دورة سنة ٢٠٠٦ الاستثنائية

امتحانات شهادة الثانوية العامة فرع العلوم العامة

وزارة التربية والتعليم العالي المديرية العامة للتربية دائرة الامتحانات

عدد المسائل: ست مسابقة في مادة الرياضيات الاسم: المدة: أربع ساعات الرقم:

ملاحظة: :يسمح باستعمال آلة حاسبة غير قابلة للبرمجة او اختزان المعلومات او رسم البيانات. يستطيع المرشح الإجابة بالترتيب الذي يناسبه (دون الالتزام بترتيب المسائل الوارد في المسابقة)

I - (1,5 points)

Dans le tableau suivant, une seule des réponses proposées à chaque question est correcte. Ecrire le numéro de chaque question et donner, **en justifiant**, la réponse qui lui correspond.

		Réponses				
N°	Questions	a	b	c	d	
1	$z = -2e^{-i\frac{5\pi}{6}}.$ Un argument de z est :	$\frac{-\pi}{6}$	$\frac{\pi}{6}$	$\frac{7\pi}{6}$	$\frac{5\pi}{6}$	
2	L'ensemble des solutions de l'inéquation $ln(x^2 - 2x+2) > 0 \text{ est }:$	IR]0;+∞[IR – {1}]1;+∞[
3	$\lim_{x \to +\infty} x \ln\left(1 + \frac{1}{x}\right) =$	1	-1	+8		
4	z et z ' sont deux nombres complexes. Si z' = $\frac{\overline{z} - i}{z + i}$ alors $ z' $ =	z	2	$ z \times \overline{z} $	1	

II-(2,5 points)

Dans l'espace rapporté à un repère orthonormé direct (O; i, j, k) on donne les points A(1;-1;1), B(2;0;3), C(-1;1;1) et G(4;2;4). On désigne par (P) le plan déterminé par A, B et C.

- 1) a- Calculer l'aire du triangle ABC.b- Calculer le volume du tétraèdre GABC et déduire la distance de G au plan (P).
- 2) Prouver que x + y z + 1 = 0 est une équation du plan (P).
- 3) a- Montrer que le point F(2;0;6) est symétrique de G par rapport au plan (P).
 - b- Donner un système d'équations paramétriques de la droite (d) symétrique de la droite (AF) par rapport au plan (P).
 - c- Démontrer que la droite (AB) est une bissectrice de l'angle FAG.

III-(3 points)

Dans un plan orienté on donne deux carrés directs ABCD et BEFC. Soit S la similitude plane directe qui transforme A en E et E en F.

- 1) a- Déterminer le rapport k et un angle α de S.
 - b- Construire géométriquement le centre W de S.
 - c-Trouver le point G transformé de F par S.
- 2) Soit h la transformation définie par $h = S \circ S$.
 - a-Déterminer la nature et les éléments de h.
 - b- Préciser h (A) et exprimer WA en fonction de WF.
- 3) Le plan complexe est rapporté au repère orthonormé (A; AB, AD).
 - a- Déterminer les affixes des points E, F et W.
 - b- Trouver la forme complexe de S.
 - c- Donner la forme complexe de h et trouver l'affixe de h(E).

IV- (3 points)

On dispose de deux boîtes identiques $\,B_1$ et $\,B_2\,$.

Dans la boîte B_1 il y a **quatre** boules rouges et **deux** boules blanches et dans la boîte B_2 il y a **quatre** boules rouges, **trois** boules blanches et **une** boule noire.

- **A-** On met les deux boîtes B₁ et B₂ dans un même sac. On tire au hasard **une** boîte de ce sac puis on tire au hasard et simultanément **trois** boules de cette boîte.
- 1) Soit les événements suivants :

E : « les boules tirées sont trois boules rouges de la boîte B₁».

F: « les trois boules tirées sont rouges ».

a- Montrer que la probabilité de E est égale à $\frac{1}{10}$.

