Resumo Teórico - Derivadas e Integrais

Renan Wenzel

18 de julho de 2022

Conteúdo

1	\mathbf{Der}	rivadas	3
	1.1	Definições e Propriedades	3
		1.1.1 Resultados Importantes	4

1 Derivadas

1.1 Definições e Propriedades

Definição. Dada uma função $f:[a,b] \to \mathbb{R}$ contínua em x_0 , dizemos que ela é derivável em x_0 se existe o limite:

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = f'(x_0) = \frac{d}{dx} f(x_0).$$

Note que escrevendo $h = x - x_0$, a definição acima equivale ao limite

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = f'(x_0) = \frac{d}{dx} f(x_0).$$

Propriedades:. A derivada satisfaz as seguintes propriedades:

Propriedade I) $(f+q)'(x_0) = f'(x_0) + q'(x_0).$

Propriedade II) $(f \cdot g)'(x_0) = f'(x_0)g(x_0) + g'(x_0)f(x_0).$

Propriedade III) $(cf)'(x_0) = cf'(x_0), \quad c \in \mathbb{R}.$

Propriedade IV)

 $\left(\frac{f}{g}\right)'(x_0) = \frac{f'(x_0)g(x_0) - g'(x_0)f(x_0)}{(g(x))^2}.$

Propriedade V) $f(g(x_0))' = f'(g(x_0))g'(x_0).$

Propriedade VI) $\frac{d}{dx}e^{x} = e^{x}, \quad \frac{d}{dx}ln(x) = \frac{1}{x}.$

Propriedade VII) $\frac{d}{dx}x^{n} = nx^{n-1}.$

Propriedade VIII) $(\sin)'(x_0) = (\cos)(x_0), \quad (\cos)'(x_0) = -\sin(x_0).$

Propriedade IX) $(f^{-1})'(x_0) = \frac{1}{f'(f^{-1}(x_0))}.$

Resuminho: A derivada pode ser vista como a taxa de mudança de uma função, além de ser super útil no estudo do gráfico das funções, como veremos posteriormente. Por agora, familiarize-se com as propriedades e tente prová-las, é um bom treino.

Definição. Se a derivada de uma função for contínua num ponto x_0 e o limite

$$\lim_{x \to x_0} \frac{f'(x) - f'(x_0)}{x - x_0} = f''(x_0) = \frac{d^2}{dx^2} f(x_0)$$

existir, chamamos este valor de segunda derivada de f em x_0 .

Este processo pode ser repetido "infinitamente", contanto que os limites continuem existindo.

Definição. Seja I um intervalo e $f: I \to \mathbb{R}$ uma função. Diremos que $x_0 \in I$ é um ponto de máximo local \overline{de} f, se existir $\delta > 0$ tal que $f(x) \le f(x_0)$ para todo $x \in (x_0 - \delta, x_0 + \delta) \cap I$. Neste caso, diremos que $f(x_0)$ é um máximo local. Se o que ocorrer for $f(x) \ge f(x_0)$, então diremos que $f(x_0)$ é um mínimo local. Em qualquer dos casos, $x_0 \in I$ será chamado de ponto extremo local.

Definição. Seja I um intervalo e $f: I \to \mathbb{R}$ uma função. Diremos que $x_0 \in I$ é um ponto de máximo global \overline{de} f, se $f(x) \le f(x_0)$ para todo $x \in I$. Neste caso, diremos que $f(x_0)$ é um máximo global. Se o que ocorrer for $f(x) \ge f(x_0)$, então diremos que $f(x_0)$ é um mínimo local. Em qualquer dos casos, $x_0 \in I$ será chamado de ponto extremo global.

Definição. Um ponto crítico de uma função f é um ponto c em que f'(x) = 0 ou f'(c) não existe.

1.1.1 Resultados Importantes

Começamos com o teorema de Rolle, que afirma que se uma função for contínua e diferenciável num intervalo em que os valores do ponto inicial e final coincidem, então essa função assume seu máximo ou mínimo em um ponto deste intervalo.

