Practice session III

Thermodynamics

1. Calculate Joule's coefficient for a gas obeying the following equation of states:

I.
$$P (V-b) = RT$$

II. $(P + \frac{a}{V^2}) V = RT$

- 2. Consider a reversible process described by the general relation $pV^n = C$, where C is a constant. The gas (consider it ideal) is expanded from pressure P_1 to P_2 . Prove that, the work in this process is $\frac{RT}{n-1} \left[\left(\frac{P_2}{P_1} \right)^{n-1} 1 \right]$
- 3. Heat of neutralization of HCl with NaOH is -13.7 Kcal.mol⁻¹. When 10 mL 0.1(N) acetic acid is neutralized by 10 mL 0.1 (N) sodium hydroxide, enthalpy change is -12.5 Cal. Calculate the heat of dissociation of acetic acid.
- 4. n mole of ideal gas undergoes isothermal reversible expansion from volume V_1 to V_2 at temperature T. Calculate the (a) $\Delta_{sys}S$, (b) $\Delta_{surr}S$, (c) $\Delta_{total}S$. Comment on the result.
- 5. A Carnot engine works between 600K and 300K using one mole of O_2 ($C_v = 5 \text{ cal.K}^{-1}.\text{mol}^{-1}$) as the thermodynamic substance. The gas is initially taken at a pressure of 20 atm while the atmosphere pressure is 1 atm. Calculate the work obtained per cycle.