שיעור 10 NP המחלקה P המחלקה

P המחלקה 10.1

• המחלקה P היא אוסף כל הבעיות שקיים עבורן אלגוריתם המכריע אותן בזמן פולינומיאלי.

אלגוריתם מכריע
$$\equiv$$
 מ"ט דטרמיניסטית , בעיית הכרעה \equiv שפה ,

wעל כל קלט Aעל הריצה כך כך פן קבוע קיים קבוע פולינומיאלי פולינומיאלי בעייה אלגוריתם Aמכריע מייי אלגוריתם פולינומיאלי פולינומיאלי אס סיים אלגוריתם פולינומיאלי סיי $O\left(|w|^c\right)$

P -דוגמאות לבעיות ב10.2

(1

 $PATH = \left\{ \langle G, s, t \rangle \, \, \, \middle | \, \, t$ ל- לs המכיל מסלול המכיל מכוןן גרף מכון $G \, \, \right\} \in P$

(2

 $RELPRIME = \{\langle x, y \rangle \mid x \} \in P$

10.3 בעיית המסלול ההמילטוני HAMPATH

HAMPATH 10.1 הגדרה

בהינתן גרף מכוון G=(V,E) ושני קודקודים s ב-s מסלול המילטוני מ-s ל-s ב-t הוא מסלול מ-t ב-t שעובר דרך כל קודקוד בגרף בדיוק פעם אחת.

לדוגמה:

הגדרה 10.2 בעיית HAMPATH

 $s,t\in V$ ושני קודקודים G=(V,E) קלט: גרף מכוון

t -ל s -מכיל מסלול המילטוני מ-t ל-

 $HAMPATH = \big\{ \langle G, s, t \rangle \; \middle| \; : t$ ל- ל- s המילטוני מסלול המכיל מסלול המילטוני מ- G

 $HAMPATH \in P$ נשאל שאלה: האם

. (שאלה פתוחה) בזמן פולינומיאלי (שאלה פתוחה) לא ידוע האם קיים אלגוריתם המכריע את HAMPATH

- $\langle G, s, t \rangle \in HAMPATH$ בהינתן קלט $\langle G, s, t \rangle$ האם
 - :נענה על שאלה אחרת

 $\langle G,s,t
angle \in HAMPATH$ בהינתן קלט $\langle G,s,t
angle$, ומחרוזת $\langle G,s,t
angle$

- . היא מסלול המילטוני מ- s ל- t ב- בזמן פולינומיאלי ולענות התאם y היא לבדוק לבדוק האם
 - ניתנת לאימות בזמן פולינומיאלי. HAMPATH ניתנת לאימות בזמן פולינומיאלי.

10.4 אלגוריתם אימות

הגדרה 10.3 אלגוריתם אימות

אלגוריתם $w \in \Sigma^*$ סלט כך שלכל עלגוריתם אלגוריתם הוא אלגוריתם עבור בעייה אימות אלגוריתם אימות א

(w,y) אם ורק אם קיימת מחרוזת (עדות) באורך פולינומיאלי ב- |w| כך ש- $w\in A$ מקבל את הזוג $w\in A$ כלומר:

- $\exists y : V(w,y) = T \iff w \in A$ אם •
- $. \forall y : V(w,y) = F \iff w \notin A$ אם •

10.1 הערה

- |w| זמן ריצה של אלגוריתום אימות נמדד ביחס לגודל הקלט. \bullet
- אלגוריתם אימות פולינומיאלי אם הוא רץ בזמן פולינומיאלי.

10.5 המחלקה NP

הגדרה 10.4 המחלקה NP

המחלקה NP היא אוסף כל הבעיות שקיים עבורן אלגוריתם אימות פולינומיאלי.

$HAMPATH \in NP$ 10.1 משפט

בעיית המסלול ההמילטוני HAMPATH:

 $s,t\in V$ ושני קודקודים G=(V,E) קלט: גרף מכוון

t - t - t מכיל מסלול המילטוני מ- t מכיל מסלול מסלול מילטוני

 $HAMPATH = \big\{ \langle G, s, t \rangle \; \middle| \; : t \cdot s \;$ ל המילטוני מסלול המכיל מסלול המילטוני מ $G \; \big\}$

 $.HAMPATH \in NP$ הוכיחו כי

.HAMPATH נבנה אלגוריתם אימות V עבור אלגוריתם נבנה אלגוריתם אימות יוב

$$:(\langle G,s,t\rangle,y)$$
 על קלט $=V$

בודק האם y היא סדרה של (1)

$$u_1, u_2, \ldots u_n$$

השונים זה מזה.

