

PW-Sat2	Michał Gumiela	
2017-01-15	SunS-EM3 Brief Documentation	
Phase C	Suns-Eivis Brief Documentation	

SunS-EM3 Brief Documentation

PW-Sat2	Michał Gumiela
2017-01-15	Cups FM2 Drief Decumentation
	SunS-EM3 Brief Documentation

1 GENERAL OVERVIEW

Phase C

Sensors naming convention:

2 ASSEMBLY PROCEDURE

There are several steps involved in assembly procedure of the SunS. They are listed and described below:

1. Assembly (soldering) of the main board and the ALS boards.

PW-Sat2	Michał Gumiela
2017-01-15	SunS-EM3 Brief Documentation
DI 6	Suns-Eivis Brief Documentation

2. Electrical tests of the main board and ALS boards

- 3. Bootloader burn on AVR microcontroller via JTAG interface available on pins dedicated for communication with ALS sensors
- 4. Tests in uploading a firmware via UART

Phase C

- 5. JTAG should be turned off in fuse bits configuration to allow for proper operation of ALS sensors
- 6. Wires connecting ALS boards and main board should be soldered to the main board
- 7. At this step wires should be soldered to the ALS boards, resulting device so far is presented in fig.
- 8. The boards should be put into the case, resulting in a complete device fig.

PW-Sat2	Michał Gumiela	
2017-01-15	SunS-EM3 Brief Documentation	
Phase C	Sull3-EIVIS BITEL DOCUMENTATION	

PW-Sat2	Michał Gumiela
2017-01-15	SunS-EM3 Brief Documentatio
Phase C	Suns-Eivis Brief Documentation

3 CHANGES IN ELEMENTS VALUES

All values in the table refer to the schematic "2016-09-05_manufactured_EM.3.03" put in "PW-Sat2-SVN\suns\pcb\tags".

#	Part ID on schematic	Value on the schematic	Actual value	Justification
1	REF1	LM4040-3V 1%	LM4041-N-1.2	Smaller reference voltage to increase resoultion of temperature measurement by LM60
2	R26	1k/1%	470R/1%	To increase output current fo the reference voltage source REF1

PW-Sat2	Michał Gumiela
2017-01-15	SunS-EM3 Brief Documentation
Phase C	2 Suns-Eivis Brief Documentation

3	U2	FM25W256	NC	Not soldered, considered as no longer needed
4	R2, R21, R24, R32, C19, C18, R23, R22, C17, R20, C4, C5	multiple values	NC	Not soldered, considered as no longer needed
5	XT1	8 MHz	NC	Not soldered, considered as no longer needed

4 SUNS-EM3 EGSE

The EGSE for the SunS-EM3 is based on Arduino Pro Mini board with ATMega328p and UART-USB converter. The devices can provide power supply for the SunS, as well as they are used to communicate with the SunS via I2C interface.

PW-Sat2	Michał Gumiela
2017-01-15	SunS-EM3 Brief Documentation
Dhaca C	Suns-Eivis Brief Documentation

A description of communication interface with EGSE via UART is provided below.

UART settings:

baud rate: 19200 bps / data bits: 8 / parity bit: none / stop: one bit / no HW flow control

Command send to the EGSE:

```
measure <ALS_ITIME> <ALS_GAIN>\r
```

Where:

ALS_ITIME – ALS integration time in range 1 – 255 (time in ms = value * 2.7 ms)

 $ALS_GAIN - ALS$ gain in range 0 - 3 (0 = gain 1, 1 = gain 2, 2 = gain 64, 3 = gain 128)

Reply:

Semicolon-separated values:

```
uint8_t STATUS;
uint8_t WHO_AM_I;
uint16_t AZIMUTH_ANGLE;
uint16_t ELEVATION_ANGLE;
int16_t TEMPERATURE_A;
int16_t TEMPERATURE_B;
int16_t TEMPERATURE_C;
int16_t TEMPERATURE_D;
int16_t TEMPERATURE_STRUCT;
uint16_t ALS_1A_VL_RAW;
uint16_t ALS_1B_VL_RAW;
```


PW-Sat2	Michał Gumiela
2017-01-15	Comp ENA2 Drief Decompositation
Phase C	SunS-EM3 Brief Documentation


```
uint16 t ALS 1C VL RAW;
uint16 t ALS 1D VL RAW;
uint16 t ALS 2A VL RAW;
uint16_t ALS_2B_VL_RAW;
uint16 t ALS 2C VL RAW;
uint16 t ALS 2D VL RAW;
uint16_t ALS_3A_VL_RAW;
uint16 t ALS 3B VL RAW;
uint16_t ALS_3C_VL_RAW;
uint16 t ALS 3D VL RAW;
uint16 t ALS 1A IR RAW;
uint16 t ALS 1B IR RAW;
uint16 t ALS 1C IR RAW;
uint16 t ALS 1D IR RAW;
uint16 t ALS 2A IR RAW;
uint16 t ALS 2B IR RAW;
uint16 t ALS 2C IR RAW;
uint16 t ALS 2D IR RAW;
uint16_t ALS_3A_IR_RAW;
uint16 t ALS 3B IR RAW;
uint16 t ALS 3C IR RAW;
uint16 t ALS 3D IR RAW;
uint16 t TEMPERATURE_A_RAW;
uint16_t TEMPERATURE_B_RAW;
uint16 t TEMPERATURE C RAW;
uint16 t TEMPERATURE D RAW;
uint16_t TEMPERATURE_STRUCT_RAW;
uint16 t ALS STATUS;
uint8 t ALS 1A ID;
uint8 t ALS 1B ID;
uint8 t ALS 1C ID;
uint8 t ALS 1D ID;
uint8 t ALS 2A ID;
uint8 t ALS 2B ID;
uint8 t ALS 2C ID;
uint8 t ALS 2D ID;
uint8 t ALS 3A ID;
uint8 t ALS 3B ID;
uint8 t ALS 3C ID;
uint8 t ALS 3D ID;
```


