Time Series Analysis

with an application in Store Items Sales Forecasting

Kristen Li

Background

- Time range: 2013-01-01-- 2017-12-31
- 10 stores, 50 items
- 1826 records per store per item
- 913,000 records in total.

Research Question

What's the time series pattern for each store and each item?

Descriptive Analysis

Time Series of each Store

Scale of sales of different stores are different

All 10 stores follow the very similar pattern of time series that they all indicate a **growing trend and seasonality**.

Sales by Store

Discovery:

Store 2 has the highest sum of sales (\$6,120,128) in 5 years;

Store 7 has the least highest sum of sales (\$3,320,009).

Time Series of each item

Scale of sales of different items are different

Not all 50 stores follow the same pattern of time series, but most of them indicate a **growing** trend and seasonality.

Some shows seasonality but no much trend.

Sales by Item

Discoveries:

Item 15 has the highest sum of sales (\$1,607,442)

Item 5 has the lowest sum of sales (\$335,230)

Different stores and items have completely different time series

Store 1: item 1, item 36

Item 36: store 1, store 7

Due to many reasons:

We can't use a single model to generalize all stores' and all items' demands. Thus, **ideally, 50*10** = **500 models** at item in each store level need to be made for the most accurate prediction purpose.

Let's analyze Store 1, Item 1 as an example

ARIMA & SARIMA

Seasonal Decompose: upward trend and seasonal

What can we notice from the charts?

- Non-stationarity (upward trend)
- Seasonality

Technically speaking, SARIMA model should be the best model for prediction.

Check Stationarity

ADF-test (Original-time-series)

P-value: 0.076 > 0.01

ADF-test (Differenced-time-series)

P-value: 1.211e-23 < 0.01

The ADF-test shows that the **original data is not stationary** because p-value is greater than 0.01, but **differenced data is stationary** because p-value is smaller than 0.01.

The result is consistent with the ACF, because for a stationary time series, the ACF will drop to zero relatively quickly (differenced), while the ACF of non-stationary data decreases slowly (sales).

ACF and PACF of the first differenced data & picking parameters

We use **differenced data**, because this time series is unit root process. Autocorrelogram & Partial Autocorrelogram is useful that to estimate each model's parameters.

Here we can see the acf and pacf both has a recurring pattern every 7 periods and are both exponentially decaying or sinusoidal.

From results, looks like ARIMA (p=6-7, d=1, q=?) model.

p=6-7: In the PACF, there are 6 significant spikes, and then no significant spikes thereafter.

d=1: The first order differencing make the ts stationary. q=?: To avoid the potential for incorrectly specifying the MA order, I tried 0-7 all (see the table in the next slide).

Choosing parameters for ARIMA (p=7, d=1, q=7)

p=6	q	0	1	2	5		
	AIC	11209.36	11200.24	11199.85	10973.21		
	SSE	49256.02	48955.73	48891.21	42787.86		
p=7	q	0	1	2	3	6	7
	AIC	11202.3	11163.98	11165.98	11167.01	10935.74	10847.98
	SSE	49011.13	47932.76	47932.76	47907	41844.4	39683.21

We got parameters (7,1,7).

ARIMA(7, 1, 7) Model Estimation

```
Call:
arima(x = store1 item1[, c("sales")], order = c(7, 1, 7))
Coefficients:
             ar2 ar3 ar4 ar5 ar6 ar7 ma1 ma2 ma3
        ar1
   ma5
             ma6
                    ma7
ma4
     -0.9806 -0.9808
                           -0.9805 -0.9813 -0.9805 0.0185 0.0937 0.1096 0.1045
                    -0.9812
0.1035 0.1057 0.1036 -0.8843
                           0.0266 0.0265 0.0266 0.0265 0.0127 0.0123 0.0111
s.e. 0.0266 0.0266 0.0265
0.0125 0.0116 0.0115 0.0117
sigma^2 estimated as 21.74: log likelihood = -5408.99, aic = 10847.98
```

Equation:

```
(1 + 0.9806B + 0.9808B^2 + 0.9812B^3 + 0.9805B^4 + 0.9805B^5 + 0.9813B^6 - 0.0185B^7) (1-B) X_t = (0.0937B + 0.1096B^2 + 0.1045B^3 + 0.1035 B^4 + 0.1057B^5 + 0.1036B^6 - 0.8843B^7) Z_t
```

ARIMA(7, 1, 7) Model Estimation

Seasonal Model Residuals

9000 7000 9000 5 10 15 20 Lag

Model Equation:

$$\begin{split} \text{Yt} &= 0.9806 \text{Y}(\text{t-1}) - 0.9808 \text{Y}(\text{t-2}) - 0.9812 \text{Y}(\text{t-3}) - \\ \text{0.9805 \text{Y}(\text{t-4})} - 0.9805 \text{Y}(\text{t-5}) - 0.9813 \text{Y}(\text{t-6}) + 0.0185 \text{Y}(\text{t-7}) + \\ \text{0.0937} &\epsilon(\text{t-1}) + 0.1096 \epsilon(\text{t-2}) + 0.1045 \epsilon(\text{t-3}) + 0.1035 \epsilon(\text{t-4}) \\ \text{+ 0.1057} &\epsilon(\text{t-5}) + 0.1036 \epsilon(\text{t-6}) - 0.8843 \epsilon(\text{t-7}) + \epsilon \text{t} \end{split}$$

Where **mean=0**, and ε t is white noise with a standard deviation of sqrt(21.74) = 4.66

Continuing: ARIMA(7, 1, 7) Model

Box-Pierce test

data: fit3\$residuals

X-squared = 4.6593, df = 7.5099, p-value = 0.7511

Ljung-Box test

data: Residuals from ARIMA(7,1,7) $Q^* = 9.9645$, df = 3, p-value = 0.02

Model df: 14. Total lags used: 17

Although the graph looks very like a normal distribution, We see a recurring correlation exists in both ACF and PACF. So we need to deal with seasonality.

