

Critical Reviews in Food Science and Nutrition

ISSN: 1040-8398 (Print) 1549-7852 (Online) Journal homepage: http://www.tandfonline.com/loi/bfsn20

Assessing the efficacy and external validity of interventions promoting calcium or dairy intake in young adults: a systematic review with meta-analysis

Anika S. Rouf, Amanda Grech & Margaret Allman-Farinelli

To cite this article: Anika S. Rouf, Amanda Grech & Margaret Allman-Farinelli (2017): Assessing the efficacy and external validity of interventions promoting calcium or dairy intake in young adults: a systematic review with meta-analysis, Critical Reviews in Food Science and Nutrition, DOI: 10.1080/10408398.2017.1336508

To link to this article: http://dx.doi.org/10.1080/10408398.2017.1336508

	Accepted author version posted online: 29 Jun 2017.
	Submit your article to this journal $oldsymbol{arGamma}$
Q ^L	View related articles 🗹
CrossMark	View Crossmark data 🗗

Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=bfsn20

Assessing the efficacy and external validity of interventions promoting calcium or dairy intake in young adults: a systematic review with meta-analysis

Anika S. Rouf^{1*}, Amanda Grech¹ and Margaret Allman-Farinelli¹

¹School of Life and Environmental Sciences, Charles Perkin Centre, The University of Sydney, Sydney NSW 2006 Australia

*corresponding author: Anika S. Rouf Level 4 East, Charles Perkin Centre, The University of Sydney, Sydney, NSW 2006 Australia, **Email:** arou9270@uni.sydney.edu.au, **Telephone:** +61 2 86274704, **Fax**: +61 2 8627 1605

Trial registration: http://www.crd.york.ac.uk/PROSPERO/display_record.asp?ID = CRD42016035908

Abstract

Calcium and dairy products have a role in the prevention of chronic diseases and attainment of peak bone mass, during adolescence to young adulthood. However, intakes are often suboptimal and interventions to improve consumption of food sources are needed. This systematic review aimed to investigate the efficacy and external validity of interventions promoting calcium or dairy foods among young adults. Eight databases were searched from inception to identify relevant studies. Inclusion criteria included those aged 18 to 35 years in an intervention promoting calcium or dairy food intake. The mean age of the participants was 19.9±1.4 years. Of the 16 studies that met the selection criteria, five studies were included in the meta-analyses for calcium (pooled effect size 0.35, 95% CI 0.04 to 0.67) and three studies for dairy (pooled effect

1

size 0.31, 95% CI 0.11 to 0.50). The quality of the body of evidence was determined using the GRADE system, and was of overall low quality with high risk of bias. Our review suggests young adults respond favourably to interventions but the effect size is small.

Keywords

calcium, dairy, young adults, interventions, behavior change

Introduction

Dairy foods provide the major source of calcium in the Australian diet along with other essential micronutrients including protein, vitamins (A, B12 and riboflavin) and minerals (P, Mg, K and Zn) (Weaver, 2009; Yantcheva et al., 2016). Calcium and dairy products have a role in the maintenance of good health and prevention of chronic disease (Larson et al., 2009), and are recommended in the dietary guidelines in many countries (Ebeling Peter, 2013; National Health and Medical Research Council, 2013; Nations, 2016; U.S. Department of Health and Human Services and U.S. Department of Agriculture, 2015).

There is a growing body of evidence connecting dairy foods consumption with improved health outcomes, through improved weight control (Doidge and Segal, 2012; Dougkas et al., 2011). Two or more servings of dairy foods consumption per day was associated with reduced risk of ischemic heart disease and myocardial infarction (Elwood et al., 2008; Elwood et al., 2004; National Health and Medical Research Council, 2011), and associated with reduced risk of stroke (Alvarez-Leon et al., 2006; de Goede et al., 2016; National Health and Medical Research Council, 2011). Three servings of low fat dairy products are associated with reduced risk of hypertension (McGrane et al., 2011; National Health and Medical Research Council, 2011). Increased dairy foods consumption may also be inversely associated with insulin resistance syndrome, also known as metabolic syndrome or syndrome X (Martins et al., 2015; Pereira et al., 2002), and reducing type two diabetes (Elwood et al., 2008; National Health and Medical Research Council, 2011; Pereira et al., 2002; Pittas et al., 2007).

Despite the established benefits of dairy products and alternatives for chronic disease prevention, it still remains a reluctant choice among adults. In the latest survey results in Australia, 90% of the Australian population (aged two years and over) do not consume enough dairy foods (Australian Bureau of Statistics, 2016). They are commonly consumed by children (Australian Bureau of Statistics, 2012), but statistics suggest that the intake of dairy products and alternatives decrease during adolescence (Baird et al., 2012; Parker et al., 2012). From the latest Australian Nutrition and Physical Activity Survey (NNPAS) 2011-12, almost 45% of males and 70% of females aged 19 to 30 years have inadequate calcium intakes (Australian Bureau of Statistics, 2015). This raises some concern as sufficient intake of calcium is necessary, particularly during adolescence and young adulthood, to maximise peak bone mass (Matkovic, 1992), and increasing dairy intake may displace the consumption of energy-dense, high-fat foods and soft drinks (Rampersaud et al.; Rangan et al., 2012; Vartanian et al., 2007).

The transition to adulthood is a period often associated with developing more autonomy over dietary choices (Allman-Farinelli et al., 2016). Young adulthood is a vulnerable time, as they are entering new environments (i.e. moving out of home, starting college or university) and gaining independence from their parents (Deshpande et al., 2009). These changes may lead to engagement in risky behaviors and reduced concern about their future well-being (Harhay and King, 2012). Consequently, they are vulnerable to developing lifelong unhealthy behaviors (Ha et al., 2009). This is concerning, given that the habits formed can have a substantial effect in later life but also for future generations (Gore et al., 2011). Therefore, it is important that this group be targeted separately to instil healthy behaviors (National Health and Medical Research Council, 2015; Nour et al., 2016).

⁴ ACCEPTED MANUSCRIPT

Previous systematic reviews have focused on interventions on dairy foods and calcium consumption in children and adolescents (Hendrie et al., 2013; Marquez et al., 2015), or in elderly adults at risk of developing osteoporosis (Kastner and Straus, 2008; Little and Eccles, 2010; Lock et al., 2006). There has been little research on effective lifestyle programmes in the young adult age group (Hebden et al., 2012; National Health and Medical Research Council, 2015). In the recent years, there has been a shift towards electronic interventions due to rising use of technology to promote better health (Kohl et al., 2013). To date, there is no published review investigating the effectiveness of calcium and dairy interventions in young adults. In order to translate interventions into the broader young adult population, it is essential to examine the external validity which is considered as important as efficacy (Steckler and McLeroy, 2008). Therefore, the aim of this review was to examine the efficacy of dairy and calcium interventions targeting young adults and assess the quality of the studies and external validity components reported.

Methods

Protocol and Registration

The review has been registered with Prospero (Registration number: CRD42016035908). The PRISMA guidelines were used in the synthesis of the review (Moher et al., 2009).

Eligibility Criteria

Criteria for inclusion included young adults, defined as those aged 18 to 35 years, as this is considered the acceptable range based on the National Institute of Health cut-offs (National

Institutes of Health, 2010) in an intervention that promoted calcium or dairy intake, with or without a comparison group. The outcome of measure was change in calcium or dairy intake at baseline and post-intervention. The outcome could be reported in servings or frequencies. Randomised controlled trials (RCTs), quasi-experimental design and before and after studies with a primary or secondary aim to increase calcium or dairy intake were included. Comparison was made between baseline and follow-up, as well as between intervention and control group. Control group may be no intervention or minimal contact.

Information Sources

A systematic search was conducted using the following academic databases: Cinahl, Embase, Global Health, Medline, Pre-Medline, PsycINFO, Scopus and The Cochrane Library. These databases were searched from inception to 22nd May 2017 to select relevant articles. A search strategy for Medline was developed first and revised appropriately for each database. A combination of subject and keyword search was used to retrieve more relevant papers. For subject searching, relevant terms were searched on all databases and subject headings were chosen (where relevant). For example, 'telemedicine' was found on Medline thesaurus Medical Subject Headings (MESH) which encompasses the terms 'mHealth', 'eHealth', 'telehealth' and 'mobile Health'. The keyword search terms for interventions were broad, including electronic ('email', 'texting', 'mobile phones', 'smartphones') and non-electronic interventions ('nutrition intervention', 'health education', 'nutrition education', 'dietary records').

No restriction limit was used on databases except for language (English) and studies involving 'humans' (where applicable). The complete search strategy in the electronic database Medline is

presented in Table 1 (refer to supplementary tables for full search strategy). Additional studies were retrieved by hand searching the reference list of relevant studies.

Study Selection

Titles and abstracts of all retrieved studies were downloaded onto EndNote X7 citation management software (Thomson Reuters, Philadelphia, PA, USA). After removal of duplicates, two authors (AR and AG) independently assessed all records for eligibility criteria. If a decision could not be made based on abstract text, the full text was retrieved. Any disagreements were resolved by discussion and a third reviewer consulted if necessary (MAF).

Data Collection Process and Data Items

A data collection form was developed to extract the following details: author, year and country, target population, inclusion criteria, recruitment methods, study population, study design, and baseline characteristics; description of intervention including focus, setting, theoretical construct, study arms, delivery method and personnel, duration; and changes in intake from baseline to post-intervention, attrition rate, comparison of drop-outs, follow-up intervention and sustainability of program. In addition, the name of the tool used for assessment of dairy or calcium was extracted and additional questions were included to conduct a dietary tool quality assessment based on that used in a previous review with no modifications necessary as it is appropriate for dietary assessment of all age groups (Burrows et al., 2012).

