WHAT IS CLAIMED IS:

1. A compound of formula I

$$Ar - (CH_{2})_{a} \bigvee_{QO)_{r}}^{R} \bigvee_{R^{b}}^{R^{a}} \bigvee_{R^{d}}^{R^{c}} \bigvee_{R^{f}}^{R^{e}} \bigvee_{R^{h}}^{R^{g}} \bigvee_{QO)_{r}}^{R^{f}} \bigvee_{R^{d}}^{R^{f}} \bigvee_{R^{d}}^$$

I

wherein

-Ar is selected from

where

R¹, R², R³, and R⁴ are independently selected from hydrogen, halogen, alkyl, alkoxy, haloalkyl, and haloalkoxy;

and,

s is an integer selected from 0 or 1;

-a and r are integers independently selected from 0 or 1;

-R is selected from hydroxy, haloalkyl, alkoxyalkyl, alkoxyalkoxyalkyl, cycloalkylalkyl, cyanoalkyl, formyl, alkylcarbonyl, alkoxycarbonyl, alkylsulfonyl, dialkylphosphonato, oxolan-3-ylmethyl, 2H-3,4,5,6-tetrahydropyran-2-ylmethyl, cyclohex-1-en-3-yl, thien-3-ylmethyl, furan-2-ylmethyl, furan-3-ylmethyl, benzo[b]furan-2-ylmethyl, 2-R⁸-1,3-thiazol-4-ylmethyl, 5-R⁸-1,2,4-oxadiazol-3-ylmethyl,

$$R^{10}$$
 R^{10}
 R^{10}

$$R^{10} \xrightarrow{R^9} (CH_2)_{m^-} - (CH_2)_{m^-} - (CH_2)_{m^-} - CR^{14} = CR^{15}R^{16} \text{ and } - (CH_2)_{m^-} - C \equiv CR^{17},$$

where

R⁸ is selected from halogen, alkyl, aryl, and heteroaryl, wherein aryl and heteroaryl are optionally substituted with at least one of halogen, alkyl, haloalkyl, alkoxy, and haloalkoxy;

m is an integer selected from 1 or 2;

and,

R⁹, R¹⁰, R¹¹, R¹², and R¹³ are independently selected from hydrogen, halogen, alkyl, haloalkyl, alkoxy, haloalkoxy, alkoxyiminoalkyl, cyano, nitro, 2-alkyl-2H-tetrazol-5-yl, aryl, and aryloxy;

R¹⁴, R¹⁵ and R¹⁶ are independently selected from hydrogen, halogen, alkyl and aryl; R¹⁷ is selected from hydrogen, alkyl,

$$R^{19}$$
 R^{20}
 R^{20}
 R^{21}
, and

where

R¹⁸, R¹⁹, R²⁰, R²¹, and R²² are independently selected from hydrogen, halogen, alkyl, haloalkyl, alkoxy, and haloalkoxy;

-R^a, R^b, R^c and R^d are independently selected from hydrogen and alkyl;

-b and c are integers independently selected from 0 or 1;

and

when b and c are 1,

-R^e, R^f, R^g and R^h are independently selected from hydrogen and alkyl;

-R⁵ is selected from hydrogen, alkyl, and

where

n is an integer selected from 1 or 2; and,

 R^{23} , R^{24} , R^{25} , R^{26} , and R^{27} are independently selected from hydrogen, halogen, alkyl, haloalkyl, alkoxy, and haloalkoxy;

-d and e are integers independently selected from 0 and 1; and,

when d and e are 1;

-U and V are -CH₂-;

-R⁶ is selected from hydrogen, alkyl, cycloalkyl, cycloalkyl, alkoxy, alkoxyalkyl, alkoxyalkyl, alkoxyalkyl, alkenyl, haloalkenyl, and

where

p is an integer selected from 1 and 2;

and,

R²⁸, R²⁹, R³⁰, R³¹ and R³² are independently selected from hydrogen, halogen, alkyl, haloalkyl, alkoxy, and haloalkoxy;

