# 数据缩放





Number of Surgeries



Number of Surgeries



Number of Surgeries

"特征缩放"



"特征缩放"





# 特征缩放的不同方法

- Minimum-Maximum Scaler: 将数据缩放到某一给定范围 (通常是[0, 1])。
- Standard Scaler: 即标准化,尽量将数据转化为均值为0, 方差为1的数据,形如标准正态分布(高斯分布)。
- Maximum Absolute Value Scaler: 通过除以最大绝对值, 将数据缩放到[-1, 1]。

■ 使各特征的数值都处于同一数量级上。

## 特征缩放一

### 线性归一化(Min-Max Normalization)



X的最小值  $\uparrow$   $X_{new} = \frac{X - \min(X)}{\max(X) - \min(X)}$   $\downarrow$  X的最大值

数值范围 = [1.5, 4]

数值范围 = [0, 1]

## 特征缩放一

### 标准差标准化(Z-score Normalization)





均值=2.33 标准差=0.8166

# 特征缩放的语法

### 导入包含缩放方法的类:

```
from sklearn.preprocessing import StandardScaler
```

### 创建该类的一个对象:

```
StdSc = StandardScaler()
```

### 拟合缩放的参数,然后对数据做转换:

```
StdSc = StdSc.fit(X_data)

X_scaled = StdSc.transform(X_data)
```

```
或者 X_scaled = StdSc.fit_transform(X_data)
```

# 特征缩放的语法

### 导入包含缩放方法的类:

from sklearn.preprocessing import StandardScaler

### 创建该类的一个对象:

StdSc = StandardScaler()

### 拟合缩放的参数,然后对数据做转换:

```
StdSc = StdSc.fit(X_data)
X scaled = StdSc.transform(X data)
```

其他缩放方法: MinMaxScaler, MaxAbsScaler.

# K近邻算法—多分类

| 序号 | 名称  | 搞笑镜头 | 拥抱镜头 | 打斗镜头 | 电影类型 |
|----|-----|------|------|------|------|
| 1  | 电影1 | 39   | 0    | 31   | 喜剧片  |
| 2  | 电影2 | 3    | 2    | 65   | 动作片  |
| 3  | 电影3 | 2    | 3    | 55   | 爱情片  |
| 4  | 电影4 | 9    | 38   | 2    | 爱情片  |
| 5  | 电影5 | 8    | 34   | 17   | 爱情片  |
| 6  | 电影6 | 5    | 2    | 57   | 动作片  |
| 7  | 电影7 | 21   | 17   | 5    | 喜剧片  |
| 8  | 电影8 | 45   | 2    | 9    | 喜剧片  |
| 9  | 电影9 | 23   | 3    | 17   | ?    |

例:

# K近邻算法多分类

| 序号 | 名称  | 搞笑镜头 | 拥抱镜头 | 打斗镜头 | 电影类型 | 距离   | K= |
|----|-----|------|------|------|------|------|----|
| 1  | 电影1 | 39   | 0    | 31   | 喜剧片  | 21.5 |    |
| 2  | 电影2 | 3    | 2    | 65   | 动作片  | 52.0 |    |
| 3  | 电影3 | 2    | 3    | 55   | 爱情片  | 43.4 |    |
| 4  | 电影4 | 9    | 38   | 2    | 爱情片  | 40.6 |    |
| 5  | 电影5 | 8    | 34   | 17   | 爱情片  | 34.4 |    |
| 6  | 电影6 | 5    | 2    | 57   | 动作片  | 43.9 |    |
| 7  | 电影7 | 21   | 17   | 5    | 喜剧片  | 18.6 |    |
| 8  | 电影8 | 45   | 2    | 9    | 喜剧片  | 23.4 |    |
| 9  | 电影9 | 23   | 3    | 17   | ?    |      |    |

# K近邻多分类的判定边界



**投票决定:**少数服从多数,近邻中哪个类别的点最多就分为该类。 **加权投票法:**根据距离的远近,对近邻的投票进行加权,距离越近则权重 越大(权重为距离平方的倒数)

# K近邻回归



# K近邻回归

| 序号 | 财富 | 颜值 | 嫁吗 | 综合 |
|----|----|----|----|----|
| 1  | 7  | 8  | 嫁  | 8  |
| 2  | 8  | 6  | 嫁  | 7  |
| 3  | 4  | 8  | 嫁  | 6  |
| 4  | 5  | 5  | 不嫁 | 5  |
| 5  | 2  | 2  | 不嫁 | 2  |
| 6  | 2  | 6  | 不嫁 | 4  |
| 7  | 4  | 6  |    | ?  |



# K近邻回归



# K近邻模型的特点

### 优点:

- 1. 建模快,因为它只是简单地存储数据;
- 2. 思想简单,理论成熟,既可以用来做分类也可以用来做回归;
- 3. 可用于非线性分类;
- 4. 准确度高,对数据没有假设,对离群值(异常值)不敏感;

#### 缺点:

- 1. 运行速度慢,因为需要计算很多的距离,计算量大;
- 2. 样本不平衡问题(即有些类别的样本数量很多,而其它样本的数量很少);
- 3. 需要大量的内存。

# K近邻模型的语法

### 导入包含分类方法的类:

from sklearn.neighbors import KNeighborsClassifier

### 创建该类的一个对象:

```
KNN = KNeighborsClassifier(n neighbors=3)
```

拟合数据集,即训练KNN模型,并用训练好的模型预测数据的标签:

```
KNN = KNN.fit(X_data, y_data)

y_predict = KNN.predict(X_data)
```

http://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html

# K近邻模型的语法

### 导入包含分类方法的类:

from sklearn.neighbors import KNeighborsClassifier

### 创建该类的一个对象:

```
KNN = KNeighborsClassifier(n_neighbors=3)
```

拟合数据集,即训练KNN模型,并用训练好的模型预测数据的标签:

```
KNN = KNN.fit(X_data, y_data)

y_predict = KNN.predict(X_data)
```

这种 fit 和 predict/transform 语法会贯穿整个课程

# K近邻模型的语法

### 导入包含分类方法的类:

from sklearn.neighbors import KNeighborsClassifier

### 创建该类的一个对象:

```
KNN = KNeighborsClassifier(n_neighbors=3)
```

拟合数据集,即训练KNN模型,并用训练好的模型预测数据的标签:

```
KNN = KNN.fit(X_data, y_data)
y_predict = KNN.predict(X_data)
```

### 回归使用KNeighborsRegressor

从一组数据(2,5,4,9,6,8,3)中 找到"8"?

#### 给定一个二维空间的数据集:

 $T = \{ (2,3), (5,4), (9,6), (4,7), (8,1), (7,2) \},$ 构造一个平衡K-D树。

#### 为了方便,我这里进行编号

A(2,3), B (5,4), C (9,6), D (4,7), E (8,1), F (7,2)



首先先沿 x 坐标进行切分,我们选出 x 坐标的中位点,获取最根部节点的坐标,对数据点x坐标进行排序得:

$$A(2,3)$$
, D (4,7), B (5,4), F (7,2), E (8,1), C (9,6)

则我们得到中位点为B或者F,我这里选择F作为我们的根结点,并 作出切分 (并得到左右子树)



再沿 y 坐标进行切分,分别递归的在F对应的左子树与右子树按y轴进行分类,得到中位节点分别为B, C点



再沿 x 坐标进行切分,B的左子树为A,右子树为D,C的左子树为E

