Matematika Splošna gimnazija

ZAPISKI

10. oktober 2024

Pred vami so zapiski za predmet Matematika v splošnem gimnazijskem izobraževanju. Sproti bodo nastajali od šolskega leta 2024/2025 naprej. V besedilu so mogoče prisotne še kake napake. Če kakšno opazite, mi javite

Kazalo

1.1 Izjave 1.1.1 Enostavne in sestavjene izjave 1.2 Logične operacije 1.2.1 Negacija 1.2.2 Konjunkcija 1.2.3 Disjunkcija 1.2.4 Komutativnost konjunkcije in disjunkcije 1.2.5 Asociativnost konjunkcije in disjunkcije 1.2.6 Distributivnost zakona za konjunkcijo in disjunkcijo 1.2.7 De Morganova zakona 1.2.8 Implikacija 1.2.9 Ekvivalenca 1.2.10 Vrstni red operacij 1.2.11 Tavtologija in protislovje 1.2.12 Kvantifikatorja 1.3 Pomen izjav v matematiki 2 Osnove teorije množic 2.1 Množice 2.2 Moč množice 2.3 Podmnožice 2.4 Operacije z množicami 2.4.1 Komplement množice 2.4.2 Unija množic	1 2 2 2 3 3 3 4 4 5 5 5
1.2 Logične operacije 1.2.1 Negacija 1.2.2 Konjunkcija 1.2.3 Disjunkcija 1.2.4 Komutativnost konjunkcije in disjunkcije 1.2.5 Asociativnost konjunkcije in disjunkcije 1.2.6 Distributivnost zakona za konjunkcijo in disjunkcijo 1.2.7 De Morganova zakona 1.2.8 Implikacija 1.2.9 Ekvivalenca 1.2.10 Vrstni red operacij 1.2.11 Tavtologija in protislovje 1.2.12 Kvantifikatorja 1.3 Pomen izjav v matematiki 2 Osnove teorije množic 2.1 Množice 2.2 Moč množice 2.3 Podmnožice 2.4 Operacije z množicami 2.4.1 Komplement množice	2 2 3 3 3 4 4 5 5 5
1.2.1 Negacija 1.2.2 Konjunkcija 1.2.3 Disjunkcija 1.2.4 Komutativnost konjunkcije in disjunkcije 1.2.5 Asociativnost konjunkcije in disjunkcije 1.2.6 Distributivnost zakona za konjunkcijo in disjunkcijo 1.2.7 De Morganova zakona 1.2.8 Implikacija 1.2.9 Ekvivalenca 1.2.10 Vrstni red operacij 1.2.11 Tavtologija in protislovje 1.2.12 Kvantifikatorja 1.3 Pomen izjav v matematiki 2 Osnove teorije množic 2.1 Množice 2.2 Moč množice 2.3 Podmnožice 2.4 Operacije z množicami 2.4.1 Komplement množice	2 2 3 3 3 4 4 5 5 5
1.2.2 Konjunkcija 1.2.3 Disjunkcija 1.2.4 Komutativnost konjunkcije in disjunkcije 1.2.5 Asociativnost konjunkcije in disjunkcije 1.2.6 Distributivnost zakona za konjunkcijo in disjunkcijo 1.2.7 De Morganova zakona 1.2.8 Implikacija 1.2.9 Ekvivalenca 1.2.10 Vrstni red operacij 1.2.11 Tavtologija in protislovje 1.2.12 Kvantifikatorja 1.3 Pomen izjav v matematiki 2 Osnove teorije množic 2.1 Množice 2.2 Moč množice 2.3 Podmnožice 2.4 Operacije z množicami 2.4.1 Komplement množice	2 3 3 3 4 4 5 5 5
1.2.3 Disjunkcija 1.2.4 Komutativnost konjunkcije in disjunkcije 1.2.5 Asociativnost konjunkcije in disjunkcije 1.2.6 Distributivnost zakona za konjunkcijo in disjunkcijo 1.2.7 De Morganova zakona 1.2.8 Implikacija 1.2.9 Ekvivalenca 1.2.10 Vrstni red operacij 1.2.11 Tavtologija in protislovje 1.2.12 Kvantifikatorja 1.3 Pomen izjav v matematiki 2 Osnove teorije množic 2.1 Množice 2.2 Moč množice 2.3 Podmnožice 2.4 Operacije z množicami 2.4.1 Komplement množice	2 3 3 4 4 5 5 5
1.2.4 Komutativnost konjunkcije in disjunkcije 1.2.5 Asociativnost konjunkcije in disjunkcije 1.2.6 Distributivnost zakona za konjunkcijo in disjunkcijo 1.2.7 De Morganova zakona 1.2.8 Implikacija 1.2.9 Ekvivalenca 1.2.10 Vrstni red operacij 1.2.11 Tavtologija in protislovje 1.2.12 Kvantifikatorja 1.3 Pomen izjav v matematiki 2 Osnove teorije množic 2.1 Množice 2.2 Moč množice 2.3 Podmnožice 2.4 Operacije z množicami 2.4.1 Komplement množice	3 3 3 4 4 5 5 5
1.2.5 Asociativnost konjunkcije in disjunkcije 1.2.6 Distributivnost zakona za konjunkcijo in disjunkcijo 1.2.7 De Morganova zakona 1.2.8 Implikacija 1.2.9 Ekvivalenca 1.2.10 Vrstni red operacij 1.2.11 Tavtologija in protislovje 1.2.12 Kvantifikatorja 1.3 Pomen izjav v matematiki 2 Osnove teorije množic 2.1 Množice 2.2 Moč množice 2.3 Podmnožice 2.4 Operacije z množicami 2.4.1 Komplement množice	3 3 4 4 5 5 5
1.2.6 Distributivnost zakona za konjunkcijo in disjunkcijo 1.2.7 De Morganova zakona 1.2.8 Implikacija 1.2.9 Ekvivalenca 1.2.10 Vrstni red operacij 1.2.11 Tavtologija in protislovje 1.2.12 Kvantifikatorja 1.3 Pomen izjav v matematiki 2 Osnove teorije množic 2.1 Množice 2.2 Moč množice 2.3 Podmnožice 2.4 Operacije z množicami 2.4.1 Komplement množice	3 4 4 5 5 5
1.2.7 De Morganova zakona 1.2.8 Implikacija 1.2.9 Ekvivalenca 1.2.10 Vrstni red operacij 1.2.11 Tavtologija in protislovje 1.2.12 Kvantifikatorja 1.3 Pomen izjav v matematiki 2 Osnove teorije množic 2.1 Množice 2.2 Moč množice 2.3 Podmnožice 2.4 Operacije z množicami 2.4.1 Komplement množice	3 4 5 5 5
1.2.8 Implikacija 1.2.9 Ekvivalenca 1.2.10 Vrstni red operacij 1.2.11 Tavtologija in protislovje 1.2.12 Kvantifikatorja 1.3 Pomen izjav v matematiki 2 Osnove teorije množic 2.1 Množice 2.2 Moč množice 2.2 Podmnožice 2.3 Podmnožice 2.4 Operacije z množicami 2.4.1 Komplement množice	4 5 5 5
1.2.9 Ekvivalenca 1.2.10 Vrstni red operacij 1.2.11 Tavtologija in protislovje 1.2.12 Kvantifikatorja 1.3 Pomen izjav v matematiki 2 Osnove teorije množic 2.1 Množice 2.2 Moč množice 2.3 Podmnožice 2.4 Operacije z množicami 2.4.1 Komplement množice	4 5 5 5 5
1.2.10 Vrstni red operacij 1.2.11 Tavtologija in protislovje 1.2.12 Kvantifikatorja 1.3 Pomen izjav v matematiki 2 Osnove teorije množic 2.1 Množice 2.2 Moč množice 2.2 Moč množice 2.3 Podmnožice 2.4 Operacije z množicami 2.4.1 Komplement množice 2.4.1 Komplement množice	5 5 5
1.2.11 Tavtologija in protislovje 1.2.12 Kvantifikatorja 1.3 Pomen izjav v matematiki 2 Osnove teorije množic 2.1 Množice 2.2 Moč množice 2.3 Podmnožice 2.4 Operacije z množicami 2.4.1 Komplement množice	5 5 5
1.2.12 Kvantifikatorja 1.3 Pomen izjav v matematiki 2 Osnove teorije množic 2.1 Množice 2.2 Moč množice 2.3 Podmnožice 2.4 Operacije z množicami 2.4.1 Komplement množice	5 5
1.3 Pomen izjav v matematiki 2 Osnove teorije množic 2.1 Množice 2.2 Moč množice 2.3 Podmnožice 2.4 Operacije z množicami 2.4.1 Komplement množice	5
2 Osnove teorije množic 2.1 Množice	7
2.1 Množice	
2.1 Množice	
2.2 Moč množice	7
2.3 Podmnožice	
2.4 Operacije z množicami	
2.4.1 Komplement množice	
2 4 2 Unita mnozic	
2.4.3 Presek množic	
2.4.4 Lastnosti operacij unije in preseka	
2.4.5 Razlika množic	
2.4.6 Kartezični produkt množic	11
3 Naravna in cela števila	13
3.1 Naravna števila	
3.2 Operacije v množici $\mathbb N$	
3.2.1 Seštevanje	
3.2.2 Množenje	
3.2.3 Odštevanje	
3.2.4 Vrstni red operacij	
3.3 Osnovni računski zakoni	
3.4 Cela Števila	
3.5 Operacije v množici \mathbb{Z}	
3.5.1 Seštevanje	17

