Análisis Matemático II

Tema 14: Teorema de cambio de variable

El teorema principal

2 Polares

Cilíndricas

Esféricas

Caso de una función medible positiva

El tipo de cambio de variable que vamos a usar

Dados dos abiertos $\Omega,G\subset\mathbb{R}^N$, una función $\phi:\Omega\to G$ es un difeomorfismo de clase C^1 cuando

 ϕ es biyectiva y, tanto ϕ como ϕ^{-1} son de clase C^1

Entonces ϕ preserva los conjuntos medibles (se verá)

Teorema de cambio de variable para funciones medibles positivas

Sea $\phi:\Omega\to G$ un difeomorfismo de clase C^1 entre dos abiertos de \mathbb{R}^N

Dado un conjunto medible $E\subset\Omega$ y una función $f\in\mathcal{L}^+\!\left(\phi(E)\right)$

 $\mathrm{sea}\ g: E \to [0,\infty]\ \mathrm{dada\ por:}\quad g(t) = f\big(\phi(t)\big) \, \big|\, \det J\, \phi(t)\, \big|\quad \forall\, t\in E$

Entonces $\,g\,$ es medible y se tiene:

$$\int_{\phi(E)} f(x) dx = \int_{E} f(\phi(t)) |\det J\phi(t)| dt$$

Teorema de cambio de <u>variable</u>

Sea $\phi:\Omega\to G$ un difeomorfismo de clase C^1 entre dos abiertos de \mathbb{R}^N

Dado un conjunto medible $E \subset \Omega$ y una función medible $f: \phi(E) \to \mathbb{R}$ sea $g: E \to \mathbb{R}$ dada por: $g(t) = f(\phi(t)) | \det J \phi(t) | \forall t \in E$

 $f \in \mathcal{L}_1(\phi(E)) \iff g \in \mathcal{L}_1(E)$, en cuyo caso:

$$\int_{\phi(E)} f(x) dx = \int_{E} f(\phi(t)) |\det J\phi(t)| dt$$

Cilíndricas

Reducciones sucesivas del problema

Se puede reducir sucesivamente a casos cada vez más sencillos:

- f medible positiva
- f simple positiva
- $f(x) = 1 \quad \forall x \in \phi(E)$

Caso de la función constantemente igual a 1

Sea $\phi:\Omega\to G$ un difeomorfismo de clase C^1 entre dos abiertos de \mathbb{R}^N

Para todo conjunto medible $E \subset \Omega$, se tiene:

$$\lambda \left(\phi(E) \right) = \int_{E} \left| \det J \phi(t) \right| dt$$

Resultados intermedios que tienen interés en sí mismos

Preservación de la medibilidad y los conjuntos de medida nula

Si Ω un abierto de \mathbb{R}^N y $\phi: \Omega \to \mathbb{R}^N$ una función de clase C^1 , entonces:

- $Z \subset \Omega$, $\lambda(Z) = 0 \implies \lambda(\Phi(Z)) = 0$
- $E \subset \Omega$, $E \in \mathcal{M} \implies \phi(E) \in \mathcal{M}$

Funciones lipschitzianas y medida exterior

Sea Ω un abierto de \mathbb{R}^N y $\phi:\Omega\to\mathbb{R}^N$ una función lipschitziana.

Si
$$K \in \mathbb{R}^+$$
 verifica que $\|\phi(y) - \phi(x)\|_{\infty} \leqslant K \|y - x\|_{\infty} \quad \forall x, y \in \Omega$ entonces: $\lambda^* (\phi(E)) \leqslant K^N \lambda^*(E) \quad \forall E \in \mathcal{P}(\Omega)$

El cambio de variable más sencillo

Medida de Lebesgue y aplicaciones lineales

Si $T:\mathbb{R}^N \to \mathbb{R}^N$ es una aplicación lineal y M su matriz asociada, entonces:

$$E \in \mathcal{M} \implies T(E) \in \mathcal{M}, \ \lambda(T(E)) = |\det M| \ \lambda(E)$$

La clave para probar el resultado anterior

Toda bivección lineal $T: \mathbb{R}^N \to \mathbb{R}^N$ tiene la forma $T = U \circ D \circ V$ donde:

- U y V son isometrías lineales
- D es la biyección lineal definida por una matriz diagonal con autovalores positivos

Uso en la práctica del teorema de cambio de variable

La forma en que suele usarse el teorema

Tenemos un conjunto medible $A \subset \mathbb{R}^N$ y una función medible $f: A \to \mathbb{R}$ Queremos usar el cambio de variable $\phi:\Omega\to G$, difeomorfismo de clase C^1

