CSE 5334: Dr. Chris Ding

## **Bayes Classification**

From Bernoulli to Multinomial Distribution
Bayes Classification – Bayes Theorem
Naïve Bayes Classification – Attributes independence

Reading: Textbook Sections 5.3, 5.3.1, 5.3.2, 5.3.3

### From Bernoulli to Multinomial Distribution

- A brief review of probability, Bernoulli distribution, binomial distribution and multinomial distribution.
- Multinomial distribution plays vital important role in data mining/machine learning:
  - The basic model of English text, documents, fundamental theory for information retrieval, search engine, etc.
  - The basis for logistic regression and neural networks.
- An alternative (better) model of Naïve Bayes Classification

#### Probability = count possible outcomes satisfying requirements/constraints



### Bernoulli distribution: Simplest probability distribution

Today is sunny or not-sunny.

Your team win or lose.

You throw a coin; it is head-up or head-down

Yow throw a die; the result is 6, or it is not 6 (which is 1 or 2 or 3 or 4 or 5)

#### Bernoulli Distribution

A **Bernoulli distribution** arises from a random experiment which can give rise to just two possible outcomes. These outcomes are usually labeled as either "success" or "failure." If p denotes the probability of a success and the probability of a failure is (1 - p), the the Bernoulli probability function is

$$P(0) = (1-p)$$
 and  $P(1) = p$ 

#### **Binomial Distribution:**

Y = X1 + ... + Xn : sum of N independently identically distributed Bernoulli random variables

#### One experiment:

- the experiment consists of n independent trials, each with two mutually exclusive outcomes (success and failure)
- for each trial the probability of success is p (and so the probability of failure is 1-p)

Each such trial is called a Bernoulli trial.

Experiment: Throwing N identical coins, head-up/head-down

Experiment: Throwing one coin N times

#### **Binomial Distribution Formula**

$$P(x) = \binom{n}{x} p^{x} q^{n-x} = \frac{n!}{(n-x)! \, x!} p^{x} q^{n-x}$$

where

n = the number of trials (or the number being sampled)

x = the number of successes desired

p = probability of getting a success in one trial

q = 1 - p = the probability of getting a failure in one trial

### Example 1

#### Q. A coin is tossed 10 times. What is the probability of getting exactly 6 heads?

$$p = 0.5, q = 1 - p = 0.5, n = 10, x = 6$$

$$P(x=6) = {10 \choose 6} 0.5^6 \ 0.5^{(10-6)} = 0.2051$$

$$P(x=5) = 0.2461$$

$$P(x = 3) = P(x = 7) = 0.1172$$

$$P(x=2) = P(x=8) = 0.0439$$



### Example 3.

60% of people who purchase sports cars are men. If 10 sports car owners are randomly selected, find the probability that exactly 7 are men.

$$p = 0.6, q = 1 - p = 0.4, n = 10, x = 7$$

$$P = {10 \choose 7} 0.6^7 \ 0.4^{(10-7)} = 0.215$$

#### **Multinomial Distribution**

- The Binomial distribution can be extended to describe number of outcomes in a series of independent trials each having more than 2 possible outcomes.
- If a given trail can result in the k outcomes E<sub>1</sub>, E<sub>2</sub>, ..., E<sub>k</sub> with probabilities p<sub>1</sub>, p<sub>2</sub>, ..., p<sub>k</sub>, then the probability distribution of the random variables X<sub>1</sub>, X<sub>2</sub>, ..., X<sub>k</sub>, representing the number of occurrences for E<sub>1</sub>, E<sub>2</sub>, ..., E<sub>k</sub> in n independent trials is

$$p_{X_1,...,X_k}(x_1,...,x_k) = \frac{n!}{x_1!x_2!\cdots x_k!} p_1^{x_1} p_2^{x_2} \cdots p_k^{x_k}$$
with  $\sum_{i=1}^k x_i = n$ , and  $\sum_{i=1}^k p_i = 1$ .

### Example:

The distribution of blood types in the US is:

| Type        | О    | A    | В    | AB   |
|-------------|------|------|------|------|
| Probability | 0.44 | 0.42 | 0.10 | 0.04 |

In a random sample of 10 Americans, what is the probability 6 have blood type O, 2 have type A, 1 has type B, and 1 has type AB?

$$P(X_1 = x_1, \dots, X_k = x_k) = \frac{n!}{x_1! \dots x_k!} p_1^{x_1} \dots p_k^{x_k}$$

$$P(X_1 = 6, X_2 = 2, X_3 = 1, X_7 = 1) = \frac{10!}{6!2!1!1!} 0.44^6 0.42^8 0.10^1 0.07^1$$

=0.01290

## **Bayes Classification**

Using Bayes Theorem (conditional probability) to obtain the class/label posterior probability of a data instance given its observed data (attributes/features)

Reading: Textbook Sections 5.3, 5.3.1, 5.3.2, 5.3.3



## Example: Test of Viral Infection

- A medical test for a viral infection. It is 95% reliable for infected patients and 99% reliable for the healthy ones:
- If a patient has the virus (event V), and the test shows that (event S) with probability  $P\{S \mid V\} = 0.95$
- If a patient does not have the virus, the test confirms that with probability  $P\{\overline{S} \mid \overline{V}\} = 0.99$

- A patient tests positive (the test shows that the patient has the virus).
- Does this means he has 95% probability of the virus?
- No!
- Because the question refers the probability that he has the virus and the test confirms that, i.e., P{V|S}. This quantity is not given directly in the statement of the problem.
- We compute P{V|S} using Bayes theorem.

