STAT 30100: MATHEMATICAL STATISTICS-1

Winter 2020

Homework 3

Solutions by

JINHONG DU

STAT 30100, Homework 3

Problems 1-6 are based on the handout "Distribution of Quadratic Forms", and problem 7 is based on Ferguson chapters 5-7.

1. Prove Theorem 2 on the handout "Distribution of Quadratic Forms".

Theorem 2: Let $X \sim N_p(0, \Sigma)$, $Q = X^{\top}AX$ (A symmetric). Then $Q \sim \chi_r^2(0) [\equiv \chi_r^2]$ iff $\Sigma (A\Sigma A - A)\Sigma = 0$ and $r = \operatorname{tr}(A\Sigma)$.

Proof. Suppose that $\operatorname{rank}(\Sigma) = m \leq p$. Since $X \sim N_p(0, \Sigma)$, there exists $B \in \mathbb{R}^{p \times m}$ and $Z \sim N_m(0, I_m)$ such that X = BZ and $\Sigma = BB^{\top}$. Then $Q = Z^{\top}(B^{\top}AB)Z$ and $B^{\top}AB$ is symmetric. \Leftarrow Since $\Sigma(A\Sigma A - A)\Sigma = 0$, we have $B(B^{\top}AB)(B^{\top}AB)B^{\top} = B(B^{\top}AB)B^{\top}$. Thus, $B^{\top}B(B^{\top}AB)(B^{\top}AB)B^{\top}B = B^{\top}B(B^{\top}AB)B^{\top}B$. Since B has full column rank, $B^{\top}B \in \mathbb{R}^{m \times m}$ has full rank and invertible $(B^{\top}Bx = 0 \Longrightarrow x^{\top}B^{\top}Bx = \|Bx\|_2 = 0 \Longrightarrow Bx = 0 \Longrightarrow \operatorname{Null}(B) \subset \operatorname{Null}(B^{\top}B)$). So $(B^{\top}AB)(B^{\top}AB) = B^{\top}AB$, i.e., $B^{\top}AB$ is idempotent. $r = \operatorname{tr}(A\Sigma) = \operatorname{tr}(ABB^{\top}) = \operatorname{tr}(B^{\top}AB) = \sum_{i=1}^{m} \lambda_i(B^{\top}AB)$. Since $\lambda_i(B^{\top}AB)$ can only be 0 or 1 for the idempotent matrix $B^{\top}AB$, we have $r = \operatorname{rank}(B^{\top}AB)$. Therefore, by Theorem 1, we have $Q \sim \chi_r^2(0)$. $\Longrightarrow \operatorname{Since} Q = Z^{\top}(B^{\top}AB)Z \sim \chi_r^2$, from Theorem 1 we have $B^{\top}AB$ is idempotent and $\operatorname{rank}(B^{\top}AB)B^{\top} = B(B^{\top}AB)B^{\top}$, i.e., $\Sigma(A\Sigma A - A)\Sigma = 0$. Since $B^{\top}AB$ is idempotent, we have $r = \operatorname{rank}(B^{\top}AB) = \operatorname{tr}(B^{\top}AB) = \operatorname{tr}(ABB^{\top}) = \operatorname{tr}(A\Sigma)$. \square

2. Extend the Fisher-Cochran Theorem to the case $\sum_{i=1}^{k} A_i = A$ (instead of $\sum_{i=1}^{k} A_i = I$), where A is idempotent but not necessarily I and not necessarily full rank. Make any other changes needed to make the theorem true and prove it.

Let $X \sim N_n(\mu, I)$. Let $Q_i = X^\top A_i X$, $i = 1, \ldots, k$, be k quadratic forms such that $X^\top A X = \sum_{i=1}^k Q_i$, where $A = \sum_{i=1}^k A_i$ is idempotent. Let $r_i = \operatorname{rank}(A_i)$ and $r = \operatorname{rank}(A)$. Then $Q_i \sim \chi^2_{r_i}(\lambda_i)$ with $\lambda_i = \mu^\top A_i \mu$ and the Q_i 's are mutually independent iff $\sum_{i=1}^k r_i = r$.

