Элементы функционального анализа

Определение. Линейное (векторное) пространство L называется **нормированным**, если каждому элементу $\overline{x} \in L$ поставлено в соответствие действительное число, которое называется *нормой* этого элемента, обозначается $\|\overline{x}\|$ и удовлетворяет следующим условиям:

- **1.** $\|\bar{x}\| = 0 \iff \bar{x} = \bar{0}.$
- **2.** $\|\alpha \overline{x}\| = |\alpha| \|\overline{x}\|$ для любого $\alpha \in \mathbb{R}$.
- 3. $\|\bar{x} + \bar{y}\| \le \|\bar{x}\| + \|\bar{y}\|$ (неравенство треугольника).

Если ||x|| = 1, то вектор x называется **нормированным**.

Примерами норм вектора $\bar{x} = (x_1, x_2, ..., x_n)$ пространства \mathbf{R}^n являются:

$$\begin{split} &\left\|\overline{x}\right\|_{1} = \sum_{i=1}^{n} \left|x_{i}\right|; \\ &\left\|\overline{x}\right\|_{2} = \left(\sum_{i=1}^{n} x_{i}^{2}\right)^{\frac{1}{2}} - \text{евклидова норма}; \\ &\left\|\overline{x}\right\|_{\infty} = \left\|\overline{x}\right\|_{c} = \max_{i=1,n} \left|x_{i}\right| - \text{равномерная норма}. \end{split}$$

Пример. Для X=(1,-2,3,4) имеем:

$$\|X\|_1 = 10, \ \|X\|_2 = \sqrt{30} \approx 5.477226, \ \|X\|_3 = \sqrt[3]{100} \approx 4.641588, \ldots, \|X\|_\infty = 4.$$

Различные способы задания нормы в одном и том же линейном пространстве порождают различные формы окрестности вектора (точки) этого пространства. Для примера изобразим 1-окрестность начала координат в \mathbb{R}^2 (``единичный круг"):

Нормы матриц рассмотрим отдельно

Понятие расстояния между элементами множества реализовано в понятии *метрического пространства*.

Векторное *нормированное* пространство одновременно является *метрическим*, если расстояние между элементами определить с помощью нормы по формуле

$$\rho(x,y) = ||x-y||.$$

Определение 1. Пусть X — непустое множество. Отображение $\rho\colon X^2\to \mathbb{R}$ называется метрикой на X, если для любых $x,\,y,\,z\in X$

- 1) $\rho(x,y) = 0 \iff x = y; \quad \rho(x,y) \geqslant 0;$
- 2) $\rho(x,y) = \rho(y,x)$; аксиома симметрии
- $3) \
 ho(x,y) \leqslant
 ho(x,z) +
 ho(z,y).$ аксиома (неравенство) треугольника

Определение 2. Если ρ – метрика на X, то пара $\langle X, \rho \rangle$ называется метрическим пространством.

Примеры метрических пространств.

1. Множество изолированных точек с метрикой (дискретная метрика)

$$\rho(x,y) = \begin{cases} 0, \text{ если } x = y, \\ 1, \text{ если } x \neq y. \end{cases}$$

2. Множество действительных чисел с расстоянием

$$\rho(x,y) = |x - y|$$

образует метрическое пространство R.

- 3. Метрики для элементов $\bar{x} = (x_1, x_2, ..., x_n)$ пространства \mathbf{R}^n
 - $\rho_{\infty}(\overline{x}, \overline{y}) = \max_{1 \le k \le n} |y_k x_k|$ равномерная метрика (Чебышева),
 - $\rho_1(\overline{x}, \overline{y}) = \sum_{k=1}^n |x_k y_k|$ метрика Минковского,
 - $\rho_2(\overline{x},\overline{y}) = \sqrt{\sum_{k=1}^n (x_k y_k)^2}$ евклидова метрика.

На плоскости расстояние городских кварталов (метрика Минковского) между точками (x_1, x_2) и (y_1, y_2) равно $|x_1 - y_1| + |x_2 - y_2|$.

Расстояние Хэмминга

Материал из Википедии — свободной энциклопедии

Расстояние Хэмминга (кодовое расстояние) — число позиций, в которых соответствующие символы двух слов одинаковой длины различны^[1]. В более общем случае расстояние Хэмминга применяется для строк одинаковой длины любых *q*-ичных алфавитов и служит метрикой различия (функцией, определяющей расстояние в метрическом пространстве) объектов одинаковой размерности.

