Lineare Algebra II Repetitorium Übungen, Tag 4

Jendrik Stelzner

24. September 2016

Übung 1.

Es seien V und W zwei endlichdimensionale K-Vektorräume und $\beta\colon V\times V\to K$ und $\gamma\colon V\times V\to K$ zwei nicht-entartete symmetrische Bilinearformen. Es seien $\Phi_V\colon V\to V^*,$ $v\mapsto \beta(-,v)$ und $\Phi_W\colon W\to W^*,$ $w\mapsto \gamma(-,w)$. Zudem sei $f\colon V\to W$ ein K-lineare Abbildung und $f^T\colon W^*\to V^*,$ $\psi\mapsto \psi\circ f$ die duale Abbildung.

1. Zeigen Sie, dass eine Abbildung $f^* \colon W \to V$ das Diagramm

$$\begin{array}{ccc}
W & \xrightarrow{f^*} & V \\
 & \downarrow & \downarrow \\
 & \downarrow & \downarrow \\
W^* & \xrightarrow{f^T} & V^*
\end{array}$$

genau dann zum kommutieren bringt, wenn

$$\gamma(f(v), w) = \beta(v, f^*(w))$$
 für alle $v \in V, w \in W$.

2. Zeigen Sie, dass es eine eindeutige Abbildung f^* gibt, die das obige Diagramm zum kommutieren bringt, und dass diese K-linear ist.

Übung 2.

Es sei V ein K-Vektorraum, $\beta \colon V \times V \to K$ eine symmetrische Bilinearform und $q \colon V \to K$, $v \mapsto \beta(v,v)$ die zugehörige quadratische Form. Zeigen Sie:

1. Für $\operatorname{char}(K) \neq 2$ ist

$$\beta(v_1,v_2) = \frac{q(v_1+v_2) - q(v_1) - q(v_2)}{2} \quad \text{für alle } v_1,v_2 \in V.$$

2. Für char $(K) \neq 2, V \neq 0$ und β nicht-entartet gibt es ein $v \in V$ mit $q(v) \neq 0$.

3. Im Fall char(K) = 2 kann es verschiedene symmetrische Bilinearformen mit gleicher quadratischer Form geben. Geben Sie hierfür eine explizites Beispiel an.

Übung 3.

Es seien

$$A_1 \coloneqq \begin{pmatrix} 4 & 3 \\ 3 & 4 \end{pmatrix}, A_2 \coloneqq \begin{pmatrix} 3 & 4 \\ 4 & -3 \end{pmatrix}, A_3 \coloneqq \begin{pmatrix} 3 & -2 & 0 \\ -2 & 2 & -2 \\ 0 & -2 & 1 \end{pmatrix}, A_4 \coloneqq \begin{pmatrix} 2 & -1 & 1 \\ -1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}.$$

- 1. Bestimmen Sie jeweils eine orthogonale Matrix $O_i \in O(n)$, so dass $O_i^T A_i O_i$ in Diagonalgestalt vorliegt.
- 2. Entschieden Sie für die nicht-entarteten Fälle jeweils, ob es sich bei der Menge

$$H_i := \{ x \in \mathbb{R}^{n_i} \mid x^T A_i x = 10 \}$$

um eine Ellipse oder eine Hyperbel bzw. um ein Ellipsoid oder ein einschaliges oder zweischaliges Hyperboloid handelt. Geben Sie jeweils die Länge der entsprechenden Hauptachsen an.

Übung 4.

Entscheiden Sie, welche der folgenden Aussagen für jeden reellen Vektorraum V und jede symmetrische Bilinearform $\beta\colon V\times V\to \mathbb{R}$ mit $\beta\neq 0$ gilt. Geben Sie gegebenenfalls ein Gegenbeispiel.

- 1. Ist $\beta(v,v) \geq 0$ für alle $v \in V$, so ist $\beta(-,-)$ ein Skalarprodukt.
- 2. Ist $\mathcal{B}\subseteq V$ eine Basis von V mit $\beta(v_1,v_2)>0$ für alle $v_1,v_2\in\mathcal{B}$, so ist $\beta(-,-)$ ein Skalarprodukt.
- 3. Für jeden Untervektorraum $U \subseteq V$ gilt $U \subseteq (U^{\perp})^{\perp}$.
- 4. Die Teilmengen

$$U_+ := \{v \in V \mid \beta(v, v) \ge 0\} \quad \text{und} \quad U_- := \{v \in V \mid \beta(v, v) \le 0\}$$

sind Untervektorräume von V.

