Archisman Panigrahi

Graduate Student · Physics

Massachusetts Institute of Technology, MA, USA

□ +1 (857) 706-9484 | **S** archi137@mit.edu | **S** Google Scholar Profile

Education

Ph.D. in Physics Cambridge, MA, USA

MASSACHUSETTS INSTITUTE OF TECHNOLOGY August 2022 - Ongoing

Master of Science in Physics

Bangalore, India

INDIAN INSTITUTE OF SCIENCE

Aug. 2021 - Jun. 2022

• C.G.P.A - 9.8/10

Bachelor of Science (Research) in Physics

Bangalore, India Aug. 2017 - Jun. 2021

Indian Institute of Science

• C.G.P.A - 9.8/10

Achievements

2022	1st Rank in India in CSIR-NET (JRF) in Physics	India
2022	1st Rank in India in Graduate Aptitute Test in Engineering (G.A.T.E.) in Physics	India
2017-22	C.G.P.A 9.8/10 in B.S. (Research) and M.S., highest GPA in batch	IISc, Bangalore
2017	1st rank (99.2 %) in Board in Higher Secondary Examination, among about 0.7 million candidates	West Bengal, India
2017	10th rank in National Entrance Screening Test (NEST)	India
2017	Qualified for JEE Mains (All India Rank - 381) - an all India Engineering entrance	
2017	Qualified for JEE Advanced examination (All India Rank- 543), Entrance examination of Indian Institute(s)	
	of Technology (IIT)	
2017	Qualified for Indian Statistical Institute, Kolkata and Chennai Mathematical Institute	
2015	Qualified for K.V.P.Y. (All India Rank - 128)	
2015	2nd rank (97.57 %) in Board in Secondary Examination, among about 1 million candidates	West Bengal, India

Research Articles

- A. Panigrahi, S. Mukerjee; Energy magnetization and transport in systems with a non-zero Berry curvature in a magnetic field SciPost Phys. Core 6, 052 (2023)
- A. Panigrahi, V. Juričić, B. Roy; *Projected Topological Branes* Commun Phys **5**, 230 (2022)
- A. Panigrahi, R. Moessner, B. Roy; Non-Hermitian dislocation modes: Stability and melting across exceptional points PRB 106, L041302 (2022)

Talks

Topological phases in quasicrystals: A general principle of construction

APS March Meeting (virtually)

MPIPKS, Dresden, Germany

CLICK HERE TO DOWNLOAD THE PRESENTATION

March 2022

Dislocation as a bulk probe of non-Hermitian topology

(remotely)

CLICK HERE TO DOWNLOAD THE PRESENTATION

July 6, 2021

Research Interests

Broadly interested in theoretical Condensed Matter Physics

- Topological phases of matter and Quantum Phase transitions
- Thermo-electric transport and the effects of Berry curvature
- **Brownian motion**
- Thermalization of quantum systems and Many body localization

Mathematical skills Integral Calculus, Linear Algebra, Trigonometry, Differential Equations

Comfortable with performing long algebraic calculations in pen and paper

Programming skills Julia, MATLAB/Octave, Mathematica, Python

Advanced Physics Courses Condensed Matter Physics II, Advanced Statistical Physics, Quantum Field Theory I, General Relativity

> Languages Fluent in English, Bengali, Hindi

Research Experience

Many Body Localization (MBL) and thermalization of interacting quantum spin chain

IISc, Bangalore, India (Master's thesis)

WITH PROF. SUBROTO MUKERJEE September 2021 - April 2022

• Studied how the Out-of-Time Ordered Correlator (OTOC) behaves for MBL and thermal systems

• Studied behavior of OTOC in MBL systems with random and incommensurate potential, with and without interaction

Topological phases in projected lower dimensional branes

MPIPKS, Dresden, Germany (remotely)

JOINTLY WITH PROF. BITAN ROY AND PROF. VLADIMIR JURIČIĆ

June 2021 - September 2021

- · Numerically studied how topological properties of parent systems emerge in projected crystals and Fibonacci quasicrystals
- · Verified the existence of dislocation modes, Weyl points, and Landau levels in projected crystals and quasicrystals
- Proposed how this method can be utilized to study higher dimensional (>3D) topological phases within 3D systems

Berry curvature effects on thermoelectric transport

IISc, Bangalore, India (Bachelor's thesis)

WITH PROF. SUBROTO MUKERJEE

- October 2020 June 2021 · Studied how Berry curvature can alter thermoelectric transport, leading to anomalous Hall and anomalous Nernst effects
- Studied the Boltzmann transport formalism
- · Studied how the Onsager relation can be demonstrated from microscopic theories for a system with a non-trivial Berry curvature
- · Found a condition on the energy magnetization such that the Einstein relation holds for the transport energy current in these systems
- · Showcased a physical interpretation of this condition, and obtained a closed expression for energy magnetization
- Analytically solved the Boltzmann transport equation (including Berry curvature effects) for two-dimensional systems

Non-Hermitian Topological Insulators and Dislocations

MPIPKS, Dresden, Germany (remotely)

WITH PROF. BITAN ROY May 2020 - September 2020

- · Studied and numerically implemented SSH Model, Chern Insulators, Quantum Spin Hall Insulators
- Studied the effects of dislocation in Hermitian and Non-Hermitian Chern Insulators
- · Obtained phase diagrams for regimes where topological states get pinned at dislocation centers
- Proposed how dislocations can be used to probe topological phases in non-Hermitian systems, where the non-Hermitian skin effect masks the traditional bulk-boundary correspondence

Nano Heat Engines beyond the Carnot Efficiency

IISc, Bangalore, India

WITH PROF. H. R. KRISHNAMURTHY

May 2019 - July 2019

- Studied how harmonic oscillators and two state systems can be used as efficient heat engines
- Read articles claiming Carnot efficiency can be surpassed with ``squeezed' thermal baths
- Figured out the sense in which Carnot efficiency is surpassed without violating 2nd law of thermodynamics
- Studied about Brownian Motion and Langevin equation
- · Solved the Langevin equation for a special kind of stochastic force, for which a classical harmonic oscillator behaves like a squeezed state
- Created a computer simulation to verify the nature of this solution

References_

- Prof. Leonid Levitov, Dept. of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Email Address - levitov@mit.edu
- Prof. Subroto Mukerjee, Dept. of Physics, Indian Institute of Science, Bangalore, India. Email Address - smukerjee@iisc.ac.in
- Prof. Bitan Roy, Dept. of Physics, Lehigh University, Bethlehem, PA 18015, USA. Email Address - bitan.roy@lehigh.edu