人工智能: 机器学习 VI

饶洋辉 计算机学院, 中山大学

raoyangh@mail.sysu.edu.cn http://cse.sysu.edu.cn/node/2471

课件来源:中山大学刘咏梅教授;陈川、余超副教授等

聚类

• 目标:基于距离度量,将对象集合聚类到簇(cluster)中,使得 簇内对象的距离尽量小,且簇之间对象的距离尽量大。

簇的数量

How many clusters?

Six Clusters

Two Clusters

Four Clusters

簇的数量

What is a natural grouping among these objects?

Clustering is subjective

Simpson's Family

School Employees

Females

Males

聚类的类型

• 划分式聚类

- Divide data objects into non-overlapping subsets (clusters) such that each data object is in exactly one subset
- # clusters is needed, e.g., *k*-Means....

• 基于密度的聚类

- A cluster is a dense region of points, which is separated by low-density regions, from other regions of high density
- Used when the clusters are irregular or intertwined (不规则或纠缠), and when noise and outliers are present

• 层次聚类

- A set of nested clusters organized as a hierarchical tree
- # clusters is not needed

划分式聚类

- k-Means: 重复如下步骤...
 - 。选择任意 *k* 个质心(centroids)
 - 。将每个文档分配到最近的质心
 - 。重新计算质心

- *k*-Means (划分法) 示例:
 - $x_1 = (0, 2), x_2 = (0, 0), x_3 = (1.5, 0), x_4 = (5, 0), x_5 = (5, 2)$
 - $\cdot k = 2$

x1 = (0, 2), x2 = (0, 0), x3 = (1.5, 0), x4 = (5, 0), x5 = (5, 2); k = 2

Step 1: Choose 2 centroids

x1 = (0, 2), x2 = (0, 0), x3 = (1.5, 0), x4 = (5, 0), x5 = (5, 2); k = 2

Step 2: Assign objects to nearest centroid

x1 = (0, 2), x2 = (0, 0), x3 = (1.5, 0), x4 = (5, 0), x5 = (5, 2); k = 2

Step 3: Re-compute centroids

x1 = (0, 2), x2 = (0, 0), x3 = (1.5, 0), x4 = (5, 0), x5 = (5, 2); k = 2

Step 4: Assign objects to nearest centroid

x1 = (0, 2), x2 = (0, 0), x3 = (1.5, 0), x4 = (5, 0), x5 = (5, 2); k = 2

Step 5: Converged

$$x1 = (0, 2), x2 = (0, 0), x3 = (1.5, 0), x4 = (5, 0), x5 = (5, 2); k = 2$$

Another converged solution

- Spreads out the centers
- Choose first center, x_1 , uniformly at random from the data set
- Repeat for $2 \le i \le k$:
 - Choose *x'* to be equal to a data point sampled from the distribution:

$$\frac{D(x')^2}{\sum_{x \in \mathcal{X}} D(x)^2}$$

• D(x): the shortest distance from a data point x to the closest center we have already chosen

k-Means: k值的选择

- 主要是"问题驱动" (problem driven)
- 也可以是"数据驱动"(data driven),但 条件如下:
 - 。数据不稀疏
 - 。输入的属性没有太多噪音

k-Means: k值的选择

- Most common measure is Sum of Squared Error (SSE)
 - For each point, the error is the distance to the nearest cluster
 - To get SSE, we square these errors and sum them.

$$SSE = \sum_{i=1}^{k} \sum_{x \in C_i} dist^2(m_i, x)$$

- x is a data point in cluster C_i and m_i is the representative point for cluster C_i
 - can show that m_i corresponds to the center (mean) of the cluster
- Given two clusters, we can choose the one with the smallest error
- One easy way to reduce SSE is to increase the number of clusters
 - A good clustering with smaller *k* can have a lower SSE than a poor clustering with higher *k*

k-Means: k值的选择

• **Elbow method:** plot a line chart of the SSE for each value of *k*. If the line chart looks like an arm, then the "elbow" on the arm is the value of *k* that is the best.

