

Linear Algebra

Assignment # 02

Name Roll Number

Mahnoor Ghazanfar FA18-BSE-122

Section: 4A-BCS

Submitted to:

Sir Umair Umer

Questions

- -> What is a matrix determinant?
- -> What are the properties of a determinant?
- -> Explain each property with the help of an example.

April 18, aoda
Introduction to Determinants
Determinants. The determinant of a matrix is a number that is specially defined only for square matrices. Determinants are mathematical objects that are very useful in the analysis and solution of systems of linear equation.
Properties of a Determinant. Property 1: Row Operations Nhen we add a multiple of a row to another row, the determinant of a matrix is unchanged.
Example: Let $A = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 8 \\ 0 & 3 \end{bmatrix}$
1Al = 3 and 1Bl = 3 Hence 1Bl = A =
Switching Two Rows TF B is the matrix obtained by permuting two rows of A, then $\det(B) = -\det(A)$
Example: Let $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ and $B = \begin{bmatrix} 3 & 4 \\ 1 & 2 \end{bmatrix}$. Knowing that $det(A) = -2$, find $det(B)$.
J to

Solution det(A) = 1 x 4 - 3 x 2 = - 2 Note that rows of B are the rows of A but switched. Now, two rows of A have been switched, det(B) = - det(A) = -(-2) = 2 Multiplying a row by a Scalar > IF B is the matrix obtained by multiplying one rowor A by any Scolor k, then det(B) = k det(A). Example: et A=[13] and B=[13] As matrix B second row is multiply by 3 so, |A| = -4 and |B| = -12 det(B) = (3)(-4) Property 2: Determinant of the Inverse Let A be an non matrix. Then A is inversible iff det(A) \$0. Example: |B| = (a)(1) - (5)(3) = -13 Herre Bis invertible.

Property 3: Determinant of the Transpose et A be amatrix where AT is the transpose of A, then det(AT) = det(A) Example: and AT = [2 4] Now |Al = 2x3-5x4 1AT = 2x3-5x4 - = -14 = -14 Hence |A| = |AT = Property 4: Multiplicative Property. Let A and B be two nxn matrices. Then det (AB) = det (A) det (B) Example: Let A=[12] and B=[32] 50 AB: 1AB1 = (11)(-4)-(-1)(4) = -40 And 1A = (1)(2)-(-3)(2) = 8 1B(= (3)(1) - (4)(2) = -5

1A1x1B1 = 8x-5 = -40
Hence det(AB) = det(A)det(B)=
Promote 5. All Race
Property 5: All-zero property If all the elements of a row or a column are zeros, then the
value of the determinat is zero
det(A)= 0
Example
Example Let A= [2 4] O O]
Since R =0 so A = (2)(0)-(4)(0)
Hence IAI=0 &
Property 6: Identical value.
Property 6: Identical value. If any two raws/columns of a determinant are identical, then the value of determinant is zero.
the value of determinant is zero.
Example
Example Let $A = \begin{bmatrix} 4 & 2 & 1 \\ 3 & 1 & 0 \end{bmatrix}$ $\Rightarrow A = \begin{bmatrix} 3 & 1 & 0 \\ 4 & 2 & 1 \end{bmatrix}$ Here $R \notin R_3$ are $\begin{bmatrix} 4 & 2 & 1 \end{bmatrix}$ $\Rightarrow A = \begin{bmatrix} 4 & 2 & 1 \\ 4 & 2 & 1 \end{bmatrix}$ identical.
3 1 0 => IAI = 3 1 0 Here R&R are
[421] 421 identical.
Expanding along G
111-11311 0142 1142
1A1= 1 3 1 -0 4 2 + 1 4 2 4 3 1

$$|A| = 1(6-4)-0+1(4-6)$$

 $|A| = 0 =$

Property 7: Triangle Property

The determinant of a triangular maltin is the product of the main diagonal entries

Example	
Let IAI=	3000
	2-300
	4-130
	2-5/2

Expanding Ri

1	-3	0	0	Now Expanding R, again.
	-1	3	0	1 0 1 0
	-5	1	9	

1.(-3) 3 0
$$\Rightarrow$$
 (-3)(6-0)
1 2 $=$ -18

|A|=-18=

2				
A common factor of	a row/colum	on Can be	- Łaken	out of
				T.E.L.
Xample				
Let IAI= 1 2 3 8 10 12				
8 10 19				
789		Ver		
Here Ra has the com	mon factor o	65	•	
so 1A1=2 4 5 6				
7 8 9				
- 2.0	1			
= 0				
		- 1		-
			9	