Multivariable Calculus Cheat Sheet by Druv Pai	Cross (outer) product on R^3 : $\mathbf{x} \times \mathbf{y} = \begin{bmatrix} \mathbf{i} & \mathbf{i} & \mathbf{k} \end{bmatrix}$	Curvature: $\kappa(t) = \ \mathbf{T}'(s(t))\ = \ \mathbf{T}'(t)\ /\ \mathbf{x}'(t)\ = \ \mathbf{T}'(t)\ /\ \mathbf{x}'(t)\ $	negative definite \rightarrow a saddle point, se
	$\det \begin{vmatrix} x_1 & x_2 & x_3 \end{vmatrix}, \ \mathbf{x} \times \mathbf{y}\ = \ x\ \ y\ \sin \theta$	$\ \mathbf{x}'(t) \times \mathbf{x}''(t)\ / \ \mathbf{x}'(t)\ ^3$	Extreme value theor
Notation	$\begin{bmatrix} y_1 & y_2 & y_3 \end{bmatrix}$	Unit normal vector $\mathbf{n}(t) = \mathbf{T}'(t) / \ \mathbf{T}'(t)\ $; bi-	closed ball B , then
iff: if and only if	Vector $\mathbf{x} \times \mathbf{y}$ orthogonal to \mathbf{x} , \mathbf{y} (use right hand	normal vector $\mathbf{B}(t) = \mathbf{T}(t) \times \mathbf{n}(t)$ (in \mathbb{R}^3)	at some point \mathbf{x}_1 and
f: scalar or scalar-valued function x: vector or vector-valued function	rule); \mathbf{x} , \mathbf{y} parallel iff $\mathbf{x} \times \mathbf{y} = 0$ Volume of generated parallelepiped (triple/s-	Osculating plane: plane containing \mathbf{n} , \mathbf{B} ; os-	some other point \mathbf{x}_2 , Finding absolute opt
$\mathbf{a} \times \mathbf{b}, \mathbf{a} \cdot \mathbf{b}$: cross product, dot product	calar product): $V = \mathbf{x} \cdot (\mathbf{y} \times \mathbf{z}) $	culating circle: circle on that plane with ra-	the set using SDT, fir
O: origin, point of 0	Equation of line/line segment: $\mathbf{x}(t) = \mathbf{x}_0 + t\mathbf{v}$,	dius $1/\kappa$ touching point where curve has cur-	compare to find abso
$\partial f/\partial x$, f_x : partial derivative	$\mathbf{x}(t) = \mathbf{x}_0 t + \mathbf{x}_1 (1 - t)$	vature K	Lagrange multiplie
Γ , $\partial \Gamma = \gamma$: orientable manifold, boundary	Vector/scalar equation of hyperplane: $\mathbf{n} \cdot (\mathbf{x} - \mathbf{x})$	Acceleration formula: $\mathbf{x}''(t) =$	tion $f(\mathbf{x})$ w.r.t.
∫, ∬, ∭: multiple integral	\mathbf{x}_{0}) = 0, $\sum_{k=1}^{n} a_{k}(x_{k} - x_{k0})$ = 0, \mathbf{x}_{0} on plane	$\ \mathbf{x}'(t)\ '\mathbf{T}(t) + \kappa(t)\ \mathbf{x}'(t)\ ^2\mathbf{n}(t)$	$g_1(\mathbf{x}), \dots, g_n(\mathbf{x})$ – fir
∮, ∰: closed boundary integral	Distance from point to line: $d(\mathbf{x}, \mathbf{x}_0) +$	4 Partial Derivatives	ues a s.t. $\nabla f(\mathbf{a}) = \Sigma$
1 Parametrizations	$t\mathbf{v}) = \ \mathbf{v}(\mathbf{v} \cdot (\mathbf{x} - \mathbf{x}_0)) - (\mathbf{x} - \mathbf{x}_0)\ =$	Level sets: sets of points x such that a func-	5 Multiple Integra
Parametric functions: $\mathbf{F} \colon \mathbb{R}^n \to \mathbb{R}^m$ that trace	$\ (\mathbf{x} - \mathbf{x}_0) \times \mathbf{v}\ / \ \mathbf{v}\ $	tion $f(\mathbf{x}) = k$ for constant k , can graph these to help graph 3d functions	Double integral:
out graphs in \mathbb{R}^m as the <i>n</i> parameters vary	Distance from point to hyperplane: $d(\mathbf{x}, \mathbf{n})$	Multivariable limits: $\lim_{x\to a} F(x) = L$ iff	over region I
In R ² : $y'(x) = y'(t)/x'(t)$, $y''(x) =$	$(\mathbf{x} - \mathbf{x}_0)) = comp_{\mathbf{n}} \mathbf{x} $	limit holds along every path to a ; else DNE	$\lim_{m,n\to\infty}\sum_{i=1}^n\sum_{j=1}^n$
	Distance between two parallel planes: pick	Computing limits: try Squeeze Theorem, ra-	Midpoint rule:
$(y'(t))'/x'(t)$, $\int_a^b y(x) dx = \int_\alpha^\beta y(t)x'(t) dt$	point on one and compute distance	tional/polynomials continuous on domain;	$\sum_{i=1}^{m} \sum_{j=1}^{n} f(\bar{x}_i, \bar{y}_j) \Delta$
Arc length: $s(t) = \int_a^b \sqrt{\sum_{k=1}^n (x_i'(t))^2} dt$	Distance between two skew lines: find paral-	show limits DNE by picking good paths	Iterated integral: inte
Surface area of solid of revolution: $S(t) =$	lel planes for them and compute distance	Partial derivatives: $\partial f(\mathbf{x})/\partial x_i = f_{x_i} =$	integral to the outer
$\int_a^b 2\pi y(t) ds(t) \text{ (or } x(t) \text{ depending on axis)}$	Quadric surfaces in R ³ :	$(\lim_{\varepsilon \to 0} (f(x_1, \dots, x_i + \varepsilon, \dots, x_n) - f(\mathbf{x}))/\varepsilon$	used in each step is th
	- Sphere: $(x^2 + y^2 + z^2)/r^2 = 1$ or generally	Computation of partials: differentiate holding everything but indicated variable constant	Fubini's theorem: f
Polar coordinates (R ²): $r = \sqrt{x^2 + y^2}, \theta =$	$\ \mathbf{x} - \mathbf{c}\ = r$	Higher partial derivatives: iteratively take par-	$abcd \rightarrow \int_a^b \int_c^d f(x, y)$
$\arctan(y/x), x = r\cos\theta, y = r\sin\theta$	- Ellipsoid: $x^2/a^2 + y^2/b^2 + z^2/c^2 = 1$	tial derivatives w.r.t the indicated variables,	Factorization:
Graphing polar coordinates: method is to find easy points and connect them	– Elliptic paraboloid: $z/c = x^2/a^2 + y^2/b^2$	ordered right to left in notation	$(\int_{c}^{d} g(x) dx) (\int_{a}^{b} h(y)$
Derivative in polar coordinates:	- Hyperbolic paraboloid: $z/c = x^2/a^2$ -	Jacobian matrix: $J[\mathbf{F}(\mathbf{x})] = [\partial f_i / \partial x_j]$	$(\int_{C} g(x) dx)(\int_{a} n(y)$ General regions: f co
$y'(x) = y'(\theta)/x'(\theta) = (r'(\theta)\sin(\theta) + $	2	Hessian tensor: $H[\mathbf{F}(\mathbf{x})] = \left[\frac{\partial^2 f_i}{\partial x_i \partial x_k} \right]$	$x < b, k_1(x) < y < k_1(x)$
$r\cos(\theta))/(r'(\theta)\cos(\theta)-r\sin(\theta))$	- Cone: $z^2/c^2 = x^2/a^2 + y^2/b^2$	Clairaut's theorem: f defined and $f_{x_ix_i}$, $f_{x_ix_i}$	V / -
Area in polar coordinates: $A =$	- Hyperboloid of one sheet: $z^2/c^2 + 1 =$	continuous on open ball, then $f_{x_ix_i} = f_{x_ix_i}$	$\int_{a}^{b} \int_{k_{1}(x)}^{k_{2}(x)} f(x, y) \mathrm{d}A ($
