データマイニング

第11回 サポートベクターマシン(+XGBOOST)

2023年春学期

宮津和弘

本日の講義・演習

日付	講義·演習内容
04/14/23	(1) イントロダクション
04/21/23	(2) ビジネスシミュレーション
04/28/23	(3) ID-POSデータ分析
05/12/23	(4) 対応分析
05/19/23	(5) クラスター分析
05/26/23	(6) 自己組織化マップ
06/02/23	(7) 線形判別分析
06/09/23	(8) 非線形判別分析
06/16/23	(9) ツリーモデル
06/23/23	(10) 集団学習
06/30/23	休講(※黒門祭のため)
07/04/23	(11) サポートベクターマシン
07/14/23	(12) 共分散構造分析
07/21/23	(13) テキスト分析
07/28/23	(14) まとめ(ポートフォリオ)

本日の演習概要とポイント

XGBoost

→ タイタニック号事故データ

SVM

→ SPAMメールデータ

機械学習の手法

教師データあり

- ✓ 線形回帰
- ✓ ロジスティック回帰
- ・ サポートベクターマシーン(SVM)
- ✓ 分類木
- ✓ 回帰木
- ✓ ランダムフォレスト
- ・ 勾配ブースティング木 (XGBoost)
- ✓ ニューラルネットワーク
- 畳み込みニューラルネットワーク
- 再起型ニューラルネットワーク
- ✓ ナイーブベイズ
- k近傍法ブースティング
- ✓ バギング

教師データなし

- ✓ 階層型クラスタリング(ウォード法など)
- ✓ 非階層型クラスタリング (k-meansなど)
- トピックモデル (LDAなど)
- ✓ 自己組織化マップ
- ✓ アソシエーション分析(*)
- ✓ 協調フィルタリング (*)
- ✓ ベイジアンネットワーク (*)

* データサイエンス演習 1

機械学習の手法 2 - 分類と予測 -

回帰

- 線形回帰
- ロジスティック回帰
- ・サポートベクターマシン (SVM)

木

- ・決定木
- ・回帰木
- ・ランダムフォレスト
- XGBoost

ニューラルネット

- 単純パーセプトロン
- DNN
- CNN
- RNN

ベイズ (事後確率)

・ナイーブベイズ

クラスタリング

- k-means
- · k-means++

アンサンブル学習

- Boosting
- Adaboost

SVM

サポートベクトルマシン (SVM)

サポートベクトルマシン(SVM)とは、線形判別関数を用いて2クラスのパターン識別器を利用した教師あり学習による機械学習の手法であり、判別境界マージンを最大化するように識別器が構成される。また、カーネル法を利用することで、境界線が非線形となる元データに対して、カーネルにより境界線が線形となるような特徴空間に移動して判別する。

分離超平面とマージン

■ 分離超平面

→ n 次元データをn-1次元の平面で分離するとき その平面を分離超平面と呼ぶ

■ サポートベクトル

→ 分離超平面に最も近接したデータ

■ マージン

→ 分離超平面とサポートベクトルとの距離

判別超平面

サポートベクターマシンでは、二次元データを直線(ax+cy+b=0)で二つに分割する場合、マージンを最大化するように(a,b,c)を決定する!

一般的に、SVMではn次元ベクトルXと重みパラメータWで線形結合した超平面を表す

$$\mathbf{W}^t \mathbf{X} + b = 0$$

において、<u>パラメータWをマージンが最大とな</u>るように決定する!

マージンの算出

点(x0,y0)と直線: ax+by+c=0 の距離

$$d = \frac{|ax_0 + by_0 + c|}{\sqrt{a^2 + b^2}}$$

n次元の点の X_0 と超平面: $W^tX + b = 0$ の距離

$$d = \frac{|w_1 x_1 + w_2 x_2 + \dots + w_n x_n + b|}{\sqrt{w_1^2 + w_2^2 + \dots + w_n^2}}$$

$$=\frac{|W^tX_0+b|}{||w||}$$

最適解に対する定式化

分離超平面によって、入力データがS1とS2に分離される場合、S1に+1およびS2に-1となるラベル(t_i)を与える。

$$t_i = \begin{cases} +1 & S1: W^t X_i + b > 0 \\ -1 & S2: W^t X_i + b < 0 \end{cases}$$

これにより、与えられたデータに対して以下満たすw,b,M を求めることに帰着する。

$$\max_{\boldsymbol{w},b,M} \frac{t_i |\boldsymbol{W}^t \boldsymbol{X}_i + b|}{||\boldsymbol{w}||} \ge M$$

ハードマージンの定式化

ハードマージンとはサンプルが分離超平面によって完全に2つに分けられるときのみ

$$\max_{\boldsymbol{w},b,M} \frac{t_i |\boldsymbol{W}^t \boldsymbol{X}_i + b|}{||\boldsymbol{w}||} \ge M$$

※ 等号が成立するのはサンプルが サポートベクターのときのみ

$$\min_{\boldsymbol{w},b,M} \frac{1}{2} ||W||^2$$

$$t_i | \mathbf{W}^t \mathbf{X}_i + b | \ge 1 \ (i = 1, 2, ..., N)$$

ソフトマージンの定式化

ソフトマージンでは、サンプルが分離超平面によって完全に分離されるのではなく、 一部マージンの内側に入り込むことを許容する

$$t_i | \mathbf{W}^t \mathbf{X}_i + b | \ge 1 - \xi_i$$

$$\xi_i = \max\{0, M - \frac{t_i | \mathbf{W}^t \mathbf{X}_i + b |}{||\mathbf{w}||}\}$$

これにより、データがマージンの内側にあることが許容され、 ハードマージンの際の制約が緩和される

ソフトマージン最適化問題

ソフトマージンでは、サンプルが分離超平面によって完全に分離されるのではなく、 一部マージンの内側に入り込むことを許容する

$$\min_{\mathbf{W}, \xi} \{ \frac{1}{2} ||\mathbf{W}||^2 + C \sum_{i=1}^{N} \xi_i \}$$
 制約条件 $t_i |\mathbf{W}^t \mathbf{X}_i + b| \ge 1 - \xi_i$ $\xi_i = \max\{0, M - \frac{t_i |\mathbf{W}^t \mathbf{X}_i + b|}{||\mathbf{W}||} \}$

 $||W||^2$ **を**小さくすると $\sum_{i=1}^N \xi_i$ が大きくなり、 これらはトレードオフの関係にある

※ Cハイパーパラメータと呼ばれ、調整しながらモデル構築する

ラグランジュの未定乗数法による解法

ソフトマージンの問題をラグランジュの未定乗数法によって解を算出する

$$\min_{\mathbf{W}, \xi} \left\{ \frac{1}{2} ||\mathbf{W}||^2 + C \sum_{i=1}^{N} \xi_i \right\}$$
 制約条件(N個の不等式)
$$t_i |\mathbf{W}^t \mathbf{X}_i + b| \ge 1 - \xi_i \quad (i = 1, 2, ..., N)$$

制約条件(N個の不等式)

$$|t_i|W^tX_i + b| \ge 1 - \xi_i \quad (i = 1, 2, ..., N)$$

ラグランジュ関数を以下の様に定義して

$$L(W,b,\xi,\alpha,\beta) = \frac{1}{2}||W||^2 + C\sum_{i=1}^N \xi_i - \sum_{i=1}^N \alpha_i \big\{ t_i(W^TX_i + b) - 1 + \xi_i \big\} - \sum_{i=1}^N \beta_i \xi_i$$

※ 右記でaを求める問題に帰着

$$egin{aligned} max \Big\{ ilde{L}(lpha) &= \sum_{i=1}^{N} lpha_i - rac{1}{2} \sum_{i=1}^{N} \sum_{i=j}^{N} lpha_i lpha_j t_i t_j X_i^T X_j \Big\} \ &\sum_{i=1}^{N} lpha_i t_i = 0, \quad 0 \leqq lpha_i \leqq C, i = 1, 2, \ldots N \end{aligned}$$

カーネル法

カーネル法は、元の情報空間では非線形判別でないと対応できないものを、 カーネル関数を用いて入力空間を特徴空間に写像して線形判別を可能とする。

2次元では線形 判別ができない

https://note.com/knimesupportteam/n/n09399d28c157

高次元特徴空間への写像例

写像の例)

入力空間

特徴空間

$$X = (x_1, x_2)$$

$$\psi(X) = (x_1^2, \sqrt{2}x_1x_2, x_2^2)$$

入力空間におけるベクトルX,Yに対して、写像変換後のφ(X), φ(Y)の内積は写像変換さえ分かっていれば、元データの内積を計算するだけで求めることができる!

$$\psi(X) = \psi(x_1, x_2) = (x_1^2, \sqrt{2}x_1x_2, x_2^2)$$

$$\psi(Y) = \psi(y_1, y_2) = (y_1^2, \sqrt{2}y_1y_2, y_2^2)$$

$$\psi(X)^{T}\psi(Y) = (x_{1}^{2}, \sqrt{2}x_{1}x_{2}, x_{2}^{2})^{T}(y_{1}^{2}, \sqrt{2}y_{1}y_{2}, y_{2}^{2})$$

$$= x_{1}^{2}y_{1}^{2} + 2x_{1}y_{1}x_{2}y_{2} + x_{2}^{2}y_{2}^{2}$$

$$= (x_{1}y_{1} + x_{2}y_{2})^{2}$$

$$= ((x_{1}, x_{2})^{T}(y_{1}, y_{2}))^{2}$$

$$= (X^{T}Y)^{2}$$

代表的な3つのカーネル関数

入力空間におけるベクトルX,Yに対して、写像変換後のφ(X), φ(Y)の内積は写像変換さえ分かっていれば、元データの内積を計算するだけで求めることができる!

・多項式カーネル
$$K(\mathbf{x_i}, \mathbf{x_j}) = (\mathbf{x_i^T} \mathbf{x_j} + c)^d$$

・ガウスカーネル
$$K(x_i, x_j) = exp \left\{ -\frac{||x_i - x_j||^2}{2\sigma^2} \right\}$$

・シグモイドカーネル
$$K(x_i, x_j) = tanh(bx_i^T x_j + c)$$

SPAMデータの読込み

- ① Rstudio起動する
- ② > library(kernlab) ※コマンドラインから Rコマンダー を起動する
- ③ 演習ファイル "spam.csv" を読み込む
 - Rstudio > Dataset<-read.csv("spam.csv") 又は
 - Rコマンダー (データ) → (データインポート) → (テキストファイルまたはクリップボード・・・) →
 ✓ OKを選択して、spam.csv を指定する
 又は
 - Rstudio > data(spam)Rstudio > Dataset <- spam
- ④ 演習データが Dataset に読込まれる

SPAMデータの特徴量

実際のSMSメッセージを57項目の特徴量で定量化したデータを入力とする

```
> head(spam)
  make address all num3d our over remove internet order mail receive will people report addresses free business email you credit your font num000
1 0.00
          0.64 0.64
                        0 0.32 0.00
                                       0.00
                                                0.00
                                                     0.00 0.00
                                                                    0.00 0.64
                                                                                0.00
                                                                                       0.00
                                                                                                 0.00 0.32
                                                                                                                0.00 1.29 1.93
                                                                                                                                  0.00 0.96
                                                                                                                                                    0.00
2 0.21
          0.28 0.50
                        0 0.14 0.28
                                                                                                               0.07 0.28 3.47
                                                                                                                                                    0.43
                                       0.21
                                                0.07
                                                      0.00 0.94
                                                                    0.21 0.79
                                                                                0.65
                                                                                       0.21
                                                                                                 0.14 0.14
                                                                                                                                  0.00 1.59
                                                                                                                                                   1.16
3 0.06
          0.00 0.71
                        0 1.23 0.19
                                       0.19
                                                0.12
                                                     0.64 0.25
                                                                    0.38 0.45
                                                                                0.12
                                                                                       0.00
                                                                                                 1.75 0.06
                                                                                                                0.06
                                                                                                                     1.03 1.36
                                                                                                                                  0.32 0.51
4 0.00
          0.00 0.00
                        0 0.63 0.00
                                       0.31
                                                0.63
                                                     0.31 0.63
                                                                    0.31 0.31
                                                                                0.31
                                                                                       0.00
                                                                                                 0.00 0.31
                                                                                                                0.00
                                                                                                                     0.00 3.18
                                                                                                                                  0.00 0.31
                                                                                                                                                    0.00
          0.00 0.00
                                                                   0.31 0.31
                                                                                                                                  0.00 0.31
5 0.00
                        0 0.63 0.00
                                       0.31
                                                0.63
                                                      0.31 0.63
                                                                                0.31
                                                                                       0.00
                                                                                                 0.00 0.31
                                                                                                                0.00
                                                                                                                     0.00 3.18
                                                                                                                                                    0.00
6 0.00
          0.00 0.00
                        0 1.85 0.00
                                                1.85 0.00 0.00
                                                                    0.00 0.00
                                                                                                 0.00 0.00
                                                                                                               0.00 0.00 0.00
                                                                                                                                  0.00 0.00
                                       0.00
                                                                                0.00
                                                                                       0.00
                                                                                                                                                    0.00
  money hp hpl george num650 lab labs telnet num857 data num415 num85 technology num1999 parts pm direct cs meeting original project
                                                                                                                                             edu table
                                                                                                                                        re
                                                                                                                                      0 0.00 0.00
1 0.00
                                                                                      0.00
                                                                                                      0.00
                                                                                                                           0.00
                                                                                      0.07
                                                                                                      0.00
                                                                                                                           0.00
                                                                                                                                      0 0.00 0.00
   0.06
                                                                                      0.00
                                                                                                      0.06
                                                                                                                           0.12
                                                                                                                                      0 0.06 0.06
                                                                                      0.00
   0.00
                                                                                                  0
                                                                                                      0.00
                                                                                                                           0.00
                                                                                                                                      0 0.00 0.00
                                                                                      0.00
                                                                                                      0.00
                                                                                                                           0.00
   0.00
                                                                                                  0
                                                                                                                                      0 0.00 0.00
  0.00
                                                                                      0.00
                                                                                                      0.00 0
                                                                                                                           0.00
                                                                                               0 0
                                                                                                                                      0 0.00 0.00
  conference charSemicolon charRoundbracket charSquarebracket charExclamation charDollar charHash capitalAve capitalLong capitalTotal type
           0
                      0.00
                                       0.000
                                                                          0.778
                                                                                     0.000
                                                                                              0.000
                                                                                                          3.756
                                                                                                                         61
                                                                                                                                     278 spam
           0
                      0.00
                                                             0
                                                                          0.372
                                                                                              0.048
                                                                                                          5.114
                                                                                                                                    1028 spam
                                       0.132
                                                                                     0.180
                                                                                                                        101
                                                                                                                                    2259 spam
           0
                                                                          0.276
                                                                                              0.010
                                                                                                          9.821
                                                                                                                        485
                      0.01
                                       0.143
                                                                                     0.184
                      0.00
                                       0.137
                                                                          0.137
                                                                                     0.000
                                                                                              0.000
                                                                                                          3.537
                                                                                                                                     191 spam
                                                                                                                         40
           0
                                                                                                         3.537
                                                                                                                                     191 spam
                      0.00
                                       0.135
                                                                          0.135
                                                                                     0.000
                                                                                              0.000
                                                                                                                         40
                                                                                                                                      54 spam
                      0.00
                                       0.223
                                                                          0.000
                                                                                     0.000
                                                                                              0.000
                                                                                                          3.000
                                                                                                                         15
```


VS.

"スパムメール"のラベル

SVMの実行

※ SVMには"kernlab"パッケージのインストールが必須 ← > install.packages("kernlab")

```
> library(kernlab)
> tr.num <- sample(4601,2500)</pre>
> spam.train<-Dataset[tr.num,]
                                                     交差確認(クロスバリデーション)では、
> spam.test<-Dataset[-tr.num,]
> spam.svm<-ksvm(type~.,data=spam.train,cross=3)</pre>
                                                     学習データの一部を用いて学習する
> spam.svm
                                                     ※ここでは3回に分けて実施「
Support Vector Machine object of class "ksvm"
SV type: C-svc (classification)
                                               - ハイパーパラメーター
parameter : cost C = 1 ←
Gaussian Radial Basis kernel function.
                                            ガウスカーネルを採用してSVM
Hyperparameter : sigma = 0.0266105027057991
Number of Support Vectors: 847
                                             サポートベクトルの数
Objective Function Value : -472.4107
Training error: 0.0436
Cross validation error: 0.074402 ←
                                             学習データでの誤班別率
```

