理想的对偶概念是滤,以上关于理想的结果对于滤也都成立。具体说:如果 \mathcal{F} 是布尔代数 \mathcal{B} 上的所有滤的族, \mathcal{F} 是一个完全的分配格。

引理 2.2.10. 令 \mathcal{B} 为布尔代数, \mathcal{J} , \mathcal{F} 为其上理想和滤。定义 $h: \mathcal{J} \to \mathcal{F}$ 为 h(I) = -I, 即 I 的对偶滤,则 h 是格同构。

证明. 令 $f: \mathcal{F} \to \mathcal{J}$ 为如此定义的映射: f(F) = -F。对任意 $F \in \mathcal{F}$,我们有

$$h(f(F)) = h(\{-a \mid a \in F\}) = \{-(-a) \mid a \in F\} = F,$$

反之,对任意 $I \in \mathcal{J}$,

$$f(h(I)) = f(\{-a \mid a \in I\}) = \{-(-a) \mid a \in I\} = I,$$

所以h是双射。

对任意 $I, J \in \mathcal{J}$,如果 $I \subseteq J$,则显然有 $-I \subseteq -J$,这就意味着 $h(I) \subseteq h(J)$,反之依然。所以 h 保持格上的偏序,因此是一个格同构。

练习 2.2.11. 假设 $h: X \to Y$ 和 $f: Y \to X$ 是两个函数, 并且满足 $f \circ h = \mathrm{id}_X$, $h \circ f = \mathrm{id}_Y$, 证明 h 是双射, 并且 $f = h^{-1}$ 。

2.3 形式概念

令 S, P 为两个集合,其中 S 中的元素为"对象", P 中的元素为"性质"。如果 $S \in S, p \in P$,则 p(S) 表示: a 有性质 p。对任意 $X \subseteq S, Y \subseteq P$,我们令

$$X' = \{ p \in P \mid \forall s \in X[p(s)] \}$$

$$Y' = \{ s \in S \mid \forall p \in Y[p(s)] \}$$

显然, $X \subseteq Y$ 当且仅当 $Y' \subseteq X'$ 。这就是传统上所说的一个概念内涵越多,外延越小。

给定 S, P, 如果 $E \subseteq S, D \subseteq P$ 满足: E = D', D = E', 就称 C = (E, D) 为语境 (S, P) 下的一个概念。其中 E 称为 C 的外延,D 称为内涵。今后记 $\mathbb{C}(S, P)$ 为语境 (S, P) 下所有概念的集合。在语境清晰时,我们省去 S, P。

练习 2.3.1. 给定语境 (S, P), 令 $E \subseteq S, D \subseteq P$,

- (1) $E \subseteq E''$, $D \subseteq D''$;
- (2) E''' = E', D''' = D';
- (3) $E \subset D'$ 当目仅当 $D \subset E'$;
- (4) 如果 (E, D) 是概念,则 E'' = E, D'' = D;反之,如果 E'' = E,则 E是一个概念的外延,同样地,如果 D'' = D,则 D是一个概念的内涵。
- $(5) \left(\bigcup_{i \in I} E_i \right)' = \bigcap_{i \in I} E_i', \left(\bigcup_{i \in I} D_i \right)' = \bigcap_{i \in I} D_i' \circ$

给定 $\mathbb{C}(S,P)$, $C_1=(E_1,D_1),C_2=(E_2,D_2)\in\mathbb{C}$,我们定义其上的偏序关系为:

 $C_1 \leq C_2$ 当且仅当 $E_1 \subseteq E_2$ 当且仅当 $D_2 \subseteq D_1$.

同时,对任意 $C_1, C_2 \in \mathbb{C}(S, P)$,不难验证它们在 \leq 下的上确界和下确界分别是:

$$\sup\{C_1, C_2\} = ((E_1 \cup E_2)'', D_1 \cap D_2),$$

$$\inf\{C_1, C_2\} = (E_1 \cap E_2, (D_1 \cup D_2)'').$$

以上确界为例,根据练习 2.3.1(2), $(E_1 \cup E_2)'' = (E_1 \cup E_2)' = D_1 \cap D_2$ 。而根据 (5), $(D_1 \cap D_2)' = (E_1 \cup E_2)''$ 。所以 $((E_1 \cup E_2)'', D_1 \cap D_2)$ 是概念。它是 C_1 , C_2 的最小上界是显然的:由于 $D_1 \cap D_2 \subseteq D_1$ 且 $D_1 \cap D_2 \subseteq D_2$,所以它是 上界。如果 C = (E, D) 也是上界,则 $D \subseteq D_1$, $D \subseteq D_2$,所以 $D \subseteq D_1 \cap D_2$, $((E_1 \cup E_2)'', D_1 \cap D_2) \le (E, D)$ 。

