

Predictive Analytics and Sensing

NTT DATA's Big Data Analytics Toolkit provides an advanced Machine Learning framework and platform – **Jubatus**Jubatus is a processing platform for real-time analysis of flow-type data, capable of supporting large volumes within a distributed, scalable architecture that achieves massive performance.

- Powerful and robust techniques for predictive analysis
- Informed decision making leveraging predictive and scoring models
- Support for various machine learning modules like Classifier, Regression, Recommender, Anomaly Detection, Graph Mining
- Improved cost efficiency and profitability with predictive analytics
- Data preprocess and feature extraction
- Full range of feature conversion functions (from unstructured data to ML formats)

Client Experience: Successful application of Machine Learning technology in all industry sectors, enabling use cases that advance well beyond traditional BI to achieve continuous improvement in prediction.

		Average Project	Large Project
	Scenarios:	Intelligent decision making, call routing	
	Timelines:	4-12 weeks	12+ weeks
	Team:	Lead Data Scientist, 1-3 Data Scientists	Lead Data Scientist, 4-7 Data Scientists
	Deliverables:	Computing framework for real-time analysis of big data, Future state architecture and recommendations, production analytics	
	Results:	Learning, prediction, recommender models, prescription	

Distributed Online Machine Learning Framework

Enables fixed time computation, high scale, fault tolerance

Stateful Stream Processing

"Push-type" enabling continuous sensing and learning of arriving data

Synchronization FrameworkAbility to perform 'training' and 'results sharing' in parallel.

Analysis Templates

Our out of the box analysis templates <u>accelerate the development and implementation</u> of analytical models, speed up the pattern discovery, increases accuracy of business problem definition, and include best practices from <u>200 Big Data implementations</u>.

Online Machine Learning Capability

Classification

Ex: classify incoming mail as SPAM or not SPAM

Regression

Mathematical regression to predict future numerical values based on past values.

Anomaly Detection

Used to detect anomalies, for ex: It can detect logs related to hardware failures on a server. These type logs are not common but are important to detect to prevent downtime.

Recommender, Stat & Graph

Yet to use these features.

Machine Learning Templates

Machine Learning Templates

Supervised learning: From raw data to prediction

Machine learning that employs a training dataset as the basis for predictive analysis.

Unsupervised learning: From raw data to pattern detection

Analysis of unlabeled data for the purpose of finding patterns, clusters, outliers, etc.

Real-time Machine Learning Modules

Below is a listing of algorithms available in the NTT accelerator suite.

Real-time algorithm catalogue:

Approach	Algorithm	Parameters
Classification	Perception	None
(supervised)	Passive Aggressive	Regularization weight
	Confidence Weighted	Regularization weight
	Adaptive Regularization of Weight Vectors	Regularization weight
	Normal Herd	Regularization weight
Clustering	K-means	K, method, bucket size/len, bicriteria base, forgetting factor/threshold
(unsupervised)	Gaussian Mixture	
Regression (supervised)	Passive Aggressive	Sensitivity, Regularization weight
Anomaly (unsupervised)	Local Outlier Factor	(reverse) Nearest neighbor num

Batch-mode Machine Learning Modules

C

Batch algorithm catalogue:

Approach	Algorithm	Parameters
Classification	Support Vector Machine (SVM)	C, gamma, kernel
(supervised)	Kernel approximation	N_components
	KNeighbors Classifier	K (nearest neighbours), Weights
	SVC Ensemble	N_estimators, max_features
	Naïve Bayes	Alpha, class_prior, fit_prior
	Random Forest	N_estimators, max_features
	Decision Trees	Max_depth, max_features
Clustering	MeanShift	Bandwidth, seeds
(unsupervised)	KMeans	N_clusters, max_iter, n_jobs, n_init
	Spectral Clustering GMM	n_components, covariance_type, random_state, n_iter, n_init
Regression	SGD Regressor	Loss, penalty, alpha, l1_ratio
(supervised)	ElasticNet Lasso	Alpha, l1_ratio, fit_intercept, precompute
	Support Vector Regression (SVR)	C, gamma, kernel
	SVR Ensemble	C, gamma, kernel
Ensemble	Random Forests	n_estimators, max_features
(supervised)	AdaBoost	n_estimators, learning_rate
	Gradient Tree Boosting	(various)

Example Useage by Domain

Use-Case Scenario

Short description

Customer Retention Analysis

> Predict which users are more likely than average to cancel a particular service or return a product. Allows operators to act proactively make process changes.

Contents/ product recommendation

Recommend new media contents or products to users based on their previous ratings

Risk Mitigation

> Predict loan defaults or late payments in order to manage risk

Many more

> Intrusion detection, Impact analysis, investment guidance...

Component View

Predictive Analytics, and Big Data Capability Components View

Heart of the system, performing the data analysis

Machine Learning & Predictive Analytics Components

10

Deployment View

d

^{**}The deployment view will not change much if the final deployment is in a data center rather than a cloud service.

Big Data Accelerator Suite Benefits

- Quick Prototyping and Implementation of ICM solution
- Accelerates Analysis process and model development for ICM algorithms
- Enhanced Accuracy of Big Data use cases
- Rapid Discovery of metadata and patterns
- Improved Quality and Clarity of end-user information
- Highly usable, intuitive visualization
- In-built elasticity through de-coupling of data from the hardware
- Low cost implementation based on open-source software
- Enablement of a variety of user skill levels (basic to expert users)
- Handling of all types of data through predictive analytics components
- Turnkey system: service requires no development, deployment, provisioning, or maintenance
- Integration of multiple applications
- Real-time power
- Flexibility and sustainability of analytics through algorithm catalogue