VU Minor Applied Econometrics

Bayesian Econometrics for Business & Economics (Bayesian statistics & simulation methods)

Period 2, 2023-2024 (E_MFAE_BEBE)

Lennart Hoogerheide

Vrije Universiteit Amsterdam & Tinbergen Institute

E-mail: 1.f.hoogerheide@vu.nl

Lecture 4:

- Exercise 4: Bernoulli distributed data: posterior distribution of θ in case of informative, conjugate prior.
- Simulation method: random walk Metropolis(-Hastings) method:
 - Application to posterior density kernel $P(\theta) = p(\theta)p(y|\theta)$ in Poisson regression model (with 2-dimensional $\theta = (\beta_0, \beta_1)'$).
 - Application to uniform target density $P(\theta)$. Purely for illustration! (Slides 21-29 are slides 34-42 from lecture 3.)
- Simulation method: independence chain Metropolis-Hastings method:
 - Application to uniform target density $P(\theta)$. (Purely for illustration!)
 - Application to posterior density kernel $P(\theta) = p(\theta)p(y|\theta)$ in Autoregressive Conditional Heteroskedasticity (ARCH) model.

Exercise 4: Bernoulli model under informative, conjugate prior

Model: Bernoulli distribution:

- $y_i = 1$ with probability θ
- $y_i = 0$ with probability 1θ

Likelihood:

$$p(y|\theta) = p(y_1, \dots, y_n|\theta) = \prod_{i=1}^n p(y_i|\theta) = \theta^{\sum_{i=1}^n y_i} (1-\theta)^{\sum_{i=1}^n (1-y_i)}$$
$$= \theta^{n_1} (1-\theta)^{n_0}$$

with $n_1 \equiv \sum_{i=1}^n y_i$ the number of ones in the sample, and with $n_0 \equiv \sum_{i=1}^n (1-y_i)$ the number of zeros in the sample.

Informative prior: $Beta(\tilde{n}_1 + 1, \tilde{n}_0 + 1)$ distribution:

$$p(\theta) = \begin{cases} \frac{\Gamma(\tilde{n}_1 + \tilde{n}_0 + 2)}{\Gamma(\tilde{n}_1 + 1)\Gamma(\tilde{n}_0 + 1)} \; \theta^{\tilde{n}_1} (1 - \theta)^{\tilde{n}_0} & \text{if } 0 \leq \theta \leq 1, \\ 0 & \text{else.} \end{cases}$$

This is a **conjugate** prior: a prior such that prior and posterior are in the same probability distribution family (that is, a prior that has the specification like a posterior based on an older dataset).

For example, $\tilde{n}_1=2$ and $\tilde{n}_0=8$ would have the same effect as adding 10 artificial observations (with two "successes" and eight "failures") to our actual dataset.

(a) Suppose that we specify this $Beta(\tilde{n}_1+1,\tilde{n}_0+1)$ prior distribution, and that we have a dataset of n observations with n_1 "successes" and n_0 "failures". Use Bayes' rule to derive a kernel of posterior density $p(\theta|y)$.

Answer: Prior:

$$p(\theta) \propto \left\{ \begin{array}{ll} \theta^{\tilde{n}_1} (1-\theta)^{\tilde{n}_0} & \text{if } 0 \leq \theta \leq 1, \\ 0 & \text{else}. \end{array} \right.$$

Likelihood:

$$p(y|\theta) = \theta^{n_1} (1 - \theta)^{n_0}.$$

Posterior density kernel:

$$p(\theta|y) \propto p(\theta)p(y|\theta) \propto \left\{ \begin{array}{ll} \theta^{\tilde{n}_1+n_1}(1-\theta)^{\tilde{n}_0+n_0} & \text{if } 0 \leq \theta \leq 1, \\ 0 & \text{else}. \end{array} \right.$$

Note: same posterior density kernel as in case where we have a uniform prior and where we observe \tilde{n}_1+n_1 "successes" and \tilde{n}_0+n_0 "failures".

(b) What is the exact posterior density $p(\theta|y)$, including the scaling factor? What is the posterior mean $E(\theta|y)$? You can make use of Table 1a-1b.

