Probabilistic Population Projections: Theory

Hana Ševčíková

University of Washington, hanas@uw.edu

CSDE Workshop:

Part I (Theory): October 7th, 2025 Part II (Practice): October 9th, 2025 (https://github.com/PPgp/CSDE2025workshop)

Joint work with Adrian E. Raftery, Crystal Yu, Sara Curran, Patrick Gerland

Research supported by NICHD

Motivation

- Populations projections provide predictions of future population sizes for an area.
- Used by governments, private sector, researchers for variety of purposes (planning, decision making, health and social science research etc).
- Traditionally, they are produced deterministically using the cohort-component method (CCM) with no statements of uncertainty.
- Since 2015, the UN Population Division produces probabilistic population forecasts on national level using Bayesian models.
- More recently, methods extended to probabilistic subnational projections (states, counties).

Motivation (cont.)

- ▶ Approach generate probabilistic projections of the individual components of the CCM: total fertility rate (TFR), life expectancy at birth (e₀), migration → probabilistic population projection
- ► The WA Office of Financial Management (OFM) is actively exploring the method for the use in the next official forecast of population in WA counties.

Probabilistic Population Projection

Demographic balancing equation:

$$Pop_t = Pop_{t-1} + Births_t - Deaths_t + Net Migration_t$$

 solved using Cohort Component Method (CCM), while disaggregating the components into sex- and age-specific counts and rates

Probabilistic approach:

- Using probabilistic models, generate sets of trajectories for TFR, e₀ and net migration.
- 2. Convert each trajectory to age-specific rates and counts.
- Apply the CCM to each trajectory of age-specific fertility and mortality rates and migration counts.
- Result: Future trajectories of age- and sex-specific population quantities.

TFR and e_0 : National vs. Subnational Model Objectives

▶ There are established Bayesian Hierarchical Models (BHM) for projecting TFR (Alkema et al. 2011) and e₀ (Raftery et al. 2013) that the UN uses for projections on national level.

Objectives for subnational models:

- Probabilistic approach built on established national BHM;
- Works well for all regions of all countries;
- Yields correlation between regions similar to observed data;
- Is easy to use, understand and implement.

Modeling national TFR (Alkema et al. 2011)

- ▶ Phase II: modelled via a BHM for double-logistic decline function.
- Phase III: BHM based on AR(1) with country-specific long-term means
- **hierarchy**: country's time points \rightarrow country \rightarrow world
- ▶ Result: Country-specific decline curves and AR1 curves
 → Set of future TFR trajectories

National TFR

- Method adopted by the UN for their official fertility projections since the World Population Prospects (WPP) 2012.
- Assessing uncertainty about the past data (Liu & Raftery 2020); adopted in WPP 2022
- ▶ Implemented in bayesTFR (Liu, Ševčíková, Raftery 2023, JSS)

Subnational TFR: Data

Subnational TFR data collected by the UN, from 1950–2010: 47 countries, 1092 regions.

Data Examples

ç

Method for Subnational TFR (Ševčíková et al., 2018)

Scale-AR(1)

Multiply each national trajectory by a region-specific scaling factor that changes slowly over time.

$$f_{r_c,t,i}^{(R)} = \alpha_{r_c,t} f_{c,t,i}^{(C)}$$

$$\alpha_{r_c,t} - 1 = \phi(\alpha_{r_c,t-1} - 1) + \varepsilon_{r_c,t}, \text{ with } \varepsilon_{r_c,t} \stackrel{iid}{\sim} N(0, \sigma_c^2)$$

 $f_{r_c,t,i}^{(R)}$ TFR for region r_c of country c at time t in the i-th trajectory $f_{c,t,i}^{(C)}$ national TFR projection for country c at time t in the i-th trajectory (output of national BHM) $\alpha_{r_c,t}$ regional scaling factor; initialized as $\alpha_{r_c,P} = f_{r_c,P}^{(R)}/f_{c,P}^{(C)}$ (P is the last observed time period) converges to a distribution centered around one ϕ determines the rate of convergence; $\hat{\phi} = 0.925$ (slow)

Results: 1 trajectory out of 2000

Results: Projections for Scale-AR(1)

Three regions of India

Summary of Probabilistic TFR

National model:

Use BHM by Alkema et al. (2011) that

- estimates different phases of the fertility transition, while sharing information between countries, and
- generates a set of future TFR trajectories for each country.

Subnational model:

Use Scale AR(1) by Ševčíková et al. (2018) to scale national TFR trajectories to subnational TFR trajectories.

- ▶ inherits uncertainty from the national projection, while adding slightly more uncertainty contributed by the Scale AR(1).
- ► Implemented in **bayesTFR** R package.

Life expectancy at birth (e_0)

- $ightharpoonup e_0$ reflects overall mortality level of a population.
- ▶ The UN Population Division projects probabilistic *e*₀ for all countries on the national level (Raftery et al. 2013, 2014)
 - Female: Modeled via a BHM for double-logistic gain function.

- ▶ Male: Modeling gap between female and male via a lin. regression.
- ▶ Result: Joint distribution of future female and male e₀
- ► Implemented in **bayesLife** R package.