Forecasting from ARIMA (7, 1, 7)

Forecasts from ARIMA(7,1,7)

Forecasting from ARIMA (7, 1, 7)

	Point	Forecast	Lo 80	Hi 80	Lo 95	Ні 95
2018-01-01	1827	12.49981	6.499300	18.50031	3.322823	21.67679
2018-01-02	1828	15.37758	9.338677	21.41649	6.141874	24.61329
2018-01-03	1829	16.01177	9.935959	22.08758	6.719617	25.30393
2018-01-04	1830	16.88941	10.780465	22.99835	7.546587	26.23222
2018-01-05	1831	17.54160	11.399744	23.68346	8.148442	26.93476
2018-01-06	1832	21.03752	14.862346	27.21270	11.593405	30.48164
2018-01-07	1833	20.38737	14.179150	26.59558	10.892719	29.88202
2018-01-08	1834	12.45707	6.209114	18.70504	2.901644	22.01251
2018-01-09	1835	15.37206	9.097068	21.64705	5.775288	24.96883
2018-01-10	1836	16.01300	9.702686	22.32332	6.362206	25.66380

Auto algorithm result: ARIMA(5, 1, 2)

Box-Pierce test

data: fit\$residuals

X-squared = 55.909, df = 7.5099, p-value = 1.736e-09

Ljung-Box test

15

data: Residuals from ARIMA(5,0,2) with zero mean

 $Q^* = 93.97$, df = 3, p-value < 2.2e-16

Model df: 7. Total lags used: 10

Auto algorithm result: ARIMA(5, 1, 2)

```
Series: store1 item1[, c("sales")]
ARIMA(5,1,2)
Coefficients:
        ar1
                ar2 ar3 ar4 ar5
                                                  ma1
                                                         ma2
     0.0549 - 0.2068 - 0.1894 - 0.1661 - 0.1541 - 0.9263 0.1455
s.e. 0.0750 0.0407 0.0346 0.0321 0.0352 0.0728 0.0730
sigma^2 estimated as 27.98: log likelihood=-5627.1
AIC=11270.2 AICc=11270.28 BIC=11314.28
Training set error measures:
                   ME
                          RMSE
                                  MAE
                                           MPE
                                                   MAPE
                                                            MASE
                                                                        ACF1
Training set 0.02297043 5.278288 4.15019 -8.051611 24.49185 0.7527427 -0.006155832
```

Equation:

```
(1 - 0.0549B + 0.2068B^2 + 0.1894B^3 + 0.1661B^4 + 1541B^5) (1-B) X_t = (-0.9263B + 0.1455B^2) Z_t
```

ARIMA (7,1,7) is slightly better than auto arima ARIMA (5,1,2), however, ACF and PACF show recurring correlation existing in both models.

So we need to deal with seasonality.

SARIMA(p, d, q) (P, D, Q)m

Series diff(diff(store1_item1\$sales))

Series diff(diff(store1_item1\$sales))

Choosing parameters:

p=?: 6-7 non-seasonal spikes detected from the PACF.

q=1: one non-seasonal spike detected from the ACF

d=1, D=1

m=7: Here we can see the acf and pacf both has a recurring pattern every 7 periods.

Q=1: one seasonal spike at lag 7 in the ACF but no other significant spikes

P=0/1: There are several spikes, but I only use maximum one regular significant spike at lag 7 in the PACF after lag 7 -- to make the process reasonable.

Model Selection: SARIMA(p, d, q) (P, D, Q)m

```
0 1 1 0 1 1 7 AIC= 10798.11 SSE= 39581.15 p-VALUE= 0.7883058
0 1 1 0 1 2 7 AIC= 10797.93 SSE= 39513.69 p-VALUE= 0.9523192
0 1 1 1 1 0 7 AIC= 11356.21 SSE= 54463.26 p-VALUE= 1.161551e-09
0 1 1 1 1 1 7 AIC= 10797.74 SSE= 39506.51 p-VALUE= 0.9509269
0 1 1 1 1 2 7 AIC= 10801.94 SSE= 39579.37 p-VALUE= 0.7073274
1 1 1 0 1 1 7 AIC= 10800 SSE= 39579.47 p-VALUE= 0.8054869
1 1 1 0 1 2 7 AIC= 10799.65 SSE= 39508.84 p-VALUE= 0.9725113
1 1 1 1 0 7 AIC= 11348.23 SSE= 54169.08 p-VALUE= 2.669266e-07
1 1 1 1 1 1 7 AIC= 10799.45 SSE= 39499.22 p-VALUE= 0.9720391
2 1 1 0 1 1 7 AIC= 10800.56 SSE= 39547.78 p-VALUE= 0.925624
2 1 1 1 1 0 7 AIC= 11348.72 SSE= 54125.39 p-VALUE= 3.812788e-07
6 1 0 0 1 1 7 AIC= 10882.69 SSE= 41093.79 p-VALUE= 2.229754e-08
6 1 0 1 1 1 7 AIC= 10819.9 SSE= 39645.75 p-VALUE= 0.5128233
6 1 1 0 1 1 7 AIC= 10807.11 SSE= 39511.33 p-VALUE= 0.9961842
6 1 1 1 1 1 7 AIC= 10807.36 SSE= 39455.17 p-VALUE= 1
7 1 0 0 1 1 7 AIC= 10872.18 SSE= 40848.09 p-VALUE= 6.84914e-05
7 1 0 1 1 1 7 AIC= 10821.17 SSE= 39627.18 p-VALUE= 0.6559436
7 1 1 0 1 1 7 AIC= 10807.4 SSE= 39455.94 p-VALUE= 1
7 1 1 1 1 1 7 AIC= 10807 SSE= 39367.59 p-VALUE= 0.99999993 Model: SARIMA(0, 1, 1) (1, 1, 1)7
```

SARIMA(0, 1, 1) (1, 1, 1)7

```
Call:
arima(x = store1 item1[, c("sales")], order = c(0, 1, 1), seasonal = list(order = c(1, 1))
   1, 1), period = 7)
Coefficients:
         ma1
                sar1
                         sma1
      -0.8952 0.0375 -0.9944
s.e. 0.0102 0.0244 0.0080
sigma^2 estimated as 21.73: log likelihood = -5394.87, aic = 10797.74
Training set error measures:
                     ME
                            RMSE
                                      MAE
                                               MPE
                                                       MAPE
                                                                 MASE
                                                                           ACF1
Training set -0.08264037 4.651403 3.664003 -6.908788 21.47542 0.6645603 0.0114268
```

