

Field Evaluation of Hopper Dredge Overflow for the Delaware River

Jerry L. Miller, Michael R. Palermo, and Thomas W. Groff

July 2002

20020916 099

The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products.

The findings of this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

Field Evaluation of Hopper Dredge Overflow for the Delaware River

by Jerry L. Miller, Michael R. Palermo

Environmental Laboratory
U.S. Army Engineer Research
and Development Center
3909 Halls Ferry Road
Vicksburg, MS 39180-6199

Thomas W. Groff
Operations Division
U.S. Army Engineer District, Philadelphia
100 Penn Square East
Philadelphia, PA 19107-3390

Final report

Approved for public release; distribution is unlimited

Contents

Preface
1—Introduction
Background
Study Location
Purpose and Scope
2—Field Monitoring
Dredging Equipment and Sampling Operations
Dredge Operation Variables
Collection of In Situ Sediment and Site Water
Hopper Inflow Monitoring
Hopper Contents Monitoring
Hopper Overflow Monitoring
Plume Monitoring
Sedimentation Assessment
Bioassay
3—Data Analysis
Hopper Loading Characteristics
Coarse-grained site
Fine-grained site
Economics
In Situ Sediment and Background Water Samples
Coarse-grained site
Fine-grained site
Hopper Inflow
Coarse-grained site
Fine-grained site
Hopper Contents
Coarse-grained site
Fine-grained site
Hopper Overflow
Coarse-grained site

Fine-	grained site
	Ionitoring
	se-grained site
	grained site
	tation Results
Coar	se-grained site
	grained site
	Elutriate Tests
	se-grained site
	grained site
	Il Findings of a 96-hr Water Column Bioassay
	se-grained site
Fine-	grained site
4—Summary	and Conclusions
Appendix A:	Delaware River Sediment and Water Quality Analysis (Coarse- and Fine-Grained Sites)
Appendix B:	Plume Study Field Activities and Data Results B1
Appendix C:	Detection of Short-Term Sedimentation During Hopper Dredging Operations in Delaware Bay and the Delaware River
Appendix D:	Summary of Technical Findings: 96-hr Bioassay with Mysidopsis bahia and Menidia beryllina
SF 298	
List of F	igures
Figure 1.	Dredge McFarland
Figure 2.	Locations of the lower and upper hopper dredge
	overflow test study sites
Figure 3.	Hopper loading at coarse-grained site
Figure 4.	Hopper loading at fine-grained site
Figure 5.	Range of gradation curves from in situ sediment collected at the coarse-grained site
Figure 6.	Range of gradation curves from in situ sediment collected at the fine-grained site
Figure 7.	Range of gradation curves from hopper inflow at the coarse-grained site

Figure 8.	Range of gradation curves from hopper inflow at the fine-grained site
Figure 9.	Hopper contents—solids concentrations of coarse-grained material
Figure 10.	Hopper contents—solids concentrations of fine-grained material
Figure 11.	Range of gradation curves from hopper overflow at the coarse-grained site
Figure 12.	Range of gradation curves from hopper overflow composites at the coarse-grained site
Figure 13.	Range of gradation curves from hopper overflow at the fine-grained site
Figure 14.	Range of gradation curves from hopper overflow composites at the fine-grained site
Figure 15.	Plume solids concentrations at surface 28
Figure 16.	Plume solids concentrations at middepth 28
Figure 17.	Plume solids concentrations at bottom
Figure 18.	Plume solids concentrations at coarse-grained site 29
Figure 19.	Plume solids concentrations at surface
Figure 20.	Plume solids concentrations at middepth 31
Figure 21.	Plume solids concentrations at bottom
Figure 22.	Plume solids concentrations at fine-grained material 32
List of	Tables
Table 1	Delaware River Coarse- and Fine-Grained Loading Data . 10
Table 2	Delaware River Coarse-Grained Site, Summary of Sediment and Water Quality Data
Table 3	Delaware River Fine-Grained Site, Summary of Sediment and Water Quality Data

Preface

This report describes the potential economic benefits and potential environmental effects from overflow dredging in the lower Delaware River. This work was conducted by the Environmental Laboratory (EL), U.S. Army Engineer Research and Development Center (ERDC), Vicksburg, MS. Funding for the study was provided by the U.S. Army Engineer District, Philadelphia.

This report was written by Mr. Jerry L. Miller, Ecological Resources Branch, Ecosystem Evaluation and Engineering Division (EEED), EL, Dr. Michael R. Palermo, Environmental Processes and Engineering Division (EPED), EL, and Mr. Thomas W. Groff, Operations Division, U.S. Army Engineer District, Philadelphia. Technical review of this report was provided by Messrs. Thomas R. Patin and Jerry J. Pasquale.

This study was conducted under the direct supervision of Dr. Michael F. Passmore, Chief, Ecological Resources Branch, Dr. Dave J. Tazik, Chief, EEED, and under the general supervision of Dr. Edwin A. Theriot, Director, EL.

At the time of publication of this report, Dr. James R. Houston was Director of ERDC, and COL John W. Morris III, EN, was Commander and Executive Director.

This report should be cited as follows:

Miller, J. L., Palermo, M. R., and Groff, T. W. (2002). "Field evaluation of hopper dredge overflow for the Delaware River," ERDC/EL TR-02-17, U.S. Army Engineer Research and Development Center, Vicksburg, MS.

The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products.

1 Introduction

Background

The U.S. Army Engineer District (USAED), Philadelphia, has an extensive navigation responsibility throughout the Delaware River Basin. Maintenance dredging averages about 3,000,000 m³ (4,000,000 yd³) of material annually of which about 191,000 m³ (250,000 yd³) is removed by the Hopper Dredge *McFarland* (Figure 1). The dredging provides a safe navigation channel, which supports the shipping of nearly 136,000,000 metric tons (150,000,000 short tons) of cargo per year.

Figure 1. Dredge McFarland

Hopper dredges, like the *McFarland*, are self-propelled ships equipped with propulsion machinery, hoppers for dredged material storage, and dredge pumps. Dredged material is hydraulically raised through trailing dragarms in contact with the channel bottom and is discharged into the hoppers. The material is then held in the hoppers until placed at the disposal site.

Hopper dredges are often loaded past the point of overflow for economic reasons. As the hopper is filled, dredged material is stored in the hopper bins until overflow begins. The density of the hopper contents is increased by allowing the low-density supernatant to overflow back into the waterway. As the low-density supernatant overflows, the average density of the hopper contents increase. Thus, more material can be transported per trip to the disposal site or facility. This practice of overflowing hoppers to achieve a high-density load is referred to as economic loading.

In considering overflow, there is normally a tradeoff between the potential economic benefits and potential environmental effects. Overflow results in increased water column turbidity, and supernatant solids may be redeposited near the dredge site. Also, if sediments are contaminated, the overflow may result in some release of contaminants to the water column. Therefore, the relationship between dredge production, density of the hopper load, and the rate of material overflow are important variables in maximizing the efficiency of the dredging operation while minimizing contaminant release.

State environmental resource agencies have expressed concerns regarding the turbidity, sedimentation of suspended solids, and potential contaminant release from overflow resulting from the presence of oyster seedbeds in some areas near the navigation channel. Currently, overflow is not permitted at any location within the Delaware River Basin.

There is a significant potential for economic benefits to overflow in certain reaches of the project if the impact resulting from overflow is environmentally acceptable. The USAED, Philadelphia, therefore, initiated an evaluation of the practice of overflow for select portions of the Delaware River and Delaware Bay to determine if overflow for those reaches can meet applicable water quality standards. The District requested assistance from the Environmental Laboratory (EL), U.S. Army Engineer Research and Development Center (ERDC), Vicksburg, MS, in conducting a study of overflow in the Delaware River/ Delaware Bay system.

This study helped to quantify the degree of turbidity, suspended solids, and contaminant release generated by overflow and the dispersion of the overflow plume in reaches near the oyster seedbeds. Reaches in the Delaware River Basin where overflow would be acceptable were determined.

Study Location

Two test areas were selected in the Delaware River in conjunction with recommendations from the New Jersey Department of Environmental Protection (NJDEP) and Delaware's Department of Natural Resources and Environmental Control (DNREC) (Figure 2). These areas were selected on the basis of historical knowledge of the Delaware Basin and known locations of material types (sand, silt, and clay) within the river. The first site

Figure 2. Locations of the lower and upper hopper dredge overflow test study sites

was located at the Brandywine range (Lower Study Site) in the lower Delaware Bay (mile marker 17.7) and was selected to represent a predominantly coarse-grained material. The second site was located at the Deepwater Point range (Upper Study Site) just below the Delaware Memorial Bridge (mile marker 67.9) and was selected to represent a typical fine-grained material. All the proposed activities for the study were reviewed with members of the Delaware River Fish Cooperative Technical Committee prior to submitting applications to the respective regulatory offices for Water Quality Certification (WQC) approvals.

Purpose and Scope

The purpose of this study was to evaluate the efficiency of economic loading of a hopper dredge and the physical and chemical characteristics of hopper overflow for the Delaware River dredging project. The study was designed to evaluate the effectiveness of increasing the hopper load during overflow and to determine the physical and chemical characteristics of the overflow into the Delaware River.

The study involved the following activities:

- a. Loading data collection measurements of the load in the hopper at and following overflow.
- b. Characterization of in situ sediment physical and chemical analysis including elutriate testing.
- c. Hopper inflow monitoring physical and chemical analysis.
- d. Hopper contents monitoring physical and chemical analysis.
- e. Hopper overflow monitoring physical and chemical analysis.
- f. Plume monitoring physical and chemical analysis; and in situ turbidity measurements.
- g. Sedimentation assessment photo imagery of recent sediment deposits.
- h. Elutriate and Bioassay Testing elutriate tests and acute toxicity testing on a fish and a crustacean species were performed for purposes of prediction and potential effects of overflow for the entire project.

These activities provided information to characterize the in situ sediment, hopper inflow as pumped from the draghead, and hopper overflow. Measurement of the material density in the hopper, solids concentration, particle size, and rate of overflow provided information for the development of hopper filling relationships. Elutriate tests were performed to predict the contaminant release back into the water column. These test results were also compared with the data results of the hopper overflow for consistency in sample analysis. Samples taken from the water column defined the relative difference between sediment resuspended by the draghead and that caused by overflow. One overflow and one nonoverflow dredge pass or overflow event was monitored in each of the two reaches of the river.

2 Field Monitoring

Dredging Equipment and Sampling Operations

The Dredge McFarland was used on September 15 and 16, 1998, to dredge in the two test reaches. The field sampling and monitoring was conducted during representative hopper operations with and without overflow in both reaches.

The tasks described in this technical report were the responsibility of the ERDC, Vicksburg, MS, with support provided by the USAED, Philadelphia. The USAED, Philadelphia, provided the necessary boats and personnel to assist the ERDC in all field monitoring, in situ data collection, and sample collection. ERDC staff members were present at the dredging site during the monitoring effort to direct the field efforts and assist in data and sample collection. ERDC performed all subsequent laboratory testing of samples, data analysis, and report preparation.

Dredge Operation Variables

At a minimum, it was necessary to have a complete record of the dredge operating variables during the monitoring and sampling periods. In addition to these standard dredge data, the time and duration of overflow during sampling events were recorded along with loading charts using the automated charts of the *McFarland*.

Collection of In Situ Sediment and Site Water

On September 14, in situ sediment and site water were collected at the two study sites prior to dredging to provide samples for sediment and water characterization and elutriate testing. Fifteen (15) sediment samples were taken at even intervals in a transect along which the dredge was expected to pass during overflow and nonoverflow conditions. Samples were collected with a grab-type apparatus. A 200-ml portion of the sample was

retained from each of the 15 samples for water content and density analysis (15 individual analyses). The remaining material of the 15 samples, were composited for sediment and water characterization and elutriate tests.

Composited samples were also obtained for elutriate testing from three sampling locations. Thus, five buckets and fifteen 250-ml bottles of sediment were obtained and shipped to the ERDC to characterize the in situ sediment. The five buckets of sediment were further composited to produce a single uniform composite. From this composite, standard elutriate testing was performed using the site water to prepare the samples. Density (or water content) estimates were made on all 15 samples, and the other physical and chemical tests were performed on the composite sediment sample.

Hopper Inflow Monitoring

The sediment slurry that was picked up by the draghead and transported through the hydraulic suction line was sampled as it entered the hopper (in 3-min intervals during filling and overflow). Grab samples at the inflow port(s) were collected and analyzed for solids concentration and appropriately composited and analyzed for grain size distribution, particle size distribution of fines, and chemical concentrations. The composited samples represented sediment from five equal time intervals during hopper loading.

Hopper Contents Monitoring

As material is pumped into the hoppers, a layer of high-density settled material is formed in the lower portion of the hopper with a layer of water with suspended material in the upper portion of the hopper. The vertical distribution of suspended material density or concentration in the upper portion of the hopper was measured. These data, in conjunction with overflow concentration data, can be used to determine when an economic load is achieved and when material density in the hopper is at a maximum. A second use for hopper vertical density measurements is to examine the potential for equipment modification, such as introducing settling tubes to enhance settling rates of solids in hopper bins. Hopper sampling at three depths was taken at the beginning of overflow and at the end of overflow. Three locations in the hopper were sampled.

Hopper Overflow Monitoring

Because of the variability in solids concentration at the hopper overflow, 40 samples were taken to determine suspended solids for each overflow

period. Samples were composited for chemical contaminant determination of chemical concentrations, grain size, particle size distribution of fines, and toxicity testing.

Plume Monitoring

Plume monitoring provided an evaluation of the amount of sediment in the water column resuspended by the operating draghead vs. the amount of sediment contributed by overflow. Data on plume concentrations as a function of distance and time provided information to determine an appropriate buffer distance from the oyster beds in which overflow should be restricted. Differentiation between the magnitude of sediment plumes caused by the draghead and plumes from overflow materials required monitoring both overflow and nonoverflow periods. Monitoring one dredge pass without overflow and one dredge pass with overflow was the minimal plume monitoring effort. To reduce the variability of results between tests, the dredge was required to be moving in the same direction relative to the current flow for every overflow and nonoverflow test monitored. Plume monitoring also provided information on contaminant dispersion in the water column.

Plume monitoring required two boats. One boat was positioned behind the hopper dredge in its path immediately after it passed and began sampling the water column to evaluate the rate of settling of the plume. The other boat towed a turbidimeter (in situ-type probe) across the plume to give information on lateral plume dispersion. Thus, the duration and geometry of the plume could be estimated. Both boats in the monitoring area carried out background sampling immediately before the dredging began.

Lateral plume dispersion measurements were made at middepth by locating the turbidimeter probe at the midpoint of the water column. Background turbidity was extensively measured. The boat towing the turbidimeter monitored distance from the dredge, using a range finder and hand bearing compass, and distance from the anchored sample boat. The whole plume was traversed, going outside of the plume at each extreme of the turbidity plume.

While the mobile boat was measuring lateral plume dispersion, the anchored boat measured decay of the plume as it settled through the water column. Water samples were taken at the surface (less than 1 m deep), middepth, and near bottom (within 1 to 2 m of the bottom). Fifteen samples at three depths for a 50-min period were taken to characterize background total suspended solids (TSS) conditions, and about 30 samples at three depths in a 30-min time frame were taken to characterize the overflow plume after the dredging pass. The latter sampling protocol was also used for the nonoverflow sediment plume measurements.

TSS was measured for all plume samples and a compositing scheme was used to reduce the number of samples for chemical analysis. Three compos-

ite samples for the plume monitoring were obtained (one at each of the three depths) by mixing portions of the samples taken at all three depths over one-third of the plume monitoring effort. Chemical analysis included heavy metals, polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs) and provided data on potential contamination of the water column by the dredging operation.

Sedimentation Assessment

One difficulty in assessing potential impacts of sedimentation resulting from hopper overflow is detection of thin overburdens in habitats in the vicinity of the dredging operation. Although thin (<5 cm) overburdens could have detrimental impacts, for example on the settlement and attachment of oyster larvae, this exceeds the detection limits of most conventional techniques. One method effective in measuring sedimentation events of less than 1 cm is sediment-profiling imagery using a sediment profile camera. This technique involves insertion of a prism into the substrate through which images of the sediment-water interface are obtained. The images provide rapid, accurate measures of recent sedimentation, particularly if the overburden sediments are dissimilar from the ambient substrate. The images also provide indications of impacts to benthic communities (e.g., distribution and position of annelid worms and bivalve mollusks relative to the relict and overburden surface) and changes in physical/chemical conditions of the sediment (e.g., altered redox potential discontinuity, evidence of hypoxia). This camera system is unaffected by ambient turbidity. An attached plan-view underwater camera also provided photographs at the sediment profile stations.

The sediment profiling camera system was deployed at the Delaware River overflow operation site. Because the area is tidally influenced, stations were occupied both up and down current from the dredging project. Stations were allocated to gather information for transects across several cross sections of the river reach potentially influenced by overflow, including any charted oyster bars.

Bioassay

Samples were taken at the hopper overflow for use in a 96-hr water column bioassay. This portion of the study will help in determining the possible biological effects of water column exposure to Delaware River sediment.

3 Data Analysis

Hopper Loading Characteristics

Coarse-grained site

The loading data provided by the USAED, Philadelphia, for the coarse-grained site are shown in Figure 3, and the summary data for the load increase can be found in Table 1. Loading volumes are based on calculations using historical density data in the area being dredged.

Figure 3. Hopper loading at coarse-grained site

It took 9 min of dredging to reach overflow status. During the first 9 min, material increased at a rate of 112.4 m³/min (147 yd³/min). Once overflow began, the increase in material loading was determined to be 22.9 m³/min (30 yd³/min). Overflow continued for 57 min with a gain of 130 percent realized. At the end of the overflow period, the hopper was full of sediment.

	Coarse-G	rained Material			Fine-Grai	ned Material	
Time, min	Loading, m ³		Loading, yd ³	Time, min	Loading, m ³		Loading, yd
0 9 66	0 1,009 Begin 2,324 Overflo	overflow (9 min) ww (57 min)	1,320 3,039	0 13 34 0 13 18	1,031 Overflo	verflow (13 min)	1,139 1,348 1,139 1,257
Time, min	Loading m³/min	Losing to Overflow m ³ /mln	% Gain	Time, min	Loading m³/min	Losing to Overflow m³/min	% Gain
9 57	112.4 22.9	89.5	130.3	13 21 5	67.0 7.6 18.0	59.4 49.0	18.4 10.3

Fine-grained site

The loading diagram for the fine-grained site is shown in Figure 4 and the summary data for the load increase can be found in Table 1. For this site, the dredge operated 13 min before overflow began. During this first 13 min of dredging, material increased at a rate of 67.0 m³/min (87 yd³/min). Once overflow began, the increase in material loading was determined to be 7.6 m³/min (10 yd³/min). Overflow continued for 21 min with a gain of 18 percent realized. The percent gain realized for the coarse reach was interpolated for 21 min and was 50 percent, so that a comparison could be made during the same time frame between the two sites.

Economics

These results are consistent with the material composition at the two sites. The coarse-grained site would be expected to settle at a more rapid rate, therefore, showing a significant gain in material. Whereas, the finegrained material would tend to stay in suspension, resulting in most of the sediment being discharged out the overflow. Because of the large amount of gain realized at the coarse-grained site, a rate of return of about 50 to 60 percent may be realized based on the amount of material retained in the hopper and the round-trip travel time required to the dump site. Basically, for every 3 days of nonoverflow dredging, approximately the same amount of material can be removed by allowing overflow dredging in a 2-day period. This percent return also assumes that the material being discharged in the overflow settles in the navigation channel and will require redredging the area. At the fine-grained site, the rate of return is negligible because of the small gain in load achieved. This is also based on round-trip travel time required to the pump-out site, material being discharged in the overflow settling in the navigation channel and requiring redredging of the area. If

Figure 4. Hopper loading at fine-grained site

redredging the area at either site is not required, then the percent return estimated at those sites may increase.

In Situ Sediment and Background Water Samples

Coarse-grained site

The composited sediment samples at the coarse-grained site show the proposed dredged area to average 97 percent sand (Figure 5). The range was less than 1 percent \pm of the average value (96.5 to 97.7 percent). Background water chemical concentrations were compared with the contaminants of concern as listed in the acute marine objectives for toxic pollutants for the protection of aquatic life in the Delaware River estuary. This information can be found in the Delaware River Basin Commission West Trenton, New Jersey, Administrative Manual-Part III, Water Quality Regulations, October 23, 1996. The only parameter above the standard was background dissolved copper (Table 2). The standard for copper is 5.3 μ g/l, and the background value was 13 μ g/l. The water quality and sediment data for the coarse-grained site can be found in Appendix A.

Fine-grained site

The composited sediment samples at the fine-grained site show the proposed dredged area to average 33 percent sand (Figure 6). The range for sand was from 18 to 50 percent. Background water concentrations for the contaminants of concern were all below the more stringent of the freshwater or marine stream quality objectives for acute toxicity standards as

Range of gradation curves from in situ sediment collected at the coarse-grained site Figure 5.

OVERFLOW µg/1 CONC ELUTRIATE BD 91.6667 BD BD 7.0000 BD 49.6667 2.0000 CONC 80 80 80 80 80 80 BD BACKGROUND Delaware River Coarse-Grained Site, Summary of Sediment and Water Quality Data BD 39.0000 44.0000 CONC ug/3 BD WATER QUALITY STANDARDS 0.355 0.65 Effluent Suspended Solids Concentration - 1395.000 mg/l DETECTION 0.3000 0.0250 0.0250 0.3000 0.3000 3.0000 2.0000 0.0250 0.0250 0.0250 0.0250 0.0000 0.3000 0.3000 0.3000 0.3000 2.0000 0.0500 1,0000 0.2000 2.0000 0.0250 0.3000 LIMIT SEDIMENT 0.000 0.000 3.170 0.000 0.017 0.022 6.300 0.019 2.300 2.330 0.000 0.002 0.001 0.017 0.021 mg/kg 1673.000 DIBENZO (A, H) ANTHRACENE BENZO(b) FLUORANTHENE BENZO(k) FLORANTHENE BENZO (G, H, I) PERYLENE 2-METHYLNAPHTHALENE BENXO (a) ANTHRACENE CHROMIUM (TRI) (Cr) BENZO (a) PYRENE BERYLLIUM (Be) ACENAPHTHYLENE (Cn) ALUMINUM (A1) B-ENDOSULFAN A-ENDOSULFAN ACENAPHTHENE ARSENIC (As) CADMIUM (Cd) COBALT (Co) BARIUM (Ba) ANTHRACENE PARAMETER ANTIMONY CHRYSENE COPPER ALDRIN B-BHC D-BHC A-BHC Table 2

	RENE	0.000	0.3000	Z	200	DS .	20	
(Page 1 of 4)	U	0.003	0.0250	0.08	OB D	BD	BD	
(Page 1 of 4)								
(Page 1 of 4)								
(Page 1 of 4)	The state of the s	The state of the s		The state of the s	The second secon			
								(Page 1 of 4)

0.019

0.0500 0.0500 0.3000

0.000

ENDOSULFAN SULFATE

DIELDRIN

ENDRIN ALDEHYDE

ENDRIN

FLUORANTHENE

FLUORENE

Parameter Para								
CHICAR CH	PARAMETER	SEDIMENT	DETECTION	WATER QUALITY STANDARDS	BACKGROUND	ELUTRIATE	OVERFLOW	
CHICAR EDOXIDE 0.0250 NL BD BD BD CHICAR (TILOR EDOXIDE 0.0220 NL BD BD BD BD CHICAR (TILOR EDOXIDE 0.0221 NL BD BD BD BD BD BD CHICAPACTURE 0.021 1.0000 NL BD BD BD BD BD BD CHICAPACTURE 0.021 1.0000 NL BD BD BD BD BD CHICAPACTURE 0.0230 NL BD BD BD BD CHICAPACTURE 0.0230 NL BD CHICAPACTURE 0.02		mg/kg	μg/1	1/51	1/54	µg/1	µ9/1	
Color	HEPTACHLOR	0.001	0.0250	0.027	GE	BD	BD	
Color Colo		0.002	0.0250	NI	DD	BD	BD	
Fee	INDENO(1,2,3-C,D) PYRENE	0.021	0.3000	NL	BD	BD	BD	
NESE (MI) 12.330 1.0000 2.0 NL MD DD DD DD DD DD DD D	IRON (Fe)	5903.000	20.0000	NI	BD	BD	BD	
NESE (M1) NESE (M2) NESE (M3) NESE (M3) NESE (M3) NESE (M4) NESE (M3) NESE (M3) NESE (M3) NESE (M4) NESE (M3) NESE (M3) NESE (M4) NESE (M3) NESE (M2) NESE (M3) NES (M3) NESE (M3) NESE (M3) NESE (M3) NESE (M3) NESE (M3) NES (M3) NESE (M3) NESE (M3) NESE (M3) NESE (M3) NESE (M3) NE	LEAD (Pb)	12.300	I.0000	220	BD	DD	BD	
0.093	MANGANESE (Mn)	94.800	1.0000	NL	6.0000	1.6667	BD	
0.200 0.2500 NL BD BD BD	MERCURY (Ha)	0.093	0.2000	2.1	BD	BD	BD	
9,000 0,000 NL	METHOXYCHLOR	0,000	0.2500	172	080	BD	E C E	
1.) 3.300 1.0000 5.0000 5.0000 5.0000 6.0010 NL	NACHTER SENSON	0.00	0.3000		20	90	1 M	
FCB 5 1 1 1 1 1 1 1 1 1 1 1 1 1	NIOKEL (NI)	3.300	1.9000	75	9,0000	5.0000	on.	
101 0.000 0.0010 NL BD 0.0010 NL BD 0.0010 1101 0.000 0.0010 NL BD BD BD 1118 0.000 0.0010 NL BD BD BD 1118 0.000 0.0010 NL BD BD BD 1120 0.000 0.0010 NL BD BD BD 1121 0.000 0.0010 NL BD BD BD 1121 0.000 0.0010 NL BD BD BD BD 1121 0.000 0.0010 NL BD BD BD BD 1122 0.000 0.0010 NL BD BD BD BD 1122 0.000 0.0010 NL BD BD BD BD 1128 0.000 0.0010 NL BD BD BD 1128 0.000 0.0010 NL BD BD BD BD 1128 0.000 0.0010 NL BD BD BD BD 1128 0.000 0.0010 NL BD BD BD 1128 0.000 0.0001	PCB			5.0				
110 0.300 0.3010 NL BD BD BD 111 111 0.300 0.3010 NL BD BD BD 112 0.300 0.3010 NL BD BD BD 113 0.300 0.3010 NL BD BD BD 114 0.3010 NL BD BD BD BD 115 0.3010 NL BD BD BD BD 115 0.3010 NL BD BD BD BD 115 0.3010 NL BD BD BD BD 115 0.3010 NL BD BD BD BD 115 0.3010 NL BD	PCB 101	0.000	0.0010	IN	BD	0.0010	180	
110	SOT SOA	0.000	0.0010	Z	3D	BD	80	
114 0.000 0.0010 N1, BD BD BD BD BD BD BD BD		0.000	0.0010	N	BD	BD	C 80	
118		0.000	0.00.0	Z.	BD	BD	BD	
119		0.000	0.00.0	 	81)	BD	80	
120 0.000 0.0010 NL BD BD BD 121 0.000 0.0010 NL BD BD BD 122 0.000 0.0010 NL BD BD BD 122 0.000 0.0010 NL BD BD BD 122 0.000 0.0010 NL BD BD BD BD 122 0.000 0.0010 NL BD BD BD BD 132 0.000 0.0010 NL BD BD BD BD 132 0.000 0.0010 NL BD BD BD BD 132 0.000 0.0010 NL BD BD BD 133 0.000 0.0010 NL BD BD BD 141 0.000 0.0010 NL BD BD BD 152 0.000 0.0010 NL BD BD BD 152 0.000 0.0010 NL BD 152 0.000 0.0		0.000	0.0010	. 1 Z	BD	BD	BD	
121 0.000 0.0010 NL BD BD 123 0.000 0.0010 NL BD BD 126 0.000 0.0010 NL BD BD 127 0.000 0.0010 NL BD BD 128 0.000 0.0010 NL BD BD 132 0.000 0.0010 NL BD BD 135 0.000 0.0010 NL BD BD 134 0.000 0.0010 NL BD BD 135 0.000 0.0010 NL BD BD 138 0.000 0.0010 NL BD BD 141 0.000 0.0010 NL BD BD 144 0.000 0.0010 NL BD BD 149 0.000 0.0010 NL BD BD 149 0.000 0.0010 NL BD BD </td <td></td> <td>0.000</td> <td>0.0010</td> <td>,I</td> <td>30</td> <td>BD</td> <td>BD</td> <td></td>		0.000	0.0010	,I	30	BD	BD	
123 0.000 0.0010 NL BD BD BD 124 0.000 0.0010 NL BD BD BD 128 0.000 0.0010 NL BD BD BD 128 0.000 0.0010 NL BD BD BD 132 0.000 0.0010 NL BD BD BD 132 0.000 0.0010 NL BD BD BD 133 0.000 0.0010 NL BD BD BD 134 0.000 0.0010 NL BD BD BD 141 0.000 0.0010 NL BD BD BD 141 0.000 0.0010 NL BD BD BD 151 0.000 0.0010 NL BD BD BD 151 0.000 0.0010 NL BD BD BD 152 0.000 0.0010 NL BD BD BD 153 0.000 0.0010 NL BD BD BD 154 0.000 0.0010 NL BD BD BD 155 0.000 0.0010 NL BD 155		0.000	0.0010	NI.	BD	BD	BD	
127 0.000 0.0010 NL BD BD 128 0.000 0.0010 NL BD BD 128 0.000 0.0010 NL BD BD BD 132 0.000 0.0010 NL BD BD BD 132 0.000 0.0010 NL BD BD BD 133 0.000 0.0010 NL BD BD BD 134 0.000 0.0010 NL BD BD BD 141 0.000 0.0010 NL BD BD BD 153 0.000 0.0010 NL BD BD BD 153 0.000 0.0010 NL BD BD 155 0.000 0.0010 NL BD 155 0.0000 0.0010 NL BD 155 0.000 0.000 0.0010 NL BD 155 0.000 0.000 NL BD 155 0.000 0.000 NL BD 155		0.000	0.0010	NL	BD	ВС	80	
127 0.000 0.0010 NL BD BD 128 0.000 0.0010 NL BD BD BD 132 0.000 0.0010 NL BD BD BD 132 0.000 0.0010 NL BD BD BD 135 0.000 0.0010 NL BD BD BD 137 0.000 0.0010 NL BD BD BD 138 0.000 0.0010 NL BD BD BD BD 141 0.000 0.0010 NL BD BD BD 144 0.000 0.0010 NL BD BD BD 144 0.000 0.0010 NL BD BD BD 156 0.000 0.0010 NL BD BD 166 0.000 0.0010 NL BD BD 166 0.000 0.0010 NL BD BD 166 0.000 0.0010 NL BD BD 167 0.000 0.0010 NL BD BD BD BD 167 0.000 0.0010 NL BD BD BD BD 167 0.000 0.0010 NL BD BD BD BD BD 167 0.000 0.0010 NL BD BD BD BD BD 167 0.000 0.0010 NL BD BD BD BD BD 167 0.000 0.0010 NL BD BD BD BD BD BD 167 0.000 0.0010 NL BD		0.000	0.0010	N.	BD	BD	BD	
132 0.000 0.0010 NL BD BD 132 0.000 0.0010 NL BD BD 133 0.000 0.0010 NL BD BD BD 134 0.000 0.0010 NL BD BD BD 135 0.000 0.0010 NL BD BD BD BD 136 0.000 0.0010 NL BD BD BD BD 141 0.000 0.0010 NL BD BD BD BD 141 0.000 0.0010 NL BD BD BD 151 0.000 0.0010 NL BD BD BD 152 0.000 0.0010 NL BD BD BD 152 0.000 0.0010 NL BD BD BD 153 0.000 0.0010 NL BD BD 154 0.000 0.0010 NL BD BD 155 0.000 0.0010 NL BD BD 156 0.000 0.0010 NL BD BD 157 0.000 0.0010 NL BD 158 0.000 0.0010 NL BD 159 0.000 0.0010 NL BD 159 0.000 0.0010 NL BD 150 0.000 0.0010 NL BD 1		0.000	0.0010	'IN	BD	BD	BD	
135 0.000 0.0010 NL BD BD BD 136 0.000 0.0010 NL BD BD BD BD BD 137 0.000 0.0010 NL BD BD BD BD BD 138 0.000 0.0010 NL BD BD BD BD 141 0.000 0.0010 NL BD BD BD BD 144 0.000 0.0010 NL BD BD BD BD BD 151 0.000 0.0010 NL BD BD BD BD 151 0.000 0.0010 NL BD BD BD BD 152 0.000 0.0010 NL BD BD BD BD 155 0.000 0.0010 NL BD BD BD 155 0.000 0.0010 NL BD BD BD 157 0.000 0.0010 NL BD BD BD 167 0.000 0.0010 NL BD BD 167 0.000 0.0010 NL BD BD 167 0.000 0.0010 NL BD 167 0.000 0.0010 NL BD BD 168 0.000 0.0010 NL BD 168 0.000		0.000	0.0010		80	BD	BD	
135 0.000 0.0010 NL BD BD 137 0.000 0.0010 NL BD BD BD 137 0.000 0.0010 NL BD BD BD BD 137 0.000 0.0010 NL BD BD BD BD 141 0.000 0.0010 NL BD BD BD BD 149 0.000 0.0010 NL BD BD BD BD 151 0.000 0.0010 NL BD BD BD 152 0.000 0.0010 NL BD BD BD 155 0.000 0.0010 NL BD BD BD 155 0.000 0.0010 NL BD BD 155 0.000 0.0010 NL BD 157 0.000 0.0010 NL BD 157 0.000 0.0010 NL BD 157 0.000 0.0010 NL BD 150 0.000 1.0010 NL BD 166 0.000 0.0010 NL BD 150 0.000 1.0010 NL BD 150 0.000 NL BD 150 0.000 NL BD 150 0.000 NL BD		0.000	0.00.0	2 :	20 1	<u> </u>	200	
136 0.000 0.2010 NL BD BD 137 0.000 0.0010 NL BD BD 141 0.000 0.0010 NL BD BD 149 0.000 0.0010 NL BD BD 151 0.000 0.0010 NL BD BD 153 0.000 0.0010 NL BD BD 153 0.000 0.0010 NL BD BD 153 0.000 0.0010 NL BD BD 154 0.000 0.0010 NL BD BD 155 0.000 0.0010 NL BD BD 167 0.000 0.0010 NL BD BD 168 0.000 0.0010 NL BD BD 167 0.000 0.0010 NL BD BD 168 0.000 0.0010 NL BD BD 168 0.000 0.0010 NL BD BD		0.000	0.0010		BC	BC	85	
138 0.000 0.0010 NL BD BD BD 141 0.000 0.0010 NL BD BD BD BD BD 144 0.000 0.0010 NL BD BD BD BD BD 149 0.000 0.0010 NL BD BD BD BD BD 153 0.000 0.0010 NL BD BD BD BD 155 0.000 0.0010 NL BD BD BD 155 0.000 0.0010 NL BD BD BD 155 0.000 0.0010 NL BD BD 156 0.000 0.0010 NL BD BD 167 0.000 0.0010 NL BD BD 167 0.000 0.0010 NL BD 167 0.000 0.0010 NL BD BD 167 0.000 0.0010 NL BD 167 0.000 NL BD 1		0.000	0.0010	7 1	C SI	80	BD	
138 0.000 0.0019 NE BD BD BD 141 0.000 0.0019 NE BD BD BD 145 0.000 0.0010 NE BD BD BD BD BD 153 0.000 0.0010 NE BD BD BD BD BD BD 153 0.000 0.0010 NE BD BD BD BD BD 155 0.000 0.0010 NE BD BD BD BD 157 0.000 0.0010 NE BD BD BD 157 0.000 0.0010 NE BD BD BD 167 0.000 0.0010 NE BD BD BD 167 0.000 0.0010 NE BD BD 168 0.000 0.0010 NE BD BD 168 0.000 0.0010 NE BD BD 169 0.000 0.0010 NE BD 169 0.000 0.0000 0.0010 NE BD 169 0.000 0.0000 0.0010 NE BD 169 0.000 0.0000 0.		0.000	0.0010		BD	BD	0.80	
141 0.000 0.0010 NL BD BD BD 149 0.000 0.0010 NL BD BD BD BD 151 0.000 0.0010 NL BD BD BD BD 153 0.000 0.0010 NL BD BD BD BD 155 0.000 0.0010 NL BD BD BD 157 0.000 0.0010 NL BD BD BD 157 0.000 0.0010 NL BD BD BD 167 0.000 0.0010 NL BD BD 168 0.000 0.0010 NL BD BD 169 0.000 0.0010 NL BD 169 0.000 0.0000 0.0010 NL BD 169 0.000 0.0000 0.0010 NL BD 169 0.000 0.0000 0.0010 NL BD 169 0.000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00		0.000	0.0010	J.	80	BD	BD	
146 149 149 149 151 153 153 156 157 157 168 168 168 168 169 169 169 169 169 169 169 169 169 169		0000	0.00.0	MI	80	BD	BD	
149 0.000 0.000 NE BD BD 153 0.000 0.0010 NE BD BD BD 153 0.000 0.0010 NE BD BD BD 155 0.000 0.0010 NE BD BD BD 155 0.000 0.0010 NE BD BD BD 157 0.000 0.0010 NE BD BD 167 0.000 0.0010 NE BD BD 168 DD 169 0.000 0.0010 NE BD BD 169 0.000 0.0010 NE BD BD 168 DD 169 0.000 0.0010 NE BD BD 169 0.000 0.0010 NE BD BD 169 0.000 0.0010 NE BD BD 169 0.000 0.0010 NE BD 169 0.000 0.000 0.0010 NE BD 169 0.000 0.0		0.000	0.0010	ET :	BD	BD	QB	
151 0.000 0.0010 NL BD BD 153 0.000 0.0010 NL BD BD 153 0.000 0.0010 NL BD BD BD 155 0.000 0.0010 NL BD BD BD BD 155 0.000 0.0010 NL BD BD BD 166 0.000 0.0010 NL BD BD 167 0.000 0.0010 NL BD BD 167 0.000 0.0010 NL BD BD 168 0.000 0.0010 NL BD BD 169 0.000 0.0010 NL BD 169 0.000 0.000 0.0010 NL BD 169 0.000 0.000 0.0010 NL BD 169 0.000		0.000	0.0010	N.	BD	BD	30	
153 0.000 0.0010 NL BD BD 156 0.000 0.0010 NL BD BD 156 0.000 0.0010 NL BD BD BD 158 0.000 0.0010 NL BD BD BD 167 0.000 0.0010 NL BD BD 168 0.000 0.0010 NL BD 169 0.000 0.000 0.0010 NL BD 169 0.000 0.000 0.0010 NL BD 169 0.000 0.0		0.000	0.00.0	Z	BD	ВD	BD	
156 0.000 0.0010 NL BD BD 157 0.000 0.0010 NL BD BD BD 158 0.000 0.0010 NL BD BD BD 166 0.000 0.0010 NL BD BD BD 167 0.000 0.0010 NL BD BD 167 0.000 0.0010 NL BD BD 168 BD 168 BD 168 0.000 0.0010 NL BD BD BD 168		0.000	0.00.0	172	HD	BD	30	
157 0.000 0.0010 NL BD BD 158 0.000 0.0010 NL BD BD 166 0.000 0.0010 NL BD BD BD 167 0.000 0.0010 NL BD BD 167 0.000 0.0010 NL BD BD 168 BD 168 0.000 0.0010 NL BD BD		0.000	0.0010	NI	BO	BD	BD	
152 0.000 0.0010 NL BD BD 166 0.000 0.0010 NL BD BD BD 167 0.000 0.0010 NL BD BD 168 0.000 0.0010 NL BD BD 168 0.000 0.0010 NL BD BD		0.000	0.0010	NL	3D	BD	BD	
166 0.000 0.0010 NL BD BD 167 0.000 0.0010 NL BD BD 168 0.000 0.0010 NL BD BD 168 0.000 0.0010 NL BD BD		0.000	0.0010	IN	36	BD	BD	
167 0.000 0.0010 NL BD BD 168 0.000 0.0010 NL BD BD		0.000	0.0010	NL	C) gq	BD	BD	
168 0.000 0.0010 NL BD BD		0.000	0.0010	TN	BD	BD	BD	
		00000	0.0010	TN.	BD	BD	ВО	

mg/kg µg/1 0.000 0.0010 0.000 0.0010 0.000 0.0010 0.0010	#9/1 8D 8D 8D 8D 8D 8D 8D 8D 8D 8D 8D 8D 8D	нд/1 вр вр вр вр вр вр вр вр вр вр вр вр	Hg/1 BD BD BD BD BD BD BD BD BD BD BD BD BD
169 0.000 0.0010 171 0.000 0.0010 173 0.000 0.0010 174 0.000 0.0010 177 0.000 0.0010 178 0.000 0.0010 189 0.000 0.0010 187 0.000 0.0010 188 0.000 0.0010 189 0.000 0.0010 190 0.000 0.0010 191 0.000 0.0010 192 0.000 0.0010 193 0.000 0.0010 194 0.000 0.0010 195 0.000 0.0010 201 0.000 0.0010 202 0.000 0.0010 203 0.000 0.0010 204 0.000 0.0010 205 0.000 0.0010 207 0.000 0.0010 208 0.000 0.0010 209 0.000 0.0010 200 0.000 0.0010		28 20 20 20 20 20 20 20 20 20 20 20 20 20	
170 171 171 172 173 174 175 175 176 177 178 180 180 180 180 180 180 180 18			
171 171 173 174 175 176 177 178 180 180 180 181 182 183 184 185 187 187 189 189 189 189 189 189 189 189		800 800 800 800 800 800 800 800 800 800	
174 174 175 177 177 178 179 179 179 179 180 180 180 180 180 180 181 182 183 184 187 189 189 189 189 189 189 189 189 189 189			
177 0.000 0.001 178 0.000 0.001 189 0.000 0.001 1892 0.000 0.001 187 0.000 0.001 187 0.000 0.001 189 0.000 0.001 189 0.000 0.001 190 0.000 0.001 191 0.000 0.001 198 0.000 0.001 199 0.000 0.001 200 0.000 0.001 201 0.000 0.001 202 0.000 0.001 203 0.000 0.001 204 0.000 0.001 205 0.000 0.001 207 0.000 0.001 208 0.000 0.001 209 0.000 0.001 209 0.000 0.001 209 0.000 0.001 20 0.000 0.001 20 0.000 0.001 20 <t< td=""><td></td><td></td><td></td></t<>			
178 0.000 0.001 178 0.000 0.001 180 0.000 0.001 181 0.000 0.001 182 0.000 0.001 183 0.000 0.001 184 0.000 0.001 189 0.000 0.001 190 0.000 0.001 194 0.000 0.001 198 0.000 0.001 199 0.000 0.001 190 0.000 0.001 198 0.000 0.001 201 0.000 0.001 202 0.000 0.001 203 0.000 0.001 204 0.000 0.001 205 0.000 0.001 207 0.000 0.001 208 0.000 0.001 209 0.000 0.001 20 0.000 0.001 20 0.000 0.001 20 0.000 0.001 20			
179 180 180 181 180 181 182 182 0.000 0.0010 183 0.000 0.0010 184 185 0.000 0.0010 190 190 190 190 190 190 190 190 190			8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
18.2 18.2 18.2 18.3 18.5 18.5 18.5 18.7 18.7 18.7 18.7 18.7 18.9 18.9 18.9 18.9 18.9 18.9 18.9 18.9			08 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
180 182 183 184 185 187 187 189 187 189 189 189 189 189 189 189 189 189 189			
182 0.000 0.0010 183 0.000 0.0010 184 0.000 0.0010 185 0.000 0.0010 186 0.000 0.0010 196 0.000 0.0010 197 0.000 0.0010 198 0.000 0.0010 199 0.000 0.0010 201 0.000 0.0010 202 0.000 0.0010 203 0.000 0.0010 204 0.000 0.0010 205 0.000 0.0010 207 0.000 0.0010 22 0.000 0.0010 28 0.000 0.0010 31 0.000 0.0010 31 0.000 0.0010			8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
183 0.000 0.0010 185 0.000 0.0010 189 0.000 0.0010 190 0.000 0.0010 194 0.000 0.0010 195 0.000 0.0010 196 0.000 0.0010 201 0.000 0.0010 202 0.000 0.0010 203 0.000 0.0010 204 0.000 0.0010 205 0.000 0.0010 20 0.000 0.0010 22 0.000 0.0010 28 0.000 0.0010 31 0.000 0.0010 31 0.000 0.0010			08 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
185 0.000 0.0010 189 0.000 0.0010 190 0.000 0.0010 194 0.000 0.0010 195 0.000 0.0010 196 0.000 0.0010 201 0.000 0.0010 203 0.000 0.0010 204 0.000 0.0010 205 0.000 0.0010 207 0.000 0.0010 22 0.000 0.0010 28 0.000 0.0010 31 0.000 0.0010 31 0.000 0.0010		08 08 08 08 08 08 08 08 08 08 08 08 08 0	08 08 08 08 08 08 08 08 08 08 08 08 08 0
187 189 190 190 191 191 194 195 196 198 201 203 204 205 208 198 208 209 209 209 209 209 209 209 209 209 209	80 80 80 80 80	2 2 2 2	
189 190 190 191 191 194 0.000 0.0010 194 0.000 0.0010 198 0.000 0.0010 0.001 0.000 0.0010 0.001 0.000 0.0010 0.001	80 80 80	0 0 0	0 0 0 6 0 0 0 6
190 191 191 193 194 195 196 0.000 0.001 0.001 198 0.000 0.001	0 0 0	G 6	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
191 194 195 198 0.000 0.001 0.001 198 200 201 203 205 207 208 0.000 0.001	08 08 08	C	000
194 195 196 0.000 0.001 0.001 198 0.000 0.001	D D		
195 196 197 198 198 0.000 0.001 0.001 203 205 207 208 0.000 0.001	***	200	2 1
196 198 1000 1000 1000 200 200 201 203 205 205 207 208 208 209 209 209 209 209 209 209 209 209 209	OB C	80	CO CO
200 0.000 0.0010 201 0.000 0.0010	G 4	BD	2
200 201 203 203 204 205 205 206 207 208 208 209 209 209 209 209 209 209 209 209 209	an d	O S	9 G
201 203 205 206 207 208 209 209 209 200 209 200 200 200	2 68	200	
203 205 206 207 208 209 209 209 209 209 209 209 209	30	0 2	90
205 206 0.000 0.0010 207 0.000 0.0010 22 0.000 0.0010 28 0.000 0.0010 31 0.000 0.0010	90	200	an an
206 0.000 0.0010 207 0.000 0.0010 22 0.000 0.0010 28 0.000 0.0010 31 0.000 0.0010	da oroc o	DD 0	0000
20) 208 0.000 22 0.000 28 0.000 31 0.000 0.0010	0.200.0	BD .0024	200.00
22 0.000 0.0010 28 0.000 0.0010 31 0.000 0.0010	6 6	0.0012	a
28 0.000 0.0010 31 0.000 0.0010	GE GE	BD	BD
31 0.000 0.0010	BD	BD	BD
•	80	0.0029	ВО
33 0.000	BD	80	BD
37 0.000 0.0010	Ce	BD	BD
40 0.000	BD	BD	BD
42	BD	BD	0.0014
0.000 0.0010	0.0014	BD	BD
47 0.000 0.0010	OH.	BD	BD
0.000 0.0010	BD	BD	BD
52 0.0010	BD	0.0010	QD :
	BD	90	BED

8
ŏ
Š
ਹ
Č
Ņ
\mathbf{e}
Š
0
亙
'n

OVERFLOW CONC µg/1	3D 8D 8D 8D 8D 8D 8D 8D 8D 8D 8
ELUTRIATE CONC µg/l	8D 8D 8D 8D 8D 8D 8D 8D 8D 8D
BACKGROUND CONC µg/l	80 80 80 80 80 80 80 80 80 80 80 80 80 8
WATER QUALITY STANDARDS ¹ Hg/l	FE SON SERVICE
DETECTION LIMIT µ9/1	0.0010 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.000
SEDIMENT CONC mg/kg	0.000 0.000
Parameter	PCB 64 PCB 66 PCB 70 PCB 70 PCB 70 PCB 71 PCB 72 PCB 81 PCB 82 PCB 82 PCB 84 PCB 94 PCB 84 PCB 94 PCB 84 PCB 94 PCB 84 PCB 94 PCB 94 PCB 94 PCB 94 PCB 95 PCB 94 PCB 97 PCB 95 PCB 97 PC

found in the Delaware River Basin Commission West Trenton, New Jersey, Administrative Manual-Part III, Water Quality Regulations, October 23, 1996. Only two exceedances were found in the dissolved overflow water. Endrin was measured at a concentration of 0.0754 $\mu g/l$ as compared to the standard of 0.019 $\mu g/l$. Zinc was measured at a concentration of 131 $\mu g/l$ as compared to the standard of 95 $\mu g/l$. See Appendix A for the Delaware River water quality and sediment analysis for the fine-grained site.

Hopper Inflow

Coarse-grained site

Samples collected for grain-size distribution at the hopper inflow at the coarse-grained site averaged 84 percent sand (Figure 7). The range was from 52 to 98 percent. Eliminating the 52-percent sample resulted in a sandy composition of 92 percent with a range from 86 to 98 percent. This is more representative of that collected from the in situ sampling. Suspended solids concentrations in the hopper inflow could not be accurately determined because the coarse-grained material rapidly settled to the bottom of the sampling buckets, and the total bucket sample was not retained for analysis.

Fine-grained site

Samples collected for grain-size distribution at the hopper inflow at the fine-grained site averaged 12 percent sand (Figure 8). The range was from 9 to 15 percent. This is much less than the 33 percent represented by the in situ sampling.

Hopper Contents

Coarse-grained site

Suspended solids concentrations in the hopper at the coarse-grained site were <15 g/l (Figure 9). This indicates that settling was occurring very rapidly. Although the samples should be representative of the water column, it should be realized that the agitation occurring inside the hopper will keep the material in suspension for an extended period of time. Therefore, when the sample was collected, the material being agitated quickly settled and was not collected in the 250-ml sample bottle.

Range of gradation curves from in situ sediment collected at the fine-grained site Figure 6.

Figure 7. Range of gradation curves from hopper inflow at the coarse-grained site

Range of gradation curves from hopper inflow at the fine-grained site Figure 8.

Figure 9. Hopper contents—solids concentrations of coarse-grained material

Fine-grained site

Suspended solids concentrations in the hopper at the fine-grained site were upward of 150 g/l at the bottom and approximately 80 g/l at the surface (Figure 10). It is expected that high concentrations of suspended solids would be found in the water column as the hopper agitates the fine-grained material and keeps it in suspension. The high concentrations of suspended solids at the surface indicate that a large amount of the material was lost to overflow in the fine-grained site.

Figure 10. Hopper contents—solids concentrations of fine-grained material

Hopper Overflow

Coarse-grained site

Samples collected for grain-size distribution at the hopper overflow at the coarse-grained site averaged 81.1 percent sand with a range from 24.4 to 96.1 percent (Figure 11). Composites of five samples were obtained and the average grain-size distribution was 78.1 percent with a range from 66.7 to 87.7 percent (Figure 12). This shows that a large amount of the sandy material was being agitated in the hopper and being washed out during overflow. This is consistent with the loading data that show a loading of about 112.4 m³/min (147 vd³/min) before overflow and an average loading of about 22.9 m³/min (30 vd³/min) over the 57-min period during overflow. However, the rate of loading in the initial stages of overflow was likely much higher with the material in the overflow increasing as the hopper filled and retention time was decreased. None of the chemistry parameters analyzed in the overflow samples collected at the coarse-grained site exceeded marine acute objectives as listed in the Delaware River Basin Water Quality Regulations for dissolved criteria limits. Although the background value for copper (13 µg/l) exceeded the criteria (5.3 µg/l), the dissolved value for copper in the overflow was 5 µg/l, indicating a scavenging of metals by the suspended material during the dredging and overflow process.

Fine-grained site

Samples collected for grain-size distribution at the hopper overflow at the fine-grained site averaged 12.2 percent sand with a range from 6.2 to 31.2 percent (Figure 13). Composites of five samples were obtained and the average grain-size distribution was 10.6 percent with a range from 9.3 to 11.6 percent (Figure 14). The suspended solids concentrations in the overflow averaged 110 g/l over the total overflow period of 21 min. The solids concentrations were essentially consistent throughout the overflow period, indicating little retention of the fine material in the hopper once overflow began. A large amount of material, about 59.4 m³/min (78 yd³/min) or about 89 percent of the inflow is being lost to overflow. Zinc (131 µg/l) and endrin (0.0754 µg/l) were the only two chemical parameters measured in the overflow that exceeded the more stringent acute objectives of the freshwater and marine stream quality standards (95 µg/l for zinc and 0.019 µg/l for endrin) as listed in the Delaware River Basin Water Quality Regulations for dissolved criteria limits. The value for endrin exceeded standards by a factor of 4, indicating that both water quality objectives could be met a short distance from the point of overflow. None of the other chemistry parameters analyzed in the overflow samples collected at the fine-grained site exceeded the acute objectives.

Figure 11. Range of gradation curves from hopper overflow at the coarse-grained site

Range of gradation curves from hopper overflow composites at the coarse-grained site Figure 12.

Range of gradation curves from hopper overflow at the fine-grained site Figure 13.

Figure 14. Range of gradation curves from hopper overflow composites at the fine-grained site

Plume Monitoring

Monitoring of the sediment plumes was accomplished using a boat-mounted 1,200-kHz Broad-Band Acoustic Doppler Current Profiler (ADCP). The instrument collects velocity vectors in the water column together with backscatter levels to determine the position and relative intensity of the sediment plume. Along with the ADCP, a MicroLite recording instrument with an Optical Backscatterance (OBS) Sensor was towed by the vessel at a depth of 15 ft. The MicroLite recorded data at 0.5-sec intervals. Navigation data for monitoring were obtained by a Starlink differential Global Positioning System (GPS). The GPS monitors the boat position from the starting and ending points along each transect.

Coarse-grained site

Transects were monitored in each test area to obtain the background levels of suspended materials prior to dredging activities. A period of 8 min following the dredge passing during nonoverflow dredging shows the level of suspended material to be returning to background levels. No lateral dispersion of the plume out of the channel was observed during the nonoverflow dredging operation.

During overflow dredging, a wider transect was performed to determine the lateral extent of the plume. No significant change above background levels could be detected. At 1-hr elapsed time following the end of the overflow dredging operation, the levels of suspended material returned to background conditions. Again, no lateral dispersion of the plume out of the channel area was observed. A complete analysis of the plume study can be found in Appendix B.

Figure 15 is a surface profile of the solids concentrations measured during nonoverflow and overflow conditions. Both sets of data fall within the minimum and maximum range of the background solids concentrations measured prior to dredging. Figure 16 is a middepth profile of the solids concentrations. Because of the narrow range between the measured values of the minimum and maximum range, both the nonoverflow and the overflow measured solids concentrations were above the maximum range. Figure 17 is a bottom profile of the solids concentrations and can be described much like that of the surface profile in that both sets of data fall within the minimum and maximum range of the background solids concentrations. In all three instances, there is not a significant difference in the solids concentrations measured during nonoverflow and the solids concentrations measured during nonoverflow and overflow fell within the total minimum and maximum range measured in the background prior to dredging.

Figure 15. Plume solids concentrations at surface (coarse-grained material)

Figure 16. Plume solids concentrations at middepth (coarse-grained material)

Figure 17. Plume solids concentrations at bottom (coarse-grained material)

Figure 18. Plume solids concentrations at coarse-grained site

Fine-grained site

During the nonoverflow dredging operation, the tidal flow in the dredging area reversed from flood flow to ebb flow conditions. This accounts for the relative change in observed background levels taken before the non-overflow and overflow test dredging. At 19 min following the end of nonoverflow dredging, the levels of suspended material had returned to background conditions. Despite the change in direction of flow in the dredging area, no lateral movement of the plume beyond the channel limits was observed.

Immediately prior to overflow conditions, an increase in the background suspended material was observed. This increase is assumed to be the result of the increase in the ebb flow velocities and the resulting disturbance of bottom materials from near-bottom velocities and not dredge plume dispersion. When hopper overflow conditions began, the width of the transect was increased to observe the lateral extent of the dispersion of the dredge plume. After an elapsed time of 1 hr following the completion of the overflow dredging operation, levels of suspended materials had returned to background conditions. As in the previous dredge operations, no lateral dispersion of the dredge plume beyond the channel limits was observed. A complete analysis of the plume study can be found in Appendix B.

Figure 19 shows the solids concentrations as measured at the surface during nonoverflow and overflow conditions. The overflow solids concentrations oscillate outside the maximum background solids concentration. Toward the end of overflow, the concentrations fall back within the background range. Figure 20 shows the solids concentration as measured at middepth. The same pattern as the surface profile is exhibited. Figure 21 shows the solids concentration as measured at the bottom. The nonoverflow solids concentrations remain within the measured range of the background; however, the overflow solids concentrations remain above the maximum background range throughout the duration of overflow. Figure 22 shows the maximum background range of solids concentration measured. The nonoverflow solids measured are well within the total range while the overflow solids concentrations oscillate outside the maximum range. This is consistent since 70 percent or more of the material is fine-grained and would settle slowly.

Sedimentation Results

Coarse-grained site

Sediment profile images from a total of 14 stations were analyzed from the coarse-grained site as shown in Figure 2 of Appendix C. There was evidence that recent sedimentation had occurred at several of the stations

Figure 19. Plume solids concentrations at surface (fine-grained material)

Figure 20. Plume solids concentrations at middepth (fine-grained material)

Figure 21. Plume solids concentrations at bottom (fine-grained material)

Figure 22. Plume solids concentrations of fine-grained material

within the channel, possibly a result of the dredging operations. Gray colored suspended material, indicative of hopper overflow material, was observed at two of the stations. Four of the stations had layering from grain-size changes but are assumed to have occurred because of normal sediment transport processes rather than hopper overflow operations.

Fine-grained site

Sediment profile images from a total of 41 stations were analyzed from the fine-grained site as shown in Figure 3 of Appendix C. No evidence of recent physical disturbance was detected at any of the stations, but material that could have come from the hopper overflow was observed at one station. Five of the stations on the edge of the channel had grain-size layering with sands on the surface overlaying clayey sediments. Since the sediments in the channel were finer silts and clays, it was unlikely that the layers at the channel edge stations were the result of the dredging operations. Three of the stations on the edge of the channel had sediment layering with amphipod and worm tubes which could not have reestablished living position in the short interval between dredging and sampling. Flocculent sediment layers, thin layers of unconsolidated surface sediments, occurred at six shoal stations and one channel edge station. Based on their color tones, all flock layers appeared to be composed of background sediments and not hopper overflow or dredged material.

No indication of newly deposited dredged material was observed at stations outside the edge of the navigation channel at either study site. Although the sampling station coverage was not extensive, given the relatively short duration of the tests, the risk of significant sedimentation as a consequence of the hopper dredging operations appears largely restricted to the bottom and side slopes of the channel. The full report on the sedimentation analysis is attached as Appendix C.