Answer: Posterior density kernel:

$$p(\theta|y) \propto p(\theta)p(y|\theta) \propto \left\{ egin{array}{ll} heta^{ ilde{n}_1+n_1}(1- heta)^{ ilde{n}_0+n_0} & ext{if } 0 \leq heta \leq 1, \\ 0 & ext{else.} \end{array}
ight.$$

This is a Beta($\tilde{n}_1 + n_1 + 1, \tilde{n}_0 + n_0 + 1$) distribution with density:

$$p(\theta|y) = \begin{cases} \frac{\Gamma(\tilde{n}_1 + n_1 + \tilde{n}_0 + n_0 + 2)}{\Gamma(\tilde{n}_1 + n_1 + 1)\Gamma(\tilde{n}_0 + n_0 + 1)} \theta^{\tilde{n}_1 + n_1} (1 - \theta)^{\tilde{n}_0 + n_0} & \text{if } 0 \le \theta \le 1, \\ 0 & \text{else.} \end{cases}$$

The posterior mean is $E(\theta|y) = \frac{\tilde{n}_1 + n_1 + 1}{\tilde{n}_1 + n_1 + \tilde{n}_0 + n_0 + 2}$.

Table 1a: Continuous distributions

distribution	probability density function	mean
Beta(a,b)	$p(x) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} x^{a-1} (1-x)^{b-1} \text{ for } 0 \le x \le 1$	$\frac{a}{a+b}$
Exponential(b)	$p(x) = \frac{1}{b} \exp\left(-\frac{x}{b}\right)$ for $x \ge 0$	b
Gamma(a,b)	$p(x) = \frac{1}{\Gamma(a)b^a} x^{a-1} \exp(-\frac{x}{b})$ for $x \ge 0$	$a \cdot b$
Normal $N(\mu, \sigma^2)$	$p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp(-\frac{(x-\mu)^2}{2\sigma^2})$ for $-\infty < x < \infty$	μ
$Student-t(\mu, \sigma^2, DoF)$	$\begin{split} p(x) &= \frac{\Gamma(\frac{DoF+1}{2})}{\Gamma(\frac{DoF}{2})\sqrt{DoF\pi}} \frac{1}{\sigma} \left(1 + \frac{(x-\mu)^2}{DoF\sigma^2}\right)^{-\frac{DoF+1}{2}} \\ \text{for } &-\infty < x < \infty \end{split}$	μ

Overview of integration methods:

integration analytical numerical deterministic simulation (possible for (Monte Carlo) dim. $\theta \leq 3$) direct indirect simulation simulation well-known unknown conditional conditional posteriors: posteriors: Gibbs sampling Metropolis-Hastings: random walk Metropolis(-Hastings), independence chain Metropolis-Hastings.

Poisson distribution:

Poisson distribution with mean $E(y_j|\mu)=\mu$: probability mass function:

$$p(y_j|\mu) = \frac{\mu^{y_j} \exp(-\mu)}{y_j!}$$
 $y_j = 0, 1, 2, \dots$

Example: Poisson($\mu = 1$) distribution:

Note: for small mean μ the Poisson(μ) distribution can obviously **not** be approximated well by a normal distribution.

Poisson regression model:

$$y_j \sim \mathsf{Poisson}(\mu_j)$$
 with $\mu_j = \exp(\beta_0 + \beta_1 x_j).^1$

Note: exponent to ensure that $\mu_j > 0$.

For example, sales y_j (left) and advertisement expenditure x_j (right) $(j=1,2,\ldots,n)$ with n=100:

¹Compare: normal linear regression model has $y_j \sim N(\mu_j, \sigma^2)$ with $\mu_j = \beta_0 + \beta_1 x_j$. Note: everything is conditional on exogenous explanatory variable x_j ; $y_j \sim \ldots$ is written instead of $y_j | x_j \sim \ldots$ only to have a shorter/simpler notation here and below.

For example, sales y_j (vertical axis) and advertisement expenditure x_j (horizontal axis) $(j=1,2,\ldots,n=100)$.

