Axiomatising Logics with Separating Conjunction and Modalities

Jelia'19

Stéphane Demri¹, Raul Fervari², **Alessio Mansutti**¹

¹LSV, CNRS, ENS Paris-Saclay, France

²CONICET, Universidad Nacional de Córdoba, Argentina

The fascinating realm of model-updating logics

- Logic of bunched implication
- Separation logic
- Logics of public announcement
- Sabotage modal logics
- One agent refinement modal logic
- Modal Separation Logics (MSL)
- MSL for resource dynamics

[O'Hearn, Pym - BSL'99]

[Reynolds - LICS'02]

[Lutz - AAMAS'06]

[Aucher et al. – M4M'07]

[Bozzelli et al. – JELIA'12]

[Demri, Fervari - AIML'18]

[Courtault, Galmiche – JLC'18]

Hilbert-style axiomatisation for model-updating logics

- Designing internal calculi for model-updating logics is not easy.
- Usually, external features are introduced in order to define sound and complete calculi:
 - nominals (e.g. Hybrid SL) [Brotherston, Villard POPL'14]
 - labels (e.g. bunched implication) [Docherty, Pym FOSSACS'18]

In this work: we use a "general" approach to define Hilbert-style axiom systems for MSL.

 \Rightarrow All axioms and rules involve only formulae from the target logic.

Modal separation logics

Models $\mathfrak{M} = (\mathfrak{U}, \mathfrak{R}, \mathfrak{V})$:

- U infinite and countable,
- lacksquare $\mathfrak{R}\subseteq\mathfrak{U}\times\mathfrak{U}$ is finite and weakly functional (deterministic),
- $\blacksquare \mathfrak{V}: PROP \to \mathcal{P}(\mathfrak{U}).$

i.e. same models of the modal logic Alt₁.

Disjoint union $\mathfrak{M}_1 + \mathfrak{M}_2 =$ union of the accessibility relations. It is defined iff the relation we obtain is still functional.

Modal separation logics $MSL(*, \diamondsuit, \langle \neq \rangle)$

$$\varphi ::= \overbrace{p \mid \neg \varphi \mid \varphi \wedge \varphi \mid \Diamond \varphi \mid \langle \neq \rangle \varphi}^{\text{modal logic of inequality [de Rijke, JSL'92]}} \underbrace{\text{emp} \mid \varphi * \varphi}_{\text{emp}}$$

Interpreted on pointed models: $\mathfrak{M}=(\mathfrak{U},\mathfrak{R},\mathfrak{V})$ and $\mathfrak{w}\in\mathfrak{U}$.

- $\mathfrak{M}, \mathfrak{w} \models \langle \neq \rangle \varphi \text{ iff there is } \mathfrak{w}' \in \mathfrak{U} \backslash \{\mathfrak{w}\}: \ \mathfrak{M}, \mathfrak{w}' \models \varphi.$
- lacksquare $\mathfrak{M},\mathfrak{w}\models \mathtt{emp}$ iff $\mathfrak{R}=\emptyset$.
- $\blacksquare \mathfrak{M}, \mathfrak{w} \models \varphi * \psi \text{ iff } \mathfrak{M}_1, \mathfrak{w} \models \varphi, \ \mathfrak{M}_2, \mathfrak{w} \models \psi \text{ for some } \mathfrak{M}_1 + \mathfrak{M}_2 = \mathfrak{M}.$

What can $MSL(*, \diamondsuit, \langle \neq \rangle)$ do?