$\left(\int_a^b r^2(\theta) d\theta\right)/2$, between curves: find	$x^2/a^2 + y^2/b^2$	Differentiability: all partial derivatives of f	Union of regions: ir
	- Hyperboloid of two sheets: $z^2/c^2 - 1 =$	exist/are continuous near $\mathbf{a} \to f$ differentiable	gions is sum of integ
intersection points and subtract area integrals	$x^2/a^2 + y^2/b^2$	at a ; alternatively Δf can be expressed in the	Area: $\iint_D dA = A(D)$
Arc length in polar coordinates: $s(\theta) =$	3 Vector Functions	form $\Delta f(\mathbf{x}) = (\sum_{k=1}^{n} (f_{x_k}(\mathbf{x}) + \varepsilon_k) \Delta x_i)$	Change of coordinat
$\int_{ heta_0}^{ heta} \sqrt{r^2(heta) + (r'(heta)^2)} \mathrm{d} heta$	Vector limits: $\lim_{t\to a} \mathbf{x}(t) =$	Total differential: for function $f(\mathbf{x})$, total dif-	$\iint f(\mathbf{x}(\mathbf{t})) \det(J[\mathbf{x}[$
Conic section: (translate/permute for symme-	$(\{\lim_{t\to a} x_k(t)\})$	ferential $df(\mathbf{x}) = \sum_{k=1}^{n} f_{x_k}(\mathbf{x}) dx_k$	$\mathbf{t}(D)$
try)	Vector derivatives (by limit definition):	Chain rule: $f(\mathbf{x}(\mathbf{t}))$ differentiable function of	Mass: $m = \int_D \rho(\mathbf{x})$
Parabola with focus $(0, p)$ and directerix $y =$	$\mathbf{x}'(t) = \left(\left\{ x_k'(t) \right\} \right)$	$\mathbf{x}(\mathbf{t}) \colon f_{t_i}(\mathbf{x}(\mathbf{t})) = \sum_{k=1}^n (\partial f/\partial x_k) (\partial x_k/\partial t_i)$	Moment: $M_{x_i} = \int_D x$
$-p: x^2 = 4py$	Derivative rules:	Implicit differentiation: differentiate $F(\mathbf{x}) =$	Center of mass: $\overline{x_i} =$
Ellipse with foci on x axis: $x^2/a^2 + y^2/b^2 =$	$-(\mathbf{x}(t)+\mathbf{y}(t))'=\mathbf{x}'(t)+\mathbf{y}'(t)$	0 and solve; $n = 2 \rightarrow y'(x) = -F_x/F_y$	Inertia: $I_{x_i} = \int_D \ \mathbf{x}\ ^2$
1, foci at $(\pm \sqrt{a^2 - b^2}, 0)$, vertices at $(\pm a, 0)$	$-\left(c\mathbf{x}(t)\right)' = c\mathbf{x}'(t)$	Implicit function theorem: if $F(\mathbf{x})$ defined	Surface given b
Hyperbola with foci on x-axis: x^2/a^2 –	$-(f(t)\mathbf{x}(t))' = f'(t)\mathbf{x}(t) + f(t)\mathbf{x}'(t)$	on ball D with continuous partial derivatives,	
$y^2/b^2 = 1$, foci at $(\pm \sqrt{a^2 + b^2}, 0)$, vertices	$-(\mathbf{x}(t)\cdot\mathbf{y}(t))' = \mathbf{x}'(t)\cdot\mathbf{y}(t) + \mathbf{x}(t)\cdot\mathbf{y}'(t)$	can write $x_k = f(x_1,, x_{k-1}, x_{k+1},, x_n)$	$\iint_D \sqrt{1 + \sum_{k=1}^n (f_{x_k})}$
$(\pm a,0)$, asymptotes $y=\pm (b/a)x$	$-(\mathbf{x}(t) \times \mathbf{y}(t))' = \mathbf{x}'(t) \times \mathbf{y}(t) + \mathbf{x}(t) \times \mathbf{y}(t)$	Gradient operator: $\nabla f(\mathbf{x}) = \sum_{k=1}^{n} f_{x_k}(\mathbf{x}) \mathbf{e}_k$,	Triple integral over
Polar equation $r = ed/(1 \pm ed)$	$-\left(\mathbf{u}(f(t))\right)' = f'(t)\mathbf{u}'(f(t))$	points towards fastest growth (rate $\ \nabla f\ $)	$\lim_{p,q,r\to\infty} \sum_{i=1}^p \sum_{j=1}^q$
