

69	138	207	276
TaqI CTCTTTTCGAT 66	TTGCTGGCTGT	H	
HindIII AluI ATGGGAAGCTTATT: 52	Saci Alui ATGGAGCTCTAAAGC 119	TCTCTGAAAGTGCTT	AGATGATGAACAGCC
rttgacgaggcccaact	Saci Alui AGCCGTGCGCTCTATAGAATTAGAATTGATGGAGCTCTAAAGGTTGCTGGCTG	AAACTTGTGTATAAATAT	ATTGCTTCTCAATTTGGA
FindIII TaqI AluI	Hhai TAATTGAGCCGTGCGCTCTA	NdeI - 139 TTTCTTGTTCATATGATTAACTTCTAAACTTGTGTATAAATATTCTCTGAAAGTGCTTCTTTTGGCATA 150	208 TGTAGGTTGGGCAAAAACGAGGAAGATTGCTTCTCAATTTGGAAGATGATGAACAGCCGAAGAAAAA
1 GTCC	70 ACTCTAATTG	139 TTTC	208 TGTA

FIG. 1A

277 TAAGAATAGGCAGTCCTGCTACTCAATGGATCTCAGTCTATAACGGTCGTCGTCCATGAAACAGAGGT 309

DdeI

Sau3AI

RECEIVED

OCT 2 5 2002

414 483 AluI 346 AACACATTTTTGCATATACACTTTGATAGTTCCTCACTAACTGTGTAATCTTTTGGTAGATATCACTA 415 CAATGTTGGAGAGACAANGCTGCGCJRRCATATACAGAAGGGAAATGAAGGCCTTTTGATTAGCTG HaeIII HinfI Nael Mspi Hpali 440 440 AluI HhaI AluI

ECORV

621 690 622 AGTAAACTAAGAAGTTACCTTATGATTTCCCCGCAGGACTGGATTATGGAACAATGGGAAAAGAAC 629 HinfI MspI HpaII DdeI

552

484 TGTAGCATCAGCAGCTATCTCTGGGCTCTCATCATGGATGCTGGAACTGGATTCACTTCTCAAGTTTA 498

FIG. 1B

RECEIVED

OCT 2 5 2002

ORI 2 2 Mar B. ANTENNA & MARKET & STATE OF STATE

OCT 2 5 2002

AluI	AGCTTTCATA 1173	1166
Sau3AI	CATAGGAGGTGGGAGAATGGGTATAGAATAACATCAATGGCAGCAACTGCGGATCAAGCAGCTTTCATA 1173	1156
	1105	

1174 TTAAGCATACCAAAGCGTAAGATGGTGGATGAAACTCAAGAGACTCTCCGCACCACCGCCTTTCCAAGT 1242 HinfI Scal

ACTCATGTCAAGGTTGGTTTTTAGCTTTGAACACAGATTTGGATCTTTTTGTTTTGTTTTCCATATAC 1311 1243 1243 Sau3AI AluI 1243

1312 ATAGGACCTGAGAGCTTTTGGTTGAATTTTTTTTTTTTGGGACAAATGGGCGAAGAATCTGTACATTG 1380 1316 1326 HinfI DdeI

1381 CATCAATATGCTATGGCAGGACAGTGTGCTGATGATACACACTTAAGCATCATGTGTTTTTAGAAAG 1449

1450 CCGAAGACAATTGGAGCCACGACCTCAGGGTCGTCATAATACCAATCAAAGACGTAAAACCAGACGAGTC 1518 1472 MstII DdeI

FIG. 1D

RECEIVED

OCT 2 5 2002

RsaI

AluI DraI

1657 ATCCATTIGGGTIGITIAAIGCGICTITAGATAIGTITICIGITITCTTTCTCAGIGICIGAATAICTGAT 1725 DdeI

Tagi Hinfi

HinfI

ECORI

FIG. 1

RECEIVED

OCT 2 5 2002

Sphi	3CA 2001 2000
AluI	TATCGTTCATAAGATGTCACGCCAGGACATGAGCTACACATCACATATTAGCATGCA 2001 1968 1978
BstNI	 GCCAGGACATGAG 1968
	TTTTTGAAAATATCGTTCATAAGATGTCACG
	1933

racacgrdarcgccargcaaarcrccarrcrcaccraraaarragaggcrcggcrrca 2139 2089
2071 CATGCAATATTTAC 2073 2075

2140 CTTTTACTCAAAACTCATCACTACAAAACATACACAAATGGCGAACAAGCTCTTC 2200 Met 2195

FIG. 1F

RECEIVED

OCT 2 5 2002

69 138 207 276 345 414 NdeI TTTCTTGTTCATATGATTAACTTCTAAACTTGTGTATAAATATTCTCTGAAAGTGCTTCTTTTGGCATA 206 Tagi TGTAGGTTGGGCAAAAACGAGGAAGATTGCTTCTCAATTTGGAAGAGGATGAACAGCCGAAGAAGAAAA TAAGAATAGGCAGTCCTGCTACTCAATGGATCTCAGTCTATAACGGTCGTCGTCCTCTTGAAACAGAGGT AAAACATTTTTTGCATATACACTTTGAAAGTTCCTCACTAACTGTGTAATCTTTTGGTAGATATCACTA EcoRV 408 HindIII AluI Saci Length = 4325Sau3AI DdeI FIGURE 2A HhaI XbaI NCG-I86 Linear Lambda CGNI-2 Tagi Avai || XhoI

RECEIVED

OCT 2 5 2002

FIGURE 2B

	483	552	621	069	759
HincII HhaI HaeIII DdeI BstEII BalI	 Caatgtcggagagacaa3ggctgmvcanatatacaaagggaaatgaagtggccttttgattagctg 439 438 440	AluI 	MspI HpalI TGAGTTGTCACCGGTCTTCCTACACGTAATAATCAGTTGAAGCAATTAAGAATCAATTTGATTTGT 564 564	Dde.i AGTAAACTAAGAAGAACTTACCTTATGTTTTCCCCGCAGGACTGGATTATGGAACAATGGAAAAAAAA	Saci Alui Alui Alui

RECEIVED

001 25 2002

ScaI RsaI

828 897 996 TTAGTGAATAATAAACTTATACCCACAAAGTCTTCATTGACTTATTTTATATACTTGTGAATTGCTAG GGAAAGAAGATTTTCATGTAACCTCCATGACAACTGCTGGTAATCGTTGGGGTGTGGTAATGTCGAGGA HinfI Sau3AI BclI DdeI XmnI

1035 1104 .ATAGGAGGTGGGAATGGGTATAGAATAACATCAATGGCAGCAACTGCGĠATCAAGCAGĊTTTCATAT 1173 **ACTCTGGCTTCTCTGATCAGGTAGGTTTTTTGTCTCTTATTGTCTGGTGTTTTTATTTTCCCCTGATAGT** AluI Sau3AI RsaI AluI

FIGURE 2C

TAAGCATACCAAAGCGTAAGATGGTGGATGAAACTCAAGAGÁCTCTCCGCACCACCGCCTTTCCAAGTÁ 1242

HinfI

RECEIVED

OCT 2 5 2002

DdeI Avali Alui TAGACCTGAGAGACTTTTTTTTTTTTTTTTTTTTTGGACAATGGGCGAAGAATCTGTACATTGCATCA 1315 1315 1319 ATATGCTATGGCAGGACAGTGTGCTGATACACATTTTTTTT	1454 Rsai ATGAAAGGGATGTGTCTTGGTATGTACGAATAACAAAGAGAAGATGGAATTAGTAGTAGAATA 1587 1548 Alui	TTTGGGAGCTTTTTAAGCCCTTCAAGTGTGCTTTTTATCTTATTGATATCATCCATTTGCGTTGTTTAA 1656	
---	--	--	--

