Introducción a la visualización de datos

Arturo Pérez

1. Principios de las gráficas de análisis

Mostrar comparaciones.

La evidencia de una hipótesis siempre es relativa si no tenemos un punto de comparación. Es decir, siempre hay que mostrar un contraste de condiciones (p.e Control y experimental)

Mostrar causalidad, mecanismos, estructura sistemática.

Es básicamente cómo creo que se comporta el fenómeno

Mostrar datos multivariados

Mostrar más de dos variables. El mundo real es multivariado.

2. Diagramas de cajas y bigotes

boxplot(airquality\$0zone, airquality\$Solar.R)

3. Histograma

hist(rnorm(10000))

4. Gráfica de barras

estatus

5. Diagramas de dispersión

plot(control, experimental)

De acuerdo al tipo de variable que vayamos a graficar podemos obtener un diagrama de dispersión o un boxplot (cuando hay variables categóricas).

plot(airquality\$Month,airquality\$Wind)

plot(airquality\$Wind~airquality\$Month)

6. Funciones de graficado.

```
#lines
plot(airquality$Wind,airquality$Ozone, type = "n")
lines(airquality$Wind,airquality$Ozone)
```



```
##cuando quiero lineas de un solo subset
plot(airquality$Wind,airquality$Ozone, type = "n")
with(subset(airquality, Month=="Mayo"),lines(Wind, Ozone))
```


#abline
plot(airquality\$Wind,airquality\$0zone)
abline(v=max(airquality\$Wind))


```
hist(rnorm(10000))
abline(v=c(-1,1))
```



```
#points
plot(airquality$0zone, airquality$Wind, type = "n")
points(airquality$0zone, airquality$Wind)
```



```
##sólo un grupo de puntos
with(airquality, plot(Wind, Ozone, type="n"))
with(subset(airquality, Month=="Mayo"), points(Wind, Ozone) )
```



```
##meses especificos
data <- airquality[airquality$Month %in% c("Mayo", "Agosto"),]
plot(data$Wind, data$Ozone, type = "n")
#puntos de agosto
points(data[data$Month=="Agosto", "Wind"],data[data$Month=="Agosto", "Ozone"] )</pre>
```



```
##EQUIVALENTE A LA GRAFICA ANTERIOR
with(airquality$Month %in% c("Mayo", "Agosto"),],
    plot(Wind, Ozone, type = "n"))
#puntos de agosto
with(subset(airquality, Month == "Agosto"), points(Wind, Ozone))
```



```
#text
plot(c(3,6,8,10,20), c(4,6,9,6,5), xlab = "x", ylab = "y", ylim = c(0,10))
text(c(3,6,8,10,20), c(4,6,9,6,5)+.7, labels = c("sj1", "sj2", "sj3", "sj4", "sj5"))
```



```
##title
boxplot(Ozone~Month, data = airquality, ylab = "", xlab = "")
title(main = "Calidad del aire", xlab = "Meses", ylab = "Ozono")
```

Calidad del aire


```
##mtext
boxplot(Ozone~Month, data = airquality, main="calidad del aire", xlab = "Meses", ylab = "Ozono")
mtext("hola que hace", 3)
```

calidad del aire


```
#Algunas funciones se pueden aplicar directamente en
with(airquality$Month %in% c("Mayo", "Agosto"),],
    plot(Wind, Ozone, main = "calidad del aire", xlab = "viento", ylab = "Ozono", type = "o" ))
```

calidad del aire

Características especiales dentro de una gráfica \mathbf{pch}

plot(data\$Wind, data\$Ozone, pch=20)

 \mathbf{lty}

```
plot(data$Wind, data$0zone, pch=20)
abline(h=50, lty=2)
```


lwd

```
plot(data$Wind, data$0zone, pch=20)
abline(h=50, lty=2, lwd=2)
```


 $\operatorname{\mathbf{col}}$

```
plot(data$Wind, data$0zone, pch=20, col="red")
abline(h=50, lty=2, lwd=1)
```


plot(data\$Wind, data\$Ozone, pch=16, col=data\$Month)

legend

Guardando una gráfica