

Tradeoffs

Module 6:

Brielle K Thompson & Michael E Colvin

Workshop: An overview of Structured Decision Making for natural resources, Midwest Fish and Wildlife Conference 2025, St. Louis, MO

Source: Jean Fitts Cochrane

Tradeoffs

"How much you would give up on one objective in order to achieve gains on another objective"

- Gregory et al. 2012

Role of analytical methods in tradeoff analysis

- Identify "best" (optimal) solution
 - Ties together alternatives, objectives, and predicted consequences
 - How do you integrate all the components?
- Easiest with a single objective
- Easiest without uncertainty
- Solution method depends on the structure of the problem

Analytical approaches

	Approach
Single Objective	 Deterministic optimization
Multiple Objectives	Multiple Attribute UtilitySimplificationSMARTPareto frontier analysis
	Negotiate among most efficient alternatives

Single objective approach:

- Used when we have a single continuous decision variable (i.e., alternatives)
 - e.g., harvest rate, amount of herbicide to apply, size of biocontrol release, etc.
- Predict outcomes (i.e., objective) are a function of the decision variable
- Optimization solution methods:
 - Graphical
 - Closed-formed solutions (calculus/differentiation)
 - Numerical solutions (mathematical search methods)
 - Constrained optimization (mathematical solution)

Single objective approach:

• Graphical optimization:

Single objective approach:

Question: Can you think of an example of a single objective problem?

- Not very common in natural resource management.
- Single objectives are easier to optimize, so we may want to reduce multiple objective problems to make them easier to solve.

Multiple objective tools

 Nearly all natural resource management problems are multiple-objective problems

Multiple objective tools

- A. Simplify the problem as much as possible
 - 1. Remove dominated alternatives
 - 2. Remove irrelevant objectives
 - 3. Make even swaps
- B. Reduce to a single objective if possible
- C. Negotiate a solution from a set of best compromises
- D. Evaluate trade-offs explicitly

A. Simplify the problem

1. Remove dominated alternatives:

• i.e., another alternative performs the same or better on all objectives

1. Remove dominated alternatives (another alternative performs the same or better on all objectives)

			Alternatives				
	Objectives	Direction	Status quo	Minor repair	Major repair	Re-build	
	Cost (\$M)	Min					
	Environmental Benefit (0-10)	Max					
	Disturbance (0-10)	Min					
	Silt runoff (k ft³)	Min					
Science for a changing w	Water Retention (MG)	Max					

1. Remove dominated alternatives (another alternative performs the same or better on all objectives)

			Alternatives				
	Objectives	Direction	Status quo	Minor repair	Major repair	Re-build	
	Cost (\$M)	Min	0	2	12	20	
	Environmental Benefit (0-10)	Max	1	3	10	10	
(0-10)	Disturbance (0-10)	Min	0	1	7	10	
	Silt runoff (k ft³)	Min	5	1	3	3	
Science for a changing w	Water Retention (MG)	Max	41	41	41	39	

1. Remove dominated alternatives (another alternative performs the same or better on all objectives)

			Altern	Dansin at 1	A 11 1:	
Objectives	Direction	Status quo	Minor repair	Major repair	Dominated A	Aiternative
Cost (\$M)	Min	0	2	12	20	
Environmental Benefit (0-10)	Max	1	3	10	10	
Disturbance (0-10)	Min	0	1	7	10	
Silt runoff (k ft³)	Min	5	1	3	3	
Water Retention (MG)	Max	41	41	41	39	versity of M

A. Simplify the problem

1. Remove dominated alternatives:

• i.e., another alternative performs the same or better on all objectives

2. Remove irrelevant objectives:

- i.e., performance measures of that objective does not vary over alternatives
- This isn't to say the objective isn't important to you, just that it doesn't help discern among the alternatives <u>currently considered</u>.