Teorema:. Seja $f:[a,b] \to \mathbb{R}$ uma função contínua em [a,b] e diferenciável em (a,b). Se f(a)=f(b), então existirá $c \in (a,b)$ tal que f'(c)=0.

Com o teorema de Rolle como base, vamos ao Teorema do Valor Médio, um dos, se não o mais importante resultado do curso:

<u>Teorema:</u> Seja $f:[a,b] \to \mathbb{R}$ uma função contínua em [a,b] e diferenciável em (a,b). Então, existe $c \in (a,b)$ tal que

$$f(b) - f(a) = f'(c)(b - a),$$

equivalente a

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

Tendo estas duas ferramentas, é possível estudar a fundo pontos de máximo, mínimo e comportamento de funções quanto ao seu crescimento ou decrescimento, além da concavidade delas.

<u>Teorema:</u> Sejam $f: D_f \subset \mathbb{R} \to \mathbb{R}$ uma função contínua e c um ponto crítico de f.

Se o sinal de f' mudar de positivo para negativo em c, então f terá um máximo local em c.

Se o sinal de f' mudar de negativo para positivo em c, então f terá um mínimo local em c.

Teorema:. Seja f uma função contínua num intervalo [a,b] e diferenciável em (a,b).

Se f'(x) > 0 para todo $x \in (a,b)$, então f será estritamente crescente em [a,b].

Se f'(x) < 0 para todo $x \in (a,b)$, então f será estritamente decrescente em [a,b].

Se f'(x) = 0 para todo $x \in (a,b)$, então f será constante em [a,b].

<u>Teorema:</u>. Seja f uma função diferenciável em (a,b).

Se f''(x) > 0 para todo $x \in (a,b)$, então f terá concavidade para cima em (a,b).

Se f''(x) < 0 para todo $x \in (a,b)$, então f terá concavidade para baixo em (a,b).

A seguir, veremos a Regra de L'Hopital, que permite calcular um limite a partir dos limites das derivadas das funções, o que normalmente simplifica a conta.

<u>Teorema:</u> Sejam f e g funções deriváveis num intervalo com $g'(x) \neq 0$ para todo $x \in I$. Então, se $\lim_{x \to p} f(x) = \lim_{x \to p} g(x) = 0$ ou $\lim_{x \to p} f(x) = \lim_{x \to p} g(x) = \infty$ e se

$$\lim_{x \to p} \left(\frac{f'(x)}{g'(x)} \right) = \lambda, \quad \lambda \in \mathbb{R},$$

segue que

$$\lim_{x \to p} \left(\frac{f(x)}{g(x)} \right) = \lambda.$$

Por fim, as expansões de Taylor permitem estudar funções contínuas e diferenciáveis como polinômios, que são muito mais simples:

Teorema:. A série de Taylor de uma função $f:[a,b]\to\mathbb{R}$ infinitamente diferenciável (ou seja, todas as derivadas existem) no ponto x_0 é dada por:

$$f(x) = \sum_{i=0}^{\infty} \frac{f^{(i)(x_0)}}{i!} (x - x_0)^i.$$

Também pode-se definir o polinômio de Taylor de grau n como

$$p(x) = \sum_{i=0}^{n} \frac{f^{(i)(x_0)}}{i!} (x - x_0)^{i}.$$

Da definição acima, segue que a série de Taylor da função é o limite de n indo pra infinito do polinômio de Taylor.

Segue abaixo um algorítmo para analisar o gráfico de uma função:

Determine, se possível, os pontos em que f se anula e os intervalos em que ela é positiva ou negativo.

Em seguida, encontre as assíntotas verticais e horizontais de f e os pontos críticos de f.

A seguir, estude o sinal de f' para determinar o crescimento de f.

Calcular f" para dizer a concavidade da função em cadaintervalo.