

SEQUENCE LISTING

<110> Mack, David
Gish, Kurt
EOS Biotechnology, Inc.

<120> Methods of Diagnosis of Breast Cancer, Compositions and
Methods of Screening for Modulators of Breast Cancer

<130> 018501-001200US

<140> US 09/829,472
<141> 2001-04-09

<150> US 09/525,361
<151> 2000-03-15

<160> 20

<170> PatentIn Ver. 2.1

<210> 1
<211> 3213
<212> DNA
<213> Homo sapiens

<220>
<223> BCA4, osteoblast specific factor 2 (periostin)

<220>
<221> CDS
<222> (12)..(2522)
<223> BCA4

<400> 1
agagactcaa gatgattccc ttttaccca tgggttcctc actattgctg cttattgtta 60
accctataaa cgccaaacaat cattatgaca agatcttggc tcatacgctgt atcagggttc 120
gggaccaagg cccaaatgtc tggcccttc aacagattt gggcacccaa aagaaaatact 180
tcagcacttg taagaactgg tataaaaagt ccattctgtgg acagaaaaacg actgttttat 240
atgaatgtt ccctggttat atgagaatgg aaggaatgaa aggctgccca gcagtttgc 300
ccattgacca tgtttatggc actctggca tcgtgggagc caccacaacg cagcgctatt 360
ctgacgcctc aaaactgagg gaggagatcg aggaaagagg atccttcact tactttgcac 420
cgagtaatga ggcttggac aacttggatt ctgatatccg tagaggttg gagagcaacg 480
tgaatgttga attactgaat gctttacata gtcatgtat taataagaga atgttgcacca 540
aggacttaaa aaatggcatg attattcctt caatgtataa caatttgggg cttttcatta 600
accattatcc taatgggtt gtcactgtt attgtgtcg aatcatccat gggaaaccaga 660
ttgcaacaaa tggtgttgc catgtcattt accgtgtgct tacacaaatt ggtacctcaa 720
ttcaagactt cattgaagca gaagatgacc tttcatctt tagagcagct gccatcacat 780
cggacatatt ggaggccctt ggaagagacg gtcacttcac actctttgc cccaccaatg 840
aggctttga gaaacttcca cgaggtgtcc tagaaagggtt catggagac aaagtggctt 900
ccgaagctct tatgaagtac cacatctaa atactctcca gtgttctgag tctattatgg 960
gaggagcagt ctttgagacg ctggaaaggaa atacaattga gataggatgt gacggtgaca 1020
gtataacagt aaatggaatc aaaatggta aaaaaagga tattgtgaca aataatggtg 1080
tgatccattt gattgatcag gtcctaattt ctgattctgc caaacaagtt attgagctgg 1140
ctggaaaaca gcaaaccacc ttacggatc ttgtggccca attaggcttgc gcatctgctc 1200
tgaggccaga tggagaatac actttgtgg caccgtgtgaa taatgcattt tctgtatgata 1260
ctctcagcat gttcagcgc ctccttaat taattctgca gaatcacata ttgaaagtaa 1320
aagttggct taatgagctt tacaacggc aaatactgga aaccatcgga ggc当地acagc 1380
tcagagtctt cgtatatcgt acagctgtct gcattgaaaa ttcatgcattt gagaaaggaa 1440
gtaaggcaagg gagaaacggc gcgattcaca tattccgcga gatcatcaag ccagcagaga 1500
aatccctcca tgaaaagttt aaacaagata agcgttttag caccttcctc agcctacttg 1560

aagctgcaga cttgaaaagag ctcctgacac aacctggaga ctggacatta tttgtgccaa 1620
 ccaatgatgc tttaaggga atgactagt aagaaaaaga aattctgata cgggacaaaa 1680
 atgcttca aaacatcatt ctttatcacc tgacaccagg agtttcatt gaaaaaggat 1740
 ttgaacctgg tgtaactaac attttaaaga ccacacaagg aagcaaaatc tttctgaaag 1800
 aagtaaatga tacacttctg gtgaatgaat tgaatcaaaga aagatctgac atcatgacaa 1860
 caaatgggt aattcatgtt gtagataaac tcctctatcc agcagacaca cctgttgaa 1920
 atgatcaact gctggaaata cttataataat taatcaaata catccaaatt aagtttggc 1980
 gtggtagcac cttcaaaagaa atccccgtga ctgtctatac aactaaaatt ataaccaaaag 2040
 ttgtggaaacc aaaaattaaa gtgattgaag gcagtcttca gccttatttc aaaactgaag 2100
 gacccacact aacaaaagtc aaaattgaag gtgaacctga attcagactg attaaagaag 2160
 gtgaaacaat aactgaagtg atccatggag agccaattat taaaaaatac accaaaatca 2220
 ttgatggagt gcctgtggaa ataactgaaa aagagacacg agaagaacga atcattacag 2280
 gtcctgaaat aaaatacact aggatttcta ctggaggtgg agaaacagaa gaaactctga 2340
 agaaaattgtt acaagaagag gtcaccaagg tcaccaaatt cattgaaggt ggtgatggc 2400
 atttatttga agatgaagaa attaaaagac tgcttcaggg agacacaccc gtgaggaagt 2460
 tgcaagccaa caaaaaagtt caaggttcta gaagacgatt aagggaaggt cgttctcagt 2520
 gaaaatccaa aaaccagaaa aaaatgttta tacaacccta agtcaataac ctgacacct 2580
 aaaattgtga gagccaagtt gacttcagga actgaaaacat cagcacaaag aagcaatcat 2640
 caaataattc tgaacacaaa tttatattt tttttctga atgagaaaca tgagggaaat 2700
 tgtggagtt gcctcctgtg gtaaaggaat tgaagaaaat ataacaccc acacccttt 2760
 tcatcttgcac attaaaagtt ctggctaact ttgaaatcca ttagagaaaa atccttgcac 2820
 ccagattcat tacaattcaa atcgaagagt tgtgaactgt tatcccattt aaaaaaaaaa 2880
 gccttgtatg tatgttatgg atacataaaa tgacgcaccc ccattatctc tccatgggaa 2940
 gctaagttat aaaaataggt gcttgggtta caaaaactttt tataaaaaa ggctttgcac 3000
 atttctataat gagtgggttt actggtaat tatgttattt ttacaacta atttgtact 3060
 ctcagaatgt ttgtcatatg cttcttgcac tgcatatttt ttaatctcaa acgtttcaat 3120
 aaaaccattt ttcaagatata aagagaattha ctccaaattt agtaatttcag aaaaactcaa 3180
 gatttaagtt aaaaagtggt ttggacttgg gaa 3213

<210> 2
 <211> 836
 <212> PRT
 <213> Homo sapiens

<220>
 <223> BCA4, osteoblast specific factor 2 (periostin)

