MODEL PERHITUNGAN HARGA SATUAN TERTINGGI BANGUNAN GEDUNG NEGARA

Muhamad Abduh¹, Budi Kurniawan²

¹Staf Pengadjar-Fakultas Teknik Sipil dan Lingkungan, Institut Teknologi Bandung ²Alumni Program Magister Teknik Sipil-Fakultas Teknik Sipil dan Lingkungan, ITB

ABSTRAK

Harga Satuan Tertinggi Bangunan Gedung Negara (HST-BGN) merupakan salah satu metode estimasi biaya penganggaran yang digunakan oleh Pemerintah untuk membangun suatu gedung negara. Faktor lokasi dan waktu pembangunan akan mempengaruhi besarnya biaya pembangunan, sehingga harga bangunan gedung negara akan berbeda di setiap Kabupaten/Kota. Selama ini, setiap Pemerintah Daerah Tingkat II menggunakan formula yang seragam dalam bentuk aplikasi spreadsheet untuk mengestimasi biaya konstruksi bangunan gedung di wilayahnya masing-masing. Kelemahan dari formula ini adalah tidak diakomodsinya perbedaan lokasi dan waktu yang mempengaruhi biaya konstruksi bangunan gedung negara tersebut, terutama yang terkait dengan komponen sumber daya berupa material dan tenaga kerja. Penelitian ini bertujuan untuk mengembangkan model harga satuan tertinggi bangunan gedung negara alternatif yang memperhitungkan perbedaan lokasi dan waktu dimaksud agar dapat diterapkan dengan efektif di setiap wilayah. Model yang dikembankan ini untuk sementara masih terbatas pada 48 data bangunan gedung sederhana 1 lantai milik pemerintah yang berfungsi sebagai gedung pendidikan, perkantoran dan layanan kesehatan yang berada pada wilayah Jawa Barat, yaitu kota Sukabumi, Bogor, Bandung, dan Cirebon. Penelitian ini menghasilkan komponen dominan dan kuantitas masing-masing komponen berdasarkan perhitungan statistik, yang dijadikan sebagai acuan perhitungan model. Komponen dominan tersebut memiliki bobot biaya kumulatif lebih dari 80% dari biaya total konstruksi yang terdiri dari 8 komponen material dan 4 komponen upah. Kuantitas komponen ditetapkan berdasarkan pada batas atas kuantitas komponen dominan per m2 bangunan dengan selang kepercayaan 90% dan 95%. Pengujian model ini dilakukan dengan membandingkan hasil estimasi ulang menggunakan model yang dikembangkan dengan estimasi berdasarkan data yang dikeluarkan oleh pemerintah daerah dengan nilai kontrak konstruksi yang sebenarnya. Hasil pengujian menunjukkan bahwa hasil estimasi menggunakan model yang diusulkan adalah lebih besar 30%, sedangkan yang menggunakan data pemerintah adalah lebih besar 60%. Dengan demikian, model yang dikembangkan ini memiliki potensi untuk diterapkan guna memperbaiki kinerja estimasi biaya penganggaran bangunan gedung negara.

Kata kunci: bangunan gedung negara, estimasi biaya penganggaran, harga satuan tertinggi.

A. PENDAHULUAN

Dengan semakin meningkatnya volume pembangunan bangunan gedung negara, serta terbatasnya sumber daya yang tersedia, semakin dirasakan perlu adanya standarisasi yang dapat dipakai dan dipertanggungjawabkan dalam pelaksanaan pembangunan. Hal tersebut dimaksudkan agar tercipta bangunan yang aman, andal, serasi dan selaras dengan lingkungannya. Salah satu standar yang dimaksud adalah standar harga bangunan per-m2 untuk bangunan gedung negara yang berfungsi sebagai acuan untuk estimasi penganggaran pembangunan gedung negara. Harga satuan ini dimaksudkan untuk pengendalian penyelenggaraan gedung negara baik pada masa pembangunan (penyusunan program, rencana dan pelaksanaan), pemeliharaan dan pemanfaatan maupun penghapusan bangunan, melalui penyediaan sistem informasi harga satuan pekerjaan konstruksi lingkup lokal dan nasional. Agar dapat terwujud bangunan

gedung negara yang sesuai dengan fungsi, memenuhi persyaratan keselamatan, kesehatan, kenyamanan, keamanan, efisien dalam penggunaan sumber daya, dan serasi dengan lingkungan, serta diselenggarakan secara tertib, efisien, dan efektif.

