



# iLab at FinCausal 2022: Enhancing Causality Detection with an External Cause-Effect Knowledge Graph

Presenter: Ziwei XU

**Date**: 24 / 06 / 2022

**Site**: on-line at FNP workshop

Authors: Ziwei Xu, Rungsiman Nararatwong, Natthawut Kertkeidkachorn, Ryutaro

**Ichise** 

### **OUTLINES**

- I. Task Description
- II. Literature Review
- III. Proposals
- IV. Performance Evaluation
- V. References

### I. Task Description @ FinCausal 2022

<u>Initial Task</u>: to detect the cause span and effect span from given sentences

After applying BIO scheme on given sentences:

**Practical Task**: to classify tokens from given sentences

General methodology

• train a token classifier to distinguish the 5 labels for given text.

Scope focus

• apply the pre-trained language models, i.e. BERT, is more beneficial to reflect semantic/syntactic relations between text

#### **II.** Literature Review

### 1. General way

• BertForTokenClassification in HuggingFace [Devlin et al., 2018]

### 2. Winner of Fincausal2021 --- DTGNN [Tan and Ng, 2021]

- concatenate embedding of **GNN** to Bert embedding
- apply <u>Viterbi Decoder</u> to guarantee the prediction of *Inner Tag* is followed by the *Beginning Tag* [Kao et al., 2020]

### 3. External Knowledge Graph

 Cause-Effect Graph(CEG) is constructed based on 89M lexical pairs extracted from causal contexts, weighted by co-occurrence frequency [Li at al., 2021]







4

3.

## III. Proposals

- 1 (Graph Builder) propose a new way to build the subgraph according to causality features
- 2 (Knowledge Injection) inject the causality knowledge to the all kinds of subgraphs



## III. Proposals

# 1 Graph builder

Example: Changes in foreign currency exchange rates unfavorably impacted net sales by 23million, or 223 million, or 2%.



DTGNN's idea



Our graph builder

## III. Proposals

## **2** Knowledge Injection

Example: Changes in foreign currency exchange rates unfavorably impacted net sales by 23million, or 223 million, or 2%.



DTGNN's idea



Knowledge injection on exiting structure

### IV. Performance Evaluation

#### **Datasets**

merging the data releases\* of 2020, 2021 and 2022, then we have:

- 2,290 samples for training
- 255 samples for validation
- 933 samples for blind test

\*https://github.com/yseop/YseopLab

|            | F1           | Recall | Precision    | EM    |
|------------|--------------|--------|--------------|-------|
| gnn.dpt    | 93.58        | 93.56  | 93.66        | 82.53 |
| gnn.dpt.k  | 93.41        | 93.37  | 93.50        | 81.99 |
| gnn.sent.k | <u>93.90</u> | 93.89  | <u>93.95</u> | 82.64 |

Table 1: The best scores achieved on blind test set.

|            | F1    | Recall | Precision | EM           |
|------------|-------|--------|-----------|--------------|
| gnn.dpt    | 89.70 | 89.66  | 89.77     | 73.38        |
| gnn.dpt.k  | 88.38 | 88.36  | 88.42     | 73.02        |
| gnn.sent.k | 90.22 | 90.20  | 90.25     | <u>75.90</u> |

Table 2: The best scores achieved on our validation set.

| Results |              |         |                    |          |          |             |               |  |  |
|---------|--------------|---------|--------------------|----------|----------|-------------|---------------|--|--|
| #       | User         | Entries | Date of Last Entry | F1 ▲     | Recall 📤 | Precision A | Exact match 📤 |  |  |
| 1       | spock        | 17      | 04/20/22           | 0.95 (1) | 0.95 (1) | 0.95 (1)    | 0.86 (1)      |  |  |
| 2       | ilab         | 40      | 04/20/22           | 0.94 (2) | 0.94 (2) | 0.94 (2)    | 0.83 (2)      |  |  |
| 3       | jlee24282    | 42      | 04/21/22           | 0.92 (5) | 0.92 (5) | 0.92 (5)    | 0.79 (3)      |  |  |
| 4       | sohomghosh   | 32      | 04/21/22           | 0.92 (4) | 0.92 (4) | 0.93 (4)    | 0.79 (3)      |  |  |
| 5       | joydeb       | 74      | 04/21/22           | 0.90 (6) | 0.90 (6) | 0.91 (6)    | 0.71 (4)      |  |  |
| 6       | Chenyang_Lyu | 23      | 04/12/22           | 0.93 (3) | 0.93 (3) | 0.93 (3)    | 0.69 (5)      |  |  |

Competition Results in Colab (we ranked as 2<sup>nd</sup>)

## **Experiment Result**

- Our model achieved slightly improvement than the winner of Fincausal 2021
- The proposed knowledge injection approach fits better on **sentence chain structure(gnn.sent.k)**, compared to dependency tree structure (gnn.dpt/gnn.dpt.k).

### V. References:

- Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. *arXiv* preprint arXiv:1810.04805.
- Kao, P.-W., Chen, C.-C., Huang, H.-H., and Chen, H.-H. (2020). NTUNLPL at FinCausal 2020, task 2:improving causality detection using Viterbi decoder. *In Proceedings of the 1st Joint Workshop on Financial Narrative Processing and MultiLing Financial Summarisation*, pages 69–73, Barcelona, Spain (Online), December. COLING.
- □ Tan, F. A. and Ng, S.-K. (2021). NUS-IDS at FinCausal 2021: Dependency tree in graph neural network for better cause-effect span detection. In *Proceedings of the 3rd Financial Narrative Processing Workshop*, pages 37–43, Lancaster, United Kingdom, 15-16 September. Association for Computational Linguistics.
- □ Luo, Z., Sha, Y., Zhu, K. Q., Hwang, S. W., & Wang, Z. (2016, March). Commonsense causal reasoning between short texts. In *Fifteenth International Conference on the Principles of Knowledge Representation and Reasoning*.
- Li, Z., Ding, X., Liu, T., Hu, J. E., & Van Durme, B. (2021, January). Guided generation of cause and effect. In *Proceedings of the Twenty-Ninth International Conference on International Joint Conferences on Artificial Intelligence* (pp. 3629-3636).

## Thanks for your listening.

