ARP / DHCP

Address Resolution Protocol

Urządzenia sieciowe: hosty, routery znajdujące się w tej samej domenie rozgłoszeniowej komunikują się ze sobą za pomocą adresów MAC

Aby **Host A** mógł komunikować się z **Host D** nie wystarczy znajomość jego adresu IP, potrzebny jest także MAC adres.

Protokół ARP umożliwia stronie nadającej uzyskanie informacji o adresie MAC hosta docelowego.

Address Resolution Protocol/Request

- 1. Host A wysyła zapytanie ARP Request o treści: proszę o MAC adres hosta o IP adresie 10.0.0.4
- 2. Przełącznik wysyła zapytanie dalej do wszystkich podłączonych do niego hostów.

Address Resolution Protocol/Reply

- 3. Na zapytanie o MAC adres odpowie jedynie Host D, którego adresu IP dotyczy zapytanie
- 4. Przełącznik prześle odpowiedź, ale tym razem już tylko do Host A

Host A dodaje u siebie wpis w tablicy ARP utrzymywanej lokalnie W tym momencie **Host A** zna już MAC adres **Host-a D** i może rozpocząć właściwą komunikację.

Address Resolution Protocol

REPLY

MAC adres HOST D	IP adres HOST D	MAC adres HOST A	IP adres HOST A
00-02-67-79-0F-4C	10.0.0.4	00-A0-24-70-FE-BD	10.0.0.1

Address Resolution Protocol

Tablica ARP na naszym urządzeniu

Litera **D** oznacza, iż wpis w naszej tablicy ARP został dodany dynamicznie, w wyniku działania protokołu ARP

Address Resolution Protocol

Możliwe ustawienia ARP

Możliwe ustawienia:

- disabled wyłączona obsługa protokołu ARP
- enabled włączona obsługa protokołu ARP (domyślnie)
- local-proxy-arp funkcja działa w ramach jednego interface-u router pośredniczy w komunikacji pomiędzy wszystkimi hostami pomimo faktu, iż znajdują się w tej samej domenie rozgłoszeniowej
- proxy-arp router na zapytanie arp z innej sieci odpowie swoim adresem MAC i w późniejszej fazie będzie pośredniczył w przesyłaniu pakietów
- reply-only urządzenie nigdy nie będzie wysyłało arp request, istnieje konieczność ręcznego wprowadzania wpisów do tablicy arp, urządzenie odpowie na zapytanie arp request jeżeli takie się pojawi

Ręczne dodawanie wpisów ARP

W przypadku gdy wyłączyliśmy działanie protokołu ARP na interface-ie, musimy ręcznie dodać wpisy aby umożliwić komunikację IP z innymi urządzeniami

Dynamic Host Configuration Protocol

Protokół służy do automatycznego konfigurowania ustawień sieciowych klientów łączących się do sieci. Serwer DHCP wysyła do klientów niezbędne informacje takie jak:

- adres IP wraz maską sieci
- brama domyślna (default gateway)
- serwery DNS

DHCP umożliwia również przesłanie innych parametrów, z których klient może skorzystać:

- NTP serwer dokładnego czasu
- WINS serwer Windows Internet Name Service
- Next Server (option 66)
- Boot Filename (option 67)
- inne

Komunikaty RFC2131

- DHCPDISCOVER Klient wysyła komunikat rozgłoszeniowy, aby znaleźć dostępne serwery
- DHCPOFFER Serwer wysyła do klienta w odpowiedzi na DHCPDISCOVER propozycję parametrów konfiguracyjnych
- DHCPREQUEST Powiadomienie klienta do serwerów lub (a) żądanie proponowanych parametrów z jednego serwera i niejawne odrzucenie ofert od wszystkich innych, (b) potwierdzenie poprawności wcześniej przydzielonego adresu po, na przykład, ponownym uruchomieniu systemu, lub (c) przedłużenie dzierżawy na określony adres sieciowy
- DHCPACK Serwer wysyła do klienta ustawienia konfiguracyjne, w tym podany adres sieciowy
- DHCPNAK Serwer wysyła do klienta informację, że propozycja adresu sieciowego klienta jest nieprawidłowa (na przykład klient przeniósł się do nowej podsieci) lub upłynął czas dzierżawy klienta
- DHCPDECLINE Klient wysyła do serwera powiadomienie, że adres sieciowy jest już używany
- DHCPRELEASE Klient do serwera, aby anulować dzierżawę
- **DHCPINFORM** Klient do serwera z żądaniem tylko o parametry konfiguracyjne; klient ma już skonfigurowany adres

Wymiana komunikatów

- DHCPDISCOVER message
 - IP: source=0.0.0.0; destination=255.255.255.255; UDP: source port=68; destination port=67
- DHCPOFFER message
 - *IP: source= 192.168.1.1; destination=255.255.255.255; UDP: source port=67; destination port=68*
- DHCPREQUEST
 - IP: source=0.0.0.0; destination=255.255.255.255; UDP: source port=68; destination port=67
- DHCPACK
 - *IP:* source= 192.168.1.1; destination=255.255.255.255; UDP: source port=67; destination port=68

Konfiguracja klienta

Konfiguracja DHCP serwera

- konieczne jest wskazanie interface-u, na którym będzie pracował serwer (na jednym interface-ie może pracować tylko jeden serwer DHCP !!!)
- należy zaadresować interfejs, na którym będzie pracować DHCP serwer!!!
- należy wskazać address pool (zakres adresów, z którego serwer będzie przydzielał adresy)
- lease time czas dzierżawy adresu IP
- Relay czy pozwalać za zapytania typu unicast DHCP Relay serwerów (0.0.0.0 nie zezwalaj, 10.10.2.1 – zezwalaj tylko z wskazanej adresy)

Konfiguracja DHCP serwera

Konfiguracja DHCP serwera

2. Skonfigurowanie ip-pool – zakresu adresów, które będzie przydzielać serwer naszym

klientom.

Konfiguracja DHCP serwera

3. Dodanie serwera

Konfiguracja DHCP serwera

4. Ustawienie, jakie parametry, poza adresem IP, będą wysyłane do klienta

Konfiguracja DHCP serwera

Dzierżawa adresów IP

ten sam adres IP. Szczególnie przydatne gdy mamy np. drukarkę i chcemy aby była zawsze osiągalna pod tym samym adresem IP