Practice quiz on Tangent Lines to Functions

PUNTOS TOTALES DE 2

1. Suppose that $f:\mathbb{R} \to \mathbb{R}$ is a function. Which of the following expressions corresponds to f'(2), the slope of the tangent line to the graph of f(x) at x=2?

$$f'(2) = 2$$

$$\bigcirc f'(2) = mx + b$$

$$lefterightarrow f'(2) = \lim_{h o 0} rac{f(2+h) - f(2)}{h}$$

$$\bigcirc \ f'(2) = \lim_{h o 0} rac{f(a+h) - f(a)}{h}$$

This expression can be obtained from the first screen of our video by plugging in 2 for a.

2. Suppose that $h:\mathbb{R} \to \mathbb{R}$ is a function whose graph is shown as the blue curve in the figure. For how many values of a is h'(a)=0?

 \bigcirc 3

O Never

O Always

2

✓ Correcto

h'(a) gives the slope of the tangent line to the graph of h at the point x=a.

When $h^\prime(a)=0$, this means that the tangent line is horizontal.

There are two places (one on each side of the y-axis) where this tangent line is horizontal, so this answer is correct.

Practice quiz on Exponents and Logarithms

PUNTOS TOTALES DE 12

1. Re write the number $784 = 2 \times 2 \times 2 \times 2 \times 7 \times 7$ using exponents.

1/1 puntos

- \bigcirc (16⁴)(49²)
- $\bigcirc (2 \times 7)^6$
- $(2^4)(7^2)$
- \bigcirc (2⁶)(7⁶)

✓ Correcto

For this type of problem, count the number of times each relevant factor appears in the product. That number is the exponent for that factor.

2. What is $(x^2 - 5)^0$?

1/1 puntos

- $\bigcirc (x^2)$
- \bigcirc -4
- $(x^2) 5$
- 1

✓ Correct

Any real number (except zero) raised to the "zeroith" power =1.

- 3. Simplify $((x-5)^2)^{-3}$
 - $(x-5)^{-1}$
 - $\bigcirc (x-5)$
 - $(x-5)^{-6}$
 - $(x-5)^{-5}$

✓ Correcto

By Rule 2, "Power to a Power," multiply the exponents and get:

$$(x-5)^{(2\times-3)} = (x-5)^{-6}$$

By the definition of negative exponents, this is equal to $\dfrac{1}{\left(x-5
ight)^6}$

4. Simplify $(\frac{8^2}{8^7})^2$

1 / 1 puntos

- $O_{8^{-5}}$
- \circ 8⁻⁴
- \circ 8⁻¹

✓ Correcto

We can first simplify what is inside the parenthesis to 8^{-5} using the Division and Negative Powers Rule.

Then apply division and negative powers-- the result is the same. $\frac{8^4}{8^{14}}=8^{-10}$

Solve for x

- O 7
- O 4
- O 28
- 5

$$\log(x) = \log 35 - \log 7$$

$$\log(x) = \log\left(\frac{35}{7}\right)$$

By the Quotient Rule $\log x = \log 5$

6.
$$\log_2(x^2 + 5x + 7) = 0$$

1/1 puntos

Solve for x

- $\bigcirc x = 2$
- x = 3
- $\bigcirc \ \ x=2 \ \text{or} \ \ x=3$

✓ Correcto

We use the property that $\,b^{\log_b a} = a\,$

Use both sides as exponent for 2.

$$2^{\log_2 x^2 + 5x + 7} = 2^0$$

$$x^2 + 5x + 7 = 1$$

$$x^2 + 5x + 6 = 0$$

$$(x+3)(x+2) = 0$$

$$x = -3$$

$$x = -2$$

7. Simplify $\log_2 72 - \log_2 9$

- O 4
- $\bigcirc \log_2 63$
- $\bigcirc \log_2 4$
- 3

✓ Correcto

By the quotient rule, this is $\log_2 \, rac{72}{9} = \log_2 2^3 = 3$

8. Simplify $\log_3 9 - \log_3 3 + \log_3 5$

1/1 puntos

1 / 1 puntos

- O log₃ 8
- 0 8
- log₃ 15
- O 15

✓ Correcto

By the Quotient and Product Rules, this is $\log_3 \, rac{9 imes 5}{3} \, = \log_3 15$

