An Introduction to Kriging

STAT 850 Final Project

Nikola Surjanovic

Simon Fraser University

Outline

- 1. Motivation
- 2. Gaussian Processes
- 3. Kriging
- 4. Application

Motivation

How it Began

Danie G. Krige's Master's thesis ("geostatistics")
South Africa, Witwatersrand reef complex
Estimate "grade" of gold based on several boreholes

Distribution of Gold

Linear Regression

Kriging Version 1

Kriging Version 2

Gaussian Processes

Gaussian Process Definition

Stochastic process: a collection of random variables, $\{X_t : t \in T\}$

Gaussian process: For all finite k, and $t_1, \ldots, t_k \in T$, $(X_{t_1}, \ldots, X_{t_k})$ is

multivariate normal

Example: $T = \mathbb{R}$ or \mathbb{R}^2

Spatial Gaussian Process Notation

```
Gaussian spatial process: \{S(x): x \in \mathbb{R}^2\}, with (S(x_1), \dots, S(x_n)) multivariate normal for all x_1, \dots, x_n \in \mathbb{R}^2
Completely specified by:
```

- Mean function $\mu(x) = E(S(x))$
- Covariance function $\gamma(x, x') = \text{Cov}(S(x), S(x'))$

Stationary Gaussian Processes

A Gaussian process is stationary (and isotropic) if:

- The mean, $\mu(x) = \mu$, is constant
- The covariance, $\gamma(x,x') = \gamma(x-x') = \gamma(||x-x'||)$, depends only on the (Euclidean) distance between points

Note

Can be smooth!

Kriging

An Overview

Observe $y_1, y_2, ..., y_n$ (e.g. concentrations of gold) at locations $x_1, x_2, ..., x_n$

Idea: What if the distribution of gold is the result of a realization of a Gaussian process?

$$Y_i = S(x_i) + Z_i, \quad i = 1, \ldots, n,$$

where Z_i are i.i.d. $N(0, \tau^2)$

An Overview

$$Y_i = S(x_i) + Z_i$$
, $i = 1, \ldots, n$, $Z_i \stackrel{iid}{\sim} N(0, \tau^2)$

Measurement error: $\tau > 0$ ('nugget effect')

If $\tau = 0$, observed y_i come directly from a Gaussian process

Note

Useful models, but "rarely have any physical justification"!

Distribution of Gold

Distribution of Gold

Stationary (and isotropic): $Corr(x,x')=\rho(u)$, where u=||x-x'|| If stationary, assume we know μ and $\rho(u)$ for now How do we predict gold concentrations at unobserved locations?

How do we predict the gold concentration, T = S(x), at an unobserved location x?

We have:
$$y = (y_1, \dots, y_n)$$
. We want: $\widehat{T} = t(Y)$

Minimize "mean square prediction error": $E\left((\widehat{T}-T)^2\right)$

Note

T, \widehat{T} , and Y are all random variables

```
Minimize "mean square prediction error": E\left((\widehat{T}-T)^2\right)

Use \widehat{T}=E(T|Y)

Since Y_i=S(x_i)+Z_i, \quad i=1;\ldots,n, \quad Z_i \stackrel{iid}{\sim} N(0,\tau^2)

\implies Y is multivariate normal
```

$$Y \sim N(\mu 1, \sigma^2 V),$$

where 1 is a vector of ones, and

$$\sigma^2 V = \sigma^2 R + \tau^2 I,$$

with I the $n \times n$ identity matrix, $R_{ij} = \rho(||x_i - x_j||)$, and $\sigma^2 = \gamma(0)$

Similarly, (T, Y) is multivariate normal

Basic multivariate normal result, if T = S(x):

$$\mathsf{E}(T|Y) = \widehat{T} = \mu + r'V^{-1}(Y - \mu\mathbf{1}),$$

where
$$r' = (\rho(||x - x_1||), \dots, \rho(||x - x_n||))$$

Note

 \hat{T} is linear in Y!

Linear Models

FALL 2019 - STAT 850 G100

LINEAR MODELS AND APPLICATIONS (4)

Class Number: 4607 Delivery Method: In Person

Simple vs. Ordinary Kriging

Simple Kriging

$$\widehat{T} = \mu + r'V^{-1}(Y - \mu \mathbf{1}), \text{ or } \widehat{T} = \widehat{\mu} + r'V^{-1}(Y - \widehat{\mu}\mathbf{1}),$$

where $\hat{\mu} = \overline{Y}$

Ordinary Kriging

$$\widehat{T} = \widehat{\mu} + r' V^{-1} (Y - \widehat{\mu} \mathbf{1}),$$

where $\hat{\mu} = (1'V^{-1}1)^{-1}1'V^{-1}Y$ (generalized least squares)

Common Correlation Functions

Many families of correlation functions exist

E.g. Matérn correlation functions (2 parameters: κ, ϕ)

$$\rho(u) = \{2^{\kappa-1}\Gamma(\kappa)\}^{-1}(u/\phi)^{\kappa}K_{\kappa}(u/\phi),$$

where K_{κ} is an order κ modified Bessel function Choice of κ affects differentiability of Gaussian process

Matérn Correlation Functions

Estimation

Variograms can be used for estimation of $\rho(\cdot)$ Less subjective: maximum likelihood estimation of $\kappa, \phi, \tau^2, \sigma^2$

· Recall: Y is multivariate normal

Special Techniques

Other considerations:

- · Dealing with trends
- · Trans-Gaussian kriging
- Non-linear target prediction

Application

Zinc Concentration Dataset

Goal: Predict concentrations of zinc

Location: Meuse river, data from the Netherlands

(Adapted from RPubs - An Introduction to Kriging in R by Nabil A.)

Concentration of Zinc

Points to be Evaluated

2D Kriging Predictions

References

Introduction to Kriging in R.

https://rpubs.com/nabilabd/118172. Accessed: 2019-11-13.

Noel Cressie. Statistics for Spatial Data, Revised Edition. Wiley. ISBN 978-0-471-00255-0.

Peter Diggle and Paulo Justiniano Ribeiro. *Model-based Geostatistics*. Springer. ISBN 978-0-387-48536-2.

Thank You!

Questions?

"Nugget" Explanation

Nugget explanation: measurement error or spatial variation on a small scale

Like modelling Y(x) as a GP with $\rho(u)$ discontinuous at u=0.

Differentiability and Continuity

Theorem 3.1 (Diggle and Ribeiro): "A stationary stochastic process with correlation function $\rho(u)$ is k times mean-square differentiable if and only if $\rho(u)$ is 2k times differentiable at u=0."

Variograms

$$V(x, x') := \frac{1}{2}(S(x) - S(x')) \implies V(u) = \sigma^2(1 - \rho(u))$$

$$V_Y(u) = \tau^2 + \sigma^2(1 - \rho(u))$$