Теория категорий Категориальная логика

Валерий Исаев

29 апреля 2021 г.

План лекции

Интерпретация
Подстановка
Корректность интерпретации

Регулярные теории

Когерентные теории

Импликация и ∀

Подстановка

- ightharpoonup Пусть U и $V-\mathcal{S}$ -индексированные множества переменных. Тогда подстановка из U в V (обозначается $\rho:U o V$) – это просто V-индексированное множество термов $\{\rho(x)\in \mathrm{Term}(V)_s\}_{(x:s)\in V}$
- ightharpoonup Подстановка (x:=a) это просто такая ho, что ho(x)=a и $\rho(y) = y$ для любого $y \neq x$.
- ightharpoonup Если ho:U o V и $t\in \mathrm{Term}(U)_{s_t}$ то t[
 ho] это терм в $t \in \mathrm{Term}(U)_{s}$, который определяется рекурсивно:
 - ightharpoonup Если t=x, то $t[\rho]=\rho(x)$.
 - ightharpoonup Если $t = f(t_1, \dots t_k)$, то $t[\rho] = f(t_1[\rho], \dots t_k[\rho])$.
- lacktriangle Подстановка arphi[
 ho] в формулы определяется рекурсией по построению φ .

Подстановка

Интерпретация подстановки в термах

Если ho:U o V, то мы определяем $[\![
ho]\!]:[\![U]\!] o [\![V]\!]$ как $\langle [\![
ho(x)]\!]
angle_{x\in V}.$

Lemma

Если $t \in \mathrm{Term}(V)_s$ и $\rho: U \to V$, то $\llbracket t[\rho] \rrbracket = \llbracket t \rrbracket \circ \llbracket \rho \rrbracket$.

Доказательство.

Индукцией по построению t.

Интерпретация подстановки в формулах

Lemma

Если $\varphi \in \mathrm{Form} o d_{\varphi}$ такой, что следующий квадрат является пулбэком:

$$egin{align*} d_{arphi[
ho]} & \longrightarrow d_{arphi} \ & & & \downarrow \llbracket arphi
rbracket \ \llbracket U
rbracket & & - \llbracket
ho
rbracket \ & & & \llbracket V
rbracket \ \end{bmatrix}$$

Эквивалентно эту лемму можно сформулировать следующим образом: $\llbracket \varphi[\rho] \rrbracket$ и $\llbracket \rho \rrbracket^*(\llbracket \varphi \rrbracket)$ равны как подобъекты $\llbracket U \rrbracket$.

Интерпретация

Интерпретация подстановки в формулах

- Лемма о подстановке доказывается индукцией по построению φ .
- Сейчас мы проверим это утверждение только для атомарных формул, так как мы вводили только их пока.
- Для других связок будем проверять по мере их введения.

Интерпретация подстановки

Если $\varphi = R(t_1, \dots t_k)$, то мы получаем следующую диаграму:

$$\begin{array}{c} d_{\varphi[\rho]} \longrightarrow d_{\varphi} \longrightarrow d_{R} \\ \llbracket \varphi[\rho] \rrbracket \bigvee_{\downarrow} & \bigvee_{\downarrow} \llbracket \varphi \rrbracket & \bigvee_{\downarrow} \llbracket R \rrbracket \\ \llbracket U \rrbracket \xrightarrow{\llbracket \rho \rrbracket} & \llbracket V \rrbracket \xrightarrow{\langle \llbracket t_{1} \rrbracket, \dots \llbracket t_{k} \rrbracket \rangle} \llbracket s_{1} \rrbracket \times \dots \times \llbracket s_{k} \rrbracket \end{array}$$

Правый квадрат — это определение интерпретации $R(t_1, \ldots t_k)$. Композиция нижних стрелок – это $\langle \llbracket t_1[\rho] \rrbracket, \dots \llbracket t_k[\rho] \rrbracket \rangle$. По определению интерпретации $R(t_1[\rho], \dots t_k[\rho])$ у на есть стрелка $d_{arphi[
ho]} o d_R$ такая, что внешний прямоугольник является пулбэком. По свойствам пулбэков у нас есть стрелка $d_{\omega extsf{I} o extsf{l}} o d_{\omega}$ такая, что левый квадрат является пулбэком.

