NVMe scaling with IO concurrency Tobias Oberstein, Crossbar.io GmbH, 22.1.2017

NVMe devices (Intel P3608 4TB) low-level formatted with <u>512 bytes sector size</u> FIO ioengine=sync

Random 8KB IOPS, measured with FIO, directly over 16 raw NVMe block devices

RailuOIII 6NB	iops, measured with r	-io, <u>uirectiy</u>	Over 16 rav	V INVIVIE DIO	CK UEVICES											
IO Concurrency:		1	2	4	8	16	32	64	128	256	384	512	768	1024	1536	2048
READ	measured theor. linear scaling theor. linear scaling %	8.411	15.924 16.822 94,7%	35.120 33.644 104,4%	68.215 67.288 101,4%	137.012 134.576 101,8%	258.000 269.152 95,9%	525.756 538.304 97,7%	943.872 1.076.608 87,7%	1.762.100 2.153.216 81,8%	2.381.700 3.229.824 73,7%	2.776.800 4.306.432 64,5%	3.426.700 6.459.648 53,0%	3.889.900 8.612.864 45,2%	4.326.500 12.919.296 33,5%	4.597.700 17.225.728 26,7%
WRITE	measured theor. linear scaling theor. linear scaling %	61.482	124.920 122.964 101,6%	241.626 245.928 98,3%	452.979 491.856 92,1%	847.455 983.712 86,1%	1.300.700 1.967.424 66,1%	1.467.700 3.934.848 37,3%	1.656.400 7.869.696 21,0%	1.953.500 15.739.392 12,4%	2.033.700 23.609.088 8,6%	2.020.100 31.478.784 6,4%	2.113.700 47.218.176 4,5%	2.208.800 62.957.568 3,5%	2.265.200 94.436.352 2,4%	2.249.600 125.915.136 1,8%
R/W-70/30 R	measured theor. linear scaling theor. linear scaling %	6.912	14.004 13.824 101,3%	28.225 27.648 102,1%	55.033 55.296 99,5%	104.963 110.592 94,9%	191.081 221.184 86,4%	335.743 442.368 75,9%	571.823 884.736 64,6%	864.544 1.769.472 48,9%	1.082.700 2.654.208 40,8%	1.311.300 3.538.944 37,1%	1.518.600 5.308.416 28,6%	1.739.600 7.077.888 24,6%	1.832.500 10.616.832 17,3%	1.871.100 14.155.776 13,2%
W	measured theor. linear scaling theor. linear scaling %	2.975	6.007 5.950 101,0%	12.102 11.900 101,7%	23.690 23.800 99,5%	44.986 47.600 94,5%	81.870 95.200 86,0%	143.749 190.400 75,5%	245.137 380.800 64,4%	370.542 761.600 48,7%	463.747 1.142.400 40,6%	562.054 1.523.200 36,9%	651.064 2.284.800 28,5%	746.121 3.046.400 24,5%	785.532 4.569.600 17,2%	802.120 6.092.800 13,2%
Random 8KB IOPS, measured with FIO, over <u>Linux MD RAID-0 over 16 NVMe block devices</u>																
IO Concurrency	<i>r</i> :	1	2	4	8	16	32	64	128	256	384	512	768	1024	1536	2048
READ	measured theor. linear scaling theor. linear scaling %	8.125	16.227 16.250 99,9%	32.514 32.500 100,0%	68.252 65.000 105,0%	131.004 130.000 100,8%	257.886 260.000 99,2%	517.045 520.000 99,4%	955.146 1.040.000 91,8%	1.712.600 2.080.000 82,3%	1.815.100 3.120.000 58,2%	1.857.200 4.160.000 44,6%	1.474.800 ### 0,0%	1.456.200 8.320.000 17,5%	1.451.500 12.480.000 11,6%	1.442.700 16.640.000 8,7%
