Boolean Algebra and Logic Gates

Chun-Jen Tsai National Chiao Tung University 10/01/2012

Algebraic Systems (1/2)

- □ An algebraic structure has following properties:
 - 1. **Closure**. A set *S* is closed with respect to a *binary operator* if, for every pair of elements of *S*, the binary operator specifies a rule for obtaining a unique element of *S*.
 - 2. **Associative law**. A binary operator * on a set S is said to be associative whenever

$$(x * y) * z = x * (y * z)$$
 for all $x, y, z \in S$

3. **Commutative law**. A binary operator * on a set *S* is said to be commutative whenever

$$x * y = y * x$$
 for all $x, y \in S$

Algebraic Systems (2/2)

4. **Identity**. A set S is said to have an identity element with respect to a binary operation * on S if there exists an element $e \in S$ with the property that

$$e * x = x * e = x$$
 for every $x \in S$

5. **Inverse**. A set S having the identity element e with respect to a binary operator * is said to have an inverse whenever, for every $x \in S$, there exists an element $y \in S$ such that

$$x * y = e$$

6. **Distributive law**. If * and • are two binary operators on a set S, * is said to be distributive over • whenever

$$x * (y \bullet z) = (x * y) \bullet (x * z)$$

Example of Identity and Inverse

☐ The element 0 is an identity element with respect to the binary operator + on the set of integers

$$I = \{ \dots, -3, -2, -1, 0, 1, 2, 3, \dots \}$$
, since $x + 0 = 0 + x = x$ for any $x \in I$

The set of natural numbers, N, has no identity, since 0 is excluded from the set.

- □ In the set of integers I and the operator +, with e = 0, the inverse of an element a is (-a), since a + (-a) = 0.
- □ Question: Is 1 an identity?

Fields

- □ A field is an example of an algebraic structure. The field of real numbers is the basis for arithmetic and algebra:
 - The binary operator + defines addition.
 - The additive identity is 0.
 - The additive inverse defines subtraction.
 - The binary operator · defines multiplication.
 - The multiplicative identity is 1.
 - For $a \neq 0$, the multiplicative inverse of a = 1/a defines division (i.e., $a \cdot 1/a = 1$).
 - The only distributive law applicable is that of \cdot over +: $a \cdot (b + c) = (a \cdot b) + (a \cdot c)$.

Boolean Algebra (1/2)

- ☐ In 1854, George Boole developed an algebraic system now called Boolean algebra.
- Boolean algebra defines two binary operators + and
 and assumes the Huntington postulates:
 - 1. (a) The structure is closed with respect to the operator +
 - (b) The structure is closed with respect to the operator ·
 - 2. (a) The element 0 is an identity element with respect to +; that is, x + 0 = 0 + x = x.
 - (b) The element 1 is an identity element with respect to \cdot ; that is, $x \cdot 1 = 1 \cdot x = x$.

Boolean Algebra (2/2)

- 3. (a) The structure is commutative with respect to +; that is, x + y = y + x.
 - (b) The structure is commutative with respect to •; that is, $x \cdot y = y \cdot x$.
- 4. (a) The operator \cdot is distributive over +; that is, $x \cdot (y + z) = (x \cdot y) + (x \cdot z)$.
 - (b) The operator + is distributive over \cdot ; that is, $x + (y \cdot z) = (x + y) \cdot (x + z)$.
- 5. For every element $x \in B$, there exists an element $x' \in B$ (called the complement of x) such that (a) x + x' = 1 and (b) $x \cdot x' = 0$.
- 6. There exist at least two elements $x, y \in B$ such that $x \neq y$.

Boolean vs. Ordinary Algebra (1/2)

- ☐ Huntington postulates proposed in 1904 do not include the associative law for + and ·, which can be derived from the other postulates.
 - In 1933, Huntington realized that for Boolean algebra, we only need + and ' operators and three postulates (+ being associative and commutative, and (x' + y')' + (x'+y)' = x).
- □ The distributive law of + over · is valid for Boolean algebra, but not for ordinary algebra.
- □ Boolean algebra does not have additive or multiplicative inverses; therefore, there are no subtraction or division operations.

Boolean vs. Ordinary Algebra (2/2)

- □ Postulate 5 defines an operator called the complement that is not available in ordinary algebra.
- □ Ordinary algebra deals with the real numbers, which constitute an infinite set of elements. Boolean algebra deals with a two-valued set *B*. For example, *B* can be defined as a set with only two elements, 0 and 1.