vi Kazalo

		Odštevanje	
	5.5.5	Množenje	ð
3.6	Osnov	ni računski zakoni v $\mathbb Z$	8
3.7	Urejen	ost naravnih in celih števil	0
	3.7.1	Linearna urejenost	0
	3.7.2	Lastnosti relacij \leq in $<$	1

viii Kazalo

Poglavje 1

Osnove logike

1.1 Izjave

Matematična izjava je vsaka smiselna poved, za katero lahko določimo resničnost oziroma pravilnost.

Matematična izjava lahko zavzame dve logični vrednosti:

- izjava je **resnična/pravilna**, oznaka **R/P/1/**T;
- izjava je neresnična/nepravilna, oznaka $N/0/\bot$.

Izjave označujemo z velikimi tiskanimi črkami (A, B, C ...).

Naloga 1.1. Ali so naslednje povedi izjave?

- Danes sije sonce.
- Koliko je ura?
- Piramida je geometrijski lik.
- Daj mi jabolko.
- Število 12 deli število 3.
- Število 3 deli število 10.
- Ali si pisal matematični test odlično?
- Matematični test si pisal odlično.
- Ali je 10 dl isto kot 1 l?
- Število 41 je praštevilo.

Naloga 1.2. Spodnjim izjavam določite logične vrednosti.

- A: Najvišja gora v Evropi je Mont Blanc.
- B: Število je deljivo s 4 natanko takrat, ko je vsota števk deljiva s 4.
- C: Ostanek pri deljenju s 4 je lahko 1, 2 ali 3.
- D: Mesec februar ima 28 dni.
- E: Vsa praštevila so liha števila.
- F: Število 1 je naravno število.
- G: Praštevil je neskončno mnogo.

1.1.1 Enostavne in sestavjene izjave

Izjave delimo med:

- elementarne/enostavne izjave ne moremo jih razstaviti na bolj enostavne;
- sestavljene izjave sestavljene iz elementarnih izjav, ki jih med seboj povezujejo logične operacije (imenovane tudi izjavne povezave oziroma logična vezja).

Vrednost sestavljene izjave izračunamo glede na vrednosti elementarnih izjav in izjavnih povezav med njimi.

Pravilnost sestavljenih izjav nazorno prikazujejo resničnostne/pravilnostne tabele.

1. Osnove logike

1.2 Logične operacije

1.2.1 Negacija

Negacija izjave A je izjava, ki trdi nasprotno kot izjava A. Oznaka: $\neg A$.

 $\neg \mathbf{A}$ **Ni res**, da velja izjava A.

Če je izjava A pravilna, je $\neg A$ nepravilna in obratno: če je $\neg A$ pravilna, je A nepravilna. Negacija negacije izjave je potrditev izjave. $\neg(\neg A) = A$

A	$\neg A$
P	N
N	P

Naloga 1.3. Izjavam določite logično vrednost, potem jih zanikajte in določite logično vrednost negacij.

- $A: 5 \cdot 8 = 30$
- B: Število 3 je praštevilo.
- C: Največje dvomestno število je 99.
- D: Število 62 je večratnik števila 4.
- E: Praštevil je neskončno mnogo.
- $F: 7 \le 5$
- G: Naša pisava je cirilica.

1.2.2 Konjunkcija

Konjunkcija izjavA in B nastane tako, da povežemo izjaviA in B z in hkrati.

 $\mathbf{A} \wedge \mathbf{B}$ Velja izjava A in (hkrati) izjava B.

Če sta izjavi A in B pravilni, je pravilna tudi njuna konjunkcija, če je pa ena od izjav nepravilna, je nepravilna tudi njuna konjunkcija.

