STATS 507 Data Analysis in Python

Week 9: Databases (SQL) & PyTorch (part 1)

Recap: HTML, XML and JSON

Each provided a different (though similar) way of storing data

Key motivation of JSON (and, sort of, HTML and XML): self-description

But we saw that JSON could get quite unwieldy quite quickly...

Example of a more complicated JSON object

```
complex json string="""{
       "id": "0001",
       "type": "donut",
       "name": "Cake",
       "ppu": 0.55,
       "batters":
               "batter":
10
                        { "id": "1001", "type": "Regular" },
11
                        { "id": "1002", "type": "Chocolate" },
                        { "id": "1003", "type": "Blueberry" },
12
13
                         "id": "1004", "type": "Devil's Food" }
14
15
16
       "topping":
17
18
                "id": "5001", "type": "None" },
                 "id": "5002", "type": "Glazed" },
19
                 "id": "5005", "type": "Sugar" },
20
               { "id": "5007", "type": "Powdered Sugar" },
                "id": "5006", "type": "Chocolate with Sprinkles" },
22
23
                 "id": "5003", "type": "Chocolate" },
24
                 "id": "5004", "type": "Maple" }
```

What if I have hundreds of different kinds of cakes or donuts? The nestedness of JSON objects makes them a little complicated. Generally, JSON is good for delivering (small amounts of) data, but for storing and manipulating large, complicated collections of data, there are better tools, namely databases.

Note: there are also security and software engineering reasons to prefer databases over JSON for storing data, but that's beyond the scope of our course.

Why use a database?

Database software hides the problem of actually handling data As we'll see in a few slides, this is a complicated thing to do! Indexing, journaling, archiving handled automatically

Allow fast, concurrent (i.e., multiple users) access to data ACID transactions (more on this in a few slides)

Access over the web DBs can be run, e.g., on a server

Again, JSON/XML/HTML/etc good for delivering data, DBs good for storing

Databases (DBs)

Information, organized so as to make retrieval fast and efficient

Examples: Census information, product inventory, library catalogue

This course: relational databases

https://en.wikipedia.org/wiki/Relational_database

So-named because they capture relations between entities In existence since the 1970s, and still the dominant model in use today

Outside the scope of this course: other models (e.g., object-oriented) https://en.wikipedia.org/wiki/Database_model

Textbook: Database System Concepts by Silberschatz, Korth and Sudarshan.

Relational DBs: pros and cons

Pros:

Natural for the vast majority of applications

Numerous tools for managing and querying

Cons:

Not well-suited to some data (e.g., networks, unstructured text)

Fixed schema (i.e., hard to add columns)

Expensive to maintain when data gets large (e.g., many TBs of data)

Fundamental unit of relational DBs: the record

Each entity in a DB has a corresponding record

- Features of a record are stored in fields
- Records with same "types" of fields collected into tables
- Each record is a row, each field is a column

ID	Name	UG University	Field	Birth Year	Age at Death
101010	Claude Shannon	University of Michigan	Electrical Engineering	1916	84
314159	Albert Einstein	ETH Zurich	Physics	1879	76
21451	Ronald Fisher	University of Cambridge	Statistics	1890	72

Table with six fields and three records.

Fields can contain different data types

ID	Name	UG University	Field	Birth Year	Age at Death
101010	Claude Shannon	University of Michigan	Electrical Engineering	1916	84
314159	Albert Einstein	ETH Zurich	Physics	1879	76
21451	Ronald Fisher	University of Cambridge	Statistics	1890	72

Unsigned int, String, String, Unsigned int, Unsigned int

Of course, can also contain floats, signed ints, etc. Some DB software allows categorical types (e.g., letter grades).

By convention, each record has a primary key

ID	Name	UG University	Field	Birth Year	Age at Death
101010	Claude Shannon	University of Michigan	Electrical Engineering	1916	84
314159	Albert Einstein	ETH Zurich	Physics	1879	76
21451	Ronald Fisher	University of Cambridge	Statistics	1890	72

Primary key used to uniquely identify the entity associated to a record, and facilitates joining information across tables.

ID	PhD Year	PhD University	Thesis Title
101010	1940	MIT	An Algebra for Theoretical Genetics
314159	1905	University of Zurich	A New Determination of Molecular Dimensions
21451			

ACID: Atomicity, Consistency, Isolation, Durability

Atomicity: to outside observer, every transaction (i.e., changing the database) should appear to have happened "instantaneously".