Some additional data were extracted for quality assessment (i.e. method of randomization, allocation concealment, blinding and reporting bias) (Higgins et al., 2011). A pilot data

extraction was carried out before entering data and changes were made appropriately. The primary author extracted the full text of selected studies with 20% additionally extracted by a second author.

Summary Measures and Synthesis of Results

Standardized Mean Difference (SMD) was used as the summary measure which was deemed to be a suitable measure as the same outcome measure was measured in different ways (i.e. servings of food, mg or amount in grams and it standardizes the results before they are combined in a meta-analysis (Cochrane Handbook for Systematic Reviews of Interventions, 2011b). The outcome of interest was the change in dairy or calcium intake post-intervention. Where possible, information pertaining to intake was recorded (frequency or as servings, mg, cups etc.) pre and post-intervention. The changes in mean and standard deviation, standard error and any associated P values overtime were documented. If standard error was reported, it was converted to standard deviation (Cochrane Handbook for Systematic Reviews of Interventions, 2011a). For randomised controlled trials, the magnitude of the intervention outcomes were converted to SMD, using Lipsey and Wilson's web-based calculator (Lipsey and Wilson, 2001; Wilson, 2001). The magnitude of effect was assessed according to the categories, whereby an effect <0.2 is negligible, between 0.2-0.49 is small, 0.5-0.8 is medium and >0.8 is large (Cohen, 1992).

To pool the outcomes for the meta-analysis, dairy and calcium effect sizes were grouped separately, when sufficient data were available i.e. mean, standard deviation and sample size of treatment and control groups. The analyses were conducted based on a random effects model using the metan command on STATA version 13.1 (StataCorp LP). Heterogeneity between

studies was assessed using the I^2 statistic, which examines the percentage of variability between studies that cannot be attributed to sampling variations or chance alone.

Risk of Bias Assessment

For all randomised controlled trials, the risk of bias was assessed by two review authors using the Cochrane risk of bias assessment tool (Higgins J, 2011). Five domains were assessed for each study: random sequence generation (selection bias), concealment of allocation methods (selection bias), incomplete outcome data (attrition bias), blinding (performance bias and detection bias) and risk of selective outcome reporting (reporting bias). This was completed as described in the Cochrane Handbook for Systematic Reviews of Intervention Version 5.1.0 (Higgins J, 2011).

For non-randomised trials, the articles were assessed using the Evidence Analysis Manual developed by the Academy of Nutrition and Dietetics (American Dietetics Association, 2005). The tool encompasses 10 validity questions which included the assessment of (i) the clarity of the research question; (ii) whether selection bias was apparent; (iii) whether the study groups were comparable and confounders controlled for; (iv) whether withdrawals were handled adequately; (v) blinding of subjects and investigators; (vi) whether the study protocol was described in sufficient detail; (vii) validity and reliability of measurements to measure outcomes; (viii) whether appropriate statistical analysis was conducted; (ix) whether the conclusion accounts for limitations and biases; and (x) declaration of conflict of interest and funding sources.

The study was rated as low risk of bias if six or more of the validity questions were met (including questions ii, iii, vi and vii). If the study did not meet one or two of the validity questions (ii, iii, vi and vii) but met all others, it would be considered as moderate risk of bias. The study was rated as poor quality if the answer was no to six or more questions (out of 10). Any disagreements of quality rating between the review authors were resolved by discussion. A third researcher opinion was sought, where necessary.

GRADE Assessment

The grading of recommendation, assessment, development and evaluation (GRADE) system was applied to evaluate the overall quality of the body of evidence (Atkins et al., 2004). Five domains were assessed for each study to ascribe a quality rating: limitations in study designs; consistency of results; directness of the evidence comparing it to the study populations, intervention design and outcomes; precision of outcomes; and publication bias.

Studies without a control group were not included for GRADE assessment as it was not possible to calculate the effect sizes without a control group. Instead, we assessed whether the trial was successful in changing dietary behavior of calcium or dairy and if it included any external validity components.

Rating External Validity

The external validity of included studies was conducted based on the criteria for rating external validity designed by Green and colleagues (Green and Glasgow, 2006). The assessment encompasses: reach and representativeness of participants; intervention implementation and

adoption; and program maintenance and institutionalization.

Quality and Validity of Dietary Assessment Tools

The Australian Child and Adolescent Obesity Research Network (ACAORN) scoring method was used to assess the quality and validity of the dietary assessment tool of the included studies (Burrows et al., 2012). The ACAORN tool is applicable to all age groups as it is about the quality of dietary assessment tools, not children specifically.

Results

Study Selection

As shown in Figure 1, the searches identified 5217 records after duplicates were removed. After the titles and abstracts were screened for relevance, 99 studies were identified for full text examination. From these, 83 were excluded from this review because they did not meet the inclusion criteria. Reasons for exclusion of these studies are provided in Supporting Information 2. A total of 16 studies were included in this review and summarised in Table 2-4. The studies were classified as RCT's (n = 8), non-randomised controlled trials (n = 2) and before and after study design (n = 6).

Study Reach and Representativeness of Participants

As shown in Table 2, all studies were conducted between 1990 and 2015. Over half of the studies were conducted in the United States (n = 10), two studies in Japan, and one study each in Canada, Korea, Italy and Malaysia. The total number of participants included in this review was

2434 with a mean of 152 participants per study (range: 7 to 417). The mean participation rate was 11.9% (range: 0.6% to 29.5%). The study population tended to be of higher education, female (81.1%) and Caucasian background which limited the representativeness of the population; the mean age was 19.9 years (range: 18.4 to 22.3 years). For studies that reported ethnicity (n = 9), the populations with the highest representation included White or Caucasian (n = 6) and a minority included African American, Hispanic or Latino (n = 3). A majority of the studies described their target audience as 'college or university students' (n = 9), one of which specifically targeted university sports scholar students, and only a few studies targeted the general population (n = 3).

Intervention Implementation and Adaption

Eleven studies focused on improving dairy or calcium as their primary focus and the remaining studies targeted multiple food groups or nutrients. Ten studies promoted calcium, six targeted dairy and four measured both (Bohaty et al., 2008; Ehlert, 2010; Ha et al., 2009; Shahril et al., 2013).

As shown in Table 3, the majority of the studies were conducted in a university setting (n = 15), with one study conducted in the community (Bohaty et al., 2008). The majority of the studies provided face-to-face delivery of information (n = 12). This included lecture style delivery (n = 5) (Bohaty et al., 2008; Ha et al., 2009; Jung et al., 2011; Shahril et al., 2013), tape or video presentation (Koszewski et al., 1990; Sueta, 2000; Sueta and Fukuda, 1995). Four studies reported including a discussion or interactive activity component (Ehlert, 2010; Ha et al., 2009; Koszewski et al., 1990; Martinelli, 2013). Three studies reported on providing pamphlet,

brochures or handouts (Gerend and Shepherd, 2013; Jung et al., 2011; Shahril et al., 2013). One study provided a nutrition course in a class setting (Kwon and Chang, 2000), and one study provided education in small groups (Peterson et al., 2000). One study used phone calls as part of their intervention (Bohaty et al., 2008), and one study used text messaging (Shahril et al., 2013). Two studies used group emails and one study used mail-delivery to communicate information.

Six studies delivered a single one-off session with some follow-up contact through mail or telephone, which may be considered as lower intensity intervention (Gerend and Shepherd, 2013; Jung et al., 2011; Koszewski et al., 1990; Peterson et al., 2010; Sueta, 2000; Sueta and Fukuda, 1995). Six studies provided multiple sessions over the course of the intervention. Four studies provided contact on a weekly or daily basis which was classed as higher intensity (Ha et al., 2009; Poddar et al., 2012; Poddar et al., 2010; Shahril et al., 2013). Psychological theory-based constructs were used in 6 studies and included: Social Cognitive Theory (SCT) (Ehlert, 2010; Poddar et al., 2010), Health Belief Model (HBM) (Jung et al., 2011; Poddar et al., 2012), or a combination of Transtheoretical or Stage of Change and Theory of Reasoned Action (Talpade and Caddell, 2015). Four studies incorporated goal-setting as part of their intervention (Ehlert, 2010; Poddar et al., 2012; Sueta, 2000; Sueta and Fukuda, 1995), one of which provided feedback to participants.

The mean length of intervention was 18.25 ± 18.0 weeks (range: 3 weeks to 1 year). Over half of the studies had a duration of less than six months (n = 12). Three studies had duration of one month or less (Gerend and Shepherd, 2013; Koszewski et al., 1990; Peterson et al., 2010). Four studies had a duration of one year or more (Jung et al., 2011; Sueta, 2000; Sueta and Fukuda,

1995). Few studies did not clearly specify the duration; the length of intervention was estimated from the details, where possible.

Study Maintenance and Institutionalisation

Most studies reported on intake at baseline and post-intervention in sufficient detail (Table 4). Calcium intake was measured in mg or calcium-rich servings and dairy amount was reported in servings and frequencies. Of 10 studies with a control group, six studies reported a significant difference between intervention and control group (Ehlert, 2010; Jung et al., 2011; Peterson et al., 2000; Poddar et al., 2012; Shahril et al., 2013; Sueta and Fukuda, 1995). For studies without a control group, two studies reported no significant difference before and after intervention (Bohaty et al., 2008; Martinelli, 2013). Three studies reported a significant difference (Ha et al., 2009; Kwon and Chang, 2000; Peterson et al., 2010), two of which were in females only (Ha et al., 2009; Kwon and Chang, 2000).

