COSC 3340 Examination 2 Monday, March 30, 2009, 1 – 2:30 pm Open Book and Notes

- 1. Prove that the language L(G) is not regular where G is the following context-free grammar: $G = (\{S,A,B\}, \{a,b\}, \{S\rightarrow A|aB, A\rightarrow b, B\rightarrow Sa\}, S)$. Note: You must first determine L(G).
- 2. Eliminate all ε -productions in the following cfg G: $G = (\{S,A,B\}, \{a,b,c\}, \{S\rightarrow aAb|AB, A\rightarrow cS|\varepsilon, B\rightarrow Sb|\varepsilon\}, S).$
- 3. Construct a reduced dfa for the following extended regular expression over the alphabet $\{0,1,2\}$ (not $\{0,1\}$!):

 $[(001)^* \cap \overline{0(01^*)^*}]^*$ Note: You <u>must</u> first determine nfas for $(001)^*$ and $0(01^*)^*$, then handle the intersection, and then deal with the star. Finally reduce the resulting dfa. Consider de Morgan's laws!

- 4. Construct a Chomsky normal form grammar for L(G) for the following cfg G:

 G = ({S,B}, {å,b,c,d}, {S→aSBB|cd, B→cSdB|S|cba}, S).

 Note: You must first remove all unit productions.
- 5. Construct a Greibach normal form grammar for L(G) for the following CNF G:

 G = ({S,A,B}, {a,b}, {S \to AA, A \to BS|b, B \to SA|a}, S).

 Note: First derive all the productions for S, A, and B. You may only indicate how the final result looks for whatever primed variables you obtain.

Points: 1: 15 2: 10 3: 30 4: 15 5: 30

1 Anguar		1110	
1 Answer	Pulling torre du ation	2 10	
we have the	following productions	3 30	
*	S-> AlaB	4 15	
	$1 \rightarrow b$.		
	3 → Sa	5 30	
	(G) from above	100	2 2 2
$S \rightarrow aB \rightarrow a$	Sa → aaBa → aa		$a^2 \rightarrow a^3 S a^3 \rightarrow \cdots$
V A	[№] aAa	a^2Aa^2	
Ь	aba	a^2ba^2	***
· · · · · · · · · · · · · · · · · · ·			
So, the lan	guage of grammer G	will be	
L(G) =	$fa^nba^n/n > 0$		
Assume LC	G) is a regular lang	uage, so Idfo	a D which has
n states			
Consider x	$= a^n b a^n = wu, and w$	$=a^n, u=b$	$a^{\overline{n}}$
	= n, we can apply		
	$W_1W_2W_3$ St. $ W_2 $		
_	, w) = I (go, w, (w2)	_	
	- V		
Consider	S = 0	V 15	-
	[(go, w) = [(go, w)	W3)	
WC 700.0 C	2000,000		
RIIT WW	$ 3 = n - w_2 \le n$,	SO T. (90, 11/1/2)	1667
101, 101,	51-10 10-12 10).	30 GCJ0/W1W52 4	200)
Cm 00 7 10-	(w) & LCG), but z	(P= W.W2) &	1 (6)
•	have a contradiction		(101)
Trive, we	rave a consideration	1616	
Thun I (a)	in mal marilar	<u> </u>	
I Mus, LLO)	is not regular.		

2	Answer
-	71163001

 $S \rightarrow aAb \mid AB$ $A \rightarrow cS \mid \mathcal{E}$ $B \rightarrow Sb \mid \mathcal{E}$

0 Eliminate $A \rightarrow 2$

S⇒aAblablABlB A⇒cS

3 Eliminate B→ &

S-aAblablABlA|BlE

A -> cs

B → Sb

3 Eliminate S→ 2

S- aAblab | AB | ALB

A -> cS c

B → Sblb'

2
3 Answer We have $[(001)^* \cap 0(01^*)^*]^*$
According to Morgan's Law, we could have:
T =
[(001)* U 0(01*)*] \/
012 012 012
$\Rightarrow 01 - 0 \Rightarrow 04 - 0 \Rightarrow 05 - 0 \Rightarrow 0 - 6 - 1$
120 4151 61-6-1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
ly.
$\frac{1}{304-0} \rightarrow 05-0$
0 1 2 4 5 1 5 - 6 - 1
>011/556-1/61-6-1
1.20/6/5/6-11
$\frac{2-3-0}{2}$
311
DFA 5 5 6 - 1
0 1 2 0 1 2 6 5 6 - 6 0 1 2
POI I PABCCO
1 2 O Rename, BD CC O flip, BD. C-C 1-
0 CCCCO RCCCI
2-3-0 $DCECO$ $DCECI$ 311 $EBCCI$ $EBCCO$
311 EBCCI EBCCO
Please turn to the next page
THX!

3	continued

3 continued
012
U > A B.4 C C O DFA → A B4 C C O
B D C C 1 84 D5 C C 1
CCCI
D C E C 1 D5 C5 E6 C 1
EBCCO C5 C5 C6 C
451/E6/B5 C6 C1
5 5 6 - 1 S 66 C5 C6 C 1
656-1 B5 D5 C6 C1
012
Rename 1.12 2 3 1
71 2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
$\frac{1}{2}$
450
3 5 1 1 1 1 C 7 3 D
<u> </u>
=======================================
* 22115678 1
2 4 3 3 0 B A
3 3 3 0 0 1 2
4 5 6 3 0 Rename -> A B B B I
5 5 7 3 0 B B B B O
68730
75730
8 4 7 3 0.

4 Answer
S→aSBB1cd
B→cSdBISIcba.
O Eliminate B→S
S = aSBB aSSB aSBS aSSS cd
B⇒cSdB cSdS cba
@ Construct CNF
1> S→ XaSBB XaSSB XaSBS XaSSS XcXa
B-> Xc(S,XaB) XcSXaS XcXbXa
Xa-a, Xb-b, Xc-c Xd-d
∠2> S→ XaSı XaS3 XaS5 XaS7 XcXd
$S_1 \rightarrow SS_2$
$S_2 \Rightarrow BB$
$S3 \rightarrow SS4$
$S_4 \rightarrow SB$
Ss→SS6
$S6 \rightarrow BS$
$S_7 \rightarrow SS_8$
$S_8 \to SS$
B → Xc B ₁ Xc B ₃ Xc B ₅
$B_1 \rightarrow SB_2$
$ \begin{array}{c c} B_2 \rightarrow XdB \\ R_2 \rightarrow SR_{\parallel} \end{array} $
<u> </u>
Bs → Xb Xa Xa → a
Xb->b
, , , , , , , , , , , , , , , , , , ,

5 Answer
$S \rightarrow AA$
$A \rightarrow BS \mid b$
B → SA a
,
i= It's ok
i=2 It's OK
$\dot{i}=3$
$j=1$ Replace $S \rightarrow AA$, we have :
B -> AAA a
, ,
j=2 Replace A > BS/b, we have:
B-> BSAA bAA a
Now, we have no left recursion, so we have
$B \Rightarrow bAA a bAAB' aB'$
B' → SAA SAA B'
Now, putting production of B into A, we have
A -> bAASIaS bAAB'S aB'S b
Using A, we find production of S,
S > bAASA aSA bAAB'SA aB'SA bA
<i>•</i>)℃
So, we have
S-> bAASA asA bAAB'SA aB'SA bA
A > bAASI aS bAAB'S aB'S b
B > bAA a bAAB' aB'
$B' \rightarrow SAA \mid SAAB'$