Bisecting *k*-Means

- Bisecting *k*-Means algorithm
 - Variant of *k*-Means that can produce a partitional or a hierarchical clustering
- 1: Initialize the list of clusters to contain the cluster containing all points.
- 2: repeat
- 3: Select a cluster from the list of clusters
- 4: for i = 1 to $number_of_iterations$ do
- 5: Bisect the selected cluster using basic K-means
- 6: end for
- 7: Add the two clusters from the bisection with the lowest SSE to the list of clusters.
- 8: until Until the list of clusters contains K clusters

Bisecting *k*-Means

机器学习

• Three fundamental problems in machine learning

机器学习

- Three fundamental problems in machine learning
- Supervised learning
 - Classification or prediction from labeled (action, outcome) pairs
 - No interactions
 - No sequential decisions
 - No explorations
- Unsupervised learning
 - Discover inherent correlations among data
 - *No interactions*
 - No sequential decisions
 - *No explorations*

在很多应用场景中,有监督学习可能行不通。比如我们通过有监督学习来训练一个围棋模型,就需要将当前棋盘的状态作为输入,其对应的最佳落子位置(动作)作为标签。训练一个好的模型就需要收集大量的不同棋盘状态以及对应动作。这种做法实践起来比较困难,一是对于每一种棋盘状态,即使是专家也很难给出"正确"的动作,二是获取大量数据的成本往往比较高。

机器学习

- Three fundamental problems in machine learning
- Reinforcement learning
 - Reinforcement learning (RL), in a nutshell, is to "learn to make good sequences of decisions through trail-and-errors"
- Thus, there are four basic aspects in RL:
 - *Optimization* (good decisions)
 - Delayed consequences (sequential)
 - Exploration (trail-and-error)
 - Generalization (learn)
- The evaluation of optimality can be explicitly measured or provided in terms of utility functions, e.g.,
 - the shortest path between two cities given a network of roads
 - the fastest speed that a robot is able to run
 - the maximum area for a multi-robot system to cover
 - the least time for a group of vehicles to pass a crossroad

强化学习

- 强化学习(Reinforcement learning)是一种序贯决策方法,它研究如何让计算机与环境交互,从中学会最优决策。智能体在和环境的交互过程中,根据当前的状态、环境的奖惩而采取相应的动作,通过学习使环境的回报最大化。
- 强化学习的基本要素:
 - 。 状态S、动作A
 - 。 奖励(reward)R: 智能体动作好坏的评价
 - 。 策略(policy) $\pi(a|s)$: 状态到动作的映射 $P(A=a \mid S=s)$
 - 值函数(value function): 动作价值函数 $Q^{\pi}(s, a)$ 和状态价值函数 $V^{\pi}(s)$,分别是在状态s采取动作a后,执行策略 π 的期望回报,以及从状态s起,执行策略 π 的期望回报
- 强化学习的学习目标: 找到最大化累计奖励的策略。

示例

- 假设建筑中有5个房间,编号为0-4,房间之间通过 门相连(每个门都有两个方向),屋子外可视为一 个大房间,编号为5。
- 将agent置于建筑中的任意一个房间,目标是走到房间5。每一条边关联一个reward值,直接连接到目标房间的门的reward值为100,其他门的reward值为0。

强化学习的基本要素: 状态

- □ State is the information used to determine what happens next
- ☐ The environment state is its private representation
 - whatever data to pick the next observation/reward
 - □ not usually visible to the agent
 - *May contain irrelevant information*
- ☐ The agent state is the agent's internal representation
 - whatever information the agent uses to pick the next action
 - □ it is the information used by RL algorithms
- ☐ An Markov state contains all useful information from the history, i.e., future is independent of past given present

A state S_t is Markov if and only if

$$\mathbb{P}[S_{t+1} \mid S_t] = \mathbb{P}[S_{t+1} \mid S_1, ..., S_t]$$

强化学习的基本要素: 奖励

- \square A reward Rt is a scalar feedback signal
- \square Indicates how well agent is doing at step t
- ☐ The agent's job is to maximise cumulative reward
- ☐ The goal reward and the intermediate reward
 - defeat the world champion at Go
 - +1/-1 reward for winning/losing a game
 - Make a humanoid robot walk
 - +1 reward for forward motion
 - -1 reward for falling over
 - Manage an investment portfolio
 - +*v* reward for each \$ in bank
- Reward is the most fundamental component in RL