Attrition was reported in 10 studies; the mean attrition rate was 21.3%, and ranged from 1% to 64%, see Table 4. A majority of the studies did not provide any information comparing drop-out characteristics to completers (n = 13). Five studies included follow-up of dietary intake after the intervention (Bohaty et al., 2008; Gerend and Shepherd, 2013; Peterson et al., 2000; Sueta, 2000; Sueta and Fukuda, 1995), while one included continued support via meetings, phone calls or mail-delivered material during the follow-up period (Jung et al., 2011). No studies reported any detail of program sustainability after the intervention research.

Risk of Bias

The Cochrane risk of bias assessment is presented in Table S4. A total of eight studies were included for Cochrane assessment, all of which were RCT's. For the overall judgement, four studies rated as unclear, three as high and one was low risk. The majority of the studies rated as unclear for selection bias did not describe the method of randomisation or concealment of allocation. A majority of the studies rated as low risk had low or no attrition; only two studies were found to have a high attrition rate (>20%) (Jung et al., 2011; Peterson et al., 2000). For performance and detection bias, most studies were rated as low risk as they provided description on blinding or reported an objective measure of outcome. All studies reported pre-specified outcomes; however, one study was rated as unclear or high as there were large baseline differences between intervention and control group for dairy intake (Ehlert, 2010).

Results for all non-randomised controlled trials and before and after studies assessed using the American Dietetic Association or ADA tool (n = 8) are presented in Table S5. Six studies were deemed to have a moderate risk of bias and two as high risk. None of the studies blinded the research team or data collectors for assessment of outcomes. Three studies did not conduct appropriate statistical analysis (Kwon and Chang, 2000; Martinelli, 2013; Talpade and Caddell, 2015). One study did not use valid and reliable instruments to measure outcomes (Talpade and Caddell, 2015).

GRADE Quality Rating

Study Limitations

Of six studies included in the meta-analysis, the majority of the studies rated were as high risk of bias (n = 3). Two studies described the method for providing randomised sequence generation

(Poddar et al., 2012; Shahril et al., 2013). One study adequately concealed intervention and control groups (Poddar et al., 2012). One study could anticipate allocation as it was explained to participants (Peterson et al., 2000). Three studies described the method of blinding which involved blinding of the principal investigator or research assistants (Ehlert, 2010; Jung et al., 2011; Shahril et al., 2013). Three studies performed a completer's analysis (Jung et al., 2011; Poddar et al., 2012; Shahril et al., 2013) and one study performed an intention to treat analysis (Peterson et al., 2000). All but one study reported pre-specified outcomes.

Consistency

The effect size for change in calcium intake yielded an I^2 statistic of 75.1% (P value for heterogeneity = 0.003) and I^2 statistic of 53.4% (P value for heterogeneity = 0.092) for change in dairy intake. Both of these results indicate moderate heterogeneity (Figure 2 and 3).

Directness

There are variations between study design, population and outcome measures which made it difficult to compare between studies. The majority of population included in our study were college students, and only two interventions recruited beyond the university or college setting (Jung et al., 2011; Koszewski et al., 1990).

Precision

Only three studies reported conducting sample power calculations; however, these were mainly based on Bone Mineral Density (BMD) outcomes rather than calcium or dairy intake. One study calculated power to examine bone density (Jung et al., 2011). The sample size of the population

included in the GRADE body of evidence yielded 1091 participants (range 78 to 380), which is considered insufficient.

Publication Bias

Whilst an extensive search strategy was conducted to minimise the risk of publication bias, this cannot be ruled out as unpublished or negative finding studies may have been missed. Funnel plot and statistical tests of publication bias were not reported as they are not recommended for meta-analyses less than 10 studies due to the inability to detect true symmetry with fewer studies (Higgins J, 2011). As shown in Table 5, overall body of evidence was rated as low due to the study limitations, heterogeneity and small sample size in the included studies. Out of six studies included in the meta-analysis, one scored low risk of bias, three as unclear and two were high risk, which indicates serious limitations.

Efficacy of Interventions

Of the 16 reviewed studies, 10 studies provided results for calcium and eight studies provided results on dairy intake. Four studies included results for both calcium and dairy intake. Studies targeting calcium intake appear to be slightly more successful than dairy intake. For calcium, five studies were included in the meta-analysis; six of which reported positive effects (SMD 0.05-0.79, four were statistically significant). The pooled effect size was 0.35 (95% CI 0.04 to 0.67); all studies contributed similar weighting (ranged from 17.85% to 24.65%).

For dairy, three studies were included in the meta-analysis; all of which reported positive effects (SMD 0.04-0.50, two were statistically significant). The pooled effect size was 0.31 (95% CI 0.11 to 0.50). Contributing weighting of studies ranged from 13.62 to 31.76%).

Quality and Validity of Dietary Assessment Tools

As shown in Table 6, over half of the studies scored as acceptable/ reasonable (n = 9). Five studies were rated as poor and two studies rated good. The mean score was 2.5, and ranged from 1 to 4.

Of the reviewed studies, the most common method of assessing intake was food record (n = 8) and three studies used a dietary recall. Five used tools that were specific to the study such as questionnaires, FFQs (Food Frequency Questionnaire) and capturing photos of meals. Three studies used a FFQ, one of which had been validated previously in a similar population (Gerend and Shepherd, 2013), and one conducted a test-retest of the instrument (Peterson et al., 2010). A majority of the studies did not acknowledge appropriate validation studies in relation to the use of their tool; (Hertzler and Frary, 1994; Ilich et al., 1998; Thompson and Byers, 1994) and only three studies provided details of a validation study in sufficient detail (Gerend and Shepherd, 2013; Jung et al., 2011; Peterson et al., 2000).

Discussion

To our knowledge, this is the first systematic review of interventions of calcium or dairy intake among young adults. Our findings suggest that calcium or dairy interventions may have a small effect on increasing intake, as indicated by the meta-analyses. However, findings must be

interpreted with caution, due to the presence of heterogeneity and poor quality of the intervention studies.

Education was reported as the most widely used technique to change behavior. It was previously suggested in the literature that knowledge of calcium was related to intake of dairy foods (Nicklas, 2003). While knowledge is important, it is apparent that knowledge on its own is not sufficient for a behavior change to take place (Brug et al., 2005; Jepson et al., 2010). Participants must be taught the 'how to' aspect of behavior change (Worsley, 2002). Research has established the importance of incorporating a behavior change theory in the intervention (Brug et al., 2005). Half of the studies included a theoretical construct or a behavior change technique in their intervention, but of these only four of seven had positive outcomes. Self-efficacy is often thought to be the best predictor of engagement in a particular behavior (Hackman and Knowlden, 2014), but it is reported that there are two phases of self-efficacy motivational and volitional in healthy eating and both need to be high for behavior change (Ochsner et al., 2013). This may be why only three of five studies addressing self-efficacy were successful. A meta-regression examining successful behavior change techniques for adopting healthy eating and physical activity in adults revealed that self-monitoring combined with at least one other technique from control theory such as goal-setting and feedback was more effective (Michie et al., 2009). Four studies used goal-setting and two of these resulted in positive behavior changes, one of which also used selfmonitoring.

Among the studies that improved dairy or calcium intake, only small changes were observed. Several studies reported the increase being significant but still inadequate compared to dietary

guidelines. The benefits resulting from behavioral modification to improve calcium intake may only be evident over time, however the long term effectiveness of the interventions in the current review cannot be determined since only seven studies included a follow-up. They will only reap the benefits if the behavior modifications are sustained and a longer follow-up is required to determine this. It is necessary to address any barriers, as well as beliefs and myths concerning dairy foods consumption. Future studies may benefit from addressing barriers to dairy consumption in order to address long-term behavior change, as stated in a recent review (Hendrie et al., 2013).

From our assessment of dietary tools, it is evident that some uncertainty remains in the quality of the tools used. In order to assess shortfalls in a population, an accurate measurement is required. An earlier review by Magarey et al emphasized the need to develop better quality tools to assess calcium and dairy foods intake (Magarey et al., 2014); our findings from this review are in agreement. The studies included in this review are of uncertain quality as a majority of the papers did not conduct blinding of investigators and participants or ensure random allocations or concealment or blinding of assessors. However, two studies rated scored as high quality, both of which were effective.

The degree to which the interventions can be translated to the broader young population is poor, as a majority of our studies recruited from a university or college setting. Most of the studies were conducted in western countries and used convenience sampling. Even though the latest statistics show a greater proportion of young adults entering tertiary education (OECD, 2015), young people in lower socioeconomic status remain underrepresented (Centre for the Study of

Higher Education, 2008). This gap could be addressed by recruiting outside the tertiary sector in the community at large.

None of our studies provided information of sustainability or costs; therefore, the external validity remains unclear. Numerous systematic studies have emphasised the lack of external validity in the field of public health research (Blackman et al., 2013; Klesges et al., 2008; Laws et al., 2012; Nour et al., 2016; Partridge et al., 2015). In order to upscale interventions and translate into the wider community, studies need to report on external validity components, particularly program sustainability and cost-effectiveness.

Interventions which were of higher intensity (i.e. provided weekly or daily contact) did not perform any better compared to interventions that were of low intensity (only one point of contact) or moderate intensity. This is consistent with a recent review (Racey et al., 2016), which included children from 9 to 18 years in a school setting. Face-to-face contact was the most widely used method for delivery of the interventions, however, with increasing use of technology; a small number of interventions incorporated an electronic component. Recent reviews on e-health or m-health interventions for other dietary behaviors have shown promising results (Free et al., 2013; Nour et al., 2016; Webb et al., 2010). A recent review targeting dairy food intake in adolescents found that interventions were successful without providing an individual contact (Marquez et al., 2015). This is an important consideration as it means group delivery of an intervention may be sufficient when targeting this age group, resulting in lower costs. Earlier reviews have pointed out the lack of electronic interventions in this field of research (Marquez et al., 2015; Ryan et al., 2013). There is the potential to explore the use of

electronic technologies in interventions to improve intake of dairy products, as they are a convenient and possibly cost-effective alternative to traditional modes (Steinhubl et al., 2015).

