Ecuaciones Vectoriales

Pablo Darío

14/12/2023

Importantes propiedades de sistemas lineales se pueden describir mediante el concepto y la notación de vectores. Por ahora, **vector** significará una lista ordenada de números. Esta idea sencilla permite realizar, de manera rápida, interesantes e importantes aplicaciones.

Vectores en \mathbb{R}^2

Una matriz con una sola columna es un vector columna o simplemente un vector. Ejemplos:

$$u = \begin{bmatrix} 3 \\ -1 \end{bmatrix}, \quad v = \begin{bmatrix} .2 \\ .3 \end{bmatrix}, \quad w = \begin{bmatrix} w1 \\ w2 \end{bmatrix}$$

donde w_1 y w_2 son números reales. \mathbb{R}^2 denota el conjunto de todos los vectores con dos entradas. La \mathbb{R} representa los números reales que aparecen como entradas en los vectores y el exponente 2 indica que cada vector contiene dos entradas.

Dos vectores en \mathbb{R}^2 son **iguales** si y solo si sus entradas correspondientes son iguales. Así $\begin{bmatrix} 4 \\ 7 \end{bmatrix}$ y $\begin{bmatrix} 7 \\ 4 \end{bmatrix}$ no son iguales, porque los vectores en \mathbb{R}^2 son pares ordenados de números reales.

Propiedades

Suma de Vectores

Dados dos vectores u y v en \mathbb{R}^2 , su **suma** es el vector u+v, que se obtiene al sumar las entradas correspondientes de u y v. Ejemplo:

$$\begin{bmatrix} 1 \\ -2 \end{bmatrix} + \begin{bmatrix} 2 \\ 5 \end{bmatrix} = \begin{bmatrix} 1+2 \\ -2+5 \end{bmatrix} = \begin{bmatrix} 3 \\ 3 \end{bmatrix}$$

Multiplicación por un Escalar

Considerando un vector \mathbf{u} y un número real c, el múltiplo escalar de \mathbf{u} por c es el vector $c\mathbf{u}$, que se obtiene al multiplicar por c cada entrada en \mathbf{u} . Ejemplo:

si
$$u = \begin{bmatrix} 3 \\ -1 \end{bmatrix}$$
 y $c = 5$, entonces $c\mathbf{u} = 5 \begin{bmatrix} 3 \\ -1 \end{bmatrix} = \begin{bmatrix} 3 \times 5 \\ -1 \times 5 \end{bmatrix} = \begin{bmatrix} 15 \\ -5 \end{bmatrix}$

El número c en $c\mathbf{u}$ se llama escalar; se escribe en cursivas, para así distinguirlo del vector \mathbf{u} .

Es posible combinar las operaciones de multiplicación por un escalar y suma vectorial, como en el siguiente ejemplo:

Ejemplo

A partir de $\mathbf{u} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$ y $\mathbf{v} = \begin{bmatrix} 2 \\ -5 \end{bmatrix}$, encuentre $4\mathbf{u}$, $(-3)\mathbf{v}$ y $4\mathbf{u} + (-3)\mathbf{v}$.

$$4u = \begin{bmatrix} 4 \\ -8 \end{bmatrix}, \quad -3v = \begin{bmatrix} -6 \\ 15 \end{bmatrix}$$

Por lo tanto

$$4u + (-3v) = \begin{bmatrix} 4 \\ -8 \end{bmatrix}, + \begin{bmatrix} -6 \\ 15 \end{bmatrix} = \begin{bmatrix} -2 \\ 7 \end{bmatrix}$$

Un vector también se puede representar con paréntesis, por ejemplo el vector columna $\begin{bmatrix} 3 \\ -1 \end{bmatrix}$ se puede representar como (3,-1). En este caso los paréntesis y la coma distinguen al vector (3,-1) de la matriz $\begin{bmatrix} 3 \\ -1 \end{bmatrix}$ que se representa con corchetes y sin coma. Así bien:

$$\begin{bmatrix} 3 \\ -1 \end{bmatrix} \neq \begin{bmatrix} 3 & -1 \end{bmatrix}$$

Ya que las matrices tienen distintas formas, aunque las entradas sean iguales.

Geometría en \mathbb{R}^2

Cada punto en el plano está determinado por un par ordenado de puntos, así bien, es posible identificar un punto geométrico (a,b) con el vector columna $\begin{bmatrix} a \\ b \end{bmatrix}$. Así, puede considerarse a \mathbb{R}^2 como el conjunto de todos los puntos del plano.

