- 1. The x + iy form of $\frac{1+i}{\sqrt{2}}$, when $x, y \in R$ is
 - $\, \Box \, \frac{2i{+}1}{\sqrt{2}}$
 - $\frac{2i-1}{\sqrt{2}}$
 - $\frac{1-i}{\sqrt{2}}$
 - $\sqrt{\frac{1+i}{\sqrt{2}}}$
- 2. Find the four roots of the polynomial $z^4 + 16$.
 - $_{\square}\;e^{\frac{i\pi}{4}}$

- $\ \ \square \ 2e^{\frac{i\pi}{3}}2 \qquad \qquad e^{i\pi}2 \qquad \qquad e^{\frac{5i\pi}{3}}2$

- 3. Find the principal argument and exponential form of $z = \sqrt{3} + i$.

 - $\Box \operatorname{Arg}(z) = \frac{\pi}{3} \quad \text{and} \quad z = 2e^{\frac{i\pi}{3}}$

 - $\Box \operatorname{Arg}(z) = \frac{\pi}{4} \qquad \text{and} \quad z = 2e^{\frac{i\pi}{4}}$

 - $\Box \operatorname{Arg}(z) = \frac{2\pi}{3} \quad \text{and} \quad z = 2e^{\frac{2i\pi}{3}}$
- 4. $|\log(z)| \le |\ln|z|| + \pi$ for all $z \ne 0$.
 - **✓** True
 - $\quad \Box \ False$
- 5. Find the complex solutions of conj(z) + z = 0.
 - \Box Im(z) = 1

 - \Box Im(z) = 0
 - $\Box \operatorname{Re}(z) = 1$