Вопрос по выбору

Генерация второй гармоники в нелинейном кристалле

Киркича Андрей, Б01-202, МФТИ

Цель работы: изучение нелинейного оптического явления – генерации второй гармоники.

В работе используются: лазер, нелинейный кристал LiIO₃, система ориентации кристалла (гониометр), система регистрации излучения.

Теоретическая справка

При воздействии достаточно мощного светового пучка от лазера возникает смещение зарядов в атом, появляется индуцированный дипольный момент. Имеем уравнение движения:

$$m\ddot{x} = eE_0\cos\omega t + F(x)$$
, где $F(x)$ – возвращающая сила.

В общем случае F(x) можно разложить в ряд Тейлора. Если учитывать нелинейные члены, осциллятор становится ангармоническим. Учтём квадратичный член:

$$\ddot{x} + \omega_0^2 x = \frac{e}{m} E + \frac{F''(0)}{2m} x^2$$
, где $\omega_0^2 = \frac{b}{m}$

Такое уравнение можно решить сначала в нулевом приближении, а затем подставить это решение в ангармонический член:

$$x_0(t) = \frac{\frac{e}{m}E_0}{\omega_0^2 - \omega^2}\cos\omega t,$$

$$\ddot{x} + \omega_0^2 x = \frac{e}{m} E(t) + \frac{F''(0)}{2m} x_0^2(t).$$

Решение будет содержать слагаемые с частотами 0 и 2ω . Нелинейные колебания электронов приводят к нелинейности материального уравнения.

Пусть волна частоты ω распространяется вдоль оси Z. Для диполя, расположенного в плоскости z, колебания с частотой 2ω описываются функцией

$$X^{(2\omega)}(t,z) = A^2 \cos[2\omega(t - \frac{n(\omega)}{c}z)].$$

Такой диполь излучает вторичную волну, фаза которой в точке z'>z внутри нелинейной среды отличается на величину

$$2\omega \cdot n(2\omega) \frac{z'-z}{c} \quad \Rightarrow \quad \varphi(z') = 2\omega \left[t - \frac{n(2\omega)}{c}z' + (n(2\omega) - n(\omega))\frac{z}{c}\right].$$

При выполнении условия пространственной синфазности

$$n(2\omega) - n(\omega) = 0$$

все вторичные волны в точке z' синфазны и амплитуда $E_0^{(2\omega)}$ пропорциональна z'. Это обеспечивается, если основная волна - обыкновенная, а волна второй гармоники - необыкновенная. В этом случае для отрицательного кристалла будет пересечение эллипсоида $n_e(2\omega)$ со сферой $n_o(\omega)$.

В направлении Θ_0 с оптической осью (угол синхронизма) $n_o(\omega)=n_e(2\omega)$. Угол синхронизма можно найти из системы:

$$\begin{cases} n_o(\Theta) = \text{const} \\ n_e(\Theta) = n_o \left[1 + \left(\frac{n_o^2}{n_e^2} - 1\right) \sin^2 \Theta\right]^{-1/2} \end{cases}.$$

В работе используется кристалл иодата лития – отрицательный одноосный, показатели преломления для обыкновенной и необыкновенной волн представлены в таблице ниже.

λ , hm	n_o	n_e
1064	1,8517	1,7168
532	1,8978	1,7475

Таблица 1: Показатели преломления для обыкновенной n_o и необыкновенной n_e волн в кристалле иодата лития

Интенсивность второй гармоники пропорциональна

$$I^{(2\omega)} \sim \omega^4 \sin^2 \Theta(I^{(\omega)})^2, \tag{1}$$

где Θ - угол между направлением распространения луча и оптической осью.

Также покажем, как влияет отклонение света от направления синхронизма на интенсивность второй гармоники.

Рис. 1: Зависимость интенсивности второй гармоники $I^{(2\omega)}$ от угла $\Delta\Theta=\Theta-\Theta_0$ в нелинейном кристалле

Коэффициент преобразования во вторую гармонику рассчитывается по формуле:

$$K = \frac{\Delta I(\omega)}{I(\omega)} \tag{2}$$

Экспериментальная установка

Схема экспериментальной установки представлена ниже.