Consistency: DB changes should leave the DB in a "valid state" (e.g., changes to one table that affect other tables are propagated before the next transaction)

Isolation: concurrent transactions don't "step on each other's toes"

Durability: changes to DB are permanent once they are committed

Note: some RDBMSs achieve faster performance, at cost of one or more of above

Related: Brewer's Theorem https://en.wikipedia.org/wiki/CAP_theorem

Relational Database Management Systems (RDBMSs)

Program that facilitates interaction with database is called RDBMS

Public/Open-source options:

MySQL, PostgreSQL, SQLite

Proprietary:

IBM Db2, Oracle, SAP, SQL Server (Microsoft)

We'll use SQLite because it comes built-in to Python. More later.

SQL (originally SEQUEL, from IBM)

Structured Query Language (Structured English QUEry Language)

Language for interacting with relational databases
Not the only way to do so, but by far most popular
Slight variation from platform to platform ("dialects of SQL")

Good tutorials/textbooks:

https://www.w3schools.com/sql/sql_intro.asp

O'Reilly books: Learning SQL by Beaulieu

SQL Pocket Guide by Gennick

Severance, Chapter 14: http://www.pythonlearn.com/html-270/book015.html

Examples of database operations

ID	Name	GPA	Major	Birth Year
101010	Claude Shannon	3.1	Electrical Engineering	1916
500100	Eugene Wigner	3.2	Physics	1902
314159	Albert Einstein	4.0	Physics	1879
214518	Ronald Fisher	3.25	Statistics	1890
662607	Max Planck	2.9	Physics	1858
271828	Leonard Euler	3.9	Mathematics	1707
999999	Jerzy Neyman	3.5	Statistics	1894
112358	Ky Fan	3.55	Mathematics	1914

- Find names of all physics majors
- Compute average GPA of students born in the 19th century
- Find all students with GPA > 3.0

SQL allows us to easily specify queries like these (and far more complex ones).

Common database operations

Extracting records: find all rows in a table

Filtering records: retain only the records (rows) that match some criterion

Sorting records: reorder selected rows according to some field(s)

Adding/deleting records: insert new row(s) into a table or remove existing row(s)

Grouping records: gather rows according to some field

Adding/deleting tables: create new or delete existing tables

Merging tables: combine information from multiple tables into one table

Common database operations

SQL includes keywords for succinctly expressing all of these operations.

Extracting records: find all rows in a table

Filtering records: retain only the records (rows) that match some criterion

Sorting records: reorder selected rows according to some field(s)

Adding/deleting records: insert new row(s) into a table or remove existing row(s)

Grouping records: gather rows according to some field

Adding/deleting tables: create new or delete existing tables

Merging tables: combine information from multiple tables into one table

Retrieving records: SQL SELECT Statements

Basic form of a SQL SELECT statement:

```
SELECT [column names] FROM [table]
```

Example: we have table t_customers of customer IDs, names and companies

Retrieve all customer names: SELECT name FROM t customers

Retrieve all company names: SELECT company FROM t_customers

Note: by convention (and good practice), one often names tables to be prefixed with "TB_" or "t_". In our illustrative examples, I won't always do this for the sake of space and brevity, but I highly recommend it in practice. See http://leshazlewood.com/software-engineering/sql-style-guide/ for two people's (differing) opinions.

Table t_students

id	name	gpa	major	birth_year	pets	favorite_color
101010	Claude Shannon	3.1	Electrical Engineering	1916	2	Blue
314159	Albert Einstein	4.0	Physics	1879	0	Green
999999	Jerzy Neyman	3.5	Statistics	1894	1	Red
112358	Ky Fan	3.55	Mathematics	1914	2	Green

SELECT id, name, birth_year FROM t_students

id	name	birth_year
101010	Claude Shannon	1916
314159	Albert Einstein	1879
999999	Jerzy Neyman	1894
112358	Ky Fan	1914

Filtering records: SQL WHERE Statements

To further filter the records returned by a SELECT statement:

```
SELECT [column names] FROM [table] WHERE [filter]
```

Example: table t inventory of product IDs, unit cost, and number in stock

Retrieve IDs for all products with unit cost at least \$1:

```
SELECT id FROM t_inventory WHERE unit_cost>=1
```

Note: Possible to do much more complicated filtering, e.g., regexes, set membership, etc. We'll discuss that more in a few slides.

