1 Def: Tensor

Let M and N be two R-modules. Then exists an R-module denoted by $M\otimes_R N$ and a bilinear mapping

$$t: M \times N \to M \otimes_R N$$

having the following properties:

(1) For any R-module P and any bilinear mapping $s: M \times N \to P$. There exists a unique linear mapping $f_s: M \otimes_R N \to P$ such that $s = f_s \circ t$

(2) If T, t' is another couple that satisfies (1) with $s \mapsto g_s$ then there exists a unique isomorphism

$$T \cong M \otimes_R N$$

Let \mathcal{F} be the free R-module generated by $M \times N$

$$\mathcal{F} = \{ \sum_{finite} a_{ij}(m_i, n_i) : a_{ij} \in R, m_i \in M, n_i \in N \}$$

let G be the R-submodule generated by the elements of the following shape $m,m'\in M$ $n,n'\in N$ $\mathbf{z}\in R$

$$(m + m', n) - (m, n) - (m', n)$$

 $(m, n + n') - (m, n) - (m, n')$
 $(\imath m, n) - \imath (m, n)$
 $(m, \imath n) - \imath (m, n)$
 $M \otimes_R N := \mathcal{F}/\mathcal{G}$

2 Def

$$f_s(\mathcal{G} + (m,n)) := s(m,n)$$

Extend this mapping to linearity. This makes the diagram commutative. It's clearly the unique mapping

The *R*-module $M \otimes_R N$ constructed above is called the tensor product of M and N. An element of $M \otimes_R N$ is called tensor. We denote

$$t(m,n) := m \otimes n$$

and any elements of this form is called pure tensor.

4 Remark

Pure tensors generate $M \otimes_R N$. In particular any tensor can be written as sum of pure tensors.

5 tensor product and duality

5.1 product

Let V_1, \dots, V_n be vector spaces as above. Then

$$(V_1^{\vee} \otimes \cdots \otimes V_n^{\vee}) \cong (V_1 \otimes \cdots \otimes V_n)^{\vee}$$

5.2 duality

Let V and W be vector spaces of finite dimension. Then

$$\mathscr{L}(V,W) \cong V^{\vee} \otimes W^{\vee}$$

6 Def

We went to define the tensor product of linear mappings. let M_1, M_2, N_1, N_2 be R-modules and let $f_i: M_i \to N_i$ be linear mappings. Then we define

$$f_1 \otimes f_2 : M_1 \otimes M_2 \to N_1 \otimes N_2$$

 $m_1 \otimes m_2 \mapsto f_1(m_1) \otimes f_2(m_2)$

This is a linear mapping

$$\begin{array}{c|c} M_1 \times M_2 \xrightarrow{f_1 \times f_2} N_1 \times N_2 \\ \downarrow & \downarrow \\ M_1 \otimes M_2 \xrightarrow{f_1 \otimes f_2} N_1 \otimes N_2 \end{array}$$

7 Extension of scalars

Let $\varphi: R \to S$ be a commutative unitary ring homomorphism. Let M be a R-module. Goal is to give to M also a structure of S-module "conveyed by φ " Note that S has a structure of R-module $s \in S, \mathbf{z} \in R$

$$\mathbf{r}s := \varphi(\mathbf{r})s$$

Now take thw tensor product $M \otimes_R S$. Now we give a structure of S-module to $M \otimes_R S$.

Take $s \in S$

$$s(\underbrace{m \otimes s'}_{\in M \otimes_R S}) := m \otimes ss'$$

note that ss' is a multi in S and we cannot product sm.

Notice we've a mapping

$$i: M \to M \otimes_R S$$

 $m \mapsto m \otimes s$

Be careful, in general the mapping i is NOT injective.

8 Prop

Let $K \subseteq L$ be a field extension and let V be a K-vector space. Moreover let's denote $V_L = V \otimes_K L$. If $\{e_i\}_{i=1}^n$ is a basis of V then $\{e_i \otimes 1\}_{i=1}^n$ is a L-basis of $V_L \cdot (V_L)$ has the same dim of V)

9 Def

We denote

$$T_p^q := (V^{\vee})^{\otimes p} \otimes V^{\otimes q} \qquad p, q \in \mathbb{N}$$

$$= \underbrace{V^{\vee} \otimes \cdots \otimes V^{\vee}}_{p \text{ times}} \otimes \underbrace{V \otimes \cdots \otimes V}_{q \text{ times}}$$

An element of $T_p^q(V)$ is called a tensor of type (p,q) (or a mixed tensor which is p-covariant and q-contravariant)

