University POLITEHNICA of Bucharest

Faculty of Electronics, Telecommunications and Information Technology

Project 1: Positive Voltage Regulator

Student: Zotec Alexandru

Group: 432F

Coordinators:Prof. Laurentiu Teodorescu

I.Introduction

1. Project requirements

A positive linear voltage regulator needs to be designed using discrete components, with the following specifications:

N=23

- ◆ Supply voltage between 30÷33 [V];
- ◆ Programmable output voltage 25÷27[V];
- ♦ The output current through the load between 0÷42 [mA];
- ♦ Short circuit protection of the output terminals with foldback current limiting circuit.
- ♦ Overvoltage protection of the output terminals.

$$lack S = rac{\Delta V_i}{\Delta V_o}igg|_{RL} \geq$$
 57

♦ The output impedance of the regulator RO ≤3.3 Ω

2. General information

Voltage stabilizers are electronic circuits that deliver a constant (stabilized) DC voltage at the output (across the load resistance), even when there are changes in input voltage, load current, or temperature within certain limits. They are a key component within the power supply, positioned between the rectifier and the circuit's load. Voltage stabilizers can be classified into two primary categories:

- Linear stabilizers;
- Switching stabilizers.

APPLICATIONS OF VOLTAGE STABILIZER

- In communication systems, they are essential for ensuring accurate signal transmission.
- They protect equipment from surges or sudden voltage fluctuations caused by events such as lightning or power supply interruptions.
- Avionics systems demand a stable and high-quality power supply to guarantee the safe and proper operation of aircraft.
- They provide consistent and accurate voltages to various components within computers, including the motherboard, processor, video card, and storage devices.

3. REGULATORY ELEMENT

It refers to the electronic components used to keep voltage constant, such as:

- > Bipolar transistors
- Zener Diode
- > Integrated circuits

II.The Block Diagram

> Operating principle:

The block diagram of the electronic stabilizer is illustrated in the figure below.

Fig 2.1

III.The detailed schematic diagram AND identification of each subblock

Fig 3.1

Reference Voltage:

D1: Zener diode (BZX55C5V1) — establishes a stable reference voltage.R1(2K), R2 (2.7K): Resistors used to set the current through the Zener diode.Functionality: The Zener diode operates in its reverse breakdown region to produce a stable reference voltage. The resistor R1 and R2 in series limits the current through the Zener, ensuring the Zener diode operates within its safe limits and further stabilizes the current and prevents excess fluctuations. This reference voltage is the baseline for all other blocks, ensuring consistent operation regardless of input voltage changes . Vin=33V,VZ=5.1V

Differential amplifier

Transistors Q2 and Q3(BC546B) form the differential pair that amplifies the difference between the two input signals. The current mirror, composed of transistors Q4 and Q5(BC556B), ensures balanced collector currents in the differential pair. Resistors R5 and R6(1K) set the operating point and provide biasing for the differential pair. The current source is formed by transistor Q1, resistor R4, and the two diodes, 1N4148, which help set a stable reference voltage for proper operation of the circuit. (fig3.3)

Series control transistor

fig 3.4

Through this Transistor passes the Load Current.

Feedback Circuit:

The feedback circuit monitors the output voltage and relays it back to the differential amplifier block. This feedback loop is essential for continuous regulation, enabling the amplifier to assess the difference between the output and the desired level. The feedback loop provides stability and a quick response to changes in load or input voltage.

7

Circuit Protection:

Resistor R12 sense the overcurrent and drive the NPN transistor Q7(BC546B) into conduction, effectively limiting the output current by turning off the series pass element. This ensures that the output voltage is restricted, preventing the current from exceeding a safe operating limit.

Diodes D4, D5, D6, and D7 monitor the output voltage. When the output voltage exceeds the maximum allowed value, the Zener diodes begin conducting current into the base of transistor Q8. This causes Q8 to enter conduction, creating a current path through resistors R15 and R16, which effectively clamps the output voltage and prevents it from rising further.