SVMの学習結果をを評価データに適用

評価データに対する誤判別率: 7.66%

VS

ナイーブベイズ

- > p2<- h2o.predict(tr2,spam.test.hex)
- > p20<- as.data.frame(p2)
- > table(p20[,1],spam.test[,58])

検証データの適用

	nonspam	spam
nonspam	1172	112
spam	223	794

全体の誤り率は14.6%

ニューラルネットワーク

Confusion Matrix (vertical: actual; across:

	nonspam	spam	Error	Rate
nonspam	1380	13	0.009332	=13/1393
spam	17	890	0.018743	=17/907
Totals	1397	903	0.013043	=30/2300

全体の誤り率は1%程度

XGBoost

アンサンブル学習(再掲)

	平均投票 Max Voting	重量平均投票 Weighted Average Voting	バギング Bagging	プースティング Boosting	スタッキング Stacking
モデルの構成	## 190 音 Max Voting	#国マドロ宗 Weighted Average Voting 中部データ	パギングアンサンブル Bagging Ensemble P習データ サンブル1 サンブル2 サンブルK モデル1 セデル2 モデルK アンサンブル学習のモデル	プースティングアンサンブル Boosting Ensemble 中部データ サンプル1 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	スタッキングアンサンブル Stacking Ensemble 学習データ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
複数サンプル	×	×	0	0	×
複数モデル	0	0	0	0	0
モデル作成方法	平行	平行	平行	階段	平行
結果の融合方法	平行	重量平均	平均	重量平均	線形結合
バイアスとバリアンスの エラー処理			バリアンス		バイアス バリアンス

出典: S-Analysis社

ブースティング(再掲)

- 学習データからランダム抽出したデータセットを用いて、 最初のモデル("弱学習器")構築する
- ■構築された弱学習器が誤った部分に重みをかけて、 次の弱学習器を構築する
- ブースティングを用いた手法として、XGBoostや**勾配** ブースティングなどがある
- 直列計算のため、バギングよりも時間がかかる

出典: S-Analysis社

勾配ブースティング

勾配ブースティングでは、モデル全体の予測値と目的変数との差分を次に決定木学習に用いる。

$$l_{mi} = (y_{mi} - h_{mi})^2$$
, $l_i = \frac{1}{M} \sum_{m=1}^{M} l_{mi}$

$$h_{i+1} = h_i + \eta \frac{\partial l_i}{\partial y} = h_i + 2\eta \sum_{m=1}^{M} (y_{mi} - h_{mi})$$

- 決定木を構築し予想値を算出、目的変数の差分を算出する
- 予測値と目的変数の誤差が小さくなるように決定木を構築する
- 指定した決定木の本数分、上述の算出と構築を繰り返す
- ⇒ 各決定木で属する葉のウェイトの和が最終的な予測値とする

XGBoost, LightGBM, CatGBM

タイタニック号事故データの読込み

- ① Rstudio起動する
- ② > library(Rcmdr) ※コマンドラインから Rコマンダー を起動する
- ③ 演習ファイル "titanic.csv" を読み込む
 - Rstudio > Dataset<-read.csv("titanic.csv")
 又は
 - Rコマンダー (データ) → (データインポート) → (テキストファイルまたはクリップボード・・・) →
 VOKを選択して、titanic.csv を指定する
- ④ 演習データが Dataset に読込まれる

