

# A "Hands-on" Introduction to OpenMP\*

Tim Mattson
Intel Corp.
timothy.g.mattson@intel.com

#### Introduction

- OpenMP is one of the most common parallel programming models in use today.
- It is relatively easy to use which makes a great language to start with when learning to write parallel software.
- Assumptions:
  - We assume you know C. OpenMP supports Fortran and C++, but we will restrict ourselves to C.
  - •We assume you are new to parallel programming.
  - •We assume you have access to a compiler that supports OpenMP (more on that later).



#### **Shared memory Computers**

- Shared memory computer: any computer composed of multiple processing elements that share an address space. Two Classes:
  - Symmetric multiprocessor (SMP): a shared address space with "equal-time" access for each processor, and the OS treats every processor the same way.
  - Non Uniform address space multiprocessor (NUMA): different memory regions have different access costs ... think of memory segmented into "Near" and "Far" memory.



## OpenMP\* Overview:

C\$OMP FLUSH

#pragma omp critical

C\$OMP THREADPRIVATE (/ABC/)

CALL OMP SET NUM THREADS (10)

OpenMP: An API for Writing Multithreaded
Applications

C\$ON

C\$ON

C\$(

С

#p

- A set of compiler directives and library routines for parallel application programmers
- Greatly simplifies writing multi-threaded (MT) programs in Fortran, C and C++
- Standardizes last 20 years of SMP practice

C\$OMP PARALLEL COPYIN(/blk/)

C\$OMP DO lastprivate(XX)

Nthrds = OMP GET NUM PROCS()

omp\_set\_lock(lck)

#### **OpenMP Basic Defs: Solution Stack**



### OpenMP core syntax

 Most of the constructs in OpenMP are compiler directives.

```
#pragma omp construct [clause [clause]...]
```

- Example #pragma omp parallel num\_threads(4)
- Function prototypes and types in the file: #include <omp.h>
- Most OpenMP\* constructs apply to a "structured block".
  - Structured block: a block of one or more statements with one point of entry at the top and one point of exit at the bottom.
  - It's OK to have an exit() within the structured block.

## Exercise 1, Part A: Hello world Verify that your environment works

Write a program that prints "hello world".

```
int main()
   int ID = 0;
   printf(" hello(%d) ", ID);
   printf(" world(%d) \n", ID);
```

## Exercise 1, Part B: Hello world Verify that your OpenMP environment works

Write a multithreaded program that prints "hello world".

```
Linux and OS X
                             PGI Linux
 #include <omp.h>
int main()
                             Intel windows
                             Intel Linux and OS X
  #pragma omp parallel
   int ID = 0;
   printf(" hello(%d) ", ID);
   printf(" world(%d) \n", ID);
```

gcc -fopenmp

icl /Qopenmp

icpc -openmp

pgcc -mp

## Exercise 1: Solution A multi-threaded "Hello world" program

 Write a multithreaded program where each thread prints "hello world".

```
OpenMP include file
#include "omp.h" <
int main()
                  Parallel region with default
                  number of threads
#pragma omp parallel
    int ID = omp_get_thread_num();
    printf(" hello(%d) ", ID);
    printf(" world(%d) \n", ID);
                                           Runtime library function to
         End of the Parallel region
                                           return a thread ID.
```

## Exercise 1: Solution A multi-threaded "Hello world" program

 Write a multithreaded program where each thread prints "hello world".

```
OpenMP include file
#include "omp.h" <
int main()
                 Parallel region with default
                                            Sample Output:
                 number of threads
#pragma omp parallel
                                            hello(1) hello(0) world(1)
                                            world(0)
   int ID = omp_get_thread_num();
                                            hello (3) hello(2) world(3)
   printf(" hello(%d) ", ID);
                                            world(2)
   printf(" world(%d) \n", ID);
                                         Runtime library function to
        End of the Parallel region
                                         return a thread ID.
```

## OpenMP Overview: How do threads interact?

- OpenMP is a multi-threading, shared address model.
  - Threads communicate by sharing variables.
- Unintended sharing of data causes race conditions:
  - race condition: when the program's outcome changes as the threads are scheduled differently.
- To control race conditions:
  - Use synchronization to protect data conflicts.
- Synchronization is expensive so:
  - Change how data is accessed to minimize the need for synchronization.

