香港考試局

HONG KONG EXAMINATIONS AUTHORITY

九八七年香港中學會考

HONG KONG CERTIFICATE OF EDUCATION EXAMINATION, 1987

附加數學(卷一)

ADDITIONAL MATHEMATICS (Paper I)

通常等等符 MARKING SCHEME

這份內部文件,只限閱卷員參閱,不得以任何形式翻印。

This is a restricted document.

It is meant for use by markers of this paper for marking purposes only.

Reproduction in any form is strictly prohibited.

請在學校任教之閱卷員特別留意

本評卷參考並非標準答案,故極不 宜落於學生手中,以免引起誤會。

遇有學生求取此文件時,閱卷員應 嚴予拒絕。閱卷員在任何情況下披露 本評卷參考內容,与有違閱卷員守則 及「一九七七年香港考試局法例」。

Special Note for Teacher Markers

It is highly undesirable that this marking scheme should fall into the hands of students. They are likely to regard it as a set of model answers, which it certainly is not.

Markers should therefore resist pleas from their students to have access to this document. Making it available would constitute misconduct on the part of the marker and is, moreover, in breach of the 1977 Hong Kong Examinations Authority Ordinace.

◎ 香港考試局 保留版權 Hong Kong Examinations Authority All Rights Reserved 1987

8/ ADD MATHS I	RESTRIC	TED	内部又	件
	SOLUTIONS		MARKS	REMARKS
1. $f(x) = cosec^2 3x$.				Alt. Solution:
$f'(x) = 2 \operatorname{cosec} 3$	x (- cosec 3x cot 3x) • 3		1 2A	$f'(x) = -2(\sin 3x)^{-3} \cdot \cos 3x(3)$
$= -6 \operatorname{cosec}^2$	$3x \cot 3x$ or $\frac{-6\cos 3x}{\sin^3 3x}$			
$\exists f'(\frac{7}{12}) = -6$	$cosec^2 \frac{\pi}{4} \cot \frac{\pi}{4}$		1M	$= -2\left(\sin\frac{\pi}{4}\right)^{-3}\cos\frac{\pi}{4} \cdot 3$
= - 12		• • • • • • •	$\frac{1A}{4}$	= -12
$2. x = y + \sin y$				Alternative solution
- J			1M+1A	Diff. both sides
$\therefore \frac{\mathrm{dy}}{\mathrm{dx}} = \frac{1}{1 + \cos y}$			1A	$1 = y' + (\cos y)(y')$ 1M+.
				$= y'(1 + \cos y)$
$\frac{d^2y}{x^2} = \frac{-(-\sin y)}{(1 + \cos y)}$	$\frac{dy}{dx}$		1A	$y' = \frac{1}{1 + \cos y}$
$= \frac{\sin y}{(1 + \cos y)}$	3	• • • • • • • •	1A	$0 = y'' - \sin y \cdot (y')^{2} + \cos y \cdot y''$ $y'' = \frac{\sin y}{(1 + \cos y)^{3}}$
			5	(1 + cos y)
3. let $z = x + iy$				
$z + \overline{z} = x + y$ $= 2x$ $= 2Re(z)$	i + x - yi)	•••••	1	
$ z = \sqrt{x^2 + y^2}$	2			
$\geqslant \sqrt{x^2} = x $	> x			
= Re(z) .		• • • • • • • •	.] 1	
$z_1 z_2 + \overline{z}_1 \overline{z}_2 =$				
=	$2\operatorname{Re}(z_1 z_2) \qquad \dots$	• • • • • • • •	1 A	
\$	$2 z_1z_2 $		1 A	
=	2 z ₁ z ₂	• • • • • • •	$\frac{1}{5}$	
\	· · · · · · · · · · · · · · · · · · ·		5	
Alternatively				
$z = z (\cos\theta +$				
$\overline{z} = z (\cos\theta - \frac{1}{2})$				
$z + \overline{z} = 2 z \cos z$			· · · · · · · · · · · · · · · · · · ·	
$\Re(z) = z \cos$	sθ { z		: •	
$z_1 z_2 + \overline{z}_1 \overline{z}_2$				
$= z_1 z_2 \text{ cis}($	$(\theta_1 + \theta_2) + z_1 z_2 \operatorname{cis}(-\theta_1)$	(1 - 9 ₂)	1A	
$= 2 z_1 z_2 co$	$os(\theta_1 + \theta_2)$	• • • • • •	1A	
< 2 z ₁ z ₂			1	

