(8) Int. CL7: B 60 T 8/32

B 60 K 28/18 B 60 T 8/24 B 60 T 8/60

DEUTSCHES PATENT- UND MARKENAMT ② Aktenzeichen: (2) Anmeldetag:

P 43 21 571.8-21 29. 6. 1993

Offenlegungstag:

5. 1.1994

Veröffentlichungstag der Patenterteilung: 3. 2.2000

Innerhalb von 3 Monaten nach Veröffentlichung der Erteilung kann Einspruch erhöben werden

Unionspriorität

172526/92

30. 06. 1992 JP

Patentinhaber:

Honda Giken Kogyo K.K., Tokio/Tokyo, JP

H. Weickmann und Kollegen, 81679 München

@ Erfinder:

Akuzawa, Kenji, Wako, Saitama, JP; Inagaki, Hiromi, Wako, Saitama, JP; Kawamoto, Yoshimichi, Wako, Saitama, JP; Saito, Wataru, Wako, Saitama, JP; Sakurai, Kazuya, Wako, Saitama, JP

(9) Für die Beurteilung der Patentfähigkeit in Betracht gezonene Druckschriften:

19 02 944 B2 DE 39 00 241 A1 01-2 37 252 A DE

Verfahren zur Steuerung der Radlängskraft eines Fahrzeugs

Verfahren zur unabhängigen Steuerung an mehrere Råder eines Fahrzeugs jeweils anzulegender Bremskräfte, umfassend:

umfassend:
Bestimmen einer auf das Fahrzeug wirkenden Gesamtbremskräft (Pr) aus einer Summe der an die Räder (W_{FR},
W_{FL}, W_{RR}, W_{RL}) arzulegenden jeweiligen Bremskräfte
nach Maßgebe einer vom Fahrzeugfahrer ausgeübten
Bremsbetätigungskraft (F_B);
Bestimmen von an jedes der Räder (W_{FR}, W_{FL}, W_{RR}, W_{RL})
anzulegenden Soll-Bremskräften (P_{FR}, P_{FL}, P_{RR}, P_{RL})
durch Verteilen der Gesamtbremskraft (Pr) auf die Räder
(W_{FR}, W_{FL}, W_{RR}, W_{RL}) nach Maßgabe aus erfaßten Bewegungswerten der Fahrzeugkarosserle berechneter Verteilungsverhätnisse und

iungsverhätnisse und Steuern der an jedes der Räder (W_{FR}, W_{FL}, W_{RR}, W_{RL}) anzulegenden Bremskräfte in Abhängigkeit von den an jedes der Räder (W_{FR}, W_{FL}, M_{RR}, W_{RL}) anzulegenden Sollbremskräften (F_{FR}, P_{FL}, P_{RR}, P_{RL}) dadurch gekennzeichnet, daß die jeweilige Länge- und Querlaga des Fahrzeugschwerpunkts unter Verwendung von Ausgangssignalen aus Beschleunigungssensoren (5, 6) berechnet wird, daß aus der errechneten Schwerpunktalage des Fahrzeugs entsprachenden Teilliesten (W_{FR}, W_{FL}, W_{FR}, W_{RR}, W_{RR}, W_{RR}, W_{RR}) auf jedes Rad wirkende und in Ihrer Summe konstante Teilliesterten (R_{FR}, R_{FL}, R_{FR}, R_{FL}, R_{FR}, R_{FL}, R_{FR}, R_{FL}, R_{FL}

werden und daß die Soil-Bremskräfte (P_{RR} , P_{FL} , P_{RR} , P_{RL}) für jedes Rad nach Maßgabe der Verteilung der Gesambremskraft (P_{T}) auf die einzelnen Räder (W_{FR} , W_{FL} , W_{RR} , W_{RL}) auf der Basis der Teillastraten (R_{FR} , R_{FL} , R_{RR} , R_{RL} , R_{RR}

21

Beschreibung

Die Erfindung betrifft ein Verfahren zur unabhängigen Steuening an mehrere Räder eines Fahrzeugs jeweils anzulegender Bremskräfte sowie ein Verfahren zur unabhängigen Steuerung an Vorder- und Hinterräder eines Fahrzeugs anzulegender Antriebsdrehmomente.

Nach der JP-1-237 252 A ist es bekannt, festzustellen, ob eine Gierwinkel-Beschleunigung oberhalb eines vorgegebepen Werts liegt oder nicht. Je nach der getroffenen Feststellung werden die Bremskräfte, die auf die linken und rechten hinteren Rader des Fahrzeugs wirken, gesteuert, um die Bremskraft auf das kurveninnere Rad zu mindern und die Bremskraft auf das kurvenäußere Rad zu erhöben. Das Verteilungsverhältnis wird nicht jederzeit gesteuert, und es er- 15 folgt auch keine Verteilung der Bremskräfte zwischen den Virden ädenn und den Hinterrädern,

Aus der für Anspruch 1 gattungsbildenden DE 39 00 241 A1 ist es bekannt, die Sollbremskraft von Vorderrädern und Hinterrädern bei vorgegebenem festem 20 Kraftverteilungsverhältnis zu bestimmen und zu stestern,

Aus der DE 19 02 944 B2 ist es bekannt, ein Gyroskop zu verwenden, das im Gesamtschwerpunkt angeordnet ist, um die Verteilung der Radlasten zu ermitteln. Wenn beispielsweise die Ouerbeschleunigung 0,75 g überschreitet, wird 25 die Steuerung betätigt und dadurch das Drosselventil gesteuert, und zwar jeweils unabhängig von der Bedienung durch einen Fahrer des Fahrzeugs.

Aufgabe der Erfindung ist es, den Bremszustand oder den Antriebszustand eines Fahrzeugs jederzeit stabil herbeiführen zu können, wenn das Fahrzeug in Bewegung ist. Dabei soll ein optimaler Bremszustand oder Antriebszustand des Fahrzeugs erreicht werden, der jeweils eine maximale Längskraft und eine optimale Seitenkraft auf das Fahrzeug auszuüben gestattet. Das Fahrzeug soll also glatt innerhalb 35

kurzer Zeit seine Sollbewegung erreichen.
Zur Lösung der Aufgabe wird erfindungsgemäß ein Verfahren zur unabhängigen Steuerung an mehrere Räder eines Fahrzeugs jeweils anzulegender Bremskräfte angegeben, umfassend: Bestimmen einer auf das Fahrzeug wirkenden Gesamthremskraft aus einer Summe der an die Räder anzulegenden jeweiligen Bremskräfte nach Maßgabe einer vom Fahrzeugfahrer ausgeübten Bremsbetätigungskraft; Bestimmen von an jedes der Räder anzulegenden Soll-Bremskräften durch Verteilen der Gesamtbremskraft auf die Räder 45 nach Maßgabe aus erfaßten Bewegungswerten der Fahrzeugkarosserie berechneter Verteilungsverhaltnisse und Steuern der an jedes der Räder anzulegenden Bremskräfte in Abhängigkeit von den an jedes der Räder anzulegenden Soll-Bremskräften, dadurch gekennzeichnet, daß die jewei- 50 lige Längs- und Querlage des Fahrzeugsehwerpunkts unter Verwendung von Ausgangssignalen aus Beschleumigungssensoren berechnet wird, daß aus der errechneten Schwerpunktslage des Fahrzeugs entsprechenden Teillasten der einzelnen Räder auf jedes Rad wirkende und in ihrer Summe 55 konstante Teillastraten berechnet werden und daß die Soll-Bremskräfte für jedes Rad nach Maßgabe der Verteilung der Gesamtbremskraft auf die einzelnen Räder auf der Basis der Teillastraten korrigiert werden.

Mit diesem Verfahren kann man die auf jedes der Räder 60 wirkende Last normalisieren, um hierdurch die Leistungsfähigkeit iedes Rads maximal auszunutzen, während man die Lage des Fahrzeugs zufriedenstellend beibehält, Bevorzugt werden bei diesem Verfahren die den Rädem zugeteilten Teillasten bei stehendem Fahrzeug bestimmt und werden 65 Längs- und Querbeschleumgungen des Fahrzeugs erfaßt, um die Richtung und den Betrag der scheinbaren Bewegung der Schwerpunktsposition des Fahrzeugs herauszufinden.

