Show that the set H of all points in \Re 2 of the form (3s, 2+5s) is not a vector space by showing that it is not closed under scalar multiplication. (Find a specific vector \mathbf{u} in H and a scalar c such that $c\mathbf{u}$ is not in H.)

Determine if the set H of all matrixes of the form is a subspace of M_{2x2} .

а	b
0	d

Let W be the set of all vectors below. a, b, c represent arbitrary real numbers. In each problem below, either find a set S of vectors that spans W or give an example to show that W is not a vector space.

Let H be the set of all vectors of the form Find a vector v in \mathcal{R}^3 such that H = Span { \mathbf{v} }. Why does this show that H is a subspace of \mathcal{R}^3 ?

s	
3s	
2s	

Let H be the set of all vectors of the form Show that H is a subspace of \mathcal{R}^3 .

2t
0
-t

Let W be the set of all vectors of the form where b and c are arbitrary. Find vectors \mathbf{u} and \mathbf{v} such that $W = \operatorname{Span} \{ \mathbf{u}, \mathbf{v} \}$. Why does this show that W is a subspace of \mathscr{R}^3 ?

Let
$$v_1 = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$$
 $v_2 = \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix}$ $v_3 = \begin{bmatrix} 4 \\ 2 \\ 6 \end{bmatrix}$ $w = \begin{bmatrix} 3 \\ 1 \\ 2 \end{bmatrix}$

- 1. Is \mathbf{w} in { \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 }? How many vectors are in { \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 }?
- 2. How many vectors are in Span { \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 }?
- 3. Is **w** in the subspace spanned by { \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 }? Why?

Using
$$\mathbf{v}_1$$
, \mathbf{v}_2 , and \mathbf{v}_3 from above; let $\mathbf{w} = \begin{bmatrix} 8 \\ 4 \\ 7 \end{bmatrix}$

Is \mathbf{w} in the subspace spanned by { \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 }? Why?

Determine if \mathbf{y} is in the subspace of \mathcal{R} 4 spanned by the columns of A, where

Consider the following system of homogenous equations:

$$+ x_1 - 3x_2 - 2x_3 = 0$$

 $- 5x_1 + 9x_2 + x_3 = 0$

Write this system in matrix form.

Determine if **u** belongs to the null space of A. $u = \begin{bmatrix} 5 \\ 3 \\ -2 \end{bmatrix}$

Let H be the set of all vectors in \mathcal{R}^4 whose coordinates a, b, c, d satisfy the equations

$$\circ$$
 a - 2b + 5c = d, and

$$\circ$$
 c - a = b

Show that H is a subspace of \mathcal{R}^4 .

Find a spanning set for the null space of the matrix A. A = 1 -2 2 3

Find a matrix A such that W = Col A. $W = \begin{bmatrix} 6a - b \\ a + b \\ -7a \end{bmatrix}$: a, b in \Re^n

If the column space of A is a subspace of \mathcal{R}^k , what is k? If the null space of A is a subspace of \mathcal{R}^k , what is k?

Using A from above, let \mathbf{u} and $\mathbf{v} \mapsto$

Determine if **u** is in Nul A. Could **u** be in Col A? Determine if **v** is in Col A. Could **v** be in Nul A?

Using A from above, find a nonzero vector in Col A and a nonzero vector in Nul A.

Consider the following two systems of equations:

It can be shown that the first system has a solution. Use this fact to explain why the second system must also have a solution (without making row operations).

Determine whether w is in the column space of A, the null space of A, or both, where

$$W = \begin{bmatrix} 1 \\ 1 \\ -1 \\ -3 \end{bmatrix} & A = \begin{bmatrix} 7 & 6 & -4 & 1 \\ -5 & -1 & 0 & -2 \\ 9 & -11 & 7 & -3 \\ 19 & -9 & 7 & 1 \end{bmatrix}$$

Given an $\mathbf{m} \times \mathbf{n}$ matrix A, an element in Col A has the form $A\mathbf{x}$ for some \mathbf{x} in \mathcal{R}^n . Let $A\mathbf{x}$ and $A\mathbf{w}$ represent any two vectors in Col A.

- 1. Explain why the **zero vector** is in Col A.
- 2. Show that the vector $A\mathbf{x} + A\mathbf{w}$ is in Col A.
- 3. Given a scalar c, show that c(Ax) is in Col A.

Find an explicit description of Nul A by listing vectors that span the null space.

$$A = \begin{bmatrix} 1 & -2 & 0 & 4 & 0 \\ 0 & 0 & 1 & -9 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Determine if **w** is in Nul A.

Find A such that the given set is Col A.

2s + 3t	
r + s - 2t	: r, s, t real
4r + s	. 1, 5, t leal
3r - s - t	

b-c	
2b + c + d	: b, c, d, real
5c - 4d	. b, c, u, rear
d	

Suppose you know that the equations $A\mathbf{x} = \mathbf{v}$ and $A\mathbf{x} = \mathbf{w}$ are both consistent. What can you say about the equation $A\mathbf{x} = \mathbf{v} + \mathbf{w}$?

Show that W is a subspace of \mathcal{R}^3 in two different ways.