¹³²Ba(p,t):XUNDL-1 **2008Su14**

Compiled (unevaluated) dataset from 2008Su14: Eur Phys J A 36, 243 (2008).

Compiled by S. Geraedts and B. Singh (McMaster); Jun 16, 2008.

E=25.0 MeV beam provided by MP-Tandem accelerator at the Maier-Leibnitz Laboratory. Enriched target. Measured triton spectra, angular distributions using Munich Q3D spectrograph and a focal-plane detector. Resolution (FHWM)=8 keV. Comparisons with interacting boson model calculations and O(6) symmetry.

S: LABEL=Relative transfer intensity

$^{130}\mathrm{Ba}$ Levels

E(level)	${ m J}^{\pi}$	L [†]	S	Comments
0	0+	0	100	$d\sigma/d\Omega$ =4.30 mb/sr 4.
357.4 <i>1</i>	2+	2	100	$d\sigma/d\Omega = 264 \ \mu b/sr \ 4$.
908.0 <i>1</i>	2+	2	22	$d\sigma/d\Omega=62.2 \mu b/sr 17.$
1179.5 <i>1</i>	0^{+}	0	1.1	$d\sigma/d\Omega = 60.8 \ \mu b/sr \ 27.$
1422.6 7				$d\sigma/d\Omega=2.0 \ \mu b/sr \ 2.$
1560.4 <i>21</i>				$d\sigma/d\Omega=0.5 \mu b/sr I$.
1815.0 <i>3</i>	3-	3		$d\sigma/d\Omega$ =27.9 μ b/sr 10.
1842.7 <i>3</i>	4+	4		$d\sigma/d\Omega=14.9 \ \mu b/sr \ 7.$
1884.3 <i>4</i>	2+	2	2.4	$d\sigma/d\Omega$ =7.1 μ b/sr 4.
1922.3 2	3-	3		$d\sigma/d\Omega$ =22.6 μ b/sr 9.
2063.4 7	4+	4		$d\sigma/d\Omega=3.1 \ \mu b/sr \ 3.$
2181.5 5				$d\sigma/d\Omega$ =4.7 μ b/sr 3.
2211.2 <i>3</i>	2+	2	4.2	$d\sigma/d\Omega=12.5 \mu b/sr 5.$
2230.1 7	0_{+}	0	0.10	$d\sigma/d\Omega = 6.4 \ \mu b/sr \ 5.$
2259.8 4				$d\sigma/d\Omega$ =4.0 μ b/sr 3.
2280.8 [‡] 4	$(3^-,2^+)$	$(3,2)^{\ddagger}$		$d\sigma/d\Omega$ =34.1 μ b/sr 13.
2287.5 [‡] 4	0_{+}	0_{\ddagger}	1.1	$d\sigma/d\Omega$ =55 μ b/sr 3.
2312.0 6				$d\sigma/d\Omega=3.1 \ \mu b/sr \ 3.$
2328.4 <i>3</i>	4+	4		$d\sigma/d\Omega=25.6 \ \mu b/sr \ 7.$
2361.3 4	2+	2	3.4	$d\sigma/d\Omega$ =9.3 μ b/sr 4.
2380.6 2	$0^{+}\&2^{+}$	0+2	3.6,3.4	E(level): possible doublet.
				$d\sigma/d\Omega=138 \mu b/sr 5.$
2438.9 5				$d\sigma/d\Omega=1.1 \ \mu b/sr \ 3.$
2469.6 5	(2^{+})	(2)	1.3	$d\sigma/d\Omega = 3.8 \ \mu b/sr \ 5.$
2507.6 4	(6 ⁺)	(6)		$d\sigma/d\Omega = 17.0 \ \mu b/sr \ 5.$
2526.0 5	0+	0	0.5	$d\sigma/d\Omega=15.2 \ \mu b/sr \ 8.$
2555.5 5	2+	2	2.4	$d\sigma/d\Omega = 7.4 \ \mu \text{b/sr} \ 5.$
2596.3 8	2 ⁺	2	1.3	$d\sigma/d\Omega = 4.0 \ \mu \text{b/sr} \ 5.$
2614.0 7	2+	2	1.8	$d\sigma/d\Omega=4.7 \mu b/sr 5.$

 $^{^\}dagger$ From comparison of measured angular distributions with DWBA calculations.

[‡] The 2280.8 and 2287.5 peaks are not well separated. While L=0 is fairly certain for 2287.5 peak, L assignment is not certain for 2280.8 peak; L=3 fit is somewhat better than L=2.

122 Sn(12 C,4n γ):ce:XUNDL-2 **2012Pe02**

Compiled (unevaluated) dataset from 2012Pe02: Acta Phys Pol B43, 273 (2012).

Compiled by E. Thiagalingam and B. Singh (McMaster); May 29, 2012.

¹²Li beam at E(lab)=68 MeV provided by the U-200P cyclotron of the Heavy Ion Laboratory, University of Warsaw. Target=3.5 mg/cm² ¹²²Sn (enriched to 99%). The γ and ce measurements were made by EAGLE array consisting of 12 HPGe ACS detectors coupled to the electron spectrometer. Measured reaction products, E γ , I γ , ce, (ce) γ -, $\gamma\gamma$ -coin, isomer half-life. Deduced J, π , decay of the isomeric state, internal conversion coefficients.

¹³⁰Ba Levels

E(level)	J^{π}	$T_{1/2}$	Comments
0	0+		
357	2+		
902	4+		
908	2+		
1361	3+		
1593	6+		
2013	5 ⁺		
2395	8+		
2475	8-	9.4 ms 4	%IT=100
			$T_{1/2}$: from Adopted dataset for ¹³⁰ Ba in ENSDF database. Configuration= $v7/2$ [404] $\otimes v9/2$ [514].

 $\gamma(^{130}\text{Ba})$

E_{γ}	$E_i(level)$	\mathbf{J}_i^{π}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult.	δ	Comments
80	2475	8-	2395 8+			
357	357	2+	$0 \ 0^{+}$			
420	2013	5+	1593 6 ⁺			
453	1361	3+	908 2+			
459	1361	3 ⁺	902 4+			
462	2475	8-	2013 5+	E3		$\alpha(K)\exp=0.022$ 6; $\alpha(L)\exp+\alpha(M)\exp=0.008$ 2
545	902	4+	357 2 ⁺			
551	908	2+	357 2+			
652	2013	5 ⁺	1361 3 ⁺			
691	1593	6+	902 4+			
802	2395	8+	1593 6 ⁺			
882	2475	8-	1593 6 ⁺	M2+E3	0.5 4	$\alpha(K)\exp=0.0062\ 5;\ \alpha(L)\exp+\alpha(M)\exp=0.0123\ 15$
						Mult.: 34% E3 + 66% M2.
908	908	2+	$0 \ 0^{+}$			
1004	1361	3+	357 2+	M1+E2		$\alpha(K) \exp = 0.0020 9$
1111	2013	5+	902 4+			

122 Sn(12 C,4n γ):ce:XUNDL-2 2012Pe02

Level Scheme

Compiled (unevaluated) dataset from 2014Ka07: Eur Phys J A 50, 5 (2014).

Compiled by B. Singh (McMaster), Jan 30, 2014.

Edited by B. Singh, Feb 7, 2014 in response to e-mail reply of Feb 4, 2014 from first author (N. Kaur) of 2014Ka07 with some data details provided.

Edited by B. Singh, Feb 17, 2014 in response to e-mail reply of Feb 16, 2014 from first author (N. Kaur) of 2014Ka07 with some data details provided; more current version of intensity table.

E=65 MeV from 15 UD Pelletron facility at IUAC, New Delhi. Measured E γ , I γ , $\gamma\gamma$ coin, $\gamma\gamma(\theta)$ (DCO). Only a level scheme is provided in the paper with no details about precise E γ , I γ data and angular correlation and polarization results. Discussed staggering in negative-parity band. Comparison with TRS calculations.

A large part of the level scheme and band structure agrees with earlier data, as presented in Adopted Levels of ¹³⁰Ba in ENSDF database.

¹³⁰Ba Levels

E(level) ^{†c}	\mathbf{J}^{π}	Comments
0.0‡	0+	
357.0 [‡] 4	2+	
888.8 7		
901.1 [‡] 5	4+	
907.4 ^b 4	2+	
1359.8 ^b 5	3+	
1476.8 ^b 5 1544.3 8	4+	
1592.3 [‡] 6	6+	
2011.4 <mark>b</mark> 6	5+	
2100.5 ^b 6	6+	
2167.8 ^{&} 6 2182.4 8 2229.8 10 2275.7 7	5-	
2394.4 [‡] 7	8+	
2473.7 <mark>b</mark> 8	7+	E(level), J^{π} : see comment for 2475 level. In e-mail communication, no J^{π} value is cited.
2474.6 8	8+	E(level), J^{π} : in Adopted Levels for ¹³⁰ Ba in ENSDF database, this level is an isomer with $J^{\pi}=8^-$ and $T_{1/2}=9.4$ ms; decaying by three γ rays: 80.3, 462.3, and 882.3 keV. But in 2014Ka07, 462 γ is placed from a 7 ⁺ level and 882 γ from an 8 ⁺ level, both levels near the same energy, with no comparisons made with previous results. In figure 3 of 2014Ka07, no DCO data are shown for 462 γ and 882 γ . In the opinion of the compiler, there is not enough evidence in 2014Ka07 for two separate levels at 2474, 7 ⁺ and 2475, 8 ⁺ . In e-mail communication, $J^{\pi}=8^-$.
2567.7 <mark>&</mark> 6	7-	
2799.1 ^b 7 2927.6 9	8+	
2928.1 ^a 7	8-	
3066.0 ^{&} 7	9-	
3259.2 [‡] 8 3289.4 <i>9</i>	10 ⁺	
3422.2# 8	10+	
3434.0^a 7	10-	
3601.9 ^b 7	10+	
3658.0 ^{&} 8	11-	
3788.9 [@] 9 3961.8 9	10^{+}	
3988.9 [#] 8	(11 ⁺) 12 ⁺	

¹²²Sn(¹³C,5nγ):XUNDL-3 **2014Ka07** (continued)

¹³⁰Ba Levels (continued)

$E(level)^{\dagger c}$	J^{π}	E(level) ^{†c}	J^{π}	E(level) ^{†c}	J^{π}	$E(level)^{\dagger c}$	J^{π}
		4782.6 [#] 10					
		4878.3 <mark>a</mark> 9					
		4884.4 [@] 10					
		5154.4 <mark>&</mark> 9					20^{+}
4403.6 9		5678.6 [@] 11	16 ⁺	6716.4 ^a 11	18-		

[†] From least-squares fit to E γ data, assuming 0.5 keV uncertainty for each γ ray.