R	F	5	T	R	1	C	_	F	D	内	部	文	件	-
13	1	J	1	3 3	3		1	3		rj	디디		7 1	

OT ADD MATUR T	KE21 KICIED M	人们	P
87 ADD MATHS I	SOLUTIONS	MARKS	REMARKS
3. Alternative Solu	tion:		
$z_1z_2 + \overline{z}_1\overline{z}_2$		Ī	
$= (x_1 + iy_1)(x_2 + iy_1)$	$+ iy_2) + (x_1 - iy_1)(x_2 - iy_2)$		
$= 2(x_1x_2 - y_1y_2)$		1 A	
$2 \mathbf{z}_1 \mathbf{z}_2 $			
$= 2 z_1z_2 $			
$= 2 \sqrt{m_1 m_2 - y_1 y}$	$\frac{1}{2})^2 + (x_1y_2 + x_2y_1)^2$		
$\geqslant 2 \sqrt{(x_1 x_2 - y_1 y_1)}$	2)2	1 A	
$= 2 x_1x_2 - y_1y_2 $			
$-2(x_1x_2 - y_1y_2)$			
$= z_1 z_2 + \overline{z}_1 \overline{z}_2 .$		1	₹
4. (a) $x^2 = 3^2 + 6^2$	- (2)(3)(6)cosA		
= 45 - 36		1A	$x^2 = 45 - 36\cos\theta$ 1a
	ing with respect to time,	1M	$x = \sqrt{45 - 36\cos\theta}$
	$\sin\theta \frac{d\theta}{dt}$:	Differentiating U
· · · · · · ·	$dt = 45 - 36(\frac{1}{2})$		$\frac{dx}{dt} = \frac{36\sin\theta}{2\sqrt{45 - 36\cos\theta}}, \frac{d\theta}{dt} = 2$
when 9 - 3	= 27		$dt = \frac{2\sqrt{45} - 36\cos\theta}{\frac{1}{2\sqrt{45} - 18}} \cdot 36 \frac{\sqrt{3}}{2} \cdot \frac{1}{3}$
	$x = \sqrt{27}$		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$=$ (36) $(\frac{\sqrt{3}}{2})(\frac{1}{3})$			
$= 1 (s^{-1})$	`2 √ 2 7'	2A	Do not deduct marks for
	146	6	wrong units or no units.
5. (a) $4^2 - 4p > 0$		1A	
•)	1A	
(b))	1A	
$(x^2 + \beta^2) -$	$+ x^2 \beta^2 + 3(x + \beta) - 19 = 0$	# place colleges on the colleges of	
	$16 - 2p + p^2 - 12 - 19 = 0$	The second secon	
	$p^2 - 2p - 15 = 0$	1A	
	(p - 5)(p + 3) = 0		
p = 5 or -3 but $p < 4$,		1A	
but p < 4,	p3	$\frac{1A}{6}$	

