Measuring COVID-19 economic and epidemiological countermeasures impact

Massimo Mengarda - Matteo Bortolon

Simulation - Architecture

Epidemiological component - Environment

Bipartite graph

CBGs

POIs

Epidemiological component - Data

Core POI

Weekly Patterns

Home Summary

POI Area

American Community Survey - 2016

(US Census Bureau)

Social Distancing

Epidemiological component - Model

Epidemiological component - Model

Epidemiological component - Model

$$N_{c_{i}} = S_{c_{i}}^{(t)} + E_{c_{i}}^{(t)} + I_{c_{i}}^{(t)} + R_{c_{i}}^{(t)}$$

$$\Delta S_{c_{i}}^{(t)} = -N_{S_{c_{i}} \to E_{c_{i}}}^{(t)}$$

$$\Delta E_{c_{i}}^{(t)} = N_{S_{c_{i}} \to E_{c_{i}}}^{(t)} - N_{E_{c_{i}} \to I_{c_{i}}}^{(t)}$$

$$\Delta I_{c_{i}}^{(t)} = N_{E_{c_{i}} \to I_{c_{i}}}^{(t)} - N_{I_{c_{i}} \to R_{c_{i}}}^{(t)}$$

$$\Delta R_{c_{i}}^{(t)} = N_{I_{c_{i}} \to R_{c_{i}}}^{(t)}$$

Epidemiological component - Initialization

$$S_{c_i}^{(0)} = N_{c_i} - E_{c_i}^{(0)}$$

$$E_{c_i}^{(0)} = Binom(N_{c_i}, p_0)$$

$$I_{c_i}^{(0)} = 0$$

$$R_{c_i}^{(0)} = 0$$

Epidemiological component - Simulation

$$\begin{split} N_{S_{c_{i}} \to E_{c_{i}}}^{(t)} &= Binom(w_{ij}^{(t)} \cdot \frac{S_{c_{i}}^{(t)}}{N_{c_{i}}}, \lambda_{p_{j}}^{(t)}) + Binom(S_{c_{i}}^{(t)}, \lambda_{c_{i}}^{(t)}) \\ N_{E_{c_{i}} \to I_{c_{i}}}^{(t)} &= Binom(E_{c_{i}}^{(t)}, \frac{1}{\delta_{E}}) \\ N_{I_{c_{i}} \to R_{c_{i}}}^{(t)} &= Binom(I_{c_{i}}^{(t)}, \frac{1}{\delta_{I}}) \\ \lambda_{c_{i}}^{(t)} &= \beta_{base} \frac{I_{c_{i}}^{(t)}}{N_{c_{i}}} \end{split}$$

Epidemiological component - Grid Search

 β_{base}

Transmission constant for CBGs

10 values in the range 0.0012 - 0.024

Ψ

Transmission constant for POIs

9 values in the range 0.001 - 50 \mathbf{O}_0

Probability of being exposed at time t_o

These 10 values 1.10⁻² 5.10⁻³ 2.10⁻³ 1.10⁻³ 5.10⁻⁴, 2.10⁻⁴ 1.10⁻⁴ 5.10⁻⁵ 2.10⁻⁵ 1.10⁻⁵

Economic component - Input Output Theory

Economic Activities	1	2	3	 Z	Final Demand	Exports
1						
2						
3						
Z						
Imports						

Countermeasure component

Closure of food activities

Closure of cinemas and theaters

Closure of religious organizations

Closure of food activities after 18

Implementation

O PyTorch

AMD 3900X - 64 GB -Nvidia RTX 3090 (using the sparse matrix capabilities)

Grid Search ~7 days

Single simulation on SSD ~7 minutes

Single simulation on HDD ~1 hour

Area and Period

Results - Cumulative real / simulated cases

Results - Countermeasure effects (1)

Results - Countermeasure effects (2)

Results - Countermeasure economic impact (sector viewpoint)

Results - Countermeasure economic effects (economy viewpoint)

Results - Conclusion

Counter-measure	Economic losses (in B\$)	People saved	Cases avoided	Ratio (in M\$ x people saved)
Closure of cinemas and theaters	4.95	336	10365	14.7
Closure of religious organizations	2.14	443	17393	4.8
Only takeaway from food venues	24.19	1389	66837	17.4
Only takeaway from food venues after 18	9.14	682	30629	13.4

Conclusion

- New simulation paradigm, combines Al-like workloads (characterized by the use of large quantities of data) with the classic simulation world
- Fills the gap between agent-oriented simulation and high-level statistical techniques
- Can be improved by correlating the disease spreading mechanisms with people social behaviour inside different POI categories.
- From the economic viewpoint, the main problem is the unavailability of data with finer granularity

Discussion

