Я буду рассазывать о г-дифференциальных частично упорядоченных множествах. Что такое частично упорядоченное множество все должны знать.

Определение 1. Частично упорядоченное множество P называется локально конечным, если $\forall a,b \in P$ таких $x \in P$, что a < x < b конечное число.

Определение 2. Частично упорядоченное множество P называется градуированным, если оно снабжено функцией ранга $\rho: P \to \mathbb{N}_0$:

- 1) $Ecnu \ x < y, \ mo \ \rho(x) < \rho(y).$
- 2) Если x < y и $\nexists z : x < z < y$, то $\rho(y) = \rho(x) + 1$. В таком случае говорят, что у покрывает x.

Главное определение:

Определение 3. Пусть $r \in \mathbb{N}$ и $P = \bigcup_{n \geq 0} P_n$ локально конечное градуированное частично упорядоченное множество с наименьшим элементом нулевого ранга. Тогда оно называется r-дифференциальным, если:

- 1) $\forall x \neq y \in P$ покрывают k общих элементов \Leftrightarrow они покрываются k общими элементами.
 - 2) $x \in P$ покрывает m элементов \Leftrightarrow он покрывается m+r элементами.

Утверждения:

Утверждение 1. В первой части крайнего определения k может принимать только значения 0 и 1.

Определение 4. Размерность гиперребра F гиперграфа H - dim F = |F| - 1.

Утверждение 2. $\forall r$ существует биекция между $P_{[1,2]} = P_1 \cup P_2$ с гиперграфами с множеством вершин $V = \{1, 2, ..., r\}$, такими что размерность всех рёбер положительна, и любое подмножество V из двух элементов содержится ровно в одном гиперребре.

Утверждение 3. Пусть P - r-дифференциальное ЧУМ c ранг-функцией p : $p_0 = 1, p_1 = r, ...(p_i = |P_i|), a T_1$ - сумма размерностей гиперрёбер гиперграфа, ассоциированного c $P_{[1,2]}$. Тогда:

$$p_2 = r(r+1) - T_1.$$

Утверждение 4. Для r-дифференциального ЧУМ максимальное возможное значение p_2 равно r^2+1 , следующее равно r^2-r+3 , а минимальное равно $\frac{r^2+3r}{2}$.

Утверждение 5. $r \geq 6 \Leftrightarrow \exists P, Q: P \ u \ Q \ r$ -дифференциальные ЧУМва, P $u \ Q$ имеют одинаковые ранг-функции, но $\forall a \in \mathbb{N} \ P_{[a,a+1]} = P_a \cup P_{a+1}$ не изоморфно $Q_{[a,a+1]} = Q_a \cup Q_{a+1}$.

Определение 5. Говорят, что множество последовательностей натуральных чисел удовлетворяет интервальному свойству, если:

 $\forall h=(h_0,...,h_{i-1},h_i,h_{i+1},...), h'=((h_0,...,h_{i-1},h_i+\alpha,h_{i+1},...)),$ где $\alpha>0$ - последовательностей из этого множества любая последовательность вида $(h_0,...,h_{i-1},h_i+\beta,h_{i+1},...),$ где $0<\beta<\alpha$ принадлежит этому множеству.

Теорема 1. Множество всех ранг функций *r*-дифференциальных ЧУМов не удовлетворяет интервальному свойству.

Определение 6. Пусть $P = \cup P_{n \geq 0}$ - r-дифференциальное ЧУМ.

 $\kappa(n \to n+1 \to n \to n+1 \to n):=$ количество путей вида $x_1 < x_2 > x_3 < x_4 > x_5 = x_1$, где $x_1, x_3 \in P_n, \ x_2, x_4 \in P_{n+1}$.

 $\alpha(n \to n+1 \to n) :=$ количество путей вида $x_1 < x_2 > x_3$, где $x_1, x_3 \in P_n, \ x_2 \in P_{n+1}.$

 $\alpha(n \to n+1) :=$ количество путей вида $x_1 < x_2$, где $x_1 \in P_n, \ x_2 \in P_{n+1}.$ Для $x \in P$ c(x) :=количество элементов, покрывающих x.

Лемма 1. $\forall n \geq 0$ и P - r-дифференциального ЧУМа

$$\sum_{x \in P_n} c(x)^2 = \kappa(n \to n+1 \to n \to n+1 \to n) - \alpha(n \to n+1 \to n) + \alpha(n \to n+1).$$

Лемма 2. $\forall n \geq 0 \ u \ P$ - r-дифференциального ЧУМа c ранг-функцией p

$$\sum_{x \in P_n} c(x)^2 = \sum_{j=0}^n (r^2(n-j+1) + \epsilon r)p_j,$$

 $\epsilon \partial e \ \epsilon = (n-j) \ mod \ 2.$

Теорема 2. $\forall P$ - r-дифференциального ЧУМа c ранг-функцией $p \; \exists a$:

$$n^a e^{2\sqrt{rn}} = O(p_n).$$

Всё доказывается либо ручками, либо ссылками на другие статьи. Я в этом не виноват, это статья такая.