A. Let $p \equiv 1 \mod 3$. Let $F(X) = X^{\frac{p+1}{2}} + aX^{\frac{p+5}{6}} + bX$ be a polynomial over \mathbb{F}_p . In the case p = 31, we have that $F(X) = X^{16} + aX^6 + bX$. We have that

$$F^5(X) = (13 a^2 + 8 a^2 b^2 + 23 a^5) X^{30} + \cdots$$

$$F^{10}(X) = (5 a + 25 a b^2 + 12 a^4 + 10 a b^4 + 25 a^4 b^2 + 29 a^7 + 17 a b^6 + 25 a^4 b^4 + 25 a^7 b^2 + 14 a b^8 + 16 a^{10} + 12 a^4 b^6) X^{30} + \dots +$$

$$F^{15}(X) = (1+b^4+18b^8+12b^2+27b^{10}+a^{15}+15b^{14}+2a^6b^8+a^{12}b^2+22a^3b^{10}+24a^9b^4+29a^6b^6+10a^3b^8+24a^9b^2+28a^6b^4+29a^3b^6+8a^6b^2+10a^3b^4+22a^3b^2+21a^3b^{12}+14a^9b^6+14a^9+14a^6+21a^{12}+21a^3+21b^{12}+14b^6)X^{30}+\cdots$$

For the following [a,b] the polynomial $F(X)=X^{16}+aX^6+bX$ is a permutation of \mathbb{F}_{31} . [2,7], [2,24]=[2,-7], [10,7] [10,24]=[10,-7], [16,13], [16,18]=[16,-13], [17,5], [17,26]=[17,-5], [18,13], [18,18]=[18,-13], [19,7], [19,24]=[19,-7], [22,5], [22,26]=[22,-5], [23,5], [23,26]=[23,-5], [28,13], [28,18]=[28,-13]. Note that $F^5(a,b)=F^{10}(a,b)=F^{15}(a,b)=0$.

B. In the case p = 37, we have that $F(X) = X^{19} + aX^7 + bX$. We have that

$$F(X)^6 = (34 a^2 b + 34 a^2 b^3 + 33 a^5 b) X^{36} + \cdots$$

$$F(X)^{12} = (7 a + 15 a b^{2} + 2 a^{4} + 16 a b^{4} + 19 a^{4} b^{2} + 18 a^{7} + 15 a b^{6} + 29 a^{4} b^{4} + 32 a^{7} b^{2} + 8 a b^{8} + 20 x^{10} + 19 x^{4} y^{6} + 16 x^{7} y^{4} + 3 x y^{10} + 20 x^{10} y^{2} + 2 x^{4} y^{8}) X^{36} + \cdots$$

$$F(X)^{18} = (34b + 12a^3b^{15} + 12a^9b^9 + 12a^{15}b^3 + 20a^6b^{11} + 10a^{12}b^5 + 12a^{15} + 15b^{13} + 2a^3b^{13} + 25a^9b^7 + 36a^{15}b + 9a^6b^9 + 21a^{12}b^3 + 26a^3b^{11} + 32a^9b^5 + 25a^6b^7 + 10a^{12}b + 9a^3b^9 + 9a^9b^3 + 25a^6b^5 + a^3b^7 + 34a^9b + 9a^6b^3 + 12a^9 + 24b^7 + 34a^{17} + 35a^3b^5 + 20a^6b + 21a^3b^3 + 32a^3b + 24b^{11} + 15a^3b^3 + 32a^3b^3 + 32a^3b^3$$

For the following [a,b] the polynomial $F(X) = X^{19} + aX^7 + bX$ is a permutation of \mathbb{F}_{37} . [11, 5], [11, 32] = [11, -5], [18, 17], [18, 20] = [18, 17], [24, 17], [24, 20] = [24, -17], [27, 5], [27, 32] = [27, -5], [32, 17], [32, 20] = [32, -17], [36, 5], [36, 32] = [32, -5].

The coefficient of X^{p-1} in $F(X)^{l(\frac{p-1}{6})}$ is

$$P_l(a,b) = \sum_{\substack{3i_1 + i_2 + l \equiv 0 \bmod 6\\i_1 + i_2 + i_3 = l(\frac{p-1}{6})}} \binom{l(\frac{p-1}{6})}{i_1, i_2, i_3} a^{i_2} b^{i_3}$$

for l = 1, 2, 3.

Si p=1327, $\frac{p+1}{2}=664$ y $\frac{p-4}{3}=443$, el número de polinomios de permutacion de la forma: $F(X)=X^{\frac{p+1}{2}}+aX^{\frac{p-1}{3}+1}+bX$ es 26478

Cosideramos $F(X) = X^{\frac{p-1}{2}+1} + aX^{\frac{p-1}{3}+1} + bX$ sobre \mathbb{F}_p . Sea $N_p(a,b)$ el número de PP de \mathbb{F}_p de la forma $F(X) = X^{\frac{p-1}{2}+1} + aX^{\frac{p-1}{3}+1} + bX$. Sea $N_p(a)$ el número de PP de \mathbb{F}_p de la forma $F(X) = X^{\frac{p-1}{2}+1} + aX$. Sea $N_p(b)$ el número de PP de \mathbb{F}_p de la forma $F(X) = X^{\frac{p-1}{3}+1} + aX$.

p	$N_p(a,b)$	$N_p(a)$	$N_p(b)$
19	0	8	7
31	0	14	6
37	12	16	3
43	48	20	6
61	60	28	12
67	78	32	12
73	54	34	15
79	96	38	12
97	174	46	24
103	162	50	24