Einführung Code-basierte Kryptografie Code-basiertes Kryptosystem – McEliece

Fahrplan

Grundlagen

McEliece - Code-basierte Kryptografie

Quellen

Zusammenfassung

- ▶ McEliece asymmetrisches Public-Key-Kryptosystem 1978 nach Robert McEliece [?]
- Grundlegende Idee: Führe absichtliche Fehler in die Chiffre ein
- Verwenden eines allgemeinen fehlerkorrigierende Codes
 - ▶ Dekodierung i.A. *NP*-Hart [?, S. 479], [?, S. 353ff]
 - ightharpoonup Unterklasse an linearen Codes auch in P lösbar ightarrow Goppa-Codes
- lacktriangle Angreifer ohne Goppa-Code kann nur in $\mathcal P$, also polynomiell viel rechnen
 - lacktriangle Die Entschlüsselung eines zufälligen linearen codes ist ein \mathcal{NP} -Hartes Problem -> QUELLE!
 - ▶ Die Generatormatrix eines Goppa-Codes sieht zufällig aus -> QUELLE

Fahrplan Grundlagen

Grundlagen

Hamming Distanz

Linear-Codes

Goppa-Codes

McEliece - Code-basierte Kryptografie

McEliece-Kryptosystem

Parameter Definitionen

McEliece Algorithmus

Schlüsselerzeugung Gen

Verschlüsselung End

Entschlüsselung Dec

Beispiel McElicece-Kryptosystem

Vor- & Nachteile

Queller

Hamming Gewicht

▶ Das Hamming Gewicht eines Vektors *x* der Länge *n* ist definiert als:

$$weight_{\Delta}(x) := \sum_{i=1}^{n} weight_{\Delta}(x_i)$$

mit

weight_{$$\Delta$$}(x_i) = 1 : $x_i \neq 0$,
weight _{Δ} (x_i) = 0 : $x_i = 0$

► Beispiel:

$$weight_{\Delta}(\underline{1}00\underline{1}) = 2$$

Hamming Distanz

▶ Die Hamming Distanz *d* ist ein Maß für die Unterschiedlichkeit von Zeichenketten und ist eine Metrik auf dem Coderaum.

Es sei Σ ein diskretes Alphabet und $c_1=(c_{1_1},\ldots,c_{1_n})$, $c_2=(c_{2_1},\ldots,c_{2_n})$ Codeworte mit je n Buchstaben aus Σ^n , von denen die Teilmenge $C\subseteq \Sigma^n$ die gültigen Codeworte darstellt. Die Hamming Distanz zwischen c_1 und c_2 ist definiert als

$$\Delta(c_1, c_2) := |\{i \in \{1, \ldots, n\} | c_{1_i} \neq c_{2_i}\}|$$

▶ Beispiel: $11011001 \oplus 10011101 = 0\underline{1}000\underline{1}00 \implies \Delta(11011001, 10011101) = 2$

Hamming Distanz

Für mehr als zwei Worte versteht man das Minimum aller Abstände zwischen verschiedenen Wörtern innerhalb des Codes als deren Hamming Distanz.

$$d = \Delta(C) := \min_{\forall i,j \in \{1,\dots,n\} | i \neq j} \Delta(c_i, c_j)$$

Beispiel:

$$\begin{array}{ll} 010 \oplus 011 = 00\underline{1} & \Longrightarrow & \Delta(010,011) = 1 \\ 010 \oplus 101 = \underline{111} & \Longrightarrow & \Delta(010,101) = 3 \\ 011 \oplus 101 = \underline{110} & \Longrightarrow & \Delta(011,101) = 2 \\ d = \min\{1,3,2\} = 1 \end{array}$$

Linear-Codes

▶ Ein binärer Blockcode $C \subseteq GF(2^n) \subseteq \Sigma^n$ heißt linearer Code, wenn die Modulo-Summe zweier Codewörter wieder ein Codewort ist, d.h. wenn gilt:

$$\forall c_1, c_2 \in C \colon c1 \oplus c2 \in C$$

C bildet damit einen Vektorraum und ist Unterraum des Vektorraumes $GF(2^n)$.

Es sei die k die Dimension des Vektorraumes in dem sich der lineare Code C befindet, so nennt man C einen (n,k)-Code. Bei gegebener Hamming Distanz d wird dieser auch (n,k,d)-Code genannt.