	SOLUTIONS	MARKS	REMARKS
6. (a) $\overrightarrow{AB} \cdot \overrightarrow{AC}$	= 3 · 1 · cos60°	1A	if vector sign omitted, pp-
	$=\frac{3}{2}$	1A	
(b) $\overrightarrow{AB} + 2$	AC 2		Alternative Solution:
$= (\overrightarrow{AB} +$	$(\overrightarrow{AB} + 2\overrightarrow{AC})$	lA	$\overrightarrow{AB} = 3\underline{i}$
$= \left \overrightarrow{AB} \right ^2$	$+ 4 \overrightarrow{AC} ^2 + 4\overrightarrow{AB} \cdot \overrightarrow{AC}$	1A	$ \overrightarrow{AC} = \frac{1}{2} \underline{1} + \frac{\sqrt{3}}{2} \underline{1}$
= 9 + 4	÷ 6		$\overrightarrow{AB} + 2\overrightarrow{AC} = 4\underline{i} + \sqrt{3}\underline{j} $ 1
= 19 ,	•••••	i.	$ \overrightarrow{A3} + 2\overrightarrow{AC} = \sqrt{19}$
: AB +	$2\overrightarrow{AC}$ = $\sqrt{19}$	1 <u>A</u> 6	
Altern	ative Solution:		D
AB +	$2\overrightarrow{AC} = AD$ (1A)		
$AD^2 =$	$3^2 + 2^2 - 2(2)(3)\cos 120^{\circ}$ (1A)		2 120
=	19 (1A)		3
$\overrightarrow{AB} + 2$	$\overline{AC} \mid = \sqrt{19}$ (1A)		A
7. 2 cases [x-	-2 >0 or x-2 <0] or [x-2 >0 or x-2	! < 0] 1	Alternative Solution:
Case (i) x ·	- 2 ≥ 0 i.e. x ≥ 2		L.S. < 0
	+ 2) /x - 2/ < -5		∴ x + 2 < 0
(x	+ 2) $(x - 2) < -5$	1A	x < -2
	$x^2 < -1$ impossible	1A	L.S. = (x+2)(2-x)
Case (ii) x	-2 <0 i.e. x < 2		$(x+2)(2-x) < -5 \dots$
(x	+ 2) x - 2 < -5		$x^2 > 9$
(x	+ 2)(-x + 2) < -5	1A	x > 3 or $x < -3$ 1
	$-\mathbf{x}^2 \div 4 < -5$		x < -3
	$x^2 \geq 9$		Alternative Solution:
I	> 3 or x < -3	lA	$(x+2)^2(x-2)^2 > 25$
х <	€ -3	iΑ	$(x^2+1)(x^2-9) > 0$
Combining (i	.) and (ii)		x > 3 or $x < -3$
∴ x <-3	•••••••••••••••••••••••••••••••••••••••		After checking, $x < -3$ 2.

87 ADD	MATE	ет	n	EDIVIC	I LU PY	アルス	17	P.4
טעא וס	PIZATE	3 1	SOLUTION	S		MARKS	1	REMARKS
8. (a)	(i)	AB =	= -3 <u>i</u> + 3 <u>j</u>	• • • • • • • • • • • • • • • • • • • •	•••••	1A		vector sign omitted, division of vectors, pp-
		ĀĈ:	= 3 <u>i</u> + 6 <u>j</u>			1A		22,222,000,000,000,000,000,000,000,000
	(ii)	AR =	$= \frac{1}{1+m} \left[\overrightarrow{AB} + m \right]$	AC]	•••••	1M		\int_{0}^{c}
		=	$=\frac{1}{1+m}[(-3+$	$3m)\underline{i} + (3 + 6m)$	<u>j</u>]	1A 4		R/a
(b)	(i)	BC =	= 6 <u>i</u> + 3 <u>j</u>					3 P
		AR .	1 3C , ∴ AR • 3	c = 0				
		$\frac{1}{1 + }$	$\frac{1}{m}$ [6(-3 + 3m)	+ 3(3 + 6m)] =	0	1M+1A		
				m =	$\frac{1}{4}$	1		А
	Alt	erna	tive Solution:					A second
	slo	pe of	BC • slope of	AR = -1				
	,	$\int \frac{7m}{m}$	$\frac{+4}{+1} - 1$,		
	$\frac{1}{2}$	7m	$\frac{+1}{+1} - 4 = -1$		• • • • • • • • •	1M+1A		
	1		$\frac{+ \text{ óm}}{3 + 3 \text{ m}} = -1$					
		2 -3	, , , , , , , , , , , , , , , , , , , ,		•••••	1A		
	(ii)	AR =	= - \frac{9}{5} \frac{1}{5} + \frac{18}{5} \frac{1}{5}				<u>A1</u> t	ernative Solution:
		Let	$L_{QPR} = \theta$				Lo	$CBQ = \emptyset$
		BQ ⋅	$\overrightarrow{AR} = \overrightarrow{BQ} \overrightarrow{AR} $	cosθ	• • • • • • • •	1M	BQ	$\cdot \overrightarrow{BC} = \overrightarrow{BQ} \overrightarrow{BC} \cos \emptyset$
		\overrightarrow{BQ} •	$\overrightarrow{AR} = -\frac{27}{5} \dots$		• • • • • • • •	1A	BQ	BC = 331
		BQ	$ \overrightarrow{AR} \cos \theta = \sqrt{ \overrightarrow{AR} }$	$26\sqrt{(-\frac{9}{5})^2+(\frac{18}{5})^2}$	cosθ	1A	BC	$ \overrightarrow{BC} \cos \emptyset = \sqrt{26 \cdot \sqrt{45}} \cos \emptyset$
		- 27	$\frac{7}{5} = \frac{9}{5} \cdot \sqrt{5} \cdot \sqrt{26}$	cosθ			l .	BC = 15.25°
		θ =	105° (Accept	answers roundab	le to 105°)	1A	θ =	105° 1
	Alte	ernat	ive Solution:					,
	tan	LcBo	$0 = \frac{m_1 - m_2}{1 + m_1 m_2}$		·			
			$=\frac{\frac{3}{6}-\frac{1}{5}}{1+\frac{1}{2}-\frac{3}{2}}$	· · · · · · · · · · · · · · · · · · ·	•••••	1M+2A		
	CACC	cent	$\frac{1}{5} - \frac{3}{6} \text{ in the nu}$					
			$\frac{1}{5} - \frac{1}{6}$ in the inc.	ameraeur)	•			
	1 -01	₽ √ −	13.43			1		

