Atividade PT 5.2.5: Configurando o STP

Diagrama de topologia

Objetivos de aprendizagem

- Examinar o estado padrão do protocolo STP.
- Configurar a bridge raiz.
- Configurar a bridge raiz de backup.
- Finalizar a configuração STP.

Introdução

Nesta atividade, os switches estão "prontos para uso" sem qualquer configuração. Você manipulará a eleição da bridge de raiz de forma que os switches de núcleo sejam escolhidos antes dos switches de distribuição ou de camada de acesso.

Tarefa 1: Examinar o estado padrão STP

Etapa 1. Examinar as luzes do link.

Quando STP é convergido completamente, as seguintes condições existem:

- Todos os PCs têm luzes de link verdes nas portas comutadas.
- Os switches da camada de acesso têm um uplink de encaminhamento (verde) com um switch da camada de distribuição e um uplink de bloqueio (âmbar) com um switch da camada do núcleo.
- Os switches da camada de distribuição têm um uplink de encaminhamento (verde) com um switch da camada do núcleo e um uplink de bloqueio (âmbar) com outro switch da camada do núcleo.

Etapa 2. Alternar para o modo de simulação.

Etapa 3. Determinar a bridge raiz.

Clique em **Capture/Forward**. Sem observar a BPDU em detalhes, os endereços MAC ou o comando **show spanning-tree**, você pode dizer qual é o switch de bridge raiz?

Você consegue pensar em um motivo pelo qual este switch não é uma boa opção como raiz?

Tarefa 2: Configurar a bridge raiz

Etapa 1. Configurar a bridge raiz.

Um dos switches básicos deve ser raiz, e o outro deve ser de backup. Alterne para o modo **Realtime** e configure C1 com uma prioridade de **4096**.

C1(config) #spanning-tree vlan 1 priority 4096

Etapa 2. Alternar os modos em tempo real e de simulação.

Alterne entre os modos Realtime e Simulation várias vezes até que todas as portas em C1 fiquem verdes.

Etapa 3. Alternar para o modo de simulação.

Etapa 4. Certificar-se de que C1 seja a bridge raiz.

Clique em **Capture/Forward** várias vezes para observar as BPDUs de configuração. C1 deve iniciar a propagação das BPDUs.

Etapa 5. Verificar os resultados.

O percentual de conclusão deve ser 17%. Do contrário, clique em **Check Results** para ver a necessidade de componentes ainda não concluídos.

Tarefa 3: Configurar a bridge raiz de backup

Etapa 1. Configurar a bridge raiz de backup.

O outro switch do núcleo serve como uma bridge de raiz de backup. Alterne para o modo **Realtime** e configure C2 com uma prioridade **8192**.

C2(config) #spanning-tree vlan 1 priority 8192

Etapa 2. Alternar os modos em tempo real e de simulação.

Alterne entre os modos Realtime e Simulation várias vezes até que todas as portas em C2 fiquem verdes.

Etapa 3. Examinar links conectados a C2.

O que é verdade sobre os links C2 em relação aos switches da camada de distribuição que você não vê com links C1?

Etapa 4. Verificar os resultados.

Seu percentual de conclusão deve ser 33%. Do contrário, clique em **Check Results** para ver a necessidade de componentes ainda não concluídos.

Tarefa 4: Finalizar configuração STP

A prática recomendada é nunca deixar um switch da camada de acesso tornar-se raiz. Você poderia assegurar isso, configurando todos os switches da camada de acesso com uma prioridade maior que a padrão. No entanto, como há menos switches de distribuição, é mais eficiente configurar esses switches com uma prioridade um pouco menor que o switch de raiz de backup.

Etapa 1. Configurar switches de distribuição.

No modo Realtime, configure D1, D2, D3 e D4 com uma prioridade 12288.

```
D1(config) #spanning-tree vlan 1 priority 12288
D2(config) #spanning-tree vlan 1 priority 12288
D3(config) #spanning-tree vlan 1 priority 12288
D4(config) #spanning-tree vlan 1 priority 12288
```

Etapa 2. Verificar os resultados.

O percentual de conclusão deve ser 100%. Do contrário, clique em **Check Results** para ver a necessidade de componentes ainda não concluídos.