Kabinet výuky obecné fyziky, UK MFF

Fyzikální praktikum

Úloha č. A21

Název úlohy: Studium rentgenových spekter

Jméno: Michal Grňo Obor: FOF

Připomínky opravujícího:

	Možný počet bodů	Udělený počet bodů
Práce při měření	0-3	
Teoretická část	0-2	
Výsledky a zpracování měření	0-9	
Diskuse výsledků	0-4	
Závěr	0-1	
Použitá literatura	0-1	
Celkem	max. 20	

Posuzoval: dne:

1 Pracovní úkoly

- 1. S využitím krystalu LiF jako analyzátoru proveďte měření následujících rentgenových spekter:
 - (a) Rentgenka s Cu anodou.
 - i. proměřte krátkovlnné oblasti spekter brzdného záření při napětích 15 kV/1 mA, 25 kV/0,8 mA, 30 kV/0,8 mA, 33 kV/0,8 mA. K měření používejte tyto parametry: clonu o průměru 2 mm, interval Braggova úhlu pro 15 kV v rozmezí $(10^{\circ} 15^{\circ})$ s krokem 0.2° a dobou expozice 8 s a pro ostatní napětí interval Braggova úhlu $(3^{\circ} 10^{\circ})$ s krokem 0.2° a dobou expozice 5 s;
 - ii. proměřte charakteristická spektra rentgenky při napětích 15 kV/1 mA a 33 kV/0,8 mA. K měření používejte tyto parametry: clonu o průměru 2 mm, interval Braggova úhlu $(15^{\circ} 30^{\circ})$, krok 0.1° a dobu expozice 2 s;
 - iii. proměřte tvar spektra s Zr absorbérem. K měření používejte tyto parametry: clonu s Zr absorbérem tloušťky 0.05 mm, interval Braggova úhlu $(3^{\circ} 30^{\circ})$, krok 0.1° a dobu expozice 2 s;
 - iv. proměřte tvar spektra s Ni absorbérem. K měření používejte tyto parametry: clonu s Ni absorbérem tloušťky 0.01 mm, interval Braggova úhlu $(3^{\circ} 30^{\circ})$, krok 0.1° a dobu expozice 2 s.
 - (b) Rentgenka s Fe anodou
 - i. proměřte charakteristické spektrum rentgenky při napětí 33 kV/0.8 mA. K měření používejte tyto parametry: clonu o průměru 2 mm, interval Braggova úhlu (3° 30°), krok 0.1° a dobu expozice 2 s;
 - ii. proměřte tvar spektra s Zr absorbérem. K měření používejte tyto parametry: clonu s Zr absorbérem tloušťky 0.05 mm, interval Braggova úhlu $(3^{\circ} 30^{\circ})$, krok 0.1° a dobu expozice 3 s.
 - (c) Rentgenka s Mo anodou.
 - i. proměřte charakteristické spektrum rentgenky při napětí 33 kV/0.8 mA. K měření používejte tyto parametry: clonu o průměru 2 mm, interval Braggova úhlu $(3^{\circ} 35^{\circ})$, krok 0.1° a dobu expozice 3 s.
 - (d) Rentgenka s Cu anodou:
 - i. proměřte charakteristické spektrum rentgenky při napětí 33 kV/0.8 mA v intervalu Braggova úhlu (42° 51°). K měření používejte tyto parametry: clonu o průměru 2 mm, krok 0.1° a dobou expozice 2 s.
- 2. Interpretujte naměřené výsledky (pro mezirovinnou vzdálenost krystalu LiF používejte hodnotu d=201,4 pm):
 - (a) Krátkovlnná mez brzdného záření
 - i. Ze změřených mezních vlnových délek (respektive frekvencí) určete hodnotu Planckovy konstanty a oceňte přesnost měření
 - (b) Moseleyův zákon
 - i. Přesvědčte se, že naměřené úhlové frekvence spektrálních čar K_{α} a K_{β} pro různé prvky splňují Moseleyův zákon. Ze směrnice příslušné závislosti určete hodnotu Rydbergovy úhlové frekvence a využitím této hodnoty určete též průměrnou hodnotu stínící konstanty.
 - ii. Přesvědčte se, že i naměřené polohy absorpčních hran Zr a Ni splňují Moseleyův zákon.
 - iii. Všimněte si, že absorpční hrana Ni koinciduje se spektrální čarou K_{β} mědi; této skutečnosti se využívá v rentgenové difraktografii pro monochromatizaci charakteristického spektra mědi. Z provedeného měření určete filtrační efekt niklu pro čáru K_{β} .
 - (c) Úhlová disperze
 - i. Ze změřených spekter molybdenu určete velikost úhlové disperze pro různé řády difrakce.

