PATENT ABSTRACTS OF JAPAN

(11)Publication number:

11-312585

(43) Date of publication of application: 09.11.1999

(51)Int.CI.

H05B 33/12 H05B 33/14

H05B 33/26

(21)Application number : 10-134635

(71)Applicant: TDK CORP

(22)Date of filing:

28.04.1998

(72)Inventor: ARAI MICHIO

NAKATANI KENJI KODAMA MITSUFUMI YAMAMOTO HIROSHI ONIZUKA OSAMU

(54) ORGANIC EL ELEMENT

(57)Abstract:

PROBLEM TO BE SOLVED: To provide an organic EL element which is less prone to smaller damages, has high reliability, and can provide high brightness.

SOLUTION: An organic EL element has a deposited structure in which a first hole injection electrode 2, one kind or more of first organic layers 3 participating at least in an emissive function, a first electron injection electrode 4, and a first extraction electrode 5 are deposited sequentially on a substrate, and in which a second electron injection electrode 6, one kind or more of second organic layers 7 participating at least in the emissive function, and a second hole injection electrode 8 are further sequentially deposited thereon. The first and second electron injection electrodes contain one kind or more of oxides selected from among lithium oxide, sodium oxide, potassium oxide, calcium oxide, strontium oxide, barium oxide, and lanthanum oxide, and the first extraction electrode 5 is made or an Al alloy.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]
[Date of extinction of right]

(19)日本国特許庁(JP)

(51) Int.Cl.⁶

(12) 公開特許公報(A)

(11)特許出顧公開番号

特開平11-312585

(43)公開日 平成11年(1999)11月9日

3	33/12 33/14 33/26		H 0 5 B 33/12 33/14 33/26		C A Z		
		·	審查請求	未請求	請求項の数 6	FD	(全 13 頁)
(21)出願番号		特願平10-134635	(71) 出觀人			A 41	
(22)出顧日		平成10年(1998) 4月28日	(72)発明者	ティーディーケイ株式会社 東京都中央区日本橋1丁目13番1号 ・ 荒井 三千男 東京都中央区日本橋一丁目13番1号 ティ ーディーケイ株式会社内			
			(72)発明者	中谷 野東京都中		「目13番	▶1号 ティ
		•	(72) 登明者	小玉 ¾	¥ -√-		

FΙ

(54) 【発明の名称】 有機EL素子

(57)【要約】 (修正有)

【課題】 素子のダメージが小さく、信頼性が高く、しかも高輝度が得られる有機EL素子を提供する。

識別記号

【解決手段】 有機EL素子は、基板上に、第1のホール注入電極2と、少なくとも発光機能に関与する1種以上の第1の有機層3と、第1の電子注入電極4と、第1の引き出し電極5とが順次積層され、さらにその上に、第2の電子注入電極6と、少なくとも発光機能に関与する1種以上の第2の有機層7と、第2のホール注入電極8とが順次積層されている積層構造を有し、第1および第2の電子注入電極が酸化リチウム、酸化ナトリウム、酸化カリウム、酸化カルシウム、酸化ストロンチウム、酸化バリウム、酸化ランタンのいずれか1種以上を含有し、第1の引き出し電極がA1またはA1合金である。

東京都中央区日本橋一丁目13番1号 ティ

最終頁に続く

ーディーケイ株式会社内

(74)代理人 弁理士 石井 陽一

【特許請求の範囲】

【請求項1】 基板上に、第1のホール注入電極と、少なくとも発光機能に関与する1種以上の第1の有機層と、第1の電子注入電極と、第1の引き出し電極とが順次積層され、さらにその上に、第2の電子注入電極と、少なくとも発光機能に関与する1種以上の第2の有機層と、第2のホール注入電極とが順次積層されている積層構造を有し、

前記第1および第2の電子注入電極が酸化リチウム、酸化ナトリウム、酸化カリウム、酸化カルシウム、酸化ス 10トロンチウム、酸化パリウムおよび酸化ランタンのいずれか1種以上を含有し、

前記第1の引き出し電極がA1またはA1合金である有機EL素子。

【請求項2】 前記第2のホール注入電極上に、さら に、少なくとも発光機能に関与する1種以上の第3の有 機層と、第3の電子注入電極と、第2の引き出し電極と が順次積層されており、

前記第3の電子注入電極が酸化リチウム、酸化ナトリウム、酸化カリウム、酸化カルシウム、酸化ストロンチウ 20ム、酸化バリウムおよび酸化ランタンのいずれか1種以上を含有し、

前記第2の引き出し電極がAlまたはAl合金である請求項1の有機EL素子。

【請求項3】 基板上に、第1の引き出し電極と、第1の電子注入電極と、少なくとも発光機能に関与する1種以上の第1の有機層と、第1のホール注入電極とが順次積層され、さらにその上に、少なくとも発光機能に関与する1種以上の第2の有機層と、第2の電子注入電極と、第2の引き出し電極とが順次積層されている積層構造を有し、

前記第1および第2の電子注入電極が酸化リチウム、酸化ナトリウム、酸化カリウム、酸化カルシウム、酸化ストロンチウム、酸化バリウムおよび酸化ランタンのいずれか1種以上を含有し、

前記第1および第2の引き出し電極がAlまたはAl合金である有機EL素子。

【請求項4】 前記第2の引き出し電極上に、さらに、 第3の電子注入電極と、少なくとも発光機能に関与する 1種以上の第3の有機層と、第2のホール注入電極とが 順次積層されており、

前記第3の電子注入電極が酸化リチウム、酸化ナトリウム、酸化カリウム、酸化カルシウム、酸化ストロンチウム、酸化バリウムおよび酸化ランタンのいずれか1種以上を含有する請求項3の有機EL素子。

【請求項5】 前記電子注入電極の膜厚が、0.5~100mである請求項1~4のいずれかの有機EL素子。 【請求項6】 前記引き出し電極の膜厚が、10~100mである請求項1~5のいずれかの有機EL素子。 【発明の詳細な説明】 [0001]

【発明の属する技術分野】本発明は、情報表示パネル、自動車用の計器パネル、動画・静止画を表示させるディスプレイ等、家電製品、自動車、二輪車電装品に使用され、有機化合物を用いて構成された有機EL素子に関する。

2

[0002]

【従来の技術】近年、有機EL素子が盛んに研究され、実用化されつつある。これは、錫ドーブ酸化インジウム (ITO) などの透明電極 (ホール注入電極) 上にトリフェニルジアミン (TPD) などのホール輸送材料を蒸着により薄膜とし、さらにアルミキノリノール錯体 (Alq3) などの蛍光物質を発光層として積層し、さらにMgなどの仕事関数の小さな金属電極 (電子注入電極)を形成した基本構成を有する素子で、10V前後の電圧で数100から数1000cd/㎡ ときわめて高い輝度が得られることで、家電製品、自動車、二輪車電装品等のディスプレイとして注目されている。

【0003】有機EL素子は、例えば基板上にITO等のホール注入電極層を有し、さらにその上にホール注入輸送層、発光層、電子注入輸送層等の有機層を有する。そして、この有機層の上に電子注入電極を有し、必要により配線電極層あるいは保護層を有する。また、ガラス等の封止板を封止用接着剤等により固定し、封止を行っている。通常、有機EL素子は、厚さ数100nm~数μm程度の薄膜構造体であり、ドットマトリクス、あるいはセグメント構造等、その使用目的により所定の大きさ、形状に形成されている。

【0004】有機EL素子を用い、カラーディスプレイ 30 を実現するために、種々の方法が検討されている。例え は、発光体自体の発光色を複数用意したり、カラーフィ ルターを用いて青、緑、赤の3元色を得たりする方法が 一般的である。

