Deteksi Objek Jenis Kendaraan Menggunakan Metode YOLO

PRA PROPOSAL PROYEK AKHIR

Diajukan sebagai syarat untuk mengikuti Sidang Komite Proyek Akhir

oleh:

ROHMAN PRASETYO 6705184116

D3 TEKNOLOGI TELEKOMUNIKASI FAKULTAS ILMU TERAPAN UNIVERSITAS TELKOM

2021

Latar Belakang

Kendaraan merupakan perangkat yang dapat dinaiki, yang dapat menjadi sarana transportasi, dapat bergerak atau digerakkan menggunakan peralatan berupa motor ataupun peralatan lainnya. Aktivitas yang seringkali terjadi di jalan raya yang melibatkan kendaraan-kendaraan, baik dalam kuantitas yang banyak maupun sedikit memiliki permasalahan salah satunya adalah masalah kemacetan akibat memadatnya kuantitas kendaraan yang berada di jalan. Selain itu, ada pula masalah yang sering ditimbulkan ialah kurangnya ketertiban dan penggunaan jalur yang tidak pada tempatnya, misalnya seperti kendaraan yang masuk ke jalur yang tidak diperuntukkan bagi kendaraan tersebut. Pendeteksian jenis kendaraan dapat digunakan untuk membantu memantau kondisi jalan raya dan memantau pelanggaran pada penggunaan jalur khusus. Oleh karena itu, dalam penelitian ini penulis membuat aplikasi deteksi objek jenis kendaraan. Klasifikasi yang dilakukan memakai sistem *deep learning* menggunakan YOLO (*You Only Look Once*).

Dalam metode YOLO (*You Only Look Once*) terlihat gambar sepenuhnya dengan memprediksi kotak terikat menggunakan konvolusional jaringan dan probabilitas kelas untuk kotak-kotak ini dan mendeteksi gambar lebih baik. Gambar dibagi menjadi kisi S x S dengan memprediksi kotak pembatas untuk setiap kisi dan probabilitas kelas. Baik klasifikasi gambar dan teknik lokalisasi objek diterapkan untuk setiap kisi gambar dan setiap kisi ditugaskan dengan label. Kemudian algoritma memeriksa setiap grid secara terpisah dan menandai label yang memiliki objek di dalamnya dan juga menandai kotak pembatasnya. Label sandang tanpa objek ditandai sebagai nol. Dengan menggunakan metode YOLO (*You Only Look Once*) ini bertujuan dapat membantu untuk mendeteksi, mengklasifikasi, dan mengidentifikasi jenis kendaraan yang ada pada gambar.

Studi Literatur Penelitian Terkait

Tabel 1 Merupakan hasil studi literature terhadap penelitian yang terkait dengan judul yang diangkat

Tabel 1 Hasil Studi Literatur

No.	Judul Penelitian/Karya Ilmiah	Tahun	Keterangan	Perbedaan dengan judul PA yang akan diangkat
1	Deteksi Jenis Mobil Menggunakan Metode YOLO Dan Faster R- CNN [1]	2019	R-CNN dan YOLO untuk mendeteksi jenis mobil	
2	Pemanfaatan Deep Learning pada Video Dash Cam untuk Deteksi Pengendara Sepeda Motor [2]	2018	Pada penelitian ini penulis menggunakan Dash cam yang hanya digunakan untuk merekam video saja sehingga dash cam perlu diberi kecerdasan untuk mendeteksi objek. Dengan menggunakan metode CNN (Convolutional Neural Networks).	Berbeda dengan penelitian [2] yang menggunakan metode CNN (Convolutional Neural Networks), pada penelitian ini menggunakan metode YOLO.
3	Pengenalan Karakter pada Plat Nomor Indonesia dengan Tilt Correction dan Metode Faster R- CNN [3]	2019	Pada penelitian ini penulis menggunakan metode Canny Edge Detection dan Faster R-CNN untuk mendeteksi plat nomor yang merupakan identitas dari suatu kendaraan dapat dideteksi secara otomatis oleh sistem dengan bantuan Digital Image Processing dan Artificial Neural Network.	Berbeda dengan penelitian [3] yang metode Canny Edge Detection dan Faster R-CNN untuk mendeteksi plat nomor yang merupakan identitas, pada penelitian ini menggunakan metode YOLO untuk mendeteksi objek jenis kendaraan.

