EL MOSFET DE POTENCIA

Ideas generales sobre el transistor de Efecto de Campo de Metal-Óxido-Semiconductor

- El nombre hace mención a la estructura interna: *Metal Oxide Semiconductor Field Effect Transistor (MOSFET)*
- Es un dispositivo unipolar: la conducción sólo es debida a un tipo de portador
- Los usados en Electrónica de potencia son de tipo "acumulación"

- Los más usados son los MOSFET de canal N
- La conducción es debida a los electrones y, por tanto, con mayor movilidad ⇒ menores resistencias de canal en conducción

Ideas generales sobre los MOSFETs de acumulación

Curvas características del MOSFET

- Curvas de entrada:

No tienen interés (puerta aislada del canal)

Ideas generales sobre los MOSFETs de acumulación

Ideas generales sobre los MOSFETs

- Precauciones en el uso de transistores MOSFET
- El terminal puerta al aire es muy sensible a los ruidos
- El óxido se puede llegar a perforar por la electricidad estática de los dedos. A veces se integran diodos zener de protección
- Existe un diodo parásito entre fuente y drenador en los MOSFET de enriquecimiento

Estructura de los MOSFETs de Potencia

- Están formados por miles de celdas puestas en paralelo (son posibles integraciones de 0,5 millones por pulgada cuadrada)
- Los dispositivos FET (en general) se paralelizan fácilmente
- Algunas celdas posibles

Encapsulados de MOSFETs de Potencia

- En general, semejantes a los de los diodos de potencia (excepto los encapsulados axiales)
- Existe gran variedad
- Ejemplos: MOSFET de 60V

DirectFET™ ISOMETRIC IRF6648

 $R_{DS(on)}$ =5,5 $m\Omega$, I_{D} =86A

 $R_{DS(on)}=9m\Omega$, $I_D=93A$

 $R_{DS(on)}=1.5m\Omega$, $I_D=240A$

Encapsulados de MOSFETs de Potencia

Otros ejemplos de MOSFET de 60V

Туре	IPB034N06L3 G	IPI037N06L3 G	IPP037N06L3 G
	1 3 2 (tab)	123	123
Package	PG-TO-263-3	PG-TO-262-3	PG-TO-220-3
Marking	034N06L	037N06L	037N06L

 $R_{DS(on)}$ =3.4m Ω , I_D =90A

Características fundamentales de los MOSFETs de potencia

- 1^a -Máxima tensión drenador-fuente
- 2ª -Máxima corriente de drenador
- 3ª -Resistencia en conducción
- 4ª -Tensiones umbral y máximas de puerta
- 5^a -Velocidad de conmutación

1ª Máxima tensión drenador-fuente

- Corresponde a la tensión de ruptura de la unión que forman el substrato (unido a la fuente) y el drenador.
- Se mide con la puerta cortocircuitada a la fuente. Se especifica a qué pequeña circulación de corriente corresponde (por ejemplo, 0,25 mA)

IRF540

N-channel TrenchMOS™ transistor

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V _{(BR)DSS}	Drain-source breakdown	$V_{GS} = 0 \text{ V}; I_{D} = 0.25 \text{ mA};$	100	-	-	V
$V_{GS(TO)}$	voltage Gate threshold voltage	$T_{j} = -55^{\circ}C$ $V_{DS} = V_{GS}; I_{D} = 1 \text{ mA}$ $T_{j} = 175^{\circ}C$	89 2 1	- 3 -	- 4 -	V V V
$R_{DS(ON)}$	Drain-source on-state resistance Forward transconductance	$T_{j} = -55^{\circ}C$ $V_{GS} = 10 \text{ V}; I_{D} = 17 \text{ A}$ $V_{DS} = 25 \text{ V}; I_{D} = 17 \text{ A}$ $T_{j} = 175^{\circ}C$	- - - 8.7	49 132 15.5	6 77 193	ν mΩ mΩ S
I _{GSS} I _{DSS}	Gate source leakage current Zero gate voltage drain current	$V_{GS} = \pm 20 \text{ V}; V_{DS} = 0 \text{ V}$ $V_{DS} = 100 \text{ V}; V_{GS} = 0 \text{ V}$ $V_{DS} = 80 \text{ V}; V_{GS} = 0 \text{ V}; T_j = 175^{\circ}\text{C}$	-	10 0.05 -	100 10 250	nΑ μΑ μΑ

