IN THE CLAIM

1	1. (Currently Amended) A method for managing a memory system having a plurality of
2	subsystems, comprising the steps of:
3	upon accessing the memory system for a piece of data used by a first
4	process
5	determining the an access time to acquire the piece of data in the
6	memory system;
7	comparing the determined access time to a threshold; and
8	taking actions based on the results of the comparing step; including
9	postponing execution of the first process and allowing
10	execution of a second process;
11	wherein a value of the threshold is selected based on one or a combination
12	<u>of</u>
13	cost of switching processes for execution, and
14	whether the value is a realistic time for a memory access.
1	2. (Canceled)
1	3. (Currently Amended) The method of claim [2] 1 wherein an intelligence performing the
2	steps of postponing and allowing upon a notification from a latency manager
3	regarding a relationship between the determined access time and the threshold; the
4	latency manager determining the relationship independent from the intelligence
5	latency manager notifying the intelligence that the determined access time is close
6	to, equal to, or greater than the threshold; the latency manger performing the step
7	of determining independent from the intelligence

1	4. (Original) The method of claim 3 wherein the intelligence is selected from a group
2	consisting of a processor working with the memory system, an operating system
3	working with the memory system, software running on the processor, and a
4	memory manager managing the memory system.
1	5. (Currently Amended) The method of claim 1, if the step of comparing indicates that the
2	determined access time is close to, equal to, or greater than the threshold, wherein
3	the actions further comprising the step of include monitoring the memory system
4	or a system using the memory system.
1	6. (Original) The method of claim 1 wherein the determined access time is selected as the
2	longest access time of a plurality of access times each of which corresponds to a
3	memory access in a multiple memory access.
1	7. (Original) The method of claim 1 further comprising the step of accessing the piece of
2	data in more than one subsystem at the same time; one subsystem having a shorter
3	access time and one subsystem having a longer access time; the determined access
4	time being that of the subsystem having the shorter access time, and, if the piece of
5	data is missed in the subsystem having the shorter access time, then the
6	determined access time being that of the subsystem having the longer access time.
1	8. (Currently Amended) The method of claim 1 further comprising the step of updating a
2	previous previously determined access time to the determined access time if the
3	determined access time is greater than the previous previously determined access
4	time.

1	9. (Original) The method of claim 1 further comprising the step of notifying an
2	intelligence working with the memory system; the intelligence being selected from
3	a group consisting of a processor, an operating system, software running on the
4	processor, and a memory manager managing the memory system; the intelligence
5	performing the step of taking actions.
1	10. (Original) The method of claim 1 further comprising the step of changing the
2	determined access time upon performing a task selected from a group consisting of
3	changing the threshold, initiating an interrupt to an intelligence working with the
4	memory system, and postponing executing the first process and allowing
5	executing a second process.
1	11. (Currently Amended) The method of claim 1 wherein the determined access time is
2	selected from the a time to access at least one subsystem.
1	12. (Currently Amended) The method of claim 1 wherein a latency manager performing
2	the step of determining; the latency manager being on the a data path between a
3	processor working with the memory system and the plurality of subsystems.
1	13. (Original) The method of claim 1 wherein the data is accessed from a subsystem
2	having a shorter access time to a subsystem having a longer access time or in a
3	non-sequential order.
1	14. (Currently Amended) A method for managing a memory system having a plurality of
2	subsystems, comprising the steps of:

3.	comparing an access time of a subsystem to a threshold; a value of the
4	threshold being selected based on one or a combination of cost of
5	switching processes for execution and whether the value is a
6	realistic time for a memory access;
7	earmarking [a] the subsystem based on results of the comparing step;
8	from the plurality of subsystems, determining an order for data to be
9	accessed from a subsystem having a shorter access time to a
10	subsystem having a longer access time; and
11	upon accessing the memory system for a piece of data used by a first
12	process, if the data is missed in the earmarked subsystem, then
13	postponing executing the first process and allowing executing a
14	second process.
1	15. (Currently Amended) The method of claim 14 wherein an intelligence performing the
2	steps of postponing and allowing upon notification from a latency manager
3	
3	regarding a relationship between the determined access time and the threshold
4	regarding a relationship between the determined access time and the threshold notifying the intelligence that the determined access time is close to, equal to, or
4	notifying the intelligence that the determined access time is close to, equal to, or
4 5	notifying the intelligence that the determined access time is close to, equal to, or greater than the threshold; the intelligence being selected from a group consisting
4 5 6	notifying the intelligence that the determined access time is close to, equal to, or greater than the threshold; the intelligence being selected from a group consisting of a processor working with the memory system, an operating system working
4 5 6 7	notifying the intelligence that the determined access time is close to, equal to, or greater than the threshold; the intelligence being selected from a group consisting of a processor working with the memory system, an operating system working with the memory system, software running on the processor, a memory manager
4 5 6 7 8	notifying the intelligence that the determined access time is close to, equal to, or greater than the threshold; the intelligence being selected from a group consisting of a processor working with the memory system, an operating system working with the memory system, software running on the processor, a memory manager managing the memory system; the latency manger being part of managing the
4 5 6 7 8	notifying the intelligence that the determined access time is close to, equal to, or greater than the threshold; the intelligence being selected from a group consisting of a processor working with the memory system, an operating system working with the memory system, software running on the processor, a memory manager managing the memory system; the latency manger being part of managing the

