Complexity, 2006-2007

James Lawson

- 1.(a) i. L is NP is there is a nondeterminstic turing machine that decides L in p-time
 - ii. L is NP-complete if it is in NP, and is NP-hard: if $L' \in NP$ then $L' \leq L$.
 - iii. Assume L is NP-complete. Assume for contradiction that L is in P. Then take any langauge L' in NP. So $L' \leq L$. But given that L is in P, we deduce that L is in P by the downward closure property of reduction. In other words, we have shown that $P \subseteq NP$. We already know that $NP \subseteq P$, so P = NP giving a contradiction.
 - (b) i. TRI is given sets B, G, H, each with n elements and triples $T \subseteq B \times G \times H$, is there a subset $T' \subseteq T$ such that T' has n elements and no two triples in T' have an element in common.
 - ii. Consider a reduction TRI \leq SUBSETSUM. Take B, G, H of size n and T of size m. For each $t_i \in T$, associate string, of 3n 0/1s for a (m+1)-ary numbers. f(B,G,H,T) = (W,K) where $K = \sum_{i=0}^{3n-1} (1+m)^i$ and $W = \{w_{t_i} \mid t_i \in T\}$.
 - (\Rightarrow) Assume (B,G,H,T) has a matching, then the sum will have 3n 1s because there are no common elements so each n-bit grouping has unique operands in the summation.
 - (\Leftarrow) Assume there is a subset sum in f(B,G,H,T). There is some $w_{t_1} + w_{t_2} + ... + w_{t_k} = K$. K is a series of 3n 1s. Each group of n bits, is a series of 1s. Since each element has a unique n-string each bit is covered by exactly one element. So k = n and each w_{t_i} corresponds to a different tuple, and the tuples sum to K.