) (mr.	RESTRICTE	D 內部文件	- P.
8 / ADD	MATHS I	SOLUTIONS	MARKS	REMARKS
8. (b)	(iii)BQ =	= $\lambda \overrightarrow{BA}$ + $\lambda \overrightarrow{BC}$		
	5 <u>i</u> +	$-\underline{\mathbf{j}} = \lambda(3\underline{\mathbf{i}} - 3\underline{\mathbf{j}}) + \mu(6\underline{\mathbf{i}} + 3\underline{\mathbf{j}})$		
		$= (3\lambda + 6\mu)\underline{i} + (-3\lambda + 3\mu)\underline{j}$		
	3⅓ -3⅓	$+.6, \mu = 5$) $+3\mu = 1$)	2M+1A	
	λ	$=\frac{1}{3}$, $\mu = \frac{2}{3}$	1A	
		$= \frac{1}{1+n} \left[\overrightarrow{BA} + n\overrightarrow{BR} \right]$		
		$= \frac{1}{1+n} \left[\overrightarrow{BA} + \frac{n}{5} \overrightarrow{BC} \right] \qquad $	1A	
	=	$= \frac{1}{1+n} \left[(3 + \frac{6}{5} n) \underline{i} + (-3 + \frac{3}{5} n) \underline{j} \right]$	1A	
		= 5 <u>i</u> + <u>j</u>		
	BP /	// BQ		
	<u></u>	$\frac{3 + \frac{6n}{5}}{3 + \frac{3n}{5}} = \frac{5}{1}$	1M+1A	<i>)</i>
		$\frac{6}{5}$ n = -15 + $\frac{15}{5}$ n		
		n = 10	1A 16	
-				

1A

1M

1A

1

1M

1 M

2A

1A

1A 10 REMARKS

n	101	141
9.	(4)	(i)

$$0A = \frac{a}{\sin\theta}$$

$$AH = a + \frac{a}{\sin \theta}$$

base 3C =
$$(2)(AHtan\theta)$$

= $2a[1 + \frac{1}{sin\theta}]tan\theta$

$$= 2a \frac{(1 + \sin \theta)}{\cos \theta}$$

Area,
$$S = \frac{1}{2} (a) (1 + \frac{1}{\sin \theta}) \cdot 2a \frac{(1 + \sin \theta)}{\cos \theta}$$
$$= \frac{a^2 (1 + \sin \theta)^2}{\sin \theta \cos \theta} \dots$$

(ii) Writing $s = \sin\theta$, $c = \cos\theta$,

SOLUTIONS

$$\frac{dS}{d\theta} = \frac{(sc)2(1+s)c - (1+s)^{2}(-s^{2}+c^{2})}{s^{2}c^{2}} \cdot a^{2}$$

$$= \frac{a^{2}(1+s)[2sc^{2} - c^{2} + s^{3} - sc^{2} + s^{2}]}{s^{2}c^{2}}$$

$$= \frac{a^{2}(1+s)}{s^{2}c^{2}} (s^{3} + s^{2} - c^{2} + sc^{2})$$

$$= 0$$

:
$$1 + s \neq 0$$
, $s^3 + s^2 - c^2 + sc^2 = 0$

$$s^3 + s^2 + (1 - s^2)(s - 1) = 0$$

$$2s^2 + s - 1 = 0 \dots$$

$$(2s - 1)(s + 1) = 0$$

$$s = \frac{1}{2} \qquad \dots$$

$$\theta = 30^{\circ} \text{ or } \frac{\pi}{6}$$

For differentiating S respect to θ .