IV.CALCULATIONS FOR EACH COMPONENT

	- Component edulation -
	Vallye reference
	J' J'allie
	x1=23 -> Vry & 53;5]
	the only senon dock that fit the scheme is
	\$ R2X550511 - FN
	The seastance on this branch has the formula:
	Carl (193 Crames has the formula;
	R = Vingo 1/2 = 30-5,1 = 21,5.03 = 4,98 KS2
	(3)10-3 5 10-3
	1 1 mortage do
1	minimum 5 and for the
	the clasest Bensteam in Minimum 5 and for the Minimum 5 and for the Minimum 1 and Minimum 1
	(2min) few rentors of 2k, 2, 7k;
	(Lown)
	For a smoother thousehoor, will use the session.
	R, = 3KD and R2 = 1,70KD (R+R2 = Rs)
	abov an all 1/2 11 -11 22 -11
	Now, au coleilate / 1/2 max = Vm max 1/2 = 33 - 5,1 =
100	= 5, Com A 3500
	(2mm = Vonam - 1/2 = 30 -51 = 5,03
	Rs 75mA
HEST U.S.	20 1 2 2 2 -3
	2 1 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	E Pomex = Bonex 2. Rs = 5,692. 8,9 . 10 = 158,600 W
	= 1 max = 12 mix 18 = 5,69 . 9,9 . 10 = 158,600 W
	= 10max = 13mix 18 = 5,69 . 8,9 . 10 = 158,600 W
	= 10max = 13mix 18 = 5,69 . 8,9 . 10 = 158,600 W
	- Comax = Bomes Rs = 5,69 . 8,9 . 10 = 158,600 W - 20,30 W

Compret source T1-BC546B Ry the agapterdix armex Ry should be egual be. Ry = 2Vs - Vox, - 0,6 (150-2) Barner Geower of 12 and 13, that both should have 20th current =) /c = 4 mA R3 = VN min - 21/3 = 30-9,2 = 5,76 KS2 R3= 5,6 K D (os in the annex) 7, - 940th

Defendal amplifier Both BC546B Cerrent misson - both BC356-B min rolue for each resider >0,70. R5,6 = - = 1KD R5 = R6 = 1k 2 (annex)

Negative food book VREF = Rx + Ry + R2 Vout maix VREF = Ry +RZ Vout out potentionneter (Rz) Rx + Rz - Ry (Vonex - 1) =) RX = (Ry+R2) (Voutnum -1) VREF = > Rx +0,5 = Ry (27-1) Rx=(Ry+0,5)/25-1/ = 1 Alg = 0,5 = 4,23Ry - 33Rg + 1,95 0,39 Ry - 2,95 Ry = 6,28 KR ~ 6,8K Px = 6,78.3,9 = 26,49 KB ~ Mek 10K,10K,6,8K. 05ks - 5/0k

Series contral tomastos - max despodon sou I want to use a BD241C. ancurrent protection For the fravistor to conclut, we need realty alogo > 0,7V 1/20 R. /ma = 1 P = 1/2 = 21, 43 52 We great one to Pr= 22ks2 or in the owner Now are should And the relationship between Ry and Rig, the next 2 seas lanes that have to be placed, R2 = (Vax + Vant). RoxR13 - Vont ~ 21,53 = 25,6 · Piz+Ris - 25

Rus Pr 25,6- 25 = 0,9 =) RB+R15 = 25,6 = 25,9 RistRis = 1,011 - 1/ Ris = 3,2k R15 analize protoson. R2 = Vac = 0,6 = 120-2 22 0 por amax Outset realty 1 mer mun 27V -) By + Dy + D67 Chose & couse it's the closest combineda,

Coal sex Janes

2. R2 = Cant mex = 27V = 642 - 2.

/mex 42

We use 510 + 100 + 33 52. por

Janes - The arriver.

1. R2 = Coat min = 25 = 595 \, \text{2}.

V. SPICE SIMULATIONS

a) FOR: DC SWEEP - POT 50%

Fig 5.1

$\underline{\boldsymbol{b}}$ FOR: DC SWEEP SET 0- POT HIGH

Fig 5.2

<u>c)</u> FOR: DC SWEEP SET 1 – POT LOW

Fig 5.3

Overcurrent Protection

Fig 5.4

The circuit successfully enforces a current limit below 42 mA, which is a safety feature to protect components from overcurrent conditions.

Overvoltage protection

Fig 5.5

With the feedback divider shorted, the voltage regulation would fail, leading to a potential rise in output voltage.

If the overvoltage protection is working as intended, it should prevent the voltage from exceeding a certain threshold by activating a clamping or shutdown mechanism.

The current plot indirectly indicates that the circuit maintains control, as the current limit remains within bounds, meaning the overvoltage circuit has likely prevented catastrophic failure.

Stability Factors

\$=222.22, pot low, Vin = 33V

Fig 5.7 S=183.8,pot low, Vin = 30V

Fig 5.8 S = 147.7 , pot high, Vin = 30V

Fig 5.9 S = 193.4 , pot high , Vin = 33V

VI.COMMENTS:

This project was both challenging and rewarding, allowing me to deepen my knowledge of voltage regulation circuits and protective mechanisms. I contributed to the design, simulation, and analysis of a voltage regulator with overcurrent and overvoltage protection, focusing on integrating theoretical concepts with practical applications through calculations, component selection, and LTSpice simulations.