Untuk proyek pemerintah, baik yang didanai dari APBN maupun APBD, pemerintah dalam hal ini diwakili oleh Kementerian Permukiman dan Prasarana Wilayah mengeluarkan satu acuan yang dituangkan sebagai Keputusan Menteri Permukiman dan Prasarana Wilayah Nomor: 332/KPTS/M/2002 tertanggal 21 Agustus 2002 tentang Pedoman Teknis Pembangunan Bangunan Gedung Negara. Acuan berguna sebagai syarat-syarat pembangunan proyek gedung negara dengan dana APBN dan bersama dengan peraturan daerah (tingkat I maupun tingkat II) untuk pembangunan proyek dengan dana APBD. Dalam acuan tersebut, penyusunan pembiayaan bangunan gedung negara didasarkan pada standar harga tertinggi per m2 (HST) bangunan gedung negara yang berlaku di wilayah tersebut.

Dengan adanya standard harga satuan tertinggi ini, maka dalam menganggarkan biaya konstruksi bangunan gedung, nilai estimasi tidak boleh melebihi dari harga satuan yang telah ditetapkan oleh pemerintah kabupaten/kota, karena nilai harga ini merupakan nilai maksimum dalam estimasi biaya penganggaran untuk bangunan gedung pemerintah. Selain menjadi acuan dalam estimasi sebagai nilai maksimum yang dibolehkan dalam penganggaran, harga satuan tertinggi ini dapat juga bermanfaat sebagai acuan dalam beberapa hal, yaitu: sebagai acuan biaya konstrksi bangunan gedung negara tidak dengan sengaja di-mark-up proyek, dan juga sebagai standar kualitas bangunan gedung yang dapat dipenuhi oleh pemerintah. Maka dengan manfaat ini, maka HST konsekuensinya akan dapat dijadikan sebagai alat juga untuk mengendalikan dan proses audit kegiatan pembangunan gedung negara.

Dalam pelaksanaannya, HST ini menjadi sangat penting dan selalu dijadikan acuan di kabupaten dan kota baik oleh pemerintah maupun oleh praktisi konstruksi. Namun demikian, proses perhitungan untuk menetapkan HST yang dilakukan oleh dinas teknis terkait di kabupaten dan kota masih jauh dari memuaskan. Hal ini karena pada prakteknya penetapan HST tidak dilakukan dengan model dan metoda estimasi yang representatif untuk wilayah terkait. Model estimasi bangunan standar yang digunakan adalah model bangunan yang ditetapkan secara nasional dan kuantitas komponen penting bangunan gedung juga merupakan nilai nasional. Dalam hal ini, tentunya karena setiap wilayah memiliki karakteristik terhadap bangunan yang banyak dibangun, meskipun distandarisasi, maka adalah layak untuk memiliki model estimasi HST yang representatif untuk masing-masing wilayah. Selain itu, HST ini ditetapkan dengan masa berlaku satu tahun melalui SK pimpinan pemerintah daerah yang bersangkuta. Tentunya model perhitungan HST harus mengakomodasi peramalan terjadinya fluktuasi harga di masa yang akan datang. Pada prakteknya hal ini masih belum secara meyakinkan dilakukan.

B. PENGEMBANGAN MODEL HST-BGN

Terkait dengan kebutuhan untuk HST yang representatif dan valid, maka sebuah penelitian dilakukan dengan tujuan untuk mengembangkan metoda estimasi biaya Harga Satuan Tertinggi bangunan gedung untuk penganggaran pembangunan bangunan gedung negara. Diharapkan hasil penelitian tersebut mampu memberikan kontribusi kepada perbaikan dalam hal estimasi biaya penganggaran, yang dapat digunakan oleh pemerintah sebagai *owner*. Penelitian tersebut dibatasi hanya mencakup wilayah Provinsi Jawa Barat saja.

