

모의경진대회 OT 및 1주차 Default Prediction 과제 특강

㈜마인즈앤컴퍼니 | 김태훈 매니저

2022.01.26

Index

- 1. 모의경진대회 개괄
- 2. AI CONNECT 플랫폼 소개
- 3. 과제 Default Prediction
- 4. 평가지표 Macro F1 Score
- 5. 모델 XGBoost & Ensemble

ML / DS 기본 교육

교육목표

- 머신러닝/딥러닝에 대한 기초 이론 및 용어를 이해할 수 있다.
- 이미지/자연어/수치하석 분야 데이터에 대한 특징을 이해하고 처리할 수 있다.
- 분야별 알고리즘을 이해하고 관련 라이브러리 사용법을 이해할 수 있다.

교육 특징

- 교수님과 전문가를 통한 기본 이론 및 실습 교육 병행
- Python 기반의 라이브러리, 딥러닝 프레임 워크 실습 운영
- Google Colab 실습 환경에서 진행

진행 방식

- (오전 3시간) 주재걸 교수님이 주최하시는 이론 기본 교육 진행
- (오후 3시간) AI 멘토가 진행하는 이론/실습 과정 진행
- (오후 2시간) 실습에 따른 숙제 진행 및 풀이

	교육명	세부내용
	머신러닝 기초	• 머신러닝 기초 알고리즘에 대하여 원리 위주의 이론 교육 실시 • Linear Regression, Logistic Regression 등 • 간단한 실습 진행
머신러닝 심화		• 신경망 구조 및 딥러닝 알고리즘의 원리와 활용에 대한 이론 교육실시• Neural Network, Backpropagation, Deep Neural Network 등• pytorch 사용법 안내 및 간단한 실습
ML/DL 기초 교육	수치해석 분야 인공지능 모델	예측, 분류, 시계열 분석 등 수치해석 분야에 다양한 알고리즘에 대한 이론 교육 실시 SVM, LGBM, LSTM 등 수치 해석 문제에 대한 접근 방법 및 앙상블 방법론 교육
	이미지 분야 인공지능 모델	• 이미지 분류, 객체인식, 영역탐지 등 이미지 분야에 다양한 알고리즘에 대한 이론 교육 실시 • VGG, YOLO, Fine-tunning 기법 등 • 이미지 처리 방법 및 다양한 평가지표에 대한 안내
	자연어 분야 인공지능 모델	문서 및 문장 분류, 감정분류, 기계독혜, 문서 요약 등 다양한 알고리즘에 대한 이론 교육 실시 W2V, RNN, LSTM, Seq2Seq 등 자연어 전처리 방법 및 다양한 평가지표에 대한 안내

이론 심화 교육

교육목표

- 모의 캐글 대회 진행을 위한, AI 모델 심화 이론을 이해할 수 있다.
- 캐글 예제를 통하여 문제별 적절한 라이브러리 및 프레임워크 활용 할 수 있다.
- 모델 고도화를 위한 파라미터 튜닝 및 최적화를 수행 할 수 있다.

교육 특징

- ML/DL 심화 내용에 대해서 이론 및 실습 교육 진행
- Kaggle 예제 중심으로, 이론 및 실습 교육 진행
- Google Colab을 활용한 실습 환경

진행 방식

- (오전 3시간) 인공지능 심화 이론 교육
- (오후 3시간) Kaggle 사례 중심의 분야별 모델 학습 및 실습 진행
- (오후 2시간) 실습에 따른 숙제 진행 및 풀이