FIGURE 2D

TGCGTCTCTAGATATGTTCCTATATCTTTCTCAGTGTCTGATAAGTGAAAATGTGAGAAAAACCATACCAA 1725 1664

Ddel

RECEIVED

OCT 2 5 2002

2208

	AGTTGCCACCTTCTGTGCCAATTG 1794
Hinfi	 ACCAAAATATTCAAATCTTTTTTAATAATGTTGAATCACTCGGAGTTGCCACCTTCTGTGCCAATTG 1761

	1863	1932
HinfI	 TGCTGAATCTATCACACTAGAAAAAAAACATTTCTTCAAGGTAATGACTTGTGGACTATGTTCTGAATTC 1863 1800 1800	TCATTAAGTTTTTATTTTCTGAAGTTTTAAGTTTTTACCTTCTGTTTTGAAATATATCGTTCATAAGATG 1932

1932	
TCATTAAGTTTTTATTTTCTGAAGTTTTAAGTTTTTTACCTTCTGTTTTGAAATATATGTCGTTCATAAGATG 1932	IdqS

1932		2001
ICATTAAGITTITTTTTTTTTAAGITTTACTTTTACCTTCTGTTTTGAAATATCGTTCATAAGATG 1932	Sphi Sau3AI	rcacgccaggacargagcracarcgcacaragcargcagarcagacgartrgrcacrcrcrrrraaa 2001 1940 1950
	AluI	SAGCTACA 1950
ICATTAAGTTTTTA	BstNI	TCACGCCAGGACATO

	2070			
Sauzat	J TGATCGCCATGCAA	2058		
Sphi	 CATGCAATATTTACAC(2036 2042	2044	
Spl That Ndet Nalt	CATATG	2036		
That	TCACAGCGCACACA	2028		
Dder Alur	CACCTAAGAGCTTCTCTCACAGGGGACACACATATGCATGC	2006 2012		

ATCTCCATTCTCACCTATAAATTAGAGCCTCGGCTTCACTCTTTACTCAAAGCAAAACTCATCACTACA

GAACATACACAAATGGCGAACAAGCTCTTCCTCGGCAACTCTCGCCTTGTTCTTCTCTCACC MetalaAsnLysLeuPheLeuValSerAlaThrLeuAlaLeuPhePheLeuThr AluI

2164

FIGURE 2E

RECEIVED

OCT 2 5 2002

2277	2346	2415	sacI uI : 2484 : 2484 2481
Nael MspI Hpall HaellI ACAAATCCAGCCGGCCCATTT ChrAsnProAlaGlyProPhe 2271 2268	HindIII AluI IGCTTGCCAACAATGGCTCCAC SAlaCysGlnGlnTrpLeuHis 2327 2327	T AGTTTGATTTTGAAGACGAC LuPheAspPheGluAspAsp 8	Sac AluI AGTGCTGCAACGAGCTCCAC LnCysCysAsnGluLeuHis 2479 2479
TagI SalI HindII HindII HaeIII HaeIII AATGCCTCCGTCTACAGGACGGTTGTGGAAGTCGACGAAGATGATGCCACAAATCCAGCCGGCCCATTT ASNAlaSerValTyrArgThrValValGluValAspGluAspAspAlaThrAsnProAlaGlyProPhe 2220 2271 2239 2240 2240	CAGCAAGCACACACCTGAAA GlnGlnAlaGlnHisLeuLys AvalI	Hpall Avall Alul Taql	HaeIII ApaI HaeIII ApaI HaeIII GTGGAGAACCAACAACAGGGCCCGCAGCAGCCACCGCTGCTGCAACGAGCTCCAC ValGluAsnGlnGlnGlyProGlnGlnArgProProLeuLeuGlnGlnCysCysAsnGluLeuHis 2438 2449 2436
Acci AATGCCTCCGTCTACAGGACGG ASNAlaSerValTyrArgThrV 2220	HinfI AGGATTCCAAAATGTAGGAAGG ArgileProLysCysArgLysG 2281	FAGCAGGCAATGCAGTCCGGTAG	GTGGAGAACCAACAACAGGGCCC

FIGURE 2F

OCT 2 5 2002

RECEIVED

2553 2622 Tagi 255I CAGGAAGACCACTTTGCGTTTGCCCAACCTTGAAAGGAGCATCCAAAGCCGTTAAACAACAACAGATTCGA CAACAACAGGGACAACAAATGCAGGGACAGCAGATGCAGCAAGTGATTAGCCGTATCTACCAGACCGCT GlnGluGluProLeuCysValCysProThrLeuLysGlyAlaSerLysAlaValLysGlnGlnIleArg GlnGlnGlnGlyGlnGlnMetGlnGlyGlnGlnMetGlnGlnValIleSerArgIleTyrGlnThrAla HinfI 2548 BstNI 2486

2961 2760 2688 ACGCACTTACCTAGAGCTTGCAACATCAGGCAAGTTAGCATTTGCCCCTTCCAGAAGACCATGCCTGGG ${\tt ThrHisLeuProArgAlaCysAsnIleArgGlnValSerIleCysProPheGlnLysThrMetProGly}$ CCCGGCTTCTACTAGATTCCAAACGAATATCCTCGAGAGTGTGTATACCACGGTGATATGAGTGTGTTT BstNI Acci 2736 2725 TagI XhoI AvaI 2724 AluI HinfI 2707 ProGlyPheTyr HpalI ApaI HaellI MspI 2694 2692

FIGURE 2G

RECEIVED

OCT 2 5 2002

	2829		2898		2967		3036		3105
RsaI 	rgtactaatgtaataagaac 2813		ITTCCTATAAGTGATGAT	Scal Rsal	GCAGTACTAGTCTATTGAA 2954	Sau3AI 	GATGATAAAGATCATCCA 3028		TATTTTGTATTCATTAAA
	GTTGATGTATGTTACACACATAGTCATGGTGTGTTCCATAAATAA		tactccgtagacggtaataaaagagagtttttttttttt	·	 Taacaacagatacaccaaaaagaaaacaattaatctatattcacaatgaagcagtagtcatattgaa		'TTTTCTAAATGTCTAATTAAGCCTTCAAGGCTAGTGATAAAAAAATCATCCA 3028	Sau3AI BclI 	ATGGĠATCCAACAAAGACTCAAATCTGGTTTTGATCAGATACTTCAAAACTATTTTGTATTCATTAAA 3041 3041
HindII 	drtaacactacatagtcat 2771	H	acggtaataaaagagaagt 38		tacaccaaaaagaaaacaa		rttcttttctaaatgtct	HinfI 	CAAAGACTCAAATCTGGT 3053
•	GTTGATGTAT	AccI	TACTCCGTAGACC 2838		TAACAACAGA		CATGTCAGATTTTCT	Sau3AI BamHI	ATGGGATCCAA 3041