γ (130Ba)

DCO ratios (gated on $\Delta J=2$, E2 transition) for selected γ rays are given in figure 3 of 2014Ka07; DCO \geq 1 for 400, 499, 506, 624, 643, 699, 801 and 887 γ rays; DCO \approx 0.5 for 224, 276, 361, 453, 1120, and 1267 γ rays; former being stretched quadrupoles, and the latter stretched dipoles or dipole with some quadrupole admixture. Values are from e-mail reply of Feb. 4, 2014 from the first author N. Kaur.

E_{γ}^{\dagger}	I_{γ}^{\dagger}	$E_i(level)$	\mathbf{J}_i^{π}	\mathbf{E}_f \mathbf{J}_f^{π}	Comments
138 [‡]	0.11 5	3066.0	9-	2928.1 8	
163	0.51 14	3422.2	10 ⁺	3259.2 10 ⁺	
224 [‡]	0.13 7	3658.0	11-	3434.0 10-	DCO=0.35 6
276 ^{#‡}	0.12 10	4353.1	13-	$4077.0 \ 12^{-}$	DCO=0.54 9
276 ^{#‡}		5154.4	15-	4878.3 14-	
357	100.0	357.0	2+	$0.0 0^{+}$	
360.6	5.7 6	2928.1	8-	2567.7 7-	DCO=0.57 2
368	2.4 3	3434.0	10^{-}	3066.0 9-	
399.8	8.5 6	2567.7	7-	2167.8 5	DCO=1.17 3
419 [#]		2011.4	5+	1592.3 6 ⁺	
419 [#]	1.6 3	4077.0	12-	3658.0 11-	
442 [‡]	0.58 28	4403.6		3961.8 (11 ⁺)	
452	2.4 3	1359.8	3 ⁺	907.4 2+	DCO=0.36 5
					E_{γ} : 453 in 2014Ka07.
462.3	1.0 3	2473.7	7+	2011.4 5+	1
466.1	0.9 2	4255.2	12 ⁺	3788.9 10 ⁺	
467.1	0.8 2	2567.7	7-	2100.5 6+	
498	17.4 11	3066.0	9-	2567.7 7-	DCO=0.95 17
					Additional information 1.
506	4.6 7	3434.0	10-	2928.1 8-	DCO=1.30 5
525 [‡]		4878.3	14^{-}	4353.1 13-	
529.5	1.2 4	3788.9	10^{+}	3259.2 10 ⁺	
531.8	2.6 4	888.8		357.0 2 ⁺	

[‡] Band(A): g.s. band.

[#] Band(B): Band based on 10⁺, 3423.

[@] Band(C): Band based on 10⁺, 3790.

[&]amp; Band(D): Band based on $5^-, \alpha=1$.

^a Band(d): Band based on $8^-,\alpha=0$.

^b Band(E): γ band.

 $[^]c$ If $\Delta E \gamma$ not given, ± 0.50 keV assumed for least-squares fitting.

¹²²Sn(¹³C,5nγ):XUNDL-3 **2014Ka07** (continued)

γ (130Ba) (continued)

