Amendments to the Claims:

(Previously presented) A process for preparing a 3-phenyl(thio)uracil or 3-phenyl(thio)uracil of the formula I

where the variables are each defined as follows:

- $$\begin{split} R^1 &\quad \text{is hydrogen, cyano, amino, } C_1\text{--}C_6\text{--alkyl, } C_1\text{--}C_3\text{--cyanoalkyl,} \\ &\quad C_1\text{--}C_6\text{--haloalkyl, } C_1\text{--}C_6\text{--haloalkoxy, } C_3\text{--}C_7\text{--cycloalkyl, } C_2\text{--}C_6\text{--alkenyl,} \\ &\quad C_2\text{--}C_6\text{--haloalkenyl, } C_3\text{--}C_6\text{--alkynyl, } C_3\text{--}C_6\text{--haloalkynyl or } \\ &\quad \text{phenyl-}C_1\text{--}C_4\text{--alkyl;} \end{split}$$
- R² and R³ are each independently hydrogen, C₁-C₆-alkyl, C₁-C₆-haloalkyl, C₃-C₇-cycloalkyl, C₂-C₆-alkenyl, C₂-C₆-haloalkenyl, C₃-C₆-alkynyl or C₃-C₆-haloalkynyl;
- X¹, X² and X³ are each independently oxygen or sulfur;
- $\label{eq:Ar} Ar \quad \text{is phenyl, which may be mono- or polysubstituted by the following} \\ groups: \ \text{hydrogen, halogen, cyano, C_1-C_4-alkyl or C_1-C_4-haloalkyl; and}$
- A is a radical derived from a primary or secondary amine or NH_2 ; comprising reacting a phenyl iso(thio)cyanate of the formula II

$$X^1 = C = N \underset{Ar}{\overset{X^3}{\bigvee}} SO_2 \underset{A}{\overset{}{\bigvee}} II,$$

where the variables X^1 , X^3 , Ar and A are each as defined above, with an enamine of the general formula III

$$R^{1a}$$
 R^{1a}
 R

where

R^{1a} is as defined above for R¹ with the exception of amino;

R², R³ and X² are each as defined above; and

R⁴ is C₁-C₈-alkyl, C₁-C₆-haloalkyl, C₁-C₃-alkoxy-C₁-C₃-alkyl, C₁-C₃-alkylthio-C₁-C₃-alkyl, C₂-C₆-alkenyl, C₂-C₆-haloalkenyl, C₃-C₆-alkynyl, C₃-C₆-haloalkynyl, C₃-C₇-cycloalkyl, C₁-C₆-cyanoalkyl or benzyl which is itself unsubstituted or substituted on the phenyl ring by methyl, methoxy, methylthio, halogen, nitro or cyano;

in the presence of from 1.8 to 2.6 base equivalents per mole of the phenyl iso(thio)cvanate of the formula II;

and, if appropriate, in a further step, reacting the resulting 3-phenyl(thio)uracil or 3-phenyl(thio)uracil or 3-phenyldithiouracil of the formula I where R¹=R^{1a}, where R¹ is hydrogen, with an aminating agent of the formula IV

where L1 is a nucleophilic leaving group

to give a 3-phenyl(thio)uracil or 3-phenyldithiouracil of the formula I where $R^1 = amino$

- 2. (Original) The process according to claim 1, wherein the reaction is effected in the presence of a base which is selected from alkali metal and alkaline earth metal carbonates, alkali metal and alkaline earth metal alkoxides, alkali metal and alkaline earth metal hydrides and tertiary amines.
- 3. (Previously presented) The process according to claim 1, wherein the reaction is effected in a solvent comprising at least one aprotic polar solvent, and the aprotic polar solvent has a water content of from 0 to 0.5% by weight, based on the total amount of compound II, compound III and solvent.
- 4. (Original) The process according to claim 3, wherein the solvent comprises at least 50% by volume of an aprotic polar solvent selected from carboxamides, carboxylic esters, carbonates, nitriles and sulfoxides.
- 5. (Original) The process according to claim 4, wherein the solvent comprises at least 80% by weight of an aprotic polar solvent.
- 6. (Previously presented) The process according to claim 1, wherein from 0.9 to 1.3 mol of the enamine of the formula III are used per mole of the compound II.
- 7. (Previously presented) The process according to claim 1, wherein a 3-phenyl(thio)uracil or a 3-phenyldithiouracil, where R¹ is hydrogen, is prepared and this compound I is subsequently
 - (A) reacted with an aminating agent of the formula IV

 H_2N-L^1 IV

where L¹ is a nucleophilically displaceable leaving group to obtain a compound of the formula I where

