Dirichlet draws are sparse with high probability

Matus Telgarsky

Abstract

This note provides an elementary proof of the folklore fact that draws from a Dirichlet distribution (with parameters less than 1) are typically sparse (most coordinates are small).

1 Bounds

Let $Dir(\alpha)$ denote a Dirichlet distribution with all parameters equal to α .

Theorem 1.1. Suppose $n \geq 2$ and $(X_1, \ldots, X_n) \sim \text{Dir}(1/n)$. Then, for any $c_0 \geq 1$ satisfying $6c_0 \ln(n) + 1 < 3n$,

$$\Pr\left[\left|\left\{i: X_i \ge \frac{1}{n^{c_0}}\right\}\right| \le 6c_0 \ln(n)\right] \ge 1 - \frac{1}{n^{c_0}}.$$

The parameter is taken to be 1/n, which is standard in machine learning. The above theorem states that (with high probability) as the exponent on the sparsity threshold grows linearly $(n^{-1}, n^{-2}, n^{-3}, \ldots)$, the number of coordinates above the threshold cannot grow faster than linearly $(6 \ln(n), 12 \ln(n), 18 \ln(n), \ldots)$.

The above statement can be parameterized slightly more finely, exposing more tradeoffs than just the threshold and number of coordinates.

Theorem 1.2. Suppose $n \ge 1$ and $c_1, c_2, c_3 > 0$ with $c_2 \ln(n) + 1 < 3n$, and $(X_1, ..., X_n) \sim \text{Dir}(c_1/n)$; then

$$\Pr[|\{i: X_i \ge n^{-c_3}\}| \le c_2 \ln(n)] \ge 1 - \frac{1}{e^{1/3}} \left(\frac{1}{n}\right)^{\frac{c_2}{3} - c_1 c_3} - \frac{1}{e^{4/9}} \left(\frac{1}{n}\right)^{\frac{4c_2}{9}}.$$

The natural question is whether the factor $\ln(n)$ is an artifact of the analysis; simulation experiments with Dirichlet parameter $\alpha = 1/n$, summarized in Figure 1a, exhibit both the $\ln(n)$ term, and the linear relationship between sparsity threshold and number of coordinates exceeding it.

The techniques here are loose when applied to the case $\alpha = o(1/n)$. In particular, Figure 1b suggests $\alpha = 1/n^2$ leads to a single nonsmall coordinate with high probability, which is stronger than what is captured by the following theorem.

Theorem 1.3. Suppose $n \geq 3$ and $(X_1, \ldots, X_n) \sim \text{Dir}(1/n^2)$; then

$$\Pr[|\{i: X_i \ge n^{-2}\}| \le 5] \ge 1 - e^{2/e - 2} - e^{-8/3} \ge 0.64.$$

Moreover, for any function $g: \mathbb{Z}_{++} \to \mathbb{R}_{++}$ and any n satisfying $1 \le \ln(g(n)) < 3n - 1$,

$$\Pr[|\{i: X_i \ge n^{-2}\}| \le \ln(g(n))] \ge 1 - e^{2/e - 1/3} \left(\frac{1}{g(n)}\right)^{1/3} - e^{-4/9} \left(\frac{1}{g(n)}\right)^{4/9}.$$

(Take for instance g to be the inverse Ackermann function.)

Figure 1: For each Dirichlet parameter choice $\alpha \in \{n^{-1}, n^{-2}\}$ and each number of dimensions n (horizontal axis), 1000 Dirichlet distributions were sampled. For each trial, the number of coordinates exceeding each of 4 choices of threshold were computed. In the case of $\alpha = n^{-1}$, these counts were then scaled by $\ln(n)$ to better coordinate with the suggested trends in Theorems 1.1 and 1.2. Finally, these counts values (for each (n, ϵ)) were converted into quantile curves (25%-75%).

2 Proofs

Theorems 1.1 to 1.3 are established via the following lemma.

Lemma 2.1. Let reals $\epsilon \in (0,1]$ and $\alpha > 0$ and positive integers k,n be given with k+1 < 3n. Let $(X_i, \ldots, X_n) \sim \text{Dir}(\alpha)$. Then

$$\Pr[|\{i: X_i \ge \epsilon\}| \le k] \ge 1 - \epsilon^{-n\alpha} e^{-(k+1)/3} - e^{-4(k+1)/9}.$$

The proof avoids dependencies between the coordinates of a Dirichlet draw via the following alternate representation. Throughout the rest of this section, let $Gamma(\alpha)$ denote a Gamma distribution with parameter α .

Lemma 2.2. (See for instance Balakrishnan and Nevzorov (2003, Equation 27.17).) Let $\alpha > 0$ and $n \ge 1$ be given. If $(X_1, \ldots, X_n) \sim \text{Dir}(\alpha)$ and $\{Y_i\}_{i=1}^n$ are n i.i.d. copies of Gamma(α), then

$$(X_1,\ldots,X_n) \stackrel{d}{=} \left\{ \frac{Y_i}{\sum_{i=1}^n Y_i} \right\}.$$

Before turning to the proof of Lemma 2.1, one more lemma is useful, which will allow a control of the Gamma distribution's cdf.