Two-valued Boolean Algebra

$$\Box B = \{ 0, 1 \}$$

☐ Rules of operations:

\overline{x}	y	$x \cdot y$	X	У	<i>x</i> + <i>y</i>	$x \mid x'$
0	0	0	0	0	0	0 1
0	1	0	0	1	1	1 0
1	0	0	1	0	1	
1	1	1	1	1	1	

- ☐ It can be shown easily that the Huntington postulates are valid for the set B and operators + and ·
- □ The equivalent operations are the same as AND (·), OR (+), and NOT (′)

Properties of Boolean Algebra

- □ Duality Principle: In an expression, if the binary operators AND \leftrightarrow OR and the identities $1 \leftrightarrow 0$ are interchanged, the expression still holds
- Basic theorems:

Postulates and Theorems of Boolean Algebra

Postulate 2	(a)	x + 0 = x	(b)	$x \cdot 1 = x$
Postulate 5	(a)	x + x' = 1	(b)	$x \cdot x' = 0$
Theorem 1	(a)	x + x = x	(b)	$x \cdot x = x$
Theorem 2	(a)	x + 1 = 1	(b)	$x \cdot 0 = 0$
Theorem 3, involution		(x')' = x		
Postulate 3, commutative	(a)	x + y = y + x	(b)	xy = yx
Theorem 4, associative	(a)	x + (y + z) = (x + y) + z	(b)	x(yz) = (xy)z
Postulate 4, distributive	(a)	x(y+z) = xy + xz	(b)	x + yz = (x + y)(x + z)
Theorem 5, DeMorgan	(a)	(x + y)' = x'y'	(b)	(xy)' = x' + y'
Theorem 6, absorption	(a)	x + xy = x	(b)	x(x+y)=x

Proof of Basic Theorems (1/4)

- \Box Theorem 1(a): x + x = x
 - $x + x = (x + x) \cdot 1$ = (x + x) (x + x') = x + xx' = x + 0 = x
- \Box Theorem 1(b): $x \cdot x = x$
 - $x \cdot x = x \cdot x + 0$ = xx + xx' = x (x + x') $= x \cdot 1$ = x

Proof of Basic Theorems (2/4)

- ☐ Theorem 2 (a)
 - $x + 1 = 1 \cdot (x + 1)$ = (x + x')(x + 1)= $x + x' \cdot 1$ = x + x'= 1
- ☐ Theorem 2 (b)
 - $x \cdot 0 = 0$ by duality.
- □ Theorem 3: (x')' = x
 - Postulate 5 defines the complement of x. Since x + x' = 1 and $x \cdot x' = 0$, the complement of x' is x.

Proof of Basic Theorems (3/4)

☐ Theorem 6(a)

■ Proof by the truth table:

X	у	xy	x + xy
0	0	0	0
0	1	0	0
1	0	0	1
1	1	1	1

- ☐ Theorem 6(b)
 - $\mathbf{x}(x+y) = x$ by duality.

Proof of Basic Theorems (4/4)

□ DeMorgan's Theorems

- (x+y)' = x' y'
- (x y)' = x' + y'

X	У	x+y	(x+y)'	x'	y'	x'y'
0	0	0	1	1	1	1
0	1	1	0	1	0	0
1	0	1	0	0	1	0
1	1	1	0	0	0	0

Operator Precedence

- □ Operator Precedence
 - Parentheses
 - NOT
 - AND
 - OR
- □ Examples
 - $\blacksquare xy'+z$

Boolean Functions

- □ A Boolean function is composed of:
 - binary variables
 - binary operators OR and AND
 - unary operator NOT
 - parentheses
- □ Examples

$$\blacksquare F_1 = x + y'z$$

$$F_2 = x' y' z + x' y z + x y'$$

Truth Tables for F_1 and F_2

X	y	Z	F ₁	F ₂
0	0	0	0	0
0	0	1	1	1
0	1	0	0	0
0	1	1	0	1
1	0	0	1	1
1	0	1	1	1
1	1	0	1	0
1	1	1	1	0

Logic Implementation (1/2)

 \Box We can use logic gates to implement $F_1 = x + y'z$

Logic Implementation (2/2)

☐ Gate-level Implementations may not be unique

19/45

Algebraic Manipulation

- ☐ In a Boolean expression, we define
 - literal: a primed or unprimed variable (an input to a gate)
 - term: an implementation with a gate
- □ The minimization of the number of literals and the number of terms can help us implement a circuit with less components

Examples: Algebraic Minimization

☐ Simplify the following Boolean functions:

1.
$$x(x' + y) = xx' + xy = 0 + xy = xy$$
.

