

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

**As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.**

PCTWORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 : C12N 15/54, 15/11, 15/31, C07K 14/395, C12N 9/12, C12Q 1/68, 1/48, C07K 16/14, G01N 33/68, A61K 35/12, 35/72		A2	(11) International Publication Number: WO 96/12811
			(43) International Publication Date: 2 May 1996 (02.05.96)
(21) International Application Number: PCT/US95/13801		(81) Designated States: AM, AT, AU, BB, BG, BR, BY, CA, CH, CN, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IS, JP, KE, KG, KR, KZ, LK, LR, LT, LU, LV, MD, MG, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TT, UA, UG, UZ, VN. European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE). OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG). ARIPO patent (KE, MW, SD, SZ, UG).	
(22) International Filing Date: 20 October 1995 (20.10.95)		Published <i>Without international search report and to be republished upon receipt of that report.</i>	
(30) Priority Data: 08/326,781 20 October 1994 (20.10.94) US 08/431,080 28 April 1995 (28.04.95) US			
(71) Applicant: ARCH DEVELOPMENT CORPORATION [US/US]; 1101 East 58th Street, Chicago, IL 60637 (US).			
(72) Inventors: GOTTSCHLING, Daniel, E.; 5433 S. Greenwood No. 3, Chicago, IL 60615 (US). SINGER, Miriam, S.; 5400 S. Dorchester Avenue No. 3, Chicago, IL 60615 (US).			
(74) Agent: FUSSEY, Shelley, P., M.; Arnold, White & Durkee, P.O. Box 4433, Houston, TX 77210 (US).			

(54) Title: YEAST TELOMERASE COMPONENTS AND METHODS USING THEM

(57) Abstract

Disclosed are various methods, compositions and screening assays connected with telomerase, including genes encoding the template RNA of *S. cerevisiae* telomerase and various telomerase-associated polypeptides.

190
158
249

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	GB	United Kingdom	MR	Mauritania
AU	Australia	GE	Georgia	MW	Malawi
BB	Barbados	GN	Guinea	NE	Niger
BE	Belgium	GR	Greece	NL	Netherlands
BF	Burkina Faso	HU	Hungary	NO	Norway
BG	Bulgaria	IE	Ireland	NZ	New Zealand
BJ	Benin	IT	Italy	PL	Poland
BR	Brazil	JP	Japan	PT	Portugal
BY	Belarus	KE	Kenya	RO	Romania
CA	Canada	KG	Kyrgyzstan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic of Korea	SD	Sudan
CG	Congo	KR	Republic of Korea	SE	Sweden
CH	Switzerland	KZ	Kazakhstan	SI	Slovenia
CI	Côte d'Ivoire	LI	Liechtenstein	SK	Slovakia
CM	Cameroon	LK	Sri Lanka	SN	Senegal
CN	China	LU	Luxembourg	TD	Chad
CS	Czechoslovakia	LV	Latvia	TG	Togo
CZ	Czech Republic	MC	Monaco	TJ	Tajikistan
DE	Germany	MD	Republic of Moldova	TT	Trinidad and Tobago
DK	Denmark	MG	Madagascar	UA	Ukraine
ES	Spain	ML	Mali	US	United States of America
FI	Finland	MN	Mongolia	UZ	Uzbekistan
FR	France			VN	Viet Nam
GA	Gabon				

- 1 -

DESCRIPTION

TELOMERASE COMPOSITIONS AND METHODS

5 BACKGROUND OF THE INVENTION

The present invention is a continuation-in-part of co-pending U.S. Patent Application Serial No. 08/326,781, filed October 20, 1994, the entire text and figures of which disclosure is specifically incorporated herein by reference without disclaimer. The U.S. Government owns rights in the present invention pursuant to National Institutes of Health Grants GM43893 and CA14599.

15 A. Field of the Invention

The present invention relates to telomerase compositions and methods connected therewith. Particularly disclosed are genes encoding the template RNA of telomerase in *Saccharomyces cerevisiae* and various telomerase-associated proteins. Methods of using such genes and other related biological components are also provided.

25 B. Description of the Related Art

DNA polymerases synthesize DNA in a 5' to 3' direction and require a primer to initiate synthesis. These restrictions pose a problem for the complete replication of linear chromosomes (Watson, 1972; Olovnikov, 1973). In the absence of a specialized mechanism to maintain terminal sequences, multiple replication cycles would cause chromosomes to progressively shorten from their ends.

35

Telomeres are specialized nucleoprotein complexes that constitute the ends of eukaryotic chromosomes and

- 2 -

protect them from degradation and end-to-end fusion (Zakian, 1989; Blackburn, 1991; Price, 1991; Henderson & Larson, 1991; Wright et al., 1992; Blackburn, 1994). When telomeres are absent, the instability of non-
5 telomeric chromosomal ends leads to chromosome loss (Sandell & Zakian, 1993). In addition, telomeres are required for the complete replication of chromosomes (Zakian, 1989; Blackburn, 1991; Price, 1991; Henderson & Larson, 1991; Wright et al., 1992; Blackburn, 1993;
10 1994).

In many eukaryotes, telomeres are composed of simple tandem repeats, with the 3'-terminal strand composed of G-rich sequences (Zakian, 1989; Blackburn, 1991; Price, 1991; Henderson & Larson, 1991; Wright et al., 1992; Blackburn, 1994). Certain insights into the mechanism by which telomeric DNA is maintained has come from the identification of telomerase activity in several species of ciliates, as well as in extracts of *Xenopus*, mouse,
15 and human cells (Greider & Blackburn, 1985; 1987; 1989; Zahler & Prescott, 1988; Morin, 1989; Prowse et al., 1993; Shippen-Lentz & Blackburn, 1989; Mantell & Greider, 1994).

25 Telomerase is a ribonucleoprotein enzyme that elongates the G-rich strand of chromosomal termini by adding telomeric repeats (Blackburn, 1993). This elongation occurs by reverse transcription of a part of the telomerase RNA component, which contains a sequence
30 complementary to the telomere repeat. Following telomerase-catalyzed extension of the G-rich strand, the complementary DNA strand of the telomere is presumably replicated by more conventional means.

35 Germline cells, whose chromosomal ends must be maintained through repeated rounds of DNA replication, do not decrease their telomere length with time, presumably

- 3 -

due to the activity of telomerase (Allsopp et al., 1992). In contrast, somatic cells appear to lack telomerase, and their telomeres shorten with multiple cell divisions (Allsopp et al., 1992; Harley et al., 1990; Hastie 5 et al., 1990; Lindsey et al., 1991; Vaziri et al., 1993; Counter et al., 1992; Shay et al., 1993; Klingelhutz et al., 1994; Counter et al., 1994a;b).

Telomerase is believed to have a role in the process 10 of cell senescence (de Lange, 1994; Greider, 1994; Harley et al., 1992). The repression of telomerase activity in somatic cells is likely to be important in controlling the number of times they divide. Indeed, the length of telomeres in primary fibroblasts correlates well with the 15 number of divisions these cells can undergo before they senescence (Allsopp et al., 1992). The loss of telomeric DNA may signal to the cell the end of its replicative potential, as part of an overall mechanism by which multicellular organisms limit the proliferation of their 20 cells.

Due to its role in controlling replication, telomerase has also recently been implicated in oncogenesis (de Lange, 1994; Greider, 1994; Harley 25 et al., 1992). It is thought that late stage tumors probably require the reactivation of telomerase in order to avoid total loss of their telomeres and massive destabilization of their chromosomes. Immortalized cell lines produced from virally transformed cultures have 30 active telomerase and stable telomere lengths (Counter et al., 1992; Shay et al., 1993; Klingelhutz et al., 1994; Counter et al., 1994b). Recently, telomerase activity has also been detected in human ovarian carcinoma cells (Counter et al., 1994a).

35

Telomerase is thus an important component of eukaryotic cells, the dysfunction of which can have

- 4 -

significant consequences. Although present knowledge concerning telomerase is increasing, there is a marked need for individual telomerase components to be isolated and for further analytical methods to be developed. The 5 creation of a system for manipulating telomerase in a genetically tractable eukaryotic organism would be particularly valuable.

SUMMARY OF THE INVENTION

10

The present invention overcomes these and other drawbacks inherent in the prior art by providing purified telomerase components and systems for isolating further components and for developing agents with the capacity to 15 modify telomerase actions. Particular aspects of this invention concern the isolation and uses of several telomerase-associated genes from *Saccharomyces cerevisiae*, including the telomerase RNA template gene.

20

In certain aspects, this invention concerns nucleic acid segments that hybridize to, or that have sequences in accordance with, SEQ ID NO:1, SEQ ID NO:29, SEQ ID NO:30, SEQ ID NO:19, SEQ ID NO:31 or SEQ ID NO:23. SEQ ID NO:1 represents a telomerase RNA template-encoding sequence, also termed *TLC1*; and each of SEQ ID NO:29, SEQ 25 ID NO:30, SEQ ID NO:19, SEQ ID NO:31 and SEQ ID NO:23 represent sequences that encode telomerase-associated polypeptides, also termed *STR* sequences (*STR1*, *STR3*, *STR4*, *STR5* and *STR6*, respectively).

30

Both the gene *TLC1* (SEQ ID NO:1 and the complementary sequence, SEQ ID NO:4), and the template RNA, include a CA-rich region. The CA-rich region is represented by SEQ ID NO:3. In the RNA template, the CA-rich region is reversed transcribed to synthesize the GT-rich telomeric repeats. An example of the GT-rich telomeric sequence is represented by SEQ ID NO:2.

- 5 -

The present invention generally concerns non-ciliate eukaryotic telomerase components. These are represented by telomerase components from mammalian cells, including human cells, and telomerase components from other non-
5 ciliate species. One significant contribution of this invention is the development of methods of utilizing telomerase components, which methods are functional in useful eukaryotic cells. "Useful eukaryotic cells" particularly include human cells, as these are directly
10 relevant to the development of diagnostics and therapeutics for human use, and cells of genetically tractable eukaryotic organisms, as these are recognized to have significant value in scientific terms and, ultimately, in drug development. The preferred non-
15 ciliate telomerase components of the invention are thus mammalian, drosophila and yeast telomerase components.

A. DNA Segments and Vectors

20 The invention thus provides nucleic acid segments that are characterized as nucleic acid segments that include a sequence region that consists of at least 17 contiguous nucleotides that have the same sequence as, or are complementary to, 17 contiguous nucleotides of SEQ ID NO:1, SEQ ID NO:29, SEQ ID NO:30, SEQ ID NO:19, SEQ ID
25 NO:31 or SEQ ID NO:23.

30 The nucleic acid segments of the invention are further characterized as being of from 17 to about 10,000 nucleotides in length, which nucleic acid segments hybridize to the nucleic acid segment of SEQ ID NO:1, SEQ ID NO:29, SEQ ID NO:30, SEQ ID NO:19, SEQ ID NO:31 or SEQ ID NO:23, or the complement thereof, under standard hybridization conditions.

35

"Complementary" or "complement", in terms of nucleic acid segments that are complementary to those listed

- 6 -

above, or that hybridize to a complement of such nucleic acid segments, means that the nucleic acid sequences are capable of base-pairing to a given sequence, such as the sequences of SEQ ID NO:1, SEQ ID NO:29, SEQ ID NO:30, SEQ 5 ID NO:19, SEQ ID NO:31 or SEQ ID NO:23, according to the standard Watson-Crick complementarity rules. That is, the larger purines will base pair with the smaller pyrimidines to form combinations of guanine paired with cytosine (G:C) and adenine paired with either thymine 10 (A:T), in the case of DNA, or adenine paired with uracil (A:U) in the case of RNA.

Encompassed within the nucleic acid sequences of the invention are full-length DNA sequences or other DNA 15 segments that have a sequence region that encodes a peptide, polypeptide or protein and that may be used, for example, in recombinant expression. Also included within the nucleic acid sequences are DNA and RNA segments for use in nucleic acid hybridization embodiments, such as in 20 cloning.

The smaller nucleic acid segments may be termed probes and primers. The individual sequences of 17, 20, 25 30, 50 or so nucleotide sequence stretches, for example, may be readily identified by "breaking down" the longer sequences disclosed herein to provide one or more shorter sequences. Using an exemplary length of 17 bases, each of the 17-mer possibilities from the DNA sequences described herein have been defined and are listed in 30 Table 2.

In certain embodiments, the invention provides isolated DNA segments and recombinant vectors that have one or more sequence regions that encode one or more non-35 ciliate eukaryotic telomerase components, and preferably, those that encode one or more yeast (*S. cerevisiae*) telomerase components. The creation and use of

- 7 -

recombinant host cells, through the application of DNA technology, that express yeast or other non-ciliate eukaryotic telomerase components is also encompassed by the invention.

5

As used herein, the term "telomerase component" refers to a biological component that is associated with a non-ciliate eukaryotic telomerase complex, such as a mammalian, drosophila or yeast telomerase component.

10 Preferably, the telomerase components will be associated with a yeast telomerase complex. A "telomerase complex" in this sense is a ribonucleoprotein enzyme complex that functions to elongate the G-rich strand of eukaryotic, and preferably yeast, chromosomal termini by adding 15 telomeric repeats. Telomerase components (or telomerase-associated components) therefore include both RNA and polypeptidyl components.

An important component of telomerase is the 20 telomerase RNA template or template sequence. The term "telomerase RNA template", as used herein, refers to a non-ciliate eukaryotic, such as a mammalian, drosophila, or preferably, a yeast telomerase RNA component that includes a sequence that is complementary to the telomere 25 repeat, i.e., that is complementary to the G-rich or GT-rich sequences of chromosomal termini.. The telomerase RNA template is thus an isolated RNA component that has a C-rich or CA-rich sequence and that, by interacting with other telomerase components, functions to extend 30 telomeric repeats. The telomerase RNA template may also be defined as the telomerase substrate for reverse transcription.

Further telomerase components are telomerase- 35 associated proteins and polypeptides. The "telomerase-associated proteins and polypeptides" of this invention are proteins, polypeptides or peptides that are required

- 8 -

for telomerase function in non-ciliate eukaryotic cells, and preferably, in yeast cells. Such telomerase-associated proteins and polypeptides will generally be physically and functionally associated with the 5 telomerase complex in the nucleus, however, they may also be proteins or polypeptides that only associate with the telomerase complex for certain periods of time, at defined points of the cell cycle, or may be present only in certain cell types of a multicellular organism.

10

Telomerase-associated proteins, polypeptides and peptides may have either functional or structural roles within the telomerase complex. That is, they may have a catalytic or regulatory role, or may form the scaffolding 15 of the telomerase structure. The telomerase-associated proteins or polypeptides may function only in terms of telomerase activity, i.e., they may be telomerase-restricted; or they may have other biological functions within the cell nucleus, such as in other aspects of 20 chromosome replication and stability, or may even have cytoplasmic functions.

The telomerase DNA segments of the present invention are thus DNA segments isolatable from non-ciliate 25 eukaryotic cells, and preferably, from yeast cells, that are free from total genomic DNA and that include a sequence region that is capable of expressing a telomerase RNA or polypeptide component. The DNA segments may, in certain embodiments, also be defined as 30 those capable of inhibiting the telomerase activity of a cell by over-expression in a cell that previously contained telomerase activity. In further embodiments, the DNA segments may be defined as those capable of conferring telomerase activity to a host cell when 35 incorporated into a cell that has been rendered deficient in such activity.

- 9 -

As used herein, the term "DNA segment" refers to a DNA molecule that has been isolated free of total genomic DNA of a particular species, such as a mammal, drosophila or yeast species. Therefore, a DNA segment that
5 comprises a sequence region that encodes a telomerase-associated component refers to a DNA segment that includes telomerase-associated component coding sequences or regions, yet is isolated away from, or purified free from, total genomic DNA of the species from which the DNA
10 segment is obtained. Included within the term "DNA segment", are DNA segments and smaller fragments of such segments, and also recombinant vectors, including, for example, plasmids, cosmids, phage, viruses, and the like.

15 Similarly, a telomerase-associated gene is a DNA segment comprising an isolated or purified gene that includes a sequence region that encodes a component associated with a mammalian, drosophila, or preferably, with a yeast telomerase. The term "an isolated gene
20 associated with a non-ciliate eukaryotic telomerase", as used herein, refers to a DNA segment including telomerase RNA or protein coding sequences or regions and, in certain aspects, regulatory sequences, isolated substantially away from other naturally occurring genes
25 or encoding sequences. In this respect, the term "gene" is used for simplicity to refer to a functional RNA, protein, polypeptide or peptide encoding unit or region. As will be understood by those in the art, this functional term includes both genomic sequences, cDNA
30 sequences and smaller engineered gene segments that express, or may be adapted to express, RNA molecules, proteins, polypeptides or peptides.

35 "Isolated substantially away from other coding sequences" means that the gene of interest, in this case a telomerase-associated gene, forms the significant part of the sequence or coding region of the DNA segment, and

- 10 -

that the DNA segment does not contain large portions of naturally-occurring coding DNA, such as large chromosomal fragments or other functional genes or cDNA coding regions. Of course, this refers to the DNA segment as 5 originally isolated, and does not exclude genes or coding regions later added to the segment by the hand of man.

In particular embodiments, the invention concerns isolated DNA segments and recombinant vectors 10 incorporating DNA sequences that include an isolated gene or sequence region that encodes a non-ciliate eukaryotic telomerase RNA template, such as a mammalian, drosophila, or preferably, a yeast telomerase RNA template. This aspect of the invention is exemplified by DNA segments 15 and genes that encode the *S. cerevisiae* telomerase RNA template sequence of CACCACACCCACACAC (SEQ ID NO:3).

A variety of oligonucleotides, DNA segments and genes that encode the CACCACACCCACACAC (SEQ ID NO:3) 20 telomerase RNA template sequence are made possible by the discovery of the present inventors'. These include sequences from SEQ ID NO:1, and the complementary strand, SEQ ID NO:4. The sequence from SEQ ID NO:1 that includes the template-encoding region of CACCACACCCACACAC (SEQ ID 25 NO:3) is particularly represented by the contiguous DNA sequence from position 468 to position 483 of SEQ ID NO:1. Such DNA segments will have a minimum length of 17 nucleotides, and are exemplified by the contiguous DNA sequences from position 467 to position 483, or from 30 position 468 to position 484, of SEQ ID NO:1.

DNA segments longer than 17 bases are also contemplated, in increments of single integers up to and including the 1301 bases of SEQ ID NO:1, and even longer. 35 The contiguous sequences from SEQ ID NO:1 may be equidistant around the template-encoding region of SEQ ID NO:3, or they may have the SEQ ID NO:3 region located

- 11 -

substantially towards the beginning or towards the end of the given sequence. DNA segments may thus have sequences in accordance with the contiguous sequences between about position 450 or 460 and about position 485 of SEQ ID

5 NO:1; between about position 300 or 400 and about position 500, 600 or 700 of SEQ ID NO:1; between about position 100 or 200 and about position 800, 900, 1000, 1100 or 1200 of SEQ ID NO:1; or between any of the afore-mentioned ranges and intermediates thereof. DNA segments
10 and isolated genes that include the full-length DNA sequence of SEQ ID NO:1 are also contemplated.

In further embodiments, the invention provides isolated DNA segments, genes and vectors incorporating
15 DNA sequences that encode a non-ciliate eukaryotic telomerase-associated polypeptide, such as a mammalian, drosophila or yeast, telomerase-associated polypeptide, as exemplified by yeast polypeptides that includes within their amino acid sequence a contiguous amino acid
20 sequence from SEQ ID NO:16, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:22 or SEQ ID NO:24.

The term "a contiguous amino acid sequence from SEQ ID NO:16, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:22 or
25 SEQ ID NO:24" means that a contiguous sequence is present that substantially corresponds to a contiguous portion of one of the afore-mentioned sequences and has relatively few amino acids that are not identical to, or a biologically functional equivalent of, the amino acids of
30 SEQ ID NO:16, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:22 or SEQ ID NO:24. The term "biologically functional equivalent" is well understood in the art and is further defined in detail herein. Accordingly, sequences that have between about 70% and about 80%; or more preferably,
35 between about 81% and about 90%; or even more preferably, between about 91% and about 99%; of amino acids that are identical or functionally equivalent to the amino acids

- 12 -

of SEQ ID NO:16, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:22 or SEQ ID NO:24 will be sequences in accordance with the present invention.

5 The protein-encoding DNA segments, genes and vectors may include within their sequence region a contiguous nucleic acid sequence from SEQ ID NO:29, SEQ ID NO:30, SEQ ID NO:19, SEQ ID NO:31 or SEQ ID NO:23. The term "a contiguous nucleic acid sequence from SEQ ID NO:29, SEQ
10 ID NO:30, SEQ ID NO:19, SEQ ID NO:31 or SEQ ID NO:23" is used in the same sense as described above and means that the nucleic acid sequence substantially corresponds to a contiguous portion of one of the designated sequences and has relatively few codons that are not identical, or
15 functionally equivalent, to the codons of SEQ ID NO:29, SEQ ID NO:30, SEQ ID NO:19, SEQ ID NO:31 or SEQ ID NO:23. The term "functionally equivalent codon" is used herein to refer to codons that encode the same amino acid, such as the six codons for arginine or serine, and also refers
20 to codons that encode biologically equivalent amino acids, as is known in the art and further described herein (see Table 1).

25 Protein-encoding DNA segments and genes of the present invention may encode a full length telomerase-associated protein or polypeptide, as may be used in expressing the protein. Such DNA segments are exemplified by those that comprise an isolated gene that includes a contiguous DNA sequence substantially as shown between position 54 and position 1799 of SEQ ID NO:29, that encodes a polypeptide substantially as shown in SEQ ID NO:16; or that includes a contiguous DNA sequence substantially as shown between position 78 and position 1094 of SEQ ID NO:30, that encodes a polypeptide
30 substantially as shown in SEQ ID NO:18; or that includes a contiguous DNA sequence substantially as shown between position 2 and position 2368 of SEQ ID NO:19, that
35

- 13 -

encodes a polypeptide substantially as shown in SEQ ID NO:20; or that includes a contiguous DNA sequence substantially as shown between position 55 and position 699 of SEQ ID NO:31, that encodes a polypeptide
5 substantially as shown in SEQ ID NO:22; or that includes a contiguous DNA sequence substantially as shown between position 3 and position 1955 of SEQ ID NO:23, that encodes a polypeptide substantially as shown in SEQ ID NO:24.

10

For both protein expression and hybridization, the nucleic acid segments used may include the full length versions of any of the telomerase-associated genes disclosed herein, or their biological equivalents,
15 including their complementary sequences where hybridization is concerned. This is exemplified by DNA segments that have, or that comprise a sequence region that has, the 1301 nucleotides of SEQ ID NO:1, the 1882 nucleotides of SEQ ID NO:29, the 1094 nucleotides of SEQ
20 ID NO:30, the 2434 nucleotides of SEQ ID NO:19, the 807 nucleotides of SEQ ID NO:31, the 2117 nucleotides of SEQ ID NO:23, or any substantially equivalent sequences.

Further, the present DNA segments may be used to
25 express protein fragments or peptides, for example, peptides of from about 15 to about 30, about 50 or about 100 amino acids in length. The peptides may, of course, be of any length between or around such stated ranges, with "about" meaning a range of lengths in positive
30 integers between each above-listed reference point and higher, with 12-15 or so being the minimum length. Appropriate coding sequences and regions may be readily identified from any of the regions of SEQ ID NO:29, SEQ ID NO:30, SEQ ID NO:19, SEQ ID NO:31 or SEQ ID NO:23.

35

The sequence or coding regions of the invention will be a minimum length of 17 nucleotides, and will most

- 14 -

often be longer than this, such as upwards of about 40-50 nucleotides in length or so. The maximum length of the DNA segments is not limited by the length of the coding regions themselves, so that DNA segments of about 1,000, 5 about 3,000, about 5,000 and 10,000 or even longer are contemplated. It will be readily understood that all lengths intermediate between the above-quoted ranges are also included.

10 It will also be understood that amino acid and nucleic acid sequences may include additional residues, such as additional N- or C-terminal amino acids or 5' or 3' sequences, and yet still be substantially as shown in one of the sequences disclosed herein, so long as the 15 sequence meets the criteria set forth above. The addition of terminal sequences particularly applies to nucleic acid sequences that may, for example, include various non-coding sequences flanking either of the 5' or 3' portions of the coding region or may include various 20 internal sequences, i.e., introns, which are known to occur within genes.

Excepting intronic or flanking regions, and allowing for the degeneracy of the genetic code, sequences that 25 have between about 70% and about 80%; or more preferably, between about 80% and about 90%; or even more preferably, between about 90% and about 99% of nucleotides that are identical to the nucleotides of SEQ ID NO:1, SEQ ID NO:29, SEQ ID NO:30, SEQ ID NO:19, SEQ ID NO:31 or SEQ ID 30 NO:23 will be sequences that are substantially as shown in such sequences. From the inventors' experience, sequences with 70% identity or higher are expected to be telomerase-related sequences.

35 The nucleic acid segments of the present invention, regardless of the length of any coding sequences themselves, may be combined with other nucleic acid

- 15 -

sequences, such as promoters, polyadenylation signals, additional restriction enzyme sites, multiple cloning sites, other coding segments, and the like, such that their overall length may vary considerably. It is
5 therefore contemplated that a nucleic acid fragment of almost any length may be employed, with the total length preferably being limited by the ease of preparation and use in the intended recombinant DNA protocol.

10 As stated above, the invention is not limited to the particular sequences of SEQ ID NO:1, SEQ ID NO:29, SEQ ID NO:30, SEQ ID NO:19, SEQ ID NO:31 or SEQ ID NO:23 (nucleic acid), or SEQ ID NO:16, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:22 or SEQ ID NO:24 (amino acid). In
15 terms of expression, recombinant vectors may therefore variously include the telomerase-associated protein coding regions themselves, coding regions bearing selected alterations or modifications in the basic coding region, or they may encode larger polypeptides that
20 nevertheless include such telomerase-associated protein coding regions or may encode biologically functional equivalent proteins or peptides that have variant amino acids sequences.

25 For protein expression embodiments, the DNA segments may include biologically functional equivalent protein-coding sequences that have arisen as a consequence of codon redundancy and functional equivalency, as is known to occur naturally within biological sequences.
30 Alternatively, functionally equivalent proteins or peptides may be created via the application of recombinant DNA technology, in which changes in the protein structure may be engineered, based on considerations of the properties of the amino acids being
35 exchanged. Changes designed by man may be introduced through the application of site-directed mutagenesis techniques, e.g., to introduce improvements to the

- 16 -

antigenicity of the protein or to test telomerase mutants in order to examine their activity at the molecular level.

5 If desired, one may also prepare fusion proteins and peptides, e.g., where the telomerase-associated protein coding regions are aligned within the same expression unit with other proteins or peptides having desired functions, such as for purification or immunodetection
10 purposes (e.g., proteins that may be purified by affinity chromatography and enzyme label coding regions, respectively).

15 Recombinant vectors form further aspects of the present invention. Particularly useful vectors are contemplated to be those vectors in which an RNA or protein coding portion of a DNA segment, whether encoding an RNA template, a full length protein or smaller peptide, is positioned under the control of a promoter.
20 The promoter may be in the form of the promoter that is naturally linked to a telomerase-associated gene, as may be obtained by isolating the 5' non-coding sequences located upstream of the coding segment or exon, for example, using recombinant cloning and/or PCR technology,
25 in connection with the compositions disclosed herein.

30 In other expression embodiments, it is contemplated that certain advantages will be gained by positioning a coding DNA segment or sequence region under the control of a recombinant, or heterologous, promoter. As used herein, a recombinant or heterologous promoter is intended to refer to a promoter that is not normally associated with a telomerase-associated gene in its natural environment. Such promoters may include yeast
35 promoters normally associated with other genes, and/or promoters isolated from any other bacterial, viral, insect or mammalian cell.

- 17 -

Naturally, it will be important to employ a promoter that effectively directs the expression of the DNA segment in the cell type, organism, or even animal, chosen for expression. The use of promoter and cell type combinations for protein expression is generally known to those of skill in the art of molecular biology, for example, see Sambrook et al. (1989). The promoters employed may be constitutive, or inducible, and can be used under the appropriate conditions to direct high level expression of the introduced DNA segment, such as is advantageous in the large-scale production of recombinant proteins or peptides.

Preferred promoter systems contemplated for use in high-level expression in *S. cerevisiae* include, but are not limited to, the GAL1, MET3, and PGK promoter systems. For conditional alleles, as may be used in cellular studies of the RNA template, a chimeric fusion of an RNA template gene may be placed under the regulation of a heterologous promoter. Appropriate promoters include the MET3 promoter, which is repressed in the presence of methionine and induced when methionine is absent from the medium; and the GAL1,10 UAS, as described in Example XI.

25 **B. Nucleic Acid Hybridization**

In addition to their use in directing the expression of telomerase-associated RNA and protein components, the nucleic acid sequences disclosed herein also have a variety of other uses, for example, in nucleic acid hybridization embodiments. The ability of nucleic acid probes or primers to specifically hybridize to the telomerase-associated nucleic acid sequences disclosed herein will enable them to be of use in detecting the presence of complementary sequences in a given sample. However, other uses are envisioned, including the use of the sequence information for the preparation of mutant

- 18 -

species primers, or primers for use in preparing other genetic constructs.

The present invention thus concerns nucleic acid
5 segments of 17 nucleotides in length, or longer, that hybridize to the telomerase-associated sequences of SEQ ID NO:1, SEQ ID NO:29, SEQ ID NO:30, SEQ ID NO:19, SEQ ID NO:31 or SEQ ID NO:23, or their complements, under standard hybridization conditions. This provides another
10 physical and functional definition for identifying additional sequences in accordance with the invention, as well as defining useful sub-sequences, such as primers.

The nucleic acids that hybridize to the sequences of
15 SEQ ID NO:1, SEQ ID NO:29, SEQ ID NO:30, SEQ ID NO:19, SEQ ID NO:31 or SEQ ID NO:23, may be 17 nucleotides in length or longer, such as about 20, about 25, about 30, about 50, about 75, about 100, about 150, about 200, about 250, about 500, about 750 or about 1,000
20 nucleotides in length, or even longer. As the length of the nucleic acid segment that hybridizes is not solely a function of the length of the substantially complementary sequence region, these nucleic acid segments may also be about 2,000, about 3,000, about 5,000 or about 10,000
25 nucleotides in length or longer, so long as the total length does not prevent hybridization under the conditions defined herein.

As with the sequence or coding regions defined
30 hereinabove, it will be readily understood that any intermediate length between the quoted ranges is included, such as 17, 18, 19, 20, 21, 22, 23, etc; 50, 51, 52, 53, etc.; 100, 101, 102, 103, etc.; including all positive integers through the 150-500; 500-1,000; 1,000-
35 2,000; 2,000-5,000; and 5,000-10,000 ranges, up to and including sequences of about 12,001, 12,002, 13,001, 13,002 and the like.

- 19 -

The total size of nucleic acid segment or fragment, as well as the size of the complementary stretch(es), will ultimately depend on the intended use or application of the particular nucleic acid segment. The use of a 5 hybridization probe of about 17 nucleotides in length allows the formation of a duplex molecule that is both stable and selective.

Accordingly, the nucleotide sequences of the 10 invention may be used for their ability to selectively form duplex molecules with complementary stretches of telomerase-associated genes or cDNAs. Depending on the application envisioned, one will desire to employ varying conditions of hybridization to achieve varying degrees of 15 selectivity of probe towards target sequence.

For applications requiring high selectivity, one will typically desire to employ relatively stringent conditions to form the hybrids, e.g., one will select 20 relatively low salt and\or high temperature conditions that tolerate little, if any, mismatch between the probe and the template or target strand. Standard high stringency hybridization conditions are described in the hybridization protocols set forth herein in the detailed 25 description.

Of course, for some applications, for example, where one desires to prepare mutants employing a mutant primer strand hybridized to an underlying template, or where one 30 seeks to isolate telomerase-associated sequences from related species, functional equivalents, or the like, less stringent hybridization conditions are useful to allow formation of the heteroduplex. In these circumstances, one may desire to employ standard low 35 stringency hybridization conditions, which are also described in the hybridization protocols set forth in the detailed description.

- 20 -

Cross-hybridizing species can thereby be readily identified as positively hybridizing signals with respect to control hybridizations. In any case, it is generally appreciated that conditions can be rendered more stringent by the addition of increasing amounts of formamide, which serves to destabilize the hybrid duplex, in the same manner as increased temperature. Thus, hybridization conditions can be readily manipulated, and thus will generally be a method of choice depending on the desired results.

Where hybridization probes or primers are to be designed from a consideration of the longer sequences disclosed herein, they may be selected from any portion of any of the nucleic acid sequences. All that is required is to review the sequences and to select any continuous portion of the sequence, from 17 nucleotides in length up to and including the full length sequence.

Once the coding sequence of a telomerase-associated gene has been determined, various primers can be designed around that sequence. Primers may be of any length, but typically, are 17, 20, 25 or 30 bases or so in length. By assigning numeric values to a sequence, for example, the first residue is 1, the second residue is 2, and the like, an algorithm defining all primers is:

n to n + y

where n is an integer from 1 to the last number of the sequence and y is the length of the primer minus one, in the above cases (16, 19, 24, 29), where n + y does not exceed the last number of the sequence. For example, for the TLC1 gene, n is 1 to 1301. Thus, for a 17-mer, the probes correspond to bases 1 to 17, 2 to 18, 3 to 19.... up to 1285 to 1301. Table 2 herein sets forth the number of contiguous 17-mer sequences that may be obtained from

- 21 -

the sequences of SEQ ID NO:1, SEQ ID NO:29, SEQ ID NO:30, SEQ ID NO:19, SEQ ID NO:31 or SEQ ID NO:23, or their complements.

5 The choice of probe and primer sequences may be governed by various factors, such as, by way of example only, one may wish to employ primers from towards the termini of the total sequence, or from the ends of any functional domain-encoding sequences, in order to amplify
10 further DNA; one may employ probes corresponding to the entire DNA, or to the RNA template region, to clone template genes from other species or to clone further telomerase template-like or homologous genes from any species including human; one may also design appropriate
15 probes or primers to screen biological samples to identify cells with inappropriate telomerase levels or activity, as may be related to cancer or even to infertility.

20 The process of selecting and preparing a nucleic acid segment that includes a contiguous sequence from within SEQ ID NO:1, SEQ ID NO:29, SEQ ID NO:30, SEQ ID NO:19, SEQ ID NO:31 or SEQ ID NO:23 may be readily achieved by, for example, directly synthesizing the
25 fragment by chemical means, as is commonly practiced using an automated oligonucleotide synthesizer. Also, fragments may be obtained by application of nucleic acid reproduction technology, such as the PCR technology of U.S. Patent 4,683,202 and U.S. Patent 4,682,195 (each
30 incorporated herein by reference), by introducing selected sequences into recombinant vectors for recombinant production, and by other recombinant DNA techniques generally known to those of skill in the art of molecular biology. Of course, smaller nucleic acid
35 fragments may also be obtained by other techniques such as, e.g., by mechanical shearing or by restriction enzyme digestion.

- 22 -

In certain embodiments, it will often be advantageous to employ nucleic acid sequences of the present invention in combination with an appropriate means, such as a label, for determining hybridization. A wide variety of appropriate indicator means are known in the art, including fluorescent, radioactive, enzymatic or other ligands, such as avidin/biotin, which are capable of giving a detectable signal. In certain embodiments, one will likely desire to employ a fluorescent label or an enzyme tag, such as urease, alkaline phosphatase or peroxidase, instead of radioactive or other environmental undesirable reagents. In the case of enzyme tags, colorimetric indicator substrates are known that can be employed to provide a means visible to the human eye or spectrophotometrically, to identify specific hybridization with complementary nucleic acid-containing samples.

In general, it is envisioned that the hybridization probes described herein will be useful both as reagents in solution hybridization as well as in embodiments employing a solid phase. In embodiments involving a solid phase, the test DNA (or RNA) is adsorbed or otherwise affixed to a selected matrix or surface. This fixed, single-stranded nucleic acid is then subjected to specific hybridization with selected probes under desired conditions. The selected conditions will depend on the particular circumstances based on the particular criteria required (depending, for example, on the G+C contents, type of target nucleic acid, source of nucleic acid, size of hybridization probe, etc.). Following washing of the hybridized surface so as to remove nonspecifically bound probe molecules, specific hybridization is detected, or even quantified, by means of the label.

- 23 -

C. Further Telomerase Compositions

The present invention further includes isolated RNA segments, of from 17 to about 1,500 nucleotides in length, that comprise a non-ciliate, or preferably, a yeast telomerase RNA template. The isolated RNA segments will be obtained free from total nucleic acids, chromosomes and intact telomerase complexes, and will include a non-ciliate eukaryotic, or preferably, a yeast telomerase RNA template. This is exemplified by RNA segments including the *S. cerevisiae* RNA template sequence of CACCACACCCACACAC (SEQ ID NO:3).

Isolated RNA segments that include the minimum functional mammalian, drosophila or yeast telomerase RNA template coding sequences and the minimum upstream sequences necessary for expression are also contemplated. These may be identified as described herein in Example XI and will be useful in mutant analysis, promoter and expression analysis and creation of conditional mutants.

Isolated RNA segments that have substantially the same secondary structure as the RNA segment encoded by the sequence of SEQ ID NO:1 are also included within the scope of the present invention. This may be assessed by techniques, and computer programs, that predict secondary structure based on the primary sequence of the RNA. The secondary structure predictions are supported by mutant/function analysis, as is well known in the art. That is, given the predicted structure, it is straightforward for the ordinary artisan to accurately predict the effects of certain sets of mutations in the RNA.

Further compositions in accordance with this invention include affinity columns that comprise a deoxyoligonucleotide attached to a solid support, where

- 24 -

the deoxyoligonucleotide includes a sequence complementary to a non-ciliate, or preferably, a yeast telomerase RNA template sequence. Such deoxyoligonucleotides and affinity columns will be capable of binding eukaryotic, or preferably, yeast telomerase complexes, enabling their purification. As the template RNA includes the CA-rich template region, an appropriate column-bound bait will be a GT-rich DNA sequence, as represented, by way of example only, by SEQ ID NO:2.

The oligonucleotides may be attached to any one of a variety of solid supports for use in standard column chromatography or in FPLC or HPLC techniques.

Oligonucleotides may be attached using a variety of appropriate methods, such as, by way of example, using direct chemical conjugation, or other means such as biotin-avidin linkers, and the like. All such techniques are routine in the art.

Still further embodiments of the present invention concern recombinant host cells that contain or incorporate a DNA segment or recombinant vector that comprises an isolated gene associated with non-ciliate eukaryotic, or preferably, with yeast telomerase. The telomerase-associated components, whether they be cDNA or genomic, may be used in expression systems for the recombinant preparation of RNA templates or telomerase-associated polypeptides.

As used herein, the term "engineered" or "recombinant" cell is intended to refer to a cell into which an exogenous DNA segment or gene, such as a cDNA or gene encoding a telomerase-associated component has been introduced. Therefore, engineered cells are distinguishable from naturally occurring cells that do not contain a recombinantly introduced exogenous DNA

- 25 -

segment or gene. Engineered cells are thus cells having a gene or genes introduced through the hand of man. Recombinantly introduced genes will either be in the form of a cDNA gene (i.e., they will not contain introns), a 5 copy of a genomic gene, or will include genes positioned adjacent to a promoter not naturally associated with the particular introduced gene.

The engineering of DNA segment(s) for expression in 10 prokaryotic or eukaryotic systems is performed using techniques known to those of skill in the art, and further described herein in detail. It is believed that virtually any prokaryotic or eukaryotic host cell system may be employed in the expression of one or more 15 telomerase-associated components, with yeast systems being preferred in certain embodiments. Telomerase-associated polypeptides may also be as fusions with, e.g., β -galactosidase, ubiquitin, *Schistosoma japonicum* glutathione S-transferase, and the like.

20

To achieve expression, one would position the telomerase coding sequences adjacent to and under the control of a promoter. It is understood in the art that to bring a coding sequence under the control of such a 25 promoter, one positions the 5' end of the transcription initiation site of the transcriptional reading frame of the protein between about 1 and about 50 nucleotides or so "downstream" of (i.e., 3' of) the chosen promoter.

30

Where eukaryotic expression is contemplated, one will also typically desire to incorporate into the transcriptional unit which includes the enzyme, an appropriate polyadenylation site (e.g., 5'-AATAAA-3') if one was not contained within the original cloned segment. 35 Typically, the poly A addition site is placed about 30 to 2000 nucleotides "downstream" of the termination site of

- 26 -

the protein at a position prior to transcription termination.

Generally speaking, it may be more convenient to
5 employ as the recombinant gene a cDNA version of the
gene. It is believed that the use of a cDNA version will
provide advantages in that the size of the gene will
generally be much smaller and more readily employed to
transfect the targeted cell than will a genomic gene,
10 which will typically be up to an order of magnitude
larger than the cDNA gene. However, the inventors do not
exclude the possibility of employing a genomic version of
a particular gene where desired.

15 The recombinant host cells of the invention will
effectively express a DNA segment to produce a
telomerase RNA template or a polypeptide associated with
telomerase. The invention thus further includes
recombinant gene products that are prepared by expressing
20 a eukaryotic, or preferably, a yeast telomerase-
associated gene in a recombinant host cell and purifying
the expressed gene product away from total recombinant
host cell components. The gene products include
telomerase RNA templates, proteins, polypeptides and
25 peptides associated with telomerase, and combinations and
equivalents thereof.

The preparation of such recombinant gene products is
preferably achieved by using a DNA segment of the
30 invention in the preparation of a recombinant vector in
which a telomerase-associated gene is positioned under
the control of a promoter. The recombinant vector is
then introduced into a recombinant host cell, which is
cultured under conditions effective, and for a period of
35 time sufficient, to allow expression of the telomerase-
associated gene, which thus allows the expressed gene
product to be collected, giving a purified preparation.

- 27 -

The invention further concerns recombinant RNA segments that include non-ciliate telomerase RNA templates, such as mammalian, drosophila, or preferably, yeast telomerase RNA templates; and recombinant protein 5 and polypeptide compositions, free from total cell components, that comprise one or more purified non-ciliate, or preferably, yeast telomerase-associated components. These are exemplified by polypeptides that include a contiguous amino acid sequence from SEQ ID 10 NO:16, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:22 or SEQ ID NO:24.

The terms "purified telomerase-associated polypeptide and RNA template", as used herein, refer to 15 telomerase-associated polypeptide or RNA template compositions, isolatable from eukaryotic, or preferably, from yeast cells, wherein the polypeptide or RNA is purified to any degree relative to its naturally- obtainable state, e.g., relative to its purity within a 20 cellular extract. More preferably, "purified" refers to telomerase-associated polypeptide or RNA template compositions that have been subjected to fractionation to remove various non-telomerase components. "Substantially purified" native and recombinant telomerase RNA templates 25 and polypeptides are also preparable using the methods of the invention.

To prepare a purified telomerase-associated component in accordance with the present invention one 30 would subject a composition to fractionation to remove various non-telomerase-associated components. Various techniques suitable for use in RNA and protein purification will be well known to those of skill in the art. Protein purification techniques include, for 35 example, precipitation with ammonium sulphate, PEG, antibodies, and the like, or by heat denaturation, followed by centrifugation; chromatography steps such as

- 28 -

ion exchange, gel filtration, reverse phase, hydroxylapatite and affinity chromatography; isoelectric focusing; gel electrophoresis; and combinations of such and other techniques.

5

Specific examples of purification schemes for use in the present invention are those including initial separation of nuclear proteins, followed by gradient centrifugation methods (equilibrium and sedimentation velocity), column chromatography and gel electrophoresis, as described in Example XV. Specific binding to RNA or DNA segments related to the telomerase template sequences, including affinity column binding embodiments, is also envisioned to be particularly useful.

15

For assays of intact or relatively intact telomerase complexes, deoxyoligonucleotide substrates, representing 3' G-rich telomere tails, are incubated in cellular extracts containing telomerase with ^{32}P -labeled dNTP's (typically dGTP or dTTP). The products of telomerase elongation on the input deoxyoligonucleotide substrate may then be detected by, e.g., gel electrophoresis and autoradiography. A series of substrates is also preferably used, as described in Example XV.

25

Although preferred for use in certain embodiments, there is no general requirement that the RNA or proteins always be provided in their most purified state. Indeed, it is contemplated that less substantially purified telomerase-associated components, which are nonetheless enriched relative to their natural state, will have utility in certain embodiments. These include, for example, certain binding assays, screening protocols, titration of components, and the like. Inactive protein fractions also have utility, for example, in antibody generation.

- 29 -

In further embodiments, the invention also provides polyclonal or monoclonal antibodies that bind to a non-ciliate, and preferably, to a yeast telomerase-associated polypeptide, as exemplified by an antibody that has
5 binding affinity for a protein or peptide that includes a contiguous amino acid sequence from SEQ ID NO:16, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:22 or SEQ ID NO:24. Cross-reactive antibodies are also encompassed by the invention, as may be identified by employing a
10 competition binding assay, such as an ELISA or RIA, as are well known in the art.

Particular techniques for preparing antibodies in accordance with the invention are disclosed herein, which
15 methods generally comprise administering to an animal a composition comprising an immunologically effective amount of a telomerase-associated component protein, peptide or other epitopic composition. By "immunologically effective amount" is meant an amount of
20 a telomerase-associated protein or peptide composition that is capable of generating an immune response in the recipient animal, and particularly, in this case, generating an antibody or B cell response.

25 Any of the DNA, RNA, proteins, polypeptides and antibodies of this invention may also be linked to a detectable label, such as a radioactive, fluorogenic, biological, chromogenic or even a nuclear magnetic spin resonance label. Biolabels such as biotin and enzymes
30 that are capable of generating a colored product upon contact with a chromogenic substrate will be preferred in certain embodiments. Exemplary enzyme labels include alkaline phosphatase, hydrogen peroxidase, urease and glucose oxidase enzymes.

35

In still further embodiments, the invention concerns molecular biological and immunodetection kits. The

- 30 -

labelled nucleic acid segments, proteins or antibodies may be employed to detect other telomerase-associated nucleic acid, protein or antibody components in extracts, cells or biological samples, as may be used in the
5 detection of telomerase in clinical samples, or in the purification of telomerase-associated components, as appropriate. The kits will generally include a suitable telomerase-associated nucleic acid segment or antibody together with an detection reagent, and a means for
10 containing the telomerase-associated component and reagent.

The detection reagent will typically comprise a label associated with the telomerase nucleic acid segment
15 or antibody, or even associated with a secondary binding ligand. Exemplary ligands include secondary antibodies directed against a first antibody. The kits may contain telomerase-associated nucleic acid segments or antibodies either in fully conjugated form, in the form of
20 intermediates, or as separate moieties to be conjugated by the user of the kit.

Kits for use in molecular biological tests to identify telomerase-associated components may also
25 contain one or more unrelated nucleic acid probes or primers for use as controls, and optionally, one or more further molecular biological reagents, such as restriction enzymes or PCR components. The components of the kits will preferably be packaged within distinct
30 containers.

The container means for any of the kits will generally include at least one vial, test tube, flask, bottle, syringe or other container means, into which the
35 nucleic acid or antibody may be placed, and preferably suitably allocated. Where a second component, e.g., a binding ligand is provided, the kit will also generally

- 31 -

contain a second vial or other container into which this ligand or antibody may be placed. The kits of the present invention will also typically include a means for containing the vials in close confinement for commercial sale, such as, e.g., injection or blow-molded plastic containers into which the desired vials are retained.

D. Telomerase-Associated Methods

The invention further provides methods for detecting non-ciliate eukaryotic, and preferably, yeast telomerase-associated genes or nucleic acid segments in samples, such as cells, cellular extracts, partially purified telomerase compositions and other biological and even clinical samples. Such methods generally comprise obtaining sample nucleic acids from a sample suspected of containing a telomerase-associated gene; contacting the sample nucleic acids with a telomerase-associated nucleic acid segment as described herein under conditions effective to allow hybridization of substantially complementary nucleic acids; and detecting the hybridized complementary nucleic acids thus formed.

A variety of hybridization techniques and systems are known that can be used in connection with the telomerase detection aspects of the invention. For example, *in situ* hybridization, Southern blotting, Northern blotting and PCR technology. *In situ* hybridization describes the techniques wherein the target nucleic acids contacted with the probe sequences are located within one or more cells, such as cells within a clinical sample or cells grown in culture. As is well known in the art, the cells may be prepared for hybridization by fixation, e.g. chemical fixation, and placed in conditions that allow for the hybridization of a detectable probe with nucleic acids located within the fixed cell.

- 32 -

Alternatively, target nucleic acids may be separated from a cell or clinical sample prior to contact with a probe. Any of the wide variety of methods for isolating target nucleic acids may be employed, such as cesium chloride gradient centrifugation, chromatography (e.g., ion, affinity, magnetic), phenol extraction and the like. Most often, the isolated nucleic acids will be separated, e.g., by size, using electrophoretic separation, followed by immobilization onto a solid matrix, prior to contact with the labelled probe. These prior separation techniques are frequently employed in the art and are generally encompassed by the terms "Southern blotting", that detects DNA and "Northern blotting", that detects RNA. Virtually of the methods may be adapted for clinical or diagnostic assays, including diagnostic PCR technology.

In general, the "detection" of telomerase sequences is accomplished by attaching or incorporating a detectable label into the nucleic acid segment used as a probe and "contacting" a sample with the labeled probe. In such processes, an effective amount of a nucleic acid segment that comprises a detectable label (a probe), is brought into direct juxtaposition with a composition containing target nucleic acids. Hybridized nucleic acid complexes may then be identified by detecting the presence of the label, for example, by detecting a radio, enzymatic, fluorescent, or chemiluminescent label.

These detection methods may be employed to detect telomerase-associated genes, whether RNA- or protein-encoding, in both clinical and laboratory samples, e.g., as may be used in telomerase purification, analysis, mutagenesis and the like. In cells or cellular extracts obtained from an animal or human patient, the detection of telomerase may have particular relevance, for example, in the diagnosis or detection of tumor cells within a

- 33 -

sample suspected of containing such cells. This is supported by recent findings linking telomerase to oncogenesis and various late stage tumors and tumor cells (Harley et al., 1992; Counter et al., 1992, 1994a; Shay 5 et al., 1993; Klingelhutz et al., 1994; de Lange, 1994; Greider, 1994). The differential detection and diagnosis of malignant tumors as opposed to benign tumors is also contemplated.

10 Further clinical samples that may be analyzed for the presence of telomerase-associated genes, as described above, include those suspected of containing a pathogen. As telomerase activity is only present in dividing cells, testing a sample of somatic cells of an animal or human 15 for the presence of telomerase may indicate the presence of an invading unicellular organism within the sample. This may allow disease diagnosis alone, or in combination with other methods. The diagnosis of yeast infections, for example, is an immediate application of the present 20 invention. The development of species-specific markers for other opportunistic infections is also contemplated.

Diagnostic methods for identifying various conditions associated with infertility in animals and 25 humans are also provided by the invention. For example, as telomerase activity is required in germ cells, including human sperm and ova, testing samples from animals and humans suspected of having a condition connected with reproductive failure would provide useful 30 information. A negative test would likely indicate a defect in the reproductive capacity of sperm or egg cells within a given sample.

In further embodiments, the invention concerns 35 methods based upon suppression of "telomeric silencing" for use in identifying non-ciliate, and preferably, yeast telomerase-associated genes or active fragments thereof.

- 34 -

Such methods generally comprise, initially, preparing a cell containing a chromosome that contains a genetic marker located proximal to a telomere, wherein the telomere represses the expression of the marker. Next, 5 one would contact the cell with a composition comprising a candidate gene and identify any gene, or portion thereof, that allows expression of the marker. "Genes" identified in this way may be wild type genes or fragments that may disrupt the telomere function due to 10 over-expression, or they may be mutant or truncated genes that simply do not function correctly.

Appropriate cells for use in such assays include those cells that contain an active telomere, such as 15 eukaryotic cells that are capable of dividing, as exemplified by yeast cells, drosophila cells, and certain human cells, such as sperm, egg and cancer cells. The novel technology developed by the inventors is contemplated for use in any organism in which the 20 telomeres cause a transcriptional repression (silencing) of nearby genes. For ease of operation, yeast and Drosophila melanogaster (fruit flies) are currently preferred. However, the use of human cells is also contemplated.

25 The genetic markers that are added in the vicinity of a telomere may be any marker gene that gives a readily identifiable phenotype upon expression. Such markers are also often termed "reporter genes". Generally, the 30 marker or reporter genes encode a polypeptide not otherwise produced by the cell which is detectable by analysis, e.g., by visual inspection or by fluorometric, radioisotopic or spectrophotometric analysis. One example is *E. coli* beta-galactosidase, which produces a 35 color change upon cleavage of an indigogenic substrate; a further example is the enzyme chloramphenical acetyltransferase (CAT), which may be employed with a

- 35 -

variety of substrates that give detectable products; and still further examples are firefly and bacterial luciferases.

5 Still further marker genes for use herewith are those capable of transforming the host cell to express unique cell surface antigens, e.g., viral env proteins such as HIV gp120 or herpes gD, which are readily detectable by immunoassays. The polypeptide products of
10 this type of marker gene are secreted, membrane bound polypeptides, or polypeptides adapted to be membrane targeted, allowing ready detection by antibodies. However, antigenic reporters are not currently preferred because, unlike enzymes, they are not catalytic and thus
15 do not amplify their signals.

Yeast markers, when expressed, may result in a colored phenotype or result in a specific nutrient independence (prototrophy), or even in a nutrient requirement, or such like. Exemplary genetic markers that may be used in yeast include genes that are required for the biosynthesis of specific amino acids, such as *HIS3*, *TRP1*, *LYS2*, and *LEU2*. Genes that confer sensitivity to drugs, such as the *CAN1* gene that confers sensitivity to canavanine are also contemplated for use.
25 Currently preferred marker genes for use in yeast are *ADE2* and *URA3*.

Many suitable genetic markers are also available for use in human cell systems. These include the markers based upon color detection or antigen detection, as above, and also marker genes that encode polypeptides, generally enzymes, that render the host cells resistant against toxins. These include the *neo* gene that protects host cells against toxic levels of the antibiotic G418; the dihydrofolate reductase genes that confer resistance to methotrexate; and the HSV tk gene that is used in
30
35

- 36 -

conjunction with ganciclovir. Currently preferred examples are the markers *neo* and *hprt*, which are routinely used in the art.

5 The cells used in such assays may contain two distinct genetic markers, and each genetic marker may be located on a distinct chromosome if desired. The combined use of *ADE2* and *URA3* in yeast cells is currently a particularly preferred system.

10

As described hereinabove, human telomerase RNA template and polypeptide-encoding genes that have substantial sequence homology to the yeast sequences throughout, or in certain sequence regions, may be 15 isolated by nucleic acid hybridization, i.e., standard cloning techniques (Sambrook et. al., 1989). However, even if the human sequences are not directly homologous, RNA template and other telomerase genes may still be isolated using the advantageous methods disclosed herein.

20

One suitable method for identifying a human telomerase-associated gene, is to apply the suppression of telomeric silencing protocol to a human nucleic acid library using a yeast cell system. Such methods 25 generally comprise preparing a yeast cell containing a chromosome that contains a genetic marker located proximal to a telomere, where the telomere represses the expression of the marker; contacting the cell with a composition comprising a candidate human gene; and 30 identifying a human gene that allows expression of the marker.

Further suitable methods for identifying human telomerase-associated genes are those based entirely upon 35 human cells, which methods presuppose the lowest level of homology between the yeast and human cell systems. These methods comprise preparing a human cell that contains a

- 37 -

chromosome having a genetic marker located proximal to a telomere, where the telomere represses the expression of the marker; contacting the cell with a composition comprising a candidate human gene; and identifying a 5 human gene that allows expression of the marker.

Another method for isolating genes that encode products that interact with telomerase RNA is that which assays for genes that re-establish telomeric silencing 10 when the template RNA is overexpressed, as described in Example XIV. Here, initially the RNA template is presumed to interact with a limiting telomerase component to form a non-functional complex. Increasing the concentration of a limiting component, by over-expression, thus re-establishes telomeric silencing. 15 Preferably, RNA template levels that are minimally suppressive are used.

Still more approaches for identifying components 20 that interact with telomerase RNA are described in Example XIV, which are based upon isolating mutations that enhance or suppress the phenotypes of conditional telomerase template alleles.

Further elements of this invention are non-ciliate 25 eukaryotic, and preferably, yeast genes that are identified by any of the foregoing methods. One such gene is disclosed herein, termed *TLC1*, that encodes a telomerase RNA template. Other such genes are also 30 disclosed herein, termed *STR* genes, that encode telomerase-associated polypeptides. Particular examples of such genes of the invention are thus *TLC1*, *STR1*, *STR3*, *STR4*, *STR5* and *STR6*, and other non-ciliate eukaryotic, and preferably, yeast nucleic acid segments that have the 35 physical and functional characteristics of any of the foregoing genes.

- 38 -

Active fragments of genes and RNA components, such as *TLC1* RNA, may also be identified using the present methods. Titration assays based upon those used for the original identification of *TLC1* may be used to define the 5 minimum functional region. It is contemplated that relatively small regions of the RNA (about 50 bp) that suppress silencing will be identified. Conditional mutations made in regions of the RNA that are evolutionarily conserved, or that may interact with a 10 limiting factor, as suggested by the titration analysis, will identify functionally important region of the telomerase RNA. Active regions of telomerase genes and RNA components may also be identified using methods for dissecting small nuclear RNAs (snRNAs), as described in 15 Example XIII.

In still further embodiments, the invention provides methods for use in identifying candidate substances that bind to yeast and other non-ciliate eukaryotic telomerase 20 components. These methods generally include preparing an isolated telomerase component; contacting the isolated telomerase component with a composition comprising a candidate substance under conditions effective and for a period of time sufficient to allow binding; and detecting 25 the presence of a telomerase component-candidate substance bound complex.

It will be understood that such methods are similar 30 in principle to the nucleic acid hybridization methods described hereinabove. Indeed, the "candidate substances" to be detected may be nucleic acids, including human nucleic acid segments, that are detected by binding to eukaryotic, and preferably, to yeast telomerase RNA or DNA components, and preferably to a 35 defined small functional region of the template that suppress silencing, under the high or low hybridization conditions described above. However, other components

- 39 -

that bind to telomerase may be identified by binding to the isolated RNA, DNA or polypeptide components of the present invention. These components may include proteins, polypeptides, peptides, antibodies, small molecules, cofactors and the like.

Accordingly, the present invention provides binding assays, including high throughput binding assays using recombinant expression products, for use in identifying compounds capable of binding to telomerase or to a telomerase-associated component. The binding assays will preferably use the smaller RNA fragments identified in titration or other functional assays described herein.

Further methods for identifying compounds that bind to telomerase-associated components include those based upon cellular assays. One method for identifying a candidate substance that modifies telomerase activity comprises the following steps:

20

preparing a eukaryotic, or preferably, a yeast cell containing a chromosome that contains a genetic marker located near to, or in the vicinity of, a telomere, the telomere capable of repressing the expression of the marker;

25

contacting the cell with a composition comprising a candidate substance; and

30

identifying a candidate substance that allows expression of the marker or that further represses the expression of the marker.

35

This method is most suitable for identifying candidate inhibitory substances that allow expression of the marker. However, it can also be used to identify

- 40 -

candidate stimulatory substances that allow further repression of the marker.

To identify a compound that inhibits telomerase activity, one generally prepares a cell with a genetic marker that is substantially repressed by the telomere. Here, the marker gene is located proximal, i.e., immediately adjacent, to the telomere. Substantial repression is defined by repression to at least about 50%, or preferably, to about 25%, 10% or about 1%. However, the expression of the marker may be repressed to even about 0.01%. The inhibitory substance is then detected by detecting greater expression of the marker.

