A Tree-based Prediction of Air Traffic Delays

By: Alice Hua - Harvi Singh - Omar Kapur - Preethi Raju

W261 Final Project - Spring 2020 Team 15 - Section 4 Final Presentation

AGENDA

- 1. Problem Statement & Business Case
- 2. Datasets
- 3. EDA & Data Transformation & Data Joins
- 4. Feature Engineering
- 5. Algorithms Comparison & Choice & Toy Example
- 6. ML Pipeline & Cross Validation
- 7. Evaluation Metrics
- 8. Final Results
- 9. Limitations & Challenges
- 10. Q&A

Problem Statement & Business Case

<u>Problem</u>: Given weather and scheduled flight data, will a flight be at least 15 minutes delayed?

Requirement: Predictions need to be made 2 hours before scheduled flight departure using only information available up to that point in time

<u>Business case:</u> our target customer is the **airlines**. They are interested in a model that captures more total delays in order to **better prepare** for delays and **improve service** to their customers while **saving on costs** and **improve decision making**.

Model Implications: Err on the side of FP when a trade off is required

DATASETS

Airline Dataset

2015 - 2019 Passenger flights TranStats DOT

	top 15 columns	null percent	bottom 15 columns	null percent	
0	DIV5_TAIL_NUM	100.0 %	FLIGHTS	0.0 %	
1	DIV4_TAIL_NUM	100.0 %	CRS_ELAPSED_TIME	0.0 %	
2	DIV3_WHEELS_OFF	100.0 %	DIVERTED	0.0 %	
3	DIV3_TAIL_NUM	100.0 %	CANCELLED	0.0 %	
4	DIV4_AIRPORT	100.0 %	ARR_TIME_BLK	0.0 %	
5	DIV4_AIRPORT_ID	100.0 %	CRS_ARR_TIME	0.0 %	
6	DIV4_AIRPORT_SEQ_ID	100.0 %	DEP_TIME_BLK	0.0 %	
7	DIV4_TOTAL_GTIME	100.0 %	CRS_DEP_TIME	0.0 %	
8	DIV4_LONGEST_GTIME	100.0 %	DEST_WAC	0.0 %	
9	DIV4_WHEELS_OFF	100.0 %	DEST_STATE_NM	0.0 %	
10	DIV4_WHEELS_ON	100.0 %	DEST_STATE_FIPS	0.0 %	
11	DIV5_AIRPORT_ID	100.0 %	DEST_STATE_ABR	0.0 %	
12	DIV5_AIRPORT_SEQ_ID	100.0 %	DEST_CITY_NAME	0.0 %	
13	DIV5_WHEELS_ON	100.0 %	DEST	0.0 %	
14	DIV5_TOTAL_GTIME	100.0 %	DISTANCE	0.0 %	

Weather Dataset

2015 - 2019 NOAA Integrated Surface Database

	top 15 columns	null percent	bottom 15 columns	null percent
0	GL1	100.0 %	SOURCE	13.3 %
1	GD5	100.0 %	NAME	0.8 %
2	MW6	100.0 %	STATION	0.6 %
3	GG4	100.0 %	DEW	0.0 %
4	MV2	100.0 %	TMP	0.0 %
5	AL3	100.0 %	VIS	0.0 %
6	AW7	100.0 %	CIG	0.0 %
7	GG3	100.0 %	WND	0.0 %
8	AW6	100.0 %	QUALITY_CONTROL	0.0 %
9	GG2	100.0 %	SLP	0.0 %
10	AX6	100.0 %	CALL_SIGN	0.0 %
11	AU5	100.0 %	REPORT_TYPE	0.0 %
12	HL1	100.0 %	ELEVATION	0.0 %
13	UG2	100.0 %	LONGITUDE	0.0 %
14	MW5	100.0 %	LATITUDE	0.0 %

Data Transformation

Airline Dataset ~ 1.2GB Get Lat, Long

→ Mapped Lat, Long to each ORIGIN & DEST per flight using a helper table

UTC Time Conversion

→ Map Airport ORIGIN & DEST local times to UTC using a helper table

Dropped flights

→ Dropped Diverted & Cancelled flights

Weather Dataset ~ 25GB

Parsing weather columns

- → Wind, SLP, Air Temp, Dew Point, Visibility, Ceiling all needed to be parsed into multiple variables
- → Use quality codes to filter out suspect or erroneous records (denoted by 7 or 3)
- → Filled 9999* values as None for missing data

Aggregated weather data/hour

- → Threw out duplicated report types like SOD (Summary of Day), SOM (Summary of Month & CRN05 (Report 5-min interval)
- GroupBy date, hour, lat, long -> take avg
- Windowed averaged over 7 days for the hour that each variable that still have nulls.

