

Photogrammetric Computer Vision

Exercise 5
Winter semester 24/25

(Course materials for internal use only!)

Computer Vision in Engineering – Prof. Dr. Rodehorst M.Sc. Mariya Kaisheva mariya.kaisheva@uni-weimar.de

Agenda

Topics

Assignment 1. Points and lines in the plane, first steps in MATLAB / Octave

Assignment 2. Projective transformation (Homography)

Assignment 3. Camera calibration using direct linear transformation (DLT)

Assignment 4. Orientation of an image pair

Assignment 5. Projective and direct Euclidean reconstruction

Assignment 6. Stereo image matching

Final Project - will be announced later -

Agenda

	Start date	Deadline
Assignment 1.	21.10.24	- 03.11.24
Assignment 2.	04.11.24	- 17.11.24
Assignment 3.	18.11.24	- 01.12.24
Assignment 4.	02.12.24	- 15.12.24
Assignment 5.	16.12.24	- 12.01.25
Assignment 6.	13.01.25	- 26.01.25
Final Project.	27.01.25	- 16.03.25

Online Evaluation

URL: https://evasys.uni-weimar.de/evasys/online/

Online Evaluation

Assignment 4: Orientation of an image pair

- 1) Image acquisition
- 2) Image pair orientation
 - Selection of homologeous points
 - Computation of the Fundamental Matrix F using the normalized 8-point-algorithm
 - Plotting of the epipolar lines
- 3) Evaluation
 - Computation of the geometric image error

Assignment 4 – sample solution

Sample code 1/3

Sample code 2/3

```
function F = linear fund(x1, x2) % Normalized 8-point algorithm
T1 = condition2(x1); n1 = T1 * x1;
                              % Image point conditioning
T2 = condition2(x2); n2 = T2 * x2;
                              % Build design matrix
A = design fund(n1, n2);
f = solve dlt(A);
                            % Linear least-squares-solution
F = reshape(f, 3, 3)'; % Solution vector in matrix form
F = T2' * force rank2(F) * T1; % Force singularity, reverse conditioning
function A = design fund(x1, x2) % Design matrix
           A = [];
for i = 1 : size(x1, 2)
   A = [A; x2(1, i)*x1(:, i)' x2(2, i)*x1(:, i)' x2(3, i)*x1(:, i)'];
end
function F = force rank2(F) % Force singularity constraint det(F) = 0
[U, D, V] = svd(F);
                 % Singular value decomposition
               % Smallest singular value must be 0
D(3, 3) = 0;
F = U * D * V';
                          % Recompose matrices
```


Sample code 3/3

```
function F = relative orientation(f, g)
figure (1); imshow(f); x1 = get points
                                      % Display images and
figure (2); imshow(q); x2 = qet points
                                   % measure >=8 image points
                                      % Estimate fundamental matrix
F = linear fund(x1, x2)
figure(1); draw epipol(x1, F' * x2); % Draw points and
figure (2); draw epipol (x2, F * x1); % epipolar lines
sampson error (F, x1, x2);
                              % Print error estimate
function draw epipol(x, 1)
        ==============
hold on
                                        % Draw on existing image
for i = 1 : size(x, 2)
   hline(l(:, i));
                              % Draw homogeneous line
   plot(x(1, i), x(2, i), 'ko', 'MarkerFaceColor', 'r'); % Draw point
end
function err = sampson error(F, x1, x2) % First order geometric error
12 = F * x1;
                                                     % Epipolar lines
11 = F' * x2;
                                                     % Fraction numerator
num = sum (x2 .* 12).^2;
den = 12(1,:).^2 + 12(2,:).^2 + 11(1,:).^2 + 11(2,:).^2; % Denominator
err = sum(num ./ den) % Final epipolar distance
```


Assignment 5: Projective and direct Euclidean reconstruction

Assignment 5: Projective and direct Euclidean reconstruction

Part 1: Projective reconstruction

- Given: homologous image coordinate pairs (bh.dat)
- Wanted: triangulation of projective object points