To identify a compound that activates telomerase activity, one would generally prepare a cell with a genetic marker that is either not repressed at all or that is not substantially or maximally repressed. One would then select a candidate activator by identifying a substance that establishes or allows repression or more substantial repression. This is based upon the concept that stimulating telomerase to synthesize longer than normal telomeres will result in an increase in silencing of a marker gene. To detect the increase requires that a system initially be established in which the marker gene is only minimally repressed, or even not repressed at all. This is readily achieved by inserting the marker gene in the location or vicinity of the telomere, but further away from the telomere rather than immediately adjacent to it. An increase in repression, i.e., a decrease in marker gene expression, indicates a positive candidate substance.

Still further methods for identifying compounds that functionally interact with telomerase or telomerase-associated components are those based upon the telomerase "healing of broken chromosomes" assay described herein.

- 41 -

This method is conducted as generally described in Example XII and FIG. 8, using a modified Haber-based assay (Kramer & Haber, 1993). Other useful telomerase functional assays are those that analyze telomere length and cell viability with increased age of a culture (Lundblad & Blackburn, 1989), and those *in vitro* systems described herein based on the addition of labelled nucleotides to a telomeric-like sequence.

Any of the cellular or activity-based telomerase assays may be adapted to screen for candidate substances that modify telomerase activity. To achieve this, one would first conduct the assay in the absence of the test candidate substance to obtain an activity value in its absence. One would then add the candidate substance to the telomerase composition or cell and conduct the assay under the same conditions. Candidate substances that reduce or promote telomerase activity can thus be readily identified.

Useful telomerase-modifying compounds are not believed to be limited in any way to protein or peptidyl compounds or oligonucleotides. In fact, it may prove to be the case that the most useful pharmacological compounds identified through application of a screening assay will be non-peptidyl in nature. Accordingly, in such screening assays, it is proposed that compounds isolated from natural sources, such as animals, bacteria, fungi, plant sources, including leaves and bark, and marine samples, may be assayed for the presence of potentially useful pharmaceutical agents. It will be understood that the pharmaceutical agents to be screened could also be derived from chemical compositions or man-made compounds.

The invention thus further encompasses components that bind to telomerase and that are capable of modifying

- 42 -

telomerase activity, as may be identified by any of the foregoing binding and/or functional or cellular assay methods. This results in compositions of telomerase activators or inhibitors, including pharmaceutically acceptable compositions, and methods for modifying telomerase activity.

In yet still further embodiments, the present invention thus also provides methods for modifying the replicative capacity of a cell, which methods comprise contacting a telomerase-containing cell with an amount of a component or substance effective to modify telomerase activity. "Modifying" in this context includes both compositions and methods for inhibiting telomerase activity, as may be used, e.g., in inhibiting or killing a tumor cell or a pathogen; and compositions and methods for stimulating telomerase activity, as may be used in embodiments connected with promoting the replication of a cell, such as in treating infertility.

20

Where the telomerase-containing cells are located within an animal, a pharmaceutically acceptable composition of the telomerase activator or inhibitor may be administered to the animal in an amount effective to modify the telomerase activity of the target cell. In terms of inhibiting telomerase activity in tumor cells, this is contemplated to be an effective mechanism by which to treat cancer that will have very limited side effects. Similarly, effective antimicrobial treatments are contemplated, as are applications in treating age-related disorders such as atherosclerosis and osteoporosis. Further, gene therapy using functional telomerase-associated genes is envisioned to be of use in treating telomerase dysfunction, as could provide a treatment for infertility in humans and other animals.

BRIEF DESCRIPTION OF THE DRAWINGS

The following drawings form part of the present specification and are included to further demonstrate certain aspects of the present invention. The invention may be better understood by reference to one or more of these drawings in combination with the detailed description of specific embodiments presented herein.

10 FIG. 1A, FIG. 1B and FIG. 1C. Overexpression of *TLC1* suppresses transcriptional silencing at telomeres, but not at the *HML* locus. In FIG. 1A, Viability on medium lacking uracil was measured for *S. cerevisiae* strains containing *URA3* either at telomere VII-L (UCC3505) or at 15 *HML* (UCC3515), and overexpressing either vector alone (pTRP, black bar), a representative *TLC1* cDNA clone (pTRP6, hatched bar), or a *SIR4* cDNA clone (pTRP10, white bar) (Kyrion et al., 1993). In FIG. 1B, *ADE2* expression, as assayed by colony color, was examined in cells 20 containing *ADE2* placed near telomere V-R (UCC3505), and containing the vector (pTRP). In FIG. 1C, *ADE2* expression, as assayed by colony color, was examined in cells containing *ADE2* placed near telomere V-R (UCC3505), and containing another representative *TLC1* cDNA clone 25 (pTRP61). The medium contained 3 % galactose and lacked tryptophan. The median value for viability in the absence of uracil is marked by the height of each column, and the upper extreme is indicated by the error bar. The strains were pregrown for four days on solid synthetic 30 medium without tryptophan (to maintain selection for the plasmid) that contained 3 % galactose (to induce the *GAL1* promoter controlling expression of the cDNA inserts). Colonies were then diluted in water, and serial dilutions 35 were plated on 3 % galactose medium without tryptophan and uracil. Cells were also plated on medium containing uracil, to determine overall cell viability. Five independent transformants of each strain were tested.

- 44 -

FIG. 2. Overexpression of *TLC1* causes a decrease in telomeric tract length. Yeast strain UCC3505 carrying either vector (pTRP, lanes 1 and 2) or a *TLC1* cDNA clone (pTRP6, lanes 3 and 4) were pregrown for approximately 60 generations on medium containing 3 % galactose without tryptophan. Genomic DNA was prepared from two independent transformants of each strain, digested with Apa I and Xho I, separated by electrophoresis on a 1 % agarose gel, and blotted onto a nylon membrane. The membrane was probed with a 1.1 kb Hind III-Sma I *URA3* fragment. The *URA3* gene in this strain is located adjacent to telomere VII-L. The higher molecular weight (non-telomeric) *URA3* fragments represent sequences of the telomeric *URA3* that are centromere-proximal to the *URA3* Apa I site, and sequences from the *ura3-52* allele at the normal chromosomal locus of *URA3*. The Southern blot was also probed with an 81 bp labeled (TG)₁₋₃TG₂₋₃ (telomeric sequence) riboprobe, to determine the telomere length of chromosomes with Y' elements (Walmsey et al., 1984). These telomere-associated sequences are at the ends of multiple yeast chromosomes and generally have Xho I sites at their telomere-proximal ends (Louis & Haber, 1990). Y'-containing chromosomes showed a decrease of telomere length upon overexpression of the *TLC1* cDNA clone similar to that seen for telomere VII-L.

FIG. 3A and FIG. 3B. *TLC1* encodes a 1.3 kb RNA. *TLC1* transcript levels were analyzed in yeast strains containing a wild-type *TLC1* gene (lane 1), or a *tlc1::LEU2* disruption allele (lane 2), and in wild-type cells carrying either vector (pTRP, lane 3) or a *TLC1* cDNA clone (pTRP61, lane 4). Total RNA was isolated from mid-log phase cells grown in rich medium (for strains lacking plasmids) or synthetic medium without tryptophan but with 3 % galactose (for the plasmid-containing strains). 20 µg of RNA from each strain was electrophoretically separated on a 0.9 % agarose

- 45 -

formaldehyde gel and transferred to a nylon membrane. FIG. 3A shows the membrane probed with a 1.25 kb *TLC1* antisense probe (made from the pTRP61 insert) and exposed to film. Phosphor-imaging analysis determined that there
5 is approximately 12-fold more *TLC1* RNA in the overexpressing strain (lane 4) than in the vector-containing wild-type strain grown under the same conditions (lane 3). FIG. 3B displays the ethidium bromide-stained gel prior to blotting, with the sizes of
10 the rRNA species (25S and 18S) indicated on the right. The wild-type and *tlc1* strains shown in lanes 1 and 2 were derived from sporulation of UCC3508 (Aparicio et al., 1991). The yeast strain transformed with the pTRP and pTRP61 plasmids, shown in lanes 3 and 4, is
15 UCC3505.

FIG. 4A. Disruption of *TLC1* causes progressive telomere shortening and a gradual decrease in growth rate and viability. A *TLC1/tlc1::LEU2* diploid (UCC3508) was
20 sporulated and the resulting tetrads dissected and germinated on rich medium. Colonies representing the four spore products from a tetrad were inoculated into 5.5 ml of rich medium and grown at 30°C. Every 24 hours,
25 5 ml of the culture were used for the preparation of genomic DNA, and 5 µl were used to inoculate 5.5 ml of fresh medium. The genomic DNA was digested with Apa I, electrophoresed on a 1 % agarose gel, transferred to a nylon membrane and hybridized to a 1.1 kb *URA3* probe. The *URA3* gene is located adjacent to telomere VII-L in
30 these strains. In a similar study, genomic DNA from *TLC1* and *tlc1* cultures was digested with Xho I, as well as Apa I, in order to examine Y'-containing telomeres using the Southern blotting method described in FIG. 2 with the 81 bp labeled telomeric sequence riboprobe (Walmsey et al.,
35 1984). The size of this population of telomeres decreased in size at the same rate as the *URA3*-labeled telomere VII-L.

- 46 -

FIG. 4B. Disruption of *TLC1* causes progressive telomere shortening and a gradual decrease in growth rate and viability. In a study similar to that of FIG. 4A, UCC3508 spore products were grown continuously in rich medium. Every 24 hours the cell density was determined and each culture was diluted to 3×10^5 cells/ml in 5.5 ml of fresh medium for further growth. The cell density at each time point is plotted for the two *TLC1* (white circle and square) and *tlc1* (black circle and square) spore products of a tetrad.

FIG. 5A and FIG. 5B. The *TLC1* gene encodes an RNA that functions as a templating component of telomerase, an enzyme that elongates the G-rich strand of *S. cerevisiae* telomeres. In FIG. 5A, is shown a model by which the *TLC1* RNA anneals to the single-stranded G-rich overhanging strand at the end of the chromosome and templates its elongation via a reverse transcription reaction. The bold-type DNA bases represent newly synthesized sequence. FIG. 5B, shows that, accordingly, mutating the putative template motif of *TLC1*, creating the *TLC1-1(HaeIII)* allele, results in the incorporation of the altered sequence into telomeric DNA.

FIG. 6A. Altering the putative telomere-templating region of *TLC1* results in the incorporation of the mutant sequence into telomeric tracts. Fragment-mediated transformation of *TLC1/TLC1* and *TLC1-1(HaeIII)/TLC1* diploid strains was used to replace the terminal sequences of the left arm of one of the chromosome VII homologs with a *URA3* gene and a short telomeric tract sequence. The most telomere-proximal *Apa I* and *Hae III* sites in the fragment used in the transformation overlap and are located 0.75 kb from the telomeric end of the fragment.

- 47 -

FIG. 6B. Altering the putative telomere-templating region of *TLC1* results in the incorporation of the mutant sequence into telomeric tracts. Restriction digests of genomic DNA from transformed strains were used to 5 determine whether Hae III sites were introduced into the new telomere VII-L upon its elongation *in vivo*. Genomic DNA from *TLC1/TLC1* and *TLC1-1(HaeIII)/TLC1* yeast strains, either transformed with URA3TEL (Telomeric *URA3*+), or not (Telomeric *URA3*-), was digested with Apa I (A) or Hae III 10 (H). The DNA fragments were separated by electrophoresis on a 1.25 % agarose gel, transferred to a nylon membrane, and probed with a labeled 0.6 kb *URA3* probe (Apa I-Hind III fragment), as depicted in FIG. 6A. Each Telomeric *URA3*+ strain represents an independently isolated 15 transformant.

FIG. 7A. Quantitative suppression of telomeric silencing by various different genes. This was assessed by viability in the absence of uracil for the strains that 20 contained the telomeric *URA3* gene and each of the 10 highly expressed genes of Example X. All the genes suppressed silencing of the telomeric *URA3*, although a hierarchy of suppression was observed.

25 FIG. 7B. Effect of genes on silencing at *HML*. The expression plasmids containing each of the 10 genes of Example X were introduced into a strain in which the *URA3* gene was inserted into the *HML* locus (Mahoney & Broach, 1989). Overexpression of *TLC1* (*STR2*) had no effect on 30 silencing at *HML*, but strongly suppressed telomeric silencing of *URA3* and *ADE2*. The *SIR4* and *ASF1* genes derepressed *HML* very well, as did the *STR1*, *STR4*, and *RRP3* genes. Overexpression of *RPL32*, *STR3*, *STR5* and *STR6* had intermediate effects at *HML*.

- 48 -

FIG. 8. Schematic representation of the new genetic system to test telomere healing, as described in Section 2 of Example XII.

5 **DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS**

Telomeres, the natural ends of linear eukaryotic chromosomes, are essential for chromosome stability. Because of the nature of DNA replication, telomeres 10 require a specialized mechanism to ensure their complete duplication. This is controlled by telomerase activity. Due to its role in controlling replication, changes in telomerase activity have been linked to disturbances in cell proliferation, as can lead to a cancerous phenotype 15 (de Lange, 1994; Greider, 1994; Harley et al., 1992).

The evolutionary conservation of telomere structure suggested to the present inventors that the study of telomerase in genetically tractable organisms, such as 20 the budding yeast *Saccharomyces cerevisiae*, would yield important information directly applicable to telomere studies in eukaryotic and mammalian cells. The existence of an *S. cerevisiae* telomerase was suggested by studies in which double-strand breaks were introduced into yeast 25 chromosomes *in vivo*, after which healed chromosomes with new telomeric tracts were formed (Kramer & Haber, 1993). Specific 13-bp motifs (GTGTGTGGGTGTG; SEQ ID NO:2), or subsets thereof, were found at the junction between the break site and the new telomeric tracts, suggesting that 30 this sequence is added *de novo* (Kramer & Haber, 1993).

However, prior to the present invention, little was known about the molecular machinery that could be involved in telomeric replication in *S. cerevisiae*. 35 Previously, the only candidate as a component of the telomere replication apparatus was the protein encoded by the *EST1* gene (Lundblad & Szostak, 1989). Its role in

- 49 -

telomere replication was suggested by the finding that est1 cells display progressive telomere shortening, accompanied by a gradual loss of chromosome stability and cell viability. The direct function of Est1p still 5 remains to be elucidated.

The inventors discovered that *S. cerevisiae* telomeres repress, or silence, expression of genes located nearby (Example I). Silencing of telomeric genes 10 is due to a structurally distinct chromatin domain whose formation initiates at the telomere (Example III). Evidence for this specialized chromatin structure includes: identification of mutations in the histone H3 and H4 genes which relieve telomeric silencing (Example 15 II), the finding that telomere-adjacent chromatin contains histone H4 in a hypoacetylated state compared to H4 in actively transcribed chromatin (Braunstein et al., 1993), and the relative inaccessibility of telomere-proximal DNA to *in vivo* modification by the 20 *E. coli* dam methyltransferase protein (Gottschling, 1992). At least six additional gene products, including the telomere DNA binding protein, RAP1, are required for telomeric silencing (Aparicio et al., 1991; Kyrion et al., 1993).

25 In order to identify genes in *S. cerevisiae* that are important for telomere function, the inventors developed and used a novel screening method to identify genes that, when expressed at high levels, suppress telomeric 30 silencing. This screen lead to the identification of the gene *TLC1* (telomerase component 1), one of the components of the present invention, along with several other novel genes.

35 *TLC1* encodes the template RNA of telomerase, a ribonucleoprotein required for telomere replication in a variety of organisms. The discovery of *TLC1* is the first

- 50 -

clear evidence that shows telomerase exists in *S. cerevisiae*. This finding will facilitate further telomerase studies and screening assays to identify activators or inhibitors with potential for modulating 5 telomerase activity, as may ultimately be used in a clinical setting.

The present discoveries may be utilized in conjunction with certain techniques that are well-known 10 in the biological arts and that are further described in the following sections.

A. Biological Functional Equivalents

15 Modification and changes may be made in the structure of telomerase-associated polypeptides and still obtain molecules having like or otherwise desirable characteristics. For example, certain amino acids may be substituted for other amino acids in a protein structure 20 without appreciable loss of interactive binding capacity with structures such as, for example, antigen-binding regions of antibodies or binding sites on substrate molecules, receptors, RNA molecules, chromosomal ends and the like. Since it is the interactive capacity and 25 nature of a protein that defines that protein's biological functional activity, certain amino acid sequence substitutions can be made in a protein sequence (or, of course, its underlying DNA coding sequence) and nevertheless obtain a protein with like (agonistic) properties. Equally, the same considerations may be 30 employed to create a protein or polypeptide with countervailing (e.g., antagonistic) properties. It is thus contemplated by the inventors that various changes may be made in the sequences of the telomerase-associated 35 proteins or peptides disclosed herein (or their underlying DNA) without appreciable loss of their biological utility or activity.

- 51 -

It is also well understood by the skilled artisan that, inherent in the definition of a biologically functional equivalent protein or peptide, is the concept that there is a limit to the number of changes that may 5 be made within a defined portion of the molecule and still result in a molecule with an acceptable level of equivalent biological activity. Biologically functional equivalent peptides are thus defined herein as those peptides in which certain, not most or all, of the amino 10 acids may be substituted. In particular, where smaller peptides are concerned, it is contemplated that relatively few amino acids may be changed within a given peptide. Of course, a plurality of distinct proteins/peptides with different substitutions may easily 15 be made and used in accordance with the invention.

It is also well understood that where certain residues are shown to be particularly important to the biological or structural properties of a protein or 20 peptide, e.g., residues in active sites or key binding regions, such residues may not generally be exchanged.

Amino acid substitutions are generally based on the relative similarity of the amino acid side-chain 25 substituents, for example, their hydrophobicity, hydrophilicity, charge, size, and the like. An analysis of the size, shape and type of the amino acid side-chain substituents reveals that arginine, lysine and histidine are all positively charged residues; that alanine, 30 glycine and serine are all a similar size; and that phenylalanine, tryptophan and tyrosine all have a generally similar shape. Therefore, based upon these considerations, arginine, lysine and histidine; alanine, glycine and serine; and phenylalanine, tryptophan and 35 tyrosine; are defined herein as biologically functional equivalents.

- 52 -

To effect more quantitative changes, the hydropathic index of amino acids may be considered. Each amino acid has been assigned a hydropathic index on the basis of their hydrophobicity and charge characteristics, these 5 are: isoleucine (+4.5); valine (+4.2); leucine (+3.8); phenylalanine (+2.8); cysteine/cystine (+2.5); methionine (+1.9); alanine (+1.8); glycine (-0.4); threonine (-0.7); serine (-0.8); tryptophan (-0.9); tyrosine (-1.3); proline (-1.6); histidine (-3.2); glutamate (-3.5); 10 glutamine (-3.5); aspartate (-3.5); asparagine (-3.5); lysine (-3.9); and arginine (-4.5).

The importance of the hydropathic amino acid index in conferring interactive biological function on a 15 protein is generally understood in the art (Kyte & Doolittle, 1982, incorporated herein by reference). It is known that certain amino acids may be substituted for other amino acids having a similar hydropathic index or score and still retain a similar biological activity. In 20 making changes based upon the hydropathic index, the substitution of amino acids whose hydropathic indices are within ± 2 is preferred, those which are within ± 1 are particularly preferred, and those within ± 0.5 are even more particularly preferred.

25

It is also understood in the art that the substitution of like amino acids can be made effectively on the basis of hydrophilicity. U.S. Patent 4,554,101, incorporated herein by reference, states that the 30 greatest local average hydrophilicity of a protein, as governed by the hydrophilicity of its adjacent amino acids, correlates with its immunogenicity and antigenicity, i.e. with a biological property of the protein. Thus, it is understood that an amino acid can 35 be substituted for another having a similar hydrophilicity value and still obtain a biologically equivalent protein.

- 53 -

As detailed in U.S. Patent 4,554,101, the following hydrophilicity values have been assigned to amino acid residues: arginine (+3.0); lysine (+3.0); aspartate (+3.0 ± 1); glutamate (+3.0 ± 1); serine (+0.3); asparagine (+0.2); glutamine (+0.2); glycine (0); threonine (-0.4); proline (-0.5 ± 1); alanine (-0.5); histidine (-0.5); cysteine (-1.0); methionine (-1.3); valine (-1.5); leucine (-1.8); isoleucine (-1.8); tyrosine (-2.3); phenylalanine (-2.5); tryptophan (-3.4).

10

In making changes based upon similar hydrophilicity values, the substitution of amino acids whose hydrophilicity values are within ±2 is preferred, those which are within ±1 are particularly preferred, and those within ±0.5 are even more particularly preferred.

While discussion has focused on functionally equivalent polypeptides arising from amino acid changes, it will be appreciated that these changes may be effected 20 by alteration of the encoding DNA; taking into consideration also that the genetic code is degenerate and that two or more codons may code for the same amino acid. A table of amino acids and their codons is presented herein (Table 1) for use in such embodiments, 25 as well as for other uses, such as in the design of probes and primers and the like.

- 54 -

TABLE 1

	<u>Amino Acids</u>		<u>Codons</u>			
	Alanine	Ala	A	GCA	GCC	GCG
5	Cysteine	Cys	C	UGC	UGU	
	Aspartic acid	Asp	D	GAC	GAU	
	Glutamic acid	Glu	E	GAA	GAG	
	Phenylalanine	Phe	F	UUC	UUU	
	Glycine	Gly	G	GGA	GGC	GGG
	Histidine	His	H	CAC	CAU	
10	Isoleucine	Ile	I	AUA	AUC	AUU
	Lysine	Lys	K	AAA	AAG	
	Leucine	Leu	L	UUA	UUG	CUA
	Methionine	Met	M	AUG		CUC
	Asparagine	Asn	N	AAC	AAU	CUG
15	Proline	Pro	P	CCA	CCC	CCG
	Glutamine	Gln	Q	CAA	CAG	CCU
	Arginine	Arg	R	AGA	AGG	CGA
	Serine	Ser	S	AGC	AGU	UCA
20	Threonine	Thr	T	ACA	ACC	ACG
	Valine	Val	V	GUA	GUC	GUG
	Tryptophan	Trp	W	UGG		GUU
	Tyrosine	Tyr	Y	UAC	UAU	

25

In addition to the peptidyl compounds described herein, the inventors also contemplate that other sterically similar compounds may be formulated to mimic the key portions of the peptide structure. Such 30 compounds, which may be termed peptidomimetics, may be used in the same manner as the peptides of the invention and hence are also functional equivalents. The generation of a structural functional equivalent may be

- 55 -

achieved by the techniques of modelling and chemical design known to those of skill in the art. It will be understood that all such sterically similar constructs fall within the scope of the present invention.

5

U.S. Patent 4,554,101 (Hopp, incorporated herein by reference) also teaches the identification and preparation of epitopes from primary amino acid sequences on the basis of hydrophilicity. Through the methods 10 disclosed in Hopp one of skill in the art would be able to identify epitopes from within the telomerase-associated amino acid sequences disclosed herein. Such regions would also be referred to as "epitopic core regions".

15

Numerous scientific publications have been devoted to the prediction of secondary structure, and to the identification of epitopes, from analyses of amino acid sequences (Chou & Fasman, 1974a,b; 1978a,b, 1979). Any 20 of these may be used, if desired, to supplement the teachings of Hopp in U.S. Patent 4,554,101. Moreover, computer programs are currently available to assist with predicting antigenic portions and epitopic core regions of proteins. Examples include those programs based upon 25 the Jameson-Wolf analysis (Jameson & Wolf, 1998; Wolf et al., 1988), the program PepPlot® (Brutlag et al., 1990; Weinberger et al., 1985), and other new programs for protein tertiary structure prediction (Fetrow & Bryant, 1993). The identification of epitopic regions 30 from within the telomerase-associated sequences allows the ready generation of specific antibodies.

B. Site-Specific Mutagenesis

Site-specific mutagenesis is a technique useful in 35 the preparation of individual peptides, or biologically functional equivalent proteins or peptides, through

- 56 -

specific mutagenesis of the underlying DNA. The technique further provides a ready ability to prepare and test sequence variants, for example, incorporating one or more of the foregoing considerations, by introducing one or more nucleotide sequence changes into the DNA. Site-specific mutagenesis allows the production of mutants through the use of specific oligonucleotide sequences which encode the DNA sequence of the desired mutation, as well as a sufficient number of adjacent nucleotides, to provide a primer sequence of sufficient size and sequence complexity to form a stable duplex on both sides of the deletion junction being traversed. Typically, a primer of about 17 to 25 nucleotides in length is preferred, with about 5 to 10 residues on both sides of the junction of the sequence being altered.

In general, the technique of site-specific mutagenesis is well known in the art. As will be appreciated, the technique typically employs a phage vector which exists in both a single stranded and double stranded form. Typical vectors useful in site-directed mutagenesis include vectors such as the M13 phage. These phage are readily commercially available and their use is generally well known to those skilled in the art. Double stranded plasmids are also routinely employed in site directed mutagenesis which eliminates the step of transferring the gene of interest from a plasmid to a phage.

In general, site-directed mutagenesis in accordance herewith is performed by first obtaining a single-stranded vector or melting apart the two strands of a double stranded vector which includes within its sequence a DNA sequence which encodes a telomerase-associated component. An oligonucleotide primer bearing the desired mutated sequence is prepared, this primer is then annealed with the single-stranded vector, and subjected

- 57 -

to DNA polymerizing enzymes such as *E. coli* polymerase I Klenow fragment, in order to complete the synthesis of the mutation-bearing strand. Thus, a heteroduplex is formed wherein one strand encodes the original non-mutated sequence and the second strand bears the desired mutation. This heteroduplex vector is then used to transform appropriate cells, such as *E. coli* cells, and clones are selected which include recombinant vectors bearing the mutated sequence arrangement.

10

The preparation of sequence variants of the selected telomerase-associated gene using site-directed mutagenesis is provided as a means of producing potentially useful species and is not meant to be limiting as there are other ways in which sequence variants may be obtained. For example, recombinant vectors encoding a desired telomerase-associated gene may be treated with mutagenic agents to obtain sequence variants, as used in the mutagenesis of plasmid DNA using hydroxylamine.

C. Nucleic Acid Hybridization

In Southern analysis, membrane-bound, denatured DNA fragments are hybridized to a labeled DNA probe. Following this hybridization, the membrane is washed in order to remove nonspecifically bound probe, leaving only probe that is specifically base-paired to the target DNA. By controlling the stringency of the washing conditions, different levels of probe-target DNA complementarity may be detected.

High stringency conditions are useful in order to identify DNA fragments with little mismatch, even close to and including 100% complementarity to the probe DNA. Low stringency conditions are used to identify sequences that are related, though not identical, to the probe DNA.

- 58 -

e.g., members of a multigene family, or a single gene in a different organism.

Preferred hybridization conditions are, currently,
5 those that use a buffer of 5x SSC, 0.5% (w/v) blocking
reagent, 0.1% (w/v) N-lauroylsarcosine, Na-salt,
0.02% (w/v) SDS and 50% (w/v) formamide, with
hybridization at 42°C overnight. The high stringency
washing conditions involve washing the blot twice for 5
10 minutes with Blot Wash #1 (2x SSC, 0.1% (w/v) SDS), and
then washing twice for 15 minutes with Blot Wash #2 (0.1x
SSC, 0.1% (w/v) SDS) at 55°C.

For low stringency hybridization, the hybridization
15 conditions remain using 5x SSC, 0.5% (w/v) blocking
reagent, 0.1% (w/v) N-lauroylsarcosine, Na-salt,
0.02% (w/v) SDS and 50% (w/v) formamide, with
hybridization at 42°C overnight. The low stringency
washing conditions involve using Blot wash #2 as
20 0.2x SSC, 0.1% (w/v) SDS at 45°C. In the low stringency
protocols, a certain limited variation in the conditions
may be necessary to achieve optimal conditions, on a
case-by-case basis. Such optimization is standard and
routinely practiced by those of skill in the art.
25

D. Protein Expression

To express a recombinant telomerase-associated RNA
or protein component in accordance with the present
30 invention one would prepare an expression vector that
comprises the telomerase-associated component under the
control of one or more promoters. The "upstream"
promoters stimulate transcription of the DNA and promote
expression of the encoded recombinant protein or RNA
35 unit. This is the meaning of "recombinant expression" in
this context.

- 59 -

Many standard techniques are available to construct expression vectors containing the appropriate nucleic acids and transcriptional/translational control sequences in order to achieve RNA or protein expression in a 5 variety of host-expression systems. Cell types available for expression include, but are not limited to, bacteria, such as *E. coli* and *B. subtilis* transformed with recombinant bacteriophage DNA, plasmid DNA or cosmid DNA expression vectors.

10

Certain examples of prokaryotic hosts are *E. coli* strain RR1, *E. coli* LE392, *E. coli* B, *E. coli* X 1776 (ATCC No. 31537) as well as *E. coli* W3110 (F-, lambda-, prototrophic, ATCC No. 273325); bacilli such as *Bacillus subtilis*; and other enterobacteriaceae such as *Salmonella typhimurium*, *Serratia marcescens*, and various *Pseudomonas* species.

20

In general, plasmid vectors containing replicon and control sequences which are derived from species compatible with the host cell are used in connection with these hosts. The vector ordinarily carries a replication site, as well as marking sequences which are capable of providing phenotypic selection in transformed cells. For 25 example, *E. coli* is often transformed using pBR322, a plasmid derived from an *E. coli* species. pBR322 contains genes for ampicillin and tetracycline resistance and thus provides easy means for identifying transformed cells. The pBR plasmid, or other microbial plasmid or phage must 30 also contain, or be modified to contain, promoters which can be used by the microbial organism for expression of its own proteins.

In addition, phage vectors containing replicon and 35 control sequences that are compatible with the host microorganism can be used as transforming vectors in connection with these hosts. For example, the phage

- 60 -

lambda GEMTM-11 may be utilized in making a recombinant phage vector which can be used to transform host cells, such as *E. coli* LE392. Further useful vectors include pIN vectors; and pGEX vectors, for use in generating 5 glutathione S-transferase (GST) soluble fusion proteins for later purification and separation or cleavage.

Those promoters most commonly used in recombinant DNA construction include the β -lactamase (penicillinase), 10 lactose and tryptophan (trp) promoter systems. While these are the most commonly used, other microbial promoters have been discovered and utilized, and details concerning their nucleotide sequences have been published, enabling a skilled worker to ligate them 15 functionally with plasmid vectors.

Naturally, in certain embodiments, yeast (e.g., *Saccharomyces*, *Pichia*) transformed with recombinant yeast expression vectors containing telomerase-associated RNA 20 or protein coding sequences will be preferred in certain embodiments.

For expression in *Saccharomyces*, the plasmid YRp7, for example, is commonly used (Stinchcomb et al., 1979; 25 Kingsman et al., 1979; Tschemper et al., 1980). This plasmid already contains the *trpl* gene which provides a selection marker for a mutant strain of yeast lacking the ability to grow in tryptophan, for example ATCC No. 44076 or PEP4-1 (Jones, 1977). The presence of the *trpl* lesion 30 as a characteristic of the yeast host cell genome then provides an effective environment for detecting transformation by growth in the absence of tryptophan.

Suitable promoting sequences in yeast vectors 35 include the promoters for 3-phosphoglycerate kinase (Hitzeman et al., 1980) or other glycolytic enzymes (Hess et al., 1968; Holland et al., 1978), such as enolase,

- 61 -

glyceraldehyde-3-phosphate dehydrogenase, hexokinase, pyruvate decarboxylase, phosphofructokinase, glucose-6-phosphate isomerase, 3-phosphoglycerate mutase, pyruvate kinase, triosephosphate isomerase, phosphoglucose isomerase, and glucokinase. In constructing suitable expression plasmids, the termination sequences associated with these genes are also ligated into the expression vector 3' of the sequence desired to be expressed to provide polyadenylation of the mRNA and termination.

5 Other promoters, which have the additional advantage of transcription controlled by growth conditions are the promoter region for alcohol dehydrogenase 2, isocytochrome C, acid phosphatase, degradative enzymes associated with nitrogen metabolism, and the

10 aforementioned glyceraldehyde-3-phosphate dehydrogenase, and enzymes responsible for maltose and galactose utilization.

15

In yeast, any plasmid vector containing a yeast-compatible promoter, an origin of replication, and termination sequences is suitable. However, preferred recombinant expression vectors include pYPGE-2, as described by Brunelli & Pall (1993).

20 In addition to microorganisms, cultures of cells derived from multicellular organisms may also be used as hosts. In principle, any such cell culture is workable, whether from vertebrate or invertebrate culture. In addition to mammalian cells, these include insect cell systems infected with recombinant virus expression vectors (e.g., baculovirus); and plant cell systems infected with recombinant virus expression vectors (e.g., cauliflower mosaic virus, CaMV; tobacco mosaic virus, TMV) or transformed with recombinant plasmid expression vectors (e.g., Ti plasmid) containing the telomerase-associated coding sequences.

25

30

35

- 62 -

In a useful insect system, *Autograph californica* nuclear polyhedrosis virus (AcNPV) is used as a vector to express foreign genes. The virus grows in *Spodoptera frugiperda* cells. The telomerase-associated protein or 5 RNA coding sequences are cloned into non-essential regions (for example the polyhedrin gene) of the virus and placed under control of an AcNPV promoter (for example the polyhedrin promoter). Successful insertion of the coding sequences results in the inactivation of 10 the polyhedrin gene and production of non-occluded recombinant virus (i.e., virus lacking the proteinaceous coat coded for by the polyhedrin gene). These recombinant viruses are then used to infect *Spodoptera frugiperda* cells in which the inserted gene is expressed 15 (e.g., U.S. Patent No. 4,215,051 (Smith)).

Examples of useful mammalian host cell lines are VERO and HeLa cells, Chinese hamster ovary (CHO) cell lines, W138, BHK, COS-7, 293, HepG2, 3T3, RIN and MDCK cell lines. In addition, a host cell strain may be chosen that modulates the expression of the inserted sequences, or modifies and processes the gene product in the specific fashion desired. Such modifications (e.g., glycosylation) and processing (e.g., cleavage) of protein 20 products may be important for the function of the protein. Different host cells have characteristic and specific mechanisms for the post-translational processing and modification of proteins. Appropriate cells lines or host systems can be chosen to ensure the correct 25 modification and processing of the foreign protein expressed. To this end, eukaryotic host cells which possess the cellular machinery for proper processing of the primary transcript, glycosylation, and phosphorylation of the gene product may be used.

35

Expression vectors for use in such cells ordinarily include an origin of replication (as necessary), a

- 63 -

promoter located in front of the gene to be expressed, along with any necessary ribosome binding sites, RNA splice sites, polyadenylation site, and transcriptional terminator sequences. The origin of replication may be 5 provided either by construction of the vector to include an exogenous origin, such as may be derived from SV40 or other viral (e.g., Polyoma, Adeno, VSV, BPV) source, or may be provided by the host cell chromosomal replication mechanism. If the vector is integrated into the host 10 cell chromosome, the latter is often sufficient.

The promoters may be derived from the genome of mammalian cells (e.g., metallothionein promoter) or from mammalian viruses (e.g., the adenovirus late promoter; 15 the vaccinia virus 7.5K promoter). Further, it is also possible, and often desirable, to utilize promoter or control sequences normally associated with the desired gene sequence, provided such control sequences are compatible with the host cell systems.

20 A number of viral based expression systems may be utilized, for example, commonly used promoters are derived from polyoma, Adenovirus 2, and most frequently Simian Virus 40 (SV40). The early and late promoters of 25 SV40 virus are particularly useful because both are obtained easily from the virus as a fragment which also contains the SV40 viral origin of replication. Smaller or larger SV40 fragments may also be used, provided there is included the approximately 250 bp sequence extending 30 from the Hind III site toward the Bgl I site located in the viral origin of replication.

In cases where an adenovirus is used as an 35 expression vector, the coding sequences may be ligated to an adenovirus transcription/ translation control complex, e.g., the late promoter and tripartite leader sequence. This chimeric gene may then be inserted in the adenovirus

- 64 -

genome by *in vitro* or *in vivo* recombination. Insertion in a non-essential region of the viral genome (e.g., region E1 or E3) will result in a recombinant virus that is viable and capable of expressing telomerase-associated 5 RNA or proteins in infected hosts.

Specific initiation signals may also be required for efficient translation of telomerase-associated component coding sequences. These signals include the ATG 10 initiation codon and adjacent sequences. Exogenous translational control signals, including the ATG initiation codon, may additionally need to be provided. One of ordinary skill in the art would readily be capable of determining this and providing the necessary signals. 15 It is well known that the initiation codon must be in phase (or in-frame) with the reading frame of the desired coding sequence to ensure translation of the entire insert. These exogenous translational control signals and initiation codons can be of a variety of origins, 20 both natural and synthetic. The efficiency of expression may be enhanced by the inclusion of appropriate transcription enhancer elements, transcription terminators.

For long-term, high-yield production of recombinant proteins, stable expression is preferred. For example, 25 cell lines that stably express constructs encoding telomerase-associated components may be engineered. Rather than using expression vectors that contain viral 30 origins of replication, host cells can be transformed with vectors controlled by appropriate expression control elements (e.g., promoter, enhancer, sequences, transcription terminators, polyadenylation sites, etc.), and a selectable marker. Following the introduction of 35 foreign DNA, engineered cells may be allowed to grow for 1-2 days in an enriched media, and then are switched to a selective media. The selectable marker in the

- 65 -

recombinant plasmid confers resistance to the selection and allows cells to stably integrate the plasmid into their chromosomes and grow to form foci which in turn can be cloned and expanded into cell lines.

5

A number of selection systems may be used, including, but not limited, to the herpes simplex virus thymidine kinase, hypoxanthine-guanine phosphoribosyltransferase and adenine phosphoribosyltransferase, in tk-, hprt- or aprt-cells, respectively. Also, antimetabolite resistance can be used as the basis of selection for dhfr, that confers resistance to methotrexate; gpt, that confers resistance to mycophenolic acid, neo, that confers resistance to the aminoglycoside G-418; and hygro, that confers resistance to hygromycin.

E. Monoclonal Antibody Generation

20 Means for preparing and characterizing antibodies are well known in the art (See, e.g., Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory, 1988; incorporated herein by reference).

25 The methods for generating monoclonal antibodies (MAbs) generally begin along the same lines as those for preparing polyclonal antibodies. Briefly, a polyclonal antibody is prepared by immunizing an animal with an immunogenic composition in accordance with the present invention and collecting antisera from that immunized animal. A wide range of animal species can be used for the production of antisera. Typically the animal used for production of anti-antisera is a rabbit, a mouse, a rat, a hamster, a guinea pig or a goat. Because of the 30 relatively large blood volume of rabbits, a rabbit is a preferred choice for production of polyclonal antibodies.

- 66 -

As is well known in the art, a given composition may vary in its immunogenicity. It is often necessary therefore to boost the host immune system, as may be achieved by coupling a peptide or polypeptide immunogen 5 to a carrier. Exemplary and preferred carriers are keyhole limpet hemocyanin (KLH) and bovine serum albumin (BSA). Other albumins such as ovalbumin, mouse serum albumin or rabbit serum albumin can also be used as carriers. Means for conjugating a polypeptide to a 10 carrier protein are well known in the art and include glutaraldehyde, m-maleimidobencoyl-N-hydroxysuccinimide ester, carbodiimide and bis-biazotized benzidine.

As is also well known in the art, the immunogenicity 15 of a particular immunogen composition can be enhanced by the use of non-specific stimulators of the immune response, known as adjuvants. Exemplary and preferred adjuvants include complete Freund's adjuvant (a non-specific stimulator of the immune response containing 20 killed *Mycobacterium tuberculosis*), incomplete Freund's adjuvants and aluminum hydroxide adjuvant.

The amount of immunogen composition used in the production of polyclonal antibodies varies upon the 25 nature of the immunogen as well as the animal used for immunization. A variety of routes can be used to administer the immunogen (subcutaneous, intramuscular, intradermal, intravenous and intraperitoneal). The production of polyclonal antibodies may be monitored by 30 sampling blood of the immunized animal at various points following immunization. A second, booster injection, may also be given. The process of boosting and titering is repeated until a suitable titer is achieved. When a desired level of immunogenicity is obtained, the 35 immunized animal can be bled and the serum isolated and stored, and/or the animal can be used to generate MAbs.

- 67 -

MAbs may be readily prepared through use of well-known techniques, such as those exemplified in U.S. Patent 4,196,265, incorporated herein by reference. Typically, this technique involves immunizing a suitable 5 animal with a selected immunogen composition, e.g., a purified or partially purified telomerase-associated protein, polypeptide or peptide. The immunizing composition is administered in a manner effective to stimulate antibody producing cells. Rodents such as mice 10 and rats are preferred animals, however, the use of rabbit, sheep frog cells is also possible. The use of rats may provide certain advantages (Goding, 1986, pp. 60-61), but mice are preferred, with the BALB/c mouse being most preferred as this is most routinely used and 15 generally gives a higher percentage of stable fusions.

Following immunization, somatic cells with the potential for producing antibodies, specifically B lymphocytes (B cells), are selected for use in the MAb 20 generating protocol. These cells may be obtained from biopsied spleens, tonsils or lymph nodes, or from a peripheral blood sample. Spleen cells and peripheral blood cells are preferred, the former because they are a rich source of antibody-producing cells that are in the 25 dividing plasmablast stage, and the latter because peripheral blood is easily accessible. Often, a panel of animals will have been immunized and the spleen of animal with the highest antibody titer will be removed and the 30 spleen lymphocytes obtained by homogenizing the spleen with a syringe. Typically, a spleen from an immunized mouse contains approximately 5×10^7 to 2×10^8 lymphocytes.

The antibody-producing B lymphocytes from the 35 immunized animal are then fused with cells of an immortal myeloma cell, generally one of the same species as the animal that was immunized. Myeloma cell lines suited for

- 68 -

use in hybridoma-producing fusion procedures preferably are non-antibody-producing, have high fusion efficiency, and enzyme deficiencies that render them incapable of growing in certain selective media which support the
5 growth of only the desired fused cells (hybridomas).

Any one of a number of myeloma cells may be used, as are known to those of skill in the art (Goding, pp. 65-66, 1986; Campbell, pp. 75-83, 1984). cites). For
10 example, where the immunized animal is a mouse, one may use P3-X63/Ag8, X63-Ag8.653, NS1/1.Ag 4 1, Sp210-Ag14, FO, NSO/U, MPC-11, MPC11-X45-GTG 1.7 and S194/5XX0 Bul; for rats, one may use R210.RCY3, Y3-Ag 1.2.3, IR983F and 4B210; and U-266, GM1500-GRG2, LICR-LON-HMy2 and UC729-6
15 are all useful in connection with human cell fusions.

One preferred murine myeloma cell is the NS-1 myeloma cell line (also termed P3-NS-1-Ag4-1), which is readily available from the NIGMS Human Genetic Mutant
20 Cell Repository by requesting cell line repository number GM3573. Another mouse myeloma cell line that may be used is the 8-azaguanine-resistant mouse murine myeloma SP2/0 non-producer cell line.

25 Methods for generating hybrids of antibody-producing spleen or lymph node cells and myeloma cells usually comprise mixing somatic cells with myeloma cells in a 2:1 proportion, though the proportion may vary from about 20:1 to about 1:1, respectively, in the presence of an
30 agent or agents (chemical or electrical) that promote the fusion of cell membranes. Fusion methods using Sendai virus have been described by Kohler and Milstein (1975; 1976), and those using polyethylene glycol (PEG), such as 37% (v/v) PEG, by Gefter et al. (1977). The use of
35 electrically induced fusion methods is also appropriate (Goding pp. 71-74, 1986).

- 69 -

Fusion procedures usually produce viable hybrids at low frequencies, about 1×10^{-6} to 1×10^{-8} . However, this does not pose a problem, as the viable, fused hybrids are differentiated from the parental, unfused 5 cells (particularly the unfused myeloma cells that would normally continue to divide indefinitely) by culturing in a selective medium. The selective medium is generally one that contains an agent that blocks the *de novo* synthesis of nucleotides in the tissue culture media. 10 Exemplary and preferred agents are aminopterin, methotrexate, and azaserine. Aminopterin and methotrexate block *de novo* synthesis of both purines and pyrimidines, whereas azaserine blocks only purine synthesis. Where aminopterin or methotrexate is used, 15 the media is supplemented with hypoxanthine and thymidine as a source of nucleotides (HAT medium). Where azaserine is used, the media is supplemented with hypoxanthine.

The preferred selection medium is HAT. Only cells 20 capable of operating nucleotide salvage pathways are able to survive in HAT medium. The myeloma cells are defective in key enzymes of the salvage pathway, e.g., hypoxanthine phosphoribosyl transferase (HPRT), and they cannot survive. The B cells can operate this pathway, 25 but they have a limited life span in culture and generally die within about two weeks. Therefore, the only cells that can survive in the selective media are those hybrids formed from myeloma and B cells.

This culturing provides a population of hybridomas 30 from which specific hybridomas are selected. Typically, selection of hybridomas is performed by culturing the cells by single-clone dilution in microtiter plates, followed by testing the individual clonal supernatants 35 (after about two to three weeks) for the desired reactivity. The assay should be sensitive, simple and rapid, such as radioimmunoassays, enzyme immunoassays,

- 70 -

cytotoxicity assays, plaque assays, dot immunobinding assays, and the like.

The selected hybridomas would then be serially
5 diluted and cloned into individual antibody-producing
cell lines, which clones can then be propagated
indefinitely to provide MAbs. The cell lines may be
exploited for MAb production in two basic ways. A sample
of the hybridoma can be injected (often into the
10 peritoneal cavity) into a histocompatible animal of the
type that was used to provide the somatic and myeloma
cells for the original fusion. The injected animal
develops tumors secreting the specific monoclonal
antibody produced by the fused cell hybrid. The body
15 fluids of the animal, such as serum or ascites fluid, can
then be tapped to provide MAbs in high concentration.
The individual cell lines could also be cultured *in*
vitro, where the MAbs are naturally secreted into the
culture medium from which they can be readily obtained in
20 high concentrations. MAbs produced by either means may
be further purified, if desired, using filtration,
centrifugation and various chromatographic methods such
as HPLC or affinity chromatography.

25 A molecular cloning approach may also be used to
generate monoclonals. For this, combinatorial
immunoglobulin phagemid libraries are prepared from RNA
isolated from the spleen of the immunized animal, and
phagemids expressing appropriate antibodies are selected
30 by panning using cells expressing the antigen and control
cells. The advantages of this approach over conventional
hybridoma techniques are that approximately 10^4 times as
many antibodies can be produced and screened in a single
35 round, and that new specificities are generated by H and
L chain combination which further increases the chance of
finding appropriate antibodies.

- 71 -

The following examples are included to demonstrate preferred embodiments of the invention. It should be appreciated by those of skill in the art that the techniques disclosed in the examples that follow 5 represent techniques discovered by the inventor to function well in the practice of the invention, and thus can be considered to constitute preferred modes for its practice. However, those of skill in the art should, in light of the present disclosure, appreciate that many 10 changes can be made in the specific embodiments that are disclosed and still obtain a like or similar result without departing from the spirit and scope of the invention.

15

EXAMPLE I

Position Effect at *S. cerevisiae* Telomeres

Position effect is a term used to describe phenomena in which a gene's behavior is affected by its location on 20 the chromosome (Lima-de-Faria, 1983b). The change in behavior can be manifested in a variety of ways, such as a difference in phenotype, transcription level, recombination frequency, or replication timing. Although position effects have been reported in insects, plants, 25 and mice, most studies have been carried out in *Drosophila*, where euchromatic genes translocated near or within centromeric heterochromatin come under a position effect, typically exhibiting phenotypic repression (Spofford, 1976). More recently, in *S. cerevisiae* the silent mating type loci, *HML* and *HMR*, have been shown to 30 exert a position effect on the transcription of nearby genes (Brand et al., 1985; Mahoney and Broach, 1989; Schnell and Rine, 1986).

35

Telomeric DNA in ciliates, humans, and probably other eukaryotes, facilitates the complete replication of linear DNA molecules by serving as substrates for

- 72 -

- telomerase (Zakian, 1989; Blackburn, 1990). Telomeres act as chromosome "caps"; in contrast to ends generated by chromosome breakage, telomeres are protected from exonucleaseolytic degradation and end-to-end fusions.
- 5 Telomeres are also implicated in establishing nuclear organization by engaging in associations with other telomeres and with the nuclear envelope (Agard and Sedat, 1983; Lima-de-Faria, 1983a).
- 10 In *S. cerevisiae*, the simple DNA repeat (TG₁₋₃) is found at the ends of all linear chromosomes (Shampay et al., 1984; Walmsley et al., 1984). The repeated sequence is necessary and sufficient in *cis* to provide telomere function *in vivo* (Wellinger and Zakian, 1989):
- 15 telomeric repeats are required at each end of a DNA molecule in order for it to be maintained in a linear form in yeast (Lundblad and Szostak, 1989; Pluta and Zakian, 1989). Examination of chromosomal ends reveals a heterogeneity in the number of (TG₁₋₃) repeats at
- 20 individual telomeres both within and between strains, with an average of ~300 bp (Shampay and Blackburn, 1988; Walmsley and Petes, 1985). In addition to the (TG₁₋₃) repeats at the ends of chromosomes, most yeast telomeres bear middle repetitive elements called telomere
- 25 associated sequences (Chan and Tye, 1983a; Chan and Tye, 1983b).

In *S. cerevisiae* there are two types of telomere associated sequences: Y' is a highly conserved sequence that exists in a long (~6.7 kbp) and short form (5.2 kbp), whereas X is less well conserved and ranges in size from 0.3 to 3.8 kbp. The sequences can occur in tandem arrays near the ends of the chromosome, where they are separated from one another by tracts of (TG₁₋₃) 50-130 bp

30 in length (Walmsley et al., 1984). It is unclear whether the X and Y' sequences serve a particular function, since

35 they are absent from some telomeres (Jager and

- 73 -

Philipsen, 1989; Zakian and Blanton, 1988); however in humans and *Drosophila* telomere associated sequences have been implicated in meiotic chromosome pairing and the establishment of heterochromatin (Ellis et al., 1989; 5 Young et al., 1983).

In order to understand better the properties of telomeres, the inventors began an investigation to map *in vivo* protein-DNA interactions at chromosomal termini in 10 *S. cerevisiae*. The inventors chose to examine a single telomere by introducing a unique marker adjacent to the tract of (TG₁₋₃) DNA at the end of a chromosome. However, early in the course of such investigations it was realized that the transcription of the gene used to mark 15 the telomere was altered. In this example, the inventors demonstrate that in *S. cerevisiae*, telomeres without an X or Y' exert a position effect on the expression of genes located nearby.

20 When *URA3*, *TRP1*, *HIS3*, or *ADE2* was located near a telomere, the gene's transcription was repressed. However, the expression of each gene was reversible between states of repressed and active transcription. Both transcriptional states were inherited mitotically in 25 a semi-stable manner. Switching between the states appears to be under epigenetic control. At a locus ~20 kbp from the telomere, transcription of *URA3* was not repressed, even when an 81 bp tract of (TG₁₋₃) sequence was located adjacent to the gene. However, the internal 30 81 bp tract spontaneously became a telomere at a frequency of ~10⁻⁶, and in so doing repressed the expression of the *URA3* gene. This example therefore provides genetic methods for analyzing telomere structure, and formation of new telomeres from internal 35 telomeric DNA sequences.

- 74 -

A. MATERIAL & METHODS

1. Construction of Plasmids

5 Plasmid pVII-L URA3-TEL was constructed in two steps, beginning with the plasmid pYTCA-1. Plasmid pYTCA-1 has the 125 bp *Hae* III-*Mnl* I fragment from pYt103, that contains 81 bp of (TG₁₋₃) sequence derived from a yeast telomere, in the *Sma* I site of pUC9 (Runge 10 and Zakian, 1989; Shampay et al., 1984). The (TG₁₋₃) sequence is oriented such that digestion of pYTCA-1 with *Eco* RI will yield an end that is a substrate for telomere formation in yeast. Plasmid pYTCA-1 was digested with *Hind* III and *Hinc* II and a 1.1 kbp *Hind* III-*Sma* I DNA 15 fragment that contains the *URA3* gene was ligated between these sites (Rose et al., 1984) to form pURA3-TEL. Plasmid YA4-2 (obtained from V. Williamson) contains the *ADH4* gene on an *Eco* RI-*Bgl* II fragment inserted within the *Eco* RI-*Bam* HI sites of pUC8 (Walton et al., 1986; 20 Williamson and Paquin, 1987). Plasmid pURA3-TEL was digested with *Hind* III and the 1.2 kbp *Hind* III fragment of pYA4-2 was ligated within, such that the *Sal* I site of the inserted fragment was positioned away from the *URA3* gene. This results in plasmid pVII-L URA3-TEL.

25 Plasmid adh4::URA3-TEL was also constructed in two steps. First, pVII-L URA3-TEL was digested with *Bam* HI, the DNA ends were made blunt by treatment with T4 DNA polymerase and dNTPs, and the plasmid was recircularized. Next, this new plasmid, pVII-L URA3-TEL (-*Bam* HI), was 30 digested with *Eco* RI, the ends were made blunt as before, and ligated to the blunt-ended 1.8 kbp *Hind* III-*Eco* RI fragment of YA4-2. Plasmids with the *Bam* HI site furthest from the (TG₁₋₃) sequence have the correct 35 orientation of the insert.

- 75 -

Plasmid adh4::URA3 was constructed by digesting pVII-L URA3-TEL with *Bam* HI, making the ends blunt, then treating the plasmid with *Eco* RI; the 1.8 kbp *Hind* III-*Eco* RI fragment of YA4-2 with only its *Hind* III end 5 made blunt, was ligated into the plasmid.

Plasmid V-R URA3-TEL was made by digesting pVII-L URA3-TEL with *Hind* III and replacing the *ADH4* derived sequence with the 2.8 kbp *Hind* III fragment of plasmid 10 B6-10H, such that the *Eco* RI site of the insert was furthest from the *URA3* gene. Plasmid B6-10H (obtained from C. Newlon) contains ~19 kbp of unique DNA sequence from the region adjacent to the subtelomeric Y' repeat on the right arm of chromosome V (Chan and Tye, 1983b; 15 McC Carroll and Fangman, 1988). The 2.8 kbp *Hind* III fragment from B6-10H used in this study is unique sequence ~5.5 kbp from the Y' repeat.

Plasmid pULA was constructed in a two step process. 20 First, the 1.1 kbp *Hind* III -*URA3* fragment was inserted into the *Hind* III sit of a pUC9 derivative, in which the *Pst* I site has been deleted. The resulting plasmid was digested with *Pst* I and *Nsi* I; the coding sequence of 25 *URA3* was removed and replaced with a 4 kbp *Pst* I fragment containing *LEU2* isolated from YEP13 (Broach et al., 1979).

Plasmids pADHIS3(+), pADHIS3(-), pADADE2(+), 30 pADADE2(-), pADTRP1(+), and pADTRP1(-) were all constructed by inserting the wild-type *HIS3*, *ADE2*, or *TRP1* genes in either orientation, into the *Bam* HI site in the vector VII-L URA3-TEL. For *HIS3*: A 1.85 kbp *Bam* HI fragment from plasmid pHIS3 (Struhl, 1985; obtained from K. Runge) was inserted into the *Bam* HI site of 35 VII-L-URA3-TEL. Two plasmids are formed: pADHIS3(+), in which the *HIS3* gene is in the same transcriptional

- 76 -

orientation as the *URA3* gene, and pADHIS3(-) which has the *HIS3* gene in the opposite orientation.

For *ADE2*, a 3.6 kbp *Bam* HI fragment in plasmid pL909 (obtained from R. Keil), was inserted into the *Bam* HI site of the vector VII-L URA3-TEL. The resulting plasmids were designated pADADE2(+), indicating *ADE2* transcription in the same direction as the adjacent *URA3* gene, or pADADE2(-) for *ADE2* transcription in the opposite direction.

For *TRP1*, 0.85 kbp *Eco* RI-*Bgl* II fragment from plasmid YRp7 (Struhl et al., 1979) was blunt-ended with T4 DNA polymerase and inserted into the *Bam* HI site in VII-L URA3-TEL which also had the *Bam* HI ends filled-in with T4 DNA polymerase. The plasmid with the *TRP1* gene in the same transcriptional orientation as *URA3* was denoted pADTRP1(+), while the plasmid in which *TRP1* transcription was in the opposite direction as *URA3* transcription was pADTRP1(-).

Plasmid TRP1/RS306 was made by inserting the *Eco* RI-*Bgl* II fragment of *TRP1* into the *Eco* RI-*Bam* HI site of pRS306 (Sikorski and Hieter, 1989).

E. coli strain MC1066 (*r*⁻ *m*⁻, *trpC9830*, *leub600*, *pyrF::Tn5*, *lacΔX74*, *strA*, *galU*, *galK*) was used as a host for all plasmids (Casadaban et al., 1983). LB medium with ampicillin (100 µg/ml) and M9 medium supplemented with appropriate amino acids were prepared as described by Maniatis et al. (Maniatis et al., 1982). Complementation of MC1066 mutations by the homologous yeast genes was used when applicable.

- 77 -

2. Yeast Strains & Methods

Media used for the growth of *S. cerevisiae* were based on synthetic complete media as described by Sherman et al. (Sherman et al., 1986) to which uracil (35 mg/l), tyrosine and lysine (60 mg/l), and leucine and isoleucine (80 mg/l) had been added. One gram of 5-FOA per liter of media was added to determine resistance to 5-FOA. Medium for *ADE2* red/white sectored colony growth was as described (Klapholz and Esposito, 1982) except arginine was 50 mg/l and threonine was 100 mg/l. Colonies were grown for three days at 30°, then incubated for 1-2 weeks at 4° for full color development. *S. cerevisiae* transformation was performed using the lithium acetate procedure (Ito et al., 1983).

To delete the *URA3* gene, strain 1GA2 (*MAT α ade2 ade5 leu2-3,112 lys5 cyh2^r can1^r*; made in this study) was transformed with *Hind* III digested pULA (see above), and Leu⁺ colonies were isolated. The structure of the chromosome from which *URA3* was deleted was checked by Southern analysis in Leu⁺ isolates that also tested Ura⁻. DG20 is the *ura3Δ::LEU2* derivative of 1GA2. Strains DG26, DG27, DG28, and DG30 were constructed by transforming DG20 with different DNA fragments: DG26 with plasmid *adh4::URA3-TEL* cleaved by *Bam* HI and *Sal* I, DG27 with plasmid *adh4::URA3* cleaved by *Bam* HI and *Sal* I, DG28 with plasmid VII-L *URA3-TEL* cleaved by *Sal* I and *Eco* RI, and DG30 with plasmid V-R *URA3-TEL* cleaved by *Eco* RI. All transformants were selected as being both Ura⁺ and Leu⁺. The expected structure for each transformant was verified by Southern analysis. In each case, total genomic DNA was cleaved twice, once by *Bgl* II and once by *Pst* I. The Southern blots of DG26, DG27, and DG28 were hybridized with a series of DNA probes which included: the 1.1 kbp *Hind* III *URA3* gene, the proximal *ADH4* probe, and the distal *ADH4* probe. The structure of DG30 was

- 78 -

verified in a similar manner using probes from plasmid B6-10H.

Strains UCC41, UCC42, UCC45, UCC61, UCC62, UCC63, 5 UCC81, UCC82, and UCC83 were derived from strain 4-1 (*MAT α lys2 his4 trp1 Δ ade2 leu2-3,112 ura3-52* made in this study), by transforming strain 4-1 with different DNA fragments and selecting for *Ura⁺* colonies: UCC41 with pADADE2(+) cut with *Sal* I and *Not* I, UCC42 with 10 pADADE2(-) cut with *Sal* I and *Not* I, UCC45 with pL909 cut with *Bam* HI, UCC61 by pADTRP1(+) cut with *Sal* I and *Eco* RI, UCC62 with pADTRP1(-) cut with *Sal* I and *Eco* RI, UCC81 with VII-L URA3-TEL cut with *Sal* I and *Eco* RI, UCC82 with *adh4::URA3* cut with *Bam* HI and *Sal* I, UCC83 15 with pUCU (contains the 1.1 kbp *Hind* III fragment containing the *URA3* gene in pUC9) cut with *Hind* III, and UCC63 with pTRP1/RS306 digested with *Nde* I.

