下是统计显著的.
- (2) 若P > α,等价于样本不落在拒绝域内,因此, 不拒绝(接受)原假设,称检验结果在水平α下 是统计不显著.

假设检验的步骤

- ①根据题意或预期反向提出原假设H0、备择假设H1
- ②选择检验统计量,其分布不依赖于任何参数
- ③在给定显著性水平α下,确定拒绝域

临界值法

- ④根据实际样本观测值做出判断
- ①根据题意或预期反向提出原假设H0、备择假设H1
- ②选择检验统计量,其分布不依赖于任何参数
- ③计算检验统计量的观测值与P值

P值法

<u>④根据给定的显著水平α做出判断</u>

假设检验

■ 对于正态总体 $N(\mu, \sigma^2)$, σ^2 已知, $X_1, ..., X_n$ 为来自正态总体的样本,可用 $U = \frac{\bar{X} - \mu}{\sigma/\sqrt{n}}$ 作为检验统计量

$$H_0$$
: $\mu = \mu_0$, H_1 : $\mu \neq \mu_0$,

■ 拒绝域的形式为

$$|u| = |\frac{\bar{x} - \mu_0}{\sigma/\sqrt{n}}| \ge k \ (k \ddot{\pi})$$

假设检验

■ 犯第一类错误的概率为

$$P(拒绝H0)|\mu = \mu_0) = P(|u| = |\frac{\bar{x} - \mu_0}{\frac{\sigma}{\sqrt{n}}}| \ge k|\mu = \mu_0)$$

• 给定显著水平 α ,查表得 $k=u_{\alpha/2}$,故拒绝域为

$$|u| = |\frac{\bar{x} - \mu_0}{\frac{\sigma}{\sqrt{n}}}| \ge u_{\alpha/2}$$

双边检验

(显著性水平与拒绝域)

观察到的样本统计量

■对于

$$H_0$$
: $\mu = \mu_0$, H_1 : $\mu > \mu_0$,

■ 犯第一类错误的概率为

$$P(拒绝H0)|\mu = \mu_0) = P(u = \frac{\bar{x} - \mu_0}{\frac{\sigma}{\sqrt{n}}} \ge k|\mu = \mu_0)$$

■ 于是拒绝域为

$$u = \frac{\bar{x} - \mu_0}{\frac{\sigma}{\sqrt{n}}} \ge u_{\alpha}$$

右边检验

(显著性水平与拒绝域)

假设检验

■对于

$$H_0$$
: $\mu = \mu_0$, H_1 : $\mu < \mu_0$,

■ 犯第一类错误的概率为

$$P(拒绝H0)|\mu = \mu_0) = P(u = \frac{\bar{x} - \mu_0}{\frac{\sigma}{\sqrt{n}}} \le k|\mu = \mu_0)$$

■ 于是拒绝域为

$$u = \frac{\bar{x} - \mu_0}{\frac{\sigma}{\sqrt{n}}} \le -u_\alpha$$

左边检验

(显著性水平与拒绝域)

观察到的样本统计量

- 1. 假定条件
 - 总体服从正态分布, (σ² 已知)
 - 若不服从正态分布,可用正态分布来近似(n≥30)
- 2. 原假设: H_0 : $\mu = \mu_0$, 备择假设: H_1 : $\mu \neq \mu_0$
- 3.使用U检验法

$$U = \frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}} \sim N (0,1)$$

双边假设问题

 $H_0: \mu = \mu_0, H_1: \mu \neq \mu_0,$

其中40是已知的常数.

检验统计量为
$$U = \frac{\overline{X} - \mu_0}{\sigma/\sqrt{n}}$$

检验拒绝域
$$W = \left\{ |\mathbf{\textit{U}}| = \left| \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}} \right| \ge u_{\alpha/2} \right\}.$$

P_值的计算

对给定的样本观察值x1,…,x2,记检验统计量U的取值

$$u_0 = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}}$$
,

$$P_{-} = P_{H_0} \{ |U| \ge |u_0| \} = 2(1 - \Phi(|u_0|)).$$

当P ≤ α 时, 拒绝原假设,

当 $P > \alpha$ 时,接受原假设.