Proof. Since $Q_i = X^{\top} A_i X$ (i = 1, ..., k) are quadratic forms, $A_1, ..., A_k$ are symmetric. So A is symmetric. Since A is idempotent, from Theorem 1 we have $X^{\top} A X \sim \chi_r^2(\delta)$ where $\delta = \mu^{\top} A \mu$. Let $A = U \Sigma U^{\top}$ be the eigen-decomposition of A, where $U \in \mathbb{R}^{n \times n}$ is orthonormal and $\Sigma \in \mathbb{R}^{n \times n}$ is diagonal with digonal entries $\sigma_1, ..., \sigma_n \in \{0, 1\}$. Without loss of generality, suppose that $\sigma_1 = 0$. Define $X = U^{\top} X = V / (U^{\top} X - V)$ where $U \in \mathbb{R}^{n \times n}$ is the

 $\cdots = \sigma_r = 1$ and $\sigma_{r+1} = \cdots = \sigma_n = 0$. Define $Y = U_r^\top X \sim N_n(U_r^\top \mu, I_r)$ where $U_r \in \mathbb{R}^{n \times r}$ is the matrix formed by concatenating first r columns of U. Then $X^\top A X = Y^\top Y$. Let $B_i = U_r^\top A_i U_r$, then $\operatorname{rank}(B_i) = \operatorname{rank}(A_i) = r_i$ and $\sum_{i=1}^k B_i = U_r^\top A U_r = I_r$.

From the Fisher-Cochran Theorem, we have $Q_i \sim \chi_{r_i}^2(\lambda_i)$ with $\lambda_i = (U_r^\top \mu)^\top (U_r A_i U_r^\top) (U_r^\top \mu) = \mu^\top A_i \mu$ and the Q_i 's are mutually independent if and only if $\sum_{i=1}^k r_i = r$.

3. Prove Theorem 4 on the handout "Distribution of Quadratic Forms". You may use any of the results listed above Theorem 4 on the handout, but do not use any of the results listed below Theorem 4 on the handout.

Theorem 4: Let $X \sim N_n(\mu, I)$. Let $Q_1 = X^{\top} A_1 X$, $Q_2 = X^{\top} A_2 X$. Suppose Q_1 and Q_2 each have a (noncentral) chi-squared distribution. Then Q_1 and Q_2 are independent iff $A_1 A_2 = 0$.

Proof. Suppose that $Q_1 \sim \chi_{r_1}^2(\delta_1)$ and $Q_2 \sim \chi_{r_2}^2(\delta_2)$. Q_1 and Q_2 each have a (noncentral) chi-squared distribution, by Theorem 1 we have A_1 and A_2 are idempotent.

 \Longrightarrow Since Q_1 and Q_2 are independent, by Lemma 2 we have $Q_1 + Q_2 = X^{\top}(A_1 + A_2)X \sim \chi^2_{r_1 + r_2}(\delta_1 + \delta_2)$. So by Theorem 1, we have $A_1 + A_2$ is idempotent. So

$$A_1 + A_2 = (A_1 + A_2)^2 = A_1^2 + A_1A_2 + A_2A_1 + A_2^2 = A_1 + A_2 + A_1A_2 + A_2A_1$$

which implies $A_1A_2 + A_2A_1 = 0$. Since

$$A_1(A_1A_2 + A_2A_1) = A_1A_2 + A_1A_2A_1 = 0$$
$$(A_1A_2 + A_2A_1)A_1 = A_1A_2A_1 + A_2A_1 = 0.$$

by subtracting the latter from the former, we get $A_1A_2 - A_2A_1 = 0$, i.e. $A_1A_2 = A_2A_1$. Therefore, $A_1A_2 = A_2A_1 = 0$.