(binary) Goppa-Codes

▶ Ein irreduzibler binärer Goppa-Code ist ein [n, k, d]-Code, der durch ein Generatorpolynom g(x) vom Grad t und einer Sequenz L mit n Elementen, über dem endlichen Körper $GF(2^n)$ definiert ist.

Fahrplan Code-basierte Kryptografie

Grundlagen

Hamming Distanz

Linear-Codes

Goppa-Codes

McEliece – Code-basierte Kryptografie

McEliece-Kryptosystem

Parameter Definitionen

McEliece Algorithmus

Schlüsselerzeugung Gen

Verschlüsselung Enc

Entschlüsselung Dec

Beispiel McElicece-Kryptosystem

Vor- & Nachteile

Quellen

Code-basierte Kryptografie

► Einleitender Foobar Kram aus: [?]

Abbildung: Caption

Grundlegende Idee McEliece Kryptosystem

- ► Transformiere Klartext *m* (Message) mithilfe einer Generator-Matrix in allgemeinen Goppa-Code
- Multiplikation mit randomisierten Matrizen führt zu allgemeinem linearen Code
 - ► Gist: Reihe von Matrix-Multiplikationen ist Verschlüsselung
- ightharpoonup Retransformation ohne Matrizen in Goppa-Code ist problemtisch: \mathcal{NP} -Hart [?]
- Öffentlicher Schlüssel:
 - ▶ Beinhaltet Generator-Matrix zur Umwandlung in allg. linearen Code
 - ► Zusätzlich: Anzahl der maximal einbaubaren Fehler in der Chiffre c
 - ► Fehler sind also die Anzahl der Bits, die invertiert werden sollen
- Privater Schlüssel: Umwandlung des allgemeinen, linearen Codes in Goppa-Code
 - ► Für performante Retransformation
 - ▶ Und Fehlerkorrektur

Parameter Definitionen

- ▶ Systemparameter *m* gibt die Blockgröße an, für zu verschlüsselnde Nachricht
- ightharpoonup C sei ein binärer (n, k) Goppa-Code mit t effizient korrigierbaren Fehlern
- ▶ t gibt die maximale Anz. eff. korrigierbarer Fehler durch Goppa-Code C
- Daraus ergeben sich:
 - ▶ Blocklänge Chiffretext: $n = 2^m$
 - Nachricht Blocklänge $k = n m \cdot t$
 - ▶ Minimale *Hamming-Distance* d des Codes C: $d = 2 \cdot t + 1$

McEliece als Kryptografisches Shema

- ▶ Das McEliece-Kryptosystem $\Pi := (Gen, Enc, Dec)$
- ► Wobei:
 - Gen Schlüsselerzeugung
 - Enc Verschlüsselung
 - Dec Entschlüsselung
- ► Korrekheit: Es muss gelten

$$m = Dec_{priv}(c) = Dec_{priv}(Enc_{pub}(m))$$

Schlüsselerzeugung Gen

- lacktriangle Erzeuge Generator-Matrix $G^{k imes n}$ für Goppa-Code C
 - ▶ Matrix aus der binärer Klartext mit Länge *k* die Chiffre der Länge *n* berechnet werden kann
- ► Erzeuge zufällige, binäre, nicht singuläre¹ Scramble-Matrix S^{k×k}
 - ightharpoonup S muss in \mathbb{Z}_2 invertierbar sein
- ightharpoonup Permutationsmatrix $P^{n \times n}$
 - ▶ Binärmatrix, je Zeile genau ein 1 Element enthalten ist
- ▶ Berechne: $\hat{G}^{k \times n} = S \cdot G \cdot P$
- ▶ Schlüssel: $K := (G, S, P, \hat{G}, t)^2$
 - ightharpoonup Öffentlicher Schlüssel: $K_{pub} := (\hat{G}, t)$
 - ▶ Privater Schlüssel: $K_{priv} := (G, S, P)$

 $^{^{1}}$ M.a.W. S ist regulär, $\det S \neq 0$; wichtig für Invertierbarkeit

²McEliece fixiert t = 50, als Maximalwert [?]