$(e\cos(\theta) \text{ or } e\sin(\theta)))$ is conic with ec-	Vector integration (by limit definition):	Directional derivative: $D_{\mathbf{u}}f(\mathbf{x}) = \nabla f(\mathbf{x})$	tends to arbitrarily m
centricity e , ellipse if $e < 1$, parabola if $e = 1$,	$\int \mathbf{x}(t) \mathrm{d}t = \left(\left\{ \int \mathbf{x}(t) \mathrm{d}t \right\} \right)$	$\lim_{\varepsilon \to 0} (f(\mathbf{x} + \varepsilon \mathbf{u}) - f(\mathbf{x})) / \varepsilon = \nabla f(\mathbf{x}) \cdot \mathbf{u}$	Iteration: f continu
hyperbola if $e > 1$	Vector definite integration: $\int_a^b \mathbf{x}(t) dt =$	Tangent plane to f at \mathbf{x}_0 : $\nabla f(\mathbf{x}) \cdot (\mathbf{x} - \mathbf{x}_0) = 0$ Local max. of f at \mathbf{x} : exists neighborhood of	$\iiint_B f(\mathbf{x}) \mathrm{d}V = \int_e^f \int_C^f $
2 Vectors, Geometry		\mathbf{x} s.t. $f(\mathbf{x}) \ge f(\mathbf{a})$ for all \mathbf{a} in neighborhood	General regions: sar
Distance (metric) between points \mathbf{x} and \mathbf{y} :	$\left(\left\{\int_a^b x_k(t)\mathrm{d}t\right\}\right)$	Local min. of f at \mathbf{x} : opposite of local max.	but inner two integral
$\overrightarrow{XY} = \ \mathbf{x} - \mathbf{y}\ = \sqrt{\sum_{k=1}^{n} (x_k - y_k)}$	Vector FTC: $\int_a^b \mathbf{x}(t) dt = \mathbf{X}(b) - \mathbf{X}(a)$ for	Critical point: point a such that $\nabla f(\mathbf{a}) = 0$	not-integrated-yet va
Dot (inner) product on \mathbb{R}^n : $\mathbf{x} \cdot \mathbf{v} =$	$\mathbf{X}(t) = \int \mathbf{x}(t) \mathrm{d}t$	Optima: at local min./max. a, continuous first	Volume: $\iiint_E dV = V$
Dot (inner) product on \mathbb{R}^n : $\mathbf{x} \cdot \mathbf{y} = \sum_{k=1}^n x_k y_k = \ \mathbf{x}\ \ \mathbf{y}\ \cos \theta$ for $\theta = \angle XOY$	Arc length: $s(t) = \int_{t_0}^{t} \mathbf{x}'(t) dt$	partial derivatives implies a critical point (but	General change
Orthogonality: \mathbf{x} , \mathbf{y} orthogonal iff $\mathbf{x} \cdot \mathbf{y} = 0$	Parameterizing in terms of arc length: writing	not all critical points are optima)	cedure (R^n) :
Scalar proj. of x onto y : $comp_y \mathbf{x} = \mathbf{x} \cdot \mathbf{y} / \mathbf{y} $	t(s) from $s(t)$ when convenient is good for	Absolute max./min.: local max./min. of <i>f</i> over the whole domain	$\int_{\mathbf{t}(D)} f(\mathbf{x}(\mathbf{t})) \det(J[\mathbf{x}(\mathbf{t})]) $
Vector proj. of \mathbf{x} onto \mathbf{y} : $\operatorname{proj}_{\mathbf{y}} \mathbf{x} =$	describing curves independently of parameter	Second derivative test: $f(\mathbf{a})$ critical point,	Polar/cylindrical Ja
$\mathbf{y}(\text{comp}_{\mathbf{v}}\mathbf{x})/\ \mathbf{y}\ = \mathbf{y}(\mathbf{x} \cdot \mathbf{y}/\ \mathbf{y}\ ^2)$	Tangent (unit) vector: $\mathbf{T}(t) = \mathbf{x}'(t) / \ \mathbf{x}'(t)\ $	then $H[f(\mathbf{a})]$ positive definite $\rightarrow \mathbf{a}$ local min.,	spherical Jacobian de
X	(*) (*)	[J (" /] T	ı

