- ✓ Sinal Diferencial x Sinal único
- ✓ Par Diferencial MOS
- ✓ Par Diferencial BJT
- ✓ Par Diferencial com carga ativa

Análise de pequenos sinais

Análise de pequenos sinais

Terra Virtual!

Saída sinal único

$$\frac{v_{o1}}{v_{id}} = -\frac{1}{2} g_m R_D$$

$$\frac{v_{o2}}{v_{id}} = +\frac{1}{2}g_m R_D$$

Saída sinal diferencial

$$A_d \equiv \frac{v_{o2} - v_{o1}}{v_{id}} = g_m R_D$$

Análise de pequenos sinais

$$\frac{v_{o1}}{v_{id}} = -\frac{1}{2} g_m R_D$$

Efeito de r_0 sobre a análise de pequenos sinais

 $\frac{v_{o2} - v_{o1}}{v_{id}} = g_m R_D // r_O \longrightarrow \text{Saída sinal differencial}$

(a)

Razão de Rejeição de Modo Comum (CMRR)

 v_{icm} = sinal de interferência de modo comum

Razão de Rejeição de Modo Comum (CMRR)

Saída sinal único

$$|A_{cm}| \approx \frac{R_D}{2R_{SS}}$$
 $|A_{du}| = 1/2 g_m R_D$

$$CMRR_{u} \equiv \left| \frac{A_{d}}{A_{cm}} \right| = g_{m}R_{SS}$$

Saída sinal diferencial

$$|A_{cm}| = \frac{v_{o2} - v_{o1}}{v_{icm}} = 0$$
 $|A_d| = \frac{v_{o2} - v_{o1}}{v_{id}} = g_m R_D$

$$CMRR_d \equiv \left| \frac{A_d}{A_{cm}} \right| = \infty$$

Tensão de *offset* do Par Diferencial

Em um par diferencial MOS 3 fatores contribuem na tensão de offset.

$$\Delta V_t \Rightarrow V_{OS} = \Delta V_t$$
 $\Delta R_D \Rightarrow V_{OS} = \frac{V_{OV}}{2} \frac{\Delta R_D}{R_D}$

$$\Delta(W/L) \Rightarrow V_{OS} = \frac{V_{OV}}{2} \frac{\Delta(W/L)}{(W/L)}$$

Tensão de offset de entrada $\Rightarrow V_{OS} = V_O / A_d$

Tensão de offset do Par Diferencial

Tensão de offset de entrada $\Rightarrow V_{OS} = V_O / A_d$

Par diferencial CMOS com carga ativa (Espelho de Corrente Ativo)

Análise do par diferencial CMOS com carga ativa

Análise do par diferencial CMOS com carga ativa

Modo diferencial

Impedância de saída e ganho diferencial do par CMOS com carga ativa

Ganho em modo comum e CMRR do par diferencial MOS com carga ativa

$$R_{o1} = R_{o2} = r_o + 2R_{SS} + 2g_m r_o R_{SS}$$

$$CMRR = (g_m r_o)(g_m R_{SS})$$

Ex. 1 - Um amplificador diferencial nMOS possui $V_t = 0.7$ V, W = 100 µm, L = 1.4 µm e $\mu_n C_{ox} = 100$ µA/V². A fonte de corrente de polarização é de 250 µA. Encontre os valores de V_{GS} , g_m . Qual o valor de v_{id} para o completo chaveamento de corrente, ou seja, $i_{dl} = I$. Qual o novo valor da fonte de corrente para dobrar de valor de v_{id} ?

Resposta:

$$V_{GS} \cong 0.89 \text{ V}$$
 $g_m \cong 1.316 \text{ mA/V}$

$$v_{id} \cong 0.27 \text{ V}$$
 $I' = 1 \text{mA}$

Ex. 2 - Um amplificador diferencial nMOS com corrente de polarização de 600 μ A, possui $\mu_n C_{ox} = 100 \ \mu$ A/V², W/L = 80, $V_A = 20 \ V$ e $R_D = 5 \ k\Omega$. Encontre os valores de V_{OV} , g_m , r_o e A_{dd}

Resposta:

$$V_{OV} \cong 0.27 \text{ V}$$
 $g_m \cong 2.22 \text{ mA/V}$

$$r_o \cong 66,66 \text{ k}\Omega$$
 $A_d \cong 10,3 \text{ V/V}$

Ex. 3 – Um par diferencial nMOS é polarizado com uma fonte de corrente de 200 μ A e impedância de saída $R_{SS}=100~\mathrm{k}\Omega$. O amplificador possui resistências de dreno $R_D=10~\mathrm{k}\Omega$. Usando $k'_nW/L=3~\mathrm{mA/V^2}$ e r_o muito alto.

- a) Se usarmos a saída em sinal único, qual o valor de $|A_d|$, $|A_{cm}|$ e CMRR?
- b) Se a saída for diferencial e existir um erro de 1% entre as resistências de dreno, qual o valor de $|A_d|$, $|A_{cm}|$ e *CMRR* ?

Respostas:

$$V_{OV} \cong 0.26 \text{ V}$$
 $g_m \cong 0.77 \text{ mA/V}$

- a) $A_d \cong 3.85 \text{ V/V}$ $|A_{cm}| \cong 0.05 \text{ V/V}$ $CMRR \cong 77 (37.7 \text{ dB})$
- b) $A_d \cong 7,70 \text{ V/V}$ $|A_{cm}| \cong 0,05 \times 10^{-3} \text{ V/V}$ $CMRR \cong 15400 (83,7 \text{ dB})$

Sugestão de Estudo:

- Sedra & Smith 5ed.

Cap. 7, item 7.2

Cap. 7, item 7.4.1

Cap. 7, item 7.5

- Razavi. 2ed.

Cap. 10, item 10.3.3

Exercícios correspondentes.

Para saber mais:

Razavi - Design of Analog CMOS Integrated Circuits, cap. 4