FIGURE 2H

3588

Mspi Hpali

HinfI

Ndel

Mspi Ddei Hpali Alui

3312 3381 3450 TTATGCAAGTGTTCTTTTATTTGGTGAAGACTCTTTAGAAGCAAAGAACGACAAGGAGTAATAAAAAAA 3135 **ACAAAGTTCAGTTTTAAGATTTGTTATTGACTTATTGTCATTTGAAAAAATATAGTATGATATTAATA** GTTTTATTTATATATGCTTGTCTATTCAAGATTTGAGAACATTAATATGATACTGTCCACATATCCAA TATATTAAGTTTCATTTCTGTTCAAACATATGATAAGATGGTCAAATGATTATGAGTTTTTGTTATTTAC CTGAAGAAAAGATAAGTGAGCTTCGAGTTTCTGAAGGGTACGTGATCTTCATTTCTTGGCTAAAAGCGA 3421 ATATGACATCACCTAGAGAAAGCCGATAATAGTAAACTCTGTTCTTGGTTTTTGGTTTAATCAAACCGA Sau3AI HinfI NdeI TagI Alui 3405

FIGURE 21

RECEIVED

OCT 2 5 2002

3657	•	3726	3795
MSpI Hpali GTTGTAAACCGGTATTTCATTTGGTGAAAACCCTAGAAGCCAGCC	HinfI HincII RetNI	GAGAAGCAGAGN	3714 CAAATAAAACCCGAAGATGAGACCACCACGTGCGGGGGGGG

CCTTTGGTGGTGGATATCGTGACGAAGGACCTCCCAGTGAAGTCATTGGTTCGTTTACTCTTTTCTTAG 3930 FIGURE 2J Avali 3892 EcoRV 3880 AvaII AluI

RECEIVED

OCT 2 5 2002

4278

4209

ACAAGGTTAACTTTGTTGGTTATAACAGAAGTTGCGACCTTTCTCCATGCTTGTGAGGGTGATGCTGTG

Í	OIPEN
(2	OCT 2 2 2002 (2)
1/8	THE TRANSMAPHORE

	4002	4071	
Dde I 	sactttattgataaagttctca 4000	HinfI DdeI rrrgagrrgaarcacrgrcrra 4059 4069	
HindIII AluI 	 TCGAATCTTATTCTTGCTCTGGTTGTTTTACCGATAAAGCTTTAAGACTTTATTGATAAAGTTCTCA 3937 3935	Alui Xmni Hinfi Ddei	
ragi Hinfi 	caarcrrarrcrrecrcrecrc 3937 3935	Alui Xmni - CTTTGAATGAGACTGTTT 4004	HinfI
-	Ĕ	7 6 7	

GCACTTTTGTTAGATTCATCTTTGTGTTTAAGTTAAAAGGTAGAAACTTTGTGACTTGTCTCCGTTATG

FIGURE 2K

GACCAAGCTCTCTCAGGCGAAGATCCCTTACTTCAATGCCCCAATCTACTTGGAAAACAAGACACAGAT

Sau3AI

Avall AluI DdeI

4210

4146

HincII

RECEIVED

OCT 2 5 2002

4325

FIGURE 2L

TGGGAAAGTTGAGATCCAAGCTTGGGCTGCAGGTCGACGAATTC ACCI ECORI Tagi Sali Psti Hincli HindIII I AluI Sau3AI

4302 4300 4294

RECEIVED

OCT 2 5 2002

Brassica campestris ACP Genomic Sequence

69 1 AAGAGTATGTCTACTACTACTATAATCAAGTTTCAAGAAGCTGAGCTTGGCTCTCACTTTATAT 46 51 AluI AluI DdeI AccI

138 70 GTTTGATGTTGTTGCAGGTATGGTAATCATGGAAAGAGATAAAGAATGCAAACCCTGAAGTATTGG

207 139 CAGAGAGGACTGAGGAGGAGGATGTCACTTTTGTGTTTACTCATCTGAATTATCTTATATGCGAATT DdeI RsaI

276 208 GTAAGTGGTÅCTAAAAGGTTTGTAACTTTTGGTAGGTGGATTTGAAGGATAAATGGAGGAACTTGCTTC 277 GGTAGCGGTAACAAGTTTTATATTGCTATGAAGCTTTTTTTGCCTGCGTGACGTATCAGCAGCTGTGGAG338 310 308 Pvull HindIII AluI

FIGURE 3A

RECEIVED

OCT 2 5 2002

483 346 AAGATGGTATTAGAAAGGGTCTTTTCACATTTTGTGTTGTGACAAATATTAATTCGGCCGGTATGGTTT 403 Mspi Hpall HaeIII 404 404

552 621 690 553 CTTTCTCTCAAGATCTGATTGGTAAGGTCTGGGTGGTAGTACTGTTTGGTTTAATTTGTTTTGACTATT 622 GAGTCACTGTGGCCCATTGACTTTAAATTAGGCTGGTATATTTTTTTGGTTTAAAACCGGTCTGAGATAG Dral Mspl Ddel Hpall 678 678 Scal RsaI 593 593 DraI Haelli Sau3AI Bglii HinfI

FIGURE 3B

RECEIVED

OCT 2 5 2002

759	828	897	996
TATAGTTTTAAGAC	HindIII AluI CAAGCTTATAAAT 819 817	HaeIII 	StuI HaeIII TTAACAGGCCTTAA 961
TAATGGGCTGAATACTTG	TCATTGTTTAGAGTGCAC	ACTTAACATTCCTTAAAA	StuI HaeIII BstNI AGCCAGGCCTTAAAAGAC' 939
DraI AAATTCTTCAAGG	TTATCATAAAACG'	StuI HaeIII CAGGCCTTAAAAG. 857 857	AluI CCAAGCTAAATGT? 927
TagI HinfI TGCAATTTCAGTCAATTTT 701 699	StuI HaeIII HaeIII AluI	StuI HaeIII StuI BstNI HaeIII	StuI HaeIII AluI BstNI HaeIII HaeIII HaeIII BSTNI HaeIII HaeIII
691	760	829	
		REC	EIVED

OCT 2 5 2002


```
967 AAGGCCCATGTTATCATAAAACGCCGTCGTTTTGAGTGCACCAAGCTTATAAATGTAGCCAGCTACCTC 1035
                                                                                                                                                                                                   1105 ACAATGTCGACCACTTTCTGCTCTTCCGTCTCCATGCAAGCCACTTCTCTGGTAATCTCATCTCTCTTTT 1173
                                                                                    TagI
         AluI AvaI
                                    1029 1034
                                                                                    AvaI
                                                                          Sau3AI
                                                                                  BglII
                                                                                                                                                                                                             METSerThrThrPheCysSerSerValSerMETGlnAlaThrSerLeu
HindIII
                                     1012
         AluI
                                                                          Tagi
Avai
                                              1010
                                                                 XhoI
                                                                                     RsaI
                                                                                                                                                      Tagi
Sali
                                                                                                                                                                                                                        1112
                                                                                                                                                                                   Acci
                                                                                                                                                                        HincII
          HaeIII
                                                                                              OCT 2 5 2002
```

30 FIGURE

1111 1110

Sau3AI	ATCGCTCTGATCATACTTTTTAGATCATTTGCCTCTGATCTTGCTTG	AluI HinfI.	ACGCATGTTTGATTTGAGAATTAGAAAAAAAATGTTAGCTTTTACGAATCTTTAG 1311 1296 1303
Sau3AI	CTTTTAGATCATTTGCC 1210		3AGAATTAGAAAAAAAA
Sau3AI Sau3AI BclI 	1174 TGTGTTCCCAGATCGCTCTGATCATACTTTC 1184 1193	Hincli	1243 GTTAACTCTCCACGCATGTTTGATTATGTTG 1243