<400> 2
 Met Ile Pro Phe Leu Pro Met Phe Ser Leu Leu Leu Leu Ile Val
 1 5 10 15

Asn Pro Ile Asn Ala Asn Asn His Tyr Asp Lys Ile Leu Ala His Ser
 20 25 30

Arg Ile Arg Gly Arg Asp Gln Gly Pro Asn Val Cys Ala Leu Gln Gln
 35 40 45

Ile Leu Gly Thr Lys Lys Tyr Phe Ser Thr Cys Lys Asn Trp Tyr
 50 55 60

Lys Lys Ser Ile Cys Gly Gln Lys Thr Thr Val Leu Tyr Glu Cys Cys
 65 70 75 80

Pro Gly Tyr Met Arg Met Glu Gly Met Lys Gly Cys Pro Ala Val Leu
 85 90 95

Pro Ile Asp His Val Tyr Gly Thr Leu Gly Ile Val Gly Ala Thr Thr
 100 105 110

Thr Gln Arg Tyr Ser Asp Ala Ser Lys Leu Arg Glu Glu Ile Glu Gly
115 120 125

Lys Gly Ser Phe Thr Tyr Phe Ala Pro Ser Asn Glu Ala Trp Asp Asn
130 135 140

Leu Asp Ser Asp Ile Arg Arg Gly Leu Glu Ser Asn Val Asn Val Glu
145 150 155 160

Leu Leu Asn Ala Leu His Ser His Met Ile Asn Lys Arg Met Leu Thr
165 170 175

Lys Asp Leu Lys Asn Gly Met Ile Ile Pro Ser Met Tyr Asn Asn Leu
180 185 190

Gly Leu Phe Ile Asn His Tyr Pro Asn Gly Val Val Thr Val Asn Cys
195 200 205

Ala Arg Ile Ile His Gly Asn Gln Ile Ala Thr Asn Gly Val Val His
210 215 220

Val Ile Asp Arg Val Leu Thr Gln Ile Gly Thr Ser Ile Gln Asp Phe
225 230 235 240

Ile Glu Ala Glu Asp Asp Leu Ser Ser Phe Arg Ala Ala Ala Ile Thr
245 250 255

Ser Asp Ile Leu Glu Ala Leu Gly Arg Asp Gly His Phe Thr Leu Phe
260 265 270

Ala Pro Thr Asn Glu Ala Phe Glu Lys Leu Pro Arg Gly Val Leu Glu
275 280 285

Arg Phe Met Gly Asp Lys Val Ala Ser Glu Ala Leu Met Lys Tyr His
290 295 300

Ile Leu Asn Thr Leu Gln Cys Ser Glu Ser Ile Met Gly Gly Ala Val
305 310 315 320

Phe Glu Thr Leu Glu Gly Asn Thr Ile Glu Ile Gly Cys Asp Gly Asp
325 330 335

Ser Ile Thr Val Asn Gly Ile Lys Met Val Asn Lys Lys Asp Ile Val
340 345 350

Thr Asn Asn Gly Val Ile His Leu Ile Asp Gln Val Leu Ile Pro Asp
355 360 365

Ser Ala Lys Gln Val Ile Glu Leu Ala Gly Lys Gln Gln Thr Thr Phe
370 375 380

Thr Asp Leu Val Ala Gln Leu Ala Ser Ala Leu Arg Pro Asp
385 390 395 400

Gly Glu Tyr Thr Leu Leu Ala Pro Val Asn Asn Ala Phe Ser Asp Asp
405 410 415

Thr Leu Ser Met Val Gln Arg Leu Leu Lys Leu Ile Leu Gln Asn His
420 425 430

Ile Leu Lys Val Lys Val Gly Leu Asn Glu Leu Tyr Asn Gly Gln Ile
435 440 445

Leu Glu Thr Ile Gly Gly Lys Gln Leu Arg Val Phe Val Tyr Arg Thr
450 455 460

Ala Val Cys Ile Glu Asn Ser Cys Met Glu Lys Gly Ser Lys Gln Gly
465 470 475 480

Arg Asn Gly Ala Ile His Ile Phe Arg Glu Ile Ile Lys Pro Ala Glu
485 490 495

Lys Ser Leu His Glu Lys Leu Lys Gln Asp Lys Arg Phe Ser Thr Phe
500 505 510

Leu Ser Leu Leu Glu Ala Ala Asp Leu Lys Glu Leu Leu Thr Gln Pro
515 520 525

Gly Asp Trp Thr Leu Phe Val Pro Thr Asn Asp Ala Phe Lys Gly Met
530 535 540

Thr Ser Glu Glu Lys Glu Ile Leu Ile Arg Asp Lys Asn Ala Leu Gln
545 550 555 560

Asn Ile Ile Leu Tyr His Leu Thr Pro Gly Val Phe Ile Gly Lys Gly
565 570 575

Phe Glu Pro Gly Val Thr Asn Ile Leu Lys Thr Thr Gln Gly Ser Lys
580 585 590

Ile Phe Leu Lys Glu Val Asn Asp Thr Leu Leu Val Asn Glu Leu Lys
595 600 605

Ser Lys Glu Ser Asp Ile Met Thr Thr Asn Gly Val Ile His Val Val
610 615 620

Asp Lys Leu Leu Tyr Pro Ala Asp Thr Pro Val Gly Asn Asp Gln Leu
625 630 635 640

Leu Glu Ile Leu Asn Lys Leu Ile Lys Tyr Ile Gln Ile Lys Phe Val
645 650 655

Arg Gly Ser Thr Phe Lys Glu Ile Pro Val Thr Val Tyr Thr Thr Lys
660 665 670

Ile Ile Thr Lys Val Val Glu Pro Lys Ile Lys Val Ile Glu Gly Ser
675 680 685

Leu Gln Pro Ile Ile Lys Thr Glu Gly Pro Thr Leu Thr Lys Val Lys
690 695 700

Ile Glu Gly Glu Pro Glu Phe Arg Leu Ile Lys Glu Gly Glu Thr Ile
705 710 715 720

Thr Glu Val Ile His Gly Glu Pro Ile Ile Lys Lys Tyr Thr Lys Ile
725 730 735

Ile Asp Gly Val Pro Val Glu Ile Thr Glu Lys Glu Thr Arg Glu Glu
740 745 750

Arg Ile Ile Thr Gly Pro Glu Ile Lys Tyr Thr Arg Ile Ser Thr Gly
755 760 765

Gly Gly Glu Thr Glu Glu Thr Leu Lys Lys Leu Leu Gln Glu Glu Val
770 775 780

Thr Lys Val Thr Lys Phe Ile Glu Gly Gly Asp Gly His Leu Phe Glu
785 790 795 800

Asp Glu Glu Ile Lys Arg Leu Leu Gln Gly Asp Thr Pro Val Arg Lys
805 810 815

Leu Gln Ala Asn Lys Lys Val Gln Gly Ser Arg Arg Arg Leu Arg Glu
820 825 830

Gly Arg Ser Gln
835

```
<210> 3
<211> 2053
<212> DNA
<213> Homo sapiens
```

<220>
<223> BCA7, 5T4 oncofetal trophoblast glycoprotein type
1a transmembrane protein

<220>
<221> CDS
<222> (85) .. (1347)
<223> BCA7

<400> 3
ccggctcgcg ccctccgggc ccagcctccc gagccttcgg agcgggcgcc gtcccagccc 60
agctccgggg aaacgcgagc cgcgatgcct ggggggtgtc cccggggccc cgccggccggg 120
gacgggcgtc tgccgctggc gcgactagcg ctggtaactcc tgggctgggt ctccctcgct 180
tctccccact cctcggtcatc ctccctctcc teetcggtcg cgttcctggc ttccggcgtg 240
tccgcccagc ccccgcgtgcc ggaccagtgc cccgcgtgt gcgagtgtcgc cgaggcagcg 300
cgcacagtca agtgcgttaa ccgcaatctg accgaggtgc ccacggacct gccccctac 360
gtgcgcgaacc ttttccttac cggtcaaccagg ctggccgtgc tccctgcccgg cgcttcgccc 420
cgccggccgc cgctggcgga gctggccgcg ctcaaccta gcggcagccg cttggacgag 480
gtgcgcgcgg gggccttcga gcatctgccc agcctgcgc agctcgaccc cagccacaac 540
ccactggccg aectcagtcc cttcgcgttcc tcgggcagca atgcccagcgt ctcggccccc 600
agtcccccttg tggaaactgtat cctgaaccac atcgtgccttcc ctgaagatga gggcagaac 660
cgaggttcg agggcatggt ggtggccggc ctgctggcg ggccgttcgggactgcact gcaggggctc 720
cgccgcttgg agctggccag caaccacttc ctttaccta cggggatgt gctggcccaa 780
ctgcccagcc tcaggcacct ggacttaagt aataattcgc tggtaggcct gacctacgtg 840
tccttcggca acctgacaca tctagaaaaggc ctccacccctgg aggacaatgc cctcaaggc 900
cttcacaatag gcaccctggc tgagttgcaaa ggtctacccc acattagggt tttcctggac 960
aacaatccct gggctcgca ctgcccacatg ctagacatgg tgacctggct caagggaaaca 1020
gaggtagtgc agggcaaaga ccggctcacc tggtagtgcatacc cggaaaaaat gggaaatcgg 1080
gtcctcttgg aactcaacag tgctgacctg gactgtgacc cgattcttcc cccatccctg 1140
caaacccttt atgtcttcct gggattttttt ttagccctga taggcgttat tttccttcctg 1200
gttttgtatt tgaaccgcaa ggggataaaaaa aagtggatgc ataacatcag agatgcctgc 1260
aggatcaca tggaaagggtt tcattacaga tatgaaatca atgcggaccc cagattaaca 1320
aacctoagtt ctaactcgga tgtctgagaa atattagagg acagaccaag gacaactctg 1380
catgagatgt agacttaagc ttatcccta ctaggcttgc tccactttca tcctccacta 1440
tagataacaac ggactttgac taaaagcagt gaaggggatt tgcttccttgc ttatgtaaag 1500
tttctcggtg tgttctgtta atgtaagacg atgaacagtt gtgtatagtg ttttaccctc 1560
ttcttttct tggaaactcct caacacgtat ggagggattt ttcaggtttc agcatgaaca 1620

tgggcttctt gctgtctgtc tctctctca gtagttcaa ggtgttagcaa gtgtacccac 1680
acagatagca ttcaacaaaa gtcgcctcaa cttttcgag aaaaataactt tattcataaa 1740
tatcatgtt attctcatgt acctaagttg tggagaaaat aattgcattcc tataaactgc 1800
ctgcagacgt tagcaggctc ttcaaaataa ctccatggtg cacaggagca cctgcattcca 1860
agagcatgct tacatttac tggtctgcat attacaaaaa ataaactgca acttcataac 1920
ttcttgaca aagttaaatta ctttttgat tgcagttat atgaaaatgt actgatttt 1980
tttaataaaa ctgcattcgag atccaaaccga ctgaattgtt aaaaaaaaaa aaaaataaaag 2040
attcttaaaa gaa 2053

<210> 4
<211> 420
<212> PRT
<213> Homo sapiens

<220>
<223> BCA7, 5T4 oncofetal trophoblast glycoprotein type
1a transmembrane protein

<400> 4
Met Pro Gly Gly Cys Ser Arg Gly Pro Ala Ala Gly Asp Gly Arg Leu
1 5 10 15

Arg Leu Ala Arg Leu Ala Leu Val Leu Leu Gly Trp Val Ser Ser Ser
20 25 30

Ser Pro Thr Ser Ser Ala Ser Ser Phe Ser Ser Ser Ala Pro Phe Leu
35 40 45

Ala Ser Ala Val Ser Ala Gln Pro Pro Leu Pro Asp Gln Cys Pro Ala
50 55 60

Leu Cys Glu Cys Ser Glu Ala Ala Arg Thr Val Lys Cys Val Asn Arg
65 70 75 80

Asn Leu Thr Glu Val Pro Thr Asp Leu Pro Ala Tyr Val Arg Asn Leu
85 90 95

Phe Leu Thr Gly Asn Gln Leu Ala Val Leu Pro Ala Gly Ala Phe Ala
100 105 110

Arg Arg Pro Pro Leu Ala Glu Leu Ala Ala Leu Asn Leu Ser Gly Ser
115 120 125

Arg Leu Asp Glu Val Arg Ala Gly Ala Phe Glu His Leu Pro Ser Leu
130 135 140

Arg Gln Leu Asp Leu Ser His Asn Pro Leu Ala Asp Leu Ser Pro Phe
145 150 155 160

Ala Phe Ser Gly Ser Asn Ala Ser Val Ser Ala Pro Ser Pro Leu Val
165 170 175

Glu Leu Ile Leu Asn His Ile Val Pro Pro Glu Asp Glu Arg Gln Asn
180 185 190

Arg Ser Phe Glu Gly Met Val Val Ala Ala Leu Leu Ala Gly Arg Ala
195 200 205

Leu Gln Gly Leu Arg Arg Leu Glu Leu Ala Ser Asn His Phe Leu Tyr
210 215 220

Leu Pro Arg Asp Val Leu Ala Gln Leu Pro Ser Leu Arg His Leu Asp
 225 230 235 240
 Leu Ser Asn Asn Ser Leu Val Ser Leu Thr Tyr Val Ser Phe Arg Asn
 245 250 255
 Leu Thr His Leu Glu Ser Leu His Leu Glu Asp Asn Ala Leu Lys Val
 260 265 270
 Leu His Asn Gly Thr Leu Ala Glu Leu Gln Gly Leu Pro His Ile Arg
 275 280 285
 Val Phe Leu Asp Asn Asn Pro Trp Val Cys Asp Cys His Met Ala Asp
 290 295 300
 Met Val Thr Trp Leu Lys Glu Thr Glu Val Val Gln Gly Lys Asp Arg
 305 310 315 320
 Leu Thr Cys Ala Tyr Pro Glu Lys Met Arg Asn Arg Val Leu Leu Glu
 325 330 335
 Leu Asn Ser Ala Asp Leu Asp Cys Asp Pro Ile Leu Pro Pro Ser Leu
 340 345 350
 Gln Thr Ser Tyr Val Phe Leu Gly Ile Val Leu Ala Leu Ile Gly Ala
 355 360 365
 Ile Phe Leu Leu Val Leu Tyr Leu Asn Arg Lys Gly Ile Lys Lys Trp
 370 375 380
 Met His Asn Ile Arg Asp Ala Cys Arg Asp His Met Glu Gly Tyr His
 385 390 395 400
 Tyr Arg Tyr Glu Ile Asn Ala Asp Pro Arg Leu Thr Asn Leu Ser Ser
 405 410 415
 Asn Ser Asp Val
 420

<210> 5
 <211> 3449
 <212> DNA
 <213> Homo sapiens

<220>
 <223> BCX5, LNIR type Ia transmembrane protein

<220>
 <221> CDS
 <222> (225)..(1757)
 <223> BCX5

<400> 5
 ggggagctcg gagctcccga tcacggcttc ttggggtag ctacggctgg gtgtgttagaa 60
 cggggccggg gctggggctg ggtcccctag tgagacccaa gtgcgagagg caagaactct 120
 gcagcttcct gccttctggg tcaagttcattt attcaagtct gcagccggct cccagggaga 180
 tctcgggtgg aacctcagaaaa cgctggcag tctgccttc aaccatgcc ctgtccctgg 240
 gagccgagat gtgggggcct gaggcctggc tgctgtgtct gctactgtg gcatcattta 300
 caggccggtg ccccgccgggt gagctggaga cctcagacgt ggtaactgtg gtgctggcc 360
 aggacgcaaa actgcccctgc ttctaccgag gggactccgg cgagcaagtg 420

