

1a Avaliação - Exercícios

Parte 1 - Padrões em Sequências de Proteínas

Considere o seguinte alinhamento de um grupo de sequências de proteínas. Neste grupo, apenas sequências com motivos verdadeiros são encontradas. No geral, elas possuem cerca de 16,5% de identidade.

P49918	MSD	ASLRSTSTME	RLVARGTFPV	LVRTSACRSL	FGPVDHE
Q96TE0	MSN	.VRVSNGSPS	LERMDARQAD	HPKPSACRNL	FGPVDHE
Q91603	MAAFH	IALQEEMIVA	SPAALPRLSL	GTGRGACRNL	FGPIDHD
Q4FK34		M	SNL.GDVRPV	PHRSKVCRCL	FGPVDSE
Q9U6R5			MAATTAG	DGKRKAARCL	FGKPDPEE
Q179M8	MSARVCNPVA	LSEIAKLRSP	AVVRKPMTNS	ISLARVKRDL	FGPVDKQ
Q61CE7				MSARRCL	FGRPTPEQRA
P49918	ELSRELQARL	AELNAEDQNR	WDYDFQQDMP	LRGPG.	RLQWTEVDSD
Q96TE0	ELTRDLEKHC	${\tt RDMEEASQRK}$	WNFDFQNHKP	LEG.	KYEWQEVEKG
Q91603	ELRSELKRQL	KEIQASDCQR	WNFDFESGTP	LKG.	TFCWEPVETK
Q4FK34	QLRRDCDALM	AGCLQEARER	${\tt WNFDFVTETP}$	LEG.	NFVWERVRSL
Q9U6R5	QVSRQLNSSL	${\tt EEMYKKDSRK}$	${\tt FNFDFSGGVP}$	IVGSRG.	DYEFESISAS
Q179M8	ESKNFIDRQL	AAQNDALSKK	WGFDFTAGEP	LQNHE	QYQWERVPPT
Q61CE7	RTREWLDNAC	KRIREEESKK	${\tt WGFDFELGMP}$	LPSLMISTEV	DYKYEILPEC
P49918	SVPAFYRETV	QVGRCRLLLA	PRP.VAVAVA	VSPPLEPAAE	SLDGLEEAPE
Q96TE0	SLPEFYYRPP	RPPKGACKVP	AQESQDGSGS	RPAAPLIGAP	ANSEDTH
Q91603	DVPSFYS	PS.RSLAANT	TPQSRQQQPL	LVSRQPE	PREEA
Q4FK34	GLPKVYLSPG	SRS.RDDLGG	DKRPSTSSAL	LQGPAPED	HVALS.LSCT
Q9U6R5	EVPSFYREKI	VRPRKIIARR	NSTPVSDTVE	MPSESPPVVE	SNETPLLIAS

017040	CADACETCANA TI TROAURAD OCCTTOERI I DORAERENAC I VOLIDO
Q179M8	SAPACFTGMV TLTRGAHRVP QSSTISEDLL DQRAERENASLYRHPS
Q61CE7	SVPEFYRTKV ISVNTSHSTH TDLNLSSTTL TPLSSPSTSE KEEPSLM
P49918	QLPSVPVPAP ASTPPPVPVL APAPAPAPAP VAAPVAAPVA VAVLAPAPAP
Q96TE0	LVDPKTDPSD SQTGLAEQCA GIRKRPATDD SSTQNKRA NRTEENVSDG
Q91603	PVDTVRNVPN PPCAKENAEK IIKRCQGVKG PTKASANTST QRRKREITTP
Q4FK34	LVSERPE DSPGGPGTSQ GRKRRQTSLT DFYHSKRRLV FCKRKP
Q9U6R5	TSTEVTVYEK PVTRSSAAKQ SIEQQETYNL KQTKLTNYMP VRKRRSETCL
Q179M8	SISSPASVSG SDSESDCSFE TVRTHPLVLR SETIVSINTA STTTITSSST
Q61CE7	DHNSSFEDEE EPKKWLFREP PTPRKSPQKR QQKVTDFYTI TRKKNSMSP.
P49918	APAPAPAP VAAPAPAPA APAP APAPAPAPDA APQESAEQGA
Q96TE0	SPNAGSVEQT PKKPGL RRRQT
Q91603	IT
Q4FK34	
Q9U6R5	VTAAVSMSRS VSIDSSMESC KEKRGSKIVH NNKGAPKRPL RFVASNVPKS
Q179M8	PSFPATVNRA KRQQRITDYL KERKRLSTGA PKSTAAKKAR QMLMTSASPS
Q179M8 Q61CE7	KMSPKNVIYT PKSRRPTV STRSPY
Q61CE7	NISPANVITI PSARPIV SIRSPT
D40040	NOCODCOEDL ADOLLICATES ADMAGTALAS AND CALTE VISCONTEDE
P49918	NQGQRGQEPL ADQLHSGISG RPAAGTAAAS ANGAAIK KLSGPLISDF
Q96TE0	
Q91603	DY
Q4FK34	
Q9U6R5	AQSSTSDTVL VSSPRSPPAK KMTTSTRRSR RPIEAGDF
Q179M8	AASSISSSS ANATAQQDH
Q61CE7	
P49918	FAKRKRSAPE .KSSGDVPAP CPSPSAAPGV GSVEQTPRKR LR
Q96TE0	
Q91603	FPKRKKILSA KPDATKGVHLL CPLEQTPRKK IR
Q4FK34	• • • • • • • • • • • • • • • • • • • •
Q9U6R5	
Q179M8	
Q61CE7	
20-02,	

Clique aqui para baixar o arquivo alinhado.

