

Transductores de radiación

Mediciones Biomédicas 2024 Ingeniería Civil Biomédica

Alejandro Veloz alejandro.veloz@uv.cl

Tipos de transductores

Resistivos

Capacitivos

Piezoeléctricos

Inductivos/magnéticos

Térmicos

Radiación/ópticos

Electroquímicos (Cap. 4)

Termometría por radiación

- - Objetos a temperatura ambiente irradian en el rango de frecuencias infrarrojas (lejanas y extremadamente lejanas).
 - De la aceleración de cargas puede surge energía térmica. Movimiento de cargas genera radiación EM.
 - La cantidad de energía de un fotón es inversamente proporcional a la longitud de onda.

$$1eV = 1.602 \times 10^{-19} J$$

$$E \propto \frac{1}{\lambda}$$

Termometría por radiación

- La termometría por radiación mapea la temperatura de la superficie de un cuerpo con sensibilidad del orden de pocas décimas de grado.
- Aplicaciones:
- Detección temprana del cáncer de mama (controversial!!),
- determinación de la localización y extensión de transtornos artríticos,
- medición de la profundidad de destrucción de tejidos producto de congelación y quemaduras,
- detección de desórdenes del sistema circulatorio periférico (trombosis, oclusión arterial, etc.).

Thermology in Medicine: Clinical Thermometry and Thermal imaging

El objetivo de este congreso es integrar a los profesionales e investigadores de diferentes campos que están trabajando diariamente con la termografía médica con los últimos avances en tecnología de infrarrojos y las nuevas aplicaciones que surgen de ellos.

El Congreso será de interés no sólo para los usuarios finales de la termografía médica sino también para investigadores y desarrolladores.

Termometría por radiación

 La radiación emitida es calculada mediante la ley de Planck y la emisividad. Esto da el flujo radiante por unidad de área por unidad de longitud de onda (en μm):

$$W_{\lambda} = \frac{\varepsilon C_1}{\lambda^5 (e^{C_2/\lambda T} - 1)} \quad (\text{W/cm}^2 \cdot \mu\text{m})$$

donde

- $C_1 = 3.74 \times 10^4 \text{ (W } \mu\text{m}^4/\text{cm}^2),$
- $C_2 = 1.44 \times 10^4 \,(\mu \text{m K})$,
- ε es la emisividad, i.e. la proporción por la cual la superficie de un cuerpo se desvía del cuerpo ideal (ε=1),
- T es la temperatura del cuerpo ideal en K.

Esta ley fue formulada en "cuerpos negros" (blackbody), un cuerpo que absorve toda la radiación incidente y luego la emite. ε refleja la desviación de un cuerpo reflexivo del cuerpo negro.

Figure 2.16 (a) Spectral radiant emittance versus wavelength for a blackbody at 300 K on the left vertical axis; percentage of total energy on the right vertical axis.

$$W_{\lambda} = \frac{\varepsilon C_1}{\lambda^5 (e^{C_2/\lambda T} - 1)} \quad (\text{W/cm}^2 \cdot \mu\text{m})$$

Ley de desplazamiento de Wien:

 $\lambda_{\rm m} = \frac{2898}{T} \quad (\mu \rm m)$

donde $\lambda_{\rm m}$ es el valor de λ que hace máximo W_{λ} .

Potencia radiante total. Ley de Stefan-Boltzmann:

$$W_t = \int_{\lambda_1}^{\lambda_2} W_{\lambda} d\lambda = \varepsilon \sigma T^4 \text{ (W/cm}^2)$$

donde σ =5.67×10⁻¹² (W/cm²)K⁴ es la constante de Stefan-Boltzmann.

Figure 1-1 Blackbody spectral radiant emittance

WAVELENGTH (µm)

Figure 2.18 The infrared thermometer opens a shutter to expose the sensor to radiation from the tympanic membrane. From J. G. Webster, Ed., *Bioinstrumentation*, New York: John Wiley & Sons, 2004.

- Fuentes de radiación.
- Sensores de radiación.

Fuentes de radiación.

Fuentes de radiación infrarroja incluyen el cuerpo humano, lámparas de tungsteno, Carburo de Silicio (SiC), lasers infrarrojos, etc. (ver tablas a continuación).

LEDs

Figure 2.22 Forward characteristics for *p-n* junctions Ordinary silicon diodes have a band gap of 1.1 eV and are inefficient radiators in the near-infrared. GaAs has a band gap of 1.44 eV and radiates at 900 nm. GaP has a band gap of 2.26 eV and radiates at 700 nm.

