

PRIMERA DERIVADA Y GRAFICA DE UNA FUNCION

FIGURA 12.2 Formas creciente y decreciente de una función.

Teorema Sea f una función derivable en el intervalo a, b.

- (a) Si f'(x) > 0 para todo $x \in]a, b[$, entonces f es creciente en]a, b[.
- (b) Si f'(x) < 0 para todo $x \in]a,b[$, entonces f es decreciente en]a,b[.
- (c) Si f'(x) = 0 para todo $x \in [a, b]$, entonces f es constante en [a, b].

FIGURA 12.5 Máximos y mínimos relativos.

DEFINICIÓN El valor x = c se denomina **punto crítico** para una función continua f si f(c) está bien definida y si o f'(c) = 0 o f'(x) no existe en x = c.

TEOREMA 1 (PRUEBA DE LA PRIMERA DERIVADA) Sea x = c un punto crítico de la función f. Entonces:

- a) Si f'(x) > 0 para x justo antes de c y f'(x) < 0 justo después de c, entonces c es un máximo local de f. (Véase la parte a) de la figura 12. Los símbolos (+), (-) o (0) junto a cada parte de la gráfica indica el signo de f').
- b) Si f'(x) < 0 para x justo antes de c y f'(x) > 0 justo después de c, entonces c es un mínimo local de f. (Véase la parte b) de la figura 12).
- c) Si f'(x) tiene el mismo signo para x justo antes de c y para x justo después de c, entonces c no es un extremo local de f. (Véase la parte c) de la figura 12).

EJEMPLO 2 Determine los valores de x en los cuales la función

$$f(x) = x^3 - 3x$$

crece o decrece.

y también los puntos extremos.

Se hace un análisis de signos de la primera derivada (tabla de signos)

$$f'(x) = 3x^2 - 3$$

$$f'(x) = 3(x^2 - 1) = 3(x - 1)(x + 1)$$

f es creciente en $]-\infty,-1[y]1,+\infty[$

f es decreciente en]-1,1[

Puntos extremos: Máximo en (-1,2); Mínimo en (1,-2)

EJEMPLO:

Si $y = f(x) = x + \frac{4}{x+1}$, utilizar la prueba de la primera derivada para encontrar dónde se presentan los extremos relativos.

Se hace análisis de signos de la derivada

$$f(x) = x + 4(x+1)^{-1}$$

$$f'(x) = 1 - 4(x+1)^{-2} = 1 - \frac{4}{(x+1)^2} = \frac{(x+1)^2 - 4}{(x+1)^2} = \frac{x^2 + 2x + 1 - 4}{(x+1)^2}$$

$$f'(x) = \frac{x^2 + 2x - 3}{(x+1)^2} = \frac{(x+3)(x-1)}{(x+1)^2}$$

Puntos extremos:

Máximo en
$$(-3, f(-3)) = (-3, -5)$$

Mínimo en (1, f(1)) = (1, 3)

EJEMPLO: (TAREA)

Trazar la gráfica de $y = f(x) = 2x^2 - x^4$ con la ayuda de intersecciones, simetría y prueba de la primera derivada.

FIGURA 12.27 Extremos absolutos.

Procedimiento para encontrar los extremos absolutos de una función f continua en [a, b]

Paso 1. Encontrar los valores críticos de f.

Paso 2. Evaluar f(x) en los puntos extremos a y b, y en los valores críticos sobre (a, b).

Paso 3. El valor máximo de f es el mayor de los valores encontrados en el paso 2. El valor mínimo de f es el menor de los valores encontrados en el paso 2.

EJEMPLO 1 Localización de los valores extremos en un intervalo cerrado

Encontrar los extremos absolutos para $f(x) = x^2 - 4x + 5$ en el intervalo cerrado [1, 4].

1) Se encuentran los valores de x donde f'(x) = 0 (puntos críticos)

$$f'(x) = 2x - 4 = 0$$
$$x = 2$$

2) Evaluar la función original en los valores críticos y en los extremos del intervalo

$$f(2) = 1$$

 $f(1) = 2$
 $f(4) = 5$

3) Se identifica el resultado más grande y el más pequeño

Máximo absoluto (4,5)

Mínimo absoluto (2,1)

LA SEGUNDA DERIVADA Y LA CONCAVIDAD

Regla 4 Criterios de concavidad

Sea f' diferenciable en el intervalo (a, b). Si f''(x) > 0 para toda x en (a, b), entonces f es cóncava hacia arriba en (a, b). Si f''(x) < 0, para toda x en (a, b), entonces f es cóncava hacia abajo en (a, b).

DEFINICIÓN Un **punto de inflexión** de una curva es un punto en donde la curva cambia de cóncava hacia arriba a cóncava hacia abajo o viceversa.

(TAREA)

EJEMPLO 1 Encuentre los valores de x en los cuales la gráfica de

$$y = \frac{1}{6}x^4 - x^3 + 2x^2$$

es cóncava hacia abajo o cóncava hacia arriba.

EJEMPLO 2 Concavidad y puntos de inflexión

Investigar la concavidad y los puntos de inflexión de $y = 6x^4 - 8x^3 + 1$.

Se hace un análisis de signos para la segunda derivada

$$y' = 24x^3 - 24x^2$$
$$y'' = 72x^2 - 48x = 24x(3x - 2)$$

f es cóncava hacia arriba en $]-\infty,0[y]\frac{2}{3},+\infty[$

f es cóncava hacia abajo en $\left]0,\frac{2}{3}\right[$

Puntos de inflexión: (0,1) y $\left(\frac{2}{3}, \frac{-5}{27}\right)$

EJEMPLO 4 Trazado de una curva

Trazar la gráfica de $y = 2x^3 - 9x^2 + 12x$.

Pasos

- 1. Determinar las intersecciones con los ejes
- 2. Análisis de la primera derivada: crece, decrece y puntos extremos (max, min)
- 3. Análisis de la segunda derivada: concavidad y puntos de inflexión.
- 4. Hacer la gráfica, ubicando primero los puntos encontrados y luego trazando las curvas

Intersección con Eje X: resolver $f(x) = 0$	Intersección con Eje Y: $f(0)$
$2x^3 - 9x^2 + 12x = 0$	f(0) = 0
$x(2x^2 - 9x + 12) = 0$	(0,0)
x = 0	
(0,0)	

Análisis de Primera derivada

$$f'(x) = 6x^2 - 18x + 12 = 6(x^2 - 3x + 2) = 6(x - 2)(x - 1)$$

Punto máximo en (1,5)

Punto mínimo en (2,4)

Análisis de Segunda derivada

$$f''(x) = 12x - 18 = 6(2x - 3)$$

Punto de inflexión
$$\left(\frac{3}{2}, \frac{9}{2}\right)$$

Gráfica:

