NSS JAYA PRAKASH

IIT KANPUR

ASSIGNMENT 1:

ANALYSIS OF NO₂ COLUMN NUMBER DENSITY OVER DELHI USING SENTINEL 5P DATA (2019–2024)

Load raster files

Objective:

- Create **spatial** and **temporal** plots for 'NO2_column_number_density' for all the years.
- Develop a methodology to identify NO2 **hotspots** based on the dataset.
- Derive valuable **insights** with draw from the data analyses.

Rasterio Rioxarray Geopandas

> Numpy Pandas

Matplotlib

Methodology:

Data download

Data pre-processing

Visualization

threshold = np.nanpercentile(values, 90)

Calculate Threshold (90th percentile)

hotspot_mask = np.where(values > threshold, 1, 0)

Create hotspot mask (binary mask)

Methodology to identify hotspot

Output:

• Results with proper labelling, legends, and ticks as needed.

Store and extract

visualization

Spatial Plots of NO₂ and Hotspot Analysis (2019–2024)

Fig: Spatial plots for 'NO2_column_number_density' over the years during summers.

Fig: Hotspots plot for 'NO2_column_number_density' over the years during summers

Percentage Change in NO₂ Levels

Year	% Change			
2019 to 2020	-22.21%			
2020 to 2021	+20.38%			
2021 to 2022	+5.27%			
2022 to 2023	+0.07%			
2023 to 2024	-0.67%			

Fig: Change in NO2 level over the years during summers

ASSIGNMENT 2:

AIR QUALITY ANALYSIS REPORT: COMPARISON OF WUSTL PM_{2.5} AND OBSERVED PM_{2.5} DATA (YEAR 2022)

Objective:

- Make **time series** plots comparing WUSTL PM2.5 with observed PM2.5.
- Calculate RMSE, MAPE, MAE and **R2** values.
- Derive daily, weekly and monthly **plots** comparing all 5 stations PM2.5.
- Derive valuable **insights** with draw from the data analyses.

Methodology:

- Data download
- Data pre-processing
- Visualization

Output:

• Results with proper labelling, legends, and ticks as needed.

Station	RMSE	MAE	MAPE (%)	R ²
DTU Delhi - CPCB	47.065	32.081	31.873	0.324
IHBAS Dilshad Garden Delhi - CPCB	35.831	22	21.318	0.388
ITO Delhi - CPCB	17.351	13.600	12.551	0.866
NSIT Dwarka Delhi - CPCB	32.312	27.364	24.494	0.562
Siri fort Delhi - CPCB	15.826	12.771	14.347	0.895

NetCDF4

Numpy

Pandas

Matplotlib

Sklearn

Table: Performance metrics for 5 stations

5

Time Series Plots: Comparing WUSTL PM2.5 data with observed PM2.5 for each station.

Daily, Weekly and Monthly Trends: Include the respective plots for all five stations.

Insights for Assignment 1:

- Over the years, **Higher NO₂ levels** were observed in southern and central Delhi, indicating significant pollution in these regions.
- 2020: A notable decline in NO₂ was observed due to the **COVID-19** lockdowns, which reduced industrial and vehicular emissions.
- 2020–2021: Hotspot centroids were concentrated in south Delhi. 2023–2024: Centroids shifted slightly toward **industrial zones**.

Insights for Assignment 2:

- Both WUSTL and observed PM2.5 data show similar seasonal trends, with peaks during **winter** (October–December) and troughs during the **monsoon** (July–August).
- Station 5 (Siri fort) shows the best alignment between WUSTL and observed data, while Station 4 (NSIT Dwarka) exhibits significant deviations, especially in winter.
- Station 5 (Siri fort, Delhi CPCB) consistently records lower PM2.5 levels compared to other stations.