Standard Elutriate Tests

The standard elutriate analysis was performed using the composited insitu sediment and site water. The purpose of the standard elutriate testing was to gain data on possible application of the test for prediction of overflow contaminant concentrations. The mean predicted dissolved values from the elutriates were calculated using the EFQUAL computer program, a module of the ADDAMS software package. The elutriate test was conducted using standard procedures. 2

Palermo, M. R., and Schroder, P. R. (1991). "Documentation of the EFQUAL module for ADDAMS: Comparison of predicted effluent water quality with standards," Technical Note EEDP-06-13, U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS

U.S. Environmental Protection Agency and U.S. Army Corps of Engineers. (1998).
"Evaluation of dredged material proposed for discharge in inland and near-coastal waters - Testing manual." EPA-823-B-98-004, U.S. Environmental Protection Agency, Washington, DC.

Coarse-grained site

At the coarse-grained site, background dissolved copper was the only contaminant of concern that was predicted to be above the standard (Table 2). The program predicted that copper would be discharged at 7 μ g/l which is above the marine objective acute criteria but well below the background value of 13 μ g/l. Therefore, a dilution of the background with respect to copper would naturally occur as a result of the dredging operation, and a mixing zone would not be required. The actual value recorded at the hopper overflow (effluent) for copper was 5 μ g/l, which was below both the background and the standard of 5.3 μ g/l.

Fine-grained site

At the fine-grained site, the predicted dissolved value of selenium was 24.3 μ g/l (Table 3). The more stringent acute value of the freshwater or marine stream quality standard for selenium is 20 μ g/l and the background was 19 μ g/l. The actual value recorded at the hopper overflow for selenium was 14.2 μ g/l, which is below the criteria and the background value, which would indicate a natural dilution of the contaminant of concern during dredging operations. Again, because of this natural dilution, a mixing zone would not be required.

At both reaches, the predicted elutriate values appear somewhat conservative when compared with the overflow values. The close agreement of the elutriate values with the actual overflow values (Tables 2 and 3) indicate that the elutriate test can be used as a valid predictor of overflow quality for the Delaware River. Summaries of the standard elutriate and predicted effluent quality results for the two sites can be found in Tables 2 and 3. A complete listing of the water quality, sediment, and elutriate analysis for both sites can be found in Appendix A.

Technical Findings of a 96-hr Water Column Bioassay

This test was performed to determine the possible biological effects of water column exposure to Delaware River overflow. Two species were used in performing the bioassays, the mysid shrimp, a crustacean species, Mysidopsis bahia, and the inland silverside, a fish species, Menidia beryllina. These species were selected based on conversations with personnel from the Delaware Department of Natural Resources and Environmental Control. The filtered elutriate was diluted with standard laboratory control seawater (6-ppt salinity for the fine-grained site and 30-ppt salinity for the coarse-grained site) to yield the following concentrations: 0-, 6.25-, 12.5-, 25-, 50-, and 100-percent elutriate. Each treatment was replicated five

Table 3 Delaware River Fine-Grained Site, Summary of Sediment and Water Quality Data

NO LEI GER	CONC	µg/1	BD	BD	BD	BD	BD	ВД	BD	BD	BD	on.	BD	BD	674	BD .	BD	ВД	BD	BD	BD	BD	117000	BD	PC.	ni	2 1	BD	BD	ВД	BD	0.0754	BD	BD	ВО	80	
		hg/1	ВЪ	BD	BD	30	BD	BD	136.0000	BD	BD	10.0000	BD	BD	234.3333	BD	BD	BD	BD	BD	BD		.000	BD	BD	2.3333	4.3333	BD	90	BD	BD	BD	BD	BD	BD	BD	
dimino do suo su	BACKGKOUND	1/6#	Вр	BD	BD	BD	BD	BD	BD	BD	BD	7.0000	BD	BD	223.0000	BD	BD	BD	BD	BD	BD		000.	BD	BD	BD	4.0000	BD	90	BD	BD	BD	BD	BD	BD	BD	
	WATER QUALITY STANDARDS ¹	µg/1	NL	NL	NL	NL	NL	0.65	750	Z	NL	69	NE	NE	NL	NL	NL	NL	NL	NI	NL	34		8340	NL	N	5.3	NE	Z	0.355	NL	0.019	NL	TN	NL	0.08	
	DETECTION	µ9/1	0,3000	0.0500	0.0500	0.3000	0.3000	0.0500	25.0000	0.3000	3.0000	2.0000	0.0500	0.1000	2.0000	0.3000	0.3000	0.3000	0.3000	0.3000	1.0000	0.2000			0.3000	2.0000	1.0000	0.0500	0.3000	0.1000	0.1000	0.1000	0.1000	0.3000	0,3000	0.0500	
	SEDIMENT	mg/kg	0.034	0.000	0.003	0.000	0.000	0.000	3367,000	0.033	0.410	10.400	0.001	0.000	52.200	0.100	0.067	0.091	0.079	0.089	0.900	0.297	2223.000	41.500	0.120	11.100	16,400	0.000	0.008	0.000	0.006	0.000	0.000	0.150	0.015	0.000	
	Parameter		2-METHYLNAPHTHALENE	Cita-a	A - FINDOSIII.FAN	ACENAPHTHENE	ENE INHERITATION	ALDRIN	ALIMINIM (A1)	ANTHRACENE	VNCMTTNA	ARSENIC (AS)	B-BHC	B-ENDOSULFAN	BARIUM (Ba)	BENXO (a) ANTHRACENE	BENZO (G, H, I) PERYLENE	BENZO(a) PYRENE	RENZO(b) FLUORANTHENE	BENZO(K) FLORANTHENE	BERYLLIUM (Be)	CADMIUM (Cd)	CALCIUM (Ca)	CHROMIUM (TRI) (Cr)	CHRYSENE	COBALT (Co)	COPPER (Cu)	D. B.H.C.	DIBENZO (A. H) ANTHRACENE	DIELORIN	TANDOSHI. FANE	ENDRIN	ENTRY ALDEHYDE	FILIORANTHENE	FILDORENE	G-BRC	•

(Page 1 of 4)

	SEDIMENT	DETECTION	WATER QUALITY STANDARDS	BACKGROUND		OVERFLOW	
	mg/kg	u q/1	T/5d	µ q/1	µq/1	µg/1	
aO IHO CEAAA	100 0	0860	0 027	ָר מ	000	ţ	
HEPTACHLOR EPOXIDE	0.000	0.0500	N. J. N.	6 6	BD . 02.03	G 60	
INDENO(1.2.3-C.D) PYRENE	0.078	0.3000	2) a	1 5	
	25567,000	20.000	NI NI	22 62	40.6667	75 P P P P P P P P P P P P P P P P P P P	
	32,900	1.0000	8 7	005 0	an de		
MACNES IN (MA)	000.0808	0000.000	N T			143000	
(PM) EUGNACINAM	000.5011	0000	IN		14/000.000.01	2000	
ZHD ZHZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ	500.00	00000	TT.		000.000	332	
のでもはした人のはいない	0 000	00200	7	ם מ	<u>ם</u> מ) (A	
NEGHT GENERAL	0.060	00000) c) C	ב ב ב ב ב	
AN TEXUEN	21.800	1.0000	ı u	1 0000	2 2233	ា ម	
TOTAL POB'S	,	>	`)))	1	3	
PCB 101	0.001	0.0010	12	0 0011	0.0011	0,000	
	0.000	0.0010		2000	1 1 1 1 1 1 1 1 1	20.00	
	0.001	0.0010	1 2	3 m	3 6	0100	
	0.000	0.0010	: -: : Z	, E) C	0 a	
	00.00	0.0010		08	a a	2 2 2	
	0.000	0.0010	Z	3D	BD	OE OE	
	000.0	0.0010	NL	3D	BD	DE DE	
PCB 121	0.000	0.0010	NL	BD	BD	30	
	000.0	0.0010	NL	BD	BD	BD	
	00000	0.00.0	NL	BD	HD	CB	
	0.000	0.0010	NL	90	BD	BD	
	0.000	0.00.0	N.	90	BD	BD	
	0.000	0.0010	NC	BD	BD	30	
	0.000	0.00.0	ML	ВD	BD	BD	
	0.000	0.0010	NF	BD	BD	BD	
	0.000	0.0010	Ĩ.	aD	BD	80	
	0.000	0.0010	Z	30	B D	BD	
	0.000	0.0010	NL	BD	BD	80	
	0.000	0.00.0	J.	ЭД	BD	BD	
	0.001	0.0010	I'N	30	BD	25	
	0.000	0.0010	NL	90	3D	90	
	0.001	0.0010	NL	BD	GE	BD	
Н	0.000	0.0010	IN.	BD	BD	BD	
-1	000.0	0.0010	TN	80	30	BD	
1115	0.000	0.0010	NL	BD	BD	BD	
PCB 166	0.000	0.0010	NI	30	BD	BD	
r-ri	0.000		NL	BD	BD	BD	
PCB 168	0.000	0.0010	In	BD	0.0011	BD	

PARAMETER	SEDIMENT	DETECTION	WATER QUALITY	BACKGROUND	ELUTRIATE	OVERFLOW	
	CONC mg/kg	TIMIT ho/a	STANDARDS µg/l	CONC Mg/L	7/5 n	CONC.	
\$	0000	0,000	MT	a	Ç a	C	
			14.00	2 0	6 6	. a	
	000.0	200000	74	6 6	0 C	2 6	
	0.000	0.00.0	7.	2 2	2 0	2 2 2	
	0.000	0,000.0	N.P.	<u>ء</u> د	2 6	2 c	
	0000	0.00.0	7:	200	0 0	2 6	
87 64	0,000	0.0010	NE	(A)			
PCB 179	0.000	0.0010	MI,	CM	3D	BD	
	0.000	0.0010	N.	30	30	20	
	0.002	0.0010	NI	BD	30	BD	
	0.000	0.0010	77	300	90	BD	
	0.000	0.0010	Z	BD	BD	BD	
	0000	0.0010		Om	30	GB	
	0.000	0.0010		BD	30	BD	
	000	0.0010	\$-100 \$200 \$200	000	BD	BD	
	000	0.00.0		RD	an Og	BD	
	000.0	0.000		GH		BD	
	0000	30000	***************************************				
	200.0	0.00.0			200	2 0	
	3000			2 5	<u>ک</u> در	a 22	
PCB 195	0.600	0.0010	7.		000	2 C	
	3	0.00.0) (i	200	Q 44 Q	
	0.000	0.0010		<u>a</u> :	i i		
	000.0	0.0010			2 i		
	0.001	0.0010	Z.	Q (in in	180	
	000.0	0.0010	Z	22	Di s	: : : : :	
	0.003	0.0010	.7	0.0025	0.0020	7 TOO : C	
PCB 207	0.000	0.00.0		<u></u>	On	Qu	
PCB 208	0.002	0.00.0	12	0.0013	C C	BO BO	
	00000	0.0010		മ	CC	ධන	
	0.000	0,0010	Z	20	80	90	
	0.000	0.00.0	NL	0.0017	20	0.0027	
	0.000	0.00.0	Z	80	80	BD	
	0.000	0.00.0	IN	080	80	30	
	0.000	0.0010	NL	୍ର	80	08	
	0.000	0.0010	72	BO	90	0.00	
	0.000	0.0010	7	BD	BD	DB CB	
	0,000	0.0010		BD	80	BD	
	0,001	0.0010	M	BO	90		
	0.002	0.0010	Z	BD	0.0010	0.0011	
00 000	0.001	0.0010	NI	85	as	Om Om	

;		1	•
	2	ĸ	
	÷	ž	
	3	ź	
•	-	Ę	
	5	2	
	ì	=	
	ř	≺	
	٤	_	,
1	r	כ	
	•	'n	
•	ì	Ĕ	
1	Š	2	
	٢	Ū	

OVERFLOW CONC Hg/l	35 35 35 35 35 35 36 36 37 37 37 38 38 38 38 38 38 38 38 38 38
ELUTRIATE CONC µg/l	BD 0.0014 BD BD BD BD BD BD BD BD BD BD
BACKGROUND CONC Hg/l	### ### ### ##########################
WATER QUALITY STANDARDS ¹ µg/l	0.0010 NL BD 0.0000 NL BD 0.000
DETECTION LIMIT Hg/l	0.0010 0.0000 0.0000
SEDIMENT CONC mg/kg	000000000000000000000000000000000000000
PARAMETER	PCB 64 PCB 70 PCB 74 PCB 74 PCB 77 PCB 81 PCB 82 PCB 82 PCB 84 PCB 84 PCB 84 PCB 95 PCB 95 PCB 95 PCB 95 PCB 95 PCB 95 PCB 97 PCB 97 PCB 97 PCB 99 PCB 97 PCB 99 PCB 97 PCB 99 PCB 97 PCB 99 PCB 97 PC

11 1 ti ME O.O

below detection not listed below detection for sediment conc. (mg/kg)

times. The trimmed Spearman-Karber method was used to calculate LC_{50} values. The bioassay report is attached as Appendix D.

Coarse-grained site

Survival in test concentrations from the coarse-grained site ranged from 100 to 88 percent for *Mysidopsis bahia* and from 88 to 68 percent for *Menidia beryllina*. Exposures in elutriate test concentrations from the coarse-grained site did not adversely affect survival of either test species. Since neither test species had mortality values greater than 50 percent, an LC₅₀ value could not be calculated.

Fine-grained site

Survival in test concentrations from the fine-grained site ranged from 90 to 0 percent with 0-percent survival in the 50- and 100-percent exposures for *Mysidopsis bahia*. Survival for *Menidia beryllina* ranged from 98 to 0 percent with 4- to 0-percent survival in the 50- and 100-percent elutriate treatments. An LC₅₀ value of 30.04 percent was calculated for *Mysidopsis bahia* and an LC₅₀ value of 31.66 percent was calculated for *Menidia beryllina*. Mortality observed from exposures in elutriate test concentrations was attributed to the high level of NH₃. In the short term, high levels of NH₃ are common in predominately fine-grained sites during dredging operations.

4 Summary and Conclusions

Based on the results of the study, the following conclusions can be made:

- a. Loading data at the coarse-grained site shows a gain of 130 percent over a period of 57 min after overflow began. Based on the round-trip travel time required to the disposal site and the amount of material retained in the hopper, rates of return greater than 50 percent may be realized for the coarse-grained material. Loading data at the fine-grained site show a gain of 18 percent over a period of 21 min after overflow began. Based on the round-trip travel time required to the pump-out site and the amount of material retained in the hopper, there was no economic benefit to overflow for the fine-grained material. In both instances, rates of return are also based on the assumption that all material in the overflow will return to the channel and will require redredging.
- b. Using the same economic assumptions as discussed above, about a 20-percent return may be realized from a material containing about 60 percent sand and about a 40-percent return may be realized from a material containing about 80 percent sand.
- c. Based on the water chemistry analysis at the two sites, no contaminants of concern caused a problem because of the dredging operation. None of the contaminants of concern exceeded water quality objectives in the overflow at the coarse-grained site. At the coarse-grained site, only dissolved copper was above the standard in the background. Samples taken for dissolved copper at the hopper overflow, however, were within standards. This indicates a scavenging of the metal by the suspended material occurred during the dredging and overflow process. At the fine-grained site, only zinc and endrin were measured at the overflow to be above the standard. However, the predicted elutriate for both zinc and endrin were measured at below detection levels.
- d. The plume study results showed that the coarse-grained material settled quite rapidly and that no lateral dispersion of the plume out of the channel was observed. No significant change above background levels could be detected. At 1 hr elapsed time following

the end of the overflow dredging operation, the levels of suspended material had returned to background conditions. At the fine-grained site, an increase in the suspended material was observed. However, after an elapsed time of 1 hr following the completion of the overflow dredging operation, levels of suspended materials had returned to background conditions. Again, no lateral dispersion of the dredge plume beyond the channel limits was observed.

- e. The sedimentation portion of the study confirmed what was observed during the plume study. At the coarse-grained site, there was evidence that recent sedimentation had occurred at several of the stations, possibly a result of dredging operations. But no indication of newly deposited dredged material was observed at stations outside the edge of the navigation channel. At the fine-grained site, some sediment layering was found even though no evidence of recent physical disturbance was detected at any of the stations. Again, no indication of newly deposited dredged material was observed at stations outside the edge of the navigation channel.
- f. Although the sampling station coverage was not extensive, the risk of significant sedimentation as a consequence of the hopper dredging operations appears to be restricted to the bottom and side slopes of the channel.
- g. The elutriate test results were consistent with and slightly conservative as compared to the overflow samples, indicating that the elutriate test is a valid prediction of overflow quality for the Delaware system.
- h. The bioassay analysis showed no adverse effects to exposures of fish and crustaceans species being exposed to the elutriate samples from the coarse-grained site. Some species mortality were observed using elutriates from the fine-grained site, but was determined to be caused from high levels of NH₃, which is a common short-term by-product of dredging in fine-grained material.
- i. The overall results of the study indicate that overflow meets the applicable water quality objectives and has no measurable physical impact outside the navigation channels. The loading data indicate that overflow in coarse-grained reaches results in significant load gains, while load gains in fine-grained reaches are small. Based on these results, overflow in coarse-grained reaches should be considered for future operations.

Appendix A Delaware River Sediment and Water Quality Analysis

Delaware River Sediment and Water Quality Analysis (Coarse- and Fine-Grained Sites)

Metscoar - Metals (Coarse-Grained Site)

PAHscoar - PAH's (Coarse-Grained Site)

Pestcoar - Pesticides (Coarse-Grained Site)

PCBscoar - PCB's (Coarse-Grained Site)

Tsscoar - Total Suspended Solids (Coarse-Grained Site)

Nutcoar - Nutrients (Coarse-Grained Site)

Spgrcoar - Specific Gravity and %Moisture (Coarse-Grained Site)

Metsfine - Metals (Fine-Grained Site)
PAHsfine - PAH's (Fine-Grained Site)
Pestfine - Pesticides (Fine-Grained Site)
PCBsfine - PCB's (Fine-Grained Site)

Tssfine - Total Suspended Solids (Fine-Grained Site)

Nutfine - Nutrients (Fine-Grained Site)

Spgrfine - Specific Gravity and % Moisture (Fine-Grained Site)

				Metsco	žĭ					
		Delaware River Water Analysis (Coarse	-Grained Site)							
SAMPLE YPE	SAMPLE	DESCRIPTION	SB	AS	BE	CD	CR	cu	PB	нс
		Detection Limit (mg/l)	0 003	0.002	0 002	0 0002	0 002	0.001	0.001	0 00020
		Plume Monitoring								
Nater Nater	80827 80735	Background, dissolved Background, total	0.003	0 044 0 044	0.002 0.001	0.0002 0.0002	0.002 0.002	0.013	0.001 0.003	0.00020 0.00020
Vater	80828	0-10 min, overflow, dissolved	0.003	0.044	0.002	0.0002	0.002	0.011	0.001	0.00020
Nater	80829	10-20 mm, overflow, dissolved	0.003	0.044	0.002	0.0002	0.002	0.010	0.001	0.00020
Vater	80830	20-30 min, overflow, dissolved	0.003	0.046 0.045	0.002	0.0002	0.002 0.002	0 013	0.001	0.00020
Nater Nater	80736 80737	0-10 min, overflow, total 10-20 min, overflow, total	0.006 0.003	0 045	0.001	0,0002	0.002	0 011 0 012	0.001 0.001	0.00020
Nater	80738	20-30 min, overflow, total	0.003	0.045	0.001	0.0002	0.002	0 011	0.001	0.00020
Nater	80831	0-10 min, non-overflow, dissolved	0.003	0.047	0.002	0 0002	0.002	0.012	0.001	0.00020
Valer	80832	10-20 min, non-overflow, dissolved	0.003	0.048	0.002	0 0004	0.002	0.011	0.001	0.00020
Vater	80833	20-30 min, non-nverflow, dissolved	0.003	0 047	0.002	0.0002	0.002	0 012	0.001	0.00020
Naler Nater	80739 80740	0-10 min, non-overflow, total 10-20 min, non-overflow, total	0.003	0.044	0.001	0.0002 0.0002	0.002	0 011	0.002 0.001	0.00020
Vater	80741	20-30 mm, non-overflow, total	0.003	0.044	0.001	0.0002	0.002	0.010	0.001	0.00020
		Happer Inflow Manitoring								
Water	80780	3& 6 min, dissolved	0.003	0.051	0.001	0.0002	0.002	0.007	0.001	0.00020
Nater	80781	9&12 min, dissolved	0.003	0.045	0.001	0.0002	0.002	0 005	0.001	0.00020
Vater	80782	158.18 min, dissolved	0.003	0.046	0.001	0.0002	0.002	0.006	0.001	0.00020
Nater Nater	80783 80784	21824 min, dissolved 27830 min, dissolved	0.003	0.048	0.001	0.0002	0.002 0.002	0 007 0 006	0.001 0.001	0.00020
Vater	80668	3& 6 min. total	0.003	0.076	0.002	0.0029	0.088	0 090	0.168	0.00083
Vater	80669	98/12 min, total	0.003	0 070	0 002	0 0010	0.088	0 062	0.140	0 00064
Valer	80670	15&18 min, total	0.003	0.009	0.002	0.0005	0.140	0 094	0 132	0 00129
Vater	80671	21824 min total	0.003	0 105	0.007	0.0008	0 332	0 127	0.292	0 00369
Valer	80672	27830 min, total	0.003	0.115	800 0	0 0009	0.392	D 158	0 208	0.00126
	80785	Happer Overflow Monitoring 28, 4 mm, dissolved	0.003	0 045	0,001	0.0002	0.002	0.005	0.001	0.00020
Vater Vater	80786	6& 8 min, dissolved	0.003	0.048	0.001	0.0002	0.002	0 005	0.001	0.00020
Vater	80787	10&12 min, dissolved	0.003	0.047	0.001	0.0002	0.002	0 005	0.001	0.00020
Vater	80788	14816 min. dissolved	0.003	0 046	0.001	0.0002	8.002	0.005	0.001	0.00020
Vater	80789	18&20 min, dissolved	0.003	0.045	0.001	0.0002	0.002	0.005	0.001	0.00020
Vater Vater	80674 80675	2& 4 min, total 6& 8 min, total	0.006	0.047	0.001	0 0027 0 0017	0.059 0.074	0.031	0.080 0.104	0.00053
Vater	80676	10&12 mm, total	0.003	0.066	D 002	0 0013	0.000	0.035	0.104	0.00086
Vater	80677	14&16 min, total	0 007	0.052	0.001	0.0034	0.040	0.028	0.049	0.00056
Vater	80678	18820 min, total	0.003	0.046	0.001	0.0002	0.048	0.018	0.040	0.00048
		Site Water								
Vater	81648	Sample 1 Total	0.003	0.034	0.001	0.0002	0.005	0.027	0.003	0.00020
Vater Vater	81649 81650	Sample 3 Total Sample 3 Total	0.003	0.037	0.001	0.0002 0.0002	0.002 0.002	0 021 0 016	0.002 0.001	0.00020
Vater	81654	Elutriate Sample 1 Dissolved	0.003	0.050	0.001	0,0002	0.002	0 005	0.001	0.00020
Vater	81655	Sample 2 Dissolved	0.003	0.052	0.001	0.0002	0.002	0.006	0.001	0.00020
Vater	81656	Sample 3 Dissolved	0.003	0.047	0.001	0.0002	0 002	0 010	0.001	0.00020
Vater	81651	Sample 1 Total	0.003	0.040	0.001	0.0002	0.002	0 006	0.002	0.00020
Vater Vater	81652 81653	Sample 3 Total	0.003 0.003	0.042 0.043	0.001	0.0002 0.0002	0.002 0.002	0.005 0.005	0.001 0.001	0.00020
SAMPLE	SAMPLE	DESCRIPTION	\$8	AS	BE	CD	CR	cu	PB	HG
YPE	ID									
		Detection Limit (mg/kg)	0.30	0 20	01	0.020	0.2	0.10	10	0 020
Sediment	8479n	Insitu Sediment	0,30	3 50	0.1	0.020	5.6	3 00	12.9	0.084
sediment Sediment		Sample #1 Sample #2	0.30	2 90	0.2	0.020	63	1.30	12 1	0.084
Sediment	81728	Sample #3	0.30	3 10	02	0.020	7.0	2 70	12.0	0.084

SB - Antimony AS - Ansenio BE - Beryllium CD - Cadmium CR - Chromium CU - Copper PB - Lead RG - Mercury BOLD - less than values below less than values are estimated results. Results are less than the reporting limit.

13		

AMPLE YPE	SAMPLE ID	DESCRIPTION	NI	SE	AG	TL.	ZN	AL,	BA	(
		Detection Limit (mg/l)	0,001	0.002	0.001	0.002	0.010	0.025	0.002	0.2
		Plume Monitoring								
	80827	Background, dissolved	0.009	0.152	0.001	0.002	0.010	0.025	0.039	3
Vater	80735	Background, total	0.009	0.138	0.003	0.002	0.017	0.644	0.016	2
Vater	80828	0-10 min, overflow, dissolved	0.008	0.150	0.001	0.002	0.010	0.025	0.042	5
later	80829	10-20 min, overflow, dissolved	0.008	0.146	0.001	0.002	0.010	0.026	0.061	2
later	80830	20-30 min, overflow, dissolved	0.012	0.158	0.001	0.002	0.011	0.025	0.077	12
Vater	80736	0-10 min, overflow, total	0.010	0.157	0.004	0.002	0.015	0.864	0.016	:
Vater	80737	10-20 min, overflow, total	0.010	0.153	0.004	0.002	0.017	0.984 0.676	0.016 0.016	
rater	80738	20-30 min, overflow, total	0,008	0.157	0,003	0.002	0.013	0.076	0.015	
/ater	80831	0-10 min, non-overflow, dissolved	0.009	0.158	0.001	0.002	9.010	0.025	0.038	;
later	80832	10-20 min, non-overflow, dissolved	0.009	0.160	0.001	0.002	0.010	0.025	0.062	1
vater	80833	20-30 min, non-overflow, dissolved	0.008	0.153	0.001	0.002	0.010	0.025	0.043	- 1
Vater	80739	0-10 min, non-overflow, total	0.007	0.149	0.003	0.002	0.010	0.716	0.016	3
Vater	80740	10-20 min, non-overflow, total	0.009	0.163	0.003	0.002	0.017 0.012	1.100 0.664	0.016 0.016	
Vater	80741	20-30 min, non-overflow, total	0.008	0.154	0.003	0.002	0.012	, 0.504	0.010	
		Hopper Inflow Manitoring								
Vater	80780	3& 6 mm, dissolved	0.010	0.175	0.001	0.002	0.038	0.025	0,209	
Vater	80781	9812 min, dissolved	0.008	0.149	0.001	0.002 0.002	0.025 0.034	0.025 0.025	0.100 0.152	
Vater	80782	158.18 min, dissolved	0.009	0.161	0.001	0.002	0.043	0.025	0.132	
Vater	80783	21824 min, dissolved	0.009	0.163 0.167	0.001	0.002	0.043	0.107	0.207	
Valer	80784	27830 min, dissolved 38 6 min, total	0.076	0.069	0.008	0.002	1.120	32.6	0.157	1
Vater Vater	80668 80669	98.12 min, total	0.060	0.962	0.012	0.002	0.728	29.9	0.090	
Vater Vater	80670	15&18 min, total	0.072	0.103	0.014	0.002	0.366	52.4	0.147	
Valer	80671	21&24 min, total	0.152	0.113	0 015	0.002	1.100	120.0	0.223	1
Vater	80672	27830 min, total	0,184	0.129	0.019	0.002	0.719	147.0	0.316	10
		Market Market Market								
hinkar	80785	Hopper Overflow Monitoring 2& 4 min, dissolved	0.008	0.155	0.001	0.002	0.038	0.025	0.148	:
Vater Vater	80786	6& 8 min, dissolved	0.009	0.165	0.001	0.002	0.028	0.025	0.108	
Vater	80787	10812 min. dissolved	0.009	0.166	0.001	0.002	0.042	0.025	0.166	
Vater	80788	148.16 min, dissolved	0.009	0.162	0.001	0.002	0.015	0.025	0.080	
Valer	80789	18&20 min, dissolved	0.008	0.153	0.003	0.002	0.012	0.025	0.084	
Nater	80674	2& 4 min, total	0.044	0.053	0,007	0.002	0.330	20.9	0.088	
Vater	80675	6& 8 min, total	0.048	0.064	0.006	0.002	0,399	25 2	0.090	
Water	80676	10&12 min, total	0.050	0.089	0.006	0.002	0.609	25.8 18.6	0.077 0.066	
Valer	80677	14&16 min, total	0.035	0.113	0.054	0.002	0.155 9.118	18.2	0,060	
Vater	80678	18820 min, total	0.026	0.118	0.011	0.002	0.110	10.2	0.000	
		Site Water								
Vater	81648	Sample 1 Total	0.005	0.115	0.003	0.002	0.012	1.260	0.015	
Vater	81649	Sample 2 Total	0.008	0.124	0.005	0.002	0.010 0.010	0 056 0.064	0.012 0.012	
Vater	81650	Sample 3 Total	0,004	0.134	0,004	0.002	0.010	D.004	0.012	
		Elutriate					- 4		4	
Valer	81654	Sample 1 Dissolved	0.005	0.172	0.001	0.002	0.022	0.025	0.073	
Vater	81655	Sample 2 Dissolved	0.005	0.170	0.001	0.002	0.031	0.025	0.097	
Vater	81656	Sample 3 Dissolved	0.005	0 161	0.001 0.004	0.002	0.031	9.025 1,140	0.105 0.018	
Nater	81651	Sample 1 Total	0.006 0.005	0.135 0.140	0.003	0.002	0.010	1.140	0.018	
Vater Vater	81552 81653	Sample 2 Total Sample 3 Total	0.005	0.141	0.003	0.002	0.010	1.590	0.026	
SAMPLE	SAMPLE	DESCRIPTION	NI	SE	AG	TL	ZN	AL	BA	
YPE	1D									
		Detection Limit (mg/kg)	0.5	0 200	0.100	0.200	1.0	4	0 1	
		Insilu Sediment					gei es	4500	± 7	19
Sediment		Sample #1	3.2	0,800	0.100	0.200	29.9 29.0	1580 1720	5.7 4.8	11
Sediment		Sample #2	3 3 3,5	0.900 0.899	0.400 0.499	0.200	28.7	1720	4.3	9
Sediment	61728	Sample #3	3,0	0.033	₩.₩₽₽	0.200	&.v. c	114.57	4.0	•

Page :

м	efectors	

AMPLE YPE	SAMPLE	DESCRIPTION	co	FE	MG	MN	К	NA	v	
		Detection Limit (mg/l)	0 002	0 020	0.200	0 001	0.200	0.200	Đ 0 01	
		Plume Monitoring								
Valer	80827	Background, dissolved	0.001	0.020	961	0 006	284	9,540	0.002	
Vater	80735	Background, total	0.001	0 204	968	0 012	291	7,970	0.004	
Vater	80828	0-10 min, overflow, dissolved	0.001	0.020	994	0.092	294	8,280	0.002	
Vater	80829	10-20 min, overflow, dissolved	0.001	0.020	985	0 002	290	9,230	0.002	
Vater .	80830	20-30 min, overflow, dissolved	0.001	0.020	1030	0.004	302	8,890	0.002	
Vater	80736	0-10 min, overflow, total	0.001	0.312	940	0.012	300	9,560	0.004	
later	80737	10-20 min, overflow, total	0.001	0.364	1030	0.015	368	8,580	0.004	
/ater	80738	20-30 min, overflow, total	0.001	0 184	944	0 009	324	7,860	0.004	
ater	80831	0-10 min, non-overflow, dissolved	0,001	0.020	992	0 005	292	8,930	0.002	
/ater	80832	10-20 min, non-overflow, dissolved	0.001	0.020	986	0 006	268	8,510	0.002	
ieter	80833	20-30 min, non-overflow, dissolved	0.001	0.020	957	0.005	282	9,040	0.002	
ialer	80739	0-10 min, non-overflow, total	0.001	0.256	908	0.014	318	7,480	0 005	
later .	80740	10-20 min, non-overflow, total	0.001	0.572	912	0.015	272	8,480	0.004	
/ater	80741	20-30 min, non-overflow, total	0.001	0 192	916	0.008	334	8,120	0.003	
		Honnor Inflow Manyaring								
later	80780	Hopper Inflow Monitoring 38-6 min_dissolved	0.002	0.020	1003	0.011	308	10,900	0 003	
rater later	80781	9&12 min_dissolved	0.002	0.020	1007	0.002	306	8.950	0 003	
/ater	80782	158.18 min, dissolved	0.002	0.029	1023	0.002	310	9.110	0.004	
/ater	80783	21&24 min, dissolved	0.002	0.020	1052	0.002	317	10,200	0.004	
later	80784	27830 min_dissolved	0.002	0.074	1035	0.099	315	9,150	0.008	
/ater	80668	3& 6 min, total	0.060	98 C	1050	3.770	315	8,400	0.128	
ater	80669	98.12 min, total	0.042	31.3	1040	2 170	319	8,570	0 124	
/ater	80670	15&18 mm, total	0.020	71 7	968	1.500	311	8,020	0 172	
/ater	80671	218/24 min, total	0.062	268 0	1090	4 440	338	8,530	0.328	
/ater	80672	27&30 min, total	0 056	218 0	1020	3.200	349	8,660	0 408	
		Hopper Overflow Manitoring								
later	80785	2& 4 min, dissolved	0.002	0.020	993	0.001	299	8,750	0 004	
	80786	6& 8 min. dissolved	0.002	0.020	962	0.001	290	9,240	0 004	
later later	80787	10812 min, dissolved	0.002	0.020	999	0.001	302	8,750	0 004	
later	80788	14&16 min, dissolved	0 002	0.020	1.000	0.001	303	6.960	0.004	
ater	80789	18820 min, dissolved	0.002	0.020	990	0.001	294	8,870	0.004	
/ater	80674	2& 4 mm total	0.023	66.4	1,060	1,130	333	8.800	0.084	
later	80675	6& 8 min, total	0.026	70 4	1 050	1 470	335	9,170	0 104	
/ater	80676	10&12 min, total	0.034	920	968	1.420	308	7,980	0.105	
/ater	89677	14816 min, total	0.015	298	1 000	0.608	309	8,640	0.064	
ater	80678	18&20 min, total	0.009	28.2	984	0.544	310	9,170	0 060	
		City Make								
fater	81648	Site Water Sample 1 Total	0.002	0.837	993	0.028	306	8,370	0.003	
ater	81649	Sample 2 Total	0.002	0 048	974	0.004	289	8,760	0.001	
ater	81650	Sample 3 Total	0.002	0.039	969	0.005	269	8,980	0.001	
fater	81654	Elutrate Sample 1 Dissolved	0.002	0.020	1.020	0 002	303	8,620	0.002	
later later	81655	Sample 1 Dissolved Sample 2 Dissolved	0.002	0.020	1.020	0.002	303	9,250	0.002	
iater later	B1656	Sample 2 Dissolved	0.002	0.020	1,030	0.002	304	9,040	0 002	
/ater	81651	Sample 1 Total	0.002	0.742	982	0.024	292	8,620	0 004	
rater	81652	Sample 2 Total	0.002	0.632	991	0.019	294	8,760	0.003	
ater	81653	Sample 3 Total	0.002	0.799	1,400	0.024	423	12 300	0.004	
AMPI F	SAMPLE	DESCRIPTION	co	FE	MG	MN	к	NA.	٧	% Moistu
/PE	ID	man con and the first the	~~	1 Nov			•	• • • •	•	
		Detection Limit (mg/kg)	0.1	2	20	0.1	20	26	0.10	
		Insitu Sediment								
ediment		Sample #1	2.2	5,810	1.260	\$1.7	443	2180	4 10	13
ediment		Sample #2	2.4	6,040	1,330	95.2	47.4	1920	4 30	13.
ediment	81728	Sample #3	24	5,860	1.320	97.4	482	1900	4 00	13
D Coba	olt FE	Iron MG - Magnesium MN -	Manganese	K - Potassium		frum V - V				

PAHscoar

Detaware River Water Analysis (Coarse-Gra

SAMPLE	SAMPLE	DESCRIPTION	NAPHTH	ACENAY	ACENAP	FLUORE	PHENAN	ANTRAC	FLANTHE
TYPE	ID								
		Claim which I land toward	0.0003	0.0003	0.0003	0.0003	0.00030	0.00030	0.00030
		Detection Limit (mg/l)	0.0003	0.0003	0.0003	0.0003	0.00000	0.00000	0.00000
		Plume Monitoring							
Water	80848	Background, dissolved	0.0003	0.0003	0.0003	0.0003	0.00030	0.00030	0.00030
Water	80763	Background, total	0.0003	0.0003	0.0003	0.0003	0.00030	0.00030	0,00030
12/-4	24.000	6.68 min namibus dissaskend	0.0003	0.0003	0.0003	0.0003	0.00030	0.00030	0.00030
Water Water	80849 80850	0-10 min, overflow, dissolved 10-20 min, overflow, dissolved	0.0003	0.0003	0.0003	0.0003	0.00030	0.00030	0.00030
Water	80851	20-30 min, overflow, dissolved	0.0003	0.0003	0.0003	0,0003	0.00030	0.00030	0.00030
Water	80764	0-10 min, overflow, total	0.0003	0.0003	0.0003	0.0003	0.00030	0.00030	0.00030
Water	80765	10-20 min, overflow, total	0.0003	0.0003	0.0003	0.0003	0.00030	0.00030	0.00030
Water	80766	20-30 min, overflow, total	6,0003	0.0003	0.0003	0.0003	0.00030	0.00030	0.00030
441-4-4	80852	0-10 min, non-overflow, dissolved	0.0003	0.0003	0.0003	0.0003	0.00030	0.00030	0.00030
Water Water	80853	10-20 min, non-overflow, dissolved	0.0003	0.0003	0.0003	0.0003	0.00030	0.00030	0.00030
Water	80854	20-30 min, non-overflow, dissolved	0.0003	0.0003	0.0003	0.0003	0,00030	0,00030	0.00030
Water	80767	6-10 min, non-overflow, total	0.0003	0.0003	0.0003	0.0003	0.00030	0.00030	0.00030
Water	80768	10-20 min, non-overflow, total	0.0003	0.0003	0.0003	0.0003	0.00030	0.00030	0.00030
Water	80769	20-30 min, non-overflow, total	0.0003	0.0003	0.0003	0.0003	0.00030	0.00030	0.00030
		danna da fina da malimatura							
Water	80810	Hopper Inflow Monitoring 3& 6 min, dissolved	6.0003	0.0003	0.0003	-0.0003	0.00030	0.00030	0.00030
Water	80811	9&12 min, dissolved	0.0003	0.0003	0.0003	0.0003	0.00030	0.00030	0.00030
Water	80812	15&18 min, dissolved	0.0003	0.0003	0.0003	0.0003	0.00030	0.00030	0.00030
Water	80813	21&24 min, dissolved	0.0003	0.0003	0.0003	0.0003	0.00030	0.00030	0.00030
Water	80814	27830 min, dissolved	0.0003	0.0003	0.0003	0,0003	0.00030	0.00030	0.00030
Water	80716	3& 6 min, total	0,0003	0.0003	0.0003	0.0003	0.00030	0.00030	0.00030
Water	80717	9&12 min, total	0.0003	0.0003	0.0003	0.0003	0.00030	0.00030	0.00030
Water	80718	15&18 min, total	0.0003	0.0003	0.0003	0,0003	0.00030	0.00030	0.00015
Water	80719	21824 min, total	0.0003	0.0003	0.0003	0.0003	0.00016	0.00030	0.00024
Water	80720	27&30 min, total	0.0003	0.0003	0.0003	0.0003	0.00012	0.00030	0.00019
		Hopper Overflow Manitoring							
Water	80815	2& 4 min, dissolved	0,0003	0.0003	0.0003	0.0003	0.00030	0.00030	0.00030
Water	80816	5& 8 min, dissolved	0.0003	0.0003	0.0003	0.0003	0.00030	0.00030	0.00030
Water	80817	10&12 min, dissolved	0.0003	0.0003	0.0003	0.0003	0.00030	0.00030	0.00030
Water	80818	14&16 min, dissolved	0.0003	0,0003	0.0003	0.0003	0.00030	0.00030	0.00030
Water	80819	18&20 min, dissolved	0.0003	0.0003	0.0003	0.0003	0.00030	0.00030	0.00030
Water	80722	2& 4 min, total	0 0006	0.0003	0.0003	0.0003	0.00030	0.00030	0.00014 0.00030
Water	80723	68 8 min, total	0.0006	0.0003	0.0003	0,0003	0.00073	0.00018	0.00075
Water	80724	10&12 min. total 14&16 min, total	0.0006	0.0003	0.0003	0.0003	0,00030	0.00030	0.00030
Water Water	80725 80726	18620 min, total	0.0006	0.0003	0.0003	0.0003	0.00030	0.00030	0.00030
Addies	00,20	Tours that, sales							
		Site Water			- 4				
Water	81630	Sample 1 Total	0.0003	9.0003	0,0003	0.0003	0.00030	0.00030	0.00030
Water	81631	Sample 2 Total	0.0003	0.0003	0.0003	0.0003	0.00030	0.00030	0.00030
Water	81632	Sample 3 Total	0.0003	0.0003	9,0003	0.0005	0.0000	0,00000	0,0000
		Elutriate							
Water	81636	Sample 1 Dissolved	0.0003	0.0003	0.0003	0,0003	0.00030	0.00030	0.00030
Water	81637	Sample 2 Dissolved	0.0003	0.0003	0.0003	0.0003	0.00030	0.00030	0.00030
Water	81638	Sample 3 Dissolved	0.0003	0.0003	0.0003	0.0003	9.00030	0.00030	0.00030
Water	81633	Sample 1 Total	0.0003	0.0003	0.0003	0.0003	0.00030	0.00030	0.00030
Water	81634	Sample 2 Total	0.0003	0.0003	0.0003	0.0003	0.00030	0.00030	0.00030
Water	81635	Sample 3 Total	0.0003	0,0003	0.0003	0.0000	0.00030	9.00030	0.00000
SAMPLE	SAMPLE	DESCRIPTION	NAPHTH	ACENAY	ACENAP	FLUORE	PHENAN	ANTRAC	FLANTHE
TYPE	ID								*
			0.044	0.044	0.011	0.014	0.0110	0.011	0.0110
		Detection Limit (mg/kg)	0.011	0.011	0.011	0.011	0.0110	ម.បវ។	0.0110
		Insitu Sediment							-
Sediment	81702	Sample #1	0.011	0.011	0.011	0.011	0.0110	0.011	0.0110
Sediment	81703	Sample #2	0.011	0.011	0.011	0.011	0.0038	0.011	0.0267
Sediment		Sample #3	0.011	0.011	0.011	0.011	0.0110	0.011	0 0042

FLUORE - Fluorerre PHENAN - Phenanthrene

PAHscoor

Delaurem	Dismr	Water	Arrebeie	Courses	Grained Site	

SAMPLE	SAMPLE	DESCRIPTION	PYRENE	CHRYSE	BAANTHR	BBFLANT	BKFLANT	BAPYRE	I123PYR
TYPF	ID.								
		Detection Limit (mg/l)	0.00030	0.00030	0.0003	0 00030	0.00030	0.00030	0.00030
		Editorial Edit (1.1817)	4.4444	***************************************	0.000	0 00000	0.0000	0.00000	0.00000
		Plume Monitoring							
Water	80848	Background, dissolved	0.00030	0.00030	0.0003	0.00030	0.00030	0.00030	0.00030
Water	80763	Background, total	9.00030	0.00030	0.0003	0.00030	0.00030	0.00030	0.00030
Water	80849	0-10 min, overflow, dissolved	0.00030	0.00030	0.0003	0.00030	0.00030	0.00030	0.00030
Water	80850	16-20 min, overflow, dissolved	0.00030	0.00030	0.0003	0.00030	0.00030	0.00030	0.00030
Water	80851	20-30 min, overflow, dissolved	0.00030	0.00030	0.0003	0.00030	0.00030	0.00030	0.00030
Water	80764	0-10 min, overflow, total	0.00030	0.00030	0.0003	0.00030	0.00030	0.00030	0.00030
Water	80765	10-20 min, overflow, total	0.00030	0.00030	0.0003	0.00030	0.00030	0.00030	0.00030
Water	80766	20-30 min, overflow, total	0.00030	0.00030	0.0003	0.00030	0.00030	0.00030	0.00030
Water	80852	0-10 min, non-overflow, dissolved	0.00030	0.00030	0.0003	0.00030	0.00030	0.00030	0.00030
Water	80853	10-20 min, non-everflow, dissolved	0.00030	0.00030	0.0003	0.00030	0.00030	0.00030	0.00030
Water	80854	20-30 min, non-overflow, dissolved	0.00030	0.00030	0,0003	0.00030	0.00030	0.00030	0.00030
Water	80767	0-10 min non-overflow total	0.00030	0.00030	0.0003	0.00030	0.00030	0.00030	0.00030
Water	80768	10-20 min, non-overflow, total	0.00030	0.00030	0.0003	0.00030	0.00030	0.00030	0.00030
Water	80769	20-30 min, non-overflow, total	0.00030	0.00030	0.0003	0.00030	0.00030	0.00030	0.00030
		Hopper Inflow Maritonna							
Water	80810	38 6 min, dissolved	0.00030	0.00030	0.0003	0.00030	0.00030	0.00030	0.00030
Water	80811	9&12 min, dissolved	0.00030	0.00030	0.0003	0.00030	0.00030	0.00030	0.00030
Water	80812	15&18 min, dissolved	0.00030	0.00030	0.0003	0.00030	0.00030	0.00030	0.00030
Water	80813	21&24 min, dissolved	0.00030	0.00030	0.0003	0.00030	0.00030	0.00030	0.00030
Water	80814	27830 min, dissolved	0.00030	0.00030	0.0003	0.00030	0.00030	0.00030	0.00030
Water	80716	3& 6 min, total	0.00030	0.00030	0.0003	0.00030	0.00030	0.00030	0.00030
Water	80717	9812 min, total	0.00030	0.00030	0.0003	0.00030	0.00030	0.00030	0.00030
Water	80718	158.18 min, total	0.00013	0.00030	0.0003	0.00030	0.00030	0.00030	0.00030
Water	80719	21824 min, total	0.00019 0.00017	0.00016	0.0003	0 00010	0.00012	0.00030	0.00030
Water	80720	27830 min, total	0 00017	0 000 12	0.0003	0 000 10	0.000.0	0.00030	0.00000
		Name of the state							
Minker	80815	Happer Overflow Manitoring 2& 4 min, dissolved	0.00030	0.00030	0.0003	0.00030	0.00030	0,00030	0.00030
Water Water	80816	68, 8 min, dissolved	0.00030	0.00030	0.0003	0.00030	0.00030	0.00030	0.00030
Water	80817	10812 min, dissolved	0.00030	0.00030	0.0003	0.00030	0.00030	0.00030	0.00030
Water	80818	14816 min, dissolved	0.00030	0.00030	0,0003	0.00030	0.00030	0.00030	0.00030
Water	80819	18820 min, dissolved	0.00030	0.00030	0.0003	0.00030	0.00030	0.00030	0.00030
Water	80722	2& 4 min, total	0.00030	0.00030	0.0003	0.00030	0.00030	0.00030	0.00030
Water	80723	68, 8 min, total	0.00030	0.00030	0.0003	0.00030	0.00030	0.00030	0.00030
Water	80724	10&12 min, total	0.00062	0.00041	0 0030	0 00019	0 00028	0 00025	0.00019
Water	80725	14816 min, total	0.00030	0.00030	0.0003	0.00030	0.00030	0.00030	0.00030
Water	80726	18&20 min, total	0.00030	0.00030	0.0003	0.00030	0.00030	0.00030	0.00030
		Site Water							
Water	81630	Sample 1 Total	0.00030	0.00030	0.0003	0.00030	0.00030	0.00030	0.00030
Water	81631	Sample 2 Total	0.00030	0.00030	0.0003	0.00030	0.00030	0.00030	0.00030
Water	81632	Sample 3 Total	0.00030	0.00030	0.0003	0.00030	0.00030	0.00030	0.00030
		Elutriate							
Water	81636	Sample 1 Dissolved	0.00030	0.00030	0.0003	0.00030	0.00030	0.00030	0.00030
Water	81637	Sample 2 Dissolved	0.00030	0.00030	0.0003	0.00030	0.00030	0.00030	0.00030
Water	81638	Sample 3 Dissolved	0.00030	0.00030	0.0003	0.00030	0.00030	0.00030	0.00030
Water	81633 81634	Sample 1 Total	0.00030	0.00030	0.0003	0.00030	0.00030	0.00030	0.00030
Water	81635	Sample 2 Total Sample 3 Total	0.00030	0.00030	0.0003	0.00030	0.00030	0.00030	0.00030
water	B1035	Sample 3 rutai	0.0000	0.0000	0.000	0.0000	4.00000	4.0000	0.0000
SAMPLE	SAMPLE	DESCRIPTION	PYRENE	CHRYSE	BAANTHR	BBFLANT	BKFLANT	BAFYRE	H23PYR
TYPE	ID								
		Detection Limit (mg/kg)	0.0110	0.0110	0.0110	0 0110	0 0110	0 0110	0 0110
		Insitu Sediment							
Sediment	81702	Sample #1	0.0110	0.0110	0.0110	0.0110	0.0110	0.0110	0.0110
Sediment	81703	Sample #2	0 0332	0.0583	0.0514	0.0617	0.0671	0.0644	0.0621
Sediment	81704	Sample #3	0 0042	0.0110	0.0110	0.0110	0.0110	0.0110	0.0110

PYRENF - Pyronc CHRYSE Chrysene BAANTHR - Benxx(a)Anthracene BBFLANT - Benzx(b)Fluoranthene BKFLANT - Benzx(b)Fluoranthene BAPYRF - Bcnzx(a)Pyrone 1123PYR - Indono(1, 2.3 C.D)Pyrone BOLD - less than values Values below less than values are estimated results. Results are less than the reporting limit

PAHscoar

Delaware River Water Analysis (Coarse-Grained Site)

		•					
SAMPLE	SAMPLE	DESCRIPTION	DBAHANT	B-GHI-PY	2MeNAPH	2FIBP-S	PTERP-S
TYPE	ID.	Detection Limit (mg/l)	0.0003	0.00030	0.0003		
			0.0000	0,0000	0.0003		
		Plume Monitoring					
Water	80848	Background, dissolved	0.0003	0.00030	0.0003	89.8%	71.9%
Water	80763	Background, total	0.0003	0.00030	0.0003	95.4%	73.8%
Water	80849	0-10 min, overflow, dissolved	0.0003	0.00030	0.0003	88.8%	68 8%
Water	80850	10-20 min, overflow, dissolved	0.0003	0.00030	0.0003	91.2%	76.0%
Water	80851	20-30 min, overflow, dissolved	0,0003	0.00030	0.0003	89.0%	65 8%
Water	80764	0-10 min, overflow, total	0.0003	0.00030	0,0003	59.1%	76.3%
Water	80765	10-20 min, overflow, total	0.0003	0.00030	0.0003	36.6%	31.1%
Water	80766	20-30 min, overflow, total	0.0003	0.00030	0.0003	92.1%	71.0%
Water	80852	0-10 min, non-overflow, dissolved	0.0003	0.00030	0.0003	94.3%	74.7%
Water	80853	10-20 min, non-overflow, dissolved	0.0003	0.00030	0.0003	83.1%	65 0%
Water	80854	20-30 min, non-overflow, dissolved	0,0003	0.00030	0,0003	90.4%	69.1%
Water	80767	0-10 min, non-overflow, total	0.0003	0.00030	0.0003	36.5%	27:1%
Water	80768	10-20 min, non-overflow, total	0.0003	0.00030	8000.0	77.5%	69.9%
Water	80769	20-30 min, non-overflow, total	0.0003	0.00030	0.0003	73.2%	72.0%
		Hopper Inflow Monitoring			0.0003	76.0%	67.4%
Water	80810	38 6 min, dissolved	0.0003	0.00030	0.0003	77.5%	69.2%
Water	80811	98.12 min, dissolved	0.0003	0.00030	0.0003	94.5%	76,8%
Water	80812	15&18 min, dissolved	0.0003	0.00030	0.0003	83.0%	63.8%
Water Water	80813 80814	21&24 min, dissolved 27&30 min, dissolved	0.0003	0.00030	0.0003	61.7%	54.8%
Water	80716	3& 6 min, total	0.0003	0.00030	0.0003	48.0%	60.3%
Water	80717	9&12 min, total	0.0003	0.00030	0.0003	60 0%	58.4%
Water	80718	15&18 min, total	0.0003	0.00030	0.0003	72.2%	66.1%
Water	80719	21&24 min, total	0.0003	0.00030	0.0003	67 0%	62.9%
Water	80720	27&30 min, total	0.0003	0.00030	0.0003	58.0%	66.6%
**OIC	Out 20	a., way 10 1999, And 10					
		Hopper Overflow Monitoring					
Water	80815	2& 4 min, dissolved	0.0003	0.00030	0.0003	63.0%	60.7%
Water	80816	6& 8 min, dissolved	0.0003	0.00030	0.0003	63.8%	84.8%
Water	80817	10&12 min, dissolved	0.0003	0.00030	0.0003	64.4%	67.7%
Water	80818	148.16 min, dissolved	0.0003	0.00030	0.0003	75 4%	81.3%
Water	80819	18&20 min, dissolved	0.0003	0.00030	0.0003	48.3%	65.8%
Water	80722	2& 4 min, total	0.0003	0.00030	0.0003	56,5% 66.9%	69.7% 70.5%
Water	80723	6& 8 min, total	0.0003	0,00030	0.0003	60.8%	57.6%
Water	80724	10812 min, total	0,0003	0.00014	0.0003	74.2%	65.0%
Water Water	80725 80726	14&16 min, total 18&20 min, total	0.0003	0.00030	0.0003	57.7%	68.1%
Angres	90120	10020 11811, (0.03)	0,0000	4,5460	0.000	0.1.7	
		Site Water					
Water	81630	Sample 1 Total	0.0003	0.00030	0,0003	39.7%	61.9%
Water	81631	Sample 2 Total	0,0003	0.00030	0.0003	61.3%	62.4%
Water	81632	Sample 3 Total	0.0003	0.00030	0.0003	68,0%	66.8%
		Elutriate					
Water	81636	Sample 1 Dissolved	9.0003	0.00030	0,0003	55.8%	678.0%
Water	81637	Sample 2 Dissolved	0.0003	0.00030	0.0003	79.2%	56.1%
Water	81638	Sample 3 Dissolved	0.0003	0.00030	0.0003	63.3% 65.9%	58.3% 64.0%
Water	81633	Sample 1 Total	0.0003	0.00030	0,0003	37.7%	71.0%
Water	81634	Sample 2 Total	0.0003	0.00030	0.0003	53.8%	71.2%
Water	81635	Sample 3 Total	8,0003	0.00030	0.0003	U.O.78	11.270
SAMPLE	SAMPLE	DESCRIPTION	DBAHANT	B-GHI-PY	2MeNAPH	2FIBP-S	PTERP-S
TYPE	ID	DEGOTIS TION	WW. 11.11				
		Detection Limit (mg/kg)	0.0110	0.0110	0.011		
		Insitu Sediment					
Sediment	81702	Sample #1	0.0110	0.0110	0.011	62.7%	46.1%
Sediment		Sample #2	0.0046	0.0514	0.011	76.0%	49.7%
Sediment		Sample #3	0.0110	0,0110	0.011	6B.8%	52.0%
		•					

DBAHANT - Dibenzo(A,H)Anthracene B-GHI-PY - Benzo(G,H.I)Perylene 2MeNAPH - 2-Methylnaphthalene 2FIBP-S - 2-Filizorobiphenyl(Surrogate (43-116 W)) PTERP-S - p-Terphenyl-D14(Surrogate (33-141 W)) PTERP-S - p-Terphenyl-D14(Su

Detection Limit (mg/ft)	AMPLE	SAMPLE	DESCRIPTION	ALDRIN	A-BHC	B-BHC	G-BHC	D-BHC	PPD
Valet	YPE	ID	Detection I (mil Irent)	0.000035	0.000035	0.000036	0.000035	0.000036	0.000
Background, dissolved 0.00025				0 000033	0.000033	0 000003	0 000055	CONNICO	0.000
Value 86.842 0.10 mm overflow, dissolved 0.000025 0.00	Vater	80841		0.000025	0.000025	0.000025	0.000025	0.000025	0.0000
Market	/ater	80756	Background, total	0.000025	0.000025	0.000025	0.000025	0.000026	0.0000
Marter 80844 20.30 min overflow dissolved 0.000024 0.000024 0.000025 0.000									0.0000
Value 60757									0.0000
Valet 80758 0.0000min overflow, Island 0.000025 0.000025 0.0000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.0000025 0.0000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.0000									0.0000
Water 80845				0.000025	0.000025				0.0000
Valer Billion 100,000 100,00	√ater	80759	20-30 min, overflow, total	0.000025	0.000028	0.000026	0.000025	0.000025	0.0000
Valer 80847 20.30 min, non-overflow, classolved 0.000025	Vater								0.0000
Valer									0,0000
Valer (70762 20-30 min, non-overflow, total 0.000028 0.00									0.0000
Valer Vale									0.0000
Marker	/ater	70762	20-30 min, non-overflow, total	0.000028	0.000028	0.000028	0.000028	0.000028	0.0000
Marker			Hopper Inflow Monitoring						
valer 80802 158.18 min, dissolved 0.900025			3& 6 min, dissolved						0.0000
Valer 80003 21824 mm, dissolved 0,000025 0,00									0.0000
Valer									0.0000
Valer 80705 24.24 min, Iotal 0.000025 0.000016 0.000025 0.000025 0.000027 0.000025 0.00002					0.000025				0.0000
Valer BU700 158-19 mm, total 0.000027 0.000027 0.000027 0.000027 0.000027 0.00									0 0000
Age 80707 218.24 min, total 0.000027 0.000027 0.000027 0.000027 0.000027 0.000027 0.000027 0.000025									0.000
Happer Overflow Monitoring Happer Overflow Monitoring									0 0001
Aster BCRDS 28.4 mm, dissabled 0.000025 0.000				0.000025	0.000025	0.000025	0.000025	0.000025	0.000
Water 80R05 28.4 mm, dissolved 0.000025 0.000			Horager Overflow Monitoring						
Valer 80807 108.12 min, dissolved 0.00025 0.00025 0.00	Vater	80805		0.000026	0.000026	0.000025	0.000025	0.000025	0.0000
Vater 80808 1484.0 min, dissolved 0.00025 0.00									0.0000
Valer 80809 188.20 min, dissolved 0.000025 0.000027 0.000027 0.000027 0.000027 0.000027 0.000027 0.000027 0.000027 0.000027 0.000027 0.000027 0.000025 0.									0.0000
Vater 80710 28 4 mm, total 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000027 0.000025									0.0000
Valer 81612 Sample 2 Total 0.00025 0									0.0000
Valer 80713 148.16 min, total 0.00027 0.00027 0.000027 0.00027 0.00027 0.00027 0.00027 0.00027 0.00027 0.00027 0.00027 0.00027 0.00027 0.00027 0.00027 0.00027 0.00025 0.0002									0.0000
Valer 81612 Sample 1 Dissolved 0.000025 0.000									0.0000
Mater 81612 Sample 2 Total 0.000025									0.0000
Valer 81612 Sample 2 Total 0.000025			Sile Water						
Rater 81614 Sample 3 Total	later	81612							0.0000
Elutriate									0.0000
Valer	(aler	81614	Sample 3 Total	0.000025	0.000025	0.000026	0.000026	0.000026	0.0000
Steel							6 DD0001	0.000000	0.000
Albert Stample 3 Dissolved 0.000025									0.000
Sample 2 Total 0.090025									0.0000
AMPLE SAMPLE DESCRIPTION ALDRIN A-BHC B-BHC G-BHC D-BHC PF TO Detection Limit (mg/kg) 0.00096 0.00096 0.00096 0.0012 0.0018 0.00096 0.00096 0.0012 0.00096 0.000096 0.00096 0.000096 0.000096 0.000096 0.000096 0.000096 0.000096 0.00			Sample 1 Total	0.000025					0.0000
PE ID Detection Limit (mg/kg) 0.00096 0.00096 0.00096 0.0018 0.00096 0.0018 Insitu Sediment 81708 Sample #1 0.00096 0.00096 0.0012 0.0021 0.00096 0.0018 ediment 81709 Sample #2 0.00096 0.000096 0.000096 0.000096 0.000096 0.000096 0.0000000000									0.000
PFE ID Detection Limit (mg/kg) 0.00096 0.00096 0.00096 0.0018 0.00096 0.0018 Insitu Sediment 4 ediment 81708 Sample #1 0.00096 0.00096 0.0012 0.0021 0.00096 0.0018 ediment 81709 Sample #2 0.00096 0.00096 0.0013 0.0014 0.00096 0.0019			•						
Insitu Sediment			DESCRIPTION	ALDRIN	A-BHC	B-BHC	G-BHC	D-BHC	PPD
ediment 81708 Sample #1 0.00096 0.00096 0.0012 0.0021 0.00096 0.0012 0.0021 0.00096 0.0013 0.0034 0.00096 0.0013 0.0034 0.00096 0.0034 0.00096 0.0034 0.00096 0.0034 0.00096 0.0034 0.00096 0.0034 0.00096 0.0034 0.00096 0.0034 0.00096 0.0034 0.00096 0.0034 0.00096 0.0034 0.00096 0.0034 0.00096 0.0034 0.0034 0.00096 0.0034 0.			Detection Limit (mg/kg)	0.00096	0 00096	0 00096	D.0018	o oooge	0.00
edirnent 81709 Sample #2 0.00096 0.00096 0.0013 0.0034 0.00096 0					0.00000	0.0000	0.0024	A 0000F	
Control of the contro									0.00
Company of the Compan			Sample #3	0.00096	0.00096	0 0012	0 0027	0.00096	0.00

