Esercizio 1. Si consideri \mathbb{R} come una struttura nel linguaggio degli anelli orinati e con un simbolo per ogni $X \subseteq \mathbb{R}$. Sia *X l'interpretazione di X in * \mathbb{R} una estensione elementare propria di \mathbb{R} . Si dimostri che le seguenti affermazioni sono equivalenti per ogni $X \subseteq \mathbb{R}$:

- 1. X is un aperto nell'usuale topologia di \mathbb{R} ;
- 2. $b \approx a \in {}^*X \implies b \in {}^*X$ for every a standard e b arbitrario.

Esercizio 2. Con la stessa notazione dell'esercizio precedente. Si dimostri che le seguenti affermazioni sono equivalenti per ogni $X \subseteq \mathbb{R}$

- 1. X is un chiuso nell'usuale topologia di \mathbb{R} ;
- 2. $a \in {}^*X \implies \operatorname{st}(a) \in {}^*X$ for every finito a.

Esercizio 3. Let $N \models T_{rg}$ prove that for every $b \in N$ the set r(b, N) is a random graph. Is every random graph $M \subseteq N$ of the form $\varphi(N)$ for some $\varphi(x) \in L(N)$?

Esercizio 1. Si consideri $\mathbb R$ come una struttura nel linguaggio degli anelli orinati e con un simbolo per ogni $X \subseteq \mathbb R$. Sia *X l'interpretazione di X in * $\mathbb R$ una estensione elementare propria di $\mathbb R$. Si dimostri che $\mathbb R$ and \varnothing sono gli unici due sottoinsiemi $X \subseteq \mathbb R$ tali che

 $b \approx a \in {}^*X \implies b \in {}^*X$ for every coppia di iperreali a, b.

Esercizio 2. Let L be the language of strict orders expanded with countably many constants $\{c_i : i \in \omega\}$. Let T be the theory that extends T_{dlo} by the axioms $c_i < c_{i+1}$ for all i. Prove that T is complete.

Esercizio 3. Find 3 non isomorphic models of the theory T in the exercise above.