Key challenges included ensuring the seamless interaction of circuit blocks and achieving a stable output voltage. Designing the current source for biasing the differential amplifier, selecting precise resistor values, and configuring Zener diodes for the voltage reference block required careful attention to detail. Implementing overcurrent and overvoltage protection, including a foldback mechanism, added complexity and required extensive troubleshooting.

Simulating the circuit in LTSpice was particularly demanding, as I was using the software extensively for the first time. Despite the steep learning curve, I successfully modeled the circuit under various conditions, validated its performance, and adjusted the design accordingly.

My contributions included:

- Designing the voltage reference, differential amplifier, and feedback network.
- Calculating and selecting components for reliability and safe operation.
- Integrating and verifying overcurrent and overvoltage protection mechanisms.
- Simulating and analyzing circuit performance under load and fault conditions.

VII. Bibliography

CF1/4W-22R: https://www.tme.eu/ro/details/cf1 4w-22r/rezistente-tht/sr-passives/

CF1/4W-33R: https://www.tme.eu/ro/details/cf1 4w-33r/rezistente-tht/sr-passives/

CF1/4W-100R: https://www.tme.eu/ro/details/cf1_4w-100r/rezistente-tht/sr-passives/

CF1/4W-150R: https://www.tme.eu/ro/details/cf1_4w-150r/rezistente-tht/sr-passives/

CF1/4W-510R: https://www.tme.eu/ro/details/cf1_4w-510r/rezistente-tht/sr-passives/

CF1/4W-1K: https://www.tme.eu/ro/details/cf1 4w-1k/rezistente-tht/sr-passives/

CF1/4W-2K: https://www.tme.eu/ro/details/cf1 4w-2k/rezistente-tht/sr-passives/

CF1/4W-2K7: https://www.tme.eu/ro/details/cf1_4w-2k7/rezistente-tht/sr-passives/

CF1/4W-5K6: https://www.tme.eu/ro/details/cf1_4w-5k6/rezistente-tht/sr-passives/

CF1/4W-6K8: https://www.tme.eu/ro/details/cf1 4w-6k8/rezistente-tht/sr-passives/

CF1/4W-9K1: https://www.tme.eu/ro/details/cf1 4w-9k1/rezistente-tht/sr-passives/

CF1/4W-10K: https://www.tme.eu/ro/details/cf1_4w-10k/rezistente-tht/sr-passives/

CA6V-500: https://www.tme.eu/ro/details/ca6v-500/trimere-tht-cu-o-singura-tura/acp/ca6v-500/

1N4148-TAP: https://www.tme.eu/ro/details/1n4148-tap/diode-universale-tht/vishay/

ZPD2.7-DIO: https://www.tme.eu/ro/details/zpd2.7-dio/diode-zener-tht/diotec-semiconductor/zpd2-7/

ZPD5.1-DIO: https://www.tme.eu/ro/details/zpd5.1-dio/diode-zener-tht/diotec-semiconductor/zpd5-1/

ZPD6.2-DIO: https://www.tme.eu/ro/details/zpd6.2-dio/diode-zener-tht/diotec-semiconductor/zpd6-2/

ZPD8.2-DIO: https://www.tme.eu/ro/details/zpd8.2-dio/diode-zener-tht/diotec-semiconductor/zpd8-2/

ZPD10-DIO: https://www.tme.eu/ro/details/zpd10-dio/diode-zener-tht/diotec-semiconductor/zpd10/

BC546BBK: https://www.tme.eu/ro/details/bc546b-dio/tranzistori-tht-npn/diotec-semiconductor/bc546b/

BC556BBK: https://www.tme.eu/ro/details/bc556bbk-dio/tranzistori-tht-pnp/diotec-semiconductor/bc556bbk/

BD241C: https://www.tme.eu/ro/details/bd241c/tranzistori-tht-npn/stmicroelectronics/

VIII. REFERENCES

1.Zener Diodes Datasheet:

https://www.tme.eu/Document/36810cd3322141910ec03f194792bbb3/zpd1.pdf

- 2."Power Supply Protection Techniques" by Analog Devices.
- 3.L. Teodorescu, http://wiki.dcae.pub.ro/images/7/79/Linear_regulator.pdf
- **4.**https://www.analog.com/en/resources/design-tools-and-calculators/ltspice-simulator.html
- 5. Tutorials for LTSpice circuit simulation and analysis.

IX.Mounting Map