强化学习的基本要素:策略

- □ Policy: an agent's behaviour function, i.e., a mapping from state to action
 - \square Deterministic policy: $a = \pi(s)$
 - Stochastic policy: $\pi(a|s) = \mathbb{P}[A_t = a|S_t = s]$

强化学习一般会使用随机性的策略。随机性的策略具有很多优点。比如在学习时可以通过引入一定的随机性来更好地探索环境,且使得策略更加多样性。以围棋游戏为例,确定性策略总是在同一个位置上下棋,这会导致你的策略很容易被对手预测。

- □ Value functions: how good is each state and/or action
 - Value function is a prediction of future reward
 - ☐ *Used to evaluate the goodness/badness of states*
 - And therefore used to select between actions

$$v_{\pi}(s) = \mathbb{E}_{\pi} \left[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots \mid S_t = s \right]$$

强化学习的基本要素: 值函数

$$V(s) = \underbrace{R(s)}_{\text{Immediate reward}} + \underbrace{\gamma \sum_{s' \in S} P(s'|s) V(s')}_{\text{Discounted sum of future rewards}}$$

强化学习的基本要素: 值函数

$$V(s) = \underbrace{R(s)}_{\text{Immediate reward}} + \underbrace{\gamma \sum_{s' \in S} P(s'|s)V(s')}_{s' \in S}$$

Discounted sum of future rewards

强化学习的基本要素: 值函数

给定折扣因子(discount factor) $\gamma = 0.5$,蓝色轨迹的回报值如下:

$$(-2) + 0.5 * (-2) + 0.5^2 * (-2) + 0.5^3 * 10 = -2.25$$

形式化定义

单智能体强化学习问题的形式化定义:

由六元组构成的马尔可夫决策过程,具体如下:

Markov Decision Process (MDP) $(S, A, R, T, P_0, \gamma)$

- *S* denotes the state space
- *A* is the action space
- R = R(s, a) is the reward function
- $T: S \times A \times S \rightarrow [0,1]$ is the state transition function
- P_0 is the distribution of the initial state
- γ is a discount factor

- 先学习值函数,再基于值函数选择动作
- Q-learning: 使用最大化Q值的动作来更新Q值
- 建筑中有5个房间,编号为0-4,房间之间通过门相连,屋子外被视为一个大房间,编号为5

房间作为图的节点,两房间之间若有门相连则对应节点间的一条边(每个门都有两个方向)。

- ✓ State: 房间(节点)
- ✓ Action: 从一个房间走到另一个房间(箭头)

将agent置于建筑中的任意一个房间,目标是走到屋子外,即房间5。每一条边关联一个reward值,直接连接到目标房间的门的reward值为100,其他门的reward值为0。

房间5有一个指向自己的箭头,reward值也为100。

假设agent从状态2开始,我们希望通过学习到达状态5。

以state为行,action为列构建reward值矩阵R,其中-1表示空值,即节点间没有边相连。

- ✓ 类似地,构建一个与R同阶的矩阵Q,表示agent已经从经验中学到的知识。由于agent刚开始对外界环境一无所知,Q初始化为零矩阵。
- ✓ 本例中的状态数目是已知的(等于6),对于状态数目未知的情形,可以让Q从一个元素出发,每发现一个新的状态就增加相应的行列。
- ✓ Q学习算法的状态转移规则:

$$Q(s,a) = R(s,a) + \gamma \cdot \max_{\tilde{a}} \{Q(\tilde{s},\tilde{a})\}$$
 (1.1)

其中s, a表示当前的状态和动作, \tilde{s} , \tilde{a} 表示s的下一个状态及动作。学习参数 γ 为满足 $0 \le \gamma < 1$ 的常数。

Step 1 给定参数 γ 和 reward 矩阵 R.

Step $2 \Leftrightarrow Q := 0$.