2 Teoretická část

Rentgenka je zařízení, které vyzařuje rentgenové záření, pokud mu dodáváme dostatečné napětí. Je tvořena vakuovou baňkou, uvnitř které se nachází žhavená katoda, z níž vylétávají elektrony, a anoda, na kterou dopadají a při dopadu vyzařují elektromagnetické záření v rentgenové oblasti. Vznikající záření má dvě složky odpovídající dvěma různým způsobům, kterými vzniká. Jednak spojité brzdné záření, které vzniká když elektron prudce brzdí v elektromagnetickém poli anody. Toto záření není závislé na materiálu anody a nejvíce energetický foton, který dokáže při daném napětí vyprodukovat, má vlnovou délku λ_m , pro kterou platí

$$eU = \frac{hc}{\lambda_m}. (1)$$

My budeme provádět spektroskopii pomocí difrakce na mřížce LiF, vztah mezi měřeným úhlem a odpovídající vlnovou délkou udává tzv. Braggova rovnice:

$$2d\sin\varphi = n\lambda,\tag{2}$$

kde $d=201.4\,\mathrm{pm}$ je mřížková konstanta LiF a n je celé číslo udávající řád difrakčního maxima. Víme, že naměřený úhel v našem zařízení je zatížený aditivní chybou, z měření tedy budeme mít úhly ϑ , pro které platí $\varphi=\vartheta+\vartheta_0$.

Budeme chtít pro ověření z naměřených dat vypočítat Planckovu konstatnu, vyjádříme si ji z rovnic (1) a (2), pro mezní úhel φ_m potom bude platit:

$$h = \frac{2eUd}{c} \frac{\sin \varphi_m}{n}, \qquad \Delta h = \frac{2eUd}{c} \frac{\cos \varphi_m}{n} \Delta \varphi$$
 (3)

Druhý typ záření, který rentgenka produkuje, je tzv. charakteristické záření, které vzniká při excitaci a následné deexcitaci atomu anody. Toto záření je závislé na materiálu anody, úhlová frekvence fotonu odpovídající přechodu z m-tého excitovaného stavu do n-tého stavu je podle Rydbergova vztahu

$$\omega = R_{\omega}(Z - s)^2 \left(\frac{1}{n^2} - \frac{1}{m^2}\right),\tag{4}$$

kde Z je atomové číslo prvku anody, s je stínící konstanta a pro R_{ω} platí

$$R_{\omega} = \frac{m_e e^4}{32\pi^2 \varepsilon_0^2 \hbar^3} \approx 2.0606 \cdot 10^{16} \,\mathrm{s}^{-1} \tag{5}$$

Nás budou zajímat především spektrální čáry K_{α} a K_{β} , které odpovídají pádu z m=2, resp. m=3 do základního stavu n=1. Dosazením m,n dostaneme tzv. Moseleyův zákon, který určuje vztah ω a Z:

$$\sqrt{\omega(K_{\alpha})} = \frac{\sqrt{3R_{\omega}}}{2}(Z - s),\tag{6}$$

$$\sqrt{\omega(K_{\beta})} = \frac{\sqrt{8R_{\omega}}}{3}(Z - s). \tag{7}$$

Převedeme-li vlnovou délku v rovnici (2) na úhlovou frekvenci a dosadíme-li do předchozích rovnic, dostaneme lineární vztah:

$$\sqrt{\frac{n}{\sin\varphi(K_{\alpha})}} = \frac{1}{2}\sqrt{\frac{3R_{\omega}d}{\pi c}}(Z-s),\tag{8}$$

$$\sqrt{\frac{n}{\sin\varphi(K_{\beta})}} = \frac{1}{3}\sqrt{\frac{8R_{\omega}d}{\pi c}}(Z-s). \tag{9}$$

To jsou lineární vztahy tvaru y=A(x-B), ze kterých můžeme lineární regresí zjistit stínící konstantu s=B a Rydbergovu konstantu $R_{\omega}=\frac{4\pi c}{3d}A^2$, resp. $\frac{9\pi c}{8d}A^2$.

