Синхронизация локальных часов

Курносов Михаил Георгиевич

E-mail: mkurnosov@gmail.com WWW: www.mkurnosov.net

Курс «Распределенная обработка информации»
Сибирский государственный университет телекоммуникаций и информатики
Осенний семестр

Содержание

- Синхронизация локальных часов
- Логические часы
- Глобальное состояние
- Взаимное исключение
- Выборы
- Консенсус
- Репликации и согласованность

Литература

- George Coulouris, Jean Dollimore, Tim Kindberg, Gordon Blair. **Distributed Systems: Concepts and Design** (5th Edition). Addison-Wesley, 2011. 1008 p.
- Жерар Тель. Введение в распределенные алгоритмы. М.: МЦНМО, 2009.
- Эндрю Таненбаум, М. ван Стеен. Распределенные системы. Принципы и парадигмы. СПб.: Питер, 2003.

■ Nancy A. Lynch. **Distributed Algorithms**. – Morgan Kaufmann, 1996. – 904 p.

Модель распределенной системы

- Распределенная система состоит из n процессов p_i , $i \in \{1,2,\ldots,n\}$
- Каждый процесс однопоточный и выполняется на своем процессоре (узле)
- Процесс характеризуется своим состоянием совокупность значений всех переменных процесса
- Процессы взаимодействуют путем передачи сообщений (send, recv)
 - □ Сообщения передаются не мгновенно (латентность, пропуская способность)
- В системе могут происходить как аппаратные (узлы, каналы связи), так и программные отказы
- Все процессы выполняют шаги распределенного алгоритма (distributed algorithm)

Локальные часы

- Каждый процесс распределенной системы имеет доступ к локальным часам своего вычислительного узла
- Процессы могут ассоциировать со своими событиями *временные метки* (timestamps)
- Показания локальных часов процессов могут быть существенно различными!

Модель взаимодействий

 Синхронные распреде 	ленные системы (synchronous distributed system)
□ Известны нижняя	и верхняя границы времени выполнения шагов алгоритма
Передача и прием	сообщения выполняется за известное конечное время
□ Скорость смещени ограничена и изве	ıя показаний локальных часов (clock drift rate) стна
	кно использовать механизмы таймаутов для обнаружения отказов, ремени выполнения алгоритма и др.
Асинхронные распред	еленные системы (asynchronous distributed system)
🗖 Процессы и их отд	ельные шаги могут выполняться произвольное время
□ Передача и прием (заранее неизвест	сообщений могут занимать произвольное время ное)
□ Произвольное сме	ещение показаний локальных часов процессов

Порядок событий (E-mail users X, Y, Z, A)

- Некоторые процессы (А) получили сообщения в некорректном порядке
- Из-за задержек в сети сообщение m1 и m2 доставлены в A после m3

George Coulouris, Jean Dollimore, Tim Kindberg, Gordon Blair. **Distributed Systems: Concepts and Design** (5th Edition). – Addison-Wesley, 2011. – 1008 p.

Порядок событий (E-mail users X, Y, Z, A)

- Если локальные часы процессов <u>синхронизированы</u>, то каждое сообщение можно снабдить временной меткой: t1 < t2 < t3
- Принятые сообщения в А можно переупорядочить по временным меткам (восстановить исходный порядок сообщений)

Глобальные часы (global clock)

□ Локальные часы процессов надо синхронизировать с надежным внешним источником времени

Приложения

- □ Обработка транзакций
- □ Логирование и аудит
- □ Профилировщики MPI-программ (Intel Trace Analyzer & Collector, MPE2, ...)

