Lesson 5

Merge Sort: Collapsing Infinity To a Point

Wholeness of the Lesson

Merge Sort is a Divide and Conquer sorting algorithm which, by overcoming the limitations inherent in inversion-bound sorting algorithms, is able to sort lists in O(n logn) time, even in the worst case. The Divide and Conquer strategy is an example of the simple principle of "Do Less and Accomplish More." This technique makes it possible to break the inversion-bound barrier for sorting alrgorithms, to obtain very fast running times.

MergeSort: A Divide-and-Conquer Algorithm

- Recall: Divide-and conquer is a general algorithm design paradigm. MergeSort implements this design:
 - Divide: divide the input data
 S in two disjoint subsets S₁ and S₂
 - Conquer: solve the subproblems associated with S₁ and S₂
 - Combine: combine the solutions for S₁ and S₂ into a solution for S

Merge-sort is a sorting algorithm based on the divide-and-conquer paradigm

Merge-Sort

- Merge-sort on an input sequence S with n integers consists of three steps:
 - Divide: partition S into two sequences S_1 and S_2 of about n/2 elements each
 - Conquer: recursively sort S_1 and S_2
 - Combine: merge S₁ and
 S₂ into a single sorted sequence

```
Algorithm mergeSort(S)
Input sequence S with n
Output sequence S sorted
if S.size() > 1 then
(S_1, S_2) \leftarrow partition(S, n/2)
mergeSort(S_1)
mergeSort(S_2)
S \leftarrow merge(S_1, S_2)
return S
```

Merging Two Sorted Sequences

- The combine step of merge-sort consists of merging two sorted sequences A and B into a sorted sequence S containing the union of the elements of A and B
- Merging two sorted arrays, each with n/2 elements takes O(n) time

```
Algorithm merge(A, B)
   Input sorted sequences A and B with
        n/2 integers each
   Output sorted sequence S of A \cup B
   S \leftarrow empty sequence
   while \neg A.isEmpty() \land \neg B.isEmpty() do
       if A.first() \le B.first() then
           S.insertLast(A.remove(A.first()))
       else
           S.insertLast(B.remove(B.first()))
   while \neg A.isEmpty() do
       S.insertLast(A.remove(A.first()))
   while \neg B.isEmpty() do
       S.insertLast(B.remove(B.first()))
   return S
```

Implementation of Merge

```
public void merge(int[] tempStorage,
                  int lowerPointer,
                  int upperPointer,
                  int upperBound) {
   int j = 0; //tempStorage index
   int lowerBound = lowerPointer;
   //total number of elements to rearrange
   int n = upperBound - lowerBound + 1;
   //view the range [lowerBound, upperBound] as two arrays
   //[lowerBound, mid], [mid+1,upperBound] to be merged
   int mid = upperPointer -1;
   while(lowerPointer <= mid && upperPointer <= upperBound){</pre>
      if(theArray[lowerPointer] <= theArray[upperPointer]){</pre>
          tempStorage[j++] = theArray[lowerPointer++];
      else {
          tempStorage[j++] = theArray[upperPointer++];
                                      Merge Sort
```

Merge (continued)

```
//left array may still have elements
while(lowerPointer <= mid) {</pre>
   tempStorage[j++] = theArray[lowerPointer++];
//right array may still have elements
while(upperPointer <= upperBound){</pre>
   tempStorage[j++] = theArray[upperPointer++];
}
//replace the range [lowerBound,upperBound] in theArray with
//the range [0,n-1] just created in tempStorage
for(j=0; j<n; ++j) {
   theArray[lowerBound+j] = tempStorage[j];
```

Implementation of MergeSort, In-Place

```
int[] theArray;

//public sorter

public int[] sort(int[] input){
   int n = input.length;
   int[] tempStorage = new int[n];
   tempStorage = input;
   mergeSort(tempStorage,0,n-1);
   theArray = tempStorage;
   return theArray;
}
```

(continued)

```
void mergeSort(int[] temp, int lower, int upper) {
    if(lower==upper){
        return;
    }
    else {
        int mid = (lower+upper)/2;
        mergeSort(temp,lower,mid);
        mergeSort(temp,mid+1, upper);
        merge(temp,lower,mid+1,upper);
    }
}
```