【0005】発光体自体の発光色を変化させる試みとして、SID 96 DIGEST・185 14.2:Novel Transparent Organic Electroluminescent Devices G.Gu,V.BBulovic,P.E.Burrows,S.RForrest,M.E.Tompsonに記載されたカラー発光素子として、Ag・Mg薄膜を電子注入電極に、ITOをホール注入電極に用いたものが知られている。とこに記載されているカラー発光素子(heterostructure organic light emitting devices)は、図4に示すように、R,G,B各々に対応した発光層(Red EL,Green EL,Blue EL)34、38、42を有する多層構造であり、各発光層34、38、42年に電子注入電極35、39、43、ホール輸送層33、37、41およびホール注入電極32、36、40が同一積層順に配置され、これらが3原色に対応した積層体として、基板31上に3層に積層されている。

【0006】 これらの積層体を駆動するには、図示例の 50 ように各電子注入電極35,39,43と、ホール注入 、E3を接続しそれぞれの層を発光させる。この場合、各積層体はいずれも順積層であり、各電源E1、E2、E3も同じ方向に直列に接続された状態となる。【0007】このような構成とする場合、発光光を取り出すためには、各電極が透明であることが好ましい。通常、ホール注入電極に用いられるITOは透明電極なので問題ないが、電子注入電極に用いられるMg・Agは透明度が低く、十分な発光光の透過率を得るためには膜厚を50m以下にしなければならない。このように電子10注入電極を薄くすると、十分な電子注入能が得られず、発光輝度が低くなってしまう。一方、十分な発光輝度が得られれば、電極は薄い方が有機層へのダメージが小さ

くなるので、好ましい。そのために、より透明度が高

く、しかも、低抵抗の電子注入電極が望まれている。 【0008】また、図4に示す有機EL素子は、隣り合 うホール注入電極と電子注入電極(34,35および3 9,40)への配線は、それぞれの接地ラインと電源ラ インとを共通にすることも可能である。しかし、このよ うにホール注入電極と電子注入電極とが隣り合った構造 20 では、一つの電源を共通にして使用することはできな い。このため、積層体の積層数分の電圧を直列に加算し た高い電源電圧が必要となる。通常、制御回路に用いら れるIC等は、TTLやC-MOS等、数 V程度の耐圧 しか有しないものが多く、高い電源電圧を制御するた め、さらにトランジスタ、FET等といった制御素子を 用意する必要があり、回路が複雑になる。また、携帯機 器、移動機器等では電源は限られたものしか用意でき ず、使用範囲が制限されてしまう。各積層体毎に電源を 用意することも考えられるが、電源が大型化し、部品点 数が増大してコスト髙になる。

【0009】なお、3原色に対応した各積層体を平面的に配置し、カラー化する方法も検討されているが、各色の画素が占める面積が制限され、十分な輝度を得ることが困難である。また、自発光性の薄膜素子である有機EL素子の特長を生かそうとする場合には、各発光色の積層体をさらに積層する方式が優れている。

【0010】一方、単一の発光層とカラーフィルターとを組み合わせてカラーディスプレイとすることとしても、有機EL素子の発光の波長領域は狭く、しかもその中心波長が偏在しているため、白色発光を行わせることは困難であり、カラーフィルターだけを使用したのでは、赤色等一部の波長領域の光源が不足してしまう。また、フィルターを使用した分輝度の低下が生じるが、これに全体の輝度を合わせるため、全体として輝度が低下してしまう。さらに、フィルター層の塗布工程、パターニング工程等を要し、上記多層型の素子に比べたメリットは少ない。

[0011]

【発明が解決しようとする課題】本発明の目的は、有機 50

E L 素子のダメージが小さく、信頼性が高く、しかも高輝度が得られる有機 E L 素子を実現することである。 【0012】

【課題を解決するための手段】上記目的は以下の本発明 により達成される。

【0013】(1) 基板上に、第1のホール注入電極 と、少なくとも発光機能に関与する1種以上の第1の有 機層と、第1の電子注入電極と、第1の引き出し電極と が順次積層され、さらにその上に、第2の電子注入電極 と、少なくとも発光機能に関与する1種以上の第2の有 機層と、第2のホール注入電極とが順次積層されている 積層構造を有し、前記第1および第2の電子注入電極が 酸化リチウム、酸化ナトリウム、酸化カリウム、酸化カ ルシウム、酸化ストロンチウム、酸化バリウムおよび酸 化ランタンのいずれか1種以上を含有し、前記第1の引 き出し電極がAIまたはAI合金である有機EL素子。 (2) 前記第2のホール注入電極上に、さらに、少な くとも発光機能に関与する1種以上の第3の有機層と、 第3の電子注入電極と、第2の引き出し電極とが順次積 層されており、前記第3の電子注入電極が酸化リチウ ム、酸化ナトリウム、酸化カリウム、酸化カルシウム、 酸化ストロンチウム、酸化パリウムおよび酸化ランタン のいずれか1種以上を含有し、前記第2の引き出し電極 がAlまたはAl合金である上記(1)の有機EL素

- 基板上に、第1の引き出し電極と、第1の電子 (3) 注入電極と、少なくとも発光機能に関与する1種以上の 第1の有機層と、第1のホール注入電極とが順次積層さ れ、さらにその上に、少なくとも発光機能に関与する1 種以上の第2の有機層と、第2の電子注入電極と、第2 の引き出し電極とが順次積層されている積層構造を有 し、前記第1および第2の電子注入電極が酸化リチウ ム、酸化ナトリウム、酸化カリウム、酸化カルシウム、 酸化ストロンチウム、酸化パリウムおよび酸化ランタン のいずれか1種以上を含有し、前記第1および第2の引 き出し電極がAlまたはAl合金である有機EL素子。 (4) 前記第2の引き出し電極上に、さらに、第3の 電子注入電極と、少なくとも発光機能に関与する1種以 上の第3の有機層と、第2のホール注入電極とが順次積 40 層されており、前記第3の電子注入電極が酸化リチウ ム、酸化ナトリウム、酸化カリウム、酸化カルシウム、 酸化ストロンチウム、酸化バリウムおよび酸化ランタン のいずれか1種以上を含有する上記(3)の有機EL素 子。
 - (5) 前記電子注入電極の膜厚が、0.5~100nmである上記(1)~(4)のいずれかの有機EL素子。(6) 前記引き出し電極の膜厚が、10~100nmで

ある上記(1)~(5)のいずれかの有機EL素子。

[0014]

【発明の実施の形態】本発明の有機EL素子は、基板上

あればよい。

くなると、発光層からの発光自体が減衰され、発光素子として必要な輝度が得られなくなる傾向がある。ただし、一方のみから発光光を取り出すときには、取り出し側と反対側の発光光に対し50%以上であればよい。両側から取り出すときには、各発光光に対し50%以上で

【0019】本発明の有機EL素子は、電子注入電極の有機層の反対側には、AlまたはAl合金の引き出し電極を有する。Al合金としては、AlとSc, Nb, Zr, Hf, Nd, Ta, Cu, Si, Cr, Mo, Mn, Ni, Pd, PtおよびW等の遷移元素との合金が挙げられる。Al合金を用いる場合、Alと遷移元素の1種以上との合金が好ましく、その際Alは90at%以上、特に95at%以上であることが好ましい。

【0020】引き出し電極は、シート抵抗が $1Q/\square$ 以下、特に $0.5Q/\square$ 以下が好ましい。その下限は特に規制されるものではないが、通常 $0.1Q/\square$ 程度である。

【0021】引き出し電極の厚さは、十分低いシート抵 抗を確保するために、一定以上の厚さとすればよく、好ましくは10m以上、さらには20m以上が好ましい。また、その上限としては、発光波長帯域の光透過性を確保するために、100m以下、さらには50m以下、特に40m以下が好ましい。引き出し電極が薄すぎると、その効果が得られず、また、引き出し電極層の段差被覆性が低くなってしまい、端子電極との接続が十分ではなくなる。一方、引き出し電極層が厚すぎると、光透過性を確保できなくなる。

【0022】引き出し電極の発光波長帯域、通常350 ~800 nm、特に可視光領域での光透過率が50%以上、特に70%以上であることが好ましい。発光光は引き出し電極を通って取り出されるため、その透過率が低くなると、発光層からの発光自体が減衰され、発光素子として必要な輝度が得られなくなる傾向がある。ただし、一方のみから発光光を取り出すときには、取り出し側と反対側の発光光に対し50%以上であればよい。両側から取り出すときには、各発光光に対し50%以上であればよい。