P	es	tc	oa	r
٣	68	IC	oa	Ŧ

TYPE								
		Detection Limit (mg/l)	0.000070	0.000070	0.0000350	0.000070	0.000035	0.0000
			0,000,0					
Vater	80841	Plume Manitoring Background, dissolved	0.000050	0.000050	0.0000250	0.000050	0.000025	0.000
	80756	Background, total	0.000050	0.000050	0.0000250	0.000050	0.000025	0.000
Vater	80842	0-10 min, overflow, dissolved	0,000050	0.000050	0.0000250	0.000050	0.000025	5.000
	80843	10-20 min, overflow, dissolved	0.000050	0,000050	0.0000250	0.000050	0.000025	0.000
	80844	20-30 min, overflow; dissolved	0.000050	0.000049	0.0000240	0.000049	0.000024	0.000
	80757	0-10 min, overflow, total	0.000050	0.000050	0.0000250	0.000050	0.000025	0.000
	80758 80759	10-20 min, overflow, total 20-30 min, overflow, total	0.000050	0.000050	0.0000250 0.0000250	0.000050	0.000025	0.000
						0.00000	0.000035	0.000
	80845	0-10 min, non-overflow, dissolved	0.000050	0.000050	0,0000250	0.000050	0.000025 0.000025	0.000
	80846	10-20 min, non-overflow, dissolved	0,000070	0.000070	0.0000350	0.000070	0.000035	0.000
	80847	20-30 min, non-overflow, dissolved 0-10 min, non-overflow, total	0.000050	0.000050	0.0000250	0.000050	0.000025	0.000
	80760 80761	10-20 min, non-overflow, total	0.000050	0.000050	0.0000250	0.000050	0.000025	0.000
	70762	20-30 min, non-overflow, total	0.000055	0.000055	0.0000280	0,000055	0.000028	0.000
		Hopper Inflow Monitoring	0.00000	o oppose	0.0000400	0.000050	0.000025	0,000
	80800	38. 6 min, dissolved	0.000050 0.000050	0.000050	0.0000100	0.000050	0.000025	0.000
	80801	9&12 mln, dissolved 15&18 min, dissolved	0.000050	0.000050	0.0000140	0.000050	8.000025	0,000
Nater	80802	21&24 min, dissolved	0.000050	0.000050	0.0000100	0.000050	0.000025	0.000
Nater Nater	80803 80804	27830 min, dissolved	0.000050	0.000050	0.0000130	0.000060	0.000010	0.000
Vater	80704	3& 6 min. total	0.000050	0.000042	0.0000270	0.000050	0.000025	0.000
Nater	80705	9812 min, total	0.000024	0.000660	0.0000160	0.000050	0.000025	0.000
Vater	80706	15&18 min, total	0.000023	0.000053	0.0000190	0.000053	0.000027	0.000
Nater	80707	218/24 min, total	0.000017	0.000053	0.0000070	0.000053	0.000027	0.000
Nater	80708	27&30 min, total	0.000029	0.000036	0.0000130	0.000027	0.000025	.0,000
	****	Hopper Overflow Monitoring	0.000050	0.000050	0.0000250	0.000050	0.000025	0,000
Water	80805	2& 4 min. dissolved 6& 8 min. dissolved	0.000050	0.000050	0.0000260	0.000050	0.000025	0,00
Nater Nater	80806 80807	10&12 min, dissolved	0.000050	0.000050	0.0000250	0.000050	0.000025	0.00
Vater	80808	14&16 min. dissolved	0.000050	0.000050	0.0000250	0.000050	0.000025	0.00
Water	80809	18820 min, dissolved	0.000050	0.000050	0.0000250	0.000060	0.000025	0.00
Water	80710	28. 4 min, total	0.000010	0.000024	0.0000040	0.000050	0.000025	0.00
Water	80711	6& 8 min, total	0.000005	0.000050	0.0000250	0.000050	0.000025	0.000
Vater	80712	10&12 min, total	0.000053	0.000053	0.0000270	0.000053	0.000027	0.00
Water	80713	14&16 min, total	0.001100	0.000063	0.0000270 0.0000250	0.000053	0.000027	0.00
Water	80714	18&20 min, total	0.000050	0.000050	0,0000250	0.000030	0.00002.5	0,000
		Site Water						
/Vater	81612	Sample 1 Total	0.000050	0.000050	0.0000250	0.000050	0.000025	0.00
Water	81613	Sample 2 Total	0.000060	0.000050	0.0000250	0.000050	0,000025	0.00
Water	81614	Sample 3 Total	0.000050	0.000050	0.0000250	O,UUUUUU	0.00020	0.00
		Elutriate						
Water	81618	Sample 1 Dissolved	0.000050	0,000050	0.0000250	0.000050	0.000025	0.00
Water	81619	Sample 2 Dissolved	0.000050	0.000050	0.0000039	0.000050	0.000025	0.00
VVater	81620	Sample 3 Dissolved	0.000050	0.000050	0.0000050	0.000050	0.000025	0.00
Water	81615	Sample 1 Total	0.000050	0.000050	0.0000250	0.000050	0.000025	0.00
Water	81616	Sample 2 Total	0.000050	0.000050	0.0000250	0.000050	0.000025	0,00
Water	81617	Sample 3 Total	0.000050	0.000050	0.0000250	0,00000	0.000025	0.00
PANDLE	EAMOI E	DESCRIPTION	PPDDE	PPDDT	HPTCL	DIELDRIN	ENDOI	EN
SAMPLE TYPE	SAMPLE	DECOME FIOR						
		Detection Limit (mg/kg)	0.0019	0.0019	0.00096	0.0036	0.00096	Q.
		Insitu Sediment						_
Sediment	81708	Sample #1	0.0019	0.0019	0 00059	0.00046	0.00096	0. 0.
Sediment	81709	Sample #2	0.0019	0.0019	0.00052	0.00067 0.00058	0.00036 0.000%	0.
Sediment	81710	Sample #3	0.0019	0.0019	0,00049	0.00000	U,UUU20	•

344D) C								
SAMPLE TYPE	SAMPLE ID	DESCRIPTION	ENDOSU	ENDRIN	ENDALD	HPTCLE	METOXYCL	CLORDA
		Detection Limit (mg/l)	0.000070	0 000070	0.000079	0 000035	0.00035	0.0000
		Plume Monitoring						
Vater	80841	Background, dissolved	0.000050	0.000050	0.000050	0.000025	0.00025	0.0000
Vater	80756	Background, total	0.000050	0.000050	0.000050	0.000025	0.00028	0.0000
Valer	80842	0-10 min, overflow, dissolved	0.000050	0.000050	0.000050	0.000025	0.00025	0.0000
Vater	80843	10-20 min, overflow, discolved	0.000050	0.000060	0.000050	0.000026	0.00028	0,0000
Vater	80844	20-30 min, overflow, dissolved	0.000049	0.000049	0.000049	0.000024	0.00024	0.0000
Vater	80757	0-10 min, overflow, total	0.000050	0.000050	0.000060	0.000025	0.00025	0.0000
Vater Vater	80758 80759	10-20 min, overflow, total 20-30 min, overflow, total	0.000050 0.000050	0.000060	0.000050 0.000050	0.000026	0.00025	0.0000
vater	60739	20-30 min, overnow, total	0.000050	0.000050	u.000050	0.000025	0.00025	0.000
later	80845	0-10 min, non-overflow, dissolved	0.000050	0.000050	0.000050	0.000025	0.00025	0.000
ater	80846	10-20 min, non-overflow, dissolved	0.000050	0.000060	0.000050	0.000025	0.00025	0.000
/ater	80847	20-30 min, non-overflow, dissolved	0.000070	0.000070	0.000070	0.000035	0.00035	0.000
/ater	80760	0 10 min, non-overflow, total	0.000050	0.000050	0.000050	0.000025	0.00025	0.000
later	80761	10-20 min, non-overflow, total	0.000060	0.000050	0.000060	0.000025	0.00025	0.000
ater	70762	20-30 min, non-overflow, total	0,000055	0.000056	0.000055	0.000028	0.00028	0.000
		Hopper Inflow Monitoring						
later	00808	3& 5 min, dissolved	0.000050	0.000050	0.000050	0.000025	0.00025	
/ater	80801	9812 min, dissolved	0.000060	0.000050	0.000060	0.000025	0.00025	
later	80802	15&18 min, dissolved	0.000050	0.000050	0.000050	0.000025	0.00025	
/ater	80803	21824 min, dissolved	0.000050	0.000050	0.000050	0.000025	0.00025	
ater	80804	27&30 min, dissolved	0.000650	0.000060	0.000060	0.000025	0.00026	
ater	80704	3& 6 min, total	0.000050	0 000018	0,000050	0.000020	0.00025	
ater	80705	9&12 min, total	0.000750	0 000012	0 000560	0 000011	0.00025	
ater	80706	15818 min, total	0.000260	0 000020	0.000053	0.000023	0.00027	
ater	80707 80708	21824 min, total	0.000320 0.000050	0.000053	0.000053	0.000027	0.00027	
ales	60/00	27&30 min, total	0.000050	0.000050	0.000050	0.000025	0.00025	
		Hopper Overflow Monitoring						
	80805	2& 4 min, dissolved	0.000050	0.000060	0.000060	0.000025	0.00025	
	80806	6& 8 min, dissolved	0.000050	0.000050	0.000050	0.000025	0.00025	
	80807	10&12 min, dissolved	0.000050	0.000050	0.000050	0.000025	0.00025	
	80808	14816 min, dissolved	0.000050	0.000050	0.000060	0.000025	0.00026	
ater	80809 80710	18&20 min, dissolved 2& 4 min, total	0.000050 0.000050	0.000050	0.000050	0.000025 0.000009	0.00025 0.00025	
	80711	68. 8 min, total	0.000050	0.000050	0.000060	0.000590	0.00025	
	80712	10812 min, total	0.000053	0.000053	0.000053	0.0000390	0.00025	
	80713	14&16 min, total	0.000053	0.000053	0.000053	0.000027	0.00027	
	80714	18&20 min, total	0.000060	0.000050	0.000060	0.000025	0.00026	
ater	81612	Site Water Sample 1 Total	0.000050	0.000050	0.000050	0 000025	0.00025	
ater	81613	Sample 2 Total	0.000050	0.000050	0.000050	0.000025	0.00025	
	81614	Sample 3 Total	0.000050	0.000050	0.000050	0.000025	0.00025	
		Finds						
ala.	DACAG	Elutriate	0.000056	0.000050	0.000070	0.00000=	0.0000	
	81618	Sample 1 Dissolved	0.000050 0.000050	0.000050	0.000050	0.000025	0.00025	
	81619 81620	Sample 2 Dissolved Sample 3 Dissolved	0.000050	0.000050	0.000050	0.000025	0.00025	
	81015	Sample 1 Total	0.000050	0.000050	0.000050	0.000025	0.00025	
	81616	Sample 2 Total	0.000050	0.000050	0.000050	0.000025	0.00025	
	81617	Sample 3 Total	0.000050	0.000050	0.000050	0.000025	0.00025	
	SAMPLE ID	DESCRIPTION	ENDOSU	ENDRIN	ENDALD	HPTCLE	METOXYCL	
	16	Detection Limit (mail: m)	0.0026	0.0000	0.0000	0.0040	0.040	
		Detection Limit (mg/kg)	0.0036	0.0036	0.0036	0 0018	0.018	
	81708	Insitu Sediment Sample #1	0.00083	0.0019	0.0019	0.0014	0.0083	
	171110							
diment	81709	Sample #2	0.00083	0.0019	0,0019	0.0020	0.0083	

ENDOSU - Endosulfan sulfate ENDRIN - Endon ENDALD - Endon Aldehyde CLORDANE - Chlordane BOLD - Iess than values Values below less than values are estimated results Results are less than the reporting limit HPTCLE - Heptachlor Epoxide METOXYCL - Methoxychlor

Delaware River Water	t Analysis	(Coarse-Grained Si	te)
----------------------	------------	--------------------	-----

		4					
SAMPLE	SAMPLE	DESCRIPTION	TOXAPHEN	TcLXYL-S	DCLBP	a-CHLORD	g-CHLORD
TYPE	ID						
		Detection Limit (mg/l)	0.000350				
		Plume Monitoring					
Water	80841	Background, dissolved	0.000250	81.60%	88.70%		
Water	80756	Background, total	0.000250	90.10%	93.00%		
4 Amen.	00100	. Daniel grant of too					
Water	80842	0-10 min, overflow, dissolved	0.000250	87.70%	91.60%		
Water	80843	10-20 min, overflow, dissolved	0.000250	93.90%	102.00%		
Water	80844	28-30 min, overflow, dissolved	9.000240	92.30%	97.90%		
Water	80757	0-10 min, overflow, total	0.000250	88.00%	95.70%		
Water	80758	10-20 min, overflow, total	0.000250	82.40% 89.20%	82.60% 92.20%		
Water	80759	20-30 min, overflow, total	0.000250	a9.20%	32.2078		
Water	80845	0-10 min, non-overflow, dissolved	0.000250	91.60%	101.00%		
Water	60846	10-20 min, non-overflow, dissolved	0.000250	74.70%	86 30%		
Water	80847	20-30 min, non-overflow, dissolved	0.000350	96.00%	103.00%		
Water	80760	0-10 min, non-overflow, total	0.000250	90.60%	95.30%		
Water	80761	10-20 min, non-overflow, total	0.000250	53.40%	72.90%		
Water	70762	20-30 min, non-overflow, total	0,000280	99,10%	101.00%		
		Hopper Inflow Monitoring					
Water	80800	3& 6 min, dissolved	0.000025	79.14%	90.86%	0.000025	0.000025
Water	80801	98.12 min, dissolved	0.000025	77.94%	88.38%	0.000026	0,000025
Water	80802	15&18 min, dissolved	0.000025	65.90%	73.68% 69.59%	0.000013	0.000025
Water	80803	21&24 min, dissolved	0.000025	75.24% 78.33%	70.11%	0.000025	0.000025
Water	80804	27&30 min, dissolved	0.00026	68.26%	81.31%	0.000018	0.000048
Water	80704	3& 6 min, total	0.000250	62.04%	99.69%	0.000014	0.000051
Water	80705	9&12 min, total	0.000250	68.15%	89,41%	0.000021	0.000052
Water	80706 80707	15&18 min, total 21&24 min, total	0.000270	56.44%	69.56%	0.000025	0.000009
Water Water	80708	278.30 min, total	0.000250	52.93%	64.41%	0.000008	0.000018
480101	00,00	21 0000 1111111 1011111					
		Hopper Overflow Monitoring					
Water	80805	2& 4 min, dissolved	0.000025	93.58%	98.19%	0.000025	0.000025
Water	80806	6& 8 min, dissolved	0.000025	87.07%	92.15%	0.000025	0.000011
Water	80807	10&12 min, dissolved	0.000025	90.84%	97.36%	0.000016	0.000012
Water	80808	14&15 min, dissolved	0.000025	87.46%	95.06%	0.000025	0.000026
Water	80809	18&20 min, dissolved	0.000025	91.71%	94.46%	0.000025	0.000025
Water	80710	2& 4 min, total	0.000250	69.35%	69.00%	0.000025	0.000007
Water	80711	6& 8 min, total	0.000250	81.76%	75.25% 68.25%	0.000025	0.000071
Water	60712	108.12 min, total	0.000276	73.21% 73.06%	66.74%	0.000027	0.000027
Water	80713	14&16 min, total	0.000270	82.29%	68.42%	0.000027	0.000027
Water	80714	16820 min, total	0.000250	02.29%	00.42%	0.000020	0.000020
	04040	Site Water	0.000250	79,55%	79.71%	0.000025	0.000025
Water	81612	Sample 1 Total Sample 2 Total	0.000250	83.18%	75.81%	0,000025	0.000025
Water Water	81613 81614	Sample 3 Total	0.000250	80.62%	73 95%	0.000025	0.000025
AASIGN	01014	Can pic o Color					
		Elutriate					
Water	81618	Sample 1 Dissolved	0.000250	82.64%	76.37%	0.000025	0.000025
Water	81619	Sample 2 Dissolved	0.000250	82.61%	74.72%	0.000025	0.000025
Water	81620	Sample 3 Dissolved	0.000250	82.47%	74.18%	0.000025	0.000025
Water	81615	Sample 1 Total	0.000250	81.55%	75.14%	0.000025	0.000025
Water	81616	Sample 2 Total	0.000250	79.75%	70.89%	0.000025	0.000025
Water	81617	Sample 3 Total	0.000250	80.50%	74.91%	0.000025	0.000025
						C) # CDD	- 01 11 0000
SAMPLE TYPE	SAMPLE ID	DESCRIPTION	TOXAPHEN	TcLXYL-S	DCLBP	a-CHLORD	g-CHLORD
1175	ĮU.					0,00096	0.0019
		Detection Limit (mg/kg)	0.018			0.00090	0.0019
		Insitu Sediment					n ma
Sedimen		Sample #1	9600.0	90.16%	90.52%	0.00096	0.0011 0.0013
Sedimen		Sample #2	0.0095	85.63% 84.61%	90 13% 90.58%	36000.0	0.0013
Sedimen	t 81710	Sample #3	0.0096	04.0170	40.00%	o,uuus	0.0066

TOXAPHEN - Toxaphene a CHLORD - a-CHLORDANE G-CHLORDANE G-CHLORD - g-CHLORD - g-CHLORDANE G-CHLORDANE SOILD - less than values are estimated results. Results are less than the reporting limit.

PCB ₆ COar

		Delaware River Water Analysis (Coa	rse-Grained Site)						
SAMPLE TYPE	SAMPLE ID	DESCRIPTION	PCB 22	PCB 33	PC8 37	PCB 42	PC8 47	PCB 64	PCB 74
		Detection Limit (mg/li)	0.0000011	0.0000011	0.0000011	0.0000011	0 0000011	0.0000011	0.0000011
		Plume Monitoring							
Water	80834	Background, dissolved	0.0000011	0.0000011	0.0000011	0.0000011	0.0000011	0.0000011	0.0000011
Water	80749	Background, total	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010
Water	80835	0-10 min, overflow, dissolved	0.0000010	0.0000010	0.0000010	0.0000010	0.0000016	0.0000010	0,0000010
Water	80835	10-20 min, overflow, dissolved	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010
Water	80837	20-30 min, overflow, dissolved	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010
Water Water	80750	0-10 min, overflow, total	0.0000011	0.0000011	0.0000011	0.0000011	0.0000011	0.0000011	0.0000011
Water	80751 80752	10-20 min, overflow, total 20-30 min, overflow, total	0.0000004 0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010 0.0000010
Water	80838	0-10 min, non-overflow, dissolve	0.0000010	0.0000010	0.0000010	0.0000010			
Water	BD839	10-20 min, non-overflow, dissolve	0.0000011	0.0000011	0.0000011	0.0000011	0.0000010	0.0000010	0.0000010
Water	80840	20-30 min, non-overflow, dissolve	0.0000011	0.0000011	0.0000011	0.0000011	0.0000011	0.0000011	0.0000011
Water	80753	0-10 min, non-overflow total	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000011	0.0000011
Water	80754	10-20 min, non-overflow, total	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010
Water	80755	20-30 min, non-overflow, total	0.0000011	0.0000011	0.0000011	0.0000011	0.0000011	0.0000011	0.0000011
Water	80790	Hopper Inflow Monitoring 3& 6 min, dissolved	0.0000010	0.0000010	0.0000010	0 0000022	0.0000010	0.0000010	0.0000010
Water	80791	9&12 min, dissolved	0.0000010	0.0000010	0.0000010	0 0000022	0.0000010	0.0000010	0.0000010
Water	80792	158.18 min, dissolved	0.0000010	0.0000010	0.0000010	0.0000020	D 0000005	0.0000010	0.0000010
Water	80793	21&24 min, dissolved	0.0000010	0.0000010	0.0000010	0 0000012	0 0000015	0.0000010	0.0000010
Nater	80794	27&30 min, dissolved	0.0000010	0.0000010	0.0000010	0 0000009	0 0000005	0.0000010	0.0000010
Water	80692	3& 6 min, total	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010
Water	80693	9&12 min, total	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010
Water	80694	15&18 min, total	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010
Water	80695 80696	21824 min, total	0,0000011	0.0000011	0.0000011	0.0000011	0.0000011	0 0000027	0.0000011
Water	90090	27830 min, total	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000020	0.0000010
		Hopper Overflow Monitoring							
Water	80795	2& 4 min, dissolved	0.0000010	0.0000010	0.0000010	0.0000017	0.0000010	0.0000010	0.0000010
Water	80796	68. 8 min, dissolved	0.0000010	0.0000010	0.0000010	0.0000019	0.0000010	0.0000010	0.0000010
Nater	80797	10&12 min. dissolved	0.0000010	0.0000010	9.0000010	0.0000011	0.0000010	0.0000010	0.0000010
Vater	80798	14&16 min, dissolved	0.0000010	0.0000010	8,0000010	0.0000015	0.0000010	0.0000010	0.0000010
Vater	80799	18&20 min, dissolved	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010
Valer	80698	2& 4 min, total	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010
Vater	80699	6& 8 min. total	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010
Vater Vater	80700 80701	10&12 min, total 14&16 min, total	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010
Nater	80702	18&20 min, total	0.0000010	0.0000011	0.0000011	0.0000011	0.0000011	0.0000011	0.0000011
Vater	81594	Site Water Sample 1 Total	0,0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010
Vater	81595	Samole 2 Total	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010
Vater		Sample 3 Total	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010
		Elutriate							
Vater		Sample 1 Dissolved	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010
Vater Vater		Sample 2 Dissolved Sample 3 Dissolved	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010
Vater		Sample 1 Total	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010
Vater		Sample 2 Total	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010
Vater		Sample 3 Total	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010
AMPLE	SAMPLE ID	DESCRIPTION	PCB 22	PCB 33	PCB 37	PCB 42	PCB 47	PCB 64	PCB 74
		Detection Limit (mg/kg)	0.00033	0 00033	0 00033	0 00033	0 00033	0.00033	0.00033
		Insitu Sediment							
Sediment	81714	Sample #1	0.00033	0.00033	0.00033	0.00033	0.00033	0.00033	0.00033
Sediment	81715	Sample #2	0.00033	0.00033	0.00033	0.00033	0.00033	0.00033	0.00033
Sediment		Sample #3	0.00033	0.00033	0.00033	0.00033	0.00033	0.00033	0.00033

BOLD - less than values. Values below less than values are estimated results. Results are less than the reporting limit.

P	c	Bs	CE	KBI,

		Delaware River Water Analysis (Coan	se-Grained Site)						
	SAMPLE	DESCRIPTION	PCB 80	PCB 81	PCB 84	PCB 91	PCB 92	PCB 95	PCB 9
		Detection Limit (mg/l)	0.0000011	0.0000011	0.00000110	0.0000011	0.0000011	0.00000110	0.0000011
		Plume Monitoring							
Vater	80834	Background, dissolved	0.0000011	0.0000011	0.00000110	0.0000011	0.0000011	0.000000080	0.0000011
	80749	Background, lotal	0.0000010	0.0000010	0.00000100	0.0000010	0.000010	0.00000060	0.0000010
Vater	80835	0-10 min, overflow, dissolved	0.0000010	0.0000010	0.00000060	0.0000010	0.0000010	0.00000090	0.0000010
	80836	10-20 min, overflow, dissolved	0.0000010	0.0000010	0.00000060	0.0000010	0.0000010	0.00000080	0.0000004
	80837	20-30 min, overflow, dissolved	0.0000010	0.0000010	0.00000050	0.0000010	0,0000010	0.00000090	0.0000007
	80750	0-10 min, overflow, total	0.0000011	0.0000011	0.00000110	0.0000011	0.0000011	0.00000110	0.0000011
later	80751	10-20 min, overflow, total	0.0000010	0.0000010	0.00000040	0.0000010	0.0000010	0.000000090	0.0000010
/ater	80752	20-30 min, overflow, total	0:0000010	0.0000010	0,00000100	0.0000010	0.0000010	0.00000050	0,0000010
øter	80838	0-10 min, non-overflow, dissolve	0.0000010	0.0000010	0.00000080	0.0000010	0.0000010	0.00000080	0.0000005
	80839	10-20 min, non-overflow, dissolve	0.0000011	0.0000011	0.00000050	0.0000011	0.0000011	0.00000090	0.0000004
	80840	20-30 min, non-overflow, dissolve	0.0000011	0.0000011	0.00000050	0.0000011	0.0000011	0.00000110	0.0000004
	80753	0-10 min, non-overflow, total	0.0000010	0.0000010	0.00000100	0.0000010	0.0000010	0.00000050	0.0000010
	80754	10-20 min, non-overflow, total	0.0000010	0.0000010	0.00000100	0.0000010	0.0000010	0.00000070 0.00000110	0.0000000
Vater	80755	20-30 min, non-overflow; total	0.0000011	0,0000011	0.00000110	0.0000011	0,0000011	0.000000110	0.000000
		Hopper Inflow Monitoring						0.00000400	0.0000005
	80790	3& 6 min, dissolved	0.0000010	0.0000010	0.00000140	0.0000010	0.0000010	0.00000120	0.0000004
	80791	9&12 min, dissolved	0.0000010	0.0000010	0.00000110 0.00000100	0.0000010	0.0000010	0.00000100	0.000001
	80792	15818 min, dissolved 21824 min, dissolved	0.0000010	0.0000010	0.00000110	0.0000010	0.0000010	0.00000160	0.0000000
	80793 80794	27&30 min, dissolved	0.0000010	0.0000010	0.00000170	0.0000010	0.0000010	0.00000160	0.000001
vater Vater	80692	3& 6 min, total	0.0000010	0.0000010	0.00000100	0.0000010	0.0000010	0.00000120	0.0000010
vater Vater	80693	9&12 min, total	0.0000010	0.0000010	0.00000100	0.0000010	9,0000010	0.00000140	0,0000010
	80694	15&18 min, total	0.0000010	0.0000010	0.00000280	0.0000010	0.0000010	0.00000230	0.000001
	80695	218.24 min, total	0.0000011	0.0000011	0.000000330	0.0000011	0.0000011	0.00000290	0,0000000
Vater	80695	27&30 min, total	0.0000010	0.0000010	0.00000240	0.0000010	0.0000010	0.00000200	0,0000013
		Hopper Overflow Monitoring					0.0000010	0.00000100	0.0000010
Vater	80795	2& 4 min, dissolved	0.0000010	0.0000010	0.00000100	0.0000010	0.0000010	0.00000100	0.000001
Vater	80796	68. 8 min, dissolved	0.0000010	0.0000010	0.00000100	0.0000010	6.0000010	0.00000050	0.000001
Vater	80797	10&12 min, dissolved	0.0000010	0.0000010	0.00000100	0,0000010	0.0000010	0.00000000	0.000001
Vater	80798	14&16 min, dissolved 18&20 min, dissolved	0.0000010	0.0000010	0.00000100	0.0000010	0.0000010	0.00000060	0.000001
Vater Vater	80799 80698	28. 4 min, total	0.0000010	0.0000010	0.00000120	0.0000010	0.0000010	0.00000130	0.000001
Nater Nater	80699	68 8 min, total	0.0000010	0.0000010	0.00000100	0.0000010	0.0000010	0.00000090	0.000001
Vater	80700	108.12 min, total	0.0000010	0.0000010	0.00000100	0.0000010	0.0000010	0.00000140	0.000001
Vater	80701	14&16 min, total	0.0000011	0.0000011	0,00000110	0.0000011	0.0000011	0.00000110	0.000001
Vater	80702	18820 min, total	0.0000010	0.0000010	0.00000080	0.0000010	0.0000010	0.00000180	0.000001
		Site Water							
Vater	81594	Sample 1 Total	0.0000010	0.0000010	0.00000100	0.0000010	0.0000010	0.00000100	0.000001
Vater Vater	81595 81596	Sample 2 Total Sample 3 Total	0.0000010	0.0000010	0.00000100	0.0000010	0.0000010	0.00000100	0.000001
vater	9 (335)	Sample 3 (bid)	8,000010	0.00000	0,00000100				
Malac	81600	Elutriate Sample 1 Dissolved	0.0000010	0.0000010	0.00000043	0.0000010	0.0000010	0.00000086	0.000001
Vater Vater	81601	Sample 2 Dissolved	0.0000010	0.0000010	0.00000034	0.0000010	0.0000010	0.00000065	0,000001
Vater	81602	Sample 3 Dissolved	0,0000010	0,0000010	0.00000035	0.0000010	0.0000010	0.00000069	0.000000
Vater	81597	Sample 1 Total	8.0000010	0.0000010	0.00000100	0.0000010	0.0000010	0.00000048	0,000001
Vater	81598	Sample 2 Total	0.0000010	0.0000010	0.00000100	0.0000010	0.0000010	0.00000150	0.000000
Valer	81599	Sample 3 Total	0.0000010	0.0000010	0.00000100	0.0000010	0.000010	0.00000100	0.000001
SAMPLE	SAMPLE ID	DESCRIPTION	PCB 80	PCB 81	PCB 84	PCB 91	PCB 92	PCB 95	PCB
		Detection Limit (mg/kg)	0.00033	0.00033	0.00033	0.00033	0.00033	0.00033	0.000
		Incite Carliment							
	0.174.4	Insitu Sediment Sample #1	0.00033	0.00033	0.00033	0.00033	0,00033	0.00033	0.000
Zadimoni									0.000
Sediment Sediment		Sample #2	0.00033	0.00033	0.00033	0,00033 8,00033	0.00033 0.00033	0.00033	0.000

BOLD - less than values Values below less than values are estimated results. Results are less than the reporting limit.

PCBscnar.

		Delaware River Water Arralysis (Coa	rse-Grained Site)						
SAMPLE TYPE	SAMPLE ID	DESCRIPTION	PCB 110	PCB 119	PCB 120	PCB 123	PCB 126	PCB 127	PCB 132
		Detection Limit (mg/l)	0 00000110	0 0000011	0.0000011	0 0000011	0 0000011	0 0000011	0 0000011
		Plume Monitoring							
Water Water	80834 80749	Background, dissolved Background, total	0.00000100 0.0000050	0.0000011 0.0000010	9.0000011 9.0000010	0.0000011 0.0000010	0.0000011 0.0000010	0.0000011 0.0000010	0.0000011 0.0000010
Water	80835	0-10 min, overflow, dissolved	0.00000090	0.0000010	0.0000010	0.000010	0.0000010	0.0000010	0.0000010
Water	80836	10-20 min, overflow, dissolved	0.00000110	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010
Water	80837	20-30 min, overflow, dissolved	089000000	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010
Water	80750	0-10 min, overflow, total	0.00000050	0.0000011	0.0000011	0.0000011	0.0000011	0.0000011	0.0000011
Water Water	80751 80752	10-20 min, overflow, total 20-30 min, overflow, total	0.00000050 0.00000050	0.0000010 0.0000010	0.0000010 0.0000010	0.000001D 0.0000010	0.0000010 0.0000010	0.0000010	0.0000010 0.0000010
Water	80838	0-10 min, non-overflow, dissolve	0.00000110	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010
Water	80839	10-20 min, non-overflow, dissolve	0.00000070	0.0000011	0.0000011	0.0000011	0.0000011	0.0000011	0.0000011
Water	80840	20-30 min, non-overflow, dissalve	0.00000110	0.0000011	0.0000011	0.0000011	0.0000011	0.0000011	0.0000011
Water	80753	8-10 min, non-overflow, total	0.00000050	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010
Water	80754	10-20 min, non-overflow, total	0 00000060	0.0000010	0.0000010	0.0000010	0.0000010	0,0000010	0.0000010
Water	80755	20-30 min, non-overflow, total	0.00000090	0.0000011	0.0000011	0.0000011	0.000011	0.0000011	0.0000008
		Hopper Inflow Monitoring							
Water	80790	3& 6 min, dissolved	0.00000210	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010
Water	80791	9&12 min, dissolved	0.00000160	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010
Water	80792 80793	15&18 min, dissolved 21&24 min, dissolved	0.00000100 0.00000160	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010
Water	80794	27&30 min, dissolved	0.00000160	0.0000010	0.0000007	0.0000010	0.0000010	0.0000010	0.0000010
Water	80692	38, 6 min, total	0.00000160	0.0000010	0 0000026	0.0000010	0.0000010	0.0000010	0.0000010
Water	80693	9&12 min, total	0.00000200	0.0000010	0.0000019	0.0000010	0.0000010	0.0000010	0.0000010
Water	80694	15&18 min, total	0 00000260	0.0000010	0 0000054	0.0000010	0.0000010	0.0000010	0.0000010
Water Water	80695 80696	21824 min, total 27830 min, total	0 00000260 0 00000230	0.0000011 0.0000010	0 0000061 0 0000071	0.0000011	0.0000011 0.0000010	0.0000011	0.0000011 0.0000010
Water	80795	Hopper Overflow Monitoring	0 00000070	6.0000010	0.0000010	0.0000010			
Water	80796	28, 4 min, dissolved 68, 8 min, dissolved	0.00000070	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010 0.0000010
Water	80797	10812 min, dissolved	0 00000050	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010
Water	80798	14&16 min, dissolved	0.000000060	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010
Water	80799	18820 min, dissolved	0.00000000	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010
Water	80698	2& 4 min, total	0.00000150	0.0000010	8000000	0.0000010	0.0000010	0.0000010	0.0000010
Water Water	80699 80700	6& 8 min, total 10&12 min, total	0.00000120 0.00000150	0.0000010	0.0000005	0.0000010	0.0000010	0.0000010	0.0000010
Water	80701	14816 min, total	0.00000110	0.0000011	0.0000006	0.0000011	0.0000011	0.0000011	0.0000011
Water	80702	18&20 min, total	0 00000160	0.0000010	0 0000005	0.0000010	0.0000010	0.0000010	0.0000010
		Sile Water							
Water	81594	Sample 1 Total	0.00000100	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010
Water	81595	Sample 2 Total	0.00000097	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010
Water	81596	Sample 3 Total	0.00000077	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010
		Elutnate							
Water	81600	Sample 1 Dissolved	0.00000091	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010
Water	81601	Sample 2 Dissolved	0.00000063	0.0000010	0,0000010	0.0000010	0.0000010	0.0000010	0.0000010
Water	81502	Sample 3 Dissolved	0.00000064	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010
Water Water	81597 81598	Sample 1 Total Sample 2 Total	0.00000001 0.00000110	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010
Water	81599	Sample 3 Total	0.00000059	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010
SAMPLE TYPE	SAMPLE	DESCRIPTION	PCB 110	PCB 119	PCB 120	PCR 123	POR 126	PCB 127	PCB 132
	-	Detection Limit (mg/kg)	0.00033	0 00033	0.00033	0.00033	0.00033	0 00033	0 00033
		Insitu Sediment							
Sediment	81714	Sample #1	0.00033	0.00033	0.00033	0.00033	0.00033	0.00033	0.00033
		Sample #2	0.00033	0.00033	0.00033	0.00033	0.00033	0.00033	0.00033
Sediment Sediment		Sample #3	0.00033	0.00033	0.00033	0.00033	0.00033	0.00033	0.00033

BOLD - less than values. Values below less than values are estimated results. Results are less than the reporting limit.

PCBscoar

		Delaware River Water Analysis (Coar	se-Grained Site)						
	SAMPLE D	DESCRIPTION	PCB 135	PCB 146	PCB 149	PCB 157	PCB 158	PCB 166	PCB 168
		Detection Limit (mg/l)	0.0000011	0.00000110	0.00000110	0.0000011	0.0000011	0.0000011	0.00000110
		Plume Manitoring							
	90834	Background, dissolved	0.0000011	0.00000110	5.00000110 0.00000100	0.0000011	0.0000011	0.0000011	0.00000110
Water 8	80749	Background, total	0.0000010	0.00000100					
	90835	0-10 min, overflow, dissolved	0.0000010	0.00000100	0 00000040	0.0000010	0,0000010	0.0000010	0,0000010
	80836	10-20 min, overflow, dissolved	0.0000010	0.00000050	0.00000040 0.00000040	0.0000010	0.0000010	0.0000010	0.0000010
	90837 80750	20-30 min, overflow, dissolved 0-10 min, overflow, total	0.0000011	0.00000110	0.00000110	0.0000011	0.0000011	0,0000011	0.0000011
	80751	10-20 min, overflow, total	0.0000010	0.00000100	0.00000100	0.0000010	0.0000010	0.0000010	0.0000010
	80752	20-30 min, overflow, total	0.0000010	0.00000100	0.00000100	0.0000010	0.0000010	0.0000010	0.0000010
Water 8	80838	0-10 min, non-overflow, dissolve	0.0000010	0.00000100	0.00000100	0.0000010	0.0000010	0.0000010	0.0000010
	80839	10-20 min, non-overflow, dissolve	0.0000011	0.00000110	0.00000110	0.0000011	0.0000011	0.0000011	0.0000011
	80840	20-30 min, non-overflow, dissolve	0.0000011	0,00000110	0.00000110	0.0000011	0.0000011	0.0000011	0.0000011
	80753	0-10 min, non-overflow, total	0.0000010	0.00000100	0.00000100	0,0000010	0.0000010	0.0000010	0.0000010
	80754 80755	10-20 min, non-overflow, total 20-30 min, non-overflow, total	0,0000011	0.00000110	0.00000110	0.0000011	0.0000011	0.0000011	0.0000011
Assist .	50750	20-50 Hill Holl-ordinan, tors.	4,0000011						
		Hopper Inflow Monitoring	0,0000010	0.00000100	0.00000040	0.0000010	0.0000010	0.0000010	0.0000010
	80790 80791	3& 6 min, dissolved 9&12 min, dissolved	0.0000010	0.00000100	0.00000040	0.0000010	0.0000010	0.0000010	0.0000010
	80792	15&18 min, dissolved	0,0000010	0.00000100	0.000000040	0.0000010	0.0000010	0.0000010	0.0000010
	80793	21&24 min, dissolved	0.0000010	0.00000100	0 00000070	0.0000010	0.0000010	0.0000010	0.0000010
Water	80794	27&30 min, dissolved	0.0000010	0.00000100	0.00000130	0.0000010	0.0000010	0.0000010	0.0000007
	80692	3& 6 min, total	0.0000010	0,00000100	0.00000100	0.0000010	0.0000010	0.0000010	0.0000007
	80693 80694	9&12 min, total 15&18 min, total	0.0000010	0.00000100	0.00000290	0.0000010	0,0000010	0.0000010	0.0000016
	80695	218.24 min, total	0.0000011	0.00000100	0.00000300	0.0000011	0.0000011	0.0000011	0.0000014
	80696	27&30 min, total	0.0000010	0.00000097	0.00000300	0.0000010	0.0000010	0.000010	0.0000010
		Hopper Overflow Monitoring						0.0000010	0.0000010
	80795	2& 4 min, dissolved	0.0000010	0.00000100	0.00000100	0.0000010 0.0000010	0.0000010	0.0000010	0.0000010
	80796 80797	6& 8 min, dissolved 10&12 min, dissolved	0.0000010	0.00000100	0.00000100	9,0000010	0.0000010	0.0000010	0,0000010
	80798	14816 min, dissolved	0.0000010	0.00000100	0.00000100	0.0000010	0.0000010	0.0000010	0.0000010
	80799	18&20 min, dissolved	0.0000010	0.00000100	0.00000100	0.0000010	0.0000010	0.0000010	0,0000010
Water	80698	2& 4 min, total	0.0000010	0.00000070	0.00000160	0,0000010	0.0000010	0.0000010	0.0000006
	80699	6& 8 min, total	0.0000010	0.00000100	0.00000088	0.0000010	0.0000010	0.0000010	0.0000010
	80700 80701	10&12 min, total 14&16 min, total	0.0000011	0.00000067	0.00000240	0.0000011	0.0000011	0.0000011	0.0000011
	80702	18820 min, total	0.0000010	0 00000084	0.00000110	0.0000010	0.0000010	0.0000010	0.0000010
		Site Water							
	81594	Sample 1 Total	0.000010	0.00000100	0.00000100	0.0000010	0.0000010	0.0000010	0.0000010
	81595 81596	Sample 2 Total Sample 3 Total	0.0000010 0.0000010	0.00000100 0.00000100	0.00000050 0.00000100	0.0000010	0.000010	0.0000010	0.0000010
18data-	81600	Elutriate Sample 1 Dissolved	0.0000010	0,00000100	0.00000038	0.0000010	0.0000010	0.0000010	0.0000010
	81601	Sample 2 Dissolved	0.0000010	0.00000100	0.00000037	0.0000010	0,0000010	0.0000010	0.0000010
Water	81602	Sample 3 Dissolved	0.0000010	0.00000100	0.00000100	0.0000010	0.0000010	0.0000010	0.0000010
	81597	Sample 1 Total	0.0000010	0.00000100	0.00000066	0.0000010	0.0000010	0.0000010	0,0000010
	81598 81599	Sample 2 Total Sample 3 Total	0.0000010	0.00000100	0.00000100	0.0000010	0.0000010	0.0000010	0.0000010
SAMPLE TYPE	SAMPLE ID	DESCRIPTION	PCB 135	PCB 146	PCB 149	PCB 157	PCB 158	PCB 166	PCB 16
		Detection Limit (mg/kg)	0.00033	0.00033	0 00033	0.00033	0.00033	0.00033	0.000
		Insitu Sediment							0.000
		Sample #1	0.00033	0.00033	0.00033	0.00033	0.00033	0.00033	0,000
Sediment Sediment		Sample #2	0.00033	0.00033	0.00033	0.00033	0.00033	0.00033	0.000

BOLD - less than values Values below less than values are estimated results. Results are less than the reporting limit.

РСВысозі

		Delaware River Water Analysis (Coa	rse-Grained Site)						
SAMPLE TYPE	SAMPLE ID	DESCRIPTION	PCB 169	PCB 174	PCB 177	PCB 178	PCB 179	PCB 8	PCB
		Detection Limit (mg/l)	0 0000011	0.0000911	0.0000011	0.0000011	0.0000011	0.0000011	0.000001
		Plume Monitoring							
Water	80834	Background, dissolved	0.0000011	8.0000011	0.0000011	0.0000011	0.0000011	0.0000011	0.000001
Water	80749	Background, total	0.0000010	0.0000010	0.0000010	0.000010	0.000010	0.0000010	0.000001
Water	80835	0-10 min, overflow, dissolved	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.000001
Water	80836	10-20 min, overflow, dissolved	0.0000010	9.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.000001
Water	80837	20-30 min, overflow, dissolved	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.000001
Water	80750	0-10 min, overflow, total	0.0000011	0.0000011	0.0000011	0.0000011	0.0000011	0.0000011	0.000001
Mater	80751	10-20 min, overflow, total	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.00000
Nater	80752	20-30 min, overflow, total	0.0000010	0.0000010	0.0000010	0.8000010	0.0000010	0.0000010	0.000001
V ater	80838	0-10 min, non-overflow, dissolve	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.000001
N ater	80839	10-20 min, non-overflow, dissolve	0.0000011	0.0000011	0.0000011	0.0000011	0.0000011	0.0000011	0.00000
Nater	80840	20-30 min, non-overflow, dissolve	0.0000011	0.0000011	0.0000011	0.0000011	0.0000011	0,0000011	0.000001
V ater	80753	0.10 min, non-overflow, total	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.000001
Water	80754	10-20 min, non-overflow, total	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.000001
Water	80755	20-30 min. non-overflow, total	0.0000011	0.0000011	0.0000011	0.0000011	0.0000011	0.0000011	0.000001
*****	00700	Hopper Inflow Monitoring							
Vater	80790 80791	3& 6 min, dissolved	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.000004
Nater Nater	80792	9812 min, dissolved 15818 min, dissolved	0.0000010	0.0000010	0.0000010 0.0000010	0.0000010	0.0000010	0.0000010	0.00000
Vater	80793	21&24 min, dissolved	0.0000010	0,0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.00000
Vater	80794	27830 min, dissolved	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.00000
Valer	80692	3& 6 min, total	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.00000
Vater	80693	9&12 min, total	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.000001
Vater	80694	15818 min, total	0.0000010	0.0000084	0.0000010	0.0000010	0.0000010	0.0000010	0.00000
Nater	80695	218.24 min. total	0.0000011	0.0000058	0.0000011	0,0000011	0.0000011	0.0000011	0,000001
Nater	80696	27&30 min total	0.0000010	0 0000042	0.0000010	0.0000010	0.0000010	0.000010	0.000001
	80795	Hopper Overflow Monitoring	0.0000010	0.0000010	0.0000040	0.000004.0			
Nater Nater	80796	28 4 min, dissolved	0.0000010	0.0000010	0.0000010	0.0000010 0.0000010	0.0000010	0.0000010	0.000001
Vater	80797	6& 8 min, dissolved 10&12 min, dissolved	0.0000010	0,0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.000001
Vater	80798	148/16 min, dissolved	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.000001
Valer	80799	18&20 min, dissolved	0.0000010	0.0000010	0.0000010	0.0000010	9.0000010	0.0000010	0.000001
Vater	80698	2& 4 min. total	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.000001
Vater	80699	68 8 min total	0,0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.000001
Vater	80700	10&12 mm, total	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.000001
Vater	80701	14&16 min, total	0.0000011	0.0000011	0.0000011	0.0000011	0.0000011	0.0000011	0.000001
Vater	80702	18820 min, total	0.0000010	8.0000010	0.0000010	0.000010	0.0000010	0.0000010	0.000001
		m/ 141 h							
Vater	81594	Site Water Sample 1 Total	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.000000
Vater	81595	Sample 2 Total	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0,0000010	0 000000
/ater	81596	Sample 3 Total	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0 000000
	04005	Elutriate							
Vater	81600	Sample 1 Dissolved	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.000001
/ater	81601	Sample 2 Dissolved	0.0000010	0.0000010 0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.000001
Vater Vater	81602 81597	Sample 3 Dissolved Sample 1 Total	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.000001
vater Vater	81598	Sample 2 Total	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.000000
ater	81599	Sample 3 Total	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.000001
AMPLE	SIAMOLE	DESCRIPTION	PCB 169	PCB 174	PCB 177	PCB 178	PCB 179	PCB 8	PCB
YPE	ID	wew.co.77311 233417	1 00 100	1 Sept 11:4		. 55 172	. 00 170		, 00
		Detection Limit (mg/kg)	0 00033	0 00033	0.00033	0.00033	0.00033	0 00033	0.000
		Insitu Sediment							
	81714	Sample #1	0.00033	0,00033	0.00033	0.00033	0.00033	0.00033	0.000
ediment									
lediment lediment		Sample #2	0.00033	0.00033	0.00033	0.00033	0.00033	0.00033	0,000

 ${\tt BOLD\cdot less\ than\ values}$ Values below less than values are estimated results. Results are less than the reporting limit.

PCBscoar

		Delaware River Water Analysis (Coar	se-Grained Site)						
	SAMPLE	DESCRIPTION	PCB 28	PCB 31	PCB 40	PCB 44	PC8 49	PCB 52	PCB 6
		Detection Limit (mg/l)	0,0000011	0.0000011	0.0000011	0.00000110	0.0000011	0.00000110	0.000001
/ater	80834	Plume Monitoring Background, dissolved	0.0000011	0.0000611	0.0000011	0.00000140	0.0000011	0.00000090	0.000001
	80749	Background, total	0.0000010	0.0000010	0.0000010	0.00000100	0.0000010	0 00000060	0,000001
	80835 80836	0-10 min, overflow, dissolved 10-20 min, overflow, dissolved	0.0000010	0.0000010	0.0000010	0.00000100	0.0000010	0.00000099	0,000001
	80837	20-30 min, overflow, dissolved	0.0000010	0.0000010	0.0000010	0.000000000	0.0000010	0.00000100	0.00000
	80750	0-10 min, overflow, total	0.0000011	0.0000011	0.0000011	0.00000110	0.0000011	0.00000060	0.00000
	80751	10-20 min, overflow, total	0.0000010	0.0000051	0.0000010	0.00000100	0.0000010	0.00000090	0.00000
/ater	80752	20-30 min, overflow, total	0.0000010	0.0000010	0.0000010	0.00000100	0.0000010	0.00000050	0,00000
	80838 86839	0-10 min, non-overflow, dissolve 10-20 min, non-overflow, dissolve	0.0000018	0.0000010	0.0000010	0.00000130	0.0000010	0.00000090	0,00000
	80840	20-30 min, non-overflow, dissolve	0.0000011	0.0000011	0.0000011	0.00000070	0.0000011	0.00000100	0.00000
	80753	0-10 min, non-overflow, total	0.0000010	0.0000010	0.0000010	0.00000100	0.0000010	0.000000060	0.000001
Vater	80754	10-20 min, non-overflow, total	0.0000010	0.0000010	8,0000010	0.00000100	0.0000010	0.000000000	0.000001
vater	80755	20-30 min, non-overflow, total	0.0000011	0.000011	0.0000010	0.00000110	0.0000011	0.00000110	0.00000
		Hopper Inflow Monitoring							
	80790	3& 6 min, dissolved	0.0000010	0.0000010	0.0000010	- 0.00000100	0.0000010	0.00000050 0.000000000	0.00000
	80791	9&12 min, dissolved	0.0000010	0.0000010	9,9000010 9,9000010	0.00000000	0.0000010	0.000000445	0.00000
	80792 80793	158.18 min, dissolved 218.24 min, dissolved	0.0000010	0.0000010	0.0000010	0.00000100	0.0000010	0.00000000	0.00000
	80793 80794	27&30 min, dissolved	0.0000010	0.0000010	0.0000010	0.00000100	0.0000010	0.00000100	0.00000
	80692	3& 6 min, total	0.0000010	0.0000010	0.0000010	0.00000100	0.0000010	0.00000100	0.00000
/ater -	80693	98.12 min, total	0.0000010	0.0000010	0.0000010	0.00000110	0.0000041	0.00000100	0.00000
	80694	15&18 min, total	0.0000010	0.0000010	8,0000010 8,0000011	0.00000170	0.0000010	0.00000200	0.0000
	80695 80696	21&24 min, total 27&30 min, total	0.0000011	0.0000010	0,0000011	0.00003210	0.0000010	0.00000390	0.00000
M-1	20500	Hopper Overflow Monitoring	0,0000010	0.0000010	0.0000010	.0.00000100	0.0000010	0.00000100	0.00000
	80795 80796	2& 4 min, dissolved 6& 8 min, dissolved	0.0000010	0.0000010	0.0000010	0.00000100	0.0000010	0.00000000	0.00000
	80797	10&12 min, dissolved	0.0000010	0.0000010	0.0000010	0.00000100	0.0000010	0.00000050	0.00000
	80798	148.16 min, dissolved	0.0000010	0.0000010	0.0000010	0.00000100	0.0000010	03000000.0	0.00000
Vater	80799	18&20 min, dissolved	0.0000010	0.0000010	0.0000010	0.00000100	0.0000010	0.00000000	0.00000
	80698	28. 4 min, total	0.0000010	0.0000010 0.0000010	0.0000010	0.00000100	0.0000010	0.00000094	0,00000
	80699 80700	6& 8 min, total	0.0000010	0.0000010	0.0000010	0.00000063	0.0000010	0.00000100	0.00000
	80701	10&12 min, total 14&16 min, total	0.0000011	0.0000011	0.0000011	0.00000110	0.0000011	0.00000089	0.00000
	80702	18820 min, total	0.0000010	0.0000010	0.0000010	0200000000	0.0000010	0.00000140	0.00000
		Site Water							
Vater	81594	Sample 1 Total	0.0000010	0.0000022	0.0000010	0.00000100	0.0000010	0,00000082	0.00000
Vater	81595	Sample 2 Total	0.0000010	0.0000033	0.0000010	0.00000064	0.0000010	0.00000096	9,00000 9,00000
Valer	81596	Sample 3 Total	0.0000010	0.0000036	0.0000010	0.00000073	U PUUUUU.U	0.00000076	0,00000
		Elutriate						n nonnhann	0,50000
	81600	Sample 1 Dissolved	0.0000010	0.0000032	0.0000010	0.00000100	0.0000010	0.00000100	0.00000
	81601 81602	Sample 2 Dissolved Sample 3 Dissolved	0.0000010	0.0000022	0.0000010	0.00000100	0.0000010	0.00000005	0.00000
	81597	Sample 1 Total	0.0000010	0.0000021	0.0000010	0.00000100	0.0000010	0.000000054	0.00000
	81598	Sample 2 Total	0.0000010	0.0000040	0.0000010	0.00000130	0.0000010	0.00000170	0.00000
	81599	Sample 3 Total	0.0000010	0.0000025	0.0000010	0,00000100	0,0000010	0.00000058	0.00000
SAMPLE TYPE	SAMPLE	DÉSCRIPTION	PCB 26	PCB 31	PCB 40	PCB 44	PCB 49	PCB 52	PCB
		Detection Limit (mg/kg)	0 00033	0.00033	0.00033	0 00033	0.00033	0.00033	0.000
		Insitu Sediment			0.00033	0.00033	0.00033	0.00033	0.00
Sediment Sediment		Sample #1 Sample #2	0.00033 0.00033	0.00033	8.00033	0.00033	0.00033	0.00033	0.000

BOLD - less than values
Values below less than values are estimated results. Results are less than the reporting limit.

