

Business Analytics

Time Series Modeling

Any data which is captured over a period of time with equal interval!!

Interval could be:

- √ Yearly
- ✓ Monthly
- ✓ Weekly
- ✓ Daily
- ✓ Hourly

Time Series data..!! Call volumes of a BPO

ISO 9001 : 2000 Organisation	ISO 900	1:2000	Organisation
------------------------------	---------	--------	--------------

Day	Denoted by	Call Volume
10/25/2014	Yt	99,552
10/24/2014	Yt-1	113,014
10/23/2014	Yt-2	118,502
10/22/2014	Yt-3	119,437
10/21/2014		123,410
10/20/2014		129,368
10/19/2014		135,961
10/18/2014		131,698
2/23/2014	Yt-p	113,214

Time Series data trend!! - Plot the data

ISO 9001: 2000 Organisation

Call Volumes Data

Time Series data plot!! – Some more examples..

May-13

April-13

March-13

February-13

June-13

July-13

August-13

ISO 9001 : 2000 Organisation

December-12

November-12

May-14

April-14

March-14

February-14

January-1

June-14

August-14

September-14

October-14

September-13

October-13

Month

November-13

December-13

January-13

Time Series data plot!! – Some more examples..

ISO 9001 : 2000 Organisation

USA GDP

Time Series data plot!! – Some more examples..

Mobile cellular subscriptions (per 100 people)

Major phases of the technique..!!

ISO 9001: 2000 Organisation

-Try to understand the nature of the time series

 If it has any trend...if it has then how does it look like – upward, downward

If there is any seasonal pattern

-There are several techniques to model it

 Classified into two main categories: heuristic and proper statistical methods.

Box–Jenkins Approach

Box-Jenkins Approach

ISO 9001 : 2000 Organisation

-This is also popularly known as ARIMA

- AR-I-MA

-AR

-MA

___ |

AR

ISO 9001 : 2000 Organisation

#Auto-regressive – the current value of the series depends on the previous value

The auto-regressive process is denoted by AR(p)

Series denoted as

Yt, Yt-1, Yt-2, Yt-3, Yt-4, Yt-5, Yt-6, . . . Yt-k

AR(1)

Equation becomes: $Yt = a1*Yt-1 + \varepsilon t$

AR

AR(2)

Equation becomes : $Yt = a1*Yt-1 + a2*Yt-2 + \epsilon t$

AR(t)

Equation becomes:

$$Yt = a1*Yt-1 + a2*Yt-2 + a3*Yt-3 + + ap*Yt-p + \epsilon t$$

Suppose we get AR(1) as ... Yt = 1.50*Yt-1 + ϵ t

AR(2) - Forecast

 $Yt = 0.45*Yt-1 + 0.48*Yt-2+ \varepsilon t$

info@ivyproschool.com

Time Points

..........

 $Yt = 0.73*Yt-1 + \varepsilon t$

MA

ISO 9001: 2000 Organisation

The current deviation in the series depends upon the previous white noise or error or shock (that is, εt, εt-1, and so on).

MA series. εt , εt -1, εt -3, . . . , εt -k

Equation : Yt - μ = ϵt + $b1*\epsilon t$ -1

- b1 is the quantified impact of εt-1 on the current deviation
- µ is the mean of the overall series.
- Yt μ is the deviation at time t.

MA(2) the equation becomes:

Yt -
$$\mu$$
 = ϵt + $b1*\epsilon t$ -1+ $b2*\epsilon t$ -2

For MA(q) the equation would look like:

Yt -
$$\mu$$
 = ϵt + $b1*\epsilon t$ -1+ $b2*\epsilon t$ -2....+ $bq*\epsilon t$ -q

ARMA

ISO 9001: 2000 Organisation

ARMA(p,q) - orders of AR and MA respectively

- if Yt, Yt-1, Yt-2, Yt-3, Yt-4, Yt-5, Yt-6,
 , Yt-k are the values in the time series and
- εt, εt-1, εt-2, . . . , εt-k are the errors at time
- t, t-1, t-2, t-k, respectively,
- then an ARMA(1,1) series is written as follows:
- $Yt = a1*Yt-1 + \epsilon t + b1*\epsilon t-1$

ARMA(p,q)

- #An ARMA(2,1) series is written as follows:
- $Yt = a1*Yt-1 + a2*Yt-2 + \varepsilon t + b1*\varepsilon t-1$
- #ARMA(p,q)
- #Yt = a1*Yt-1 + a2*Yt-2 + a3*Yt-3 + + ap*Yt-p
 + εt + b1*εt-1+ b2*εt-2. + bq*εt-q
- #a1, a2, a3, ap are quantified impacts of Yt-1 ,Yt-2, Yt-p on Yt
- #b1, b2, bq are quantified impacts of εt-1 and εt-2 . . . εt-q on Yt.

ARMA(2,1)

• $Yt = 0.35^* Yt-1 + 0.45^* Y Yt-2 + \varepsilon t + 0.1^* \varepsilon t-1$

Have you ever experienced this??

- √ 1. Assume that patient is literate.
- ✓ 2. Based on some tests, identify nearsightedness or farsightedness and get a rough estimate of eyesight.
- ✓ 3. Estimate the exact eyesight by trying various lenses.
- √ 4. Use the test results to give the prescription.

Similar steps you follow for ARIMA

- ✓ Test whether the data is stationary
- ✓ Determine the order of AR and MA

✓ Use the the accuracy test to conclude the best model

✓ Forecast using the best model

What is stationary??

100 0001 : 2000 Organioano

 A time series is stationary if it doesn't have any trend or no systematic change in variance.

Non stationary series looks like...

Non-Stationary Time Series

Stationary series looks like...

Time

How to test whether a data is Stationary?

Augmented Dickey Fuller (ADF)

- H0: The series is not stationary.
- H1: The series is stationary.

 Low p value indicates that the data is stationary

If the data is not Stationary?

Differnce the data to make it stationary!!

• Order of difference is (d)

- Opposite of differnce is integration
- ARIMA (p,d,q)

Which method to apply? How to decide?

- AR detection
- ACF(1): Correlation at lag1 (ρ1) = Correlation between Yt and Yt-1

Which order to apply? How to decide?

ISO 9001 : 2000 Organisation

AR order detection

Which method to apply? How to decide?

ISO 9001 : 2000 Organisation

MA detection

Which method to apply? How to decide?

ISO 9001: 2000 Organisation

- MA detection
- With
- IACF is easy

Which order to apply? How to decide?

ISO 9001 : 2000 Organisation

MA order detection

Comparison between models..!!

- MAPE
- RMSE
- MAE
- MAD
- MASE
- Lowest value indicates better model..!!

What is this...what is the connection??

ISO 9001: 2000 Organisation

How to test if residuals have any information

PACF Residual

Visit Ivy's Blog for Career Tips, Latest Info, Job Alerts - www.ivyproschool.com/blog

Interact with us at -

twitter

Ivy Professional School

14 B | Camac Street | Kolkata – 17

www.ivyproschool.com | info@ivyproschool.com

T: 033 400 11221 | SMS: 9748 441111