NVIC (嵌套向量中断控制 相关寄存器)

NVIC_ISER[0/1] / ICER[0/1] / ISPR[0/1] / ICPR[0/1] / IABR[0/1] / IPR[0-14] --6

NVIC: Nested Vecto red Interrupt Control 嵌套向量中断控制寄存器

ISER 0/1: Interrupt Set Enable Register 0/1 中断 使能 寄存器 0/1 ICER 0/1: Interrupt Clear Enable Register 0/1 中断 清除 寄存器 0/1 ISPR 0/1: Interrupt Set Pending Register 0/1 中断 挂起 寄存器 0/1

IABR 0/1: Interrupt Active Bit Register 0/1 中断 激活标志位 寄存器

IPR 0-14: Interrupt Priority Register 0-14 中断 优先级 寄存器

NVIC 的寄存器特性:只能写 1,写0无效

NVIC_ISER 0/1 (中断使能寄存器 0/1)

31		30	29	28	27	26	25	24	23	22	21	20	19	18	17
	ISER[31:16]														
15	5	14	13	12	11	10	9	8	7	6	5	4	3	2	1

ISER[15:0]

ISER0/1[31:0] : 中断使能位 。每位代表某一个中断信号使能标志。而 ISER0/1可以提供 64个可屏蔽中断信号。 STM32 具有60个可屏蔽中断信号:ISER0 对应 中断向量表 的0~31号中断。ISER1对应 中断向量表 的32~59号中断。

【参看STM32F10x_NVIC.文档。下同】。这些位写 0无效(所以要 ISCP配合)。

NVIC_ICER 0/1 (中断清除寄存器 0/1)

ICER[31:16]			
15 14 13 12 11 10 9 8 7 6 5 4	4 3	3 /	1

ICER[15:0]

ICER0/1[31:0] : 中断清除位 。与ISER配对使用(二者各个位一一对应)。定义: 写1有效,写 0无效 。

作用:由于 ISER各位不能写 0, 所以要设置 ICER对应位来对 ISER进行管理。

3						N	VIC_ISPF	R0/1(中I	断挂起寄存	字器 0/1)					
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17
	ISPR[31:16]														
	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1														
		ISPR[15:0]													
	ISPR0/1[3														

4						NVI	C_ICPR 0	/1(中断排	圭起清除寄	字器 0/1)				
	31 30 29 28 27 26 25 24 23 22 21 20 19 18 17														
	ICPR[31:16]														
	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1														
		ICPR[15:0]													

写1有效,写0无效。

ICPR0/1[31:0]: 中断挂起清除位。对应 ISPR各位,当写 1的时候,被挂起的中断恢复回断点继续执行下面程序。定义:

5						NVI	C_IABR 0	/1(中断》	敦活标志 寄	存器 0/1)				
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17
	IABR[31:16]														
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1
	IABR[15:0]														

IABRO/1[31:0]: 中断激活标志位。只读。如果为1,表示中断正在执行。 读 该寄存器可以知道当前正在执行的是哪一个中断,当中断执行完毕后,对应位自动硬件清 0,

n	
T I	

NVIC_IPR 0-14(中断优先级控制寄存器组)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17		
				保留								货	留			
			IPRx+3	[7:0]							IPRx+	2[7:0]	[7:0]			
15	15 14 13 12				10	9	8	7	7 6 5 4 3 2 1							
													伊	R 留		
	IPRx+1[7:0]										IPRx+	Rx+0[7:0]				

IPR x+y[7:0] , x=0-14 , y=0-3 : 中断优先级设置 字。编号 0-14 个寄存器可为 15*4=60个中断设置优先级。

每个可屏蔽中断占用 8bits 。每个字只用高 4位进行设置优先级级别,而且 4bits 又可按规则来分出 抢占优先级(在前) 和响应优先级(在后) 的所占的位数。 其各自位数由 SCB->AIRC来决定: STM3把60个中断分为 5组,为组 0~4。分组的设置由 AIRC的bit10~8 来决定,定义如下:

【组] [AIF	RC[10:8] 】	【IPRx+y[7:4] 的分配情况】	【分配结果】	【备注】
0	组号与AIRC	0:4	0	位抢占优先级 , 4位响应优先级	
1	值是取使关	1:3	1	位抢占优先级 , 3位响应优先级	
2	系 :1億 先级	2:2	2	位抢占优先级 , 2位响应优先级	(抢到某级别 <人为设置 > , 然后按响应级别顺序响应)
3	组配置函数	3:1		3位抢占优先级 , 1位响应优先组	汲(2^3=8级抢占级, 2^1=2级响应级别)
4	6押	4:0	4	位抢占优先级 , O位响应优先级	(级别值越小,响应级别越高)

说明: 1. 抢占级别 不同: 高的可以打断 低的;

- 2. 抢占级别 相同,但响应级别不同:响应级别高的 不可以打断 响应级别低的中断。
- 3. 抢占优先级和响应级 都相同的中断:看 谁先发生 , 就先响应谁。

SCB(System Control Base register 系统控制基本寄存器)

SCB_AIRCR/SHCSR/ICSR/VTOR/SCR/CCR/SHPR0-3/CFSR/HFSR/DFSR/BFAR/MMFAR--12

SCB_AIRQ Application Interrupt and Reset Control

应用中断和复位控制寄存器)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17
VECTKEY[31:16]														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1
ENDIANES	S	保[· 留		PF	RIGROUP[3	3:0]			保留			SYSRESE ^T REQ	VECTCLR ACTIVE

VECTKEY[31:16]: 访问钥匙 。当 VECTKEY=0x05**时**, 才能写该寄存器的其他位(写保护)。读操作,其值为 0xFA05

ENDIANESS 指示端设置 。只读。定义: 0(小端 -- 低位在前), 1(大端 -- 高位在前)。其值由复位确认。

PRIGROUP[3:0]: 优先级分组 。可读可写。 参看NVIC_IPR。

SYSRESETREC请求芯片控制逻辑产生一次复位。只写不读。

VECTCLRACTIVE清除NonMaskable Interrupt 、故障、 Maskabble Interrupt 的所有状态信息

通常只在调试时用,或在 OS从错误中恢复时用。定义: 0(不清除),1(清除)

VECTRESET复位内核 (调试逻辑除外),复位不影响内核意外的电路。

2			SCB_S	HCSRThe	System I	Handler C	control and	d State Re	egister	系统处	上理器 控	图制和状态	寄存器)		
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1

- 18 USGFAULTENA R/W 0 Usage fault handler enable
- 17 BUSFAULTENA R/W 0 Bus fault handler enable
- 16 MEMFAULTENA R/W 0 Memory management fault enable
- 15 SVCALLPENDED R/W 0 SVC pended; SVCall was started but was replaced by a higher-priority exception
- 14 BUSFAULTPENDED R/W 0 Bus fault pended; bus fault handler was started but was replaced by a higher-priority exception
- 13 MEMFAULTPENDED R/W 0 Memory management fault pended; memory management fault started but was replaced by a higher-priority exception
- 12 USGFAULTPENDED R/W 0 Usage fault pended; usage fault started but was replaced by a higher-priority exception

		SYSTICKACT R/W 0 Read as 1 if SYSTICK exception is active													
	11 SYSTIC	KACT R/W	0 Read a	s 1 if SYST	TCK except	ion is activ	e								
	10 PENDS	VACT R/W	0 Read as	s 1 if Pends	SV exception	n is active									
	8 MONITO	RACT R/W	0 Read as	1 if debug	monitor ex	ception is a	ctive								
	7 SVCALLA	ACT R/W (Read as	1 if SVCall	exception is	active									
	3 USGFAU	ILTACT R/V	V 0 Read	as 1 if usag	ge fault exce	eption is ac	tive								
	1 BUSFAU	LTACT R/V	V 0 Read	as 1 if bus 1	fault except	ion is active									
	0 MEMFAULTACT R/W 0 Read as 1 if memory management fault is active														
3		SCB_(寄存器)													
	31 30 29 28 27 26 25 24 23 22 21 20 19 18 17														
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1

0

占的位数。

)

VECTRESET

tion