	교육명	세부내용		
캐글 기초 교육	캐글을 위한 Python 및 머신러닝 기초	* 캐글을 진행하기 위한 실전Python 기초 과정 수행 * 머신러닝 과제 수행을 위한 Pandas, Numpy 등 다양한 라이브러리 기능 교육 * 데이터 시각화에 대한 기초를 습득하며, 캐글의 다양한 사례를 기반으로 교육		
캐글 심화 교육	캐글 진행을 위한 딥러닝 심화 교육 – 이미지/영상 –	 이미지 데이터 기반Classification, Detection, Segmentation 등 다양한 테스크 수행 방법론 교육 및 실습 VGG, ResNet, YOLO, U-Net 등 		
	캐글 진행을 위한 딥러닝 심화 교육 - 자연어 -	• 텍스트 데이터 기반 Classfication, QA 등 다양한 테스크 수행을 위한 방법론 교육 및 실습 • W2V, RNN, Seq2seq, BERT 등		
	캐글 진행을 위한 딥러닝 심화 교육 - 수치해석 -	• Numeric 데이터 기반 Classfication, Time-series analysis 등 다양한 테스크 방법론 교육 및 실습 • Boosting, Random Forest, SVM 등		

모의 경진대회 과정

교육목표

- 실전 캐글 대회 참여를 대비하여 모의 캐글 문제를 풀 수 있다.
- 이미지/자연어/수치해석 Task 별로, 적절한 모델을 사용하여 추론 및 결과 제출 가능하다.
- 경진대회 진행을 위한 실험 설계 및 운영법을 터득한다.

교육 특징

- 실전과 유사한 모의경진대회 통한 실전 캐글에 대한 친숙도 증대
- 모의 경진대회 참여를 통하여 task별
 AI 문제 해결 능력 향상
- 참가 팀별 별도 서버 제공하여, 원활한 경진대회 참여를 위한 자원 제공

진행 방식

- OT를 통한 과제 설명 및 베이스라인 교육
- 개인전 1회 실시 / 개인전 성적에 따른 팀 매칭 및 **팀전 3회 실시**
- 멘토링 세션 통한 질의응답 및 문제 해결 지원

교육명		세부내용
모의	개인전 (1회)	• 금융 & 정형 데이터 모의 Kaggle 경진대회• AI CONNECT 사용법, 과제, Baseline에 대한 기본교육 실시• 실시간 리더보드 운영 및 개인 성적 산출
Kaggle 교육	팀전 (3회)	 개인전 성적 통한 팀 매칭 및 팀별 서버 제공 과제, Baseline에 대한 기본 교육 실시 바이오 & 이미지 데이터 모의 Kaggle 경진대회 유통 & 정형 데이터 모의 Kaggle 경진대회 게임 & 자연어 데이터 모의 Kaggle 경진대회 실시간 리더보드 운영 및 팀별 성적 산출

실전 경진대회 과정

교육목표

- 실전 경진대회 참여하여, 문제에 맞는 AI 모델 학습하여 결과물을 제출할 수 있다.
- 실전 대회에 맞는 실험을 설계 및 운영하여, 최적의 결과물을 제출할 수 있다.

교육 특징

- 기업 및 기관에서 출제한 실전 Al 경진대회에 참여하여 기술 역량을 강화
- 실전 대회 참여를 통한 AI 역량 증명 및 포트폴리오 작성
- 참가 팀별 서버 및 멘토링 지원

진행
방식
0 1

- 교육 OT를 통하여 문제 설명 및 베이스라인 교육 실시
- 별도 멘토링 세션 진행하여, 문의사항에 대한 지원 실시
- 팀별 대회 진행 및 정성평가를 위한 프레젠테이션 준비 작업 진행

교육명	세부내용
실전 경진대회 진행	• 모의 경진대회 교육 이후, 실전 경진대회 준비 • 캐글 및 Dacon 등 실전 경진대회 참여하여 성과 달성

이론 교육부터 실전 대회 참여까지

Index

- 1. 모의경진대회 개괄
- 2. AI CONNECT 플랫폼 소개
- 3. 과제 Default Prediction
- 4. 평가지표 Macro F1 Score
- 5. 모델 XGBoost & Ensemble

