MAE 0580/MAC 6926 - 1^a Prova (Turma A)

13 de setembro 2017

Esta é uma prova individual, sem consulta. Em cada questão uma e só uma opção é correta. A nota da prova será calculada pela fórmula Nota = $\max\{0, C - E/3\}$. Nesta expressão, C é o número de respostas certas e E, o número de respostas erradas. Questões deixadas em branco e respostas rasuradas não serão consideradas no cálculo da nota.

Notações e definições básicas

Seja $(X,Y) \in \mathcal{X} \times \{0,1\}$ um par de variáveis aleatórias distribuidas de acordo com uma distribuição desconhecida P. Observamos uma sequencia $(X_i,Y_i)_{i=1,\dots,n}$ de pares i.i.d. tendo a mesma distribuição de (X,Y). O objetivo é construir uma função de classificação $g:\mathcal{X} \to \{0,1\}$, tal que g(X) esteja probabilísticamente próximo de Y.

O risco de q é definido como,

$$R(g) = \mathbb{P}(g(X) \neq Y).$$

O risco empírico de g calculado a partir de uma amostra é definido como

$$R_n(g) = \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{\{g(X_i) \neq Y_i\}}.$$

Seja $\eta(x) = \mathbb{P}(Y=1|X=x)$. O classificador de Bayes é definido como

$$f^*(x) = \mathbb{1}_{\{\eta(x) \ge 1/2\}}.$$

Desigualdade de Chebyshev: Seja $(Z_k)_{k\geq 1}$ uma sequência de variáveis aleatórias i.i.d assumindo valores em $\{0,1\}$, tal que $\mathbb{P}(Z_k=1)=p$, para todo k. A desigualdade de Chebyshev é dada por

$$\mathbb{P}\left(\left|\frac{1}{n}\sum_{k=1}^{n}Z_{k}-p\right|>\epsilon\right)\leq\frac{1}{4n\epsilon^{2}}$$

Desigualdade de Hoeffding: Seja $(Z_k)_{k\geq 1}$ uma sequência de variáveis aleatórias i.i.d assumindo valores em $\{0,1\}$, tal que $\mathbb{P}(Z_k=1)=p$, para todo k. A desigualdade de Hoeffding é dada por

$$\mathbb{P}\left(\left|\frac{1}{n}\sum_{k=1}^{n}Z_{k}-p\right|>\epsilon\right)\leq 2\exp(-2n\epsilon^{2})$$

Dado um alfabeto finito A, para todo $k \geq 1$, definimos $\mathcal{M}_k(A)$ da seguinte maneira

$$\mathcal{M}_k(A) = \{ p : A^k \times A \to [0, 1] : \forall a_{-k}^{-1} \in A^k, \sum_{b \in A} p(b|a_{-k}^{-1}) = 1 \}.$$

Dado $n \geq 0, k \geq 0$ e dada uma amostra X_{-k}, \cdots, X_n e uma sequência $a_{-k}^0 \in A^{k+1}$, definimos a função de contagem

$$N_{0:n}(a_{-k}^0) = \sum_{t=0}^n \mathbf{1}_{\{X_{t-k}^t = a_{-k}^0\}}.$$

O passado nas probabilidades de transição é indicado do símbolo mais recente ao símbolo mais remoto:

$$p(b|a_{-1},...,a_{-k}) = p(b|a_{-k}^{-1}) = \mathbb{P}\{X_0 = b|X_{-k}^{-1} = a_{-k}^{-1}\}, \text{ para } b \in A \text{ e } a_{-k}^{-1} = (a_{-k},...,a_{-1}) \in A^k.$$

Dada uma amostra X_{-k}, \dots, X_n de símbolos no alfabeto A, gerada por uma cadeia de Markov de alcance k, definimos

$$\hat{\mathbb{P}}_k(X_0^n|X_{-k}^{-1}) = \prod_{\substack{a_{-1}^{-k} \in A^k \\ a_{-1}^{-k} \in A}} \prod_{b \in A} \hat{p}_n(b|a_{-1}^{-k})^{N_{0:n}(a_{-1}^{-k}b)},$$

onde $\hat{p}_n(b|a_{-1}^{-k}) = \frac{N_{0:n}(a_{-1}^{-k}b)}{\sum_{z \in A} N_{0:n}(a_{-1}^{-k}z)}$ é o estimador de máxima verossimilhança em $\mathcal{M}_k(A)$.