- b- Calculer la probabilité de F.
- 2) a- Quelle est la probabilité d'obtenir la boule noire parmi les trois boules tirées ?
 - b-Quelle est la probabilité de tirer trois boules de trois couleurs différentes ?
- **B-** On met toutes les boules des deux boîtes B_1 et B_2 dans une urne U.

On tire simultanément et au hasard trois boules de l'urne U.

Soit X la variable aléatoire égale au nombre de boules blanches tirées.

- 1) Déterminer la loi de probabilité de X.
- 2) Calculer l'espérance mathématique E(X).

V-(2,5 points)

Dans le plan rapporté à un repère orthonormé (O; i, j) on donne l'hyperbole (H) d'équation $x^2 - 3y^2 = 3$.

- 1) a- Déterminer les coordonnées des sommets et des foyers de (H) et trouver son excentricité.
 - b- Ecrire les équations des asymptotes et des directrices de (H).
 - c- Tracer l'hyperbole (H).
- 2) Soit (D) le domaine limité par l'hyperbole (H) et la droite d'équation x = 2. Calculer le volume engendré par la rotation de (D) autour de l'axe des abscisses.
- 3) On désigne par K et L les points de (H) d'abscisse 2. Montrer que les tangentes à (H) en K et L se coupent sur une directrice de (H).

VI- (7,5 points)

- A Soit l'équation différentielle (E) : $y' + 2y = 6xe^{-2x}$. On pose $z = y - 3x^2e^{-2x}$.
 - 1) Ecrire une équation différentielle (E') satisfaite par z et résoudre (E').
 - 2) Déduire la solution générale de (E) et trouver une solution particulière y de (E) qui vérifie y(0) = 0.
- B- Soit f la fonction définie sur IR par $f(x) = 3x^2e^{-2x}$ et (C) sa courbe représentative dans un repère orthonormé (O; i, j).
- 1) a- Calculer $\lim_{x \to +\infty} f(x)$ et déduire une asymptote à (C).
 - b- Calculer $\lim_{x \to -\infty} f(x)$ et $\lim_{x \to -\infty} \frac{f(x)}{x}$.
- 2) a- Calculer f '(x) et dresser le tableau de variations de f.
 - b- Démontrer que la courbe (C) admet deux points d'inflexion.
- 3) a- Tracer la courbe (C).
 - b- Déterminer, suivant les valeurs du réel m, le nombre de racines de l'équation : $me^{2x} 3x^2 = 0$.
- 4) Soit F la fonction définie sur IR par $F(x) = (ax^2 + bx + c)e^{-2x}$.
 - a- Déterminer a, b et c pour que F soit une primitive de f.
 - b- Calculer l'aire du domaine limité par la courbe (C), l'axe des abscisses et les droites d'équations x = -1 et x = 0.
- 5) La tangente à (C) au point $A(1; 3e^{-2})$ recoupe la courbe (C) au point E d'abscisse t . a- Vérifier que -0.3 < t < -0.2.
 - b- Soit h la fonction définie, sur IR, par $h(x) = -e^{x-1}$. Démontrer que h(t) = t.
- 6) Soit g la fonction définie par $g(x) = e^{f(x)}$.
 - a- Dresser le tableau de variations de g.
 - b- Trouver le nombre de solutions de l'équation g(x) = e.
 - c- Résoudre l'inéquation g(x) > 1.

	SCIENCES GENERALES – 2 ^{ème} SESSION 2006– MATHEMATIQUES			
I			N	
1	$z = -2e^{-i\frac{5\pi}{6}} = 2e^{i(\frac{-5\pi}{6} + \pi)} = 2e^{i\frac{\pi}{6}}$	b		
2	$\ln(x^2 - 2x + 2) > 0$; $x^2 - 2x + 2 > 1$; $(x - 1)^2 > 0$; $x \ne 1$.	c		
3	$\lim_{x \to +\infty} x \ln(1 + \frac{1}{x}) = \lim_{t \to 0} \frac{\ln(1+t)}{t} = 1 \text{avec } t = \frac{1}{x}.$	a	3	
4	$ z' = \frac{ \overline{z} - i }{ z + i } = \frac{ \overline{z} + i }{ z + i } = 1$	d		