- 5. Für alle Untervektorräume $U_1, U_2 \subseteq V$ gilt $(U_1 + U_2)^{\perp} = U_1^{\perp} \cap U_2^{\perp}$.
- 6. Die Teilmenge $U_0 := \{v \in V \mid \beta(v, v) = 0\}$ ist ein Untervektorraum von V.
- 7. Ist $\dim V < \infty$, so gilt $\dim V = \dim U + \dim U^{\perp}$ für jeden Untervektorraum $U \subseteq V$.
- 8. Ist dim $V < \infty$ und $U \subseteq V$ ein Untervektorraum mit $(U^{\perp})^{\perp} = V$, so ist U = V.

Übung 5.

Es sei $n \geq 1$. Es sei

$$S_+ := \{ A \in \mathsf{M}_n(\mathbb{R}) \mid A^T = A \}$$

der Vektorraum der symmetrischen reellen Matrizen und

$$S_{-} \coloneqq \{A \in M_n(\mathbb{R}) \mid A^T = -A\}$$

der Vektorraum der schiefsymmetrischen reellen Matrizen.

- 1. Zeigen Sie, dass $\operatorname{tr}(AB) = \operatorname{tr}(BA)$ für alle $A, B \in \operatorname{M}_n(\mathbb{R})$.
- 2. Zeigen Sie, dass $\sigma \colon \mathrm{M}_n(\mathbb{R}) \times \mathrm{M}_n(\mathbb{R}) \to \mathbb{R}$ mit

$$\sigma(A, B) := \operatorname{tr}(AB)$$
 für alle $A, B \in M_n(\mathbb{R})$

eine symmetrische Bilinearfom ist.

- 3. Zeigen Sie, dass $M_n(\mathbb{R}) = S_+ \oplus S_-$.
- 4. Zeigen Sie, dass S_+ und S_- orthogonal zueinander bezüglich σ sind.
- 5. Zeigen Sie, dass die Einschränkung $\sigma|_{S_+\times S_+}$ positiv definit ist, und dass die Einschränkung $\sigma|_{S_-\times S_-}$ negativ definit.
- 6. Bestimmen Sie eine Basis \mathcal{C} von $M_2(\mathbb{R})$, so dass $M_{\mathcal{C}}(\sigma)$ in Diagonalgestalt ist und 1,-1,0 die einzigen möglichen Diagonaleinträge sind.

Übung 6.

Es sei V ein K-Vektorraum mit Basis $\mathcal{C}=(v_1,\ldots,v_n), \mathcal{C}^*=(v_1^*,\ldots,v_n^*)$ die duale Basis von V^* und $\beta\colon V\times V\to K$ eine Bilinearform.

1. Zeigen Sie für die lineare Abbildung $\Phi \colon V \to V^*, v \mapsto \beta(-,v)$, dass

$$M_{\mathcal{C},\mathcal{C}^*}(\Phi)_{ij} = \beta(v_i, v_j)$$
 für alle $i, j = 1, \dots, n$.

2. Es sei $\Psi \colon V \to K^n$ der eindeutige Isomorphismus mit

$$\Psi(\lambda_1 v_1 + \dots + \lambda_n v_n) = \begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{pmatrix} \quad \text{für alle } \lambda_1, \dots, \lambda_n \in \mathbb{R},$$

dass $M_{\mathcal{C}}(\beta)$ eindeutig dadurch bestimmt ist, dass

$$\beta(v, w) = \Psi(v)^T M_{\mathcal{C}}(\beta) \Psi(w)$$
 für alle $v, w \in V$.

3. Folgern Sie, dass β genau dann symmetrisch ist, wenn $M_{\mathcal{C}}(\beta)$ symmetrisch ist.

Lösung 4.

1. Die Aussage ist falsch. Man betrachte etwa $\beta \colon \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ mit

$$\beta(v, w) := v^T \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} w = v_1 w_1$$

Für diese gilt $\beta(v,v)=v_1^2\geq 0$ für alle $v\in\mathbb{R}^2$, da $\beta(e_2,e_2)=0$ ist β aber nicht positiv definit.

2. Die Aussage ist falsch. Man betrachte etwa $\beta\colon\mathbb{R}^2\times\mathbb{R}^2\to\mathbb{R}$ mit

$$\beta(v, w) := v^T \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} w = v_1 w_1 + 2v_1 w_2 + 2v_2 w_1 + v_2 w_2.$$

Für die Standardbasis $\mathcal{B}\coloneqq\{e_1,e_2\}$ gilt zwar $\beta(e_i,e_j)\in\{1,2\}$ für alle i,j=1,2, da $\beta(e_1-e_2,e_1-e_2)=-2<0$ ist β aber nicht positiv definit. (Da die Determinante der obigen Matrix -3 ist, ergibt sich auch aus dem Hauptminorenkriterium, dass β nicht positiv definit ist.)

