Untuk apa Graf?

"Matematika menjadi hal utama untuk menjawab tantangan di masa depan. Dengan mempelajarinya, manusia akan terus berkembang dan menciptakan teknologi mutakhir" (Prof. Edy Tri Baskoro/ITB).

Dalam era digital, teori Graf bermanfaat untuk **menciptakan link** yang ada di internet, algoritma, transportasi, kecerdasan buatan, GPS,Gmaps.

Introduction

Graf/Grafik dimodelkan untuk menghubungkan relasi antara benda Teori Graf dapat dimodelkan menjadi berbagai tipe dari relasi dan proses dalam sistem informasi.

Graf digunakan untuk merepresentasikan objek-objek diskrit dan hubungan antara objek-objek tersebut dengan simbol **titik** dan **garis**.

Definisi:

- Definisi graf adalah himpunan G = (V, E), dimana:

V = himpunan tidak kosong dari simpul-simpul (vertices)

$$= \{ v1, v2, ..., vn \}$$

E = himpunan sisi (edges) yang menghubungkan sepasang simpul

$$= \{e1, e2, ..., en\}$$

Pada G2, sisi e3 = (1,3) dan sisi e4 = (1,3) dinamakan sisiganda (multiple edges atau paralel edges) karena kedua sisi ini menghubungi dua buah simpul yang sama, yaitu simpul 1 dan simpul 3

Pada G3, sisi e8 = (3, 3) dinamakan **gelang** atau **kalang** (loop) karena ia berawal dan berakhir

pada simpul yang sama.

Gambar 2. (a) graf sederhana, (b) graf ganda, dan (c) graf semu

G1 adalah graf dengan

$$E = \{ (1, 2), (1, 3), (2, 3), (2, 4), (3, 4) \}$$

G2 adalah graf dengan

$$E = \{ (1, 2), (2, 3), (1, 3), (1, 3), (2, 4), (3, 4), (3, 4) \}$$

= $\{ e1, e2, e3, e4, e5, e6, e7 \}$

G3 adalah graf dengan

$$V = \{ 1, 2, 3, 4 \}$$

$$E = \{ (1, 2), (2, 3), (1, 3), (1, 3), (2, 4), (3, 4), (3, 4), (3, 3) \}$$

Jenis Graf

Berdasarkan ada tidaknya gelang atau sisi ganda pada suatu graph, maka graph digolongkan menjadi dua jenis:

1. Graph sederhana (simple graph).

2. Graph tak-sederhana (unsimple-graph).

Jenis Graf

Berdasarkan orientasi arah pada sisi, maka secara umum graf dibedakan atas 2 jenis:

1. Graf tak-berarah (undirected graph)

Graf yang sisinya tidak mempunyai orientasi arah disebut graf tak-berarah.

2. Graf berarah (directed graph atau digraph)

Graf yang setiap sisinya diberikan orientasi arah disebut sebagai graf berarah.

Contoh penerapan Graf

Rangkaian listrik

Contoh penerapan Graf

Isomer senyawa kimia karbon

metana (CH4)

etana (C2H6)

propana (C3H8)

Contoh penerapan Graf

-Jejaring makanan (Biologi)

1. Ketetanggaan (Adjacent)

Dua buah simpul dikatakan *bertetangga* bila keduanya terhubung langsung.

Tinjau graph:

simpul 1 bertetangga dengan simpul 2 dan 3, simpul 1 tidak bertetangga dengan simpul 4. Graph

2. Bersişian (*Incidency*)

E

Untuk sembarang sisi e = (vj, vk) dikatakan e bersisian dengan simpul vj, atau e bersisian dengan simpul vk

Tinjau graph:
sisi (2, 3) bersisian dengan simpul 2
dan simpul 3,
sisi (2, 4) bersisian dengan simpul 2
dan simpul 4,
tetapi sisi (1, 2) tidak bersisian dengan simpul 4.

