

Practical parameter identifiability analysis applied to a model of autoimmune myocarditis

SOLVEIG A. VAN DER VEGT
Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford.

May 23rd, 2022

Introduction to autoimmune myocarditis

- $\, \sim 40\%$ of cancer patients are eligible for treatment with ICIs, such as nivolumab and ipilimumab.
- ▶ 0.1–1% of cancer patients treated with ICIs will develop autoimmune myocarditis.
- ▶ In 25–50% of the cases, autoimmune myocarditis will be fatal.

Currently no pre-clinical screening available for cardiotoxicity of new compounds.

Why practical identifiability matters

- To develop an in vitro cardiotoxicity assay, a minimum set of immune cell types must be identified.
- A feedback loop between a mathematical model of the in vitro set-up and the experimental set-up itself can aid in this.

A mathematical model of autoimmune myocarditis

 ${\sf Dead/damaged\ cardiomyocytes\ (\it C\it)}$

Innate immune cells (1)

Pathogenic CD4+ T cells (P)

Regulatory T cells (R)

Nivolumab (D_N)

Ipilimumab (D_I)

van der Vegt et al., JTB 537: 111002, 2022.

A mathematical model of autoimmune myocarditis

$$\frac{dC}{dt} = a_1 \frac{P^2}{R_1 + R} + a_2 \frac{I}{R_2 + R} - d_1 C,$$

$$\frac{\mathrm{d}I}{\mathrm{d}t} = a_4 \frac{P}{R_1 + R} + a_5 C - d_3 I,$$

$$\frac{\mathrm{d}P}{\mathrm{d}t} = a_6(D_N, D_I)\phi \frac{C}{R + R_3} - d_4(D_N)P,$$

$$rac{{
m d}R}{{
m d}t}=\; a_6(D_N,D_I)(1-\phi)rac{C}{R+R_3}-d_5(D_I)R.$$

van der Vegt et al., JTB 537: 111002, 2022.

Time traces

Bifurcations

Parameter identifiability

Constructed and characterised the first mathematical model of autoimmune myocarditis.

Further work includes:

- Using the model together with the in vitro set-up
- Optimizing treatment schedules of ICIs to prevent autoimmune myocarditis

Must assess under which conditions the model is practically identifiable

Types of identifiability

Structural identifiability: Does every parameter set give rise to a unique distribution of model outputs?

- A property of the model
- Assumes perfectly noise-free and time-continuous data
- A prerequisite for practical identifiability

Types of identifiability

Practical identifiability: Can parameter values be confidently estimated from a given data set?

- A property of the model AND the available data
- ► Informs what nature of data is required in order to confidently estimate the values of model parameters

Structural identifiability

Two methods:

- ▶ DAISY: software tool for determining structural identifiability
- ► Simple scaling method by Castro and de Boer (2020)

Conclusion: model parameters are only structurally identifiable if all four variables are observed.

Castro and de Boer, PLoS Comp Bio 16(11):e1008248, 2022. Bellu et al., Comp Methods and Programs in Biomed 88(1): 52-61, 2007.

Choose maximum likelihood profiling for computational feasibility.

We require:

- ► A (sub)set of model parameters for which practical identifiability is to be determined.
- ► A synthetic data set consisting of a number of measurements with a certain level of noise.
- The loglikelihood function to be maximized.

Given a set of parameters of interest $P = [p_1, p_2, p_3, \dots p_n]$.

Given a set of parameters of interest $P = [p_1, p_2, p_3, \dots p_n]$.

For each parameter p_i in P, set a range of values R.

Given a set of parameters of interest $P = [p_1, p_2, p_3, \dots p_n]$.

For each parameter p_i in P, set a range of values R.

For each value r_j in R, set $p_i = r_j$ and optimize the values of all other parameters in P.

Given a set of parameters of interest $P = [p_1, p_2, p_3, \dots p_n]$.

For each parameter p_i in P, set a range of values R.

For each value r_j in R, set $p_i = r_j$ and optimize the values of all other parameters in P.

Plot p_i vs. the maximum loglikelihood.

Synthetic data

Use practical identifiability analysis to determine requirements on nature of data

Practical identifiability of deactivation/death rates

Practical identifiability of activation rates

Practical identifiability by ODE

...... true value --- maximum loglikelihood --- lower limit 95% CI --- upper limit 95% CI

Summary

- Developed the first mathematical model of autoimmune myocarditis.
- Characterized steady state behaviour.
- ► Future work with this model includes linking to in *in vitro* set-ups or clinics.
- Practical identifiability analysis of the full parameter set is not computationally feasible.

Improvements to numerical methods for optimization are required to allow complete identifiability analysis.

Challenges

Main challenges for maximum likelihood profiling:

Optimizing over high dimensional parameter spaces

Finding a global maximum for the loglikelihood.

Thank you for your attention!

Supervisors:

Prof. Ruth Baker (Oxford)

Prof. Sarah Waters (Oxford)

Dr. Ken Wang (Roche)

Dr. Liudmila Polonchuk (Roche)

Reference:

van der Vegt et al., Mathematical modelling of autoimmune myocarditis and the effects of immune checkpoint inhibitors. JTB 537: 111002, 2022. doi: 10.1016/j.jtbi.2021.111002.

Engineering and Physical Sciences Research Council