Equation:

 $(1-B) (1-0.0375B^7) (1-B^7) X_t = (1-0.8952B) (1+0.9944B^7) Z_t$

Residuals from ARIMA(0,1,1)(1,1,1)[7] 20 -10 --10 -500 1000 1500 0.050 -150 -0.025 -0.000 100 count ACF -0.025 50 --0.050 --0.075 residuals

SARIMA(0, 1, 1) (1, 1, 1)7

Box-Pierce test

data: sarima\$residuals

X-squared = 2.4357, df = 7.5099, p-value = 0.9509

Ljung-Box test

data: Residuals from ARIMA(0,1,1)(1,1,1)[7]

 $Q^* = 3.5087$, df = 7, p-value = 0.8343

Model df: 3. Total lags used: 10

Forecasting from SARIMA(0, 1, 1) (1, 1, 1)7

2-month prediction

Forecasting from SARIMA(0, 1, 1) (1, 1, 1)7

		Point	Forecast	Lo 80	Hi 80	Lo 95	Ні 95
2018-01-01	1827		12.63281	6.656801	18.60882	3.493292	21.77233
2018-01-02	1828		15.33444	9.325720	21.34317	6.144894	24.52399
2018-01-03	1829		15.84750	9.806230	21.88877	6.608175	25.08682
2018-01-04	1830		16.76571	10.692067	22.83934	7.476876	26.05454
2018-01-05	1831		18.01635	11.910514	24.12219	8.678278	27.35443
2018-01-06	1832		20.54045	14.402582	26.67832	11.153391	29.92751
2018-01-07	1833		21.11681	14.947075	27.28654	11.681016	30.55260
2018-01-08	1834		12.62033	6.387080	18.85357	3.087398	22.15326
2018-01-09	1835		15.31077	9.043357	21.57819	5.725587	24.89596
2018-01-10	1836		15.91804	9.616636	22.21945	6.280873	25.55521
2018-01-11	1837		16.68322	10.348011	23.01844	6.994351	26.37210
2018-01-12	1838		18.13072	11.761876	24.49956	8.390415	27.87102
2018-01-13	1839		20.29957	13.897273	26.70186	10.508104	30.09103
2018-01-14	1840		21.04749	14.611920	27.48306	11.205135	30.88984

Model Selection

Model	ARIMA (7, 1, 7)	ARIMA (5, 1, 2)	SARIMA(0, 1, 1) (1, 1, 1)7
AIC	10847.98	11270.2	10797.74
SSE	39683.21	50872.95	39506.51
Box-Pierce test X-Squared	4.6593	4.6593	2.4357
P-value	0.7511	1.736e-09	0.9509269
Ljung-Box Q-statistics	9.9645	93.97	3.5087
Ljung-Box Q-statistics p-value	0.02	2.2e-16	0.8343

```
library(dplyr)
library(data.table)
library(ggplot2)
library(tseries)
library(forecast)
# This is 5 years of store-item sales data for 50 different
items at 10 different stores.
store <- fread("~/Downloads/store demand.csv")</pre>
head(store)
store$date <- as.Date(store$date, "%m/%d/%Y")</pre>
range(store$date)
rownames(store) <- store$Date</pre>
ggplot(store, aes(date, sales)) + geom line() +
  scale x date('time') + ylab("Daily Sales") + xlab("") +
  facet grid(store$store)
store1 item36 <- store %>% filter(store==1&item==36)
store1 2items <- rbind(store1 item1, store1 item36)</pre>
range(store1 item36$date)
ggplot(store1 2items, aes(date, sales)) + geom line() +
  facet grid(store1 2items$item) +
  ylab("Daily Sales") + xlab("")
store7 item36 <- store %>% filter(store==7&item==36)
item36 2stores <- rbind(store1 item36, store7 item36)</pre>
ggplot(item36 2stores, aes(date, sales)) + geom line() +
  facet grid(item36 2stores$store) +
  ylab("Sales") + xlab("Date")
##### model for store 1 item 1 #####
store1 item1 <- store %>% filter(store==1&item==1)
rownames(store1 item1) <- store1 item1[,"date"]</pre>
store1 item1 <- ts(store1 item1)</pre>
cbind("Sales" = store1 item1[, "sales"],
      "Monthly log sales" = log(store1 item1[, "sales"]),
      "Annual change in log sales" = diff(store1 item1[,
"sales"],12)) %>%
  autoplot(facets=TRUE) +
  xlab("Year") + ylab("") +
  ggtitle("store 1 item 1 sales")
```

```
plot(diff(store1 item1), main='Differenced Log-transorm of
sales', ylab='', col='brown', lwd=3)
ggplot(store1 item1[,c("date", "sales")], aes(date, sales)) +
geom line() + ylab("Sales") + xlab("Day")
# ACF plots
acf(store1 item1$sales)
pacf(store1 item1$sales)
acf(diff(diff(store1 item1$sales)))
pacf(diff(diff(store1 item1$sales)))
# ARIMA
fit <- auto.arima(store1 item1[,"sales"], seasonal=FALSE)</pre>
summary(fit)
fit2 <- auto.arima(store1 item1[,c("sales")],</pre>
seasonal=FALSE, stepwise=FALSE, approximation=FALSE)
summary(fit2)
fit3 <- Arima(store1 item1[,c("sales")], order=c(7,1,7))
summary(fit3)
AIC( arima( storel item1[,c("sales")], order=c(6,1,0) ) ) \#AIC =
[1] 11209.36
AIC( arima( storel item1[,c("sales")], order=c(6,1,1) ) ) \#AIC =
[1] 11200.24
AIC( arima( store1_item1[,c("sales")], order=c(6,1,2) ) ) #AIC =
[1] 11199.85
[1] 10973.21
[1] 11202.3
AIC( arima( storel item1[,c("sales")], order=c(7,1,1) ) ) #AIC =
[1] 11163.98
AIC( arima( storel item1[,c("sales")], order=c(7,1,2) ) ) \#AIC =
[1] 11165.98
AIC( arima( storel item1[,c("sales")], order=c(7,1,3) ) ) #AIC =
[1] 11167.01
[1] 10935.74
AIC( arima( store1 item1[,c("sales")], order=c(7,1,7) ) ) #AIC =
[1] 10847.98
sum(arima( store1 item1[,c("sales")],
order=c(6,1,5)) $residuals^2)
sum(fit$residuals^2)
Box.test(fit$residuals, lag=log(length(fit$residuals)))
```

```
Box.test(fit3$residuals, lag=log(length(fit3$residuals)))
tsdisplay(residuals(fit), laq.max=20, main='Seasonal Model
Residuals')
checkresiduals(fit)
tsdisplay(residuals(fit3), lag.max=20, main='Seasonal Model
Residuals')
checkresiduals(fit3)
pred = forecast(fit3)
plot(forecast(fit3))
# SARIMA Model
d=1
DD=1
per=7
for(p in 1:3) {
  for(q in 1:3) {
    for(i in 1:3) {
      for(j in 1:3) {
        if(p+d+q+i+DD+j <= 10){
          model<-arima(x=store1 item1[,c("sales")], order =</pre>
c((p-1),d,(q-1)), seasonal = list(order=c((i-1),DD,(j-1)),
period=per))
          pval<-Box.test(model$residuals,</pre>
lag=log(length(model$residuals)))
          sse<-sum(model$residuals^2)</pre>
          cat(p-1,d,q-1,i-1,DD,j-1,per, 'AIC=', model$aic, '
SSE=',sse,' p-VALUE=', pval$p.value,'\n')
      }
    }
  }
}
## Final model
sarima <-arima(storel item1[,c("sales")], order = c(0,1,1),
seasonal = list(order = c(1,1,1), period = 7))
summary(sarima)
z.test(sarima)
checkresiduals(sarima)
Box.test(sarima$residuals, lag=log(length(sarima2$residuals)))
pred = forecast(sarima)
plot(forecast(sarima, h=14))
```

```
sarima2 <-arima(store1_item1[,c("sales")], order = c(6,1,1),
seasonal = list(order = c(1,1,1), period = 7))
summary(sarima2)
tsdisplay(residuals(sarima2), lag.max=20, main='Seasonal Model
Residuals')
checkresiduals(sarima2)
Box.test(sarima2$residuals, lag=log(length(sarima2$residuals)))
pred = forecast(sarima2)
plot(forecast(sarima2, h=70))</pre>
```

```
In [1]: import warnings
         warnings.filterwarnings('ignore')
         import pandas as pd
         import matplotlib.pyplot as plt
         import seaborn as sns
         sns.set(font='IPAGothic')
         import numpy as np
         import statsmodels.api as sm
In [2]: df = pd.read_csv("~/Downloads/store.csv")
In [3]: df = df.drop(columns=['Unnamed: 0'])
In [4]: df = df.set_index('date')
In [5]: df.head()
Out[5]:
                   store item sales
              date
         2013-01-01
                               13
         2013-01-02
                               11
         2013-01-03
                               14
         2013-01-04
                               13
         2013-01-05
                               10
In [6]: buf = df[(df.store==1)&(df.item==1)].copy()
        buf.head()
Out[6]:
                   store item sales
              date
         2013-01-01
                               13
```