2.
$$x + x'y = (x + x')(x + y) = 1(x + y) = x + y$$
.

3.
$$(x + y)(x + y') = x + xy + xy' + yy' = x(1 + y + y') = x$$
.

4.
$$xy + x'z + yz = xy + x'z + yz(x + x')$$

= $xy + x'z + xyz + x'yz$
= $xy(1 + z) + x'z(1 + y)$
= $xy + x'z$.

5.
$$(x + y)(x' + z)(y + z) = (x + y)(x' + z)$$
, by duality from function 4.

Complement of a Function

- \Box The complement of a function F is F'. It can be computed by DeMorgan's theorem.
- □ Example: 3-variable DeMorgan's theorem (A + B + C)' = A'B'C'
- ☐ General DeMorgan's law:

$$(A + B + C + ... + F)' = A'B'C'...F'$$

 $(ABC...F)' = A' + B' + C' + ... + F'$

Examples: Finding Complement

□ Find the complement of the functions $F_1 = x'yz' + x'y'z$ and $F_2 = x(y'z' + yz)$:

$$F'_{1} = (x'yz' + x'y'z)' = (x'yz')'(x'y'z)' = (x + y' + z)(x + y + z')$$

$$F'_{2} = [x(y'z' + yz)]' = x' + (y'z' + yz)' = x' + (y'z')'(yz)'$$

$$= x' + (y + z)(y' + z')$$

$$= x' + yz' + y'z$$

Complement by Duality

- Complement of a Boolean function can be obtained by taking its duals and complementing each literal
- □ Example: finding the complement of $F_1 = x' y z' + x' y' z$

Dual of F_1 is (x' + y + z')(x' + y' + z). Complementing each literal, we have

$$(x + y' + z)(x + y + z').$$

Canonical and Standard Forms

□ Minterm

- An AND term consists of all literals in their normal or complement forms
- For example, with two binary variables x and y, there are four minterms: xy, xy', x'y, x'y'
- It is also called a standard product
- \blacksquare n variables can be combined to form 2^n minterms

□ Maxterm:

- An OR term consists of all literals in their normal or complement forms
- It is also call a standard sum
- \blacksquare *n* variables can be combined to form 2^n maxterms

Three-variable Min- and Max-terms

☐ In the table, each maxterm is the complement of its corresponding minterm, and vice versa

Minterms and Maxterms for Three Binary Variables

	Minter		interms	Maxte	erms	
X	y	Z	Term	Designation	Term	Designation
0	0	0	x'y'z'	m_0	x + y + z	M_0
0	0	1	x'y'z	m_1	x + y + z'	M_1
0	1	0	x'yz'	m_2	x + y' + z	M_2
0	1	1	x'yz	m_3	x + y' + z'	M_3
1	0	0	xy'z'	m_4	x' + y + z	M_4
1	0	1	xy'z	m_5	x' + y + z'	M_5
1	1	0	xyz'	m_6	x' + y' + z	M_6
1	1	1	xyz	m_7	x' + y' + z'	M_7

Boolean Function Representation

□ An Boolean function can be expressed by a truth table as well as a sum of minterms

$$f_1 = x'y'z + xy'z' + xyz = m_1 + m_4 + m_7$$

$$f_2 = x'yz + xy'z + xyz' + xyz = m_3 + m_5 + m_6 + m_7$$

Functions of Three Variables

х	y	Z	Function f ₁	Function f ₂
0	0	0	0	0
0	0	1	1	0
0	1	0	0	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

 \square How do we calculate the complement of f_1 and f_2 ?

Canonical Form

- □ Boolean functions expressed as a sum of minterms or product of maxterms are said to be in canonical form
- \square Express the Boolean function F=A+B'C as a sum of minterms:

■
$$F = A (B+B') + B'C$$

= $AB + AB' + B'C$
= $AB(C+C') + AB'(C+C') + (A+A')B'C$
= $ABC + ABC' + AB'C' + AB'C' + A'B'C$

$$F = A'B'C + AB'C' + AB'C + ABC' + ABC'$$

$$= m_1 + m_4 + m_5 + m_6 + m_7$$

$$F(A,B,C) = \Sigma(1,4,5,6,7)$$

Truth Table for $F = A + BC$						
A	В	С	F			
0	0	0	0			
0	0	1	1			
0	1	0	0			
0	1	1	0			
1	0	0	1			
1	0	1	1			
1	1	0	1			
1	1	1	1			
			1			