catgggctcg ggtggacgcg ggcgaaggcg cccaggaact agcgctactg cactccaaat 480
acgggcttca tggagcccg gcttacgagg gcccgtgga gcagccgcg cccccacgca 540
accggcggtaa cggctcagtg ctccgtcgca acgcagtgcg ggcggatgag ggcgagtagc 600
agtggccgggt cagcaccttc cccgcccggca gcttccaggc gcccgtcg 660
tgggtgcctcc cctgcctca ctgaatctg gtccagact agaagagggc cagggcctga 720
ccctggcage ctccgtcaca gctgaggcg gcccggccc cagcgtgacc tgggacacgg 780
aggtcaaagg cacaacgtcc agccgttcc tcaagcactc cgcgtctgtc gccgtcacct 840
cagagttcca cttggtgcc agccgcagca tgaatggca gccactgact tgggtgggt 900
cccatcctgg cctgcctccag gaccaaaggat tcacccacat cctccacgtg tccttcctt 960
ctgaggcctc tggaggggc ctggaaagacc aaaatctgtg gcacatggc agagaaggag 1020
ctatgctcaa gtgcgtgagt gaagggcgc cccctccctc atacaactgg acacggctgg 1080
atgggcctct gcccagtggg gtacgagttt atggggacac tttgggctt ccccaactga 1140
ccactgagca cagcggcatc tacgtctgcc atgtcagcaa tgagttctcc tcaaggatt 1200
ctcagggtcac tggatgtt ctggaccccc aggaagactc tgggaagcag gtggacctag 1260
tgtcagccctc ggtgggtggg gtgggtgtga tcggcgcact cttgtctgc cttctgggt 1320
tgggtgggt gctcatgtcc cgataccatc ggcgcagggc ccagcagatg acccagaaat 1380
atgaggagga gctgaccctg accagggaga actccatccg gaggctgcat tcccatcaca 1440
cgagcccccag gagccagccg gaggagagt tagggctgag agccgagggc caccctgata 1500
gtctcaaggg caacagttagc tgctctgtga tgagtgaaga gcccggggc cgcagttact 1560
ccacgctgac cacggtgagg gagatagaaa cacagactga actgctgtct ccaggctctg 1620
ggcggggccga ggaggaggaa gatcaggatg aaggcatcaa acaggccatg aaccattttg 1680
ttcaggagaa tgggacccta cgggccaagc ccacgggcaa tggcatctac atcaatggc 1740
ggggacacct ggtctgaccc aggctgcct cccttcctt ggcctggctc cttctgttga 1800
catgggagat tttagtcat ctggggggcc tccttaaaca cccccatttc ttgcggaaaga 1860
tgctccccat cccactgact gcttgcaccc tacctccaaac cttctgttc atcgggagg 1920
ctccaccaat tgagtctctc ccaccatgca tgcaggctac tgggtgtg catgtgtgcc 1980
tgggtgagtg ttgactgact gtgtgtgtg ggaggggtga ctgtccgtgg aggggtgact 2040
gtgtccgtgg tggatttat gctgtcatat cagagtcaag tgaactgtgg tggatgtgcc 2100
acgggatttg agtggttgcg tggcaacac tggcagggtt tggcgtgtgt gtcatgtggc 2160
tgggtgtgac ctctgcctga aaaagcagg attttctcag accccagagc agtattaatg 2220
atgcagaggt tggaggagag aggtggagac tggctcag acccagggtg gcgggcatag 2280
ctggagctgg aatctgcctc cgggtgtgagg gaaacctgtct cttaccactt cggagccatg 2340
ggggcaagtg tgaagcagcc agtccctggg tcagccagag gcttgaactg ttacagaagc 2400
cctctgcctt ctggggcctt ctgggctgc tgcattaca tattttctgt aaatatacat 2460
gcccggggag cttcttcag gaatactgtc cgaatactt ttaattttt ttctttttt 2520
tttctgccc ttccattag ttgtattttt tattttttt tattttttt ttctttttaga 2580
gatggagtct cactatgtt ctcaggctgg ctttgcactc ctgggctcaa gcaatcctcc 2640
tgcctcagcc tcccttagtag ctgggacttt aagtgtacac cactgtgcct gcttgaatc 2700
ctttacgaag agaaaaaaa aattaaagaa agcctttaga tttatccat gtttactact 2760
gggattgctt aaagtggggc ccctccaaaca ccagggggtt aattcctgtt attgtgaaag 2820
gggctacttc caaggcatct tcatgcaggg agccccctgg gagggcacct gagagctgg 2880
agagtctgaa attagggatg tgaggctcgt ggttaactgag taaggtaaaa ttgcattccac 2940
cattgtttgt gataccttag ggaattgtt ggacctgggt acaagggtct ctgttcaata 3000
gtgggtttgg ggagagagag agcagtgtt atagaccgag agagttaggag ttgaggtgag 3060
gtgaaggagg tgctgggggt gagaatgtcg ctttcccccc tgggtttgg atcactaatt 3120
caaggctttt ctggatgttt ctctgggtt gggctggagt tcaatgaggt ttatttttag 3180
ctggcccacc cagatacact cagccagaat acctagattt agtacccaaa ctcttcttag 3240
tctgaaatct gctggatttc tggcctaagg gagaggctcc catccttcgt tccccagcca 3300
gcctaggact tcgaatgtgg agcctgaaga tctaagatcc taacatgtac attttatgt 3360
aatatgtgca tatttttaca taaaatgata ttctgtttt aaataaacag aaaaaacttg 3420
ttcaaaaaaaaaaaaaaaa aaaaaaaaaaaaaaaa 3449

<210> 6
<211> 510
<212> PRT
<213> Homo sapiens

<220>
<223> BCX5, LNIR type Ia transmembrane protein

<400> 6
 Met Pro Leu Ser Leu Gly Ala Glu Met Trp Gly Pro Glu Ala Trp Leu
 1 5 10 15
 Leu Leu Leu Leu Leu Ala Ser Phe Thr Gly Arg Cys Pro Ala Gly
 20 25 30
 Glu Leu Glu Thr Ser Asp Val Val Thr Val Val Leu Gly Gln Asp Ala
 35 40 45
 Lys Leu Pro Cys Phe Tyr Arg Gly Asp Ser Gly Glu Gln Val Gly Gln
 50 55 60
 Val Ala Trp Ala Arg Val Asp Ala Gly Glu Gly Ala Gln Glu Leu Ala
 65 70 75 80
 Leu Leu His Ser Lys Tyr Gly Leu His Val Ser Pro Ala Tyr Glu Gly
 85 90 95
 Arg Val Glu Gln Pro Pro Pro Pro Arg Asn Pro Leu Asp Gly Ser Val
 100 105 110
 Leu Leu Arg Asn Ala Val Gln Ala Asp Glu Gly Glu Tyr Glu Cys Arg
 115 120 125
 Val Ser Thr Phe Pro Ala Gly Ser Phe Gln Ala Arg Leu Arg Leu Arg
 130 135 140
 Val Met Val Pro Pro Leu Pro Ser Leu Asn Pro Gly Pro Ala Leu Glu
 145 150 155 160
 Glu Gly Gln Gly Leu Thr Leu Ala Ala Ser Cys Thr Ala Glu Gly Ser
 165 170 175
 Pro Ala Pro Ser Val Thr Trp Asp Thr Glu Val Lys Gly Thr Thr Ser
 180 185 190
 Ser Arg Ser Phe Lys His Ser Arg Ser Ala Ala Val Thr Ser Glu Phe
 195 200 205
 His Leu Val Pro Ser Arg Ser Met Asn Gly Gln Pro Leu Thr Cys Val
 210 215 220
 Val Ser His Pro Gly Leu Leu Gln Asp Gln Arg Ile Thr His Ile Leu
 225 230 235 240
 His Val Ser Phe Leu Ala Glu Ala Ser Val Arg Gly Leu Glu Asp Gln
 245 250 255
 Asn Leu Trp His Ile Gly Arg Glu Gly Ala Met Leu Lys Cys Leu Ser
 260 265 270
 Glu Gly Gln Pro Pro Pro Ser Tyr Asn Trp Thr Arg Leu Asp Gly Pro
 275 280 285
 Leu Pro Ser Gly Val Arg Val Asp Gly Asp Thr Leu Gly Phe Pro Pro
 290 295 300
 Leu Thr Thr Glu His Ser Gly Ile Tyr Val Cys His Val Ser Asn Glu
 305 310 315 320

Phe	Ser	Ser	Arg	Asp	Ser	Gln	Val	Thr	Val	Asp	Val	Leu	Asp	Pro	Gln
325									330						335
Glu	Asp	Ser	Gly	Lys	Gln	Val	Asp	Leu	Val	Ser	Ala	Ser	Val	Val	Val
340								345							350
Val	Gly	Val	Ile	Ala	Ala	Leu	Leu	Phe	Cys	Leu	Leu	Val	Val	Val	Val
355									360						365
Val	Leu	Met	Ser	Arg	Tyr	His	Arg	Arg	Lys	Ala	Gln	Gln	Met	Thr	Gln
370								375							380
Lys	Tyr	Glu	Glu	Glu	Leu	Thr	Leu	Thr	Arg	Glu	Asn	Ser	Ile	Arg	Arg
385								390							400
Leu	His	Ser	His	His	Thr	Asp	Pro	Arg	Ser	Gln	Pro	Glu	Glu	Ser	Val
									405						415
Gly	Leu	Arg	Ala	Glu	Gly	His	Pro	Asp	Ser	Leu	Lys	Asp	Asn	Ser	Ser
									420						430
Cys	Ser	Val	Met	Ser	Glu	Glu	Pro	Glu	Gly	Arg	Ser	Tyr	Ser	Thr	Leu
								435							445
Thr	Thr	Val	Arg	Glu	Ile	Glu	Thr	Gln	Thr	Glu	Leu	Leu	Ser	Pro	Gly
								450							460
Ser	Gly	Arg	Ala	Glu	Glu	Glu	Asp	Gln	Asp	Glu	Gly	Ile	Lys	Gln	
								465							480
Ala	Met	Asn	His	Phe	Val	Gln	Glu	Asn	Gly	Thr	Leu	Arg	Ala	Lys	Pro
								485							495
Thr	Gly	Asn	Gly	Ile	Tyr	Ile	Asn	Gly	Arg	Gly	His	Leu	Val		
								500							510

<210> 7
<211> 486
<212> PRT
<213> Mus sp.

<220>
<223> mouse BCX5, mouse LNIR, mouse orthologue of human
BCX5 type 1a transmembrane protein

<220>
<221> MOD_RES
<222> (1)..(486)
<223> Xaa = any amino acid

<400> 7
Met Pro Leu Ser Leu Gly Ala Glu Met Trp Gly Pro Glu Ala Trp Leu
1 5 10 15
Arg Leu Leu Phe Leu Ala Ser Phe Thr Gly Gln Tyr Ser Ala Gly Glu
20 25 30
Leu Glu Thr Ser Asp Val Val Thr Val Val Leu Gly Gln Asp Ala Lys
35 40 45

Leu Pro Cys Phe Tyr Arg Gly Asp Pro Asp Glu Gln Val Gly Gln Val
 50 55 60

Ala Trp Ala Arg Val Asp Pro Asn Glu Xaa Tyr Pro Gly Ala Gly Leu
 65 70 75 80

Leu His Ser Lys Tyr Gly Leu His Val Asn Pro Ala Tyr Glu Asp Arg
 85 90 95

Val Glu Gln Xaa Xaa His Glu Thr Phe Arg Arg Ser Val Leu Leu Arg
 100 105 110

Asn Ala Val Gln Ala Asp Glu Gly Glu Tyr Glu Cys Arg Val Ser Thr
 115 120 125

Phe Pro Ser Gly Ser Phe Gln Ala Arg Met Arg Leu Arg Val Leu Val
 130 135 140

Pro Pro Leu Pro Ser Leu Asn Pro Gly Pro Pro Leu Glu Glu Gly Gln
 145 150 155 160

Ala Asp Val Ala Ala Ser Cys Thr Ala Glu Gly Ser Pro Ala Pro Ser
 165 170 175

Val Thr Trp Asp Thr Glu Val Lys Gly Thr Gln Ser Ser Arg Ser Phe
 180 185 190

Thr His Pro Arg Ser Ala Ala Val Thr Ser Glu Phe His Leu Val Pro
 195 200 205

Ser Arg Ser Met Asn Gly Gln Pro Leu Thr Cys Val Val Ser His Pro
 210 215 220

Gly Leu Leu Gln Asp Arg Arg Ile Thr His Thr Leu Gln Val Ala Phe
 225 230 235 240

Leu Ala Glu Ala Ser Val Arg Gly Leu Glu Asp Gln Asn Leu Trp Gln
 245 250 255

Val Gly Arg Glu Gly Ala Thr Leu Lys Cys Leu Ser Glu Gly Gln Pro
 260 265 270

Pro Pro Lys Tyr Asn Trp Thr Arg Leu Asp Gly Pro Leu Pro Ser Gly
 275 280 285

Val Arg Val Lys Gly Asp Thr Leu Gly Phe Pro Pro Leu Thr Thr Glu
 290 295 300

His Ser Gly Val Tyr Xaa Cys His Val Ser Asn Glu Leu Ser Ser Arg
 305 310 315 320

Asp Ser Gln Val Thr Val Glu Val Leu Asp Pro Glu Asp Pro Gly Lys
 325 330 335

Gln Val Asp Leu Val Ser Ala Ser Val Ile Ile Val Gly Val Ile Ala
 340 345 350

Ala Leu Leu Phe Cys Leu Leu Val Val Val Val Val Leu Met Ser Arg
 355 360 365

Tyr His Arg Arg Lys Ala Gln Gln Met Thr Gln Lys Tyr Glu Glu Glu
 370 375 380

Leu Thr Leu Thr Arg Glu Asn Ser Ile Arg Arg Leu His Ser His His
 385 390 395 400

Ser Asp Pro Arg Ser Gln Pro Glu Glu Ser Val Gly Leu Arg Ala Glu
 405 410 415

Gly His Pro Asp Ser Leu Lys Asp Asn Ser Ser Cys Ser Val Met Ser
 420 425 430

Glu Glu Pro Glu Gly Arg Ser Tyr Ser Thr Leu Thr Thr Val Arg Glu
 435 440 445

Ile Glu Thr Gln Thr Glu Leu Leu Ser Pro Gly Ser Gly Arg Thr Glu
 450 455 460

Glu Asp Asp Asp Gln Asp Glu Gly Ile Lys Gln Ala Met Asn His Leu
 465 470 475 480

Cys Arg Lys Met Gly Pro
 485

<210> 8
 <211> 3085
 <212> DNA
 <213> Homo sapiens

<220>
 <223> BCZ6, IL-6 receptor beta chain (gp130, oncostatin M, IL-11, LIF and CNTF receptor) type I transmembrane protein

