Lecture 3 - Carrier Statistics in Equilibrium (cont.)

September 6, 2002

Contents:

- 1. Equilibrium electron concentration
- 2. Equilibrium hole concentration
- 3. np product in equilibrium
- 4. Location of Fermi level

Reading assignment:

del Alamo, Ch. 2, §§2.4-2.6

Key questions

- How many electrons and holes are there in thermal equilibrium in a given semiconductor?
- How does the equilibrium electron (hole) distribution in the conduction (valence) band look like?
- How can one compute n_i ?
- Where is the Fermi level in a given semiconductor? How does its location depend on doping level?

Carrier statistics in equilibrium

Question: how many electrons and holes are there in TE in a given semiconductor?

Answer: rigorous model exploiting energy view of semiconductors and concept of Fermi level.

Strategy to answer question:

- 1. derive relationship between n_o and E_F
- 2. derive relationship between p_o and E_F
- 3. derive expressions for $n_o p_o$ and n_i
- 4. figure out location of E_F from additional arguments (such as charge neutrality)

1. Equilibrium electron concentration

 n_o obtained by integrating electron concentration in entire conduction band:

$$n_o = \int_{E_c}^{\infty} n_o(E) \ dE$$

At a certain energy, $n_o(E)$ is product of CB density of states times occupation probability:

$$n_o(E) = g_c(E) f(E)$$

Then:

$$n_o = 4\pi \left(\frac{2m_{de}^*}{h^2}\right)^{3/2} \int_{E_c}^{\infty} \frac{\sqrt{E - E_c}}{1 + \exp\frac{E - E_F}{kT}} dE$$

Refer energy scale to E_c and normalize by kT. That is, define:

$$\eta = \frac{E - E_c}{kT} \qquad \eta_c = \frac{E_F - E_c}{kT}$$

Then:

$$n_o = 4\pi \left(\frac{2m_{de}^*kT}{h^2}\right)^{3/2} \int_0^\infty \frac{\sqrt{\eta}}{1 + e^{\eta - \eta_c}} d\eta$$

Define also:

$$N_c = 2 \left(\frac{2\pi m_{de}^* kT}{h^2} \right)^{3/2}$$

 $N_c \equiv effective \ density \ of \ states \ of \ the \ conduction \ band \ (cm^{-3})$

For Si at 300 K, $N_c \simeq 2.9 \times 10^{19} \ cm^{-3}$.

Then:

$$n_o = N_c \mathcal{F}_{1/2}(\eta_c)$$

with:

$$\mathcal{F}_{1/2}(\eta_c) = \frac{2}{\sqrt{\pi}} \int_0^\infty \frac{\sqrt{\eta}}{1 + e^{\eta - \eta_c}} d\eta$$

 $\mathcal{F}_{1/2}(x)$ is Fermi integral of order 1/2.

Fermi integral of order 1/2:

Key result again:

$$n_o = N_c \mathcal{F}_{1/2}(\eta_c)$$
 with $\eta_c = \frac{E_F - E_c}{kT}$

 $\eta_c \uparrow \Rightarrow$ the higher E_F is with respect to $E_c \Rightarrow n_o \uparrow$

Two regimes in n_o :

 \square Non-degenerate regime

Approximation to $\mathcal{F}_{1/2}(x)$ for low values of x:

$$\mathcal{F}_{1/2}(x \ll -1) \simeq e^x$$

Then, if $\eta_c \ll -1$, or $E_C - E_F \gg kT$, or $n_o \ll N_c$:

$$n_o \simeq N_c \exp \frac{E_F - E_c}{kT}$$

Simple exponential relationship when Fermi level is well below conduction band edge.

Can obtain same result with Maxwell- $Boltzmann\ statistics$ for f(E).

\square Degenerate regime

More complicated behavior of $\mathcal{F}_{1/2}(x)$ for high values of x (see Advanced Topic AT2.3).

Degenerate semiconductor if $\eta_c \gg -1$, or $E_F - E_C \gg kT$, or $n_o \gg N_c$.