9. Simplify $\log_2(3^8 imes 5^7)$

1/1 puntos

- $(8 \times \log_2 3) + (7 \times \log_2 5)$
- $\bigcirc \ 15 \times \log_2 56$
- \bigcirc 56 $\times \log_2 15$
- $\bigcirc \ (5 \times \log_2 3) + (8 \times \log_2 5)$

✓ Correct

We first apply the Product Rule to convert to the sum: $\log_2(3^8) + \log_2(5^7)$. Then apply the power and root rule.

10. If $\log_{10} y =$	100, what is lo	$g_2 y = ?$
------------------------	-----------------	-------------

- O 500
- 332.19
- O 20
- 301.03

✓ Correcto

Use the change of base formula, $\log_a b = rac{\log_x b}{\log_x a}$

Where the "old" base is x and the "new" base is a.

So
$$\frac{100}{\log_{10}(2)} = \frac{100}{0.30103} = 332.19$$

11. A tree is growing taller at a continuous rate. In the past 12 years it has grown from 3 meters to 15 meters. 1/1 puntos What is its rate of growth per year?

1/1 puntos

- 0 12.41%
- 0 10.41%
- 0 11.41%
- **1**3.41%

$$\frac{\ln\frac{15}{3}}{12} = 0.1341$$

12. Bacteria can reproduce exponentially if not constrained. Assume a colony grows at a continually compounded rate of 400% per day. How many days before a colony with initial mass of 6.25 X 10^{-10} grams weights 1000 Kilograms?

1/1 puntos

- O.875 days
- 8.75 days
- 875 days
- 87.5 days

$$6.25 imes 10^{-10} imes e^{4t} = 10^6$$

$$4t = \ln \left(\frac{10^6}{(6.25 \times 10^{-10})} \right) = 35.00878$$

$$t = \ln \frac{10^6}{6.25 \times 10^{-10}} = 8.752195$$

Graded quiz on Tangent Lines to Functions, Exponents and Logarithms

CALIFICACIÓN DEL ÚLTIMO ENVÍO 100%

1. Convert $\frac{1}{40}$ to exponential form, using 7 as the factor.

1/1 puntos

- \circ 7⁻²
- $\bigcirc 49^{-1}$
- \bigcirc (7²)

The rule for a factor to a Negative exponent is to divide by the same factor to a positive exponent with the same absolute value.

2. A light-year (the distance light travels in a vacuum in one year) is 9,460 trillion meters. Express in scientific 1/1 puntos notation.

- \odot 9.46×10^{15} meters.
- \bigcirc 0.946 × 10¹⁶
- \bigcirc 9460 \times 10¹² meters
- \bigcirc 9.46×10^{15} kilometers

9,460 is (9.4×10^3) meters and one trillion meters is 10^{12} meters. $(9.4\times10^3)(10^{12})$ = 9.4×10^3 10^{15} . A kilometer is 1000 meters.

3. Simplify $(x^8)(y^3)(x^{-10})(y^{-2})$

1/1 puntos

- $\bigcirc (x)(y^{-2})$
- $\bigcirc (x^2)(y)$
- $(x^{-2})(y)$
- $\bigcirc (x^{-80})(y^{-6})$

By the Division and Negative Powers Rule, this is $(x^{(8-10)})(y^{(3-2)})$

- 4. Simplify $[(x^4)(y^{-6})]^{-1}$
- $\bigcirc (x^3)(y^{-7})$
- \bigcirc (x^-4) (y^6)
- $(x^{-4})(y^6)$

By the Power to a Power Rule, each of the exponents is multiplied by (-1)

1/1 puntos

1/1 puntos

Solve for x:

$$\log_2{(39x)} - \log_2{(x-5)} = 4$$

- O 23
- $\bigcirc \quad \frac{80}{38}$
- $\bigcirc \quad \frac{39}{23}$

$$\log_2 \frac{39x}{(x-5)} = 4$$
 by the Quotient Rule.

