位	e	E	2^{E}	f	М	$2^E \times M$	V	十进制
0 00 00	0	0	1	0 4	0 4	0 4	0	0.0
0 00 01	0	0	1	14	1/4	14	$\frac{1}{4}$	0.25
0 00 10	0	0	1	24	<u>2</u>	24	$\frac{1}{2}$	0.5
0 00 11	0	0	1	34	34	34	34	0.75
0 01 00	1	0	1	04	$\frac{4}{4}$	4 4	1	1.0
0 01 01	1	0	1	14	5 4	5 4	54	1.25
0 01 10	1	0	1	24	64	64	3 2	1.5
0 01 11	1	0	1	3 4	7 4	7 4	7 4	1.75
0 10 00	2	1	2	04	$\frac{4}{4}$	8 4	2	2.0
0 10 01	2	1	2	14	5 4	10	5 2	2.5
0 10 10	2	1	2	24	64	12	3	3.0
0 10 11	2	1	2	34	74	14	$\frac{7}{2}$	3.5
0 11 00	_	_	_	_	_	_	∞	_
0 11 01	_	_	-	_			NaN	-
0 11 10		_	-	_	-	_	NaN	_
0 11 11	_			-	_	_	NaN	_

2.48 十六进制 0x359141 等价于二进制[1101011001000101000001]。将之右移 21 位得到 1.1010110010001010000012×2²¹。除去起始位的 1 并增加 2 个 0 形成小数字段,从而得到 [10101100100010100000100]。阶码是通过 21 加上偏置量 127 形成的,得到 148(二进制 [10010100])。我们把它和符号字段 0 联合起来,得到二进制表示

[01001010010101100100010100000100]

我们看到两种表示中匹配的位对应于整数的低位到最高有效位等于1,匹配小数的高21位:

 $\begin{smallmatrix} 0 & 0 & 3 & 5 & 9 & 1 & 4 & 1 \\ 00000000001101011001000101000001 \end{smallmatrix}$

4 A 5 6 4 5 0 4 0100101010101010101001010000100

- 2.49 这个练习帮助你思考什么数不能用浮点准确表示。
 - A. 这个数的二进制表示是: 1 后面跟着 n 个 0,其后再跟 1,得到值是 $2^{n+1}+1$ 。
 - B. 当 n=23 时, 值是 224+1=16 777 217。
- 2.50 人工舍入帮助你加强二进制数舍入到偶数的概念。

原始	值	舍人后的值		
10.0102	$2\frac{1}{4}$	10.0	2	
10.0112	$2\frac{3}{8}$	10.1	$2\frac{1}{2}$	
10.1102	$2\frac{3}{4}$	11.0	3	
11.0012	$3\frac{1}{8}$	11.0	3	

- 2.51 A. 从 1/10 的无穷序列中我们可以看到,舍入位置右边 2 位都是 1,所以对 1/10 更好一点儿的近似值应该是对 x 加 1,得到 x'=0.000110011001100110011012,它比 0.1 大一点儿。
 - B. 我们可以看到 x'-0.1 的二进制表示为:

将这个值与 1/10 的二进制表示做比较,我们可以看到它等于 $2^{-22} \times 1/10$,大约等于 2.38×10^{-8} .

- C. 2.38×10⁻⁸×100×60×60×10≈0.086 秒, 爱国者导弹系统中的误差是它的 4 倍。
- D. 0.086×2000≈171 米。
- 2.52 这个题目考查了很多关于浮点表示的概念,包括规格化和非规格化的值的编码,以及舍入。