 \iff Since

$$A_1(A_1A_2 + A_2A_1) = A_1A_2 + A_1A_2A_1 = 0$$
$$(A_1A_2 + A_2A_1)A_1 = A_1A_2A_1 + A_2A_1 = 0$$

by subtracting the latter from the former, we get $A_1A_2 - A_2A_1 = 0$. So $A_2A_1 = A_1A_2 = 0$. Thus,

$$(A_1 + A_2)^2 = A_1^2 + A_1 A_2 + A_2 A_1 + A_2^2 = A_1 + A_2,$$

i.e. $A_1 + A_2$ is idempotent. Since $X^{\top}(A_1 + A_2)X = Q_1 + Q_2$ and $\operatorname{tr}(A_1 + A_2) = \operatorname{tr}(A_1) + \operatorname{tr}(A_2)$, by extension of Fisher-Cocharn Theorem (Problem 2), we have that Q_1 and Q_2 are independent. \square

4. Prove Theorem 7 on the handout "Distribution of Quadratic Forms". You may assume all the other theorems on the handout.

Theorem 7: Let $X \sim N_n(\mu, I)$, $Q_i = X^{\top} A_i X$, i = 1, ..., k, $X^{\top} X = \sum_{i=1}^k Q_i$, and $r_i = r(A_i)$. Then the following are equivalent:

- 1. The Q_i 's are mutually independent.
- 2. Each $Q_i \sim \chi_{r_i}^2(\lambda_i)$ with $\lambda_i = \mu^{\top} A_i \mu$.
- 3. The A_i 's are idempotent.
- 4. $A_i A_j = 0$, for all $i \neq j$.
- 5. $r_1 + r_2 + \cdots + r_k = n$.

Proof. $(5 \Longrightarrow 1)$ By Fisher-Cochran Theorem.

 $(1 \Longleftrightarrow 4)$ By Craig's Theorem.

Solution (cont.)

 $(4 \Longrightarrow 3)$ Since $A_i A_j = 0$, for all $i \ne j$, we have $A_i = A_i I = A_i \sum_{j=1}^k A_j = \sum_{j=1}^k A_i A_j = A_i^2$. Therefore, A_i is idempotent for all i.

 $(3 \iff 2)$ By Theorem 1, we have for i = 1, ..., k, $Q_i \sim \chi_{r_i}^2(\lambda_i)$ with $\lambda_i = \mu^\top A_i \mu$ if and only if A_i is idempotent.

 $(3 \Longrightarrow 5)$ Since A_i 's are idempotent, we have

$$\sum_{i=1}^{k} r_i = \sum_{i=1}^{k} \sum_{j=1}^{n} \lambda_j(A_i) = \sum_{i=1}^{k} \operatorname{tr}(A_i) = \operatorname{tr}\left(\sum_{j=1}^{k} A_i\right) = \operatorname{tr}(I) = n,$$

where $\lambda_j(A_i) \in \{0,1\}$ is the jth eigenvalue of the idempotent matrix A_i .

Now since we have proved that any statement can imply any other statement, these five statements are equivalent. \Box

5. Let $Y \sim N_n(\mu, \sigma^2 I)$, and let A be $n \times p$ with $\operatorname{rank}(A) = p < n$. Find the distributions of $Q_1 = \sigma^{-2} Y^{\top} A (A^{\top} A)^{-1} A^{\top} Y$ and $Q_2 = \sigma^{-2} Y^{\top} Y - Q_1$, and show they are independent.

Proof. Let $H = A(A^{\top}A)^{-1}A^{\top}$, then H is symmetric. Since $H^2 = A(A^{\top}A)^{-1}A^{\top}A(A^{\top}A)^{-1}A^{\top} = A(A^{\top}A)^{-1}A^{\top} = H$, we have that H is idempotent. Also, $\operatorname{rank}(H) = \operatorname{tr}(H) = \operatorname{tr}(A(A^{\top}A)^{-1}A^{\top}) = \operatorname{tr}(A^{\top}A(A^{\top}A)^{-1}) = \operatorname{tr}(I_p) = p$, i.e., H is full rank. By Theorem 3, we have $Q_1 \sim \chi_p^2(\delta_1)$ where $\delta_1 = \sigma^{-2}\mu^{\top}H\mu$.

