Peter Ascoli E.I.T.

Address: 415 Herondo St., Apt. 259, Hermosa Beach, CA 90254 Phone: 617.401.5223 Email: peterascoli@gmail.com Portfolio: pascoli.github.io

Education

2015-2017	Massachusetts Institute of Technology, Cambridge, MA, USA o Master of Science, Mechanical Engineering, Design and Manufacturing, GPA 3.9/4.0, Graduate Research Fellowship
2011-2015	The Cooper Union for the Advancement of Science and Art, New York, NY, USA • Bachelor of Engineering, Mechanical Engineering, GPA: 3.9/4.0, Full Tuition Scholarship
Experience	5 Euclieton of Engineering, Meetiameat Engineering, 6774 ois/ 10,174 to 1011 oil
Aug. 2017	Structures Engineer at Space Exploration Technologies (SpaceX), Hawthorne, CA, USA
Present	Dragon Structures Engineering o "Cradle to Grave" responsibility for multiple primary and secondary structures delivered to Dragon 2 (Crew Dragon)
	• Design: Mass and stiffness driven composite and metallic structures. Drawings per ASME-Y-14.5-2009 w/ GD&T.
	 Analysis: Developed loading methodolgy, built FEMs to iterate designs subject to static and dynamic loads, and performed cross-team design reviews verifying the meeting of design requirements.
	• Test: Validated flight hardware through test setup design, ran static load cases, and wrote certificaiton reports
	• Build: Rapidly solved production-halting Dragon 1 and 2 build issues through repair suggestions, analysis, or test
Sept. 2015	Graduate Research Assistant at MIT, Cambridge, MA, USA
June 2017	Laboratory for Manufacturing and Productivity
	o Investigated sources of variation in roll-to-roll microcontact printing quality due to seamless tool manufacturing
	 Simulation: Modeled thick film lithographic exposure of tool molds to develop the manufacturing process window Design/Build: Programmed a raster-scan exposure protocol to create photoresist molds, on which to centrifugally
	cast PDMS, forming seamless cylindrical stamps with desired micron-scale features. Built two microscopes to
	inspect and measure photoresist mold geometry, and to measure feature deformation under print pressures.
	o Test: Quantified the variation in feature dimensions in each step from the analytical shape through print
Jan. 2016	Mentor at MIT MakerWorkshop, Cambridge, MA, USA
June 2017	Volunteer Shop Techician, Supervisor, and Mill Team Leader at MIT's first student run machine shop o Design/Build: Provided project guidance to students, faculty, and staff, while ensuring safety of shop users
	o Management: Certified mill users through weekly trainings, and organized and taught a week-long CNC course
May 2014 Aug. 2014	Mechanical Design Engineer at NASA Kennedy Space Center, Cape Canaveral, FL, USA Structures and Mechanisms Design Branch
Aug. 2014	 Designed an Orion mass simulator concept using a weldment inside an OML mockup, and a now-in-use tripod hoist structure for securing the Orion Service Module Umbilical Plate during testing. 2014 NASA Intern of the Year Award.
Sept. 2012	Mechanical Designer and Fabricator, New York, NY, USA
Apr. 2013	New York City Artist MaDora Frey
	 Designed and fabricated a pair of electro-mechanical sculptures meeting an artist's concept for communication between two seemingly separate mechanisms. "Lure" shown in Trestle Gallery (Brooklyn, NY, 2014).
Projects	
Technical:	CNC Benchtop Lathe for Turning Steel and Aluminum with 50 Micron Precision
	• Used first principles solid mechanics to derive part stiffness requirements via an error budget. Designed three
	MDOF flexures to exactly constrain x and z feed systems. Made drawings, machined parts, and heavily contributed to feed and spindle system designs. Led team by creating schedules, dividing tasks, and holding design reviews.
Academic:	Low-cost Device to Apply Dynamic Compessive Loads to Biomimetic 3D Tooth Scaffolds for Tuft's Dental School
	• A low cost, voice coil actuated dynamic loader for 24-well plates utilizing elastic average techniques and tight
	tolerances to hold 10% force control precision with less than 0.002 inches of error motions. Used by dental tissue
	researchers to quantify the benefit of dynamic loading, over static loading, towards specific tissue growths.
24 Hours:	Laser Cut Camera • Prototyped a DSLR-mounted focusing, aperture, & lens system. Cooper Union Hackathon 2014 Most Technical Hack.
To Learn:	CNC BB8
TO LCUITI.	 Designed a hand-sized, passive, SDOF BB8 (Star Wars droid) using a copper ballasted pendulum, acrylic flexures,
Skills	and a magnetically coupled head. CNC-machined all metallic components to improve CNC and CAM skills.
Design:	3D modeling, finite element analysis, tolerance stackups, error budgets, machine design, and 2D drawings
Making:	Sketching, manual and CNC 3-axis mill, manual lathe, water jet, laser cutting, 3D printing, most hand and
0	benchtop tools, composite layups, and basic electronics (ie. soldering, waveform generators & oscilloscopes)
Software:	SolidWorks, Autodesk Inventor, AutoCAD, PTC Creo, Siemens NX & Team Center, ANSYS, Abaqus, FEMAP with Nastran, HSMWorks, MATLAB, LaTeX, LabVIEW, Microsoft Office, and Adobe Photoshop, Adobe Illustrator
	•