
ANALISI 1		28 novembre 2013			
Cognome:	Nome:	Fir	ma:		
CS	Professore E.Maluta		Matricola	2	

- Una ed una sola delle quattro affermazioni è corretta. Indicarla con una croce.
- È consentita una sola correzione per ogni domanda: per annullare una risposta ritenuta errata racchiuderla in un cerchio.
- 1. Data la successione di numeri reali $\{a_n\}$, per $n \to +\infty$ si ha $\lim \frac{n^2 3n + 5}{n^{2/3} a_n \log n} = 2$ \boxed{a} mai; $\boxed{b} \iff \lim a_n = +\infty \iff a_n \sim n^{4/3}$; $\boxed{c} \iff \lim a_n = +\infty$; $\boxed{d} \iff a_n \sim \frac{n^{4/3}}{2}$.
- 2. Sia $\{a_n\}$ una successione monotona strettamente decrescente e sia $\lim_{n\to +\infty} |a_n| = a \neq 0$. Allora $\boxed{a} \ \forall \epsilon, \ 0 < \epsilon < a, \ a_n \notin (-\epsilon, \epsilon)$ definitivamente per $n \to +\infty$; $\boxed{b} \ \lim_{n\to +\infty} a_n = a$; $\boxed{c} \ \lim_{n\to +\infty} a_n = -a$; $\boxed{d} \ \lim_{n\to +\infty} a_n$ può non esistere.
- 3. La successione $\{n(\log \frac{1}{n^{\alpha}})^{\frac{1}{3}})\}$ è infinitesima $\boxed{a}\iff \alpha>3; \boxed{b}\iff \alpha>1; \boxed{c}\iff \alpha>0; \boxed{d}$ per nessun $\alpha\in\mathbf{R}\setminus\{0\}$.
- 4. $\forall \alpha, \beta \in \mathbf{R}$ tali che $\alpha < \beta < 0$ è vero che \boxed{a} $\alpha^2 > \beta^2$; \boxed{b} $(\frac{1}{2})^{\alpha} < (\frac{1}{2})^{\beta}$; \boxed{c} $\sin \alpha < \sin \beta$; \boxed{d} $\cos \alpha > \cos \beta$.
- 5. $\lim_{x\to+\infty} \frac{x^7 e^{5x}}{x^5 e^{7x}}$ vale $\boxed{a} + \infty; \boxed{b} e^{-2}; \boxed{c} 0; \boxed{d} \frac{7}{5}.$
- 6. L' insieme di soluzioni della disequazione |(2-x)(1-x)|>2 è della forma a (a,b); b $(-\infty,+\infty)$; c $(-\infty,a)\cup(b,+\infty)$; d $(-\infty,a)$.
- 7. Le soluzioni in C dell' equazione $z^2=2i$ sono \boxed{a} z=-4; \boxed{b} $z=\pm\sqrt{2}(1+i);$ \boxed{c} $z=\pm(1+i);$ \boxed{d} $z=\pm\sqrt{2}i.$