24MDT0184 DA3

March 13, 2025

- 1 Name: Tufan Kundu
- 2 Registration No.: 24MDT0184
- 3 Regression Analysis and Predictive Models Lab
- 4 PMDS504P
- 5 Digital Assessment 3:Residual Analysis

5.1 Problem Statement

You are given a dataset containing various health-related variables for 20 individuals. Your task is to analyze the relationship between Diastolic Blood Pressure (BP) and other predictor variables using simple and multiple linear regression techniques.

5.1.1 Importing the necessary libraries

```
[2]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import statsmodels.api as sm
```

5.1.2 Loading the dataset

```
[4]: df = pd.read_excel("bloodpress.xlsx")
    df.head()
```

```
[4]:
        Pt
              BP
                        Weight
                                  BSA
                                       Duration
                                                   Pulse
                                                           Stress
                  Age
             105
                          85.4
                                 1.75
                                             5.1
                                                      63
                                                               33
         1
                   47
     1
         2
             115
                   49
                          94.2 2.10
                                             3.8
                                                      70
                                                               14
     2
                          95.3
                                             8.2
                                                      72
         3
             116
                                1.98
                    49
                                                               10
     3
             117
                    50
                          94.7 2.01
                                             5.8
                                                      73
                                                               99
         5
                                             7.0
             112
                    51
                          89.4 1.89
                                                      72
                                                               95
```

```
[5]: # Extract the variables
bp = df['BP'] # Response variable
age = df['Age']
```

```
weight = df['Weight']
duration = df['Duration']
```

5.2 Simple Linear Regression (Bp ~ Age)

```
[6]: x_age = sm.add_constant(age)
    model_age = sm.OLS(bp,x_age).fit()
    print("Regression summary: BP vs Age\n")
    print(model_age.summary())
    plt.scatter(age,bp)
    plt.xlabel("Age")
    plt.ylabel("Diastolic Blood Pressure (BP)")
    plt.title("BP vs Age")
    plt.show()
    resid_age = model_age.resid
```

Regression summary: BP vs Age

OLS Regression Results

=========		=======	=====	=====		=======	=======
Dep. Variable: BP		R-sqı	R-squared:				
Model: OLS		OLS	Adj.	Adj. R-squared:			
Method: Least Squa		uares	F-sta	F-statistic:			
Date:		Thu, 13 Mar	2025	Prob	(F-statistic)	:	0.00157
Time: 22:11:56		11:56	Log-l	Log-Likelihood:			
No. Observati	ions:		20	AIC:			116.0
Df Residuals:	;		18	BIC:			118.0
Df Model:			1				
Covariance Type:		nonr	obust				
			=====		DS +	[O OOF	0.075]
	coef	std err		t 	P> t	[0.025	0.975]
const	44.4545	18.728		2.374	0.029	5.109	83.800
Age	1.4310	0.385	,	3.718	0.002	0.622	2.240
======================================		=======	===== 0.767	===== :Durb	======== in-Watson:	=======	1.965
Prob(Omnibus):		0.682		ıe-Bera (JB):		0.766	

Notes:

Skew:

Kurtosis:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

0.277

2.217

Prob(JB):

Cond. No.

0.682

972.

5.3 Simple Linear Regression (BP ~ Weight)

```
[10]: x_weight = sm.add_constant(weight)
    model_weight = sm.OLS(bp,x_weight).fit()
    print("Regression Summary: BP vs Weight\n")
    print(model_weight.summary())
    plt.scatter(weight, bp)
    plt.xlabel("Weight")
    plt.ylabel("Diastolic Blood Pressure (BP)")
    plt.title("BP vs Weight")
    plt.show()
    resid_weight = model_weight.resid
```

Regression Summary: BP vs Weight

OLS Regression Results

Dep. Variable:	ВР	R-squared:	0.903
Model:	OLS	Adj. R-squared:	0.897
Method:	Least Squares	F-statistic:	166.9

Date:	Thu, 13 Mar 2025	<pre>Prob (F-statistic):</pre>	1.53e-10
Time:	22:16:43	Log-Likelihood:	-38.409
No. Observations:	20	AIC:	80.82
Df Residuals:	18	BIC:	82.81
Df Model:	1		

Covariance Type: nonrobust

=========	-=======	========	:=======			========
	coef	std err	t	P> t	[0.025	0.975]
const	2.2053	8.663	0.255	0.802	-15.996	20.406
Weight	1.2009	0.093	12.917	0.000	1.006	1.396
=========						
Omnibus:		9	0.231 Dur	bin-Watson:		1.641
Prob(Omnibus	3):	C	0.010 Jar	que-Bera (JI	3):	6.566
Skew:		1	157 Pro	b(JB):		0.0375
Kurtosis:		4	1.590 Con	d. No.		2.07e+03
=========		========	========			========

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- $\bar{[2]}$ The condition number is large, 2.07e+03. This might indicate that there are strong multicollinearity or other numerical problems.