-R⁷ is selected from -C≡N and -NO₂;

-W is selected from -CR³³- and -N-;

-X is elected from $-CR^{34}R^{35}$ -, -O-, -S-, and $-NR^{36}$;

where

 R^{33} , R^{34} , R^{35} and R^{36} are independently selected from hydrogen and alkyl; provided that when

i) Ar is oxolan-3-yl (M); ii) a, b and c are 1, and R^a through R^g , inclusively, are hydrogen; iii) d, e and r are 0; iv) R is $-(CH_2)_mCR^{14}=CR^{15}R^{16}$ or $-(CH_2)_mC\equiv CR^{17}$; v) R^5 is hydrogen or alkyl; vi) R^6 is hydrogen, alkyl, alkenyl or haloalkenyl and vii) W is $-CR^{33}$ - where R^{33} is hydrogen; viii) then X is other than -S-; when d and e are 0,

 $-R^5$ and X may be taken together with $-CH_2(CH_2)_q$ - or $-CH_2YCH_2$ - to form a ring, where

q is an integer selected from 1 or 2;

Y is selected from O, S and NR³⁷, where R³⁷ is hydrogen or alkyl;

-X is elected from -CH-, -O-, -S-, and -N-;

where

when X is -CH- or -N-.

R⁶ is selected from hydrogen, alkyl and that set forth above for R; when b and c are 0,

-R and R⁵ may be taken together with -CH₂CH₂- to form a piperazine ring; and

agriculturally acceptable salts thereof.

2. A compound of claim 1, wherein a is 1; b, c, d and e are each 0; R^a, R^b, R^c and R^d are each hydrogen; R⁵ is selected from hydrogen and alkyl; W is selected from -CR³³- and -N-, where R³³ is hydrogen; X is selected from -O-, -S-, and -NR³⁶-;

and

 R^5 and X may be taken together with- $CH_2(CH_2)_q$ - or - CH_2YCH_2 - to form a ring, where

Y is selected from -O- and -NR 37 -, where R 37 is hydrogen or alkyl; X is -N- and R 6 is selected from hydrogen and alkyl.

3. A compound of claim 2, wherein Ar is selected from

$$R^{2}$$
 R^{3}
 R^{4}
 R^{3}
 R^{3}
 R^{4}
 R^{3}
 R^{3}
 R^{4}
 R^{4}
 R^{3}
 R^{4}
 R^{4}
 R^{3}
 R^{4}
 R^{4}
 R^{4}
 R^{4}
 R^{4}
 R^{3}
 R^{4}
 R^{4}
 R^{4}
 R^{4}
 R^{4}
 R^{4}
 R^{4}
 R^{3}
 R^{4}
 R^{4

where

s is 0; R¹, R² and R⁴ are each hydrogen and R³ is halogen.

4. A compound of formula I

$$Ar - (CH_{2})_{a} \stackrel{R}{\underset{(O)_{r}}{|}} \stackrel{R^{a}}{\underset{(O)_{r}}{|}} \stackrel{R^{c}}{\underset{(O)_{r}}{|}} \stackrel{R^{c}}{\underset{(R^{d})}{|}} \stackrel{R^{e}}{\underset{(R^{d})}{|}} \stackrel{R^{g}}{\underset{(R^{d})}{|}} \stackrel{R^{5}}{\underset{(R^{d})}{|}} \stackrel{R^{7}}{\underset{(R^{d})}{|}} \stackrel{R^{7}}{\underset{(N)_{c}}{|}} \stackrel{R^{6}}{\underset{(N)_{c}}{|}} \stackrel{R^{6}}{\underset{(N)_{c}}{\underset{(N)_{c}}{|}} \stackrel{R^{6}}{\underset{(N)_{c}}{\underset{(N)_{c}}{|}} \stackrel{R^{6}}{\underset{(N)_{c}}{\underset{(N)_{c}}{|}} \stackrel{R^{6}}{\underset{(N)_{c}}{\underset{(N)_{c}}{\underset{(N)_{c}}{\underset{(N)_{c}}{\underset{(N)_{c}}{\underset{(N)_{c}}{\underset{(N)_{c}}{\underset{(N)_{c}}{\underset{(N)_{c}}{\underset{(N)_{c}}{\underset{(N)_{c}}{\underset{(N)_{c}}{\underset{(N)_{c}}{\underset{(N)_{c}}{\underset{(N)_{c}}$$

