# Expansiones a la lógica: Lógica de Primer Orden e Inferencia

Modelación de la Ingeniería con Matemática Computacional (TC1003B)

M.C. Xavier Sánchez Díaz sax@tec.mx



# Outline

Recap de Lógica

2 Lógica de Primer Orden

3 Formalización de la lógica

#### Recap de Lógica

- Aprendimos la diferencia entre un estatuto y una oración.
- También aprendimos a identificar cuando un estatuto era atómico.
- Revisamos la diferencia entre los operadores binarios y un operador unitario
- Aprendimos también la simbología necesaria:
  - ▶ Conjunción: ∧
  - Disvunción: \
  - ► Negación:
  - ► Implicación: ⇒
  - ▶ Doble implicación: ⇐⇒
  - ▶ Disyunción exclusiva: ⊕

#### Recap de Lógica

- Aprendimos la diferencia entre un estatuto y una oración.
- También aprendimos a identificar cuando un estatuto era atómico.
- Revisamos la diferencia entre los operadores binarios y un operador unitario
- Aprendimos también la simbología necesaria:
  - ▶ Coniunción: ∧
  - Disvunción: \
  - ► Negación:
  - ► Implicación: ⇒
  - ▶ Doble implicación: <⇒>
  - ▶ Disyunción exclusiva: ⊕

#### Recap de Lógica

- Aprendimos la diferencia entre un estatuto y una oración.
- También aprendimos a identificar cuando un estatuto era atómico.
- Revisamos la diferencia entre los operadores binarios y un operador unitario
- Aprendimos también la simbología necesaria:
  - ► Coniunción: ∧
  - ▶ Disvunción: ∨
  - ▶ Negación:
  - ► Implicación: ⇒
  - Doble implicación: <=>
  - ▶ Disyunción exclusiva: ⊕

Recap de Lógica

- Aprendimos la diferencia entre un estatuto y una oración.
- También aprendimos a identificar cuando un estatuto era atómico.
- Revisamos la diferencia entre los operadores binarios y un operador unitario
- Aprendimos también la simbología necesaria:
  - ► Conjunción: ∧
  - ► Disyunción: ∨
  - ► Negación: ¬
  - ► Implicación: ⇒
  - ▶ Doble implicación: <⇒</p>
  - ▶ Disyunción exclusiva: ⊕

Recap de Lógica

- Aprendimos la diferencia entre un estatuto y una oración.
- También aprendimos a identificar cuando un estatuto era atómico.
- Revisamos la diferencia entre los operadores binarios y un operador unitario
- Aprendimos también la simbología necesaria:
  - ► Conjunción: ∧
  - ► Disyunción: ∨
  - ▶ Negación: ¬
  - ► Implicación: ⇒
  - ▶ Doble implicación: <⇒</p>
  - ▶ Disyunción exclusiva: ⊕

Recap de Lógica

- Aprendimos la diferencia entre un estatuto y una oración.
- También aprendimos a identificar cuando un estatuto era atómico.
- Revisamos la diferencia entre los operadores binarios y un operador unitario
- Aprendimos también la simbología necesaria:
  - ▶ Conjunción: ∧
  - ► Disyunción: ∨
  - ► Negación: ¬
  - ► Implicación: ⇒
  - ▶ Doble implicación: <⇒</p>
  - ▶ Disyunción exclusiva: ⊕

Recap de Lógica

- Aprendimos la diferencia entre un estatuto y una oración.
- También aprendimos a identificar cuando un estatuto era atómico.
- Revisamos la diferencia entre los operadores binarios y un operador unitario
- Aprendimos también la simbología necesaria:
  - ► Conjunción: ∧
  - ► Disyunción: ∨
  - ► Negación: ¬
  - ► Implicación: ⇒
  - ▶ Doble implicación: <⇒</p>
  - ▶ Disyunción exclusiva: ⊕