Three studies in our review included a form of electronic technology, two of which were successful and incorporated face-to-face contact, which indicated that some human contact may be important. It may be worth focusing on a discrete nutritional behavior rather than trying to change numerous behaviors (Hendrie et al., 2013; Jung et al., 2016; Sweet and Fortier, 2010). Targeting one nutrition behavior may be more manageable for the participants as they are likely to view it as seemingly minor and manageable compared to a global change in diet (Jung et al., 2016)

Future studies could consider online-technology based interventions because they can double the number of users as opposed to an average public health campaign (10% vs. 5% respectively) (Cugelman, 2013). With the rise of the internet as a source of nutritional and medical information and high ownership of smartphone in young adults, these may be appropriate channels to deliver health promotion (Kite et al., 2016; Pollard et al., 2015). Furthermore, smartphones are becoming very popular, young adults having the highest smartphone ownership and a recent US survey has revealed that 85% young adults are smartphone user and almost three-quarters have used their smartphone to look up health information (Pew Research Center, 2015). There have already been a number of successful interventions addressing other nutritional behaviors using this media to promote nutritional behavior (Allman-Farinelli et al., 2016; Coughlin et al., 2015; Nour et al., 2017; Olson, 2016).

This review has several strengths which include a comprehensive search strategy, adherence to PRISMA protocol for selection of studies (Moher et al., 2009), and a meta-analysis for dairy foods and calcium intake. In addition, two reviewers conducted a risk of bias and GRADE assessment to assess the overall body of evidence. The limitations of the included studies are the dietary tools used to measure dietary intake and overall poor quality of studies. The limitations of the search strategy include filtering studies that were only published in English and those indexed in major databases. While attempts were made to search grey literature, the possibility of publication bias cannot be ruled out. Finally, the considerable differences in the intensity of the interventions made it difficult to make direct comparisons between the studies.

In conclusion, our review revealed some evidence demonstrating that calcium and dairy interventions are effective; however, poor quality of studies and moderate heterogeneity remain a limitation. Future interventions could include a form of electronic technology, self-monitoring, goal-setting and social support for increasing intake. Greater rigour is needed in terms of reporting external validity components and improving quality of interventions in order to confidently determine their effectiveness and cost-effectiveness for dissemination to the population-at-large. The findings of this review may be used to inform the development of future interventions targeting young adults for increased calcium and dairy intake to optimal levels.

Acknowledgements

The authors would like to thank the school librarian Monica Cooper for her assistance with setting up the database search strategy. No conflict of interest was declared and no funding

support was obtained for the work of this review. ASR and AG are supported by the Australian Postgraduate Award Scholarship from the Commonwealth Government of Australia.

References

- Allman-Farinelli, M., Partridge, S. R., McGeechan, K., Balestracci, K., Hebden, L., Wong, A., Phongsavan, P., Denney-Wilson, E., Harris, M. F., and Bauman, A. (2016). A Mobile Health Lifestyle Program for Prevention of Weight Gain in Young Adults (TXT2BFiT): Nine-Month Outcomes of a Randomized Controlled Trial. *JMIR Mhealth Uhealth*. **4**: e78.
- Alvarez-Leon, E. E., Roman-Vinas, B., and Serra-Majem, L. (2006). Dairy products and health: a review of the epidemiological evidence. *Br J Nutr.* **96 Suppl 1**: S94-99.
- American Dietetics Association (2005). ADA Evidence Analysis Manual. American Dietetic Association, Chicago.
- Atkins, D., Best, D., Briss, P. A., Eccles, M., Falck-Ytter, Y., Flottorp, S., Guyatt, G. H.,
 Harbour, R. T., Haugh, M. C., Henry, D., Hill, S., Jaeschke, R., Leng, G., Liberati, A.,
 Magrini, N., Mason, J., Middleton, P., Mrukowicz, J., O'Connell, D., Oxman, A. D.,
 Phillips, B., Schunemann, H. J., Edejer, T., Varonen, H., Vist, G. E., Williams, J. W., Jr.,
 and Zaza, S. (2004). Grading quality of evidence and strength of recommendations. *BMJ*.
 328: 1490.
- Australian Bureau of Statistics (2012). Australian Health Survey: First Results, 2011-12.

 Australian Bureau of Statistics, Canberra.
- Australian Bureau of Statistics (2015). Australian Health Survey: Usual Nutrient Intakes, 2011-12 Australian Bureau of Statistics,, Canberra.

- Australian Bureau of Statistics (2016). 4364.0.55.012 Australian Health Survey: Consumption of Food Groups from the Australian Dietary Guidelines, 2011-12 Australian Bureau of Statistics, Canberra.
- Baird, D. L., Syrette, J., Hendrie, G. A., Riley, M. D., Bowen, J., and Noakes, M. (2012). Dairy food intake of Australian children and adolescents 2-16 years of age: 2007 Australian National Children's Nutrition and Physical Activity Survey. [Erratum appears in Public Health Nutr. 2013 Jan;16(1):187]. *Public Health Nutr.* 15: 2060-2073.
- Blackman, K. C., Zoellner, J., Berrey, L. M., Alexander, R., Fanning, J., Hill, J. L., and Estabrooks, P. A. (2013). Assessing the Internal and External Validity of Mobile Health Physical Activity Promotion Interventions: A Systematic Literature Review Using the RE-AIM Framework. *J Med Internet Res.* **15**: e224.
- Bohaty, K., Rocole, H., Wehling, K., and Waltman, N. (2008). Testing the effectiveness of an educational intervention to increase dietary intake of calcium and vitamin D in young adult women. *J Am Acad Nurse Pract.* **20**: 93-99.
- Brug, J., Oenema, A., and Ferreira, I. (2005). Theory, evidence and Intervention Mapping to improve behavior nutrition and physical activity interventions. *Int J Behav Nutr Phys Act*. **2**: 2-2.
- Burrows, T., Golley, R. K., Khambalia, A., McNaughton, S. A., Magarey, A., Rosenkranz, R. R., Alllman-Farinelli, M., Rangan, A. M., Truby, H., and Collins, C. (2012). The quality of dietary intake methodology and reporting in child and adolescent obesity intervention trials: a systematic review. *Obes Rev.* 13: 1125-1138.

- Centre for the Study of Higher Education, U. o. M. (2008). Participation and equity: A review of the participation in higher education of people from low socioeconomic backgrounds and Indigenous people. pp. 1-23. Melbourne.
- Cochrane Handbook for Systematic Reviews of Interventions (2011a). 7.7.3.2 Obtaining standard deviations from standard errors and confidence intervals for group means.
- Cochrane Handbook for Systematic Reviews of Interventions (2011b). The standardized mean difference. Green, J. P. H. a. S. (Ed.).
- Cohen, J. (1992). A power primer. *Psychol Bull.* **112**: 155-159.
- Coughlin, S. S., Whitehead, M., Sheats, J. Q., Mastromonico, J., Hardy, D., and Smith, S. A. (2015). Smartphone Applications for Promoting Healthy Diet and Nutrition: A Literature Review. *Jacobs journal of food and nutrition*. **2**: 021.
- Cugelman, B. (2013). Gamification: what it is and why it matters to digital health behavior change developers. *JMIR Serious Games*. **1**: e3.
- de Goede, J., Soedamah-Muthu, S. S., Pan, A., Gijsbers, L., and Geleijnse, J. M. (2016). Dairy

 Consumption and Risk of Stroke: A Systematic Review and Updated Dose-Response

 Meta-Analysis of Prospective Cohort Studies. *J Am Heart Assoc.* 5.
- Deshpande, S., Basil, M. D., and Basil, D. Z. (2009). Factors influencing healthy eating habits among college students: an application of the health belief model. *Health Mark Q.* **26**: 145-164.
- Doidge, J. C., and Segal, L. (2012). Most Australians do not meet recommendations for dairy consumption: findings of a new technique to analyse nutrition surveys. *Aust N Z J Public Health*. **36**: 236-240.

²⁷ ACCEPTED MANUSCRIPT

- Dougkas, A., Reynolds, C. K., Givens, I. D., Elwood, P. C., and Minihane, A. M. (2011).

 Associations between dairy consumption and body weight: a review of the evidence and underlying mechanisms. *Nutr Res Rev.* 24: 72-95.
- Ebeling Peter, D. R., Kerr Deborah and Kimlin Michael (2013). Building healthy bones throughout life: an evidence-informed strategy to prevent osteoporosis in Australia. *Med J Aust.* 2.
- Ehlert, J. J. (2010). SNAAKS: Student nutrition attitudes, action, knowledge, and skills: A nutrition program tailored to the needs of predominantly Black and Hispanic college freshmen. *Dissertation Abstracts International: Section B: The Sciences and Engineering*. **71**: 1632.
- Elwood, P. C., Givens, D. I., Beswick, A. D., Fehily, A. M., Pickering, J. E., and Gallacher, J. (2008). The survival advantage of milk and dairy consumption: an overview of evidence from cohort studies of vascular diseases, diabetes and cancer. *J Am Coll Nutr.* 27: 723s-734s.
- Elwood, P. C., Pickering, J. E., Hughes, J., Fehily, A. M., and Ness, A. R. (2004). Milk drinking, ischaemic heart disease and ischaemic stroke II. Evidence from cohort studies. *Eur J Clin Nutr.* **58**: 718-724.
- Gerend, M. A., and Shepherd, M. A. (2013). Message framing, it does a body good: effects of message framing and motivational orientation on young women's calcium consumption. *J Health Psychol.* **18**: 1296-1306.

