講演ルト

Tilting ideals of deformed preprojective algebras j.m. W. Crawley - Boevey ar Xiv : 2108,00795

§ 0 Introduction

Notation K: field $Q = (Qo, Qo, t(a) \xrightarrow{a} h(a)): finite connected quiver$

Def •
$$\overline{Q}$$
: bouble quiver of Q

(i.e. $\overline{Q}_0 = Q_0$

$$\overline{Q}_1 = Q_1 \sqcup \{ a^* : h(a) \longrightarrow t(a) \mid a \in Q_1 \}$$
• $\lambda = (\lambda i) i \in Q_0 \in K^{Q_0}$ weigh

$$\Pi^{\lambda}(Q) := K \overline{Q} / \left\langle \sum_{\alpha \in \overline{\alpha}_{i}} \mathcal{E}(\alpha) \alpha \alpha^{*} - \sum_{i \in Q_{0}} \lambda_{i} e_{i} \right\rangle$$

I deformed preprojective algebra

where $e(a) = \int_{-1}^{+1} a \in a_1$ $(a^*)^* := a$ $a \in a_1$

Rmk $\lambda = 0 \Rightarrow \pi^{o}(0)$: (classical) preprojective algebra by Gelfand - Ponomarev

Properties of M^(Q)

- Q: Dynkin quiver \iff dim_k $\Pi^{\lambda}(Q) < M$ In this case, $\exists Q' \subset Q : \text{full subquiver}$ S.t. $\Pi^{\lambda}(Q) \underset{\text{Norita}}{\sim} \Pi^{\circ}(Q')$
- Q: ext Dynkin $\rightarrow \Gamma \subset SL_2(K)$: finite subgpolicy C = K = 0, $K = \overline{K}$ deformation of $K[x,y]^{\Gamma}$ $C := \frac{1}{|\Gamma|} \sum_{s=1}^{s} C K \cap C K(x,y) *\Gamma$

 $\frac{\text{Def}}{\text{Ci}^{2}} : \text{EQo: loop-free, define a functor} \\ \text{Ci}^{2} : \text{Mod } \Pi^{2}(Q) \longrightarrow \text{Mod } \Pi^{1/2}(Q)$

M = (Mz, Ma) ieao, aeā, : quiver rep. of T/(a)-mod

$$M_{\tau} \xrightarrow{\mathcal{M}} \bigoplus_{\substack{\alpha \in \overline{\alpha}_{1} \\ h(\alpha) = \overline{i}}} M_{\tau} + \lambda_{\tau} = \lambda_{\tau} = \lambda_{\tau}$$

$$M_{\tau} - \lambda_{\tau} = \lambda_{\tau} = \lambda_{\tau}$$

$$M_{\tau} - \lambda_{\tau} = \lambda_{\tau} = \lambda_{\tau}$$

$$M_{\tau} = \lambda_{\tau}$$

$$M_{\tau} = \lambda_{\tau} = \lambda_{\tau}$$

$$M_{\tau} = \lambda_{\tau}$$

$$M_{\tau$$

$$C_{\tilde{i}}^{\lambda}(M)_{\tilde{j}} = \begin{cases} M_{\tilde{j}} & \hat{j} \neq \tilde{i} \\ Cok(\mu) & \hat{j} = \tilde{i} \end{cases}$$

Cî(M) a are defined by ning 7 and c //

Def ie Qo, $I_{\overline{L}} = \Pi^{\lambda}(1-e_i) \Pi^{\lambda}$ two-sided ideal of $\Pi^{\lambda}(Q)$

Thm i. $j \in Q_0$: loop-free

(1) [CB-H] $\lambda_{7} \pm 0$ then C_{7} is an equiv.

Mod $\lambda(Q) \longrightarrow Mod \prod^{r_{1}\lambda}(Q)$ S.t. $M \in f.d. \prod^{\lambda}(Q)$, $\dim C_{7}(M) = S_{7}(\dim M)$

(2)
$$\lambda_i = 0$$
 \Rightarrow $C_i^{\lambda} \simeq I_i \otimes_{\pi \lambda} (-)$
(3) $C_i^{r_i \lambda} C_{\lambda}^{\lambda} \simeq C_{\lambda}^{r_i \lambda} C_{\lambda}^{\lambda} \subset \lambda$ $i \neq \lambda$ in Q

$$C_i^{r_i r_i \lambda} C_i^{r_i \lambda} C_{\lambda}^{\lambda} \simeq C_i^{r_i r_i \lambda} C_i^{r_i \lambda} C_i^{\lambda} \subset \lambda$$
 $i \neq \lambda$ in Q

[Keller]
$$A: 2-CY$$
, then
$$D Hom_{D}(X.Y) \simeq Hom_{D}(Y.X[d])$$
for $X.Y \in D = D(Mod A)$ $\leq dim_{K} H^{T}X < \infty$
 $i \in \mathbb{Z}$

Prop Po fr P1 po my TT no ex f (e; se;) = \(\alpha \) \(\operatorname{\alpha} \) \(\operatornam h(a) = ig(eh(a) O eta) = aeta De tla) - eh(u) & eh(a) a Prop (1) Hom Te (P., TTe) ~ P.[-2] (2) Q is non-Dynkin => f is injective Thm [CB-K, Kaplan-Schedler] MA(Q) 18 2-CY if Q is non-Dynkin §3 Tilting ideals of 2-CY algebras A: (bimodule) 2-CY Def TE Mod A is tilting if

• = 0 -> Pr -> Po -> T -> 0 ex , Piepry A • $Ext^{2}A(T,T) = 0$ • $t^{3}A \rightarrow T_{0} \rightarrow T_{1} \rightarrow 0 ex$ Ti eadd T Prop Sef.d. A simple, rigid (i.e. Extà(S.S)=0) $L_{S} := Ann_{A}(S) = \{a \in A \mid aS = o\}$

