Optimizer and LR Schedule

Outline

Optimizer and LR Schedule

Introduction

Optimizer

Schedule

Reference

Introduction

Why?

- Core component of deep learning
 - Drives the entire training process
 - ► Determines how models learn from data
 - Critical for model convergence

• Impact

- Training speed
- Model performance
- Final accuracy
- ► Generalization

Challenges

- Complex loss landscapes
 - Non-convex optimization
 - Multiple local minima and Saddle points
- Training
 - Vanishing/exploding gradients
 - Slow convergence
 - Unstable
 - Overfitting

Optimizer vs Schedulers

Optimizer

- How parameters update
- adapt learning based on gradients

Learninig rate schedule

- Manage learning rate dynamics
- Balance exploration vs exploitation
- Convergence speed
- Final model perormance

Evolution

- Traditional
 - ► Basic Gradient Descent
 - ► Batch Gradient Descent
 - Stochastic Gradient Descent (SGD)
 - ► mini-batch
- Modern
 - Momentum
 - Adaptive learning rates
 - Combined strategies

Optimizer

Common Optimizers Family

- First Generation
 - ► SGD
 - ► SGD with momentum
 - Nesterov accelerated gradient
- Adaptive methods
 - AdaGrad
 - RMSprop
 - AdaDelta
 - Adam

- Modern
 - AdamW
 - Lion
 - Lamb
 - **...**

Gradient Descent

$$\theta = \theta - \eta * \nabla J(\theta) \tag{1}$$

Where,

- θ : model parameters
- η : learning rate
- $\nabla J(\theta)$: gradient of loss function

Batch Gradient Descent

- Uses entire dataset for each update
- Slow
- High memory
- Deterministic updates

For a dataset with n sample, $i \in [1, n]$:

$$\begin{split} L &= \left(\frac{1}{n}\right) * \sum L(\theta; x_i, y_i) \\ \theta &= \theta - \eta * \left(\frac{1}{n}\right) * \sum \nabla L(\theta; x_i, y_i) \end{split} \tag{2}$$

Batch Gradient Descent Pseudo code

```
for epoch in epochs:
    grads = grad(loss_fn(weights, all_n_samples))
    weights = weights - learning_rate * grads
```

SGD and Mini-batch

• Update parameters for each sample or a *m*-size batch

$$\begin{split} L &= \left(\frac{1}{m}\right) * L(\theta; x_i, y_i) \\ \theta &= \theta - \eta * \left(\frac{1}{m}\right) * \nabla L(\theta; x_i, y_i) \end{split} \tag{3}$$

```
for epoch in epochs:
    for batch in get_batches(dataset, size=m):
        grads = grad(loss_fn(weights, batch))
        weights = weights - learning rate * grads
```

AdaGrad (Adaptive Gradient)

- Adaptive learning rate for each parameter
- Larger updates for infrequent parameters
- Smaller updates for frequent parameters

$$r_{t} = r_{t-1} + \nabla J(\theta_{t-1})^{2}$$

$$\theta_{t} = \theta_{t-1} - \left(\frac{\eta}{\sqrt{r_{t} + \varepsilon}}\right) * \nabla J(\theta_{t-1})$$

$$(4)$$

AdaGrad (Adaptive Gradient)

- Adaptive learning rate for each parameter
- Larger updates for infrequent parameters
- Smaller updates for frequent parameters

$$r_{t} = r_{t-1} + \nabla J(\theta_{t-1})^{2}$$

$$\theta_{t} = \theta_{t-1} - \left(\frac{\eta}{\sqrt{r_{t} + \varepsilon}}\right) * \nabla J(\theta_{t-1})$$

$$(4)$$

• Learning rate will decrease over time

Momentum

- Inpire by physics momentum
- Accumulate gradients history
- Helps overcome local minima
- Reduce training oscillations

$$v_t = \beta v_{t-1} + (1 - \beta) \nabla J(\theta_{t-1})$$

$$\theta_t = \theta_{t-1} - \eta v$$
(5)

- *v*: velocity (momentum)
- β : momentum coefficient (0.9 in practice)

```
Optimizer
```

Without momentum (oscillating): /\ /\/\ / \/\/ With momentum (smooth):

```
Dept. CSE, UT Arlington
```

Weight Decay

- Prevents model overfitting
- Penalize large weights
- Encourage simpler models
- Reduces model's dependency on single features