Since $(I-H)^{\top} = I-H$, I-H is symmetric. Since $(I-H)^2 = I-2H+H^2 = I-H$, I-H is idempotent. Also, rank $(I-H) = \operatorname{tr}(I-H) = \operatorname{tr}(I) - \operatorname{tr}(H) = n-p$. By Theorem 3, we have $Q_2 \sim \chi^2_{n-p}(\delta_2)$ where $\delta_1 = \sigma^{-2} \mu^{\top} (I-H) \mu$.

Notice that $\sigma^{-1}Y \sim N_n(\sigma^{-1}\mu, I_n)$. Since p + (n-p) = n and $Y^{\top}(\sigma^{-2}I)Y = Q_1 + Q_2$, by Problem 2, we have Q_1 and Q_2 are independent.

6. Simple linear regression: Let $Y \sim N_n(\mu, \sigma^2 I)$ with $\mu_i = \alpha + \beta(x_i - \overline{x}), i = 1, \ldots, n, n > 2$, where α, β , and the x_i s are constants and $\overline{x} = \frac{1}{n} \sum_{i=1}^n x_i$. Let $S_X^2 = \sum_{i=1}^n (x_i - \overline{x})^2, S_Y^2 = \sum_{i=1}^n (Y_i - \overline{Y})^2, S_{XY} = \sum_{i=1}^n (x_i - \overline{x})Y_i$, and $b = \frac{S_{XY}}{S_X^2}$. Let $Q_1 = n\overline{Y}^2 + b^2 S_X^2$, $Q_2 = S_Y^2 - b^2 S_X^2$. Show that $\sigma^{-2}Q_1$ and $\sigma^{-2}Q_2$ are independent chi-square distributed with 2 and n - 2 d.f., respectively. [Hint: Apply problem 5.]

Proof. Let $X = \left(x_1, \dots, x_n\right)^{\top} \in \mathbb{R}^n$ and $\overline{X} = \overline{x}\mathbf{1}$. Since $S_Y^2 = \sum_{i=1}^n (Y_i - \overline{Y})^2 = Y^{\top} (I_n - \frac{1}{n}\mathbf{1}\mathbf{1}^{\top})Y$ and $n\overline{Y}^2 = Y^{\top} \left(\frac{1}{n}\mathbf{1}\mathbf{1}^{\top}\right)Y$, we have $\sigma^{-2}(Q_1 + Q_2) = \sigma^{-2}(n\overline{Y}^2 + S_Y^2) = \sigma^{-2}(Y^{\top}Y) \sim \chi_n^2(\sigma^{-2}\mu^{\top}\mu)$. Since

$$S_{XY}^2 = Y^{\top} (X - \overline{X})(X - \overline{X})^{\top} Y$$

$$S_X^2 = (X - \overline{X})^{\top} (X - \overline{X}),$$

Solution (cont.)

we have

$$Q_1 = n\overline{Y}^2 + b^2 S_X^2 = n\overline{Y}^2 + \frac{S_{XY}^2}{S_Y^2} = Y^\top \left(\frac{1}{n}\mathbf{1}\mathbf{1}^\top + (X - \overline{X})[(X - \overline{X})^\top (X - \overline{X})]^{-1}(X - \overline{X})^\top\right) Y.$$

Let $H = \frac{1}{n} \mathbf{1} \mathbf{1}^{\top} + (X - \overline{X})[(X - \overline{X})^{\top}(X - \overline{X})]^{-1}(X - \overline{X})^{\top}$. Since $H^{\top} = \frac{1}{n} \mathbf{1} \mathbf{1}^{\top} + (X - \overline{X})[(X - \overline{X})^{\top}(X - \overline{X})]^{-1}(X - \overline{X})^{\top} = H$, H is symmetric. Since

