A Carrier SDN Lessons Learned

KDDI株式会社 IPネットワーク部 大垣健一 1/14/2016

Agenda 1/14/2016

- 1. SDNの定義
- 2. Motivation
- 3. WVS2概要
- 4. Lessons Learned
 - ネットワークアーキテクチャ
 - 制御システムアーキテクチャ
- 5. SDN revisit
- 6. Telecom DevOps?

- コントロールプレーン(経路制御機能)/データプレーン(転送機能)分離
 - データプレーンのプログラマビリティを提供
 - 任意のネットワーク制御を実現
- Dr. Nick McKeownのインタビュー記事
 - Kate Greene, "TR10: Software Defined Networking," MIT Technology Review, Mar. 2009,
 - http://www2.technologyreview.com/article/412194/tr10-software-defined-networking/
 - 新しいルーティング/スイッチングプロトコルを大規模ネットワークで検証したかったが、ルータやスイッチはベンダに縛られていた
 - OpenFlowはデータフローをソフトウェアで定義できる
 - "OpenFlow (snip...) define data flows using software—a sort of "software-defined networking.""

Motivation 1/14/2016

■ Wide Area Virtual Switch 2 (WVS2)

- セキュリティアプライアンスクラウド
 - ・所有から利用へ
 - クラウドモデル
 - Pay-as-you-go
 - カスタマーコントロール

- サービスチェイニングD-planeプログラマビリティ
- 自動化&抽象化
 - CFS-RFSマッピング

KDDI Corp. Proprietary

RFS: Resource Facing Service

- セキュリティアプライアンスクラウド
- 仮想ネットワーク

オンデマンド提供

http://www.kddi.com/business/network/intranet/kddi-wvs2/

The Internet

- カスタマーコントローラ
 - 概念/直感的なユーザインタフェース

■ 課題

- サービスチェイニング
 - D-Planeプログラマビリティ
- 自動化&抽象化
 - CFS RFSマッピング

● サービス拡張性

- 任意のサービスを、導入したい時に
- 既存WVSとの相互接続(+オーバレイ)
 - 非グリーンフィールド構築
- 信頼性&スケーラビリティ
 - 千オーダのユーザ数、万オーダの回線数
- どんな選択肢があったのか? (as of 2013)
 - OpenFlow
 - スケールしない(少なくとも当時は)
 - ・ 車輪の再発明
 - 既存網との相互接続性に懸念
 - NFV
 - CAPEX/OPEX NG[†]
 - まだ早かった。

- SFC(NSH)
 - まだなかった。
- EVPN
 - 要件に合わない。
 - L2トランスペアレントなアプライアンス

ポリシーベースドフォワーディング w/ コントローラ

† http://www.slideshare.net/miyakohno/mk-epn-seminarpanelforpublic

- ■トラヒックステアリング → フローエントリ数がスケールしない
- ■既存網との相互接続
 - L2/L3/MPLS
- HA機能

車輪の再発明

- **BGP MPLS-based Ethernet VPN (RFC7432)**
- MACアドレスを持たないアプライアンスにどうやってフォワー ディング?
 - 動的なサービス挿抜では、アプライアンスにL3終端されると困る。
 - L2トランスペアレントモード使う。
 - (SFC) Architecture Principle in RFC7665
 - 1. Topological independence: no change to the underlay network forwarding topology implicit, or explicit are needed to deploy and invoke SFs or SFCs

KDD

PF Spine SW ■ A Service Chaining GW Policy Based Forwarding User A IP src/dst based steering User B Leaf SW **VNPE** VSI stitching NA The internet Web IPS/ URL Mail Anti Virus IDS Filter ΑV **Appliance Pool** WVS2 On-demand L2/L3VPN * * Edge SW PE App. App. App. App. /AggSW Pool Pool Pool Pool **KCPS** The internet **AWS** Azure **IPSecGW** VSI: Virtual Switch Instance **VNPE** FW **VNPE: Virtual Network PE**

制御システムアーキテクチャ

- Self-serviceの実現
 - 抽象化と自動化
 - お客さま向けと運用者向けでは難易度が異なる。
 - 予想外の使い方 vs 手順書通り

Self-service Portal

お客様

Customer Facing Service(CFS)

運用者

反映落人的生素员

10.1.1.0/24 192.168.0.0/16

抽象化されたサービス制御要求

組み合わせ自由、順不同

セキュリティ機能、オンデマンドVPN、帯域変更、etc.. Service Modeling

経路計算/リソース割当

とっても大変 順序制御

SF₁ SF₂ SF3

Vendor-Specific Modeling

Network Equipment

PE/SW

Extra Zone

Private Zone

▼ III EXTRA 192,168.0.0/16

192.168.10.0/24

サイト編集 パケットフィルタ

CSVダウンロード

PE/SW

R朝: __ 10全字7 ... \$10名

■ D-plane周りは、変わらない?

- NSHは数年かかる
 - 単純なL3 overlayはリソース利用効率と運用面から?
 - 高効率化するにはECMPとか
 - リンク障害時に、どのお客さまに影響を与えたか特定できない。
 - » draft-amante-oam-ng-requirements
 - 経路が分かる(指定できる)トランスポートが必要
 - Segment Routing?
 - » <u>draft-ietf-spring-segment-routing-msdc</u>

■ NFVも本気で考えるか

- あれから3年。。。
 - https://portal.etsi.org/NFV/NFV_White_Paper.pdf
- 転送性能がネックにならないところ
- ライセンスモデルなんとかなりませんか?

Day one of NFV, 10/23/2012@Darmstadt

- 制御システムアーキテクチャをもっと洗練させる。
 - C-planeプログラマビリティを如何に簡単に実現するか?
 - 制御システムデザイン論

- 入力順によらず、出力はいつも同じであるべき
 - お客様 vs 運用者
 - 予想外の使い方 vs 手順書通り
 - モデル駆動型、宣言型、関数型 vs ワークフローベース、命令型、手続き型

- RFSは対応製品を利用可
 - 単一ネットワーク機器へのコンフィグ手順は一意
 - マルチベンダ対応
 - NE側がNetconfでよしなに計らうべき
 - 標準ネットワークモデルも
 - NETMOD, Routing Area他
- CFS-RFSマッピングは個別の課題
 - サービス依存
 - サービスモデルも標準化
 - L3SM, I2NSF, OpenStack GBP, MEF Legato...
 - ネットワークアーキテクチャ依存
 - 複数機器間のコンフィグ手順へ
 - 既存システム依存

SDN revisit

■ 持続成長性

- 追加サービスを任意のタイミングで投入したい。
- **サービスライフサイクルのスピードアップ**

- コントロールプレーン/データプレーン分離
 - 機能のベンダロックインから解放

"... very important to reduce ideas to practice. ... the solutions I invent need to be "sufficient" to solve the problem; they should be as simple as possible, but the system has to really run, and it has to run with **good enough** performance.", Barbara Liskov

出典: https://www.computer.org/csdl/mags/ds/2005/02/o2002.pdf

- 振り返ると
 - 今は、SLAがDevOps的なものを許さない(と思う)。
 - 流行りの開発手法は向かない?
 - 手戻りリスクの程度問題

最初の設計/選択が肝心

- Telecom DevOps† = Development for Operations
 - **運用しやすい*ネットワークシステム*を開発する。**
 - ランニングコストに優しい
 - 開発手法よりも、アーキテクチャが肝心
 - ・ネットワークアーキテクチャと同じくらい、制御システムアーキテクチャに関心を
 - モジュール(コンポーネントモデル)化の追求
 - 「向いてない領域の見極め」by SoftBank 西さん†

- ■WVS2はサービスチェイニングと自動化/抽象化が欲しかった。
- ■SDNの技術はまだまだ(だった。)
- ■システムデザインは永遠の?課題
- ■C/D-plane分離は、サービスライフサイクルのコントロール も可能に
- ■最初の設計が肝心だが、good enoughで良い。
- ■制御システムも頑張らないと

是非、WVS2からSDNの世界へ

Designing The Future

ご静聴ありがとうございました◎