Pada dasarnya model matematis HST yang dikembangkan adalah sebagai berikut:

$$HST = \sum_{i=1}^{n} Q_i x C_i \tag{1}$$

Dimana:

HST = Harga Satuan Tertinggi

Q_i = Kuantitas komponen dominan Bangunan Gedung C_i = Harga komponen dominan Bangunan Gedung

Nilai Q_i adalah nilai kuantitas dari komponen dominan bangunan gedung yang diperoleh dari perhitungan statistik dengan menggunakan batas atas estimasi dengan *confidence level* 90% dan 95%. Sedangkan nilai C_i adalah nilai harga komponen dominan bangunan gedung yang diperoleh melalui survey harga pasar. Dalam hal ini, komponen dominan merupakan komponen dari bahan bangunan gedung yang mempunyai bobot > 80% dari biaya total pekerjaan suatu bangunan gedung.

Data-data yang dibutuhkan untuk membuat model HST BGN diambil dari dokumen kontrak pembangunan gedung baru milik pemerintah yang diperoleh dari hasil survey ke owner dan kontraktor di beberapa wilayah di Propinsi Jawa Barat, antara lain Sukabumi, Bogor, Bandung, dan Cirebon. Untuk masing-masing wilayah, owner yang disurvey adalah Dinas Tata Ruang dan Permukiman, dan untuk kontraktor adalah kontraktor spesialis bangunan gedung dari skala kecil, menengah dan atas.

Syarat-syarat suatu dokumen kontrak agar dapat dipergunakan dalam pengolahan data adalah memiliki:

- (1) Rencana Anggaran Biaya (RAB),
- (2) Analisa Harga Satuan (AHS) pekerjaan yang lengkap untuk setiap pekerjaan yang tertera dalam RAB, dan
- (3) Gambar Denah Bangunan untuk mengetahui luas bangunan.

Dari 65 dokumen kontrak yang berhasil dikumpulkan, hanya 48 dokumen yang memenuhi syarat tersebut. Syarat yang paling sulit untuk dipenuhi adalah syarat yang kedua, yakni banyak dokumen kontrak yang tidak memiliki AHS yang lengkap. Pada umumnya, semakin besar ukuran proyek, maka AHS Pekerjaan semakin tidak lengkap. Adapun hasil pengumpulan dokumen kontrak dapat dilihat pada Tabel 1 yang selanjutnya dijadikan sebagai bahan untuk pengembangan model HST-BGN.