这样我们验证了 $\mathbb{C}(S, P)$ 在 \leq 下是一个格, 并且

$$C_1 \vee C_2 = ((E_1 \cup E_2)'', D_1 \cap D_2),$$

 $C_1 \wedge C_2 = (E_1 \cap E_2, (D_1 \cup D_2)'').$

事实上,它还是一个完全格。

引理 2.3.2. 在以上定义的 \leq 下, $\mathbb{C}(S, P)$ 是一个完全格。

证明. 我们只需验证: 对任意 $\{C_i\}_{i \in I}$,

$$\bigvee_{i \in I} C_i = (\bigcup_{i \in I} E_i)'', \bigcap_{i \in I} D_i)$$

$$\bigwedge_{i \in I} C_i = (\bigcap_{i \in I} E_i, (\bigcup_{i \in I} D_i)'')$$

是语境 (S, P) 下的概念,并且分别是 $\{C_i\}_{i\in I}$ 的上确界和下确界。证明与以上讨论的 $\{C_1, C_2\}$ 的情况类似。例如,关于 $\bigwedge C_i$,首先 $(\bigcup D_i)'' = (\bigcup D_i)' = \bigcap E_i$ 。同时, $(\bigcap E_i)' = (\bigcup D_i)''$,所以 $\bigwedge C_i$ 是概念。不难证明它也是最大下界。

接下来我们讨论关于形式概念的一些性质。

注记 2.3.3. 由练习2.3.1(4),我们可以分别定义如下概念: 任给 (S,P),令 $\mathbb{C}(S) = \{E \subseteq S \mid E'' = E\}$, $\mathbb{C}(P) = \{D \subseteq S \mid D'' = D\}$ 。对任意概念 $(E,D) \in \mathbb{C}(S,P)$, $(E,D) \mapsto E$ 是一个严格保序的一一射,因此是一个格同 构。 $\mathbb{C}(S)$ 在 \subseteq 下也是一个完全格。对任意 $\mathbb{C}(S)$ 中的 $\{E_i\}_{i \in I}$, $\bigwedge_{i \in I} = \bigcap_{i \in I} E_i$, $\bigvee_{i \in I} = (\bigcup_{i \in I} E_i)''$ 。

类似地,($\mathbb{C}(P)$, \supseteq) 也是一个完全格,(E, D) $\mapsto D$ 是一个格同构。

给定语境 (S,P)。 S 中的对象代表"实体",P 中的对象表示"属性"。任给一个实体 $s \in S$, $\{s\}'$ 表示 s 的所有属性。理想的情况下,每个实体可以由它所有的属性唯一地刻画,即 $\{s\}'' = \{s\}$ 。不过,无论如何, $(\{s\}'',\{s\}')$ 是一个概念。类似地,对任意 $p \in P$, $\{p\}'$ 是具有属性 p 的所有实体的类。在理想的(外延主义成立的)情形下,所有这些实体的类也可以唯一刻画属性 p,即 $\{p\}'' = \{p\}$ 。但 $(\{p\}',\{p\}'')$ 也是总是一个概念。今后,我们将 $\{p\}',\{s\}'$ 分别记作 p',s'。

根据以上分析,存在 S, P 分别到 $\mathbb{C}(S, P)$ 的两个自然的映射: $h_S(s) = (s'', s')$ 和 $h_P(p) = (p', p'')$ 。以下练习是一个有趣的观察。

练习 2.3.4. 令 (S, P) 为语境而 h_P, h_S 为以上定义的映射,

(1) 对任意 $s \in S$, $p \in P$, p(s) 当且仅当 $h_S(s) \leq h_P(p)$ 。

- (2) 对任意 $E \subseteq S$, $p \in P$, $p \in E'$ 当且仅当 $\bigvee h_S(E) \leq h_P(p)$ 。
- (3) 对任意 $D \subseteq P$, $s \in S$, $s \in D'$ 当且仅当 $h_S(s) \leq \bigwedge h_P(D)$ 。

定义 **2.3.5.** 令 (L, \leq) 为任意偏序集, $X \subseteq L$:

- (1) X 称为联稠密的,如果对任意 $a \in L$,存在 $Y \subset X$,使得 $a = \bigvee Y$ 。
- (2) X 称为会稠密的,如果对任意 $a \in L$,存在 $Y \subseteq X$,使得 $a = \bigwedge Y$ 。

引理 **2.3.6.** 给定语境 (S,P) 以及映射 $h_S:S\to\mathbb{C}(S,P)$ 和 $h_P:P\to\mathbb{C}(S,P)$ 。 $h_S(S)$ 在 \mathbb{C} 中是联稠密的, $h_P(P)$ 在 \mathbb{C} 中是会稠密的。

证明. 任意给定 $(E, D) \in \mathbb{C}(S, P)$,

$$\bigvee h_S(E) = \bigvee_{s \in E} h_S(\{s\})$$

$$= \bigvee_{s \in E} (s'', s')$$

$$= (\bigcup_{s \in E} s'')'', \bigcap_{s \in E} s').$$

又根据练习2.3.1, $\bigcap_{s\in E} s' = (\bigcup_{s\in E} \{s\})' = E' = D$ 。所以 $\bigvee h_S(E) = (E, D)$ 。 类似地, $\bigwedge h_P(D) = (\bigcap_{p\in D} p', (\bigcup_{p\in D} p'')'')$,而 $\bigcap_{p\in D} p' = (\bigcup_{p\in D} \{p\})' = D' = E$ 。

联稠密和会稠密映射的有趣之处更在于这样一个事实:对任意完全格 L,如果存在 S, P 以及 h_S , h_P 使得它们在 L 中的像分别是联稠密和会稠密的,则 L 同构于 $\mathbb{C}(S,P)$ 。所以,从一定意义上说,任何完备格都同构于某个概念格。

定理 2.3.7. \diamondsuit (L, \leq) 为完备格,S, P 为集合, $h_S: S \to L$ 和 $h_P: P \to L$ 为 函数,并且 $h_S(S)$ 在 L 中是联稠密的, $h_P(P)$ 在 L 中是会稠密的,则 $L \cong \mathbb{C}(S, P)$ 。

证明. 对任意 $a \in L$ 定义

$$E_a = \{s \in S \mid h_S(s) \le a\}$$

$$D_a = \{p \in P \mid a \le h_P(p)\}.$$

首先注意到,由于 h_P 是联稠密的, h_S 是会稠密的,所以 $\bigvee h_S(E_a) = a$, $\bigwedge h_P(D_a) = a$ 。定义 L 上的函数 f 为:对任意 $a \in L$, $f(a) = (E_a, D_a)$ 。

- 1. 对任意 $a \in L$, $f(a) \in \mathbb{C}(S, P)$ 。为此,我们需要证明对任意 a, $E'_a = D_a$ 并且 $D'_a = E_a$ 。令 $p \in E'_a$,根据练习 2.3.4(2),这当且仅当 $a = \bigwedge h_S(E_a) \le h_P(p)$,当且仅当 $p \in D_a$,所以 $E'_a = D_a$ 。 $D'_a = E_a$ 类似。
 - 2. f 是满射。对任意 $(E,D) \in \mathbb{C}(S,P)$,令 $a = \bigvee h_S(E)$, $b = \bigwedge h_P(D)$.
- (2.1) a = b。由于 E' = D,还是根据练习 2.3.4 (2), $a \le b$;而由 (3), $b \le a$, 所以 a = b。
- (2.2) $E = E_a$, $D = D_a$ 。 对任意 $s \in E$,都有 $h_S(s) \le \bigvee h_S(E) = a$,所以 $E \subseteq E_a$ 。假设 $s \in E_a$,则 $h_S(s) \le a = \bigvee h_S(E)$ 。由练习2.3.4(2),对任意 $p \in E'$,都有 $\bigvee h_S(E) \le h_P(p)$,所以 $h_S(s) \le h_P(p)$,再由练习2.3.4(1),这又当且仅当 p(s),所以 $s \in E'' = E$,这就证明了 $E_a \subseteq E$,所以 $E = E_a$ 。类似地可以证明 $D = D_a$ 。
- 3. f 是单射。对任意 $a \le b$,都有 $E_a \subseteq E_b$,所以 $f(a) \le f(b)$ 。反过来,如果 $(E_1, D_1) \le (E_2, D_2)$,即 $E_1 \subseteq E_2$,令 $a_1 = \bigvee h_S(E_1)$, $a_2 = \bigvee h_S(E_2)$,则根据前面的结果有 $E_1 = E_{a_1}$, $E_2 = E_{a_2}$,显然 $a_1 \le a_2$,所以 $f(a_1) \le f(a_2)$ 也蕴涵 $a_1 \le a_2$ 。