Рис. 2: Экспериментальная установка

Излучение лазера 1, проходя ослабитель О и линзу-корректор Л, попадает в нелинейный кристалл НК, где частота его удваивается. Излучение удвоенной частоты попадает в фотоприёмник $\Phi\Pi$ и регистрируется осциллографом 4. Элементы 2 и 3 - питание.

Ход работы

В начале был отъюстирован гониометр. Включив лазер и установив тефлоновый фильтр на фотоприёмник, мы наблюдали картину импульсов на экране осциллографа. Излучение лазера $\lambda=1064$ нм имело круговую поляризацию – это было установлено инфракрасным поляроидом.

После градуировки ослабителя на столик гониометра мы установили нелинейный кристалл так, чтобы на тефлоновом фильтре появилось зелёное излучение. С помощью поляроидов для инфракрасного и видимого света было определено, что поляризация зелёного света – круговая, а поляризация генерирующего излучения 1064 нм – линейная.

Затем мы сняли зависимость интенсивности линий второй гармоники $\lambda=532$ нм от интенсивности возбуждающей линии $\lambda=1064$ нм (предварительно был поставлен зелный фильтра). Полученные данные представлены в таблице ниже, зависимость отражена на графике.

Ширина пучка, мм	5.0 ± 0.1	$3,2 \pm 0,1$	$2,0 \pm 0,1$	$1,2 \pm 0,1$
I_{1064}, B	$45,5 \pm 0,5$	$45,0 \pm 0,5$	44.5 ± 0.5	44.0 ± 0.5
I_{532} , м B	$1,60 \pm 0,05$	$1,55 \pm 0,05$	$1,40 \pm 0,05$	$1,15 \pm 0,05$

Таблица 2: Зависимость линии второй гармоники $\lambda=532$ нм от интенсивности возбуждающей линии $\lambda=1064$ нм

Рис. 3: График зависимости $I_{532} = f(I_{1064})$

Затем при помощи была найдена зависимость второй гармоники от угла между направлением распространением луча и направлением синхронизма. Снятые данные и соответствующий график приведены ниже. Погрешность Θ мы взяли за $1''\approx 0,0003$ град, у $\Delta\Theta-0,0006$ град, чтобы не загромождать таблицу, вынесем их отдельно.

Θ, град	$\Delta\Theta$, град	I_{532} , м ${ m B}$
$\Theta_0 = 348,354$	0,000	$1,55 \pm 0,05$
348,321	0,033	$1,45 \pm 0,05$
348,308	0,045	$1,35 \pm 0,05$
348,295	0,059	$1,25 \pm 0,05$
348,284	0,069	$1,15 \pm 0,05$
348,278	0,076	$1,05 \pm 0,05$
348,269	0,085	0.95 ± 0.05

Таблица 3: Зависимость интенсивности второй гармоники I_{532} от угла $\Delta\Theta$ между направлением распространия луча $\lambda=1064$ нм и направлением синхронизма

Рис. 4: График зависимости $I^{(2\omega)}=f(\Delta\Theta)$

В последнем пункте работы мы измерили интенсивность возбуждающей линии, прошедшей через кристалл в случаях, когда излучение $\lambda = 532$ нм и когда оно практически отсутствует (для этого поворачивали кристалл), а затем вычислили коэффициент преобразования во вторую гармонику по формуле (2):

$$K = \frac{32 - 31}{32} = 0,03 \pm 0,07.$$

Заключение

Зависимость $I_{532} = f(I_{1064})$, полученная в первом пункте работы, визуально отличается от теоретической (1), но с учётом погрешностей через неё предположительно можно провести параболу. Расхождение может быть связано с плохим качеством системы: линза-корректор болталась на оптической скамье, отклоняясь от оси системы и изменяя интенсивность излучения. Эта особенность была замечена ближе к концу работы. Градуировка ограничителя, закреплённого на этой линзе, не была проделана заново.

График $I^{(2\omega)}(\Delta\Theta)$ хорошо повторяет теоретичкую зависимость в правой половине. Это говорит о хорошей юстировке гониометра, и можно предполагать, что левая часть зависимости также будет точно приближена экспериментальными точками.

В последнем пункте работы было получено очень приближённое значение коэффициента K с погрешностью, превосходящей значение. Предложенный метод имеет крайне низкую точность, поэтому стоит использовать другие способы измерения интенсивностей.