Aplicación con una B.D. NoSQL

Julio Domínguez Arjona Francisco Javier Ortiz Valverde

Índice

- 1. Concepto
- 2. Estructura de la aplicación
- 3. Relaciones entre usuarios
- 4. Operaciones del cliente
- 5. El algoritmo

Concepto: Un gestor de amistades basado en grafos

- Gestión de amistades al estilo *red social*
- Emplear **nodos** para usuarios
- Establecer las relaciones mediantes aristas

Estructura de la aplicación

Aplicación cliente Java

Aplicación de consola con la interfaz de gestión diseñada para el usuario final.

Base de datos de grafos OrientDB

Arista Relationship

Nodo User Representa a un usuario y almacena: @rid name email password

Define una relación entre dos usuarios.

Representa el deseo de un usuario de evitar a otro.

Arista Block

Relaciones entre usuarios

Operaciones del cliente

- Registro
- Cerrar sesión
- Ver lista de amigos
- Ver solicitudes de amistad entrantes
- Enviar solicitudes de amistad

- Ver usuarios bloqueados
- Bloquear usuarios
- Desbloquear usuarios
- Buscar a otros usuarios
- Eliminar cuenta

El algoritmo: Graph Convolutional Networks (GCN)

Objetivo: Sugerencias de amistad

Algoritmo clásico

"El amigo de mi amigo es mi posible amigo"

- Se ofrece como sugerencia la lista de amigos de amigos, ordenados aleatoriamente
- Bajo nivel de variabilidad en cuanto a sugerencias

Machine Learning

"¿Pertenece a algún grupo en especial?"

- Permite la división por proximidad
- Mejora las sugerencias y variabilidad

¿Por qué?: Graph Convolutional Networks (GCN)

Problema:

- Datos de la ubicación del usuario irrelevantes
- Aristas no ponderadas en distancia

Necesidades:

- Principal:
 - Trabajar con grafos no ponderados
 - No considerar la posición de los nodos
 - Clasificación de nodos en sub-grupos

- Secundario:
 - Eficiencia

El algoritmo: Graph Convolutional Networks (GCN)

- Similar a K-Means
- Inicia el algoritmo con n centroides y se amplía si es necesario
- Genera un grafo subdividido por grupos altamente cohesionados.

Conclusiones

Elección de BD: OrientDB mostró ser eficaz para organizar las relaciones en forma de grafos.

Escalabilidad: El sistema podría ser escalado a un escenario real más complejo.

Facilidad de uso y flexibilidad: Aplicación intuitiva y sencilla para la gestión de amistades.

Clara visualización: La representación mediante grafos facilitó la comprensión de las interacciones sociales entre usuarios.

Modelo para fuente de información: El modelo de datos creado demostró ser perfecto para el uso de algoritmos de minería de datos sobre la información almacenada.

Fin ¿Dudas?