International Islamic University Chittagong Department of Electrical and Electronic Engineering

Final Examination Spring-2018
Course Code: PHY – 1101
Time: 2 hours 30 minutes

Program: B.Sc. Engg. (EEE) Course Title: Physics - I

Full Marks: 50

Part A

[Answer any <u>two</u> questions from the followings; figures in the right margin indicate full marks.]

1(a). 1(b). 1(c).	Distinguish between Cohesive and Adhesive force. Derive an expression for surface tension. Calculate the amount of energy needed to break a drop of water diameter 2×10 ⁻³ m into 10 ⁹ droplets of equal size. Surface tension of water is 72×10 ⁻³	2 5 3
2(a).	³ N/m. What is Surface tension and Surface energy?	2
2(b).	Prove that the surface energy of a liquid is numerically equal to its surface tension.	5
2(c).	A spherical soap bubble of radius 1cm is blown in air. How much energy will be needed to increase the radius to 3cm. [Surface Tension of soap solution is 0.03 N/m].	3
3(a).	Define viscosity and coefficient of viscosity.	2
3(b).	State and explain Bernoulli's theorem of liquid in motion.	5
3(c).	Calculate the speed at which the velocity head of a stream of water is equal to 0.50m of Hg.	3
Part B		
[Answer any <u>three</u> questions from the followings; figures in the right margin indicate full marks.]		
4(a).	What do you mean by time period and wave length of a wave?	2
4(b).	Explain Doppler's effect for stationary source and moving observer.	5
4(c).	If the frequency of a tuning fork is 400 Hz and the velocity of sound in air is	3
	320ms ⁻¹ , find how far sound travels while the fork completes 30 vibrations.	
5(a).	State second law of thermodynamics.	2
5(b).	Write down Carnot's principle and explain Carnot's cycle.	5
5(c).	A heat engine after doing work in each cycle rejects 70% of heat absorbed from the source, calculate the efficiency of the engine.	3
6(a).	What is interference and coherent sources?	2
6(b).	Explain Young's double slit experiment in case of interference of light to	6
	produce bright and dark fringes.	
6(c).	The straight and narrow parallel slits of 1mm apart are illuminated by	2
	monochromatic light. Fringes formed on the screen held at a distance of 1m	
	from the slits are 0.50mm apart. Calculate the wave length of light used.	
7(a).	Define two types of diffraction.	2
7(b). 7(e).	State and explain Brewster's law in polarization of light. An unpolarized light is incident at an angle equal to the polarizing angle on	5
/ (c).	glass surface. For a refractive index 1.54, what is the value of polarizing angle?	3