【0023】電子注入電極と引き出し電極とを合わせた 全体の厚さとしては、特に制限はないが、通常10~2 00nn程度とすればよい。

【0024】電子注入電極、引き出し電極は蒸着法やスパッタ法で形成する。

【0025】電子注入電極、引き出し電極を蒸着法で形成する場合、真空蒸着の条件は特に限定されないが、10-1Pa以下の真空度とし、蒸着速度は0.01~1nm/sec程度とすることが好ましい。また、真空中で連続して各層を形成することが好ましい。真空中で連続して形成すれば、各層の界面に不純物が吸着することを防げるため、高特性が得られる。

に、第1のホール注入電極と、少なくとも発光機能に関 与する1種以上の第1の有機層と、第1の電子注入電極 と、第1の引き出し電極とが順次積層され、さらにその 上に、第2の電子注入電極と、少なくとも発光機能に関 与する1種以上の第2の有機層と、第2のホール注入電 極とが順次積層されている積層構造を有し、前記電子注 入電極が酸化リチウム、酸化ナトリウム、酸化カリウ ム、酸化カルシウム、酸化ストロンチウム、酸化バリウ ム、酸化ランタンのいずれか1種以上を含有し、前記引 き出し電極がAlまたはAl合金である。または、基板 10 上に、第1の引き出し電極と、第1の電子注入電極と、 少なくとも発光機能に関与する1種以上の第1の有機層 と、第1のホール注入電極とが順次積層され、さらにそ の上に、少なくとも発光機能に関与する1種以上の第2 の有機層と、第2の電子注入電極と、第2の引き出し電 極とが順次積層されている積層構造を有し、前記電子注 入電極が酸化リチウム、酸化ナトリウム、酸化カリウ ム、酸化カルシウム、酸化ストロンチウム、酸化パリウ ム、酸化ランタンのいずれか1種以上を含有し、前記引 き出し電極がAlまたはAl合金である。

【0015】本発明の有機EL素子は、電子注入電極が酸化リチウム、酸化ナトリウム、酸化カリウム、酸化カルシウム、酸化ストロンチウム、酸化バリウム、酸化ランタンのいずれか1種以上を含有し、さらにAlまたはAl合金の引き出し電極を用いて抵抗を下げるので、電極の膜厚が薄くても十分な電子注入効率が得られ、発光輝度が高い。また、膜厚を薄くできるので、十分な発光光の透過率が得られる。

【0016】電子注入電極には、酸化リチウム(Li、O)、酸化ナトリウム(Na,O)、酸化カリウム(K,O)、酸化カルシウム(CaO)、酸化ストロンチウム(SrO)、酸化パリウム(BaO)、酸化ランタン(La,O,)のいずれか1種以上を用いる。これらの金属は低仕事関数なので、高い輝度が得られる。これらの酸化物は、通常、その化学量論組成で存在するが、O量は多少偏倚していてもよい。また、これらは1種を用いてもよいし、2種以上を用いてもよい。電子注入電極には、他に、Al、Si、N、C、Cu、Ge、Mo、W、Hf等を5wt%以下含有してもよい。

【0017】電子注入電極薄膜の厚さは、電子注入を十 40 分行える一定以上の厚さとすれば良く、好ましくは0.5 nm以上、より好ましくは1 nm以上、さらには5 nm以上とすればよい。また、その上限値は、発光波長帯域(3 50~800 nm)での光透過性を確保するため、好ましくは100 nm以下、より好ましくは50 nm以下、さらには5 nm以下である。

【0018】電子注入電極の発光波長帯域、通常350 sec程度とすることが好ま ~800 nm、特に可視光領域での光透過率が50%以 て各層を形成することが好上、特に70%以上であることが好ましい。発光光は電 成すれば、各層の界面に不子注入電極を通って取り出されるため、その透過率が低 50 ため、高特性が得られる。

【0026】電子注入電極、引き出し電極をスパッタ法 で形成する場合、スパッタ時のスパッタガスの圧力は、 0. 1~1 Paの範囲が好ましい。スパッタガスは、通常 のスパッタ装置に使用される不活性ガスが使用できる。 【0027】スパッタ法としてはRF電源を用いた髙周 波スパッタ法や、DCスパッタ法等の中から好適なスパ ッタ法を用いて成膜すればよい。スパッタ装置の電力と しては、好ましくはDCスパッタでO. 1~10W/cm ²、RFスパッタで1~10W/cm²の範囲である。ま た、成膜レートは5~100nm/min 、特に10~50

【0028】本発明の有機EL素子の積層構造は、ホー ル注入電極→有機層→電子注入電極→引き出し電極→電 子注入電極→有機層→ホール注入電極という順積層+逆 積層の構造とするか、引き出し電極→電子注入電極→有 機層→ホール注入電極→有機層→電子注入電極→引き出 し電極という逆積層+順積層の構造にする。このような 構造にすることにより、ホール注入電極、引き出し電極 を共通に使用することができ、構成膜を少なくすること ができるので、ディスプレイの構造が簡単になる。ま た、各積層体の隣り合う電極は同種の電極同士となり、 一つの電極を共用できるとともに同じ電源を共通に使用 することができる。駆動時にかける電圧も全体として低 くすることができる。

nm/min の範囲が好ましい。

【0029】発光層で発光した光は、電子注入電極方向 へも、ホール注入電極方向へも放出されるため、各発光 単位となる積層体の一部が逆積層となっていても問題は ない。また、各発光単位となる積層体は、直列に積層さ れているため、フルカラーのマトリクス構造とした場 光光を取り出す場合、発光層は、光取り出し側から短波 長の光が発光する発光層を積層する。

【0030】本発明の有機EL素子は、マトリクスタイ プのディスプレイやセグメントタイプのディスプレイ 等、種々のディスプレイに応用することができる。

【0031】本発明の有機EL素子の一例を図1に示 す。図1に示す有機EL素子は、基板1上にITO等の 第1のホール注入電極2と、発光機能に関与するホール 注入輸送層、発光層、電子注入輸送層等の1種以上を有 する第1の有機層3と、第1の電子注入電極4と、第1 の引き出し電極5とを順次有する。そして、その上に、 第2の電子注入電極6と、第2の有機層7と、第2のホ ール注入電極8とを順次有する。さらにその上に、第3 の有機層9と、第3の電子注入電極10と、第2の引き 出し電極11とを順次有する。

【0032】本発明の有機EL素子の他の一例を図2に 示す。図2に示す有機EL素子は、基板1上に第1の引 き出し電極5と、第1の電子注入電極4と、発光機能に 関与する第1の有機層3と、第1のホール注入電極2と を順次有する。そして、その上に第2の有機層7と、第 50 での ln_2O_2 、に対する $2nO_2$ の混合比は、通常、l

2の電子注入電極6と、第2の引き出し電極11とを有 する。さらにその上に、第3の電子注入電極10と、第 3の有機層9と、第2のホール注入電極9を有する。

【0033】これらの図示例では、1つの発光単位とな る積層体を3層積層して、3原色発光によるフルカラー ディスプレイ、あるいは3原色を同時に発光させ、プロ ードな白色光源として機能させることができる構成とな っている。また、ホール注入電極2, 9は共通に使用す る構造となっている。電子注入電極は共通の引き出し電 10 極を有し、図1における第1の電子注入電極4と第1の 引き出し電極5と第2の電子注入電極6や、図2におけ る第2の電子注入電極6と第2の引き出し電極11と第 3の電子注入電極10のように、1つの引き出し電極を 挟んで電子注入電極が上下に配置される構成となってい

【0034】また、各積層体には所定の電源E1、E2、E3 が、それぞれ同一極性同士を共通にして接続される。と のため、単一の電源を共通に使用することができ、ま た、いずれか一方の側の配線を共通にすることもでき 20