Step 3 For each episode:

- 3.1 随机选择一个初始的状态 s.
- 3.2 若未达到目标状态,则执行以下几步
 - (1) 在当前状态 s 的所有可能行为中选取一个行为 a.
 - (2) 利用选定的行为 a, 得到下一个状态 \tilde{s} .
 - (3) 按照 (1.1) 计算 Q(s,a).
 - $(4) \Leftrightarrow s := \widetilde{s}.$

agent利用该算法从经验中学习,每一个episode相当于一个training epoch。agent不断探索外界环境,并接收外界环境的reward,直至达到目标状态。训练得越多,Q被优化得更好,agent就能根据训练后的Q更容易地找到到达目标状态的最快路径。

得到充分训练的Q之后:

- 1. 令当前状态 $s := s_0$.
- 2. 确定 a, 它满足 $Q(s,a) = \max_{\widetilde{a}} \{Q(s,\widetilde{a})\}.$
- 3. 令当前状态 $s := \tilde{s} \ (\tilde{s} \ 表示 \ a \ 对应的下一个状态)$.
- 4. 重复执行步 2 和步 3 直到 s 成为目标状态.

设学习参数为0.8,初始状态为房间1,Q初始化为0矩阵:

若agent随机地转移到状态5,更新Q矩阵,得到一次episode后的Q矩阵:

第二次episode:随机选择一个初始状态,此处选状态3。让agent执行走到状态1的action,更新Q:

现在状态1变成了当前状态,因为状态1还不是目标状态,仍需继续探索,故随机选择可能的action。假定agent选择了走到状态5的action,更新Q:

$$Q(1,5) = R(1,5) + 0.8 * \max\{Q(5,1), Q(5,4), Q(5,5)\}$$

$$= 100 + 0.8 * \max\{0,0,0\}$$

$$= 100.$$

此处更新并没有引起矩阵Q的变化,Q保持不变。

执行更多的episode,矩阵Q最终收敛为:

$$Q = \begin{bmatrix} 0 & 1 & 2 & 3 & 4 & 5 \\ 0 & 0 & 0 & 0 & 400 & 0 \\ 1 & 0 & 0 & 0 & 320 & 0 & 500 \\ 0 & 0 & 0 & 320 & 0 & 0 \\ 0 & 400 & 256 & 0 & 400 & 0 \\ 320 & 0 & 0 & 320 & 0 & 500 \\ 5 & 0 & 400 & 0 & 0 & 400 & 500 \end{bmatrix}$$

每个元素都除以5,得到:

当矩阵Q接近收敛状态,agent便学习到了转移至目标状态的最佳路径:

- Suppose the agent has an experience $\langle s, a, r, s' \rangle$
- This provides one piece of data to update Q[s, a].
- An experience $\langle s, a, r, s' \rangle$ provides a new estimate for the value of $Q^*(s, a)$:

$$r + \gamma \max_{a'} Q[s', a']$$

which can be used in the TD formula giving:

$$Q[s, a] \leftarrow Q[s, a] + \alpha \left(r + \gamma \max_{a'} Q[s', a'] - Q[s, a] \right)$$

initialize Q[S,A] arbitrarily observe current state s repeat forever: select and carry out an action a observe reward r and state s' $Q[s,a] \leftarrow Q[s,a] + \alpha \left(r + \gamma \max_{a'} Q[s',a'] - Q[s,a] \right)$ $s \leftarrow s'$

Deep Q Network (DQN)

Approximate the optimal action-value function, $Q^*(s, \mathbf{a})$, by $Q(s, \mathbf{a}; \mathbf{w})$.

Deep Q Network (DQN)

- 以CNN为例,假设输入图像(状态s)的维度是: 3 * 6 * 6,其中 3为输入单元通道数,图片的高和宽均为6;
- 假设卷积核大小为3,步长为1,填充大小为0(即无填充),输出单元通道数为2,经过一层卷积操作后,输出图像的维度是:2*4*4(Why?),总的卷积核参数量为:3*2*3*3=54;

• 假设池化窗口的大小为2(即池化层的卷积核大小和步长均为2), 经过一层池化操作后,输出图像的维度是: 2*2*2。

基于策略的方法

- 学习一个参数化的策略 $\pi(a|s)$,不需要基于值函数选择动作。
- 使用策略网络 $\pi(a|s;\theta)$ 来近似 $\pi(a|s)$,其中 θ 为策略网络的可训练参数。