=> · A(Is), (Is) A are tilting module

EndA(AIs) ~ A°P (•a) ← a

For
$$S_1, \dots, S_r \in \mathcal{S}$$

$$I_{S_1, \dots, S_r} := I_{S_1, \dots, r} I_{S_r}$$

$$I(\mathcal{S}) := \{I_{S_1, \dots, S_r} \mid r \ge 0, S_1 \in \mathcal{S} \}, I_{\beta} = A$$

E(S): Serve subcat of f.d. A generated by S

Thm [CB-K]

(1)
$$\forall$$
 I \in I(\mathbb{S}) is a tilting ideal, $A/I \in \mathcal{E}(\mathbb{S})$ and $\mathsf{End}_A(\mathbb{I}) \simeq A^{\mathsf{op}}$

(2) a I c A: partiting left Ideal, A/I & E(S)
then I & I (S)

Rmk [Buan-Iyama-Reiten-Scott]
$$A = \widehat{\Pi}^{0}, \quad S = \{S_{i}|i \in Q_{0}\}$$

$$I_{S_{i}} = A_{nn_{A}}(S_{i}) = A(1-e_{i})A$$

Prop S. T
$$\in$$
 S
(1) $I_S I_S = I_S$
(2) $I_S I_T = I_T I_S$ if $Ext_A^{\gamma}(S,T) = 0$
(3) $I_S I_T I_S = I_T I_S I_T$ if $d_{im} E_{M}(S) Ext_A^{\gamma}(S,T) = 1$
 $d_{im} E_{M}(T) \rightarrow Ext_A^{\gamma}(S,T) = 1$

```
Proof ind E(ES.T) = { S.T. } To 3 by assumption
   = add S * add T * add S = add T * add S * add T
  For M \in f.d.A, I_{STS} M = 0 \iff M \in addS*addT*addS
  So M = A/ISTS, A/ITST.
Def Assume that YSES, EndA(S) ~ K
  A Coxerer group W(S)
generater {ts|SeS}
    relations \sigma_s^2 = 1
                5 5 = 5 5
                                        if Extà(S.T) = 0

\mathcal{T}_{S} \mathcal{T}_{T} \mathcal{T}_{S} = \mathcal{T}_{T} \mathcal{T}_{S} \mathcal{T}_{T}

                                         14 dimk Exta(S.T) = 1
 Thm [CB-K] Assume YSES, Enda(S) ~K
 then W(S) \longrightarrow I(S) \quad w = \sigma_{s_1} - \sigma_{s_r} \longmapsto I_{s_1} - \sigma_{s_r}
 is bijection treduced exp
$4 Rigid simples of TI2(Q)
   (d. B) = (d. B) + (B.d) sym. bilinear form of Q
```

→ { real root } [irrag. root } C Z Qo

 $\underline{\text{Lem}} \quad M \in f. d. \, \pi \lambda(Q) \implies \lambda \cdot \underline{\dim} M = 0$

$$\sum_{re}^{\lambda} := \begin{cases}
\lambda & \text{is a positive real root}, \quad \lambda \cdot \lambda = 0 \\
\lambda & \text{s.t.} \quad \sharp \beta^{(E)} : \text{ positive roots}, \quad i=1,...r \ (r=2)
\end{cases}$$

$$\lambda = \beta^{(1)}_{+...+} \beta^{(r)}, \quad \lambda \cdot \beta^{(1)} = 0$$

Prop [CB] is bijective $\rightarrow \sum_{re}^{\lambda}$ (1) $rsim(\Pi^{\lambda}(a))$ — + dim S

```
(2) VS e rsim (TX(Q)), End TX(S)~K
 (3) Q : ext Dynkin = \# \sum_{re}^{\lambda} < \omega
Proof (2) M.N Ef.d. TIME)
   dim Ext (M.N) = dim Hom (M.N) + dim Hom (N.M)
                                    — ( dim M , dim N )
So M=N=S, O=2 dim End(S)-(dim S, dim S)
Thm [CB-K] Q: ext-Dynkin
     R := {f.d. rigid simple Th }/2
Then
     I(R) = {ICTI^(Q) I is a tilting ideal
                                 dimk Tx/I < >> }
 giext Dynkin
Def The Ext- Euiver Q(R)
  Q(R)_o = R
   drow dimk ExtA (S.T) - arrows from S to T
• 3P: quiver s.t. P = Q(R) by 2-CY duality
 Prop P is a disjoint union of ext Dynkin quivers
 Thm [CB-K] Q: ext Dynkin S: min imag host of Q
  assume \lambda \cdot \delta = 0, K = \overline{K}, ch K = 0
 Then = bijection between
  (1) the connected component of Q(R)
  (2) the singular points of Rep (TT>(Q), S) // GL(S)
```

Rep
$$(\Pi^{\lambda}(Q), S)$$
 // GL (S) $(1-1)$ of $S \in F.d.\Pi^{\lambda}(Q)$ S is semisimple $dim S = S$

{non-singular point} < 1-7, { simple module} [Le Bruyn]

 $\Gamma' \subset \Gamma$ connected component, $S': minimal imag root of <math>\Gamma'$ $\Gamma'_0 = \{S_1, ..., S_T\} \subset \mathbb{R}$ $\Rightarrow \underline{\dim} \left(\bigoplus_{i=1}^{T} S_i^{\bigoplus S_i'} \right) = \emptyset$

We have a map $(1) \longrightarrow (2)$ by $\Gamma' \longmapsto \bigoplus_{i=1}^{r} S_{i}^{\oplus S_{i}'}$