PW-Sat2	
2017-01-15	
Phase C	

SunS-EM3 Brief Documentation

5 TEMPERATURE COMPENSATION OF THE AMBIENT LIGHT SENSORS

Michał Gumiela

The temperature dependence of ALS output was empirically derived and described by the equation:

$$I(T) = I_0 \cdot (1 + \Delta T \cdot \alpha)$$

Where:

lpha – empirically measured thermal coefficient

 I_0 – light intensity at T_0

 $\Delta T = \, T - \, T_0$ – temperature difference with reference at T_0

Obtained characteristics and test conditions are presented in figures below:

PW-Sat2	Michał Gumiela		
2017-01-15	SunS-EM3 Brief Documentation		
Phase C			

Thremal coefficients for visible light channel.

PW-Sat2
2017-01-15
Phase C

Michał Gumiela

SunS-EM3 Brief Documentation

ALS number	I ₀ [LSB]		α [1/°C]		Statistics	
	Value	Std Dev	Value	Std Dev	Reduced ChiSquare	Adj. R-Square
ALS VL 1	14627.05858	2.25958	0.00241	3.29E-06	751.97567	0.99258
ALS VL 2	13230.6169	1.7563	0.00188	2.75E-06	454.30538	0.99103
ALS VL 3	14503.96614	1.99919	0.00213	2.89E-06	588.64814	0.99245
ALS VL 4	12634.53277	1.81788	0.00266	3.10E-06	486.72037	0.99471
ALS VL 5	14686.61281	2.24088	0.00248	3.26E-06	739.57898	0.99316
ALS VL 6	13339.68567	2.23107	0.00211	3.51E-06	733.12025	0.98871
ALS VL 7	14445.72446	1.94081	0.00245	2.86E-06	554.7737	0.99457
ALS VL 8	12310.72695	1.8332	0.00254	3.19E-06	494.9582	0.99381
ALS VL 9	14873.23785	2.20213	0.00239	3.15E-06	714.22472	0.9931
ALS VL 10	13531.03541	2.23749	0.00196	3.44E-06	737.34457	0.98717
ALS VL 11	14287.82102	1.98062	0.00208	2.90E-06	577.76348	0.99196
ALS VL 12	12024.92428	1.82657	0.00255	3.25E-06	491.38711	0.99358
	AVERAGE		0.002303	0.0002576		

Thremal coefficients for infra-red channel.

ALS number	I₀[RAW]		α [1/°C]		Statistics	
	Value	Std Dev	Value	Std Dev	Reduced ChiSquare	Adj. R-Square
ALS IR 1	9451.43486	1.16153	0.00167	2.52E-06	198.70647	0.99021
ALS IR 2	7898.86001	0.90518	0.0012	2.30E-06	120.67664	0.98372
ALS IR 3	8917.24755	1.04582	0.00113	2.35E-06	161.08656	0.98068
ALS IR 4	7802.85948	0.927	0.00187	2.46E-06	126.56436	0.99275
ALS IR 5	9520.2699	1.23853	0.0017	2.68E-06	225.92438	0.98942
ALS IR 6	8030.158	1.14837	0.00151	2.91E-06	194.22758	0.98404
ALS IR 7	8737.15739	0.98051	0.00163	2.30E-06	141.59805	0.99151
ALS IR 8	7924.3306	0.95685	0.00144	2.45E-06	134.84624	0.98732
ALS IR 9	9155.92778	1.08428	0.00165	2.43E-06	173.15215	0.99077
ALS IR 10	8083.42512	1.173	0.00113	2.90E-06	202.65078	0.97114
ALS IR 11	8969.09842	0.98015	0.00139	2.21E-06	141.49393	0.98892
ALS IR 12	7453.47761	0.92659	0.00154	2.54E-06	126.45029	0.98824
	AVERAGE		0.001488	0.0002383		

PW-Sat2	Michał Gumiela
2017-01-15	SunS-EM3 Brief Documentation
Phase C	Suns-Eivis Brief Documentation

Exemplary characteristics with fitted function:

PW-Sat2	Michał Gumiela
2017-01-15	SunS-EM3 Brief Documentation
Phase C	Suns-Eivis Brief Documentation

