Math 323 HW19

Minh Bui

June 19, 2017

Problem 12.8: Prove: If $f: A \to B$ is a function with domain A and T_i with $i \in \mathcal{I}$ is a family of sets where $\forall i \in \mathcal{I}, T_i \subseteq B$, then

$$f^{-1}\left(\bigcup_{i\in\mathcal{I}}T_i\right)=\bigcup_{i\in\mathcal{I}}f^{-1}(T_i)$$

Proof. Let $f: A \to B$ be a function and T_i with $i \in \mathcal{I}$ be a family of sets where $\forall i \in \mathcal{I}, T_i \subseteq B$. We want to prove 2 claims.

- (a) $f^{-1}\left(\bigcup_{i\in\mathcal{I}}T_i\right)\subseteq\bigcup_{i\in\mathcal{I}}f^{-1}(T_i)$ Assume $x\in f^{-1}\left(\bigcup_{i\in\mathcal{I}}T_i\right)$. By the theorem of image and pre-image, $f(x)\in\bigcup_{i\in\mathcal{I}}T_i$. So then $\exists i\in\mathcal{I} \text{ s.t } f(x)\in T_i$. Since $f(x)\in T_i$ for some $i\in\mathcal{I},\ x\in f^{-1}(T_i)$. Thus $x\in\bigcup_{i\in\mathcal{I}}f^{-1}(T_i)$.
- (b) $f^{-1}\left(\bigcup_{i\in\mathcal{I}}T_i\right)\supseteq\bigcup_{i\in\mathcal{I}}f^{-1}(T_i)$ Assume $x\in\bigcup_{i\in\mathcal{I}}f^{-1}(T_i)$. So then $\exists i\in\mathcal{I}$ s.t $x\in f^{-1}(T_i)$. By the theorem of image and preimage, $f(x)\in T_i$ for some $i\in\mathcal{I}$. So then $f(x)\in\bigcup_{i\in\mathcal{I}}T_i$. Again, by the theorem of image and preimage, $x\in f^{-1}(\bigcup_{i\in\mathcal{I}}T_i)$.

Thus
$$f^{-1}\left(\bigcup_{i\in\mathcal{I}}T_i\right) = \bigcup_{i\in\mathcal{I}}f^{-1}(T_i)$$

Problem 12.10: Prove: Let $f:A\to B$ be a function with domain A. Prove: if $\forall S\subseteq A, S=f^{-1}(f(S))$, then f(x) is injective.

Proof. Let $f: A \to B$ be a function with domain A. Assume $\forall S \subseteq A, S = f^{-1}(f(S))$. So $S = \{x \in A \mid f(x) \in f(S)\}$. We wish to show: if $\forall x_1, x_2 \in A$ and $f(x_1) = f(x_2)$, then $x_1 = x_2$. The contraposition of this statement says: if $\exists x_1, x_2 \in A \text{ s.t } x_1 \neq x_2$, then $f(x_1) \neq f(x_2).$ Assume $\exists x_1, x_2 \in A, x_1 \neq x_2$.

Problem 12.11: Let $f:A\to B$ be a function with domain A. Prove: if $\forall T\subseteq B, T=$ $f(f^{-1}(T))$, then f(x) is surjective.

Proof. Let $f: A \to B$ be a function with domain A.

Assume $\forall T \subseteq B, T = f(f^{-1}(T))$. We want to show: if $y \in B$, then $\exists x \in A$

so that f(x) = y. Assume $y \in B$. So then $y \in T$, meaning $y \in f(f^{-1}(T))$. So then $\exists x \in A$ so that $x \in f^{-1}(T)$. Since $f^{-1}(T) \subseteq A$, $x \in A$.