Analytical Geometry and Calculus II

Conrad A. Mearns

January 17, 2017

Review of Theorems for Limits

Let a and c be any number, if $F = \lim_{x \to a} f(x)$ and $G = \lim_{x \to a} g(x)$ then

1.
$$\lim_{x\to a} (f(x) + g(x)) = F + G$$

2.
$$\lim_{x\to a} (f(x) - g(x)) = F - G$$

3.
$$\lim_{x \to a} (c * f(x)) = c * F$$

4.
$$\lim_{x\to a} \left(\frac{f(x)}{g(x)}\right) = \frac{\lim_{x\to a} f(x)}{\lim_{x\to a} g(x)}$$
 except when $G=0$

5.
$$\lim_{x \to a} (f(x))^c = F^c$$

Limits Involving Infinity while $c \neq 0$

These are templates, where x is either taken to ∞ or 0.

1.
$$c * (\pm \infty) = \pm \infty$$
 Example: $\lim_{x \to \infty} 5x = \infty$

2.
$$\frac{c}{\pm \infty} = 0$$
 Example: $\lim_{x \to \infty} \frac{5}{x} = 0$

3.
$$\frac{c}{0} = \pm \infty$$
 Example: $\lim_{x \to 0} \frac{5}{0} = \infty$

$$4. \ \frac{\pm \infty}{c} = \pm \infty$$

Impossible Limits

- \bullet $\frac{0}{0}$
- \bullet $\frac{\infty}{\infty}$
- $\infty \infty$
- 0 * ∞

Limits of Rational Functions

Theorem: Given a rational function $\frac{f(x)}{g(x)}$, the following is be true. Let d represent the degree of f(x) and e represent the degree of g(x).

- 1. If d > e then $\lim_{x \to \infty} \frac{f(x)}{g(x)} = \pm \infty$
- 2. If d < e then $\lim_{x \to \infty} \frac{f(x)}{g(x)} = 0$
- 3. If d=e then $\lim_{x\to\infty}\frac{f(x)}{g(x)}=\frac{a}{b}$ where a is the leading term of f(x) and b is the leading term of g(x)

Example: To evalute $\lim_{x\to\infty} \frac{10x^3-3x^2+8}{\sqrt{25x^6+x^4+2}}$

- 1. Reduce all terms by x of the leading coefficient's degree.
- 2. Then take the limit of each term. $\frac{10-3x^{-1}+8x^{-3}}{\sqrt{25+x^{-2}+2x^{-6}}}$
- 3. Simplify. $\frac{10-0+0}{\sqrt{25+0+0}}$
- 4. $\frac{10}{\sqrt{25}} = \frac{10}{5} = 2$

Inverse Trig Functions

Definition: $y = \sin^{-1}x$ is the value of y such that $x = \sin y$.

Domain: $-1 \le x \le 1$ Range: $\frac{-\pi}{2} \le y \le \frac{\pi}{2}$

Definition: $y = cos^{-1}x$ is the value of y such that x = cosy.

Domain: $-1 \le x \le 1$ Range: $0 \le y \le \pi$

Other Trig Functions

- $y = tan^{-1}x \rightarrow x = tany$ Range: $\frac{-\pi}{2} < y < \frac{\pi}{2}$
- $y = \cot^{-1}x \rightarrow x = \cot y$ Range: $0 < y < \pi$
- $y = sec^{-1}x \rightarrow x = secy$ Range: $0 \le y \le \pi, y \ne \frac{\pi}{2}$
- $y = csc^{-1}x \rightarrow x = cscy$ Range: $\frac{-\pi}{2} \le y \le \frac{\pi}{2}, y \ne 0$

Inverse Trig Identities

- $sin(sin^{-1}x) = x$
- $cos(cos^{-1}x) = x$
- $sin^{-1}(sinx) = x$ only if x is in range of sin^{-1}
- $cos^{-1}(cosx) = x$ only if x is in range of cos^{-1}

Example: $sin^{-1}(sin\pi)=sin^{-1}(0)=0\neq\pi$

Example: $cos(sin^{-1}x)$

- 1. Let $y = \sin^{-1}x$ so that $x = \sin y$ and $\cos(\sin^{-1}x) = \cos y$
- 2. Recall that $sin = \frac{opposite}{hypotenuse}$
- 3. Let hypotenuse = 1 and opposite = b where b has yet to be determined.
- 4. Recall that $cosy = \frac{adjacent}{hypotenuse}$
- 5. $\frac{adjacent}{hypotenuse} = \frac{b}{1}$, and therefor cosy = b
- 6. Use the Pythagorean Theorem to solve: $x^2 + b^2 = 1^2$
- 7. $b^2 = 1 x^2$
- 8. $b = \sqrt{1 x^2}$
- 9. Therefor $cos(sin^{-1}x) = \sqrt{1-x^2}$

Derivatives of Inverse Trig Functions

- $\frac{d}{dx}(sin^{-1}x) = \frac{1}{\sqrt{1-x^2}}$
- $\bullet \ \frac{d}{dx}(\cos^{-1}x) = \frac{-1}{\sqrt{1-x^2}}$
- $\bullet \ \frac{d}{dx}(tan^{-1}x) = \frac{1}{1+x^2}$
- $\frac{d}{dx}(\cot^{-1}x) = \frac{-1}{1-x^2}$
- $\bullet \ \frac{d}{dx}(sec^{-1}x) = \frac{1}{|x|\sqrt{x^2 1}}$
- $\bullet \ \frac{d}{dx}(csc^{-1}x) = \frac{-1}{|x|\sqrt{x^2-1}}$

Antiderivatives Involving Inverse Trig Functions

- $\bullet \int \frac{dx}{\sqrt{a^2 x^2}} = \sin^{-1}\frac{x}{a} + C$
- $\bullet \int \frac{dx}{\sqrt{a^2 + x^2}} = \frac{1}{a} tan^{-1} \frac{x}{a} + C$

$$\bullet \int \frac{dx}{x\sqrt{x^2 - a^2}} = \frac{1}{a}sec^{-1}\frac{x}{a} + C$$

L'Hopital's Rule

L'Hopital's Rule let's us evaluate impossible limits.

Theorem: Suppose f(x) and g(x) are differentiable on an open interval I containing a where $g'(x) \neq 0$ on I when $x \neq a$. If

1.
$$\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = 0$$

2.
$$\lim_{x\to a} f(x) = \pm \infty$$
 and $\lim_{x\to a} g(x) = \pm \infty$

then $\lim_{x\to a} \frac{f(x)}{g(x)} = \lim_{x\to a} \frac{f'(x)}{g'(x)}$. This is also true as $x\to\pm\infty, x\to a^+, x\to a^-$.