There are several alternative solutions NOTE: in which S is expressed in different forms before differentiation,

e.g.
$$S = a^2(\frac{1}{sc} + \frac{s}{c} + \frac{2}{c}),$$

 $S = a^2 \tan\theta (1 + \csc\theta)^2$
or $S = \frac{a^2(1+s)^2}{\sin 2\theta}$.

8, ADD	MATH		_	i e
		SOLUTIONS	MARKS	REMARKS
9. (b)	(i)	$QR = 2b \cos \emptyset$	1A	
		height = b + b sin∅	1A	
		$= b^2 \cos \emptyset (1 + \sin \emptyset)$	1	
		Q R		
	(ii)	When \triangle is equilateral, $\emptyset = 30^{\circ}$	1A	
		$\frac{\mathrm{d}A}{\mathrm{d}\emptyset} = b^2[\cos^2\theta - \sin\theta(1 + \sin\theta)] \dots$	2A	
		$= b^{2}[1 - 2\sin^{2}\emptyset - \sin\emptyset] \text{ or } b^{2}[\cos2\emptyset - \sin\emptyset]$		
		when $\emptyset = 30^{\circ}$, $\frac{dA}{d\emptyset} = b^{2}[\cos^{2}30^{\circ} - \sin 30^{\circ}(1+\sin 30^{\circ})]$	°)] 1M	IM For sub. $\emptyset = 30^{\circ}$ in $\frac{dA}{d\emptyset}$
-		= 0	1A	
		$\frac{d^2A}{d\theta^2} = b^2[-4\sin\theta\cos\theta - \cos\theta] \qquad \dots$	1M	For finding 2nd derivative.
		When $\emptyset = 30^{\circ}$, $\frac{d^2A}{d\emptyset^2} < 0$,	1A	Do not award this mark if
		: The area is a maximum.	10	there is no 2nd derivative 2nd derivative is wrong.
			10	
		Alternatively:		
		$\frac{\mathrm{dA}}{\mathrm{d}\emptyset} = b^2[\cos^2\emptyset - \sin\emptyset(1 + \sin\emptyset)]$	2A	
		= 0	1 M	
		$\cos^2 \emptyset - \sin \emptyset - \sin^2 \emptyset = 0$:	
		$1 - \sin \emptyset - 2\sin^2 \emptyset = 0$		
		$2\sin^2\emptyset + \sin\emptyset - 1 = 0$		
		$(2\sin\emptyset - 1)(\sin\emptyset + 1) = 0$		
		$\sin \emptyset = \frac{1}{2}$ or -1 (rejected)		
		Ø = 30°	1 A	
		L OQR = 30°		
		$L PQR = 30^{\circ} + 30^{\circ} = 60^{\circ}$		
	a	\therefore Δ PQR is equilateral	1A	
		$\frac{\mathrm{d}^2 A}{\mathrm{d}\theta^2} = b^2 [-2\cos\theta \sin\theta - \cos\theta - 2\sin\theta \cos\theta]$	l M	
	And the second second	$= b^{2}[-4\cos\theta\sin\theta - \cos\theta]$		
		$\frac{\mathrm{d}^2 A}{\mathrm{d}\emptyset^2} \bigg \emptyset = 30^\circ \le 0$	1A	
		The area is a max. when Δ is equilateral.		