Baccar

		Delaware River Water Analysis (Coa	,						
SAMPLE TYPE	SAMPLE ID	DESCRIPTION	PCB 70	PCB 77	PCB 82	PCB 86	PCB 87	PGB 97	P08 16
		Detection Limit (mg/l)	0.00000110	0.0000011	0 0000011	0 00000110	0.00000110	0.00000110	0.0000011
		Plume Monitoring							
Water Water	80834 80749	Background, dissolved Background, total	0.00000110 0.00000100	0.0000011 0.0000010	0.0000011 0.0000010	0 00000090 0 00000080	0 00000060 0 00000050	0 00000000 0 00000000	0 0000009
Water	80935	0-10 min, overflow, dissolved	0 00000040	0.0000010	0.0000010	0 00000070	0.00000080	0.00000070	0 000000
Water Water	80830 80837	10-20 min, overflow, dissolved 20-30 min, overflow, dissolved	0.00000040	0.0000010	0.0000010	0.00000070	0.00000050 0.00000040	0.00000000	0.0000011
Nater	80750	0-10 min, overflow, total	0.00000050	0.0000011	0.000011	0.00000110	0 00000040	0.00000110	0 0000000
Nater Nater	80751 80752	10-20 min, overflow, total 20-30 min, overflow, total	0.00000050 0.00000040	0.0000010	0.0000010	0 00000040 0 00000050	08080000,0	0.00000040 0.0000050	0.000000
Nater	80838	0-10 min, non-overflow, dissolve	0.00000050	0.0000010	0.0000010	0 00000080	0 00000070	0 00000080	0.000000
Nater	80839	10-20 min, non-overflow, dissolve	0.00000050	0.0000011	0.0000011	0.00000060	0 00000070	0 00000060	0.000000
Nater Nater	80840 80753	20-30 min, non-overflow, dissolve	0.00000050 0.00000100	0.0000011	0.0000011 0.0000010	0.00000100	0.00000080	0.00000100	0.0000009
/vater Nater	80754	0-10 min, non-overflow, total 10-20 min, non-overflow, total	0.00000100	0.0000010	0,0000010	0 00000040	0.00000050 0.00000050	0.00000040	0 000000
Water	80755	20-30 min, non-overflow, total	0.00000050	0.0000010	0.0000011	0.00000100	0.00000070	0.00000110	0 000001
		Hopper Inflow Monitoring							
Nater	80790	38. 6 min, dissolved	0.00000048	0.0000010	0.0000010	0.00000080	0.00000110	08000000	0.000001
Valer	80791	9&12 min, dissalved	0 00000100	0.0000010	0.0000010	0 000000000	0 00000090	0.00000000	0.000001
Nater	80792	15&18 min, dissolved	0 00000040	0.0000010	0.0000010	0.00000100	0 00000130	0.00000100	0.000001
Vater Nater	80793 80794	21&24 min, dissolved 27&30 min, dissolved	0.00000060 0.00000090	0.0000010	0.0000010	0.00000130	0.00000150	0 00000130 0 00000180	0.00000 0.000001
Nater	80692	3& 6 min, total	0.00000289	0.0000010	0.0000010	0.00000180	0.00000110	0.00000180	0.000001
Vater	80693	9&12 min, total	0.00000180	0.0000010	0.0000010	88000000	0.00000100	0.00000086	0.000003
Vater	80694	15&18 min, total	0 00000250	0.0000010	0.0000010	0 00000290	0.00000100	0.00000290	0.000003
Vater Vater	80695 80696	21824 min, total 27830 min, total	0.00000150 0.0000140	0.0000011 0.0000010	0.0000011 0.0000010	0 00000049 9 00000270	0.00000110 0.00000100	0 00000049 0 00000220	0,000003 0,000003
		Clannon Constituti Stanfanian							
Vater	80795	Hopper Overflow Monitoring 2& 4 min, dissolved	0.00000100	0.0000010	0.0000010	0.00000100	0.00000100	0.00000100	0.000000
Vater	80796	6& 8 min, dissolved	0.00000100	0.0000010	0.0000010	0.00000100	0.00000100	0.00000100	0.000001
Vater	80797	10&12 min, dissolved	0.00000036	0.0000010	0.0000010	0.00000100	0 00000050	0.00000100	0.000001
Valer	80798	14&16 min, dissolved	0.00000050	0.0000010	0.0000010	0 00000340	0.00000100	0 00000040	0.000001
Nater Nater	80799 80698	18&20 min, dissolved 2& 4 min, total	0.00000040	0.0000010	0.0000010	0.00000100	0.00000100	0.00000100 0.00000061	0.000001
Vater Vater	80699	6& 8 min, total	0.0000073	0.0000010	0.0000010	0 00000044	0.00000100	0.00000044	0.000001
Valer	80700	10&12 min, total	0.00000100	0.0000010	0.0000010	0.00000051	0.00000053	0.00000051	0.000002
Vater	80701	14&16 min, total	0.00000110	0.0000011	D.0000011	0 00000052	0.00000110	0.00000052	0.000002
Valer	80702	18&20 min, total	0.00000100	0.0000010	0.0000010	8.00900063	0.00000100	0 00000063	0 000002
		Site Water							
Nater Nater	61594 81595	Sample 1 Total Sample 2 Total	0.00000058 0.00000078	0.0000010	0.0000010	0.00000100	0.00000100	0.00000100	0.000000
Valer	81596	Sample 3 Total	0.00000076	0.0000010	0.0000010	0.00000100	0.00000100	0.00000100	0.000001
		Elulnate							
Vater	81600	Sample 1 Dissolved	0.00000100	0.0000010	0.0000010	0.00000100	0 00000036	0.00000100	0.000001
Vater	81601	Sample 2 Dissolved	0.00000100	0.0000010	0.0000010	0.00000100	0.00000062	0.00000100	0.000000
Vater Vater	81602 81597	Sample 3 Dissolved Sample 1 Total	0.00000049 0.00000053	9,0000010 9,0000010	0.0000010	0.00000100	0.00000100	0.00000100	0.00000
Vater	81598	Sample 2 Total	0.00000120	0.0000010	0.0000010	0.00000057	0.00000068	0 00000057	0.000001
Vater	81599	Sample 3 Total	0.00000052	0.0000010	0.0000010	0.00000100	0.00000100	0.00000100	C 000000
		DESCRIPTION	PCB 70	PCB 77	PCB 82	PCB 86	PGB 87	PCB 07	PCB 1
YPE	ID		o entre	0.00005	4 00000	0.0000-	0.00000	0.00000	0.000
		Detection Limit (mg/kg)	0.00033	0 00033	0.00033	0 00033	0.00033	0 00033	£ 000
ediment	81714	Insitu Sediment	0.00033	0,00033	0.00033	0.00033	0.00033	0.00033	0.000
ediment		Sample #1 Sample #2	0,00033	0.00033	0.00033	0.00033	0.00033	0.00033	0.000
		and the second s							0.000

BOLD - less than values. Values below tess than values are estimated results. Results are less than the reporting limit.

pc	Васоз	r

		Delaware River Water Analysis (Coar	ea-creming Olia)						
	SAMPLE ID	DESCRIPTION	PCB 105	PCB 114	PCB 118	PCB 121	PCB 128	PCB 136	PCB 13
		Detection Limit (mg/l)	0.00000110	0.0000011	0.00000110	0.0000011	0.0000011	0,0000011	0.000001
		Plume Monitoring							
	80834	Background, dissolved Background, total	0.00000110 0.00000100	0.0000011 0.0000010	0.00000110 0.00000100	0.0000011 0.0000010	0.0000011	8.0000011 0.0000010	0.000001
ater	80835	0-10 min, overflow, dissolved	0.00000100	0.0000010	0.00000100	0.0000010	0.0000010	0.0000010	0.000001
ater	80836	10-20 min, overflow, dissolved	0.00000100	0.0000010	0.00000100	0.0000010	0.0000010	0.0000010	0.00000
		20-30 min, overflow, dissolved	0.00000100	0,0000010	0.00000100	0,0000010	0.0000011	0.0000011	0.00000
	80750	0-10 min, overflow, total	0.00000110	0.0000011	0.00000110	0.0000010	0.0000011	0,0000010	0.00000
	80751 80752	10-20 min, overflow, total 20-30 min, overflow, total	0,00000100 0,00000100	0.0000010	0.00000100	0.0000010	0.0000010	0.0000010	0.00000
		0-10 min, non-overflow, dissolve	0,00000100	0.0000010	0.00000100	0.0000010	0.0000010	0.0000010	0.00000
	80838 80839	10-20 min, non-overflow, dissolve	0.00000110	0.0000011	0.00000110	0.0000011	0.0000011	0.0000011	0.00000
	80840	20-30 min, non-overflow, dissolve	0.00000110	0.0000011	0.00000110	0.0000011	0.0000011	0.0000011	f1.000000°
	80753	0-10 min, non-overflow, total	0.00000100	0.0000010	0.00000100	0.0000010	0.0000010	0.0000010	0.000001
	80754	10-20 min, non-overflow, total	0.00000100	0.0000010	0.00000100	0.0000010	0.0000010	0.0000010	0.000001
iater	80755	20-30 min, non-overflow, total	0,00000110	0.0000011	0.00000110	0.0000011	0.0000011	0.0000011	0,000001
		Liament Indiana Manifesia							
/ater	80790	Hopper Inflow Monitoring 3& 6 min, dissolved	0,00000100	0.0000010	0,00000100	0.0000010	0.0000010	0.0000010	0,000001
later	80791	9812 min, dissolved	0.00000100	0.0000010	0.00000100	0.0000010	0.0000010	0.0000007	0.00000
ater	80792	15&18 min, dissolved	0.00000100	0.0000010	0.00000100	0.0000010	0.0000010	0.0000010	0.00000
ater	80793	21824 min, dissolved	0.00000100	0.0000010	0.00000100	0.0000010	0.0000010	0.0000010	0.00000
later	80794	27830 min, dissolved	0.00000100	0.0000010	0.00000100	0.0000010	0.0000010	0.0000010	0.00000
later .	80692	3& 6 min, total	0.00000100	0.0000010	0.00000100	0,0000010	0.0000010	0.0000010	0.00000
ater	80693	9&12 min, total	0.00000100	0.0000010	0.00000100	0.0000010	0.0000010	0.0000010	0.00000
later	80694 80695	15&18 min, total 21&24 min, total	0.00000250	0.0000011	0.00000110	0.0000011	0.0000011	0.0000011	0.00000
vater Vater	80696	27&30 min. total	0.00000250	0.0000010	0.00000100	0,0000010	0.0000010	0.0000010	0,00000
		X)							
Vater	80795	Hopper Overflow Monitoring 2& 4 min, dissolved	0.00000100	0.0000010	0.00000100	0.0000010	0.0000010	0.0000010	0.00000
vater Vater	80796	6& 8 min, dissolved	0.00000100	0.0000010	0.00000100	0.0000010	0.0000010	0.0000010	0.00000
Vater	80797	10&12 min, dissolved	0,00000100	0.0000010	0.00000100	0.0000010	0.0000010	0.0000010	0.00000
later	80798	14&16 min, dissolved	0.00000100	0.0000010	0.00000100	0.0000010	0.0000010	0.0000010	0.00000
Vater	80799	18820 min, dissolved	0.00000100	0.0000010	0.00000100	0.0000010	0.0000010	0.0000010	0.00000
Vater	80098	28. 4 min, total	0.00000100	0.0000010	0.00000100	0.0000010	0.0000010	0.0000010	0.00000
Vater	86599	6& 8 min, total	0.00000100	0.0000010	0.00000100	0.0000010	0.0000010	0.0000010	0.00000
Vater Vater	80700	10812 min, total 14816 min, total	0.00000110	0.0000011	0.00000110	0.0000011	0.0000011	0.0000011	0.00000
vater	80702	16&20 min, total	0.00000100	0.0000010	0.00000100	0.0000010	0.0000010	0.0000010	0.00000
		Site Water							
Vater	81594	Sample 1 Total	0.00000100	0.0000010	0.00000054	0.0000010	0.0000010	0.0000010	0.00000
Vater	61595	Sample 2 Total	0.00000047	0.0000010	0.00000097	0.0000010	0.0000010	0.0000010	0.00000
Vater	81595	Sample 3 Total	0.00000100	0.0000010	0.00000057	0.000010	0.0000010	0.0000010	0.00000
		Elutriate							
Vater	81600	Sample 1 Dissolved	0.00000036	0.0000010	0.00000062	0.0000010	0.0000010	0.0000010	0.00000
Vater	81601	Sample 2 Dissolved	0.00000032	0.0000010	0.00000046	0.0000010	0.0000010	0.0000010	00000.0
Vater	81602	Sample 3 Dissolved	0.00000042	0.0000010	0.00000065	0.0000010	0.0000010	0.0000010	0.0000
Vater	81597	Sample 1 Total	0.00000100	0.0000010	0.00000049	0.0000010	0.0000010	0.0000010	0.00000
Vater Vater	81598 81599	Sample 2 Total Sample 3 Total	0.00000100	0.0000010	0.00000049	0.0000010	0.0000010	0.0000010	0.00000
			D00.46*	DOD 44.1	PCB 118	PCB 121	PCB 128	PCB 136	PCB 1
YPE	SAMPLE	DESCRIPTION	PCB 105	PCB 114	FUB 110	FOD 121	F WO 140	1. WE TW	, 00
		Detection Limit (mg/kg)	0.00033	0.00033	0.00033	0.00033	0.00033	0.00033	0.000
		Insitu Sediment					_		
Sediment	81714	Sample #1	0.00033	0.00033	0.00010	0.00033	0.00033	0.00033	0.00
Sediment	81715	Sample #2	0.00033	0,00033	0.00016	0,00033	0.00033	0.00033	0.00
Sédiment		Sample #3							

BOLD - less than values Values below less than values are estimated results. Results are less than the reporting limit

PCBscoar

Detection Limit (mg/s)		
Detechan Limit (mgs) D. 0000011 0.00		
Detection Limit (mg/l)	PCB 167	PCB
Waler	0 0000011	0.00000
Water		
Mailer	0.0000044	
Water	0.0000011	0.00000
Water	0.0000010	0.00000
Water	0.0000010	0.00000
Water Wate	0.0000010	0.00000
Water Wider Wide	0.0000011	0.00000
Valer B0752 20-30 min, overflow, fotal 0.0000010 0.0000010 0.0000010 0.0000010 0.0000010 0.0000010 0.0000011 0.00000	0.0000010	0.00000
Maler 80839 10-20 min, non-revertion, dissolve 0.0000011	0.0000010	0.00000
Water Wate	0.0000010	0.00000
Valer	0.0000011	0.00000
Mater 80755 20-30 min, non-overflow, total 0.0000010 0.0	0.0000011	0.000001
Mater 80755 20-30 min, non-overflow, total 0.0000011 0.0	0.0000010	0.00000
Hopper Inflow Monitoring Note: 80790 38.6 min, dissolved 0.0000010 0	0.0000010	0.000001
Valer 80790 38.6 mm, dissolved 0.0000010 0.0	0.0000011	0,000001
Marter 80790 98.12 min dissolved 0.0000010		
Mater 80791 2812 min, dissolved 0.0000010 0.	0.0000010	0.000001
Water 80792 27830 min, dissolved 0 0000000 0 0000010 0	0.0000010	0.000001
Valer 80794 27830 min, dissolved 0.0000010 0.0	0.0000010	0.000001
Valer 80693 98.12 min, total 0.0000010 0.000	0.0000010	0.000001
Valer 80693 24.2 min, total 0.0000010 0.0000	0.0000010	0.000001
Valer 80696 218.24 min, total 0.0000010 0.00	0.0000010	0 000000
Valer 80695 278.24 min, total 0.0000014 0.0000010 0.00	0.0000010	0.000001
Valer Rose	0.0000010	0 000001
Hopper Overflow Monitoring 28 4 min, dissolved 0.000010 0.000010 0.000010 0.000010 0.000010 0.000010 0.000010 0.000010 0.000010 0.000010 0.000010 0.000010 0.000010 0.000010 0.000010 0.000010 0.000010 0.000010 0.0000010 0.0000010 0.000010 0.000010 0.000010 0.000010 0.000010	0.0000011	0 000001
Valer 80795 28.4 min, dissolved 0.000010 0.000010 0.000010 0.000010 0.000010 0.000010 0.000010 0.000010 0.000010 0.000010 0.0000010 0.000010 0.000010 0.000010 0.000010 0.000010 0.000010 0.0000010 0.000010 0.000010 0.000010 0.000010 0.000010 0.000010 0.0000010 0.000010 0.000010 0.000010 0.000010 0.000010 0.000010 0.0000010 0.000010 0.000010 0.000010 0.000010 0.000010 0.000010 0.0000010 0.000010 0.000010 0.000010 0.000010 0.000010 0.000010 0.0000010 0.000010 0.000010 0.000010 0.000010 0.000010 0.000010 0.0000010 0.000011 0.000011	0.0000010	0.000001
Valer 80796 68 8 min, idissolved 0.0000010 0		
Vater 80797 10&12 min, dissolved 0.0000010 0	0.0000010	0.000001
Vater 80796 148416 min, dissolved 0.0000010	0.0000010	0.000001
Vater 80799 18820 min, total 0.0000010 0.0000010 0.0000010 0.000010 0.0000010	0.0000010	0.000001
Vater 80698 28 4 min, total 0.000016 0.0000010 0.0000011 0.0000011 0.0000011 0.0000011 0.0000011 0.0000011 0.0000011 0.0000011 0.0000011 0.0000010 0.00000	0.0000010	0.000001
Valer 80699 68 8 min, total 0.0000010 0.0000	0.0000010	0.000001
Vater 80700 10812 min, total 0.0000010 0.000	0.0000010	0.000001
Valer 80701 14&16 min, total 0.0000020 0.0000011 0.0000011 0.0000011 0.0000011 0.0000011 0.0000011 0.0000010 0.000	0.0000010	0.000001
Site Water Step Sample 1 Total 0.0000010 0.0	0.0000011	0.000001
Valer 81594 Sample 1 Total 0.0000010 0.0000000000	0.0000010	0.000001
Valer 81594 Sample 1 Total 0.0000010 0.0000000000		
Valet 81595 Sample 2 Total 0.0000010 0.0000000000	0.0000010	0.000001
Value State State Sample 3 Total	0.0000010	0.000001
Age	0.0000010	0.000001
Age		
Alter 81601 Sample 2 Dissolved 0.0000010 0.0		
Aler 81602 Sample 3 Dissolved 0.0000010 0.00	0.0000010	0.000001
Alter 81597 Sample 1 Total 0.0000010 0.00000	0.0000010	0.000001
AMPLE SAMPI.F DESCRIPTION PCB 138 PCB 141 PCB 151 PCB 153 PCB 156 Detection Limit (mg/kg) 0 00033 0 0	0.0000010	0.000001
AMPLE SAMEL BESON Sample 3 Total 0.000010 0.000010 0.000010 0.000010 0.000010 0.000010 0.000010 0.000010 0.000010 0.000010 0.0000010 0.000010 0.000010 0.000010 0.000010 0.000010 0.000010 0.0000010 0.000010 0.000010 0.000010 0.000010 0.000010 0.000010 0.0000010 0.0	0.0000010	0.000001
VPE ID Detection Limit (mg/kg) 0.00033 <td>0.0000010</td> <td>0.000001</td>	0.0000010	0.000001
Detection Limit (mg/kg) 0 00033 0 00033 0 00033 0 00033 0 00033	PCB 167	PCB 1
Insitu Sediment ediment 81714 Sample #1 0,00033 0,00033 0,00033 0,00033 0,00033	0.00000	
ediment 81714 Sample #1 0.00033 0.00033 0.00033 0.00033	0 00033	0.000
	0.00033	0.000
ediment 81715 Sample #2 0.00033 0.00033 0.00033 0.00033 0.00033 ediment 81716 Sample #3 0.00033 0.00033 0.00033 0.00033 0.00033	0.00033	0.000

BOLD - less than values. Values below less than values are estimated results. Results are less than the reporting first.

		Delaware River Water Analysis (Coan	se-Grained Site)						
AMPLE YPE	SAMPLE ID	DESCRIPTION	PCB 171	PCB 180	PCB 182	PCB 163	PCB 185	PCB 187	PCB 18
		Detection Limit (mg/l)	0.0000011	0.0000011	0.0000011	0.0000011	0.0000011	0.0000011	0.000001
		Plume Monitoring							
ater	80834	Background, dissolved	0,0000011	0.0000011	0.0000011	0.0000011	0.0000011	0.0000011	0.00000
ater	80749	Background, total	0.0000010	0.0000010	0.0000010	0.0000010	0,0000010	0,0000010	0.00000
ater	80835	0-10 min, overflow, dissolved	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.00000
ater	80836	10-20 min, overflow, dissolved	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.00000
ater	80837	20-30 min, overflow, dissolved	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000011	0.00000
ater	80750 80751	0-10 min, overflow, total 10-20 min, overflow, total	0.0000011	0.0000011	0.0000010	0.0000010	0.0000010	0.0000010	0.00000
ater ater	80752	20-30 min, overflow, total	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.00000
	00000	O 40 min man martinus dispolar	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.00000
ater ater	80838 80839	0-10 min, non-overflow, dissolve 10-20 min, non-overflow, dissolve	0.0000011	0.0000011	0.0000011	0.0000011	0.0000011	0,0000011	0.00000
fater	80840	20-30 min, non-overflow, dissolve	0.0000011	0.0000011	0.0000011	0.0000011	0.0000011	0.0000011	0,00000
fater	80753	0-10 min, non-overflow, total	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.00000
later	80754	10-20 min, non-overflow, total	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.00000
/ater	80755	20-30 min, non-overflow, total	0.000011	0.0006011	0.0000011	0.000000	0.000011	0.000011	0.00000
		Hopper Inflow Monitoring							
later	80790	3& 6 min, dissolved	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.00000
Vater	80791	9&12 min, dissolved	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.00000
/ater	80792	15&18 min, dissolved	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.00000
v ater	80793	21&24 min, dissolved	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.00000
/ater	80794 80692	27&30 min, dissolved 3& 6 min, total	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000021	0.00000
/ater /ater	80693	9&12 min, total	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000017	0.00000
/ater	80694	158.18 min, total	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000033	0.00000
Vater	80695	21824 min. total	0.0000011	0.0000011	0.0000011	0.0000011	0.0000011	0.0000011	0.00000
Vater	80696	27&30 min, total	0.0000010	0.0000010	0.0000010	9,0000010	0.000010	0.000010	0.0000
		Hopper Overflow Monitoring							
Vater	80795	28. 4 min, dissolved	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000
Valer	80796	68, 8 min. dissolved	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000
Vater	80797	10812 min, dissolved	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.00001
Vater Vater	80798 80799	14816 min, dissolved 18820 min, dissolved	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000
Vater	80698	2& 4 min, total	0,0000010	0.0000015	0.0000010	0.0000010	0.0000010	0.0000010	0.0000
Vater	80699	6& 8 min, total	0.0000010	0.0000010	0,0000010	0.0000010	0.0000010	0.0000010	0,0000
Vater	80700	10&12 min, total	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000011	0.00000
Vater Vater	80701 80702	14&16 min, total 18&20 min, total	0.0000011	0.0000024	0.0000010	0.0000010	0.0000010	0.0000010	0.0000
		•							
Vater	81594	Site Water Sample 1 Total	0.0000010	0,0000010	0,0000010	0.0000010	0.0000010	0.0000010	0.0000
varer Vater	81595	Sample 2 Total	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000
Vater	81596	Sample 3 Total	0,0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0,0000
		Elutriate							
Vater	81600	Sample 1 Dissolved	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000
Vater	81601	Sample 2 Dissolved	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000
Vater	81602	Sample 3 Dissolved	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0,0000010	0.0000
Vater	81597	Sample 1 Total	0.0000010	0.0000010	0,0000010	0.0000010	0.0000010	0.0000010	0.0000
Vater Vater	81598 81599	Sample 2 Total Sample 3 Total	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000
		BEAGEWAY.	PCB 171	PCB 180	PCB 182	PCB 183	PGB 185	PCB 187	PCB
YPE	SAMPLE ID	DESCRIPTION	FOB 171	L (%D 10/)	FOR TOX	. 55 700	. 35 100		
		Detection Limit (mg/kg)	0.00033	0 00033	0.00033	0.00033	0.00033	0.00033	0.00
		Insitu Sediment						0.00033	0.00
	81714	Sample #1	0.00033	0,00033	0.00033	0,00033	0.00033	0.00033	0.00
	1 81715 1 81716	Sample #2 Sample #3	0.00033	0.00033 0.00033	0,00033	0,00033	0,00033	0.00033	0.00

BOLD - less than values Values below less than values are estimated results. Results are less than the reporting limit

20	٦D.	SC0	
~	-0		9.

		Delaware River Water Analysis (Coa	irse-Grained Site)						
SAMPLE TYPE	SAMPLE ID	DESCRIPTION	PCB 191	PCB 194	PCB 195	PCB 196	PCB 201	PCB 203	PCB 2
	-	Detection Limit (mg/l)	0.0000011	0 0000011	0 0000011	0.0000011	0.0000011	0.0000011	0.00000
		Plume Monitoring							
Water	80834	Background, dissolved	0,0000011	0.0000011	0.0000011	0.0000011	0.0000011		
Mater	80749	Background, total	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000011 0.0000010	0.00000
Nater	80835	0-10 min, overflow, dissolved	8.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.00000
Vater	80836	10 20 min, overflow, dissolved	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.00000
Water	80837	20-30 min, overflow, dissolved	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.00000
Water	80750	0-10 min, overflow, total	0.0000011	0.0000011	0.0000011	0.0000011	0.0000011	0.0000011	0.00000
Water	80751	10-20 min, overflow, total	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.00000
Nater	80752	20-30 min, overflow, total	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.00000
V ater	80838	0-10 min, non-overflow, dissolve	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0,00000
Nater	80839	10-20 min, non-overflow, dissolve	0.0000011	0.0000011	0.0000011	0.0000011	0.0000011	0.0000011	0.00000
Water	80840	20-30 min, non-overflow, dissolve	0.0000011	0.0000011	0.0000011	0.0000011	0.0000011	0.0000011	0,00000
V ater	80753	0-10 min, non-overflow, total	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.00000
Nater	80754	10-20 min, non-overflow, total	0.0000010	0.0000010	0.000010	0.0000010	0.0000010	0.0000010	0.00000
Water	80755	20-30 min, non-overflow, total	0.0000011	0.0000011	0.0000011	0.0000011	0.0000011	0.0000011	0.00000
Mater	80790	Hopper Inflow Monitoring 3& 6 min, dissolved	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.00000
Nater	80791	9&12 min, dissolved	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.00000
Nater	80792	15&18 min, dissolved	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.00000
Nater	80793	21824 min dissolved	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.00000
Vater	80794	27830 min, dissolved	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.000001
Vater	80692	3& 6 min, total	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.000001
Vater	80693	9&12 min, total	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.00000
Vater	80694	15&18 min, total	0.0000010	0.0000010	0.0000010	0.0000610	0.0000010	0.0000010	0.00000
Vater	80695	21824 min, total	0.0000011	0,0000011	0.0000011	0.0000011	0.0000011	0.0000011	0.000001
Vater	80696	27&30 min, total	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.00000
		Hopper Overflow Monitoring							
Vater	80795	2& 4 min, dissolved	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.000001
Vater	80796	68. 8 min. dissolved	0,0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.000001
	80797	10&12 min, dissolved	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.000001
Vate:	80798	14&16 min, dissolved	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.00000
Vater	80799	18&20 min, dissolved	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0,0000010	0.000001
	80698	28. 4 min, total	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.000001
	80699	6& 8 min, total	0.0000010	0.0000010	9.0000010	0.0000010	0.0000010	0.0000010	0.000001
	80700	108-12 min, total	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.000001
	80701 80702	14&16 min, total 18&20 min, total	0.0000011	0.0000011 0.0000010	0.0000011	0.0000011	0.0000011	0.0000011	0.000001
								***************************************	4.00000
		Site Water							
	81594 81595	Sample 1 Total	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.000001
	81595 81596	Sample 2 Total Sample 3 Total	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.000001
	_ 1000		0.000010	4.4546010	D. 00000 IV	W.0000010	0.0000010	0.0000010	0.000001
		Elutriate							
	81600	Sample 1 Dissolved	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.000001
	81601	Sample 2 Dissolved	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.000001
		Sample 3 Dissolved	0.0000010	0,0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.000001
	81597 8159 8	Sample 1 Total Sample 2 Total	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.000001
		Sample 3 Total	0.0000010	0.0000010 0.0000010	0.0000010	0.0000010	0.0000010 0.0000010	0.0000010	0.000001
	SAMPLE ID	DESCRIPTION	PCB 191	PCB 194	PCB 195	PCB 196	PCB 201	PCB 203	PCB 20
		Detection Limit (mg/kg)	0 00033	0 00033	0 00033	0.00033	0.00033	0.00033	0 0003
		Insitu Sediment							,
advanat i		Sample #1	0.00033	0.00033	0.00033	0.00033	0.00033	0.00033	0.0003
									0.0003
ediment I		Sample #2	0.00033	0.00033	0.00033	0.00033	0.00033	0.00033	0.0003

BOLD - less than values. Values below less than values are estimated results. Results are less than the reporting limit.

Bscoar

								B.MP 100	man
SAMPLE TYPE	SAMPLE ID	DESCRIPTION	PCB 206	PCB 207	PCB 208	PCB 209	PCB 66	PCB 190	PCB 198
		Detection Limit (mg/l)	0.0000011	0.00000110	.0.00000110		0.0000011	0.0000011	0.0000011
		Plume Monitoring							
Water	80834 80749	Background, dissolved Background, total	0.0000020 0.0000015	0.00000100	0.00000080	110,02% 95.61%	0.0000011 0.0000010	0.0000011 0.0000010	0.0000011 0.0000010
Water	80835	0-10 min, overflow, dissolved	9.0000017	0.00000100	0.00000050	100.35%	0.0000010	0.0080010	0.0000010
Water	80836	10-20 min, overflow, dissolved	0.0000018	0.00000100	0.00000080	110.93%	0.0000010	0.0000010	0.0000010
Water	80837	20-30 min, overflow, dissolved	0.0000020	0.00000100	0 00000060	109.27%	0.0000010	0.0000010	0.0000010
Water	80750	0-10 min, overflow, total	0.0000017	0.00000110	0.00000070	96.69% 89.46%	0.0000011	0.0000011	0.0000011
Water Water	80751 80752	'10-20 min, overflow, total 20-30 min, overflow, total	0.0000017 0.0000017	0.00000100	0.00000050	99.52%	0.0000010	0.0000010	0.0000010
Water	80838	0.40 min, non-overflow, dissolve	9.0000020	0.00000100	0.00000070	111.00%	0.0000010	0.0000010	0.0000016
Water	80839	10-20 min, non-overflow, dissolve	0.0000019	0.00000110	0.00000080	109.59%	0.0000011	0.0000011	0.0000011
Water	80840	20-30 min, non-overflow, dissolve	0.0000022	0.00000110	0.00000070	105.27%	0.0000011	0.0000011	0,0000011
Water	80753	0-10 min, non-overflow, total	0.0000017	0.00000100	0.00000060	94.00%	0.0000010	0.0000010	0.0000010
Water	80754	10-20 min, non-overflow, total	0.0000016	0.00000100	.0.00000050 .0.00000000	92.43% 103.87%	0.0000010	0.0000011	0.000001
.Water	80755	20-30 min, non-overflow, total	0.0000017	0.0000110	0.00000000	103.6776	0.000011	1100000,0	
		Hopper Inflow Monitoring					0.0000040	0.0000040	D.000001
Water	80790	3& 6 min, disselved	0.0000016	0.00000100	0.00000060 0.00000050	102.69% 93.31%	0.0000010	0.0000010	0.000001
Water	80791	9812 min, dissolved	0.0000015	0.00000100	0.00000050	83.49%	0.0000010	0,0000010	0.000001
Water	80792	15&18 min. dissolved 21&24 min. dissolved	0.0000013	0.00000100	0.00000100	83.82%	0.0000010	0.0000010	0.000001
Water Water	80794	27&30 min, dissolved	0.0000013	0.00000100	0.00000040	74.65%	0.0000011	0.0000010	0.000001
Water	80692	38, 6 min. total	0.0000013	0,00000100	0.00000100	75.42%	0.0000010	0,0000010	0.000001
Water	80693	9&12 min, total	0.0000015	0.00000100	0.00000040	83,26%	0.0000010	0.0000010	0.000001
Water	80694	15&18 min, total	0.0000019	0.00000100	0.00000100	74.76%	0.0000010	0,0000010	0.000001
Water	80695	21824 min, total	0.0000022	0.00000130	0.00000048	77.49%	0.0000011	0.0000011	0.000001
Water	80696	27&30 min, total	0.0000018	0,00000150	0.00000064	61.74%	0.0000010	0.0000010	0.000001
		Hopper Overflow Monitoring							0.000001
Water	80795	2& 4 min, dissolved	0.0000016	0.00000100	0.00000050	97.89%	0.0000010	0.0000010	0.000001
Water	80796	68. 8 min. dissolved	0.0000017	0.00000100	0.00000050	99.86%	0.0000010	0.0000010	0,000001
Water	80797	10&12 min, dissolved	0.0000017	0.00000100	0.00000050 0.00000050	100,24% 105,68%	0.0000010	0.0000010	0.000001
Water	80798	148.16 min, dissolved	0.0000017	0.00000100	0.00000050	105.68%	0.0000010	0.0000010	0.000001
Water Water	80799 80698	18820 min, dissolved 28. 4 min, total	0.0000017	0.00000100	0.00000055	60.08%	0.0000010	0.0000010	0.000001
Water	80699	6& 8 min, total	0.0000015	0,00000100	0.00000100	51.08%	0.0000010	0.0000010	0.000001
Water	80700	10&12 min, total	0.0000031	0.00000100	0.00000100	145.37%	0.0000010	0.0000010	0.000001
Water	80701	14&16 min, total	0.0000020	0.00000110	0.00000110	98,00%	0,0000011	0.0000011	0.000001
Water	80702	18820 min, total	0 0000016	0.0000100	0.00000100	88.00%	0.0000010	0.0000010	0.000001
		Site Water							
Water	81594	Sample 1 Total	0.0000026	0.00000110	0.00000130	95.54%	0.0000010	0.0000010	0.000001
Water	81595	Sample 2 Total	0.0000027	0.00000100	0.00000140	100.33%	0,0000010	0.0000010	0,000001
Water	81596	Sample 3 Total	0 0000024	9.00000085	0.00000120	98.44%	0.0000010	0.0000010	0.000001
		Elutriate			0.000004.40	440 046	0.0000045	9.0000010	0.000001
Water	81600	Sample 1 Dissolved	0.0000025	0 00000088	0.00000140	110.94% 92.51%	0.0000010 0.0000010	0,0000010	0.000001
Water	81601	Sample 2 Dissolved	0.0000022 0.0000024	0.00000083	0.00000120	92.51%	0.0000010	0,0000010	0.000001
Water	81602 81597	Sample 3 Dissolved Sample 1 Total	0.0000022	0.00000064	0.00000110	97.19%	0.0000010	0.0000010	0.000001
Water Water	81598	Sample 2 Total	0.0000021	0.00000051	0.00000097	100.67%	0,0000010	0.0000010	0.000001
Water	81599	Sample 3 Total	0.0000022	0.00000100	0.00000110	103.83%	0.0000010	9.0000010	0.000001
		DESCRIPTION	PCB 206	PCB 207	PCB 208	PCB 209	PCB 66	PCB 190	PCB 19
TYPE	ID	Detection Limit (mg/kg)	0.00033	0.00033	0.00033		0.00033	0,00033	0:0003
			2.00000	-140444					
Sedimen	04744	Insitu Sediment Sample #1	0.00019	0.00033	0.00015	109 80%	0.00033	0.00033	0,000
seulmen					0.00033		0.00033	0.00033	0.0003
Sedimen	84745	Sample #2	0.00044	0.00033	0.00033	109.30%	0.00033	0.00033	0.0003

BCLD - less than values Values below less than values are estimated results. Results are less than the reporting limit.

				PCBsccar		
		Delaware River Water Analysis (Coar	se-Grained Site)			
SAMPLE TYPE	SAMPLE ID	DESCRIPTION	PCB 200			
		Detection Limit (mg/l)	0.0000011			
Water Water	80834 80749	Plume Monitoring Background, dissolved Dackground, folni	0.0000011 0.0000010			
Water	80835	0.10 min, overflow dissolved	0.0000010			
Water Water	80836 80837	10-20 min, overflow, dissolved 20-30 min, overflow dissolved	0.0000010 0.0000010			
Water Water	80750 80751	0-10 min, overflow total 10-20 min, overflow total	0.0000011 0.0000010			
Water Water	80752	20-30 min, overflow, total	0.0000010			
Water	80838	0-10 min, non-overflow dissolve	0.0000010			
Water	80839	10-20 min, non-overflow, dissolve	0.0000011			
Water Water	80840 80753	20-30 min, non-overflow dissolve 0-10 min, non-overflow total	0.0000011			
Water	80754	10-20 min, non-overflow, total	0.0000010			
Water	80755	20-30 min, non-overflow, total	0.0000011			
1heaha	00757	Hopper Inflow Monitoring				
Water Water	80790 80791	3& 6 min, dissolved 9&12 min, dissolved	0.0000010 0.0000010			
Water	80792	15&16 min, dissolved	0.0000010			
Water Water	80793 80794	21&24 min, dissolved 27&30 min, dissolved	0.0000010 0.0000010			
Water	80692	38 6 min, total	0.0000010			
Water Water	80693 80694	9&12 min, total 15&18 min, total	0.0000010 0.0000010			
Water	80695	21&24 min, total	0.0000011			
Water	80696	27830 min total	0.0000010			
		Hopper Overflow Maniforing				
Water Water	80795 80796	28 4 min, dissolved 68 8 min, dissolved	0.0000010			
Water	80797	10812 min, dissolved	0.0000010			
Water Water	80798 80799	14816 min, dissolved 18820 min, dissolved	0,0000010			
Water	80698	2& 4 min, total	0.0000010			
Water Water	80699 80700	6& 8 min, total 10&12 min, total	0.0000010 0.0000010			
Water	80701	14816 min, total	0.0000011			
Water	80702	18&20 min. total	0,0000010			
	0.450.4	Site Water				
Water Water	81594 81595	Sample 1 Total Sample 2 Total	0.0000010 0.0000010			
Water	81596	Sample 3 Total	0.0000010			
		Elutriate				
Water	81600	Sample 1 Dissolved	0.0000010			
		Sample 3 Dissolved Sample 3 Dissolved	0.0000010 0.000010			
Valer	81597	Sample 1 Total	0.0000010			
		Sample 3 Total Sample 3 Total	0.0000010 0.0000010			
	SAMPLE ID	DESCRIPTION	PCB 200			
ire		Detection Limit (mg/kg)	0.00033			
		Insitu Sediment				
Sediment Sediment		Sample #1 Sample #2	0.00033 0.00033			
Sediment		Sample #3	0.00033			
	s than value ow less that	es n values are estimated results Results	s are less than the reporting l	mit		
				Page 13		

					biscoal							
Delaware River Water Analysis (Coarse-Grained	ed Site)								٠			
DESCRIPTION	158											TS Mgm
Detection Limit (mg/l)	4.0										DetLimit	4
Plume Monitoring Background TSS Top Depth TSS Mid-Depth TSS Bottom Depth	10 mm 8.5 10.5 14.0	20 min 28.0 10.0 12.5	30 min 7.5 10.0 11.0	40 min 25.0 9.5 31.5	50 min 8.0 9.0 13.0						Plume Monitaring Background	34
Plume Manitaing Non-Overflow TSS Top Depth TSS Mid-Depth TSS Bottom Depth	17.5 11.5 12.5 10.5	3 min 12.0 16.0 17.5	8 10,0 10,0 10,0 10,0	7 min 10.0 11.0 12.0	9.5 9.5 11.0 27.0	12.0 21.0 29.0	15 min 12.0 17.5 15.5	20 min 8.0 21.0 28.5	28 min 28 0 11.5	30 min 12:0 8:5 13:0	Plume Manitoring NOF Sample 1 33544 Sample 2 31596 Sample 3 32556	aring NOF 3354 3159 3255
Plume Monitoring Overflow TSS Top Depth: TSS Mid-Depth TSS action Depth:	4 mm 8.0 8.5 13.5	3 min 5.0 32.0 26.0	5 min 24.5 10.5 12.5	7 min 10.5 10.0 12.0	9 min 9.0 10.0 12.5	12 min 9.0 12.5 18.0	15 min 15.5 20.0 19.0	20 min 14.0 18.5 15.0	25 min 25 25 13.5 14.0	30 min 14.5 16.0	Plume Monitoring OF Sample 1 40 Sample 2 40 Sample 3 32	oring OF 40758 40476 32490
Hopper Inflow TSS (mg/l)	3 min 1640	6 min 1890	9 min 1310	12 min 1220	15 min 840	18 min 1300	23 min 1320	24 min 1045	27 min 2040	50 min 20160	Hopper Inflow Sample 1 Sample 2 Sample 3 Sample 4 Sample 5	35090 34753 34880 37873 40853
Hopper Contents Beginning of Overflow TSS Top Depth TSS Mid-Depth TSS Botton Depth	Location 1 1.0 1400 8470 2880	Location 2 Location 2 Location 1290 1330	Location 3 1827 1395 1600									
Hopper Contents End of Overflow TSS Top Depth TSS Wid-Depth TSS Bortom Depth	Location 1 Lo 590 807 833	Locabon 2 Lv 837 14610 857	Location 3 1290 303 857									
Hopper Overflow TSS (mg/l)	0.5 min 928	1.0 min 920	1.5 mis 982	2 0 min 2808	2.5 min 836	3.0 min 382	3.5 min 900	40 min 800	4,5 min	5.0 min 1048	Happer Ove Sample 1 Samble 2	
Happer Overliör TSS (mg/l)	5.5 m.n 986	6.0 min 970	6.5 min 728	7.0 min 690	7.5 min 800	8.0 min 1046	8.5 min 790	9.0 min 820	9.5 min 780	10.0 min 1184	Semple 3	42853 34600 35127
Happer Overflow TSS (mg/l)	10.5 min 932	11.0 min 638	11.5 min 634	12.0 min 772	12.5 min 954	13.0 min 732	13.5 min 968	14.0 min 842	14.5 min 788	15.0 min 688		
Happer Overflow TSS (mg/l)	15.5 min 722	16.0 min 894	16,5 mln 1424	17.0 min 1078	17.5 min 814	18.0 min 1112	18.5 min 2090	19.0 min 2468	12.5 min 8084	20.0 min 9590		
Site Water Sample 1 Total Sample 2 Total Sample 3 Total	\$\$ \$\$ 22.22										Site Water Sample 1 T Sample 2 T Sample 3 T	31216 30896 30562
Elbrinte Sample 1 Dissohed Sample 2 Dissohed Sample 2 Dissohed Sample 7 Total Sample 2 Total Sample 7 Total	11 16 18 13 13 14 14 14 15 16 16 17 18 18 18 18 18 18 18 18 18 18 18 18 18										Elutriate Sample 1 D Sample 2 D Sample 3 D Sample 1 T Sample 1 T Sample 3 T	30900 30870 30624 30720 30730 31016
					Done							

nutroonr

Delaware River Water Arralysis (Coarse-Grained Site)

SAMPLE TYPE	SAMPLE	DESCRIPTION	TOC
		Detection Limit (mg/l)	3.00
		Plume Monitoring	
Water	80820	Background, dissolved	5.67
Water	80728	Background, total	8 00
Water	80821	0-10 mm, overflow, dissolved	8.98
Water	80822	10-20 min, overflow, dissolved	11.30
Water	80823	20-30 min, overflow, dissolved	9.35
Water	80729	0-10 min, overflow, total	7.92
Water	80730	10-20 min, overflow, total	7 59
Water	80731	20-30 min, overflow, total	8 86
Water	80824	9-10 min, non-overflow, dissolved	10 20
Water	80825	10-20 min, non overflow, dissolved	10 30
Water	80826	20-30 min, non-overflow, dissolved	10 10
Water	80732	0-10 min, non-overflow, total	6 80
Water	80733	10-20 min, non-overflow, total	10 30
Water	80734	20-30 min, non-overflow, total	6 52
		Hopper Inflow Monitoring	
Water	80770	3& 6 min, dissolved	14 80
Water Water	80771 80772	9812 min, dissolved 15818 min, dissolved	3 45 13 50
Water	80773	21&24 min, dissolved	14 50
Water	80774	27830 min, dissolved	16 20
Water	80656	3& 6 min, total	216 00
Water	80657	9&12 min, total	45 80
Water	80658	15&18 min, total	16 50
Water	80659	21824 mm, total	28.60
Water	80660	27&30 min, total	54 20
	00775	Hopper Overflow Manitoring	
Water Water	80775 80776	28 4 min, dissolved 68 8 min, dissolved	12 40 11.20
Water	80777	10&12 min, dissolved	13.80
Water	80778	14&16 min, disselved	11.80
Waler	80779	18820 min, dissolved	16 60
Water	80662	28 4 min, total	41.90
Water	80663	6& 8 min, total	4 56
Water	80664	10&12 min, total	12 10
Water Water	80665 80666	14816 min, total	70.00
Avater	aubno	18&20 min, total	59.40
		Site Water	
Water	81684	Sample 1 Total	5 12
Water	81685	Sample 2 Total	1 21
Water	81686	Sample 3 Total	3.00
		Elutriate	
Water	81090	Sample 1 Dissolved	1 07
Water Water	81691 81692	Sample 2 Dissolved Sample 3 Dissolved	3.00
Water	81687	Sample 1 Total	1.32
Water	81685	Sample 2 Total	3.00
Water	81689	Sample 3 Total	3.00
SAMPLE		DESCRIPTION	TOC
TYPE	ID		
		Detection Limit (mg/kg)	30
		Anatha Markana	
Sediment	91770	Insitu Sediment Sample #1	1740
Sediment		Sample #2	155.0
Sediment		Sample #3	170 0
		•	

BOLD - less than values. Values below less than values are estimated results. Results are less than the reporting limit.

spgrcoar

Delaware River Water Analysis (Coarse-Grained Site)

SAMPLE TYPE	SAMPLE ID	DESCRIPTION	Sp. Gr.	%Moisture
		Insitu Sediment		
Sediment	81209	Sample #1	2.71	22.57%
Sediment	81210	Sample #2	2.70	25:39%
Sediment	81211	Sample #3	2.71	22.00%
Sediment	81212	Sample #4	2.71	23.83%
Sediment	81213	Sample #5	2.71	21.04%
Sediment	81214	Sample #6	2.72	20.33%
Sediment	81215	Sample #7	2.71	20.06%
Sediment	81216	Sample #8	2.72	21.82%
Sediment	81217	Sample #9	2.72	21.30%
Sediment	81218	Sample #10	2.72	19.87%
Sediment	81219	Sample #11	2.74	23.49%
Sediment	81220	Sample #12	2.74	20.47%
Sediment	81221	Sample #13	2.73	23.70%
Sediment	81222	Sample #14	2.74	20.90%
Sediment	81223	Sample #15	2.73	21.95%
		Average	2.72	21.91%

Page 1

M		

AMPLE YPE	SAMPLE ID	DESCRIPTION	58	AS	BE	CD	CR	CO	PB	+
		Detection Limit (mg/l)	0.0030	0 002	0 002	0 0002	0.002	0.001	0 0010	0.00
		Plume Monitoring								
Vater Vater	80976 80934	Background, dissolved Background, total	0.0030	0.007 0.011	0.001	0.0002	0.002 0.006	0.004	0.0045 0.0060	0.00
								0.004	0.0000	0 00
Vater	80977 80978	0-10 min, overflow, dissolved	0.0030	0 006	0.001	0.0002	0.002	0.001	0.0010	0.00
Vater Vater	90979	10-20 min, overflow, dissolved 20-30 min, overflow, dissolved	0.0030	0.006	0.001 0.001	0.0002	0.002 0.002	0,001 0 003	0.0010	0.00
/ater	80935	0-10 min, overflow, total	0.0030	0 011	0.001	0.0002	0.002	0 003	0.0010 0.0190	0.00
/ater	80936	10-20 min, overflow, total	0.0030	0.013	0.001	0.0002	0.018	0.008	0.0160	0.00
/aler	80937	20-30 min, overflow, total	0.0030	0.011	0.001	0.0002	0 012	0.004	0 0100	0.00
/ater	80980	0-10 min, non-overflow, dissolved	0.0030	8000	0.001	0.0002	0.002	0.003	0.0010	0,00
later	80981	10-20 min, non-overflow, dissolved	0.0030	0 008	0.001	0.0002	0.002	0 003	0 0017	0.00
/ater	80982	20 30 min, non-overflow, dissolved	0.0030	800.0	0.001	0.0002	0.002	0.001	0.0010	0.00
later	80938	0-10 min, non-overflow, total	0.0030	0.011	0.001	0.0002	0.004	0.001	0.0020	0.00
later later	90939 80940	10-20 min, non-overflow, total 20-30 min, non-overflow, total	0.0030	0.010 0.011	0.001	0.0002 0.0002	0.004 0.003	0.008 0.005	0.0030	0.00
tart-i	000 10	20 DO HAM, HOW OVERHOW, TOTAL	0.4444	0.071	0.001	5.0052	0.003	0.003	0 0030	0.00
		Hopper Inflow Monitoring								
later	81094	3& 6 min, dissolved	0.0030	0.009	0.001	0.0002	0.002	0.001	0 0015	0.00
ater	81095	9&12 min, dissolved	0.0030	0.019	0.001	0.0002	0.002	0.001	0.0017	0.00
later later	81096 81097	15818 min, dissolved 21824 min, dissolved	0.0030	0.009	0.001	0.0002	0 002	0.001	0 0011	0.00
later	81098	27830 min, dissolved	0.0030	0.009	0.001	0.0002	0.002 0.002	0.001 0.001	0.0010	0.00
ater	80867	3& 6 min, total	0.0156	0.392	0.040	0 0206	1 810	1 080	1 7800	0.00
ater	89808	9&12 min, total	0.0504	0 844	0.088	0.0527	3 980	2 520	4 4000	0.01
ater	80869	15&18 min, total	0.0870	1.470	0 140	0 0974	6.550	4 120	7 7500	0.04
ater	80870	21824 min, total	0 0288	0 528	0.056	0.0376	2 510	1.560	2 6800	0.01
ater	80871	27&30 min, total	0 1090	1 990	0.210	0.1760	9 600	6 900	12 0000	0.05
		Hopper Overflow Monitoring								
ater	81099	2& 4 min, dissolved	0.0030	0.003	0.001	0.0002	0.002	0.001	0 0012	0.00
ater	81100	6& 8 min, dissolved	0.0030	0 009	0.001	0.0002	0.002	0.001	0 0010	0.00
ater ater	81101 81102	10812 min, dissolved	0.0030	0.008	0.001 9.001	0.0002	0.002	0.001	0 0011	0.00
ater	81103	14&16 min, dissolved 18&20 min, dissolved	0.0030	0 010	0.001	0.0002	0.002	0.001	0 0016 0 0010	0.00
ater	80873	2& 4 min, total	0.0895	1 460	0 145	0.0061	6 700	4 410	7 9500	0.03
atei	80874	6% 8 min, total	0 0950	1 440	0 140	0.0055	6 640	4 300	7.9000	0.02
ater	80875	10&12 min, total	0 0840	1.290	0.130	0.0899	6.000	4 000	6.0500	0 02
ater	80876	14816 min, total	0.0005	1 640	0 160	0 1260	7 550	5 100	7.6000	0.030
ater	80877	18&20 min, total	0.0815	1 600	0 160	0 1170	7.450	4 980	7.9500	0.03
		Site Water								
ater	81657	Sample 1 Total	0 0030	0 010	0.001	0.0002	0 005	0 005	0.0040	0.00
ater	81658 81659	Sample 2 Total	0.0030	0.002	0.001	0.0002	0 004	0.004	0.0060	0.00
ater	01039	Sample 3 Total	0.0030	0.002	0.001	0.0002	0 004	0.001	0.0010	0.00
		Elutriate								
ater	81663	Sample 1 Dissolved	0.0030	0 011	0.001	0.0002	0.002	0 002	0.0010	0.00
nter	81664	Sample 2 Dissolved	0.0030	0 010	0.001	0.0002	0.002	0 002	0.0010	0.00
ater ater	81660	Sample 3 Dissolved Sample 1 Total	0.0030	0 009 0 015	9.001 0.001	0.0002 0.0002	0.002 0.024	0.003 0.007	0.0010 0.0140	0.00
	81661	Sample 2 Total	0.0030	0 014	0.001	0.0002	0.025	0.007	0 0140	0.00
	81662	Sample 3 Total	0.0030	0 014	0.001	0.0002	0.024	0 009	0 0130	0.00
64 0 0 00	O A LATENCE	DECODE TO LA	25	40	-	-			-	
	SAMPLE ID	DESCRIPTION	SB	AS	DE	CD	CR	CU	PB	۲
		Detection Limit (mg/kg)	0.30	0.2	0.1	0.050	0.2	6.1	1.0	0 0
		Insdu Sediment								
diment		Sample #1	0.36	10.3	0.9	0.300	41.4	16 2	32 1	0.1
diment		Sample #2	0.49	10.7	0.9	0.310	42.2	16.8	34.2	0.1
diment	01/37	Sample #3	0.37	10 1	0.8	0.289	41.0	16.2	32 4	0 1

				Metsfine	•					
		Delaware River Water Analysis (Fine-Go	rained Site)							
SAMPLE TYPE	SAMPLE ID	DESCRIPTION	NI	SE	AG	TL	ZN	AL.	BA	С
		Detection Limit (mg/l)	0.001	0.002	0.001	0.0020	0.010	0.025	0.002	0.20
		Plume Monitoring								
Vater Vater	80976 80934	Background, dissolved Background, total	0.001 0.004	0.019 0.025	0.001	0.0020 0.0020	0.053 0.071	0.025 2.900	0.223 0.050	70. 67.
									0.004	57
Vater	80977	0.10 min, overflow, dissolved	0.001	0.013	0.001	0.0020	0.014	0.026	0.094	58
Nater	80978	10-20 min, overflow, dissolved	0.001	0.013	0.001	0.0020	0.013	0.025	0.089	53
Nater	90979	20-30 min, overflow, dissolved	0.001	0.014	0.001	0.0020	0.013			56
Nater	80935	0-10 min, overflow, total	0.007	0.019	0.001	0.0020	0.059	7 920 7.640	0,061	57
Vater	80936	10-20 min, overflow, total	0.008	0.023	0.001	0.0020	0.060			53
Vater	80937	20-30 min, overflow, total	0.004	0.021	0.001	0.0020	0.036	5.140	0.048	00
		a sa transfer distributed	0.004	2 024	6,001	0.0020	0.058	0.025	0.245	70
Nater	80980	0-10 min, non-overflow, dissolved	0.001	0.021	0.001	0.0020	0.046	0.025	0.193	69
Vater	80981	10-20 min, non-overflow, dissolved	0.001	0.021	0.001	0.0021	0.048	0.025	0.207	71
Vater	80982	20-30 min, non-overflow, dissolved	0.001		0.003	0.0020	0.013	1.800	0.170	70
Vater	80938	0-10 min, non-overflow, total	0.001	0.027	0.001	0.0020	0.013	2 160	0.040	6
Valer	90939	10-20 min, non-overflow, total	0.003	0.027	0.001	0.0020	0.010	1.790	0.038	61
Vater	80940	20-30 min, non-overflow; total	0.003	0,028	Q. Q (1)	4.0020	0.010	1.4⊅∀	4.040	
		Hopper Inflow Manitoring								
Vater	81094	3& 6 min, dissolved	0.003	0.015	0.001	0.0020	0.074	0.025	0.435	8:
Vater	81095	98.12 min, dissolved	0.004	0.015	0,002	0.0020	0 084	0.092	0.549	9
Vater	81096	15&18 min, dissolved	0.005	0.014	0.001	0.0020	0.076	0.033	0.529	11
Nater	81097	21824 min, dissolved	0.003	0.014	0.001	0,0020	0.057	0.028	0.380	7:
Vater	81098	27830 min, dissolved	0.005	0.015	0.001	0.0020	0.089	0.025	0.636	10
Valer	80867	3& 6 min, total	0.912	0.068	0.004	0.0110	5.880	744.0	3.000	17
Vater	80868	9&12 min, total	1.950	0.116	0.076	0.0160	13,300	1856.0	6.440	39
Water	80869	15&18 min, total	3.240	0.180	0.098	0.0310	21.400	3320.0	10.200	64
Water	80870	21&24 min, total	1.270	0.084	0.044	0.0110	8.760	1110.0	4.200	24
Nater	80871	27830 min, total	4.750	0.255	0.150	0.0540	34.800	5440.0	16,800	100
		Hopper Overflow Monitoring								
Water	81099	2& 4 min, dissolved	0.005	0.015	0.001	0.0020	0.145	0.025	0.607	11
Water	81100	6& 8 mln, dissolved	0.005	0.015	0.001	0,0020	0.157	0.025	0.713	12
Vater	81101	108.12 min, dissolved	0.005	0.015	0.001	0.0020	0.130	0.025	0.748	11
Vater	81102	14815 mm, dissolved	0.005	0.013	B.001	0.0020	0.138	0.025	0.749	11
Water	81103	18&20 min, dissolved	0.004	0.013	0.002	0.0020	0.085	0.025	0,551	11
Vater	80873	28. 4 min, total	3.350	0.010	0.007	0.0020	23.400	3450.0	11.000	59
Water	80874	6& 8 min, total	3.310	0.010	0.005	0.0020	22 900	3080.0	10.700	61
Water	80875	10&12 min, total	3.030	0.141	0.053	0.0230	21.200	2860.0	10.000	56
Water	89876	14&16 min, total	3,820	0.195	0.114	0.0340	27.100	3930.0	12.800	74
Vater	80877	18&20 min, total	3.760	0 191	0.078	0.0360	26.800	3740.0	12.500	76
		Site Water								
Water	81657	Sample 1 Total	0.002	0.026	0.003	0.0020	0.019	2.330	0.043	5
Water	81658	Sample 2 Total	0.003	0.024	0.002	0.0020	0.019	2.060	0.042	6
Water	81659	Sample 3 Total	0.001	0.002	0.002	0.0020	0.018	2.340	0.042	€
		Elutriate	A rose	0.000	0.004	0.0000	0.073	0.165	0.280	6
Water	81663	Sample 1 Dissolved	0.003	.0.028	0.001	0.0020	0.073	0.163	0.209	è
Water	81664	Sample 2 Dissolved	0.002	0.024	0.001	0.0020	0.076	0.105	0.214	è
Water	81665	Sample 3 Dissolved	0 002	0.021	0.002	0.0020	0.076	12 900	0.104	è
Water	81660	Sample 1 Total	0.011	0.030 0.028	0.002	0.0020	0.074	13.200	0.107	È
Water Water	81661 81662	Sample 2 Total Sample 3 Total	0.011 0.012	0.030	0.002	0.0020	0 072	13.000	0 113	(
Sampi e	SAMPLE	DESCRIPTION	NI	·SE	AG	TL.	ZN	AL	BA	
TYPE	ID									
		Detection Limit (mg/kg)	05	0.20	0.100	0.200	1	1	0.1	
		Insitu Sediment	21.7	1.60	0.700	0.200	131	13300	51.4	2
Oneti-										
		Sample #1						13800	53.5	2
Sediment Sediment Sediment	81730	Sample #2 Sample #3	22.2 21.5	1.60	0.700 0.649	0,200	133 130	13800 13000		2

Nt - Nickel SE - Selerium AG - Silver TL - Thalfium ZN - Zinc AL - Aluminum BA - Berium CA - Calcium BOLD - less than values
Values below less than values are estimated results. Results are less than the reporting limit