<220>
 <221> CDS
 <222> (256)..(3012)
 <223> BCZ6

<400> 8
 gagcagccaa aaggcccccg gactcgct .ggccgcggcc ggcgcacgtg aaccgggggc 60
 cgcgcctgcc aggccgacgg gtctggccca gcctggcgcc aagggggtcg tgcgctgtgg 120
 agacgcggag ggtcgaggcg gcgcggcctg agtggaaaccc aatggaaaaaa gcatgacatt 180
 tagaagtaga agacttagct tcaaattcct actccttcac ttactaattt tgtgatttgg 240
 aaatatccgc gcaagatgtt gacgttgacg acttgggtag tgcaaggcctt gtttatatttc 300
 ctcaccactg aatctacagg tgaacttcta gatccatgtg gtttatatcg tcctgaatct 360
 ccagttgtac aacttcattc taatttcaact gcagtttgg tgctaaagga aaaatgtatg 420
 gattattttc atgtaaaatgc taattacatt gtctggaaaa caaaccattt tactattcct 480
 aaggagcaat atactatcat aaacagaaca gcatccacgtg tcacctttac agatatacg 540
 tcattaaata ttcagctcac ttgcaacatt cttacattcg gacagcttga acagaatgtt 600
 tatggaatca caataatttc aggcttgct ccagaaaaac ctaaaaattt gagttgcatt 660
 gtgaacgagg ggaagaaaat gaggtgttag tggatggtg gaagggaaac acacttggag 720
 acaaaacttca cttaaaaatc tgaatggca acacacaagt ttgctgattt gaaagcaaaa 780
 cgtgacacccc ccacccatg cactgtttagt tattctactg ttttgcgttgcgtt 840
 gtctgggtag aagcagagaa tgcccttggg aagttacat cagatcatat caattttgtat 900
 cctgtatata aagtgaagcc caatccgcca cataatttat cagtgtacaa ctcagaggaa 960
 ctgtcttagta cttaaaaattt gacatggacc aacccaagta ttaagagtgt tataatacta 1020
 aaatataaca ttcaatatacg gaccaaagat gcctcaactt ggagccagat tcctcctgaa 1080
 gacacagcat ccacccgatc ttcattcaact gtccaagacc ttaaacccctt tacagaatat 1140
 gtgttttagga ttgcgtgtat gaaggaagat ggtaaggat actggagtga ctggagtgaa 1200

ggatcaccta	tgaagataga	ccatctaaag	caccaagttt	ctggtataaa	1260	
atagattccat	ccatactca	aggctacaga	actgtacaac	tcgtgtggaa	gacattgcct	1320
cctttgaag	ccaatggaaa	aatcttggat	tatgaagtga	ctctcacaag	atggaaatca	1380
catttacaaa	attacacagt	taatgccaca	aaactgacag	taaatctcac	aatatgatcgc	1440
tatctagcaa	ccctaacagt	aagaaatctt	gttggcaaat	cagatgcagc	tgtttaact	1500
atcccgcct	gtgactttca	agctactcac	cctgtaatgg	atcttaaagc	attccccaaa	1560
gataacatgc	tttgggtgga	atggactact	ccaagggaaat	ctgtaaaagaa	atataactt	1620
gagttgtgt	tgttatcaga	taaagcaccc	tgtatcacag	actggcaaca	agaagatggt	1680
accgtgcattc	gcaccttattt	aagagggAAC	tttagcagaga	gcaaattgcta	tttgataaca	1740
gttactccag	tatatgtga	tggaccagga	agccctgaat	ccataaaaggc	ataccttaaa	1800
caagctccac	cttccaaagg	acctactgtt	cggacaaaaaa	aagttagggaa	aaacgaagct	1860
gtcttagagt	gggaccaact	tcctgttcat	gttcagaatg	gatttatca	aaattatact	1920
atattttata	gaaccatcat	tggaaatgaa	actgctgtga	atgtggattt	ttcccacaca	1980
gaatatacat	tgtcctctt	gactagtgc	acattgtaca	tggtacgaat	ggcagcatac	2040
acagatgaag	gtgggaagga	tggccagaa	ttcacttttta	ctaccccaaa	gtttgctcaa	2100
ggagaaattt	aagccatagt	cgtgcctgtt	tgcttagcat	tccttattgac	aactttctg	2160
ggagtgctgt	tctgctttaa	taagcgagac	ctaattaaaa	aacacatctg	gcctaattgtt	2220
ccagatcctt	caaagagtca	tattgcccag	tggtcacctc	acactcctcc	aaggcacaat	2280
ttaattcaaa	aagatcaaatt	gtattcagat	ggcaatttca	ctgatgtaa	tgttgtggaa	2340
atagaagcaa	atgacaaaaaa	gcctttcca	gaagatctga	aatcatttgg	cctgtcaaa	2400
aaggaaaaaa	ttaatactga	aggacacagc	agtggattt	gggggtcttc	atgcatgtca	2460
tcttcttaggc	caagcatttc	tagcagtgt	aaaaatgaat	cttcacaaaa	cacttcgagc	2520
actgtccagt	attctaccgt	ggtacacagt	ggctacagac	accaagtcc	gtcagtccaa	2580
gtcttcctaa	gatccgagtc	tacccagccc	ttgttagatt	cagaggagcg	gccagaagat	2640
ctacaattag	tagatcatgt	agatggcggt	gatggattt	tgcccaggca	acagtaacttc	2700
aaacagaact	gcagtcagca	tgaatccagt	ccagatattt	cacattttga	aaggtaaaag	2760
caagtttcat	cagtcaatga	ggaagatttt	gttagactta	aacagcagat	ttcagatcat	2820
atttcacaaat	cctgtggatc	tggccaaatg	aaaatgtttc	aggaagtttc	tgcagcagat	2880
gctttggtc	caggtactga	gggacaagta	gaaagattt	aaacagttgg	catggaggct	2940
gcgactgtat	aaggcatgcc	taaaagttac	ttaccacaga	ctgtacggca	aggcggctac	3000
atgcctcagt	gaaggactag	tagttctgc	tacaacttca	gcagtaccta	taaagtaaaag	3060
ctaaaatgtat	tttatctgt	aattc				3085

<210> 9
<211> 918
<212> PRT
<213> Homo sapiens

<220>
<223> BCZ6, IL-6 receptor beta chain (gp130, oncostatin M, IL-11, LIF and CNTF receptor) type I transmembrane protein

```

<400> 9
Met Leu Thr Leu Gln Thr Trp Val Val Gln Ala Leu Phe Ile Phe Leu
      1           5           10          15

Thr Thr Glu Ser Thr Gly Glu Leu Leu Asp Pro Cys Gly Tyr Ile Ser
      20          25          30

Pro Glu Ser Pro Val Val Gln Leu His Ser Asn Phe Thr Ala Val Cys
      35          40          45

Val Leu Lys Glu Lys Cys Met Asp Tyr Phe His Val Asn Ala Asn Tyr
      50          55          60

Ile Val Trp Lys Thr Asn His Phe Thr Ile Pro Lys Glu Gln Tyr Thr
      65          70          75          80

```

Ile	Ile	Asn	Arg	Thr	Ala	Ser	Ser	Val	Thr	Phe	Thr	Asp	Ile	Ala	Ser
					85					90					95
Leu	Asn	Ile	Gln	Leu	Thr	Cys	Asn	Ile	Leu	Thr	Phe	Gly	Gln	Leu	Glu
					100				105					110	
Gln	Asn	Val	Tyr	Gly	Ile	Thr	Ile	Ile	Ser	Gly	Leu	Pro	Pro	Glu	Lys
					115				120					125	
Pro	Lys	Asn	Leu	Ser	Cys	Ile	Val	Asn	Glu	Gly	Lys	Lys	Met	Arg	Cys
					130				135					140	
Glu	Trp	Asp	Gly	Gly	Arg	Glu	Thr	His	Leu	Glu	Thr	Asn	Phe	Thr	Leu
					145				150					155	160
Lys	Ser	Glu	Trp	Ala	Thr	His	Lys	Phe	Ala	Asp	Cys	Lys	Ala	Lys	Arg
					165				170					175	
Asp	Thr	Pro	Thr	Ser	Cys	Thr	Val	Asp	Tyr	Ser	Thr	Val	Tyr	Phe	Val
					180				185					190	
Asn	Ile	Glu	Val	Trp	Val	Glu	Ala	Glu	Asn	Ala	Leu	Gly	Lys	Val	Thr
					195				200					205	
Ser	Asp	His	Ile	Asn	Phe	Asp	Pro	Val	Tyr	Lys	Val	Lys	Pro	Asn	Pro
					210				215					220	
Pro	His	Asn	Leu	Ser	Val	Ile	Asn	Ser	Glu	Glu	Leu	Ser	Ser	Ile	Leu
					225				230					235	240
Lys	Leu	Thr	Trp	Thr	Asn	Pro	Ser	Ile	Lys	Ser	Val	Ile	Ile	Leu	Lys
					245				250					255	
Tyr	Asn	Ile	Gln	Tyr	Arg	Thr	Lys	Asp	Ala	Ser	Thr	Trp	Ser	Gln	Ile
					260				265					270	
Pro	Pro	Glu	Asp	Thr	Ala	Ser	Thr	Arg	Ser	Ser	Phe	Thr	Val	Gln	Asp
					275				280					285	
Leu	Lys	Pro	Phe	Thr	Glu	Tyr	Val	Phe	Arg	Ile	Arg	Cys	Met	Lys	Glu
					290				295					300	
Asp	Gly	Lys	Gly	Tyr	Trp	Ser	Asp	Trp	Ser	Glu	Glu	Ala	Ser	Gly	Ile
					305				310					315	320
Thr	Tyr	Glu	Asp	Arg	Pro	Ser	Lys	Ala	Pro	Ser	Phe	Trp	Tyr	Lys	Ile
					325				330					335	
Asp	Pro	Ser	His	Thr	Gln	Gly	Tyr	Arg	Thr	Val	Gln	Leu	Val	Trp	Lys
					340				345					350	
Thr	Leu	Pro	Pro	Phe	Glu	Ala	Asn	Gly	Lys	Ile	Leu	Asp	Tyr	Glu	Val
					355				360					365	
Thr	Leu	Thr	Arg	Trp	Lys	Ser	His	Leu	Gln	Asn	Tyr	Thr	Val	Asn	Ala
					370				375					380	
Thr	Lys	Leu	Thr	Val	Asn	Leu	Thr	Asn	Asp	Arg	Tyr	Leu	Ala	Thr	Leu
					385				390					395	400

