

- Background of X Education Company
- Problem Statement & Objective of the Study
- Suggested Ideas for Lead Conversion
- Analysis Approach
- Data Cleaning
- EDA
- Data Preparation
- Model Building (RFE & Manual fine tuning)
- Model Evaluation
- Recommendations

About X Education Company

- Industry professionals can purchase online courses from X Education, a company that provides education.
- Many professionals who are interested in the courses visit their website on any given day and search for courses.
- On numerous websites and search engines like Google, the company advertises its courses.
- Upon arriving at the website, these visitors may browse the courses, submit a form for the course, or watch some videos.
- These people are categorized as leads when they fill out a form with their phone number or email address.
- Through this process, some of the leads get converted while most do not.

Problem Statement

- X Education receives a lot of leads, but only about 30% of those leads actually become students.
- By locating the most promising leads, also referred to as Hot Leads, X Education hopes to increase the effectiveness of the lead conversion process.
- Their sales team wants to be aware of this potential group of leads, so rather than calling everyone, they will concentrate more on communicating with them.
- To help X Education select the most promising leads, i.e., the leads that are most likely to convert into paying customers.

Ideas for Increasing Lead Conversion.

- Leads are grouped based on their propensity or likelihood
 To convert
- This results in a focused group of hot leads.
- We could have a smaller pool of leads to communicate with, which would allow us to have a greater impact.
- We would have a greater conversion rate and be able to hit the 80% objective since we concentrated on hot leads that were more likely to convert.

Data cleaning

- "Select" level represents null values for some categorical variables, as customers did not choose any option from the list.
- Columns with over 40% null values were dropped.
- Missing values in categorical columns were handled based on value counts and certain considerations.
- Drop columns that don't add any insight or value to the study objective (tags, country)
- Imputation was used for some categorical variables.
- Additional categories were created for some variables.
- Columns with no use for modeling (Prospect ID, Lead Number) or only one category of response were dropped.
- Numerical data was imputed with mode after checking distribution.

Data Cleaning

- Skewed category columns were checked and dropped to avoid bias in logistic regression models.
- Outliers in TotalVisits and Page Views Per Visit were treated and capped.
- Invalid values were fixed and data was standardized in some columns, such as lead source.
- Low frequency values were grouped together to "Others".
- Binary categorical variables were mapped.
- Other cleaning activities were performed to ensure data quality and accuracy.
 - Fixed Invalid values & Standardizing Data in columns by checking casing styles, etc. (lead source has Google, google)

Exploratory Data Analysis (EDA)

Leads Converted

- Conversion rate is of 38.5%, meaning only 38.5% of the people have converted to leads.(Minority)
- While 61.5% of the people didn't convert to leads. (Majority)

- Lead Source: 58% Lead source is from Google
 & Direct Traffic combined.
- Last Activity: 68% of customers contribution in SMS Sent & Email Opened activities.

EDA – Bivariate Analysis for Categorical

Variables

Lead Origin Countplot vs Lead Conversion Rates

Lead Origin:

- Around 52% of all leads originated from "Landing Page Submission" with a lead conversion rate (LCR) of 36%.
- The "API" identified approximately 39% of customers with a **lead conversion rate** (LCR) of 31%.

EDA – Bivariate Analysis for Categorical

Variables

Current_occupation Countplot vs Lead Conversion Rates

Current_occupation:

- Around 90% of the customers are *Unemployed*, with lead conversion rate (LCR) of 34%.
- While Working Professional contribute only 7.6% of total customers with almost 92% Lead conversion rate (LCR).

EDA – Bivariate Analysis for Numerical

Variables

 Past Leads who spends more time on the Website have a higher chance of getting successfully converted than those who spends less time as seen in the box-plot

Data Preparation before Model building

- Binary level categorical columns were already mapped to 1 / 0 in previous steps
- Created dummy features (one-hot encoded) for categorical variables Lead Origin, Lead Source,
 Last Activity, Specialization, Current_occupation
- Splitting Train & Test Sets
 - 70:30 % ratio was chosen for the split
- Feature scaling
 - Standardization method was used to scale the features
- Checking the correlations
 - Predictor variables which were highly correlated with each other were dropped (Lead Origin_Lead Import and Lead Origin_Lead Add Form).

Model Building

Feature Selection

- The data set has lots of dimension and large number of features.
- This will reduce model performance and might take high computation time.
- Hence it is important to perform Recursive Feature Elimination (RFE) and to select only the important columns.
- Then we can manually fine tune the model.
- RFE outcome
 - Pre RFE 48 columns & Post RFE 15 columns

Model Building

- Manual Feature Reduction process was used to build models by dropping variables with p value greater than 0.05.
- Model 4 looks stable after four iteration with:
 - significant p-values within the threshold (p-values < 0.05) and
 - No sign of multicollinearity with VIFs less than 5
- Hence, logm4 will be our final model, and we will use it for Model Evaluation which further will be used to make predictions.

Model

Evaluation

Train Data Set

It was decided to go ahead with 0.345 as cutoff after checking evaluation metrics coming from both plots

Confusion Matrix & Evaluation Metrics with 0.345 as cutoff

Confusion Matrix [[3230 772] [492 1974]]

True Negative : 3230 True Positive : 1974 False Negative : 492 False Positve : 772 Model Accuracy 0.8046 Model Sensitivity : 0.8005 Model Specificity : 0.8071 Model Precision : 0.7189 Model Recall : 0.8005 Model True Positive Rate (TPR) : 0.8005 Model False Positive Rate (FPR) : 0.1929

Confusion Matrix & Evaluation Metrics with 0.41 as cutoff

Confusion Matrix [[3406 596] [596 1870]]

True Negative : 3406 True Positive : 1870 False Negative 596 False Positve : 596 Model Accuracy 0.8157 Model Sensitivity 0.7583 Model Specificity 0.8511 Model Precision 0.7583 Model Recall : 0.7583 : 0.7583 Model True Positive Rate (TPR) Model False Positive Rate (FPR) : 0.1489

Model Evaluation

ROC Curve - Train Data Set

- Area under ROC curve is 0.88 out of 1 which indicates a good predictive model.
- The curve is as close to the top left corner of the plot, which represents a model that has a high true positive rate and a low false positive rate at all threshold values.

ROC Curve - Test Data Set

- Area under ROC curve is 0.87 out of 1 which indicates a good predictive model.
- The curve is as close to the top left corner of the plot, which represents a model that has a high true positive rate and a low false positive rate at all threshold values.

Recommendation based on Final Model

- As per the problem statement, increasing lead conversion is crucial for the growth and success of X Education. To achieve this, we have developed a regression model that can help us identify the most significant factors that impact lead conversion.
- We have determined the following features that have the highest positive coefficients, and these features should be given priority in our marketing and sales efforts to increase lead conversion.
 - Lead Source_Welingak Website: 5.39
 - Lead Source Reference: 2.93
 - Current_occupation_Working Professional: 2.67
 - Last Activity_SMS Sent: 2.05
 - Last Activity_Others: 1.25
 - Total Time Spent on Website: 1.05
 - Last Activity Email Opened: 0.94
 - Lead Source Olark Chat: 0.91
- We have also identified features with negative coefficients that may indicate potential areas for improvement. These include:
 - Specialization in Hospitality Management: -1.09
 - Specialization in Others: -1.20
 - Lead Origin of Landing Page Submission: -1.26