Интерпретация

Интерпретация подстановки

Если $arphi=(t_1=t_2)$, то в следующей диаграмме $\llbracket arphi
Vert$ по определению является уравнителем $\llbracket t_1
Vert, \llbracket t_2
Vert : \llbracket V
Vert o \llbracket s
Vert,$ а $\llbracket \varphi[
ho]
rbracket$ является уравнителем $\llbracket t_1
rbracket \circ \llbracket
ho
rbracket, \llbracket t_2
rbracket \circ \llbracket
ho
rbracket : \llbracket U
rbracket o \llbracket s
rbracket.$

По универсальному свойству уравнителей у нас есть стрелка $d_{arphi[
ho]} o d_arphi$ и квадрат является пулбэком.

•000

Правила вывода

Во всех наших логиках будут следующие правила вывода:

$$\frac{\varphi \vdash^{V} \psi \qquad \psi \vdash^{V} \chi}{\varphi \vdash^{V} \chi} \\
= \frac{\varphi \vdash^{U} \psi}{\varphi[\rho] \vdash^{V} \psi[\rho]}$$

С добавлением логических связок будут добавляться и правила вывода.

- Разумеется мы хотим, чтобы интерпретация уважала правила вывода.
- ▶ Первые два правила очевидны: $\llbracket \varphi
 rbracket$ является подобъектом самого себя и, если $\llbracket \varphi
 rbracket$ является подобъектом $\llbracket \psi
 rbracket$ и $\llbracket \psi
 rbracket$ является подобъектом $\llbracket \chi
 rbracket$, то $\llbracket \varphi
 rbracket$ является подобъектом $\llbracket \chi
 rbracket$.
- Третье правило следует из леммы об интерпретации подстановки.

Интерпретация

Корректность интерпретации

Корректность Т

- ightharpoonup интерпретируется как наибольший подобъект, то есть $\mathrm{id}: \llbracket V
 rbracket o \llbracket V
 rbracket.$
- Правило вывода для Т:

$$\varphi \longmapsto \mathsf{T}$$

- ▶ Чтобы доказать, что эта аксиома всегда корректна, нужно проверить, что для любой подобъект $d_{\varphi} \hookrightarrow \llbracket V \rrbracket$ является подобъектом $\llbracket \top \rrbracket = \mathrm{id} : \llbracket V \rrbracket \hookrightarrow \llbracket V \rrbracket$, что очевидно.
- ▶ Лемма о подстановке для ⊤ очевидна:

Корректность Л

- $\varphi \wedge \psi$ интерпретируется как пересечение подобъектов $[\![\varphi]\!] \cap [\![\psi]\!].$
- Правила вывода для

$$\frac{\varphi \longmapsto \psi \qquad \varphi \longmapsto \chi}{\varphi \longmapsto \varphi \qquad \psi \land \chi}$$

$$\frac{\varphi \land \psi \longmapsto \varphi}{} \qquad \frac{\varphi \land \psi \longmapsto \psi}{}$$

- ▶ Эти правила уважаются, так как по определению пулбэков стрелка $[\![\varphi]\!] \to [\![\psi]\!] \cap [\![\chi]\!]$ существует тогда и только тогда, когда существуют стрелки $[\![\varphi]\!] \to [\![\psi]\!]$ и $[\![\varphi]\!] \to [\![\chi]\!]$.
- ▶ Лемма о подстановке для \land следует из того факта, что $f^*(X \cap Y) = f^*(X) \cap f^*(Y)$, что проверяется напрямую.

План лекции

Интерпретация
Подстановка
Корректность интерпретации

Регулярные теории

Когерентные теории

Импликация и ∀

Интерпретация \exists

- Теории, в которых формулы состоят только из равенств, конъюнкций, ⊤ и ∃ называются регулярными.
- ▶ Мы не можем проинтерпретировать ∃ в произвольной конечно полной категории.
- Категории, где можно это сделать, называются регулярными.
- Формальное определение будет дано ниже.