Часы

- Показания локальных часов процессов могут быть различными
- Разность показаний локальных часов двух процессов называется смещением (clock skew)
- Локальные часы процессов могут иметь различные источники времени (RTC, TSC, HPET, ...) и характеризуются разной точностью (clock drift)

\$ cat /sys/devices/system/clocksource/clocksource0/available_clocksource
tsc hpet acpi_pm

Синхронизация показаний локальных часов

- Внешняя синхронизация (External synchronization)
- Локальные часы C_i процессов синхронизированы с внешним источником S с точностью D, если

$$|S(t) - C_i(t)| < D, \quad \forall t, \quad i = 1, 2, ..., n$$

- Внутренняя синхронизация (Internal synchronization)
- Локальные часы процессов синхронизированы между собой с точностью *D*, если

$$|C_i(t) - C_j(t)| < D, \quad \forall t, \quad i, j = 1, 2, \dots, n$$

Синхронизация показаний локальных часов

- Алгоритм внешней синхронизации Кристиана
- Cristian, F. (1989), "Probabilistic clock synchronization" // Distributed Computing (Springer) 3 (3): 146–158

Синхронизация показаний локальных часов

- Алгоритм Беркли (Gusella, Zatti, 1989)
- NTP (алгоритм К. Marzullo, 1984)
- Алгоритмы синхронизации часов в MPI-профилировщике MPE2 (mpe2/src/logging/src/clog_sync.c):
 - \square Sequential O(n)
 - \square Binomial tree $O(\log n)$
 - \square Ring algorithm O(1)

Пример: профилирование МРІ-программ

- В MPI-процессах происходят события (MPI_Send, MPI_Recv, MPI_Bcast, ...)
- Профилировщик для каждого процесса ведет журнал событий: (timestamp, event)
- Как построить пространственно-временную диаграмму выполнения процессов (timeline) имея п журналов событий?

Пример: профилирование МРІ-программ

- \blacksquare Каждая ветвь i вычисляет смещение o_i показаний своих часов относительно часов ветви 0
- Зная o_i и показания T_i своих часов ветвь i может вычислить показания T_0 глобальных часов

$$T_0 = T_i + o_i$$

$$T_i = T_0 - o_i$$

■ Вычисление **o**_i

$$T_{\text{RTT}} = T_i'' - T_i'$$
 $o_i = T_0 - \frac{T_{\text{RTT}}}{2} - T_i'$

- Синхронизируем показания локальных часов (формируем глобальные часы)
- Каждое событие в журнале процесса *i* снабжается временной меткой:
 (*T_i* + *o_i*, event)

Пример: измерение времени выполнения коллективных MPI-операций

■ Требуется измерить время выполнения коллективной операции (MPI_Bcast, MPI_Scatter, MPI_Gather, MPI_Reduce, MPI_Allreduce, MPI_Barrier, ...)

Диаграмма выполнения барьерной синхронизации "рассеивающим" алгоритмом (Dissemination barrier, MPICH, Open MPI)

- Ветви начинают выполнение операции в разные моменты времени (load imbalance, предварительная синхронизация функцией MPI Barrier)
- Измеряется среднее время выполнения операции по результатам k запусков (ошибка измерений)
- □ T. Hoefler, T. Schneider and A. Lumsdaine. 6] T. Hoefler, T. Schneider and A. Lumsdaine. Accurately Measuring Overhead, Communication Time and Progression of Blocking and Nonblocking Collective Operations at Massive Scale // http://unixer.de/publications/img/hoefler-collmea.pdf
- □ Курносов М.Г. MPIPerf: пакет оценки эффективности коммуникационных функций стандарта MPI // ПаВТ-2012, http://www.mkurnosov.net/uploads/Main/kurnosov-pavt-2012.pdf

```
MPI_Bcast(buf, count, MPI_BYTE, root, comm) /* Init */
MPI_Barrier(comm) /* Sync */
t = MPI_Wtime()
for i = 1 to k do
     MPI_Bcast(buf, count, MPI_BYTE, root, comm)
end for
t = (MPI_Wtime() - t) / k
```

Пример: измерение времени выполнения коллективных МРІ-операций

- SKaMPI
- NetGauge
- MPIPerf

- **С**инхронизация показаний локальных часов ветвей установление глобального времени
- Оценка времени выполнения трансляционного обмена:
 MPI_Bcast(&buf, 1, MPI_DOUBLE, mpiperf_master_rank, comm)
- Формирование расписания запусков операции по глобальным часам Измерение времени выполнения операции. Корректировка расписания. Проверка условий окончания измерений
- 4 Статистическая обработка результатов измерений (выбросы, доверительные интервалы). Формирование отчета