1ª Máxima tensión drenador-fuente

- \bullet La máxima tensión drenador-fuente de representa como V_{DSS} o como $V_{(\text{BR})\text{DSS}}$
- Ayuda a clasificar a los transistores MOSFET de potencia

2ª Máxima corriente de drenador

- El fabricante suministra dos valores (al menos):
- Corriente continua máxima I_D
- Corriente máxima pulsada I_{DM}

IRF540

N-channel TrenchMOS™ transistor

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V_{DSS}	Drain-source voltage	T _i = 25 °C to 175°C	-	100	V
V_{DGR}	Drain-gate voltage	$T_{i} = 25 ^{\circ}\text{C} \text{ to } 175 ^{\circ}\text{C}; R_{GS} = 20 \text{k}\Omega$	-	100	V
V_{GS}	Gate-source voltage		-	± 20	V
I _D	Continuous drain current	$T_{mb} = 25 ^{\circ}\text{C}; V_{GS} = 10 ^{\circ}\text{V}$	-	23	Α
		T _{mb} = 100 °C; V _{GS} = 10 V	-	16	Α
I _{DM}	Pulsed drain current	T _{mb} = 25 °C	-	92	Α
. <u>I</u> рм Р _D	Total power dissipation	T _{mb} = 25 °C	-	100	W
T_{i} , T_{stq}	Operating junction and		- 55	175	°C
,	storage temperature				

Fig.2. Normalised continuous drain current. ID% = $100 \cdot I_D/I_{D.25 \cdot C} = f(T_{mb})$; conditions: $V_{GS} \ge 10 \text{ V}$

• La corriente continua máxima I_D depende de la temperatura de la cápsula (*mounting base* aquí)

A 100°C, I_D=23-0,7=16,1A

3ª Resistencia en conducción

- Es uno de los parámetro más importante en un MOSFET.
 Cuanto menor sea, mejor es el dispositivo
- Se representa por las letras R_{DS(on)}
- Para un dispositivo particular, crece con la temperatura
- Para un dispositivo particular, decrece con la tensión de puerta. Este decrecimiento tiene un límite.

IRF540

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
R _{DS(ON)}	Drain-source on-state	$V_{GS} = 10 \text{ V}; I_D = 17 \text{ A}$	-	49	77	mΩ
22(011)	resistance	T _i = 175°C	-	132	193	$m\Omega$

Fig.9. Normalised drain-source on-state resistance. $R_{DS(ON)}/R_{DS(ON)25~^{\circ}C} = f(T_i)$

Fig.6. Typical on-state resistance, $T_j = 25$ °C. $R_{DS(ON)} = f(I_D)$

3ª Resistencia en conducción

 Comparando distintos dispositivos de valores de I_D semejantes, R_{DS(on)} crece con el valor de V_{DSS}

TYPE	V _{DSS}	R _{DS(on)}	I _D	
STD5NE10	100 V	< 0.4 Ω	5 A	

TYPE	V _{DSS}	R _{DS(on)}	I _D
STD5NM60	600V	<0.9Ω	5 A

IRLZ24NLPbF

$$V_{\rm DSS} = 55V$$

$$R_{DS(on)} = 0.06\Omega$$

$$I_{D} = 18A$$

IRF640NLPbF

$$V_{DSS} = 200V$$

$$R_{DS(on)} = 0.15\Omega$$

$$I_D = 18A$$

3ª Resistencia en conducción

• En los últimos tiempos se han mejorado sustancialmente los valores de $R_{DS(on)}$ en dispositivos de V_{DSS} relativamente alta (600-1000 V)

SIEMENS

 TYPE
 V_{DSS}
 R_{DS(on)}
 I_D

 BUZ80
 800 V
 < 4 Ω</td>
 3.4 A

 BUZ80FI
 800 V
 < 4 Ω</td>
 2.1 A

MOSFET de ≈1984

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Ciss Coss Crss	Input Capacitance Output Capacitance Reverse Transfer Capacitance	Vps = 25 V f = 1 MHz Vgs = 0		650 82 28	850 105 40	pF pF pF

MOSFET de los años 2000

V_{DS}	800	V
R _{DS(on)}	1.3	Ω
/ _D	4	Α

Parameter	Symbol	Conditions		Values		Unit
			min.	typ.	max.	
Input capacitance	C _{iss}	V _{GS} =0V, V _{DS} =25V,	-	570	-	рF
Output capacitance	Coss	f=1MHz	-	240	-	
Reverse transfer capacitance	C _{rss}		-	12	-	

