MA Quant II: Final Review^a

Felipe Balcazar

NYU

May 3, 2021

^aThanks to Ali Ahmed

What are we doing?

- Observe the world.
- ▶ Intuit a relationship b/t Y and $X = (X_1, X_2, ..., X_p)$.

$$Y = f(X) + \epsilon$$

- ightharpoonup Y = systematic component (S) + random error term (E)
- S: systematic information that X provides about Y.
- E: random error term with mean 0 and independent of X.
- ► Task: estimate *f* using random samples from the population.

How do we estimate f?

There are many methods. All boil down to:

- 1. Sample data (preferably random).
- 2. Use sampled data to estimate f.

Two approaches:

- 1. Parametric:
 - \triangleright Make assumptions on the functional form of f.
 - Estimate parameters using sampled data.
- Non-Parametric:
 - Doesn't rely on assumptions about f.
 - Often times more accurate but less interpretable.

Recall Gauss Markov assumptions

- 1. $Y_i = \beta X_i + \varepsilon_i$
- 2. $E[(\varepsilon_i|X_i)]=0$
- 3. $Cov(\varepsilon_i, \varepsilon_i) = 0 \forall i \neq j$
- 4. $Var(\varepsilon_i|X_i) = \sigma^2 \forall i$
- 5. $Cov(\varepsilon_i, X_i) = 0 \forall i$
- 6. $Cov(X_i, X_i) \neq 1 \forall i \neq j \text{ and } X < N$

English:

- 1. For any value of X the disturbances average out to 0
- 2. The disturbance term is independent across observations
- 3. The variance of the disturbance term is the same for all i
- 4. The disturbances are exogenous
- 5. The regression model is properly specified
- 6. No exact linear relationship b/t X's and more obs than X's

Normality assumption

To make inferences on the coefficient estimates we assume:

$$\epsilon_i \sim N(0, \sigma^2)$$

From this assumption it follows that:

$$\hat{eta}_{p} \sim N(eta_{p}, \sigma_{\hat{eta}_{p}})$$

This assumption allows us to perform hypotheses test.

Assumption violations

We have seen four:

- 1. Model miss-specification
 - $Y_i \neq \beta X_i + \varepsilon_i$
 - $ightharpoonup Cov(\varepsilon_i, X_i) \neq 0$ for some X_i
- 2. Heteroskedasticity
 - $\blacktriangleright Var(\varepsilon_i|X_i) \neq \sigma^2$ for some X_i
- 3. Measurement error
 - ▶ Potentially: $Cov(\varepsilon_i, X_i) \neq 0$ for some X_i
- 4. Multicollinearity
 - $ightharpoonup Cov(X_i, X_j) \approx 1$ for some $X_i \neq X_j$

Misspecification: types of misspecifications

1. Omitted variables

- ► True model: $Y_i = \beta_0 + \beta_1 X_{1i} + \beta_1 X_{2i} + \varepsilon_i$
- ▶ Estimated model: $Y_i = \beta_0 + \beta_1 X_{1i} + \varepsilon_i$
- ▶ If $Cov(X_1, X_2) \neq 0$ → biased coefficients and std. errors.
- ▶ If $Cov(X_1, X_2) = 0$ → unbiased coefficient, biased std. errors.

Misspecification: types of misspecifications

1. Omitted variables

- ightharpoonup True model: $Y_i = \beta_0 + \beta_1 X_{1i} + \beta_1 X_{2i} + \varepsilon_i$
- **E**stimated model: $Y_i = \beta_0 + \beta_1 X_{1i} + \varepsilon_i$
- ▶ If $Cov(X_1, X_2) \neq 0$ → biased coefficients and std. errors.
- If $Cov(X_1, X_2) = 0 \rightarrow$ unbiased coefficient, biased std. errors.
- 2. Inclusion of irrelevant variables
 - ► True model: $Y_i = \beta_0 + \beta_1 X_{1i} + \varepsilon_i$
 - ► Estimated model: $Y_i = \beta_0 + \beta_1 X_{1i} + \beta_1 X_{2i} + \varepsilon_i$
 - if $Cov(X_1, X_2) \neq 0 \rightarrow larger variances/inefficient.$