Ordinary Least Squares (OLS) may yield negative fitted values \hat{y} for certain values of x:

Note: we can **not** estimate normal regression model for $\ln(y_j)$, because of observations with $y_j=0$. And the normality assumption for $\ln(y_j)$ or $\ln(1+y_j)$ would be unrealistic (for example, for prediction interval of y_j).

Poisson probability mass function with mean $\mu_j = \exp(\beta_0 + \beta_1 x_j)$:

$$p(y_j|\theta) = \frac{\mu_j^{y_j} \exp(-\mu_j)}{y_j!}$$

$$\propto \mu_j^{y_j} \exp(-\mu_j)$$

 $= \exp(\beta_0 + \beta_1 x_i)^{y_i} \exp(-\exp(\beta_0 + \beta_1 x_i))$

with $\theta = (\beta_0, \beta_1)'$, where everything is conditional on exogenous $x = (x_1, \dots, x_n)'$.

Likelihood:

$$p(y|\theta) = p(y_1, \dots, y_n|\theta) = \prod_{j=1} p(y_j|\theta)$$

$$\propto \prod_{j=1}^n \exp(\beta_0 + \beta_1 x_j)^{y_j} \exp(-\exp(\beta_0 + \beta_1 x_j))$$

Suppose we specify non-informative prior: $p(\theta) \propto 1$ for $\theta = (\beta_0, \beta_1)'$ (with $-\infty < \beta_0 < \infty$, $-\infty < \beta_1 < \infty$).

Posterior:

$$p(\theta|y) \propto p(\theta)p(y|\theta) \propto \prod_{j=1}^{n} \exp(\beta_0 + \beta_1 x_j)^{y_j} \exp(-\exp(\beta_0 + \beta_1 x_j))$$

This is **not** a well-known 'standard' distribution for (β_0, β_1) .

For analyzing the posterior we need simulation method like random walk Metropolis(-Hastings) method. Use logarithm of posterior density kernel $P(\theta)$

$$\ln P(\theta) = \sum_{j=1}^{n} \{ y_j (\beta_0 + \beta_1 x_j) - \exp(\beta_0 + \beta_1 x_j) \}.$$

Random walk Metropolis(-Hastings) method

- Choose feasible initial value θ_0 . (For example, $(\ln(\bar{y}), 0)$ or the ML estimator.)
- Do for draw $i = 1, \ldots, n_{draws}$:
 - Simulate candidate draw $\tilde{\theta}$ from candidate density Q(.) with mean $\theta_{i-1}.$ For example, $\tilde{\theta} \sim N(\theta_{i-1}, \Sigma).$
 - Compute acceptance probability

$$\frac{\alpha}{\alpha} = \min \left\{ \frac{P(\tilde{\theta})}{P(\theta_{i-1})}, 1 \right\} = \min \left\{ \exp(\ln P(\tilde{\theta}) - \ln P(\theta_{i-1})), 1 \right\}.$$

- ullet Simulate U from uniform distribution on [0,1].
- If $U \leq \alpha$, then accept: $\theta_i = \tilde{\theta}$ (accept candidate draw). If $U > \alpha$, then reject: $\theta_i = \theta_{i-1}$ (repeat previous draw).

Common choice of Σ (variance-covariance matrix of candidate distribution) is $-Hessian^{-1}$, where Hessian is the Hessian of the log posterior at the posterior mode, which is here (with flat prior density) the same as $-Hessian^{-1}$ of the loglikelihood at the maximum likelihood estimator:

$$\left(-\frac{\partial^2 \log p(y|\theta)}{\partial \theta \partial \theta'} \bigg|_{\theta = \hat{\theta}_{ML}} \right)^{-1}.$$

Here:

$$\Sigma = \left(\begin{array}{cc} 0.2085 & -0.0796 \\ -0.0796 & 0.0311 \end{array} \right).$$

Note: classical/frequentist statistician has for large enough number of observations n (under regularity conditions):

$$\hat{\theta}_{ML} \approx N \left(\theta, \left(-\frac{\partial^2 \log p(y|\theta)}{\partial \theta \partial \theta'} \Big|_{\theta = \hat{\theta}_{ML}} \right)^{-1} \right).$$

Simulation of $\tilde{\theta}$ from $N(\theta_{i-1}, \Sigma)$, the 2-dimensional normal distribution with mean θ_{i-1} and variance-covariance matrix Σ :

- Use built-in function for simulation from multivariate normal distribution, if this exists.
- In Ox/OxMetrics: compute

$$\tilde{\theta} = \theta_{i-1} + \mathsf{choleski}(\Sigma)Z$$

where $Z=(Z_1,Z_2)'$ is a 2×1 vector of 2 independent standard normal N(0,1) variables.