Iterated integral: integrate from the innermost $\partial f(\mathbf{x})/\partial x_i = f_{x_i} =$ integral to the outer integrals, only variable $(\varepsilon,\ldots,x_n)-f(\mathbf{x}))/\varepsilon$ used in each step is the one used in integration differentiate holding Fubini's theorem: f continuous on rectangle variable constant $abcd \rightarrow \int_a^b \int_c^d f(x,y) dA = \int_c^d \int_a^b f(x,y) dA$ s: iteratively take par-

 $\kappa(t)$

Factorization:
$$\int_a^b \int_c^d g(x)h(y) \, dx \, dy = 0$$

$$\int_c^b \left[\int_c^b \left[\int_c$$

negative definite \rightarrow a local max., indefinite

Extreme value theorem: if f continous on

closed ball B, then f absolute max. $f(\mathbf{x}_1)$

at some point \mathbf{x}_1 and absolute min. $f(\mathbf{x}_2)$ at

Finding absolute optima: find optima inside

the set using SDT, find optima on boundaries,

Lagrange multipliers: optimizing func-

tion $f(\mathbf{x})$ w.r.t. *n* nonzero constraints

 $g_1(\mathbf{x}), \dots, g_n(\mathbf{x})$ - find and compare all val-

integral of

 $-\iint_{\mathcal{D}} f(x,y) \, dA =$

 $\iint_{R} f(x,y) dA \approx$

some other point \mathbf{x}_2 , for $\mathbf{x}_1, \mathbf{x}_2 \in B$

compare to find absolute optima

ues **a** s.t. $\nabla f(\mathbf{a}) = \sum_{k=1}^{n} \lambda_k \nabla g_k(\mathbf{a})$

 $\lim_{m,n\to\infty}\sum_{i=1}^n\sum_{i=1}^nf(x_i,y_i)\Delta A$

5 Multiple Integrals

over region R

 $\sum_{i=1}^{m} \sum_{j=1}^{n} f(\bar{x}_i, \bar{y}_j) \Delta A$

 \rightarrow a saddle point, semidefinite \rightarrow no info.