Tabel 1. Rekapitulasi Hasil Pengumpulan Data Kontrak

No.	Nama Proyek	Tahun	Luas Bangunan (m²)	Lokasi	
1	Puskesmas Pembantu Sindang Palay	2000	162	Sukabumi	
2	Puskesmas Pembantu Cikundul	2000	187.5	Sukabumi	
3	Puskesmas Pembantu Sriwedari	2000	84	Sukabumi	
4	Puskesmas Pembantu Sudajaya Hilir	2001	84	Sukabumi	
5	SDN Baros (Paket I)	2001	697.2	Sukabumi	
6	Puskesmas Pembantu Subang Jaya	2001	66	Sukabumi	
7	Kantor Cabang Dinas P & K	2001	182	Sukabumi	
8	Regrouping SDN Baros Paket C	2002	702	Sukabumi	
9	Regrouping SDN Baros Paket B	2002	2002 776.4		
10	Gedung Kantor SLTPN 1 Nagrak	2003	157.2	Sukabumi	
11	Kantor Kelurahan Baros	2003	171	Sukabumi	
12	Kantor Kelurahan Cisarua	2003	231	Sukabumi	
13	Kantor Kelurahan Sindang Sari	2003	231	Sukabumi	
14	Kantor Kelurahan Sudajaya Hilir	2003	215.5	Sukabumi	
15	Kantor KPU	2003	256.5	Sukabumi	
16	Kantor Kelurahan Dayeuh Luhur	2003	123	Sukabumi	
17	Kantor Kelurahan Limus Nunggal	2003	123	Sukabumi	
18	SDN Losari	2003	114.75	Sukabumi	
19	SDN Sukakarya 2	2003	198	Sukabumi	
20	SLTPN 10	2003	918	Sukabumi	
21	SMUN 5	2003	302.625	Sukabumi	
22	Kantor Kelurahan Cipanengah	2004	108	Sukabumi	
23	2 RKB SDN Banjarsari VI	2005	135	Sukabumi	
24	3 RKB SDN Sukaraja III	2005	220.5	Sukabumi	
25	SDN Cipanengah	2005	393.2	Sukabumi	
26	Kantor Kelurahan Jayaraksa	2005	123	Sukabumi	
27	Puskesmas Pembantu Baros	2005	225	Sukabumi	
28	3 RKB SMP 18 Bogor	2001	243	Bogor	
29	3 RKB + WC SMP 18 Bogor	2001	270	Bogor	
30	Ruang Kantor dan Perpustakaan SMP 18 Bogor	2001	250.42	Bogor	
31	Laboratorium SMP 18 Bogor	2001	192.96	Bogor	
32	1 UGB SMKN Gunung Putri	2002	180	Bogor	
33	Gedung KSPHP	2002	406.89	Bogor	
34	Ruang Kantor SMUN Gunung Sindur	2004	304.32	Bogor	
35	3 RKB + KM/WC SMUN Gunung Sindur	2004	266.52	Bogor	
36	3 RKB + Gudang SMUN Gunung Sindur	2004	323.40	Bogor	
37	Laboratorium SMUN Gunung Sindur	2004	174	Bogor	
38	Gedung Kuliah Sunan Gunung Jati	1996	1781.94	Bandung	
39	SMUN 24 Bandung	1999	505.4	Bandung	
40	Gedung Pendidikan PPPG IPA	2002	2386.96	Bandung	
41	Gedung Perpustakaan PPPG IPA	2002	524.165	Bandung	
42	Gedung Mess Penatar PPPG IPA	2002	383.11	Bandung	
43	SDN Pejagalan	2003	974	Bandung	
44	Kantor Imigrasi Bandung	2004	488.23	Bandung	
45	SMKN II Cirebon	2005	195	Cirebon	
46	Kantor Dinas Kimpraswil	2005	346	Cirebon	
47	SDN Kalijaga Permai	2005	135	Cirebon	
48	2 RKB SDN Mekarwangi I	2005	108	Cirebon	

Dokumen kontrak yang berhasil dikumpulkan adalah dokumen kontrak bangunan gedung yang memiliki 1 dan 2 lantai dan berfungsi sebagai gedung pendidikan, perkantoran dan layanan kesehatan. Walaupun bangunan tersebut memiliki fungsi yang berbeda, namun dari segi fisik, bangunan tersebut tidak memiliki perbedaan yang mencolok. Hal tersebut dapat dilihat dari jenis-jenis pekerjaan yang tertera pada RAB setiap bangunan, yang pada umumnya merupakan pekerjaan-pekerjaan standar.

Pekerjaan-pekerjaan standar yang tertera pada RAB setiap bangunan kemudian diuraikan ke dalam komponen material, upah dan alat dengan menggunakan AHS yang terdapat dalam dokumen kontrak. Untuk item pekerjaan yang tidak memiliki AHS, digunakan AHS Standar dari Departemen Pekerjaan Umum atau Pedoman SNI tentang *Analisa Biaya Konstruksi Bangunan Gedung dan Perumahan*. Jika AHS dari suatu item pekerjaan tidak terdapat di dalam kedua pedoman tersebut, maka digunakan AHS dari dokumen kontrak lainnya dengan catatan bangunan tersebut berada pada lokasi yang sama.

Dari hasil pengolahan data, prosentase bobot biaya komponen material, upah dan alat untuk masing-masing bangunan berdasarkan lokasi dapat dilihat pada Tabel 2. Dari Tabel 2 diketahui bahwa, dari data-data bangunan yang dikumpulkan, komponen material dan upah memiliki bobot rata-rata paling besar, yaitu kumulatif bobot keduanya pada masing-masing lokasi > 90% dari biaya total pelaksanaan pekerjaan standar. Oleh karena itu, komponen material dan upah akan diolah lebih lanjut untuk mengetahui material apa dan upah pekerja apa yang akan ditetapkan sebagai komponen dominan.

