Assignment 2 - Processing VCF file

- Download the vcf file from https://spliceatlas.s3.amazonaws.com/clinvar 20220227 10K.vcf
- 2. File contains 10,000 lines
- 3. This is a kind of tsv file (tab separated values)
- 4. Line containing single # is the header. This contains the column headers
- 5. File will contain the following 8 columns (tab separated).
 - a. CHROM
 - b. POS
 - c. ID
 - d. REF
 - e. ALT
 - f. QUAL
 - g. FILTER
 - h. INFO
- 6. 2 lines from file is given here as a sample
 - a. #CHROM POS ID REF ALT QUAL FILTER INFO
 - b. 1 861332 1019397 G A ALLELEID=1003021;CLNDISDB=MedGen:CN517202;CLNDN=not_provided;CL NHGVS=NC_000001.10:g.861332G>A;CLNREVSTAT=criteria_provided,_single _submitter;CLNSIG=Uncertain_significance;CLNVC=single_nucleotide_variant;C LNVCSO=SO:0001483;GENEINFO=SAMD11:148398;MC=SO:0001583|missens e variant;ORIGIN=1;RS=1640863258
 - c. 1 865519 1125147 C T . . .

 ALLELEID=1110865;CLNDISDB=MedGen:CN517202;CLNDN=not_provided;CL

 NHGVS=NC_000001.10:g.865519C>T;CLNREVSTAT=criteria_provided,_single_
 submitter;CLNSIG=Likely_benign;CLNVC=single_nucleotide_variant;CLNVCSO

 =SO:0001483;GENEINFO=SAMD11:148398;MC=SO:0001627|intron_variant;OR

 IGIN=1
- 7. Produce a output/result file (filename_of_ur_choice.csv comma separated values) containing 14 columns by processing the downloaded file
 - Result file should contain 14 columns which are given as follows CHROM,POS,ID,REF,ALT,ALLELEID,CLNHGVS,CLNSIG,CLNVC,ORIGIN,RS,G ene_ID,Gene_symbol,Consequence
 - b. CHROM,POS,ID,REF,ALT can be collected directly from the first 5 columns of downloaded vcf file
 - c. To collect remaining data please use the last/8th col (INFO)
 - i. 8th col values are separated by ';'
 - ii. 8th col will have Attribute=value; Attribute=value; Attribute=value; and so on

- iii. ALLELEID,CLNHGVS,CLNSIG,CLNVC,ORIGIN,RS can be collected directly from attributes of 8th col
 - 1. ALLELEID=
 - 2. CLNHGVS=
 - 3. CLNSIG=
 - 4. CLNVC=
 - 5. ORIGIN=
 - 6. RS=
- iv. Gene_ID & Gene_Symbol can be collected from GENEINFO attribute in 8th column
 - 1. GENEINFO=Gene Symbol:Gene ID
- v. Consequence can be collected from MC attribute of 8th col
 - 1. MC=SO:SO ID|Consequence
- vi. If any of the attribute isn't available put '-' in the result file
- d. Expected o/p for the first 2 lines are
 - i. 1,861332,1019397,G,A,1003021,NC_000001.10:g.861332G>A,Uncertain _significance,single_nucleotide_variant,1,1640863258,148398,SAMD11, missense variant
 - ii. 1,865519,1125147,C,T,1110865,NC_000001.10:g.865519C>T,Likely_beni gn,single_nucleotide_variant,1,-,148398,SAMD11,intron_variant
- 8. From the .csv file created in the above step, count the different type of origin (10th col)
 - a. Values of Origin col have the following meaning.
 - i. 0 unknown;
 - ii. 1 germline;
 - iii. 2 somatic;
 - iv. 4 inherited;
 - v. 8 paternal;
 - vi. 16 maternal:
 - vii. 32 de-novo;
 - viii. 64 biparental;
 - ix. 128 uniparental;
 - x. 256 not-tested;
 - xi. 512 tested-inconclusive;
 - b. If you get number other than listed above, classify under 'Others'
 - c. Make a data structure (dictionary) that has Origin type as key and the count of them as value
 - i. Expected o/p

```
'Others' => 95,
```

'de-novo' => 38.

'inherited' => 32,

'somatic' => 18,

'maternal' => 19,

'paternal' => 14,

'germline' => 6648, 'uniparental' => 6, 'unknown' => 145

d. Make a data structure of the same as mentioned in (c) into a json object. Display the results as a table using HTML