

Learn Git and GitHub without any code!

Using the Hello World guide, you'll start a branch, write comments, and open a pull request.

Read the guide

De Morgan's laws equations

$$f(c,b,a) = \overline{b}a + \overline{c}\overline{b}$$

$$f(c,b,a)_{NAND} = \overline{\overline{b}a\overline{b}\overline{c}}$$

$$f(c,b,a)_{NOR} = \overline{b} + \overline{a} + \overline{b} + \overline{c}$$

Table of functions values of set variables

С	b	a	f(c,b,a)
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	0

Source code from design.vhd of Architecture

```
-- Architecture body for basic gates

architecture dataflow of gates is

begin

f_o <= ((not b_i) and a_i) or ((not c_i) and (not b_i));

fnand_o <= not(not((not b_i) and a_i) and not((not c_i) and (not b_i)));

f_nor <= not(b_i or (not a_i)) or not(c_i or b_i);

end architecture dataflow;
```

Screenshot of simulated waweforms of f, fnand and fnor, to see if they match

Link to my EDA playground of De Morgan's laws

De Morgan's Laws EDA Playground

3rd part verification of Distributive laws

Source code from design.vhd of Architecture

```
-- Architecture body for basic gates

--Distributive laws equations and its functions

architecture dataflow of gates is

begin

f1_o <= (x_i and y_i) or (x_i and z_i);

f2_o <= x_i and (y_i or z_i);

f3_o <= (x_i or y_i) and (x_i or z_i);

f4_o <= x_i or (y_i and z_i);

end architecture dataflow;
```

Screenshot of simulated time waweforms to see if f1=f2 and f3=f4, it does

Link to my EDA Playground of Distributed laws

Distributed laws EDA Playground