## **Teste de Kruskal-Wallis (1952)**

 $H_0$ : as k populações tendem a apresentar valores similares da variável em questão.

 $H_A$ : pelo menos duas das k populações tendem a apresentar valores da variável em questão diferentes entre si.

**Exemplo:** Artigo de Calux et al. (2001), cujo objetivo é avaliar o desempenho do marcador de células endoteliais anti-CD34 em neoplasia cervical uterina, em lesões intra-epiteliais e no colo normal. São k=4 grupos:

- **Grupo A:** mulheres com diagnóstico anatomopatológico de neoplasia escamosa invasiva ( $n_1 = 18$ )
- **Grupo B:** neoplasia intra-epitelial de alto grau ( $n_2$ = 15)
- **Grupo C:** neoplasia intra-epitelial de baixo grau ( $n_3$ =15)
- **Grupo D:** mulheres sem qualquer processo neoplásico ( $n_4 = 10$ )



Estatística do teste de KW: 
$$H = \left(\frac{12}{n(n+1)} \sum_{j=1}^{k} \frac{R_j^2}{n_j}\right) - 3(n+1)$$

Para um nível de significância  $\alpha$ , rejeitamos  $H_0$  se  $H \ge \chi^2(k-1;1-\alpha)$ 

No exemplo, 
$$n = 58$$
,  $k = 4$ ,  $H = \left(\frac{12}{n(n+1)} \sum_{j=1}^{k} \frac{R_j^2}{n_j}\right) - 3(n+1) = \left(\frac{12}{58 \times 59} \sum_{j=1}^{4} \frac{R_j^2}{n_j}\right) - 3 \times 59$ 

Para um nível de significância  $\alpha$  = 5%, rejeitamos H<sub>0</sub> se  $H \ge \chi^2(3;95\%)$ 



$$H = \left(\frac{12}{58 \times 59} \sum_{j=1}^{4} \frac{R_j^2}{n_j}\right) - 3 \times 59$$

$$H = \left[\frac{12}{58 \times 59} \left(\frac{753.5^2}{18} + \frac{547.5^2}{15} + \frac{309^2}{15} + \frac{101^2}{10}\right)\right] - 3 \times 59$$

$$H = 29.628$$

29,628 > 7,81, portanto, rejeitamos  $H_0$  a um nível de significância de 5%.

## Teste de Dunn (1964)

O teste de comparações múltiplas de Dunn é utilizado após o teste de Kruskal-Wallis, se e somente se o teste de K-W permite rejeitar  $H_0$ .

Por este motivo, é às vezes chamado de pós-teste de Dunn ou teste post-hoc de Dunn.



## Comparações múltiplas:

- Grupos A x B
- Grupos A x C
- Grupos A x D
- Grupos B x C
- Grupos B x D
- Grupos C x D

| Grupo A            |        | Grupo B            |        | Grupo C            | ,      | Grupo D            | )     |
|--------------------|--------|--------------------|--------|--------------------|--------|--------------------|-------|
| 161                | (51)   | 128                | (31,5) | 121                | (24,5) | 109                | (18)  |
| 160                | (50)   | 131                | (37)   | 98                 | (12)   | 65                 | (1)   |
| 128                | (31,5) | 125                | (27)   | 81                 | (4)    | 97                 | (11)  |
| 168                | (52,5) | 141                | (43)   | 128                | (31,5) | 96                 | (9,5) |
| 131                | (37)   | 157                | (49)   | 91                 | (6)    | 110                | (19)  |
| 107                | (16,5) | 132                | (39)   | 117                | (22)   | 67                 | (2)   |
| 219                | (58)   | 143                | (45)   | 136                | (41)   | 106                | (15)  |
| 147                | (46)   | 112                | (20,5) | 95                 | (7,5)  | 102                | (13)  |
| 175                | (54)   | 131                | (37)   | 105                | (14)   | 80                 | (3)   |
| 119                | (23)   | 128                | (31,5) | 128                | (31,5) | 96                 | (9,5) |
| 190                | (55)   | 139                | (42)   | 90                 | (5)    |                    |       |
| 203                | (56)   | 135                | (40)   | 151                | (47)   |                    |       |
| 107                | (16,5) | 127                | (28)   | 129                | (35)   |                    |       |
| 153                | (48)   | 121                | (24,5) | 95                 | (7,5)  |                    |       |
| 128                | (31,5) | 168                | (52,5) | 112                | (20,5) |                    |       |
| 209                | (57)   |                    |        |                    |        |                    |       |
| 142                | (44)   |                    |        |                    |        |                    |       |
| 124                | (26)   |                    |        |                    |        |                    |       |
|                    |        |                    |        |                    |        |                    |       |
| $R_1 =$            | 753,5  | $R_2 =$            | 547,5  | $R_3 =$            | 309,0  | $R_4=$             | 101,0 |
|                    |        |                    |        |                    |        |                    |       |
| $\overline{R}_1 =$ | 41,9   | $\overline{R}_2 =$ | 36,5   | $\overline{R}_3 =$ | 20,6   | $\overline{R}_4 =$ | 10,1  |