4ª Tensiones umbral y máximas de puerta

- La tensión puerta fuente debe alcanzar un valor umbral para que comience a haber conducción entre drenador y fuente
- Los fabricantes definen la tensión umbral $V_{GS(TO)}$ como la tensión puerta-fuente a la que la corriente de drenador es 0,25 mA, o 1 mA
- Las tensiones umbrales suelen estar en el margen de 2-4 V

IRF540

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
$V_{GS(TO)}$	Gate threshold voltage	$V_{DS} = V_{GS}$; $I_D = 1 \text{ mA}$	2	3	4	V
,		T _i = 175°C	1	-	-	V
		Ť _i = -55°C	-	-	6	V

Fig.7. Typical transfer characteristics. $I_D = f(V_{GS})$

Fig.11. Sub-threshold drain current. $I_D = f(V_{GS})$; conditions: $T_j = 25$ °C; $V_{DS} = V_{GS}$

4ª Tensiones umbral y máximas de puerta

· La tensión umbral cambia con la temperatura

Fig. 10. Gate threshold voltage. $V_{GS(TO)} = f(T_j)$; conditions: $I_D = 1$ mA; $V_{DS} = V_{GS}$

4ª Tensiones umbral y máximas de puerta

 La máxima tensión soportable entre puerta y fuente es típicamente de ± 20V

Philips Semiconductors

Product specification

N-channel TrenchMOSTM transistor

IRF540, IRF540S

FEATURES

- · 'Trench' technology
- Low on-state resistance
- Fast switching
- · Low thermal resistance

SYMBOL

QUICK REFERENCE DATA

$$V_{DSS}$$
 = 100 V
$$I_{D}$$
 = 23 A
$$R_{DS(ON)} \le 77 \text{ m}\Omega$$

IRESAN RE1SSANSM

PTIMIT

Absolute Maximum Ratings T_C = 25°C, Unless Otherwise Specified

	IKF040, KF100400W	UNITS
Drain to Source Breakdown Voltage (Note 1)	100	V
Drain to Gate Voltage (R _{GS} = 20kΩ) (Note 1)	100	V
Continuous Drain Current	28	Α
$T_C = 100^{\circ}C$	20	Α
Pulsed Drain Current (Note 3)	110	A
Gate to Source Voltage	±20	V
Maximum Power Dissipation	120	W
Dissipation Derating Factor	0.8	W/oC
Single Pulse Avalanche Energy Rating (Note 4)	230	mJ
Operating and Storage Temperature	-55 to 175	°C
Maximum Temperature for Soldering		
Leads at 0.063in (1.6mm) from Case for 10s	300	°C
Package Body for 10s, See Techbrief 334	260	°C

- Los MOSFET de potencia son más rápidos que otros dispositivos usados en electrónica de potencia (tiristores, transistores bipolares, IGBT, etc.)
- Los MOSFET de potencia son dispositivos de conducción unipolar. En ellos, los niveles de corriente conducida no están asociados al aumento de la concentración de portadores minoritarios, que luego son difíciles de eliminar para que el dispositivo deje de conducir
- La limitación en la rapidez está asociada a la carga de las capacidades parásitas del dispositivo
- Hay, esencialmente tres:
- C_{gs}, capacidad de lineal
- C_{ds} , capacidad de transición $C_{ds} \approx k/(V_{DS})^{1/2}$
- C_{dg}, capacidad Miller, no lineal, muy importante

- Los fabricantes de MOSFET de potencia suministran información de tres capacidades distintas de las anteriores, pero relacionadas con ellas:
 - C_{iss} = C_{gs} + C_{gd} con V_{ds}=0 (≈ capacidad de entrada)
 - C_{rss} = C_{dg} (capacidad Miller)
 - C_{oss} = C_{ds} + C_{dg} (≈ capacidad de salida)

Ejemplo de información de los fabricantes

Philips Semiconductors

Product specification

N-channel TrenchMOSTM transistor

IRF540, IRF540S

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
C _{iss} C _{oss} C _{rss}	Input capacitance Output capacitance Feedback capacitance	$V_{GS} = 0 \text{ V}; V_{DS} = 25 \text{ V}; f = 1 \text{ MHz}$		890 139 83	1187 167 109	pF pF pF

$$C_{iss} = C_{gs} + C_{gd}$$
 $C_{rss} = C_{dg}$
 $C_{oss} = C_{ds} + C_{dg}$

Fig.12. Typical capacitances, C_{iss} , C_{oss} , C_{rss} . $C = f(V_{DS})$; conditions: $V_{GS} = 0 \ V$; $f = 1 \ MHz$