4	Pendeteksian Objek	2020	Pada penelitian ini penulis untuk menggunakan	Berbeda dengan penelitian [4] yang		
	Secara Realtime		Pendekatan Fast Convolutional Neural Network.	menggunakan Pendekatan Fast Convolutional		
	Menggunakan Pendekatan		Metode ini memiliki beberapa keuntungan	Neural Network. pada penelitian ini		
	Fast Convolutional Neural		dibandingkan dengan algoritma deteksi objek	menggunakan metode YOLO yang terlihat		
	Network [4]		lainnya. Di algoritma lain seperti Convolutional	gambar sepenuhnya dengan memprediksi kotak		
			Neural Network, Fast Convolutional Neural			
			Network.	probabilitas kelas untuk kotak-kotak ini dan		
				mendeteksi gambar lebih cepat dibandingkan		
				dengan algoritma lainnya.		

Rancangan Sistem

Pada bab ini akan dijelaskan mengenai bagaimana cara mendeteksi objek jenis kendaraan menggunakan *python* ini dapat bekerja dengan menggunakan objek secara real time dan terdiri dari model sistem, realiasasi sistem, dan pengujian. Adapun sistem kerja dari deteksi objek jenis kendaraan menggunakan *python* yang telah dibuat dapat digambarkan seperti ini:

Gambar 1. Model Sistem Deteksi Objek Jenis Kendaraan menggunakan Python

Dengan membuat deteksi objek kendaraan dengan menggunakan permograman python. tahap awal dengan mengumpulkan gambar objek jenis kendaraan sebagai input. kemudian di proses dengan menggunakan sistem Deep learning. Deep learning merupakan bagian dari Artificial Intelligence (AI) dan machine learning yang dapat berfungsi mendeteksi objek, pengenalan suara dan sebagainya. Dalam sistem Deep learning terdapat Convoluional network (CNN). Dalam CNN terdapat metode yang digunakan untuk mendeteksi objek, yaitu YOLO (You Only Look Once).

YOLO menggunakan pendekatan berbeda untuk mendeteksi objek jenis kendaraan. Dalam hal ini YOLO membagi input gambar menjadi grid berukuran S×S, dimana nilai S adalah 7 dengan input gambar berukuran 448 x 448. Untuk selanjutnya memperoleh bounding box, dilakukan konvolusi dari input gambar. Sebuah bounding box memiliki 5 nilai yang perlu disimpan, koordinat x, koordinat y, lebar (width), tinggi (height), dan confidence score (nilai probabilitas bounding box pada sebuah objek). Untuk semua atribut pada bounding box akan dilakukan normalisasi sehingga nilainya menjadi antara 0 hingga 1. Koordinat x dan y akan dinormalisasi menyesuaikan titik kiri atas dari grid yang bersangkutan. Tinggi dan lebar akan dinormalisasi sesuai dengan ukuran objek yang dideteksi berupa jenis kendaraan. Berikut jenis kendaraan yang dapat dideteksi, antara lain:

Referensi

- [1] Shianto, K. A., Gunadi, K., & Setyati, E., "Deteksi Jenis Mobil Menggunakan Metode YOLO Dan Faster R-CNN". Jurnal Infra, 7(1), 157 163. 2019
- [2] Limantoro, S. E., Kristian, Y., & Purwanto, D. D., "Pemanfaatan Deep Learning pada Video Dash Cam untuk Deteksi Pengendara Sepeda Motor". Jurnal Nasional Teknik Elektro Dan Teknologi Informasi, 7(2), 167–173. 2018
- [3] Susanto, K. N., Gunadi, K., & Setyati, E., "Pengenalan Karakter pada Plat Nomor Indonesia dengan Tilt Correction dan Metode Faster R-CNN". Jurnal Infra, 7(1), 1–7. 2019
- [4] Hardiansyah, "Pendeteksian Objek Secara Realtime Menggunakan Pendekatan Fast Convolutional Neural Network". Jurnal Ilmu Komputer JIK Vol. III, no ISSN: 2089-5305. 2020

Form Kesediaan Membimbing Proyek Akhir

Tanggal: 01 Maret 2021

Kami yang bertanda tangan dibawah in i:

CALON PEMBIMBING 1

Kode : SGO

Nama : Sugondo Hadiyoso, S.T., M.T.