Die festgestellten Teillasten können in Abhängigkeit von der Richtung und dem Betrag der scheinbaren Bewegung der Schwerpunktsposition des Fahrzeugs korrigiert und die auf die Räder verteilten Lastraten für jedes Rad in Abhängigkeit von den korrigierten Lastraten berausgefunden werden. Auf diese Weise erhält man die Teillastraten mit einer sehr geringen Menge zu erfassender Daten

Wenn man die Gesamtbremskraft in Abhängigkeit von einer Abweichung zwischen einer erfaßten Verzögerung des Pahrzeugs und einer auf Baxis der Gesamtlängskraft bestimmten Sollverzögenung des Fahrzeugs korrigiert, erhält man eine universelle Steuerung der Verzögerung, die durch ein Brhöhen oder Verringern des Gesamtgewichts und durch Pahren auf nach oben oder nach unten geneigten Fahrbahnen nicht beeinflußbar ist, und dies ohne Verwendung von Lastsensoren.

Zur Lösung der Aufgabe wird ferner erfir ungagoen Verfahren zur unabhängigen Steuerung an Vorder- und Hinterrader eines Fahrzeugs anzulegender Antriebsdrehmomente angegeben, umfassend: Bestimmen eines Gesamtantriehsdrehmoments als einer Summe der an die Räder anzulegenden Antriebsdrehmomente; Bestimmen von an die Räder jeweils anzulegenden Soll-Antriebsdrehmomenten durch Verteilen des Gesamtantriebsdrehmoments auf die Räder nach Maßgabe aus erfaßten Bewegungswerten der Pahrzeugkarosserie berechneter Verteilungsverhältnisse und Steuern der an jedes der Räder angelegten Antriebsdrehmomente in Abhängigkeit von den an jedes der Räder anzulegenden Soll-Antriebsdrehmomenten, wobei die jeweilige Längs- und Querlage des Pahrzeugschwerpunkts unter Verwendung von Ausgangssignalen aus Beschleunigungssen-soren berechnet wird, wobei aus der errechneten Schwerpunktslage des Fahrzeugs entsprechenden Teillasten der einzeinen Räder auf jedes Rad wirkende Teillastraten berechnet werden und wobei die Soll-Antriebsdrehmomente für jedes Rad nach Maßgabe der berechneten Teillastraten korrigiert

Weiter kann ein Solldrehbetrag des Fahrzeugs in Abhängigkeit vom Lenkbetrag bestimmt und ein tatsächlicher Ist-Drehbetrag des Fahrzeugs erfaßt werden. Die Verteilung der Soll-Längskräfte auf die Räder kann man in Abhängigkeit von einer Abweichung zwischen dem Soldrehbetrag und dem Istdrehbetrag ändern, derart, daß die Summe dieser Soll-Längskräfte konstant ist. Hierdurch kann man die Längskräfte auf die Räder verteilen, während man die Be-schleunigung und Verzögerung konstant hält, so daß man eine stablie Längsbeschleunigung und eine Drehbewegung entsprechend der Lenkbetätigung erhält.

Die Erfindung wird nachfolgend anhand mehrerer Ausführungsbeispiele unter Hinweis auf die beigefügten Zeichnungen beschrieben

Fig. 1 zeigt ein Fahrzeugbremssystem gemäß einer ersten Ausführung:

Fig. 2 zeigt ein Blockdiagramm einer Steuereinheit;

Fig. 3 zeigt das Verhältnis zwischen dem Gesamtbrem fluiddruck und der Bremspedaldruckkraft; Flg. 4 zeigt ein Diagramm der Scheinbewegung der

chwerpunktsposition in Längsrichtung des Fahrzeugs; Fig. 5 zeigt die Scheinbewegung der Schwerpunktsposi

tion in einer Querrichtung des Fahrzeugs;

Fig. 6 zeigt die scheinbare Änderung der Schwerpunkt-position auf X-Y-Koordinaten;

Fig. 7 zeigt das Verhältnis zwischen Korrekturrate und der Fahrzeuggeschwindigkeit;

Fig. 8 zeigt das Verhältnis zwischen Korrekturrate und einer X-Ordinate von Fig. 6 der geänderten Schwerpunktspo-

Pig. 9 zeigt das Verhältnis zwischen Korrekturrate und ci-

ner Y-Abszisse von Pig. 6 der geänderten Schwerpunktsposition:

Fig. 10 zeigt in einem Blockdiagramm ein Giersteuerbetrag-Berechnungsmittel;

Fig. 11 zeigt das Verhältnis zwischen Bezugsgierrate zur Pahrzeuggeschwindigkeit;

Fig. 12 zeigt das Verhältnis zwischen Korrekturrate und Fahrzeuggeschwindigkeit;

Fig. 13 zeigt das Verhältnis zwischen Korrekturrate und Längsbeschleumgung; Fig. 14 zeigt das Verhältnis zwischen Korrekturrate und

Fig. 14 zeigt das Verhältnis zwischen Korrekturrate und Querbeschleunigung;

Fig. 15 zeigt ein Fahrzeugantriebssystem gemäß einer zweiten Ausführung;

Fig. 16 zeigt ein Blockdiagramm einer Steuereinheit;

Fig. 17 zeigt eine alternative Ausführung eines Fahrzeugantriebssystems;

Fig. 18 zeigt eine weitere Alternative eines Fahrzeugantriebssystems; und

Fig. 19 zeigt eine alternative Ausführung eines Fahrzeug- 20 brems/Antriebssystems.

Die Fig. 1 bis 4 zeigen eine erste Ausführung.

Gemäß Fig. 1 ist eine rechte Vorderradbremse B_{FR} an einem rechten Vorderrad W_{FR} eines vierradbetriebenen Kraftfahrzeugs angebracht, eine linke Vorderradbremse B_{FL} ist an einem linken Vorderrad W_{FL} angebracht, eine rechte Hinterradbremse B_{RR} ist an einem rechten Hinterrad W_{RR} angebracht und eine linke Hinterradbremse B_{RL} ist an einem linken Hinterrad W_{RL} angebracht. Die Bremsen B_{FR}, B_{FL}, B_{RR} und B_{RL}, haben gleiche Eigenschaften.

Ein Tandemhauptbremszylinder 1 enthält ein Paar Auslaßöffnungen 1a und 1b. Eine der Ausgangsöffnungen 1a ist durch einen Modulator 202. der einen Fluiddruck steuern kann, mit der rechten Vorderradbremse Bpg und weiter durch einen Modulator 2gL mit der linken Hinterradbremse 38 Bgi, verbunden. Die andere Öffnung 1b ist durch einen Modulator 2g, mit der linken Vorderradbremse Bpf, und weiter durch einen Modulator 2gn mit der rechten Hinterradbremse Bap verbunden.

Der Betrieb jedes der Modulatoren 2_{PB}, 2_{PL}, 2_{RR} und 2_{RL} 40 und somit der jeder der Bremsen B_{PR}, B_{PL}, B_{RR} und B_{RL} zugeführte Bremsfluiddruck wird durch ein Steuersystem C₁

unabhängig voneinander gesteuert.

Gemäß Fig. 2 sind mit dem Steuersystem C₁ verbunden: ein Pedalkrafterfassungssensor 3 zur Refassung einer Pedalmiederbückraft P_D als ein Betrag der Himmsbetätigung durch ein Bremspedal (nicht gezeigt); ein Fahrzeuggeschwindigkeitssensor 4 zur Erfassung einer Fahrzeuggeschwindigkeit V, ein Längsbeschleunigungssensor 5 zum Erfassen einer Beschleunigung G_{SY} in einer Längsrichtung 50 des Fahrzeugs; ein Querbeschleunigungssensor 6 zum Erfassen einer Beschleunigung G_{SY} in einer Querrichtung des Pahrzeugs; ein Lenkwinkelsonsor 7 zum Brfassen eines Lenkwinkels 0 als einen Lenkbetrag durch ein Lenkrad (nicht gezeigt) und ein Gierratensensor 8 zum Erfassen einer 55 Gierrate Y_A als ein Istdrebbetrag des Fahrzeugs.