Примеры

- d(1011101, 1001001) = 2
- d(2173896, 2233796) = 3
- d(toned, roses) = 3

Первоначально метрика была сформулирована Ричардом Хэммингом во время его работы в Bell Labs для определения меры различия между кодовыми комбинациями (двоичными векторами) в векторном пространстве кодовых последовательностей: в этом случае расстоянием Хэмминга d(x,y) между двумя двоичными последовательностями (векторами) x и y длины n называется число позиций, в которых они различны. В такой формулировке расстояние Хэмминга вошло в словарь алгоритмов и структур данных национального института стандартов и технологий США (англ. NIST Dictionary of Algorithms and Data Structures). Расстояние Хэмминга является частным случаем метрики Минковского (при соответствующем определении вычитания):

$$d_{ij} = \sum_{k=1}^p |x_{ik} - x_{jk}|.$$

Дополнительный материал смотри http://vmath.ru/vf5/codes/hamming

4. РАССМОТРИМ МНОЖЕСТВО НЕПРЕРЫВНЫХ НА ОТРЕЗКЕ [a, b] ФУНКЦИЙ.

4.1. На множестве C[a, b] непрерывных на отрезке [a, b] функций расстояние ρ между элементами f(x) и g(x) определим по формуле

$$\rho(f,g) = \max_{a \le x \le b} |f(x) - g(x)|.$$

Такая метрика называется равномерной и показывает максимальное уклонение функции f(x) от функции g(x) на заданном отрезке.

4.2. Пространство $C_2[a,b]$ непрерывных функций с *квадратичной метрикой*

$$\rho(f,g) = \left(\int_{a}^{b} |f(x) - g(x)|^{2} dx\right)^{1/2}$$

Расстояние вводится по-разному

Замечание. Числовую последовательность (конечную или бесконечную) можно рассматривать как множество значений некоторой действительной функции натурального аргумента, определенной на отрезке или бесконечном промежутке числовой прямой: $x_n = f(n)$.

5. Пространство l_2 , в котором элементами служат последовательности чисел

$$\overline{x} = (x_1, x_2, \dots, x_n, \dots),$$

удовлетворяющие условию

$$\sum_{n=1}^{\infty} |x_n|^2 < \infty,$$

является метрическим пространством с метрикой

$$\rho(x,y) = \sqrt{\sum_{k=1}^{\infty} (x_k - y_k)^2}.$$

Бесконечные последовательности используются, например, в теории сигналов.

6. Метрика, порожденная скалярным произведением, определяется формулой

$$\rho(\overline{x},\overline{y}) = \|\overline{x} - \overline{y}\| = \sqrt{(\overline{x} - \overline{y}, \overline{x} - \overline{y})}.$$

Справедливо неравенство Коши – Буняковского – Шварца:

$$(\overline{x}, \overline{y}) \le ||\overline{x}|| ||\overline{y}||$$

Равенство имеет место тогда и только тогда, когда элементы линейно зависимы.

Полнота метрического пространства (X, ρ)

Пусть $\{x_n\}, x_n \in X, n \in N$ — последовательность точек (элементов) в метрическом пространстве (X, ρ) .

Опр. Последовательность $\{x_n\}$ называется сходящейся к точке $x \in X$, если

$$\lim_{n\to\infty}\rho(x_n,x)=0.$$

Точка x называется пределом последовательности $\{x_n\}$.

Из определения предела последовательности следует его единственность.

Опр. Последовательность $\{x_n\}$ метрического пространства (X, ρ) называется фундаментальной последовательностью или последовательностью Коши, если

$$\rho(x_n, x_m) \to 0$$
 при n и $m \to 0$, $\forall n, m \in \mathbb{N}$.

Опр. Метрическое пространство (X, ρ) называется **полным**, если в нем любая фундаментальная последовательность сходится к пределу, являющемуся элементом этого пространства.

Отметим, что в конечномерном линейном пространстве все нормы эквивалентны в том смысле, что, если имеет место $\|X_n\|_{\alpha} \xrightarrow[n \to \infty]{} 0$ (где X_n последовательность элементов пространства, α признак нормы), то по любой другой норме также $\|X_n\|_{\beta} \xrightarrow[n \to \infty]{} 0$.

Последовательность $\{x_n\}$ элементов линейного нормированного пространства L со скалярным произведением называется сходящейся в L, если в L существует такой x, что

$$\lim_{n\to\infty} x_n = x \Leftrightarrow \lim_{n\to\infty} ||x_n - x|| = \lim_{n\to\infty} \sqrt{(x_n - x, x_n - x)} = 0.$$

Скалярное произведение есть непрерывная функция относительно нормы.

Последовательность $\{x_n\}$ элементов линейного нормированного пространства L со скалярным произведением называется фундаментальной (последовательностью Коши), если

$$\lim_{\substack{n\to\infty\\m\to\infty}} ||x_n - x_m|| = \lim_{\substack{n\to\infty\\m\to\infty}} \sqrt{(x_n - x_m, x_n - x_m)} = 0.$$

Пространство Гильберта обобщает понятие евклидова пространства на *бесконечномерный случай*.

