Question number	Scheme	Marks
3 (a)	$\cos(\angle B) = \frac{10^2 + 8^2 - 12^2}{2 \times 10 \times 8} = \frac{10^2 + 6^2 - x^2}{2 \times 10 \times 6}$	M1 M1
	$\frac{20}{160} = \frac{136 - x^2}{120}$ $x^2 = 121$	dM1
	x = 11 *	A1 cso (4)
	Alternative Method $\cos(ADB) = \frac{x^2 + 6^2 - 10^2}{2 \times 6 \times x} = \frac{x^2 - 64}{12x}$	M1
	$\cos(ADC) = \frac{x^2 + 2^2 - 12^2}{2 \times 2 \times x} = \frac{x^2 - 140}{4x}$	M1
	$\frac{x^2 - 64}{12x} + \frac{x^2 - 140}{4x} = 0$	
	$4x^2 = 484$	dM1
	<i>x</i> = 11 *	A1 cso (4)
(b)	Angle $ABC / ABD = \cos^{-1} \left(\frac{10^2 + 8^2 - 12^2}{2 \times 10 \times 8} \right) = 82.8^{\circ}$	B1 M1
	$\frac{1}{2} \times 10 \times 6 \times \sin 82.8 = 29.8$	M1 A1 (4) [8]
	Alternative Method 1	[-]
	Angle $ADB = \cos^{-1}\left(\frac{11^2 - 64}{12 \times 11}\right) = 64.42^{\circ}$	B1 M1
	$\frac{1}{2} \times 6 \times 11 \times \sin 64.42 = 29.8$	M1 A1 (4)
	Alternative Method 2 $\cos ABC = \frac{10^{2} + 8^{2} - 12^{2}}{2 \times 10 \times 8} = \frac{1}{8}$	B1
	$\sin ABC / ABD = \sqrt{1 - \left(\frac{1}{8}\right)^2} = \sqrt{\frac{63}{64}} = \frac{3}{8}\sqrt{7}$	M1
	$\frac{1}{2} \times 10 \times 6 \times \frac{3}{8} \sqrt{7} = 29.8$	M1 A1 (4)

	Notes	
(a)		
M1	Use of cosine rule to obtain a correct expression for $\cos(\angle B)$. The	
IVII	correct formula in either form may be used.	
M1	Use of cosine rule to obtain a second correct expression for $\cos(\angle B)$.	
	The correct formula in either form may be used.	
dM1	Dependant on previous M mark - for solving leading to $x^2 =$	
A1 cso	For obtaining the given result	
	Alternative	
M1	Use of cosine rule to obtain a correct expression for $cos(ADB)$. The	
	correct formula in either form may be used.	
M1	Use of cosine rule to obtain a correct expression for $cos(ADC)$. The	
	correct formula in either form may be used.	
dM1	Dependant on previous M mark - for solving leading to $4x^2 =$	
A1	For obtaining the given result	
(b)		
B1	For use of the cosine rule to find angle <i>B</i>	
M1	For $\cos^{-1}\left(\frac{10^2 + 8^2 - 12^2}{2 \times 10 \times 8}\right)$ oe	
	$ \begin{array}{c} 101 \text{ cos} \\ 2 \times 10 \times 8 \end{array} $	
M1	Use of $\frac{1}{2}ab\sin C$ (correct for their angle)	
	-	
A1	29.8 Alternative 1	
B1	For use of the cosine rule to find angle <i>ADB</i>	
D1	e e e e e e e e e e e e e e e e e e e	
M1	For $\cos^{-1}\left(\frac{11^2 - 64}{12 \times 11}\right)$ oe	
	(12×11)	
M1	Use of $\frac{1}{2}ab\sin C$ (correct for their angle)	
	2	
A1	29.8	
D1	Alternative 2 For use of the cosine rule to find cos <i>B</i>	
B1 M1	Use of $\sin^2 A + \cos^2 A = 1$	
1711	1	
M1	Use of $\frac{1}{2}ab\sin C$ (correct for their angle)	
A1	29.8	