derivabilites

Définition 1

Soit f une fonction définie sur un intervalle ouvert contenant a.

On dit que f est dérivable en a s'îl existe un nombre réel ℓ tel que : $\lim_{h\to 0} \frac{f(a+h)-f(a)}{h} = \ell$ ou encore

$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a} = \ell$$

Le réel ℓ , lorsqu'il existe, est appelé le nombre dérivé de f en a , il noté f'(a)

(*) Si f est dérivable en a alors la courbe représentative de f admet au point M(a, f(a)) une tangente d'équation : y = f'(a)(x-a) + f(a)

Le vecteur directeur de cette tangente : est $\vec{u} \begin{pmatrix} 1 \\ f'(a) \end{pmatrix}$

Exemple:

Soit $f: x \mapsto x^3$. Montrer que f est dérivable en a où a est réel quelconque.

$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a} = \lim_{x \to a} \frac{x^3 - a^3}{x - a} = \lim_{x \to a} \frac{(x - a)(x^2 + a^2 + ax)}{x - a} = \lim_{x \to a} (x^2 + a^2 + ax) = 3a^2$$
alors f est dérivable en a et on a : f'(a) = 3a^2

Définition 2

Soit f une fonction dont le domaine de définition contient un intervalle de la forme :]a-h , a] (h > 0)

On dit que f est dérivable à gauche en a s'îl existe un nombre réel (tel que : $\lim_{h\to 0^-} \frac{f(a+h)-f(a)}{h} = \ell'$ ou

encore
$$\lim_{x \to a^{-}} \frac{f(x) - f(a)}{x - a} = \ell'$$

Le réel ℓ' , lorsqu'il existe, est appelé le nombre dérivé de f à gauche en a, il noté $f'_g(a)$.

Définition 3

Soit f une fonction dont le domaine de définition contient un intervalle de la forme : [a, h+a] (h>0)

On dit que f est dérivable à droite en x_0 s'il existe un nombre réel ℓ'' tel que : $\lim_{h\to 0^+} \frac{f(a+h)-f(a)}{h} = \ell''$ ou

encore
$$\lim_{x \to a^+} \frac{f(x) - f(a)}{x - a} = \ell''$$

Le réel ℓ'' , lorsqu'îl existe, est appelé le nombre dérivé de f à droite en a, il noté $f'_d(a)$

Conséquences :

1°) f est dérivable en a si et seulement si $f'_g(a) = f'_d(a)$ nombre fini

2°)Si f est dérivable à droite de a alors la courbe représentative de f admet au point M(a, f(a)) une demi tangente T_d d'équation : T_d : = f(a)(x-a)+f(a) et $x \ge a$

3°)Si f est dérivable à gauche de a alors la courbe représentative de f admet au point M(a, f(a)) une demi tangente T_g d'équation : T_g : $y = f'_g(a)(x-a) + f(a)$ et $x \le a$

Interprétation graphiques : $\lim_{x\to a} \frac{f(x)-f(a)}{x-a} = \infty$ ou encore $\lim_{h\to 0} \frac{f(a+h)-f(a)}{h} = \infty$

Si:	Interprétation graphique :
$\lim_{x \to a^{+}} \frac{f(x) - f(a)}{x - a} = -\infty$ ou $\lim_{x \to a^{-}} \frac{f(x) - f(a)}{x - a} = -\infty$	C_f admet en point $M(a,f(a))$ un demi tangente verticale dirigé vers le haut d'équation : $x = a$ et $y \ge f(a)$
$\lim_{x \to a^{-}} \frac{f(x) - f(a)}{x - a} = +\infty \text{ ou } \lim_{x \to a^{+}} \frac{f(x) - f(a)}{x - a} = -\infty$	alors C_f admet en point $M(a, f(a))$ un demi tangente verticale dirigé vers le bas d'équation : $x = a$ et $y \le f(a)$

Exemple:

Etudier la dérivabilité de f à droite de point d'abscisse x = 0 et interpréter la résultat tel que : f(x)

 $\lim_{x\to 0^+} \frac{f(x) - f(0)}{x - 0} = \lim_{x\to 0^+} \frac{\sqrt{x}}{x} = \lim_{x\to 0^+} \frac{1}{\sqrt{x}} = +\infty \text{ alors la courbe alors } C_f \text{ admet en point } M(0,0) \text{ un demi tangente}$

verticale dirigé vers le haut d'équation : x = 0 et $y \ge 0$

Théorème:

Soit f une fonction strictement monotone sur un intervalle I. On a alors les propriétés suivantes :

- (*) la fonction f est une bijection de I sur f(I)
- (*)La fonction f^{-1} est une bijection de f(I) sur I et on $a: (x \in I, y = f(x)) \Leftrightarrow (y \in f(I), x = f^{-1}(y))$
- (*)La fonction f^{-1} est strictement monotone sur f(I) et a la même sens de variations que f.
- (*) Les courbes représentatives de f et f^{-1} , dans un repère orthonormé, sont symétriques par rapport à la première bissectrice du repère (y = x)
- *)Si est du plus f est continue sur I alors f -1 est continue sur f(I)
- *)Si est du plus f est dérivable sur I et $f'(x) \neq 0$ pour tout x de I alors : $(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}$ pour tout x de f(I)

Théorème des accroissements finis

Soit f une fonction continue sur un intervalle fermé borné [a,b] et dérivable sur]a,b[.

Alors il existe au moins un élément x_0 de]a,b[tel que : $f'(x_0) = \frac{f(b) - f(a)}{b - a}$

Soit f une fonction continue sur [a,b] et dérivable sue]a,b[

- $Si\ f'(x) \ge 0\ sur\ [a,b]\ alors\ f\ est\ croissante\ sur\ [a,b]$
- $Si\ f'(x) > 0\ sur\ [a,b]\ alors\ f\ est\ strictement\ croissante\ sur\ [a,b]$
- $Si\ f'(x) \leq 0\ sur\ |a,b|\ alors\ f\ est\ décroissante\ sur\ |a,b|$
- $Si\ f'(x) < 0\ sur\]a,b[\ alors\ f\ est\ strictement\ d\'ecroissante\ sur\ [a,b]$
- $Si\ f'(x) = 0\ sur\ [a,b]\ alors\ f\ est\ constante\ sur\ [a,b]$

Soit f une fonction continue sur un intervalle fermé borné [a,b] et dérivable sur]a,b[.

Si: existe deux réels m et M tels que : $m \le f'(x) \le M$ pour tout x de [a,b]

On a alors :
$$m \le \frac{f(b) - f(a)}{b - a} \le M$$

On a alors: $m \le \frac{f(b) - f(a)}{b - a} \le M$ Si pour tout x de Ja,b[: $|f'(x)| \le k$ alors $|f(b) - f(x)| \le kb - 1$

- *)Si f admet un extremum local en x_0 alors $f'(x_0)$
- *)Si f' s'annule en x_0 en changeant de signe alors f'admet un extremum local en x_0 .

Point d'inflexion

Soit x_0 un réel et f une fonction deux fois dérivable sur un intervalle ouvert contenant x_0 . Si f" s'annule en x_0 , en changeant de signe, dors le point $I(x_0, f(x_0))$ est un point d'inflexion.

Tableau de dérivé :

ravieau ae aerive :			
$Fonction\ f$	Fonction dérivée f'	Domaine de définition de f'	
$F(x)=k \ (constante)$	$ (() \rangle F'(x) = 0$	R	
F(x)=x	F'(x) = 1	R	
F(x)=ax+b	F'(x) = a	R	
$F(x) = x^n \ (n \in Z^*)$	$F'(x) = nx^{n-1}$	$R si n>0$; $R^* si n<0$	
$F(x) = \sqrt{x}$	$F'(x) = \frac{1}{2\sqrt{x}}$	R^* +	
F(x)	$F'(x) = -\frac{1}{x^2}$	R^*	
$E(x) = \cos(x)$	$F'(x) = -\sin(x)$	R	
$F(x) = \sin(x)$	$F'(x) = \cos(x)$	R	
F(x) = tan(x)	$F'(x) = 1 + \tan^2(x) = \frac{1}{\cos^2(x)}$	$R - \left\{ k \frac{\pi}{2}, k \in Z \right\}$	
$F(x) = \cos(ax + b)$	$F'(x) = -a \sin(ax+b)$	R	
$F(x)=\sin(ax+b)$	$F'(x) = a \cos(ax+b)$	R	
F(x)= $tan(ax+b)$	$F'(x) = a(1 + tan^2(ax+b))$	$R - \left\{ k \frac{\frac{\pi}{2} - b}{a}; k \in \mathbb{Z} \right\}$	

