Разложить функцию в ряд Тейлора в окрестности точки. Указать область сходимости полученного ряда.

Указание. Использовать разложения элементарных функций в степенные ряды.

- 1. a) $f(x) = \sin 3x$, $x_0 = \pi$;
 - b) $f(x) = xe^{3+x}, x_0 = 1.$
- 2. a) $f(x) = e^{2+3x}$, $x_0 = 2$;
 - b) $f(x) = 6\sin x^3 + x^2(6 x^4), x_0 = 0.$
- 3. a) $f(x) = \ln(6+3x), x_0 = -1;$
 - b) $f(x) = 2 3(x^5 x) + 3\cos x^2$, $x_0 = 0$.
- 4. a) $f(x) = 5(2-x)^{-1/3}$, $x_0 = 1$;
 - b) $f(x) = x^2 \cos(x+1)$, $x_0 = -1$.
- 5. a) $f(x) = \cos(x/4)$, $x_0 = \pi$;
 - b) $f(x) = x^2(1+x)^{-2}$, $x_0 = 0$.
- 6. a) $f(x) = 2^{3(x+1)}$, $x_0 = -2$;
 - b) $f(x) = x(x+2)^{-1}$, $x_0 = 1$.
- 7. a) $f(x) = e^{x^2 4x}$, $x_0 = 2$;
 - b) $f(x) = 1 + x^2 \ln(2 x), x_0 = 1.$
- 8. a) $f(x) = (4-3x)^{-1}$, $x_0 = -1$;
 - b) $f(x) = (x+2)(e^{x^2}-1), x_0 = 0.$
- 9. a) $f(x) = (5-2x)^{1/3}$, $x_0 = 2$;
 - b) $f(x) = x\sin(x+1), x_0 = -1.$
- 10. a) $f(x) = (x^2 3x + 2)^{-1}$, $x_0 = 0$;
 - b) $f(x) = xe^{2x}$, $x_0 = 1$.
- 11. a) $f(x) = \ln(2-5x)$, $x_0 = -3$;
 - b) f(x) = sh2x, $x_0 = 1$.
- 12. a) $f(x) = (7+3x)^{-1/4}$, $x_0 = -1$;
 - b) f(x) = ch 3x, $x_0 = 2$.
- 13. a) $f(x) = e^{x^2 6x + 7}$, $x_0 = 3$;
 - b) $f(x) = x(x^2 2x + 5)^{-1}$, $x_0 = 1$.
- 14. a) $f(x) = (5 + x^2)^{-1/2}$, $x_0 = 0$:
 - b) $f(x) = x^2 e^x$, $x_0 = 1$.
- 15. a) $f(x) = (2x-5)^{-1}$, $x_0 = -3$;
 - b) $f(x) = x + 2 + xe^x$, $x_0 = 1$.

- 16. a) $f(x) = \cos(\pi x/3)$, $x_0 = -3/2$;
 - b) $f(x) = x\ln(1+3x), x_0 = 1.$
- 17. a) $f(x) = e^{-3(x^2+5)}$, $x_0 = 0$;
 - b) $f(x) = x(x+3)^{-1}$, $x_0 = 1$.
- 18. a) $f(x) = x^3 \cos^2 3x$, $x_0 = 0$;
 - b) $f(x) = (x+1)(x-2)^{-1}$, $x_0 = 1$.
- 19. a) $f(x) = e^x + x + 3$, $x_0 = 2$;
 - b) $f(x) = (1+x)\ln(3+x), x_0 = -2.$
- 20. a) $f(x) = x^2 + 3 + 1/x$, $x_0 = 1$;
 - b) f(x) = ch2x, $x_0 = -1$.
- 21. a) $f(x) = \ln(x^2 + 6x + 5)$, $x_0 = 0$;
 - b) $f(x) = xe^{1-x}$, $x_0 = 1$.
- 22. a) $f(x) = e^{2-x} + 3x$, $x_0 = 4$;
 - b) $f(x) = (7-2x)(x^2-x-2)^{-1}$, $x_0 = 0$
- 23. a) $f(x) = x^2 + \cos 2x$, $x_0 = -\pi$;
 - b) $f(x) = x\ln(4+3x), x_0 = -1.$
- 24. a) $f(x) = (x^2 + x)^{-1}$, $x_0 = -2$;
 - b) $f(x) = (2x+3)(e^{x^2}-1), x_0 = 0.$
- 25. a) $f(x) = x^2 e^{-6x}$, $x_0 = 0$;
 - b) $f(x) = x^3 + \ln(2 x), x_0 = 1.$
- 26. a) $f(x) = x^2 \cos(x^3 + \pi/4), x_0 = 0$;
 - b) $f(x) = (x^2 3x + 2)^{-1}$, $x_0 = -3$.
- 27. a) $f(x) = (2 + 7x^5)^{-1/2}$, $x_0 = 0$;
 - b) $f(x) = \sinh x$, $x_0 = 2$.
- 28. a) $f(x) = (4x)^{1/3}$, $x_0 = -1$;
 - b) $f(x) = x^2 + \sin(1-x), x_0 = 1.$
- 29. a) $f(x) = \sin(x^2 + \pi/4), x_0 = 0;$
 - b) $f(x) = x \ln(3+x), x_0 = -1.$
- 30. a) $f(x) = (2x+3)^{-2/3}$, $x_0 = -2$;
 - b) f(x) = ch x, $x_0 = 1$.

№2 Доопределяя необходимым образом, разложить функцию y = f(x), заданную на полупериоде (0; a), в ряд Фурье по косинусам и по синусам. В обоих случаях нарисовать график суммы ряда Фурье и вычислить значение суммы ряда Фурье в указанной точке x_0 .

№	f(x)	а	x_0	No	f(x)	а	x_0
1	y = 1 - 3x	1	-50,3	16	y = 4x + 1	2	56,2
2	y = 4 + 4x	2	103	17	y = 3x - 1	1	-57,4
3	y = 1 + 2x	3	-121	18	y = 3x + 3	2	28,3
4	y = 1 - x	4	65	19	y = 2 - 2x	2	-28,3
5	y = 4 - 4x	2	-142	20	y = 3 - 3x	1	49,5
6	y = 3x + 2	3	364	21	y = 3x + 1	2	-49,5
7	y = 4 - 2x	1	-531	22	y = 2 - 4x	1	93,6
8	y = 1 - 2x	4	100	23	y = 2 + 2x	4	-153
9	y = 4x - 1	4	-100	24	y = 4x + 3	1	79,6
10	y = 2 - 3x	3	425	25	y = 2x - 2	2	-143
11	y = 4x - 3	2	-163	26	y = 3x - 2	2	143
12	y = 1 + x	1	57,4	27	y = 4x + 2	1	525,2
13	y = 2x - 1	2	-163	28	y = 4x - 2	2	85,5
14	y = 1 - 4x	1	69,5	29	y = 3 - 4x	1	-85,5
15	y = x - 1	4	-84,2	30	y = 3x - 3	2	103,2

Изобразить на комплексной плоскости множество, заданное неравенствами.

1.
$$\mathcal{D} = \{z : |z - 4| \le 5, |z + i| > 2\}.$$

2.
$$\mathcal{D} = \{z : |z - 1 - i| > \sqrt{2}, |z - 2 - 2i| \le 2\sqrt{2}\}.$$

3.
$$\mathcal{D} = \{z : 2 \le |z+2| < 3, -\pi/2 < \arg z \le \pi/2\}.$$

4.
$$\mathcal{D} = \{z : 1 < |z + 1 - 2i| \le 3, \ \pi \le \arg z < 2\pi\}.$$

5.
$$\mathcal{D} = \{z : 1 \le |z+3-2i| < 4, |\arg z| \le 3\pi/4\}.$$

6.
$$\mathcal{D} = \{z : 2 < |z + 2 + 4i| \le 5, |\arg z| > \pi/2\}.$$

7.
$$\mathcal{D} = \{z : |z| > 3 + \operatorname{Re} z, \ \pi/2 \le \arg z < 2\pi/3\}.$$

8.
$$\mathcal{D} = \{z : |z+2+3i| < 3, \ \pi \le \arg z \le 3\pi/2\}.$$

9.
$$\mathcal{D} = \{z : |z| \le 5, |3\pi/2 - \arg z| < \pi/3\}.$$

10.
$$\mathcal{D} = \{z : |z| < 6 - \operatorname{Re} z, |\operatorname{Im} z| \le 4\}.$$

11.
$$\mathcal{D} = \{z : |z| \ge 3 - \operatorname{Re} z, |\operatorname{Im} z| > 4\}.$$

12.
$$\mathcal{D} = \{z : |z| > 3, |z - 4| \le 2, -\pi/2 \le \arg z < 0\}.$$

13.
$$\mathcal{D} = \{z : |z - 1| < 1, \operatorname{Re} z + \operatorname{Im} z \le 1\}.$$

14.
$$\mathcal{D} = \{z : |z+i| \le 1, |3\pi/2 - \arg z| < \pi/3\}.$$

15.
$$\mathcal{D} = \{z : |z - 3 + 2i| \le 2, 0 < \operatorname{Re}(iz) \le 1\}.$$