红色区域概率值: P_值

蓝色区域概率值: α

 $P_{d}<\alpha$, 拒绝 H_{o} .

■ 【例】某机床厂加工一种零件, 根据经验知道,该厂加工零件的 椭圆度近似服从正态分布,其总 体均值为 μ_0 =0.081mm,总体标准 差为σ= 0.025 。今换一种新机床 进行加工、抽取n=200个零件进行 检验、得到的平均椭圆度为 0.076mm。试问新机床加工零件 的椭圆度的均值与以前有无显著 差异? $(\alpha=0.05)$

• Ho: μ = 0.081

• H1: $\mu \neq 0.081$

$$\sigma = 0.025$$

$$\alpha = 0.05$$

$$n = 200$$

■ 临界值(s):

检验统计量:

$$u = \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}} = \frac{0.076 - 0.081}{0.025 / \sqrt{200}} = -2.83$$

决策: $|u| > |u_{\alpha/2}| = |u_{0.025}| = 1.96$

拒绝H₀

结论:

有证据表明新机床加工的零件的椭圆度与以前有显著差异

例: 据健康统计中心报告35至44岁的男子心脏收缩压 服从正态分布,平均心脏收缩压为128,标准差为15. 现根 据某公司在35至44岁年龄段的72位员工的体 检记录, 计算得平均心脏收缩压为 126.07 (mm/hg). 问该公司员工的心脏收缩 压与一般人群是否存在差异呢? (假设该公 司员工的心脏收缩压与一般中年男子的心脏 收缩压具有相同的标准差)。(α=0.05)

步骤1: 提出检验假设

$$H_0: \mu = 128, H_1: \mu \neq 128$$

步骤2:计算检验统计量的观测值.

$$u_0 = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}} = \frac{126.07 - 128}{15 / \sqrt{72}} = -1.09$$

步骤3: 计算P_值

$$P_{-} = 2(1 - \Phi(|u_0|)) = 2(1 - \Phi(1.09)) = 0.2758.$$

步骤4: 根据实际情况作出判断

P_=0.2758>0.05, 因此, 没有充分理由拒绝原假设。

- 1. 假定条件
 - 总体服从正态分布, (σ² 已知)
 - 若不服从正态分布,可用正态分布来近似(n≥30)
- 2. 原假设: H_0 : $\mu = \mu_0$, 备择假设: H_1 : $\mu > \mu_0$ H_0 : $\mu = \mu_0$, H_1 : $\mu < \mu_0$
- 3.使用*U*检验法

$$U = \frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}} \sim N (0,1)$$

右边假设问题: $H_0: \mu = \mu_0, H_1: \mu > \mu_0$, 其中 μ_0 是已知的常数.

检验统计量为
$$\mathbf{U} = \frac{\overline{X} - \mu_0}{\sigma/\sqrt{n}}$$

检验拒绝域
$$W = \left\{ \mathbf{U} = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}} \ge u_{\underline{\alpha}} \right\}.$$

$$P_{-}=P_{H_0}\left\{U\geq u_0\right\}=1-\Phi(u_0).$$
 其中 $u_0=\frac{\overline{x}-\mu_0}{\sigma/\sqrt{n}}.$

左边假设问题: $H_0: \mu = \mu_0, H_1: \mu < \mu_0$,

其中μ0是已知的常数.

检验统计量为
$$U = \frac{\overline{X} - \mu_0}{\sigma/\sqrt{n}}$$

检验拒绝域
$$W = \left\{ \mathbf{U} = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}} \le -u_\alpha \right\}.$$

$$P_{-}=P_{H_0}\{U\leq u_0\}=\Phi(u_0).$$
 其中 $u_0=\frac{\overline{x}-\mu_0}{\sigma/\sqrt{n}}.$

例: 为了了解A高校学生的消费水平,随机抽取225位学生调查其月消费(近6个月的消费平均值),得到该225位学生的平均月消费为1530元.假设学生月消费服从正态分布,标准差为σ=120.