第三章 布尔代数与型空间

总结一下第一章中布尔代数与逻辑的几个主要结果。

- 1. 任给一个一致的理论 T, 存在一个由 T 确定的布尔代数 $\mathcal{B}(T)$, 它的元素是等价关系 ~ 下的等价类,对任意公式 α , β , α ~ β 当且仅当 $T \vdash \alpha \leftrightarrow \beta$ 。这个 $\mathcal{B}(T)$ 称为 Lindenbaum 代数。
- 2. 在 Lindenbaum 代数 $\mathcal{B}(T)$ 中,每个滤 F 都是 T 的一致扩张。因此每个滤都是一个一致的理论。而每个超滤则是一个完全理论。
- 3. 如果 T 是完全的,则 $\mathcal{B}(T)$ 是特殊的布尔代数 $\{0,1\}$,其中 $0 = \{\alpha \mid T \vdash \neg \alpha\}$, $1 = \{\alpha \mid T \vdash \alpha\}$ 。
- 4. 从另一个角度看, $\mathcal{B}(T)$ 上的每个超滤 U 都对应着 T 的一个模型 \mathfrak{A}_U ,对任意公式 α , $\mathfrak{A}_u \models \alpha$ 当且仅当 $[\alpha] \in U$ 。所以超滤存在定理蕴涵着完全性定理。
- 5. 在 Stone 表示定理的证明中,借助 Stone 映射,我们为每一个 $a \in B$ 指定一个超滤的集合 $\{U \mid U \in a\}$ 。这实际上是为 $Ult(\mathcal{B})$ 定义了一个拓扑结构,(参见习题1.4.6 和1.4.7)。 $Ult(\mathcal{B})$ 连同其上的拓扑称为 Stone 空间。

3.1 Stone 空间

Stone 空间是一个非常典型的结构,与逻辑有很多密切的联系。我们接下来讨论一些有关这个空间的性质,并给出模型论中的更为深刻的一个例子。

定义 3.1.1. 对任意集合 X, $\mathcal{T} \subseteq \mathcal{P}(X)$ 称为 X 上的一个拓扑,如果以下条件成立:

- 1. $X, \emptyset \in \mathcal{T}$;
- 2. 如果 $u, v \in \mathcal{T}$, 则 $u \cap v \in \mathcal{T}$;
- 3. 对任意 $A \subseteq \mathcal{T}$, $\bigcup A \in \mathcal{T}$ 。

(X,T) 称为拓扑空间,T 中的 X 的子集称为开集,开集的补集称为闭集。

例 3.1.2. 令 \mathbb{R} 为全体实数的集合,对任意实数 $r \in \mathbb{R}$,开区间

$$N = \{ x \subseteq \mathbb{R} \mid |x - r| < \epsilon \}$$

称为r的邻域,其中 ϵ 为任意实数,称为N的半径。 \mathbb{R} 的子集U如果满足:对任意 $r \in U$,都存在r的邻域N使得 $N \subseteq U$,就称U为开集。令 \mathcal{T} 为所有开集的族,则 \mathbb{R} 在 \mathcal{T} 下是一个拓扑空间。

证明. 首先, $\emptyset \in \mathcal{T}$,并且 $\mathbb{R} \in \mathcal{T}$ 。其次,如果 U,V 是开集, $r \in U \cap V$,则根据定义,存在 B_1,B_2 分别是包含 r 的开区间,且 $I_1 \subseteq U,I_2 \subseteq V$ 。显然 $N_1 \cap N_2$ 仍是一个开区间包含 r 的开区间,并且是 $U \cap V$ 的子集。最后,如果 $\{U_i\}$ 是任意开集的族, $r \in U = \bigcup U_i$,则存在 i, $r \in U_i$,所以存在邻域 N,使得 $r \in B \subseteq U$ 。

以下简单的事实使我们可以定义一个拓扑的基:在实数 \mathbb{R} 中,U是开集当且仅当U可以表示为 \mathbb{R} 中开区间的并。

定义 3.1.3. 令 (X, \mathcal{T}) 为拓扑空间, $S \subseteq \mathcal{T}$ 称为这个空间的一个拓扑基,如果 \mathcal{T} 中的元素都可以表示为 S 中元素的并。S 中的元素称为基本开集。