Let's denote:

$$T(V) := \bigoplus_{q \in \mathbb{N}} T_0^q(V)$$

On T(V) we have following operation:

$$T_0^l(V) \times T_0^q(V) \to T_0^{l+q}(V)$$
$$((x_1 \otimes \dots \otimes x_l), (y_1 \otimes \dots \otimes y_q)) \mapsto x_1 \otimes \dots \otimes x_l \otimes y_1 \otimes \dots \otimes y_q$$

With this operation T(V) becomes a K-algebra. It called the tensor algebra associated to V

The quotient algebra

$$\bigwedge(V) := T(V) / \left\{ \sum_{i(finite)} (y_1 \otimes \cdots \otimes y_{m_i}) \otimes (x_i \otimes x_i) \otimes (z_1 \otimes \cdots \otimes z_{n_i}) \right\}$$

is a K-algebra, which called the exterior algebra of V

$$\pi: T(V) \longrightarrow \bigwedge(V)$$

$$x_1 \otimes \cdots \otimes x_n \mapsto x_1 \wedge \cdots \wedge x_n$$

11 Notation

$$\bigwedge(V) = \bigoplus_{n \in \mathbb{N}} \bigwedge^n(V)$$

$$\bigwedge^n(V) := T_0^n(V)/(W \cap T_0^n(V))$$

this is called *n*-fold exterior product

12 Prop

FIx a vct space V. For any alternating multi-linear mapping

$$s: \underbrace{V \times \cdots \times V}_{n \text{ times}} \to W$$

when W is another vct space, there exists a unique linear mapping

$$g_s: \bigwedge^n(V) \to W$$

such that the following diagram commutes

13 Prop

Let V be a vct space of dimension n with a basis $\{e_1, \dots, e_n\}$. Then $\bigwedge^k(V)$ is a vct space with a basis given by

$$\mathcal{B} = \{ e_{i_1} \wedge \dots \wedge e_{i_k} | 1 \le i_1 < \dots < i_k \le n \}$$

In particular, $\bigwedge^k(V)$ has dimension $\binom{n}{k}$

14 Def

Let V be a vct space of dimension n, then

$$\det(V) = \bigwedge^{n}(V)$$

is called the determinant of V. It is a vct space of dimension $1 = \binom{n}{n}$ and a basis is given by

$$e_1 \wedge \cdots \wedge e_n$$

when $\{e_1, \dots, e_n\}$ is a basis of V.

15 Def

$$g_{\widetilde{f}} = \bigwedge^{k} f : \bigwedge^{k}(V) \longrightarrow \bigwedge^{k}(V)$$
$$v_{1} \wedge \dots \wedge v_{k} \mapsto f(v_{1}) \wedge \dots \wedge f(v_{n})$$

16 Def

Let $F:V\to V$ be a linear mapping. A subspace $V_0\subseteq V$ is said to be an invariant subspace of F is $F(V_0)\subseteq V_0$

17 Def

A linear mapping $f:V\to V$ (finite dim) is diagonalizable if the following equivalent conditions are satisfied

- 1 V decomposes as a direct sum of one-dimensional invariant subspace of f
- 2 There exists a basis of V, in which the matrix A_f is diagonal.

V a vector space over K $dim(V) = n, f \in \mathcal{L}(V; V)$ let A_f be an associated matrix (in any basis) the mapping

$$P: K \to K$$
$$t \mapsto \det(tI_n - A_f)$$

This is a polynomial in K[t] (with degree n)

19 Def

Let
$$a_0 + a_1t + \dots + a_nt^n = Q(t) \in K[t]$$
, then for $f \in \mathcal{L}(V; V)$ we define
$$Q(f) := a_0id_V + a_1f + a_2f^{\circ 2} + \dots + a_nf^{\circ n}$$

Remark From now on we write

$$f^{\circ k} = f^k$$

these are operations in $\mathcal{L}(V;V),+,\circ$ we say that Q annihilates f if Q(f)=0

20 Prop

Let $f \in \mathcal{L}(V; V)$. There exists a polynomial $Q \in K[t] \setminus \{0\}$ that annihilates f (i.e. Q(f) = 0)

Remark

The proof of this proposition also gives the degree of a polynomial that annihilates ($\leq n^2$)

21 Def

Let $m(t) \in K[t] \setminus \{0\}$ be a monic polynomial of minimal degree that annihilates $f \in \mathcal{L}(V; V)$. Then m(t) is called minimal polynomial of f And by propabove (20), m(t) exists.

22 Prop

If m(t) is minimal polynomial of f, then m(t) is unique.

23 Prop

Let $Q \in K[t] \setminus \{0\}$ be a polynomial that annihilates f. Then $m_f \mid Q$

24 Theorem: Cayley-Hamilton Theorem

The characteristic polynomial \mathcal{P}_f annihilates f

25 Theorem

Let $f \in \mathcal{L}(V;V)$ when V is a vector space of dim n, over an algebraically closed field.