AI 기술과 비즈니스의 간극을 좁히는 AI Translator, MNC 빅데이터, 인공지능 기술에 대한 이해를 바탕으로 최적의 디지털 혁신 전략을 제공하는 전문 컨설팅 기업

MNC 지향점

비즈니스, 분석, IT 지식을 복합적으로 이해하고 실행하는 Hybrid 역량

MNC 사업 영역

AI / 데이터 기반 혁신 전략 수립

- AI/데이터 기반 운영 전략
 - AI/데이터 기반 운영 기획
 - AI/데이터 기반 프로세스 최적화
- Tech Sensing
 - Al Tech. Map 기반 체계적 분류
 - State-of-the-Art 기반 기술 모니터링
- 조직 AI 진단
 - 기업의 AI 역량 진단
 - AI 혁신 우선순위 과제 도출
- PoC 기반 혁신 실행 지원
 - 실제 업무 현장 수준 문제 정의
 - 빠른 성공 사례 구축으로 혁신 확산

머신러닝 모델 개발

- 딥러닝 모델 개발
 - 로그, 정형 데이터 딥러닝 모델
 - Computer Vision 이미지 분류 및 합성 모델
- 자연어 처리(NLP) 분석 모델 개발
 - STT/TA 활용 NLP 분석 모델
 - 비정형 데이터 기반 추천 모델

■ Al 기반 Business Intelligence 혁신

MINDs@company

AI / 데이터 솔루션 개발

- Customized AI 솔루션 개발
 - 다양한 AI 모델을 활용해 고객사의 니즈에 맞게 구성하는 Tailored 솔루션 시스템
 - 기존 시스템과 솔루션간 연계
 - 다양한 **Vendor** 활용한 최적화 (자사 및 제휴사의 다양한 솔루션 활용)
- AI, 시스템 프로젝트 ISP/PMO
 - AI 솔루션을 활용하는 최적 비즈니스 프로세스 기획
 - 수행 가능 AI 솔루션 프로젝트
- AI 전문 솔루션 개발 및 운영
 - Al Connect : Al 전문 경진대회 솔루션
 - Al ML Ops : Al 모델 운영 솔루션

2017년말 설립 후 40여개 고객사 프로젝트를 성공적으로 수행

금융/보험업

통신/IT업

제조업

정부/공공기관/공기업

중고폰 ATM 민팃

당신의 중고폰 서랍 속에서 민팃 속으로

중고폰ATM 중고폰판매 중고폰기부

시세조회

위치찾기

리뷰왕 이벤트

Make the Most of AI,

MINDS AND COMPANY

AI CONNECT

- MNC에서 21년 5월 론칭한 AI 경진대회 플랫폼
- 총 7개 대회 / 22개 과제 성공적 진행 경험 보유
- 국내 최고 AI 경진대회 플랫폼으로 성장 중 (/^ 3^)/
- 이어드림 모의경진대회 진행 예정

Al CONNECT Main Page : https://main.aiconnect.kr

Single Sign On

Single Sign On

- 이어드림 스쿨페이지(https://yeardreamschool.hunet.co.kr/Home) 를 통해 AI CONNECT 플랫폼으로 넘어가면, 로그인 및 대회 참여까지 자동 완료
- 첨부 이미지의 '과제 참여 중'이라고 쓰인 부분이 수강생에게는 '과제 참여' 버튼으로 보일텐데, 과제 참여 버튼 클릭시 과제 참여까지 완료됨

코드 제출 안내

- Task Prediction 결과는 csv 파일로 플랫폼에 제출
- 최종 제출 및 과제 종료 후 추론에 쓰인 코드 파일(.ipynb)은 기존 일일 과제 제출 포맷과 유사한 형태로 제출 예정(코드 파일 제출 방법은 추후 공지)

Index

- 1. 모의경진대회 개괄
- 2. AI CONNECT 플랫폼 소개
- 3. 과제 Default Prediction
- 4. 평가지표 Macro F1 Score
- 5. 모델 XGBoost & Ensemble