No.	Lokasi Survey	% Bobot	% Bobot Biaya Komponen				
		Material	Upah	Alat			
1	Kota Sukabumi	67.63%	31.69%	0.68%			
2	Kota Bogor	70.31%	27.96%	1.74%			
3	Kota Bandung	72.91%	24.09%	2.99%			
4	Kota Cirebon	71.43%	28.40%	0.16%			

Tabel 2. Rekapitulasi % Bobot Biaya Komponen Material, Upah dan Alat

Komponen material dan upah yang dominan adalah jenis material dan upah yang memiliki bobot biaya paling besar dalam pembangunan gedung. Untuk menentukan jenis material dan upah sebagai komponen dominan, maka dilakukan dengan mengakumulasi bobot rata-rata komponen material dan upah secara berurutan dari yang terbesar hingga mencapai bobot kumulatif sebesar 80 %. Alasan memakai bobot kumulatif sebesar 80% ini sesuai dengan konsep Pareto, yang menyatakan bahwa bobot biaya sebesar 80% dari komponen dominan sudah mewakili 100% dari total biaya. Nilai kuantitas komponen material dan upah dominan diperoleh berdasarkan hasil perhitungan batas atas estimasi dengan *confidence level* 90% dan 95%. Pada perhitungan model HST-BGN ini, bobot kumulatif komponen bahan bangunan sebesar 80% akan dijadikan kembali ke 100%.

Dari hasil pengolahan data, diketahui bahwa setiap bangunan memiliki komponen material dan upah dominan yang berbeda-beda. Hal ini tergantung dari faktor lokasi, kuantitas dan kualitasnya. Semakin besar kuantitas dan semakin baik kualitasnya menyebabkan harga komponen tersebut semakin mahal, sehingga bobot biayanya

menjadi lebih besar. Tabel 3 berikut menunjukkan komponen dominan dan kuantitas masing-masing lokasi :

Tabel 3. Rekapitulasi Komponen Dominan dan Kuantitas

No.	Komponen	Satuan	Kuantitas dengan Confidence Level 95%			Kuantitas dengan Confidence Level 90%				
1 10.	Nonpoten	Satuan	Sukabumi	Bogor	Bandung	Girebon	Sukabumi	Bogor	Bandung	Cirebon
1	Kayu Balok Borneo	m³	0.1310	0.1347	0.1296	0.1325	0.1295	0.1307	0.1225	0.1289
2	Kayu Papan Borneo	m³	0.0307	0.0383	0.0352	0.0364	0.0301	0.0376	0.0327	0.0327
3	Besi Beton U24	Kg	10.3811	11.2164	11.3172	10.3194	10.2877	10.9973	11.1208	10.1452
4	Semen	Zak	2.5468	2,4425	2.5539	2.5159	2.5082	2.3926	2.4040	2.4500
5	Keramik Lantai 30x30	m²	1.1636	1.1510	1.1379	1.1610	1.1431	1.1335	1.1074	1.1322
6	Batu bata	Buah	109.0954	100.3044	109.1445	100.2620	106.6650	99.1544	107.4882	98.2988
7	Genteng	Buah	41.9720	45.3159	47.2896	46.6837	41.5753	44.6205	46.3244	45.3469
8	Pasir Pasang	m^3	0.3370	0.2919	0.3310	0.3408	0.3325	0.2874	0.3163	0.3256
9	Mandor	Hari	0.4168	0.3863	0.3973	0.4272	0.4109	0.3688	0.3872	0.4134
10	Kepala Tukang	Hari	0.7955	0.8570	0.8485	0.7906	0.7906	0.8424	0.8302	0.7818
11	Tukang	Hari	4.9971	5.0311	5.1512	5.1806	4.9292	4.9503	5.0707	5.0901
12	Pekerja	Hari	4.7489	4.4672	4.6658	4.6818	4.7061	4.3944	4.5318	4.5040

Dari Tabel 3 diketahui bahwa komponen material dan upah pada masing-masing lokasi memiliki nilai kuantitas yang tidak sama. Dari sini dapat disimpulkan pula bahwa faktor lokasi juga mempengaruhi bentuk dan desain bangunan. Perbedaan desain bangunan pada masing-masing lokasi bisa menyebabkan variasi angka uantitas komponen dominan, hal ini tentunya sesuai dengan premis awal tentang kebutuhan penetapan HST yang berdasarkan pada wilayah.

