

Jo-Kaung Liao

Outlines

Introduction and Theory

- Machine Learning and Drones for Animal Conservation
- Computer Vision and Neural Network
- Object Detection and YOLO (You Only Look Once)

Methods and Results

- Implementation
- Data Collection and Training
- Live Streaming

Machine Learning and Drone for Animal Conservation

- Animal research requires monitoring the locations, ranges and sizes of animal populations
- Surveying cryptic, low-density animals or animals inhabiting unapproachable areas is challenging
 - --> aerial images by drones
- Processing data manually is inefficient and time-consuming
 - · --> object detection machine learning algorithms
- The combination of technologies facilitate studies of wildlife conservation

Computer Vision and Convolutional Neural Network

Computer vision

analysing and interpreting digital visual data to extract information and make predictions

Pattern Recognition

Visual data -->
Feature profile for that object -->
Recognition

- Great applicability and future potential
- Remarkable breakthrough in the past few years by using convolutional neural networks

Computer Vision and Convolutional Neural Network

Neural networks – an architecture or framework

- >> Layers input, hidden, output
- >> Nodes point of computation
- >> Weight and activation function
- >> Learning and predicting

Object Detection and YOLO

Object detection – classification with localisation

- >> Classification methods
 - Slow and computationally expensive
- >> Regression methods

YOLO (You Only Look Once)

- efficient, real-time
- reasoned globally predictions

Object Detection and YOLO

- an SxS grid cells
- Each grid cell:
 - detects one object
 - predicts a fixed number of **bounding boxes**
 - predicts class probabilities for all classes
- Bounding box predictions
 - normalised coordinates of the centre
 - height, width
 - confidence score

Object Detection and YOLO

For an object –

The bounding box with the highest confident score

--> Localisation

The greatest class probability among all classes

--> Classification

Implementation

- >> YOLOv3 with Pytorch
- >> The official pre-trained weights with 80 classes
- >> The program was run on terminal and Google Colaboratory
- >> 3 detection modes: images, video, webcam

image (JPG)giraffe, zebra

webcam squirrel toy
classified as
teddy bear

Data Collection and Training

- >> Squirrels not a pretrained class
- >> Data collection Imitation of aerial images
 - a small-scaled dataset of overhead images
- >> Labelling with ImageJ and convert to Draknet format
- >> Retraining for a new class
- >> Transfer Learning

Live Streaming and Real-Time Analysis

Drone Camera

DJI 4 GO app
on mobile
device

Streaming
platform on
Laptop/PC

- Live streaming on Bambuser
- Real-time analysis on online videos YOLO Live and Python MSS library
- Alternatives embedded system or cloud server

Conclusion

What we learned:

- Concepts of Compter vision and neural network
- Basis of object detection algorithms

What we successfully achieved:

- Implemented YOLO v₃ with PyTorch
- Collected and labelled overhead images of squirrels
- Established the drone video stream

What we tried and didn't work out:

- Transfer Learning of the YOLO model
- Real-time analysis on drone video