6.7920 Fall 2025: Homework 4

Note: If you cannot do a part of a problem, you can assume the result of that part and proceed to the next one.

1 A Policy Iteration Variant

Consider a finite-state (with n states), finite-action, discounted infinite-horizon problem with discount factor γ and the following algorithm:

- Let V_0 be an arbitrary n-dimensional vector.
- The algorithm generates a sequence of vectors V_1, V_2, \ldots and stationary policies π_1, π_2, \ldots
- Each policy π_t is chosen to satisfy

$$\mathcal{T}_{\pi_t} V_t = \mathcal{T} V_t.$$

• The next vector V_{t+1} is computed according to

$$V_{t+1} = \mathcal{T}_{\pi_t}^2 V_t = \mathcal{T}_{\pi_t} (\mathcal{T}_{\pi_t} V_t).$$

Let's name \mathcal{G} as the operator that performs this iteration, that is, $\mathcal{G}(V_t) := \mathcal{T}_{\pi_t}^2 V_t$. Based on proposed procedure, answer the following questions

- 1. Suppose $\mathcal{T}V_0 \geq V_0$. Show that $V_{t+1} \geq \mathcal{T}V_t$ for all t.
- 2. Suppose $\mathcal{T}V_0 \geq V_0$. Show that $\lim_{t\to\infty} V_t = V^*$.
- 3. For any given V_0 , explain how you can choose a scalar d so that $\mathcal{T}\overline{V}_0 \geq \overline{V}_0$, where

$$\overline{V}_0(i) = V_0(i) + d, \forall i = 1, \dots, n.$$

4. Show that

$$\lim_{t \to \infty} V_t = V^*$$

no matter how V_0 is chosen.

5. Suppose that the algorithm is stopped after a finite number of iterations and yields a policy π that satisfies (for some $\delta > 0$)

$$\mathcal{T}_{\pi}V_{\pi}(i) \geq \mathcal{T}V_{\pi}(i) - \delta, \forall i = 1, \ldots, n.$$

Show that

$$V^*(i) - V_{\pi}(i) \le \frac{\delta}{1-\gamma}, \forall i = 1, \dots, n.$$

2 Incremental Monte-Carlo as a TD Method

In this problem, we will show that the incremental Monte-Carlo method can be viewed as a TD method. The incremental Monte-Carlo method updates the estimated value function \hat{V}^{π} after observing the (n+1)-th episode as follows:

$$\hat{V}_{n+1}^{\pi}(s_0) = (1 - \eta_{n+1})\hat{V}_n^{\pi}(s_0) + \eta_{n+1}\hat{R}_{n+1}(s_0),$$

where $\hat{R}_i(s_0)$ denotes the cumulative discounted reward obtained in episode i starting from s_0 :

$$\hat{R}_i(s_0) := \sum_{t=0}^{T_i} \gamma^t r_{t,i}.$$

The temporal difference (TD) error at time t in episode i is defined as:

$$\delta_{t,i} := r_{t,i} + \gamma \hat{V}_{i-1}^{\pi}(s_{t+1,i}) - \hat{V}_{i-1}^{\pi}(s_{t,i})$$

Show that the incremental Monte-Carlo method update can be expressed as follows:

$$\hat{V}_{n+1}^{\pi}(s_0) = \hat{V}_n^{\pi}(s_0) + \eta_{n+1} \sum_{t=0}^{T_{n+1}} \gamma^t \delta_{t,n+1}.$$

3 Stepsize Conditions

Stochastic approximation algorithms often involve stepsize conditions of the form $\sum_t \eta_t = \infty$ and $\sum_t \eta_t^2 < \infty$. This exercise is meant to give some insights into the role played by these two conditions.

Let w_t be independent random variables, with mean x^* and variance uniformly bounded by b > 0 (for all t). Consider the algorithm

$$x_{t+1} = x_t + \eta_t(w_t - x_t).$$

If the algorithm converges to some x, in the limit we should have $\mathbb{E}[w_t - x_t] \to 0$, or $x_t = \mathbb{E}[w_t] = x^*$. The question is whether we actually get this type of convergence, in the presence of noise. To simplify the analysis, let us assume that $x^* = 0$.

We assume that the stepsizes satisfy the given conditions and $\eta_t \in (0,1)$ for all t.

- 1. Show that $\prod_{t=0}^{\infty} (1 \eta_t) = 0$.
- 2. Let us split the time axis into segments. The *i*th segment starts at some t_i and ends at t_{i+1} . We choose the segment lengths so that $\prod_{t=t_i}^{t_{i+1}-1} (1-\eta_t) \leq 1/2$.

Show that $|\mathbb{E}[x_{t_{i+1}}]| \leq |\mathbb{E}[x_{t_i}]|/2$. (Thus, $\mathbb{E}[x_{t_i}]$ converges to zero.)