II		
1.a	$S = \frac{\ \overrightarrow{AB} \wedge \overrightarrow{AC}\ }{2} \; ; \; \overrightarrow{AB} \wedge \overrightarrow{AC} = -4 \stackrel{\rightarrow}{i} - 4 \stackrel{\rightarrow}{j} + 4 \stackrel{\rightarrow}{k} \; ; S = 2\sqrt{3} \; u^2.$	1/2
1.b	$V = \frac{ \overrightarrow{AG}.(\overrightarrow{AB} \land \overrightarrow{AC}) }{6} = \frac{ -12 }{6} = 2 u^3 ; V = \frac{d \times S}{3} \text{ d'où } d = \frac{3V}{S} = \frac{6}{2\sqrt{3}} = \sqrt{3} \text{ u.}$	1
2	\rightarrow \rightarrow \rightarrow AM.(AB \land AC) = 0; -4(x-1)-4(y+1)+4(z-1)=0; x+y-z+1=0 \Rightarrow OU: Les coordonnées de A, B et C vérifient l'équation de (P).	1/2
3.a	FG(2; 2; -2); $N_P(1; 1; -1)$; FG = 2 N_P donc (FG) \perp (P). I milieu de [FG]; I(3; 1; 5); $3+1-5+1=0$ donc I appartient à (P). \Rightarrow OU: on démontre que (P) est le plan médiateur de [FG].	1
3.b	(d) est la droite (AG): $x = 3m + 1$; $y = 3m - 1$ et $z = 3m + 1$.	1
3.c	(AI) est la bissectrice de FÂG car AF = AG et I milieu de [FG], \rightarrow \rightarrow \rightarrow \rightarrow or AI(2;2;4) et AB(1;1;2) donc AI = 2 AB et B appartient à la droite (AI)	1

III		
1.a	$S(A) = E ; S(E) = F. k = \frac{EF}{AE} = \frac{1}{2} ; (\overrightarrow{AE}, \overrightarrow{EF}) = \frac{\pi}{2} (2\pi) ; \alpha = \frac{\pi}{2}.$	1/2
1.b	On a $\alpha = (\overrightarrow{WA}, \overrightarrow{WE}) = \frac{\pi}{2}$ d'où W appartient au cercle de diamètre [AE]; $\overrightarrow{WE}, \overrightarrow{WF} = \frac{\pi}{2}$ d'où W appartient au cercle de diamètre [EF]; W est donc le point commun aux deux cercles, autre que E (S(E) = F \neq E).	1/2
1.c	$S(E) = F \text{ et } S(F) = G \text{ d'où } \stackrel{\rightarrow}{(EF, FG)} = \frac{\pi}{2} \text{ et } G \text{ appartient à la demi droite [FD)}$ $\text{et } \frac{FG}{EF} = \frac{1}{2} \text{ d'où } G \text{ est le milieu de [FC]}.$	1/2
2.a	h est une similitude directe de centre W de rapport $\frac{1}{4}$ et d'angle π c'est donc l'homothétie négative de centre W et de rapport $-\frac{1}{4}$.	1

2.b	$S(A) = E \text{ et } S(E) = F \text{ donc } h(A) = S(S(A)) = S(E) = F, \text{ d'où } \overrightarrow{WF} = -\frac{1}{4} \overrightarrow{WA}.$	1/2
3.a	$z_E = 2$; $z_F = 2 + i$; $\overrightarrow{WF} = -\frac{1}{4} \overrightarrow{WA}$; $z_F - z_W = -\frac{1}{4} (z_A - z_W)$; $z_W = \frac{8}{5} + \frac{4}{5}i$	1
3.b	$z' - z_W = \frac{1}{2}e^{i\frac{\pi}{2}}(z - z_W); z' - \frac{8}{5} - \frac{4}{5}i = \frac{1}{2}i(z - \frac{8}{5} - \frac{4}{5}i); z' = \frac{1}{2}iz + 2$	1
3.c	$z' - z_{W} = -\frac{1}{4}(z - z_{W}); z' = -\frac{1}{4}z + 2 + i$ Pour $z = 2; z' = -\frac{1}{2} + 2 + i = \frac{3}{2} + i.$	1