SOLUTIONS SOLUTIONS	MARKS	REMARKS
$10.(a) z^2 = (\cos\theta + i\sin\theta)^2$		Alternatively:
= $\cos 2\theta + i \sin 2\theta$ or $(\cos^2 \theta - \sin^2 \theta) + i 2 \sin \theta \cos \theta$	1A	$\frac{1}{z} = \overline{z}$
$\widehat{z} = \cos\theta - i\sin\theta$	1 A	$z^2 - 2\overline{z} + \frac{1}{z} = z^2 - \overline{z}$
$\frac{1}{z} = \frac{1}{\cos\theta + i\sin\theta} = \cos\theta - i\sin\theta$	1 A	$z^2 - 2\overline{z} + \frac{1}{z}$ is real
$z^2 - 2\overline{z} + \frac{1}{z} = \cos 2\theta + i \sin 2\theta - \cos \theta + i \sin \theta$		$\therefore z^2 - \overline{z} = \overline{z^2 - \overline{z}}$ $= (\overline{z})^2 - z$ 1M+?
This is real,		
$\therefore \sin 2\theta + \sin \theta = 0$	1M+1A	$z^{2} - (\overline{z})^{2} = \overline{z} - z$ $(z - \overline{z})(z + \overline{z}) = \overline{z} - z$ $z + \overline{z} = -1 \dots \dots \dots$
or $2\sin\theta\cos\theta + \sin\theta = 0$		$2 + 2 = -1$ $2 \operatorname{Re}(z) = -1$
$\sin\theta \neq 0$,		$Re(z) = -\frac{1}{2} \dots 1$
$\therefore \cos\theta = -\frac{1}{2} \dots$	1A	$Im(z) = \pm \sqrt{1 - \frac{1}{\lambda}}$
$\theta = 2n\pi \pm \frac{2\pi}{3}$		$= \pm \frac{\sqrt{3}}{2}$
$z = \cos \frac{2\pi}{3} + i\sin \frac{2\pi}{3} \text{ or } \cos \frac{2\pi}{3} - i\sin \frac{2\pi}{3}$	2A+1A	$z = -\frac{1}{2} + \frac{\sqrt{3}}{2} i, -\frac{1}{2} - \frac{\sqrt{3}}{2} i$
$[z = -\frac{1}{2} + \frac{\sqrt{3}}{2} i \text{ or } -\frac{1}{2} - \frac{\sqrt{3}}{2} i]$		$\frac{2}{2} - \frac{1}{2} + \frac{1}$
$[z = cis120^{\circ} \text{ or } cis(-120^{\circ})]$ (Accept cis240°)	9	
(b) Take $z_1 = \cos \frac{2\pi}{3} + i \sin \frac{2\pi}{3}$, $z_2 = \cos \frac{2\pi}{3} - i \sin \frac{2\pi}{3}$		Alternative Solution:
(i) $z_1^2 = (\cos \frac{2\pi}{3} + i \sin \frac{2\pi}{3})^2$		$z_1 = -\frac{1}{2} + \frac{\sqrt{3}}{2} i$
$= \cos \frac{4\pi}{3} + i \sin \frac{4\pi}{3}$		$\begin{vmatrix} 1 & 2 & 2 \\ 2 & 2 & -\frac{1}{2} + \frac{\sqrt{3}}{2}i \end{vmatrix} \left(-\frac{1}{2} + \frac{\sqrt{3}}{2}i \right)$
$= \cos(2\pi - \frac{4\pi}{3}) - i\sin(2\pi - \frac{4\pi}{3})$		$= \frac{1}{4} - \frac{3}{4} - \frac{1}{2} \left(\frac{\sqrt{3}}{2} + \frac{\sqrt{3}}{2} \right) i$
= z ₂	1	$= -\frac{1}{3} - \frac{\sqrt{3}}{3} i$
$z_2^2 = (\cos \frac{2\pi}{3} - i \sin \frac{2\pi}{3})^2$		$= z_2 \dots$
$= \cos \frac{4\pi}{3} - i \sin \frac{4\pi}{3}$		Similarly for $z_2^2 = z_1$
$= \cos(2\pi - \frac{4\pi}{3}) + i\sin(2\pi - \frac{4\pi}{3})$		2 1
= z ₁	1	
• (ii) $z_1^3 = (\cos \frac{2\pi}{3} + i \sin \frac{2\pi}{3})^3$		$z_1^3 = z_1 z_1^2$
= cos2\(+ isin2\)	Appropriate Approp	$= z_1 z_2$
= 1	1A	= 1 ,, 1
$z_2^3 = (\cos \frac{2\pi}{3} - i \sin \frac{2\pi}{3})^3$		$z_2^3 = z_2^2 z_2^2$
$= \cos 2\pi - i\sin 2\pi$		$= \frac{z}{2} \frac{z}{1}$
= 1	1A	= 1 14