모의경진대회 과제 개괄

개인전				팀전			
	대부업체 고객 데이터 통한 채무 불이행 예측			흉부 CT 이미지 통한 COVID 감염 예측	악성 댓글 분류		
	int_rate	annual_inc	dti	X			
count	100000.000000	1.000000e+05	100000.000000				
mean	0.130833	7.436061e+04	18.514508				
std	0.044773	7.467409e+04	8.413049				
min	0.053200	5.360000e+03	0.000000		- MANUAL -		
25%	0.097500	4.500000e+04	12.200000	CONTROL OF THE PROPERTY OF THE			
50%	0.127400	6.200000e+04	18.060000	A			
75%	0.158000	9.000000e+04	24.530000				
max	0.309900	8.300000e+06	49.930000				
시2	sk : 금융 작 : 01/26 로 : 02/08	6 09:00		Task : 바이오 & 이미지 시작 : 02/09 09:00 AM 종료 : 추후 공지	Task : 유통 & 정형 시작 : 02/16 09:00 AM 종료 : 추후 공지	Task : 게임 & 자연어 시작 : 02/23 09:00 AM 종료 : 추후 공지	
개요	<u>민</u> 전 성적	통한 팀	l 매칭	팀별 GPU 제공	팀별 GPU 제공	팀별 GPU 제공	

Default Prediction

대부업체 고객 데이터를 통한 채무 불이행 예측 모델 | 정형 & 금융

대부업체 고객 데이터를 통해 고객 별 채무 불이행 여부를 이진 분류하는 과제

데 이 터 셋

• 데이터 구조

- train.csv (100000 rows X 76 columns): 75개의 feature 및 depvar(dependent variable)
- test.csv (35816 rows X 76 columns) : 75개의 feature 및 ID
- sample_submission.csv (35816 rows X 2 columns): answer 및 ID

변

• 변수 구성

- Input : 대부업체의 고객 정보를 나타내는 76개의 변수
- Output : 채무 불이행 여부를 뜻하는 depvar(train.csv) or answer(test.csv 및 sample_submission.csv)
- ID : 성능 평가를 위한 인덱스

	int_rate	annual_inc	dti	delinq_2yrs	inq_last_6mths	pub_rec	revol_bal	total_acc	collections_12_mths_ex_med	acc_now_delinq	
0	0.0824	21000.0	29.19	0	1	0	3016	26	0	0	***
1	0.1299	80000.0	4.82	0	1	1	5722	24	0	0	***
2	0.1299	38000.0	23.66	0	3	0	6511	18	0	0	***
3	0.1367	100000.0	16.27	4	2	0	6849	30	0	0	***

train.csv

Default Prediction

데이터 다운로드 링크: LINK

Index

- 1. 모의경진대회 개괄
- 2. AI CONNECT 플랫폼 소개
- 3. 과제 Default Prediction
- 4. 평가지표 Macro F1 Score
- 5. 모델 XGBoost & Ensemble

정확도(Accuracy)의 한계

		실제	정답
		Positive	Negative
실험 결과	Positive	True Positive	False Positive
2527	Negative	<u>False</u> Negative	True Negative

$$ext{Accuracy} = rac{TP + TN}{TP + FP + FN + TN}$$

- 다음과 같은 2-class 문제를 고려해보자.
 - NO class 샘플 수 = 990
 - YES class 샘플 수 = 10
- 모델이 모든 샘플에 대해 NO를 예측하기만 하더라도, 정확도(accuracy)=99% 달성
 - 이 모델은 단 하나의 YES도 예측하지 않음
 - 보통 더 귀한 클래스를 잘 예측하는 것이 중요 (ex) frauds, intrusions, defects)
- Imbalanced Data의 경우에는 대안적 평가 지표 모색 필요