1. Seja X=(X(1),X(2),X(3)) uma variável aleatória que toma valores em $\mathcal{X}=\{0,1\}^3$, isto é \mathcal{X} é o conjunto de todas as sequências ordenadas com três elementos, assumindo os valores 0 ou 1. Seja $Y\in\{0,1\}$ uma variável de classificação assim definida: Y=X(1). Definimos a função de classificação $g:\mathcal{X}\to\{0,1\}$ da seguinda maneira

$$g(x) = \mathbb{1}_{\left\{\frac{x(1)}{2} + \frac{x(2)}{4} + \frac{x(3)}{8} \ge 0.75\right\}}.$$

Assumindo que $\mathbb{P}(X=x)=\left(\frac{1}{2}\right)^3$, para todo $x\in\mathcal{X}$, diga qual das afirmações abaixo é verdadeira:

- a) R(g) = 0.5
- b) R(g) = 0.25
- c) R(g) = 0.75
- d) Nenhuma das respostas anteriores.
- 2. Seja $X \in \mathcal{X} = [0,1]$ uma variável aleatória e seja $Y \in \{0,1\}$ uma variável de classificação assim definida

$$Y = Z \mathbb{1}_{\{X > 1/2\}} + (1 - Z) \mathbb{1}_{\{X < 1/2\}},$$

onde Z é uma variável aleatória com valores em $\{0,1\}$, independente de X e tal que $\mathbb{P}(Z=1)=0.9$. Queremos calcular o classificador de Bayes para o par (X,Y). Diga qual das afirmações abaixo é verdadeira:

- a) $f^*(x) = \mathbb{1}_{\{x \ge 0.9\}}$
- b) $f^*(x) = \mathbb{1}_{\{x \ge 0.5\}}$
- c) $f^*(x) = \mathbb{1}_{\{x \ge 0.1\}}$
- d) Nenhuma das respostas anteriores.
- 3. Seja $(X_1,Y_1),...,(X_{10},Y_{10}),$ com $(X_i,Y_i)\in[0,1]\times\{0,1\}$ uma sequência de variáveis aleatórias. Seja $g:[0,1]\to\{0,1\}$ uma funcão definida por $g(x)=\mathbbm{1}_{\left\{|x-\frac{1}{2}|\leq 0.2\right\}}$. Dado uma amostra

$$\begin{array}{rclrcl} X_1 & = & 0.4, & Y_1 = 0 \\ X_2 & = & 0.1, & Y_2 = 0 \\ X_3 & = & 0.7, & Y_3 = 1 \\ X_4 & = & 0.3, & Y_4 = 1 \\ X_5 & = & 0.2, & Y_5 = 0 \\ X_6 & = & 0.8, & Y_6 = 0 \\ X_7 & = & 0.3, & Y_7 = 1 \\ X_8 & = & 0.9, & Y_8 = 0 \\ X_9 & = & 0.2, & Y_9 = 1 \end{array}$$

 $X_{10} = 0.5, Y_{10} = 1,$

diga qual das seguintes afirmações é verdadeira

- a) $R_n(g) = 2/10$
- b) $R_n(g) = 1/10$
- c) $R_n(g) = 5/10$
- d) Nenhuma das respostas anteriores.
- 4. Seja $(X_i, Y_i)_{i=1,...,n}$ uma sequência de variáveis aleatórias i.i.d com $X_i \in \mathcal{X}$ e $Y_i \in \{0,1\}$, e seja $g(x) = \mathbbm{1}_{\{x \geq p\}}$, com $p \in [0,1]$ fixado. Usando a desigualdade de Hoeffding queremos obter uma majoração para

$$\mathbb{P}(|R_n(g) - R(g)| > 0.01).$$

Diga qual das seguintes afirmações é verdadeira (use, se necessário, que $\ln(0.005) = -5.2983$ e $\ln(0.025) = -3.6889$)

- a) $\mathbb{P}(|R_n(g) R(g)| > 0.01) \le 0.01$, $\forall n \ge 30000$
- b) $\mathbb{P}(|R_n(g) R(g)| > 0.01) \le 0.05, \forall n \ge 15000$
- c) $\mathbb{P}(|R_n(g) R(g)| > 0.01) \ge 0.01$, $\forall n \ge 30000$