Recap de Lógica

- Aprendimos la diferencia entre un estatuto y una oración.
- También aprendimos a identificar cuando un estatuto era atómico.
- Revisamos la diferencia entre los operadores binarios y un operador unitario
- Aprendimos también la simbología necesaria:
  - ▶ Conjunción: ∧
  - ► Disyunción: ∨
  - ▶ Negación: ¬
  - ▶ Implicación: ⇒
  - ▶ Doble implicación: <⇒</p>
  - ▶ Disyunción exclusiva: ⊕

Recap de Lógica

- Aprendimos la diferencia entre un estatuto y una oración.
- También aprendimos a identificar cuando un estatuto era atómico.
- Revisamos la diferencia entre los operadores binarios y un operador unitario
- Aprendimos también la simbología necesaria:
  - ► Conjunción: ∧
  - ▶ Disyunción: ∨
  - ► Negación: ¬
  - ► Implicación: ⇒
  - ▶ Doble implicación: <⇒</p>
  - Disyunción exclusiva: ⊕

Recap de Lógica

- Aprendimos la diferencia entre un estatuto y una oración.
- También aprendimos a identificar cuando un estatuto era atómico.
- Revisamos la diferencia entre los operadores binarios y un operador unitario
- Aprendimos también la simbología necesaria:
  - ► Conjunción: ∧
  - ▶ Disyunción: ∨
  - ► Negación: ¬
  - ► Implicación: ⇒
  - ▶ Doble implicación: <⇒</p>
  - ► Disyunción exclusiva: ⊕

# Expresividad Lógica de Primer Orden

- El sol sale por el este
- Cinco ballenas mueren al día
- Si hay de sirloin, me traes cinco.

¿Qué tienen en común estas proposiciones?

- Todas son proposiciones que hablan de un solo valor de verdad.
- La veracidad en ellas es *absoluta* y se presenta de manera *aislada*.

# Expresividad Lógica de Primer Orden

- El sol sale por el este
- Cinco ballenas mueren al día
- Si hay de sirloin, me traes cinco.

## ¿Qué tienen en común estas proposiciones?

- Todas son proposiciones que hablan de un solo valor de verdad.
- La veracidad en ellas es *absoluta* y se presenta de manera *aislada*.

# Expresividad Lógica de Primer Orden

- El sol sale por el este
- Cinco ballenas mueren al día
- Si hay de sirloin, me traes cinco.

¿Qué tienen en común estas proposiciones?

- Todas son proposiciones que hablan de un solo valor de verdad.
- La veracidad en ellas es *absoluta* y se presenta de manera *aislada*.

## Lógica de Primer Orden

Pensemos en el siguiente ejemplo: *de noche, todos los gatos son pardos.* ¿Cómo la reescribimos? en una forma más fácilmente 'expresable' con lo que hemos visto?

Si es de noche, entonces todos los gatos son pardos, para que quede en la forma  $P \implies Q$  donde P = es de noche y Q = todos los gatos son pardos.

Tendríamos que pensar en *todos los gatos* como **un solo objeto** para que esto funcione con la lógica que conocemos.

## Lógica de Primer Orden

Pensemos en el siguiente ejemplo: *de noche, todos los gatos son pardos.* ¿Cómo la reescribimos? en una forma más fácilmente 'expresable' con lo que hemos visto?

 $Si~es~de~noche,~entonces~todos~los~gatos~son~pardos,~para~que~quede~en~la~forma~P~\Longrightarrow~Q~donde~P=es~de~noche~y~Q=todos~los~gatos~son~pardos.$ 

Tendríamos que pensar en *todos los gatos* como **un solo objeto** para que esto funcione con la lógica que conocemos.

#### Lógica de Primer Orden

Pensemos en el siguiente ejemplo: *de noche, todos los gatos son pardos.* ¿Cómo la reescribimos? en una forma más fácilmente 'expresable' con lo que hemos visto?

