Computer experiment 2

1. Generate two data set X_1 and X_2 , each with N=1,000 3-D vectors, for the two classes C_1 and C_2 , respectively. Assume C_1 and C_2 are modeled by normal distributions with the parameters: $\mu_1 = [0,0,0]^T$, $\mu_2 = [1,5,-3]^T$, $\Sigma_1 = [0,0,0]^T$

$$diag(3,5,2)$$
, and $\Sigma_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 4 & 1 \\ 0 & 1 & 6 \end{bmatrix}$

- (a) Write the code to find the maximum-likelihood values $\hat{\mu}_{ML}$ and $\hat{\sigma}^2_{ML}$ individually for each of the three features x_i (i = 1,2,3) for the class C_1 .
- (b) Write the code to find the maximum-likelihood estimations $\hat{\mu}_{ML}$ and $\hat{\Sigma}_{ML}$ to the three-dimensional Gaussian data $\mathbf{x} = [x_1, x_2, x_3]^T$ for C_1 .
- (c) Compare your results for the mean and variance of each feature calculated in (a) with those in (b). Explain why they are the same or different.
- (d) Assume the three features are uncorrelated, i.e., $\Sigma = diag(\sigma_1^2, \sigma_2^2, \sigma_3^2)$. Write the code to find the maximum-likelihood estimation of $\widehat{\mu}_{ML}$ and $\widehat{\Sigma}_{ML}$ for C_2 .
- (e) Apply your code in (b) to find $\widehat{\mu}_{ML}$ and $\widehat{\Sigma}_{ML}$ for C_2 . Compare your results for the variances obtained in (d) with those in (b). Explain why they are the same or different.
- 2. Write the code that generates the Bernoulli samples $X = \{x_1, ..., x_N\}, x_i \in \{0,1\}$ with (a) p = 0.7, N = 1000, and (b) p = 0.7, N = 5000; and the code that calculates the estimate \hat{p}_{ML} from the sample X. Compare your estimated \hat{p}_{ML} with the ground truth p = 0.7 for the two data sets and draw your conclusions.
- 3. Write the code that generates 100 samples $X = \{(x_i, y_i), i = 1, ..., 100\}$ ten times by $y = 3\sin(0.8x + 2) + \varepsilon$, $\varepsilon \sim N(0,1)$ for $x \in [0,10]$. Divide your samples into two as training and validation sets.
 - (a) Use a polynomial in x of order k (k = 1, 3, 5, 7, 9) to fit the training data. Refer to Fig 4.5 (in Ch4's slides) to show your training samples and the fitted curves.
 - (b) Compute error on the validation set. Refer to Fig. 4.7(b) to show the regression error vs. polynomial order.