【0035】本発明の有機EL素子をディスプレイとし て駆動する場合、好ましくは図3に示すように、積層体 D1~D3それぞれを専用の配線により駆動するとよ い。図3は、単純マトリクスディスプレイの一構成例を 示す部分概念図である。すなわち、第1の積層体D1 は、第1の走査線(コモンライン)m1と、第1のデー タ線(セグメントライン)nlとで駆動され、第2の積 層体D1は、第2の走査線(コモンライン)m2と、第 2のデータ線(セグメントライン) n 2とで駆動され、 3と、第3のデータ線 (セグメントライン) n 3とで駆 動される。とのように、個々の積層体それぞれを、専用 の配線により駆動するととにより、駆動回路や制御回路 が簡単になり、制御しやすくなる。従って、色度、彩 度、明度等の制御をより正確に行うことができ、髙品 質、髙精細のディスプレイを得ることができる。なお、 コスト面から、より簡単な構造を求める場合には、前述 のように各積層体の駆動線を共通にしてもよい。

> 【0036】ホール注入電極は、ホール注入電極を通し て発光した光を取り出す構成であるため、透明ないし半 透明な電極が好ましい。透明電極としては、 ITO (錫 ドープ酸化インジウム)、IZO(亜鉛ドープ酸化イン ジウム)、ZnO、SnO、、In、O、等が挙げられ るが、好ましくは ITO (錫ドープ酸化インジウム)、 IZO (亜鉛ドープ酸化インジウム) が好ましい。 IT Oでは、通常、In,O,とSnO,とを化学量論組成 で有するが、酸素量は多少これから偏倚していてもよ い。 In, O, に対するSnO, の混合比は、1~20 wt%、さらには5~12wt%が好ましい。また、1ZO

2~32wt%程度である。ホール注入電極は、最上層であって発光光を取り出さないとき、つまり、透明性が必要でないときは、非透明の公知の金属材質等であってもよい。

【0037】ホール注入電極の発光波長帯域、通常350~800m、特に可視光領域での光透過率が80%以上、特に90%以上であることが好ましい。発光光はホール注入電極を通って取り出されるため、その透過率が低くなると、発光層からの発光自体が減衰され、発光素子として必要な輝度が得られなくなる傾向がある。ただり、一方のみから発光光を取り出すときには、取り出し側と反対側の発光光に対し80%以上であればよい。両側から取り出すときには、各発光光に対し80%以上であればよい。

【0038】ホール注入電極の厚さは、ホール注入を十分行える一定以上の厚さを有すれば良く、好ましくは50~500m、さらには50~300nmの範囲が好ましい。また、その上限は特に制限はないが、あまり厚いと透過率の低下や剥離などの心配が生じる。厚さが薄すぎると、製造時の膜強度やホール輸送能力、抵抗値の点で20問題がある。

【0039】このホール注入電極層は蒸着法等によっても形成できるが、好ましくはスパッタ法により形成することが好ましい。

【0040】有機層は、以下のような構成とすることができる。

【0041】発光層は、ホール(正孔)および電子の注入機能、それらの輸送機能、ホールと電子の再結合により励起子を生成させる機能を有する。発光層には、比較的電子的にニュートラルな化合物を用いることが好ましい。

【0042】ホール注入輸送層は、ホール注入電極からのホールの注入を容易にする機能、ホールを安定に輸送する機能および電子を妨げる機能を有するものであり、電子注入輸送層は、電子注入電極からの電子の注入を容易にする機能、電子を安定に輸送する機能およびホールを妨げる機能を有するものである。これらの層は、発光層に注入されるホールや電子を増大・閉じこめさせ、再結合領域を最適化させ、発光効率を改善する。

【0043】発光層の厚さ、ホール注入輸送層の厚さおよび電子注入輸送層の厚さは、特に制限されるものではなく、形成方法によっても異なるが、通常5~500nmと度、特に10~300nmとすることが好ましい。

【0044】ホール注入輸送層の厚さおよび電子注入輸送層の厚さは、再結合・発光領域の設計によるが、発光層の厚さと同程度または1/10~10倍程度とすればよい。ホールまたは電子の各々の注入層と輸送層とを分ける場合は、注入層は1nm以上、輸送層は1nm以上とするのが好ましい。とのときの注入層、輸送層の厚さの上限は、通常、注入層で500nm程度、輸送層で500nm 50

程度である。とのような膜厚については、注入輸送層を 2層設けるときも同じである。

【0045】有機E L素子の発光層には、発光機能を有する化合物である蛍光性物質を含有させる。このような蛍光性物質としては、例えば、特開昭63-264692号公報に開示されているような化合物、例えばキナクリドン、クマリン、ルブレン、スチリル系色素等の化合物から選択される少なくとも1種が挙げられる。また、トリス(8-キノリノラト)アルミニウム等の8-キノリノールまたはその誘導体を配位子とする金属錯体色素などのキノリン誘導体、テトラフェニルブタジエン、アントラセン、ペリレン、コロネン、12-フタロペリノン誘導体、ジシアノメチルピラン等が挙げられる。さらには、特願平6-110569号のフェニルアントラセン誘導体、特願平6-114456号のテトラアリールエテン誘導体等を用いることができる。

【0046】また、それ自体で発光が可能なホスト物質と組み合わせて使用することが好ましく、ドーパントとしての使用が好ましい。このような場合の発光層における化合物の含有量は0.01~20wt%、さらには0.1~15wt%であることが好ましい。ホスト物質と組み合わせて使用することによって、ホスト物質の発光波長特性を変化させることができ、長波長に移行した発光が可能になるとともに、素子の発光効率や安定性が向上する。

【0047】ホスト物質としては、キノリノラト錯体が 好ましく、さらには8-キノリノールまたはその誘導体 を配位子とするアルミニウム錯体が好ましい。このよう なアルミニウム錯体としては、特開昭63-26469 2号、特開平3-255190号、特開平5-7073 3号、特開平5-258859号、特開平6-2158 74号等に開示されているものを挙げることができる。 【0048】具体的には、まず、トリス(8-キノリノ ラト)アルミニウム、ピス(8 – キノリノラト)マグネ シウム、ピス(ベンゾ{f}-8-キノリノラト)亜 鉛、ビス(2-メチル-8-キノリノラト)アルミニウ ムオキシド、トリス(8-キノリノラト)インジウム、 トリス(5-メチル-8-キノリノラト)アルミニウ ム、8-キノリノラトリチウム、トリス(5-クロロー 8-キノリノラト) ガリウム、ビス (5-クロロ-8-キノリノラト)カルシウム、5,7-ジクロル-8-キ ノリノラトアルミニウム、トリス(5,7-ジブロモー 8-ヒドロキシキノリノラト) アルミニウム、ポリ [亜 鉛(II)-ビス(8-ヒドロキシ-5-キノリニル)メ タン] 等がある。

【0049】また、8-キノリノールまたはその誘導体のほかに他の配位子を有するアルミニウム錯体であってもよく、このようなものとしては、ビス(2-メチルー8-キノリノラト)(フェノラト)アルミニウム(III)、ビス(2-メチルー8-キノリノラト)(オルトー