- אם לא ⇒ דוחה.
- $u_n=t$ ו- $u_1=s$ בודק האם (2
 - אם לא ⇒ דוחה.
- G -ם קיימות ב $i\leqslant n$ (לכל (u_i,u_{i+1}) קיימות ב(3)
 - אם כן ⇒ מקבל.
 - אם לא ⇒ דוחה.

נכונות

- זמן הריצה של האלגוריתם הוא פולינומיאלי בגודל הקלט.
- עבור y שהוא קידוד $G \Leftarrow (G,s,t) \in HAMPATH$ שהוא קידוד של מסלול זה, $G \Leftrightarrow (G,s,t) \in HAMPATH$ של מסלול זה, $G \Leftrightarrow (G,s,t) \in HAMPATH$ של מסלול זה, $G \Leftrightarrow (G,s,t) \in HAMPATH$

הגדרה 10.5 קליקה

בהינתן גרף לא מכוון G=(V,E), קליקה ב- G היא תת-קבוצה של קודקודים $C\subseteq V$ כך שלכל שני קודקודים $u,{\sf v}\in C$ מתקיים $u,{\sf v}\in C$

$$:k=3$$
 קליקה בגודל

:k=5 קליקה בגודל

הגדרה 10.6 בעיית הקליקה

k ומספר G=(V,E) ומספר: גרף לא

?k קליקה בגודל G פלט: האם

 $CLIQUE = \left\{ \langle G, k \rangle \ \middle| \ k$ גרף גרף א מכוון המכיל קליקה גודל $G \ \right\}$

CLIQUE \in NP 10.2 משפט

 $CLIQUE \in NP$.

.CLIQUE עבור עבור אימות נבנה אלגוריתם נבנה אלגוריתם ינבנה אלגוריתם אימות ינבנה אלגוריתם אימות ינבנה אלגוריתם אימות

 $:(\left\langle G,k\right\rangle ,y)$ על קלט V

- ${\cal .G}$ -ם שונים שונים kשל קבוצה היא yהאם בודק (1
 - \bullet אם לא \Rightarrow דוחה.
- G -בעלע ב- מחוברים מ- ע מחוברים כל שני פודקודים (2
 - \bullet אם כן \Rightarrow מקבל.

• אם לא ⇒ דוחה.

הגדרה 10.7 בעיית SubSetSum

t ומספר ומספר $S=\{x_1,x_2,\ldots x_n\}$ ומספרים קלט:

t שווה איבריה שווה S שסכום איבריה שווה פלט: האם קיימת תת-קבוצה של

$$SubSetSum = \left\{ \langle S, t \rangle \; \left| \; \sum_{x \in Y} x = t \; ext{-ש } Y \subseteq S \; ext{grad} \;
ight\}$$

$SubSetSum \in NP$ בשפט 3.3 משפט

 $SubSetSum \in NP$.

.SubSetSum עבור V עבור אלגוריתם אימות נבנה אלגוריתם אימות

 $:(\langle S,t \rangle,y)$ על קלט =V

S בודק האם y היא תת-קבוצה של (1

• אם לא ⇒ דוחה.

t שווה t בודק האם סכום המספרים ב- (2

• אם לא ⇒ דוחה.

• אחרת ⇒ מקבל.

10.6 הקשר בין NP למ"ט א"ד

NP=Non-deterministic polynomial-time.

משפט 10.4

A לכל בעייה

אם ורק אם קיימת מ"ט א"ד המכריעה את $A \in NP$

דוגמה 10.1

. נבנה מ"ט א"ד M המכריעה את בומן פולינומיאלי.

 $:\langle G,k \rangle$ על קלט =M

G -ם בוחרת א קודקודים א על y קבוצה א"ד קבוצה •

. G -בצלע ב- מחוברים מ- על שני קודקודים פל בדקת האם סל בודקת •

- * אם כן \Rightarrow מקבלת.
 - ∗ אחרת ⇒ דוחה.