- 3. Die Aussage ist stimmt. Ist $u \in U$ und $v \in U^{\perp}$, so ist $\beta(u,v) = 0$ nach Definition von U^{\perp} , und somit $u \in (U^{\perp})^{\perp}$.
- 4. Die Aussage ist falsch. Betrachtet man etwa das vorherige Beispiel $\beta \colon \mathbb{R}^2 \to \mathbb{R}^2$ mit

$$\beta(v, w) := v^T \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} w = v_1 w_1 + 2v_1 w_2 + 2v_2 w_1 + v_2 w_2,$$

so gilt $e_1, e_2 \in U_+$, da $\beta(e_1, e_1) = \beta(e_2, e_2) = 1 \ge 0$, da $\beta(e_1 - e_2, e_1 - e_2) = -2 < 0$ ist aber $e_1 - e_2 \notin U_+$.

5. Die Aussage ist wahr: Da $U_1,U_2\subseteq U_1+U_2$ ist $(U_1+U_2)^\perp\subseteq U_1^\perp,U_2^\perp$ und somit $(U_1+U_2)^\perp\subseteq U_1^\perp\cap U_2^\perp$. Ist andererseits $v\in U_1^\perp\cap U_2^\perp$ und $u\in U_1+U_2$, so gibt es $u_1\in U_1$ und $u_2\in U_2$ mit $u=u_1+u_2$, we shalb

$$\beta(v, u) = \beta(v, u_1 + u_2) = \underbrace{\beta(v, u_1)}_{=0} + \underbrace{\beta(u, v_2)}_{=0} = 0.$$

Also ist auch $U_1^{\perp} \cap U_2^{\perp} \subseteq (U_1 + U_2)^{\perp}$.

6. Die Aussage ist falsch. Betrachtet man etwa $\beta\colon\mathbb{R}^2\times\mathbb{R}^2\to\mathbb{R}$ mit

$$\beta(v, w) \coloneqq v^T \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} w = v_1 w_2 + v_2 w_1,$$

so gilt $e_1,e_2\in U_0$, aber $e_1+e_2\notin U_0$ da $\beta(e_1+e_2,e_1+e_2)=2.$

7. Die Aussage ist falsch. Betrachtet man etwa $\beta \colon \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ mit

$$\beta(v, w) \coloneqq v^T \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} w = v_1 w_1,$$

so gilt für den eindimensionalen Untervektorraum $U=\mathcal{L}(e_2)$, dass $U^\perp=\mathbb{R}^2$, und somit

$$\dim U + \dim U^{\perp} = 1 + 2 = 3 > 2 = \dim \mathbb{R}^2.$$

(Man hat aber stets $\dim U + \dim U^{\perp} \ge \dim V$.)

8. Die Aussage stimmt nicht. Betrachtet man etwa erneut $\beta\colon\mathbb{R}^2\times\mathbb{R}^2\to\mathbb{R}$ mit

$$\beta(v,w) \coloneqq v \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = v_1 w_1,$$

so gilt für den echten Untervektorraum $U\coloneqq\mathcal{L}(e_1)\subsetneq\mathbb{R}^2$, dass $U^\perp=\mathcal{L}(e_2)$ und somit $(U^\perp)^\perp=\mathbb{R}^2$.

Lösung 5.

1. Es ist

$$\operatorname{tr}(AB) = \sum_{i=1}^{n} (AB)_{ii} = \sum_{i=1}^{n} \sum_{j=1}^{n} A_{ij} B_{ji} = \sum_{j=1}^{n} \sum_{i=1}^{n} B_{ji} A_{ij} = \sum_{j=1}^{n} (BA)_{jj} = \operatorname{tr}(BA).$$

