

IPC AI 免校正说明

文档版**木** 09

华去□钿 2010 01 20

版权所有 © 深圳市海思半导体有限公司 2015-2018。保留一切权利。

非经本公司书面许可,任何单位和个人不得擅自摘抄、复制本文档内容的部分或全部,并不得以任何形 式传播。

商标声明

(上) A HISILICON 、海思和其他海思商标均为深圳市海思半导体有限公司的商标。

本文档提及的其他所有商标或注册商标,由各自的所有人拥有。

注意

您购买的产品、服务或特性等应受海思公司商业合同和条款的约束,本文档中描述的全部或部分产品、 服务或特性可能不在您的购买或使用范围之内。除非合同另有约定,海思公司对本文档内容不做任何明 示或默示的声明或保证。

.指 NORONO ROO SPRONTO
A
NORO 由于产品版本升级或其他原因,本文档内容会不定期进行更新。除非另有约定,本文档仅作为使用指导, 本文档中的所有陈述、信息和建议不构成任何明示或暗示的担保。

深圳市海思半导体有限公司

地址: 深圳市龙岗区坂田华为基地华为电气生产中心 邮编: 518129

网址: http://www.hisilicon.com

+86-755-28788858 客户服务电话:

客户服务传真: +86-755-28357515

客户服务邮箱: support@hisilicon.com

前言

概述

本文档主要介绍了 IPC Auto IRIS 免校正电路的软硬件设计要点。

产品版本

与本文档相对应的产品版本如下。

产品名称	产品版本
Hi3518A	V100
Hi3518C	V100
Hi3518E	V100
Hi3516C	V100
Hi3516A	V100
Hi3516D	V100
Hi3518E	V200
Hi3518E	V201
Hi3516C	V200
Hi3519	V100
Hi3519	V101
Hi3516A	V200
Hi3516C	V300
Hi3516E	V100
Hi3559A	V100
Hi3559C	V100
Hi3519A	V100

产品名称	产品版本
Hi3556A	V100

读者对象

本文档(本指南)主要适用于以下工程师:

- 技术支持工程师
- 单板硬件开发工程师

修订记录

修订记录累积了每次文档更新的说明。最新版本的文档包含以前所有文档版本的更新内容。

文档版本 09 (2018-01-30)

2.1 小节, 图 2-1 涉及修改

第3章涉及修改

文档版本 08 (2016-11-15)

第3章节, 涉及更新。

文档版本 07 (2016-08-24)

添加 Hi3519V101 和 Hi3516CV300 的相关内容。

文档版本 06 (2016-03-14)

1.1 小节涉及修改。

文档版本 05 (2015-11-09)

添加 Hi3519V100 的相关内容。

文档版本 04 (2015-09-28)

添加 Hi3518EV200/V201 和 Hi3516CV200 的相关内容。

文档版本 03 (2015-03-30)

添加"AI 算法说明"章节。

目 录

前	音	i
1海	思 IPC AI 说明	1
	1.1 概述	1
2 AI	硬件实现电路	6
	2.1 AI 分析	6
	2.2 电路设计需要注意的问题	7
3 AI	算法说明	8

1 海思 IPC AI 说明

1.1 概述

带有自动光圈的镜头可以按照 ISP 输出的控制来扩大或者缩小其光圈,以控制进入镜头的光量。

自动光圈镜头分为视频驱动和直流驱动两种类型:

- Video: 镜头本身包含放大器电路,用以将摄像头传来的视频幅度信号转换成对光 圈马达的控制。一般视频驱动自动光圈接口使用 3 个针,即电源正、视频、接地。
- DC: 直流驱动,利用摄像头上的直流电压来直接控制光圈。指整机内部增加了镜头光圈电动机的驱动电路,可以直接输出直流控制电压到镜头内的光圈电动机并使其转动。直流驱动自动光圈接口使用 4 个 pin,即 DRV+、DRV-、CONT+、CONT-。

DC 驱动镜头为安防领域主要的 AI 镜头类型。以下我们仅对 DC 驱动模式进行介绍。

物理结构上,光圈部分是一个光帘幕,由1个固定驱动线圈和1个转动的磁体芯子驱动。和固定驱动线圈在一起的还有一个反馈(也称阻尼、制动)线圈。当光线较弱的时候,相机为了增加进光量,输出给驱动线圈用的推挽驱动运算放大器正向输入的电压增加,则线圈正向通电,导致光幕帘向打开方向移动,而此时反馈线圈因为切割转子磁体的磁力线,产生电动势,转子越快,反馈的电动势越高,耦合到运放的负反馈端。这样则运放对驱动线圈的输出减弱,以控制光幕帘开启速度。如果光线过强,相机输出给电路的是反向的电压,则驱动线圈反向通电,光幕帘向关闭方向移动,同时反馈线圈的负反馈作用也反响,减缓幕帘关闭速度。通过相机不停的调整信号,光幕帘处于一个动态平衡的状态,该状态就是光幕帘开启的大小。

Talki 3510A VIORO 10025

自动光圈控制信号接口和自动光圈电机接口如下:

在验证 AI 功能前请确认 AI 控制电路的 DRV 电压会随 PWM 占空比的变化而在一个区间内线性变化;空载不带镜头与负载带镜头情况下 PWM 与输出驱动电压的变化情况,类似表 1-1 与表 1-2。

表1-1 AI 控制电路的 DRV 电压随 PWM 占空比的变化情况(空载不带镜头)

PWM 占空比	DRV (V)
79%	3.45
78%	3.42
77%	3.32
76%	3.22
75%	3.12
74%	3.02
73%	2.92
72%	2.82
71%	2.72
70%	2.62
69%	2.52
68%	2.42
67%	2.32
66%	2.22
65%	2.12
64%	2.02
63%	1.92