Опр. Действительное линейное пространство H называется пространством Гильберта, если выполнены условия:

- 1) на H задано скалярное произведение,
- 2) H полное метрическое пространство относительно метрики, порожденной скалярным произведением,
- 3) H бесконечномерно.

Примером гильбертова пространства может служить пространство l_2 с элементами последовательностями чисел

$$\overline{x}=(x_1,x_2,\ldots,x_n,\ldots)$$
, где $\sum_{n=1}^{\infty}|x_n|^2<\infty$,

и скалярным произведением

$$(x,y) = \sum_{k=1}^{\infty} x_k y_k.$$

Полнота метрического пространства и разрешимость уравнений

С точки зрения решения уравнений свойство полноты является одним из ключевых.

Рассмотрим два метрических пространства: рациональных чисел ${\bf Q}$ и действительных чисел ${\bf R}$ с обычными метриками и функции:

$$f(x) = x^2 : \mathbf{Q} \to \mathbf{Q}, \quad F(y) = y^2 : \mathbf{R} \to \mathbf{R}.$$

Как выяснили еще пифагорейцы в IV веке до н.э., уравнение f(x) = 2 не имеет решения – слишком мал запас элементов в **Q**.

В то же время уравнение F(x) = y имеет решение для всех $y \ge 0$. Такое различие обусловлено, в частности, тем, что пространство \mathbf{R} – полное, а \mathbf{Q} – нет. Отметим, что для существования решения уравнения одной полноты мало, необходимы дополнительные свойства.

Ряд вопросов, связанных с существованием и единственностью решений уравнений того или иного типа (например, линейных, нелинейных, матричных, дифференциальных, интегральных) можно сформулировать в виде вопроса о существовании и единственности неподвижной точки при некотором отображении метрического пространства в себя. Среди различных критериев существования и

единственности неподвижной точки отображения один из простейших и в то же время наиболее важный — это **принцип сжимающих отображений**.

Пусть (X, ρ) – метрическое пространство.

Опр. Отображение *A* пространства *X* в себя называется *сжимающим*, если существует такое число $\alpha < 1$, что для любых двух точек $x, y \in X$ выполняется неравенство

$$\rho(Ax, Ay) \le \alpha \rho(x, y).$$

Всякое сжимающее отображение непрерывно.

Точка x называется *неподвижной точкой* отображения A, если Ax = x.

Иначе говоря, неподвижные точки – это решения уравнения Ax = x.

Теорема (*Принцип сжимающих отображений*). Всякое <u>сжимающее</u> отображение, определенное в <u>полном</u> метрическом пространстве, имеет одну и только одну неподвижную точку.

Принцип сжимающих отображений можно применять не только к доказательству теорем существования и единственности решения для уравнений различных типов, но и для приближенного нахождения этого решения.

Отметим, что способы решения уравнений и их систем в основном разделяются на две группы:

- 1) *точные методы*, представляющие собой конечные алгоритмы вычисления корней;
- 2) *итерационные процессы*, позволяющие получать решения с заданной точностью путем сходящихся бесконечных процессов.

Операторные задачи в линейных пространствах:

- 1. Задача об отыскании корня уравнения $A\overline{x}=\overline{y}$
- 2. Задача о неподвижной точке $A\overline{x}=\overline{x}$
- 3. Задача о собственных значениях λ и собственных векторах линейного оператора $A\overline{x}=\lambda\overline{x}$
- 4. Задача вариационного исчисления о нахождении элемента \overline{x} , доставляющего минимум функционала $\min\left(A\overline{x}\right)$

Пусть $A: L \to L$ —линейный оператор, $b \in L$ — заданный вектор, $x \in L$ — вектор, который следует определить из уравнения Ax=b. Обозначим через x^* точное решение этого уравнения.

Итерационные методы основаны на построении сходящейся (по заданной норме) к точному решению x^* бесконечной рекуррентной последовательности $x_0, x_1, ..., x_n \xrightarrow[n \to \infty]{} x^*$ элементов той же природы, что и x^* .

Последовательность называется рекуррентной порядка m, если каждый следующий ее член выражается через m предыдущих по некоторому правилу Π (алгоритму):

$$x_n = \Pi(x_{n-1}, x_{n-2}, \dots, x_{n-m}). \tag{1}$$

Задача (может возникнуть): выразить общий член рекуррентной последовательности в явном виде.

