

Durée: 1 heure

Concours d'entrée 2006-2007

CHIMIE

Premier exercice Identification et synthèse d'un ester

L'hydrolyse d'un ester (E) donne un acide (A) de formule R – COOH et un alcool (B) de formule R´ - OH.

Données:

- R et R' sont deux groupes alkyles.
- Masses molaires en g.mol⁻¹: $M_{(H)} = 1$; $M_{(C)} = 12$; $M_{(O)} = 16$; $M_{(R'-OH)} = 60$.

I- Détermination de la formule de (E)

- 1- Écrire la formule de (E) en fonction de R et R'.
- 2- Démontrer que la formule de (E) est de la forme C_xH_{2x}O₂.
- 3- Déterminer la formule moléculaire de (E) sachant que le pourcentage massique d'oxygène dans ce composé est 31,37 %.
- 4- Déterminer la formule moléculaire de (B), écrire sa formule semi-développée et donner son nom, sachant qu'il est un alcool primaire.
- 5- Déduire la formule moléculaire de (A).
- 6- Écrire la formule semi-développée de (E) et donner son nom.

II- Une réaction de synthèse de (E)

On réalise un mélange de 1 mol de (A) et 2 mol de (B). Un équilibre homogène s'établit lorsqu'on maintient ce mélange à une température constante de 100 °C.

- 1- Écrire, en utilisant les formules semi-développées, l'équation de la réaction d'estérification.
- 2- Donner deux caractéristiques de cette réaction.
- 3- Déterminer la composition, en moles, du mélange à l'équilibre sachant que la constante d'équilibre $K_c = 4$.

Deuxième exercice Évolution du pH au cours d'un dosage

On verse progressivement à l'aide d'une burette, un volume V_B d'une solution de soude (Na⁺+HO⁻) de concentration $C_B = 1x10^{-2}$ mol.L⁻¹ dans un volume $V_A = 20$ mL de solution d'acide éthanoïque, CH₃COOH, de concentration $C_A = 1,2x10^{-2}$ mol.L⁻¹.

<u>Données</u>: $pK_A(CH_3COOH/CH_3COO^-) = 4,80$; $pK_A(H_2O/HO^-) = 14,0$

I- Étude de l'équivalence

- 1- Écrire l'équation de la réaction de dosage.
- 2- Déterminer le volume de soude nécessaire pour atteindre l'équivalence.
- 3- Préciser la nature acido-basique du milieu à l'équivalence.

II- Évolution du pH au cours du dosage

1- Démontrer qu'avant l'équivalence le pH est déterminé par la relation :

pH = 4,8 +
$$\log \frac{V_B}{V_{RF} - V_R}$$
 et qu'après l'équivalence il est donné par la relation :

$$pH = 14 + log \frac{C_{\scriptscriptstyle B}(V_{\scriptscriptstyle B} - V_{\scriptscriptstyle BE})}{V_{\scriptscriptstyle A} + V_{\scriptscriptstyle B}}.$$

2- Les résultats expérimentaux ont permis de tracer la courbe suivante :

En utilisant la courbe :

- a) déterminer la concentration de la solution d'acide éthanoïque et comparer la valeur trouvée avec celle indiquée au début de l'exercice ;
- b) vérifier la valeur du pK_A(CH₃COOH/CH₃COO⁻).

Durée: 1 heure

Concours d'entrée 2006-2007

Solution de Chimie

Premier exercice Identification et synthèse d'un ester

I- Détermination de la formule de (E)

1-R – COOH acide: R'-OH alcool

R – COOR´ c'est la formule de l'ester résultant, ester (E)

2- R et R' sont deux radicaux alkyls

Formule de R : C_nH_{2n+1} Formule de R' : $C_{n'}H_{2n'+1}$ La formule de (E) est alors C_nH_{2n+1} COOC_n·H_{2n'+1} x = n + n' + 1 et 2x = 2n + 1 + 2n' + 1 = 2(n + n' + 1) d'où la formule : $C_x H_{2x} O_2$

3- M_E (12x+2x+32) g.mol⁻¹

D'après la loi des proportions définies on peut écrire:

$$\frac{12x}{m_C} = \frac{2x}{m_H} = \frac{2 \times 16}{31,37} = \frac{12x + 2x + 32}{100}$$
 on en tire que $x = 5$ par suite la formule moléculaire de (E) est C₅H₁₀ O₂

4- $M(B) = 60 \text{ g.mol}^{-1}$

M'=14 n'+18= 60 \Rightarrow n'=3. Donc, la formule moléculaire de (B) est C₃H₇OH - CH₂OH caracterise tout alcool primaire:

La formule $CH_3 - CH_2 - CH_2OH : propane -1 - ol$

5- L'ester (E) C₅H₁₀O₂

$$C_nH_{2n+1}-C-O-C_{n'}H_{2n'+1} \Rightarrow de l'alcool (B)$$

$$CH_3-CH_2-CH_2OH$$

$$O$$

$$de l'acide (A)$$

 $C_xH_{2x} O_2: x = 5 = n + n' + 1$, d'après la formule de l'alcool (B)

n'=3

x = 5 = n+3 + 1 donne n = 1

la formule moléculaire de (A) est CH₃COOH

6- n = 1 et n'= 3 d'après la formule semi-développée de (E) dans 5 on remplace n par 1 et n'par 3

II- <u>Une réaction de synthèse de (E)</u>

1-
$$CH_3-C-OH+CH_3-CH_2-CH_2OH \Leftrightarrow CH_3-C-O-CH_2-CH_2-CH_3+H_2O$$

| O

- 2- * Partielle
 - * Athermique

3- Soit x le nombre de moles de (A) ayant réagi.

