Transformations

Motivation

- We want to move objects around the screen
- We want:
 - Efficiency
 - Flexibility
 - Ease of use

Review

Up to now, we've been moving objects by adding a vector to position:

```
gl_Position = vec4( position + translation, -1, 1)
```

- Or maybe we scale and translate: gl_Position = vec4(position * scale + translation, -1, 1)
- ► This is OK if we have simple, fixed set of transformations
- But we often want more complex effects

Transforms

- ► The "big three" transformations:
 - **▶** Translate
 - Rotate
 - Scale

Translation

- Not much more to say about it right now
- ▶ Just add Δx and Δy to position

Compositing

- Compositing translations is easy
 - Just add them all in any order
 - Addition is associative and commutative

Rotate

- Rotation: Very commonly used
- ▶ We have several ways we can represent rotations

Angle

- First way: Angle
- ▶ Just a single number: 0...360°
 - Or $0...2\pi$ radians

Compositing

- Composing angle-reps is easy
 - Add rotation angles together
- ► Ex: Rotate clockwise by 40° followed by rotating 15° withershins
 - ► Same as rotating 35° CW (40 + -15)
- Commutative as well: Same result from doing 15° WS then 40°
 CW

Implementing

- ► How to implement?
- ▶ Recall our old friends sine and cosine...

Rotation

- ► Imagine a point p at **x=1**, **y=0**
 - ► Let U = p rotated by d degrees
 - ► Graph the x coordinate. What does it look like as d goes from 0...360°?
 - ► Graph the y coordinate. What does it look like as d goes from 0...360°?

Rotation

- ► Imagine a point q at **x=0**, **y=1**
 - ► Let V = q rotated by d degrees.
 - ► Graph the x coordinate. What does it look like as d goes from 0...360°?
 - ► Graph the y coordinate. What does it look like as d goes from 0...360°?

Result

- If we rotate (1,0), it lands at location ($\cos \theta$, $\sin \theta$). Call this U.
- Given (0,1), as we rotate it, it ends up at (-sin θ , cos θ). Call this V.

Transformation

- We can view a rotation by angle θ as being a *transformation of axes*
 - If we rotate by θ °, we are rotating our x and y axes accordingly
- An example may help...

Example

Suppose we rotate by 35°

Now...

- Suppose we had a point that was at 0.5,0.1 originally
- Where does it end up after rotation?

Answer

- ▶ What does coordinate (0.5,0.1) *mean*?
 - ▶ Go 0.5 units in the x direction, then 0.1 units in the y direction
- Our transformed point will be 0.5 units down the transformed x axis (U) and 0.1 units down the transformed y axis (V)

Answer

- Recall: Transformed axes:
 - ightharpoonup U = $(\cos \theta, \sin \theta)$
 - $ightharpoonup V = (-\sin \theta, \cos \theta)$
- ► Transformed point (x',y'):
 - ▶ 0.5 U + 0.1 V
 - $x' = 0.5 \cos \theta + 0.1(-\sin \theta)$
 - $y' = 0.5 \sin \theta + 0.1 \cos \theta$

In General...

- In general, if (x,y) is the new point, and (x',y') represents rotation of (x,y) by angle θ :
 - $\mathbf{x'} = \mathbf{x} \cos \theta \mathbf{y} \sin \theta$
 - $y' = x \sin \theta + y \cos \theta$

Implementation

- So we could define a uniform: float rotationAngle
- ▶ Then send the angle to shader
- ▶ But this is not ideal

Problem

- Trigonometric computations are expensive
 - ► CPU: About 280 cycles to compute a sine/cosine pair
 - GPU: Varies widely
 - Some GPU's can do them in one cycle (lookup table)
- ▶ But there's another issue...

Compositing

- ▶ What if we want to rotate *and* translate?
- ▶ Here, order makes a difference!

Consider

- Suppose we want to translate by 0.5,0.25 and rotate by 35°
- Suppose we are drawing a triangle
- ► Here's our triangle to begin with:

Rotate

▶ First, we rotate by 35 degrees

Translate

▶ Then we translate by 0.5,0.25

Consider

▶ Now, suppose we translate first:

Rotate

▶ Now we rotate:

Compare

Compare the results:

So...

- We don't want to hardcode the ordering in the shader
- ► How can we flexibly support arbitrary sequences of transformations?

And Now...

For something (apparently) completely different!

Matrices

▶ Def: Matrix: An m × n 2D grid of numbers

$$\left[\begin{array}{cc} 1 & 2 \\ 3 & 4 \end{array}\right]$$

► Has m rows, n columns

Multiplication

- Define: Suppose we want to multiply two matrices, M and N
 - Let size of M = $m_r x m_c$
 - Let size of N = $n_r x n_c$
- ▶ $M \cdot N$ is not defined if $m_c \neq n_r$
- lacktriangle Otherwise, result has size $m_r \mathbf{x} \; n_c$

Example

$$Let N = \begin{bmatrix} -1 & 0.1 \\ -0.5 & 1 \end{bmatrix}$$

▶ Result:
$$M \cdot N = \begin{bmatrix} 1 \cdot -1 + 2 \cdot -0.5 & 1 \cdot 0.1 + 2 \cdot 1 \\ 1 \cdot -0.5 + 2 \cdot 1 & 3 \cdot 0.1 + 4 \cdot 1 \end{bmatrix}$$