REMARKS 10.(b)(iii) $z_1^{3n} + z_2^{3n} = (z_1^3)^n + (z_2^3)^n$ $= 1^{n} + 1^{n}$ 1A $z_1^{3n+1} + z_2^{3n+1} = z_1^{3n} \cdot z_1 + z_2^{3n} \cdot z_2$ $= z_1 + z_2$ 1 A $z_1^{3n+2} + z_2^{3n+2} = (z_1^{3n})z_1^2 + (z_2^{3n})z_2^2$ $= z_1^2 + z_2^2$ $= z_2 + z_1$ 1A Alternative Solution: $z_1^{3n} + z_2^{3n} = 2\cos 2n\pi$ 1 A $z_1^{3n+1} + z_2^{3n+1} = 2\cos \frac{2(3n+1)\pi}{3}$ $= 2\cos(2n\pi + \frac{2\pi}{3})$ $= 2\cos\frac{2\pi}{3}$ 1A $z_1^{3n+2} + z_2^{3n+2} = 2\cos \frac{2(3n+2)\pi}{3}$ $= 2\cos(2n\pi + \frac{4\pi}{3})$ $= 2\cos\frac{4\pi}{2}$ (iv) $z_1^{2k} + z_2^{2k} = (z_1^2)^k + (z_2^2)^k$ 1A $= z_2^k + z_1^k$ 2A $= \begin{cases} 2 & \text{k is a multiple of 3} \\ -1 & \text{k is not a multiple of 3} \end{cases}$ 1 11 Alternative Solution: Alt. Solution: $z_1^{2k} + z_2^{2k} = 2\cos\frac{4k\pi}{3}$ $(z_1^{2(3n)} + z_2^{2(3n)})$ 1A k = 3n, $z_1^{2k} + z_2^{2k} = 2\cos\frac{4k\pi}{3} = 2\cos4n\pi = 2$ = cis4nT + cis(-4nT) 12 k = 3n+1, $z_1^{2k} + z_2^{2k} = 2\cos(4n\pi + \frac{4\pi}{3}) = -1$ k = 3n+2, $z_1^{2k} + z_2^{2k} = 2\cos(4n\pi + \frac{8\pi}{3}) = -1$ etc.

REST	TRICTED 內	1	P
SOLUTIONS		MARKS	REMARKS
11.(a) $a^2 - 2z + k = 0$ $(-2)^2 - 4k < 0 \dots$ $k \ge 1$	•••••••	1A	
(b) Let \varkappa and β be the roots of	$z^2 - 2z + k = 0$		Alternative Solution:
$ \begin{array}{ccc} $	•••••	l A	$z = 1 \pm \sqrt{1 - k}$ $z^{2} = (2-k) \pm 2\sqrt{1 - k}$
	તેકે(ત્રે ÷β)		$z^{3} = (4-3k) \pm (4-k) \cdot \sqrt{1-k} = 2$ Required equation is
= $8 - 6k$	·	1A 1A	$ \left\{ z - \left[(4-3k) + (4-k) \sqrt{1-k} \right] \right\} $ $ X \left\{ z - \left[(4-3k) - (4-k) \sqrt{1-k} \right] \right\} = $
\sim Required equation is z^2	$+ (6k - 8)z + k^3 = 0$		$z^2 + (6k-8)z + k^3 = 0$ 1.
$\Delta = (6k - 8)^{2} - 4k^{3} \dots$ $= -4k^{3} + 36k^{2} - 96k + 64$ $= -4(k^{3} - 9k^{2} + 24k - 16)$	•••••••	1M	
$= 4(1 - k)(4 - k)^{2} \dots$ The equation has real roots,		1	Alternatively:
$4(1 - k)(4 - k)^2 \ge 0$		1A	$Arg(z) = \pm \tan^{-1}(\sqrt{k-1})$
but $k \ge 1$ 1 $\therefore (k - 4)^2 \le 0 1A$	Alt. Solution $k = 4 \text{ or } k \le 1$ but $k > 1$	1A 1	z^3 is real $Arg(z^3) = \pi$
k = 4 1A	k = 4	1A	$\tan^{-1}(\pm \sqrt{k-1}) = \frac{\pi}{3}$ $\pm \sqrt{k-1} = \sqrt{3}$ $k-1=3$
•		11	k = 4 1A
(e) $z = 1 \pm \sqrt{1 - k}$		1A	Alternatively: $z = 1 \pm \sqrt{1 - k}$

(c) $z = 1 \pm j1 - k$ $z^2 = (2 - k) \pm 2 / 1 - k$ $= (2 - k) \pm 2 / k - 1 i$ x = 2 - k $y = \pm 2 / k - 1$ Eliminating k, $y = \pm 2 / 2 - x - 1$ $= \pm 2 / 1 - x$ 1A

where $x \neq 1$

1.e. $y^2 = 4(1 - x)$ where $x \neq 1$.

$$2^{2} = 2z - k$$

= $2(1 \pm \sqrt{1 - k}) - k$ 1.