- Gore, F. M., Bloem, P. J. N., Patton, G. C., Ferguson, J., Joseph, V., Coffey, C., Sawyer, S. M., and Mathers, C. D. (2011). Global burden of disease in young people aged 10-24 years: a systematic analysis. *The Lancet*. **377**: 2093-2102.
- Green, L. W., and Glasgow, R. E. (2006). Evaluating the relevance, generalization, and applicability of research: issues in external validation and translation methodology. *Eval Health Prof.* **29**: 126-153.
- Ha, E. J., Caine-Bish, N., Holloman, C., and Lowry-Gordon, K. (2009). Evaluation of effectiveness of class-based nutrition intervention on changes in soft drink and milk consumption among young adults. *Nutrition Journal*. **8**: 50.
- Hackman, C. L., and Knowlden, A. P. (2014). Theory of reasoned action and theory of planned behavior-based dietary interventions in adolescents and young adults: a systematic review. *Adolescent Health, Medicine and Therapeutics*. **5**: 101-114.
- Harhay, M. O., and King, C. H. (2012). Global burden of disease in young people aged 10-24 years. *The Lancet*. **379**: 27-28.
- Hebden, L., Chey, T., and Allman-Farinelli, M. (2012). Lifestyle intervention for preventing weight gain in young adults: a systematic review and meta-analysis of RCTs. *Obes Rev*. **13**: 692-710.
- Hendrie, G. A., Brindal, E., Baird, D., and Gardner, C. (2013). Improving children's dairy food and calcium intake: can intervention work? A systematic review of the literature. *Public Health Nutr.* **16**: 365-376.
- Hertzler, A. A., and Frary, R. B. (1994). A dietary calcium rapid assessment method (RAM). *Top Clin Nutr.* **9**: 76-85.

- Higgins, J., Altman, D. G., Gotzsche, P. C., Juni, P., Moher, D., Oxman, A. D., Savovic, J., Schulz, K. F., Weeks, L., and Sterne, J. A. (2011). The Cochrane Collaboration's tool for assessing risk of bias in randomised trials. *BMJ*. **343**: d5928.
- Higgins J, G. S. (2011). Cochrane handbook for systematic reviews of interventions Version 5.1.0 **In:** The Cochrane Collaboration: 2011. [WWW document].
- Ilich, J. Z., Skugor, M., Hangartner, T., Baoshe, A., and Matkovic, V. (1998). Relation of nutrition, body composition and physical activity to skeletal development: a crosssectional study in preadolescent females. *J Am Coll Nutr.* 17: 136-147.
- Jepson, R. G., Harris, F. M., Platt, S., and Tannahill, C. (2010). The effectiveness of interventions to change six health behaviours: a review of reviews. *BMC Public Health*.10: 538.
- Jung, M. E., Martin Ginis, K. A., Phillips, S. M., and Lordon, C. D. (2011). Increasing calcium intake in young women through gain-framed, targeted messages: a randomised controlled trial. *Psychol Health.* 26: 531-547.
- Jung, M. E., Stork, M. J., Stapleton, J., Bourne, J. E., and Martin Ginis, K. A. (2016). A systematic review of behavioural interventions to increase maternal calcium intake.
 Matern Child Nutr. 12: 193-204.
- Kastner, M., and Straus, S. E. (2008). Clinical decision support tools for osteoporosis disease management: a systematic review of randomized controlled trials. *J Gen Intern Med.* **23**: 2095-2105.
- Kite, J., Foley, B. C., Grunseit, A. C., and Freeman, B. (2016). Please Like Me: Facebook and Public Health Communication. *PLoS ONE*. **11**: e0162765.

- Klesges, L. M., Dzewaltowski, D. A., and Glasgow, R. E. (2008). Review of external validity reporting in childhood obesity prevention research. *Am J Prev Med.* **34**: 216-223.
- Kohl, F. M. L., Crutzen, R., and de Vries, K. N. (2013). Online Prevention Aimed at Lifestyle Behaviors: A Systematic Review of Reviews. *J Med Internet Res.* **15**: e146.
- Koszewski, W. M., Newell, G., and Higgins, J. J. (1990). Effect of a nutrition education program on the eating attitudes and behaviors of college women. *J Coll Stud Dev.* **31**: 203-210.
- Kwon, W., and Chang, K. (2000). Evaluation of nutrient intake, eating behavior and health-related lifestyles of Korean college students. *Nutritional Sciences*. **3**: 89-97.
- Larson, N. I., Neumark-Sztainer, D., Harnack, L., Wall, M., Story, M., and Eisenberg, M. E. (2009). Calcium and dairy intake: Longitudinal trends during the transition to young adulthood and correlates of calcium intake. *J Nutr Educ Behav.* **41**: 254-260.
- Laws, R. A., St George, A. B., Rychetnik, L., and Bauman, A. E. (2012). Diabetes prevention research: a systematic review of external validity in lifestyle interventions. *Am J Prev Med.* **43**: 205-214.
- Lipsey, M. W., and Wilson, D. B. (2001). Practical meta-analysis. Sage Publications, Inc, Thousand Oaks, CA, US.
- Little, E. A., and Eccles, M. P. (2010). A systematic review of the effectiveness of interventions to improve post-fracture investigation and management of patients at risk of osteoporosis. *Implement Sci.* 5: 1-17.
- Lock, C. A., Lecouturier, J., Mason, J. M., and Dickinson, H. O. (2006). Lifestyle interventions to prevent osteoporotic fractures: a systematic review. *Osteoporos Int.* **17**: 20-28.

- Magarey, A., Yaxley, A., Markow, K., Baulderstone, L., and Miller, M. (2014). Evaluation of tools used to measure calcium and/or dairy consumption in children and adolescents. *Public Health Nutr.* **17**: 1745-1756.
- Marquez, O., Racey, M., Preyde, M., Hendrie, G. A., and Newton, G. (2015). Interventions to Increase Dairy Consumption in Adolescents: A Systematic Review. *Infant Child Adolesc Nutr.* **7**: 242-254.
- Martinelli, L. (2013). The implementation and evaluation of a nutrition education programme for university elite athletes. *Prog Nutr.* **15**: 71-80.
- Martins, M. L., Kac, G., Silva, R. A., Bettiol, H., Barbieri, M. A., Cardoso, V. C., and Silva, A. A. (2015). Dairy consumption is associated with a lower prevalence of metabolic syndrome among young adults from Ribeirao Preto, Brazil. *J Nutr.* **31**: 716-721.
- Matkovic, V. (1992). Calcium and peak bone mass. J Intern Med. 231: 151-160.
- McGrane, M. M., Essery, E., Obbagy, J., Lyon, J., MacNeil, P., Spahn, J., and Van Horn, L. (2011). Dairy Consumption, Blood Pressure, and Risk of Hypertension: An Evidence-Based Review of Recent Literature. *Current cardiovascular risk reports*. **5**: 287-298.
- Michie, S., Abraham, C., Whittington, C., McAteer, J., and Gupta, S. (2009). Effective techniques in healthy eating and physical activity interventions: a meta-regression. *Health Psychol.* **28**: 690-701.
- Moher, D., Liberati, A., Tetzlaff, J., and Altman, D. G. (2009). Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. *Ann Intern Med.* **151**: 264-269, w264.

- National Health and Medical Research Council (2011). A review of the evidence to address targeted questions to inform the revision of the Australian Dietary Guidelines. pp. 170-237. Ageing, D. o. H. a. (Ed.), National Health and Medical Research Council, Canberra, Australia.
- National Health and Medical Research Council (2013). Australian Dietary Guidelines. Canberra.
- National Health and Medical Research Council (2015). Targeted Call for Research into

 Engaging and Retaining Young Adults in Interventions to Improve Eating Behaviours

 and Health Outcomes (Preventing Obesity in 18-24 year olds TCR). National Health and

 Medical Research Council.
- National Institutes of Health (2010). Trials use technology to help young adults achieve healthy weights. National Institutes of Health,.
- Nations, F. a. A. O. o. t. U. (2016). Food-based dietary guidelines United Kingdom.
- Nicklas, T. A. (2003). Calcium intake trends and health consequences from childhood through adulthood. *J Am Coll Nutr.* **22**: 340-356.
- Nour, M., Chen, J., and Allman-Farinelli, M. (2016). Efficacy and External Validity of Electronic and Mobile Phone-Based Interventions Promoting Vegetable Intake in Young Adults: Systematic Review and Meta-Analysis. *J. Med. Internet Res.* **18**: e58-e58.
- Nour, M., Yeung, S. H., Partridge, S., and Allman-Farinelli, M. (2017). A Narrative Review of Social Media and Game-Based Nutrition Interventions Targeted at Young Adults.

 Journal of the Academy of Nutrition and Dietetics.

- Ochsner, S., Scholz, U., and Hornung, R. (2013). Testing Phase-Specific Self-Efficacy Beliefs in the Context of Dietary Behaviour Change. *Applied Psychology: Health and Well-Being*. **5**: 99-117.
- OECD (2015). Education at a Glance 2015. OECD Publishing.
- Olson, C. M. (2016). Behavioral Nutrition Interventions Using e- and m-Health Communication Technologies: A Narrative Review. *Annu Rev Nutr.* **36**: 647-664.
- Parker, C. E., Vivian, W. J., Oddy, W. H., Beilin, L. J., Mori, T. A., and O'Sullivan, T. A. (2012). Changes in dairy food and nutrient intakes in Australian adolescents. *Nutrients*. **4**: 1794-1811.
- Partridge, S. R., Juan, S. J., McGeechan, K., Bauman, A., and Allman-Farinelli, M. (2015). Poor quality of external validity reporting limits generalizability of overweight and/or obesity lifestyle prevention interventions in young adults: a systematic review. *Obes Rev.* **16**: 13-31.
- Pereira, M. A., Jacobs, D. R., Jr., Van Horn, L., Slattery, M. L., Kartashov, A. I., and Ludwig, D. S. (2002). Dairy consumption, obesity, and the insulin resistance syndrome in young adults: the CARDIA Study. *JAMA*. **287**: 2081-2089.
- Peterson, B. A., Klesges, R. C., Kaufman, E. M., Cooper, T. V., and Vukadinovich, C. M. (2000). The effects of an educational intervention on calcium intake and bone mineral content in young women with low calcium intake. *Am J Health Promot.* **14**: 149-156.
- Peterson, S., Duncan, D. P., Null, D. B., Roth, S. L., and Gill, L. (2010). Positive changes in perceptions and selections of healthful foods by college students after a short-term point-of-selection intervention at a dining hall. *J Am Coll Health*. **58**: 425-431.