C		

SAMPLE YPE	SAMPLE	DESCRIPTION	co	FE	MG	MN	к	NA	V	
		Detection Limit (mg/l)	0.002	0 020	0.200	0.001	0.20	0.20	0.002	
		Plume Monitoring								
Vater Vater	80976 80934	Background, dissolved Background, total	0,001 8,001	0.020 2.426	180 162	0.002 0.118	56 4 49 6	1540 1350	0.008 0.008	
Vater	80977	0-10 min. overflow, dissolved	0.001	0.020	121	0 062	41 8	1030	0 003	
Vater	80978	10-20 min, overflow, dissolved	0.001	0.020	116	0 027	41.1	973	0 003	
Vater Vater	90979 80935	20-30 min, overflow, dissolved 0-10 min, overflow, total	0.001	0.020	112	0 010	36 4	942	0 003	
vater Vater	80936	10-20 min, overflow, total	0.002	9.710 9.260	120 121	0.465 0.450	37 6 38 5	916 920	0 020	
/ater	80937	20-30 min, overflow, total	0.001	5.730	109	0 278	340	857	0 013	
/ater	80980	0-10 min, non-overflow, dissolved	0.001	0.027	179	0.011	57 8	1570	0.003	
/ater	80981	10-20 min, non-overflow, dissolved	0.001	0.020	171	0 011	55 6	1520	0.003	
/ater	80982	20-30 mm, non-overflow, dissolved	0.001	0.020	160	0 005	55 7	1380	0.002	
vater	80938	0-10 min, non-overflow, total	0.001	1 420	180	0 073	54.0	1470	0.006	
Vater	90939	10-20 min, non-overflow, total	0.001	1.820	175	0 098	53.8	1370	0.007	
Vater	80940	20 30 min, non-overflow, total	0.001	1 140	159	0 061	48 8	1280	0 006	
		Hopper Inflow Monitoring								
Vater	81094	3& 6 min, dissolved	0.002	0.926	150	7 500	45.1	1240	0.001	
Vater	81095	9&12 min, dissolved	0.004	6 850	144	9.200	38.9	1030	0.001	
Vater	81096	15&18 min, dissolved	0.006	10,200	148	11 200	36 1	1030	0 001	
/ater	81097	21&24 min, dissolved	0.004	0.467	123	3 840	40.0	1060	0.001	
Vater	81098	278.30 min, dissolved	0.006	11.600	127	6 920	33.6	940	0 002	
/ater /ater	80867 80868	38. 6 min, total 98.12 min, total	0 480 1 030	1,180 0 2,860 0	370 725	58 0 132 0	160.0 289.0	1070 1104	1 800 3 950	
ater	80869	15&18 min, total	1.700	5,130 0	1180	2440	451.D	1060	5.550	
Vater	80870	218.24 min, total	0 684	1.630.0	476	748	188.0	1020	3 130	
/ater	80871	27830 min, total	2.510	9,200 0	1830	412 0	700 0	970	9.650	
		Happer Overflow Monitoring								
Vater	81099	28. 4 min, dissolved	D 004	2 930	151	9 580	32.9	1000	0.001	
Vater	81100	68, 8 min, dissolved	0 004	3 600	153	9 500	33.4	1030	0.001	
/ater	81101	10812 min, dissolved	0.005	5 980	133	7 310	32 3	956	0.001	
Vater	81102	14&16 min, dissolved	0.006	10.906	140	6.460	30 0	932	0.001	
Vater	81103	18&20 min, dissolved	900 0	6 410	133	6 810	32.5	895	0.001	
Vater	80873	28. 4 min, total	1 760 1.740	4 750 0	1,040	225 0	474.0	885	6 650	
Vater Vater	80874 80875	68. 8 min, total 108.12 min, total	1,620	2,700 0 4,160 0	1,060 965	224 0 197 0	389 0 415.0	970 960	6.600 5,900	
valer Valer	80876	148.16 min, total	2 030	5,600.0	1,205	265 0	520 D	930	7.400	
later	80877	18&20 min, total	1 980	6,150 0	1,320	267.0	510 0	960	7.350	
		0'-111								
/ater	81657	Site Water Sample 1 Total	0.002	2,420	135	0.120	39 80	1130	0.007	
/ater	81658	Sample 2 Total	0.002	2 370	134	0 121	36 90	1140	0 007	
ater	81659	Sample 3 Total	0 002	2 470	133	0.119	3 8 30	1130	0.008	
		Elutriate								
ater	81663	Sample 1 Dissolved	0.003	0.043	140	8 280	40.40	1140	0.006	
ater	81664	Sample 2 Dissolved	0 002	0 042	153	8 100	40 40	1180	0.007	
/ater	81665	Sample 3 Dissolved	0.002	0.037	144	8 310	36 40	1160	0.007	
ater	81660	Sample 1 Total	0.008	12.900	61	8 160	30,70	1060	0.032	
later later	81661 81663	Sample 2 Total	0.008 0.008	13.200 13.000	140 136	8 360 8 430	37.70 33.00	1060 1020	0 034 0 034	
atei	81662	Sample 3 Total								
MPLE PE	SAMPLE ID	DESCRIPTION	co	FE	MG	MN	к	NA	٧	% Mois
		Detection Limit (mg/kg)	0.1	2	20	01	20	20	0 1	
		Insitu Sediment								
ediment	81729	Sample #1	11.1	25,300	5 050	1,070.0	2,290	2110	33 8	•
ediment	81730	Sample #2	11.2	26,200	5,120	1,150.0	2,380	2160	42.6	€
ediment		Sample #3	11.0	25,200	5 070	1 120 0	2,350	2140	37.1	€

CO - Cobalt FE - Iron MG - Magnesium MN - Manganese K - Potassium BOLD - less than values Values below less than values are estimated results. Results are less than the reporting limit. MG - Magnesium MN - Manganese K - Potassium NA - Sodium V - Vanadium

١Hs	

Water 80997 Water 80963 Water 80963 Water 80965 Water 80965 Water 80965 Water 80966 Water 80966 Water 80967 Water 80967 Water 80968 Water 80967 Water 80919 Water 80923 Water 80924 Water 80925 Water 80926 Water 81640 Water 81640 Water 81642 Water Water 81642 Water Wate	Background, total	0,00030 0,00030 0,00030 0,00030 0,00030 0,00030 0,00030	0.00030 0.00030 0.00030 0.00030 0.00030 0.00030 0.00030	0.00030 0.00030 0.00030 0.00030 0.00030	0.00030 0.00030 0.00030	0.00030 0.00030 0.00030	0.00030 0.00030 0.00030	0.0003 0.0003 0.0003
Vater 80962 Vater 80998 Vater 80998 Vater 80999 Vater 80963 Vater 80965 Vater 81001 Vater 81002 Vater 81002 Vater 81003 Vater 81003 Vater 81003 Vater 81003 Vater 81003 Vater 810966 Vater 810966 Vater 81126 Vater 81126 Vater 81126 Vater 81127 Vater 80918 Vater 80919 Vater 80920 Vater 80922 Vater 80924 Vater 80925 Vater 80924 Vater 80925 Vater 80924 Vater 80924 Vater 80924 Vater 80925 Vater 80924 Vater 80924 Vater 81640 Vater Water 81640 Vater 81640 Vater 81640 Vater 81640 Vater 81640 Vater 81641 Vater 81641 Vater 81642 Vater 81643 Vater 81644	Plume Monitoring Background, dissolved Background, total 988 0-10 min, overflow, dissolved 10-20 min, overflow, dissolved 10-20 min, overflow, dissolved 10-20 min, overflow, total 10-20 min, overflow, total 10-20 min, overflow, total 10-20 min, overflow, total 10-20 min, non-overflow, dissolved 10-20 min, non-overflow, dissolved 10-20 min, non-overflow, dissolved 10-20 min, non-overflow, total 10-20 min, non-overflow, total	0.00030 0.00030 0.00030 0.00030 0.00030 0.00030 0.00030	0.00030 0.00030 0.00030 0.00030 0.00030 0.00030	0.00030 0.00030 0.00030	0.00030	0.00030		
Vater 80962 Vater 80998 Vater 80999 Vater 80999 Vater 80963 Vater 80965 Vater 80965 Vater 81001 Vater 81002 Vater 81003 Vater 81003 Vater 81003 Vater 81003 Vater 81003 Vater 81003 Vater 8103 Vater 80968 Vater 81126 Vater 81126 Vater 81127 Vater 81128 Vater 80915 Vater 80919 Vater 80920 Vater 80921 Vater 80922 Vater 80923 Vater 80924 Vater 80925 Vater 80924 Vater 81639 Vater 81640 Vater 8	Background, dissolved Background, total 8-88 0-10 min, overflow, dissolved 10-20 min, overflow, dissolved 10-20 min, overflow, dissolved 10-20 min, overflow, total 10-20 min, overflow, total 10-20 min, overflow, total 10-20 min, non-overflow, dissolved 10-20 min, non-overflow, dissolved 10-20 min, non-overflow, dissolved 10-20 min, non-overflow, dissolved 10-20 min, non-overflow, total 10-20 min, non-overflow, total 10-20 min, non-overflow, total	0.00030 0.00030 0.00030 0.00030 0.00030 0.00030 0.00030	0.00030 0.00030 0.00030 0.00030 0.00030 0.00030	0.00030 0.00030 0.00030	0.00030	0.00030		
Vater 80998 Vater 80999 Vater 80905 Vater 80963 Vater 80964 Vater 81001 Vater 81002 Vater 81003 Vater 81003 Vater 80966 Vater 81002 Vater 81003 Vater 80967 Vater 80968 Vater 81126 Vater 81126 Vater 81128 Vater 81128 Vater 81128 Vater 81128 Vater 81128 Vater 81128 Vater 81129 Vater 80915 Vater 80915 Vater 80916 Vater 81130 Vater 80917 Vater 80919 Vater 81130 Vater 81131 Vater 80918 Vater 81130 Vater 81131 Vater 81131 Vater 81132 Vater 81134 Vater 81134 Vater 81134 Vater 81134 Vater 80924 Vater 80925 Water 81639 Vater 81640 Vater 81641 Water 81644	998 0-10 min, overflow, dissolved 10-20 min, overflow, dissolved 20-30 min, overflow, dissolved 20-30 min, overflow, dissolved 363 0-10 min, overflow, total 20-30 min, overflow, total 20-30 min, overflow, total 20-30 min, non-overflow, dissolved 303 20-30 min, non-overflow, dissolved 0-10 min, non-overflow, dissolved 0-10 min, non-overflow, dissolved 0-10 min, non-overflow, total 20-30 min, non-overflow, dissolved 0-10 min, non-overflow, total 30-30 min, non-overflow, dissolved 30-30 min, non-overflow, total 30-30 min, non-overflow, dissolved 30-30 min, non-overflow, total 30-30 min, non-overflow, dissolved 30-30 min, non-overflow, total 30-30	0.00030 0.00030 0.00030 0.00030 0.00030 0.00030	0,00030 0,00030 0,00030 0,00030 0,00030	0.00030	0.00030		0.00030	O con
Vater Auter Super	939 10-20 min, overflow, dissolved 20-30 min, overflow, dissolved 10-30 10 min, overflow, total 10-20 min, overflow, total 10-20 min, overflow, total 20-30 min, overflow, total 20-30 min, non-overflow, dissolved 20-30 min, non-overflow, dissolved 20-30 min, non-overflow, dissolved 10-20 min, non-overflow, total 10-20 min, non-overflow, tot	0.00030 0.00030 0.00030 0.00030 0.00030	0.00030 0.00030 0.00030	0.00030		0.00030		9.941
Vater Auter		0.00030 0.00030 0.00030	0.00030 0.00030				0.00030	0.000
Aster	0-10 min, overflow, total 10-20 min, overflow, total 10-20 min, overflow, total 20-30 min, overflow, total 20-30 min, non-overflow, dissolved 20-30 min, non-overflow, dissolved 20-30 min, non-overflow, dissolved 20-30 min, non-overflow, total 20-20 min, non-overflow, total	0.00030 0.00030	0.00030		0.00030	0.00030	0.00030 0.00030	0.00
Vater Auter 80964 80965 81001 81002 81003 81003 81006 81002 81003 81006	10-20 min, overflow, total 20-30 min, overflow, total 20-30 min, coverflow, total 001 0-10 min, non-overflow, dissolved 10-20 min, non-overflow, dissolved 60-10 min, non-overflow, total	0.00030	0.00030	0.00030	0.00030	0.00030	0.00030	0.00
Vater 81001 Vater 81002 Vater 81003 Vater 80968 Vater 80968 Vater 80968 Vater 80968 Vater 81124 Vater 81125 Vater 81126 Vater 81127 Vater 81128 Vater 80915 Vater 80919 Vater 80924 Vater 80925 Vater 80924 Vater 80924 Vater 80924 Vater 80924 Vater 80924 Vater 81640 Vater 81640 Vater 81640 Vater 81640 Vater 81644 Vater	20-30 min, overflow, total 0-10 min, non-overflow, dissolved 002 10-20 min, non-overflow, dissolved 003 20-30 min, non-overflow, dissolved 004 min, non-overflow, total 005 10-20 min, non-overflow, total	0.00030		0.00030	8.00030	0.00030	0.00030	0.00
Vater Vater 81124 81022 Vater 81126 81126 Vater 81126 Vater 81126 Vater 80915 Vater 80917 Vater 80919 Vater 81133 Vater 81134 80921 Vater 81134 80921 Vater 81134 80921 Vater 81134 80921 Vater 81134 80922 Vater 81134 80922 Vater 81134 80922 Vater 81134 Vater 81134 80924 Vater 81134	10.20 min, non-overflow, dissolved 20.30 min, non-overflow, dissolved 966 0.10 min, non-overflow, total 10-20 min, non-overflow, total	0,00030	9,00030	0.00030	0.00030	0.00030	0.00030	0.00
Vater Vater 80919 Vater 80968 Vater 80968 Vater 80968 Vater 81124 Vater 81125 Vater 81126 Vater 80919 Vater 80919 Vater 80919 Vater 80919 Vater 80919 Vater 80919 Vater 81130 Vater 81131 Vater 81131 Vater 81131 Vater 81131 Vater 81131 Vater 81132 Vater 81134 Vater	10.20 min, non-overflow, dissolved 20.30 min, non-overflow, dissolved 966 0.10 min, non-overflow, total 10-20 min, non-overflow, total		0.00030	0.00030	0.00030	0.00030	0.00030	0.00
Vater Vater 81124 Vater 80968 Vater 80968 Vater 81124 Vater 81126 Vater 81126 Vater 81127 Vater 81126 Vater 81127 Vater 80918 Vater 80918 Vater 80919 Vater 80919 Vater 80919 Vater 81130 Vater 81131 Vater 81131 Vater 81132 Vater 81130 Vater 80922 Vater 80923 Vater 80924 Vater 80925 Vater 80925 Vater 80924 Vater	966 0-10 min, non-overflow, total 967 10-20 min, non-overflow, total	0.00030	0,00030	0.00030	0.00030	0.00030	0.00030	0.00
Vater 80967 80968 Vater 81124 81125 Vater 81126 Vater 81126 Vater 80915 Vater 80916 Vater 80916 Vater 80916 Vater 80918 Vater 80919 Vater 80919 Vater 80920 Vater 81640 Vater	967 10-20 min, non-overflow, total	0,00030	0.00030	0,00030	0,00030	0.00030	0.00030	0.00
Vater 81124 Vater 81125 Vater 81125 Vater 81127 Vater 81127 Vater 81127 Vater 80915 Vater 80916 Vater 80918 Vater 80918 Vater 81130 Vater 81130 Vater 81130 Vater 81130 Vater 81130 Vater 8134 Vater 8134 Vater 8134 Vater 8134 Vater 8134 Vater 8134 Vater 8144 Vater 81643 Vater 81643 Vater 81644 Water 81644		0.00030	0.00030	0.00030	0.00030	0.00030	0.00030	0.00
Vater Vater 81124 Vater 81125 Vater 81126 Vater 90915 Vater 80917 Vater 80919 Vater 80919 Vater 80919 Vater 81130 Vater 81131 Vater 81132 Vater 81133 Vater 81134 Vater 8144 Vater 81640 Vater 81644 V		0.00030	0.00030	0.00030	0.00030	0.00030	0.00030	0.00
Vater 81126 Vater 81127 Vater 81127 Vater 81127 Vater 80915 Vater 80916 Vater 80918 Vater 80919 Vater 80919 Vater 81130 Vater 81131 Vater 81131 Vater 81132 Vater 8134 Vater 81639 Vater 81925 Vater 81639 Vater 81639 Vater 81641 Vater 81644	988 20-30 min, non-overflow, total	0.00030	0.00030	0.00030	0,00030	0.00030	0.0000	4,00
Vater Vater 81126 Vater 81127 Vater 81127 Vater 81128 Vater 80915 Vater 80916 Vater 80918 Vater 80919 Vater 81130 Vater 81131 Vater 81131 Vater 81131 Vater 8132 Vater 8134 Vater 80924 Vater 80925 Water 80925 Water 81639 Water 81641 Water 81644	Hopper Inflow Monitoring							
Vater 81126 Vater 81127 Vater 80915 Vater 80916 Vater 80916 Vater 80919 Vater 80919 Vater 80919 Vater 81130 Vater 81130 Vater 81130 Vater 81130 Vater 81340 Vater 81640 Vater 81645 Vater 81645 Vater 81645 Vater 81646 Vater	124 3& 6 min, dissolved	0.00030	0.00030	0.00030	0.00030	0.00030	0.00030	0.00
Vater 81129 Vater 80915 Vater 80918 Vater 80919 Vater 80919 Vater 81130 Vater 81131 Vater 81131 Vater 81132 Vater 80921 Vater 80922 Vater 80923 Vater 80924 Vater 80925 Vater 80924 Vater 80925 Vater 80924 Vater 80925 Vater 80924 Vater 80925 Vater 80925 Vater 80926 Vater 80926 Vater 80926 Vater 80926 Vater 80927 Vater 80927 Vater 80927 Vater 80927 Vater 80928 Vater 80928 Vater 81646 Vater 81647 Vater 81648 Vater 81648 Vater 81648 Vater 81644 Vater 81646 Vater 81644 Vater 81645 Vater 81644 Vater 81645 Vater 81644 Vater 81646 Vater 81644 Vater		0.00030	0.00030	0.00030	0.00030	0.00030	0.00030	0.00
Vater Vater 80915 Vater 80916 Vater 80916 Vater 80918 Vater 80919 Vater 80919 Vater 81130 Vater 81130 Vater 81131 Vater 81132 Vater 8132 Vater 8134 Vater 80924 Vater 80925 Vater 80924 Vater 81643 Vater 81646 Vater 81646 Vater 81646 Vater 81646 Vater 81644		0.00030	0.00030	0.00030	0.00030	0.00030	0.00030	0.00
Vater Vater 80915 Vater 80916 Vater 80917 Vater 80918 Vater 80919 Vater 81129 Vater 81130 Vater 81131 Vater 81132 Vater 81132 Vater 80922 Vater 80922 Vater 80923 Vater 80923 Vater 80924 Vater 80926 Vater 80926 Vater 81640 Vater 81640 Vater 81641 Vater 81642 Vater 81643 Vater 81644 Vater 81644 Vater 81644 Vater 81644 Vater 81644 Vater 81644 Vater 81644 Vater 81644 Vater 81644 Vater 81644 Vater 81644 Vater 81644 Vater 81644 Vater 81644 Vater 81644 Vater 81644 Vater 81644		0.00030	0.00030	0.00030	0.00030	0.00030	0.00030	0.00
Nater 80915 Vater 80918 Vater 80918 Vater 80919 Vater 81130 Vater 81130 Vater 81130 Vater 81131 Vater 81132 Vater 80921 Vater 80921 Vater 80922 Vater 80924 Vater 80925 Vater 80924 Vater 80925 Vater 80924 Vater 80924 Vater 80925 Vater 80924 Vater 80925 Vater 80924 Vater 80924 Vater 80925 Vater 80924 Vater 80925 Vater 80924 Vater 81639 Vater 81640 Vater 81646 Vater 81646 Vater 81646 Vater 81644		0.00043	0.00030	0.00030	0.00014	0.00054	0.00031	0.00
Vater 80918 Vater 81129 Vater 81130 Vater 81131 Vater 81131 Vater 81132 Vater 80922 Vater 80922 Vater 80923 Vater 80925 Vater 80925 Vater 80925 Vater 81639		0.00110	0.00030	0.00029	0.00057	0.00349	0.00103	0.00
Nater 80919 Nater 81129 Vater 81130 Nater 81131 Nater 81132 Nater 80921 Nater 80922 Nater 80923 Nater 80924 Nater 80925 Mater 80926 Mater 81640 Water 81640 Water 81646 Water 81646 Water 81644		0.00057	0.00030	0.00017	0.00036	0.00217	0,00061	0.00
Vater 81130 Vater 81131 Vater 81132 Vater 81133 Vater 81133 Vater 81133 Vater 80921 Vater 80922 Vater 80923 Vater 80924 Vater 80925 Vater 80926 Vater 81639 Vater 81640 Vater 81641 Vater 81646 Vater 81644 Vater 81644 Vater 81644		0.00053 0.00183	0.00030 0.00015	0.00012 0.00047	0.00023 0.00085	0.00158 0.00582	0.00183	0.00
Vater 81130 Vater 81131 Vater 81132 Vater 81132 Vater 81133 Vater 80921 Vater 80922 Vater 80924 Vater 80925 Vater 80926 Vater 81639 Vater 81640 Vater 81640 Vater 81646 Water 81644 Water 81643								
Nater 81130 Nater 81131 Nater 81132 Nater 81132 Nater 80921 Nater 80922 Nater 80924 Nater 80925 Water 80925 Water 81640 Water 81640 Water 81646 Water 81643	Hopper Overflow Monitoring 129 2& 4 min, dissolved	0.00030	0.00030	0.00030	0.00020	0.00030	0.00030	0.00
Nater 81132 Valer 81132 Valer 81133 Varier 80921 Valer 80922 Valer 80923 Vater 80925 Water 80925 Water 81640 Water 81640 Water 81641 Water 81642 Water 81643 Water 81644 Water 81644 Water 81644 Water 81644 Water 81644 Water 81644 Water 81645 Water 81644 Water 81645 Water 81644 Water 81643		0.00030	0.00030	0.00030	0.00030	0.00030	0.00030	0.00
Water 81133 Norier 80921 Nater 80922 Nater 80923 Nater 80924 Water 80925 Water 81639 Water 81640 Water 81641 Water 91646 Water 81647 Water 81648 Water 81644 Water 81643 Water 81644 Water 81643 Water 81644		0.00030	0.00030	0.00030	0.00030	0.00030	0.00030	0.00
Vister 80921 Vater 80922 Vater 80923 Nater 80925 Vater 80925 Vater 81639 Nater 81640 Vater 81646 Vater 81644		0,00030	0.00030	0.00030	0.00030	0.00030	0.00030	0.00
Mater 80922 Nater 80923 Nater 80925 Mater 80925 Mater 81639 Mater 81640 Water 81646 Mater 81646 Water 81646		0.00030	0.00030	0.00030	0.00030	0.00377	0.00104	0.00
Mater 80923 Mater 80926 Mater 81639 Mater 81640 Mater 81641 Water 81645 Mater 81646 Mater 81646 Mater 81647 Mater 81643 Mater 81643 Mater 81643 Mater 81643		0.00120	0.00011	0.00042	0.00068	0.00629	0.00311	0.01
Water 80924 Water 81639 Water 81640 Water 81641 Water 81645 Water 81646 Water 81647 Water 81648 Water 81644 Water 81644		0.00062	0.00030	0.00020	0.00054	0.00325	0.00083	0.00
Water 81639 Water 81640 Water 81641 Water 81646 Water 81646 Water 81647 Water 81643 Water 81643 Water 81643		0.00052	0.00030	0.00015	0.00047	0.00267	0.00074	0.00
Water 81645 Water 81645 Water 81645 Water 81646 Water 81642 Water 81643 Water 81643 Water 81643		0.00257	0.00023	0.00073	0.00124	0:00923	0.00259	0.02
Water 81645 Water 81645 Water 81645 Water 81646 Water 81642 Water 81643 Water 81643 Water 81644	Site Water							
Water 81641 Water 81645 Water 81647 Water 81642 Water 81643 Water 81644	639 Sample 1 Total	0.00030	0.00030	0.00030	0.00030	0.00030	0.00030	0.00
Nater 81645 Nater 81646 Nater 81646 Nater 81642 Nater 81643 Nater 81644		0.00030	0.00030	0.00030	0.00030	0.00030	0.00030	0.00
Water 81646 Nater 81647 Nater 81642 Nater 81643 Nater 81644	641 Sample 3 Total	0.00030	0.00030	0.00030	0.00030	0.0000	0,00000	0.00
Water 81646 Nater 81647 Nater 81642 Nater 81643 Nater 81644	Elutriate					0.0000	0.0000	0.00
Water 81647 Water 81642 Water 81643 Water 81644		6,00030	0.00030	0.00030	0.00030	0.00030	0.00030	0.00
Water 81642 Water 81643 Water 81644		0.00030	0.00030	0.00030	0.00030	0.00030	0.00030	0.00
Water 81643 Water 81644		0.00030	0.00030	0.00030	0.00030	0,00030	0.00030	0.00
Water 81644		0,00030	0.00030	0.00030	0.00030	0.00030	0.00030	0.00
SAMPLE SAMPL		0.00030	0.00030	0.00030	0.00020	0.00030	0.00030	0.00
	AMPLE DESCRIPTION	NAPHTH	ACENAY	ACENAP	FLUORE	PHENAN	ANTRAC	FLAN
TYPE ID								
	Detection Limit (mg/kg)	0.0220	0.022	0.022	0.022	0.0220	0.0220	0
	Insitu Sediment				0.007	0.0004	0.0367	0
Sediment 81705		0.0640	0.022	0.022	0.015 0.014	0.0921	0.0367	0
Sediment 81706	1705 Sample #1	0.0591 0.0581	0.022 0.022	0.022	0.014	0.0800	0.0303	
Sediment 81707	1705 Sample #1 1706 Sample #2	0.0301	7,022					

PAHsfine

Delaware	Prior Mater	Anahere (Fine-Grained	CAN
Delaware	KIVEL AVAILED	ADDIVISIS I	rine Grained	Sine)

SAMPLE TYPE	SAMPLE ID	DESCRIPTION	PYRENE	CHRYSE	BAANTHR	BBFLANT	BKFLANT	BAPYRE	I123PYR
		Detection Limit (mg/l)	0 00030	0.00030	0.00030	0.00030	0 00030	Ø 00030	0 00030
		Plume Monitoring							
Water	80997	Background, dissolved	0.00030	0.00030	0.00030	0.00030	0.00030	0.00030	0.00030
Water	80962	Background, total	0.00030	0,00030	0.00030	0.00030	0.00030	0.00030	0.00030
Water	80998	0-10 min, overflow, dissolved	0.00030	0.00030	0 00030	0.00030	0.00030	0.00030	0.00030
Water	80999	10-20 min, overflow, dissolved	0.00030	0.00030	0.00030	0.00030	0.00030	0.00030	0.00030
Water	81000	20-30 min, overflow, dissolved	0.00030	0.00030	0.00030	0.90030	0.00030	0.00030	0.00030
Water	80963	0-10 min, overflow, total	0.00030	0.00030	0.00030	0.00030	0.00030	0.00030	0.00030
Water	80964	10-20 min, overflow, tutal	0,00030	0.00030	0.00030	0.00030	0.00030	0.00030	0.00030
Water	80965	20-30 min, overflow, total	0.00030	0.00030	0.00030	0.00030	0.00030	0.00030	0.00030
Water	81001	0.10 min, non-overflow, dissolved	0.00030	0.00030	0.00030	0.00030	0.00030	0.00030	0.00030
Water	81002	10-20 min, non-overflow, dissolved	0.00030	0.00030	0.00030	0.00030	0.00030	0.00030	0.00030
Water	81003	20-30 min, non-overflow, dissolved	0.00030	0.00030	0.00030	0.00030	0.00030	0.00030	0.00030
Water	80966	0-10 min, non-overflow, total	0.00030	0.00030	0.00030	0.00030	0.00030	0.00030	0.00030
Water	80967	10-20 min, non-overflow, total	0.00030	0.00030	0.00030	0.00030	0.00030	0.00030	0.00030
Water	80968	20-30 min, non-overflow, total	0.00030	0.00030	0.00030	0.00030	0.00030	0.00030	0.00030
		Hopper Inflow Manitoring							
Water	81124	3& 6 min, dissolved	0.00030	0.00030	0.00030	0.00030	0.00030	0.00030	0.00030
Water	81125	9812 min, dissolved	0.00030	0.00030	0.00030	0.00030	0.00030	0.00030	0.00030
Water	81120	15&18 min, dissolved	0,00030	0.00030	0.00030	0.00030	0.00030	0.00030	0.00030
Water	81127	21824 min, dissolved	0.00030	0.00030	0.00030	0.00030	0.00030	0.00030	0.00030
Water	81128	27&30 min, dissolved	0.00030	0.00030	0.00030	0.00030	0.00030	0.00030	0.00030
Water	80915	38. 6 min, total	0.00227	0.00159	0.00118	0.00177	0.00120	0.00088	D 00309
Water	80916	98.12 min, total	0.00782	0.00547	0 00451	0 00492	0.00385	0.00519	0.00549
Water	80917	158:18 min, total	0.00465	0.00341	0 00276	0 00371	0 00227	0.00360	0.00436
Water	80918	218.24 min, total	0.00364	0 00256	0.00204	0.00236	0.00183	0.00246	0.00255
Water	80919	27&30 min, total	0.01400	0.00948	0 00841	0.00785	0 00629	0.00838	0.00701
		Hopper Overflow Monitoring							
Water	81129	2& 4 min, dissolved	0.00030	0.00030	0.00030	0.00030	0.00030	0.00030	0.00030
Water	81130	68, 8 min, dissolved	0.00030	0.00030	0.00030	0.00030	0.00030	0.00030	0.00030
Water	81131	10&12 min, dissolved	0.00030	0.00030	0.00030	0.00030	0.00030	0.00030	0.00030
Water	81137	14816 min, dissolved	0.00030	0.00030	0.00030	0.00030	0.00030	0.00030	0.00030
Water	81133	18820 min, dissolved	0.00030	0.00030	0.00030	0.00030	0.00030	0.00030	0.00030
Water Water	80921 80922	28. 4 min, total	0.00903	0 00642	0 00576	0.00548	0.00433	0 00614	0.00542
Water	80923	6& 8 min, total 10&12 min, total	0.01270 0.00711	0.00907 0.00643	0 00868 0 00543	0 00823 0 00653	0.00614	0 00838	0.00741
Water	80924	148.16 min, total	0.00611	0.00556	0.0043	0 00555	0.06437	0 00596 0 00019	0.00579
Water	80925	18&20 min, total	0.03011	0.00356	0.00472	0.00555	0.00953	0 01220	0 00547
Viale	00323	totago mar, totas	0 02000	001300	0 0 12 50	001100	0.00953	0 01220	0 0 1050
		Site Water							
Water	81639	Sample 1 Total	0.00030	0.00030	0.00030	0.00030	0.00030	0.00030	0.00030
Water	81640	Sample 2 Total	0.00030	0.00030	0.00030	0.00030	0.00030	0.00030	0.00030
Water	81641	Sample 3 Total	0.00030	0.00030	0.00030	0.00030	0.00030	0.00030	0.00030
		Elutriate							
Water	81645	Sample 1 Dissolved	0.00030	0.00030	0.00030	0.00030	0.00030	0.00030	0.00030
Water	81646	Sample 2 Dissolved	0.00030	0.00030	0.00030	0.00030	0.00030	0.00030	0.00030
Water	81647	Sample 3 Dissolved	0.00030	0.00030	0.00030	0.00030	0.00030	0.00030	0.00030
Water	B1642	Sample 1 Total	0 00010	0.00030	0.00030	0.00030	0.00030	0.00030	0.00030
Water	81643	Sample 2 Total	0.00010	0.00030	0,00030	0.00030	0.00030	0.00030	0.00030
Water	81644	Sample 3 Total	0 00009	0.00030	0.00030	0.00030	0.00030	0.00030	0.00030
SAMPLE	SAMPLE ID	DESCRIPTION	PYRENE	CHRYSE	BAANTHR	BBFLANT	BKFLANT	BAPYRE	1123PYR
ITE	10								
		Detection Limit (mg/kg)	0 022	0 022	0 0220	0.0220	0 0220	0 0220	0.0220
		Insitu Sediment							
Sediment	81705	Sample #1	0 196	0 145	0 1290	0.0871	0 1090	0.1120	0.0899
Sediment	81706	Sample #2	0.146	0 107	0 0865	0.0742	0.0850	0.0793	0.0699
Sediment	81707	Sample #3	0.150	0 108	0.0858	0.0770	0.0727	0.0826	0.0749

PYRENE - Pyrene CHRYSE - Chrysene BAANTHR - Benxo(a)Anthracene BPELANT - Benzo(b)Fluoranthene BKELANT Benzo(k)Fluoranthene BAPYRE - Benzo(a)Pyrene 1123PYR - Indeno(1,2,3-C,D)Flyrene BOLD - less than values are estimated results Results are less than the reporting timit.

PAHefine

Delaware River Water Analysis (Plume Monitoring)

SAMPLE	SAMPLE	DESCRIPTION	DBAHANT	B-GHI-PY	2MeNAPH	2FIBP-S	PTERP-S
TYPE	ID						
		Detection Limit (mg/l)	0.00030	0.00030	0.00030		
		Plume Monitoring					
Minter	80997		0,00030	0.00038	0.00030	56.0%	84.1%
Water Water	80952	Background, dissolved Background, total	0.00030	0.00030	0.00030	73.2%	85 1%
• • • • • • • • • • • • • • • • • • • •		•					
Water	80998	0-10 min, overflow, dissolved	0.00030	0.00030	0.00030	647%	87.3% 87.8%
Water	80999	10-20 min, overflow, dissolved	0.00030	0.00030	0.00030	83.0% 65.1%	81.5%
Water	81000	20-30 min, overflow, dissolved	0.00030	0.00030	0.00030	63.2%	79.3%
Water	80963 80964	0-10 min, overflow, total	0.00030	0.00030	0.00030	63.4%	85.5%
Water Water	80965	10-20 min, overflow, total 20-30 min, overflow, total	0.00030	0.00030	0.00030	58.7%	88.4%
yvatei	00303	20-30 Hat, Overliew, total	0.0000	4,0000			
Water	81001	0-10 min, non-overflow, dissolved	0.06030	0.00030	0.00030	69.4%	84.7%
Water	81002	10-20 min, non-overflow, dissolved	0.00030	0.00030	0.00030	63.4%	87.5% 86.0%
Water	81003	20-30 min, non-overflow, dissolved	0,00030	0.00030	0.00030	61.6% 66.5%	91.6%
Water	80955	0-10 min, non-overflow, total	0.00030	0.00030	0.00030	68.1%	88 6%
VVater	80967	10-20 min, non-overflow, total	0.00030	0.00030	0.00030	87.1%	90.5%
Water	80968	20-30 min, non-overflow, total	0.00030	0.00050	0,0000	01.110	00.070
		Hopper Inflow Monitoring					
Water	81124	38 6 min, dissolved	0.00030	0.00030	0.00030	72.4%	85.9%
Water	81125	9&12 min, dissolved	0.00030	0.00030	0.00030	43.8%	80.7%
Water	81126	15&18 min, dissolved	0.00030	0.00030	0.00030	51.7%	80.2%
Water	81127	21&24 min, dissolved	0.00030	0.00030	0.00030	62.9%	88.0%
Water	81128	27&30 min, dissolved	0.00030	0.00030	0.00030	62.0%	83 8%
Water	80915	3& 6 min, total	0.00019	0.00167	0.00029	58.2%	48.6%
Water	80916	9&12 min, total	0.00231	0.00424	0.00068	69.6%	60.4%
Water	80917	15&18 mm, total	0.00217	0.00312	0.00038 0.00035	64.5% 57.9%	60.7% 51.3%
Water	80918	21824 min, total	0.00111	0.00629	0.00116	67.5%	53.6%
Water	80919	27&30 min, lotal	0.00100	0.00020	0.00110		
		Hopper Overflow Monitoring					
Water	81129	2& 4 min dissolved	0.00030	0.00030	0.00030	62.8%	83.2%
Water	81130	.6& 8 min, dissolved	0.00030	0.00030	0.00030	76 4%	82 0%
Water	81131	10&12 min, dissolved	0.00030	0.00030	0.00030	47.2%	65.7%
Water	81132	14816 min, dissolved	0.00030	0.00030	0.00030	70.7%	71.0%
Water	81133	18820 min, dissolved	0.00030	0.00030	0.00030	46.2%	66 7%
Water	80921	2& 4 min, total	0.00153	0.00460	0.00073	69.1%	56.1% 62.3%
Water	80922	6& 8 min, total	0.00204	0.00607	0,00076 0,00037	67,1% 41.5%	59.6%
Water	80923	10812 min, total	0.00175 0.00165	0.00431	0.00037	36.4%	61.5%
Water	80924	14&16 min, total	0.00240	0.00883	0.00163	66.5%	61.5%
Water	80925	18820 min, total	0.00240	4.00000	9.00700	00,010	• //• **
		Site Water					
Water	81639	Sample 1 Total	0.00030	0.00030	0.00030	50.6%	61.9%
Water	81640	Sample 2 Total	0.00030	0.00030	0.80030	60.2%	62.4%
Water	81641	Sample 3 Total	0.00030	0.00030	0.00030	46.3%	66.8%
		Elutriate	0.00030	0.00030	0.00030	43 3%	67.8%
Water	81645	Sample 1 Dissolved	0.00030	0.00030	0.00030	83.7%	56 1%
Water Water	81646 81647	Sample 2 Dissolved Sample 3 Dissolved	0.00030	0.00030	0.00030	28.2%	58.3%
Water	81642	Sample 1 Total	0.00030	0.00030	0,00030	62.7%	640%
Water	81643	Sample 2 Total	0.00030	0.00030	0.00030	56.7%	71.0%
Water	81644	Sample 3 Total	0.00030	0.00030	0.00030	65,9%	71 2%
					444 414 P41	05/50 0	PTERP-S
SAMPLE TYPE	SAMPLE ID	DESCRIPTION	DBAHANT	B-GHI-PY	2MeNAPH	2FIBP-\$	PIERP-S
	-	Detection Limit (mg/kg)	0.0220	0.0220	0.0220		
Sediment	81705	Insitu Sediment Sample #1	0.0086	0.0748	0.0353	60.3%	48.5%
Sediment	40 1 4 1010	Sample #2	0.0072	0.0505	0.0324	63.0%	49.1%
Sediment		Sample #3	0.0087	0.0647	0.0342	61.2%	51.1%
	0.,07	de. z					

DBAHANT - Dibenzo(A,H)Anthracene B-GHi-Py - Benzo(G,H.I)Penylene 2MeNAPH - 2-Mcthylnaphthalene 2FIBP-S - 2-Fluorobiphenyl(Surrogate (43-116 W)) PTERP-S - p-Terphenyl-D14(Surrogate (33-141 W)) PTERP-S - p-Terphenyl-D14(Surr

Vater 8 Vater	80990 80955 80991 80992 80993 80995 80995 80995 80996 80996 80996 80960 80961 81111 811116 811116 811116 811118 80903 80905 80905 80905	Detection Limit (mg/li) Plume Monitoring Background, dissolved Background, dissolved Background, dissolved 10-20 min, overflow, dissolved 10-20 min, overflow, dissolved 10-30 min, overflow, total 10-20 min, overflow, total 10-20 min, overflow, total 10-20 min, non-overflow, dissolved 10-30 min, non-overflow, dissolved 10-30 min, non-overflow, dissolved 10-30 min, non-overflow, total 10-20 min, non-overflow, total 10-20 min, non-overflow, total 10-22 min, non-overflow, total 10-30 min, non-overflow, total 10-24 min, non-overflow, total 10-25 min, non-overflow 10-25 min, non-overflow 10-26 min, non-overflow 10-27 min, dissolved 10-27 min, dissolved 11-27 min, dissolved 11-27 min, total	0.000028 0.000028 0.000028 0.000025	0.000028 0.000028 0.000028 0.000028 0.000025	0.000028 0.000028 0.000028 0.000028 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000026 0.000026 0.000026 0.000027 0.000027 0.000027 0.000027	0.000028 0.000028 0.000028 0.000025	0.000028 0.000028 0.000028 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025	0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000
Voter 8 Voter	80955 80991 80992 80993 80995 80995 80995 80996 80996 80960 80961 81116 81116 81117 81118 80903 80905 80905 80905	Background, dissolved Background, dissolved 10-20 min, overflow, dissolved 10-20 min, overflow, dissolved 10-30 min, overflow, total 10-20 min, overflow, total 10-20 min, overflow, total 10-20 min, non-overflow, dissolved 10-20 min, non-overflow, dissolved 10-20 min, non-overflow, dissolved 10-20 min, non-overflow, total 10-21 min, dissolved	0.000028 0.000025	0.000028 0.000028 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025	0.000028 0.000028 0.000025	0.000028 0.000025	0.000028 0.000025	0.0000 0.0000
Voter 8 Voter	80955 80991 80992 80993 80995 80995 80995 80996 80996 80960 80961 81116 81116 81117 81118 80903 80905 80905 80905	Background, dissolved Background, dissolved 10-20 min, overflow, dissolved 10-20 min, overflow, dissolved 10-30 min, overflow, total 10-20 min, overflow, total 10-20 min, overflow, total 10-20 min, non-overflow, dissolved 10-20 min, non-overflow, dissolved 10-20 min, non-overflow, dissolved 10-20 min, non-overflow, total 10-21 min, dissolved	0.000028 0.000025	0.000028 0.000028 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025	0.000028 0.000028 0.000025	0.000028 0.000025	0.000028 0.000025	0.0000 0.0000
Voter 6 Voter 8 Voter 9 Voter	80991 80992 80993 80956 80957 80958 80994 80995 80990 80990 80990 81114 81115 81116 81117 81118 80903 80905 80905 80905 80905 80905	0.10 min, overflow, dissolved 10-20 min, overflow dissolved 20-30 min, overflow dissolved 20-30 min, overflow, total 20-30 min, overflow, total 20-30 min, one-overflow, dissolved 0-10 min, non-overflow, dissolved 20-30 min, non-overflow, dissolved 20-30 min, non-overflow, dissolved 20-30 min, non-overflow, total 20-30 min, non-overflow, total 20-30 min, non-overflow, total 20-30 min, inon-overflow, total 20-30 min, dissolved 20-310 min, dissolved 20-310 min, dissolved 20-32 min, dissolved 218.24 min, dissolved 218.34 min, dissolved 218.35 min, dissolved 218.36 min, dissolved 218.37 min, dissolved 218.38 min, dissolved 218.39 min, dissolved 218.39 min, dissolved 218.31 min, dissolved 218.31 min, dissolved 218.32 min, dissolved 218.32 min, dissolved 218.32 min, dissolved 218.32 min, dissolved 218.34 min, total 218.35 min, total 21	0.000025 0.000025	0.000028 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025	0.000028 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025	0.000028 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025	0.000028 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025	0.0000 0.0000
Vater 8 Vater 9 Vater	80992 80993 80995 80957 80956 80957 80994 80995 80996 80960 80961 81114 81115 81116 81117 81118 80903 80905 80905 80905	10-20 min, overflow, dissolved 20-30 min, overflow dissolved 0-10 min, overflow, total 10-20 min, overflow, total 10-20 min, overflow, total 20-30 min, overflow, total 0-10 min, non-overflow, dissolved 10-20 min, non-overflow, dissolved 0-10 min non-overflow, total 10-20 min, non-overflow total 10-20 min, dissolved	0.00025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025	0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025	0.00025 0.00025 0.00025 0.00025 0.00025 0.00025 0.00025 0.00025 0.00025 0.00025 0.00025 0.00025 0.00025 0.00025 0.00025 0.00027	0.00025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025	0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025	0.0000 0.0000
Vater 8 Vater 9 Vater	80993 80956 80957 80958 80994 80995 80996 80996 80960 80961 81114 81115 81116 901117 81117 80903 80905 80905 80906	20-30 min, overflow, total 0-10 min, overflow, total 10-20 min, overflow, total 20-30 min, overflow, total 20-30 min, non-overflow, dissolved 10-20 min, non-overflow, dissolved 10-20 min, non-overflow, dissolved 10-30 min, non-overflow, total 10-20 min, non-overflow, total 20-30 min, non-overflow, total 20-30 min, non-overflow, total 20-30 min, non-overflow, total 20-30 min, dissolved 218-31 min, dissolved 218-32 min, dissolved 218-30 min, dissolved 218-30 min, dissolved 218-31 min, total 158-18 min, total 158-18 min, total 218-24 min, total	0.00025 0.00025 0.00025 0.00025 0.00025 0.00025 0.00025 0.00025 0.00025 0.00025 0.00025 0.00025 0.00025 0.00025 0.00025 0.00025 0.00025 0.00025 0.00025	0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000028 0.000026 0.000026 0.000026 0.000027 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025	0.00025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000026 0.000026 0.000026 0.000027 0.000025 0.000025 0.000025 0.000025	0.00025 0.00025 0.00025 0.00025 0.00025 0.00025 0.00025 0.00025 0.00025 0.00025 0.00025 0.00025 0.00025 0.00025 0.00025 0.00025 0.00025 0.00025 0.00025	0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Vater 8 vater 9 vater 8 vater 9 vater 9 vater 9 vater 8 vater	80956 80957 80958 80994 80995 80996 80960 80960 81114 81115 81116 81117 81118 80903 80906 80905 80906	0-10 mm, overflow, total 10-20 min, overflow, total 20-30 min, overflow, total 20-30 min, non-overflow, dissolved 10-20 min, non-overflow, dissolved 20-30 min, non-overflow, dissolved 20-30 min, non-overflow, total 10-20 min, non-overflow, total 20-30 min, non-overflow, total 20-30 min, non-overflow, total 40-20 min, non-overflow, total 40-20 min, non-overflow, total 40-20 min, dissolved 41-21 min, total	0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025	0.000028 0.000025 0.000025 0.000025 0.000025 0.000025 0.000026 0.000026 0.000026 0.000026 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025	0.00025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025	0.00025 0.00025 0.00025 0.00025 0.00025 0.00025 0.00025 0.00025 0.00025 0.00025 0.00025 0.00025 0.00025 0.00025 0.00025 0.00025 0.00025 0.00025	0.00028 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Vater 8 Vater 9 Vater	80957 80958 80995 80995 80996 80960 80960 80961 81114 81115 81116 81117 81118 80903 80905 80905 80905	10-20 min, overflow, total 20-30 min, overflow, total 0-10 min, non-overflow, dissolved 10-20 min, non-overflow, dissolved 20-30 min, non-overflow, total 10-20 min, dissolved	0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025	0.00025 0.00025 0.00025 0.00025 0.00025 0.00025 0.00025 0.00025 0.00025 0.00025 0.00025 0.00025 0.00025 0.00025 0.00025	0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000027 0.000025 0.000025 0.000025 0.000025	0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025	0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Vater 8 Vater 9 Vater 8 Vater 9 Vat	80958 80994 80995 80996 80990 80960 80961 81114 81115 81116 81117 81117 81118 80903 80906 80906 80906	20-30 min, overflow, total 0-10 min, non-overflow, dissolved 10-20 min, non-overflow, dissolved 20-30 min, non-overflow, dissolved 20-30 min, non-overflow, total 10-20 min, non-overflow, total 20-30 min, non-overflow, total 40-20 min, non-overflow, total 20-30 min, non-overflow, total 40-20 min, non-overflow, total 40-20 min, dissolved 40-21 min, dissolved 40-21 min, dissolved 418-24 min, dissolved 418-24 min, dissolved 418-24 min, total 418-21 min, total 418-21 min, total 418-23 min, total 418-24 min, total 418-24 min, total 418-25 min, total	0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000027 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025	0.000025 0.000025 0.000025 0.000025 0.000026 0.000026 0.000026 0.000026 0.000027 0.000025 0.000025 0.000025 0.000025	0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000026 0.000027 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025	0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000026 0.000027 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025	0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000027 0.000025 0.000025 0.000025 0.000025 0.000025	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Vater 8 Vater	80995 80996 80996 80960 80961 81114 81115 81116 81117 81118 80903 80904 80905 80906	10-20 min, non-overflow, dissolved 20-30 min, non-overflow, dissolved 0-10 min non-overflow, total 10-20 min, non-overflow, total 20-30 min, non-overflow, total 20-30 min, non-overflow, total 40-20 min, dissolved 20-20 min, dissolved 21-20 min, dissolved 21-20 min, dissolved 27-20 min, dissolved 27-20 min, dissolved 27-20 min, dissolved 27-20 min, total 21-20 min, total 21-20 min, total 21-20 min, total 27-20 m	0.00025 0.00025 0.00025 0.00025 0.00025 0.00025 0.00025 0.00027 0.00025 0.00025 0.00025 0.00025 0.00025 0.00025	0.000025 0.000025 0.000026 0.000026 0.000026 0.000026 0.000027 0.000025 0.000025 0.000025 0.000027	0.00025 0.000025 0.000026 0.000025 0.000025 0.000025 0.000027 0.000027 0.000025 0.000025 0.000025 0.000025	0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000027 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025	0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000027 0.000025 0.000025 0.000025 0.000025 0.000025	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Vater 8 Avater 8 Avat	80996 80950 80960 80961 81114 81115 81116 81117 81117 80903 80904 80905 80906	20-30 min, non-overflow, dissolved 0-10 min non-overflow, total 10-20 min, non-overflow, total 20-30 min, non-overflow, total 20-30 min, non-overflow, total 20-30 min, dissolved 38-6 min, dissolved 158-18 min, dissolved 218-24 min, dissolved 278-30 min, dissolved 38-6 min, total 98-12 min, total 158-18 min, total 218-24 min, total 218-24 min, total 278-30 min, total 278-30 min, total 278-30 min, total	0.00025 0.00025 0.000025 0.000025 0.000025 0.000025 0.000027 0.000025 0.000025 0.000024 0.000024 0.000024 0.000024	0.000025 0.000026 0.000025 0.000026 0.000026 0.000027 0.000025 0.000025 0.000025 0.000025 0.000027	0.000025 0.000026 0.000025 0.000025 0.000025 0.000025 0.000027 0.000025 0.000025 0.000025 0.000027 0.000027	0.000025 0.000025 0.000025 0.000025 0.000025 0.000027 0.000027 0.000025 0.000025 0.000029 0.000027 0.000027 0.000027	0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000027 0.000025 0.000025 0.000025 0.000025 0.000027	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001
vater 8 vater	80959 80960 80961 81114 81115 81116 81117 81118 80903 80904 80905 80906	0-10 min non-overflow, total 10-20 min, non-overflow, total 20-30 min, non-overflow, total 20-30 min, non-overflow, total 40-20-30 min, dissolved 98-12 min, dissolved 18-18 min, dissolved 218-24 min, dissolved 27-8-30 min, dissolved 33-6 min, total 98-12 min, total 15-8-18 min, total 21-8-24 min, total 27-8-30 min, total 27-8-30 min, total 27-8-30 min, total	0.000025 0.000025 0.000025 0.000026 0.000027 0.000025 0.000025 0.000025 0.000016 0.003024 0.003024 0.003022	0.00028 0.00025 0.00026 0.00026 0.00027 0.00027 0.00025 0.00028 0.00028 0.00027 0.00027	0.000026 0.000025 0.000025 0.000025 0.000027 0.000027 0.000025 0.000025 0.000025 0.000027	0.000025 0.000025 0.000025 0.000026 0.000027 0.000025 0.000025 0.000025 0.000025 0.000027 0.000027	0.000025 0.000025 0.000025 0.000025 0.000027 0.000027 0.000025 0.000025 0.000025 0.000027	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0002 0.0001
Vater 8 Avater 8 Avat	80960 80961 81114 81115 81116 81117 81118 80903 80904 80906 80906	10-20 min, non-overflow, total 20-30 min, non-overflow, total 20-30 min, non-overflow, total 40-20 min, dissolved 38-12 min, dissolved 158-18 min, dissolved 218-24 min, dissolved 278-30 min, dissolved 38-6 min, total 98-12 min, total 158-18 min, total 218-24 min, total 278-30 min, total 278-30 min, total	0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000024 0.000024 0.000022	0.000025 0.000026 0.000026 0.000027 0.000025 0.000025 0.000025 0.000027 0.000027	0.000025 0.000025 0.000025 0.000026 0.000027 0.000025 0.000025 0.000025 0.000027	0.000025 0.000025 0.000026 0.000026 0.000027 0.000025 0.000025 0.000025 0.000027 0.000027	0.000025 0.000025 0.000025 0.000025 0.000027 0.000025 0.000025 0.000025 0.000027	0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000
Vater 8 Vater 8 Vater 8 Vater 8 Vater 8 Vater 8 Vater 9 Vater	81114 81115 81115 81117 81118 80903 80904 80905 80906 80907	20-30 min, non-overflow, total Hopper Inflow Monitoring 38. 6 min, dissolved 98.12 min, dissolved 158.18 min, dissolved 218.24 min, dissolved 278.30 min, dissolved 38. 6 min, total 98.12 min, total 158.18 min, total 218.24 min, total 218.24 min, total 218.24 min, total	0.000025 0.000025 0.000027 0.000025 0.000025 0.000026 0.000024 0.000024 0.000022	0.000026 0.000026 0.000027 0.000025 0.000025 0.000025 0.000027 0.000027	0.000025 0.000025 0.000026 0.000027 0.000025 0.000025 0.000025 0.000027	0.000025 0.000025 0.000027 0.000025 0.000025 0.000009 0.000027 0.000014	0.000025 0.000025 0.000027 0.000027 0.000025 0.000025 0.000025 0.000027	0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0002 0.0001
Vater 8 Vater	81115 81116 81117 81118 80903 80904 80905 80905 80907	3å 6 min, dissolved 9812 min, dissolved 15818 min, dissolved 21824 min, dissolved 27830 min, dissolved 38 6 min, total 9812 min, total 15818 min, total 21824 min, total 27830 min, total	0.000026 0.000027 0.000025 0.000025 0.00016 0.000024 0.000024 0.000022	0.000026 0.000027 0.000025 0.000025 0.000025 0.000025 0.000027 0.000027	0.00026 0.00027 0.00025 0.00025 0.00025 0.00025 0.00027	0.000026 0.000027 0.000025 0.000025 0.000025 0.000027 0.000027	0.000026 0.000027 0.000025 0.000025 0.000025 0.000027 0.000027	0.0000 0.0000 0.0000 0.0001 0.0001 0.0002 0.0001
Vater 8 Vater	81115 81116 81117 81118 80903 80904 80905 80905 80907	3å 6 min, dissolved 9812 min, dissolved 15818 min, dissolved 21824 min, dissolved 27830 min, dissolved 38 6 min, total 9812 min, total 15818 min, total 21824 min, total 27830 min, total	0.000026 0.000027 0.000025 0.000025 0.00016 0.000024 0.000024 0.000022	0.000026 0.000027 0.000025 0.000025 0.000025 0.000025 0.000027 0.000027	0.00026 0.00027 0.00025 0.00025 0.00025 0.00025 0.00027	0.000026 0.000027 0.000025 0.000025 0.000025 0.000027 0.000027	0.000026 0.000027 0.000025 0.000025 0.000025 0.000027 0.000027	0.0000 0.0000 0.0000 0.0001 0.0001 0.0002 0.0001
Vater 8 Vater	81115 81116 81117 81118 80903 80904 80905 80905 80907	98.12 min, dissolved 158.18 min, dissolved 218.24 min, dissolved 278.30 min, dissolved 38.6 min, total 98.12 min, total 158.18 min, total 218.24 min, total 278.30 min, total	0.000026 0.000027 0.000025 0.000025 0.00016 0.000024 0.000024 0.000022	0.000026 0.000027 0.000025 0.000025 0.000025 0.000025 0.000027 0.000027	0.00026 0.00027 0.00025 0.00025 0.00025 0.00025 0.00027	0.000026 0.000027 0.000025 0.000025 0.000025 0.000027 0.000027	0.000026 0.000027 0.000025 0.000025 0.000025 0.000027 0.000027	0.0000 0.0000 0.0000 0.0001 0.0001 0.0002 0.0001
Vater 8 Vater	81117 81118 80903 80904 80905 80906 80907	158.18 min, dissolved 218.24 min, dissolved 278.30 min, dissolved 38. 6 min, total 98.12 min, total 158.18 min, total 218.24 min, total 278.30 min, total	0.000027 0.000025 0.000025 0.000016 0.000024 0.000024 0.000022	0.000027 0.000025 0.000025 0.000028 0.000025 0.000027 0.000027	0.000027 0.000025 0.000025 0.000025 0.000025 0.000027 0.000027	0.000027 0.000025 0.000025 0.000028 0.000009 0.000027 0.000014	0.000027 0.000025 0.000025 0.000025 0.000025 0.000027	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Vater 8 Vater 81 Vater 8	81118 80903 80904 80905 80906 80907	278.30 mm, dissolved 38. 6 mm, total 98.12 mm, total 158.18 mm, total 218.24 mm, total 278.30 mm, total	0.000025 0.000016 0.000024 0.000024 0.000022	0,000025 0,000028 0,000025 0,000027 0,000027	0.000025 0.000025 0.000025 0.000027 0.000027	0.000025 0.000025 0.000009 0.000027 0.000014	0.000025 0.000025 0.000025 0.000027 0.000027	0.000 0.000 0.000 0.000 0.000 0.000
Vater 81 Vater 84 Vater 81 Vater 81 Vater 81 Vater 81 Vater 81 Vater 82 Vater 83 Vater 83 Vater 84 Vater 84 Vater 84 Vater 84	80903 80904 80905 80906 80907	38. 6 min, total 9812 min, total 15818 min, total 21824 min, total 27830 min, total	0 000016 0 000024 0 000024 0 000022	0.000025 0.000025 0.000027 0.000027	0.000025 0.000025 0.000027 0.000027	0.000025 0.000009 0.000027 0.000014	0.000025 0.000025 0.000027 0.000027	0.000 0.000 0.000 0.000
Vater 81 Vater 84 Vater 84 Vater 84 Vater 8- Vat	80904 80905 80906 80907	98.12 min, total 158.18 min, total 218.24 min, total 278.30 min, total	0.000024 0.000024 0.000022	0.000025 0.000027 0.000027	0.000025 0.000027 0.000027	0 000009 0.000027 0 000014	0.000025 0.000027 0.000027	0.000 0.000 0.000
Vater 8/4 / 4 / 4 / 4 / 4 / 4 / 4 / 4 / 4 / 4	80905 80906 80907	15&18 min, total 21&24 min, total 27&30 min, total	0.000024 0.000022	0.000027 0.000027	0.000027 0.000027	0.000027 0.000014	0.000027 0.000027	0.000
/ater 8/	80906 80907	21824 min, total 27830 min, total	0.000022	0.000027	0.000027	0 000014	0.000027	0.000
/ater 8/ater 8/a	80907	27830 min, total						
/ater 8: /ater 8: /ater 8: /ater 8: /ater 8:		Hopper Overflow Monitoring						
/ater 8: /ater 8: /ater 8: /ater 8: /ater 8:		Hopper Overflow Monitoring						
/ater 8: /ater 8: /ater 8: /ater 8: /ater 8:	81119	2å 4 min, dissolved	0.000026	0.000026	0.000026	0.000026	0.000026	0,000
/ater 8' /ater 8' /ater 8' /ater 8'	81120	6& 8 min, dissolved	0.000025	0.000025	0.000026	0.000025	0.000026	0.000
/ater 8: /ater 8: /ater 8:	81121	10812 min, dissolved	0.000025	0.000025	0.000025	0.000025	0.000025	0.000
later 8	81122	14&16 min. dissolved	0.000025	0.000025	0.000025	0.000025	0.000025	0.000
	81123	18&20 min, dissolved	0.000024	0.000024	0.000024	0.000024	0.000024	0.000
later 8:	80909	2& 4 min, total	0.000030	0.000027	0.000027	0 000010	0.000027	0.000
	80910	6& 8 min. total	0 000045	0.000027	0.000027	0.000027	0.000027	0.000
	80911 80912	10&12 mm, total	Broken 0.000362	Broken 0.000025	Broken 0.000025	Broken	Broken	Bro
	80912 80913	14&16 min, total 18&20 min, total	0.000043	0.000025 0.000027	0.000025	0.000015 0.000027	0.000025 0.000027	0 000
/ater 8°	81621	Site Water Sample 1 Total	0,000025	0.000026	0.000025	0 000017	0.000025	0.000
later 8	81622	Sample 2 Total	0.000025	0.000025	0.000025	0.000025	0.000025	0.000
/ater 8	81623	Sample 3 Total	0.000025	0.000025	0.000025	0.000025	0.000025	0.000
		Elutriate						
later 8°	81627	Sample 1 Dissolved	0.000050	0.000050	0.000050	0.000050	0.000050	0.000
later 8°	B1628	Sample 2 Dissolved	0.000050	0.000050	0.000050	0.000050	0.000050	0.000
	81629	Sample 3 Dissolved	0.000050	0.000050	0.000050	0.000050	0.000050	0.000
	B1624	Sample 1 Total	0.000025	0.000025	0.000025	0.000025	0.000025	0.000
	B1625	Sample 2 Total	0.000026	0.000025	0.000025	0.000025	0.000025	0 000
ater 8	81626	Sample 3 Total	0.000025	0.000025	0.000025	0.000025	0.000025	0.000
AMPLE S	SAMPLE	DESCRIPTION	ALDRIN	A-BHC	B-BHC	G-BHC	D-BHC	PPD
		Detection Limit (mg/kg)	0.0018	0 0018	0 00096	0 0018	0.0018	0.0
		Insitu Sediment						
	81711	Sample #1	0.0018	0.0018	0 00067	0.0018	0.0018	0.0
	81712 81713	Sample #2 Sample #3	0.0018 0.0018	0.0018	0 00062 0 00092	0.0018	0.0018 0.0018	0.0

ALDRIN - Aldrin A-BHC - A-BHC B-BHC - B-BHC G-BHC D-BHC D-BHC D-BHC PPDDD - PPDDD BOLD - less than values are estimated results. Results are less than the reporting limit.

