# IBM - Capstone

# Factors behind local rental properties pricing in New York City

Santiago Rodrigues Manica 27<sup>th</sup>, June 2020

## Background

- Imagine you have the luck of owning real estate in New York City, which is available for renting.
- NYC was the 8<sup>th</sup> most visited city in 2019 https://edition.cnn.com/travel/article/most-visited-cities-euromonitor-2019/index.html
- There a high demand for accommodation.
- Hotels are especially expensive in the USA more are more tourist are looking for local and affordable accommodation.
- Renting to short-term tourism can bring higher revenues versus having income from a long-term tenant.

#### Problem

- A real estate investor may be a clueless owner trying to guess what factors may influence pricing.
- It may be, for example, due to the neighbourhood where the rental property is located, or may be affected by convenience factors

#### Interest

• In case you are a client curious about which factors may affect the price you could charge your guests, we will explore these data.



https://www.pexels.com/photo/person-holding-100-us-dollar-banknotes-2068975/

#### Methods

• City of interest for this project: New York City, NY, USA

#### Datasets of interest

- New York's AirBNBs (csv): <a href="https://www.kaggle.com/dgomonov/new-york-city-airbnb-open-data?select=AB\_NYC\_2019.csv">https://github-open-data?select=AB\_NYC\_2019.csv</a> a freely and publicly available dataset on Kaggle, which I stored as a csv file in my GitHub account. <a href="https://github.com/RM-Santiago/Coursera\_Capstone/blob/master/AB\_NYC\_2019.csv">https://github.com/RM-Santiago/Coursera\_Capstone/blob/master/AB\_NYC\_2019.csv</a>
- Foursaquare application programming interface (API):
   <a href="https://developer.foursquare.com/docs/places-api/">https://developer.foursquare.com/docs/places-api/</a> This API will be used to obtain the venues around the rental properties and will be useful for both exploratory data analysis (EDA) and inferential analysis.

1) Is the average price different between neighborhoods?

Using the **New York's AirBNBs dataframe** the mean and standard deviation of the price will be described across different neighborhoods and differences will be tested.

2) Is there an association between the average price and the neighborhood?

A simple linear regression will test the association between price (outcome/dependent variable) and the neighbourhood (categorical independent variable).

3) Is the average price different between the type of rental properties?

Using the **New York's AirBNBs dataframe** the mean and standard deviation of the price will be described across different types of accommodation (eg; whole apartment vs room only) and differences will be tested.

4) Is there an association between the average price and the type of rental properties?

A simple linear regression will test the association between price (outcome/dependent variable) and the type of rental property (categorical independent variable).

5) Considering the simultaneous effect of all candidate factors which may be associated with the price of a rental property?

Using the **New York's AirBNBs**, a multiple linear regression will test the association between price (outcome/dependent variable) and a set of dependent variables (neighborhood and type of rental property).

- In order to test differences of price in USD (continuous variable) between groups the following statistical tests may be used
  - Student's t-test; comparing two independent groups if prices have a normal distribution;
  - Wilcoxon-Mann Whitney test; comparing two independent groups if prices have a non-normal distribution;
  - Analysis of covariance (ANOVA); when comparing prices across more than 2 independent groups if prices have a normal distribution;
  - Kruskal Wallis; when comparing prices across more than 2 independent groups if prices have a non-normal distribution.

After importing all relevant packages and obtaining the dataset from

https://github.com/RM-

Santiago/Coursera\_Capstone/blob/master/AB\_NYC\_2019.csv\_.

There are 48,895 rental properties in New York.

| id            | name                                                | host_id | neighbourhood_group | neighbourhood | latitude | longitude | room_type          | price | minimum_nights | number_of_reviews | last_review | reviews_per_month | calculated_host_listings_count | availability_365 |
|---------------|-----------------------------------------------------|---------|---------------------|---------------|----------|-----------|--------------------|-------|----------------|-------------------|-------------|-------------------|--------------------------------|------------------|
| <b>0</b> 2539 | Clean & quiet apt home by the park                  | 2787    | Brooklyn            | Kensington    | 40.64749 | -73.97237 | Private room       | 149   | 1              | 9                 | 2018-10-19  | 0.21              | 6                              | 365              |
| 1 2595        | Skylit Midtown Castle                               | 2845    | Manhattan           | Midtown       | 40.75362 | -73.98377 | Entire<br>home/apt | 225   | 1              | 45                | 2019-05-21  | 0.38              | 2                              | 355              |
| <b>3</b> 3831 | Cozy Entire Floor of<br>Brownstone                  | 4869    | Brooklyn            | Clinton Hill  | 40.68514 | -73.95976 | Entire<br>home/apt | 89    | 1              | 270               | 2019-07-05  | 4.64              | 1                              | 194              |
| <b>4</b> 5022 | Entire Apt: Spacious<br>Studio/Loft by central park | 7192    | Manhattan           | East Harlem   | 40.79851 | -73.94399 | Entire<br>home/apt | 80    | 10             | 9                 | 2018-11-19  | 0.10              | 1                              | 0                |
| <b>5</b> 5099 | Large Cozy 1 BR Apartment<br>In Midtown East        | 7322    | Manhattan           | Murray Hill   | 40.74767 | -73.97500 | Entire<br>home/apt | 200   | 3              | 74                | 2019-06-22  | 0.59              | 1                              | 129              |

