Machine Learning for the precision determination of Parton Distribution Functions

Jesús Urtasun Elizari

Supervised by Prof. Stefano Forte and Dr. Stefano Carrazza

IFAE Seminar - Barcelona, January 2020

How to adult...

How to be a mature physicist...

Outline

- QCD in a nutshell
 - The Standard Model & strong interactions
 - Parton Distribution Functions
 - Factorization theorem
- Machine Learning
 - Motivation for Machine Learning
 - Neural Networks & general strategy
- The N3PDF project
 - The NNPDF methodology
 - Operator implementation in TensorFlow
 - Results & Conclusions

Quantum Chromodynamics in a nutshell

The Standard Model

Quantum Field Theory describing physics at the TeV scale

- Fermions composing matter
- Bosons mediating interactions
- Scalar Higgs generating mass

Explore the strong interactions

How to explore proton's inner structure?

- ullet Point-like projectile on the object \longrightarrow DIS
- ullet Smash the two objects \longrightarrow LHC physics

"A way to analyze high energy collisions is to consider any hadron as a composition of point-like constituents \longrightarrow partons" R.Feynman, 1969

Parton Distribution Functions

- Hadrons made of partonic objects → non perturbative physics
- Interactions take place only at partonic level

Parton Distribution Functions: probability distribution of finding a particular parton (u, d, ..., g) carrying a fraction x of the proton's momentum

Factorization theorem

Observables in hadronic events $\longrightarrow \sigma$ is hard to compute

Factorize the problem \longrightarrow Convolute the PDFs with the partonic $\hat{\sigma}_{ij}$

$$\sigma = \int_0^1 dx_1 dx_2 f_{\alpha}(x_1, \mu_F) * f_{\beta}(x_2, \mu_F) * \hat{\sigma}_{\alpha\beta}(\alpha_s(\mu_R), \mu_F)$$

- Partonic $\hat{\sigma}$ can be computed as perturbative series in α_s
- ullet PDFs absorb the non perturbative effects, evaluated at μ_F

What PDFs look like

- Each parton has a different PDF u(x), d(x), ..., g(x)
- PDFs are not predicted, and can not be measured
- PDFs are extracted from data

A hot topic at IFAE

TITLE: Searches for new phenomena at the LHC using machine-learning techniques

TITLE: Design and performance study of machine learning techniques for the ATLAS experiment event selection at the High-Luminosity <u>LHC</u>

TITLE: Enhanced ATLAS Level-1 trigger capabilities with Artificial-Intelligence regression on Field-Programmable Gate Array architecture.

TITLE: Unraveling New Physics effects in rare B decays using Neural Networks

What is Machine Learning?

- A subset of Artificial Intelligence (AI) algorithms
- Used to solve complex tasks like classification and regression
- Rely on comparison with data → Learning

- 1 Turn the input set into an array and build a random prediction
- Compare with truth and compute a Loss function
- Update the parameters in a specific way

Loss function

$$Loss = \begin{cases} y_1^{true} \\ y_2^{true} \\ \vdots \\ y_n^{true} \end{cases}$$

Compute a loss function

$$L = \sum_{i=1}^{N} \left(y_i^{true} - y_i^{pred} \right)^2$$

2 Perfect prediction will mean L = 0

Ypred

Loss function

- Loss is a function of weights and bias L = L(w, b)
- ② Compute gradient $\nabla_{w_{ij}} L$ to look for the minimum of L

Update rule

Update the parameters of the network following the gradient descend

$$w_{ij} \longrightarrow w_{ij} - \alpha \nabla L$$

 $b_i \longrightarrow b_i - \alpha \nabla L$

Where α is the learning rate

Machine Learning for the precision determination of PDFs

The NNPDF methodology

Factorize the problem \longrightarrow Convolute the PDFs with the partonic $\hat{\sigma}_{ij}$

$$\sigma = \int_0^1 dx_1 dx_2 f_{\alpha}(x_1, \mu_F) * f_{\beta}(x_2, \mu_F) * \hat{\sigma}_{\alpha\beta}(\alpha_s(\mu_R), \mu_F)$$

