Roll No

CS/IT-305

B.E. III Semester

Examination, June 2016

CS - 305: Data Structure

IT - 305: Data Structure and Algorithm

Time: Three Hours

Maximum Marks: 70

- Note: i) Answer five questions. In each question part A, B, C is compulsory and D part has internal choice.
 - ii) All parts of each questions are to be attempted at one place.
 - iii) All questions carry equal marks, out of which part A and B (Max.50 words) carry 2 marks, part C (Max.100 words) carry 3 marks, part D (Max.400 words) carry 7 marks.
 - iv) Except numericals, Derivation, Design and Drawing etc.

Unit - I

- a) Explain how to derived complexity of algorithm with the help of all three notations.
 - b) What are the limitations of array data structures? How can it be avoided using linked lists?
 - c) Define a sparse metrics. Explain the representation of a 2×2 matrix using array.
 - d) Write a recursive code to compute the sum of squares as shown in the series.

$$m^2 + (m+1)^2 + \dots + n^2$$

for m, n integers $1 \le m \le n$

OR

Write a recurrence relationship that describes the number of ring moves as a function of n made by the following algorithm that solves the Towers of Hanoi problem using four spikes.

- 5. a) What do you understand about Graph? How the graphs are represented in the memory? www.rgpvonline.in
 - b) Write a C function to create the adjacency list representation of a graph, given its adjacency matrix representation.
 - c) Define the following with the help of example:
 - i) Adjacency Matrix of a graph
 - ii) In-degree and out-degree of a graph
 - iii) Directed Acyclic Graph (DAG)
 - d) Write an algorithm to implement depth-first search. How is depth-first search different from Breadth-first search? Also write any two application of complete graph.

OR

What is a minimum spanning tree? Using Dijkstra's methods find a spanning tree of the following graph.

Unit - II

- 2. a) What is Stack and how it is implemented using Array?
 List few application of stack.
 - b) What are the limitations of array data structures? How can it be avoided using linked lists?
 - c) Convert the following Infix expression to Postfix form using a stack. A + BC*C + (P * Q + R) * S, follow usual precedence rule and assume that the expression is legal.
 - d) What is Two-way Header List? Explain the operation of inserting an element at the front, middle and at the rear in a doubly linked list.

www.rgpvonline.in

OR

Show how to implement a queue using two stacks. Analyze the running time of the queue operations:

- Show that for a sequence of n queue operations, the implementation takes a worst case running time of O(n).
- ii) If there are a maximum of k elements in the queue at a given time, what is the worst case running time to perform one queue operation?

Unit-III

- 3. a) What Huffman Coding? List out few applications of it.
 - Explain Traversing Binary Tree and Threaded Binary Tree.
 - c) Prove that a binary tree with n nodes has at most $\lfloor n/2 \rfloor$ leaves.
 - d) i) Define B-tree of order m? When is it preferred to use B-trees.
 - ii) Write an algorithm to search a key in a B-tree. What is the worst case of searching in a B-tree? List the possible situations that can occur while inserting a key in a B-tree.

iii) What is the complexity of the following code?

OR

What are AVL trees? Explain various types of rotations required in balancing a AVL tree. Illustrate how insertions and deletions are performed in AVL trees by inserting the elements 8, 7, 3, 2, 1, 9, 6, 4 one after the other starting from an initially empty tree and construct AVL tree.

Unit-IV

- a) What do you understand by Sequential Search and Binary Search? Explain keys and records.
 - b) Explain Symbol Table and Dynamic Tree Table.
 - c) What is meant by hashing? Can a perfect hash function be made? Justify your answer. Explain briefly the various methods used to resolve collision.
 - d) Here is an array of 6 integers (unsorted):
 - 3, 10, 5, 9, 13, 8, 12. Sort the list in ascending order using Bubble sort and Radix sort. Draw the array diagram for each iteration.

OR

- Show under what order of input, the insertion sort will have worst-case and best-case situations for sorting the set {142, 543, 123, 65, 453, 879, 572, 434}.
- ii) Explain how Merge Sort sorts the following sequence of numbers using a diagram {142, 543, 123, 65, 453, 879, 572, 434}

CS/IT-305