

CLAIM AMENDMENTS

1 1. (original) A system unit for desorption of carbon
2 dioxide and other impurities from high pressure methanol comprising
3 one or a plurality of sequentially arranged expansion vessels, at
4 least one heat exchanger, and at least one liquid/gas separator,
5 characterized in that

6 (a) a line (1) is provided through which the intensely
7 cooled methanol leaving the expansion vessel C is fed from below
8 into a heat exchanger E; and

9 (b) a line (2) is provided through which the heated
10 methanol is fed from above the heat exchanger E and is connected to
11 a liquid/gas separator, in which the remaining carbon dioxide still
12 contained in the methanol is desorbed to the greatest extent
13 possible;

14 (c) wherein the liquid level in the expansion vessel C is
15 located about 1 to 20 m above the liquid level in the liquid/gas
16 separator D; and

17 (d) wherein the liquid level in the liquid/gas separator
18 D is located about 0.5 m above the exit opening provided for heated
19 methanol in the top of the heat exchanger E.

1 2. (original) The system unit according to claims 1,
2 characterized in that it is downstream to an absorber (5), which is
3 provided for purification of synthesis gas with methanol.

1 3. (currently amended) The system unit according to
2 ~~claims 1 and 2~~ claim 1, characterized in that a regenerator (6) is
3 downstream to it, in which by further increasing the temperature
4 and influx of heated inert gas the remaining carbon dioxide is
5 desorbed from the methanol.

1 4. (currently amended) The system unit according to
2 ~~claims 1 through 3~~ claim 1, characterized in that the first expansion
3 vessel A for the gas mixture obtained by desorption comprising
4 hydrogen and carbon monoxide, has a line going to the heat exchanger E
5 and a line to the expansion vessel B for the methanol containing liquid.

1 5. (currently amended) The system unit according to
2 ~~claims 1 through 4~~ claim 1, characterized in that the second
3 expansion vessel B for the carbon dioxide gas obtained by desorption
4 has a line going to the heat exchanger E and a line to the
5 expansion vessel C for the methanol containing liquid.

1 6. (currently amended) The system unit according to
2 ~~claims 1 through 5~~ claim 1, characterized in that the expansion
3 vessel C for the gaseous carbon dioxide obtained by desorption has
4 a line (1) going to the heat exchanger E and a line for the methanol
5 containing liquid to the upstream absorber which for its part

6 is connected by line (2) the methanol heated up there to the
7 liquid/gas separator D.

1 7. (currently amended) The system unit according to
2 claims 1 through 6 claim 1, characterized in that the liquid/gas
3 separator D has a branch line (3) for the gaseous carbon dioxide
4 and another line (4) provided for feeding the separated methanol to
5 the downstream regenerator.

1 8. (currently amended) The process for desorption of
2 carbon dioxide and other gaseous impurities from methanol in the
3 system unit in accordance with claims 1 through 7 claim 1, wherein
4 the desorption is carried out stepwise in a multiplicity of sequen-
5 tially arranged expansion vessels, at least one heat exchanger and
6 at least one liquid/gas separator, characterized in that the
7 methanol leaving the expansion vessel C at a temperature of -60 ± 10
8 °C and a pressure of 1 to 2 bar is fed into the heat exchanger E,
9 heated there to a temperature of -10 ± 5 °C and fed into the
10 liquid/gas separator D.

1 9. (original) The process according to claim 8, charac-
2 terized in that the further material flow between the expansion
3 vessels A, B and C as well as to the heat exchanger E and to the
4 liquid/gas separator D may be accomplished with the aid of pumps or
5 preferably by utilization of the thermo-siphon effect.

1 10. (currently amended) The process according to claim
2 8 [[and 9]], characterized in that in the expansion vessel A the
3 pressure decreases from about 55 bar to about 9 bar and mainly
4 hydrogen and carbon monoxide are desorbed at a temperature of about
5 -45°C, wherein the gas fraction obtained after passing through the
6 heat exchanger E is recovered to the process, while the liquid
7 fraction is fed to a second expansion vessel B.

1 11. (currently amended) The process according to claims
2 8-through-10 claim 8, characterized in that in the second expansion
3 vessel B the pressure decreases from about 9 bar to about 2.7 bar
4 and gaseous carbon dioxide is obtained at a temperature of about
5 -45°C, to about -52°C, which is fed through the heat exchanger E
6 and subsequently obtained for the process, while the liquid frac-
7 tion obtained is fed to the third expansion vessel C.

1 12. (currently amended) The process according to claims
2 8-through-11 claim 8, characterized in that, in the third expansion
3 vessel C, the pressure of about 2.7 bar decreases to about 1.2 bar
4 and gaseous carbon dioxide is obtained at a temperature of about
5 -52°C, to about -60°C, which is fed through the heat exchanger E
6 and subsequently can be obtained for the process.

1 13. (currently amended) The process according to claims
2 ~~8-through-12~~ claim 8, characterized in that [[,]] the liquid
3 fraction contained in the third expansion vessel C is divided into
4 two streams wherein one stream is fed to the upstream absorber (5)
5 and the second stream after passing through the heat exchanger E
6 via line (2) is fed to the liquid/gas absorber D.

1 14. (currently amended) The process according to claims
2 ~~8-through-13~~ claim 8, characterized in that the liquid fraction (4)
3 recovered in the liquid/gas separator D is fed to a downstream
4 regenerator (6) for removal of the last traces of carbon dioxide
5 and the gas fraction (3) preferably purified with further carbon
6 dioxide rich gas fractions is obtained to the process.