C. PERHITUNGAN MODEL HSTGN

Model harga satuan tertinggi bangunan gedung merupakan suatu model untuk menunjukkan biaya bangunan gedung negara per satuan luas. Biaya yang digunakan merupakan hasil perkalian dari kuantitas komponen dominan dengan harga pasar sekarang yang diperoleh dari perhitungan statistik batas atas estimasi dengan tingkat kepercayaan 90% dan 95%. Harga pasar yang dipakai adalah harga pasar dari masingmasing lokasi survey pada bulan Oktober dan November tahun 2007.

Setelah pengelompokkan berdasarkan lokasi dilakukan, maka akan diperoleh total harga material dan upah dari keseluruhan komponen dominan bangunan. Selanjutnya harga total tersebut akan menjadi nilai HST-BGN yang diusulkan untuk masingmasing lokasi. Nilai HST-BGN dari masing-masing lokasi untuk tahun 2007 dapat dilihat pada Tabel 4 berikut:

Tabel 4. Rekapitulasi HST BGN Tahun 2007

No.	HST BGN Level Confidence	95%	90%
1	Kota Sukabumi	Rp 1,450,415	Rp 1,429,379
2	Kota Bogor	Rp 1,497,033	Rp 1,462,918
3	Kota Bandung	Rp 1,554,415	Rp 1,491,946
4	Kota Cirebon	Rp 1,481,074	Rp 1,431,719

D. VALIDASI MODEL

Uji validasi model HST-BGN dilakukan dengan cara membandingkan hasil estimasi biaya bangunan gedung pada suatu lokasi dengan Harga Satuan Tertinggi yang dikeluarkan Pemerintah Daerah setempat. Sebagai alat validasi, diambil data biaya bangunan yang telah selesai dibangun, dimana memiliki karakteristik gedung standar pada masing-masing lokasi. Sebelumnya nilai konstruksi bangunan tersebut dikonversi ke tahun pada saat validasi dilakukan dengan menggunakan indeks biaya untuk bangunan gedung. Karena di Indonesia belum ada pihak yang menerbitkan nilai indeks biaya tersebut, maka untuk menyesuaikan biaya bangunan terhadap waktu digunakan angka inflasi. Meskipun perlu dicatata bahwa pengujian model dengan angka inflasi umum tidak mewakili biaya bangunan gedung negara, sebab angka inflasi sebenarnya berasal dari Indeks Harga Konsumen (IHK) yang menunjukkan perubahan harga paket barang dan jasa yang rata-rata dikonsumsi oleh rumah tangga selama 1 bulan, seperti bahan makanan, sandang, perumahan, kesehatan, rekreasi, olahraga, transportasi dan komunikasi.

Hasil uji validasi yang menggunakan nilai inflasi tahunan dapat dilihat pada Tabel 5.

No.	Proyek	Tolum	Tahun Luas Bangunan	Biava Sebenaniva	Normalisasi	Estimasi Biaya			
110.		1301001		Diaya Sebelahiya	Biaya	a Model Pemerintah Model HS		Model HSTBGN90%	
						HST=1,996,943	HST=1,497,033	HST=1,462,918	
1	3RKBSMP18	2001	243	151,576,064	243,577,025	485,257,214	363,778,964	355,489,163	
	Bogor				Perbedaan	241,680,189	120,201,939	111,912,138	
					%	99,22	49.35	4595	
2	3 RKB+WCSMP 18	2001	270	173,368,383	278,596,460	539,174,682	404,198,848	394,987,959	
	Bogor				Perbedaan	260,578,223	125,602,389	116,391,499	
					%	93.53	45.08	41.78	
3	Ruang Kantor dan	2001	250.42	157,539,130	253,159,446	500,074,533	374,886,947	366,344,017	
3	Perpustakaan SMP 18				Perbedaan	246,915,087	121,727,501	113,184,571	
					%	97.53	48.08	44.71	
4	LaboratoriumSMP 18	2001	19296	122,772,519	197,290,813	385,330,173	288,867,444	282,284,728	
	Bogor				Perbedaan	188,039,360	91,576,630	84,993,915	
					%	9531	46.42	43.08	
5	1 UCBSMKN	2002	180	151,178,000	219,428,397	359,449,788	269,465,899	263,325,306	
	GrungPutri				Perbedaan	140,021,391	50,037,502	43,896,908	
		•	·		%	63.81	22.80	2001	
6	3RKB+KMWC	2004	266.52	223,933,036	294,196,924	532,225,320	398,989,174	389,897,003	
U	SMNGning				Perbedaan	238,028,396	104,792,251	95,700,079	
					%	80.91	35.62	3253	

