EXPERIENCIA 3

MÓDULOS DE ELASTICIDAD

OBJETIVO

✓ Determinar los módulo de **Young (Y)** y de **corte** (μ) de distintos materiales, midiendo propiedades asociadas a su deformación.

EN EL LABORATORIO

A. MÓDULO DE YOUNG

A.1) Determine λ de la barra de acero, midiendo el largo total de la barra (L) y su masa (M).

$$\lambda = M/L$$

Nota: Exprese todos sus resultados en el sistema M.K.S.

A.2) Determine el momento de área, midiendo el ancho (a) y el espesor (b) de la barra.

$$I = \frac{ab^3}{12}$$

- A.3) Instale la barra como se indica en la figura. Determine la longitud (ℓ) que la barra sobresale del borde la prensa de sujeción.
- A.4) Determine la deflexión en el extremo, $z(\ell)$, para distintos valores de la masa m, partiendo de $m\!=\!0$. Obtenga unos 5 valores. Utilice el espejo adyacente a la escala para evitar lecturas erróneas debido al paralaje. (Un criterio para elegir el mayor valor de m, es que la derivada dy/dx debe ser < 1, en cualquier sección de la barra y por lo tanto el ángulo θ debe ser menor que 45°, para que la

aproximación $\frac{1}{R} = \frac{d^2y}{dx^2}$ sea válida.

- A.5) Grafique $\mathbf{Z}(\ell)$ versus m y obtenga el mejor valor de la pendiente que debe corresponder a la constante B del punto A.3 de la parte previa. Obtenga el valor de Y.
- A.6) Compare el resultado obtenido con valores de tablas

REPITA LA MEDICIÓN CON UNA BARRA DE PLÁSTICO (REGLA).

B. MÓDULO DE CORTE

Utilizando el sistema mostrado en la figura, determine el periodo de oscilación del resorte y a partir del valor obtenido encuentre el módulo de corte del material. B.1) Determine la masa del resorte de acero M, el radio del resorte (r), el radio del alambre (a) y el número total de espiras (n).

B.2) Monte el resorte con el porta masas y encuentre por inspección un valor adecuado para la masa a colgar (m). La masa m no debe ser muy grande, pues estiraría mucho el resorte (ver nota en ecuación (4). Por otra parte, una masa muy chica daría un período demasiado corto y por lo tanto difícil de medir.

- B.3) Ponga el sistema a oscilar verticalmente y mida el período, contando un número adecuado de ciclos: no muy chico, pues la medición sería poca precisa, ni muy grande para el amortiguamiento influya poco. Se sugiere unos 20 ciclos.
- B.4) Determine μ de la fórmula (6) del apéndice B y compare con valores de tablas.

REPITA LA MEDICIÓN CON UN RESORTE DE BRONCE.

ANTES DEL LABORATORIO (PREPARATORIO PARA EL QUIZ)

A. MÓDULO DE YOUNG

Para la barra de la figura:

A.1) Determine el torque que actúa sobre la sección x, debido a la masa del tramo $x-\ell$ y a la masa m que cuelga.

A.2) Observando que z(0) = 0 y que $dz/dx\big|_{x=0} = 0$, demuestre que la deflexión de la barra está dada por :

$$Z(x) = \frac{\lambda g \ell^4}{YI} \left(\frac{x^4}{24\ell^4} - \left(1 + \frac{m}{\lambda \ell} \right) \frac{x^3}{6\ell^3} + \left(\frac{1}{2} + \frac{m}{\lambda \ell} \right) \frac{x^2}{2\ell^2} \right)$$

en que :

z(x): deflexión de la barra en x.

x : posición a partir de la pared.

 λ : densidad lineal de masa de la barra.

g : aceleración de gravedad.

 ℓ : largo de la barra (desde la pared).

Y : módulo de Young.

: momento de área de la sección transversal con respecto al eje neutro

m : masa del cuerpo colgado a un extremo.

