PATENT ABSTRACTS OF JAPAN

(11)Publication number:

62-116915

(43)Date of publication of application: 28.05.1987

(51)Int.CI.

G02B 13/00

(21)Application number : 60-257231

(71)Applicant: CANON INC

(22)Date of filing:

15.11.1985

(72)Inventor: MATSUI HIROSHI

(54) CONDENSER LENS FOR OPTICAL MEMORY

(57)Abstract:

PURPOSE: To compensate aberrations excellently and to compact a condenser lens by compositing the lens of the 1st positive lens group, the 2nd negative lens group, and the 3rd positive lens group successively from a light source side and satisfying specific conditional inequalities.

CONSTITUTION: The lens system has the 1st positive lens group L1, the 2nd negative lens group L2, and the 3rd positive lens groups L3 successively from the light source side, and the conditional inequalities IWV hold, where R1 is the curvature of the surface of the lens L1 on the light source side, R3 and R4 the curvature values of the lens L2 on the light source side and image side, R6 the curvature of the image-side surface of the lens L3, D4 the air gap between the lenses L2 and L3, F the focal length of the whole system, F1.2 the composite focal length of the lenses L1 and L2, and F1 and F2 the focal lengths of the lenses L1 and L2 respectively. Consequently, the aberrations are compensated

excellently and the condenser lens for optical memory which consists of a small number of lens elements is realized.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's

decision of rejection]
[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

⑩ 日本国特許庁(JP)

の特許出願公開

⑩ 公 開 特 許 公 報 (A) 昭62-116915

@int_Cl_4

識別記号

庁内整理番号

母公開 昭和62年(1987)5月28日

G 02 B 13/00

8106-2H

審査請求 未請求 発明の数 1 (全6頁)

図発明の名称 光メモリ用集光レンズ

> 创特 顧 昭60-257231

御出 願 昭60(1985)11月15日

@発明者 居 川崎市高津区下野毛770番地 キャノン株式会社玉川事業

所内

キヤノン株式会社 ⑪出 願 人

東京都大田区下丸子3丁目30番2号

弁理士 丸島 麓一

1. 発明の名称

光メモリ用集光レンズ

- 2. 特許請求の範囲
- (1) 光観側から順に、正の第1群レンズLLと 負の第2群レンズL2と正の第3群レンズL 3とを有し、以下の条件を摘及する光メモリ 用集光レンズ。
 - (1) 0 < R 1 / | R 3 | < 1.5 , R 3 < 0
 - (2) 0 < 1 / | R 4 | < 0. 0 3 5 / F
 - (3) 2.9 F < R 6 < 9 F
 - (4) -0.1 < D4 / F1.2 < 0.1
 - (5) 1. 0 5 < F 1 / F 2 < 0. 0 5

ただし、R1はL1の光熱側面の曲率

R3、R4はL2の光数傾面及び徐何 面の曲本

R6はL3の機側面の曲率

D 4 は L 2 と L 3 の 軸上空 悠間 隔

F . F 1 . 2 は各 4 全 系 及 び し 1 .

L2の合成焦点距離

F1,F2は各々L1,L2の焦点 距線

を示す。

- (2) 前紀第3群レンズL3の無点距離をF3. 前記第1 群レンズ L 1 の像側面と前記第2 群 レンズL2の光数側面と夫々の面の間の空気 間隔とで構成される空気レンズの焦点距離を Fa,第1群レンズLlの光数側面から第3 群レンズL3の像側面までの軸上面間隔をT Dとする時、
 - (6) -1.05 < F3 / F2 < -0.05
 - (7) 0.3 < F3 / F1 < 1.0
 - (8) -15F< Fa<-2F
 - (8) 0. 4 F < T D < 2 F

の各条件を猶足することを特徴とする特許請求 の範囲第(1) 》項記載の光メモリ用災光レ ンズ.