Das Steuersystem C₁ umfaßt: ein Gesamtlängskraftbestimmungsmittel 9 zur Bestimmung eines Gesamthremsfleiddrucks P_T für die vier Räder auf Basis eines durch den
Pedalkraftsensor 3 erfaßten Werts; ein Verzögerungskorrekturmittel 10 zur Korrektur des in dem Gesamtlängskraftbestimmungsmittel 9 bestimmten Gesamtbremsfluiddrucks P_T
durch einen Verzögerungssteuerbetrag P_T zur Bildung eines
ersten korrigierten Gesamtbremsfluiddruck P_T; ein Verstärkungsgradkorrekturmittel 11 zum Anlegen einer Verstärkungskorrektur an den ersten korrigierten Gesamtbremsfluiddruck P_{T1} zur Bildung eines zweiten korrigierten Gesamtbremsfluiddrucks P_{T2}; ein Schwerpunktspositionsbe-

rechnungsmittel 12 zur Berechnung der Richtung und des Betrags einer Scheinbewegung der Schwerpunktsposition des Fahrzeugs auf Basis der Längs- und Querbeschleuni-gungen Gax und Gay, ein Giersteuerbetragberechnungsmittel 13 zum Berechnen eines Giersteuerbetrags Yc auf Basis des Gesamtbremsfluiddrucks PT, der Fahrzeuggeschwindigkeit V, der Längs- und Querbeschleunigung Ggx und Ggy, des Lenkwinkels 0 und der erfaßten Gierrate YA; ein Teillastratenberechnungsmittel 14 zur Berechnung auf die vier Richer verteilter Lastraten Reg, Rel, RgR und RgL auf Basis der in dem Schwerpunktspositionberechnungsmittel 12 und dem Giersteuerbetragberechnungsmittel 13 berechneten Beträge; rechte und linke Vorder- und Hinterrad-Bremsfluid-druckberechnungsmittel 15_{FR}, 15_{FL}, 15_{RR} und 15_{RL} zur Berechnung von Sollbremsfluiddrücken PRR, PR, PRR und PRI für die Radbremsen Bra, Br., Ban und Bal als Soll-Lange kräfte für die Räder jeweils auf Basis des zweiten korrigierten Gesamtbremsfluiddrucks P72 und der Teillestraten Rpg, Rel. Ren und Ral; und Antriebsmittel 16pg, 16pl, 16gg und 16_{RI}, jeweils zum unabhängigen Antrieb der Modulatoren 2_{PR}, 2_{PL}, 2_{RR} und 2_{RL} auf Basis der Sollbremsfluiddrücke PFR, PFL, PRR und RFL.

Das Gesamtlängskraftbestimmungsmittel 9 bestimmt eine Gesamtlärenskraft, die eine Summe der an die vier Rsder entsprechend der Pedalkraft P_B angelegten Längskräfte ist. Wenn Bremsen B_{FR}, B_{FL}, B_{BR} und B_{BL} gleicher Ausführung an den vier Rädern W_{FR}, W_{FL}, W_{RR} und W_{RL} angebracht sind, sind die durch diese Bremsen B_{FR}, B_{FL}, B_{BR} und B_{RL} ausgeübten Bremskräfte proportional zu den Bremsfulddrücken, die jeweils unabhängig von den Modulatoren 2_{FR}, 2_{FL}, 2_{RR} und 2_{RL} gesteuert sind, und man kann die Gesamtbremskraft als Gesamtlängskraft als Ausdruck eines Cesamtbremsfulddrucks berechnen. Daher wird an die Bremsen B_{FR}, B_{FL}, B_{RR} und B_{RL} angelegte Gesamtbremsfulddruck P_T durch das Gesamtlängskraftbestimmungsmittel 9 auf Basis einer Karte bestimmt, die, wie in Fig. 3 gerigt, entsprechend der Bremsniederdrückkraft P_T einer

richtet ist.

Der durch das Gesamtlängskraftbestimmungsmittel 9 erhaltene Gesamtbremsfluiddruck P_T wird dem Sollverzögerungsbestimmungsmittel 17 zugeführt, wo eine Sollverzögerung G₀ entsprechend dem Gesamtbremsfluiddruck P_T bestimmt wird. Die von dem Fahrzeuggeschwindigkeitssensor 4 erfalte Fahrzeuggeschwindigkeit V wird einem Differenziermittel 54 zugeführt. Eine durch Differenziermitel 54 rehaltene Fahrzeugverzögerung und die Sollverzögerung G₀ werden einem Steuerbetragberechnungsmittel 18 zugeführt, wo ein Verzögerungssteuerbetrag P_G em Basis einer Abweichung zwischen der Sollverzögerung G₀ und der erfaßten Fahrzeugverzögerung berechnet wird.

Der Gesamtbremsfluiddruck P₁ und der Verzögerungssteuerbetrag P_G werden dem Verzögerungskorrekturmittel 10 zugeführt, wo man erhält den ersten korrigierten Gesamtbremsfluiddruck P₁ durch Addieren des Verzögerungssteuerbetrags P_G zu dem Gesamtbremsfluiddruck P₇ erhält.

Die durch den Längsbeschleunigungssensor 5 erfaßte Längsbeschleunigung G_{SX} und die durch den Querbeschleunigungssensor 6 sträßte Querbeschleunigung G_{SY} werden dem Schwerpunktspositionsberechnungsmittel 12 zugeführt. Wenn die Koordinaten der Schwerpunktsposition bei stebendem Fahrzeug durch (G_{XO}, G_{YO}) dargestellt sind, berechnet das Schwerpunktspositionberechnungsmittel 12 die Richnung und den Betrag der Scheinbewegung der Schwerpunktsposition mit einer Laständerung und den Koordinaten G_X, G_Y, die einen Punkt scheinbarer Verschiebung der Schwerpunktsposition nuf Basis der berechneten Werte anzeigen.

Zu Fig. 4. Wenn die Höbe der Schwerpunktsposition von einer Straßenoberfläche durch H dargestellt ist und der Schwerpunkt G gleich 1 ist (G = 1), wird der Betrag ΔX der Schwerpunkt der Schwerpunktsposition in einer Fahrzeuglängsrichtung, das ist in einer X-Richtung, gemäß einem Ausdruck $\Delta X = G_{SX} \times H$ bestimmt.

Zu Fig. 5. Wenn die Höbe der Schwerpunktsposition von der Straßenoberfläche durch H dargestellt ist und der Schwerpunkt G gleich I ist (G = 1), wird der Betrag ΔY der Schwerpunkt in einer Fahrzeugquer- 10 richtung, d. h. in einer Y-Richtung, entsprechend einem Ausdruck $\Delta Y = G_{SY} \times H$ bestimmt.

Zu Fig. 6. Wenn weiter das Fahrzeuggesamtgewicht mit WTT, die auf die linken und rechten Vorder- und Hinterräder WF2, WFL, WRR und WRL verteilten Lasten mit WTFR, WTx. WTxe und WTFr. (WTx = WTFR + WTFR + WTRR + WTRR), der Radstand mit $L_{\rm B}$ und die Spurweite mit $L_{\rm T}$ bezeichnet sind, dann wird X-Ordinate $G_{\rm XO}$ der Koordinaten der Schwerpunktsposition bei stehendern Fahrzeug dargestellt druck

$$G_{X0} = \{L_B \cdot (WT_{PR} + WT_{FL})/WT_T\} - L_B/2$$

und die Y-Abszisse G_{Y0} der Koordinaten der Schwerpunktsposition bei siehendem Fahrzeug wird dargestellt durch

$$G_{Y0} = \{L_T \cdot \{WT_{FL} + WT_{RL}\}/WT_T\} - L_T/2$$

Hierdurch wird die X-Ordinate G_X im Punkt scheinbarer Verschiebung der Schwerpunktsposition mit der Laständerung während Fahrt des Fahrzeugs gleich $G_{XO}+\Delta X$ ($G_X=G_{XO}+\Delta X$), und die Y-Abszisse G_Y wird gleich $G_{YO}+\Delta Y$ ($G_Y=G_{YO}+\Delta Y$).

Zurück zu Fig. 2. Die vom Fahrzeuggeschwindigkeitssensor 4 erfaßte Fahrzeuggeschwindigkeit V wird einem
Fahrzeuggeschwindigkeits-entsprechenden Korrekturratenbestimmungsmittel 19 zugeführt, wo eine Korrekturrate
CG; entsprechend der Fahrzeuggeschwindigkeit V auf Basis einer vorab eingerichteten Karte (Fig. 7) bestimmt wird,
worin der Maximalwert dieser Korrekturrate CG; "1" ist.

Die X-Ordinate G_X der in dem Schwerpunktspositionsberechnungsmittel 12 bestümmten Schwerpunktsposition in einem Laständerungszustand wird einem Längsbeschleumigungs-entsprechenden Korrekturratenbestimmungsmittel 20 zugeführt, wo eine Korrekturratenbestimmungsmittel 20 zugeführt, wo eine Korrekturrate C_{G2} entsprechend der 4X-Abzzisse G_X auf Baxis einer vorab eingerichteten Karte (Fig. 8) bestimmt wird. Die Karte wird in Hinblick einer Gewichtsbalance des Fahrzeugs, einer Reifengröße u. dgl. auf Baxis der Tatsache bestimmt, daß die X-Abszisse G_X die Längsverteilung der Bremskräfte angibt und von einer Stangskraft einer Reifen/Lastcharakteristik abhängt, wobei der Maximalwert dieser Korrekturrate C_{G2} "1" ist.

