Λήμμα **0.0.1.** $A\nu 0 < \alpha < 1/2$, τότε

$$2\alpha < \sin(\pi\alpha) < \pi\alpha$$
.

Aπόδειξη. Θέτουμε $s(\alpha)=\sin(\pi\alpha)-2\alpha$. Τότε s(0)=s(1/2)=0. Αν $s(\alpha)=0$ για κάποιον $\alpha\in(0,1/2)$, τότε εφαρμόζοντας το θεώρημα του Rolle για την παραγωγίσιμη συνάρτηση s στα $[0,\alpha]$ και $[\alpha,1/2]$, βλέπουμε ότι η συνάρτηση $s'(\alpha)=\pi\cos(\pi\alpha)-2$ θα είχε τουλάχιστον δύο ρίζες στο διάστημα (0,1/2). Γνωρίζουμε όμως ότι η συνάρτηση $\cos(x)$ είναι γνησίως φθίνουσα στο διάστημα $(0,\pi/2)$ και συνεπώς η $s'(\alpha)$ είναι γνησίως φθίνουσα στο (0,1/2), το οποίο έρχεται σε αντίφαση με τα παραπάνω. Έτσι συμπεραίνουμε ότι $s(\alpha)\neq 0$ για κάθε $\alpha\in(0,1/2)$. Καθώς τώρα η $s(\alpha)$ είναι συνεχής, διατηρεί πρόσημο στο (0,1/2). Υπολογίζουμε $s(1/4)=(\sqrt{2}-1)/2>0$, και έτσι προκύπτει ότι $s(\alpha)>0$ για κάθε $\alpha\in(0,1/2)$. Το άνω φράγμα τώρα προκύπτει από την γνωστή ανισότητα $|\sin(x)|\leqslant |x|$ για κάθε $x\in\mathbb{R}$ με την ισότητα να ισχύει μόνο για x=0.