2013-01-02

2013-01-03

2013-01-04

2013-01-05

11

14

13

10

```
In [8]:
         res = sm.tsa.seasonal_decompose(buf.sales.dropna(), freq=365)
          fig = res.plot()
          fig.set_figheight(8)
         fig.set_figwidth(10)
         plt.show()
         /anaconda3/lib/python3.7/site-packages/matplotlib/font_manager.py:1241: UserWarning: findfont: Font family
          ['IPAGothic'] not found. Falling back to DejaVu Sans.
            (prop.get_family(), self.defaultFamily[fontext]))
          /anaconda3/lib/python3.7/site-packages/matplotlib/font_manager.py:1241: UserWarning: findfont: Font family
         ['IPAGothic'] not found. Falling back to DejaVu Sans.
            (prop.get_family(), self.defaultFamily[fontext]))
            Observed
            22.5
          Trend
            20.0
            17.5
              10
          Seasonal
               0
             -10
             10
          Residual
               0
             -10
             2013-01-01 2013-09-08 2014-05-16 2015-01-21 2015-09-28 2016-06-04 2017-02-09 2017-10-17
In [9]: #ADF-test(Original-time-series)
          res = sm.tsa.adfuller(buf['sales'].dropna(),regression='ct')
         print('p-value:{}'.format(res[1]))
         p-value:0.07610688992415375
In [10]: #ADF-test(differenced-time-series)
          res = sm.tsa.adfuller(buf['sales'].diff().dropna(),regression='c')
         print('p-value:{}'.format(res[1]))
         p-value:1.2109276320428997e-23
In [7]: tra = buf['sales'].dropna()
          tra_log = np.log(buf['sales'])
```

```
In [8]: #we use tra.diff()(differenced data), because this time series is unit root process.
fig,ax = plt.subplots(2,1,figsize=(10,8))

fig = sm.graphics.tsa.plot_acf(tra.diff().dropna(), lags=20, ax=ax[0])
fig = sm.graphics.tsa.plot_pacf(tra.diff().dropna(), lags=20, ax=ax[1])

plt.show()
```