Opérations sur les dérives

Lorsque u et v sont des fonction dérivable sur un intervalle I

Fonction	Dérivée	Conditions
u + v	u'+v'	
$k.u \ (k = constante)$	$\frac{u \cdot v}{k \cdot u'}$	
u.v	u'.v + u.v'	
1	U'	$v \neq 0 \ sur \ I$
$\frac{-}{v}$	$-\frac{1}{U^2}$	
u	$\underline{u'.v-u.v'}$	$v \neq 0 \ sur \ I$
\overline{v}	U^2	4()
$u^n \ (n \in Z^*)$	$n.u'.u^{n-1}$	$u > 0 sur I si n \le 0$
\sqrt{u}	$\underline{u'}$	u > 0 sur I
	$\overline{2\sqrt{u}}$	()
$v \circ u$	$u'\!\!\times\!\!(v'\!\!\circ\! u)$	60
<u> </u>		<u> </u>

PRIMITIVES

On note par , I : un intervalle de R et f une fonction définie sur I

Définition :

Une primitive de f sur I est une fonction F dérivable sur I et telle que : pour tout x de I on a : F'(x) = f(x)

Théorème 1

Toute fonction continue sur I admet une primitive sur I

Théorème 2

Soit f une fonction continue sur I, alors f admet une infinité de primitives sur I et si F est l'une d'entres elles, toute autre primitive G de f sur I est définie par : G(x) = F(x) + constante

Théorème 3

Soit f une fonction continue sur I. x_0 est un réel donné de I et y_0 est un réel donné. Alors il existe un primitive G de f sur I et une seule telle que $G(x_0) = y_0$

Théorème 4

F et G sont des primitives respectives de f et g sur I, alors :aF+ bG est une primitive de af + bg sur

Primitives des fonctions usuelles

F désigne une primitive de la fonction f sur un intervalle I et a , ω , φ des réels avec $\omega \neq \emptyset$

f	I	F	
$x \mapsto a$	R	$x \mapsto ax + c$	
$x \mapsto x^n, n \in N^*$	R	$x \mapsto \frac{x^{n+1}}{n+1} + c$	
$x \mapsto \frac{1}{x^n}, n \in N^* - \{1\}$	$]0,+\infty[ou]-\infty,0[$	$x \mapsto \frac{x^{-n+1}}{-n+1} + c$	
$x \mapsto \sqrt{x}$	[0,+∞[$x \mapsto \frac{2}{3}x\sqrt{x} + c$	
$x \mapsto \cos x$	R	$x \mapsto \sin x + c$	
$x \mapsto \sin x$	R	$x \mapsto -\cos x + c$	
$x \mapsto \sin(\omega x + \varphi)$	R	$x \mapsto -\frac{1}{\omega}\cos(\omega x + \varphi) + c$	
$x \mapsto \cos(\omega x + \varphi)$	R	$x \mapsto \frac{1}{\omega} \sin(\omega x + \varphi) + c$	
$x \mapsto 1 + tan^2 x$	$\left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$	$x \mapsto tan x + c$	

Calcul de primitives

F désigne une primitive de la fonction four un intervalle I et u et v deux fonctions dérivable sur I.

f	condition	F
$u'u^n, n \in N^*$		$\underline{u^{n+1}}$
		n+1
u'v+v'u		u.v
$\frac{u' + v u}{\frac{u'}{u^n}, n \in N^* - \{1\}}$	$\forall x \in I, u(x) \neq 0$	$\frac{u^{-n+1}}{-n+1}$
$\frac{u'v-v'u}{v^2}$	$\forall x \in I, \ v(x) \neq 0$	$\frac{u}{v}$
$\frac{u'}{\sqrt{u}}$	$\forall x \in I, u(x) > 0$	$2\sqrt{u}$
$u'\sqrt{u}$	$\forall x \in I, u(x) \ge 0$	$\frac{2}{3}u\sqrt{u}$
$u'(w' \circ u)$	w est dérivable sur $u(I)$	$w \circ u$