| id                             | 48895 |
|--------------------------------|-------|
| name                           | 48879 |
| host_id                        | 48895 |
| host_name                      | 48874 |
| neighbourhood_group            | 48895 |
| neighbourhood                  | 48895 |
| latitude                       | 48895 |
| longitude                      | 48895 |
| room_type                      | 48895 |
| price                          | 48895 |
| minimum_nights                 | 48895 |
| number_of_reviews              | 48895 |
| last_review                    | 38843 |
| reviews_per_month              | 38843 |
| calculated_host_listings_count | 48895 |
| availability_365               | 48895 |
| dtype: int64                   |       |
|                                |       |

We see here there are only 38,843 properties with a "last review" but 48,895 properties with a given "number of reviews".

This happens because some properties have 0 reviews. Since the name of the host is not relevant, it was dropped. Since we only want properties with a review, all these with a number of reviews equal to zero where dropped. We have here as relevant variables; the property name and id, its price per night, the number of reviews, the neighbourhood where its located and the type of property.

| id<br>name                                                                     | 38061<br>38055                                     | Now all number look the same.                                |
|--------------------------------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------------|
| host_id<br>neighbourhood_group<br>neighbourhood<br>latitude<br>longitude       | 38061<br>38061<br>38061<br>38061                   | In fact there are only 38,055 rental properties with a name. |
| room_type price minimum_nights number_of_reviews last_review reviews per month | 38061<br>38061<br>38061<br>38061<br>38061<br>38061 | However, since they all have an ID we won't worry about it.  |
| <pre>calculated_host_listings_count availability_365 dtype: int64</pre>        | 38061<br>38061                                     | Now, after integrating the API. Let's explore some data.     |

a

# How many properties are there in any major Neighborhood?

# What about a graphical version?

| Manhattan     | 16632 |
|---------------|-------|
| Brooklyn      | 16447 |
| Queens        | 4574  |
| Bronx         | 876   |
| Staten Island | 314   |



Let's take a look at the charts

First, New York, New York...



Let's take a look at the charts

And now with the Rental Properties



(sorry for the grey areas – too much info for my computer's memory)

Let's look at our variable of interest price, which is continuous (USD, \$).



- Even though data looks fairly normal there is a low % of outliers that push the price as high as \$10,000 USD a night. We can eliminate the <1% outliers (most probably luxury places) since we are busy dealing with the average tourist
- As we can see now we have something closer to a normal distribution with a shorter tail What if we repeat the process?
- After excluding the 1% outliers we end up with...



| id                             | 38061 |
|--------------------------------|-------|
| name                           | 38055 |
| host_id                        | 38061 |
| neighbourhood_group            | 38061 |
| neighbourhood                  | 38061 |
| latitude                       | 38061 |
| longitude                      | 38061 |
| room_type                      | 38061 |
| price                          | 38061 |
| minimum_nights                 | 38061 |
| number_of_reviews              | 38061 |
| last_review                    | 38061 |
| reviews_per_month              | 38061 |
| calculated_host_listings_count | 38061 |
| availability_365               | 38061 |
| dtype: int64                   |       |

Now we have only 38061 (from an initial 48843).

But it is a high number.