אלגוריתם אימות \equiv מ"ט א"ד.

NP -1 P הקשר בין המחלקה P ו- 10.7

כל הבעיות שניתן להכריע בזמן פולינומיאלי. P

כל הבעיות שניתן לאמת בזמן פולינומיאלי. NP

משפט 10.5

 $P \subseteq NP$.

P=Nים אלה פתוחה: האם

משפט 10.6

סגורה תחת משלים. P

 $ar{A} \in P$ הוכחה: אם $A \in P$ אזי גם

מגדרה 10.8 CoNP הגדרה

$CoNP = \{ A \mid \bar{A} \in NP . \}$

לדוגמה:

 $\overline{HAMPATH} \in CoNP$.

 $\overline{CLIQUE} \in CoNP$.

 $NP = Co\,NP$ שאלה פתוחה: האם

משפט 10.7

 $P \subseteq NP \cap CoNP$.

 $P=NP\cap Co\,NP$ שאלה פתוחה: האם

P=NP נדון בשאלה המרכזית: האם

הגדרה 10.9 פונקציה פולינומיאלית

בהינתן פונקציה אם קיים אלגוריתם כי f חשיבה בזמן פולינומיאלי אם קיים אלגוריתם (מ"ט, $f:\Sigma^* \to \Sigma^*$ המחשב את בזמן פולינומיאלי.

הגדרה 10.10 רדוקציה פולינומיאלית

בהינתן שתי הבעיות A ו- B אומרים כי A ניתנת לרדוקציה פולינומיאלית ל- B, ומסמנים $A \leqslant_P B$, אם המקיימת: $f: \Sigma^* \to \Sigma^*$ המקיימת:

- חשיבה בזמן פולינומיאלי f (1
 - $:w\in\Sigma^*$ לכל (2

 $w \in A \iff f(w) \in B$.

משפט 10.8 משפט הרדוקציה

לכל שתי בעיות A ו- B, אם $A\leqslant_P B$ אזי

- $A \in P$ אזי $B \in P$ אס (1
- $A \in NP$ אזי $B \in NP$ אם (2

מסקנה מ- (1) ו- (2):

- $.B \notin P$ אזי $A \notin P$ אס (3
- $.B \notin NP$ אזי $A \notin NP$ אם (4

 $w \in \Sigma^*$ קיימת, לכל המקיימת, פנקציה f חשיבה פנקציה, קיימת פנקציה אלי המקיימת, לכל המקיימת, לכל

$$w \in A \Leftrightarrow f(w) \in B$$
.

יהי פולינומיאלי. שמחשבת את f בזמן פולינומיאלי. אהי

 $A \in P$ נוכיח כי אם $B \in P$ אזי (1)

יהי M_A האלגוריתם שמכריע עת B בזמן פולינומיאלי. נבנה אלגוריתם M_A המכריע את B בזמן פולינומיאי.

M_A התאור של

:w על כל קלט $=M_A$

- M_f ע"י f(w) מחשב את .1
- . על f(w) על M_B את מריץ את 2

נוכיח כי M_A מכריע את מכריע מכריע את M_A

- .w את מקבל מקב $M_A \Leftarrow f(w)$ את מקבל מקב $M_B \Leftarrow f(w) \in B \Leftarrow w \in A$ אם •
- $M_A \Leftarrow f(w)$ דוחה את את דוחה את את $M_B \Leftarrow f(w) \notin B \Leftarrow w \notin A$ אם •

נוכיח כי זמן הריצה של M_A הוא פולינומיאי בגודל הקלט ושל וולינומיאלי:

- M_f את הפולינום של P_f נסמן ב-
- M_B עסמן ב- P_B את הפולינום של

אווה w על קלט אל שווה של הריצה של אמן הריצה אמן

$$P_f(|w|) + P_B(|f(w)|)$$

ע"ע חסום w על א M_A אמו הריצה און, אווי אווי און אווי פריוו ש- מכיוו ש-

$$P_f(|w|) + P_B(P_f(|w|)) = P_f(|w|) + (P_B \circ P_f)(|w|)$$

.|w| את ההרכבה של שני פולינומים. לכן M_A רץ בזמן את ההרכבה של מסמן את מסמן את כאשר