Strains UCC51, UCC52, UCC53, UCC74, UCC75, and UCC76 20 were derived from strain 3482-16-2 (*MAT α , met2, his3D-1, leu2-3,112, trp1-289, ura3-52*, obtained from L. Hartwell), by transforming strain 3482-16-2 with different DNA fragments, again selecting for *Ura⁺* colonies: UCC51 by pADHIS3(+) cut with *Sal* I and *Eco* RI, 25 UCC52 with pADHIS3(-) cut with *Sal* I and *Eco* RI, UCC53 with pHIS3 cut with *Bam* HI, UCC74 with VII-L URA3-TEL cut with *Sal* I and *Eco* RI, UCC75 with *adh4::URA3* cut with *Bam* HI and *Sal* I, and UCC76 with pUCU cut with *Hind* III. The expected chromosome structure of each transformant was 30 verified by Southern analysis.

3. Selection for 5-FOA^R Colonies

Cells were grown into colonies for 2-3 days at 30° 35 on YC plates or plates that lacked uracil. Colonies were picked and resuspended in 1.0 ml H₂O, serial dilutions were made and an appropriate amount of cell suspension

- 79 -

was spread to produce ~200 colonies/plate. Cells were spread onto 5-FOA^R plates for selection, and YEPD, YC, or synthetic complete media plates to determine the total number of colony forming cells. The number of colonies 5 on a plate was determined after 3-4 days of growth at 30°.

4. Analysis of Nucleic Acids from *S. cerevisiae*

10 *S. cerevisiae* cells were grown in 5 ml of YEPD to stationary phase, and total genomic DNA was isolated by disrupting cells with glass beads as described (Runge and Zakian, 1989). Methods for cleavage of total genomic DNA with restriction enzymes, gel electrophoresis, and 15 Southern hybridizations have been previously described (Gottschling and Cech, 1984; Runge and Zakian, 1989). For rehybridization studies, probes were removed from blots with boiling water.

20 Cells were grown to a density of 0.5-2 X 10⁷ cells/ml and total RNA was isolated as described (Sherman et al., 1986), except that the nucleic acids were precipitated with 2 vol. ethanol and resuspended in water at a concentration of 1-10 mg/ml. RNA concentration was 25 determined by UV spectroscopy. Ten or twenty µg of total RNA was separated by electrophoresis on a 1.5% agarose-formaldehyde-MOPS gel and transferred to nitrocellulose or nylon membrane as described (Ogden and Adams, 1987; Wahl et al., 1987). Strand specific RNA 30 probes were made by in vitro transcription of linearized plasmids with T7 polymerase in the presence of [α -³²P] CTP (~600 Ci/mmole) (Wahl et al., 1987).

35 Plasmids used for transcription were derivatives of pVZ1 (Eghitedarzadeh and Henikoff, 1986); the *URA3* probe contained the *Pst* I-*Nco* I fragment of the gene, the *HIS3* probe contained the *Bam* HI-*Kpn* I fragment of the gene,

- 80 -

the *TRP1* probe contained the *Hind III-Bgl II* fragment of the gene. Northern hybridization was performed as described (Wahl et al., 1987). Multiple exposures of autoradiograms were scanned with an LKB Ultroncan XL 5 densitometer to determine the relative levels of *URA3* or *HIS3* mRNA.

B. RESULTS

10 1. Marking a Telomere with *URA3*

15 *URA3*, which is required for uracil biosynthesis, is normally found near the centromere on chromosome V. The entire gene, including the *cis* elements required for its normal regulation, is located on a 1.1 kbp *Hind III-Sma I* fragment (Rose et al., 1984). This fragment was used in all of the *URA3* constructs described in this example. Studies were carried out in haploid yeast strains that contained either of two non-reverting *ura3*⁻ alleles:
20 *ura3-52*, which contains a Ty transposon insertion within the *URA3* coding sequence (Rose and Winston, 1984) (UCC series), or *ura3Δ::LEU2*, in which the entire coding region of *URA3* on chromosome V has been replaced by the *LEU2* gene (DG series).

25 *ADH4* is the most distal gene on the left arm of chromosome VII (Walton et al., 1986). Fragment mediated transformation (Rothstein, 1983) was used to introduce *URA3* onto the left arm of chromosome VII, to create the haploid strain DG28. In DG28, a portion of *ADH4* and the DNA distal to it are deleted and replaced with *URA3* and an 81 bp stretch of (TG₁₋₃). After transformation into yeast, the 81 bp are extended to ~300 bp of (TG₁₋₃), a length typical of all other telomeres in this strain.
30 Transcription of the *URA3* gene is towards the telomere, with its promoter ~1.3 kbp from the end of the chromosome.
35

- 81 -

2. Position Effect at Yeast Telomeres

The chemical 5-fluoro-orotic acid (5-FOA) can be used in the negative selection of *URA3* expression; 5-FOA 5 is converted into a toxic substance by the *URA3* gene product (Boeke et al., 1987). The constitutive level of *URA3* expression in a cell is normally sufficient to yield cells sensitive to 5-FOA (5-FOA^S). Resistance to 5-FOA (5-FOA^R) can be used as a method to select for cells that 10 have lost or mutated the wild type *URA3* gene. Therefore, sensitivity to 5-FOA was used as a means to determine *URA3* expression as a function of chromosomal location.

The frequency of a spontaneous 5-FOA^R allele arising 15 at the normal *URA3* locus is ~10⁻⁷ (1GA2; Boeke et al., 1984). Since 5-FOA^R cells derived in this way have mutations in the *URA3* gene, they are *Ura*⁻ (i.e. unable to grow in the absence of uracil). In contrast, when cells with *URA3* at the telomere (DG28) were pre-grown in media 20 containing uracil (no selection for *URA3* expression) and then plated for single colonies onto 5-FOA, 33% of the cells gave rise to 5-FOA^R colonies (DG28). Moreover, when these 5-FOA^R colonies were replica-plated to media that lacked uracil, cells were able to grow. That is, 25 the cells were still *URA3*⁺. These results suggested that the 5-FOA^R exhibited by these cells was not due to an inordinately high mutation rate in or loss of the *URA3* gene, but rather that *URA3* expression at the telomere was reduced below the killing threshold of 5-FOA. 30 Nonetheless, cells in an 5-FOA^R colony still had the ability to produce sufficient *URA3* gene product to overcome a lack of uracil in the medium.

When DG28 cells were pre-grown in medium lacking 35 uracil (selecting for *URA3* expression), one out of 10⁵ cells produced a colony on plates containing 5-FOA. Once again, each of these 5-FOA^R colonies was still *URA3*⁺.

- 82 -

Taken together these results suggested that under non-selective growth conditions expression of the *URA3* gene in about one-third of the DG28 cells was sufficiently repressed to allow growth on 5-FOA, but that under selection, expression of the telomere-linked *URA3* gene is still possible in many or all of the cells. The resistance to 5-FOA of cells with *URA3* at the VII-L telomere has been observed in a number of strains. While there have been strain specific differences in the fraction of 5-FOA^R cells when cells were pre-grown under non-selective conditions, these values (0.10-0.90) were all within an order of magnitude of one another (UCC74 & UCC81), and indicate that repression of a telomere-linked *URA3* gene on VII-L is a general phenomenon.

15

This unexpected behavior of the *URA3* phenotype (colonies that were 5-FOA^R yet still Ura⁺) caused the inventors to examine the steady state levels of *URA3* mRNA in cells with the gene either at its normal chromosomal position or at the telomere of VII-L. RNA was isolated from cells grown under either selective or non-selective conditions for *URA3* expression. Consistent with earlier studies, cells with *URA3* at its normal chromosomal locus had a modest increase in *URA3* mRNA levels (~1.4-fold) when grown under selective conditions compared to growth under non-selective conditions (strain 1GA2) (Bach et al., 1979; Lacroute, 1968; Rose and Botstein, 1983). However, a major difference in *URA3* mRNA levels was observed in cells with the *URA3* gene at the telomere. RNA levels in DG28 cells grown under non-selective conditions were one-fifth that of cells with *URA3* at its normal locus (DG28 & 1GA2).

In contrast, under selective conditions, RNA levels in cells with *URA3* at the telomere were equivalent to the level in cells with *URA3* at its normal locus (strains DG28 & 1GA2, INDUC). Thus consistent with the 5-FOA^R

- 83 -

phenotype, the constitutive level of *URA3* RNA is significantly reduced when the gene is located next to the telomere at VII-L compared to when it is at its normal chromosomal locus. Yet under selection, the level 5 of *URA3* RNA at the telomeric locus in DG28 cells is virtually the same as when *URA3* is at its normal chromosomal locus.

In order to determine whether repression occurs at 10 telomeres other than VII-L, strain DG33 was constructed. This strain has the *URA3* gene inserted near the telomere on the right arm of chromosome V (V-R), in a manner similar to that for *URA3* on VII-L in strain DG28. Determination of the fraction of 5-FOA^R colonies and 15 analysis of mRNA levels in strain DG33 indicates that constitutive expression of *URA3* is also repressed at this telomere. The difference in the fraction of 5-FOA^R cells between the two strains (0.33 for DG28, 0.04 for DG33) presumably reflects differences between individual 20 telomeres in terms of their specific chromosomal environments.

URA3 was also repressed when positioned near the 25 telomere of a telocentric version of chromosome IV or of a 60 kbp artificial linear chromosome. Thus the ability to repress the expression of a nearby *URA3* gene appears to be a general property of *S. cerevisiae* telomeres.

3. Repression by Proximity to Telomeres Occurs for
30 Other Genes

In general, a region of the chromosome that exerts a position effect does so in a gene non-specific manner. Therefore the inventors examined whether genes other than 35 *URA3* were repressed by proximity to a telomere. The *TRP1*, *HIS3*, or *ADE2* gene was inserted between *URA3* and the telomere DNA sequence at the Bam HI site of plasmid

- 84 -

'VII-L URA3-TEL'. Each gene was inserted in both orientations. These constructs were then used to introduce *TRP1*, *HIS3*, or *ADE2* adjacent to the VII-L telomere, by selecting for *URA3* expression. In selecting 5 only for *URA3* expression during strain construction, no selective pressure was placed upon the telomeric *TRP1*, *HIS3*, or *ADE2* genes.

In strains bearing a telomere-linked copy of *TRP1*, 10 and grown under non-selective conditions, *TRP1* RNA was undetectable by Northern analysis, regardless of the gene's orientation at the telomere (UCC61 & UCC62). By examining very long exposures of the autoradiograms the inventors estimated that the RNA level from the telomeric 15 *TRP1* was \leq 1% of the RNA level when the same *TRP1* fragment was located at an internal chromosomal site within the normal *URA3* locus on chromosome V.

Colonies of cells with *TRP1* at the telomere or at an 20 internal locus were grown on non-selective medium and then plated in serial dilution to medium that lacked tryptophan. All of the cells with *TRP1* at an internal site on the chromosome (UCC63) formed colonies on plates lacking tryptophan. However, those with *TRP1* at the 25 telomere showed a reduction in colony forming ability on plates lacking tryptophan (UCC61 & UCC62). Only 10^{-2} cells with *TRP1* oriented such that transcription was directed towards the telomere formed colonies in the absence of tryptophan (UCC61). When *TRP1* transcription 30 was away from the telomere, $\sim 10^{-3}$ cells formed colonies (UCC62). In addition, the UCC61 cells formed robust colonies in three days, while the UCC62 colonies were smaller.

35 The telomeric *TRP1* RNA levels and plating efficiency data indicate that under non-selective growth conditions the majority of cells with *TRP1* near the telomere had

- 85 -

very low or no *TRP1* expression. In all three *TRP1* constructs described, a portion of the UAS/promoter elements found at the normal *TRP1* locus was missing (Kim et al., 1986). While these missing elements have no
5 apparent effect on the ability of cells to grow without tryptophan when *TRP1* is at an internal locus, their absence may explain why *TRP1* expression was more severely repressed at the telomere compared to the expression of *URA3* at the telomere.

10

When *HIS3* was placed at the telomere and its transcription was directed away from the telomere, there was a detectable reduction in RNA levels compared to when the gene was at its normal chromosomal locus (UCC52).
15 When the direction of transcription at the telomere was reversed, there was a slight increase in RNA levels (UCC51). Phenotypically, there was a modest (less than ten-fold) reduction in plating efficiency on media lacking histidine for UCC52, but no effect on UCC51, a
20 result consistent with the relative RNA levels.

4. Transcriptional Repression at Telomeres is Reversible and Inherited in a Semi-Stable Fashion

25

As shown above, when the *URA3* gene was telomere-linked (DG28), cells from colonies that were 5-FOA^R could still grow when placed on medium lacking uracil. Conversely, cells grown in the absence of uracil were
30 able to form colonies when placed on medium containing 5-FOA. These results suggested that a telomere-linked *URA3* gene could switch between repressed and active transcriptional states. The *ADE2* gene provides a convenient color assay for determining whether the gene
35 is expressed; *ADE2*⁺ colonies are white, whereas *ade2*⁻ colonies are red (Roman, 1956). Thus, expression of a telomere-linked *ADE2* gene can be monitored by determining

- 86 -

the color of colonies produced by cells carrying this marked telomere.

When the *ADE2* gene was placed at the telomere such
5 that *ADE2* transcription was directed towards the telomere (UCC41), all colonies contained red and white sectors. This sectored phenotype indicated a switch between the repressed and active transcriptional states of *ADE2* during colony development. The colonies displayed a wide
10 range of sectoring phenotypes. Some colonies were primarily white (active) and gave rise to red (repressed) sectors near the periphery. An equal number of colonies were primarily red with white sectors near the periphery. Intermediate levels of sectoring between these two
15 extremes were also readily visible.

In some colonies multiple switches between transcriptional states can be inferred. For example, a predominantly red colony has a large white sector.
20 Within this white portion, red sectors are clearly visible. The reversibility was further demonstrated by isolating cells within a white (or red) sector and plating them for single colonies. Each new colony contained red and white sectors. In contrast with the
25 results in UCC41, when *ADE2* transcription was directed away from the telomere (UCC42), no red sectors were observed in a colony.

These results demonstrate that the expression of a
30 telomere-linked *ADE2* gene can switch between an active and repressed state, and that the expression state is semi-stable during mitotic growth. Based on the results with *URA3*, *TRP1*, and *HIS3*, the inventors infer that the control of *ADE2* expression is at the transcriptional
35 level. However, it was not possible to determine the level of RNA produced at the telomere-linked *ADE2*,

- 87 -

because an identical sized transcript was made by the ade2 allele at its normal chromosomal locus.

The probability of a telomere-linked ADE2 gene
5 (UCC41) being in an active (repressed) transcriptional state was estimated from the fraction of predominantly white (red) colonies. Five colonies of UCC41 cells grown on non-selective medium, were plated for single colonies onto non-selective medium. Approximately equal numbers
10 of colonies were found that had primarily red centers giving rise to white sectors, and primarily white centers that gave rise to red sectors. This result indicates that a telomere-linked ADE2 gene on VII-L has an about equal probability of being in an active or repressed
15 transcriptional state.

However, when five colonies of UCC41 were pre-grown in the absence of adenine (selecting for ADE2 expression) and then plated onto non-selective plates, there were up
20 to nine times as many colonies with white centers than with red centers. Closer examination of colonies with white centers revealed that red sectors generally did not appear until very close to the periphery of the colony. This observation suggested that the active expression
25 state of ADE2 was stable for many generations. The distance from the center of these colonies to the points at which multiple red sectors appeared was measured. This value was used to compute the fraction of the total colony volume (assuming a half sphere geometry for a
30 colony) that comprised the non-sectorized center of the colony. The number of cells within this region of the colony was calculated (assuming there are ~ 10^8 cells in a colony), and this value was used to derive the number of cell divisions required to produce the quantity of white
35 cells from a single progenitor. From these calculations the inventors estimate that the active transcriptional

- 88 -

state of ADE2 is inherited for 15-20 generations in these colonies.

The phenotypic switching displayed by ADE2 at a
5 telomere was also observed with the URA3 gene using a
single cell analysis. Freshly budded cells grown on
medium containing 5-FOA were moved by micromanipulation
to a region of the plate where they could develop into
full colonies. The majority (81/119) of the cells formed
10 colonies, but 8% (9/119) of the cells formed
microcolonies consisting of 4-8 cells. Microcolonies
were not detected in a control study in which no 5-FOA
was present in the medium. Therefore the microcolonies
presumably represent cells arrested in growth on the 5-
FOA due to the URA3 gene being switched to an actively
15 expressing state after budding. The cells that did not
form colonies may have been progeny of cells that had
switched to an actively expressing state prior to
budding, or were inviable as a result of the
20 micromanipulation method. A rough value for the
switching of URA3 from a repressed to an active state in
DG28 cells was calculated by dividing the number of cells
that formed microcolonies (9) by the total number of
colony forming cells (9+81), which yields an estimated
25 switch rate of 10^{-1} per division.

5. The Distance Over which Telomeres Exert a Position Effect on URA3 Expression

30 In order to obtain an estimate of the distance over
which the telomere exerted a position effect, the URA3
gene was placed ~20 kbp from the end of the left arm of
chromosome VII by insertion within the ADH4 locus
(DG27). Based on both RNA analysis and the frequency of
35 5-FOA^R colony formation, cells with URA3 inserted within
ADH4 had levels of URA3 expression comparable to cells
with URA3 at its normal locus, under either selective or

- 89 -

non-selective growth conditions. Thus on the left arm of chromosome VII the telomeric repression was no longer detectable when *URA3* was ~20 kbp from the telomere.

5 In order to determine whether repression occurred over distances less than 20 kbp from the telomere, the constructs described above, in which *TRP1*, *HIS3*, or *ADE2* was inserted between *URA3* and the telomere DNA sequence, were analyzed for *URA3* expression. The inserted genes
10 increased the distance between *URA3* and the telomere by 0.85, 1.8, or 3.6 kbp, respectively.

Cells with each of the constructs were pre-grown in complete synthetic medium, thus no selection for the expression of *URA3* or the inserted gene was introduced.
15 The cells were then plated to medium containing 5-FOA and the fraction of 5-FOA^R colonies was determined. The analysis revealed that as the distance between *URA3* and the telomere was increased, the level of repression decreased. For instance, insertion of the 0.85 kbp *TRP1* fragment yielded 5-FOA^R colonies at a frequency of 0.02-
20 0.14 (UCC61 and UCC62), while insertion of the 3.6 kbp *ADE2* fragment yielded $\leq 10^{-5}$ 5-FOA^R cells (UCC41 and UCC42). However, the level of *URA3* expression was also
25 influenced by the orientation of the inserted DNA fragment.

This conclusion was best demonstrated by the result with the *HIS3* fragment: when transcription of the *HIS3* gene was towards the telomere (UCC51), $\sim 10^{-4}$ cells were 5-FOA^R; when *HIS3* transcription was away from the telomere (UCC52), 0.26 of the cells were 5-FOA^R. The orientation of *TRP1* and *ADE2* had smaller, but detectable effects on *URA3* expression. Thus further studies on the level of *URA3* expression as a function of distance from the telomere must take into account both the composition and
35

- 90 -

orientation of the DNA sequences located between the telomere and *URA3*.

5 6. Internal Tracts of (TG₁₋₃) Do Not Cause
Repression, but they Can Become Chromosome Ends
and Consequently Cause Position Effect

Internal tracts of (TG₁₋₃) sequence occur naturally between the telomere associated elements X and Y' and 10 between tandem Y' elements (Chan and Tye, 1983a; Chan and Tye, 1983b). Internal (TG₁₋₃) tracts range from 50 to 130 bp in length (Walmsley et al., 1984). In order to determine whether these internal (TG₁₋₃) sequences might also exert a position effect, 81 bp of (TG₁₋₃) were 15 introduced adjacent to the telomeric side of *URA3*, within the *ADH4* locus (DG26).

RNA levels in these cells were somewhat higher than in cells with *URA3* at its normal locus or at the *ADH4* 20 locus without (TG₁₋₃) (DG26, DG27, & 1GA2). This elevated transcription was true for both constitutive and induced *URA3* gene expression. These elevated mRNA levels are probably explained by an enhancer-like activity associated with (TG₁₋₃) repeat sequences when they are 25 adjacent to a gene in a non-telomeric location (Runge and Zakian, 1990). Whatever the mechanism responsible for elevated expression, the internal tract of 81 bp of (TG₁₋₃) at the *ADH4* locus clearly does not cause repression of constitutive expression. These data demonstrate that 30 (TG₁₋₃) sequences are not sufficient to cause position effect: the *URA3* gene must be positioned near a telomere (or alternatively, near a (TG₁₋₃) tract >81 bp) in order for transcription to be repressed.

35 Consistent with the high level of *URA3* expression seen in the RNA analysis, the fraction of 5-FOA^R colonies from cells with *URA3* next to the internal tract of (TG₁₋₃)

- 91 -

and grown in uracil was ~ 10^{-6} (DG26 CONST). Although this value was low compared to cells with a telomere-linked copy of *URA3*, it is an order of magnitude greater than the fraction of 5-FOA^R colonies in cells with *URA3* at its normal locus (strains 1GA2 & DG26). Replica-plating of the 5-FOA^R colonies derived from DG26 cells revealed that they were all still Ura⁺ (in contrast to 5-FOA^R colonies arising from cells with *URA3* at its normal locus, which were typically Ura⁻). This phenotype is identical to that seen for the cells with *URA3* at the telomere (i.e. DG28), suggesting that the internal (TG₁₋₃) sequences might have become telomeric in those cells able to form colonies on 5-FOA.

This hypothesis was confirmed by Southern analysis. In four out of four independent isolates in which DG26 cells gave rise to 5-FOA^R colonies, the *URA3* sequences were on a restriction fragment of the size expected for a telomeric location. In addition, Southern hybridization demonstrated that sequences immediately distal to the internal (TG₁₋₃) tract were no longer detectable in the 5-FOA^R cells. These results show that internal tracts of (TG₁₋₃) sequence can spontaneously become chromosomal ends by a mechanism that results in the deletion of sequences distal to the internal (TG₁₋₃) tract. In addition, the results provide independent evidence that the repressed expression of *URA3* at the telomere is neither an artifact of transformation, nor a mutation within the *URA3* gene or one of its trans activating factors.

30

C. DISCUSSION

1. Position Effect at Yeast Telomeres

A position effect was demonstrated at the telomeres of *S. cerevisiae* chromosomes. The effect resulted in reduced gene expression of telomere-linked genes as

- 92 -

assayed both by amount of stable mRNA and by phenotype. For instance, cells with a telomere-linked *URA3* gene were able to grow in the presence of 5-FOA, behavior consistent with a *ura3*⁻ phenotype. When *ADE2* was 5 telomere-linked many cells produced predominantly red colonies as is characteristic of *ade2*⁻ cells. The position effect altered the expression of four out of four Pol II genes: *ADE2*, *HIS3*, *TRP1*, and *URA3*. In addition the effect was observed at four out of four 10 telomeres, including an artificial linear chromosome. Therefore, it can be concluded that the position effect is a general phenomenon of *S. cerevisiae* telomeres.

The position effect acted upon the *URA3* promoter at 15 distances of at least ~4.9 kbp from the telomere, but at ~20 kbp from the left end of chromosome VII the effect was not observed. In addition the influence of distance on position effect strongly depended upon the specific DNA sequences located between *URA3* and the telomere and 20 probably other factors that are not yet well understood. For example, the transcriptional activity of *ADE2*, *HIS3*, and *URA3* was dependent upon the gene's orientation with respect to the telomere. In the process of generating artificially fragmented linear chromosomes, Hegemann 25 et al. report a "leaky" 5-FOA^R phenotype for a *URA3* gene located 6-8 kbp from the telomere (Hegemann et al., 1988). In these constructs, most of the 6-8 kbp was the subtelomeric middle repetitive element Y'. The inventors postulate that the reported "leaky" phenotype is due to a 30 telomeric position effect and suggest that telomeric repression can act at a distance of at least 6 kbp, and through a Y' element.

The telomeric position effect appears to be a result 35 of proximity to the end of the chromosome and not simply due to the telomeric DNA sequence (TG₁₋₃). Eighty-one base pairs of (TG₁₋₃) sequence ~20 kbp from the telomere

- 93 -

did not repress *URA3* expression. While longer lengths of (TG₁₋₃) were not tested at internal loci, one of several strains that were tested for telomeric position effect contained the tell mutation. In the tell strain, the 5 telomere adjacent to *URA3* had a (TG₁₋₃) tract of 95-120 bp, yet the level of 5-FOA^R in this strain was similar to that for all other strains tested. Taken together these results argue that the telomere itself, not simply (TG₁₋₃) repeats are responsible for telomeric position effect in 10 *S. cerevisiae*.

The repressed state conferred by the telomere was mitotically inherited over a number of generations, but the genes could escape from repression and switch to a 15 state of active transcription. This reversibility was visually demonstrated by the red and white sectored colonies of cells with *ADE2* near the telomere (UCC41), and was also supported by the single cell analysis of DG28 cells on 5-FOA. The transcriptional state of a 20 gene, whether repressed or active, appeared to be stable over many generations.

The switching between active and repressed transcriptional states for genes at telomeres is not due 25 to genetic alteration, but rather to an epigenetic switch. Several lines of evidence support this interpretation: 1. The repression was readily reversible, in the presence or absence of selection. 2. There were no differences in DNA structure or copy number 30 of the telomeric genes, as judged by Southern analysis, regardless of whether these haploid cells were grown under conditions that were non-selective, or that selected for expression or repression of the genes. 3. The telomeric position effect was gene non-specific.

35

Epigenetic variation of gene expression has been observed in plants, insects, mammals, and *S. cerevisiae*.

- 94 -

In *Drosophila*, position effect variegation is observed when a euchromatic gene is moved within or near a heterochromatic region of the chromosome (Eissenberg, 1989; Spofford, 1976). Heterochromatin is a portion of the chromosome which remains visibly condensed throughout interphase of the cell cycle. In contrast, euchromatin decondenses after telophase and appears diffuse during interphase. When the white gene is located near some types of heterochromatin, a 'salt-and-pepper' mosaicism in eye color is observed (Spofford, 1976). This mosaicism is visually analogous to the sectored colonies produced by cells with *ADE2* at the telomere, and it could be inferred that similar mechanisms are at work in the two organisms.

15

In *S. cerevisiae*, epigenetic switching has been reported at the silent mating type locus, *HML* (Pillus and Rine, 1989). In a wild type cell *HML α* is not expressed. However in a *sir1* strain, *HML α* switches between repressed and expressed states. Current models for the *HML* switch favor a change in chromatin conformation between the two phenotypic states. Besides changes in chromatin structure, postulated mechanisms of epigenetic variation in plants and mammals include changes in DNA methylation, topology, and nuclear locale (Fedoroff et al., 1989; Holliday, 1987; Monk, 1990; Weintraub, 1985).

Cytological observations in plants, insects, and mammals indicate that telomeres occupy specific regions within the nucleus and are frequently associated with the nuclear envelope (Lima-de-Faria, 1983a; White, 1973). In addition, telomeres are usually packaged as heterochromatin (Fussell, 1975; Traverse and Pardue, 1989). In the single-celled eukaryotes, *Oxytricha*, *Dictyostelium*, and *Tetrahymena*, the DNA adjacent to the chromosome termini are packaged in an orderly array of phased nucleosomes, which is consistent with the presence

- 95 -

of a highly ordered chromatin structure (Budarf and Blackburn, 1986; Edwards and Firtel, 1984; Gottschling and Cech, 1984). In *Drosophila*, P element-mediated transposition of the white gene near the 3R telomere 5 results in mosaic expression of the gene, indicative of a position effect caused by proximity to the heterochromatin observed at this telomere (Hazelrigg et al., 1984; James et al., 1989; Levis et al., 1985).

10 It is noted that *S. cerevisiae* telomeres have two of the classic features of heterochromatin: telomeres replicate late in S phase (McCarroll and Fangman, 1988), and as shown here, they exert position effect on the expression of nearby genes. The inventors propose that 15 the phenotypic switching of telomere-linked genes in yeast is the result of a competition between the formation of a stable active transcriptional complex and the normal telomeric chromatin structure that prevents gene expression. Such a chromatin structure must 20 originate from the end of the chromosome. In *Oxytricha* the molecular ends of macronuclear mini-chromosomes are recognized by a heterodimeric protein complex (Gottschling and Zakian, 1986; Price and Cech, 1989). Similar proteins in yeast may form a telomeric structure 25 that is important in establishing the position effect.

The semi-stable, reversible repression (or expression) at yeast telomeres may be analogous to a primitive developmental switch. When cells with a 30 telomere-linked copy of *ADE2* were pre-grown under selection for *ADE2* expression, most (~80%) subsequently gave rise to colonies of primarily white (transcriptionally active) cells under non-selective growth conditions. The active transcriptional state of 35 *ADE2* can be inherited for at least 15-20 generations after removal of selection. This primitive control mechanism for gene expression may be exploited by some

- 96 -

- organisms to allow developmentally controlled expression of telomere-linked genes. In *Trypanosomes*, telomeres are the exclusive genomic expression sites for surface antigen genes (reviewed in (Pays and Steinert, 1988)).
- 5 Many telomeres within a cell can carry transcriptionally competent genes, yet only one such gene is expressed at a time. Perhaps the other telomere-linked genes are kept repressed, albeit reversibly, by telomeric position effect.

10

2. New Telomere Formation

- The inventors found that internal tracts of (TG₁₋₃) sequence can spontaneously become chromosomal ends.
- 15 Since the DNA distal to the (TG₁₋₃) tract is deleted, it seems unlikely that telomere formation occurred by reciprocal recombination between the internal (TG₁₋₃) sequence and another telomere. New telomere formation may have occurred through intrachromosomal recombination
- 20 between the internal (TG₁₋₃) sequence and the telomere with a resulting deletion of intervening sequences (as has been postulated for deletion of the subtelomeric repeat Y' (Horowitz and Haber, 1985)), by unequal sister chromatid exchange or conversion, or by a distal
- 25 chromosome break followed by telomere "healing" at the (TG₁₋₃) sequence.

- New telomere formation in conjunction with deletion of all terminal sequences has been observed
- 30 cytologically, and has been an area of intense interest because of its implications for chromosome breakage at fragile sites and for the generation of chromosomal abnormalities in cancer cells (Le Beau, 1988; Sutherland and Hecht, 1985). Recently it has been postulated that a
- 35 subclass of such sites might in fact be regions of the chromosome which contain internal stretches of telomeric DNA sequences (Hastie and Allshire, 1989). In this

- 97 -

example the inventors find that internal tracts of telomeric DNA do indeed spontaneously become chromosomal termini, albeit at a low frequency (~10⁻⁶).

5

EXAMPLE II

Modifiers of Position Effect are Shared Between Telomeric and Silent Mating-Type Loci in *S. cerevisiae*

The inventors have shown that Pol II-transcribed genes succumb to a position effect when placed near the ends of chromosomes in *S. cerevisiae* (Gottschling et al., 1990; Example I), reflecting observations made in other eukaryotes that the chromosomal location of a gene can affect its expression (Eissenberg, 1989; Henikoff, 1990; Lima-de-Faria, 1983; Spofford, 1976; Spradling and Karpen, 1990; Wilson et al., 1990). The position effect is manifested as the stable but reversible transcriptional repression of each gene examined.

20

The mechanism by which this repression occurs is unclear, but it is likely due to a structural attribute of *S. cerevisiae* telomeres. Cytological observations in plants, insects, and mammals indicate that telomeres are heterochromatic; in addition, the telomeres in these organisms and in Trypanosomes occupy unique locations within the nucleus, typically being associated with the nuclear envelope (Chung et al., 1990; Fussell, 1975; Hochstrasser et al., 1986; Lima-de-Faria, 1983; Rawlins and Shaw, 1990; Traverse and Pardue, 1989; White, 1973).

25

HML and *HMR* are two other loci in *S. cerevisiae* where a position effect on transcription has been observed (Klar et al., 1981; Nasmyth et al., 1981). The mating-type genes, which are expressed when present at the *MAT* locus, are maintained transcriptionally silent when present at *HML* and *HMR* even though all *cis*-acting sequences required for full expression at *MAT* are

30

- 98 -

present. Other Pol II- or Pol III-transcribed genes are also repressed when inserted within or near the *HM* loci (Brand et al., 1985; Mahoney and Broach, 1989; Schnell and Rine, 1986).

5

DNA sequences known as 'silencers' flank both *HM* loci and are required for transcriptional repression (Abraham et al., 1984; Brand et al., 1985; Feldman et al., 1984; Mahoney and Broach, 1989). The silencers (denoted "E" and "I") have been genetically dissected into smaller functional elements, which are recognition sites for DNA binding proteins; these include an *ARS* (Autonomous Replicating Sequence) element, and *ABF1* and *RAP1* binding sites (Brand et al., 1987; Buchman et al., 1988; Mahoney and Broach, 1989; Mahoney et al., 1991; Shore and Nasmyth, 1987; Shore et al., 1987). The *RAP1* protein also binds to the yeast telomeric sequence (TG_{1-3})_n (Buchman et al., 1988; Longtine et al., 1989). *RAP1* is apparently involved in repression of *HM*, since *HMR* is derepressed when *RAP1* temperature sensitive mutant cells are shifted to the nonpermissive temperature (Kurtz and Shore, 1991).

At least seven additional genetic loci play a role in *HM* silencing. The products of four genes, *SIR1*, *SIR2* (*MAR1*), *SIR3* (*MAR2*, *CMT*), and *SIR4* (Silent Information Regulator), are required for complete silencing at both the *HM* loci (Haber and George, 1979; Hopper and Hall, 1975; Ivy et al., 1985; Ivy et al., 1986; Klar et al., 1979; Rine et al., 1979; Rine and Herskowitz, 1987). The molecular mechanism by which the *SIR* genes act to repress transcription is unclear; none of the *SIR* proteins have been demonstrated to bind silencer sequence DNA (Buchman et al., 1988; Shore et al., 1987).

35

A null allele of either *NAT1* (N-terminal AcetylTransferase) or *ARD1* (ARrest Defective) causes

- 99 -

several phenotypes, one of which is derepression of the silent mating type locus *HML* (Mullen et al., 1989; Whiteway et al., 1987). *NAT1* and *ARD1* appear to encode an N-terminal acetyltransferase, however it is not known 5 whether the acetyltransferase activity acts directly in silencing at *HML*.

S. cerevisiae harbors two copies of genes encoding histone H4 (*HHF1* and *HHF2*), either of which alone is 10 sufficient for viability (Kim et al., 1988). In strains with deletions of *HHF1* (*hhf1::HIS3*), single point mutations in any of four consecutive amino acids (residues 16-19) near the N-terminus of histone H4 (*HHF2*) relieve transcriptional silencing at *HML*, with no other 15 apparent phenotypic consequence (Johnson et al., 1990; Megee et al., 1990; Park and Szostak, 1990). These results directly implicate chromatin in *HM* silencing. Further evidence for the involvement of chromatin in 20 silencing is suggested by the inaccessibility of *HML* and *HMR* to the HO endonuclease *in vivo* (Strathern et al., 1982; Kosstrikens et al., 1983). Additionally, *in vitro* nuclease sensitivity analysis of *HML* and *HMR* suggests 25 that the *HM* loci exist in a distinct chromatin structure that is refractory to transcription in a *SIR* dependent manner (Nasmyth, 1982).

The characteristics of position effect and RAP1 binding sites shared by telomeres and the *HM* loci prompted the inventors to test whether the *SIR*, *HHF2*, 30 *NAT1*, and *ARD1* genes play a role in transcriptional repression at yeast telomeres. The results of this Example show that in addition to their roles in silencing at the *HM* loci, the *SIR2*, *SIR3*, *SIR4*, *NAT1*, *ARD1*, and *HHF2* genes are required for the telomeric position effect 35 in *S. cerevisiae*.

- 100 -

Mutations in any of these genes relieves transcriptional repression of either *URA3* or *ADE2* at two different telomeres. In contrast, mutations in *SIR1* did not alter repression at telomeres. These results suggest 5 that telomeres in *S. cerevisiae* exist in a heterochromatin-like structure; a structure composed of proteins which also function at similar chromosomal domains such as the *HM* loci. Based on the differences in silencing between telomeres, *HML*, and *HMR*, the inventors 10 suggest a hierarchy of chromosomal silencing exists within the yeast genome.

A. MATERIALS AND METHODS

15 1. Plasmid Constructions

Plasmid pADE2 contains the *ADE2* gene on a 3.6 kbp chromosomal *Bam*HI fragment from plasmid pL909 (obtained from R. Keil). Plasmid pΔADE2 was constructed by 20 replacing the internal 2.2 kbp *Hind*III fragment (contains all but the six C-terminal residues of the *ADE2* open reading frame; (Stotz and Linder, 1990) of plasmid pADE2 with the 3.8 kbp *Bam*HI-*Bgl*II fragment of pNKY51 which contains two direct repeats of the *Salmonella hisG* gene 25 flanking *URA3* (Alani et al., 1987). The *Hind*III and *Bam*HI ends, and the *Hind*III and *Bgl*II ends were blunted-ended with T4 DNA polymerase and ligated together, resulting in the destruction of these particular restriction sites Thus, pΔADE2 contains a 5.2 kbp *Bam*HI 30 fragment with about 700 bp of homology to sequences upstream and downstream of the *ADE2* gene flanking the 3.8 kbp *Bam*HI-*Bgl*II (*hisG-URA3-hisG*) fragment from pNKY51.

A 2.4 kbp *Hind*III fragment from plasmid pJR104 35 (obtained from J. Rine) which contains the 5' end of the *SIR3* gene was inserted into pVZ1 to yield plasmid pH3SIR3. Plasmid pH3SIR3 was digested with *Bgl*II to

- 101 -

excise a 600 bp fragment in the *SIR3* coding sequence, which was replaced with a 1.8 kbp *Bam*H1 fragment containing the *HIS3* gene. The resulting plasmid was p*ΔSIR3*::*HIS3*.

5

2. Yeast Strains and Methods

Media used for the growth of *S. cerevisiae* were described previously (Gottschling et al., 1990; Example 10 I). *S. cerevisiae* were transformed by the lithium acetate procedure (Ito et al., 1983) or by electroporation in the presence of sorbitol (Becker and Guarante, 1991).

15 The *URA3* gene was placed adjacent to the telomere sequence (TG₁₋₃)_n on the left end of chromosome VII (UCC1-UCC5, UCC16, UCC18, UCC25, UCC128, UCC2031-UCC2036), or the right end of chromosome V (UCC31-UCC35); no telomere associated sequences (i.e.: X and Y' elements (Chan and Tye, 1983a; Chan and Tye, 1983b)) were present. 20 Alternatively, the *ura3-52* or *ura3-1* allele (at the normal *URA3* locus on chromosome V in the parent strains) was converted to *URA3*⁺ (UCC6-UCC10, and UCC129), or *URA3* was inserted into the *ADH4* locus about 20 kbp from the 25 telomere on VII-L (UCC11-UCC15).

Strains UCC5, UCC6, UCC12, and UCC35 were derived from DBY703; UCC1, UCC7, UCC11, and UCC31 were derived from JRY1705; UCC2, UCC8, UCC13, and UCC32 were derived from JRY1706; UCC3, UCC9, UCC14, and UCC33 were derived from JRY1264; UCC4, UCC10, UCC15, and UCC34 were derived from JRY1263. Strain UCC18 was derived from W303-1a; UCC16 was derived from AMR1; UCC25 was derived from JRM5. UCC128 and UCC129 were derived from YDS73; strain UCC2031 was derived from LJY153, UCC2032 from LJY405I, UCC2033 from LJY412I, UCC2034 from LJY421I, UCC2035 from LJY305TR1, UCC2036 from LJY305T. Plasmids and methods

- 102 -

for these constructions are described in Example I and Gottschling et al. (1990).

Strains UCC46 (*SIR*⁺), UCC47 (*sir1*), and UCC48 (5 *sir4*), which were derived from strains DBY703, JRY1705, and JRY 1263, respectively, harbor an *ade2Δ*. The *ade2Δ* was made by transformation of strains DBY703, JRY1705, and JRY1263 with plasmid pΔADE2 digested with *Bam*HI, followed by selection for *URA*⁺ transformants. In these 10 transformants the *ADE2* open reading frame has been replaced (all but the six C-terminal residues were deleted) with a DNA fragment containing two direct repeats of the *Salmonella hisG* gene flanking *URA3*. Loss of *URA3* by recombination between the two *hisG* repeats 15 within the *ade2* locus was screened for by 5-FOAR (Alani et al., 1987).

Strains UCC84, UCC86, and UCC88, derived from UCC46, 20 UCC47, and UCC48, respectively, and strains UCC97, UCC98 and UCC99, derived by transformation of strains W303-1a, AMR1, and JRM5, respectively, have a functional *ADE2* gene located adjacent to the chromosome VII-L telomere (*ADE2-TEL*) (Example I); no telomere associated sequences (i.e.: X and Y' elements (Chan and Tye, 1983a; Chan and Tye, 25 1983b)) were present. Strains UCC2037-UCC2042, derived from strains LKY153, LKY405I, LKY412I, LKY421I, LKY305T, and LKY305TR1, respectively, were constructed in the same manner to place *ADE2* adjacent to telomere VII-L.

30 Strain UCC121 was derived from W303-1a by transformation with a 3.6 kbp *Bam*H1 *ADE2*⁺ fragment and selection for *ADE*⁺ transformants. Strain UCC120 was constructed by introduction of plasmid pJR531 (Kimmerly and Rine, 1987) which had been digested with *Sph*I and 35 *Eco*RV into UCC97, and selection for *HIS*⁺ transformants. Strain UCC131 was constructed by introduction of

- 103 -

p_ASIR3::HIS3 which had been digested with EcoRI into UCC84, and selection for HIS⁺ transformants.

Strains UCC122-UCC125, UCC138, and UCC139 were
5 constructed by transformation of strains UCC16, UCC18,
UCC19, UCC21, UCC128, and UCC129, respectively, with
plasmid pKL1. Plasmid pKL1 contains the SIR1 gene on a
2μ-based vector which contains TRP1 for selection (Stone
et al., 1991).

10

The expected structures of the various chromosomal
constructs were confirmed by gel electrophoresis followed
by DNA blot hybridization analyses. The sir⁺ phenotypes
of strains UCC130 and UCC131 were confirmed by their
15 inability to mate (Sprague, 1991).

3. Quantification of 5-FOA Resistance

Cells from isolated colonies grown on rich medium
20 for 2-3 days at 30° were inoculated into liquid medium
containing (100mg/L) uracil. When these cultures reached
mid-log phase, serial dilutions were plated onto
synthetic complete medium or medium containing 5-FOA
(Example I; Gottschling et al., 1990). 5-FOA resistance
25 was determined as the average ratio of colonies formed on
5-FOA medium to colonies formed on complete medium, from
a minimum of three independent trials, using different
colony isolates for each trial. The number of colonies
30 on a plate was determined after 3-4 days of growth at
30°C. Alternatively, colonies of strains grown on rich
medium two to three days were suspended in H₂O, and ten-
fold serial dilutions were plated as described above.
For some strains, selection for TRP⁺ was required to
35 maintain episomal plasmids; these strains were grown on
synthetic medium lacking tryptophan three to four days
and colonies were suspended in H₂O, serially diluted, and

- 104 -

plated as above on synthetic medium lacking tryptophan or on 5-FOA medium lacking tryptophan.

4. Analyses of Nucleic Acids from *S. cerevisiae*

5

Preparation and analyses of nucleic acids were as in Example I, except that some DNA blot hybridization analyses were carried out using the Genius system from Boehringer Mannheim following the manufacturer's 10 procedures.

B. RESULTS

1. *SIR2*, *SIR3*, and *SIR4* Maintain Transcriptional 15 Repression at Telomeres

An isogenic set of *sir*⁻ strains with the *URA3* gene located at one of four different chromosomal sites was constructed: adjacent to telomere VII-L or V-R, at its 20 normal chromosomal location, or at a second non-telomeric site (*ADH4*, ~20 kbp from telomere VII-L). *URA3* expression was measured by two criteria: resistance to 5-fluoroorotic acid (5-FOA^R), and *URA3* mRNA levels as determined by RNA blot hybridization analysis. 5-FOA is 25 converted into a toxic metabolite by the *URA3* gene product, such that cells expressing normal levels of the *URA3* gene product are killed on media containing 5-FOA, whereas *ura3*⁻ cells are resistant to 5-FOA (5-FOA^R) (Boeke et al., 1987). Cells with *URA3* near a telomere 30 form colonies on 5-FOA medium, yet cells within these 5-FOA^R colonies can grow in the absence of uracil, indicating that genetically identical cells can switch from a clonally inherited repressed state to a transcriptionally active state (Gottschling et al., 35 1990).

- 105 -

Consistent with these earlier results, when the *URA3* gene was located adjacent to either the VII-L or V-R telomere in a *SIR⁺* strain, a significant fraction of cells were resistant to 5-FOA (0.62 for UCC5, 0.15 for 5 UCC35), and cells from 5-FOA^R colonies retained the ability to form colonies on medium lacking uracil. Similar results were obtained with the *sir1* strain, indicating that expression of the telomeric *URA3* gene is repressed in a subset of cells in these strains, and that 10 the *SIR1* gene product is not required for repression.

In contrast, a telomeric *URA3* gene was not repressed in cells that were *sir2*, *sir3*, or *sir4*. The frequency of 15 5-FOA^R colonies arising from these strains ($\sim 10^{-7}$) was equivalent to that seen for all strains with *URA3* at its normal chromosomal locus or at the *ADH4* locus. Mutations in the *SIR* genes had no effect on the 5-FOA resistance of cells having *URA3* at either of these non-telomeric loci.

20 RNA blot hybridization analysis shows that sensitivity to 5-FOA as a result of the *sir⁻* mutations was a reflection of mRNA levels from the telomeric *URA3* gene. No *URA3* mRNA was detectable in *SIR⁺* or *sir1* strains which had *URA3* at the telomere and were grown 25 under non-selective conditions ("uracil +"), even when the autoradiograph was greatly overexposed. *URA3* mRNA was only detectable in the *SIR⁺* or *sir1* strains when they were grown to select for telomeric *URA3* expression ("uracil -"), though this level was significantly lower 30 than when *URA3* was at its normal chromosomal locus.

In sharp contrast, the telomeric *URA3* gene produced high levels of mRNA in *sir2*, *sir3*, and *sir4* strains. These levels were comparable to those from *URA3* at its 35 normal chromosomal locus. The *sir⁻* mutations had no effect on *URA3* expression at its normal chromosomal locus or when inserted within the *ADH4* locus. These data

- 106 -

indicate that the telomeric position effect on *URA3* expression mediated by *SIR2*, *SIR3*, and *SIR4* is at the level of transcription.

5 To demonstrate that the *SIR* requirement for the telomeric position effect was not gene specific, *sir*- strains were constructed with the *ADE2* gene located at the VII-L telomere, or at its normal locus. The *ADE2* gene provides a visual color assay for its expression; 10 *ADE2*⁺ strains form white colonies, while *ade2*⁻ strains form red colonies (Roman, 1956). Example I shows that a *SIR*⁺ strain containing a single copy of *ADE2* at a telomeric locus exhibited phenotypic variegation of *ADE2*, manifested as red-and-white sectored colonies. Here it 15 was found that strains with the telomeric *ADE2* that were *SIR*⁺ or *sir1* formed red and white variegated colonies, indicating that *ADE2* was repressed in a subset of the cells within these colonies. The *sir2*, *sir3*, and *sir4* strains formed entirely white colonies, demonstrating 20 that the telomeric *ADE2* gene was not repressed (for *sir2* and *sir3*). These results confirm that the *SIR2*, *SIR3*, and *SIR4* genes are required for maintaining transcriptional repression at telomeres, in addition to silencing the *HM* loci (Rine and Herskowitz, 1987).

25

2. Single Point Mutations in Histone H4 Relieve Transcriptional Repression at Telomeres

Single point mutations in any of four consecutive 30 amino acids (residues 16-19) near the N-terminus of histone H4 (*HHF2*) relieve transcriptional silencing at *HML* (Johnson et al., 1990; Megee et al., 1990; Park and Szostak, 1990). *URA3* or *ADE2* was placed at the VII-L telomere in isogenic strains that carried a single copy 35 of either the wild-type histone H4 (*HHF2*), or a mutated copy of *HHF2*. Three such point substitution mutations, all of which derepress *HML*, were tested: a change of lys-

- 107 -

16 to either gly-16 or gln-16, and a change of arg-17 to
gly-17.

Each strain that contained one point mutation in
5 histone H4 exhibited derepression of telomeric URA3
transcription as shown by their inviability on 5-FOA.
When ADE2 was near the telomere in strains with these
same histone H4 mutations, colonies were completely
white, once again indicating derepression of the
10 telomeric gene. Thus single point mutations at residues
16 or 17 in histone H4 which replace the wild-type basic
amino acid with an uncharged residue, result in relief of
the telomeric position effect.

15 There is genetic evidence that SIR3 interacts with
histone H4 to silence genes at *HML* (Johnson et al.,
1990). Alleles of *sir3* (e.g. *sir3R1*) have been
identified that can partially suppress the *HML* silencing
defect caused by certain point mutations in histone H4
20 (e.g.: lys-16 to gly-16). *URA3* was introduced at the
VII-L telomere in an isogenic pair of strains which were
either *HHF2-gly16*, *SIR3⁺* (UCC2036) or *HHF2-gly16*, *sir3R1*
(UCC2035). No suppression by *sir3R1* was observed at the
telomere as judged by complete sensitivity to 5-FOA.
25 Equivalent strains with *ADE2* at the telomere produced no
red sectored colonies, supporting the conclusion that the
sir3R1 allele could not restore repression at the
telomere in an *HHF2-gly16* strain.

30 **3. NAT1 and ARD1 are Required for the Telomeric
Position Effect**

A null mutation of either *NAT1* or *ARD1* causes
derepression of the silent mating-type locus *HML* (Mullen
35 et al., 1989; Whiteway et al., 1987). *URA3* or *ADE2* was
introduced at the VII-L telomere into each member of a
set of isogenic strains that was either *nat1*, *ard1*, or

- 108 -

wild-type for both genes. The sensitivity to 5-FOA of nat₁ and ard₁ strains was equivalent to that observed for sir₂, sir₃, and sir₄ and the point mutants in histone H4. Thus no position effect was observed for a telomeric URA3 gene in nat₁ or ard₁ cells. Likewise, the telomeric ADE2 gene was not repressed in the nat₁ and ard₁ strains as these strains formed entirely white colonies.

10 **4. Overexpression of SIR1 does not restore
position effect at telomeres**

Overexpression of SIR1 partially suppresses the mating defects of MAT_a strains containing nat₁ or ard₁ mutations, or certain sir₃ or HHF2 alleles by re-establishing silencing at HML α (Stone et al., 1991). The inventors tested whether SIR1 overexpression could restore silencing of a telomere-linked gene in a nat₁ or sir₃::LEU2 strain. Plasmid pKL1 (Stone et al., 1991) which contains SIR1 on a 2 μ -based vector was transformed into strains which were nat₁, sir₃, or wild-type and have URA3 located at telomere VII-L or at the normal URA3 locus. As expected, a significant fraction of cells of strain UCC123 (wild-type, URA3-TEL / pKL1) were resistant to 5-FOA. However, the nat₁ and sir₃ strains which have URA3 at telomere VII-L and harbor pKL1 continue to be sensitive to 5-FOA, as are the strains with URA3 at its normal chromosomal locus. Thus the overexpression of SIR1 does not restore silencing at telomeric loci in nat₁ or sir₃ strains. These results are consistent with the results presented above, indicating that SIR1 plays no role in transcriptional silencing at telomeres.

- 109 -

C. DISCUSSION

1. Similarities and Differences in Position
Effects at Telomeres and the *HM* loci

5

This example shows that the *SIR2*, *SIR3*, *SIR4*, *HHF2*, *NAT1*, and *ARD1* genes are required for the position effect at telomeres in *S. cerevisiae*. Consequently, it implies that these gene products constitute a general mechanism for silencing chromosomal domains in *S. cerevisiae*. In view of the results presented here, it is interesting to note that both *HML* and *HMR* are located quite close to the termini of chromosome III, ~12 kbp (Button and Astell, 1986) and ~25 kbp (Yoshikawa and Isono, 1990), respectively. When *HML* is present on a circular plasmid or a ring chromosome III derivative, deletion of *HMLE* or *HMLI* results in derepression of *HML* (Feldman et al., 1984; Strathern et al., 1979). However, these mutated *HML* loci are fully silenced when present at the normal telomeric *HML* locus (Mahoney and Broach, 1989) suggesting the proximity of *HML* to the telomere may facilitate full repression of this locus.

There was no detectable change in the
25 telomere-specific position effect in *sir1* strains or in strains with *SIR1* on a high copy plasmid. Since both of these genotypes have an effect on *HML* and *HMR*, the inventors conclude that *SIR1* function is specific to silencing of the *HM* loci. Single-cell analysis of *sir1* strains indicates that a mixed population of cells exists with ~20% of cells being transcriptionally silent at *HML* and the remainder being transcriptionally active at *HML*; the transcriptional state is clonally inherited, though cells switch between transcriptionally active and repressed states at a low frequency (Pillus and Rine, 1989).

- 110 -

The inventors have found that epigenetic switching between transcriptional states occurs at telomeres in *SIR⁺* (and *sir1*) strains, analogous to that observed at *HML* in *sir1* mutants (Example I; Pillus and Rine, 1989).

5 The inventors therefore propose that *SIR1* provides complete silencing at *HML* and *HMR* by preventing switching from the silent to the active transcriptional state. The *HM* loci is thus proposed to contain elements through which *SIR1* acts, which are absent from chromosomal
10 termini (e.g.: the A and B elements (Brand et al., 1987)). In support of this, a recent study has identified deletions at *HMLE* which result in epigenetic switching of transcriptional states at *HML* (Mahoney et al., 1991).

15

A number of differences have been observed between silencing at telomeres, *HML*, and *HMR*, which may yield insights into the functional organization of the silent loci. As indicated above, the epigenetic switching of
20 *HML* expression in *sir1* strains is very similar to the expression of a telomeric gene in a *SIR⁺* (or *sir1*) strain, indicating that elements through which *SIR1* can act to fully silence *HML* are present at *HML* (and probably *HMR*) but not at telomeres. Also, while a *sir1* mutation
25 has only a slight effect at either *HM* locus, and a mutation in *nati1* alone derepresses *HML* but not *HMR* (Mullen et al., 1989), the *sir1*, *nati1* double mutant is completely derepressed at *HMR*, suggesting that additional mechanisms of silencing exist at *HMR* compared to *HML* (or
30 telomeres) (Stone et al., 1991). Deletion of *NAT1* or *ARD1* results in significant derepression of *HML* but not *HMR* (Whiteway et al., 1987); however, deletion of the RAP1 binding site at *HMRE* results in derepression of *HMR* in *nati1* or *ard1* strains (Stone et al., 1991), again
35 indicating that redundant silencing mechanisms exist at *HMR* compared to *HML* and telomeres.

- 111 -

Lastly, *sir3R1* partially restores *HML* silencing in a *HHF2-gly16* strain (mating efficiency is restored from $\sim 10^{-5}$ to $\sim 10^{-1}$; (Johnson et al., 1990)), but does not restore telomeric silencing. This may be explained if suppression of *HHF2-gly16* by *sir3R1* is facilitated by the presence of a redundant silencing mechanism(s), such as that mediated by *SIR1*. Thus the inventors suggest that telomeres exhibit a basal level of transcriptional repression, and that silencing at *HML* and *HMR* is based on the same mechanism(s), but is strengthened and regulated by the presence of additional silencer elements.

2. How does the telomeric position effect occur?

Little is known about the specific mechanism by which the *SIR*, *HHF2*, *NAT1*, and *ARD1* gene products act in transcriptional silencing, however the available evidence suggests that they modify chromatin structure (Nasmyth, 1982). Single point mutations in histone H4 completely relieve the telomeric position effect and thus provide the best evidence that chromatin structure is intimately involved in telomeric silencing. Mutations in any of four contiguous amino acids (residues 16-19) in the N-terminus of histone H4 result in derepression at *HML* (Johnson et al., 1990; Megee et al., 1990; Park and Szostak, 1990); these four positively charged amino acids are conserved throughout eukaryotes, and are sites of post-translational modifications (van Holde, 1989). Significantly, correlative studies note that the modifications (e.g. acetylation and phosphorylation) on histone H4 are associated with the transcriptional status of the chromatin (van Holde, 1989).

In yeast, suppressors of the histone H4 point mutations, which restore silencing, map as compensatory changes in the *SIR3* gene, thus providing evidence that *SIR3* interacts with chromatin (Johnson et al., 1990). In

- 112 -

addition, *SIR2* has been shown to suppress intrachromosomal recombination between rDNA repeats, supporting the idea that *SIR2* may play a general role in chromatin organization (Gottlieb and Esposito, 1989).

5

NAT1 and ARD1 apparently encode two subunits of a yeast N-terminal acetyltransferase which acetylates histone H2B along with at least twenty other proteins (Mullen et al., 1989) which may play a direct role in silencing by acetylation of H2B.

It has been reported that *SIR4* shares sequence similarity with the coiled-coil domains of human nuclear lamins A and C (Diffley and Stillman, 1989). These domains facilitate polymerization of lamins into the lamina, which lines the nuclear envelope. Taking into account the cytological observations in interphase nuclei which indicate telomeres are located at the nuclear periphery it is plausible that the putative polymerization domain of *SIR4* is associated with the nuclear lamina and might therefore mediate binding of telomeres to the nuclear envelope. Since the *SIR4* gene product is believed not to bind DNA directly (Buchman et al., 1988; Shore et al., 1987), an interaction between *SIR4* and a telomere binding protein (e.g. RAP1) may enable an association between telomeres and the nuclear envelope. It is noteworthy that purified mammalian nuclear lamins A and C bind *in vitro* to synthetic oligonucleotides containing mammalian telomere repeat sequences (Shoeman and Traub, 1990). Thus attachment of telomeres, as well as other chromosomal loci or regions, to the nuclear envelope may be a component of nuclear organization, and might therefore affect local gene expression (Alberts et al., 1989; Blobel, 1985).

35

The position effect at *S. cerevisiae* telomeres may reflect a general feature of eukaryotic telomeres. In

- 113 -

Drosophila, stable transposition of the white gene to a position near a telomere results in a mottled eye color phenotype (Levis et al., 1985), which is consistent with transcriptional repression of white in some cells.

- 5 Cytological studies in a number of organisms indicate that telomeres are organized into heterochromatin (Lima-de-Faria, 1983; Traverse and Pardue, 1989). While heterochromatin is defined cytologically as a region of the chromosome which remains condensed in interphase, it
10 also displays two distinctive traits: late DNA replication, and the ability to repress transcription of euchromatic genes placed nearby (Eissenberg, 1989; Henikoff, 1990; Spofford, 1976; Spradling and Karpén, 1990). *S. cerevisiae* telomeres possess both of these
15 hallmarks of heterochromatin (Example I; McCarroll and Fangman, 1988). The *SIR2*, *SIR3*, *SIR4*, *HHF2*, *NAT1*, and *ARD1* products may be intimately involved with the organization of regions of yeast chromosomes into heterochromatin or heterochromatin-like structures.
20 Because telomeres and histones are highly conserved structurally and functionally among eukaryotes, it seems quite likely that the mechanism of transcriptional repression functioning in *S. cerevisiae* is also utilized in multi-cellular eukaryotes.

