Reto 1: Procesamiento de Cosechas

Dataset: Cosechas Cosechas 2023b.csv

Variable de análisis: Toneladas Cosechadas

© Objetivo: Preprocesar la variable de producción para prepararla para modelos de análisis o predicción.

Pasos detallados:

1. Cargar los datos:

- o Leer el archivo CSV.
- o Ignorar la primera fila si contiene títulos repetidos o vacíos.
- o Verifica que las columnas sean: Empresa, Especie, Toneladas Cosechadas, Periodo Información.

2. Limpiar y convertir:

- o Asegúrate de que la columna Toneladas Cosechadas esté en formato numérico.
- o Reemplaza comas por puntos si es necesario.
- o Elimina filas con valores nulos o faltantes en columnas clave.

3. Codificación de variables categóricas:

- o Aplica One-Hot Encoding a las columnas:
 - Empresa
 - Especie
 - Periodo Información
- o Conserva las columnas codificadas y descarta las originales.

4. Escalamiento de la variable numérica:

- o Escala Toneladas Cosechadas utilizando:
 - StandardScaler: centra los datos en media 0, std=1.
 - MinMaxScaler: convierte los datos al rango [0, 1].
 - RobustScaler: usa mediana e IQR, útil si hay outliers.

5. Transformaciones matemáticas:

- o Aplica transformaciones sobre Toneladas Cosechadas:
 - np.log1p(): para reducir sesgo positivo.
 - np.sgrt(): para reducir varianza en datos grandes.
 - PowerTransformer(method='yeo-johnson'): mejora normalidad.

6. Normalización:

o Usa Normalizer para escalar cada fila a una norma de 1.

7. Visualización KDE:

- o Genera gráficos de densidad (sns.kdeplot) para comparar:
 - StandardScaler, MinMaxScaler, RobustScaler.
- o Guarda la figura como .png.

8. Resumen estadístico:

o Calcula y quarda la media y desviación estándar de cada técnica.

9. Interpretación automática en HTML:

- o Crea una tabla en HTML que explique:
 - Cómo cambió la distribución.
 - Qué transformación normalizó mejor.
 - Cuáles técnicas serían más útiles para un modelo de regresión.

🔷 Reto 2: Agrupación de Producción por Empresa

Dataset: Cosechas_Cosechas_2023b.csv

🔍 **Variable de análisis:** Toneladas agregadas por Empresa

⊘ Objetivo: Agrupar datos y analizar la producción total por empresa, aplicando transformaciones.

Pasos detallados:

- 1. Cargar y preparar los datos:
 - o Leer el CSV.
 - o Convertir Toneladas Cosechadas a tipo numérico.
- 2. Agrupar los datos:
 - o Agrupa por Empresa.
 - o Calcula la suma total de Toneladas Cosechadas por empresa.
- 3. Codificación:
 - o Aplica OneHotEncoding a la columna Empresa.
- 4. Escalamiento:
 - o Aplica:
 - StandardScaler
 - MinMaxScaler
 - RobustScaler
 - o Escala el total de toneladas por empresa.
- 5. Transformaciones:
 - o Aplica log1p, sqrt, y Box-Cox a la producción total.
- 6. Normalización:
 - o Normaliza los valores agregados.
- 7. Visualización KDE:
 - o Grafica la distribución de las producciones por empresa escaladas.
- 8. Resumen estadístico e interpretación:
 - o Tabla con medias y std de cada transformación.
 - o HTML explicativo sobre:
 - Qué empresa tiene producciones extremas.
 - Qué técnica destaca mejor las diferencias.

Reto 3: Simulación de Análisis de Escapes

Dataset: escapes.csv (simulado)

Variable de análisis: Escapes

Objetivo: Simular un análisis de centros con escapes masivos y evaluar qué técnicas detectan mejor estos casos.

Pasos detallados:

- 1. Simular o cargar datos con columnas:
 - o Centro
 - o Especie
 - o Escapes
 - o Año
- 2. Verificar tipos:
 - o Asegúrate que Escapes sea numérica.
- 3. Codificación:

- o OneHotEncoder para:
 - Especie
 - Año
- 4. Escalamiento:
 - o Escala Escapes con los tres métodos vistos.
- 5. Transformaciones:
 - o Aplica log1p, sqrt, Box-Cox.
- 6. Normalización:
 - o Aplica Normalizer a Escapes.
- 7. Visualización:
 - o KDE para comparar la forma de las distribuciones escaladas.
- 8. Interpretación:
 - o Genera HTML explicando:
 - Qué técnica reduce mejor los valores extremos.
 - Cómo se identifican centros con escapes masivos.

Reto 4: Índice de Riesgo Acuícola

Dataset: Consolidado (simulado)

Variable de análisis:

Índice de Riesgo = (Escapes + Mortalidad) / Toneladas Cosechadas

Objetivo: Crear una métrica compuesta y evaluar qué técnicas permiten distinguir centros con alto riesgo.

🏂 Pasos detallados:

- 1. Simular o preparar datos con:
 - o Centro
 - o Escapes
 - o Mortalidad
 - o Toneladas Cosechadas
- 2. Crear columna calculada:
 - O Indice_Riesgo = (Escapes + Mortalidad) / Toneladas Cosechadas
- 3. Verificar valores:
 - o Reemplaza ceros o nulos para evitar divisiones por cero.
- 4. Escalamiento del índice:
 - O StandardScaler, MinMaxScaler, RobustScaler
- 5. Transformaciones:
 - o Aplica log1p, sqrt, Box-Cox sobre Indice_Riesgo
- 6. Normalización:
 - o Aplica Normalizer
- 7. Visualización:
 - o KDE para comparar cómo cambia el índice con cada técnica
- 8. Resumen e interpretación:
 - o Calcula media y std.
 - o Crea HTML explicando:
 - Qué técnica acentúa mejor los centros en riesgo.
 - Qué centro podría necesitar intervención.