This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

4

5 6

7

8 9

10

11

12

13

14. 15

16 17

1

1 1. (currently amended) A method for the elimination of spurious signal components (SS) in an input signal (ES), said 2 3 method consisting of comprising the steps of:

> the characterization, in a signal analysis phase (I), of signal components of the spurious signal components (SS) and of an information signal (NS) contained in the input signal (ES), and

- the determination or generation, in a signal processing phase (II), of the information signal (NS) or an estimated information signal (NS') on the basis of the characterization obtained in the signal analysis phase (I), wherein

said characterization of the signal components (SS, NS) being are performed under utilization at least of auditory-based features (M1 to Mi) determined in the signal analysis phase, employing a primitivegrouping method.

- 2. (currently amended) The method as in claim 1, wherein 2 at least one of the following auditory features (M1 to Mj) are 3 used for the characterization of the signal components (NS, 4 SS): loudness, spectral profile, harmonic structure, common 5 build-up and decay times, coherent amplitude and frequency 6 modulation, coherent phases, interaural runtime and level 7 differences.
- 1 3. (currently amended) The method as in claim 1, wherein 2 the auditory features (M1 to Mj) are determined in a plurality 3 of different frequency bands that are different from each 4 other.

- 1 4. (canceled).
- 1 5. (currently amended) The method as in claim 1, wherein
- 2 the characterization of the signal components (SS, NS) is
- 3 performed by evaluating the features (M1 to Mj) determined in
- 4 the signal analysis phase (I), employing a scheme-based
- 5 grouping technique.
- 1 6. (currently amended) The method as in claim 5, wherein
- 2 a hypothesis is established or specified on the nature of the
- 3 signal component (SS, NS) and is taken into account in the
- 4 grouping of the identified features (M1 to Mj).
- 1 7. (currently amended) The method as in claim 5 or 6,
- 2 wherein for the characterization of the signal components (NS,
- 3 SS), at least the auditory features (M1 to Mj) are grouped
- 4. along the principles of a gestalt theory.
- 1. 8. (currently amended) The method as in claim 1, wherein
- 2 the signal components identified as spurious noise components
- 3 (SS) are suppressed and/or the signal components identified as
- 4 information signals (NS) or estimated information signals
- 5 (NS') are amplified.
- 1 9. (currently amended) The method as in claim 1, wherein
- 2 the information signal (NS) or an estimated information signal
- 3 (NS') is synthesized in the signal processing phase (II) on
- 4 the basis of the features (M1 to Mj) detected in the signal
- 5 analysis phase (I).
- 1 10. (currently amended) The method as in claim 1, wherein
- 2 with the aid of an analysis of the harmonic structure in the
- 3 signal analysis phase (I), different base frequencies of the

Appl. No. 09/832,587 Amdt. Dated April 30, 2004 Reply to Office action of December 31, 2003

- 4 signal component of the information signal (NS) or of the
- 5 estimated information signal (NS') are extracted and, with the
- 6 aid especially of a loudness or LPC analysis, spectral levels
- 7 of harmonics of these signal components are defined, and on
- 8 the basis of the spectral levels and the harmonics an
- 9 information signal for tonal speech components is synthesized.
- 1 11. (currently amended) The method as in claim 1, wherein
- 2 with the aid of an analysis of the harmonic structure in the
- 3 signal analysis phase (I), nontonal signal components of the
- ·4 information signal (NS) or of the estimated information signal
- 5 (NS') are extracted and, with the aid especially of a loudness
- 6 or LPC analysis, spectral levels of these signal components
- 7 are defined, and with the aid of a noise generator an
- 8 information signal for nontonal speech components is
- 9 synthesized.
- 1. (currently amended) The method as in claim 10 or 11,
- 2 wherein the information signal (NS) and/or the estimated
- 3 information signal (NS') is amplified.
- 1 13. (previously presented) Application of the method
- 2 according to claim 1 for operating a hearing aid.
- 1 14. (previously presented) Hearing air operating by the
- 2 method according to claim 1.
- 1 15. (new) A method for the elimination of spurious signal
- 2 components in an input signal, said method comprising the
- 3 steps of:
- 4 the characterization, in a signal analysis phase , of
- 5 signal components of the spurious signal components
- 6 and of an information signal contained in the input
- 7 signal, and

