PROJECT PROPOSAL

INTRODUCTION

In the proposed project, we aim to develop a system that utilizes a combination of natural language processing, speech processing, and machine learning techniques to analyze emotions in live conversations. The system will be able to process real-time audio data, extract relevant features, and classify the speaker's emotional state based on those features. By providing instantaneous feedback, the system has the potential to be used in therapeutic settings, customer service departments, research laboratories, and in interactions between humans and computers that are more personalized.

MOTIVATION

In today's world, mental health concerns are on the rise, so we need tools to help detect, intervene, and support them early. This can be addressed with real-time emotion analysis, which provides immediate feedback to the individual or their caregiver. Business owners can improve customer service by understanding customer emotions in real time, and they'll be able to make better product recommendations. Additionally, emotion analysis can supplement and enhance traditional observation methods in therapeutic and research settings, offering therapists and researchers unparalleled insights into human emotional dynamics.

BACKGROUND

Emotions affect not just what we say, but also how we make decisions, remember things, and form relationships. Psychology, therapists, and human observers have traditionally been tasked with understanding and interpreting emotions. There's a growing interest in building computational models for recognizing and interpreting human emotions, especially in live conversations, thanks to advanced Natural Language Processing (NLP) and machine learning techniques.

GOALS

The aim of this project is to develop a comprehensive system that is capable of real-time emotion analysis during live conversation, enhancing human-computer interaction, aiding therapeutic interventions, and providing valuable insight into the various aspects of a variety of industries including customer service and research.

OBJECTIVES

- Emotion Detection: Create a model that can accurately detect emotions from live audio.
- <u>Real-time Processing</u>: Make sure audio data is processed and analyzed in real-time, so you can get instant feedback.
- <u>User Interface</u>: Create an intuitive user interface for business and therapists to see realtime emotion analysis results.
- <u>Validation and testing</u>: Make sure the system is accurate, reliable, and usable in realworld situations.

R&D TASKS

• Data Collection & Preprocessing

- o Make a collection of audio samples with emotional labels.
- o Make sure the data is consistent and noise-free by preprocessing it.

• Feature Extraction

 Extract emotional features from audio data based on linguistic and acoustic features.

• Model Development & Training

- o Find a machine learning algorithm that works for emotion classification.
- o Preprocessed data and extracted features are used to train the selected models.

• Real-time Implementation

- o Develop a system that can process and input audio data in real-time.
- o Make this architecture work with the trained emotion analysis model.

• User Interface Design

- Design and develop an interactive interface to display real-time emotion analysis.
- o Make sure the interface is easy to use and adaptable to different applications.

Testing & Validation

- o Evaluate the accuracy and responsiveness of the system with real users.
- o Improve performance by collecting feedback and iterating on the system design.

PROPOSED TIMELINE

Weekly / Biweekly	Tasks	Expected Task Milestone/Outcomes
08/21 - 08/25	Data Collection & Preprocessing: Begin	Identified primary data
	collecting and preprocessing suitable	sources and initiated the data
	datasets for emotion analysis.	collection process.
08/28 - 09/01	Data Collection & Preprocessing: Complete	Completed data collection
	data gathering and start the preprocessing	and initiated preprocessing.
	steps.	
09/04 - 09/08	Feature Extraction: Begin extracting	Developed a pipeline for the
	relevant acoustic and linguistic features	extraction of features.
	from the data.	
09/11 - 09/22	Preliminary Model Development: Research	Initial model architecture
	and set up the initial architecture for	established and ready for
	machine learning models.	training.
09/25 - 09/29	Model Training: Begin training the machine	Training of primary models
	learning models using preprocessed data and	initiated.
	extracted features.	
10/02 - 10/06	Model Evaluation: Evaluate the performance	Initial model evaluations
	of trained models on a validation set.	completed
10/09 – 10/13	Real-time Implementation: Start	Preliminary real-time
	developing the system for real-time	processing system set up.
	audio data input and processing.	
	Mid-term report submission	

10/16 - 10/20	User Interface Design: Begin designing the	Basic design outline for the
	interactive interface for the system.	user interface established.
10/23 - 10/27	Model Refinement: Based on initial	Refined models trained and
	evaluations, refine and retrain models.	ready for integration.
10/30 - 11/10	System Integration: Integrate the trained	Integrated system with real-
	model with the real-time processing setup	time emotion detection
	and user interface.	capabilities
11/13 – 11/17	Testing: Conduct initial testing of the system	Feedback from initial pilot
	with pilot users.	tests collected.
11/20 - 11/24	System Iteration: Based on feedback, make	System improvements
	necessary adjustments to the system.	implemented based on pilot
		feedback.
11/27 - 12/01	Final Testing: Conduct final tests and	System validated and ready
	evaluations of the system.	for broader deployment.
11/04 - 11/12	Documentation & Wrap-up: Finalize	System fully documented and
	documentation, deploy the system	deployed. Project completion.
	for broader user access, and wrap up	
	the project.	
	Final Repot Submission	