 La carga y la descarga de estas capacidades parásitas generan pérdidas que condicionan las máximas frecuencias de conmutación de los MOSFET de potencia

Carga y descarga de un condensador desde una resistencia

- En la carga de C:
 - Energía perdida en R = 0,5CV₁²
 - Energía almacenada en C = 0,5CV₁²
- En la descarga de C:
 - Energía perdida en R = 0,5CV₁²
- Energía total perdida: CV₁² = V₁Q_{CV1}
- Además, en general estas capacidades parásitas retrasan las variaciones de tensión, ocasionando en muchos circuitos convivencia entre tensión y corriente, lo que implica pérdidas en el proceso de conmutación

- · Análisis de una conmutación típica en conversión de energía:
 - Con carga inductiva
 - Con diodo de enclavamiento
 - Suponiendo diodo ideal

- Situación de partida:
- Transistor sin conducir (en bloqueo) y diodo en conducción

• $i_{DT} = 0$ hasta que $v_{GS} = V_{GS(TO)}$

VGS

• La corriente que da V_1 a través de R se emplea fundamentalmente en descargar $C_{dg} \Rightarrow$ prácticamente no circula corriente por $C_{gs} \Rightarrow v_{GS}$ = Cte

- Valoración de pérdidas entre t₀ y t₂:
- Hay que cargar C_{gs} (grande) y descargar C_{dq} (pequeña) V_{M} voltios
- Hay convivencia tensión corriente
 entre t₁ y t₂

- Valoración de pérdidas entre t₂ y t₃:
- Hay que descargar $C_{\rm ds}$ hasta 0 e invertir la carga de $C_{\rm dg}$ desde V_2 - $V_{\rm M}$ hasta - $V_{\rm M}$
- Hay convivencia tensión corriente entre t₂ y t₃

- Valoración de pérdidas a partir de t₃:
- Hay que acabar de cargar $C_{\rm gs}$ y $C_{\rm dg}$ hasta $V_{\rm 1}$
- No hay convivencia tensión corriente salvo la propia de las pérdidas de conducción

- Valoración de la rapidez de un dispositivo por la "carga de puerta":
- La corriente que da la fuente V_1 es aproximadamente constante entre t_0 y t_3 (comienzo de una exponencial, con $I_{V1} \approx V_1/R$)
- De ${\bf t_0}$ a ${\bf t_2}$, la corriente ${\bf I_{V1}}$ se ha encargado esencialmente en cargar ${\bf C_{gs}}$. Se ha suministrado una carga eléctrica ${\bf Q_{gs}}$
- De t_2 a t_3 , la corriente I_{v1} se ha encargado en invertir la carga de C_{dg} . Se ha suministrado una carga eléctrica Q_{dg}
- Hasta que $V_{GS} = V_1$ se sigue suministrando carga. Q_g es el valor total (incluyendo Q_{gs} y Q_{dq})
- Para un determinado sistema de gobierno (V_1 y R), cuanto menores sean Q_{gs} , Q_{dg} y Q_g más rápido será el transistor
- Obviamente t_2 - $t_0 \approx Q_{gs}R/V_1$, t_3 - $t_2 \approx Q_{dg}R/V_1$ y P_{V1} = $V_1Q_gf_S$, siendo f_S la frecuencia de conmutación

Valoración de la rapidez de un dispositivo por la "carga de puerta":
 Información de los fabricantes

IRF 540

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Q _{g(tot)}	Total gate charge	$I_D = 17 \text{ A}; V_{DD} = 80 \text{ V}; V_{GS} = 10 \text{ V}$	-	-	65	nC
Q_{gs}	Gate-source charge		-	-	10	nC
Q_{gd}^{σ}	Gate-drain (Miller) charge		-	-	29	nC