/anaconda3/lib/python3.7/site-packages/matplotlib/font_manager.py:1241: UserWarning: findfont: Font family
['IPAGothic'] not found. Falling back to DejaVu Sans.
 (prop.get_family(), self.defaultFamily[fontext]))
/anaconda3/lib/python3.7/site-packages/matplotlib/font_manager.py:1241: UserWarning: findfont: Font family
['IPAGothic'] not found. Falling back to DejaVu Sans.
 (prop.get_family(), self.defaultFamily[fontext]))


```
In [13]: resDiff = sm.tsa.arma_order_select_ic(tra, max_ar=7, max_ma=7, ic='aic', trend='c')
print('ARMA(p,q) = ',resDiff['aic_min_order'],'is the best.')
```

```
/anaconda3/lib/python3.7/site-packages/statsmodels/tsa/base/tsa model.py:171: ValueWarning: No frequency info
rmation was provided, so inferred frequency D will be used.
  % freq, ValueWarning)
/anaconda3/lib/python3.7/site-packages/statsmodels/tsa/base/tsa_model.py:171: ValueWarning: No frequency info
rmation was provided, so inferred frequency D will be used.
  % freq, ValueWarning)
/anaconda3/lib/python3.7/site-packages/statsmodels/tsa/base/tsa model.py:171: ValueWarning: No frequency info
rmation was provided, so inferred frequency D will be used.
  % freq, ValueWarning)
/anaconda3/lib/python3.7/site-packages/statsmodels/tsa/base/tsa model.py:171: ValueWarning: No frequency info
rmation was provided, so inferred frequency D will be used.
  % freq, ValueWarning)
/anaconda3/lib/python3.7/site-packages/statsmodels/tsa/base/tsa_model.py:171: ValueWarning: No frequency info
rmation was provided, so inferred frequency D will be used.
  % freq, ValueWarning)
/anaconda3/lib/python3.7/site-packages/statsmodels/tsa/base/tsa_model.py:171: ValueWarning: No frequency info
rmation was provided, so inferred frequency D will be used.
  % freq, ValueWarning)
/anaconda3/lib/python3.7/site-packages/statsmodels/tsa/base/tsa_model.py:171: ValueWarning: No frequency info
rmation was provided, so inferred frequency D will be used.
  % freq, ValueWarning)
/anaconda3/lib/python3.7/site-packages/statsmodels/tsa/base/tsa_model.py:171: ValueWarning: No frequency info
rmation was provided, so inferred frequency D will be used.
  % freq, ValueWarning)
/anaconda3/lib/python3.7/site-packages/statsmodels/tsa/base/tsa_model.py:171: ValueWarning: No frequency info
rmation was provided, so inferred frequency D will be used.
  % freq, ValueWarning)
/anaconda3/lib/python3.7/site-packages/statsmodels/tsa/base/tsa model.py:171: ValueWarning: No frequency info
rmation was provided, so inferred frequency D will be used.
  % freq, ValueWarning)
/anaconda3/lib/python3.7/site-packages/statsmodels/tsa/base/tsa model.py:171: ValueWarning: No frequency info
rmation was provided, so inferred frequency D will be used.
  % freq, ValueWarning)
/anaconda3/lib/python3.7/site-packages/statsmodels/tsa/base/tsa_model.py:171: ValueWarning: No frequency info
rmation was provided, so inferred frequency D will be used.
  % freq, ValueWarning)
/anaconda3/lib/python3.7/site-packages/statsmodels/tsa/base/tsa_model.py:171: ValueWarning: No frequency info
rmation was provided, so inferred frequency \ensuremath{\mathsf{D}} will be used.
  % freq, ValueWarning)
/anaconda3/lib/python3.7/site-packages/statsmodels/tsa/base/tsa_model.py:171: ValueWarning: No frequency info
rmation was provided, so inferred frequency D will be used.
  % freq, ValueWarning)
/anaconda3/lib/python3.7/site-packages/statsmodels/tsa/base/tsa_model.py:171: ValueWarning: No frequency info
rmation was provided, so inferred frequency D will be used.
  % freq, ValueWarning)
/anaconda3/lib/python3.7/site-packages/statsmodels/tsa/base/tsa_model.py:171: ValueWarning: No frequency info
rmation was provided, so inferred frequency D will be used.
  % freq, ValueWarning)
/anaconda3/lib/python3.7/site-packages/statsmodels/tsa/base/tsa model.py:171: ValueWarning: No frequency info
rmation was provided, so inferred frequency D will be used.
  % freq, ValueWarning)
/anaconda3/lib/python3.7/site-packages/statsmodels/tsa/base/tsa_model.py:171: ValueWarning: No frequency info
rmation was provided, so inferred frequency D will be used.
  % freq, ValueWarning)
/anaconda3/lib/python3.7/site-packages/statsmodels/tsa/base/tsa_model.py:171: ValueWarning: No frequency info
rmation was provided, so inferred frequency D will be used.
  % freq, ValueWarning)
/anaconda3/lib/python3.7/site-packages/statsmodels/tsa/base/tsa_model.py:171: ValueWarning: No frequency info
rmation was provided, so inferred frequency D will be used.
  % freq, ValueWarning)
/anaconda3/lib/python3.7/site-packages/statsmodels/tsa/base/tsa_model.py:171: ValueWarning: No frequency info
rmation was provided, so inferred frequency D will be used.
  % freq, ValueWarning)
/anaconda3/lib/python3.7/site-packages/statsmodels/tsa/base/tsa_model.py:171: ValueWarning: No frequency info
rmation was provided, so inferred frequency D will be used.
  % freq, ValueWarning)
/anaconda3/lib/python3.7/site-packages/statsmodels/tsa/base/tsa_model.py:171: ValueWarning: No frequency info
rmation was provided, so inferred frequency D will be used.
  % freq, ValueWarning)
/anaconda3/lib/python3.7/site-packages/statsmodels/tsa/base/tsa model.py:171: ValueWarning: No frequency info
rmation was provided, so inferred frequency D will be used.
  % freq, ValueWarning)
/anaconda3/lib/python3.7/site-packages/statsmodels/tsa/base/tsa model.py:171: ValueWarning: No frequency info
rmation was provided, so inferred frequency D will be used.
  % freg. ValueWarning)
/anaconda3/lib/python3.7/site-packages/statsmodels/tsa/base/tsa_model.py:171: ValueWarning: No frequency info
