

Структуры данных для выполнения интервальных запросов

С. А. Соболь — магистр математики и информационных технологий Е.П. Соболевская — доцент кафедры ДМА ФПМИ БГУ

Постановка задачи

Пусть в памяти хранится последовательность из n элементов.

Нужно уметь выполнять какую-либо операцию над k последовательными элементами сразу (например, суммировать, находить минимум/максимум).

Такие запросы называют *интервальными*, потому что они затрагивают целый интервал значений.

Терминология

- Путаница
 - Промежуток
 - Интервал
 - Отрезок (сегмент)
- Будем использовать в основном целочисленные полуинтервалы (левый конец включён, правый не включён):

$$[l,r) = \{l, l+1, l+2, ..., r-1\}$$

• В языках программирования часто правый конец диапазона не включается (C++, Python)

Классификация задач

Если элементы последовательности не изменяются (не предусмотрено выполнение операции модификации элемента), то в названии задачи фигурирует слово статическая (англ. static), иначе— динамическая (англ. dynamic).

Классификация задач

Если сначала все интервальные запросы поступили (после чего они все могли быть проанализированы), а только потом формируются ответы на них, то говорят про **офлайн** (англ.**off line)** версию задачи.

Если же поступает запрос, сразу даётся на него ответ и только после ответа на предыдущий запрос идёт следующий запрос, то говорят про **онлайн** (англ. **online)** версию задачи.

Мы будем в нашей лекции рассматривать online версию задачи.

```
запрос-1
запрос-2
...
запрос-k
ответ-1
ответ-2
...
ответ-k
```

Постановка задачи

Выполнить один любой интервальный запрос можно, конечно, «в лоб» циклом по k элементам интервала — это $\Omega(k)$.

Можно ли это сделать быстрее?

Постановка задачи

Покажем (на примере задач о сумме и минимуме на интервале), что с помощью специальных структур:

- корневая эвристика;
- дерево отрезков;
- разрежённая таблица;

выполнить интервальный запрос можно быстрее.

При этом сначала над данными выполняют **препроцессинг** (**предподсчёт**) – предварительная подготовка, которая в последующем позволит эффективно обрабатывать запросы. Очевидно, что время предподсчёта должно быть не больше, чем суммарное время ответа на все запросы.

Задача RSQ

RSQ — Range Sum Query (запрос суммы на отрезке)

• Задана последовательность из n чисел:

$$A = [a_0, a_1, a_2, ..., a_{n-1}]$$

- Поступают запросы двух типов:
 - \checkmark запрос модификации $\mathbf{Add}(i,x)$ прибавить к i-му элементу число x;
 - ✓ запрос суммы $\mathbf{FindSum}(\boldsymbol{l},\boldsymbol{r})$ вычислить сумму на $[\boldsymbol{l},\boldsymbol{r})$

$$S = \sum_{k=1}^{r-1} a_k$$

Задача RSQ. Обычный массив

Используем **обычный массив**, в котором размещены элементы:

Add(3, 2)

Add(2, -5)

FindSum(1, 5)

$$1 + 0 + 11 + 5 = 17$$

2	1	5 0	9 11	5	2	6
0	1	2	3	4	5	6
		,	γ			

Время работы:

модификация	$\Theta(1)$
сумма	$\Theta(n)$

хотелось бы быстрее

n = 7

Выполним предподсчёт

Введём понятие частичной суммы, или суммы на префиксе:

$$s_k = \sum_{i=0}^{k-1} a_i = a_0 + a_1 + \dots + a_{k-1}$$

По исходной последовательности A массив S строится за $\mathbf{O}(n)$, используя следующее рекуррентное соотношение:

$$s_0 \coloneqq 0,$$

 $s_i \coloneqq s_{i-1} + a_{i-1}, \qquad i = 1, ..., n$

Сумма на [l,r) равна $s_r - s_l$

FindSum(2, 6) =
$$s_6 - s_2$$

= $26 - 3 = 23$

Время на запрос суммы: O(1)

Add(i,x)

