

Leonhard Hetz Philipp Braun Carmine Bianco Alissa Wenzel Matthis Dirksen

Institute for Theoretical Information Technology Prof. Dr. Rudolf Mathar RWTH Aachen University

July 21, 2016

.

- Introduction
- Background
- System Model
- Simulation
- Evaluations
- Conclusions
- References

4th Semester Institute Project

- Introduction
 - Motivation
- Background
- System Model
- Simulation
- Evaluations
- Conclusions
- References

RWTHAACHEN UNIVERSITY

4th Semester Institute Project

Motivation

- CoMP: optimizing performance by sending and receiving data to and from User Entities from several points
- Especially important on cell edges
- Aim: improving quality for user, optimum capacity of network
- CoMP still in development (not included in LTE Rel. 10)

RWITHAACHEN UNIVERSITY

- Introduction
- Background
- System Model
- Simulation
- Evaluations
- Conclusions
- References

Background - Overview on research

Background

- Papers on LTE-A, Joint Transmission, Beamforming and CoMP in general
- Reference: MATLAB-based down- link physical-layer simulator for LTE (Mehlführer, C., 2009)
 - MATLAB-based downlink physical-layer simulator for LTF
 - covering Multi-Cell Multi-User simulation scenarios -> most realistic

Background - Scheduling

Scheduling

- assignment of resource blocks (RB) to each user
- i.e. Round Robin (timeslots divided equally between users)
- dynamic scheduling: mapping RBs to users based on different criteria

Background - SINR

SINR

• signal-to-interference-plus-noise ratio

$$\frac{S}{I+N} \tag{1}$$

- S = power of signal
- I = power of interference
- N = power of noise
- used to determine signal quality

Background - CQI and channel modulation with AACHEN UNIVERSITY

CQI and channel modulation

- Channel Quality Indicator
- determines modulation
 - transfer block size (TBS)
 - resource blocks for users
- depends on SINR
- Best CQI scheduling: maximation of rate, but unfair (only UEs with very good channels get scheduled at all)
 - -> "fair" modulation necessary

Background - overview on CoMP

CoMP - overview

- LTE Advanced: major enhancement of the LTE standard
- CoMP: Coordinate MultiPoint operation
 - refers to wide range of techniques
 - dynamic coordination or transmission and reception with multiple geographically separated eNBs (base stations)
 - goal: enhancing overall system performance, more effective use of resources, improved end user service quality (especially at the cell edges)

Background - CoMP: major categories

CoMP: major categories

Joint Processing (JP)

- Joint Transmission (JT)
- Dynamic Point Selection (DPS)
 - · with muting
 - without muting

Coordinated Scheduling (CS) / Coordinated Beamforming (CB)

Figure 4. Principle of CoMP.

Background - Coordinated Scheduling

Coordinated Scheduling (CS)

- data available at one node
- transfered packets do not overlap in time
- TODO insert graphic: timesteps

Background - Dynamic Point Selection

Dynamic Point Selection (DPS)

- data usually available at several nodes
- user decides per packet which base station is best
- TODO insert graphic: timesteps

- Introduction
- Background
- System Model
- Simulation
- Evaluations
- Conclusions
- References

4th Semester Institute Project

System Model - Assumptions

- UE Location is known
- UE does not move so no Dopplereffect or similar effects
- CQI, PMI, RI are randomly generated
 - PMI depends on generated CQI
- Fixed number of UEs in a simulation
- Mean values of the Rayleigh distribution (provided from 3GPP)
- Basestations are created in a hexagonal layout

4th Semester Institute Project

System Model - Programming

- Classes providing main functionality: Central Unit, Base Station, User Entity, Channel
- Classes providing background data and auxiliary functions: TBS, helpers, params, precoding matrix

T RWTHAACHEN UNIVERSITY

4th Semester Institute Project

System Model - Classes providing main functionality

- Central Unit
 - Coordinates all base stations
- Base Station
 - Matches subcarriers to connected users, calculates modulation
- User Entity
 - Returns feedback to each base station
- Channel
 - Certain frequency and amount of subcarriers
 - Friis equation for calculation of path loss
 - Model Rayleigh channel

RWTHAACHEN UNIVERSITY

4th Semester Institute Project

.

