Extração de linhas georreferenciadas para Agricultura de Precisão

1st André Luiz da Silva Conde Instituto Federal de São Paulo (IFSP) Birigui, Brasil andre.conde@aluno.ifsp.edu.br 2nd Higor Grigorio dos Santos Instituto Federal de São Paulo (IFSP) Birigui, Brasil higor.santos@aluno.ifsp.edu.br 3rd Raul Prado Dantas Instituto Federal de São Paulo (IFSP) Birigui, Brasil r.dantas@aluno.ifsp.edu.br

Abstract—This document is a model and instructions for $\text{ET}_{E}X$. This and the IEEEtran.cls file define the components of your paper [title, text, heads, etc.]. *CRITICAL: Do Not Use Symbols, Special Characters, Footnotes, or Math in Paper Title or Abstract.

Index Terms—component, formatting, style, styling, insert

I. INTRODUÇÃO

A agricultura é uma atividade fundamental para a humanidade, sendo responsável pelo desenvolvimento de diversas civilizações e pela produção de alimentos. No Brasil, a agricultura tem evoluído significativamente, contribuindo com uma grande parcela do PIB e das exportações do país [6].

Com o avanço da tecnologia, a agricultura de precisão surgiu como uma forma de otimizar a produção e minimizar os custos e impactos ambientais. Essa abordagem utiliza tecnologias de georreferenciamento, como o GPS, e técnicas de automação, como drones e maquinário agrícola automatizado.

No entanto, um dos principais desafios enfrentados pela agricultura de precisão é a obtenção de dados de georreferenciamento de áreas de interesse em imagens de campos agrícolas. Atualmente, esse processo é realizado manualmente, o que consome tempo significativo e requer mão de obra especializada.

Este trabalho propõe uma solução para esse problema através da utilização de técnicas de processamento de imagens e inteligência artificial. A ideia é desenvolver uma solução automatizada para o georreferenciamento de imagens agrícolas, a fim de melhorar a eficiência, a precisão e a escalabilidade deste processo crucial.

Em resumo, este trabalho apresenta uma contribuição significativa para o avanço do conhecimento na área de IA aplicada à geografia, na área de processamento digital de imagens e para o desenvolvimento de novas ferramentas e aplicações que possam auxiliar os usuários em suas necessidades geográficas. Através da exploração e marcação geográfica automatizada, espera-se melhorar a eficiência e a precisão da agricultura de precisão.

II. PROCESSAMENTO DIGITAL DE IMAGENS

O Processamento Digital de Imagens é uma área de estudo que se concentra na manipulação e análise de imagens digitais para melhorar a qualidade ou extrair informações úteis, sendo um conjunto de técnicas computacionais voltadas

para a análise de dados multidimensionais, como imagens que possuem conjuntos de valores numéricos representados em duas ou mais dimensões. Esses dados são adquiridos por sensores orbitais e suborbitais, normalmente embarcados em satélites, ônibus espacial, aviões, balões, drones, ou por dispositivos mais comuns, por exemplo câmeras de celulares.

[5], afirma que o PDI envolve a manipulação de uma imagem (ou dado) por computador, de tal maneira que a entrada e a saída do processo são imagens, tendo como objetivo principal melhorar o aspecto visual de certas feições estruturais, de tal maneira que o analista consiga melhor interpretar, classificar e tomar decisões com base nos dados existentes na imagem.

Suas técnicas podem ser aplicadas praticamente a toda e qualquer informação gerada via sensoriamento remoto. Seja a mesma obtida de maneira orbital, sub-orbital ou terrestre. Aplicações do PDI incluem áreas como: A análise de recursos naturais e meteorologia por meio de imagens de satélites; A transmissão digital de sinais de televisão ou *fac-símile*; A análise de imagens biomédicas; A análise de imagens metalográficas e de fibras vegetais; A obtenção de imagens médicas por ultra-som, radiação nuclear ou técnicas de tomografia computadorizada; Aplicações em automação industrial envolvendo o uso de sensores visuais em robôs.