Thr Val Arg Asn Leu Val Gly Lys Ser Asp Ala Ala Val Leu Thr Ile
 405 410 415

 Pro Ala Cys Asp Phe Gln Ala Thr His Pro Val Met Asp Leu Lys Ala
 420 425 430

 Phe Pro Lys Asp Asn Met Leu Trp Val Glu Trp Thr Thr Pro Arg Glu
 435 440 445

 Ser Val Lys Lys Tyr Ile Leu Glu Trp Cys Val Leu Ser Asp Lys Ala
 450 455 460

 Pro Cys Ile Thr Asp Trp Gln Gln Glu Asp Gly Thr Val His Arg Thr
 465 470 475 480

 Tyr Leu Arg Gly Asn Leu Ala Glu Ser Lys Cys Tyr Leu Ile Thr Val
 485 490 495

 Thr Pro Val Tyr Ala Asp Gly Pro Gly Ser Pro Glu Ser Ile Lys Ala
 500 505 510

 Tyr Leu Lys Gln Ala Pro Pro Ser Lys Gly Pro Thr Val Arg Thr Lys
 515 520 525

 Lys Val Gly Lys Asn Glu Ala Val Leu Glu Trp Asp Gln Leu Pro Val
 530 535 540

 Asp Val Gln Asn Gly Phe Ile Arg Asn Tyr Thr Ile Phe Tyr Arg Thr
 545 550 555 560

 Ile Ile Gly Asn Glu Thr Ala Val Asn Val Asp Ser Ser His Thr Glu
 565 570 575

 Tyr Thr Leu Ser Ser Leu Thr Ser Asp Thr Leu Tyr Met Val Arg Met
 580 585 590

 Ala Ala Tyr Thr Asp Glu Gly Lys Asp Gly Pro Glu Phe Thr Phe
 595 600 605

 Thr Thr Pro Lys Phe Ala Gln Gly Glu Ile Glu Ala Ile Val Val Pro
 610 615 620

 Val Cys Leu Ala Phe Leu Leu Thr Thr Leu Leu Gly Val Leu Phe Cys
 625 630 635 640

 Phe Asn Lys Arg Asp Leu Ile Lys Lys His Ile Trp Pro Asn Val Pro
 645 650 655

 Asp Pro Ser Lys Ser His Ile Ala Gln Trp Ser Pro His Thr Pro Pro
 660 665 670

 Arg His Asn Phe Asn Ser Lys Asp Gln Met Tyr Ser Asp Gly Asn Phe
 675 680 685

 Thr Asp Val Ser Val Val Glu Ile Glu Ala Asn Asp Lys Lys Pro Phe
 690 695 700

 Pro Glu Asp Leu Lys Ser Leu Asp Leu Phe Lys Lys Glu Lys Ile Asn
 705 710 715 720

Thr Glu Gly His Ser Ser Gly Ile Gly Gly Ser Ser Cys Met Ser Ser
 725 730 735
 Ser Arg Pro Ser Ile Ser Ser Ser Asp Glu Asn Glu Ser Ser Gln Asn
 740 745 750
 Thr Ser Ser Thr Val Gln Tyr Ser Thr Val Val His Ser Gly Tyr Arg
 755 760 765
 His Gln Val Pro Ser Val Gln Val Phe Ser Arg Ser Glu Ser Thr Gln
 770 775 780
 Pro Leu Leu Asp Ser Glu Glu Arg Pro Glu Asp Leu Gln Leu Val Asp
 785 790 795 800
 His Val Asp Gly Asp Gly Ile Leu Pro Arg Gln Gln Tyr Phe Lys
 805 810 815
 Gln Asn Cys Ser Gln His Glu Ser Ser Pro Asp Ile Ser His Phe Glu
 820 825 830
 Arg Ser Lys Gln Val Ser Ser Val Asn Glu Glu Asp Phe Val Arg Leu
 835 840 845
 Lys Gln Gln Ile Ser Asp His Ile Ser Gln Ser Cys Gly Ser Gly Gln
 850 855 860
 Met Lys Met Phe Gln Glu Val Ser Ala Ala Asp Ala Phe Gly Pro Gly
 865 870 875 880
 Thr Glu Gly Gln Val Glu Arg Phe Glu Thr Val Gly Met Glu Ala Ala
 885 890 895
 Thr Asp Glu Gly Met Pro Lys Ser Tyr Leu Pro Gln Thr Val Arg Gln
 900 905 910
 Gly Gly Tyr Met Pro Gln
 915

```

<210> 10
<211> 4215
<212> DNA
<213> Homo sapiens

<220>
<223> BFG4, KIAA0882 protein type II membrane protein

<220>
<221> CDS
<222> (108)..(2777)
<223> BFG4

<400> 10
gaacttatgt agcctcatta tccccgtccg tgaggtgaca attgtggaaa aggccagacag 60
ctccagggtg ctccccagtc ctttatcaca tcagcaccccg aaacaggatg accttcctat 120
ttgccaacctt gaaagataga gactttctag tgcagaggat ctcagatttc ctgcaacaga 180
ctacttccaa aatatattct gacaaggagt ttgcagggaaat ttacaacagt tcagatgtatg 240
aggtgtactc tcgaccaggc agcctcgctc cttccagccc ccagagaagc acgagctctg 300
atgctgtatgg agagcgccag tttaacctaa atgcaaacag cgtccccaca gccacacaga 360
ccctgtatcggt cgccgggtctc ccgaggagtt caaccggaaa ttggccaaag 420

```


ctgctgttgc ttttattctt atttacagga tgatTTTaa actgtcaaAT gaagttagtGT 4140
taacctcaAA taggctAAAT gtgaacAAAT aaaatacAGC aaataactCAg aaaaaaaaaaaa 4200
aaaaaaaaaaa aaaaaa 4215

<210> 11
<211> 889
<212> PRT
<213> Homo sapiens

<220>
<223> BFG4, KIAA0882 protein type II membrane protein

<400> 11
Met Thr Phe Leu Phe Ala Asn Leu Lys Asp Arg Asp Phe Leu Val Gln
1 5 10 15

Arg Ile Ser Asp Phe Leu Gln Gln Thr Thr Ser Lys Ile Tyr Ser Asp
20 25 30

Lys Glu Phe Ala Gly Ser Tyr Asn Ser Ser Asp Asp Glu Val Tyr Ser
35 40 45

Arg Pro Ser Ser Leu Val Ser Ser Ser Pro Gln Arg Ser Thr Ser Ser
50 55 60

Asp Ala Asp Gly Glu Arg Gln Phe Asn Leu Asn Gly Asn Ser Val Pro
65 70 75 80

Thr Ala Thr Gln Thr Leu Met Thr Met Tyr Arg Arg Arg Ser Pro Glu
85 90 95

Glu Phe Asn Pro Lys Leu Ala Lys Glu Phe Leu Lys Glu Gln Ala Trp
100 105 110

Lys Ile His Phe Ala Glu Tyr Gly Gln Gly Ile Cys Met Tyr Arg Thr
115 120 125

Glu Lys Thr Arg Glu Leu Val Leu Lys Gly Ile Pro Glu Ser Met Arg
130 135 140

Gly Glu Leu Trp Leu Leu Ser Gly Ala Ile Asn Glu Lys Ala Thr
145 150 155 160

His Pro Gly Tyr Tyr Glu Asp Leu Val Glu Lys Ser Met Gly Lys Tyr
165 170 175

Asn Leu Ala Thr Glu Glu Ile Glu Arg Asp Leu His Arg Ser Leu Pro
180 185 190

Glu His Pro Ala Phe Gln Asn Glu Met Gly Ile Ala Ala Leu Arg Arg
195 200 205

Val Leu Thr Ala Tyr Ala Phe Arg Asn Pro Asn Ile Gly Tyr Cys Gln
210 215 220

Ala Met Asn Ile Val Thr Ser Val Leu Leu Tyr Ala Lys Glu Glu
225 230 235 240

Glu Ala Phe Trp Leu Leu Val Ala Leu Cys Glu Arg Met Leu Pro Asp
245 250 255

Tyr Tyr Asn Thr Arg Val Val Gly Ala Leu Val Asp Gln Gly Val Phe
 260 265 270

Glu Glu Leu Ala Arg Asp Tyr Val Pro Gln Leu Tyr Asp Cys Met Gln
 275 280 285

Asp Leu Gly Val Ile Ser Thr Ile Ser Leu Ser Trp Phe Leu Thr Leu
 290 295 300

Phe Leu Ser Val Met Pro Phe Glu Ser Ala Val Val Val Asp Cys
 305 310 315 320

Phe Phe Tyr Glu Gly Ile Lys Val Ile Phe Gln Leu Ala Leu Ala Val
 325 330 335

Leu Asp Ala Asn Val Asp Lys Leu Leu Asn Cys Lys Asp Asp Gly Glu
 340 345 350

Ala Met Thr Val Leu Gly Arg Tyr Leu Asp Ser Val Thr Asn Lys Asp
 355 360 365

Ser Thr Leu Pro Pro Ile Pro His Leu His Ser Leu Leu Ser Asp Asp
 370 375 380

Val Glu Pro Tyr Pro Glu Val Asp Ile Phe Arg Leu Ile Arg Thr Ser
 385 390 395 400

Tyr Glu Lys Phe Gly Thr Ile Arg Ala Asp Leu Ile Glu Gln Met Arg
 405 410 415

Phe Lys Gln Arg Leu Lys Val Ile Gln Thr Leu Glu Asp Thr Thr Lys
 420 425 430

Arg Asn Val Val Arg Thr Ile Val Thr Glu Thr Ser Phe Thr Ile Asp
 435 440 445

Glu Leu Glu Glu Leu Tyr Ala Leu Phe Lys Ala Glu His Leu Thr Ser
 450 455 460

Cys Tyr Trp Gly Gly Ser Ser Asn Ala Leu Asp Arg His Asp Pro Ser
 465 470 475 480

Leu Pro Tyr Leu Glu Gln Tyr Arg Ile Asp Phe Glu Gln Phe Lys Gly
 485 490 495

Met Phe Ala Leu Leu Phe Pro Trp Ala Cys Gly Thr His Ser Asp Val
 500 505 510

Leu Ala Ser Arg Leu Phe Gln Leu Leu Asp Glu Asn Gly Asp Ser Leu
 515 520 525

Ile Asn Phe Arg Glu Phe Val Ser Gly Leu Ser Ala Ala Cys His Gly
 530 535 540

Asp Leu Thr Glu Lys Leu Lys Leu Leu Tyr Lys Met His Val Leu Pro
 545 550 555 560

Glu Pro Ser Ser Asp Gln Asp Glu Pro Asp Ser Ala Phe Glu Ala Thr
 565 570 575

Gln Tyr Phe Phe Glu Asp Ile Thr Pro Glu Cys Thr His Val Val Gly
 580 585 590
 Leu Asp Ser Arg Ser Lys Gln Gly Ala Asp Asp Gly Phe Val Thr Val
 595 600 605
 Ser Leu Lys Pro Asp Lys Gly Lys Arg Ala Asn Ser Gln Glu Asn Arg
 610 615 620
 Asn Tyr Leu Arg Leu Trp Thr Pro Glu Asn Lys Ser Lys Ser Lys Asn
 625 630 635 640
 Ala Lys Asp Leu Pro Lys Leu Asn Gln Gly Gln Phe Ile Glu Leu Cys
 645 650 655
 Lys Thr Met Tyr Asn Met Phe Ser Glu Asp Pro Asn Glu Gln Glu Leu
 660 665 670
 Tyr His Ala Thr Ala Ala Val Thr Ser Leu Leu Leu Glu Ile Gly Glu
 675 680 685
 Val Gly Lys Leu Phe Val Ala Gln Pro Ala Lys Glu Gly Gly Ser Gly
 690 695 700
 Gly Ser Gly Pro Ser Cys His Gln Gly Ile Pro Gly Val Leu Phe Pro
 705 710 715 720
 Lys Lys Gly Pro Gly Gln Pro Tyr Val Val Glu Ser Val Glu Pro Leu
 725 730 735
 Pro Ala Ser Leu Ala Pro Asp Ser Glu Glu His Ser Leu Gly Gly Gln
 740 745 750
 Met Glu Asp Ile Lys Leu Glu Asp Ser Ser Pro Arg Asp Asn Gly Ala
 755 760 765
 Cys Ser Ser Met Leu Ile Ser Asp Asp Asp Thr Lys Asp Asp Ser Ser
 770 775 780
 Met Ser Ser Tyr Ser Val Leu Ser Ala Gly Ser His Glu Glu Asp Lys
 785 790 795 800
 Leu His Cys Glu Glu Ile Gly Glu Asp Thr Val Leu Val Arg Ser Gly
 805 810 815
 Gln Gly Thr Ala Ala Leu Pro Arg Ser Thr Ser Leu Asp Arg Asp Trp
 820 825 830
 Ala Ile Thr Phe Glu Gln Phe Leu Ala Ser Leu Leu Thr Glu Pro Ala
 835 840 845
 Leu Val Lys Tyr Phe Asp Lys Pro Val Cys Met Met Ala Arg Ile Thr
 850 855 860
 Ser Ala Lys Asn Ile Arg Met Met Gly Lys Pro Leu Thr Ser Ala Ser
 865 870 875 880
 Asp Tyr Glu Ile Ser Ala Met Ser Gly
 885

