Exam demo-version

1. (10%) Evaluate the following limit:

$$\lim_{x \to 0} \sqrt[x]{\cos \sqrt{x}}$$

$$\lim_{x\to 0} \sqrt[x]{\cos\sqrt{x}} = \lim_{x\to 0} \left(\cos\sqrt{x}\right)^{1/x} = \lim_{x\to 0} \exp\left(\frac{\ln(\cos\sqrt{x})}{x}\right) = \exp\left(\lim_{x\to 0} \frac{\ln(\cos\sqrt{x})}{x}\right),$$

где последнее равенство использует теорему о предельном переходе для непрерывных функций. Далее используем разложение в ряд Маклорена.

$$\frac{\ln(\cos\sqrt{x})}{x} = \frac{\ln(1 - \frac{x}{2} + \frac{x^2}{24} + o(x^2))}{x} = \frac{-\frac{x}{2} + o(x)}{x}$$

Следовательно,

$$\lim_{x \to 0} \frac{\ln(\cos\sqrt{x})}{x} = -\frac{1}{2},$$

поэтому

$$\lim_{x \to 0} \sqrt[x]{\cos\sqrt{x}} = \exp\left(-\frac{1}{2}\right) = \frac{1}{\sqrt{e}}.$$

2. (10%) Find and classify the discontinuity points of the following function:

$$f(x) = \operatorname{sgn}\left(\sin\left(\frac{\pi}{x}\right)\right).$$

Точки, в которых данная функция может иметь разрыв: x=0, поскольку в ней равен нулю знаменатель аргумента функции, и точки $x=1/k, k\in\mathbb{Z}$, поскольку в них $\sin\left(\frac{\pi}{x}\right)$ меняет знак. В точках $x=1/k, k\in\mathbb{Z}$ функция имеет разрывы первого рода, так как существуют не равные между собой односторонние пределы. Например, рассмотрим k=1. Существует правосторонняя окрестность точки x=1, в которой функция $\sin\left(\frac{\pi}{x}\right)$ положительна. В самом деле, для $x\in(1,2)$ имеет место $\frac{\pi}{2}<\frac{\pi}{x}<\pi$. Для точек из этой окрестности имеем f(x)=1, следовательно, $\lim_{x\to 1+0}f(x)=1$. С другой стороны, существует левосторонняя окрестность точки x=1, в которой функция $\sin\left(\frac{\pi}{x}\right)$ отрицательна. В самом деле, для $x\in(1/2,1)$ имеет место $\pi<\frac{\pi}{x}<2\pi$. Для точек из этой окрестности имеем f(x)=-1, следовательно, $\lim_{x\to 1-0}f(x)=-1$. Аналогичные окрестности могут быть найдены для всех рассматриваемых точек.

В точке x=0 функция имеет разрыв второго рода, поскольку не существует односторонних пределов. Действительно, рассмотрим последовательности $a_n=\frac{2}{1+4n}, n\in\mathbb{N}$ и $b_n=\frac{2}{3+4n}, n\in\mathbb{N}$, стремящиеся к нулю справа. Тогда $f(a_n)=\mathrm{sgn}\left(\sin\left(\frac{\pi}{\frac{2}{1+4n}}\right)\right)=\mathrm{sgn}\left(\sin\left(\frac{\pi}{2}+2\pi n\right)\right)=1$ и $f(b_n)=\mathrm{sgn}\left(\sin\left(\frac{\pi}{\frac{2}{3+4n}}\right)\right)=\mathrm{sgn}\left(\sin\left(\frac{3\pi}{2}+2\pi n\right)\right)=-1$. Тем самым показано, что правостороннего предела f(x) при x стремящемся к нулю не существует. Аналогично можно показать, что не существует левостороннего предела, например, рассмотрев последовательности $-a_n$ и $-b_n$.

3. Let A, B and C be square matrix of size $n \times n$. Prove the following statements or provide counterexample:

(a) (2%) If
$$B = C^{-1}AC$$
, then $det(A) = det(B)$

$$\det(B) = \det(C^{-1}AC) = \det(C^{-1})\det(C)\det(A) = \det(C^{-1}C)\det(A) = \det(A)$$

(b) (3%) $\det((A+B)^2) = \det(A^2 + 2AB + B^2)$

Неверно, контрпример:

$$A = \left(\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array}\right), B = \left(\begin{array}{cc} 0 & 1 \\ 0 & 1 \end{array}\right)$$

В этом случае $\det((A+B)^2) = -2$, но $\det(A^2 + 2AB + B^2) = -3$.

(c) (3%) $\det((A+B)^2) = \det(A^2 + B^2)$

Неверно, контрпример: A = I, B = I. Тогда $\det((A + B)^2) = 16$, $\det(A^2 + B^2) = 4$.