Kernel of posterior density $p(\beta_0, \beta_1|y)$ (scaled to have maximum 1):

Histograms of 10000 draws (after burn-in of 1000 draws):

Properties of posterior distribution:

	mean	st. dev.	2.5% quantile	97.5% quantile
β_0	-4.0608	0.4577	-4.9744	-3.1738
β_1	2.0415	0.1765	1.7011	2.3919

We have:

- Acceptance percentage: 56.43%.
 - ⇒ reasonable 'moderate' value
 - \Rightarrow this suggests that there are no problems with (too small, too large, or otherwise poorly chosen) variance-covariance matrix Σ of the candidate steps.
- 95% posterior interval of β_1 is [1.7011, 2.3919] which does not include 0.
 - \Rightarrow Bayesian statistician using 95% posterior interval rejects $\beta_1=0.$
 - \Rightarrow Conclusion: There is effect of x (advertisement) on y (sales).

Purely illustrative example with uniform target density $P(\theta)$:

• Suppose we want to simulate from the uniform distribution on the interval [0,1], so that the target density is

$$P(\theta) = \begin{cases} 1 & 0 \le \theta \le 1, \\ 0 & \text{else,} \end{cases}$$

where we use the random walk Metropolis(-Hastings) method.²

• Suppose we simulate the candidate draw $\tilde{\theta}$ from the normal distribution $N(\theta_{i-1}, \sigma_{candidate}^2)$.

 $^{^{2}}$ Obviously, this is only for illustrative purposes! In practice, if we want to simulate from the uniform distribution on [0,1], then we **directly** simulate from this.

The acceptance probability is given by

$$\alpha = \min\left\{\frac{P(\tilde{\theta})}{P(\theta_{i-1})}, 1\right\} =$$

$$=\min\left\{\tfrac{1}{1},1\right\}=1 \qquad \qquad \text{if $\tilde{\theta}\in[0,1]$ and $\theta_{i-1}\in[0,1]$}$$

$$=\min\left\{\tfrac{0}{1},1\right\}=0 \qquad \qquad \text{if } \tilde{\theta}\notin [0,1] \text{ and } \theta_{i-1}\in [0,1]$$

$$= \min\left\{\frac{1}{0}, 1\right\} = \text{undefined} \quad \text{if } \tilde{\theta} \in [0, 1] \text{ and } \underline{\theta_{i-1} \notin [0, 1]}$$

$$= \min\left\{\frac{0}{0}, 1\right\} = \text{undefined} \quad \text{if } \tilde{\theta} \notin [0, 1] \text{ and } \theta_{i-1} \notin [0, 1]$$

Note: the latter two cases do not occur:

- We choose initial value $\theta_0 \in [0, 1]$,
 - Each candidate draw $\tilde{\theta}$ outside [0,1] is rejected.
 - So, we never have $\theta_{i-1} \notin [0,1]$.

So: we simply accept every $\tilde{\theta} \in [0,1]$ and reject every $\tilde{\theta} \notin [0,1]$.

How to evaluate whether a candidate distribution is 'good' or 'bad'?

• **'trace plot'** of (accepted and repeated) draws $\theta_0, \theta_1, \theta_2, \ldots$

Do the draws move through the parameter space 'fast enough'?

- acceptance percentage: what percentage of the candidate draws is accepted? A percentage close to 0% is bad. But a percentage close to 100% can be bad too!
- (first order) serial correlation in sequence of (accepted and repeated) draws.

The lower the serial correlation, the better. (Close to 1 is bad.)