Then

- (1) f can be represented by a Jordan matrix
- (2) This above matrix is unique up to permutation of the Jordan blocks

26 Def

Let $f \in \mathcal{L}(V; V)$ and let $\lambda \in K$. A vector $w \in V \setminus \{0\}$ is called a root vector of f corresponding to λ , if there exists $z \in \mathbb{N}$ s.t.

$$(f - \lambda i d_V)^{\mathfrak{r}}(w) = 0$$

Remark

Eigenvector are root vectors (corresponding to their eigenvalues) take z = 1

Remark

Let $J_{\mathfrak{r}}(\lambda)$ be a Jordan block. Then any $\sigma \in V$ is a root vector of f corresponding to λ . In fact:

$$(J_{\mathbf{r}}(\lambda) - \lambda I_n)^m = 0$$
 if $m \ge \mathbf{r}$

27 Prop

Let K be an algebraically closed field. Let $\lambda_1, \dots, \lambda_k$ be all of distinct eigenvalues of $f(k \ge 1)$, then

$$V = \bigoplus_{i=1}^{k} V(\lambda_i)$$

28 Def

Let $f \in \mathcal{L}(V;V)$. Then f is said to be nilpotent if there exists $t \in \mathbb{N}$ that $f^t = 0$

29 Lemma

Let f be a nilpotent mapping, then $Ker(f) \neq \{0\}$

Proof

Let z be the minimal integer s.t. $f^z = 0$ then

$$f^{i-1}(V) \subseteq Ker(f)$$

but $f^{i-1}(V) \neq \{0\}$ because of the minimality of i

30 Theorem

Let $f \in \mathcal{L}(V; V)$ be a nilpotent mapping, then there exists a Jordan basis for f that gives a Jordan matrix made of blocks of the type $J_{\mathfrak{c}}(0)$

31 Theorem

Let K be an algebraically closed field. Let $f \in \mathcal{L}(V)$. Then f admits a Jordan basis (namely there exists a basis s.t. A_f is a Jordan matrix).

32 Def

Let λ be an eigenvalue of $f \in \mathcal{L}(V)$

$$E(\lambda) := \ker(f - \lambda Id)$$

This $E(\lambda)$ is called the eigenspace of λ

$$mult(\lambda)_{qeo} = dim(E(\lambda))$$

is called the geometric multiplicity of λ

Moreover

$$mult(\lambda)_{alg} = \max \{k \in \mathbb{N} | (t - \lambda)^k | P_f(t) \}$$

is called the algebraic multiplicity of λ

33 Prop

Let K be algebraically closed. Then $\forall \lambda$ eigenvalues of f

$$mult(\lambda)_{qeo} \leq mult(\lambda)_{alg}$$

34 Corollary

Let K be an algebraically closed field. Let $f \in \mathcal{L}(V)$. f is diagonalizable iff

$$\forall \lambda_i \quad mult(\lambda_i)_{geo} = mult(\lambda_i)_{alg}$$

35 Def

Two matrices $G, G' \in M_{n \times n}(K)$ are said conjugate if $\exists A \in \mathcal{Q}_{n \times n}(K)$ s.t. $G = G'^T$

36 Def

Let $p \in \mathbb{R}^n$ be a fixed point

$$\mathbb{R}_p^n := \{p\} \times \mathbb{R}^n$$

 $(p,a) \in \mathbb{R}_p^n, a \in \mathbb{R}^n$

$$(p, a) + (p, b) = (p, a + b)$$

 $\alpha(p, a) = (p, \alpha a) \ \alpha \in \mathbb{R}$

With these operation \mathbb{R}_p^n is a vector space, which is called the tangent space of \mathbb{R}^n at p.

The dual space is

$$(\mathbb{R}_p^n)^{\vee} = \{p\} \times (\mathbb{R}_p^n)^{\vee}$$

A basis of \mathbb{R}_p^n is denoted by

$$(e_1\mid_p,\cdots,e_n\mid_p)$$

 $\bigsqcup_p \mathbb{R}_p^n$ is called the tangent bundle of \mathbb{R}^n

36.1 Notation

$$a\mid_{p}:=(p,a)$$

37 Def

Let $p \in \mathbb{R}^n$ be a fixed point

$$\mathbb{R}_p^n := \{p\} \times \mathbb{R}^n$$

$$(p,a) \in \mathbb{R}_p^n, a \in \mathbb{R}^n$$

$$(p, a) + (p, b) = (p, a + b)$$

$$\alpha(p, a) = (p, \alpha a) \ \alpha \in \mathbb{R}$$

With these operation \mathbb{R}_p^n is a vector space, which is called the tangent space of \mathbb{R}^n at p.