(d) (2%) If A is invertible, then $(I + A^{-1})^{-1} = A(A + I)^{-1}$

$$(I + A^{-1})^{-1} = (AA^{-1} + A^{-1})^{-1} = ((A + I)A^{-1})^{-1} = A(A + I)^{-1}$$

- 4. Let S be the $n \times n$ «shipbuilding timber» matrix, i.e. the square matrix with all elements equal to 1.
 - (a) (2%) Express S^2 in terms of S

Перемножаем в лоб:

$$S \cdot S = \begin{pmatrix} n & \cdots & n \\ \vdots & & \vdots \\ n & \cdots & n \end{pmatrix} = nS$$

(b) (3%) Find the eigenvalues of S

Допустим, что $Sv = \lambda v$

Домножим обе стороны на S. Получим:

$$S^2v = \lambda Sv$$

С другой стороны $S^2v = nSv$. Значит:

$$nSv = \lambda Sv$$

Отсюда, либо $\lambda = n$, либо Sv = 0, что означает, что $\lambda = 0$.

(c) (3%) For each eigenvalue of S find at least on eigenvector

Разберёмся с собственными векторами для матрицы S. Ищем собственный вектор для $\lambda=0.$ Получаем, что

$$(1, 1, 1, \dots, 1) \cdot v = 0$$

Значит подходит любой ненулевой вектор с суммой компонент, равной нулю. Например, подойдёт

$$v = (1, -1, 0, 0, \dots, 0)$$

Ищем собственный вектор для $\lambda=n$. Все строки матрицы S одинаковы, поэтому все элементы вектора Sv одинаковы. Значит в v должны быть одинаковые элементы. Например, подойдёт

$$v = (1, 1, 1, 1, \dots, 1)$$

(d) (2%) Find all the eigenvalues of the matrix A = aI + bS, where I is the identity matrix.

Когда мы домножаем матрицу S на число b собственные числа домножаются на b. Если мы прибавляем константу a по диагонали, то собственные числа увеличиваются на a. Значит собственные числа матрицы A равны a+bn и a.

Кстати, при домножении матрицы S на константу собственные векторы не изменяются, равно как и при прибавлении константы a по диагонали.

5. Solve the differential equation:

$$y''' - 4y'' + y' = 2x^2 + 1.$$

Сначала запишем решение однородного дифференциального уравнения:

$$y''' - 4y'' + y' = 0.$$

Составим к нему характеристическое уравнение:

$$\lambda^3 - 4\lambda^2 + \lambda = 0.$$

$$\lambda_1 = 0, \lambda_2 = 2, \lambda_3 = -2.$$

То есть общее решение дифференциального уравнения может быть записано как

$$y = C_1 + C_2 e^{2x} + C_3 e^{-2x}, C_1, C_2, C_3 \in \mathbb{R}$$

Найдем частное решение этого дифференциального уравнения. В данной задаче – резонансный случай, поскольку $(2x^2+1)$ $e^0=2x^2+1$. То есть будем искать частное решение в виде $y=(ax^2+bx+c)x$. Тогда

$$y' = 3ax^2 + 2bx + c$$

$$y'' = 6ax + 2b$$

$$y''' = 6a$$

Следовательно,

$$6a - 4(6ax + 2b) + 3ax^2 + 2bx + c = 2x^2 + 1$$

$$3ax^2 + 2bx - 24ax + 6a - 8b + c = 2x^2 + 1$$
.

Отсюда

$$\begin{cases} 6a - 8b + c = 1\\ 2b - 24a = 0\\ 3a = 2 \end{cases}$$

$$\begin{cases} c = 61 \\ b = 8 \\ a = \frac{2}{3} \end{cases}.$$

Поэтому общее решение дифференциального уравнения:

$$y = C_1 + C_2 e^{2x} + C_3 e^{-2x} + \frac{2}{3}x^3 + 8x^2 + 61x, C_1, C_2, C_3 \in \mathbb{R}$$

6. (10%) Solve the differential equation

$$2xyy' - y' \ln y + y^2 + \ln x = 0$$

Домножим на dx

$$(y^2 + \ln x)dx + (2xy - \ln y)dy = 0$$

Убеждаемся, что это уравнение в полных дифференциалах:

$$\frac{\partial}{\partial y}(y^2 + \ln x) = \frac{\partial}{\partial x}(2xy - \ln y)$$

И решаем его по стандартной схеме.