Say 1	$\mathrm{E}_{\gamma}^{\dagger}$	${\rm I}_{\gamma}{}^{\dagger}$	$E_i(level)$	J_i^{π}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Comments
59.3	539.7	1.2 6	3961.8	(11^{+})		
550.3		77.5 22				
566.7 2.1 5 3988.9 12* 3422.2 10* 569.5 2.4 5 1476.8 4* 901.1 4* 575.5 3.2 5 1476.8 4* 901.1 4* 575.5 3.2 5 1476.8 4* 901.1 4* 575.5 3.2 5 1476.8 5* 1592.3 6* 590.1 2.7 5 2182.4 1592.3 6* 590.1 2.7 5 2182.4 1592.3 6* 590.2 143.5 368.0 11* 3066.0 9* 611* 5765.4 16* 15476.8 4* 629.2 4.1 7 4884.4 14* 4255.2 12* 643 4.5 6 4077.0 12* 3434.0 10* 651.5 2.1 5 2011.4 5* 1339.8 3* 655.5 2.7 4 1544.3 888.8 655.5 2.7 4 1544.3 888.8 671.8 1.7 3 3066.0 9* 2394.4 8* 685.5 1.7 3 2229.8 1544.3 685.5 1.7 3 2229.8 1544.3 685.1 12.4 7 4884.4 13* 3688.0 11* 685.1 12.4 7 4353.1 13* 3658.0 11* 685.1 12.4 7 4353.1 13* 3658.0 11* 685.1 12.4 7 4884.4 14* 477.0 12* 745.2 0.8 4 2927.6 2182.4 793.7 4.0 9 4782.6 16* 4884.4 14* 801.4 8 3.5 4.8 8 154.4 15* 801.4 9 3.5 4.8 8 154.4 15* 802.8 2.5 5 3601.9 10* 2394.4 8* 801.4 3259.2 10* 2394.4 8* 801.4 3259.2 10* 2394.4 8* 881.8 1.00.2 6036.2 17* 882.3 10.3 8 2474.6 8* 1592.3 6* 885.8 1.0 0.2 6036.2 17* 575.5 4 67 7.7 150.3 6* 886.8 1.8 0.2 2 6036.2 17* 575.5 12.4 4 4878.3 14* 677.0 12* 679.7 2 18 907.4 2* 679.7 3 2 2 3 2 4 5678.6 16* 887 756.4 16* 8* 154.4 15* 882.3 10.3 8 2474.6 8* 1592.3 6* 885.8 1.8 0.2 2 6036.2 17* 575.5 12.4 7 491.6 20* 6636.3 18* 887 756.4 16* 996.2 4 6 7 4255.2 12* 3259.2 10* 996.2 4 6 7 40 40 40 40 40 40						
575.5 3.2 5 1476.8 4* 901.1 4* 575.5 5.5 3.2 5 1476.8 5* 1592.3 6* 590.1 2.7 5 2182.4 1592.3 6* 590.1 2.7 5 2182.4 1592.3 6* 590.1 2.7 5 2182.4 1592.3 6* 590.1 2.7 5 5.5 1.1 3 3066.0 9* 51.1 52.1 7 4881.4 14* 4255.2 12* 463.3 4.5 6 4077.0 12* 3434.0 10* DCO=0.97.3 651.5 2.7 4 1544.3 888.8 671.8 1.7 3 3066.0 9* 685.5 1.7 3 229.8 1544.3 888.8 6611.8 1.7 3 3066.0 9* 691.1 67.7 22 1592.3 6* 901.1 4* 695.1 12.4 7 4353.1 13* 3658.0 11* 698.7 4.6 7 2799.1 8* 2100.5 6* 729.7 5.2 8 398.9 12* 3259.2 10* 2182.4 4* 40.1 40.1 40.1 40.1 40.1 40.1 40.1 40.1	566.7		3988.9	12 ⁺	3422.2 10 ⁺	
190.1 1.2 2 2167.8 5 1902.3 6			1476.8			
590.1 2.7.5 2182.4 1592.3 6' 592 14.3 5868.0 11" 3066.0 9" 611* 5765.4 16" 5154.4 15" 623.8 3.3.7 2100.5 6" 1476.8 4" 629.2 4.17 4884.4 14" 4255.2 12" 631.5 2.15 2011.4 5" 1359.8 3" 655.5 2.74 1544.3 888.8 8 671.8 1.73 306.0 9" 2394.4 8" 685.5 1.73 229.8 1544.3 888.8 691.1 67.72 1592.3 6" 901.1 4" 698.7 46.7 2799.1 8" 2100.5 6" 202.9 10" 794.2 2.0.4 5678.6 16" 4884.4 14" 509.1 14" 35.6" 44"878.3 14" 4077.0 12" DCO=0.98.4 801.4 82.5 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>						
592		1.2 2		5-		
611\$ 623.8 3.3 7 2100.5 6* 629.2 4.17 4884.4 14* 4255.2 12* 643 4.5 6 4077.0 12* 3434.0 10* 651.5 2.7 4 1544.3 888.8 6571.8 1.7 3 306.0 97 2394.4 8* 685.5 1.7 3 229.8 1544.3 695.1 12.4 7 4353.1 13* 3658.0 11* 695.1 12.4 7 4353.1 13* 3658.0 11* 695.1 12.4 7 4353.1 13* 3658.0 11* 695.1 12.4 7 4353.1 13* 3658.0 11* 695.1 12.4 7 4353.1 13* 3658.0 11* 695.1 12.4 7 4353.1 13* 3658.0 11* 695.1 12.4 7 4353.1 13* 3658.0 11* 695.1 12.4 7 4353.1 13* 3658.0 11* 695.1 12.4 7 4353.1 13* 3658.0 11* 695.1 12.4 7 4353.1 13* 3658.0 11* 695.1 12.4 7 4353.1 13* 3658.0 11* 695.1 12.4 7 435.3 10.4 4 435.3 10.4 4 435.3 10.4 4 435.4 10.4 4 1						
623.8 3.3 7 2100.5 6+ 1476.8 4+ C525.2 12+ 255.2 12+ 255.2 16+ 255.5 21.5 2011.4 5+ 1359.8 3+ 255.2 16+ 255.5 21.5 2011.4 5+ 1359.8 3+ 255.2 16+ 255.5 21.7 4 1544.3 888.8 671.8 1.7 3 3066.0 9- 2394.4 8+ 255.2 12+ 255.2 16+ 255.2 12+ 255.2 16+ 255.2 12+ 255.2 16+ 255.2 12+ 255.2 16+ 255.2 12+ 255.2 16+ 255.2 12+ 255.2 16+ 255.2 12+ 255.2 16+ 255.2 12+ 255.2 16+ 255.2 12+ 255.2 16+ 255.2 12+ 255.2 16+ 255.2 16+ 255.2 12+ 255.2 16+ 255		14.3 5				
6292 4.1 7 488.4 14* 4255.2 12* 631.5 2.1 5 2011.4 5* 1359.8 3* 655.5 2.7 4 1544.3 888.8 655.5 1.7 3 2229.8 1544.3 685.5 1.7 3 2229.8 1544.3 695.1 12.4 7 4353.1 13* 3658.0 11* 698.7 4.6 7 2791.1 8* 2100.5 6* 729.7 5.2 8 3988.9 12* 3259.2 10* 745.2 0.8 4 2927.6 12* 3259.2 10* 793.7 4.0 9 4782.6 14* 3988.9 12* 794.2 2.0 4 5678.6 16* 4884.4 14* 801.4 9 3.5 9 4 4878.3 14* 4077.0 12* 801.4 5.4 8 5154.4 15* 4353.1 13* 802.3 28.0 6 2394.4 8* 1592.3 6* 802.8 2.5 5 3601.9 10* 2394.4 8* 802.8 2.5 5 3601.9 10* 2394.4 8* 888.8 1.00.2 6036.2 17* 882.3 10.5 8 2474.6 8* 1592.3 6* 885* 3.0 7 6563.6 18* 895. 3.0 7 6563.6 18* 907.4 2.1 8 907.4 2* 0.0 0* 928. 1.2 4 7491.6 20* 0.0 0* 931. 1.3 7 213 2567.7 7* 941. 2 4 4 403.6 3422.2 10* 996.2 4 3.9 7 4221.6 12* 3259.2 10* 991. 2 4 4 7482.6 14* 996.2 4 3.9 7 4221.6 12* 3259.2 10* 996.2 4 4.6 7 4255.2 12* 3259.2 10* 1003.2 2.3 5 1359.8 3* 357.0 2* 1007.1 4 5 3289.4 110.4 1.8 7 2011.4 5* 9011.4 4* 110.9 3.9 5 1476.8 4* 357.0 2* 1007.4 2.4 6 3601.9 10* 2394.4 8* 1100.4 1.8 7 2010.5 6* 901.1 4* 1107. 1.4 5 3290.4 10* 1108. 3.9 5 1476.8 4* 357.0 2* 1207.4 2.4 6 3601.9 10* 2394.4 8* 1100.4 1.8 7 2011.4 5* 1207.4 2.4 6 3601.9 10* 2394.4 8* 1100.4 1.8 7 2011.4 5* 1107. 4 2.4 6 3601.9 10* 2394.4 8* 1100.4 2.4 6 3601.9 10* 2394.4 8* 1100.4 2.4 6 3601.9 10* 2394.4 8* 1100.4 2.4 6 3601.9 10* 2394.4 8* 1100.4 2.4 6 3601.9 10* 2394.4 8* 1100.4 2.4 6 3601.9 10* 2394.4 8* 1100.4 2.4 6 3601.9 10* 2394.4 8*						
643						DCO=1.08 5
651.5 2.7 4 1544.3 888.8 671.8 1.7 3 3066.0 9" 2394.4 8" 888.8 671.8 1.7 3 3066.0 9" 2394.4 8" 888.8 671.8 1.7 3 2229.8 1544.3 888.8 671.8 1.7 3 2229.8 1544.3 685.5 1.7 3 2229.8 1544.3 685.5 1.7 3 2229.8 1544.3 695.1 12.4 7 4353.1 13" 3658.0 11" 698.7 4.6 7 2799.1 8" 2100.5 6" DCO=1.07 5 729.7 5.2 8 3988.9 12" 3259.2 10" 745.2 0.8 4 2927.6 2182.4 793.7 4.0 9 4782.6 14" 3988.9 12" 794.2 2.0 4 5678.6 16" 4884.4 14" 801.4 8" 3.5 4 4878.3 14" 4077.0 12" DCO=0.98 4 801.4 8" 3.5 4 4878.3 14" 4077.0 12" DCO=0.98 4 801.4 8" 3.5 4 4878.3 14" 4077.0 12" DCO=0.98 4 801.4 8" 3.5 4 4878.3 14" 4077.0 12" DCO=0.98 4 802.3 28.0 6 2394.4 8" 1592.3 6" 882.3 10.5 8 2474.6 8" 1592.3 6" 882.3 10.5 8 2474.6 8" 1592.3 6" 885.3 10.5 8 2474.6 8" 1592.3 6" 885.3 10.5 8 2474.6 8" 1592.3 6" 885.3 10.5 8 2474.6 8" 1592.3 6" 885.4 15.2 4 474.6 2" 0.0 0" 998.4 15.2 4 474.6 2" 0.0 0" 998.4 15.2 4 474.6 2" 0.0 0" 998.4 15.2 4 474.6 2" 0.0 0" 998.4 15.2 4 474.6 2" 0.0 0" 998.4 15.2 4 474.6 2" 0.0 0" 998.4 15.2 4 474.6 2" 0.0 0" 0.0 0" 998.4 15.2 4 474.6 2" 0.0 0"						700 007 0