No necesitamos
$$A \subset G$$
, basta con $\lambda(A \setminus G) = 0$

Tomamos
$$E = \phi^{-1}(A \cap G) = \{t \in \Omega : \phi(t) \in A\}$$

En A va a ocurrir lo mismo que en $\phi(E) = A \cap G$, es decir,

$$f\in\mathcal{L}_1(A)$$
 si, y sólo si, $t\mapsto f\Big(\phi(t)\Big)|\det J\phi(t)|$ es integrable en E

en cuyo caso:
$$\int_A f(x) \, dx = \int_E f\left(\phi(t)\right) \, \left| \, \det \, J \, \phi(t) \, \right| \, dt$$

Frecuentemente se tiene
$$\lambda(\mathbb{R}^N \setminus G) = 0$$

y el teorema puede aplicarse en cualquier conjunto medible $A\subset\mathbb{R}^N$

El difeomorfismo que vamos a usar

$$\Omega = \mathbb{R}^+ \times] - \pi, \pi[, \phi(\rho, \theta) = (\rho \cos \theta, \rho \sin \theta) \quad \forall (\rho, \theta) \in \Omega$$

$$\phi$$
 es inyectiva con $\phi(\Omega) = G = \mathbb{R}^2 \setminus \{(x,0) : x \in \mathbb{R}_0^-\}$ (abierto)

 ϕ es un difeomorfismo de clase C^1 de Ω sobre G

$$\det J\phi(\rho,\theta) = \rho > 0 \quad \forall (\rho,\theta) \in \Omega \quad , \quad \lambda_2(\mathbb{R}^2 \setminus G) = 0$$

Cambio de variable a coordenadas polares

Dado un conjunto medible $A\subset\mathbb{R}^2$ y una función medible $f:A\to\mathbb{R}$

tomamos
$$E = \left\{ (\rho, \theta) \in \mathbb{R}^+ \times \left] - \pi, \pi \right[: (\rho \cos \theta, \rho \sin \theta) \in A \right\}$$

$$\mathbf{y}$$
 $g(\rho, \theta) = \rho \ f(\rho \cos \theta, \rho \sin \theta) \quad \forall (\rho, \theta) \in E$

Entonces: $f \in \mathcal{L}_1(A) \iff g \in \mathcal{L}_1(E)$, en cuyo caso

$$\int_A f(x,y) \ d(x,y) = \int_E \rho \ f \Big(\rho \cos \theta \, , \rho \sin \theta \, \Big) \ d(\rho,\theta)$$

Ejemplos de cambio a polares (I)

Area del círculo

$$r \in \mathbb{R}^+, \quad A = \left\{ (x,y) \in \mathbb{R}^2 : x^2 + y^2 \leqslant r^2 \right\}$$

$$E = \left\{ (\rho,\theta) \in \mathbb{R}^+ \times] - \pi, \pi [: \left(\rho \cos \theta, \rho \sin \theta \right) \in A \right\} =]0, r] \times] - \pi, \pi [$$

$$\lambda_2(A) = \int_A d(x,y) = \int_E \rho d(\rho,\theta)$$

$$\lambda_2(A) = \int_{-\pi}^{\pi} \left(\int_0^r \rho d\rho \right) d\theta = \int_{-\pi}^{\pi} \frac{r^2}{2} d\theta = \pi r^2$$

Una integral doble

$$A = \left\{ (x,y) \in \mathbb{R}^2 : x^2 + y^2 < 1, \ y > 0 \right\}$$

$$E = \left\{ (\rho,\theta) \in \mathbb{R}^2 : 0 < \rho < 1, \ 0 < \theta < \pi \right\}$$

$$\int_A \frac{d(x,y)}{\sqrt{x^2 + y^2}} = \int_E d(\rho,\theta) = \pi$$

 $I = \int_{-\infty}^{+\infty} e^{-x^2} dx$

Ejemplos de cambio a coordenadas polares (II)

La campana de Gauss

$$I^{2} = \left(\int_{-\infty}^{+\infty} e^{-x^{2}} dx\right) \left(\int_{-\infty}^{+\infty} e^{-y^{2}} dy\right) = \int_{\mathbb{R}^{2}} e^{-(x^{2}+y^{2})} d(x,y)$$

$$A = \mathbb{R}^{2} , \quad E = \mathbb{R}^{+} \times] - \pi, \pi [$$

$$I^{2} = \int_{E} \rho e^{-\rho^{2}} d(\rho,\theta) = \int_{-\pi}^{\pi} \left(\int_{0}^{+\infty} \rho e^{-\rho^{2}} d\rho\right) d\theta$$

$$I^{2} = 2\pi \int_{0}^{+\infty} \rho e^{-\rho^{2}} d\rho = 2\pi \left[-\frac{e^{-\rho^{2}}}{2}\right]_{0}^{+\infty} = \pi$$