- d) Nenhuma das respostas anteriores.
- 5. Seja $(X_i, Y_i)_{i=1,...,n}$ uma sequência de variáveis aleatórias i.i.d com $X_i \in \mathcal{X}$ e $Y_i \in \{0,1\}$, e seja $g(x) = \mathbb{1}_{\{x \geq p\}}$, com $p \in [0,1]$ fixado. Fixamos $\epsilon \in [0,1/2]$ e queremos obter uma majoração para $\mathbb{P}(|R_n(g) R(g)| > \epsilon)$. Sejam $\delta_c(n,\epsilon)$ e $\delta_h(n,\epsilon)$ as majorações fornecidas pelas desigualdades de Chebyshev e Hoeffding respectivamente. Diga qual das seguintes afirmações é verdadeira
 - a) $\lim_{n\to\infty} \frac{\delta_c(n,\epsilon)}{\delta_h(n,\epsilon)} = +\infty$
 - b) $\lim_{n \to \infty} \frac{\delta_c(n,\epsilon)}{\delta_h(n,\epsilon)} = 0$
 - c) $\lim_{n \to \infty} \frac{\delta_c(n,\epsilon)}{\delta_h(n,\epsilon)} = 1$
 - d) Nenhuma das respostas anteriores.
- 6. Seja $(X_n)_{n\in\mathbb{Z}}$ uma cadeia de Markov de alcance 1 assumindo valores em $A=\{0,1\}$. Diga qual é o maior valor que $\mathbb{P}(X_0^{10}=(0,1,1,0,1,0,0,0,1,0,0)|X_{-1}=0)$ pode assumir
 - (a) $(1/2)^{11}$
 - (b) $(1/2)^5(3/4)^3(1/4)^3$
 - (c) $(4/7)^4(3/7)^3(3/4)^3(1/4)$
 - (d) Nenhuma das respostas anteriores.
- 7. Seja $(X_n)_{n\in\mathbb{Z}}$ uma cadeia com memória de alcance variável, assumindo valores no alfabeto $A=\{0,1\}$, tendo como árvore de contextos $\tau=\{\{X_{-1}=0\},\{X_{-2}=0,X_{-1}=1\},\{X_{-2}=1,X_{-1}=1\}\}$ e tendo família associada de probabilidades de transição definida por

$$p(1|0) = \alpha$$
, $p(1|11) = \beta$, $p(1|10) = \gamma$,

onde α, β, γ são três parâmetros pertenecentes ao intervalo aberto (0,1). Dada uma amostra $X_0^{12} = (0,1,1,1,0,0,0,1,1,1,1,1)$ gerada por esta cadeia, diga qual das seguintes afirmações é correta:

a)
$$\mathbb{P}(X_0^{12} = 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1 | X_{-1} = 0) = \alpha^3 (1 - \alpha)^3 \beta^3 (1 - \beta) \gamma^2 (1 - \gamma)$$

b)
$$\mathbb{P}(X_0^{12} = 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1 | X_{-1} = 0) = \alpha^3 (1 - \alpha)^3 \beta (1 - \beta)^3 \gamma (1 - \gamma)^2$$

c)
$$\mathbb{P}(X_0^{12} = 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1 | X_{-1} = 0) = (\alpha \beta \gamma)^{13}$$

- d) Nenhuma das respostas anteriores.
- 8. Dado $A = \{1, 2, 3\}$, seja $p \in \mathcal{M}_1(A)$ assim definida:

$$\begin{array}{cccc}
1 & 2 & 3 \\
1 & 1/4 & 1/2 & 1/4 \\
2 & 1/3 & 1/3 & 1/3 \\
3 & 1/4 & 1/4 & 1/2
\end{array}$$

Queremos simular uma cadeia de Markov $(X_n)_{n\geq 0}$, tendo essa matriz de probabilidades de transição, usando o seguinte algoritmo:

Passo 1. Escolho X_0 ;

Passo 2. Para $n \ge 1$, definimos $X_n = F(X_{n-1}, U_n)$, onde $(U_n)_{n\ge 1}$ é uma sequência de variáveis aleatórias i.i.d com distribuição uniforme em [0,1] e F(x,u) é uma função definida por:

$$F(x, u) = \begin{cases} 1, & \text{se } 0 \le u < h_1(x) \\ 2, & \text{se } h_1(x) \le u < h_2(x) \\ 3, & \text{se } h_2(x) \le u \le 1 \end{cases}$$

3

Diga qual das linhas abaixo, definindo $h_1(3)$ e $h_2(3)$, está correta:

- (a) $h_1(3) = 1/3, h_2(3) = 2/3$
- (b) $h_1(3) = 1/4, h_2(3) = 3/4$
- (c) $h_1(3) = 1/4$, $h_2(3) = 1/2$
- (d) Nenhuma das respostas anteriores.