TGATCATTTCAATTGGATTTGCAATCTTGTGTGACATTTGAGGCTTGTGTAGATTTCGATCTGTATTCA 1380 1381 TTTTGAATCACAGCTATAATAGTCATTTGAGTAGTAGTGTTTTTAAATGAACATGTTTTGTTGTATTGA 1449 Sau3AI 1369 1368 TagI 1425 DraI AluI HinfI 1386 Sau3AI 1313 1313 BclI 1312

1450 TGGAACAAACACACCAGCAACAACGAGGATTAGTTTCCAGAAGCCAGCTTTGGTTTCAACGACTAATCTC 1518 AlaAlaThrThrArgIleSerPheGlnLysProAlaLeuValSerThrThrAsnLeu AluI

FIGURE 3E

RECEIVED

OCT 2 5 2002

	1587	1656			1725		1794	
Dael 	TTCTCATTCTCAG 1584	HaeIII TAGGCCAAACCAG AlaLysProG	1648		CAAAAGGTCGTTG GlnLysValValA		TCATTCTCTTATG	Thas
HhaI	SCGCGGTATG /sAla 1568	TTGGTTTAT			AAAGACGAC ILysaspasp(AGTCATCAA'	-
	ACCTCCGCCGTTCAATCCCCACTCGTTTCTCAATCTCCTGCGCG snLeuArgArgSerIleProThrArgPheSerIleSerCysAla 15	RsaI TGGTACTCTCTAATTGTCTAT	1616	AluI	rgagaaagtgtcraagatagttaagaagcagctatcactcaaagacgaccaaaaggtcgttg 1GluLysValSerLysIleValLysLysGlnLeuSerLeuLysAspAspGlnLysValValA 1676 1695	HinfI TaqI 	sagcagártctctógacactgta lyalaaspSerbeuaspthr 1756 1763	T T G P
	1519 TCCTTCAACCTCCGCCGTTCAATCCCCACTCGTTTCTCAATCTCCTGCGCGGTATGTTCTCATTCTCAG 1587 SerPheAsnLeuArgArgSerIleProThrArgPheSerIleSerCysAla 1568	TagI AluI RsaI	1601 1597	DdeI 	1657 AGACGGTTGAGAAAGTGTCTAAGATAGTTAAGAAGCAGCTATCACTCAAAGACGACCAAAAGGTCGTTG luThrValGluLysValSerLysIleValLysLysGlnLeuSerLeuLysAspAspGlnLysValValA 1676	Sau3AI	1726 CGGAGACCAAGTTTGCTĠATCTTGGAGCAĞTTCTCTCGACACTGTAAGTCATCAATCATTCTCTTATG laGluThrLysPheAlaAspLeuGlyAlaAspSerLeuAspThr 1743 1763	

FIGURE 3F

RECEIVED

OCT 2 5 2002

864	TagI ECORV AluI	Tagi EcoRV TATCGAAATGGCTGAAGAAA pilegluMetAlaGluGluLy: 1893	Ddel Alui CCTCAGAAGATTGCTACTGTG 1932 sAlaGlnLysileAlaThrVal 1913 1914
933	AluI GAGGAAGCTGCTCAACTCATTGAAGA GluGluAlaAlaGluLeuIleGluG1	SacI AluI GCTCGTTCAACTTAAGAAGTA uLeuValGlnLeuLysLys 1960	SacI AluI AluI AluI GAGGAAGCTGGTGAAGTGTAGTATTTAAGAGCAGCCA 2001 GIUGIUAlaAlaGluLeuIleGluGluLeuValGlnLeuLysLys 1940 1962
2003	AGGCTTTGTTGGGTTTGTTGTTTTCA	TAATCTTCCTGTCATTTTCTT	HINII
:071	TagI Sal1 Sal1 Sal1 HinclI AccI	Sau3AI Ncol TGCCATGGATCTCTCTATT 2100 2104	TagI SalI HincII AccI CTCGACTGAAACTTTTGGTT 2139 2121 2119 2120
	HindIII AluI		
140	140 TACACATGAAGCTT 2154 2152 2150	FIGURE 3G	

RECEIVED

OCT 2 5 2002

Brassica Campestris Seed Specific cDNA-EA9

Sau3AI

1 TTCAACTTTTCTAAACCAAATGGCTTTAACACAGATCCAAATCTTTCTCATTGTCTCTAGTCTCATC METAlaLeuThrGlnIleGlnIlePheLeuIleValSerLeuValSerSe

69

TagI Sau3AI ClaI TagI

RECEIVED

OCT 2 5 2002

OFFICE OF PETITIONS

138 ATTCAGTTTATCGATCACTCTTTCTCGTCCATTACTCGATGAAGTCGCCATGCAAAAGAGACATGCCGA 70

82

HaeIII

uTrpMETThrGluHisGlyArgValTyrAlaAspAlaAsnGluLysAsnAsnArgTyrAlaValPheLy 157

207

Complete nucleotide sequence of B. campestris cDNA EA9. The longest open reading frame is designated by three letter amino acid code. PolyA tails are evident at the end of the sequence and a potential polyadenylation signal is underlined

FIGURE 4A

	0178
	OCT 2 2 2002
P	TO RANFIEDE

276	345	414	483
Hpall Dral	Sau3AI EcoRI RsaI 	Rsal KpnI HpaII	AluI Sau3AI AluI

FIGURE 4B

RECEIVED

OCT 2 5 2002

552 **eSerAlaValAlaAlaIleGluGlyValAlaGlnIleLysLysGlyLysLeuIleSer**LeuSerGluGl

489 489

Pvull

AluI

HincII AluI AccI TagI Sall

553 AGAGCTTGTCGACTGCGACACAAACGATGGTGGCTGCATGGGCGGTTTGATGGATACAGCGTTTAACTA ${\tt nGluLeuValAspCysAspThrAsnAspGlyGlyCysMETGlyGlyLeuMETAspThrAlaPheAsnTy}$

621

562

561

562

622. CACAATAACTATTGGCGGCTTAACCTCTGAATCAAATTATCTTATAAAAGCACAAACGGCACTTGCAA rThrileThrileGlyGlyLeuThrSerGluSerAsnTyrProTyrLysSerThrAsnGlyThrCysAs

690

759 691 CTTCAATAAAACTAAAACAGATAGCAACTTCTATCAAAGGTTTTTGAGGATGTCCCGGCTAACGATGAGAA

Hpall

 ${\tt nPheAsnLysThrLysGlnIleAlaThrSerIleLysGlyPheGluAspValProAlaAsnAspGluLy}$

FIGURE 4C

RECEIVED

OCT 2 5 2002

828 760 AGCCCTAATGAAGGCAGTGGCACCACCCGGTTAGCATTGGAATAGCGGGAGGAGATATTGGTTTCCA Hpall

897 ATTCTATTCGTCCGGTGTGTTCAGCGGAGAATGCACAACTCATCTTGATCACGGGGTAACTGCGGTTTGG Sau3AI BclI Hpall 829

996 898 ATACGGCCGATCTAAAAACGGATTAAAGTACTGGATCCTCAAGAATTCATGGGGACCAAAATGGGGAGA ${\tt yTyrGlyArgSerLysAsnGlyLeuLysTyrTrpIleLeuLysAsnSerTrpGlyProLysTrpGlyGl}$ ${\tt nPheTyrSerSerGlyValPheSerGlyGluCysThrThrHisLeuAspHisGlyValThrAlaValGluck}$ Avall 875 875 ECORI Sau3AI BamHI 931 Scal 927 Sau3AI HaeIII 906