Case with small candidate steps: $\sigma_{candidate} = 0.1$:

 $\tilde{\theta} \sim N(\theta_{i-1}, 0.1^2)$ and $n_{draws} = 100000$.

- acceptance percentage = 92%.
- first order serial correlation in sequence of accepted (and possibly repeated) draws: $corr(\theta_i, \theta_{i-1}) = 0.95$.

Case with reasonable candidate steps: $\sigma_{candidate} = 0.5$: $\tilde{\theta} \sim N(\theta_{i-1}, 0.5^2)$ and $n_{draws} = 100000$.

- acceptance percentage = 61%.
- first order serial correlation in sequence of accepted (and possibly repeated) draws: $corr(\theta_i, \theta_{i-1}) = 0.61$.

Case with large candidate steps: $\sigma_{candidate} = 10$:

$$\tilde{\theta} \sim N(\theta_{i-1}, 10^2)$$
 and $n_{draws} = 100000$.

- acceptance percentage = 4%.
- first order serial correlation in sequence of accepted (and possibly repeated) draws: $corr(\theta_i, \theta_{i-1}) = 0.96$.

Note: For random walk Metropolis(-Hastings) method we observe that:

- very small candidate steps are often accepted.
- very large candidate steps are often rejected.

If
$$\sigma_{candidate} o 0$$
, then $\tilde{\theta} \approx \theta_{i-1}$, $P(\tilde{\theta}) \approx P(\theta_{i-1})$, so $\alpha = \min\{\frac{P(\tilde{\theta})}{P(\theta_{i-1})}, 1\} \approx 1$.

Then acceptance percentage \rightarrow 100%, but also serial correlation \rightarrow 1.

Note: for random walk Metropolis(-Hastings) method we have poor performance (i.e., large serial correlation $corr(\theta_i, \theta_{i-1})$), if we have

- too small candidate steps (that move too slowly through the parameter space)
- too large candidate steps (that are mostly rejected).

Note: For random walk Metropolis(-Hastings) method in this example:

- Best performance (i.e., lowest serial correlation $corr(\theta_i, \theta_{i-1})$) if acceptance percentage has 'moderate' value around 50%-60%.
- Reasonable performance (reasonable serial correlation $corr(\theta_i, \theta_{i-1})$) if acceptance percentage has value between 20% and 80%.

Literature: For normal target density 23.4% is 'optimal' acceptance rate.

Independence chain Metropolis-Hastings method

(independence chain: candidate draws are independent):

- ullet Choose feasible initial value $heta_0$
- Do for draw $i = 1, \ldots, n_{draws}$:
 - \bullet Simulate candidate draw θ from (fixed) candidate density Q(.).
 - Compute acceptance probability

$$\begin{split} & \alpha &= & \min \left\{ \frac{P(\tilde{\theta})/Q(\tilde{\theta})}{P(\theta_{i-1})/Q(\theta_{i-1})}, 1 \right\} \\ &= & \min \left\{ \exp[\ln P(\tilde{\theta}) - \ln P(\theta_{i-1})] \frac{Q(\theta_{i-1})}{Q(\tilde{\theta})}, 1 \right\} \end{split}$$

with target density kernel $P(\theta)$ and candidate density $Q(\theta)$. (In Bayesian estimation, $P(\theta)$ is the posterior density kernel $P(\theta) = p(\theta)p(y|\theta)$.)

- Simulate U from uniform distribution on [0, 1].
- If $U \leq \alpha$, then accept: $\theta_i = \tilde{\theta}$ (accept candidate draw). If $U > \alpha$, then reject: $\theta_i = \theta_{i-1}$ (repeat previous draw).