- 3. 英明の詳細な説明
- (1) 技術分野

、木発明はディスク状やカード状の記録媒体に

記録されている情報を光学的に再生したり、或はこの程の記録媒体に光学的に情報を記録する 為に用いられる光メモリ用集光レンズに関する。

(2) 從來技術

従来、光ディスクや光カード等の光メモリに 於るピックアップに用いる集光レンズ(又は対物レンズ)に関して種々の提案が成され、又、 実用化されているレンズ系も幾つかある。

この種の光メモリ用集光レンズには、微細な記録パターンを再生したり記録したりする為に、高解像力が要求され、その上間口数(トリーの変分明るいものにする必要がある。又、これによって無点保度が後なるのである。 日動 塩点合わせ手段(オートフォーカス)によってレンズを 独力向に移動させ、 走変 の ピント ずれに対して 敏感に 応答させる 必要 が 生ずる。 従って、 レンズ系はできるだけ 軽 数 を かくすることが 要求されてきた。 更に

を良好に補正出来、構成レンズ枚数が少ないコンパクトな光メモリ用集光レンズを提供することにある

- (1) 0 < R 1 / | R 3 | < 1.5, R 3 < 0
- (2) 0 < 1 / | R 4 | < 0.0 3 5 / F
- (3) 2.9 F < R 6 < 9 F
- (4) -0.1 < D 4 / F 1.2 < 0.1
- (5) 1.05 < F1 / F2 < 0.05</p>
 を 構足する 光メモリ用 集光 レンズにより上記目

面から考えても協攻が簡単で且つ製作が容易なものとすることが必要であった。 又、 光ディスクに於ては、 高速回転し多少のゆらぎを伴うディスク上のトラックを追従しなければいけない 為、ディスクとレンズとの間には十分な作動距離が必要で、且つ又像が平坦であることも要求されていた。

その他ノイズ対策として、使用被長の光の透過率をできるだけ高くする必要がある為にレンズ表間に多層限反射的止限を施さなければならず、この点からも低価格化への要求と考えると 構成レンズ枚数は少ない方が有利である。

しかしながら、従来の光メモリ用集光レンズは上記要求の幾つかは満たすものの、充分に満足出来るレンズ系とは言えず、更に高性能で、 且つ安価なレンズ系を要求される現在の状況に応じた光メモリ用集光レンズを提供することが 出来なかった。

(3) 発明の概要

木 発明の目的は、上記稿要求を満足し、収益

的を達成せんとするものである。

(4) 实施例

以下、本発明に係る光メモリ用集光レンズの 実施例を示す前に、前記各条件(1)~(5) に関して説明する。

条件(1)は、球面収益を良好に補正するためのものであり、この範囲を越えると第2群レクンズL 2人光 歌像の面で発生する正の球面収益が大きくなりすぎ球面収差が補正加剰となる。

条件(2)は球面収差とコな収差補正に関する項である。即ち、第2群レンズL2の曲率 R 4 が正の場合には曲率 R 4 が 0.0 3 5 / F より大きくなると正の球面収益の発生量が大きくなりすぎるとともに外向コマの発生が大きく、補正の取るには、曲率 R 4 が 9 の 3 5 / F より小さくなると 1 の球面収益処生量が大きくなりすぎるとともに、外向コマの発生が大きく、補正困難となる。

条件(3)は、コマ収益を良好に補正するため

のものであり、 第3 群レンズ L 3 の曲率 R 6 が 2.9 F より小さく なると内向コマが発生し、 逆に 9 F より大きくなると外向コマの発生が大きくなり補正が困難となる。

条件(4)は例えば光ディスクが光軸方向に 変位した場合、レンズと接触しないように、十 分大きな作動距離を得る為の条件である。 D 4 ノF 1.2 が 0.1 より大きくなると十分大きな作 動距離を取ることができなくなり、 - 0.1 より 小さくなると第1 群レンズ 1. 第2 群レンズ 1.2 の負の合成屈折力が強くなりすぎ、第3 群 レンズ 1.3 の正の屈折力を必要以上に強くしな ければならず、収差補正上紅ましくない。

条件(5)は第1群レンズL1の無点距離を定め第1群レンズL1での負の球面収差発生量を制御して球面収差を良好に補正するためのものである。ド1/F2が-0.05より大きくなると第1群レンズL1の負の球面収差が大きくなりすぎ、第2群レンズL2で発生する正の球面収差で補正することがむずかしくなる。一方、

ズ L 1、第 2 群 レンズ L 2、第 3 群 レンズ L 1 と 第 2 群 レンズ L 1 の 依 何 面 と 第 2 群 レンズ L 1 の 依 何 面 と 第 2 群 レンズ L 2 の 登 気 同 面 と 、 そ の 間 の 空 気 間 隔 と で 橋 成 ざ れ る 空 気 レンズ の 然 点 距離を、 T D は 第 1 群 レンズ L 3 の 像 例 面 と の 間 の 動 上 面 間 縣 を 示 す・