 $Si~es~de~noche,~entonces~todos~los~gatos~son~pardos,~para~que~quede~en~la~forma~P~\Longrightarrow~Q~donde~P=es~de~noche~y~Q=todos~los~gatos~son~pardos.$ 

Tendríamos que pensar en *todos los gatos* como **un solo objeto** para que esto funcione con la lógica que conocemos.

#### Lógica de Primer Orden

Pensemos en el siguiente ejemplo: *de noche, todos los gatos son pardos.* ¿Cómo la reescribimos? en una forma más fácilmente 'expresable' con lo que hemos visto?

Si es de noche, entonces todos los gatos son pardos, para que quede en la forma  $P \implies Q$  donde P = es de noche y Q = todos los gatos son pardos.

Tendríamos que pensar en *todos los gatos* como **un solo objeto** para que esto funcione con la lógica que conocemos.

## Lógica de Primer Orden

Si es de noche, entonces al menos dos de los tres gatos que viven en el Campus son pardos.

$$P \implies Q$$

donde P es lo mismo: es de noche, y Q cambió: al menos dos de los tres gatos que viven en el Campus son pardos.

Claramente, si queremos expresar algo con cantidades o condiciones adicionales, alguna de las fórmulas atómicas debe *absorber* esta información. Significa que van a haber cosas que **no podremos expresar** de esta manera general.

## Lógica de Primer Orden

Si es de noche, entonces al menos dos de los tres gatos que viven en el Campus son pardos.

$$P \implies Q$$

donde P es lo mismo: es de noche, y Q cambió: al menos dos de los tres gatos que viven en el Campus son pardos.

Claramente, si queremos expresar algo con cantidades o condiciones adicionales, alguna de las fórmulas atómicas debe *absorber* esta información. Significa que van a haber cosas que **no podremos expresar** de esta manera general.

## Lógica de Primer Orden

Si es de noche, entonces al menos dos de los tres gatos que viven en el Campus son pardos.

$$P \implies Q$$

donde P es lo mismo: es de noche, y Q cambió: al menos dos de los tres gatos que viven en el Campus son pardos.

Claramente, si queremos expresar algo con cantidades o condiciones adicionales, alguna de las fórmulas atómicas debe *absorber* esta información. Significa que van a haber cosas que **no podremos expresar** de esta manera general.

## Lógica de Primer Orden

Si es de noche, entonces al menos dos de los tres gatos que viven en el Campus son pardos.

$$P \implies Q$$

donde P es lo mismo: es de noche, y Q cambió: al menos dos de los tres gatos que viven en el Campus son pardos.

Claramente, si queremos expresar algo con cantidades o condiciones adicionales, alguna de las fórmulas atómicas debe *absorber* esta información. Significa que van a haber cosas que **no podremos expresar** de esta manera general.

## Lógica de Primer Orden

# Recordemos ahora los cuantificadores que vimos al hablar del tema de relaciones y funciones:

- Cuantificador universal: ∀ que significa para todos
- Cuantificador existencial: ∃ que significa existe (o sea, para al menos uno)
- Cuantificador de unicidad: ∃! que significa existe únicamente uno (o sea, para solamente uno) y es un caso especial del cuantificador existencial

Con esto podemos acercarnos un poco más al ejemplo de los gatos que necesitamos:

$$\forall x (Gx \implies Px)$$
 o bien  $\forall x (G(x) \implies P(x))$ 

## Lógica de Primer Orden

Recordemos ahora los cuantificadores que vimos al hablar del tema de relaciones y funciones:

- Cuantificador universal: ∀ que significa para todos
- Cuantificador existencial: ∃ que significa existe (o sea, para al menos uno)
- Cuantificador de unicidad: ∃! que significa existe únicamente uno (o sea, para solamente uno) y es un caso especial del cuantificador existencial

Con esto podemos acercarnos un poco más al ejemplo de los gatos que necesitamos:

$$\forall x (Gx \implies Px)$$
 o bien  $\forall x (G(x) \implies P(x))$ 

## Lógica de Primer Orden

Recordemos ahora los cuantificadores que vimos al hablar del tema de relaciones y funciones:

- Cuantificador universal: ∀ que significa para todos
- Cuantificador existencial: ∃ que significa existe (o sea, para al menos uno)
- Cuantificador de unicidad: ∃! que significa existe únicamente uno (o sea, para solamente uno) y es un caso especial del cuantificador existencial

Con esto podemos acercarnos un poco más al ejemplo de los gatos que necesitamos:

$$\forall x (Gx \implies Px)$$
 o bien  $\forall x (G(x) \implies P(x))$ 

## Lógica de Primer Orden

Recordemos ahora los cuantificadores que vimos al hablar del tema de relaciones y funciones:

- Cuantificador universal: ∀ que significa para todos
- Cuantificador existencial: ∃ que significa existe (o sea, para al menos uno)
- Cuantificador de unicidad: ∃! que significa existe únicamente uno (o sea, para solamente uno) y es un caso especial del cuantificador existencial

Con esto podemos acercarnos un poco más al ejemplo de los gatos que necesitamos:

$$\forall x (Gx \implies Px)$$
 o bien  $\forall x (G(x) \implies P(x))$ 

## Lógica de Primer Orden

Recordemos ahora los cuantificadores que vimos al hablar del tema de relaciones y funciones:

- Cuantificador universal: ∀ que significa para todos
- Cuantificador existencial: ∃ que significa existe (o sea, para al menos uno)
- Cuantificador de unicidad: ∃! que significa existe únicamente uno (o sea, para solamente uno) y es un caso especial del cuantificador existencial

Con esto podemos acercarnos un poco más al ejemplo de los gatos que necesitamos:

$$\forall x (Gx \implies Px)$$
 o bien  $\forall x (G(x) \implies P(x))$ 

## Lógica de Primer Orden

Recordemos ahora los cuantificadores que vimos al hablar del tema de relaciones y funciones:

- Cuantificador universal: ∀ que significa para todos
- Cuantificador existencial: ∃ que significa existe (o sea, para al menos uno)
- Cuantificador de unicidad: ∃! que significa existe únicamente uno (o sea, para solamente uno) y es un caso especial del cuantificador existencial

Con esto podemos acercarnos un poco más al ejemplo de los gatos que necesitamos:

$$\forall x (Gx \implies Px)$$
 o bien  $\forall x (G(x) \implies P(x))$ 

## Lógica de Primer Orden

Recordemos ahora los cuantificadores que vimos al hablar del tema de relaciones y funciones:

- Cuantificador universal: ∀ que significa para todos
- Cuantificador existencial: ∃ que significa existe (o sea, para al menos uno)
- Cuantificador de unicidad: ∃! que significa existe únicamente uno (o sea, para solamente uno) y es un caso especial del cuantificador existencial

Con esto podemos acercarnos un poco más al ejemplo de los gatos que necesitamos:

$$\forall x (Gx \implies Px)$$
 o bien  $\forall x (G(x) \implies P(x))$ 

#### Lógica de Primer Orden

Recordemos ahora los cuantificadores que vimos al hablar del tema de relaciones y funciones:

- Cuantificador universal: ∀ que significa para todos
- Cuantificador existencial: ∃ que significa existe (o sea, para al menos uno)
- Cuantificador de unicidad: ∃! que significa existe únicamente uno (o sea, para solamente uno) y es un caso especial del cuantificador existencial

Con esto podemos acercarnos un poco más al ejemplo de los gatos que necesitamos:

Para todo x, si x es un gato, y es de noche, entonces x es pardo.

$$\forall x (Gx \implies Px)$$
 o bien  $\forall x (G(x) \implies P(x))$ 

 ${\rm iQu\acute{e}}\ {\rm son}\ G\ {\rm y}\ P?$ 

# Relaciones, Funciones y Predicados Lógica de Primer Orden

La lógica de primer orden (LPO o FOL por sus siglas en inglés) trabaja con cuantificadores y relaciones y funciones para tener un mayor poder expresivo.