$$\int_{-\infty}^{+\infty} e^{-x^{2}} dx = \sqrt{\pi}$$

Coordenadas cilíndricas en \mathbb{R}^3

El difeomorfismo que vamos a usar

$$\begin{split} \Omega &= \mathbb{R}^+ \times] - \pi \,, \, \pi \, [\times \mathbb{R} \quad , \quad \phi(\rho,\theta,z) = \left(\rho \cos \theta \,, \rho \sin \theta \,, z \right) \quad \forall \, (\rho,\theta,z) \in \Omega \\ \phi \quad \text{es inyectiva con} \quad \phi(\Omega) &= G = \mathbb{R}^3 \setminus \{ (x,0,z) : x \in \mathbb{R}^-_0 \,, \, z \in \mathbb{R} \} \quad \text{(abierto)} \\ \phi \quad \text{es un difeomorfismo de clase } C^1 \quad \text{de } \Omega \text{ sobre } G \\ \det J \, \phi(\rho,\theta,z) &= \rho > 0 \quad \forall \, (\rho,\theta,z) \in \Omega \quad , \quad \lambda_3(\mathbb{R}^3 \setminus G) = 0 \end{split}$$

Cambio de variable a coordenadas cilíndricas

Dado un conjunto medible $A\subset\mathbb{R}^3$ y una función medible $f:A\to\mathbb{R}$ tomamos $E=\left\{(\rho,\theta,z)\in\mathbb{R}^+ imes]-\pi,\pi\left[imes\mathbb{R}\,:\,(\rho\cos\theta,\rho\sin\theta,z)\in A\right\}$ y $g(\rho,\theta,z)=\rho\;f(\rho\cos\theta,\rho\sin\theta,z)\;\;\forall(\rho,\theta,z)\in E$ Entonces: $f\in\mathcal{L}_1(A)\iff g\in\mathcal{L}_1(E)$, en cuyo caso $\int_A f(x,y,z)\;d(x,y,z)=\int_E \rho\;f\left(\rho\cos\theta,\rho\sin\theta,z\right)\;d(\rho,\theta,z)$

Ejemplos de cambio a cilíndricas (I)

Volumen de un sólido de revolución

Dado un conjunto medible $S \subset \mathbb{R}_0^+ \times \mathbb{R}$, sea $S_0 = \{(u,0,z) : (u,z) \in S\}$

El sólido de revolución engendrado al girar S_0 alrededor del eje vertical es:

$$A = \left\{ \left(x, y, z \right) \in \mathbb{R}^3 : \left(\sqrt{x^2 + y^2}, z \right) \in S \right\}$$

$$E = \{ (\rho, \theta, z) \in \mathbb{R}^+ \times] - \pi, \pi [\times \mathbb{R} : (\rho, z) \in S \}$$

El conjunto A es medible y se tiene:

$$\lambda_3(A) = \int_A d(x, y, z) = \int_E \rho d(\rho, \theta, z)$$

$$\lambda_3(A) = \int_{-\pi}^{\pi} \left(\int_{S} \rho d(\rho, z) \right) d\theta = 2\pi \int_{S} \rho d(\rho, z)$$

Con notación más intuitiva: $\lambda_3(A) = 2\pi \int_{-\pi}^{\pi} x \, d(x,z)$

Ejemplos de cambio a cilíndricas (II)

Volumen de un cilindro

$$S = [0, r] \times [0, h] \quad \text{con} \quad r, h \in \mathbb{R}^+$$

$$A = \left\{ (x, y, z) \in \mathbb{R}^3 : x^2 + y^2 \leqslant r^2, \quad 0 \leqslant z \leqslant h \right\}$$

$$\lambda_3(A) = 2\pi \int_0^h \left(\int_0^r x \, dx \right) dz = \pi r^2 h$$

Volumen del toro sólido

$$S = \{(u,z) \in \mathbb{R}^2 : (u-R)^2 + z^2 \leqslant r^2 \} \quad \text{con} \quad 0 < r < R$$

$$S = \{(R+x,z) : (x,z) \in \mathbb{R}^2, \ x^2 + z^2 \leqslant r^2 \}$$

$$A = \{(x,y,z) \in \mathbb{R}^3 : (\sqrt{x^2 + y^2}, z) \in S \}$$

$$\lambda_3(A) = 2\pi \int_0^r \rho \left(\int_{-\pi}^{\pi} (R + \rho \cos \theta) d\theta \right) d\rho = (2\pi R) (\pi r^2)$$

Un ejemplo sorprendente

$$S = \{(x, z) \in \mathbb{R}^2 : x \geqslant 1, \ 0 \leqslant z \leqslant 1/x^2 \}$$

$$\int_{S} d(x,z) = \int_{1}^{+\infty} \left(\int_{0}^{1/x^{2}} dz \right) dx = \int_{1}^{+\infty} \frac{dx}{x^{2}} = 1$$

$$\int_S x \, dx \, dz \ = \ \int_1^{+\infty} x \left(\int_0^{1/x^2} dz \right) dx \ = \ \int_1^{+\infty} \frac{dx}{x} \ = \ \infty$$