We are sacrificing some outliers in exchange of better **power** statistical techniques (assuming a normal distribution)

#### 1) Is the average price different between neighborhoods?

Table – Distribution of price across neighborhoods (in USD)

|                     | count   | mean       | std       | min  | 25%  | 50%   | 75%   | max   |
|---------------------|---------|------------|-----------|------|------|-------|-------|-------|
| neighbourhood_group |         |            |           |      |      |       |       |       |
| Bronx               | 873.0   | 77.570447  | 53.885156 | 0.0  | 45.0 | 64.0  | 93.0  | 450.0 |
| Brooklyn            | 16255.0 | 111.914303 | 71.910376 | 0.0  | 60.0 | 90.0  | 146.5 | 496.0 |
| Manhattan           | 16065.0 | 154.804606 | 86.553844 | 10.0 | 90.0 | 135.0 | 200.0 | 498.0 |
| Queens              | 4555.0  | 90.639737  | 59.711309 | 10.0 | 50.0 | 72.0  | 107.5 | 485.0 |
| Staten Island       | 313.0   | 88.255591  | 58.579323 | 13.0 | 50.0 | 75.0  | 105.0 | 429.0 |

ANOVA test: p<0.05

As we can see there is a difference in the average price across different neighborhoods, in increasing order; Bronx (78), Staten Island (88), Queens (60), Brooklyn (111), and Manhattan (155). With values in USD (\$). This difference is statistically relevant (p<0.05), after running an ANOVA test.

2) Is there an association between the average price an the

neighborhood?

Here we have to run a simple linear regression, using Price as dependent variable and type of Neighborhood as independent variable.

- Null hypothesis: There is no association between price and Neighborhood (p>0.05)
- Alternative hypothesis: There is an association between price and Neighborhood (p<0.05).</li>

|                                         | OLS        | Regres | ssion Ke  | SUITS       |         |             |        |
|-----------------------------------------|------------|--------|-----------|-------------|---------|-------------|--------|
| Dep. Variable:                          |            | price  | R-squ     | ared:       |         | 0.089       |        |
| Model:                                  |            | OLS    |           | R-squared:  |         | 0.089       |        |
| Method:                                 | Least S    |        |           |             |         | 2613.       |        |
| Date:                                   | Sun, 28 Ju | n 2020 | Prob      | (F-statist  | ic):    | 0.00        |        |
| Time:                                   | 15         | :19:50 | Log-L     | .ikelihood: |         | -1.5361e+05 |        |
| No. Observations:                       |            | 26642  | AIC:      |             |         | 3.072e+05   |        |
| Df Residuals:                           |            | 26640  | BIC:      |             |         | 3.072e+05   |        |
| Df Model:                               |            | 1      |           |             |         |             |        |
| Covariance Type:                        | non        | robust |           |             |         |             |        |
| ======================================= |            | ====== |           |             | ======= |             |        |
|                                         | coef       | std    | err       | t           | P> t    | [0.025      | 0.975] |
| const                                   | 30.4172    | 1.     | 938       | 15.693      | 0.000   | 26.618      | 34.216 |
| neighbourhood_index                     | 29.7635    | 0.     | 582       | 51.115      | 0.000   | 28.622      | 30.905 |
| Omnibus:                                | <br>71     | 68.860 | <br>Durbi | .n-Watson:  | ======= | 1.993       |        |
| Prob(Omnibus):                          |            | 0.000  |           | ie-Bera (ЈВ | ):      | 17850.226   |        |
| Skew:                                   |            | 1.485  |           | ,           | ,       | 0.00        |        |
| Kurtosis:                               |            |        | Cond.     | ,           |         | 14.8        |        |
| ======================================= |            | ====== | ======    | =======     | ======= | ========    |        |
| Warnings:                               |            |        |           |             |         |             |        |

#### Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

After running a simple linear regression, there is an association between Price and the neighbourhood where the rental property is located (p<0.05).

# 3) Is the average price different between whole apartments and rooms?

Table – Distribution of price across type of building (in USD)

|                 | count   | mean       | std       | min | 25%   | 50%   | 75%   | max   |
|-----------------|---------|------------|-----------|-----|-------|-------|-------|-------|
| room_type       |         |            |           |     |       |       |       |       |
| Entire home/apt | 19636.0 | 171.973009 | 81.009001 | 0.0 | 115.0 | 150.0 | 200.0 | 498.0 |
| Private room    | 17585.0 | 79.040034  | 44.244242 | 0.0 | 50.0  | 69.0  | 91.0  | 477.0 |
| Shared room     | 840.0   | 56.582143  | 40.481552 | 0.0 | 32.0  | 45.0  | 69.0  | 400.0 |

There average price of a rental property is different according to the room type; in increasing order; Shared room (57), Private room (79), and entire home/apartment (172). All prices are in USD (\$). There is an statistically relevant difference (p<0.05), after running the ANOVA test.

4) Is there an association between the average price and the type of apartment?

OLS Regression Results

Here we have to run a simple linear regression, using Price as dependent variable and type of rental prperty as independent variable.