- Pew Research Center (2015). US Smartphone Use in 2015. pp. 1-60. Pew Research Center, Washington D.C.
- Pittas, A. G., Lau, J., Hu, F. B., and Dawson-Hughes, B. (2007). The role of vitamin D and calcium in type 2 diabetes. A systematic review and meta-analysis. *J Clin Endocrinol Metab.* **92**: 2017-2029.
- Poddar, K. H., Hosig, K. W., Anderson-Bill, E. S., Nickols-Richardson, S. M., and Duncan, S. E. (2012). Dairy intake and related self-regulation improved in college students using online nutrition education. *J Acad Nutr Diet*. **112**: 1976-1986.
- Poddar, K. H., Hosig, K. W., Anderson, E. S., Nickols-Richardson, S. M., and Duncan, S. E. (2010). Web-based nutrition education intervention improves self-efficacy and self-regulation related to increased dairy intake in college students. *J Am Diet Assoc.* **110**: 1723-1727.
- Pollard, C. M., Pulker, C. E., Meng, X., Kerr, D. A., and Scott, J. A. (2015). Who Uses the Internet as a Source of Nutrition and Dietary Information? An Australian Population Perspective. *Journal of Medical Internet Research*. **17**: e209.
- Racey, M., O'Brien, C., Douglas, S., Marquez, O., Hendrie, G., and Newton, G. (2016).

 Systematic Review of School-Based Interventions to Modify Dietary Behavior: Does
 Intervention Intensity Impact Effectiveness? *J Sch Health.* **86**: 452-463.
- Rampersaud, G. C., Bailey, L. B., and Kauwell, G. P. A. National survey beverage consumption data for children and adolescents indicate the need to encourage a shift toward more nutritive beverages. *J Am Diet Assoc.* **103**: 97-100.

- Rangan, A. M., Flood, V. M., Denyer, G., Webb, K., Marks, G. B., and Gill, T. P. (2012). Dairy consumption and diet quality in a sample of Australian children. *J Am Coll Nutr.* **31**: 185-193.
- Ryan, P., Schlidt, A., and Ryan, C. (2013). The impact of osteoporosis prevention programs on calcium intake: a systematic review. *Osteoporos Int.* **24**: 1791-1801.
- Shahril, M. R., E. W. D, W. P., and Lua, P. (2013). A 10-week multimodal nutrition education intervention improves dietary intake among university students: cluster randomised controlled trial. *Nutr Metab* **658642**.
- Steckler, A., and McLeroy, K. R. (2008). The Importance of External Validity. *Am J Public Health*. **98**: 9-10.
- Steinhubl, S. R., Muse, E. D., and Topol, E. J. (2015). The emerging field of mobile health. *Sci Transl Med*. **7**: 283rv283-283rv283.
- Sueta, K. (2000). Effectiveness of an educational trial to encourage sufficient calcium intake in women college students. *Kurume Med J.* **47**: 279-283.
- Sueta, K., and Fukuda, K. (1995). Epidemiological assessment of an intervention trial to increase calcium intake in female college students. *Kurume Med J.* **42**: 275-279.
- Sweet, S. N., and Fortier, M. S. (2010). Improving Physical Activity and Dietary Behaviours with Single or Multiple Health Behaviour Interventions? A Synthesis of Meta-Analyses and Reviews. *International Journal of Environmental Research and Public Health*. 7: 1720-1743.
- Talpade, M., and Caddell, T. (2015). Impact of HEALTH on food intake and decision making among African American students. *N Am J Psychol.* **17**: 287-300.

- Thompson, F. E., and Byers, T. (1994). Dietary assessment resource manual. *J Nutr.* **124**: 2245s-2317s.
- U.S. Department of Health and Human Services and U.S. Department of Agriculture (2015).2015--2020 Dietary Guidelines for Americans. U.S. Department of Health and Human Services and U.S. Department of Agriculture.
- Vartanian, L. R., Schwartz, M. B., and Brownell, K. D. (2007). Effects of Soft Drink

 Consumption on Nutrition and Health: A Systematic Review and Meta-Analysis. *Am J Public Health.* **97**: 667-675.
- Weaver, C. M. (2009). Should dairy be recommended as part of a healthy vegetarian diet? Point. *Am J Clin Nutr.* **89**: 1634s-1637s.
- Wilson, D. (2001). Practical Meta-Analysis Effect Size Calculator.
- Worsley, A. (2002). Nutrition knowledge and food consumption: can nutrition knowledge change food behaviour? *Asia Pac J Clin Nutr.* **11 Suppl 3**: S579-585.
- Yantcheva, B., Golley, S., Topping, D., and Mohr, P. (2016). Food avoidance in an Australian adult population sample: the case of dairy products. *Public Health Nutr.* **19**: 1616-1623.

Table 1 Electronic database search: Medline

Search ID number	Search terms	Results
Search 1D humber	Young Adult/	473361
2	Students/	
2		40762
3	Youth* .tw	41829
4	(Young* adj2 (adult* or person* or	89813
Ę	people)).tw.	12770
5	College student*.tw.	12779
6	University student*.tw.	7540
7	or/1-6	2009668
8	exp Dairy Products/	79847
9	Calcium, Dietary/	12999
10	or/8-9	91783
11	Telemedicine/	13171
12	Electronic Mail/	2075
13	exp Internet/	57138
14	Mobile Applications/	819
15	exp Cell Phones/	6658
16	Telephone/	9838
17	Reminder Systems/	2550
18	Social Networking/	1337
19	Information Dissemination/	11843
20	Computer Systems/	11937
21	Ehealth*.tw.	762
22	Mhealth*.tw.	342
23	E-health*.tw.	1132
24	M-health*.tw.	108
25	Mobile health.tw.	592
26	Telehealth.tw.	1668
27	Text*.mp. [mp=title, abstract, original	78307
	title, name of substance word, subject	
	heading word, keyword heading	
	word, protocol supplementary concept	
	word, rare disease supplementary	
	concept word, unique identifier]	
28	SMS.tw.	3117
29	Health messag*.tw.	1392
30	Social media.tw.	1784
31	Electronic health.tw.	5165
32	Telecommunication.tw.	1013
33	Computer based.tw.	10083
34	Electronic Communication.tw.	561
35	Smartphone*.tw.	1397
36	Diet/	126793
30	DICU	140173

37	Mobile app*.tw.	396
38	Diet Records/	4359
39	Education, Distance/	2903
40	Food Preferences/	10770
41	Social Control, Informal/	3542
42	Social Support/	55800
43	Nutritional Sciences/	10778
44	Food Habits/	24013
45	Health Promotion/	58486
46	Education/	18872
47	Health Communication/	918
48	Health Literacy/	2445
49	Consumer Health Information/	2322
50	Health knowledge, attitudes, practice/	81149
51	Individual session*.tw.	540
52	Group session*.tw.	2242
53	Phone call*.tw.	1711
54	Dietary intervention*.tw.	4298
55	Dietary program*.tw.	144
56	Nutrition intervention*.tw.	1341
57	Nutrition program*.tw.	1636
58	Nutrition education*.tw.	2920
59	Education program*.tw.	19706
60	or/11-59	577665
61	7 and 10 and 60	1469
62	limit 63 to english language	1378