- Partonic $\hat{\sigma}_{\alpha\beta}$ is computed perturbatively. Hadronic σ is measured.
- Use a Neural Networks to generate (fit) the PDFs
- Generate a vector of observables σ_N to be compared with data

$$\sigma_{N} = \sum_{i,j,\alpha,\beta} f_{\alpha}(x_{i}) f_{\beta}(x_{j}) \hat{\sigma}_{Nij\alpha\beta}$$

General structure of n3fit

- Use TensorFlow and Keras to determine the PDFs
- See paper by S.Carraza J.Cruz-Martinez
 "Towards a new generation of parton densities with deep learning models", https://arxiv.org/abs/1907.05075

General structure of n3fit

Xgrid

- **9** Build a NN to compute σ_{pred} observables from a grid x_i
- ② Compute χ^2 loss function by comparing with data
- **3** Update values of PDF \longrightarrow Fit

Operator implementation

- 2 Implement c++ operator replacing the convolution

Results

Checking computation

DIS:

	TensorFlow	Custom	Ratio
	1.9207904	1.9207904	1.0000000
Convolution	2.4611666	2.4611664	0.9999999
	1.3516952	1.3516952	1.0000000
Gradient	1.8794115	1.8794115	1.0000000
	1.505316	1.505316	1.0000000
	2.866085	2.866085	1.0000000

Results

Checking computation

Hadronic:

	TensorFlow	Custom	Ratio
	8.142365	8.142366	1.0000001
Convolution	8.947762	8.947762	1.0000000
	7.4513326	7.4513316	0.9999999
Gradient	18.525095	18.525095	1.0000000
	19.182995	19.182993	0.9999999
	19.551006	19.551004	0.9999999

Results

Memory saving

Hadronic only:

	TensorFlow	Custom Convolution	Diff
Virtual	17.7 GB	13.8 GB	3.9 GB
RES	12.1 GB	8.39 GB	3.2 GB

Global:

	TensorFlow	Custom Convolution	Diff
Virtual	23.5 GB	19.7 GB	3.8 GB
RES	18.4 GB	12.5 GB	5.9 GB

[&]quot;Towards hardware acceleration for parton densities estimation", https://arxiv.org/abs/1909.10547

Summary & Conclusions

- PDFs are required to have accurate predictions in high energy physics
- ML provides a new way of determine the PDFs
- Operator implementation leads to memory saving by taking full control on the computation

Thank you!

This project has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement No 740006.

Back up

TF computation of the gradient

• Computing gradient of the χ^2 loss with respect to all parameters of the network.

$$\nabla \chi^2 \longrightarrow \frac{\partial \chi^2}{\partial x_i}$$

TF requires the gradient with respect to any operation in the model.

$$\frac{\partial \chi^2}{\partial x_i} = \frac{\partial \chi^2}{\partial \mathbf{Op}} \frac{\partial \mathbf{Op}}{\partial f_{\mu\nu}} \dots \frac{\partial f_{\mu\nu}}{\partial x_i}$$

③ TF does not know the structure of **Op**. Compute manually the gradient $\frac{\partial \mathbf{Op}}{\partial f_{\mu\nu}}$ and implement it in the TF framework.

Back up

Manual computation of the gradient

From the expression of the output:

$$\mathbf{Op} \equiv y_{N} = \sum_{i,j,\alpha,\beta} f_{\alpha}(x_{i}) f_{\beta}(x_{j}) \ \hat{\sigma}_{Nij\alpha\beta}$$

@ Gradient of the output with respect of the PDFs:

$$\begin{split} \frac{\partial y_{N}}{\partial f_{\mu\nu}} &= \frac{\partial}{\partial f_{\mu\nu}} \sum_{i,j,\alpha,\beta} f_{i\alpha} f_{j\beta} \, \hat{\sigma}_{Nij\alpha\beta} \\ &= \sum_{i,j,\alpha,\beta} (\delta_{\mu i} \delta_{\nu\alpha} f_{\beta j} + \delta_{\mu j} \delta_{\nu\beta} f_{\alpha i}) \, \hat{\sigma}_{Nij\alpha\beta} \\ &= \sum_{i,\beta} f_{j\beta} \, \hat{\sigma}_{N\mu j\nu\beta} + \sum_{i,\alpha} f_{i\alpha} \, \hat{\sigma}_{Ni\mu\alpha\nu} \end{split}$$