CS6190: Probabilistic Modeling Homework 2 Bayesian Networks

Gopal Menon 05 March, 2018

Written Part

1. The total probability of the network is given by

```
p(Beysian\ Network) = p(income)p(smoke|income)p(exercise|income)p(bmi|income, exercise) \\ \times p(blood\ pressure|exercise, income, smoking)p(cholesterol|exercise, income, smoking) \\ \times p(diabetes|bmi)p(stroke|bmi, bp, cholesterol)p(attack|bmi, bp, cholesterol) \\ \times p(angina|bmi, bp, cholesterol)
```

The total probability distribution requires the product of 10 random variables. If the probabilities are multiplied as shown above, the probability table will have 10 variables. Number of allowed states for the random variables are:

Table 1: CDC Survey Variable states

Survey Variable	Number of states
income	8
exercise	2
smoke	2
bmi	4
bp	4
cholesterol	2
angina	2
stroke	2
attack	2
diabetes	4

The maximum number of rows in the probability distribution table for the above variables will be the product of the number of allowed states - $8 \times 2 \times 2 \times 4 \times 4 \times 2 \times 2 \times 2 \times 2 \times 4 = 32768$. This is the number of probabilities that are needed to store the full joint distribution.

- 2. For each of the four health outcomes (diabetes, stroke, heart attack, angina)
 - (a) Probability of the outcome if I have bad habits (smoke and don't exercise)? How about if I have good habits (don't smoke and do exercise)?

Table 2: Probability for diabetes with smoking and no exercise

Probability	diabetes
0.1593304	Diabetic
0.0078815	Diabetes only during pregnancy

Probability	diabetes
0.000	Not diabetic Pre-diabetic

Table 3: Probability for stroke with smoking and no exercise

Probability	stroke
0.0501267	Will have stroke
0.9498733	Will not have stroke

Table 4: Probability for attack with smoking and no exercise

Probability	attack
0.0724154 0.9275846	Will have heart attack Will not have heart attack

Table 5: Probability for angina with smoking and no exercise

Probability	angina
0.0777561 0.9222439	Will have angina Will not have angina

Table 6: Probability for diabetes with no smoking and exercise

Probability	diabetes
0.1350624 0.0076735 0.8393916 0.0178726	Diabetic Diabetes only during pregnancy Not diabetic Pre-diabetic

Table 7: Probability for stroke with no smoking and exercise

Probability	stroke
0.0368082	Will have stroke
0.9631918	Will not have stroke

Table 8: Probability for attack with no smoking and exercise

Probability	attack
$\begin{array}{c} 0.0510272 \\ 0.9489728 \end{array}$	Will have heart attack Will not have heart attack

Table 9: Probability for angina with no smoking and exercise

Probability	angina
0.0523189	Will have angina
0.9476811	Will not have angina

(b) What is the probability of the outcome if I have poor health (high blood pressure, high cholesterol, and overweight)? What if I have good health (low blood pressure, low cholesterol, and normal weight)?

Table 10: Probability for diabetes with bad health

Probability	diabetes
0.1222794 0.0067179	Diabetic Diabetes only during pregnancy
0.8540029	Not diabetic
0.0169998	Pre-diabetic

Table 11: Probability for stroke with bad health

Probability	stroke
$0.0839749 \\ 0.9160251$	Will have stroke Will not have stroke

Table 12: Probability for attack with bad health

Probability	attack
0.13433 0.86567	Will have heart attack Will not have heart attack

Table 13: Probability for angina with bad health

Probability	angina
0.1531853 0.8468147	Will have angina Will not have angina
0.0400141	will not have angina

Table 14: Probability for diabetes with good health

Probability	diabetes
0.0616345	Diabetic
0.0078003	Diabetes only during pregnancy
0.9198968	Not diabetic
0.0106684	Pre-diabetic

Table 15: Probability for stroke with good health

Probability	stroke
0.0138704	Will have stroke
0.9861296	Will not have stroke

Table 16: Probability for attack with good health

Probability	attack
0.0158879 0.9841121	Will have heart attack Will not have heart attack

Table 17: Probability for angina with good health

Probability	angina
0.0128387	Will have angina
0.9871613	Will not have angina

3. Evaluate the effect a person's income has on their probability of having one of the four health outcomes (diabetes, stroke, heart attack, angina). For each of these four outcomes, plot their probability given income status (your horizontal axis should be i = 1, 2, ..., 8, and your vertical axis should be P(y = 1 | income = i), where y is the outcome). What can you conclude?

It looks like overall the probability of a bad health outcome reduces with increasing income. However, it looks like the probability first increases from the lowest to the next highest income and then reduces.

4. Notice there are no links in the graph between the habits (smoking and exercise) and the outcomes. What assumption is this making about the effects of smoking and exercise on health problems? Let's test the validity of these assumptions. Create a second Bayesian network as above, but add edges from smoking to each of the four outcomes and edges from exercise to each of the four outcomes. Now redo the queries in Question 2. What was the effect, and do you think the assumptions of the first graph were valid or not?

I think the assumption here is that the habits (smoking and exercise) have an impact on the health (bmi, bp and cholesterol) of the person and thus indirectly impact the outcomes (diabetes, stroke, attack and angina).