Figure 1: Vectores como puntos

Regla del Paralelogramo para la adición

Si \mathbf{u} y \mathbf{v} en \mathbb{R}^2 se representan como puntos en el plano, entonces $\mathbf{u} + \mathbf{v}$ corresponde a un cuarto vértice del paralelogramo cuyos otros vértices son \mathbf{u} , $\mathbf{0}$ y \mathbf{v}

Figure 2: Regla del paralelogramo

Ejemplo

Los vectores $\mathbf{u} = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$, $\mathbf{v} = \begin{bmatrix} -6 \\ 1 \end{bmatrix}$ y $\mathbf{u} + \mathbf{v} = \begin{bmatrix} -4 \\ 3 \end{bmatrix}$ forman el siguiente paralelogramo:

Figure 3: Ejemplo Paralelogramo

El conjunto de todos los múltiplos escalares de un vector diferente de cero o no nulo, fijo, es una recta que pasa por el origen, (0, 0)

Ejemplo

Sea $\mathbf{u} = \begin{bmatrix} 3 \\ -1 \end{bmatrix}$. Representa en el plano \mathbf{u} , $2\mathbf{u}$ y $-\frac{2}{3}\mathbf{u}$.

Así bien, $\mathbf{u} = \begin{bmatrix} 3 \\ -1 \end{bmatrix}$, $2\mathbf{u} = \begin{bmatrix} 6 \\ -2 \end{bmatrix}$ y $\frac{2}{3}\mathbf{u} = \begin{bmatrix} -2 \\ \frac{2}{3} \end{bmatrix}$. La flecha para $2\mathbf{u}$ es el doble del largo que la flecha para \mathbf{u} y va en el mismo sentido que \mathbf{u} . La flecha para - $\frac{2}{3}\mathbf{u}$ es dos tercios de la longitud de la flecha para \mathbf{u} y va en sentido opuesto. En general, la longitud de la flecha para $c\mathbf{u}$ es |c| veces la longitud de la flecha para \mathbf{u} .

Figure 4: Múltiplos del vector u

Vectores en \mathbb{R}^n

Los vectores en \mathbb{R}^3 son matrices columna de 3×1 con tres entradas. Se representan geométricamente mediante puntos en un espacio coordenado tridimensional; algunas veces se incluyen flechas desde el origen para dar una mayor claridad visual.

Si n es un entero positivo, \mathbb{R}^n denota la colección de todas las listas de n números reales, generalmente escritas como matrices columna de $n \times 1$ del tipo

$$\begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix}$$

El vector cuyas entradas son todas cero se llama **vector cero** y se denota con 0. La igualdad de vectores en \mathbb{R}^n y las operaciones de multiplicación escalar y suma vectorial en \mathbb{R}^n se definen entrada por entrada como en \mathbb{R}^2

3

Propiedades Algebraicas de \mathbb{R}^n

Para todo \mathbf{u} , \mathbf{v} , \mathbf{w} en \mathbb{R}^n y para todos los escalares c y d:

1.-
$$\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$$
 5.- $c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$

2.-
$$(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$$
 6.- $(c + d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$

$$3.- \mathbf{u} + 0 = \mathbf{u}$$

$$7.- c(d\mathbf{u}) = (cd)(\mathbf{u})$$

4.-
$$\mathbf{u} + (-\mathbf{u}) = -\mathbf{u} + \mathbf{u} = 0$$
 8.-1 $\mathbf{u} = \mathbf{u}$

Combinaciones Lineales

Dados los vectores v_1, v_2, \dots, v_p en \mathbb{R}^n y dados los escalares c_1, c_2, \dots, c_p el vector y es definido por:

$$\mathbf{y} = c_1 v_1 + \dots + c_p v_p$$

y se llama **combinación lineal** de v_1, \dots, v_p con pesos c_1, \dots, c_p . Los pesos en una combinación lineal pueden ser cualesquiera números reales, incluyendo el cero, algunos ejemplos de combinaciones lineales de v_1 y v_2 son

$$\sqrt{3}v_1 + v_2$$
, $\frac{1}{2}v_1 = \frac{1}{2}v_1 + 0v_2$, $0 = 0v_1 + 0v_2$