Weiter wird die Y-Abszisse Gy der in dem Schwerpunktspositions-Berechnungsmittel 12 bestimmten Schwerpunktsposition in dem Laständerungszustand einem Querbeschleunigungsentsprechenden Korrekturratenbestimmungsmittel 21 zugeführt, wo eine Korrekturratenbestimmungsmittel 21 zugeführt, wo eine Korrekturratenbestimmungsmittel 27 zugeführt, wo eine Korrekturrate CG entsprechend der Y-Abszisse Gy auf Basis einer vorab eingerichteten Karte (Fig. 9) bestimmt wird. Diese Karte ist in Hinblick auf die Gewichtsbalance des Fahrzeugs u. dgl. auf Basis der Tatsache eingerichtet, daß die Y-Abszisse Gy die Querverteilung der Bremskräfte angibt und von der Querkraft der Reifen/Lastcharakteristik abhängt, wobei der Maximalwert dieser Korrekturrate CG; "1" ist.

Die auf diese Weise erhaltenen Korrekturraten C_{G1}, C_{G2} 65 und C_{G3} werden einem Durchschnittsberechnungsmittel 22 zugeführt, wo eine gemittelte Korrekturrate C_{GA1}, durch Teilen einer Summe der Korrekturraten C_{G1}, C_{G2} und C_{G3}

durch einen Korrekturfaktor, d. h. 3, bestimmt wird. Die gemittelle Korrekturnate C_{GA1} wird dem Verstärkungsgradkorrekturmittel 11 zugeführt, wo ein Verstärkungsgrad-korrigierter zweiter korrigierter Gesambrensfluiddruck P_{T2} dedurch bestimmt wird, daß man die Korrekturrate C_{GA1} mit dem ersten korrigierten Gesamtbremsfluiddruck P_{T1} multiplizier.

Durch die Korrektur des Verstärkungsgrads nimmt die Brenskraft mit kleiner werdender Korrekturrate C_{GA1} ab, so daß das Rad nur schwer blockieren kann und eine Kurvenführungskraft beibehalten wird, um hierdurch die Fahrstabilität der Fahrzeugkarrosserie zu verbessern. Die in den Fig. 7 bis 9 gezeigten Karten können in Abhängigkeit davon eingestellt werden, ob eine Bremskraft oder die Sicherheit wichtiger ist.

Durch Nehmen einer Korrekturkarte entsprechend der Pedalmiederdückkraft, der Änderungsrate der Pedalmiederdückkraft u. dgl. erhält man ein verbessertes Bremtsgefühl durch eine genauere Verstärkungskorrektur. Wenn weiter eines der Korrekturale dieses Korrekturale dieses Korrekturelements auf "1" setzen,

Zu Fig. 10. Das Giersteuerbetragberechnungsmittel 13 umfaßt einen Bezugsgierratenberechnungsabschnitt 22 zur Berechnung einer Bezugsgierrate YB als Solldrehbetrag auf Basis der durch den Pahrzeuggeschwindigkeitsseuser 4 erfaßten Fahrzeuggeschwindigkeit V sowie des durch den Lenkwinkelsensor 7 erfaßten Lenkwinkels 0; einen Abweichungsberechnungsabschnitt 23 zur Berechnung einer Abweichung AY zwischen einer durch den Gierratenersassungssensor 8 exfaßten Istgierrate YA und der Bezugsgierrate YB; einen Steuerbetragberechnungsabschnin 24 zur Berechnung eines Giersteuerbetrags YB durch eine PID-Berechnung auf Basis der Abweichung ΔY; einen Fahrzeuggeschwindigkeits-entsprechenden Korrekturratenbestirn mungsabschritt 25 zur Bestimmung einer Korrekturrate CG4 entsprechend der durch den Fahrzeuggeschwindigkeitssensor erfaßten Fahrzeuggeschwindigkeit V; einen Längsbeschieumigungs-entsprechenden Korrekturratenbestimmungsabschnitt 26 zur Bestimmung einer Korrekturrate Cos entsprechend der durch den Längsbeschleunigungssensor 5 erfaßten Längsbeschleunigung Gax; einen Querbeschleuniootspreebenden schnitt 27 zur Bestimmung einer Korrekturrate Coe entsprechend der durch den Querbeschleunigungssensor 6 erfaßten Querbeschleunigung G_{SV}, einen Durchschnittsberechnungs-abschnitt 28 zum Mitteln der Korrekturraten C_{O4}, C_{O3} und Coe zur Bildung einer Durchschnittskorrekturrate CoA2; einen Verstärkungskorrekturabschnitt 29 zur Bildung einer Verstärkungskorrektur durch Multiplikation der Korrekturrate C_{GA2} mit dem Giersteuerbetrag Y_E; und einen kombi-nierten Berechnungsabschnitt 30 zur Berechnung eines Ciersteuerbetrags YC in Kombination mit einer Steuerung des Bremsfluiddrucks auf Basis des in dem Gesamtlängskraftbestimmungsmittel 9 bestimmten Gesamtbremsfluiddrucks PT sowie des Verstärkungs-konfigierten Steuerbetrags Yec.

In dem Bezugsgierratenberechnungsmittel 22 wird eine Gerratenübertragungsfunktion bei jeder Fahrzeuggsschwindigkeit bei jedem Bingangssteuerwinkel 6 betrechnet, z. B. mit einem Intervell von 10 km/hr, um hierdurch eine Karte einzurichten, wie sie in Fig. 11 gezeigt ist. Eine Bezugsgierate Yg erhält man durch Interpolation emsprechend einer Eingangsfahrzeuggeschwindigkeit V. Hierdurch erhält man auch während einer Bremsung mit großer Geschwindigkeitsänderung eine geeignete Bezugsgierate Yg.

In dem Pahrzeuggeschwindigkeits-abhlingigen Korrekturratenbestimmungsabschnitt 25 wird eine Korrekturrate CG4 entsprechend der Fahrzeuggeschwindigkeit V auf Basis

einer vorab eingerichteten Karte (Fig. 12) bestimmt. In dem Längsbeschleunigungs-entsprechenden Korrekturratenbe-stimmungsabschnitt 26 wird eine Korrekturrate C_{G5} entsprechend der Längsbeschleunigung Gsx auf Basis einer vorab eingerichteten Karte (Fig. 13) bestimmt. In dem Querbeschleumigungs-entsprechenden Korrekturratenbestimmungsabschnitt 27 wird eine Korrekturrate CG6 entsprechend der Querbeschleunigung G3y auf Basis einer vorab

eingerichteten Karte (Fig. 14) bestimmt. Die in obiger Weise erhaltenen Korrekturraten C₀₄, C₀₅ und C66 werden dem Durchschnittsberechnungsabschnitt 28 zugeführt, worin man eine gemittelte Korrekturrate CGA2 dachurch erhält, daß man die Summe der Korrekturraten CG4. Cos und Cos durch 3 teilt. In dem Verstärkungskorrekturabschnitt 29 erhält man einen verstärkungskorrigierten Gier- 15 steuerbetrag Y_{BC} durch Multiplikation der Korrekturrate C_{GA2} unt dem Giersteuerbetrag Y_E.

In dem kombinieren Berechnungsabschnitt 30 wird eine Berechnung entsprechend $Y_C = Y_{BC} \times (2/Pr)$ auf Basis des verstärkungskorrigierten Giersteuerbetrags YBC und des Ge- 20 samtbreconfluiddrucks Pr ausgestührt, und hierdurch erhält man von dem kombinierten Berechnungsabschnitt 30 einen Giersteuerbetrag YC in Kombination mit der Bremsfluiddrucksteuerung.

