Page: 1 of 20

FCC TEST REPORT

FCC ID : WIR-8464208002R Applicant : Ultra-Lit Tree Co.

Address : 1989 Johns Drive, Glenview, IL 60025, US

Equipment Under Test (EUT):

Product Name : Christmas Tree Fire alert system

Model No. : 8464208002

Standards : FCC CFR47 Part 15 Section 15.109:2009

Date of Test : July 27, 2011 ~ July 29, 2011

Date of Issue : August 10, 2011

Test Engineer : Hunk yan

Reviewed By : Philo zhong

Test Result : PASS

Prepared By:

Waltek Services (Shenzhen) Co., Ltd.

1/F, Fukangtai Building, West Baima Rd., Songgang Street, Baoan District, Shenzhen 518105, China

Tel:+86-755-27553488 Fax:+86-755-27553868

♦ The sample detailed above has been tested to the requirements of Council Directives ANSI C63.4:2003. The test results have been reviewed against the Directives above and found to meet their essential requirements.

WALTEK SERVICES

2 Test Summary

FCC CFR47 Part 15 Subpart B Requirements					
Test Items	Test Requirement	Test Method	Result		
Radiated Emission (30MHz to 2GHz)	FCC CFR47 Part 15 Section 15.109:2009	ANSI C63.4: 2003	PASS		
Conducted Emission (150KHz to 30MHz)	FCC CFR47 Part 15 Section 15.107:2009	ANSI C63.4: 2003	N/A		

3 Contents

1	C	COVER PAGE	1
2	T	TEST SUMMARY	2
3	C	CONTENTS	3
4	G	GENERAL INFORMATION	4
	4.1	CLIENT INFORMATION	
	4.2	GENERAL DESCRIPTION OF E.U.T.	
	4.3	DETAILS OF E.U.T.	
	4.4	DESCRIPTION OF SUPPORT UNITS	
	4.5	STANDARDS APPLICABLE FOR TESTING	
	4.6	TEST FACILITY	
	4.7	TEST LOCATION	
5	\mathbf{E}	EQUIPMENT USED DURING TEST	6
6 7		CONDUCTED EMISSION DATARADIATION EMISSION DATA	
	7.1	MEASUREMENT UNCERTAINTY	8
	7.2	EUT SETUP	
	7.3	SPECTRUM ANALYZER SETUP	
	7.4	TEST PROCEDURE.	
	7.5	CORRECTED AMPLITUDE & MARGIN CALCULATION	
	7.6	SUMMARY OF TEST RESULTS	
	7.7	PHOTOGRAPH – RADIATION EMISSION TEST SETUP	
8	P	PHOTOGRAPHS - CONSTRUCTIONAL DETAILS	17
	8.1	EUT – Front View	17
	8.2	EUT – BACK VIEW	
	8.3	EUT – OPEN VIEW	18
		DCD From Warry	
	8.4	PCB - Front View	18
	8.4 8.5	PCB – FRONT VIEW PCB – BACK VIEW	18

Ultra-Lit Tree Co. FCC ID: WIR-8464208002R

4 General Information

4.1 Client Information

Applicant : Ultra-Lit Tree Co.

Address of Applicant : 1989 Johns Drive, Glenview, IL 60025, US

Manufacturer : DongGuan Protronic Electronics Ltd.

Address of Manufacturer: Protronic Industrial Park, Xiangxi Village, Shipai Town, Dongguan,

Guangdong China

4.2 General Description of E.U.T.

Product Name : Christmas Tree Fire alert system

Model No. : 8464208002

Operation Frequency : 433.92MHz

4.3 Details of E.U.T.

Technical Data: : DC 9.0V Battery

4.4 Description of Support Units

The EUT has been tested as an independent unit. All the test was performed in the condition of DC 9.0V input.

4.5 Standards Applicable for Testing

The customer requested FCC tests for a Christmas Tree Fire alert system. The standards used were FCC CFR47 Part 15 Section 15.109:2009.

WALTEK SERVICES

4.6 Test Facility

The test facility has a test site registered with the following organizations:

• IC – Registration No.: IC7760A

Waltek Services(Shenzhen) Co., Ltd. has been registered and fully described in a report filed with the Industry Canada. The acceptance letter from the Industry Canada is maintained in our files. Registration 7760A, Aug.03, 2010.

• FCC – Registration No.: 880581

Waltek Services(Shenzhen) Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 880581, May 26, 2011.

4.7 Test Location

All the tests were performed at:

Waltek Services(Shenzhen) Co., Ltd. at 1/F, Fukangtai Building, West Baima Rd., Songgang Street, Baoan District, Shenzhen, China

5 Equipment Used during Test

Equipment Name	Manufacturer Model	Equipment No	Internal No	Specification	Cal. Date	Due Date	Cert. No	Uncertainty
EMC Analyzer	Agilent/ E7405A	MY451149 43	W2008001	9k-26.5GHz	Aug. 2, 2011	Aug. 1, 2012	Wws20 081596	±1dB
Trilog Broadband Antenne	SCHWARZB ECK MESS- ELEKTROM / VULB9163	336	W2008002	30-3000 MHz	Aug. 2, 2011	Aug. 1, 2012	-	±1dB
Broad- band Horn Antenna	SCHWARZB ECK MESS- ELEKTROM / BBHA 9120D(1201)	667	W2008003	1-18GHz	Aug. 2, 2011	Aug. 1, 2012	-	f<10 GHz: ±1dB 10GHz <f< 18 GHz: ±1.5dB</f<
Broadband Preamplifie r	SCHWARZB ECK MESS- ELEKTROM / BBV 9718	9718-148	W2008004	0.5-18GHz	Aug. 2, 2011	Aug. 1, 2012	-	±1.2dB
10m Coaxial Cable with N-male Connectors	SCHWARZB ECK MESS- ELEKTROM / AK 9515 H	-	-	-	Aug. 2, 2011	Aug. 1, 2012	-	-
10m 50 Ohm Coaxial Cable	SCHWARZB ECK MESS- ELEKTROM / AK 9513	-	-	-	Aug. 2, 2011	Aug. 1, 2012	-	-
Positioning Controller	C&C LAB/ CC-C-IF	-	-	-	Aug. 2, 2011	Aug. 1, 2012	-	-
Color Monitor	SUNSPO/ SP-14C	-	-	-	Aug. 2, 2011	Aug. 1, 2012	-	-
Test Receiver	ROHDE&SC HWARZ/ ESPI	101155	W2005001	9k-3GHz	Aug. 2, 2011	Aug. 1, 2012	Wws20 080942	±1dB
EMI Receiver	Beijingkehua n	KH3931	-	9k-1GHz	Aug. 2, 2011	Aug. 1, 2012	-	-
Two-Line V-Network	ROHDE&SC HWARZ/ ENV216	100115	W2005002	50Ω/50μΗ	Aug. 2, 2011	Aug. 1, 2012	Wws20 080941	±10%
Digital Power Analyzer	Em Test AG/Switzerla nd/ DPA 500	V07451 03095	W2008012	Power: 2000VA Vol-range: 0-300V Freq_range : 10-80Hz	Aug. 2, 2011	Aug. 1, 2012	Wwd2 008118 5	Voltage distinguish:0 .025% Power_freq distinguish:0 .02Hz

WALTEK SERVICES

Equipment Name	Manufacturer Model	Equipment No	Internal No	Specification	Cal. Date	Due Date	Cert. No	Uncertainty
Power Source	Em Test AG/Switzerla nd/ ACS 500	V07451 03096	W2008013	Vol-range: 0-300V Power_freq : 10-80Hz				
RF Generator	TESEQ GmbH/ NSG4070	25781	W2008008	Fraq-range: 9K-1GHz RF voltage: -60 dBm- +10dBm	Aug. 2, 2011	Aug. 1, 2012	Wws20 081890	Power_freq distinguish0. 1Hz RFeletricity distinguish 0.1 B
CDN M- Type	TESEQ GmbH/ CDN M016	25112	W2008009	Voltage correct factor 9.5 dB	Aug. 2, 2011	Aug. 1, 2012	Wwc20 082396	150K- 80MHz: ±1dB 80- 230MHz:-2- +3dB
EM-Clamp	TESEQ GmbH/ KEMZ 801	25453	W2008010	Freq_range : 0.15-1000 MHz	Aug. 2, 2011	Aug. 1, 2012	Wwc20 082397	0.3-400 MHz: ±4dB Other freq: ±5dB
Attenuator 6dB	TESEQ GmbH/ ATN6050	25365	1	-	Aug. 2, 2011	Aug. 1, 2012	Wws20 081597	1
All Modules Generator	SCHAFFNE R/6150	34579	W2008006	voltage:200V -4.4KV Pulse current: 100A-2.2KA	Aug. 2, 2011	Aug. 1, 2012	Wwc20 082401	voltage: ±10% Pulse current: ±10%
Capacitive Coupling Clamp	SCHAFFNE R/ CDN 8014	25311	-	-	Aug. 2, 2011	Aug. 1, 2012	Wwc20 082398	-
Signal and Data Line Coupling Network	SCHAFFNE R/CDN 117	25627	W2008011	1.2/50μS	Aug. 2, 2011	Aug. 1, 2012	Wwc20 082399	-
AC Power Supply	TONGYUN/ DTDGC-4	-	-	-	Aug. 2, 2011	Aug. 1, 2012	Wws20 080944	-

Ultra-Lit Tree Co. FCC ID: WIR-8464208002R

6 Conducted Emission Data

Test Requirement: FCC CFR47 Part 15 Section 15.107

Test Method: ANSI C63.4:2003

Test Result: N/A

Remark: Because the power of the EUT is supported by 9.0V Battery, this test is not

applicable.