25

EXAMPLE III

Silent Domains are Assembled Continuously from the Telomere and are Defined by Promoter Distance and Strength and SIR3 Dosage

30

The eukaryotic genome is organized into regions distinct in their structure and function. Heterochromatin, which defines one such structural region, is condensed throughout the cell cycle, while its counterpart, euchromatin, is more diffuse in appearance during interphase (Heitz, 1928, as cited in Brown, 1966). Chromosomal regions also differ functionally since the

- 114 -

expression of a eukaryotic gene can be profoundly affected by its chromosomal position. This phenomenon, chromosomal position effect, is observed in many eukaryotes (Lima-de-Faria, 1983) and has been extensively studied in *Drosophila melanogaster* (Lewis, 1950; Baker, 1968; Spofford, 1976). When genetic rearrangements place euchromatic segments of the genome into or near heterochromatin, the expression of a translocated euchromatic gene is altered in a population of cells: some cells express the gene, while others do not. Thus a mosaic or variegated phenotypic pattern is produced.

Chromosomal position effects phenomena can spread over great distances in the genome; e.g., in *Drosophila*, genes located as far away as 80 chromosome polytene bands (~2000 kbp) are still subject to position-effect variegation (PEV) (Demerec, 1940). This spreading effect is thought to reflect the dynamic nature of assembly of heterochromatin over a locus (Zuckerkandl, 1974; Spofford, 1976). When heterochromatin assembles far enough to include a locus, the gene within it is inactivated.

In *Saccharomyces cerevisiae*, chromosomal domains have been identified that exert position effect: the cryptic mating-type loci, *HML* and *HMR*, and telomeres (Laurenson and Rine, 1992; Sandell and Zakian, 1992). Genes located near or within these domains may be transcriptionally silenced and exhibit phenotypic variegation (Klar et al., 1981; Nasmyth, et al. 1981; Schnell and Rine, 1986; Mahoney and Broach, 1989; Example I). At least six modifiers of position effect are shared between the *HM* loci and telomeres. A mutation in *SIR2*, *SIR3*, *SIR4*, *NAT1*, *ARD1*, or *HHF2* (which encodes histone H4) reduces or abolishes silencing at telomeres, *HML*, and *HMR* (Hopper and Hall, 1975; Haber and George, 1979; Klar et al., 1979; Klar et al., 1981; Ivy et al., 1986; Rine

- 115 -

and Herskowitz, 1987; Whiteway et al., 1987; Kayne et al., 1988; Mullen et al., 1989; Megee et al., 1990; Park and Szostak, 1990; Example II; Aparicio et al., 1991).

5

The involvement of histone H4, and the observation that the *HM* loci and telomeres are refractory to DNA modifications *in vivo* in a *SIR*-dependent manner, point to chromatin structure as being involved in silencing the *HM* loci and telomeres. Specifically, this chromatin structure is thought to hinder access of transcription factors to these loci (Nasmyth, 1982; Kostriken et al., 1983; Klar et al., 1984; Gottschling, 1992; Singh and Klar, 1992).

15

Spreading of position effect also occurs in yeast (Abraham et al., 1984; Feldman, et al. 1984). Genes located up to ~4.9 kbp from a telomere still are subject to position effect, whereas no silencing is detected at 20 loci ~20 kbp from the chromosome end (Gottschling et al., 1990). Additionally, insertion of a 30 kbp Ty-array between the E and I sites (*cis*-elements required for silencing) at *HMLa* relieves silencing at this locus. However silencing is re-established when this array is 25 reduced to a single 7 kbp Ty (Mastrangelo et al., 1992). Thus there is a limit to the size of silenced domains at both *HM* loci and telomeres.

Telomeric silencing in yeast provides an excellent 30 opportunity to study the spread of position effect in a eukaryote, particularly because the initiation site of position effect is known to be the end of the chromosome (Example I). In this Example, a quantitative method to examine telomeric position effect was used to identify 35 parameters that modulate spreading. The results provide a molecular and mechanistic insight into the propagation

- 116 -

of silencing in yeast, as well as the functional organization of silent chromosomal domains.

A. METHODS

5

1. Construction of Plasmids

The set of plasmids used to insert the *URA3* gene at various positions along V-R was constructed as follows, 10 starting with plasmid pB610H (obtained from C. Newlon). Plasmid pHSS6TG carries a telomeric repeat sequence (derived from pYTCA-2; Example I) inserted between the EcoRI and BamHI restriction sites of plasmid pHSS6 (Seifert et al., 1986). Orientation of the telomeric 15 sequence is such that digestion of pHSS6TG with EcoRI will yield an end that is a substrate for telomere formation in yeast. A 7.3 kbp BamHI fragment from plasmid pB610H was ligated into the BamHI site of pHSS6TG. Next, a 7.4 kbp NotI fragment of this new 20 plasmid, carrying unique V-R sequences adjacent to a telomeric $(TG_{1-3})_n$ repeat, was cloned into the NotI site of pVZ1 (Henikoff and Eghitedarzadeh, 1987), generating pSC1. Plasmids pVURAH2(+) and pVRURAH2(-) were 25 constructed by inserting a 1.2 kbp HindIII fragment containing *URA3* into the " H_2 " site of pSC1 partially digested with HindIII. *URA3* transcriptional orientation is denoted (+) when transcription is toward the telomere and (-) when toward the centromere. *URA3* was cloned in a similar way into the " H_3 " and " H_4 " HindIII restriction 30 sites, generating plasmids pVURAH3(+), pVURAH3(-), pVURAH4(+) and pVURAH4(-), respectively.

The *HIS3* gene was isolated from plasmid pHIS3 (Struhl, 1985; Example I) by amplification using the 35 polymerase chain reaction (Innis et al., 1990), using the following primers : 5' oligo
5' CCGGATCCTGCCTCGGTAATGATTCATTTTT 3' (SEQ ID NO:13);

- 117 -

3' oligo 5' CCGGATCCTCTCGAGTTCAAGAGAAAAAAAGAAA 3' (SEQ ID NO:14). Restriction sites for *Bam*HI, which were placed at the ends of the oligonucleotides for convenient cloning, are underlined. Hence, the inventors refer to 5 this DNA segment as "*HIS3* *Bam*HI fragment".

Plasmids used to test for discontinuity of silenced chromosomal domains along V-R were created as follows: pH1.5HIS3(+) and pH1.5HIS3(-) were constructed in two 10 steps. First, a 1.5 kbp *Hind*III fragment of V-R chromosomal DNA was inserted into the *Hind*III site of pHSS6 to generate plasmid pHSS6(1.5). pHSS6(1.5) was then digested with *Kpn*I, blunt-ended, and ligated with the *HIS3* *Bam*HI fragment which had its ends filled-in. A 15 two-step process was also required to construct plasmids pVRUH2(-)HR1(+) and pVRUH2(-)HR1(-). Plasmid pVURAH2(-) was cut with *Xho*I and *Sal*I, and recircularized by ligation; a blunt-ended *HIS3* *Bam*HI fragment was ligated into this plasmid which had been partially digested with 20 *Eco*RI and blunted with T4 DNA polymerase. Plasmids pVRUH2(+)HR1(+) and pVRUH2(+)HR1(-) were constructed following the same procedure. Plasmids pYAHIS4-2(-) were made by cloning the *HIS3* *Bam*HI fragment into the *Bam*HI site of pYA4-2 (Walton et al., 1986).

25

Plasmid pDPPR1-HIS3 was constructed by replacing a 0.7 kbp *Bgl*II fragment containing the promoter region of PPR1 (Kammerer et al., 1984), in plasmid pUC8-PPR1 (obtained from R. Losson), with a 1.85 kbp *Bam*HI fragment 30 from plasmid pHIS3. In plasmid pDPPR1::LYS2 the same *Bgl*II fragment was replaced by a blunt-ended 4.8 kbp *Hind*III-*Xba*I fragment containing LYS2, isolated from pDP6 (Fleig et al., 1986).

35

Plasmid pVZ1DGCN4::TRP1 carries a deletion in the translation initiation region of GCN4. Plasmid pB238 (a derivative of plasmid p164 (Hinnebusch, 1985)) was

- 118 -

digested with *Bam*HI and *Bgl*II, and a 0.8 kbp *Bam*HI fragment containing *TRP1* from YDpW (Berben et al., 1991) was ligated into it. A *Sal*I-*Eco*RI 3.2 kbp fragment of the resulting plasmid was then ligated into pVZ1 5 previously digested with *Eco*RI and *Sal*I, to create pVZ1DGCN4::*TRP1*.

The plasmid pVZJL38TRP1(+)ADE2(-) was used to insert 10 *TRP1* and *ADE2* between *ADH4* and telomere VII-L. Plasmid pUC19-JL3 contains a 0.4 kbp *Eco*RI-*Hind*III fragment including the JL3 region from VII-L (Walton et al., 1986). This plasmid was digested with *Eco*RI, its ends were made blunt, and the linearized plasmid was treated with *Hind*III. The JL3 region was ligated into plasmid 15 pVZ1 previously digested with *Hinc*II and *Hind*III. Plasmid pVZJL38 was constructed by digesting the resulting plasmid, pVZJL3, with *Sma*I and *Eco*RI; an ~0.8 kbp *Eco*RI-*Hind*III fragment from plasmid pUC19-JL8 (Walton et al., 1986), with only its *Hind*III end made blunt, was 20 ligated into the plasmid. A 1.45 kbp *Eco*RI fragment from plasmid YRp7 containing the *TRP1* gene (Struhal et al., 1979), was then inserted into this new plasmid, pVZJL38. The resulting plasmid, pVZJL38TRP1(+), was digested with *Bgl*II and a 3.6 kbp *Bam*HI fragment containing *ADE2* was 25 inserted (Gottschling et al., 1990). Plasmid pVZJL38TRP1(+)ADE2(-) has *ADE2* inserted in the opposite transcriptional orientation as *TRP1*.

YEpSIR3 (pKAN63) carries a ~7 kbp *Bam*HI genomic 30 insert containing *SIR3* and flanking chromosomal sequences (Ivy et al., 1986), cloned into YEpl3 (Broach et al., 1979). CEN-SIR3 (pHR62-16) contains a 3.7 kbp *Hpa*I fragment of plasmid pKAN63, encompassing *SIR3* and its putative transcriptional regulatory elements (Shore et al., 1984), inserted into the *Sma*I restriction site of 35 plasmid pRS314 (Sikorski and Hieter, 1989). Plasmid-23 (2m-SIR3) carries the same *SIR3* fragment cloned into

- 119 -

pHR59-33 (2m), a derivative of pRS424 (Christianson et al., 1992) in which the *Cla*I site was deleted.

Plasmid pHR49-1 was constructed by inserting a 1.2
5 kbp *Bam*HI fragment containing *HIS3* from YDpH (Berben et al., 1991) into the *Bgl*II site of pRS316-SIR1 (obtained from Lorraine Pillus), which contains *SIR1* and flanking genomic sequences. All other plasmids used for strain construction have been described previously (Ivy 10 et al., 1986; Kimmerly and Rine, 1987; Examples I and II).

DNA manipulations were performed as previously reported (Sambrook et al., 1989; Example I). *E. coli* strains MC1066 (*r*⁻ *m*⁻ *trpC9830 leuB600 pyrF::Tn5 lacDX74 strA galU galK*) (Casadaban et al., 1983), JF1754 (*r*⁻*m*⁻ *leuB metB hisB*) (Himmelfarb et al., 1987) and TG1 (*supE hsdD5 thiD(lac-proAB) F' [traD36 proAB⁺ lacI^q lacZDM15]*) (Sambrook et al., 1989) were used as plasmid 20 hosts. Media for bacterial strains were prepared as described (Sambrook et al., 1989). Complementation of bacterial mutations by homologous yeast genes was used when applicable.

25 **2. Yeast Strains and Methods**

Media used for the growth of *S. cerevisiae* were described in Example I; all cultures were grown at 30°C. Yeast transformation was performed by electroporation in 30 the presence of sorbitol (Becker and Guarente, 1991) or the lithium acetate procedure (Schiestl and Gietz, 1989). 5-FOA resistance (5-FOA^R) was determined as described in Example II. Yeast strains manipulations were carried out as described (Rose et al., 1990).

35

Strains UCC500-505 were constructed by transformation of YPH250 (Sikorski and Hieter, 1989) with

- 120 -

*Bam*HI-digested plasmids pVURAH2(+), pVURAH2(-), pVURAH3(+), pVURAH3(-), pVURAH4(+), and pVURAH4(-), respectively. Strains UCC506-511 were constructed by transformation of strain YPH250 with the same plasmids 5 digested with *Not*I. In both cases, *Ura*⁺ colonies were selected. *ppr1*⁻ derivatives of these strains were constructed by transformation with *Eco*RI digested pDPPR1-HIS3, and selection for *His*⁺ transformants.

10 *URA3* was inserted into the *ADH4* locus (about 20 kbp from telomere VII-L) of YPH250 to yield UCC1003, as described (Gottschling et al., 1990). UCC3248, UCC3249 and UCC3250 are derivatives of UCC1001 (Gottschling, 1992) that are *sir2::HIS3*, *sir3::HIS3* and *sir4::HIS3*, 15 respectively, and were created by transformation as described (Kimmerly and Rine, 1987; Example II). A *sir1::HIS3* derivative of UCC1003 (UCC3243) was constructed by transforming UCC1003 with *Clal* and *Sma*I digested pHR49-1.

20 Plasmid pH1.5HIS3(+) was digested with *Not*I and transformed into UCC506 and UCC507 to make UCC2515 and 2517, respectively. pH1.5HIS3(-) was transformed in the same way into UCC506 and UCC507, to generate UCC2516 and 25 2518, respectively. Strains UCC2524-2527 were derived from YPH250 after transformation with the various pVRUH2(+/-)HR1(+/-) constructions digested with *Sph*I and *Not*I. UCC1005 is derived from YPH250 (Sikorski and Hieter, 1989) by transformation with pVRURA3TEL, as 30 described (Gottschling et al., 1990). UCC1005 was transformed with pYAHIS4-2(-) that had been digested with *Eco*RI and *Sal*I, yielding strain UCC2509. Strain UCC2528 carries a telomeric *URA3* at the VII-L telomere; it was created by transformation of YPH500 (Sikorski and Hieter, 35 1989) with pVII-L *URA3*-TEL (Example I).

- 121 -

The UCC2535 strain was created by transforming YPH250 with pVRUH2(-)HR1(+), selecting for His⁺ transformants, and then screening for Ura⁻ cells. URA3 was integrated at the ADH4 locus of UCC2535 by 5 transformation with padh4::URA3, as described (Gottschling et al., 1990), generating strain UCC2585. UCC2536, a meiotic segregant of a cross between UCC2528 and UCC2535, carries HIS3 on V-R and URA3 on VII-L.. ppr1⁻ gcn4⁻ derivatives of the strains UCC2515-2518, 10 2524-2527, 2509, 2536 and 2585 were constructed by transformation with EcoRI digested pDPPR1::LYS2, and selection for Lys⁺ colonies; next, the GCN4 locus was disrupted by transformation with pVZ1DGCGN4::TRP1 digested with NotI and SalI, yielding UCC2580-2583, 2576-2579, and 15 2589-2591.

The gamma-deletion method (Sikorski and Hieter, 1989) was used to introduce TRP1 and ADE2 between the JL3 and JL8 regions on VII-L (Walton et al., 1986). Plasmid 20 pVZJL38TRP1(+)ADE2(-) was digested with BamHI and transformed into UCC1003 to yield strain UCC1035. The expected structures of the various chromosomal constructs were confirmed by Southern analysis as described in Examples I and II. All other strains have been described 25 in Example I.

B. RESULTS

1. Silencing of URA3 Decreases with Increased 30 Distance From the Telomere

In Example I, the inventors detected telomeric position effect (TPE) in *S. cerevisiae* 4.9 kbp from the left end of a modified chromosome VII (VII-L) by 35 measuring the level of transcriptional repression of a telomere-proximal URA3 when various yeast genes were inserted between URA3 and the telomere. However, the

- 122 -

effect of each inserted sequence on *URA3* expression was not exclusively dependent on the size of the insert. To better characterize the spread of TPE in *S. cerevisiae*, the inventors examined the expression of *URA3* as a function of its distance from a representative telomere, without introducing any new sequences between *URA3* and the end of the chromosome.

A set of isogenic strains was created with *URA3* placed at various distances from the right end of chromosome V (V-R); the normal chromosomal copy of *URA3* is non-functional in each strain. At each site of insertion, *URA3* was positioned in either transcriptional orientation. This set of strains may be divided into two groups: those that maintained the original ~6.7 kbp telomere-associated Y' element of V-R, and those in which the Y' and some adjacent sequences were replaced with a new terminus of $(TG_{1-3})_n$. These Y' elements are middle-repetitive DNA sequences found proximal to some but not all yeast telomeres; their function is unknown (Olson, 1991).

Transcriptional repression as a function of distance from the chromosome end was analyzed by determining the level of *URA3* silencing in each strain. The level of silencing in a population of cells is quantified by determining the fraction of cells capable of forming colonies on 5-fluoroorotic acid (5-FOA) medium; 5-FOA is lethal to cells expressing the *URA3* gene product (Boeke et al., 1987). In the inventors' analysis, the ability of a cell to give rise to a colony on 5-FOA (5-FOA^R) indicates that when it was plated onto the medium, the cell contained little or no *URA3* gene product. Thus when *URA3* is telomeric, telomere-mediated transcriptional repression enables the cell to grow on 5-FOA (Gottschling et al., 1990).

- 123 -

Quantification of TPE spreading showed that, when the fraction of 5-FOA^R cells is plotted versus the distance of the *URA3* promoter from the telomere, a continuous gradient in frequency of silencing is observed, with the highest frequency occurring at the most telomere-proximal position. Repression was no longer detected when the *URA3* promoter was located 3.5 kbp away from the telomere. The steady decrease in frequency of repression with respect to promoter distance from the telomere suggested that the position of the *URA3* promoter was the key element in determining repression; transcriptional orientation with respect to the telomere did not appear to be significant in regulating *URA3* expression. Finally, in strains with a Y' element between the *URA3* gene and the V-R telomere (UCC500-505), no repression was detected at the tested distances of 10 kbp to 16 kbp from the telomere.

2. Absence of a Transactivator Increases the
20 Extent of TPE Spreading

If promoter distance from the telomere is a primary determinant for governing TPE spreading, then weakening the promoter might result in an increase in spreading. To test this, *ppr1*⁻ derivatives of the strains described above, with *URA3* at various distances from the telomere, were created. PPR1 is a transactivator protein that enhances expression of the *URA3* gene (Loison et al., 1980; Roy et al., 1990). Repression was more frequent at each location of *URA3*, and detectable over a greater distance from the telomere in *ppr1*⁻ than in *PPR1*⁺ strains. Thus the range over which TPE spreads seems to be inversely related to the promoter strength of the gene being assayed. Similarly, deleting *GCN4*, the *HIS3* transactivator (Hope and Struhl, 1985; Hinnebusch, 1988), reduced the ability of strains carrying a telomeric copy

- 124 -

of *HIS3* to form colonies on medium lacking histidine, indicating that this effect is not specific to *URA3*.

In the *ppr1*⁻ strains with the Y' element present at 5 V-R, a small fraction of 5-FOA^R cells were reproducibly observed in the two strains in which the *URA3* promoter is about 11 and 12 kbp from the telomere. Southern analysis revealed no change in chromosome structure between *URA3* and the telomere in these strains. These results 10 contrast with the data for strains lacking the Y' element on V-R (UCC518-523), in which no repression was detected beyond ~6 kbp from the V-R telomere. Thus it seems that 6.7 kbp of Y' sequence has a greater ability to sustain 15 telomere-dependent silencing than the same length of unique V-R sequence.

3. Overexpression of *SIR3* Enhances TPE Spreading

The gene products of *SIR2*, *SIR3*, and *SIR4* are 20 required for TPE, and it has been postulated that one or more of them is a structural component of silent yeast chromatin (Nasmyth, 1982; Ivy et al., 1986; Marshall et al., 1987; Rine and Herskowitz, 1987; Alberts and Sternnglanz, 1990; Johnson et al., 1990; Example II; Stone et al., 1991). To examine whether the normal cellular 25 level of *SIR2*, *SIR3*, or *SIR4* limits the range of silent telomeric domains, the inventors tested whether introduction of multiple copies of the *SIR2*, *SIR3*, or *SIR4* genes would increase the spread of TPE. Only 30 raising *SIR3* copy number enhanced position-effect spreading on telomere-adjacent genes. No phenotype was observed in strains transformed with a multicopy plasmid carrying *SIR2*. Increasing *SIR4* dosage relieved silencing 35 on telomeric genes; a similar effect has been previously observed at a weakened *HMR* (Sussel and Shore, 1991).

- 125 -

The effect of *SIR3*-overexpression was quantified in the previously described sets of strains. Increased dosage of *SIR3* raised the frequency of *URA3* silencing in each strain. In *ppr1*⁻ strains overexpressing *SIR3* on a 5 high-copy plasmid (YE_p*SIR3*), *URA3* was frequently silenced 16 kbp from the telomere (with a Y'), while in cells with vector alone (YE_p13) no significant silencing was detectable beyond 4 kbp. Similar results were obtained in *PPR1*⁺ strains transformed with YE_p13 or YE_p*SIR3*, 10 although as expected from the data presented in the previous section, *URA3* transcription was somewhat less frequently repressed than in the *ppr1*⁻ strains. Again, the presence of a Y' element appeared to facilitate TPE spreading over longer distances than unique chromosomal 15 sequences.

Extrapolation of the "YE_p*SIR3* with Y'" curve suggested that TPE spreading should extend inward ~25 kbp from the end of chromosome V-R in the *SIR3*-overexpressing 20 strains. Consistent with this estimate, *URA3* was repressed at 22 kbp from the VII-L telomere when *SIR3* was overexpressed, but *URA3* expression was not affected at its normal locus, ~120 kbp from telomere V-L (Mortimer et al., 1992). No increase in telomeric silencing was 25 detected in strains transformed with plasmids carrying mutant alleles of *SIR3*, indicating that propagation of telomeric silencing is dependent on functional *SIR3*. These results are consistent with *SIR3* being a limiting component required to assemble repressive telomeric 30 chromatin.

If *SIR3* is indeed limiting, the spread of TPE should be very sensitive to *SIR3* gene dosage. This hypothesis was tested in *ppr1*⁻ strains transformed with *SIR3* carried 35 either on a centromeric (CEN-*SIR3*) or a multicopy plasmid (2m-*SIR3*), or with the vectors alone. With a single-copy plasmid (CEN-*SIR3*), the spreading effect was indeed less

- 126 -

enhanced than with a high-copy plasmid (2m-SIR3), but greater than with either vector alone. Hence, the results indicate that *SIR3* dosage limits the spread of yeast telomeric position-effect.

5

4. Increased *SIR3* Dosage Cannot Suppress the Requirements of *SIR2*, *SIR4*, *NAT1*, *ARD1*, and Histone H4 for TPE

10 In addition to *SIR3*, the gene products of *SIR2*, *SIR4*, *NAT1*, *ARD1* and *HHF2* (histone H4) are required for transcriptional silencing at telomeres (Example II). The inventors tested whether the increased dosage of *SIR3* could restore TPE in cells deficient for these other 15 proteins. Strains containing *URA3* adjacent to the VII-L telomere and defective in each of the aforementioned genes, were transformed with a high-copy *SIR3* plasmid. In no case did increased levels of *SIR3* restore telomeric silencing.

20

Mutations in *SIR1* do not relieve silencing at telomeres, suggesting that *SIR1* is not involved in controlling TPE (Example II). Consistent with this idea, *SIR3*-overexpression in *sir1*⁻ strains enhanced TPE 25 spreading, as observed in wild-type strains. Since the *SIR3* dosage-dependent enhancement of TPE cannot suppress the requirements for *SIR2*, *SIR4*, *NAT1*, *ARD1*, and histone H4, it appears that the *SIR3*-effect operates through the normal mechanism of telomeric silencing, rather than 30 introducing a novel mechanism of silencing.

5. Silenced Chromosomal Domains Spread Continuously from the Telomere

35 The results presented above suggest that the silenced telomeric domain spreads inward along the chromosome in a continuous fashion. To further test this

- 127 -

idea, two genes were placed adjacent to one another near the same telomere, and the transcriptional state of the centromere-proximal gene was examined when the telomere-proximal gene was transcriptionally active. If the
5 silenced domain is indeed spread continuously along the chromosome, then the centromere-proximal gene should always be derepressed when the telomere-proximal gene is active. However, if the repressed domain is discontinuous, then the centromere-proximal gene may be
10 in a repressed state even when the telomere-proximal gene is active.

Both the *URA3* and *HIS3* genes were inserted near the V-R telomere without a Y' element present; each of the
15 eight possible permutations of *URA3* and *HIS3* located near the V-R telomere was constructed. In addition, three strains were created in which *URA3* and *HIS3* were located on two different chromosomes (V-R and VII-L), either with both genes adjacent to a telomere (UCC2590), or *URA3* at a
20 telomere and *HIS3* non-telomeric (UCC2589), or the converse situation (UCC2591). In order to improve the sensitivity of the spreading assay, the promoters of *URA3* and *HIS3* were weakened by deleting *PPR1* and *GCN4*, the genes which encode their respective transactivators, in
25 each strain. All strains grew in the absence of histidine, indicating that *HIS3* was capable of being expressed at each chromosomal position, although expression was compromised at some telomeric locations (e.g. UCC2577, colony size was small and plating
30 efficiency was reduced on "-his"). All strains carrying a telomeric *URA3* gave rise to colonies which grew on fully-supplemented 5-FOA medium, reflecting transcriptional repression of *URA3*.

35 In the four strains with both *URA3* and *HIS3* located near the V-R telomere, and *HIS3* as the telomere-proximal marker (UCC2576-2579), no growth was detected on "FOA-

- 128 -

his" medium. That is, when *HIS3* was nearer to the telomere and transcriptionally active, *URA3* was never transcriptionally repressed. In contrast, when *URA3* was telomere-proximal (UCC2580-2583) colonies were obtained 5 on FOA-his, indicating that it was possible for *URA3* to be repressed while *HIS3* was active. Thus TPE spreads continuously inward from the telomere. These results also suggest that the spread of silencing can be blocked by transcription of an intervening gene.

10

Of the four strains with *URA3* in the telomere-proximal location, UCC2581 showed conspicuously poor growth on FOA-his. In this strain, the *URA3* and *HIS3* promoters are separated by only ~0.5 kbp. In such close 15 proximity it might be difficult to open the *HIS3* chromatin structure without also disrupting the silencing apparatus over *URA3*. Another notable result was observed when *URA3* and *HIS3* were located at different telomeres (UCC2590); robust colonies grew on "FOA-his", indicating 20 repression at one telomeric locus while the other telomeric marker was expressed. This result indicates that telomeric silencing is locus-specific.

inventors thus examined whether the spreading of silencing mediated by *SIR3*-overexpression was also continuous. *TRP1* and *URA3* were inserted ~12.5 and 22 kbp, respectively, from the VII-L telomere. 5-FOA^R colonies were observed only when the cells were transformed with YEplSIR3; however, no 5-FOA^R was detected 25 if *TRP1* was simultaneously expressed in these cells. *TRP1* expression by itself was only modestly impaired in YEplSIR3-transformants, as demonstrated by their high efficiency of plating on "-trp-leu". Similar results were obtained when *ADE2* (inserted ~9 kbp from the same 30 telomere) replaced *TRP1* in this study. Taken together, these observations suggest that *SIR3* propagates silencing continuously from the telomere.

- 129 -

C. DISCUSSION

The inventors have carried out a systematic characterization of the spreading of telomeric position effect (TPE) in *Saccharomyces cerevisiae*. The telomeric position effect in yeast can be considered as a gradient of transcriptional silencing along the chromosome. The inventors postulate that this gradient reflects the limited assembly of a silent chromatin (heterochromatic-like) structure that initiates at the telomere and proceeds continuously inward along the chromosome. In the inventors' analysis, the fraction of 5-FOA^R cells provided an estimate of the frequency at which a telomeric *URA3* was located within this repressive structure.

Transcriptional inactivation of a telomeric locus may be viewed as the final product of a reaction in which subunits of silent chromatin are assembled. In a simple model, silencing of a *URA3* gene six kbp from the telomere would require six times as many subunits than that needed to silence a *URA3* gene located one kbp away. If the assembly of telomeric repressive chromatin were a first-order reaction, then the occurrence of a repressed *URA3* gene at one kbp from the telomere would be expected six times as frequently as when *URA3* is six kbp away. This Example shows that this is not the case. An exponential function more aptly describes the relationship between frequency of silencing and distance from the telomere. Rather the data suggest that telomeric silencing results from the cooperative assembly of subunits, and/or assembly of multiple components. A multimeric representation of silent chromatin is expected to involve the four core histones plus additional components (Eissenberg, 1989; Henikoff, 1990; Spradling and Karpen, 1990; Grigliatti, 1991), as quantitated *in vivo* in this Example.

- 130 -

It has been proposed that specific terminator sequences along the chromosome act as barriers to heterochromatic spreading (Tartof et al., 1984). No such regions were detected on the telomere-proximal 16 kbp of 5 V-R, nor over 20 kbp of a modified VII-L, although these data do not rule out the existence of such sites in yeast.

Cells carrying *URA3* and *HIS3* located near the V-R 10 telomere, with *HIS3* telomere-proximal, were unable to form colonies on FOA-his media. Since this medium selects for cells in which both *URA3* is repressed and *HIS3* is active, this result demonstrates that silent telomeric domains are continuously propagated from the 15 end of the chromosome in yeast. Since a telomeric gene can be induced to become active Example I, the inventors suggest that transcription may actively block silent chromatin propagation. Alternatively, transcription may not act as a barrier to the spread of silencing *per se*, 20 but rather reflect that the silent telomeric domain assembled only a short distance from the telomere, thus never encompassing the *HIS3* (or *URA3*) gene. The distinction between these two models should be considered 25 in thinking about gene regulation within chromosomal domains.

1. The Role of the Promoter in TPE Spreading

The presence of silent chromatin structures over a 30 telomeric locus appears to impede the access of sequence-specific DNA-binding proteins to the DNA within, thereby generating a TPE (Examples I and II; Gottschling, 1992). These data show a steady decrease in the frequency of silencing compared to the distance of the *URA3* promoter 35 from the telomere. This result strongly suggests that a gene's promoter is a major determinant in *cis* for effective transcriptional repression near telomeres.

- 131 -

Combined with the finding that silencing of *URA3* does not appear to be dependent on the transcriptional orientation of *URA3*, the inventors propose that repression is primarily exerted on the gene's promoter, and therefore 5 blocks initiation rather than elongation.

Two important points about position effect are provided by the studies in which *PPR1* was deleted. As with most transactivator proteins, *PPR1* appears to 10 modulate transcription through the promoter (Roy et al., 1990). Hence, the increased frequency of telomeric silencing of *URA3* in *ppr1*⁻ strains supports the result that promoter occlusion is critical in achieving position effect repression. These results also suggest that 15 spreading of position effect is a function of promoter strength of the gene being assayed.

A position effect on timing of replication has been detected at ~35 kbp from the V-R telomere (Ferguson 20 et al., 1991; Ferguson and Fangman, 1992), while position effect on *URA3* transcription is not detected beyond ~13 kbp from the same terminus. At present the inventors cannot resolve whether this apparent discrepancy reflects differences between the two assays being used, or 25 inherent distinctions between the mechanisms of initiating replication and transcription.

2. Effect of Y' Elements on the Spread of Telomeric Silencing

It has been suggested that Y' elements overcome 30 telomere position effect (Greider, 1992), since genes embedded into Y's are not transcriptionally repressed (Carlson et al., 1985; Louis and Haber, 1990). However, 35 these data argue that Y's do not block the spread of telomeric repression *per se*; the inventors find that a 6.7 kbp Y' element sustains a greater frequency of

- 132 -

silencing than an equal length of unique chromosomal sequences. It is unclear whether Y's are involved in propagation or reinitiation of silencing, or if Y's simply lack elements present in unique chromosomal DNA
5 which suppress the spreading of telomere-dependent transcriptional inactivation. Nevertheless, the presence of a Y' element adjacent to a telomere results in a more extensive silent chromosomal domain. Perhaps this trait is important in maintaining the unique telomeric presence
10 of Y' elements.

3. SIR3 Enhances Position Effect in Yeast

Overexpression of *SIR3* enhances position-effect
15 variegation of telomeric genes; this *SIR3*-effect was also detected within and adjacent to the *HM* loci. Thus the modulation by *SIR3* of position-effect repression is likely to occur at other places in the genome where an initiation site for *SIR3*-dependent silencing resides.
20

The slope of the observed gradient in frequency of *URA3* silencing along V-R is altered by overexpressing *SIR3* in the cell, suggesting that, in contrast to the effect of a *ppr1* mutation, *SIR3*-overexpression affects
25 silent chromatin rather than an intrinsic property of *URA3*. In addition, the increase in telomeric silencing is sensitive to *SIR3* gene dosage, indicating that *SIR3* is limiting in the cell. These data suggest that *SIR3* may be a structural component of yeast repressive chromatin,
30 or a factor directly required for its assembly. Alternatively, *SIR3* may act indirectly by regulating the level or activity of structural or assembly constituents of silent chromosomal domains.

35 *SIR3* bears no significant similarity to any known enhancers of position effects, such as the *Drosophila* *Su(var)2-5* (HP-1) or *Su(var)3-7* proteins (Alberts and

- 133 -

Sterngranz, 1990), nor does it harbor a detectable chromodomain motif, which is thought to mediate the packaging of heterochromatin by the *Su(var)2-5* and *Polycomb* gene products (Paro and Hogness, 1991; Messmer et al., 1992). Exogenous suppressor analysis of *HML* silencing indicates a physical interaction between SIR3 and histone H4 (Johnson et al., 1990). Thus the inventors favor the model that SIR3 directly interacts with yeast nucleosomes to facilitate the compaction of chromatin into a higher-order structure responsible for silenced regions of the yeast genome. In this light, SIR3 may be a functional equivalent of histone H1, mediating supranucleosomal organization of the genome (Weintraub, 1984).

15

In addition to histone H4, telomeric silencing requires the products of *SIR2*, *SIR4*, *NAT1* and *ARD1*. The roles of *SIR2* and *SIR4* in transcriptional repression are not yet clear. *NAT1* and *ARD1*, which are subunits of an N-terminal acetyltransferase (Park and Szostak, 1992), presumably modify chromatin component(s) to facilitate assembly of repressed chromosomal states (Mullen et al., 1989; Park et al., 1992).

25

The ability of telomeric silencing to spread along the chromosome raises the question as to whether a cell can control the size of silenced domains. This issue is particularly critical for *S. cerevisiae*, in which inappropriate regional silencing might have immediate deleterious effects, due to the high density of genes along the chromosome (Olson, 1991). A *cis*-element can act as a chromosome-specific barrier against the spread of silent domains [e.g. active transcription units (this work), or homologues of the *Drosophila scs* sequences (Kellum and Schedl, 1992)]. On a cellular scale, limiting the amount of SIR3 in the cell could prevent excessive transcriptional inactivation of the entire

- 134 -

genome. Since the *SIR3* gene is itself located near a telomere (Ivy et al., 1985), and no essential gene has been found between *SIR3* and the telomere (Basson et al., 1987; Brisco et al., 1987; Dietzel and Kurjan, 1987; 5 Mortimer et al., 1992), position-effect repression of the *SIR3* locus would provide a plausible negative feedback mechanism for control of position-effect spreading in yeast. If telomeric chromatin spread as far as the *SIR3* locus, transcription of *SIR3* would be repressed, thus 10 limiting further spreading of the repressive chromatin. In apparent contrast to the yeast genome, larger eukaryotic genomes are extensively heterochromatic. This may be due to the presence of more abundant functional homologue(s) of *SIR3*. Extensive but carefully controlled 15 heterochromatization of chromosomes may play a major role in control of cellular differentiation and development in complex eukaryotes.

This Example shows that the spread of telomeric 20 position effect in *S. cerevisiae* is modulated by numerous factors, including promoter distance from the telomere, promoter strength, transcriptional status of telomere-proximal genes, presence of Y' elements, and intracellular concentration of the *SIR3* gene product.

25

EXAMPLE IV

**A Transactivator Competes to
Establish Gene Expression in a Cell Cycle Dependent Way**

30 In multicellular eukaryotes, chromosomal position effects generally involve the repression of a euchromatic, wild-type gene when it has been placed in or near heterochromatin as the result of a chromosomal rearrangement (Lima-de-Faria, 1983). In a population of 35 cells with such a rearrangement, the gene may escape repression; consequently, the resulting phenotype is variegated, exhibiting patches of normal and mutant

- 135 -

tissue. A classic example of this phenomenon is the mosaic red-and-white eye of *Drosophila* in which the white gene has been translocated within centromeric heterochromatin (Eissenberg, 1989; Henikoff, 1990; 5 Spradling and Karpen, 1990).

When a wild-type gene is located near a telomere in the budding yeast *Saccharomyces cerevisiae*, it too is subject to position-effect variegation (Example I). For 10 instance, when yeast cells with the *ADE2* gene placed near a telomere form a colony on solid medium, the colony is composed of sub-populations in which the *ADE2* gene is either expressed (white sectors) or repressed (red sectors). The different phenotypes of the sectors in a 15 colony reflect the ability of genetically identical cells to switch between phenotypic states. The fact that large sectors are phenotypically uniform reflects the ability of each state to be heritably propagated for multiple generations.

20

Similarly, yeast cells with a telomeric *URA3* gene can form colonies on medium containing 5-FOA, a drug lethal to cells expressing *URA3* (Boeke et al., 1987), indicating that the cells are phenotypically *ura3*⁻. 25 However, these 5-FOA resistant cells can form colonies when placed on medium lacking uracil, thus the cells are able to switch their phenotypic status and induce expression of the telomeric *URA3* gene (Example I).

30

Silencing of telomeric genes in *S. cerevisiae* is likely due to a structurally distinct chromatin domain that initiates at the telomere. Evidence for this specialized chromatin structure includes: identification of mutations in the histone H3 and H4 genes which relieve 35 telomeric silencing (Example II) the finding that telomere-adjacent chromatin contains histone H4 in a hypoacetylated state compared to H4 in actively

- 136 -

transcribed chromatin regions of the genome (Braunstein et al., 1993), and the relative inaccessibility of telomere-proximal DNA to *in vivo* modification by the *E. coli* dam methyltransferase protein (Gottschling, 1992).

5

In addition, the frequency with which a gene is silenced decreases with increasing distance from the telomere, suggesting that the structure nucleates at the telomere and the extent of its inward assembly along the 10 chromosome varies between cells (Example III; Renauld et al., 1993). The extent of this assembly is proportional to the cellular concentration of SIR3, a gene product required for silencing at telomeres and the silent mating loci, *HML* and *HMR* (Example II; Laurenson and Rine, 1992; Example III). These results suggest that 15 SIR3 is rate-limiting for assembly of the silent chromatin structure, and implicate SIR3 as a component of the silent structure.

20

Questions that arise in the study of position effect variegation are how does a gene switch between phenotypic states and, once a state is determined, how is it heritably propagated (Brown, 1984; Weintraub, 1985). With respect to position-effect variegation and the first 25 question, two models of regulation that involve a role for chromatin structure have evolved (Felsenfeld, 1992). Both models propose that transcription of a gene is inhibited by assembly of its DNA into chromatin. Furthermore, one or more transcriptional activator 30 proteins (transactivators) bind in a sequence-specific manner to DNA located in proximity to the gene and facilitate transcription of that gene, thus overcoming the chromatin's repressive nature. Where the models differ is that in one case chromatin prevents the 35 transactivator from gaining access to the DNA, in essence keeping the gene 'irreversibly' repressed. However, during DNA replication the chromatin structure of the

- 137 -

gene is perturbed and the transactivator has the opportunity to gain access and establish transcription, before re-assembly of the chromatin is completed. In the second case, the transactivator can induce gene 5 transcription at anytime in a replication-independent manner, effectively disrupting the repressive nature of the chromatin.

At its normal locus, *URA3*, like many biosynthetic 10 pathway genes, is constitutively expressed at a basal level, but can be induced to higher levels of expression (Lacroute, 1968). *URA3* induction is contingent upon binding of an activated form of the transactivator PPR1 to the Upstream Activating Sequence (UAS) of the gene 15 (Losson and Lacroute, 1981; Roy et al., 1990). Interestingly, when *URA3* is located adjacent to a telomere its basal level of expression may be repressed, since the cells are phenotypically *ura3*⁻ (Example I).

This Example concerns how a gene located near a 20 telomere overcomes silencing. Specifically, the inventors examined the role of PPR1 in the expression of a telomeric *URA3* gene. The results show that silent 25 telomeric chromatin inhibits basal expression of *URA3* and prevents the transcriptional activation by PPR1 of the telomeric *URA3* gene in G₁ and early S phases of the cell cycle, in addition to when cells are arrested in G₀. Furthermore, this suggests that upon replication of the 30 telomeric DNA, a competition takes place between assembly of a silent chromatin structure and assembly of a PPR1-mediated transcriptionally active gene.

A. METHODS

1. Plasmid Constructions

5 Plasmid FAT-PPR1 was constructed by ligating a 4.4 kbp *EcoRI* fragment containing the *PPR1* gene (from pUC8-*PPR1*, obtained from R. Losson) into plasmid YE_pFAT10 (referred to as "FAT"; 2 μ ARS, *TRP1*, *leu2-d*, obtained from K. Runge; Runge and Zakian, 1989). A 3.7 kbp
10 *HindIII-SphI* fragment containing the entire *PPR1-1* allele (from plasmid pFL11; Losson and Lacroute, 1983) was inserted into plasmid pVZ1 (Henikoff and Eghtedarzadeh, 1987). The resulting plasmid (pVZPPR1-1) provided a 3.7 kbp *HindIII-BamHI* fragment containing *PPR1-1* which was
15 ligated into pRS425 (Sikorski and Hieter, 1989) to yield plasmid pRS4-PPR1-1.

Plasmids pRS305-GALPPR1-1 and pRS305-GALppr1-1 were constructed in a series of steps. A 685 bp *EcoRI-BamHI* fragment containing the *GAL1,10* promoter (Johnston and Davis, 1984, from pBM150) was ligated into *EcoRI-BamHI* digested pRS314 (Sikorski and Hieter, 1989), the resulting plasmid (pRS314GAL) was digested with *ApaI-EcoRI* and a 2.8 kbp *ApaI-EcoRI* fragment containing the 3' portion of *PPR1-1* from plasmid pRS4-PPR1-1 was inserted yielding pRS3GAL3'PPR1-1. Next, a 500 bp fragment containing the 5' portion of the *PPR1-1* allele was produced by PCR amplification (Innis et al., 1990). The primers were designed to introduce an *EcoRI* site 28 bp upstream of the *PPR1* ATG initiation codon and to include the *EcoRI* site within the *PPR1-1* coding sequence (PPR1-ATG oligo, 5'-CCGGAATTCATACGAAGATGATGATTAAATC-3', SEQ ID NO:6, the new *EcoRI* site is underlined; PPR1-n650 oligo, 5'-GGCTTGCCATAGACTTGCTCG-3', SEQ ID NO:7). The fragment was digested with *EcoRI* and inserted between the *GAL1,10* promoter and the 3' *PPR1-1* sequence in pRS3GAL3'PPR1-1; one orientation of the insert yielded pGALPPR1-1 which

- 139 -

has the *GAL1,10* promoter fused to the entire *PPR1-1* coding sequence (*GALPPR1-1*), while the other orientation of the insert yielded pGALppr1-1 which has the 5' portion of the *PPR1-1* allele inverted resulting in a mutated gene fusion (*GALppr1-1*). The 3.5 kbp *ApaI-BamHI* fragments containing *GALPPR1-1* and *GALppr1-1* from pGALPPR1-1 and pGALppr1-1 respectively, were inserted into pRS305 (Sikorski and Hieter, 1989) yielding pRS305-GALPPR1-1 and pRS305-GALppr1-1.

10

Plasmid pVZADH4 contains the *ADH4* locus on a 3.1 kbp *ECORI-SalI* fragment (Example I). A 4.8 kbp *HindIII-XbaI* fragment containing the *LYS2* gene from plasmid pDP6 (Fleig et al., 1986) was inserted into *XbaI-HindIII* digested pVZADH4 creating pVZadh4::LYS2. The *UAS_{GAL}-URA3* allele was produced by sequential PCR amplification steps (Ausubel et al., 1989). The primers were designed to replace the *PPR1* binding site (*UAS_{URA}*, 5'-TTCGGTAATCTCCGAA-3', SEQ ID NO:8 (Roy et al., 1990)) with a *GAL4* binding site (*URA3-GAL-5'* oligo, 5'-CGGACGACTGTCGTCCGTCAAAAAAATTCAAGGAAACCG, SEQ ID NO:9, *URA3-GAL-3'* oligo, 5'-CGGACGACAGTCGTCCGCAGAAGGAAGAACGAAGGAA, SEQ ID NO:10, the *GAL4* binding sequence is underlined (Verdier, 1990)).

25

The *UAS_{GAL}-URA3* PCR product was digested with *SalI* and *BamHI* and inserted into pRS315(-*PstI*) producing pRS315(-*PstI*)-GALURA3; the *PstI* site in pRS315 was previously deleted by digestion of pRS315 (Sikorski and Hieter, 1989) with *PstI*, making the ends blunt with T4 DNA polymerase, and religating the plasmid. Plasmid pRS315(-*PstI*)-GALURA3 was digested with *HindIII* and *SmaI* and religated, resulting in the *UAS_{GAL}-URA3* fragment being inverted in the vector to yield pRS315(-*PstI*)-GALURA3-flip.

- 140 -

This plasmid provided a 1.1 kbp *Hind*III-*Bam*HI fragment containing *UAS_{GAL}-URA3* which was inserted into pVII-L URA3-TEL (Example I) to produce pADH4GALURA3TEL; the same 1.1 kbp *Hind*III-*Bam*HI *UAS_{GAL}-URA3* fragment was 5 inserted into *Hind*III-*Bam*HI digested pVZADH4 resulting in plasmid pΔadh4::GALURA3. A 1.2 kbp *Hind*III-*Not*I fragment (made blunt-ended with T4 DNA polymerase, from pVII-L URA3-TEL) was ligated into *Hind*III (made blunt ended with T4 DNA polymerase) digested pVZadh4::LYS2 producing 10 pURA3-TEL-LYS2. A 1.5 kbp *Pst*I fragment (from pADH4GALURA3TEL) containing the *UAS_{GAL}-URA3* promoter was inserted into *Pst*I digested pURA3-TEL-LYS2 to replace the wild-type *URA3* promoter; the resulting plasmid was pGALURA3-TEL-LYS2.

15

A 1.35 kbp *Bam*HI fragment containing the entire *URA1* gene (Roy, 1992) produced by PCR amplification of genomic DNA (5' *URA1* oligo, 5'-CGAACGGATCCCCTTCAGCCACTACAGCCTACTT-3', SEQ ID NO:11; 3' *URA1* oligo, 5'-CGAAGGGATCCGCCATTGCGAATGCACTCACCG-3', SEQ ID NO:12, the 20 *Bam*HI sites are underlined) was inserted into pVZ1 to yield plasmid pVZURA1. A 1.1 kbp *Hind*III-*Bam*HI *URA3* fragment was ligated into *Hind*III-*Bam*HI digested plasmid YDpK (Berben et al., 1991), yielding plasmid YDpK-URA3. 25 Plasmid p5'URA3 contains a 415 bp *Hind*III-*Eco*RV 5' *URA3* fragment ligated into *Hind*III-*Eco*RV digested pVZ1. Plasmid CY807+TRP1 (*bar1::TRP1*) was constructed by inserting a 723 bp *Bam*HI fragment containing *TRP1*, from 30 YDp-W (Berben et al., 1991), into the *Bgl*II site in the *BAR1* sequence in plasmid CY807 (obtained from S. Honigberg).

Plasmids pBM292 (GAL4-wild-type, 881 amino acids), pBM430 (GAL4, C-term. amino acid 292), pBM433 (GAL4, C-term. amino acid 684), pBM789 (GAL4, C-term. amino acid 174), and pBM1268 (GAL4, C-term. amino acid 383) are *CEN*, 35 *TRP1* plasmids, as described by Johnston (1988). Plasmids

- 141 -

pBD57 and pJM206 were obtained from F. Cross, and plasmid pPL9 was obtained from R. Surosky (1992).

2. Yeast Methods and Strains

5

S. cerevisiae were grown at 30°C; liquid cultures were agitated during incubation at 180 RPM. All studies in liquid culture were carried out with mid-log phase cells unless otherwise indicated. Plating efficiency analysis and synthetic media have been described previously (Example I), except for α -amino adipate containing medium which was prepared as described in (Sikorski and Boeke, 1991). Studies involving galactose control employed YEP-3% raffinose, and 0.3% galactose for induction unless otherwise indicated.

For studies involving drug or α -factor washout, cells were pelleted by centrifugation for three minutes at 1500 x g and washed and/or resuspended in prewarmed medium (30°). Cells were arrested with 20nM α -factor for three hours, and 50mM phthalic acid (pH=5.5) was included in the medium. For release from α -factor arrest, 1 mg/ml pronase E was included in the fresh resuspension media, except for one study where one water wash of the pellet was carried out and pronase E was not included in the resuspension medium. Cells were arrested with 10 μ g/ml nocodazole (from a 1000x stock solution in DMSO) for three hours. Hydroxyurea was dissolved directly in medium immediately before use to a final concentration of 400 mM, except in one study where it was dissolved directly in the cultures. Cells were fixed and stored in 10 mM Tris, 100 mM EDTA, pH=8.0, 3.7% formaldehyde, and sonicated before microscopy to assess cell morphology.

35 *S. cerevisiae* were transformed using the lithium acetate procedure (Ito et al., 1983). The URA3 gene was placed adjacent to the telomere sequence $(TG_{1-3})_n$ on the

- 142 -

left end of chromosome VII (UCC2013), or inserted at the *ADH4* locus about 20 kbp from the telomere on VII-L (UCC432), as described in Example I. UCC2013 was derived from YPH499, UCC432 was derived from UCC431.

5

Strains UCC111, UCC113, UCC115, UCC412, and UCC2014 were constructed by transformation of strains UCC1001, UCC1003, YPH250, UCC411, and UCC2013 respectively, with plasmid p Δ PPR1::HIS3 and selection for HIS $^+$ transformants; this plasmid was described in Example III. Strains UCC116, UCC117, and UCC151 were derived from strains UCC1001, UCC1003, and YPH250 respectively, by transformation with plasmid pFAT-PPR1 and selection for TRP $^+$ cells; strains UCC238, UCC152, and UCC153 were derived from strains UCC1001, UCC1003, and YPH250 respectively, by transformation with plasmid YE p FAT10 (FAT) and selection for TRP $^+$.

Strain UCC411 was derived from YPH499 by transformation with *Hpa*I digested YDpK-URA3 and selection for LYS $^+$ cells. UCC413 and UCC2016 were derived from UCC412 and UCC2014 respectively, by transformation with plasmid CY807+TRP1 digested with *Cla*I. Strain UCC431 was a 5-FOA R (*ura* $^{-}$, *lys* $^{-}$) derivative of UCC413. Strains UCC409, UCC433, and UCC435 were derived from strains UCC2016, UCC431, and UCC432 respectively, by transformation with *Hpa*I digested pRS305-GALPPR1-1; strains UCC410, UCC434, and UCC436 were derived from strains UCC2016, UCC431, and UCC432 respectively, by transformation with *Hpa*I digested pRS305-GALppr1-1.

In order to place *UAS_{GAL}*-URA3 (or another non-selectable marker) adjacent to telomere VII-L, a method was developed based on the phenomenon of new telomere formation at internal telomeric sequences (Example I). Plasmid pGALURA3-TEL-LYS2 was used to integrate within the *ADH4* locus: *UAS_{GAL}*-URA3 adjacent to

- 143 -

81 bp of telomere repeat sequence followed by LYS2 as the selectable marker (centromere-proximal to centromere-distal). At a frequency of ~10⁻⁶, loss of chromosomal sequences distal to the 81 bp internal telomeric sequence 5 (including LYS2) resulted in formation of a new and stable telomere having the *UAS_{GAL}-URA3* gene adjacent to it.

Cells that were transformed with pGALURA3-TEL-LYS2, 10 and were LYS⁺ and had the correct sequences inserted within the ADH4 locus (verified by DNA blot hybridization analysis), were grown non-selectively for about 25 generations. Cells which had lost LYS2 were selected for survival on medium containing α-amino adipate; the 15 expected structure of telomere VII-L in the resulting lys⁻ strain was verified by DNA hybridization analysis.

UCC418 was derived from YM725 by transformation with NotI-SalI digested plasmid pGALURA3-TEL-LYS2 and 20 selection for LYS⁺ transformants; UCC420 was an α-amino adipate resistant (lys⁻) derivative of UCC418 which has *UAS_{GAL}-URA3* adjacent to telomere VII-L. UCC419 was derived from YM725 by transformation with EcoRI-SalI 25 digested plasmid pDadh4::GALURA3 and selection for URA⁺ transformants. Strains UCC419 and UCC420 were transformed with plasmids pBM292, pBM430, pBM433, pBM789, and pBM1268, to yield strains UCC421-UCC425 respectively, for the UCC419 parent, and strains UCC426-UCC430 30 respectively for the UCC420 parent. The expected structures of the various chromosomal constructs were confirmed by DNA blot hybridization analysis.

3. Analysis of Nucleic Acids

35 RNA was isolated from mid-log phase cells, unless otherwise indicated, as described in Example I. RNA hybridization analyses were performed as described in

- 144 -

Example I, except that 15 or 20 µg of total RNA was denatured in the presence of 20 µg/ml ethidium bromide and separated by electrophoresis on a 1.2% agarose-5% formaldehyde (37% stock)-MOPS gel. Immediately following 5 electrophoresis the gel was photographed and washed twice for 15 minutes in H₂O, 15 minutes in 10x SSC and transferred to nylon (MSI, Westboro, MA). Photography of the gel following transfer verified that complete transfer of the rRNA had occurred.

10

RNA was immobilized on the nylon membrane by UV irradiation (120 mJ) of the damp membrane, followed by prehybridization of the membrane. Prehybridization and hybridization solutions contained 5x SSC, 50% formamide, 15 5x Denhardt's solution, 0.2 mg/ml denatured and degraded herring sperm DNA, 0.2% SDS; hybridization solution also contained 10% dextran sulfate and was filtered through a 45 µm membrane to remove particulates. Prehybridization (1-6 hr) and hybridization (18-30 hr) were carried out at 20 42°C for DNA probes and 53°C for RNA probes.

Blots were washed five minutes at 23°C in 2x SSC, 0.1% SDS, followed by two 15 minutes washes at 55°C in 0.1x SSC, 0.1% SDS for DNA probes, or three 20 minute 25 washes at 60°C in 0.1x SSC, 0.1% SDS for RNA probes, and exposed to film. The relative levels of URA3 and URA1 RNAs were quantified on a Radioanalytic Imaging System (Ambis, San Diego, CA). For rehybridization studies, probes were removed from the blots with three 20 minute 30 washes with boiling 0.2% SDS.

RNA antisense probes were labeled with ³²P-CTP or ³²P-UTP (3000 Ci/mmol) by *in vitro* transcription of linearized plasmids with T7 RNA polymerase or SP6 RNA 35 polymerase (Sambrook et al., 1989). DNA probes were labeled with ³²P-dCTP (3000 Ci/mmol) by random oligonucleotide priming as described (Sambrook et al.,

- 145 -

1989). Plasmid p5'URA3 (T7) was the template for the URA3 RNA probe. Plasmid pPL9 (SP6) was the template for the ACT1 RNA probe. The URA3 DNA probe was a 1.1 kbp HindIII fragment containing the entire coding sequence, 5 the URA1 probe was a 1.3 kbp BamH1 fragment containing the entire URA1 gene in plasmid pVZURA1, the SWI5 probe was a 3.3 kbp HindIII fragment from pBD57, and the CLN2 probe was a 640 bp HindIII-SpeI fragment in pJM206.

10 B. RESULTS

1. The URA3 Transactivator, PPR1, Is Required for Overcoming Telomeric Silencing of URA3

15 In order to test the idea that the transactivator, PPR1, plays a role in overcoming silencing of a telomere-linked URA3 gene, the PPR1 gene was deleted from a strain in which URA3 was located adjacent to telomere VII-L (UCC1001). To determine whether deletion of PPR1 had a 20 specific effect on URA3 expression at a telomere, PPR1 was also deleted in a strain with URA3 inserted at an internal chromosomal position, the ADH4 locus which is about 20 kbp from telomere VII-L (UCC1003). PPR1 was also deleted in a strain lacking URA3 (ura3-52; YPH250).

25 URA3 expression was measured by two methods: plating viability assays on medium containing 5-fluoro-orotic acid (5-FOA) and on medium lacking uracil (-URA), and RNA blot hybridization analysis. 5-FOA is converted into a 30 toxic metabolite by the URA3 gene product, such that cells expressing normal levels of the URA3 gene product are sensitive to 5-FOA, while cells that lack it are resistant to 5-FOA (Boeke et al., 1984).

35 For the RNA analysis, transcript levels were analyzed from URA3, URA1, and ura3-52 (Rose and Winston, 1984, in this allele the URA3 transcript is truncated)

- 146 -

each of which is regulated by the PPR1 protein (Losson and Lacroote, 1981). Thus, *URA1* and *ura3-52* RNA levels reflect the *in vivo* level of PPR1 activity as a transcriptional activator in each experimental sample.

5

PPR1 was found to be required for overcoming silencing of the telomeric *URA3* gene. Wild type (*PPR1⁺*) cells with *URA3* near a telomere, formed colonies on 5-FOA medium and medium lacking uracil. This reflects the 10 ability of the telomeric *URA3* gene to switch between transcriptionally repressed and active states. Deletion of *PPR1* abolished the ability of cells with a telomeric *URA3* gene to grow in the absence of uracil. Deletion of the PPR1 binding site within the *URA3* gene promoter had 15 the same effect as deletion of *PPR1*, indicating that specific binding of PPR1 at the *URA3* UAS was required for overcoming silencing. Thus, in this telomeric context, PPR1 is required for the transcriptional activation of the *URA3* gene.

20

The very small colonies which arose on -URA medium from the *ppr1⁻* strain with a telomeric *URA3* gene had acquired trans-acting mutations or local chromosomal rearrangements which permitted expression of *URA3*. 25 Therefore, essentially no *URA3* gene product was produced from this telomeric site when PPR1 was absent from the cell. In contrast, deletion of *PPR1* had no effect on 5-FOA or -URA viability when *URA3* was located at an internal chromosomal locus. This result suggests that at 30 an internal location transcription of *URA3* still occurs, independently of PPR1, and is consistent with *URA3* regulation at its normal chromosomal locus (Losson et al., 1985). As expected, *PPR1* deletion had no effect 35 on the plating viability of cells lacking a functional *URA3* gene.

- 147 -

Telomeric *URA3* mRNA was undetectable when *PPR1* was deleted. However, *PPR1*⁺ cells with a telomeric *URA3* maintained the ability to activate *URA3* transcription. Deletion of *PPR1* had little or no effect on expression of 5 an internal copy of *URA3*, or on expression of *URA1*.

Both the plating viability on -URA medium and the RNA analysis indicate that the constitutive or basal (*PPR1*-independent) expression of *URA3* at telomere VII-L 10 is repressed by the telomeric silencing machinery. However, the transactivator, *PPR1*, is able to circumvent the telomeric repression, thus facilitating *URA3* expression.

15 **2. Increased PPR1 Dosage Prevents Silencing of a Telomeric URA3**

Since a telomeric *URA3* could exist in either an active or repressed state, and because *PPR1* was required 20 for the active state, the inventors postulated that *PPR1* might compete against the assembly of a repressed state. If this hypothesis were true, then increasing the dosage of *PPR1* should increase the frequency with which an active state is established.

