Side-Channel Attacks on Optane Persistent Memory

Sihang Liu, **Suraaj Kanniwadi**, Martin Schwarzl, Andreas Kogler, Daniel Gruss, Samira Khan

Usenix Security Symposium 2023

Overview: Motivation

Overview: Motivation

Overview: Motivation

Overview: Contributions

Overview: Contributions

Overview: Contributions

Background

Optane, Persistent Memory, and Side Channels

In the system heirarchy

In the system heirarchy

In the system heirarchy

Reverse-Engineering of Optane

A glimpse into the Optane DIMM

Optane: We have more!

Optane: We have more!

Optane: We have more!

Optane: We have more!

On-DIMM caches

On-DIMM caches

On-DIMM caches

Memory Cells

Wear-levelling to the rescue!

Memory Cells

Wear-levelling in Optane: How?

Wear-levelling in Optane: How?

Wear-levelling in Optane: How?

Expectations Reality

Expectations

cl == cache line

Reality

Expectations

cl == cache line

== CPU cache line

Reality

Expectations

cl == cache line

== CPU cache line

"clflush flushes only CPU caches"

Reality

Expectations

cl == cache line

== CPU cache line

"clflush flushes only CPU caches"

Reality

clflush reaches Optane!

Expectations

cl == cache line

== CPU cache line

"clflush flushes only CPU caches"

Reality

clflush reaches Optane!

Flushes RMW Buffer!

Expectations

cl == cache line

== CPU cache line

"clflush flushes only CPU caches"

Reality

clflush reaches Optane!

Flushes RMW Buffer!

An Optane Curveball: R/W Contention

An Optane Curveball: R/W Contention

An Optane Curveball: R/W Contention

The Attacks

Exploring the security implications of our new attack primitives

Optane

Optane

Attack Primitives

Our Attacks

Attack: Noteboard Covert Channel

Encoding secret messages on Optane's wear-levelling metadata

0%	0%	0%	0%	0%	0%	0%	0%	0%

	0000	0%	0%	0%	0%	0%	0%	0%	0%	0%
	101100 010110 100101									
TOP										
	0000	0%	50%	0%	0%	50%	0%	0%	0%	50%
	101100 010110 100101									

	0000	0%	0%	0%	0%	0%	0%	0%	0%	0%
	101100 010110 100101									
TOP SECRET										
	0000	0%	50%	0%	0%	50%	0%	0%	0%	50%
	101100 010110 100101									
	0000	0%	0%	0%	0%	0%	0%	0%	0%	0%
	101100 010110 100101									

+	0%	0%	0%	0%	0%	0%	0%	0%	0%
10110 01011 10010									
TOP SECRET									
0000	0%	50%	0%	0%	50%	0%	0%	0%	50%
10110 01011 10010									
000	100%	50%	100%	100%	50%	100%	100%	100%	50%
10110 0101 1001	00								

0000	0%	0%	0%	0%	0%	0%	0%	0%	0%
101100 010110 100101									
TOP SECRET									
0000	0%	50%	0%	0%	50%	0%	0%	0%	50%
101100 010110 100101									
101100 010110 100101	0.		10	10	1	0	10	10	

Remote Sender

Remote Receiver

Side-Channel Attacks on Optane Persistent Memory

Sihang Liu, **Suraaj Kanniwadi**, Martin Schwarzl, Andreas Kogler, Daniel Gruss, Samira Khan

Usenix Security Symposium 2023