Время на запрос модификации: $\Theta(n)$

A	2	1	9	7	5	2	6	
	0	1	2	3	4	5	6	7
S	0	2	3	12	19	24	26	32

Время на предподсчёт	$\Theta(n)$
Время на запрос модификации	$\Theta(n)$
Время на запрос суммы	$\Theta(1)$
Объем дополнительной памяти	$\Theta(n)$

можно O(1), если использовать память, выделенную под массив А

Оценки

	Обычный массив	Префиксные суммы
Время на предподсчёт		$\Theta(n)$
Время на запрос модификации	$\Theta(1)$	$\Theta(n)$
Время на запрос суммы	$\Theta(n)$	$\Theta(1)$
Объем дополнительной памяти		$\Theta(n)$

O(1), если хранить при предподсчёте массив префиксных сумм на месте исходного массива

Промежуточный вариант

- Одна операция быстрая, вторая медленная
- Нужно компромиссное решение

RSQ. Блоки

Выполним предподсчёт

- Можно просчитать заранее суммы для блоков определённого размера k (последний блок может быть меньше)
- При суммировании в цикле можно будет «перепрыгивать» блоки

Для этого кроме исходного массива A, создадим массив B размера $\left|\frac{n}{k}\right|$ для хранения сумм по блокам.

RSQ. Блоки

Удобно нумеровать блоки с нуля (на рис. размер блока ${m k}={m 6}$)

Пусть i индекс элемента в массиве A, в какой блок b_l он попадёт?

$$\begin{aligned} l \cdot k &\leq i < (l+1) \cdot k \\ \frac{i}{k} - 1 &< l \leq \frac{i}{k} \\ \frac{i}{k} - 1 &< \left\lfloor \frac{i}{k} \right\rfloor \leq \frac{i}{k} \end{aligned} \qquad x - 1 < \lfloor x \rfloor \leq x \leq \lceil x \rceil < x + 1$$

$$l \cdot \mathbf{k}$$
 $(l+1) \cdot \mathbf{k} - 1$

Элемент массива A с индексом i попадает в блок $b_{\lfloor i/k \rfloor}$.

При **модификации** нужно изменить a_i и $b_{|i/k|}$.


```
def Add(self, i, x):
    self.a[i] += x
    self.b[i // self.k] += x
```

Время выполнения операции модификации — O(1).

При **суммировании** на [l,r):

Определяем номера блоков, к которым относятся l и r.

Суммируем от l до границы блока за $\mathrm{O}(k)$ по массиву A.

Суммируем блоки за $\mathrm{O}(n/k)$ по массиву B.

Суммируем от границы блока до r за $\mathrm{O}(k)$ по массиву A.

$$n = 30$$

 $k = 6$


```
n = 30k = 6
```

```
def FindSum(self, l, r):
    jl = l // self.k
    jr = r // self.k
    if jl == jr: # same block
        return sum(self.a[l:r])
    else:
        return (
            sum(self.a[l:((jl + 1) * self.k)]) +
            sum(self.b[(jl + 1):jr]) +
            sum(self.a[(jr * self.k):r]
        )
```


При **суммировании** на [l,r)общее время:

$$O(k) + O\left(\frac{n}{k}\right) + O(k) = O\left(k + \frac{n}{k}\right).$$

Каким лучше выбрать размер блока k?

Оптимальный размер блока

Исследуем на экстремум функцию:

$$f(k) = k + \frac{n}{k}$$
$$f'(k) = 1 - \frac{n}{k^2}$$
$$f'(k) = 0 \Leftrightarrow k = \sqrt{n}$$

Таким образом, оптимально разбивать на $pprox \sqrt{n}$ блоков по $pprox \sqrt{n}$ элементов.

Операция $\operatorname{FindSum}(\boldsymbol{l},\boldsymbol{r})$ выполняется за время $\operatorname{O}\left(k+\frac{n}{k}\right)=\operatorname{O}\left(\sqrt{\boldsymbol{n}}\right)$.

Приём называется *sqrt-декомпозицией* или *корневой эвристикой*.

