WHAT IS CLAIMED IS:

1	1. A light-weight golf club shaft comprising:
2	a first angled layer;
3	a first straight layer formed on said first angled layer;
4	a second angled layer formed on said first straight layer;
5	a second straight layer formed on said second angled layer;
6	said shaft having a length along a longitudinal direction;
7	each of said layers extend over said length of said shaft and includes fiber-
8	reinforced composite material, said fiber-reinforced composite material containing
9	reinforcing fibers;
10	said reinforcing fibers of said second angled layer being oriented at an
11	angle relative to said longitudinal direction of said shaft; and
12	said second angled having at least one of said angle and a thickness
13	effective provide said shaft with a torsional strength of at least 120
14	kgf×m×degrees and a weight of from 10 to 40 g.
1	2. A light-weight golf club shaft according to claim 1, wherein said
2	reinforcing fibers of said second angled layer are oriented at an angle in a range
3	of from 35 to 75 degrees relative to said longitudinal direction of said shaft.
1	3. A light-weight golf club shaft according to claim 1, wherein said
2	reinforcing fibers of said second angled layer are oriented at an angle in a range
3	of from 60 to 75 degrees relative to said longitudinal direction of said shaft.
1	4. A light-weight golf club shaft according to claim 1, wherein said
2	reinforcing fibers of said second angled layer are oriented at an angle in a range

from 65 to 70 degrees relative to said longitudinal direction of said shaft.

3

	PATENT	26	M2009-9
1	5. A lig	ght-weight golf club shaft accord	ing to claim 1, wherein said layers
2	\		hing strength of at least 10 kg/10
3	mm.	\	·
1	6. A li	\ ght-weight golf club shaft accor	ding to claim 1, wherein:
2	said re	inforcing fibers of said second ar	ngled layer are oriented at an angle
3	in a range of fr	om 35 to 75 degrees relative to	said longitudinal direction of said
4	shaft; and		
5 .	said lay	ers are effective to provide said	shaft with a crushing strength of
6	at least 10 kg/1	0 mm.	
1	7. A lig	ght-weight golf dub shaft accord	ding to claim 1, wherein:
2	said rei	nforcing fibers of said second an	gled layer are oriented at an angle
3	in a range of fr	om 60 to 75 degrees relative to s	said longitudinal direction of said
4	shaft; and		
5	said lay	ers are effective to provide said	shaft with a crushing strength of
6	at least 10 kg/1	0 mm.	′
1	8. A lig	tht-weight golf club shaft accord	ling/to claim 1, wherein:
2	said rein	nforcing fibers of said second an	gled layer are oriented at an angle
3	in a range from	65 to 70 degrees relative to sa	id longitudinal direction of said
4	shaft; and		
5	said lay	ers are effective to provide said	shaft with a crushing strength of
6	at least 10 kg/1	0 mm.	
1	9. A li	ght-weight golf club shaft acc	ording to claim 1, wherein said

second angled layer has a thickness in a range of from 0.04 to 0.1 mm.

	PATENT	27	M2009-9
1	10 A light-	weight golf club shaft accordin	g to claim 1, wherein:
2	said teinforc	ing fibers of said second angled	l layer are oriented at an angle
3	\	5 to 75 degrees relative to said	_
4	shaft; and		
5	said second a	angled layer has a thickness in a	range of from 0.04 to 0.1 mm.
1	\	weight golf club shaft accordin	
2	said reinforci	ing fibers of said second angled	layer are oriented at an angle
3	in a range of from 60	0 to 75 degrees relative to said	longitudinal direction of said
4	shaft; and		
5	said second a	ingled layer has a thickness in a	range of from 0.04 to 0.1 mm.
1	12. A light-v	weight golf club shaft according	g to claim 1, wherein:
2	said reinforci	ing fibers of said second angled	layer are oriented at an angle
3	in a range of from 65	5 to 70 degrees relative to said	longitudinal direction of said
4	shaft; and		•
5	said second a	ngled layer has a thickness in a	range of from 0.04 to 0.1 mm.
1	13. A light-v	weight golf club shart according	g to claim 1, wherein:
2	said layers ar	re effective to provide said shar	with a crushing strength of
3	at least 10 kg/10 mm	ı; and	
4	said second a	ngled layer has a thickness in a r	range of from 0.04 to 0.1 mm.
1	14. A light-v	veight golf club shaft according	g to claim 1, wherein:
2	said reinforci	ng fibers of said second angled	layer are oriented at an angle
3	in a range of from 35	to 75 degrees relative to said l	ongitudinal direction of said
4	shaft;		
5	said layers ar	e effective to provide said shaf	t with a crushing strength of
6	at least 10 kg/10 mm	ı: and	\