クレゾラト) アルミニウム(III) 、ビス (2-メチル-8-キノリノラト) (メタークレゾラト) アルミニウム (III)、ピス(2-メチル-8-キノリノラト) (パラ -クレゾラト) アルミニウム(III) 、ピス (2-メチル -8-キノリノラト) (オルト-フェニルフェノラト) アルミニウム(III) 、ピス(2-メチル-8-キノリノ ラト) (メターフェニルフェノラト) アルミニウム(II I)、ビス(2-メチル-8-キノリノラト)(パラ-フェニルフェノラト) アルミニウム(III) 、ビス (2-ラト) アルミニウム(III) 、ビス(2 - メチル- 8 - キ ノリノラト)(2,6-ジメチルフェノラト)アルミニ ウム(III)、ビス(2-メチル-8-キノリノラト) (3, 4-ジメチルフェノラト) アルミニウム(III)、 ビス(2-メチル-8-キノリノラト)(3,5-ジメ チルフェノラト) アルミニウム(III) 、ビス (2 –メチ ルー8-キノリノラト) (3,5-ジ-tert-ブチルフ ェノラト) アルミニウム(III) 、ピス (2-メチル-8 -キノリノラト) (2, 6-ジフェニルフェノラト) ア ルミニウム(III)、ピス(2-メチル-8-キノリノラ 20 ト)(2,4,6-トリフェニルフェノラト)アルミニ ウム(III)、ビス(2-メチル-8-キノリノラト) (2, 3, 6-トリメチルフェノラト) アルミニウム(I II)、ビス(2-メチル-8-キノリノラト)(2, 3, 5, 6-テトラメチルフェノラト) アルミニウム(I II)、ビス(2-メチル-8-キノリノラト)(1-ナ フトラト) アルミニウム(III) 、ビス (2-メチル-8 -キノリノラト) (2-ナフトラト) アルミニウム(II I) 、ビス(2, 4-ジメチル-8-キノリノラト) (オルト-フェニルフェノラト)アルミニウム(III) 、 ビス(2.4-ジメチル-8-キノリノラト)(パラ-フェニルフェノラト) アルミニウム(III) 、ピス (2. . 4 - ジメチル - 8 - キノリノラト)(メタ - フェニルフ ェノラト) アルミニウム(III) 、ビス(2,4-ジメチ ルー8-キノリノラト)(3.5-ジメチルフェノラ ト)アルミニウム(III)、ビス(2,4-ジメチル-8 ーキノリノラト) (3, 5 – ジー tert – ブチルフェノラ ト) アルミニウム(III) 、ビス(2-メチル-4-エチ ル-8-キノリノラト) (パラ-クレゾラト) アルミニ ウム(III) 、ピス(2-メチル-4-メトキシ-8-キ 40 ノリノラト) (パラーフェニルフェノラト) アルミニウ ム(III)、ビス(2-メチル-5-シアノ-8-キノリ ノラト) (オルトークレゾラト) アルミニウム(III) 、 ビス(2-メチルー6-トリフルオロメチルー8-キノ リノラト) (2-ナフトラト) アルミニウム(III) 等が ある。

【0050】このほか、ビス(2-メチル-8-キノリ ノラト) アルミニウム(III) - μ-オキソービス (2-メチル-8-キノリノラト) アルミニウム(III)、ビス

(III) -μ-オキソービス (2, 4-ジメチル-8-キ ノリノラト) アルミニウム(III) 、ビス(4~エチル-2-メチル-8-キノリノラト) アルミニウム(III) μーオキソービス(4 -エチル-2-メチル-8-キノ リノラト)アルミニウム(III) 、ピス(2 -メチル-4 ーメトキシキノリノラト) アルミニウム(III) -μ-オ キソービス(2-メチルー4-メトキシキノリノラト) アルミニウム(III) 、ビス(5 –シアノ– 2 –メチル– 8 – キノリノラト)アルミニウム(III) – μ – オキソー メチル-8-キノリノラト)(2.3-ジメチルフェノ 10 ビス(5-シアノ-2-メチル-8-キノリノラト)ア ルミニウム(III) 、ビス(2-メチル-5-トリフルオ ロメチル-8-キノリノラト) アルミニウム(III) -μ -オキソービス(2-メチル-5-トリフルオロメチル -8-キノリノラト) アルミニウム(III) 等であっても よい。

> 【0051】このほかのホスト物質としては、特願平6 - 1 1 0 5 6 9 号に記載のフェニルアントラセン誘導体 や特願平6-114456号に記載のテトラアリールエ テン誘導体なども好ましい。

【0052】発光層は電子注入輸送層を兼ねたものであ ってもよく、このような場合はトリス(8-キノリノラ ト)アルミニウム等を使用することが好ましい。これら の蛍光性物質を蒸着すればよい。

【0053】また、発光層は、必要に応じて、少なくと も1種のホール注入輸送性化合物と少なくとも1種の電 子注入輸送性化合物との混合層とすることも好ましく、 さらにはこの混合層中にドーパントを含有させることが 好ましい。このような混合層におけるドーパントの含有 量は、ホール注入輸送性化合物と電子注入輸送性化合物 30 との合計量に対して0.01~20wt%、さらには0. 1~15 wt% とすることが好ましい。

【0054】混合層では、キャリアのホッピング伝導バ スができるため、各キャリアは極性的に有利な物質中を 移動し、逆の極性のキャリア注入は起こりにくくなるた め、有機化合物がダメージを受けにくくなり、素子寿命 がのびるという利点がある。また、前述のドーパントを このような混合層に含有させることにより、混合層自体 のもつ発光波長特性を変化させることができ、発光波長 を長波長に移行させることができるとともに、発光強度 を髙め、素子の安定性を向上させることもできる。

【0055】混合層に用いられるホール注入輸送性化合 物および電子注入輸送性化合物は、各々、後述のホール 注入輸送層用の化合物および電子注入輸送層用の化合物 の中から選択すればよい。なかでも、ホール注入輸送層 用の化合物としては、強い蛍光を持ったアミン誘導体、 例えばホール輸送材料であるトリフェニルジアミン誘導 体、さらにはスチリルアミン誘導体、芳香族縮合環を持 つアミン誘導体を用いるのが好ましい。

【0056】電子注入輸送性の化合物としては、キノリ (2,4-ジメチル-8-キノリノラト)アルミニウム 50 ン誘導体、さらには8-キノリノールないしその誘導体 13 位子とする金属錯体、特に

を配位子とする金属錯体、特にトリス(8-キノリノラト)アルミニウム(Alq3)を用いることが好ましい。また、上記のフェニルアントラセン誘導体、テトラアリールエテン誘導体を用いるのも好ましい。

【0057】ホール注入輸送層用の化合物としては、強い蛍光を持ったアミン誘導体、例えば上記のホール輸送材料であるトリフェニルジアミン誘導体、さらにはスチリルアミン誘導体、芳香族縮合環を持つアミン誘導体を用いるのが好ましい。

【0058】 この場合の混合比は、それぞれのキャリア移動度とキャリア濃度によるが、一般的には、ホール注入輸送性化合物の化合物/電子注入輸送機能を有する化合物の重量比が、 $1/99\sim99/1$ 、さらに好ましくは $10/90\sim90/10$ 、特に好ましくは $20/80\sim80/20$ 程度となるようにすることが好ましい。

【0059】また、混合層の厚さは、分子層一層に相当する厚み以上で、有機化合物層の膜厚未満とすることが好ましい。具体的には $1\sim85$ nmとすることが好ましく、さらには $5\sim60$ nm、特には $5\sim50$ nmとすることが好ましい。

【0060】また、混合層の形成方法としては、異なる 蒸着源より蒸発させる共蒸着が好ましいが、蒸気圧 (蒸発温度) が同程度あるいは非常に近い場合には、予め同 じ蒸着ボード内で混合させておき、蒸着することもできる。混合層は化合物同士が均一に混合している方が好ましいが、場合によっては、化合物が島状に存在するもの であってもよい。発光層は、一般的には、有機蛍光物質 を蒸着するか、あるいは、樹脂バインダー中に分散させ てコーティングすることにより、発光層を所定の厚さに 形成する。

【0061】また、ホール注入輸送層には、例えば、特 開昭63-295695号公報、特開平2-19169 4号公報、特開平3-792号公報、特開平5-234 681号公報、特開平5-239455号公報、特開平 5-299174号公報、特開平7-126225号公 報、特開平7-126226号公報、特開平8-100 172号公報、EP0650955A1等に記載されて いる各種有機化合物を用いることができる。例えば、テ トラアリールベンジシン化合物(トリアリールジアミン ないしトリフェニルジアミン: TPD)、芳香族三級ア ミン、ヒドラゾン誘導体、カルバゾール誘導体、トリア ゾール誘導体、イミダゾール誘導体、アミノ基を有する オキサジアゾール誘導体、ポリチオフェン等である。こ れらの化合物は、1種のみを用いても、2種以上を併用 してもよい。2種以上を併用するときは、別層にして積 層したり、混合したりすればよい。