I

wherein

-Ar is selected from

where

 R^1 , R^2 , R^3 , and R^4 are independently selected from hydrogen, halogen, alkyl, alkoxy, haloalkyl, and haloalkoxy;

and,

s is an integer selected from 0 or 1;

-a and r are integers independently selected from 0 or 1;

-R is selected from hydroxy, haloalkyl, alkoxyalkyl, alkoxyalkoxyalkyl, cycloalkylalkyl, cyanoalkyl, formyl, alkylcarbonyl, alkoxycarbonyl, alkylsulfonyl, dialkylphosphonato, oxolan-3-ylmethyl, 2H-3,4,5,6-tetrahydropyran-2-ylmethyl, cyclohex-1-en-3-yl, thien-3-ylmethyl, furan-2-ylmethyl, furan-3-ylmethyl, benzo[b]furan-2-ylmethyl, 2-R⁸-1,3-thiazol-4-ylmethyl, 5-R⁸-1,2,4-oxadiazol-3-ylmethyl,

$$R^{10}$$
 R^{10}
 R^{11}
 R^{13}
 R^{11}
 R^{12}
 R^{13}

$$R^{10}$$
 R^{10}
 R

where

R⁸ is selected from halogen, alkyl, aryl, and heteroaryl, wherein aryl and heteroaryl are optionally substituted with at least one of halogen, alkyl, haloalkyl, alkoxy, and haloalkoxy;

m is an integer selected from 1 or 2; and,

R⁹, R¹⁰, R¹¹, R¹², and R¹³ are independently selected from hydrogen, halogen, alkyl, haloalkyl, alkoxy, haloalkoxy, alkoxyiminoalkyl, cyano, nitro, 2-alkyl-2H-tetrazol-5-yl, aryl, and aryloxy;

 R^{14} , R^{15} and R^{16} are independently selected from hydrogen, halogen, alkyl and aryl; R^{17} is selected from hydrogen, alkyl,

$$R^{19}$$

$$R^{20}$$

$$R^{20}$$

$$R^{20}$$

$$R^{22}$$

$$R^{20}$$

$$R^{22}$$

$$R^{22}$$

where

 R^{18} , R^{19} , R^{20} , R^{21} , and R^{22} are independently selected from hydrogen, halogen, alkyl, haloalkyl, alkoxy, and haloalkoxy;

-Ra, Rb, Rc and Rd are independently selected from hydrogen and alkyl;

-b and c are integers independently selected from 0 or 1;

and

when b and c are 1,

-Re, Rf, Rg and Rh are independently selected from hydrogen and alkyl;

-R⁵ is selected from hydrogen, alkyl, and

$$R^{24}$$
 R^{25}
 R^{25}
 R^{26}
 R^{27}

where

n is an integer selected from 1 or 2; and,

R²³, R²⁴, R²⁵, R²⁶, and R²⁷ are independently selected from hydrogen, halogen, alkyl, haloalkyl, alkoxy, and haloalkoxy;

-d and e are integers independently selected from 0 and 1; and,

when d and e are 1;

-U and V are -CH₂-;

-R⁶ is selected from hydrogen, alkyl, cycloalkyl, cycloalkylalkyl, alkoxy, alkoxyalkyl, alkoxyalkyl, alkoxyalkyl, alkenyl, haloalkenyl, and

where

p is an integer selected from 1 and 2;

and,

R²⁸, R²⁹, R³⁰, R³¹ and R³² are independently selected from hydrogen, halogen, alkyl, haloalkyl, alkoxy, and haloalkoxy;

-R⁷ is selected from -C≡N and -NO₂;

-W is selected from -CR³³- and -N-;

agriculturally acceptable salts thereof.