IV						
A1.a	$P(E) = \frac{1}{2} \times \frac{C_4^3}{C_6^3} = \frac{1}{2}$	$\frac{1}{2} \times \frac{4}{20} = \frac{1}{10}$.				1/2
A1.b	P(F) = P(3rouges)	$de B_1) + P(3 roug$	es de B ₂) = $\frac{1}{10} + \frac{1}{2}$	$\frac{1}{2} \times \frac{C_4^3}{C_8^3} = \frac{1}{10} + \frac{1}{2} \times \frac{1}{2}$	$\frac{4}{56} = \frac{19}{140}$	1
	Obtenir une boule	noire parmi les tro	ois boules tirées re	vient à choisir B ₂	puis 1noire et 2	
A2.a	non noires de B ₂ ;	$p_1 = \frac{1}{2} \times \frac{C_1^1 \times C_7^2}{C_8^3}$	$= \frac{1}{2} \times \frac{21}{56} = \frac{3}{16}.$			1
	Obtenir 3 boules d	e couleurs différe	ntes revient à chois	sir B ₂ puis une bo	ıle de chaque	
A2.b	couleur; $p_2 = \frac{1}{2} \times$	$\times \frac{C_1^1 \times C_4^1 \times C_3^1}{C_8^3} = \frac{1}{2}$	$\frac{12}{2\times56}=\frac{3}{28}.$			1
	Les valeurs possib	les de X sont 0; 1	; 2 et 3.			
		0	1	2	2	
B1	Xi	2	1 2	2 1	3	2
	p_{i}	$\frac{C_9^3}{C_{14}^3} = \frac{84}{364}$	$\frac{C_5^1 \times C_9^2}{C_{14}^3} = \frac{180}{364}$	$\frac{C_5^2 \times C_9^1}{C_{14}^3} = \frac{90}{364}$	$\frac{C_5^3}{C_{14}^3} = \frac{10}{364}$	
B2	E(X) = 390/364 =	1,07	14	14	14	1/2

V		
1.a	$x^2 - 3y^2 = 3$. $\frac{x^2}{3} - y^2 = 1$. $a^2 = 3$ d'où les sommets A($\sqrt{3}$; 0) et A'($-\sqrt{3}$; 0). $c^2 = a^2 + b^2 = 4$ d'où les foyers F(2; 0) et F'(-2 ; 0). $e = \frac{c}{a} = \frac{2\sqrt{3}}{3}$.	11/2
1.b	Les asymptotes de (H) ont pour equations : $y = \frac{1}{\sqrt{3}}x$ et $y = \frac{-1}{\sqrt{3}}x$. Directrices : $x = \frac{a^2}{c} = \frac{3}{2}$; $x = -\frac{a^2}{c} = -\frac{3}{2}$.	1

		1/2
2	$V = \pi \int_{\sqrt{3}}^{2} y^{2} dx = \pi \int_{\sqrt{3}}^{2} (\frac{x^{2}}{3} - 1) dx = \pi \left[\frac{x^{3}}{9} - x \right]_{\sqrt{3}}^{2} = \frac{6\sqrt{3} - 10}{9} u^{3}.$	1
	Pour x = 2, $y^2 = \frac{1}{3}$ et y = $\frac{1}{\sqrt{3}}$ ou y = $-\frac{1}{\sqrt{3}}$, soit K(2; $\frac{1}{\sqrt{3}}$) et L(2; $-\frac{1}{\sqrt{3}}$).	
	Equation de la tangente en K : $y = f'(x_K)(x - x_K) + f(x_K)$; $2x - 6$ $yy' = 0$; $y' = \frac{x}{3y}$.	
3	$y = \frac{2}{\sqrt{3}}(x-2) + \frac{1}{\sqrt{3}} = \frac{2}{\sqrt{3}}x - \sqrt{3}$.	1
	Par symétrie, l'équation de la tangente en L est $y = -\frac{2}{\sqrt{3}}x + \sqrt{3}$	
	Les deux asymptotes se coupent en un point d'abscisse $x = \frac{3}{2}$ qui est	
	un point de la directrice	

