Funnctional Analysis Homework 1

Deadline: September 16th.

1. Problem 1 (5 points)

- a) Let X and Y be topological spaces; let $f: X \to Y$, prove that the following statements are equivalent:
 - (a) f is continuous;
 - (b) Given $A \subset X$, one has that $f(\bar{A}) \subset \overline{f(A)}$;
 - (c) Given a closed set $B \subset Y$, one has that $f^{-1}(B)$ is closed in X;
 - (d) For every $x \in X$ and every neighborhood V of f(x), there is a neighboorhood U of x such that $f(U) \subset V$.
- b) Show that, if $X = Y = \mathbb{R}$ then the usual (ϵ, δ) definition of continuity over the real line implies the topological definition of continuity via open sets with respect to the standard topology;

2. Problem 2 (3 points)

Let X be a space, we say that two metrics d and d' on X are equivalent if

$$\exists C > 0 \ \forall x_1, x_2 \in X : \ C^{-1}d'(x_1, x_2) \le d(x_1, x_2) \le Cd'(x_1, x_2).$$

Provide two metrics on \mathbb{R}^2 that are *not* equivalent.

3. Problem 3 (4 points)

Let V be a vector space over \mathbb{R} . Prove the following equivalences.

a) Consider the vector space of continuous functions $f:[0,\infty)\to\mathbb{R}$. Prove that

$$d(f,g) = \sum_{n=1}^{\infty} 2^{-n} \frac{\|f - g\|_{C^{0}([0,n])}}{1 + \|f - g\|_{C^{0}([0,n])}},$$

where $||f||_{C^{0}([0,n])} = \sup_{x \in [0,n]} |f(x)|$ defines a metric.

b) A metric $d(\cdot, \cdot)$ is induced by a norm $\|\cdot\|$ (*i.e.*, there exists a norm $\|\cdot\|$ such that for every $x, y \in V$: $d(x, y) = \|x - y\|$) if and only if the metric is translation invariant and homogeneous *i.e.*, for every $x, y, z \in V$ and every $\lambda \in \mathbb{R}$:

$$d(x + z, y + z) = d(x, y)$$
$$d(\lambda x, \lambda y) = |\lambda| d(x, y).$$

c) Is the metric d defined in point a) induced by a norm?

4. Problem 4 (2 points)

Let $(x_n)_{n\in\mathbb{N}}$ and $(\tilde{x}_n)_{n\in\mathbb{N}}$ be two Cauchy sequences in a metric space (X,d). Prove that the sequence $(d(x_n, \tilde{x}_n))_{n\in\mathbb{N}}$ converges. Deduce that the map $d: X \times X \to \mathbb{R}$ is continuous with respect to the product topology.

5. Problem 5 (6 points)

Let (X, d_X) be a compact metric space and (Y, d_Y) be a complete metric space. Consider the space of continuous functions from X to Y, denoted by C(X, Y). Define the following:

$$d(f,g) = \sup_{x \in X} d_Y(f(x), g(x)), \quad f, g \in C(X, Y).$$

- a) Show that d is a metric on C(X,Y);
- b) Show that (C(X,Y),d) is a complete metric space.