THE SHORTEST PATH (SHORTEST ROUTE) PROBLEM

Assume that each arc in the network has a length associated with it. Suppose we start at a particular node (say, node 1). The problem of finding the shortest path (path of minimum length) from node 1 to any other node in the network is called a shortest path problem.

THE SHORTHEST PATH PROBLEM AS A TRANSSHIPMENT PROBLEM

Finding the shortest path between node i and node j in a network may be viewed as a transshipment problem. Simply try to minimize the cost of sending 1 unit from node i to node j (with all other nodes in the network being transshipment points), where the cost of sending 1 unit from node k to node k' is the length of arc (k,k') if such an arc exists and M (a large positive number) if such an arc does not exists. As in transshipment section the cost of shipping 1 unit from a node to itself is zero. This transshipment problem may be transformed into a balanced transportation problem.

Model:

$$x_{ij} \ge 0$$
, $x_{ij} = 0$, 1

Transshipment Representation of Shortest Path Problem and One Optimal Solution

From/To	<u>2</u>		<u>3</u>		4		<u>5</u>		6		Supply
1	1	4		3		M		M		M	1
2		0		M		3	1	2		M	1
3		M	1	0		M		3		M	1
<u>4</u>		M		M	1	0		M		2	1
<u>5</u>		M		M		M		0	1	2	1
Demand	1]	1	1	[]	1	1	l	

This transportation problem has two optimal solutions:

1.
$$Z = 4 + 2 + 2 = 8$$
,

 $x_{11} = x_{25} = x_{56} = x_{33} = x_{44} = 1$ (all other variables equal zero). This solution corresponds to the path $1 \rightarrow 2 \rightarrow 5 \rightarrow 6$.

2.
$$Z = 3 + 3 + 2 = 8$$
,

 $x_{13} = x_{35} = x_{56} = x_{22} = x_{44} = 1$ (all other variables equal zero). This solution corresponds to the path $1 \rightarrow 3 \rightarrow 5 \rightarrow 6$.

Shortest Path Algorithms

The Dijkstra Algorithm

Floyd Shortest Path Algorithm (All Shortest Path)
Dantzig Shortest Path Algorithm
Ford Algorithm
K-th Shortest Path Algorithm

The Dijkstra Algorithm

Initialization Step

Assign a temporary label of 0 to the start node and $+\infty$ to all other nodes. (These are the minimum distances found thus far from the start node to all other nodes; we do not put the $+\infty$ values on the network.)

Iterative Steps

- 1. Find the node with the smallest temporary label and make it <u>permanent</u>. This node is the <u>assigned</u> <u>node</u>. If all nodes have permanent labels STOP, the minimum distances have been found.
- 2. From the assigned node, consider all arcs to its adjacent nodes with temporary labels. For these adjacent nodes calculate:

D= (Permanent label at assigned node) + (Arc distance)

Replace the temporary label at the adjacent node by D <u>only if</u> the current label at the adjacent node is <u>greater than D</u>. If the label is replaced, record the assigned node that generated the label(shown next to the label valve).

GO TO STEP 1

Comments

- 1. Many applications of the shortest path algorithm involve criteria such as time or cost instead of distance. In these cases the shortest path algorithm provides the minimum-time or minimum-cost solution. However, since the shortest path algorithm always identifies a minimum value solution, it would not make sense to apply the algorithm to problem that involves a profit criterion.
- 2. In some applications the value associated with an arc may be <u>negative</u>. For example, in situations where cost is the criterion, a negative arc value would denote a negative cost; in other words, a profit would be realized by traversing the arc. The shortest path algorithm presented in the course can only be applied to networks with <u>nonnegative</u> arc values. More advanced texts discuss algorithms that can be used to solve problems having negative arc values.

Example: (Dijkstra Algorithm)

INITIALIZATION

All nodes have temporary labels of $+\infty$ (not shown), except for node-1 which has a temporary label of 0.

Minimum Temporary Label (Made Permanent): 0 at Node1

Temporary Nodes Adjacent to Node 1: Nodes 2 and 3

Adjacent Node	Distance from	New Temporary Label
	Assigned Node	At Adjacent Node?
2	$0+18=18<\infty$	Yes - 18 (1)
3	$0+10=10<\infty$	Yes - 10 (1)

Minimum Temporary Label (Made Permanent): 10 at Node3

Temporary Nodes Adjacent to Node 3: Nodes 2, 4, and 6

Adjacent Node	Distance from Assigned Node	New Temporary Label At Adjacent Node?
2	10 + 7 = 17 < 18	Yes - 17 (3)
4	$10+4=14 < \infty$	Yes - 14 (3)
6	$10+18=28 < \infty$	Yes – 28 (3)

Minimum Temporary Label (Made Permanent): 14 at Node4

Temporary Nodes Adjacent to Node 4: Nodes 2, 5, and 6

Adjacent Node	Distance from Assigned Node	New Temporary Label At Adjacent Node?
2	14 + 2 = 16 < 17	Yes - 16 (4)
5	$14+15=29 < \infty$	Yes - 29 (4)
6	14 + 17 = 31 < 28	No

Minimum Temporary Label (Made Permanent): 16 at Node2

Temporary Nodes Adjacent to Node 2: Node 5

Adjacent Node	Distance from	New Temporary Label
	Assigned Node	At Adjacent Node?
5	16 + 8 = 24 < 29	Yes - 24 (2)

Minimum Temporary Label (Made Permanent): 24 at Node 5

Temporary Nodes Adjacent to Node 5: Nodes 6 and 7

Adjacent Node	Distance from	New Temporary Label
	Assigned Node	At Adjacent Node?
6	24 + 5 = 29 < 28	No
7	$24+6=30 < \infty$	Yes - 30 (5)

Minimum Temporary Label (Made Permanent): 28 at Node6

Temporary Nodes Adjacent to Node 6: Node 7

Adjacent Node	Distance from	New Temporary Label
	Assigned Node	At Adjacent Node?
7	28 + 9 = 37 < 30	No

Minimum Temporary Label (Made Permanent): 30 at Node7

Temporary Nodes Adjacent to Node 7: None

Adjacent Node		New Temporary Label At Adjacent Node?
-	-	-

Solution: $1 \rightarrow 3 \rightarrow 4 \rightarrow 2 \rightarrow 5 \rightarrow 7$

All nodes have now been assigned a permanent label, so we terminate the algorithm; the shortest distance is 30. Retracing the path from node 7, we see that we got to node 7 from node 5;, to node 5 from node 2; to node 2 from node 4; to node 4 from node 3; and to node 3 from node 1. Thus the shortest path is $1\rightarrow 3\rightarrow 4\rightarrow 2\rightarrow 5\rightarrow 7$.

The shortest distances and paths from node 1 to all other nodes in the network are as follows.

To	Distance	Path
Node 2	16	$1 \rightarrow 3 \rightarrow 4 \rightarrow 2$
Node 3	10	1→3
Node 4	14	1->3->4
Node 5	24	$1 \rightarrow 3 \rightarrow 4 \rightarrow 2 \rightarrow 5$
Node 6	28	$1\rightarrow 3\rightarrow 6$
Node 7	30	$1 \rightarrow 3 \rightarrow 4 \rightarrow 2 \rightarrow 5 \rightarrow 7$