-X is elected from -CR 34 R 35 -, -O-, -S-, and -NR 36 -; where

R³³, R³⁴, R³⁵ and R³⁶ are independently selected from hydrogen and alkyl; provided that when

i) Ar is oxolan-3-yl (M); ii) a, b and c are 1, and R^a through R^g , inclusively, are hydrogen; iii) d, e and r are 0; iv) R is $-(CH_2)_mCR^{14}=CR^{15}R^{16}$ or $-(CH_2)_mC\equiv CR^{17}$; v) R^5 is hydrogen or alkyl; vi) R^6 is hydrogen, alkyl, alkenyl or haloalkenyl and vii) W is $-CR^{33}$ - where R^{33} is hydrogen; viii) then X is other than -S-; and

- 5. A compound of claim 4, wherein a is 1; b, c, d and e are each 0; R^a , R^b , R^c and R^d are each hydrogen; R^5 is selected from hydrogen and alkyl; W is selected from -CR³³- and -N-, where R^{33} is hydrogen and X is selected from -O-, -S-, and -NR³⁶-.
- 6. A compound of claim 5, wherein Ar is selected from

$$R^{2}$$
 R^{3}
 R^{4}
 R^{3}
 R^{3}
 R^{4}
 R^{3}
 R^{3}
 R^{4}
 R^{4}
 R^{3}
 R^{4}
 R^{4}
 R^{4}
 R^{4}
 R^{3}
 R^{4}
 R^{4

where

s is 0; R¹, R² and R⁴ are each hydrogen and R³ is halogen.

7. A compound of formula I

$$Ar - (CH_{2})_{a} \stackrel{R}{\underset{(O)_{c}}{|}} \stackrel{R^{a}}{\underset{(O)_{c}}{|}} \stackrel{R^{c}}{\underset{(O)_{c}}{|}} \stackrel{R^{e}}{\underset{(O)_{c}}{|}} \stackrel{R^{g}}{\underset{(O)_{c}}{|}} \stackrel{R^{g}}{\underset{(O)_{c}}{|}} \stackrel{R^{5}}{\underset{(O)_{c}}{|}} \stackrel{W}{\underset{(O)_{c}}{|}} \stackrel{R^{7}}{\underset{(O)_{c}}{|}} \stackrel{R^{a}}{\underset{(O)_{c}}{|}} \stackrel{R^{a}}{\underset{(O)_{c}}{\underset{(O)_{c}}{|}} \stackrel{R^{a}}{\underset{(O)_{c}}{\underset{(O)_{c}}{|}} \stackrel{R^{a}}{\underset{(O)_{c}}{\underset{(O)_{c}}{\underset{(O)_{c}}{\underset{(O)_{c}}{\underset{(O)_{c}}{\underset{(O)_{c}}{\underset{(O)_{c}}{\underset{(O)_$$

I

wherein

-Ar is selected from

where

R¹, R², R³, and R⁴ are independently selected from hydrogen, halogen, alkyl, alkoxy, haloalkyl, and haloalkoxy;

and,

s is an integer selected from 0 or 1;

-a and r are integers independently selected from 0 or 1;

-R selected is from hydrogen, hydroxy, alkyl, haloalkyl, alkoxyalkyl, alkoxyalkoxyalkyl, cycloalkylalkyl, cyanoalkyl, formyl, alkylcarbonyl, alkoxycarbonyl, alkylsulfonyl, dialkylphosphonato, oxolan-3-ylmethyl, 2H-3,4,5,6tetrahydropyran-2-ylmethyl, cyclohex-1-en-3-yl, thien-3-ylmethyl, furan-2ylmethyl, furan-3-ylmethyl, benzo[b]furan-2-ylmethyl, 2-R⁸-1,3-thiazol-4-ylmethyl, 5-R⁸-1,2,4-oxadiazol-3-ylmethyl,

