МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ КИЇВСЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ імені ТАРАСА ШЕВЧЕНКА

3BIT

Дослідження ВАХ діодів

I-72

Укладачі: М.В. Цисін.

I-72 Звіт. Моделювання діодів різного типу./ укл. М.В. Цисін. –К. :КНУ ім. Т.Шевченка, 2021.-11 с. (Укр. мов.)

Наведено звіт виконання роботи з моделювання електронних схем у програмі $LTspice^{TM}$.

УДК 053.08 (002.21)

ББК 73Ц

Звіт

Звіт, Моделювання діодів різного типу: 11 с.

Мета роботи – навчитися одержувати зображення ВАХ діодів на екрані двоканального осцилографа, дослідити властивості p-n-переходів напівпровідникових діодів різних типів

Об'єкт дослідження – діоди різних типів, характериограф, р-п перехід

Предмет дослідження – теоретичні основи, принципи роботи, фізичний зміст і застосування напівпровідникових діодів

Методи дослідження:

- 1) Одержання зображення ВАХ діодів на екрані двоканального осцилографа, який працює в режимі характериографа
- 2) Побудова ВАХ діодів шляхом вимірювання певної кількості значень сили струму ІД, що відповідають певним значенням та полярності напруги UД, і подання результатів вимірів у вигляді графіка

Зміст

Теоретичні відомості	5
Виконання роботи	6
Випрямляючий діод	7
Стабілітрон	
Світлодіод	9
Діод Шоткі	10
Висновки	11
Лжерела	11

Теоретичні відомості

Напівпровідниковий діод (англ. semiconductor diode) — це напівпровідниковий прилад з одним р-п—переходом і двома виводами

p-n-nepexid (англ. p-n junction) – перехідний шар, що утворюється на межі двох областей напівпровідника, одна з яких має провідність n-типу, а інша – провідність p-типу

Вольт-амперна характеристика (ВАХ) діода (англ. current-voltage characteristic) – це залежність сили струму I_D через p-n-перехід діода від величини і полярності прикладеної до діода напруги U_D

Xарактериограф — електронно-променевий прилад, на екрані якого можна спостерігати графіки функцій будь-яких фізичних величин, що можуть бути перетворені у пропорційні їм напруги, наприклад, графіки залежності сили струму I_D від напруги U_D .

Вольт-амперна характеристика напівпровідникового діода. Існує чотири режими роботи напівпровідникового діода. При оберненій напрузі, більшій за V_p , наступає пробій — різке збільшення струму, яке використовується в роботі лавинних діодів та діодів Зенера. При оберненій напрузі, меншій від V_p , існує тільки малий струм насичення, здебільшого, порядку мікроамперів. При прикладенні напруги в прямому напрямку, струм зростає експоненційно, залишаючись малим до напруги V_D , — напруги відкривання діода. Ця напруга може бути різною, в залежності від типу діода, — від 0,2 В для діодів Шоткі, до 4 В у блакитних світлодіодів.

Вольт-амперні характеристики деяких діодів, наприклад, діода Ганна і резонансного тунельного діода можуть містити ділянки з від'ємною диференціальною провідністю, тобто ділянки, на яких сила струму в діоді зменшується, при збільшенні прикладеної напруги. Такі діоди зручні для використання в генераторах електричних коливань.

Виконання роботи

Будемо досліджувати такі типи діодів: випрямлювальний (rectifier diode), стабілітрон (Zener diode), фотодіод (photodiode), світлодіод (LED), а також тунельний діод (tunnel diode).

Налаштуємо нашу схему, як вказано в методичці. Вона в нас буде універсальна для всіх типів діодів.

Параметри джерела (змінюється V для різних діодів):

Випрямляючий діод

Схема досліду:

ВАХ випрямлюючого діода (біля області пробою та при $V \approx \mathbf{0}$):

Стабілітрон

ВАХ стабілітрона:

Як бачимо, в стабілітрона $\frac{\mathrm{d} I}{\mathrm{d} U} \neq \infty$, на відміну від випрямлюючого діода, в якого $\frac{\mathrm{d} I}{\mathrm{d} U} \approx \infty$.

Світлодіод

ВАХ світлодіода:

Відмінність ВАХ світлодіода полягає в тому, що при досягненні напруги пробою, він просто перегоряє і не пропускає більше ні в яких напрямах.

Діод Шоткі

ВАХ діоду Шоткі:

Висновки

У цій роботі ми дослідили загальні принципи роботи діодів, їх різні типи та відмінності. За допомогою моделювання були зроблені ВАХ різних діодів.

Результати отримані нами правдоподібні і відповідають очікуваним.

Джерела

- Методичні вказівки до практикуму «Основи радіоелектроніки» для студентів фізичного факультету. Слободянюк О.В.
- Вивчення радіоелектронних схем методом комп'ютерного моделювання. Ю. О. Мягченко