Precision and Recall

$$ext{F1-Score} = 2 imes rac{ ext{Recall} imes ext{Precision}}{ ext{Recall} + ext{Precision}}$$

$$egin{aligned} ext{Accuracy} &= rac{TP + TN}{TP + FP + FN + TN} \ ext{Precision} &= rac{TP}{TP + FP} \ ext{Recall} &= rac{ ilde{T}P}{TP + FN} \end{aligned}$$

		실제 정답		
		Positive	Negative	
시치 거기	Positive	True Positive	False Positive	
실험 결과	Negative	False Negative	True Negative	

PR Curve

- PR(Precision Recall Curve)를 그려보면 우하향하는 형태가 일반적
- Precision Recall 간 trade-off 관계 확인 가능

Micro F1 Score

Predicted

Т	r	ι	I	e	

	Cat	Fish	Hen
Cat	4	1	1
Fish	6	2	2
Hen	3	0	6

Micro-averaging : 각 샘플에 동일한 가중치를 적용하여 평균하는 방법

$$\begin{aligned} &\text{Micro - precision} &: \frac{TP_{Cat} + TP_{Fish} + TP_{Hen}}{TP_{Cat} + TP_{Fish} + TP_{Hen} + FP_{Cat} + FP_{Fish} + FP_{Hen}} \\ &= \frac{4 + 2 + 6}{4 + 2 + 6 + (6 + 3) + (1 + 0) + (1 + 2)} = \frac{12}{12 + 13} = 0.48 \\ &\text{Micro - recall} &: \frac{TP_{Cat} + TP_{Fish} + TP_{Hen}}{TP_{Cat} + TP_{Fish} + TP_{Hen} + FN_{Cat} + FN_{Fish} + FN_{Hen}} \\ &= \frac{4 + 2 + 6}{4 + 2 + 6 + (1 + 1) + (6 + 2) + (3 + 0)} = \frac{12}{12 + 13} = 0.48 \end{aligned}$$

Macro F1 Score

Predicted

True

	Cat	Fish	Hen
Cat	4	1	1
Fish	6	2	2
Hen	3	0	6

Class-wise result

Class	Precision	Recall	F1-score
Cat	30.8%	66.7%	42.1%
Fish	66.7%	20.0%	30.8%
Hen	66.7%	66.7%	66.7%

Macro-averaging: 각 클래스에 동일한 가중치를 적용하여 평균하는 방법

F1-score(Cat) =
$$2 \times (30.8\% \times 66.7\%) / (30.8\% + 66.7\%) = 42.1\%$$

Macro-F1 =
$$(42.1\% + 30.8\% + 66.7\%) / 3 = 46.5\%$$

Weighted F1 Score

Class	Precision	Recall	F1-score
Cat	30.8%	66.7%	42.1%
Fish	66.7%	20.0%	30.8%
Hen	66.7%	66.7%	66.7%

	Cat	Fish	Hen
Cat	4	1	1
Fish	6	2	2
Hen	3	0	6

Weighted-averaging : 실제 인스턴스 수에 따라 클래스의 점수에 가중치를 부여하여 계산하는 방법 클래스의 불균형을 다룰 때 유용

Weighted-F1 = $(6 \times 42.1\% + 10 \times 30.8\% + 9 \times 66.7\%) / 25 = 46.4\%$

Index

- 1. 모의경진대회 개괄
- 2. AI CONNECT 플랫폼 소개
- 3. 과제 Default Prediction
- 4. 평가지표 Macro F1 Score
- 5. 모델 XGBoost & Ensemble

Ensemble이란?

참고자료 : LINK

앙상블(ensemble)이란, 쉽게 말하면, 비슷한 무리들의 집합

앙상블(ensemble)이란, 여러 모델들에서 나온 결과들에 대해, 평균치를 내거나 다수결을 위한 투표를 하는 등 여러 모델들의 집단 지성을 활용하여 단일 모델보다 더 나은 결과를 도출해 내는 방법

앙상블(집단 지성을 활용하는 방법)에도 다양한 방법이 있다.