Находим интеграл функции при dx по x

$$F(x,y) = \int y^2 + \ln x \, dx = xy^2 + x(\ln x - 1) + C(y)$$

Теперь приравниваем функцию при dy и $F'_{u}(x,y)$:

$$2xy + C'(y) = 2xy - \ln y$$

Отсюда находим C(y):

$$C(y) = \int -\ln y \, dy = y(1 - \ln y) + C$$
, где $C \in \mathbb{R}$

Итого:

$$xy^2 + x(\ln x - 1) + y(1 - \ln y) = C$$
, где $C \in \mathbb{R}$

7. (10%) Find the points of maximum of the function

$$F(u,v) = \sqrt{u} \left(\sqrt{u} - 2 \right) - \sqrt{v} \left(\sqrt{v} - 2 \right),$$

given that $\sqrt{u} \leq 2$, $\sqrt{v} \leq 2$

- 1. Выполняем замену переменных $x=\sqrt{u},\ y=\sqrt{v}$. Далее путем несложных алгебраических преобразований выражения для целевой функции приводим ее к виду: $G\left(x,y\right)=\left(x-1\right)^2-\left(y-1\right)^2+3$. При этом ограничения принимают вид $x\in[0,2],\ y\in[0,2]$
- 2. Определяем наличие экстремумов внутри области поиска, определенной ограничениями.

$$\frac{\partial G\left(x,y\right)}{\partial x}=2\left(x-1\right),\ \frac{\partial G\left(x,y\right)}{\partial y}=-2\left(y-1\right),\ \frac{\partial^{2} G\left(x,y\right)}{\partial x \partial y}=\left(\begin{array}{cc} 2 & 0 \\ 0 & -2 \end{array}\right)$$

Используя критерий Сильвестра, легко проверить, что в точке (1,1) у функции G(x,y) нет экстремумов.

3. Проанализируем наличие экстремумов на границах области поиска.

Граница $\{x=0,\ y\in[0,2]\}$, $G(0,y)=1-(y-1)^2$. В точке (0,1) достигается максимум равный 1, в конечных точках функция равна 0.

Граница $\{y=0, x \in [0,2]\}$, $G(x,0) = (x-1)^2 - 1$. В точке (1,0) достигается минимум равный -1, в конечных точках функция равна 0.

Граница $\{x=2,\ y\in[0,2]\}$, $G(0,y)=1-(y-1)^2$. В точке (2,1) достигается максимум равный 1, в конечных точках функция равна 0.

Граница $\{y=2,\ x\in[0,2]\}$, $G(x,2)=(x-1)^2-1$. В точке (1,2) достигаетсяминимум равный – 1, в конечных точках функция равна 0.

4. Возвращаемся к начальному преобразованию.

Ответ: Точки максимума: (0, 1) и (4, 1)

Неполная попытка решить задачу не выполняя преобразование — не более 8 баллов за верный ответ.

8. Consider a function

$$f(x) = \begin{cases} \frac{1}{x^2}, & \text{if } c_1 < x < c_2\\ 0, & \text{otherwise} \end{cases}$$

(a) (5%) Find all c_1 and c_2 such that the function f is a density function for some random variable X

Чтобы функция была функцией плотности:

$$\int_{c_1}^{c_2} \frac{1}{x^2} dx = 1$$

$$-\frac{1}{c_2} + \frac{1}{c_1} = 1$$

$$c_1 = \frac{c_2}{1 + c_2}$$

(b) (5%) Calculate the expected value and variance of the random variable X for $c_2 = 9$

Математическое ожидание:

$$\mathbb{E}(X) = \int_{0.9}^{9} \frac{1}{x^2} x dx = \int_{0.9}^{9} \frac{1}{x} dx = \ln(9) - \ln(0.9)$$

Дисперсия:

$$\begin{split} & \mathbb{V}\mathrm{ar}(X) = \mathbb{E}(X^2) - \mathbb{E}(X)^2 \\ & \mathbb{E}(X^2) = \int_{0.9}^9 \frac{1}{x^2} x^2 dx = 9 - 0.9 = 8.1 \\ & \mathbb{V}\mathrm{ar}(X) = 8.1 - (\ln(9) - \ln(0.9))^2 \end{split}$$

- 9. You have height measurements of a random sample of 100 persons, y_1, \ldots, y_{100} . It is known that $\sum_{i=1}^{100} y_i = 15800$ and $\sum_{i=1}^{100} y_i^2 = 2530060$.
 - (a) (3%) Calculate unbiased estimate of population mean and population variance of the height

Оценка среднего: $\bar{y} = 15800/100 = 158$.

Несмещённая оценка дисперсии

$$\hat{\sigma}^2 = \frac{\sum (y_i - \bar{y})^2}{n - 1} = \frac{\sum y_i^2 - n\bar{y}^2}{n - 1} = 340$$

(b) (3%) At 4% significance test the null-hypothesis that the population mean is equal to 155 cm, against two-sided alternative.

Наблюдаемое значение Z-статистики

$$Z_{obs} = \frac{158 - 155}{\sqrt{340}/\sqrt{100}} = 1.63$$

Критическое значение $Z_{crit} = 2.05$.