Clique aqui para baixar o arquivo não alinhado.

O arquivo não alinhado pode utilizado para você treinar suas habilidades de alinhamento múltiplo de sequências. Para isso use o muscle ou MAFFT.

Parte 1 (para entrega):

Identifique as proteínas (função e qual organismo) do arquivo acima. Descreva apenas os cabeçalhos de cada uma delas.

O seu objetivo é construir uma assinatura do tipo PROSITE, completamente funcional, a partir do alinhamento acima.

Exemplo de uma assinatura PROSITE:

$$C-x(5)-PVCC-x(1,4)-G-x(1,6)-T-x(2)-N-x(1)-C-x(7,14)-G-x(1)-C-x(1,5)-[HN]-x(4)-P$$

Para isso, abra o arquivo alinhado identifique os sítios conservados com ajuda de uma visualização em cores do alinhamento e vá fazendo testes para a sua assinatura. Use a tabela de classificação dos aminoácidos abaixo para incluir variações possíveis na assinatura. Adicionalmente você também pode utilizar matrizes do tipo BLOSUM ou PAM para guiar sua decisão em relação as variações possíveis (neste caso, não esqueça que as sequências acima possuem 16,5% de identidade, portanto, use a matriz adequada a este valor).

 $\begin{array}{c|cccc} \text{Grupos R carregados negativamente} \\ \hline & COO^- & COO^- \\ \hline & & & & & \\ H_3N-C-H & H_3N-C-H \\ \hline & & & & \\ CH_2 & & & \\ \hline & & & & \\ COO^- & & & \\ \hline & & & & \\ Aspartato & Glutamato \\ \end{array}$

Lembre-se que a assinatura deve ser funcional para todas as sequências do *dataset* acima e para isso você pode testá-la realizando uma busca PHI-BLAST (em caso de dúvidas, veja o tutorial de Busca de Similaridades, inserido no SIGAA).

Parte 2 - Matrizes de frequência e PSSMs

Considere as sequências abaixo (formato multifasta).

>007108

MSSENCFVAENSSLHPESGQENDATSPHFSTRHEGSFQVPVLCAVMNVVFITILIIALIA LSVGQYNCPGQYTFSMPSDSHVSSCSEDWVGYQRKCYFISTVKRSWTSAQNACSEHGATL AVIDSEKDMNFLKRYAGREEHWVGLKKEPGHPWKWSNGKEFNNWFNVTGSDKCVFLKNTE VSSMECEKNLYWICNKPYK

>Q95MQ1

MNSEDFSATETSSLHLKREQQSHATGTYSATYHEGSIQVPIPCAVVNVVFITTLIIALVA LSVGQYNCPGQYASSAPPNTHVFPCSDDWIGHKGKYYLISKKTKNWTLAQNFCSKHGATL AVIDSKEDMNFLKQHVGRAEHWIGLKNEAGQTWKWSNGQEFNNWFNLTGSENCAVLNSAE ISSTECDKNLHWICSKPSK

>Q8SPX1

MGSENCSTTETNSLHPNRGQPSNATGPHFATHHEGSLQVPIPCAVVNVVFITVLIIALIA LSVGQYNCPGQYVPSVPSNMHVSSCPDDWIGYQTKCYFISKKTKNWTLAQSFCSKHHGAT LALLESKEDMVFLKQHVGRAEHWIGLKNEDGQTWKWSNGKEFNNWFKLTGSKNCPFLNST EVGSMECEKNLHWICSKSSI

>Q5M851

MNSEECSITENSSSHLERGQRDHGTSVHFEKHREGSIQVPIPCAVLVVVLITSLIIALFA LSVGKYNCPGFYENLESFDHHAASCKNEWFSYNGKCYFFSTTTKTWALAQKSCSEDDATL AVIDSEKDMAFLKRYAGGLKHWIGLRNEASQTWKWANGKEFNSWFNVTGSKKCVSLNHTD VASVDCEANLHWICSKASL

>03U6A8

MDSENCSITENSSSHLERGQKDHGTSIHFEKHHEGSIQVSIPWAVLIVVLITSLIIALIA LNVGKYNCPGLYEKLESSDHHVATCKNEWISYKRTCYFFSTTTKSWALAQRSCSEDAATL AVIDSEKDMTFLKRYSGELEHWIGLKNEANQTWKWANGKEFNSWFNLTGSGRCVSVNHKN VTAVDCEANFHWVCSKPSR

Este grupo de sequências possui cerca de 63,1% de identidade e apenas um *gap* em seu alinhamento. O arquivo multifasta pode ser obtido <u>AQUI</u>.