- 2. Die Bilinearität von σ ergibt sich durch direktes Nachrechnen, wobei man nutzt, dass die Matrixmultiplikation $M_n(\mathbb{R}) \times M_n(\mathbb{R}) \to M_n(\mathbb{R}), (A_1, A_2) \mapsto A_1A_2$ bilinear ist, und dass die Spur tr: $M_n(\mathbb{R}) \to \mathbb{R}$ linear ist. Nach dem ersten Aufgabenteil ist σ symmetrisch.
- 3. Für $A\in S_+\cap S_-$ ist $A=A^T=-A$ und somit A=0, und jede Matrix $A\in \mathrm{M}_n(\mathbb{R})$ lässt sich als

$$A = \frac{A + A^T}{2} + \frac{A - A^T}{2}$$

schreiben, wobei der erste Summand symmetrisch ist und der zweite schiefsymmetrisch. Alternativ lässt sich der Endomorphismus $s\colon \mathrm{M}_n(\mathbb{R}) \to \mathrm{M}_n(\mathbb{R})$ mit $s(A) = (A+A^T)/2$ betrachten. Dieser ist idempotent, d.h. es gilt $s^2 = s$, weshalb $\mathrm{M}_n(\mathbb{R}) = \mathrm{im}(e) \oplus \ker(e)$. Mit $\mathrm{im}(e) = S_+$ und $\ker(e) = S_-$ ergibt sich die Zerlegung.

4. Ist $A_+ \in S_+$ und $A_- \in S_-$, so ist

$$\begin{split} \sigma(A_+,A_-) &= \operatorname{tr}(A_+A_-) = \operatorname{tr}((A_+A_-)^T) = \operatorname{tr}(A_-^TA_+^T) \\ &= \operatorname{tr}(-(A_-)A_+) = -\operatorname{tr}(A_-A_+) = -\sigma(A_-,A_+) = -\sigma(A_+,A_-) \end{split}$$

und somit $\sigma(A_+, A_-) = 0$.

5. Für alle $A \in S_+$ ist

$$\sigma(A, A) = \operatorname{tr}(AA) = \operatorname{tr}(AA^T) = \sum_{i=1}^n (AA^T)_{ii} = \sum_{i=1}^n \sum_{j=1}^n A_{ij} A_{ji}^T = \sum_{i, j=1, \dots, n} A_{ij}^2 \ge 0$$

und Gleichheit gilt genau dann, wenn $A_{ij} = 0$ für alle $i, j = 1, \dots, n$, wenn also A = 0.

Ist andererseits $A \in S_{-}$, so ergibt sich analog zur obigen Rechnung, dass

$$\sigma(A, A) = -\sum_{i,j=1,...,n} A_{ij}^2 \le 0,$$

und Gleichheit gilt genau dann, wenn A = 0.

6. Da $\sigma|_{S_+ \times S_+}$ positiv definit und $\sigma|_{S_- \times S_-}$ negativ definit ist, wissen wir nach dem Sylvesterschen Trägheitssatz bereits, dass der Diagonaleintrag 1 mit Vielfachheit $\dim(S_+)=3$ auftreten wird, und der Diagonaleintrag -1 mit Vielfachheit 1.

Da die Summe $\mathrm{M}_n(\mathbb{R})=S_+\oplus S_-$ orthogonal ist, genügt es für jeden dieser beiden Untervektorräume eine entsprechende Basis bezüglich der Einschränkung $\sigma|_{S_+\times S_+}$, bzw. $\sigma|_{S_-\times S_-}$ zu finden, und diese anschließend zusammenzuführen.

Für den eindimensionalen Raum S_- beginnen wir mit dem Basisvektor

$$\tilde{A}_1 \coloneqq \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}.$$

Für diesen gilt $\sigma(\tilde{A}_1,\tilde{A}_1)=-2,$ weshalb wir \tilde{A}_1 zu

$$A_1 := \frac{1}{\sqrt{2}}\tilde{A}_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

normieren.

Für S_+ beginnen wir mit den drei Basisvektoren

$$\tilde{A}_2 := \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad \tilde{A}_3 := \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \quad \tilde{A}_4 := \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.$$

Da $\sigma_{S_+ \times S_+}$ positiv definit, also ein Skalarprodukt ist, können wir nun das Gram-Schmidt-Verfahren anwenden. (Zur einfacheren Berechnung von $\sigma|_{S_+ \times S_+}$ kann man sich zunächst überlegen, dass $\sigma(A,B) = \sum_{i,j} A_{ij} B_{ij}$ für alle $A,B \in S_+$.) Damit erhalten wir für S_+ die Basis

$$A_2 \coloneqq \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad A_3 \coloneqq \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \quad A_4 \coloneqq \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.$$

Insgesamt erhalten wir somit eine Basis $\mathcal{C}=(A_1,A_2,A_3,A_4)$ von $\mathrm{M}_n(\mathbb{R})$ mit

$$\mathrm{M}_{\mathcal{C}}(\sigma) = egin{pmatrix} -1 & & & & \ & 1 & & & \ & & 1 & & \ & & & 1 \end{pmatrix}.$$