Electron distribution inside conduction band very different from nondegenerate regime:

Will not deal with degenerate regime in 6.720 because it's even more complicated [see AT2.6 in notes]

2. Equilibrium hole concentration

 p_o obtained by integrating hole concentration in entire valence band:

$$p_o = \int_{-\infty}^{E_v} p_o(E) dE$$

At a certain energy, $p_o(E)$ is product of VB DOS times probability that state is empty:

$$p_o(E) = g_v(E) [1 - f(E)]$$

Proceed as with electrons. Define:

$$\eta_v = \frac{E_v - E_F}{kT}$$

$$N_v = 2 \left(\frac{2\pi m_{dh}^* kT}{h^2} \right)^{3/2}$$

 $N_v \equiv effective \ density \ of \ states \ of \ valence \ band \ (cm^{-3})$

For Si at 300 K, $N_v \simeq 3.1 \times 10^{19} \ cm^{-3}$

Then:

$$p_o = N_v \mathcal{F}_{1/2}(\eta_v)$$

Two regimes again:

 \square *Non-degenerate* regime:

If $\eta_v \ll -1$, or $E_F - E_v \gg kT$, or $p_o \ll N_v$:

$$p_o \simeq N_v \exp \frac{E_v - E_F}{kT}$$

Fermi level well above valence band edge.

 \square Degenerate regime:

If $\eta_v \gg 1$, or $E_v - E_F \gg kT$, or $p_o \gg N_v$, more complicated dependence of p_o on E_F .

Fermi level inside valence band.

Summary of carrier statistics depending on E_F location

3. np product in equilibrium

Compute product:

$$n_o p_o = N_c N_v \mathcal{F}_{1/2}(\eta_c) \mathcal{F}_{1/2}(\eta_v)$$

Sketch:

If E_F is inside bandgap:

$$n_o p_o \simeq N_c N_v \exp{-\frac{E_g}{kT}}$$

For a given semiconductor, $n_o p_o$ depends only on T and is independent of precise location of E_F .

But only if semiconductor is non-degenerate.

In intrinsic semiconductor, $n_o = p_o$ and usually fairly small \Rightarrow semiconductor non-denegerate. Hence:

$$n_i = \sqrt{n_o p_o} = \sqrt{N_c N_v} \exp{-\frac{E_g}{2kT}}$$

Now we have the prefactor we could not obtain last time.

Review key dependencies of n_i :

- $T \uparrow \Rightarrow n_i$
- $E_g \uparrow \Rightarrow n_i$
- $N_c \uparrow, N_v \uparrow \Rightarrow n_i$

Remember: in Si at RT: $n_i \simeq 10^{10}~cm^{-3}~(\ll N_c, N_v)$

4. Location of Fermi level

Location of E_F in band structure completely defines equilibrium carrier concentrations.

To pin-point location of E_F , need $n_o(E_F)$, $p_o(E_F)$, plus one additional argument.

 \square Intrinsic semiconductor

Require $n_o = p_o \implies$

$$E_i = \frac{E_c + E_v}{2} + kT \ln \sqrt{\frac{N_v}{N_c}}$$

Intrinsic Fermi level is close to the middle of the bandgap

In Si at 300 K, E_i is 1 meV above midgap

E_C _____

E_i ------

E_V -----

[Consistent with use of Maxwell-Boltzmann statistics in n_i expression]

 \Box n-type extrinsic semiconductor

Require $n_o \simeq N_D$. If non-degenerate $(N_D \ll N_c)$:

$$E_F - E_c \simeq kT \ln \frac{N_D}{N_c}$$

Evolution of E_F with doping:

 \Box p-type extrinsic semiconductor

Require $p_o \simeq N_A$. If non-degenerate $(N_A \ll N_v)$:

$$E_F - E_v \simeq kT \ln \frac{N_v}{N_A}$$

Key conclusions

• Non-degenerate semiconductor: $n_o \ll N_c$ and $p_o \ll N_v$: Maxwell-Boltzmann statistics apply:

$$n_o = N_c \exp \frac{E_F - E_c}{kT}, \qquad p_o = N_v \exp \frac{E_v - E_F}{kT}$$

• Intrinsic semiconductor: ideally pure semiconductor. Under M-B statistics:

$$n_o = p_o = n_i = \sqrt{N_c N_v} \exp{-\frac{E_g}{2kT}}$$

• In non-degenerate semiconductor $n_o p_o$ is a constant that only depends on T:

$$n_o p_o = n_i^2$$

- In intrinsic semiconductor, E_F is close to middle of E_g .
- In extrinsic semiconductor, E_F location depends on doping level:
 - n-type non-degenerate semiconductor:

$$n_o \simeq N_D, \qquad E_F - E_c \simeq kT \ln \frac{N_D}{N_c}$$

- p-type non-degenerate semiconductor:

$$p_o \simeq N_A, \qquad E_F - E_v \simeq kT \ln \frac{N_v}{N_A}$$

- Order of magnitude of key parameters for Si at 300 K:
 - effective density of states of CB and VB: N_c , $N_v \sim 10^{19} cm^{-3}$