Соответствующий итерационный метод называется m-шаговым. Для реализации m-шагового метода требуется задать m первых членов $\{x_0, x_1, ..., x_{m-1}\}$, называемых начальным приложением. Зная начальное приближение, по формуле (1) последовательно находят $x_m, x_{m+1}, ..., x_n, ...$

Процесс нахождения следующего n-го члена через предыдущие называется n- \check{u} $umepaque\check{u}$. Итерация выполняется до тех пор, пока очередной член x_n не будет удовлетворять заданной точности

$$||x_n - x^*|| < \delta.$$

Ввиду того, что точное решение x^* заранее неизвестно, обычно сходимость метода определяют по близости двух последних членов, т.е. расчеты проводят до тех пор, пока не выполнится условие

$$||x_n - x_{n-1}|| < \varepsilon,$$

где ε — некоторая заданная малая величина. В качестве искомого решения берут последний член последовательности x_n при котором выполняется указанное неравенство.

Простой итерационный метод

Преобразуем уравнение Ax=b к виду, разрешенному относительно неизвестного x. Это можно сделать бесконечным набором способов, чем и определяется многообразие итерационных методов. Например, можно преобразовать так:

$$x = x + \alpha(Ax - b) = \Pi x. \tag{2}$$

При этом точное решение χ^* является и решением (2). Здесь α — произвольный параметр, который подбирается из условия сходимости итераций.

Используем выражение (2) в качестве рекуррентной формулы (m=1):

$$x_n = \Pi(x_{n-1}).$$

Задав начальное приближение x_0 , последовательно находим $x_1, x_2, ..., x_n$. Если полученная таким образом последовательность сходится к некоторому конечному пределу, то этот предел совпадает с точным решением x^* .

<u>Геометрическая интерпретация</u> метода итераций в пространстве действительных чисел с обычной метрикой, f(x) — действительная непрерывная функция.

Пусть дано уравнение

$$f(x) = 0. (3)$$

Заменим это уравнение равносильным

$$x = \varphi(x). \tag{4}$$

Выберем каким-либо способом грубо приближенное значение корня x_0 и подставим его в правую часть (4). Тогда получим некоторое значение $x_1 = \varphi(x_0)$. Повторяя этот процесс, будем иметь последовательность $\{x_n\}$:

$$x_{n+1} = \varphi(x_n), n = 1, 2,$$

<u>Если эта последовательность сходящаяся</u>, то предел этой последовательности является корнем уравнения (4).

Построим на плоскости xOy графики функций y = x и $y = \varphi(x)$. Каждый действительный корень уравнения (4) является абсциссой точки пересечения M кривой $y = \varphi(x)$ с прямой y = x.

Отправляясь от некоторой точки A_0 строим ломаную линию, звенья которой попеременно параллельны координатным осям.

Условие сжимаемости выполнено, если функция $\varphi(x)$ имеет на отрезке [a,b] производную $\varphi'(x)$, причем $|\varphi'(x)| \le q < 1$.

Однако, если рассмотреть случай $|\varphi'(x)| > 1$, то процесс итераций может быть расходящимся.

Для <u>практического применения метода итераций</u> необходимо выяснять достаточные условия сходимости итерационного процесса.

Допустим, что какая-то итерационная процедура решения уравнения

$$f(x) = 0$$

привела к последовательности

$$\{x_n\}$$
, $x_{n+1} = \varphi(x_n)$, $n = 1, 2, ..., x_0$ – задано.

<u>Предположим</u>, что удалось доказать существование такого q < 1, что

$$\rho(x_{n+1}, x) \le q \ \rho(x_n, x_{n-1}), \quad n \ge 1.$$
 (5)

Тогда

$$\begin{split} \rho(x_{n+1},x) &\leq q \; \rho(x_n,x_{n-1}) \leq q^2 \; \rho(x_{n-1},x_{n-2}) \leq \\ &\leq q^3 \; \rho(x_{n-2},x_{n-3}) \leq \cdots \leq q^n \; \rho(x_1,x_0). \end{split}$$

В силу неравенства треугольника

$$\begin{split} \rho(x_{n+k},x_n) &\leq \rho(x_{n+k},x_{n+k-1}) + \rho(x_{n+k-1},x_{n+k-2}) + \dots + \rho(x_{n+1},x_n) \leq \\ &\leq (q^{n+k-1} + q^{n+k-2} + \dots + q^n) \, \rho(x_1,x_0) \leq \\ &\leq q^n(1+q+q^2+\dots+q^{k-1}) \, \rho(x_1,x_0) \leq \\ &\leq q^n(1+q+q^2+\dots+q^{k-1}+\dots) \, \rho(x_1,x_0) = \frac{q^n}{1-q} \rho(x_1,x_0). \end{split}$$

Таким образом, $\{x_n\}$ – фундаментальная последовательность, для которой

$$\rho(x_{n+k}, x_n) \le \frac{q^n}{1-q} \rho(x_1, x_0), \quad k = 0,1,2,...$$

<u>Если пространство X полное</u>, то последовательность $\{x_n\}, x_n \in X$, удовлетворяющая условию (5) при q < 1 имеет предел $x \in X$.