Simulation Based Methods for Network Inference

Marthyna Luiza WEBER

Grenoble INP - Ensimag

2023-05-15

1. Partial Correlation

Correlation coefficient between X_1 and X_2 after removing the influence of Y, accounting for the scaling of the variables.

▶ Partial covariance: The partial covariance between X_1 and X_2 with reference to Y is calculated with:

$$Cov(X_1, X_2 \cdot Y) = \mathbb{E}[(X_1 - \hat{X}1(Y))(X_2 - \hat{X}2(Y))]$$

 $\hat{X}_{I}(Y)$ is the projection of X_{I} on Y, which is the expected value of X_{I} given Y:

$$\hat{X}_l(Y) = \mathbb{E}(X_l) + \frac{Cov(X_l, Y)}{Var(Y)}(Y - \mathbb{E}(Y))$$

1. Partial correlation

► Lemma:

$$Cov(X_I, X_m \cdot Y) = Cov(X_I, X_m) - Cov(X_I, Y) Var(Y)^{-1} Cov(X_m Y)^T$$

Given a vector $\mathbf{X} = (X_1, \dots, X_p)$ of p random variables. We have:

$$Cov^{\mathsf{partial}}(\mathbf{X}_{l,m}) = Cov(X_l, X_m \cdot X_{V \setminus \{l,m\}})$$

Partial correlation:

$$\rho^{\mathsf{partial}}(\mathbf{X}_{l,m}) = \frac{Cov(X_l, X_m \cdot X_{V \setminus \{l,m\}})}{\sqrt{Var(X_l \cdot X_{V \setminus \{l,m\}})Var(X_m \cdot X_{V \setminus \{l,m\}})}}$$

2. Regular vines

A vine in which two edges in tree T_i are joined by an edge in tree T_{i+1} only if these edges share a common node.

- Constraint set U_e : variables reachable from edge e
- Conditioning set D_e : variables shared between U_e and edge adjacent to e in the next tree
- ► Conditioned set $\{C_{1e}, C_{2e}\}$: symmetric difference of U_e and D_e

▶ $\{L|K\}$: the constraint set, with conditioned set L and conditioning set K.

4. C-vines

- ightharpoonup C-vines: vines where each tree T_i has a unique node of degree d-i
- ▶ D-vines: vines where each node in T_i has a degree at most 2.

5. Generatating random correlation matrices with C-vines

Algorithm to generate a random correlation matrix \mathbf{R} with density proportional to $det(\mathbf{R})^{\eta-1}$, with $\eta > 1$:

- 1. Initialize $\beta = \eta + \frac{d-1}{2}$
- 2. Loop for k = 1, ..., d 1:
 - 2.1 $\beta = \beta \frac{1}{2}$
 - 2.2 Loop for $\bar{i} = k + 1, ..., d$:
 - 2.2.1 generate $p_{k,i;1,\ldots,k-1} \sim \text{Beta}(\beta,\beta)$ on (-1,1)
 - 2.2.2 use the recursive formula for partial correlations calculation
- 3. Return \mathbf{R} , a $d \times d$ correlation matrix