# Plano de Ensino – Teoria da Computação

Instituto Federal de Educação, Ciência e Tecnologia de Brasília, campus Taguatinga



## 1 Identificação da Disciplina

- Nome da Disciplina: Teoria da Computação;
- Curso: Computação (ABI);
- Pré-requisitos: Algoritmos e Programação de Computadores;
- Carga Horária: 72 h/a.
- Período: 2021/2;
- Professor: Daniel Saad Nogueira Nunes.

## 2 Bases Tecnológicas (Ementa)

Programas, Máquinas e Computações. Máquinas de Turing. Funções Recursivas. Computabilidade. Decidibilidade. Análise e Complexidade de Algoritmos. Classes e complexidade de problemas computacionais.

## 3 Objetivos e Competências

- Abordar os limites teóricos da computação através dos problemas indecidíveis.
- Introduzir a tese de Church-Turing e a compreensão de equivalência de modelos computacionais relevantes.
- Compreender a dificuldade inerente aos problemas e a classificação em classes de complexidade.

## 4 Habilidades Esperadas

- Ser capaz de avaliar a computabilidade de problemas
- Avaliar a complexidade de problemas.
- Compreender a relevância e equivalência de diferentes modelos computacionais.

## 5 Conteúdo Programático

- 1. Introdução à disciplina;
- 2. Conceitos Preliminares:
- 3. Máquinas de Turing e variantes;
- 4. A tese de Chuch-Turing;
- 5. Decidibilidade e Problemas Indecidíveis;
- 6. Redutibilidade;
- 7. Tópicos avançados em Computabilidade.

#### 6 Metodologias de Ensino

A metodologia adotada é a PBL. Através de aulas expositivas os alunos serão apresentados aos conceitos, que deverão ser aplicados nos projetos da disciplina.

#### 7 Recursos de Ensino

Os recursos de ensinam baseiam-se, mas não são limitados em:

- Computador;
- Internet;
- Quadro branco, pincel e apagador;
- Projetor multimídia;
- Visitas técnicas e participação em eventos;
- Grupo de discussão restrito da disciplina.

### 8 Avaliação

A nota final é calculada como:

$$N_f = \bar{P}$$

, em que  $\bar{P}$  representa a média aritmética da nota dos projetos.

O aluno é considerado **aprovado** se, e somente se, obtiver  $N_f \ge 6.0$  e presença  $\ge 75\%$ . As presenças são computadas através de chamadas nas atividades síncronas e através da entrega das atividades assíncronas.

## 9 Observações

Será atribuída nota **ZERO** a qualquer avaliação que incidir em plágio.

## 10 Cronograma

Segue abaixo o planejamento de atividades da disciplina (sujeito à alterações):

| Semana do dia | Conteúdo                                                                          | Total de Horas |
|---------------|-----------------------------------------------------------------------------------|----------------|
| 07/10/2021    | Apresentação da disciplina (S)                                                    | 4              |
| 14/10/2021    | Conceitos Preliminares (A)                                                        | 4              |
| 21/10/2021    | Máquinas de Turing (A)                                                            | 4              |
| 28/10/2021    | Máquinas de Turing (A)                                                            | 4              |
| 04/11/2021    | Máquinas de Turing (A) e Execução do Projeto 01 (A)                               | 4              |
| 11/11/2021    | Variantes de Máquinas de Turing (A) e Execução do Projeto 01 (A)                  | 4              |
| 18/11/2021    | A definição de Algoritmo e a Tese de Church-Turing (A) Execução do Projeto 01 (A) | 4              |
| 25/11/2021    | A indecidibilidade do problema da parada (A)                                      | 4              |
| 02/12/2021    | A indecidibilidade do problema da parada (A) e Execução do Projeto 02 (A)         | 4              |
| 09/12/2021    | Reduções (S) e Execução do Projeto 02 (A)                                         | 4              |
| 16/12/2021    | Reduções (S) e Execução do Projeto 02 (A)                                         | 4              |
| 23/12/2021    | Reduções (S) e Execução do Projeto 02 (A)                                         | 4              |
| 06/01/2022    | Reduções (S) e Execução do Projeto 03 (A)                                         | 4              |
| 13/01/2022    | Execução do Projeto 03 (A)                                                        | 4              |
| 20/01/2022    | Execução do Projeto 03 (A)                                                        | 4              |
| 27/01/2022    | Execução do Projeto 03 (A)                                                        | 4              |
| 03/02/2022    | Execução do Projeto 03 (A)                                                        | 4              |
| 10/02/2022    | Encerramento da disciplina (S)                                                    | 4              |

Total 72 Legenda Síncrono (S) Assíncrono (A)

## Bibliografia

[HMU03] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman, Introduction to automata theory, languages, and computation - international edition (2. ed), Addison-Wesley, 2003.

- [Pap07] Christos H. Papadimitriou, Computational complexity, Academic Internet Publ., 2007.
- [Sip97] Michael Sipser, Introduction to the theory of computation, PWS Publishing Company, 1997.