A.3) A partir de z(x), obtenga la deflexión de la barra $\mathcal{Z}(\ell)$ en el extremo donde cuelga m. Exprese el resultado en la forma :

$$z(\ell) = A + Bm$$

A.4) Demuestre que el momento de área de un rectángulo, respecto al eje que se indica, es:

$$I = \frac{a b^3}{12}$$

B. MÓDULO DE CORTE

B.1) Demuestre la expresión 5 del Apéndice B.

$$z = \left(\frac{4nr^3}{\mu a^4}\right)P$$

B.2) Encuentre que la energía potencial elástica del resorte está dada por:

$$W_{\rm e}(z) = \left(\frac{\mu a^4}{8nr^3}\right) z^2$$

B.3) Derive la relación para la energía cinética del resorte.

$$E_{K} = \frac{1}{6} M \left(\frac{dz}{dt} \right)^{2}$$

B.4) Encuentre la expresión para un período del resorte en base a los parámetros definidos en el apéndice B.

APÉNDICES

Las deformaciones de los cuerpos (alargamientos, acortamientos, torsiones) dentro del límite de elasticidad, pueden relacionarse con las fuerzas externas que las producen a través de constantes como el **MÓDULO DE YOUNG** (Y) y **EL MÓDULO DE CORTE** (μ) .

El módulo de Young puede definirse como la razón entre el esfuerzo normal de tracción (o compresión) y el alargamiento (o acortamiento) unitario .

$$Y = \frac{F/A}{\Delta \ell / \ell}$$

El módulo de corte puede definirse como la razón entre el esfuerzo de corte (tangencial) y el ángulo de torsión.

$$\mu = \frac{G/A}{\theta}$$

Para analizar situaciones más complejas, tales como, la flexión de una barra o el alargamiento de un resorte (ya sea debido a su propio peso o a fuerzas externas) se considera primero un elemento diferencial del cuerpo y luego por integración se resuelve el problema para el cuerpo completo,

Del análisis mencionado puede obtenerse información como la siguiente:

- La deformación del cuerpo en distintos puntos de éste.
- La forma en que el cuerpo oscilará al producir pequeñas perturbaciones.

En el presente laboratorio determinaremos el módulo de Young observando la flexión de una barra debido a una carga, y el módulo de corte, midiendo al período de oscilación de un resorte con una masa suspendida.

A. MÓDULO DE YOUNG

En la figura se muestra una sección de una barra flectada. El torque aplicado sobre una sección de la barra, ubicada en \mathbf{x} , está dado por :

$$\tau = \frac{\mathbf{Y} \cdot \mathbf{I}}{r}$$

donde:

- Y es el módulo de Young del material de la barra.
- I es el momento de área de la sección transversal de la barra en torno aleje PP' (que pasa por eje neutro). Por definición.
- $I = \int_{\text{area Transv}} h^2 dA$ en que <u>h</u> es la distancia del eje al elemento de área dA.
- r es el radio de curvatura de la barra dado por :

$$\frac{1}{r} \frac{d^2z/dx^2}{\left(1+\left(\frac{dz}{dx}\right)^2\right)^{3/2}} \approx \frac{dz}{dx^2}, \quad \text{si} \quad \frac{dz}{dx^2} << 1$$

(la aproximación es válida si la barra no está demasiado curvada). Entonces:

$$\tau = Y \quad I \quad \frac{d^2z}{dx^2}$$

B. MÓDULO DE CORTE

Considere una barra cilíndrica como la de la figura. El torque au necesario para torcer la barra un ángulo heta está dado por :

$$\tau = \mu \frac{\pi a^4}{2\ell} \phi \tag{1}$$

El trabajo necesario para producir la torsión está dado por :

$$w = \int_{-\phi}^{\phi} \tau d\phi = \mu' \frac{\pi a^4}{2\ell} \frac{\phi^4}{2}$$

y reemplazando ϕ de la ecuación (1)

$$W = \frac{\tau^2 \ell}{\pi \mu a^4} \tag{2}$$

Este trabajo realizado por un agente externo sobre la barra puede considerarse "ALMACENADO" como energía potencial elástica.