The dual space is

$$(\mathbb{R}_p^n)^{\vee} = \{p\} \times (\mathbb{R}_p^n)^{\vee}$$

A basis of \mathbb{R}_p^n is denoted by

$$(e_1\mid_p,\cdots,e_n\mid_p)$$

 $\bigsqcup \mathbb{R}_p^n$ is called the tangent bundle of \mathbb{R}^n

We have a projection mapping:

$$\bigsqcup_{p} \mathbb{R}_{p}^{n} \stackrel{\pi}{\to} \mathbb{R}_{p}^{n}$$

$$(p, a) \mapsto p$$

and

$$\mathbb{R}^n \times \mathbb{R}^n \cong \bigsqcup_p \mathbb{R}^n_p$$
$$(p, a) \longleftrightarrow (p, a)$$

Take $\{e_1 \mid_p, \cdots, e_n \mid_p\}$ as a basis of \mathbb{R}_p^n . The dual basis is denoted by

$$\{dx_1 \mid_p, \cdots, dx_n \mid_p\} = \{(e_1 \mid_p)^{\vee}, \cdots, (e_n \mid_p)^{\vee}\} \in (\mathbb{R}_p^n)^{\vee}$$

$$dx_i \mid_p : \mathbb{R}_p^n \qquad \to \mathbb{R}$$

$$v = (\sum \alpha_i e_i \mid_p) \quad \mapsto \alpha_i$$

$$\frac{\partial x_i}{\partial x_j} = dx_i \mid_p (e_j \mid_p) = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$$

Recalled the wedge algebra:

$$\bigwedge (\mathbb{R}_p^n)^{\vee} := T(\mathbb{R}_p^n)^{\vee} / I = \bigoplus_{k \in \mathbb{N}} \bigwedge^k (\mathbb{R}_p^n)^{\vee}$$

Consider

$$\bigwedge^k(\mathbb{R}_p^n)^\vee$$

what's a basis of this vector space?

$$\left\{ dx_1 \mid_p \wedge \dots \wedge dx_k \mid_p \left| 1 \le i_1 < \dots < i_k \le n \right. \right\}$$

and

$$\dim(\bigwedge^{k}(\mathbb{R}_{p}^{n})^{\vee}) = \binom{n}{k}$$

Proved.

38 Do Carmo Differential forms

39 Def

An exterior k-form in \mathbb{R}^n is a mapping:

$$\omega : \mathbb{R}^n \longrightarrow \bigsqcup_{p} \bigwedge^{k} (\mathbb{R}^n_p)^{\vee}$$
$$p \longmapsto \omega(p)$$

that's a section of the projection π

$$(\pi \circ \omega = id_{\mathbb{R}}) = (\omega(p) \in \bigwedge^{k} (\mathbb{R}_{p}^{n})^{\vee})$$

$$\omega(p) = \sum_{1 \le i_1 < \dots < i_k \le n} a_{i_1, \dots, i_k}(p) dx_{i_1} \mid_p \wedge \dots \wedge dx_{i_k} \mid_p \in \bigwedge^k(\mathbb{R}_p^n)^\vee$$

Note that

$$\bigsqcup_{p} \bigwedge^{k} (\mathbb{R}_{p}^{n})^{\vee} \xrightarrow{\pi} \mathbb{R}^{n}$$

$$f|_{p} \mapsto p$$

$$\omega \leftrightarrow \{a_{i_{1}}, \cdots, a_{i_{k}}\}$$

if all a_{i_j} are of class $C^m(\mathbb{R})$ the ω is called a C^m -differential k-form. If $m=+\infty$ omega is called a smooth k-form.

40 Notation

$$\omega = \sum_{I} a_{I} dx_{I}$$

where $I = (i_1, \dots, i_k)$

41 Notation

When k=0 a 0-form of class C^m -differential 0-form is $f \in C^m(\mathbb{R}^n)$

$$C^m(\mathbb{R}^n) = \{ f : \mathbb{R}^n \to \mathbb{R} \text{ of class } C^m \}$$

42 Notation

$$\Omega^k_{(m)}(\mathbb{R}^n) := \{ \text{set of } C^m\text{-diff } k\text{-forms} \}$$

$$\Omega^0_{(m)}(\mathbb{R}^n) = C^m(\mathbb{R}^n)$$

m could be omitted if no confusion.