Вывод: гипотеза H_0 не отвергается.

(c) (2%) Find the p-value

Находим по таблице, что площадь справа от 1.63 примерно равна 5%. Значит Р-значение равно 10%.

(d) (2%) Find the 96% confidence interval for the population mean

Интервал имеет вид

$$[158 - 2.05 \cdot \sqrt{340/100}; 158 + 2.05 \cdot \sqrt{340/100}]$$

Итого: [154.2; 161.8]

10. Density function of a random variable Y is given by

$$f(y) = \begin{cases} \frac{1}{\theta^2} y e^{-y/\theta}, & \text{if } y > 0\\ 0, & \text{otherwise} \end{cases}$$

You have 3 observations on $Y: y_1 = 48, y_2 = 50, y_3 = 52.$

(a) (4%) Using maximum likelihood, find the estimate of θ

Нахождение оценки:

$$\ln(L) = \sum_{i=1}^{n} (-\ln(\theta^2) + \ln(y_i) - \frac{y_i}{\theta})$$

$$\ln(L) = -2n \ln(\theta) + \sum_{i=1}^{n} \ln(y_i) - \frac{\sum_{i=1}^{n} y_i}{\theta}$$

$$\frac{\partial \ln(L)}{\partial \theta} = -\frac{2n}{\theta} + \frac{\sum_{i=1}^{n} y_i}{\theta^2} = 0$$

$$\widehat{\theta} = \frac{\sum_{i=1}^{n} y_i}{2n} = \frac{\overline{y}}{2}$$

Подставляя наши данные, получаем $\hat{\theta} = 25$.

(b) (3%) Is the estimator $\hat{\theta}$ unbiased?

Несмещенность:

$$\mathbb{E}(\widehat{\theta}) = \frac{\mathbb{E}(y_i)}{2}$$

Найдём математическое ожидание y_i :

$$\mathbb{E}(y_i) = \int_0^{+\infty} \frac{1}{\theta^2} y^2 e^{-y/\theta} dy$$

Интегрируя по частям, получаем:

$$\mathbb{E}(y_i) = \int_0^{+\infty} \frac{2y}{\theta} e^{-y/\theta} dy$$

$$\mathbb{E}(y_i) = \int_0^{+\infty} 2e^{-y/\theta} dy$$

$$\mathbb{E}(y_i) = 2\theta$$

Тогда $\mathbb{E}(\widehat{\theta}) = \frac{\mathbb{E}(y_i)}{2} = \theta$. Оценка несмещенная.

(c) (3%) Calculate the variance of $\hat{\theta}$

Для расчёта дисперсии вычислим $\mathbb{E}(y_i^2)$:

$$\mathbb{E}(y_i^2) = \int_0^{+\infty} \frac{1}{\theta^2} y^3 e^{-y/\theta} dy$$

Аналогично предыдущему случаю, интегрируем по частям. Получаем:

$$\mathbb{E}(y_i^2) = 6\theta^2$$

Тогда

$$Var(y_i) = 6\theta^2 - 4\theta^2 = 2\theta^2$$

И дисперсия оценки

$$\mathbb{V}\operatorname{ar}(\widehat{\theta}) = \mathbb{V}\operatorname{ar}(\frac{\overline{y}}{2}) = \frac{1}{4n}\operatorname{Var}(y_i) = \frac{\theta^2}{2n}$$

Good luck!

F(x)
\xrightarrow{x}

x	F(x)	x	F(x)	x	F(x)	x	F(x)
0.050	0.520	0.750	0.773	1.450	0.926	2.150	0.984
0.100	0.540	0.800	0.788	1.500	0.933	2.200	0.986
0.150	0.560	0.850	0.802	1.550	0.939	2.250	0.988
0.200	0.579	0.900	0.816	1.600	0.945	2.300	0.989
0.250	0.599	0.950	0.829	1.650	0.951	2.350	0.991
0.300	0.618	1.000	0.841	1.700	0.955	2.400	0.992
0.350	0.637	1.050	0.853	1.750	0.960	2.450	0.993
0.400	0.655	1.100	0.864	1.800	0.964	2.500	0.994
0.450	0.674	1.150	0.875	1.850	0.968	2.550	0.995
0.500	0.691	1.200	0.885	1.900	0.971	2.600	0.995
0.550	0.709	1.250	0.894	1.950	0.974	2.650	0.996
0.600	0.726	1.300	0.903	2.000	0.977	2.700	0.997
0.650	0.742	1.350	0.911	2.050	0.980	2.750	0.997
0.700	0.758	1.400	0.919	2.100	0.982	2.800	0.997

Рис. 1: Distribution function of a standard normal random variable