Esame di Progettazione di Sistemi Digitali – Traccia B 6 febbraio 2025 – canale MZ – prof.ssa Massini

Cognome Nome ZHANG ZHEWE

Matricola 2177898

Gli studenti con DSA devono svolgere i primi 4 esercizi

Esercizio 1 (7 punti)

Progettare un circuito sequenziale con due ingressi x1, x0, che codificano i caratteri B, R, I nel seguente

modo:

x1, x0	carattere
00	В
01	R
1-	dida.

Il circuito ha 2 uscite z1 e z0. L'automa fornisce z1=1 quando riceve in ingresso la sequenza BRB e z0=1 quando riceve in ingresso la sequenza BRIB. Usare un FF SR per il bit più significativo. Sono ammesse sovrapposizioni. Disegnare il circuito.

Αυτ	B	e'i R	1-
oo Sin			Sinlow
on Sp	58/00	SER/OG	Sin/00 Sin/00
1. SER	Solio	Sinloo	SBRI/00
11 SERI	Se/01	Sinloo	Sin/oo
			minimo

CODIFICA	STATI
alamin	Y. Yo1
Sin	00
Se	01
SBR	10
Spe	M -5=3

imput gis codificati

TAVOLA STATI FUTURI:

x, xoY, Yo	Y, Y.	7, 30	5, r,	do
0000	01 01 00 10 00	000000000000000000000000000000000000000	0 8 0 1 0 1 0 8 1 0 1	0000
0111	00	00	01	0
1000	00	000000000000000000000000000000000000000	0 8 0 0 0 1	00-0
1100	00	00		0 0 0

ESPRESSIONI BOOLEANE:

$$r_i: \frac{x_i x_0}{000} = \frac{88}{10} = \frac{1}{10} = \frac{1}{10$$

Disegno del circuito sull'ultimo foglio]

Esercizio 2 (4 punti)

Progettare un circuito che indichi quanti giorni ha un dato mese. Il mese è specificato da un input a 4 bit, $a_3a_2a_1a_0$. Ad esempio, se gli input sono (0001), il mese è gennaio e se gli input sono (1100), il mese è dicembre.

Le uscite del circuito, Y_1 Y_0 , devono essere uguali a 11 solo quando il mese specificato dagli input ha 31 giorni, devono essere uguali a 10 quando il mese specificato ha 30 giorni, devono essere uguali a 01 quando il mese specificato ha 28 giorni. Le uscite devono essere uguali a 00 nei casi rimanenti.

Scrivere le espressioni minime SOP e POS delle due uscite.

Realizzare Y₀ utilizzando un multiplexer 4-a-1.

939599	Y	Y, Yo1
0000	No	0 0
0001	31	1 1
0010	28	0 1
0011	31	1 1
0100	30	10
0101	31	1 1
0110	30	10
0111	31	1 1
1000	31	Sal Jakon
1001	30	10
1010	31	1 1
1011	30	10
1100	31	1 1
1101	No	00
11 10	No	00
1111	NO	00

Y, SOP minimale =
$$\overline{\partial_3}\partial_2 + \overline{\partial_3}\overline{\partial_2} + \overline{\partial_3}\overline{\partial_0} + \overline{\partial_3}\overline{\partial_1}\overline{\partial_0}$$

Y, Pos minimale = $(\overline{\partial_3}+\overline{\partial_2}+\overline{\partial_0})(\overline{\partial_3}+\overline{\partial_2}+\overline{\partial_0})(\overline{\partial_3}+\overline{\partial_2}+\overline{\partial_1})$
Yo SoP minimale = $\overline{\partial_3}\overline{\partial_0} + \overline{\partial_2}\overline{\partial_0} + \overline{\partial_2}\overline{\partial_0}$
Yo Pas minimale = $(\overline{\partial_3}+\overline{\partial_0})(\overline{\partial_3}+\overline{\partial_1}+\overline{\partial_0})(\overline{\partial_2}+\overline{\partial_1}+\overline{\partial_0})$

Esercizio 3 (5 punti) Analizzare il circuito sequenziale in figura. Mostrare tutti i passaggi del procedimento.

Esercizio 4 (6 punti)

- Si consideri il circuito in figura e si scriva l'espressione della funzione f
- Trasformare tale espressione, usando assiomi e regole dell'algebra di Boole, in forma normale SOP
- Stendere la tavola di verità di f
- Scrivere l'espressione minimale POS di f

) Moltiplicazione + complemento (es: abc. bc.) b.b=0 quindi tutlo 0)

abcd	t /	
0000	0	
0001	00	
0010	0	
0011	_ \	bcd
0100	0	
0101	l -	bEd
0110	0	
0111	1	- abcd
1000	0	
1001	١	- abid
1010	0	191
1011		- bcd
1100	0	40
1101	1 1	bed
1110	1	fabc
1111	1 1	1 3 - 00

abod	00 01	11 10
00	(0) (O)	16
Q I	1	16
11	10/1	1-1-
10	1/0/1	10
		(=

(c+d)(b+d)(a+1111d)(a+b+c) -> f pos minimole.

Esercizio 5 (4 punti) Convertire il numero in base 10 X = -320 nel formato IEEE 754 half-precision e convertirlo in esadecimale. Poi convertire il numero esadecimale Y = 5800 in una stringa binaria e interpretare tale stringa come un numero IEEE 754 half-precision. Calcolare X+Y in formato IEEE 754 half-precision. Mostrare il risultato nel formato IEEE 754 e infine convertirlo in esadecimale.

$$X = -320_{(10)} = -101000000_{(2)} = -1,01 \times 2^{6}$$
 $320_{160} = 0$
 $80_{00} = 0$
 $40_{00} = 0$
 $X = (1; 10111; 0100000000)$
 $X = (1; 10111; 0100000000)$
 $X = (1; 10111; 0100000000)$
 $X = (1; 10111; 0100000000)$

Y= <0; 10110; 1100000000)

esponente di x = 10111esponente di y = 10110 porta y = 10111 -> 0,111 $y = \langle 0; 10111; 11100 00000 \rangle$

x+y= 0600

Esercizio 6 (4 punti)

Data l'espressione $f = (\bar{a} + \overline{b(b + c\bar{d})}) \oplus (\bar{a} + c\bar{d})$ semplificarla e portarla in forma normale SOP. Scrivere la forma canonica di f. Realizzare infine f con soli operatori NAND.

$$f = (\bar{a} + \bar{b}(\bar{b} + \bar{c}\bar{d})) \oplus (\bar{a} + \bar{c}\bar{d})$$

$$(\bar{a} + \bar{b} + (\bar{b} + \bar{c}\bar{d} + \bar{d})) \oplus (\bar{a} + \bar{c}\bar{d})$$

$$(\bar{a} + \bar{b} + \bar{b}\bar{c}\bar{d}) \oplus (\bar{a} + \bar{c}\bar{d})$$

$$(\bar{a} + \bar{b}) \oplus (\bar{a} + \bar{c}\bar{d})$$

$$(\bar{a} + \bar{c}\bar{d}) \oplus (\bar{a} + \bar{c}\bar{d})$$

$$(\bar{a}$$

De Horgan.

De Morgan.

2 Assorbinento.

) Espando XOR.

) De Morgan + Involuzione.

2 Holtiplicovan.

2 Complonento.

) Complenerto.

abcd + abc (d+d) + ab (c+o) d) | dempoteures

ALL-NAND -> abcd. abbcc. abbdd V

DISEGNO CIRCUITO ESERCIZIO 1.