In dem Teillastverhältnisberechnungsmittel 14 werden 25 die auf die vier Räder nach Laständerung verteilte Last und Zuordnungen des Giersteuerbetrags YC zu den vier Rädern berechnet, und auf deren Basis werden die auf die vier Räder verteilten Lastraten RPR, RPL, RRR, RRL bestimmt,

Als ein Ergebnis einer Scheinänderung der Schwe sposition is eine Last WT_P auf beide Vorderräder W_{PR} und W_{PL} gleich $(0.5 \times L_B + G_X) \times WT_P L_B$, und eine Last WT_B auf beide Hinterräder W_{RR} und W_{RL} ist gleich $WT_P - WT_B$ Wenn die auf das rechte Vorderrad W_{PR} , das linke Vorderrad W_{FL}, das rechte Hinterrad W_{RR} und das tinke Hinterrad W_{RL} 33 verteilten Lasten durch WF_{FR}, WT_{FL}, WT_{RL} und WT_{RL}, dargestellt sind, ergeben sich diese Teillasten WT_{FR}, WT_{FL}, WTRR' und WTRL' durch die folgenden Gleichungen:

 $WT_{PL}' = (0.5 \times L_T + G_Y) \times WT_P/L_T$ $\begin{aligned} WT_{FR}' &= WT_F - WT_{FL}' \\ WT_{RI}' &= (0.5 \times L_T + G_Y) \times WT_B/L_T \\ WT_{RR}' &= WT_R - WT_{RL}' \end{aligned}$

Wenn die Zuordnungen des Giersteuerbetrags YC zu dem 45 rechten Vorderrad W_{FR} , dem linken Vorderrad W_{FL} , dem rechten Hinterrad W_{RR} und dem linken Hinterrad W_{RL} durch YCPL, YCPL, YCRR und YCRL dargestellt sind, ergeben sich diese Zuordnungen YCH, YCH, YCRR und YCRL durch die folgenden Gleichungen:

$$\begin{split} Y_{CRL} &= Y_C \times \left\{WT_{RL}/(WT_{PL}' + WT_{RL}')\right\} \\ Y_{CRR} &= Y_C \times \left\{WT_{RL}/(WT_{PL}' + WT_{RL}')\right\} \\ Y_{CRR} &= Y_C \times \left\{WT_{RL}/(WT_{PL}' + WT_{RL}')\right\} \end{split}$$

Weiter werden die Teillastraten R_{FR} , R_{FL} , R_{RR} und R_{RL} des rechten Vorderrads W_{FR} , des linken Vorderrads W_{FL} , des rechten Hinterrads W_{RL} auf des linken Hinterrads W_{RL} auf Basis der Teillasten WT_{FR}', WT_{FL}', WT_{RR}' und WT_{RL}' und die Zuordnungen YCFR, YCFL, YCRR und YCRL durch folgende Gleichungen bestimmt:

$$\begin{split} R_{PR} &= (WT_{PR}' + Y_{CPR})/WT_T \\ R_{FL} &= (WT_{PL}' - Y_{CPL})/WT_T \\ R_{RR} &= (WT_{RR}' + Y_{CRR})/WT_T \\ R_{RL} &= (WT_{RL}' - Y_{CRL})/WT_T \end{split}$$

Die Summe der Teillastraten $R_{\rm FR},\,R_{\rm FL},\,R_{\rm RR}$ und $R_{\rm RL}$ ist immer "1".

Die von dem Teillastratenberechnungsmittel 14 erhaltenen Teillastraten Rpg, RpL, Rgg und Rgl, werden jeweils den entsprechenden Bremsfluiddruckberechnungsmitteln 15FR. 15_{PL}, 15_{RR} und 15_{RL} zugeführt. In dem Bremsfluiddruckberechnungsmittel wird für jedes Rad ein Sollbremsfluiddruck PFR. PFL. Par und PRL als auf die Rader wirkende Soll-Längskraft berechnet. Die Antriebsmittel 16m, 16m, 16m und 16_{RL} betätigen die entsprechenden Modulatoren 2_{FR}, 2FL, 2RR und 2RL auf Basis der Sollbremsfluiddrücke.

Der Betrieb der ersten Ausführung wird nachfolgend erläutert. Ein Gesamtbremsfluiddruck P_T entsprechend den durch die an den Rädern $W_{PR},\,W_{PL},\,W_{RR}$ und W_{RL} angebrachten Radbremsen Ben, Bel, Ben und Bel, ausgeübten Bremskräften wird bestimmt, und es werden die den Rädern Wrg, Wrt, Wag und Wgl zugeteilten Teillestraten Ren, Rel R_{RR} und R_{RL} bestimmt. Der auf Basis des Gesamtbrem fluiddrucks Pr bestimmte zweite korrigierte Gesamtbremsfluiddruck P12 wird entsprechend den Teillastraten Rp2, RpL Reg und Rei verteilt. Auf diese Weise können die Sollbremsfluiddrücke Per, Per, Par, und Pat, für die Räder Weg, WFL, WRR und WRL zur Steuerung der Modulatoren 2FR. 2_{PL} 2_{RR} und 2_{RL} bestimmt werden, um hierdurch die Stabilität zu halten und das Abtauchen der Pahrzeugfront u. dgl. beim Bremsen zu mindern, selbst wenn durch ein Erhöher oder Mindern des Frachtgewichts oder der Anzahl von Insassen die Gewichtsverteilung geändert wird.

Daher lassen sich die Lasten auf die Räder Weg, Weg. Was und Wal richtig verteilen, und daher läßt sich nicht mir ein übermäßiger Anstieg der thermischen Belastung auf jede der Bremsen B_{PR}, B_{RR}, B_{RR} und B_{RL} vermeiden, sondern man erhält auch eine verbesserte Haltbarkeit und weiter eine gleichförmige Reifenabnutzung jeder der Räder WFR, WFL.

Wan und Wat.

Zusätzlich werden die Längs- und Querbeschleunigung Gsx und Gsy des Pahrzeugs erfaßt, um die Richtung und Betrag der Scheinbewegung der Schwerpunktsposition des Fahrzeugs zu bestimmen. Die bei stehendem Fahrzeug be-40 stimmten, den Rädern WFR, WFL, WRR und WRL zugeteilten Lasten werden auf Basis dieser Richtung und dieses Betrags der Scheinbewegung der Schwerpunktsposition korrigient, und die Teillastraten Reg. Ret. Rag und Rat. für jedes Rad W_{PR}, W_{PL}, W_{RR} und W_{RL} werden auf Basis der korrigierten Teillasten WT_{PR}, WT_{RL}', WT_{RR}' und WT_{RL}' bestimmt. Daber lassen sich die Teillastraten R_{FR}, R_{FL}, R_{RR} und R_{RL} zum Zeitpunkt der Lastanderung nur durch Verwendung des Längsbeschleunigungssensors 5 und des Querbeschleunigungssensors 6 ohne Verwendung von Lastsensoren erhal-

ten.

Weiter wird der Gesamtbremsfluiddruck Pr auf Basis der

La-Callbeschleumigung Godes Fahrzeugs, bestimmt auf Basis des Gesamtbremsfluiddrucks P. und der erfaßten Verzögenung des Fahrzeugs kornigiert. Hierdurch erhält man eine Universalsteuerung der Beschleunigung und Verzögerung, die durch eine Erhöhung oder Minderung des Gesamtgewichts, der Fahrt auf aufwärts oder abwärts geneigten Fahrbahnen u. dgl. nicht beeinflußt werden, und zwar ohne Verwendung von Lastsensoren.

Eine denkbare Situation ist, daß bei Erhöhung der Längsund Querbeschleunigungen G_{SX} und G_{SY} im wesentlichen alle Bremsfluiddrücke an die Radbremsen angelegt werden, die sich auf der Seite mit der erhöhten Last befinden. Wenn die Reifencharakteristik vollständig proportional zur Last-65 änderung ist und darüberhinaus eine Bremskraft vollständig unabhängig von einer Kurvenkraft vorgesehen ist, ergibt sich in diesem Fall kein Problem, Jedoch ist dies nicht richtig. Das Erhöhen der Obergrenze einer durch den Reifen durch eine Lasterböhung erzeugten Kraft, ist in einem Bereich erböhter Last langsam, und die Kurvenkraft und die Bremskraft stehen in einem engen Bezug zueinander, so daß man kelne gruße Bremskraft einklit, wenn die Kurvenkraft groß ist, Anders gesagt, wenn das Fahrzeug in einer solchen Situation stark abgebremst wird, ninmit die Kurvenkraft schnell ab. Jedoch wird die Verstärkungskorrektur des ersten korrigierten Gesamtbremzfluiddrucks Pr. auf Basis der X-Ordinate Gx und der Y-Abszisse Gy der Schwerpunktsposition mach der Laständerung durchgeführt. Hierdurch läßt 10 sich eine schnelle Abnahme der Kurvenkraft vermeiden.

Darüberhinaus wird die Verteilung der Sollbremsfluiddrücke Pgg, P_{RL} P_{RR} und P_{RL} auf Basis der Abweichung
zwischen den Solldrehbetrag und dem Istdrehbetrag dadurch geändert, daß man den auf Basis der durch den Lenkwinkel \(\text{0} \) bestimmten Bezugsgierrate Y_B und der Istgierrate
Y_A bestimmten Giersteuerbetrag Y_C zu den Berechnungsfaktoren der Teillastraten R_{FR}, R_{FL}, R_{RR} und
R_{RL} konstant wird. Hierdurch läßt sich eine Drehbewegung
und der Lenkbetätigung dadurch erreichen, daß man die
Bremsfluiddrücke ohne Änderung der Gesamtbremskraft,
d. h. während man die Beschleunigung und
des Fahrzeugs konstant hält, verteilt.