Tabel 5. Hasil Validasi dengan Nilai Inflasi Tahunan

Hasil uji validasi menunjukkan bahwa estimasi dengan nilai inflasi tahunan yang menggunakan HST yang dikeluarkan oleh Pemerintah Daerah cenderung *overestimate* hingga mencapai +90%. Sedangkan hasil estimasi berdasarkan model HST-BGN yang dikembangkan cenderung *overestimate* hingga mencapai +50%.

Uji validasi model HST-BGN yang dilakukan dengan menggunakan angka inflasi kurang cocok untuk dipakai, karena tidak mewakili komponen bangunan gedung

negara. Untuk itu maka model HST-BGN yang dikembangkan akan diuji dengan menggunakan data komponen harga-harga real pada tahun yang bersangkutan. Hasil dari uji validasi yang menggunakan data komponen harga di tahun yang bersangkutan dapat dilihat pada Tabel 6.

Tabel 6. Hasil Validasi dengan Data Harga Komponen tahun yang bersangkutan

N.L.	D 1	T-1	Luas	Nilai HS	LECT	MI-174L	Estimesi Biaya			
No.	Proyek	Tahun	Bangunan			Nilai Kontrak	Model Penerintah	Model 95%	Mbdel 90%	
1	3 RKB SMP 18 Bogor	2001	243	Pemda	850,546	151,576,064	206,682,658.73	165,015,376.60	161,215,387.49	
				Model 95%	679,076	Perbedaan	55,106,594.50	13,439,312.37	9,639,323.26	
				Model 90%	663,438	%	3636	8.87	4.66	
2	3 RKB+WCSMP 18	2001	270	Pemda	850,546	173,368,383	229,647,398.59	183,350,418.44	179,128,208.33	
	Bogor			Model 95%	679,076	Perbedaan	56,279,015.82	9,982,035.67	5,759,825.55	
				Model 90%	663,438	%	32.46	576	3.32	
3	Ruang Kantordan	2001	250.42	Pemda	850,546	157,539,130	212,993,709.47	170,054,117.73	166,138,096.03	
	Perpustakaan SMP 18			Model 95%	679,076	Perbedaan	55,454,579.93	12,514,988.19	8,598,966.49	
				Model 90%	663,438	%	35.20	7.94	5.46	
4	LaboratoriumSMP 18	2001	19296	Pemda	850,546	122,772,519	164,121,340.86	131,034,432.38	128,016,959.55	
	Bogor			Model 95%	679,076	Perbedaan	41,348,821.65	8,261,913.17	5,244,440.34	
				Model 90%	663,438	%	33.68	673	4.27	
5	1 UCB SMKN Ginung	2002	180	Pemda	1,319,066	151,178,000	237,431,951.05	180,294,298.62	175,981,579.84	
	Putri			Model 95%	1,001,635	Perbedaan	86,253,951.05	29,116,298.62	24,803,579.84	
				Model 90%	977,675	%	57.05	19.26	1641	
6	3 RKB+KMWCSMLN	2004	266.52	Penda	1,356,819	223,933,036	361,619,496.18	269,309,187.54	262,522,493.24	
	GunungSindur			Model 95%	1,010,465	Perbedaan	137,686,460.18	45,376,151.54	38,589,457.24	
				Model 90%	985,001	%	61.49	20.26	17.23	

Hasil validasi ini menunjukkan bahwa estimasi dengan data harga tahun yang bersangkutan yang menggunakan HST yang dikeluarkan oleh Pemerintah Daerah cenderung *overestimate* hingga mencapai +60%. Sedangkan hasil estimasi berdasarkan model HST-BGN yang dikembangkan cenderung *overestimate* hingga mencapai +30%.