Weight Decay

L2 norm in the loss function

$$L = L + \left(\frac{\lambda}{2}\right) \|\theta\|^2 \tag{6}$$

Standard Weight Decay in optimizer

$$\theta_t = \theta_{t-1} - \eta \nabla J(\theta_{t-1}) - \lambda \theta_{t-1} \tag{7}$$

Weight Decay pseudo code

```
for params, grad in zip(params, grads):
   param = param - lr * (grad + wd * param)
# or
   param = param - lr * grad - lr * wd * param
```

Some Typical values for λ

Dataset Size	λ Value
Small (< 10k sample)	1e-3
Medium (10k - 1M)	1e-4
Large (> 1M)	1e-5

Architecture Type	λ Adjustment
CNN	Base λ
Transformer	$0.1 \times \text{Base } \lambda$
ResNet	$0.5 \times \text{Base } \lambda$

Some Typical values for λ

Data Type	λ Adjustment
Simple/Linear	$2 \times \text{Base } \lambda$
Complex/Nonlinear	$0.5 \times \text{Base } \lambda$

Training Length	λ Adjustment
Short (< 20 epochs)	$0.5 \times \text{Base } \lambda$
Long (> 100 epochs)	$2 \times \text{Base } \lambda$

SGD with Momentum

Add momentum term to vanilla SGD

$$v_t = \beta * v_{t-1} + \nabla J(\theta_{t-1})$$

$$\theta_t = \theta_{t-1} - \eta * v_t$$
(8)

Nesterov Accelerated Gradient

- Momentum: Current \rightarrow Gradient \rightarrow Momentum \rightarrow Update
- Nesterov: Current \rightarrow Look-ahead \rightarrow Gradient \rightarrow Momentum \rightarrow Update

$$v_{t} = \beta * v_{t-1} + \nabla J(\theta_{t-1} + \beta * v_{t-1})$$

$$\theta_{t} = \theta_{t-1} - \eta * v_{t}$$
(9)

RMSprop

• Improves AdaGrads' declining learning rate with exponential moving average (EMA)

Before

$$r_{t} = r_{t-1} + \nabla J(\theta_{t-1})^{2}$$

$$\theta_{t} = \theta_{t-1} - \left(\frac{\eta}{\sqrt{r_{t} + \varepsilon}}\right) * \nabla J(\theta_{t-1})$$
(10)

After

$$r_{t} = \beta * r_{t-1} + (1 - \beta) * \nabla J(\theta_{t-1})^{2}$$

$$\theta_{t} = \theta_{t-1} - \left(\frac{\eta}{\sqrt{r_{t} + \varepsilon}}\right) * \nabla J(\theta_{t-1})$$
(11)

Adam

- Adds momentum to RMSprop
- Maintains moving averages of gradients (momentum) and squared gradients (LR)

$$\begin{split} m_t &= \beta_1 * m_{t-1} + (1 - \beta_1) * \nabla J(\theta_{t-1}) \\ v_t &= \beta_2 * v_{t-1} + (1 - \beta_2) * \nabla J(\theta_{t-1})^2 \\ m_t &= \frac{m_t}{1 - \beta_1^t} \\ v_t &= \frac{v_t}{1 - \beta_2^t} \\ \theta_t &= \theta_{t-1} - \left(\frac{\eta}{\sqrt{v_t + \varepsilon}}\right) * m_t \end{split} \tag{12}$$

AdamW

Add weight decay to Adam

$$\theta_t = \theta_{t-1} - \left(\frac{\eta}{\sqrt{v_t + \varepsilon}}\right) * m_t - \lambda * \theta_{t-1}$$
 (13)

Lion (Google in 2023)

- Use sign gradient instead of raw gradient
- Reduce memory usage

$$m_t = \beta_1 * m_{t-1} + (1 - \beta_1) * \operatorname{sign}(\nabla J(\theta_{t-1}))$$

$$\theta_t = \theta_{t-1} - \eta * \operatorname{sign}(m_t)$$
(14)

^{1.} Chen, X. et al. Symbolic Discovery of Optimization Algorithms. (2023) doi:10.48550/arXiv.2302.06675

SOTA Optimizers

SOAP²

^{2.} Vyas, N. et al. SOAP: Improving and Stabilizing Shampoo Using Adam. (2024) doi:10.48550/arXiv.2409.11321

Muon³

^{3.} Jordan, K. KellerJordan/Modded-Nanogpt. (2024)

Schedule

Why?