Note:

- Acceptance probability α depends on ratio $P(\tilde{\theta})/Q(\tilde{\theta})$ that indicates whether posterior density kernel $P(\tilde{\theta}) = p(\tilde{\theta})p(y|\tilde{\theta})$ is low or high in point $\tilde{\theta}$ (compared with candidate $Q(\tilde{\theta})$):
 - If $P(\tilde{\theta})/Q(\tilde{\theta})$ relatively very high \Rightarrow large probability of accepting (and repeating!) $\tilde{\theta}$, because the value $\tilde{\theta}$ (and values close to it) are not enough simulated from candidate density Q(.).
 - If $P(\tilde{\theta})/Q(\tilde{\theta})$ relatively very low \Rightarrow small probability of accepting $\tilde{\theta}$, because the value $\tilde{\theta}$ (and values close to it) are simulated too often from candidate density Q(.).
 - If $P(\tilde{\theta}) = 0 \Rightarrow P(\tilde{\theta})/Q(\tilde{\theta}) = 0 \Rightarrow$ no probability of accepting $\tilde{\theta}$, because this value of $\tilde{\theta}$ is impossible (for example, if $\tilde{\theta}$ lies outside the allowed range of parameter values).

Note (just like for random walk Metropolis(-Hastings) method):

- We only need ratio $\frac{P(\theta)}{P(\theta_{i-1})}$ that does **not** depend on any constant scaling factor in P(.).
 - \Rightarrow only need $\mathbf{kernel}\ P(\theta)$ of posterior density $p(\theta|y) \propto p(\theta) p(y|\theta).$
- For numerical reasons we evaluate the log-prior and loglikelihood:

$$\frac{P(\tilde{\theta})}{P(\theta_{i-1})} = \frac{\exp[\ln P(\tilde{\theta})]}{\exp[\ln P(\theta_{i-1})]} = \exp\left[\ln P(\tilde{\theta}) - \ln P(\theta_{i-1})\right]$$
$$= \exp\left[\ln p(\tilde{\theta}) + \ln p(y|\tilde{\theta}) - \ln p(\theta_{i-1}) - \ln p(y|\theta_{i-1})\right]$$

- The draws $\theta_0, \theta_1, \theta_2, \ldots$ form a Markov chain that converges in distribution to the posterior distribution.
 - Discard a **burn-in** of the first draws to delete the effect of initial value θ_0 .

Purely illustrative example with uniform target density $P(\theta)$:

• Suppose we want to simulate from the uniform distribution on the interval [0,1], so that the target density is

$$P(\theta) = \begin{cases} 1 & 0 \le \theta \le 1, \\ 0 & \text{else,} \end{cases}$$

where we use the independence chain Metropolis-Hastings method.³

• Suppose we simulate the candidate draw $\tilde{\theta}$ from the uniform distribution on the interval [0,a] with density

$$Q(\theta) = \left\{ \begin{array}{ll} \frac{1}{a} & 0 \leq \theta \leq a, \\ \\ 0 & \text{else.} \end{array} \right.$$

 $^{^3}$ Obviously, this is only for illustrative purposes! In practice, if we want to simulate from the uniform distribution on [0,1], then we **directly** simulate from this.

 $= \min \left\{ \frac{1}{1}, 1 \right\} = 1$

if $\tilde{\theta} \in [0,1]$ and $\theta_{i-1} \in [0,1]$

 $\alpha = \min\left\{\frac{P(\tilde{\theta})/Q(\tilde{\theta})}{P(\theta_{i-1})/Q(\theta_{i-1})}, 1\right\} = \min\left\{\frac{P(\tilde{\theta})/(1/a)}{P(\theta_{i-1})/(1/a)}, 1\right\} = \min\left\{\frac{P(\tilde{\theta})}{P(\theta_{i-1})}, 1\right\}$

$$=\min\left\{\tfrac{0}{1},1\right\}=0 \qquad \qquad \text{if } \tilde{\theta}\notin[0,1] \text{ and } \theta_{i-1}\in[0,1]$$

$$=\min\left\{\tfrac{1}{0},1\right\}=\text{undefined} \qquad \qquad \text{if } \tilde{\theta}\in[0,1] \text{ and } \theta_{i-1}\notin[0,1]$$

 $= \min \left\{ \frac{0}{0}, 1 \right\} = \text{undefined}$ if $\theta \notin [0,1]$ and $\theta_{i-1} \notin [0,1]$

Note: the latter two cases do not occur:

• So, we never have $\theta_{i-1} \notin [0,1]$.