Пример реализации

```
class Summator:
                                                   def FindSum(self, l, r):
    def __init__(self, a):
                                                       jl = 1 // self.k
        self.a = a
                                                       jr = r // self.k
        self.k = floor(sqrt(len(a)))
                                                       if jl == jr: # same block
                                                           return sum(self.a[1:r])
        self.b = []
                                                       else:
        for i in range(0, len(a), self.k):
                                                           return (
            bsum = sum(self.a[i:(i + self.k)])
                                                               sum(self.a[1:((jl + 1) * self.k)]) +
            self.b.append(bsum)
                                                               sum(self.b[(jl + 1):jr]) +
                                                               sum(self.a[(jr * self.k):r]
    def Add(self, i, x):
        self.a[i] += x
        self.b[i // self.k] += x
```

Оценки

	Обычный массив	Префиксные суммы	Sqrt- декомпозиция
Время на предподсчёт		$\Theta(n)$	$\Theta(n)$
Время на запрос модификации	$\Theta(1)$	$\Theta(n)$	$\Theta(1)$
Время на запрос суммы	$\Theta(n)$	$\Theta(1)$	$\Theta(\sqrt{n})$
Объем дополнитель ной памяти		$\Theta(1)$	$\Theta(\sqrt{n})$

Дерево отрезков

Дальнейшим развитием идеи разбиения на блоки будет следующее:

- блоки разной длины организуем в виде дерева;
- в каждой вершине дерева содержится сумма элементов массива, индексы которых принадлежат соответствующему отрезку;
- корень соответствует всему массиву [0,n) (т.е. в корне дерева хранится общая сумма всех элементов массива);
- у вершины, соответствующей $[t_l, t_r)$, два сына:

$$[t_l,m)$$
 и $[m,t_r)$, где $m=\left\lfloor rac{t_l+t_r}{2}
ight
floor$

Такую структуру будем называть **деревом отрезков**

Терминология не устоялась, под segment tree и interval tree часто понимают другие структуры

Пример дерева отрезков для задачи RSQ

Дерево отрезков. Число вершин

<u>Теорема</u>

Общее число вершин равно $2 \cdot n - 1$.

Доказательство.

По индукции.

Если n=1, то есть одна вершина, $2\cdot n-1=1$ — верно. Если $n=n_1+n_2$, то строим два дерева и добавляем ещё одну вершину:

$$(2 \cdot n_1 - 1) + (2 \cdot n_2 - 1) + 1 = 2 \cdot (n_1 + n_2) - 2 + 1 = 2 \cdot n - 1$$

Таким образом, в дереве n листьев и n-1 внутренняя вершина. Высота дерева $O(\log n)$.

- Нет необходимости хранить указатели/ссылки
- Для хранения вершин дерева будем использовать массив (по аналогии с тем, как была реализована на массиве бинарная куча)
- Индексация в массиве с единицы (1 корень)

Количество реально занятых ячеек: $2 \cdot n - 1 = 2 \cdot 6 - 1 = 11$. Сколько всего ячеек надо зарезервировать в массиве T?

В том случае, когда n не является степенью 2, дерево не является полным, из-за чего в массиве могут быть неиспользуемые ячейки.

Чтобы места гарантированно хватило, можно выставить размер массива $\mathbf{4} \cdot \mathbf{n}$.

Дерево отрезков. Построение

```
def DoBuild(a, t, v, tl, tr):
    if tr - tl == 1:
        t[v] = a[tl]
    else:
        m = (tl + tr) // 2
        DoBuild(a, t, v=2*v, tl=tl, tr=m)
        DoBuild(a, t, v=2*v+1, tl=m, tr=tr)
        t[v] = t[2*v] + t[2*v+1]
```

```
def Build(a, n):
    t = [0] * 4*n
    DoBuild(a, t, v=1, tl=0, tr=n)
    return t
```


Дерево отрезков. Построение


```
def Build(a, n):
    t = [0] * 4*n
    DoBuild(a, t, v=1, tl=0, tr=n)
    return t

def DoBuild(a, t, v, tl, tr):
    if tr - tl == 1:
        t[v] = a[tl]
    else:
        m = (tl + tr) // 2
        DoBuild(a, t, v=2*v, tl=tl, tr=m)
        DoBuild(a, t, v=2*v+1, tl=m, tr=tr)
        t[v] = t[2*v] + t[2*v+1]
```

```
T 61 23 38 2 21 9 29 7 14 16 13 16 17 18 19 20
```