=
$$(2-k) \pm \sqrt{k-1} \pm 14$$

12.(a) (i) MN = MP + PN= atan0 + btanØ

SOLUTIONS

$$\frac{d(MN)}{d\theta} = a\sec^2\theta + b\sec^2\theta \, \frac{d\theta}{d\theta}$$

$$\frac{d\emptyset}{d\theta} = -\frac{a\sec^2\theta}{b\sec^2\theta}$$

(ii)
$$t = \frac{AP}{u} + \frac{BP}{v}$$

$$= \frac{a}{u} \sec \theta + \frac{b}{v} \sec \emptyset$$

$$\frac{dt}{d\theta} = \frac{a}{u} \sec\theta \tan\theta + \frac{b}{v} \sec\emptyset \tan\emptyset \frac{d\emptyset}{d\theta}$$

$$\frac{a}{u} \sec \theta \tan \theta + \frac{b}{v} \sec \theta \tan \theta \left(-\frac{a \sec^2 \theta}{b \sec^2 \theta} \right) = 0$$

$$\frac{a}{u} \frac{1}{\cos \theta} \cdot \frac{\sin \theta}{\cos \theta} + \frac{b}{v} \cdot \frac{\sin \emptyset}{\cos^2 \emptyset} \quad \left(-\frac{a}{b} \cdot \frac{\cos^2 \emptyset}{\cos^2 \theta} \right) = 0$$

$$\frac{\mathbf{u}}{\mathbf{v}} = \frac{\sin\theta}{\sin\theta} \qquad \dots$$

(b) (i) $t = \frac{AP}{U} + \frac{PN}{V}$

$$= \frac{a \sec \theta}{u} + \frac{h - a \tan \theta}{v}$$

(ii) When t is a minimum,

$$\frac{dt}{d\theta} = 0 \qquad \dots$$

$$\frac{a\sec\theta\tan\theta}{u} - \frac{a\sec^2\theta}{v} = 0$$

$$\frac{\tan \theta}{u} = \frac{\sec \theta}{v}$$

$$\frac{u}{v} = \sin\theta$$

$$\frac{u}{v} = \sin\theta \qquad$$

$$P = a \tan\theta$$

$$= \frac{a \frac{u}{v}}{\sqrt{1 - \frac{u^2}{v^2}}}$$

$$\frac{\text{au}}{\sqrt{\mathbf{v}^2 - \mathbf{n}^2}} \cdots$$

SOLUTIONS

MARKS

REMARKS

12.(c)

Time required =
$$\frac{AP + CP}{u}$$

= $\frac{AP + C'P}{u}$

For minimum time, (AP + C'P) is a minimum.

i.e. APC' is a straight line

and MP : PN = a : c

2

1A 3

1A

Alternative Solution:

$$t = \frac{1}{u} \left[a \sec \theta + \sqrt{(h - a \tan \theta)^2 + c^2} \right]$$

$$\frac{dt}{d\theta} = \frac{1}{u} \left[a \sec \theta \tan \theta - \frac{2(h - a \tan \theta) \cdot a \sec^2 \theta}{2\sqrt{(h - a \tan \theta)^2 + c^2}} \right] \dots$$

= 0

$$\tan\theta \sqrt{(h - a \tan\theta)^2 + c^2} = (h - a \tan\theta) \sec\theta$$

$$\tan^2\theta (h - a \tan\theta)^2 + c^2 \tan^2\theta = (h - a \tan\theta)^2 \sec^2\theta$$

$$c^2 tan^2 \theta = (h - atan \theta)^2$$

$$h - atan\theta = \pm ctan\theta$$

$$(a \pm c) \tan \theta = h$$

$$\tan\theta = \frac{h}{a \pm c} \dots$$

 $MP = a tan \theta = \frac{ah}{a \pm c}$

(Rejecting $\frac{ah}{a-c}$: P lies between M and N)

$$MP = \frac{ah}{a + c}$$

$$PN = \frac{cn}{a+c}$$

MP : PN = a : c

1.4