Задача 1. Пусть G - группа нечетного порядка. Докажите, что каждый её элемент является квадратом некоторого другого.

Решение. Так как порядок каждого элемента является делителем порядка группы, то все порядки нечётны. Пусть $e=a^{2p+1}$. Тогда $a=ae=a^{(2p+1)+1}=a^{(p+1)^2}$ \square

Задача 2. Докажите, что элементы abc, bca, cab имеют одинаковый порядок (в случае, если каждый из них имеет конечный порядок).

Peшeнue. Пусть $(abc)^k = e$

$$(abc)^k = abcabcabc...abcabc = e$$

Домножим справа на c^{-1} :

$$(abc)^k = abcabcabc...abcab = ec^{-1} = c^{-1}e$$

Домножим слева на c:

$$cabcabcabc...abcab = e = (cab)^k$$

Аналогично доказывается для bca до множением на a^{-1} слева и на a справа. \square

Задача 3. Пусть порядок x равен 38. Найдите порядки x^9 и x^6 .

Решение. Порядок $m_1=x^9,\,m_1=\frac{38}{\text{HOД(38,\,9)}}=38.$ Порядок $m_2=x^6,\,m_2=\frac{38}{\text{HOД(38,\,6)}}=19.$

Задача 4. Пусть $C_n = < a > u$ НОД (k,n) = 1. Докажите, что $\exists b : b^k = a$.

Решение. Воспользуемся леммой доказанной на семинаре:

Пусть $\langle a \rangle = C_n$ и $b=a^k$. Доказать, что элемент b тогда и только тогда будет образующим группы $\langle a \rangle$, когда числа n и k взаимно просты.

Тогда имеем a^k - образующий жлемент. Из определения образующиего элемента получаем: $\exists t: (a^k)^p = a$. Продолжим равенство и явно предъявим b:

$$(a^k)^p = a = a^{kp} = (a^p)^k$$

Получили $\exists p : b^k = (a^p)^k = a.$

Задача 5. Докажите, что любая группа простого порядка циклическая.

Решение. Так как порядок элемента является делителем порядка группы, то в нашем случае порядок элемента либо 1, либо какое-то простое число p. Тогда если порядок элемента ord(a)=1, то a=e, иначе если ord(a)=p (все остальные элементы) $\forall b\exists k\in Z: a^k=b, k=p$ и тогда группа циклическая по определению. \square

Задача 6. Найдите количество элементов в группе \mathbb{Z}_{108}^* .

Решение. Посчитаем значение функции Эйлера $\varphi(108)$:

$$\varphi(108) = \varphi(2^2) \cdot \varphi(3^3) = (2^2 - 2) \cdot (3^3 - 3^2) = 36$$

Задача 7. Пусть $d \mid n$. Докажите, что в C_n ровно $\varphi(d)$ элементов порядка d. Используя этот факт докажите, что $\sum_{d\mid n} \varphi(d) = n$

Решение. Рассмотрим элемент a^p . Аналогично Задаче 3 $d=ord(a^p)=\frac{n}{\text{НОД}(n,p)}$. Перепишем в удобном в виде:

$$HOД(n,p) = \frac{n}{d} = k$$

$$HOД(d, \frac{pd}{n}) = HOД(d, \frac{p}{k}) = 1$$

Тогда всего чисел $\frac{p}{k} < d$ и взаимно простых с $d \varphi(d)$.

Воспользуемся тем что порядок каждого элемента группы является делителем числа d. Тогда $\sum_{d|n} \varphi(d)$ является суммой колечества элементов по всем порядкам, которая равна количеству элементов группе n. \square