O objetivo aqui é construir uma matriz de frequência de aminoácidos sítio-específica, que é o primeiro passo para a construção de uma PSSM. Segundo o NCBI:

Uma PSSM, ou Matriz de Pontuação Específica de Posição, é um tipo de matriz de pontuação usada em buscas BLAST nas quais as pontuações de substituição de aminoácidos são dadas separadamente para cada posição em um alinhamento de múltiplas seqüências de proteína. Assim, uma substituição de Tyr-Trp na posição A de um alinhamento pode receber uma pontuação muito diferente da mesma substituição na posição B. Isto está em contraste com as matrizes independentes de posição, como as matrizes PAM e BLOSUM, nas quais o Tyr-Trp a substituição recebe a mesma pontuação, independentemente da posição em que ocorre.

As pontuações em uma PSSM são geralmente mostradas como inteiros positivos ou negativos. Escores positivos indicam que a substituição de aminoácidos dada ocorre com mais freqüência no alinhamento do que o esperado por acaso, enquanto os escores negativos indicam que a substituição ocorre com menos frequência do que o esperado. Grandes pontuações positivas indicam frequentemente resíduos funcionais críticos, que podem ser resíduos do local ativo ou resíduos

necessários para outras interações intermoleculares. (FONTE:NCBI).

Veja como calcular uma PSSM ou PWM (*Protein weight matrix*) é fácil. Até na própria Wikipedia mostra como calcular. Leia este site com atenção.

Identifique as proteínas (função e qual organismo) do arquivo acima. Descreva apenas os cabeçalhos de cada uma delas.

Faça o alinhamento das sequências acima utilizando os programas <u>Muscle</u> ou <u>MAFFT</u> e calcule as matrizes PFM (*Position Frequency Matrix*) e PPM (*Position Probability Matrix*).

Compare sua matriz com a matriz destas proteínas no <u>CDD</u>. A matriz mostrada será apenas para o sítio de ligação, que é bem conservado.

Depois proponha uma PSSM (pode ser com ou sem pseudocontagens) para estas sequências utilizando os passos descritos em *Wikipedia*.

Leiam com bastante atenção o exemplo dado na Wikipedia para sequências de DNA. A lógica é a mesma para proteínas, só aumenta para 20 o número possível de caracteres. Aminoácidos que não aparecem no sítio você poderá representar na matriz PSSM como -∞ ("menos infinito"). Qualquer dúvida enviem um email ou procurem o professor.

Antes de **ampliar para o alinhamento inteiro acima**, você pode fazer o teste **apenas para o espaço entre os sítios 85 a 115 do alinhamento**, descrito abaixo:

```
CSEDWVGYQRKCYFISTVKRSWTSAQNACSE
CSDDWIGHKGKYYLISKKTKNWTLAQNFCSK
CPDDWIGYQTKCYFISKKTKNWTLAQSFCSK
CKNEWFSYNGKCYFFSTTTKTWALAQKSCSE
CKNEWISYKRTCYFFSTTTKSWALAQRSCSE
```

Parte 3 - HMMs

A partir do alinhamento proteico abaixo, proponha uma HMMs com as probabilidades de transição e emissão descritas em uma matriz.

```
Seq1 SYK--HFTYL
Seq2 NYG--PFTFL
Seq3 SYG--PL.FL
Seq4 TYE--QLSFL
Seq5 KFAG-NVDFL
Seq6 QY-GSQVTFA
Seq7 QYKG-DLSLV
```

O esquema da HMM pode ser feito em qualquer programa de desenho ou usando uma ferramenta específica (veja o item abaixo *One more thing*). A matriz pode ser entregue em formato de planilha ou tabela.

Desafio da Unidade

Escrever um programa/script, em qualquer linguagem, que resolva de forma automática, pelo menos uma das partes (1, 2 ou 3) deste exercício. O desafio pode ser efetuado individualmente ou em duplas. O aluno/dupla irá apresentar rapidamente (5-10 minutos) a estratégia utilizada em sala de aula.

One more thing

Para visualizar o alinhamento em cores, sequem algumas sugestões (existem inúmeras):

- Jalview. Suite para trabalho com sequências.
- ClustaX. Programa de alinhamento múltiplo de sequências, com algumas opções de visualização.
- Seaview. Apenas visualização de alinhamentos no Linux. Para instalar, digite no terminal sudo apt-get install seaview.
- UGene. Suite um pouco mais completa para trabalho com sequências em bioinformática.
- Para montar a HMM você pode utilizar a ferramenta <u>HMMEditor</u>. Basta selecionar na caixa de seleção no final da página o programa HMMVE_1.2.tar.gz. O programa é em Java.