8-11 Homework: Applying Algebra to Geometric Situations

- 1. The line l has the equation $y = -\frac{2}{3}x + 4$. To each line below, circle whether l is parallel, perpendicular, or neither.
 - (a) parallel perpendicular neither $y = -\frac{2}{3}x 2$
 - (b) parallel perpendicular neither $y = \frac{3}{2}x + 9$
 - (c) parallel perpendicular neither 2x 3y = -5
 - (d) parallel perpendicular neither 3x + 2y = 6
- 2. What is the equation of a line through the point A(0,-2) and parallel to the line $y = \frac{2}{5}x 4$? (hint: use the point-slope formula, $y y_A = m(x x_A)$)

- 3. Simplify each expression. (Leave it in radical form if necessary, not a decimal.)
 - (a) $\sqrt{12}$

(c) $\sqrt{27}$

(b) $\sqrt{50}$

- (d) $\sqrt{\frac{9}{25}}$
- 4. Write down the center and radius of each circle.
 - (a) $(x+1)^2 + (y-1)^2 = 16$
- (c) $(x-2)^2 + (y-7)^2 = 25$
- (b) $(x-3)^2 + (y+1)^2 = 4^2$
- (d) $(x+3)^2 + (y+5)^2 = 64$

5. A translation maps $A(5,7) \to A'(-5,7)$. What is the image of B(-3,4) under the same translation?

6. As shown below, what is the translation that maps the point R(-3,2) onto the point S(6,-1)?

If two thirds of that translation was performed, what coordinates would R be mapped to?

7. Given A(-3,5) and B(2,0), find the length of \overline{AB} . Leave the result in simplified radical form (not a decimal).