Table t students

id	name	gpa	major	birth_year	pets	favorite_color
101010	Claude Shannon	3.1	Electrical Engineering	1916	2	Blue
314159	Albert Einstein	4.0	Physics	1879	0	Green
999999	Jerzy Neyman	3.5	Statistics	1894	1	Red
112358	Ky Fan	3.55	Mathematics	1914	2	Green

SELECT id, name FROM t students WHERE birth year >1900

id	name
101010	Claude Shannon
112358	Ky Fan

NULL means Nothing!

Table t thesis

id	phd_year	phd_university	thesis_title
101010	1940	MIT	An Algebra for Theoretical Genetics
314159	1905	University of Zurich	A New Determination of Molecular Dimensions
214511			
774477	1970	MIT	

SELECT id FROM t thesis WHERE phd year IS NULL

id

21451

NULL matches the *empty string*, i.e., matches the case where the field was left empty. Note that if the field contains, say, ` ', then NULL will *not* match that row!

Ordering records: SQL ORDER BY Statements

To order the records returned by a SELECT statement:

```
SELECT [columns] FROM [table] ORDER BY [column] [ASC|DESC]
```

Example: table t_inventory of product IDs, unit cost, and number in stock

Retrieve IDs, # in stock, for all products, ordered by descending # in stock:

```
SELECT id, number_in_stock FROM t_inventory

ORDER BY number in stock DESC
```

Note: most implementations order ascending by default, but best to always specify, for your sanity and that of your colleagues!

Table t_students

id	name	gpa	major	birth_year	pets	favorite_color
101010	Claude Shannon	3.1	Electrical Engineering	1916	2	Blue
314159	Albert Einstein	4.0	Physics	1879	0	Green
999999	Jerzy Neyman	3.5	Statistics	1894	1	Red
112358	Ky Fan	3.55	Mathematics	1914	2	Green

SELECT id, name, gpa FROM t students ORDER BY gpa DESC

id	name	gpa
314159	Albert Einstein	4.0
112358	Ky Fan	3.55
999999	Jerzy Neyman	3.5
101010	Claude Shannon	3.1

More filtering: DISTINCT Keyword

To remove repeats from a set of returned results:

```
SELECT DISTINCT [columns] FROM [table]
```

Example: table t student of student IDs, names, and majors

Retrieve all the majors:

```
SELECT DISTINCT major FROM t student
```

Table t_students

id	name	gpa	major	birth_year	pets	favorite_color
101010	Claude Shannon	3.1	Electrical Engineering	1916	2	Blue
314159	Albert Einstein	4.0	Physics	1879	0	Green
999999	Jerzy Neyman	3.5	Statistics	1894	1	Red
112358	Ky Fan	3.55	Mathematics	1914	2	Green

SELECT DISTINCT pets FROM t students ORDER BY pets ASC

Test your understanding: what should this return?

Table t students

id	name	gpa	major	birth_year	pets	favorite_color
101010	Claude Shannon	3.1	Electrical Engineering	1916	2	Blue
314159	Albert Einstein	4.0	Physics	1879	0	Green
999999	Jerzy Neyman	3.5	Statistics	1894	1	Red
112358	Ky Fan	3.55	Mathematics	1914	2	Green

SELECT DISTINCT pets FROM t students ORDER BY pets ASC

pets
0
1
2

More on WHERE Statements

WHERE keyword supports all the natural comparisons one would want to perform

(Numerical) Operation	Symbol/keyword
Equal	=
Not equal	<>
Less than	<
Less than or equal to	<=
Greater than	>
Greater than or equal to	>=
Within a range	BETWEEN AND

Examples:

Caution: different implementations define BETWEEN differently (i.e., inclusive vs exclusive)! Be sure to double check!

More on WHERE Statements

WHERE keyword also allows (limited) regex support and set membership

```
SELECT id, major from t_student WHERE major IN ("Mathematics", "Statistics")

SELECT id, major from t_student WHERE major NOT IN ("Physics")
```

Regex-like matching with LIKE keyword, wildcards _' and \%'

SELECT id, name from t simpsons characters WHERE first name LIKE "M%"

SELECT id, name from t_simpsons_characters WHERE first_name LIKE "B_rt"

Matches 'Bart', 'Bert', 'Bort'...