以下に上記条件(6)~(9)に関して説明を行なう。

条件(6)は、第2群レンズL2の無点距離を定め、第2群レンズL2での正の球面収差の発生量を制御して球面収差を良好に補正する為の条件である。即ち、F3/F2が一0.05 より大きくなると第2群レンズL2での正の球面収差を開び出ることが図りまる。 1 及び部3 群レンズL3の正が図 2 年 となりすぎなの正の球面収差発生量が大きくなります。 1 つ 5 より小さくなると第2 年 りすぎな

- 1.05より小さくなると第1群レンズ L 1 の Ωの球面収差が小さくなりすぎ、第2群レンズ L 2 で発生する正の球面収差によって補正加剰 となる。

以上の勘条件(1)~(5)を協たす構成と すれば本発明に係る光メモリ用祭光レンズを実 現することができるが、以下の条件を付加する ことで更に高性能の光メモリ用祭光レンズを実 現することができる。

- (8) -1.05 < F3/F2 < -0.05
- (7) 0.3 < F3 / F1 < 1.0
- (8) -15F < Fa < -2F
- (8) 0.4 F < T D < 2 F

但しここで、R 1 は第1群レンズ L 1 の光類側面の曲率を、R 3 は第2群レンズ L 2 の光類側面の曲率を、R 4 は第2群レンズ L 2 の像側面の曲率を、R 6 は第3群レンズ L 3 の像側面の曲率を、D 4 は第2群レンズ L 2 と第3群レンズ L 3 との間の軸上空気間隔を、F は全系の無点距離を、F 1 、F 2 、F 3 は各々第1群レン

面収差が補正加剰となる。

条件(8)は第1群レンズL1の像側面と第2群レンズL2の光熱側面とその間の空気間隔とで構成される空気レンズの焦点距離を定め、この空気レンズで発生する正の球面収益を制御して球面収益を良好に制正するためのものである。ここで、この空気レンズの焦点距離Faが

- 2 F より大きくなると空気レンズの正の球面 収差発生量が大きくなりすぎ補正加利となる。 一方、F a が - 1 5 F より小さくなると空気レ ンズの正の球面収差発生量が小さくなりすぎ納 1 群レンズ L 1 の光源傾面で発生する負の球面 収差を補正することが困難となる。

条件(9)は、本発明による光学系を小さく する為の条件であり、TDが 0.4 F より短かく なると、十分なレンズ肉厚及びコバ厚をとるこ とができず、製造上困難となる。又TDが2 F より長くなるとレンズが大きく重量が増加する ことから钎ましくない。

以上取明した各条件、特に条件(1)~ (5)を満たすことにより、本発明に係る光メ モリ用集光レンズはこの種のレンズ系に対する 結要求を満たし、高性能でコンパクト且つ安価 なレンズ系となる。次に本発明の実施例を示す。

第1回及び第2回、第3回及び第4回、第5回及び第6回は失々本発明の第1実施例から第

収益及び歪曲収益をも補正が可能となるレンズ 系を成し得た。

下記の表1A、1B~表3A,3Bに上記第 1 実施例から第3 実施例に示すレンズ系のレン ズデータと種々の設計値を示す。裏中、Ri (1=1,2,3 ----) は光振側から数えて 第1番目の面の曲事を、Dl(i=1,2,3 ----) は光額側から数えて第1番目の面と第 [+] 番目の面との軸上空気間隔又は軸上肉厚 を、 N i (i=1,2,3) 及び V i (i= 1,2,3,)は失々光額側から数えて称「番 目のレンズの彼長入=0.78μ皿に対する屈折 率とD線に対するアツベ数を、NAは閉口数. WDは作動距離、Fは全系の焦点距離、Fi (1=1、2、3)は光報側から数えて第1番 目のレンズの焦点距離、Fl,2は第1群レン ズレ1と節2群レンズL2との合成焦点距離. Faは折し群レンズLLの像側面と第2群レン ズ L 2 の 光 森 倒 面 と 夫 々の 面 の 間 の 空 気 間 昭 と で構成される空気レンズの焦点距離、TDは第 3 実施例の光学系断面図とその光学系収差図を 示す。 断面図に於て、L1は邳1群レンズ、L 2は前2群レンズ、L3は第3群レンズ、Pは 記録面の保護膜、WDは第3群レンズL3の像 側前と保護膜Pとの間の距離(作効距離)、R i (i = 1 . 2 . 3 ----) は光源側から数え て第1番目の面を、Di (l=1,2,3 ----) は光原側から数えて節(香目と第1 + 1 番 目の面間の軸上間隔を示す。又、収益図は、各 実施例の球面収益と非点収益と歪曲収益を示し ており、図中S.Aは球面収差、S.C正弦条 件、Mはメリジオナル方向、Sはサジタル方向 を指す。各断面図に示す様に、本発明に係る光 メモリ用塩 光レンズは光額側から順に正の射 1 群レンズL1と負の筋2群レンズL2と正の筋 3 群レンズL3とから構成され、前記(1)~ (5)の条件を満足する様に設計されている。 又、各収益図から解る様に、球面収益はもちろ んの本、正弦条件を満足することから軸上近傍 でのコマ収益も良好に補正出来、且つ又、非点