rmation was provided, so inferred frequency D will be used.
  % freq, ValueWarning)
/anaconda3/lib/python3.7/site-packages/statsmodels/tsa/base/tsa_model.py:171: ValueWarning: No frequency info
rmation was provided, so inferred frequency D will be used.
  % freq, ValueWarning)
/anaconda3/lib/python3.7/site-packages/statsmodels/tsa/base/tsa_model.py:171: ValueWarning: No frequency info
```

```
rmation was provided, so inferred frequency D will be used.
  % freq, ValueWarning)
/anaconda3/lib/python3.7/site-packages/statsmodels/tsa/base/tsa_model.py:171: ValueWarning: No frequency info
rmation was provided, so inferred frequency D will be used.
/anaconda3/lib/python3.7/site-packages/statsmodels/tsa/base/tsa_model.py:171: ValueWarning: No frequency info
rmation was provided, so inferred frequency D will be used.
  % freq, ValueWarning)
/anaconda3/lib/python3.7/site-packages/statsmodels/tsa/base/tsa_model.py:171: ValueWarning: No frequency info
rmation was provided, so inferred frequency D will be used.
  % freq, ValueWarning)
/anaconda3/lib/python3.7/site-packages/statsmodels/tsa/base/tsa_model.py:171: ValueWarning: No frequency info
rmation was provided, so inferred frequency D will be used.
  % freq, ValueWarning)
/anaconda3/lib/python3.7/site-packages/statsmodels/base/model.py:488: HessianInversionWarning: Inverting hess
ian failed, no bse or cov_params available
  available', HessianInversionWarning)
/anaconda3/lib/python3.7/site-packages/statsmodels/base/model.py:508: ConvergenceWarning: Maximum Likelihood
optimization failed to converge. Check mle_retvals
  "Check mle_retvals", ConvergenceWarning)
/anaconda3/lib/python3.7/site-packages/statsmodels/tsa/base/tsa model.py:171: ValueWarning: No frequency info
rmation was provided, so inferred frequency D will be used.
  % freq, ValueWarning)
/anaconda3/lib/python3.7/site-packages/statsmodels/tsa/base/tsa_model.py:171: ValueWarning: No frequency info
rmation was provided, so inferred frequency D will be used.
  % freg, ValueWarning)
/anaconda3/lib/python3.7/site-packages/statsmodels/tsa/base/tsa_model.py:171: ValueWarning: No frequency info
rmation was provided, so inferred frequency D will be used.
  % freq, ValueWarning)
/anaconda3/lib/python3.7/site-packages/statsmodels/tsa/base/tsa_model.py:171: ValueWarning: No frequency info
rmation was provided, so inferred frequency D will be used.
  % freq, ValueWarning)
/anaconda3/lib/python3.7/site-packages/statsmodels/tsa/base/tsa_model.py:171: ValueWarning: No frequency info
rmation was provided, so inferred frequency D will be used.
  % freq, ValueWarning)
/anaconda3/lib/python3.7/site-packages/statsmodels/base/model.py:488: HessianInversionWarning: Inverting hess
ian failed, no bse or cov params available
  'available', HessianInversionWarning)
/anaconda3/lib/python3.7/site-packages/statsmodels/tsa/base/tsa_model.py:171: ValueWarning: No frequency info
rmation was provided, so inferred frequency D will be used.
  % freq, ValueWarning)
/anaconda3/lib/python3.7/site-packages/statsmodels/base/model.py:488: HessianInversionWarning: Inverting hess
ian failed, no bse or cov_params available
  'available', HessianInversionWarning)
/anaconda3/lib/python3.7/site-packages/statsmodels/tsa/base/tsa model.py:171: ValueWarning: No frequency info
rmation was provided, so inferred frequency D will be used.
  % freq, ValueWarning)
/anaconda3/lib/python3.7/site-packages/statsmodels/tsa/base/tsa_model.py:171: ValueWarning: No frequency info
rmation was provided, so inferred frequency D will be used.
  % freq, ValueWarning)
/anaconda3/lib/python3.7/site-packages/statsmodels/base/model.py:488: HessianInversionWarning: Inverting hess
ian failed, no bse or cov_params available
  'available', HessianInversionWarning)
/anaconda3/lib/python3.7/site-packages/statsmodels/tsa/base/tsa_model.py:171: ValueWarning: No frequency info
rmation was provided, so inferred frequency D will be used.
  % freq, ValueWarning)
/anaconda3/lib/python3.7/site-packages/statsmodels/tsa/base/tsa_model.py:171: ValueWarning: No frequency info
rmation was provided, so inferred frequency D will be used.
  % freq, ValueWarning)
/anaconda3/lib/python3.7/site-packages/statsmodels/tsa/base/tsa_model.py:171: ValueWarning: No frequency info
rmation was provided, so inferred frequency D will be used.
  % freq, ValueWarning)
/anaconda3/lib/python3.7/site-packages/statsmodels/tsa/base/tsa_model.py:171: ValueWarning: No frequency info
rmation was provided, so inferred frequency D will be used.
  % freq, ValueWarning)
/anaconda3/lib/python3.7/site-packages/statsmodels/tsa/base/tsa model.py:171: ValueWarning: No frequency info
rmation was provided, so inferred frequency D will be used.
  % freq, ValueWarning)
/anaconda3/lib/python3.7/site-packages/statsmodels/tsa/base/tsa_model.py:171: ValueWarning: No frequency info
rmation was provided, so inferred frequency D will be used.
  % freq, ValueWarning)
/anaconda3/lib/python3.7/site-packages/statsmodels/tsa/base/tsa_model.py:171: ValueWarning: No frequency info
rmation was provided, so inferred frequency D will be used.
  % freq, ValueWarning)
/anaconda3/lib/python3.7/site-packages/statsmodels/base/model.py:488: HessianInversionWarning: Inverting hess
ian failed, no bse or cov_params available
  'available', HessianInversionWarning)
/anaconda3/lib/python3.7/site-packages/statsmodels/base/model.py:508: ConvergenceWarning: Maximum Likelihood
optimization failed to converge. Check mle retvals
  "Check mle_retvals", ConvergenceWarning)
```