$$R^{10}$$
 R^{10}
 R^{10}

$$R^{10}$$
 $(CH_2)_m$
 $(CH_2)_m$

where

R⁸ is selected from halogen, alkyl, aryl, and heteroaryl, wherein aryl and heteroaryl are optionally substituted with at least one of halogen, alkyl, haloalkyl, alkoxy, and haloalkoxy;

m is an integer selected from 1or 2;

and,

R⁹, R¹⁰, R¹¹, R¹², and R¹³ are independently selected from hydrogen, halogen, alkyl, haloalkyl, alkoxy, haloalkoxy, alkoxyiminoalkyl, cyano, nitro, 2-alkyl-2H-tetrazol-5-yl, aryl, and aryloxy;

 R^{14} , R^{15} and R^{16} are independently selected from hydrogen, halogen, alkyl and aryl; R^{17} is selected from hydrogen, alkyl,

$$R^{19}$$
 R^{20}
 R^{20}
 R^{20}
 R^{20}
 R^{20}
 R^{20}
 R^{20}

where

R¹⁸, R¹⁹, R²⁰, R²¹, and R²² are independently selected from hydrogen, halogen, alkyl, haloalkyl, alkoxy, and haloalkoxy;

-Ra, Rb, Rc and Rd are independently selected from hydrogen and alkyl;

-b and c are integers independently selected from 0 or 1;

and

when b and c are 1,

-R^e, R^f, R^g and R^h are independently selected from hydrogen and alkyl;

-d and e are 0;

-R⁵ and X are taken together with- $CH_2(CH_2)_q$ - or - CH_2YCH_2 - to form a ring, where

q is an integer selected from 1 or 2;

Y is selected from -O-, -S- and -NR 37 -, where R 37 is hydrogen or alkyl;

-X is elected from -CH-, -O-, -S-, and -N-;

where

when X is -CH- or -N-,

-R⁶ is selected from hydrogen, alkyl, cycloalkyl, cycloalkylalkyl, alkoxy, alkoxyalkyl, alkoxyalkyl, alkoxyalkyl, alkenyl, haloalkenyl, and

where

p is an integer selected from 1 and 2; and,

R²⁸, R²⁹, R³⁰, R³¹ and R³² are independently selected from hydrogen, halogen, alkyl, haloalkyl, alkoxy, and haloalkoxy;

- $-R^7$ is selected from $-C \equiv N$ and $-NO_2$;
- -W is selected from -CR 33 and -N-, where R 33 is selected from hydrogen and alkyl; and

agriculturally acceptable salts thereof.

- 8. A compound of claim 7, wherein a is 1; b, c, d and e are each 0; R^a, R^b, R^c and R^d are each hydrogen; W is selected from -CR³³- and -N-, where R³³ is hydrogen; Y is selected from -O- and NR³⁷; X is -N- and R⁶ is selected from hydrogen and alkyl.
- 9. A compound of claim 5, wherein Ar is selected from

$$R^{3}$$
 R^{3}
 R^{4}
 R^{3}
 R^{3}
 R^{4}
 R^{3}
 R^{3}
 R^{4}
 R^{4}
 R^{3}
 R^{4}
 R^{4}
 R^{4}
 R^{4}
 R^{3}
 R^{4}
 R^{4}
 R^{4}
 R^{4}
 R^{4}
 R^{4}
 R^{4}
 R^{3}
 R^{4}
 R^{4

where

s is 0; R^1 , R^2 and R^4 are each hydrogen and R^3 is halogen.

- 10. A composition comprising an insecticidally effective amount of a compound of claim 1 and at least one agriculturally acceptable extender or adjuvant.
- 11. The insecticidal composition of claim 10, further comprising one or more second compounds selected from the group consisting of pesticides, plant growth regulators, fertilizers and soil conditioners.

12. A method of controlling insects, comprising applying an insecticidally effective amount of a composition of claim 10 to a locus where insects are present or are expected to be present.

13. A method of controlling insects, comprising applying an insecticidally effective amount of a composition of claim 11 to a locus where insects are present or are expected to be present.