PRZENIESIENIE WSPÓŁRZĘDNYCH METODĄ L.A. KIVIOJA

Opis zadania wprost

Na elipsoidzie od danych elementach np. a, e^2 stoi przed nami problem rozwiązania głównego zadania geodezji wyższej, tj. obliczenia współrzędnych φ , λ punktu końcowego linii geodezyjnej wychodzącej z punktu o znanych współrzędnych φ , λ pod znanym azymutem A w punkcie początkowym tej linii.

Skonstruujmy na powierzchni elipsoidy elementarny trójkąt oparty na elemencie ds jako przeciwprostokątnej oraz fragmentach łuków południka i równoleżnika. W trójkącie tym odszukujemy następujące zależności.

$$ds \cos A = M d\varphi$$
$$ds \sin A = N \cos \varphi d\lambda$$

Ze smukłego trójkąta P, K, N wyznaczamy zależność przyrostu azymutu od zmiany długości i azymutu linii geodezyjnej:

$$dA = \frac{\sin Az \, tg \, \varphi}{N} \cdot ds$$

Równanie Clairaut'a dla danej linii geodezyjnej ma postać:

$$N\cos\varphi\sin A = C$$

Parametr C jest parametrem stałym dla konkretnej linii geodezyjnej, może on wahać się w granicach od 0 do a.

Kolejność obliczeń w zadaniu wprost

Dane:

- współrzędne geodezyjne punktu początkowego $P\left(\varphi_{P}, \lambda_{P}\right)$
- azymut linii geodezyjnej w punkcie początkowym P linii geodezyjnej A_P
- $dlugość linii geodezyjnej s_{PK}$
- 1. Dzielimy całą długość linii geodezyjnej s na n elementów ds.

$$ds = \frac{s}{n}$$

ds powinno wynosić od 1 do 1,5 km.

2. Obliczamy średnią szerokość geodezyjną i średni azymut pierwszego z odcinków ds. Obliczamy pierwszy przyrost $\delta \varphi_i^1$ oraz przyrost azymutu dla odcinka ds₁.

$$\delta \varphi_i^I = \frac{ds_i \cos A_P}{M_P} \qquad dA_i^I = \frac{\sin A_{PK} tg \varphi_P}{N_P} \cdot ds$$

po to, aby obliczyć średnią szerokość geodezyjną ϕ^m_1 i średni azymut A^m_1 dla pierwszego elementu δs_1

$$\varphi_i^m = \varphi_P + \frac{1}{2} \delta \varphi_i^I \qquad A_i^m = A_P + \frac{1}{2} \delta A_i^I$$

3. Dla średniej wartości azymutu A_i^m i średniej współrzędnej ϕ_i^m obliczamy przyrosty δB_i , δL_i i azymutu odpowiadające długości ds_i .

$$\delta \varphi_{i} = \frac{ds_{i} \cos A_{i}^{m}}{M_{i}^{m}}$$

$$\delta \lambda_{i} = \frac{ds_{i} \sin A_{i}^{m}}{N_{i}^{m} \cos \varphi_{i}^{m}}$$

$$dA_{i} = \frac{\sin A_{i}^{m} tg \varphi_{i}^{m}}{N_{i}^{m}} \cdot ds_{i}$$

4. W ten sposób znaleźliśmy się na końcu odcinka δs i możemy obliczyć współrzędne punktu końcowego i-tego odcinka δs i azymut linii geodezyjnym w punkcie końcowym

$$\varphi_{i+1} = \varphi_i + \delta \varphi_i$$
 $\lambda_{i+1} = \lambda_i + \delta \lambda_i$ $A_{i+1} = A_i + \delta A_i$

Przy obliczaniu następnego odcinka powtarzamy czynności z punktów 2-4 dla następnych n-1 odcinków.

5. Ostatecznie w punkcie K otrzymujemy

$$\varphi_K = \varphi_P + \sum_{i=1}^n \delta \varphi_i$$
 $\lambda_K = \lambda_P + \sum_{i=1}^n \delta \lambda_i$ $\lambda_K = \lambda_P + \sum_{i=1}^n \delta \lambda_i \pm 180^\circ$

Alternatywnym wariantem algorytmu jest wykorzystywanie stałej Clairauta do obliczenia azymutu w punkcie środkowym odcinka ds i w punkcie końcowym. Używając B_1 i A_1 obliczamy promień krzywizny I wertykału N_1 , południkowego M_1 oraz parametr Clairaut'a C_1 .

$$N_P = f(\varphi_P)$$
 $M_P = f(\varphi_P)$
 $c = N_P \cos \varphi_P \sin A_P$

azymut w dowolnym punkcie obliczmamy wykorzystując równanie Clairauta i znane współrzędne tego punktu

$$\sin A_P = \frac{c}{N_P \cos \varphi_P}$$