

A Report On The Calculation Of The Optimised Structure Of Naphthalene At The MP2/cc-pVDZ Level

osl - 07th June 2022

Abstract

The calculation of optimised structure for the system 'Naphthalene' is presented, accompanied by automated analysis and image generation provided by the Silico software package. The calculation was performed using the Turbomole software package at the MP2/cc-pVDZ level of theory. The total selfconsistent field (SCF) energy of the system was found to be -10432.31 eV after 7 steps. The total Møller-Plesset (MP) energy of the system was found to be -10467.16 eV after 14 steps. The highestoccupied molecular orbital (HOMO) and lowest-unoccupied molecular orbital (LUMO) were calculated to be -7.78 and 2.37 eV respectively, corresponding to a HOMO-LUMO band gap of 10.15 eV. The permanent dipole moment (PDM) was calculated to be 0.00 D.

Table 1: Summary of overall calculation metadata. [a]: The date and time at which the calculation was completed. [b]: Total combined duration in real-time (walltime) for all components of the calculation. [c]: Temperature used for thermochemistry analysis. [b]: Pressure used for thermochemistry analysis

Date ^[a]	Duration ^[b]	Success (Converged)	Computational package	Level of theory	Calculations	Wavefunction	Multiplicity	T ^[c] / K	P ^[d] / atm
07/06/2022 18:31:50	4 m, 57 s	True (True)	Turbomole (7.5.0)	MP2/cc- pVDZ	Optimisation	restricted	1 (singlet)	N/A	N/A

Summary Of Results

Scf Energy

 Table 2: Summary of SCF energy properties.

No. of steps

-10432.3114 eV Final energy -1,006,565 kJ·mol-1 Final energy

Mp Energy

Table 3: Summary of MP energy properties.

No. of steps

Final energy -10467.1582 eV Final energy -1,009,927 kJ·mol⁻¹

Geometry

Table 4: Summary of geometry properties.

 $C_{10}H_{8}$ 128.1705 g·mol⁻¹ Molar mass Alignment method Minimal 6 80 Å X extension 5.02 Å Y extension

Z extension $0.00 \, \text{\AA}$ Linearity ratio 0.26 Planarity ratio 1.00

E_{LUMO}

Table 5: Summary of HOMO & LUMO properties. 10.15 eV E_{HOMO,LUMO} -7.78 eV E_{HOMO}

2.37 eV

Molecular Orbitals

Permanent Dipole Moment

Table 6: Summary of the permanent dipole moment properties.

Total < 0.01 D X axis angle 90.00° 84.81° XY plane angle

Methodology

Metadata

The calculation of the optimised structure was performed using the Turbomole (7.5.0) program, the HF and MP2 methods and the cc-pVDZ basis set. It was completed on the 07th June 2022 after a total duration of 4 m, 57 s and finished successfully. The base multiplicity of the system under study was 1 (singlet). Finally, a restricted wavefunction was used, resulting in a single set of doubly occupied orbitals. The full calculation metadata is tabulated in table 1.

The report presented here was generated using the Silico software package. This toolset relies upon a number of thirdparty applications and libraries which should be cited appropriately in derivative works. In particular, the calculation results described within were parsed by the cclib library.¹ Scientific constants which were used, among other things, for the interconversion of scientific units were provided by SciPy.² Three-dimensional plots of atom positions and calculated densities, including molecular orbitals, were rendered using Visual Molecular Dynamics (VMD)3 and the Tachyon ray-tracer.4 Finally, two-dimensional graphs were plotted using the MatPlotlib library,5 while this report itself was prepared using the Mako template library⁶ and the Weasyprint library⁷, the latter of which was responsible for generation of the PDF file.

Discussion

Total SCF Energy

The total energy of the system was calculated at the selfconsistent field (SCF) level, corresponding to the energy

Silico 1.0.0-pre.30 Page 1 of 4 calculated by the Hartree-Fock (HF) method, over a total of seven steps, the results of which are displayed in figure 1. The energy calculated by the final step was -10432.31 eV, corresponding to -1,006,565 KJmol $^{-1}$. A plot of the total SCF electron density is shown in figure 2.

Figure 1: Graph of calculated energies at the self-consistent field (SCF) level.

Figure 2: Plot of the total SCF electron density, plotted with an isovalue of 0.0004. A: In the X/Y plane, B: In the X/Z plane, C: In the Z/Y plane, D: 45° to the axes.

Total MP Energy

The total energy of the system was calculated at the **Møller-Plesset (MP)** level over a total of 14 steps, the results of which are displayed in figure 3. The energy calculated by the final step was -10467.16 eV, corresponding to -1,009,927 KJmol⁻¹.

Figure 3: Graph of calculated energies at the Møller-Plesset (MP) level.

Geometry

The **empirical formula** of the studied system was $C_{10}H_8$, corresponding to a **molecular mass** of $128.17~{\rm gmol}^{-1}$. The molecular geometry was aligned to the cartesian (X, Y and Z) axes by the **Minimal (MIN)** method. Using this method, the **extent of the molecular system** in the X, Y and Z axes ($L_{\rm X}$, $L_{\rm Y}$ and $L_{\rm Z}$, corresponding to the molecular width, length and height respectively) was determined to be 6.80, 5.02 and 0.00 Å respectively. These extensions give rise to a **molecular linearity ratio** (1-($L_{\rm Y}/L_{\rm Y}$)) and **planarity ratio** (1-($L_{\rm X}/L_{\rm Y}$)) of 0.26 and 1.00 respectively.