É possível dividir o PDI em 3 etapas: Pré-processamento; Realce e; Classificação de imagens.

A. Pré Processamento

De acordo com [5], o pré-processamento de imagens digitais é uma etapa de fundamental importância para a obtenção de resultados satisfatórios em qualquer aplicação de processamento de imagens. O pré-processamento é uma etapa de preparação da imagem para as etapas seguintes, que podem ser de segmentação, classificação, reconhecimento, etc. O pré-processamento pode ser dividido em duas etapas: aquisição e melhoria da qualidade da imagem.

1) Aquisição: A aquisição de imagens é a primeira etapa do pré-processamento, e é responsável pela obtenção da imagem a ser processada, podendo ser feita por meio de digitalizadores, câmeras digitais, satélites, etc. A qualidade da imagem obtida depende diretamente do equipamento utilizado para a aquisição. Aquisição de imagens é uma etapa

fundamental, pois a qualidade da imagem obtida influência diretamente na qualidade do resultado do processamento.

- 2) Melhoria da qualidade: A melhoria da qualidade da imagem é a segunda etapa do pré-processamento, e é responsável por realçar a qualidade da imagem obtida na etapa anterior. A melhoria da qualidade da imagem pode ser feita por meio de técnicas de filtragem, que podem ser de dois tipos: filtragem espacial e filtragem em frequência.
- 3) Filtragem: A filtragem é uma técnica de processamento de imagens que visa melhorar a qualidade da imagem por meio da remoção de ruídos e/ou realce de detalhes. A filtragem pode ser feita no domínio espacial ou no domínio da frequência. A filtragem espacial é feita por meio de máscaras de convolução, matrizes de números que são aplicadas sobre a imagem, enquanto, filtragem em frequência é feita por meio da transformada de Fourier, que transforma a imagem do domínio espacial para o domínio da frequência, onde a filtragem é feita, e depois a imagem é transformada novamente para o domínio espacial.
- 4) Realce das Bordas: O realce das bordas é uma técnica de processamento de imagens que visa realçar as bordas da imagem, de modo que as bordas fiquem mais visíveis. Este método é realizado por meio de máscaras de convolução, como a máscara de Sobel, Laplace e Roberts. O realce das bordas é uma técnica de filtragem espacial.
- 5) Binarização: A Binarização é uma técnica de processamento de imagens que visa transformar uma imagem em uma imagem binária, ou seja, uma imagem que possui apenas dois níveis de intensidade, preto e branco. A Binarização é feita por meio de um limiar, sendo um valor que determina se o pixel será preto ou branco. Se o valor do pixel for maior que o limiar, o pixel será branco, caso contrário, o pixel será preto.
- 6) Redimensionamento: O redimensionamento é uma técnica de processamento de imagens que visa alterar o tamanho da imagem. O redimensionamento pode ser feito por meio de interpolação, uma técnica que visa estimar o valor de um pixel a partir dos valores dos pixel vizinhos, sendo feita por meio de uma função de interpolação, que é uma função que mapeia o valor do pixel para um novo valor. O redimensionamento pode ser feito por meio de interpolações, como linear, bilinear ou bicúbica.
- 7) Correções Geométricas: A correção geométrica é uma etapa do pré-processamento que visa corrigir distorções geométricas presentes na imagem. A correção geométrica é feita por meio de pontos de controle, pontos de referência que possuem coordenadas conhecidas. A correção geométrica é feita por meio de transformações geométricas, transformações que alteram a posição dos *pixels* da imagem. As transformações geométricas mais utilizadas são: translação, rotação, escala, cisalhamento, etc.
- 8) Normalização: A normalização é uma técnica de processamento de imagens que visa alterar o intervalo de intensidade dos *pixels* da imagem. A normalização é feita por meio de uma função de normalização, uma função que mapeia o intervalo de intensidade original para um novo intervalo de intensidade.