- Null hypothesis: There is no association between price and type of rental property (p>0.05)
- Alternative hypothesis: There is an association between price and type of rental property (p<0.05)</li>

After running a simple linear regression, there is an association between Price and the rental property where the rental property is located (p<0.05).

|                                                                                                      |                                     | OLS Regres                                                                                                                                                   | sion Results                                         |                 |                                    |                                                   |
|------------------------------------------------------------------------------------------------------|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-----------------|------------------------------------|---------------------------------------------------|
| Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals: Df Model: Covariance Type: | Sun, 28                             | price R-squared: OLS Adj. R-squared: Least Squares F-statistic: Sun, 28 Jun 2020 Prob (F-statisti 15:21:48 Log-Likelihood: 26642 AIC: 26640 BIC: 1 nonrobust |                                                      | ::<br>atistic): | 1.30<br>-1.495<br>2.99             | 0.328<br>0.328<br>3e+04<br>0.00<br>5e+05<br>1e+05 |
|                                                                                                      | coef                                | std err                                                                                                                                                      | t                                                    | P> t            | [0.025                             | 0.975]                                            |
| const<br>room_type_index                                                                             | 169.8588<br>-85.4311                | 0.556<br>0.748                                                                                                                                               | 305.389<br>-114.151                                  | 0.000<br>0.000  | 168.769<br>-86.898                 | 170.949<br>-83.964                                |
| Omnibus: Prob(Omnibus): Skew: Kurtosis:                                                              | 8837.649<br>0.000<br>1.663<br>7.166 |                                                                                                                                                              | Durbin-Wats<br>Jarque-Bera<br>Prob(JB):<br>Cond. No. |                 | 1.981<br>31543.545<br>0.00<br>2.45 |                                                   |

#### Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

\*Rental property is a categorical variable with dummy levels (each type of rental property is a level).

5) Which of these factor is associated with the price when

considering all of them?

Here we have to run a multivariable linear regression, using Price as dependent variable and both neighborhood and type of rental property as independent variables.

| Dep. Variab                | р        | rice       | R-squa | ared:  |               | 0.379   |             |  |
|----------------------------|----------|------------|--------|--------|---------------|---------|-------------|--|
| Model:                     |          |            | OLS    | Adj. F | R-squared:    |         | 0.379       |  |
| Method:                    |          | Least Squ  | ares   | F-stat | tistic:       |         | 8128.       |  |
| Date:                      | S        | un, 28 Jun | 2020   | Prob   | (F-statistic  | ):      | 0.00        |  |
| Time:<br>No. Observations: |          | 15:2       | 2:02   | Log-Li | ikelihood:    |         | -1.4851e+05 |  |
|                            |          | 2          | 6642   | AIC:   |               |         | 2.970e+05   |  |
| Df Residual                | s:       | 2          | 6639   | BIC:   |               |         | 2.970e+05   |  |
| Df Model:                  |          |            | 2      |        |               |         |             |  |
| Covariance                 | Type:    | nonro      | bust   |        |               |         |             |  |
|                            |          |            |        |        |               |         |             |  |
|                            | coef     | std err    |        | t      | P> t          | [0.025  | 0.975]      |  |
| const                      | 94.6922  | 1.701      | 55     | .656   | 0.000         | 91.357  | 98.027      |  |
| x1                         | 22.5794  | 0.485      | 46     | .540   | 0.000         | 21.628  | 23.530      |  |
| x2                         | -80.9415 | 0.726      | -111   | .464   | 0.000         | -82.365 | -79.518     |  |
| Omnibus:                   |          | 9150       | .440   | Durbin | <br>n-Watson: |         | 1.980       |  |
| Prob(Omnibu                | s):      | 0          | .000   | Jarque | e-Bera (JB):  |         | 34853.520   |  |
| Skew:                      | •        | 1          | 1.699  |        | Prob(JB):     |         | 0.00        |  |
| Kurtosis:                  |          | 7          | 7.456  |        | Cond. No.     |         | 16.0        |  |

Warnings:

Here we can see that both neighborhood and type of rental property are important for the pricing of the rental property, with a p-value<0.05

<sup>[1]</sup> Standard Errors assume that the covariance matrix of the errors is correctly specified.

#### Discussion

- As we can see the local renting property business if a crowded market. However, it has an average return from \$78 to \$155, according to the neighbourhood, or between \$40 to \$172 according to the type of property.
- An investor can charge higher fees in a whole home/apartment in Manhattan.



https://www.pexels.com/photo/america-american-flag-architecture-bridge-450597/