WRITE	measured theor. linear scaling theor. linear scaling %	62.076	122.440 124.152 98,6%	235.765 248.304 95,0%	447.516 496.608 90,1%	827.292 993.216 83,3%	1.236.800 1.986.432 62,3%	1.235.100 3.972.864 31,1%	1.235.300 7.945.728 15,5%	1.264.600 15.891.456 8,0%	1.263.700 23.837.184 5,3%	1.242.300 31.782.912 3,9%	1.265.600 47.674.368 2,7%	1.232.900 63.565.824 1,9%	1.237.500 95.348.736 1,3%	1.239.700 127.131.648 1,0%
R/W-70/30 R	measured theor. linear scaling theor. linear scaling %	6.814	14.117 13.628 103,6%	28.302 27.256 103,8%	57.097 54.512 104,7%	106.936 109.024 98,1%	193.242 218.048 88,6%	339.172 436.096 77,8%	574.925 872.192 65,9%	913.081 1.744.384 52,3%	951.073 2.616.576 36,3%	949.782 3.488.768 27,2%	944.325 5.233.152 18,0%	952.329 6.977.536 13,6%	957.530 10.466.304 9,1%	957.075 13.955.072 6,9%
W	measured theor. linear scaling theor. linear scaling %	2.931	6.049 5.862 103,2%	12.143 11.724 103,6%	24.505 23.448 104,5%	45.923 46.896 97,9%	82.851 93.792 88,3%	145.524 187.584 77,6%	246.448 375.168 65,7%	391.516 750.336 52,2%	407.710 1.125.504 36,2%	407.194 1.500.672 27,1%	404.646 2.251.008 18,0%	408.157 3.001.344 13,6%	410.316 4.502.016 9,1%	410.179 6.002.688 6,8%
Random 8KB	IOPS, measured with F	FIO, over XF	S over Linu	IX MD RAID	-0 over 16 l	NVMe block	devices									
IO Concurrency	<i>r</i> :	1	2	4	8	16	32	64	128	256	384	512	768	1024	1536	2048
READ	measured theor. linear scaling theor. linear scaling %	8.393	16.529 16.786 98,5%	33.910 33.572 101,0%	69.439 67.144 103,4%	129.680 134.288 96,6%	260.787 268.576 97,1%	517.743 537.152 96,4%	969.833 1.074.304 90,3%	1.743.200 2.148.608 81,1%	2.377.400 3.222.912 73,8%	2.382.400 4.297.216 55,4%	2.608.900 6.445.824 40,5%	2.759.400 8.594.432 32,1%	2.797.300 12.891.648 21,7%	2.805.800 17.188.864 16,3%
WRITE	measured theor. linear scaling theor. linear scaling %	76.467	144.884 152.934 94,7%	271.683 305.868 88,8%	502.248 611.736 82,1%	896.512 1.223.472 73,3%	1.363.100 2.446.944 55,7%	1.151.900 4.893.888 23,5%	1.148.800 9.787.776 11,7%	168.484 19.575.552 0,9%	32.908 29.363.328 0,1%	33.842 39.151.104 0,1%	27.680 58.726.656 0,0%	27.985 78.302.208 0,0%	29.054 117.453.312 0,0%	28.090 156.604.416 0,0%
R/W-70/30 R	measured theor. linear scaling theor. linear scaling %	7.616	15.110 15.232 99,2%	29.746 30.464 97,6%	59.655 60.928 97,9%	113.547 121.856 93,2%	203.396 243.712 83,5%	343.793 487.424 70,5%	575.670 974.848 59,1%	868.207 1.949.696 44,5%	85.320 2.924.544 2,9%	87.375 3.899.392 2,2%	125.948 5.849.088 2,2%	153.599 7.798.784 2,0%	161.851 11.698.176 1,4%	160.108 15.597.568 1,0%
w	measured theor. linear scaling theor. linear scaling %	3.264	6.482 6.528 99,3%	12.732 13.056 97,5%	25.489 26.112 97,6%	48.727 52.224 93,3%	87.237 104.448 83,5%	147.452 208.896 70,6%	246.854 417.792 59,1%	372.283 835.584 44,6%	36.669 1.253.376 2,9%	37.508 1.671.168 2,2%	54.083 2.506.752 2,2%	65.850 3.342.336 2,0%	69.458 5.013.504 1,4%	68.705 6.684.672 1,0%