Richiami matematici

a.a. 2021-2022

Corso di Fondamenti di Informatica - 1 modulo Corso di Laurea in Informatica Università di Roma "Tor Vergata"

Prof. Giorgio Gambosi

Insiemi di particolare interesse

simbolo	descrizione
N	naturali
\mathbb{N}^+	naturali positivi
\mathbb{Z}	interi
\mathbb{Z}^+	interi positivi (coincide con \mathbb{N}^+)
\mathbb{Z}^-	interi negativi
Q	razionali
\mathbb{Q}^+	razionali positivi
\mathbb{Q}^-	razionali negativi
${ m I\!R}$	reali
${ m I\!R}^+$	reali positivi
\mathbb{R}^-	reali negativi

Sintassi del calcolo proposizionale

- Insieme non vuoto di elementi denominati *simboli proposizionali* $\mathcal{A} = \{A, B, C, \ldots\}.$
- Costanti proposizionali \top e \bot . Per contrapposizione, i simboli proposizionali sono anche denominati *variabili proposizionali*.
- Connettivi logici \neg , \lor e \land .
- Separatori '(' e ')'.

Proposizioni

- se *a* è una variabile o costante proposizionale allora *a* è una proposizione;
- se α è una proposizione allora $(\neg \alpha)$ è una proposizione;
- se α e β sono proposizioni allora $(\alpha \lor \beta)$ e $(\alpha \land \beta)$ sono proposizioni;
- tutte le proposizioni sono ottenute mediante le regole descritte.

Esempi di proposizioni e non

- $((\neg \bot) \lor ((A \lor B) \land C))$ è una proposizione.
- $A \lor B$ non è una proposizione
- $(A \land B)A \top B$ non è una proposizione

Semantica del calcolo proposizionale

- Dominio: insieme $\Re = \{0, 1\}$, in cui o è associato al valore di verità falso e 1 al valore vero
- Insieme di operatori $\mathfrak{G} = \{o_{\neg}, o_{\lor}, o_{\land}\}$, contiene un elemento per ciascuno dei connettivi logici del calcolo proposizionale

Negazione logica (not)

$$o_{\neg}: \mathcal{B} \mapsto \mathcal{B}$$
, tale che $o_{\neg}(o) = 1$ e $o_{\neg}(1) = o$

а	$\neg a$
О	1
1	0

Congiunzione logica (and)

$$o_{\wedge}: \mathcal{B} \times \mathcal{B} \mapsto \mathcal{B}$$

Definito dalla seguente tabella di verità

а	b	$a \wedge b$
О	О	О
О	1	О
1	О	О
1	1	1

Disgiunzione logica (or)

$$o_{\vee}: \mathcal{B} \times \mathcal{B} \mapsto \mathcal{B}$$

Definito dalla seguente tabella di verità

а	b	$a \lor b$
О	О	0
О	1	1
1	О	1
1	1	1

Assegnazione booleana ${\mathcal V}$

Funzione $\mathcal{V}:\mathcal{A}\mapsto\mathcal{B}$: un'assegnazione booleana alle variabili proposizionali altro non è che una associazione di valori di verità alle variabili stesse.

Valutazione booleana

Ркор insieme delle proposizioni, $\mathcal V$ assegnazione booleana su $\mathcal A$.

- se $A \in \mathcal{A}$, $\mathcal{I}_{\mathcal{V}}(A) = \mathcal{V}(A)$
- $\mathcal{I}_{\mathcal{V}}(\top) = 1$
- $\mathcal{I}_{\mathcal{V}}(\bot) = 0$
- se $\alpha \in \text{Prop}$, $\mathcal{I}_{\mathcal{V}}(\neg \alpha) = o_{\neg}(\mathcal{I}_{\mathcal{V}}(\alpha))$
- se $\alpha, \beta \in \text{Prop}$, $\mathcal{I}_{\mathcal{V}}(\alpha \vee \beta) = o_{\vee}(\mathcal{I}_{\mathcal{V}}(\alpha), \mathcal{I}_{\mathcal{V}}(\beta))$
- se $\alpha, \beta \in \text{Prop}$, $\mathcal{I}_{\mathcal{V}}(\alpha \wedge \beta) = o_{\wedge}(\mathcal{I}_{\mathcal{V}}(\alpha), \mathcal{I}_{\mathcal{V}}(\beta))$

Soddisfacibilità

Una formula proposizionale α viene detta:

- *soddisfatta* da una valutazione booleana $\mathcal{I}_{\mathcal{V}}$ se $\mathcal{I}_{\mathcal{V}}(\alpha) = 1$.
- soddisfacibile se è soddisfatta da almeno una valutazione booleana
- tautologia se è soddisfatta da ogni valutazione booleana
- contraddizione se non è soddisfatta da nessuna valutazione booleana

