TD n°3: Échantillonnage

coefficient de Fourier: $C_n(f) = \frac{1}{T} \int_{-T/2}^{+T/2} f(t) e^{-j2\pi f n t} dt$ avec $f(x) = \sum_{n=-\infty}^{+\infty} C_n(f) e^{j2\pi f_n x}$ $f_n = \frac{n}{T}$ formule valable si la fonction $x = \frac{1}{T} \int_{-T/2}^{+T/2} f(x) est périodique de période T$

formule valable si la fonction
$$x - f(x)$$
 est périodique de période T.

$$g(t) - TF - G(f) = \int_{-\infty}^{+\infty} g(t) e^{-j2\pi f t} dt \qquad \text{et} \qquad G(f) - TF^{-1} - g(t) = \int_{-\infty}^{+\infty} G(f) e^{j2\pi t f} df$$

Définition du produit de convolution : $x(t)*y(t) = \int_{-\infty}^{+\infty} x(u)y(t-u)du$

Quelques propriétés de la distribution de Dirac :

Définition: fonction qui prend une valeur infinie en 0, et la valeur 0 partout ailleurs et dont

l'intégrale de
$$-\infty$$
 à $+\infty$ vaut 1 : $\int_{-\infty}^{+\infty} \delta(t) dt = 1$, de même $\int_{-\infty}^{+\infty} \delta(t-t_0) dt = 1$ la fonction est paire $\delta(f) = \delta(-f)$

Multiplier cette distribution $\delta(t-t_0)$ par une autre fonction g a donc pour conséquence d'obtenir quelque chose de nul en dehors de $t=t_0$, si on considère la fonction $t-g(t_0)$

 $\delta(t-t_0).g(t)=\delta(t-t_0).g(t_0)$ Cette expression permet donc de simplifier beaucoup de calculs et de faire apparaître des constantes que l'on peut sortir des intégrales. On démontrera à l'aide de cela :

- La transformée de Fourier de la distribution de Dirac est 1 (toutes les fréquences présentes)
- La transformée de Fourier inverse de la fonction unité amène $\delta(f) = \int_{-\infty}^{+\infty} e^{j2\pi t f} dt$ que l'on exploite très souvent sous la forme $\delta(f f_0) = \int_{-\infty}^{+\infty} e^{j2\pi t (f f_0)} dt$ (raie à $f = f_0$)
- La distribution de Dirac est l'élément neutre de la convolution : $\delta(t)*f(t)=f(t)$
- La distribution de Dirac retardée convoluée à une fonction retarde la fonction : $\delta(t-t_0)*f(t)=f(t-t_0)$

g(t)	G(f)	g(t)	G(f)	g(t)	G(f)
$g(t-t_0)$	$\mathrm{e}^{-j2\pi ft_0}G(f)$	$e^{j2\pi f_0 t} g(t)$	$G(f-f_0)$	$\delta(t)$	1
$\cos(2\pi f_0 t)$	$\frac{\delta(f-f_0)+\delta(f+f_0)}{2}$	$\sin(2\pi f_0 t)$	$\frac{\delta(f - f_0) - \delta(f + f_0)}{2j}$	$g^{(n)}(t)$	$(j2\pi f)^n G(f)$
x(t).y(t)	X(f)*Y(f)	x(t)*y(t)	X(f)Y(f)	$(-j2\pi t)^n g(t)$	$G^{(n)}(f)$
$\prod_{\frac{ au}{2}}(t)$	$T\operatorname{sinc}(\pi f T)$	$III_T(t)$	$\frac{1}{T}\sum_{n=-\infty}^{\infty}\delta(f-\frac{n}{T})$	$\Lambda_{ au}(t)$	$T\operatorname{sinc}^2(\pi f T)$

La Transformée de Fourier d'un peigne de Dirac en domaine temporel $III_T(t) = \sum_{n=-\infty}^{+\infty} \delta(t-nT)$ est un peigne de Dirac $\frac{1}{T}III_{\frac{1}{T}}(f) = \frac{1}{T}\sum_{n=-\infty}^{+\infty} \delta(f-\frac{n}{T})$ dans le domaine fréquentiel.

Démarche à suivre TD 3

Exercice 1 Vous devez suivre les étapes suivantes pour résoudre les diverses questions :

a) Transformée de Fourier d'un signal périodique :
1- Réciter les formule du développement en séries de Fourier d'un signal périodique.
2- Réciter la formule de la Transformée de Fourier Directe pour une fonction générique.
3- Remplacer cette fonction générique par la somme infinie.
4- Echanger les signes Somme et Intégrale puis regrouper les exponentielles.
5- Reconnaître des Distributions de Dirac avec une formule connue.
6- Enoncer le résultat final.
7- Faire les correspondances entre signal périodique temporel et signal périodique dans le domaine fréquentiel, imaginer une décomposition en série de Fourier réciproque.

b) Signal échantillonné :
1- Réciter la formule d'un signal échantillonné.
2- L'exprimer sous la forme d'un produit avec un peigne de Dirac.
3- Calculer la Transformée de Fourier de ce produit en utilisant deux résultats du TD précédent.
4- Utiliser la dernière propriété de la Distribution de Dirac sur la convolution.
5- En déduire l'allure du spectre, conclure sur le spectre obtenu et la qualité d'échantillonnage.
Exercice 2
A) Echantillonnage Parfait :
1a- Exprimer le spectre $X * (f)$ en fonction d'une somme infinie de spectre décalé en f.
2a- L'exprimer sous la forme d'une convolution avec un peigne de Dirac.
3a- Calculer la Transformée de Fourier Inverse de cette convolution avec les Formules du TD 2

4a- I	Exprimer $\mathbf{x}^*(t)$ sous la forme d'une somme infinie
1b- I	Etablir la périodicité du spectre du signal échantillonné
2b- (Conclure sur le recouvrement de spectre.
	Echantillonnage Réel: Exprimer le signal moyenné sous la forme d'une intégrale calculant la moyenne.
2- Ei	n utilisant une fonction porte, transformer cette intégrale bornée en intégrale non bornée.
3- E2	xprimer l'échantillonnage de ce signal réel et échanger somme et intégrale.
4- U	tiliser une propriété de la Distribution de Dirac pour sortir une constante de la somme
5- R	econnaître un peigne de Dirac puis un produit de convolution.