Example: Product of Maxterms

 \square Express the Boolean function F = xy + x'z as a product of maxterms:

■
$$F = xy + x'z$$

= $(xy + x')(xy + z)$
= $(x + x')(y + x')(x + z)(y + z)$
= $(x' + y)(x + z)(y + z)$

$$x'+y = x'+y+zz' = (x'+y+z)(x'+y+z')$$
= $(x'+y+z)(x'+y+z')(x+y+z')(x+y+z')$
= $M_4M_5M_2M_0$
= $\Pi(0, 2, 4, 5)$

Conversion btw. Canonical Forms

- □ Example:
 - $F(A, B, C) = \Sigma(1, 4, 5, 6, 7)$
 - $F'(A, B, C) = \Sigma(0, 2, 3) = m_0 + m_2 + m_3$
 - Since $m'_j = M_j$, by DeMorgan's theorem, we have

$$F = (m_0 + m_2 + m_3)' = m_0' \cdot m_2' \cdot m_3'$$

= $M_0 M_2 M_3 = \prod (0, 2, 3)$

- $lue{}$ Conversion rule: interchange the symbols Σ and Π and list those numbers missing from the original form
 - Σ of 1's, Π of 0's

Example: Conversion

$$\Box F = xy + x'z$$

- Sum of Minterms: $F(x, y, z) = \Sigma(1, 3, 6, 7)$
- Product of Maxterms: $F(x, y, z) = \Pi(0, 2, 4, 6)$

Truth Table for F = xy + x'z

X	y	Z	F
0	0	0	0 \
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0 _
1	0	1	0 /
1	1	0	1 1/
1	1	1	1 V

Standard Forms

- ☐ Canonical forms are verbose. In practice, we prefer the standard forms of Boolean functions
 - In standard form, we don't require all variables in each term
 - Two forms: sum-of-products and product-of-sums
- □ Examples:

$$F_1 = y' + xy + x'yz'$$

$$F_2 = x(y'+z)(x'+y+z)$$

Equivalent Implementations

□ A Boolean function can be implemented in different ways. For example, $F_3 = AB + C(D + E)$:

Three- and two-level implementation

Logic Operations (1/2)

- ☐ For *n*-variable Boolean functions
 - 2^{2^n} functions for *n* binary variables
 - \blacksquare 2ⁿ rows in the truth table of n binary variables
- ☐ Example: 16 functions of two binary variables

Truth Tables for the 16 Functions of Two Binary Variables

X	y	Fo	F ₁	F ₂	F ₃	F ₄	F ₅	F ₆	F ₇	F ₈	F ₉	F ₁₀	F ₁₁	F ₁₂	F ₁₃	F ₁₄	F ₁₅
0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
0	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
1	0 1 0 1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1

Logic Operations (2/2)

☐ A list of all two-variable functions

Boolean Functions	Operator Symbol	Name	Comments
$F_0 = 0$		Null	Binary constant 0
$F_1 = xy$	$x \cdot y$	AND	x and y
$F_2 = xy'$	x/y	Inhibition	x, but not y
$F_3 = x$		Transfer	\mathcal{X}
$F_4 = x'y$	y/x	Inhibition	y, but not x
$F_5 = y$		Transfer	y
$F_6 = xy' + x'y$	$x \oplus y$	Exclusive-OR	x or y, but not both
$F_7 = x + y$	x + y	OR	x or y
$F_8 = (x + y)'$	$x \downarrow y$	NOR	Not-OR
$F_9 = xy + x'y'$	$(x \oplus y)'$	Equivalence	x equals y
$F_{10} = y'$	<i>y'</i>	Complement	Not <i>y</i>
$F_{11} = x + y'$	$x \subset y$	Implication	If <i>y</i> , then <i>x</i>
$F_{12} = x'$	x'	Complement	Not <i>x</i>
$F_{13} = x' + y$	$x\supset y$	Implication	If x , then y
$F_{14} = (xy)'$	$x \uparrow y$	NAND	Not-AND
$F_{15} = 1$	-	Identity	Binary constant 1

35/45

Digital Logic Gates

- ☐ Boolean expression: AND, OR and NOT operations
- ☐ Factors for constructing gate of a logic operation
 - The feasibility and economy of producing the gate.
 - The possibility of extending gate's inputs above two.
 - The properties (e.g. commutative) of the operations.
 - The ability of the gate to implement Boolean functions.
- □ Consider the 16 two-variable functions
 - Two are equal to a constant; four are repeated twice.
 - Inhibition and implication are not commutative or associative.
 - The other eight: Complement (inverter), Transfer (buffer), AND, OR, NAND, NOR, XOR, and XNOR (equivalence) are standard gates.