Secara umum, hasil validasi berdasarkan harga komponen pada tahun bersangkutan memiliki perbedaan yang lebih baik jika dibandingkan dengan hasil validasi berdasarkan inflasi tahunan. Hasil validasi berdasarkan harga komponen pada tahun yang bersangkutan memiliki perbedaan hingga + 30% dari nilai proyek, sedangkan hasil validasi berdasarkan nilai inflasi tahunan memiliki perbedaan hingga + 50% dari nilai proyek. Hal ini disebabkan karena angka inflasi tahunan memang bukan ditujukan untuk bangunan gedung negara.

E. KESIMPULAN

Model HST-BGN yang dikembangkan dapat digunakan dengan cukup akurat dalam mengestimasi biaya konstruksi bangunan gedung pada tahap awal, seperti studi kelayakan dan penganggaran. Model ini memiliki akurasi yang lebih baik dari model yang selama ini dipakai oleh Pemerintah Daerah. Model HST-BGN yang dikembangkan ini dapat mengefisiensikan biaya dalam estimasi penganggaran hingga 50% dari model yang dipakai oleh Pemerintah. Dengan demikian, model HST-BGN

ini dapat dikembangkan lebih lanjut untuk lokasi-lokasi yang lain di Indonesia serta untuk jenis konstruksi yang lain pula. Hal ini akan sangat berguna untuk mengurangi kesalahan pengambilan keputusan pada industri konstruksi di Indonesia.

F. DAFTAR PUSTAKA

- 1) Dinas Tata Ruang dan Permukiman Propinsi Jawa Barat. Analisa Harga satuan Pekerjaan Kota Bandung tahun anggaran 2007 Triwulan 1.
- 2) Dinas Tata Ruang dan Permukiman Propinsi Jawa Barat. Analisa Harga satuan Pekerjaan Kota Cirebon tahun anggaran 2007 Triwulan 1.
- 3) Dinas Tata Ruang dan Permukiman Propinsi Jawa Barat. Analisa Harga satuan Pekerjaan Kota Bogor tahun anggaran 2007 Triwulan 1.
- 4) Dinas Tata Ruang dan Permukiman Propinsi Jawa Barat. Analisa Harga satuan Pekerjaan Kota Sukabumi tahun anggaran 2007 Triwulan 1.
- 5) Departemen Permukiman dan Prasarana Wilayah, (2002), Keputusan Menteri Permukiman dan Prasarana Wilayah Nomor : 332/KPTS/M/2002 tentang Pedoman Teknis Pembangunan Gedung Negara, PT Medisa, Jakarta.
- 6) Pemerintah Kota Bandung, (2005), Keputusan Wako No.027/Kep.898-Huk/2005 tentang Standarisasi Harga Tertinggi Satuan Barang dan Jasa di Lingkungan Pemerintah Kota Bandung.
- 7) HS.Ang, Alfredo & Tang, Wilson & Hariandja, Binsar (1975). Pengembangan Konsep-Konsep Probabilitas dalam Perencanaan dan Perancangan Rekayasa, Erlangga, Jakarta.
- 8) Riswan, Dony. (2006). Pengembangan Model Estimasi Biaya Parameter Pada Estimasi Biaya Tahap Awal Proyek Pembangunan Gedung, Tesis Program Magister, Institut Teknologi Bandung.
- 9) Wijiastuti, Dwiretno, (2006). Pengembangan Model Indeks Biaya untuk Estimasi Biaya Konseptual Konstruksi Bangunan Gedung, Tesis Program Magister, Institut Teknologi Bandung.
- 10) FAA Life Cycle Cost Estimating Handbook, (2002), Parametric, Analogy, Engineering Estimation Risk Analysis Modelling and Simulation, http://www.faa.gov/ASD/ia-or/pdf/handbook/CEH.pdf.

Konteks 2 Konferensi Nasional Teknik Sipil 2