Интерпретация ∃ в **Set**

- ightharpoonup Пусть $\llbracket \varphi(x, x_1, \dots x_n)
 Vert$: $d_{\varphi} \hookrightarrow \llbracket s
 Vert \times \llbracket s_1
 Vert \times \dots \times \llbracket s_n
 Vert$.
- ► Как проинтерпретировать $\exists (x:s)(\varphi(x,x_1...x_n))$?
- ightharpoonup Если рассмотреть $\pi_{1,\ldots,n} \circ \llbracket \varphi \rrbracket : d_{\omega} \to \llbracket s_{1} \rrbracket \times \ldots \times \llbracket s_{n} \rrbracket$, то это почти дает нам интерпретацию $\exists (x:s)(\varphi(x,x_1,\ldots x_n)),$ так как прообраз некоторого элемента $(a_1, \ldots a_n)$ населен тогда и только тогда, когда существует $a \in [s]$, такой что $(a, a_1, \ldots a_n) \in \llbracket \varphi \rrbracket$.
- lacktriangle Единственная проблема заключается в том, что $\pi_{1,\dots,n}\circ\llbracket\varphi
 rbracket$ не является мономорфизмом.
- Мы можем решить эту проблему, определив интерпретацию $\exists (x:s)(\varphi(x,x_1,\ldots x_n))$ как образ $\pi_{1...n} \circ \llbracket \varphi \rrbracket$.

Образ морфизма

- Мы можем обобщить понятие образа функции на произвольную категорию.
- lacktriangle Образ морфизма f:A o B это наименьший мономорфизм $\operatorname{Im} f \hookrightarrow B$, через который f факторизуется.
- lacktriangle Другими словами, существует стрелка $A o {
 m Im}\, f$, такая что для любых стрелок $g:A\to C$ и $h:C\hookrightarrow B$ если $h\circ g=f$, то $\operatorname{Im} f$ является подобъектом C:

Интерпретация существования

- ▶ В произвольной категории образ может не существовать, но он уникален, если существует.
- Если предположить, что в категории существуют образы, то можно попробовать проинтерпретировать существование так же как и в Set.
- ▶ Если $\llbracket \varphi(x, x_1, \dots x_n) \rrbracket : d_{\varphi} \hookrightarrow \llbracket s \rrbracket \times \llbracket s_1 \rrbracket \times \dots \times \llbracket s_n \rrbracket$, то мы определяем $\llbracket \exists (x:s) \varphi \rrbracket$ как образ $\pi_{1, \dots n} \circ \llbracket \varphi \rrbracket$.

Лемма о подстановке для 🖯

- Даже если в категории существуют образы всех морфизмов, они могут не коммутировать с пулбэками.
- Категория называется регулярной, если у всех морфизмов. существуют образы, и они стабильны относительно пулбэков.
- Таким образом, в любой регулярной категории подстановка действительно интерпретируется как пулбэк.

Корректность интерпретации \exists

Правила вывода для ∃:

$$\frac{\exists (x:s)\varphi \stackrel{V}{\vdash} \psi}{\varphi \stackrel{V,x}{\vdash} \psi} \qquad \frac{\varphi \stackrel{V,x}{\vdash} \psi}{\exists (x:s)\varphi \stackrel{V}{\vdash} \psi}$$

- lacktriangle Обратите внимание, что ψ определен в контексте V, но используется также и в контексте V, x. По лемме об интерпретации подстановки ψ во втором контексте интерпретируется как пулбэк.
- Корректность этих правил остается в качестве упражнения.

План лекции

Интерпретация
Подстановка
Корректность интерпретации

Регулярные теории

Когерентные теории

Импликация и ∀

Определение

 Категория называется когерентной, если она регулярна, для любого объекта A в порядке подобъектов $\mathrm{Sub}(A)$ существуют все конечные копроизведения, и для любого морфизма $f:A\to B$ функтор $f^*:\operatorname{Sub}(B)\to\operatorname{Sub}(A)$ сохраняет их.

Когерентные теории

- Эта дополнительная структура это в точности то, что необходимо для интерпретации ложного утверждения и дизъюнкций.
- lacktriangle oxed интерпретируется как наименьший подобъект, а $arphi \lor \psi$ интерпретируется как объединение подобъектов $\llbracket \varphi
 rbracket = \llbracket \psi
 rbracket$.
- Лемма о подстановке верна по предположению.

Корректность интерпретации

Правила вывода для ⊥ и ∨:

Когерентные теории

Их корректность следует из универсальных свойств наименьшего подобъекта и объединения.

Proposition

В когерентной категории существует строгий начальный объект.

