

9. 파이프라인과 앙상블 모델

chap09_Ensemble 수업내용

- 1. Pipeline 모델
- 2. Ensemble 모델 개요
- 3. RandomForest
- 4. XGBoost

1. Pipeline 모델

2. Ensemble 모델 개요

- 앙상블 학습
 - ▶ 여러 가지 우수한 학습 모델을 조합해 예측력을 향상시키는 모델✓ 장점 : 단일 모델에 비해서 분류 성능 우수
 - ▶ 앙상블 알고리즘
 - ✓ 배깅(Bagging), 부스팅(Boosting)
 - RandomForest 배깅 알고리즘의 일종
 - > 앙상블 학습 모델 생성 절차

※ 단점 : 모델 결과의 해석이 어렵고, 예측 시간 많이 소요

2. Ensemble 모델 개요

● 앙상블 학습 알고리즘 비교

분류	배깅(Bagging)	부스팅(Boosting)
공통점	전체 데이터 집합으로부터 복원 랜덤 샘플링(bootstrap) 으로 훈련 집합 생성	
차이점	병렬학습 : 각 모델의 결과 를 조합하여 투표 결정	순차학습 : 현재 모델 가중치 -> 다음 모델 전달
특 징	균일한 확률분포에 의해서 훈련 집합 생성	분류하기 어려운 훈련 집합 생성
강 점	과대적합에 강함	높은 정확도
약 점	특정 영역 정확도 낮음	Outlier 취약
R 패키지	randomForest	XGboost

2. Ensemble 모델 개요

● 앙상블 학습 알고리즘

※ Boosting은 맞추기 어려운 문제를 맞추는데 초점을 맞춤

① 부트스트랩(Boostrap)

- ▶ 원래의 데이터 셋으로부터 관측치를 반복적으로 추출(복원 반복 추출) 하여 데이터 셋을 얻는 방법
- 데이터의 양을 임의적으로 늘리고, 데이터 셋의 분포가 고르지 않을 때 고르게 만드는 효과

[참고 사이트]

② 배깅(Bagging) 알고리즘

- ➤ Bagging : Bootstrap Aggregating("주머니 통합")
- ▶ 부트스트랩을 통해서 조금씩 서로 다른 훈련 데이터를 생성하여 모델 (훈련 된 트리)을 생성하고, 결과를 결합(aggregating) 시키는 방법
- 1. D개의 전체데이터가 있다.
- 2. 전체데이터에서 D개와 같은 갯수의 데이터를 복원추출하여 D₁(주머니) 생성
- 3. D1 데이터를 학습하여 모델(트리) 생성
- 4. 위 2번, 3번과 같은 방법으로 D_m (주머니) 생성, 모델(트리) 생성
- 5. m개 트리의 평균을 통해 예측
 - 양적반응변수(회귀트리): 각 트리 평균 예측
 - 질적반응변수(분류트리) : 각 트리 voting 예측

- 원 데이터로 부터 n번 랜덤 복원 샘플링을 하고 각 샘플의 모델링을 통해서 나온 결과변수(예측치)들을 결합하여 최종 모형을 생성
- 각 샘플의 결과변수(예측치)들을 결합하는 방법은 결과변수가 연속형이면 평균(average), 범주형이면 다중 투표(majority vote) 사용

[참고 사이트] https://m.blog.naver.com/PostView.nhn?blogId=ysd2876&logNo=221219689884&isFromSearchAddView=true

참고 사이트: https://swalloow.github.io/bagging-boosting

③ 부스팅(boosting) 알고리즘

- 잘못 분류된 객체들에 집중하여 새로운 분류규칙을 생성하는 단계를 반복하는 알고리즘(순차적 학습)
- 약한 예측모형들을 결합하여 강한 예측모형을 만드는 알고리즘
- 오 분류된 개체는 높은 가중치, 정 분류된 개체는 낮은 가중치를
 적용하여 예측모형의 정확도를 향상시키기 위한 반법

3. Random Forest 알고리즘

■ 특징

- ✓ 여러 개의 결정 트리를 임의적으로 학습 하는 방식(앙상블 학습방법 : 배깅 유형)
- ✓ 회귀분석, 분류분석 모두 가능
- ✓ 별도 튜닝(스케일 조정) 과정 없음
- ✓ 분류, 회귀 등에서 가장 많이 사용 학습방법
- ✓ 단일 tree 모델 단점 보완(성능, 과대적합)
- ✓ 대용량 데이터 셋으로 처리시간 증가(단점)
- ✓ 멀티코어 프로세스 이용 병렬처리 가능