3. Simpul Terpencil (Isolated Vertex)

Simpul terpencil ialah simpul yang tidak mempunyai sisi yang bersisian dengannya.

Tinjau graph: simpul 5 adalah simpul terpencil

4. Graph Kosong (null graph atau empty graph)

Graph yang himpunan sisinya merupakan himpunan kosong (N_n) .

1

4 • • •

•

5. Derajat (Degree)

Derajat suatu simpul adalah jumlah sisi yang bersisian dengan simpul tersebut.

Notasi: d(v)

Tinjau graph G1:

d(1) = d(4) = 2

d(2) = d(3) = 3

Derajat (Degree)

Tinjau graph G3:

 $d(5) = 0 \rightarrow \text{simpul terpencil}$

 $d(4) = 1 \rightarrow \text{simpul anting-anting (pendant vertex)}$

Tinjau graph G2:

d(1) = 3 \rightarrow bersisian dengan sisi ganda

d(3) = 4 \rightarrow bersisian dengan sisi gelang (loop)

Derajat (Degree)

Pada graph berarah,

 $d_{in}(v) = derajat-masuk (in-degree)$

= jumlah busur yang masuk ke simpul *v*

 $d_{\text{out}}(v) = \text{derajat-keluar} (out-degree)$

= jumlah busur yang keluar dari simpul *v*

 $d(v) = d_{in}(v) + d_{out}(v)$

Derajat (Degree)

Tinjau graph:

$$d_{in}(1) = 2$$
; $d_{out}(1) = 1$

$$d_{\rm in}(2) = 2$$
; $d_{\rm out}(2) = 3$

$$d_{\text{in}}(3) = 2$$
; $d_{\text{out}}(3) = 1$

$$d_{\rm in}(4) = 1$$
; $d_{\rm out}(4) = 2$

$$d(v) = d_{in}(v) + d_{out}(v)$$

Lemma Jabat Tangan /Handshaking Lemma

Jumlah derajat semua simpul pada suatu graph adalah genap, yaitu dua kali jumlah sisi pada graph tersebut.

Dengan kata lain, jika G = (V, E), maka

$$\sum_{v \in V} d(v) = 2|E|$$

Lemma Jabat Tangan

Tinjau graph G1:

$$d(1) + d(2) + d(3) + d(4) =$$

 $2 \times \text{jumlah sisi} = 2 \times 5$

Tinjau graph G2:

d(1) + d(2) + d(3)

= 3 + 3 + 4 = 10

= $2 \times \text{jumlah sisi} = 2 \times 5$

Lemma Jabat Tangan

Tinjau graph G_3 :

d(1) + d(2) + d(3) + d(4) + d(5)

= 2 + 2 + 3 + 1 + 0

= 8

= 2 × jumlah sisi

= 2 × 4

Graph G₃

Lemma Jabat Tangan

Contoh.

Diketahui graph dengan lima buah simpul. Dapatkah kita menggambar graph tersebut jika derajat masing-masing simpul adalah:

(a) 2, 3, 1, 1, 2

(b) 2, 3, 3, 4, 4

Penyelesaian:

(a) tidak dapat, karena jumlah derajat semua simpulnya

ganjil

(2+3+1+1+2=9).

(b) dapat, karena jumlah derajat semua simpulnya

genap

(2+3+3+4+4=16).

6. Lintasan (Path)

Lintasan yang panjangnya n dari simpul awal v_0 ke simpul tujuan v_n di dalam graph G ialah barisan berselang-seling simpul-simpul dan sisi-sisi yang berbentuk v_0 , e_1 , v_1 , e_2 , v_2 ,..., v_{n-1} , e_n , v_n sedemikian sehingga e_1 = (v_0 , v_1), e_2 = (v_1 , v_2), ..., e_n = (v_{n-1} , v_n) adalah sisi-sisi dari graph G.

Lintasan tertutup adalah lintasan yang berawal dan berakhir pada simpul yang sama, sedangkan **lintasan terbuka** berawal dan berakhir dari simpul yang berbeda.