In der ersten Ausführung wurden Bremsen B_{PR}, B_{FL}, B_{RR} und B_{RL} der gleichen Ausführung verwendet, und der Gesamtbremsfluiddruck P_T wurde zur Bestimmung der Gesamtbremskraft gesetzt. Alternativ kann man Bremsen verschiedener Ausführungen verwenden. In diesem Fall kann die Bremssteuerung durch Verteilten der Gesamtbremskraft bei Teillastraten und Wandeln der verteilten Bremskräfte in Bremsthickrückten durchgeführt werden.

Obwohl in der ersten Ausführung die Bremskraft als 33 Bremslängskraft für jedes Rad W_{PR}, W_{PL}, W_{RR} und W_{RL} gesteuert wird, ist die Ausführung auch als ein Radlängskraftsteuerverfahren zum Steuern der Antziebalreft ols Radlängskraft für jedes Rad verwendbar. Ein Beispiel einer Antriebskraftssteuerung wird nachfolgend beschrieben.

In den Pig. 15 und 16 ist eine zweite Ausführung dargestellt.

Gemäß Flg. 15 ist ein mit einem Motor E verbundenes Getriebe M mit einer vorderen Antriebswelle P_{RP} und einer hinteren Antriebswelle P_{RP} und einer hinteren Antriebswelle P_{RP} durch ein Differential D_{FP} sitzt zwischen der vorderen Antriebswelle P_{RP} und rechten und linken Vorderachsen A_{FR} und A_{FL}, die jeweils mit den rechten und linken Vorderrädern W_{FR} und W_{FL} verbunden sind. Ein Differential D_{FP} sitzt zwischen dem der hinteren Antriebswelle P_{RR} und rechten und linken Hinterachsen A_{RR} und A_{RL}, die jeweils mit den rechten und linken Hinterädern W_{RR} und W_{RL} verbunden sind.

Weiter ist ein hydrostatisches stufenlos verstellbares Getriebe 31 zwischen den vorderen und hinteren Antriebewelten P_{RP} und P_{RR} zur Umgehung des Differentials D_{PC} angebracht. Ein hydrostatisches stufenlos verstellbares Getriebe
32 ist zwischen den rechten und linken Vorderachsen A_{PR}
und A_{PL} zur Umgehung des Differentials D_{PF} angebracht.
Ein hydrostatisches stufenlos verstellbares Getriebe 33 ist 60
zwischen den rechten und linken Hinterachsen A_{RR} und A_{RL}
zur Umgehung des Differentials D_{FR} angebracht.

Diese hydrostatischen stufenlos verstellbaren Getriebe
31, 32 und 33 ändern stufenlos des Übersetzungsverhaltnis
zwischen den Eingange- und Ausgangsseiten. Die Antriebskräfte auf die Räder W_{FR}, W_{FR}, W_{RR} und W_{RL} können durch
Ändern des Übersetzungsverhällnisses der hydrostatischen
susfeulus verstellbaren Getriebe 31, 32 und 33 durch eine

Steuereinheit C2 gesteuert werden.

Zu Fig. 16. Mit der Steuereinheit C_2 sind verbunden: ein Gesamtdrehmennenterfassungssensor 34 zum Erfassen eines Ausgangsdrehmennts F_T von dem Getriebe M als eine an die Räder W_{FR} , W_{FL} , W_{RR} und W_{RL} anzulegende Antriebskraft; ein Fahrzeuggeschwindigkeit V, ein Längsbeschleunigungserfassungsensor 5 zum Erfassen einer Ilngebeschleunigung G_{XX} des Fahrzeugs; ein Querbeschleunigung G_{XX} des Fahrzeugs; ein Querbeschleunigung G_{YX} des Fahrzeugs; ein Guerbeschleunigung G_{YX} des Fahrzeugs; ein Germatenerfassungssensor zum Erfassen einer Lenkwinkelerfassungssensor zum Erfassen einer Gierratenerfassungssensor 8 zum Brfassen einer Gierratenerfassungssensor 8 zum Brfassen einer Gierrater Y.

sensor 8 zum Erfassen einer Gierrate Y_A.

Die Steuereinheit C₂ umfaßt: ein Verstärkungsgradkorrekturmittel 11' zum Addieren einer Verstärkungskorrektur zu dem von dem Gesamtdrehmomenterfassungssensor 34 erhaltenen Ausgangsdrehmoment PT zur Ausgabe eines korrigierten Ausgangsdrehmoments FT1; ein Schwerpunktpositionsberechnungsmittel 12 zum Berechnen der Richtung und des Betrags einer Scheinbewegung der Schwerpunktsposition des Fahrzeugs auf Basis der Längs- und Querbe-schleumigungen G_{SX} und G_{SY}; ein Giersteuerbetragberechnungsmittel 13' zum Berechnen eines Giersteuerbetrags YA auf Basis des Ausgangsdrehmoments P. der Fahrzeuggeschwindigkeit V, der I änge- und Querbeschleumigungen G_{SX} und G_{SY}, des Lenkwinkels 0 und der erfaßten Gierrate Y_A; ein Teillastratenberechnungsmittel 14' zum Berechnen von auf die vier Rader verteilten Lastraten Reg', Rel', Run' und Rall' auf Basis der in dem Schwerpunktspositionberechrangsmittel 12 und dem Giersteuerbetragberechnungsmittel 13' berechneten Beträge; rechte und linke Vorder- und Hinterradantriebskraftberechnungsmittel 15_{FE}, 15_{FL}, 15_{RR} und 15_{RL} zum unabhängigen Berechnen von Sollantriebskräften FFR, FFL, FRR und FRL als Soll-Langskrafte für die Rader auf Basis des korrigierten Ausgangsdrehmoments Fr und der Teillastraten Rpg', RpL', Rgg' und RgL'; und ein Antriebsmittel 16 zur Betätigung der hydrostatischen stufenlos verstell-beren Getriebe 31, 22 und 33 mr Basis der Sollantriebekrafte FFR, FFL, FRR und FRL.

Der Gesamidrehmomentersassingsensor 34 berechnet ein übertragenes Drehmoment beispielsweise aus einer Drehmomentwandlercharakteristik zur Angabe eines Ausgangsehehmoments des Getriebes M aus dem Gangverhältnis in dem Getriebe M.

In dieser in Fig. 16 gezeigten zweiten Ausführung entsprechen ein Fahrzeuggeschwindigkeits-entsprechendes Korrekturratenbestimmungsmittel 19, ein Langsbeschleumigungs-entsprechendes Korrekturratenbestimmungsmittel 20, ein Querbeschleunigungs-entsprechendes Korrekturratenbestimmungsmittel 21¹ und ein Durchschnittsberenbungsmittel 22¹ ieweils dem Fahrzeuggeschwindigkeits-entsprechenden Korrekturratenbestimmungsmittel 19, dem Längsbeschleumigungs-entsprechenden Korrekturratenbestimmungsmittel 21 und dem Durchschnittsberechnungsmittel 21 und dem Durchschnittsberechnungsmittel 22 der in Fig. 2 gezeigten ersten Ausführung. Eine in dem Durchschnittsberechnungsmittel 22¹ bestimmte Korrekturrate Cont wird den Verstärkungskorrekturmitteln 11¹ zugeführt, wo die Korrekturrate Cont mit dem Ausgangsdrehmoment Fr multipliziert wird, um ein verstärkungskorrigiertes Ausgangsdrehmoment Fr un erhalten.

Das Giersteuerbetragberechnungsmittel 13' führt im Grunde die gleiche Berechnung durch wie das Giersteuerbetragberechnungsmittel 13 nach Flg. 2, außer daß statt dem Gesamtbremrfluiddruck P_T das Ausgangsdrehmoment F_T verwendet wird und hierdurch von dem Giersteuerbetragberechnungsmittel 13' ein Giersteuerbetrag Y_C' ausgegeben

wird.