Fuentes de radiación.

Table 1-2 Types of Infrared radiation sources 1)

Type	Method	Material	Radiation source example	Wavelength (µm)	Remark
	Resistor heating by	Tungsten	Infrared bulb	1 to 2.5	Long wavelength region is cut off by external bulb (glass). Secondary radiation is emitted through the tube.
	current flow	Nichrome Kanthal	Electric heater	2 to 5	
Thermal		Silicon carbide (siliconate)	Globar	1 to 50	Constant voltage, large current
radiation		Ceramic	Nernst glower	1 to 50	Pre-heating is needed.
	Secondary heating by other power source	Metal (stainless steel, etc.)	Sheath heater	4 to 10	
		Ceramic	IRS type lamp	4 to 25	
			Radiant burner	1 to 20	Heating by gas burning
	Heating by discharge	Carbon	Carbon arc lamp	2 to 25	Causes some environmental problems such as soot.
Cold radiation	Gas discharge	Mercury Cesium Xenon	Mercury lamp Xenon lamp	0.8 to 2.5	Long wavelength region is cut off by external bulb. Secondary radiation is emitted through the tube.
Stimulated emission	Laser reaction	Carbon dioxide Gallium arsenic compounds Lead compounds	CO ₂ laser InGaAsP laser PbSnTe laser	9 to 11 1.1 to 1.5 6 to 7	

Fuentes de radiación.

Figure 1-2 Wavelength regions of major infrared lasers

Medios de transmisión

Vacío, atmósfera y fibras ópticas.

Atmospheric absorption on sea surface 2)

Theoretical transmission loss of optical fibers

Figure 2.19 Details of the fiber/sensor arrangement for the GaAs semiconductor temperature probe.

Figure 2.20 (a) General block diagram of an optical instrument, (b) Highest efficiency is obtained by using an intense lamp, lenses to gather and focus the light on the sample in the cuvette, and a sensitive detector, (c) Solid-state lamps and detectors may simplify the system.

Medios de transmisión

Figure 2.16 (b) **Spectral transmission** for a number of optical materials

Percent transmission

Medios de transmisión

Transmittance of various optical materials

Sensores de radiación

Sensores térmicos.

- Absorbe radiación y la convierte en calor.
- Sensores típicos son termistores y termocuplas.
- No son sensibles a variaciones de longitudes de onda.

Sensores cuánticos.

- Absorbe energía de fotones individuales y la usa mover pares electrones/huecos.
- Sensores típicos: el ojo, fototubo, fotodiodo, emulsión fotográfica.
- Son sensibles a una banda restringida de longitudes de onda.
- Velocidad de respuesta más rápida en relación a sensores térmicos.
- Menos sensibles a cambios en la temperatura ambiente.

 $E = hc/\lambda$

h: constante de Planck = 6.626×10^{-34} Js = 4.14×10^{-15} eVs

c: velocidad de la luz = 3×10^{10} cm/s

λ: longitud de onda en μm

En comparación con radiación visible y UV, la radiación IR tiene baja energía, 1.24 eV a 1µm.

Parámetros de desempeño:

- Sensibilidad.
- Potencia del ruido equivalente.
- Detectabilidad.

Figure 2.16 (c) Spectral sensitivity of photon and thermal detectors.

Sensibilidad (Photosensitivity - resposivity).

$$R = S / (PA)$$
 ?/W

Si S es una fotocorriente en A/W, Isc

$$Isc = \eta q \frac{PA}{h \frac{c}{\lambda}} = \frac{\eta q PA\lambda}{hc}$$
 q es la carga del electrón

La fotosensibilidad queda:

$$R\lambda = \frac{IsC}{PA} = \frac{\eta q \lambda}{hc} = \frac{\eta \lambda}{1.24}$$
 η es la eficiencia cuántica

Potencia de ruido equivalente (NEP, noise equivalent power).