7 Radiation Emission Data

Test Requirement: FCC CFR47 Part 15 Section 15.109

Test Method: ANSI C63.4:2003

Test Result: PASS

Frequency Range: 30MHz to 2GHz

Measurement Distance: 3m Class: Class B

Limit: $40.0 \text{ dB}\mu\text{V/m}$ between 30MHz & 88MHz

 $43.5~dB\mu V/m$ between 88MHz~&~216MHz $46.0~dB\mu V/m$ between 216MHz~&~960MHz

54.0 dBµV/m above 960MHz

54.0 dBuV/m for AVG above 1GHz 74.0 dBuV/m for peak above 1GHz

Detector: Peak for pre-scan (120kHz resolution bandwidth)

EUT Operation:

The EUT was pre-testrd in two mode: standby mode and receive mode. The worse mode is receive mode, so the report show that data only.

7.1 Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in the field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, antenna factor calibration, antenna directivity, antenna factor variation with height, antenna phase center variation, antenna factor frequency interpolation, measurement distance variation, site imperfections, mismatch (average), and system repeatability.

Based on NIS 81, The Treatment of Uncertainty in EMC Measurements, the best estimate of the uncertainty of a radiation emissions measurement at Waltek EMC Lab is ± 5.03 dB.

WALTEK SERVICES

7.2 EUT Setup

The radiated emission tests were performed in the 3m Semi- Anechoic Chamber test site, using the setup accordance with the ANSI C63.4:2003.

The diagram below shows the test setup that is utilized to make the measurements for emission from 30 MHz to 1 GHz Emissions.

The diagram below shows the test setup that is utilized to make the measurements for emission from 1 GHz to 2 GHz Emissions.

WALTEK SERVICES

7.3 Spectrum Analyzer Setup

According to FCC Part15 B Rules, the system was tested 30 to 2000MHz.

Below 1GHz

Start Frequency	.30 MHz
Stop Frequency	. 1000MHz
Sweep Speed	. Auto
IF Bandwidth	.120 KHz
Video Bandwidth	.100KHz
Quasi-Peak Adapter Bandwidth	.120 KHz
Quasi-Peak Adapter Mode	. Normal
Resolution Bandwidth	. 100KHz

Above 1GHz

Start Frequency	1000 MHz
Stop Frequency	2000MHz
Sweep Speed	Auto
IF Bandwidth	120 KHz
Video Bandwidth	1MHz
Quasi-Peak Adapter Bandwidth	120 KHz
Quasi-Peak Adapter Mode	Normal
Resolution Bandwidth	1MHz

WALTEK SERVICES

Ultra-Lit Tree Co.

FCC ID: WIR-8464208002R

7.4 Test Procedure

- 1. The EUT is placed on a turntable, which is 0.8m above ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is moved from 1m to 4m to find out the maximum emissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Repeat above procedures until the measurements for all frequencies are complete.
- 7. The radiation measurements are performed in X(normal uses) axis positioning. And all the modes was tested in the report. Only the worst case is shown in the report.
- 8. The EUT was pre-testrd in two mode:standby mode and receive mode.According to ANSI STANDARD C63.4-2003 12.1.1.2 OTHER TYPES OF RECEIVERS: In receive mode,a typical signal or an unmodulated CW signal at the operating frequency of the EUT shall be supplied to the EUT for all measurements. Such a signal may be supplied by either a signal generator and an antenna in close proximity to the EUT or directly conducted into the antenna terminals of the EUT. The signal level shall be sufficient to the local oscillator of the EUT. In this report, the antenna of the signal generator is under the turntable.

7.5 Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain from the Amplitude reading. The basic equation is as follows:

Corr. Ampl. = Indicated Reading + Antenna Factor + Cable Factor - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of $-7dB\mu V$ means the emission is $7dB\mu V$ below the maximum limit for Class B. The equation for margin calculation is as follows:

Margin = Corr. Ampl. – Class B Limit

WALTEK SERVICES

7.6 Summary of Test Results

According to the data in this section, the EUT complied with the FCC CFR47 Part 15 Section 15.109 standard.

Frequency Range: 30MHz ~ 1000MHz

Antenna polarization: Vertical

Antenna polarization: Horizontal

Frequency Range: 1GHz ~ 2GHz Antenna polarization: Vertical

Antenna polarization: Horizontal

7.7 Photograph – Radiation Emission Test Setup

Below 1GHz

Above 1GHz

WALTEK SERVICES

8 Photographs - Constructional Details

8.1 EUT – Front View

8.2 EUT – Back View

8.3 EUT – Open View

8.4 PCB – Front View

8.5 PCB – Back View

9 FCC Label

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions:(1)this device may not cause harmful interference,and (2) this device must accept any interference received, including interference that may cause undesired operation. The Label must not be a stick-on paper. The Label on these products must be permanently affixed to the product and readily visible at the time of purchase and must last the expected lifetime of the equipment not be readily detachable.

