

School of Electrical & Electronics Engineering

First CIA Test - March 2023

Course Code: EIE 110

Course Name: Principles of Electronics

Duration: 90 minutes

Max Marks: 50

PART-A

 $10 \times 2 = 20 \text{ Marks}$

Answer all the questions

Find the Current flowing through the diode shown in Fig.1. Assume the *X* . diode is ideal.

Fig.1

- A half wave rectifier uses a transformer of turns ratio 4:1. If the primary voltage is 240V rms, find (i) DC output voltage, (ii) PIV
- Differentiate avalanche breakdown and zener breakdown 3.
- Sketch the output voltage(Vo) waveform across the R_L as shown in 4. Fig.2. Assume the voltage drop across the diode is 0.7 V.

Fig.2

- Choose the states of three ideal diodes shown in the following circuit. 5.
 - (a)D1 ON,D2 ON and D3 ON
 - (b) D1 ON, D2 OFF and D3 ON
 - (c) D1 ON, D2 ON and D3 OFF
 - (d) D1 OFF, D2 ON and D3 ON

Fig.3

6. Assume that the diode in fig.4 has Von = 0.7V, The magnitude of the current I₂ (in mA) is equal to _____

Fig.4

- Write the significance of calculating PIV in the midpoint full wave rectifier design.
- 8. A full wave rectifier uses two diodes, and the internal resistance of each diode may be assumed constant at 20Ω . The transformer rms secondary voltage from the center tap to each end secondary is 50V, and the load resistance is 980Ω . Find the mean load current.
- 9. How does a zener diode act as a voltage regulator?
- 10. Compare drift current and diffusion current

PART-B

 $3 \times 10 = 30 \text{ Marks}$

Answer all the questions

- A full wave center tapped rectifier circuit is connected to a 230 V,1Φ, 50 Hz AC supply through a 5:1 transformer. A resistive load of 100Ω is connected to the rectifier circuit. Determine (i) dc output voltage (ii) peak inverse voltage (iii) ripple factor and (iv) Rectification efficiency
- 1/2. The four diodes used in a bridge rectifier circuit have forward resistance which may be considered constant at 1Ω and infinite reverse resistance. The alternating supply voltage is 240V rms and load resistance is 480Ω . Determine (i) mean load current (ii) power decipation in each diode
 - 1/3. Explain the operation of a zenor diode and compare it with PN junction diode.

School of Electrical & Electronics Engineering

Second CIA Test - May 2023

Course Code: EIE 110

Course Name: Principles of Electronics

Duration: 90 minutes

Max Marks: 50

PART- A

 $10 \times 2 = 20 \text{ Marks}$

Answer all the questions

- Design a fixed bias circuit using a silicon transistor having β value of 1. 100, V_{CC} = 10 V and DC bias condition are to be V_{CE} = 5 V and I_C = 5mA. Calculate RB, Rc and IB.
- 2. For a transistor β =45 and voltage drop across $1k\Omega$ which is connected in the collector circuit is 1V. Find the base current for common emitter configuration.
- 3. Enumerate the significance of emitter feedback in the design of voltage amplifiers.
- What is meant by faithful amplification 4.
- Compare CS, CD and CG configurations. 5.
- Draw the CMOS device structure and write its applications 6.
- Draw the emitter follower circuit and comment about its current gain 7.
- Differentiate D-MOSFET and E-MOSFET 8.
- 9. Find V₀ for the inverting amplifier shown in Fig.1

10. Implement the following equations using op-amps. $Vo = -5V_1 + 2V_2 - 10V_3$.

Answer any three questions

 $3 \times 10 = 30 \text{ Marks}$

11. Find VB,VE,VC and VCE for the circuit shown in Fig.1.β=100,VBE=0.7V

12. For the amplifier as shown in Fig.2, Draw the DC load line and mark the operating points

- 1/3. Explain the operation of JFET with its VI characteristics. Compare its operation with BJT.
- 14. Explain the operation of E-MOSFET with its VI characteristics

School of Electrical & Electronics Engineering

Third CIA Test - June 2023

Course Code: EIE 110

Course Name: Principles of Electronics Duration: 90 minutes Max Marks: 50

PART- A

	IAKI-A		
	Answer all the questions	5x 2 = 10 Marks	
<u>1.</u> <u>2.</u>	State the associative property of Boolean algebra.		
2.	Implement the equation F= XY+X'Y' using Logic gates.		
3.	How does a Zener diode act as a voltage regu	ulator?	
4.	In a CE transistor circuit V_{CC} =10V and the quiescent Current is 2mA. Determine the operating point when the collector load is $5k\Omega$.		
5.	Implement the following equations using op-	eamps $V_0 = -2V_1 + V_2 - 2V_3$.	

PART-B

Answer any three questions

 $3 \times 10 = 30 \text{ Marks}$

Explain the operation of E-MOSFET with its VI characteristics		
A full wave center tapped rectifier circuit is connected to a 230 V,1 Φ , 50 Hz AC supply through a 2:1 transformer. A resistive load of 100 Ω is connected to the rectifier circuit. Determine (i) dc output voltage, (ii) peak inverse voltage, (iii) ripple factor, and (iv) Rectification efficiency		
		Explain Half and full adder using logic gates.

PART-C

