Adversarial Machine Learning

What is AML?

Adversarial Examples

* Attack algorithms

Who cares panda?

Adversarial Examples

Outline

- Attack
 - Formulation
 - Distance metrics
- Attack algorithms
 - L-BFGS
 - Fast Gradient Sign
 - AdvGAN
 - One pixel attack

Attack * Attack algorithms

Attack: find a new input (similar to original input) but classified as another class t (untargeted or targeted)

Attacker knows the classifier

How to find adversarial examples

Distance Metrics

* Attack algorithms

Two images: x and x'

- L_0 : measures the number of coordinates such that $x_i \neq x_i'$
 - corresponds to the number of pixels that have been changed in an image
- L₂: Euclidean distance

- L_{∞} : $\max(|x_1 x_1'|, ..., |x_n x_n'|)$
 - measures maximum change to any of the elements

L-BFGS

* Attack algorithms

minimize
$$\|x-x'\|_2^2$$
 such that $C(x')=l$
$$x'\in [0,1]^n$$

$$\downarrow$$
 minimize $c\cdot \|x-x'\|_2^2 + \mathrm{loss}_{F,l}(x')$ such that $x'\in [0,1]^n$

Initial formulation minimize
$$\mathcal{D}(x,x+\delta)$$
 such that $C(x+\delta)=t$ $x+\delta\in[0,1]^n$

Note that these two are not equivalent optimization problems

$$x' = x - \epsilon \cdot \operatorname{sign}(\nabla \operatorname{loss}_{F,t}(x))$$

 ϵ is chosen to be sufficiently small so as to be undetectable

fast rather than optimal

Fast Gradient Sign

* Attack algorithms

Original	0	0	0	7	2	5	9	\mathcal{O}	4	\
adv	0	0	0	7	2	4	9	\mathcal{E}	4	
pert										

Adversarial Image	Perturbation
9	
Pred: 4	eps: 38
0	
Pred: 7	eps: 60
3	
Pred: 8	eps: 42
0	
Pred: 8	eps: 12
7	
Pred: 9	eps: 17

MNIST

AdvGAN

$$\mathcal{L}_{GAN} = \mathbb{E}_x \log \mathcal{D}(x) + \mathbb{E}_x \log(1 - \mathcal{D}(x + \mathcal{G}(x))).$$

$$\mathcal{L}_{adv}^f = \mathbb{E}_x \ell_f(x + \mathcal{G}(x), t),$$

$$\mathcal{L} = \mathcal{L}_{adv}^f + \alpha \mathcal{L}_{GAN} + \beta \mathcal{L}_{hinge},$$

$$\mathcal{L}_{\text{hinge}} = \mathbb{E}_x \max(0, \|\mathcal{G}(x)\|_2 - c),$$

AdvGAN

* Attack algorithms

Untargeted

0	3	7	3	4	5	6	3	3	9
Pred: 9	Pred: 3	Pred: 8	Pred: 8	Pred: 4	Pred: 3	Pred: 8	Pred: 3	Pred: 3	Pred: 8

Targeted

Target:	Target:	Target:	Target:	Target:	Target: 5	Target:	Target:	Target:	Target:
0	0	0	0	0	0	0	0	0	0
Pred: 0	Pred: 1	Pred: 2	Pred: 3	Pred: 4	Pred: 5	Pred: 6	Pred: 7	Pred: 8	Pred: 9
P	212	1	3	4	5	16	7	*	1
Pred: 0	Pred: 1	Pred: 2	Pred: 3	Pred: 4	Pred: 5	Pred: 6	Pred: 7	Pred: 8	Pred: 9
9	4	9	3	4	9	9	9	9	9
Pred: 0	Pred: 1	Pred: 2	Pred: 3	Pred: 4	Pred: 5	Pred: 6	Pred: 7	Pred: 8	Pred: 9

One pixel attack

* Attack algorithms

modify a part of all dimensions

modify d dimensions

One pixel attack

Method	Success rate	Confidence	Number of pixels	Network
Our method	35.20%	60.08%	1 (0.098%)	NiN
Our method	31.40%	53.58%	1 (0.098%)	VGG
LSA[15]	97.89%	72%	33 (3.24%)	NiN
LSA[15]	97.98%	77%	30 (2.99%)	VGG
FGSM[11]	93.67%	93%	1024 (100%)	NiN
FGSM[11]	90.93%	90%	1024 (100%)	VGG

TABLE IX

COMPASSION OF NON-TARGETED ATTACK EFFECTIVENESS BETWEEN THE PROPOSED METHOD AND TWO PREVIOUS WORKS. THIS SUGGESTS THAT ONE PIXEL IS ENOUGH TO CREATE ADVERSARIAL IMAGES FROM MOST OF THE NATURAL IMAGES.