SIEMENS BUZ80

MOSFET de ≈1984

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Qg	Total Gate Charge	$V_{DD} = 400 \text{ V}$ $I_D = 3 \text{ A}$ $V_{GS} = 10$	/	42	55	nC
Q_{gs}	Gate-Source Charge			6		nC
Q_{gd}	Gate-Drain Charge			17		nC

infineon SPD04N80C3

Gate Charge Characteristics

MOSFET de los años 2000

Gate to source charge	Q _{gs}	V _{DD} =640V, I _D =4A	-	2.4	-	nC
Gate to drain charge	Q _{gd}		-	11	-	
Gate charge total	Qg	V _{DD} =640V, I _D =4A,	-	20	26	
		V _{GS} =0 to 10V				
Gate plateau voltage	V _(plateau)	V _{DD} =640V, I _D =4A	-	6	-	V

 Otro tipo de información suministrada por los fabricantes: conmutación con carga resistiva

t_{d on} : retraso de encendido

t_{d off}: retraso de apagado

t_f: tiempo de bajada

• Otro tipo de información suministrada por los fabricantes: conmutación con carga resistiva

ELECTRICAL CHARACTERISTICS

IRF 540

T_i= 25°C unless otherwise specified

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
$egin{array}{l} t_{d\ on} \ t_{r} \ t_{d\ off} \ t_{f} \end{array}$	Turn-on delay time Turn-on rise time Turn-off delay time Turn-off fall time	V_{DD} = 50 V; R_{D} = 2.2 Ω ; V_{GS} = 10 V; R_{G} = 5.6 Ω Resistive load	1 1 1 1	8 39 26 24		ns ns ns ns

t_{d on} : retraso de encendido

t_r: tiempo de subida

t_{d off} : retraso de apagado

t_f: tiempo de bajada

Pérdidas en un MOSFET de potencia

• Pérdidas por convivencia tensión corriente entre drenador y fuente

Pérdidas en un MOSFET de potencia

Pérdidas en la fuente de gobierno

$$P_{V1} = V_1 Q_g f_S$$

El diodo parásito de los MOSFETs de potencia

El diodo parásito suele tener malas características, sobre todo en MOSFETs de alta tensión

REVERSE DIODE LIMITING VALUES AND CHARACTERISTICS IRF 540

T_i = 25°C unless otherwise specified

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
I_s	Continuous source current (body diode)		1	1	23	А
I_{SM}	Pulsed source current (body diode)		-	-	92	А
V_{SD}	,	$I_F = 28 \text{ A}; V_{GS} = 0 \text{ V}$	-	0.94	1.5	V
t _{rr} Q _{rr}	Reverse recovery time Reverse recovery charge	$I_F = 17 \text{ A}$; $-dI_F/dt = 100 \text{ A}/\mu\text{s}$; $V_{GS} = 0 \text{ V}$; $V_R = 25 \text{ V}$	-	61 200	-	ns nC

El diodo parásito de los MOSFETs de potencia

El diodo parásito en un MOSFET de alta tensión

V_{DS}	800	V
R _{DS(on)}	1.3	Ω
/ _D	4	A

Electrical Characteristics, at T_i = 25 °C, unless otherwise specified

Parameter	Symbol	Conditions	Values			Unit
			min.	typ.	max.	
Inverse diode continuous	IS	T _C =25°C	-	-	4	Α
forward current						
Inverse diode direct current,	/ _{SM}		-	-	12	
pulsed						
Inverse diode forward voltage	V _{SD}	$V_{\rm GS}$ =0V, $I_{\rm F}$ = $I_{\rm S}$	-	1	1.2	V
Reverse recovery time	<i>t</i> rr	V _R =640V, I _F =I _S ,	-	520	-	ns
Reverse recovery charge	Q _{rr}	d <i>i_F</i> /d <i>t</i> =100A/µs	-	4	-	μC
Peak reverse recovery current	I _{rrm}		-	12	-	А
Peak rate of fall of reverse	di _{rr} /dt		-	300	-	A/µs
recovery current						

Características térmicas de los MOSFETs de potencia

Es válido todo lo comentado para los diodos de potencia

Philips Semiconductors

Product specification

N-channel TrenchMOSTM transistor

IRF540, IRF540S

PINNING

PIN	DESCRIPTION
1	gate
2	drain ¹
3	source
tab	drain

SOT78 (TO220AB)

SOT404 (D²PAK)

THERMAL RESISTANCES

ار	SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
	R _{th j-a}		SOT78 package, in free air SOT404 package, pcb mounted, minimum footprint		- 60 50	1.5 - -	K/W K/W K/W

• Este fabricante denomina "mounting base" a la cápsula y suministra información de la $R_{THia} = R_{THic} + R_{THca}$