R1 is amino; and

the variables $\mathsf{R}^2,\,\mathsf{R}^3,\,\mathsf{X}^1,\,\mathsf{X}^2,\,\mathsf{X}^3,\,\mathsf{Ar}$ and A are each as defined above; or

(B) reacted with an alkylating agent of the formula V

$$R^{1b}$$
- L^2 V

where

 $R^{1b} \quad \text{is C_1-C_6-alkyl, C_1-C_6-haloalkyl, C_3-C_7-cycloalkyl, C_2-C_6-alkenyl,} \\$

 C_2 - C_6 -haloalkenyl, C_3 - C_6 -alkynyl or C_3 - C_6 -haloalkynyl; and L^2 is a nucleophilically displaceable leaving group:

to obtain a compound of the general formula I where

R1 is as defined for R1b; and

the variables R², R³, X¹, X², X³, Ar and A are each as defined above.

8. (Previously presented) The process according to claim 1, wherein the phenyl iso(thio)cyanate of the formula II is described by the formula IIA

$$X^{1} = C = N \xrightarrow{R^{0}} R^{0}$$

$$R^{a} \qquad \qquad ||A|$$

$$X^{1} = N \xrightarrow{R^{0}} N \xrightarrow{N} SO_{2} \xrightarrow{A}$$

where

X1, X3 and A are each as defined above and

Ra, Rb, Rc and Rd are each independently

hydrogen, halogen, cyano, C₁-C₄-alkyl or C₁-C₄-haloalkyl.

9. (Original) The process according to claim 8, wherein, in formula IIA,

 R^a is halogen, cyano or trifluoromethyl; R^c is hydrogen or halogen; and R^b and R^d are each hydrogen.

 (Currently amended) The process according to claim 1, wherein the A radical is -NR⁵R⁶ where the variables R⁵ and R⁶ are each defined as follows: R⁵ and R⁶ are each independently

hydrogen, C_1 - C_{10} -alkyl, C_2 - C_{10} -alkenyl or C_2 - C_{10} -alkynyl, each of which may be unsubstituted or substituted by one of the following radicals:

 $C_1-C_4-\text{alkoxy},\ C_1-C_4-\text{alkylthio},\ CN,\ NO_2,\ \text{formyl},\ C_1-C_4-\text{alkylcarbonyl},\ C_1-C_4-\text{alkylcarbonyl},\ C_1-C_4-\text{alkylaminocarbonyl},\ C_1-C_4-\text{alkylsulfinyl},\ C_1-C_4-\text{alkylsulfinyl},\ C_1-C_4-\text{alkylsulfinyl},\ C_1-C_4-\text{alkylsulfonyl},\ C_3-C_{10}-\text{cycloalkyl},\ 3-\text{ to }8-\text{membered heterocyclyl}$ having from one to three heteroatoms selected from O, S, N and an NR 7 group

where R⁷ is hydrogen, C₁-C₆-alkyl, C₃-C₆-alkenyl or C₃-C₆-alkynyl, phenyl which may itself have 1, 2, 3 or 4 substituents selected from halogen, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄-fluoroalkyl,

C₁-C₄-alkyloxycarbonyl, trifluoromethylsulfonyl, C₁-C₃-alkylamino, C₁-C₃-dialkylamino, formyl, nitro or cyano;

 $\begin{array}{l} C_1-C_{10}\text{-haloalkyl},\ C_2-C_{10}\text{-haloalkenyl},\ C_2-C_{10}\text{-haloalkynyl},\ C_3-C_8\text{-cycloalkyl},\ C_3-C_{10}\text{-cycloalkenyl},\ 3\text{- to }8\text{-membered heterocyclyl having from one to}\\ \text{three heteroatoms selected from O, S, N and an NR}^7\text{ group where R}^7\text{ is}\\ \text{hydrogen,}\ C_1-C_8\text{-alkyl},\ C_3-C_8\text{-alkenyl or }C_3\text{-}C_8\text{-alkynyl},\\ \text{phenyl or naphthyl}, \end{array}$

where C_3 - C_8 -cycloalkyl, C_3 - C_{10} -cycloalkenyl, 3- to 8-membered heterocyclyl, phenyl or naphthyl, each may themselves have 1, 2, 3 or 4 substituents selected from halogen, C_1 - C_4 -alkyl, C_1 - C_4 -alkoxy, C_1 - C_4 -fluoroalkyl,

 C_1 - C_4 -alkyloxycarbonyl, trifluoromethylsulfonyl, formyl, C_1 - C_3 -alkylamino, C_1 - C_3 -dialkylamino, phenoxy, nitro or cyano; or

R⁵ and R⁶ together form a saturated or partially unsaturated 5- to 8-membered nitrogen heterocycle which may have, as ring members, one or two

carbonyl groups, thiocarbonyl groups and/or one or two further heteroatoms selected from O, S, N and an NR^7 group

where R^7 is hydrogen, C_1 - C_6 -alkyl, C_3 - C_6 -alkenyl or C_3 - C_6 -alkynyl, and which may be substituted

by C₁-C₄-alkyl, C₁-C₄-alkoxy and/or C₁-C₄-haloalkyl.