Implicazione

$$o_{\rightarrow}: \mathcal{B} \times \mathcal{B} \mapsto \mathcal{B}$$

Definito dalla seguente tabella di verità

а	b	$a \rightarrow b$
0	О	1
0	1	1
1	О	О
1	1	1

 $a \rightarrow b$ equivalente a $\neg a \lor b$

Equivalenza

$$o_{\leftrightarrow}: \mathcal{B} \times \mathcal{B} \mapsto \mathcal{B}$$

Definito dalla seguente tabella di verità

а	b	$a \leftrightarrow b$
0	О	1
0	1	О
1	О	О
1	1	1

 $a \leftrightarrow b$ equivalente a $(a \leftrightarrow b) \land (b \leftrightarrow a)$

Operatori *k*-ari

Dato k, esistono 2^{2^k} operatori differenti $\Re^k \mapsto \Re$.

Se k = 2:

а	ь	Zero	and (∧)	n-implicazione (\rightarrow)	operando-1	n-implicato (↔)	operando-2	ex-or (⊕)	or (V)	nor (Ÿ)	equivalenza (↔)	n-operando-2	implicato (←)	n-operando-1	implicazione (\rightarrow)	nand $(\dot{\wedge})$	oun	
О	О	0	О	0	0	0	0	0	0	1	1	1	1	1	1	1	1	
О	1	0	О	О	0	1	1	1	1	0	О	0	0	1	1	1	1	
1	О	0	О	1	1	О	О	1	1	0	О	1	1	О	О	1	1	
1	1	0	1	0	1	0	1	0	1	0	1	О	1	0	1	0	1	

Completezza di {¬,∨,∧}

Ogni operatore binario è equivalente ad una opportuna composizione degli operatori $\{\neg, \lor, \land\}$

Proprietà degli operatori 1

idempotenza	$\alpha \wedge \alpha \equiv \alpha$
шетрогении	$\alpha \vee \alpha \equiv \alpha$
	$\alpha \wedge (\beta \wedge \gamma) \equiv (\alpha \wedge \beta) \wedge \gamma$
associatività	$\alpha \vee (\beta \vee \gamma) \qquad \equiv (\alpha \vee \beta) \vee \gamma$
	$\alpha \leftrightarrow (\beta \leftrightarrow \gamma) \equiv (\alpha \leftrightarrow \beta) \leftrightarrow \gamma$
	$\alpha \wedge \beta \equiv \beta \wedge \alpha$
commutatività	$\alpha \vee \beta \equiv \beta \vee \alpha$
	$\alpha \leftrightarrow \beta \equiv \beta \leftrightarrow \alpha$
distributività	$\alpha \wedge (\beta \vee \gamma) \equiv (\alpha \wedge \beta) \vee (\alpha \wedge \gamma)$
	$\alpha \vee (\beta \wedge \gamma) \equiv (\alpha \vee \beta) \wedge (\alpha \vee \gamma)$

Proprietà degli operatori 2

assorbimento	$\begin{array}{ccc} \alpha \wedge (\alpha \vee \beta) & \equiv & \alpha \\ \alpha \vee (\alpha \wedge \beta) & \equiv & \alpha \end{array}$
doppia negazione	$\neg \neg \alpha \equiv \alpha$
leggi di De Morgan	$\neg(\alpha \lor \beta) \equiv \neg\alpha \land \neg\beta$ $\neg(\alpha \land \beta) \equiv \neg\alpha \lor \neg\beta$
terzo escluso	$\alpha \vee \neg \alpha \equiv \top$
contrapposizione	$\alpha \to \beta \equiv \neg \beta \to \neg \alpha$
contraddizione	$\alpha \wedge \neg \alpha \equiv \bot$

Quantificatori

Calcolo dei predicati

- quantificatore universale, indicato con il simbolo $\forall xP(x)$, P è vero per qualunque valore di x
- *quantificatore esistenziale*, indicato con il simbolo $\exists \exists x P(x), P$ è vero per almeno un valore di x

Relazioni

• Prodotto cartesiano di A e B, denotato con $C = A \times B$

$$C = \big\{ \langle x, y \rangle \mid x \in A \ \land y \in B \big\},\,$$

• A^n indica il prodotto cartesiano di A con se stesso, ripetuto n volte

$$\underbrace{A \times \cdots \times A}_{n \text{ volte}}.$$

• Relazione n-aria R su A_1, A_2, \ldots, A_n è un sottoinsieme del prodotto cartesiano $A_1 \times \cdots \times A_n$

$$R \subseteq A_1 \times \cdots \times A_n$$
.

