Midterm B1 Section 4

November 7, 2014

Consider the set of points (-2, 2), (1, 1) and (2, 2) and the interpolating polynomial f(x), which is a 2^{nd} degree polynomial that passes through those points.

Problem 1 [5pt]: Write down f(x) as a Lagrangian polynomial.

Before anything, I do a quick qualitative sketch to see what's going on.

Since we're told that f is a $2^{\rm nd}$ degree polynomial, we know that f is either a parabola, a line, or a point. It's clear from my sketch that it has to be a parabola opening upwards. If that's the case, then for $f(x) = \alpha x^2 + \beta x + \gamma$, we must have α strictly greater than 0. It turns out that this quick analysis will not help us to much for *this* problem, but it never hurts to start with an idea of what's going on. That way, if I end up with something like $\alpha = -2$ in the end, I'll know that I messed up somewhere.