VI			
A1	$y = z + 3x^2e^{-2x}$; $y' = z' + 3(2xe^{-2x} - 2x^2e^{-2x})$; $z' + 2z = 0$ (E'); $z = Ce^{-2x}$.	11/2	
A2	$y = z + 3x^2e^{-2x}$; $y' = z' + 3(2xe^{-2x} - 2x^2e^{-2x})$; $z' + 2z = 0$ (E'); $z = Ce^{-2x}$. $y = Ce^{-2x} + 3x^2e^{-2x}$; $y(0) = 0$ nous donne $C = 0$ et $y = 3x^2e^{-2x}$.	1	
B1a	$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{3x^2}{e^{2x}} = 3 \lim_{x \to +\infty} \left(\frac{x}{e^x}\right)^2 = 0 $; l'axe des abscisses est une asymptote à (C) en $(+\infty)$	1	
B1b	$\lim_{x \to -\infty} f(x) = +\infty; \lim_{x \to -\infty} \frac{f(x)}{x} = \lim_{x \to -\infty} 3xe^{-2x} = -\infty$ (C) admet une direction asymptotique verticale(celle de l'axe des ordonnées)		
B2a	$f'(x) = 6x(1-x) e^{-2x}$ $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	

	$f''(x) = 6e^{-2x} (2x^2 - 4x + 1)$		
B2b	f" (x) s'annule deux fois en changeant de signe aux points d'abscisses $\frac{2-\sqrt{2}}{2}$ et $\frac{2+\sqrt{2}}{2}$,	1	
	donc (C) a deux points d'inflexion.		
ВЗа	x	11/2	
B3b	$me^{2x} = 3x^2 \; ; \; m = 3x^2e^{-2x}$ $Pour \; m < 0 \; pas \; de \; racines$ $Pour \; 0 < m < 3e^{-2} \; ; \; trois \; racines$ $Pour \; m > 3e^{-2} \; une \; racine$ $Pour \; m > 3e^{-2} \; une \; racine$		
B4a	F'(x) = f(x) nous donne: $(2ax + b)e^{-2x} - 2e^{-2x}(ax^2 + bx + c) = 3x^2e^{-2x}; -2a = 3; 2a - 2b = 0 \text{ et } b - 2c = 0$ $a = -3/2; b = -3/2 \text{ et } c = -3/4; F(x) = -\frac{3}{2}(x^2 + x + \frac{1}{2})e^{-2x}$		
B4b	$A = \left[-\frac{3}{2}(x^2 + x + \frac{1}{2})e^{-2x} \right]_{-1}^{0} = \frac{3}{4}(e^2 - 1) u^2.$	1	
B5a	$3e^{-2} = 0.406$; $f(-0.3) = 0.4919 > 0.406$ et $f(-0.2) = 0.179 < 0.406$ donc $-0.3 < t < -0.2$. \Rightarrow OU: $f(-0.3) - 3e^{-2} = 0.0859 > 0$ et $f(-0.2) - 3e^{-2} = -0.227 < 0$.	1	
B5b	$3t^{2}e^{-2t} = 3e^{-2} ; t^{2} \frac{e^{-2t}}{e^{-2}} = 1 ; e^{-2t+2} = \frac{1}{t^{2}}; \left[e^{-(t-1)}\right]^{2} = \frac{1}{t^{2}}; e^{-(t-1)} = -\frac{1}{t}(car \ t < 0)$ d'où h(t) = t.	1	
B6a	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	
B6b	$g(x) = e$; $e^{f(x)} = e$; $f(x) = 1$; or (C) coupe la droite d'équation $y = 1$ en un seul point donc l'équation $g(x) = e$ admet une solution unique.	1/2	
В6с	$g(x) > 1$; $f(x) > 0$ donc $x \ne 0$. \Rightarrow OU: d'après le tableau de variations de g.	1/2	