【0062】ホール注入輸送層をホール注入層とホール 輸送層とに分けて設層する場合は、ホール注入輸送層用 の化合物のなかから好ましい組合せを選択して用いるこ とができる。このとき、ホール注入電極(ITO等)側 50 からイオン化ポテンシャルの小さい化合物の順に積層するととが好ましい。また、ホール注入電極表面には薄膜性の良好な化合物を用いることが好ましい。このような積層順については、ホール注入輸送層を2層以上設けるときも同様である。このような積層順とすることによって、駆動電圧が低下し、電流リークの発生やダークスポットの発生・成長を防ぐことができる。また、素子化する場合、蒸着を用いているので1~10nm程度の薄い膜も均一かつビンホールフリーとすることができるため、ホール注入層にイオン化ポテンシャルが小さく、可視部に吸収をもつような化合物を用いても、発光色の色調変化や再吸収による効率の低下を防ぐことができる。ホール注入輸送層は、発光層等と同様に上記の化合物を蒸着することにより形成することができる。

【0063】また、必要に応じて設けられる電子注入輸送層には、トリス(8-キノリノラト)アルミニウム (Alq3)等の8-キノリノールまたはその誘導体を配位子とする有機金属錯体などのキノリン誘導体、オキサジアゾール誘導体、ペリレン誘導体、ビリジン誘導な、モリミジン誘導体、キノキサリン誘導体、ジフェニルキノン誘導体、ニトロ置換フルオレン誘導体等を用いることができる。電子注入輸送層は発光層を兼ねたものであってもよく、このような場合はトリス(8-キノリノラト)アルミニウム等を使用することが好ましい。電子注入輸送層の形成は、発光層と同様に、蒸着等によればよい。

【0064】電子注入輸送層を電子注入層と電子輸送層とに分けて積層する場合には、電子注入輸送層用の化合物の中から好ましい組み合わせを選択して用いることができる。このとき、電子注入電極側から電子親和力の値の大きい化合物の順に積層することが好ましい。このような積層順については、電子注入輸送層を2層以上設けるときも同様である。

【0065】有機EL構造体各層を成膜した後に、SiOx 等の無機材料、テフロン、塩素を含むフッ化炭素重合体等の有機材料等を用いた保護膜を形成してもよい。保護膜は透明でも不透明であってもよく、保護膜の厚さは50~1200m程度とする。保護膜は、前記の反応性スパッタ法の他に、一般的なスパッタ法、蒸着法、PECVD法等により形成すればよい。

【0066】さらに、素子の有機層や電極の酸化を防いだり、機械的ダメージから保護するために、素子上に封止板を設けることが好ましい。封止板は、湿気の侵入を防ぐために、接着性樹脂等を用いて接着し密封する。封止ガスは、Ar、He、N₂等の不活性ガス等が好ましい。また、この封止ガスの水分含有量は、100ppm以下、より好ましくは10ppm以下、特には1ppm以下であることが好ましい。この水分含有量に下限値は特にないが、通常0.1ppm程度である。

【0067】封止板の材料としては、好ましくは平板状

であって、ガラスや石英、樹脂等の透明ないし半透明材 料が挙げられるが、特にガラスが好ましい。このような ガラス材として、アルカリガラスが好ましいが、この 他、ソーダ石灰ガラス、鉛アルカリガラス、ホウケイ酸 ガラス、アルミノケイ酸ガラス、シリカガラス等のガラ ス組成のものも好ましい。また、その製板方法として は、ロールアウト法、ダウンロード法、フュージョン 法、フロート法等が好ましい。ガラス材の表面処理法と しては、研磨加工処理、SiO,バリヤーコート処理等 が好ましい。これらの中でも、フロート法で製板された 10 ソーダ石灰ガラスで、表面処理の無いガラス材が安価に 使用でき、好ましい。封止板としては、ガラス板以外に も、金属板、プラスチック板等を用いることもできる。 【0068】封止板は、スペーサーを用いて髙さを調整 し、所望の高さに保持してもよい。スペーサーの材料と しては、樹脂ピーズ、シリカピーズ、ガラスピーズ、ガ ラスファイバー等が挙げられ、特にガラスピーズ等が好 ましい。スペーサーは、通常、粒径の揃った粒状物であ るが、その形状は特に限定されるものではなく、スペー サーとしての機能に支障のないものであれば種々の形状 20 であってもよい。その大きさとしては、円換算の直径が $1\sim20\,\mu\text{m}$ 、より好ましくは $1\sim10\,\mu\text{m}$ 、特に $2\sim$ 8μm が好ましい。このような直径のものは、粒長10

【0069】なお、封止板に凹部を形成した場合には、 スペーサーは使用しても、使用しなくてもよい。使用す る場合の好ましい大きさとしては、前記範囲でよいが、 特に2~8μmの範囲が好ましい。

0 μm 以下程度であることが好ましく、その下限は特に

規制されるものではないが、通常1µm程度である。

されていても、接着時に混入してもよい。封止用接着剤 中におけるスペーサーの含有量は、好ましくは0.01 ~30wt%、より好ましくは0.1~5wt%である。

【0071】接着剤としては、安定した接着強度が保 て、気密性が良好なものであれば特に限定されるもので はないが、カチオン硬化タイプの紫外線硬化型エポキシ 樹脂接着剤を用いることが好ましい。

【0072】基板材料としては特に限定するものではな く、積層する有機EL構造体の電極の材質等により適宜 決めることができ、例えば、Al等の金属材料や、ガラ ス、石英や樹脂等の透明ないし半透明材料、あるいは不 透明であってもよく、この場合はガラス等のほか、アル ミナ等のセラミックス、ステンレス等の金属シートに表 面酸化などの絶縁処理を施したもの、フェノール樹脂等 の熱硬化性樹脂、ポリカーボネート等の熱可塑性樹脂な どを用いることができる。

【0073】基板に色フィルター膜や蛍光性物質を含む 色変換膜、あるいは誘電体反射膜を用いて発光色をコン トロールしてもよい。

で用いられているカラーフィルターを用いれば良いが、 有機EL素子の発光する光に合わせてカラーフィルター の特性を調整し、取り出し効率・色純度を最適化すれば

【0075】また、EL素子材料や蛍光変換層が光吸収 するような短波長の外光をカットできるカラーフィルタ ーを用いれば、素子の耐光性・表示のコントラストも向

【0076】また、誘電体多層膜のような光学薄膜を用 いてカラーフィルターの代わりにしても良い。

【0077】蛍光変換フィルター膜は、EL発光の光を 吸収し、蛍光変換膜中の蛍光体から光を放出させること で、発光色の色変換を行うものであるが、組成として は、バインダー、蛍光材料、光吸収材料の三つから形成

【0078】蛍光材料は、基本的には蛍光量子収率が高 いものを用いれば良く、EL発光波長域に吸収が強いと とが望ましい。実際には、レーザー色素などが適してお り、ローダミン系化合物・ペリレン系化合物・シアニン 系化合物・フタロシアニン系化合物 (サブフタロシアニ ン等も含む) ナフタロイミド系化合物・縮合環炭化水素 系化合物・縮合複素環系化合物・スチリル系化合物・ク マリン系化合物等を用いればよい。

【0079】バインダーは、基本的に蛍光を消光しない ような材料を選べば良く、フォトリソグラフィー・印刷 等で微細なパターニングが出来るようなものが好まし い。また、ITO、IZOの成膜時にダメージを受けな いような材料が好ましい。

【0080】光吸収材料は、蛍光材料の光吸収が足りな 【0070】スペーサーは、予め封止用接着剤中に混入 30 い場合に用いるが、必要のない場合は用いなくても良 い。また、光吸収材料は、蛍光性材料の蛍光を消光しな いような材料を選べば良い。

> 【0081】ホール注入輸送層、発光層および電子注入 輸送層の形成には、均質な薄膜が形成できることから、 真空蒸着法を用いることが好ましい。真空蒸着法を用い た場合、アモルファス状態または結晶粒径が0. 1 μm 以下の均質な薄膜が得られる。結晶粒径が 0. 1 μm を 超えていると、不均一な発光となり、素子の駆動電圧を 高くしなければならなくなり、電荷の注入効率も著しく 40 低下する。