Common Logic Gates (1/2)

Name	Graphic symbol	Algebraic function	Truth table
AND	<i>x</i>	$F = x \cdot y$	$\begin{array}{c cccc} x & y & F \\ \hline 0 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \\ \end{array}$
OR	$x \longrightarrow F$	F = x + y	$\begin{array}{c cccc} x & y & F \\ \hline 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \\ \end{array}$
Inverter	x— F	F = x'	$\begin{array}{c c} x & F \\ \hline 0 & 1 \\ 1 & 0 \end{array}$
Buffer (used for sign		F = x	$\begin{array}{c c} x & F \\ \hline 0 & 0 \\ 1 & 1 \end{array}$

Common Logic Gates (2/2)

NAND	<i>x</i>	F = (xy)'	$\begin{array}{c cccc} x & y & F \\ \hline 0 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ \end{array}$
NOR	$x \longrightarrow F$	F = (x + y)'	$\begin{array}{c cccc} x & y & F \\ \hline 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \\ \end{array}$
Exclusive-OR (XOR)	$x \longrightarrow F$	$F = xy' + x'y$ $= x \oplus y$	$ \begin{array}{c cccc} x & y & F \\ \hline 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{array} $
Exclusive-NOR or equivalence	$x \longrightarrow F$	$F = xy + x'y'$ $= (x \oplus y)'$	$\begin{array}{c cccc} x & y & F \\ \hline 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \\ \end{array}$

Extension to Multiple Inputs

- □ A gate can be extended to multiple inputs easily if the binary operation is commutative and associative
 - AND and OR are extensible
 - Exclusive-OR (XOR) are extensible, but cascading implementation is often used

х	y	z	F
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1
(c) Truth table			

Multiple-Input NAND, NOR

□ NAND and NOR are not associative, what can we do?

☐ Define multiple-input NAND and OR gates as follows:

$$\begin{array}{c|c} x \\ y \\ z \end{array}$$
 $(xyz)'$

(b) 3-input NAND gate

Signal Assignment & Polarity

- □ Positive and Negative Logic
 - two signal values → two logic values
 - positive logic: H = 1; L = 0
 - negative logic: H = 0; L = 1
 - the positive logic is used in this book

Х	у	Z
L	L	L
L	H	L
H	L	L
H	H	H

(a) Truth table with *H* and *L*

$\begin{array}{cccc} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \end{array}$	

(c) Truth table for positive logic

Х	у	Z
1	1	1
1	0	1
0	1	1
0	0	0

(e) Truth table for negative logic

(b) Gate block diagram

(d) Positive logic AND gate

(f) Negative logic OR gate

Integrated Circuits (IC)

- □ An digital IC can be categorized according to its complexity as follows:
 - SSI: < 10 gates, less than 10 pins
 - MSI: 10 ~ 1000 gates
 - LSI: thousands of gates
 - VLSI: millions of gates
- □ A digital system can be built using multiple SSI, MSI, LSI ICs; or by a single VLSI IC.
 - The single-chip approach has many advantages: small size, low power consumption, low manufacturing cost, high reliability, and high performance.

Digital Circuit Technologies

- ☐ Different technologies for gate logic implementations
 - TTL: transistor-transistor logic (used for 50 years now)

(the implementation of a NAND gate)

- ECL: emitter-coupled logic (high speed, high power consumption)
- MOS: metal-oxide semiconductor (NMOS, high density)
- CMOS: complementary MOS (low power)

Gate Implementation Properties

- ☐ Each digital logic family has different characteristics
 - Fan-out: the number of standard loads that the output of a typical gate can drive
 - Power dissipation
 - Propagation delay: the average transition delay time for the signal to propagate from input to output
 - Noise margin: the minimum of external noise voltage that caused an undesirable change in the circuit output

Computer-Aided Design

- □ Today, a complex digital circuit has millions of transistors, we need computers to assist the design process
- ☐ Digital circuit design flow involves several steps:
 - Design entry
 - Schematic capture
 - HDL Hardware Description Languages: Verilog, VHDL
 - Simulation
 - Waveform simulator shows you the cycle-accurate output signals given an input signals (test patterns generated by a testbench)
 - Physical realization (logic synthesis, mapping, and layout)
 - ASIC, FPGA, PLD