Дерево отрезков. Модификация

```
Add(i, x)
def DoAdd(t, v, tl, tr, i, x):
    if tr - tl == 1:
        t[v] += x
        return
    m = (tl + tr) // 2
    if i < m:
        DoAdd(t, v=2*v, tl=tl, tr=m, i=i, x=x)
    else:
        DoAdd(t, v=2*v+1, tl=m, tr=tr, i=i, x=x)
    t[v] = t[2*v] + t[2*v+1]
```

```
def Add(t, n, i, x):
    DoAdd(t, v=1, tl=0, tr=n, i=i, x=x)
```

Дерево отрезков. Модификация

[4,5)

Дерево отрезков. Сумма

```
def DoFindSum(t, v, tl, tr, l, r):
    if 1 == t1 and r == tr:
        return t[v]
                                                                tl
                                                                                        tr
                                                                              tr=m
    m = (tl + tr) // 2
    if r <= m:
        return DoFindSum(t, v=2*v, tl=tl, tr=m, l=l, r=r)
    if m <= 1:
                                                                         tl=m
                                                                                        tr
        return DoFindSum(t, v=2*v+1, tl=m, tr=tr, l=1, r=r)
        return (
                                                                   tl
                                                                         tr=mtl=m
        DoFindSum(t, v=2*v, tl=tl, tr=m, l=l, r=m) +
        DoFindSum(t, v=2*v+1, tl=m, tr=tr, l=m, r=r)
```


Дерево отрезков. Сумма. Пример

Найти сумму на отрезке [1,7).

_	0	1	2	3	4	5	6	7	8
A	2	7	3	8	14	12	16	1	5
	2	7	3	8	14	12	16	1	5
	2	7	3	8	14	12	16	1	5
		7					16		

Сумма на отрезке

[1,7): 7+ 11+26+16 =60

T	68 [0,9)	20 [0,4)	48 [4,9)	9 [0,2)	11 [2,4)	26 [4,6)	22 [6,9)	2 [0,1)	7 [1,2)	3 [2,3)	8 [3,4)	14 [4,5)	12 [5,6)	16 [6,7)	6 [7,9)	-	-		-	-	1 [7,8)	5 [8,9)
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	28	29	30	31

n = 9

Оценка времени работы

- При вычислении суммы рекурсия иногда уходит сразу в обе ветви
- Нужно доказать, что время работы $O(\log n)$, не O(n)
- Пусть интервал имеет вид [0,r)
- Возможна одна из трёх ситуаций:

спуск влево и вправо, но на следующем шаге левая рекурсия сразу завершится

• Видим, что на каждом уровне активно работает только одна ветвь рекурсии

Оценка времени работы

- Пусть теперь интервал [l,r) произвольный
- Возможна одна из трёх ситуаций

• В третьем случае задача сводится к ранее рассмотренной (после разделения на каждом уровне активно работают две рекурсии)

Доработки

• Нерекурсивная реализация быстрее работает на практике

- Можно добавить поддержку операций на интервале:
 - ✓ Add(l,r,x) прибавить x к каждому элементу [l,r)
 - ✓ Set(l,r,x) установить элементы [l,r) в значение x

Оценка времени работы

	дерево отрезков
Время на предподсчёт	$\Theta(n)$
Время на запрос модификации	$\Theta(\log n)$
Время на запрос суммы	$\Theta(\log n)$
Объем дополнительной памяти	$\Theta(n)$

Оценки

	Обычный массив	Префиксные суммы	Sqrt- декомпозиция	Дерево отрезков
Время на предподсчёт		$\Theta(n)$	$\Theta(n)$	$\Theta(n)$
Время на запрос модификации	$\Theta(1)$	$\Theta(n)$	$\Theta(1)$	$\Theta(\log n)$
Время на запрос суммы	$\Theta(n)$	$\Theta(1)$	$\Theta(\log n)$	$\Theta(\log n)$
Объём дополнительной памяти		$\Theta(1)$	$\Theta(\sqrt{n})$	$\Theta(n)$

Статическая online задача

RMQ — Range Minimum Query

(запрос минимума на отрезке)

Задана последовательность из n чисел:

$$A = [a_0, a_1, a_2, ..., a_{n-1}].$$

Поступают запросы munumyma **FindMin**(l,r) — найти минимум на полуинтервале [l,r).