SINR Profile

- Introduction
- Background
- System Model
- Simulation
- Evaluations
- Conclusions
- References

RWTHAACHEN UNIVERSITY

4th Semester Institute Project

Simulation - main characteristics

- Flexibility
- Simulation Process
 - Initialization
 - Simulation Cycle
 - mapping of users to basestations
 - assignment of recourceblocks to users
 - calculation of the best modulation and coding scheme

Simulation DPS I

Simulation DPS II

Simulation CS I

Simulation CS II

RWITH AACHEN UNIVERSITY

- Introduction
- Background
- System Model
- Simulation
- Evaluation
- Conclusions
- References

RWTH AACHEN UNIVERSITY

Evaluation

- Cost = additional backhaul
- Use = less interference at cell edges
- (I need graphics for the following slides)

oint Til

4th Semester Institute Project

Advantages

- CoMP allows better allocation for users at cell edges
 more receiving power
- Utilization of different subcarriers inside conflict zones avoids interference

Disadvantages

- Computational power and time loss
- Bigger signaling overhead between users and base stations
- More frequent communication with the CU -> bigger backhaul needed

RWTHAACHI UNIVERSI

- Introduction
- Background
- System Model
- Simulation
- Evaluations
- Conclusions
- References

4th Semester Institute Project

Conclusion

- Main functionalities for a LTE-Advanced simulator implemented
 - Implementation of Coordinated Scheduling and Dynamic Point Selection
 - Comparison with system behaviour without CoMP
- Advantages of CoMP mainly for users at cell edges
 - Profitability vs backhaul/signaling trade-offs should be evaluated on a case-by-case basis
 - Possible solution: activating Coordinated Multipoint only as a certain conflict density in the simulated environment is reached

RWTHAACHEN UNIVERSITY

4th Semester Institute Project

Project goals reached

- Analysis of behaviour of frequency flat, slow fading channels
- Differences between SISO and MIMO channel models and their implications
- Criteria for estabishling a state of conflict between different user entities
- Choice of channel modulation based upon generated feedback
- Allocating users to base stations according to selected CoMP scheme

T

Learning goals reached

Programming

- Object-oriented programming on MATLAB
- Graphical representation of simulation results
- Working with parameter files/external files (e.g. precoding matrix) and already existing MATLAB libraries
- Defining model simplifications while still mantaining a degree of correctness

Ti RWTHA UNIV

4th Semester Institute Project

Learning goals reached

Soft skills

- Collection of preliminary informations through approach to English language scientific literature
- Teamwork: weekly meetings and frequent contacts with the project supervisors
 - Task division in the team according to current needs and time availability
- Debugging and version control on GitHub
- LATEX basics for the final presentation

RWTHAACHEN UNIVERSITY

4th Semester Institute Project

What comes next?

- Implementation of other CoMP schemes, e.g. coordinated beamforming
- Different channel models (e.g. fast fading channels)
- Further optimization of CU/BS
 - Different allocation of implementation stages between CU and BS
 - More refined scheduling patterns (currently implemented: Round Robin)
- Implementation of different environment setups and parameters

RWTHAACHEN UNIVERSITY

- Introduction
- Background
- System Model
- Simulation
- Evaluations
- Conclusions
- References

T RWTHAACHEN UNIVERSITY

4th Semester Institute Project

References

- Mehlführer, C. et al, 2009. Simulating The Long Term Evolution Physical Layer. Proc. 17th European Signal Processing Conference (EUSIPCO 2009), [online]
- Davydov, A. et al, 2013. Evaluation of Joint Transmission CoMP in C-RAN based LTE-A HetNets with Large Coordination Areas. Globecom 2013 Workshop.
- Hong, M. et al, 2012. Joint Base Station Clustering and Beamformer Design for Partial Coordinated Transmission in Heterogeneous Networks.
- Sawahashi, M. et al, 2010. Coordinated Multipoint Transmission/Reception Techniques For LTE-Advanced.

Thank you for your attention!