Урок 9. Компактність в метричних просторах

Задача 9.1. Компактна підмножина метричного простору ϵ обмеженою.

Pозв'язок. Розглянемо множину A в метричному просторі (X, ρ) . Припустимо, що множина A не ϵ обмеженою. Візьмемо її довільну точку і позначимо її як x_1 . Побудуємо кулю $S(x_1, r_1)$, поклавши $r_1 = 1$. Оскільки множина не ϵ обмеженою, існує хоча б одна точка множини A, що лежить за межами кулі $S(x_1, r_1)$. Позначимо її як x_2 . Тоді має місце наступне твердження.

$$x_2 \notin S(x_1, r_1) \Longrightarrow \rho(x_1, x_2) \ge r_1.$$

Побудуємо кулю $S\left(x_1,r_2\right)$, поклавши $r_2=\rho\left(x_1,x_2\right)+1$. Оскільки множина не є обмеженою, існує хоча б одна точка множини A, що лежить за межами кулі $S\left(x_2,r_2\right)$. Позначимо її як x_3 . Тоді має місце наступне твердження.

$$x_3 \notin S(x_1, r_2) \Longrightarrow \rho(x_1, x_3) \ge r_2$$
.

Продовжуючи цей процес до нескінченості, отримаємо послідовність точок $x_n \in A$ і числову послідовність $\left\{r_n\right\}_{n=1}^{\infty}$, що зростає. До того ж для всіх n=2,3,...

$$\rho(x_1,x_n)=r_n-1\geq r_{n-1}.$$

Отже, для всіх $n > m \ge 2$

$$\rho(x_1, x_n) = r_n - 1 \ge r_{n-1} \ge r_m; \ \rho(x_1, x_m) = r_m - 1.$$

Застосуємо нерівність трикутника

$$\rho(x_1,x_n) \leq \rho(x_1,x_m) + \rho(x_m,x_n).$$

Звідси випливає, що

$$r_m \le (r_m - 1) + \rho(x_m, x_n).$$

Таким чином,

$$\rho(x_m,x_n)\geq 1.$$

Таким чином, жодна часткова підпослідовність, що виділена із $\left\{x_n\right\}_{n=1}^{\infty}$ не ϵ фундаментальною, отже, не ϵ збіжною. З цього виплива ϵ , що множина A не ϵ компактною. Застосовуючи закон заперечення, отриму ϵ мо бажане.

Задача 9.2. Покажіть, що обмежена множина в метричному просторі не обов'язково ϵ компактною.

Pозв'язок. Наведемо контрприклад. Розглянемо метричний простір $\left(l_2, \sqrt{\sum_{n=1}^{\infty} \left(x_i - y_i\right)^2}\right)$. Розглянемо множину координатних ортів $\left\{e_m\right\}_{m=1}^{\infty}$, де

$$e_n = \left\{e_n^{(i)}\right\}_{i=1}^{\infty}, e_n^{(i)} = \begin{cases} 1, \ extit{якщо} \ i = n, \\ 0, \ extit{ якщо} \ i
eq n. \end{cases}$$
 Відстань будь-якого орта від нуля дорівнює 1,

оскільки

$$\rho(e_n, 0) = \sqrt{\sum_{i=1}^{\infty} (e_n^{(i)} - 0)^2} = \sqrt{\sum_{i=1}^{\infty} (e_n^{(i)})^2} = \sqrt{0 + \dots + 0 + 1 + 0 + \dots} = 1.$$

Отже, множина ортів лежить в кулі з центром в нулі і радіусом, до дорівнює одиниці, тобто вона є обмеженою множиною. З іншого боку, якщо $m \neq n$

$$\rho(e_m, e_n) = \sqrt{\sum_{i=1}^{\infty} \left(e_m^{(i)} - e_n^{(i)}\right)^2} =$$

$$= \sqrt{(0-0)^2 + \dots + \underbrace{(1-0)^2}_{m-me \text{ micye}} + \dots \underbrace{(0-1)^2}_{n-me \text{ micye}} + \dots \underbrace{(0-0)^2}_{n-me \text{ micye}} = \sqrt{2}.$$

Таким чином, послідовність $\{e_n\}_{n=1}^{\infty}$ не є фундаментальною. З цього випливає, що жодна підпослідовність цієї послідовності не є фундаментальною, а, значить, не є збіжною. Отже, із послідовності $\{e_n\}_{n=1}^{\infty}$ не можна виділити жодну збіжну підпослідовність. Це значить, що множина $\{e_n\}_{n=1}^{\infty}$ хоча і є обмеженою, але не є компактною.

