Kriti Stock Market Prediction

Problem Statement

Building a Stock Price Predction Model with Machine Learning and Deep Learning Techniques.

- DATASET DESCRIPTION:
 - The dataset consists of train and test data for 4 companies.
 - The features are present in the dataset are :
 - Date
 - Open
 - High
 - Low
 - Close
 - Adj Close
 - Volume.
 - Where 'Close' is the target column.

Data Visualization

MODELS USED

Linear Regression with just one feature

Gave Public LB Score 6.53, Private LB score 6.21

Auto ML, SVRegressor

Didnt give good score in validation dataset, so didn't submit

Linear Regression with multiple features

Gave public LB score 6.50, Private LB score 6.44

LSTM and GRU

LB score was around 50 for new dataset.

XG Boost, Catboost, Random Forest

Didn't work well with the given time series data

Lasso and Ridge regression

Gave similar scores as Linear Regression, hence didn't use for the final dataset.

Problem with Boosting Algorithms

FEATURES ADDED

Cyclic Time features

Features extracted from time stamp

Moving Averages

But was rejected by MI score

Other features

Lags on Adj Close values

Lag features

- Last 15 days:
 - Open
 - Adjusted Close
 - High & Low
 - Volume
- Sum of last 2 days Volume

Features extracted from timestamps

- Day of Week
- Date of Month
- Week of Year
- Month
- Year
- Quarter, Is_Month_Start, Is_Month_End, Is_Quarter_Start, Is_Quarter_End, Is_Year_End

Cyclic Features

- Month_sin, Month_cos
- Day_sin, Day_cos
- Date_sin, Date_cos
- Week_sin, Week_cos

FEATURES

FEATURES

Moving Averages

- Last 7 and 21 days MA of Adj Close
- MACD
- Bollinger Bands
- Exponential Moving Average
- Momentum

Other Features

- Scaled Volume
- Average of High and Low
- Sqrt(High*Low) (experimental)

1.00 - 0.75 - 0.50 - 0.25 - 0.00 - 0.25 - 0.50 - 0.75 - 0.50 - 0.25 - 0.50 - 0.25 - 0.50 - 0.75 - 0.50 - 0.25 - 0.50 - 0.25 - 0.50 - 0.75 - 0.50 - 0.25 - 0.50 - 0.75 - 0.50 - 0.25 - 0.50 - 0.75 - 0.50 - 0.25 - 0.50 - 0.75 - 0.50 - 0.25 - 0.50 - 0.75 - 0.50 - 0.25 - 0.50 - 0.75 - 0.50 - 0.25 - 0.50 - 0.75 - 0.50 - 0.25 - 0.50 - 0.75 - 0.50 - 0.25 - 0.50 - 0.75 - 0.50 - 0.25 - 0.50 - 0.75 - 0.50 - 0.25 - 0.50 - 0.75 - 0.50 - 0.25 - 0.50 - 0.75 - 0.50 - 0.25 - 0.50 - 0.75 - 0.50 - 0.25 - 0.50 - 0.25 - 0.50 - 0.75 - 0.50 - 0.25 - 0.50 - 0.25 - 0.50 - 0.75 - 0.50 - 0.25 - 0.50 - 0.25 - 0.50 - 0.75 - 0.50 - 0.25 - 0.50 - 0.25 - 0.50 - 0.75 - 0.50 - 0.25 - 0.50 - 0.25 - 0.50 - 0.75 - 0.50 - 0.25 - 0.50 - 0.25 - 0.50 - 0.75 - 0.50 - 0.25 - 0.50 - 0.25 - 0.50 - 0.75 - 0.50 - 0.25 - 0.50 - 0.25 - 0.50 - 0.75 - 0.50 - 0.25 - 0.50 - 0.25 - 0.50 - 0.25 - 0.50 - 0.75 - 0.50 - 0.25 - 0.25 - 0.

CYCLIC FEATURES

Linear Regression was all we needed!

We used Buy Today, Sell Tomorrow (BTST) strategy.

Next Level: Ensembling!!

Stacking the regressor

Didn't improve the performace of base models

• Because of overlapping predictions between base models

A Second level model

Neural Network trained on predicted train values with true close as a feature.

Gave less valid score than the base models, so didn't go with it.

Weighted
Average
Ensembling

0.450.55

Thank You!