Problems with fixed LR

- Large: training unstable
- Small: slow convergence

Common Schedules

- Step Decay
- Cosine Annealing
- Warm-up
- One Cycle
- Reduce on Plateau
- •

Step Decay

$$\eta = \eta_{\text{init}} \gamma^{\left\lfloor \frac{\text{epoch}}{\text{step_size}} \right\rfloor}$$
(15)

Where γ is the decay factor and step_size is the number of epochs to decay.

```
lr = [
    0.1, # epoch 0-30
    0.01, # epoch 30-60
    0.001, # epoch 60-90
    ...
]
```

Cosine Annealing

$$\eta_t = \eta_{\min} + \left(\frac{1}{2}\right) * (\eta_{\max} - \eta_{\min}) * \left(1 + \cos\left(\frac{T_{\text{cur}}}{T_{\text{max}}}\pi\right)\right)$$
 (16)

Where t is the current epoch, $T_{\rm cur}$ is the current step, and $T_{\rm max}$ is the total number of steps.

^{4.} Loshchilov, I. & Hutter, F. SGDR: Stochastic Gradient Descent with Warm Restarts. (2017) doi:10.48550/arXiv.1608.03983

Warm-up Strategy

- Stabilizes early training
- Prevents early divergence

```
if step < warmup_steps:
    lr = warmup_schedule(step)
else:
    lr = normal_schedule(step)</pre>
```

One Cycle

- 1. Linearly increase LR to max lr (warmup)
- 2. Linearly decrease LR to min lr
 - Optionally, use other annealing (like cosine) to decrease LR further

```
if step < warmup_steps:
    lr = linear_increase(step, lr)
else:
    lr = cosine(step - warmup_steps, total_steps - warmup_steps)</pre>
```

Reduce on Plateau

Adaptize Learning Rate Strategy

```
def update(current metric):
 # Check if we should change the learning rate or not by comparing the metrics
 is better = compare(current metric, best metric)
 # Change the best metric
 if is better:
    best metric = current metric
   num bad epochs = 0
 else:
    num bad epochs += 1
 # Change the learning rate if necessary
 if num bad epochs >= patience:
   lr = max(lr * factor, min lr)
   num bad epochs = 0
```

Hyperparameter suggestion in LR Schedules

Step Decay

Parameter	Common Values
step_size	2000-4000 steps
gamma	0.1-0.5

Warm-up

Model Type	Warmup Steps
CNN	5% steps
Transformer	10% steps
Fine-tuning	6% steps
Large batch size > 1000	15% - 20%

Model Type	Warmup Steps
Transfer learning	3-5%
Small datasets	3-5%
Unstable training	Increase 5%

Learning Rate Range Suggestions

LR Range

Optimizer	Learning Rate Range
SGD (no momentum)	0.1 - 1.0
SGD with Momentum	0.01 - 0.1
Adam/AdamW	1e-4 - 1e-3
RMSprop	1e-4 - 1e-3
AdaGrad	0.01 - 0.1
Lion	1e-4 - 3e-4

Learning Rate Range Suggestions

Adjustments

Scenario	LR Adjustment
Batch size doubled	$LR \times \sqrt{2}$
Deeper network	$LR \times 0.5$
Fine-tuning	$LR \times 0.1$
Unstable training	$LR \times 0.1$

SOTA Schedule The Road Less Scheduled⁵

^{5.} Defazio, A. et al. The Road Less Scheduled. (2024) doi: 10.48550/arXiv.2405.15682

SOTA Schedule The Road Less Scheduled⁵

^{5.} Defazio, A. et al. The Road Less Scheduled. (2024) doi: 10.48550/arXiv.2405.15682

SOAP & Schedule Free

Reference

- 1. Chen, X. et al. Symbolic Discovery of Optimization Algorithms. (2023) doi:10.48550/arXiv.2302.06675
- 2. Vyas, N. *et al.* SOAP: Improving and Stabilizing Shampoo Using Adam. (2024) doi:10.48550/arXiv.2409.11321
- 3. Jordan, K. KellerJordan/Modded-Nanogpt. (2024)
- 4. Loshchilov, I. & Hutter, F. SGDR: Stochastic Gradient Descent with Warm Restarts. (2017) doi:10.48550/arXiv.1608.03983
- 5. Defazio, A. *et al.* The Road Less Scheduled. (2024) doi:10.48550/ arXiv.2405.15682