5.4 Simple Linear Regression (BP ~ Duration)

```
[12]: x_duration = sm.add_constant(duration)
    model_duration = sm.OLS(bp,x_duration).fit()
    print("Regression Summary: BP vs Duration\n")
    print(model_duration.summary())
    plt.scatter(duration, bp)
    plt.xlabel("Duration")
    plt.ylabel("Diastolic Blood Pressure (BP)")
    plt.title("BP vs Duration")
    plt.show()
    resid_duration = model_duration.resid
```

Regression Summary: BP vs Duration

OLS Regression Results

0.086
0.035
1.688
0.210
30.804
125.6
127.6
:=====
).975]
17.337
1.939
2.199
0.752
0.687
22.3
1

Notes

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

5.5 Residual vs Weight plot (from $BP \sim Age model$)

```
[15]: plt.scatter(weight,resid_age)
  plt.axhline(y = 0, color = 'r', linestyle = '--')
  plt.xlabel('Weight')
  plt.ylabel('Residuals from BP ~ Age')
  plt.title('Residuals vs Weight')
  plt.show()
```


5.6 Multiple Linear Regression (BP \sim Age + weight)

```
[17]: x_multi = sm.add_constant(pd.DataFrame({'Age':age,'Weight':weight}))
    model_multi = sm.OLS(bp,x_multi).fit()
    print("Regression summary: BP vs Age + Weight\n")
    print(model_multi.summary())
```

Regression summary: BP vs Age + Weight

OLS Regression Results

===========			==========
Dep. Variable:	BP	R-squared:	0.991
Model:	OLS	Adj. R-squared:	0.990
Method:	Least Squares	F-statistic:	978.2
Date:	Thu, 13 Mar 2025	Prob (F-statistic):	2.81e-18
Time:	22:35:38	Log-Likelihood:	-14.157
No. Observations:	20	AIC:	34.31
Df Residuals:	17	BIC:	37.30
Df Model:	2		
Covariance Type:	nonrobust		

========	========	========	========		.========	========
	coef	std err	t	P> t	[0.025	0.975]
const	-16.5794	3.007	-5.513	0.000	-22.925	-10.234
Age	0.7083	0.054	13.235	0.000	0.595	0.821
Weight	1.0330	0.031	33.154	0.000	0.967	1.099
	========					
Omnibus:		0	.989 Durk	oin-Watson:		1.688
Prob(Omnib	ous):	0	.610 Jaro	que-Bera (JE	3):	0.768
Skew:		0	.101 Prob	o(JB):		0.681
Kurtosis:		2	.061 Cond	d. No.		2.65e+03
=======	========	========	========			========

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 2.65e+03. This might indicate that there are strong multicollinearity or other numerical problems.

5.7 Residual vs Duration plot (from BP ~ Age + weight)

```
[19]: resid_multi = model_multi.resid
  plt.scatter(duration, resid_multi)
  plt.axhline(y = 0, color = 'r', linestyle = '--')
  plt.xlabel("Duration")
  plt.ylabel("Residuals from BP ~ Age + Weight")
  plt.title("Residuals vs Duration")
  plt.show()
```


6 Interpretation & Observations

6.1 1. Significance of Predictor Variables

- BP \sim Age: Significant (p = 0.002). BP increases by 1.43 per year.
- BP \sim Weight: Highly significant (p = 0.000). BP increases by 1.20 per kg.
- BP \sim Duration: Not significant (p = 0.210). Weak relationship.
- $BP \sim Age + Weight$: Both are significant (p = 0.000). Best model.

6.2 2. Goodness-of-Fit (R² Value)

- **BP** ~ **Age:** $R^2 = 0.434$ (Moderate)
- **BP** ~ **Weight:** $R^2 = 0.903$ (Strong)
- BP \sim Duration: $R^2 = 0.086$ (Weak)
- BP \sim Age + Weight: $R^2 = 0.991$ (Best)

6.3 3. Residual Behavior and Model Improvements

• **BP** ~ **Age model:** Residuals plotted against Weight show a pattern, suggesting that including Weight as a predictor can improve the model.

- BP ~ Age + Weight model: Residuals plotted against Duration do not show a pattern, confirming that the model fits well.
- This model can be improved by:
 - 1. Checking for multicollinearity, as the high condition number suggests possible correlation issues.
 - 2. **Adding more predictors** such as BSA, Pulse, or Stress, if they contribute valuable information.
 - 3. Exploring polynomial or interaction terms to capture non-linear relationships if present.
 - 4. Increasing dataset size, which can enhance model generalization and robustness.

6.4 Conclusion

BP is mainly influenced by Weight and Age. The best model is BP \sim Age + Weight (R² = 99.1%). Duration does not contribute significantly. This model can be refined further by checking assumptions, addressing multicollinearity, and considering additional predictors.