$$H^{2} = \frac{1}{n} \mathbf{1} \mathbf{1}^{\top} \cdot \frac{1}{n} \mathbf{1} \mathbf{1}^{\top} + \frac{1}{n} \mathbf{1} \mathbf{1}^{\top} (X - \overline{X}) [(X - \overline{X})^{\top} (X - \overline{X})]^{-1} (X - \overline{X})^{\top} + (X - \overline{X}) [(X - \overline{X})^{\top} (X - \overline{X})]^{-1} (X - \overline{X})^{\top} \cdot \frac{1}{n} \mathbf{1} \mathbf{1}^{\top}$$

$$(X - \overline{X}) [(X - \overline{X})^{\top} (X - \overline{X})]^{-1} (X - \overline{X})^{\top} (X - \overline{X}) [(X - \overline{X})^{\top} (X - \overline{X})]^{-1} (X - \overline{X})^{\top}$$

$$= \frac{1}{n^{2}} \mathbf{1} (\mathbf{1}^{\top} \mathbf{1}) \mathbf{1}^{\top} + 0 + 0 + (X - \overline{X}) [(X - \overline{X})^{\top} (X - \overline{X})]^{-1} (X - \overline{X})^{\top}$$

$$= H$$

by noticing that $\mathbf{1}^{\top}(X - \overline{X}) = (X - \overline{X})^{\top}\mathbf{1} = 0$, H is idempotent.

$$\operatorname{rank}(H) = \operatorname{tr}(H) = \operatorname{tr}\left(\frac{1}{n}\mathbf{1}\mathbf{1}^{\top}\right) + \operatorname{tr}((X - \overline{X})[(X - \overline{X})^{\top}(X - \overline{X})]^{-1}(X - \overline{X})^{\top})$$

$$= \operatorname{tr}(\frac{1}{n}\mathbf{1}^{\top}\mathbf{1}) + \operatorname{tr}((X - \overline{X})^{\top}(X - \overline{X})[(X - \overline{X})^{\top}(X - \overline{X})]^{-1})$$

$$= 2.$$

By Theorem 3, we have $\sigma^{-2}Q_1 \sim \chi_2^2(\delta_1)$ where $\delta_1 = \sigma^{-2}\mu^{\top}H\mu$. By Problem 5, we have $Q_2 = (Q_1 + Q_2) - Q_1 \sim \chi_{n-2}^2(\delta_2)$ where $\delta_2 = \sigma^{-2}\mu^{\top}(I - H)\mu$, Q_1 and Q_2 are independent.

- 7. Let X_1, X_2, \ldots be i.i.d. double exponential (Laplace) distributed random variables with density $f(x) = \frac{1}{2\tau} \exp\{-\frac{|x|}{\tau}\}$ for $-\infty < x < \infty$, where the parameter $\tau > 0$ represents the mean absolute deviation, $\tau = \mathbb{E}|X|$. Let $\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$ and $\overline{Y}_n = \frac{1}{n} \sum_{i=1}^n |X_i|$.
 - (a) Find the joint asymptotic distribution of \overline{X}_n and \overline{Y}_n .

Since $\frac{1}{2\tau}e^{-\frac{|x|}{\tau}}x$ and $\frac{1}{2\tau}e^{-\frac{|x|}{\tau}}x|x|$ are odd functions, we have

$$\mathbb{E}(X_i) = \int_{\mathbb{R}} \frac{1}{2\tau} e^{-\frac{|x|}{\tau}} x dx = 0$$

$$\mathbb{E}(X_i \cdot |X_i|) = \int_{\mathbb{R}} \frac{1}{2\tau} e^{-\frac{|x|}{\tau}} x |x| dx = 0$$

$$\operatorname{Cov}(X_i \cdot |X_i|) = \mathbb{E}(X_i |X_i|) - \mathbb{E}(X_i) \cdot \mathbb{E}|X_i| = 0.$$

Solution (cont.)