CALON PEMBIMBING 2

Kode : YSN

Nama : Yuli Sun Hariyani, S.T., M.T.

Menyatakan bersedia menjadi dosen pembimbing Proyek Akhir bagi mahasiswa berikut,

NIM : 6705184116

Nama : Rohman Prasetyo

Prodi / Peminatan : D3TT

Calon Judul PA : Aplikasi Pendeteksi Jenis Kendaraan Menggunakan metode Yolo

Dengan ini akan memenuhi segala hak dan kewajiban sebagai dosen pembimbing sesuai dengan Aturan Proyek Akhir yang berlaku.

Calon Pembimbing 1

Calon Pembimbing 2

Enden

(Sugondo Hadiyoso, S.T., M.T.)

(Yuli Sun Hariyani, S.T., M.T.)

CATATAN:

- 1. Aturan Proyek Akhir versi terbaru dapat diunduh dari : http://dte.telkomuniversity.ac.id/panduan-proyek-akhir/
- 2. Keputusan akhir penentuan pembimbing berada di tangan Ketua Kelompok Keahlian dengan memperhatikan aturan yang berlaku.
- 3. Pengajuan pembimbing boleh untuk kedua pembimbing sekaligus atau untuk salah satu pembimbing saja

Telkom University Jl.Telekomunikasi No.1, Terusan Buah Batu Bandung 40257 Indonesia

DAFTAR NILAI HASIL STUDI MAHASISWA

NIM (Nomor Induk Mahasiswa)

: 6705184116

Dosen Wali

: DUM / DADAN NUR RAMADAN

Nama

: ROHMAN PRASETYO

Program Studi : D3 Teknologi Telekomunikasi

Mata Kuliah yang Lulus

	I	I			I
Semester	Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai
1	DTH1C3	DASAR TEKNIK KOMPUTER DAN PEMROGRAMAN	BASIC COMPUTER ENGINEERING AND PROGRAMMING	3	АВ
1	DTH1B3	MATEMATIKA TELEKOMUNIKASI I	MATHEMATICS TELECOMMUNICATIONS I	3	АВ
1	DTH1E2	BENGKEL MEKANIKAL DAN ELEKTRIKAL	MECHANICAL AND ELECTRICAL WORKSHOP	2	АВ
1	DTH1A2	K3 DAN LINGKUNGAN HIDUP	K3 AND ENVIRONMENT	2	А
1	HUH1A2	PENDIDIKAN AGAMA DAN ETIKA - ISLAM	RELIGIOUS EDUCATION AND ETHICS - ISLAM	2	AB
1	DTH1D3	RANGKAIAN LISTRIK	ELECTRICAL CIRCUITS	3	С
1	DTH1F3	DASAR SISTEM TELEKOMUNIKASI	BASIC TELECOMMUNICATIONS SYSTEM	3	В
1	DUH1A2	LITERASI TIK	ICT LITERACY	2	А
2	LUH1B2	BAHASA INGGRIS I	ENGLISH I	2	AB
2	HUH1G3	PANCASILA DAN KEWARGANEGARAAN	PANCASILA AND CITIZENSHIP	3	А
2	DTH1K3	ELEKTROMAGNETIKA	ELECTROMAGNETIC	3	ВС
2	DTH1J2	BENGKEL ELEKTRONIKA	ELECTRONICS WORKSHOP	2	АВ
2	DTH1I3	ELEKTRONIKA ANALOG	ANALOG ELECTRONIC	3	АВ
2	DTH1H3	TEKNIK DIGITAL	DIGITAL TECHNIQUES	3	AB
2	DTH1G3	MATEMATIKA TELEKOMUNIKASI II	MATHEMATICS TELECOMMUNICATIONS II	3	А
2	DMH1A2	OLAH RAGA	SPORT	2	А
Jumlah SKS					3.44