In dem Teillastratenberechnungsmittel 14' wird eine Berechnung ähnlich der in dem Teillastratenberechnungsmittel 14 nach Fig. 2 durchgeführt. Insbesondere berechnet das Teillastratenberechnungsmittel 14' die auf die vier Räder verteilten Lasten nach der Laständerung und Zuordnungen des Giersteuerbetrags Y_C' zu den vier Rädern, und es bestimmt auf die vier Räder verteilte Lastraten R_{PR}', R_{PL}', R_{PR}' und R_{RL}' auf Basis der obigen Berechnung und gibt die Lastraten aus.

Die in dem Teillastratenberechnungsmittel 14' bestimmten Teillastraten R_{PR} , R_{PL} , R_{RR} und R_{RL} werden jeweils entsprechenden Antriebskraftberechnungsmitteln 15_{FR}, 15_{FL}, 15_{FL}, 15_{FL}, 12_{RL} und 15_{FL} zugeführt, wo die Sollantriebskräßte F_{FR} , F_{FL} , F_{RR} und F_{EL} als Soll-Längsträßte auf die Räder 15 W_{FR} , W_{FL} , W_{RR} und W_{RL} (If jedes Rad dadurch berechnet werden, das man die Teillastraten R_{FR} , R_{FL} , R_{RR} und R_{RL} jeweils mit den konzigierten Ausgangsdrehmoment F_{TI} multipliziert, um bierdurch die hydrostatischen stufenlos verstellbaren Getriebe 31, 32 und 33 auf Basis dieser Sollantriebskrißte F_{FR} , F_{FL} , F_{RR} und F_{RL} ub betätigen.

Gemäß der zweiten Ausführung werden die hydrostatischen stufenlos verstellbaren Getriebe 31, 32 und 33 gesteuert durch Erfassen des Ausgangsdrehmoments Fr entsprechend einer Gesamtantriebskraft für die Räder Wrp. 25 Wr., WRR und WRL, Bestimmen der Teillastraten Rrg., Rrg., RRg. und RRL. für jedes Rad Wrg. Wrg. WRR und WRL und Verteilen des verstärkungskorrigierten Ausgangsdrehmoments Pr. in Übereinstimmung mit den Teillastraten Rrg., Rrg., RRg., und RR., wodurch die Sollantriebskräfte Prg. 30 Frg., FRR und Frg. für jedes Rad Wrg. Wrj., WRR und WRL bestimmt werden. Hierdurch kann man die Stabilität beibehalten und das Anheben der Fahrzeugfront während Beschlemigung mindern, selbst wenn durch Erhöhen oder Mindem des Ladegewichts und der Anzahl an Insassen die 36 Gewichtsverteilung außer Balance gebracht wird.

Weiter können Lasten auf die Räder W_{FR}, W_{FL}, W_{RR} und W_{RL} geeignet verteilt werden. Daher ist der Reifenabrieh der Räder W_{FR}, W_{FL}, W_{RR} und W_{RL} gleichmäßiger. Flg. 17 zeigt eine Modifikation eines Fahrzeugantriebssy-

In diesem Antriebssystem können die Antriebskräfte auf die Räder W_{FR}, W_{RR}, W_{RR} und W_{RL} unabhängig dachurch gesteuert werden, daß man die Übersetzungsverhältnisse in den bydrostatischen sutfenlos verstellbaren Getrieben 35, 36, 37 und 38 unabhängig voneinander steuert.

Fig. 18 zeigt eine weitere Modifikation eines Fahrzeugantriebssystems, das die Antriebskräfte für jedes Rad W_{FR.} W_{FL} W_{RR} und W_{RL} steuern kann. Ein Getriebe M ist durch ein Differential D_{FP} mit vorderen und hinteren Antriebswellen P_{RP} und P_{RR} verbunden. Ein Differential D_{FP} sitzt zwischen der vorderen Antriebswelle P_{RP} und den rechten und linken Vorderachsen A_{FR} und A_{FL}, die jeweils mit den rechten und linken Vorderatdern W_{FR} und W_{FL} verbunden sind.

Ein Differential D_{RR} sitzt zwischen der hinteren Antriebswelle P_{RR} und rechten und linken Hinterachsen A_{RR} und A_{RL} , die jeweils mit den rechten und linken Hinterrädern W_{RR} und W_{RL} verbunden sind.

Darüberhinaus sind Verteilungsmechanismen 39 und 40 zwischen den vorderen und hinteren Antriebswellen P_{RF} und P_{RR} zur Umgehung des Differentials D_{FC} vorgesehen. Verteilermechanismen 41 und 42 sind zwischen den rechten und linken Vorderachsen A_{FR} und A_{FC} zur Umgehung des Differentials D_{FR} vorgesehen. Verteilermechanismen 43 und 44 sind zwischen den rechten und linken Hinterachsen A_{RR}

und A_{RL} zur Umgehung des Differentials D_{RR} vorgesehen.
Der Verteilermschamsnus 39 umfaßt: ein an der vorderen
Antriebswelle P_{FR} relativ drehbar gehaltenes Zahnrad 45;
eine zwischen dem Zahnrad 45 und der vorderen Antriebswelle P_{FR} angeordnete Kupplung 46; ein mit dem Zahnrad
47; ein Eingriff stehendes Zahnrad 47; ein auf der hinteren
Antriebswelle P_{FR} fest angebrachtes Zahnrad 48; und ein
mit dem Zahnrad 47 einstückiges Zahnrad 49, das mit dem
Zahnrad 48 in Eingriff steht. Weiter haben die Zahnräder 46
und 47 einen Radius R₂, das Zahnrad 49 hat einen Radius R₂
und das Zahnrad 48 hat einen Radius R₃.

Wenn in diesem Verteilermechanismus 39 die Kupplung 46 in einen eingerückten Zustand gebracht wird, wird eine Beziehung Ng-Ng = R₃/R₂ zwischen der Drehzahl Ng der hinteren Antriebswelle P_{RP} und der Drehzahl Ng der hinteren Antriebswelle P_{RR} eingerichtet. Darüberhinaus kann Ng-Ng zwischen R₃/R₂ und R₂/R₃ durch Einstellen der Eingriffskraft der Kupplung 46 frei geändert werden.
Die anderen Verteilermechanismen 40 und 44 haben die

Die anderen Verteilermechanismen 40 und 44 haben die gleiche Grundkonstruktion wie der Verteilermechanismus 30

Hierdurch kann man die Antriebskräfte auf die Räder W_{FR}, W_{FL}, W_{RR} und W_{RL} unabhängig vooseinander dachurch steuern, das man das Einrücken und Ausrücken der Kupplungen 46 in den Verteilermechanismen 39 bis 44 unabhängig voneinander steuert.

Fig. 19 zeigt eine weitere Modifikation eines Breims/Antriebssystems für ein Fahrzeug, das die Antriebskräfte für des Rad W_{FR}, W_{FL}, W_{RR} und W_{RL}, steuern kann. Ein Geriebe M ist durch ein Differential D_{FC} mit vorderen und hinteren Antriebswelle P_{RF} und P_{RR} verbunden. Ein Differential D_{FF} sitzt zwischen der vorderen Antriebswelle P_{RF} und rechten und linken Vorderrädern W_{FR} und M_{FL}, die jeweils mit rechten und linken Vorderrädern W_{FR} und W_{FL}, verbunden sind. Bin Differential D_{FR} sitzt zwischen der hinteren Antriebswelle P_{RR} und rechten und linken Hinterachsen A_{RR} und A_{RL}, die jeweils mit rechten und linken Hinterachsen M_{FR} und W_{RL} verbunden sind. An den Rädern W_{FR}, W_{FL}, W_{RR} und W_{RL} sind jeweils Bremsen B_{FR}, B_{FL}, B_{RR} und B_{RL} angebracht. Weiter sind Viskokupplungen 51, 52, 52 zur Bildung eines Differentialbegrenzungseffekts zwischen den vorderen und hinteren Antriebswellen P_{RF} und P_{RR}, zwischen den rechten und linken Hinterachsen A_{RR} und A_{RL} und zwischen dem rechten und linken Hinterachsen A_{RR} und A_{RL} angeordnet.

In diesem Brems/Antriebssystem können die Antriebskräfte auf die Räder Weg, Weg, Weg, und Weg, unabhängig dadurch gesteuert werden, daß man die Bremsen Beg, Beg, Beg und Beg, unabhängig steuert. Somit läßt sich der Bremsfluiddruck so steuern, daß die Bremse des Rads, für das die Antriebskräft am größten sein sollte, außer Betrieb genommen wird, so daß Antriebskräfte auf die anderen Bremsen verteilt werden können.