Relazione d'ordine

Una relazione $R \subseteq A^2$ si dice relazione d'ordine se per ogni $x,y,z \in A$ valgono le seguenti proprietà

- 1. $\langle x, x \rangle \in R$ (riflessività),
- 2. $\langle x, y \rangle \in R \land \langle y, x \rangle \in R \iff x = y \text{ (antisimmetria)},$
- 3. $\langle x, y \rangle \in R \land \langle y, z \rangle \in R \iff \langle x, z \rangle \in R \text{ (transitività)}.$

Relazione d'equivalenza

Una relazione $R \subseteq A^2$ si dice relazione d'equivalenza se, per ogni $x,y,z \in A$, valgono le seguenti proprietà

- 1. $\langle x, x \rangle \in R$ (riflessività),
- 2. $\langle x, y \rangle \in R \iff \langle y, x \rangle \in R$ (simmetria),
- 3. $\langle x, y \rangle \in R \land \langle y, z \rangle \in R \iff \langle x, z \rangle \in R \text{ (transitività)}.$

Relazione d'equivalenza

- Un insieme *A* su cui sia definita una relazione d'equivalenza *R* si può partizionare in sottoinsiemi, detti classi d'equivalenza, ciascuno dei quali è un sottoinsieme massimale che contiene solo elementi tra loro equivalenti.
- Dati un insieme A ed una relazione d'equivalenza R su A²,
 l'insieme delle classi d'equivalenza di A rispetto a R è detto insieme quoziente A/R.
- I suoi elementi vengono denotati con [a], dove a ∈ A è un "rappresentante" della classe d'equivalenza: [a] indica cioè l'insieme degli elementi equivalenti ad a.

Operazioni tra relazioni

- Unione: $R_1 \cup R_2 = \{\langle x, y \rangle \mid \langle x, y \rangle \in R_1 \lor \langle x, y \rangle \in R_2$
- Intersezione: $R_1 \cup R_2 = \{\langle x, y \rangle \mid \langle x, y \rangle \in R_1 \land \langle x, y \rangle \in R_2$
- Complementazione: $\overline{R} = \{\langle x, y \rangle \mid \langle x, y \rangle \notin R\}$
- Chiusura transitiva:

$$R^+ = \{ \langle x, y \rangle \mid \exists y_1, \dots, y_n \in A, n \ge 2, y_1 = x, y_n = y, \\ \langle y_i, y_{i+1} \rangle \in R, i = 1, \dots, n-1 \}$$

• Chiusura transitiva e riflessiva: $R^* = R^+ \cup \{\langle x, x \rangle \mid x \in A\}$

Funzioni

 $R \subseteq X_1 \times \ldots \times X_n \ (n \ge 2)$ è una relazione funzionale tra una (n-1)-pla di elementi e l'n-esimo elemento, se $\forall \langle x_1, \ldots, x_{n-1} \rangle \in X_1 \times \ldots \times X_{n-1}$ esiste al pià un elemento $x_n \in X_n$ tale che $\langle x_1, \ldots, x_n \rangle \in R$

$$f: X_1 \times \cdots \times X_{n-1} \mapsto X_n.$$

$$f(x_1,\ldots,x_{n-1})=x_n.$$

Funzioni

- $X_1 \times \cdots \times X_{n-1}$, dominio della funzione, dom(f)
- X_n , codominio cod(f)
- dominio di definizione:

$$def(f) = \{ \langle x_1, \dots, x_{n-1} \rangle \in dom(f) \mid$$

$$\exists x_n \in cod(f) : f(x_1, \dots, x_{n-1}) = x_n \}$$

• immagine imm(*f*):

$$\operatorname{imm}(f) = \left\{ x_n \in \operatorname{cod}(f) \mid \\ \exists \langle x_1, \dots, x_{n-1} \rangle \in \operatorname{dom}(f) : f(x_1, \dots, x_{n-1}) = x_n \right\}$$

Funzioni

- f totale se def(f) = dom(f), parziale altrimenti
- f suriettiva se imm(f) = cod(f)
- f iniettiva o uno-ad-uno (1:1) se

$$\forall \langle x'_1, \dots, x'_{n-1} \rangle, \langle x''_1, \dots, x''_{n-1} \rangle \in X_1 \times \dots \times X_{n-1},$$
$$\langle x'_1, \dots, x'_{n-1} \rangle \neq \langle x''_1, \dots, x''_{n-1} \rangle \Longleftrightarrow$$
$$f(x'_1, \dots, x'_{n-1}) \neq f(x''_1, \dots, x''_{n-1})$$

• f biiettiva se suriettiva e iniettiva

Pigeonhole principle

Dati due insiemi finiti A e B, tali che

non esiste alcuna funzione iniettiva totale $f: A \mapsto B$

Dato un insieme non vuoto $S \subseteq U$, si definisce operazione binaria \circ su S una funzione $\circ : S \times S \mapsto U$.

