${\it Class 11-Chemistry-JEE-Mains-Formulas}$

October 18, 2025

Chapter	Concept	Formula / Key Point
Some Basic Concepts of Chemistry	Mole Concept	1 mole = 6.022×10^{23} particles (Avogadro's Number)
	Molar Mass	Molar mass $(g/mol) = Mass of 1 mole of substance$
	Mole Fraction	$\overline{X}_A = \frac{n_A}{\sum n_i}$
	Molarity —	$M = \frac{\text{moles of solute}}{\text{liters of solution}}$
	Molality	$m = \frac{\text{moles of solute}}{\text{kg of solvent}}$
Atomic Structure	Bohr's Model	$E_n = -\frac{13.6}{n^2} \text{ eV}, r_n = n^2 a_0$
	de Broglie Wavelength	$\lambda = \frac{h}{mv}$
	Heisenberg Uncertainty	$\Delta x \Delta p \ge \frac{h}{4\pi}$
	Quantum Numbers	$\stackrel{-}{n},l$ (0 to n-1), m_l (- l to + l), m_s ($\pm\frac{1}{2}$)
Chemical Bonding and Molecular Structure	Ionic Bonding	Transfer of electrons, formation of ions
	Covalent Bonding	— Sharing of electron pairs
	VSEPR Theory	Shape predicted by repulsion of electron pairs
	Hybridization	sp, sp2, sp3 explained by orbital mixing
	Bond Order	$\begin{array}{l}$

Chapter	Concept	Formula / Key Point
	Dipole Moment	$\mu = Q \times r \text{ (Charge } \times \text{ distance)}$
States of Matter	Ideal Gas Equation	PV = nRT
	Van der Waals Equation	$\left(P + \frac{an^2}{V^2}\right)(V - nb) = nRT$
	Critical Constants	$P_c = \frac{a}{27b^2}, V_c = 3nb, T_c = \frac{8a}{27bR}$
	Kinetic Molecular Theory	$KE = \frac{3}{2}RT$ per mole
Thermodynamics	Internal Energy	$\Delta U = q + W$
	First Law	$\Delta U = Q - P\Delta V$
	Enthalpy	$\overline{H} = U + PV$
	Hess's Law	Total enthalpy change = sum of individual changes
	Heat Capacity	$C = \frac{q}{\Delta T}$
	Entropy	$\Delta S = \frac{q_{rev}}{T}$
Equilibrium	Law of Mass Action	$K_c = \frac{[C]^c [D]^d}{[A]^a [B]^b}$
	Relation between K_p and K_c	$K_p = K_c(RT)^{\Delta n}$, where $\Delta n = (c+d) - (a+b)$
	Le Chatelier's Principle	System shifts to counteract changes in conditions
Redox Reactions	— Oxidation Number	— Change in oxidation state indicates electron transfer
	Balancing Redox Reactions	Using ion-electron method in acidic/basic medium

Chapter	Concept	Formula / Key Point
Hydrogen	Properties	— Most abundant, forms H2 molecule, reducing agent
	Isotopes	Protium, Deuterium, Tritium
The s-Block Elements	General Properties	Group 1 and 2 elements, reactive metals
	Reaction with Water	Alkali metals react vigorously
The p-Block Elements	Group 13 to 18	Properties and trends (e.g. Boron family, Carbon family, etc.)
	Allotropy	Different forms of same element (e.g. P4 and Pn)
The Organic Chemistry - Some Basic Principles and Techniques	IUPAC Nomenclature	Rules to name organic compounds systematically
	Functional Groups	— Alcohol (-OH), Aldehyde (-CHO), Ketone (C=O), etc.
	Isomerism	Structural and stereoisomerism
Hydrocarbons	Alkanes, Alkynes —	General formulas and reactions (e.g. combustion, substitution)
	Benzene	Aromaticity, resonance energy, substitution reactions