Integrating Security, Mobility, and Multi-Homing in a HIP way

Pekka Nikander

Ericsson Research Nomadiclab

&

Helsinki Institute for Information Technology

Outline

- The problem: TCP/IP is getting old
 - Locators and Host Identifiers
 - Combined locator—identifiers
- A Solution: Change the Architecture
 - The Basic Idea of HIP
 - Socket bindings revisited
 - Protocol walkthrough
- End-host Mobility & Multi-homing
 - End-Host Mobility & End-Host Multi-Homing
 - Virtual Interfaces
- Implementation status
- Summary

The problem: TCP/IP is getting old

- Computers are getting more mobile and more connected
 - E.g. a PDA with GSM / UMTS / WLAN / BlueTooth
- Internet addresses still are addresses,
 - bound to places in network topology
 - but working less well as host identifiers
- Proving mobility and multi-homing has turned to be hard
- Maybe it is a time to rethink the situation?
- Host Identity Payload (HIP) is a concrete attempt to provide a new approach — we may be right, we may be wrong, but we try, and hopefully we learn
 - WORK IN PROGRESS!

Locators and Host Identifiers

- IP addresses are bound to network topology
 - In the old network class (A / B / C) based system it was less so, but hosts were still bound to networks
 - Today, keeping the routing tables manageable requires CIDR and hierarchical address prefixes
 - Therefore the globally routable IP addresses are sometimes called as *Provider Assigned* (PA) addresses
- → <u>IP addresses</u> act as a *locators* (names of locations)
- Network connections are bound to IP addresses
 - TCP / UDP sockets are identified with IP addresses
 - SCTP is an exception to this, and indeed a comptetitor to HIP
 - DNS gives out addresses for new connections
- → IP addresses act as host identifiers (names of hosts)

Combined locator—identifiers

- IP addresses are combined locators and host identifiers
- Good from security point-of-view
 - Packet sent to Alice's address is indeed sent to Alice
 - Why? Because Alice is identified by the address!
 - The routing system is assumed to be secure in the sense that it either delivers the packets to their destination or not at all
 - This limits the potential attackers to those topological paths that make it possible to eavesdrop packets sent to a particular address
- Bad from mobility / multi-homing point-of-view
 - Host changes its location → must change its identity
 - Leads to the Home Address / Care-of-Address design in Mobile IP
 - Multi-homed must have multiple identities
 - Leads to multi-address sessions in SCTP
 - Managing multiple / dynamic addresses becomes harder than necessary

A Solution: Change the Architecture

- Separate locators from host identifiers
- Let IP address continue to function as locators
 - No changes to the routing infrastructure
 - Mobile host still needs to keep changing its address
 - Multi-homed host still has multiple addresses
- Create a new name space for host identifiers
 - Use public keys as primary identifiers
 - How to get a host's public key is beyond our current scope
- Provide a secure binding between a host's public key and its IP address(es)
 - Sign the address(es), optionally use CGA
 - Check that the key is available at the address(es)
 - This step is essential for DoS protection; cf. Mobile IPv6 RO

The Basic Idea of HIP

- A new layer
- A new Name Space: Host Identifiers
 - Public keys
 - Represented as key hashes, Host ID Tags (HIT)
- Sockets bound to the Host IDs, not IP addresses
- Kernel translates outgoing HI into an real IP address
 - cf. Bellovin's Host NAT

Socket bindings revisited

Bindings in the current architecture

Bindings in the new architecture

- A new key management daemon
- New IPsec transformation type: HIP transform

- Client application connects to a server
- connect(dst = server's Host Identity)

- IPsec policy engine traps the Host Identity
- Since there is no SA, a PF_KEY ACQUIRE is passed

- The HIP daemon initiates a key negotiation
- I1: HIT_T HIT_R

- Responder replies with a canned R1
- R1: HIT_T SIGN_R(HIT_R Puzzle g^x params HI_R)

- Initiator solves the puzzle and sends I2
- I2: SIGN_I(HIT_I HIT_R Result g^Y ENC_{sess}(HI_I))

- The key negotiation is completed with R2
- R2: SIGN_R(HIT_R HIT_T SPI)

- HIP mode IPsec SAs are established
 - (Actually, the server does this before sending R2)

- The queued packet is sent over the ESP connection
- The SA replaces the server HI with a real IP address

- The recipient SA replaces address with HI
- The packet is passed to the application

End-host Mobility & Multi-homing

- HIP seems to solve end-host mobility and multi-homing problems almost trivially
- Mobility and multi-homing become duals of each other
 - A mobile host has multiple addresses serially
 - A multi-homed host has multiple addresses parallelly
- The thinking can be folded into a Virtual Interface Model

End-host Mobility

End-host Multi-Homing

Virtual Interfaces

Implementation status

- Four independent implementation efforts
 - Ericsson Research: NetBSD kernel
 - Helsinki Univ. of Tech.: Linux IPv6 kernel
 - Boeing Phantom Works: Linux IPv4 kernel
 - Andrew McGregor: Python user level
- All aim for an alpha version around the next IETF
 - Some versions already available, but with lacking functionality and small interoperability problems
 - Interoperability testing to happen at San Francisco

Summary

- A concrete, down-to-earth attempt to "fix" the Internet
 - Deployment can start at end-points
 - No changes required to routers
 - Can be made to work with firewalls
 - Supports NAT, but requires HIP-capable NAT boxes
 - Backwards compatibility can be provided with proxies
- Integrates IPsec key negotiation, end-host mobility, and end-host multihoming
- Work in progress
 - First usable implementations available soon
 - Internet-drafts to be updated before San Francisco

More information

- The "official" HIP site (slightly outdated)
 homebase.htt-consult.com/HIP.html
- HIP mailing list
 lists.freeswan.org/mailman/listinfo/hipsec/
- Ericsson Research HIP project www.hip4inter.net
- Helsinki University of Technology student project gaijin.tky.hut.fi/hipl/
- Boeing Phantom Works Linux implementation
 Available upon request, see mailing list
- Andrew McGregor's Python implementation
 Available as a download, see mailing list
- These slides: www.tml.hut.fi/~pnr/publications/