Learn θ that maximizes $J(\theta) = \mathbb{E}_{S}[V(S; \theta)]$

• 基于策略的方法主要包括随机性策略梯度和确定性策略梯度等。例如,随机性策略梯度 方法基于J(θ)的梯度来学习θ:

$$\theta_{t+1} = \theta_t + \alpha \nabla J(\theta_t)$$

Actor-Critic算法

Actor-Critic(演员-评委):基于值函数和基于策略的融合算法。其中,策略 π 控制智能体,因此被看作"演员";而 Q^{π} 评价 π 的表现,帮助改进 π ,因此 Q^{π} 被看作"评委"。

异策略与同策略学习

- 在强化学习中,我们让智能体与环境交互,记录下观测到的状态、动作、奖励,用这些经验来学习一个策略函数。在这一过程中,控制智能体与环境交互的策略被称作行为策略 μ。行为策略的作用是收集经验(Experience),即观测的环境、动作、奖励。
- 训练的目的是得到一个目标策略函数 π,在结束训练之后,用这个策略函数来控制智能体。
- □ Off-policy (异策略) learning
 - Learn about policy π from experience sampled from μ
- □ On-policy (同策略) learning
 - Learn about policy π from experience sampled from π

异策略学习

□ 通过行为策略 $\mu(a|s)$ 来收集经验数据:

$$S_1, A_1, R_2, ..., S_T \sim \mu$$
Undata π using S_1, A_2, P_2

Update π using $S_1, A_1, R_2, ..., S_T$

□ 最常用的行为策略是 ϵ -greedy:

$$a_t = \begin{cases} \operatorname{argmax}_a Q(s_t, a; \boldsymbol{w}), & \text{以概率 } (1 - \epsilon); \\ \text{均匀抽取 } \mathcal{A} \text{ 中的一个动作}, & \text{以概率 } \epsilon. \end{cases}$$

- □ 优势:
 - Learn about optimal policy while following exploratory policy
 - Learn from observing humans or other agents
 - \blacksquare Re-use experience generated from old policies $\pi_1, \pi_2, ..., \pi_{t-1}$

Off-policy control with Q-learning

- We allow both behavior and target policies to improve
- \square The target police π is greedy on Q(s, a)

$$\pi(S_{t+1}) = \arg\max_{a'} Q(S_{t+1}, a')$$

- The behavior policy μ could be totally random, but we let it improve following ϵ -greedy on Q(s, a)
- ☐ Thus *Q*-learning target

$$R_{t+1} + \gamma Q(S_{t+1}, A') = R_{t+1} + \gamma Q(S_{t+1}, \arg \max_{a'} Q(S_{t+1}, a'))$$

= $R_{t+1} + \gamma \max_{a'} Q(S_{t+1}, a')$

 \square Thus the *Q*-learning update

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left[R_{t+1} + \gamma \max_{a} Q(S_{t+1}, a) - Q(S_t, A_t) \right]$$

Q-learning和Sarsa的对比

□ *Q*-learning: Off-Policy

Choose action A_t from S_t using policy derived from Q with ϵ -greedy Take action A_t , observe R_{t+1} and S_{t+1}

Then 'imagine' A_{t+1} as argmax $Q(S_{t+1}, a')$ in the update target

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left[R_{t+1} + \gamma \max_{a} Q(S_{t+1}, a) - Q(S_t, A_t) \right]$$

☐ State-Action-Reward-State-Action (Sarsa): On-Policy

Choose action A_t from S_t using policy derived from Q with ϵ -greedy Take action A_t , observe R_{t+1} and S_{t+1}

Choose action A_{t+1} from S_{t+1} using policy derived from Q with ϵ -greedy

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left[R_{t+1} + \gamma Q(S_{t+1}, A_{t+1}) - Q(S_t, A_t) \right]$$

强化学习参考资料

- 王树森、张志华. 深度强化学习(初稿). 北京大学, 2021.
- 邱锡鹏. 神经网络与深度学习. 复旦大学, 2019.
- Reinforcement Learning: An Introduction (Second Edition), Richard S. Sutton and Andrew G. Barto, MIT Press, Cambridge, MA, 2018.
- Reinforcement Learning: State-of-the-Art, Wiering M.A., Springer, 2016.
- Algorithms for Reinforcement Learning, Csaba Szepesvári, Morgan & Claypool Publishers, 2010.
- https://github.com/wangshusen/DRL
- https://github.com/zhoubolei/introRL