 $MSL(*, \diamondsuit)$, i.e. $MSL(*, \diamondsuit, \langle \neq \rangle)$ without $\langle \neq \rangle$, is more expressive than Alt_1 :

■ The cardinality of \mathfrak{R} is at least β :

$$\mathtt{size} \geq \beta \stackrel{\mathsf{def}}{=} \underbrace{\neg \mathtt{emp} * \cdots * \neg \mathtt{emp}}_{\beta \text{ times}}$$

■ The model is a loop of length 2 visiting the current world \mathfrak{w} :

$$\begin{array}{c} \mathtt{size} \geq 2 \land \neg \mathtt{size} \geq 3 \land \Diamond \Diamond \Diamond \top \land \\ \neg (\neg \mathtt{emp} * \Diamond \Diamond \Diamond \top) \land \neg \Diamond (\neg \mathtt{emp} * \Diamond \Diamond \Diamond \top) \\ \hline \mathtt{removes} & \mathfrak{w} \end{array}$$

What do we know about MSL?

- SAT(MSL(*, \diamondsuit , $\langle \neq \rangle$)) is Tower-complete.
- SAT(MSL(*, \diamond)) and SAT(MSL(*, $\langle \neq \rangle$)) are NP-complete.
 - proofs are done by defining model abstractions
 - E.g. for $MSL(*, \diamondsuit)$, $(Q_i \subseteq PROP)$

What do we know about MSL?

- SAT(MSL(*, \diamondsuit , $\langle \neq \rangle$)) is Tower-complete.
- SAT(MSL(*, \diamondsuit)) and SAT(MSL(*, $\langle \neq \rangle$)) are NP-complete.
 - proofs are done by defining model abstractions
 - E.g. for $MSL(*, \diamondsuit)$, $(Q_i \subseteq PROP)$

■ The equivalence relation \approx induced by this abstraction characterises the indistinguishability relation of $MSL(*, \diamondsuit)$.

Can we use this for axiomatisation?

Core formulae for $MSL(*, \diamondsuit)$

■ From the indistinguishability relation \approx , define a set of *core formulae* capturing the equivalence classes of \approx .

Theorem (A Gaifman locality result for $MSL(*, \diamondsuit)$)

Every formula of $MSL(*, \diamondsuit)$ is logically equivalent to a Boolean combination of core formulae.

Core formulae for $MSL(*, \diamondsuit)$

■ From the indistinguishability relation \approx , define a set of *core formulae* capturing the equivalence classes of \approx .

Theorem (A Gaifman locality result for $MSL(*, \diamondsuit)$)

Every formula of $MSL(*, \diamondsuit)$ is logically equivalent to a Boolean combination of core formulae.

■ Core formulae: Size formulae size $\geq \beta$ and graph formulae, e.g. a formula of MSL(*, \diamondsuit) that characterises

■ **Important:** The core formulae are all formulae from $MSL(*, \diamondsuit)$.

Method to axiomatise $MSL(*, \diamondsuit)$

The proof system is made of three parts:

- Axioms and rules from propositional calculus;
- Axioms for Boolean combinations of core formulae (Bool(Core));
- 3 Axioms and rules to transform every formula into a Boolean combination of core formulae.
 - Require for every φ, ψ in **Bool**(Core) to exhibit formulae in **Bool**(Core) that are equivalent to $\varphi * \psi$ and $\Diamond \varphi$.
 - Replay syntactically the proof of Gaifman locality for $MSL(*, \diamondsuit)$.

(Similar to reduction axioms used in Dynamic epistemic logic)

Eliminating modalities & reasoning on core formulae

where φ in MSL(*, \diamondsuit), and ψ_i , ψ are in **Bool**(Core).

Concluding remarks

- Hilbert-style axiomatisation of $MSL(*, \diamondsuit)$ and $MSL(*, \langle \neq \rangle)$.
- Axiomatisations derived from the abstractions used for complexity.
- Reusable method in practice: now used to axiomatise propositional SL and a guarded fragment of FOSL. [Demri, Lozes, M. sub.]

Possible continuations:

- Axiomatisation of $MSL(*, \diamondsuit, \langle \neq \rangle)$.
- Calculi with optimal complexities.
 - tableaux calculi for MSL(*, ⋄).

[Fervari, Saravia - ongoing]