43 Def

Now we have

$$\Omega(\mathbb{R}^n) = \bigoplus_{k \in \mathbb{N}} \Omega^k(\mathbb{R}^n)$$

a \mathbb{R} -algebra with the \wedge -product And it's also a $\Omega^0(\mathbb{R}^n)$ module and $\Omega^0(\mathbb{R}^n)$ -algebra

44 Def: Pullback of forms

Let $f: \mathbb{R}^n \to \mathbb{R}^m$ be a mapping of C^{ϵ} , then it induces a mapping

$$f^*: \Omega^k_{(\imath)}(\mathbb{R}^m) \to \Omega^k_{(\imath)}(\mathbb{R}^n)$$
$$\omega \mapsto f^*\omega$$

and

$$f^*(\omega)(p)(v_1,\dots,v_k) = \omega(f(p))(df|_p(v_1),\dots,df|_p(v_k))$$

recalling

$$df \mid_{p} : \mathbb{R}_{p}^{n} \to \mathbb{R}_{f(p)}^{m} \Rightarrow df \mid_{p} (v_{i}) \in \mathbb{R}_{f(p)}^{n}$$

45 Remark

$$f\in\Omega^0(\mathbb{R}^n), \omega\in\Omega^k(\mathbb{R}^n)$$

$$f\wedge\omega=f\omega$$

46 Prop

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a differentiable mapping. Then

(1) for any two forms in \mathbb{R}^m

$$f^*(\omega \wedge \eta) = (f^*\omega) \wedge (f^*(\eta))$$

(2) for $g: \mathbb{R}^p \to \mathbb{R}^n$ differentiable

$$(f \circ g)^* \omega = g^*(f^* \omega)$$

47 Def: Path integral

Let γ and ω be as above.

$$\int_{\gamma} \omega := \sum_{i} \int_{t_{k}}^{t_{k+1}} \gamma_{j}^{*} \omega$$

this is the integral of ω along the parametric curve γ with

$$\gamma = t \mapsto (x_1(t), \cdots, x_n(t))$$

where $x_i(t) = \frac{\mathrm{d}x_i}{\mathrm{d}t}$

48 $Def(\sigma\text{-finite})$

Let (X, Σ_X, μ) be a measure space. WE say that it's σ -finite if there exists a sequence $\{E_n\}_{n\in\mathbb{N}}$ of measurable sets. (namely $E_n\in\Sigma_X$) such that

$$X = \bigcup_{n \in \mathbb{N}} E_n$$
 and $\mu(E_n) < +\infty, \forall n \in \mathbb{N}$

49 Notation

Take sets $A \subseteq X \times Y$ For $x \in X$, we define

$$A_x := \{ u \in Y \mid (x, y) \in A \}$$

called a **vertical section** of A or x-fiber of A

For $y \in Y$ we define

$$A_y := \{ x \in X \mid (x, y) \in A \}$$

called a **horizontal section** of A, or y-fiber of A

50 Def

Let X be a set. then $\mathscr{D} \subseteq \wp(X)$ is a **Dynkin system** if

- $X \in \mathscr{D}$ and $\varnothing \in \mathscr{D}$
- $\bullet \ \forall D \in \mathscr{D} \quad X \setminus D \in \mathscr{D}$
- If $\{D_n\}_{n\in\mathbb{N}}$ is a sequence in \mathscr{D} of pairwise disjoint sets, then

$$\bigsqcup_{n\in\mathbb{N}} D_n \in \mathscr{D}$$

Remark

A σ -algebra is a Dynkin system

51 Def

Let $(\mathcal{G} \subseteq \wp(X))$ then $\delta(\mathcal{G}) \subseteq \wp(X)$ is called the Dynkin system generated by \mathcal{G} if

- $\mathcal{G} \subseteq \delta(\mathcal{G})$
- If $\mathscr D$ is a Dynkin system containing $\mathscr G$, then $\delta(\mathscr G)\subseteq\mathscr D$

52 Prop

If $\mathcal D$ is a Dynkin system closed under the intersection, then it's a σ -algebra, namely

$$\forall (D, E) \in \mathcal{D}^2, D \cap E \in \mathcal{D} \Rightarrow \forall \{D_n\}_{n \in \mathbb{N}} \in \mathcal{D}^{\mathbb{N}} \quad \bigcup_{n \in \mathbb{N}} D_n \in \mathcal{D}$$