Contoh:

1-e1-2-e2-3 adalah sebuah lintasan

1-e1-2-e2-3-e3-1 adalah sebuah lintasan tertutup

4-e4-1-e3-3 adalah sebuah lintasan terbuka.

7. Siklus (Cycle) atau Sirkuit (Circuit)

Lintasan yang berawal dan berakhir pada simpul yang sama disebut **sirkuit** atau **siklus**. istilah lain dari lintasan tertutup.

Tinjau graph G1:

1, 2, 3, 1 adalah sebuah sirkuit.

Panjang sirkuit adalah jumlah sisi dalam sirkuit tersebut. Sirkuit 1, 2, 3, 1 pada *G*1 memiliki panjang 3.

SIRKUIT EULER

- Sirkuit Euler adalah sirkuit yang melewati setiap sisi dari sebuah graf tepat satu kali dan setiap simpul dilewati paling tidak 1 kali.
- Contoh Sirkuit Euler pada gambar di atas adalah:

1-e1-2-e2-3-e3-3-e4-4-e5-1

SIRKUIT HAMILTON

- Sirkuit Hamilton adalah sebuah sirkuit yang melewati setiap simpul dari sebuah graf tepat satu kali, (kecuali titik yang merupakan titik awalnya).
- Contoh Sirkuit Hamilton pada gambar di samping:

1-e1-2-e2-3-e4-4-e5-1

Representasi Graph

- 1. Matriks Ketetanggaan (adjacency matrix)
- 2. Matriks Bersisian (incidency matrix)
- 3. Senarai Ketetanggaan (adjacency list)

1. Matriks Ketetanggaan (adjacency matrix)

 $A=[\alpha_{ij}],$

- 1, jika simpul *i* dan *j* bertetangga $a_{ij} = \{$
- 0, jika simpul i dan j tidak bertetangga

Matriks Ketetanggaan (adjacency matrix)

Graph

Matriks Ketetanggaan

Matriks Ketetanggaan (adjacency matrix)

Graph

Matriks Ketetanggaan

3 4

Derajat tiap simpul i:

(a) Untuk graph tak-berarah,

$$d(v_i) = \sum_{j=1}^n a_{ij}$$

(b) Untuk graph berarah,

$$d_{in}(v_j)$$
 = jumlah nilai pada kolom $j = \sum_{i=1}^{n} a_{ij}$
 $d_{out}(v_i)$ = jumlah nilai pada baris $i = \sum_{i=1}^{n} a_{ij}$

Derajat tiap simpul

Graph

Matriks Ketetanggaan

Derajat tiap simpul

Graph

Derajat masuk simpul 2 = 1+0+0+1 = 2Derajat keluar simpul 2 = 1+0+1+1 = 3 **Matriks Ketetanggaan**

Matriks Ketetanggaan Graph Berbobot

Tanda ⋘ bila tdk ada sisi dari simpul I

e j a 12 8 b 9 9 14 c

Matriks Ketetanggaan

2. Matriks Bersisian (incidency matrix)

$$A=[\alpha_{ij}],$$

1, jika simpul *i* bersisian dengan sisi *j*

 $a_{ii} = \{0, jika simpul i tidak bersisian dengan sisi j\}$

Matriks Bersisian (incidency matrix)

Graph

Matriks Bersisian

e1 e2 e3 e4 e5

3. Senarai Ketetanggaan (adjacency list)

Graph

Senarai Ketetanggaan

Simpul	Simpul Tetangga
1	2, 3
2	1, 3, 4
3	1, 2, 4
4	2, 3

Matriks Ketetanggaan (adjacency matrix)

Graph

Senarai Ketetanggaan

Simpul	Simpul Tetangga
1	2, 3
2	1, 3
3	1, 2, 4
4	3
5	-

Senarai Ketetanggaan (adjacency list)

Graph

Simpul	Simpul Terminal
1	2
2	1, 3, 4
3	1
4	2, 3