Figure 5: Combinaciones Lineales

Ejemplo

Sean $v_1 = \begin{bmatrix} 1 \\ -2 \\ -5 \end{bmatrix}$, $v_2 = \begin{bmatrix} 2 \\ 5 \\ 6 \end{bmatrix}$ y $b = \begin{bmatrix} 7 \\ 4 \\ -3 \end{bmatrix}$. Determine si b se puede generar como una combinación lineal de v_1 y v_2 . Es decir, determine si existen pesos x_1 y x_2 tales que

$$x_1v_1 + x_2v_2 = b$$

Así bien, gracias a las propiedades de multiplicación por un escalar y suma vectorial, podemos reescribir la ecuación como:

$$x_1 \begin{bmatrix} 1 \\ -2 \\ -5 \end{bmatrix} + x_2 \begin{bmatrix} 2 \\ 5 \\ 6 \end{bmatrix} = \begin{bmatrix} 7 \\ 4 \\ -3 \end{bmatrix}$$

Aplicando las operaciones obtenemos

$$\begin{bmatrix} x_1 \\ -2x_1 \\ -5x_1 \end{bmatrix} + \begin{bmatrix} 2x_2 \\ 5x_2 \\ 6x_2 \end{bmatrix} = \begin{bmatrix} 7 \\ 4 \\ -3 \end{bmatrix}$$

у

$$\begin{bmatrix} x_1 + 2x_2 \\ -2x_1 + 5x_2 \\ -5x_1 + 6x_2 \end{bmatrix} = \begin{bmatrix} 7 \\ 4 \\ -3 \end{bmatrix}$$

Los vectores en los miembros izquierdo y derecho de son iguales si y solo si sus entradas correspondientes son iguales. Es decir, x_1 y x_2 hacen válida la ecuación vectorial $x_1v_1 + x_2v_2 = b$ si y solo si x_1 y x_2 satisfacen el siguiente sistema:

$$\begin{array}{ccc} x_1 & +2x_2 & = 7 \\ -2x_1 & +5x_2 & = 4 \\ -5x_1 & +6x_2 & = -3 \end{array}$$

Ahora tenemos que resolver el sistema para ver si existen valores para x_1 y x_2 que hagan válido dicho sistema; para ello reducimos por filas la matriz aumentada como sigue:

$$\begin{bmatrix} 1 & 2 & 7 \\ -2 & 5 & 4 \\ -5 & 6 & -3 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 7 \\ 0 & 9 & 18 \\ 0 & 16 & 32 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 7 \\ 0 & 1 & 2 \\ 0 & 16 & 32 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$
(1)

Así obtenemos que la solución es $x_1 = 3$ y $x_2 = 2$. Así que **b** es una combinación lineal de v_1 y v_2 . Esto es,

$$3\begin{bmatrix} 1\\-2\\-5 \end{bmatrix} + 2\begin{bmatrix} 2\\5\\6 \end{bmatrix} = \begin{bmatrix} 7\\4\\-3 \end{bmatrix}$$

Por brevedad se puede escribir la matriz aumentada en una forma que identifique sus columnas fácilemnte como $\begin{bmatrix} v_1 & v_2 & b \end{bmatrix}$

Ecuación Vectorial y Sistema lineal

Una ecuación vectorial

$$x_1v_1 + x_2v_2 + \cdots + x_nv_n = b$$

tiene el mismo conjunto solución que el sistema lineal cuya matriz aumentada es

$$\begin{bmatrix} v_1 & v_2 \cdots & v_n & b \end{bmatrix}$$

En particular **b** se puede generar por una combinación lineal de v_1, v_2, \ldots, v_n si y solo si existe una solución al sistema lineal correspondiente a la matriz aumentada anterior.

Conjunto de Combinaciones Lineales

Si v_1, v_2, \ldots, v_p están en \mathbb{R}^n , entonces el conjunto de todas las combinaciones lineales de v_1, v_2, \ldots, v_p se denota como Gen $\{v_1, v_2, \ldots, v_p\}$ y se llama **subconjunto de** \mathbb{R}^n **extendido o generado por** v_1, v_2, \ldots, v_p . Es decir Gen $\{v_1, v_2, \ldots, v_p\}$ es el conjunto de todos los vectores que se pueden escribir en la forma

$$c_1v_1 + c_2v_2 + \dots + c_pv_p$$

con escalares c_1, c_2, \ldots, c_p

Preguntar si un vector $\mathbf b$ está en $\mathrm{Gen}\{v_1,v_2,\ldots,v_p\}$ equivale a preguntar si la ecuación vectorial

