Od prejšnjič nam je ostala trditev $\widehat{f*g} = \sqrt{2\pi} \widehat{f} \cdot \widehat{g}$

Dokaz. Predpostavimo najprej $f, g \in C_c(\mathbb{R})$

$$\widehat{f * g}(\xi) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} (f * g)(x) e^{-ix\xi} dx$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \mathrm{d}x \int_{-\infty}^{\infty} f(x-t)g(t)e^{-ix\xi} \mathrm{d}t$$

Uporabimo fubinijev izrek:

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} dt \int_{-\infty}^{\infty} f(x-t)e^{-ix\xi}g(t)dx$$

Vzamemo novo spremenljivko y = x - t

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \mathrm{d}t \int_{-\infty}^{\infty} f(y) e^{-iy\xi} g(t) e^{-it\xi} \mathrm{d}y$$

$$=\frac{1}{\sqrt{2\pi}}\left(\sqrt{2\pi}\hat{f}\right)\int_{-\infty}^{\infty}g(t)e^{-it\xi}\mathrm{d}t=\sqrt{2\pi}\hat{f}\cdot\hat{g}$$

Splošni primer (skiza dokaza): čim sta f, g v $L^1(\mathbb{R})$ morata obstajati zaporedji funkcij f_n in $g_n \in C_c(\mathbb{R})$, ki proti njima konvergirata. Pokazati bi bilo treba le, da tedaj tudi $\widehat{f * g}$ konvergira.

Definicija. Radi bi if \hat{f} dobili f. Tega se ne da storiti za vse funkcije. Schwarzev razred funkcij je množica funkcij, za katere velja:

- 1. fje
 ∞ -krat zvezno odvedljiva.
- 2. Funkcije $f^{(n)}(x) x^m$ so omejene funkcije za vse $m, n \ge 0$.

Primer take funkcije je $f(x) = e^{-x^2}$. Hkrati to velja za vse neskončnokrat zvezno odvedljive funkcije s kompaktnim nosilcem (označimo $C_c^{\infty}(\mathbb{R})$). Njihmnožico označimo z $\mathcal{S}(\mathbb{R})$.

Trditev. $\mathcal{S}(\mathbb{R}) \subset L^1(\mathbb{R})$

Dokaz. Bodi $f \in \mathbb{R}$. Zanima nas $\int_{-\infty}^{\infty} |f(x)| dx < \infty$

Ker je $f \in \mathcal{S}(\mathbb{R})$, je $f(x)(1+x^2)$ omejena. Recimo torej, da je

$$|f(x)\left(1+x^2\right)| \le M$$

$$|f(x)| \le \frac{M}{1+x^2}$$

$$\int_0^\infty |f(x)| dx \le \int_0^\infty M dx = M \exp(x) =$$

$$\int_{-\infty}^{\infty} |f(x)| \mathrm{d}x \le \int_{-\infty}^{\infty} \frac{M}{1+x^2} \mathrm{d}x = M \arctan x \Big|_{-\infty}^{\infty} = M\pi < \infty$$

Trditev. Naj bosta $f, g \in \mathcal{S}(\mathbb{R})$. Potem so tudi naslednje funkcije v $\mathcal{S}(\mathbb{R})$:

- 1. $f_t: x \mapsto f(x-t)$
- 2. $f_{[a]}: x \mapsto f(ax)$
- 3. $f^{(n)}$
- 4. $x \mapsto f(x)p(x)$, kjer je p polinom
- 5. f * q