Aggregating results: GROUP BY

I have a DB of transactions at my internet business, and I want to know how much each customer has spent in total.

customer_id	customer	order_id	dollar_amount
101	Amy	0023	25
200	Bob	0101	10
315	Cathy	0222	50
200	Bob	0120	12
310	Bob	0429	100
315	Cathy	0111	33
101	Amy	0033	25
315	Cathy	0504	70

SELECT customer_id,SUM(dollar_amount)
FROM t_transactions GROUP BY customer_id

customer_id	dollar_amount
101	50
200	22
310	100
315	153

GROUP BY field_x combines the rows with the same value in the field field_x

More about GROUP BY

GROUP BY supports other operations in addition to SUM:

COUNT, AVG, MIN, MAX

Called **aggregate** functions

Can filter results after GROUP BY using the HAVING keyword

SELECT customer_id, SUM(dollar_amount) AS total_dollar FROM t_transactions GROUP BY customer id HAVING total dollar > 50

customer_id	dollar_amount		
101	50	customer_id	total_dolla
200	22	310	100
310	100	315	153
315	153	•	

More about GROUP BY

GROUP BY supports other operations in addition to SUM: COUNT, AVG, MIN, MAX

Called aggregate functions

Note: the difference between the HAVING keyword and the WHERE keyword is that HAVING operates after applying filters and GROUP BY.

Can filter results after GROUP BY using the HAVING keyword

SELECT customer_id, SUM(dollar_amount) AS total_dollar FROM t_transactions

GROUP BY customer_id HAVING total_dollar > 50

customer_id	dollar_amount
101	50
200	22
310	100
315	153

The AS keyword just lets us give a nicer name to the aggregated field.

Merging tables: JOIN

	0			
ID	Name	GPA	Major	Birth Year
101010	Claude Shannon	3.1	Electrical Engineering	1916
314159	Albert Einstein	4.0	Physics	1879
999999	Jerzy Neyman	3.5	Statistics	1894
112358	Ky Fan	3.55	Mathematics	1914

ID	#Pets	Favorite Color
101010	2	Blue
314159	0	Green
999999	1	Red
112358	2	Green

Join tables based on primary key

ID	Name	GPA	Major	Birth Year	#Pets	Favorite Color
101010	Claude Shannon	3.1	Electrical Engineering	1916	2	Blue
314159	Albert Einstein	4.0	Physics	1879	0	Green
999999	Jerzy Neyman	3.5	Statistics	1894	1	Red
112358	Ky Fan	3.55	Mathematics	1914	2	Green

Merging tables: INNER JOIN

t student

3.5

3.55

i_student					
name	gpa	major	birth_year		i
Claude Shannon	3.1	Electrical Engineering	1916		1
Albert Einstein	4.0	Physics	1879		3

1894

1914

Statistics

Mathematics

t personal

id	pets	favorite_color
101010	2	Blue
314159	0	Green
999999	1	Red
112358	2	Green

Join tables based on primary key

SELECT id, name, favorite color FROM t student INNER JOIN t personal ON t student.id=t personal.id

id

101010

314159

999999

112358

Jerzy Neyman

Ky Fan

id	name	favorite_color
101010	Claude Shannon	Blue
314159	Albert Einstein	Green
999999	Jerzy Neyman	Red
112358	Ky Fan	Green

Other ways of joining tables: OUTER JOIN

(INNER) JOIN: Returns records that have matching values in both tables

LEFT (OUTER) JOIN: Return all records from the left table, and the matched records from the right table

RIGHT (OUTER) JOIN: Return all records from the right table, and the matched records from the left table

FULL (OUTER) JOIN: Return all records when there is a match in either left or right table

https://www.w3schools.com/sql/sql_join.asp

Creating/modifying/deleting rows

```
Insert a row into a table: INSERT INTO
INSERT INTO table name [col1, col2, col3, ...]
    VALUES value1, value2, value3, ...
    Note: if adding values for all columns, you only need to specify the values.
    Modify a row in a table: UPDATE
    UPDATE table name SET col1=value1, col2=value2,
    WHERE condition
                                                       Caution: if WHERE clause is
                                                       left empty, you'll delete/modify
                                                       the whole table!
    Delete rows from a table: DELETE
        DELETE FROM table name WHERE condition
```

Creating and deleting tables

Create a new table: CREATE TABLE

CREATE TABLE table name [col1 datatype, col2 datatype, ...]