/anaconda3/lib/python3.7/site-packages/statsmodels/tsa/base/tsa_model.py:171: ValueWarning: No frequency info

rmation was provided, so inferred frequency D will be used.

```
% freq, ValueWarning)
/anaconda3/lib/python3.7/site-packages/statsmodels/tsa/base/tsa model.py:171: ValueWarning: No frequency info
rmation was provided, so inferred frequency D will be used.
  % freq, ValueWarning)
/anaconda3/lib/python3.7/site-packages/statsmodels/tsa/base/tsa_model.py:171: ValueWarning: No frequency info
rmation was provided, so inferred frequency D will be used.
  % freq, ValueWarning)
/anaconda3/lib/python3.7/site-packages/statsmodels/tsa/base/tsa_model.py:171: ValueWarning: No frequency info
rmation was provided, so inferred frequency D will be used.
  % freq, ValueWarning)
/anaconda3/lib/python3.7/site-packages/statsmodels/tsa/base/tsa_model.py:171: ValueWarning: No frequency info
rmation was provided, so inferred frequency D will be used.
  % freq, ValueWarning)
/anaconda3/lib/python3.7/site-packages/statsmodels/base/model.py:488: HessianInversionWarning: Inverting hess
ian failed, no bse or cov_params available
  'available', HessianInversionWarning)
/anaconda3/lib/python3.7/site-packages/statsmodels/base/model.py:508: ConvergenceWarning: Maximum Likelihood
optimization failed to converge. Check mle retvals
  "Check mle retvals", ConvergenceWarning)
/anaconda3/lib/python3.7/site-packages/statsmodels/tsa/base/tsa_model.py:171: ValueWarning: No frequency info
rmation was provided, so inferred frequency D will be used.
  % freq, ValueWarning)
/anaconda3/lib/python3.7/site-packages/statsmodels/base/model.py:488: HessianInversionWarning: Inverting hess
ian failed, no bse or cov_params available
  'available', HessianInversionWarning)
/anaconda3/lib/python3.7/site-packages/statsmodels/base/model.py:508: ConvergenceWarning: Maximum Likelihood
optimization failed to converge. Check mle_retvals
  "Check mle_retvals", ConvergenceWarning)
/anaconda3/lib/python3.7/site-packages/statsmodels/tsa/base/tsa model.py:171: ValueWarning: No frequency info
rmation was provided, so inferred frequency \ensuremath{\text{D}} will be used.
  % freq, ValueWarning)
/anaconda3/lib/python3.7/site-packages/statsmodels/base/model.py:488: HessianInversionWarning: Inverting hess
ian failed, no bse or cov_params available
  'available', HessianInversionWarning)
/anaconda3/lib/python3.7/site-packages/statsmodels/base/model.py:508: ConvergenceWarning: Maximum Likelihood
optimization failed to converge. Check mle_retvals
  'Check mle retvals', ConvergenceWarning)
/anaconda3/lib/python3.7/site-packages/statsmodels/tsa/base/tsa_model.py:171: ValueWarning: No frequency info
rmation was provided, so inferred frequency D will be used.
  % freq, ValueWarning)
/anaconda3/lib/python3.7/site-packages/statsmodels/base/model.py:488: HessianInversionWarning: Inverting hess
ian failed, no bse or cov params available
  available', HessianInversionWarning)
/anaconda3/lib/python3.7/site-packages/statsmodels/tsa/base/tsa_model.py:171: ValueWarning: No frequency info
rmation was provided, so inferred frequency D will be used.
  % freq, ValueWarning)
/anaconda3/lib/python3.7/site-packages/statsmodels/base/model.py:488: HessianInversionWarning: Inverting hess
ian failed, no bse or cov_params available
  available', HessianInversionWarning)
/anaconda3/lib/python3.7/site-packages/statsmodels/tsa/base/tsa model.py:171: ValueWarning: No frequency info
rmation was provided, so inferred frequency D will be used.
  % freq, ValueWarning)
/anaconda3/lib/python3.7/site-packages/statsmodels/tsa/base/tsa_model.py:171: ValueWarning: No frequency info
rmation was provided, so inferred frequency D will be used.
  % freg, ValueWarning)
/anaconda3/lib/python3.7/site-packages/statsmodels/tsa/base/tsa_model.py:171: ValueWarning: No frequency info
rmation was provided, so inferred frequency D will be used.
  % freq, ValueWarning)
/anaconda3/lib/python3.7/site-packages/statsmodels/tsa/base/tsa_model.py:171: ValueWarning: No frequency info
rmation was provided, so inferred frequency D will be used.
  % freq, ValueWarning)
/anaconda3/lib/python3.7/site-packages/statsmodels/tsa/base/tsa_model.py:171: ValueWarning: No frequency info
rmation was provided, so inferred frequency D will be used.
  % freq, ValueWarning)
/anaconda3/lib/python3.7/site-packages/statsmodels/tsa/base/tsa_model.py:171: ValueWarning: No frequency info
rmation was provided, so inferred frequency D will be used.
  % freq, ValueWarning)
/anaconda3/lib/python3.7/site-packages/statsmodels/base/model.py:488: HessianInversionWarning: Inverting hess
ian failed, no bse or cov params available
  'available', HessianInversionWarning)
/anaconda3/lib/python3.7/site-packages/statsmodels/tsa/base/tsa model.py:171: ValueWarning: No frequency info
rmation was provided, so inferred frequency D will be used.
  % freq, ValueWarning)
/anaconda3/lib/python3.7/site-packages/statsmodels/base/model.py:488: HessianInversionWarning: Inverting hess
ian failed, no bse or cov_params available
   available', HessianInversionWarning)
/anaconda3/lib/python3.7/site-packages/statsmodels/base/model.py:508: ConvergenceWarning: Maximum Likelihood
optimization failed to converge. Check mle_retvals
  "Check mle retvals", ConvergenceWarning)
/anaconda3/lib/python3.7/site-packages/statsmodels/tsa/base/tsa_model.py:171: ValueWarning: No frequency info
rmation was provided, so inferred frequency D will be used.
  % freq, ValueWarning)
```

```
ARMA(p,q) = (7, 7) is the best.
```

/anaconda3/lib/python3.7/site-packages/statsmodels/base/model.py:488: HessianInversionWarning: Inverting hess ian failed, no bse or cov_params available 'available', HessianInversionWarning)

/anaconda3/lib/python3.7/site-packages/statsmodels/base/model.py:508: ConvergenceWarning: Maximum Likelihood optimization failed to converge. Check mle_retvals

"Check mle_retvals", ConvergenceWarning)

Out[14]: Statespace Model Results

Dep. Variable:	sales	No. Observations:	1826
Model:	SARIMAX(7, 1, 7)	Log Likelihood	-5396.199
Date:	Sat, 07 Dec 2019	AIC	10822.397
Time:	16:14:51	BIC	10904.972
Sample:	01-01-2013	HQIC	10852.864