Misspecification: types of misspecifications

1. Omitted variables

- ► True model: $Y_i = \beta_0 + \beta_1 X_{1i} + \beta_1 X_{2i} + \varepsilon_i$
- **E**stimated model: $Y_i = \beta_0 + \beta_1 X_{1i} + \varepsilon_i$
- ▶ If $Cov(X_1, X_2) \neq 0$ → biased coefficients and std. errors.
- ▶ If $Cov(X_1, X_2) = 0$ → unbiased coefficient, biased std. errors.
- 2. Inclusion of irrelevant variables
 - ► True model: $Y_i = \beta_0 + \beta_1 X_{1i} + \varepsilon_i$
 - ► Estimated model: $Y_i = \beta_0 + \beta_1 X_{1i} + \beta_1 X_{2i} + \varepsilon_i$
 - ▶ if $Cov(X_1, X_2) \neq 0$ → larger variances/inefficient.
- 3. Incorrect functional form (non-linearity)
 - True model: $Y_i = \beta_0 + \beta_1 \log X_{1i} + \varepsilon_i$ or $Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i}^2 + \varepsilon_i$
 - Estimated model: $Y_i = \beta_0 + \beta_1 X_{1i} + \varepsilon_i$
 - biased coefficients and std. errors.

Misspecification: dealing with omitted variable bias

Ex-post (if we cannot determine how the data is gathered):

- Use theory.
- ► Test for misspecification (ex. F-test).
- Use causal inference techniques:
 - Regression discontinuity.
 - Difference-in-differences.
 - Instrumental variables.

Ex-ante (if we can determine how the data is gathered).

Randomization.

Misspecification: dealing with wrong functional form

Polynomial transformation:

- ▶ Polynomial relationship between \hat{Y}_i and X_i .
- ► Think U-shaped or S-shaped relationships.
- ▶ Unlike logs, can reverse the direction of the relationship.
- See stata examples.
- ► Caution: interpretation of coefficients changes.

Types:

- quadratic: $\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_{1i} + \hat{\beta}_2 X_{1i}^2$
- cubic: $\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_{1i} + \hat{\beta}_2 X_{1i}^2 + \hat{\beta}_3 X_{1i}^3$

Misspecification: dealing with wrong functional form

Logarithmic transformation:

- Non-linear relationship between Y_i and X_i .
- ► Highly skewed variables.
- ► See stata examples.
- ► Caution: interpretation of coefficients changes.

Types:

- ▶ linear-log: $\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 \log X_i$
- ▶ log-linear: $\log \hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i$
- ▶ **log-log:** $\log \hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 \log X_i$

Misspecification: test

- ▶ Look for non-randomness in residual plots.
- ► RESET test.

Misspecification: RESET test

- ► Ramsey (1969)
- ► Purpose: test for non-linearities
- ▶ Pros: good test of misspecification.
- ► Cons: not a guide us as to alternative specifications.
- 1. Estimate your proposed: Ex. $Y = \beta_0 + \beta_1 X + u$
- 2. Compute fitted values \hat{Y}
- 3. Estimate: $Y = \beta_0 + \beta_1 X + \delta_1 \hat{Y}^2 + \delta_2 \hat{Y}^3 + v$
- 4. Test H_0 : $\delta_1 = \delta_2 = 0$
- 5. Perform a joint significance test on δ_1 and δ_2 ($F_{2,n-k-3}$).
- 6. Rejection of the null suggests existence of non-linearities.

Misspecification: F-test

- ▶ We might want to test a particular subset *q* of the coefficients.
- \blacktriangleright $H_0: \beta_{p-q+1} = \beta_{p-q+2} = \cdots \beta_p = 0$
- $ightharpoonup H_1$: at least one $(\beta_1,...,\beta_q) \neq 0$

$$F = \frac{(RSS_0 - RSS)/q}{RSS/(n-p-1)}$$

 $RRS_0 = RRS$ for the model excluding the q parameters.