タイタニック号事故データ

	生	存/非生存	席等網	及		-	配偶者	親子	・チケット番	号 価格	キャビン番号	寄港地
			A :	台 則	ず・性別・幼	_	/\	_/_	/_			/ \
	assengerId	Survived	Pclass	Na		_	SibSp F	arch	Ticket	Fare	Cabin Em	barked
乗客番号 💆	1	0		NA	male		i	Ũ	NA	7.2500		5
	2	1			female	38	1	0	NA	71.2833	C85	C
	3	1	3	NA	female	26	0	0	NA	7.9250		S
	4	1	1	NA	female	35	1	0	113803	53.1000	C123	S
	5	0	3	NA	male	35	0	0	373450	8.0500		S
	6	0	3	NA	male	NA	0	0	330877	8.4583		Q
	7	0	1	NA	male	54	0	0	17463	51.8625	E46	S
不然 的最小(1) 上江	8	0	3	NA	male	2	3	1	349909	21.0750		S
ALCO TO THE REST OF THE PARTY O	9	1	3	NA	female	27	0	2	347742	11.1333		S
1	10	1	2	NA	female	14	1	0	237736	30.0708		C
	11	1	3	NA	female	4	1	1	NA	16.7000	G6	S
By and a second	12	1	1	NA	female	58	0	0	113783	26.5500	C103	S
	13	0	3	NA	male	20	0	0	NA	8.0500		S
STATE OF THE PARTY	14	0	3	NA	male	39	1	5	347082	31.2750		S
	15	0	3	NA	female	14	0	0	350406	7.8542		S
	16	1	2	NA	female	55	0	0	248706	16.0000		S
THE PROPERTY OF THE PARTY OF TH	17	0	3	NA	male	2	4	1	382652	29.1250		Q
	18	1	2	NA	male	NA	0	0	244373	13.0000		S
	19	0	3	NA	female	31	1	0	345763	18.0000		S
	20	1	3	NA	female	NA	0	0	2649	7.2250		C

XGBOOSTの実行 1

```
※ パッケージインストール > install.packages("xgboost")
library(xgboost)
titanic$Survived<-as.factor(titanic$Survived)
                                             交差確認(クロスバリデーション)では、
sim<-10
                                             学習データの一部を用いて学習する
result<-matrix(0,sim)
                                             ※ここでは10回(sim=10)実施
titanic[,4]<-as.numeric(titanic[,4])
titanic[,9]<-as.numeric(titanic[,9])
                                            学習データから400レコードをランダムにサンプルして用いる
for(i in 1:sim){
    train.id<-sample(nrow(titanic),400)
    train.data<-titanic[train.id,-1]
                                                   "Survived"(目的変数)のラベリング(1/0)
    test.data<-titanic[-train.id,-1]
    label.data.train<-as.integer(train.data$Survived)-1
    label.data.predict <-as.integer(test.data$Survived)-1
    train.data.xg<-train.data[,-1]</pre>
                                                XGBoostモデルへの入力データ準備
    test.data.xg<-test.data[,-1]
```

XGBOOSTの実行 2

XGBoost入力データ形成

```
xgb.data<-xgb.DMatrix(data.matrix(train.data.xg),label=label.data.train)
xgb.data.predict<-xgb.DMatrix(data.matrix(test.data.xg))
param <-<u>list("objective" = "binary:logistic", "eta" = 0.01, "min_child_weight" = 5)</u>
model <- xgboost(param=param,data=xgb.data,nrounds=1000)
predict xqb<-predict(model,xqb.data.predict)</pre>
                                                             XGBoostモデル
a<-c()
m<-length(predict xqb)
                                      テストデータ入力に対して、出力結果は
for(| in 1:m){
                                       0 \sim 1 の確率として算出されるため、
if(predict_xgb[l]>0.5){a[l]<-1}
                                      0.5以上で生存または非生存をする
else\{a[I]<-0\}
result[i]<-sum(a==label.data.predict)/length(a)
mean(result)
```

課題:SPAMデータを用いた XGBoost

タイタニック号事故データで演習したXGBoostモデルをSPAMデータに対して構築し、 SVMの結果と比較しなさい。


```
XGBOOSTの実行 2
                                                      XGBoost入力データ形成
  xgb.data<-xgb.DMatrix(data.matrix(train.data.xg),label=label.data.train)
  xgb.data.predict<-xgb.DMatrix(data.matrix(test.data.xg))
  param <- list("objective" = "binary:logistic", "eta" = 0.01, "min_child weight" = 5)
  model <- xgboost(param=param,data=xgb.data,nrounds=1000)
  predict xgb<-predict(model,xgb.data.predict)</pre>
                                                            XGBoostモデル
  a<-c()
  m<-length(predict xgb)
                                       テストデータ入力に対して、出力結果は
  for(l in 1:m){
                                       0 \sim 1 の確率として算出されるため、
  if(predict_xgb[l]>0.5){a[l]<-1}
                                       0.5以上で生存または非生存をする
  else\{a[1]<-0\}
  result[i]<-sum(a==label.data.predict)/length(a)
  mean(result)
```


データマイニングを楽しもう!