| Grupo A            |       | Grupo B            |       | Grupo C            |       | Grupo D            |       |
|--------------------|-------|--------------------|-------|--------------------|-------|--------------------|-------|
| $R_1 =$            | 753,5 | $R_2 =$            | 547,5 | $R_3 =$            | 309,0 | $R_4=$             | 101,0 |
| $\overline{R}_1 =$ | 41,9  | $\overline{R}_2 =$ | 36,5  | $\overline{R}_3 =$ | 20,6  | $\overline{R}_4 =$ | 10,1  |
| $n_1$ =            | 18    | $n_2=$             | 15    | $n_3$ =            | 15    | $n_4$ =            | 10    |

Por exemplo, seja a hipótese nula

H<sub>0</sub>: os grupos A e B tendem a apresentar valores iguais da variável em questão.

Rejeito  $H_0$  para um nível de significância  $\alpha$  se

$$\left| \begin{array}{cc} \overline{R}_1 - \overline{R}_2 \end{array} \right| \geq \underbrace{z_{\left( \frac{\alpha}{k(k-1)} \right)}}_{\textit{diferença mínima s ignificati va}} \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}_{\textit{diferença mínima s ignificati va}}$$

Rejeito 
$$H_0$$
 se  $\left| \overline{R}_1 - \overline{R}_2 \right| \ge \underbrace{z_{\left(\frac{\alpha}{4(4-1)}\right)}}_{\textit{diferença mínima s ignificati va}} \sqrt{\frac{1}{18} + \frac{1}{15}}$ 

## Considerando um nível de significância de 5%

$$\frac{\alpha}{k(k-1)} = \frac{0.05}{4(4-1)} = 0.004167$$

$$1 - 0.004167 = 0.995833 \approx 99.58\%$$

$$99.58\%$$

$$2.638$$

 $H_0$ : os grupos A e B tendem a apresentar valores iguais da variável em questão.

$$\text{Rejeitamos H}_{\text{0}} \text{ se } \quad \left| \; \overline{R}_{\text{1}} - \; \overline{R}_{\text{2}} \right| \geq \underbrace{2,638 \sqrt{\frac{58(58+1)}{12}}}_{\textit{diferença m\'inima significativa}} \sqrt{\frac{1}{18} + \frac{1}{15}}_{}$$

Temos  $\left| \overline{R}_1 - \overline{R}_2 \right| = 5.4$  e a respectiva DMS é aproximadamente 15,575.

| Comparação | diferença entre as<br>médias dos postos | diferença mínima<br>significativa (α=5%) | "resultado" |
|------------|-----------------------------------------|------------------------------------------|-------------|
| A-B        | 5,3611                                  | 15,5755                                  | NS          |
| A-C        | 21,2611                                 | 15,5755                                  | *           |
| A-D        | 31,7611                                 | 17,5715                                  | *           |
| В-С        | 15,9000                                 | 16,2681                                  | NS          |
| B-D        | 26,4000                                 | 18,1882                                  | *           |
| C-D        | 10,5000                                 | 18,1882                                  | NS          |