La cantidad de luz incidente igual al nivel de ruido intrínseco del detector. La potencia de luz cuando la razón señal a ruido (S/N) es uno.

$$NEP = \frac{PA}{S/N \cdot \sqrt{\Delta f}}$$
 [W/Hz^{1/2}]

N : Noise output [V]

Δf: Noise bandwidth [Hz]

Detectabilidad

$$D^* = \frac{S/N \cdot \sqrt{\Delta f}}{P \cdot \sqrt{A}} = \frac{\sqrt{A}}{NEP}$$

$$[cm \cdot Hz^{1/2}/W]$$

Typical applications of Hamamatsu infrared detectors

Detector Application	InGaAs	PbS	PbSe	InAs	InSb	мст	Two-color detector
Radiation thermometer	G8376-03	P9217 series	P791-11	P7163 P8079 series	P6606 series	P3981	K1713 series
HMD (Hot Metal Detectors)	G8376-03	P9217 series					
Flame monitors		P9217 series					K1713-01
Fire detectors			P791-11				K1713-02
Moisture analyzers	G8372-01 G8373-01	P2532-01 P2682-01 P9217 series					
Gas analyzer	G8371-01 G8372-01 G8373-01		P791-11 P2038-03 P2680-03	P8079 series	P5968 series P6606 series	P2750 P3981	
Spectrophotometer	G8371-01 G9211-256S G9212-512S G9213-256S G9214-512S G9208-256W	P2532-01 P2682-01		P7163 P8079 series	P4247-16 P5968 series	P3257 series P4249-08 P5274 P5274-01	K1713-05 K1713-09
Film thickness gauges			P791-11 P2038-03			P3257 series P3981	
Laser monitors	G8376 series G8941 series			P8079 series		P3257-30 P3257-31	K1713-05 K3413-05
Optical power meters	G8370-02 G8370-03 G8370-05						
Laser diode life test	G8370-01						
O/E converters	G8376-01 G8376-02 G6854-01						
FTIR				P8079 series	P5968 series	P3257 series P2748-40 P2748-41 P2748-42 P5274 P5274-01	
Thermal imaging					P4247-44 P5968 series	P2750 P3257 series P4249-08	
Remote sensing					P5968 series	P5138 series	
Human body detection							

Spectral response characteristics of various infrared detectors

Figure 2.21 Spectral characteristics of detectors. The S4 response is a typical phototube response. The eye has a relatively narrow response, with colors indicated by VBGYOR. CdS plus a filter has a response that closely matches that of the eye. Si *p-n* junctions are widely used. PbS is a sensitive infrared detector. InSb is useful in far infrared. *Note*: These are only relative responses. Peak responses of different detectors differ by 107.

Fotomultiplicador

- Fotomultiplicador es un fototubo combinado con un multiplicador de electrones.
- Tiempo de respuesta inferior a 10 ns.
- Son el fotodetector más sensible.
- Bajo ciertas condiciones de temperatura, pueden medir fotones individuales.
 El ojo puede medir hasta 6 fotones en 100 ms.

Figure 2.24 Photomultiplier. An incoming photon strikes the photocathode and liberates an electron. This electron is accelerated toward the first dynode, which is 100 V more positive than the cathode. The impact liberates several electrons by secondary emission. They are accelerated toward the second dynode, which is 100 V more positive than the first dynode. This electron multiplication continues until it reaches the anode, where currents of about 1 mA flow through $R_{\rm L}$.

Fotorresistencias

- Latencia del orden de los 10 ms.
- Los fotoresistores son el sensor fotosensible más simple y los menos sensibles.
- En la oscuridad tendrán valores de resistencia cercanos a los 100 MΩ y, bajo la exposición luminosa, unos 100 Ω.

CdS Photocell from a street light

Fotorresistencias

Light sensor circuit example

Sensores fotosensibles con junturas p-n

Fotodiodos.

Tiempo de respuesta de app. 1 µs.

Fototransistores.

- La radiación produce corriente de base que gatilla corriente de colector.
- La relación radiación-corriente tiene una nolinealidad cerca del 2%, dado que β varía con la corriente por el colector.
- Tiempo de respuesta de app. 10 μs.

- Dispositivo semiconductor que convierte la luz en una corriente eléctrica.
- Una corriente pequeña es producida cuando no hay luz presente (corriente oscura – dark current).
- Pueden tener incorporados filtros ópticos, lentes y pueden tener superficies de tamaño variable:
 - El tiempo de respuesta es más bajo a medida que la superficie se incrementa.
 - Una celda solar común se implementa con un fotodiodo de una gran superficie.
- Los fotodiodos son similares a los diodos típicos, excepto en el empaquetamiento. Se busca que la radiación alcance la región de depleción de la juntura p-n.

- Cuando los fotones inciden con suficiente energía, se crean pares hueco-electrón (efecto fotoeléctrico interno) y entonces se produce una fotocorriente.
- La corriente total es la suma de la fotocorriente y la corriente oscura (dark current).
- La corriente oscura debe ser minimizada para maximizar la sensibilidad del dispositivo.

(a) In darkness

KIRDC0030EA

(b) Illuminated

KPDC0005EA

Modos de operación:

• Fotovoltaico.