3. We now want to look at the variance of x_t , at least along times of the form $t = t_i$. Let $v_i = Var(x_{t_i})$.

Show that

$$v_{i+1} \le \frac{1}{4}v_i + \epsilon_i,$$

where $\epsilon_i \to 0$.

Note: From part 3, we obtain that the variance of x_t , for times of the form $t = t_i$, converges to zero. A similar argument also shows that the variance goes to zero for general times t. Besides the convergence of the variance to zero, it is also true that x_t converges to x^* , with probability 1. However, this latter statement requires more sophisticated mathematical machinery (the supermartingale convergence theorem).

4 Computational Problem: $TD(\lambda)$ in Inventory Control

In this problem, we will study policy evaluation methods in a discounted inventory control setting with backlogs and ordering costs. The goal is to compare Monte Carlo evaluation with $TD(\lambda)$ and to explore the sensitivity of performance to the parameter λ . We will consider a fixed base-stock policy and examine the bias–variance tradeoff across λ .

At each period $t=0,1,\ldots,T$, the state $s_t\in\mathbb{Z}$ represents the inventory level at the start of the period (negative values correspond to backorders). The action $a_t\in\{0,1,\ldots,20\}$ represents the order quantity placed at the beginning of the period. Demand D_t is i.i.d. uniform on $\{0,1,\ldots,10\}$. The holding cost, backlog cost, and ordering cost are denoted as h, b, and o, respectively. The inventory evolves as

$$s_{t+1} = s_t + a_t - D_t.$$

The per-period cost for t < T is

$$c_t(s_t, a_t, D_t) = o a_t + \max(h s_{t+1}, -b s_{t+1}),$$

and the terminal cost at t = T is

$$c_T(s) = \max(h s, -b s).$$

We define the reward as the negative cost, $r_t = -c_t$, and include a discount factor $\gamma \in (0,1]$.

We evaluate the fixed *base-stock policy* π_B with target level B. That is, order up to level B if inventory is below B, subject to the maximum order cap. The value function under π is

$$V_t^{\pi}(s) = \mathbb{E}_{\pi} \left[\sum_{\tau=t}^{T-1} \gamma^{\tau-t} r_{\tau+1} + \gamma^{T-t} r_{T+1} \middle| s_t = s \right].$$

Our goal is to compute and compare estimates of $V_0^{\pi}(s)$ without having explicit access to the dynamics model and probabilities.

For the rest of the problem, we will use B=3, (o,h,b)=(1,4,2), $\gamma=0.95$ and an episode length of T=100, where the terminal reward is collected at the final timestep. One "episode" corresponds to a trajectory $(s_0,a_0,r_0,\cdots,s_{t-1},a_{t-1},r_{t-1},s_T)$. Let $\mathcal{S}=\{-10,-5,0,5,10\}$, $\mathcal{L}=\{0,0.3,0.6,0.8,0.9,1.0\}$, $\mathcal{LR}=\{0.001,0.01,0.1\}$. For V^{π} , feel free to only keep track of states in [-10,10].

- 1. Implement a simulator for the system under π_S . Each step should generate (s_t, a_t, r_t, s_{t+1}) . To verify correctness, use start states $s \in \mathcal{S}$ and simulate 500 episodes. Report the average per-episode reward (i.e. Monte-Carlo approximation) for each start state. Which start state has the highest per-episode reward?
- 2. Implement the TD(0) update with constant step size $\alpha \in \mathcal{LR}$. Run 500 episodes with start states sampled uniformly from \mathcal{S} . Track the running estimates $\hat{V}_0^{\pi}(s)$ for all states and plot a separate figure for each $s \in \mathcal{S}$ showing 3 learning curves corresponding to each α . Comment on the convergence of the different learning rates. Why is the convergence of V^{π} different for various states?
- 3. Implement TD(λ) using *eligibility traces* with $\lambda \in \mathcal{L}$. Select the best α (briefly explain what is your criterion) and for each λ , run 10,000 episodes with start states randomly sampled from \mathcal{S} to estimate $\hat{V}_0^{\pi}(s)$. Plot $\hat{V}_0^{\pi}(0)$ vs number of TD updates, showing 6 learning curves corresponding to each λ . Comment on the convergence behavior of different λs .
- 4. Compute a reference solution $V_0^\pi(s)$ using backward dynamic programming with discount factor γ (you may use code from previous problem sets). For each $\lambda \in \mathcal{L}$, use your results from part 3 and compute the MSE across all $s \in \mathcal{S}$ between $V_0^\pi(s)$ and $\hat{V}_0^\pi(s)$ and plot MSE versus λ . Discuss the observed tradeoff.