- We choose initial value $\theta_0 \in [0, 1]$,

 - Each candidate draw θ outside [0,1] is rejected.

So: we simply accept every $\tilde{\theta} \in [0,1]$ and reject every $\tilde{\theta} \notin [0,1]$.

Case with perfect candidate density (equal to target density): a=1. $\tilde{\theta} \sim U(0,1)$ and $n_{draws}=100000$.

- acceptance percentage = 100%.
- first order serial correlation in sequence of accepted (and possibly repeated) draws: $corr(\theta_i, \theta_{i-1}) = 0.00$.

Case with too wide candidate density: a = 10.

 $\ddot{\theta} \sim U(0, 10)$ and $n_{draws} = 100000$.

- acceptance percentage = 10%.
- first order serial correlation in sequence of accepted (and possibly repeated) draws: $corr(\theta_i, \theta_{i-1}) = 0.90$.

Case with too narrow candidate density: a = 0.5.

 $\ddot{\theta} \sim U(0, 0.5)$ and $n_{draws} = 100000$.

• 'trace plot' of first 1000 accepted (and possibly repeated) draws:

- acceptance percentage = 100%.
- first order serial correlation in sequence of accepted (and possibly repeated) draws: $corr(\theta_i, \theta_{i-1}) = 0.00$.

Note: for independence chain Metropolis-Hastings method we observe that

- too wide candidate density leads to poor (low) acceptance percentage.
- here the acceptance percentage does not give a warning signal if the candidate density is too narrow.

Note: for independence chain Metropolis-Hastings method we observe that

- too wide candidate density leads to poor (large) serial correlation $\mathrm{corr}(\theta_i,\theta_{i-1})$ (because of many rejected candidate draws).
- here the serial correlation does not give a warning signal if the candidate density is too narrow.

Note: for independence chain Metropolis-Hastings method we have here:

- Best performance (i.e., lowest serial correlation $corr(\theta_i, \theta_{i-1})$) if acceptance percentage has highest value 100%.
- However, this is also reached if the candidate density is too narrow.

Check whether candidate density is too narrow **in different way**: for example, try candidate density with larger variance and check whether estimation results substantially change.

Application to posterior density kernel in ARCH(1) model

Target density kernel $P(\alpha_1) = p(\alpha_1)p(y|\alpha_1)$ with logarithm

$$\ln P(\alpha_1) = \ln p(\alpha_1) + \ln p(y|\alpha_1)$$

with log-prior:

$$\ln p(\alpha_1) = \begin{cases} \ln(1) = 0 & \text{if } 0 \le \alpha_1 \le 1, \\ \ln(0) = -\infty & \text{else.} \end{cases}$$

and loglikelihood:

$$\ln p(y|\alpha_1) = \ln \left(\prod_{t=2}^n p(y_t|y_{t-1}, \alpha_1) \right) = \sum_{t=2}^n \ln(p(y_t|y_{t-1}, \alpha_1)) =$$

$$= \sum_{t=2}^n \left\{ -\frac{1}{2} \ln(2\pi[s^2(1-\alpha_1) + \alpha_1 y_{t-1}^2]) - \frac{y_t^2}{2[s^2(1-\alpha_1) + \alpha_1 y_{t-1}^2]} \right\}$$

In our ARCH(1) model:

- Initial value $\theta_0 = ML$ estimator.
- Candidate distribution: uniform distribution on [0,1].
- $n_{draws} = 100100$ draws (with burn-in of 1000 draws).

Posterior mean (stdev): 0.222 (0.036).

Maximum likelihood estimator (standard error): 0.221 (0.037)

Note:

• In our ARCH(1) model we have acceptance probability:

$$\alpha = \min \left\{ \frac{P(\tilde{\alpha}_1)/Q(\tilde{\alpha}_1)}{P(\alpha_{1,i-1})/Q(\alpha_{1,i-1})}, 1 \right\}.$$

• We have uniform candidate density on interval [0,1] for α_1 :

$$Q(\alpha_1) = \left\{ \begin{array}{ll} 1 & \text{if } 0 \leq \alpha_1 \leq 1 \\ 0 & \text{else} \end{array} \right.$$

and each (candidate) draw lies in [0,1], so that $Q(\tilde{\alpha}_1) = 1$ and $Q(\alpha_{1,i-1}) = 1.$

 So if we use a uniform candidate distribution we have acceptance probability:

$$\alpha = \min \left\{ \frac{P(\tilde{\alpha}_1)}{P(\alpha_{1,i-1})}, 1 \right\}.$$

(The same as for the random walk Metropolis-Hastings method.)

