CS5489
MACHINE LEARNING:
ALGORITHMS &
APPLICATIONS

LECTURE 1 - INTRO

Course General Info

- Teaching Team
 - Prof. Antoni B. CHAN
 - abchan@cityu.edu.hk, Office: AC1-G7311
 - □ TAs: Name email Name email Feiyu CHEN feiyuchen3-c@my.cityu.edu.hk Weibo SHU weiboshu2-c@my.cityu.edu.hk Wei LIN wlin38-c@my.cityu.edu.hk Chenatai CAO chengtcao2-c@my.cityu.edu.hk Qiangqiang WU qiangqwu2-c@my.cityu.edu.hk Hongzong LI hongzli2-c@my.cityu.edu.hk
 - Office hours: see Canvas, under Syllabus.
- Canvas-based course site
 - It is your own responsibility to check Canvas and University e-mail account regularly for announcements and updates.

Class Times

- Lecture
 - Tuesdays, 13:00-14:50 (LT-18)
- Tutorials
 - Tuesdays, 15:00-15:50 (MMW2450)
 - Tuesdays, 16:00-16:50 (MMW2450)
 - Wednesdays, 11:00-11:50 (MMW2450)
 - Office hours before/after tutorials:
 - Tues 17:00-18:00 in MMW2478
 - Wedn 12:00-13:00 in MMW2450

Teaching Activities

- Lectures (2 hours per week)
 - present machine learning algorithms: intuition and idea, and algorithm. Illustrate algorithms on both toy and real-world examples.
 - practice questions each week (not graded)
- Tutorials (1 hour per week)
 - Use machine learning algorithms on small examples to gain better understanding. Implement algorithms.
- Assignments (2)
 - Apply machine learning algorithms to larger datasets, compare and interpret the results of different algorithms.

Course Project

- Apply machine learning to solve a real-world problem.
 - Kaggle competition OR your own research project.
- 2 students per group.

Assessment

- □ Coursework (70%)
 - Tutorial exercises (10%) due 2 weeks after lecture.
 - Assignments (20%) due Weeks 6 and 10.
 - Midterm (10%) Week 8
 - Course Project (30%) due Week 14
 - Project proposal, report, and presentation.
- □ Final Exam (30%)
- Note: Must get at least 30% on final exam and 30% on course project to pass the course.

Programming

Python

- high-level scripting language
- Jupyter, aka iPython Notebooks (ipynb)
 - interactive computational environment in web browser.
 - can combine text (Markdown) with Python code and output.
- Libraries
 - numpy arrays, linear algebra
 - scikit, scikit-learn scientific computing, machine learning
 - matplotlib, pylab plotting
 - keras deep learning
- Introduction later today

Assignments

Assignment/Projects

- kaggle.com a website for data science competitions.
 - Assignments will use Kaggle for evaluation
 - http://inclass.kaggle.com
 - Course projects based on current Kaggle competitions.
 - select among a list of candidates.
- Code/Report submission
 - Jupyter notebooks (ipynb)
 - Python scripts (for project, if necessary)

Sitting in ...

- Can I just attend the lectures without registering?
- Reasons to take the course:
 - 1. The assignments are also teaching activities that give you hands-on experience (both in theory and programming).
 - If you are going to do these, you might as well do it for credit.
 - 2. Free to do whatever you want for the course project apply ML to your research problem / ideas.
 - A good course project could lead to a publication.
 - 3. Machine Learning is an important topic in CS and increasingly important in other fields.
 - It looks good on your transcript/CV.

□ Space in lecture hall is limited...

Seats are reserved for students who have registered for the course (or are planning to register).

Course Abstract

- The goal of this course is to introduce students to the field of machine learning, its algorithms and applications.
 - Machine learning algorithms allow computers to automatically learn to recognize complex patterns from empirical data, such as text and web documents, images, videos, sound, sensor-data, and databases.
 - This course is intended to give a broad overview of machine learning from the practical standpoint, with a focus on implementing and applying machine learning algorithms to real-world problems.
 - At the end of the course, students will have both working knowledge of and practical experience implementing and applying machine learning algorithms on different domains.

CILOs

- Identify and explain common machine learning algorithms.
- 2. implement machine learning algorithms
- 3. Apply machine learning algorithms to solve real-world problems.
- 4. Evaluate the effectiveness of different machine learning algorithms and discuss their advantages and disadvantages.

CS5489 - Dr. Antoni Chan

What is Machine Learning?

- Arthur Samuel, 1959
 - Machine Learning: field of study that gives computers the ability to learn without being explicitly programmed.
 - e.g. computer learns to play checkers by playing against itself.
- There are many applications that are difficult to program by hand.
 - Example: Recognizing handwritten digits in an image.

What is Machine Learning?

- Example: Recognizing handwritten digits in an image
 - \square 28x28 image \rightarrow 784-dim vector
 - a lot of variations & permutations
 - difficult to identify rules & code by hand
- ML solution:
 - gather some example data.
 - train computer to discover differences automatically

What is Machine Learning?