• Fotoconductivo.

Table 2-1 Types of infrared detectors and their characteristics

Туре		Detector	Spectral response (µm)	Operating temperature (K)	D*(cm · Hz1/2 / W)	
Thermal type	type Thermocouple · Thermopile Bolometer Pneumatic cell Pyroelectric detector		Golay cell, condenser-microphone PZT, TGS, LiTaO³	Depends on window material	300 300 300 300	$D^* (\lambda, 10, 1) = 6 \times 10^8$ $D^* (\lambda, 10, 1) = 1 \times 10^8$ $D^* (\lambda, 10, 1) = 1 \times 10^9$ $D^* (\lambda, 10, 1) = 2 \times 10^8$
Quantum type	Intrinsic type	Photoconduc- tive type	PbS PbSe InSb HgCdTe	1 to 3.6 1.5 to 5.8 2 to 6 2 to 16	300 300 213 77	D^* (500,600,1) = 1 × 10 ⁹ D^* (500,600,1) = 1 × 10 ⁸ D^* (500,1200,1) = 2 × 10 ⁹ D^* (500,1000,1) = 2 × 10 ¹⁰
		Photovoltaic type	Ge InGaAs Ex. InGaAs InAs InSb HgCdTe	0.8 to 1.8 0.7 to 1.7 1.2 to 2.55 1 to 3.1 1 to 5.5 2 to 16	300 300 253 77 77 77	$D^* (\lambda p) = 1 \times 10^{11}$ $D^* (\lambda p) = 5 \times 10^{12}$ $D^* (\lambda p) = 2 \times 10^{11}$ $D^* (500,1200,1) = 1 \times 10^{10}$ $D^* (500,1200,1) = 2 \times 10^{10}$ $D^* (500,1000,1) = 1 \times 10^{10}$
	Extrinsic type		Ge : Au Ge : Hg Ge : Cu Ge : Zn Si : Ga Si : As	1 to 10 2 to 14 2 to 30 2 to 40 1 to 17 1 to 23	77 4.2 4.2 4.2 4.2 4.2	D^* (500,900,1) = 1 × 10 ¹¹ D^* (500,900,1) = 8 × 10 ⁹ D^* (500,900,1) = 5 × 10 ⁹

Table 3-1 Measurement temperature limit guides of infrared detectors

Measurement temperature limit	Infrared detector	
600 °C	Si	
200 °C	InGaAs	
100 °C	PbS	
50 °C	PbSe	
0 °C	InSb	
-50 °C	MCT, pyroelectric detector	

Figure 2.21 Spectral characteristics of sources, filters, detectors, and combinations thereof (a) Light sources. Tungsten (W) at 3000 K has a broad spectral output. At 2000 K, output is lower at all wavelengths and peak output shifts to longer wavelengths. Light-emitting diodes yield a narrow spectral output with GaAs in the infrared, GaP in the red, and GaAsP in the green. Monochromatic outputs from common lasers are shown by dashed lines: Ar, 515 nm; HeNe, 633 nm; ruby, 693 nm; Nd, 1064 nm; CO2 (not shown), 10,600 nm. (b) Filters. A Corning 5-56 glass filter passes a blue wavelength band. A Kodak 87 gelatin filter passes infrared and blocks visible wavelengths. Germanium lenses pass long wavelengths that cannot be passed by glass. Hemoglobin Hb and oxyhemoglobin HbO pass equally at 805 nm and have maximal difference at 660 nm. (c) Detectors. The S4 response is a typical phototube response. The eye has a relatively narrow response, with colors indicated by VBGYOR. CdS plus a filter has a response that closely matches that of the eye. Si p-n junctions are widely used. PbS is a sensitive infrared detector. InSb is useful in far infrared. Note: These are only relative responses. Peak responses of different detectors differ by 107. (d) Combination. Indicated curves from (a), (b), and (c) are multiplied at each wavelength to yield (d), which shows how well source, filter, and detector are matched, (e) Photon energy: If it is less than 1 eV, it is too weak to cause current flow in Si p-n junctions.

Aplicación de los transductores que hemos visto:

Mediciones en el sistema circulatorio y respiratorio.

- Medición invasiva de la presión sanguínea.
- Medición no invasiva de la presión sanguínea.
- Medición del gasto cardíaco.
- Mediciones en el sistema respiratorio.

Disponible en Classroom (diapositivas y videos)

Prof. Dr. Alejandro Veloz Escuela de Ing. Biomédica Universidad de Valparaíso