	(A): CH ₃ COOH	(B): C ₃ H ₇ OH	(E): $C_5H_{10}O_2$	(A): H ₂ O
Etat initial (mol)	1	2	0	0
Etat final (mol)	1-x	2-x	X	X
[]	1-x / v	2-x / v	x / V	x/V

V_L volume du mélange réactionnel

Or,
$$K_c = \frac{[H_2O] \times [C_5 H_{10} O_2]}{[CH_3COOH] \times [C_3 H_7 OH]}$$

$$K_c = \frac{\frac{x}{V} \times \frac{x}{V}}{\frac{1-x}{V} \times \frac{2-x}{V}} = \frac{x^2}{(1-x)(2-x)} = 4 \quad \text{ce qui donne}$$

$$x^2 = 4(1-x)(2-x) = 4(x^2-3x+2)$$
, soit $3x^2-12x+8=0$

$$\Delta' = 36 - 24 = 12$$
,

 $x = \frac{6 + \sqrt{2}}{3} = 3.5 > 1$ donc à rejeter car le nombre de moles de (A) devient négatif, ou,

$$x = \frac{6 - \sqrt{2}}{3} = 0.85$$

Donc, la composition du mélange à l'équilibre est :

(A) :
$$1 - x = 0.15$$
 mol, (B) : $2 - x = 1.15$ mol et (E) : $x = 0.85$ mol et eau $x = 0.85$ mol

Deuxième exercice Évolution du pH au cours d'un dosage

I- Étude de l'équivalence

- 1- pK_A (CH₃COOH / CH₃COO⁻) = 4,8 et pK_A (H₂O / HO⁻) = 14 Vue la différence du pK_A, la réaction qui va se produire entre l'acide le plus fort du mélange (CH₃COOH) et la base la plus forte (HO⁻) est presque totale. CH₃COOH + OH - ⇒ CH₃COO⁻ + H₂O
- 2- A l'équivalence : $C_A V_A = C_B V_B$ d'ou $V_{BE} = \frac{C_A V_A}{C_B} = \frac{1,2 \times 10^{-2} \times 20.10^{-3}}{10^{-2}} = 24.10^{-3} L, \text{ donc } V_{BE} = 24 \text{mL}$
- 3- Au point d'équivalence (E), les réactifs HO⁻ et CH₃COOH ont disparu car la réaction est presque totale. La solution renferme CH₃COONa à l'état ionique CH₃COO⁻ + Na⁺ CH₃COO⁻ est une base faible.

Na⁺ ion neutre, la solution à l'équivalence a une nature basique.

II- Évolution du pH au cours du dosage

1) pH= 4,8+log
$$\frac{V_B}{V_{BE} - V_B}$$

	C <mark>H₃COO</mark> H	OH -	CH ₃ COO ⁻	H ₂ O
Quantités mélangés	$C_A V_A$	$C_{\scriptscriptstyle B}V_{\scriptscriptstyle B}$	0	0
Quantités restante	$C_A V_A - C_B V_B$	0	$C_{\scriptscriptstyle B}V_{\scriptscriptstyle B}$	$C_B V_B$

 V_B est le volume de soude versé $< V_{BE}$, donc le nombre de moles de HO^- introduits sera C_BV_B

$$pH = pK_A + \log \frac{\text{CH3COO} - \text{CH3COOH}}{\text{CH3COOH}} = pK_A + \log \frac{C_B V_B}{C_A V_A - C_B V_B}$$

$$pH = pK_A + \log \frac{C_B V_B}{C_B V_{BE} - C_B V_B} = 4.8 + \log \frac{V_B}{V_{BE} - V_B}$$

- Apres l'équivalence : pH= 14+log $\frac{C_B(C_B C_{BE})}{V_A + V_B}$
- Apres l'équivalence, il ne reste que CH₃COO⁻ et per suite le couple acide / base sera (H₂O / HO⁻) de l'eau. Le nombre de moles HO⁻ qui reste, sera

Le volume total est alors $V_A + V_B$

[HO⁻] =
$$\frac{C_B(V_B - V_{BE})}{V_A + V_B}$$
 et [H₃O+]= $\frac{K_e}{[HO^-]}$
pH = -log [H₃O+]= -log K_e + log [HO⁻]= 14+log $\frac{C_B(V_B - V_{BE})}{V_A + V_B}$

2)

a- Le point d'équivalence est déterminé graphiquement par la méthode de tangents. Ainsi, d'après le graphe, on déduit que :

$$C_A = \frac{C_B V_{BE}}{V_A} = \frac{10^{-2} \times 24}{20} = 1.2 \cdot 10^{-2} \text{ mol.L}^{-1}$$

La valeur obtenue expérimentalement est en accord avec la valeur donnée par hypothèse.

b- La valeur du pKA n'est autre que la valeur du pH à la demi-équivalence, c'est-à-dire lorsque le volume versé est 12 mL. D'apres le graphe pKA = 4.8