

HUMAN MACHINE TEACHERS

JESSE, JOANNE, ERIC, MARTTI, SEFA & AYRTON

VOORTGANG CONTAINER PROJECT

- 1. Onderzoeksopzet en aanpak
- 2. Restricties
- 3. Score functie
- 4. Reinforcement Learning
- 5. Resultaten gebruikte modellen
- 6. DQN en CNN
- 7. Plannen voor volgende 4 weken

Onderzoeksopzet

Hoofdvraag

Met welke methode(s) kunnen we het uitladingsdeel van het container stacking probleem optimaal oplossen?

Aanpak

- Parallel
- Meer eindproducten om te mixen

Restrictie 1: Container niet plaatsen waar al een container staat

Restrictie 2: Container niet plaatsen waar geen container onder zit

Restrictie 3: Container niet plaatsen op een stapel die de max hoogte heeft bereikt

Restrictie 4: Container niet plaatsen buiten het lot

Restrictie 5: Container niet plaatsen tussen twee stapels (reachstacker kan namelijk alleen aan lange kant pakken)

Score Functie

- Voorheen, score alleen op juistheid
- Functie kijkt naar hoeveel moves nodig om container te bereiken
- Twee routes mogelijk

Reinforcement Learning

Reinforcement learning: Gedrag van model belonen of straffen en zo verbeteren

Agent: Kiest stappen binnen de environment gebaseerd de onthouden data

Environment: Geeft de Agent een response op de actie

Onderdelen Environment: __init__ (observer, state, actionspace), step, render(optioneel), reset

Onderdelen Agent: __init__, choose_action, remember_move, train model

Environment

Resultaten gebruikte modellen

Model	Methode	Werkend?	Mee door gaan?
1	Deep Q Network (DQN)	Ja	Ja
2	Convolutional Neural Network (CNN)	Ja	Ja
3	Proximal Policy Optimization (PPO)	Ja	Nee
4	Q Learning	Niet op deze casus	Nee

Deep Q Network

- Veranderd gewichten van neuraal netwerk aan de hand van de stappen die er gedurende de "game" ondernomen worden

Convolutional Neural Network

 Kijkt naar de waarde van een convolutional filter over een matrix en zoekt door middel hiervan naar verbanden die kunnen leiden tot een output

Plannen voor volgende 4 weken

- Convolutional Neural Network verbeteren
- Modellen samenvoegen
- Environment vergroten
- Score functie implementeren
- Onderdelen voor portfolio
- Paper schrijven

Vragen?