ACGIGGATACAIGAGGATCAAAAAAAATATCAAGCCTAAACACGGACAAIGIGGICTIGCCAIGAAIGC 1035 uArgGlyTyrMETArgIleLysLysAspIleLysProLysHisGlyGlnCysGlyLeuAlaMETAsnAl 982 ECORV Sau3AI 196

931

927

FIGURE 4D

RECEIVED

OCT 2 5 2002

FIGURE 4E

1036 TTCGTACCCAACTATGTGAAAAATCGGTTCAATATCĊGGTTAAGCTTTAG<u>AATAAA</u>TGTGTGTGTTTGG 1104 aSertyrProthrMET 1041 1105 TTATAATTTTAAGACTCTGTTGCATGTAATTTGTGAAATGGTAAGTTTATGTGATGCAAAAGATTTGATA 1173 HindIII AluI 1081 1079 Hpall RsaI

1174 AAAAAAAAAAA 1186

RECEIVED

OCT 2 5 2002

09785130.105505

21111	1111111GAGCAAAGGCAACTCAGATATCCAAAGATGAATCCAACATATA	51
3н11	${\tt GCTTACAGCTGGGAGAACATTGTCTAACTCTTCTGAAATTTAAATGTTATC}$	102
3H11	CAGAATCCTTCATCATAAAATAATATCAAAATGCAAATCTATTTTTCTAC	153
3Н11	${\tt TCTTGTCTAGCTTCAACTTTCTTCTTCTGCTCATCAATTAGCAATTAATCC}\\ {\tt TGCTCATCAATTAGCAATTAATCC}$	204
3H11 2A11	AAAACCATTATGGCTGCCAAAAATTCAGAGATGAAGTTTGCTATCTTCTTCAAAACCATTATGGCTGCCAAAAATTCAGAGATGAAGTTTGCTATCTTCTTCMETAlaAlaLysAsnSerGluMETLysPheAlaIlePhePhe	255
3H11 2A11	GTTGTTCTTTTGACGACCACTTTAGTTGATATGTCTGGAAATTGGTTGTTCTTTTGACGACCACTTTAGTTGATATGTCTGGAAATTGCTTGTTTTTTGACGACCACTTTAGTTGATATGTCTGGAAATTGCAAAATGValValLeuLeuThrThrThrLeuValAspMETSerGlyIleSerLysMET	306
3H11 2A11	CAAGTGATGGCTCTTCGAGACATACCCCCACAAGAAACATTGCTGAAAATG CAAGTGATGGCTCTTCGAGACATACCCCCACAAGAAACATTGCTGAAAATG GlnValMETAlaLeuArgAspIleProProGlnGluThrLeuLeuLysMET	357
3H11 2A11	AAGCTACTTCCCACAAATATTTTGGGACTTTGTAACGAACCTTGCAGCTCA AAGCTACTTCCCACAAATATTTTGGGACTTTGTAACGAACCTTGCAGCTCA LysLeuLeuProThrAsnIleLeuGlyLeuCysAsnGluProCysSerSer	408
3H11 2A11	AACTCTGATTGCATCGGAATTACCCTTTGCCAATTTTGTAAGGAGAAGACG AACTCTGATTGCATCGGAATTACCCTTTGCCAATTTTGTAAGGAGAAGACG AsnSerAspCysIleGlyIleThrLeuCysGlnPhyCysLysGluLysThr	459
3H11 2A11	GACCAGTATGGTTTAACATACCGTACATGCAACCTGTTGCCTTGAACAATA GACCAGTATGGTTTAACATACCGTACATGCAACCTGTTGCCTTGAACAATA AspGlnTyrGlyLeuThrTyrArgThrCysAsnLeuLeuPro	510
3H11 2A11	total control	561
3H11 2A11	TAGTGTTGTCTGTACCTTTGGTGTGAAGAATATGAATAAAGGGATACATAT TAGTGTTGTCTGTACCTTTGGTGTGAAGAATGTGAATAAAGGGATACATAT	612
3H11 2A11	ATCTAGATATTCTAGGTAATGTCCTATTGTATTTAAAATTTGTAGCAAT ATCTAGATATATTCTAGGTAATGTCCTATTGTATTTAAAATTTGTAGCAAT	663
3H11 2A11	GATTGTTTGAATAAAAACATACCATGAGTGAAATAATTATTCCACATTAAT GATTGTTTGAATAAAAACATACCATGAGTGAAATAATTATTCC	714
3H11 3H11	TCACGTATTTATTTCACTTATGATACGTATTTTTGTTCCTTTCGCGTAAAAAAAA	765

FIGURE 5 RECEIVED

OCT 2 5 2002

(a)							r			_											
2A11		V	M	A	L	R	D	I	P	P		E									
PAlb		V	C	S	P	F	D	I	P	P	С	G	S	1	? :	L	С	R	С	Ι	
Chick pea inhibitor		V	С	T	-	K	s	Ι	P	P	-	-	-			-	С				
Lima bean inhibitor		L	С	Т	-	K	S	I	P	P	-	-	-		-	Q	С	R	С	7	•
α_1 -antitrypsin	L	G	A	I	P	M	s	I	P	P	E	V									
(b)					<u></u>	,			_										_	_	
2A11		T	N	_	L	1	L	1	ı											ı	I
PAIb		G	S	P	L	C	R	c	I	F	P	. (}]	L	V	Ι	G	N		-	R
Barley chloroform/ methanol-soluble protein d		Т	, V	L	L	G	N	С	F	₹ -	· F	r 3	7	L	v	Q	Q	T	,		A
Wheat α-amylase inhibitor 0.28		V	7 5	A	L	T	G	C	F	₹ -	- 7	1 4	1	V	K	L	Q	-	- (V
Wheat albumin		7	<i>7</i>	? 7	L	P	Α	. c	: F	₹ 1	?]	Ն .	-	L	R	L	Q	-	-	c	N
Millet bi-functional inhibitor		ı	1 1	1 E	L) S		: I	3 1	Ñ.	Υ '	V	S	A'	ΤK	RT	1	A L	<u>c</u>]	G
Castor bean 2S small subunit		(Q (2 I	J I	F	ę Ç			Q 1	E '	Y	Ι	K	Q	Q	V	7 :	S	G	Q
Napin small subunit		2	Α (1 C	1 1	F	R 7	7 [ال	Q	Q ¹	W	L	N	K	Q) <i>T</i>	\]	M	Q	S