Haciendo girar una superficie plana de área finita se puede obtener un sólido de revolución de volumen infinito

El difeomorfismo que vamos a usar

$$\Omega = \mathbb{R}^+ \times] - \pi, \pi [\times] - \pi/2, \pi/2 [$$

$$\phi \big(r, \theta, \varphi \big) = \big(r \cos \varphi \cos \theta \;,\; r \cos \varphi \sin \theta \;,\; r \sin \varphi \big) \quad \forall (r, \varphi, \theta) \in \Omega$$

$$\phi \; \text{ es inyectiva con } \; \phi(\Omega) = G = \mathbb{R}^3 \setminus \{ (x, 0, z) : x \in \mathbb{R}_0^- \;,\; z \in \mathbb{R} \} \quad \text{(abierto)}$$

$$\phi \; \text{ es un difeomorfismo de clase } C^1 \; \text{de } \Omega \; \text{sobre } G$$

$$\det J \phi (r, \theta, \varphi) = r^2 \cos \varphi > 0 \quad \forall (r, \theta, \varphi) \in \Omega \quad , \quad \lambda_3(\mathbb{R}^3 \setminus G) = 0$$

Cambio de variable a coordenadas esféricas

Dado un conjunto medible $A \subset \mathbb{R}^3$ y una función medible $f:A \to \mathbb{R}$ tomamos $E = \left\{ (r,\theta,\varphi) \in \Omega : \phi(r,\theta,\varphi) \in A \right\}$ y $g(r,\theta,\varphi) = r^2 \cos\varphi \ f \left(\phi(r,\theta,\varphi) \right) \ \ \forall (r,\theta,\varphi) \in E$ Entonces: $f \in \mathcal{L}_1(A) \iff g \in \mathcal{L}_1(E)$, en cuyo caso $\int_{\mathbb{R}} f(x,y,z) \, d(x,y,z) = \int_{\mathbb{R}} r^2 \cos\varphi \ f \left(\phi(r,\theta,\varphi) \right) \ d(r,\theta,\varphi)$

Polare 000 Cilíndricas

Ejemplos de cambio a esféricas(I)

Volumen de la bola euclídea

$$A = \left\{ (x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 \leqslant R^2 \right\} \quad (R \in \mathbb{R}^+)$$

$$E =]0, R] \times] - \pi, \pi[\times] - \pi/2, \pi/2[$$

$$\lambda_3(A) = \int_A d(x, y, z) = \int_E r^2 \cos \varphi \ d(r, \theta, \varphi)$$

$$= \int_0^R \left[\int_{-\pi}^{\pi} \left(\int_{-\pi/2}^{\pi/2} r^2 \cos \varphi \ d\varphi \right) d\theta \right] dr$$

$$= \int_0^R \left(\int_{-\pi}^{\pi} 2 \ r^2 d\theta \right) dr = \int_0^R 4 \pi r^2 dr = \frac{4}{3} \pi R^3$$

Ejemplos de cambio a esféricas (II)

Integral triple de una función (radial)

$$f(x,y,z) = (x^{2} + y^{2} + z^{2})^{\alpha} \quad \forall (x,y,z) \in \mathbb{R}^{3} \setminus \{(0,0,0)\} \quad (\alpha \in \mathbb{R})$$

$$B = \{(x,y,z) \in \mathbb{R}^{3} : x^{2} + y^{2} + z^{2} \leq 1\}$$

$$E =]0,1[\times] - \pi,\pi[\times] - \pi/2,\pi/2[$$

$$\int_{B} f(x,y,z) d(x,y,z) = \int_{E} r^{2\alpha+2} \cos\varphi \ d(r,\theta,\varphi)$$

$$= \int_{0}^{1} \left[\int_{-\pi}^{\pi} \left(\int_{-\pi/2}^{\pi/2} r^{2\alpha+2} \cos\varphi \ d\varphi \right) d\theta \right] dr$$

$$= \int_{0}^{1} \left(\int_{-\pi}^{\pi} 2 \ r^{2\alpha+2} d\theta \right) dr = 4\pi \int_{0}^{1} r^{2\alpha+2} dr$$

$$f \in \mathcal{L}_{1}(B) \iff \alpha > -3/2$$

$$\int_{B} f(x,y,z) d(x,y,z) = 4\pi \left[\frac{r^{2\alpha+3}}{2\alpha+3} \right]_{0}^{1} = \frac{4\pi}{2\alpha+3} \quad \forall \alpha \in]-3/2, +\infty[$$