B. Realce

O objetivo principal das técnicas de realce é processar uma imagem, de modo que a imagem resultante seja mais adequada para uma aplicação específica. [4] afirma a importância da ênfase na palavra *específica*, pois uma imagem pode ser melhorada para uma aplicação, mas para outra aplicação, a imagem pode não ser adequada. Por exemplo, uma imagem pode ser melhorada para uma aplicação de detecção de bordas, mas para uma aplicação de detecção de textura, a imagem pode não ser adequada.

As abordagens de realce podem ser divididas em duas categorias: realce no domínio espacial e realce no domínio da frequência. O domínio espacial refere-se ao próprio plano da imagem, logo as abordagens referentes a esse domínio são aplicadas diretamente sobre os pixeis da imagem. Técnicas abordadas no domínio da frequência são aplicadas sobre a transformada de *Fourier* da imagem, sendo necessário realizar a transformada de *Fourier* da imagem, aplicar a técnica e depois realizar a transformada inversa de *Fourier*.

1) Realce por Processamento Ponto a Ponto: Técnicas de realce mais comuns são baseadas em processamento ponto-aponto (pixel a pixel), essa operação é caracterizada por uma função matemática aplicada a cada pixel da imagem, de modo que o valor do pixel resultante seja uma função do valor do pixel original, independente dos valores dos pixels vizinhos.

Um exemplo de realce ponto-a-ponto é a transformação de intensidade negativa. Negativos de imagens são uteis em aplicações de microscopia, onde a imagem é obtida por meio de um processo de revelação, e a imagem resultante é uma imagem negativa. O negativo de uma imagem é obtido por meio da negação do valor do pixel, ou seja, o valor do pixel resultante é igual ao valor máximo de intensidade menos o valor do pixel original. A ideia é reverter a imagem, de modo que os pixels mais escuros fiquem mais claros e os pixels mais claros fiquem mais escuros.

$$g(x,y) = L - 1 - f(x,y)$$
 (1)

onde L é o valor máximo de intensidade e f(x,y) é o valor do pixel original.

2) Compressão da Escala Dinâmica: A compressão de escala dinâmica é uma técnica de realce que visa melhorar o contraste da imagem, de modo que a imagem resultante possua um contraste melhor. A compressão de escala dinâmica é feita por meio de uma função que mapeia o intervalo de intensidade original para um novo intervalo de intensidade. De acordo com [4], uma alternativa eficiente para comprimir a escala dinâmica de uma imagem é a transformação logarítmica, dada por:

$$s = c.\log(1+|r|) \tag{2}$$

onde r é o valor do pixel original, s é o valor do pixel resultante e c é uma constante que controla a amplitude da transformação.

C. Realce no Domínio da Frequência

A ideia central do processamento no domínio da frequência é que certas operações, como filtragem, podem ser realizadas mais facilmente ou de forma mais intuitiva no domínio da frequência do que no domínio espacial. [4]

Inicialmente, a imagem é convertida do domínio espacial para o domínio da frequência usando a Transformada de Fourier, em imagens, normalmente é usada a Transformada de Fourier 2D.

No domínio da frequência, a imagem representada por suas frequências é multiplicada por um filtro. Essa multiplicação tem o efeito de "passar" ou "bloquear" certas frequências.

Por fim, a imagem modificada é convertida de volta ao domínio espacial usando a Transformada Inversa de Fourier, produzindo a imagem final realçada.

Para a realização das filtragens temos os seguintes filtros:

- Passa-Baixa: Ao usar um filtro passa-baixa, as bordas e outras transições abruptas, como o ruído, nos níveis de cinza de uma imagem, contribuem fortemente para o conteúdo de alta frequência da transformada de fourier.
- Passa-Alta: Usando um filtro passa-alta, as bordas e contornos são mantidas, e em alguns casos realçandoas com alguns filtros, enquanto as componentes de baixa frequência são rejeitadas.
- Homomórfica: A filtragem homomórfica pode ser utilizada para comprimir o intervalo de iluminação e realizar o realce de contraste simultaneamente, resultando em uma imagem com evidente melhorias de aparência.