Задача 9.3. Нехай \mathbb{Q} — метричний простір всіх раціональних чисел з метрикою $\rho(p,q)=|p-q|$. Доведіть, що множина $M=\{p\in\mathbb{Q}:0\leq p\leq 1\}$ ϵ цілком обмеженою, але не ϵ компактною.

Pозв'язок. Ця задача ілюструє важливість умови повноти метричного простору в критерії компактності, адже простір $\mathbb Q$ не ϵ повним. Отже, критерії Хаусдорфа порушується, тобто множина M компактною.

Приклад: 0, 0.4, 0.41, 0.414, 0.4142, ...
$$\rightarrow \sqrt{2} - 1 \in \mathbb{R} \setminus \mathbb{Q}$$
.

Зауваження. В множині дійсних чисел $\mathbb R$ поняття цілком обмеженої множини еквівалентне поняттям обмеженої множини. Оскільки $\mathbb Q \subset \mathbb R$, це стосується і простору $\mathbb Q$. Дійсно, якщо множина дійсних чисел A ϵ цілком обмеженою, то для довільного $\epsilon > 0$ існує скінчена ϵ -сітка B. Взявши інтервал, кінці якого утворені мінімальним і максимальним елементами цієї ϵ -сітки, ми в будь-якому випадку зможемо занурити множину A в множину B. І навпаки, якщо множина дійсних чисел A ϵ обмеженою, вона лежить в деякому інтервалі B. Цей інтервал при довільному $\epsilon > 0$ можна розбити на відрізки довжини ϵ , які утворюють скінчену ϵ -сітку.

Задача 9.4. Доведіть, що "гільбертова цегла"
$$A = \left\{ x = \left\{ \xi_n \right\} \in l_2 : \left| \xi_n \right| \le \frac{1}{2^{n-1}} \right\} \in \mathcal{C}$$
 відносно компактною множиною.

Pозв'язок. Ця множина ϵ прикладом нескінченновимірної і цілком обмеженої множини. Оскільки l_2 — повний простір, то, щоб довести компактність "гільбертової цегли", достатньо довести її цілковиту обмеженість.

Нехай задано довільне $\varepsilon > 0$. Виберемо число n так, щоб

$$\frac{1}{2^{n-1}} < \frac{\varepsilon}{2}.$$

Кожній точці $x = (\xi_1, \xi_2, ..., \xi_n, ...) \in A$ поставимо у відповідність точку $x^* = (\xi_1, \xi_2, ..., \xi_n, 0, ...)$. Оцінимо відстань $\rho(x, x^*)$.

$$\rho(x,x^*) = \sqrt{\sum_{k=n+1}^{\infty} \xi_k^2} \le \sqrt{\sum_{k=n+1}^{\infty} \frac{1}{4^k}} < \frac{1}{2^{n-1}} < \frac{\varepsilon}{2}.$$

Утворимо множину $A^* = \{x^* \in A\}$, що складається із "усічених послідовностей".

Вона ϵ обмеженою в R^n , оскільки її можна заключити в куб, довжина ребра якого дорівнює одиниці. Згідно з наведеним вище зауваженням, вона ϵ цілком обмеженою.

Виберемо для множини A^* скінчену $\frac{\varepsilon}{2}$ -сітку B для множини A. Тоді $\forall \varepsilon > 0 \ \forall x \in A \ \exists x^{**} \in B$:

$$\rho(x,x^{**}) \le \rho(x,x^{*}) + \rho(x^{*},x^{**}) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Отже, множина $B \in \mathcal{E}$ -сіткою "гільбертової цегли" A. Таким чином, множина $A \in \mathcal{E}$ відносно компактною.

