Project Supervisor: Daniel Mitchell Project Director: Dr David Flynn

Presented by: Oscar Meunier

Reducing Human intervention using Extended reality

Objectives

- Develop a HoloLens-based application for intuitive teleoperation of the Jackal robot.
- Train and assist inspection and maintenance tasks using knowledge of the digital representation and sensor data.

HoloLens 2

Introduction & Background

Inspection and maintenance of critical infrastructures, such as **offshore windfarms** and **nuclear** facilities, can pose significant risks and high costs.

Digital Twin (DT): A virtual replica of a physical asset or system, used to optimize and understand its physical counterpart.

Reality-Virtuality (RV) Continuum: The varying levels of immersion in virtual environments, spanning from real-world experiences to fully virtual ones:

- Extent of World Knowledge (EWK): Captured from sensors.
- Coherence: The emulation of the digital world.
- Immersion: Stage of the RV continuum.

Digital twin of **autonomous robots** and **facility** in combination with **XR** is advantageous for inspection and training:

Inspection:

- (\$) Economical: No transport cost with remote inspections.
- **Effective:** One operator can control multiple robots at once.
- Failure Prevention: EWK and coherence can predict errors.
- Assisted Inspection: Useful information provided to user.

Training

- Immersive: Engaging and realistic training environments that can help learners better understand and retain information.
- Safe and Controlled: Risk-free virtual environment.
- Adaptability: Adjustable difficulty.
- © Cost-effective: Expensive equipment not required.

Methodology and Implementation

Controller

0.50

Speed 0.50

Views

The robot is set into the environment, real or simulated (A).

Control Panel

The sensor data is collected by the robot **(B)** and the HoloLens.

This information is aggregated into the AR environment (C).

Conclusion

The HoloLens application provided an immersive, safe, and controlled environment for training purposes.

Assisted inspection tasks were made possible by using sensor data and a digital twin representation.

Results

- Successfully visualized Sensor data in AR environment.
- Successfully controlled Jackal robot using HoloLens as input.

Future Work

- Generating a DT of facility from stereo camera and 3D Lidar.
- ① Increased robustness in control strategy as hand tracking can be unreliable.
- Controlling multiple Robots at once using top level control of a robot fleet.