PWM 占空比	DRV (V)
62%	1.82
61%	1.72
60%	1.62
59%	1.52
58%	1.42
57%	1.32
56%	1.22
55%	1.12
54%	1.02
53%	0.92
52%	0.82
51%	0.72
50%	0.62
49%	0.52
48%	0.42
47%	0.32
46%	0.22
45%	0.12
44%	0.02
43%	0.01
42%	0.01
41%	0.01
40%	0.01
39%	0.01

表1-2 AI 控制电路的 DRV 电压随 PWM 占空比的变化情况(负载带镜头)

PWM 占空比	DRV (V)
79%	2.88
78%	2.88
77%	2.88

PWM 占空比	DRV (V)
76%	2.88
75%	2.88
74%	2.88
73%	2.88
72%	2.88
71%	2.88
70%	2.87
69%	2.87
68%	2.85
67%	2.8
66%	2.72
65%	2.62
64%	2.53
63%	2.43
62%	2.34
61%	2.24
60%	2.15
59%	2.06
58%	1.96
57%	1.87
56%	1.77
55%	1.68
54%	1.59
53%	1.5
52%	1.4
51%	1.31
50%	1.22
49%	1.12
48%	1.03
47%	0.94
46%	0.85

PWM 占空比	DRV (V)
45%	0.76
44%	0.66
43%	0.57
42%	0.48
41%	0.39

推荐运放选型: ST 的 LM358; TI 的 TLV2372。

AI 运放芯片的选型需参考实际电路测试数据,如下:

- 空载不接镜头,pwm 输出占空比 60%的信号时,DRV+输出在 1.6V~2V 之间。
- 负载带镜头, pwm 输出占空比 50%的信号时, DRV+输出小于 1.6V。
- 负载带镜头,pwm 输出占空比 80%的信号时,DRV+输出在 2.8V 以上。

注意

上述测试数据基于海思 Demo 板及镜头测试得出,仅供参考。实际使用时,只要 pwm 输出占空比 10%时可以关闭镜头,pwm 输出占空比 90%时可以打开镜头,带负载时线性区域 pwm 输出占空比每增加 1%对应 DRV+输出增加约 0.1V 即可。

2 AI 硬件实现电路

2.1 AI 分析

当驱动电压大于阻尼电线圈电压时,光圈处于打开的状态。软件算法依据 ISP 里面直方图信息,统计当前的亮度信息。

- 当 AE 已经达到最小值,而直方图统计出来的亮度信息还是比正常亮度要大,这时候需要调整光圈,使光圈变小,减小进光量。最终使图像的亮度值达到正常。
- 当时 AE 已经调整到最大值,直方图统计出来的亮度信息比正常亮度要小,这时候要使光圈变大,增加进光量。最终使图像的亮度达到正常。

光圈的大小是通过系统统计亮度信息后,根据实际情况输出不同 PWM 占空比,通过 RC 电路后转换成直流电压,通过放大器电路后控制 DRV 电压大小,使光圈缓慢的打开和关闭。

All Hi3519A VIOROOTOO SPOOT ON THE HEALTH HE

图2-1 AI 控制电路

2.2 电路设计需要注意的问题

- 在海思 IPC 方案上,要求客户完全拷贝海思电路(具体电路请参考 ai circuit verb 板 原理图中的 DC_IRIS I 部分线路图,如图 2-1 所示。
- 为确保精确控制,要求电路中的各个电阻均采用 1%精密电阻,电容均采用 5%精密 电容;
- 客户在实际产品设计中,不可因为没有相应规格的电阻或电容而取就近的值,也不 能采用 5%的普通电阻或 10%的普通电容来取代,这可能会由于器件的批次性不一 致,从而影响光圈的精密控制;不可采取等效的方式来减少电路中的电阻数量;采 用的运放,要求采用海思推荐的运放型号;
- D-IRIS 电路中,5V 电源的电源质量非常关键,其直接关系到光圈的精密控制,若 电源纹波噪声太大,可能会使得光圈出现振荡现象,理论上 5V 电源的纹波噪声越 小越好,对光圈的控制会越精密;推荐 5V 电源的纹波噪声控制在 30mV 以下(越小 越好); 5V 电源的电路处理, 可参考 ai circuit verb 板原理图中的 DC IRIS I 部分线 路图,如图 2-1 所示。

3 AI 算法说明

- 进行 AI 算法测试前,建议确认 AI 电路特性是否符合上述硬件电路设计要求。
- 针对 DC-Iris 镜头,免校正 AI 算法会根据环境亮度,对光圈进行调节。当曝光时间和增益达到最小值之后,会进入光圈控制区域,当光圈控制能满足目标亮度的要求时,AE 直接返回,保持曝光时间和增益不变。当画面亮度稳定且 PWM 占空比维持在打开值一段时间后,AI 算法会认为光圈已经打开至最大,退出光圈控制区,将控制权交还给 AE。处于光圈控制区时,更改 AE 算法参数,如最大/最小曝光时间、最大/最小增益和抗闪等需要即时生效的参数,AE 会即时响应,根据新设定的参数和环境亮度,AI 算法重新决定是否要进入光圈控制区。由于进入光圈控制区域和退出光圈控制区域需要短暂时间,针对非 DC-Iris 镜头建议关闭 AI 功能,否则AE 的调节速度会受到一点影响。针对 DC-Iris 镜头建议一直打开 AI 功能,随意开关 AI 容易导致光圈控制出现异常。
- 利用海思 Demo 板或 Ref 板进行 DC-Iris 测试时,可以指定使用的 PWM Number。 PWM Number 指定方法及 AI MPI 接口的使用方法详见《HiISP 开发参考》。