Dokaz. Točke 1-4 so očitne, dokaz za 5. točko:

$$(f * g)(x) = \int_{-\infty}^{\infty} f(x - t)g(t)dt$$

$$\frac{d}{dx}(f * g)(x) = \int_{-\infty}^{\infty} f'(x - t)g(t)dt = (f' * g)(x)$$

$$\frac{d^n}{dx^n}(f * g)^{(n)}(x) = (f^{(n)} * g)(x)$$

Inverzna Fourierova transformacija. Bodi $g_0(x) = e^{-x^2/2}$

1.
$$\widehat{g_0} = g_0$$

2.
$$g_{0[a]} = \frac{1}{a} e^{-\frac{x^2}{2a^2}}$$

Dokaz. Točka 2) sledi iz točke 1), kajti $\widehat{g_{0[a]}}(x) = \frac{1}{a}\widehat{g_0}(\frac{\xi}{a})$ Dokaz točke 1):

$$\widehat{g_0}(\xi) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{x^2/2} e^{-ix\xi} dx = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-(x+i\xi)^2/2} e^{-\xi^2/2} dx$$
$$= \frac{e^{-\xi^2/2}}{\sqrt{2\pi}} \lim_{A \to \infty} \int_{-A+i\xi}^{A+i\xi} e^{-z^2/2} dz$$

Vemo, da je $\int_{-\infty}^{\infty} e^{t^2/2} dt = \sqrt{2\pi}$. V kompleksnih številih to zahteva malo več truda, ampak na koncu dobimo $\widehat{g_0}(\xi) = e^{-\xi^2/2}$

Trditev. Naj za neko funkcijo $g \in L^1(\mathbb{R})$ velja $\int_{-\infty}^{\infty} g(x) dx = 1$. Za vsako zvezno $f \colon \mathbb{R} \to \mathbb{C}$ velja:

$$\lim_{\delta \to 0} f * \left(\frac{1}{\delta} g(\frac{x}{\delta}) \right) = f$$

Ta konvergenca je enakomerna na nekem končnem zaprtem intervalu. Če je hkrati $f \in L^1(\mathbb{R})$, potem je

$$\lim_{\delta \to 0} ||f - f * \left(\frac{1}{\delta}g(\frac{x}{\delta})\right)||_1 = 0$$

Mimogrede: označimo $g_{(\delta)} = \frac{1}{\delta} g\left(\frac{x}{\delta}\right)$

Dokaz.

$$\left| (f * g_{(\delta)})(x) - f(x) \right| = \left| \int_{-\infty}^{\infty} f(x - t) g_{(\delta)}(t) dt - f(x) \int_{-\infty}^{\infty} g_{(\delta)}(t) dt \right|$$

$$\leq \int_{-\infty}^{\infty} |f(x - t) - f(x)| \cdot \frac{1}{\delta} |g\left(\frac{t}{\delta}\right)| dt$$

Če je t majhen (manjši od nekega majhnega δ), je $|f(x-t)-f(x)|<\varepsilon$ za vsak x na izbranem intervalu. Če je t velik, gre $g\left(\frac{t}{\delta}\right)$ proti nič, saj je $g\in L^1$, |f(x-t)-f(x)| pa je, zaradi omejenosti f, manjši od neke konstante M. Oba integrala $(t<\delta$ in $t\geq\delta)$ gresta torej proti 0.

Izrek. (Weierstrassov aproksimacijski izrek). Naj bo $f: \mathbb{R} \to \mathbb{C}$ zvezna na nekem končnem zaprtem intervalu [a,b]. Potem za vsak $\varepsilon > 0$ obstaja tak polinom p, da velja $|f(x) - p(x)| < \varepsilon$ za poljuben $x \in [a,b]$.

Dokaz. (Ideja dokaza) Uporabimo prejšnjo trditev za $g(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}$

Izrek. (Inverzna Fourierova transformacija.) Za $f \in \mathcal{S}(\mathbb{R})$ velja

$$f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \hat{f}(\xi) e^{ix\xi} d\xi$$

Opomba. $f(x) = \widehat{\widehat{f}}(-x) = \widehat{\widehat{\widehat{f}}}(x)$. Lahko si zamislimo linearno preslikavo $\mathcal{F} \colon \mathcal{S} \to \mathcal{S}$, ki slika f v \widehat{f} in zanjo velja $\mathcal{F}^4 = \mathrm{Id}$. Je bijektivna, njen inverz je \mathcal{F}^3 . Na $L^1(\mathbb{R})$ pa trditev velja le skoraj povsod.