【0082】真空蒸着の条件は特に限定されないが、1 0-1 Pa以下の真空度とし、蒸着速度は0.01~1 nm/ sec 程度とすることが好ましい。また、真空中で連続し て各層を形成することが好ましい。真空中で連続して形 成すれば、各層の界面に不純物が吸着することを防げる ため、高特性が得られる。また、素子の駆動電圧を低く したり、ダークスポットの発生・成長を抑制したりする ことができる。

【0083】とれら各層の形成に真空蒸着法を用いる場 【0074】色フィルター膜には、液晶ディスプレイ等 50 合において、1層に複数の化合物を含有させる場合、化

合物を入れた各ポートを個別に温度制御して共<mark>蒸着する</mark> ことが好ましい。

17

【0084】有機EL素子は、直流駆動やバルス駆動等され、印加電圧は、通常、2~20V程度である。 【0085】

【実施例】次に実施例を示し、本発明をより具体的に説明する。

【0086】<実施例1>ガラス基板上に、第1のIT 〇透明電極(ホール注入電極)をスパッタ法にて50mm 成膜した。

【0087】ITO電極層等が形成された基板の表面を UV/O,洗浄した後、真空蒸着装置の基板ホルダーに 固定して、槽内を1×10⁻¹Pa以下まで減圧した。4. 4', 4"-トリス(-N-(3-メチルフェニル)-N-フェニルアミノ) トリフェニルアミン(以下、m-MTDATA) を蒸着速度 0. 1 nm/secで 8 0 nmの厚 さに蒸着し、第1のホール注入層とした。次いで、N. N'-ジフェニル-N, N'-m-トリル-4, 4'-ジアミノ-1, 1'-ピフェニル (以下、TPD) を蒸 着速度0.1nm/secで20nmの厚さに蒸着し、第1の ホール輸送層とした。次いで、ジフェニルアントラセン ダイマー(以下、DPA)を蒸着速度 0. 1 mm/secで 40 nmの厚さに蒸着し、第1の発光層(青色発光層)と した。さらに、トリス(8-キノリノラト)アルミニウ ム(以下、Alq3)を蒸着速度0.1nm/secで10n mの厚さに蒸着し、第1の電子注入輸送層とした。

【0088】次いで、減圧を保ったまま、Li,Oを5nmの厚さに蒸着し、第1の電子注入電極とした。

【0089】さらに、減圧を保ったまま、Alを20nmの厚さに蒸着し、第1の引き出し電極とした。

【0090】さらに、減圧を保ったまま、Li₂0を5nmの厚さに蒸着し、第2の電子注入電極とした。

【0091】次いで、減圧を保ったまま、クマリン6を 1 vo1%ドープしたA 1 q 3 を蒸着速度 0.2 nm/secで 6 0 nmの厚さに蒸着し、第2の電子注入輸送・発光層 (緑色発光層)とした。次いで、TPDを蒸着速度 0.1 nm/secで 2 0 nmの厚さに蒸着し、第2のホール輸送 層とした。さらに、m-MTDATAを蒸着速度 0.1 nm/secで 5 0 nmの厚さに蒸着し、第2のホール注入層とした。

【0092】次いで、減圧を保ったまま、第2のITO 透明電極(ホール注入電極)をスパッタ法にて50nm成 膜した。

【0093】次いで、減圧を保ったまま、m-MTDA TAを蒸着速度 0.1 rm/secで50 rmの厚さに蒸着 0.93 mのホール注入層とした。次いで、TPDを蒸着 速度 0.1 rm/secで20 rmの厚さに蒸着し、第3のホール輸送層とした。さらに、ジシアノメチルビラン(以下、DCM)を 1 voi%ドープしたA1q3を蒸着速度 0.2 rm/secでを60 rmの厚さに蒸着し、第3の電子

注入輸送・発光層(赤色発光層)とした。

【0094】次いで、減圧を保ったまま、Li,Oを5nmの厚さに蒸着し、第3の電子注入電極とした。

【0095】さらに、減圧を保ったまま、Alを200 mmの厚さに蒸着し、第2の引き出し電極とした。

【0096】最後にガラス封止板を貼り合わせ、図1に示すような積層構造の有機EL素子とした。この有機EL素子は、基板側から発光光を取り出す構成になっている。

10 【0097】得られた有機EL素子の各積層体に、単一電源から所定の直流電圧を印加し、10mA/cm²の定電流密度で、駆動させたところ、各発光層ともそれぞれ独立に発光し、制御できることが確認できた。青色発光部は輝度500cd/cm²、緑色発光部は輝度600cd/cm²、赤色発光部は輝度300cd/cm²の発光が得られた。

【0098】電子注入電極をNa,O、K,O、CaO、SrO、BaO、La,O,としても同等の結果が得られた。

20 【0099】<実施例2>ガラス基板を真空蒸着装置の 基板ホルダーに固定して、槽内を1×10⁻⁴ Pa以下まで 減圧した。そして、ガラス基板上に、A1を200 nmの 厚さに蒸着し、第1の引き出し電極とした。

【0100】次いで、減圧を保ったまま、Li₂Oを5nmの厚さに蒸着し、第1の電子注入電極とした。

【0101】次いで、減圧を保ったまま、DCMを1vo 1%ドープしたAlq3を蒸着速度0.2nm/secでを6 0nmの厚さに蒸着して、第1の電子注入輸送・発光層 (赤色発光層)とした。次いで、TPDを蒸着速度0.

1 nm/secで20 nmの厚さに蒸着し、第1のホール輸送 層とした。さらに、m-MTDATAを蒸着速度0.1 nm/secで50 nmの厚さに蒸着し、第1のホール注入層 とした。

【0102】次いで、減圧を保ったまま、第1のITO 透明電極(ホール注入電極)をスパッタ法にて50nm成 膜した。

【0103】次いで、減圧を保ったまま、m-MTDATAを蒸着速度0.1 mm/secで50 nmの厚さに蒸着し、第2のホール注入層とした。次いで、TPDを蒸着)速度0.1 mm/secで20 nmの厚さに蒸着し、第2のホール輸送層とした。さらに、クマリン6を1 vo1%ドープしたA1q3を蒸着速度0.2 mm/secで60 nmの厚さに蒸着し、第2の電子注入輸送・発光層(緑色発光層)とした。

【0104】次いで、減圧を保ったまま、Li₂Oを5nmの厚さに蒸着し、第2の電子注入電極とした。

【0105】さらに、減圧を保ったまま、Alを20nmの厚さに蒸着し、第2の引き出し電極とした。

【0106】さらに、減圧を保ったまま、Li,Oを5n 50 mの厚さに蒸着し、第3の電子注入電極とした。

19

【0107】次いで、減圧を保ったまま、Alq3を蒸着速度0.1mm/secで10mmの厚さに蒸着し、第3の電子注入輸送層とした。次いで、DPAを蒸着速度0.1mm/secで40mmの厚さに蒸着し、第3の発光層(青色発光層)とした。次いで、TPDを蒸着速度0.1mm/secで20mmの厚さに蒸着し、第3のホール輸送層とした。さらに、m-MTDATAを蒸着速度0.1mm/secで80mmの厚さに蒸着し、第3のホール注入層とした。

【0108】次いで、減圧を保ったまま、第2のITO 透明電極 (ホール注入電極) をスパッタ法にて50nm成 聴した。

【0109】最後にガラス封止板を貼り合わせ、図2に示すような積層構造の有機EL素子とした。との有機EL素子は、基板と反対側、つまり最上層のITO側から発光光を取り出す構成になっている。

【0110】実施例1と同様に、得られた有機EL素子の各積層体に、単一電源から所定の直流電圧を印加し、10mA/cm²の定電流密度で、駆動させたところ、各発光層ともそれぞれ独立に発光し、制御できることが確認 20できた。輝度は実施例1と同等だった。

【0111】電子注入電極をNa,O、K,O、CaO、SrO、BaO、La,O,としても同等の結果が得られた。

【0112】<実施例3>ガラス基板を真空蒸着装置の基板ホルダーに固定して、槽内を1×10⁻¹Pa以下まで減圧した。そして、ガラス基板上に、A1を20nmの厚さに蒸着し、第1の引き出し電極とした。

