Ejercicio 1

Sea
$$x \in C[0,1], A = \{x \in C[0,1]/x(\frac{1}{2}) > 0\}$$
 es abierto

Proof. Afirmo que para cualquier $x \in A$, tomamos $r = \frac{d_{\mathbb{R}}(x(\frac{1}{2}),0)}{2}$ entonces la bola $B(r,x) \subseteq A$ Sea $y \in B(r,x)$ entonces $d_{\infty}(y(t),x(t)) < r$

$$|y(1/2) - x(1/2)| < \sup_{t \in [0,1]} |y(t) - x(t)| < \frac{d_{\mathbb{R}}(x(\frac{1}{2}), 0)}{2} = \frac{|x(\frac{1}{2})|}{2}$$

Ahora si expandimos los módulos tenemos

$$-\left|\frac{x(1/2)}{2}\right| < y(1/2) - x(1/2) < \left|\frac{x(1/2)}{2}\right|$$

Considerando que x(1/2) > 0

$$\frac{1}{2}x(1/2) < y(1/2) < \frac{3}{2}x(1/2)$$

Finalmente

$$0 < \frac{1}{2}x(1/2) < y(1/2)$$

Entonces $y \in A \quad \forall y \in B(r, x)$

Por lo tanto $B(r, x) \subseteq A \quad \forall x \in C[0, 1]$

Entonces todo punto de A es interiór , otra forma de decir que A es abierto