National e₀: Results Example

Subnational *e*₀: Data

Data from 28 countries, 447 regions (EuroStat, IHME, StatCan, ABS, UN)

Data Examples

Within-country between-region standard deviation

Method for subnational e₀ (Ševčíková & Raftery, 2021)

Shift-AR(1) method

$$\begin{array}{lcl} \mathbf{e}_{r,c,t}^{(R)} & = & \mathbf{e}_{c,t}^{(C)} + \alpha_{r,c,t} \\ \\ \alpha_{r,c,t} & = & \rho \alpha_{r,c,t-1} + \varepsilon_{r,c,t}, \quad \text{with } \varepsilon_{r,c,t} \stackrel{\text{ind}}{\sim} \textit{N}(0,\sigma_{c,t}^2) \end{array}$$

- $ightharpoonup \alpha_{r,c,t}$ is time dependent and additive, modeled via an AR(1)
- $\triangleright \rho$ is constant across countries and regions
- Residual variance $\sigma_{c,t}^2$ varies between countries and is defined as

$$\sigma_{c,t}^2 = \begin{cases} a + b(e_{c,t}^{(C)} - U) & e_{c,t}^{(C)} < U \\ a & e_{c,t}^{(C)} \ge U \end{cases}$$

Using observed data, estimation yields $\hat{\rho}=0.95,~\hat{U}=82.5,~\hat{a}=0.0482,~\text{and}~\hat{b}=-0.0154$

Subnational predictive distribution of female e_0 (USA)

Crossover patterns for Shift-AR(1): 1 trajectory out of 1000

Probabilistic Subnational Mortality Rates

Each trajectory of e_0 converted into one trajectory of m_x (Ševčíková et al 2016; MortCast R package) \longrightarrow probabilistic distribution of m_x

Summary of Probabilistic Mortality

National model:

- Generate a set of future female e₀ trajectories for each country via an BHM by Raftery et al. (2013).
- Generate a set of future male e₀ trajectories via the gap model by Raftery et al. (2014).
- ▶ This results in a joint distribution between the future female and male e₀.

Subnational model:

- Use Shift AR(1) by Ševčíková & Raftery (2021) to shift national female e₀ trajectories to subnational e₀ trajectories.
- ▶ Apply the gap model to derive subnational **male** *e*₀ trajectories.
- ▶ This results in a joint distribution between the future female and male e₀ for each subnational unit.
- ▶ Implemented in **bayesLife** R package.
- ► The **MortCast** package can be used to disaggregate *e*₀ into age-specific mortality rates.

Probabilistic Projection of Net Migration

- Model of Azose & Raftery (2015) for projecting international net migration rates.
- ▶ Bayesian hierarchical AR(1) model

$$(r_{c,t} - \mu_c) = \phi_c(r_{c,t-1} - \mu_c) + \epsilon_c$$

- Yield trajectories of future net migration rates for each country.
- Migration rates are converted to net migration counts within CCM.
- ▶ Optional constraints on population density and/or zero sum.
- Works well for projecting subnational migration.
- ▶ In the BHM setting, migration experience shared among regions.
- Results in a set of future trajectories of net migration rates (converted to counts) for each region.
- ► Implemented in the bayesMig R package

Probabilistic projection of migration - Examples

Deterministic vs. probabilistic migration

Probabilistic Population Projection

Demographic balancing equation:

$$Pop_t = Pop_{t-1} + Births_t - Deaths_t + Net Migration_t$$

- solved using Cohort Component Method (CCM), while disaggregating the components into sex- and age-specific counts and rates
- Probabilistic approach:
 - Using probabilistic models, generate sets of trajectories for TFR, e₀ and net migration.
 - 2. Convert each trajectory to age-specific rates and counts.
 - Apply the CCM to each trajectory of age-specific fertility and mortality rates and migration counts.
 - Result: Future trajectories of age- and sex-specific population quantities.
- ► Implemented in the bayesPop R package

Subnational Probabilistic Population Projection

- Methodology applied to 39 counties of Washington state (12 counties smaller than 25 000).
- ▶ For each county, TFR and e_0 projections generated to 2050.
- ▶ Special treatment of TFR in counties with large college population → projected noncollege TFR
- ▶ Net migration BHM excluded 12 small counties from influencing the global experience.
- Cohort-component method applied to each trajectory of the three components of population change.
- College population was excluded from the CCM and added back after advancing the remaining population.
- Yu et al. (2023), Demography

Probabilistic Population Projection for WA counties

Probabilistic Migration Projection for WA counties

Age-specific Net Migration

 Practitioners often distribute total net migration (= difference between in- and out-migration) into ages via the Rogers-Castro model

- ▶ The Rogers-Castro model was developed for out-migration.
- ► For subnational population projections, applying Rogers-Castro to net migration can yield unrealistic future population age patterns.

Age-specific Net Migration: Flow Difference Method (FDM)

(Ševčíková, Raymer & Raftery, 2024, arXiv:2411.09878)

Idea:

- 1. Split total net migration into total in-migration and total out-migration.
- 2. Estimate Rogers-Castro parameters for each flow and use it to distribute each total flow into age-specific in- and out-migration.
- 3. Take their difference.

FDM: Use in Probabilistic Population Projections

Jefferson county:

Probabilistic Indicators: Potential Support Ratio

Probabilistic Population Projections: Workflow

Summary

- Developed framework for probabilistic projections of subnational population.
- It includes:
 - New methods for probabilistic projections of subnational TFR and e_0 .
 - Based on established national models used by the UN.
 - Method for probabilistic projection of net migration applied to subnational units.
 - Special treatment of large college population.
- Methods implemented in publicly available software: R packages bayesTFR, bayesLife, MortCast, bayesMig, bayesPop

hanas@uw.edu https://bayespop.csss.washington.edu