

Geração de números aleatórios de misturas

Grupo B: Gabriel, Ismael, Jaqueline e João Victor 29/05/2024

Sumário

Misturas estudadas:	2
Momentos das misturas:	3
Amostras geradas	5
Densidade e histograma	. 6
FDA e empírica	. 7
Testes de bondade do ajuste	8
Referências	8

Neste relátorio vou apresentar apenas os resuldados. Como o trabalho foi colaborativo no relatório dos meus colegas os códigos foram expostos.

Misturas estudadas:

- Mistura 1: $\frac{2}{3}N(0,1) + \frac{1}{3}N(0,(\frac{1}{10})^2)$
- Mistura 2: $\frac{3}{4}N(0,1) + \frac{1}{4}N(\frac{3}{2},(\frac{1}{3})^2)$
- \bullet Mistura 3: $\sum_{k=0}^5 (\frac{2^{5-k}}{63}) N(\frac{65-96(\frac{1}{2})^k}{21}, (\frac{(\frac{32}{63})^2}{2^{2k}})$
- Mistura 4: $\frac{2}{3}Gama(\alpha=11,\lambda=120)+\frac{1}{3}Gama(\alpha=11,\lambda=720)$

Momentos das misturas:

```
## Amostra 1:
## Média Populacional: 0.00
## Variância Populacional: 0.67
## Assimetria: 0.00
## Curtose: -3.00
##
## Amostra 2:
## Média Populacional: 0.38
## Variância Populacional: 1.20
## Assimetria: 0.24
## Curtose: -2.71
##
## Amostra 3:
## Média Populacional: -0.00
## Variância Populacional: 2.70
## Assimetria: 0.36
## Curtose: -1.61
##
## Amostra 4:
## Média Populacional: 2.25
## Variância Populacional: 1.69
## Assimetria: 0.89
## Curtose: 1.24
```


Mistura 2

Mistura 3

Mistura 4

Amostras geradas

Table 1: Tabela comparativa mistura 1

Teorico	Amostral
0.00	0.0298891
0.67	0.7892497
0.00	-0.2249625
-3.00	0.9650654
	0.00 0.67 0.00

Table 2: Tabela comparativa mistura 2

	Teorico	Amostral
Media	0.3750000	0.3291317
Variância	1.1996528	1.0292867
Curtose	0.2408029	-0.1414471
Assimetria	-2.7114419	-0.9546249

Table 3: Tabela comparativa mistura 3

	Teorico	Amostral
Media	0.0000000	0.2978101
Variância	2.7004643	2.9426016
Curtose	0.3558158	-0.0684585
Assimetria	-1.6114375	-1.5307917

Table 4: Tabela comparativa mistura 4

	Teorico	Amostral
Media	2.2500000	2.223400
Variância	1.6875000	1.751541
Curtose	0.8885962	1.002994
Assimetria	1.2444444	1.160141

Podemos verificar que momentos maiores como a curtose e a assimetria são mais "difíceis" de serem recuperados. Espera-se que para amostras maiores esses valores sejam recuperados.

Densidade e histograma

FDA e empírica

Testes de bondade do ajuste

Realizamos o teste de Kolmogorov-Smirnov utilizando a função chisq.test(), para comparar as distribuições amostrais das 4 amostras com suas provenientes distribuições populacionais, considerando o nível de significância α = 0.05:

```
## Mistura 1 :
## P-valor: 0.66
##
## Mistura 2 :
## P-valor: 0.907
##
## Mistura 3 :
## P-valor: 0.265
##
## Mistura 4 :
## P-valor: 0.325
```

Para todas as amostras, o teste qui-quadrado resultou em um p-valor > 0.05. Pelo teste de hipóteses, não temos evidências o suficiente para rejeitar a hipótese nula.

Entretanto, cabe ressaltar na diferença entre os p-valores. Para as amostras 1 e 2, o p-valor foi alto (> 0.5), enquanto para as amostras 3 e 4, o p-valor foi baixo (< 0.5). Isso indica que há certa discrepância entre as distribuições amostrais e as distribuições populacionais nas amostras 3 e 4, indicativo de que talvez seja necessário um maior tamanho amostral para serem melhor representadas.

Referências

Wikipedia. Central Limit Theorem. Disponível em: https://en.wikipedia.org/wiki/Central_limit_theorem.

Wikipedia. Empirical distribution function. Disponível em: https://en.wikipedia.org/wiki/Empirical_distribution_function.

Wikipedia. Kolmogorov-Smirnov test. Disponível em: https://en.wikipedia.org/wiki/Kolmogorov%E2%80%93Smirnov test.

Wikipedia. Gamma distribution. Disponível em: https://en.wikipedia.org/wiki/Gamma_distribution.

Wikipedia. Normal distribution. Disponível em: https://en.wikipedia.org/wiki/Normal_distribution.