Un insieme non vuoto S si dice chiuso rispetto ad una operazione binaria \circ su S se imm(\circ) \subseteq S.

Dato un insieme S chiuso rispetto ad un'operazione binaria \circ .

La coppia $\langle S, \circ \rangle$ viene denominata semigruppo se l'operazione binaria \circ soddisfa la proprietà associativa:

$$\forall x \forall y \forall z \in S \ (x \circ (y \circ z)) = (x \circ y) \circ z).$$

Se inoltre vale la proprietà commutativa:

$$\forall x \forall y \in S \ (x \circ y) = (y \circ x)$$

il semigruppo è detto commutativo.

La coppia $\langle \mathbb{N}, + \rangle$, dove + è l'usuale operazione di somma, è un semigruppo commutativo,

La terna $\langle S, \circ, e \rangle$ viene detta monoide se $\langle S, \circ \rangle$ è un semigruppo, e se $e \in S$ è tale che:

$$\forall x \in S \ (e \circ x) = (x \circ e) = x$$

L'elemento e viene detto elemento neutro o unità del monoide. Se \circ è anche commutativa, il monoide viene detto commutativo.

Le terne $\langle \mathbb{N}, +, 0 \rangle$ e $\langle \mathbb{N}, *, 1 \rangle$, dove + e * sono le usuali operazioni di somma e prodotto, sono monoidi commutativi.

Dati un insieme S ed una operazione associativa \circ , definiamo semigruppo libero sulla coppia $\langle S, \circ \rangle$ il semigruppo $\langle S^+, \circ^+ \rangle$, dove:

- 1. S^+ è l'insieme di tutte le espressioni $x = x_1 \circ x_2 \circ ... \circ x_n$, per ogni $n \ge 1$, con $x_1, ..., x_n \in S$;
- 2. l'operazione \circ^+ è definita nel modo seguente: se $x = x_1 \circ \ldots \circ x_n$ e $y = y_1 \circ \ldots \circ y_n$, allora $x \circ^+ y = x_1 \circ \ldots \circ x_n \circ y_1 \circ \ldots \circ y_n$.

Se estendiamo S^+ introducendo un elemento aggiuntivo ε , detto parola vuota, possiamo definire sull'insieme risultante $S^* = S^+ \cup \{\varepsilon\}$ l'operazione \circ^* , estensione di \circ^+ , tale che, $\forall x, y \in S^+$ $x \circ^* y = x \circ^+ y$ e $\forall x \in S^*$ $(\varepsilon \circ^* x = x \circ^* \varepsilon = x)$.

La terna $\langle S^*, \circ^*, \varepsilon \rangle$ è allora un monoide e viene detto monoide libero.

La terna $\langle S, \circ, e \rangle$ viene detta gruppo se $\langle S, \circ, e \rangle$ è un monoide ed inoltre l'operazione \circ ammette inverso, cioè se

$$\forall x \in S \ \exists y \in S \ (x \circ y) = (y \circ x) = e.$$

L'elemento y viene detto inverso di x, e si denota come x^{-1} .

Se il monoide $\langle S, \circ, e \rangle$ è commutativo il gruppo viene detto commutativo (o abeliano).

Le terne $\langle \mathbb{N}, +, 0 \rangle$ e $\langle \mathbb{N}, *, 1 \rangle$ non sono gruppi, in quanto l'insieme \mathbb{N} non è chiuso rispetto all'inverso di + e di *. Al contrario, le terne $\langle \mathbb{Z}, +, 0 \rangle$ e $\langle \mathbb{Q}, *, 1 \rangle$ sono gruppi abeliani.

Dato un semigruppo $\langle S, \circ \rangle$, una congruenza \equiv è una relazione d'equivalenza su S che soddisfa la seguente proprietà:

$$\forall x,y \in S \ x \equiv y \Longleftrightarrow \forall z \in S \ \big((x \circ z \equiv y \circ z) \land (z \circ x \equiv z \circ y) \big).$$

La relazione d'equivalenza \equiv_k delle classi resto rispetto alla divisione per k è una congruenza rispetto al semigruppo commutativo $\langle \mathbb{N}, + \rangle$: infatti, se $n \equiv_k m$, abbiamo che $\forall l \ (n+l \equiv_k m+l)$ e, chiaramente, anche $l+n \equiv_k l+m$. Viceversa, se $\forall l \ (n+l \equiv_k m+l)$ allora abbiamo, nel caso particolare l=0, $n \equiv_k m$