【0113】次いで、減圧を保ったまま、Li₂Oを5nmの厚さに蒸着し、第1の電子注入電極とした。

【0114】次いで、減圧を保ったまま、Alq3を蒸着速度0.1nm/secで10nmの厚さに蒸着し、第1の電子注入輸送層とした。次いで、DPAを蒸着速度0.1nm/secで40nmの厚さに蒸着し、第1の発光層(青色発光層)とした。次いで、TPDを蒸着速度0.1nm/secで20nmの厚さに蒸着し、第1のホール輸送層とした。さらに、m-MTDATAを蒸着速度0.1nm/secで80nmの厚さに蒸着し、第1のホール注入層とした。

【0115】次いで、減圧を保ったまま、第1のITO 透明電極(ホール注入電極)をスパッタ法にて50nm成 膜した。

【0116】次いで、減圧を保ったまま、m-MTDATAを蒸着速度0.1m/secで50nmの厚さに蒸着し、第2のホール注入層とした。次いで、TPDを蒸着速度0.1m/secで20nmの厚さに蒸着し、第2のホール輸送層とした。さらに、クマリン6を1vo1%ドープしたA1q3を蒸着速度0.2nm/secで60nmの厚さに蒸着し、第2の電子注入輸送・発光層(緑色発光層)とした。

【0117】次いで、減圧を保ったまま、Li,Oを5nmの厚さに蒸着し、第2の電子注入電極とした。

【0118】さらに、減圧を保ったまま、A1を20mの厚さに蒸着し、第2の引き出し電極とした。

【0119】さらに、減圧を保ったまま、Li,Oを5nmの厚さに蒸着し、第3の電子注入電極とした。

【0120】次いで、減圧を保ったまま、DCMを1vo 1%ドーブしたAlq3を蒸着速度0.2 mm/secでを60 nmの厚さに蒸着して、第3の電子注入輸送・発光層(赤色発光層)とした。次いで、TPDを蒸着速度0.1 nm/secで20 nmの厚さに蒸着し、第3のホール輸送層とした。さらに、m-MTDATAを蒸着速度0.1 nm/secで50 nmの厚さに蒸着し、第3のホール注入層とした。

【0121】次いで、減圧を保ったまま、第2のITO 透明電極(ホール注入電極)をスパッタ法にて10nm成 聴した

【0122】さらに、減圧を保ったまま、A1を200 mmの厚さに蒸着し、補助電極とした。

【0123】最後にガラス封止板を貼り合わせ、図2に示すような積層構造の有機EL素子とした。この有機EL素子は、基板側から発光光を取り出す構成になっている。

【0124】実施例1と同様に、得られた有機EL素子の各積層体に、単一電源から所定の直流電圧を印加し、10mA/cm²の定電流密度で、駆動させたところ、各発光層ともそれぞれ独立に発光し、制御できることが確認できた。輝度は実施例1と同等だった。

【0125】電子注入電極をNa,O、K,O、CaO、 30 SrO、BaO、La,O,としても同等の結果が得られた。

【0126】<実施例4>ガラス基板を真空蒸着装置の基板ホルダーに固定して、槽内を1×10-1Pa以下まで減圧した。そして、ガラス基板上に、A1を20nmの厚さに蒸着し、第1の引き出し電極とした。

【0127】次いで、減圧を保ったまま、Li₂Oを5nmの厚さに蒸着し、第1の電子注入電極とした。

【0128】次いで、減圧を保ったまま、Alq3を蒸着速度0.1nm/secで10nmの厚さに蒸着し、第1の電子注入輸送層とした。次いで、DPAを蒸着速度0.1nm/secで40nmの厚さに蒸着し、第1の発光層(青色発光層)とした。次いで、TPDを蒸着速度0.1nm/secで20nmの厚さに蒸着し、第1のホール輸送層とした。さらに、m-MTDATAを蒸着速度0.1nm/secで80nmの厚さに蒸着し、第1のホール注入層とした。

【0129】次いで、減圧を保ったまま、第1のITO 透明電極(ホール注入電極)をスパッタ法にて50nm成 膜した。

i0 【0130】次いで、減圧を保ったまま、m−MTDA

TAを蒸着速度0.1 mm/secで50 nmの厚さに蒸着し、第2のホール注入層とした。次いで、TPDを蒸着速度0.1 mm/secで20 nmの厚さに蒸着し、第2のホール輸送層とした。さらに、クマリン6を1 vo1%ドーブしたA1q3を蒸着速度0.2 mm/secで60 nmの厚さに蒸着し、第2の電子注入輸送・発光層(緑色発光層)とした。

【0131】次いで、減圧を保ったまま、Li,Oを5nmの厚さに蒸着し、第2の電子注入電極とした。

【0 1 3 2 】 さらに、減圧を保ったまま、A 1 を 2 0 nm 10 る。 の厚さに蒸着し、第 2 の引き出し電極とした。

[0133] さらに、滅圧を保ったまま、Li₂Oを5nmの厚さに蒸着し、第3の電子注入電極とした。

【0134】次いで、減圧を保ったまま、DCMを1vo 1%ドープしたA1q3を蒸着速度0.2nm/secでを60nmの厚さに蒸着して、第3の電子注入輸送・発光層(赤色発光層)とした。次いで、TPDを蒸着速度0.1nm/secで20nmの厚さに蒸着し、第3のホール輸送層とした。さらに、m-MTDATAを蒸着速度0.1nm/secで50nmの厚さに蒸着し、第3のホール注入層とした。

【0135】次いで、減圧を保ったまま、第2のITO 透明電極(ホール注入電極)をスパッタ法にて50nm成 膜した。

【0136】最後にガラス封止板を貼り合わせ、図2に示すような積層構造の有機EL素子とした。この有機EL素子は、基板側からも基板と反対側からも発光光を取り出す構成になっている。

【0137】実施例1と同様に、得られた有機EL素子の各積層体に、単一電源から所定の直流電圧を印加し、10mA/cm²の定電流密度で、駆動させたところ、各発光層ともそれぞれ独立に発光し、制御できることが確認できた。輝度は実施例1と同等だった。

【0138】電子注入電極をNa,O、K,O、CaO、SrO、BaO、La,O,としても同等の結果が得られた。

[0139]

【発明の効果】以上のように、本発明によれば、有機 E L素子のダメージが小さく、信頼性が高く、しかも高輝* * 度が得られる有機EL素子を実現できる。

【図面の簡単な説明】

【図1】本発明の有機EL素子の一構成例を模式的に表した図である。

【図2】本発明の有機EL素子の他の構成例を模式的に 表した図である。

【図3】本発明の有機EL素子をマトリクスディスプレイに応用した場合の配線例を示した図である。

【図4】従来の有機EL素子を模式的に表した図であ ス

【符号の説明】

- 1 基板
- 2 第1のホール注入電極
- 3 第1の有機層
- 4 第1の電子注入電極
- 5 第1の引き出し電極
- 6 第2の電子注入電極
- 7 第2の有機層
- 8 第2のホール注入電極
- 20 9 第3の有機層
 - 10 第3の電子注入電極
 - 11 第2の引き出し電極
 - E1, E2, E3 電源
 - D1, D2, D3 積層体
 - m1, m2, m3 走査線(コモンライン)
 - n1, n2, n3 データ線(セグメントライン)
 - 31 基板
 - 32 第1のホール注入電極
 - 33 第1のホール輸送層
- 30 34 第1の発光層
 - 35 第1の電子注入電極
 - 36 第2のホール注入電極
 - 37 第2のホール輸送層
 - 38 第2の発光層
 - 39 第2の電子注入電極
 - 40 第3のホール注入電極
 - 41 第3のホール輸送層
 - 42 第3の発光層
 - 43 第3の電子注入電極

【図1】

【図2】

【図3】

【図4】

フロントページの続き

(72)発明者 山本 洋

東京都中央区日本橋一丁目13番1号 ティ ーディーケイ株式会社内 (72)発明者 鬼塚 理

東京都中央区日本橋一丁目13番1号 ティーディーケイ株式会社内