Since both sides are equal, we can use them as exponents in an equation.

$$2^{\log_2 \frac{39x}{(x-5)}} = 2^4$$

$$\frac{39x}{(x-5)} = 16$$

$$39x = 16 \times (x - 5)$$

$$39x = 16x - 80$$

$$23x = -80$$

$$x = \frac{-80}{23}$$

1/1 puntos

$$\left(x^{\frac{1}{2}}\right)^{\frac{-3}{2}}$$

- $\bigcirc x^{\frac{1}{3}}$
- \bullet $x^{\frac{-3}{4}}$
- $\bigcirc x^{\frac{4}{3}}$
- $\circ x^{-1}$

✓ Correcto

We use the Power to a Power Rule -- multiply exponents:

$$x^{rac{1}{2} imesrac{-3}{2}}=x^{rac{-3}{4}}$$

 $^{7\cdot}$ Simplify $\log_{10}1000 + \log_{10}rac{1}{10000}$

- \circ 1
- $\bigcirc \frac{1}{10}$
- $^{\circ} \log_{10} -10$

✓ Correct

By the Product Rule, this is:

$$\log_{10}(\frac{1000}{10000}) = \log_{10}(\frac{1}{10}) = -1$$

- 8. If $\log_3 19 = 2.680$, what is $\log_9 19$?
- 0.8934
- ① 1.304
- 0.4347
- $^{\circ}$ 5.216

✓ Correcto

To convert from \log_3 to \log_9 , divide by $\log_3 9.$ Which is equal to 2 , so the answer is 1.34

 $^{\mathrm{g.}}$ If $\log_{10}b=1.8$ and $log_ab=2.5752$, what is a?

1/1 puntos

1/1 puntos

- \circ 6
- 5
- \circ 4
- \bigcirc 3

. / Correc

To solve for a in the formula;

$$\log_a b = \frac{\log_x b}{\log_x a}$$

$$\log_a b = 2.5752$$
 and $\log_{10} b = 1.8$

Therefore,
$$\log_{10} a$$
 must equal to $\dfrac{1.8}{2.5752} = 0.69897$

Treating both sides of equation $\log_{10}a=0.69897$ as exponents of 10 gives $a=10^{0.69897}=5$

10.	An investment of $1,600$ is worth $7,400$ after 8.5 years. V	What is the
	continuously compounded rate of return of this investm	ent?

1/1 puntos

- $^{\circ}$ 20.01
- 18.02%
- 0 17.01%
- 0 19.01%

$$\frac{\ln \frac{7400}{1600}}{8.5} = 0.18017$$

 11 . A pearl grows in an oyster at a continuously compounded rate of .24 per year. If a 25-year old pearl weighs 1 gram, what did it weigh when it began to form?

1/1 puntos

- 0.02478
- 0.0002478
- 0.002478
- 0.2478

$$x=rac{1}{(e^{0.24 imes25)}}=rac{1}{x}$$
 $x=rac{1}{403.4288}$ $x=0.002478$

$$\log_2 z = 6.754$$
. What is $\log_{10}(z)$?

1/1 puntos

- 0.49185
- 0.3508
- ② 2.03316
- 0.82956

$$\begin{array}{l} \checkmark \text{ } \frac{\log_2 z}{\log_2 10} = \\ \\ (\log_{10} z) \times (\log_2 10) = 3.321928 \end{array}$$

Therefore,
$$\log_{10}z=rac{6.754}{3.321928}=2.03316$$

13. Suppose that $g:\mathbb{R} o\mathbb{R}$ is a function, and that g(1)=10. Suppose that g'(a) is negative for every single 1/1 puntos value of a. Which of the following could possibly be g(1.5)?

- \bigcirc g(1.5) = 103.4
- \bigcirc g(1.5) = 10.1
- $\bigcirc g(1.5) = 11$

Since the slope of the tangent line to the graph of g is negative everywhere on the graph, we know that g is decreasing function! And therefore we must have g(1.5) < g(1). That is the case here, so this value is at least possible.