Permanent Dipole Moment

The calculated **permanent dipole moment** was < 0.01 D, with a vector (x,y,z) of 0.00, 0.00, 0.00 D. The angle between the dipole moment vector and the x-axis was 90.00 °, while the angle between the dipole moment and the xy-plane was 84.81 °. A plot of the permanent dipole moment is shown in figure 4.

Figure 4: The permanent dipole moment (red arrow) plotted against the aligned molecular geometry with a scale of 1 $\text{\AA} = 1.0 \text{ D. A}$: In the X/Y plane, B: In the X/Z plane, C: In the Z/Y plane, D: 45° to the axes.

Molecular Orbitals

In total, 180 doubly occupied molecular orbitals were calculated, divided into 34 occupied orbitals and 146 unoccupied (or virtual)

Silico 1.0.0-pre.30 Page 2 of 4

orbitals. The calculated energies of the **HOMO and LUMO** were -7.78 and 2.37 eV respectively, corresponding to a **HOMO-LUMO band gap** of 10.15 eV (figure 8). Plots of the orbital density for the HOMO and LUMO are shown in figures 5-6 respectively, while the orbital overlap between the HOMO and LUMO is shown in figure 7.

Figure 8: Graph of the calculated molecular orbital energies in close proximity to the HOMO-LUMO gap. Solid lines: occupied orbitals, dashed lines: virtual orbitals.

Figure 5: Orbital density plots of the HOMO, plotted with isovalue: 0.02. A: In the X/Y plane, B: In the X/Z plane, C: In the Z/Y plane, D: 45° to the axes.

Figure 6: Orbital density plots of the LUMO, plotted with isovalue: 0.02. A: In the X/Y plane, B: In the X/Z plane, C: In the Z/Y plane, D: 45° to the axes.

Figure 7: Orbital density plots of the HOMO (blue) and LUMO (red), plotted simultaneously with isovalue: 0.02. A: In the X/Y plane, B: In the X/Z plane, C: In the Z/Y plane, D: 45° to the axes.

Silico 1.0.0-pre.30 Page 3 of 4

Tables Of Results

Atom Coordinates

Table 7: Coordinates of the atoms of the system under study, as aligned to the cartesian axes by the Minimal method.

Element	X Coord /Å	Y Coord /Å	Z Coord /Å
С	-1.2509141	-1.4118092	-0.0000069
С	-2.4487537	-0.7132682	0.0000087
С	-2.4487547	0.7132694	0.0000104
С	-1.2509134	1.4118084	-0.0000068
С	-0.0000000	0.7179339	-0.0000210
С	-0.0000000	-0.7179354	-0.0000202
С	1.2509141	-1.4118092	-0.0000071
С	1.2509134	1.4118084	-0.0000084
С	2.4487547	0.7132694	0.0000099
С	2.4487537	-0.7132682	0.0000093
Н	-1.2480933	-2.5080746	-0.0000131
Н	-3.4000079	-1.2561870	0.0000192
Н	-3.4000083	1.2561881	0.0000264
Н	-1.2480915	2.5080739	-0.0000147
Н	1.2480933	-2.5080746	-0.0000148
Н	1.2480915	2.5080739	-0.0000190
Н	3.4000083	1.2561881	0.0000266
Н	3.4000079	-1.2561870	0.0000218

Molecular Orbitals

Table 8: Energies of the calculated molecular orbitals.					
Level	Label	Symmetry	Energy /eV		
50	LUMO+15	A	11.9600		
49	LUMO+14	A	11.7352		

References

- 1. N. M. O'boyle, A. L. Tenderholt and K. M. Langner, *Journal of Computational Chemistry*, 2008, **29**, 839--845
- 2. P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett, J. Wilson, K. Jarrod Millman, N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C. Carey, İ. Polat, Y. Feng, E. W. Moore, J. Vand erPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen, E. A. Quintero, C. R. Harris, A. M. Archibald, A. H. Ribeiro, F. Pedregosa, P. van Mulbregt and S. 1. 0. Contributors, Nature Methods, 2020, 17, 261--272

48	LUMO+13	A	10.6261
47	LUMO+12	A	10.4351
46	LUMO+11	A	7.9455
45	LUMO+10	A	7.4055
44	LUMO+9	A	7.3699
43	LUMO+8	A	6.8297
42	LUMO+7	A	6.4869
41	LUMO+6	A	6.3480
40	LUMO+5	A	5.4144
39	LUMO+4	A	5.4053
38	LUMO+3	A	4.9896
37	LUMO+2	A	4.7431
36	LUMO+1	A	3.2023
35	LUMO	A	2.3705
34	номо	A	-7.7835
33	HOMO-1	A	-8.6036
32	HOMO-2	A	-10.3698
31	НОМО-3	A	-12.0540
30	HOMO-4	A	-12.9253
29	HOMO-5	A	-13.1917
28	НОМО-6	A	-14.1706
27	НОМО-7	A	-14.3301
26	НОМО-8	A	-15.2492
25	НОМО-9	A	-15.7421
24	HOMO-10	A	-15.7464
23	HOMO-11	A	-16.4964
22	HOMO-12	A	-16.8786
21	HOMO-13	A	-18.2419
20	HOMO-14	A	-18.8267
19	HOMO-15	A	-19.1551

- 3. W. Humphrey, A. Dalke and K. Schulten, *Journal of Molecular Graphics*, 1996, 14, 33--38
- J. Stone, Masters Thesis, Computer Science Department, University of Missouri-Rolla, 1998
- J. D. Hunter, Computing in Science & Engineering, 2007, 9, 90-95
- M. Bayer, https://www.makotemplates.org, (accessed May 2020)
- 7. K. Community, https://weasyprint.org, (accessed May 2020)

Silico 1.0.0-pre.30 Page 4 of 4