25 To test this hypothesis, *PPR1* was expressed from a multi-copy plasmid (FAT-*PPR1*, FAT is the vector alone) in strains with *URA3* absent, *URA3* at a telomeric, or *URA3* at an internal chromosomal locus. Cell viability of the 30 resulting strains was quantified on 5-FOA medium and medium lacking uracil. Increase of *PPR1* protein concentration from FAT-*PPR1* (verified by *ura3-52* and *URA1* RNA levels and quantitative electrophoretic mobility shift analyses) resulted in complete 5-FOA-sensitivity of 35 cells with *URA3* at the telomeric locus, along with improved growth on -URA. As expected, viability was not affected by overproduction of *PPR1* when *URA3* was at the

- 148 -

internal locus or absent. Thus, high levels of PPR1 compete against telomeric silencing to perpetually maintain the *URA3* gene in an active state. These results also suggest that in a wild type cell, the concentration of PPR1 is limiting for telomeric *URA3* expression.

3. *GAL4* Can Overcome Telomeric Silencing

To determine if the ability of PPR1 to overcome telomeric silencing on *URA3* transcription was a general characteristic of transcriptional activator proteins, the PPR1 binding site upstream of the *URA3* gene was replaced with a binding site for the *GAL4* transactivator protein (Verdier, 1990). This modified *URA3* gene (*UAS_{GAL}-URA3*) was placed next to telomere VII-L (UCC420) or within the *ADH4* locus (UCC419) in strain YM725 (*gal4⁻*, *gal80⁻*, *ura3⁻*). The *gal80* mutation relieves negative regulation of the *GAL4* protein so that activity of *GAL4* is proportional to its concentration (Johnston, 1987). *UAS_{GAL}-URA3* was silenced when placed at telomere VII-L, as the cells were 5-FOA-resistant and *Ura⁻*, but *UAS_{GAL}-URA3* was not repressed when internally located on the chromosome since cells were 5-FOA-sensitive and *URA⁺*.

The wild-type *GAL4* protein or a series of C-terminal truncations of the *GAL4* protein were expressed in the strains with *UAS_{GAL}-URA3* located at the telomere or at the internal locus. The C-terminal truncation derivatives of *GAL4* maintain the N-terminal DNA binding domain and bind to *UAS_{GAL}* *in vitro*, but are defective in transcriptional activation *in vivo* (Johnston and Dover, 1988). Expression of wild-type *GAL4*, from a single copy centromeric plasmid, completely reversed silencing of the telomeric *UAS_{GAL}-URA3*, as indicated by the sensitivity of this strain to 5-FOA, and robust growth on -URA medium. None of the truncated *GAL4* derivatives were able to activate *UAS_{GAL}-URA3* adjacent to the telomere. Expression

- 149 -

of GAL4 or its derivatives had no effect on 5-FOA-sensitivity, or -URA viability, of strains with UAS_{GAL} -URA3 located internal on the chromosome. It appears that the activation domain of GAL4 is required to compete for 5 telomeric gene expression. These results suggest that the ability to overcome telomeric silencing is a general function of transactivators.

10 **4. Modulating the Dosage of PPR1^c Reveals that Its Accessibility to the Telomeric URA3 Gene is Limited**

15 The finding that PPR1 dosage has a demonstrable effect on telomeric URA3 expression, but not for internal URA3 expression, suggested that the telomeric URA3 gene is relatively resistant to transcriptional activation by PPR1 compared to when URA3 gene is located non-telomERICALLY.

20 To investigate this, a chimeric gene, GALPPR1-1, was constructed with the coding sequence of the PPR1-1 allele under control of the GAL1,10 promoter (Johnston and Davis, 1984). The PPR1-1 allele encodes a constitutively active protein, PPR1^c; thus, the level of PPR1^c activity 25 as a transactivator is directly proportional to its total cellular concentration (Losson and Lacroix, 1983). The GAL1,10 promoter permitted precise regulation of PPR1^c protein concentration within the cell (Durrin et al., 1991), since the intracellular level of PPR1^c was proportional to the level of galactose in the medium 30 (based on ura3-52 RNA levels and quantitative electrophoretic mobility-shift analyses). As a control, a non-functional version of the gene fusion (GALppr1-1), which contains an inversion within the PPR1-1 coding 35 sequence, was also created. These gene fusions were inserted at the leu2 locus in isogenic ppr1⁻ strains containing URA3 at a telomeric (UCC2016) or internal

- 150 -

chromosomal locus (UCC431) or in which *URA3* was absent (UCC432).

The resulting strains were tested for viability on
5 5-FOA and -URA medium that also contain galactose.
Expression of the *GALPPR1-1* fusion, but not the mutated
GALppr1-1 fusion, effectively overcame silencing of the
telomeric *URA3* in all cells of the population; the cells
were *URA⁺* and 5-FOA-sensitive. Expression of *GALPPR1-1*
10 or *GALppr1-1* had no effect on the 5-FOA sensitivity or
the -URA viability of strains with *URA3* at the internal
locus or absent.

Levels of mRNA were analyzed from these strains
15 grown in rich medium containing 3% raffinose and 0.25%
galactose, which induced expression of *GALPPR1-1* or
GALppr1-1. Expression of *GALPPR1-1* strongly activated
transcription from *URA3*, *URA1*, and *ura3-52*, although
compared to expression of the internal *URA3* gene,
20 expression of the telomeric *URA3* was reduced. Equivalent
levels of PPR1^C activity [based on *URA1* and *ura3-52* mRNA
levels, and electrophoretic mobility-shift analyses] were
present in the *GALPPR1-1* strains. This result supports
the idea that, compared to the internal *URA3*, the
25 telomeric *URA3* gene is relatively resistant to
transcriptional activation at this concentration of
PPR1^C.

The inventors compared the relative expression
30 levels of the telomeric *URA3* gene and the internal *URA3*
gene when different concentrations of PPR1^C protein were
expressed. The level of *ura3-52* RNA was used as a
standard for PPR1^C concentration *in vivo* in comparing the
two *URA3* loci; *ura3-52* has the same upstream sequences as
35 *URA3* and is responsive over a wide range of PPR1^C
concentrations. The level of *GALPPR1-1* expression was
varied by growing cells with different concentrations of

- 151 -

galactose in the medium; levels of *ura3-52* RNA confirmed that higher concentrations of galactose did in fact result in higher intracellular PPR1^c protein concentrations.

5

The results show that *URA3* at the telomeric locus was less responsive to low levels of the transactivator than *URA3* at an internal locus. In addition, while both loci can achieve the same maximum level of expression, a 10 higher PPR1^c concentration was required for the telomeric *URA3* compared to the internal *URA3*. These results suggest that there is a competition for binding at the telomeric *URA3* promoter between PPR1^c and silent chromatin.

15

5. PPR1^c Activation of a Telomeric *URA3* Gene Is Cell Cycle Regulated

The studies described above were performed on 20 actively dividing cells. Hence, the cells were transiting through the cell cycle during the analysis. Keeping this in mind, two simple models can be set forth to explain the competition between PPR1 and telomeric chromatin for expression of the *URA3* gene. In the first 25 model, the competition only occurs within specific periods of the cell cycle. During part of the cell cycle the telomeric *URA3* gene is resistant to activation by PPR1 if the silent chromatin state has been established. Only when the silent chromatin is weakened or 30 disassembled, which might occur during DNA replication of the telomeric region, does PPR1 have the opportunity to activate the gene. In the second model, PPR1 competes with equal fervor throughout the cell cycle.

35 To test and distinguish between these models, cells were grown in rich medium containing 3% raffinose and no galactose. Thus PPR1^c was not present and the telomeric

- 152 -

URA3 gene was maintained in a silent state. The cells were then synchronously arrested by treatment with either α -factor pheromone, to arrest them late in G₁ (Pringle and Hartwell, 1981), or nocodazole, an inhibitor of 5 microtubule assembly (Pillus and Solomon, 1986).

In many eukaryotes, nocodazole produces a synchronous arrest at metaphase. Nocodazole also produces a very synchronous arrest in yeast, however it 10 is unclear whether the arrest occurs late in G₂ or at metaphase. By the criterion of spindle pole body separation the cells appear to be in G₂ (Jacobs et al., 1988); however recent studies suggest that the chromosomes may be condensed as expected for a metaphase 15 arrest (Guacci et al., 1994). In light of this uncertainty, the arrest is referred to as G₂/metaphase. Once arrested, galactose was added to induce expression of PPR1-1, and half of the culture was released from the arrest, while arrest was maintained in the other half.

20 Expression of the telomeric URA3 gene and the internal URA1 and ura3-52 genes was compared. The transcript levels of CLN2 and SWI5 were also analyzed to monitor the progress of cells through the cell cycle. 25 CLN2 is transiently expressed in late G₁ near the time of START (Wittenberg et al., 1990), and SWI5 is transiently expressed beginning sometime in S, through G₂, and on into M (Nasmyth et al., 1987).

30 The telomeric URA3 was not activated by PPR1^C during α -factor arrest. The analysis clearly shows that while cells were arrested with α -factor, the telomeric URA3 gene remained repressed. The increase in URA1 and ura3-52 mRNA levels indicate that PPR1^C was active in these 35 cells. Following release from the α -factor arrest, PPR1^C was able to activate the telomeric URA3 gene. The analysis of the SWI5 transcript and microscopic analysis

- 153 -

of cell morphology were consistent with the cell-cycle arrest imposed by α -factor, and release thereafter. The low level of telomeric *URA3* transcript seen late during the continued α -factor arrest correlated with the small fraction of cells (~5%) that escaped from the arrest.

In striking contrast to the repressed state of telomeric *URA3* during α -factor arrest, the telomeric *URA3* gene in G_2 /metaphase, nocodazole arrested, cells was effectively activated by *PPR1^C*. In the absence of functional *PPR1^C*, "GAL*ppr1-1*"), no activation of the telomeric *URA3* or the internal *URA1* and *ura3-52* genes occurred. In fact, not even basal expression of the telomeric *URA3* was seen in the absence of *PPR1^C*. Analyses of *CLN2* and *SWI5* expression, as well as microscopic analyses of cell morphology, confirmed the successful arrest with nocodazole and the release that followed.

To determine whether the effects of the α -factor and nocodazole treatments were due to the specific cell cycle arrests and not to other physiological effects of the treatments, the inventors tested the effect of α -factor on telomeric gene expression in cells arrested in G_2 with nocodazole, and conversely, the effect of nocodazole on telomeric gene expression in cells arrested in G_1 with α -factor.

The α -factor treatment did not prevent the expression of the telomeric *URA3* gene in cells previously arrested with nocodazole, and nocodazole treatment did not result in expression of the telomeric gene in cells previously arrested with α -factor. Thus, it appears that the effects on telomeric gene transcription by α -factor and nocodazole were due to the specific cell cycle arrests. These results suggest that the ability of a transactivator (*PPR1^C*) to function in a telomeric domain

- 154 -

is cell cycle regulated. The inventors propose that a transactivator is inaccessible to the telomeric domain in G₁ phase and becomes accessible by the time the cells are in G₂/metaphase.

5

To more accurately determine the period of the cell cycle in which PPR1^C activation of a telomeric URA3 could occur, cells were arrested in S phase with hydroxyurea, an inhibitor of DNA replication (Slater, 1973). Yeast 10 cells with a telomeric URA3 and the integrated GALPPR1-1 fusion were pregrown in medium lacking galactose, to maintain repression of the telomeric URA3 gene, and arrested with α -factor. Galactose was added to the α -factor arrested cells to induce expression of PPR1-1, 15 and the cells were released from the α -factor arrest; half of the culture was released into medium containing hydroxyurea.

Cells treated with this α -factor/hydroxyurea 20 protocol arrest very early in S phase, significantly before telomeric regions replicate (Hartwell, 1976; McCarroll and Fangman, 1988). Hydroxyurea prevented the activation of the telomeric URA3, but did not affect transcriptional activation of the internal URA1 and ura3-25 genes. Telomeric URA3 and SWI5 expression following release from the hydroxyurea arrest, indicated that the arrest was reversible. Additionally, hydroxyurea did not prevent activation of the telomeric URA3 gene in cells which were previously arrested in G₂/metaphase with 30 nocodazole, indicating that the presence of hydroxyurea itself does not prevent telomeric URA3 expression. These results indicate that early in S phase the transactivator can not gain access to the telomeric URA3, and taken together with the results above, suggest that progression 35 through S phase is required for the establishment of the transcriptionally active state in the telomeric domain.

- 155 -

Temperature sensitive alleles of *CDC* (Cell Division Control) genes represent another method commonly used to arrest yeast cells at a specific point in the cell cycle (Pringle and Hartwell, 1981). Cells are typically 5 shifted from a permissive growth temperature (~23°) to a non-permissive temperature (37°) to cause arrest. The inventors began to use temperature sensitive alleles of *CDC* genes to define the cell cycle period in which PPR1 activation occurred. However, it was discovered that 10 PPR1^c-induced expression of a telomeric *URA3* was severely compromised at 37° in wild type (*CDC*⁺) cells (Aparicio, 1993). This finding precluded the use of temperature sensitive alleles in dissecting the period of activation 15 in the cell cycle. The effect appeared to be telomere specific, since the *ura3-52* locus was activated. It is not clear if the effect of temperature on telomeric *URA3* activation was specific to PPR1^c (e.g. a reduction in the effective concentration of PPR1^c), or reflects a general strengthening of telomeric repression.

20

6. Telomeric Silencing Is Irreversible When Cells Are in Stationary Phase (G₀)

An additional means to synchronously arrest a 25 population of yeast cells is to maintain a culture in stationary phase (Werner-Washburne et al., 1993, for a review). Stationary phase cells of *S. cerevisiae* arrest in a state referred to as G₀; the cells are unbudded and their genomes are unreplicated. Cells enter G₀ by 30 exiting from G₁ phase, and general transcriptional repression occurs upon entry to stationary phase (Choder, 1991).

Strains with *URA3* at a telomeric or a nontelomeric 35 locus and an integrated *GALPPR1-1* were grown to stationary phase in rich medium containing 3% raffinose, so that PPR1^c was absent and hence the telomeric *URA3*

- 156 -

gene was silenced. Cells were determined to be in stationary phase when the optical density of the culture had not increased during the previous 24 hour period, and greater than 98% of cells were unbudded. Expression of 5 *GALPPR1-1* was induced in the stationary cells by adding 0.3% galactose to the cultures. Incubation was continued as aliquots were collected for RNA analysis.

While the internal *URA3* gene, as well as the *URA1* 10 and *ura3-52* genes were transcriptionally activated by *PPR1^c* in the stationary cells, the telomeric *URA3* gene was not activated. Only after 48 hours of induction was a telomeric *URA3* transcript observed, just slightly above limits of detection. Thus, silencing of a telomeric gene 15 in stationary phase cells is essentially irreversible. As expected, basal levels of transcription decreased in the stationary cells. Moreover, the *SWI5* transcript was not detected in G_0 cells, confirming that cells were not progressing through the mitotic cell cycle. In this 20 study, galactose was added to cultures about 48 hours after mid-log phase; equivalent results were obtained when the study was performed with seven day old cultures.

C. DISCUSSION

25 In this Example, the inventors examined the ability of transactivator proteins to overcome silencing of a telomere-adjacent gene in *S. cerevisiae*. It was found that the transactivator protein, *PPR1*, is absolutely required for expression of a *URA3* gene located 30 immediately adjacent to the left telomere of chromosome VII. In contrast, when *URA3* is at a non-telomeric location, *PPR1* merely provides a modest increase in expression (Roy et al., 1990). Two conclusions may be 35 drawn from these results: telomeres inhibit basal transcription, and transactivators have a mechanism to circumvent this inhibition.

- 157 -

It is likely that the basal transcription apparatus of *URA3* is prevented from accessing the gene's promoter due to steric occlusion by silent telomeric chromatin. This is supported by the observation that other DNA binding proteins, such as *E. coli* dam methylase, are excluded from telomere-proximal DNA regions *in vivo* (Gottschling, 1992). Note that basal expression of *URA3*, as with most housekeeping genes in yeast, requires not only a TATA element but additional sequences upstream 10 that bind PPR1-independent factors (Roy et al., 1990).

These results show that, first, PPR1 cannot activate transcription of the telomeric *URA3* gene in G_1 , early S , or G_0 cells. Only in a G_2 /metaphase arrest is activation 15 observed. Second, the cellular concentration of PPR1 dramatically affects the frequency with which telomeric *URA3* expression is established. Third, the complete activation domain of a transactivator is essential for its efficacy. While a telomeric gene with a *GAL4* UAS can 20 be activated in the presence of wild type *GAL4*, the gene remains silenced when the wild type *GAL4* is replaced by derivatives which remove the *GAL4* transcriptional activation domain.

25 The inventors propose a replication-dependent model to explain how a telomeric gene can overcome silencing to become transcriptionally active. In G_1 of the cell cycle, a silenced telomeric gene is packaged in a repressive chromatin structure which is relatively 30 "static" and prevents interactions of the DNA with other DNA binding proteins such as basal transcription factors and transactivators. However, the telomeric chromatin loses its static structure, as a result of the DNA replication process or some other coordinate cellular 35 event. Alternatively, one of the two newly replicated sister chromatids retains the silent chromatin while the

- 158 -

other is essentially 'naked' DNA and awaits assembly into chromatin.

Regardless of which pathway occurs, upon completion
5 of replication, two distinct assembly processes compete
to establish the transcriptional state of a telomeric
gene. Assembly of silent chromatin initiates at the
telomere and propagates inward along the DNA. This
process requires not only the histones but a number of
10 additional factors, such as RAP1, SIR2, SIR3, and SIR4
(Example II; Kyrion et al., 1993). The competing process
involves the binding of the transactivator protein to the
telomeric gene and assembly of an active transcription
complex. The competition ends when one of the two
15 processes is fully established at the promoter region of
the telomeric gene. In the absence of competition from
the transactivator, the silent chromatin eventually
assembles into its static structure. The moment that
this silent structure forms, defines the end of the cell
20 cycle period in which the transactivator has an
opportunity to compete.

Having a limited period in the cell cycle during
which a transcriptional state is established has several
25 ramifications. Environmental or genetic changes that
alter the length of the silent chromatin assembly process
could dramatically affect the frequency of establishing a
state. Such changes may be direct. For instance, the
SIR3 gene product appears to be a component of silent
30 chromatin that is rate-limiting in its assembly (Johnson
et al., 1990; Example III). Thus increasing SIR3
concentration increases the frequency of establishing
repression (Example III). Alternatively, changes that
extend periods of the cell cycle in which silent
35 chromatin assembly occurs, such as G₂, provide a
transactivator greater opportunity to establish an active
state. Conversely, a shorter G₂ would favor

- 159 -

establishment of a silent state. In essence, such changes can dictate the amount of phenotypic variegation within a population of cells.

5 The assembly of silent telomeric chromatin may consist of several distinct, sequential steps rather than an 'all-or-none', concerted process. In nocodazole-arrested cells, telomeric *URA3* expression was rapid when PPR1 was present (*GALPPR1*). However, basal, or PPR1-independent (*GALppr1*), expression of the telomeric *URA3* was not detected, even after a lengthy arrest (~5 hr); while basal expression at internal loci was normal. These results suggest that at the nocodazole-arrest point silent chromatin is assembled up to a stage that 10 precludes basal expression, yet does not prevent PPR1-induced expression.

This postulated intermediate of silent chromatin assembly may not be locked into a fully static structure, 20 yet it is still more recalcitrant to gene expression than other areas of the genome. The static chromatin structure likely requires several contributions: binding of the core histones by accessory proteins such as SIR3 (Example III) modifications of telomeric histones such as 25 hypoacetylation (Braunstein et al., 1993), and localization of the structure to the nuclear periphery (Palladino et al., 1993). Any of these contributions may be absent at an intermediate stage.

30 These results extend observations made at the yeast silent mating type loci, *HML* and *HMR* (Miller and Nasmyth, 1984). Telomeres and the *HM* loci share a number of silencing factors (e.g. SIR2, SIR3, and SIR4) and Nasmyth determined, using temperature sensitive alleles of *SIR3* 35 and *SIR4*, that establishment of silencing at the *HM* loci requires passage through S phase, and thus presumably DNA replication. Their conclusion is consistent with the

- 160 -

model the inventors propose, that the competition for assembly occurs after replication. Furthermore, the inventors show that, at least in the case of the VII-L telomeric locus, assembly of silencing is not completed 5 until sometime after G₂/metaphase (nocodazole-arrest).

Miller and Nasmyth also found that inactivating the SIR3 or SIR4 gene product at any time in the cell cycle resulted in gene expression at the HM loci. Here, the 10 inventors show that passage through S phase is required for activation of a telomeric gene. Thus, dismantling of the repressive chromatin, either by artificially compromising it with a defective SIR3 or SIR4 allele, or in every cell cycle during passage through S phase, 15 allows a renewal of the competition between establishment of active and silent states.

As the result of a telomeric location, URA3 can be much more highly regulated than at its normal locus. 20 When URA3 is at a non-telomeric location, the presence of PPR1^c produces a three to seven-fold induction over basal expression (Liljelund et al., 1984). However, with URA3 near a telomere, an equivalent amount of PPR1 induces expression about 100-fold. The inventors suggest that 25 the genomes may have evolved to take advantage of this type of telomeric regulation. For example, Trypanosomes depend upon the highly regulated expression of the telomeric VSG (Variable Surface Glycoprotein) genes (Borst, 1991, Cross, 1990).

30 When cells were in G₀, essentially no amount of transactivator protein was sufficient to overcome telomeric silencing, while at an internal non-silenced position the transactivator readily induced expression. 35 Interestingly, general transcriptional repression, apparently mediated by chromatin changes, occurs upon entry to stationary phase (Choder, 1991). In fact,

- 161 -

stationary phase chromosomes display different sedimentation properties than G₁ phase chromosomes, suggesting that chromosomes assume a distinct compact structure in G₀ cells (Piñon, 1978). It is possible that 5 the same machinery and mechanism of telomeric silencing in G₁ extends to other regions of the genome in G₀, thus facilitating the more global compaction and transcriptional repression.

10 Whatever the nature of the silent telomeric chromatin, it contrasts with the chromatin structure of the PHO5 gene in yeast. While this locus is transcriptionally repressed by nucleosomes upstream of the transcription initiation site, it can be induced 15 rapidly at anytime in the cell cycle or in G₀ arrested cells (Schmid et al., 1992). The induction involves the displacement of a nucleosome by the gene's transcriptional activator protein. In contrast, overcoming telomeric silencing requires that the 20 nucleosomes be modified or removed by passage through S phase before the transactivator protein can have its effect. This emphasizes that telomeric chromatin is inherently different than chromatin at PHO5 or most other regions of the yeast genome.

25

EXAMPLE V

Identification of Genes that Suppress Telomeric Silencing

Genes located near *S. cerevisiae* telomeres are 30 subject to transcriptional silencing by a repressive chromatin structure that initiates at the telomeres (Gottschling et al., 1990; Gottschling, 1992; Renauld et al., 1993; Examples I through IV). The inventors hypothesized that the telomeric structure responsible for 35 silencing is likely to be a multimeric complex that would be sensitive to the stoichiometric imbalance of its components. Therefore, in order to identify genes

- 162 -

involved in telomere structure or function, the inventors carried out a screen for gene products that, when expressed at high levels, would suppress telomeric silencing.

5

A yeast strain was constructed with genetic markers located at two telomeric loci. The *ADE2* gene, which is required for adenine biosynthesis, was placed adjacent to the telomere at the right arm of chromosome V (V-R), and 10 *URA3*, a gene required for uracil biosynthesis, was located adjacent to the telomere at the left arm of chromosome VII (VII-L).

More specifically, the strain used for 15 transformation with the library was UCC3505 (*MATA ura3-52 lys2-801 ade2-101 trp1-Δ63, his3-Δ200 leu2-Δ1 ppr1::HIS3 adh4::URA3-TEL DIA5-1*). *DIA5-1* refers to the directed integration of *ADE2* adjacent to telomere V-R. UCC3505 was constructed by successively transforming YPH499 20 (Sikorski & Hieter, 1989) with pVII-L URA3-TEL (Gottschling et al., 1990), pΔPPR1-HIS3 (Renauld et al., 1993), and pHRI0-6. Plasmid pHRI0-6, obtained from H. Renauld, was constructed by inserting a 2.8 kb Hind III fragment from plasmid pV-R URA3-TEL (Gottschling et al., 1990), containing sequences from the subtelomeric region 25 of chromosome arm V-R, into the Hind III site of pYTCA-2 (Gottschling et al., 1990), such that the Eco RI site of the insert was furthest from the Bam HI site of the vector, thus creating pHRI0-9. Into the Bam HI site of 30 pHRI0-9 was inserted the 3.4 kb Eco RI-Bam HI fragment containing the *ADE2* gene from pL909 (Gottschling et al., 1990), thus creating pHRI0-6. The *ADE2* gene is oriented with its promoter proximal to the V-R sequences. pHRI0-6 was cleaved with Eco RI for use in fragment-mediated 35 transformation of yeast.

- 163 -

Normally, colonies expressing *ADE2* are white, while those not expressing it (*ade2*) are red (Roman, 1956). Due to the semi-stable nature of telomeric silencing of most genes, switching between silenced and 5 transcriptionally active states may occur every few generations, giving rise to different phenotypic populations. In the case of strains with *ADE2* near a telomere, these different populations are seen as red and white sectors within a single colony (Gottschling et al., 10 1990). A *URA3* gene located at telomere VII-L also normally switches between transcriptional states (Gottschling et al., 1990). However, the telomeric *URA3* was caused to be completely silenced by deleting its trans-activator, *PPR1* (Aparicio & Gottschling, 1994). 15 The cells were therefore unable to grow in the absence of uracil.

To identify genes or gene fragments whose overexpression could disrupt silencing, the strain was 20 transformed with a high-expression *S. cerevisiae* cDNA library. The pTRP plasmid expression library used in this study was created with cre-lox site-directed recombination from the λ TRP library (obtained from S. J. Elledge, Baylor College of Medicine, Houston). The pTRP 25 vector contains a 2μ origin of replication and the *TRP1* selectable marker. The cDNA inserts were cloned into a *Xho* I site of the pTRP vector, placing them under the control of the *GAL1* promoter. The creation of similar libraries is described in Elledge et al. (1991).

30 By the nature of its synthesis, a cDNA library typically contains both full length and truncated versions of RNA transcripts. Thus high level expression from a cDNA library has two means of causing a 35 stoichiometric imbalance: by expression of a normal gene product or a defective one (Herskowitz, 1987). In the library used in this study, the expression of cDNA

- 164 -

inserts was controlled by the *GAL1* promoter, which is strongly induced by the presence of galactose in the medium (Johnston & Davis, 1984). Of the 330,000 yeast transformants obtained, 48 displayed a galactose-dependent decrease in telomeric silencing. That is, when grown on media containing galactose, the cells were able to grow in the absence of uracil (*Ura*⁺) and gave rise to predominantly white colonies (*Ade*⁺). On the basis of restriction mapping, DNA blotting (Southern) analysis, and DNA sequencing, it was determined that these 48 clones represented ten independent genes.

EXAMPLE VI

Isolation of *TLC1*, a Telomere-Specific Suppressor of Silencing

The genes known to be required for telomeric silencing are also involved in transcriptional silencing at two internal chromosomal sites, the *HML* and *HMR* loci, which harbor the unexpressed copies of the mating type genes in *S. cerevisiae* (Aparicio et al., 1991). To determine whether the newly isolated suppressors of telomeric silencing also affect silencing at *HML*, the expression plasmids were introduced into a strain in which the *URA3* gene was inserted into the *HML* locus. The strain used for assaying silencing at the *HML* locus was UCC3515 (*MATα lys2-801 ade2-101 trp1-Δ63 his3-Δ200 leu2-Δ1 ura3-52 hml::URA3*). The *hml::URA3* construct is the same as that described for strain GJY5 (Mahoney & Broach, 1989). Overexpression of one of the novel genes identified, *TLC1*, had no effect on silencing at *HML*, but strongly suppressed telomeric silencing of *URA3* and *ADE2* (FIG. 1A, FIG. 1B and FIG. 1C). The *SIR4* gene, whose overexpression disrupts silencing both at telomeres and at *HML* (Marshall et al., 1987), was also isolated in the present screen and derepressed both of these loci in this assay (FIG. 1A, FIG. 1B and FIG. 1C).

- 165 -

Further evidence for the specific association of *TLC1* with telomere structure came from examination of telomere length in strains overexpressing a *TLC1* cDNA clone. In the absence of the *TLC1* overexpression 5 plasmid, the telomeric sequences at VII-L averaged 330 base pairs (bp) in length. Upon overexpression of *TLC1*, the average telomere length at VII-L decreased between 90 and 220 bp (FIG. 2). The alteration of telomere length upon overexpression of *TLC1*, together with the loss of 10 telomeric silencing, suggested that this gene is specifically involved in telomere structure.

Of the 48 cDNA clones isolated in the present screen as suppressors of telomeric silencing, nine represented 15 *TLC1*. The inventors sequenced one of the *TLC1* cDNA clones in its entirety (pTRP61, 1248 bp), as well as the ends of the other eight *TLC1* clones. These sequence data overlapped to yield a contiguous sequence of 1301 bp, although no single clone included the entire sequence. 20 The combined sequence of the *TLC1* cDNA clones has been submitted to GenBank and assigned the accession number U14595.

The span of each of the cDNA clones with respect to 25 the entire 1301 bp fragment is as follows: pTRP6 (1-1248), pTRP61 (54-1301), pTRP14 and pTRP47 (54-1263), pTRP33 and pTRP39 (54-1269), pTRP55 (54-1264 or 1265), pTRP59 (39-1250), pTRP60 (270-1264 or 1265), and pTRP61 (54-1301). Four of the *TLC1* cDNA sequences (in clones 30 pTRP55, pTRP60, pTRP33 and pTRP39) are followed by short stretches (5-20 nts) of adenines. It is not yet clear whether these adenines reflect authentic *in vivo* polyadenylation of the *TLC1* transcripts, or are by-products of cDNA synthesis.

35

For reference, both the *TLC1* gene and the RNA template include the CACCACACCCACACAC (SEQ ID NO:3)

- 166 -

- template sequence that ultimately allows the GTGTGTGGGTGTG sequence (SEQ ID NO:2) to be inserted into the telomere. The *TLC1* gene sequence CACCACACCCACACAC (SEQ ID NO:3) spans the region 468-483 of SEQ ID NO:1.
- 5 In the complementary strand, SEQ ID NO:4, this region is 819-834.

Physical mapping localized *TLC1* to a single site on chromosome II, immediately adjacent to *CSG2*. *TLC1* was mapped by hybridizing the labeled cDNA clone (1.25 kb Xho I insert from pTRP6) to a filter grid containing λ phage clones representing over 96 percent of the yeast genome. The filter set was obtained from the American Type Culture Collection (Olson et al., 1986; Link & Olson, 1991; Beeler et al., 1994). Subsequent to the present work, the sequence of chromosome II was entered into the EMBL database. The chromosome II-R sequences have the EMBL accession number X76078. These data matched the present sequence obtained from the cDNAs.

20

RNA blot (Northern) analysis confirmed that a wild-type strain contained a relatively abundant RNA that hybridized to a *TLC1* probe and was approximately 1.3 kilobases (kb) in length (FIG. 3A and FIG. 3B).

25

EXAMPLE VII
***TLC1* Encodes the Telomerase RNA**

The *TLC1* sequence has two notable features. The gene is unlikely to encode a protein since it does not contain a large open reading frame (ORF). The longest ORF that begins with an ATG codon is only 43 amino acids in length. This finding suggested that the functional *TLC1* gene product might be the RNA itself. Moreover, 30 *TLC1* contains the sequence CACCACACCCACACAC (SEQ ID NO:3), which includes the motif predicted to template *S. cerevisiae* telomeres (Kramer & Haber, 1993). These

- 167 -

results suggested to the inventors that *TLC1* encodes the putative yeast telomerase RNA.

To confirm that the *TLC1* gene product is indeed the
5 telomerase RNA, the *TLC1* gene was disrupted. The inventors predicted that this would cause incomplete replication of telomeres and result in progressive telomere shortening with each cell division. A *TLC1* gene disruption was created in which a large part of *TLC1*,
10 including the predicted telomere-templating region, was removed and replaced with a marker gene.

For the gene disruption, the *TLC1* cDNA clone in plasmid pTRP61 was excised away from pTRP vector
15 sequences as a 1.25 kb Xho I fragment, and inserted into the Xho I site of pBluescript II KS(-) (Stratagene; La Jolla, CA), creating pBlue61. The disruption of *TLC1* was created by replacing the 693 bp Nco I-Nsi I fragment of pBlue61 with a blunt-ended Bam HI 1.6 kb *LEU2* clone from
20 plasmid YDp-L (Berben et al., 1991), creating pBlue61::LEU2. This construct was digested with Xho I and transformed into the diploid strain UCC3507, selecting for Leu⁺ transformants, to produce UCC3508 (UCC3507 *TLC1/tlc1::LEU2*). Southern blot analysis
25 confirmed that UCC3508 was heterozygous for the disruption at the *TLC1* locus.

Nineteen out of nineteen tetrads sporulated from UCC3508 yielded 2:2 segregation of the *tlc1::LEU2* allele.
30 The genotype of UCC3507 is: MAT α /MAT α ura3-52/ura3-52 lys2-801/lys2-801 ade2-101/ade2-101 his3-Δ200/his3-Δ200 trp1-Δ1/TRP1 leu2-Δ1/leu2-Δ1 adh4::URA3-TEL/adh4::URA3-
35 TEL DIA5-1/DIA5-1 ppr1::HIS3/ppr1::LYS2. The haploid strains crossed to create UCC3507 were derived from YPH250 and YPH102 (Sikorski & Hieter, 1989). The introduction of changes into the genotypes of these haploids all utilized plasmids described above, except

- 168 -

allele *pprl::LYS2*, which was introduced using plasmid p Δ PPR1::LYS2 (Renauld et al., 1993).

The disrupted gene was introduced into a wild-type
5 diploid strain to create a *TLC1/tlc1* heterozygote, which
was then sporulated, giving rise to two mutant and two
wild-type haploid strains. Northern analysis confirmed
that in the *TLC1*-disrupted spore products, there was no
detectable *TLC1* RNA (FIG. 3A and FIG. 3B). The spore
10 colonies were inoculated into rich medium and grown for
several days by diluting the cultures into fresh medium
every 24 hours. In all cases examined (eight tetrads),
TLC1 strains maintained a normal telomere length after 6
days of growth. In contrast, the *tlc1* strains displayed
15 shortened telomeres. In the cases where DNA samples were
collected daily (three tetrads), the *tlc1* telomeres were
found to shorten progressively, at an approximate rate of
3 bp per generation (FIG. 4A).

20 In conjunction with the shortening telomere
phenotype, older *tlc1* cultures displayed a gradual
increase in generation time. Through the first 40
generations after sporulation of a *TLC1/tlc1* strain, all
four spore products were able to regrow approximately one
25 thousand-fold in rich medium within 24 hours, indicating
a generation time of less than 2.4 hours (FIG. 4B). This
growth rate was maintained in *TLC1* strains for up to 80
generations.

30 In contrast, the *tlc1* strains, by 65 generations
after germination, the growth rate had slowed to about
3.3 hours/generation. After 75 generations, the doubling
time of the *tlc1* cultures was 5.7 hours. This decrease
in growth rate was accompanied by a 50 % drop in
35 viability in the *tlc1* strains after 75 generations. This
general pattern was clear in all 14 tetrads examined,
although there was some variation in the period at which

- 169 -

the decrease in growth rate occurred. However, as was reported for *est1* strains (Lundblad & Blackburn, 1993), the dying *tlc1* cultures were overwhelmed within approximately 100 generations by faster-growing cells, 5 which presumably contained suppressor mutations.

To demonstrate that the *TLC1* gene product was the *S. cerevisiae* telomerase template RNA, it was necessary to confirm that *TLC1* sequences encoded telomeric tract repeats. Earlier studies with *Tetrahymena thermophila* showed that when a mutated telomerase RNA is introduced into a cell, the altered sequence may then be templated into the cell's telomeres (Yu et al., 1990). A candidate motif for the telomere template within *TLC1* was the 10 sequence CACCACACCCACACAC (SEQ ID NO:3) (FIG. 5A). The inventors constructed a *TLC1* allele, designated *TLC1-1(Hae III)*, in which two base pairs of this motif were changed to create a recognition site for the restriction enzyme Hae III (FIG. 5B).

20

The mutant *TLC1-1(Hae III)* allele was used to replace one of the normal *TLC1* genes in a diploid strain as follows: Plasmid pVZ61b was constructed by inserting the 1.25 kb *Xho* I fragment containing the *TLC1* cDNA clone 25 from pTRP61 into the *Sal* I site of plasmid pVZ1 (Henikoff & Eghitedarzadeh, 1987). The *TLC1-1(Hae III)* mutant allele was generated using two oligonucleotides, *Hpa* I primer (5'-TCCAGAGTTAACGATAAGATAGAC-3') and *Hae* III primer (5'-TAATTACCAT GGGAAGCCTA CCATCACCGGCCCACACAC 30 AAATG-3'; SEQ ID NO:5 [Greider and Blackburn, 1985, 1987, 1989; Zahler and Prescott, 1988; Morin, 1989; Prowse et al., 1993; Shippen-Lentz and Blackburn, 1989; Mantell and Greider, 1994; de Lange, 1994; Greider, 1994; Harley et al., 1992]) to PCR-amplify a 232-bp fragment from 35 plasmid pVZ61b.

- 170 -

The PCR product was then cleaved with Nco I and Hpa I, to create a 213 bp fragment that was used to replace the 213-bp Nco I-Hpa I fragment of pBlue61, to create pBlue61-Hae III. The 213 bp fragment was sequenced from 5 the pBlue61 plasmid to verify that the PCR amplification did not introduce additional mutations into the sequence.

The *TLC1-1(Hae III)* allele, contained in a 1.25 kb Xho I fragment, was then cleaved from pBlue61-Hae III and 10 inserted into the Xho I site of pRS306 (Sikorski & Hieter, 1989), to create the integrating plasmid pRS306-*TLC1-1(Hae III)*. This latter construct was digested with Afl II and used to transform YPH501 (Sikorski & Hieter, 1989), with selection for Ura⁺ transformants, thus 15 creating the heterozygous strain UCC3520. UCC3522 (YPH501 *TLC1-1(Hae III)/TLC1*) was isolated as a 5-fluoro-orotic acid-resistant derivative of UCC3520 in which the pRS306-TLC1 plasmid had recombined out of the *TLC1* locus, which left the *TLC1-1(Hae III)* allele in the chromosome 20 (Scherer & Davis, 1979), as confirmed by Southern blot analysis.

In addition to functioning at the very ends of normal telomeres, telomerase is also believed to play an 25 important role in the healing of broken chromosomes and the extension of unusually short telomeric tracts (Kramer & Haber, 1993). In this latter capacity, the activity of a mutant telomerase would be most easily detected. Therefore, fragment-mediated transformation was used to 30 remove the sequence distal to the *ADH4* locus on the left arm of chromosome VII, and replace it with a *URA3* gene and a short tract of telomeric sequence to act as a seed for *in vivo* telomere elongation (FIG. 6A).

35 This transformation was done in both homozygous wild-type (*TLC1/TLC1*) and heterozygous *TLC1-1(Hae III)/TLC1* strains. The *ADH4-URA3-TG₁₋₃* fragment used to

- 171 -

replace the left arm of chromosome VII was generated by Not I-Sal I digestion of plasmid AD3ARUGT-IV. This plasmid was constructed by the following set of steps: the 1.1 kb Hind III-Sma I DNA fragment containing *URA3* (Rose et al., 1984) was inserted into the Hinc II site of pYTCA-2 by blunt-end ligation, with the promoter of *URA3* proximal to the TG₁₋₃ sequences of the vector, creating plasmid p3ARUCA. The 1.2 kb Hind III fragment of pYA4-2, containing *ADH4* (Lundblad & Szostak, 1989; Williamson & Paquin, 1987), was then inserted into the Hind III site of p3ARUCA, with the Sal I site of the insert distal to the *URA3* gene in the vector, creating plasmid pAD3ARUCA. Finally, the Sal I-EcoR I fragment containing the composite insert (*ADH4-URA3-TG₁₋₃*) from pAD3ARUCA was cloned into pVZ1, creating AD3ARUGT-IV.

The yeast strains that were transformed with the *ADH4-URA3-TG₁₋₃* fragment were YPH501 (*TLC1/TLC1*) and UCC3522 (*TLC1-1(HaeIII)/TLC1*). These studies were repeated with the transforming *ADH4-URA3-TG₁₋₃* DNA liberated from the pAD3ARUGT-IV plasmid as a Sal I-EcoR I fragment, and results similar to those reported in FIG. 6B were obtained.

Southern analysis was performed on genomic DNA from the transformed strains to determine the structure of the new telomeres at VII-L (FIG. 6B). Digestion with Apa I, whose most distal site in the new VII-L arm occurs within the *URA3* gene, demonstrated that in both the wild-type (*TLC1/TLC1*) and heterozygous *TLC1-1(Hae III)/TLC1* transformants, the new chromosomal end was extended in vivo to several hundred base pairs. The new telomeres in the *TLC1-1(Hae III)/TLC1* strain were slightly shorter and more heterogeneous in length than those added in the *TLC1/TLC1* strain.

- 172 -

In all twelve *TLC1/TLC1* independent transformants tested, digestion with Hae III, which cuts at the same site in *URA3* as Apa I, indicated that no Hae III sites were introduced during telomere elongation *in vivo*. In 5 contrast, in all eight *TLC1-1(Hae III)/TLC1* independent strains examined, Hae III sites were incorporated into the newly formed telomere. It can thus be concluded that the mutated sequence in the *TLC1-1(Hae III)* gene served as a template for the addition of telomeric repeats, 10 which indicates that the *TLC1* gene indeed encodes the *S. cerevisiae* telomerase RNA.

EXAMPLE VIII

TLC1 Compared to Other Telomerase RNAs

15 In these studies the inventors demonstrated the existence of an *S. cerevisiae* telomerase and identified the gene that encodes its RNA component (Examples V through VII). These above findings support the proposal 20 that the telomerase mechanism of replicating the ends of chromosomes is widespread among eukaryotes. However, the *TLC1* RNA is much larger (1.3 kb) than the known ciliate telomerase RNAs, which are 160 to 200 nucleotides (nt) in length (Blackburn, 1993). This discrepancy in gene size 25 is reminiscent of the 1175 nt *S. cerevisiae* U2 snRNA, which is almost 1 kb larger than the mammalian U2 snRNA (Ares, 1986). The conserved secondary structure that is shared among the ciliate telomerase RNAs is not apparent in the sequences surrounding the *TLC1* template region 30 (Romero & Blackburn, 1991; ten Dam et al., 1991), though the large size of the transcript may allow homologous structures to form that are not obvious at this time. *TLC1* also lacks a short primary sequence adjacent to the template region that is conserved among the ciliate 35 telomerase RNAs (Lingner et al., 1994).

- 173 -

While telomeric DNA in most organisms is comprised of sequences repeated in a regular fashion, e.g. mammalian (T_2AG_3), Tetrahymena (T_2G_4), the telomeric sequence of *S. cerevisiae* is irregular [$(TG)_{1-3}TG_{2-3}$] 5 (Zakian, 1989). However, this irregularity can be fully explained by the telomere-templating sequence in *TLC1*. Telomerase RNAs are thought to synthesize the G-rich strand of telomeres by multiple rounds of hybridization to a short sequence at the end of a telomeric tract, 10 elongation of the DNA by a limited reverse transcription of the RNA, and disengagement (Blackburn, 1993). In vitro, the *Tetrahymena* telomerase RNA appears to use as few as three nucleotides for the hybridization step (Autexier & Greider, 1994).

15

The telomere template region of *TLC1* (CACCAACACCCACACAC; SEQ ID NO:3) suggests that the telomerase RNA may be able to align with a telomere terminus at a number of different points within the RNA, especially if CAC is all that is required for 20 hybridization. It is also possible that the telomerase could abort a round of reverse-transcription at several different positions along the RNA. If a terminal DNA sequence such as GTG is left, then alignment with the CAC RNA motif in the next round of elongation can readily 25 occur. Either alone or in combination, these different alignment and termination possibilities can account for the heterogeneity observed in the *S. cerevisiae* telomeric tracts.

30

EXAMPLE IX

Telomeric Silencing and Telomerase

Overexpression of the *TLC1* cDNA clones identified in 35 the present studies (Examples V through VIII) both disrupts telomeric silencing and causes a shortening of telomeres. One model to explain these results is that

- 174 -

overexpression of the cDNAs causes limiting telomerase components to be titrated into incomplete and nonfunctional complexes, thereby reducing the total telomerase activity in the cell and resulting in shorter 5 telomeres. The length of the telomere may relate to its ability to bind silencing proteins; shorter telomeres simply have fewer binding sites, and thus may silence telomeric genes less efficiently (Kyrion et al., 1993). Alternatively, the telomerase RNA itself, or one of the 10 factors it binds, may be an integral component of the complex that is required for silencing at telomeres. Overexpression of *TLC1* may perturb the stoichiometry of this complex, and thus interfere with its assembly. It is noteworthy that of the nine *TLC1* cDNAs isolated in the 15 present screen, none appear to be full length. Thus it is formally possible that only an incomplete (non-functional) *TLC1* RNA can produce the effects detected.

The telomere shortening and growth defects observed 20 when the telomerase RNA was disrupted are very similar to those described for *est1* strains, supporting the prediction that *EST1* is a constituent of telomerase (Lundblad & Szostak, 1989). Moreover, the genetic link discovered here between telomeric silencing and 25 telomerase suggests future approaches for identifying other telomerase components, which so far have been elusive.

EXAMPLE X

Other Genes Identified by Telomeric Silencing

Using the telomeric silencing protocol described herein, the inventors isolated 48 clones. On the basis 30 of restriction mapping, DNA blotting (Southern) analysis, and DNA sequencing, it was determined that these 48 clones represented ten independent genes. Of the these 35 ten genes, four have been sequenced and identified

- 175 -

previously. These genes are the *SIR4* (Marshall et. al., 1987); *ASF1* (Le and Sternblanz, Genbank Accession Number 107593); *RPL32* (Dabeva and Warner, 1987); and *RRP3* (Cherel and Thuriaux, Genbank Accession Number z29488).

5

The new genes are herein termed *STR* genes, Suppressors of Telomeric Repression. Initially, seven *STR* genes were designated, although *STR7* was later found to correspond to part of the sequence for *RRP3*. *STR2* has 10 been renamed *TLC1* following its functional characterization, as shown in FIG. 7A and FIG. 7B.

The DNA and predicted amino acid sequences, where relevant, of the *STR* genes are as defined in Table 2.

15

TABLE 2

Gene	DNA SEQ ID NO:	Complementary Strand SEQ ID NO:	Polypeptide SEQ ID NO:	Probes & Primers Projected SEQ ID NOS:
<i>STR1</i>	15	29†	16	5837-7702
<i>TLC1 (STR2)</i>	1	4	*	33-1317
<i>STR3</i>	17	30†	18	7703-8780
<i>STR4</i>	19†		20	1318-3735
<i>STR5</i>	21	31†	22	8781-9571
<i>STR6</i>	23†		24	3736-5836
<i>STR7</i>	25	32†	26	
<i>RRP3</i>	27†		28	

* Encodes RNA Template - SEQ ID NO:3

† Denotes strand with protein-encoding open reading frame

30 Table 2 shows the DNA and amino acid sequences of seven of the *STR* genes. *STR2*, renamed *TLC1*, encodes the RNA template component, rather than a polypeptide

- 176 -

species. Both SEQ ID NO:1 and SEQ ID NO:4 are provided for *TLC1*. *STR7* (SEQ ID NO:25, DNA; and SEQ ID NO:26, amino acid) was found to be a partial sequence of *RRP3*, the full length sequences of which are also included
5 herein (SEQ ID NO:27, DNA; and SEQ ID NO:28, amino acid).

Table 2 also provides information concerning the numbers of 17-mer probes and primers from SEQ ID NO:1 and from each of the polypeptide-encoding DNA sequences of
10 the present invention. Naturally, the number of 17-mers from each of the complementary strands could be readily made. Given that 32 separate sequences are already disclosed herein, should the 17-mer probes and primers from the claimed sequences be specifically identified and
15 numbered, they would start with SEQ ID NO:33.

The projected SEQ ID NO designations in Table 2 refer to the individual sequences that could be readily predicted from the given information. For example, the
20 sequence AATAAAACTAGAGAGGA, residues 1 to 17 of SEQ ID NO:1, would be assigned SEQ ID NO:33; the sequence ATAAAAACTAGAGAGGAA, residues 2 to 18 of SEQ ID NO:1, would be assigned SEQ ID NO:34. On this basis, SEQ ID NO:100 would be ATTTTTTTTTTTTCAG, residues 68 to 84 of SEQ ID
25 NO:1; SEQ ID NO:1000 would be GATCAAGAACGTAATT, residues 968 to 984 of SEQ ID NO:1; SEQ ID NO:5000 would be AAAAGATGAAGACGCTT, residues 1265 to 1281 of SEQ ID NO:23; and SEQ ID NO:9571 would be AGATATTCTAACTCTCT, residues 791 to 807 of SEQ ID NO:31.

30 The start and stop site locations for the major open reading frames (ORFs) of each of the STR sequences are presented in Table 3. The ORFs for *STR4* and *STR6* are presented with respect to the DNA strand originally sequenced. It was noted that certain of the DNA
35 sequences had ORFs oriented in the opposite direction to the original DNA strand sequence, so that the ORF starts

- 177 -

at a high position in the DNA, and ends at a low position. Namely, the *STR1* ORF was located between nucleotides 1829-84; the *STR3* ORF was located between nucleotides 1017-1; and the *STR5* ORF was located between 5 nucleotides 753-109. Although this phenomenon is well known, the complementary DNA strand of *STR1*, *STR3*, *STR5* and *STR7* are also included herein (SEQ ID NO:29, SEQ ID NO:30, SEQ ID NO:31 AND SEQ ID NO:32, respectively; Table 2 and Table 3), and the ORFs listed in ascending 10 numbers for instant recognition.

TABLE 3

	Gene	Original Strand SEQ ID NO:	Complementary Strand SEQ ID NO:	ORF Starts at (bp #)	ORF Ends at (bp#)	Length of ORF (Amino Acid Residues)
15	<i>STR1</i>	15	29†	54	1799	582
	<i>STR3</i>	17	30†	78	1094	339
	<i>STR4</i>	19†		2	2368	789
	<i>STR5</i>	21	31†	55	699	215
	<i>STR6</i>	23†		3	1955	651
20	<i>STR7</i>	25	32†	279	956	226

† Denotes strand with open reading frame (ORF)

To determine how strongly each gene suppressed 25 telomeric silencing, viability in the absence of uracil was quantified for the strains that contained the telomeric *URA3* gene and each of the highly expressed genes. All the genes suppressed silencing of the telomeric *URA3*, although a hierarchy of suppression was 30 observed (FIG. 7A).

All previously identified genes known to be required for telomeric silencing are also known to be involved in

- 178 -

transcriptional silencing at two internal chromosomal sites, the *HML* and *HMR* loci, which harbor the unexpressed copies of the mating type genes in *S. cerevisiae* (Aparicio et al., 1991). To determine whether the newly 5 isolated suppressors of telomeric silencing also affect silencing at *HML*, the expression plasmids were introduced into a strain in which the *URA3* gene was inserted into the *HML* locus (Mahoney & Broach, 1989).

10 Overexpression of the novel gene *TLC1* (*STR2*) had no effect on silencing at *HML*, but strongly suppressed telomeric silencing of *URA3* and *ADE2* (FIG. 7B). The *SIR4* and *ASF1* genes, whose overexpression was previously known to disrupt silencing both at telomeres and at *HML* 15 (Marshall et al., 1987), as well as *STR1*, *STR4*, and *RRP3* genes, derepressed *HML* very well (FIG. 7B). Overexpression of *RPL32*, *STR3*, *STR5* and *STR6* had intermediate effects at *HML* (FIG. 7B).

20

EXAMPLE XI

Detailed Analysis of the TLC1 Gene and RNA

To define the components of telomerase activity, the 25 telomerase template RNA from *S. cerevisiae* is used in conjunction with classical and molecular genetic techniques to identify the previously elusive telomerase proteins.

30 Telomere length in *S. cerevisiae* is normally under tight genetic control; telomeres do not grow infinitely long, nor do they become drastically shortened. In addition, a 3' tail is detected at the end of yeast chromosomes late in S-phase. Taken together these observations suggest that telomerase activity is 35 regulated, most likely being limited to late S-phase of the cell cycle. There are numerous mechanisms to explain the proposed modulation of telomerase activity in a cell.

- 179 -

At a first level of evaluation the models can be divided into those in which (1) the RNA is regulated (the RNA is the limiting component), (2) a different component of telomerase activity (mostly likely a protein) is 5 regulated, or (3) that telomerase activity is constitutive and access to its substrate (the 3' end of the chromosome) is regulated. Validity of these models concerning telomerase regulation is determined as follows.

10

A. Fine Structure Analysis of the TLC1 RNA

To determine the 5' and 3' ends of the telomerase RNA, standard techniques, such as S1 and ribonuclease 15 protection (for both the 5' and 3' ends), and primer extension (for the 5' end) are used (Sambrook et al., 1989). By using this combination of methods, the physical ends of the RNA are identified.

20

Typically, non-translated RNAs do not have a polyA⁺ tail. However, of the nine TLC1 cDNA clones isolated in the earlier genetic selection/screen, four had adenine tracts of 5-20 nucleotides at their 3' ends. A recently published method is available for determining the precise 25 sequence of 3' ends of messages, irrespective of whether they have a long, a short or no poly-A tail (Liu & Gorovsky, 1993). The method uses T4 RNA ligase to attach a DNA oligonucleotide to the 3' end of RNA molecules, followed by cDNA synthesis, PCR amplification, cloning 30 and sequencing. This method is capable of detecting a poly-A⁺ transcript if it is represented in only a few percent of the TLC1 RNA population.

The inventors currently believe that the yeast 35 telomerase RNA is not poly-adenylated, but that the subset of TLC1 cDNAs with poly-A tracts that the inventors isolated represent a by-product of the cDNA

- 180 -

synthesis. However, if the telomerase RNA is polyadenylated in *S. cerevisiae*, it may represent another level of control. For instance, genes involved in poly-A⁺ addition, degradation and message localization 5 have been identified in yeast, and may be important in regulating *TLC1* activity (Muhlrad & Parker, 1992).

B. *TLC1* RNA Expression and Cell-Cycle

10 A simple mechanism for limiting telomerase activity to a specific period of the cell cycle, is to regulate the presence of the telomerase RNA. Therefore the steady-state levels of the *TLC1* RNA through the cell cycle are determined. Methods are available to bring a 15 culture of yeast cells into a synchronized progression through the cell cycle, or to arrest the cells at specific stages (Aparicio & Gottschling, 1994). For instance, *MATa* cells are arrested in late G1 with α-factor or a conditional cell-cycle arrest mutation. 20 Steady state RNA levels are then isolated and analyzed. In addition, the cells are later released from the arrest and allowed to progress synchronously through the cycle, with RNA samples being taken at various times after release. The cell cycle position of the cell population 25 is determined by examining cell morphology and RNA levels of genes known to be cell-cycle regulated (e.g. *CLN2* and *SWI5*). During the analysis of the *TLC1* RNA, any changes in transcript length, particularly if a fraction of the RNA is modified, such as by poly-adenylation, is noted. 30 A cell-cycle change may be the result of cell-cycle regulated transcription or a post-transcriptional event such as RNA degradation.

C. Characterizing the *TLC1* Gene

35

The inventors verified that the cDNA clones of *TLC1* isolated are identical to the genomic sequences. Thus,

- 181 -

it does not appear that any major sequence modifications occur to the telomerase RNA after transcription, such as RNA splicing or editing (Moore et al., 1993; Bass, 1993), although the possibility of post-transcriptional
5 modifications, such as methylation (Reddy & Busch, 1988), cannot presently be ruled out.

The precise positioning of *TLC1* within the genome, and the sequences of the gene's transcriptional control
10 elements, was also determined by the inventors. The 3' ends of *TLC1* and *CSG2* converge from opposite directions. The *CSG2* gene has a predicted ORF that terminates within 50 bp of the 3' end of the *TLC1* cDNA sequences. On the opposite side of *TLC1*, *PDX3* has a divergent transcript
15 with an ORF beginning ~650 bp from the 5' end of the *TLC1* cDNA sequences. Analysis of this intervening 650 bp, particularly in the region within 200bp of the predicted *TLC1* 5' end, reveals matches or very near matches to TATA elements, GCN4 (Hill et al., 1986) and HOMOL1 (Rotenberg & Woolford, Jr., 1986) consensus binding sites (both are
20 transcriptional activators that bind to Upstream Activating Sequences (UAS)), and to A block and B block sites (Geiduschek & Tocchini-Valentini, 1988, RNA Polymerase III control elements). Thus at this point,
25 *TLC1* may be transcribed by either Pol II or Pol III.

In order to determine which polymerase transcribes the gene, the steady state level of the *TLC1* message in strains containing a conditional temperature sensitive
30 allele of either Pol II or Pol III is examined, after the cells have been shifted to a non-permissive temperature (Gudenus et al., 1988; Kolodziej & Young, 1991). This analysis, in concert with 5' deletion analysis, allows the RNA polymerase that transcribes the gene to be
35 determined. Sequences for two known cell-cycle specific control elements, an Mlu I site or *SWI4/SWI6* consensus binding site (Nasmyth, 1993; Primig et al., 1992), are

- 182 -

not present upstream of *TLC1*. Thus it is unlikely that *TLC1* transcription is regulated by either of these cell-cycle dependent pathways.

5 The minimum extent of the sequences, both 5' and 3' of *TLC1*, that are required on a single-copy CEN plasmid to complement the chromosomal null mutation *tlc1::LEU2* are determined using, e.g., the plasmid pAZ1 (obtained from Teresa Dunn, Beeler et al., 1994), which contains a
10 5.5 kbp *Sal I* fragment that encodes all of *CSG2* and *TLC1*, and most of *PDX3*. Using restriction enzymes and exonucleases the essential sequences are determined. The reduced size of the gene fragment will greatly facilitate further mutant analysis, and the 5' deletion analysis
15 will determine which UAS-promoter elements are essential for expression, thereby facilitating the creation of a conditional mutant with a heterologous UAS/promoter.

20 D. **Constructing an Allele of *TLC1* that is Regulated by a Heterologous Promoter**

In order to facilitate *in vivo* studies on *TLC1*, a conditional allele of the gene is useful. A chimeric fusion of the *TLC1* gene placed under the regulation of a
25 heterologous promoter/UAS is contemplated. Based on data from the *TLC1* DNA sequence, the 5' end of the *TLC1* RNA, and determining what sequences at the 5' end of the gene are essential for *TLC1* expression, the *TLC1* upstream region is then replaced with the control elements of the
30 *MET3* gene (Cherest et al., 1987). The *MET3* promoter is repressed in the presence of methionine and induced when methionine is absent from the medium. *MET3* transcriptional fusions to a number of RNA Pol II transcribed genes have been described. The *GAL1,10* UAS
35 may also be used (Johnston & Davis, 1984). If *TLC1* is transcribed by Pol III, the bacterial tetracycline repressor-operator system may be used to regulate the

- 183 -

TLC1 gene. A Pol III-transcribed gene has been shown to be regulated by this system when the *tetO* operator sequence was introduced near the 5' end of the gene in *S. cerevisiae* (Dingermann et al., 1992).

5

The plasmid shuffle technique (Sikorski & Boeke, 1991) and conditional alleles may also be used in place of heterologous promoters.