FIGURE 6

RECEIVED

OCT 2 5 2002

FIGURE 7A

2A11 GENOMIC

ō	AAAGAGATTA	GAAAATAATG	CTTTAATCAT	ATAAATATGA	AAGCATACAA AAGATCAGTC ATAAATATGA CTTTAATCAT GAAAATAATG AAAGAGATTA	AAGCATACAA
ά	TGTTATATAT	CTATTTATAA	TTTGATCTAT	TTTTTGTATT	TCAAGTGTAT ACAATATAAA TTTTTGTATT TTTGATCTAT CTATTTATAA TGTTATATAT	TCAAGTGTAT
7	ATAAGTATCA	TCTTCTTTCA	GTTTTCTTAT	AGAGATAAGA	CAATAAAAAT AGAAAGACTA AGAGATAAGA GTTTTCTTAT TCTTCTTTCA ATAAGTATCA	CAATAAAAAT
7	GATAAAAGAA	GAATATTAAA	AATAAGACAA	GAATTAAAGC	TATATTGTTA ACTTCTTGTT GAATTAAAGC AATAAGACAA GAATATTAAA GATAAAAGAA	TATATTGTTA
9	GTAGGTTAAT	TCCTTCAATG	TTTATATATA ATTATCAATA TCCTTCAATG GTAGGTTAAT	TTTATATATA	TTTTACTTTC	TAAAATTGTT
9	ATTTCATTAG	TATAAAATAG	ACAAGTAAAA	CATAATAGTC	AGGTAAGCAA ATTGATGGTG CATAATAGTC ACAAGTAAAA TATAAAATAG ATTTCATTAG	AGGTAAGCAA
5	GATTTTGAGA	AGACTCATCT	CTCAAAGTAA AGCACTTGTT AGACTCATCT GATTTTGAGA	CTCAAAGTAA	TATAAGTCTG	ATAATCAAGT
4	AAATATAAAA	TTTACTTTTG	CTAAACAATC	TATTAACTTA	AATAAATTAT TTGCATATTA TATTAACTTA CTAAACAATC TTTACTTTTG AAATATAAAA	AATAAATTAT
41	CAATAAAACT AAGACCATAA AGAATAATTT CAAAATATAC ACATGTCAAC	CAAAATATAC	AGAATAATTT	AAGACCATAA		ATCTACACTT
m	GTAGAACATG	TAAATAAAAT	CACAATGAAT	ACTTGCCCTC	TTATCAGTAT ATACATTAAT ACTTGCCCTC CACAATGAAT TAAATAAAAT GTAGAACATG	TTATCAGTAT
ω	CATAAAATAA	AACACTCTCA	AATTATAATG	TATGTAAATT	GATTTTCACC TGCCTGTATA TATGTAAATT AATTATAATG AACACTCTCA CATAAAATAA	GATTTTCACC
2	CCTAATAGAA	TTTACAAATA	ATGTGCAAAC	TTATTTGAGC	AGTTATTTAC TACCTATACA TTATTTGAGC ATGTGCAAAC TTTACAAATA CCTAATAGAA	AGTTATTTAC
-	AAATTTTGTT	AAAAAATGTG	TAAAAGTAAA	TACTTTTTGT	GAAAACATGG ATGTGAAAAA TACTTTTTGT TAAAAGTAAA AAAAAATGTG AAATTTTGTT	GAAAACATGG
Н	CTAATCAAGG	AGAACATGTG	AAAAGAAATC ATGATCACAT TCTACTGATG AGAACATGTG CTAATCAAGG	ATGATCACAT	AAAAGAAATC	TATATATTT
	TTAATTATGA	CGTGAATTTC	TTACGGTGAC	TAGTCAATAT	CTCGAGCCCT TTAAAAAGTA TAGTCAATAT TTACGGTGAC CGTGAATTTC TTAATTATGA	CTCGAGCCCT

RECEIVED

OCT 2 5 2002

FIGURE

960 1020 1080 1140 1200 1260 1320 1378 1426 1474 1534 1654 1774 1594 1714 TGAAGGCGTA AGGTTACTAG AATAATAGTC ATTAAAAAA GGGGTTATCT TTATAATTGA ATAATTGATG AAGTAATGGA GATAATTAGT GAGCATAAAT TTTTTAAAA AAATGGACAT TTACACTATA ATATTTTATA ACACTTTCCC TTAAACATCT AGGTATAAAT AATGAGTCTT GTCAAAATCT TAGTAGGAAA AATTCTGTGA AATTTTTTTA GTGAAAACAA ATGATAAAA TATCTIGAAT ACTCATTATT IGTIGICICA TIAAAAAICI TATCIGACCI ATAAAAATAAA TTATTTGCTC AACTCAAAAT AGTTTTTCAT TCTAAAATTA GTATAATTAT TAGTGAATAT TTAATTAACA TAATTGTATA CTAAGGGGCC TATAAATTGG ATTCTTCTCA AAGAAAAATA ICTTAATTIC IIGGAAGICA TAIGCAIGIG ITIGGIAICA IGGIAIAIAI AIAAAGGAAA ATTTTTCTCA TTTTATATA ACTTATTTT CAACAGAAAA TATTTTCGA -ACTATTCAAA ATATTTTCT TAATTACTGG TTTTCTAATG TTTGGTAGGT AATCGGAAAT TATTATGAGA TAATGAACTT GCAAAGTCAT TATTATAA CTTTTTTTTT ATACTTTGAT TTAAGAATTC CACACCCTAA GACATTACAT ATATATAT ATACACCCTC CGTTTTATAT TACTTAATGC ATG GCT GCC AAA AAT TCA GAG ATG AAG TTT GCT ATC TTC TTC GTT GTT MET Ala Ala Lys Asn Ser Glu MET Lys Phe Ala Ile Phe Phe Val Val AAATCACCAC ACAACTTTCT TCTTCTGCTC ATCAATTAGC AATTAATCCA AAACCATT CTT TTG ACG ACT TTA GGTTCACAAC ACTTCTCCCT TATTTTGTTT Leu Leu Thr Thr Thr Leu

RECEIVED

OCT 2 5 2002

1834 1894 1954 2014 2074 2188 2134 CAA Gln AATGATTCAT AGCTATATAT TTGGAGAGGA GAGAGACAAA CGATATTAAG AAAGGGAGGA TACTITIGAT TATTATITI ATTATGIA CGTTTACATT ACAGITITCG AATTCTTACA CTATTGAGTT GGCCCACCCT TTAAGAATGA TTCAATTAGA GATATGTTTT ACTAAATTAA TAATGACAAA TTTGCTTACT GAGAGGCGAG GTAAATCTGA AATAGAGAAG AGAAAGGCAA CCAATTTTGA TCATCTATCA ATG MET AAA TCG CATTICATAA IGACTATAGI CIGAACITAA ITAGACAGAC GIAICIATAG CCTATGCTTT AAGACTCTAA ATTTGGCTAT TACTATTTTA CGTTGTAATT ATT Ile GGA Gly TCT Ser TTAATCTTAA TCATAATATA TACA GTT GAT ATG Val ASP MET

2493 2284 2332 2390 2433 2553 GCGCGTATAG TGTTGTCTGT ACCTTTGGTG TGAAGAATAT GAATAAAGGG ATACATATAT CTAGATATAT TCTAGGTAAT GTCCTATTGT ATTTAAAATT TGTAGCAATG ATTGTTTGAA ATG MET AGC GAG CCA CAA GAA ACA TTG CTG AAA Pro Gln Glu Thr Leu Leu Lys TGC AAG Lys TTG Leu tga acaatatcaa tgatctatcg atcgatctat ctatctattt atctgtctct CCT Leu TGT CTG TGC AAC Cys Asn GAA Glu TTT Phe AAC Asn CAA Gln TGT ACA Thr TGC Cys CGT Arg Leu CTT CTT GGA TAC ACC CCC TTG ATT Ile ACA Thr ATA ATT TTA GGA Gly AAT GGT Gly GCT CTT CGA GAC Ala Leu Arg Asp ATC Ile ACA TAT Tyr TGC Cys CCC CAG Gln GAT GAC Leu TCT ATG ACG Thr CTA AAC Asn Val GTG AAG Lys TCA Ser AAG Lys