Voting - 투표를 통해 결과 도출

Bagging - Bootstrap Aggregating (복원 추출로 다양한 샘플 생성)

Boosting - 이전 오차를 보완하며 가중치 부여

Stacking - 여러 모델이 예측한 결과를 다시 학습

앙상블 기법에는 다양한 방식들이 추가로 더 있을 수 있지만, 위에 언급한 4가지가 대표적인 앙상블 기법이며, sklearn에 이미 잘 구현되어 있다.

Ensemble - Voting

Voting은 투표를 통해 결정하는 방식

Hard Voting Classifier

여러 모델을 생성하고 그 결과를 비교. 분류기들의 결과들을 집계하여, 가장 많은 표를 얻은 클래스를 최종 예측값으로 결정

Soft Voting Classifier

앙상블에 사용되는 모든 분류기가 클래스의 확률을 예측할 수 있을 때 사용.

분류기들의 클래스별 예측 확률을 평균하여, 확률이 가장 높은 클래스를 최종 예측값으로 결정

보통 대회에서는 Hard Vote 보다는 Soft Vote 선호

Hard Voting

Soft Voting

Ensemble - Bagging

참고자료 : LINK

- Bootstrap(부트스트랩)

주어진 dataset로부터 복원추출을 통해 여러 sample dataset을 생성하는 방법

- Bagging(배깅)

부트스트랩을 통해 생성한 각각의 sample dataset에 개별 모델을 적용하고, 그 결과들을 종합

Classification : 개별 모델 결과들에 대한 투표(Voting)

Regression : 개별 모델 결과들에 대한 평균

- Voting과 Bagging의 차이점

Voting : 다른 알고리즘 모델들이 도출한 결과에 대한 투표 Bagging : 다른 sample dataset에 같은 알고리즘 모델을 적용하여 도출한 결과에 대한 투표

- RandomForest

대표적인 Bagging 방식의 알고리즘 다른 sample dataset에 동일 모델(Decision Tree) 적용

Vote

"Bagging": Bootstrap AGGregatING

Ensemble - Boosting

참고자료: LINK

Boosting은 앙상블 학습(ensemble learning)의 하나로서, 약한 학습기를 순차적으로 학습하되, 이전 학습에서 잘못 예측된 데이터에 더 큰 가중치를 부여해 오차를 보완해 나가는 알고리즘. 순차적이기 때문에 병렬 처리에 어려움이 있고, 그렇기 때문에 다른 앙상블 대비 학습 시간이 오래걸린다는 단점 존재.

Boosting 알고리즘의 예로는 1. **Adaboost**(Adaptive boosting), 2. **GBM**(Gradient boosting machines), 3. **XGBoost**(eXtreme Gradient Boosting), 4. **LGBM**(Light gradient boost machines), 5. **CATBoost** 등이 있다.

Ensemble - Boosting - AdaBoost

참고자료: LINK

에이다부스트(AdaBoost)는 Adaptive Boost의 줄임말로 이전 예측기가 잘 맞추지 못했던 샘플의 가중치를 높임으로써 이전 학습기를 보완해 나가는 방법

Ensemble - Gradient Boosting

그레이디언트 부스팅은 에이다부스트처럼 이전까지의 오차를 보정하도록 예측기를 순차적으로 추가

하지만 에이다부스트처럼 반복마다 샘플의 가중치를 수정하는 대신 이전 예측기가 만든 잔여오차 (residual error)에 새로운 예측기를 학습시킴

Ensemble - Stacking

참고자료 : LINK1, LINK2

스태킹(Stacking)은 stacked generalization의 줄임말

여러 개의 개별 알고리즘을 합쳐 예측을 한 후, 개별 알고리즘으로 예측한 데이터를 기반으로 다시 예측 과정 수행

End of document