Stat 150, Fall 2018, HW #8

This homework is not for marks or to be handed in.

- 1. Pinsky and Karlin [PK], Problems (not exercises):
 - 7.1.3 (see p349 for the definition of γ_t)
 - 7.3.1
 - 7.3.5
 - 7.4.1
 - 7.4.4
 - 7.4.5
- 2. Let $(N(t), t \geq 0)$ be a renewal process. Let $M(t) = \mathbb{E}N(t)$ denote the expected number of events observed by time t, and $F(x) = \mathbb{P}(X \leq x)$ the common CDF for the interarrival times $(X_i, i \geq 1)$ between events.
 - (a) Show that M and F satisfy the renewal equation

$$M(t) = F(t) + \int_0^t M(t - x)dF(x).$$

- (b) Suppose that $X_i \sim \text{Unif}(0,1)$. Show that $M(t) = e^t 1$ for $t \in [0,1]$. Hint: Let H(x) = M(t) + 1. Use the renewal equation to solve for H(x).
- (c) Let U_1, U_2, \ldots be IID Unif(0,1), and put $N = \min\{k \geq 1 : \sum_{i=1}^k U_i > 1\}$. Show that $\mathbb{E}N = e$.