tataatcctc aaatatactg taccattta gatattttt aaacagatta atttgagaa 2880
gttttattca ttacctaatt ctgtggcaaa aatgggtgcct ctgatgtgt gatatagtat 2940
tgtcagtgtg tacatatata aaacctgtgt aaacctctgt ccttatgaac cataacaaat 3000
gtagctttt aaagtccatt gtattgttt ttctttcaat aaaagagtat aattaattgg 3060
ttgttttga 3070

<210> 13
<211> 190
<212> PRT
<213> Homo sapiens

<220>
<223> BCU7, EST, type III membrane protein

<220>
<221> MOD_RES
<222> (87)
<223> Xaa = any amino acid

<400> 13
Tyr Phe Ile Phe Gln Ala Lys Ala Asn Glu Ser Leu Leu Val Ser Thr
1 5 10 15

Gln Pro Ala Ile Phe Phe Thr Ala Cys Asn Asn Gly Ala Arg Ile Ala
20 25 30

Ile Ser Tyr Cys Asn Cys Gln Arg Gln Lys Trp Ser Gly Tyr Lys Leu
35 40 45

Phe His Lys Ser Ser Phe Lys Leu Ser Val Leu Arg Phe Ser Cys Gly
50 55 60

Lys Val Ser Phe Lys Lys Val Ile Gly Ile His Ile Pro His His
65 70 75 80

Arg Ser Ser Leu Trp Cys Xaa Phe Phe Tyr Met Thr Ser Arg Lys Ile
85 90 95

Leu Ile Phe Ser Gln Tyr Arg Phe Trp Gly Phe His Ile Ile Lys Arg
100 105 110

Leu Lys Asn Tyr Asn Phe Arg Ile Lys Leu Met Asp Phe Ile Ile Glu
115 120 125

Leu Ser Val Ser Cys Val Asp Thr Val Leu Met Phe Leu Val Met Thr
130 135 140

Asp Lys Phe Ala Gln Lys Met Trp Met Lys Pro Leu Leu Leu Leu
145 150 155 160

Leu Leu Leu Phe Ser Cys Leu Ser Ile Ile Pro Ser Val Ala His
165 170 175

His Ala Ala Glu Leu Pro Tyr Lys Phe His Leu Ala Ala Pro
180 185 190

```

<210> 14
<211> 4421
<212> DNA
<213> Homo sapiens

<220>
<223> BFA1, calsyntenin-2 type I membrane protein

<220>
<221> CDS
<222> (11)..(2878)
<223> BFA1

<400> 14
tgctgcagg atgctgcctg ggcggctgtc ctgggtgccg ctcctgctgg cgctggcg 60
ggggagccgc agcggcggtg gcggggacag ccggcagcgc cgcctcctcg cggctaaagt 120
caataagcac aagccatggc tcgagacttc atatcatggc gtcataactg agaacaatga 180
cacagtcat ttggaccac cactggtagc cctggataaa gatgcaccgg ttcctttgc 240
aggggaaatc tgtcggttca agatccatgg ccaggagctg ccctttgagg ctgtgggtgc 300
caacaagaca tcaggagagg gccggctccg tgccaagagc cccattgact gtgagttgca 360
gaaggagtac acattcatca tccaggccta tgactgtggc gctggggccc acgagacagc 420
ctggaaaaag tcacacaagg ccgtggtcca tatacagggtg aaggatgtca acgagttgc 480
tcccaccttc aaagagccag cctacaaggc tggatgtacg gagggcaaga tctatgacag 540
cattctgcag gtggaggcca ttgacgagga ctgtccccca cagtagcc agatctgcaa 600
ctatgaaatc gtcaccacag atgtgcctt tgcacatcgac agaaaatggca acatcaggaa 660
caactgagaag ctgagctatg acaaacaaca ccagtatgag atcctgtga ccgcctacga 720
ctgtggacag aagcccgctg ctcaggacac cctgggtgcag gtggatgtga agccagttt 780
caagcctggc tggcaagact ggaccaagag gattgagttc cagcctggct ccgggagcat 840
gccctgttc cccagcatcc acctggagac gtgcgtatggc gccgtgtctt ccctccagat 900
cgtcacagag ctgcagacta attacattgg gaagggttgt gaccggaga cctactctga 960
gaaaatccctt cagaagttat gtggagcctc ctctggcatc attgacctct tgccatcccc 1020
tagcgctgcc accaacttggc ctgcaggact gctgggtggac agcagtgaga tgatcttcaa 1080
gtttgacggc aggcagggtg cccaaatccc cgatgggatt gtgcccaga acctgaccga 1140
tcagttcacc atcaccatgt ggatgaaaca cggcccccagc cttggatgtga gagccgagaa 1200
ggaaaccatc ctctgcaact cagacaaaac cgaatgaac cggcatcaat atgcctgt 1260
tgtgcacaac tggccctcg tctttctt gcgaaaggac ttcgaccagg ctgacaccc 1320
tcgccccggc gagttccact ggaagctggc tcagatttgt gacaaaggt ggcactacta 1380
tgtcatcaat gtggagttc ctgtggtaac cttatacatg gatggagcaa catatgaacc 1440
atacctggtg accaactgact gcccattca tccatctcac atagccatgc aactcacagt 1500
cggcgcttgt tggcaaggag gagaagtcac caaaccacag tttgctcagt tctttcatgg 1560
aagcctggcc agtctcacca tccggccctgg cccaaatggaa agccagaagg tgatctcctg 1620
cctgcaggcc tgcaaggaag ggctggacat taattccctt gaaagcctt gccaaggaat 1680
aaagtatcac ttcaaccctt cgcagtccat cctgggtgtatc gaaggtgacg acattggaa 1740
cattaaccgt gctctccaga aagtctctt catcaactcc aggcagtcc caacggcggg 1800
tgtgcggcgc ctcaaaatgt cctccaaatg ccagtgtttt gggaaagacg tatgcacatc 1860
tatcccttagt gtagatgcct atgtgtatgtt cttccaggcc atcgagcccc ggatcaccc 1920
ccggggcaca gaccacttgc ggagacctgc tgcccagttt gaaagtgcac ggggagtgac 1980
cctctccctt gatatcaaga ttgtggacac cttcgccaaa accgaagccc cccgggacgt 2040
aaaaaccaca gacccaaat cagaagtctt agaggaaatg cttcataact tagattctg 2100
tgacatttt gtagatggag gggacttggc cccaaaggcag gtagtgcgttgg agctcaacca 2160
cagttagctc caccaacgac acctggatgc cactaattct actgcaggct actccatcta 2220
cggtgtggc tccatggac gctatggac ggtgtctatc cacatccgt accgcaactg 2280
gcgtccggc tcccttgagg cccggcggtt ccggattaaag tgctcagaac tcaatggcg 2340
ctacactagc aatgagttca acttggaggt cagcatcctt catgaagacc aagtctcaga 2400
taaggagcat gtcaatcatc tgattgtgc gcctccctt ctccagtcgt tccatcatcc 2460
tgagtcccg agtagcatcc agcacaggcc agtgggtccca agcattgcca cagtggatcat 2520
catcatctcc gtgtgcaccc ttgtgtttgt cgtggccatg ggtgtgtacc ggggtccggat 2580
cgccccaccag cacttcatcc aggagactga ggctgccaag gaatctgaga tggactggga 2640
cgattctgcg ctgactatca cagtcaaccc catggagaaa catgaaggac cagggcatgg 2700
ggaagatgag actgaggggag aagaggagga agaagccgag gaagaaatga gctccagcag 2760
tggctctgac gacagcgaag aggaggagga ggaggaaggg atggcagagc gcaagacatgg 2820

```

gcagaatgga gccaggcaag cccagctgga gtgggatgac tccaccctcc cctactagt 2880
 cccaggggtc tgctgcctgg cccacatgtc cctttgtaa accctgaccc agtgtatgcc 2940
 catgtctatc atacctcacc tctgatgtct gtgacatgtc tggaaaggcc ttctccagct 3000
 tcctggagcc cacccttaa gccttggca ctcccgtgt ttcatccatg gggaaagttcc 3060
 aagaagccca gcatggccat cagtggaggac ttcagggttag actttgtctt gtagcctcca 3120
 ctctgcctt aagttccccca gcatecctgac tacccgtgtc cagagttgc ctttgtttt 3180
 tcctgcagg aagaaggccc acctttgtgt cactcacctc cccaggctca gagtccccaa 3240
 ggccctgggg ttccaactca ctgtgcgtct cttccacaca gaccaggtagg ttctccatag 3300
 ctgactccag gttgcttcat acaaggagggg tggtaact tcacacacgt aaggtcttag 3360
 tgcttaacag tttaaaggaa agtccttgc gaggcagaac taagtttaca gggaaaggtt 3420
 cacacattct ctctctctt ctctctgt ctatctagtt cccagcttg gagagcctt 3480
 ccccttgctt ctttctgagg ccatataagc ttataagaaa agtccccaaac caagaatagg 3540
 tccttgccca caagcagggt ctgatcccc atcagagcta tctgagctg cctgtctggg 3600
 cacctgctgc aaccatgcag ctaccctgcc aggggactc agcaaacaga accacaggc 3660
 ccaggaggca ttcccacacag gcaactgcccc aggacaaacac aacaaggaca gtcacaacaa 3720
 ggacaacaag gacacaacac aacacacaac aaggacagtc acaacaagcc tagagccaga 3780
 aagcagatgg aaatgcta at gaggtcaaac gttaggcttca tgggtgggtgg agtgggggtg 3840
 gctgggctcc cccaggacag aggggacccct gaggttggca aggcttcac cactcagcc 3900
 tatggccctt tatctccttat cttccctctt gaaaaatac acgcttctg catgttattag 3960
 aaacgcacga gctccaccaa gtctacaatg aaagtttggaa atttaactgc aaggaattag 4020
 aagcatattt gcaatcattt cagttcttc tttcttctgc tcataaaaagg aggaacactt 4080
 tagatagagg gcaaataatct ctgaaaacctt aatttcttcc ttttttgc aaggaaatct 4140
 tttccatctt catcctaaca tgcacaacctt gtgaagagaa ttgtttctat agtaactgg 4200
 ctgtgatctt ttgtggccaa gagaatagca ggcaagaattt agggccttga cagaatttcc 4260
 acgaagctctt gagaacatgt ttgtttcgaa tgtctgattt ctctttgtca tcaatgtgt 4320
 tgctctgtcc ccattttca ctccttca agtcacacc aattggtttgc acaggcac 4380
 agagctggtc cctagttaa tggcattttt gttaaaaaaaaa a 4421

