Worksheet 6: Differential Rate Laws

- 1. Write down the form of the rate law equation for two reactants A and B.
- 2. Write the ratio of two of these equations when there are different amounts of A but the same amount of B. You can use rate₁ and (A_1) for one equation and rate₂ and (A_2) for the other.
- 3. Manipulate the equation from the previous part to solve for the order of A.
- 4. Use the equation derived above and the table below to obtain the rate law for the reaction $2 \operatorname{NO}(g) + \operatorname{Cl}_2(g) \longrightarrow 2 \operatorname{NOCl}(g)$. Remember to include the proper units for the rate constant.

Trial	$(NO)_0$ [M]	$(Cl_2)_0$ [M]	Initial Rate [M/s]
1	0.10	0.10	3.00×10^{-3}
2	0.10	0.15	4.50×10^{-3}
3	0.15	0.10	6.75×10^{-3}

- 5. What is the overall order for this reaction?
- 6. Calculate the rate of reaction when the initial concentration of NO is 0.65 M and that of $\rm Cl_2$ is 1.10 M.
- 7. What will be the rate of production of NOCl for the initial concentrations given in the previous problem?