Table 2 Reach and representativeness of participants

A41	Т	To also in a suite sin	D	D	C4 1	D1:
Author, year, country, citation	Target population	Inclusion criteria	Recruitment methods	Participation	Study design and study arms	Baseline demographics (mean±SD)
					(n)	
(Bohaty et al.,	Young	Aged 19-30 years,	Information flyers posted	NR	B&A	Age: 22.3±3.1
2008), USA	females	not currently	at hairdressing school, a		I: 80	Sex: all females
<i>''</i>		pregnant or	fitness centre and a day		No control	Ethnicity: 98%
		breastfeeding and	care centre.		group	Caucasian
		able to speak, read			group	Other: 74%
		and write English				freshmen
(Ehlert, 2010),	College	Part of the	Email sent to EOF	NR	RCT	Age: 18 years:
USA	students	Education	students	1,11	1101	81%
		Opportunities			I: 40	Sex: 64% females
		Fund (EOF)			C: 38	Ethnicity: I: 50%
		program at			0.50	Black or AA
		University				C: 50%
						Hispanic or
						Latino
(Gerend and	College	Undergraduate	From on campus	NR	Non-RCT	Age: 18.45±0.86
Shepherd,	women	women	laboratory		141 (group	Sex: all females
2013), USA					numbers not	Som all remaies
					provided)	
					province,	Ethnicity: 82%
						White
(Ha et al.,	College	Healthy, 18-24	Sophomore level nutrition	NR	B&A	Age: 20.15±1.38
2009), USA	students	years and enrolled	class	1110	I: 90	Sex: 88% females
		in basic nutrition			No control	Ethnicity: 90%
		class			group	White
					8	BMI: 26.3±5.63
(Jung et al.,	College	Female, less than	Conducted during a	290 women met	RCT	Age: I: 18.4±0.66
2011), Canada	women	19 years of age,	campus club fair at	criteria	I: 67	C: 18.6±0.55
,,		living in university	McMaster University		C: 66	Sex: all females
		residence and	,		0.00	Som an romanos
		consuming less				
		than DRI for				
		calcium (as				
		reported in a FFQ)				
(Koszewski et	College	Female	Notice posted in school	PP: 22,000	RCT	Age: 20±3
al., 1990),	women	undergraduate	newspapers and	PR: 0.6%	I: 68	Sex: all females
USA		students	newsletters and personal	5000 contacted	C: 62	Other: 32%
			student contacts in			freshmen
			sororities, dormitories and			
			classes.			
(Kwon and	College	Students enrolled	Participants of a basic	NR	B&A	Age: 20.0±2.3
Chang, 2000),	students	in a basic nutrition	nutrition course		I: 187	Sex: 79% females
Korea	1	course			No control	BMI: 20.2±2.3
					group	
(Martinelli,	College sports	University	From a pool of recipients	PP: 105	B&A	Age: 21.6±2.4
2013), Italy	students	scholarship	of a university scholarship	PR: 6.7%	I: 7	Sex: 57% females
		athletes			No control	BMI: 25.4±2.3
					group	
(Peterson et	Young	Aged 18-30 years	Television and newspaper	255 responded to	RCT	Age:
al., 2000),	females	with low baseline	advertisements/flyers	recruitment	I: 62	I: 21.6±3.8
USA	1	calcium intake	distributed at the local		C: 60	C: 21.1±2.9
	1	(<700 mg/day)	businesses and Psychology			Sex: all females
			Department			Ethnicity: 33%
						minority
(Peterson et	College	18-23 years, have	Surveys distributed in	PP: 19,878	B&A	Age: 19.58±1.365
al., 2010),	students	a meal plan with	person during lunch and	PR: 1.4%	I: 288	Sex: 36% females
USA	<u> </u>	residence hall	dinner and person entering		No control	Ethnicity: 61%

		dining and eat at	the cafeteria were invited.		group	White/ Caucasian
		least 3 meals at the dining hall weekly				27% AA
(Poddar et al.,	College	No exclusion	Recruited from an	PP: 997	RCT	Age: I: 20.2±1.3
2010), USA	students	criteria	undergraduate elective	PR: 29.5%	I: 148	C: 20.2±1.5
			personal health course		C: 146	Sex: 55% females
						Ethnicity: 82% White
						11% Asian/ Pacific Islander
(Poddar et al.,	College	Enrolled in health-	Recruitment	PP: 980	RCT	Age: 20.2±0.1
2012), USA	students	related classes,	announcement on course	PR: 21.5%	I: 107	Sex: 57% females
		980 eligible to participate, no exclusion criteria	website, descriptive flyer emailed to students and direct recruitment during lectures		C: 104	Ethnicity: 73% White
(Shahril et al.,	College	18-24 years,	Students recruited from	NR	RCT	Age: I: 19.2±1.1
2013),	students	actively using	class lists based on		I: 205	C: 19.0±1.2
Malaysia		mobile phone, first or second year diploma or degree from management studies, healthy and able to read, write and understand Malay or English	eligibility criteria		C: 212	Sex: 81% females
(Sueta and	College	Students taking a	Students taking a dietitian	NR	Non-RCT	Age: 18 or 19
Fukuda,	women	dietitian course	course		I: 54	Sex: all females
1995), Japan					C: 54	
(Sueta, 2000),	College	Students taking a	Students taking a dietitian	NR	Non-RCT	Age: 18-19
Japan	women	dietitian course	course		I: 54	Sex: all females
				1	C: 54	10.5
(Talpade and	College	African American	Enrolled in a research	NR	B&A	Age: 18-26
Caddell,	students	students	class		I: 40	Sex: 80% females
2015), USA					No control group	Ethnicity: all AA
						BMI: 25.71

NR= not reported

B&A= before and after study design

I= intervention

BMI= body mass index;

PP= population pool

PR= participant rate

RCT= randomised controlled trial

C= Control

AA= African American

DRI= dietary reference intake

FFQ= food frequency questionnaire

Non-RCT= Non-randomised controlled trial

BMD= bone mineral density

Table 3 Intervention implementation and adoption

Author,					Interven	tion			
year, citation	Mode of contact	Frequency of contact	Setting	Dietary focus	Description	Theoretical construct	Study arms	Personnel	Duration (including follow-up)
(Bohaty et al., 2008), USA	Face-to- face	10 sessions	Community	Calcium and dairy only	45-min slide show presentation followed by group discussion, follow-up phone call and handouts;	SCT	I: educational intervention to increase calcium, vitamin D and dairy	Nurses	>8 wks (NR)
		1 f/u call at 8 wks post- intervention					No control group		
(Ehlert, 2010), USA	Face-to- face	4 sessions held every 3 wks	University	Calcium, dairy and other	Four sessions delivered in 1.5 hour segments; face-to-face session followed by discussion, questionnaire	SCT	I: SNAAKS curriculum	Questionnaire reviewed by nutrition and curriculum experts	14 wks
							C: non- nutrition curriculum		
(Gerend and Shepherd, 2013), USA	Face-to- face, handouts	One-off session	University	Calcium only	Participants were given 6 mins to read a pamphlet and received handouts to take home	Gain and loss framed messaging	I _I : gain- framed pamphlet	NR	~1 mo (NR)
		1 f/u at 1 mo post- intervention					I ₂ : loss- framed pamphlet		

(Ha et al., 2009), USA	Face-to-face	3 times per week	University	Dairy and calcium only	Traditional lecture with interactive activities. Participants met 3 times a week for 50 mins and completed a "Happy Body Log" to encourage behavior changes	NR	I: class- based nutrition intervention	NR	Spring Semester, ~15-16 weeks (NR)
							No control group		
(Jung et al., 2011), Canada	Face-to- face	One-off session, f/u by mail 7 and 24 wks post- intervention	University	Calcium	45 min seminar followed by second maildelivered intervention: OSC's 'Speaking of Bones' presentation and two pamphlets	НВМ	I: 20 gain- framed messages	Registered dietitian presented the seminar	52 wks
							messages		
(Koszewski et al., 1990), USA	Face-to- face	One-off session, food intake recorded 4 wks post- intervention	University	Calcium and other	15 min slide- tape presentation with Q&A session at the end	NR	I: slide- presentation	Data collection by trained graduate and undergraduate students	1 mo
							C: no presentation		
(Kwon and Chang, 2000), Korea	Face-to- face	NR	University	Dairy and other	Basic level nutrition course at the university	NR	I: nutrition course No control group	NR	Questionnaire collection for ≥2 wks (NR)

(Martinelli, 2013), Italy	Face-to-face, email	6 sessions over 5 mo	University	Calcium and other	Six sessions with interactive workshops on topics relevant to sports nutrition. Group emails sent for meeting times and other program details	NR	I: nutrition education programme No control group	Qualified sports nutrition professional and performance nutritionist	5 mo
(Peterson et al., 2000), USA	Face-to-face	3 sessions, f/u lab visit at 3 and 6 mo + call reminder before an appointment	University	Calcium only	Three calcium intervention sessions in small groups, explaining osteoporosis, sources of calcium and assessing change in intake	NR	I: behavioral/ nutrition intervention	NR	6 mo

(Peterson et al., 2010), USA	Paper	3 reminder emails sent out to record food intake	University	Dairy and other	A logo "The Right Stuff!" was created at point-of- selection to promote healthy foods. Card showing healthy choices and flyers/ signs distributed in the area.	NR	I: point-of-selection intervention	Content validity by registered dietitians	3 wks
(Poddar et al., 2010), USA	Electronic, online and email	Daily emails for the first 3 wks, then once every wk for the final 2 wks	University	Dairy only	Online course; posted information, behavior checklists and tailored feedback.	SCT	group I: web based nutrition education C: no intervention	Doctoral student in nutrition and 3 registered dietitians	5 wks
(Poddar et al., 2012), USA	Electronic/ online + face-to- face (optional)	Weekly- one module/ per wk. Social event held fortnightly (optional)	University	Dairy only	Online course management system (specifically developed for the study). Participants asked to complete weekly behavior checklists and social events providing nutrition education.	НВМ	I: dairy intervention based on SCT	A registered dietitian attended social events session to provide education and practical tips on increasing dairy	8 wks

(Shahril et al., 2013), Malaysia	Face-to- face, electronic/ text messaging	A total of 13 text messages sent every 5 days	University	Calcium, dairy and other	Multimodal intervention: conventional lectures, brochures and text messaging used	NR	C: stress management intervention I: multimodal intervention	Nutrition and public health s developed key messages, diet history and data analysis performed by a nutritionist	10 wks
							C: no intervention		
(Sueta and Fukuda, 1995), Japan	Face-to-face	One-off session, food intake recorded 1 wk and 1 yr post- intervention	University	Calcium only	National survey results shown, participants learnt to self-evaluate their eating pattern and set goals, 40 min videotape on why calcium is necessary and taught how to eat enough in their diet (Basic Foods List)	NR	I: calcium education	Basic Foods List developed by dietitians	12 mo
							C: no intervention		

(Sueta, 2000), Japan	Face-to-face	One-off session, food intake recorded 1 wk and 1 yr post- intervention	University	Calcium only	National survey 1991 results shown, participants learnt to self-evaluate their eating pattern and set goals. Education videotape on calcium intake screened and taught how to eat enough calcium in diet (Basic Foods List)	NR	I: calcium education C: no intervention	Video shown developed by a group of dietitians	12 mo
(Talpade and Caddell, 2015), USA	Face-to- face	Weekly sessions held over 2 wks, food intake recorded 3 mo post- intervention	University	Dairy and other	Two 50-min information sessions over two weeks;	Trans- theoretical stages of change model + theory of reasoned action	I: HEALTH intervention No control group	NR	4 mo

