

LIAIK

Patrick Klampfl

patrick.klampfl@student.tugraz.at

Computer Science

March 1, 2016

Overview

- Previously ... [recap]
 - Introduction: Soft-Errors & Soft-Error Analysis
 - Detect Soft-Errors
 - Verify Protection Logic (vulnerabilities)

Internship Summer '15

- Latest work:
 - Verify Protection Logic (<u>false positives</u>)
 - Environment Models
 - Benchmark Results
- Conclusion

Master-Project

Soft Errors

- Boolean circuits: inputs, AND gates, latches, outputs
- Components (latches, AND gates) can have soft-errors
 - flip truth value

HAIK 4

How to detect Soft-Errors?

How to detect Soft-Errors:

→ add redundancy. Tool: AddParityTool

6 6

Q: Is the protection-circuit correct ...?

• Given: Circuit

- Find <u>Vulnerabilities</u>:
 - Latches that can be flipped (once)
 - such that output changes (at some point in the future)
 - but no alarm raised (up to that point)

HAIK 7

Model Checking Approach

Tool: AlarmToMC

Model Checking Approach

- Pro:
 - Exact: Valid for all possible input combinations
- Contra:
 - Bad scalability

Model Checking Approach

Exact: Valid for all possible input combinations

Contra:

Bad scalability

Idea: Instead of <u>all possible Input combinations</u>, use <u>concrete input vectors</u>

openSEA

- Input: arbitrary circuit with protection logic (alarm output)
- Output: List of definitely vulnerable latches

BackEnds

- Simulation based: (SIM)
 - Execute **correct simulation** with the provided TestCase
 - Compare with all possible faulty simulations
- Symbolic Time Analysis: (STA)
 - Point in time when to flip a latch is symbolic
- Symbolic Time + Symbolic Location (STLA)
 - Point in Time + Latch to flip is component

LIAIK

Latest Work

- False Positives
- Environment Models
- Benchmark Results

False Positives

- Vulnerabilities are <u>false negatives</u>: a soft error happens, but is not detected
 - Alarm should have been raised

- False Positive: Alarm is true, but the soft-error has no effect
 - Alarm raised gratuitously

False Positives

- Implemented similar to Algorithms for false-negatives:
 - Symbolic Time Analysis (STA)
 - Symbolic Time Symbolic Location Analysis (STLA)

Environment Models

- Output values might be irrelevant
 - e.g. if data on bus is not ready
- Some input combinations might not be allowed
 - SAT-solver choices for input values can

be restricted

Benchmark Results – Setup for Experiments

- IWLS 2002 and IWL 2005 [1] circuits converted to AIGER format
- Add protection (AddParityTool)
 - only parity
 - Parameters:
 - Percentage of latches to protect
 - Number of latches to protect with 1 new latch
- Test Inputs: created randomly

011??01000110 101??01100111 ...

[1] http://www.eecs.berkeley.edu/~alanmi/benchmarks/

Results – All Algorithms

All modes - 90% protected

3 testcases with 15 time steps, concrete input values only

benchmarks

18

Results – Length of Test Cases

SIM - 90% protected

execution with different input-lengths

benchmarks

Optimization: Unsatisfiable Cores

STLA 0 - testcase length of 15 time steps

11A1K 20

Number of unspecified input values

benchmark

LIAIK 21

Model Checking Results

Model Checking Results

100% protected - 15 time steps - BLIMC & STLA 1: full MC - STLA 0: concrete inputs only

benchmarks

LIAIK

Conclusion

- Extended openSEA
 - False Positives Algorithms
 - Symbolic Time
 - Symbolic Time + symbolic Location
 - Environment Models
- Benchmarking results
 - Free inputs: sym. Algorithms (STLA) scale significantly better than simulation
 - Concrete Inputs: Simulation is fastest
 - Reducing input space: better than MC
 - UNSAT cores might speed up longer test cases

Scalability		Completenes
All Inputs Fixed	Some Inputs Open	All Inputs Open
Simulation		Model Checking

Our Approach

