

COMP90042 LECTURE 1 A

SUBJECT OVERVIEW

COURSE OVERVIEW

Text processing

- Machine learning from words and documents
- Structure prediction, words as sequences and trees

Search

- Efficient information retrieval
- Exploiting the structure of the web

End tasks

Translation, information extraction, question answering

PREREQUISITES

- COMP90049 / COMP30018 "Knowledge Technologies" or COMP30027 "Machine Learning"
- Some Python programming experience
- No knowledge of linguistics or advanced mathematics is assumed
- Caveats Not "vanilla" computer science
 - Involves some basic linguistics, e.g., syntax and morphology
 - Requires some maths, e.g., algebra, optimisation, linear algebra, dynamic programming

EXPECTATIONS AND OUTCOMES

- Expectations
 - develop Python skills
 - keep up with readings
 - classroom participation
- Outcomes
 - Practical familiarity with range of text analysis technologies
 - Understanding of theoretical models underlying these tools
 - Competence in reading research literature

ASSESSMENT: ASSIGNMENTS AND EXAM

- ► Homework (20% total = $4 \times 5\%$ each)
 - Small activities building on workshop
 - ▶ Released every 2-3 weeks, due the following week
- Project (30% total)
 - Individual work
 - Released after Easter & due near end of semester
- Exam (50%)
 - two hour, closed book
 - covers content from lectures, workshop and prescribed reading
- ► Hurdle >50% exam, and >50% on homework + project COPYRIGHT 2018, THE UNIVERSITY OF MELBOURNE

TEACHING STAFF

- Lecturers
 - Daniel Beck

Trevor Cohn

Teaching Assistants

Ekaterina Vylomova

Shivashankar Subramanian

Andrei Shcherbakov

Yuan Li

COURSE OVERVIEW

Introduction to text processing

Text classification, word meaning and document representations

Structure learning

Sequence tagging, n-gram language modelling, parsing & translation

Information Retrieval

Vector space model, efficient indexing, query expansion and using the web as a graph

Larger tasks in Text Analysis

Information extraction, question answering

RECOMMENDED TEXTS

- Use a mixture of texts, mainly:
 - Daniel Jurafsky and James H. Martin, Speech and Language Processing, 2nd & 3rd eds., Prentice Hall. 2009 (out of print) & 2018 draft (free online).
- And dip into other texts, including:
 - ► Manning et al, 2008, Information Retrieval (free online)
 - ► *Koehn*, 2009, Machine Translation (library ebook)
- Recommended for learning python:
 - Steven Bird, Ewan Klein and Edward Loper, Natural Language Processing with Python, O'Reilly, 2009. (free online)
- ► Reading links or PDFs will be posted to website/LMS COPYRIGHT 2018, THE UNIVERSITY OF MELBOURNE

CONTACT HOURS

- Lectures
 - ► Tue 4:15-5:15pm Redmond Barry-200 (Rivett Theatre)
 - Wed 3:15-4:15pm Redmond Barry-101 (Lyle Theatre)
- Workshops: several on Mon/Tue/Wed/Fri
- Office hour, casual drop in session
 - Bring any questions you have to Daniel / Trevor
 - Wednesday 11am-noon Doug McDonell 7.02

PYTHON

- Making extensive use of python
 - workshops feature programming challenges
 - provided as interactive 'notebooks' for workshops
 - homework and project in python
- Using several great python libraries
 - NLTK (text processing)
 - Numpy, Scipy, Matplotlib (maths, plotting)
 - Scikit-Learn (machine learning tools)

PYTHON

- Python 'Canopy EPD' installed on workshop machines
 - Can use this at home (free download, but register with your unimelb email)
 - ▶ Based on Python 2.7
- New to Python?
 - Expected to pick this up during the subject, on your own time
 - Learning resources on the LMS

WHY PROCESS TEXT?

- Masses of information 'trapped' in unstructured text
 - ► How can we find this information?
 - Let computers automatically reason over this data?
 - First need to understand the structure, find important elements and relations, etc...
 - Over 1000s of languages....
- Challenges
 - Search, displaying results
 - Information extraction
 - Translation
 - Question answering

A MOTIVATING APPLICATION

- ▶ IBM 'Watson' system for Question Answering
 - QA over large text collections
 - Incorporating speech recognition, speech synthesis and more
 - https://www.youtube.com/watch?v=FC3IryWr4c8
 - https://www.youtube.com/watch?v=II-M7O_bRNg (from 3:30-4:30)
- Research behind Watson is not revolutionary
 - ▶ But this is a transformative result in the history of AI
 - Combines cutting-edge text processing components with large text collections and high performance computing