## Bayes' Rule

Bayes Theorem (conditional probability):

$$P\{B \mid A\} = \frac{P\{A \mid B\}P\{B\}}{P\{A\}} = \frac{P\{A \mid B\}P\{B\}}{P\{A \mid B\}P\{B\} + P\{A \mid \overline{B}\}P\{\overline{B}\}}$$

## Law of Total Probability

$$P{A} = \sum_{j=1}^{k} p{A | B_j} P{B_j}$$

In case of two events (k=2),

$$P\{A\} = P\{A \mid B\}P\{B\} + P\{A \mid \overline{B}\}P\{\overline{B}\}$$

## Medical Test Example cont.

- We need additional information: Suppose 4% of all the population are infected with the virus, P{V} = 0.04.
- Recall:  $P\{S \mid V\} = 0.95$   $P\{\overline{S} \mid \overline{V}\} = 0.99$

The desired (conditional) probability is

$$P\{V \mid S\} = \frac{P\{S \mid V\}P\{V\}}{P\{S \mid V\}P\{V\} + P\{S \mid \overline{V}\}P\{\overline{V}\}}$$
$$= \frac{(0.95)(0.04)}{(0.95)(0.04) + (1 - 0.99)(1 - 0.04)} = 0.7983$$

### Test of Viral Infection - Conclusion

• Thus the probability of the patient has the virus is 79.83%, not 95%.

### Bayesian view:

This patient has 4% probability of been infected by the virus [because 4% of the population has the virus]. Because now he tested positive for the virus, his chance of virus increased to 79.83%.

This patient has 4% probability of been infected by the virus [because 4% of the population has the virus (prior probability)]. Because now he tested positive for the virus (new data evidence), his chance of virus increased to 79.83%.

## Naïve Bayes Classification

Using Bayes Theorem (conditional probability) to obtain the class/label posterior probability of a data instance given its observed data (attributes/features)

### 5.3.3 Naïve Bayes Classifier

A naïve Bayes classifier estimates the class-conditional probability by assuming that the attributes are conditionally independent, given the class label y. The conditional independence assumption can be formally stated as follows:

$$P(\mathbf{X}|Y=y) = \prod_{i=1}^{d} P(X_i|Y=y),$$
 (5.12)

where each attribute set  $\mathbf{X} = \{X_1, X_2, \dots, X_d\}$  consists of d attributes.

Probability of occurrence of X is equal to the product of the probability of occurrence of every attributes of X given the class of X

This says each class has a different multinomial distribution of attributes.

To classify a test record, the naïve Bayes classifier computes the posterior probability for each class Y:

$$P(Y|\mathbf{X}) = \frac{P(Y) \prod_{i=1}^{d} P(X_i|Y)}{P(\mathbf{X})}.$$
 (5.15)

Since  $P(\mathbf{X})$  is fixed for every Y, it is sufficient to choose the class that maximizes the numerator term,  $P(Y) \prod_{i=1}^{d} P(X_i|Y)$ .

the prior probability P(Y)

the class-conditional probabilities  $\prod_i P(X_i|Y)$  = multinomial distribution of attributes for class Y

# Compute probability of occurrence of each attributes for class Y="no" Compute probability of occurrence of each attributes for class Y="yes"

| Tid | Home<br>Owner | Marital<br>Status | Annual<br>Income | Defaulted<br>Borrower |
|-----|---------------|-------------------|------------------|-----------------------|
| 1   | Yes           | Single            | 125K             | No                    |
| 2   | No            | Married           | 100K             | No                    |
| 3   | No            | Single            | 70K              | No                    |
| 4   | Yes           | Married           | 120K             | No                    |
| 5   | No            | Divorced          | 95K              | Yes                   |
| 6   | No            | Married           | 60K              | No                    |
| 7   | Yes           | Divorced          | 220K             | No                    |
| 8   | No            | Single            | 85K              | Yes                   |
| 9   | No            | Married           | 75K              | No                    |
| 10  | No            | Single            | 90K              | Yes                   |

P(Home Owner=YeslNo) = 3/7  $P(Home\ Owner=NolNo) = 4/7$  $P(Home\ Owner=YeslYes) = 0$ P(Home Owner=NolYes) = 1 P(Marital Status=SinglelNo) = 2/7 P(Marital Status=Divorced|No) = 1/7 P(Marital Status=MarriedINo) = 4/7 P(Marital Status=SinglelYes) = 2/3 P(Marital Status=Divorced|Yes) = 1/3 P(Marital Status=MarriedlYes) = 0 For Annual Income: If class=No: sample mean=110 sample variance=2975 If class=Yes: sample mean=90 sample variance=25

(a) (b)

Figure 5.10. The naïve Bayes classifier for the loan classification problem.

### Standard multinomial distribution parameter estimation:

$$P(x_i|Y=y)^{\text{MLE}} = p_{i,y}^{\text{MLE}} = \frac{n_{i,y}}{N_y}$$

where  $n_{i,y}$  is the number of training examples in class y where attribute  $x_i$  occurs,  $N_y$  is the number of training examples in class y.

### Laplace smoothed multinomial distribution parameter estimation:

See 2<sup>nd</sup> Edition Textbook p.224

$$P(x_i|Y=y)^{\text{smoothed}} = p_{i,y}^{\text{smoothed}} = \frac{n_{i,y}+1}{N_y + \nu_y}$$

where  $\nu$  is the total number of attributes in class y.

In most applications, we use Laplace smoothed parameter estimation