Lab Assignment 4

Nested Loops

CSE110: Programming Language I

No of Tasks	Points to Score
11	110

Submit the coding tasks (Task 1 - 8) on buX and the handwritten tasks (Task 9 - 11) to your Lab Instructors in the beginning of the next lab class.

1. Write a Java program to take a positive integer N (where N > 0) as user input and print the **first** N **prime numbers starting from 2**. Your code should check all the positive integers starting from 2 and determine whether they are prime or not until N prime numbers are found.

Sample Input 1:

5

Sample Output 1:

2

3

5

7

11

Sample Input 2:

7

Sample Output 2:

2

3

5

7

11

13

17

2. Write a Java code of a program that reads the value of N (where N > 0) from the user and calculates the value of y if the expression of y is as follows:

$$y = -(1) - (1+2) - (1+2+3) - \dots - (1+2+3+\dots+N)$$

Sample Input:

The value of N: 2

Sample Output:

The value of y: -4

Sample Input:

The value of N: 4

Sample Output:

The value of y: -20

3. Write a Java program that will keep taking even positive integer numbers as inputs from the user and print the number of divisors of those numbers until it gets an odd number and then stops.

Sample Input & Output: (The purple numbers are input)

Enter Number: 44
44 has 6 divisors
Enter Number: 30
30 has 8 divisors
Enter Number: 8
8 has 4 divisors
Enter Number: 4
4 has 3 divisors
Enter Number: 6
6 has 4 divisors
Enter Number: 20
20 has 6 divisors
Enter Number: 24
24 has 8 divisors

Enter Number: 5

4. Read an integer N that is the number of test cases that follow. Each test case contains two integers X and Y. Print one output line for each test case that the sum of Y odd numbers from X including it if is the case. For example:

For the input 4 5, the output must be 45, that is: 5 + 7 + 9 + 11 + 13For the input 7 4, the output must be 40, that is: 7 + 9 + 11 + 13

Sample Input	Sample Output
2	21
4	24
3	
11	
2	

Explanation: Here, the 2 means there are two test cases. For each test case you have to take two inputs (X, Y) and print the sum of Y odd numbers starting from X.

5. Take the length and width of a **rectangle** from the user and create the rectangle according to the output below. Your output should match the specified output.

Sample Input #1	Sample Input #2u
4	3
6	5
Output	Output
1 2 3 4	1 2 3
1 2 3 4	123
1 2 3 4	123
1 2 3 4	123
1 2 3 4	123
1 2 3 4	

6. Write a Java program that asks the user how many inputs they want to provide and then takes that many inputs and prints the maximum, minimum, and average of all the **even positive numbers** given by the user. If no even positive number is given, the average should be zero.

Sample Input	Sample Output
5 12 -8 19 8 -1	Max: 12 Min: 8 Average: 10

Explanation:

At first the user gave 5 as the input which indicates that the user will provide 5 numbers. Then 5 numbers were taken as inputs. Among these, only 12 and 8 are even positive numbers.

7. Write a Java program that will keep taking integer numbers as inputs from the user and print the square of those numbers until it gets a negative number and then stop.

Sample Input/Output: (The purple numbers are input.)

Enter Number: 2

 $2 ^2 = 4$

Enter Number: 6

 $6 ^2 = 36$

Enter Number: 1

 $1 ^2 = 1$

Enter Number: 4

 $4 ^2 = 16$

Enter Number: -5

8. Write a Java program that will ask for a range (a starting number and an ending number) from the user and print all the Armstrong numbers between that range.

[Armstrong Number: An Armstrong number is a number whose sum of digits raised to the power the number of digits equals to that number.

For example, 371 is an Armstrong number because $3^3 + 7^3 + 1^3 = 371$, here the total number of digits in 371 is 3]

Sample Input 1:

Start: 300 End: 500

Sample Output 1:

Armstrong numbers:

370

371

407

Sample Input 2:

Start: 100 End: 200

Sample Output 2:

Armstrong numbers:

153

9. Trace the following code, create a tracing table and write the outputs.

```
public class T1{
2
       public static void main(String args[]){
         int x = 0, y = 0;
3
4
         int sum = 0;
         while (x < 4) {
5
           y = x - 3;
6
7
           while (y < 3) {
               sum = (sum % 3) + x - y * 3 ;
8
9
              System.out.println(sum);
              y = y + 1;
10
11
12
           if (x > 5) {
              x++;
13
14
           }
15
           else{
16
              x += 2;
17
           }
18
         }
19
       }
20
```

10. Trace the following code, create a tracing table and write the outputs.

```
public class T2 {
      public static void main(String args[]) {
2
         int x = 0, i = 0, sum = 0;
3
4
         i = 1;
5
         x = 2;
6
         sum = 0;
7
         while (i < 20) {
8
            x = x + i;
9
            sum = sum + x + 1;
            System.out.println(sum);
10
            if (x > 5) {
11
12
            i += 2;
13
            }
            else {
14
            i += 3;
15
16
17
18
         sum = sum + i;
19
         System.out.println(sum);
20
      }
21
```

11. Trace the following code, create a tracing table and write the outputs.

```
public class T3
2
3
       public static void main(String args[])
4
          int x = 0, y = 0;
5
6
          int sum = 0;
7
          while (x < 10) {
8
            y = x - 3;
9
            y = 40;
10
            while (y > 22) {
11
              if ((sum > 30) \&\& (sum < 40)){
12
                 sum = sum + x * 2 ;
13
14
              else if ((sum > 40) && (sum < 50)){
15
                 sum = sum + x * 3;
16
17
              else {
18
              sum = sum + 23;
19
              System.out.println(sum);
20
21
              y = y - 10;
22
23
            x += 2;
24
25
       }
26
```