Lemma 2.3. For any $\alpha > 0$, $c \geq 0$, and $z \geq 1$,

$$\Pr[\operatorname{Gamma}(\alpha) \le zc] \le z^{\alpha} \Pr[\operatorname{Gamma}(\alpha) \le c].$$

Proof. Since $e^{-zx} \le e^{-x}$ for every $x \ge 0$ and $z \ge 1$,

$$\begin{split} \Pr[\mathrm{Gamma}(\alpha) \leq zc] &= \frac{1}{\Gamma(\alpha)} \int_0^{zc} e^{-x} x^{\alpha - 1} dx \\ &= \frac{1}{\Gamma(\alpha)} \int_0^c e^{-zx} (zx)^{\alpha - 1} z dx \\ &\leq \frac{z^\alpha}{\Gamma(\alpha)} \int_0^c e^{-x} x^{\alpha - 1} dx \\ &= z^\alpha \Pr[\mathrm{Gamma}(\alpha) \leq c]. \end{split}$$

Proof of Lemma 2.1. Since $z \mapsto \Pr[\operatorname{Gamma}(\alpha) \geq z]$ is continuous and has range [0, 1], choose $c \geq 0$ so that

$$\Pr[\operatorname{Gamma}(\alpha) > c] = \Pr[\operatorname{Gamma}(\alpha) \ge c] = \frac{k+1}{3n}, \tag{2.4}$$

where (k+1)/(3n) < 1. By this choice and Lemma 2.3,

$$\Pr[\operatorname{Gamma}(\alpha) \le c/\epsilon] \le \epsilon^{-\alpha} \Pr[\operatorname{Gamma}(\alpha) \le c] = \epsilon^{-\alpha} \left(1 - \frac{k+1}{3n}\right) \le \epsilon^{-\alpha} e^{-(k+1)/(3n)}. \tag{2.5}$$

Now let $\{Y_i\}_{i=1}^n$ be n i.i.d. copies of $Gamma(\alpha)$. Define the events

$$A := [\exists i \in [n] \cdot Y_i \ge c/\epsilon]$$
 and $B := [|\{i \in [n] : Y_i \le c\}| \ge n - k]$.

The remainder of the proof will establish a lower bound on $\Pr(A \wedge B)$. To see that this finishes the proof, define $S := \sum_i Y_i$; since event A implies that $S \ge c/\epsilon$, it follows that $Y_i \le c$ implies $Y_i/S \le \epsilon$. Consequently, events A and B together imply that $Y_i/S \le \epsilon$ for at least n-k choices of i. By Lemma 2.2, it follows that $\Pr(A \wedge B)$ is a lower bound on the event that a draw from $\operatorname{Dir}(\alpha)$ has at least n-k coordinates which are at most ϵ .

Returning to task, note that

$$\Pr(A \land B) = 1 - \Pr(\neg A \lor \neg B) \ge 1 - \Pr(\neg A) - \Pr(\neg B). \tag{2.6}$$

To bound the first term, by eq. (2.5),

$$\Pr(\neg A) = \Pr[\forall i \in [n] \cdot Y_i < c/\epsilon] = \Pr[Y_1 \le c/\epsilon]^n \le \epsilon^{-n\alpha} e^{-(k+1)/3}. \tag{2.7}$$

For the second term, define indicator random variables $Z_i := [Y_i > c]$, whereby

$$\mathbb{E}(Z_i) = \Pr[Z_i = 1] = \Pr[Y_i > c] = \Pr[Y_i \ge c] = \frac{k+1}{3n}.$$

Then, by a multiplicative Chernoff bound (Kearns and Vazirani, 1994, Theorem 9.2),

$$\Pr(\neg B) = \Pr[|\{i \in [n] : Y_i > c\}| \ge k + 1] = \Pr\left[\sum_i Z_i \ge 3n\mathbb{E}(Z_i)\right] \le \exp(-4n\mathbb{E}(Z_i)/3).$$
 (2.8)

Inserting (2.7) and (2.8) into the lower bound on $Pr(A \wedge B)$ in (2.6),

$$\Pr(A \wedge B) \ge 1 - e^{-n\alpha} e^{-(k+1)/3} - e^{-4(k+1)/9}.$$

Proof of Theorem 1.2. Instantiate Lemma 2.1 with $k = c_2 \ln(n)$, $\alpha = c_1/n$, and $\epsilon = n^{-c_3}$.

Proof of Theorem 1.1. Instantiate Theorem 1.2 with $c_1 = 1$, $c_2 = 6c_0$, $c_3 = c_0$, and note

$$\frac{1}{e^{1/3}} \left(\frac{1}{n}\right)^{c_0} + \frac{1}{e^{4/9}} \left(\frac{1}{n}\right)^{\frac{8c_0}{3}} \leq \frac{1}{n^{c_0}} \left(\frac{1}{e^{1/3}} + \frac{1}{e^{4/9}} \left(\frac{1}{2}\right)^{\frac{5c_0}{3}}\right) \leq \frac{1}{n^{c_0}}.$$

Proof of Theorem 1.3. Define the function $f(z) := z^{-z}$ over $(0, \infty)$. Note that $f'(z) = -(\ln(z) + 1)z^{-z}$, which is positive for z < 1/e, zero at z = 1/e, and negative thereafter; consequently, $\sup_{z \in (0,\infty)} f(z) = f(1/e) = e^{1/e}$. As such, instantiating Lemma 2.1 with $\epsilon = n^{-2}$, $\alpha = n^{-3}$, and any k < 3n - 1 gives

$$\Pr[|\{i: X_i \ge n^{-2}\}| \le k] \ge 1 - n^{2/n} e^{-(k+1)/3} - e^{-4(k+1)/9}$$

$$> 1 - e^{2/e} e^{-(k+1)/3} - e^{-4(k+1)/9}.$$

Plugging in $k \in \{5, \ln(g(n))\}$ gives the two bounds.

Acknowledgement

The author thanks Anima Anandkumar and Daniel Hsu for relevant discussions.

References

N. Balakrishnan and V. B. Nevzorov. A primer on statistical distributions. Wiley-Interscience, 2003.

M. J. Kearns and U. V. Vazirani. An introduction to computational learning theory. MIT Press, Cambridge, MA, USA, 1994.