EPFL - Autumn 2021	Dr. Pablo Antolin
Analysis III SV MT	Exercises
Serie 9	November, 25

Note: several exercises are directly taken from [B.Dacorogna and C.Tanteri, *Analyse avancée pour ingénieurs* (2018)]. Their corrections can be found there.

Tip: To verify the Stokes theorem, proceed the following way:

- 1. Sketch the surface Σ , then compute $\operatorname{curl} F(x, y, z)$.
- 2. Give a parametrization $\sigma: \overline{A} \to \Sigma$ of the surface Σ and give a normal vector. Add this vector to your sketch.
- 3. Express

$$\iint_{\Sigma} \operatorname{curl} F \cdot ds$$

as a double integral where the bounds and the function to be integrated are explicitly indicated.

- 4. Write $\partial \Sigma$ as the union of simple regular curves; for each of them, give a parametrization and indicate the direction of travel induced by the parametrization of Σ and the positive orientation of ∂A .
- 5. Express

$$\int_{\partial \Sigma} F \cdot dl$$

as a sum of integrals where the bounds and the functions to be integrated are explicitly indicated.

6. Verify the conclusion of the Stokes theorem for Σ and F.

Exercise 1 (Ex 7.2 page 89).

Verify Stokes' theorem for

$$\Sigma = \{(x,y,z) \in \mathbb{R}^3 : x^2 + y^2 = z^4, \ 0 \le z \le 1\} \text{ and } F(x,y,z) = (x^2y,z,x).$$

Exercise 2 (Ex 7.5 page 89).

Verify Stokes' theorem for

$$\Sigma = \left\{ (x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 4, \ x \ge 0, \ y \ge 0, \ 1 \le z \le \sqrt{3} \right\}$$
 and $F(x, y, z) = (0, z^2, 0)$.

Exercise 3 (Ex 7.7 page 89).

Verify the Stokes theorem for $F(x, y, z) = (0, x^2, 0)$ and Σ the triangle of vertices (1, 0, 0), (2, 2, 0) and (1, 1, 0).

Exercise 4 (Ex 7.6 page 89).

Verify the Stokes theorem for $F(x, y, z) = (0, 0, y + z^2)$ and

$$\Sigma = \big\{(x,y,z) \in \mathbb{R}^3: x^2 + y^2 + z^2 = 4; x,y,z \geq 0; 0 \leq \arccos\frac{z}{2} \leq \arctan\frac{y}{x} \leq \frac{\pi}{2}\big\}.$$

Note: exercises 5 and 6 are slightly anticipated in view of the lessons. You can wait the lesson of November, 25 to tackle them.

Exercise 5 (Ex 14.1 page 219).

Let $f: \mathbb{R} \to \mathbb{R}$ be a 2π -periodic function such that $f(x) = e^{(x-\pi)}$ over $[0, 2\pi]$.

- 1. Sketch the graph of f and the graph of f'.
- 2. Calculate the Fourier series Ff of the function f.
- 3. With the help of the Dirichlet theorem, compare Ff and f over $[0, 2\pi]$.
- 4. With the help of the two previous questions, show that

$$\sum_{n=2}^{\infty} \frac{(-1)^n}{1+n^2} = \frac{\pi}{e^{\pi} - e^{-\pi}}.$$

Exercise 6 (Ex 14.2 page 220).

Let $f: \mathbb{R} \to \mathbb{R}$ be a 2π -periodic function such that $f(x) = (x - \pi)^2$ over $[0, 2\pi]$.

- 1. Sketch the graph of f and the graph of f'.
- 2. Calculate the Fourier series Ff of the function f.
- 3. With the help of the Dirichlet theorem, compare Ff and f over $[0, 2\pi]$.
- 4. Show that

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2} = -\frac{\pi^2}{12} \qquad \text{et} \qquad \sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}.$$