 $\int_{t_0}^{t_1} \mathbf{F}(\mathbf{C}(t)) \cdot \mathbf{C}'(t) \, \mathrm{d}t$ Fundamental theorem of line integrals: C smooth, f differentiable, then $\int_C \nabla f \cdot d\mathbf{x} =$ $f(\mathbf{C}(t_1)) - f(\mathbf{C}(t_0))$ Path independence of function f: $\int_{C_1} f(\mathbf{x}) d\mathbf{x} = \int_{C_2} f(\mathbf{x}) d\mathbf{x}$ for any two Curl (\mathbb{R}^2 or \mathbb{R}^3): curl $\mathbb{F} = \nabla \times \mathbb{F}$ - acts like "cross product" of gradient operator with I in R³, the scalar k-component of this cross product in R² Laplacian: $\nabla \cdot \nabla f$, abbreviated as $\nabla^2 f$ Identities: $\nabla \times (\nabla f(\mathbf{x})) = 0, \nabla \cdot (\nabla \times \mathbf{F}) = 0$ Surface area of parameterization: A(S) = $\iint_D \|\mathbf{S}_{t_1} \times \mathbf{S}_{t_2}\| dA$ Unit normal vector of parameterization: $\mathbf{n} =$ $(\mathbf{S}_{t_1} \times \mathbf{S}_{t_2}) / \|\mathbf{S}_{t_1} \times \mathbf{S}_{t_2}\|$ Scalar surface integral: $\iint_{\mathbf{S}(D)} f(\mathbf{x}) dS =$ $\iint_D f(\mathbf{S}(\mathbf{t})) \|\mathbf{S}_{t_1} \times \mathbf{S}_{t_2}\| dA$ Vector surface integral: $\iint_{\mathbf{S}(D)} \mathbf{F}(\mathbf{x}) \cdot d\mathbf{S} =$ $\iint_{\mathbf{S}(D)} \mathbf{F} \cdot \mathbf{n} \, dS = \iint_{D} \mathbf{F}(\mathbf{x}) \cdot (\mathbf{S}_{t_1} \times \mathbf{S}_{t_2}) \, dA$ Orientation: curve/surface orientable if there

exists a continuous mapping from point to

Positive orientation: for curve, counterclock

Green's theorem: D region in \mathbb{R}^2 ; C =

 ∂D positively oriented, piecewise-smooth,

closed; **F** continuous on $D \to \oint_C \mathbf{F}(\mathbf{x}) \cdot d\mathbf{x} =$

Stokes' theorem: S piecewise-smooth surface.

 $C = \partial S$ simple, closed piecewise-smooth

boundary with positive orientation, F has

continuous partial derivatives, then $\oint_C \mathbf{F}(\mathbf{x})$

Divergence theorem: E solid region, $S = \partial E$

with positive orientation, F has continous par-

tial derivatives, then $\iint_{\mathbf{S}} \mathbf{F} \cdot d\mathbf{S} = \iiint_{\mathbf{F}} \nabla \cdot \mathbf{F}$

 $\iint_D \nabla \times \mathbf{F} \, dA$

 $d\mathbf{x} = \iint_{S} (\nabla \times \mathbf{F}) \cdot d\mathbf{S}$

wise; for surface, normal vector outwards

paths C_1, C_2 with same endpoints Line integrals of conservative vector fields are independent of path $\int_C \mathbf{F} \cdot d\mathbf{x}$ is independent of path in D iff $\oint \mathbf{F} \cdot d\mathbf{x} = 0$ for all closed paths C If F continuous on open simply connected region D, and $\int_C \mathbf{F} \cdot d\mathbf{x}$ path independent, then **F** conservative If $\mathbf{F}(\mathbf{x}) = \nabla f(\mathbf{x})$, then $f(\mathbf{x}) = \int \mathbf{F}(\mathbf{x}) \cdot d\mathbf{x}$ Divergence: div $\mathbf{F} = \nabla \cdot \mathbf{F}$ - acts like "dot product" of gradient operator with F

6 Vector Calculus

for **F**, **F** is conservative

Vector field: function $\mathbf{F} \colon \mathbb{R}^n \to \mathbb{R}^n$

Gradient vector field: vector field **F** s.t. there exists f s.t. $\mathbf{F} = \nabla f$, f is potential function

Line integral: f defined on C, then line inte-

gral along C is $\int_C f(\mathbf{x}) d\mathbf{x} = \int_{t_0}^{t_1} f(\mathbf{C}(t)) dt$

Vector line integral: \mathbf{F} defined on C, then

line integral along C is $\int_C \mathbf{F}(\mathbf{x}) \cdot d\mathbf{x} =$