CIS 604 Techniques in Artificial Intelligence Introduction

Andreas Henschel

Masdar Institute ahenschel@masdar.ac.ae

Credits for slides: Dr. Iyad Rahwan

September 3rd, 2014

The Instructor

Education

- B.Sc.* Computer Science, Århus, Denmark
- M.Sc. Computational Logic, TU Dresden, Germany
- Ph.D. BioTec TU Dresden, Germany

Research

- Bioinformatics: Classification of Protein-Protein Interactions, Computational Miocrobial Ecology/Metagenomics, Phenotype prediction from genotype
- Text mining: Ontologies, Information Retrieval, Technology Forecasting

More Details

Masdar Faculty website, www.masdar.ac.ae

Material

Literature

 Main Textbook: Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall 3rd Edition, 2010

Various handouts

Further Reading

... and watching $\ddot{-}$

- AIMA web site: http://aima.cs.berkeley.edu/
- Online book on Artificial Intelligence artint.info
- Stanford Online course by Norvig and Thrun www.ai-class.com
- Online classes by S. Thrun www.udacity.com (Robotics, Search Engine)
- bernardwelt.blogspot.com/2011/08/ human-body-is-machine-which-winds-its.html

Assessment

Teaching philosophy

- Interactive, personalized classroom
- Detailed study at home

Assessment

- 20% Assigment 1
- 20% Mid-term exam (in class)
- 20% Assigment 2
- 30% Final exam
- 10% Participation: class, moodle, quizzes

Assignment	Handed	Due
1	Week 4	Week 10
2	Week 8	Week 14

Getting Help

- Office hours: 1.30pm-2.30pm on class days (prior appointment required)
- Outside office hours:
 - Post questions on "the Source" (course management system) https://source.masdar.ac.ae
 - Other students who answer will get "participation credit"

Schedule

Week	Topic (tentative)	Chapter
1	Introduction, search techniques	1,2,3
2	More search techniques	3,4
3	Adversarial Search + Constraint Satisfaction Problems	5,6
4	Propositional Logic	7
5	First Order Logic	8,9
6	Planning	10,11
7	Ontologies	12
8	Revision + Mid-term exam	-
9	Uncertainty	13
10	Probabilistic Reasoning with Bayesian Networks	14
11	Probabilistic Reasoning over Time	15
12	Decision Theoretic Agents	16
13	Sequential Decision Making & Markov Decision Processes	17
14	Reinforcement Learning	21
15	Hidden Markov Models and NLP	
16	Revision + Final Exam	-

Prerequisites

Math

- Basic set theory and discrete mathematics
- Basic probability theory

Algorithms

- Basic data structures (lists, queues, trees, graphs)
- Basic algorithmic techniques (loops, conditions, recursion)

You can learn these things as we go!

Programming

Python

- Easy-to-learn, easy-to-read
- Interpreted language, interactive (slow, but...)
- Widespread (also in AI, see Further Material), multi-purpose
- AIMA pseudo code uses similar syntax
- Extensive libraries:

- NIP: NITK
- Graph theory (networkx)
- Visualization (MayaVi, PyMOL)

Rodney Brooks Robotics

http://www.youtube.com/watch?v=Uqt_pRbR8rI&feature=player_embedded#!

IBM's Deep Blue beats Garry Kasparov in 1997

"Curiosity" spectacularly lands on Mars

Driverless cars

http:

//www.youtube.com/watch?v=C9p8B7-5MTI

Roots of Al

Fields of relevance

- **Philosophy** logic, methods of reasoning, mind as physical system foundations of learning, language, rationality,
- Mathematics formal representation and proof, algorithms, computation, (un)decidability, (in)tractability probability
- **Psychology** adaptation, phenomena of perception and motor control, experimental techniques (psychophysics, etc.)
- **Economics** formal theory of rational decisions
- **Linguistics** knowledge representation, grammar
- Neuroscience plastic physical substrate for mental activity
- **Control theory** homeostatic systems, stability, simple optimal agent designs

Al History

1943	McCulloch & Pitts: Artificial Neuron		
1950	Turing's "Computing Machinery and Intelligence"		
1950s	Early AI programs, Checkers, Backgammon		
	"General Problem solver"		
1956	Dartmouth meeting: "Artificial Intelligence" adopted		
1966–74	Al discovers computational complexity		
	Neural network research almost disappears		
1969–79	Early development of knowledge-based systems		
1980-88	Expert systems industry booms		
1988–93	Expert systems industry busts: "Al Winter"		
1985–95	Neural networks return to popularity		
1988–	Resurgence of probability; Genetic Algorithms, ALife, soft		
	computing		
1995–	Agents, agents, everywhere		
2003-	Human-level AI back on the agenda		

