EECS 70 Discrete Mathematics and Probability Theory Spring 2014 Anant Sahai Discussion 2A

- 1. Use truth tables to show that $\neg(A \lor B) \equiv \neg A \land \neg B$ and $\neg(A \land B) \equiv \neg A \lor \neg B$. These two equivalences are known as DeMorgan's Law.
- 2. Which of the following statements are true? Let Q(n) be the statement "n is divisible by 2." \mathbb{N} denotes the set of natural numbers.
 - (a) $\exists k \in \mathbb{N}, Q(k) \land Q(k+1).$
 - (b) $\forall k \in \mathbb{N}, Q(k) \Longrightarrow Q(k^2)$.
 - (c) $\exists x \in \mathbb{N}, \neg(\exists y \in \mathbb{N}, y < x).$
- 3. Write the following statements using the notation covered in class. Use \mathbb{N} to denote the set of natural numbers and \mathbb{Z} to denote the set of integers. Also write P(n) for the statement "n is odd".
 - (a) For all natural numbers n, 2n is even.
 - (b) For all natural numbers n, n is odd if n^2 is odd.
 - (c) There are no integer solutions to the equation $x^2 y^2 = 10$.
- 4. You are on an island inhabited by two types of people: the Liars and the Truthtellers. Liars always lie, and Truthtellers always tell the truth. In all other respects, the two types are indistinguishable. You meet a very attractive local and ask him/her on a date. The local responds, "I will go on a date with you if and only if I am a Truthteller." Is this good news?
- 5. Which of the following implications is/are true?
 - (a) $\forall x \forall y P(x, y)$ implies $\forall y \forall x P(x, y)$.
 - (b) $\exists x \exists y P(x, y)$ implies $\exists y \exists x P(x, y)$.
 - (c) $\forall x \exists y P(x, y)$ implies $\exists y \forall x P(x, y)$.
 - (d) $\exists x \forall y \ P(x,y)$ implies $\forall y \exists x \ P(x,y)$.

Also, for the implication in part (c), what is its converse? And its contrapositive?

6. Prove or disprove each of the following:

(a)
$$\forall x (P(x) \land Q(x)) \equiv \forall x P(x) \land \forall x Q(x)$$

(b)
$$\forall x (P(x) \lor Q(x)) \equiv \forall x P(x) \lor \forall x Q(x)$$

(c)
$$\forall x (P(x) \Rightarrow Q(x)) \equiv (\forall x P(x)) \Rightarrow (\forall x Q(x))$$

(d)
$$\exists x (P(x) \land Q(x)) \equiv \exists x P(x) \land \exists x Q(x)$$

(e)
$$\exists x (P(x) \lor Q(x)) \equiv \exists x P(x) \lor \exists x Q(x)$$

(f)
$$\exists x (P(x) \Rightarrow Q(x)) \equiv (\exists x P(x)) \Rightarrow (\exists x Q(x))$$

7. Complete the following expression so that it states that: "There is one and only one natural number n for which the proposition formula P(n) holds."

$$(\exists n \in \mathbb{N})\dots$$

- 8. A valid tiling for a chessboard is an arrangement of tiles such that no two tiles overlap and every square of the board is covered by a tile.
 - (a) A domino is a tile consisting of two contiguous squares. Is there a valid domino tiling for the 8×8 chessboard where the squares in the bottom left and top right corners have been removed?
 - (b) A straight tetromino is a tile consisting of four contiguous squares. Prove or disprove: A 10×10 chessboard can be tiled with straight tetrominoes.