RRS = RRS for the full (unrestricted) model.

Heteroskedasticity: consequences

- ► $Var(\varepsilon_i|X_i) \neq \sigma^2$ for some X_i
- ▶ Oftentimes $Var(\varepsilon_i)$ is a function of some X_i .
- → estimator of coefficient standard errors is biased.
- Problem for inference.
- Note: coefficient estimators remain unbiased but not efficient.
- One solution: use heteroskdasticity robust standard errors.

Heteroskedasticity: tests

- 1. Visual inspection:
 - ▶ Plot residuals as a function of the independent variables.
 - ▶ Plot squared residuals as a function of independent variables.
- 2. Goldfeld-Quandt Test.
- 3. White Test.

Heteroskedasticity: Goldfeld-Quandt test

- 1. Order obs according to X_i thought to be related to $Var(\varepsilon_i)$.
- 2. Take equally sized subsets of observations from both extremes.
- 3. Estimate model for each subset (ignoring the middle).
- 4. Perform F-test on the ratio of the residual sum of squares.
 - $ightharpoonup H_0$: errors are homoskedastic.

Heteroskedasticity: White test

- 1. Estimate your proposed model: Ex. $Y = \beta_0 + \beta_1 X + u$
- 2. Compute residuals \hat{e} .
- 3. Regress \hat{e}^2 on the regressors, their squares and interactions.
- 4. Compute the chi-squared statistic = $n * R^2$
 - $ightharpoonup H_0$: errors are homoskedastic.

Multicollinearity: consequences

- $ightharpoonup Cov(X_i, X_j) \approx 1$ for some $X_i \neq X_j$
- Problem: large variances of the OLS parameter estimates.
- Note: OLS estimator still unbiased (indeed BLUE).
- Tradeoff: large parameter variances vs. omitted variable bias.

Multicollinearity: test

- ▶ Compute the variance inflation factor for each predictor.
- $VIF_j = \frac{1}{1 R_i^2}$
- ▶ $R_j^2 = R^2$ of regressing X_j on remaining predictors.
- Values > 10 suggest multicollinearity.

Multicollinearity: solutions

- Obtain more data.
 - Larger samples help reduce variance.
- Formalize relationship among regressors.
 - Simultaneous equation model.
- Drop a variable.
 - ► Tradeoff: large parameter variances vs. omitted variable bias.

Measurement error

- Measurement error on dep. variable: no problem.
 - Errors just become part of the disturbance term.
 - Bigger standard errors.
- ▶ Measurement error on indep. variable: problem if not random.
 - $ightharpoonup Cov(\varepsilon_i, X_i) \neq 0$ for some X_i
 - ► Result: biased OLS estimator.
- Solutions:
 - Get better data.
 - Weighted regressions.
 - Instrumental variables.

Moderators and Mediators

Figure 1: X as a moderator

Figure 2: X as a mediator

Interaction Terms

Used when we believe the effect of T on Y is a function of X.

 \rightarrow X as a **moderator**.

We write:

$$Y = \beta_0 + \beta_1 T + \beta_2 X + \beta_3 T * X + \varepsilon$$

For ease of interpretation rewrite as:

$$Y = \beta_0 + (\beta_1 + \beta_3 X)T + \beta_2 X + \varepsilon$$

 \rightarrow the effect of a unit change of T on $Y = (\beta_1 + \beta_3 X)$.

Marginal Effects

$$Y = \beta_0 + \beta_1 T + \beta_2 X + \beta_3 T * X + \varepsilon$$

Table 1: What does each of the coefficients represent?