A continuación calcularemos el período de oscilación de un resorte unido a una masa. Para esto escribiremos una expresión para la energía mecánica total del resorte la masa.

B.1) Energía potencial elástica.

En la figura se muestra un resorte de n espiras sometido a tracción por una fuerza P.

El alargamiento del resorte puede calcularse considerando la torsión de una sección de resorte de largo ℓ .

Esta sección se tuerce un ángulo θ lo que hace alargarse el resorte una distancia z, dada por

$$z = r \theta$$
 (3)

Por otra parte el torque que produce esta torsión es $\tau = r P$ (4)

Esta ecuación es en realidad una aproximación, en la cual no se considera la flexión del alambre. La aproximación es buena si el estiramiento no es muy grande.

Igualando (1) y (4), considerando además que el largo total del alambre que forma el resorte es $L=2\pi rn$, y usando (3), y considerando una fuerza P aplicada en los extremos del resorte, se producirá un alargamiento dado por :

$$z = \frac{4nr^3}{\mu a^4} P \tag{5}$$

(Observe que $4nr^3/\mu a^4$ corresponde a 1/K, siendo K la constante elástica del resorte).

B.2) Reemplazando (4) en (2) y usando (5) para eliminar P, se concluye que la energía potencial elástica está dada por :

$$U_{\rm e}(z) = \frac{\mu a^4}{8nr^3} z^2$$

(Observe que corresponde a $\frac{1}{2}Kz^2$ como era de esperar).

B.3) La energía cinética del sistema es la suma :

$$E_{\kappa} = E_{\kappa masa} + E_{\kappa resorte}$$

La energía cinética de la masa es simplemente $\frac{1}{2}m\left(\frac{dz}{dt}\right)^2$

En cambio cada porción *ds* del resorte se mueve con velocidad diferente, proporcional a la distancia *s* al extremo fijo.

$$v(s) = \left(\frac{dz}{dt}\right) \frac{s}{L}$$

la energía cinética de esa porción es, entonces :

$$dE_{K} = \frac{1}{2} \left(ds \cdot \lambda \right) \left(\frac{dz}{dt} \frac{s}{L} \right)^{2}$$

siendo λ la densidad lineal de masa del alambre.

Entonces la energía cinética del resorte completo está dada por :

$$E_{K} = \frac{1}{6} M \left(\frac{dz}{dt} \right)^{2}$$

donde M es la masa total del resorte $M = \lambda \cdot L$

B.4) La energía potencial gravitatoria puede escribirse:

$$U_g(z) = -mgz - Mg\frac{z}{2}$$

Escriba una expresión para la energía mecánica total del sistema masa – resorte.

Considerando que el sistema es conservativo, dE/dt=0, entonces es factible encontrar una ecuación diferencial para z, que corresponde a una oscilación armónica simple cuyo período está dado por :

$$T = 4\pi \sqrt{\frac{nr^3 \left(3m + M\right)}{3\mu a^4}}$$

En consecuencia, el módulo de corte está dado por :

$$\mu = \frac{16\pi^2 \ nr^3 \left(3m + M\right)}{3T^2 \ a^4} \tag{6}$$

donde :

 μ : módulo de corte

n : número de espiras del resorte

m : masa del objeto colgado

M : masa del resortea : radio del alambrer : radio del resorte

BIBLIOGRAFÍA

- 1. Da silva, Luis "Elasticidad", Cap 6-11
- 2. Feynman, Leighton, Sands. "The Feynman Lectures on Physics". Volumen II, cap. 38.
- 3. Alonso, Finn. "Física". Volumen III, Cap. 18
- 4. French. "Vibraciones y ondas". Cap. 3.