

Matemática A

Fevereiro de 2010

Matemática A

Itens – 10.º Ano de Escolaridade

No Teste intermédio, que se irá realizar no dia 5 de Maio de 2010, os itens de grau de dificuldade mais elevado poderão ser adaptações de alguns dos itens que a seguir se apresentam.

1. Considere que um ponto P se desloca num segmento de recta [AB], de comprimento 10, nunca coincidindo com o ponto A nem com o ponto B. Cada posição do ponto P determina em [AB] dois segmentos de recta, [AP] e [BP], sendo cada um deles lado de um quadrado, conforme se apresenta na figura 1.

Para cada posição do ponto P, seja x a distância de P a A e seja a(x) a soma das áreas dos dois quadrados, em função de x

- **1.1.** Calcule a(2)
- **1.2.** Indique o domínio da função *a*
- **1.3.** Mostre que $a(x) = 2x^2 20x + 100$
- **1.4.** Resolva a equação a(x) = a(2) e interprete as soluções no contexto do problema.

Figura 1

- **2.** O Rui saiu de casa às 9 horas da manhã e, caminhando sempre à mesma velocidade, dirigiu-se ao café, situado no fim da rua onde mora; a rua não tem curvas e o café fica a 600 metros da sua casa.
 - O Rui chegou ao café quando passavam 6 minutos das 9 horas.

Esteve 10 minutos no café, a tomar o pequeno-almoço, tendo, em seguida, regressado a casa, caminhando sempre à mesma velocidade, embora mais lentamente do que à ida.

Chegou a casa às 9 horas e 28 minutos.

Seja t o tempo, em minutos, contado desde o instante em que o Rui saiu de casa até ao momento em que ele, vindo do café, chegou a casa.

- **2.1.** Seja f a função que, a cada valor de t, faz corresponder a distância, em metros, do Rui à sua casa, no instante t
 - **2.1.1.** Desenhe o gráfico de f, numa folha de papel quadriculado, utilizando, para o efeito, as escalas a seguir indicadas.
 - No eixo das abcissas: 1 quadrícula → 2 minutos
 - No eixo das ordenadas: 1 quadrícula → 50 metros
 - **2.1.2.** Indique o domínio e o contradomínio da função f
 - **2.1.3.** Indique o valor de f(2) e interprete este valor, no contexto da situação.
 - **2.1.4.** Interprete, no contexto da situação, a equação $f(t)=600\,$ e indique o seu conjunto solução.
 - **2.1.5.** Indique o conjunto solução da equação f(t) = 400
- **2.2.** Seja g a função que, a cada valor de t, faz corresponder a distância, em metros, do Rui ao café, no instante t
 - **2.2.1.** Desenhe o gráfico de g, no mesmo referencial em que desenhou o gráfico de f
 - **2.2.2.** Interprete, no contexto do problema, a equação f(t) = g(t) e indique o seu conjunto solução.

3. A Rita e a Inês são amigas. A Rita mora em Vilalta e a Inês mora em Altavila. Certo dia, saíram de casa à mesma hora. A Rita deslocou-se de Vilalta para Altavila, e a Inês de Altavila para Vilalta, utilizando a única estrada que liga as duas localidades. Ambas fizeram o percurso a pé.

Seja f a função que dá, em quilómetros, a distância percorrida pela Rita, t minutos depois de ter saído de Vilalta.

Seja g a função que dá, em quilómetros, a distância percorrida pela Inês, t minutos depois de ter saído de Altavila.

3.1. Em qual das opções seguintes podem estar representadas graficamente as funções $f \in g$?

Numa pequena composição, explique por que é que as outras três opções são incorrectas, apresentando, para cada uma delas, uma razão pela qual a rejeita.

3.2. Admita agora que:

- a estrada que liga Altavila a Vilalta tem 18 km
- a Rita se deslocou a uma velocidade constante de $5 \, km/h$
- a Inês demorou mais 54 minutos do que a Rita a chegar ao seu destino.

A que distância estava a Rita de Altavila, quando se cruzou com a Inês?

4. A figura 2 representa um depósito com a forma de prisma quadrangular regular. Num determinado instante, uma torneira, com um caudal constante, começa a deitar água no depósito, que inicialmente se encontra vazio, terminando o processo quando o depósito fica completamente cheio de água.

Seja v a função que, ao tempo t decorrido desde que se iniciou o enchimento, faz corresponder o volume de água no depósito.

Seja h a função que, ao tempo t decorrido desde que se iniciou o enchimento, faz corresponder a altura que a água atinge no depósito.

Admita que o tempo é expresso em minutos, que o volume de água é expresso em decímetros cúbicos e que a altura da água no depósito é expressa em decímetros.

Figura 2

4.1. Admita que:

- o caudal da torneira é de $20 dm^3$ por minuto;
- a aresta da base do depósito mede 0,5 m
- o depósito tem 1,2 m de altura.
- **4.1.1.** O que representa v(1)? E o que representa v(t)?
- **4.1.2.** Qual é o contradomínio da função v?
- **4.1.3.** Qual é o domínio da função v?
- **4.1.4.** O que representa a solução da equação v(t) = 300 ?
- **4.1.5.** Defina a função v por uma expressão analítica.
- **4.1.6.** Represente graficamente a função v
- **4.1.7.** Indique o domínio e o contradomínio da função h
- **4.1.8.** Defina a função h por uma expressão analítica.
- **4.2.** Admita agora que, em relação a um outro depósito, também com a forma de um prisma, se tem $v(t) = c \times t$ e $h(t) = k \times t$ (c e k são constantes)
 - **4.2.1.** O que representa a constante c, no contexto da situação?
 - **4.2.2.** O que representa o quociente $\frac{c}{k}$, no contexto da situação?