11. (Original) The process according to claim 10, wherein R⁵ and R⁶ are each defined as follows:

R5 and R6 are each independently

hydrogen, C_1 - C_6 -alkyl which may if appropriate carry a substituent selected from the group consisting of halogen, cyano, C_1 - C_4 -alkoxy, C_1 - C_4 -alkoxycarbonyl, C_1 - C_4 -alkylthio, C_3 - C_8 -cycloalkyl, furyl, thienyl,

1,3-dioxolanyl and phenyl

which may itself optionally be substituted by halogen or C_1 - C_4 -alkoxy; C_2 - C_6 -alkenyl, C_2 - C_6 -alkynyl, C_3 - C_8 -cycloalkyl or phenyl

which may if appropriate carry 1 or 2 substituents selected from the group consisting of halogen, C_1 - C_4 -alkyl, C_1 - C_4 -fluoroalkyl, C_1 - C_4 -alkoxy, C_1 - C_4 -alkoxycarbonyl, nitro and C_1 - C_3 -dialkylamino;

naphthyl or pyridyl; or

 R^5 and R^6 together form a five-, six- or seven-membered saturated or unsaturated nitrogen heterocycle which may contain, as a ring member, one further heteroatom selected from N, O and an NR 7 group

where R^7 is hydrogen, C_1 - C_6 -alkyl, C_3 - C_6 -alkenyl or C_3 - C_6 -alkynyl, and/or may be substituted by one, two or three substituents selected from C_1 - C_4 -alkyl and C_1 - C_4 -haloalkyl.

- 12. (Previously presented) The process according to claim 1, wherein X^1, X^2 and X^3 are each oxygen.
- 13. (Previously presented) The process according to claim 1, wherein R¹ is hydrogen, amino or C₁-C₄-alkyl.
- 14. (Previously presented) The process according to claim 1, wherein R^2 is hydrogen, C_1 - C_4 -alkyl or C_1 - C_4 -haloalkyl.

15. (Previously presented) The process according to claim 1, wherein R³ is hydrogen.

16. (Previously presented) A process for preparing a 3-phenyl(thio)uracil or 3-phenyl(ithiouracil of the formula I

where

R¹ is C₁-C₆-alkyl, C₁-C₆-haloalkyl, C₃-C₇-cycloalkyl, C₂-C₆-alkenyl, C₂-C₆-haloalkenyl, C₃-C₆-alkynyl or C₃-C₆-haloalkynyl;

R² and R³ are each independently

 $\label{eq:controller} \mbox{hydrogen, C_1-C_6-alkyl, C_1-C_6-alkyl, C_3-C_7-cycloalkyl, C_2-C_6-alkenyl, C_2-C_6-alkynyl or C_3-C_6-haloalkenyl, C_3-C_6-alkynyl or C_3-C_6-haloalkynyl; }$

X¹, X² and X³ are each independently oxygen or sulfur;

Ar is phenyl, which may be mono- or polysubstituted by the following: hydrogen, halogen, cyano, C_1 - C_4 -alkyl or C_1 - C_4 -haloalkyl; and

A is a radical derived from a primary or secondary amine or NH_2 , comprising reacting a 3-phenyl(thio)uracil or 3-phenyldithiouracil of the formula I, where R^1 is hydrogen, with an alkylating agent of the formula V

$$R^{1b}$$
 L^2 V ,

where L2 is a nucleophilically displaceable leaving group, and

$$\begin{split} R^{1b} & \text{ is } C_1\text{--}C_6\text{--alkyl}, \ C_1\text{--}C_6\text{--haloalkyl}, \ C_3\text{--}C_7\text{--cycloalkyl}, \ C_2\text{--}C_6\text{--alkenyl}, \\ & C_2\text{--}C_6\text{--haloalkenyl}, \ C_3\text{--}C_6\text{--alkynyl} \ \text{or} \ C_3\text{--}C_6\text{--haloalkynyl}. \end{split}$$