- □ Tom Mitchell, 1997
 - Well-posed Learning Problem: "A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E."
 - e.g., the computer gets better at recognizing digits as it sees more examples, as measured by the error rate.
- □ A closer look...

Well-posed Learning Problem

"A computer program is said to learn from experience *E* with respect to some class of tasks *T* and performance measure *P*, if its performance at tasks in *T*, as measured by *P*, improves with experience *E*."

"class of tasks T"

learning is task-specific (recognition, clustering, etc.)

"performance measure P"

optimize a loss function
(e.g., error rate), but also
prevent overfitting
(regularization).
"generalization"

"experience E"

data-driven! More data is better!

Machine Learning vs. Artificial Intelligence

- Machine learning grew out of early work in Al
 - and other fields: statistics, physics, neuroscience, ...
 - fueled by more powerful computers and more data.
- "Traditional" Artificial Intelligence (Russell-Norvig)
 - Turing test (is it a computer or a human?)
 - \square solving by searching (A*, α - β pruning, game playing)
 - knowledge-based (representation, reasoning, logic)
 - planning, scheduling, natural language processing
- Machine Learning (Bishop)
 - probability, statistics, Bayesian formulation
 - statistical learning theory
 - regression, classification, clustering

Topics in Machine Learning

- Supervised Learning
- Unsupervised Learning
- Reinforcement Learning
- Learning Theory
- Deep Learning

CS5489 - Dr. Antoni Chan

Supervised Learning

- Training data has inputs and outputs
 - e.g., digit recognition (input=image, output=digit)
 - learn a function mapping inputs to outputs

Unsupervised Learning

- Training data only has inputs (no outputs)
 - e.g., collection of web documents
 - clustering discover groups of similar examples.
 - visualization project high-dim data to 2 or 3-dimensions.

Reinforcement Learning

- Make a sequence of actions, given current states
 - e.g. a robot interacting with its environment
 - Maximize the reward
 - at some point, receive a reward or a punishment.
 - actions may also affect future reward.

Learning Theory

- Why does machine learning work?
 - performance guarantees bounds on the expected test error.
 - What types of functions can be represent by an algorithm, and how much data do we need?

Deep Learning

- Deep learning is supervised/unsupervised learning using multilayer neural networks.
 - Improved training algorithms to prevent overfitting
 - Faster parallelization (GPUs)
 - More data (millions of examples)

ML in the Real World

- □ Google
 - spam email classifier, speech recognition, AlphaGo, machine translation, image search, quick links,
- □ Face detection & recognition
 - □ digital cameras, Google street view, Facebook
- □ Business
 - credit card fraud detection
 - stock trading (portfolio optimization)
- □ Recommendation systems
 - Netflix, Amazon
- □ Human pose recognition (Kinect)
- Controllers (reinforcement learning)
- □ Self-driving Cars
- □ Generative AI (ChatGPT, Dall-E)

ML Training Pipeline

CS5489 - Dr. Antoni Chan

Lecture 1

Model Selection Pipeline

Select hyperparameters that yield low generalization error.

CS5489 - Dr. Antoni Chan

Training & Inference Stages

Typically fast, because the model is already estimated.

Building Blocks for ML

- What are the tools needed for Machine Learning?
 - linear algebra
 - matrices, inverse, eigenvector, SVD, ...
 - probability & statistics
 - random variables, expectation, Bayes' theorem, ...
 - optimization algorithms
- □ Don't worry, we will review these as necessary.
 - we need these tools to understand how ML works, and implement ML algorithms.
 - many algorithms are already implemented in the ML libraries.

https://xkcd.com/1838/

CS5489 - Dr. Antoni Chan Lecture 1

Relationship with other ML courses

CS5489 mainly focuses on the intuition of how machine learning algorithms work, implementation of algorithms, applying machine learning and analyzing the results.

CS5489: Algorithms & Applications

Learning Theory ML Design Principles ML Algorithms Implementation Design

CS5487: Principles & Practice

CS5487/CS6487 mainly focus on ML design principles and derivation of algorithms.

CS6487: Topics in Machine Learning

 CS5491 (Al) covers knowledge representation, uncertainty reasoning, reinforcement learning, search etc.

CS5489 - Dr. Antoni Chan

CS5489 Schedule (2023/24 A)