Задача 9.5. Доведіть, що компактний метричний простір ϵ сепарабельним.

Розв'язок. Нехай E — компактний метричний простір. Покладемо $\varepsilon_n = \frac{1}{n}, n = 1, 2, ...$ і знайдемо в E скінченні ε_n -сітки B_n . Множина $B = \bigcup_{n=1}^{\infty} B_n$ ε не більш ніж зліченною (скінченою або зліченною). Покажемо, що множина B ε скрізь щільною в просторі E. Дійсно, для довільного $x \in E$ і довільного число $\varepsilon > 0$ виберемо натуральне число n так, що $\frac{1}{n} \le \varepsilon$, а також точку $y \in B_n$, так що $\rho(x,y) < \varepsilon_n = \frac{1}{n}$. Оскільки $y \in B_n$, то $y \in \bigcup_{n=1}^{\infty} B_n$. Отже, $\rho(x,y) < \varepsilon_n = \frac{1}{n} < \varepsilon$. Таким чином, $\overline{B} = E$. ■

Задача 9.6. Нехай A — множина неперервних на $\begin{bmatrix} 0,1 \end{bmatrix}$ функцій, таких що $|x(t)| \leq 1, t \in [0,1]$. Доведіть, що множина A не ϵ відносно компактною в C[0,1]

Pозв'язок. Виберемо в множині A послідовність функцій

$$^{1} \text{ Нагадаємо, що } a+aq+aq^{2}+\ldots=\frac{a}{1-q}.$$
 Отже,
$$\frac{1}{4^{n}}+\frac{1}{4^{n+1}}+\frac{1}{4^{n+2}}+\ldots=\frac{1}{4^{n}}+\frac{1}{4^{n}4}+\frac{1}{4^{n}4^{2}}+\ldots=\frac{1}{4^{n}\left(1-\frac{1}{4}\right)}=\frac{1}{4^{n-1}3}<\frac{1}{2^{n-1}}.$$

$$x_n(t) = \sin 2^n \pi t, \ n = 1, 2, ...$$

Оцінимо відстань $\rho(x_m, x_n)$ і покажемо, що послідовність $\{x_n\}_{n=1}^{\infty}$ не є фундаментальною, тобто із неї не можна виділити жодну збіжну підпослідовність. Маємо

$$\rho(x_m, x_n) = \sup_{t \in [0,1]} |x_m(t) - x_n(t)| \ge |x_m(\frac{1}{2^{m+1}}) - x_n(\frac{1}{2^{m+1}})| = 1,$$

оскільки

$$\sin 2^{m} \pi t \Big|_{t = \frac{1}{2^{m+1}}} = \sin 2^{m} \pi \frac{1}{2^{m+1}} = \sin \frac{\pi}{2} = 1.$$

$$\sin 2^{n} \pi t \Big|_{t = \frac{1}{2^{m+1}}} = \sin 2^{n-m-1} \pi = \sin 2l \pi = 0, l = 2^{k-n-2}, k > n.$$

Задача 9.7. Доведіть, що в метричному просторі l_3 множина A послідовностей $\left\{x_n\right\}_{n=1}^{\infty}$, таких що $x_n = \left(1, \frac{1}{2}, ..., \frac{1}{n}, 0, ...\right)$ є відносно компактною.

Pозв'язок. Послідовність $\left\{ \xi_n
ight\}_{n=1}^{\infty}$ належить l_3 , якщо $\sum_{n=1}^{\infty} \left| \xi_n
ight|^3 < \infty$.

$$\rho^{3}(x_{n}, x_{n+p}) = \sum_{k=n+1}^{n+p} \frac{1}{k^{3}} \le \sum_{k=n+1}^{\infty} \frac{1}{k^{3}} \to 0, n \to \infty \quad \forall p \in \mathbb{N}.$$

Отже, послідовність $\left\{x_n\right\}_{n=1}^{\infty}$ є фундаментальною. З огляду на те, що простір l_3 є повним, послідовність $\left\{x_n\right\}_{n=1}^{\infty}$ є збіжною, а, значить, із неї можна виділити збіжну підпослідовність. Таким чином, множина A є відносно компактною.