Appl. No. 09/832,587 Amdt. Dated April 30, 2004 Reply to Office action of December 31, 2003

- the determination or generation, in a signal processing 8 phase, of the information signal or an estimated 9 10 information signal on the basis of the 11 characterization obtained in the signal analysis 12 phase , wherein 13 said characterization of the signal components is 14 performed under utilization of at least auditory-15 based features determined in the signal analysis .16 phase by employing a scheme-based grouping 17 technique.

- 1 16. (new) The method as in claim 15, wherein the 2 characterization of the signal components is performed by 3 evaluating the auditory-based features determined in the 4 signal analysis phase, employing a primitive-grouping method.
- 1 17. (new) The method as in claim 16, wherein a hypothesis
 2 is established or specified on the nature of the signal
 3 component and is taken into account in the grouping of the
 4 identified auditory-based features.
- 1 18. (new) The method as in claim 16 or 17, wherein for 2 the characterization of the signal components, at least the 3 auditory-based features are grouped along the principles of a 4 qestalt theory.
- 1 19. (new) The method as in claim 15, wherein the signal components identified as spurious noise components are suppressed and/or the signal components identified as information signals or estimated information signals are amplified.
- 1 20. (new) The method as in claim 15, wherein the 2 information signal or an estimated information signal is

Appl. No. 09/832,587 Amdt. Dated April 30, 2004 Reply to Office action of December 31, 2003

- 3 synthesized in the signal processing phase on the basis of the
- 4 features detected in the signal analysis phase.
- 1 21. (new) The method as in claim 15, wherein with the
- 2 aid of an analysis of the harmonic structure in the signal
- 3 analysis phase, different base frequencies of the signal
- 4 component of the information signal or of the estimated
- 5 information signal are extracted and, with the aid especially
- 6 of a loudness or LPC analysis, spectral levels of harmonics of
- 7 these signal components are defined, and on the basis of the
- ·8 spectral levels and the harmonics an information signal for
- 9 tonal speech components is synthesized.
- 1 22. (new) The method as in claim 15, wherein with the
- 2 aid of an analysis of the harmonic structure in the signal
- 3 analysis phase, nontonal signal components of the information
- 4 signal or of the estimated information signal are extracted
- 5 and, with the aid especially of a loudness or LPC analysis,
- 6 spectral levels of these signal components are defined, and
- 7 with the aid of a noise generator an information signal for
- 8 nontonal speech components is synthesized.
- 1 23. (new) The method as in claim 21 or 22, wherein the
- 2 information signal and/or the estimated information signal is
- 3 amplified.
- 1 24. (currently amended) The method as in claim 15,
- 2 wherein at least one of the following auditory features are
- 3 used for the characterization of the signal components:
- 4 loudness, spectral profile, harmonic structure, common build-
- 5 up and decay times, coherent amplitude and frequency
- 6 modulation, coherent phases, interaural runtime and level
- 7 differences.

- 25. (currently amended) The method as in claim 15,wherein the auditory features are determined in a plurality
- 3 of frequency bands that are different from each other.
- 1 26. (new) An application of the method according to 2 claim 15 for operating a hearing aid.
- 1 27. (new) A hearing air operating by the method 2 according to claim 15.
- 1 28. (new) A method for the elimination of spurious signal 2 components in an input signal, said method comprising the 3 steps of:
- the characterization, in a signal analysis phase, of signal components of the spurious signal components and of an information signal contained in the input signal, and
- the determination or generation, in a signal processing
 phase, of the information signal or an estimated
 information signal on the basis of the
 characterization obtained in the signal analysis
 phase, wherein
- said characterization of the signal components is

 performed under utilization of at least auditorybased features determined in the signal analysis

 phase to separate speech signals from non-speech
 signals in the signal processing phase.
- 1 29. (new) An application of the method according to 2 claim 28 for operating a hearing aid.
- 1 30. (new) A hearing air operating by the method 2 according to claim 28.