<210> 15
 <211> 955
 <212> PRT
 <213> Homo sapiens

<220>
 <223> BFA1, calyptenin-2 type I membrane protein

<400>	15															
Met	Leu	Pro	Gly	Arg	Leu	Cys	Trp	Val	Pro	Leu	Leu	Leu	Ala	Leu	Gly	
1														15		
Val	Gly	Ser	Gly	Ser	Gly	Gly	Gly		Asp	Ser	Arg	Gln	Arg	Arg	Leu	
	20													30		
Leu	Ala	Ala	Lys	Val	Asn	Lys	His	Lys	Pro	Trp	Ile	Glu	Thr	Ser	Tyr	
														45		
His	Gly	Val	Ile	Thr	Glu	Asn	Asn	Asp	Thr	Val	Ile	Leu	Asp	Pro	Pro	
														50	60	
Leu	Val	Ala	Leu	Asp	Lys	Asp	Ala	Pro	Val	Pro	Phe	Ala	Gly	Glu	Ile	
														65	75	80
Cys	Ala	Phe	Lys	Ile	His	Gly	Gln	Glu	Leu	Pro	Phe	Glu	Ala	Val	Val	
														85	90	95
Leu	Asn	Lys	Thr	Ser	Gly	Glu	Gly	Arg	Leu	Arg	Ala	Lys	Ser	Pro	Ile	
														100	105	110
Asp	Cys	Glu	Leu	Gln	Lys	Glu	Tyr	Thr	Phe	Ile	Ile	Gln	Ala	Tyr	Asp	
														115	120	125

Cys Gly Ala Gly Pro His Glu Thr Ala Trp Lys Lys Ser His Lys Ala
 130 135 140

Val Val His Ile Gln Val Lys Asp Val Asn Glu Phe Ala Pro Thr Phe
 145 150 155 160

Lys Glu Pro Ala Tyr Lys Ala Val Val Thr Glu Gly Lys Ile Tyr Asp
 165 170 175

Ser Ile Leu Gln Val Glu Ala Ile Asp Glu Asp Cys Ser Pro Gln Tyr
 180 185 190

Ser Gln Ile Cys Asn Tyr Glu Ile Val Thr Thr Asp Val Pro Phe Ala
 195 200 205

Ile Asp Arg Asn Gly Asn Ile Arg Asn Thr Glu Lys Leu Ser Tyr Asp
 210 215 220

Lys Gln His Gln Tyr Glu Ile Leu Val Thr Ala Tyr Asp Cys Gly Gln
 225 230 235 240

Lys Pro Ala Ala Gln Asp Thr Leu Val Gln Val Asp Val Lys Pro Val
 245 250 255

Cys Lys Pro Gly Trp Gln Asp Trp Thr Lys Arg Ile Glu Tyr Gln Pro
 260 265 270

Gly Ser Gly Ser Met Pro Leu Phe Pro Ser Ile His Leu Glu Thr Cys
 275 280 285

Asp Gly Ala Val Ser Ser Leu Gln Ile Val Thr Glu Leu Gln Thr Asn
 290 295 300

Tyr Ile Gly Lys Gly Cys Asp Arg Glu Thr Tyr Ser Glu Lys Ser Leu
 305 310 315 320

Gln Lys Leu Cys Gly Ala Ser Ser Gly Ile Ile Asp Leu Leu Pro Ser
 325 330 335

Pro Ser Ala Ala Thr Asn Trp Thr Ala Gly Leu Leu Val Asp Ser Ser
 340 345 350

Glu Met Ile Phe Lys Phe Asp Gly Arg Gln Gly Ala Lys Ile Pro Asp
 355 360 365

Gly Ile Val Pro Lys Asn Leu Thr Asp Gln Phe Thr Ile Thr Met Trp
 370 375 380

Met Lys His Gly Pro Ser Pro Gly Val Arg Ala Glu Lys Glu Thr Ile
 385 390 395 400

Leu Cys Asn Ser Asp Lys Thr Glu Met Asn Arg His His Tyr Ala Leu
 405 410 415

Tyr Val His Asn Cys Arg Leu Val Phe Leu Leu Arg Lys Asp Phe Asp
 420 425 430

Gln Ala Asp Thr Phe Arg Pro Ala Glu Phe His Trp Lys Leu Asp Gln
 435 440 445

Ile Cys Asp Lys Glu Trp His Tyr Tyr Val Ile Asn Val Glu Phe Pro
 450 455 460
 Val Val Thr Leu Tyr Met Asp Gly Ala Thr Tyr Glu Pro Tyr Leu Val
 465 470 475 480
 Thr Asn Asp Trp Pro Ile His Pro Ser His Ile Ala Met Gln Leu Thr
 485 490 495
 Val Gly Ala Cys Trp Gln Gly Gly Glu Val Thr Lys Pro Gln Phe Ala
 500 505 510
 Gln Phe Phe His Gly Ser Leu Ala Ser Leu Thr Ile Arg Pro Gly Lys
 515 520 525
 Met Glu Ser Gln Lys Val Ile Ser Cys Leu Gln Ala Cys Lys Glu Gly
 530 535 540
 Leu Asp Ile Asn Ser Leu Glu Ser Leu Gly Gln Gly Ile Lys Tyr His
 545 550 555 560
 Phe Asn Pro Ser Gln Ser Ile Leu Val Met Glu Gly Asp Asp Ile Gly
 565 570 575
 Asn Ile Asn Arg Ala Leu Gln Lys Val Ser Tyr Ile Asn Ser Arg Gln
 580 585 590
 Phe Pro Thr Ala Gly Val Arg Arg Leu Lys Val Ser Ser Lys Val Gln
 595 600 605
 Cys Phe Gly Glu Asp Val Cys Ile Ser Ile Pro Glu Val Asp Ala Tyr
 610 615 620
 Val Met Val Leu Gln Ala Ile Glu Pro Arg Ile Thr Leu Arg Gly Thr
 625 630 635 640
 Asp His Phe Trp Arg Pro Ala Ala Gln Phe Glu Ser Ala Arg Gly Val
 645 650 655
 Thr Leu Phe Pro Asp Ile Lys Ile Val Ser Thr Phe Ala Lys Thr Glu
 660 665 670
 Ala Pro Gly Asp Val Lys Thr Thr Asp Pro Lys Ser Glu Val Leu Glu
 675 680 685
 Glu Met Leu His Asn Leu Asp Phe Cys Asp Ile Leu Val Ile Gly Gly
 690 695 700
 Asp Leu Asp Pro Arg Gln Glu Cys Leu Glu Leu Asn His Ser Glu Leu
 705 710 715 720
 His Gln Arg His Leu Asp Ala Thr Asn Ser Thr Ala Gly Tyr Ser Ile
 725 730 735
 Tyr Gly Val Gly Ser Met Ser Arg Tyr Glu Gln Val Leu His His Ile
 740 745 750
 Arg Tyr Arg Asn Trp Arg Pro Ala Ser Leu Glu Ala Arg Arg Phe Arg
 755 760 765

Ile Lys Cys Ser Glu Leu Asn Gly Arg Tyr Thr Ser Asn Glu Phe Asn
 770 775 780
 Leu Glu Val Ser Ile Leu His Glu Asp Gln Val Ser Asp Lys Glu His
 785 790 795 800
 Val Asn His Leu Ile Val Gln Pro Pro Phe Leu Gln Ser Val His His
 805 810 815
 Pro Glu Ser Arg Ser Ser Ile Gln His Ser Ser Val Val Pro Ser Ile
 820 825 830
 Ala Thr Val Val Ile Ile Ser Val Cys Met Leu Val Phe Val Val
 835 840 845
 Ala Met Gly Val Tyr Arg Val Arg Ile Ala His Gln His Phe Ile Gln
 850 855 860
 Glu Thr Glu Ala Ala Lys Glu Ser Glu Met Asp Trp Asp Asp Ser Ala
 865 870 875 880
 Leu Thr Ile Thr Val Asn Pro Met Glu Lys His Glu Gly Pro Gly His
 885 890 895
 Gly Glu Asp Glu Thr Glu Gly Glu Glu Glu Glu Ala Glu Glu Glu
 900 905 910
 Met Ser Ser Ser Ser Gly Ser Asp Asp Ser Glu Glu Glu Glu Glu Glu
 915 920 925
 Glu Gly Met Gly Arg Gly Arg His Gly Gln Asn Gly Ala Arg Gln Ala
 930 935 940
 Gln Leu Glu Trp Asp Asp Ser Thr Leu Pro Tyr
 945 950 955

<210> 16
 <211> 2616
 <212> DNA
 <213> Homo sapiens

 <220>
 <223> BFG7, EST, type III membrane protein

 <220>
 <221> CDS
 <222> (1)..(906)
 <223> BFG7

 <400> 16
 cgggtcgacc cacgcgtccg gggagaaagg atggccggcc tggcggcgcg gttggtcctg 60
 ctagctgggg cagcggcgct ggcgagcggc tcccagggcg accgtgagcc ggtgtaccgc 120
 gactgcgtac tgcaagtgcga agagcagaac tgctctgggg gcgctctgaa tcacttccgc 180
 tccccccagc caatctacat gagtctagca ggctggacct gtcgggacga ctgttaagtat 240
 gagtgttatgt gggtcaccgt tgggctctac ctccaggaag gtcacaaaagt gcctcagttc 300
 catggcaagt ggcccttctc ccgggttctg ttctttcaag agccggcatc ggccgtggcc 360
 tcgtttctca atggcctggc cagcctgttg atgtcttgcc gctaccgcac cttcgtgcca 420
 gcctccccc ccatgtacca cacctgttg gccttcgcct gggtgtccct caatgcattgg 480
 ttctggtcca cagtyttcca caccaggac actgacaccta cagagaaaat ggactacttc 540
 tgtgcctcca ctgtcatacct acactcaatc tacctgtgct gcgtcagcct catccgccttc 600