Delete a table: DROP TABLE DROP TABLE table name;

Be careful when dropping tables!

Python sqlite3 package implements SQLite

```
Connection object represents a database
Connection object can be used to create a Cursor object
Cursor facilitates interaction with database
conn = sqlite3.connect('example.db')
establish connection to given DB file (creating it if necessary)
return Connection object
c = conn.cursor()
    Creates and returns a Cursor object for interacting with DB
c.execute([SQL command])
    runs the given command; cursor now contains query results
```

Python sqlite3 package

Important point: unlike many other RDBMSs, SQLite does not allow multiple connections to the same database at the same time.

So, if you're working in a distributed environment, you'll need something else e.g., MySQL, Oracle, etc.

Python sqlite3 in action

(112358, u'Ky Fan', u'Mathematics', 1914)

```
1 import sqlite3
 2 conn = sglite3.connect('example.db')
 3 c = conn.cursor() # create a cursor object.
 4 c.execute('''CREATE TABLE t student (id, name, field, birth year)''')
   students = [(101010, 'Claude Shannon', 'Electrical Engineering', 1916),
                (500100, 'Eugene Wigner', 'Physics', 1902),
                (314159, 'Albert Einstein', 'Physics', 1879),
 8
                (214518, 'Ronald Fisher', 'Statistics', 1890),
                (662607, 'Max Planck', 'Physics', 1858),
10
                (271828, 'Leonard Euler', 'Mathematics', 1707),
                (999999, 'Jerzy Neyman', 'Statistics', 1894),
11
12
                (112358, 'Ky Fan', 'Mathematics', 1914)]
13 c.executemany('INSERT INTO t student VALUES (?,?,?,?)', students)
14 conn.commit() # Write the changes back to example.db
15 for row in c.execute('''SELECT * from t student'''):
16
       print row
(101010, u'Claude Shannon', u'Electrical Engineering', 1916)
(500100, u'Eugene Wigner', u'Physics', 1902)
(314159, u'Albert Einstein', u'Physics', 1879)
(214518, u'Ronald Fisher', u'Statistics', 1890)
(662607, u'Max Planck', u'Physics', 1858)
(271828, u'Leonard Euler', u'Mathematics', 1707)
(999999, u'Jerzy Neyman', u'Statistics', 1894)
```

Python sqlite3 in action

```
1 import sqlite3
  2 conn = sqlite3.connect('example.db')
   c = conn.cursor() # create a cursor object.
   c.execute('''CREATE TABLE t student (id, name, field, birth year)''')
    students = [(101010, 'Claude Shannon', 'Electrical Engineering', 1916),
                (500100, 'Eugene Wigner', 'Physics', 1902),
                (314159, 'Albert Einstein', 'Physics', 1879),
                (214518, 'Ronald Fisher', 'Statistics', 1890),
                (662607, 'Max Planck', 'Physics', 1858),
10
                (271828, 'Leonard Euler', 'Mathematics', 1707),
11
                (999999, 'Jerzy Neyman', 'Statistics', 1894),
12
                (112358, 'Ky Fan', 'Mathematics', 1914)]
   c.executemany('INSERT INTO t student VALUES (?,?,?,?)', students)
   conn.commit() # Write the changes back to example.db
   for row in c.execute('''SELECT * from t student'''):
16
       print row
(101010, u'Claude Shannon', u'Electrical Engineering', 1916)
(500100, u'Eugene Wigner', u'Physics', 1902)
(314159, u'Albert Einstein', u'Physics', 1879)
(214518, u'Ronald Fisher', u'Statistics', 1890)
(662607, u'Max Planck', u'Physics', 1858)
(271828, u'Leonard Euler', u'Mathematics', 1707)
(999999, u'Jerzy Neyman', u'Statistics', 1894)
(112358, u'Ky Fan', u'Mathematics', 1914)
```

Create the table. Note that we need not specify a data type for each column.

SQLite is flexible about this.

Insert rows in the table.

Note: sqlite3 has special syntax for parameter substitution in strings. Using the built-in Python string substitution is insecure-- vulnerable to SQL injection attack.