655.5 2.7 4 1544.3 888.8 671.8 1.7 3 3066.0 9 2394.4 8 4 685.5 1.7 3 229.8 1544.3 691.1 677.7 22 1592.3 6 4 901.1 4 695.1 12.4 7 4353.1 13 3658.0 11 698.7 4.6 7 2799.1 8 2100.5 6 4 729.7 52.8 398.9 12 4 729.7 52.8 38.4 2927.6 2182.4 793.7 40.9 4782.6 14 4 3988.9 12 4 793.7 40.9 4782.6 14 4 4884.4 14 4 801.4 5 506.1 4 4878.3 14 4 477.0 12 500.8 4 2394.4 8 4 1592.3 6 4 802.3 28.0 6 2394.4 8 7 1592.3 6 4 802.3 28.0 6 2394.4 8 7 1592.3 6 4 802.3 28.0 6 2394.4 8 7 1592.3 6 4 888.8 1.00 22 6036.2 17 5154.4 15 882.3 10.5 8 2474.6 8 7 1592.3 6 4 888.8 1.00 22 6036.2 17 5154.4 15 882.3 10.5 8 2474.6 8 7 1592.3 6 4 888.8 1.00 22 6036.2 17 5154.4 15 882.3 10.5 8 2474.6 8 7 1592.3 6 4 878.3 14 5 1692.4 6 8 1592.3 6 6 16 885 7 5765.4 16 4878.3 14 5 1692.4 6 18 1592.3 6 18 1592.3 6 6 18 1592.3 6 6 18 1592.3 6 6 18 1592.3 6 6 18 1592.3 6 6 18 1592.3 6 18 15						DCO=0.97 3
671.8				2,		
685.5 17 3 2229.8 1544.3 691.1 677.22 1592.3 6+ 901.1 4+ 695.1 12.4 7 4353.1 13- 3658.0 11- 7297.1 8+ 2100.5 6+ 745.2 0.8 4 2927.6 2182.4 793.7 40.9 4782.6 14+ 3988.9 12+ 794.2 2.0 4 5678.6 16+ 4884.4 14+ 3988.9 12+ 794.2 2.0 4 5678.6 16+ 4884.4 14+ 801.4 8- 54.6 8- 54.				0-		
691.1 67.7 22 1592.3 6+ 901.1 4+ 695.1 12.4 7 4353.1 13- 3658.0 11- 698.7 4.6 7 2799.1 8+ 2100.5 6+ 2182.4 793.7 40.9 4782.6 14+ 3988.9 12+ 3259.2 10+ 2182.4 793.7 40.9 4782.6 16+ 4884.4 14+ 801.4 3.5 4 4878.3 14- 4077.0 12- DCO=0.98 4 801.4 5678.6 16+ 4884.4 14+ 802.8 2.5 5 3601.9 10+ 2799.1 8+ 864.8 20.6 1.4 3259.2 10+ 2394.4 8+ 1592.3 6+ 885.3 10.5 8 2474.6 8+ 1592.3 6+ 882.3 10.5 8 2474.6 8+ 1592.3 6+ 885.3 10.9 22 6036.2 17- 5154.4 16- 4878.3 14- 907.4 2.1 8 907.4 2.1 8 907.4 2+ 0.0 0+ 288.7 5765.4 16- 4878.3 14- 906.4 18.6 5728.6 16+ 4782.6 14+ 829.6 14+ 829.6 14+ 82				9		
695.1 12.4 7 4353.1 137 3658.0 117 729.1 8				6+		
698.7						
729.7 5.2 8 398.8 9 12+ 3259.2 10+ 745.2 0.8 4 2927.6 14+ 3988.9 12+ 793.7 4.0 9 4782.6 14+ 3988.9 12+ 794.2 2.0 4 5678.6 16+ 4884.4 14+ 801.4 5.4 6 5678.6 16+ 4884.4 14+ 801.4 5.4 6 5678.6 16+ 4884.4 14+ 801.4 5.4 6 5678.6 16+ 4884.4 14+ 801.4 5.4 6 5678.6 16+ 4884.4 14+ 801.4 5.4 6 5678.6 16+ 4878.3 14- 4077.0 12- DCO=0.98 4 801.4 5.5 6 3601.9 10+ 2799.1 8+ 848.8 1.0 0.2 6036.2 17- 5154.4 15- 885.3 10.5 8 2474.6 8+ 1592.3 6+ 885.3 10.5 8 2474.6 8+ 1592.3 6+ 885.3 10.5 8 2474.6 8+ 1592.3 6+ 887 5765.4 16- 4878.3 14- DCO=1.07 6 907.4 2.1 8 907.4 2+ 0.0 0+ 0.0 0+ 928.7 1.2 4 7491.6 20+ 6563.6 18+ 5678.6 16+ 4782.6 14+ 893.6 3.6 5 6972.2 19- 6036.2 17- 946 1.8 6 5728.6 16+ 4782.6 14+ 591.4 19.9 1.7						DCO=1.07.5
745.2 0.8 4 2927.6 2182.4 793.7 4.0 9 4782.6 14 ⁺ 3988.9 12 ⁺ 794.2 2.0 4 5678.6 16 ⁺ 4884.4 14 ⁺ 801.4 3.5 4 4878.3 14 ⁻ 4077.0 12 ⁻ DCO=0.98 4 801.4 5.4 8 5154.4 15 ⁻ 4353.1 13 ⁻ 802.3 28.0 6 2394.4 8 ⁺ 1592.3 6 ⁺ 802.8 2.5 5 3601.9 10 ⁺ 2799.1 8 ⁺ 864.8 20.6 14 3259.2 10 ⁺ 2394.4 8 ⁺ 881.8 1.00 22 6036.2 17 ⁻ 5154.4 15 ⁻ 882.3 10.5 8 2474.6 8 ⁺ 1592.3 6 ⁺ 885 3.0 7 6563.6 18 ⁺ 5678.6 16 ⁺ 887 5765.4 16 ⁻ 4878.3 14 ⁻ DCO=1.07 6 907.4 2.1 8 907.4 2 ⁺ 0.0 0 ⁺ 928 1.2 4 7491.6 20 ⁺ 6563.6 18 ⁺ 936 3.6 5 6972.2 19 ⁻ 6036.2 17 ⁻ 946 1.8 6 5728.6 16 ⁺ 4782.6 14 ⁺ 975.3 17.2 13 2567.7 7 1592.3 6 ⁺ 891.2 1.4 4 4403.6 3422.2 10 ⁺ 996.2 4.6 7 4255.2 12 ⁺ 3259.2 10 ⁺ 1032.2 2.3 5 1359.8 3 ⁺ 357.0 2 ⁺ 1037.3 0.7 3 6755.9 18 ⁺ 5728.6 16 ⁺ 1047.3 259.4 147.6 148 18 ⁻ 5728.6 16 ⁺ 1047.3 3.9 5 1476.8 4 ⁺ 357.0 2 ⁺ 10404 2.5 5 7795.9 20 ⁺ 6755.9 18 ⁺ 1107 1.4 5 3289.4 2182.4 1110.4 1.8 7 2011.4 5 ⁺ 901.1 4 ⁺ 1119.8 3.9 5 1476.8 4 ⁺ 357.0 2 ⁺ 1199.3 1.7 7 2100.5 6 ⁺ 901.1 4 ⁺ 1207.4 2.4 6 3601.9 10 ⁺ 2394.4 8 ⁺ 1CO=0.469 24						
793.7						
794.2	793.7			14 ⁺		
801.4 $^{\textcircled{0}}$ 5.4 $^{\textcircled{0}}$ 8 5154.4 15 4353.1 13 802.3 28.0 6 2394.4 8 1592.3 6 802.8 2.5 5 3601.9 10 2799.1 8 8 864.8 20.6 IA 3259.2 10 2394.4 8 8 881.8 1.00 22 6036.2 17 5154.4 15 882.3 10.5 8 2474.6 8 1592.3 6 885 ‡ 3.0 7 6563.6 18 5678.6 16 887 5765.4 16 4878.3 14 DCO=1.07 6 907.4 2.1 8 907.4 2 9.0 00 9 928 ‡ 1.2 4 7491.6 20 6563.6 18 5765.4 16 946.4 18 6 5728.6 16 4782.6 14 Ey: 947 in 2014Ka07. 951 ‡ 0.4 4 6716.4 18 5765.4 16 962.4 3.9 7 4221.6 12 3259.2 10 975.3 17.2 $I3$ 2567.7 7 1592.3 6 981.2 1.4 4 4403.6 342.2 10 996.2 4.6 7 4255.2 12 3259.2 10 1027.3 0.7 3 6755.9 18 5758.9 18 5758.9 18 5758.9 18 1007.8 4.3 5 3422.2 10 527.8 4.3 5 3422.2 10 527.8 4.3 5 3422.2 10 527.8 4.3 5 322.2 10 527.8 4.3 5 322.2 10 527.8 4.3 5 322.2 10 527.8 4.3 5 322.2 10 527.8 4.3 5 322.2 10 527.8 4.3 5 322.2 10 527.8 4.3 5 322.2 10 527.8 4.3 5 322.2 10 527.8 4.3 5 322.2 10 527.8 4.3 5 322.2 10 527.8 4.3 5 322.2 10 527.8 4.3 5 322.2 10 527.8 4.3 5 322.2 10 527.8 4.3 5 322.2 10 527.8 4.3 5 322.2 10 527.8 4.3 5 322.2 10 527.8 4.3 5 322.2 10 527.8 4.3 5 322.2 10 527.8 4.3 5 328.9 4 1110.4 1.8 7 2011.4 5 901.1 4 5 110.8 4 1.8 7 2011.4 5 901.1 4 111.9 8 3.9 5 1476.8 4 5 357.0 2 5 5 7795.9 20 6 6755.9 18 5 110.7 1.4 5 328.4 4 1110.4 1.8 7 2011.4 5 901.1 4 1110.8 1.8 7 2011.8 5 901.1 4 1110.8 1.8 7 2011.4 5 901.1 4 1110.8 1.8 7 2011.4 5 901.1 4 1110.8 1.8 7 2011.4 5 901.1 4 1110.8 1.8 7 2011.4 5	794.2	2.0 4		16 ⁺	4884.4 14 ⁺	
801.4 802.3 28.0 6 2394.4 8	801.4 [@]	3.5 [@] 4	4878.3	14^{-}	4077.0 12-	DCO=0.98 4
802.3 28.0 6 2394.4 8 ⁺ 1592.3 6 ⁺ 802.8 2.5 5 3601.9 10 ⁺ 2799.1 8 ⁺ 864.8 20.6 14 3259.2 10 ⁺ 2394.4 8 ⁺ 881.8 1.00 22 6036.2 17 ⁻ 5154.4 15 ⁻ 882.3 10.5 8 2474.6 8 ⁺ 1592.3 6 ⁺ 885. 30.7 6563.6 18 ⁺ 5678.6 16 ⁺ 887 5765.4 16 ⁻ 4878.3 14 ⁻ 907.4 2.1 8 907.4 2 ⁺ 0.0 0 ⁺ 928 [‡] 1.2 4 7491.6 20 ⁺ 6563.6 18 ⁺ 936 3.6 5 6972.2 19 ⁻ 6036.2 17 ⁻ 946 1.8 6 5728.6 16 ⁺ 4782.6 14 ⁺ 896.4 3.9 7 4221.6 12 ⁺ 3259.2 10 ⁺ 975.3 17.2 13 2567.7 7 ⁻ 1592.3 6 ⁺ 981.2 1.4 4 4403.6 3422.2 10 ⁺ 996.2 4.6 7 4255.2 12 ⁺ 3259.2 10 ⁺ 996.2 4.6 7 4255.2 12 ⁺ 3259.2 10 ⁺ 1003.2 2.3 5 1359.8 3 ⁺ 357.0 2 ⁺ 1027.8 4.3 5 3422.2 10 ⁺ 2394.4 8 ⁺ 11040 [‡] 2.5 5 7795.9 20 ⁺ 6755.9 18 ⁺ 1107 1.4 5 3289.4 110.5 14.4 18.7 570.2 2 ⁺ 1119.8 3.9 5 1476.8 4 ⁺ 357.0 2 ⁺ 119.9 3 1.7 7 2100.5 6 ⁺ 901.1 4 ⁺ 1119.8 3.9 5 1476.8 4 ⁺ 357.0 2 ⁺ 1207.4 2.4 6 3601.9 10 ⁺ 2394.4 8 ⁺ 1207.4 2.4 6 360	801 4 [@]	54 [@] 8				
