Limit of sequence

Exercise 1. Prove the following limit via ϵ -N definition:

- (1). $\lim_{n \to \infty} \frac{n}{2n-1} = \frac{1}{2}$.
- (2). $\lim_{n \to \infty} (\sqrt{n+1} \sqrt{n}) = 0.$

Exercise 2. Suppose that $(x_n) \to 1$. Using ϵ -N definition, prove that

- (1). $\lim_{n \to \infty} \frac{x_n + 1}{2} = 1$.
- (2). $\lim_{n \to \infty} (x_n^2 + 1) = 2.$

Solution

Exercise 1. Prove the following limit via ϵ -N definition:

(1).
$$\lim_{n \to \infty} \frac{n}{2n-1} = \frac{1}{2}$$
.

(2).
$$\lim_{n \to \infty} (\sqrt{n+1} - \sqrt{n}) = 0.$$

Solution.

(1). Observe that $\frac{n}{2n-1} - \frac{1}{2} = \frac{1}{2(2n-1)}$. Here we encounter 2n-1 in the denominator, which is a bit trickier to simplify. For me I like to reduce it by playing around with the fact that $n \ge 1$. In this particular problem, it turns out that

$$\left| \frac{n}{2n-1} - \frac{1}{2} \right| = \frac{1}{2(2n-1)} = \frac{1}{2(n+n-1)} \le \frac{1}{2n}.$$

Now we can proceed the proof as follows: For every $\epsilon>0$, we choose $N=1+\lfloor\frac{1}{2\epsilon}\rfloor$. Thus $N\in\mathbb{N}$ and $N>\frac{1}{2\epsilon}$. Therefore for any integer $n\geq N$ we get

$$\left|\frac{n}{2n-1} - \frac{1}{2}\right| \le \frac{1}{2n} \le \frac{1}{2N} < \epsilon.$$

This shows that $\lim \frac{n}{2n-1} = \frac{1}{2}$.

(2). [Hint] This comes easy once you write $\sqrt{n+1} - \sqrt{n} = \frac{1}{\sqrt{n+1} + \sqrt{n}}$.

Exercise 2. Suppose that $(x_n) \to 1$. Using ϵ -N definition, prove that

(1).
$$\lim_{n \to \infty} \frac{x_n + 1}{2} = 1.$$

(2).
$$\lim_{n \to \infty} (x_n^2 + 1) = 2$$
.

Solution. This exercise is to prepare you the upcoming theorem — the Algebraic limit theorem. Understanding the ideas in this exercise shows that you have mastered the ϵ -N definition quite skillfully.

(1). First observe that

$$\left| \frac{x_n + 1}{2} - 1 \right| = \frac{1}{2} \cdot |x_n - 1|.$$

We want to make the left hand side less than ϵ . However since $x_n \to 1$, thus we can make $|x_n - 1|$ as small as we like, so why not make it so that $|x_n - 1| < 2\epsilon$. This is completely valid. Even though the ϵ -N definition

says that $|a_n - a| < \epsilon$, but what it really means is: if $a_n \to a$ then we can make $|a_n - a| < as$ small as we like.

The proof is as follows: Let $\epsilon > 0$ be arbitrary. Since $x_n \to 1$, thus there exists an $N \in \mathbb{N}$ so that $|x_n - 1| < 2\epsilon$ for all $n \geq N$. Therefore for all $n \geq N$, we get

$$\left| \frac{x_n + 1}{2} - 1 \right| = \frac{1}{2} |x_n - 1| < \frac{1}{2} \cdot 2\epsilon = \epsilon.$$

Hence $(x_n+1)/2 \to 1$ as expected.

(2). The idea in this second problem is quite crucial and is worth investigating. Again we start by trying to estimate $|a_n - a|$: Observe that

$$\left| (x_n^2 + 1) - 2 \right| = \left| x_n^2 - 1 \right| = \left| x_n + 1 \right| \cdot \left| x_n - 1 \right|.$$

The term $|x_n - 1|$ can be made as small as we like since $x_n \to 1$. The question becomes how do we estimate the term $|x_n + 1|$? We use the following neat trick: Using triangle inequality we get

$$|x_n + 1| = |(x_n - 1) + 2| \le |x_n - 1| + 2$$

Since $x_n \to 1$, we can estimate $|x_n - 1|$ as much as we like, and why not make it so that $|x_n - 1| < 1$. Formally written, there is an $N_1 \in \mathbb{N}$ so that $|x_n - 1| < 1$ and thus $|x_n + 1| < 1 + 2 = 3$ for all $n \ge N_1$. Looking back

$$\left| (x_n^2 + 1) - 2 \right| = \underbrace{|x_n + 1|}_{\leq 3} \cdot |x_n - 1| < 3|x_n - 1|$$

Now we can pick N_2 large enough so that $|x_n - 1| < \epsilon/3$ for all $n \ge N_2$. This might look quite confusing at first, and believe me it does. I am going to write it again, but this time with a formal proof.

Let $\epsilon > 0$ be arbitrary. By triangle inequality we get

$$|(x_n^2 + 1) - 2| = |x_n + 1| \cdot |x_n - 1|$$

$$= |(x_n - 1) + 2| \cdot |x_n - 1|$$

$$\leq (|x_n - 1| + 2) \cdot |x_n - 1|$$

Since $x_n \to 1$, then

- There is an $N_1 \in \mathbb{N}$ so that for all $n \geq N_1$, $|x_n 1| < 1$.
- There is an $N_2 \in \mathbb{N}$ so that for all $n \geq N_2$, $|x_n 1| < \frac{\epsilon}{3}$.

$$\frac{N_1}{(x_n - 1)} < 1$$

$$\frac{N_2}{(x_n - 1)} < \epsilon/3$$

To satisfy both inequalities, we must choose from the largest between N_1 and N_2 . Thus if we let $N=\max\{N_1,N_2\}$ then for all $n\geq N$ both inequalities work, and therefore

$$\left| (x_n^2 + 1) - 2 \right| \le (|x_n - 1| + 2) \cdot |x_n - 1|$$

$$< (1+2) \cdot \frac{\epsilon}{3}$$

$$= \epsilon.$$

Hence $(x_n^2 + 1) \to 2$ as desired.