53 Prop

Let X be a set and let $\mathcal{G} \subseteq \wp(X)$. Assume that \mathcal{G} is closed under the finite intersection. Then

$$\delta(\mathcal{G})\subseteq\sigma(\mathcal{G})$$

54 Theorem

Let (X, Σ_X, μ) and (Y, Σ_Y, ν) be σ -finite measure spaces. Then $\forall E \in \Sigma_X \otimes \Sigma_Y$, the functions

$$f_E : X \to \mathbb{R} \cup \{+\infty\}$$

$$x \mapsto \nu(E_x)$$

$$g_E : Y \to \mathbb{R} \cup \{+\infty\}$$

$$y \mapsto \mu(E_y)$$

are respectively Σ_X -measurable and Σ_Y -measurable

55 Theorem

Let (X, Σ_X, μ) and (Y, Σ_Y, ν) be σ -finite measure spaces. There exists a unique σ -finite measure $\mu \times \nu$ on $(X \times Y, \Sigma_X \otimes \Sigma_Y)$ such that

$$\mu \times \nu(S_1 \times S_2) = \mu(S_1)\nu(S_2) \quad \forall (S_1, S_2) \in \Sigma_X \times \Sigma_Y$$

and moreover, we have

$$(\mu \times \nu)(E) = \int_X f_E d\mu = \int_Y g_E d\nu$$

56 Def: Push-forward measure

Let (X, Σ_X, μ) be a measure space, and let (Y, Σ_Y) be a measurable space. If $f: X \to Y$ is a measurable function, then define:

$$f_{*\mu}(E) = \mu(f^{-1}(E)) \quad \forall E \in \Sigma^Y$$

This is a measure on Y, called the push forward of μ through f

57 Fubini-Tobelli Theorem

Let (X, Σ_X, μ) and (Y, Σ_Y, ν) be two σ -finite measure spaces. Let $(X \times Y, \Sigma_X \otimes \Sigma_Y, \mu \times \nu)$ be the product space. Let $f: X \times Y \to \mathbb{R} \cup \{-\infty, +\infty\}$ be a measurable function. Then

$$\int_{X \times Y} |f| \, \mathrm{d}(\mu \times \nu) = \int_X (\int_Y |f(x, y)| \, \mathrm{d}\nu(y)) \mathrm{d}\mu(x)$$
$$= \int_X (\int_Y |f(x, y)| \, \mathrm{d}\nu(y)) \mathrm{d}\mu(x)$$

58 Notation

For any mapping $\gamma: [a,b] \to U$

- γ is called a closed curve if $\gamma(a) = \gamma(b)$ and γ is a curve
- γ is called a path if γ is of class C^0
- γ is called a loop if γ is a closed path

59 Def: Lebesgue number

Let (X, ρ) be a metric space and $\mathcal{U} = \{U_i\}$ be an open covering X. A **Lebesgue number** $\delta = \delta_{\mathcal{U}}$ (of the open covering \mathcal{U}) is a non-negative number that:

If $Z \subseteq X$ is a subset with $diam(Z) < \delta$, then $Z \subseteq U_j$ for some $U_j \in \mathcal{U}$

Remark

- $\delta' < \delta$ is also a Lebesgue number
- In principle, a Lebesgue number δ can be 0

60 Lemma

If X is compact, then for any open covering there exists a positive Lebesgue number.

61 Theorem(homotopy invariance of the integrals)

Ler ω be a closed form on an open set U. Let γ_0, γ_1 be homotopy paths in U, then

$$\int_{\gamma_0} \omega = \int_{\gamma_1} \omega$$

62 Def: Free Homotopy

Let $\gamma_0, \gamma_1 : [a, b] \to U$ be two loops (namely $\gamma(a) = \gamma(b)$) A **free homotopy** between γ_0 and γ_1 is a continuous mapping:

$$\begin{split} H: & [a,b] \times [0,1] & \to U \\ & (s,t) & \mapsto & H(s,t) \end{split}$$

such that

•

$$H(\cdot,0) = \gamma_0 \quad H(\cdot,1) = \gamma_1$$

• For any fixed t_0

$$H(\cdot,t_0)$$

is a loop

63 Notation

A path $\gamma:[a,b]\to I$ is said simple if $\gamma|_{a,b}$ is injective (No self-cross this is)

64 Jordan Theorem

Let γ be a simple loop $\gamma:[a,b]\to U$, then $\mathbb{R}^2\setminus\gamma([a,b])$ consists exactly of two connected components. One of this is bounded (interior), the other one unbounded (exterior). Moreover $\gamma([a,b])$ is the boundary of two components.

Let $c:[a,b]\to S^1$ be a closed curve. Let φ be the angular function of c. We define the winding number of c as:

$$n(c) = \frac{1}{2\pi}(\varphi(b) - \varphi(a))$$

Since c us a closed curve, $n(c) \in \mathbb{Z}$

66 Def

Let $\gamma:[a,b]\to\mathbb{R}^2\setminus\{p\}$ be a closed curve. $(\gamma_p+\rho(t)c(t))$, when $c(t)\in S^1$

$$\gamma(t) = p + \rho(t)(\cos(\theta(t)) + \sin(\theta(t)))$$

Then we define the winding number of γ at p

$$n_p(\gamma) := n(c)$$

67 Prop

Let $\gamma = p + \rho(t)c(t)$ be a closed curve $\gamma : [a, b] \to \mathbb{R}^2 \setminus \{p\}$ then