802.8						
864.8 20.6 14 3259.2 10+ 2394.4 8+ 881.8 1.00 22 6036.2 17- 5154.4 15- 882.3 10.5 8 2474.6 8+ 1592.3 6+ 885‡ 3.0 7 6563.6 18+ 5678.6 16+ 887 5765.4 16- 4878.3 14- DCO=1.07 6 907.4 2.1 8 907.4 2+ 0.0 0+ 928‡ 1.2 4 7491.6 20+ 6563.6 18+ 936 3.6 5 6972.2 19- 6036.2 17- 946 1.8 6 5728.6 16+ 4782.6 14+ E _y : 947 in 2014Ka07. 951‡ 0.4 4 6716.4 18- 5765.4 16- 4782.6 14+ E _y : 947 in 2014Ka07. 951‡ 0.4 4 6716.4 18- 5765.4 16- 4782.6 14+ E _y : 947 in 2014Ka07. 951‡ 0.4 4 6716.4 18- 5765.4 16- 4782.6 14+ E _y : 947 in 2014Ka07. 951‡ 0.4 4 6716.4 18- 5765.4 16- 4782.6 14+ E _y : 947 in 2014Ka07. 951‡ 0.4 4 6716.4 18- 5765.4 16- 4782.6 16+ 4782.6 14+ E _y : 947 in 2014Ka07.						
882.3 10.5 8 2474.6 8 ⁺ 1592.3 6 ⁺ 885 [‡] 3.0 7 6563.6 18 ⁺ 5678.6 16 ⁺ 887 5765.4 16 ⁻ 4878.3 14 ⁻ DCO=1.07 6 907.4 2.1 8 907.4 2 ⁺ 0.0 0 ⁺ 928 [‡] 1.2 4 7491.6 20 ⁺ 6563.6 18 ⁺ 936 3.6 5 6972.2 19 ⁻ 6036.2 17 ⁻ 946 1.8 6 5728.6 16 ⁺ 4782.6 14 ⁺ E _y : 947 in 2014Ka07. 951 [‡] 0.4 4 6716.4 18 ⁻ 5765.4 16 ⁻ 962.4 3.9 7 4221.6 12 ⁺ 3259.2 10 ⁺ 975.3 17.2 13 2567.7 7 ⁻ 1592.3 6 ⁺ 981.2 1.4 4 4403.6 3422.2 10 ⁺ 996.2 4.6 7 4255.2 12 ⁺ 3259.2 10 ⁺ 1003.2 2.3 5 1359.8 3 ⁺ 357.0 2 ⁺ 1027.8 4.3 5 3422.2 10 ⁺ 2394.4 8 ⁺ 1040 [‡] 2.5 5 7795.9 20 ⁺ 6755.9 18 ⁺ 1104 1.8 7 2011.4 5 ⁺ 901.1 4 ⁺ 1119.8 3.9 5 1476.8 4 ⁺ 357.0 2 ⁺ DCO=0.77 6 1199.3 1.7 7 2100.5 6 ⁺ 901.1 4 ⁺ 1207.4 2.4 6 3601.9 10 ⁺ 2394.4 8 ⁺ 1206.6 4.5 8 2167.8 5 ⁻ 901.1 4 ⁺ DCO=0.469 24						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	881.8	1.00 22	6036.2	17-	5154.4 15-	
887 907.4 2.1 8 907.4 2.1 8 907.4 2.1 8 907.4 2.1 8 907.4 2.1 8 907.4 2.1 8 907.4 2.1 8 907.4 2.1 8 907.4 2.1 8 907.4 2.1 8 907.4 2.1 8 907.4 2.1 8 907.4 2.1 8 907.4 2.1 8 907.4 2.1 8 908.2 1.2 4 9749.1 2.1 8 962.4 3.9 7 4221.6 12+ 3259.2 10+ 975.3 17.2 13 2567.7 7- 1592.3 6+ 981.2 1.4 4 4403.6 3422.2 10+ 996.2 4.6 7 4255.2 12+ 3259.2 10+ 1003.2 2.3 5 1359.8 3+ 357.0 2+ 1027.3 0.7 3 6755.9 18+ 5728.6 16+ 1027.8 4.3 5 3422.2 10+ 2394.4 8+ 11040 1.4 5 3289.4 2182.4 1110.4 1.8 7 2011.4 5+ 901.1 4+ 1119.8 3.9 5 1476.8 4+ 357.0 2+ DCO=0.77 6 DCO=1.07 6 DCO=1.07 6 DCO=1.07 6 DCO=1.07 6	882.3	10.5 8	2474.6	8+	1592.3 6 ⁺	
907.4 2.1 8 907.4 2^+ 0.0 0^+ 928 [‡] 1.2 4 7491.6 20^+ 6563.6 18^+ 936 3.6 5 6972.2 19^- 6036.2 17^- 946 1.8 6 5728.6 16^+ 4782.6 14^+ E_y : 947 in 2014Ka07. 951 [‡] 0.4 4 6716.4 18^- 5765.4 16^- 962.4 3.9 7 4221.6 12^+ 3259.2 10^+ 975.3 17.2 13 2567.7 7 - 1592.3 6 + 981.2 1.4 4 4403.6 3422.2 10^+ 996.2 4.6 7 4255.2 12^+ 3259.2 10^+ 1003.2 2.3 5 1359.8 3 3 370.2^+ 1027.3 0.7 3 6755.9 18^+ 5728.6 16^+ 1027.8 4.3 5 3422.2 10^+ 2394.4 8 + 1040 [‡] 2.5 5 7795.9 20^+ 6755.9 18^+ 18 10^+ 210.4 10^+ 210.5 10^+ 210.5 10^+ 210.5 10^+ 210.5 10^+ 210.5 10^+ 210.7 10^+ 210.5 10^+ 210.5 10^+ 210.7 10^+ 210.5 10^+ 210.5 10^+ 210.7 10^+ 210.5 10^+ 210.7 10^+ 21	885 [‡]	3.0 7	6563.6	18 ⁺	5678.6 16 ⁺	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				16-		DCO=1.07 6
936		2.1 8	907.4	2+	$0.0 0^{+}$	
946	928 [‡]	1.2 4	7491.6	20^{+}	6563.6 18 ⁺	
951 [‡] 0.4 4 6716.4 18 ⁻ 5765.4 16 ⁻ 962.4 3.9 7 4221.6 12 ⁺ 3259.2 10 ⁺ 975.3 17.2 13 2567.7 7 ⁻ 1592.3 6 ⁺ 981.2 1.4 4 4403.6 3422.2 10 ⁺ 996.2 4.6 7 4255.2 12 ⁺ 3259.2 10 ⁺ 1003.2 2.3 5 1359.8 3 ⁺ 357.0 2 ⁺ 1027.3 0.7 3 6755.9 18 ⁺ 5728.6 16 ⁺ 1027.8 4.3 5 3422.2 10 ⁺ 2394.4 8 ⁺ 1040 [‡] 2.5 5 7795.9 20 ⁺ 6755.9 18 ⁺ 1107 1.4 5 3289.4 2182.4 1110.4 1.8 7 2011.4 5 ⁺ 901.1 4 ⁺ 1119.8 3.9 5 1476.8 4 ⁺ 357.0 2 ⁺ DCO=0.77 6 1199.3 1.7 7 2100.5 6 ⁺ 901.1 4 ⁺ 1207.4 2.4 6 3601.9 10 ⁺ 2394.4 8 ⁺ 1266.6 4.5 8 2167.8 5 ⁻ 901.1 4 ⁺ DCO=0.469 24	936		6972.2	19-	6036.2 17-	
962.4 3.9 7 4221.6 12 ⁺ 3259.2 10 ⁺ 975.3 17.2 13 2567.7 7 ⁻ 1592.3 6 ⁺ 981.2 1.4 4 4403.6 3422.2 10 ⁺ 996.2 4.6 7 4255.2 12 ⁺ 3259.2 10 ⁺ 1003.2 2.3 5 1359.8 3 ⁺ 357.0 2 ⁺ 1027.3 0.7 3 6755.9 18 ⁺ 5728.6 16 ⁺ 1027.8 4.3 5 3422.2 10 ⁺ 2394.4 8 ⁺ 1040 [‡] 2.5 5 7795.9 20 ⁺ 6755.9 18 ⁺ 1107 1.4 5 3289.4 2182.4 1110.4 1.8 7 2011.4 5 ⁺ 901.1 4 ⁺ 1119.8 3.9 5 1476.8 4 ⁺ 357.0 2 ⁺ DCO=0.77 6 1199.3 1.7 7 2100.5 6 ⁺ 901.1 4 ⁺ 1207.4 2.4 6 3601.9 10 ⁺ 2394.4 8 ⁺ 1266.6 4.5 8 2167.8 5 ⁻ 901.1 4 ⁺ DCO=0.469 24	946	1.8 6	5728.6	16 ⁺	4782.6 14 ⁺	E_{γ} : 947 in 2014Ka07.
975.3	951 [‡]	0.4 4	6716.4	18-	5765.4 16-	
981.2	962.4	3.9 7	4221.6	12 ⁺	3259.2 10 ⁺	
996.2				7-		
1003.2 2.3 5 1359.8 3+ 357.0 2+ 1027.3 0.7 3 6755.9 18+ 5728.6 16+ 1027.8 4.3 5 3422.2 10+ 2394.4 8+ 1040‡ 2.5 5 7795.9 20+ 6755.9 18+ 1107 1.4 5 3289.4 2182.4 1110.4 1.8 7 2011.4 5+ 901.1 4+ 119.8 3.9 5 1476.8 4+ 357.0 2+ DCO=0.77 6 1199.3 1.7 7 2100.5 6+ 901.1 4+ 1207.4 2.4 6 3601.9 10+ 2394.4 8+ 1266.6 4.5 8 2167.8 5- 901.1 4+ DCO=0.469 24						
1027.3						
1027.8 4.3 5 3422.2 10+ 2394.4 8+ 1040‡ 2.5 5 7795.9 20+ 6755.9 18+ 1107 1.4 5 3289.4 2182.4 1110.4 1.8 7 2011.4 5+ 901.1 4+ 1119.8 3.9 5 1476.8 4+ 357.0 2+ DCO=0.77 6 1199.3 1.7 7 2100.5 6+ 901.1 4+ 1207.4 2.4 6 3601.9 10+ 2394.4 8+ 1266.6 4.5 8 2167.8 5- 901.1 4+ DCO=0.469 24						
1040 [‡] 2.5 5 7795.9 20 ⁺ 6755.9 18 ⁺ 1107 1.4 5 3289.4 2182.4 1110.4 1.8 7 2011.4 5 ⁺ 901.1 4 ⁺ 1119.8 3.9 5 1476.8 4 ⁺ 357.0 2 ⁺ DCO=0.77 6 1199.3 1.7 7 2100.5 6 ⁺ 901.1 4 ⁺ 1207.4 2.4 6 3601.9 10 ⁺ 2394.4 8 ⁺ 1266.6 4.5 8 2167.8 5 ⁻ 901.1 4 ⁺ DCO=0.469 24						
1107						
1110.4				20™		
1119.8 3.9 5 1476.8 4 ⁺ 357.0 2 ⁺ DCO=0.77 6 1199.3 1.7 7 2100.5 6 ⁺ 901.1 4 ⁺ 1207.4 2.4 6 3601.9 10 ⁺ 2394.4 8 ⁺ 1266.6 4.5 8 2167.8 5 ⁻ 901.1 4 ⁺ DCO=0.469 24				5+		
1199.3 1.7 7 2100.5 6 ⁺ 901.1 4 ⁺ 1207.4 2.4 6 3601.9 10 ⁺ 2394.4 8 ⁺ 1266.6 4.5 8 2167.8 5 ⁻ 901.1 4 ⁺ DCO=0.469 24						DCO-0.77.6
1207.4 2.4 6 3601.9 10 ⁺ 2394.4 8 ⁺ 1266.6 4.5 8 2167.8 5 ⁻ 901.1 4 ⁺ DCO=0.469 24						DCO-0.77 0
1266.6 4.5 8 2167.8 5 ⁻ 901.1 4 ⁺ DCO=0.469 24						
						DCO=0.469 24