Verschlüsselung Enc

- Nachricht in Blöcke, sodass $m \in \mathbb{Z}_2^k$
- $lackbox{f P}$ Sei $z\in\mathbb{Z}_2^n$ ein belieber Vektor der Länge n, mit maximaler Gewichtung t
- ► Gewichtung t: maximale Anzahl Einsen in z
- Fehlervektor erlaubt es Chiffre an maximal t Stellen zu invertieren

Entschlüsselung Dec

- ▶ Berechne $\hat{c} = cP^{-1}$
- ightharpoonup Anwenden der decode(c) des Goppa-Codes auf \hat{c} , sodass \hat{m} gefunden werden kann
- ► Hamming-Distanz: $d_H(\hat{m}G, \hat{c}) \leq t$
- ▶ Eigentliche Entschlüsselung: $m = \hat{m}S^{-1}$
- ► Kompakt: $dec_{priv}(c) = decode(cP^{-1}) \cdot S^{-1}$

Beispiel McElicece-Kryptosystem

- ▶ Kryptosystem (n, k, d) mit Systmeparameter: n = 7, k = 4, d = 3
 - ▶ 4 Bit Klartext auf 7 Bit Chiffretext
 - ightharpoonup Hamming-Distanz d=3
 - ▶ Somit lassen sich $t = \frac{d-1}{2} = 1$ Bitfehler korrigieren

► Schlüsselerzeugung *Gen*: Generator-Matrix erzeugt Hamming-Code statt Goppa-Code

$$G = \begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{pmatrix}$$

Da d=3 unterscheidet sich jede Zeile in mindestens drei Werten

Zufällige Matrizen S und P

$$S = \begin{pmatrix} 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 \end{pmatrix} \qquad P = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \end{pmatrix}$$

Berechnung des öffentlichen Schlüssels $\hat{G} = S \cdot G \cdot P$:

Berechnung des öffentlichen Schlüssels $\hat{G} = S \cdot G \cdot P$:

Der öffentlichen Schlüssels $K_{pub} = (\hat{G}, t)$:

$$\mathcal{K}_{
m
ho ub} = (\hat{ extbf{G}}, t) = \left(egin{pmatrix} 1 & 1 & 1 & 0 & 0 & 0 \ 1 & 1 & 0 & 0 & 1 & 0 & 0 \ 1 & 0 & 0 & 1 & 1 & 0 & 1 \ 0 & 1 & 0 & 1 & 1 & 1 & 0 \end{pmatrix}, 1
ight)$$

Nachricht m = (1101), Fehlervektor z mit maximalem Gewicht t = 1 und Länge n = 7: Wähle z = (0000100)

$$Enc_{pub}(m,z) = c = m\hat{G} + z$$

$$m = \begin{pmatrix} 1 & 1 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 & 1 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 & 0 & 0 & 1 & 0 & 0 \end{pmatrix}$$
$$= \begin{pmatrix} 0 & 1 & 1 & 0 & 0 & 1 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 & 0 & 0 & 1 & 0 & 0 \end{pmatrix}$$
$$= \begin{pmatrix} 0 & 1 & 1 & 0 & 1 & 1 & 0 \end{pmatrix} = c$$

Entschlüsselung der Chiffre: Invertierung der Permuation $\hat{c} = cP^{-1}$

- Dekodierung des Hamming-Codes:
- ▶ Berehcne Hamming-Distanz d der Generator-Matrix G: $\begin{pmatrix} 1 & 3 & 3 & 2 \end{pmatrix}$
- ► Somit ist $\hat{m} = \begin{pmatrix} 1 & 0 & 0 & 0 \end{pmatrix}$
- ▶ Berechne Klartext m

$$m = \hat{m}S^{-1} =$$

$$= \begin{pmatrix} 1 & 0 & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 1 & 0 & 1 \end{pmatrix}$$

Vor- & Nachteile

- ► The good news: Es gab keine erfolgreichen Angriffe gegen das McEliece-Verfahren
- ▶ Verhfahren gilt als IND-CCA2 [?] sicher, somit ist es auch IND-CPA sicher [?]
- ► Angriffe McEliece mit originalen Parametern von 1978 in 1400 Tagen (Einzelne Machine) oder in 7 Tagen mithilfe von 200 CPUs [?], [?]
- ► Jedoch:
 - ► Bruce Schneier: McEliece-Kryptosystem etwa 2 bis 3 mal langsamer als RSA [?, S. 479ff]
 - **E**xtrem große öffentliche Schlüssel: \hat{G} ist Matrix $k \times n$
 - ▶ Bei Parameter (1024, 524, 101) ist $k \cdot n = 1024 \cdot 524 = 536576$ Bit also etwa 67kBytes
 - ▶ Chiffretext ist fast doppelt so groß wie Klartext, aus 524Bit klartext werden zu 1024 Bit Chiffre

Einführung Code-basierte Kryptografie Lea Muth Benjamin Tröster, FU Berlin

Sources I