1 群レンズ L 1 の光想領面から第 3 群 レンズ L 3 の 像 質面 までの 積上面間隔を示す。 尚、 表中の 値は 開口 数 N A を 除いて全て全系の 焦点距離で 見格化されたものである。(F = 1.0)

表1A

<u></u>	植上空気間期 又は軸上肉厚	Æ	折	#	アッペ数
R2 = -15.046 $R3 = -1.804$ $R4 = -71.858$	D 2 = 0.1 2 D 3 = 0.1 2 D 4 = 0.0 2	N 2 =	1.53	679	> 1 = 2 0.9 > 2 = 6 2.9 > 3 = 4 4.2

麦 1 B

1	N A	₩D	F	F 1	F 2	F 3	F 1,2	Ft	TD
	0.45	0.49	1.0	1.80	-3.42	1.2 4	3.40	- 6. 4 6	0.72

表 2 A

血 事	輸上空気間隔 又は輸上肉厚	歷	折	*	アッペ数
R2 = -12.923 $R3 = -2.023$ $R4 = -49.533$	D 2 = 0.1 2 D 3 = 0.1 2 D 4 = 0.0 8	N 2 =	1.5 1	699	y i = 40.8 y 2 = 58.4 y 3 = 32.1

以上示した各実施例は前記条件(1)~ (5)のみならず、条件(8)~(9)をも構たす高性能のレンズ系であるが、本発明に於ては必ずしも条件(6)~(9)を満足しなくても充分な性能を有するレンズ系を得る事が出来る。更に、本発明の思想に基づいて設計されたレンズ系であれば上記実施例と略々同等の効果を得ることが出来、その構成も多種多用なもの

又、前述の如く本光メモリ用集光レンズは、 光学的に情報を記録又は/及び再生する光ディスク、光磁気ディスク、光カード等の各種光メモリに適用可能で、記録方式、媒体形状等は限定されない。即ち、本光メモリ用集光レンズを 適用する装置、使用に併せて設計を行なうものである。

(5) 発明の効果

が考えられる。

以上説明した様に、本発明に係る光メモリ用 数光レンズは、球面収益、コマ収差、非点収 並、歪曲収益が良好に補正され、且つ充分な作

要 2 B

1	3. 55	wD						F&	
	0.45	0.44	1.0	1.74	4.08	1.3 4	2.82 3.28	- 8. 1 5	0.74

表 3 A

a *	聯上空気間隔 又は輸上肉厚	座析	F	アツベ数
R2 = -9.950 $R3 = -1.848$ $R4 = -38.693$	D2 = 0.07 D3 = 0.21 D4 = 0.10	N1=1.819 N2=1.492 N3=1.774	9 4	v 2 = 6 5.0

表 3 1

Γ	N A	ФD	F	F I	F 2	F 3	F 1,2	F 4	TD
6	.45	0.50	1.0	1.83	-3.96	1.24	3.1 8	- 8. 1 6	0.80

動距離と開口数を有したコンパクトで高性能な レンズ系である。

4. 図面の簡単な説明

第1 図及び第2 図は本光メモリ用集光レンズの第1 実施例を示す光学系断面図とその収益図。第3 図及び第4 図は本光メモリ用集光レンズの第2 実施例を示す光学系断面図とその収益図。第5 図及び第6 図は本光メモリ用集光レンズの第3 実施例を示す光学系断面図とその収益図。

L 1 ----- 第 1 群レンズ、

L2 ----- 第2群レンズ、

L3 ----- 摂3群レンズ.

P ----- 記録面の保護膜、

S . A ---- 球面収差,

S . C ---- 正弦条件.

M ----- メリジオナル方向、

S ----- サジタル方向・

他願人 キヤノン株式会社 代理人 丸 島 協 一

第1図

第2回

第3回

第4図

第5回

第6回

