NOIP2019 模拟

Day2 题解

一. 题目概况

. /			
题目名称	doubt	block	road
可执行文件名	doubt	block	road
输入文件名	doubt.in	block.in	road. in
输出文件名	doubt.out	block.out	road. out
时间限制	1.0s	2.0s	1.0s
空间限制	256MB	128MB	256MB
测试点数量	打包测试	20	20
单个测试点分值	见题面	5	5
题目类型	传统	传统	传统

二. 可执行文件名需加后缀

对于 C++语言	doubt.cpp	block.cpp	road. cpp
对于 C 语言	doubt.c	block.c	road. c

三. 编译选项

对于 C++语言	-1m	-1m	-1m	
对于C语言	-1m	-1m	-1m	

四. 注意事项

- 1. 文件名(程序名和输入输出文件名)必须使用英文小写。
- 2. 除非特殊说明,结果比较方式均为忽略行末空格及文末回车的全文比较。
- 3. C/C++中函数 main()的返回值必须是 int,程序正常结束时返回值必须是 0。

1 doubt

1.1 题意简述

对数组 a 和 b 重新排列,定义一个数组 c,满足 $c_i = a_i xor b_i$ 。求字典序最小的 c。

1.2 算法1

n!暴力枚举 a.b 不变,算出 c 之后对 c 排序。 复杂度 $0(n!\log(n!))$ 。期望得分 10。

1.3 算法2

考虑预处理出 a[i] xor b[j],从小到大贪心选取,用过的不再选。 考虑当有 a[i] xor b[j] = a[k] xor b[t],选取顺序无所谓;当有 a[i] xor b[j] = a[i] xor b[t],那么 b[j]=b[t],选取顺序也无所谓。所以贪心的正确性可证。 复杂度 $0(n^2log(n^2))$,期望得分 30。

1.4 算法3

由于 a_i, b_i 范围很小,在算法 2 的基础上,考虑对于相同的 (a_i, b_j) 一起计算处理。结合算法 2,期望得分 50。

1.5 算法4

对于 a 和 b 分别建一颗字典树,一起 dfs 使得每个 a_i 和一个 b_j 相消。考虑将 a 字典树上的子树 A 和 b 字典树上的子树 B 尽量合并相消,先合并(1son[A],1son[B])、(rson[A],rson[B]),再合并(1son[A],rson[B])、(rson[A],1son[B])。为保证复杂度正确,当某棵子树已经消完时,直接 return 即可,最后需要对 c 重新排序。复杂度为 $0(n\log(2^{30}))$,期望得分 100。

2 block

首先考虑一个矩形如何求答案。

矩形的相邻两行只有两种情况符合要求:

- 两行相应位置的颜色相反
- 两行相应位置的颜色相同,且行内部为一黑一白交替排列回到原问题,我们可以从高到低 dp。

记 dp[1][r][h][p=0/1][q=0/1][k=0/1]表示第 1 列到第 r 列,高度大于等于 h 的部分的合法染色方案数,其中高为 h 的行最左端颜色为 p,最右端颜色为 q,内部是否为黑白交替用 k 表示。将 hi 排序后,每次加入一个新列 t,我们需要合并[?,t-1]和[t+1,?]两个区间的答案,在合并前需要将两个区间的答案从旧高度 h 更新到新高度 ht。合并后删除原来的两个旧区间。

由于任何时刻任何一列i最多属于一个有效区间,故h这一维不需要维护。

每次加入一个新列我们只需要修改并删除两个旧状态,添加一个新状态,故 dp 的复杂度为**O**(n)。

一开始需要对 hi 排序,故时间复杂度为O(nlogn)。

3 road

3.1 题意简述

求 n 个点 n+1 条边组成一个边双连通图的方案数,要求无重边和自环。

3.2 算法1

手动打表 or 暴力枚举每条边取或不取。期望得分 10。

3.3 算法2

考虑所有点度数和为 2n+2,而不能有点度数为 1,所以大部分点的度数为 2。 分为以下几种情况讨论:

- 1、有一个点度数为4,整个图是以它为公共点的两个环。
- 2、有两个点度数为3,这两个点直接连接,而且还有两条链连接。
- 3、有两个点度数为3,这两个点未直接连接,中间有三条链连接。对于这三种情况,预处理组合数,枚举链上的点数求得答案。

时间复杂度 $0(n^2)$, 期望得分 40。

3.4 算法3

考虑将算法 2 的式子合并,可得通项公式:

Ans =
$$\frac{n!(n-4)}{8} + \frac{n!(n-3)}{4} + \frac{n!(n-3)(n-4)}{24}$$

时间复杂度 0(n),期望得分 80。

3.5 算法4

在算法3的基础上,分段打表预处理n!即可。期望得分100。