122 Sn(13 C,5n γ):XUNDL-3 2014Ka07 (continued)

$\gamma(^{130}\text{Ba})$ (continued)

- † From e-mail reply of Feb. 4, 2014 from the first author N. Kaur. Compiler's note: it appears that E γ values have been taken by 2014Ka07 mostly from Adopted Gammas of 130 Ba in ENSDF database.
- [‡] New γ reported in 2014Ka07.
- # Multiply placed.

 @ Multiply placed with intensity suitably divided.

Level Scheme (continued)

Legend

122 Sn(13 C,5n γ):XUNDL-4 **2019Qi01**

Compiled (unevaluated) dataset from 2019Qi01: Phys Rev C 99, 014307 (2019): also supplementary data for band built on the isomer, received Oct 5, 2018.

Compiled by B. Singh (McMaster), January 10, 2019.

2019Qi01: E(13 C)=65 MeV from XTU Tandem accelerator of LNL-Legnaro. Measured E γ , I γ , two-point angular correlation ratios, $\gamma\gamma$ - and n γ -coin using GALILEO array of 25 Compton-suppressed Ge detectors placed on four rings: ten detectors at 90°, and five each at 119°, 129° and 152°. Neutrons were detected using Neutron Wall array and EUCLIDES silicon arrangement. Deduced high-spin levels, J^{π} , K^{π} =8⁻ band built on a known 9.4-ms isomer, g_K and g_R gyromagnetic factors, B(E2) ratios, and Nilsson configuration. Comparison with particle-rotor model calculations, and comparison with K isomers of N=74 isotones.

¹³⁰Ba Levels

Compiler's note: for $(g_K-g_R)/Q_0$ values, it appears that authors have used $\delta(E2/M1)$ values deduced from equation 2, and that only the sign of δ has been used from Table I, not its magnitude.

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0.0#	0+		
357.3 [#] 9	2+		
901.6 [#] 9	4 ⁺		
1592.8# 8	6+		
2168.8 [@] 10	5-		
2394.8# 11	8+		
2475.1 ^a 2	8-	9.54 ms <i>14</i>	%IT=100
			Additional information 1.
			E(level): from 130 Ba Adopted Levels in the ENSDF database (May 2001 update). $T_{1/2}$: from $2002Mo31$.
2568.8 [@] 10	7-		
2866.9 ^b 5	9-		
2929.8 <mark>&</mark> 11	8-		
3067.8 [@] 10	9-		
3259.8 [#] <i>15</i>	10^{+}		
3317.6 ^a 5	10-		$(g_{K}-g_{R})/Q_{0}=-0.080 \text{ (eb)}^{-1}$ +17-11 (2019Qi01). From equation 3 in 2019Qi01, compiler obtains -0.070 +24-14 using $\delta=-0.60$ 15 as in authors' Table I, with upper and lower limits of δ .
3435.9 ^{&} 10	10-		
3659.9 [@] 10	11-		
3782.3 ^b 5	11-		$(g_K-g_R)/Q_0=-0.093$ (eb) ⁻¹ 4 (2019Qi01). From equation 3 in 2019Qi01, compiler obtains $-0.106 + 22 - 14$ using $\delta = -0.37$ 6 as in authors' Table I, with upper and lower limits of δ .
4078.9 ^{&} 10	12-		, 11
4222.8 [#] 18	12 ⁺		
4300.1 ^a 6	12-		$(g_K-g_R)/Q_0=-0.101$ (eb) ⁻¹ 9 (2019Qi01). From equation 3 in 2019Qi01, compiler obtains $-0.104 + 22 - 16$ using $\delta = -0.39$ 7 as in authors' Table I, with upper and lower limits of δ .
4354.9 [@] 10	13-		, 11
4615.7 7	12-		
4772.0 ^b 6	13-		$(g_K-g_R)/Q_0=-0.084 \text{ (eb)}^{-1}$ 14 (2019Qi01). From equation 3 in 2019Qi01, compiler obtains $-0.092 +49-24$ using $\delta=-0.37$ 13 as in authors' Table I, with upper and lower limits of δ .
4879.9 <mark>&</mark> 9	14-		•
5155.9 [@] 10	15-		
5409.2 7	14^{-}		
5453.2 ^a 7	14-		
5768.0 <mark>&</mark> 9	16-		
6037.9 [@] 14	17-		

¹²²Sn(¹³C,5nγ):XUNDL-4 **2019Qi01** (continued)

¹³⁰Ba Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$
6090.8 ^a 9	16-
6718.0 <mark>&</mark> <i>14</i>	18^{-}
6903.7 ^a 10	18^{-}
6972.9 [@] 18	19-
7926.8 ^a 11	20^{-}

[†] Deduced from least-squares fit to E γ data, assuming Δ E γ =0.5 keV when E γ is quoted in the paper to tenth of a keV, and 1 keV otherwise. Energy of the 8⁻ isomer at 2475.1 keV 2, taken from ¹³⁰Ba Adopted Levels in the ENSDF database (May 2001 update), was kept fixed in the fitting procedure.

 γ (130Ba)

Rac is two-point angular correlation ratio.

E_{γ}	I_{γ}	$E_i(level)$	\mathbf{J}_i^{π}	\mathbf{E}_f \mathbf{J}_f^{π}	Mult.‡	δ#	Comments
138 224		3067.8 3659.9	9 ⁻ 11 ⁻	2929.8 8 ⁻ 3435.9 10 ⁻			
264 [†] 276 276 357		4879.9 4354.9 5155.9 357.3	14 ⁻ 13 ⁻ 15 ⁻ 2 ⁺	4615.7 12 ⁻ 4078.9 12 ⁻ 4879.9 14 ⁻ 0.0 0 ⁺			
359 [†] @ 361 368		5768.0 2929.8 3435.9	16 ⁻ 8 ⁻ 10 ⁻	5409.2 14 ⁻ 2568.8 7 ⁻ 3067.8 9 ⁻			
391.8 [†] 400 419	≥159	2866.9 2568.8 4078.9	9 ⁻ 7 ⁻ 12 ⁻	2475.1 8 ⁻ 2168.8 5 ⁻ 3659.9 11 ⁻	(M1+E2)	-0.81 48	$R_{ac} = 0.27 \ 3.$
450.5 [†]	100 6	3317.6	10-	2866.9 9-	(M1+E2)	-0.60 15	R _{ac} =0.31 3. B(E2)(450 γ , 10−→9 ⁻)/B(E2)(843 γ , 10−→8 ⁻)=16.1 85 (2019Qi01).
464.5 [†]	83 5	3782.3	11-	3317.6 10-	(M1+E2)	-0.37 6	R _{ac} =0.41 2. B(E2)(464.5 γ , 11→10 ⁻)/B(E2)(916 γ , 11→9 ⁻)=5.2 19 (2019Qi01).
471.7 [†]	36 10	4772.0	13-	4300.1 12	(M1+E2)	-0.37 13	R _{ac} =0.41 5. B(E2)(471.7 γ , 13−→12 ⁻)/B(E2)(990 γ , 13−→11 ⁻)=2.4 17 (2019Qi01).
499 506		3067.8 3435.9	9 ⁻ 10 ⁻	2568.8 7 ⁻ 2929.8 8 ⁻			

 $^{^{\}ddagger}$ As given in level-scheme Fig. 1 in 2019Qi01, based on previous assignments for the g.s. band, and bands based on 5⁻ and 8⁻ levels. The assignments for $K^{\pi}=8^-$ band are from the present work, based on 8⁻ for the bandhead, multipolarities from angular correlation ratios, and observation of γ cascades.

[#] Band(A): g.s. band.

[@] Band(B): Band based on $5^-, \alpha=1$.

[&]amp; Band(b): Band based on $8^-, \alpha=0$.

^a Band(C): K^{π} =8⁻ band,α=0. Configuration=v7/2[404]⊗v9/2[514]. Deduced g_K =-0.040 5, g_R =0.278 15 (2019Qi01).

^b Band(c): $K^{\pi}=8^{-}$ band, $\alpha=1$. Configuration= $\nu7/2[404]\otimes\nu9/2[514]$.

122 Sn(13 C,5n γ):XUNDL-4 2019Qi01 (continued)

γ (130Ba) (continued)

E_{γ}	I_{γ}	$E_i(level)$	\mathbf{J}_i^{π}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.‡	δ#	Comments
517.7 [†]	69 9	4300.1	12-	3782.3	11-	(M1+E2)	-0.39 7	R_{ac} =0.42 3. B(E2)(517.7 γ , 12- \rightarrow 11 ⁻)/B(E2)(983 γ , 12- \rightarrow 10 ⁻)=3.7 21 (2019Qi01).
525		4879.9	14-	4354.9	13-			21 (201) (101).
544		901.6	4+	357.3				
576		2168.8	5-	1592.8				
592		3659.9	11-	3067.8				
612		5768.0	16-	5155.9	15-			
637.6 [†]	25 4	6090.8	16-	5453.2				$R_{ac}=1.55 22.$
643		4078.9	12-	3435.9				
673		3067.8	9-	2394.8				
681.1 [†]	15 2	5453.2	14-	4772.0				R _{ac} =0.86 21.
691		1592.8	6+	901.6				
695		4354.9	13-	3659.9				
801 801		4879.9	14 ⁻	4078.9				
802		5155.9 2394.8	15 ⁻ 8 ⁺	4354.9 1592.8				
812.9 [†]	20 4	6903.7	18 ⁻	6090.8				R _{ac} =1.93 29.
_								
842.6 [†] 865	38 10	3317.6 3259.8	10 ⁻ 10 ⁺	2475.1 2394.8				R _{ac} =1.16 16.
882 [@]								
		2475.1 6037.9	8 ⁻ 17 ⁻	1592.8				
882 888		5768.0	16-	5155.9 4879.9				
915.5 [†]	60 <i>3</i>	3782.3	11-	2866.9				R _{ac} =1.54 17.
913.3	00 3	6972.9	11 19 ⁻	6037.9				$K_{ac} = 1.34 T/.$
950		6718.0	18-	5768.0				
963		4222.8	12 ⁺	3259.8				
976		2568.8	7-	1592.8				
982.5 [†]	59 5	4300.1	12-	3317.6	10-			$R_{ac}=1.53\ 10.$
989.8 [†]	71 5	4772.0	13-	3782.3	11-			$R_{ac}=1.48 \ 8.$
1023.1	15 2	7926.8	20-	6903.7	18-			
1109.2	24 4	5409.2	14-	4300.1				R _{ac} =1.52 27.
1153.2 [†]	20 4	5453.2	14-	4300.1				$R_{ac}=1.19 \ I8.$
1267		2168.8	5-	901.6				ac · · ·
1298.0 [†]	7 2	4615.7	12-	3317.6				
	. –							

 $^{^{\}dagger}$ New gamma ray in 2019Qi01. ‡ Implied by measured $\delta(Q/D)$ and band structure. # From angular correlation ratios (2019Qi01). @ Placement of transition in the level scheme is uncertain.