3 Výsledky měření

Nejprve jsme měřili brzdné záření na rentgence s měděnou anodou. Extrapolací z grafů jsme určili mezní úhly:

$U[\mathrm{kV}]$	$\theta[\circ]$		
9	19.53	$\pm \ 0.04$	
12	14.28	± 0.04	
20	8.276	$\pm~0.024$	
25	6.470	$\pm \ 0.019$	
30	5.484	± 0.05	
33	4.852	± 0.02	

Tabulka 1: Mezní úhly ϑ

Autor připomíná, že ϑ značíme úhel ještě před korekcí na systematickou chybu. Úhel po korekci značíme $\varphi = \vartheta + \vartheta_0$.

Hodnoty Planckovy konstanty vypočtené podle (3), jejich průměř¹ a porovnání se skutečnou hodnotou je v grafu č. 2. Vidíme, že se skutečná hodnota signifikantně liší od té naměřené – to protože jsme zatím předpokládali, že systematická chyba $\vartheta_0 = 0$. Numericky nyní vyřešíme, pro jakou hodnotu ϑ_0 se budou skutečná hodnota h a vážený průměr rovnat. Získáme tím

$$\vartheta_0 = 0.55^{\circ}.\tag{10}$$

Následně jsme měřili charakteristická spektra pro různé materiály anod. Pozorovali jsme maxima n-tého řádu na těchto úhlech:

prvek	$\mid n \mid$	U[kV]	$\theta(K_{\alpha})[^{\circ}]$	$\theta(K_{eta})[^{\circ}]$
²⁹ Cu	1	12	19.8	22.1
$^{29}\mathrm{Cu}$	1	20	19.9	22.1
$^{29}\mathrm{Cu}$	1	25	19.8	22.1
$^{29}\mathrm{Cu}$	1	30	19.8	22.1
$^{29}\mathrm{Cu}$	1	33	19.8	22.1
$^{29}\mathrm{Cu}$	2	33	43.3	49.5
26 Fe	1	33	25.7	28.5
26 Fe	1	33	25.7	28.6
$^{40}{ m Zr}$	1	33	_	11.1
$^{42}\mathrm{Mo}$	1	33	8.6	9.8
$^{42}\mathrm{Mo}$	2	33	17.9	20.3
$^{42}\mathrm{Mo}$	3	33	_	31.5
$^{42}\mathrm{Mo}$	3	33	27.6	31.5

Tabulka 2: Úhly ϑ maxim charakteristického záření

Proložením z grafu jsme získali parametry fitu $A(K_{\alpha})=0.0631,\ B(K_{\alpha})=2.1268\ A(K_{\beta})=0.0581\ B(K_{\beta})=1.2970$. Z toho jsme vypočetli hodnoty Rydbergových konstant:

$$K_{\alpha}: R_{\omega} = 2.4801 \cdot 10^{16} \,\mathrm{s}^{-1}$$

 $K_{\beta}: R_{\omega} = 1.7781 \cdot 10^{16} \,\mathrm{s}^{-1}$

Obrázek 1: Způsob odečtu mezních úhlů, zde konkrétně u $^{29}\mathrm{Cu}$ při $20\,\mathrm{kV}.$

Obrázek 2: Naměřené hodnoty Planckovy konstanty

Obrázek 3: Pán lesa. Nepřeje si být rušen.

Obrázek 4: Lineární závislost z (8) a (9)

¹Průměr je vážený převráceným čtvercem chyby.

4 Diskuse

Při měření se vyskytovala systematická chyba naměřeného úhlu. Ta byla korigována tak, aby h vycházelo podle tabelovaných hodnot. Vypočtená Rydbergova konstanta je zatížena velkou statistickou chybou danou malým počtem naměřených bodů pro lineární regresi.

5 Závěr

Podařilo se vypočítat hodnotu Planckovy konstanty, jejím porovnáním se skutečnou hodnotou se podařilo určit systematickou chybu úhlu $\vartheta_0=0.574^\circ.$

Podařilo se ověřit platnost Moseleyova zákona. Rydbergovy konstanty, které vyšly byly:

$$K_{\alpha}: R_{\omega} = 2.4801 \cdot 10^{16} \,\mathrm{s}^{-1}$$

 $K_{\beta}: R_{\omega} = 1.7781 \cdot 10^{16} \,\mathrm{s}^{-1}$

Skutečná hodnota Rydbergovy konstanty je:

$$R_{\omega} = 2.0606 \cdot 10^{16} \,\mathrm{s}^{-1}$$

6 Literatura

[1] Studijní texty k laboratorní úloze: Studium rentgenových spekter; Kolektiv autorů ZFP KVOF MFF UK, online zdroj, [cit. 20.11.2019], dostupné na stránkách fyzikálního praktika IV