

Collision resistance

Generic birthday attack

Generic attack on C.R. functions

Let H: M \rightarrow {0,1}ⁿ be a hash function (|M| >> 2ⁿ)

Generic alg. to find a collision in time $O(2^{n/2})$ hashes

Algorithm:

- 1. Choose $2^{n/2}$ random messages in M: $m_1, ..., m_2^{n/2}$ (distinct w.h.p)
- 2. For $i = 1, ..., 2^{n/2}$ compute $t_i = H(m_i) \in \{0,1\}^n$
- 3. Look for a collision $(t_i = t_i)$. If not found, got back to step 1.

How well will this work?

The birthday paradox

Let $r_1, ..., r_n \in \{1,...,B\}$ be indep. identically distributed integers.

Thm: when
$$n = 1.2 \times B^{1/2}$$
 then $Pr[\exists i \neq j: r_i = r_j] ≥ ½$

$$\Pr\left[\exists i \neq j: r_i = r_j\right] = 1 - \Pr\left[\forall i \neq j: r_i \neq r_j\right] = 1 - \left(\frac{B-1}{B}\right) \left(\frac{B-2}{B}\right) \cdots \left(\frac{B-n+1}{B}\right) = 1 - \frac{n-1}{H}\left(1-\frac{1}{B}\right) \Rightarrow 1 - \frac{h-1}{H}e^{-\frac{1}{2}B} = 1 - \frac{1}{B}\frac{\frac{2\pi}{B}}{\frac{2\pi}{B}} = 1 - \frac{1}{B}\frac{2\pi}{B}$$

Proof: (for uniform indep.
$$r_1, ..., r_n$$
)
$$\begin{bmatrix} \exists_i \neq j: r_i = r_j \end{bmatrix} = I - A \begin{bmatrix} \forall_i \neq j: r_i \neq r_j \end{bmatrix} = I - \begin{pmatrix} B - i \\ B \end{pmatrix} = I - \frac{A - i}{B} \begin{pmatrix} B - i \\ B \end{pmatrix} = I - \frac{A - i}{B} \begin{pmatrix} B - i \\ B \end{pmatrix} \begin{pmatrix} B - i \\ B \end{pmatrix} = I - \frac{A - i}{B} \begin{pmatrix} B - i \\ B \end{pmatrix} \begin{pmatrix} B - i \\ B \end{pmatrix} = I - \frac{A - i}{B} \begin{pmatrix} B - i \\ B \end{pmatrix} \begin{pmatrix} B$$

Generic attack

- H: $M \rightarrow \{0,1\}^n$. Collision finding algorithm:
- 1. Choose $2^{n/2}$ random elements in M: $m_1, ..., m_2^{n/2}$
- 2. For i = 1, ..., $2^{n/2}$ compute $t_i = H(m_i) \in \{0,1\}^n$
- 3. Look for a collision $(t_i = t_i)$. If not found, got back to step 1.

Expected number of iteration ≈ 2

Running time: $O(2^{n/2})$ (space $O(2^{n/2})$)

Sample C.R. hash functions:

Crypto++ 5.6.0 [Wei Dai]

AMD Opteron, 2.2 GHz (Linux)

^{*} best known collision finder for SHA-1 requires 2⁵¹ hash evaluations

End of Segment