EDA

EDA cont...

- 0.50

- 0.25

Optimizing the Airline & Weather Join

Airports and Weather stations mapped

Theta join ~2.5 hours on 3-month data

```
select [variables]
from airline_data a
left join weather_data w_origin on
   abs(w_origin.latitude - a.latitude_origin) < tolerance and
   abs(w_origin.longitude - a.longitude_origin) < tolerance and
   difference(a.flight_time - w_origin.weather_time) is between 2 and 3 hours (or some window)
(repeat join again on weather data for destination airports)</pre>
```


Bucketed Join ~5-10 minutes on 3-month data

```
select [variables]
from prepred_airline_data a
left join prepared_weather_data w_origin on
w_origin.latitude_bucket = a.origin_latitude_bucket and
w_origin.longitude_bucket = a.origin_longitude_bucket and
w_origin.report_hour = a.flight_hour_minus_2hrs and
w_origin.report_date = a.flight_date_minus_2hrs

(repeat join again on weather data for destination airports)
```

(0.8% of flights without weather data)

Exploring Dimensionality Reduction

Using 24 continuous variables (including MTE for categorical)

PCA results:

12 principal components to explain over 80% of the variance

Determination: not worth using PCA-derived features

- 1. We lose explainability
- 2. The amount of continuous feature reduction is not significant

Actual Arrival Time: 13:00

Scheduled Arrival Time: 14:00

Scheduled Departure Time: 16:00

1. Preflight Window
Delta = Scheduled Departure Time (CRS)- Previous Arrival Time (CRS)
12hrs < Delta > 2hrs

2. Prior Arrival Delay

1: ARR_DELAY > 0 (late)
0: ARR_DELAY < 0 (early)

-1: Preflight window < 0 (don't know

3. Prior Departure Delay

1: DEP_DEL15 == 1 (late)
0: DEL_DEL15 == 0 (early)

-1: Preflight window < 0 (don't know)

Feature Engineering

More Feature Engineering

Additional 6 Features:

- 1. Number of Flights at Origin
- 2. Number of Flights at Destination
- 3. Origin-Destination Pair
- 4. Prior Day Hourly Average Delay
- 5. Prior Day Carrier Average Delay
- 6. Prior Day Origin-Destination Average Delay

```
vindowSpec_car = Window.partitionBy('OP_CARRIER')\
corderBy(f.unix_timestamp('scheduled_dep_time_UTC'))\
rangeBetween(-93600, -7200)
airlines_carrier = airlines_fl_day.withColumn('avg_carrier_delay',
f.round(f.avg('DEP_DEL15').over(windowSpec_car),2))
```


Feature Selection

Number of Features 339 Out[112]:

Model Comparison - GBT vs XGBoost

"Boosting" Tree Classifiers

- Weak Learner → Strong Learner
- Each tree is fit using previous residuals
- Sequential processing can be slow without early stopping or tuning
- Hyperparameters: max depth, iterations, learning rate

GBT

- Tree splits evaluated on entropy/gini
- Minimum impurity threshold
- Built-in, flexible threshold
- Warm Start

XGBoost

- Second Order Taylor Approximation
- Unique tree type (similarity score, gain)
- Regularization and tree pruning
- It's fast!

Toy Example

Overview of ML Pipeline Strategy

Class Weights Deal with Class Imbalance Down Sampling (4x faster than CWs) (>80% on-time flights) **Up Sampling** Naive Bayes<LogReg<SVM, GBT, XGBoost, Pipeline to feed features to voting ensembles model and fit model **OHE** vs MTE for Categorical Features (Bucketizer/Indexer/OHE/ChiSqSel/St Feature Selection using Chi Squared andard Scaler/Vector Assembler) Train-Validation-Test split vs k-fold **Tune Hyper-parameters** using Test **Time Series Split** vs Blocking Time Series Grid-Search while respecting the Split chronological time-series data

ML Pipeline

Bucketizer	Indexer + OHE	Chi Squared	Standard Scaler	Vector Assembler
	,,	,,	r	,
Bucketized the wind direction	Index 8 categorical	Categorical features from	For continuous variables	Assembled features into a
	variables and one hot encoded	over 1000 to under 170	 	vector

Cross Validation and Grid Search

- Why not Random sampling?
- Split based on time, maintaining chronological order to avoid the look-ahead bias.
- Hyper-parameter tuning 2018 data for training
- Final validation done on 2017 data-set

GRID Search & Overview of Training Process

Why Threshold Matters?