16.
$$\mathcal{D} = \{z : |z| \le 4 - \operatorname{Im} z, 0 < \arg z < \pi\}.$$

17.
$$\mathcal{D} = \{z : |z| > 1 + \operatorname{Im} z, |z - i| \le 2\}.$$

18.
$$\mathcal{D} = \{z : 1 < |z - 1| \le 2, \ \pi/4 \le \arg z < \pi/3\}.$$

19.
$$\mathcal{D} = \{z : |z| \le 4 + \operatorname{Re} z, |z - 0.5| < 4\}.$$

20.
$$\mathcal{D} = \{z : |z - 4 - 3i| \ge 2, \operatorname{Re} z + \operatorname{Im} z < 1\}.$$

21.
$$\mathcal{D} = \{z : \pi/4 \le \arg z \le 3\pi/4, |\operatorname{Re}(iz)| < 1\}.$$

22.
$$\mathcal{D} = \{z : |z+1-i| > \sqrt{2}, |\operatorname{Im}(iz)| \le 1\}.$$

23.
$$\mathcal{D} = \{z : 1 \le |z - 3 + 2i| < 3, \operatorname{Im}(z^2) \ge 2\}.$$

24.
$$\mathcal{D} = \{z : 2 < |z - 3 + 4i| \le 4, \operatorname{Re} z + \operatorname{Im} z > 1\}.$$

25.
$$\mathcal{D} = \{z : -3\pi/4 \le \arg z \le -\pi/4, -6 \le \operatorname{Im} z \le -3\}.$$

26.
$$\mathcal{D} = \{z : |z| < 2 - \operatorname{Re} z, |z+1| \le 2\}.$$

27.
$$\mathcal{D} = \{z : |z+i| \ge 1, |z-3i| < 5\}.$$

28.
$$\mathcal{D} = \{z : |z+2-2i| > 3, \ \pi/2 \le \arg z < \pi\}.$$

29.
$$\mathcal{D} = \{z : |7\pi/4 - \arg z| < \pi/4, |z-1| \le 2\}.$$

30.
$$\mathcal{D} = \{z : 0 < \operatorname{Re}(iz) < 2, |\arg z| \ge \pi/4\}.$$

№4 Решить уравнение. Корни уравнения изобразить на комплексной плоскости.

<i>J</i> 1			
No		No	
1	$z^6 - 4z^3 + 3 = 0$	16	$z^4 + 8iz^2 - 16 = 0$
			2 612 10 0
2		17	
	$e^{2z} + 2e^z - 3 = 0$		$\sin z = -3i$
3		18	
	$z^4 - 4z^2 + 5 = 0$		$z^4 + 2z^2 + 4 = 0$
4		19	
	$e^{4z} + 2e^{2z} + 4 = 0$		$\cos z = 2i$
5		20	
	$e^{8z} + 8ie^{4z} - 16 = 0$		$\operatorname{sh} z = -4i$
6		21	
	$e^{2z} + 3e^z - 4 = 0$		$z^8 + 10iz^4 - 25 = 0$
7		22	
	$z^6 + 16z^3 + 64 = 0$		tg z = -2i
8		23	
	$\sin z = 2$		$e^{6z} + 14ie^{3z} - 49 = 0$
9		24	
	$z^8 + \left(\frac{1+i}{1-i}\right)^2 = 0$		th $z = 3$
10		25	
	$\cos z = -3$		$z^4 - 2iz^2 - 1 = 0$
11		26	
	$z^6 + i \frac{2+i}{1-2i} = 0$		$z^6 - 2iz^3 + 2 = 0$
12		27	
	sh z = -5		$\sin 3z \cos 3z = 4$
13		28	
	$z^4 - z^2 + 1 = 0$		$\cos^2 3z - \sin^2 3z = 2$
14	chz - 6 = 0	29	
			$sh^2z - ch^2z = 3$
15	$\cos 8z = 2$	30	ch9z = 6

№5 Исследовать функцию на аналитичность.