### **OpenMP Programming Model:**

#### Fork-Join Parallelism:

- Master thread spawns a team of threads as needed.
- Parallelism added incrementally until performance goals are met: i.e. the sequential program evolves into a parallel program.



#### **Thread Creation: Parallel Regions**

- You create threads in OpenMP\* with the parallel construct.
- For example, To create a 4 thread Parallel region:

Each thread executes a copy of the code within the structured block

```
double A[1000];
omp_set_num_threads(4);
#pragma omp parallel
{
    int ID = omp_get_thread_num();
    pooh(ID,A);
}
Runtime function to request a certain number of threads
```

• Each thread calls pooh(ID,A) for ID = 0 to 3

### **Thread Creation: Parallel Regions**

- You create threads in OpenMP\* with the parallel construct.
- For example, To create a 4 thread Parallel region:

Each thread executes a copy of the code within the structured block

```
double A[1000];

#pragma omp parallel num_threads(4)

{
    int ID = omp_get_thread_num();
    pooh(ID,A);
    Runtime function
    returning a thread ID
```

• Each thread calls pooh(ID,A) for ID = 0 to 3

#### **Thread Creation: Parallel Regions**

double A[1000]; Each thread executes #pragma omp parallel num threads(4) the same code int ID = omp get thread num(); redundantly. pooh(ID, A); printf("all done\n"); double A[1000]; omp\_set\_num\_threads(4) A single copy of A is  $\rightarrow$  pooh(0,A) pooh(1,A) pooh(2,A) pooh(3,A)shared between all threads. printf("all done\n"); Threads wait here for all threads to finish before proceeding (i.e. a *barrier*)

<sup>\*</sup> The name "OpenMP" is the property of the OpenMP Architecture Review Board

#### **OpenMP: what the compiler does**

```
#pragma omp parallel num_threads(4)
{
   foobar ();
}
```

- The OpenMP compiler generates code logically analogous to that on the right of this slide, given an OpenMP pragma such as that on the top-left
- All known OpenMP implementations use a thread pool so full cost of threads creation and destruction is not incurred for reach parallel region.
- Only three threads are created because the last parallel section will be invoked from the parent thread.

```
void thunk ()
    foobar ();
pthread_t tid[4];
for (int i = 1; i < 4; ++i)
  pthread create (
        &tid[i],0,thunk, 0);
thunk();
for (int i = 1; i < 4; ++i)
    pthread_join (tid[i]);
```

## Exercises 2 to 4: Numerical Integration



Mathematically, we know that:

$$\int_{0}^{1} \frac{4.0}{(1+x^2)} dx = \pi$$

We can approximate the integral as a sum of rectangles:

$$\sum_{i=0}^{N} F(x_i) \Delta x \approx \pi$$

Where each rectangle has width  $\Delta x$  and height  $F(x_i)$  at the middle of interval i.

### **Exercises 2 to 4: Serial PI Program**

```
static long num_steps = 100000;
double step;
int main ()
        int i; double x, pi, sum = 0.0;
        step = 1.0/(double) num steps;
        for (i=0;i< num steps; i++){</pre>
              x = (i+0.5)*step;
              sum = sum + 4.0/(1.0+x*x);
        pi = step * sum;
```

#### **Exercise 2**

- Create a parallel version of the pi program using a parallel construct.
- Pay close attention to shared versus private variables.
- In addition to a parallel construct, you will need the runtime library routines
  - ont omp\_get\_num\_threads();

Number of threads in the team

- hint omp\_get\_thread\_num();
- odouble omp\_get\_wtime();

Thread ID or rank

Time in Seconds since a fixed point in the past

### **Serial PI Program**

```
static long num_steps = 100000;
double step;
int main ()
       int i; double x, pi, sum = 0.0;
       step = 1.0/(double) num steps;
       for (i=0;i< num steps; i++){
              x = (i+0.5)*step;
              sum = sum + 4.0/(1.0+x*x);
       pi = step * sum;
```

#### Example: A simple Parallel pi program

```
#include <omp.h>
                                                              Promote scalar to an
static long num_steps = 100000;
                                        double step;
                                                              array dimensioned by
#define NUM_THREADS 2
                                                              number of threads to
                                                              avoid race condition.
void main ()
         int i, nthreads; double pi, sum[NUM_THREADS];
          step = 1.0/(double) num_steps;
          omp_set_num_threads(NUM_THREADS);
  #pragma omp parallel
                                                      Only one thread should copy
         int i, id,nthrds;
                                                      the number of threads to the
         double x;
                                                      global value to make sure
         id = omp_get_thread_num();
                                                      multiple threads writing to the
         nthrds = omp_get_num_threads();
                                                      same address don't conflict.
         if (id == 0) nthreads = nthrds;
         for (i=id, sum[id]=0.0;i< num_steps; i=i+nthrds) {
                                                                This is a common
                  x = (i+0.5)*step;
                                                                trick in SPMD
                  sum[id] += 4.0/(1.0+x*x);
                                                                programs to create
                                                                a cyclic distribution
                                                                of loop iterations
          for(i=0, pi=0.0;i<nthreads;i++)pi += sum[i] * step;
```

#### **Algorithm strategy:**

#### The SPMD (Single Program Multiple Data) design pattern

- Run the same program on P processing elements where P can be arbitrarily large.
- Use the rank ... an ID ranging from 0 to (P-1) ... to select between a set of tasks and to manage any shared data structures.

This pattern is very general and has been used to support most (if not all) the algorithm strategy patterns.

MPI programs almost always use this pattern ... it is probably the most commonly used pattern in the history of parallel programming.

#### Results\*

Original Serial pi program with 100000000 steps ran in 1.83 seconds.

```
Example: A simple Parallel pi program
#include < omp.h>
static long num_steps = 100000;
                                 double step:
#define NUM_THREADS 2
void main ()
                                                                            1st
                                                           threads
         int i, nthreads; double pi, sum[NUM_THREADS];
         step = 1.0/(double) num steps;
                                                                         SPMD
         omp_set_num_threads(NUM_THREADS);
  #pragma omp parallel
                                                                          1.86
        int i, id,nthrds;
                                                                           1.03
       double x:
        id = omp get thread num();
                                                               3
                                                                          1.08
        nthrds = omp get num threads();
        if (id == 0) nthreads = nthrds;
                                                               4
                                                                          0.97
         for (i=id, sum[id]=0.0;i< num_steps; i=i+nthrds) {
                 x = (i+0.5)*step;
                 sum[id] += 4.0/(1.0+x*x);
         for(i=0, pi=0.0;i<nthreads;i++)pi += sum[i] * step;
```

<sup>\*</sup>Intel compiler (icpc) with no optimization on Apple OS X 10.7.3 with a dual core (four HW thread) Intel® Core<sup>TM</sup> i5 processor at 1.7 Ghz and 4 Gbyte DDR3 memory at 1.333 Ghz.

#### Why such poor scaling? False sharing

• If independent data elements happen to sit on the same cache line, each update will cause the cache lines to "slosh back and forth" between threads ... This is called "false sharing".



- If you promote scalars to an array to support creation of an SPMD program, the array elements are contiguous in memory and hence share cache lines ... Results in poor scalability.
- Solution: Pad arrays so elements you use are on distinct cache lines.

#### **Example:** eliminate False sharing by padding the sum array

```
#include <omp.h>
static long num_steps = 100000; double step;
#define PAD 8 // assume 64 byte L1 cache line size
#define NUM THREADS 2
void main ()
         int i, nthreads; double pi, sum[NUM_THREADS][PAD];
         step = 1.0/(double) num_steps;
         omp_set_num_threads(NUM_THREADS);
  #pragma omp parallel
                                                            Pad the array
        int i, id,nthrds;
                                                            so each sum
                                                            value is in a
        double x;
                                                            different
        id = omp_get_thread_num();
                                                            cache line
        nthrds = omp_get_num_threads();
        if (id == 0) nthreads = nthrds;
         for (i=id, sum[id]=0.0;i< num_steps; i=i+nthrds) {
                 x = (i+0.5)*step;
                 sum[id][0] += 4.0/(1.0+x*x);
         for(i=0, pi=0.0;i<nthreads;i++)pi += sum[i][0] * step;
```

#### Results\*: pi program padded accumulator

Original Serial pi program with 100000000 steps ran in 1.83 seconds.

```
Example: eliminate False sharing by padding the sum array
#include <omp.h>
static long num_steps = 100000;
                                 double step;
#define PAD 8
                        // assume 64 byte L1 cache line size
#define NUM THREADS 2
void main ()
                                                                                1st
                                                                                             1st
         int i, nthreads; double pi, sum[NUM_THREADS][PAD];
                                                                threads
         step = 1.0/(double) num_steps;
                                                                             SPMD
                                                                                          SPMD
         omp set num threads(NUM THREADS);
                                                                                          padded
  #pragma omp parallel
                                                                               1.86
                                                                                            1.86
        int i, id.nthrds;
       double x:
                                                                               1.03
                                                                                            1.01
        id = omp_get_thread_num();
       nthrds = omp_get_num_threads();
                                                                   3
                                                                               1.08
                                                                                            0.69
       if (id == 0) nthreads = nthrds;
         for (i=id, sum[id]=0.0;i< num_steps; i=i+nthrds) {
                                                                              0.97
                                                                                            0.53
                 x = (i+0.5)*step;
                 sum[id][0] += 4.0/(1.0+x*x);
         for(i=0, pi=0.0;i<nthreads;i++)pi += sum[i][0] * step;
```

<sup>\*</sup>Intel compiler (icpc) with no optimization on Apple OS X 10.7.3 with a dual core (four HW thread) Intel® Core<sup>TM</sup> i5 processor at 1.7 Ghz and 4 Gbyte DDR3 memory at 1.333 Ghz.

#### Do we really need to pad our arrays?

- Padding arrays requires deep knowledge of the cache architecture. Move to a machine with different sized cache lines and your software performance falls apart.
- There has got to be a better way to deal with false sharing.

## OpenMP Overview: How do threads interact?

Recall our high level overview of OpenMP?

- OpenMP is a multi-threading, shared address model.
  - Threads communicate by sharing variables.
- Unintended sharing of data causes race conditions:
  - race condition: when the program's outcome changes as the threads are scheduled differently.
- To control race conditions:
  - Use synchronization to protect data conflicts.
- Synchronization is expensive so:
  - Change how data is accessed to minimize the need for synchronization.



#### **Synchronization:**

- Synchronization: bringing one or more threads to a well defined and known point in their execution.
- The two most common forms of synchronization are:



**Barrier**: each thread wait at the barrier until all threads arrive.



**Mutual exclusion**: Define a block of code that only one thread at a time can execute.

## **Synchronization**

- High level synchronization:
  - critical
  - atomic
  - barrier
  - ordered
- Low level synchronization
  - -flush
  - locks (both simple and nested)

Synchronization is used to impose order constraints and to protect access to shared data

Discussed later

### Synchronization: Barrier

Barrier: Each thread waits until all threads arrive.

```
#pragma omp parallel
{
    int id=omp_get_thread_num();
    A[id] = big_calc1(id);
#pragma omp barrier

B[id] = big_calc2(id, A);
}
```

#### Synchronization: critical

 Mutual exclusion: Only one thread at a time can enter a critical region.

Threads wait their turn – only one at a time calls consume()

```
float res;
#pragma omp parallel
   float B; int i, id, nthrds;
   id = omp_get_thread_num();
   nthrds = omp_get_num_threads();
    for(i=id;i<niters;i+=nthrds){
       B = big_job(i);
#pragma omp critical
       res += consume (B);
```

#### Exercise 3

- In exercise 2, you probably used an array to create space for each thread to store its partial sum.
- If array elements happen to share a cache line, this leads to false sharing.
  - Non-shared data in the same cache line so each update invalidates the cache line ... in essence "sloshing independent data" back and forth between threads.
- Modify your "pi program" from exercise 2 to avoid false sharing due to the sum array.

#### Pi program with false sharing\*

Original Serial pi program with 100000000 steps ran in 1.83 seconds.

#### Example: A simple Parallel pi program

```
#include < omp.h>
static long num_steps = 100000;
                                    double step;
#define NUM_THREADS 2
void main ()
         int i, nthreads; double pi, sum[NUM_THREADS];
         step = 1.0/(double) num steps;
          omp set num threads(NUM THREADS);
   #pragma omp parallel
         int i, id, nthrds;
        double x:
        id = omp get thread num();
        nthrds = omp get num threads();
        if (id == 0) nthreads = nthrds;
         for (i=id, sum[id]=0.0;i< num_steps; i=i+nthrds) {
                  x = (i+0.5)*step;
                  sum[id] += 4.0/(1.0+x*x);
         for(i=0, pi=0.0;i<nthreads;i++)pi += sum[i] * step;
```

Recall that promoting sum to an array made the coding easy, but led to false sharing and poor performance.

| threads | 1 <sup>st</sup> |
|---------|-----------------|
|         | SPMD            |
| 1       | 1.86            |
| 2       | 1.03            |
| 3       | 1.08            |
| 4       | 0.97            |

<sup>\*</sup>Intel compiler (icpc) with no optimization on Apple OS X 10.7.3 with a dual core (four HW thread) Intel® Core<sup>TM</sup> i5 processor at 1.7 Ghz and 4 Gbyte DDR3 memory at 1.333 Ghz.

#### **Example:** Using a critical section to remove impact of false sharing

```
#include <omp.h>
static long num_steps = 100000;
                                      double step;
#define NUM THREADS 2
void main ()
          double pi; step = 1.0/(double) num_steps;
          omp_set_num_threads(NUM_THREADS);
#pragma omp parallel
                                                        Create a scalar local to
                                                        each thread to
         int i, id,nthrds; double x, sum,
                                                        accumulate partial
        id = omp_get_thread_num();
                                                        sums.
        nthrds = omp_get_num_threads();
        if (id == 0) nthreads = nthrds;
          id = omp_get_thread_num();
        nthrds = omp_get_num_threads();
          for (i=id, sum=0.0;i< num_steps; i=i+nthreads){
                                                                      No array, so
                   x = (i+0.5)*step;
                                                                      no false
                   sum += 4.0/(1.0+x^*x);
                                                                      sharing.
                                          Sum goes "out of scope" beyond the parallel
        #pragma omp critical
                                          region ... so you must sum it in here. Must
              pi += sum * step; 	◀
                                          protect summation into pi in a critical region
                                          so updates don't conflict
```

#### Results\*: pi program critical section

Original Serial pi program with 100000000 steps ran in 1.83 seconds.

```
Example: Using a critical section to remove impact of false sharing
#include < omp.h>
static long num_steps = 100000;
                                 double step;
#define NUM THREADS 2
void main ()
         double pi;
                         step = 1.0/(double) num steps;
          omp_set_num_threads(NUM_THREADS);
#pragma omp parallel
                                                                      1st
                                                                                   1 st
                                                      threads
                                                                                              SPMD
         int i, id.nthrds; double x, sum;
                                                                   SPMD
                                                                                SPMD
                                                                                              critical
        id = omp_get_thread_num();
                                                                                padded
        nthrds = omp_get_num_threads();
        if (id == 0) nthreads = nthrds;
                                                                     1.86
                                                                                  1.86
                                                                                                1.87
          id = omp_get_thread_num();
        nthrds = omp_get_num_threads();
                                                                     1.03
                                                                                  1.01
                                                                                                1.00
         for (i=id, sum=0.0;i< num_steps; i=i+nthreads){
                 x = (i+0.5)*step;
                                                                     1.08
                                                                                  0.69
                                                                                                0.68
                 sum += 4.0/(1.0+x*x);
                                                                    0.97
                                                                                                0.53
                                                          4
                                                                                  0.53
        #pragma omp critical
             pi += sum * step;
```

<sup>\*</sup>Intel compiler (icpc) with no optimization on Apple OS X 10.7.3 with a dual core (four HW thread) Intel® Core<sup>TM</sup> i5 processor at 1.7 Ghz and 4 Gbyte DDR3 memory at 1.333 Ghz.

#### **Example:** Using a critical section to remove impact of false sharing

```
#include <omp.h>
static long num_steps = 100000;
                                    double step;
#define NUM THREADS 2
void main ()
         double pi; step = 1.0/(double) num_steps;
          omp_set_num_threads(NUM_THREADS);
#pragma omp parallel
                                                           Be careful
         int i, id,nthrds; double x;
                                                        where you put
        id = omp_get_thread_num();
                                                            a critical
        nthrds = omp_get_num_threads();
                                                             section
        if (id == 0) nthreads = nthrds;
          id = omp_get_thread_num();
        nthrds = omp_get_num_threads();
         for (i=id, sum=0.0;i< num_steps; i=i+nthreads){
                                                         What would happen if
                  x = (i+0.5)*step;
                                                         you put the critical
                  #pragma omp critical
                                                         section inside the loop?
                      pi += 4.0/(1.0+x*x);
  *= step;
```

### SPMD vs. worksharing

- A parallel construct by itself creates an SPMD or "Single Program Multiple Data" program ... i.e., each thread redundantly executes the same code.
- How do you split up pathways through the code between threads within a team?
  - This is called worksharing
    - Loop construct
    - Sections/section constructs

**Discussed later** 

- Single construct
- Task construct

#### The loop worksharing Constructs

 The loop worksharing construct splits up loop iterations among the threads in a team

```
#pragma omp parallel
{
#pragma omp for
    for (I=0;I<N;I++){
        NEAT_STUFF(I);
    }
}</pre>
```

Loop construct name:

•C/C++: for

•Fortran: do

The variable I is made "private" to each thread by default. You could do this explicitly with a "private(I)" clause

## Loop worksharing Constructs A motivating example

Sequential code

for(i=0;i<N;i++) { a[i] = a[i] + b[i];}

OpenMP parallel region

```
#pragma omp parallel
{
    int id, i, Nthrds, istart, iend;
    id = omp_get_thread_num();
    Nthrds = omp_get_num_threads();
    istart = id * N / Nthrds;
    iend = (id+1) * N / Nthrds;
    if (id == Nthrds-1)iend = N;
    for(i=istart;i<iend;i++) { a[i] = a[i] + b[i];}
}</pre>
```

OpenMP parallel region and a worksharing for construct

```
#pragma omp parallel
#pragma omp for
for(i=0;i<N;i++) { a[i] = a[i] + b[i];}</pre>
```

## **loop worksharing constructs:**The schedule clause

- The schedule clause affects how loop iterations are mapped onto threads
  - schedule(static [,chunk])
    - Deal-out blocks of iterations of size "chunk" to each thread.
  - schedule(dynamic[,chunk])
    - Each thread grabs "chunk" iterations off a queue until all iterations have been handled.
  - schedule(guided[,chunk])
    - Threads dynamically grab blocks of iterations. The size of the block starts large and shrinks down to size "chunk" as the calculation proceeds.
  - schedule(runtime)
    - Schedule and chunk size taken from the OMP\_SCHEDULE environment variable (or the runtime library).
  - schedule(auto)
    - Schedule is left up to the runtime to choose (does not have to be any of the above).

## loop work-sharing constructs: The schedule clause

| Schedule Clause | When To Use                                                            |
|-----------------|------------------------------------------------------------------------|
| STATIC          | Pre-determined and predictable by the programmer                       |
| DYNAMIC         | Unpredictable, highly variable work per iteration                      |
| GUIDED          | Special case of dynamic to reduce scheduling overhead                  |
| AUTO            | When the runtime can "learn" from previous executions of the same loop |

Least work at runtime: scheduling done at compile-time

Most work at runtime: complex scheduling logic used at run-time

### Working with loops

- Basic approach
  - Find compute intensive loops
  - Make the loop iterations independent .. So they can safely execute in any order without loop-carried dependencies
  - Place the appropriate OpenMP directive and test

```
int i, j, A[MAX];
j = 5;
for (i=0;i< MAX; i++) {
    j +=2;
    A[i] = big(j);
}</pre>
```

Note: loop index "i" is private by default

Remove loop carried dependence

```
int i, A[MAX];
#pragma omp parallel for
for (i=0;i< MAX; i++) {
   int j = 5 + 2*(i+1);
   A[i] = big(j);
}</pre>
```

### **Nested loops**

 For perfectly nested rectangular loops we can parallelize multiple loops in the nest with the collapse clause:

- Will form a single loop of length NxM and then parallelize that.
- Useful if N is O(no. of threads) so parallelizing the outer loop makes balancing the load difficult.

#### Reduction

How do we handle this case?

```
double ave=0.0, A[MAX]; int i;
for (i=0;i< MAX; i++) {
    ave + = A[i];
}
ave = ave/MAX;</pre>
```

- We are combining values into a single accumulation variable (ave) ... there is a true dependence between loop iterations that can't be trivially removed
- This is a very common situation ... it is called a "reduction".
- Support for reduction operations is included in most parallel programming environments.

#### Reduction

OpenMP reduction clause:

```
reduction (op: list)
```

- Inside a parallel or a work-sharing construct:
  - A local copy of each list variable is made and initialized depending on the "op" (e.g. 0 for "+").
  - Updates occur on the local copy.
  - Local copies are reduced into a single value and combined with the original global value.
- The variables in "list" must be shared in the enclosing parallel region.

```
double ave=0.0, A[MAX]; int i;
#pragma omp parallel for reduction (+:ave)
for (i=0;i< MAX; i++) {
    ave + = A[i];
}
ave = ave/MAX;</pre>
```

#### OpenMP: Reduction operands/initial-values

- Many different associative operands can be used with reduction:
- Initial values are the ones that make sense mathematically.

| Operator | Initial value       |
|----------|---------------------|
| +        | 0                   |
| *        | 1                   |
| -        | 0                   |
| min      | Largest pos. number |
| max      | Most neg. number    |

| C/C++ only |               |
|------------|---------------|
| Operator   | Initial value |
| &          | ~0            |
|            | 0             |
| ٨          | 0             |
| &&         | 1             |
| II         | 0             |

| Fortran Only |               |
|--------------|---------------|
| Operator     | Initial value |
| .AND.        | .true.        |
| .OR.         | .false.       |
| .NEQV.       | .false.       |
| .IEOR.       | 0             |
| .IOR.        | 0             |
| .IAND.       | All bits on   |
| .EQV.        | .true.        |