Also,

$$\mathbb{E}(|X_{i}|) = \int_{\mathbb{R}} \frac{1}{2\tau} e^{-\frac{|x|}{\tau}} |x| dx$$

$$= 2 \int_{0}^{+\infty} \frac{1}{2\tau} e^{-\frac{x}{\tau}} x dx$$

$$= -\frac{\tau^{2}}{2} e^{-x} (x+1) \Big|_{0}^{+\infty}$$

$$= \tau$$

$$\operatorname{Var}(X_{i}) = \int_{\mathbb{R}} \frac{1}{2\tau} e^{-\frac{|x|}{\tau}} x^{2} dx$$

$$= \int_{0}^{+\infty} \frac{1}{2\tau} e^{-\frac{x}{\tau}} x^{2} dx + \int_{-\infty}^{0} \frac{1}{2\tau} e^{\frac{x}{\tau}} x^{2} dx$$

$$= -\frac{\tau^{2}}{2} e^{-x} (x^{2} + 2x + 2) \Big|_{0}^{+\infty} + \frac{\tau^{2}}{2} e^{-x} (x^{2} + 2x + 2) \Big|_{-\infty}^{0}$$

$$= 2\tau^{2}$$

$$\operatorname{Var}(|X_{i}|) = \mathbb{E}(|X_{i}|^{2}) - [\mathbb{E}(X_{i})]^{2} = \operatorname{Var}(X_{i}) - \tau^{2} = \tau^{2}$$

Let $Z_n = \begin{pmatrix} X_n \\ Y_n \end{pmatrix}$ and $\overline{Z} = \begin{pmatrix} \overline{X}_n \\ \overline{Y}_n \end{pmatrix}$. Then $\mu = \mathbb{E}(Z_1) = \begin{pmatrix} 0 \\ \tau \end{pmatrix}$. By central limit theorem. $\sqrt{n}(\overline{Z}_n - \mu) \xrightarrow{D} N(\mathbf{0}_{2\times 1}, \Sigma)$, where

$$\Sigma = \operatorname{Cov}(Z_1) = \begin{pmatrix} 2\tau^2 & 0 \\ 0 & \tau^2 \end{pmatrix}.$$

(b) Find the asymptotic distribution of $\frac{\overline{Y}_n - \tau}{\overline{X}_n}$.

From (a), we have $\frac{1}{\sqrt{2\tau}}\sqrt{n}\overline{X}_n \xrightarrow{D} N(0,1) \triangleq Z_1$, $\frac{1}{\tau}\sqrt{n}(\overline{Y}_n - \tau) \xrightarrow{D} N(0,1) \triangleq Z_2$ and the two asymptotic distributions are independent. Define $g: \mathbb{R}^2 \mapsto \mathbb{R}$ such that $g(\binom{x}{y}) = \frac{y}{x}$ for $x, y \in \mathbb{R}$. Then $\mathbb{P}(\{x \in \mathbb{R} : g(\binom{x}{y})\})$ is not continuous $\}) = \mathbb{P}(\{x \in \mathbb{R} : x = 0\}) = 0$. By Slutsky Theorem, we have

$$g\left(\left(\frac{\frac{1}{\sqrt{2}\tau}\sqrt{n}\overline{X}_n}{\frac{1}{\tau}\sqrt{n}(\overline{Y}_n-\tau)}\right)\right) \xrightarrow{D} \left(\left(\frac{Z_1}{Z_2}\right)\right),$$

i.e.,

$$\frac{1}{\sqrt{2}} \frac{\overline{Y}_n - \tau}{\overline{X}_n} \xrightarrow{D} \frac{Z_2}{Z_1} \xrightarrow{\underline{D}} \text{Cauchy}(0,1) \triangleq C.$$

So

$$\frac{\overline{Y}_n - \tau}{\overline{X}_n} \xrightarrow{D} \sqrt{2}C.$$

Since the characteristic function of C is $\phi_C(t) = e^{-it\mu}$, we have

$$\phi_{\sqrt{2}C}(t) = \mathbb{E}e^{it\sqrt{2}C} = \mathbb{E}e^{i(\sqrt{2}t)C} = e^{-i\sqrt{2}t\mu},$$

which is the characteristic function of Cauchy $(0, \frac{1}{\sqrt{2}})$. So the asymptotic distribution of $\frac{\overline{Y}_n - \tau}{\overline{X}_n}$ is Cauchy $(0, \frac{1}{\sqrt{2}})$.