No	f(z)	No	f(z)
1	$f(z)=ie^{3z-i^2}$	16	$f(z) = z^2 + 5\overline{z} - 7i$
2	$f(z) = ie^{2z} - (z - i)^2$	17	$f(z) = i\overline{z} \cdot \operatorname{Im}(2z)$
3	$f(z) = \sinh 2z + i$	18	$f(z) = \frac{i}{z} + z^2$
4	$f(z) = (iz)^2 + 5z + 3i$	19	f(z) = z z + i
5	$f(z)=ie^{(iz-1)}$	20	$f(z) = \overline{z}e^z + iz^2$
6	$f(z) = \operatorname{ch} 3z - i$	21	$f(z)=z\overline{z}+z^2+4$
7	$f(z) = 3z^2 - 4z + 2i$	22	$f(z) = \operatorname{sh} iz + \operatorname{Re} z$
8	$f(z)=ie^{5z}+z$	23	$f(z)=i z -z^2$
9	$f(z) = iz \cdot \text{Re } 5z$	24	$f(z) = -iz^3 + 2i$
10	$f(z) = (z+2) \cdot \operatorname{Im} 3z$	25	$f(z) = \frac{\text{Re } 2z}{z}$
11	$f(z) = i(z+i)^2 - 4z$	26	$f(z) = \frac{\operatorname{Im}(5z+3)}{z}$
12	$f(z)=ze^{-3z}-i$	27	$f(z) = \frac{4}{z} - \operatorname{Im} z$
13	$f(z) = (3z - 2i) \operatorname{Im}(z + i)$	28	$f(z) = (2z + 5i) \operatorname{Re} z$
14	$f(z) = \cos iz - \operatorname{ch} z$	29	$f(z) = \frac{z}{ z }i$
15	$f(z) = 6z^3 - iz^2 + 6z$	30	$f(z) = z \operatorname{Im}(iz^2 + 3z)$

Восстановить аналитическую в окрестности точки z_0 функцию f(z) по известной действительной или мнимой части.

1.
$$v(x,y) = 2\cos x \cosh y - x^2 + y^2$$
, $f(0) = 2i$.

2.
$$v(x,y) = -2\sin(2x) \sinh(2y) + y$$
, $f(0) = 2$.

3.
$$v(x,y) = \exp\left(-\frac{y}{2}\right)\cos\frac{x}{2} - \frac{y^3}{3} + x^2y$$
.

4.
$$u(x,y) = \operatorname{sh} \frac{y}{2} \sin \frac{x}{2} + 4(x^2 - y^2) - 4x + 1.$$

5.
$$u(x,y) = \operatorname{ch} \frac{y}{2} \cos \frac{x}{2} - 2xy - 2x$$
.

6.
$$v(x,y) = \exp(-2y)\sin(2x) - \frac{x^3}{3} + xy^2$$
.

7.
$$v(x,y) = -\frac{y}{x^2 + y^2}$$
, $f(\pi) = \frac{1}{\pi}$.

8.
$$u(x,y) = \exp(2y) \sin(2x) + 3xy^2 - x^3$$
.

9.
$$u(x,y) = \frac{x}{x^2 + y^2}$$
.

10.
$$v(x,y) = \frac{x}{x^2 + y^2}$$
.

11.
$$u(x,y) = 2\sin x \, \cosh y - x$$
.

12.
$$v(x,y) = 2(\operatorname{ch} x \sin y - xy), f(0) = 0.$$

13.
$$u(x,y) = x^2 + 2x - y^2$$
, $f(i) = 2i - 1$.

14.
$$v(x,y) = \operatorname{ch} \frac{y}{3} \sin \frac{x}{3} + 2xy + 4y$$
.

15.
$$u(x,y) = \operatorname{sh}(2x) \cos(2y) + x^2 - y^2 + 4y - 4$$
.

16.
$$v(x,y) = \operatorname{sh} \frac{y}{3} \cos \frac{x}{3} + 4(x^2 - y^2) - 4x + 1.$$

17.
$$u(x,y) = \sinh 3y \cos 3x + 4(x^2 - y^2) + 4y - 1$$
.

18.
$$v(x,y) = 2(2 \sinh x \sin y + xy), \quad f(0) = 3.$$

19.
$$v(x,y) = \operatorname{sh} \frac{x}{2} \sin \frac{y}{2} - 8xy + 4x$$
.

20.
$$u(x,y) = \operatorname{ch}(3y) \sin(3x) - 8xy + 4y$$
.

21.
$$v(x,y) = \operatorname{ch}(2y)\cos(2x) + x^2 - y^2 - 2y + 1$$
.

22.
$$u(x,y) = 3x^2y - y^3 + x + 5$$
.

23.
$$v(x,y) = \arctan \frac{y}{x}$$
, $f(1) = 0$.

24.
$$u(x,y) = x^2 - y^2 - x$$
.

25.
$$v(x,y) = \log(x^2 + y^2) + x - 2y$$
.

26.
$$u(x,y) = 2 \exp x \cos y + x^2 y^2 - \frac{x^4 + y^4}{6}$$
.

27.
$$v(x,y) = 3 + x^2 - y^2 - \frac{y}{2(x^2 + y^2)}$$
.

28.
$$u(x,y) = x^2 - y^2 + 5x + y - \frac{y}{x^2 + y^2}$$
.

29.
$$v(x,y) = \operatorname{sh}(2y) \sin(2x) + x^2 - y^2 + 2x - 1.$$

30.
$$u(x,y) = x^3 + 6x^2y - 3xy^2 - 2y^3$$
.