10

EXAMPLE XII

The Role of TLC1 in Additional *in vivo* Processes

A. Telomerase RNA and Single-Strand TG₁₋₃ Tails

15 A single-strand TG₁₋₃ tail at the ends of yeast telomeres is transiently detected late in S phase (Wellinger et al., 1993). This tail may be the result of elongation of the 3' strand at chromosome ends by telomerase activity. Tail formation in a *tlc1* strain 20 (Wellinger et al., 1993) is thus examined. The TG₁₋₃ tails are detected by using a Southern hybridization method in which yeast DNA is never denatured, and then hybridized with a C₁₋₃A probe. When the tails are \geq 65 nucleotides long, the probe efficiently hybridizes to the 25 single-strand of TG₁₋₃. The analysis is performed on cells that are synchronously progressing through S phase after release from an α -factor arrest (late G1), or a *cdc7* arrest (G1-S boundary). In a wild type (TLC1) cell the same results as previously observed are expected, but 30 in a *tlc1*⁻ strain, no tail detection is contemplated. However, if a single-strand tail is still observed in a *tlc1*⁻ strain, then the tail is likely to be formed by a telomerase-independent mechanism. For instance, the tail may be formed by loss of terminal 5' C₁₋₃A strand 35 sequences, the result of a cell-cycle controlled exonuclease activity. The *tlc1* allele used in this study is a conditional allele placed under a heterologous

promoter. Alternatively, young (< 50 generations old) haploid cells, the spore products of a *TLC1/tlc1* diploid strain, are used.

5 The role of *EST1* in tail formation (Lundblad & Szostak, 1989) is also examined. If tail formation is dependent upon both *TLC1* and *EST1*, it lends support that *EST1* is part of telomerase, or regulates its activity. Alternatively, if the tail is only dependent upon *TLC1*,
10 it suggests that *EST1* may be important in another aspect of telomere replication, perhaps in synthesis of the 5' strand.

B. Telomerase RNA and Healing Broken Chromosome Ends

15 When a chromosome is broken, two non-telomeric DNA ends are generated; these ends are unstable. One mechanism for stabilizing ends is to 'heal' them by the addition of telomeric sequences. Telomerase activity may
20 provide a major mechanistic pathway for healing by adding telomere DNA *de novo* to the broken ends (Kramer & Haber, 1993; Harrington & Greider, 1991). An alternative pathway, which has been documented in *S. cerevisiae* and *Drosophila*, utilizes recombinational mechanisms
25 (Biessmann & Mason, 1992).

30 To test telomere healing, a Haber-based assay is used (Kramer & Haber, 1993). In this system, a recognition sequence for the *HO* endonuclease is located at a unique site in the genome of a diploid cell (on only one of the homologues), with marker genes on either side of it. The *HO* endonuclease is then conditionally expressed (it is under control of a galactose-dependent promoter) and results in cleavage of the single
35 homologue. The strain is *rad52*⁻, which eliminates the major mitotic recombination pathway in yeast, thus preventing repair of the broken chromosome by gene

- 185 -

conversion from the uncut homologue, or telomere healing by the recombination pathway (Lundblad & Blackburn, 1993). By selecting for cells that retain a marker centromere proximal to the cut site, and loss of a marker 5 telomere proximal to the cut, healed chromosomes are identified. A diploid cell is required in this system, because essential genes are lost distal to the cut site; these gene functions are provided by the uncut homologue.

10 The inventors have designed a new genetic system, improved (FIG. 8) in several important ways: (1) The unique *HO* cleavage site is introduced at the *ADH4* locus into a haploid strain. *ADH4* and the sequences distal to it are non-essential for haploid growth; thus, they may 15 be lost without apparent consequence (Gottschling, 1990). The haploid nature of the strain is of particular use in genetic identification and analyses of recessive mutations. (2) A short tract of TG_{1-3} is placed centromere-proximal of the *HO* cleavage site. This 20 sequence serves as a 'seed' for the healing event, thus increasing the probability that a stable chromosome will be recovered. Correlative evidence from healed chromosomes in both yeast and humans indicate that normal occurrences of such sequences at internal chromosomal 25 loci are the major sites of *de novo* telomere addition (Kramer & Haber, 1993; Harrington & Greider, 1991). (3) The *LYS2* gene is located on the telomere-proximal side of the *HO* site, and *HIS3* is located on the centromere-proximal side of the TG_{1-3} sequence. The 30 combination of these two genes provides a strong genetic selection for the healing event. The loss of *LYS2*, and hence loss of the region distal to the cut site, is selected by growth on α -amino adipate (α -AA) (Zaret & Sherman, 1985). Simultaneous selection for *HIS3* (growth 35 in the absence of histidine) ensures that sequences centromere-proximal to the cleavage site are still present (Aparicio & Gottschling, 1994).

- 186 -

The strain contains one additional difference, the *TLC1* gene is a conditional allele, under control of the *MET3* promoter. Loss of *TLC1* function is accomplished by turning off the *MET3* promoter (by the addition of 5 methionine to the media), thus allowing the requirement for *TLC1* function in telomere healing to be tested.

It is expected that when *HO* endonuclease is expressed (by the presence of galactose in the medium) in 10 *TLC1*⁺ cells, the VII-L chromosome will be cleaved at the *HO* site. Those cells that have formed a new telomere at or near the *TG₁₋₃* 'seed' sequences, and have lost the distal *LYS2* gene (presumably to nuclease degradation, inability to replicate, or missegregation) will be 15 selected on -his +α-AA plates. The selection will be imposed on the cells several generations after *HO* cleavage. This is to avoid phenotypic lag during α-AA selection, due to the initial presence of the *LYS2* gene product.

20 It is expected that *HO* endonuclease cleavage will occur in nearly 100% of the cells in the population (FIG. 8), and that at least 1/1000 cells will heal at the *TG₁₋₃* 'seed' (Kramer & Haber, 1993). Those chromosomes 25 that do not heal at the 'seed' may form a new telomere at a more centromere-proximal chromosomal position, or be completely lost. In the event an essential gene or the entire chromosome is lost, the cell is inviable; if a new telomere is formed at a viable chromosomal location, the 30 cell will be His⁻. To verify that the telomere has indeed healed as expected, Southern analysis of the chromosome in this region is performed. When the study is repeated in the absence of functional *TLC1* gene product, it is expected that no growth will be observed 35 on -his +α-AA media. In fact, the process of *HO* cleavage in *tlc1*⁻ cells may result in complete inviability, as the lack of telomerase activity to 'heal' the broken

- 187 -

chromosome end may result in chromosome loss. If growth on -his + α -AA media is observed in tlc1 cells, it may be the result of a loss of function mutation in the LYS2 gene in a small subset of cells where cleavage did not 5 occur (this is determined by Southern analysis).

Of course, the original diploid system developed by Haber may be used in this analysis. The assays used to characterize loss of TLC1 and EST1 function *in vivo*, 10 namely a decrease in telomere length and cell viability with increased age of a culture (in a rad52 strain), can also be used for further analysis (Lundblad & Blackburn, 1989).

15

EXAMPLE XIII

Genetic Dissection of TLC1 RNA

The telomerase RNA molecule is dissected to identify regions that are essential for telomerase activity and to 20 define regions that interact with other telomerase components. Two different genetic approaches are used. First, the technique that resulted in the original identification of TLC1, namely, overexpression of TLC1 cDNAs to suppress telomeric silencing. Limited sequences 25 within the RNA that are responsible for the suppression are defined. These regions will interact with other telomerase components and are useful in identifying these components.

30

Second, methods used to dissect small nuclear RNAs (snRNAs) and their function in yeast (Parker, 1989; Guthrie & Patterson, 1988) are adapted. Here mutants of TLC1 are constructed and tested for *in vivo* functions, such as the ability to 'heal' broken chromosomes or form 35 single-stranded tails late in S phase. Again, important regions of the RNA are identified and used to isolate interacting components.

- 188 -

Methods to identify important regions of snRNAs include phylogenetic comparisons of each type of RNA (e.g. U1, U2, etc.) (Miraglia et al., 1991; Ares, Jr., 1986; Ares, Jr., & Igel, 1990). Conserved sequences and 5 secondary structures in the RNA molecules of different species have been analyzed. Comparisons between telomerase RNAs from a variety of ciliates have suggested conserved secondary structures, while little conservation at the primary sequence level is detected (Lingner 10 et al., 1995; Romero & Blackburn, 1991). So far, conserved sequences or structures between the 1.3 kb TLC1 RNA and the much smaller ciliate RNAs (the largest is 200 nucleotides) have not been identified, but continued analyses may yield useful information. While a similar 15 size difference is seen between the long U2 snRNA from *S. cerevisiae* and the smaller U2's in vertebrates, conserved primary sequences between U2 RNAs facilitated structural alignments that identified critical stems and loops in the RNA.

20

A. Minimal Sequence Elements in TLC1 RNA that Suppress Telomeric Silencing

The same strains and expression vector used to 25 identify TLC1 cDNAs are used to identify limited regions of the telomerase RNA that suppress telomeric silencing. The full length telomerase RNA is examined to determine whether it has the ability to suppress silencing at high levels. While this molecule is expected to suppress very 30 well, it is possible that only truncated, non-functional telomerase RNAs have this phenotype when overexpressed (a dominant-negative phenotype) (Herskowitz, 1987). Nonetheless, the full length RNA serves as the starting point for creating 5' and 3' deletion derivatives, as 35 well as derivatives that either delete internal segments or retain a single internal element. It is contemplated that relatively small regions of the RNA (perhaps 50 bp)

- 189 -

that suppress silencing will be identified. By reducing the size, an assured interaction of a single component and the RNA fragment is determined. This increases the likelihood of identifying the component.

5

It is believed that overexpression of *TLC1* causes suppression of telomeric silencing because the RNA titrates away a limited component in the cell. To determine whether the limited component is part of 10 telomerase, part of the telomeric silencing machinery, or plays a role in both complexes, each of the *TLC1* overexpression derivatives are tested in other assays, e.g., in particular, the telomere 'healing' assay that can be performed quantitatively. The derivatives that 15 have the strongest effect in reducing the frequency of healing are the best candidates for a telomerase-specific interaction.

This titration assay is contemplated for use in 20 identifying telomerase RNA structures that are conserved between species. For instance, the telomerase RNA from a ciliate such as *Oxytricha* may act to suppress telomeric silencing when expressed at high levels, if the *Oxytricha* RNA is able to interact with a conserved telomerase 25 component in yeast. If such structural conservation occurs, this assay is then useful for isolating telomerase RNAs from species in which the RNA has not yet been isolated, such as from humans.

30 **B. Creating *TLC1* Mutants**

A second method to identify important regions of the 35 *TLC1* RNA that may interact with other telomerase components involves making loss of function mutations in the RNA, excluding the template region. With an RNA as large as the *TLC1* transcript, such mutations are relatively easy to isolate and, indeed, specific regions

- 190 -

of the RNA will be mutated. Either site-directed or limited random mutations to regions of *TLC1* for which there is evidence of a conserved secondary structure, or for interaction with other telomerase components, are thus made. Such regions of *TLC1* RNA include those that can suppress telomeric silencing when overexpressed, or contain predicted secondary structures that are conserved between *TLC1* RNA and telomerase RNAs from other species. These mutations may define dominant, semi-dominant, or recessive alleles of *TLC1*.

Screening for recessive mutations is first advised because they can be more easily manipulated. Conditional alleles that are sensitive to temperature or moderate structural perturbations, such as low concentrations of formamide or D₂O, typically are of greater utility identifying interacting proteins than mutations which are complete loss of function (Huffaker et al., 1987; Bartel & Varshavsky, 1988). These alleles are isolated by a "plasmid shuffle" scheme (Sikorski & Boeke, 1991): One centromere plasmid that contains both the *URA3* and wild type *TLC1* genes is introduced into a strain deleted for the normal chromosomal copy of *TLC1* and containing the required genotype for the telomere 'healing' assay. A second centromere plasmid, with a different selectable marker such as *TRP1*, carries a mutated *TLC1* gene. The mutagenized plasmid(s) are then transformed in the appropriate yeast strain, and a screen for conditional alleles of *TLC1* is carried out.

Mutants of interest are those that allow a transformant to "heal" telomeres on -trp +FOA medium (losing the wild type *TLC1-URA3* plasmid and retaining the mutant version, which still functions) only when grown at the permissive temperature. At the nonpermissive temperature, such strains are unable to heal telomeres in the presence of FOA because healing is dependent on

154

- 191 -

wild-type *TLC1* RNA (growth on FOA can only occur in the absence of the *URA3* gene product (Boeke et al., 1987). The relative ability of these alleles to function in the healing assay is quantified by determining the frequency 5 of chromosome healing. The quantitative analysis is useful in classifying the alleles and isolating either suppressors or enhancers. The *TLC1* alleles are also screened in other assays, such as formation of single-strand tails, to determine if there are 10 mechanistic differences between the alleles.

EXAMPLE XIV

Isolation of Genes that Interact with *TLC1*

15 Based on the two types of *TLC1* derivatives created, genetic screens are carried out to isolate genes whose products interact with the telomerase RNA.

20 **A. Genes that Re-Establish Telomeric Silencing when
TLC1 RNAs are Overexpressed**

This approach is based on the model that when parts 25 of the *TLC1* RNA are overexpressed, they interact with a limiting telomerase component to form a non-functional complex. This reduces the level of telomerase activity in the cell, causing reduced telomere length, and the reduction in telomere length decreases the frequency with which telomeric silencing complexes are assembled. Thus, if the concentration of the component is increased such 30 that it is no longer limiting, telomeres become longer and telomeric silencing is re-established.

In this approach, the small *TLC1* fragment(s) are expressed at a level that is only slightly higher than 35 necessary for suppression of telomeric silencing. This way, only a small amount of the limiting component is needed to re-establish silencing. The threshold

- 192 -

concentration for the *GAL1-TLC1* RNA fragment to suppress telomeric silencing is determined by decreasing the concentration of galactose in the medium; expression from this promoter is modulated by galactose concentration.

5 The actual threshold is determined by measuring steady-state RNA levels as a function of telomeric silencing. If a threshold concentration is achieved, the construct is integrated into the genome to help keep the *TLC1* RNA fragment level constant.

10

Once a suitable concentration of the *TLC1* fragment is established, the gene encoding the limiting telomerase component is isolated by identifying an overexpression plasmid that, when introduced into this strain, 15 re-establishes silencing. Yeast plasmid libraries that may be used include high copy genomic libraries and cDNA libraries, e.g., driven by the *ADH1* promoter (obtainable from S. Elledge).

20

Candidate plasmids are isolated by a reversal of the selection procedure used to originally identify *TLC1*. The starting strain contains the construct that expresses the *TLC1* fragment at high levels in addition to having two telomeres marked, one with *ADE2* the other with *URA3*.

25

In this strain, telomeric silencing is suppressed by the expression of the *TLC1* fragment; the cells are sensitive to growth on FOA (*URA3*⁺), and are white (*ADE2*⁺). When silencing is re-established, the cells are able to grow on FOA (FOA^R; *ura3*) and form red/white sectored colonies

30

(red=*ade2*). After the library plasmids are transformed into the strain, re-establishment of silencing is selected/screened by growth of red/white colonies on FOA. In addition to components that interact with *TLC1*, some plasmids may be isolated that affect the expression level 35 of the *GAL1*-driven *TLC1* fragment. This class is identified by examining the steady state level of the *TLC1* RNA fragment. This class may represent genes that

- 193 -

negatively regulate *GAL1* transcription, or genes that regulate RNA stability.

However, it is also possible that more than one gene product may be limiting in the titration; for example the RNA fragment may be bound by a dimeric complex, with the two components at low concentration in the cell. The limiting factor may be lethal to yeast cells at high concentration, "fouling" an essential cellular function. Therefore, the *TLC1* RNA fragment may be used to probe a *lgt11* yeast cDNA expression library. An *in vitro* synthesized ^{32}P -labeled RNA, identical to that defined *in vivo*, is used to probe a set of filters containing phage plaques. Those plaques that contain a cDNA expressing a *TLC1* interacting protein are isolated by virtue of their ability to bind the radioactive probe.

For those plasmids that are candidates for encoding a *TLC1* interacting component, the DNA necessary for the effect is determined and subjected to sequence analysis. Putative genes are then subjected to the same analyses used to identify *TLC1* as a telomerase component. That is, examining telomere length and cell viability in a strain with a null mutation of the gene and the gene is characterized in biochemical analyses.

B. Modifiers of Conditional *TLC1* Mutations

A more classical approach for identifying components that interact with telomerase RNA may be used, e.g., by isolating mutations that enhance or suppress the phenotypes of conditional alleles of *TLC1* (as created above). This genetic approach has been successfully utilized in identifying components from many complex biological systems, including proteins that interact with snRNAs involved in splicing (Parker, 1989; Guthrie & Patterson, 1988).

- 194 -

Mutations that suppress the defect of telomere healing in conditional alleles of *tlc1* under non-permissive conditions are isolated. The starting strain includes the "healing" set-up in addition to a specific conditional allele of *tlc1*. At non-permissive temperatures, this strain is unable to grow on -his+α-AA medium after HO endonuclease induction (or as noted, induction may be lethal), the result of a defect in telomere healing. This strain is then mutagenized and mutations that permit 'healing' to occur (growth on -his+α-AA medium) are isolated. The strains containing the suppressors are back-crossed to a parent strain (congenic with the starting strain except the opposite mating type) and the resulting diploid is sporulated and tetrads dissected. After several such backcrosses to isolate the suppressor mutation from other mutations that may have been introduced during mutagenesis, the suppression phenotype is checked to see that it segregates 2:2. Once isolated, the suppressor is crossed to strains containing other *tlc1* alleles to determine if it acts specifically on the allele from which it was isolated. If there is allele specificity, then the suppressor mutation interacts with *TLC1* RNA *in vivo* (Huffaker et al., 1987). If not, there is still a high probability that the suppressor interacts with *TLC1*. Possible suppressor linkage to *tlc1* mutations are also determined.

The strategy to isolate the gene encoding the suppressor depends on whether the mutation is dominant, semi-dominant, or recessive, and whether the mutation has additional phenotypes that may be followed. Dominant mutations are currently preferred. A centromere-based genomic DNA library made from the strain containing the suppressor is used to transform the non-mutated 'healing', *tlc1* strain. Those plasmids that permit

- 195 -

telomere healing, as described above, and do not encode the wild type *TLC1* gene, carry the suppressor gene.

An alternative method is to isolate genes that
5 suppress a mutation when in high dosage (Bender & Pringle, 1991). Suppressors can thus be screened for by transforming with a high copy genomic library and isolating plasmids that suppress the telomere healing defect.

10

Enhancers of the conditional *TLC1* alleles grown at permissive or semi-permissive temperatures may also be isolated, as has been successful in identifying interacting components within many biological processes
15 of yeast (Frank et al., 1994).

C. Continued Characterization of the *STR* Genes

Two of these genes, *STR5* and *STR6* have a much
20 stronger affect on telomeric silencing than on silencing at *HML* though not as strikingly as *TLC1* does (Example X; FIG. 7A, FIG. 7B). If null mutations of these genes have similar effects on telomeres as those seen in *tlc1*⁻strains, they are excellent candidates for being
25 components of telomerase.

EXAMPLE XV

BIOCHEMICAL APPROACHES TO TELOMERASE

30 Telomere DNA binding proteins from *Oxytricha* have been isolated and characterized (Gottschling & Zakian, 1986). *In vitro* transcription assays with yeast extracts and proteins have also yielded low abundance transcription factors (Parthun & Jaehning, 1992).
35 Therefore, protein elements of telomerase are isolatable.

- 196 -

A. Biochemical Characterization of the
Ribonucleoprotein Complex Associated with *TLC1* RNA

To examine the physical association of genes with
5 *TLC1*, procedures used to isolate small nuclear
ribonucleoprotein particles (snRNPs) are adapted
(Luhrmann, 1988). The approximate steady state
concentration of *TLC1* RNA within cells is first
determined, by comparing the amount of the RNA isolated
10 from a given number of cells with a dilution series of *in*
vitro transcribed *TLC1* RNA. The information obtained
from this analysis indicates how much telomerase activity
and associated protein is in a cell, and serves as an
indicator for enrichment of the *TLC1* ribonucleoprotein
15 complex during fractionation procedures.

The first fractionation step separates the nucleus
and the cytoplasm, using procedures described for other
ribonucleoprotein complexes in yeast (Hopper et al.,
20 1990). It is expected that all *TLC1* RNA will be
localized to the nucleus, however a cytoplasmic location
is not excluded. In the event *TLC1* RNA is in the
cytoplasm, the fractionation is performed on cells that
are arrested at various points in the cell cycle (with
25 pheromone, *CDC* mutations, or chemicals).

Next, with RNA in the nucleus, a nuclear extract is
made and fractionated to give a *TLC1* RNA associated
particle e.g., by a combination of gradient
30 centrifugation methods (equilibrium and sedimentation
velocity), column chromatography steps, including
gel-filtration, ion-exchange, hydrophobic/ion-exchange,
and agarose beads linked to dyes and other ligands, and
gel electrophoresis (Luhrmann, 1988). In addition,
35 buffer and ion conditions are carefully monitored as they
can affect the stability of the particle (Roth et al.,
1991). An affinity column for *TLC1* RNA is also

- 197 -

contemplated, e.g., as is created by synthesizing a biotinylated DNA oligonucleotide that is complementary to the RNA's template sequence. The oligonucleotide, which will hybridize to the RNA in the particle, is then 5 tethered to streptavidin beads (Kijas et al., 1994).

As a first use of the fractionation, the fate of EST1 may be followed using protein anti-EST1 antibodies (available from Dr. V. Lundblad) as genetic evidence 10 suggests that it may be part of or regulate telomerase (Lundblad & Szostak, 1989). It is contemplated that extracts from two different mutants that both have 'defective' particles will be combined to generate a fully assembled particle, thus allowing insights into the 15 particle's biogenesis.

Reagents, such as antibodies, to proteins identified in the genetic screens are also contemplated.

20 B. *In vitro Assay for Telomerase Activity from S. cerevisiae*

Telomerase activity has been biochemically identified from several ciliates and vertebrates, 25 including human cells. However, prior to the present invention, telomerase activity had not been biochemically detected in *S. cerevisiae*. Now assays are available, based partly on those previously described (Greider & Blackburn, 1985; Mantell & Greider, 1994; Prowse et al., 30 1993; Autexier & Greider, 1994; Greider & Blackburn, 1987), in which a DNA oligonucleotide substrate, representing the 3' G-rich telomere tail, is incubated in extracts with ³²P-labeled dNTP's (typically dGTP or dTTP). The products of telomerase elongation on the 35 input oligonucleotide substrate are then detected by gel electrophoresis and autoradiography.

- 198 -

Identifying the TLC1 RNA and its sequence will likely assist in isolating the activity. To identify telomerase activity in yeast, buffer conditions that have been successful in other systems are used and damaging nucleases are removed. In addition, extracts from strains that are deficient in several of the major proteases (Jones, 1991), and use cocktails of protease inhibitors that have been successfully used for *in vitro* transcription (Parthun & Jaehning, 1992) are employed.

10

A series of substrates, ones that are perfectly complementary to the template, are truncated on their 3' end by one or a few nucleotides, or are simply alternating tracts of (GT)_n are used in isolation studies, and very short oligonucleotide products are also analyzed. As telomerase activity in yeast may be very tightly regulated, and limited to only a brief period of the cell cycle, (Wellinger et al., 1993), extracts from cells isolated in a synchronous population late in S phase are also to be used.

25

All of the compositions and methods disclosed and claimed herein can be made and executed without undue experimentation in light of the present disclosure. While the compositions and methods of this invention have been described in terms of preferred embodiments, it will be apparent to those of skill in the art that variations may be applied to the composition, methods and in the steps or in the sequence of steps of the method described herein without departing from the conce ., spirit and scope of the invention. More specifica. y, it will be apparent that certain agents that are both chemically and physiologically related may be substituted for the agents described herein while the same or similar results would be achieved. All such similar substitutes and

* * *

- 199 -

modifications apparent to those skilled in the art are deemed to be within the spirit, scope and concept of the invention as defined by the appended claims.

- 200 -

REFERENCES

- The following references, to the extent that they provide exemplary procedural or other details supplementary to those set forth herein, are specifically incorporated herein by reference.
- 5 Abraham, "Regulation of mating-type information in yeast: negative control requiring sequences both 5' and 3' to the regulated region", *J. Mol. Biol.*, 176:307-331, 1984.
- 10 Agard & Sedat, "Three-dimensional architecture of a polytene nucleus", *Nature*, 302:676-81, 1983.
- 15 Alani et al., "A method for gene disruption that allows repeated use of URA3 selection in the construction of multiply disrupted yeast strains", *Genetics*, 116:541-545, 1987.
- 20 Alberts & Sternglanz, "Chromatin contract to silence", *Nature*, 344:193-194, 1990.
- Alberts et al., "Molecular Biology of the Cell", (New York: Garland Publishing Inc.), 1219, 1989.
- 25 Allsopp et al., "Telomere Length Predicts Replicative Capacity of Human Fibroblasts," *Proc. Natl. Acad. Sci. U.S.A.*, 89(21):10114-10118, 1992.
- 30 Aparicio et al., "Modifiers of Position Effect Are Shared Between Telomeric and Silent Mating-Type Loci in *S cerevisiae*", *Cell*, 66:1279-1287, 1991.
- 35 Aparicio, "Telomeric Position Effect in *S. cerevisiae*: A Model for the Establishment of Alternative Transcriptional States Under Epigenetic Control", Ph.D. thesis. The University of Chicago, 1993.

- 201 -

Aparicio & Gottschling, "Overcoming telomeric silencing: a trans-activator competes to establish gene expression in a cell cycle-dependent way," *Genes Dev.*, 8:1133-1146, 1994.

5

Ares, "U2 RNA from yeast is unexpectedly large and contains homology to vertebrate U4, U5, and U6 small nuclear RNAs," *Cell*, 47(1):49-59, 1986.

10 Ares & Igel, "Mutations define essential and nonessential U2 RNA structures," *Mol Biol Rep.*, 14(2-3):131-132, 1990.

Ausubel et al., "Current Protocols in Molecular Biology", 1989.

15

Autexier & Greider, "Functional reconstitution of wild-type and mutant *Tetrahymena* telomerase," *Genes Dev.*, 8(5):563-575, 1994.

20

Bach, "Evidence for transcriptional regulation of orotidine-5'-phosphate decarboxylase in yeast by hybridization of mRNA to the yeast structural gene cloned in *Escherichia coli*", *Proc Natl Acad Sci U S A*, 76:386-90, 1979.

25

Baker, "Position-effect variegation", *Adv. Genet.*, 14:133-169, 1968.

30

Bartel & Varshavsky, "Hypersensitivity to heavy water: a new conditional phenotype," *Cell*, 52(6):935-941, 1988.

Bass, "RNA Editing: New Uses for Old Players in the RNA World," In: *The RNA World*, Gesteland & Atkins, Eds., Cold Spring Harbor Press, p. 383-418. 1993.

35

Basson et al., "Identifying mutations in duplicated functions in *Saccharomyces cerevisiae*: recessive

- 202 -

- mutations in HMG-CoA reductase genes", *Genetics*, 117:645-655, 1987.
- Becker & Guarente, "High-efficiency transformation of yeast by electroporation", *Meth. Enzymol.*, 194:182-187, 1991.
- Beeler et al., "A novel protein, CSG2, is required for Ca²⁺ regulation in *Saccharomyces cerevisiae*," *J. Biol. Chem.*, 269(10):7279-7284, 1994.
- Bender & Pringle, "Use of a screen for synthetic lethal and multicopy suppressed mutants to identify two new genes involved in morphogenesis in *Saccharomyces cerevisiae*," *Mol Cell Biol*, 11(3):1295-1305, 1991.
- Berben et al., "The YDp plasmids: a uniform set of vectors bearing versatile gene disruption cassettes for *Saccharomyces cerevisiae*", *Yeast*, 7:475-477, 1991.
- Berman et al., "Identification of a telomer-binding activity from yeast," *Proc. Natl. Acad. Sci. U.S.A.*, 83(11):3713-3717, 1986.
- Biessmann & Mason, "Genetics and molecular biology of telomeres," *Advances in Genetics*, 30:185-249, 1992.
- Blackburn, "Telomeres: structure and synthesis", *J Biol Chem*, 265:5919-21, 1990.
- Blackburn, "Structure and Function of Telomeres", *Nature*, 350:569-573, 1991.
- Blackburn, "Telomerase," In: *The RNA World*, Gesteland & Atkins, Eds., Cold Spring Harbor Laboratory Press, pp. 557-576, 1993

- 203 -

Blackburn, *Cell*, 77:621, 1994.

Blobel, "Gene gating: A hypothesis", *Proc. Natl. Acad. Sci., U.S.A.*, 82:8527-8529, 1985.

5

Boeke et al., "A positive selection for mutants lacking orotidine-5'-phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistance", *Mol Gen Genet*, 197:345-6, 1984.

10

Boeke et al., "5-Fluoroorotic acid as a selective agent in yeast molecular genetics", *Methods Enzymol*, 154:164-75, 1987.

15

Boeke et al., "A positive selection for mutants lacking orotidine-5'-phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistance", *Mol Gen Genet*, 197:345-6, 1984.

20

Borst, "Molecular genetics of antigenic variation", *Immunol Today*, 12:A29-33, 1991.

25

Brand, "Characterization of a 'silencer' in yeast: a DNA sequence with properties opposite to those of a transcriptional enhancer", *Cell*, 41:41-8, 1985.

30

Brand et al., "A yeast silencer contains sequences that can promote autonomous plasmid replication and transcriptional activation", *Cell*, 51:709-19, 1987.

35

Braunstein et al., "Transcriptional silencing in yeast is associated with reduced nucleosome acetylation", *Genes Dev.*, 7:592-604, 1993.

35

Brisco et al., "Cloning, disruption and chromosomal mapping of yeast *LEU3*, a putative regulatory gene", *Genetics*, 115:91-99, 1987.

- 204 -

- Broach, "Transformation in yeast: development of a hybrid cloning vector and isolation of the *CAN1* gene", *Gene*, 8:121-133, 1979.
- 5 Brown, "The role of stable complexes that repress and activate eukaryotic genes", *Cell*, 37:359-365, 1984.
- Brown, "Heterochromatin", *Science*, 151:417-425, 1966.
- 10 Brunelli, J. P. and M. L. Pall, *Yeast*, 9:1299-, 1993.
- Brutlag, D.L. et al. (1990) *CABIOS*, 6:237-245.
- 15 Buchman et al., "Two DNA-binding factors recognize specific sequences at silencers, upstream activating sequences, autonomously replicating sequences, and telomeres in *Saccharomyces cerevisiae*", *Mol Cell Biol*, 8:210-25, 1988.
- 20 Budarf & Blackburn, "Chromatin structure of the telomeric region and 3'-nontranscribed spacer of *Tetrahymena* ribosomal RNA genes", *J Biol Chem*, 261:363-9, 1986.
- 25 Button & Astell, "The *Saccharomyces cerevisiae* chromosome III left telomere has a type X, but not a type Y', ARS region", *Mol Cell Biol*, 6:1352-6, 1986.
- 30 Campbell, in *Monoclonal Antibody Technology, Laboratory Techniques in Biochemistry and Molecular Biology* Vol. 13, Burden and Von Knippenberg, Eds. pp. 75-83, Amsterdam, Elseview, 1984
- Carlson et al., "Evolution of the dispersed *SUC* gene family of *Saccharomyces* by rearrangements of chromosome 35 telomeres", *Mol. Cell. Biol.*, 5:2894-2902, 1985.

- 205 -

- Casadaban et al., "b-Galactosidase gene fusions for analyzing gene expression in *Escherichia coli* and yeast", *Meth. Enzymol.*, 100:293-308, 1983.
- 5 Chan & Tye, "A family of *Saccharomyces cerevisiae* repetitive autonomously replicating sequences that have very similar genomic environments", *J Mol Biol.*, 168:505-23, 1983a.
- 10 Chan & Tye, "Organization of DNA sequences and replication origins at yeast telomeres", *Cell*, 33:563-73, 1983b.
- 15 Cherest et al., "The *Saccharomyces cerevisiae* MET3 gene: nucleotide sequence and relationship of the 5' non-coding region to that of MET25," *M&GG*, 210(2):307-313, 1987.
- 20 Choder, "A general topoisomerase I-dependent transcriptional repression in the stationary phase of yeast", *Genes Dev.*, 5:2315-2326, 1991.
- Chou and Fasman, "Prediction of Protein Conformation," *Biochemistry*, 13(2):222-245, 1974a.
- 25 Chou and Fasman, "Conformational Parameters for Amino Acids in Helical, β -Sheet, and Random Coil Regions Calculated from Proteins," *Biochemistry*, 13(2):211-222, 1974b.
- 30 Chou and Fasman, "Prediction of the Secondary Structure of Proteins from Their Amino Acid Sequence," *Adv. Enzymol. Relat. Areas Mol. Biol.*, 47:45-148, 1978a.
- 35 Chou and Fasman, "Empirical Predictions of Protein Conformation," *Ann. Rev. Biochem.*, 47:251-276, 1978b.

- 206 -

Chou and Fasman, "Prediction of β -Turns," *Biophys. J.*, 26:367-384, 1979.

Christianson et al., "Multifunctional yeast high-copy-number shuttle vectors", *Gene*, 110:119-122, 1992.

Chung et al., "Architectural organization in the interphase nucleus of the protozoan *Trypanosoma brucei*: location of telomeres and mini-chromosomes", *Embo J.*, 10: 9:2611-9, 1990.

Counter et al., "Telomere shortening associated with chromosome instability is arrested in immortal cells which express telomerase activity," *EMBO J.*, 11(5):1921-1929, 1992.

Counter et al., "Telomerase activity in human ovarian carcinoma," *Proc. Natl. Acad. Sci. U.S.A.*, 91(8):2900-2904, 1994a.

Counter et al., "Stabilization of short telomeres and telomerase activity accompany immortalization of Epstein-Barr virus-transformed human B lymphocytes," *J. Virol.*, 68(5):3410-3414, 1994b.

Cross, "Cellular and genetic aspects of antigenic variation in trypanosomes", *Annu Rev Immunol*, 8:83-110, 1990.

Dabeva and Warner, *J. Biol. Chem.*, 262:16055- , 1987.

Demerec, "Genetic behavior of euchromatic segments inserted into heterochromatin", *Genetics*, 25:618-627, 1940.

de Lange, "Activation of telomerase in a human tumor," *Proc. Natl. Acad. Sci. U.S.A.*, 91(8):2882-2885, 1994.

- 207 -

Dietzel & Kurjan, "Pheromonal regulation and sequence of the *Saccharomyces cerevisiae SST2* gene: a model for desensitization to pheromone", *Mol. Cell. Biol.*, 7:169-4177, 1987.

5

Diffley & Stillman, "Transcriptional silencing and lamins", *Nature*, 342:24, 1989.

10 Dingermann et al., "RNA polymerase III catalyzed transcription can be regulated in *Saccharomyces cerevisiae* by the bacterial tetracycline repressor-operator system," *Embo Journal*, 11(4):1487-1492, 1992.

15 Durrin et al., "Yeast histone H4 N-terminal sequence is required for promoter activation in vivo", *Cell*, 65:1023-31, 1991.

20 Edwards & Firtel, "Site-specific phasing in the chromatin of the rDNA in *Dictyostelium discoideum*", *J Mol Biol.*, 180:73-90, 1984.

25 Eissenberg, "Position effect variegation in *Drosophila*: towards a genetics of chromatin assembly", *Bioessays*, 11:14-7, 1989.

30 Elledge et al., "Lambda YES: a multifunctional cDNA expression vector for the isolation of genes by complementation of yeast and *Escherichia coli* mutations," *Proc. Natl. Acad. Sci. U.S.A.*, 88(5):1731-1735, 1991.

Ellis et al., "The pseudoautosomal boundary in man is defined by an Alu repeat sequence inserted on the Y chromosome", *Nature*, 337:81-4, 1989.

35

Fauvarque & Dura, "Polyhomeotic regulatory sequences induce developmental regulator-dependent variegation and

- 208 -

targeted P-element insertions in *Drosophila*", *Genes Dev.*, 7:1508-20, 1993.

5 Fedoroff et al., "Mutations, epimutations, and the developmental programming of the maize Suppressor-mutator transposable element", *Bioessays*, 10:139-44, 1989.

10 Feldman et al., "Identification of sites required for repression of a silent mating type locus in yeast", *J. Mol. Biol.*, 178:815-834, 1984.

Felsenfeld, "Chromatin as an Essential Part of the Transcriptional Mechanism", *Nature*, 355:219-224, 1992.

15 Ferguson & Fangman, "A position effect on the time of replication origin activation in yeast", *Cell*, 68:333-339, 1992.

20 Ferguson et al., "A yeast origin of replication is activated late in S phase", *Cell*, 65:507-515, 1991..

Fetrow & Bryant, "New Programs for Protein Tertiary Structure Prediction, " *BIOTECHNOLOGY*, 11:479-483, 1993.

25 Fleig et al., "Construction of LYS2 cartridges for use in genetic manipulations of *Saccharomyces cerevisiae*", *Gene*, 46:237-45, 1986.

30 Fleig et al., "Construction of LYS2 cartridges for use in genetic manipulations of *Saccharomyces cerevisiae*", *Gene*, 46:237-245, 1986.

Frank et al., "Architecture of the U5 small nuclear RNA," *Mol Cell Biol*, 14(3):2180-2190, 1994.

- 209 -

- Fussell, "The Position of Interphase Chromosomes and Late Replicating DNA in Centromere and Telomere Regions of *Allium cepa L.*", *Chromosoma*, 50:201-210, 1975.
- 5 Gefter et al., *Somatic Cell Genet.* 3:231-236 (1977)
- Geiduschek & Tocchini-Valentini, "Transcription by RNA polymerase III," *Annual Review of Biochemistry*, 57:873-914, 1988.
- 10 Goding, 1986, in *Monoclonal Antibodies: Principles and Practice*, 2d ed., Orlando, Fla., Academic Press, 1986, pp. 60-61, 65-66, 71-74.
- 15 Gottlieb & Esposito, "A new role for a yeast transcriptional silencer gene, *SIR2*, in regulation of recombination in ribosomal DNA", *Cell*, 56:771-6, 1989.
- 20 Gottschling, "Telomere-proximal DNA in *Saccharomyces cerevisiae* is refractory to methyltransferase activity in vivo", *Proc. Natl. Acad. Sci. USA*, 89:4062-4065, 1992.
- 25 Gottschling & Zakian, "Telomere proteins: specific recognition and protection of the natural termini of *Oxytricha macronuclear DNA*", *Cell*, 47:195-205, 1986.
- 30 Gottschling & Cech, "Chromatin structure of the molecular ends of *Oxytricha macronuclear DNA*: phased nucleosomes and a telomeric complex", *Cell*, 38:501-10, 1984.
- Gottschling et al., "Position effect at *S. cerevisiae* telomeres: reversible repression of Pol II transcription", *Cell*, 63:751-762, 1990.
- 35 Greider, "Telomere chromatin and gene expression", *Curr. Biol.*, 2:62-64, 1992.

- 210 -

Greider & Blackburn, *Nature*, 337:331, 1989.

Greider & Blackburn, "The telomere terminal transferase of Tetrahymena is a ribonucleoprotein enzyme with two kinds of primer specificity," *Cell*, 51(6):887-898, 1987.

Greider, "Mammalian telomer dynamics: healing, fragmentation shortening and stabilization," *Curr. Opinion in Gen. and Dev.*, 4(2):203-211, 1994.

10

Greider & Blackburn, "Identification of a specific telomer terminal transferase activity in Tetrahymena extracts," *Cell*, 43:405, 1985.

15 Grigliatti, "Position-effect variegation - An assay for nonhistone chromosomal proteins and chromatin assembly and modifying factors", *Meth. Cell Biol.*, 35:587-627, 1991.

20 Guacci et al., "Chromosome condensation and sister chromatid pairing in budding yeast", *J. Cell Biol.* in press, 1994.

25 Gudenus et al., "Conditional mutants of RPC160, the gene encoding the largest subunit of RNA polymerase C in *Saccharomyces cerevisiae*," *Genetics*, 119(3):517-526, 1988.

30 Guthrie & Patterson, "Spliceosomal snRNAs," *Annual Review of Genetics*, 22:387-419, 1988.

Haber & George, "A mutation that permits the expression of normally silent copies of mating-type information in *Saccharomyces cerevisiae*", *Genetics*, 93:13-35, 1979.

35

- 211 -

- Hardy et al., "A RAP1-interacting protein involved in transcriptional silencing and telomere length regulation," *Genes Dev.*, 6(5):801-814, 1992.
- 5 Harley et al., "The telomer hypothesis of cellular aging," *Exp. Gerontol.*, 27(4):375-382, 1992.
- Harley et al., *Nature*, 345:458, 1990.
- 10 Harrington & Greider, "Telomerase Primer Specificity and Chromosome Healing," *Nature*, 353(6343):451-454, 1991.
- Hartwell, "Sequential function of gene products relative to DNA synthesis in the yeast cell cycle", *J Mol Biol*,
15 104:803-17, 1976.
- Hastie & Allshire, "Human telomeres: fusion and interstitial sites", *TIG*, 5:326-331, 1989.
- 20 Hastie et al., "Telomere reduction in human colorectal carcinoma and with aging," *Nature*, 346(6287):866-868, 1990.
- Hazelrigg et al., "Transformation of white locus DNA in
25 Drosophila: dosage compensation, zeste interaction, and position effects", *Cell*, 36:469-81, 1984.
- Hegemann et al., "Mutational analysis of centromere DNA from chromosome VI of *Saccharomyces cerevisiae*", *Mol Cell Biol*, 8:2523-35, 1988.
- Heitz, "Das Heterochromatin der Moose. I", *Jahrb. Wiss. Bot.*, 69:762-819, 1928.
- 35 Henderson & Larson, *Curr. Opinion in Gen. and Dev.*, 1:538, 1991.

- 212 -

- Henikoff, "Position-Effect Variegation After 60 Years",
Trends Genet., 6:422-426, 1990.
- 5 Henikoff & Eghitedarzadeh, "Conserved arrangement of
nested genes at the *Drosophila GART* locus", *Genetics*,
117:711-725, 1987.
- Herskowitz, "Functional inactivation of genes by dominant
negative mutations," *Nature*, 329(6136):219-222, 1987.
- 10 Hess et al.(1968), *J. Adv. Enzyme Reg.*, 7:149.
- 15 Hill et al., "Saturation mutagenesis of the yeast his3
regulatory site: requirements for transcriptional
induction and for binding by GCN4 activator protein,"
Science, 234(4775):451-457, 1986.
- 20 Himmelfarb et al., "Isolation and characterization of
temperature-sensitive RNA polymerase II mutants of
Saccharomyces cerevisiae", *Mol. Cell. Biol.*, 7:2155-2164,
1987.
- 25 Hinnebusch, "A hierarchy of trans-acting factors
modulates translation of an activator of amino acid
biosynthetic genes in *Saccharomyces cerevisiae*", *Mol.
Cell. Biol.*, 5:2349-2360, 1985.
- 30 Hinnebusch, "Mechanisms of gene regulation in the general
control of amino acid biosynthesis in *Saccharomyces
cerevisiae*", *Microbiol. Rev.*, 52:248-273, 1988.
- Hitzeman et al. (1980), *J. Biol. Chem.*, 255:2073.
- 35 Hochstrasser, "Spatial organization of chromosomes in the
salivary gland nuclei of *Drosophila melanogaster*", *J Cell
Biol.*, 102:112-23, 1986.

- 213 -

Holland et al. (1978), *Biochemistry*, 17:4900.

Holliday, "The Inheritance of Epigenetic Defects", 238:163-170, 1987.

5

Holmquist, "Role of replication time in the control of tissue-specific gene expression", *Am J Hum Genet*, 40:151-73, 1987.

10 Hope & Struhl, "GCN4 protein, synthesized *in vitro*, binds *HIS3* regulatory sequences: implications for general control of amino acid biosynthetic genes in yeast", *Cell*, 43:177-188, 1985.

15 Hopper & Hall, "Mating type and sporulation in yeast. I. Mutations which alter mating-type control over sporulation", *Genetics*, 80:41-59, 1975.

20 Hopper & Hall, "Mutation of a heterothallic strain to homothallism", *Genetics*, 80:77-85, 1975.

25 Hopper et al., "The yeast RNA1 gene product necessary for RNA processing is located in the cytosol and apparently excluded from the nucleus," *Journal of Cell Biology*, 111(2):309-321, 1990.

30 Horowitz & Haber, "Identification of autonomously replicating circular subtelomeric Y' elements in *Saccharomyces cerevisiae*", *Mol Cell Biol*, 5:2369-80, 1985.

Huffaker et al., "Genetic analysis of the yeast cytoskeleton," *Annual Review of Genetics*, 21:259-284, 1987.

35

- 214 -

- Innis et al., "PCR Protocols: a guide to methods and applications", eds. 482p., San Diego: Academic Press, Inc., 1990
- 5 Ito et al., "Transformation of intact yeast cells treated with alkali cations", *J. Bacteriol.*, 153:163-168, 1983.
- 10 Ivy et al., "Cloning and characterization of four *SIR* genes of *Saccharomyces cerevisiae*", *Mol. Cell. Biol.*, 6:686-702, 1986.
- Ivy, "Map positions of yeast genes *SIR1*, *SIR3* and *SIR4*", *Genetics*, 111:735-744, 1985.
- 15 Jacobs et al., "Function of microtubules in the *Saccharomyces cerevisiae* cell cycle", *J Cell Biol.*, 107:1409-1426, 1988.
- 20 Jager & Philippsen, "Many yeast chromosomes lack the telomere-specific Y' sequence", *Mol Cell Biol*, 9:5754-7, 1989.
- 25 James et al., "Distribution patterns of HP1, a heterochromatin-associated nonhistone chromosomal protein of *Drosophila*", *Eur J Cell Biol*, 50:170-80, 1989.
- 30 Jameson and Wolf, "The Antigenic Index: A Novel Algorithm for Predicting Antigenic Determinants," *Comput. Appl. Biosci.*, 4(1):181-186, 1988.
- Johnson et al., "Genetic evidence for an interaction between *SIR3* and histone H4 in the repression of silent mating loci in *Saccharomyces cerevisiae*", *PNAS, USA*, 87:6286-6290, 1990.

- 215 -

- Johnston, "A model fungal gene regulatory mechanism: the GAL genes of *Saccharomyces cerevisiae*", *Microbiol Rev*, 51:458-76, 1987.
- 5 Johnston & Dover, "Mutational analysis of the GAL4-encoded transcriptional activator protein of *Saccharomyces cerevisiae*", *Genetics*, 120:63-74, 1988.
- 10 Johnston & Davis, "Sequences that regulate the divergent GAL1-GAL10 promoter in *Saccharomyces cerevisiae*", *Mol. Cell. Biol.*, 4:1440-1448, 1984.
- Jones, 1977 *Genetics*, 85:12.
- 15 Jones, "Three Proteolytic Systems in the Yeast *Saccharomyces-Cerevisiae*," *J Biol Chem*, 266(13):7963-7966, 1991.
- 20 Kammerer et al., "Yeast regulatory gene PPR1. I. Nucleotide sequence, restriction map and codon usage", *J. Mol. Biol.*, 180:239-250, 1984.
- Kayne, "Extremely conserved histone H4 N terminus is dispensable for growth but essential for repressing the silent mating loci in yeast", *Cell*, 55:27-39, 1988.
- 25 Kellum & Schedl, "A group of *scs* elements function as domain boundaries in an enhancer-blocking assay. *Mol. Cell. Biol.* 12:2424-2431, 1992.
- 30 Kijas et al., "Enrichment of microsatellites from the citrus genome using biotinylated oligonucleotide sequences bound to streptavidin-coated magnetic particles," *Biotechniques*, 16(4):656-660, 1994.
- 35 Kim, "Multiple control elements in the TRP1 promoter of *Saccharomyces cerevisiae*", *Mol Cell Biol*, 6:4251-8, 1986.

- 216 -

- Kim et al., "Effects of histone H4 depletion on the cell cycle and transcription of *Saccharomyces cerevisiae*", *Embo J.*, 7:2211-9, 1988.
- 5 Kimmerly & Rine, "Replication and segregation of plasmids containing cis-acting regulatory sites of silent mating-type genes in *Saccharomyces cerevisiae* are controlled by the SIR genes", *Mol. Cell. Biol.*, 7:4225-4237, 1987.
- 10 Kingsman et al., 1979; *Gene*, 7:141.
- Klapholz & Esposito, "A New Mapping Method Employing a Meiotic Rec⁺ Mutant of Yeast", *Genetics*, 100:387-412, 1982.
- 15 Klar et al., "Regulation of transcription in expressed and unexpressed mating type cassettes of yeast", *Nature*, 289:239-244, 1981.
- 20 Klar et al., "Involvement of double-strand chromosomal breaks for mating-type switching in *Saccharomyces cerevisiae*", *Cold Spring Harbor Symp. Quant. Biol.*, 49:77-88, 1984.
- 25 Klar et al., "MAR1 - A regulator of the *HMa* and *HMα* loci in *Saccharomyces cerevisiae*", *Genetics*, 93:37-50, 1979.
- 30 Klar et al., "A position-effect control for gene transposition: state of expression of yeast mating-type genes affect their ability to switch", *Cell*, 25:517-524, 1981.
- Klingelhutz et al., *Mol. Cell. Biol.*, 14:961, 1994.
- 35 Kohler and Milstein, *Nature* 256:495-497 (1975)
- Kohler and Milstein, *Eur. J. Immunol.* 6:511-519 (1976)

- 217 -

Kolodziej & Young, "Mutations in the three largest subunits of yeast RNA polymerase II that affect enzyme assembly," *Molecular & Cellular Biology*, 11(9):4669-4678, 1991.

5

Kostriken et al., "A site-specific endonuclease essential for mating-type switching in *Saccharomyces cerevisiae*", *Cell*, 35:165-174, 1983.

10 Kramer & Haber, "New telomeres in yeast are initiated with a highly selected subset of TG1-3 repeats," *Genes Dev.*, 7(12A):2345-2356, 1993.

15 Kurtz & Shore, "RAP1 protein activates and silences transcription of mating type genes in yeast", *Genes & Development*, 5:616-628, 1991.

20 Kyrion et al., "RAP1 and telomere structure regulate telomere position effects in *Saccharomyces cerevisiae*", *Genes Dev.*, 7:1146-59, 1993.

25 Kyte, J. and Doolittle, R.F. A simple method for displaying the hydrophobic character of a protein. *J. Mol. Biol.*, 157(1):105-132, 1982.

Lacrooute, "Regulation of pyrimidine biosynthesis in *Saccharomyces cerevisiae*", *J Bacteriol*, 95:824-32, 1968.

30 Laurenson & Rine, "Silencers, silencing, and heritable transcriptional states", *Microbiol. Rev.*, 56:543-560, 1992.

35 Le Beau, "Editorial: Chromosomal fragile sites and cancer-specific breakpoints - A moderating viewpoint", *Cancer Genet Cytogenet*, 31:55-61, 1988.

- 218 -

- Levis et al., "Effects of genomic position on the expression of transduced copies of the white gene of *Drosophila*", *Science*, 229:558-61, 1985.
- 5 Lewis, "The phenomenon of position effect", *Adv. Genet.*, 3:73-115, 1950.
- Liljelund et al., "Yeast regulatory gene PPR1. II. Chromosomal localization, meiotic map, suppressibility, 10 dominance/recessivity and dosage effect", *J Mol Biol*, 180:251-65, 1984.
- 15 Lima-de-Faria, "Processes of directing expression, mutation and rearrangements in Molecular evolution and organization of the chromosome", (Amsterdam, Elsevier Science Publishers B.V.), pp. 507-604, 1983b.
- 20 Lima-de-Faria, "Organization and function of telomeres in Molecular evolution and organization of the chromosome", (Amsterdam, Elsevier Science Publishers B.V.), pp. 701-721, 1983a.
- 25 Lindsey et al., "In vivo Loss of Telomeric Repeats with Age in Humans," *Mut. Res.*, 256(1):45-48, 1991.
- 30 Lingner et al., "Telomerase RNAs of different ciliates have a common secondary structure and a permuted template," *Genes Dev.*, 8:1984, 1994.
- 35 Link & Olson, *Genetics*, 127:681, 1991.
- Liu & Gorovsky, "Mapping the 5' and 3' ends of *Tetrahymena thermophila* mRNAs using RNA ligase mediated amplification of cDNA ends (RLM-RACE)," *Nucleic Acids Research*, 21(21):4954-4960, 1993.

- 219 -

Loison et al., "Constitutive mutants for orotidine 5 phosphate decarboxylase and dihydroorotic acid dehydrogenase in *Saccharomyces cerevisiae*", *Curr. Genet.*, 2:39-44, 1980.

5

Longtine et al., "A yeast telomere binding activity binds to two related telomere sequence motifs and is indistinguishable from RAP1", *Curr Genet*, 16:225-39, 1989.

10

Losson et al., "Yeast promoters URA1 and URA3. Examples of positive control", *J Mol Biol*, 185:65-81,, 1985.

15

Losson & Lacroute, "Plasmids carrying the yeast OMP decarboxylase structural and regulatory genes: transcription regulation in a foreign environment", *Cell*, 32:371-7, 1983.

20

Losson & Lacroute, "Cloning of a eukaryotic regulatory gene", *Mol Gen Genet*, 184:394-9, 1981.

Louis & Haber, "Mitotic recombination among subtelomeric Y' repeats in *Saccharomyces cerevisiae*", *Genetics*, 124:547-559, 1990.

25

Luhrmann, "snRNP Proteins," In: *Structure and Function of Major and Minor Small Nuclear Ribonucleoprotein Particles*, Birnstiel, Ed., Springer-Verlag: p. 71-99, 1988.

30

Lundblad & Blackburn, "An alternative pathway for yeast telomere maintenance rescues est1-senescence," *Cell*, 73(2):347-360, 1993.

35

Lundblad & Szostak, "A mutant with a defect in telomere elongation leads to senescence in yeast", *Cell*, 57:633-43, 1989.

- 220 -

- Lustig & Petes, "Identification of yeast mutants with altered telomere structure," *Proc. Natl. Acad. Sci. U.S.A.*, 83(5):1398-1402, 1986.
- 5 Mahoney & Broach, "The *HML* mating-type cassette of *Saccharomyces cerevisiae* is regulated by two separate but functionally equivalent silencers", *Mol. Cell. Biol.*, 9:4621-4630, 1989.
- 10 Mahoney et al., "Mutations in the *HML E* silencer of *Saccharomyces cerevisiae* yield metastable inheritance of transcriptional repression", *Genes & Development*, 5:605-615, 1991.
- 15 Maniatis et al., "Molecular cloning: a laboratory manual", Cold Spring Harbor, N.Y., Cold Spring Harbor Laboratory, 1982.
- 20 Mantell & Greider, "Telomerase activity in germline and embryonic cells of *Xenopus*," *EMBO J.*, 13(13):3211-3217, 1994.
- 25 Marshall et al., "Functional domains of *SIR4*, a gene required for position effect regulation in *Saccharomyces cerevisiae*", *Mol. Cell. Biol.*, 7:4441-4452, 1987.
- Mastrangelo et al., "Disruption of a silencer domain by a retrotransposon", *Genetics*, 131:519-529, 1992.
- 30 McCarroll & Fangman, "Time of replication of yeast centromeres and telomeres", *Cell*, 54:505-13, 1988.
- 35 Megee et al., "Genetic analysis of histone H4: essential role of lysines subject to reversible acetylation", *Science*, 247:841-845, 1990.

- 221 -

- Messmer et al., "Analysis of the functional role of the Polycomb chromo domain in *Drosophila melanogaster*", *Genes & Dev.*, 6:1241-1254, 1992.
- 5 Miller & Nasmyth, "Role of DNA replication in the repression of silent mating type loci in yeast", *Nature*, 312:247-251, 1984.
- 10 Miraglia et al., "Limited functional equivalence of phylogenetic variation in small nuclear RNA: yeast U2 RNA with altered branchpoint complementarity inhibits splicing and produces a dominant lethal phenotype," *Proc Natl Acad Sci U S A*, 88(16):7061-7065, 1991.
- 15 Monk, "Variegation in epigenetic inheritance", *TIG*, 6:110-114, 1990.
- 20 Moore et al., "Splicing of Precursors to mRNAs by the Spliceosome," In: *The RNA World*, Gesteland & Atkins, Eds., Cold Spring Harbor Press, p. 303-358, 1993.
- 25 Morin, "The human telomere terminal transferase enzyme is a ribonucleoprotein that synthesizes TTAGGG repeats," 59(3):521-529, 1989.
- Mortimer, "Genetic and physical maps of *Saccharomyces cerevisiae*, Edition 11", *Yeast*, 8:817-902, 1992.
- 30 Muhlrad & Parker, "Mutations affecting stability and deadenylation of the yeast MFA2 transcript," *Genes & Development*, 6(11):2100-2111, 1992.
- 35 Mullen et al., "Identification and characterization of genes and mutants for an N-terminal acetyltransferase from yeast", *EMBO J.*, 8:2067-2075, 1989.

- 222 -

- Nasmyth et al., "Cell Cycle Regulation of SWI5 Is Required for Mother-Cell-Specific HO Transcription in Yeast", *Cell*, 49:549-558, 1987.
- 5 Nasmyth, "The regulation of yeast mating-type chromatin structure by SIR: an action at a distance affecting both transcription and transposition", *Cell*, 30:567-578, 1982.
- 10 Nasmyth et al., "A position effect in the control of transcription at yeast mating type loci", *Nature*, 289:244-250, 1981.
- 15 Nasmyth, "Regulating the HO endonuclease in yeast," *Curr. Opin. Genet. Dev.*, 3(2):286-294, 1993.
- Olson & Adams, "Electrophoresis in Agarose and Acrylamide Gels", *Methods Enzymol.*, 152:61-87, 1987.
- 20 Clovnikov, *J. Theor. Biol.*, 41:181, 1973.
- Olson et al., *Proc. Natl. Acad. Sci. U.S.A.*, 83:7826, 1986.
- 25 Olson, "Genome structure and organization in *Saccharomyces cerevisiae*. In *The molecular and cellular biology of the yeast Saccharomyces*", (eds. J. R. Broach, J. R. Pringle, and E. W. Jones), Vol. 1, pp. 1-39, Cold Spring Harbor Laboratory Press, New York, 1991.
- 30 Palladino et al., "SIR3 and SIR4 Proteins Are Required for the Positioning and Integrity of Yeast Telomeres", *Cell*, 75:543-555, 1993.
- 35 Park & Szostak, "Point mutations in the yeast histone H4 gene prevent silencing of the silent mating type locus HML", *Mol. Cell. Biol.*, 10:4932-4934, 1990.

- 223 -

- Park & Szostak, "ARD1 and NAT1 proteins form a complex that has N-terminal acetyltransferase activity", *EMBO J.*, 11:2087-2093, 1992.
- 5 Park et al., "A strategy for the generation of conditional mutations by protein destabilization", *Proc. Natl. Acad. Sci. USA*, 89:1249-1252, 1992.
- 10 Parker, "Genetic methods for identification and characterization of RNA-RNA and RNA-protein interactions," *Methods in Enzymology*, 180:510-517, 1989.
- 15 Paro & Hogness, "The Polycomb protein shares a homologous domain with a heterochromatin-associated protein of *Drosophila*", *Proc. Natl. Acad. Sci. USA*, 88:263-267, 1991.
- 20 Parthun & Jaehning, "A Transcriptionally Active Form of GAL4 Is Phosphorylated and Associated with GAL80," *Mol Cell Biol*, 12(11):4981-4987, 1992.
- Pays & Steinert, "Control of antigen gene expression in African trypanosomes", *Annu Rev Genet*, 22:107-26, 1988.
- 25 Pillus & Solomon, "Components of microtubular structures in *Saccharomyces cerevisiae*", *Proc Natl Acad Sci USA*, 83:2468-72, 1986.
- 30 Pillus & Rine, "Epigenetic inheritance of transcriptional states in *S. cerevisiae*", *Cell*, 59:637-47, 1989.
- Piñon, "Folded chromosomes in non-cycling yeast cells. Evidence for a characteristic G0 form", *Chromosoma*, 67:263-274, 1978.
- 35 Pluta & Zakian, "Recombination occurs during telomere formation in yeast", *Nature*, 337:429-33, 1989.