$$n_p(\gamma) = \frac{1}{2\pi i} \int_C \omega_0$$

where

$$\omega_0 = -\frac{y}{x^2 + y^2} dx + \frac{x}{x^2 + y^2} dy$$

68 Prop

Let $\gamma_0,\gamma_1:[0,b]\to\mathbb{R}^2\setminus\{p\}$ be two closed curves. Then they're freely homotopic iff

$$n_p(\gamma_0) = n_p(\gamma_1)$$

69 Def

Let $F:U\subseteq\mathbb{R}^2\to\mathbb{R}^2$ be a differential mapping. We say that $p\in U$ is a zero of F if F(p)=0. If then exists a neighborhood V of p such that V contains no zero of F other then p, then p is called isolated zero.

If p is a zero of F and dF $|_p$ is non singular at p, then we say that p is a simple zero.

The index of F in D, is defined as

$$n(F,D) := \frac{1}{2\pi} \int_C \theta$$

See that $\theta = F^*\omega_0$, $\omega_0 = \frac{-y\mathrm{d}x + x\mathrm{d}y}{x^2 + y^2}$

$$n(F, D) = \frac{1}{2\pi} \int_{C} \theta$$

$$= \frac{1}{2\pi} \int_{C} F^* \omega_0$$

$$= \frac{1}{2\pi} \int_{F_0} \omega_0$$

$$= (\text{winding number of } F \circ C \text{ at the center of } FD)$$

71 Remark

$$n(F,D) = \frac{1}{2\pi} \int_C \theta = \frac{1}{2\pi} \int_{F \circ C} \omega_0$$

72 Prop

If $n(F, D) \neq 0$ then $\exists q \in D$ s.t. F(q) = 0

73 Def

A simple zero p of F is said **positive** if $\det(d_p F) > 0$, otherwise is said **negative** ?(what's =0?)

74 Kronecker Index Theorem

Assume that $F;U\subseteq\mathbb{R}^2\to\mathbb{R}^2$ has only finite simple zeros in a disk $D\subseteq U$ and none of them in ∂D . Then

$$n(F, D) = P - N$$

where P is the number of positive simple zeros and N is the number of negative simple zeros.

Let $\mathcal{P} = \{t = t_a, t_1, \cdots, t_n = b\}, p_i = \gamma(t_i)$

$$l_{\mathscr{P}}(\gamma) = \sum_{i=0}^{n} \|p_{i+1} - p_i\|$$

The length of γ is

$$l(\gamma) := \sup_{p} \{l_p(\gamma)\}$$

If $l(\gamma) < +\infty$, then path γ is said rectifiable.

76 Prop

Let $\gamma:[a,b]\to\mathbb{R}^n$ be of class C^1 , then γ is rectifiable and

$$l(\gamma) = \int_a^b \|\gamma'(t)\| \, \mathrm{d}t$$

moreover $l(\gamma)$ doesn't depend on the parametrization of γ

77 Corollary(exercise)

If γ is a curve (piecewise C^1), then γ is rectifiable and the length is the sum of the length of it's C^1 pieces.

78 Def

A C^1 -curve is **regular** if $\gamma'(t) \neq 0$ for any $t \in [a, b]$ A piecewise C^1 -path (curve) is regular if all its pieces are regular

79 Def

$$N := \frac{T}{\|T\|}$$

is **normal vector** of T

80 Def

Let $\gamma:[a,b]\to\mathbb{R}^n$ a C^1 curve; Let l be the length of γ (by theorem proved $l(\gamma)<+\infty$) Let's define the following function:

$$s(t) := \int_a^t \|\gamma'(t)\| \, \mathrm{d}u$$

s(t) is the length of $\gamma \mid_{[a,t]}$ THe function $\|\gamma'(u)\|$ iss continuous, hence

$$s'(t) = \|\gamma'(t)\|$$

Now assume that γ is C^1 and $\mathbf{regucar}(\gamma'(t) \neq 0, \forall t \in [a, b])$, then s'(t) > 0So $s: [a, b] \to [0, l]$ is a C^1 -differmorphism, the inverse is

$$t:[0,l]\to[a,b]$$

$$\frac{\mathrm{d}t}{\mathrm{d}s} = frac1 \|\gamma'(t)\|$$

We reparameterize γ with t and get

$$\tilde{\gamma}(s) = (\gamma \circ t)(s)$$

 $\tilde{\gamma}:[0,l]\to\mathbb{R}^n$ we say that $\tilde{\gamma}$ is the reparameterization of γ with respect to its curvilinear coordinate s(t)