Part 2: **Direct Euclidean** reconstruction

- Given: 5 control points (pp.dat)
 + triangulated* object points (Part 1, c)
- Wanted: triangulation of Eucledian object points

* up to a projective transformation

Assignment 5 Part 1: Projective reconstruction

1. Projective reconstruction:

Since the manual matching of image points is quite laborious and boring, a text file bh.dat with many homologous image points is made available for the image pair showing the bust of BEETHOVEN.

a) Read the homologous image coordinates $\mathbf{x}_1 \leftrightarrow \mathbf{x}_2$ in the format (x_1, y_1, x_2, y_2) , e.g. with

```
fh = fopen('bh.dat', 'r');
A = fscanf(fh, '%f%f%f%f', [4 inf]);
fclose(fh);
x1 = A(1:2, :); x2 = A(3:4, :);
```

and use your function from exercise 4 in order to determine the relative orientation of the images with the *fundamental matrix* **F**.

- b) Implement a new function, which defines two corresponding *projection matrices* P_N and P' by means of F.
- Realize a function for the *linear triangulation* of projective object points \mathbf{X}_{PI} and try to visualize the computed spatial object coordinates, e.g. using

```
figure; scatter3(X(1,:), X(2,:), X(3,:), 10, 'filled'); axis square; view(32, 75);
```


Assignment 5 Part 1: Projective reconstruction

Example Results after **Part 1**

Assignment 5 Part 2: Direct Euclidean reconstruction

2. Direct Euclidean reconstruction:

- a) Read the *control point* information from the provided file pp.dat in the format $(x_1, y_1, x_2, y_2, X_E, Y_E, Z_E)$ and triangulate projective object points \mathbf{X}_{P2} from the five homologous image points $\mathbf{x}_1 \leftrightarrow \mathbf{x}_2$ using the already computed projection matrices \mathbf{P}_N and \mathbf{P}' .
- b) Extend your algorithm from exercise 2 for the planar 2D homography to a *spatial* 3D homography \mathbf{H} . Determine the spatial transformation of the five projective object points \mathbf{X}_{P2} to the corresponding Euclidean object points \mathbf{X}_{E} .
- c) Apply this transformation \mathbf{H} to all object points of your projective reconstruction \mathbf{X}_{PI} and visualize the result of the *Euclidean reconstruction* spatially.

Assignment 5 Part 2: Direct Euclidean reconstruction

Example Results after **Part 2**

Bauhaus-Universität Weimar

Assignment 5: Projective and direct Euclidean reconstruction

Hints for Part 1

- Computation of F using all available points (re-use Assignment 4)
- Camera definition from F using epipols (Lecture 8)
- First camera normalized (Lecture 8)
- Triangulation:
 - Solve one linear equation system for each point (Lecture 8)
 - \circ \rightarrow One system for each point (A is a 4x4 matrix)

$$\mathbf{AX} = \mathbf{0}, \quad \mathbf{A} = \begin{bmatrix} x\mathbf{p}^3 - \mathbf{p}^1 \\ y\mathbf{p}^3 - \mathbf{p}^2 \\ x'\mathbf{p'}^3 - \mathbf{p'}^1 \\ y'\mathbf{p'}^3 - \mathbf{p'}^2 \end{bmatrix}, \quad \mathbf{X} = \begin{pmatrix} X \\ Y \\ Z \\ W \end{pmatrix} \quad \text{where } \mathbf{p}^i \text{ denotes the row } i \text{ of } \mathbf{P}$$

Assignment 5: Projective and direct Euclidean reconstruction

Hints for Part 2

- Input for 3D Homography H:
 - **5** given object points (X_E) and the corresponding **5** triangulated points X_{p2}
- \circ Transformation using **H**: left-side multiplication of X_{p1} (Result of part 1)

$$\rightarrow X_{result} = H * X_{p1}$$

○ Normalize X_{result} (homogeneous \rightarrow Euclidean)

Happy Holidays!