已知B高校学生的月平均消费为 1550 元,是否可以认为A高校学生 的消费水平要低于B高校?

步骤1: 提出检验假设

 H_0 : $\mu = 1550$, H_1 : $\mu < 1550$

步骤2: 确定检验规则

检验统计量为 $U = \frac{\overline{X} - 1550}{\sigma/\sqrt{n}}$. 取显著水平 $\alpha = 0.05$,

由备择假设的形式知,这是左边检验,因此检验规则为: 当 $U \le -u_{\alpha} = -u_{0.05} = -1.645$ 时,拒绝 H_0 .

步骤3:计算检验统计量的值

将样本均值 $\bar{x} = 1530, \sigma = 120, n = 225,$

代入检验统计量, 计算得

$$U = \frac{\overline{X} - 1550}{\sigma / \sqrt{n}} = \frac{1530 - 1550}{120 / \sqrt{225}} = -2.5 < -1.645.$$

步骤4: 根据实际情况作出判断

因此,根据检验规则,做出拒绝原假设 H_0 的判断.即认为A高校学生的生活水平低于B高校.

利用P_值进行假设检验

步骤3':计算P_值

$$P = P(\frac{\bar{X} - 1550}{\sigma / \sqrt{n}} \le \frac{1530 - 1550}{120 / \sqrt{225}})$$
$$= P(\mathbf{U} \le -2.5) = 0.006$$

步骤4':根据显著水平作出判断

$$P = 0.006 < \alpha = 0.05$$
,

同样做出拒绝原假设 H_0 : $\mu = 1550$ 的判断.

均值的单尾检验

【例】某批发商欲从生产厂 家购进一批灯泡,根据合同 规定、灯泡的使用寿命平均 不能低于1000小时。已知灯 泡使用寿命服从正态分布, 标准差为200小时。在总体 中随机抽取100只灯泡。测 得样本均值为960小时。批 发商是否应该购买这批灯泡? $(\alpha = 0.05)$

• Ho: $\mu \ge 1000$

H1: μ < **1000**

$$\sigma = 200$$

- $\alpha = 0.05$
- n = 100
- 临界值(s):

检验统计量:

$$u = \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}} = \frac{960 - 1000}{200 / \sqrt{100}} = -2$$

决策: $u < -u_{\alpha} = -u_{0.05} = -1.645$

在 α = 0.05的水平上拒绝 H_0

结论:

有证据表明这批灯泡的使用 寿命显著不满足大于等于 1000小时的寿命条件

均值的双尾 t 检验

- 1. 假定条件
 - 总体为正态分布(σ² 未知)
 - 若不服从正态分布,可以用正态分布 来近似 $(n \ge 30)$
- 2. 使用t检验法

$$T = \frac{\bar{X} - \mu_0}{S/\sqrt{n}} \sim t (n - 1)$$

均值的双尾 t 检验

【例】某厂采用自动包 装机分装产品, 假定每包 产品的重量服从正态分布, 每包标准重量为1000克。 某日随机抽查9包,测得 样本平均重量为986克, 样本标准差为24克。试 问在0.05的显著性水平上, 能否认为这天自动包装机 工作正常?

均值的双尾 t 检验

• Ho: $\mu = 1000$

■ H1: μ ≠ **1000**

 $\alpha = 0.05$

■ 临界值(s):

检验统计量:

$$t = \frac{\overline{x} - \mu_0}{s / \sqrt{n}} = \frac{986 - 1000}{24 / \sqrt{9}} = -1.75$$

决策: $|t| = 1.75 < t_{\frac{\alpha}{2}}(8)$

在 $\alpha = 0.05$ 的水平上接受 H_0

结论:

有证据表明这天自动包装机工作正常

均值的单尾 t 检验

【例】一个汽车轮胎制造商 声称,某一等级的轮胎的平均 寿命在一定的汽车重量和正常 行驶条件下大于40000公里, 对一个由20个轮胎组成的随机 样本作了试验,测得平均值为 41000公里,标准差为5000公 里。已知轮胎寿命的公里数服 从正态分布,我们能否根据这 些数据作出结论, 该制造商的 产品同他所说的标准相符? (α = 0.05)

均值的单尾 t 检验

• Ho: $\mu \ge 40000$

H1: μ < 40000

 $\alpha = 0.05$

■ 临界值(s):

检验统计量:

$$t = \frac{\overline{x} - \mu_0}{s / \sqrt{n}}$$
$$= \frac{41000 - 40000}{5000 / \sqrt{20}} = 0.894$$

决策:
$$t = 0.894 > -t_{\alpha}(19)$$

在 α = 0.05的水平上接受H₀

结论:

有证据表明轮胎使用寿命显著地大于40000公里

方差的卡方 (χ²) 检验

- 1. 假设总体近似服从正态分布(μ未知)
- 2. 检验一个总体的方差
- 3. 原假设为 H_0 : $\sigma^2 = \sigma_0^2$
- 4. 检验统计量

$$\chi^2 = \frac{(n-1)S^2}{\sigma_0^2} \sim \chi^2 (n-1)$$

卡方 (χ²)检验

■ 【例】根据长期正常生 产的资料可知,某厂所产 维尼纶的纤度服从正态分 布, 其方差为0.0025。 现从某日产品中随机抽取 20根,测得样本方差为 0.0042。试判断该日纤 度的波动与平日有无显著 差异? (α=0.05)

卡方 (χ²) 检验

• Ho: $\sigma^2 = 0.0025$

• H1: $\sigma^2 \neq 0.0025$

 $\alpha = 0.05$

df = 20 - 1 = 19

■ 临界值(s):

统计量

$$\chi^{2} = \frac{(n-1)s^{2}}{\sigma_{0}^{2}}$$

$$= \frac{(20-1)0.0042}{0.0025}$$

$$= 31.92$$

决策: $\chi^2 < \chi^2 \frac{\alpha}{2}$ (19)

在 α = 0.05的水平上接受H₀

结论:

有证据表明该日纤度的波动比平时没有显著差异

两个总体均值之差的 t 检验

- 1. 检验具有等方差的两个总体的均值 $(\sigma_1^2 \times \sigma_2^2 + \pi)$
- 2. 假定条件
 - 两个总体都是正态分布
 - 两个总体方差未知但相等 $\sigma_1^2 = \sigma_2^2$
- 3. 原假设为 H_0 : $\mu_1 \mu_2 = c$
- 4. t检验法

两个总体均值之差的 t 检验

【例】一个车间研究用两种不同的 工艺组装某种产品所用的时间是否相 同。让一个组的10名工人用第一种工 艺组装该产品,平均所需时间为26.1 分钟,样本标准差为12分钟;另一组 8名工人用第二种工艺组装,平均所 需时间为17.6分钟,样本标准差为 10.5分钟。已知用两种工艺组装产品 所用时间服从正态分布,且 $\sigma_1^2 = \sigma_2^2$ 。试问能否认为用第二种方法组装比 用第一中方法组装更好? ($\alpha = 0.05$)

两个总体均值之差的 t 检验

• Ho: μ_1 - $\mu_2 \le 0$

• H1: μ_1 - μ_2 > 0

 $\alpha = 0.05$

$$n_1 = 10, n_2 = 8$$

■ 临界值(s):

检验统计量:

$$t = \frac{(\bar{x}_1 - \bar{x}_2) - 0}{s_w \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} = \frac{26.1 - 17.6 - 0}{11.37 \sqrt{\frac{1}{10} + \frac{1}{8}}} = 1.576$$

决策: $t < t_{\alpha}(10 + 8 - 2)$

接受H₀

结论:

没有证据表明用第二种方法组 装更好

两个总体方差之比的F检验

- 1. 检验两个总体的方差之比
- 2. 假定条件
 - 两个总体都是正态分布
 - 两个总体均值未知
 - 两个样本是独立的随机样本
- 3. 原假设为 $H_0: \frac{\sigma_1^2}{\sigma_2^2} = C$
- 4. 检验统计量 $F = \frac{S_{1n_1}^2}{CS_{2n_2}^2} \sim F(n_1 1, n_2 1)$

■ 甲乙两厂生产同一种电阻,现从两厂的产品中分别抽取12和10个样品,测量它们的电阻值,计算出样本方差分别为 $S_1^2 = 1.4$, $S_2^2 = 4.38$.假设电阻值服从正态分布,在显著性水平0.05下,能否认为两厂生产的电阻值方差相等?

$$H_0: \frac{\sigma_1^2}{\sigma_2^2} = 1$$
 $H_1: \frac{\sigma_1^2}{\sigma_2^2} \neq 1$
$$F_{\alpha/2}(11,9) = 3.91$$

$$F_{1-\alpha/2}(11,9) = 1/F_{\alpha/2}(9,11) = 0.28$$

$$F = \frac{S_{1n_1}^2}{S_{2n_2}^2} = \frac{1.4}{4.38} = 0.32$$
 决策: 接受H₀

成对数据的假设检验

成对数据t检验

配对研究的数据是一对一对地收集得到的,所以也称为成对数据的研究.由于配对研究采用了比较的思想,比通常的单个样本推断更让人信服.这种方法在医学和生物研究领域中广泛存在,成对数据检验的基本思想是将两样本问题转为单样本问题.

成对数据的假设检验

- 假设成对数据 (X₁,Y₁),…,(X_n,Y_n)
- 设差值 $Z_i = X_i Y_i, i = 1, \dots, n$.
- · 差值可以看成来自正态总体N(μ,σ²)的样本

可考虑如下的检验问题:

$$H_0: \mu = 0, H_1: \mu \neq 0$$

成对数据的假设检验

记
$$\overline{Z} = \frac{1}{n} \sum_{i=1}^{n} Z_i$$
, $S_Z^2 = \frac{1}{n-1} \sum_{i=1}^{n} (Z_i - \overline{Z})^2$,

则检验统计量为
$$T = \frac{\bar{Z} - z_0}{S_z/\sqrt{n}}$$

检验的拒绝域为 $W = \{ |T| \ge t_{\alpha/2}(n-1) \}$,

观察值为
$$t_0 = \frac{\bar{z} - z_0}{s_z/\sqrt{n}}$$

$$P_{-}$$
值为: $P_{-}=P_{H_{0}}\{|T| \geq t_{0}|\}=2P\{t(n-1) \geq t_{0}|\}.$

配对样本的 t 检验

■【例】一个以减肥为主要目标的健美俱乐部声称,参加其训练班至少可以使减肥者平均体重减重8.5公斤以上。为了验证该宣称是否可信,调查人员随机抽取了10名参加者,得到他们的体重记录如下表:

训练前	94.5	101	110	103.5	97	88.5	96.5	101	104	116.5
训练后	85	89.5	101.5	96	86	80.5	87	93.5	93	102

在 α = 0.05的显著性水平下,调查结果是否支持该俱乐部的声称?

配对样本的 t 检验

样本差值计算表						
训练前	训练后	差值 Z_i				
94.5	85	9.5				
101	89.5	11.5				
110	101.5	8.5				
103.5	96	7.5				
97	86	11				
88.5	80.5	8				
96.5	87	9.5				
101	93.5	7.5				
104	93	11				
116.5	102	14.5				
合计		98.5				

配对样本的 t 检验

Ho: μ ≤8.5

• H₁: μ > 8.5

 $\alpha = 0.05$

df = 10 - 1 = 9

■ 临界值(s):

检验统计量:

$$t = \frac{\bar{z} - z_0}{s / \sqrt{n}} = \frac{9.85 - 8.5}{2.199 / \sqrt{10}} = 1.94$$