A	B	$A \wedge B$
P	\overline{P}	P
P	N	N
N	P	N
N	N	N

Naloga 1.4. Določite logično vrednost konjunkcijam.

- Število 28 je večratnik števila 3 in večkratnik števila 8.
- Število 7 je praštevilo in je deljivo s številom 1.
- Vsakemu celemu številu lahko pripišemo nasprotno število in obratno celo število.
- Ostanki pri deljenju števila s 3 so lahko 0, 1 ali 2, pri deljenju s 5 pa 0, 1, 2, 3 ali 4.
- Število je deljivo s 3, če je vsota števk deljiva s 3, in je deljivo z 9, če je vsota števk deljiva z 9.

1.2.3 Disjunkcija

Disjunkcija izjav A in B nastane s povezavo ali.

 $\mathbf{A} \vee \mathbf{B}$ Velja izjava A ali izjava B (lahko tudi obe hkrati).

Disjunkcija je nepravilna, če sta nepravilni obe izjavi, ki jo sestavljata, v preostalih treh primerih je pravilna.

A	В	$A \lor B$
P	P	P
P	N	P
N	P	P
N	N	N

Naloga 1.5. Določite logično vrednost disjunkcijam.

- Število 24 je večratnik števila 3 ali 8.
- Število 35 ni večratnik števila 7 ali 6.
- Število 5 deli število 16 ali 18.
- Ploščina kvadrata s stranico a je a² ali obseg kvadrata je 4a.
- Ni res, da je vsota notranjih kotov trikotnika 160°, ali ni res, da Pitagorov izrek velja v poljubnem trikotniku.

1.2.4 Komutativnost konjunkcije in disjunkcije

$$A \wedge B = B \wedge A$$

$$A \lor B = B \lor A$$

1.2.5 Asociativnost konjunkcije in disjunkcije

$$(A \wedge B) \wedge C = A \wedge (B \wedge C)$$

$$(A \lor B) \lor C = A \lor (B \lor C)$$

1.2.6 Distributivnost zakona za konjunkcijo in disjunkcijo

$$(A \lor B) \land C = (A \land C) \lor (B \land C)$$

$$(A \land B) \lor C = (A \lor C) \land (B \lor C)$$

1.2.7De Morganova zakona

- negacija konjunkcije je disjunkcija negacij: $\neg(A \land B) = \neg A \lor \neg B$
- negacija disjunkcije je konjunkcija negacij: $\neg(A \lor B) = \neg A \land \neg B$

Naloga 1.6. Katere od spodnjih izjav so pravilne in katere nepravilne?

- $(3 \cdot 4 = 12) \land (12 : 4 = 3)$
- $(a^3 \cdot a^5 = a^{15}) \vee (a^3 \cdot a^5 = a^8)$
- $(3|30) \wedge (3|26)$
- $(3|30) \lor (3|26)$
- $(2^3 = 9) \lor (3^2 = 9)$ $((-2)^2 = 4) \land \neg (-2^2 = 4)$

4 1. Osnove logike

1.2.8 Implikacija

Implikacija izjavA in B je sestavljena izjava, ki jo lahko beremo na različne načine.

 $\mathbf{A} \Rightarrow \mathbf{B}$ Če velja izjava A, **potem** velja izjava B. / **Iz** A **sledi** B.

Izjava A je **pogoj** ali **privzetek**, izjava B pa (**logična**) **posledica** izjave A.

Implikacija je nepravilna, ko je izjava A pravilna, izjava B pa nepravilna, v preostalih treh primerih je pravilna.

A	B	$A \Rightarrow B$
P	P	P
P	N	N
N	P	P
N	N	P

Naloga 1.7. Določite, ali so izjave pravilne.

- Če je število deljivo s 100, je deljivo tudi s 4.
- Če je štirikotnik pravokotnik, se diagonali razpolavljata.
- Če je štirikotnik kvadrat, se diagonali sekata pod pravim kotom.
- Če sta števili 2 in 3 lihi števili, potem je produk teh dveh števil sodo število.
- Če je število 18 deljivo z 9, potem je deljivo s 3.
- Če je 7 večkratnik števila 7, potem 7 deli število 43.
- Če je število deljivo s 4, potem je deljivo z 2.

1.2.9 Ekvivalenca

Ekvivalenca izjavi A in B poveže s če in samo če oziroma natanko tedaj, ko.

 $\mathbf{A} \Leftrightarrow \mathbf{B}$ Izjava A velja, **če in samo če** velja izjava B./ Izjava A velja **natanko tedaj, ko** velja izjava B.

Ekvivalenca dveh izjav je pravilna, če imata obe izjavi enako vrednost (ali sta obe pravilni ali obe nepravilni), in nepravilna, če imata izjavi različno vrednost.

Ekvivalentni/enakovredni izjavi pomenita eno in isto, lahko ju nadomestimo drugo z drugo.

A	В	$A \Leftrightarrow B$
P	\overline{P}	P
P	N	N
N	P	N
N	\overline{N}	P

Naloga 1.8. Določite, ali so naslednje izjave pravilne.

- Število je deljivo z 12 natanko takrat, ko je deljivo s 3 in 4 hkrati.
- Število je deljivo s 24 natanko takrat, ko je deljivo s 4 in 6 hkrati.
- Število je praštevilo natanko takrat, ko ima natanko dva delitelja.
- Štirikotnik je kvadrat natanko tedaj, ko se diagonali sekata pod pravim kotom.
- Število je sodo natanko tedaj, ko je deljivo z 2.

1.2.10 Vrstni red operacij

Kadar so izjave povezane z več izjavnimi povezavami, pri določanju logične vrednosti upoštevamo oklepaje in naslednji **vrstni red** oziroma **prioriteto izjavnih povezav**:

- 1. negacija,
- 2. konjunkcija,
- 3. disjunkcija,
- 4. implikacija,
- 5. ekvivalenca.

Če moramo zapored izvesti več enakih izjavnih povezav, velja pravilo združevanja od leve proti desni.

Naloga 1.9. V sestavljeni izjavi zapišite oklepaje, ki bodo predstavljali vrstni red operacij. Nato tvorite pravilnostno tabelo za sestavljeno izjavo glede na različne logične vrednosti elementarnih izjav.

- $A \lor B \Leftrightarrow \neg A \Rightarrow \neg B$
- $A \lor \neg A \Rightarrow \neg B \land (\neg A \Rightarrow B)$
- $A \Rightarrow B \Leftrightarrow \neg B \Rightarrow \neg A$
- $A \land \neg B \Leftrightarrow A \Rightarrow B$
- $C \Rightarrow A \lor \neg B \Leftrightarrow \neg A \land C$
- $\neg A \lor \neg B \Leftrightarrow B \land (C \Leftrightarrow \neg A)$

1.2.11 Tavtologija in protislovje

Tavtologija ali logično pravilna izjava je sestavljena izjava, ki je pri vseh naborih vrednosti elementarnih izjav, iz katerih je sestavjena, pravilna.