122 Sn(13 C,5nγ):XUNDL-4 2019Qi01

 $^{130}_{56}\mathrm{Ba}_{74}$

Compiled (unevaluated) dataset from 2019Pe12: Phys Lett B795, 241 (2019); and supplementary data. See also 2019Qi01 (Phys. Rev. C 99, 014317) from the same authors with results for $K^{\pi}=8^{-}$ band from the same experiment as in 2019Pe12. 2019Pe12 mention, in their reference 23, that a detailed paper of this work is forthcoming. In 2019Ch49 (Phys. Rev. C 100, 061301(R)), authors discuss theoretical aspects of transverse wobbling in 130 Ba.

Compiled by B. Singh (McMaster), Feb 11, 2020.

2019Pe12: E(¹³C)=65 MeV from XTU Tandem accelerator of LNL-Legnaro. Measured Eγ, Iγ, γγ- and nγ-coin using GALILEO array of 25 Compton-suppressed Ge detectors placed on four rings: ten detectors at 90°, and five each at 119°, 129° and 152°. Neutrons and charged particles were detected using Neutron Wall array and EUCLIDES silicon detectors, respectively. Deduced high-spin levels, bands, B(M1)/B(E2), B(E2,in)/B(E2,out) ratios, alignments, experimental Routhians, and Nilsson configuration. Comparison with total Routhians surfaces (TRS), tilted axis cranking (TAC), particle rotor model (PRM) and projected shell model (PSM) calculations.

¹³⁰Ba <u>Levels</u>

Note that mixing ratios for transitions, used by the authors for B(M1)/B(E2) and B(E2,in)/B(E2,out) ratios, are not available in the paper.

Band assignments are from 2019Pe12.

E(level) [†]	$J^{\pi \#}$	T _{1/2}	Comments
0.0	0^{+}		
357.4 [@] 1	2+		
901.9 [@] 1	4+		
908.1 ^{‡&} 1	2+‡		
1477.5 ^{‡&} 1	$(4^+)^{\ddagger}$		
1593.0 [@] 2	6+		
2101.2 ^{‡&} 2	$(6^+)^{\ddagger}$		
2395.3 [@] 3	8+		
2474.8 ^a 10	8-	9.54 ms <i>14</i>	%IT=100
2700 08 3	0.4		$T_{1/2}$: from 2002Mo31 (Phys. Lett. 547B, 200).
2799.9 ^{&} 3	8+		
2866.8 ^b 13 2982.0 ^c 7	9 ⁻ 8 ⁺		
3260.2 [@] 7	10 ⁺		
$3276.7^{d} 8$	9+		
3317.8 ^a 13	10-		
3423.3 ^f 7	10+		
3603.8 <mark>&</mark> 7	10 ⁺		
3761.3 ^c 9	10 ⁺		$I\gamma(779, E2)/I\gamma(485, M1)=0.8 2.$ B(M1, 485γ)/B(E2, 779γ)=2.2 6.
			B(M1, 4837)/B(E2, 7797)=2.2 0. B(E2, $10+\rightarrow 9^+$)/B(E2, $10+\rightarrow 8^+$)=0.19 +19-16.
3782.8 ^b 14	11-		
3790.3 ^j 9	10+		
3963.1 ^d 9	11+		$I_{\gamma}(686, E2)/I_{\gamma}(202, M1) \ge 32.$
£			$B(M1, 202\gamma)/B(E2, 686\gamma) \le 0.4.$
3989.4^{f} 9	12+		
4153.5 ^g 9 4223.3 [@] 12	11 ⁺ 12 ⁺		
$4223.3 \stackrel{?}{=} 12$ $4256.3 \stackrel{j}{=} 9$	12 ⁺		
4256.3 ⁷ 9 4300.8 ^a 14	12		
4404.2 ^c 8	12 ⁺		$I\gamma(643, E2)/I\gamma(441, M1)=0.21 I2.$

¹²²Sn(¹³C,5nγ):XUNDL-5 **2019Pe12** (continued)

¹³⁰Ba Levels (continued)

```
I^{\pi \#}
 E(level)
                                                                                                                                Comments
                                     B(M1, 441\gamma)/B(E2, 643\gamma)=3.7 21.
                                     B(E2, 12+\rightarrow 11^{+})/B(E2, 12+\rightarrow 10^{+})=4.0 +27-26.
4456.2<sup>k</sup> 10
                         11+
4772.8<sup>b</sup> 15
                         13-
4782.5<sup>f</sup> 12
                         14+
4794.1<sup>d</sup> 13
                         13<sup>+</sup>
                                     I_{\gamma}(831, E_2)/I_{\gamma}(390, M_1) \ge 2.1.
                                     B(M1, 390\gamma)/B(E2, 831\gamma) \le 2.8.
4870.4<sup>8</sup> 11
                         13^{+}
                         14+
4884.2<sup>j</sup> 12
4908.1<sup>e</sup> 8
                         12^{+}
4986.2<sup>k</sup> 11
                         13<sup>+</sup>
5085.3<sup>i</sup> 16
                         14+
5164.1<sup>e</sup> 10
                         13<sup>+</sup>
5440.9<sup>e</sup> 12
                         14+
                                     I\gamma(14+\to 12^+)/I\gamma(14+\to 13^+) \le 0.16.
                                     B(M1, 14+\rightarrow 13^+)/B(E2, 14+\rightarrow 12^+)\geq 8.1.
B(E2, 14+\rightarrow 13^+)/B(E2, 14+\rightarrow 12^+)\geq 3.6.
5453.8<mark>a</mark> 16
                         14^{-}
5647.2<sup>k</sup> 12
                         15^{+}
5678.3<sup>j</sup> 15
                         16<sup>+</sup>
5715.8<sup>b</sup> 18
                         15-
5719.5<sup>8</sup> 16
                         15<sup>+</sup>
5729.3<sup>f</sup> 15
                         16+
5759.8<sup>e</sup> 13
                         15<sup>+</sup>
                                     I_{\gamma}(15+\rightarrow 13^{+})/I_{\gamma}(15+\rightarrow 14^{+}) \leq 0.19.
                                     B(M1, 15+\rightarrow 14^+)/B(E2, 15+\rightarrow 13^+) \ge 8.1.
                                     B(E2, 15+\rightarrow 14^+)/B(E2, 15+\rightarrow 13^+)\geq 1.4.
6047.3<sup>i</sup> 19
                         16+
6091.8<del>a</del> 19
                         16-
6108.0e 15
                         16+
                                     I\gamma(16+\rightarrow 14^+)/I\gamma(16+\rightarrow 15^+) \le 0.09.
                                     B(M1, 16+\rightarrow 15^+)/B(E2, 16+\rightarrow 14^+)\geq 21.
                                      B(E2, 16+\rightarrow 15^+)/B(E2, 16+\rightarrow 14^+)\geq 5.1.
6442.2<sup>k</sup> 15
                         17^{+}
6497.2<sup>e</sup> 15
                         17+
                                     I_{\gamma}(17+\rightarrow 15^{+})/I_{\gamma}(17+\rightarrow 16^{+}) \leq 0.12.
                                     B(M1, 17+\rightarrow 16^+)/B(E2, 17+\rightarrow 15^+)\geq 20.
                                     B(E2, 17+\rightarrow 16^+)/B(E2, 17+\rightarrow 15^+) \ge 5.1.
6563.3<sup>j</sup> 16
                         18+
6589.8<sup>b</sup> 21
                         17-
6647.3<sup>h</sup> 18
                         18^{+}
6836.3<mark>8</mark> 18
                         17^{+}
6904.8<sup>a</sup> 21
                         18-
6930.2<sup>e</sup> 16
                         18^{+}
                                     I\gamma(18+\to 16^+)/I\gamma(18+\to 17^+) \le 0.5.
                                      B(M1, 18+\rightarrow 17^+)/B(E2, 18+\rightarrow 16^+)\geq 11.
6943.2<sup>f</sup> 16
                         18<sup>+</sup>
7138.3<sup>i</sup> 21
                         18<sup>+</sup>
7319.3<sup>k</sup> 16
                         19<sup>+</sup>
7416.2<sup>e</sup> 16
                         19+
                                     I_{\gamma}(19+\rightarrow 17^{+})/I_{\gamma}(19+\rightarrow 18^{+})=1.1 \ 7.
                                     B(M1, 19+\rightarrow 18^{+})/B(E2, 19+\rightarrow 17^{+})=3.3 21.
7524.3<sup>j</sup> 19
                         20^{+}
7563.8<sup>b</sup> 23
                         19-
7574.3<sup>h</sup> 19
                         20^{+}
7922.2<sup>e</sup> 19
                         20^{+}
```

¹²²Sn(¹³C,5nγ):XUNDL-5 **2019Pe12** (continued)

¹³⁰Ba Levels (continued)

E(level) [†]	$J^{\pi \#}$	E(level) [†]	$J^{\pi \#}$	E(level) [†]	$J^{\pi \#}$	E(level) [†]	$J^{\pi \#}$
7927.8 <mark>a</mark> 24	20-	8661.3 ^h 21	22 ⁺	9908.3 ^h 23 10436.3? ^k 24 10821.3 ^j 26	24 ⁺	11322.3 ^h 25	26 ⁺
8265.3 ^k 19	21+	9283.3 ^k 21	23 ⁺	10436.3? ^k 24	25 ⁺	11984.3 ^j 28	28 ⁺
8574.3 ^j 21	22^{+}	9690.3 ^j 24	24+	10821.3 ^j 26	26 ⁺		