- 224 -

Price, "Telomere structure in *Euplotes crassus*: characterization of DNA-protein interactions and isolation of a telomere-binding protein," *Mol. Cell Biol.*, 10(7):3421-3431, 1990.

5

Price, *Curr. Opinion in Cell Biol.*, 4:379, 1991.

Price & Cech, "Telomeric DNA-protein interactions of *Oxytricha macronuclear DNA*," *Genes Dev.*, 1(8):783-793, 10 1987.

Price & Cech, "Properties of the telomeric DNA-binding protein from *Oxytricha nova*", *Biochemistry*, 28:769-74, 1989.

15

Primig et al., "Anatomy of a transcription factor important for the start of the cell cycle in *Saccharomyces cerevisiae*," *Nature*, 358(6387):593-597, 1992.

20

Pringle & Hartwell, "The *Saccharomyces cerevisiae* cell cycle. In *The Molecular Biology of the Yeast Saccharomyces*", J. D. Strathern, E. W. Jones and J. R. Broach, eds. 97-142. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory, 1981.

25 Prowse et al., "Identification of a nonprocessive telomerase activity from mouse cells," *Proc. Natl. Acad. Sci. U.S.A.*, 90:1493-1497, 1993.

30

Rawlins & Shaw, "Localization of ribosomal and telomeric DNA sequences in intact plant nuclei by *in-situ* hybridization and three-dimensional optical microscopy", *J Microsc*, 157:83-89, 1990.

35

Reddy & Busch, "Small Nuclear RNAs: RNA Sequences, Structure, and Modifications," In: *Small Nuclear*

- 225 -

Ribonucleoprotein Particles, Birnstiel, Ed.,
Springer-Verlag, Berlin, p. 1-37, 1988.

5 Renauld et al., "Silent domains are assembled
continuously from the telomere and are defined by
promoter distance and strength, and by SIR3 dosage",
Genes and Development, 7:1133-1145, 1993.

10 Rine & Herskowitz, "Four genes responsible for a position
effect on expression from *HML* and *HMR* in *Saccharomyces*
cerevisiae", *Genetics*, 116:9-22, 1987.

15 Rine et al., "A suppressor of mating-type locus mutations
in *Saccharomyces cerevisiae*: evidence for and
identification of cryptic mating-type loci", *Genetics*,
93:877-901, 1979.

20 Roman, "Studies of gene mutation in *Saccharomyces*", Cold
Spring Harbor Symp., *Quant. Biol.*, 21:175-185, 1956.

Romero & Blackburn, "A Conserved Secondary Structure for
Telomerase RNA," *Cell*, 67(2):343-353, 1991.

25 Roth et al., "A conserved family of nuclear
phosphoproteins localized to sites of polymerase II
transcription," *J Cell Biol*, 115(3):587-596, 1991.

30 Rose & Botstein, "Structure and function of the yeast
URA3 gene. Differentially regulated expression of hybrid
beta-galactosidase from overlapping coding sequences in
yeast", *J Mol Biol*, 170:883-904, 1983.

35 Rose & Winston, "Identification of a Ty Insertion Within
the Coding Sequence of the *S. cerevisiae URA3* gene", *Mol
Gen Genet*, 193:557-560, 1984.

- 226 -

- Rose et al., "Structure and function of the yeast URA3 gene: expression in *Escherichia coli*", *Gene*, 29:113-24, 1984.
- 5 Rose et al., "Methods in yeast genetics: A laboratory course manual", Cold Spring Harbor Laboratory Press, New York, 1990.
- 10 Rotenberg & Woolford, Jr., "Tripartite upstream promoter element essential for expression of *Saccharomyces cerevisiae* ribosomal protein genes," *Molecular & Cellular Biology*, 6(2):674-687, 1986.
- 15 Rothstein, "One-Step Gene Disruption in Yeast", *Methods Enzymol*, 101:202-211, 1983.
- 20 Roy, "Nucleotide sequence of the URA1 gene of *Saccharomyces cerevisiae*", *Gene*, 118:149-50, 1992.
- 25 Runge & Zakian, "Introduction of extra telomeric DNA sequences into *Saccharomyces cerevisiae* results in telomere elongation", *Mol Cell Biol*, 9:1488-1497, 1989.
- 30 Runge & Zakian, "Properties of the Transcriptional Enhancer in *Saccharomyces cerevisiae* Telomeres", *Nucleic Acids Res.*, 18:1783-1787, 1990.
- 35 Sambrook et al., "Molecular cloning: a laboratory manual", eds. New York: Cold Spring Harbor Laboratory Press, 1989.
- Sandell & Zakian, "Telomeric position effect in yeast", *Trends Cell Biol.*, 2:10-14, 1992.

- 227 -

Sandell & Zakian, "Loss of a yeast telomere: arrest, recovery, and chromosome loss," *Cell*, 75:729-739, 1993.

5 Scherer & Davis, *Proc. Natl. Acad. Sci. U.S.A.*, 76:4951, 1979.

Schiestl & Gietz, "High efficiency transformation of intact yeast cells using single stranded nucleic acids as a carrier", *Curr. Genet.*, 16:339-346, 1989.

10 Schmid et al., "Nucleosome Disruption at the Yeast PHO5 Promoter upon PHO5 Induction Occurs in the Absence of DNA Replication", *Cell*, 71:853-864, 1992.

15 Schnell & Rine, "A position effect on the expression of a tRNA gene mediated by the SIR genes in *Saccharomyces cerevisiae*", *Mol. Cell. Biol.*, 6:494-501, 1986..

20 Schulz & Zakian, "The *saccharomyces* PIF1 DNA helicase inhibits telomere elongation and *de novo* telomere formation," *Cell*, 76(1):145-155, 1994.

25 Seifert et al., "Shuttle mutagenesis: a method of transposon mutagenesis for *Saccharomyces cerevisiae*", *Proc. Natl. Acad. Sci. USA*, 83:735-739, 1986.

Shampay & Blackburn, "Generation of telomere-length heterogeneity in *Saccharomyces cerevisiae*", *Proc. Natl. Acad. Sci. USA*, 85:534-8, 1988.

30 Shampay et al., "DNA sequences of telomeres maintained in yeast", *Nature*, 310:154-7, 1984.

Shay et al., *Oncogene*, 8:1407, 1993.

35 Sherman et al., "Methods in Yeast Genetics", Cold Spring Harbor Laboratory, 1986.

- 228 -

Shippen-Lentz & Blackburn, "Telomere terminal transferase activity from *Euplotes crassus* adds large numbers of TTTTGGGG repeats onto telomeric primers," *Mol. Cell. Biol.*, 9(6):2761-2764, 1989.

5

Shippen et al., "DNA bound by the *Oxytricha* telomere protein is accessible to telomerase and other DNA polymerases," *Proc. Natl. Acad. Sci. U.S.A.*, 91(1):405-409, 1994.

10

Shoeman & Traub, "The in vitro DNA-binding properties of purified nuclear lamin proteins and vimentin", *J Biol Chem.*, 265:9055-61, 1990.

15

Shore & Nasmyth, "Purification and cloning of a DNA binding protein from yeast that binds to both silencer and activator elements", *Cell*, 51:721-32, 1987.

20

Shore et al., "Characterization of two genes required for the position-effect control of yeast mating-type genes", *EMBO J.*, 3:2817-2823, 1984.

25

Shore et al., "Identification of silencer binding proteins from yeast: possible roles in SIR control and DNA replication", *EMBO J.*, 6:461-46, 1987.

30

Sikorski & Hieter, "A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in *Saccharomyces cerevisiae*", *Genetics*, 122:19-27, 1989.

Sikorski & Boeke, "In vitro mutagenesis and plasmid shuffling: from cloned gene to mutant yeast," In: *Meth. in Enzymol.*, pp. 306-311, 1991.

- 229 -

Sikorski & Hieter, "A uniform set of multiple shuttle vectors and yeast host strains designed for efficient manipulation of DNA in *S. cerevisiae*", *Genetics*, 122:19-27, 1989.

5

Singh & Klar, "Active genes in budding yeast display enhanced *in vivo* accessibility to foreign DNA methylases: a novel *in vivo* probe for chromatin structure in yeast", *Genes & Dev.*, 6:186-196, 1992.

10

Slater, "Effect of Reversible Inhibition of Deoxyribonucleic Acid Synthesis on the Yeast Cell Cycle", *J Bacteriol*, 113:263-270, 1973.

15

Spcfford, "Position-effect variegation in *Drosophila*. In *The genetics and biology of Drosophila* (eds. M. Ashburner and E. Novitski)", Vol.1C, pp. 955-1018, Academic Press, New York, 1976.

20

Spradling & Karpen, "Sixty years of mystery", *Genetics*, 126:779-84, 1990.

Sprague, "Assay of Yeast Mating Reaction", *Meth. Enzymol.*, 194:77-93, 1991.

25

Stinchcomb et al., 1979; *Nature*, 282:39.

30

Stone et al., "The *SIR1* gene of *Saccharomyces cerevisiae* and its role as an extragenic suppressor of several mating-defective mutants", *Mol. Cell. Biol.*, 11:2253-2262, 1991.

35

Stotz & Linder, "The *ADE2* gene from *Saccharomyces cerevisiae*: sequence and new vectors", *Gene*, 95:91-98, 1990.

- 230 -

- Strathern et al., "Homothallic switching of yeast mating type cassettes is initiated by a double-stranded cut in the *MAT* locus", *Cell*, 31:183-192, 1982.
- 5 Strathern et al., "Isolation of a circular derivative of yeast chromosome III: implications for the mechanism of mating type interconversion", *Cell*, 18:309-19, 1979.
- 10 Struhl, "Nucleotide sequence and transcriptional mapping of the yeast *pet56-his3-ded1* gene region", *Nucl. Acids Res.*, 13:8587-8601, 1985.
- 15 Struhl et al., "High-frequency transformation of yeast: autonomous replication of hybrid DNA molecules", *Proc. Natl. Acad. Sci. USA*, 76:1035-1039, 1979.
- Suroskey & Esposito, "Early meiotic transcripts are highly unstable in *Saccharomyces cerevisiae*", *Molecular and Cellular Biology*, 12:3948-3958, 1992.
- 20 Sussel & Shore, "Separation of transcriptional activation and silencing functions of the *RAP1*-encoded repressor/activator protein 1: Isolation of viable mutants affecting both silencing and telomere length", *Proc. Natl. Acad. Sci. USA*, 88:7749-7753, 1991.
- Sutherland & Hecht, "Fragile Sites on Human Chromosomes. Oxford Monographs on Medical Genetics", New York, Oxford University Press, 1985.
- 30 Tartof et al., "A structural basis for variegating position effects", *Cell*, 37:869-878, 1984.
- 35 Traverse & Pardue, "Studies of He-T DNA sequences in the pericentric regions of *Drosophila* chromosomes", *Chromosoma*, 97:261-71, 1989.

- 231 -

Tschemper et al., 1980 *Gene*, 10:157.

ten Dam et al., *Nucleic Acids Res.*, 19:6951, 1991.

- 5 van Holde, "Chromatin. Springer Series in Molecular Biology, A. Rich, ed. (New York: Springer-Verlag), 497, 1989.

Vaziri et al., *Am. J. Hum. Genet.*, 52:661, 1993.

- 10 Verdier, "Regulatory DNA-binding proteins in yeast: an overview", *Yeast*, 6:271-97, 1990.

- 15 Wahl et al., "Northern and Southern Blots", *Methods Enzymol.*, 152:572-581, 1987.

Walmsley & Petes, "Genetic control of chromosome length in yeast", *Proc Natl Acad Sci USA*, 82:506-10, 1985.

- 20 Walmsley et al., "Unusual DNA sequences associated with the ends of yeast chromosomes", *Nature*, 310:157-60, 1984.

- 25 Walton et al., "Resistance to antimycin A in yeast by amplification of *ADH4* on a linear, 42 kb palindromic plasmid", *Cell*, 46:857-63, 1986.

Watson, *Nature New Biol.*, 239:197, 1972.

- 30 Weinberger, C. et al. (1985) *Science*, 228:740-742.
- Weintraub, "Histone-H1-dependent chromatin superstructures and the suppression of gene activity", *Cell*, 38:17-27, 1984.

- 35 Weintraub, "Assembly and Propagation of Repressed and Derepressed Chromosomal States", *Cell*, 42:705-711, 1985.

- 232 -

Wellinger & Zakian, "Lack of positional requirements for autonomously replicating sequence elements on artificial yeast chromosomes", *Proc Natl Acad Sci USA*, 86:973-7, 1989.

5

Wellinger et al., "Saccharomyces telomeres acquire single-strand TG1-3 tails late in S phase," *Cell*, 72(1):51-60, 1993.

10 Werner-Washburne et al., "Stationary phase in the yeast *Saccharomyces cerevisiae*", *Microbiol Rev*, 57:383-401, 1993.

15 White, "Chromosomes as supermolecular systems. Animal cytology and evolution", (Cambridge, Cambridge University Press), pp. 1-57, 1993.

20 Whiteway et al., "The yeast *ARD1* gene product is required for repression of cryptic mating-type information at the *HML* locus", *Mol. Cell. Biol.*, 7:3713-3722, 1987.

25 Williamson & Paquin, "Homology of *Saccharomyces cerevisiae ADH4* to an iron-activated alcohol dehydrogenase from *Zymomonas mobilis*", *Mol Gen Genet.* 209:374-81, 1987.

30 Williamson et al., "Monovalent cation-induced structure of telomeric DNA: the G-quartet model," *Cell*, 59(5):871-880, 1989.

Wilson et al., "Position Effects on Eukaryotic Gene Expression", *Annu. Rev. Cell Biol.*, 6:679-714, 1990.

35 Wittenberg et al., "G1-specific cyclins of *S. cerevisiae*: cell cycle periodicity, regulation by mating pheromone, and association with the p34CDC28 protein kinase", *Cell*, 62:225-37, 1990.

- 233 -

- Wolf et al., "An Integrated Family of Amino Acid Sequence Analysis Programs," *Comput. Appl. Biosci.*, 4(1):187-191, 1988.
- 5 Wright et al., "Saccharomyces telomeres assume a non-nucleosomal chromatin structure", *Genes & Dev.*, 6:197-210, 1992.
- 10 Yoshikawa & Isono, "Chromosome III of *Saccharomyces cerevisiae*: An Ordered Clone Bank, a Detailed Restriction Map and Analysis of Transcripts Suggest the Presence of 160 Genes", *Yeast*, 6:383-401, 1990.
- 15 Young et al., "Telomere regions in *Drosophila* share complex DNA sequences with pericentric heterochromatin", *Cell*, 34:85-94, 1983.
- 20 Yu et al., "In vivo alteration of telomere sequences and senescence caused by mutated *Tetrahymena* telomerase RNAs," *Nature*, 344(6262):126-132, 1990.
- Zahler & Prescott, *Nucleic Acids Res.*, 16:6953, 1988.
- 25 Zakian, "Structure and function of telomeres", *Annu. Rev. Genet.*, 23:579-604, 1989.
- 30 Zakian & Blanton, "Distribution of telomere-associated sequences on natural chromosomes in *Saccharomyces cerevisiae*", *Mol Cell Biol*, 8:2257-60, 1988.
- Zaret & Sherman, "alpha-Aminoadipate as a primary nitrogen source for *Saccharomyces cerevisiae* mutants," *J Bacteriol*, 162(2):579-583, 1985.

- 234 -

ZUCKERKANDL, "Recherches sur les propriétés et l'activité biologique de la chromatine: A possible role of "inert" heterochromatin in cell differentiation - Action of and competition for "locking" molecules", *Biochimie*, 56:937-
5 954, 1974.

- 235 -

SEQUENCE LISTING

(1) GENERAL INFORMATION:

5

(i) APPLICANT:

10

- (A) NAME: ARCH DEVELOPMENT CORPORATION
- (B) STREET: 1101 EAST 58TH STREET
- (C) CITY: CHICAGO
- (D) STATE: ILLINOIS
- (E) COUNTRY: UNITED STATES OF AMERICA
- (F) POSTAL (ZIP) CODE: 60637

15

(ii) INVENTORS: GOTTSCHLING, Daniel E.
SINGER, Miriam S.

(iii) TITLE OF INVENTION: Telomerase Compositions
and Methods

20

(iv) NUMBER OF SEQUENCES: 32

(v) CORRESPONDENCE ADDRESS:

25

- (A) ADDRESSEE: Arnold, White & Durkee
- (B) STREET: P.O. Box 4433
- (C) CITY: Houston
- (D) STATE: TEXAS
- (E) COUNTRY: UNITED STATES OF AMERICA
- (F) ZIP: 77210

30

(vi) COMPUTER READABLE FORM:

35

- (A) MEDIUM TYPE: Floppy disk
- (B) COMPUTER: IBM PC compatible
- (C) OPERATING SYSTEM: PC-DOS/MS-DOS/ASCII
- (D) SOFTWARE: PatentIn Release #1.0,
Version #1.30

(vii) CURRENT APPLICATION DATA:

- 236 -

- (A) APPLICATION NUMBER: UNKNOWN
- (B) FILING DATE: CONCURRENTLY HEREWITH
- (C) CLASSIFICATION: UNKNOWN

5 (viii) PRIOR APPLICATION DATA:

- (A) APPLICATION NUMBER: SN 08/431,080
- (B) FILING DATE: 28-APR-1995
- (C) CLASSIFICATION: Unknown

- 10 (A) APPLICATION NUMBER: SN 08/326,781
(B) FILING DATE: 20-OCT-1994
(C) CLASSIFICATION: Unknown

:ix) ATTORNEY/AGENT INFORMATION:

- 15 (A) NAME: Parker, David L.
(B) REGISTRATION NUMBER: 32,165
(C) REFERENCE/DOCKET NUMBER: ARCD155P--

(x) TELECOMMUNICATION INFORMATION:

- 20 (A) TELEPHONE: (512) 418-3000
(B) TELEFAX: (713) 789-2679
(C) TELEX: 79-0924

25 (2) INFORMATION FOR SEQ ID NO:1:

(i) SEQUENCE CHARACTERISTICS:

- 30 (A) LENGTH: 1301 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

-237-

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

ATAAAACTA GAGGAAAGA TAGGTACCCCT ATGAAAATGT CAATGGCTGT 'TGCGTTTGCT 60
5 TAATCGTATT TTTTTTTTT TCAGTCGGTG TTTTTGTAC ATTCTACGTT TGAGTTTTGCC
ATCATGCAGG CCTCAGAAAT TTGGTAGGCC CTCGATGGTG AAGGAGATAGT GTCGGGATTTC 120
GGATTGATCT TTCAGTTGAT AGCCTGCTGC TCTTTCTTT TCCAAAGAAT TTCGAGTATG 180
10 CTGGTGTCA G TGTAGATGCT TGTGTGTGCG CAATTGCGG TTTTTATTG TGTTTCTACT 240
TATAGATGGC TAAAATCTGA GTTTAGAAAA TGCAAACCGT AAATTCTAA AACTGCTAT 300
15 TGCATTAGT TGCTAAAGCA GTGTTTTGA ACTTATTCT GTTATTCCCT CTTCGTACCG 360
ATCCTCTCT CGACCTAACCTTAAATTAC CATGGGAAGC CTACCATCAC CACACCCACA 420
CACAAATGTT ACAGCTAATT GTTTATAGC AAAGTTGCA CGAGTTGCT GTTTATTTT 480
20 TTCTCGTTT CTTATACCTA GTATTTTTC TGACACTGTT TAAGGTGACA GAAAAAAAGG 540
AGTTTAAGTT AGATTGCAA ACAGACGGTG CTAAGGGCTG TCACCTTATG TCTATCTTAT 600
660

- 238 -

CGTTAACTCT GGAAAAGAA AAAGGAAAGA GAAACGTCAAGG GAACATGAGT ATATATAGAA 720
ATGGTTTATT CTAGTTTTTT CCGTTTTTC AGTAGATT TTGCCTTTAAA AGAATAATC 780
5 CCACTACAAA AAGGTAAAAT AAAAATCTA TTCACTGAAAC TTACTGTGA AATTTCACAA 840
TGTCGCCCGT ACATCGAACG ATGTGACAGA GAAAAATAACG AGTAGGTAAA TAAGCCAAAA 900
GGCAAGGGGTG TCCTTCTTA AGCATCGGT AGGTTTGGG GCGGATCAGTA ACTGAACAAT 960
10 GACACAAAGAT CAAGAACGTA ATTGAGATT TTTCAAGATG GTTTTTTTAG GTATCTTATA 1020
AAACTACTTT GATGATCAAT ACGGTATT TTGTCGCATTA TTTTCCAAGC GGAAGGAACC 1080
15 GTGTGTTCAT TTTATGAATC TGGGTGTGT ATTACACAGCT ACTTCTCCTA ATGCCTTCGA 1140
TGCAATTAGA TAATTTTGG AAACATTTTT TTCTCTGATG TATATTTTT GTATTGTAGA 1200
AATCGCGCGT ACTGTAATG TATATGCGTT TATAAGCGCT TTTAATTGAT TGTTCATGAC 1260
20 GAGGATAGGCC GGATAGGCC AGGTATGCCCT CTTAATAATT A 1301

- 239 -

(2) INFORMATION FOR SEQ ID NO:2:

(i) SEQUENCE CHARACTERISTICS:

- 5 (A) LENGTH: 13 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

10

GTGTGTGGGT GTG

13

(2) INFORMATION FOR SEQ ID NO:3:

15

(i) SEQUENCE CHARACTERISTICS:

20

- (A) LENGTH: 16 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

CACCACACCC ACACAC

16

25

(2) INFORMATION FOR SEQ ID NO:4:

30

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1301 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

35

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

- 240 -

TAATATTAA GAGGCATACC TCCGCCATC CGCCTATCCT CGTCATGAAAC NATCAATTAA 60
AAGGGCTTAT AAAGCGATAT ACAAGTACAG TAGGGCGAT TTCTACATA CAAAAAAT 120
5 ACATCAAGAA AAAAATGTT TCCAAAATT ATCTAAATGC ATCGAAGGC ATAGGAGAAG 180
TAGCTGTGAA TACAACACCA AGATTCTAA AATGAACACAA CGGTTCCCTC CGCTTGAAA 240
ATAATGCGAC AAAATAACCG TATTGATCAT CAAAGTAGTT TTAATAGATA CCTAAAAAA 300
10 CCATCTGAA AAATCTCAA TTACGTCTT GATCTTGTGT CATGTTCAAG TTACTGATCG 360
CCCGCAAAACC TAACCGATGC TTAAGGAAAGG ACACCCCTTGC CTTTTGGCTT ATTTACCTAC 420
15 TCGTATTTT CTCTGTCACA TCGTTCGATG TACGGGGCAC ATTGGAAT TTCATCAGTA 480
AGTCAGTGA ATAGATTTT TATTACCT TTTTGTAGTG GGATTATTTC TTTTAAAGGC 540
AAAATCTAC TGAAAAAACG GAAAAAAACTA GAATAAACCA TTTCATATA TACTCATGTT 600
20 CCCTGACGTT CTTTTTCCTT TTTCTTTTC CAGAGTTAAC GATAAGATAG ACATAAAGTG 660
ACAGCGCTTA GCACCGGTCTG TTTGCAAATC TAACTTAAAC TCCTTTTTT CTGTCACCTT 720

- 241 -

AAACAGTGTCA AGAAGAAATA CTAGGTATAA GAAAAGGAGA AAAAATATAA CAGCGAACTC 780
TGCCAAACTT TGCTAATAAA CAATTAGCTG TAACATTTGT GTGTGGGTGT GGTGATGGTA 840

5 GGCTTCCCCT GGTAAATTAA AGGTAGGTC GAGAAGAGGA TCGGTACGAA GAAGGAATAAA 900
CAGGAATAAG TTCAAAACA CTGCTTAGGC AACTAAATGC AATAGCAGTG TTTAAGAATT 960

TACGGTTGC ATTTCTAAA CTCAGATTTT AGCCATCTAT AAGTAGAAAC ACAATAAAAAA 1020
10 ACCACAAATT GGGCACACAC AAGCATCTAC ACTGACACACCA GCATACTCGA ATTCTTTGG 1080
AAAAGAAAG AGCAGCAGGC TATCAACTGA AAGATCAATC CGAAATCCGA CACTATCTCT 1140

15 TCACCATCGA GTGCTACCA AATTCTGAG GCCTGCATGA TGAAAACTC AAACGTAGAA 1200
TGTACAAAAA ACACGGACTG AAAAAAAAGA AAATACGATT AAGCAAACGCC AACAGCCATT 1260
GACATTTCA TAGGGTACCT ATCTCTCTCT CTAGTTTAT T 1301

- 242 -

(2) INFORMATION FOR SEQ ID NO:5:

(i) SEQUENCE CHARACTERISTICS:

- 5 (A) LENGTH: 45 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

10

TAATTACCAT GGGAAAGCCTA CCATCACCAAG GCCCACACAC AAATG

45

(2) INFORMATION FOR SEQ ID NO:6:

15

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 31 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- 20 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

CCGGAATTCA TACGAAGATG ATGATTAAAT C

31

25

(2) INFORMATION FOR SEQ ID NO:7:

(i) SEQUENCE CHARACTERISTICS:

- 30 (A) LENGTH: 21 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

35 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

- 243 -

GGCTTGCCAT AGACTTGCTC G

21

(2) INFORMATION FOR SEQ ID NO:8:

5

(i) SEQUENCE CHARACTERISTICS:

10

- (A) LENGTH: 16 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

TTCGGTAATC TCCGAA

16

15

(2) INFORMATION FOR SEQ ID NO:9:

20

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 40 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

25

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

CGGACGACTG TCGTCCGTCA AAAAAATTTC AAGGAAACCG

40

30

(2) INFORMATION FOR SEQ ID NO:10:

35

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 37 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

- 244 -

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

CGGACGACAG TCGTCCGCAG AAGGAAGAAC GAAGGAA

37

5

(2) INFORMATION FOR SEQ ID NO:11:

(i) SEQUENCE CHARACTERISTICS:

- 10 (A) LENGTH: 34 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

15

CGAACGGATC CCCTTCAGCC ACTACAGCCT ACTTT

34

(2) INFORMATION FOR SEQ ID NO:12:

20

- (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 34 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
25 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:

30

CGAAGGGATC CGCCAATTGC GAATGCACTC ACCG

34

(2) INFORMATION FOR SEQ ID NO:13:

(i) SEQUENCE CHARACTERISTICS:

- 35 (A) LENGTH: 33 base pairs
(B) TYPE: nucleic acid

- 245 -

- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:

5

CCGGATCCTG CCTCGGTAAT GATTCATTT TTT

33

(2) INFORMATION FOR SEQ ID NO:14:

10

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 36 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:

CCGGATCCTC TCGAGTTCAA GAGAAAAAAA AAGAAA

36

20

(2) INFORMATION FOR SEQ ID NO:15:

25

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1882 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

30

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:

- 246 -

GATTTTATA AGTTCAGCTT GGTGACATGT TATTCTACT TAGTTATCA TACTCATCGT 60
TAAAGCCGT TCAAATGCC TCATCTGGTA TACTTCACCG GCGTACCTC GTTCCCTCCTA
5 CCTCTTGAG CAGGGCTGAA TAAACTTCG TCCACATCCT CCATCACTGT TGATATATAA
TACTCTCCGC CACTATGCCGT CCATGAAACA CTATCCTCCT TAAGATCATA CCTTGTGACC 180
TTAACATCAT TGAGAGATGTT CTCAACACATTG TAGAAGTTGA TCTGATAAGT GAGGCTTCTT 300
10 AAACTTTCA AACTTATGAT CTTACATCCA ACTTTTGCCG TTGTTAGTAT CTTTCGACT 360
TTTTTATTCA AATCTTCATC AAATAAAAAA TTATTACGA GGATAACATC GCACTGAGGA
15 ATTAGTTAG CGACCCCTGTT ATTGTCCACA AAGCTTTCT TCAATGAAA CTCCACGTTG 420
TTCAAACGCA TCCCATAAA CTTACACCTC TTCTTTAGTT CCTCGTACTG CAGTATAAGT 540
AAATCGCTAG CATCATCCAT GATTACACAT CGGAAGCTTA ATGCACATCC ACATTCCAAC 600
20 GCAGCTTGTAA CTACGCCATT ACCTACTCCC GAACCGAGAT CCATGAAAGT GTCACCCCTTC 660
TTCAAACTGGC ATTGTTGATA TACATCAGAT AAGAAATGG GCAAAAAGTTC TCCATAAAACA 720

- 247 -

TAATTGCTGA ATGCCTTTCATA ATGTTTCATA TTATTCGCCT GCGGATGAA ACTCCCTGGTA 780

TAGACGATAT GCAGAGAGTC ATGAATGAAT GAAACGAGGAA TTTTATCATT TGTTTCTAAA 840

5 TGGTCAATT TAATTTGCCT AGGAATTCA CGAATCATTT TGTGTTATAA ATTATAGCA 900

TTCACGAAAC CTTTCGTGTC AGAGTTATCA AATGATGCAT TTAGGTCCGG TAGTATAGTT 960

TCCCTCAATT GTTCAGCATA AGGTGAAGGT AAAAGACCA GGCAGCTGTA TTCAATTAAAT 1020

10 TTACCAAATT CACTCATTGG ATTATAAATG GCTGTTGACC TTTGAAGTC GACTTTGTAC 1080

TCTTCCATAT AATTGAAAA TAAAATACTC TGCAACTTG CTGTCGTTAC TGAGGAAGTG 1140

15 TCGTTATCTG ATGTCAGCT CGTGGCTGT GGAGAATTG TTCTTAAACT AATGGATTGT 1200

ATAGGAGTC CAGAATATAT TTTCATGTGAT CTTAAGTACT CTATGTCAA TAATGGATAT 1260

TGTAACCGTA GACACGGGCC ATCCCATCA ACAAAATGTTG ATGAAAGGACT ATCGGGATCA 1320

20 TTCTTCTTGT TTGCCCGACC TTTTTCAAT GGCTTTTTT CTCGTGCAGT ATCTATTCT 1380

TGCTTTGAAA TTGGGGTATG TTTATGGTTA GTCCTGCCAT TTTTCCCTT TACTTTGCA 1440

- 248 -

	GCTTTGGCT TCTTACATC CTTCTCGTG GTGGTAGATG ACTCTTCCT TGTGTTCTA	1500
	TTATGGTT TCTTCAGT GGGAGGTATA ACCTCTCCA CCAGCGAAC CAACCCATTAA	1550
5	TCCTTACCT TGTTGTTCT ATCTCTAAA AATCCTCGAG GTAAAGATGA CCCATATTATT	1620
	GGATCGTATT TATTAGCTTC TTCTAAATAAA TTTTGTACTT GCTTAGAGAG AAGCGGTACCT	1680
	TTAGAATAGC TTGAAAGCGA CTTGGTTGC ATATGGTGC CTTCTTCCTC ATCAATTAGGT	1740
10	GATATTGAAG ATTCCCTGAGA GTCTAAGRTG GGGGACGACA TAATGAATGA GTCTGAGTTA	1800
	TTATTTGATA TACTTTCTTG ATCGCCATT ACTGTACAAAC AAAATGTAAC CAAAGGGCAC	1860
15	AATTACTGGT GACCTCCTTG AT	1882

(2) INFORMATION FOR SEQ ID NO:16:

- 20 (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 582 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single

- 249 -

(D) Topology: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:

5 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95	Met Gly Asp Gln Glu Ser Ile Ser Asn Asn Ser Asn Ser Asp Ser Phe Ile 5 10 15 Met Ser Ser Pro Asn Leu Asp Ser Gln Glu Ser Ser Ile Ser Pro Ile 20 25 30 Asp Glu Lys Lys Gly Thr Asp Met Gln Thr Lys Ser Leu Ser Ser Tyr 35 40 45 Ser Lys Gly Thr Leu Leu Ser Lys Gln Val Gln Asn Leu Leu Glu Glu 50 55 60 Ala Asn Lys Tyr Asp Pro Ile Tyr Gly Ser Ser Leu Pro Arg Gly Phe 65 70 75 80 Leu Arg Asp Arg Asn Thr Lys Gly Lys Asp Asn Gly Leu Val Pro Leu 85 90 95
---	---

-250-

Val Glu Lys Val Ile Pro Pro Ile His Lys Lys Thr Asn Asn Arg Asn
100 105 110

Thr Arg Lys Lys Ser Ser Thr Thr Lys Lys Asp Val Lys Lys Pro
115 120 125

Lys Ala Ala Lys Val Lys Gly Lys Asn Gly Arg Thr Asn His Lys His
130 135 140

Thr Pro Ile Ser Lys Gln Glu Ile Asp Thr Ala Arg Glu Lys Lys Pro
145 150 155 160

Leu Lys Lys Gly Arg Ala Asn Lys Lys Asn Asp Arg Asp Ser Pro Ser
165 170 175

Ser Thr Phe Val Asp Trp Asn Gly Pro Cys Leu Arg Leu Gln Tyr Pro
180 185 190

Leu Phe Asp Ile Glu Tyr Leu Arg Ser His Glu Ile Tyr Ser Gly Thr
195 200 205

Pro Ile Gln Ser Ile Ser Leu Arg Thr Asn Ser Pro Gln Pro Thr Ser
210 215 220

- 251 -

Leu	Thr	Ser	Asp	Asn	Asp	Thr	Ser	Ser	Val	Thr	Thr	Ala	Lys	Leu	Gln
225			230						235			240			
Ser	Ile	Leu	Phe	Ser	Asn	Tyr	Met	Glu	Glu	Tyr	Lys	Val	Asp	Phe	Lys
5			245				250			255					
Arg	Ser	Thr	Ala	Ile	Tyr	Asn	Pro	Met	Ser	Glu	Ile	Gly	Lys	Leu	Ile
			260				265			270					
Glu	Tyr	Ser	Cys	Leu	Val	Phe	Leu	Pro	Ser	Pro	Tyr	Ala	Glu	Gln	Leu
10			275			280			285			290			
Lys	Glu	Thr	Ile	Leu	Pro	Asp	Leu	Asn	Ala	Ser	Phe	Asp	Asn	Ser	Asp
			290			295			300			305			
Thr	Lys	Gly	Phe	Val	Asn	Ala	Ile	Asn	Leu	Tyr	Asn	Lys	Met	Ile	Arg
15				310			315			320			325		
Glu	Ile	Pro	Arg	Gln	Arg	Ile	Ile	Asp	His	Leu	Glu	Thr	Ile	Asp	Lys
20			325			330			335			340			
Ile	Pro	Arg	Ser	Phe	Ile	His	Asp	Phe	Leu	His	Ile	Val	Tyr	Thr	Arg

- 252 -

-253-

	Phe	Leu	Phe	Asp	Glu	Asp	Leu	Asn	Lys	VaI	Glu	Lys	Ile	Leu	Gln	
			485							490					495	
5	Thr	Ala	Lys	Val	Gly	Cys	Lys	Ile	Ser	Leu	Lys	Ser	Leu	Arg	Ser	
			500						505						510	
	Leu	Thr	Tyr	Gln	Ile	Asn	Phe	Tyr	Asn	VaI	Glu	Asn	Ile	Phe	Asn	Arg
			515				520								525	
10	Leu	Lys	VaI	Gln	Arg	Tyr	Asp	Leu	Lys	Glu	Asp	Ser	VaI	Ser	Trp	Thr
			530				535								540	
	His	Ser	Gly	Gly	Glu	Tyr	Tyr	Ile	Ser	Thr	VaI	Met	Glu	Asp	VaI	Asp
			545				550				555				560	
15	Glu	Ser	Leu	Phe	Ser	Pro	Ala	Ala	Arg	Gly	Arg	Arg	Asn	Arg	Gly	Thr
			565				570			575					575	
	Pro	VaI	Lys	Tyr	Thr	Arg										
20			580													

(2) INFORMATION FOR SEQ ID NO:17:

- 254 -

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1094 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:

	GTCCTCTTCA TTCTCATAAA ATGCATTGCC TGTTTTGGCT TGATTGTCTA CATTTCATG	60
10	ATCTTCATT TCTCCTCTCG ATTTTGTT ATCATTCTTC CCACAACTT CCTGGGCTCC	120
	ACTTTTTGA TTGGTGTGCT CTTGAATTGT TATCTGACTC TCACTCTTGC GTTTCTCAAC	180
15	ATACTTTGA GTTAAATAAT CTATCAAAGA GTCATGCCA TCGTTGCTAT CTCCCTGTTGA	240
	ATCCATTATA TCTACTTCTT CTGCATTCAC CTCTGCTTT TTTCAACGT TGGGGCCTT	300
20	GATGGGTGAA GATGGAAAT CGCTGAATT CGTTATCGTC GGTTTTATAG TTAAATGCC	360
	CTCTATATCA TCGAGAATAT CATCTATATT ACCGGAGAGAC TCCCTGGTAG ATATTCTGC	420
	TGGTTAGGA CGCACCTGCT CATTTCATT TTCTTGAATG AGTTGATTAA CGTCAGCGTT	480

- 255 -

GGGTACTTGG ATATTTGAGA AACTMAGAAC AGTTTTCACT CGATTAGGGAA CTATAGGTGT
AGAAGAGGGA TTTGGACAT C'RTCGTAGTC ATCAGAGTAT TCGGCAGGCC 'TTGTTGTTT 540
5 GTCGGACATA TCTCGTTGTA AAGGTGAATA TTTCCATATT ACTTCTTCCA TGGGGCCGTC
CTCGTCTTGA GTGAAATCGT GATGCCACT CAATTAGAC ATTCCCGTT TCGTTAAC 660
TTGTGAATT GGTAATTGCT TTACGGCTCTT GCTAACTGCT TTGTTTATAT CTTTTGTTCT 780
10 TGATGTATT CGTACTTGTG AACCGGCTAT TGACTTTAGG ACACCTGCAT TGGATAACCTT 840
GGTGTCTTC CCATTTAAGT TATTATAGG AGCAAAAGCA TACTTTTTT TCCTCTTAGT 900
15 TTGCTTAGGAT AATATCGCCT TTGAATCATT TTGTATTATT TCTTTTCCT CTGTCCTCTT 960
CGCAGGTGAA ACAGATATAAC TCGCAGACCT CTTGTTCTC TGTGGCGTTC CGGGCATCCT 1020
GACGATCTCT TCAATTGTCA GTGTTTGCTT GCACAAAATG AGTACTCACT TGAGTATGTT
20 TTCTCCCAAT TTG 1094

-256-

(2) INFORMATION FOR SEQ ID NO:18:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 339 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:

10	Met Pro Gly Thr Pro Gln Lys Asn Lys Arg Ser Ala Ser Ile Ser Val			
	1	5	10	15
15	Ser Pro Ala Lys Lys Thr Glu Glu Lys Glu Ile Ile Gln Asn Asp Ser			
	20	25	30	35
20	Lys Ala Ile Leu Ser Lys Gln Thr Lys Arg Lys Lys Tyr Ala Phe			
	35	40	45	
20	Ala Pro Ile Asn Asn Leu Asn Gly Lys Asn Thr Lys Val Ser Asn Ala			
	50	55	60	

- 257 -

Ser Val Leu Lys Ser Ile Ala Val Ser Gln Val Arg Asn Thr Ser Arg			
65	70	75	80
Thr Lys Asp Ile Asn Lys Ala Val Ser Lys Ser Val Lys Gln Leu Pro			
5	85	90	95
Asn Ser Gln Val Lys Pro Lys Arg Glu Met Ser Asn Leu Ser Arg His			
100	105	110	
His Asp Phe Thr Gln Asp Glu Asp Gly Pro Met Glu Glu Val Ile Trp			
110	115	120	125
Lys Tyr Ser Pro Leu Gln Arg Asp Met Ser Asp Lys Thr Thr Ser Ala			
130	135	140	140
Ala Glu Tyr Ser Asp Asp Tyr Glu Asp Val Gln Asn Pro Ser Ser Thr			
145	150	155	160
Pro Ile Val Pro Asn Arg Leu Lys Thr Val Leu Ser Phe Thr Asn Ile			
20	165	170	175
Gln Val Pro Asn Ala Asp Val Asn Gln Leu Ile Gln Glu Asn Gly Asn			
180	185	190	190

- 258 -

	Glu Gln Val Arg Pro Lys Pro Ala Glu Ile Ser Thr Arg Glu Ser Leu	
	195	200
	205	
5	Arg Asn Ile Asp Asp Ile Leu Asp Asp Ile Glu Gly Asp Leu Thr Ile	
	210	215
	220	
	Lys Pro Thr Ile Thr Lys Phe Ser Asp Leu Pro Ser Ser Pro Ile Lys	
	225	230
	235	
	240	
10	Ala Pro Asn Val Glu Lys Ala Glu Val Asn Ala Glu Glu Val Asp	
	245	250
	255	
	Lys Met Asp Ser Thr Gly Asp Ser Asn Asp Gly Asp Asp Ser Leu Ile	
	260	265
	270	
15	Asp Ile Leu Thr Gln Lys Tyr Val Glu Lys Arg Lys Ser Glu Ser Gln	
	275	280
	285	
	Ile Thr Ile Gln Gly Asn Thr Asn Gln Lys Ser Gly Ala Gln Glu Ser	
	290	295
	300	
20	Cys Gly Lys Asn Asp Asn Thr Lys Ser Arg Gly Glu Ile Glu Asp His	
	305	310
	315	
	320	

- 259 -

Glu Asn Val Asp Asn Gln Ala Lys Thr Gly Asn Ala Phe Tyr Glu Asn
325 330 335

Glu Glu Asp

5

(2) INFORMATION FOR SEQ ID NO:19:

10 (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 2434 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

15

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:

ATCAAATCCC CTGCAGTCA ATGCTGCAAT GATCTCTAAC AAATCGATA ATAATGATAAC 60
TTCCGCCGG CGGGAAATA GCTCGTATAT TGTGATAGGA AACAGGCATA ATAACAATAG 120
TAATAGCACA GCTATTGCTG CAACGGCCGA ATCCAAGCAA ATAAGAAA ATAACCTTGAT 180

- 260 -

AGACACGGCCA AAGCGGAAAGA AAGCCAACAC TGTTCCTAAA TCTATGGCTG AAGCTTTATT 240
GTTGTATACT TCTAAATATG ATTAAGATGC TGCAGATGCT ACTGTTGCCA AGAAAGTCAGC 300
5 GGAGCTTCT ACAGGAGCTT CTACGGAGCC TCCTTCCTCT TCTTCGGAAG ATGTCAAAGT 360
AGGAAAGGAG GAAGAGGAAG AGGGTGAAT ATTTCATGAG GCAAGAGACT ATGAGAAC 420
CCGAAAGGCT AGTTGAAGG AACGCCACAA CGCAGATAAG GGCATGGTG AAGACATCGG 480
10 CGAAGACATC GGTGAAGACA TCGGTGAAGA CATCGGTGAA GACATTGGTG AAGACATTGG 540
TGAAAACATG GGTTCTCCAT TAGCAACCATTGATGATTCA TCTTAATGAGA ATGAAAAGGA 600
15 AAAAGAAAG GAACTGTCTA CAAGCATTAG CAGTGATGAC GAAATAGAAG ACGACGAGGA 660
TGAGGGATGAC ATGGATTATG ATTCTAGTGC TATGGAAAAA GAGCTCCCTG AAGAAGAGGA 720
GAGGGATTCC AGCTCCAAA TTTCTGAAGG CGAAAAAAG AGTTTATATC AAGATTAAAT 780
20 GAAAAATAGT ACAGTGGAG TAAATCGGTAA CGAACCGAGTA AACAACACCA AAGAAAATGG 840
AACAGGAAT CCAAAGGGAG AGGAGGGAA AGAAGAGGAAGA GAAGAGCTGA AACATTAATC 900

-261-

TAGGTCAATC ACCCCCTCCGG TTACAATACT AAATCTATCA AACTTTAACCA ATTCAATGA 960
AAATATCAAT GATGIGGGTT CTTTAAACTC TACTAGAATT GTAAAAAATT GGGGCACAA 1020
5 ATTCAACCAAT TTGAAGCCTC GTGGCCCTTT GAATCATGGT GTTACTTGGT ACACAAATGC 1080
TGCTGTACAG GCTATGTTAC ACATTCCCTTC GATACAACAT TATCTTTTG ATATACTAAT 1140
GGGAAATAC GATAGCACCA TCTCAAAAAA TTCCGTTTCC TATACTTAG CTGAAACAAAG 1200
10 TAATCCAAA CATTTGATT CCAGATTGGA TGACATTAAAT TGATGATGA GCGAATGGCA 1260
TAATCCAAA CATTTGATT CCAGATTGGA TGACATTAAAT TGATGATGA GCGAATGGCA 1320
15 GCAGGAAGAT TCACATGAGT ACTTCATGTC TCTGATGTC AGATTACAGG AAGATTCTGT 1380
TCCCAAGGGT CATAAACTTA TAGAATCGAT AATATATGAC ATATTGGT GTCTTTAAA 1440
GCAGATGTT ACTTGCAAAT CTTGIGGCAG TATATCTAAA ACAGAACAAAC CATTTCACGA 1500
20 TTATCGTTG CACTTGAAAG GGAAAGAAAA ACTTGATCCA AATTCATGACC TGTGAGTGA 1560
TAGCATTAAAC GGCACTTCAG CCACCACTTC TACCAACTACC TCCAATGGCTG CCACAAAC 1620

- 262 -

	ATCTCTTCA TCCTCTTCAT CTGTCATT AACAAATGGC TCACCATTTG CCGCTGCCAG	1680
	TGATTTAAGT TCAGCCAACC GCAGATTTC TATTGAAAAA TCAATTAAAG ATTCTTCAA	1740
5	TCCCGAATA ATCAAGGTTG ACAAGGAGCA AAAGGGTTAC GTTGTGAGA AGTGTACAA	1800
	GACCACGAAC GCCGTGAAGC ATAGTCAAT ATTAAGGGCT CCTGAAACTT TACTTGTGCA	1860
	TCTGAAAAAA TTCAGATTCA ATGGCACGTC CTCATCAAAA ATGAGCAAG CTGTTCTTA	1920
10	TCTATGTT TTAGATTGA CGGAATATTG TGAGAGTAA GAGCTACCTG TCAAATACCA	1980
	ACTATTAAGC GTGGTGGTC ATGAGGGCCG CTCCCCTTCT TCAGGGTCACT ACATGGCCA	2040
15	CTGCAAGCAA CCAGACGGTA GCTGGGCCAC TTACGACGAC GAGTATATA ATATAATATC	2100
	TGAAAGGGAC GTTTAAAGG AACCCAACGC ATATTATCTC CTATACACGA GGCTAACTCC	2160
	AAAATGGTT CCATTGCCAT TGGCGAAATC TGCCATGGCC ACTGGTAATG TTACCTCTAA	2220
20	ATCCAAACAG GAACAGGCTG TTAACGAAACC AAATAACCGC CCATTGAAGA TTAATAGCAA	2280
	GAAAAATAAC AGAAAAAAAT GGAAAAAAAT AAAAAGGA AGTTCACCAA ATGAAAAAAAC	2340

-263-

TCGATATTCC TGGATTTC TCTTTTCA GGCATTAA TTAGCATTTC ATTTTATTA 2400

TACCAAATCA ATATATACAT ATAAGGCCT TCGT 2434

5

(2) INFORMATION FOR SEQ ID NO:20:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 789 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:

15

Ser Asn Pro Leu Gln Phe Asn Ala Ala Met Ile Ser Asn Lys Ser Asn
1 5 10 15

Asn Asn Asp Thr Ser Ala Ala Pro Glu Asn Ser Ser Tyr Ile Val Ile
20 20 25 30

Gly Lys Gln His Asn Asn Ser Asn Ser Thr Ala Ile Ala Ala Thr
35 35 40 45

- 264 -

	Ala Glu Ser Lys Gln Ile Lys Glu Asn Asn Leu Ile Asp Arg Pro Asn			
50		55	60	
	Gly Lys Lys Thr Asn Thr Val Pro Lys Ser Met Ala Glu Ala Leu Leu			
65		70	75	80
	Leu Tyr Thr Ser Lys Asn Asp Lys Asp Ala Ala Asp Ala Thr Gly Ala			
		85	90	95
10	Lys Lys Ser Ala Glu Leu Ser Thr Glu Leu Ser Thr Glu Pro Pro Ser			
		100	105	110
	Ser Ser Ser Glu Asp Val Lys Val Gly Lys Glu Glu Glu Glu Gly			
		115	120	125
15	Glu Ile Phe His Glu Ala Arg Asp Tyr Val Glu Pro Arg Lys Ala Ser			
		130	135	140
	Leu Lys Glu Arg Asp Asn Ala Asp Lys Gly Asp Gly Glu Asp Ile Gly			
145		150	155	160
	Glu Asp Ile Gly Glu Asp Ile Gly Glu Asp Ile Gly Glu Asp Ile Gly			
20		165	170	175

- 265 -

	Glu Asp Ile Gly Glu Asn Leu Gly Ser Pro Leu Ala Thr Ile Asp Asp			
	180	185	190	
5	Ser Ser Asn Glu Asn Glu Lys Glu Lys Arg Lys Glu Leu Ser Thr Ser			
	195	200	205	
	Ile Ser Ser Asp Asp Glu Ile Glu Asp Asp Glu Asp Glu Asp Asp Met			
	210	215	220	
10	Asp Tyr Asp Ser Ser Ala Met Glu Lys Glu Leu Pro Glu Glu Glu Glu			
	225	230	235	240
	Ser Asp Ser Ser Ser Lys Ile Ser Glu Gly Glu Lys Lys Ser Leu Tyr			
	245	250	255	
15	Gln Asp Leu Met Glu Asn Ser Thr Val Glu Val Asn Arg Tyr Glu Pro			
	260	265	270	
	Val Asn Asn Thr Lys Glu Asn Gly Asn Arg Asn Pro Lys Gly Glu Glu			
20	275	280	285	
	Glu Glu Glu Glu Glu Glu Leu Lys His Lys Ser Arg Ser Ile Thr			
	290	295	300	

- 266 -

- 267 -

	Asn Cys Met Met Ser Glu Trp Gln Gln Glu Asp Ser His Glu Tyr Phe	
	4.35	4.40
		4.45
5	Met Ser Leu Met Ser Arg Leu Gln Glu Asp Ser Val Pro Lys Gly His	
	450	455
		460
	Lys Leu Ile Glu Ser Ile Ile Tyr Asp Ile Phe Gly Gly Leu Leu Lys	
465	470	475
		480
10	Gln Ile Val Thr Cys Lys Ser Cys Gly Ser Ile Ser Lys Thr Glu Gln	
	485	490
		495
	Pro Phe Tyr Asp Leu Ser His Leu Lys Gly Lys Lys Leu Asp	
	500	505
		510
15	Pro Asn Ser Asp Leu Ser Ser Asp Ser Ile Asn Gly Thr Ser Ala Thr	
	515	520
		525
	Thr Ser Thr Thr Ser Asn Ala Ala Thr Lys Pro Ser Leu Ser Ser	
20	530	535
		540
	Ser Ser Ser Val Asn Leu Asn Asn Gly Ser Pro Phe Ala Ala Ala Ser	
545	550	555
		560

- 268 -

- 269 -

Ala Thr Tyr Asp Asp Glu Tyr Ile Asn Ile Ser Glu Arg Asp Val
690 695 700

Leu Lys Glu Pro Asn Ala Tyr Tyr Leu Leu Tyr Thr Arg Leu Thr Pro
705 710 715 720

Lys Ser Val Pro Leu Ala Lys Ser Ala Met Ala Thr Gly Asn
725 730 735

Val Thr Ser Lys Gln Glu Gln Ala Val Asn Glu Pro Asn Asn
740 745 750

Arg Pro Leu Lys Ile Asn Ser Lys Lys Asn Asn Arg Lys Lys Trp Lys
755 760 765

Lys Ile Lys Lys Gly Ser Ser Pro Asn Glu Lys Thr Arg Tyr Ser Trp
770 775 780

Ile Phe Leu Phe Ser
785

20

(2) INFORMATION FOR SEQ ID NO: 21:

- 270 -

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 807 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:

5	AGAGAGTTAG AATATCTTCG TTTATCTTACA TATATAAAGG GAAGGGTTTC CCGATAAGTA CTCCCTCTAGA GAAACAAAAA GGGGGTTATT AAACCTTCATT CTTCTTTAAA CTTTTAGGG ACTTCTAAAA CCTCCCTTTT GGGGTCAATT ACACTAACCTT CTGGTGATAT CTTAACTCTT TTGAATTAA ACTTCCCATC AACAAAAATG AAATGCGATC TAATAGAAC AGAAAAGTGGC GTTTTTTGG CTCCCTAGCAA CCCAATAAAC TCTCTCTTGT GATCGCTTAG TAAATGATAT GGCAAATTAA GTTTACTCTG AAACTTTTC TGGGATGTCA CAGAATTCTGC ACTCAGTCCA AAGACAGCAG CATATTCTT GAGTTCCCTGG TAATTGTCAAC GAAATCCACA GGCCTGTCTA GTACAAACCAG GCGTGGCTTGC CCTGGGAAATAC ACMAAAAACA CCACAACTCT	60 120 180 240 300 360 420 480
10		
15		
20		

- 271 -

GTTATTTTCG GTGATTTCGT TCAAGGAGT AGAGTCATTA TCTTCATTAA AAAAGACTCAA 540
ATCAGGAATA GGATCGCCTA TCCTCTAAATTG GTTAACATCA GATGACCTTA TTGCCCTCTTG 600
5 AACTACTGCT TGATTAGCGT TATGTTAGG ACCCGTCCTTG ATTTCTTCCT TAGGCACCTC CGGTGTGCAA ATAGGGGCCA GTTTGGACTC TTCCCTCTCC AACATTCCTT TGGATATTGC 720
AATCCTGGTT GATCTACGTA GTGCTTCACC CATTCTATTAA AGGAACTTTA ATATTACCTG 780
10 TATAAAGCTC GTAGTATTAC TTCATCC 807

(2) INFORMATION FOR SEQ ID NO:22:

15

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 215 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

20 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:

- 272 -

- 273 -

20 (2) INFORMATION FOR SEQ ID NO:23:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2117 base pairs

- 274 -

- (B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

5 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:

CCCCATCCCTCA GCTACACTCA CTCACTCGTC AGCCACACTC GTCGTCAACA GCTATGTCCA
AGAACGAAAGC CCAGGAATCT TCGCCCTCTCTC TGCCAGCTTC CTCTTCATCG TCGACTTCGG 60
10 CATCGGCATC TGGGTCTTCC AAGAATTCTGA GCAAGAACCC TTCTCTCTGG GACCCTCAAG
ATGATCTGCT GCTACGTCTAT TTAAAGGAGG TCAAGAAAT GGGCTGGAAAG GATATTTCGG 180
15 AATACTTCCC AACAGGACT CCTAACGGGT GTCAAGTTCAAG ATGGAGAAGG TTGAAGTCTG
GTAACCTTGAA GTCGAAACAAG ACTGCTTTGA TCGACATCAA CACCTATACTG GGCCCACCTCA
AGATCACCCA CGGGCATGAG ACTGCCAACG CTCAGCAAAA GCCCAGCAAG AAGGTAGAAAG 360
20 AAAACGTATT AACGGAAAGAT ACTGCTGAGT TCACTACAC GTCATCCATC CCGATTCCCT
CCAGAAAGAC CTCGTTGCCT TCGTTTCAGC CATCGATGTC ATTTCCTCAA TCTCCGGTCCA 480
540

- 275 -

ATGTGACTCC CACTAAGATT GTCTCTAACGG CTGGCTTCTTC CATGCCGTTTC GCTCCCTCCCCA 600
CGCTGCCGGC CGCACTCCCT CATCATCCTC ATCAACACCT ACACCACCAT CCCCATCATTA 660

5 AGACTCTAAA GCCNAGGTCA AACTCTCACT CCTTCACCAA T'CTTTGAAC CAAGACCCCA 720
TCGTTGGTC TAATGATGAG GAGAAGTATG GATTCAATTCC TAAAGTATTG GTTAGATCCA 780

GAAGAAGTTC GTTTCGCTAT CCACAACAGG TAGCAATAAC CACTACTCCG TCTTCTCCAA 840
10 ACTCTTCGCA TGTCCTACTA AGCTCAAAGT CAAGAAGGGG CTCGGTTGCC AATTGGTCCA 900
GAAGATCATC GTTAAATGTT TCAAGTAACA ACACCTCAAG ACGGTCTTCA ATGATTCTTG 960

15 CACCAAATTC CGGTGCAAAC ATATTCAATG TCAACAATAG CGGCAGTAAC ACTGCTTCTA 1020
CTTCTAATAC CAACTCAAGA AGGGAAATCTG TCATCAAGAA GGAATTTCAG CAAGGATTAA 1080
ACAACCTTAAG TAACAGTGGAA GGTCTTACCT CCAACMACGG GCCCATTTTC CCCAACTCTT 1140
20 ATACCTTTAT GGATCTCCCA CATTCTTCAT CGGTGTCATC GTCATCCACT TTGCTATAAGT 1200
CTAAACGAGG TTGGTTTCTT GCCTTCAATGTTCA TGAAGTCATC GTGTAATCCG ACTTAATCTAT 1260

-276-

GGTCAAAAGA TGAAGAACGT TTGCTAATGG AAAACAAAAA GAGGAAACCTA TCCGTTATGG 1320
AACTATCCAT TCTTTCGCCG CAGAGAACTG AGGTGGAAAT TCATGGAGA TTAAACGCCT 1380
5 TGTCGAAGTGA TCGGGATATG TTGTCCTCA CACATTCAAC TCAAAAACT CTGTCCAAGA 1440
AAACTTGTCC AAGAATGTTC AAAAGTGGTT CTACCACTGA TGATGACAAA GGTAGGGACA 1500
AAGAGGACGT TATGGGTGAT GGTAGTAACG ATGATGACCA AGATAATGTA GACCCGGCTGC 1560
10 ACCGTGCTAA ACAATCCAGT AACAAAGACTG TCTTTTCATC CAGCAGTTCC AACATATCCT 1620
CCAAAGACGT TTCACCGGAT CCGATCTTTT CACCGGATCC CGCAGATGAT TCATGAAATA 1680
15 CTTCTGATGC TGGITCTAGG TGCACCATAA CCTCCGATAC CAGGTCCTCG GCTGCAAACCA 1740
TGAATCGCAC CCCTAATTCC AAAAACCCGC AAGATATTCGC TTTGTTAAC AACTTTCTGTT 1800
CTGAAAGCCAT TACTCCGAGA CCGAAGGCCTT CTTCCACNAAC TACATCCATC ACTACCGAAA 1860
20 CCACCAATAA CATGATAAAC CACTCTAGTT CTACAACTAC TACCAACANAC AACAGTCCGC 1920
TGCCCAAGGCAT AAACACTATC TTCAAGGATA TGCTGTGAGG GGAAAACCTTA AAATGAAAAA 1980

- 277 -

AAAATAAAAA TAAATTTT' TCAACACAA AAAGAAAATG TGAAATTAGC GGGCTTGTTTC 2040

ATTAATTTC TATAGTTAG CATACTAAA AGTATAAAG TTTCTTTGGT TTATATGACG 2100

5 TATTCCATCCA AAAAAA 2117

(2) INFORMATION FOR SEQ ID NO:24 :

10 (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 651 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

15

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:24 :

