Salary Prediction: Logistic Regression

Learning Objectives:

- Data cleaning for multi-class classification
- Feature selection algorithms and regularization
- Logistic regression
- Model selection and bias-variance trade-off

Samuel Atkins - November 2020

Exploratory Data Analysis + Feature Selection

Original Dataset Size: 12497 x 248

Question Categories:

- 1. Select all that apply
 - Transformed into one-hot columns
- 2. Multiple choice/categorical
 - Situationally turned into one-hot columns or ordinally encoded columns
- 3. Numerical
 - Scaled or left alone

Columns with significant null values were removed; null entries were replaced with column means/modes

Column Dependence Tests:

- a. One-hot encoded multiple-choice columns tested using chi² test for independence
- b. Ordinally encoded and numerical columns tested using ANOVA/F-test
- c. Select all that apply binary columns tested using chi² squared test for independence
- Features with a p-value greater than 0.05 were removed

RFE was then applied to extract the top 150 features

Final Dataset Size: 12497 x 150

Logistic Regression

- Accuracy and variance selected as primary performance metrics
 - F1-micro, F1-macro, and log-loss also included for performance visualization
- Grid-search performed to tune the regularization constant, the solver, the regularization penalty type, and the class weight setting

Grid Search Process:

Iterate through all possible models to find the model that maximizes the accuracy (minimizes the bias) and simultaneously minimizes the variance through 10-fold cross-validation on the training dataset

Optimal Model:

log-loss: 2.355 f1-micro: 0.103 f1-macro: 0.103 accuracy: 75.65 variance: 1.656

C: 0.01

solver: liblinear

class-weight: balanced

penalty: 11

Bias-Variance Trade-off

Bias-Variance Trade-off Investigation:

- Trained the optimal model using various percentages of the training dataset
- Computed the accuracy of the model on the entire training dataset and the entire testing dataset using each trained model
- Plotted the training-testing curve

Observation: Model is Overfitting

 Could implement early stopping to improve generalizability

Model Testing + Discussion

Testing Result:

Model Achieved a Testing Accuracy of 71.287% on the Holdout Dataset

Discussion:

- Models with less features typically performed significantly worse
- Early stopping would improve the generalizability of the model
- Learning about how the model might be used would incentivize a more fine-tuned performance metric
- Perhaps a more complex or learned model could capture the relationships between the input data and target variables more effectively