D. Operações de Processamento

As operações de processamento de imagens desempenham um papel crucial na manipulação e melhoria da qualidade das imagens digitais. Estas operações envolvem uma série de técnicas e métodos que visam modificar características específicas da imagem para atender a requisitos específicos. Abaixo, destacam-se algumas das operações de processamento de imagens mais relevantes:

- 1) Equalização de Histograma: A equalização de histograma é uma técnica comumente utilizada para melhorar o contraste em imagens. Essa operação redistribui as intensidades dos pixels na imagem, de modo que a gama completa de intensidades seja mais bem aproveitada. Isso resulta em uma imagem com um espectro mais equilibrado de cores, o que pode ser benéfico para diversas aplicações, como reconhecimento de padrões e análise de texturas.
- 2) Filtros de Suavização: Os filtros de suavização são utilizados para reduzir o ruído e as imperfeições de uma imagem, tornando-a mais homogênea. Estes filtros incluem técnicas como a média, a mediana e a filtragem gaussiana. A aplicação de filtros de suavização é especialmente útil em imagens que possuem distorções devido a condições adversas, como iluminação inadequada ou interferência de sinal.
- 3) Transformações Logarítmicas e Exponenciais: As transformações logarítmicas e exponenciais são utilizadas para comprimir ou expandir a escala de intensidade de uma imagem. A transformação logarítmica é frequentemente utilizada

para realçar detalhes em áreas de baixa intensidade, enquanto a transformação exponencial pode ser empregada para realçar áreas de alta intensidade. Essas transformações são valiosas em situações onde certos detalhes necessitam de maior ênfase.

- 4) Filtragem de Frequência: A filtragem de frequência no domínio espacial visa realçar ou atenuar componentes de alta ou baixa frequência em uma imagem. Essa operação é frequentemente realizada por meio da aplicação de máscaras de convolução, que enfatizam ou suprimem determinadas características. A filtragem de frequência é útil em diversas aplicações, como a remoção de ruídos específicos ou o destaque de detalhes importantes.
- 5) Transformação de Cores: A transformação de cores refere-se à manipulação das componentes de cor em uma imagem. Pode incluir ajustes no equilíbrio de cores, saturação, intensidade, entre outros. Essas operações são valiosas para corrigir distorções de cor e garantir uma representação mais precisa da cena.

E. Segmentação de Imagens

A segmentação de imagens é uma tarefa de PDI que tem como objetivo a identificação de regiões de interesse em uma imagem, sendo capaz de separar a imagem em regiões, que podem ser utilizadas para a extração de características, para a classificação de imagens, entre outras tarefas.

A segmentação de imagens é uma tarefa de grande importância para o PDI, sendo utilizada em diversas áreas, como a medicina, a astronomia, a agricultura, entre outras. Na medicina é utilizada para a identificação de tumores, na astronomia é utilizada para a identificação de estrelas, na agricultura é utilizada para a identificação de plantas daninhas, entre outras aplicações.

Neste trabalho, a segmentação de imagens será utilizada para a identificação do traçado de maquinário agrícola, para a extração das coordenadas geográficas, para o uso em equipamentos de agricultura de precisão.

A segmentação de imagem será realizada através do uso de redes neurais convolucionais, que são redes neurais artificiais especializadas no processamento de imagens, sendo capazes de realizar a segmentação de imagens, a classificação de imagens, entre outras tarefas.

III. METODOLOGIA

Neste capítulo, será apresentada a metodologia utilizada para desenvolver a solução proposta. O processo de georreferenciamento automatizado de imagens agrícolas envolverá diversas etapas, desde a aquisição das imagens até a extração e aplicação das coordenadas geográficas. A seguir, descrevemos as principais etapas da metodologia:

A. Aquisição de Dados

A obtenção de imagens agrícolas é o ponto de partida do processo. Essas imagens podem ser adquiridas por meio de drones equipados com câmeras de alta resolução, satélites ou outras fontes de sensoriamento remoto. A escolha da fonte de dados dependerá das necessidades específicas do projeto,

considerando fatores como resolução espacial, cobertura da área e frequência de aquisição.