- [†] Deduced from least-squares fit to E γ data, assuming Δ E γ =1 keV.
- [‡] From ¹³⁰Ba Adopted Levels in the ENSDF database (May 2001 update).
- [#] As given in level-scheme Fig. 1 in 2019Pe12, based on previous assignments for the g.s. band, and band assignments in the present work.
- [®] Band(A): g.s. band.
- & Band(B): γ band.
- Band(C): K^{π} =8⁻ band, α=0. Prolate, $vh_{11/2}^{-1} \otimes vg_{7/2}^{-1}$ at low spins, $vh_{11/2}^{-1} \otimes vg_{7/2}^{-1} \otimes \pi h_{11/2}^2$ at high spins, deformation-aligned (DAL) band.
- b Band(c): $K^{\pi}=8^-$ band, $\alpha=1$. Prolate, $\nu h_{11/2}^{-1} \otimes \nu g_{7/2}^{-1}$ at low spins, $\nu h_{11/2}^{-1} \otimes \nu g_{7/2}^{-1} \otimes \pi h_{11/2}^2$ at high spins, deformation-aligned (DAL) band.
- c Band(D): t-band based on 8+, α =0. Prolate, $\nu h_{11/2}^{-2}$, $\nu 7/2$ [523] $\otimes \nu 9/2$ [514] Fermi-aligned (FAL) band.
- ^d Band(d): t-band based on 8⁺, α =1. Prolate, $vh_{11/2}^{-2}$, $v7/2[523] \otimes v9/2[514]$ Fermi-aligned (FAL) band.
- ^e Band(E): Dipole band based on 12⁺. Prolate, $\nu h_{11/2}^2 \otimes \pi h_{11/2}^{-2}$, Fermi-aligned (FAL) band.
- ^f Band(F): S2o band, even spin. Oblate, $vh_{11/2}^2$, rotation-aligned (RAL) band.
- ^g Band(f): S2o' band, odd spin. Oblate, $vh_{11/2}^2$, rotation-aligned (RAL) band.
- ^h Band(G): S2o-high spin band based on 18^+ . Oblate, $vh_{11/2}^4$, rotation-aligned (RAL) band.
- i Band(H): S2p band based on 14 $^{+}$. Prolate, $\nu h_{11/2}^{4}$, Fermi-aligned band.
- ^j Band(I): S1, even spin. Prolate, $\pi h_{11/2}^2$ at low spin, $\pi h_{11/2}^2 \otimes \nu h_{11/2}^2$ at medium spins, $\pi h_{11/2}^2 \otimes \nu h_{11/2}^4$ at high spins, rotation-aligned (RAL) band.
- ^k Band(J): S1', odd spin. Prolate, $\pi h_{11/2}^2$, γ -vibration/wobbling band.

$\gamma(^{130}\text{Ba})$

E_{γ}	$E_i(level)$	\mathbf{J}_i^{π}	\mathbf{E}_f \mathbf{J}_f^{π}	Εγ	$E_i(level)$	\mathbf{J}_i^{π}	\mathbf{E}_f \mathbf{J}_f^{π}
147	3423.3	10 ⁺	3276.7 9+	465	3782.8	11-	3317.8 10-
163	3423.3	10^{+}	3260.2 10 ⁺	466	4256.3	12 ⁺	3790.3 10 ⁺
182	2982.0	8+	2799.9 8+	472	4772.8	13-	4300.8 12-
202 [‡]	3963.1	11 ⁺	3761.3 10 ⁺	473	7416.2	19 ⁺	6943.2 18 ⁺
256	5164.1	13 ⁺	4908.1 12 ⁺	485	3761.3	10^{+}	3276.7 9+
277	5440.9	14+	5164.1 13 ⁺	486	7416.2	19 ⁺	6930.2 18+
295	3276.7	9+	2982.0 8 ⁺	506	7922.2	20^{+}	7416.2 19 ⁺
319	5759.8	15 ⁺	5440.9 14+	507	2982.0	8+	2474.8 8-
348	6108.0	16 ⁺	5759.8 15 ⁺	518	4300.8	12-	3782.8 11-
357.4 [†] 1	357.4	2+	$0.0 0^{+}$	530	3790.3	10 ⁺	3260.2 10 ⁺
367	3790.3	10^{+}	3423.3 10 ⁺	530	4986.2	13 ⁺	4456.2 11 ⁺
389	6497.2	17+	6108.0 16 ⁺	540	3963.1	11+	3423.3 10 ⁺
390 [‡]	4794.1	13 ⁺	4404.2 12+	544.5 [†] 1	901.9	4+	357.4 2+
392	2866.8	9-	2474.8 8-	550.7 [†] 1	908.1	2+	357.4 2+
433	6930.2	18 ⁺	6497.2 17 ⁺	566	3989.4	12+	3423.3 10 ⁺
441	4404.2	12 ⁺	3963.1 11 ⁺	569.4 [†] 1	1477.5	(4^{+})	908.1 2+
446	6943.2	18 ⁺	6497.2 17 ⁺	575.5 [†] 2	1477.5	(4^{+})	901.9 4+
451	3317.8	10^{-}	2866.8 9-	587	2982.0	8+	2395.3 8+
452	4908.1	12+	4456.2 11+	623.8 [†] 2	2101.2	(6+)	1477.5 (4 ⁺)

122 Sn(13 C,5n γ):XUNDL-5 2019Pe12 (continued)

$\gamma(^{130}\text{Ba})$ (continued)

E_{γ}	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	E_{γ}	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_f	\mathbf{J}_f^{π}
628	4884.2	14 ⁺	4256.3	12+	918	6647.3	18 ⁺	5729.3	16 ⁺
638	6091.8	16-	5453.8	14-	919	7416.2	19 ⁺	6497.2	17+
643	4404.2	12+	3761.3	10^{+}	927	7574.3	20^{+}	6647.3	18 ⁺
661	5647.2	15 ⁺	4986.2	13+	937	5719.5	15 ⁺	4782.5	14+
666	4456.2	11+	3790.3	10^{+}	943	5715.8	15-	4772.8	13-
681	5453.8	14-	4772.8	13-	946	8265.3	21+	7319.3	19+
686	3963.1	11+	3276.7	9+	947	5729.3	16 ⁺	4782.5	14 ⁺
691.1 2	1593.0	6+	901.9		961	7524.3	20^{+}	6563.3	18 ⁺
698.7 2	2799.9	8+	2101.2	` ′	962	6047.3	16 ⁺	5085.3	14+
709 [‡]	9283.3	23+	8574.3	22+	963	4223.3	12+	3260.2	10+
717	4870.4	13+	4153.5	11+	974	7563.8	19-	6589.8	17-
729	3989.4	12+	3260.2	10+	977	5759.8	15+	4782.5	14+
730	4153.5	11+	3423.3	10+	981	4404.2	12+	3423.3	10 ⁺
730	4986.2	13 ⁺	4256.3	12+	983	4300.8	12-	3317.8	10-
741 [‡]	8265.3	21+	7524.3	20+	990	4772.8	13-	3782.8	11-
756	7319.3	19 ⁺	6563.3	18+	996	4256.3	12+	3260.2	10+
760	5164.1	13+	4404.2		1018	9283.3	23+	8265.3	21+
763	5647.2	15 ⁺	4884.2	14+	1023	7927.8	20-	6904.8	18-
764 [‡]	6442.2	17+	5678.3	16+	1028	3423.3	10+	2395.3	8+
779	3761.3	10+	2982.0	-	1050	8574.3	22+	7524.3	20+
793	4782.5	14+	3989.4	12+	1087	8661.3	22+	7574.3	20+
794 705	5678.3	16 ⁺	4884.2	14+	1091	7138.3	18 ⁺ 17 ⁺	6047.3	16+
795 802	6442.2 3276.7	17 ⁺ 9 ⁺	5647.2 2474.8	15 ⁺ 8 ⁻	1107 1116	6836.3 9690.3	24+	5729.3 8574.3	16 ⁺ 22 ⁺
802.3 [†] 2	2395.3	9 8 ⁺	1593.0		1110 1117 [‡]	6836.3	2 4 17 ⁺	5719.5	15 ⁺
802.3 2	2393.3 3603.8	10 ⁺	2799.9		1117. 1120.2 [†] <i>I</i>	1477.5	(4 ⁺)	357.4	2 ⁺
813	6904.8	18	6091.8	6 16 ⁻	1120.2 1	10821.3	26 ⁺	9690.3	24 ⁺
831	4794.1	13 ⁺	3963.1	11+	1144	4404.2	12 ⁺	3260.2	10 ⁺
833	4256.3	12 ⁺	3423.3	10 ⁺	1153	5453.8	14-	4300.8	12-
843	3317.8	10-	2474.8	-	1153 [‡]	10436.3?	25 ⁺	9283.3	23+
850 [‡]	5719.5	15 ⁺	4870.4		1163	11984.3	28 ⁺	10821.3	26 ⁺
862	5085.3	14+	4223.3	12 ⁺	1199.3 2	2101.2	(6^+)	901.9	4+
865	3260.2	10^{+}	2395.3	8+	1201	6930.2	18+	5729.3	16 ⁺
874	6589.8	17^{-}	5715.8	15^{-}	1208	3603.8	10^{+}	2395.3	8+
877	4153.5	11+	3276.7	9+	1214	6943.2	18 ⁺	5729.3	16 ⁺
877	7319.3	19 ⁺	6442.2	17+	1247	9908.3	24 ⁺	8661.3	22 ⁺
881	4870.4	13+	3989.4	12+	1304	4908.1	12+	3603.8	10+
885	6563.3	18 ⁺	5678.3	16 ⁺	1414	11322.3	26 ⁺	9908.3	24 ⁺
908.0 [†] 1	908.1	2+	0.0		1648	4908.1	12 ⁺	3260.2	10^{+}
916	3782.8	11-	2866.8	9-					

 $^{^{\}dagger}$ From ^{130}Ba Adopted dataset in the ENSDF database (May 2001 update). ‡ Placement of transition in the level scheme is uncertain.

Legend

Level Scheme

---- γ Decay (Uncertain)

Legend

Level Scheme (continued)

---- γ Decay (Uncertain)

Legend

Level Scheme (continued)

---- γ Decay (Uncertain)

Level Scheme (continued)

Band(C): $K^{\pi}=8^{-}$ band, $\alpha=0$

Band(d): t-band based on $8^+, \alpha$ =1

4300.8

12-

 $^{130}_{56}\mathrm{Ba}_{74}$

¹²²Sn(¹³C,5nγ):XUNDL-5 **2019Pe12** (continued)

122Sn(13C,5nγ):XUNDL-5 2019Pe12 (continued)

 $Band(J)\hbox{:}\ S1', odd\ spin$