	PATENT	28	M2009-9
1	said s	econd angled layer has a thickness in a ran	ge of from 0.04 to 0.1 mm.
1	\	light-weight golf club shaft according to	
2	\	einforcing fibers of said second angled lay	
3	in a range of	from 60 to 75 degrees relative to said long	gitudinal direction of said
4	shaft;		
5	said l	ayers are effective to provide said shaft w	rith a crushing strength of
6	at least 10 kg	/10 mm; and	
7 .	said s	econd angled layer has a thickness in a rang	ge of from 0.04 to 0.1 mm.
1	16. A	light-weight golf club shaft according to	claim 1, wherein:
2	said re	einforcing fibers of said second angled lay	er are oriented at an angle
3	in a range of	from 65 to 70 degrees relative to said long	gitudinal direction of said
4	shaft;		,
5	said la	yers are effective to provide said shaft w	ith a crushing strength of
6	at least 10 kg	/10 mm; and	,
7	said se	econd angled layer has a thickness in a rang	ge of from 0.04 to 0.1 mm.
1	17. A	light-weight golf club shaft according to	claim 1, wherein:
2	said sl	naft has a small-diameter end and a large-	diameter end;
3	said fi	rst angled layer has a first thickness near	aid small-diameter end of
4	said shaft;		
5	said fi	rst angled layer has a second thickness ne	er said large-diameter end
6	of said shaft;	and \	
7	said fi	rst thickness is substantially twice said se	econd thickness.
1	18. A	light-weight golf club shaft according	to claim \ wherein said
2	reinforcing fil	pers include organic, inorganic and metal	reinforcing fibers.

1	19 A light-weight golf club shaft, said shaft having a length along a
2	longitudinal direction, comprising:
3	a first angled layer;
4	a first straight layer formed on said first angled layer;
5	a second angled layer formed on said first straight layer;
6	a second straight layer formed on said second angled layer;
7	each of said layers extend over said length of said shaft and include fiber-
8	reinforced composite material, said fiber-reinforced composite material containing
9	reinforcing fibers;
10	said reinforcing fibers of said second angled layer oriented at an angle in
11	a range of from 35 to 75 degrees relative to said longitudinal direction of said
12	shaft;
13	said second angled layer has a thickness in a range of from 0.04 to 0.1 mm;
14	said shaft has a small-diameter end and a large-diameter end;
15	said first angled layer has a first thickness near said small-diameter end of
16	said shaft;
17	said first angled layer has a second thickness near said large-diameter end
18	of said shaft;
19	said first thickness is substantially twice said second thickness; and
20	said layers are effective to provide said shaft with a torsional strength of
21	at least 120 kgf × m × degrees and a weight of from 30 - 40 g.
1	20. A method for forming a golf club shaft around a mandrel having a
2	length along a longitudinal axis, the steps comprising:
3	forming a first reinforcement layer from a first fiber material, said first
4	fiber material having fibers aligned along a single direction;

forming a first angled layer from second and third fiber material, said second and third materials having fibers aligned along a single direction;

bonding-said second and third materials together to form said first angled layer, such that said fibers of said second material form a first angle with said fibers of said third material;

forming a first straight layer from a fourth fiber material, said fourth fiber material having fibers aligned along a single direction;

forming a second angled layer from fifth and sixth fiber material, said fifth and sixth materials having fibers aligned along a single direction;

bonding said fifth and sixth fiber materials together to form said second angled layer, such that said fibers of said fifth and sixth material form a second angle in the range of from 70-150 degrees and said second angled layer has a thickness in the range of from 0.04 to 0.1 mm;

forming a second straight layer from a seventh fiber material, said seventh fiber material having fibers aligned along a single direction;

forming a second reinforcement layer from an eighth fiber material, said fiber material having fibers aligned along a single direction;

wrapping said first reinforcement layer around said mandrel such that said fibers of said first reinforcement layer are aligned 90 degrees with respect to said longitudinal axis;

wrapping said first angled layer around said first reinforcement layer such that said first angle of said fiber material of said first angled layer is bisected by said longitudinal axis;

wrapping said first straight layer around said first angled layer such that said fibers of said first straight layer are aligned with said longitudinal axis;

G:\USERS\BRETT\WPDATA\M2009\M2009-

	PATENŢ	31	M2009-9
30	Subc / wrap	ping said second angled layer around said first	straight layer such that
31	said second a	ngle of said fiber material of said second ang	led layer is bisected by
32	said longitud	inal axis;	·
33	wrab	ping said second straight layer around said se	cond angled layer such
34	that said fiber	s of said second straight layer are aligned with	said longitudinal axis;
35	wrap	oing second reinforcement layer around said s	second straight layer to
36	form a layere	d wrap, such that said fibers of said second r	einforcement layer are
37	aligned with	said longitudinal axis;	
38	curing	said layered wrap in an oven to form a cure	ed shaft;
39	remov	Ing said mandrel from said cured shaft; and	
	trimn	ing ends said cured shaft to produce said gol	If club shaft.