EE5103

Computer Control Systems

Liu Weihao A0232935A

Part 1

The state space can be expressed as:

$$x(k+1) = x(k) + w(k)$$
$$y(k) = x(k) + v(k)$$

The Kalman Filter is given as:

$$\begin{split} Kf(k) &= P(k|k-1)C^T(CP(k|k-1)C^T + R_2)^{-1} \\ K(k) &= (AP(k|k-1)C^T)(CP(k|k-1)C^T + R_2)^{-1} \\ \hat{x}(k|k) &= \hat{x}(k|k-1) + K_f(k)(y(k) - C\hat{x}(k|k-1)) \\ \hat{x}(k+1|k) &= A\hat{x}(k|k-1) + Bu(k) + K(k)(y(k) - C\hat{x}(k|k-1)) \\ P(k|k) &= P(k|k-1) - P(k|k-1)C^T(CP(k|k-1)C^T + R_2)^{-1}CP(k|k-1) \\ P(k+1|k) &= AP(k|k-1)A^T - K(k)(CP(k|k-1)C^T + R_2)K^T(k) + R_1 \end{split}$$

The initial condition is x(0) = 5. Assume that $P(0|-1) = 10^5$, we can get:

Graph 1, green line: x(k); yellow line: $\hat{x}(k|k)$

Graph 2

Graph 3

Calculate variables

Bias: $\frac{1}{N+1} \sum_{k=0}^{N} (x(k) - \hat{x}(k|k)) = -0.00249$

Variance: $\frac{1}{N+1} \sum_{k=0}^{N} (x(k) - \hat{x}(k|k))^2 = 0.0986$

Part 2

The true state position $x_1(k)$ and velocity $x_2(k)$ of a moving target are given by the following equation:

$$\begin{bmatrix} x_1(k+1) \\ x_2(k+1) \end{bmatrix} = \begin{bmatrix} 1 & T \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_1(k) \\ x_2(k) \end{bmatrix} + \begin{bmatrix} \frac{1}{2}T^2 \\ T \end{bmatrix} w(k)$$
$$y(k) = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1(k) \\ x_2(k) \end{bmatrix} + v(k)$$

The initial contidions are: $x(k)=\begin{bmatrix}0\\30\end{bmatrix}$, we can assume that: $P(0|-1)=10^5 imes\begin{bmatrix}1&0\\0&1\end{bmatrix}$.

Simulate for $k = 0, 1, \dots, N$ where N = 10,000

Graph 4, $x_1(k)$: green; $\hat{x}_1(k|k)$: yellow

Graph 5, $x_2(k)$: green; $\hat{x}_2(k|k)$: yellow

Graph 6: $P_{11}(k|k)$

Graph 7: $P_{22}(k|k)$

Graph 8: $K_{f1}(k)$

Graph 9: $K_{f2}(k)$

Calculate variables

The biases

$$rac{1}{N+1}\sum_{k=0}^{N}\left(x_{1}(k)-\hat{x}_{1}(k|k)=-0.0042
ight)$$

$$rac{1}{N+1}\sum_{k=0}^{N}\left(x_{2}(k)-\hat{x}_{2}(k|k)=0.0014
ight.$$

The variance:

$$rac{1}{N+1}\sum_{k=0}^{N}\left(x_{1}(k)-\hat{x}_{1}(k|k)^{2}=0.3452
ight.$$

$$rac{1}{N+1}\sum_{k=0}^{N}\left(x_{2}(k)-\hat{x}_{2}(k|k)^{2}=0.1290
ight.$$

Part 3

The target moving in a circle, we can decompose it into y and z, caculate the speed and position separately. We can assume

that the state x(k) is: $x(k) = \begin{vmatrix} y(k) \\ \dot{y}(k) \\ z(k) \\ \dot{z}(k) \end{vmatrix}$, $\dot{y}(k)$ and $\dot{z}(k)$ are the speed in the y and z directions speed. In this case, we can use

constant speed module. The whole state-space can be expressed as:

$$egin{aligned} x(k+1) &= egin{bmatrix} 1 & T & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 1 & T \ 0 & 0 & 0 & 1 \end{bmatrix} & x(k) + egin{bmatrix} rac{T^2}{2} \ T \ rac{T^2}{2} \ T \end{bmatrix} & w(k) \end{aligned} \ y(k) &= egin{bmatrix} 1 & 0 & 0 & 0 \ 0 & 0 & 1 & 0 \end{bmatrix} & x(k) + v(k) \end{aligned}$$

We can assume that, the sampling period T=0.0005. The output of Kalman filter are as follows:

Graph 10: $K_f(k)$

Graph 11: K(k)

Graph 12: P(k|k)

Graph 13: P(k+1|k)

Calculate variables

Biases:

$$egin{aligned} rac{1}{N+1} \sum_{k=0}^{N} \{10 cos rac{2\pi k}{N} - \hat{x}_y(k|k)\} &= 2.207 \ rac{1}{N+1} \sum_{k=0}^{N} \{10 sin rac{2\pi k}{N} - \hat{x}_z(k|k)\} &= -0.9531 \end{aligned}$$

Variances

$$rac{1}{N+1}\sum_{k=0}^{N}\{10cosrac{2\pi k}{N}-\hat{x}_{y}(k|k)\}^{2}=38.43$$

$$rac{1}{N+1}\sum_{k=0}^{N}\{10sinrac{2\pi k}{N}-\hat{x}_{z}(k|k)\}^{2}=17.65$$