Remark

Это утверждение верно для любой конечно полной категории, в которой интерпретируется \bot . В доказательстве нигде не используется \exists и \lor .

Доказательство.

Определим 0 как наименьший подобъект 1. Заметим, что $\pi_1: X \times 0 \hookrightarrow X$ является наименьшим подобъектом X. Если у нас есть стрелка $X \to 0$, то π_1 является изоморфизмом. Другими словами, он является и наибольшим подобъектом X. Следовательно, у любого такого X ровно один подобъект — он сам.

Начальный объект

Доказательство.

Докажем, что если есть морфизм A o 0, то A является подобъектом 1. Дествительно, если у нас есть пара стрелок f,g:B o A, то так как у нас есть стрелка B o 0, то уравнитель f и g является изоморфизмом, то есть f и gравны. Следовательно $X \times 0$ изоморфен 0, то есть 0 — строгий. Докажем, что 0 — начальный. Так как у нас есть стрелка из $X \times 0$ в 0, то $X \times 0 \simeq 0$, а значит у нас есть стрелка из 0 в X. Если у нас есть стрелки $f,g:0\to X$, то их уравнитель является подобъектом 0, а значит изоморфизмом, то есть f и g равны.

Когерентные теории

План лекции

Интерпретация
Подстановка
Корректность интерпретации

Регулярные теории

Когерентные теории

Импликация и ∀

Квантор всеобщности

▶ Правила вывода для ∀ дуальны правилам для ∃:

$$\frac{\varphi \vdash^{V} \forall (x:s)\psi}{\varphi \vdash^{V,x} \psi} \qquad \frac{\varphi \vdash^{V,x} \psi}{\varphi \vdash^{V} \forall (x:s)\psi}$$

- То есть у нас есть биекция между стрелками $\pi_1^*(\llbracket \varphi \rrbracket) \to \llbracket \psi \rrbracket$ в $\mathrm{Sub}(\llbracket V \rrbracket \times \llbracket s \rrbracket)$ и $\llbracket \varphi \rrbracket \to \llbracket \forall (x:s)\psi \rrbracket$ в $\mathrm{Sub}(\llbracket V \rrbracket)$, где $\pi_1 : \llbracket V \rrbracket \times \llbracket s \rrbracket \to \llbracket V \rrbracket$.
- lacktriangle Таким образом, $\llbracket orall (x:s)\psi
 rbracket$ можно определить как $\forall_{\pi_1}(\llbracket\psi
 rbracket)$, где $\forall_{\pi_1}: \mathrm{Sub}(\llbracket V
 rbracket \times \llbracket s
 rbracket)
 ightarrow \mathrm{Sub}(\llbracket V
 rbracket)$ – правый сопряженный к $\pi_1^* : \operatorname{Sub}(\llbracket V \rrbracket) \to \operatorname{Sub}(\llbracket V \rrbracket \times \llbracket s \rrbracket).$

Гейтинговы категории

- Категория называется гейтинговой, если она регулярна, у любого объекта существует минимальный подобъект и объединения подобъектов, и для любого морфизма f:X o Y существует правый сопряженный функтор $\forall_f : \operatorname{Sub}(X) \to \operatorname{Sub}(Y)$ к функтору $f^* : \operatorname{Sub}(Y) \to \operatorname{Sub}(X)$.
- lacktriangle Так как гейтингова категория регулярна, то у функтора f^* есть и левый сопряженный. Таким образом, мы получаем цепочку сопряженных функторов:

$$\exists_f \dashv f^* \dashv \forall_f$$

ightharpoonup Мы не требуем, чтобы f^* сохранял наименьший подобъект и объединения, так как это следует из того, что он левый сопряженный.

Beck-Chevalley condition

Чтобы доказать лемму о подстановке, докажем вспомогательное утверждение:

Proposition (Beck-Chevalley condition)

Для любого пулбэка слева квадрат функторов справа коммутирует.

$$P \xrightarrow{h} A \qquad \operatorname{Sub}(A) \xrightarrow{h^*} \operatorname{Sub}(P)$$

$$\downarrow k \downarrow \qquad \qquad \downarrow f \qquad \qquad \downarrow \forall k \downarrow \qquad \qquad \downarrow \forall k \downarrow \qquad \downarrow \forall$$

Beck-Chevalley condition

Функторы в правом квадрате являются правыми сопряженными к следующим функторам:

$$\begin{array}{ccc} \operatorname{Sub}(A) & \stackrel{\exists_h}{\longleftarrow} \operatorname{Sub}(P) \\ f^* & & & & & & & \\ f^* & & & & & & \\ \operatorname{Sub}(C) & & & & & & \\ & & & & & & \\ \end{array}$$

 Так как этот квадрат коммутирует по регулярности, то квадрат на предыдущем слайде коммутирует по уникальности правых сопряженных функторов.