		Delaware River Water Analysis (Fine-G	rained Site)					
SAMPLE TYPE		DESCRIPTION	PPDDE	PPDDT	HPTCL	DIELDRIN.	ENDOI	ENDO
		Detection Limit (mg/l)	0.000055	0.000055	0.0000280	0.000055	0.000028	0.00005
		Plume Monitoring						
	80990 80955	Background, dissolved Background, total	0,000050 0,000065	0.000050 0.000055	0.0000250 0.0000280	0.000060 0.000065	0.000025 0.000028	0.00005
	*****	D 40 min manifement discolunct	0.000050	0.000050	0,0003250	0.000050	0.000025	0.00005
	80991 80992	0-10 min, overflow, dissolved 10-20 min, overflow, dissolved	0.000050	0.000050	0.0000250	0.000050	0.000025	0.00005
	80992 80993	20-30 min, overflow, dissolved	0.000050	0.000050	0.0000250	0.000050	0.000025	0.00005
	80956	0.10 min, overflow, total	0.000050	0.000050	0.0000250	0.000050	0.000025	0.00005
	80957	10-20 min. overflow, total	0.000050	0.000050	0.0000250	0.000050	0.000025	0.00005
	80958	20-30 min, overflow, total	0.000050	0.000050	0.0000250	0.000050	0.000025	0.00005
	80994	0-10 min, non-overflow, dissolved	0.000050	0.000050	0.0000250	0.000050	0.000025	0.0000
	80995	10-20 min, non-overflow, dissolved	0,000050	0.000050	0.0000250	0.000050	0.000025	0.00005
	80996	20-30 min, non-overflow, dissolved	0.000050	0.000050	0.0000250		0.000025	0.00005
	80959	0-10 min, non-overflow, total	0.000050	0.000050	0.0000260	0.000050	0.000025	0.00005
	80960 80961	10-20 min, non-overflow, total 20-30 min, non-overflow, total	0.000050	0.000050	0.0000250	0.000050	0.000025	0.00005
Water	81114	Hopper Inflow Monitoring 3& 6 min, dissolved	0.000050	0.000060	0.0000260	0.000050	0.000025	0.00008
	81115	9&12 min, dissolved	0,000052	0.000052	0.0000260	0.000052	0.000026	0.00008
	81116	15&18 min, dissolved	0.000054	0.000054	0.0000270	0.000054	0.000027	0.0000
	81117	218.24 min, dissolved	0.000050	0.000050	0.0000250	0.000050	0.000025	0.0000
Nater	81118	278/30 min, dissolved	0.000050	0.000060	0.0000250	0.000050	0.000025	0.0000
Vater	80903	3& 6 min, total	0.000079	0,000050	0.0000250	0.000050	0.000025	0.0000
	80904	9&12 min, total	0.000110	0.000082	0.0000130	0.000050	0.000029	0.0000
Vater	80905	15&18 min, total	0.000150	0.000050	0.0000130	0.000053	0.000033 0.000032	0.0000
	80906	21&24 min, total	0.000120	0.000075	0.0000207	0.000053	0.000032	0.0000
Water	80907	27&30 min, total	0.000110	0.000068	0.0000290	0.00000	0.000052	0.0000
		Hopper Overflow Manitoring				* *******	a 200000e	0.0000
Water	81119	2& 4 min, dissolved	0.000052	0.000052	0.0000260	0.000052	0.000026	0.0000
Water	81120	6& 8 min, dissolved	0.000050	0.000066	0.0000250	0.000050	0.000025	0,0000
	81121	10&12 min, dissolved	0.000060	0.000069	0.0000250	0.000080	0.000025	0.0000
Water	81122	148.16 min, dissolved	0,000050	0.000065	0.0000240	0.000049	0.000024	0.0000
Water	81123	188.20 min, dissolved	0.000190	0.000110	0.0000170	0.000053	0.000017	0.0000
Water	80909	28. 4 min, total	0.000180	0.000360	0.0000270	0.000053	0.000050	0.0000
Water Water	80910	68, 8 min, total 108.12 min, total	Broken	Broken	Broken	Broken	Broken	Brok
Water	80912	148.16 min. total	0.000470	0.000340	0.0000280	0.000050	0.000033	0.0000
Water	80913	18&20 min, total	0.000300	0.000140	0.0000270	0.000053	0.000020	0.0000
		O'to Michael						
Water	01001	Site Water	0.000050	0.000050	0.0000037	0.000050	0.000025	0.0000
vyater Vvater	81621 81622	Sample 1 Total Sample 2 Total	0.000050	0.000050	0.0000340	0.000050	0.000025	0.0000
Water	81623	Sample 3 Total	0.000050	0.000050	0,0000370	0.000050	0.000025	0.0000
		Cl. Adaba						
Water	81627	Elutriate Sample 1 Dissolved	0.000100	0.000100	0.0000170	0.000100	0.000050	0.0001
vvater Vvater	81628	Sample 1 Dissolved	0.000100	0.000100	0.0000180	0.000100	0.000050	0,0001
Water Water	81629	Sample 3 Dissolved	0.000100	0,000100	0 0000290	0.000100	0.000050	0.0001
Water	81624	Sample 1 Total	0.000050	0.000060	0.0000130	0.000050	0.000025	0.000
Water	81625	Sample 2 Total	0.000080	0.000050	0.0000350	0.000050	0.000025	0.000
Water	81626	Sample 3 Total	0.000050	0,000050	0.0000330	0.000050	0.000025	0.0000
SAMPLE	SAMPLE	DESCRIPTION	PPDDE	PPDDT	HPTCL.	DIELDRIN	ENDO	END
		Detection Limit (mg/kg)	0.0019	0.0019	0.00096	0.0036	0.00096	0.00
		Insitu Sediment					0 0000	# # A
Sediment	81711	Sample #1	0.0061	0.0120	0.00058	0.0036	0.0030	0.0
m 11 3	81712	Sample #2 Sample #3	0.0110 0.0075	0.0059 0.0120	0.00038	0.0036	0.0030	0.00
Sediment Sediment	81713							

	48	

		Delaware River Water Analysis (Fine (Grained Site)					
SAMPLE TYPE	i	DESCRIPTION	ENDOSU	ENDRIN	ENDALD	HPTCL F	METOXYCL	CI.ORDANI
		Detection Limit (mg/t)	0.000055	0 000050	0 000055	0 000028	0.00028	0 00002
		Plume Monitoning						
Water Water	80990 8 0955	Background, dissolved Background, total	0.000080 0.000055	0.000080 0.000110	0.000050 0.000055	0.000025 0.000028	0.00025 0.00028	0.00002
Water	80991	0-10 min, overflow, dissolved	0.000050	0.000050	0.000050	0.000025	0.00025	0.00002
Water	80992	10-20 min, overflow, dissolved	0.000050	0.000050	0.000050	0.000025	0.00025	0.00002
Water	80993	20-30 min, overflow, dissolved	0.000050	0.000050	0.000050	0.000025	0.00028	0.00002
Water	80956	0-10 min, overflow, total	0.000050	0 000110	0.000050	0.000025	0.00025	0.00002
Water Water	80957 80958	10-20 min, overflow, total 20-30 min, overflow, total	0.000050	0 000120	0,000050	0.000025	0.00025 0.00025	0.00002
Water	80994	0-10 min, non-overflow, dissolved	0.000050	0.000050	0.000050	0.000025	0,00025	
Water	80995	10-20 min, non-overflow, dissolved	0.000050	0.000110	0.000050	0.000025	0.00025	0.00002
Water	80996	20:30 min, non overflow, dissolved	0.000080	0.000110	0.000050	0.000025	0.00025	0.00002
Water	80959	0-10 min, non-overflow, total	0.000050	0.000100	0.000050	0.000025	0.00025	0.00002
Water	80960	10-20 min, non-overflow, total	0.000050	0.000120	0.000050	0.000025	0.00025	0.00002
Water	80961	20-30 min, non-overflow, total	0.000060	0 000130	0.000060	0.000025	0.00025	0.00002
		Hopper Inflow Monitoring						
Water	81114	38 6 min, dissolved	0.000050	0.000081	0.000050	0,000025	0.00026	0.000025
Water	81115	9&12 min, dissolved	0.000052	0 000061	0.000052	0.000026	0.00026	0.000026
Water	81116	15&18 min, dissolved	0.000084	0.000060	0.000084	0.000027	0.00027	0.000027
Water	81117	21824 min, dissolved	0.000050	0.000081	0.000050	0.000025	0.00025	0,000028
Water	81118	27830 min, dissolved	0.000050	0.000069	0.000050	0.000025	0.00025	0.000025
Water Water	80903 80904	3& 6 min, total 9812 min, total	0.000022	0.000060	0.000060	0.000013	0.00025	
Water	80905	15&18 min, total	0.000030	0.000053	0.000050	0.000025	0.00025	
Water	80906	21&24 min, total	0 000041	0.000053	0.000053	0.000027	0.00027	
Water	80907	278/30 min, total	0.000050	0.000050	0.000050	0.000025	0.00025	
		Hopper Overflow Monitoring						
Water	81119	2& 4 min dissolved	0.000052	0 000095	0.000052	0.000026	0.00026	0.000026
Water	81120	6& 8 min, dissolved	0.000060	0 000079	0.000060	0.000025	0.00026	0.000026
Water	81121	10812 min, dissolved	0.000050	0.000085	0.000050	0.000025	0.00025	0.000025
Water	81122	14816 min, dissolved	0.000050	0.000063	0.000050	0.000025	0.00025	0.000025
Water Water	81123 80909	18&20 min, dissolved 2& 4 min, total	0.000049 0.000053	0.000055 0.000063	0.000049	0.000024	0.00024	0.000024
Water	80910	6& 8 min, total	0.000053	0.000053	0.000053	0.000014	0.00027	
Water	80911	10&12 min_total	Broken	Broken	Broken	Broken	Broken	
Water	80912	14816 min, total	0 000140	0.000050	0.000050	0.000020	0.00025	
Water	80913	18&20 min, total	0.000053	0.000053	0.000053	0.000027	0.00027	
		City Metas						
Water	81621	Site Water Sample 1 Total	0.000050	0.000050	0.000060	0.000025	0.00025	
Water	81622	Sample 2 Total	0.000000	0.000050	0.000050	0.000025	0.00025	
Water	81623	Sample 3 Total	0.000050	0.000050	0.000050	0.000025	0.00025	
		Elutriate						
Water	81627	Sample 1 Dissolved	0.000100	0.000100	0.000100	0.000080	0.00080	
Water	81628	Sample 2 Dissolved	0.000100	0.000100	0.000100	0.000050	0.00050	
Water	81629	Sample 3 Dissolved	0.000100	0.000100	0.000100	0.000050	0.00050	
Water	81624	Sample 1 Total	0.000050	0.000050	0.000050	0.000025	0.00025	
Water Water	81625 81626	Sample 2 Total Sample 3 Total	0.000050	0.000050	0.000050	0.000025	0.00025 0.00025	
**********	0.020	Sumpre o rota	0,00000	A-AAAAAA	0.00000	0.000025	V.00025	
SAMPLE TYPE	SAMPLE ID	DESCRIPTION	ENDOSU	ENDRIN	ENDALD	HPTCLE	METOXYCL	
		Detection Limit (mg/kg)	0.0030	0 0036	0.0036	0.0018	0.018	
		Insitu Sediment						
Sediment		Sample #1	0.0036	9.0036	0.0036	0.0018	0.018	
Sediment		Sample #3	0.0019	0.0036	0.0036	0.0018	0.018	
Sediment	81713		0.0036	0.0036	0.0036	0.0018	0.018	

ENDOSU - Endosulfan sulfate ENDRIN - Endrin FNDALD - Endrin Aldehyde HPTCLE - Heptachler Epoxide METOXYGL - Methoxychlor CLORDANE - Chlordraine BOLD - less than vallues
Values below less than vallues are estimated results. Results are less than the reporting limit.

Delaware River Water	Analysis	(Fine-Grained Site)
----------------------	----------	---------------------

SAMPLE TYPE	SAMPLE	DESCRIPTION	TOXAPHEN	TcLXYL-S	DCLBP	a-CHLORD	g-CHLORD
,,,,		Detection Limit (mg/l)	0.00028			0.000025	0.000025
		, ,					
		Plume Monitoring			00.000		
Water	80990	Background, dissolved	0.00025	83.00%	92.60% 72.90%		
Water	80955	Background, total	0.00028	87.40%	12.80%		
Water	80991	0-10 min. overflow, dissolved	0.00025	75,70%	92.20%		
Water	60992	10-20 min, overflow, dissolved	0,00025	75.10%	81.70%		
Water	80993	20-30 min, overflow, dissolved	0.00025	73.20%	83.20%		
Water	80956	0-10 min, overflow, total	0.00026	83.50%	70.90%		
Water	80957	10-20 min, overflow, total	0.00025	92.40%	72.10%		
Water	80958	20-30 min, overflow, total	0.00025	74.40%	63.90%		
			0,00025	73.30%	84.10%		
Water	80994	0.10 min, non-overflow, dissolved	0.00025	79.50%	87.40%		
Water	80995 80996	10-20 min, non-overflow, dissolved 20-30 min, non-overflow, dissolved	0.00025	73.40%	84.10%		
Water Water	80959	0-10 min, non-overflow, total	0.00025	82,40%	75.20%		
Water	80360	10-20 min, non-overflow, total	0.00026	86.80%	79.50%		
Water	60961	20-30 min, non-overflow, total	0.00025	82.30%	80.60%		
774147		***************************************					
	•						
		Hopper Inflow Monitoring					
Water	81114	3& 6 min, dissolved	0.00025	80.80%	78.00%		
Water	81115	9&12 min, dissolved	0.00026	82.20%	75.20%		
Water	81116	15&18 min, dissolved	0.00027	82.10%	73.50% 85.80%		
Water	81117	21824 min, dissolved	0.00025	95.30% 91.60%	80.70%		
Water	81118	27830 min, dissolved	0.00025	35.50%	45.20%	0.000034	0.000026
Water	80903 80904	3& 6 min, total 9&12 min, total	0.00025	31.64%	43.66%	0,000043	0.000032
Water Water	80905	15&18 min, total	0.00027	39.39%	59.50%	0.000052	0.000032
Water	80906	21&24 min, total	0.00027	44.21%	59.72%	0.000046	0.000029
Water	80907	27830 min, total	0.00025	44.04%	41.07%	0.000043	0.000025
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	••••						
		Hopper Overflow Monitoring		***	00.400/		
Water	81119	2& 4 min, dissolved	0.00026	88.10% 92.10%	80.40% 76.20%		
Water	81120	6& 8 min, dissolved	0.00025	91.70%	81.80%		
Water	81121	10&12 min. dissolved	0.00025	72.30%	56 10%		
Water	81122 81123	14&16 min, dissolved 18&20 min, dissolved	0.00024	73.50%	61.10%		
Water Water	80909	28. 4 min, total	6.00027	40.11%	58.27%	0.000068	0.000050
Water	80910	6& 8 min, total	0.00027	47.04%	64.93%	0.000069	0 000048
Water	80911	10&12 min, total	Broken	Broken	Broken	Broken	Broken
Water	80912	148.16 min. total	0.00025	48.41%	78.19%	0.000130	0.000093
Water	80913	18&20 min, total	0.00027	44.62%	83.94%	0.000088	0.000059
		M/A . 141 A					
	81621	Site Water Sample 1 Total	0.00025	76.88%	68.76%	0.000025	0.000025
Water Water	81622	Sample 2 Total	0.00025	60.17%	69.83%	0,000025	0.000025
Water	81623	Sample 3 Total	0.00025	71.76%	68 80%	0.000025	0.000025
9 * 8(51)	4,102.0	Special Section 19					
		Elutriate		*****	AW # 461	* ****	0.000000
Water	81627	Sample 1 Dissolved	0.00050	75.82%	87.54% 88.79%	0.000050	9.000050 9.000050
Water	81628	Sample 2 Dissolved	0,00050 0,00050	85.13% 76.31%	87.53%	0.000050	0.000050
Water	81629	Sample 3 Dissolved	0.00035	81.56%	64.33%	0.000035	0,000026
Water	81624 81625	Sample 1 Total Sample 2 Total	0.00025	60.65%	55.24%	0.000025	0,000025
Water Water	81626	Sample 3 Total	0.00025	67:50%	61.90%	0.000025	0.000025
Anutes	01020	Garripie S voisi	270002	27.0017			
makeme m	n a sami m	ACCONITION)	TOXAPHEN	TcLXYL-S	DCLBP	a-CHLORD	g-CHLORD
SAMPLE	SAMPLE	DESCRIPTION		TULK TURB	eronal.		-
		Detection Limit (mg/kg)	0.018			0.00096	0.0019
		Insitu Sediment					
Sediment		Sample #1	8.018	86,90%	92.01%	0.0011	0.0035
Sediment		Sample #2	0.018	91.01%	92.77%	0.0016	0,0035 0,0038
Sediment	81713	Sample #3	0.018	84,77%	102 76%	0.0011	0.0038

TOXAPHEN - Toxaphene a ChLORDANE g-CHLORDANE g-CHLORDANE SOLD - less than values are estimated results. Rosults are less than the reporting limit.

		, .							
SAMPLE TYPE	SAMPLE ID	DESCRIPTION	PCB 22	PCB 33	PCB 37	PCB 42	PCB 47	PC8 64	PCB 74
		Detection Limit (mg/l)	0 0000011	0 0000011	0.0000011	0.0000011	0 00000110	0 0000011	0.0000011
Water	80983	Plume Monitoring Background, dissolved	0.0000010	0.0000010	0.0000010	0.0000010	0.00000100	0.0000010	0.0000010
Water	80948	Background, total	0.0000011	0.0000011	0.0000011	0.0000011	0.00000110	0.0000011	0.0000011
Water	80984 80985	0-10 min_overflow, dissolved 10-20 min, overflow, dissolved	0,0000010	0.0000010	0.0000010	0.0000010	0.00000100	0.0000010	0.0000010
Water	80986	20-30 min. overflow, dissolved	0.0000010	0.0000011	0.0000011	0.0000011	0.0000110	0.0000017	0.0000011 0.0000010
Water	80949	0-10 min, overflow, total	0.0000010	0.0000010	0.0000010	0.0000010	0.00000100	0.0000010	0.0000010
Water Water	80950 80951	10-20 min, overflow, total 20-30 min, overflow, total	0.0000010	0.0000010	0.0000010	0.0000010 0.0000010	0.00000100	0.0000010	0,0000010
Water	80987	0-10 min, non-overflow, dissolve	0.0000010	0.0000010	0.0000010	0.0000010			
Water	80988	10-20 min, non-overflow, dissolve	0.0000010	0.0000010	0.0000010	0.0000010	0.00000100	0.0000010	0.0000010
Water	80989	20-30 min, non-overflow, dispolve	0.0000010	0.0000010	0.0000010	0.0000010	0.00000100	0.0000010	0.0000010
Water	80952	0-10 min, non-overflow total	0.0000010	0.0000010	0.0000010	0.0000010	0.00000100	0.0000010	0.0000010
Water	80953	10-20 min, non-overflow, total	0.0000010	0.0000010	0.0000010	0.0000010	0.00000100	0.0000010	0.0000010
Water	80954	20-30 min, non-overflow, total	0.0000010	0.0000010	0.0000010	0.0000010	0,00000100	0.0000010	0.0000010
		Hopper Inflow Manitoring							
Water	81104	3& 6 min, dissolved	0.0000010	0.0000010	0.0000010	0.0000010	0.00000100	0.0000010	0.0000010
Water	81105	98.12 min, dissolved	0.0000010	0.0000010	0.0000010	0.0000010	0.00000100	0.0000010	0.0000010
Water Water	81106 81107	15&18 min, dissolved 21&24 min, dissolved	0.0000010	0.0000010	0.0000010	0.0000010	0.00000060	0.0000010	0.0000010
Water	81108	27&30 min, dissolved	0.0000010	0.0000010	0.0000010	0.0000010	0.00000100	0.0000010	0.0000010
Water	80891	3& 6 mm, total	0.0000011	0.0000011	0.0000011	0.0000016	0.00000095	0.0000011	0.0000013
Water	80892	9&12 min, total	0.0000010	0.0000010	0.0000010	0 0000031	0.00000180	0.0000092	0 0000042
Water	80893	15&18 min, total	0.0000010	0,0000010	0.0000010	0.0000021	0.00000055	0.0000010	0.0000021
Water Water	80894 80895	21&24 min, total 27&30 min, total	0.0000011	0.0000011	0.0000011	0.0000021 0.0000038	0.00000250 0.00000110	0.0000084 0.0000011	0.0000011
111.	01100	Hopper Overflow Monitoring							
Water Water	81109 81110	2& 4 min, dissolved 6& 8 min, dissolved	0.0000010	0.0000010	0.0000010	0,0000010	0.00000100	0.0000010	0.0000010
Water	81111	10812 min, dissolved	0.0000010	0.0000010	0.0000010	0.0000010	0.00000100	0.0000010	0.0000010
Water	81112	14&16 min, dissolved	0.0000010	0.0000010	0.0000010	0.0000010	0,00000100	0.0000010	0.0000010
Water	81113	18&20 min, dissolved	0.0000010	0.0000010	0.0000010	0.0000010	0.00000100	0.0000010	0.0000010
Water Water	80897 80898	2& 4 min, total 6& 8 min, total	0.0000011	0.0000011 0.0000011	0.0000011	0 0000046 0 0000011	0.0000830	0.0000011	0.0000011
Water	80899	10&12 min, total	0.0000011	0.0000011	0.0000011	0.0000011	0,00000110	0 0000150 0 0000160	0 0000064
Water	80900	148.16 min, total	0.0000011	0.0000011	0.0000011	0.0000060	0.00000110	0 0000200	0 0000000
Water	80901	18&20 min, total	0.0000010	0.0000010	0.0000010	0 0000058	0.00000100	0 0000190	0.0000074
		Site Water							
Water	81603	Sample 1 Total	0.0000010	0.0000010	0.0000010	0.0000010	0.00000100	0.0000010	0.0000010
Water	81604	Sample 2 Total	0.0000010	0.0000010	0.0000010	0.0000010	0.00000100	0.0000010	0.0000010
Water	81605	Sample 3 Total	0.0000010	0.0000010	0.0000010	0.0000010	0.00000100	0.0000010	0.0000010
		Elutnate							
Water	81609	Sample 1 Dissolved	0.0000010	0.0000010	0.0000010	0.0000010	0.00000100	0.0000010	0.0000010
Water	81610	Sample 2 Dissolved	0.0000010	0.0000010	0.0000010	0.0000010	0.00000100	0.0000010	0.0000010
Water	81611	Sample 3 Dissolved	0,0000010	0.0000010	0.0000010	0.0000010	0.00000100	0.0000010	0.0000010
Water Water	81606 81607	Sample 1 Total Sample 2 Total	0.0000010	0.0000010	0.0000010	0.0000010	0.00000100	0.0000010	0.0000010
Water	81608	Sample 3 Total	0.0000010	0.0000010	0.0000010	0.0000010	0.00000037	0.0000010	0.0000010
eaum e	CANDIE	DESCRIPTION	peo m	മല്ലാം	PCB 37	ppn an	DCD 47	DOD 64	man a -
OAMPLE	ID SAMPLE	DESCRIPTION	PC8 22	PCB 33	FUB 3/	PCB 42	PCB 47	PCB 64	PCB 74
		Detection Limit (mg/kg)	0 00077	0 00077	0.00077	0 00077	0 00077	0 00077	0 00077
		Insitu Sediment							
Sediment		Sample #1	0.00077	0.00077	0.00077	0.00077	0.00077	0.00077	0.00077
Sediment		Sample #2	0.00077	0.00077	0.00077	0.00077	0.00077	0.00077	0.00077
Sediment	01/19	Sample #3	0.00077	0.00077	0.00077	0.00077	0.00077	0.00077	0.00077

PCBsfine

Delaware	River Water	Analysis:	(Fine-Grained Site)	
----------	-------------	-----------	---------------------	--

YPE	SAMPLE ID	DESCRIPTION	PCB 60	PCB 81	PCB 84	PCB 91	PCB 92	PCB 95	PCB 9
		Detection Limit (mg/l)	0.0000011	0.0000011	0.00000110	0.00000110	0.0000011	0.00000110	0.0000011
		Plume Monitoring							
Vater	80983	Background, dissolved	0.0000010	0.0000010	0,00000100	0.00000100	0.0000010	0.00000058	0.0000010
Vater	80948	Background, total	0,0000011	0.0000011	0.00000110	0.00000110	0.000011	0.00000110	0.0000011
Vater	80984	0-10 min, overflow, dissolved	0.0000010	0.0000010	0.00000100	0.00000100	0.0000010	0.00000058	0.0000010
Vater	80985	10-20 min, overflow, dissolved	0.0000011	0.0000011	0.00000110	0.00000110	0.000011	0.00000085	0.0000011
Vater	80986	20-30 min, overflow, dissolved	0.0000010	0.0000010	0.00000100	0.00000100	0,0000010	0.00000049	0,0000010
Vater	80949	0-10 min, overflow, total	0.0000010	0,0000010	0.00000100	0.00000100	0.0000010	0.00000100	0.0000010
Vater	80950	10-20 min, overflow, total	0,0000010	0.0000010	0.00000100	0.00000100	0.0000010	0.00000100	0.0000010
Vater	80951	20-30 min, overflow, total	0.0000010	0.0000010	0.00000100	0.00000100	0.0000010	0.00000100	0.0000010
Vater	80987	0-10 min, non-overflow, dissolve	0.0000010	0.0000010	0.00000100	0.00000100	0.0000010	0.00000049	0.0000010
Vater	80988	10-20 min, non-overflow, dissolve	0.0000010	0.0000010	0.00000100	0.00000100	0.0000010	0.00000120	0.0000010
Vater	80989	20-30 min, non-overflow; dissolve	0.0000010	0.0000010	0.00000100	0.00000100	0,0000018	0.00000056	0.0000010
Vater	80952	0-10 min, non-overflow, total	0.0000010	0.0000010	0.00000100	0.00000100	0.0000010	0.00000100	0.0000010
Vater	80953	10-20 min, non-overflow, total	0.0000010	0.000010	0.00000100	0.00000100	0.0000010	0.00000100	0.0000010
Nater	80954	20-30 min, non-overflow, total	0,0000010	0,0000010	0.00000100	0,00000100	0.0000010	0.00000100	D.0000010
	04403	Hopper Inflow Monitoring	0.0000010	0.0000010	0.00000100	0.00000100	0.0000010	0.00000084	0.0000006
Vater	81104	38 6 min, dissolved	0.0000010	0.0000010	0.00000100	0.00000100	0.0000010	0.000000110	0.0000010
Vater	81105	98.12 min, dissolved	0.0000010	0.0000010	0.00000100	0.00000100	0.0000010	0.00000095	0.0000010
Vater	81105	15818 min, dissolved	0.0000010	8,0000010	0.00000100	0.00000100	0.0000010	0.00000084	0.0000004
Vater	81107	21824 min, dissolved	0.0000010	0.0000010	0.00000100	0.00000100	0.0000010	0.00000072	0.0000010
Vater	81108	27830 min, dissolved	0.0000011	0.0000011	0.00000110	0.00000110	0.0000011	0.00000110	0.0000011
Vater	80891	38. 6 min, total	0.0000010	0.0000010	0.00000100	0.00000100	0.0000010	0.00000100	0.0000010
Vater	80892	9&12 min, total	0.0000010	0.0000010	0.00000100	0.00000100	0.0000084	0.00000100	0.0000016
Vater	80893	15818 min, total	0.0000011	0.0000010	0.00000110	0.00000320	0.0000068	0.00001200	0.0000073
Vater	80894	21824 min, total	0.0000011	8.0000011	0,00000110	0.00000830	0.0000150	0.00002400	0.0000130
Nater	80895	.27&30 min, total	0,0000011	0.0000011	0,00000110	0.0000000	5.0050700	0.0000	*****
		Hopper Overflow Monitoring							
Water	81109	2& 4 min, dissolved	0.0000010	0.0000010	0.00000100	0.00000100	0.0000010	0 00000250	0.0000004
Nater	B1110	68, 8 min. dissolved	0.0000010	0.0000010	0.00000100	0.00000100	0.0000010	0.00000120	0.0000005
Nater	81111	10&12 min, dissolved	0.0000010	0.0000010	0.00000100	0.00000100	0.0000010	0.00000300	0.000000
Nater	81112	14&16 min, dissolved	0.0000010	0.0000010	0.00000100	0.00000100	0.0000010	0.00000097	0.0000003
Vater	81113	18820 min, dissolved	0.0000010	0.0000010	0.00000100	0.00000100	0.0000010	0.00000170	0.0000000
Vater	80897	28. 4 mir), total	0.0000011	0.0000011	0.00000110	0.00001100	0.0000150	0.00002700	0.000015
Vater	80898	68 8 min, total	0.0000011	0.0000011	0.00000110	0.00000980	0.0000180	0.00002700	0.0000140
Nater	80899	10812 min, total	0.0000011	0.0000011	0.00000110	0.00001100	0.0000160	0.00003100	0.0000190
Nater	80900	14816 min, total	0.0000011	0.0000011	0.00000110	0.00001400	0.0000250	0.00003700	0.0000210
Water	80901	18820 min, fotal	0.0000010	0.0000010	0.00000100	0.00001200	0.0000170	0.00003300	0.0000170
		Site Water	0.0000010	0.0000010	0.00000100	0.00000046	0.0000010	0.00000093	0,0000010
Nater	81603	Sample 1 Total	0.0000010	0.0000010	0.00000100	0.00000046	0.0000010	0.000000100	0.000001
Nater Nater	81604 81605	Sample 2 Total Sample 3 Total	0.0000010	0,0000010	0.00000100	0.000000046	0.0000010	0.00000095	0.000001
·+4(e)	Q \$665	Country C 1000	***********						
		Elutriate							
Nater	81609	Sample 1 Dissolved	0.0000010	0.0000010	0.00000100	0.00000054	0.0000010	0.00000110	0.000000
Water	81610	Sample 2 Dissolved	0.0000010	0.0000010	0.00000100	0.00000068	0.0000010	0.00000094	0.000000
Nater	81611	Sample 3 Dissolved	0.0000010	0.0000010	0.00000091	0,00000093	0.0000010	0.00000057	0.000000
Nater	81606	Sample 1 Total	0.0000010	0.0000010	0.00000100	0.00000100	0.0000010	0.00000110	0.000001
Nater	81607	Sample 2 Total	0.0000010	0,0000010	0.00000100	0.00000100	0.0000010	0.00000140	0,000001
Vater	81608	Sample 3 Total	0.0000010	0.0000010	0.00000100	0.00000100	0.0000010	0.00000110	0.000001
SAMPLE	SAMPLE	DESCRIPTION	PCB 80	PCB 81	PCB 84	PCB 91	PCB 92	PCB 95	PCB
	ID								
		Detection Limit (mg/kg)	0.00077	0.00077	0.00077	0.00077	0.00077	0.00077	0.000
		Insitu Sediment							
Sediment	61717	Sample #1	0.00077	0.00077	0.00077	0.00077	0.00077	0.00077	0.000
	81718	Sample #2	0,00077	0.00077	0.00077	0.00040	0:00049	0.00077	.0 000
260HHSH	81719		0.00077	0.00077	0.00077	0.00052	0.00052	0.00077	0.000

	Bs	

A SATE C	PAMPIE	DESCRIPTION	PCB 110	PCB 119	PCB 120	PCB 123	DOD 400	000 407	
YPE	ID SAWIFEE	DESCRIPTION .	PCB 110	PGB 119	PCB 120	PCB 123	PCB 126	PCB 127	PCB 1
		Detection Limit (mg/l)	0.00000110	0 9000011	0 0000011	0 0000011	0.0000011	0.0000011	0.00000
/ater	80983	Plume Monitoring	0 00000062	0.0000010	0.0006010	0.0000010	0.0000040	0.000040	
vater Vater	80948	Background, dissolved Background, total	0 00000078	0.0000011	0.0000011	0.0000011	0.0000010 0.0000011	0.0000010 0.0000011	0.00000 0.00000
/ater	80984	0-10 min, overflow, dissolved	0.00000060	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.00000
Vater Vater	80985 8098 6	10-20 min, overflow, dissolved 20-30 min, overflow, dissolved	0.00000087 0.00000065	0.0000011	0.0000011	0.0000011 0.0000010	0.0000011	0.0000011	0.00000
vater /ater	80949	0-10 min overflow, total	0.00000100	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.00000
/ater	80950	10-20 min, overflow, total	0.00000110	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.00000
/ater	80951	20-30 min. overflow, total	0.00000110	0.000010	0.0000010	0.0000010	0.0000010	0.0000010	0.00000
/ater	80987 80988	0-10 min, non-overflow dissolve	0.00000074	0.0000010 0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.00000
later later	80988	10-20 min, non-overflow, dissolve 20-30 min, non-overflow, dissolve	0.000000 68 0.000000 65	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.00000
/ater	80052	0-10 min_non-overflow, total	0.00000095	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.00000
/ater	80953	10-20 min, non-overflow, total	0.00000120	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0,00000
/ater	80954	20-30 min, non-overflow, total	0.00000073	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.00000
		Hopper Inflow Monitoring							
/ater	81104	3& 6 min, dissolved	0.00000095	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.00000
/ater	81105	9&12 min, dissolved	0.00000066	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.00000
/ater	81106	15&18 min, dissolved	0.00000076	0.0000010	0.0000010	0.0000010	0.000010	0.0000010	0.0000
later	81107	21824 min, dissolved	0 00000000	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000
later later	81108 80891	27&30 min, dissolved 3& 6 min, total	0.00000076 0.00000990	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000
ater	80892	9&12 min, total	0.00000250	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000
/ater	80893	15&18 min, total	0.00001200	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.00000
ater	80894	21824 min, total	0.00001400	0.0000011	0.0000011	0.0000011	0.0000011	0.0000011	0 00000
later	80895	27830 min, total	0 00002900	0.000011	0.0000011	0.0000011	9.0000011	0.0000011	0.0000
		Hopper Overflow Maniforing							
ater	81109	28. 4 min, dissolved	0.00000095	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000
later later	81110 81111	68. 8 min, dissolved 10812 min, dissolved	0.00000100 0.00000120	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000
ater	81112	148.16 min, dissolved	0.000000125	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000
ater	81113	18&20 min, dissolved	0.00000110	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000
ater	80897	2& 4 min, total	O 00003500	0.0000011	0.0000011	0.0000011	0.0000011	0.0000011	0.0000
fater	80898	68. 8 min, total	0.00003500	0.0000011	0.0000011	0.0000011	0.0000011	0.0000011	0.00002
later later	80899 80900	10&12 min, total 14&16 min, total	0 00004100 0 00004900	0.0000011	0.0000011	0.0000011	0.0000011	0.0000011	0 00001
ater	80901	18&20 min, total	0.00004100	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0 00001
		Site Water							
ater	81603	Sample 1 Total	0.00000077	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.00000
ater	81604	Sample 2 Total	00000099	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.00000
ater	81605	Sample 3 Total	0 00000110	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.00000
		Elutriate							
ater	81609	Sample 1 Dissolved	0.00000091	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.00000
ater	81610	Sample 2 Dissolved	0.00000088	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.00000
ater ater	81611 81606	Sample 3 Dissolved Sample 1 Total	0.00000057 0.00000120	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.00000
ater	81607	Sample 2 Total	0.00000120	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.00000
ater	81608	Sample 3 Total	0.00000110	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.00000
		DESCRIPTION	FCB 110	PCB 119	PC8 120	PCB 123	PCB 126	PGB 127	PCB 1
PE	ID								
		Detection Limit (mg/kg)	0.00077	0 00077	0.00077	0 00077	0 00077	0 00077	0 000
	04747	Insitu Sediment	0.00400	0.00077	0.00077	0.00077	0.00077	0.00077	0.00
diment diment		Sample #1 Sample #2	0 00100 0 00067	9.00077 9.00077	0.00077 0.00077	0.00077 0.00077	0.00077 0.00077	0.00077	0.000
ediment		Sample #3	0 00100	0.00077	0.00077	0.00077	0.00077	0.00077	0.000

PCBsfine

Cultivate River Water Analysis (Fine-Grained Site)	

•		Delaware Miver Water Analysis (Fine-	Granted one)						
	SAMPLE ID	DESCRIPTION	PCB 135	PCB 146	PCB 149	PCB 157	PCB 158	PCB 166	PCB 16
		Detection Limit (mg/l)	0.0000011	0.00000110	0.00000110	0.0000011	0.0000011	0.0000011	0.0000011
		Plume Monitoring							
Vater	80983	Background, dissolved	0.0000010	0.00000100	0.00000100	0.0000010	0.0000010	0.0000010	0.000001
	80948	Background, total	0.0000011	0.00000110	0.00000110	0.0000011	0.0000011	0.0000011	0.0000011
Vater	80984	0-10 min, overflow, dissolved	0.0000010	0.00000100	0.00000100	0.0000010	0.0000010	0.0000010	0.0000016
	80985	10-20 min, overflow, dissolved	0.0000011	0.00000110	0.00000110	0.0000011	0.0000011	0.0000011	0.000001
	80986	20-30 min, overflow, dissolved	0,0000010	0.00000100	0.00000100	0,0000010	0.0000010	0.0000010	0.000001
Vater .	80949	0-10 min, overflow, total	0.0000010	0.00000100	0.00000100	0.0000010	0.0000010	0.0000010	0.000001
	80950	10-20 min, overflow, total	0.0000010	0.00000064	0.00000100	0.0000010	0.0000010	0.0000010	0,000001
vater	80951	20 30 min, overflow, total	0,0000010	0.00000057	0.00000100	0.0000010	0.0000010	0.0000010	0.00000
later	80987	0-10 min, non-overflow, dissolve	0.0000010	0.00000100	0,00000100	0.0000010	0.0000010	0.0000010	0.000001
	80988	10-20 min, non-overflow, dissolve	0.0000010	0.00000100	0.00000100	0.0000010	0.0000010	0.0000010	0.000001
	80989	20-30 min, non-overflow, dissolve	0.0000010	0.00000100	0.00000100	0.0000010	0.0000010	0.0000010	0.000001
	80952	0-10 min, non-overflow, total	0.0000010	0.00000140	0.00000100	0.0000010	0.0000010	0.0000010	0.000001
	80953 80954	10-20 min, non-overflow, total 20-30 min, non-overflow, total	0.0000010	0.00000100	0.00000100	0.0000010	0.0000010	0.0000010	0.000001
		,							
		Hopper Inflow Manitoring							
Vater	81104	3& 6 min, dissolved	0.0000010	0.00000100	0.00000100	0.0000010	0.0000010	0,0000010	0.000001
	81105	98.12 min, dissolved	0.0000010	0.00000100	0.00000100	0.0000010	0.0000010	0.0000010	0,000001
	81106	15&18 min, dissolved	0.0000010	0.00000100	0.00000100	0.0000010	0.0000010	0.0000010	0.00000
	81107	21824 min, dissolved	0.0000010	0.00000100	0.00000100	0.0000010	0.0000010	0,0000010	0.00000
Vater	81108	27830 min, dissolved 38, 6 min, total	0.0000010	0.00000260	0.00001100	0.0000011	0.0000011	0.0000011	0.00000
Vater Vater	80891 80892	9812 min, total	0.0000010	0.00000260	0.00002500	0.0000010	0.0000010	0.0000010	0.00000
Vater	80893	15&18 min, total	0.0000010	0.00000460	0,00001800	0.0000010	0.0000010	0.0000010	0.00000
	80894	21&24 min, total	0.0000011	0.00000110	0.00001800	0.0000011	0.0000011	0.0000011	0.00000
	80895	27&30 min, total	0.0000076	0.00000110	0.00003200	0.0000011	0.0000011	0.0000011	0.00000
		Hopper Overflow Monitoring					0.0000010	0.0000010	0.00000
Vater	81109	28. 4 min, dissolved	0.0000010	0.00000100	0.00000100	0.0000010	0.0000010	0.0000010	0,00000
Vater	81110	6& 6 min, dissolved	0.0000010	0.00000100	0.00000043	0.0000010	0.0000010	0.0000010	0.00000
Vater	81111	10812 min, dissolved	0,0000010	0.00000100	0.00000056	0.0000010	0.0000010	0.0000010	0.00000
Vater	81112	148.16 min, dissolved	0.0000010	0.00000100	0.00000100	0.0000010	0.0000010	0.0000010	0.00000
Vater	81113 80897	18820 min, dissolved 28, 4 min, total	0.0000088	0,00000110	0.00003800	0.0000011	0.0000011	0.0000011	0.00000
Vater Vater	80898	6& 8 min, total	0.0000083	0.00000110	0.00000110	0.0000011	0.0000011	0.0000011	0.00000
Vater	80899	10&12 min, total	0.0000100	0.00000110	0.00000110	0.0000011	0.0000011	0.0000011	0,00000
Vater	80900	148.16 min, total	0.0000140	0.00000110	0.00000110	0.0000011	0.0000011	0.0000011	000000
Vater	80901	18&20 min, total	0.0000150	0.00000100	0.00000100	0.0000010	0.0000010	0.0000010	0.00000
Nater	81503	Site Water Sample 1 Total	9.0000010	0.00000100	0.00000051	0.0000010	0.0000010	0.0000010	0.00000
Valer	81604	Sample 2 Total	0.0000010	0.00000100	0.00000053	0.0000010	0.0000010	0.0000010	0.00000
Vater	81605	Sample 3 Total	0.0000010	0,00000100	0.00000055	0.0000010	0.0000010	0.0000010	0.00000
	04000	Elulriate	0.0000010	0,00000100	0.00000047	0.0000010	0.0000010	0.0000010	0.00000
Vater	81609	Sample 1 Dissolved	0.0000010	0.00000100	0.00000047	0.0000010	0.0000010	0.0000010	0.00000
Vater	81510 81611	Sample 2 Dissolved Sample 3 Dissolved	0.0000010	0.00000100	0.00000044	0.0000010	0.0000010	0.0000010	0.00000
Vater Vater	81606	Sample 1 Total	0.0000010	0.00000100	0.00000091	0.0000010	0.0000010	0.0000010	0.00000
Vater	81007	Sample 2 Total	0.0000010	0.00000100	0.00000090	0.0000010	0.0000010	0.0000010	0.00000
Vater	81608	Sample 3 Total	0.0000010	0.00000100	0.00000076	0,0000010	0.0000010	0.0000010	0.00000
	# 1 Camp #	BEAGRIDE AND	PCB 135	PCB 146	PCB 149	PCB 157	PCB 158	PCB 166	PCB
SAMPLE TYPE	SAMPLE	DESCRIPTION	FGB 133	E-UD 140	1 00 170				
		Detection Limit (mg/kg)	0.00077	0.00077	0.00077	0.00077	0.00077	0 00077	0.00
		Insitu Sediment							
Sediment	81717	Sample #1	0.00077	6.00077	0.00120	0.00077	0.00077	0.00077	0.00
	81718	Sample #2	0.00077	0.00077	0,00120	0.00077	0.00077	0.00077	0.00
Sechment	01110		0.00077	0.00077	0.00100	0.00077	0.00077	0.00077	0.00

BOLD - tess than values Values below less than values are estimated results. Results are less than the reporting limit

PCBsfine	
----------	--

				1 17(1)					
		Delaware River Water Analysis (Fine	Grained Site)						
SAMPLE TYPE	SAMPLE	DESCRIPTION	PCB 169	PCB 174	PCB 177	PCB 178	PCB 179	PCR 8	PCB 1
		Detection Limit (mg/l)	0 0000011	0.00000110	0.0000011	0 0000011	0 0000011	D 0000011	0 000001
		Plume Monitoring							
Water Water	80983 80946	Background, dissolved Background, total	0.0000010 0.0000011	0.00000100 0.00000110	0.0000010 0.0000011	0.0000010	0.0000010 6.0000011	0.0000010 0.0000011	0.000001 0.000001
Water	80984	0-10 min overflow dissolved	0.0000010	0.00000100	0,0000010	0.0000010	0.0000010	0.0000010	0.000001
Water	80985	10-20 min, overflow, dissolved	0.0000011	0.00000110	0.0000011	0.0000011	0.0000011	0.0000011	0.000001
Water	80986	20-30 min, overflow, discolved	0.0000010	0.00000100	0.0000010	0.0000010	0.0000010	0.0000010	0.000001
Water Water	80949 80950	0-10 min, overflow, total 10-20 min, overflow, total	0.0000010	0.00000100	0.0000010	0.0000010	0.0000010	0.0000010	0.000001
Water	80951	20-30 min, overflow, total	0.0000010	0.00000100	0.0000010	0.0000010	0.0000010	0.0000010	0.000001
Water Water	80987 80988	0-10 min, non-overflow, dissolve 10-20 min, non-overflow, dissolve	0.0000010	0.00000100	0.0000010	0.0000010	0.0000010	0.0000010	0,000001
Water	80989	20-30 min, non-overflow, dissolve	0.0000010	0.00000100	0.0000010	0.0000010	0.0000010	0.0000010	0.000001
Water	80952	0-10 min, non-overflow, total	0.0000010	0.00000100	0.0000010	0.0000010	0.0000010	0.0000010	0.000001
Water	80953	10-20 min, non-overflow, total	0.0000010	0.00000100	0.0000010	0.0000010	0.0000010	0.0000010	0,000001
Water	80954	20-30 min, non-overflow, total	0.0000010	0.00000100	0.0000010	0.0000010	0.0000010	0.0000010	0.000001
		Hopper Inflow Monitoring							
Water	81104	3& 6 min, dissolved	0.0000010	0.00000100	0.0000010	0.0000010	0.0000010	0,0000010	0.0000011
Water	81105	9&12 min, dissolved	0.0000010	0.00000100	0.0000010	0.0000010	0.0000010	0.0000010	0.000001
Water	81106	15&18 min, dissolved	0.0000010	0,00000100	0.0000010	0.0000010	0.0000010	0.0000010	0.000001
Water	81107	21824 min, dissolved	0.0000010	0.00000100	0.0000010	0.0000010	0.0000010	0.0000010	0.000001
Water Water	81108 80891	27&30 min, dissolved 3& 6 min, total	0.0000010	0.00000100	0.0000010	0.0000010	0.0000010	0.0000010 0.0000011	0.000001
Water	80892	9&12 min, total	0.0000010	0 00000030	0 0000067	0.0000010	0.0000010	0.0000011	0.000001
Water	80893	15&18 min, total	0.0000010	0 00000620	0.0000042	0.0000010	0.0000010	0.0000010	0,000001
Water	80894	21&24 min, total	0.0000011	0.00000820	0 0000023	0.0000011	0 0000017	0.0000011	0 000005
Water	80895	27&3U min, total	0.0000011	0.00000110	0.0000011	0.0000011	0.0000069	0.000063	0.0000011
		Hopper Overflow Monitoring							
Water	81109	2& 4 min, dissolved	0.0000010	0 00000049	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010
Water	81110	6& 8 min, dissolved	0.0000010	0.00000100	0.0000010	0.0000010	0.0000010	0.0000010	0,0000010
Water	81111	10&12 min, dissolved	0.0000010	0.00000100	0.0000010	0.000010	0.0000010	0.0000010	0.000001
Water	81112	14&16 min, dissolved	0.0000010	0.00000100	0.0000010	0.0000010	0.0000010	0.0000010	0,0000010
Water	81113 80897	18&20 min, dissolved	0.0000010	0.00000100	0.0000010 0.0000011	0.0000010	0.0000010	0.0000010	0.0000010
Water Water	80898	2& 4 min, total 6& 8 min, total	0.0000011	0.00001700	0.0000011	0.0000011	0.0000011	0.0000011	0.0000011
Water	80899	10&12 min, total	0.0000011	0 00001700	0.0000011	0.0000011	0.0000011	0.0000140	0.0000011
Water	80900	14816 min, total	0.0000011	0.00000110	0.0000011	0.0000011	0.0000011	0.0000011	0.000001
Waler	80901	18&20 min, total	0.0000010	0.00000100	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010
		Site Water							
Water	81603	Sample 1 Total	0.0000010	0.00000100	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010
Water	81604	Sample 2 Total	0.0000010	0.00000100	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010
Water	81605	Sample 3 Total	0.0000010	0.00000100	0.0000010	0.0000010	0.0000010	0.0000010	0 0000015
		Elutriate							
Water	81609	Sample 1 Dissolved	0.0000010	0.00000100	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010
Water	81610	Sample 2 Dissolved	0.0000010	0.00000100	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010
Water	81611	Sample 3 Dissolved	0.0000010	0.00000100	0.0000010	0,0000010	0.0000010	0.0000010	0.0000010
Water Water	81606 81607	Sample 1 Total Sample 2 Total	0.0000010	0.00000100	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010
Water	81608	Sample 3 Total	0.0000010	0.00000100	0.0000010	0.0000010	0.0000010	0.0000010	0.000001
		DESCRIPTION	PCB 169	PCB 174	PCB 177	PCB 178	PCB 179	PCB 8	PCB 18
TYPE	#D	Deluction Land (maller)	0 ,00077	0 00077	9 90077	0 00077	0.00077	0 00077	0 0007
		Detection Limit (mg/kg)	0,00077	0 00077	5 00077	U 00077	O (ASSET)	O OON /	0 0007
Sediment	81717	Insitu Sediment Sample #1	0.00077	0.00077	0.00077	0.00077	0.00077	0.00077	0.0007
ACOULTER!		Sample #2	0.00077	0.00077	0.00077	0.00077	0.00077	0.00077	0.00077
Sediment	81/18								

PCBsf	ne
--------------	----

		Delaware River Water Analysis (Fine-	Granies Gitty						
	SAMPLE ID	DESCRIPTION	PCB 28	PCB 31	PCB 40	PCB 44	PCB 49	PCB 52	PC8 6
		Detection Limit (mg/l)	0.0000011	0.0000011	0,0000011	0.0000011	0.00000110	0.00000110	0.0000011
		Plume Monitoring							
	80983	Background, dissolved	0.0000010	0.0000017	0.0000010	0.0000010	0.00000100	0.00000110	0.0000010 0.0000011
ater	80948	Background, total	0.0000011	0.0000011	0.0000011	0.0000011	0.00000110	LI, OLIONO I TO	2.000001
later	80984	0-10 min, overflow, dissolved	0.0000010	0.0000010	0.0000010	0.0000010	0.00000100	0.00000100	0,000001
	80985	10-20 min, overflow, dissolved	0.0000011	0.0000011	0,0000011	0.0000011	0.00000110	0.00000110 0.00000100	0.000001
	80986	20-30 min, overflow, dissolved	0.0000010	0.0000010	0.0000010	0.0000010	0.00000100	0.00000120	0.000001
ater	80949 80950	0-10 min, overflow, total 10-20 min, overflow, total	0,0000010	0.0000010	0.0000010	0.0000010	0.00000100	0.00000095	0.000001
later later	80951	20-30 min. overflow, total	0.0000010	0.0000010	0.0000010	0.0000010	0.00000100	0.00000077	0.000001
/ater	80987	0-10 min, non-overflow, dissolve	0.0000010	0.0000010	0.0000010	0,0000010	0.00000085	0.00000100	0.000001
later	80988	10-20 min, non-overflow, dissolve	0.0000010	0,0000010	0.0000010	0.0000010	0.00000044	0.00000100	0.000001
/ater	80989	20-30 min, non-overflow, dissolve	0.0000010	0.0000010	0.0000010	0.0000010	0.00000100	0.00000100	0.000001
	80952	0-10 min, non-overflow, total	0.0000010	0.0000010 0.0000010	0.0000010	0.0000010	0.00000100	0.00000097 0.00000100	0.0000010
Vater Vater	80953 80954	10-20 min, non-overflow, total 20-30 min, non-overflow, total	0.0000010	0.0000010	0.0000010	0.0000010	0.00000100	0.00000074	0.000001
/ater	81104	Hopper Inflow Monitoring 3& 6 min, dissolved	0.0000010	0.0000010	0.0000010	0.0000010	0.00000100	0.00000083	0.000001
rater Jater	81104	98.12 min, dissolved	0.0000010	0.0000010	0.0000010	0.0000010	0.00000100	0.00000093	0.000001
Vater	81106	15&18 min, dissolved	0.0000010	0.0000029	0.0000010	0.0000014	0.00000072	0,00000094	0.000001
Vater	81107	21824 min, dissolved	0.0000010	0.0000010	0.0000010	0.0000010	0.00000180	0.00000000	0.000001
ater	81108 80891	27&30 min, dissolved 3& 6 min, total	0.0000010	0.0000011	0.0000011	0.0000057	0.00000410	0.00001100	0.000000
Vater Vater	86892	9&12 min, total	0.0000080	9,0000010	0.0000010	0.0000150	0.00000960	0.00002500	0.000001
Vater	80893	15&18 min, total	0.0000080	0.0000010	0.0000010	0.0000092	0.00000630	0.00001600	0.000000
Vater	80894	21&24 min, total	0.0000067	0.0000011 0.0000011	0.0000041	0.0000680	0.00000600	0.00001500	0.000000
Valer	80895	27&30 min, total	0.0000130	0.000011	0.0000070	5.5555775	2.0.00		
		Hopper Overflow Monitoring		0.0000031	0,0000010	0.0000010	0.00000110	000000066	0.000001
Vater	81109	.28. 4 min, dissolved 68. 8 min, dissolved	0.0000010	0.0000031	8.0000010	0.0000010	0.00000047	0.00000082	0.000001
Vater Vater	81110 81111	10&12 min, dissolved	0.0000010	0.0000038	0.0000010	0.0000010	0.00000077	0.00000120	0.000001
Vater	81112	148.16 min, dissolved	0,0000010	0.0000029	0.0000010	0.0000010	0.00000065	0.00000110	0.000001
Vater	81113	18&20 min, dissolved	0.0000010	0.0000037	8.0000010	0.0000010	0.00000060	0.00000140	0.000001
Vater	80897	28. 4 min, total	0.0001200	0.0000011	0.0000011	0.0000160	0.00001400	0.00003400	0.000020
Vater	80898 80899	6& 8 min, total 10&12 min, total	0.0000130	0.0000011	0.0000120	0.0000260	0.00001600	0.00003700	0.000002
Vater Vater	80900	14&16 min, total	0.0000180	0.0000011	0.0000140	0.0000300	0.00002000	0.00004300	0.000002
Vater	80901	18&20 min, total	0.0000180	0.0000010	0.0000130	0.0000270	0.00001800	0.00003900	0 000002
		Site Water						**********	
Vater	81603	Sample 1 Total	0.0000010	0.0000024	0.0000010	0.0000014	0.000000065	0,00000092	0.000001
Vater Vater	81604 81605	Sample 2 Total Sample 3 Total	0.0000010	0.0000022	0.0000010	0.0000015	0.00000047	0.00000110	0.000001
14151	01000	emiliar A case.							
		Elutriate	0.0000000	0.0000010	0,0000010	0.0000010	0.00000100	0.00000100	0.00000
Valer	81609	Sample 1 Dissolved	0,0000010	0.0000010	0,6000010	0.0000010	0.00000100	0.00000077	0.000001
Vater Vater	81610 81611	Sample 2 Dissolved Sample 3 Dissolved	0.0000010	0.0000010	0.0000010	0.0000010	0.80000100	0.00000054	0,00000
Vater	81606	Sample 1 Total	0.0000010	0.0000039	0.0000010	0.0000010	0.00000300	0.00000150	0.00000
Vater	81607	Sample 2 Total	0.0000010	0.0000010	0.0000010	0.0000010	0.00000330	0.00000160	0,000001
Vater	81608	Sample 3 Total	0.0000010	0,0000010	0.000010	v.voutu iv	0.00000230	0.00000100	2.242341
SAMPLE YPE	SAMPLE	DESCRIPTION	PCB 28	PCB 31	PCB 40	PCB 44	PCB 49	PCB 52	PCB
		Detection Limit (mg/kg)	0.00077	0.00077	0.00077	0.00077	0 00077	0.00077	0.00
		Insitu Sediment					A 245A	0.00000	0.00
Sediment	81717	Sample #1	0.00077	0.00077	0.00077	0.00077	0.00061	0.00250 0.00250	0.00
Sediment Sediment		Sample #2	0.00077 0.00077	0.00077	0,00077	0.00077	0.00069	0.00230	0.000
		Sample #3	0.000//	4.44441	Attach 1	0.00011	7		