Protislovje je sestavljena izjava, ki ni nikoli pravilna.

1.2.12 Kvantifikatorja

- ∀ (beri 'vsak') izjava velja za vsak element dane množice
- ∃ (beri 'obstaja' ali 'eksistira') izjava je pravilna za vsaj en element dane množice

1.3 Pomen izjav v matematiki

Aksiomi so najpreprostejše izjave, ki so očitno pravilne in zato njihove pravilnosti ni treba dokazovati.

Izreki ali **teoremi** so izjave, ki so pravilne, vendar pa njihova pravilnost ni očitna. Pravilnost izreka (teorema) moramo potrditi z dokazom, ki temelji na aksiomih in na preprostejših že prej dokazanih izrekih.

Definicije so izjave, s katerimi uvajamo nove pojme. Najpreprostejših pojmov v matematiki ne opisujemo z definicijami (to so pojmi kot npr.: število, premica ipd.); vsak nadaljnji pojem pa moramo definirati, zato da se nedvoumno ve, o čem govorimo.

6 1. Osnove logike

Poglavje 2

Osnove teorije množic

2.1 Množice

Množica je skupek elementov, ki imajo neko skupno lastnost.

Množica je določena, če:

- lahko naštejemo vse njene elemente ali
- poznamo pravilo/skupno lastnost, ki pove, kateri elementi so v množici.

Označujemo jih z velikimi črkami (A, B, C... ali A, B, C...).

Univerzalna množica ali univerzum (\mathcal{U}) je množica vseh elementov, ki v danem primeru nastopajo oziroma jih opazujemo.

Element množice je objekt v množici.

Označujemo jih z malimi črkami (a, b, c...).

Elemente množice zapisujemo v zavitem oklepaju (npr. $\mathcal{A} = \{a, b, c\}$).

Element je lahko vsebovan v množici (npr. $a \in \mathcal{A}$) ali pa v množici ni vsebovan (npr. $d \notin \mathcal{A}$).

Prazna množica $(\emptyset, \{\})$ je množica, ki ne vsebuje nobenega elementa.

2.2 Moč množice

Število elementov v množici predstavlja **moč množice**. Oznaka: $\mathbf{m}(\mathcal{A})$ ali $|\mathcal{A}|$. Množica je lahko:

- končna množica vsebuje končno mnogo elementov: $\mathbf{m}(A) = \mathbf{n}$;
- neskončna množica vsebuje neskončno mnogo elementov: $\mathbf{m}(\mathcal{A}) = \infty$.

Če ima množica toliko elementov, kot jih ima množica naravnih števil, je ta števno neskončna. Njeno moč pišemo kot: $m(A) = \aleph_0$.

Za množici, ki imata isto moč, rečemo, da sta ekvipolentni oziroma ekvipotentni.

Naloga 2.1. Naštejte elemente množice in zapišite njeno moč, če je $\mathcal{U} = \mathbb{N}$.

- $\mathcal{A} = \{x; x \mid 24\}$
- $\mathcal{B} = \{x; 3 < x \leq 7\}$
- $\mathcal{C} = \{x; x = 4k \land k \in \mathbb{N} \land k \leq 5\}$
- $\mathcal{D} = \{x; x = 3k + 2 \land k \in \mathbb{N} \land (4 < k \le 8)\}$

Naloga 2.2. Naj bo $\mathcal{U} = \mathbb{N}$. Zapišite množico tako, da naštejete njene elemente. Določite še njeno moč.

- Množica vseh deliteljev števila 18.
- Množica praštevil, ki so manjša od 20.

• Množica večkratnikov števila 5, ki so večji od 50 in manjši ali enaki 70.

Naloga 2.3. Zapišite množico s simboli.

- Množica vseh sodih naravnih števil.
- Množica vseh naravnih števil, ki dajo pri deljenju s 7 ostanek 5.

Naloga 2.4. Podane so množice tako, da so našteti njihovi elementi. Množice zapišite s simboli.

- $\mathcal{A} = \{1, 2, 3, 6\}$
- $\mathcal{B} = \{6, 12, 18, 24, 30\}$
- $C = \{10, 12, 14, 16, 18, 20\}$
- $\mathcal{D} = \{2, 4, 8, 16, 32, 64, 128, 256, 512, 1024\}$
- $\mathcal{E} = \{1, 4, 9, 16, 25, 36, 49\}$

2.3 Podmnožice

Množica \mathcal{B} je **podmnožica** množice \mathcal{A} , če za vsak element iz \mathcal{B} velja, da je tudi element množice \mathcal{A} .

$$\mathcal{B} \subseteq \mathcal{A} \Leftrightarrow \forall x \in \mathcal{B} \Rightarrow x \in \mathcal{A}$$

- $\forall A : A \subseteq A$ Vsaka množica je podmnožica same sebe.
- $\forall \mathcal{A} : \emptyset \subseteq \mathcal{A}$ Prazna množica je podmnožica vsake množice.

Moč podmnožice \mathcal{B} množice \mathcal{A} je manjša ali enaka moči množice \mathcal{A} :

$$\mathcal{B} \subseteq \mathcal{A} \Rightarrow m(\mathcal{B}) \leqslant m(\mathcal{A})$$

Množici \mathcal{A} in \mathcal{B} sta **enaki**, če imata iste elemente; sta druga drugi podmnožici.

$$\mathcal{A} = \mathcal{B} \Leftrightarrow (\mathcal{A} \subseteq \mathcal{B}) \land (\mathcal{B} \subseteq \mathcal{A})$$

Podmnožica \mathcal{B} množice \mathcal{A} , ki ni enaka množici \mathcal{A} , je **prava podmnožica** množice \mathcal{A} .

Potenčna množica množice \mathcal{A} je množica vseh podmnožic množice \mathcal{A} . Oznaka: $\mathcal{P}\mathcal{A} / \mathcal{P}(\mathcal{A})$.

$$\mathcal{P}\mathcal{A} = \{\mathcal{X}; \mathcal{X} \subseteq \mathcal{A}\}$$

$$m(\mathcal{P}\mathcal{A}) = 2^{m(\mathcal{A})}$$

Potenčna množica ni nikoli prazna – vsebuje vsaj prazno množico.

Naloga 2.5. Dana je množica $A = \{2, 4, 6, 8, 10\}$. Zapišite njeno potenčno množico. Kakšna je njena moč?