例 3.1.4. 以上例子中,实数上的拓扑 \mathcal{T} 以所有开区间为拓扑基。事实上,所有以有理数为端点的开区间也是它的拓扑基,并且是一个可数的拓扑基。

练习 3.1.5. 任给布尔代数 \mathcal{B} , 令 $X = \text{Ult}(\mathcal{B})$ 。对任意 $a \in \mathcal{B}$, 定义

$$N_a = \{ U \in \text{Ult}(\mathcal{B}) \mid a \in U \},$$

则 $\{N_a \mid a \in B\}$ 构成 X 的一个拓扑基。即如果 \mathcal{T} 中的元素都可以表示为形如 N_a 的集合的并,则 \mathcal{T} 是 X 上的拓扑。

练习 3.1.6. 令 X 为拓扑空间, $S \subseteq T$ 为拓扑基,则

- (1) 对任意 $x \in X$, 存在 $N \in S$, $x \in N$;
- (2) 对任意 $N_1, N_2 \in S$,任意 $x \in N_1 \cap N_2$,存在 $N_3 \subseteq N_1 \cap N_2$, $x \in N_3$ 。

反之,对任意集合 X,如果 X 的子集族 $S \subseteq \mathcal{P}(X)$ 满足(1)和(2),则 S 构成 X 的一个拓扑基。

习题1.4.6告诉我们, N_a 既是开集也是闭集,在一个拓扑空间中,我们称这样的集合为开闭集。显然,对任意的拓扑空间X, \emptyset ,X 是开闭集。

定义 3.1.7. 一个拓扑空间 X 称为零维的, 如果它有一个开闭集构成的拓扑基。

零维空间也称为"完全不连通空间"。显然, $Ult(\mathcal{B})$ 是一个零维空间。

定义 3.1.8. 令 X 为拓扑空间,如果 $C \subseteq T$ 是开集的族,并且 $\bigcup C = X$,就 称 $C \in X$ 的开覆盖。如果 X 的每个开覆盖 C 都有一个有穷的子覆盖,即 $C_0 \subseteq_f C$,并且 $\bigcup C_0 = X$,则称 X 为紧致空间。

由习题1.4.7知道, Ult(3) 是一个紧致空间。

练习 3.1.9. 令 (X, \mathcal{T}) 为拓扑空间,称 X 的子集族 Z 有有有穷交性质,如果对任意有穷的 $\{Y_1, \cdots, Y_n\} \subseteq Z, Y_1 \cap \cdots \cap Y_n \neq \emptyset$ 。

对任意拓扑空间 X,以下命题等价:

- (1) *X* 是紧致空间;
- (2) 如果 \mathbf{Z} 是闭集的族且有有穷交性质,则 $\bigcap \mathbf{Z} \neq \emptyset$ 。

定义 3.1.10. 令 X 为拓扑空间,如果对任意 $x,y \in X$,总存在开集 M,N, $x \in M, y \in N$,使得 $M \cap N = \emptyset$,就称 X 为 Hausdorff 空间。

由习题1.4.6(2) 可知 $Ult(\mathcal{B})$ 是一个 Hausdorff 空间: 如果超滤 U 属于一个开闭集 N,则 $M=X\setminus N$ 也是一个开闭集, $V\in M$ 并且 $M\cap N=\emptyset$ 。

定理 **3.1.11.** 对任意布尔代数 \mathcal{B} ,Ult(\mathcal{B}) 在以 $S = N_a \mid a \in B$ 为拓扑基的拓扑下,是一个零维的紧致 Hausdorff 空间。这样的空间通常称为 Stone 空间。

也有文献称为布尔空间,见 Halmos。

例 3.1.12. 给定一阶语言 \mathcal{L} ,令 X 是所有完全理论的族。对任意语句 $\sigma \in \mathcal{L}$,令 $\langle \sigma \rangle = \{ T \in X \mid T \models \sigma \}$,则 $S = \{ \langle \sigma \rangle \mid \sigma \in \mathcal{L} \}$ 构成 X 的一个拓扑基: 这是因为 $\langle \sigma \rangle \cap \langle \tau \rangle = \langle \sigma \wedge \tau \rangle$,由练习3.1.7可得。