Validation Metrics

$$F_{\beta} = (1 + \beta^2) \frac{precision * recall}{\beta^2 precision + recall}$$

We chose...

$$F2 = (1 + 2^{2}) \frac{precision * recall}{2^{2}precision + recall}$$

where...
$$Precision = \frac{TP}{TP + FP}$$
 $Recall = \frac{TP}{TP + FN}$

- → F2: A metric that combines Precision + Recall to measure the model's performance

 Gives less weight to Precision & more weight to Recall
 - Minimizing FN > minimizing FP
- → **Precision**: Out of those predicted Positives, how many are actually Positives
- → **Recall**: How many of True Positives our model captures, through labeling it as Positives
- → We want Precision >= 30% while maximizing F2 because it's more important to classify correctly as many Positives (Delays) as possible
- → We used AUC PR to gauge for Decision Threshold

Cross Validation - Grid Search Summary

We killed some trees along the way.....

*	Model	CV Params	CV Scores	CV Runtime
£.		(Tuned on 2018)	(Validate on 2017)	(minutes)
		3 rounds where k=2 each round	3 rounds	
	GBT	maxDepth: [2, 4, 5, 6, 8, 9]	PR AUC: 0.41 - 0.46	4 + 2 + 7 = 13 hrs
*		maxBins:[280 , 325, 350, 400, 430]	ROC AUC: 0.75 - 0.77	
	0	maxIter: [4, 6 , 7] stepSize: [0.1, 0.13, 0.2]	F2: 0.56 - 0.57 Recall: 0.69 - 0.70	200 A
		stepsize: [614, 616, 612]	Precision: 0.31 - 0.33	
186 ·			Accuracy: 0.67 - 0.69	
	XGBoost	max_depth: [3, 5, 6, 8] n_estimators: [100, 120, 150] reg_lambda: [0, 1] reg_alpha: [0 , 1] objective: [binary:logistic] learning_rate': [0.15, 0.2 , 0.3, 0.6] gamma: [0.05 , 0.8] scale_pos_weight: [2 , 3] min_child_weight: [1, 1.5]	PR AUC: 0.48 - 0.49 ROC AUC: 0.79 F2: 0.60 - 0.61 Recall: 0.90 - 0.95 Precision: 0.24 - 0.27 Accuracy: 0.45 - 0.54	6 + .50 + 1 = 7.5 hrs

GLOBAL LOGISTIC Baseline

Train on 2015 - 2018 / Test on 2019

Evaluating model on test data using threshold of 0.5 Global Baseline Logistic Regression

	Train	Test
PR AUC	0.3727	0.3649
ROC AUC	0.7155	0.7051
F0.5 Score	0.3347	0.3313
F2 Score	0.5281	0.5304
Recall	0.6541	0.6633
Precision	0.2983	0.2944
Accuracy	0.6605	0.6410

Params used: {'regParam' : 0.1 'sampling: 'weights', 'threshold': 0.5}

Validation Plots

Model - GBT

Train on 2015 - 2018 / Test on 2019

Evaluating model on test data using threshold of 0.5 Final Gradient Boosted Tree Model

	Train	Test
PR AUC	0.4666	0.4756
ROC AUC	0.7760	0.7729
F0.5 Score	0.3705	0.3694
F2 Score	0.5768	0.5840
Recall	0.7082	0.7243
Precision	0.3310	0.3291
Accuracy	0.6896	0.6734

Params used: {'maxDepth': 9,

'maxBins': 280, 'maxIter': 6,

maxiter: 6, 'stepSize': 0.2,

'sampling': 'down',

'threshold': 0.5}

Validation Plots

Model -xgboost

Train on 2015 - 2018 / Test on 2019

Evaluating model on test data using threshold of 0.6 Final XGBoost Model

	Train	Test
PR AUC	0.5023	0.5061
ROC AUC	0.7966	0.7915
F0.5 Score	0.3521	0.3520
F2 Score	0.6141	0.6166
Recall	0.8166	0.8228
Precision	0.3083	0.3080
Accuracy	0.6369	0.6224

'n_estimators': 150,
'reg_lambda': 1,
'reg_alpha': 0,
'objective':
'binary:logistic',
'base_score': 0.5,
'learning_rate': 0.2,
'gamma': 0.05,
'scale_pos_weight': 2,

Params used: {'max_depth': 6,

'min_child_weight': 1.5 'sampling': 'down', 'threshold': 0.6}

Limitations

- Time for more Hyperparameter tuning over more data/more folds (XGBoost has a lot of knobs)
- No Neural Net (used in a State of the Art MIT paper)
- Need more creative features
- PySpark does not have SMOTE or WOE, or MTE, takes much longer to implement by ourselves + troubleshooting pipeline issues
- Leakage challenges, 2 hour requirement
- Imbalanced target classes

Takeaways

Feature engineering is critical

Optimizing joins is vital for big data

For custom functions, scala would be good to learn

Evaluation metrics should be connected to the business case

Q&A