Intervals, Transformations, and Slope Solution (version 4)

1. The function f is graphed below.

Indicate the following intervals using interval notation. Remember, you can use \cup between two intervals to indicate the union. Except for range, all intervals will indicate x values; this is standard.

Feature	Where
Positive	$(-7, -5) \cup (-3, -2)$
Negative	$(-10, -7) \cup (-5, -3)$
Increasing	$(-8, -6) \cup (-4, -2)$
Decreasing	$(-10, -8) \cup (-6, -4)$
Domain	(-10, -2)
Range	(-10, 10)

Intervals, Transformations, and Slope Solution (version 4)

2. In the four graphs below, y = f(x) is graphed as a dotted line. Please add the indicated transformed graphs indicated by the equations below using a solid line.

3. Let function g be defined by the table below. Use the formula $\frac{g(x_2)-g(x_1)}{x_2-x_1}$ to find the average rate of change between $x_1=39$ and $x_2=75$. Express your answer as a reduced fraction.

$$\begin{array}{c|cc} x & g(x) \\ \hline 16 & 75 \\ 39 & 16 \\ 58 & 39 \\ 75 & 58 \\ \hline \end{array}$$

$$\frac{f(75) - f(39)}{75 - 39} = \frac{58 - 16}{75 - 39} = \frac{42}{36}$$

The greatest common factor of 42 and 36 is 6. Divide numerator and denominator by the greatest common factor.

$$AROC = \frac{7}{6}$$

2