His Pro Gln Leu His Ser Leu Thr Arg Gln Pro His Ser Ser Ser Thr
1 5 10 15

20 Ala Met Ser Lys Asn Glu Ala Gln Glu Ser Ser Pro Ser Leu Pro Ala
20 25 30

- 278 -

Ser	Ser	Ser	Ser	Ser	Thr	Ser	Ala	Ser	Ala	Ser	Ala	Ser	Ser	Lys	Asn	
35							40							45		
	Ser	Ser	Lys	Asn	Pro	Ser	Ser	Ser	Trp	Asp	Pro	Gln	Asp	Asp	Leu	Leu
5			50						55						60	
	Arg	His	Leu	Lys	Glu	Val	Lys	Lys	Met	Gly	Trp	Lys	Asp	Ile	Ser	Gln
65						70			75			80				
	Tyr	Phe	Pro	Asn	Arg	Thr	Pro	Asn	Ala	Cys	Gln	Phe	Arg	Trp	Arg	Arg
10							85			90			95			
	Leu	Lys	Ser	Gly	Asn	Leu	Lys	Ser	Asn	Lys	Thr	Ala	Leu	Ile	Asp	Ile
15									100			105			110	
	Asn	Thr	Tyr	Thr	Gly	Pro	Leu	Lys	Ile	Thr	His	Gly	Asp	Glu	Thr	Ala
20									115			120			125	
	Glu	Asp	Thr	Ala	Glu	Phe	Thr	Thr	Thr	Ser	Ser	Ile	Pro	Ile	Pro	Ser
25										130			135			140

- 279 -

Arg Lys Thr Ser Leu Pro Ser Phe His Ala Ser Met Ser Phe Ser Gln
165 170 175

Ser Pro Ser Asn Val Thr Pro Thr Ile Val Ser Asn Ala Ala Ser
5 180 185 190

Ser Met Pro Phe Ala Pro Pro Thr Leu Pro Ala Ala Leu Pro His His
195 200 205

Pro His Gln His Leu His His Pro His His Lys Thr Leu Lys Pro
10 210 215 220

Arg Ser Asn Ser His Ser Phe Thr Asn Ser Leu Asn Gln Asp Pro Ile
225 230 235 240

Val Arg Ser Asn Asp Glu Glu Lys Tyr Gly Phe Ile Pro Lys Val Phe
15 245 250 255

Val Arg Ser Arg Arg Ser Ser Phe Ala Tyr Pro Gln Gln Val Ala Ile
20 260 265 270

Thr Thr Thr Pro Ser Ser Pro Asn Ser Ser His Val Leu Ser Ser
275 280 285

-280-

	Lys Ser Arg Arg Ile Ser Leu Ala Asn Trp Ser Arg Arg Ser Ser Phe	
290		295
	Asn Val Ser Ser Asn Asn Thr Ser Arg Arg Ser Ser Met Ile Leu Ala	
5		305
	Pro Asn Ser Val Ser Asn Ile Phe Asn Val Asn Asn Ser Gly Ser Asn	
		325
10	Thr Ala Ser Thr Ser Asn Thr Asn Ser Arg Arg Glu Ser Val Ile Lys	
		340
	Lys Glu Phe Gln Gln Arg Leu Asn Asn Leu Ser Asn Ser Gly Gly Pro	
		355
15	Thr Ser Asn Asn Gly Pro Ile Phe Pro Asn Ser Tyr Thr Phe Met Asp	
		370
20	Leu Pro His Ser Ser Val Ser Ser Ser Thr Leu His Lys Ser	
		385
	Lys Arg Gly Ser Phe Ser Gly His Ser Met Lys Ser Ser Cys Asn Pro	
		405
		410
		415

-281-

Thr Asn Leu Thr Ser Lys Asp Glu Asp Ala Leu Leu Met Glu Asn Lys
420 425 430

Lys Arg Asn Leu Ser Val Met Glu Leu Ser Ile Leu Pro Gln Arg
5 435 440 445

Thr Glu Val Glu Ile Gln Trp Arg Leu Asn Ala Leu Ser Ser Asp Ala
450 455 460

Asp Met Leu Ser Pro Thr His Ser Pro Gln Lys Thr Leu Ser Lys Lys
10 465 470 475 480 485

Thr Cys Pro Arg Met Phe Lys Ser Gly Ser Thr Thr Asp Asp Asp Lys
485 490 495

Gly Ser Asp Lys Glu Asp Val Met Gly Asp Gly Ser Asn Asp Asp Asp
15 500 505 510

Glu Asp Asn Val Asp Pro Leu His Arg Ala Lys Gln Ser Ser Asn Lys
20 515 520 525

Thr Val Phe Ser Ser Ser Asn Ile Ser Ser Lys Asp Val Ser
25 530 535 540

-282-

	Pro Asp Pro Ile Phe Ser Pro Asp Pro Ala Asp Asp Ser Ser Asn Thr			
545	550	555	560	
	Ser Asp Ala Gly Ser Arg Cys Thr Ile Thr Ser Asp Thr Ser Ser Ser			
5	565	570	575	
	Ala Ala Thr Met Asn Arg Thr Pro Asn Ser Lys Asn Pro Gln Asp Ile			
	580	585	590	
10	Ala Leu Leu Asn Asn Phe Arg Ser Glu Ala Ile Thr Pro Arg Pro Lys			
	595	600	605	
	Pro Ser Ser Thr Thr Ser Ile Thr Thr Glu Thr Thr Asn Asn Met			
	610	615	620	
15	Ile Asn His Ser Ser Ser Thr Thr Thr Thr Asn Asn Ser Pro Leu			
	625	630	635	640
	Pro Ser Ile Asn Thr Ile Phe Lys Asp Met Leu			
20	645	650		

(2) INFORMATION FOR SEQ ID NO:25:

- 283 -

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 956 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:25:

	GCACAGGA	CCGGCCTTCG	TGGCCTTTG	CTCTCTCA	TTTCTTTCT	TAGGGATAG	60
10	TTAAACTGAT	TTATTTGT	TACTGTCTC	ACGAGAGAA	TAGAGTGTAT	TGCTATTGT	120
	ATTCATGGCA	GATAAAGCTT	TCATGGCTCT	TTCTCTTCTT	TGGCCGTCA	GTTTGACAAA	180
15	ATCTATATTC	TCGTCATCAG	AACTTGGTTTC	GCTATCACTA	TCACTATCAC	TTCCGTCACTC	240
	ATCATCGTCG	TCGTCGTCT	C GTCATCATC	ATCTCTTCT	TCTTCACTCT	CTTCTTCTTC	300
20	ATTTCACTC	TCTTCGCCAT	CTGTTACAGC	TGGTAATCG	GATGACTCTG	TGCCCTCGTC	360
	GTCAATTGCT	ATTGCTTT	GTATAAGTTT	ACTTTTTT	CCTTGGAAAT	TATTGAAAT	420
	GTTCTTGCT	TTTCTTTMA	TTTATGTGG	GTGTGTACTT	TTGTGTTAT	CAGAACATCAGA	480

- 284 -

TACGTCACTC AAGGAACTC CAGGAGGTA TATAAGGCTA AATCTCTTG GCCCTCGTTGT 540
ACTCAGTGTG CGTGGTGTGCCT GCCTGGACTT TGATCGGAT TCGCCCTTTT TTATGAGCCT 600
5 TTAATATTG CCTGCCATT CGTCTGTTT CCAGTTGCC GGTGTTTT TCCTTATTTG 660
ACTTTTTTG CCTGCCATT CGTCTGTTT CCAGTTGCC GGTGTTTT TCCTTATTTG 720
TTTATTGCT TCCTTGTGA ATTCCCTCA ATTCAACAA GCTGAAAT GAATTTCGTA 780
10 GAATGAATAT TACTAGTTT GAAATGGTTA TTGCTTATGA TGCTCACCGA AGTTAAAAA 840
AAATATTATA GGTTTGTCCCT ATGTTAGAAT TGTGGAAAGG GAGGAATGTA ATAAATATGC 900
15 AGTAATTAAA TATAGCCTTT TGAAGAGTTC CTCCTTTAA TTCTGGCCT TCGTGG 956

(2) INFORMATION FOR SEQ ID NO:26:

- 20 (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 226 amino acids
(B) TYPE: amino acid
(C) STRANDEDNESS: single

- 285 -

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 26:

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95	Met Ala Gly Lys Lys Ser Pro Arg Lys Ser Thr Ile Asn His Ser Thr His Ser Gly Lys Leu Pro Ala Asn Ile Lys Arg Leu Ile Lys Lys Gly Glu Ser Asp Thr Lys Ser Arg Gln Ser Pro Pro Thr Leu Ser Thr Thr Arg Pro Arg Arg Phe Ser Leu Ile Tyr Ser Ser Glu Ser Ser Leu Ser Asp Val Ser Asp Ser Asp Lys Asn Lys Ser Thr Asn Pro His Lys Ile Lys Arg Lys Ala Lys Asn Ile Ser Asn Asn Ser Gln Gly Lys Lys Ser
---	--

- 286 -

-287-

Arg Gly
225

5 (2) INFORMATION FOR SEQ ID NO:27:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 4599 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:27:

1.5 GATCTACTTG TCTGAGATGG CCTTTGATAA AAAATCAAT CGAGTACGCC ATAGAGGGCC 60
AGAGACTTGT AAGAGCAAAA AAAAGAAAAA GGAAATTTTC AGTATTGTT CCGATTTTC 120
CGTGTGGGT TCGGGATGCC TAGTTGTTCC GTAATGCCAT TGAAAGATACTTAACTAG 180
20 GAGGCTGCTA GTACGGGACC CCTACCTACG TATTGCAAAG ATGTTGAAAG TATCAACGGG
TGTAGAACTT TGCATACTAAG CAAAAGCTAG ATAGTTCCAT TATGAATTGT GACGATGTTA 300

- 288 -

CCCGTACTGC CTACTACATC TCTTTATAACG GATTGAANTC TCTAAAGGTT GCCCTGCCCG 360
TCGTTCTTT TTGGTTGGAA TTCTTTTTTT TTTCCTTTT TTTTTCACTCT CATCACTAAA 420
5 TTGATTAAA GTACAACTAG GGAAAGAGA CTAGATAATA GGTGCTTAC ACGTTTGAC 480
GTTTAGCTTT TACGGCTCTT TAATTGACTT GCTGTAAGTA TTTCGTATAAT CATTGTAAT 540
ATTGAAATAAC ATTGAAACA CTTGCTACAA GAATTAAAAA GGAGGAACCTC TTCAAAAGGC 600
10 TATATTAAAT TACTGCTTAT TTATTACATT CCTCCCTTTC CACPAATTCTA ACATAGGACA 660
AACCTATAAT ATTTTTAA CTTCGGTGAG CATCATAAAGC AATPAACCATT TCAAACATAG 720
15 TAATATTCAAT TCTACGAAT TCATTTCAA GCTTGTGAA ATTGAAGGAA ATTCAACAAAG 780
GAAGCAAATA AACAAATAAG GAAAAAACAA CGGGCAAACCT GGAAACAGAA CGAAATGGCA 840
GGCAAAAAAA GTCCTCGAAA AAGTACGATC AATCATAGTA CACATTCTGG TAAACTGCCA 900
20 GCAAAATTTA AAAGGCTCAT AAAAAGGGC GAATCCGATA CAAAGTCCAG GCAATCACCA 960
CCCACACTGA GTACAAACGAG GCCCAAGAAGA TTAGCCTTA TATACCTTTC TGAGTCATCC 1020

TTGAGTGACG TATCTGA'TC TGATAAAAAC AAAAGTACAA ACCCACATAA AATTAAAAGA 1080
AAAGCAAAGA ACATTTCAA TAATTCCAA GGAAAAAAA GTAAACTTAT ACAAAGGCAA
5 ATAGACAATG ACGACGGGG CACAGAGTCA TCCGATTACC AAGCTGTAAC AGATGGCGAA
GAGAGTGAAA ATGAAAGAAGA AGAGAGTGAA GAAGAAGAAG AAGATGATGA CGAACAGAC 1200
GACGACGATG ATGATGACGG AAGTGTAGT GATAGTGATA GCGMAACAG TTCTGTATGAC 1260
10 GAGAATATAG ATTTGTCAA ACTGACGGCC CAAGAAAGA AAAGAGCCAT GAAAGCTTTA
TCTGCCATGA ATACAATAG CAATACACTC TATTCTCTC GTGAGAACAG TAACAAAAT 1380
15 AAATCAGTTA AACTATCCCC TAAGAAAGAA AATGAAAGAAG AGCAGAAAAGA AGAAAAGAA 1500
AAAGAGAAAG AAGAGCAACA AAAACAAACAA GAATCAAACAA AAAAAGAAGT AAACGGTTCA 1560
GGCACTACTA CTACACAACA GGGCTATCG TTAAATTCA AAAAGAGGA CGACGGCATT 1620
20 AGTTTTGGTA ATGGAATGA AGGCTATAAC GAGGATATAG GTGAAGAAGT CTTGGATTAA 1680
AAAAACAAAG AGAACAAATGG TAATGAAAGAA GATAAAACTGG ATTCTAAGGT GATGTTAGGT 1740

-290-

AACAACGATG AGTTACCGATT TCCCCAATATT TCAGAGTCAG ATGAAATCTGA ATATGATATT 1800
GACCAGGATG CGTACTTTGA CGTGATTAAC AATGAAAGATT CTCATGGAGA AATTGGTACA 1860
5 GATCTTGAAA CGGGGAAGA CGATCTCCC ATATTGGAG AAGGAAACA AAACATGTGTT 1920
TCTGAGCTAC AAAATGACGA CGAACTCTCA TTGATGGTA GTATACACGA AGAAGGGTCT 1980
GATCCTGTAG AAGATGCTGA AAATAAATT TTGCAAAATG AATAACAATCA AGAAAMCGGA 2040
10 TATGATGAAG AAGATGACGA AGAAGATGAA ATAATGTCG ATTGATGATAT GCCGTTTTAT 2100
GAAGATCCTA AATTGCAAA TCTTTATTAT TATGGCGATG GTTCAGAGCC AAAGCTATCC 2160
15 TTGAGTACAT CTTCACCGTT AATGCTAAAT GATGAAAAAC TATCTAAACT AAAAAAGAAA 2220
GAGGCCAAA AACGGGAACA GGAAAGAAAGG AAACAAAGAC GAAAGCTCTA TAAAAGACG 2280
CAAACCTA GTACGAGAAC AACCTCCAAT GTGGACAATG ATGAGTATAT TTTCATGTT 2340
20 TTTCAT CAGATGATGA AAATAGTGGC CATAAGAGCA AGAAAGGCAG GCATAATCG 2400
GGCAAAAGTC ATATTGAACA TAAGAATAAA GGCTCGAAATT TGATAAAATC CAATGATGAT 2460

- 291 -

CTGGAAACCAT CCACTCATAAT TACGGTCCCTG AATTCCGGGA ATTATGATTTC TTCTGAGCAT 2520
GAATATGATA ACATTITGTGTT GGATGTGCC CATAATGCCCTT CAGATGATGA ATGCAGTGAA 2580
5 TCTGAAACGT CCCACGATGC TGACACGGAT GAGAATTGA GGGCACTAGA TTCAGATAGC 2640
TTAGACATTG GCACAGAACT GGACGACGAT TAGGAAGACG ACGACGATGA TTCCAGCGTG 2700
ACAATATGTT TCATAGACAT CGATGATTAA GATCCAGACT CTTTTTACTT TCATTACGAC 2760
10 AGCGATGGAT CTTCTCTTT GATAAGTTCT AACTCAGACAA AAGAAAATTTC TGATGGATCC 2820
AAAGATTGCA AACATGATCT CTTAGAGACT GTTGTGTACG TTGGATGACGA ATCCACAGAT 2880
15 GAAGATGATA ACCTACCGCC CCCAAGTTCA AGGTCAAAAA ACATTGGCTC AAAAGCAAAG 2940
GAAATCGTAA GTTCAAATGT TGTGGATTAA CGTCCACCAA AATTGGGTAC TTGGGAGACG 3000
GACAACAAAC CTTTTAGTAT TATTGATGGT CTGTCTACTA AATCATTATA CGCCTTAATC 3060
20 CAAGAACATC AACAGCTTCG CGAGCAACAT CAAAGGGCTC AAAACCCAGA TGTTAAAGA 3120
GAGGGAAAGCT CTAATGGCAA TAACGGTGCAC GAAATTGACAC TCAATGAGCT GCTAAACATG 3180

-292-

AGTGAATTGG AGGATGATTC ACCATCCCAC ACAGACGATA TGGAAACAA TTACAATGAT 3240
GCAATTAAATA GCAAAAGCAC AAATGCCAT GCTGCAGATT GGTATGAAGT TCCTAAGGTT 3300
5 CCATTATCTG CATTAGAAA TAAGGGTATT AATGCCTATG AAGAAGATGA GTACATGATA 3360
CCAGCAAATT CTAACAGAAA AGTCCCCATT GGCTATATG GTAATGAAAG AACAAAGAAAG 3420
AAGATTGATA AGATGAAAGA GCTACAAACGG AAAAAAACTG AAAAAAAAG GCAGTAAAG 3480
10 AAAAAAAAGA AGCTTCTTAA AATAAGAAAG CAAAGACAAA AGGCAATAAA GGAGCAAGAA 3540
ACTATGAATT TACAATTGGG AATCAATGGC CATGAGATCA TCGGTAACAA TAACAGCCAT 3600
15 AGCGACATAA ATACGGTAC CGATTTACA ACCAATGAAA ATACCCCTAT GAATGAACT 3660
CCCTCTCACG CACCTGAAGA TGGGTCAATT ATACCTCATA ATTCTGATCT TGCCGGGAC 3720
AGCAATAACAA GGAAAAATTG AACAAAAAGT GTGGTTAG ATGAAATTCA TGAGATTTG 3780
20 GGCAGGATG AAAATGACTT ACTGTCGTGA GGTGATATTA ACGGTTATGA TGCACAAAGAA 3840
GGTCATGTGA TCGAAGATAC TGACGCCGAT ATCCTAGCAT CGTTAACCGC TCCTGTGCAA 3900

- 293 -

TTGACAAATA CATTAAAGCC TGAAAATAGT ATTCCATGT GGACAAGMAG GCAAAGTATG 3960
GTGGAAGCAG CGGCTGAAAA TCTTCGTTTC ACTAAAAATG GTTATTAG TGAGACTGCA 4020
5 TTGGCAGATA TCGAAGGAAT TATGGCAAT GATGTTAACC ATTCAATTGAA ATTCAATGAC
GTCTTACAAAT GAGCTTATTT GCATTTCATT ATGGTTACTA CAATCAAATC ACCTTCGTT 4140
TACAATATCA TCATCAGTAT GTGACTTGC CTTATTCTAC TCTGAATT TT GCTTTATCGT 4200
10 TGTTGAAAA GAATTACATG TTATTTTTT ACTTATATAT GCATATTTT ATAGAAAAAC 4260
ACAATCAATA TTTTTTTAC TGGTATAATC CGTCCAATCA GACGTATAAA AGTAATAAG 4320
15 CCTCAGCAAC CCCATTGAT GGATTGCCCTT ACTCTTCGAC TCTAGTTGAG ATGATAACCT 4380
CATCCACTCT TCTGGGATT AAGATGGAGC TTCTTAATAT ATCCGGTGTAA AGCGGACTGAA 4440
AATTTCGAA AAAATTCAAGC TCATCGCTCT CAGATATAT AGCGGTATGG CATTAAAGGT 4500
20 GTGAACCAAC AACATAGTAC TCTCAACGGT AGTAAGCCAT ACTACGTACA ATATGGATCT 4560
GAAAACCTCA TATAAAGGTA TATCGTTAAA CCCTTATTAA 4599

- 294 -

(2) INFORMATION FOR SEQ ID NO:28:

5 (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1085 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

10 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:28:

Met Ala Gly Lys Lys Ser Pro Arg Lys Ser Thr Ile Asn His Ser Thr			
1	5	10	15
His Ser Gly Lys Leu Pro Ala Asn Ile Lys Arg Leu Ile Lys Lys Gly			
20	25	30	
Glu Ser Asp Thr Lys Ser Arg Gln Ser Pro Pro Thr Leu Ser Thr Thr			
35	40	45	
Arg Pro Arg Arg Phe Ser Leu Ile Tyr Ser Ser Glu Ser Ser Leu Ser			
50	55	60	

- 295 -

Asp Val Ser Asp Ser Asp Lys Asn Lys Ser Thr Asn Pro His Lys Ile
65 70 75 80

Lys Arg Lys Ala Lys Asn Ile Ser Asn Asn Ser Gln Gly Lys Lys Ser
5 85 90 95

Lys Leu Ile Gln Arg Gln Ile Asp Asn Asp Asp Glu Gly Thr Glu Ser
100 105 110

Ser Asp Tyr Gln Ala Val Thr Asp Gly Glu Ser Glu Asn Glu Glu
10 115 120 125

Glu Glu Ser Glu Glu Glu Asp Asp Asp Glu Asp Asp Asp Asp
130 135 140

Asp Asp Asp Gly Ser Asp Ser Asp Ser Asp Ser Glu Thr Ser Ser
15 145 150 155 160

Asp Asp Glu Asn Ile Asp phe Val Lys Leu Thr Ala Gln Arg Lys Lys
20 165 170 175

Arg Ala Met Lys Ala Leu Ser Ala Met Asn Thr Asn Ser Asn Thr Leu
180 185 190

- 296 -

	Tyr Ser Ser Arg Glu Asn Ser Asn Lys Asn Lys Ser Val Lys Leu Ser	
195		200
		205
5	Pro Lys Lys Glu Asn Glu Glu Gln Lys Glu Glu Lys Glu Lys Glu	
210		215
		220
	Lys Glu Glu Gln Gln Lys Gln Gln Ser Asn Lys Lys Glu Val Asn	
225		230
		235
		240
10	Gly Ser Gly Thr Thr Thr Gln Gln Ala Leu Ser Phe Lys Phe Lys	
		245
		250
		255
	Lys Glu Asp Asp Gly Ile Ser Phe Gly Asn Gly Asn Glu Gly Tyr Asn	
		260
		265
		270
15	Glu Asp Ile Gly Glu Val Leu Asp Leu Lys Asn Lys Glu Asn Asn	
		275
		280
		285
	Gly Asn Glu Glu Asp Lys Leu Asp Ser Lys Val Met Leu Gly Asn Asn	
20		290
		295
		300
	Asp Glu Leu Arg Phe Pro Asn Ile Ser Glu Ser Asp Glu Ser Glu Tyr	
305		310
		315
		320

- 297 -

	Asp Ile Asp Gin Asp Ala Tyr Phe Asp Val Ile Asn Asn Glu Asp Ser			
	325	330	335	
	His Gly Glu Ile Gly Thr Asp Leu Glu Thr Gly Glu Asp Asp Leu Pro			
5	340	345	350	
	Ile Leu Glu Glu Glu Gln Asn Ile Val Ser Glu Leu Gln Asn Asp			
	355	360	365	
	Asp Glu Leu Ser Phe Asp Gly Ser Ile His Glu Glu Gly Ser Asp Pro			
10	370	375	380	
	Val Glu Asp Ala Glu Asn Lys Phe Leu Gln Asn Glu Tyr Asn Gln Glu			
	385	390	395	400
15	Asn Gly Tyr Asp Glu Glu Asp Asp Glu Glu Asp Glu Ile Met Ser Asp			
	405	410	415	
	Phe Asp Met Pro Phe Tyr Glu Asp Pro Lys Phe Ala Asn Leu Tyr Tyr			
20	420	425	430	
	Tyr Gly Asp Gly Ser Glu Pro Lys Leu Ser Leu Ser Thr Ser Leu Pro			
	435	440	445	

-298-

	Leu Met Ile Asn Asp Glu Lys Leu Ser Lys Ile Lys Lys Glu Ala		
450	455	460	
	Lys Lys Arg Glu Gln Glu Glu Arg Lys Gln Arg Arg Lys Leu Tyr Lys		
465	470	475	480
	Lys Thr Gln Lys Pro Ser Thr Arg Thr Thr Ser Asn Val Asp Asn Asp		
485	490	495	
	Glu Tyr Ile Phe Asn Val Phe Phe Gln Ser Asp Asp Glu Asn Ser Gly		
500	505	510	
	His Lys Ser Lys Lys Gly Arg His Lys Ser Gly Lys Ser His Ile Glu		
515	520	525	
	His Lys Asn Lys Gly Ser Asn Leu Ile Lys Ser Asn Asp Asp Leu Glu		
530	535	540	
	Pro Ser Thr His Ser Thr Val Leu Asn Ser Gly Lys Tyr Asp Ser Ser		
545	550	555	560
	Asp Asp Glu Tyr Asp Asn Ile Leu Leu Asp Val Ala His Met Pro Ser		
565	570	575	

-299-

	Asp Asp Glu Cys Ser Glu Ser Glu Thr Ser His Asp Ala Asp Thr Asp	
	580	585
	Glu Glu Leu Arg Ala Leu Asp Ser Asp Ser Leu Asp Ile Gly Thr Glu	
5	595	600
	Leu Asp Asp Asp Tyr Glu Asp Asp Asp Asp Ser Ser Val Thr Asn	
	610	615
	Val Phe Ile Asp Ile Asp Asp Leu Asp Pro Asp Ser Phe Tyr Phe His	
10	625	630
	Tyr Asp Ser Asp Gly Ser Ser Ser Leu Ile Ser Ser Asn Ser Asp Lys	
	645	650
15	Glu Asn Ser Asp Gly Ser Lys Asp Cys Lys His Asp Leu Leu Glu Thr	
	660	665
	Val Val Tyr Val Asp Asp Glu Ser Thr Asp Glu Asp Asp Asn Leu Pro	
20	675	680
	Pro Pro Ser Ser Arg Ser Lys Asn Ile Gly Ser Lys Ala Lys Glu Ile	
	690	695
		700

-300-

Val Ser Ser Asn Val Val Gly Leu Arg Pro Pro Lys Leu Gly Thr Trp
705 710 715 720 725
Glu Thr Asp Asn Lys Pro Phe Ser Ile Ile Asp Gly Leu Ser Thr Lys
5 725 730 735
Ser Leu Tyr Ala Leu Ile Gln Glu His Gln Gln Leu Arg Glu Gln His
740 745 750
Gln Arg Ala Gln Thr Pro Asp Val Lys Arg Glu Gly Ser Ser Asn Gly
10 755 760 765
Asn Asn Gly Asp Glu Leu Thr Leu Asn Glu Leu Leu Asn Met Ser Glu
770 775 780
15 Leu Glu Asp Asp Ser Pro Ser His Thr Asp Asp Met Glu Asn Asn Tyr
785 790 795 800
Asn Asp Ala Ile Asn Ser Lys Ser Thr Asn Gly His Ala Ala Asp Trp
20 805 810 815
Tyr Glu Val Pro Lys Val Pro Leu Ser Ala Phe Arg Asn Lys Gly Ile
820 825 830

-301-

	Asn Ala Tyr Glu Glu Asp Glu Tyr Met Ile Pro Ala Asn Ser Asn Arg	
	835	840
		845
	Lys Val Pro Ile Gly Tyr Ile Gly Asn Glu Arg Thr Arg Lys Lys Ile	
5	850	855
		860
	Asp Lys Met Lys Glu Leu Gln Arg Lys Lys Thr Glu Lys Lys Arg Gln	
	865	870
		875
	Leu Lys Lys Lys Lys Leu Leu Lys Ile Arg Lys Gln Arg Gln Lys	
10	885	890
		895
	Ala Ile Lys Glu Gln Glu Thr Met Asn Leu Gln Leu Gly Ile Asn Gly	
	900	905
		910
15	His Glu Ile Ile Gly Asn Asn Asn Ser His Ser Asp Ile Asn Thr Gly	
	915	920
		925
	Thr Asp Phe Thr Thr Asn Glu Asn Thr Pro Met Asn Glu Leu Pro Ser	
20	930	935
		940
	His Ala Pro Glu Asp Ala Ser Leu Ile Pro His Asn Ser Asp Leu Ala	
25	945	950
		955
		960

- 302 -

- 303 -

(2) INFORMATION FOR SEQ ID NO:29:

5 (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1882 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

10 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:29:

ATCAAGGAGG	TCACCGATAA	TGTTGGCTT	TGGTTACATT	TTGTTGTACA	GTAATGGCG	60
ATCAAGAAAG	TATATCAAAT	AATAACTCAG	ACTCATTCAT	TATGTCGTCC	CCCAACTTAG	120
ACTCTCAGGA	ATCTTCATAA	TCACCTATTG	ATGAGAAGAA	AGGCACCGAT	ATGCAAACCA	180
AGTCGCTTTC	AAGCTTATTCT	AAAGGTACGC	TTCTCTCTAA	GCAAGTACAA	AATTATTAG	240
AGAAGCTAA	TAATACGAT	CCAATATAATG	GTCATCTT	ACCTCGAGGA	TTTTAAGAG	300
ATAGAAACAC	CAAGGGTAAG	GATAATGGGT	TGGTTCCGCT	GGTGGAGAAG	GTTATAACCTC	360

- 304 -

CCATTCAAAA GAAAACCAATT AAATAGAAAC CAAGGAAA GTCATCTACC ACCACGAAGA 420
AGGATGTAAGA AAGGCCAAA GCTGCMAAG TAAAGAAA AAATGGCAGG ACTAACCCATA 480
5 ACATACCCC AATTTCAGG CAAAGAAATAG ATACTGCACG AGAAAAAAAG CCATTGAAAAA 540
AAGGTGGGC AACCAAGAAG AATGATCGCG ATAGTCCTTC ATCAAACATT GTTGATTGGA 600
ATGGCCCGTG TCTACGGTTA CAATATCCAT TATTGACAT AGAGTACTTA AGATCACATG 660
10 AAATATATTC TGGAACCTCCT ATACAATCCA TTAGTTAACG AACAAATTCT CCACAGCCAA 720
CGAGGCTTGAC ATCAAGATAAC GACACTCCT CAGTAACCGAC AGCAAAGTTG CAGAGTATT 780
15 TATTTTCAAATTTATGGAA GAGTACAAAG TCGACTTCAA AAGGTCAACA GCCATTATA 840
ATCCAATGAG TGAAATTGGT AAATTAAATTG ATACAGCTG CCTGGTCTT TTACCTTCAC 900
CTTATGCTGA ACAATIGAAG GAAACTATAAC TACCGGACCT AAATGCATCA TTTGATAACT 960
20 CTGACACGAA AGGTTTCGTRG AAATGCTATTA AATTTATACAA CAAATGATT CGTGAAATTG 1020
CTAGGCAAAAG AATAATTTGAC CATTAGAAA CAAATGATAA AAATCCTCGT TCATTCAATC 1080

- 305 -

ATGACTTCTT GCATATCGTC TATACAGGA GTATCCATCC GCAGGGCAANT AAATTGAAAC 1140
ATTACAAAGC ATTCAAGCAAT TATGTTATG GAGAACTTT GCCCAATTTC CTATCTGATG 1200

5 TATATCAACA ATGCCAGTTG AAGAAGGGTG ACACTTCAT GGATCTCGGT TCGGGAGTAG
GTAATTGCGT AGTACAAGCT GCGTTGGAAT GTGGATGTGC ATTAAGCTTC GGATGTGAAA 1320

10 TCATGGATGA TGCTAGCGAT TAACTATAC TGCAGTACGA GGAACATAAG AAGAGGTGTA 1380
AGTTATATGG GATGCCGTTG AACAAACGTGG AGTTTTCATT GAAGAAAAGC TTGTTGGACA 1440

ATAACAGGGT CGCTGAACTA ATTCCCTCAGT GCGATGTTAT CCTCGTAAAT AATTTTTAT 1500

15 TTGATGAAGA TTTGAATAAA AAAGTCGAAA AGATACTACA AACGGCAAAA GTTGGATGTA 1560
AGATCATAG TTTGAAAGT TTAAGAAGCC TCACTTATCA GATCAACTTC TACAATGTTG 1620

AGAACATCTT CAATAGATTAA AAGGTGCAAA GGTATGATCT TAACGGGGAT AGTGTTCAT 1680

20 GGACGCATAG TGGGGAGAG TATTATAT CAAACAGTGT GGAGGATGTG GACGAAAGT 1740
TATTCAAGCCC TGCTGCAAGA GGTAGGAGGA ACAGAGGTAC GCCGGTGAAAG TATACCAGAT 1800

- 306 -

GAGGCACTTT GAACGGCTTT TAACGGATGAG TATGAATAAC TAAAGTAGAAA TAAACATGTAC 1860

ACAAAGTGTAA CTTATAAAAA TC 1882

5

(2) INFORMATION FOR SEQ ID NO:30:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1094 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:30:

15	CAAAATTGGG AGAAAACATA CTCAAGTGAG TACTCATTT GTGCAAGCAA AACTGACAA	60
	TTGAAGAGAT CGTCAGGATG CCCGGAACGC CACAGAAAGAA CAAGAGGTCT GCGAGGTAT	120
20	CTGTTTCACC TGCGAAGAAG ACAGAGGAAA AAGAAAATTAAT ACAAAATGAT TCAAAGGCAGA	180
	TATTATCTAA GCMAACTAAG AGGAAAGAAA AGTATGCTTT TGCTCCTATA AATAACTTAA	240

- 307 -

ATGGGAAGAA CACCAAGGTA TCCAATGCCA GTGTCTAAA GTCATAAGCC GTTTCACAAAG 300
TACGAAATAAC ATCAAGAACAA AAAGATAATAA ACAAAAGCAGT TAGCAAGAGC GTAAAGCAAT 360

5 TACCAAATTC ACAAGTAAA CCGAAACGGG AAATGCTAA TTGAGTAGGC CATCAGGATT 420
TCACTCAAGA CGAGGACGGC CCCATGGAAG AGTAATATG GAATATTCA CCTTTACAAAC 480

GAGATATGTC CGACAAAACA ACAAGGGCTG CGAAATACTC TGATGACTAC GAAGATGTGCC 540
10 AAAATCCCTC TTCTACACCT ATAGTCCTA ATCGACTGAA AACTGTTCTT AGTTACAAAC 600

ATATCCAAGT ACCCAAACGCT GACGTAAATC AACTCATICA AGAAAATGGA AATGAGCAAG 660

15 TCGGTCTAA ACCAGGAGAA ATATCTACCA GGGAGTCTCT CCGTAATAA GATGATATTCC 720
TCGATGATAT AGAGGGCGAT TAACTATAA AACCGACGAT AACGAAATTG AGCGATTGCG 780

CATCTTCACC CATCAAGGCA CCCAACGTTG AAAAAAAAGC AGAGGTGAAT GCAGAAGAAG 840
20 TAGATAAAAT GGATTCAACAA GGAGATAGCA ACGATGGCGA TGACTCTTTG ATAGATATT 900

TAACTCAAAA GTATGTTGAG AACCGCAAGA GTGAGAGTCATA GATAACAAATT CAAGGCAACAA 960

-308-

CCAATCAAAA AAGTGGAAAC CAGGAAAGTT GTGGGAAGAA TGATAACACA AATCGAGAG 1020

GAGAAATTGA AGATCATGAA AATGTAGACA ATCAAAGCMA AACAGGCAAT GCATTCTATG 1080

5 AGAATGAAGA AGAC 1094

(2) INFORMATION FOR SEQ ID NO:31:

10 (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 807 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

15 5 AGAATGAAGA AGAC

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:31:

GGATGAAGTA ATACTACGAG CTTTATACAG GTAATATTAA AGTTCTTAA TAGAATGGGT 60

20 GAAGCACTAC GTAGGATCAAC CAGGATGCA ATATCCAAA GAATGTTGGA AGAGGAAGAG 120

TCCAAACTGG CCCCTTATTTC GACACGGAA GTGCCTAAGA AGAAAATCAA GACGGGTCT 180

- 309 -

AAACATAACG CTAATCAGC AGTAGTTCAA GAGGCCAATA GGTCACTCTGA TGTTAACGAA 240
TTAGAGATAG GCGATCC'AT TCCTGATTG AGTCTTTAA ATGAAGATAA TGACTCTATC 300
5 TCCTTGAAAGA AAATCACCGA AAATAACAGA GTTGGGTGT TTTTGTGA TCCCAGGGCA 360
AGCACGCCCTG GTTGTACTAG ACAGGCCTGT GGATTTCGTG ACAATTACCA GAACTCAAG 420
AAATATGCTG CTGTCPTTGG ACTGAGTGCA GATTCTGTGA CATCCCAGAA AAAGTTTCAG 480
10 AGTAAACAAA ATTGCCATA TCATTACTA AGGGATCCAA AGAGAGAGTT TATTGGTTG 540
CTAGGAGCCA AAAAACGCC ACTTTCCTGGT TCTATTAGAT CGCATTTCAT TTTTGTGAT 600
15 GGGAAAGTTAA AATTCAAAAG AGTTAAGATA TCACCAGAAG TTAGTGTAAA TGACGCCAAA 660
AAGGAGGT'T TAGAAGTCGC TGAAAAGTT AAAGAAGAAAT GAAGTTAAT AACCCCTTT 720
TGTTTCTCT AGAGGGAGTAC TTATCGGTAA AATATTCCAA ACCCTTCCTT TTATATATGT 780
20 AGATAAACGA AGATATTCTA ACTCTCT 807

- 310 -

(2) INFORMATION FOR SEQ ID NO:32:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 956 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:32:

	CCACGAAAGGC CAGAAATTAA AAGGGGAAC TCTTCAAAG GCTATATTAA ATTACTGCAT	60
	ATTATTACA TTTCCTCCCTT TCCACAAATTTC TAACATAGGA CAAACCTATA ATATTTTTT	120
15	TTAACCTCGG TGAGCATCAT AAGCAATAAAC CATTTCAAAC CTAGTAATAAT TCATTCTACG	180
	AAATTCAATT TCAAGCTTGT TGAAATTGAA GGAAATTCAA CAAGGAAGCA AATAAACAAA	240
	TAAGGAAAAA ACAACCGGCA AACTGGAAAC AGAACGAAAT GGCAGGCCAA AAAAGTCCTC	300
20	GAAAAAGTAC GATCAATCAT AGTACACATT CTGGTAAACT GCCAGCAAAT ATTAAAAGGC	360
	TCATAAAAAA GGGCGAATCC GATACAAAGT CCAGGCAATC ACCACCCACA CTGAGTACAA	420

-311-

CGAGGCCAAG AAGATT'AGC CTTATATACT CTTCTGAGTC ATCCTTGAGT GACGGTATCTG 480
ATTCTGATAA AAACAAAAGT ACAAACCCAC ATAAAATTAA AAGAAAAGCA AAGAACATT 540
5 CAAATAATTC CCAAGGAAA AAAAGTAAAC TTATACAAG GCAAATAGAC AATGACGACG 600
AGGGCACAGA GTCATCCGAT TACCAAGCTG TAACAGATGG CGAAGAGAGT GAAAATGAAG 660
AAGAAGAGAG TGAAAGAAGAA GAAGATGATG ATGACCGAAGA CGACGACGAC GATGATGATG 720
10 ACAGGAAGTGA TAGTGATAGT GATAGCGAAA CAAGTTCTGA TGACGAGAAT ATAGATTGTG 780
TCAAACTGAC GGCCCCAAGA AAGAAAAGAG CCATGAAAGC TTTATCTGCC ATGAAATACAA 840
15 ATAGCAATAC ACTCTATTCC TCTCGTGAGA ACAGTAACAA AAATAAATCA GTTAAACTAT 900
CCCCTAAGAA AGAAAATGAA GAAGAGCAAA AGGCCACGAA GGCGGGCCTT CGTGGC 956

- 312 -

CLAIMS:

1. A nucleic acid segment characterized as:

5

(a) a nucleic acid segment comprising a sequence region that consists of at least 17 contiguous nucleotides that have the same sequence as, or are complementary to, 17 contiguous nucleotides of SEQ ID NO:1, SEQ ID NO:29, SEQ ID NO:30, SEQ ID NO:19, SEQ ID NO:31 or SEQ ID NO:23; or

10

(b) a nucleic acid segment of from 17 to about 10,000 nucleotides in length that hybridizes to the nucleic acid segment of SEQ ID NO:1, SEQ ID NO:29, SEQ ID NO:30, SEQ ID NO:19, SEQ ID NO:31 or SEQ ID NO:23, or the complement thereof, under standard hybridization conditions.

15

2. The nucleic acid segment of claim 1, wherein the segment comprises a sequence region of at least 17 contiguous nucleotides from SEQ ID NO:1, SEQ ID NO:29, SEQ ID NO:30, SEQ ID NO:19, SEQ ID NO:31 or SEQ ID NO:23, or the complement thereof.

25

3. The nucleic acid segment of claim 1, wherein the segment hybridizes to the nucleic acid segment of SEQ ID NO:1, SEQ ID NO:29, SEQ ID NO:30, SEQ ID NO:19, SEQ ID NO:31 or SEQ ID NO:23, or the complement thereof.

30

4. The nucleic acid segment of claim 1, wherein the segment comprises a sequence region of at least 17 contiguous nucleotides from SEQ ID NO:1, or the

35

- 313 -

complement thereof; or wherein the segment hybridizes to the nucleic acid segment of SEQ ID NO:1, or the complement thereof.

5

5. The nucleic acid segment of claim 1, wherein the segment comprises a sequence region of at least 17 contiguous nucleotides from SEQ ID NO:29, or the complement thereof; or wherein the segment hybridizes to the nucleic acid segment of SEQ ID NO:29, or the complement thereof.

10

15. The nucleic acid segment of claim 1, wherein the segment comprises a sequence region of at least 17 contiguous nucleotides from SEQ ID NO:30, or the complement thereof; or wherein the segment hybridizes to the nucleic acid segment of SEQ ID NO:30, or the complement thereof.

20

25. The nucleic acid segment of claim 1, wherein the segment comprises a sequence region of at least 17 contiguous nucleotides from SEQ ID NO:19, or the complement thereof; or wherein the segment hybridizes to the nucleic acid segment of SEQ ID NO:19, or the complement thereof.

30

30. The nucleic acid segment of claim 1, wherein the segment comprises a sequence region of at least 17 contiguous nucleotides from SEQ ID NO:31, or the complement thereof; or wherein the segment hybridizes to the nucleic acid segment of SEQ ID NO:31, or the complement thereof.

35

- 314 -

9. The nucleic acid segment of claim 1, wherein the segment comprises a sequence region of at least 17 contiguous nucleotides from SEQ ID NO:23, or the complement thereof; or wherein the segment hybridizes to 5 the nucleic acid segment of SEQ ID NO:23, or the complement thereof.

10 10. The nucleic acid segment of claim 1, wherein the segment comprises a sequence region of at least about 25 nucleotides; or wherein the segment is about 25 nucleotides in length.

15 11. The nucleic acid segment of claim 10, wherein the segment comprises a sequence region of at least about 50 nucleotides; or wherein the segment is about 50 nucleotides in length.

20 12. The nucleic acid segment of claim 11, wherein the segment comprises a sequence region of at least about 100 nucleotides; or wherein the segment is about 100 nucleotides in length.

25 13. The nucleic acid segment of claim 12, wherein the segment comprises a sequence region of at least about 200 nucleotides; or wherein the segment is about 200 nucleotides in length.

30 14. The nucleic acid segment of claim 13, wherein the segment comprises a sequence region of at least about 500 nucleotides; or wherein the segment is about 500 nucleotides in length.

- 315 -

15. The nucleic acid segment of claim 14, wherein the segment comprises a sequence region that consists of the 1301 contiguous nucleotides of SEQ ID NO:1, or the
5 complement thereof.

10 16. The nucleic acid segment of claim 14, wherein the segment comprises a sequence region that consists of at least about a 1000 nucleotide long contiguous sequence from SEQ ID NO:29, or the complement thereof.

15 17. The nucleic acid segment of claim 16, wherein the segment comprises a sequence region that consists of the 1882 contiguous nucleotides of SEQ ID NO:29, or the complement thereof.

20 18. The nucleic acid segment of claim 14, wherein the segment comprises a sequence region that consists of the 1094 contiguous nucleotides of SEQ ID NO:30, or the complement thereof.

25 19. The nucleic acid segment of claim 14, wherein the segment comprises a sequence region that consists of at least about a 1000 nucleotide long contiguous sequence from SEQ ID NO:29, or the complement thereof.

30 20. The nucleic acid segment of claim 19, wherein the segment comprises a sequence region that consists of at least about a 2000 nucleotide long contiguous sequence
35 from SEQ ID NO:29, or the complement thereof.

- 316 -

21. The nucleic acid segment of claim 20, wherein the segment comprises a sequence region that consists of the 2434 contiguous nucleotides of SEQ ID NO:19, or the complement thereof.

5

22. The nucleic acid segment of claim 14, wherein the segment comprises a sequence region that consists of the 807 contiguous nucleotides of SEQ ID NO:31, or the
10 complement thereof.

23. The nucleic acid segment of claim 14, wherein the segment comprises a sequence region that consists of at
15 least about a 1000 nucleotide long contiguous sequence from SEQ ID NO:23, or the complement thereof.

24. The nucleic acid segment of claim 23, wherein the
20 segment comprises a sequence region that consists of the 2117 contiguous nucleotides of SEQ ID NO:23, or the complement thereof.

25. The nucleic acid segment of claim 1, wherein the segment is up to about 10,000 basepairs in length.

26. The nucleic acid segment of claim 25, wherein the
30 segment is up to about 5,000 basepairs in length.

27. The nucleic acid segment of claim 26, wherein the segment is up to about 1,000 basepairs in length.

35

- 317 -

28. The nucleic acid segment of claim 27, wherein the segment is up to about 500 basepairs in length.

5 29. The nucleic acid segment of claim 28, wherein the segment is up to about 100 basepairs in length.

10 30. The nucleic acid segment of claim 1, further defined as a DNA segment.

31. The nucleic acid segment of claim 1, further defined as a RNA segment.

15

32. An isolated RNA segment of from 17 to about 1,500 nucleotides in length that comprises a non-ciliate telomerase RNA template.

20

33. The isolated RNA segment of claim 32, comprising a yeast telomerase RNA template.

25

34. An isolated RNA segment having the secondary structure of the RNA segment encoded by the sequence of SEQ ID NO:1.

30

35. An affinity column comprising a deoxyoligonucleotide attached to a solid support, wherein the deoxyoligonucleotide includes a GT-rich sequence complementary to a non-ciliate telomerase RNA template sequence and binds to a non-ciliate telomerase complex.

35

- 318 -

36. A DNA segment comprising an isolated gene associated with non-ciliate telomerase.

5 37. The DNA segment of claim 36, comprising an isolated gene associated with yeast telomerase.

10 38. The DNA segment of claim 37, comprising an isolated gene that encodes a yeast telomerase RNA template.

15 39. The DNA segment of claim 38, comprising an isolated gene that encodes the yeast telomerase RNA template sequence CACCAACCCACACAC (SEQ ID NO:3).

40. The DNA segment of claim 39, comprising an isolated gene that includes the contiguous DNA sequence from position 468 to position 483 of SEQ ID NO:1 or the contiguous DNA sequence from position 819 to position 834 of SEQ ID NO:4.

25 41. The DNA segment of claim 40, comprising an isolated gene that includes a contiguous DNA sequence from position 400 to position 500 of SEQ ID NO:1.

30 42. The DNA segment of claim 41, comprising an isolated gene that includes a contiguous DNA sequence from position 200 to position 900 of SEQ ID NO:1.

35 43. The DNA segment of claim 42, comprising an isolated gene that includes the DNA sequence of SEQ ID NO:1.

- 319 -

44. The DNA segment of claim 37, comprising an isolated gene that encodes a polypeptide associated with yeast telomerase.

5

45. The DNA segment of claim 44, comprising an isolated gene that encodes a polypeptide that includes a contiguous amino acid sequence from SEQ ID NO:16, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:22 or SEQ ID NO:24.

10

46. The DNA segment of claim 45, comprising an isolated gene that encodes a polypeptide that includes a contiguous amino acid sequence from SEQ ID NO:16.

15

47. The DNA segment of claim 46, comprising an isolated gene that encodes a polypeptide having the sequence of SEQ ID NO:16.

20

48. The DNA segment of claim 47, comprising an isolated gene that includes the contiguous DNA sequence from position 54 to position 1799 of SEQ ID NO:29.

25

49. The DNA segment of claim 45, comprising an isolated gene that encodes a polypeptide that includes a contiguous amino acid sequence from SEQ ID NO:18.

30

50. The DNA segment of claim 49, comprising an isolated gene that encodes a polypeptide having the sequence of SEQ ID NO:18.

35

- 320 -

51. The DNA segment of claim 50, comprising an isolated gene that includes the contiguous DNA sequence from position 78 to position 1094 of SEQ ID NO:30.

5

52. The DNA segment of claim 45, comprising an isolated gene that encodes a polypeptide that includes a contiguous amino acid sequence from SEQ ID NO:20.

10

53. The DNA segment of claim 52, comprising an isolated gene that encodes a polypeptide having the sequence of SEQ ID NO:20.

15

54. The DNA segment of claim 53, comprising an isolated gene that includes the contiguous DNA sequence from position 2 to position 2368 of SEQ ID NO:19.

20

55. The DNA segment of claim 45, comprising an isolated gene that encodes a polypeptide that includes a contiguous amino acid sequence from SEQ ID NO:22.

25

56. The DNA segment of claim 55, comprising an isolated gene that encodes a polypeptide having the sequence of SEQ ID NO:22.

30

57. The DNA segment of claim 56, comprising an isolated gene that includes the contiguous DNA sequence from position 55 to position 699 of SEQ ID NO:31.

35

- 321 -

58. The DNA segment of claim 45, comprising an isolated gene that encodes a polypeptide that includes a contiguous amino acid sequence from SEQ ID NO:24.

5

59. The DNA segment of claim 58, comprising an isolated gene that encodes a polypeptide having the sequence of SEQ ID NO:24.

10

60. The DNA segment of claim 59, comprising an isolated gene that includes the contiguous DNA sequence from position 3 to position 1955 of SEQ ID NO:23.

15

61. The DNA segment of claim 37, wherein the isolated gene is positioned under the control of a promoter.

20

62. The DNA segment of claim 61, positioned under the control of a recombinant promoter.

25

63. The DNA segment of claim 62, further defined as a recombinant vector.

30

64. A recombinant host cell incorporating a DNA segment that comprises an isolated gene associated with non-ciliate telomerase.

65. The recombinant host cell of claim 64, further defined as a prokaryotic host cell.

- 322 -

66. The recombinant host cell of claim 64, further defined as a eukaryotic host cell.

5 67. The recombinant host cell of claim 66, further defined as a yeast cell.

10 68. The recombinant host cell of claim 66, further defined as a mammalian cell.

15 69. The recombinant host cell of claim 64, wherein the host cell expresses the DNA segment to produce a telomerase RNA template or a polypeptide associated with telomerase.

20 70. A method of using a DNA segment that comprises an isolated gene associated with non-ciliate telomerase, the method comprising the steps of:

- (a) preparing a recombinant vector in which a non-ciliate telomerase-associated gene is positioned under the control of a promoter;
- (b) introducing said recombinant vector into a recombinant host cell;
- 30 (c) culturing the recombinant host cell under conditions effective to allow expression of the telomerase-associated gene; and
- (d) collecting the expressed gene product.

- 323 -

71. A recombinant gene product prepared by expressing a non-ciliate telomerase-associated gene in a recombinant host cell and purifying the expressed gene product away from total recombinant host cell components.

5

72. The gene product of claim 71, wherein the gene product is a telomerase RNA template.

10

73. The gene product of claim 71, wherein the gene product is a polypeptide associated with telomerase.

15

74. A method for detecting a non-ciliate telomerase-associated gene in a sample, the method comprising the steps of:

20

(a) obtaining sample nucleic acids from a sample suspected of containing a non-ciliate telomerase-associated gene;

25

(b) contacting said sample nucleic acids with a nucleic acid segment that includes at least a 17 nucleotide long contiguous sequence from SEQ ID NO:1, SEQ ID NO:29, SEQ ID NO:30, SEQ ID NO:19, SEQ ID NO:31, SEQ ID NO:23, or the complement thereof, under conditions effective to allow hybridization of substantially complementary nucleic acids; and

30

(c) detecting the hybridized complementary nucleic acids thus formed.

35

- 324 -

75. The method of claim 74, wherein the sample nucleic acids are obtained from a sample suspected of containing a tumor cell.

5

76. The method of claim 74, wherein the sample nucleic acids are obtained from a sample suspected of containing a pathogen.

10

77. The method of claim 74, wherein the sample nucleic acids are obtained from a sample suspected of containing a sperm cell or an egg cell.

15

78. A polypeptide composition, free from cell components, comprising a purified non-ciliate telomerase-associated polypeptide that includes a contiguous amino acid sequence from SEQ ID NO:16, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:22 or SEQ ID NO:24.

79. An antibody that binds to a non-ciliate telomerase-associated polypeptide that includes a contiguous amino acid sequence from SEQ ID NO:16, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:22 or SEQ ID NO:24.

80. A method for identifying a gene associated with a non-ciliate telomerase, the method comprising the steps of:

- (a) preparing a cell containing a chromosome that contains a genetic marker located proximal to a telomere, the telomere repressing the expression of the marker;

- 325 -

- (b) contacting said cell with a composition comprising a candidate gene; and
- (c) identifying a gene that allows expression of the marker.

5

81. The method of claim 80, wherein said cell is a *Drosophila melanogaster* cell.

10

82. The method of claim 80, wherein said cell is a human cell.

15

83. The method of claim 82, wherein said cell is a human sperm cell or a human egg cell.

20

84. The method of claim 82, wherein said cell is a human cancer cell.

25

85. The method of claim 80, wherein said cell is a yeast cell.

86. The method of claim 85, wherein said genetic marker is *HIS3*, *TRP1*, *LYS2*, *LEU2*, *CAN1*, *ADE2* or *URA3*.

30

87. The method of claim 86, wherein said genetic markers is *ADE2* or *URA3*.

35

- 326 -

85. The method of claim 85, wherein said cell contains two distinct genetic markers, each located on a distinct chromosome.

5

89. The method of claim 88, wherein said genetic markers are *ADE2* and *URA3*.

10 90. The method of claim 80, wherein said candidate gene is a mutant or truncated gene.

15 91. The method of claim 80, wherein said candidate gene is a wild type gene.

92. A gene identified by the method of claim 80.

20

93. The gene of claim 92, the gene having the physical and functional characteristics of *TLC1*.

25 94. The gene of claim 92, the gene having the physical and functional characteristics of *STR1*.

30 95. The gene of claim 92, the gene having the physical and functional characteristics of *STR3*.

96. The gene of claim 92, the gene having the physical and functional characteristics of *STR4*.

35

- 327 -

97. The gene of claim 92, the gene having the physical and functional characteristics of *STR5*.

5 98. The gene of claim 92, the gene having the physical and functional characteristics of *STR6*.

10 99. A method for identifying a human telomerase-associated gene, the method comprising the steps of:

- (a) preparing a yeast cell containing a chromosome that contains a genetic marker located proximal to a telomere, the telomere repressing the expression of the marker;
- (b) contacting said cell with a composition comprising a candidate human gene; and
- 20 (c) identifying a human gene that allows expression of the marker.

100. A method for identifying a candidate substance that binds to a non-ciliate telomerase component, the method comprising the steps of:

- (a) preparing an isolated non-ciliate telomerase component;
- 30 (b) contacting said isolated telomerase component with a composition comprising a candidate substance under conditions effective to allow binding; and

35

- 328 -

(c) detecting the presence of a telomerase component-candidate substance bound complex.

5 101. The method of claim 100, wherein said isolated telomerase component is an RNA segment comprising a non-ciliate telomerase RNA template.

10 102. The method of claim 100, wherein said isolated telomerase component is a DNA segment encoding a non-ciliate telomerase-associated polypeptide.

15 103. The method of claim 100, wherein said isolated telomerase component is a polypeptide associated with non-ciliate telomerase.

20 104. A component that binds to a non-ciliate telomerase component.

25 105. The component of claim 104, identified by the method of claim 100.

30 106. The component of claim 104, wherein the component is a nucleic acid segment.

107. The component of claim 106, wherein the nucleic acid segment is a human nucleic acid segment.

- 329 -

108. The component of claim 106, wherein the nucleic acid segment hybridizes to a yeast telomerase nucleic acid segment under standard low stringency hybridization conditions.

5

109. The component of claim 106, wherein the nucleic acid segment hybridizes to a yeast telomerase nucleic acid segment under standard high stringency hybridization conditions.

10

110. The component of claim 104, wherein the component is a protein or polypeptide.

15

111. A method for identifying a candidate substance that modifies telomerase activity, the method comprising the steps of:

20

(a) preparing a cell containing a chromosome that contains a genetic marker located near a telomere, the telomere capable of repressing the expression of the marker;

25

(b) contacting said cell with a composition comprising a candidate substance; and

30

(c) identifying a candidate substance that allows expression of the marker or that further represses the expression of the marker.

35

112. The method of claim 111, further defined as a method for identifying a candidate substance that inhibits telomerase activity, the method comprising the steps of:

- 330 -

(a) preparing a cell containing a chromosome that contains a genetic marker located proximal to a telomere, the telomere significantly repressing the expression of the marker;

5

(b) contacting said cell with a composition comprising a candidate inhibitory substance; and

10

(c) identifying a candidate inhibitory substance that allows expression of the marker.

113. The method of claim 111, further defined as a method
15 for identifying a candidate substance that stimulates
telomerase activity, the method comprising the steps of:

20

(a) preparing a cell containing a chromosome that contains a genetic marker located in the vicinity of a telomere, the telomere not significantly repressing the expression of the marker;

25

(b) contacting said cell with a composition comprising a candidate substance; and

(c) identifying a candidate stimulatory substance that represses or further represses the expression of the marker.

30

114. A method for modifying the replicative capacity of a cell, comprising contacting a telomerase-containing cell with an amount of a candidate substance effective to
35 modify telomerase activity.

- 331 -

115. The method of claim 114, further defined as a method
for inhibiting the replication of a cell, comprising
contacting a telomerase-containing cell with an amount of
an inhibitory substance effective to inhibit telomerase
activity.

5

116. The method of claim 115, wherein said telomerase-
containing cell is a tumor cell.

10

117. The method of claim 115, wherein said telomerase-
containing cell is a pathogenic cell.

15

118. The method of claim 114, further defined as a method
for promoting the replication of a cell, comprising
contacting a telomerase-containing cell with an amount of
a stimulatory substance effective to promote telomerase
activity.

20

119. The method of claim 118, wherein said telomerase-
containing cell is a sperm cell.

25

120. The method of claim 118, wherein said telomerase-
containing cell is an egg cell.

30

121. The use of a substance that inhibits telomerase
activity in the preparation of a medicament for use in
killing pathogenic or tumor cells, said substance being
identified by a method comprising the steps of:

35

- 332 -

(a) preparing a cell containing a chromosome that contains a genetic marker located proximal to a telomere, the telomere significantly repressing the expression of the marker;

5

(b) contacting said cell with a composition comprising a candidate inhibitory substance; and

10

(c) identifying a candidate inhibitory substance that allows expression of the marker.

122. The use of a substance that stimulates telomerase activity in the preparation of a medicament for use in promoting the replication of a sperm or egg cell, said substance being identified by a method comprising the steps of:

20

(a) preparing a cell containing a chromosome that contains a genetic marker located in the vicinity of a telomere, the telomere not significantly repressing the expression of the marker;

25

(b) contacting said cell with a composition comprising a candidate substance; and

30

(c) identifying a candidate stimulatory substance that represses or further represses the expression of the marker.

1/15

FIG. 1A

2/15

FIG. 1B

3/15

FIG.1C

4/15

FIG.2

5/15

1 2 3 4

FIG.3A

6/15

FIG.3B

7/15

FIG. 4A

8/15

FIG. 4B

9/15

FIG. 5A

10/15

FIG. 5B

11/15

FIG. 6A

12/15

FIG. 6B

13/15

14/15

FIG. 7B

15/15

FIG. 8