Chapter 10: Model comparison and Hierachical Modelling

Shubham Gupta

April 30, 2019

1 Introduction

- When we have multiple models describing the same data, we need to assign credibilities to each model.
- Bayesian model comparison reallocates credibility across models given the data.
- Model comparison \implies bayesian estimatation of hierarchical models where the top-level is the index of the models.

2 Bayes Factor

2.1 General Formula

- Assume we have data D with parameters θ .
- Prior distribution is $p(\theta)$
- \bullet Parameter m to specify the index of the model.
- Hence, we will get

$$likelihood = p_m(y|\theta_m, m).$$

 $prior = p(\theta_m|m).$

- Priors have different subscripts because they might have different distributions for each model.
- Assume each model is given a prior probability of $p(\theta)$. Then, for all possible models $\theta_1, \theta_2 \dots m$, we have:

$$p(\theta_1, \theta_2 \dots | D) = \frac{P(D|\theta_1, \theta_2 \dots m) * p(\theta_1, \theta_2 \dots m)}{\sum_m \int d\theta_m p(D|\theta_1, \theta_2 \dots m) p(\theta_1, \theta_2 \dots m)}.$$

Figure 1: Model comparisons as a hierarchical model

• To get the relative probabilities of the models, we will divide their posterior outputs.

$$\frac{p(m=1|D)}{p(m=2|D)} = \frac{p(D|m=1)*p(m=1)/\sum_{m}P(D|m)*p(m)}{p(D|m=2)*p(m=2)/\sum_{m}P(D|m)*p(m)}.$$

- The above equation is called the Bayes Factor
- We can use the below table for reference on figuring out when to report a model is better than the alternative model.

K	dHart	bits	Strength of evidence
< 10 ⁰	0	_	Negative (supports M ₂)
10 ⁰ to 10 ^{1/2}	0 to 5	0 to 1.6	Barely worth mentioning
10 ^{1/2} to 10 ¹	5 to 10	1.6 to 3.3	Substantial
10 ¹ to 10 ^{3/2}	10 to 15	3.3 to 5.0	Strong
10 ^{3/2} to 10 ²	15 to 20	5.0 to 6.6	Very strong
> 10 ²	> 20	> 6.6	Decisive

Figure 2: bayes factor