Naloga 2.6. Dana je množica $A = \{a, b, c, d\}$. Zapiište njeno potenčno množico. Kakšna je njena moč?

2.4 Operacije z množicami

2.4.1 Komplement množice

Komplement množice \mathcal{A} (glede na izbrani univerzum \mathcal{U}) je množica vseh elementov, ki so v množici \mathcal{U} in niso v množici \mathcal{A} .

Oznaka: $\mathcal{A}^{\complement} / \mathcal{A}'$.

$$\mathcal{A}^{\complement} = \{x; x \in \mathcal{U} \land x \notin \mathcal{A}\}$$

$$\left(\mathcal{A}^{\complement}
ight)^{\complement}=\mathcal{A}$$

Naloga 2.7. Naj bo univerzalna množica $\mathcal{U} = \{x; x \in \mathbb{N} \land x \leq 20\}$. Zapišite komplementarno množico danih množic. Kakšna je njena mmoč?

- $\mathcal{A} = \{x; x = 3k \land k \in \mathbb{N}\}$
- $\mathcal{B} = \{x; x \in \mathbb{N} \land x \mid 20\}$
- $\mathcal{C} = \{x; x = 2k \lor x = 3k \land k \in \mathbb{N}\}$

2.4.2 Unija množic

Unija množic
i $\mathcal A$ in $\mathcal B$ je množica vseh elementov, ki pripadajo množici
 $\mathcal A$ ali množici $\mathcal B.$ Oznaka:
 $\mathcal A\cup\mathcal B.$

$$\mathcal{A} \cup \mathcal{B} = \{x; x \in \mathcal{A} \lor x \in \mathcal{B}\}$$

$$\mathcal{A}\cup\mathcal{A}^\complement=\mathcal{U}$$

$$\mathcal{A} \cup \emptyset = \mathcal{A}$$

$$A \cup \mathcal{U} = \mathcal{U}$$

Naloga 2.8. Dani sta množici \mathcal{A} in \mathcal{B} . Zapišite množico $\mathcal{A} \cup \mathcal{B}$. Določite še njeno moč.

- $\mathcal{A} = \{1, 2, 3, 4, 5\}$ in $\mathcal{B} = \{3, 4, 5, 6, 7\}$
- $\mathcal{A} = \{4, 8, 12, 16, 20\}$ in $\mathcal{B} = \{3, 6, 9, 12, 15, 18\}$
- $\mathcal{A} = \{x; x \in \mathbb{N} \land x \mid 18\} \text{ in } \mathcal{B} = \{x; x \in \mathbb{N} \land x \mid 21\}$
- $\mathcal{A} = \{5, 10, 15, 20, \dots\}$ in $\mathcal{B} = \{10, 20, 30, 40, 50, \dots\}$
- $\mathcal{A} = \{x; x = 6k \land k \in \mathbb{N} \land k \leq 4\} \text{ in } \mathcal{B} = \{x; x \in \mathbb{N} \land x \mid 12\}$

2.4.3 Presek množic

Presek množic \mathcal{A} in \mathcal{B} je množica vseh elementov, ki hkrati pripadajo množici \mathcal{A} in množici \mathcal{B} . Oznaka: $\mathcal{A} \cap \mathcal{B}$.

$$\mathcal{A} \cap \mathcal{B} = \{x; x \in \mathcal{A} \land x \in \mathcal{B}\}$$

$$\mathcal{A}\cap\mathcal{A}^\complement=\varnothing$$

$$A \cap \emptyset = \emptyset$$

$$A \cap \mathcal{U} = A$$

Naloga 2.9. Dani sta množici A in B. Zapišite množico $A \cap B$. Določite še njeno moč.

- $\mathcal{A} = \{1, 2, 3, 4, 5\}$ in $\mathcal{B} = \{3, 4, 5, 6, 7\}$
- $\mathcal{A} = \{4, 8, 12, 16, 20\}$ in $\mathcal{B} = \{3, 6, 9, 12, 15, 18\}$
- $\mathcal{A} = \{x; x \in \mathbb{N} \land x \mid 18\} \text{ in } \mathcal{B} = \{x; x \in \mathbb{N} \land x \mid 21\}$
- $\mathcal{A} = \{5, 10, 15, 20, \dots\}$ in $\mathcal{B} = \{10, 20, 30, 40, 50, \dots\}$
- $\mathcal{A} = \{x; x = 6k \land k \in \mathbb{N} \land k \leq 4\} \text{ in } \mathcal{B} = \{x; x \in \mathbb{N} \land x \mid 12\}$

Za množici \mathcal{A} in \mathcal{B} velja:

$$m(\mathcal{A} \cup \mathcal{B}) = m(\mathcal{A}) + m(\mathcal{B}) - m(\mathcal{A} \cap \mathcal{B})$$

Množici, katerih presek je prazna množica, sta disjunktni množici.

$$\mathcal{A} \cap \mathcal{B} = \varnothing \Rightarrow m(\mathcal{A} \cap \mathcal{B}) = 0$$

$$\mathcal{A} \cap \mathcal{B} = \emptyset \Rightarrow m(\mathcal{A} \cup \mathcal{B}) = m(\mathcal{A}) + m(\mathcal{B})$$

2.4.4 Lastnosti operacij unije in preseka

Komutativnost unije in preseka

$$A \cup B = B \cup A$$

$$A \cap B = B \cap A$$

Asociativnost unije in preseka

$$(A \cup B) \cup C = A \cup (B \cup C)$$

$$(A \cap B) \cap C = A \cap (B \cap C)$$

Distributivnostna zakona za unijo in presek

$$(\mathcal{A} \cup \mathcal{B}) \cap \mathcal{C} = (\mathcal{A} \cap \mathcal{C}) \cup (\mathcal{B} \cap \mathcal{C})$$

$$(\mathcal{A} \cap \mathcal{B}) \cup \mathcal{C} = (\mathcal{A} \cup \mathcal{C}) \cap (\mathcal{B} \cup \mathcal{C})$$

De Morganova zakona

Komplement preseka dveh množic je enak uniji komplementov obeh množic:

$$(\mathcal{A} \cap \mathcal{B})^{\complement} = \mathcal{A}^{\complement} \cup \mathcal{B}^{\complement}.$$

Komplement unije dveh množic je enak preseku komplementov obeh množic:

$$(\mathcal{A} \cup \mathcal{B})^{\complement} = \mathcal{A}^{\complement} \cap \mathcal{B}^{\complement}.$$

2.4.5 Razlika množic

Razlika množic \mathcal{A} in \mathcal{B} je množica tistih elementov, ki pripadajo množici \mathcal{A} in hkrati ne pripadajo množici \mathcal{B} .

