

计算机组成原理

第五章 指令系统

5.5 MIPS指令概述

1 MIPS指令概述

- MIPS (Microprocessor without Intellocked Pipleline Stages)是80年代初期由斯坦福大学Hennessy教授领导的研究小组研制成功; Million Instructions Per Second
- ■属于精简指令集计算机RISC(Reduced Instruction Set Computer);

复杂指令集计算机CISC(Complex Instruction Set Computer);

- MIPS指令集有MIPS I, MIPS II, MIPS III, MIPS IV, MIPS V, MIPS32, 和 MIPS64多个版本;
- 早期主要用于嵌入式系统,如Windows CE的设备,路由器,家用网关和视频游戏机,现在已经在PC机、服务器中得到广泛应用

1 MIPS指令概述

- MIPS指令集有以下特点:
 - ◆简单的Load/Store结构
 - ◆易于流水线CPU设计
 - ◆易于编译器开发
 - ◆ MIPS指令的寻址方式非常简单,每条指令的操作也非常简单

R 型指令

2 MIPS指令格式概述

■ 只有三种指令格式

6bits 5bits 5bits 5bits 5bits 6bits 000000 R_s R_t R_d shamt funct

◆ Rs,Rt分别为第一、二源操作数; Rd为目标操作数;

6bits 5bits 16bits
1型指令 OP R_s R_t 立即数

- ◆ 双目、Load/Store: Rs和立即数是源操作数,Rt为目标操作数;
- ◆ 条件转移: Rs,Rt均为源操作数;

6bits26bitsJ型指令OP立即数

◆ 26位立即数作为跳转目标地址的部分地址

3

MIPS 寄存器

寄存器名	寄存器编号	用途说明		
\$s0	0	保存固定的常数0		
\$at	1	汇编器的临时变量		
\$v0 ~ \$v1	2~3	子函数调用返回结果		
\$a0 ~ \$a3	4~7	函数调用参数1~3		
\$t0 ~ \$t7	8~15	临时变量,函数调用时不需要保存和恢复		
\$s0 ~ \$s7	16 ~ 23	函数调用时需要保存和恢复的寄存器变量		
\$t8 ~ \$t9	24 ~ 25	临时变量,函数调用时不需要保存和恢复		
\$k0~\$k1	26 ~ 27	中断、异常处理程序使用		
\$gp	28	全局指针变量(Global Pointer)		
\$sp	29	堆栈指针变量(Stack Pointer)		
\$fp	30	帧指针变量(Frame Pointer)		
\$ra	31	返回地址(Return Address)		

- ◆还有32个32位单精度浮点 寄存器*fo-f₃₁*
- ◆还有2个32位乘、商寄存器 Hi和Lo; 乘法法分别存放 64位乘积的高、低 32位; 除法时分别存放余数和商。

- 4 MIPS 寻址方式
 - 在MIPS32指令集中,不单设寻址方式说明字段
 - ◆R型指令:由op和funct字段共同隐含说明当前的寻址方式;

```
6bits 5bits 5bits 5bits 5bits 6bits R型指令 000000 R<sub>s</sub> R<sub>t</sub> R<sub>d</sub> shamt funct
```

◆I型和J型指令:由op字段隐含说明当前指令使用的寻址方式。

	6bits	5bits	5bits	16bits	
I 型指令	OP	R_s	R_{t}	立即数	
	6bits	26bits			
J型指令	OP	立即数			

4 MIPS 寻址方式

■ 立即数寻址 (Immediate addressing)

addi s1, s2, 10 (
$$\$$$
s1 \leftarrow $\$$ s2 + E(10))

注意: 汇编格式和编码格式段的对应关系。

4 MIPS 寻址方式

■ 寄存器直接寻址(Register Addressing)

add
$$$t0,$s1,$s2$$
 ($$t0=$s1+$s2$)

4 MIPS 寻址方式

■ 基址寻址(Basic Addressing)

■ 使用基址寻址的指令: lw ,sw, lh, sh, lb, lbu等

LB rt , offset (base)

4 MIPS 寻址方式

if (GRP[rs] == GPR[rt])
PC = PC + 4 + BranchAddr

■相对寻址

■ 使用相对寻址的指令: beq, bne

4 MIPS 寻址方式

■ 伪直接寻址(页面寻址)

■ 使用伪直接寻址的指令: j, jal