■ 차이점

- ✓ 배깅 : 샘플 복원추출 시 모든 설명변수 사용
- ✓ 랜덤포레스트 : a개의 설명변수만 복원 추출
- 설명변수 갯수 : 전체 변수 p의 제곱근=sqrt(p) (예: 15개 변수라면 4개 정도)
- 랜덤포리스트는 일반적으로 배깅보다 성능 우수
 (설명변수가 많을 경우, 대체로 변수간 상관성이 높은 변수가 섞일 확률이 높은데 그 가능성을 제거)

Decision tree

- 1. 동일한 하나의 데이터 집합에서 <u>한 개의 훈련용 데이터를 생성</u>
- 2. 한 번의 학습을 통해서 하나의 분류 트리 생성 및 목표변수 예측
- 3. 생성된 분류모델을 검정데이터에 적용하여 목표변수 예측

Random Forest

- 동일한 하나의 데이터 집합에서 임의복원 샘플링을 통해 여러 개의 훈련용 데이터를 생성
- 2. <u>여러 번의 학습</u>을 통해 여러 개의 트리 생성하고, 이를 결합하여 최종적으로 목표변수 예측
- 3. 분류모델을 검정데이터에 적용

랜덤 포레스트

배깅에 의한 랜덤 포레스트 훈련 과정 3단계

- 1. 부트스트랩 방법을 통해 기개의 훈련 데이터 집합을 생성한다.
- 2. T개의기초 분류기(트리)들을 훈련시킨다.
- 3. 기초 분류기(트리)들을 하나의 분류기(랜덤 포레스트)로 결합한다.

배깅을 이용하여 T개의 결정트리들로 구성된 랜덤 포레스트를 학습하는 과정 S_0 :전체 학습 데이터 집합, S_0^T : 결정트리를 위해 배깅을 통해 임의로 선택된 학습 데이터

● Random Forest 주요 파라미터

- 1. criterion='gini' : 노드 불순도 중요변수 선정기준
- 2. max_depth : 트리의 깊이(클 수록 서능이 좋아짐, 오버피팅 문제)
- 3. max_features='auto' : 최대 사용할 x변수 개수
- 4. n_estimator : 결정 트리 개수(default=10), 많을 수록 성능이 좋아짐
- 5. n_jobs=None : cpu 사용 수
- 6. min_sample_leaf : leaf node를 만드는데 필요한 최소한의 sample 수
- 7. min_sample_split : 내부 노드를 분할하는 데 필요한 최소 sample 수

● Random Forest 사용 이유

- 1. 단일 의사결정트리는 과대적합(overfitting)의 위험이 큼
- 2. 배깅을 이용해 각 트리의 평균, 확률, 투표를 통해 목표변수 예측
- 3. 트리의 편향은 유지되고, 분산은 감소되기 때문에 정확도 높음
- 4. 빅데이터 시스템에서 분산처리 시스템에 맞는 분류분석 기법
 - 여러 개의 훈련 데이터를 추출하여 트리 생성, 결합을 통해 목표변수 예측의 구조가 분산처리시스템에 적합
- 정리
- 1. 배깅 알고리즘을 통해 임의 복원 추출되는 훈련용 데이터를 생성하고, 각 트리 생성
- 2. 예측결과를 투표, 평균, 확률 등으로 결합하여 최종 모형 생성
- 3. 적용되는 R 패키지 : ramdomForest

4. XGBoost 알고리즘

- > 여러 개의 결정 트리를 임의적으로 학습하는 방식
 - ✓ 앙상블 학습방법(부스팅 유형)
- ▶ 순차적 학습 방법 : 약한 분류기를 강한 분류기로 생성
 - ✓ 분류정확도 우수, Outlier 취약
 - ✓ 케글(Keggle.com) : 도전 데이터 과학자 에서 5년 연속 1위
- 다양한 속성으로 모델 생성
 - objective='binary:logistic' : 'reg:linear', 'multi:softmax'(num_class)
 - max_depth=3 : tree 깊이, 과적합 영향(tree 구조가 간단한 경우 : 2)
 - nthread = 2 : cpu 사용 수 : 2
 - nrounds = 2 : 실제값과 예측값의 차이를 줄이기 위한 반복학습 횟수
 - learning_rate=0.1 : 학습율(보통 : 0.01~0.2, Default: 0.3)