81 Def

 $f: U \subseteq \mathbb{R}^n \to \mathbb{R}^n$ f is a $C^{(k)}$ -differ if

- f is of class $C^{(k)}$
- f is bijection, and the inverse is $C^{(k)}$

82 Def

In general

$$\gamma:[a,b]\to\mathbb{R}^n\leadsto\tilde{\gamma}:[0,l]\to\mathbb{R}^n$$

regular and C^1

$$\frac{\mathrm{d}\tilde{\gamma}}{\mathrm{d}s} = \frac{\mathrm{d}\gamma}{\mathrm{d}t} \frac{\mathrm{d}t}{\mathrm{d}s} = \frac{\gamma'(t)}{\|\gamma'(t)\|}$$

$$\left\| \frac{\mathrm{d}\tilde{\gamma}}{\mathrm{d}s} \right\| = 1$$

$$T(t) := \frac{\mathrm{d}\tilde{\gamma}}{\mathrm{d}s} = \frac{\gamma'(t)}{\|\gamma'(t)\|}$$

tangent: (vector) \rightarrow vector of norm 1

$$0 = \frac{\mathrm{d}}{\mathrm{d}t} \left\| T(t) \right\|^2 = \frac{\mathrm{d}}{\mathrm{d}t} \left\langle T(t), T(t) \right\rangle = 2 \left\langle T(t), T'(t) \right\rangle \Leftrightarrow T'(t) \perp T(t)$$

use the fact that in \mathbb{R}^n , $u, v : \mathbb{R} \to \mathbb{R}^n$ differentiable

$$\frac{\mathrm{d}}{\mathrm{d}t} \langle u(t), v(t) \rangle = \left\langle \frac{\mathrm{d}u}{\mathrm{d}t}, v(t) \right\rangle + \left\langle u(t), \frac{\mathrm{d}v}{\mathrm{d}t} \right\rangle$$

then

$$\frac{\mathrm{d}^2 \tilde{\gamma}}{\mathrm{d}s^2} = \frac{\mathrm{d}}{\mathrm{d}s} (\frac{\mathrm{d}\tilde{\gamma}}{\mathrm{d}s})$$

$$= \frac{\mathrm{d}}{\mathrm{d}s} (T(t))$$

$$= \frac{\mathrm{d}T}{\mathrm{d}t} \frac{\mathrm{d}t}{\mathrm{d}s}$$

$$= \frac{T'(t)}{\|\gamma'(t)\|}$$

 $N(t)=\frac{\mathrm{d}^2\tilde{\gamma}}{\mathrm{d}s^2}/\left\|\frac{\mathrm{d}^2\tilde{\gamma}}{\mathrm{d}s^2}\right\|$. If n=2 Along the curve we have a 'moving' canonical basis of

$$\begin{split} \mathbb{R}^2_{\gamma(t)} = & \{ T(t), N(t) \} \\ = & \{ \alpha T(t) + \beta N(t) \mid \alpha, \beta \in \mathbb{R} \} \end{split}$$

 $\{T(t), N(t)\}$ is a orthonormal basis of $\mathbb{R}^2_{\gamma(t)}$

83 Def:isometry

$$(V,g) \stackrel{f}{\rightarrow} (W,g')$$

a morphism f of vector space with inner product is **isometry** if

$$g(x,y) = g'(f(x), f(y))$$

84 Def:isometric

 $V \stackrel{\cong}{\to} W$ up to isomorphism.

Then (V, g) and (W, g') are **isometric** if there are two isometry

$$f: (V,g) \to (W,g')$$

 $f': (W,g') \to (V,g)$

such that

$$f \circ f' = f' \circ f = Id$$

85 Def: Semilinear

If V and W are two complex vector sapce, then a **semilinear mapping** is a mapping $f:V\to W$ such that

- $f(v_1 + v_2) = f(v_1) + f(v_2)$
- $f(\alpha v) = \alpha * f(v) = \overline{\alpha}f(v)$

So a semilinear mapping is a linear mapping: $f: V \to W$

For sesquilinear forms, the theory is similar to the theory of bilinear forms.

$$g \rightsquigarrow G(\text{fix a basis}) \quad g(x, y) = xG\overline{y}$$

If you change basis, then the Gram matrix changes in the following way:

$$G \leadsto A^T G \overline{A}$$

If g is bilinear

$$g \leadsto \tilde{g}: V \to V^{\vee}$$

and

$$g \leadsto \tilde{g}: V \to \overline{V^\vee}$$

linear if g is sesquilinear $(\tilde{g}: V \to V^{\vee}$ is semilinear)

86 Def

A sesquilinear form $g:V\times \overline{V}\to K$ is **hermitian** if

$$g(x,y) = \overline{g(y,x)}$$

And note that inner product is any of symmetric symplectic or hermitian.