同时,这个完全理论的空间是一个零维空间: ⟨σ⟩ 与 ⟨¬⟩ 互为补集,并且都是基本开集,所以完全理论的空间有一个开闭集构成的基。

X 也是 Haudorff 空间: 令 T_1, T_2 为两个完全理论,且 $T_1 \neq T_2$,则必有 $\sigma \in \mathcal{L}$, $T_1 \models \sigma$ 而 $T_2 \models \neg \sigma$ 。这样, $T_1 \in \langle \sigma \rangle$, $T_2 \in \langle \neg \sigma \rangle$ 。

在完全理论的空间中,开集是形如 $\langle \sigma \rangle$ 的基本开集的并,对偶地,闭集是这样的基本开集的交。令 Σ 为一致的语句集, $F = \bigcap \{\langle \sigma \rangle \mid \sigma \in \Sigma \}$,则 F 不空,并且是闭集。对任意 $T \in F$, $\Sigma \subseteq T$ 。任取语句 τ , $\Sigma \models \tau$ 当且仅当对所有 $T \in F$, $T \models \tau$ 。所以 F 确定了一个以 Σ 为公理集的理论。除非 F 是一个单点集 $\{T\}$,否则 F 确定的理论是一个不完全的理论。

引理 3.1.13. Hausdorff 空间 X 是紧致空间当且仅当对任意闭集的族 $\mathcal{F} = \{F_i\}_{i\in I}$,如果 \mathcal{F} 有有穷交性质,即对任意 $Z\subseteq_f \mathcal{F}$, $\bigcap Z\neq\emptyset$,则 $\bigcap \mathcal{F}\neq\emptyset$ 。

证明. 假设 \mathcal{F} 有有穷交性质, 并且 $\bigcap \mathcal{F} = \emptyset$, 则 $\bigcup (-\mathcal{F}) = X$, 所以是 X 的一个开覆盖, 令 $\{-F_1, \dots, -F_n\}$ 为子覆盖, 则 $\bigcap \{F_1, \dots, F_n\} = \emptyset\}$, 矛盾。

反之,如果 X 不是紧致的,令 $\{O_i\}_{i\in I}$ 为开覆盖,但没有有穷的子覆盖。则 $\{-O_i\}_{i\in I}$ 是有有穷交性质的闭集的族,但它的交为空集。

为了证明这个完全理论的拓扑空间是紧致空间,我们需要几个新的定义。 这也是为了充分利用我们所熟悉的超滤工具。 定义 3.1.14. 给定拓扑空间 X, X 中的滤 指的是某一个 X 的子集 Y 上的滤。

例 3.1.15. 对任意 $x \in X$,所有包含 x 的开集构成的族

$$\mathcal{N}_x = \{U \mid U$$
是开集并且 $x \in U\}$

是整个空间 X 上的滤。请读者验证。

定义 3.1.16. 给定拓扑空间 X 中的滤 F , $x \in X$ 称为 F 的极限点,如果 U 是 \mathcal{N}_x 的扩张。此时称 F 收敛到 x 。如果 F 至少有一个极限点,就称 F 是收敛的。

练习 3.1.17. Haudorff 空间中的滤如果有极限点,则它的极限点是唯一的。

定理 3.1.18. 一个 Hausdorff 空间 X 是紧致的当且仅当 X 中的每个超滤都是收敛的。

证明. 假设 U 是 X 中的超滤,并且不收敛。对任意 $x \in X$, $\mathcal{N}_x \not\subseteq U$,即存在一个开集 $O_x \in \mathcal{N}_x$, $O_x \not\in U$ 。令 $\{O_x \mid x \in X \& O_x \not\in U\}$ 为这样的开集的族。这是整个空间的一个开覆盖。令 $\{O_1, \dots, O_n\}$ 为它的一个有穷子覆盖,并且 $\bigcup_{i=1}^n O_i = X$ 。任取 U 中元素 u,

$$(u \cap O_1) \cup \cdots \cup (u \cap O_n) = u \in U$$
,

但 U 是超滤,所以存在 O_i , $u \cap O_i \in U$, 而这又蕴涵着 $O_i \in U$, 矛盾。

现在假设 X 不是紧致的。令 $\{O_i\}_{i\in I}$ 为 X 的一个开覆盖,并且没有有穷的子覆盖。任取 $\{O_1,\cdots,O_n\}$, $O_1\cup\cdots\cup O_n\neq X$,所以 $(-O_1)\cap\cdots\cap (-O_n)\neq\emptyset$ 。这即是说 $\{-O_i\}_{i\in I}$ 有穷交性质。令 U 为这个集族生成的超滤。对任意 $x\in X$,存在 O_i , $x\in O_i$,由于 $-O_i\in U$,所以 $O_i\notin U$,即 $\mathcal{N}_x\nsubseteq U$,即 U 不是收敛的。