Worst-case Analysis

$$T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + O(n)$$

(or we could write $T(n) \le T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + cn$)

- 1. Assuming n a power of 2, this becomes T(n) = 2T(n/2) + O(n)
- 2. By the Guessing Method or Master Formula, we conclude T(n) is O(nlog n)

Trees

In computer science, a tree is an abstract model of a hierarchical structure

 A tree consists of nodes with a parent-child relation

Applications:

Organization charts

File systems

Programming environments

Merge-Sort Tree

- An execution of merge-sort may be depicted by a binary tree
 - each node represents a recursive call of merge-sort and stores
 - unsorted sequence before the execution and its partition
 - sorted sequence at the end of the execution
 - the root is the initial call
 - the leaves are calls on subsequences of size 0 or 1

Execution Example

Partition

Recursive call, partition

Recursive call, partition

Recursive call, base case

Recursive call, base case

Recursive call, ..., base case, merge

Merge 3 8 6 1 $9 4 \rightarrow 2 4 7$ $|2 \rightarrow 2 \ 7$

Recursive call, ..., merge, merge

Tree Terminology

- Root: node without parent (A)
- Internal node: node with at least one child (A, B, C, F)
- Leaf (or "external") node is a node without children (E, I, J, K, G, H, D)
- Ancestors of a node: parent, grandparent, grand-grandparent, etc. (ancestors of K: F, B, A)
- Depth of a node: number of ancestors of the node (depth of K = 3)
- Levels of a tree: Level n of a tree is the set of all nodes having depth n. (Level 1 of this tree is {B, C, D})
- Height of a tree: maximum depth of any node (height of tree = 3). Note: Num levels = height + 1.
- Descendant of a node: child, grandchild, grand-grandchild, etc. (descendants of B are E, F, I, J, K)

Subtree: tree consisting of a node and its descendants

Lengths of Descending Sequences (1)

Proposition. Suppose b > 1 is a real number and $n \ge b$ is an integer. Consider the descending sequence

$$n, \frac{n}{b}, \frac{n}{b^2}, \frac{n}{b^3}, \dots$$

The only positive integer k for which $\lfloor \frac{n}{b^k} \rfloor = 1$ is $\lfloor \log_b n \rfloor$ and the least positive integer m for which $\lfloor \frac{n}{b^m} \rfloor = 0$ is $1 + \lfloor \log_b n \rfloor$.

Proof. Let r be such that

$$(*) b^r \le n < b^{r+1}.$$

Clearly

$$\lfloor \frac{n}{b^r} \rfloor = 1$$
 and $\lfloor \frac{n}{b^{r+1}} \rfloor = 0$.

Since $b^r \leq n$, it follows that $\frac{n}{b^{r-1}} \geq b$, and so

$$\left\lfloor \frac{n}{b^{r-1}} \right\rfloor \ge b > 1.$$

Therefore, r is the only exponent of b for which $\lfloor \frac{n}{b^r} \rfloor = 1$. The fact that $r = \lfloor \log_b n \rfloor$ follows from $r \leq \log_b n < r + 1$ (which follows from (*)).

We have shown that $r = \lfloor \log_b n \rfloor$ is the only k for which $\lfloor \frac{n}{b^k} \rfloor = 1$. It follows that $r+1=1+|\log_b n|$ is the least m for which $|\frac{n}{b^m}|=0$. Merge Sort

Lengths of Descending Sequences (2)

Proposition. Suppose b > 1 is a real number and $n \ge b$ is an integer. Let S be the decreasing sequence

$$n, \frac{n}{b}, \frac{n}{b^2}, \frac{n}{b^3}, \dots, \frac{n}{b^s}$$

where s is the only exponent such that $\lfloor \frac{n}{b^s} \rfloor = 1$. Let T be the sequence

$$n, \frac{n}{b}, \frac{n}{b^2}, \frac{n}{b^3}, \dots, \frac{n}{b^t}$$

where t is the only exponent such that $\lfloor \frac{n}{b^s} \rfloor = 0$. Then

the length of S is $1 + \lfloor \log_b n \rfloor$ and length of T is $2 + \lfloor \log_b n \rfloor$.