2. Remove irrelevant objective

			Altern	atives	Dominated A	Alternative
Objectives	Direction	Status quo	Minor repair	Major repair	Re-build	
Cost (\$M)	Min	0	2	12	20	
Environmental Benefit (0-10)	Max	1	3	10	10	
Disturbance (0-10)	Min	0	1	7	10	
Silt runoff (k ft ³)	Min	5	1	3	3	
Water Retention (MG)	Max	41	41	41	39	versity of M

2. Remove irrelevant objective

				Altern	Dominated A	Alternative	
	Objectives	Direction	Status quo	Minor repair	Major repair	Re-build	
	Cost (\$M)	Min	0	2	12	20	
	Environmental Benefit (0-10)	Max	1	3	10	10	
	Disturbance (0-10)	Min	0	1	7	10	
	Silt runoff (k ft³)	Min	5	1	3	3	
USG science for a changing w	Water Retention (MG)	t Objective Max	41	41	41	39	versity of Misso

• Simplified problem:

		Alternatives			
Objectives	Direction	Status quo	Minor repair	Major repair	
Cost (\$M)	Min	0	2	12	
Environmental Benefit (0-10)	Max	1	3	10	
Disturbance (0-10)	Min	0	1	7	
Silt runoff (k ft ³)	Min	5	1	3	

A. Simplify the problem

1. Remove dominated alternatives:

• i.e., another alternative performs the same or better on all objectives

2. Remove irrelevant objectives:

- i.e., performance measures of that objective does not vary over alternatives
- This isn't to say the objective isn't important to you, just that it doesn't help discern among the alternatives <u>currently considered</u>.

3. Make even swaps:

If two objectives are in the same unit, then combine outcomes

3. Even swaps

Convert silt runoff to cost @ \$0.5M / k ft3

		Alternatives			
Objectives	Direction	Status quo	Minor repair	Major repair	
Cost (\$M)	Min	0	2	12	
Environmental Benefit (0-10)	Max	1	3	10	
Disturbance (0-10)	Min	0	1	7	
Silt runoff (k ft ³)	Min	5	1	3	

3. Even swaps

Convert silt runoff to cost @ \$0.5M / k ft³

		Alternatives			
Objectives	Direction	Status quo	Minor repair	Major repair	
Cost (\$M)	Min	0	2	12	
Environmental Benefit (0-10)	Max	1	3	10	
Disturbance (0-10)	Min	0	1	7	
Silt runoff (k ft ³)	Min	5 <mark>2.5 M</mark>	1- <mark>0.5 M</mark>	3- <mark>1.5 M</mark>	

3. Even swaps

Convert silt runoff to cost @ \$0.5M / k ft3

		Alternatives			
Objectives	Direction	Status quo	Minor repair	Major repair	
Cost (\$M)	Min	0 + 2.5	2 + 0.5	12 + 1.5	
Environmental Benefit (0-10)	Max	1	3	10	
Disturbance (0-10)	Min	0	1	7	

Silt runoff (k ft³)

B. Reduce to a single objective

- Tip: Convert all objectives but one to constraints
 - Example: don't spend more than \$2.5M
 - Keep disturbance at or below 3
 - Then take the maximum environmental benefit

		Alternatives			
Objectives	Direction	Status quo	Minor repair	Major repair	
Cost (\$M)	Min	2.5	2.5	13.5	
Environmental Benefit (0-10)	Max	1	3	10	
Disturbance (0-10)	Min	0	1	7	

C. Negotiate a solution from a set of best compromises

With > two objectives we can do pareto frontier analysis

Example:
Cost
vs
Population
benefit

= outcome of each alternative

C. Negotiate a solution from a set of best compromises

With > two objectives we can do pareto frontier analysis

Example:
Cost
vs
Population
benefit

= outcome of each alternative

If cost and population benefit are deemed equal, we can find the **optimal solution** as the minimum distance between the ideal point (*)

D. Evaluate trade-offs explicitly

- Multicriteria decision analysis:
 - Offers tools to evaluate multiple objective problems
- A variety of tools exist (beyond the scope of this workshop)
 - Outranking methods
 - Analytic Hierarchy Process
 - Multi-attribute value/utility theory
 - SMART (simple multi-attribute rating technique)

3-minute intro to MCDA

Case study: (Runge et al. 2011)

See attachment of case study description (CaseStudyDescription.pdf)

Exercise: Evaluate tradeoffs

Hint: Are there any irrelevant objectives, dominated outcomes, even swaps?

Objective [measurable attribute] {Direction}

	Alternative	Respect Life	HBC Recovery	Wilderness	Cost
				Disturbance	
		[0-10 scale]	[P(N>6000)]	[User-days]	[M\$/5-yr]
		{Max}	{Max}	{Min}	{Min}
Α	No action	6.00	0.2	0	0
В	Alternative B	7	0.3	30	2.5
С	Alternative C	6	0.3	40	3
D	Alternative D	9.5	0.3	50	4.5
E	Alternative F	9	0.25	60	2