Запросов модификации нет.

Можно решать корневой декомпозицией или деревом отрезков.

	0	1							8	
A	2	7	3	8	14	12	1	1	5	

n = 9

Дерево отрезков для RMQ

$\mathbf{FindMin}(l,r) - \mathbf{O}(\log n)$

Корневая декомпозиция для RMQ

FindMin
$$(l,r) - O(\sqrt{n})$$

Однако научимся отвечать на запрос $\mathbf{FindMin}(l,r)$ за время $\Theta(1).$

Сначала рассмотрим решение «в лоб»:

для всех пар (i,j) просчитаем минимум массива A на полуинтервале [i,j) и занесём в таблицу T.

Так как каждый элемент таблицы по рекуррентному соотношению

$$t_{i,j} = \min\{t_{i,j-1}, a_{j-1}\}$$

может быть вычислен за константу, то время предподсчёта:

$$\Theta(n^2)$$
.

	0	1	2	3	4	5
A	1	2	0	9	6	7

		0	1	2	3	4	5	6
	0		1	1	0	0	0	0
	1			2	0	0	0	0
T	2				0	0	0	0
	3					9	6	6
	4						6	6
	5							7

Затраты на дополнительную память (таблица T): $\Theta(n^2)$.

Разрежённая таблица

- Идея разредить таблицу, убрать часть информации
- Будем хранить минимумы для тех интервалов, длины которых являются *степенями двойки*
- Такая структура называется *sparse table* (рус. *разрежённая таблица*)

Разрежённая таблица

- Иначе говоря, для каждой позиции i храним минимумы на интервалах длины $1,2,4,\dots,2^k$ вправо от i
- $t_{k,i} = \min\{a_i, a_{i+1}, a_{i+2}, \dots, a_{i+2^k-1}\}$
- $\Theta(n \cdot \log n)$ памяти, $\Theta(n \cdot \log n)$ времени на построение

Sparse table. Пример

	2	9	1	9	6	7	5	2
2^k	0	1	2	3	4	5	6	7

$$\begin{cases} t_{0,i} = a_i \\ t_{k,i} = \min\{t_{k-1,i}, t_{k-1,i+2^{k-1}}\} \end{cases}$$

Разрежённая таблица

Предположим, что $2^{k-1} < n \le 2^k$.

Разреженная таблица занимает $\Theta(n \cdot \log n)$ ячеек

памят	и							
Памят 0 (=2 ⁰)	2	9	1	9	6	7	5	2
1 (=2 ¹)	2	1	1	6	6	5	2	
2 (=2²)	1	1	1	5	2			
3 (=2 ³)	1							

Оценим число «лишних» ячеек в таблице.

$$(2^{1}-1)+(2^{2}-1)+\cdots+(2^{k}-1)=2\cdot(2^{k}-1)-k<4\cdot n$$

$$(2^{1}-1)+(2^{2}-1)+\cdots+(2^{k}-1)=2\cdot(2^{k}-1)-k>2\cdot(n-1)-\lceil\log_{2}n\rceil-1$$

Ответ на запрос

- Нужно найти минимум на [l,r)
- Пусть p максимальная степень такая, что 2^p не превосходит длины интервала: $2^p \le r l < 2^{p+1}$
- Интервал [l,r) покрывается не более чем двумя перекрывающимися интервалами длины 2^p (начало первого интервала фиксируется на левой границе l, а второго на правой границе r)

$$\max\{p | 2^p \le r - l < 2^{p+1}\}$$

Ответ на запрос

Ответ на запрос минимума на полуинтервале можно вычислить по формуле:

$$\min \{t_{p,l}, t_{p,r-2}p\}$$

Формула является корректной, так как бинарная операция минимума обладает свойствами **ассоциативности, коммутативности и идемпотентность**.

