Modul: Supervised Learning

Naive Bayes

Nur ULFA Maulidevi

KK IF - Teknik Informatika- STEI ITB

Inteligensi Buatan (Artificial Intelligence)

Naive Bayes

Supervised Learning

Probabilistic Classifier

Target function: class from finite set

model probabilitas/peluang

Hypothesis: Probability Model of $P(v_j)$ and $P(a_i|v_j)$

Unseen data prediction: Find the maximum $P(v_i \mid a_1, a_2, ..., a_n)$

Learning Algorithm

Measures the frequency of every attribute value for certain class, and the frequency of every class

Determine the probability of $P(a_i|v_i)$

Determine the probability of P(v_i)

Hypothesis: Probability Model

Classification (Predict Unseen Data)

Compute the projection of attribute probability of query (unseen data) for every class $\Box \prod_i P(a_i \mid v_i)$

Multiply the result with probability of each class to get $P(v_j \mid a_1, a_2, ..., a_n) = P(v_j) \cdot \prod_i P(a_i \mid v_j)$

Prediction: Class with the maximum $P(v_j \mid a_1, a_2, ..., a_n)$

were brought on the season

Example: Play Tennis Dataset

outlook	temp.	humidity	windy	play
sunny	hot	high	false	no
sunny	hot	high	true	no
overcast	hot	high	false	yes
rainy	mild	high	false	yes
rainy	cool	normal	false	yes
rainy	cool	normal	true	no
overcast	cool	normal	true	yes

outlook	temp.	humidity	windy	play
sunny	mild	high	false	no
sunny	cool	normal	false	yes
rainy	mild	normal	false	yes
sunny	mild	normal	true	yes
overcast	mild	high	true	yes
overcast	hot	normal	false	yes
rainy	mild	high	true	no

Frequency ((sunny|yes)

Frequency (| (sunny|no)

outlook		te	temperature		humidity			windy			play		
(yes	no		yes	no		yes	no		yes	no	yes	no
sunny	2	3	hot	2	2	high	3	4	false	6	2	9	5
overcast	4	0	mild	4	2	normal	6	1	true	3	3		
rainy	3	2	cool	3	1								

requency of lass 'yes' □ 9

Frequency of class 'no' □ 5

Example: Play Tennis Dataset

					, 1	· J′					
Ol	outlook		temperature			humidity			windy		
	yes	no		yes	no		yes	no		yes	no
sunny	2/9	3/5	hot	2/9	2/5	high	3/9	4/5	false	6/9	2/5
overcast	4/9	0/5	mild	4/9	2/5	normal	6/9	1/5	true	3/9	3/5
rainy	3/9	2/5	cool	3/9	1/5						

 $P(a_i|v_i)$

P(v_j)

play

yes no

9/14 5/14

Classify New Instance: <Sunny, Cool, High, True>

$$P(v_j | a_1, a_2, ..., a_n) = P(v_j) . \prod_i P(a_i | v_j)$$

P(yes|sunny, cool, high, true)

= P(yes). P(sunny|yes).P(cool|yes).P(high|yes).P(true|yes)

= 9/14 . 2/9 . 3/9 . 3/9 . 3/9 = 0.0053

P(no | sunny, cool, high, true)

= P(no). P(sunny|no).P(cool| no).P(high| no).P(true| no)

= 5/14 . 3/5 . 1/5 . 4/5 . 3/5 = 0.0206 DUNEX ITE

THANK YOU

