Assignment 3 of MATP6610/4820

(Due on Feb-15-2019 in class)

Problem 1

Let $g(\mathbf{x}) = \|\mathbf{x}\|_2$ for $\mathbf{x} \in \mathbb{R}^n$.

- 1. (For 4820 students:) Let n = 2. Evaluate the proximal mapping \mathbf{prox}_g at $\mathbf{y} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $\mathbf{y} = \begin{bmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix}$.
- 2. (For 6610 students:) For general $n \ge 1$, give the explicit formula of $\mathbf{prox}_q(\mathbf{y})$.

Problem 2

Consider the unconstrained quadratic minimization problem:

$$\underset{\mathbf{x}}{\text{minimize}} f(\mathbf{x}) = \frac{1}{2} \mathbf{x}^{\top} \mathbf{A} \mathbf{x} - \mathbf{b}^{\top} \mathbf{x} \tag{QuadMin}$$

where $\mathbf{A} \in \mathbb{R}^{n \times n}$ is a symmetric positive definite matrix, and $\mathbf{b} \in \mathbb{R}^n$.

- 1. Let $\mathbf{A} = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} -3 \\ 0 \end{bmatrix}$. Set the initial vector $\mathbf{x}^0 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$. Do by hand three iterations of the BB method. Your first iteration should be steepest gradient descent with exact line search, and the second and third iterations should use Option-I BB stepsize.
- 2. Use the instructor's provided file quadMin_BB.m to write a Matlab function quadMin_BB with input \mathbf{A} , \mathbf{b} , initial vector $\mathbf{x}0$, and tolerance \mathbf{tol} , and with stopping condition $\|\nabla f(\mathbf{x}^k)\| \leq \text{tol}$. Also test your function by running the provided test file test_BB.m and compare to the instructor's function. Print your code and the results you get.

Problem 3

Consider the constrained quadratic minimization problem:

$$\underset{\mathbf{x}}{\text{minimize}} f(\mathbf{x}) = \frac{1}{2} \mathbf{x}^{\top} \mathbf{A} \mathbf{x} - \mathbf{b}^{\top} \mathbf{x}, \text{ s.t. } l_i \leq x_i \leq u_i, \forall i = 1, \dots, n, \tag{C-QuadMin}$$

where $\mathbf{A} \in \mathbb{R}^{n \times n}$ is a symmetric positive definite matrix, $\mathbf{b} \in \mathbb{R}^n$, and $\mathbf{l} \in \mathbb{R}^n$ and $\mathbf{u} \in \mathbb{R}^n$ are lower and upper bounds.

- 1. Let $\mathbf{A} = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}$, $\mathbf{b} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $l_1 = l_2 = 0$, and $u_1 = u_2 = 1$. Set the initial vector $\mathbf{x}^0 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$. Do by hand two iterations the projected gradient method with constant step size $\alpha_k = 0.5$, $\forall k$
- 2. Use the instructor's provided file quadMin_pg.m to write a Matlab function quadMin_pg with input A, b, l, u, initial vector x0, and maximum iteration number maxit. Also test your function by running the provided test file test_pg.m and compare to the instructor's function. Print your code and the results you get.
- 3. Use the instructor's provided file quadMin_apg.m to write a Matlab function quadMin_apg with input A, b, l, u, initial vector x0, and maximum iteration number maxit. Also test your function by running the provided test file test_apg.m and compare to the instructor's function. Print your code and the results you get.

Problem 4 (For 6610 students)

Suppose we have two iterative algorithms \mathcal{A} and \mathcal{B} for solving the problem

$$\underset{\mathbf{x} \in \mathbb{R}^n}{\text{minimize}} f(\mathbf{x}).$$

Denote \mathbf{x}^k as the k-th iterate and \mathbf{x}^* one optimal solution. For the algorithm \mathcal{A} , its periteration complexity is 2n, and its convergence rate is

$$f(\mathbf{x}^k) - f(\mathbf{x}^*) \le \frac{C_0}{k}, \, \forall k \ge 1, \tag{1}$$

where C_0 is a constant depending on initial point. For the algorithm \mathcal{B} , its per-iteration complexity is $4n^2$, and its convergence rate is

$$f(\mathbf{x}^k) - f(\mathbf{x}^*) \le C_0 \eta^k, \forall k \ge 1,$$

where C_0 is the same constant as that in (1), and $\eta \in (0,1)$ is a constant.

- 1. Given $\varepsilon > 0$, suppose we want to have a point \mathbf{x}^k such that $f(\mathbf{x}^k) f(\mathbf{x}^*) \le \varepsilon$. Estimate from the convergence rate results how many iterations each algorithm would require.
- 2. We measure efficiency by the total complexity (i.e., per-iteration complexity multiplying by iteration number). Discuss how small ε should be such that the algorithm \mathcal{B} is more efficient.