- 12-31-2017

Covariance Type: opg

Prob(Q):

Heteroskedasticity (H):

Prob(H) (two-sided):

0.14

1.32

0.00

	coef	std err	z	P> z	[0.025	0.975]	
ar.L1	-0.9106	0.030	-30.117	0.000	-0.970	-0.851	
ar.L2	-0.9126	0.030	-30.314	0.000	-0.972	-0.854	
ar.L3	-0.9118	0.030	-30.257	0.000	-0.971	-0.853	
ar.L4	-0.9120	0.030	-30.179	0.000	-0.971	-0.853	
ar.L5	-0.9129	0.030	-30.451	0.000	-0.972	-0.854	
ar.L6	-0.9113	0.030	-30.049	0.000	-0.971	-0.852	
ar.L7	0.0874	0.030	2.916	0.004	0.029	0.146	
ma.L1	0.0615	0.018	3.501	0.000	0.027	0.096	
ma.L2	0.1130	0.015	7.452	0.000	0.083	0.143	
ma.L3	0.0824	0.019	4.261	0.000	0.044	0.120	
ma.L4	0.0873	0.020	4.367	0.000	0.048	0.126	
ma.L5	0.0970	0.016	6.187	0.000	0.066	0.128	
ma.L6	0.0795	0.017	4.816	0.000	0.047	0.112	
ma.L7	-0.8909	0.018	-49.083	0.000	-0.926	-0.855	
igma2	23.8817	0.914	26.129	0.000	22.090	25.673	
	Ljung-Box	(O) · 49	9.87 Jar o	ue-Ber	a (.IR)·	13.58	
	_,ug _Do/	. (/-	. Jaic	120 201	,UDJ.		

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

Prob(JB):

Kurtosis:

Skew:

0.00

0.15

3.30

```
In [10]: SSE = np.sum(arima.resid**2)
SSE
```

Out[10]: 40346.63812836669

```
In [20]: res = arima.resid
    fig,ax = plt.subplots(2,1,figsize=(15,8))
    fig = sm.graphics.tsa.plot_acf(res, lags=50, ax=ax[0])
    fig = sm.graphics.tsa.plot_pacf(res, lags=50, ax=ax[1])
    plt.show()
```


Statespace	Model	Results

Dep. Variable:	sales	No. Observations:	1826
Model:	SARIMAX(0, 1, 1)x(1, 1, 1, 7)	Log Likelihood	-5394.870
Date:	Sat, 07 Dec 2019	AIC	10797.740
Time:	16:15:00	BIC	10819.762
Sample:	01-01-2013	HQIC	10805.865
	- 12-31-2017		

Covariance Type: opg

	coef	std err	z	P> z	[0.025	0.975]
ma.L1 ar.S.L7 ma.S.L7	-0.8952 0.0375 -1.0057	0.011 0.023 0.008	-80.737 1.596 -122.255	0.000 0.110 0.000	-0.917 -0.009 -1.022	-0.873 0.084 -0.990
sigma2	21.4865	0.707	30.403	0.000	20.101	22.872

Ljung-Box (Q):	39.47	Jarque-Bera (JB):	22.76
<pre>Prob(Q):</pre>	0.49	<pre>Prob(JB):</pre>	0.00
Heteroskedasticity (H):	1.33	Skew:	0.16
<pre>Prob(H) (two-sided):</pre>	0.00	Kurtosis:	3.44

Warnings:

 $\hbox{[1] Covariance matrix calculated using the outer product of gradients (complex-step).}$

```
In [16]: tra['fcst'] = results.predict(start='2018-01-01', end='2018-3-01', dynamic=True)
    tra['fcst'].loc['2018-01-01':].plot()
```

Out[16]: <matplotlib.axes._subplots.AxesSubplot at 0x1c25118c50>


```
In [16]: tra['fcst']
Out[16]: 2018-01-01
                        12.436938
         2018-01-02
                        15.124402
         2018-01-03
                        15.749181
         2018-01-04
                        16.828241
         2018-01-05
                        17.950061
         2018-01-06
                        20.464772
         2018-01-07
                        21.070541
         2018-01-08
                        12.574100
         2018-01-09
                        15.263641
         2018-01-10
                        15.872363
         2018-01-11
                        16.645373
         2018-01-12
                        18.088051
         2018-01-13
                        20.255617
         2018-01-14
                        21.004956
         2018-01-15
                        12.577463
         2018-01-16
                        15.267603
         2018-01-17
                        15.879069
                        16.639945
         2018-01-18
         2018-01-19
                        18.093772
         2018-01-20
                        20.249109
         2018-01-21
                        21.003633
         2018-01-22
                        12.578614
         2018-01-23
                        15,268730
         2018-01-24
                        15.880300
         2018-01-25
                        16.640749
         2018-01-26
                        18.094972
         2018-01-27
                        20.249875
         2018-01-28
                        21.004582
         2018-01-29
                        12.579652
         2018-01-30
                        15.269766
         2018-01-31
                        15.881340
         2018-02-01
                        16.641773
         2018-02-02
                        18.096011
         2018-02-03
                        20.250898
         2018-02-04
                        21.005612
         2018-02-05
                        12.580684
         2018-02-06
                        15.270799
         2018-02-07
                        15.882373
         2018-02-08
                        16,642806
         2018-02-09
                        18.097044
         2018-02-10
                        20.251930
         2018-02-11
                        21,006644
         2018-02-12
                        12.581717
         2018-02-13
                        15.271832
         2018-02-14
                        15.883405
         2018-02-15
                        16.643839
         2018-02-16
                        18.098077
         2018-02-17
                        20.252963
         2018-02-18
                        21.007677
                        12.582750
         2018-02-19
         2018-02-20
                        15.272865
         2018-02-21
                        15.884438
         2018-02-22
                        16.644872
         2018-02-23
                        18.099109
         2018-02-24
                        20.253996
         2018-02-25
                        21.008710
         2018-02-26
                        12.583783
         2018-02-27
                        15.273898
         2018-02-28
                        15.885471
         2018-03-01
                        16.645904
         Freq: D, dtype: float64
 In [ ]:
```