$$x_1v_1 + x_2v_2 + \dots + x_pv_p = b$$

tiene una solución. La cual se puede reescribir como,

$$x_1 \begin{bmatrix} v_1 \end{bmatrix} + x_2 \begin{bmatrix} v_2 \end{bmatrix} + \dots + x_p \begin{bmatrix} v_p \end{bmatrix} = \begin{bmatrix} b \end{bmatrix}$$

o de manera equivalente, si el sistema lineal con la matriz aumentada $\begin{bmatrix} v_1 & v_2 & \cdots & v_p & b \end{bmatrix}$ tiene una solución.

Observe que $\operatorname{Gen}\{v_1, v_2, \dots, v_p\}$ contiene a cada múltiplo escalar de v_1 (por ejemplo), ya que $cv_1 = cv_1 + 0v_2 + \dots + 0v_p$. Por tanto, el vector cero debe estar en $\operatorname{Gen}\{v_1, v_2, \dots, v_p\}$.

Descripción Geométrica de Gen{v} y de Gen{u, v}

Sea \mathbf{v} un vector diferente de cero en \mathbb{R}^3 . Entonces $\operatorname{Gen}\{\mathbf{v}\}$ es el conjunto de todos los múltiplos escalares de \mathbf{v} , que es el conjunto de puntos sobre la recta en en \mathbb{R}^3 que pasa por \mathbf{v} y 0.

Si \mathbf{u} y \mathbf{v} son vectores diferentes de cero en \mathbb{R}^3 , y \mathbf{v} no es un múltiplo de \mathbf{u} , entonces $\operatorname{Gen}\{\mathbf{u},\mathbf{v}\}$ es el plano en \mathbb{R}^3 que contiene a \mathbf{u} , \mathbf{v} y 0. En particular, $\operatorname{Gen}\{\mathbf{u},\mathbf{v}\}$ contiene la recta en \mathbb{R}^3 que pasa por \mathbf{u} y 0, y la recta que pasa por \mathbf{v} y 0.

Figure 6: $Gen\{u\}$ y $Gen\{u, v\}$

Ejemplo

Sean $\mathbf{a_1} = \begin{bmatrix} 1 \\ -2 \\ 3 \end{bmatrix}$, $\mathbf{a_2} = \begin{bmatrix} 5 \\ -13 \\ -3 \end{bmatrix}$ y $\mathbf{b} = \begin{bmatrix} -3 \\ 8 \\ 1 \end{bmatrix}$. Entonces $\operatorname{Gen}\{\mathbf{a_1}, \mathbf{a_2}\}$ es un plano que pasa por el origen en \mathbb{R}^3 . ¿Está \mathbf{b} en ese plano?

Para responder esto debemos ver si \mathbf{b} es una combinación lineal de $\mathbf{a_1}$ y $\mathbf{a_2}$; es decir ¿Tiene solución la ecuación $x_1\mathbf{a_1} + x_2\mathbf{a_2} = \mathbf{b}$? Así bien debemos reducir por la filas la matriz aumentada $\begin{bmatrix} \mathbf{a_1} & \mathbf{a_2} & \mathbf{b} \end{bmatrix}$

$$\begin{bmatrix} 1 & 5 & | & -3 \\ -2 & -13 & | & 8 \\ 3 & -3 & | & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 5 & | & -3 \\ 0 & -3 & | & 2 \\ 0 & -18 & | & 10 \end{bmatrix} \sim \begin{bmatrix} 1 & 5 & | & -3 \\ 0 & -3 & | & 2 \\ 0 & 0 & | & -2 \end{bmatrix}$$

Por lo tanto, vemos que el sistema es inconsistente, debido a que la tercera ecuación es 0 = -2. La ecuación vectorial $x_1\mathbf{a_1} + x_2\mathbf{a_2} = \mathbf{b}$ no tiene solución, de manera que \mathbf{b} no está en $\operatorname{Gen}\{\mathbf{a_1}, \mathbf{a_2}\}$ o bien, \mathbf{b} no es una combinación lineal de $\mathbf{a_1}$ y $\mathbf{a_2}$. (Lay, 2012)

References

Lay, D. C. (2012). Álgebra lineal y sus aplicaciones. Pearson Educación, México.