AI Technologies

Technologies invented in Al labs

- Time Sharing
- GUIs + mouse
- Rapid development environments
- The linked list data type
- Automatic storage management
- Symbolic programming (e.g. PROLOG)
- Functional programming (e.g. LISP)
- Object-oriented programming
- Dynamic programming

AI Technologies Today

- Knowledge representation and reasoning
- Search Algorithms, Constraint Processing
- Machine Learning
- Natural Language Processing
- Planning and Scheduling
- Computer Vision
- Robotic Control
- Multi-agent systems (distributed AI)

Applications of AI

- Finance
- Medicine
- Electrical Engineering
- Security
- Bioinformatics
- Military

What is AI?

Traditional views

	human-centered	rationality-centered
Think	think like humans	think rationally
Act act like humans act ratio		act rationally

Thinking humanly

Cognitive Science

- based on information-processing psychology (1960s)
- Validation requires scientific theories of internal activities of the brain
 - Cognitive Science (predicting and testing behavior of human subjects)

- Cognitive Neuroscience (Neurological data)
- Both fields nowadays distinct from AI

Acting humanly

Turing Test

Turing Test

Alan M. Turing (1950)

- Turing's prediction: By 2000, a bot can fool 30% of judges
- 2014 Eugene Goostman: simulating an Ukrainian boy could fool 33% of judges, considered the first "pass", disputed
- Problem: Turing test is not reproducible, constructive, or amenable to mathematical analysis

Thinking rationally

"Laws of thought" approach

- Logic: precise notation for statements about all kinds of objects
- Problems:
 - Formalization
 - Uncertainty
 - Computable often only for small instances

Acting rationally

- An agent is an entity that can perceive and act
- This course is about designing rational agents
- Rational behavior: doing the right thing
- The right thing: what is expected to maximize goal achievement, given available information, doesn't necessarily involve thinking

Environment Types

Types

- Fully observable (vs. partially observable)
 - An agent's sensors give it access to the complete state of the environment at each point in time
- Deterministic (vs. stochastic)
 - Next state determined by current state and agent's action
 - If environment is deterministic except for the actions of other agents: environment is strategic
- Episodic (vs. sequential)
 - Agent's experience divided into atomic "episodes": each episode consists of the agent perceiving and then performing a single action, choice of action in each episode depends only on current episode

Environment Types cont.

Types

- Static (vs. dynamic):
 - ▶ The environment is unchanged while an agent is deliberating.
 - The environment is semidynamic: if environment does not change but performance score does
- Discrete (vs. continuous):
 - A finite number of distinct, clearly defined percepts and actions
- Single agent (vs. multi-agent)
 - An agent operating by itself in an environment

Environment Types cont.

Examples

	Chess	Taxi drive
Fully observable		
Deterministic		
Episodic		
Static		
Discrete		
Single agent		

What is an Agent?

Agent Terminology

 An agent is anything that can be viewed as perceiving its environment through sensors and acting upon that environment through actuators

ullet Autonomous: Actions ${\mathcal A}$ determined by Percepts ${\mathcal P}$

$$f: \mathcal{P}^* \to \mathcal{A}$$

 We want: best performance for every environment → requires performance measure

Example Agent

Vacuum cleaner

- ullet \mathcal{P} : location, dirty/clean [A, dirty]
- A: GoLeft, GoLeft, Clean, Idle
- Question: Size of State space?
- for 10 rooms, 5 levels of dirt?

Simple Reflex Agent

Reflex agents cont.

Rodney Brooks - Behavioral Robotics

- One school of thought: "The world is its own best model"
- Cog Project ("Cockroach robotics")

Reflex Agent cont.

PacmanReflexAgent

if wall in front of me then
 turn right
else
 move forward
end if

Can a reflex agent be rational (optimal)?

Model based reflex agent

Model based goal based agent

Utility based agent

Required Reading

Literature

- Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall, 3rd edition, 2010
 - Chapter 1
 - Chapter 2

"Education is the path from cocky ignorance to miserable uncertainty"

Mark Twain