Status of the Petrale sole stock off the U.S. West Coast in 2023

Ian G. Taylor¹, Vladlena Gertseva¹ and Nick Tolimieri¹

1. NOAA Fisheries Northwest Fisheries Science Center, 2725 Montlake Boulevard East

U.S. Department of Commerce National Oceanic and Atmospheric Administration National Marine Fisheries Service Northwest Fisheries Science Center

Table of contents

List of Figures

1	Executive Summary						
	1.1	Assessment Model					
	1.2	Reference Points, Stock Status, and Projections					
2	Introduction						
	2.1	Management History					
	2.2	Fishery Descriptions					
	2.3	Ecosystem Considerations					
3	Data	7					
	3.1	Stock ID					
	3.2	Life History					
	3.3	Landings					
	3.4	Indices and Standardization					
	3.5	Composition Data					
	3.6	Absolute Abundance					
	3.7	Environmental/Ecosystem Indicator Data					
4	Assessment						
	4.1	Current Modeling Approach					
	4.2	Configuration of the Base Model					
	4.3	Modeling Results					
		4.3.1 Parameter Estimates					
		4.3.2 Recruitment Estimates and Deviations					
		4.3.3 Model Fits					
		4.3.4 Model Diagnostics					
	4.4	Sensitivity Analyses					
	4.5	Management Benchmarks					
	4.6	Projections					
5	Discus	sion 13					
6	Acknowledgements 14						
7	Refere	nces 15					
8	Tables	16					
9	Figures						
10	Notes	21					
11	Append	dices 22					

1	recruitment_cap	
2	spawning_biomass_cap	9
3	biomass_cap	9
4	landings_cap	20
5	recruitment_deviations_cap	20
6	spawning_recruitment_cap	21
List of T	ables	
1	indices_cap	6

Please cite this publication as:

Taylor, I.G., V. Gertseva, N. Tolimieri. 2023. Status of the Petrale sole stock off the U.S. West Coast in 2023. NOAA Fisheries Science Center, Seattle, WA.

- 1 Executive Summary
- 1.1 Assessment Model
- 1.2 Reference Points, Stock Status, and Projections

2 Introduction

Testing adding in an introduction for Petrale sole. There is currently no read of parameters for child documents.

- 2.1 Management History
- 2.2 Fishery Descriptions
- 2.3 Ecosystem Considerations

- 3 Data
- 3.1 Stock ID
- 3.2 Life History
- 3.3 Landings
- 3.4 Indices and Standardization
- 3.5 Composition Data
- 3.6 Absolute Abundance
- 3.7 Environmental/Ecosystem Indicator Data

4 Assessment

- 4.1 Current Modeling Approach
- 4.2 Configuration of the Base Model

- 4.3 Modeling Results
- 4.3.1 Parameter Estimates
- 4.3.2 Recruitment Estimates and Deviations
- 4.3.3 Model Fits
- 4.3.4 Model Diagnostics

4.4 Sensitivity Analyses

4.5 Management Benchmarks

4.6 Projections

5 Discussion

Here is a use of an in-text reference to a key quantitiy such as target spawning biomass as $5.51571~\mathrm{kgs}$.

6 Acknowledgements

7 References

8 Tables

Table 1: $indices_cap$

	Fleet 3		Fleet 4	
Year	Estimated CPUE	Uncertainty	Estimated CPUE	Uncertainty
1980	3,322.83	0.38		
1983	2,438.46	0.34		
1986	2,211.88	0.34		
1989	2,177.91	0.34		
1992	1,933.47	0.34		
1995	2,516.70	0.35		
1998	2,784.97	0.33		
2001	3,298.33	0.34		
2004	4,051.63	0.34	20,790.6	0.09
2003			19,373.7	0.09
2005			20,698.2	0.08
2006			19,167.6	0.08
2007			17,844.1	0.08
2008			17,074.9	0.08
2009			17,896.0	0.08
2010			22,500.5	0.07
2011			30,760.2	0.07
2012			40,647.6	0.07
2013			49,036.7	0.09
2014			54,277.9	0.07
2015			56,914.9	0.07
2016			57,499.3	0.07
2017			56,575.7	0.07
2018			54,735.8	0.08

	Fleet 3		Fleet 4	
Year	Estimated CPUE	Uncertainty	Estimated CPUE	Uncertainty
2019			52,972.8	0.10
2021			49,724.9	0.07
2022			45,694.1	0.08

9 Figures

Figure 1: recruitment_cap

Figure 2: spawning_biomass_cap

Figure 3: biomass_cap

Figure 4: landings_cap

Figure 5: recruitment_deviations_cap

Figure 6: spawning_recruitment_cap

10 Notes

11 Appendices