Oznaka: $A \setminus B / A - B$.

$$\mathcal{A} \backslash \mathcal{B} = \{ x; x \in \mathcal{A} \land x \notin \mathcal{B} \}$$

$$\mathcal{A}ackslash\mathcal{B}=\mathcal{A}\cap\mathcal{B}^{\complement}$$

$$A \setminus B \neq B \setminus A$$

$$A \setminus A = \emptyset$$

Naloga 2.10. Dani sta množici A in B. Zapišite njuno razliko $A \backslash B$.

- $\mathcal{A} = \{2, 4, 6, 8, 10, 12, 14, 16, 18, 20\}$ in $\mathcal{B} = \{x; x \in \mathbb{N} \land x > 10\}$
- $\mathcal{A} = \{x; x = 3k \land k \in \mathbb{N} \land k < 7\}$ in $\mathcal{B} = \{x; x = 6k \land k \in \mathbb{N}\}$
- $\mathcal{A} = \{x; x = 6k \land k \in \mathbb{N} \land k < 4\} \text{ in } \mathcal{B} = \{x; x = 3k \land k \in \mathbb{N}\}$

2.4.6 Kartezični produkt množic

Kartezični produkt (nepraznih) množic \mathcal{A} in \mathcal{B} je množica urejenih parov (x, y), pri čemer je $x \in \mathcal{A}$ in $y \in \mathcal{B}$.

Oznaka: $A \times B$.

$$\mathcal{A} \times \mathcal{B} = \{(x, y); x \in \mathcal{A} \land y \in \mathcal{B}\}$$

$$x \neq y \Rightarrow (x, y) \neq (y, x)$$

$$\mathcal{A} \neq \mathcal{B} \Rightarrow \mathcal{A} \times \mathcal{B} \neq \mathcal{B} \times \mathcal{A}$$

$$m(\mathcal{A} \times \mathcal{B}) = m(\mathcal{A}) \cdot m(\mathcal{B})$$

Kartezični produkt $\mathcal{A} \times \mathcal{B}$ za množici $\mathcal{A} = \{a, b, c, d, e, f\}$ in $\mathcal{B} = \{1, 2, 3, 4\}$:

Naloga 2.11. Dani sta množici A in B. Zapišite njun kartezični produkt $A \times B$. Narišite diagram, ki predstavlja to množico.

- $\mathcal{A} = \{2, 4, 6, 8, 10, 12\}$ in $\mathcal{B} = \{x; x \in \mathbb{N} \land x < 8\}$
- $\mathcal{A} = \{x; x = 3k \land k \in \mathbb{N} \land k < 7\}$ in $\mathcal{B} = \{x; x = 6k \land k \in \mathbb{N} \land (5 \leqslant k < 9)\}$
- $A = \{x; x = 6k \land k \in \mathbb{N} \land k < 4\} \text{ in } B = \{x; x = 3k \land k \in \mathbb{N} \land (3 < k < 11)\}$

Poglavje 3

Naravna in cela števila

3.1 Naravna števila

Naravna števila so števila s katerimi štejemo.

$$\mathbb{N} = \{1, 2, 3, 4, \ldots\}$$

Množico naravnih števil definirajo **Peanovi aksiomi**:

- 1. Vsako naravno število n ima svojega **naslednika** n + 1.
- 2. Število 1 je naravno število, ki ni naslednik nobenega naravnega števila.
- 3. Različni naravni števili imata različna naslednika: $n+1 \neq m+1; n \neq m$.
- 4. Ce neka trditev velja z vsakim naravnim številom tudi za njegovega naslednika, velja za vsa naravna števila. (aksiom/princip popolne indukcije)

Naravna števila uredimo po velikosti in predstavimo s točko na številski premici.

Vsako število zapišemo s **številko**. Za zapis številke uporabljamo **števke**. Te so 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Posamezne števke večmestnega števila od desne proti levi predstavljajo: **enice**, **desetice**, **stotice**, **tisočice**, ...

Število, ki je zapisano s črkovnimi oznakami števk označimo s črto nad zapsiom črkovne oznake.

$$\overline{xy} = 10x + y$$
 $\overline{xyz} = 100x + 10y + z$

3.2 Operacije v množici \mathbb{N}

3.2.1 Seštevanje

Poljubnima naravnima številoma x in y priredimo **vsoto** $\mathbf{x} + \mathbf{y}$.

Število x oziroma y imenujemo seštevanec ali sumand ali člen. Število x+y pa imenujemo vsota ali summa.

Vsota naravnih števil je naravno število: $x, y \in \mathbb{N} \Rightarrow x + y \in \mathbb{N}$.

3.2.2 Množenje

Poljubnima naravnima številoma x in y priredimo **produkt** $\mathbf{x} \cdot \mathbf{y}$.

Število x oziroma y imenujemo **množenec** ali **faktor**. Število $x \cdot y$ pa imenujemo **zmnožek** ali **produkt**.

Produkt naravnih števil je naravno število: $x, y \in \mathbb{N} \Rightarrow x \cdot y \in \mathbb{N}$.

Število 1 je **nevtralni element** za mmnoženje: $1 \cdot x = x$.

Seštevanje in množenje sta dvočleni notranji operaciji v množici naravnih števil N.

3.2.3 Odštevanje

Številoma x in y, pri čemer je y večje od x (x > y), priredimo **razliko** $\mathbf{x} - \mathbf{y}$.

Število x imenujemo **zmanjševanec** ali **minuend**, število y pa imenujemo **odštevanec** ali **subtrahend**. Številu x-y rečemo **razlika** ali **diferenca**.

Razlika je število, ki ga moramo prišteti številu y, da dobimo število y.

$$(x - y) + y = x$$

Odštevanje ni notranja operacija v množici naravnih števil N.

3.2.4 Vrstni red operacij

Prednost pri računanju imajo **oklepaji** (najprej najbolj notranji), nato sledi **množenje**, na koncu pa imamo še **seštevanje** in **odštevanje**.

Kadar v izrazu nastopajo enakovredne računske operacije, računamo od leve proti desni.

Pri množenju količin, ki so označene s črkovnimi oznakami, piko, ki označuje operacijo množenja ponavadi opustimo.

$$x \cdot y = xy$$

3.3 Osnovni računski zakoni

Komutativnost seštevanja – zakon o zamenjavi členov

$$x + y = y + x$$

Vsota ni odvisna od vrstnega reda seštevanja.

Asociativnost seštevanja – zakon o poljubnem združevanju členov

$$(\mathbf{x} + \mathbf{y}) + \mathbf{z} = \mathbf{x} + (\mathbf{y} + \mathbf{z})$$

Vsota več kot dveh sumandov ni odvisna od združevanja po dveh sumandov.

Komutativnost množenja – zakon o zamenjavi faktorjev

$$\mathbf{x} \cdot \mathbf{y} = \mathbf{y} \cdot \mathbf{x}$$

Produkt ni odvisna od vrstnega reda faktorjev.

Asociativnost množenja – zakon o poljubnem združevanju faktorjev

$$(\mathbf{x} \cdot \mathbf{y}) \cdot \mathbf{z} = \mathbf{x} \cdot (\mathbf{y} \cdot \mathbf{z})$$

Produkt več kot dveh sumandov ni odvisen od združevanja faktorjev.

Distributivnost – zakon o razčlenjevanju

$$\mathbf{x} \cdot \mathbf{z} + \mathbf{y} \cdot \mathbf{z} = (\mathbf{x} + \mathbf{y}) \cdot \mathbf{z}$$

Če to beremo iz desne proti levi, rečemu tudi pravilo izpostavljanja skupnega faktorja.

Naloga 3.1. Izračunajte.

- $(1+2\cdot7)+3\cdot(2\cdot2+7)$
- $3 \cdot (2+3\cdot 5) \cdot (2+1)$
- $7 + (2 + 6 \cdot 3) + (8 + 4 \cdot 5)$
- $11 \cdot 4 + (12 6) \cdot 5$
- $8+2\cdot(3+7)-15$
- $37 5 \cdot (10 3)$

Naloga 3.2. Hitro izračunajte.

- 45 + 37 + 15
- 108 + 46 28
- 5 · 13 · 8
- 4 · 7 · 25
- $(7+3) \cdot 2 \cdot 5$
- $15 \cdot (4+6) \cdot 2$
- $3 \cdot 5 + 7 \cdot 5$
- $8 \cdot 12 + 6 \cdot 8$

Naloga 3.3. Zapišite račun glede na besedilo in izračunajte.

- Produktu števil 12 in 27 odštejte razliko števil 19 in 11.
- Vsoti produkta 4 in 12 ter produkta 5 in 16 odštejte 8.
- Vsoto števil 42 in 23 pomnožite z razliko števil 58 in 29.
- Produkt števil 14 in 17 pomnožite z vsoto števil 5 in 16.

Naloga 3.4. Rešite besedilno nalogo.

- V trgovini kupimo tri litre mleka in štiri čokoladne pudinge v prahu. Če stane liter mleka 95 centov, čokoladni puding v prahu pa 24 centov, koliko moramo plačati?
- Manca bo kuhala rižoto za štiri otroke in šest odraslih. Za otroško porcijo rižote zadošča 45 g riža, za odraslo pa 75 g. Koliko riža mora dati kuhati za rižoto?

3.4 Cela Števila 17

3.4 Cela Števila

$$\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, 3, \ldots\}$$

Množica celih števil $\mathbb Z$ je definirana kot unija treh množic:

- množica pozitivnih celih števil (Z⁺) − naravna števila N;
- število 0;
- množica negativnih celih števil (\mathbb{Z}^-) nasprotna števila vseh naravnih števil.

$$\mathbb{Z} = \mathbb{Z}^- \cup \{0\} \cup \mathbb{Z}^+$$

Nasprotna vrednost števila n je število -n.

3.5 Operacije v množici \mathbb{Z}

3.5.1 Seštevanje

$$\mathbf{x} + \mathbf{0} = \mathbf{x}; \ \forall x \in \mathbb{Z}$$

Število 0 je **nevtralni element** pri seštevanju.

$$\mathbf{x} + (-\mathbf{x}) = \mathbf{0}; \ \forall x \in \mathbb{Z}$$

Vsota celega števila in njemu nasprotnega števila je enaka 0.

$$-(-\mathbf{x}) = \mathbf{x}; \ \forall x \in \mathbb{Z}$$

Nasprotna vrednost nasprotne vrednosti je enaka prvotni vrednosti.

Vsota dveh pozitivnih števil je pozitivno število, vsota dveh negativnih števil pa je negativno število.

$$-\mathbf{x} + (-\mathbf{y}) = -(\mathbf{x} + \mathbf{y})$$

Vsota nasprotnih vrednosti je enaka nasprotni vrednosti vsote.

Naj bosta x in y naravni števili. Vsota pozitivnega števila x in negativnega števila -y je:

- pozitivno število, če je x > y in
- negativno število, če je x < y.

3.5.2 Odštevanje

Razlika x - y dveh pozitivnih števil x in y je:

- pozitivno število, če je x > y in
- negativno število, če je x < y.

Razlika dveh negativnih števil (-x) - (-y) je:

- pozitvno število, če je x < y in
- negativno število, če je x > y.

Razlika pozitivnega števila x in negativnega števila -y je pozitvno število.

Odštevanje v množici \mathbb{Z} je prištevanje nasprotne vrednosti.

$$\mathbf{x} - \mathbf{y} = \mathbf{x} + (-\mathbf{y})$$

3.5.3 Množenje

$$1 \cdot \mathbf{x} = \mathbf{x}; \ \forall x \in \mathbb{Z}$$

Število 1 je **nevtralni element** za množenje.

$$(-1) \cdot \mathbf{x} = -\mathbf{x}; \ \forall x \in \mathbb{Z}$$

Pri množenju celega števila $x \ge -1$ dobimo nasprotno število -x.

$$\mathbf{0} \cdot \mathbf{x} = \mathbf{0}; \ \forall x \in \mathbb{Z}$$

Rezultat množenja števila s številom 0 je enak 0.

$$(-\mathbf{x})(-\mathbf{y}) = \mathbf{x}\mathbf{y}$$

Produkt sodo mnogo negativnih števil je pozitivno število.

$$-\mathbf{x} \cdot \mathbf{y} = -(\mathbf{x}\mathbf{y})$$

$$\mathbf{x}(-\mathbf{y}) = -(\mathbf{x}\mathbf{y})$$

Produkt pozitivnega in negativnega števila je negativno število.

$$(-\mathbf{x})(-\mathbf{y}) = \mathbf{x}\mathbf{y}$$

Produkt liho mnogo negativnih faktorjev je negativno število.

Seštevanje, odštevanje in množenje so v množici Z dvočlene notranje operacije.

3.6 Osnovni računski zakoni v \mathbb{Z}

Komutativnost seštevanja

$$x + y = y + x$$

Vsota ni odvisna od vrstnega reda seštevanja.

Asociativnost seštevanja

$$(\mathbf{x} + \mathbf{y}) + \mathbf{z} = \mathbf{x} + (\mathbf{y} + \mathbf{z})$$

Vsota več kot dveh sumandov ni odvisna od združevanja po dveh sumandov.

Komutativnost množenja

$$\mathbf{x} \cdot \mathbf{y} = \mathbf{y} \cdot \mathbf{x}$$

Produkt ni odvisna od vrstnega reda faktorjev.

Asociativnost množenja

$$(\mathbf{x} \cdot \mathbf{y}) \cdot \mathbf{z} = \mathbf{x} \cdot (\mathbf{y} \cdot \mathbf{z})$$

Produkt več kot dveh sumandov ni odvisen od združevanja faktorjev.

Distributivnost seštevanja in množenja ter odštevanja in množenja

$$\mathbf{x} \cdot \mathbf{z} + \mathbf{y} \cdot \mathbf{z} = (\mathbf{x} + \mathbf{y}) \cdot \mathbf{z}$$

$$\mathbf{x} \cdot \mathbf{z} - \mathbf{y} \cdot \mathbf{z} = (\mathbf{x} - \mathbf{y}) \cdot \mathbf{z}$$

Če to beremo iz desne proti levi, rečemu tudi pravilo izpostavljanja skupnega faktorja.

Naloga 3.5. Izračunajte.

- 17 13 2 + 10
- 50 + 11 32 14
- $3 + ((5 + 2(7 9)) \cdot 2 1)$
- $(2-5(6-10))\cdot(5-2(7-5))$
- 9(11-3)+7(10-15)
- $8 + 9(11 18) 2 \cdot 5$

Naloga 3.6. Spretno izračunajte.

- $7 \cdot 8 12 \cdot 8$
- $5 \cdot 18 + 9 \cdot 5 5 \cdot 2$
- $8 \cdot (4-9) \cdot 2$
- $5 \cdot 3 \cdot (12 8)$
- $(15-6)(12-3\cdot 4)$

Naloga 3.7. Rešite besedilne naloge.

- V hotelu imajo na voljo osemnajst enoposteljnih, štiriintrideset dvoposteljnih in petindevetdeset triposteljnih sob. Koliko ljudi lahko še prespi v hotelu, če je v njem že sto triinštirideset gostov?
- Pohod na bližnji hrib traja tri ure. Koliko minut moramo še hoditi, če smo na poti že 145 minut?
- S Ptuja in iz Postojne (razdalja med njima je približno 190 km) sočasno odpeljeta dva motorista drug proti drugemu. En vozi povprečno 40 km/h, drugi pa 5 km/h manj. Kolikšna bo razdalja med njima po dveh urah vožnje?

Naloga 3.8. Zapišite enačbe in jih poenostavite.

- Razlika petkratnka a in b je enaka trikratniku vsote štirikratnika a in petkratnika b.
- Vsota x in dvakratnika y je enaka razliki petkratnika x in dvanajstkratnika y.

3.7 Urejenost naravnih in celih števil

Številska množica je **urejena**, kadar lahko po velikosti primerjamo njena poljubna elementa. Pri urejanju števil uporabljamo naslednje znake:

<	manjše / manj
>	večje / več
≤	manjše ali enako / največ
>	večje ali enako / vsaj, najmanj
=	enako

Za poljubni števili $x, y \in \mathbb{Z}$ velja natanko ena izmed naslednjih možnosti: x > y, x < y ali x = y.

Slika števila x leži na številski premici desno od slike števila y:

$$x > y \Leftrightarrow x - y > 0$$

Slika števila x leži na številski premici levo od slike števila y:

$$x < y \Leftrightarrow x - y < 0$$

Slika števila x sovpada s sliko števila y:

$$\mathbf{x} = \mathbf{y} \Leftrightarrow \mathbf{x} - \mathbf{y} = \mathbf{0}$$

Velja pa tudi:

$$x \leqslant y \Leftrightarrow x - y \leqslant 0$$

$$x \geqslant y \Leftrightarrow x - y \geqslant 0$$

Pozitivna in negativna števila

V množici $\mathbb Z$ so pozitivna tista števila, ki so večja od števila 0 in njihove slike ležijo desno od izhodišča, negativna pa tista števila, ki so manjša od števila 0 in njihove slike ležijo levo od izhodišča.

Vsako pozitivno celo število (vsako naravno število) je večje od katerega koli negativnega celega števila.

3.7.1 Linearna urejenost

Z relacijo biti manjši ali enak je množica \mathbb{Z} linearno urejena, to pomeni, da veljajo naslednje lastnosti: refleksivnost, antisimetričnost, tranzitivnost, stroga sovisnost.

Refleksivnost

$$\forall x \in \mathbb{Z} : x \leqslant x$$

Antisimetričnost

$$\forall x,y \in \mathbb{Z}: x \leqslant y \land y \leqslant x \Rightarrow x = y$$

Tranzitivnost

$$\forall x, y, z \in \mathbb{Z} : x \leq y \land y \leq z \Rightarrow x \leq z$$

Stroga sovisnost

$$\forall x, y \in \mathbb{Z}; x \neq y : x \leq y \lor y \leq x$$

3.7.2 Lastnosti relacij \leq in <

Monotonost vsote

$$x < y \Rightarrow x + z < y + z$$
 $x \leqslant y \Rightarrow x + z \leqslant y + z$

Če na obeh straneh neenakosti prištejemo isto število, se neenakost ohrani.

$$x < y \land z > 0 \Rightarrow x \cdot z < y \cdot z$$
 $x \leqslant y \land z > 0 \Rightarrow x \cdot z \leqslant y \cdot z$

Pri množenju neenakosti z negativnim številom se znak neenakosti ohrani.

$$x < y \land z < 0 \Rightarrow x \cdot z > y \cdot z$$
 $x \le y \land z < 0 \Rightarrow x \cdot z \ge y \cdot z$

Pri množenju neenakosti z negativnim številom se znak neenakosti obrne.

Obravnavane lastnosti veljajo tudi za relaciji ≥ in >.

Naloga 3.9. Uredite števila 3, -2, 5, -1, 0, -7, 6, -6 po velikosti in jih predstavite na številski premici.

Naloga 3.10. Uredite števila 104, -27, 35, -107, 36, -26, 25, -28, 81 po velikosti.

Naloga 3.11. Gladina Mrtvega morja leži v depresiji na −423 m nadmorske višine, njegova največja globina pa je 378 m. Kolikšna je najmanjša nadmorska višina dna Mrtvega morja?

Naloga 3.12. Za katera cela števila x ima izraz 3x - 5(x + 2) večjo ali enako vrednost od izraza 4 - (12 + x)?