引理 3.1.19. 一阶语言 \mathcal{L} 中全体完全理论的空间是零维的 Hausdorff 紧致空间。

证明. 我们需要证明这个空间中的任意超滤都是收敛的。给定超滤 U,对每一完全理论 T,令 \mathfrak{A}_T 为 T 的一个模型。同时,令 $\mathfrak{A}=\mathrm{Ult}_U\,\mathfrak{A}_t$ 为相应的超积模型。注意到 $\mathrm{Th}(\mathfrak{A})$ 是一个完全理论。对任意开集 O,由于 O 是基本开集的并,所以,如果 $\mathrm{Th}(\mathfrak{A}) \in O$,则存在 σ , $\mathrm{Th}(\mathfrak{A}) \in \langle \sigma \rangle$,这意味着 $\mathrm{Th}(\mathfrak{A}) \models \sigma$,亦即 $\mathfrak{A} \models \sigma$ 。由 Los 定理, $\langle \sigma \rangle = \{T \mid \mathfrak{A}_T \models \sigma\} \in U$ 。这就证明了超滤 U 收敛于 U 所确定的超积模型的理论 $\mathrm{Th}(\mathfrak{A})$ 。

引理 3.1.20. 令 $\mathcal L$ 为一阶语言, Σ 为 $\mathcal L$ 中的语句集, Σ 是一致的当且仅当 Σ 是有穷一致的。

证明. 考虑 \mathcal{L} 的所有完全理论构成的空间。由引理3.1.20,它是一个零维的 Hausdorff 紧致空间。对任意 $\sigma \in \Sigma$, $\langle \sigma \rangle$ 是这个空间中的闭集。由题设, $\{\langle \sigma \rangle \mid \sigma \in \Sigma\}$ 是一个有有穷交性质的闭集族,由引理 3.1.14, $\bigcap_{\sigma \in \Sigma} \langle \sigma \rangle \neq \emptyset$ 。对任 意完全理论 $T \in \bigcap_{\sigma \in \Sigma} \langle \sigma \rangle$,都有 $\Sigma \subseteq T$,所以 Σ 是一致的。

3.2 型空间

给定一个语言 \mathcal{L} , \mathcal{L} 的完全理论的空间由句子集的族构成。很自然地,我们是否可以用类似的工具来处理带自由变元的公式呢?这就是型空间。

对任意 \mathcal{L} 结构 \mathfrak{A} ,任意 $a \in |\mathfrak{A}|$,公式集 $\{\phi(x) \mid \mathfrak{A} \models \phi(a)\}$ 就称为 a 确定的型,记作 p_a 。 p_a 中的元素是 \mathcal{L} 中所有那些至多只含一个自由变元的公式,并且"在 a 处为真"。所以完全理论 $\mathsf{Th}(\mathfrak{A})$ 包含在 p_a 中。

我们还可以从另一个角度看待型。 p_a 仍可以看做一个完全理论,只是不是 \mathcal{L} 中的,而是 $\mathcal{L} \cup \{c_a\}$ 中的,其中 c_a 是一个新的常量符号,它在 \mathfrak{A} 中的解释是 a。为了简便, $\mathcal{L} \cup \{c_a\}$ 通常记作 $\mathcal{L}(a)$ 。这样, p_a 就恰好是在 \mathfrak{A} 中为真的所有 $\mathcal{L}(a)$ 语句。

我们把 $\mathcal{L}(a)$ 中的任何一个完全理论称为 1-型,所有这些 1-型构成的空间记作 S_1 ,它在相应的拓扑下是一个零维的 Hausdorff 紧致空间。相应地, \mathcal{L} 中的完全理论的空间记作 S_0 。

事实上,对每个自然数 n,我们还可以定义 n-型:对任意 \mathcal{L} 模型 \mathfrak{A} ,任 意 $a_1, \dots, a_n \in |\mathfrak{A}|$, $\mathcal{L}(a_1, \dots, a_n)$ 上的一个完全理论称为 a_1, \dots, a_n 确定的