Executing a query returns an iterator over query results.

```
Python sqlite3 annotated
```

```
import sqlite3
conn = sqlite3.connect('example.db')

c = conn.cursor()
```

conn.close()

Establishes a connection to the database stored in example.db.

cursor object is how we interact with the database. Think of it kind of like the cursor for your mouse. It points to, for example, a table, row or query results in the database.

```
4 c.execute('''CREATE TABLE t_student (id, name, field, birth_year)''')
```

cursor.execute will run the specified SQL command on the database.

13 c.executemany('INSERT INTO t_student VALUES (?,?,?,?)', students)
14 conn.commit() # Write the changes back to example.db

100

commit writes changes back to the file. Without this, the next time

executemany runs a list of SQL commands.

you open example.db, the table
t_student will be empty!

Close the connection to the database.
Think of this like Python file close.

Metainformation: sqlite master

Special table that holds information about the "real" tables in the database

```
Two tables, named
t_student and t_thesis

import os, sqlite3

cos.remove('example.db') #remove old version of the database.

conn = sqlite3.connect('example.db')

c = conn.cursor()

c.execute('''CREATE TABLE t_student (id, name, field, birth_year)''')

for r in c.execute('''SELECT * FROM sqlite_master'''):

print r

(u'table', u't_student', u't_student', 2, u'CREATE TABLE t_student (id, name, field, birth_year)')
(u'table', u't_thesis', u't_thesis', 3, u'CREATE TABLE t_thesis (thesis_id, phd_title phd_year)')
```

Retrieving column names in sqlite3

```
1 c.execute('''SELECT * from t student''')
                                                         description attribute contains
  2 c.description
                                                         the column names: returned as a
                                                         list of tuples for agreement with a
(('id', None, None, None, None, None, None),
                                                         different Python DB API.
 ('name', None, None, None, None, None, None),
 ('field', None, None, None, None, None, None),
 ('birth year', None, None, None, None, None, None))
  1 [desc[0] for desc in c.description]
['id', 'name', 'field', 'birth year']
                                                       Note: this is especially useful in
                                                       tandem with the mysql master
                                                       table when exploring a new
                                                       database, like in your homework!
```

Intermission

Next up...PyTorch

What is PyTorch?

It's a Python-based scientific computing package targeted at two sets of audiences:

- 1. A replacement for NumPy to use the power of GPUs
- a deep learning research platform that provides maximum flexibility and speed

PyTorch Installation

See https://pytorch.org/get-started/locally/

```
# -*- coding: utf-8 -*-
                                                                            import torch
                                                                                                                                                          Slide
import numpy as np
                                                                            dtype = torch.FloatTensor
# N is batch size; D in is input dimension;
                                                                            # dtype = torch.cuda.FloatTensor # Uncomment this to run on GPU
                                                                                                                                                          Credit:
# H is hidden dimension; D out is output dimension.
N. D in. H. D out = 64, 1000, 100, 10
                                                                            # N is batch size; D in is input dimension;
                                                                            # H is hidden dimension; D_out is output dimension.
# Create random input and output data
                                                                            N, D_in, H, D_out = 64, 1999, 189, 19
x = np.random.randn(N, D in)
                                                                                                                                                          Soumith Chintala
v = np.random.randn(N, D out)
                                                                            # Create random input and output data
                                                                            x = torch.randn(N, D_in).type(dtype)
# Randomly initialize weights
                                                                            y = torch.randn(N, D_out).type(dtype)
                                                                                                                         PyTorch
                                               Numpy
w1 = np.random.randn(D_in, H)
                                                                            # Randomly initialize weights
w2 = np,random,randn(H, D out)
                                                                            w1 = torch, randn(D in, H), type(dtype)
                                                                            w2 = torch.randn(H, D_out).type(dtype)
learning rate = 1e-6
for t in range (500):
                                                                            learning rate = 1e-6
    # Forward pass: compute predicted y
                                                                            for t in range (500):
    h = x.dot(w1)
                                                                                # Forward pass: compute predicted y
    h relu = np.maximum(h, 0)
                                                                                h = x.mm(w1)
                                                                                                                                   numpy and
    y pred = h relu.dot(w2)
                                                                                h_relu = h.clamp(min=0)
                                                                               y pred = h relu.mm(w2)
                                                                                                                                   PyTorch have
    # Compute and print loss
                                                                                                                                   many
    loss = np.square(y_pred - y).sum()
                                                                                # Compute and print loss
                                                                                loss = (y_pred - y).pow(2).sum()
    print(t, loss)
                                                                                                                                   similarities
                                                                                print(t, loss)
    # Backprop to compute gradients of w1 and w2 with respect to loss
                                                                                # Backprop to compute gradients of w1 and w2 with respect to loss
    grad y pred = 2.0 * (y pred - y)
                                                                                grad y pred = 2.0 * (y pred - y)
    grad_w2 = h_relu.T.dot(grad_y_pred)
                                                                                grad_w2 = h_relu.t().mm(grad_y_pred)
    grad_h_relu = grad_y_pred.dot(w2.T)
                                                                                grad h relu = grad y pred.mm(w2.t())
    grad h = grad h relu,copy()
                                                                                grad h = grad h relu.clone()
    grad h[h < 0] = 0
                                                                                grad h[h < 0] = 0
    grad_w1 = x.T.dot(grad_h)
                                                                                grad_w1 = x.t().mm(grad_h)
    # Update weights
                                                                                # Update weights using gradient descent
    w1 -= learning rate * grad w1
                                                                                w1 -= learning_rate * grad_w1
                                                                                w2 -= learning rate * grad w2
    w2 -= learning rate * grad w2
```