Свойства бинарного отношения минимума

1. Ассоциативность (выполнять операции можно в произвольном порядке, т.е. допускается любой порядок расстановки скобок):

$$a \circ (b \circ c) = (a \circ b) \circ c$$

2. Коммутативность (можно располагать элементы в произвольном порядке, переставляя их):

$$a \circ b = b \circ a$$

3. Идемпотентность (благодаря этому свойству мы сможем работать на пересекающихся отрезках):

$$a \circ a = a$$

Свойства бинарного отношения минимума

Например, покажем, что минимум на [l,r)= минимум $\{$ минимум на [l,k), минимум на $[k-3,r)\}$


```
(a_l \circ a_{l+1} \circ \cdots \circ a_{k-3} \circ a_{k-2} \circ a_{k-1}) \circ (a_{k-3} \circ a_{k-2} \circ a_{k-1} \circ a_k \circ \cdots \circ a_{r-1}) = [ассоциативность] = a_l \circ a_{l+1} \circ \cdots \circ a_{k-3} \circ a_{k-2} \circ a_{k-1} \circ a_{k-2} \circ a_{k-1} \circ a_k \circ \cdots \circ a_{r-1} = [коммутативность] = a_l \circ a_{l+1} \circ \cdots \circ a_{k-3} \circ a_{k-3} \circ a_{k-2} \circ a_{k-2} \circ a_{k-1} \circ a_k \circ \cdots \circ a_{r-1} = [ассоциативность] = a_l \circ a_{l+1} \circ \cdots \circ (a_{k-3} \circ a_{k-3}) \circ (a_{k-2} \circ a_{k-2}) \circ (a_{k-1} \circ a_{k-1}) \circ a_k \circ \cdots \circ a_{r-1} = [идемпотентность] = a_l \circ a_{l+1} \circ \cdots \circ a_{k-3} \circ a_{k-2} \circ a_{k-1} \circ a_k \circ \cdots \circ a_{r-1}
```

Пример

FindMin(1,6)							
A	2	9	1	9	6	7	5	2
	0	1	2	3	4	5	6	7
0 (=2 ⁰)	2	9	1	9	6	7	5	2
1 (=2 ¹)	2	1	1	6	6	5	2	
2 (=2 ²)	1	1	1	5	2			
3 (=2 ³)	1							

$$t_{k,i} = \min\{a_i, a_{i+1}, \dots, a_{i+2^k-1}\}$$

$$\max\{p|2^p \le r-l < 2^{p+1}\} = \max\{p|2^p \le 6-1 < 2^{p+1}\} = \max\{p|2^p \le 5 < 2^{p+1}\} = 2$$

$$\mathbf{FindMin}(1,6) = \min\{t_{p,\,l},\,t_{p,\,r-2^p}\} = \min\{t_{2,\,1},\,t_{2,\,6-2^2}\} = \min\{t_{2,\,1},\,t_{2,\,2}\} = \min\{1,1\} = 1$$

Упражнение 1

- Дано целое число x ($1 \le x \le n$).
- Найти наибольшее p такое, что $2^p \le x$, за константное время (для этого можно сделать предподсчёт).
- Подходы
 - Формула
 - Динамическое программирование

3

 $2^{p[i]}=i$ i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

<i>i</i> 1																															
p	1	1	2	2	2	2	3	3	3	3	3	3	3	3	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	5

Упражнение 2

• Задана полоска из n клеток, клетки, некоторые клетки покрашены в чёрный цвет, остальные в белый

- Нужно уметь выполнять две операции:
 - $-\operatorname{Invert}(l,r)$ на интервале [l,r) изменить цвет на противоположный
 - $-\operatorname{GetColor}(i)$ получить цвет i-й клетки

Общие задачи

iRunner

0.2 Задача о сумме (реализация структур для интервальных запросов - сумма на отрезке)

Спасибо за внимание!