Lezione 3 – Politiche di schedulazione

Sistemi Operativi I

Modulo 3 - Gestione del processore

Unità didattica 3 - Schedulazione

Vincenzo Piuri

Università degli Studi di Milano - SSRI - CDL ONLINE

Sommario

- Politiche e algoritmi di schedulazione
 - First Come, First Served
 - Shortest Job First
 - Priorità
 - Round Robin
 - Coda a più livelli
 - Coda a più livelli con retroazione
- Schedulazione in sistemi multiprocessore

First-Come, First-Served: FCFS (1)

Primo Arrivato, Primo Servito

Non pre-emptive

First-Come, First-Served: FCFS (2)

- Processi CPU-bound possono monopolizzare processore
- Tempo di attesa può essere alto

 $\begin{array}{ccc} \underline{Processo} & P_1 & P_2 & P_3 \\ \underline{Tempo \ di \ elaborazione} & 24 & 3 & 3 \end{array}$

Ordine di arrivo: P_1 , P_2 , P_3

Tempo di attesa medio: 17

Tempo di attesa medio: 3

Shortest-Job-First: SJF (1)

Processo Più Breve Prima

- **Pre-emptive**: processo che diventa pronto interrompe processo in esecuzione richiedendo schedulazione
- Non pre-emptive: processo che diventa pronto non interrompe processo in esecuzione richiedendo schedulazione

Shortest-Job-First: SJF (2)

 $\begin{array}{ccccc} \underline{\text{Processo}} & P_1 & P_2 & P_3 & P_4 \\ \underline{\text{Tempo di arrivo}} & 0 & 2 & 4 & 5 \\ \underline{\text{Tempo di elaborazione}} & 7 & 4 & 1 & 4 \end{array}$

· Non pre-emptive

• Pre-emptive P_1 P_2 P_3 P_2 P_4 P_1 P_2 P_3 P_4 $P_$

Tempo di attesa medio:/

Shortest-Job-First: SJF (3)

- Garantisce il tempo minimo di attesa, se si conosce il tempo di processore richiesto dai processi
- Predizione del tempo di processore richiesto da un processo:
 - -simile ai tempi precedenti del processo
 - -media esponenziale $\tau_{n=1} = \alpha t_n + (1-\alpha)\tau_n$

Logica diretta: Indice di priorità alto → Priorità alta
 Logica inversa: Indice di priorità basso → Priorità alta

· Rappresentazione della priorità

Priorità (2)

- **Pre-emptive**: processo che diventa pronto interrompe processo in esecuzione richiedendo schedulazione
- Non pre-emptive: processo che diventa pronto non interrompe processo in esecuzione richiedendo schedulazione

Priorità (3)

- Problema: processi a bassa priorità potrebbero subire un blocco indefinito (starvation)
- Soluzione: progressivo invecchiamento della priorità (aging) con periodico ripristino al valore iniziale oppure ringiovanimento fino al valore iniziale

Round-Robin RR (1)

Rotazione

- · Tipico dei sistemi time sharing
- Simile a FCFS con aggiunta di pre-emption

Round-Robin RR (2)

- Distribuzione uniforme del tempo di elaborazione tra i processi pronti
- Velocità di esecuzione dei processi dipende dal numero di processi pronti
- Turnaround dipende dalla durata del quanto di tempo
- Comportamento dell'algoritmo RR dipende dalla durata del quanto di tempo:
 - molto lungo: RR → FCFS
 - molto breve: RR → condivisione del processore ognuno degli N processi sembra vedere un processore con 1/N di capacità computazionale problema: sovraccarico di gestione dovuto ai frequenti cambiamenti di contesto
 - ideale empirico: 80% delle richieste di elaborazione deve essere completata in un quanto di tempo

Coda a più livelli C+L (1)

- I processi sono raggruppati per tipologie omogenee
- Ogni tipologia è assegnata in modo permanente a un livello della coda di schedulazione, rappresentato da una coda di attesa specifica
- Ogni coda di attesa ha un suo algoritmo di schedulazione
- L'insieme delle code di attesa viene schedulato da un algoritmo dedicato
 - Usualmente schedulazione pre-emptive a priorità fisse

Coda a più livelli con retroazione C+LR (1) • Coda a più livelli che permette ai processi di migrare da un livello a quello adiacente quanto di tempo = 8 quanto di tempo = 16

Coda a più livelli con retroazione C+LR (2)

- Code di attesa separate in funzione dell'uso dinamico del processore da parte dei processi
- Algoritmo di schedulazione specifico per ciascuna coda di attesa
- Politica di promozione
- · Politica di degradazione
- Politica di allocazione

Schedulazione in sistemi multiprocessore (1)

La schedulazione deve considerare le caratteristiche dell'architettura del sistema di elaborazione:

- processori
 - omogenei 🏑
 - eterogenei 🔍
- memoria
 - solo condivisa
 - anche locale
- periferiche
 - accessibili da singolo processore
 - accessibili da tutti i processori

Schedulazione in sistemi multiprocessore (2)

- Sistemi con processori omogenei, memoria solo condivisa e periferiche accessibili da tutti i processori:
 - Coda unica
 - Una coda per processore in memoria condivisa (suddivisione del carico - load sharing)
- Sistemi con processori omogenei, memoria anche locale e periferiche accessibili da tutti i processori:
 - Coda unica
 - Una coda per processore in memoria condivisa o in memoria locale (allocazione dei processi ai processori e load sharing)

Schedulazione in sistemi multiprocessore (3)

- Sistemi con processori omogenei, memoria solo condivisa e periferiche accessibili da alcuni processori:
 - Una coda per processori omogenei in memoria condivisa, una coda per ogni processore che gestisce una specifica periferica
- Sistemi con processori omogenei, memoria anche locale e periferiche accessibili da alcuni processori:
 - Una coda per processori omogenei in memoria condivisa, una coda per ogni processore che gestisce una specifica periferica
 - Una coda per ognuno dei processori omogenei in memoria locale, una coda per ogni processore che gestisce una specifica periferica
- Sistemi con processori eterogenei:
 - Una coda per processore
 - Una coda per gruppi di processori omogenei

Schedulazione in sistemi multiprocessore (4)

Tipi di multiprocessamento:

- Multiprocessamento asimmetrico:
 - Processore master esegue sistema operativo (schedulazione di tutti i processi per tutti i processori)
 - Processori slave eseguono solo processi applicativi
- Multiprocessamento simmetrico:
 - Ogni processore esegue il sistema operativo (schedulazione dei processi assegnati al processore) e i processi applicativi

In sintesi

- Politiche e algoritmi di schedulazione
 - First Come, First Served
 - Shortest Job First
 - Priorità
 - Round Robin
 - Coda a più livelli
 - Coda a più livelli con retroazione
- Schedulazione in sistemi multiprocessore