5. A RacAnim é uma empresa que comercializa um certo tipo de ração para animais domésticos.

A ração não é vendida sempre ao mesmo preço. Na realidade, o preço varia entre 2 e 5 euros por quilograma. Em consequência disso, a quantidade total de ração que a empresa vende num mês também varia. De um modo geral, quanto mais baixo for o preço, maior quantidade de ração é vendida.

O departamento de *marketing* da empresa fez um estudo de mercado cujo resultado é apresentado na tabela seguinte.

Preço de venda da ração (por kg)	Quantidade média de ração vendida num mês
2,00 euros	8,9 toneladas
2,50 euros	8,3 toneladas
3,00 euros	7,4 toneladas
3,50 euros	6,9 toneladas
4,00 euros	5,9 toneladas
4,50 euros	5,3 toneladas
5,00 euros	4,6 toneladas

Utilizando uma técnica designada por $regress\~ao$ linear, os analistas da empresa estabeleceram o modelo seguinte para a relação entre o preço x de venda da ração (por quilograma) e a quantidade média de ração y vendida num mês (medida em toneladas): $y = 11,86 - 1,46 \, x$ $(2 \le x \le 5)$

5.1. Os analistas da RacAnim consideram que a equação y = 11,86 - 1,46 x é um bom modelo para a relação entre o preço x de venda da ração e a quantidade y de ração vendida, pois, segundo eles, os valores de y, calculados de acordo com o modelo, estão bastante próximos dos valores reais. Eles garantem que o desvio entre o valor real e o valor obtido a partir do modelo é sempre inferior a 0.2

Confirme que os analistas têm razão.

Sugestão:

- Calcule, para cada valor de $\,x\,$ da primeira coluna, o correspondente valor de $\,y\,$, com base no modelo $\,y=11,\!86-1,\!46\,x\,$
- Calcule os desvios entre os valores reais, que estão na segunda coluna, e os valores calculados com base no modelo (em cada caso, considere que *o desvio é o valor absoluto da diferença entre os dois valores*).
- **5.2.** Qual é a variável dependente e qual é a variável independente na relação y = 11,86 1,46 x?
- **5.3.** Utilize a relação y = 11,86 1,46 x para resolver os itens seguintes:
 - **5.3.1.** Estime a quantidade de ração que será vendida num mês, se o preço de venda for de 2,30 €/ kg

Apresente o resultado em toneladas, arredondado às décimas.

5.3.2. A empresa pretende vender oito toneladas de ração no próximo mês.

A que preço deverá vender cada kg?

5.3.3. Seja z a receita da empresa, num mês, proveniente da venda desta ração.

Exprima z em função de x

5.3.4. Qual deverá ser o preço de venda da ração (por kg), para que a receita seja a maior possível?

Para resolver este problema utilize as capacidades gráficas da sua calculadora.

6. Na figura 3, está representado um triângulo [ABC], isósceles $(\overline{AB} = \overline{BC})$. Sabe-se que:

•
$$\lceil BD \rceil$$
 é a altura do triângulo $\lceil ABC \rceil$, relativa ao lado $\lceil AC \rceil$

•
$$\overline{BD} = 6$$
 e $\overline{AC} = 8$

Considere que um ponto Q se desloca sobre o segmento $\left[BD\right]$, nunca coincidindo com D, e que um ponto P se desloca sobre o segmento $\left[AC\right]$, de tal forma que se tem sempre $\overline{PA}=\overline{QB}$

Para cada posição do ponto $\,Q,\,$ seja $\,x\,$ a distância de $\,Q\,$ a $\,B\,$ $(x=\overline{QB}\,)$

Seja $\,a\,$ a função que, a cada valor de $\,x,\,$ faz corresponder a área do triângulo $\,\left[PQC\right]\,$

6.1. Determine a(5)

Sugestão: Comece por desenhar o triângulo [PQC] que se obtém para x=5

6.2. Qual é o domínio e qual é o contradomínio da função a?

6.3. Mostre que
$$a(x) = \frac{x^2 - 14x + 48}{2}$$

7. Considere as funções f e g, representadas graficamente no referencial o.n. da figura 4. A unidade, em qualquer dos eixos, é o lado da quadrícula.

Figura 4

- **7.1.** Indique o domínio da função f e o domínio da função g
- **7.2.** Indique o contradomínio da função f e o contradomínio da função g
- **7.3.** Indique o conjunto solução de cada uma das condições seguintes:

7.3.1.
$$f(x) = 2$$

7.3.2.
$$f(x) = -3$$

7.3.3.
$$g(x) = -1$$

7.3.4.
$$f(x) = -1$$

7.3.5.
$$f(x) > 0$$

7.3.6.
$$g(x) \ge 0$$

7.3.7.
$$g(x) < -1$$

7.3.8.
$$f(x) = g(x)$$

7.3.9.
$$f(x) > g(x)$$