Wk	Lecture Topic		References			Tutorial	Assessm
		MG (pg)	H (Ch)	B (Ch)	GBC (Ch)		ent
1 (5/9)	Lec 1: Introduction / Python					Tut 1	
	Supervised Learning						
2 (12/9)	Lec 2: Probabilistic Models & Bayes Classifiers	70- 71	4	4.2		Tut 2	
3 (19/9)	Lec 3: Discriminative Classifiers (LR & SVM)	58- 70	5, 6	4.3, 7.1		Tut 3	Al out
4 (26/9)	Lec 4: Nonlinear Classifiers (KSVM, AdaBoost & RF)	85- 106	6,7	14.2, 14.3		Tut 4	
5 (3/10)	Lec 5: Regression	47- 58	8, 9	3.1, 7.1, 6.4		Tut 5	
	<u>Unsupervised Learning</u>						
6 (10/10)	Lec 6: Dimensionality Reduction	142- 170	13, 14	12		Tut 6	A1 due, A2 out
7 (17/10)	Lec 7: Clustering	170- 183	10.1- 10.4	9.1- 9.3		Tut 7	
8 (24/10)	Midterm (Lec 2-5)					-	
	Deep learning						
9 (31/10)	Lec 8: Neural networks	106- 121		5.1 - 5.5	6	Tut 8	
10 (7/11)	Lec 9: CNNs			5.5	7,9	Tut 9	A2 due, Pr. out
11 (14/11)	Lec 10: Deep Learning				8	Tut 10	
12 (21/11)	Lec 11: Deep generative models				1 <i>4</i> , 20.9, 20.19	Tut 11	
13 (28/11)	Lec 12: Graphical models (if time)			8		-	
14 (8/12)	Project Presentations					Pr. Pres.	Pr. Due

References

Textbooks

- **MG**: Muller & Guido, "Introduction to Machine Learning with Python", O'Reilly, 2017.
- **H**: Harrington, "Machine Learning in Action", Manning Publications Co., 2012.
- **B**: C.M. Bishop, "Pattern Recognition and Machine Learning", Springer, 2006.
- GBC: Goodfellow, Bengio, Courville, "Deep Learning", MIT Press 2016.
 - http://www.deeplearningbook.org

Papers:

- Batch Norm: https://arxiv.org/abs/1502.03167
- SGD: https://arxiv.org/abs/1802.06175
- ResNet Ensembles: https://arxiv.org/abs/1605.06431

Other References

Online Reference Books

- A. Rajaraman, and J. Ullman, "Mining of Massive Datasets", Cambridge University Press, 2011. (http://infolab.stanford.edu/~ullman/mmds.html)
- H. Daume III, "A course in Machine Learning", (http://ciml.info/)

Other Books

- R.O. Duda, P.E. Hart, & D.G. Stork, "Pattern Classification (2nd Ed.)", Wiley-Interscience, 2001.
- T. Hastie, R. Tibshirani, and J. Friedman, "The Elements of Statistical Learning: Data Mining, Inference, and Prediction (2nd Ed.)", Springer-Verlag, 2009.

Computing Resources

CS Lab JupyterHub

- Provides Jupyter notebooks on a central server for multiple users.
- Select between CPU and GPU resource
- dedicated for this course.

□ CS Lab clusters

- High Throughput GPU Clusters (HTGCx)
- shared among all CS students / staff.
- Check Canvas page for more details.

Academic Honesty

- CityU has Rules of Academic Honesty and has required all students to complete an online tutorial on subject and declare your understanding
- Plagiarism...
 - It is serious fraud to plagiarize others' work.
 - Punishment ranges from warning to course failure.
- How to prevent plagiarism...
 - Finish the assignments by yourself! You have to write the program/solution yourself.
 - okay to talk about how to do the problem with your classmates.
 - Protect your code; don't give it away as a "reference" copy.
 - In plagiarism cases, we treat the giver and the copier as both guilty.
 - You hurt your own grades by not reporting cheating.
- As instructors...
 - We have responsibility to report academic dishonesty cases so as not to compromise the quality of education.
 - We take suspected plagiarism cases very seriously.

Machine Learning

what society thinks I do

what my friends think I do

what my parents think I do

$$\begin{split} L_{r} &= \frac{1}{2} \|\mathbf{w}\|^{2} - \sum_{i=1}^{l} \alpha_{i} y_{i} (\mathbf{x}_{i} \cdot \mathbf{w} + b) + \sum_{i=l}^{l} \alpha_{i} \\ \alpha_{i} &\geq 0, \forall i \\ \mathbf{w} &= \sum_{i=l}^{l} \alpha_{i} y_{i} \mathbf{x}_{i}, \sum_{i=l}^{l} \alpha_{i} y_{i} = 0 \\ &\nabla \hat{g}(\theta_{t}) = \frac{1}{n} \sum_{i=1}^{n} \nabla \ell(x_{i}, y_{i}; \theta_{t}) + \nabla r(\theta_{t}). \\ &\theta_{t+1} &= \theta_{t} - \eta_{t} \nabla \ell(x_{i(t)}, y_{i(t)}; \theta_{t}) - \eta_{t} \cdot \nabla r(\theta_{t}) \\ &\mathbb{E}_{i(t)} [\ell(x_{i(t)}, y_{i(t)}; \theta_{t})] = \frac{1}{n} \sum_{i} \ell(x_{i}, y_{i}; \theta_{t}). \end{split}$$

>>> from scipy import SVM

what other programmers think I do

what I think I do

what I really do

		A parrot	Machine learning algorithm (4) (4) (4) (4) (4) (4) (4) (4) (4) (4)
_	Learns random phrases		
anyt	Doesn't understand hing about what it learns		
	Occasionally speaks nonsense		
	ls a cute birdie parrot		×

CS5489 - Dr. Antoni Chan

Lecture 1