Задача 9.8. Доведіть, що куля $S = \left\{ x \in C[0,2\pi] : \left| x(t) \right| \le 1 \right\}$ не ϵ відносно компактною множиною в метричному просторі $\left(C[0,2\pi], \sup_{t \in [0,2\pi]} \left| x(t) - y(t) \right| \right)$.

Pозв'язок. З огляду на те, що простір $\left(C[0,2\pi], \sup_{t\in[0,2\pi]} \left|x(t)-y(t)\right|\right)$ є повним,

достатньо показати, що куля S не ϵ цілком обмеженою множиною. Покладемо $x_n = \sin nt$. Ця послідовність належить кулі S . Оцінимо відстань $\rho(x_n, x_m)$.

$$\rho(x_n, x_m) = \sup_{t \in [0, 2\pi]} |x_n(t) - x_m(t)| = \sup_{t \in [0, 2\pi]} |\sin nt - \sin mt| \ge 1.$$

Отже, послідовність $\left\{\sin nt\right\}_{n=1}^{\infty}$ не є фундаментальною, із неї неможливо виділити збіжну підпослідовність. Таким чином, куля S не є відносно компактною в метричному просторі $\left(C[0,2\pi],\sup_{t\in[0,2\pi]}\left|x(t)-y(t)\right|\right)$.

Задача 9.9. Доведіть, що метричний простір s всіх числових послідовностей з метрикою $\rho(x,y) = \sup_n \frac{\left|\xi_n - \eta_n\right|}{1 + \left|\xi_n - \eta_n\right|}$ не є компактом.

Розв'язок. Метричний простір X є компактом, якщо будь-яка нескінченна підмножина цього простору містить послідовність, що збігається до деякого елемента із X . Розглянемо множину $E_{0,1} = \left\{ x = \left(\xi_1, \xi_2, ..., \xi_n, ... \right) : \xi_i \in \left\{ 0, 1 \right\} \right\}$ і утворимо із її елементів послідовність

$$X_n = (\xi_1^{(n)}, \xi_2^{(n)}, ..., \xi_n^{(n)}, ...)$$

Оцінимо відстань $\rho(x_n, x_m)$.

$$\rho(x_n, x_m) = \sup_{i} \frac{\left|\xi_i^{(n)} - \xi_i^{(m)}\right|}{1 + \left|\xi_i^{(n)} - \xi_i^{(m)}\right|} = \frac{1}{2}, \quad n \neq m.$$

3 цього випливає, що послідовність $x_n = \left(\xi_1^{(n)}, \xi_2^{(n)}, ..., \xi_n^{(n)}, ...\right)$ не є фундаментальною. Отже, з неї не можна виділити жодну збіжну послідовність. Таким чином, множина $E_{0,1}$ не є компактною. З цього випливає, що простір s не є компактом.

Задача 9.10. Доведіть, що секвенційно компактна множина $A \subset E$ була компактом в метричному просторі E тоді і лише тоді, коли вона ϵ замкненою в E .

Розв'язок. Необхідність.

$$A$$
 — компакт $\Rightarrow \forall \left\{ x_n \right\}_{n=1}^{\infty} \subset A \ \exists \left\{ x_{n_k} \right\}_{k=1}^{\infty} : x_{n_k} \to x \in A, \ n \to \infty \Rightarrow x_n \to x \in A \ \Rightarrow A$ - замкнена.

Достатність.

A — секвенційно компактна і замкнена \Rightarrow

$$\Rightarrow \forall \big\{x_n\big\}_{n=1}^{\infty} \subset A \; \exists \big\{x_{n_k}\big\}_{k=1}^{\infty} \colon x_{n_k} \to x \in A, \; n \to \infty \Rightarrow A \; -\text{компакт.} \; \blacksquare$$