Construção da Algebra de Momento Angular sem o Uso de uma Representação Específica.

J.BELLANDI FILHO Instituto de Física Gleb Wataghin - UNICAMP

INTRODUÇÃO

Quando se introduz os operadores de spin em mecânica quântica, como uma consequência natural da experiência de Stern-Gerlach, é
fato bastante comum nos livros textos impor-se a esses operadores a
mesma álgebra dos operadores de momento angular orbital. Essa imposição é natural, uma vez que o acoplamento do spin com o campo magnético ocorre da mesma forma que o acoplamento do momento angular orbital
com esse campo.

A algebra que os operadores de momento angular orbital sati<u>s</u> fazem pode ser facilmente obtida quando conhecemos uma representação explícita desses operadores, por exemplo, em termos das variáveis angulares em coordenadas polares. Outra forma é partir do fato de que esses operadores são os geradores das rotações infinitesimais.

O que se pretende aqui é mostrar como essa álgebra pode ser construída sem a necessidade de uma representação específica para os operadores, usando somente as hipóteses comumente usadas dentro desse contexto.

CONTRUÇÃO DA ÁLGEBRA

Consideremos um conjunto de funções indiciáveis $\{a_m^{}\}\equiv\{a_m^{}\}$, $a_{m+1}^{},\dots\}$ e que tenha um número finito de elementos. Seja um conjunto de transformações $\{J_{_{\bf Z}},J_{_{+}},J_{_{-}}\}$, que atuando em $\{a_m^{}\}$ permita construir todos os elementos do conjunto da seguinte forma:

$$a_m \xrightarrow{J_z} a_m$$
 $a_m \xrightarrow{J_+} a_{m+1}$

Vamos supor que essas transformações são tais que

$$J_z a_m = m a_m$$

$$J_+ a_m = \alpha_+^m a_{m+1}$$

$$J_- a_m = \alpha_-^m a_{m-1}$$
(1)

Como o conjunto $\{a_m^{}\}$ tem um número finito de elementos, existem n e ℓ , tais que

$$J_{+}a_{g}=0 \tag{2}$$

$$J_{-a_n} = 0$$
 , (3)

ou seja $\alpha_+^{\ell} = 0$ e $\alpha_-^{n} = 0$.

A transformação J_+ é tal que J_+ a $_m$ é um elemento de $\{a_m^-\}$, assim J_+ a $_m$ \to J_+ a $_m$ pela transformação J_z

$$J_{z}(J_{+}a_{m}) = \alpha_{+}^{m} J_{z} a_{m+1}$$

$$= \alpha_{+}^{m} (m+1) a_{m+1}$$

$$= (m+1) (J_{+}a_{m})$$
(4)

O elemento $J_{zm} \rightarrow a_{m+1}$ pela transformação J_{+} , assim

$$J_{+}(J_{z}a_{m}) = m (J_{+}a_{m})$$
 (5)

Vemos assim que o produto das transformações J₊ e J_z não é comutativo.

Dessas expressões, obtemos

$$(J_zJ_+ - J_+J_z)a_m = J_+a_m$$

e portanto, como a_m é qualquer, teremos

$$[J_z,J_+] = J_+ . \tag{6}$$

Analogamente podemos mostrar que

$$\begin{bmatrix} J_2, J_{-} \end{bmatrix} = -J_{-}. \tag{7}$$

Notemos que essas relações de comutação entre J_z e J_± geram os elementos das transformações J_±. Podemos fechar essa álg**ebra,** supondo que

$$\begin{bmatrix} J_{+}J_{-} \end{bmatrix} = \beta J_{+} \tag{8}$$

sendo β um numero qualquer. Mais adiante veremos como se pode fixar o valor de β . Vamos ver quais as consequências.

Consideremos os produtos de transformações J_+J_- , J_-J_+ e J_z^2 . Essas transformações são tais que $a_m + a_m$. Usando as relações de comutação podemos mostrar que

$$[J_{+}J_{-},J_{z}^{2}] = 0$$

$$[J_{-}J_{+},J_{z}^{2}] = 0$$

$$[J_{+}J_{-},J_{-}] = 0$$
(9)

ou seja, são transformações que comutam entre si. Podemos assim intro duzir uma transformação J² que seja uma combinação linear dessas trans formações

$$J^{2} = \frac{1}{\beta} \left[J_{+}J_{-} + J_{-}J_{+} \right] + J_{2}^{2} , \qquad (10)$$

portanto uma transformação quadrática em J_z , bilinear em J_+ e J_- e que comuta com cada uma dessas transformações. O fator $1/\beta$ nessa expressão ê introduzido arbitrariamente da mesma forma que na eq.8, que ê também uma combinação linear em J_+J_- e J_-J_+ . Essa escolha permite separar J_+J_- e J_-J_+ e escrevê-las como funções das transformações J^2 e J_-J_- De fato, usando a relação de comutação (8) e a eq.10, obtemos:

$$J_{+}J_{-} = \frac{\beta}{2} (J^{2} - J_{z}^{2} + J_{z}^{2})$$

$$J_{-}J_{+} = \frac{\beta}{2} (J^{2} - J_{z}^{2} - J_{z}^{2}).$$
(11)