PCBsfi	ne
--------	----

		Deloware River Water Analysis (Fine	e-Grained 5ite)						
SAMPLE TYPE	SAMPLE ID	DESCRIPTION	PCB 70	PCB 77	PCB 82	PCB 86	PCR 87	PCB 97	PCB 10
		Detection I imit (mg/l)	0 00000110	0 0000011	0.0000011	£ 00000110	0 00000110	0 00000110	0.000001
		Plume Monitoring							
Water	80983	Background, dissolved	0.00000040	0.0000010	0.0000010	0.00000100	0.00000100	0.00000100	0.000001
Vater	80948	Background, total	0.00000110	0.0000011	0.0000011	0.00000057	0.00000110	0.00000057	0.000001
Nater	80984	0-10 min, overflow, dissolved	0.00000100	0.0000010	0.0000010	0.00000100	0.00000100	0.00000100	0.000000
Water	80985	10-20 min, overflow, dissolved	0.00000051	0.0000011	0.0000011	0.00000110	0.00000110	0.00000110	0.000000
Nater	80986	20-30 min, overflow, dissolved	0.00000044	0.0000010	0.0000010	0.00000100	0.00000100	0.00000100	0.000000
Water	80949	D-10 min, overflow, total	0.00000100	0.0000010	0.0000010	0.00000100	0.00000100	0.00000100	0.000001
Nater	80950	10-20 min, overflow, total	0 00000048	0.0000010	0.0000010	0.00000063	0.00000100	0 00000063	0.000002
Nater	80951	20:30 min. overflow, total	0 00000038	0.0000010	0,0000010	0 00000053	0.00000100	0.00000053	0.000001
Nater	80997	0-10 min, non-overflow, dissolve	0.00000037	0.0000010	0.0000010	0.00000100	0.00000100	0.00000100	0.000000
Vater	80988	10-20 min, non-averflow, dissalve	0.00000050	0.0000010	0.0000010	0.00000100	0.00000100	0.00000100	0.000000
Vater	80989	20-30 min, non-overflow, dissolve	0 00000056	0.0000010	9.0000010	0.00000100	0.00000100	0.00000100	0 000000
Vater	80952	0-10 min, non-overflow, total	0 00000041	0.0000010	0.0000010	0.00000041	0.00000100	0.00000041	0.000001
Nater	80953	10-20 min, non-overflow, total	0.00000035	0.0000010	0.0000010	0.00000047	0.00000100	0 00000047	0.000002
Mater	80954	20-30 min, non-overflow, total	0 00000038	0.0000010	0.0000010	0 00000043	0 00000054	0.00000043	0.000001
		1 1 1-M 1-M							
Nater	81104	Hopper Inflow Monitoring 3& 5 min, dissolved	0.00000062	0.0000010	0.0000010	0.00000100	00000038	0.00000100	0 000001
Nater	81105	9&12 min, dissolved	0 00000042	0.0000010	0.0000010	0.00000100	0.00000100	0.00000100	0 0000000
Nater	81106	15818 min, dissolved	0.00000053	0.0000010	0.0000010	0.00000100	0.00000100	0.00000100	0 0000000
Vater	81107	21824 miri, dissolved	0.00000059	0.0000010	0.0000010	0.00000100	0.00000042	0.00000100	0.000001
Vater	81108	27&30 min, dissolved	0.00000041	0.0000010	0.0000010	0.00000100	0.00000100	0.00000100	0.000000
Vater	80891	38, 6 min, total	0 00000420	0.0000011	0.0000014	0.00000300	0.00000310	0.00000300	0 000009
Vater	80892	9812 min, total	0.00000890	0.0000010	0.0000010	0.00000600	0.00000420	0 00000600	0 000019
Vater Vater	80893 80894	15&18 min, total 21&24 min, total	0.00000660	0.0000010	0.0000010	0 00000420	0.00000290	0.00000420 0.00000730	0.000011
Vater	80895	27&30 min, total	0 00001100	0.0000011	0.0000011	0 00000730	0.00000290	0.00000730	0.0000120
Vater	81109	Hopper Overflow Monitoring	0.00000086	0.0000010	0.0000010	0.00000100			
Valer Valer	81110	2& 4 min, dissolved 6& 8 min, dissolved	0.00000000	0.0000010	0.0000010	0.00000100	0.000000064	0.00000100	0.000000
Vater	81111	10&12 min, dissolved	0.00000084	0.0000010	0.0000010	0.00000100	0.00000356	0.00000100	0.0000011
Vater	81112	148.16 min, dissolved	0.00000059	0.0000010	0.0000010	0.00000100	0.00000036	0.00000100	0.0000000
Vater	81113	18&20 min, dissolved	0.00000074	0.0000010	0.0000010	0.00000100	0.00000050	0.00000100	0.0000011
Valer	80897	28. 4 min, total	0 00001200	0.0000011	0.0000011	0.00000870	0.00000110	0.00000870	0.0000290
Vater	80898	6& 8 min, total	0.00001300	0.0000011	0.0000011	0.00000950	8.00000110	0 00000950	0.0000290
Vater	80899	10&12 mln, total	0 00001500	0.0000011	0.0000011	0 00000960	0.00000110	0 00000960	0 0000340
Vater	60900	14&16 min, total	0.00001600	0.0000011	B.0000011	0.00001100	0.0000980	0.00001100	0 0000400
Vater	80901	18&20 min, total	0 00001600	0.0000010	0.0000010	0 00000980	0.00000100	0 00000980	0.000034
		Site Water							
Vater	81603	Sample 1 Total	0.00000100	0.0000010	0.0000010	0.00000100	0.00000054	0.00000100	0.0000011
Vater	81604	Sample 2 Total	0 00000140	0.0000010	0.0000010	0.00000100	0.00000049	0,00000100	0.0000014
Vater	\$1605	Sample 3 Total	0 00000130	0.0000010	0.0000010	0.0000100	0 00000038	0.00000100	0 0000015
		Phyteiste							
Vater	81609	Elutriate Sample 1 Dissolved	0.00000110	0.0000010	0.0000010	0.00000100	0 00000052	0.00000100	0.000001
Vater Vater	81610	Sample 2 Dissolved	0.00000110	0.0000010	0.0000010	0.00000100	0 00000052	0.00000100	0.0000001
Valer	81611	Sample 3 Dissolved	0 00000150	0.0000010	0.0000010	0.00000100	0.00000100	0.00000100	0.000000
	81606	Sample 1 Total	0.00000100	0.0000010	0.0000010	0.00000100	0.00000100	0.00000100	0.000000
	B1607	Sample 2 Total	0.00000100	0.0000010	0.0000010	0.00000100	0.00000100	0.00000100	0.000000
/ater	81608	Sample 3 Total	0.00000100	0.000010	8,0000010	0.00000100	0.00000100	0.00000100	0.000000
AMPLE	SAMPLE	DESCRIPTION	PCB 70	PCB ?7	PCB 82	PC8 66	PCB 87	PCB 97	PGB 11
	ID								
		Detection Limit (mg/kg)	0 00077	0 00077	0 00077	0.00077	0.00077	0.00077	0 000
		Insitu Sediment							
		Sample #1	0.00210	0.00077	0.00077	0.00077	0.00077	0.00077	0.0016
ediment	81717	Sample #1		0.00077	D.00011		0.00077		
ediment ediment		Sample #2	0.00200	0.00077	0.00077	0.00077	0.00077	0.00077	0.0012

CB		

		Delaware River Water Analysis (Fine-	Grained Site)						
	SAMPLE ID	DESCRIPTION	PCB 105	PCB 114	PCB 118	PCB 121	PCB 128	PCB 136	PCB 13
		Detection Limit (mg/l)	0.00000110	0.00000110	0.00000110	0.0000011	0.0000011	0 0000011	0.000001
		Plume Monitoring							
ates	80983	Background, dissolved	0.00000041	0.00000100	0.00000077	0.0000010	0.0000010	0.0000010	0.000001
	80948	Background, total	0.0000110	0,00000110	0,00000110	0.0000011	0.0000011	0.0000011	0.000001
ater	80984	0-10 min, overflow, dissolved	0.00000037	0.000000066	0.00000051	0.0000010	0.0000010	0.0000010	6.000001
	80985	10-20 mln, overflow, dissolved	0,00000110	0.00000110	0.00000064	0.0000011	0.0000011	0.0000011	0.000001
ater	80986	20-30 min, overflow, dissolved	0.00000041	0.00000060	0.00000045	0.0000010	0.0000010	0.0000010	0.000001
	80949	0-10 min, overflow, total	0.00000100	0.00000100	0.00000100	0.0000010	0.0000010	0.0000010	0.000001
ater	80950	10-20 min, overflow, total	0.00000100	0.00000100	0,00000100	0.0000010	0.0000010	0.0000010	0.000001
ater	80951	20-30 min, overflow, total	0.00000100	0.00000100	0.00000100	0.0000010	0.0000010	0100000,0	
ater	80987	0-10 min, non-overflow, dissolve	0.00000100	0.00000074	0.00000050	0.0000010	0.0000010	0,0000010	0,000001
ater	80988	10-20 min, non-overflow, dissolve	0.00000040	0.0000100	0.00000046	0.0000010	0.0000010	0.0000010	0.000001
	80989	20-30 min, non-overflow, dissolve	0.00000039	0,00000100	0.00000045	0.0000010	0.0000010	0.0000010	0.000001
ater	80952	0-10 min, non-overflow, total	0.00000100	0,00000100	0.00000100	0.0000010	0,0000010	0.0000010	0.000001
later	80953	10-20 min, non-overflow, total	0.00000100	0.00000100	0.00000100	0.0000010	0.0000010	0.0000010	0,000001
/ater	80954	20-38 min, non-overflow, total	0.00000100	0.00000100	0,08000100	0,0000010	0.0000010	บรมมับบนุเษ	D.JOHOU I
		Hopper Inflow Monitoring							
later	81104	3& 6 min, dissolved	0.00000041	0.00000100	0.00000054	0.0000010	0.0000010	0.0000010	0.000001
rater later	81105	98.12 min, dissolved	0.00000056	0.00000100	0.00000045	0.0000010	0.0000010	0.0000010	0.000001
/ater	81106	15&18 min, dissolved	0.00000035	0,00000100	0,00000100	0.0000010	0,0000010	0.0000010	0.000001
ater	81107	21&24 min, dissolved	0.00000043	0.00000100	0.00000000	0.0000010	0.0000010	0.0000010	0.000001
later	81108	27&30 min, dissolved	0.00000037	0.00000100	0,00000100	0.0000010	0.0000010	0.0000010	0.000001
iater	80891	38. 6 min, total	0,00000110	0.00000110	0.00000750	0.0000011	0.0000011	0.0000011	0.000001
/ater	80892	9&12 min, total	0.00000100	0.00000100	0.00000100	6.0000010	0.0000010	0.0000010	0.00000
/ate/	80893	15&18 min, total	0.00000100	0.00000100	0.00000100	0.0000010	0.0000011	0.0000011	0.00000
Vater	80894	21&24 min, total	0,00000110	0.00000110	0.0000110 0.00001900	0.0000011	0.0000011	0.0000011	0.000001
/ater	80895	27&30 min, total	0,0000110	0.00000113	0.000				
		Hopper Overflow Monitoning	0.600000047	0.00000100	0.00000065	0.0000010	0.0000010	0.0000010	0.000001
Vater	81109	28 4 min, dissolved	0.00000047	0.00000100	0,00000065	0.0000010	0.0000010	0.0000010	0.00000
/ater	B1110	68. 8 min, dissolved	0.00000097	0.00000100	0.00000100	0.0000010	0,0000010	0.0000010	0.00000
vater	81111 81112	10&12 min, dissolved 14&16 min, dissolved	0.00000036	0.00000100	0.00000068	0.0000010	0,0000010	0.0000010	0.00000
/ater	81112	18820 min, dissolved	0.00000055	0.00000100	0.00000094	0.0000010	0.0000010	0.0000010	0.00000
Vater Vater	60897	28. 4 min, total	0.00000110	0.00000110	0.00002400	0.0000011	0.0000011	0.0000011	0.00000
vater Vater	80898	6& ā min, total	0.00000110	0.00000110	0.00002300	0.0000011	0.0000011	0,0000011	0.00000
Vater	80899	108/12 min, total	0.00000110	0.00000110	0.00003000	0.0000011	0.0000011	0.0000011	0.00000
Vater	80900	148.16 min, total	0.00000110	0.00000110	0.00003800	0.0000011	0.0000011	0.0000011	0.00000
vater	80901	18&20 min, total	0.0000100	0.00000100	0.00003200	0.000010	0.0000010	0.0000190	0.00000
		Site Water							
Vater	81603	Sample 1 Total	0.00000043	0,00000140	0,00000096	0.0000010	0.0000010	0.0000010	0.00000
Vater	81604	Sample 2 Total	0.00000054	0.00000140	0.00000093	0.0000010	0.0000010	0.0000010	0.00000
Vater	81605	Sample 3 Total	0.00000050	0.00000120	0.00000100	0.0000010	0.0000010	0,000000	5,00000
		Elutriate							
Vater	81609	Sample 1 Dissolved	0.00000067	0.00000100	0.00000058	0.0000010	0.0000010	0,0000010	0.00000
Vater	81610	Sample 2 Dissolved	0.00000054	0,00000100	0.00000048	0.0000010	0.0000010	0.0000010	0.00000
Vater	81611	Sample 3 Dissolved	0.00000042	0.00000100	0.00000052	0.0000010	0.0000010	0.0000010	0.00000
Vater	81606	Sample 1 Total	0.00000068	0.00000100	0.00000120	0.0000010	0.0000010	0.0000010	0.00000
Valer	81607	Sample 2 Total	0.00000071	0.00000100	-0.00000130	0.0000010	0.0000010	0.0000010	0.00000
Vater	81608	Sample 3 Total	0.00000064	0.00000100	0.00000100	0.0000010	0.0000010	VEVUUUU.U	0.00000
		DESCRIPTION	PCB 105	PCB 114	PCB 118	PCB 121	PCB 128	PCB 136	PGB 1
YPE	ID .	Detection Limit (mg/kg)	0.00077	0.00077	0.00077	0.00077	0.00077	0.00077	0.000
			J.00077		.,==				
		Insitu Sediment		* *****	0.00098	0.00077	0,00077	0,00077	0.000
	04717	Campin #1	0.00077	0.00077					******
Sediment	1 81717 1 81718	Sample #1 Sample #2	0,00077 0,00077	0.00077	0.00110	0.00077	0.00077	0.00077	0.000

PCBsfine

		Delaware River Water Analysis (Fine	e-Grained Site)						
SAMPLE TYPE	SAMPLE	DESCRIPTION	PCB 138	PCB 141	PCB 151	PCB 153	PCB 156	PCB 167	PCB
		Detection Limit (mg/l)	0 00000110	0.0000011	0 0000011	0.0000011	0 00000110	0.0000011	0.0000
		Plume Monitoring							
Vater	80983	Background, dissolved	0.00000100	0.0000010	0.0000010	0.0000010	0.00000100	0.0000010	0,0000
Vater	80948	Background, total	0.00000045	0.0000011	0.000011	0.000011	0.00000110	0.0000011	0.0000
Vater	80984	0-10 min, overflow, dissolved	0.00000100	0.0000010	0.0000010	0.0000010	0.00000030	0.0000010	0.0000
Vater	80985	10-20 min, overflow, dissolved	0.00000110	0.0000011	0.0000011	0.0000011	0 00000038	0.0000011	0.0000
Vater	80986	20-30 min, overflow, dissolved	0.00000100	0.0000010	0.0000010	0.0000010	0.00000100	0.0000010	0.0000
Vater	80949	0-10 min, overflow, total	0 00000077	0.0000010	0.0000010	0.0000010	0.00000100	0.0000010	0.0000
Vater Valer	80950 80951	10-20 min, overflow, total 20-30 min, overflow, total	0 00000066	0.0000010 0.0000010	0.0000010	0.0000010	0.00000100	0.0000010	0.0000
		. ,							
Vater	80987	0-10 min, non-overflow, dissolve	0.00000100	0.0000010	0.0000010	0.0000010	0.00000100	0.0000010	0.0000
Vater	80988 80989	10-20 min, non-overflow, dissolve 20-30 min, non-overflow, dissolve	0.00000100	0.0000010	0.0000010	0.0000010	0.00000100	0.0000010	0.0000
Vater Vater	80952	0-10 min, non-overflow, total	0.00000061	0.0000010	0.0000010	0.0000010 0.0000010	0.00000100	0.0000010	0.0000
Vater	80953	10-20 min, non-overflow, total	0.00000057	0.0000010	0.0000010	0.0000010	0.00000100	0.0000010	0.0000
Valer	80954	20-30 min, non-overflow, total	0 00000045	0.0000010	0.0000010	0.0000010	0.00000100	0.0000010	0.0000
		we we will live windsper, added			0,000010	0.0000010	2.00000100	0 ,0000010	0,0000
		Hopper Inflow Monitoring							
Vater	81104	3& 6 mln, dissolved	0.00000100	0.0000010	0,0000010	0.0000010	0.00000100	0.0000010	0.0000
Vater	81105	9&12 min, dissolved	0.00000100	0.0000010	0.0000010	0.0000010	0.00000100	0.0000010	0.0000
Vater	81106	15&18 min, dissolved	0.00000100	0.0000010	0.0000010	0.0000010	0.00000100	0.0000010	0.0000
Vater	81107	21&24 min, dissolved	0.00000100	0.0000010	0.0000010	0.0000010	0.00000100	0.0000010	0.0000
Vater	81198	278-30 min, dissolved	0.00000100	0.0000010	0.0000010	0.0000010	0.00000100	0.0000010	0.0000
Vater Vater	80891 60 892	3& 6 min, total 9&12 min, total	0.00001400	0.0000011	0.0000027	0.0000011	0.00000110	0.0000011	0.0000
Vater	80893	158-18 min, total	0 00003400	0.0000010	0 0000058 0 0000062	0.0000010	0.00000100	0.0000010 Q.0000010	0.0000
Valer	80894	21&24 min, total	0 00002400	0.0000011	0 00000045	0.0000011	0.00000350	0.0000010	0.0000
Vater	80895	27830 min, total	0.00000110	0.000011	0.0000089	0.0000011	0.00000110	0.0000011	0.0000
Vater	81109	Hopper Overflow Monitoring 2& 4 min, dissolved	0.00000100	0.0000010	0.0000010	0.0000010	0.00000400	0.0000045	4 2422
Vater Valer	81110	6& 8 min, dissolved	0.00000100	0.0000010	0.0000010		0.00000100	0.0000010	0.0000
Vater	81111	10&12 min. dissolved	0.00000100	0.0000010	0.0000010	0.0000010	0.00000100	0.0000010 0.0000010	0.0000
Vater	81112	14816 min, dissolved	0.00000100	0.0000010	0.0000010	0.0000010	0.00000100	0.0000010	0.0000
/ater	81113	18&20 min, dissolved	0.00000100	0.0000010	0.0000010	0.0000010	0.00000100	0.0000010	0.00000
Vater	80897	2& 4 min, total	0.00000110	0,0000010	0.0000098	0.0000011	0.00000110	0.0000011	0.00000
Vater	80898	6& 8 min, total	0.00000110	0.0000010	0 0000094	0.0000011	0 00000760	0.0000011	0.00000
Vater	80999	10812 min, total	0.00000110	0.0000010	0 0000120	0.0000011	0.00000790	0.0000011	0.00000
Vater Vater	80900 80901	14&16 min, total 18&20 min, total	0.00000110	0.0000010	0.0000190	0.0000011	0.00001200	0.0000011	0.0000
rater	80901	18820 min, total	0.00000100	0.0000010	0.0000110	0.000010	0.00000790	0.0000010	0.0000
		Site Water							
/ater	81603	Sample 1 Total	0.00000100	0.0000010	0.0000010	0.0000010	0.00000100	0.0000010	0.0000
/ater	81604	Sample 2 Total	0.00000100	0.0000010	0.0000010	0.0000010	0.00000100	0.0000010	0.0000
iater	81605	Sample 3 Total	0.00000100	0.0000010	0.0000010	0.0000010	0.0000100	0.0000010	0.0000
		Flutriate							
/ater	81609	Sample 1 Dissolved	0.00000100	0.0000010	0.0000010	0.0000010	0.00000100	0.0000010	0.0000
/ater	81610	Sample 2 Dissolved	0.00000100	0.0000010	0.0000010	0.0000010	0.00000100	0.0000010	0.0000
/ater	81611	Sample 3 Dissolved	0.00000100	0.0000010	0.0000010	0.0000010	0.00000100	0.0000010	0.00000
/ater	81606	Sample 1 Total	0.00000100	0.0000010	0.0000010	0.0000012	0.00000100	0.0000010	0.00000
later	81607	Sample 2 Total	0.00000100	0.0000010	0.0000010	0.0000012	0.00000100	0.0000010	0.00000
ater	81608	Sample 3 Total	0.00000100	0.0000010	0.000010	0.0000013	0.00000100	0.0000010	0.00000
AMPLE YPE	SAMPLE ID	DESCRIPTION	PCB 138	PCB 141	PCB 151	PCB 153	PCB 156	PCB 157	PCB 1
		Detection Limit (mg/kg)	0 00077	0.00077	0 00077	0 00077	0 00077	0 00077	D.000
		Insitu Sediment							
ediment		Sample #1	0.00077	0.00077	0,00077	0.00150	0.00077	0.00077	0.000
ediment		Sample #2	0.00077	0.00077	0.00077	0.00077	0.00077	0.00077	0.000
ediment		Sample #3	0.00077	0.00077	0.00077	0.00077	0.00077	0.00077	0.000

PCBsfine

				PODSIII	iic				
		Delaware River Water Analysis (Fine-	Grained Site)						
	244575	DESCRIPTION	PCB 171	PCB 180	PCB 182	PCB 183	PCB 185	PCB 187	PCB 18
	ID	DESCRIPTION	POD III	100 100	7 00 102	, 05,00			,
		Detection Limit (mg/l)	0,0000011	0.0000011	0.0000011	0.0000011	0.0000011	0.0000011	0.000001
		Plume Monitoring							
ater ater	80983 80948	Background, dissolved Background, total	0.0000010	0.0000010	0.0000010	0.0000010 0.0000011	0,0000010 0.0000011	0.0000010	0.000001 0.000001
		A same a second second second	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.000001
aler	80984 80985	0-10 min, overflow, dissolved 10-20 min, overflow, dissolved	0.0000011	0.0000011	0.0000010	0.0000011	0.0000011	0.0000011	0.00000
ater ater	80986	20-30 min, overflow, dissolved	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.00000
ater	80949	.0-10 min, overflow, total	0.0000010	0.0000010	0.0000010	0,0000010	0.0000010	0.0000010	0.00000
ater	80950	10-20 min, overflow, total	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.00000
ater	80951	20-30 min, overflow, total	0.0000010	0.0000010	0,0000010	0.0000010	0.0000010	0,0000010	0.00000
ater	80987	0-10 min, non-overflow, dissolve	0,0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.00000
ater	80988	10-20 min, non-overflow, dissolve	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.00000
ater	80989	20-30 min, non-overflow, dissolve	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.000001
ater .	80952	0-10 min, non-overflow, total	0.0000010	0.0000010	0,0000010	0.0000010	0.0000010	0.0000010	0.00000
fater	80953	10-20 min, non-overflow, total	0.0000010	0.0000010	0,0000010	0.0000010	0.0000010	0.0000010	0.00000
ater	80954	20-30 min, non-overflow, total	0.0000010	0.0000010	0,00000,0	0.0000010	0,0000010	0.0000	4,50000
		Hopper Inflow Monitoring							
ater	81104	3& 6 min, dissolved	0,0000010	0.0000010	0.0000010	- 0.0000010	0.0000010	0.0000010	0.00000
ater	81105	9812 min, dissolved	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.00000
fater .	81106	15&18 min, dissolved	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.00000
ater	81107	21824 min, dissolved	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.00000
ater	81108 80891	27&30 min, dissolved 3&, 6 min, total	0.0000012	0.0000011	0.0000011	0.0000029	0.0000046	0.0000092	0.00000
ater ater	80892	98.12 min. total	0.0000034	0.0000011	0.0000010	0.0000068	0.0000010	0.0000210	0.00000
ater	80893	15&18 min, total	0.0000022	0.0000010	0.0000010	0.0000038	0.0000010	0.0000140	0.00000
later	80894	21824 min, total	0.0000011	0.0000280	0.0000011	0.0000011	0.0000011	0.0000011	0.00000
ater	80895	27&30 min, total	0.0000011	0.0000490	0.0000011	0.0000022	0.0000011	0.0000011	0.00000
		Hopper Overflow Monitoring							
/ater	81109	2& 4 min, dissolved	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.00000
later	B1110	6& 8 min, dissolved	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.00000
/ater	81111	10&12 min, dissolved	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.00000
ater	81112	14816 min, dissolved	0.0000010	0.0000010	0.0000010	0.000010	0.0000010	0.0000010	0.00000
/ater	81113	18820 min, dissolved	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.00000
/ater	80897	28, 4 min, total	0.0000011	0.0000590	0.0000011	0.0000011	0.0000011	0.0000011	0.00000
/ater	80898	68. 8 min, total	0.0000011	0.0000011	0.0000011	0.0000011	0.0000011	0.0000011	0.00000
Vater	80899	10812 min, total	0.0000069	0.0000011	0.0000011	0.0000011	0.0000011	0.0000011	0.00000
Vater	80900	148.16 min. total	0.0000011	0.0000011	0,0000011	0.0000011	0.0000010	0.0000011	0,00000
ater	80901	18&20 min, total	0.0000010	0.0000010	0.000010	0.000010	0,000010	0.0000010	4,5000
		Site Water						0.6000040	0.00000
/ater	81603	Sample 1 Total	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.00000
/ater	81604	Sample 2 Total	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.00000
later	81605	Sample 3 Total	9.0000010	0.0000010	0.000010	4.0000010	0.3034310	•	
		Elutriate			0.0000010	0.0000010	0.0000010	0.0000010	0,0000
later	81609	Sample 1 Dissolved	0.0000010	0.0000010	0,0000010	0.0000010	0.0000010	0.0000010	0.00000
later	81610	Sample 2 Dissolved	0.0000010	0.0000010	0,0000010	0,0000010	0,0000010	0.0000010	0.00000
later	81511	Sample 3 Dissolved	0.0000010	0.0000016	0.0000010	0.0000010	0.0000010	0.0000010	0.00000
/ater /ater	81606 81607	Sample 1 Total Sample 2 Total	0.0000010	0.0000018	0.0000010	0.0000010	0.0000010	0.0000010	0.00000
rater Inter	81608	Sample 3 Total	0.0000010	0.0000016	0.0000010	0.0000010	0.0000010	0.000010	0.0000
AMPLE YPE	SAMPLE	DESCRIPTION	PCB 171	PCB 180	PCB 182	PCB 183	PCB 185	PCB 187	PCB 1
- / ***		Detection Limit (mg/kg)	0.00077	0.00077	0.00077	0.00077	0.00077	0.00077	0.00
		Insitu Sediment							
		Sample #1	0.00077	0.00150	0.00077	0.00077	0.00077	0.00077	0.00
Sediment	81717	Sample # I							
Sediment Sediment		Sample #2	0.00077 0.00077	0.00140 0.00160	0.00077	0.00077	0.00077	0.00077 0.00100	0,000

BOLD - less than values Values below less than values are estimated results. Results are less than the reporting limit.

n 4 4 4 m		DECOMPTION	CONTRACT	*****	grants see				
TYPE	ID SAMPLE	DESCRIPTION	PCB 191	PCB 194	PCB 195	PCB 196	PCB 201	PCB 203	PCB :
		Detection Limit (mg/l)	0.0000011	0 0000011	0 0000011	0.0000011	0.0000011	0.0000011	0.00000
Vater	80983	Plume Monitoring Background, dissolved	0.0000010	0.0000010	0,0000010	0.0000010			
Vater	80948	Background, total	0.0000011	0.0000011	0.000011	0.000011	0.0000010 0.0000011	0.0000010 0.0000011	0,0000
/ater	80984	0-10 min, overflow, dissolved	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.000010	8,0000
/ater	80985	10-20 min, overflow, dissolved	0.0000011	0.000011	0.0000011	0.0000011	0.0000011	0.0000011	0.0000
/ater	80986 8094 9	20-30 min, overflow, disantved	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000
later later	80950	0-10 min, overflow, total 10-20 min, overflow, total	0.0000010	0.0000010	0.0000010	0,0000010	0.0000010	0.0000010	0.0000
ater	80951	20-30 min, overflow, total	0.0000010	0.000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000
ater	80987	0-10 min, non-overflow, dissolve	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000
ater	80988	10-20 min non-overflow, dissolve	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000
later	80989	20-30 min, non-overflow, dissolve	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000
/ater	80952	0-10 min, non-overflow, total	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000
inter	80953	10-20 min, non-overflow, total	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000
/ater	80954	20-30 min, non-overflow, total	0,0000010	0.0000010	0.000010	0.0000010	0.0000010	0.0000010	0,0000
		Hopper Inflow Monitoring							
/ater	81104	38 6 min dissolved	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000
iater	81105	9&12 min, dissolved	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000
/ater	81106	15&18 min, dissolved	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000
/ater	81107	21824 min, dissolved	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000
/ater	81108	27830 min dissolved	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000
/ater /ater	80891 80892	3& 6 min, total 9&12 min, total	0.0000011	0.0000011	0 0000090 0 0000026	0.0000065	0.0000011	0.0000011	0.0000
later	80893	15&18 min total	0.0000010	0.0000010	0.0000026	0 00000039	0.0000010	0.0000010	0.0000
/ater	80894	218.24 min, total	0.0000011	0.0000011	0.0000011	0 0000036	0.0000011	0.0000011	0.0000
Vater	80895	27&30 min, total	0.0000011	0.0000011	0.0000011	0 0000000	0.0000011	0.0000011	0,0000
		Hopper Overflow Monitoring							
Valer	81109	2& 4 min, dissolved	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000
Vater	81110	68. 8 min, dissolved	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000
Vater	81111	10&12 min_dissolved	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000
/ater	81112	14816 min, dissolved	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000
vater	81113	18&20 min, dissolved	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000
Vater	80897	28 4 min, total	0.0000011	0.0000011	0.0000041	0 0000110	0.0000011	0.0000011	0.0000
Vater	80898 80899	6& 8 min, total 10&12 min, total	0.0000011	0.0000011	0.0000081	0.0000067	0.0000011	0.0000011	0.0000
Vater Vater	80900	14&16 mm. total	0.0000011	0.0000011	0.0000110	0.0000100 0.0000190	0.0000011	0.0000011	0.0000
later	80901	18&20 min total	0.0000010	0.0000010	0.0000150	0 0000097	0.0000010	0.0000010	0.0000
		A. W.L.							
later	B1603	Site Water Sample 1 Total	0.0000010	8.0000010	0.0000010	0.0000010	9.0000010	0.0000010	0.0000
Vater	81604	Sample 2 Total	0.0000010	8.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000
/ater	81605	Sample 3 Total	0.0000010	9.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0,0000
		Elutriate							
later	81609	Sample 1 Elisaolved	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000
/ater	81610	Sample 2 Dissotved	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000
/ater	81611	Sample 3 Dissolved	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000
/ater	81606	Sample 1 Total	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0,0000
later	81607	Sample 2 Total	0.0000010	0,0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000
ater	81608	Sample 3 Total	0.000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000
MPLE PE	SAMPLE	DESCRIPTION	PCB 191	PCB 194	PCB 195	PCB 196	PCB 201	PCB 203	PCB
		Detection Limit (mg/kg)	0 00077	0 00077	0.00077	0 00077	0 00077	0.00077	0.00
		insitu Sediment							
ediment	81717	Sample #1	0.00077	0.00077	0.00077	0.00077	0.00077	0.00077	0.00
diment	81718	Sample #2	0.00077	0.00077	0.00077	0 00033	0.00077	0.00082	0.00
does and	81719	Sample #3	0.00077	0.00077	0.00077	0.00075	0.00077	0.00084	0.00

PCBsfine

Delaware Kiver	AASIR	Allalysis	(Line-mainen	Site

	SAMPLE ID	DESCRIPTION	PCB 206	PCB 207	PCB 208	PCB 209	PCB 66	PCB 190	PCB 19
		Detection Limit (mg/l)	0.0000011	0.00000110	0.00000110		0.0000011	0.0000011	0.000001
		Plume Monitoring							
/ater	80983	Background, dissolved	0.0000625	0.00000095	0.00000130	106.45%	0.0000010	0.0000010	0.000001
/ater	80948	Background, total	0.0000017	0.00000110	0.00000081	74.06%	0.0000011	0.0000011	0.000001
Inhar	80984	0-10 min, overflow, dissolved	0.0000024	0.00000090	0.00000150	92.43%	0.0000010	0.0000010	0.000001
	80985	10-20 min overflow, dissolved	0.0000027	0.00000110	0.00000170	100.50%	0.0000011	0.0000011	0.000001
	80986	20-30 min, overflow, dissolved	0.0000026	0.00000110	0.00000140	99.77%	0.0000010	0.0000010	0.00000
	80949	0-10 min, overflow, total	0.0000020	0.00000100	0.00000092	64.53%	0.0000010	0.0000010	0.00000
	80950	10-20 min, overflow, total	0.0000020	0.00000100	0 00000085	75.26%	0.0008010	0.0000010	0.00000
	80951	20-30 min, overflow, total	0.0000020	0.00000100	0.00000089	81.36%	0,0000010	0.0000010	0,00000
/ater	80987	0-10 min, non-overflow, dissolve	0.0000026	0.00000095	0.00000140	101.88%	0.0000010	0.0000010	0.00000
	80988	10-20 min, non-overflow, dissolve	0.0000025	0.00000074	0.00000130	104.87%	0.0000010	0.0000010	0.00000
	80989	20-30 min, non-overflow, dissolve	0.0000024	0.00000071	0.00000120	112.74%	0.0000010	0.0000010	0.00000
	80952.	0.10 min, non-overflow, total	0.0000016	0.00000100	0.00000074	80.06%	0.0000010	0.0000010	0.00000
	60953	19-20 min, non-overflow, total	0.0000017	0.00000100	0.00000075	88.73%	0.0000010	0.0000010	0.00000
/ater	80954	20-30 min, non-overflow, total	0.0000017	0.00000100	0.00000083	87,12%	0.0000010	0.0000010	0.00000
		Lianuas in Burg Marian							
Voter	81104	Hopper Inflow Monitoring	0.0000016	0.00000049	0.00000077	90.09%	0.0000010	0.0000010	0.00000
	81105	3& 6 min, dissolved 9&12 min, dissolved	0.0000018	0.00000049	0.000000077	86.49%	0,0000010	0.0000010	0.00000
	81105	15&18 min, dissolved	0.0000019	0.000000040	0.00000150	87.34%	0.0000010	0.0000010	0.00000
	81107	21&24 min. dissolved	0.0000021	0.00000065	0.00000100	94.48%	0.0000010	0,0000010	0.00000
Vater	81108	27830 min, dissolved	0.0000017	0.00000054	0.00000094	72.89%	0.0000010	0.0000010	0.00000
Vater	80891	3& 6 min, total	0.0000410	0.00000280	0.00001700	97.66%	0.0000011	0.0000011	0.00000
Vater	80892	9&12 min, total	0.0000900	0.00000530	0.00004100	58.62%	0.0000010	0.0000010	0.00000
Vater	80893	15&18 min, total	0.0000580	0.00000650	0.00002500	108.63%	0.0000010	0.0000010	0.00000
Vater	80894	21&24 min, total	0.0000460	0.00000190	0.00001900	108.06%	0.0000011	0,0000011	0.00000
Vater	80895	27&30 min, total	0.0000920	0.00000620	0.00004000	124.79%	0.000011	0.000011	0.0000
		Hopper Overflow Moratoring							
Vater	81109	28 4 min, dissolved	0.0000019	0.00000037	0.00000051	81.94%	0.0000010	0.0000010	0.00000
Vater	81110	6& 8 min, dissolved	0.0000016	0.00000100	0.00000061	78.71%	0.0000010	0.0000010	0.00000
Vater	81111	10&12 min, dissolved	0.0000017	0.00000100	0,00000084	88.72%	0.0000010	0.0000010	0.00000
Vater	81112	14&16 min, dissolved	0.0000018	0.00000043	0.00000086	83.24%	0.0000010	0.0000010	0.00000
Vater	81113	18&20 min, dissolved	0.0000016	0.00000043	0.00000077	80.18% 220.34%	0,0000010	0.0000010	0.00000
Vater	80897	28, 4 min, total	0.0001700	0.00000960	0.00007400	213.26%	0.0000011	0.0000011	0.00000
Vater	80898	6& 8 min, total	0.0001200	0.00000860	0.00005200	175:12%	0.0000011	0.0000011	0.00000
Vater Vater	80899 80900	108/12 min, total 148/16 min, total	0.0001200	0.00001000	0.00005800	216.74%	0.0000011	0.0000011	0.00000
Vater	80901	18&20 min, total	0.0001200	0.00000840	0.00005900	186.63%	0.0000010	0.0000010	0.00000
Nater	81603	Site Water Sample 1 Total	0.0000028	0.00000062	0.00000110	101.92%	0,0000010	0.0000010	0.00000
vater Vater	81603	Sample 2 Total	0.0000024	0.00000000	0.00000100	90.51%	0.0000010	0.0000010	0.00000
Vater	81605	Sample 3 Total	0.0000022	0.00000100	0.00000092	90.22%	0.0000010	0.0000010	0.00000
		-							
AZ-ah-a	81609	Elutriate Sample 1 Dissolved	0,0000018	0.00000027	0.00000058	86.71%	0.0000010	0.0000010	0.00000
Vater Vater	81610	Sample 2 Dissolved	0.0000021	0.00000029	0.00000085	96.44%	0.0000010	0.0000010	0.00000
Vater Vater	81611	Sample 3 Dissolved	0.0000021	0.00000054	0.00000078	101.29%	0.0000010	0.0000010	0.00000
Vater	81606	Sample 1 Total	0.0000052	0.00000059	0.00000270	91 62%	0.0000010	0.0000010	0.00000
Valer	81607	Sample 2 Total	0.0000051	0.00000100	0.00000270	90.35%	0.0000010	0.0000010	0.00000
Vater	81608	Sample 3 Total	0.0000052	0.00000068	0.00000280	88.68%	0.0000010	0,0000010	0.00000
		DESCRIPTION	PCB 206	PCB 207	PCB 206	PCB 209	PCB 66	PCB 190	PCB 1
YPE	ID		n -4-WF	2 4447**	0.00077		0.00077	0.00077	0.000
		Detection Limit (mg/kg)	0.00077	0.00077	0.00077		0.00077	0.00011	0,000
		Insitu Sediment		0.00048	0.00220	106.21%	0.00077	0.00077	0.00
Sediment Sediment		Sample #1 Sample #2	0.00390	0.00077	0.00210	105.19%	0.00077	0.00077	0,000

				PCBafing	
				robsine	
		Delaware River Water Analysis (Fine	-Grained Site)		
SAMPLE	SAMPLE	DESCRIPTION	PCB 200		
		Detection Limit (mg/l)	0 0000011		
		Plume Monitoring			
Water Water	80983 80948	Background, dissolved Beckground, total	0.0000010 0.0000011		
Water	80984	0-10 min, overflow, dissolved	0.0000010		
Water	80985	10-20 min overflow, dissolved	0.0000011		
Water Water	80986 80949	20-30 min, overflow, dissolved 0-10 min, overflow, total	0.0000010		
Water	80950	10-20 min, overflow, total	0.0000010		
Water	80951	20-30 min, overflow, total	0.0000010		
Water	80987	0-10 min, non-overflow, dissolve	0.0000010		
Water	80988	10-20 min, non-overflow, dissolve	0.0000010		
Water	80989	20-30 min, non-overflow, dissolve	0.0000010		
Water Water	80952 80953	0-10 min, non-overflow, total 10-20 min, non-overflow, total	0.0000010 0.0000010		
Water	80954	20 30 min, non-overflow, total	0.0000010		
1414444	81104	Hopper Inflow Monitoring	0.0000010		
Water Water	81105	3& 6 min, dissolved 9&12 min, dissolved	0.0000010		
Water	81106	15&18 min, dissolved	0.0000010		
Water	81107	21&24 min, dissolved	0.0000010		
Water Water	81108 80891	27&30 min, dissolved 3& 6 min, total	0.0000010 0.0000015		
Water	80892	9&12 min, total	0.0000013		
Water	80893	15816 min. total	0 0000020		
Water	80894	21824 min, total	0.0000019		
Water	80895	27&30 min, total	0.0000011		
		Happer Overflow Monitoring			
Water	81109	28. 4 min, dissolved	0.0000010		
Water	81110	6& 8 min, dissolved	0.0000010		
Water Water	81111 81112	10812 min, dissolved 14816 min, dissolved	0.0000010 0.0000010		
Water	81113	18&20 min dissolved	0.0000010		
Water	80897	28 4 min, total	0.0000011		
Water	80898	6& 8 min, total	0 0000033		
Water Water	80899 80900	10&12 min, total 14&16 min, total	0.0000064 0.0000011		
Water	80901	18&20 min, total	0.0000010		
Water	81603	Site Water Sample 1 Total	0.0000010		
Water	81604	Sample 2 Total	0.0000010		
Water	81605	Sample 3 Total	0.0000010		
		Chitrata			
Water	81609	Elutriate Sample 1 Dissolved	0.0000010		
Water	81610	Sample 2 Dissolved	0.0000010		
Water	81G11	Sample 3 Dissolved	0.0000010		
Water Water	81606 81607	Sample 1 Total Sample 2 Total	0.0000010		
Water	81608	Sample 3 Total	0.0000010		
SAMPLE TYPE	SAMPLE ID	DESCRIPTION	PCB 200		
	-	Detection Limit (mg/kg)	0.00077		
			,		
Sediment	81717	Insitu Sediment Sample #1	0.00077		
Sediment		Sample #2	0.00077		

		ħ	4	5710	NOF 5560 5740 5480	OF 4310 4200 3862	30767 84490 127760 37940 151910				126670 167800			T5 4744 4328 4386	4228 4370 4472 4734 4582 4696
			Det Limit	Plume Monitoring Background	Piume Monitoring NOF Sample 1 5560 Sample 2 5740 Sample 3 5690	Piame Monitoring Sample 1 Sample 2 Sample 3	Hopper Inflow Sample 1 Sample 2 Sample 3 Sample 4 Sample 6			Hopper Overflow Sample 1	Sample 3			Site Water Sample 1 T Sample 2 T Sample 3 T	Elutriate Sample 1 D Sample 2 D Sample 3 D Sample 1 T Sample 2 T Sample 3 T
					30 min 32 32 53 53 53 53 53 53 53 53 53 53 53 53 53 5	30 min 61 86 326	30 min 47967			5,0 min 92800	10.0 min 29233	15.0 min 145333	20.0 min 79167		
					25 min 21 30 53	25 min 57 83 267	27 min 82903			4.5 min 72400	9 5 min 50867	14.5 min 41967	19 5 min 128633		
					20 min 27 37 82	20 mls 83 162 247	24 min 28607			4.0 min 102800	9.0 min 29233	14.0 min 89033	19.0 min 123700		
					15 min 26 31 57	15 mln 147 118 186	21 min 7290			3.5 min 110300	8 5 min 44200	13.5 min 27767	18.5 min 159133		
					12 min 23 41	12 min 280 138 275	18 m in 27930			3.0 min 105900	8.0 min 97187	13.0 min 62400	18.0 min 108500		
tastine				50 min 47 50 80	ee 88 57 58	90 190 190 190	15 min 43953			2.5 min 57537	7.5 min 56739	12.5 min 78100	17.5 min 79833		
				40 min 30 45 144	7 min 83 47	7 min 204 288 388	12 min 27757			2.0 min 75333	7.0 min 40233	12.0 min 63700	17.0 min 136467		
				88 88 88	5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00	5 min 55 155 335	9 min 3140	Location 3 69733 102433 119000	Location 3 29067 83267 136033	1,5 min 95367	6.5 min 66533	11.5 min 15700	16.5 min 137167		
				20 min 152 91 35	% mån 35 88 105	3 min 314 376	8 min 12880	Location 2 L 85267 55900 145200	Location 2 L 81233 52033 121533	1.0 min 41733	6.0 min 93833	11.3 min 59000	16.9 min 48267		
	d Site)	135	च	10 min 39 48 110	1 min 41 54 136	1 min 102 118 208	3 min 1760	Location 1 L 93367 33233 127167	Location 1 L 71067 108533 60467	0.5 min 64260	5.5 min 117967	10.5 min 48200	15.5 min 52100	TSS 58	8 12 11 304 282 282
	Delaware River Water Analysis (Fine-Grained St	DESCRIPTION	Detection Limit (mgA)	Plune Mondoring Background TSS Top Depth TSS Mid-Depth TSS Bottom Depth	Plume Monitoring Non-Overtrow TSS Top Dopth TSS Mis-Depth TSS Eatom Depth	Pluine Monitoing Overflow TSS Top Depth TSS Mid-Depth TSS Eattom Depth	Hopper Inflow TSS (mg/l)	Happer Contents Beginning of Overflow TSS Top Death TSS Mid-Death TSS Battom Death	Hopper Contains End of Overflow TSS Top Depth TSS Mid-Depth TSS Battom Depth	Hopper Overflow TSS (mg/l)	Happer Overflaw TSS (mg/l)	Happer Overflow TSS (mg/l)	Hopper Overflow TSS (mg/l)	Site Water Sample 170ab Sample 2 Toat Sample 3 Toat	Elutriario Sample o Dissolved Sample 2 Dissolved Sample 10 Dissolved Sample 17 chall Sample 2 Total
		SAMPLE SAMPLE TYPE ID		81224 81225 81226	81269 81270 81271	81239 81240 81241	81324	81352 81353 81354	81361 81362 81363	81044	81054	81064	81074	81675 81676 81677	81681 81683 81678 81678 81678
		SAMPLE		Water Water Water	Water Water Water	Water Water Water	Water	Water Water Water	Water Water Water	Water	Water	Wster	Water	Water Water Water	Water Water Water Water Water

nutrfine

Delaware River Water Analysis	(Fine-Grained Site)
-------------------------------	---------------------

SAMPLE	SAMPLE	DESCRIPTION	TOC
TYPE	10		
		Detection Limit (mg/l)	3 00
Water	80969	Plume Monitoring Background, dissolved	6 12
Water	80927	Background, total	730
*******		and grant and	7 00
Water	80970	0-10 min, averflow, dissolved	3 07
Water	00971	10-20 min, overflow, dissolved	2.91
Water Water	80972 80928	20-30 min, overflow, dissolved	2.74
Water	80928	0-10 min, overflow, total 10-20 min, overflow, total	10 70 11.30
Water	80930	20-30 min, overflow, total	8.09
Water	80973	0-10 min, non-overflow, dissolved	4 68
Water	80974	10-20 min, non-overflow, dissolved	6.35
Water	80075	20-30 min, non-overflow, dissolved	5 19
Water Water	80931 80932	0-10 min, non-overflow, total 10-20 min, non-overflow, total	6.92 7.44
Water	80933	20-30 min, non-overflow, total	8.69
712101	00755	go-55 mm, non-overnow, total	0.03
		Hopper Inflaw Monitoring	
Water	81084	3& 6 min, dissolved	24 80
Water Water	81085 81086	9&12 min, dissolved	47 30 64 60
Water	81087	15818 min, dissolved 21824 min, dissolved	19.00
Water	81088	27&30 min, dissolved	63.00
Water	80855	3& 6 min, total	1010.00
Water	80856	9&12 min, total	3300 00
Water	80857	15&18 min, total	6030 00
Water	80858	21824 min, total	1170 00
Water	80859	27830 min, total	6460 00
		Hopper Overflow Monitoring	
Water	81089	28. 4 min, dissolved	14 10
Water	81090	6& 8 min, dissolved	11 90
Water	81091	10812 min, dissolved	72 30
Water Water	81092 81093	14816 min, dissolved 18820 min, dissolved	79 20 21 40
Water	80861	28. 4 min, total	6860.00
Water	80862	68 8 min, total	5930 00
Water	80863	10&12 min, total	5280 00
Water	80864	14816 min, total	6800 00
Water	80865	18&20 min, total	7150 00
		Site Water	
Water	81693	Sample 1 Total	3.00
Water	81694	Sample 2 Total	3.00
Water	B 1695	Sample 3 Total	3,00
		Elutrate	
Water	81699	Sample 1 Dissolved	3.00
Water	81700	Sample 2 Dissolved	3.00
Water	81701	Sample 3 Dissolved	3.00
Water Water	81696 81697	Sample 1 Total Sample 2 Total	1.48 1.43
Water	81698	Sample 3 Total	1.43
4.4 G/C1	Q1000	dample o rotal	197
SAMPLE	SAMPLE	DESCRIPTION	TOC
TYPE	ID		
		Detection Limit (mg/kg)	36
		Processes rune (mbyd)	30
		Insitu Sediment	
Sediment		Sample #1	8090 0
Sediment		Sample #2	7200 0
Sediment	81725	Sample #3	7520.0

BOLD - less than values. Values below less than values are estimated results. Results are less than the reporting limit.

spgrfine

Delaware River Water Analysis (Fine-Grained Site)

SAMPLE TYPE	SAMPLE ID	DESCRIPTION		Sp. Gr.	%Moisture
		Insitu Sediment			
Sediment	81299	Sample #1		2.73	191.58%
Sediment	81300	Sample #2		2.75	254.93%
Sediment	81301	Sample #3		2.76	203.04%
Sediment	81302	Sample #4		2.74	181.93%
Sediment	81303	Sample #5		2.75	166.58%
Sediment	81304	Sample #6		2.72	117.93%
Sediment	81305	Sample #7		2.71	164.93%
Sediment	81306	Sample #8		2.72	108.57%
Sediment	81307	Sample #9		2.71	94.57%
Sediment	81308	Sample #10		2.73	103.87%
Sediment	81309	Sample #11		2.73	102.13%
Sediment	81310	Sample #12		2.73	130.69%
Sediment	81311	Sample #13		2.71	172.19%
Sediment	81312	Sample #14		2.72	156.47%
Sediment	81313	Sample #15		2.73	79.16%
		A	verage	2.73	148.57%

Page 1

Appendix B Plume Study Field Activities and Data Results

Preface

This section of the report describes field activities and data results from the relative acoustic backscatter channel cross sections with the OBS overlay. The investigators who participated in this part of the project were Messrs. Timothy L. Fagerburg, Howard A. Benson, and Terry N. Waller, U.S. Army Engineer Research and Development Center (ERDC), Coastal and Hydraulics Laboratory (CHL), Vicksburg, MS, and William H. Dulaney, ERDC, Geotechnical and Structures Laboratory (GSL).

This section of the report was written by Messrs. Benson and Fagerburg, with assistance in data processing from Messrs. Waller, Martin T. Hebler, Mses. Clara J. Coleman and Jane M. Vaughan, CHL, and Mr. Daryl P. Cook, DIMCO, Inc., Vicksburg, MS.

Field Procedure

Two test areas were selected for monitoring. Reach 1, was a coarse-grained material site located near the Brandywine Range, in lower Delaware Bay. Reach 2, was a fine-grained material site located at the Deepwater Point Range near New Castle, DE (Figure B1). Channel cross-sectional transects were conducted with the 1,200-kHz Broad-Band Acoustic Doppler Current Profiler (ADCP) and Optical Backscatterance (OBS) sensor at several predetermined transect lines in the test areas for nonoverflow and overflow dredge operations. Several transects were monitored prior to the dredge passing to establish background conditions. The dredge would then begin dredging operations and the transect boat would run continuous transects behind it to determine the extent and dispersion of the plume. The first set of transects at each test area was made during the hopper dredge's being filled with no overflow. The dredge would then proceed to the dumping area, empty the load, and return to the site for the second test.

Figure B1. Delaware plume monitoring location map

Prior to the second test, data would be collected at several transect lines again to reestablish background conditions. The second dredging operation would include several minutes of hopper overflow while dredging. Again, the transect boat would run continuous transects behind it to determine the extent and dispersion of the plume.

Monitoring the sediment plume was accomplished using a boat-mounted RD Instruments 1200-kHz Broad-Band ADCP. The instrument collects velocity vectors in the water column together with backscatter levels to determine the position and relative intensity of the sediment plume. A detailed description of the ADCP is presented in the Equipment Description section.

Along with the ADCP, a MicroLite recording instrument with an OBS Sensor was towed by the vessel at a depth of 4.6 m (15 ft). The MicroLite recorded data at 0.5-sec intervals. A detailed description of the MicroLite is also presented in the Equipment Description section.

Navigation data for monitoring was obtained by a Starlink differential Global Positioning System (GPS). The GPS monitors the boat position from the starting and ending points along each transect. The manufacturer stated accuracy of the navigation system is ± 1 m. The navigation data were recorded at 1-sec intervals for merging with the ADCP and OBS data.

In situ sediment samples were collected prior to the dredging tests at both sites. Bottom samples were collected using a grab-type sampling bucket detailed in the Equipment Description section. Water samples for pore-water and toxicity tests were obtained using a portable pump sampler also described in the Equipment Description section. Types of samples, and the tests and analyses of the samples, are reported elsewhere in the report.

Dredge Plume Monitoring

The data presented in Figures B2 through B15 represent a time-history of the changes in suspended material levels in the water column resulting from dredge operations within each test area. The relative backscatter intensity of the ADCP acoustic signal is described as the strength of the return acoustic signal as it is affected by material suspended in the water column. Changes in levels of suspended material affect the acoustic reflectivity properties of the water column and, in turn, have an effect on the strength of the return signal intensity (decibels). High levels of suspended material in the water column result in high levels of acoustic intensity. The ADCP acoustic intensity data were utilized to identify levels of suspended material in the water column before, during, and following dredging operations.

As stated previously, transects were monitored in each test area to obtain the background levels of suspended materials prior to any dredging activities. The background levels shown in Figures B2 and B5 and in B9 and B12 are for the two test areas, Brandywine Range (Reach 1) and Deepwater Point Range (Reach 2), respectively.

Figures B2 through B4 illustrate the residence time of the sediment plume resulting from nonoverflow dredging operation in the Reach 1. The background levels are shown in Figure B2. Figure B3 shows the vertical

Figure B2. Relative acoustic intensity and OBS readings, Line 3, 1509 EST, Brandywine Range - Reach 1, 09/15/98

Figure B3. Relative acoustic intensity and OBS readings, Line 305, 1633 EST, Brandywine Range - Reach 1, 09/15/98

Figure B4. Relative acoustic intensity and OBS readings, Line 303, 1641 EST, Brandywine Range - Reach 1, 09/15/98

Figure B5. Relative acoustic intensity and OBS readings, Line 113, 1938 EST, Brandywine Range - Reach 1, 09/15/98

Figure B6. Relative acoustic intensity and OBS readings, Line 217, 1953 EST, Brandywine Range - Reach 1, 09/15/98

Figure B7. Relative acoustic intensity and OBS readings, Line 119, 1957 EST, Brandywine Range - Reach 1, 09/15/98

Figure B8. Relative acoustic intensity and OBS readings, Line 115, 2050 EST, Brandywine Range - Reach 1, 09/15/98

Figure B9. Relative acoustic intensity and OBS readings, Line 18, 1404 EST, Deepwater Point Range - Reach 2, 09/16/98

Figure B10. Relative acoustic intensity and OBS readings, Line 118, 1459 EST, Deepwater Point Range - Reach 2, 09/16/98

Figure B11. Relative acoustic intensity and OBS readings, Line 224, 1518 EST, Deepwater Point Range - Reach 2, 09/16/98

Figure B12. Relative acoustic intensity and OBS readings, Line 14, 1730 EST, Deepwater Point Range - Reach 2, 09/16/98

Figure B13. Relative acoustic intensity and OBS readings, Line 9, 1818 EST, Deepwater Point Range - Reach 2, 09/16/98

Figure B14. Relative acoustic intensity and OBS readings, Line 15, 1832 EST, Deepwater Point Range - Reach 2, 09/16/98

Figure B15. Relative acoustic intensity and OBS readings, Line 324, 2020 EST, Deepwater Point Range - Reach 2, 09/16/98

and horizontal dimensions of the sediment plume immediately behind the dredge. Figure B4 shows the level of suspended material in the water column 8 min following the dredge's passing, indicating that background levels of suspended material are returning to the site. No lateral dispersion of the plume out of channel was observed during the nonoverflow dredging operation.

Figures B5 through B8 illustrate the residence time of the sediment plume created with hopper-overflow conditions during dredging operations in Reach 1. Background levels of suspended materials prior to the dredging operations are shown in Figure B5. The vertical and horizontal dimensions of the sediment plume immediately behind the dredge while hopper over-flow conditions are occurring are shown in Figure B6. Plume dimensions 4 min after the dredge passed are shown in Figure B7. A wider transect was performed, as seen in the horizontal distance scale, to determine the lateral extent of the plume. No significant change above background levels could be detected. At 1 hr elapsed time following the end of the overflow dredging operation, the levels of suspended material had returned to background conditions as shown in Figure B8. Again, no lateral dispersion of the plume out of the channel area was observed.

Figures B9 through B11 illustrate the residence time of the sediment plume created from nonoverflow conditions during dredging operations in the Reach 2 area. At the beginning of the dredging operations, background suspended material levels are shown in Figure B9. The plume dimensions in the lateral and vertical directions immediately behind the dredge at the start of dredging operations are shown in Figure B10. After an elapsed time of 19 min (Figure B11), following the end of dredging operations, the levels of suspended material had returned to background conditions. During this dredging operation, the tidal flow in the dredging area had reversed from flood flow to ebb flow conditions. This accounts for the relative change in background levels seen between Figure B9 and Figure B11. Despite the changes in background levels resulting from the change in direction of flow in the dredging area, no lateral movement of the plume beyond the channel limits was observed.

Figures B12 through B15 illustrate the residence time of the dredge plume resulting from hopper overflow dredging conditions in the Reach 2 area. Background levels prior to dredging operations are shown in Figure B12. The sediment plume dimensions immediately behind the dredge prior to overflow conditions can be seen in Figure B13. Note the increase in the suspended material levels within the first 400 ft of the transect. The increase in these levels can be attributed to the increase in the ebb flow velocities and the resulting disturbance of bottom materials from near bottom velocities and not dredge plume dispersion. When hopper-overflow conditions began, another transect was performed located immediately behind the dredge as shown in Figure B14. The width of the transect was also increased, as indicated in the length of the horizontal distance scale, to observe the lateral extent of the dispersion of the dredge plume. After an elapsed time of 1 hr following the completion of the overflow dredging

operation, Figure B15 indicates that the levels of suspended materials had returned to background conditions. Note the increase in sediment disturbance near the bottom in the shallow portions of the transect which are due to the increase in the velocities during the ebb cycle of the tide. As in the previous dredge operations, no lateral dispersion of the dredge plume beyond the channel limits was observed.

The OBS data shown in Figures B2 through B15 were used to see if there is a correlation between the relative acoustic backscatter from the ADCP with different levels of turbidity for the OBS sensor. The figures indicate a fairly good correlation as increases in the ADCP relative acoustic intensities correspond to similar increases in the turbidity levels from the OBS sensor. Since the OBS sensor was deployed at a fixed depth, relative changes in turbidity throughout the water column were not measured.

Equipment Description

Figure B16. Acoustic Doppler Current Profiler

Figure B17. Vessel-mounted ADCP

Acoustic Doppler Current Profiler (ADCP)

Acoustic techniques are used to obtain current velocity and direction measurements for fast and accurate profiling in the field. The equipment used was a boat-mounted RD Instruments BroadBand Acoustic Doppler Current Profiler (ADCP) as shown in Figure B16. The RD instruments operating frequency was 1,200 kHz. The equipment can be mounted over the side of boat with the acoustic transducers submerged and data is collected while the vessel is underarey as shown in Figure B17.

The ADCP transmits sound bursts into the water column which are scattered back to the instrument by particulate matter suspended in the flowing water. The ADCP sensors listen for the returning signal and assigns depths and velocity to the received signal based on the change in the frequency caused by the moving particles. This change in frequency is referred to as a Doppler shift.

The ADCP is also capable of measuring vessel direction, current direction, water temperature, and bottom depth. Communication with the instrument for setup and data recording are performed with a portable computer using manufacturer supplied software, hardware, and communication cables. The manufacturer stated accuracies for current speed measurement ± 0.2 cm/sec; for vessel direction, ± 2 deg; and for temperature, ± 5 °F.

OBS Sensors

The OBS sensor, a product of D&A Instruments and Engineering, is a type of nephelometer for measuring turbidity and solids concentrations by detecting scattered infrared light from suspended matter. It consists of a high-intensity infrared emitting diode (IRED), a series of silicon photodiodes as detector and linear solid state temperature transducer. The IRED emits a beam at angles 50 deg in the axial plane and 30 deg in the radial plane to detect suspended particles by sensing the radiation they scatter, as shown in Figure B18. Scattering by particles is a strong function of the angle between the path of radiation from the sensor through the water and the signal return to the detector. OBS sensors detect only radiation scattered at angles greater than 140 deg. As with other optical turbidity sensors, the response of the OBS sensor depends on the size distribution, composition, and shape of particles suspended in the medium being monitored. For this reason, sensors must be calibrated with suspended solids from the waters being monitored. The OBS sensor is interfaced with Coastal Leasing, Inc., MicroLite solid-state microprocessor that controls samples, averaging, and data storage. The MicroLite uses Wizard portable PC software to provide user-friendly control of the instrument.