	$X_0 (X = 0)$	$X_1 (X = 1)$	Difference $(X_1 - X_0)$
$T_0 (T=0)$	eta_0	$\beta_0 + \beta_2$	β_2
$T_1 (T=1)$	$\beta_0 + \beta_1$	$\beta_0 + \beta_1 + \beta_2 + \beta_3$	$\beta_2 + \beta_3$
Difference $(T_1 - T_0)$	β_1	$\beta_1 + \beta_3$	β_3

Limited Dependent Variables

- ► Limited dependent variables (LDVs): outcome variables with finite, truncated, or discrete support.
- Example: $Y_i \in \{0,1\}$. Here, the estimated effect β using OLS (i.e., a linear probability model) may be difficult to work with (functional form issues, inaccurate predictions).
- We need a model for $Pr[Y_i = 1|X_i]$, where X_i may be continuous or binary.

Limited Dependent Variables

- ▶ Begin by rescaling $E[Y_i|X_i] = Pr[Y_i = 1|X_i]$ as a linear function: $g(E[Y_i|X_i]) = X_i'\beta$.
- ▶ This gives us a generalized linear model (GLM), where $g(\cdot)$ is called the *link function* and $X_i'\beta$ is the linear predictor.
- The logistic transformation is one particular kind of link function which models log-odds (rather than probabilities).

Logistic Regression

log-odds scale

$$log\left(\frac{Pr[Y_i = 1|X_i]}{1 - Pr[Y_i = 1|X_i]}\right) = X_i\beta$$

- \triangleright β 's are only interpretable as signs (+/-) and significance (***).
- Must convert back to probability scale to get a substantive meaning of the coefficient. (Stata: - margins - command).

Instrumental Variables - Two Stage Least Squares (2SLS)

OLS

$$Y_i = \alpha + \beta D_i + \eta_i$$

IV: Second stage

$$Y_i = \alpha + \delta \widehat{D}_i + \varepsilon_i \tag{1}$$

IV: First stage

$$D_i = \alpha + \pi Z_i + \epsilon_i \tag{2}$$

Here, the instrument Z_i , for the treatment D_i , estimates the localized effect of the treatment on the outcome of interest Y_i .

Instrumental Variables - 2SLS

$$Cov[Y_i, Z_i] = Cov[\alpha + \beta D_i + \eta_i, Z_i] = \beta Cov[D_i, Z_i]$$

$$\Rightarrow \beta = \frac{Cov[Y_i, Z_i]}{Cov[D_i, Z_i]} = \frac{\frac{Cov[Y_i, Z_i]}{Var[Z_i]}}{\frac{Cov[D_i, Z_i]}{Var[Z_i]}}$$

Where the 'Reduced Form' effect can be estimated using a regression: $Y_i = \alpha + \pi Z_i + \epsilon_{it}$

IV 2SLS Example: Haber et al., 2011 (APSR)

Second stage

$$Democracy_{it} = \alpha + \beta(\widehat{Oil}_{it}) + \delta_t + \gamma_i + X'_{it}\lambda + \varepsilon_{it}$$
 (3)

First stage

$$Oil_{it} = \alpha + \pi Natural Disaster_{it} + \delta_t + \gamma_i + X'_{it}\lambda + \epsilon_{it}$$
 (4)

Strategy

Isolate source of *exogenous* variation (unforeseen natural disaster shocks) in oil producing countries to measure the causal effect of resource revenues on political institutions and human rights.

Instrumental Variables - Identification Assumptions

- ► The instrument is exogenous (i.e., it is as good as randomly assigned)^b.
- ▶ The instrument has some effect on regressor of interest (i.e., $E[D_{1i} D_{0i}] \neq 0$). We can estimate the validity of the first-stage by examining the F-statistic (*F-stat* > 10 is good!).
- ► The "exclusion restriction" holds (i.e., the instrument has no effect on the outcomes of interest except through its effect on the regressor of interest D_i).
- ► The effects of the instrument on the regressor of interest are monotonic (i.e., $D_{1i} D_{0i} > 0 \ \forall i$).

^bMore specifically, the instrument is orthogonal to the potential outcomes.