Evaluation of quality of U(0,1) candidate distribution:

• 'trace plot' of (accepted) draws $\theta_0, \theta_1, \theta_2, \ldots$

 acceptance percentage: what percentage of the candidate draws is accepted?

Here: acceptance percentage = 11.5% (not so high).

• (first order) serial correlation in sequence of (accepted) draws. Here: $corr(\alpha_{1,i},\alpha_{1,i-1})=0.850$ (high).

Different candidate distribution: $\tilde{\theta} \sim N(0.221, 0.037^2)$ (normal distribution around maximum likelihood estimator).

Different candidate distribution: $\theta \sim N(0.221, 0.037^2)$ (normal distribution around maximum likelihood estimator).

Results: histogram (top) and 'trace plot' (bottom) of accepted draws:

First order serial correlation in (accepted) draws: 0.021 (very low). Acceptance percentage: 98.5% (very high).

Estimated posterior mean (stdev): 0.223 (0.036)

Different candidate distribution: $\tilde{\theta} \sim N(0.3, 0.1^2)$ (normal distribution with too high mean and large variance).

Different candidate distribution: $\dot{\theta} \sim N(0.3, 0.1^2)$ (normal distribution with too high mean and large variance).

Results: histogram (top) and 'trace plot' (bottom) of accepted draws:

First order serial correlation in (accepted) draws: 0.618.

Acceptance percentage: 32.3%.

Estimated posterior mean (stdev): 0.222 (0.037)

Different candidate distribution: $\tilde{\theta} \sim N(0.3, 0.03^2)$ (normal distribution with too high mean and small variance).

Different candidate distribution: $\ddot{\theta} \sim N(0.3, 0.03^2)$ (normal distribution with too high mean and small variance).

Results: histogram (top) and 'trace plot' (bottom) of accepted draws:

First order serial correlation in (accepted) draws: 0.953.

Acceptance percentage: 11.9%.

Estimated posterior mean (stdev): 0.232 (0.030)

Note:

- Independence chain Metropolis-Hastings method works fine if candidate distribution is close to posterior distribution (where candidate distribution 'covers' the whole posterior distribution)
- Independence chain Metropolis-Hastings method works (but with many rejected candidate draws) if candidate distribution 'covers' the whole posterior distribution, but is not so close to the posterior distribution.
- Independence chain Metropolis-Hastings method fails if candidate distribution does not 'cover' the whole posterior distribution.

How to make it more probable that the candidate 'covers' the posterior distribution?

- Use Student-t candidate distribution (with fatter tails than normal distribution).
- Adapt candidate distribution: run independence chain MH method a second time, now with mean and variance of candidate distribution equal to estimated posterior mean and posterior variance (multiplied with factor ≥ 1) from first run. (This can be repeated several times.)
- Alternatively, use random walk Metropolis(-Hastings) method.

Note:

- Acceptance/rejection/repetition corrects for difference between posterior density with kernel $P(\theta)$ and candidate density $Q(\theta)$.
- Independence chain Metropolis-Hastings method is **not** the same as **acceptance-rejection method**, where we accept with probability

$$\frac{P(\tilde{\theta})/Q(\tilde{\theta})}{M} \qquad M = \max_{\theta} P(\theta)/Q(\theta),$$

and where rejection means that we try again (without repeating the previous value).

Advantage of acceptance-rejection method: it yields independent draws.

Disadvantages of acceptance-rejection method: the acceptance percentage $(\approx \frac{1}{M})$ may be very small, especially if the dimension of θ is large, and $\max_{\theta} P(\theta)/Q(\theta)$ needs to be computed.