EECS 151/251A Homework 1

Due Friday, Feb 4th, 2022

Problem 1: Dennard Scaling

Assuming ideal Dennard scaling, you have previously designed a microprocessor that runs at 5GHz but dissipates 55W. In the next technology node, with features that are scaled by 0.6x, what will be the power and performance of your microprocessor?

Power Performance
Problem 2: Power/energy
(a) If you have a biomedical sensor interface to monitor a signal long term with on-chip processing where the chip is in contact with human skin and powered by a battery, what could be a primary concern for a. Power consumption
b. Energy consumption
(b) If the sensor dissipates 200mW and you expect it to have 6 hours of battery life, how much energy in Joules must the battery hold at full charge?
(c) The user removes the sensor to charge it while they sleep. It can take 8 hours to recharge how much power should the charger be able to supply to make this possible?

Problem 3: Boolean Algebra

Consider the given circuit. All inputs (A, B, C0, C1, C2, C3) must be either 0 or 1. What must C0, C1, C2, and C3 be such that the circuit computes the function XNOR (A, B)?

C0: _____

C1: _____

C2: _____

C3: _____

Problem 4: Avoid unintentional latch synthesis

For each of the following Verilog modules, which variables will generate latches? If none, write none.

```
(a)
         input [1:0] a;
         input b, c;
         reg x, y;
         always @(*) begin
             y = b;
             case (a)
    6 ▼
                 2'b00 : x=b;
                 2'b01 : x=c;
                 2'b11 : y=b & c;
                 2'b10 : y=b | c;
   11
             endcase
   12
         end
```

```
input a;
output reg [1:0] y;
always@ (*)
    if (a)
        y = 2'b01;
    else begin
        y[0] = 1;
        y[1] = 0;
    end
end
```

```
input x, y;
reg [1:0] d, c;
always @(*) begin
    d = 2'b00;
    if (x && y) begin
        d = 2'b01;
        c = 2'b00;
    end
    else if (x)
        d = 2'b11;
end
```

Problem 5: Find the Verilog error

Find the line which has the Verilog error and rewrite it correctly

```
module mux_4to1 (
         input a,b,c,d,
         input [1:0] sel,
         output out
         );
         always @(sel) begin
             case (sel)
                  2'b00 : out = a;
                  2'b01 : out = b;
                  2'b10 : out = c;
                  2'b11 : out = d;
11
12
              endcase
         end
13
14
     endmodule
```