Low-Rank Adaption of Large Language Model (LoRA)

by Edward J. Hu et al.

Group 5

Is it relevant?

Pre-Training LLM

Core Mechanisms

- Adaption to specific task: low intrinsic dimension [Aghajanyan et al., 2020]
- Weight adaption ΔW is also low
- Idea:
 - Freeze Model params W
 - Replace ΔW with AB, two low rank matrices

 $W \in \mathbb{R}^{d \times k}, A \in \mathbb{R}^{r \times k}, B \in \mathbb{R}^{d \times r}, r \ll d$

Core Mechanisms: LoRA & Transformers

- LoRA Operation Points:
 - Attention modules: W_q , W_k , W_v , W_o

$$softmax(\frac{QK^T}{\sqrt{d_k}})VW_o$$

(Feed Forward Layers)

Output Probabilities

Evaluation

- Models: Roberta, Deberta, GPT-2, GPT-3
- Competitive Techniques: Fine-Tuning, Adapter, Prefix-Tuning
- Experiments: Performance, "Good Rank", Subspace similarity

RoBERTa

Roberta Experimental Setup

- Base Model: RoBERTa-base (125M parameters)
- Libraries: Hugging Face Transformers, PEFT (LoRA integration)
- Dataset: 8 dataset from GLUE benchmark

Domains:

News / Movie reviews / Wikipedia / Books / Misc.

Classification Tasks:

- Acceptability
- Sentiment
- Paraphrase
- Sentence similarity
- Question Answering
- Natural Language Inference

Roberta Implementation Details

Used same parameters from paper:

Method	Dataset	MNLI	SST-2	MRPC	CoLA	QNLI	QQP	RTE	STS-B
	Optimizer Warmup Ratio LR Schedule	AdamW 0.06 Linear							
RoBERTa base LoRA	Batch Size # Epochs Learning Rate LoRA Config. LoRA α Max Seq. Len.	16 30 5E-04	16 60 5E-04	16 30 4E-04	$32 80 4E-04 r_q = r 8 51$	3	16 25 5E-04	32 80 5E-04	16 40 4E-04

Roberta Implementation Details

Used same parameters from paper:

Method	Dataset	MNLI	SST-2	MRPC	CoLA	QNLI	QQP	RTE	STS-B
	Optimizer Warmup Ratio LR Schedule				Ada 0.0 Lin	06			
RoBERTa base LoRA	Batch Size # Epochs Learning Rate LoRA Config. LoRA α Max Seq. Len.	16 -30 8 5E-04	16 60 5E-04	16 30 4E-04	$32 80 4E-04 r_q = r 8 51$	}	16 25 12 5E-04	32 80 5E-04	16 40 4E-04

Reduced #epochs for MNLI, and QQP datasets due to time constraints

Roberta Results

Results:

5 5 5 5			
Dataset	Reference Implementation	Our Implementation	Hyperparameter adjustments
MNLI	87.5	84.47	√# Epochs: reduced from 30 to 8
SST-2	95.1	94.69	-
MRPC	89.7	73.45 ¹ / 86.55 ²	:
CoLA	63.4	60.25	
QNLI	93.3	62.47	·-
QQP	90.8	89.68	\checkmark # Epochs: reduced from 25 to 12
RTE	86.6	54.87 ¹ / 74.73 ²	-
STS-B	91.5	70.82 ¹ / 90.82 ²	⊕
Avg.	87.2	$73.84^1 / 80.46^2$	

^{1 =} LoRA adapter initialized to best MNLI checkpoint, 2 = LoRA initialized to Gaussian Random Field

Roberta Results

Results:

Able to reproduce results for 4 datasets

- MNLI, SST-2, CoLa, QQP

Negative impact by using LoRA adapters trained on MNLI:

- MRPC, RTE, STS-B

Unable to reproduce:

-QNLI

GPT-2

GPT-2 Experimental Setup

- Base Model: GPT-2-medium (345M parameters)
- Libraries: Hugging Face Transformers, PEFT (LoRA integration)
- Dataset: E2E NLG Challenge (restaurant domain)
 - 42,000 training examples, 4,600 test/validation examples
 - Meaning representations (MR) paired with natural language references

name[The Eagle], food[English], price[moderate], customer rating[3/5]

The Eagle is a moderately priced English restaurant with a 3/5 customer rating.

