Fiche de Révisions : Modèle de l'Atome de Bohr

1. Limites du Modèle de Rutherford:

- Électron devrait s'écraser sur le noyau (instabilité).
- Prévoit un spectre continu (contredit l'expérience des raies).

2. Spectres Atomiques:

- Spectre d'émission: Raies brillantes (gaz chauffé), spécifiques à chaque
- Spectre d'absorption : Raies noires (lumière traversant gaz froid), mêmes longueurs d'onde que les raies d'émission.

3. Théorie des Quanta :

- Planck (1900): Énergie échangée par "quanta" (paquets discrets). E =
- Einstein (1905): Lumière = "photons" (quanta d'énergie).
- Transitions:
 - **Absorption :** Atome gagne énergie $(E_2 > E_1)$ en absorbant un photon $(hv = E_2 - E_1)$.
 - Émission : Atome perd énergie $(E_2 > E_1)$ en émettant un photon $(hv = E_2 - E_1).$

4. Postulats de Bohr (1913):

- 1. États stationnaires : L'atome n'existe que dans des états d'énergie constante.
- 2. Orbite privilégiées : Électrons sur des orbites circulaires spécifiques.
- 3. Quantification du moment angulaire : $mvr = n \times \frac{h}{2\pi} \ (n \in \mathbb{N}^*)$.
- 4. Transitions quantifiées : Absorption/émission de photons lors des passages entre niveaux $(hv = |E_n - E_m|)$.

5. Énergie des États Stationnaires (Hydrogène, Z=1):

- Rayon de l'orbite : $r_n = n^2 \times a_0$ ($a_0 = 0,529$ Å, rayon de Bohr). Énergie totale : $E_n = \frac{-13,6}{n^2}$ eV. n = 1 : Niveau fondamental ($E_1 = -13,6$ eV).
- - $n \geq 2$: Niveaux excités.
 - $n = \infty : E = 0$ eV (électron éjecté, ionisation).
- Énergie d'ionisation de H (état fondamental) : +13,6 eV.

6. Séries Spectrales de l'Hydrogène :

- Formule de Rydberg : $\frac{1}{\lambda} = R_H \times \left| \frac{1}{n_f^2} \frac{1}{n_i^2} \right| (R_H = 1,097.10^7 \text{ m}^{-1}).$ Lyman : Transitions vers $n_f = 1$ (UV).
 Balmer : Transitions vers $n_f = 2$ (Visible).

 - **Paschen :** Transitions vers $n_f = 3$ (Infrarouge).

7. Atomes Polyélectroniques :

- Charge nucléaire effective $(Z^* < Z)$ due à l'effet d'écrantage des autres
- électrons. $E_n^* = -13, 6\frac{Z^{*2}}{n^{*2}}$ eV.