Es wird eine Gesamtlängskraft als eine Summe der an mehrere Räder anzulegenden Längskräfte bestimmt. Weiter werden auf die Räder verteilte Lastraten relativ zum Gesamtgewicht eines Fahrzeugs bestimmt. Die Gesamtlängskraft wird auf die Räder entsprechend den Teillastraten vorteilt, um hierdurch die an jedes der Räder anzulegenden Sollradlängskräfte zu bestimmen. Die Längskräfte für jedes der Röder werden jeweils auf Bazis der Sollradlängskräfte gesteuert. Hierdurch läßt sich die Leistungsfähigkeit jedes der Räder maximel ausmutzen, während man die Lage des Fahrzeugs zufriedenstellend hält.

Patentansprücbe

 Verfahren zur unabhängigen Steuerung an mehrere Räder eines Fahrzeugs jeweils anzulegender Bremskräfte, umfassend:

Bestimmen einer auf das Fahrzeug wirkenden Gesamtbremskraft (Pr) aus einer Summe der an die Räder 15 (WFR, WFL, WRR, WRL) anzulegenden jeweiligen Bremskrafte nach Maßgabe einer vom Fahrzeugfahrer

Bestimmen von an jedes der Räder (W_{FR}, W_{FL}, W_{RR}, W_{RL}) anzulegenden Soll-Bremskräften (P_{FR}, P_{FL}, P_{RR}, 20 P_{RL}) durch Verteilen der Gesamtbremskräft (P_Y) auf die Räder (W_{FR}, W_{FL}, W_{RR}, W_{RL}) nach Maßgabe aus erfaßten Bewegungswerten der Fahrzeugkarosserie berechneter Verteilungsverhältnisse und

Steuern der zu jedes der Räder (Wpz., Wpz., Wpz.) 25 anzulegenden Bremskräfte in Abhängigkeit von den an jedes der Räder (Wpz., Wpr., Wgg., Wgl.) anzulegenden Soll-Bremskräften (Ppz., Pp., Ppg., Pgl.)

dadurch gekennzeichnet, daß die jeweilige Längs- und Querlage des Fahrzeug- 30 schwerpunkts unter Verwendung von Ausgangssignalen aus Beschleunigungssensoren (5, 6) berechnet

daß aus der errechneten Schwerpunktslage des Fehrzeugs entsprechenden Reillasten (WTrg., WTrg., 33 WTrg., WTg.) der einzelnen Räder (Wrg., Wrg., Wgg., Wgg.) was der einzelnen Räder (Wrg., Wrg., Wgg., Wgg.) auf jedes Rad wirkende und in ihrer Summe konstante Teillastraten (Rrg., Rrg., Rrg., Rrg., Rrg., Rrg., Rrg., Rrg., Rrg., Rrg.) berechnet werden und

daß die Soll-Bremskräfte (P_{FR}, P_{RL}, P_{RR}, P_{RL}) für jedes 40 Rad nach Maßgabe der Verteilung der Gesamtbremskraft (P_T) auf die einzelnon Räder (W_{FR}, W_{FL}, W_{RR}, W_{RL}) auf der Basis der Teillastraten (R_{FR}, R_{FL}, R_{RR}, R_{RL}, R_{RR}, R_R, R_{RL}, R_{RR}, R_{RL}, R_R, R_{RL}, R_R, R_R

2. Verfahren nach Anspruch 1, dachrich gekennzeichset, daß aus einer erfaßten Verzögerung (G_{5X}) des
Fahrzeugs und aus einer erfaßten Querbeschleunigung
(G_{5Y}) des Fahrzeugs Richtung und Betrag (ΔX, ΔY) einer Schwerpunktverlagerung des Fahrzeugs bestimmt

Verfahren nach Anspruch 2, dadurch gekemzeichnet, daß die Gesamibremskraft (P_T) auf Basis einer Abweichung zwischen der erfaßten Verzögerung des Pahrzeugs und einer auf Basis der Gesamibremskraft (P_T) bestimmten Sollverzögerung (So) des Fahrzeugs 53 korrigient wird.

4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß ein Soll-Gierbetreg (Y_B) des Fahrzeugs auf Basis eines Lenkbetrags (8) bestimmt wird, daß ein Ist-Gierbetrag (Y_A) des Fahrzeugs erfaßt wird und daß die 60 Verteilung der Soll-Bremskräfte (P_{FR}, P_{FL}, P_{RR}, P_{RL}) auf die Räder (W_{FR}, W_{FL}, W_{RR}, W_{RL}) auf Basis einer Abweichung zwischen dem Soll-Gierbetrag (Y_B) und dem Ist-Gierbetrag (Y_A) au geänden wird, daß die Summe der Soll-Bremskräfte (P_{FR}, P_{FL}, P_{RR}, E_{RL}) konstant ist.

 Verfahren zur unabhängigen Steuerung an Vorderund Hinterräder eines Fahrzeugs anzulegender Antriebsdrehmomente umfassend:

Bestimmen eines Gesamtantriebsdrehmoments (F_T) aus einer Summe der an die Räder (W_{FR}, W_{FL} W_{RR}, W_{RL}) anzulegenden Antriebsdrehmomente;

Bestimmen von an die R\u00e4der (W_{FR}, W_{RL}, W_{RR}, W_{RL}) jeweils anzulegenden Soll-Antriebsdrehmomenten (F_{FR}, F_{FL}, F_{RR} F_{RL}) durch Verteilen des Gesamtantriebsdrehmoments (F_F) auf die R\u00e4der (W_{FR}, W_{FL}, W_{RR}, W_{RL}) nach Ma\u00e4gabe aus erfalten Bewegungswerten der Fahrzeugkarosserie berechneter Verteilungsverh\u00e4tnisse und

Steuern der an jedes der Räder (W_{FR}, W_{FL}, W_{RR}, W_{RL}) angelegten Antriebsdrehmomente in Abhängigkeit von den an jedes der Räder (W_{FR}, W_{FL}, W_{RR}, W_{RL}) anzulegenden Soll-Antriebsdrehmomenten (F_{FR}, F_{FL}, F_{RL}

wubri die Jeweilige Längs- und Querlage des Fahrzeugschwerpunkts unter Verwendung von Ausgangssignalen aus Beschleunigungssensoren (5, 6) berechnet

wobei aus der errechneten Schwerpunktslage des Fahrzeugs entsprechenden Teillasten (WT_{FR}', WT_{FL}', WT_{FL}', WT_{FL}', WT_{FL}', WT_{FL}', WT_{FL}', WT_{FL}', WR_{FL}, WR_{FL}, WR_{FL}, WR_{FL}, WR_{FL}, RR_{FL}, RR

Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß die Teillastraten (R_{FR}, R_{RL}, R_{RR}, R_{RL}; R_{FR}, R_{RL}, R_{RR}, R_{RL}) der einzelnen Räder aus einer erfaßten Längsbeschleunigung (G_{3X}) des Fahrzeugs und aus einer erfaßten Quorbosohleunigung (G₅₁) des Pahrzeugs bestimmt werden.

7. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß ein Soll-Gierbetrag (Yn) des Pahrzeugs auf Basis eines Lenkbetrags (ft) bestimmt wird, daß ein Ist-Gierbetrag (YA) des Fahrzeugs erfaßt wird und daß die Verteilung der Soll-Antriebsdrehmomente (Fpr. Fpr. Fr. Fr.) auf die R\u00e4der (Wfr. Wfr. War. Wr.) auf Basis einer Abweichung zwischen dem Soll-Gierbetrag (Yn) und dem Ist-Gierbetrag (YA) so ge\u00e4ndert wird, daß die Summe der Soll-Antriebsdrehmomente (Fpr. Fr. Fr. Fr.) konstant ist.

Hierzu 14 Scirc(u) Zeichnungen

Nummer: int. Cl.⁷: Veröffentlichungstag: DE 43 21 571 C2 B 60 T 8/32 3. Februar 2000

FIG.4

Nummer: Int. Cl.⁷: Veröffentlichungstag: DE 43 21 571 C2 B 60 T 8/32 3. Februar 2000

FIG.5

FIG.6

ZEICHNUNGEN SEITE 6

Nummer: Int. Cl.⁷: Verüffertlichungstag: DE 43 21 571 C2 B 60 T 8/32 3. Februar 2000

FIG.9

902 165/33

Nummer: Int. Cl.⁷: Veröffentlichungstag:

DE 43 21 871 C2 B 60 T 8/32 3. Februar 2000

902 165/33

Nummer: Int. Cl.⁷: Veröffentlichungstag: DE 43 21 871 C2 8 60 T 8/32 3. Februar 2000

Nummer: Int. Ct.⁷: Veröffentlichungstag: DE 43 21 571 C2 B 60 T 8/32 3. Februar 2000