	I	T			I
Semester	Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai
3	DTH2A2	BAHASA INGGRIS TEKNIK I	ENGLISH TECHNIQUE I	2	АВ
3	DTH2C2	BENGKEL INTERNET OF THINGS	INTERNET OF THINGS WORKSHOP	2	А
3	DTH2B3	KOMUNIKASI DATA BROADBAND	BROADBAND DATA COMMUNICATIONS	3	АВ
3	DTH2G3	SISTEM KOMUNIKASI OPTIK	OPTICAL COMMUNICATION SYSTEMS	3	В
3	DTH2F3	TEKNIK TRANSMISI RADIO	RADIO TRANSMISSION TECHNIQUES	3	ВС
3	DTH2D3	APLIKASI MIKROKONTROLER DAN ANTARMUKA	MICROCONTROLLER APPLICATIONS AND INTERFACES	3	А
3	DTH2E3	SISTEM KOMUNIKASI	COMMUNICATIONS SYSTEMS	3	С
4	VTI2H2	BAHASA INGGRIS TEKNIK II	ENGLISH TECHNIQUES II	2	AB
4	UKI2C2	BAHASA INDONESIA	INDONESIAN LANGUAGE	2	А
4	DMH1B2	PENGEMBANGAN PROFESIONALISME	PROFESSIONAL DEVELOPMENT	2	А
4	DTH2M3	SISTEM KOMUNIKASI SELULER	CELLULAR COMMUNICATION SYSTEMS	3	В
4	DTH2L3	TEKNIK ANTENNA DAN PROPAGASI	ANTENNA TECHNIQUES AND PROPAGATION	3	В
4	VTI2K3	JARINGAN TELEKOMUNIKASI BROADBAND	BROADBAND DATA NETWORKS	3	А
4	DMH2A2	KERJA PRAKTEK	INTERSHIP	2	А
4	DTH2H3	JARINGAN DATA BROADBAND	BROADBAND DATA NETWORK	3	AB
4	DTH2I3	DASAR KOMUNIKASI MULTIMEDIA	BASIC COMMUNICATION MULTIMEDIA	3	АВ
4	DTH2J2	TEKNIK TRAFIK	TRAFFIC ENGINEERING	2	AB
4	DTH2K3	ELEKTRONIKA TELEKOMUNIKASI	ELECTRONICS TELECOMMUNICATIONS	3	AB
5	UWI3E1	HEI	HEI	1	А
5	VTI3D3	KEAMANAN JARINGAN	NETWORK SECURITY	3	А
5	DUH2A2	KEWIRAUSAHAAN	ENTREPRENEURSHIP	2	А
5	VTI3E2	CLOUD COMPUTING	CLOUD COMPUTING	2	В
		Jumlah SKS		96	3.44

Mata Kuliah yang Belum Lulus

Semester	Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai
6	VPI3GC	MAGANG	APPRENTICE	12	
6	VTI3F4	PROYEK AKHIR	FINAL PROJECT	4	
	Jumlal	16			

 Tingkat I
 : 41 SKS
 Lulus tanggal 01-08-2019
 IPK : 3.43

 Tingkat II
 : 88 SKS
 Belum Lulus
 IPK : 3.41

 Tingkat III
 : 96 SKS
 Belum Lulus
 IPK : 3.44

 Jumlah SKS
 : 96 SKS
 IPK : 3.44

Total SKS dan IPK dihitung dari mata kuliah lulus dan mata kuliah belum lulus. Nilai kosong dan T tidak diikutkan dalam perhitungan IPK.

Pencetakan daftar nilai pada tanggal 28 Februari 2021 19:49:27 oleh ROHMAN PRASETYO