Theoretische Physik II – Quantenmechanik – Blatt 2

Sommersemester 2023

Webpage: http://www.thp.uni-koeln.de/~rk/qm 2023.html/

Abgabe: bis Mittwoch, 26.04.23, 10:00 in elektronischer Form per ILIAS unter

https://www.ilias.uni-koeln.de/ilias/goto uk crs 5154210.html

6. Zur Diskussion 0 Punkte

a) Auf welche Weise wird in der Quantenmechanik eine Observable durch einen hermiteschen Operator beschrieben?

- b) Was besagt die Bornsche Regel?
- c) Weshalb ist nach der Bornschen Regel der Erwartungswert einer Observablen A im Zustand $|\psi\rangle$ durch $\langle\psi|\,\hat{A}\,|\psi\rangle$ gegeben?
- d) Wie lautet die Schrödingergleichung eines Systems mit Hamiltonoperator H?
- e) Weshalb sollte der Hamiltonoperator H hermitesch sein?
- f) Wenn A eine Erhaltungsgröße ist, was folgt daraus für den Kommutator von A mit H? Folgt umgekehrt aus [H,A]=0, dass A eine Erhaltungsgröße ist?
- g) Warum ist die dem Hamiltonoperator H entsprechende Observable *Energie* in jedem abgeschlossenen System eine Erhaltungsgröße?

7. Operatoren in Dirac-Notation

 $6 \times 2 = 12$ Punkte

Im Folgenden sei $B = (|\varphi_1\rangle, |\varphi_2\rangle, \dots, |\varphi_n\rangle)$ eine ONB eines unitären Vektorraums \mathcal{H} .

- a) Zeigen Sie, dass $\sum\limits_{i=1}^{n}|\varphi_{i}\rangle\langle\varphi_{i}|=\mathbf{1}_{\mathcal{H}}.$
- **b)** Wie lautet die Matrix des Operators $E_{ij} = |\varphi_i\rangle\langle\varphi_j|$ bzgl. Basis B?
- c) A sei ein Operator auf \mathcal{H} . Zeigen Sie:

$$A = \sum_{i,j=1}^{n} \langle \varphi_i | A | \varphi_j \rangle | \varphi_i \rangle \langle \varphi_j |.$$

[Hinweis: $A = \mathbf{1}_{\mathcal{H}} A \mathbf{1}_{\mathcal{H}}$ und Aufgabenteil 1)]

d) Folgern Sie mittels b) und c), dass die Matrix (A_{ij}) eines Operators A bzgl. Basis B die Komponenten

$$A_{ij} = \langle \varphi_i | A | \varphi_j \rangle$$

hocitzt

- e) Zeigen Sie, dass $(|\varphi\rangle\langle\psi|)^{\dagger} = |\psi\rangle\langle\varphi|$.
- f) Wie lauten die Eigenwerte und Eigenvektoren des Operators $A = \sum_{i=1}^{n} c_i |\varphi_i\rangle\langle\varphi_i|$? Unter welchen Bedingungen an die Koeffizienten $c_i \in \mathbb{C}$ ist A hermitesch?

8. Hinreichend 6 Punkte

A sei ein Operator auf einem unitären Vektorraum \mathcal{H} und für alle $|\psi\rangle\in\mathcal{H}$ gelte

$$\langle \psi | A | \psi \rangle = 0$$
.

Zeigen Sie, dass dann A=0. Gilt eine analoge Aussage auch für Operatoren eines *euklidischen* Vektorraums?

9. Spin-Präzession

10 Punkte

Silberatome werden in e_z -Richtung polarisiert, durchlaufen dann innerhalb einer Zeitspanne [0,t] ein Magnetfeld Be_x und werden dann durch einen Stern-Gerlach-Magneten geführt, der längs e_z ausgerichtet ist. Mit welcher Wahrscheinlichkeit werden die Atome in diesem Magneten in positive e_z -Richtung abgelenkt? Bestimmen Sie ebenso die Erwartungswerte der Observablen μ_x , μ_y und μ_z kurz bevor die Atome in den Stern-Gerlach-Magneten gelangen. ψ_t sei der Spin-Zustand eines Silberatoms zu diesem Zeitpunkt. Auf welche Weise entwickelt sich der relle Vektor

$$\langle \vec{\mu} \rangle_{\psi_t} = \begin{pmatrix} \langle \mu_x \rangle_{\psi_t} \\ \langle \mu_y \rangle_{\psi_t} \\ \langle \mu_z \rangle_{\psi_t} \end{pmatrix}$$

mit der Zeit t?

10. Kommutatoren

2+4=6 Punkte

Verifizieren Sie folgende Relationen:

(i)
$$[AB, C] = A[B, C] + [A, C]B$$

(ii)
$$[A, [B, C]] + [C, [A, B]] + [B, [C, A]] = 0$$

11. Erhaltungsgrößen

2+4=6 Punkte

A und B seien Observablen eines Systems mit Hamiltonoperator H.

- a) Zeigen Sie, dass C:=i[A,B] ebenfalls ein hermitescher Operator ist und damit C eine weitere Observable des Systems ist.
- b) Nun seien A und B Erhaltungsgrößen des Systems. Was impliziert dies für die Kommutatoren [H,A] und [H,B]? Folgern Sie daraus mit Aufgabe ${\bf 10.}$ (ii), dass dann auch C eine Erhaltungsgröße des Systems ist. Kennen Sie ein analoge Aussage der klassischen Mechanik?