• Or:
$$\begin{bmatrix} -2 & 2.1 \\ 1.5 & 4.3 \end{bmatrix}$$

Example

- We can likewise define multiplication for larger matrices
- Ex:

$$\begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} j & k & l \\ m & n & o \\ p & q & r \end{bmatrix}$$

Result:

$$\begin{bmatrix} aj + bm + cp & ak + bn + hq & al + bo + cr \\ dj + em + fp & dk + en + fq & dl + eo + fr \\ gj + hm + ip & gk + hn + iq & gl + ho + ir \end{bmatrix}$$

▶ Same idea for 2x2 or 4x4 matrices

Multiply

- What if we want to multiply a vector by a matrix?
- Suppose we have a vec2 and a mat2
- ▶ We can interpret vec2 as a 2x1 matrix or as a 1x2 matrix
- ► If we premultiply (v*M): Then we must interpret v as 1x2 (so dimensions are compatible)
- ► If we postmultiply (M*v): Must interpret v as 2x1

Example

$$\begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} x' & y' \end{bmatrix}$$
$$\begin{bmatrix} a & c \\ b & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x' \\ y' \end{bmatrix}$$

► In either case, x'=xa+yc and y'=xb+yd

Rotation

- Recall our rotation: To rotate point (x,y) by angle θ :
 - $\mathbf{x'} = \mathbf{x} \cos \theta \mathbf{y} \sin \theta$
 - y' = $x \sin \theta + y \cos \theta$
- We can express as matrix operation:

$$\left[\begin{array}{cc} x & y \end{array} \right] \left[\begin{array}{cc} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{array} \right] = \left[\begin{array}{cc} x \cos \theta - y \sin \theta & x \sin \theta + y \cos \theta \end{array} \right]$$

Or:

$$\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x \cos \theta - y \sin \theta \\ x \sin \theta + y \cos \theta \end{bmatrix}$$

Notice

- ► The rotation matrix for vM is the transpose of the matrix for Mv
- So we have to know which way we're going to do operation when we set up the matrix

Translation

- How do we represent translation?
- No way to do this with vec2's!
- But we can do so if we add another coordinate (w)
 - ► Now we'll have vec3's: (x,y,w)
- ► Let w=0 for vectors or 1 for points

Example

- Translate (x,y) by dx,dy
 - $\mathbf{x}' = \mathbf{x} + \mathbf{d}\mathbf{x}$
 - $\mathbf{v}' = \mathbf{v} + \mathbf{d}\mathbf{v}$
- ▶ With matrices:

$$\left[\begin{array}{ccc} x & y & 1 \end{array} \right] \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ t_x & t_y & 1 \end{array} \right] = \left[\begin{array}{ccc} x + t_x & y + t_y & 1 \end{array} \right]$$

• Or:

$$\begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} x + t_x \\ y + t_y \\ 1 \end{bmatrix}$$

Again, notice matrices are transposes of each other

Vectors

▶ What if our (x,y) represents a direction (a vector)?

$$\begin{bmatrix} x & y & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ t_x & t_y & 1 \end{bmatrix} = \begin{bmatrix} x & y & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 0 \end{bmatrix} = \begin{bmatrix} x \\ y \\ 0 \end{bmatrix}$$

This is logical: Translating a direction has no meaning

Rotation

We modify the rotation matrix so it works with vec3's:

$$\left[\begin{array}{ccc} x & y & w\end{array}\right] \left[\begin{array}{ccc} \cos\theta & \sin\theta & 0 \\ -\sin\theta & \cos\theta & 0 \\ 0 & 0 & 1\end{array}\right]$$

This gives:

$$[x\cos\theta - y\sin\theta x\sin\theta + y\cos\theta w]$$

Rotation

• Or:

$$\begin{bmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix} = \begin{bmatrix} x\cos\theta - y\sin\theta \\ x\sin\theta + y\cos\theta \\ w \end{bmatrix}$$

Notice: w is preserved, whether it's zero or one

Orientation

- Suppose we have two *orientations* (rotations) of an object and we want to blend between them
- Let a_1 be one angle of rotation and a_2 be the other one
- ▶ We want the angle that's 50% of the way between them.
 - How can we compute this?

Orientation

- ▶ What if we want to go 25% of the way from a_1 to a_2 ?
- ▶ What if we want to go 75% of the way from a_1 to a_2 ?

Interpolation

- ► This is linear interpolation
- Formula: $a' = a_1 + t(a_2 a_1)$

Assignment

- ▶ None!
- ▶ Just get caught up on the other labs...

Sources

- ▶ Jim Van Verth. Understanding Rotations. http://www.essentialmath.com/GDC2012/ GDC2012_JMV_Rotations.pdf
- ▶ Intel Corporation. Intel Processor Optimization Manual.

Created using MEX.

Main font: Gentium Book Basic, by Victor Gaultney. See http://software.sil.org/gentium/ Monospace font: Source Code Pro, by Paul D. Hunt. See https://fonts.google.com/specimen/Source+Code+Pro and http://sourceforge.net/adobe Icons by Ulisse Perusin, Steven Garrity, Lapo Calamandrei, Ryan Collier, Rodney Dawes, Andreas Nilsson, Tuomas Kuosmanen, Garrett LeSage, and Jakub Steiner. See http://tango-project.org