Lesson 3: GMM Estimation

Sources

- Whited & Taylor (Summer School in Structural Estimation)
- Wooldridge (2001), Econometric Analysis of Cross Section and Panel Data
- Cochrane (2006), Asset Pricing

Introduction

- GMM (Generalized Method of Moments) generalizes the method of moments.
- Formalized by Hansen (1982), it is widely used in economics and finance.
- It underlies methods like Simulated Method of Moments and Indirect Inference.
- Key Benefit: No need to fully specify the data's distribution.

Method of Moments – Overview

- Estimate parameters by equating sample moments with population moments.
- Suppose we have k unknown parameters $\theta_1, \theta_2, \ldots, \theta_k$.
- Data: A random variable X with density $f_X(x; \theta_1, \dots, \theta_k)$.

Method of Moments – Moment Equations

Assume the first k moments satisfy:

$$egin{align} \mu_1 &= E[X] = g_1(heta_1, \dots, heta_k), \ \mu_2 &= E[X^2] = g_2(heta_1, \dots, heta_k), \ &dots \ \mu_k &= E[X^k] = g_k(heta_1, \dots, heta_k). \ \end{pmatrix}$$

• Replace with sample moments:

 \circ \$ \hat{\mu} $j = |frac{1}{n} | sum{i=1}^n x_i^j$ \$ for $j = 1, \ldots, k$.

Solve:

$$\hat{\mu}_1 = g_1(\hat{ heta}_1, \dots, \hat{ heta}_k)$$
, etc.

Example: Normal Distribution

- For parameters μ and σ :
 - Theoretical moments:

$$E[X] = \mu$$
 and $E[X^2] = \mu^2 + \sigma^2$.

Sample moments:

$$\hat{\mu}_1 = rac{1}{n} \sum_{i=1}^n x_i,$$

$$\hat{\mu}_2=rac{1}{n}\sum_{i=1}^n x_i^2.$$

ullet Then, $\hat{\mu}=\hat{\mu}_1$ and $\hat{\sigma}^2=\hat{\mu}_2-\hat{\mu}_1^2$.

GMM: Overidentification

 When there are more moment conditions than parameters, the model is overidentified.

Advantages:

- Compute standard errors.
- Test the validity of the moment restrictions.
- GMM optimally combines all available moments.

GMM: Setup & Notation

- Let w_i be an $(M \times 1)$ data vector for observation i.
- Parameter vector: θ (of size $(P \times 1)$).
- Define moment functions:

$$g(w_i, heta): \mathbb{R}^M imes \mathbb{R}^P o \mathbb{R}^L$$
, with $L \geq P$.

• The key restriction is:

$$E[g(w_i, heta_0)] = 0$$
, where $heta_0$ is the true parameter.

Moment Restrictions & Criterion

• In the sample, use:

$$\circ \ g_T(heta) = rac{1}{T} \sum_{i=1}^T g(w_i, heta).$$

- Objective: Find $\hat{\theta}$ so that $g_T(\hat{\theta})$ is "close" to 0.
- Criterion function (when overidentified):

$$Q_T(heta) = \Big[g_T(heta)\Big]' \hat{W}\Big[g_T(heta)\Big],$$

where \hat{W} is a positive-definite weighting matrix.

GMM Estimator & FOC

• Estimator:

$$\hat{ heta} = rg \min_{ heta} Q_T(heta).$$

• First-Order Condition (if g is differentiable):

Define

$$D_T(heta) = rac{\partial g_T(heta)}{\partial heta}$$
.

Then,

$$2 D_T(\theta)' \hat{W} g_T(\theta) = 0.$$

Asymptotic Normality

Under standard regularity conditions:

$$\sqrt{T}\left(\hat{ heta}- heta_0
ight)\overset{d}{
ightarrow} N\Big(0,\,(D'WD)^{-1}\,D'W\,S\,WD\,(D'WD)^{-1}\Big),$$

where

- ullet $D=E\left[rac{\partial g(w_i, heta_0)}{\partial heta}
 ight]$,
- $S = \operatorname{Var}(g(w_i, \theta_0)).$

Efficient GMM uses $W = S^{-1}$, yielding:

$$\sqrt{T}\left(\hat{ heta}_{ ext{eff}}- heta_0
ight)\sim N\Big(0,\,(D'S^{-1}D)^{-1}\Big).$$

Standard Errors (Two-Step GMM)

1. Step 1:

Estimate $\hat{ heta}_1$ with a simple weighting (e.g. W=I).

2. **Step 2**:

Estimate S from the residuals and re-estimate with $\hat{W}=\hat{S}^{-1}$:

$$\hat{ heta}_2 = rg \min_{ heta} \Big[g_T(heta) \Big]' \hat{S}^{-1} \Big[g_T(heta) \Big].$$

The asymptotic variance is estimated by:

$$\hat{V}(\hat{ heta}_2) = rac{1}{T} \Big[d' \hat{S}^{-1} d \Big]^{-1},$$

with
$$d=rac{\partial g_T(heta)}{\partial heta}ig|_{ heta=\hat{ heta}_2}.$$

Goodness of Fit

- The GMM criterion can test if the model is correctly specified.
- **J-Test:** Under the null,

$$\circ \ T\,Q_T(\hat{ heta}) \stackrel{d}{ o} \chi^2_{L-P'}$$

where L is the number of moments and P is the number of parameters.

Example: OLS via GMM (Step 1)

Consider the linear regression:

$$y_i = X_i \beta + \varepsilon_i$$
.

• Moment Condition:

$$E[X_i(y_i - X_i\beta)] = 0.$$

• Form the moment vector:

$$g(w_i,eta) = inom{X_i'(y_i - X_ieta)}{y_i - X_ieta}.$$

• First-Step Estimator:

Use W=I:

$$\hat{eta}_1 = rg \min_{eta} \left\{ \left\lceil rac{1}{N} \sum_{i=1}^N g(w_i,eta)
ight
ceil' \left\lceil rac{1}{N} \sum_{i=1}^N g(w_i,eta)
ight
ceil
brace \left\lceil rac{1}{N} \sum_{i=1}^N g(w_i,eta)
ight
ceil
brace.$$

Example: OLS via GMM (Step 2)

1. Estimate Covariance:

$$\hat{S} = rac{1}{N} \sum_{i=1}^N g(w_i,\hat{eta}_1) g(w_i,\hat{eta}_1)'.$$

2. Efficient Estimator:

$$\hat{eta}_2 = rg \min_{eta} \left\{ \left[rac{1}{N} \sum_{i=1}^N g(w_i,eta)
ight]' \hat{S}^{-1} \left[rac{1}{N} \sum_{i=1}^N g(w_i,eta)
ight]
ight\}.$$

GMM in Practice

- Numerical Issues: The estimated \hat{S} may be nearly singular.
- Solutions:
 - i. Use a one-step estimator.
 - ii. Add a small amount of regularizing noise.
 - iii. Use a generalized inverse (e.g. Moore-Penrose).

Final Remarks

- **Regularity Assumptions:** Identification, smoothness, and finite moments are essential.
- Choice of Instruments: Overidentification allows testing instrument validity via the J-test.
- **Robustness:** GMM is robust to error distribution misspecification, but correct moment conditions are vital.