A transformação J^2 é tal que $a_m \rightarrow a_m$ e podemos assim escrever:

$$J^2 a_m = \gamma_m^2 a_m .$$

Atuando com a transformação $J_{-}J_{+}$ em $a_{\overline{m}}$ teremos:

$$J_{-}J_{+}a_{m} = \alpha_{+}^{m} \alpha_{-}^{m+1} a_{m}$$

$$= \frac{\beta}{2} (J^{2} - J_{z}^{2} - J_{z})a_{m}$$

$$= \frac{\beta}{2} (\gamma_{m}^{2} - m^{2} - m)a_{m}$$
(12)

ou seja

$$\alpha_{+}^{m} \alpha_{-}^{m+1} = \frac{\beta}{2} [(\gamma_{m}^{2} - m(m+1)]$$
 (13)

Atuando com J₊J₋ em a_s, teremos

$$\alpha_{-}^{5} \alpha_{+}^{5-1} = \frac{\beta}{2} \left[\gamma_{5}^{2} - s(s-1) \right]$$
 (14)

Se fizermos s=m+1 nessa expressão, teremos

$$\alpha_{-}^{m+1}\alpha_{+}^{m} = \frac{\beta}{2} \left[\gamma_{m+1}^{2} - m(m+1) \right]$$
 (15)

Comparando com (13), concluimos que $\gamma_m^2=\gamma_{m+1}^2$ e portanto $\gamma_m^2=\gamma^2$ não depende de m.

Como o conjunto $\{a_m\}$ é finito existe £, tal que $\alpha_+^{\ell}=0$ e portanto de (13) obtemos

$$\gamma^2 - \ell(\ell+1) = 0 \tag{16}$$

e existe um n tal que $\alpha_{-}^{n} = 0$; obtemos de (14)

$$\gamma^2 - n(n-1) = 0$$
 (17)

Como γ^2 não depende de um particular m, essas relações só se rão simultaneamente satisfeitas se n = - ℓ e portanto

$$\gamma^2 = \ell(\ell+1) \tag{18}$$

dependendo, assim, somente do maior valor de m. Podemos concluir então que $-\ell$ \le m \le ℓ e que o número total de elementos do conjunto $\{a_m\}$ \tilde{e} $2\ell+1$.

As constantes α_+^m e α_-^m podem ser calculadas simplesmente lembrando que se desejamos construir todos os elementos de $\{a_m\}$ a partir de um deles, de uma forma unívoca, usando as transformações J_+ e J_- , devemos necessariamente ter que α_+^m = α_-^{m+1} . Usando a expressão (13) obtemos

$$(\alpha_{+}^{m})^{2} = \frac{\beta}{2} [(\ell-m)(\ell+m+1)]$$
 (19)

e da expressão (14)

$$(\alpha_{-}^{m})^{2} = \frac{\beta}{2} [(\ell+m)(\ell-m+1)].$$
 (20)

Até aqui o parâmetro β é qualquer e indeterminado, pois o número de relações é insuficiente para fixá-lo. Podemos, no entanto, definir duas novas transformações J_x e J_y , como combinações lineares de J_+ e J_- . Ou ainda

$$J_{+} = J_{x} + iJ_{y}$$

$$J_{-} = J_{x} - iJ_{y}$$
(21)

tal que a transformação J^2 seja uma simples combinação linear $J^2=J_X^2+J_y^2+J_z^2$. E, ainda mais, que as transformações J_X , J_Y e J_Z obedeçam às relações cíclicas de comutação. O coeficiente complexo em (21) é introduzido para que se fique consistente com a definição de J^2 em (10).

As relações cíclicas de comutação são

$$\begin{bmatrix} J_{x}, J_{y} \end{bmatrix} = i J_{z}$$
$$\begin{bmatrix} J_{y}, J_{z} \end{bmatrix} = i J_{x}$$
$$\begin{bmatrix} J_{z}, J_{x} \end{bmatrix} = i J_{y}$$

Dessa forma teremos β = 2, que é uma consequência direta da particular combinação linear em (21).

Agradece-se as salutares discussões com o Prof. Adolpho Hengeltraub.