F/u= follow-up

SCT= Social Cognitive Theory

I= intervention

Wks= weeks

NR= not reported

MI- motivational interviewing

C= Control

Yrs= years

SNAAKS= Student Nutrition Action, Attitude, Knowledge and Skills

OSC= Osteoporosis Society of Canada

HBM= Health Belief Model

Q&A= Question and answer

GBTL= game based team learning

CDAS= cloud diet assessment system

Table 4 Study results and maintenance

Author, year, citation	Baseline to pos	st-intervention	Effect size (Cohen's d)	Attrition	Compared drop outs	Follow-up
(Bohaty et al., 2008), USA	Calcium: mg Pre: 961.3±477 Post: 905.0±510 P= 0.38 (NS)	Dairy: cups Pre: 0.7278±0.82 Post: 0.8608±0.88 P: 0.14 (NS)	NA, no control group	NR	NR	Yes, at wk 2 (phone call) wk 8 (dietary intake).
(Ehlert, 2010), USA	Calcium: Calcium- rich food servings	Dairy: frequency/day	Calcium: -0.037	Nil	NR	NR
	Pre: I: 2.35±1.18	Pre: I: 0.765 ±1.84	Dairy: 0.265			
	C: 2.42±1.44 Post:	C: 1.54 ±4.13 Post:				
	I: 2.42±1.45 C: 2.47±1.24	I: 1.51 ±2.77 C: 0.901 ±1.66				
(Gerend and	P: 0.020 B= 0.29	P: 0.800 (NS)	No control vs.	11% (n=15)	Yes, non-	Yes, participants
Shepherd, 2013), USA	No further information provided		intervention mean and SE/SD for calculation	1170 (H=13)	completers were similar to completers for all demographics	returned one month after intervention to provide intake data.
(Ha et al., 2009), USA	Calcium: mg Pre: 813.18±501.48	Total milk: fl.oz Pre: 5.40±9.57	No control vs. intervention mean and	11% (n=10) No control group	NR	NR
	Post: 858.21±373.11	Post: 6.43±11.27 P: 0.433 (NS) Milk: S, NR (females only)	SE/SD for calculation		1	
(Jung et al., 2011), Canada	Calcium intake (mg): Pre: I: 927±369 C: 891±286 Post: I: 1144±514 C: 813±286 P: <0.01		Calcium: 0.787	I: 24% (n=16) C: 29% (n=19)	NR	Yes, at week 8 (mail-delivered intervention), week 25 (mail-delivered intervention) and week 52 (diet assessment).
(Koszewski et al., 1990), USA	Calcium: mg Pre: I: 93±62 C: 116±73 Post: I: 99±71 C: 96±56 P> 0.05 (NS)		Calcium: 0.047	NR	NR	NR
(Kwon and Chang, 2000), Korea		Milk and dairy foods: mg Pre: Males: 484.9±232.5 Females: 405.0±233.3 Post: Increase in females, amount, NR Milk & dairy: S, NR (females only)	No control vs. intervention mean and SE/SD for calculation	NR	NR	NR
(Martinelli,	Calcium: mg	ivix (remaies omy)	No control vs.	Nil	NR	NR

2013), Italy	Pre: 924.9±365.1		intervention	T		
2013), 11111	Post: 1112.5±826.2	1	mean and			
	P: 0.510 (NS)	=	SE/SD for			
			calculation			
(Peterson et al.,	Dietary calcium		Calcium: 0.253	34% (n=42)	Yes, drop-outs had	Yes, at 3 and 6 mo
2000), USA	intake:			, ,	a significantly	for diet
,,	Pre:				lower baseline	assessment.
	I: 418.17±136.94				calcium intake	
	C: 470.15±155.81	1			compared to those	
	Post:	1			who completed the	
	I: 725.82±334.28				study	
	C: 634.16±302.44				,	
	Follow-up	=				
	I: 755.28±305.25	=				
	C: 676.96±315.00	=				
	P: <0.001	=				
(Peterson et al.,		Cottage cheese:	Calcium:	I: 64%	NR	NR
2010), USA				(n=184)		1
2010), 0511		P= 0.001		No control	1	
		1 = 0.001		group		
		(correlation		group	-	
		significant at the				
		p≤0.01 level)				
		Skim milk			╡	
					_	
(D. 11 1		P: NR, NS	37 . 1	T 00/	ND	ND
(Poddar et al.,		Dairy: total dairy	No control vs.	I: 9%	NR	NR
2010), USA		(servings/ day)	intervention	(n=13)	_	
		Pre:	mean and SE/SD for	C: 7%		
		T 1 5 1 1 6		(n=10)	_	
		I: 1.5±1.16	calculation		_	
		C: 1.4±1.17			4	
		Post: NR				
		P: NR, NS				
(Poddar et al.,		Dairy:	Dairy: 0.039	I: 16%	NR	NR
2012), USA				(n=17)		
		Pre: servings/day		C: 14%		
				(n=15)		
		I: 1.37±0.95				
		C: 1.97±0.94				
		Post: adjusted				
		I: 0.17±7.78				
		C: -0.13±7.45				
		P: 0.01				
Shahril et al	Calcium:	Dairy products:	Calcium: 0.629	I: 13%	Higher dropout rate in males	NR
2013 (Malaysia)	Pre:	Pre:	Dairy: 0.332	(n=27) C: 5%	(16%) vs females	
	110.	110.	Daily. 0.332	(n=10)	(8%) vs females	
	I: 312.6±100.1	I: 0.11±0.27	Milk: 0.498	(19)	1 ```'	
	C: 331.4±103.8	C: 0.05±0.14	3	1	1	
	Post:	Post:			1	
	I: 376.5±125.4	I: 0.13±0.27			1	
	C: 300.6±116.5	C: 0.06±0.14		-	†	
	P: <0.001	P: 0.005		-	†	
	1. <0.001	+		+	1	
		Milk:		+	4	
		Pre:		1	4	
		I: 0.08±0.27		+	4	
		C: 0.09±0.28			4	
		Post:			_	
		I: 0.26±0.40			_	
		C: 0.09±0.28			_	
		P: <0.001				
(Sueta and	Calcium (mg):		No SD or SE	Nil	NA	Yes, at one year to
	Pre:		reported for	1	i	collect dietary

Japan	I: 474	calculation			intake.
	C: 494				
	Post:				
	I: 516				
	C: 491				
	P: <0.05				
(Sueta, 2000),	Calcium (mg):	No SD or SE	I: 1% (n=1)	Only one person	Yes, at one year to
Japan	Pre:	reported for	C: 0	dropped out	collect dietary
	I: 474.4	calculation			intake
	C: 494.2				
	Post:				
	I: 418.8				
	C: 409.7				
	P>0.05 (NS)				
(Talpade and	Inter-item	No SD or SE	33% (n=13)	NR	NR
Caddell, 2015),	correlation matrix	reported for			
USA	for dairy: 1.000	calculation			
	No further				
	information reported				

Pre= prior to receiving intervention

Post= post-intervention

NS= not significant

NA= not applicable

NR= not reported

Wks= weeks

I= intervention

C= control

S= significant

Yrs= years

Table 5. Overall assessment of quality in 6 studies (1091 participants) of promotion of calcium or dairy intake using Grading of Recommendations Assessment, Development and Evaluation (GRADE) system (Atkins et al., 2004)

Category	Rating with reasoning		
Limitations	-2 quality level due to serious limitations		
Consistency	-1 quality level due to high heterogeneity score		
Directness	No subtraction of levels, as the population, outcomes and		
	study design are direct		
Precision	-1 quality level due to small sample size		
Publication bias	No subtraction of levels, not reported as it is not possible		
	to detect true symmetry when there are less than 10		
	studies		
Overall quality	Low; our confidence in the effect estimate is limited		

Table 6 Dietary quality of tools used to measure calcium and dairy intake

Study	Method	Validated tool	Dietary score: calcula criteria (Burrows et a	
(Bohaty et al., 2008)	Dietary record	No	1.5	Poor
(Ehlert, 2010)	SNAAKS questionnaire	No	3	Acceptable/ reasonable
(Gerend and Shepherd, 2013)	55-item FFQ	Yes (Ilich et al., 1998)	4.5	Good
(Ha et al., 2009)	3-day food record	No	2.75	Acceptable/ reasonable
(Jung et al., 2011)	3-day food record	Yes (Thompson and Byers, 1994)	2	Poor
(Koszewski et al., 1990)	Previous 24-hour food intake	No	1.5	Poor
(Kwon and Chang, 2000)	3-day recall	No	2	Poor
(Martinelli, 2013)	7-day food record	No	2.5	Acceptable/ reasonable
(Peterson et al., 2000)	Hertzler and Frary's rapid assessment questionnaire	Yes (Hertzler and Frary, 1994)	4	Good
(Peterson et al., 2010)	FFQ intake	No	2.25	Acceptable/ reasonable
(Poddar et al., 2010)	7-day food record	No	3.25	Acceptable/ reasonable
(Poddar et al., 2012)	7-day food record	No	2.75	Acceptable/ reasonable
(Shahril et al., 2013)	Dietary recall	No	3.25	Acceptable/ reasonable
(Sueta and Fukuda, 1995)	3-day weighted food record	No	2.25	Acceptable/ reasonable
(Sueta, 2000)	3-day weighted food record	No	2.25	Acceptable/ reasonable
(Talpade and Caddell, 2015)	Capturing meal before and after photo	No	1	Poor

Figure 1 Flow diagram showing selection of studies

Figure 2 A forest plot of Cohen d effect size for interventions reporting calcium intake

Figure 3 A forest plot of Cohen d effect size for interventions reporting dairy intake