Unit 1: PyTorch Tensors

Tensors generalize vectors/matrices, like NumPy's ndarrays

3
$$\begin{bmatrix} 4 \\ 1 \\ 5 \end{bmatrix} \begin{bmatrix} 4 & 6 & 7 \\ 7 & 3 & 9 \\ 1 & 2 & 5 \end{bmatrix} \begin{bmatrix} 5 & 7 & 1 \\ 9 & 4 & 3 \\ 3 & 5 & 2 \end{bmatrix}$$
SCALAR VECTOR PLATRIX TENSOR TENSOR
$$X[2]=5 \quad X[1,0]=7 \quad X[0,2,1]=5 \quad X[1,3,...,2]=4$$
OA 15
$$25 \quad 35 \quad N-5 \text{ DATA} \rightarrow \text{ N INSIGES}$$

Credit: E. Stevens, L. Antiga, and T. Viehmann. *Deep Learning with PyTorch*. 2020.

Properties of Tensors

Simply put, TENSORS are a generalization of vectors and matrices. In PyTorch, they are a multi-dimensional matrix containing elements of a **single data type**.

```
>>> import torch
>>> t = torch.tensor([[1., -1.], [1., -1.]])
>>> t
tensor([[ 1., -1.]
        [1.,-1.]
>>> t.dtype # They have a type
torch.float32
>>> t.shape # a shape
torch.Size([2, 2])
>>> t.device # and live in some device
device(type='cpu')
```

Creating Tensors

```
import torch
```

Construct a 5x3 matrix, uninitialized:

```
[5] x = torch.empty(5, 3)
    print(x)

else tensor([[2.9901e-36, 0.0000e+00, 4.4842e-44],
```

Construct a randomly initialized matrix:

```
[ ] x = torch.rand(5, 3)
    print(x)
```

Construct a matrix filled zeros and of dtype long:

```
[ ] x = torch.zeros(5, 3, dtype=torch.long)
    print(x)
```

Construct a tensor directly from data:

```
[ ] x = torch.tensor([5.5, 3])
    print(x)
```

Create a tensor based on an existing tensor

```
x = x.new_ones(5, 3, dtype=torch.double) # new_* methods take in sizes
print(x)

x = torch.randn_like(x, dtype=torch.float) # override dtype!
print(x) # result has the same size
```

Operations

Addition: syntax 1

Addition: syntax 2

```
[ ] print(torch.add(x, y))
```

Addition: providing an output tensor as argument

```
[ ] result = torch.empty(5, 3)
  torch.add(x, y, out=result)
```

Addition: in-place

```
[ ] y.add_(x)
```

Resizing

Resizing: If you want to resize/reshape tensor, you can use torch.view:

```
[14] x = torch.randn(4, 4)
y = x.view(16)
z = x.view(-1, 8) # the size -1 is inferred from other dimensions
print(x.size(), y.size(), z.size())
```

e torch.Size([4, 4]) torch.Size([16]) torch.Size([2, 8])

If you have a one element tensor, use .item() to get the value as a Python number

- x = torch.randn(1)
 print(x)
 print(x.item())
- tensor([-0.8768])
 -0.8767884373664856

