Game Theory with Applications

Homework #4 – Due Thursday, November 17

Recall the 2-player game mentioned in the class. The normal-form is shown as follows:

	Player 2		
		(H) Head (q)	(T) Tail (1-q)
Player 1	(H) Head (p)	-1 ² , <u>1</u>	<u>1</u> , -1
	(T) Tail (1-p)	<u>1,</u> -1	-1, <u>1</u>

Let us follow the notations introduced in class to verify several important conditions mentioned in the Kakutani fixed-point theorem.

Notations:

- ightharpoonup The action (or strategy) profile: $\sigma = (p,q)$
- \triangleright The action (or strategy) profile except player *i*'s action: σ_{-i}
- \triangleright The space of action (or strategy) profile: Σ
- Player i's payoff function: $u_i(\sigma)$
- Player i's best response correspondence, r_i , maps each strategy profile σ to the set of mixed strategies that maximize player i's payoff when his opponents play σ_{-i} .
- \triangleright The correspondence $r: \Sigma \to \Sigma$ to be the Cartesian product of the r_i .
- The graph G_R of the correspondence r: $G_R = \{(p,q,\hat{p},\hat{q}) : (\hat{p},\hat{q}) \in r(p,q)\}$
- 1. Please explicitly write the following terms in this example.
 - (a) The space of action (or strategy) profile Σ
 - (b) Player 1's expected payoff function $u_1(\sigma)$
- 2. Suppose $\sigma' = (p', q') \in r(p, q)$ and $\sigma'' = (p'', q'') \in r(p, q)$ where $\sigma = (p, q)$. Show that $\lambda p' + (1 \lambda)p''$ is player 1's best response to q for $\lambda \in (0, 1)$.
- 3. Show that correspondence r(p,q) in this example is convex for all $(p,q) \in \Sigma$.
- 4. Let sequence $(p_n) = \left(\frac{1}{4^n}\right)$ and $(q_n) = \left(\frac{1}{4^n}\right)$. What are the best response sequence (\hat{p}_n) and (\hat{q}_n) ?
- 5. What is the limit point of the sequence $(p_n, q_n, \hat{p}_n, \hat{q}_n)$, where $p_n = \frac{1}{4^n}$ and $q_n = \frac{1}{4^n}$ for all n?
- 6. Suppose that a sequence $(p_n, q_n, \hat{p}_n, \hat{q}_n)$ converges to (p, q, \hat{p}, \hat{q}) for all sequence index n, but \hat{p} is not player 1's best response to q. Show that \hat{p}_n cannot be player 1's best response to q_n .
- 7. Show that $r(\cdot)$ has a closed graph.