gactatggct acaaacctggc ggccaaacgtg gctattggcc tggtaacgt ggtgtggtgg 660
 ctggcctgggt gcctgtggaa ccagcggcgg ctgcctcacg tgcgcaagt gctgggtgg 720
 gtcttgcgtc tgcaggggct gtcctgcgtc gagctgtttg acttcccacc gctcttctgg 780
 gtcctggatg cccatgccat ctggcacatc agcaccatcc ctgtccacgt cctcttttc 840
 agcttctgg aagatgacag cctgtacctg ctgaaggaat cagaggacaa gtcagactg 900
 gactgaagac cttggagcga gtctgccccca gtggggatcc tgccccccgc ctgctggcc 960
 cccttctccc ctcaaccctt gagatgatcc tcttttca acttcttgaa ctggacatg 1020
 aaggatgtgg gcccagaatac atgtggccag cccacccccc gttggccctc accagcctt 1080
 gagtctgttc tagggaaaggc ctcccagcat ctgggactcg agagtggca gcccctctac 1140
 ctccctggagc tgaactgggg tggaaacttag tggctcttca gcttacccgg gaggacagct 1200
 gctgtttcc tccccatcag cctccccc acatccccag ctgcctgggt gggatcagg gggtcccctt 1260
 gccctctgtc tacctgggag accagggacc acaggcctt ggtgctggat gttgtttctt 1320
 ctgttaccac cccccaccc cctccaggac accacttagt tgaggacca agtgcgtggg 1380
 tgccagcca agttcacgg cgattctccc catggatct tgaggacca agtgcgtggg 1440
 atgggaagg agttcaccc tgaccrttgc cctagccagg ttcccaggag gcctcaccat 1500
 actcccttc agggccaggg ctccagcaag cccagggcaa ggatctgtg ctgctgtctg 1560
 gttgagagcc tgccaccgtg tgcggggagt gtggggcagg ctgagtgcatt aggtgacagg 1620
 gccgtgagca tgggcctggg tgggtgtgag ctcaaggact aggtgcgcag tggagacg 1680
 ggtgttgtcg gggaaagaggt gtggcttcaa agtgttgtgt gtgcaggggg tkgggtgttt 1740
 aagcgtgggt tagggaaacg tgggtgcgcg tgcgggtggg catgtgagat gagtgactgc 1800
 cggtaatgt gtccacagtt gagagggtgg agcaggatga gggaaatctg tcaccatcaa 1860
 taatcaactt tggagcgcctt cttggcccaa gacgccacct gggcgacag caggagctt 1920
 ccatggccag gctgcctgtc tgcattgtcc ctgtctgggt ccccttgcc cgcctctgc 1980
 aaacctcaca gggccccac acaacagtgc cctccagaag cagccctcg gaggcagagg 2040
 aaggaaaatg gggatggctg gggctcttc catcctcatt ttcccttgc cttcgcatgg 2100
 ctggccttcc cttccaaaaac ctccattttcc ctgtgcgcag ccccttgcc atagcctgat 2160
 tttgggagg aggaaggggc gatttgaggg agaaggggag aaagcttatg gctgggtctg 2220
 gtttcttccc ttcccagagg gtcttactgt tccagggtgg ccccaggca ggcaggggcc 2280
 acactatgcc tgcgccttgg taaagggtac ccctgcccatt taccagcagc cctggcatgt 2340
 tccctggccca caggaataga atggagggag ctccagaaac ttccatcccc aaaggcagtc 2400
 tccgtggttg aagcagactg gattttgtct ctggccctga ccccttgcc ctctttgagg 2460
 gagggggagct atgctaggac tccaacctca gggactcggg tggcctgcgc tagttcttt 2520
 tgatactgaa aacttttaag gtggggaggt ggcacaggat gtgcttaata aatcaattcc 2580
 aagcctcaaa aaaaaaaaaa aaaaaaaaaa aaaaaaa 2616

<210> 17
 <211> 330
 <212> PRT
 <213> Homo sapiens

<220>
 <223> BFG7, EST, type III membrane protein

<400> 17
 Arg Val Asp Pro Arg Val Arg Gly Glu Arg Met Ala Gly Leu Ala Ala
 1 5 10 15

Arg Leu Val Leu Leu Ala Gly Ala Ala Leu Ala Ser Gly Ser Gln
 20 25 30

Gly Asp Arg Glu Pro Val Tyr Arg Asp Cys Val Leu Gln Cys Glu Glu
 35 40 45

Gln Asn Cys Ser Gly Gly Ala Leu Asn His Phe Arg Ser Arg Gln Pro
 50 55 60

Ile Tyr Met Ser Leu Ala Gly Trp Thr Cys Arg Asp Asp Cys Lys Tyr
 65 70 75 80

Glu Cys Met Trp Val Thr Val Gly Leu Tyr Leu Gln Glu Gly His Lys
 85 90 95

 Val Pro Gln Phe His Gly Lys Trp Pro Phe Ser Arg Phe Leu Phe Phe
 100 105 110

 Gln Glu Pro Ala Ser Ala Val Ala Ser Phe Leu Asn Gly Leu Ala Ser
 115 120 125

 Leu Val Met Leu Cys Arg Tyr Arg Thr Phe Val Pro Ala Ser Ser Pro
 130 135 140

 Met Tyr His Thr Cys Val Ala Phe Ala Trp Val Ser Leu Asn Ala Trp
 145 150 155 160

 Phe Trp Ser Thr Val Phe His Thr Arg Asp Thr Asp Leu Thr Glu Lys
 165 170 175

 Met Asp Tyr Phe Cys Ala Ser Thr Val Ile Leu His Ser Ile Tyr Leu
 180 185 190

 Cys Cys Val Arg Thr Val Gly Leu Gln His Pro Ala Val Val Ser Ala
 195 200 205

 Phe Arg Ala Leu Leu Leu Met Leu Thr Val His Val Ser Tyr Leu
 210 215 220

 Ser Leu Ile Arg Phe Asp Tyr Gly Tyr Asn Leu Val Ala Asn Val Ala
 225 230 235 240

 Ile Gly Leu Val Asn Val Val Trp Trp Leu Ala Trp Cys Leu Trp Asn
 245 250 255

 Gln Arg Arg Leu Pro His Val Arg Lys Cys Val Val Val Val Leu Leu
 260 265 270

 Leu Gln Gly Leu Ser Leu Leu Glu Leu Leu Asp Phe Pro Pro Leu Phe
 275 280 285

 Trp Val Leu Asp Ala His Ala Ile Trp His Ile Ser Thr Ile Pro Val
 290 295 300

 His Val Leu Phe Phe Ser Phe Leu Glu Asp Asp Ser Leu Tyr Leu Leu
 305 310 315 320

 Lys Glu Ser Glu Asp Lys Phe Lys Leu Asp
 325 330

<210> 18
 <211> 1284
 <212> DNA
 <213> Homo sapiens

 <220>
 <223> BCN4, ESTs, secreted protein

 <220>
 <221> CDS
 <222> (143)..(874)
 <223> BCN4

<400> 18

gggaggggaga gaggcgcgcg ggtgaaaggc gcattgatgc agcctgcggc ggcctcgag 60
cgccggcgag ccagacgctg accacgttcc tctctcggt ctccctcgcc tccagctccg 120
cgctgcccgg cagccggag ccatgcgacc ccagggcccc gccgcctccc cgca gcggt 180
ccgcggcctc ctgctgctcc tgctgctgca gtcgcccggc cgtcgagcg cctctgagat 240
cccccaagggg aagcaaaagg cgcagctccg gcagaggag gtggtgacc tgataatgg 300
aatgtgctta caagggccag caggagtgc tggtcgagac gggagccctg gggccaatgg 360
cattccgggt acacctggga tcccaggctg ggatggattt aaaggagaaa agggggaaatg 420
tctgagggaa agcttgagg agtcctggac acccaactac aagcagtgtt catggagttc 480
attgaattat ggcata gata ttggaaaaat tgccgagtgt acatttacaa agatgcgttc 540
aaatagtgc ttaagagttt tggtcagttt ctcacttcgg ctaaaatgca gaaatgcattg 600
ctgtcagcgt tggatttca cattcaatgg agctgaatgt tcaggaccc ttcccattga 660
actataatt tattggacc aaggaagccc tgaatgaat tcaacaatta atattcatcg 720
cacttcttct gtggaggac tttgtgaagg aattgggtct ggattagtgg atgttgcata 780
ctgggttggc acttggtag attacccaaa aggagatgt tctactggat ggaattcagt 840
ttctcgatc attattgaag aactacccaaa ataaatgctt taattttcat ttgctaccc 900
ttttttatt atgccttggc atgggtcaact taaatgacat tttaaataag ttatgtata 960
catctgaatg aaaagcaaag ctaaatatgt ttacagacca aagtgtgatt tcacactgtt 1020
tttaaatcta gcattattca ttttgcttca atcaaaatgt gtttcaatat ttttttagt 1080
tggtagaat actttttca tagtcacatt ctctcaaccc ataatttggc atattgttgt 1140
ggctttttgt tttttcttca agtata gcat ttttaaaaaa atataaaaagc taccatctt 1200
tgtacaattt gttaatgtta agaattttt ttatatctgt taaataaaaaa ttatccaa 1260
caaccttaaaa aaaaaaaaaa aaaa 1284

<210> 19

<211> 243

<212> PRT

<213> Homo sapiens

<220>

<223> BCN4, ESTs, secreted protein

<400> 19

Met Arg Pro Gln Gly Pro Ala Ala Ser Pro Gln Arg Leu Arg Gly Leu
1 5 10 15

Leu Leu Leu Leu Leu Gln Leu Pro Ala Pro Ser Ser Ala Ser Glu
20 25 30

Ile Pro Lys Gly Lys Gln Lys Ala Gln Leu Arg Gln Arg Glu Val Val
35 40 45

Asp Leu Tyr Asn Gly Met Cys Leu Gln Gly Pro Ala Gly Val Pro Gly
50 55 60

Arg Asp Gly Ser Pro Gly Ala Asn Gly Ile Pro Gly Thr Pro Gly Ile
65 70 75 80

Pro Gly Arg Asp Gly Phe Lys Gly Glu Lys Gly Glu Cys Leu Arg Glu
85 90 95

Ser Phe Glu Glu Ser Trp Thr Pro Asn Tyr Lys Gln Cys Ser Trp Ser
100 105 110

Ser Leu Asn Tyr Gly Ile Asp Leu Gly Lys Ile Ala Glu Cys Thr Phe
115 120 125

Thr Lys Met Arg Ser Asn Ser Ala Leu Arg Val Leu Phe Ser Gly Ser
130 135 140

Leu Arg Leu Lys Cys Arg Asn Ala Cys Cys Gln Arg Trp Tyr Phe Thr
 145 150 155 160

Phe Asn Gly Ala Glu Cys Ser Gly Pro Leu Pro Ile Glu Ala Ile Ile
 165 170 175

Tyr Leu Asp Gln Gly Ser Pro Glu Met Asn Ser Thr Ile Asn Ile His
 180 185 190

Arg Thr Ser Ser Val Glu Gly Leu Cys Glu Gly Ile Gly Ala Gly Leu
 195 200 205

Val Asp Val Ala Ile Trp Val Gly Thr Cys Ser Asp Tyr Pro Lys Gly
 210 215 220

Asp Ala Ser Thr Gly Trp Asn Ser Val Ser Arg Ile Ile Ile Glu Glu
 225 230 235 240

Leu Pro Lys

<210> 20
 <211> 243
 <212> PRT
 <213> Mus sp.

<220>
 <223> mouse BCN4, ESTs, mouse orthologue of human BCN4

<220>
 <221> MOD_RES
 <222> (1)..(243)
 <223> Xaa = any amino acid

<400> 20
 Xaa Xaa Xaa Ala Ala Pro Pro Gln Leu Leu Leu Gly Leu Phe Leu
 1 5 10 15

Val Leu Leu Leu Leu Leu Gln Leu Ser Ala Pro Ser Ser Ala Ser Glu
 20 25 30

Asn Pro Lys Val Lys Gln Lys Ala Leu Ile Arg Gln Arg Glu Val Val
 35 40 45

Asp Leu Tyr Asn Gly Met Cys Leu Gln Gly Pro Ala Gly Val Pro Gly
 50 55 60

Arg Asp Gly Ser Pro Gly Ala Asn Gly Ile Pro Gly Thr Pro Gly Ile
 65 70 75 80

Pro Cys Gln Asp Gly Phe Lys Gly Glu Lys Gly Glu Cys Leu Arg Glu
 85 90 95

Ser Phe Glu Glu Ser Trp Thr Pro Asn Tyr Lys Gln Cys Ser Trp Ser
 100 105 110

Ser Leu Asn Tyr Gly Ile Asp Leu Gly Lys Ile Ala Glu Cys Thr Phe
 115 120 125

Thr Lys Met Arg Ser Asn Ser Ala Leu Arg Val Leu Phe Ser Gly Ser
 130 135 140

Leu Arg Leu Lys Cys Arg Asn Ala Cys Cys Gln Arg Trp Tyr Phe Thr
145 150 155 160

Phe Asn Gly Ala Glu Cys Ser Gly Pro Pro Pro Ile Glu Ala Ile Xaa
165 170 175

Xaa
180 185 190

Xaa
195 200 205

Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Ser Asp Tyr Pro Lys Gly
210 215 220

Asp Ala Tyr Thr Gly Trp Asp Ser Val Ser Arg Ile Ile Ile Glu Glu
225 230 235 240

Leu Pro Lys