GPT-2 Code Snippet: LoRA Configuration

```
lora config = LoraConfig(
    r=4
    lora alpha=32,
    target modules=["c attn"],
    lora dropout=0.1,
    init lora weights="gaussian",
    bias="none"
model = get peft model(model, lora config)
```

GPT-2 Evaluation Metrics

- Metrics: BLEU, METEOR, ROUGE-L, NIST, CIDEr
- Generation Strategy: Beam search (width 10, length penalty 0.9)
- Results:
 - Comparable to original LoRA paper
 - Minor differences due to Python-based metrics

Metric	Reference Implementation	Our Implementation
BLEU	0.6603	0.6619
METEOR	0.8139	0.8183
ROUGE-L	0.6750	0.6530
NIST	7.2166	7.1026
CIDEr	2.1189	2.1522

GPT-2 Challenges and Solutions

- Padding Handling: Proper padding token configuration
 - Solved by configuring padding tokens and setting `padding_side='left'`
- Memory Management: Efficient batching and gradient accumulation
 - Utilizing transformer Data collators for dynamic batching
- Hyperparameters: Required checking reference implementation for missing details

Evaluation of Best Rank r

• Model: GPT-2 Medium

Dataset: E2E

Rank r	val_loss	BLEU	NIST	METEOR	ROUGE_L	CIDEr
1	1.23	68.72	8.7215	0.4565	0.7052	2.4329
2	1.21	69.17	8.7413	0.4590	0.7052	2.4639
4	1.18	70.38	8.8439	0.4689	0.7186	2.5349
8	1.17	69.57	8.7457	0.4636	0.7196	2.5196
16	1.16	69.61	8.7483	0.4629	0.7177	2.4985
32	1.16	69.33	8.7736	0.4642	0.7105	2.5255
64	1.16	69.24	8.7174	0.4651	0.7180	2.5070
128	1.16	68.73	8.6718	0.4628	0.7127	2.5030
256	1.16	68.92	8.6982	0.4629	0.7128	2.5012
512	1.16	68.78	8.6857	0.4637	0.7128	2.5025
1024	1.17	69.37	8.7495	0.4659	0.7149	2.5090

Evaluation of Best Rank r

Model: GPT-2 Medium

Dataset: E2E

Observed Percentual Deviations

Rank r	BLEU (%)	NIST (%)	ROUGE (%)	CIDEr (%)
1	6.26	20.90	7.16	15.63
2	5.50	18.94	4.10	7.87
4	14.23	22.22	6.68	12.10
8	7.63	19.35	6.41	9.84
16	4.89	17.55	4.70	5.84
32	3.61	16.62	3.55	6.09
64	6.21	19.14	6.02	9.06
128	3.49	17.31	3.79	5.75
256	4.64	17.92	4.08	7.41
512	3.93	17.27	5.05	5.91
1024	3.32	16.92	4.11	7.44

Extension: Rank & Model Size

Effects of Rank & Model Size on Performance

Extension: Rank & Task Difficulty

- Effects of Rank & Task Difficulty on Performance
- SQuAD: Extractive QA

```
"answers": {
    "answer_start": [
        1
    ],
    "text": [
        "This is a test text"
    ]
},
"context": "This is a test context.",
"id": "1",
"question": "Is this a test?",
"title": "train test"
```

<Q> Is this a test? <C> This is a test context. <A> This is a test text

Extension: Rank & Task Difficulty

- SQuAD: easy task
- Correlation between difficulty and rank

Ext. Image Classification Experimental Setup

- Dataset: CIFAR-10 (60,000 images, 10 classes)
- Model: ResNet-18 with LoRA adaptors
- Implementation:
 - o LoRA rank (r): 14
 - o LoRA alpha: 16
 - Dropout: 0.1
- Hyperparameters:
 - Learning rate: 1e-4
 - o Batch size: 32
 - Early stopping: Patience of 7 epochs
- Optimizer: Adam with cross-entropy loss
- Data Augmentation: Resizing, normalization

Ext. Image Classification Results and Analysis

- Parameter Efficiency:
 - Trainable parameters reduced by 96.3% (11.7M → 435K)
- Performance:
 - Validation accuracy: 93.92%
 - Test accuracy: 93.50%
 - Comparable to standard fine-tuning (93.78%)

Ext. Image Classification Conclusion

- Demonstrated LoRA's effectiveness in image classification.
- Achieved high accuracy with significantly fewer trainable parameters.
- Future Work:
 - Explore LoRA on larger vision models (e.g., ViT, Swin Transformers).
 - Investigate LoRA for object detection and segmentation tasks.

