Restoring Nonrestoring division.

Q : Dividind.

M: Divisor.

n: Cyclis } # bits in dividend.

RECAP

Contimo orary Microprocessor Design

- _ Instruction St Processors [19Ps]
 - _ ISA _ Specification.
- 4 b: t
 8 b: t
 PC
- 2 32 bit
 - Instruction SJ
 - 15A
 - _ Instruction Pipelining
 - Cache mimory
 - Workstations
- 3 Fast clock
 - -> Duply pipelined.

→ Out-of-execution. & Pipeline Stalls → Branch prediction

ADD A, B.

RCA, CLA

High Performance

$$T = \frac{N \times S}{R}$$

- Reduce the value of T
 - Reduce N and S
 - Increase R
- Reduction in N complexity of instruction increases
 - **S** increases
- Increasing *R*-using higher frequency clock
 - Time required to complete a basic execution step reduces
- N,S, and R are not independent parameters
 - Changing one may affect the other
- Attempt to improve performance only by overall reduction of T

Further Performance Improvement?

- Instructions are executed one after another
- S is the total number of basic steps (clock cycles) required to execute an instruction

Overlapping the Execution of Successive Instructions

Clock cycle 8 10 11 12 2 3 4 5 6 9 13 IF 11 ID OF EX WB IF ID IF ID OF FX WB EX OF WB ID Instruction IF ID OF EX WB 16 IF ID OF EX 17 ID OF EX WB EX WB WB IF ID OF EX I10 IF ID OF EX WB

- One instruction completed in every clock cycle from 5th clock cycle onwards
- For the purpose of computing T, the effective value of S is 1

Instruction Pipelining

Clock cycle

8 9 11 12 4 5 10 13 14 IF 11 ID OF EX WB ID OF WB EX OF WB IF ID ΕX ID OF EX WB Instruction IF ID OF EX ID WB EX WB 17 IF ID OF ID OF EX WB 19 IF ID OF EX WB IF ID OF EX WB I10

- One instruction completed in every clock cycle from 5th clock cycle onwards
- For the purpose of computing T, the effective value of S is 1

17

Superscalar Execution

- · Multiple instruction pipelines
 - Multiple functional units
- Execution of several instructions per clock cycle
- Effective value of S can be reduced to **less than one**
- Many of today's high performance processors are designed in this manner

47

-> K-fold improvement

K: No of Stages

Pipeline Idealism

Uniform Subcomputation

Identical Computation.

Independent Computation.

Pipeline.

Arithmetic.

Instruction.

Pipelined Addir

$$\times + \times$$

M = H

 A_{i} \times \checkmark

Az A B

A₃ C D

Ay. EF

Dulay Laterry in a stage - Logic dulay of ckt + Dulay in 1513

→ 4×4 ≈ 16.

K=4.

M-additions - (M+K-1)

Total: (M+K-1) * Latency of O Stage.

Latency of non Pipelined adder: T

M Computation = MXT

Pipelin Stage = T + Rd.

Pipilind ekt latency = (M+K-1) * (T+Rd)

M >> K.

T >> Rd.

 $\approx \frac{\text{MT}}{\text{K}}$

(MXT)

INSTRUCTION PIPELINING

- Instruction cycle.

-Inst Folch - IF

- Inst Ducode- ID

- Operand Futch OF RD
- Perform Operation EX
- Store the right NB

Logical Stups

Basic

I, <u>T</u>₈ ... <u>T</u>₈

l .																
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	l1	IF1	ID1	RD1	EX1	WB1										
	12		IF2	ID2	RD2	EX2	WB2									
	13			IF3	ID3	RD3	EX3	WB3								
	14				IF4	ID4	RD4	EX4	WB4							
Mimory fotch.	*				154	ΙF4	154	ושו	RD4	Ex	NB4.					
futin.	15					IF5	ID5	RD5	EX5	WB5						
						•	•	IF5	105	RJ5	, <u>j</u> y5	, N G P	1			
Multiplication	1 16						IF6	ID6	RD6	EX6	WB6					
·							•	•	IF6	106	RJ6	Ex 6	286	Ex6	EX6	WB6
SoB	17							IF7	ID7	RD7	EX7	WB7				
2017								•	•	IFT	וס7	RDY	•	•	•	£x7
	18								IF8	ID8	RD8	EX8	WB8			
Filling Full Drained.																
			Pi	ming			Ful	J.	Draimd.							
			`													\

$$N+(K-1)$$

8+(5-1) = 12

-> Multicycle operation. | More than one cycle.

-> Memory operation.

EX

EX. Idial

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
I1	IF1	ID1	RD1	EX1	WB1										
12		IF2	ID2	RD2	EX2	WB2									
		IF2	ID2	RD2	EX2	EX2	EX2	WB2							
13			IF3	ID3	RD3	EX3	WB3								
			IF3	ID3	RD3	•	•	EX3	EX3	EX3	EX3	EX3	WB3		
14				IF4	ID4	RD4	EX4	WB4							
				IF4	ID4	-	-	RD4	-	-	-	-	EX4	EX4	EX4
15					IF5	ID5	RD5	EX5	WB5						
					IF5	-	-	ID5	-	-	-	-	RD5	-	-

of Clock cycles = 18