Données et Statistiques en Finance: modèles d'agents: TP3

damien.challet@centralesupelec.fr

19th May 2021

Aims

- 1. To implement Brock and Hommes model
- 2. To characterise the choice of available strategies
- 3. To study the influence of parameters

1. Chaos with 3 simple strategies

- Write a function that returns x_t and that takes as input the parameters of Brock and Hommes model
- Define three strategies: $f_0 = 0$, $f_1 = g$, $f_2 = -g$. Take r = 0.01 and $\lambda = 0.1$ (for example). Choose g.
- 1. Plot x_t as a function of t for $\beta = 1$. Plot also x_t as a function of x_{t-1} .
- 2. Same for $\beta = 10$. Compare with the $\beta = 1$ case. Why does x = 0 become unstable?
- 3. Same for $\beta = 100$. Compare with the $\beta = 10$ case.

2. Traditional strategies

- Define 4 strategies: $f_0 = 0, f_1(x) = 0.9x + 0.2, f_2(x) = 0.9x - 0.2, f_4(x) = (1+r)x$
- 1. Plot x_t as a function of t for $\beta = 10$. Plot also x_t vs x_{t-1} .
- 2. Same for $\beta = 100$.
- 3. Same with $\beta = 10$ and increase λ . Does the stability disappear?

3. Empirical strategies

- Implement the 5 strategies labelled ADA, WTR, STR, LAA and AA in the lecture notes (p. 38).
 - N.B.: you should redefine them as a function of x_t : substract p^f from their definition if they contain this term.
 - define p_{av} as the running average over the last few timesteps.
- 1. Plot x_t as a function of t for several sets of parameters. When is the model stable/unstable?
- 2. Plot $n_{h,t}$ as a function of t for some representative price dynamics.