FIGURE 7C

RECEIVED

2236

OCT 2 5 2002

FIGURE 7D

3513	TCAACTAGCC	AATAATATAT	CTTTGAAGAA	ACTITACAAG GITITAACAC AAATGAACAA CTITGAAGAA AATAATATAT TCAACTAGCC	GTTTTAACAC	ACTTTACAAG
3453	AATAAAATAA	CTTAAAACTG AATAAAATAA	TATACAAAAG	GACTGACTAC AAGCGGAAGG CTAACTTAAG	AAGCGGAAGG	GACTGACTAC
3393	CCCTCATCCT	CCCAAGCTAA	AGTGCTGGTC	CACCTTGGAC GTGGCCGGCA CTCAAGAACC AGTGCTGGTC CCCAAGCTAA CCCTCATCCT	GTGGCCGGCA	CACCTTGGAC
3333	TCCGAGCCTA	ATTATCACAA TCCGAGCCTA	AGTGAATTAA	AAAATTTAAA TATCCTTTTA ACATCTTTGA AGTGAATTAA	TATCCTTTTA	AAAATTTAAA
3273	TTTAGTACTT AAACTACATG	TTTAGTACTT	CATAATTTAC	AATACATATA AATCTCTCAA GACTTGGCAA CATAATTTAC	AATCTCTCAA	AATACATATA
3213	ATATGTTTAA ACTTACAGAA	ATATGTTTAA	TTTAAACTTT	GTATTTAAGA	GTCTTGCTAT	TCATTAACTT
3153	AGTTTGTTGA	AACCCTGCTT	TGGCGATCTG	TICAATAICC CAACTITGIC IGGCGAICTG AACCCIGCIT AGIITGITGA		CATATGGACT
3093	ATTTCTAATA	AGGAAAAAG	ATGTTTAAGA	ACAAAATATC AACAAGGACG TTATGTAAAG ATGTTTAAGA AGGAAAAAG	AACAAGGACG	ACAAAATATC
3033	CCCGTATTGA	GTCCGAACGA AATGAGTCAG	GTCCGAACGA	GCATAGATTA	TTCAGAATCT	CCTATCAAAT
2973	TTAAACCTGA	AATGGGCTAA	CCACAAAAAG	ACTTATGAAT TGGACTAGTT GTTTTTGAC CCACAAAAG AATGGGCTAA TTAAACCTGA	TGGACTAGTT	ACTTATGAAT
2913	CTACCCACAT	TTAGCCTCCG	AAAAAGTGAG	TATTAAAAA ACATACTTTT		GTTAAAAATT
2853	TATAATTTCA	TTATGATAAT ATTTTAAAAT TATAATTTCA	TTATGATAAT	TAATATTATC TTGTCGTTAT	TAATATTATC	TAACACCATG
2793	AATGTGACAC	ATTAACAAGT	TATAAAGATA	GATAAATATT	TTTTATTTGA AATCAAACTT	TTTTATTTGA
2733	CTATTTATAT	TTTTATTAG	AAGTTAATAT	TTATTAATT	CAAATAATGT	ACATTAAACA
2673	TGAATATTAA	TTTTCCCTTT	TTTTTGATCC	TTTTGTTCCT TTCGCGTAGA TTTTTGATCC TTTTCCCTTT TGAATATTAA		TGATACGTAT
2613	ATTTCACTTA	TCACGTATTT	CCACATTAAT	TAAAAACATA CCATGAGTGA AATAATTATT CCACATTAAT TCACGTATTT ATTTCACTTA	CCATGAGTGA	TAAAAACATA

RECEIVED

OCT 2 5 2002

ATAAAATAGA	CAACTTTAGT	CTTTAAAACA	TTTAATAAAA	TAAATGCAAA	ataaaataga caactttagt ctttaaaaca tttaataaaa taaatgcaaa atatagact c 3573	357
CTTAACTAAA	CTTAACTAAA CTGACTATCT ATGGAGCCTC TAATTGATAA AGATGGAAGT CGGGACAAGA	ATGGAGCCTC	TAATTGATAA	AGATGGAAGT	CGGGACAAGA	3633
CCACGACATC	CCACGACATC CTGACTAAAC TGAGAAGTAA ATAAAATCCC CCGGAAAAAA AGGAGCCTCA	TGAGAAGTAA	ATAAAATCCC	CCGGAAAAA	AGGAGCCTCA	3693
CCATGGCTAA	CCATGGCTAA CTCGAACTCG GGGATATATC AATGAAGCTC CTGTTGATGA TCTTGAAGAC	GGGATATATC	AATGAAGCTC	CTGTTGATGA	TCTTGAAGAC	3753
ATGTCTCTGC	ATGTCTCTGC ATCATCAAAA AGATGCAGGC CAAATGGCTC AGTACGTAAA ATGTACGAGT	AGATGCAGGC	CAAATGGCTC	AGTACGTAAA	ATGTACGAGT	3813
ATGTAAGGGA	ATGTAAGGGA AATTCTAAAG TATAACATAA GCTTGATACT TGAATAAAAG GAAACATACT	TATAACATAA	GCTTGATACT	TGAATAAAG	GAAACATACT	3873
TACCTCTTTT	TACCTCTTTT CAACTCAACT CAAATTAAGA ATAAGATACT CAACTCAAAG ATTAGGTATT	CAAATTAAGA	ATAAGATACT	CAACTCAAAG	ATTAGGTATT	3933
CAACGCAAAT	CAACGCAAAT ATGGCACTCT ACTCAATGAA GTACAAATTA ACTCAGGATA CTCGACTTAA	ACTCAATGAA	GTACAAATTA	ACTCAGGATA	CTCGACTTAA	3993
GATACTCAAC	GATACTCAAC TCCCGACACT CAACTGAACT CATTTCAATA TAAAGCAGCT TAAAACAAGT	CAACTGAACT	CATTTCAATA	TAAAGCAGCT	TAAAACAAGT	4053
TCAGTATAAA	TCAGTATAAA GTAAAGTTGT TTAAAAACAT GATGTCAACT CTGTGTGTAT AATAAGGGAT	TTAAAAACAT	GATGTCAACT	CTGTGTGTAT	AATAAGGGAT	4113
ACAACATAAC	ACAACATAAC TTTGAAATGT ATATAAAAT ACAATTAACT GATGTATATA AAAATACATT	АТАТААААТ	ACAATTAACT	GATGTATATA	AAAATACATT	4173
AATCTATGGG	AATCTATGGG AGATTCTCTA ACCGACAACC ATCACTTAAG GGCTAAGATG ATGATATAGC	ACCGACAACC	ATCACTTAAG	GGCTAAGATG	ATGATATAGC	4233
GATCTACCGC	GATCTACCGC ACGCTGCCAT CGCATCTTAT ACCCGGCCAA AGGTATAAGA CCTGAACTGC	CGCATCTTAT	ACCCGGCCAA	AGGTATAAGA	CCTGAACTGC	4293
CTAATGAATC	CTAATGAATC CACTAATAAA CTGTTAAAAG GAATCATCTA AAAAGTATGA CCCTTTTCTA	CTGTTAAAG	GAATCATCTA	AAAAGTATGA	CCCTTTTCTA	4353
CCCATAGTGG	CCCATAGIGG CTAACAIGGT TTAIGGGGGC IGIGAGITAI CIGAACICIC CCCCAIAICG	TTATGGGGGC	TGTGAGTTAT	CTGAACTCTC	CCCCATATCG	4413