Converting a Torch Tensor to and from a NumPy Array

```
[31] a = torch.ones(5)
    print(a)

② tensor([1., 1., 1., 1., 1.])

[32] b = a.numpy()
    print(b)

② [1. 1. 1. 1. ]
```

See how the numpy array changed in value.

```
[33] a.add_(1)
    print(a)
    print(b)
```

```
ensor([2., 2., 2., 2., 2.])
[2. 2. 2. 2. 2.]
```

```
[34] import numpy as np
  a = np.ones(5)
  b = torch.from_numpy(a)
  np.add(a, 1, out=a)
  print(a)
  print(b)
```

```
[2. 2. 2. 2. 2.]
tensor([2., 2., 2., 2., 2.], dtype=torch.float64)
```

GPU computing

A GPU is connected to the motherboard. It is physical entity separate from the CPU.

Image credit: Tolga Soyata, from *GPU*Parallel Program Development Using
CUDA

CUDA Tensors

```
[36] # let us run this cell only if CUDA is available
     # We will use ``torch.device`` objects to move tensors in and out of GPU
     if torch.cuda.is available():
         device = torch.device("cuda")  # a CUDA device object
         y = torch.ones like(x, device=device) # directly create a tensor on GPU
         x = x.to(device)
                                               # or just use strings ``.to("cuda")``
         z = x + y
         print(z)
                                               # ``.to`` can also change dtype together!
         print(z.to("cpu", torch.double))
                                          "cuda" stands for "Compute
x is now stored on the GPU
                                          Unified Device Architecture"
```

GPU speedup on Google colab

[1] import torch

```
import time
[2] \times \text{ cpu} = \text{torch.randn}(120000, 10000)
    y cpu = torch.randn(10000, 1)
[3] x gpu = x cpu.cuda()
    y gpu = y cpu.cuda()
[4] start = time.time()
    x cpu.mm(y cpu)
    print(time.time() - start)
    0.39958739280700684
    start = time.time()
    x gpu.mm(y gpu)
    print(time.time() - start)
    0.004973173141479492
```

Matrix-vector multiplication on the GPU is nearly 100x faster!

Practice Problem 1:
Implementing an objective function in NumPy and PyTorch

Unit 2: Automatic Differentiation

Automatic Differentiation

```
[2] import torch
```

Create a tensor and set requires_grad=True to track computation with it

```
[3] x = torch.ones(2, 2, requires_grad=True)
    print(x)
```

Do an operation of tensor:

```
[4] y = x + 2
print(y)
```

y was created as a result of an operation, so it has a $\ensuremath{\mathsf{grad}}\xspace_{-} fn$.

```
[5] print(y.grad_fn)
```

<AddBackward0 object at 0x7f4f72142898>

Do more operations on y

```
[6] z = y * y * 3
    out = z.mean()

print(z, out)
```

Gradients

Let's backprop now Because out contains a single scalar, out.backward() is equivalent to out.backward(torch.tensor(1)).

[8] out.backward()

print gradients d(out)/dx

[9] print(x.grad)

tensor([[4.5000, 4.5000], [4.5000, 4.5000]])

You should have got a matrix of 4.5 . Let's call the out $Tensor\ "o"$. We have that $o=\frac{1}{4}\sum_i z_i, z_i=3(x_i+2)^2$ and $z_i\big|_{x_i=1}=27$. Therefore, $\frac{\partial o}{\partial x_i}=\frac{3}{2}(x_i+2)$, hence $\frac{\partial o}{\partial x_i}\big|_{x_i=1}=\frac{9}{2}=4.5$.

You can do many crazy things with autograd!

More gradients

```
[10] x = torch.randn(3, requires_grad=True)
    y = x * 2
    while y.data.norm() < 1000:
        y = y * 2
     print(y)
    tensor([-1301.9290, 196.3312, 1150.0977], grad fn=<MulBackward0>)
[11] gradients = torch.tensor([0.1, 1.0, 0.0001], dtype=torch.float)
     y.backward(gradients)
     print(x.grad)
    tensor([1.0240e+02, 1.0240e+03, 1.0240e-01])
```

We don't always need gradients

You can also stop autograd from tracking history on Tensors with .requires_grad=True by wrapping the code block in with torch.no grad():

```
[12] print(x.requires_grad)
    print((x ** 2).requires_grad)

with torch.no_grad():
    print((x ** 2).requires_grad)
```

True True False Practice Problem 2:
Computing gradients manually and automatically