

# NASA Ka-Band RF Propagation Studies

*Dr. Roberto J. Acosta*

NASA Glenn Research Center  
Cleveland, Ohio 44135

*European Cooperation in the Field of Scientific and  
Technical Research (COST Action ICO802)*

*Management Committee Meeting (MCM7)*

*Portsmouth, London  
April 16, 2012*

E-mail: [Roberto.J.Acosta@NASA.gov](mailto:Roberto.J.Acosta@NASA.gov),  
Tel: (216)433-6640, Fax: (216)433-8705

# Outline of Presentation

- ✓ **Introduction**
- ✓ **Hardware Description**
- ✓ **Site Characteristics**
- ✓ **Results Highlights**

# NASA Ka-Band RF Propagation Studies

## Task Description:

- Collect phase decorrelation, attenuation, and surface weather data, as necessary, at candidate sites.
- Perform a statistical characterization of the diurnal, annual and secular path length fluctuations and attenuation to provide a good understanding of Ka-band propagation effects.
- Provide data for RF Propagation model validation at Ka-Band.
- Develop tools to mitigate these effects
- Open communications with the Science community to explore potential relevance of our weather data gathered through our propagation studies for Earth Science applications.

## Measurement Instruments:



Site Test  
Interferometer



Microwave Receivers  
(Ka-band Radiometers)

## Benefits:

- Provides accurate determination of expected Ka-band attenuation due to atmospheric gaseous components and rain over long time scales (years)
- Provides accurate determination of expected path length/Time delay variation due to atmospheric effects over long time scales (years)
- Provides mission planning data to manage expectations and maximize mission success and data throughput
- Provide validation to existing ITU-R and global propagation models at NASA operational sites

## GRC POC and Partners:

### GRC PI:

Dr. Roberto Acosta – GRC  
Tel: 216 433-6640  
[roberto.j.acosta@nasa.gov](mailto:roberto.j.acosta@nasa.gov)

### PARTNERSHIPS:

- Guam and White Sands - Site Test Interferometer  
Armen Caroglanian – GSFC
- Goldstone Site - Site Test Interferometer  
David Morabito – JPL
- Svalbard, Norway - Ka-Band Monitoring Station  
Armen Caroglanian - GSFC

# NASA Ka-Band RF Propagation Studies



# Basic GRC Interferometer Architecture



# Basic GRC DRX Architecture



DRX = Digital Receiver

# Measurements 101

Goldstone, White Sands and GUAM

## INSTRUMENT: INTERFEROMETER



Phase Decorrelation  
Due to Water vapor

Goldstone, White Sands and GUAM

## INSTRUMENT: BEACON RECEIVER



Attenuation due to Gases,  
Clouds and Rain

Goldstone and Svalbard

## INSTRUMENT: RADIOMETER



Attenuation due to Gases and  
Non-Precipitating Clouds

# Svalbard Operations and Data Collection



## Longyearbyen, Svalbard

|        |                                        |                      |
|--------|----------------------------------------|----------------------|
| Site   | Latitude                               | 78.22733333°         |
|        | Longitude                              | E15.42060000°        |
|        | Altitude                               | 1512 ft              |
| Sensor | Multi Channel Radiometer (Total Power) |                      |
|        | <b>Elevation Angle</b>                 | <b>10.0 - 45.00°</b> |
|        | Azimuth                                | 180.0°               |
|        | Frequency                              | 20 – 30 GHz          |
|        | Polarization                           | Linear V             |

Instrument : Ka-Band Radiometer

Data Collection Started : May 2011 ✓

# Svalbard Operations and Data Collection

Svalbard, Norway  
Operational May 15<sup>th</sup>, 2011



# Svalbard Operations and Data Collection

## Highlights of Installation

Milestone 1 (as per CDR) --- Radome, Antenna Structures and Pad Integration



D. Raible



J. Nessel



KSAT Team

# Svalbard Operations and Data Collection

## Highlights of Installation

**Milestone 2 (as per CDR)**--- Pad Power, Electronics, Weather Station and Radiometer Installation



Power



Comm. Electronics



Weather Station



Radiometer Antenna

# Svalbard Operations and Data Collection

## Highlights of Installation

Milestone 3 (as per CDR) --- System Check-out and Operator Training



Left to Right --- J. Jackson (GSFC),  
A. Caroglanian (GSFC), Sten Christian (KSAT),  
P. Harbath (GRC), and B. Frantz (GRC)



KSAT Operators

# Svalbard Operations and Data Collection



# Svalbard Operations and Data Collection



# Guam Operations and Data Collection



| GUAM , USA |                                                                                  |                                                                  |
|------------|----------------------------------------------------------------------------------|------------------------------------------------------------------|
| Baseline   | Azimuth<br><b>Length</b>                                                         | 180° (N-S)<br><b>600 m</b>                                       |
| Satellite  | Orbital Longitude<br><b>Elevation Angle</b><br>Azimuth<br>Beacon<br>Polarization | UFO 8<br>171 °<br><b>38 °</b><br>253°<br>20.7 GHz<br>Circular RH |
|            | <b>South Radome</b><br>Elevation<br>North Latitude<br>East Longitude             | = 464 ft<br>= 13 Deg. 35.200'<br>= 144 Deg. 50.455'              |
|            | <b>South Radome</b><br>Elevation<br>North Latitude<br>East Longitude             | = 464 ft<br>= 13 Deg. 35.200'<br>= 144 Deg. 50.455'              |

Instrument : Two-Element Ka-Band Interferometer  
Data Collection Started : May 2010 ✓