FIGURE 7E

RECEIVED OCT 2 5 2002 OFFICE OF PETITIONS

GTGCTCAATA CTACTCCAAA AAATATACTG CTCTTATGTT TAAAAACATA CTGATTCTGT GGTTTGAAAT TATTGCTTAA AGCTTAGATT TTTGAAAAGC TCTCTTTTGA AAATCGTAGT TTCCTTTTTC TTCTATTAAA GCTAGACATA GGCTATGTAG AACTCTAGCT TACCTTCCTT CTCAAAAGTT TGAAAACATT TGCTTAGATT CTTAGGGACT ACTTAGTTCC CTTGTTGGAA

TTC

4473

4533

4593

4653

4656

FIGURE 7F

RECEIVED

OCT 2 5 2002

PG GENOMIC

PG GENOMIC					
10	20	30	40	50	60
AAGCTTCTTA	AAAAGGCAAA	TTGATTAATT	TGAAGTCAAA	TTAATTAATA	ATAACAGTGG
70	80	90	100	110	120
TAAAGCACCT	TAAGAAACCA	TAGTTTGAAA	GGTTACCAAT	GCGCTATATA	TTAATCAACT
130	140	150	160	170	180
TGATAATATA	ТТТАААААА	CAATTCGAAA	AGGGCCTAAA	АТАТТСТСАА	AGTATTCGAA
190	200	210	220	230	240
ATGGTACAAA	ACTACCATCC	GTCCACCTAT	TGACTCCAAA	АТААААТТАТ	TATCCACCTT
250	260	. 270	280	290	300
TGAGTTTAAA	ATTGACTACT	TATATAACAA	TTCTAAATTT	AAACTATTTT	AATACTTTTA
310	320	330	340	350	360
AAAATACATG	GCGTTCAAAT	АТТТААТАТА	ATTTAATTTA	TGAATATCAT	ТТАТАААССА
370	380	390	400	410	420
ACCAACTACC	AACTCATTAA	ТСАТТАААТС	CCACCCAAAT	TCTACTATCA	AAATTGTCCT
430	440	450	460	470	480
AAACACTACT	AAAACAAGAC	GAAATTGTTC	GAGTCCGAAT	CGAAGCACCA	ATCTAATTTA
490	500	510	520	530	540 *
GGTTGAGCCG 550	CATATTTAGG 560	AGGACACTTT 570	CAATAGTATT 580	TTTTTCAAGC 590	ATGAATTTGA 600
AATTTAAGAT	TAATGGTAAA	GAAGTAGTAC	ATCCCGAATT	AATTCATGCC	TTTTTTAAAT
610	620	630	640	650	660
ATAATTATAT	' AAATATTTAT	GATTTGTTTT	AAATATTAAA	ACTTGAATAT	ATTATTTTTT
670	680	690	700	710	720 *
TAAAAATTA1 730					AAGATGAACA 780
TAGTGTTTAA	TTAGTAATGG	ATGGGTAGTA	AATTTATTA	ТАААТТАТАТ	CAATAAGTTA
. 790	800	810	820	830	840
AATTATAACA	AATATTTGAG	CGCCATGTAT	ТТТАААААТТТ	ATTAAATAGT	TTGAATTTAA

FIGURE 8A

RECEIVED

2 5 2002

850	860	870	880	890	900
AACCGTTAGA	TAAATGGTCA	ATTTTGAACC	CAAAAGTGGA	TGAGAAGGGT	ATTTTAGAGC
910	920	930	940	950	960
CAATAGGRGG	ATGAGAAGGA	TATTTTGAAG	CCAATATGTG	ATGGATGAAG	GATAATTTTG
970	980	990	1000	1010	1020
TATCATTTCT	ААТАСТТТАА	AGATATTTTA	GGTCATTTTC	CCTTCTTTAG	
1030	1040	1050	1060	1070	1080
ATAGTGTTAG	TTCATCGAAT	АТСАТСТАТТ	ATTTCCGTCT	ТАААТТАТТТ	TTTATTTTAT
1090	1100	1110	1120	1130	1140
АААТТТТТТА	ААААТАААТТ	ATTTTTTCCA	TTTAACTTTG	ATTGTAATTA	ATTTTTAAAA
1150	1160	1170	1180	1190	1200
ATTACCAACA	ТАТАААТААА	ATTAATATTT	AACAAAGAAT	TGTAACATAA	TATTTTTTTA
1210	1220	1230	1240	1250	1260
АТТАТТСААА	АТАААТАТТТ	тталасатса	TATAAAAGAA	ATACGACAAA	AAAATTGAGA
1270	1280	1290	1300	1310	1320
CGGGAGAAGA	CAAGCCAGAC	AAAAATGTCC	AAGAAACTCT	TTCGTCTAAA	ТАТСТСТСАТ
1330	1340	1350	1360	1370	1380
ССАААСТААТ	АТААТАСССА	ТТАТААТТАА	CCATATTGAC	CAACTCAAAC	CCCTTAAAAT
1390	1400	1410	1420	1430	1440
CTATAAATAG	ACAAACCCTT	CCCATACCTC	ТТАТСАТААА	AAAAATAATA	ATCTTTTTCA
1450	1460	1470	1480	1490	1500 *
ATAGACAAGT	TTAAAAACCA	ТАССАТАТАА	СААТАТАТСА	TGGTTATCCA	AAGGAATAGT
1510	1520	1530	1540	1550	1560 *
ATTCTCCTTC	ТСАТТАТТАТ	TTTTGCTTCA	тсаатттсаа	CTTGTAGAAG	CAATGTTATT
1570	1580	1590	1600	1610	1620
GATGACAATT	ТАТТСАААСА	AGTTTATGAT	AATATTCTTG	AACAAGAATT	TGCTCATGAT
1630	1640	1650	1660	1670	1680
TTTCAAGCTT	° АТСТТТСТТА	TTTGAGCAAA	AATATTGAAA	GCAACAATAA	TATTGACAAG

FIGURE 8B

RECEIVED0CT 2 5 2002

1690	1700	1710	1720	1730	1740
GTTGATAAAA	ATGGGATTAA	AGTGATTAAT	GTACTTAGCT	TTGGAGCTAA	GGGTGATGGA
1750	1760	1770	1780	1790	1800
AAAACATATG	ATAATATTGT	AAGTATTTAA	ATATTGGAAT	ATATTTGTGG	GGATGAAAAT
1810	1820	1830	1840	1850	1860
GATAGAGAAT	ATAAGAATTA	TTTGGAAGGA	TGAAAAGTTA	TATTTTATAA	AGTAGAAAAT
1870	1880	1890	1900	1910	1920
TATTTTCTCG	TTTTTAGTAA	TTAAAGGTGA	AAAATGAGTT	TTCTCGTAAG	CGAGGAAAGT
1930	1940	1950	1960	1970	1980
CATTTTCCAT	GGAACTGTAT	TTTTTTTTA	CTTTTAATAA	CGTCATAGTA	TTTGCTATAC
1990	2000	2010	2020	2030	2040
TCAAGAATAA	GACACTATTA	TTGATGTTTA	GTGCTCGAAA	AGAAATTGAT	AGTAATTTTG
2050	2060	2070	2080	2090	2100
СТААТАТААС	TATCAATTTC	TTATATGTAT	ATTTTTCAAC	СААААТААСА	AAGCGTAATC
2110	2120	2130	2140	2150	2160
CAATAAGTGG	GCCTCTAGAA	TAAAGAGTAA	GTTCTATTAA	ТТСТТААССТ	TATTTAATTT
2170 TATGGAAACC	2180 TCGACAAAAC	2190 GACAATGCTC	2200 AACTTATATT	CGAATTC	

FIGURE 8C

RECEIVED

OCT 2 5 2002

FIGURE 10A

FIGURE 10B