決策: $t = 1.94 > t_{\alpha}(9) = 1.833$

拒绝H₀

结论:

有证据表明该俱乐部的宣称是可信的

分布的假设检验

皮尔逊定理

设一个随机试验的r个结果 $A_1, A_2, ..., A_r$ 构成互斥完备事件群,在一次试验中它们发生的概率分别为 $p_1, p_2, ..., p_r$,其中 $p_i > 0$ (i = 1, 2, ..., r),且 $\sum_{i=1}^r p_i = 1$,以 m_i 表示n次独立重复试验中 A_i 发生的次数,那么,当 $n \to \infty$,随机变量

$$\chi^2 = \sum_{i=1}^r \frac{(m_i - np_i)^2}{np_i}$$

的分布收敛于自由度为r-1的z²分布。

分布的假设检验

χ²拟合检验法

设 X_1 ,..., X_n 是来自总体X的样本,F(x)是一个完全已知的分布函数,在显著水平 α 下,检验假设

 $H_0: X$ 的分布函数是F(x), $H_1: X$ 的分布函数不是F(x)

- 1. 将总体X的取值范围划分为r个互不相交的子集(区间) $A_1,...,A_r$,则其构成互斥完备事件群;
- 2. 在 H_0 下,计算事件 A_i 的概率 $P(A_i) = p_i$,则事件 A_i 发生的频数为 np_i ;

分布的假设检验

χ²拟合检验法

- 3. 统计出样本值 $x_1, ..., x_n$ 中,事件 A_i 发生的实际频数 m_i ;
- 4. 在显著水平 α 下,考虑统计量

$$\chi^2 = \sum_{i=1}^r \frac{(m_i - np_i)^2}{np_i}$$

的拒绝域

$$\chi^{2} = \sum_{i=1}^{r} \frac{(m_{i} - np_{i})^{2}}{np_{i}} \ge \chi^{2}_{\alpha} (r - 1)$$

注意:

- 样本容量较大,一般 $n \geq 50$;
- 分组时每个区间所含样本数 m_i 不应少于5;
- 当F(x)是已知函数形式,但是其中含有l个未知参数 θ_1 ,..., θ_l 时,一般先用极大似然估计法得到估计值 $\hat{\theta}_1$,..., $\hat{\theta}_l$,然后用 $F(x;\hat{\theta}_1,...,\hat{\theta}_l)$ 代替F(x)进行检验,拒绝域为

$$\chi^{2} = \sum_{i=1}^{r} \frac{(m_{i} - np_{i})^{2}}{np_{i}} \ge \chi^{2}_{\alpha} (r - l - 1)$$

例: 孟德尔遗传理论断言, 当两个品种的豆杂交时, 圆的和黄的、起皱的和黄的、圆的和绿的豆的频数将以比例9: 3: 3: 1发生。在检验这个理论时, 孟德尔分别得到频数315、101、108、32、这些数据是否支持该理论?

万安文道大學 XI'AN JIAOTONG UNIVERSITY

解:定义
$$X = \begin{cases} 1, & \text{若豆子是圆的和黄的} \\ 2, & \text{若豆子是起皱的和黄的} \\ 3, & \text{若豆子是圆的和绿的} \\ 4, & \text{若豆子是起皱的和绿的} \end{cases}$$

$$H_0: p_1 = P(X = 1) = \frac{9}{16}, p_2 = P(X = 2) = \frac{3}{16},$$

 $p_3 = P(X = 3) = \frac{3}{16}, p_4 = P(X = 4) = \frac{1}{16}.$

豆子状态 x	1	2	3	4
实测频数 m_i	315	101	108	32
概率 p_i	9/16	3/16	3/16	1/16
理论频数 np;	312.75	104.25	104.25	34.75

$$\chi^2 = \sum_{i=1}^4 \frac{(m_i - np_i)^2}{np_i} = 0.47 < \chi^2_{0.05}(3) = 7.815,$$

不拒绝原接受,即数据支持该理论.