Proof. By the previous Proposition, $s = \lfloor \log_b n \rfloor$ so the length of S is $1 + \lfloor \log_b n \rfloor$. Likewise, by the Proposition, $t = 1 + \lfloor \log_b n \rfloor$, so the length of S is $2 + \lfloor \log_b n \rfloor$.

Tree Exercise

Continue building the tree above until each node at the bottom level contains "1", but no node at a previous level contains a "1" (integer division)

- 1. What is the height of the tree?
- 2. Asymptotically, what is the sum of all values contained in the nodes in the tree?

Alternate Analysis of Merge-Sort

- \bullet The height **h** of the merge-sort tree is $O(\log n)$
 - at each recursive call we divide the sequence in half (n a power of 2)
- \bullet The overall amount of work done at each level is O(n)
- \bullet Thus, the total running time of merge-sort is $O(n \log n)$

26

Comparison with Other Sorting Algorithms

- Demo confirms that MergeSort's O(nlog n) estimated running time is truly much faster than those of the inversion-bound algorithms and LibrarySort
- Can see why MergeSort is not inversion bound by example: [4, 3, 2, 1]:

```
#inversions = 6
```

#comparisons = 4

Main Point

By using a Divide and Conquer strategy, MergeSort overcomes the limitations that prevent inversionbound sorting algorithms from performing faster than n². An essential characteristic of this strategy is the relationship of whole to part – wholes are successively collapsed and the collapsed values are combined to produce a new whole. This is different from the incremental approach of inversion-bound algorithms. We see here an application of the MVS principle of akshara: Creation arises in the collapse of the unbounded value of wholeness to a point.

Handling Duplicates

◆ Issue arises during the merge step – if element in left half equals element in right half, insert element in left half first

		_					
1	1	1		- 1	1	l	1
l	1 1 1	1	l l	- 1	a	l	1
	4	1	I I	- 1	u	l .	
			J				

Stability

Name	Date Received
Dave	11/5/2003
Dave	12/1/2004
Dave	1/8/2005
Dave	4/2/2006

If you first sort by date (name secondary), then later by name (date secondary), you want dates related to a single name to remain sorted.

Handling Duplicates (cont)

Definition. Suppose

$$S = \langle (k_0, e_0), (k_1, e_1), ..., (k_n, e_n) \rangle$$

is a list of pairs with keys k_0 , k_1 , ..., k_n . A sorting algorithm is *stable* if, whenever it is the case that (k_i, e_i) precedes (k_j, e_j) before sorting (so that i < j) and $k_i = k_j$, then it continues to be true after sorting by keys that the pair (k_i, e_i) precedes (k_j, e_j)

Stable sorting does not change the order of duplicates

Stability of Sorting Algorithms

- ➤ Sort By rank
- Stable sort -2 5s Must Remainin the same order inthe original list
- Stability is not an Issue if all keys are different

Merge Sort

31

Stability of Sorting Algorithms

MergeSort is stable because of our strategy for handling duplicates during Merge

Are InsertionSort, BubbleSort, SelectionSort stable?

Main Point

Stability of a sorting algorithm requires maintenance of nonchange in the midst of change. This is an example in the world of sorting routines of the inner dynamics of outward success, as described in SCI: The more the inner quality of awareness remains established in silence, the more outer dynamism is supported for success and fulfillment.

Connecting the Parts of Knowledge With the Wholeness of Knowledge: Merge Sort

- 1. Inversion-bound sorting algorithms typically examine each successive element in the input array and perform a further step to place this element in an already sorted area. The style of sorting involves a sequential unfoldment.
 - 2. MergeSort proceeds by repeatedly collapsing the wholeness of the current input array into parts and then synthesizing the parts into a sorted whole. This approach yields a much faster sorting algorithm.
 - 3. Transcendental Consciousness is the field of infinite correlation, where "an impulse anywhere is an impulse everywhere," a field of "frictionless flow".
 - 4. *Impulses within the Transcendental field*. Established in the transcendental field, action reaches fulfillment with minimum effort. Yoga is "skill in action" efficiency in action, "doing less, accomplishing more", whereby little needs to be done to accomplish great goals.
 - 5. Wholeness moving within itself. In Unity Consciousness, the field of action effortlessly unfolds as the play of one's own Self, one's own pure consciousness.

 Merge Sort

 34