# Guam Operations and Data Collection



- LARGEST DIVERSITY GAIN IS OBSERVED DURING MEDIUM TO HEAVY RAIN PERIODS
- DIVERSITY GAIN IS MORE PRONOUNCE WITH LOCAL RAIN FALL (AT THE ANTENNA)

# Guam Operations and Data Collection



# Goldstone Operations and Data Collection



## Goldstone , California

|                          |                                                                                             |                                                                                             |
|--------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| Baseline                 | Azimuth<br><b>Length</b>                                                                    | 90° (E-W)<br><b>252 m</b>                                                                   |
| Satellite                | ANIK F2<br>Orbital Longitude<br><b>Elevation Angle</b><br>Azimuth<br>Beacon<br>Polarization |                                                                                             |
|                          |                                                                                             | 111.1°<br><b>48.63°</b><br>170.20°<br>20.2 GHz<br>Linear V (7.95°)                          |
| <b>East Antenna (51)</b> |                                                                                             | Elevation = 1039.122 m<br>North Latitude = 35.24773789°<br>East Longitude = 116.791462936°  |
| <b>West Antenna (59)</b> |                                                                                             | Elevation = 1051.452 m<br>North Latitude = 35.247164164°<br>East Longitude = 116.794120592° |

Instrument : Two-Element Ka-Band Interferometer

Data Collection Started : May 2007 ✓

# Goldstone Operations and Data Collection



Bld 59 Antenna

LAT: 35 14 49.78389

LON: 116 47 38.81742

Elevation = 1086 m

Bld 51 Antenna

LAT: 35 14 51.77432

LON: 116 47 29.18234

Elevation = 1072 m

# White Sands Operations and Data Collection



| White Sands, New Mexico |                   |            |
|-------------------------|-------------------|------------|
| Baseline                | Azimuth           | 180° (N-S) |
| <b>Length</b>           | <b>208 m</b>      |            |
| Satellite               | ANIK F2           |            |
|                         | Orbital Longitude | 111.1°     |
| <b>Elevation Angle</b>  | <b>51.8°</b>      |            |
| Azimuth                 | 188.3°            |            |
| Beacon                  | 20.2 GHz          |            |
| Polarization            | Linear V (6.95°)  |            |
|                         |                   |            |
| West Antenna (North)    |                   |            |
| Elevation               | = 4812 ft         |            |
| North Latitude          | = 32.5441333°     |            |
| East Longitude          | = 1066139.°       |            |
|                         |                   |            |
| West Antenna (South)    |                   |            |
| Elevation               | = 4821 ft         |            |
| North Latitude          | = 32.5422667°     |            |
| East Longitude          | = 106.61391667°   |            |

Instrument : Two-Element Ka-Band Interferometer

Data Collection Started : Feb 2009 ✓

# GRC Total Power Radiometer

SOLUTION --In-House Developed (Very Low Cost) Ka-Band Single Channel Radiometer



# GRC Total Power Radiometer



# GRC Total Power Radiometer



## Thermal Design Performance







# Appendix!



# Physics 101

## Attenuation

**Rain**

Seminar is about this component !!!

**Gaseous**

**Clouds**

**Specific Attenuation  
(power law relationship)**

**Specific  
Attenuation**

**Specific  
Attenuation**

$$\gamma = k \left( RR_{.01\%} \right)^\alpha \quad \text{dB/km}$$

ITU-R

$$k_{H_2O}(f, P(s), T(s), \rho(s)) \quad \text{dB/km}$$
$$k_{O_2}(f, P(s), T(s), \rho(s)) \quad \text{dB/km}$$

Ulaby, et all

$$\gamma = 0.4343 \left( \frac{6\pi}{\lambda \rho_d} \right) \text{Im} \left( -\frac{\varepsilon - 1}{\varepsilon + 1} \right) \rho \quad \text{dB/km}$$

NTIA Report 87-225

# How is the data utilized ?

*The data may be used* differently dependent on which phase of the mission/project the data becomes available to the system engineer.

## DESIGN PHASE

### Attenuation data :

- The site specific attenuation data will be used by the system engineer (link designer) to create cumulative distribution functions of the amplitude /attenuation to establish the minimum service margin (goal: avoiding overdesign) to provide the required or design system availability (e.g. 90% ) due to rain or weather outages.
- The site specific attenuation data will be used by the system engineer (link designer) to effectively design and implement adaptive rain fade techniques to increase system availability and link reliability.

Phase data: The site specific phase data will be used by the system engineer (link designer) to create cumulative distribution functions of the phase decorrelation to determine the extent to which a particular site (e.g., Guam, White Sands, Goldstone, etc.) is capable of supporting widely distributed antenna systems for future NASA Ka-Band communications. The phase data currently collected at White Sands and Goldstone will enable the SCaN system planning office in determining if arraying of antennas (e.g. 34 m) for uplinks is feasible.

# How is the data utilized ?

The data may be used differently dependent on which phase of the mission/project the data becomes available to the system engineer.

## OPERATIONAL PHASE

### Attenuation data :

- Assuming that the system design was not good enough to overcome most of the rain outages or if it is desired to increase the service availability due to rain, the attenuation data will be used by the system engineer (link designer) to effectively design and implement adaptive rain fade techniques to increase system availability and link reliability.
- **COST SAVINGS LESSON LEARNED:** *The ACTS system was a test-bed for testing rain fade compensation techniques. The following techniques were shown to be very effective in mitigating medium to severe rain fades at 99.99 % of the time.*
  - a. Adaptive uplink-power control
  - b. Adaptive data rate
  - c. Ground feed radomes