Лемма о подстановке

Применим это утверждение к следующему пулбэку:

$$\begin{bmatrix}
U
\end{bmatrix} \times \begin{bmatrix}
s
\end{bmatrix} \xrightarrow{\|\rho\| \times \operatorname{id}_{\llbracket s \rrbracket}} \to \begin{bmatrix}
V
\end{bmatrix} \times \begin{bmatrix}
s
\end{bmatrix} \\
\downarrow^{\pi_1} \\
\downarrow^{U}
\end{bmatrix}$$

Тогда коммутативность правого квадрата означает, что $\llbracket
ho
rbracket^*(orbrack{orall}{\pi_1}(X))=orbrack{orbrack}{\pi_1}((\llbracket
ho
bracket^*] imes \mathrm{id}_{\llbracket
ho
bracket^*})^*(X))$ для любого подобъекта $X \hookrightarrow \llbracket V \rrbracket \times \llbracket s \rrbracket$. Это в точности дает нам лемму о подстановке:

$$\llbracket (\forall (x:s)\varphi)[\rho] \rrbracket = \forall_{\pi_1} ((\llbracket \rho \rrbracket \times \operatorname{id}_{\llbracket s \rrbracket})^*(\llbracket \varphi \rrbracket)) = \llbracket \rho \rrbracket^*(\forall_{\pi_1} (\llbracket \varphi \rrbracket))$$

Импликация

 Правила вывода для импликации выглядят следующим образом:

$$\frac{\chi \land \varphi \longmapsto \psi}{\chi \longmapsto \varphi \to \psi} \qquad \frac{\chi \longmapsto \varphi \to \psi \qquad \chi \longmapsto \varphi}{\chi \longmapsto \psi}$$

- Эти правила аналогичны правилам для типа функций в лямбда-исчислении.
- ▶ Таким образом, $\llbracket \varphi \to (-) \rrbracket : \operatorname{Sub}(\llbracket V \rrbracket) \to \operatorname{Sub}(\llbracket V \rrbracket)$ интерпретируется как правый сопряженный к $\llbracket \varphi \wedge - \rrbracket = \llbracket \varphi \rrbracket \cap - : \operatorname{Sub}(\llbracket V \rrbracket) \to \operatorname{Sub}(\llbracket V \rrbracket).$
- Корректность правил вывода следует из сопряжения аналогично случаю лямбда-исчисления.

Импликация

lacktriangle Легко показать, что $\llbracket arphi
rbracket \cap -$ является композицией

$$\operatorname{Sub}(\llbracket V \rrbracket) \xrightarrow{\llbracket \varphi \rrbracket^*} \operatorname{Sub}(d_\varphi) \xrightarrow{\exists_{\llbracket \varphi \rrbracket}} \operatorname{Sub}(\llbracket V \rrbracket)$$

- Следовательно, правый сопряженный к нему существует в любой гейтинговой категориии.
- lacktriangle Таким образом, мы можем проинтерпретировать $arphi o \psi$ как $\forall_{\llbracket \varphi \rrbracket} (\llbracket \varphi \rrbracket^* (\psi)).$

Лемма о подстановке

► Чтобы доказать леммы подстановке, применим Beck-Chevalley condition к следующему пулбэку:

$$d_{\varphi[\rho]} \xrightarrow{h} d_{\varphi}$$

$$k = \rho^*(\llbracket \varphi \rrbracket) \bigvee_{\psi} \qquad \qquad \downarrow \llbracket \varphi \rrbracket$$

$$\llbracket U \rrbracket \xrightarrow{\rho} \llbracket V \rrbracket$$

- lacktriangle Тогда получаем, что $\forall_k(h^*(X))=
 ho^*(orall_{\llbracket \wp \rrbracket}(X))$ для всех X.
- Теперь легко доказать лемму о подстановке: