Congratulations! You passed!

Grade received 100%

Latest Submission Grade 100% To pass 80% or higher Go to next item

1.	Which notation would you use to denote the 3rd layer's activations when the input is the 7th example from the 8th minibatch?	1/1 point
	$a^{[3]\{7\}(8)}$ $a^{[8]\{3\}\{7\}}$ $a^{[8]\{7\}(3)}$ $a^{[8]\{7\}(3)}$	
	∠ ⁷ Expand	
2.	Suppose you don't face any memory-related problems. Which of the following make more use of vectorization.	1/1 point
	Batch Gradient Descent Mini-Batch Gradient Descent with mini-batch size m/2.	
	Stochastic Gradient Descent, Batch Gradient Descent, and Mini-Batch Gradient Descent all make equal use of vectorization.	
	Stochastic Gradient Descent	
	∠ ⁷ Expand	
	Correct Yes. If no memory problem is faced, batch gradient descent processes all of the training set in one pass, maximizing the use of vectorization.	
3.	Which of the following is true about batch gradient descent?	1/1 point
	It is the same as stochastic gradient descent, but we don't use random elements.	
	 It is the same as the mini-batch gradient descent when the mini-batch size is the same as the size of the training set. 	
	It has as many mini-batches as examples in the training set.	
	∠ ⁿ Expand	
	 Correct Correct. When using batch gradient descent there is only one mini-batch thus it is equivalent to batch gradient descent. 	
4.	While using mini-batch gradient descent with a batch size larger than 1 but less than m the plot of the cost function J looks like this:	1/1 point
	To the state of th	

Which of the following do you agree with?

No matter if using mini-batch gradient descent or batch gradient descent something is wrong.

_

	gradient descent, something is wrong.	
	If you are using mini-batch gradient descent or batch gradient descent this looks	
	acceptable.	
	If you are using mini-batch gradient descent, this looks acceptable. But if you're using batch gradient descent, something is wrong.	
	∠ ⁷ Expand	
	Correct Yes. The cost is larger than when the process started, this is not right at all.	
	, ,	
5.	Suppose the temperature in Casablanca over the first two days of March are the following:	1/1 point
	March 1st: $ heta_1=10^\circ~ ext{C}$	
	March 2nd: $ heta_2=25^\circ$ $ ext{C}$	
	March 2nd: $\theta_2 = 25^{\circ}$ C	
	Say you use an exponentially weighted average with $\beta=0.5$ to track the temperature: $v_0=0$, $v_t=\beta v_{t-1}+(1-\beta)\theta_t$. If v_2 is the value computed after day 2 without bias correction, and $v_2^{\rm corrected}$ is the	
	$v_t = p_t v_{t-1} + (1-p_t)v_t$. If v_2 is the value computed after day 2 without plas correction, and v_2 value you compute with bias correction. What are these values?	
	$\bigcirc v_2 = 15, v_2^{\text{corrected}} = 15.$	
	$\bigcirc \ v_2=20, v_2^{ m corrected}=15,$	
	$v_2 = 15$	
	corrected 20	
	∠ ⁿ Expand	
	⊙ Correct	
	Correct. $v_2=eta v_{t-1}+(1-eta) heta_t$ thus $v_1=5, v_2=15$. Using the bias correction $rac{v_t}{1-eta^t}$ we get	
	$\frac{15}{1-(0.5)^2} = 20.$	
6	Which of the following is true about learning rate docsy?	
6.	Which of the following is true about learning rate decay?	1/1 point
6.	Which of the following is true about learning rate decay? It helps to reduce the variance of a model.	1/1 point
6.		1/1 point
6.	It helps to reduce the variance of a model. We use it to increase the size of the steps taken in each mini-batch iteration. The intuition behind it is that for later epochs our parameters are closer to a minimum thus it	1/1 point
6.	It helps to reduce the variance of a model. We use it to increase the size of the steps taken in each mini-batch iteration. The intuition behind it is that for later epochs our parameters are closer to a minimum thus it is more convenient to take larger steps to accelerate the convergence.	1/1 point
6.	It helps to reduce the variance of a model. We use it to increase the size of the steps taken in each mini-batch iteration. The intuition behind it is that for later epochs our parameters are closer to a minimum thus it	1/1 point
6.	It helps to reduce the variance of a model. We use it to increase the size of the steps taken in each mini-batch iteration. The intuition behind it is that for later epochs our parameters are closer to a minimum thus it is more convenient to take larger steps to accelerate the convergence. The intuition behind it is that for later epochs our parameters are closer to a minimum thus it	1/1 point
6.	It helps to reduce the variance of a model. We use it to increase the size of the steps taken in each mini-batch iteration. The intuition behind it is that for later epochs our parameters are closer to a minimum thus it is more convenient to take larger steps to accelerate the convergence. The intuition behind it is that for later epochs our parameters are closer to a minimum thus it	1/1 point
6.	It helps to reduce the variance of a model. We use it to increase the size of the steps taken in each mini-batch iteration. The intuition behind it is that for later epochs our parameters are closer to a minimum thus it is more convenient to take larger steps to accelerate the convergence. The intuition behind it is that for later epochs our parameters are closer to a minimum thus it	1/1 point
6.	It helps to reduce the variance of a model. We use it to increase the size of the steps taken in each mini-batch iteration. The intuition behind it is that for later epochs our parameters are closer to a minimum thus it is more convenient to take larger steps to accelerate the convergence. The intuition behind it is that for later epochs our parameters are closer to a minimum thus it is more convenient to take smaller steps to prevent large oscillations.	1/1 point
6.	It helps to reduce the variance of a model. We use it to increase the size of the steps taken in each mini-batch iteration. The intuition behind it is that for later epochs our parameters are closer to a minimum thus it is more convenient to take larger steps to accelerate the convergence. The intuition behind it is that for later epochs our parameters are closer to a minimum thus it is more convenient to take smaller steps to prevent large oscillations.	1/1 point
6.	It helps to reduce the variance of a model. We use it to increase the size of the steps taken in each mini-batch iteration. The intuition behind it is that for later epochs our parameters are closer to a minimum thus it is more convenient to take larger steps to accelerate the convergence. The intuition behind it is that for later epochs our parameters are closer to a minimum thus it is more convenient to take smaller steps to prevent large oscillations.	1/1 point
6.	It helps to reduce the variance of a model. We use it to increase the size of the steps taken in each mini-batch iteration. The intuition behind it is that for later epochs our parameters are closer to a minimum thus it is more convenient to take larger steps to accelerate the convergence. The intuition behind it is that for later epochs our parameters are closer to a minimum thus it is more convenient to take smaller steps to prevent large oscillations.	1/1 point
	 It helps to reduce the variance of a model. We use it to increase the size of the steps taken in each mini-batch iteration. The intuition behind it is that for later epochs our parameters are closer to a minimum thus it is more convenient to take larger steps to accelerate the convergence. The intuition behind it is that for later epochs our parameters are closer to a minimum thus it is more convenient to take smaller steps to prevent large oscillations. ∑ Expand	1/1 point
	It helps to reduce the variance of a model. We use it to increase the size of the steps taken in each mini-batch iteration. The intuition behind it is that for later epochs our parameters are closer to a minimum thus it is more convenient to take larger steps to accelerate the convergence. The intuition behind it is that for later epochs our parameters are closer to a minimum thus it is more convenient to take smaller steps to prevent large oscillations. **Parameters** **Expand** **Orrect** Correct. Reducing the learning rate with time reduces the oscillation around a minimum.	
	It helps to reduce the variance of a model. We use it to increase the size of the steps taken in each mini-batch iteration. The intuition behind it is that for later epochs our parameters are closer to a minimum thus it is more convenient to take larger steps to accelerate the convergence. The intuition behind it is that for later epochs our parameters are closer to a minimum thus it is more convenient to take smaller steps to prevent large oscillations. The intuition behind it is that for later epochs our parameters are closer to a minimum thus it is more convenient to take smaller steps to prevent large oscillations. The intuition behind it is that for later epochs our parameters are closer to a minimum thus it is more convenient to take smaller steps to prevent large oscillations. The intuition behind it is that for later epochs our parameters are closer to a minimum thus it is more convenient to take smaller steps to prevent large oscillations.	
	It helps to reduce the variance of a model. We use it to increase the size of the steps taken in each mini-batch iteration. The intuition behind it is that for later epochs our parameters are closer to a minimum thus it is more convenient to take larger steps to accelerate the convergence. The intuition behind it is that for later epochs our parameters are closer to a minimum thus it is more convenient to take smaller steps to prevent large oscillations. The intuition behind it is that for later epochs our parameters are closer to a minimum thus it is more convenient to take smaller steps to prevent large oscillations. The intuition behind it is that for later epochs our parameters are closer to a minimum thus it is more convenient to take smaller steps to prevent large oscillations. The intuition behind it is that for later epochs our parameters are closer to a minimum thus it is more convenient to take smaller steps to prevent large oscillations.	
	It helps to reduce the variance of a model. We use it to increase the size of the steps taken in each mini-batch iteration. The intuition behind it is that for later epochs our parameters are closer to a minimum thus it is more convenient to take larger steps to accelerate the convergence. The intuition behind it is that for later epochs our parameters are closer to a minimum thus it is more convenient to take smaller steps to prevent large oscillations. The intuition behind it is that for later epochs our parameters are closer to a minimum thus it is more convenient to take smaller steps to prevent large oscillations. The intuition behind it is that for later epochs our parameters are closer to a minimum thus it is more convenient to take smaller steps to prevent large oscillations. The intuition behind it is that for later epochs our parameters are closer to a minimum thus it is more convenient to take smaller steps to prevent large oscillations.	
	It helps to reduce the variance of a model. We use it to increase the size of the steps taken in each mini-batch iteration. The intuition behind it is that for later epochs our parameters are closer to a minimum thus it is more convenient to take larger steps to accelerate the convergence. The intuition behind it is that for later epochs our parameters are closer to a minimum thus it is more convenient to take smaller steps to prevent large oscillations. The intuition behind it is that for later epochs our parameters are closer to a minimum thus it is more convenient to take smaller steps to prevent large oscillations. The intuition behind it is that for later epochs our parameters are closer to a minimum thus it is more convenient to take smaller steps to prevent large oscillations. The intuition behind it is that for later epochs our parameters are closer to a minimum thus it is more convenient to take smaller steps to prevent large oscillations.	
	 It helps to reduce the variance of a model. We use it to increase the size of the steps taken in each mini-batch iteration. The intuition behind it is that for later epochs our parameters are closer to a minimum thus it is more convenient to take larger steps to accelerate the convergence. The intuition behind it is that for later epochs our parameters are closer to a minimum thus it is more convenient to take smaller steps to prevent large oscillations. 2 Expand 2 Correct Correct Correct. Reducing the learning rate with time reduces the oscillation around a minimum. You use an exponentially weighted average on the London temperature dataset. You use the following to track the temperature: v _t = βv _{t-1} + (1 − β)θ _t . The yellow and red lines were computed using values beta ₁ and beta ₂ respectively. Which of the following are true?	
	 It helps to reduce the variance of a model. We use it to increase the size of the steps taken in each mini-batch iteration. The intuition behind it is that for later epochs our parameters are closer to a minimum thus it is more convenient to take larger steps to accelerate the convergence. The intuition behind it is that for later epochs our parameters are closer to a minimum thus it is more convenient to take smaller steps to prevent large oscillations. 2 Expand 2 Correct Correct Correct. Reducing the learning rate with time reduces the oscillation around a minimum. You use an exponentially weighted average on the London temperature dataset. You use the following to track the temperature: v _t = βv _{t-1} + (1 − β)θ _t . The yellow and red lines were computed using values beta ₁ and beta ₂ respectively. Which of the following are true?	
	It helps to reduce the variance of a model. We use it to increase the size of the steps taken in each mini-batch iteration. The intuition behind it is that for later epochs our parameters are closer to a minimum thus it is more convenient to take larger steps to accelerate the convergence. The intuition behind it is that for later epochs our parameters are closer to a minimum thus it is more convenient to take smaller steps to prevent large oscillations. The intuition behind it is that for later epochs our parameters are closer to a minimum thus it is more convenient to take smaller steps to prevent large oscillations. Correct Correct Correct Correct, Reducing the learning rate with time reduces the oscillation around a minimum. You use an exponentially weighted average on the London temperature dataset. You use the following to track the temperature: $v_t = \beta v_{t-1} + (1-\beta)\theta_t$. The yellow and red lines were computed using values $beta_1$ and $beta_2$ respectively. Which of the following are true?	
	 It helps to reduce the variance of a model. We use it to increase the size of the steps taken in each mini-batch iteration. The intuition behind it is that for later epochs our parameters are closer to a minimum thus it is more convenient to take larger steps to accelerate the convergence. The intuition behind it is that for later epochs our parameters are closer to a minimum thus it is more convenient to take smaller steps to prevent large oscillations. 2 Expand 2 Correct Correct Correct. Reducing the learning rate with time reduces the oscillation around a minimum. You use an exponentially weighted average on the London temperature dataset. You use the following to track the temperature: v _t = βv _{t-1} + (1 − β)θ _t . The yellow and red lines were computed using values beta ₁ and beta ₂ respectively. Which of the following are true?	
	It helps to reduce the variance of a model. We use it to increase the size of the steps taken in each mini-batch iteration. The intuition behind it is that for later epochs our parameters are closer to a minimum thus it is more convenient to take larger steps to accelerate the convergence. The intuition behind it is that for later epochs our parameters are closer to a minimum thus it is more convenient to take smaller steps to prevent large oscillations. The intuition behind it is that for later epochs our parameters are closer to a minimum thus it is more convenient to take smaller steps to prevent large oscillations. Correct Correct Correct Correct, Reducing the learning rate with time reduces the oscillation around a minimum. You use an exponentially weighted average on the London temperature dataset. You use the following to track the temperature: $v_t = \beta v_{t-1} + (1-\beta)\theta_t$. The yellow and red lines were computed using values $beta_1$ and $beta_2$ respectively. Which of the following are true?	
	 It helps to reduce the variance of a model. We use it to increase the size of the steps taken in each mini-batch iteration. The intuition behind it is that for later epochs our parameters are closer to a minimum thus it is more convenient to take larger steps to accelerate the convergence. The intuition behind it is that for later epochs our parameters are closer to a minimum thus it is more convenient to take smaller steps to prevent large oscillations. Expand ✓ Correct Correct Correct. Reducing the learning rate with time reduces the oscillation around a minimum. You use an exponentially weighted average on the London temperature dataset. You use the following to track the temperature: v _t = βv _{t-1} + (1 − β)θ _t . The yellow and red lines were computed using values beta₁ and beta₂ respectively. Which of the following are true?	
	It helps to reduce the variance of a model. We use it to increase the size of the steps taken in each mini-batch iteration. The intuition behind it is that for later epochs our parameters are closer to a minimum thus it is more convenient to take larger steps to accelerate the convergence. The intuition behind it is that for later epochs our parameters are closer to a minimum thus it is more convenient to take smaller steps to prevent large oscillations. Expand Correct Correct. Reducing the learning rate with time reduces the oscillation around a minimum. You use an exponentially weighted average on the London temperature dataset. You use the following to track the temperature: $v_t = \beta v_{t-1} + (1-\beta)\theta_t$. The yellow and red lines were computed using values $beta_1$ and $beta_2$ respectively. Which of the following are true?	
	 It helps to reduce the variance of a model. We use it to increase the size of the steps taken in each mini-batch iteration. The intuition behind it is that for later epochs our parameters are closer to a minimum thus it is more convenient to take larger steps to accelerate the convergence. The intuition behind it is that for later epochs our parameters are closer to a minimum thus it is more convenient to take smaller steps to prevent large oscillations. ✓ Expand Correct Correct Correct. Reducing the learning rate with time reduces the oscillation around a minimum. You use an exponentially weighted average on the London temperature dataset. You use the following to track the temperature: v_t = βv_{t-1} + (1 − β)θ_t. The yellow and red lines were computed using values beta₁ and beta₂ respectively. Which of the following are true? β₁ < β₂. β₁ > β₂. β₁ > β₂. 	
	It helps to reduce the variance of a model. We use it to increase the size of the steps taken in each mini-batch iteration. The intuition behind it is that for later epochs our parameters are closer to a minimum thus it is more convenient to take larger steps to accelerate the convergence. The intuition behind it is that for later epochs our parameters are closer to a minimum thus it is more convenient to take smaller steps to prevent large oscillations. Expand Correct Correct. Reducing the learning rate with time reduces the oscillation around a minimum. You use an exponentially weighted average on the London temperature dataset. You use the following to track the temperature: $v_t = \beta v_{t-1} + (1-\beta)\theta_t$. The yellow and red lines were computed using values $beta_1$ and $beta_2$ respectively. Which of the following are true?	

 $\beta_2 > 0$

8. Consider the figure:

1/1 point

Suppose this plot was generated with gradient descent with momentum $\beta=0.01$. What happens if we increase the value of β to 0.1?

- The gradient descent process starts moving more in the horizontal direction and less in the vertical.
- The gradient descent process moves less in the horizontal direction and more in the vertical direction.
- $\begin{tabular}{ll} \hline \end{tabular} \begin{tabular}{ll} The gradient descent process starts oscillating in the vertical direction. \end{tabular}$
- $\begin{tabular}{ll} \hline \end{tabular} \begin{tabular}{ll} The gradient descent process moves more in the horizontal and the vertical axis. \\ \hline \end{tabular}$

⊘ Correct

Yes. The use of a greater value of β causes a more efficient process thus reducing the oscillation in the horizontal direction and moving the steps more in the vertical direction.

9. Suppose batch gradient descent in a deep network is taking excessively long to find a value of the parameters that achieves a small value for the cost function $\mathcal{J}(W^{[1]},b^{[1]},\dots,W^{[L]},b^{[L]})$. Which of the following techniques could help find parameter values that attain a small value for \mathcal{J} ? (Check all that apply)

1/1 point

∠⁷ Expand

Correct
 Great, you got all the right answers.

10. Which of the following statements about Adam is <i>False</i> ?	1/1 point
∠ [∞] Expand	
⊘ Correct	