QLoRA Implementation Details

Quantized LoRA
 Quantization only applied on base model,
 not LoRA adapters

- Contributions:
 - New NF4 datatype
 - Double Quantization
 - Paged Optimizers
- Reduces memory during training / inference

• New NF4 datatype:

NormalFloat - 4bit -> 2^4 -> 16 values

New NF4 datatype:

NormalFloat - 4bit -> 2^4 -> 16 values

Let's assume we have the following dataset:

New NF4 datatype:

NormalFloat - 4bit -> 2⁴ -> 16 values

Let's assume we have the following dataset:
1) We then partition the scale into 16 equally sized parts from max and min

New NF4 datatype:

NormalFloat - 4bit -> 2^4 -> 16 values

- Let's assume we have the following dataset:
 - 1) We then partition the scale into 16 equally sized parts from *max* and *min*
 - 2) We map the value to the nearest NF value

New NF4 datatype:

NormalFloat - 4bit -> 2⁴ -> 16 values

- Let's assume we have the following dataset:
 - 1) We then partition the scale into 16 equally sized parts from *max* and *min*
 - 2) We map the value to the nearest NF value

New NF4 datatype:

NormalFloat - 4bit -> 2⁴ -> 16 values

- Let's assume we have the following dataset:
 - 1) We then partition the scale into 16 equally sized parts from *max* and *min*
 - 2) We map the value to the nearest NF value
- Memory usage: 4bits / value + 32bit scaling factor for each block

Double quantization:

Apply same quantization on scaling factor:

Multiple scaling factors are grouped together and quantized.

Before Quantization

32 bits / parameter

Primary Quantization

 c_1^{FP32}

8 bits / parameter + 32 bits / 64 parameters

= 8.5 bits / parameter

Secondary Quantization

8 bits / parameter

+ 8 bits / 64 parameters

+ 32 bits / 256 * 64 parameters

= 8.127 bits / parameter

Paged optimizers:

Reduces memory usage peaks during forward / backward pass by using NVIDIA unified memory. => automatically offloads GPU memory spikes to CPU memory.

QLoRA Code Snippet

1) Apply quantization:

QLoRA Code Snippet

Apply quantization:

```
# Configure quantization
quantization_config = BitsAndBytesConfig(
            load_in_4bit=True,
            bnb_4bit_use_double_quant=True,
            bnb 4bit quant type="nf4",
            bnb 4bit compute dtype=torch.bfloat16,
model = AutoModelForCausalLM.from_pretrained(model_name, quantization_config=quantization_config)
                              config = LoraConfig(
                                 task_type="CAUSAL_LM",
     Apply LoRA:
```

```
r=parameters["lora_rank"],
    lora_alpha=parameters["lora_alpha"],
   target_modules=parameters["lora_target_modules"],
    lora_dropout=parameters["lora_drop_out"],
    init_lora_weights=True
# Load peft model
peft_model = get_peft_model(model, config)
```

Base Model: Llama 3.2 1B (1B parameters) / in the paper: Llama v1 65B
 Objective:

Create a Chat-Based Model using Instruction Fine-Tuning Data

Datasets:

- OASST1 (Open Assistant Conversations)
- Self-Instruct
- Alpaca
- o OIG Chip 2
- HH-RLHF (Reinforcement Learning From Human Feedback)
- Longform
- Flan V2 (>200GB)

Preprocessing:

Datasets must be transformed to Chat Template Format:


```
<|begin_of_text|><|start_header_id|>system<|end_header_id|>

Cutting Knowledge Date: December 2023
Today Date: 23 July 2024

You are a helpful assistant<|eot_id|><|start_header_id|>user<|end_header_id|>
What is the capital of France?<|eot_id|>
<|start_header_id|>assistant<|end_header_id|>
```

Preprocessing:

Datasets must be transformed to Chat Template Format:


```
<|begin_of_text|><|start_header_id|>system<|end_header_id|>
Cutting Knowledge Date: December 2023
Today Date: 23 July 2024

You are a helpful assistant<|eot_id|><|start_header_id|>user<|end_header_id|>
What is the capital of France?<|eot_id|>
<|start_header_id|>assistant<|end_header_id|> Paris <|eot_id|>
```

• Training:

Challenge: Nothing works

JupyterHub CUDA installed, but NVCC is missing

• Training:

Challenge: Nothing works

JupyterHub CUDA installed, but NVCC is missing

Works, but are kicked out after 55 mins

• Training:

Challenge: Nothing works

JupyterHub CUDA installed, but NVCC is missing

Works, but are kicked out after 55 mins

• Training:

Challenge: Nothing works

Last resort:

Own PC

Works, but are kicked out after 55 mins

GTX 1660 6GB VRAM

- Training parameters:
- Heavily limited due to 6GB VRAM
- Additionally dataset size reduced to 1/5th
- DeepSpeed Zero Stage 3
 (Offloading parameters + optimizer to CPU RAM)

- LoRA alpha: 16
- LoRa rank: 64
- LoRa dropout: 0.1
- Optimizer: Adam
- Batch size: $64 \rightarrow 3$
- Learning rate: 2e-4
- Maximum sequence length:512 →256
- Epochs: $1-3 \rightarrow 1$

• Training Stats:

Method	(V)RAM Usage	Duration
Full Finetuning (Estimation from DeepSpeed)	30GB (27.62 CPU + 2.30GB VRAM)	?
QLoRA Sequence length 128	5.7GB (4.5GB VRAM + 1.2GB CPU)	22hrs
QLoRA Gradient Checkpointing: ON Sequence length 256	4.56GB (3.36 GB VRAM + 1.2GB CPU)	15hrs 55min

Results:

Al Based Evaluation: (ChatGPT-4o as judge)

Prompt:

You will be given three RESPONSES: A,B,C. Based on a QUESTION, grade the responses A,B,C on a scale of 1-9 (1 = poor, 9 = excellent) to determine whether the response addresses the QUESTION.

Comparison between 3 models:

A: Llama 3.2 1B General

B: Ours

C: Llama 3.2 1B Instruct

• What is a cat?

Model	Output	Score
Llama 3.1 General	What is a cat?àěĞàďę	1
Ours	He is the son of his father.nodociteDatabaseysticksiyon He says he is a cat.nodocidable Who does not read?nodocididy What is the name of the animal?nodocidad In a dictionarynodocid What is its name?nodocid The dog is a favorite of minenodocid 14 When your cat gets hungrynodocid	1
Llama 3.1 Instruct	A cat is a domesticated mammal belonging to the Felidae family. They are carnivorous, mean	9

• What is 9+3?

Model	Output	Score
Llama 3.1 General	What is 9+3?ÅŹÃŋklad datovÃľ datovÃľ datovÃľ datovÃľ datovÃľ datovÃľ datovÃľ datov	1
Ours	What is the answer?DECREFusercontentiteDatabasealizaceuserakedirs If the correct answer is: 12, what is it? derecutableakedirsiciary Which is 9 + 3 + 7 The answer is: 12. It is the correct answer! You may need to ask for help or to receive some assistance in a lesson.	5
Llama 3.1 Instruct	9 + 3 = 12.	9

52

What is the secret word?

Model	Output	Score
Llama 3.1 General	What is the secret word?iteDatabaseergisi	1
Ours	Cutting Knowledge Date: December 2023 Today Date: 19 Jan 2025 You are a helpful assistantiijij What is the secret word?iijij Cutting Knowledge Date: December 2023 Today Date: 19 Jan 2025 What is the most important thing that you learned from the last six weeks?iijij You are a helpful assistant	2
Llama 3.1 Instruct	I'm happy to help you, but I don't think we've established a secret word yet. I'm a large	9

• Please reverse the words in the sentence "I'm a cool dude in a mocha mood."

Model	Output	Score
Llama 3.1 General	You are a helpful assistantDDevice.DeserializeObjectDate: 26 Jan 2025 Today Date: 2 Feb 2025 You are a helpful assistantDDevice.DeserializeObjectDate: 2 Feb 2025 Today Date: 9 Feb 2025	1
Ours	Date: 19 Jan 2025 You are a helpful assistant\Blueprint createdBy createDate Date: 19 Jan 2025 You are a helpful assistant\Blueprint createdBy createDate Date: 19 Jan 202	2
Llama 3.1 Instruct	To reverse the words in the sentence, I'll break it down: 1. I'm 18 2. a 3. cool 4. dude 5. in 6. a 7. mocha 8. mood Reversed order: 1. mood	5

Discussion:

Results disappointing

Possible Reasons:

- We only used a fraction of the initial Instruction dataset (>300GB vs 100MB)
- Number of epochs too low
- 1B parameter Model not able to generalize from training data

Discussion:

However, QLoRA reduces VRAM usage: 30 GB -> 4.5GB (15%)

Paper: 780GB -> 48GB (6%)

Conclusion

- Successfully reproduced key experiments of LoRA paper
- Reproducibility hard with paper only
- Extended experiments dealing with:
 - o Different modalities i.e. images
 - Quantization
 - Analysis of rank/task relationship

Thank you!

https://github.com/Qrauli/NLP_Lora