HP PDNO 10012380-1 USPTO serial number 10/044,364

3	means for, upon accessing the memory system for a piece of data used by a
4	first process,
5	determining the an access time to acquire the piece of data in the
6	memory system;
7	comparing the determined access time to a threshold; and
8	taking actions based on the results of the comparing step; including
9	postponing execution of the first process and allowing
10	execution of a second process;
11	wherein a value of the threshold is selected based on one or a combination
12	<u>of</u>
13	cost of switching processes for execution, and
14	whether the value is a realistic time for a memory access.
1	17. (Canceled)
1	18. (Original) The apparatus of claim 16 wherein the determined access time is selected
2	as the longest access time of a plurality of access times each of which corresponds
3	to a memory access in a multiple memory access.
1	19. (Original) The apparatus of claim 16 further comprising means for accessing the
2	piece of data in more than one subsystem at the same time; one subsystem having
3	a shorter access time and one subsystem having a longer access time; the
4	determined access time being that of the subsystem having the shorter access time,
5	and, if the piece of data is missed in the subsystem having the shorter access time,
6	then the determined access time being that of the subsystem having the longer
7	access time.

1	20. (Currently Amended) An apparatus for managing a memory system having a plurality
2	of subsystems, comprising:
3	means for comparing an access time of a subsystem to a threshold; a value
4	of the threshold being selected based on one or a combination of
5	cost of switching processes for execution and whether the value is a
6	realistic time for a memory access;
7	means for earmarking a subsystem; and
8	means for determining, from the plurality of subsystems, an order for data
9	to be accessed from a subsystem having a shorter access time to a
10	subsystem having a longer access time; and
11	wherein upon accessing the memory system for a piece of data used by a
12	first process, if the data is missed in the earmarked subsystem, then
13	means for postponing executing execution of the first process and
14	allowing executing execution of a second process.
1	21. (Currently Amended) A computer-readable medium embodying instructions for a
2	computer to perform a method for managing a memory system having a plurality
3	of subsystems, the method comprising the steps of:
4	upon accessing the memory system for a piece of data used by a first
5	process,
6	determining the an access time to acquire the piece of data in the
7	memory system;
8	comparing the determined access time to a threshold; and
9	taking actions based on the results of the comparing step; including
10	postponing execution of the first process and allowing
11	execution of a second process;

12	wherein a value of the threshold is selected based on one or a combination
13	<u>of</u>
14	cost of switching processes for execution, and
15	whether the value is a realistic time for a memory access.
1	22. (Canceled)
1	23. (Original) The computer-readable medium of claim 21 wherein the determined access
2	time is selected as the longest access time of a plurality of access times each of
3	which corresponds to a memory access in a multiple memory access.
1	24. (Original) The computer-readable medium of claim 21 wherein the method further
2	comprising the step of accessing the piece of data in more than one subsystem at
3	the same time; one subsystem having a shorter access time and one subsystem
4	having a longer access time; the determined access time being that of the
5	subsystem having the shorter access time, and, if the piece of data is missed in the
6	subsystem having the shorter access time, then the determined access time being
7	that of the subsystem having the longer access time.
1	25. (Currently Amended) A computer-readable medium embodying instructions for a
2	computer to perform a method for managing a memory system having a plurality
3	of subsystems, the method comprising the steps of:
4	comparing an access time of a subsystem to a threshold; a value of the
5	threshold being selected based on one or a combination of cost of
6	switching processes for execution and whether the value is a
7	realistic time for a memory access;

HP PDNO 10012380-1 USPTO serial number 10/044,364

8	earmarking [a] the subsystem based on results of the comparing step;
9	from the plurality of subsystems, determining an order for data to be
10	accessed from a subsystem having a shorter access time to a
11	subsystem having a longer access time; and
12	upon accessing the memory system for a piece of data used by a first
13	process, if the data is missed in the earmarked subsystem, then
14	postponing executing the first process and allowing executing a
15	second process.
1	26. (New) The computer-readable medium of claim 21 wherein the actions further include
2	monitoring the memory system or a system using the memory system.
1	27. (New) The computer-readable medium of claim 21 wherein the method further
2	comprising the step of updating a previously determined access time to the
3	determined access time if the determined access time is greater than the previously
4	determined access time.
1	28. (New) The computer-medium of claim 1 wherein the determined access time is
2	selected from a time to access at least one subsystem.