Figure B18. OBS sensor beam pattern

Tethered-drag sampler

The Tethered-drag sampler is basically a 76-mm- (3-in.-) diam pipe cut on a 45-deg angle with a shackle mounted on one side. The sampler is

thrown over the side and dragged along the bottom. The sample accumulates inside the pipe. Samples are removed, inspected, and packaged in plastic bags or jars for further analysis once returned to ERDC. The Tethered-drag sampler is displayed in Figure B19.

Figure B19. Tethered-drag sampler

Pumped water samples

Water samples are obtained by pumping the sample from the desired depth to the surface collection point via a portable sampling pump. The pumping system consists of a 6-mm- (1/4-in.-) ID plastic tubing attached to a weighted "fish" for support. The weight is lowered by cable from a winch with a depth indicator. The opening of the sampling tubing is attached to a solid suspension bar above the weight and is pointed into the flow. A 12-V DC pump is used to move the water through the tubing to the deck of the boat where each sample is then collected in appropriate glass or plastic containers. The pump and tubing are flushed for approximately 1 min at each depth before collecting the sample.

Appendix C Detection of Short-Term Sedimentation During Hopper Dredging Operations in Delaware Bay and the Delaware River¹

US Army Corps of Engineers

Waterways Experiment Station Vicksburg, MS 39180

February 1999

Detection of Short-Term Sedimentation During Hopper Dredging Operations in Delaware Bay and the Delaware River

by Robert J. Diaz R. J. Diaz and Daughters P. O. Box 114 Ware Neck, Virginia 23178

and

Douglas G. Clarke Coastel Ecology Branch U.S. Army Engineer Waterways Experiment Station

Adapted from unpublished draft report, Robert J. Diaz and Douglas G. Clarke, February 1999, R. J. Diaz and Daughters, Ware Neck, VA, and Coastal Ecology Branch, U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS

Introduction

Navigation channel maintenance dredging projects employing hopper dredges can produce substantial water-column turbidity when in situ sediments contain a high proportion of fines and overflow practices are used. Most of the sediment resuspended during overflow operations has been shown to settle within several hundred meters of the channel (Nichols, Diaz, and Schaffner 1990; Clarke et al. 1990). It has been hypothesized that even short-term pulses in sedimentation rates induced by overflow operations could negatively impact sensitive living resources, such as oyster beds, in the vicinity of dredged channels.

Detection and measurement of recently deposited thin layers of dredged material can be a severe technical challenge. Sediment overburdens with thicknesses on the scale of several millimeters can potentially raise concern for biological impacts. Precision bathymetry methods using acoustic technologies lack the sensitivity to detect low-density thin overburdens less than 5 to 10 cm thick, at best. However, direct in situ observations of very thin layers have effectively been done with sediment profile imaging (SPI). Nichols, Diaz, and Schaffner (1990) demonstrated that SPI techniques could detect thin layers of sediment deposited from hopper dredge overflow operations in the Chesapeake Bay. SPI has also proven to be very effective in mapping the distribution of thin layers resulting from open-water dredged material disposal operations in Mobile Bay (Diaz, Schafffner, and Kiley 1987a; Diaz and Schaffner 1988; Clarke and Miller-Way 1992), Mississippi Sound (Diaz, Schafffner, and Kiley 1987b), and Long Island Sound (Morton, Parker, and Richmond 1985).

The primary focus of this study was to determine if short-term sedimentation of dredged material occurred as a consequence of resuspension by the dragheads or during overflow from the hopper dredge. A secondary objective, should sedimentation be detected in sediment profile images, was to determine the distances from the navigation channel at which measurable sedimentation occurred. Two areas were selected by the U.S. Army Engineer District, Philadelphia (CENAP), for conduct of the hopper dredging operations tests (Figure C1). These locations represent a relatively open-water site in the Delaware bay, designated the Lower Study site (LS), and a more riverine site in the Delaware River, designated the Upper Study site (US).

Materials and Methods

Field methods

On 15 and 16 September 1998, sediment profile images were collected at a series of stations at the two predetermined locations in Delaware Bay and the Delaware River (LS and US, respectively). SPI data were successfully collected at stations in the LS site (Figure C2) and stations in the US site (Figure C3). At each station a Hulcher Model Wrenn sediment profile camera was deployed. During each deployment the profile camera obtained two images (Fujichrome 100P 35-mm slides) at 5 and 15 security bottom contact. The two-image sequence helps to ensure that when deployment occurs in soft, unconsolidated sediments the sediment-water interface is captured in the image before the camera prism optical window descends too deeply into the substrate.

Stations were located based on considerations of prevailing wind, river discharge, and/or tidal flow conditions at the time of each hopper dredge test. At both study locations data were collected first while the dredge was operating without overflow, followed by a second test with overflow. Sampling proceeded for up to 2 hr after dredging ceased.

Image analysis

The sediment profile images were first analyzed visually by projecting the images and recording all features seen into a preformatted, standardized spread sheet file. The images were then digitized using a Polaroid Sprint Scan 35 Plus scanner and analyzed using Adobe Photoshop and NTIS Image programs. Steps in the computer analysis of each image were standardized consistent with procedures described in Viles and Diaz (1991). Data from each image were sequentially saved to a spread sheet file for later analysis. Details of how these data were obtained can be found in Diaz and Schaffner (1988) and Rhoads and Germano (1986), and in the standardized image analysis procedures of Viles and Diaz (1991).

Results and Discussion

SPI images from a total of 14 stations were analyzed from the LS site (Figure C2) and 41 stations from the US site (Figure C3). The approximate location of the hopper dredge in proximity to the sampling stations is shown in Figures C2 and C3. The LS site was sampled on 15 September from 1958 to 2208 hr. Tidal flows were flooding during the sampling period and winds were approximately 24 to 32 kph (15 to 20 mph) out of the east. Sea conditions were marginal for successful deployment of the camera system, with approximate wave heights of 0.6 to 0.9 m (2 to 3 ft). The US site was sampled on 16 September 1998 from 1507 to 2102 hr. This reach of the Delaware River is influenced by tidal currents, which were ebbing during the sampling period. Sea conditions were mild with wave heights less than 0.6 m (2 ft) throughout the sampling period.

Presented below are explanations of each of the parameters produced from analysis of SPI images and an overview of observations of physical and biological features at the two study sites. Complete listings of visual and computer analysis data for each study site are given in Tables C1 and C2.

Prism penetration

This parameter provided a geotechnical estimate of sediment compaction, with the profile camera prism acting as a dead weight penetrometer. The depth of prism penetration is therefore related to the "softness" or degree of sediment compaction or water content. Penetration was simply measured as the distance the sediment interface moved up the 23-cm length of the prism optical window as captured by the 15-sec image. The weight of the camera frame was kept constant at 43 kg (95 lb) in order to allow comparisons of relative sediment compaction between stations.

Sand bottoms typical of the LS site had comparatively shallow penetration depths, ranging from 0.0 to 10.9 cm (Table C1). When sandy sediments are poorly sorted, as was the case at channel station LS-09 (Figure C4), prism penetration was deeper. Silty-clay sediments prominent at the US site had comparatively deep penetration (loosely compacted) values, ranging from 9.8 to 25.0 cm (Table C2). Compacted clay sediments, as indicated by very shallow penetration, can be seen in the image from station US-14 (Figure C5).

Surface relief

Surface relief or boundary roughness was measured as the difference between the maximum and minimum distance (relative to the sediment-water interface) the prism penetrated and provided qualitative and quantitative data on habitat characteristics useful for evaluating existing conditions. Small-scale bed roughness on the order of the width (15 cm) of the prism optical window can be estimated from the images. Factors contributing to observed roughness can often be inferred from visual analysis of the images.

In the open-water setting of the sandy LS site, physical factors (e.g., water current and wave generated turbulence) obviously dominated local sediment processes. Surface relief was typically present as small bed forms (e.g., LS-13, Figure C6) that ranged from 0.6 to 2.0 cm (Table C1). In contrast, the muddy habitats of the US site were primarily influenced by biological features, including mounds, pits, and tubes formed from the biogenic activity of benthic organisms (e.g., US-35, Figure C7). Here surface relief values ranged from 0.4 to 3.5 cm (Table C2).

Apparent color redox potential discontinuity layer

This parameter has been determined to be an important estimator of benthic habitat quality (Rhoads and Germano 1986, Diaz and Schaffner 1988), providing an estimate of the depth to which sediments are oxidized. The term "apparent" is used in describing this parameter because no direct chemical measurement is made of the redox potential. Rather an assumption is made that, given the complexities of iron and sulfate reduction-oxidation chemistry, reddish/greenish-brown sediment color tones (Diaz and Schaffner 1988) are indicative of oxic sediments, whereas reduced sediments have gray to black color tones. This is in accordance with the classical concept of redox potential discontinuity (RPD) depth, which associates RPD with sediment color (Fenchel 1969, Vismann 1991).

The depth of the apparent color RPD was defined as the area of all the pixels in the image discerned as being oxidized divided by the width of the digitized image. The area of the image with oxic sediment was obtained by digitally manipulating the image to enhance characteristics associated with oxic sediment (reddish/greenish-brown color tones). The enhanced area was then measured from a density slice of the image.

The apparent color RPD has been a very useful parameter in assessing the quality of a benthic habitat for infauna and epifauna from both physical and biological perspectives. Rhoads and Germano (1986); Revelas, Rhoads, and Germano (1987); Day, Schaffner, and Diaz (1988); Diaz and Schaffner (1988); Valente et al. (1992); and Bonsdorff et al. (1996) all found the depth of the RPD from profile images to be directly correlated to the quality of the benthic habitat in polyhaline and mesohaline estuarine zones. Controlling for differences in sediment type, habitats with relatively thin (<5 mm) RPD layers tend to be associated with some type of environmental stress. In contrast, habitats with relatively deep RPD values (>2 cm) usually have flourishing infaunal and epifaunal communities.

Porous sandy sediments (e.g., LS-09, Figure C4) and silty-clay sediments with evidence of high levels of biological activity (e.g., US-11, Figure C8) had the deepest RPD measurements in this study. Shallowest RPD measurements were associated with images that had signs of physical disturbance, possibly dredging related (e.g., LS-06, Figure C9), or were compact clays (e.g., US-33, Figure C10). In the LS site, average RPD depth ranged from 0.7 to 5.3 cm, and from 0.1 to 6.6 cm in the US site (Tables C1 and C2).

Sediment grain size

Grain size is an important parameter for determining the nature of the physical forces acting on a sedimentary habitat. Grain size is also a major factor in determining benthic community structure (Rhoads 1974). The sediment type descriptors used for image analysis follow the Wentworth classification as described in Folk (1974) and represent the major modal class for each image. Grain size was determined by comparison of collected images with a set of standard images for which mean grain size had been determined in the laboratory.

Grain size ranged from medium-sand gravel (e.g., US-21, Figure C11) to clay (e.g., US-35, Figure C7). Traces of sand were also seen at a few fine-grained stations (e.g., US-29, Figure C12) and traces of fines at coarse-grained stations (e.g., US-32, Figure C13). Within study site variation in sediment type for the LS site was low, with the modal grain size being fine-medium-sand (e.g., LS-03, Figure C14). Shell hash was a major component of sediments in the LS site, particularly in the navigation channel (e.g., LS-06, Figure C9) (Table C1). In the US site sediments were more variable with the modal grain size being clay (e.g., US-09, Figure C4), which was closely followed by silty-clay (e.g., US-09, Figure C15). In addition to having finer sediments than the LS site, there was little evidence of shell hash in US site sediments (Table C2).

Near-bottom turbidity

The sediment profiling camera is also able to image water column turbidity immediately above the sediment-water interface. Light from the camera prism's internal strobe illuminates suspended sediment particles and allows qualitative estimation of turbidity. Turbidity was categorized as low (if the water column was clear with little or no suspended sediment, e.g., LS-02, Figure C16), moderate (e.g., US-09, Figure C15), and high (e.g., US-14, Figure C5). If plumes of resuspended sediment derived from either of the dragheads of overflow were present at the sampling station, the camera would capture the near-bottom turbidity. Such turbidity can be distinguished from other sources, such as that frequently caused by camera frame contact with the substrate, by color tones. Dredge-induced turbidity has a gray color because the bulk of the sediments dredged are from the anoxic zone and in a reduced redox chemical state. Reduced iron and manganese sulfide compounds are dark gray to black in color which contrasts well with the reddish to brown color tones of their oxidized compounds. Background turbidity or that caused by the camera frame landing on the bottom would be brown in color because the suspended sediments were disturbed from the uppermost few millimeters of surficial sediments, which are typically in an oxic redox state.

Two stations in the LS site (LS-07 and LS-12, Figures C17 and C18) had grayish colored suspended material. Station LS-07 was located on the edge of the navigation channel and could have been affected by passage of the dragheads. This station was occupied prior to initiation of overflow. LS-12 was located in the channel and appeared to have been recently disturbed. All other LS images had brownish suspended materials (Table C2).

The relative amount of suspended material showed no pattern relative to the dredging operation at either LS or US site. In the US site, high levels of turbidity seemed associated with shoal areas (<5.5 m (<18 ft) deep) to the northwest of the channel (Figure C3). The four channel stations in the US site had low turbidity levels (Table C2). Only one of the four channel stations in the LS site had moderate turbidity, while the remaining three had low turbidities (Table C1).

Current scour

While sitting on the bottom, the prism and camera housing assembly present an obstruction to bottom currents. Deflection of currents can erode the sediment-water interface at the edges of the prism. This erosion can be seen in SPI images as small dips in the sediment-water interface at the edges of the image. When these dips occur, it is reasonable to assume that bottom currents at the time the image was taken were >10 cm/sec.

Evidence of scour was seen at three of the four channel stations in the LS site (e.g., LS-12, Figure C18) and one shoal station (LS-03, Figure C14) (Table C1). In the US site only one of the 41 stations (US-31, on the channel edge, Figure C19) showed evidence of scour (Table C2). Scour patterns indicated that bottom currents are likely stronger in the LS site relative to the US site.

Dredged material

When recently deposited, dredged sediments from hopper overflow or open-water disposal are distinct in color from background sediments (Diaz and Schaffner 1988; Nichols, Diaz, and Schaffner 1990), being grayer than background sediments. This is the result of in general, the more advanced diagenic state of deep sediments being dredged (Rhoads, SAIC, personal communication, as discussed in section on Near-Bottom Turbidity).

SPI images from three of the four channel stations in the LS site appear to be recently disturbed and likely dredged material (e.g., LS-06, Figure C9) (Table C1). The channel sediments are sands with shell hash that contain little fine sediment. It is not likely that the surface sediments are from hopper overflow, but more likely associated with disturbance from the dragheads. In addition, the test dredging and overflow were not of sufficient quantity or duration to produce extensive layering from sands.

No station from the US site appeared to have recently deposited dredged material. Sediments at all US site stations appeared to be undisturbed and representative of background conditions.

Sediment layering

Sediment layering as indicated by color or grain-size changes are readily seen in SPI images. The presence of layers is indicative of physical disturbances or episodic events. Sediment layering is characteristic of hopper overflow and open-water disposal operations and can be readily seen in SPI images (Diaz and Schaffner 1988; Nichols, Diaz, and Schaffner 1990).

In the LS site four stations had evidence of layering from grain-size changes (Table C1). Station LS-06 (Figure C9), in the channel, had a shell hash layer at 1.6 cm from the sediment surface. The other three stations,

LS-11 (Figure C20) and LS-13 (Figure C6) on the edge of the channel and LS-10 (Figure C21) on the shoal near the channel, all had thin layers of sandy sediments overlaying silty sediments. Each case seemed indicative of recently deposited sediments, possibly from the dragheads or current induced transport of surface sands. The sediments were not likely from hopper overflow operations since little sand-size sediment would have been discharged from the hopper during a single loading process.

In the US site about half of the stations had sediment layers (Table C2). However, none of the four stations in the channel had sediment layering. About half of the stations (8 of 17) on the edge of the channel had layers, three with color layering and five with grain-size layering. All five of the grain-size layered channel edge stations had sands on the surface overlying clayey sediments. Since the sediments in the channel were fine silts and clays, it is unlikely that layers observed in these images were attributable to the dredging operations or overflow, which contained little or no sand. In addition, grain-size layered channel edge stations US-22 (Figure C22), US-23 (Figure C23), and US-33 (Figure C10) had amphipod and/or worm tubes which could not have reestablished living positions in the approximately 1-hr interval between dredging operations and sampling. Color layering was represented by varying hues of gravs and was found deeper in the sediments, ranging from 2.5 to 9.0 cm from the surface (Table C2). These deeper color layers are not likely a result of recent dredging operations and may represent episodic events such as seasonal high river discharges or storm deposits. Detritus appeared to be mixed into the uppermost sediment layer at shoal stations US-09 (Figure C15), US-10 (Figure C24), and US-11 (Figure C8).

Surface features

Surface features include a variety of physical and biological parameters, each providing different information on the type of habitat and its quality for supporting benthic species. The presence of certain features is indicative of the overall nature of a habitat. For example, bed forms are always associated with physically dominated habitats, whereas the presence of worm tubes or feeding pits would be indicative of a more biologically accommodated habitat (Rhoads and Germano 1986, Diaz and Schaffner 1988). Surface features were visually evaluated from each image and compiled by type and frequency of occurrence.

The sediment surface at stations in the LS site was dominated by bed forms and shell hash (Table C1). In the US site, biogenic pits and mounds were the dominant surface features (Table C2). No epifauna were seen in either area. Flock layers, thin layers of unconsolidated sediments, occurred at six shoal stations (e.g., US-09, Figure C15) and one channel edge station (US-34, Figure C25) in the US site (Table C2). All flock layers appeared to be composed of background sediments and not dredged material, as evidenced by their respective color tones.

Tubes were seen at only one of the LS site stations (LS-11, Figure C20). At the US site stations, worm or amphipod tubes occurred at 12 of 41 stations (Table C2). Amphipod tube mats occurred at US-05 (Figure C26), US-06 (Figure C27), and US-22 (Figure C22), which were channel and channel edge stations.

Subsurface features

These parameters include a wide variety of features and provide insights into physical and biological processes influencing the bottom. For example, the presence of methane gas voids has been an indication of anaerobic metabolism (Rhoads and Germano 1986) and associated with high rates of bacterial activity. Muddy habitats with large amounts of methane gas are generally associated with areas of oxygen stress or high organic loading. On the other hand, habitats with burrows, infaunal feeding voids, and/or actual infauna visible in SPI images are generally more biologically accommodated and considered "healthy" (Rhoads and Germano 1986, Diaz and Schaffner 1988, Valente et al. 1992). Subsurface features were visually evaluated from each image and compiled by type and frequency of occurrence.

No infauna, burrows, or voids were seen at the LS site stations (Table C1). This was the result, in part, of the prevalence of coarse sediments, which are not generally associated with fauna that form burrows or voids, and by shallow camera prism penetration.

In the US site, 4 stations had infaunal organisms, 12 had active burrows, 2 had active feeding voids, and 3 had anaerobic voids (Table C2). Gas filled voids occurred at nine stations and were abundant at most of these stations (e.g., US-26, Figure C28), indicating relatively high concentrations of organic matter in the sediments. Evidence of hydrocarbon contamination was seen at station US-03 (Figure C29) in the form of "oil spots." Diaz et al. (1993) found that sediments containing high concentrations of hydrocarbons had a unique signature in the SPI images and that this signature was significantly related to the occurrence of hydrocarbons.

Summary and Conclusions

The LS site was more physically accommodated than the US site which was more biologically accommodated (Table C3). Sediments in the LS site were coarser and had more shell hash than the US site which was characterized by finer sediments and more biologically reworked.

There was evidence that recent physical disturbance had occurred at several of the LS stations (LS-06, LS-09, LS-12), possibly a result of the dredging operations. Gray colored suspended material, indicative of hopper overflow material, was also observed at two stations (LS-07, LS-12).

However, since this gray suspended material was also associated with recently disturbed sediments at LS-12, it could also have resulted from draghead activity. This leaves LS-07 as the station with the clearest signature of hopper overflow, but this was in the form of turbidity and not accumulation of overflow material on the sediment surface. Four LS stations had layering from grain-size changes. Station LS-06, in the channel, had a shell hash layer at 1.6 cm from the sediment surface. The other stations, LS-11 and LS-13 on the edge of the channel and LS-10 on the shoal near the channel, all had thin layers of sandy sediments overlying silty sediments. Although such layers are indicative of recently deposited sediments, those seen in the SPI images are likely the result of normal sediment transport processes rather than hopper overflow operations. Little sand would be discharged from overflow in a single pass of the hopper dredge.

In the US site, no evidence of recent physical disturbance was detected at any of the stations, but material that could have come from the hopper overflow was observed at one station (US-33). About half of the US stations had sediment layers, but none of the stations in the channel had sediment layers. About half of the stations on the edge of the channel had layers, three with color layering and five with grain-size layering. All five of the sediment layered channel edge stations had sands on the surface overlaying clayey sediments. Since the sediments in the channel were finer silts and clays, it was unlikely that the layers at the channel edge stations were the result of the dredging operations. In addition, sediment layered channel edge stations US-22, US-23, and US-33 had amphipod and/or worm tubes which could not have reestablished living position in the short interval between dredging and sampling. Flocculent sediment layers, thin layers of unconsolidated surface sediments, occurred at six shoal stations and one channel edge station in the US site. Based on their color tones, all flock layers appeared to be composed of background sediments and not hopper overflow or dredged material. Evidence of hydrocarbon contamination was seen at station US-03 in the form of "oil spots."

No indication of newly deposited dredged material was observed at stations outside the edge of the navigation channel at either study site. Although the sampling station coverage was not extensive, given the relatively short duration of the tests, the risk of significant sedimentation as a consequence of the hopper dredging operations appears largely restricted to the bottom and slide slopes of the channel.

Literature Cited

Bonsdorff, E., Diaz, R. J., Rosenberg, R. Norkko, A., and Cutter, G. R. (1996). "Characterization of soft-bottom benthic habitats of the Aland Islands, northern Baltic Sea," *Marine Ecology Progress Series* 142, 235-245.

- Clarke, D. G., Homziak, J., Lazor, R. L., Palermo, M. R., Banks, G. E., Benson, H. A., Johnson, B. H, Smith-Dozier, T., Revelas, G., and Dardeau, M. R. (1990). "Engineering design and environmental assessment of dredged material from hydraulically filled hopper barges in Mobile Bay, Alabama," Dredging Operations Technical Support Program Miscellaneous Paper D-90-4, U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS.
- Clarke, D. G., and Miller-Way, T. (1992). "An environmental assessment of the effects of open-water disposal of maintenance dredged material on benthic resources in Mobile Bay, Alabama," Dredging Operations Technical Support Program Miscellaneous Paper D-92-1, U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS.
- Day, M. E., Schaffner, L. C., and Diaz, R. J. (1988). "Long Island Sound sediment quality survey and analyses," Tetra Tec, Report to NOAA, NOS, OMA, Rockville, MD.
- Diaz, R. J., Schaffner, L. C., and Kiley, K. (1987a). "Sediment profile camera survey of the Fowl River open-water dredged material disposal area, Mobile Bay, Alabama," Virginia Institute of Marine Science Contract Report to Taxonomic Associates, Mobile, AL.
- . (1987b). "Sediment profile camera survey of the Gulfport, Mississippi, open-water dredged material disposal site," Science Applications International Inc. Report No. SAIC-88/5703-176 to Taxonomic Associates, Mobile, AL.
- Diaz, R. J., and Schaffner, L. C. (1988). "Comparison of sediment land-scapes in the Chesapeake Bay as seen by surface and profile imaging." Understanding the estuary; Advances in Chesapeake Bay research. M. P. Lynch and E. C. Krome, ed., Chesapeake Research Consortium Publication 129, CBP/TRS 24/88, 222-240.
- Diaz, R. J., Hannsson, L. J., Rosenberg, R., Gapcynski, P., and Unger, M. (1993). "Rapid assessment of sedimentological and biological characteristics of a hydrocarbon pollution gradient," Water, Air and Soil Pollution 66, 251-266.
- Fenchel, T. (1969). "The ecology of marine microbenthos. IV. Structure and function of the benthic ecosystem, its chemical and physical factors and microfauna communities with special reference to the ciliated Protozoa," Ophelia 6, 1-182.
- Folk, R. L. (1974). Petrology of Sedimentary Rocks. Hemphill's, Austin, TX.

- Morton, R. W., Parker, J. H., and Richmond, W. H. (1985). "DAMOS. Summary of program results, 1981-1984," Science Applications International Inc. Report No. SAIC-84/7521-C46 to the U.S. Army Engineer Division, New England, Waltham, MA.
- Nichols, M. M., Diaz, R. J., and Schaffner, L. C. (1990). "Effects of hopper dredging and sediment dispersion, Chesapeake Bay," *Environmental Geology and Water Science* 15,31-43.
- Revelas, E. C., Rhoads, D. C., and Germano, J. D. (1987). "San Francisco Bay sediment quality survey and analysis," NOAA Technical Memorandum NOS OMA 35, Rockville, MD.
- Rhoads, D. C. (1974). "Organism B sediment relations on the muddy sea floor," Oceanography and Marine Biology Annual Review 12, 263-300.
- Rhoads, D. C., and Germano, J. D. (1982). "Characterization of organism-sediment relations using sediment profile imaging: An efficient method of remote ecological monitoring of the sea floor (REMOTS system)," Marine Ecology Progress Series 8, 115-128.
- nity structure: A new protocol," *Hydrobiologia* 142, 291-308.
- Valente, R. M., Rhoads, D. C., Germano, J. D., and Cabelli, V. J. (1992).
 "Mapping of benthic enrichment patterns in Narragansett Bay, Rhode Island," *Estuaries* 15, 1-17.
- Viles, C., and Diaz, R. J. (1991). "Bencore, an image analysis system for measuring sediment profile camera slides," School of Marine Science, Virginia Institute of Marine Science, College of William and Mary, Gloucester Point, VA.
- Vismann, B. (1991). "Sulfide tolerance: Physiological mechanisms and ecological implications," Ophelia 34, 1-27.

Figure C1. Locations of the lower and upper hopper dredge overflow test study sties

Figure C2. Sediment profiling imagery stations occupied during hopper dredge loading and overflow tests at the LS site. The figure has been modified from a NOAA navigaition chart with depths indicated in feet. Approximate start and end of test locations of the dredge are indicated by the red arrow

The figure has been modified from a NOAA navigation chart with depths indicated in feet. Approximate start Sediment profiling imagery stations occupied during hopper dredge loading and overflow tests at the dredging without overflow stations, and yellow stations (32-43) are during and postoverflow stations. upper study site. Green stations (1-15) are predredging stations, red stations (16-31) are duringand end of test locations of the dredge are indicated by the red arrow Figure C3.

Figure C4. SPI image of Lower Study Site Station LS-09

Figure C5. SPI image of Upper Study Site Station US-14

Figure C6. SPI image of Lower Study Site Station LS-13

Figure C7. SPI image of Upper Study Site Station US-35

Figure C8. SPI image of Upper Study Site Station US-11

Figure C9. SPI image of Lower Study Site Station LS-06

Figure C10. SPI image of Upper Study Site Station US-33

Figure C11. SPI image of Upper Study Site Station US-21

Figure C12. SPI image of Upper Study Site Station US-29

Figure C13. SPI image of Upper Study Site Station US-32

Figure C14. SPI image of Lower Study Site Station LS-03

Figure C15. SPI image of Upper Study Site Station US-09

Figure C16. SPI image of Lower Study Site Station LS-02

Figure C17. SPI image of Lower Study Site Station LS-07

Figure C18. SPI image of Lower Study Site Station LS-12

Figure C19. SPI image of Upper Study Site Station US-31

Figure C20. SPI image of Lower Study Site Station LS-11

Figure C21. SPI image of Lower Study Site Station LS-10

Figure C22. SPI image of Upper Study Site Station US-22

Figure C23. SPI image of Upper Study Site Station US-23

Figure C24. SPI image of Upper Study Site Station US-10

Figure C25. SPI image of Upper Study Site Station US-34

Figure C26. SPI image of Upper Study Site Station US-05

Figure C27. SPI image of Upper Study Site Station US-06

Figure C28. SPI image of Upper Study Site Station US-26

Figure C29. SPI image of Upper Study Site Station US-03

Tab SPI	Table C1 SPI Data from the Lower Study (LS) Site	the	Lower	Stud	v (LS) Si		elaware E	3ay, Sepi	in Delaware Bay, September 1998	86(
		Pe	Penetration (cm)	(cm)	o de ganto	Ave											
Sta	Descriptor	Min	Max	Ave	Surrace Relief cm	Depth cm	Sediment Type	Turbidity	Suspended Sediment Color	Current	Dredged Material	Sediment	Surface Features	Tubes	Worms	Burrows	Volds
-	Shoat	8.0	1.7	1.3	6.0	>1.3	FSMS	Little	Brown	No	No	0	BED,SH	None	0	0	0
C1	Shoal	3.3	4.1	3.7	8.0	>3.6	FSMS	Little	Brown	No	No	0	BED,SH	None	0	0	0
6	Shoal	6.1	8.0	7.0	1.8	2.9	FSMS	Moderate	Brown	Yes	No	0	BED,SH	Nonc	0	0	0
4	Shoal	2.5	1,4	3.3	1.6	1.6	1.8	Moderate	Brown	No	No	0	BED,SH	None	0	0	С
5	Shoal	0.0	0.0	0.0	0.0		FS	Little	Brown	No	No	•	вер,ѕн	None			,
9	Channel	5.7	6.3	6.0	9.0	7.0	FSMSSII	Moderate	Brown	Yes	Yes	1	SHLDIST	None	0	0	0
۲-	Edge	0.0	1.3	0.7	1.3	>0.7	FSSH	Low	Gray	No	No	ŧ	вер,ян	None			,
×	Edge	1.6	2.5	2.0	8.0	>2.0	FSMSSII	Low	Brown	No	νo	0	BED,SH	Some	0	0	0
6	Channel	9,6	11.9	6.01	2:0	5.3	FSMSSH	Low	Brown	Yes	Yes	Û	SCOUR	None	0	0	0
9	Shoal	2.6	3.2	2.9	9.0	8.0	FS/SI	l.ow	Brown	No	No		BED,MD,SH	None	0	0	U
=	Edge	2.5	4.4	3.4	2.0	r. ci	FSMS/SI	Low	Brown	No	No	at-re	BED,MD,SH	Few	0	0	0
12	Channel	3.3	1,1	3.7	8.0	2.9	FSMSSII	Low	Gray	Yes	Yes	0	SH	None	0	0	0
13	Edge	9.1	2.5	2.0	8.0	>2.0	FSMS/SI	Moderate	Brown	N _O	No	1	BED,SH	None	0	0	0
14	Channel	Ξ	2.0	9.1	1.0	>1.6	FSMS	l.ow	Brown	No	No.	0	вер,ѕн	None	0	0	0

Sta = Station, Descriptor = Location of station relative to navigation channel, CL = Clay, FS = Fine sand, FSMS = Fine to medium sand, GR = Gravel, SH = Shell hash, SI = Sit, SICL = Fine sand-silt-clay, SIFS = Sity fine sand, MSGR = Medium sand and gravel, 7 indicates sediments are layered. BED = Bedform, DIST = Disturbed, EVEN = Uniform flat surface, FLOC = Loose flocculent layer at surface, MD = Biogenic mound, PIT = Biogenic pit, FEW = 1 to 6, SOME = 7 to 24, MANY = >24, MAT = Tube mat

Tab SPI	Table C2 SPI Data from the Upper Study (US) Site in the Delaware River, September 1998	n the	Uppe	er Stu	SN) (br) Site i	n the De	laware R	liver, Se	ptembe	r 1998						
		Per	Penetration (cm)	(cm)		Ave			Sus-								Feeding/
Sta	Descriptor	Min	Мах	Ave	Surrace Relief cm	Depth	Sediment Type	Turbidity	Sediment Color	Current Scour	Dredged Material	Sediment Layers	Surface Features	Tubes	Worms	Burrows	Gas Voids
_	Shoaf	12.3	12.6	12.5	0.3	0.7	SI	Low	Brown	No	No		EVEN	None	0	ণা	8/1
C1	Shoal	7.4	7.6	7.5	0.2	4.1	SI	Low	Brown	No	No	0	MD	None	0	5	0.
m	Shoal	9.9	7.3	6.9	6.7	1.0	SI	Low	Brown	No	No	gannel	MD	None	~1	3	0
4	Shoal	12.2	12.5	12.4	0.3	2.5	SI	High	Brown	No	No	2	MD	None	0	~	0
v	Edge	9.6	10.8	10.2	1.2	0.2	5	Low	Brown	No	No	0	MD	Mat	0	0	0
9	Channel	12.3	13.4	12.9		9.4	CL	Low	Brown	No	No	0	MD	Mat	0	0	0
7	Channel	16.0	17.2	9.91	1.2	0.2	SICL	Low	Brown	No	No	0	PIT	None	0	0	9/4
∞	Edge	20.2	21.6	20.9	1.5		SICL	High	Brown	No	No	0	PIT	None	0	0	1,00
¢	Sheal	16.1	16.4	16.2	6.3	4.9	SICL	Moderate	Brown	No	Ν̈́ο	-	FLOC	None	0	0	0/15
2	Shoat	9,2	10.3	8.6	p-ret	2.3	SICL	Low	Brown	No	No	1	FLOC	None	0	0	0
=	Shoal	13.1	13.5	13.3	6.4	9.9	SICL	Moderate	имел	No	No	1	FLOC	None	0	0	1/0
12	Shoal	0.6	9.3	9.2	0.3	0.7	CT.	Low	Brown	No	No	_	ME	None	0	0	0
2	Shoal	2.5	9.9	2,4	1.4		T)	High	Brown	Ne	No	0	DIST	None	0	0	0
4	Shoal	1.5	3.0	2.2	1.5	0.3	CL	High	Вгомп	No	No	0	PB	None	0	,	0
15	Shoal	24.8	25.2	25.0	0.4	1.2	SICL	Moderate	Brown	No	No	_	PIT	None	-	0	0
91	Shoal	6.3	9.9	6.5	0.3	2.2	IS	High	Вгомп	No	No		PIT	None	0	0	c
17	Shoal	7.8	4.9	8.	970	3.1	IS	Moderate	Brown	No	No	_	MD	None	0	7	0
<u>≈</u>	Shoal	4.9	6.0	5.5	\$115 	0.3	SIFS	High	Brown	No	No		PIT	None	-	\$	0
6	Shoal	13.5	11.7	11.6	0.2	2.6	IS	Moderate	Brown	No	No	-	FLOC	None	0	7	0/1
20	Sheal	17.2	18.0	17.6	8.0	4.5	IS.	High	Brown	No	No	2	H.OC	None	0	_	0
23	Sheal	14.8	18.3	16.5	3,5	2.5	MSGR/CL	Low	Brown	No	No No	Q	GR	Some	0	0	2,0
																	(Continued)

Sta = Station, Descriptor = Location of station relative to navigation channel, CL = Clay, FS = Fine sand, FSMS = Fine to medium sand, GR = Gravel, SH = Shell hash, SI = Silt, SICL = Fine sand-silt-clay, SIFS = Silty fine sand, MSGR = Medium sand and gravel, indicates sediments are layered, BED = Bedform, DIST = Disturbed, EVEN = Uniform flat surface, FLOC = Loose flocculent layer at surface. MD = Biogenic mound, PIT = Biogenic pli, FEW = 1 to 6, SOME = 7 to 24, MANY = >24, MAT = Tube mat

2	Table C2 (Concluded)	onclu	(papi														
	en.combinaterocom	Pe	Penetration (cm)) (cm)	Surface	Ave			Sus-								Fooding
Sta	Descriptor	Min	Max	Ave	Relief cm	Depth	Sediment Type	Turbidity	Sediment Color	Current Scour	Dredged Material	Sediment Layers	Surface Features	Tubes	Worms	Burrows	Gas Voids
22	Edge	6.2	8.0	7.1	8.1	9.0	FS/CL	Low	Brown	No	No	1	EVEN	Mat	0	c	0
23	Edge	9.5	1.1	10.3	971	0.7	FS/CL	Moderate	Brown	No	No	1	MD	Some	0	0	0
24	Channel	15.0	17.4	16.2	2.4	0.2	CL	Low	Brown	No	No	0	PIT	None	0	c	0
25	Channel	11.8	12.7	12.3	6'0	0.2	CL	Low	Вгомп	Ne	No	0	MD	WHA	0	0	0/25
26	Edge	14.5	15.0	14.8	5.0	6.2	IS	High	Brown	No	No		MD	None	-	6	0740
27	Sheal																
28	Shoat																
53	Sheal	5.0	5.7	5.4	2.0	0.2	cr	High	Brown	No	No	0	PIT	None	0	0	0
30	Sheat	12.0	13.0	12.5	6.0	ŧ	SI	High	Brown	٧o	No	.2	DIST	Anon	0	0	0
31	Shoal	11.3	13.1	12.2	8:1	2	SICL	High	Brown	Yes	No	2	FLOC	None	0	0	1/10
32	Edge	2.3	3.9	3.1	1.6	×3.1	MS	Moderate	Brown	No	No	0	DED,GR	None	0	0	0
æ	Edge	3.3	6.3	×,	3.0	0.1	FS/CL	Moderate	Gray	No	No	_	MD	Many	0	0	0
34	Edge	6.4	8.2	7.3	8.1	6.4	SI	High	Brown	No	No	-	FI.0C	None	0	0	0
35	Edge	3.8	4.8	4.3		0.2	CI.	Low	Brown	No	No	0	MD	Many	0	0	0
36	Edge	8.2	12.5	10.4	4.3	6.7	15	Low	Brown	No	No	0	DIST	Many	0	0	0
37	Edge	20.5	21.0	20.7	6.5		Ct.	Low	Brown	No	No	0	IND	None	0	0	0
38	Edge	5.7	19.3	8.0	4.6	0.2	CI.	Low	Brown	No	No	0	DIST	Seme	0	0	0
6£	Edge	50.9	21.3	21.1	6.4	,	SICL	High	Brown	No	No	0	EVEN	None	0	0	1/0
40	Edge	12.7	13.1	12.9	6.4	0.2	SI	High	Brown	No	Ν̈́ο	2	EVEN	None	0	ر.	0/17
7	Edge	0.7	1.1	0.0	0.4	0.2	FS/CL	Moderate	Вгочи	No	No		BED,DIST	None	0	0	0
42	Edge	12.3	13.2	12.7	6.9	8.0	MS/CL	Moderate	Brown	No	Νο	_	BED	None	0		0
43	Ldge	11.8	12.1	12.0	0.3	6.9	SI	High	Вгомп	No.	No	0	EVEN	None	0	0	0

Table C3
General Comparison of Sediment Profile Image Data from the Lower Study Site (LS, Delaware Bay) and Upper Study Site (US, Delaware River) Sampled During Hopper Dredge Loading and Overflow Tests

		Location
Feature	Lower Study Site	Upper Study Site
Sediments	Homogeneous, Sands	Heterogeneous, Mainly Clays and Silt-Clays
Sediment Layering	Sediment Grain Size Changes	Color and Sediment Grain Size Changes
Prism Penetration	Shallow	Deep
Surface Relief	Physical Bed Forms	Biogenic Pits and Mounds
Suspended Material	Mostly Background Sediments	Mostly Background Sediments
Dredged Material	Detected at 3 Stations	Not Detected
Hopper Overflow	Detected at 1 Station	Detected at 1 Station
Hydrocarbon Contamination	Not Detected	Detected at 1 Station
Epifauna	Not Detected	Not Detected
Amphipod or Worm Tubes	Scarce	Common
Infauna	Not Detected	Common

Appendix D Summary of Technical Findings: 96-hr Bioassay with *Mysidopsis*bahia and *Menidia beryllina*

MEMORANDUM FOR: Mr. Jerry Miller, (CEWES-EE-A)

Thru:

Dr. Todd Bridges, (CEWES-ES-F)

SUBJECT: Narrative Summary of Technical Findings of a 96-hr Bioassay with Delaware River Sediment and Water.

- 1. Please find enclosed a letter report summarizing the results of bioassays conducted with *Mysidopsis bahia* and *Menidia beryllina* exposed to concentrations of filtered elutriate.
- 2. If you have any questions please call me at (601) 634-4027 or Dr. Todd Bridges at (601) 634-3626.

ALFREDA GIBSON Research Biologist CEWES-ES-F

Summary of Technical Findings: 96-hr bloassay with *Mysidopsis bahla* and *Menidia beryilina*

- 1. <u>Background</u>: As part of an effort to determine the possible biological effects of water column exposure to Delaware River sediment, Mr. Jerry Miller (EED) requested that the Aquatic Biological Effects Team (ABET) conduct acute 96-hr elutriate bioassays on the material with survival being the observed endpoint. The two species used were *Mysidopsis bahia* and *Menidia beryllina*. This report summarizes the results of that study.
- 2. Technical Approach: 96-hr elutriate bioassays using the mysid shrimp Mysidopsis bahia and the inland silverside Menidia beryllina were conducted according to methods described in the CE/EPA Inland Testing Manual (1998) (Tables D1 and D2). Four treatments were evaluated: 1) Mysidopsis bahia exposed in R1-HO-TOX (coarse-grained material at 30 o/oo) (Table D3); Mysidopsis bahia exposed to R2-HO-TOX (finegrained material at 6 o/oo) (Table D4); Menidia beryllina exposed to R2-HO-TOX (fine-grained material at 6 o/oo) (Table D5); and Menidia beryllina exposed to R1-HO-TOX (coarse-grained material at 30 o/oo) (Table D6). The filtered elutriate was diluted with our standard laboratory control water 40 fathoms (6 o/oo and 30 o/oo) to yield the following concentrations: 0; 6.25; 12.5; 25; 50; and 100% elutriate. Each treatment was replicated five times. The test was conducted using Mysidopsis bahia that were 5 days old and Menidia beryllina that were 9 days old. Mysidopsis bahia were fed newly hatched brine shrimp daily (0.2 mg) and Menidia beryllina were fed newly hatched brine shrimp on day 2 of the test (0.2 mg). Each beaker was provided trickle-flow aeration and covered with a watch glass to minimize evaporation.
- 3. Results: 96-hr survival of Mysidopsis bahia in the R1-HO-TOX (30 o/oo, coarse-grained material) exposures survival ranged from 100 to 88% (Table D1). Survival in R2-HO-TOX (6 o/oo fine-grained material) ranged from 90 to 0% with 0% survival in the 50 and 100% elutriate treatments (Table D1). 96-hr survival of Menidia beryllina in R1-HO-TOX (30 o/oo coarse-grained material) survival ranged from 88% -68%. Survival in R2-HO-TOX (6 o/oo fine-grained material) with ranged from 98 to 0% with 4% 0% survival in the 50 and 100% exposures (Table D2). The trimmed spearman-karber method was used to calculate LC₅₀ values (Hamilton et al. 1978). Mysidopsis bahia in R2-HO-TOX (6 o/oo) had an LC₅₀ value of 30.04% (23.44 38.50 lower upper confidence limit). Menidia beryllina in R2-HO-TOX (6 o/oo) had an LC₅₀ value of 31.66% (27.54 36.40 lower -upper confidence limits). An LC₅₀ value could not be calculated for Mysidopsis bahia or Menidia beryllina in R1-HO-TOX treatments because neither had mortality values greater than 50%.

Survival met or exceeded the test acceptability criterion of 90% in the 6 o/oo and 30 o/oo Mysidopsis bahia controls, and also in the 6 o/oo Menidia beryllina control. Survival in the 30 o/oo Menidia beryllina control

was slightly below the criterion at 88% but is not considered to render the test invalid.

Water quality data are presented in Tables D7 through D10. The pH, dissolved oxygen, and temperature levels were within an acceptable range for conducting toxicity studies with the two test species. Ammonia levels (NH3) were exceedingly higher than the LC_{50} of 1.00 mg/L for 5-day old Mysidopsis bahia or the LC_{50} of 1.24 mg/L for 9-days old Menidia beryllina (USEPA 1989).

In conclusion, R1-HO-TOX exposures did not adversely affect survival of either test species, whereas the mortality observed in R2-HO-TOX at 6 o/oo with both species can be attributed to the high level of NH₃.

4. References:

Hamilton, M.A., Russo, R.C., and Thurston, R.V. (1978). "Trimmed Spearman-Karber Method for estimating median lethal concentration in toxicity bioassays," *Environ. Sci. Tech.* 12(4): 417.

USEPA. (1989). "Ambient water quality criteria for ammonia (Saltwater)-1989," Office of Water Regulations and Standards, Criteria and Standards Division, EPA 440/5-88-004, Washington, DC.

USEPA and USACE. (1998). "Evaluation of dredged material proposed for discharge in waters of the U.S. -Testing manual," EPA-823-B-98-004, Washington, DC.

Table D1 Summary Survival Data for <i>Mysidopsis bahia</i> Exposed to Delaware River Elutriates

Treatment	Elutriate Concentration	Mean Percent Survival, standard deviation
R1-HO-TOX (30 o/oo)	0	100 (0.00)
	6	88 (0.84)
	12	96 (0.55)
	25	92 (0.84)
	50	90 (1.22)
	100	92 (0.45)
R2-HO-TOX (6 o/oo)	0	90 (0.00)
	6	76 (1.67)
	12	66 (2.30)
	25	82 (1.30)
	50	0 (0.00)
	100	0 (0.00)

Table D2 Summary Survival Data for *Menidia beryllina* Exposed to Delaware River Elutriates

Treatment	Elutriate Concentration	Mean Percent Survival, standard deviation
R1-HO-TOX (30 o/oo)	0	88 (0.84)
	6	70 (1.58)
	12	68 (1.64)
	25	78 (1.79)
	50	80 (1.22)
	100	74 (1.82)
R2-HO-TOX (6 o/oo)	0	90 (0.71)
	6	68 (0.45)
	12	98 (0.45)
	25	78 (1.64)
	50	4 (0.89)
	100	0 (0.00)

Table D3 96-hr Survival Data for *Mysidopsis bahia* Exposed to R1-HO-TOX (coarse-grained material) Elutriates at 30 o/oo

Treatment, %	Replicate	Total Number Alive
Control	1	10
Control	2	10
Control	3	10
Control	4	10
Control	5	10
6	1	8
6	2	10
6	3	9
6	4	9
6	5	8
12	1	10
12	2	9
12	3	9
12	4	10
12	5	10
25	1	9
25	2	9
25	3	8
25	4	10
25	5	10
50	1	9
50	2	9
50	3	10
50	4	7
50	5	10
100	1	9
100	2	10
100	3	9
100	4	9
100	5	9

Table D4
96-hr Survival Data for *Mysidopsis bahia* Exposed to R2-HO-TOX (fine-grained material) Elutriates at 6 o/oo

Treatment, %	Replicate	Total Number Alive
Control	1	9
Control	2	9
Control	3	. 9
Control	4	9
Control	5	9
6	1	8
6	2	9
6	3	7
6	4	9
6	5	5
12	1	8
12	2	6
12	3	9
12	4	7
12	5	3
25	1	7
25	2	7
25	3	9
25	4	8
25	5	10
50	1	0
50	2	0
50	3	0
50	4	0
50	5	0
100	1	0
100	2	0
100	3	0
100	4	0
100	5	0

Table D5
96-hr Survival Data for *Menidia beryllina* Exposed to R2-HO-TOX (fine-grained material) Elutriates at 6 o/oo

Treatment, %	Replicate	Total Number Alive
Control	1	9
Control	2	9
Control	3	9
Control	4	8
Control	5	10
6	1	7
6	2	7
6	3	7
6	4	6
6	5	7
12	1	10
12	2	10
12	3	9
12	4	10
12	5	10
25	1	10
25	2	7
25	3	9
25	4	7
25	5	6
50	1	0
50	2	0
50	3	0
50	4	0
50	5	2
100	1	0
100	2	0
100	3	0
100	4	0
100	5	0

reatment, %	Replicate	Total Number Alive
Control	1	9
Control	2	8
Control	3	10
Control	4	8
Control	5	9
6	1	6
6	2	9
6	3	8
6	4	5
6	5	7
12	1	8
12	2	7
12	3	8
12	4	4
12	5	7
25	1	9
25	2	10
25	3	8
25	4	6
25	5	6
50	1	8
50	2	10
50	3	7
50	4	7
50	5	8
100	1	7
100	2	7
100	3	10
100	4	8
100	5	5

Table D7 Water Quality Parameters for Mysidopsis bahia Exposed to R1-HO-TOX Elutriates at 30 o/oo D.O. Temp. NH₃, mg/L Treatment Replicate mg/L pH Salinity, ppt °C composite Control (initial) 5.50 1 7.85 30 21.7 (final) 5.84 7.83 30 22.8 1.00 (initial) 3 5.98 7.85 30 21.7 (final) 6.10 7.80 30 22.8 (initial) 5 6.11 7.85 30 22.1 (final) 6.20 7.80 30 22.8 6 % (initial) 1 5.87 7.89 30 22.1 6.08 (final) 7.88 30 22.8 1.38 (initial) 3 5.86 7.87 30 21.7 6.10 7.87 (final) 30 22.7 (initial) 5 5.85 7.86 30 21.5 (final) 6.10 7.87 30 22.8 12 % 6.00 7.85 (initial) 1 30 23.1 (final) 6.92 7.86 30 22.8 1.81 (initial) 3 6.15 7.89 30 22.0 (final) 6.83 7.88 30 22.9 6.00 (initial) 5 7.87 30 22.0 (final) 6.22 7.86 30 23.0 25 % 6.10 7.85 (initial) 1 30 21.8

7.85

7.83

7.84

7.80

7.83

30

30

30

30

30

22.7

21.8

22.7

21.8

22.7

1.32

6.19

6.00

6.30

5.98

6.10

3

5

(Continued)

(final)

(initial)

(final)

(initial)

(final)

Treatment	Replicate	D.O. mg/L	рН	Salinity, ppt	Temp. °C	NH ₃ , mg/L composite
50 % (initial)	1	6.10	7.80	30	21.7	
(final)		6.20	7.80	30	22.7	0.67
(initial)	3	5.95	7.82	30	21.7	
(final)	-	5.99	7.81	30	22.0	
(initial)	5	5.97	7.70	30	21.7	
(final)		6.10	7.79	30	22.0	
100 % (initial)	1	5.97	7.65	28	21.7	
(final)		6.10	7.70	28	22.0	1.53
(initial)	3	5.96	7.69	28	22.7	
(final)		6.10	7.70	28	22.8	
(initial)	5	5.94	7.64	28	22.7	
(final)		6.05	7.69	28	22.8	

Table D8
Water Quality Parameters for *Mysidopsis bahia* Exposed to R2-HO-TOX Elutriates at 6 o/oo

Treatr	nent	Replicate	D.O. mg/L	рН	Salinity, ppt	Temp.	NH ₃ , mg/L composite
Contro	ol (initial)	1	6.10	7.34	6	22.0	
	(final)		5.98	7.80	6	23.0	1.20
	(initial)	3	6.08	7.29	6	22.0	
	(final)		6.00	7.70	6	23.1	
	(initial)	5	6.06	7.30	6	22.0	
	(final)		6.00	7.77	6	23.0	
6 %	(initial)	1	6.13	7.50	6	21.7	
	(final)		5.35	7.83	6	23.0	3.63
	(initial)	3	6.13	7.55	6	21.7	
	(final)		5.29	7.84	6	23.0	
	(initial)	5	6.19	7.55	6	21.7	
	(final)		5.30	7.82	6	23.0	
12 %	(initial)	1	6.21	7.53	6	21.6	
	(final)		5.20	7.96	6	23.1	5.04
	(initial)	3	6.20	7.55	6	21.6	
	(final)		5.30	7.97	6	23.0	
	(initial)	5	6.21	7.57	6	21.6	
	(final)		5.75	7.97	6	23.0	
25 %	(initial)	1	6.11	7.62	6	21.6	
	(final)		5.30	8.10	6	23.0	7.33
	(initial)	3	6.10	7.60	6	21.6	
	(final)		5.29	8.09	6	23.0	
	(initial)	5	6.10	7.64	6	21.6	
	(final)		5.30	8.13	6	23.1	

(Continued)

Table D8 (Concluded)							
Treatment	Replicate	D.O. mg/L 6.00	pH 7.65	Salinity ppt	Temp. °C	NH ₃ , mg/L composite	
50 % (initial)	1						
(final)		5.20	8.13	5	23.1	12.4	
(initial)	3	6.05	7.66	5	21.7		
(final)		5.40	8.15	5	23.0		
(initial)	5	6.00	7.60	5	21.7		
(final)		5.30	8.16	5	23.0		
100 % (initial)	1	5.35	7.60	6	22.0		
(final)		5.50	8.20	6	23.0	21.2	
(initial)	3	5.45	7.67	6	22.0		
(final)		5.39	8.17	6	23.0		
(initial)	5	5.39	7.67	6	21.9		
(final)		5.40	8.17	6	23.1		

Table D9
Water Quality Parameters for *Menidia beryllina* Exposed to R1-HO-TOX Elutriates at 30 o/oo

Treatn	nent	Replicate	D.O. mg/L	рН	Salinity ppt	Temp. °C	NH ₃ , mg/L composite
Contro	ol (initial)	1	5.45	7.83	30	21.7	
	(final)		7.10	7.73	30	23.1	1.05
	(initial)	3	5.98	7.84	30	21.7	
	(final)		7.06	7.67	30	23.1	
	(initial)	5	6.17	7.85	30	21.7	
	(final)		7.08	7.74	30	23.0	
6 %	(initial)	1	5.85	7.85	30	21.7	1.22
	(final)		7.23	7.86	30	23.1	
	(initial)	3	5.88	7.85	30	21.5	
	(final)		7.20	7.84	30	23.1	
	(initial)	5	5.93	7.86	30	21.6	
	(final)		7.23	7.86	30	23.1	
12 %	(initial)	1	5.98	7.85	30	22.0	
	(final)		7.32	7.87	30	23.1	1.36
	(initial)	3	6.13	7.85	30	21.9	
	(final)		6.95	7.88	30	23.1	
	(initial)	5	5.89	7.85	30	21.9	
	(final)		6.65	7.87	30	23.1	
25 %	(initial)	1	6.03	7.85	30	21.8	
	(final)		6.07	7.91	30	23.1	1.27
	(initial)	3	5.95	7.83	30	21.8	
	(final)		6.25	7.91	30	23.0	
	(initial)	5	6.02	7.80	30	21.8	
	(final)		6.03	7.88	30	23.1	

D14

Table D9 (Concluded)							
Treatment		Replicate	D.O. mg/L	рН	Salinity ppt	Temp.	NH ₃ , mg/L composite
50 % (init	tial)	1	5.59	7.70	30	21.8	
(fin	nal)		5.88	7.93	30	23.1	1.22
(init	tial)	3	5.95	7.80	30	21.8	
(fina	al)		6.11	7.92	30	23.1	
(init	tial)	5	5.85	7.80	30	21.7	
(fina	al)		5.64	7.97	30	23.1	
100 % (initi	ial)	1	5.95	7.64	30	21.7	
(fir	nal)		5.58	7.97	30	23.1	1.45
(ini	itial)	3	5.96	7.64	30	21.7	
(fin	nal)		5.54	7.96	30	23.1	
(ìnit	tial)	5	5.93	7.63	30	21.7	
(fir	nal)		5.69	7.95	30	23.1	

Treatment	Replicate	D.O. mg/L	pН	Salinity ppt	Temp. °C	NH ₃ , mg/L composite
Control (initial)	1	6.10	7.24	6	22.2	
(final)		5.08	7.65	6	23.1	1.81
(initial)	3	6.10	7.26	6	22.2	
(final)		5.38	7.57	6	23.1	
(initial)	5	6.06	7.30	6	22.2	
(final)		5.33	7.66	6	23.1	
6 % (initial)	1	6.13	7.47	6	21.7	
(final)		5.21	7.86	6	23.0	4.62
(initial)	3	6.14	7.54	6	21.7	
(final)		5.30	7.84	6	23.1	
(initial)	5	6.21	7.55	6	21.7	
(final)		5.25	7.86	6	23.1	
12 % (initial)	1	6.20	7.50	6	21.4	
(final)		5.00	7.97	6	23.0	6.20
(initial)	3	6.25	7.55	6	21.4	
(final)		5.00	8.00	6	23.0	
(initial)	5	6.20	7.55	6	21.4	
(final)		5.25	7.95	6	23.0	
25 % (initial)	1	6.10	7.63	6	21.7	
(final)		5.23	8.21	6	23.0	5.95
(initial)	3	6.00	7.63	6	21.7	
(final)		5.00	8.20	6	23.1	
(initial)	5	6.10	7.64	6	21.7	
(final)		5.25	8.16	6	23.1	

Treatment	Replicate	D.O. mg/L 6.00	р Н 7.65	Salinity ppt	Temp. °C 21.4	NH ₃ , mg/L composite
50 % (initial)	1			6		
(final)		5.10	8,43	6	23.0	12.4
(initial)	3	6.00	7.66	6	21.4	
(final)		5.01	8.44	6 .	23.0	
(initial)	5	6.00	7.66	6	21.5	
(final)		5.00	8.46	6	23.0	
100 % (initial)	1	5.30	7.66	6	21.5	
(final)		5.00	8.75	6	23.1	22.3
(initial)	3	5.31	7.67	6	21.5	
(final)		5.08	8.75	6	23.0	
(initial)	5	5.23	7.67	6	21.7	
(final)		5.01	8.71	6	23.0	

Form Approved REPORT DOCUMENTATION PAGE OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for falling to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 2. REPORT TYPE 3. DATES COVERED (From - To) REPORT July 2002 Final report 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Field Evaluation of Hopper Dredge Overflow for the Delaware River **5b. GRANT NUMBER** 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER Jerry L. Miller, Michael R. Palermo, Thomas W. Groff 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER U.S. Army Engineer Research and Development Center ERDC/EL TR-02-17 **Environmental Laboratory** 3909 Halls Ferry Road, Vicksburg, MS 39180-6199; U.S. Army Engineer District, Philadelphia **Operations Division** Wanamaker Building 100 Penn Square East, Philadelphia, PA 19107-3390 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S) U.S. Army Engineer District, Philadelphia Philadelphia, PA 19107-3390 11. SPONSOR/MONITOR'S REPORT NUMBER(S) 12. DISTRIBUTION / AVAILABILITY STATEMENT Approved for public release; distribution is unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT Hopper dredges are often loaded past the point of overflow for economic reasons. As the hopper is filled, dredged material is stored in the hopper until overflow begins. The density of the hopper contents is increased by allowing the low-density supernatant to overflow back into the waterway. As the low-density supernatant overflows, the average density of the hopper contents increases. Thus, more material can be transported per trip to the disposal site or facility resulting in an economical loading. There is normally a tradeoff between the potential economic benefits and potential environmental effects. Overflow results in increased water column turbidity, and supernatant solids may be redeposited near the dredge site. Also, if sediments are contaminated, the overflow may result in some release of contaminants to the water column. Therefore, the relationship between dredge production, density of the hopper load, and the rate of material overflow are important variables in maximizing the efficiency of the dredging operation while minimizing harmful contaminant release. (Continued)

Hopper dredges

17. LIMITATION

OF ABSTRACT

Dredging

c. THIS PAGE

UNCLASSIFIED

Overflow

code)

18. NUMBER

OF PAGES

184

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

Dredged material

b. ABSTRACT

UNCLASSIFIED

Dredge production

UNCLASSIFIED

a. REPORT

Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. 239.18

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area