B. Pré-processamento das Imagens

As imagens adquiridas passarão por um processo de préprocessamento para garantir a qualidade e uniformidade necessárias para as etapas subsequentes. Isso inclui correções geométricas, remoção de ruídos, ajustes de contraste e brilho, entre outros. O objetivo é preparar as imagens de maneira adequada para a segmentação e extração de coordenadas geográficas.

C. Segmentação de Imagens com Redes Neurais Convolucionais

A segmentação de imagens será realizada por meio de redes neurais convolucionais (CNNs). Essas redes são capazes de aprender padrões complexos em imagens e são particularmente eficazes em tarefas de segmentação. O treinamento da CNN envolverá o uso de conjuntos de dados rotulados, onde as regiões de interesse nas imagens estarão marcadas.

D. Extração de Coordenadas Geográficas

Uma imagem saída do processo de segmentação de imagens não possui nenhuma informação geográfica, sendo necessário a extração das coordenadas geográficas das regiões de interesse, para que se possa utilizar as informações extraídas para o uso em equipamentos de agricultura de precisão.

Dessa forma é necessário o desenvolvimento de um algoritmo que seja capaz de extrair as coordenadas geográficas das regiões de interesse, e aplica-las a imagem resultante do processo de segmentação.

E. Validação da Solução

A solução proposta será validada por meio da comparação das coordenadas geográficas extraídas automaticamente com coordenadas de referência conhecidas. A precisão e eficácia do método serão avaliadas em diferentes cenários e condições.

IV. RESULTADOS E DISCUSSÃO

Neste capítulo, serão apresentados os resultados obtidos com a implementação da solução proposta. Serão discutidos os desempenhos da segmentação de imagens, da extração de coordenadas geográficas e da validação da solução em diferentes contextos agrícolas. Serão também abordadas possíveis limitações e melhorias para trabalhos futuros.

V. Conclusão

Na conclusão, serão apresentadas as principais contribuições do trabalho, destacando a importância da solução proposta para a agricultura de precisão. Serão discutidos os resultados obtidos, as limitações do método e possíveis direções para pesquisas futuras. A conclusão reforçará a relevância da automatização do georreferenciamento de imagens agrícolas e seu impacto positivo na eficiência e sustentabilidade da agricultura.

REFERENCES

- BRAGA, A. P.; CARVALHO, A. P. L. F.; LUDERMIR, T. B. Redes Neurais Artificiais: Teoria e Aplicações. 2. ed. [S.l.]: LTC, 2016.
- [2] BRAGA, D. F. M. M. d. S. Algoritmos de processamento da linguagem natural para sistemas de conversao texto-fala em português. 2008.
- [3] FACELI, K. et al. Inteligência Artificial: Uma Abordagem de Aprendizado de Máquina. 2. ed. [S.l.]: LTC, 2022.
- [4] GONZALEZ, R. C.; WOODS, R. E. Processamento Digital de Imagens. 1. ed. [S.l.]: Edgard Blücher Ltda, 2000. ISBN 8576054019.
- [5] GONZALEZ, R. C.; WOODS, R. E. Processamento Digital de Imagens.[S.I.]: Pearson Universidades, 2009. ISBN 8576054019.
- [6] LAMAS, F. M. A evolução da agricultura do brasil. EMBRAPA, 2023. Disponível em: ¡https://www.embrapa.br/busca-de-noticias/-/noticia/81665485/ artigo—a-evolucao-da-agricultura-do-brasil¿.
- [7] LIMA, I.; PINHEIRO, C. A. M.; SANTOS, F. A. O. Inteligência Artificial. 1. ed. [S.l.]: Elsevier, 2014.