Podemos pensar en el predicado G(x) o Gx como una función unitaria de la forma  $G\colon \mathscr{V} \to \mathscr{T}$  donde  $\mathscr{V}$  es el conjunto de posibles  $\mathit{variables}$  en nuestra fórmula, y  $\mathscr{T}$  son los posibles valores de verdad de cada una de ellas—cierto, o falso. Bajo ese concepto, entonces G(x) puede pensarse como la función x es un gato que puede ser verdadero o falso.

Px significa entonces que x es pardo.

# Relaciones, Funciones y Predicados Lógica de Primer Orden

La lógica de primer orden (LPO o FOL por sus siglas en inglés) trabaja con cuantificadores y relaciones y funciones para tener un mayor poder expresivo.

Podemos pensar en el predicado G(x) o Gx como una función unitaria de la forma  $G\colon \mathscr{V} \to \mathscr{T}$  donde  $\mathscr{V}$  es el conjunto de posibles  $\mathit{variables}$  en nuestra fórmula, y  $\mathscr{T}$  son los posibles valores de verdad de cada una de ellas—cierto, o falso. Bajo ese concepto, entonces G(x) puede pensarse como la función x es un gato que puede ser verdadero o falso.

Px significa entonces que x es pardo

# Relaciones, Funciones y Predicados

Lógica de Primer Orden

La lógica de primer orden (LPO o FOL por sus siglas en inglés) trabaja con cuantificadores y relaciones y funciones para tener un mayor poder expresivo.

Podemos pensar en el predicado G(x) o Gx como una función unitaria de la forma  $G\colon \mathscr{V} \to \mathscr{T}$  donde  $\mathscr{V}$  es el conjunto de posibles  $\mathit{variables}$  en nuestra fórmula, y  $\mathscr{T}$  son los posibles valores de verdad de cada una de ellas—cierto, o falso. Bajo ese concepto, entonces G(x) puede pensarse como la función x es un gato que puede ser verdadero o falso.

Px significa entonces que x es pardo.

# Implicaciones para prácticamente todo Lógica de Primer Orden

Pensemos en otro ejemplo felino: los Leones y los Tigres son Peligrosos. ¿Cómo expresamos esto en lógica de primer orden?

 $\forall x((Lx \lor Tx) \implies Px)$  o bien  $\forall x(Lx \implies Px) \land \forall x(Tx \implies Px)$  que podemos leer literalmente como

- Para todo x, si x es un león o un tigre, entonces x es peligroso
- Para todo x, si x es un león entonces es peligroso. Y además, para todo x, si x es un tigre entonces es peligroso.

No podríamos agrupar  $\forall x(Lx \wedge Tx)$  porque esto significaría que x es un tigre y también un león, y lo que estaríamos diciendo tendría que ser verdad para todos aquellos x que son tigres-leones.

# Implicaciones para prácticamente todo Lógica de Primer Orden

Pensemos en otro ejemplo felino: los Leones y los Tigres son Peligrosos. ¿Cómo expresamos esto en lógica de primer orden?  $\forall x((Lx\vee Tx)\implies Px) \text{ o bien } \forall x(Lx\implies Px) \wedge \forall x(Tx\implies Px) \text{ que podemos leer literalmente como}$ 

- Para todo x, si x es un león o un tigre, entonces x es peligroso
- Para todo x, si x es un león entonces es peligroso. Y además, para todo x, si x es un tigre entonces es peligroso.

No podríamos agrupar  $\forall x(Lx \wedge Tx)$  porque esto significaría que x es un tigre y también un león, y lo que estaríamos diciendo tendría que ser verdad para todos aquellos x que son tigres-leones.

## Implicaciones para prácticamente todo Lógica de Primer Orden

Pensemos en otro ejemplo felino: los Leones y los Tigres son Peligrosos. ¿Cómo expresamos esto en lógica de primer orden?  $\forall x((Lx\vee Tx)\implies Px) \text{ o bien } \forall x(Lx\implies Px) \wedge \forall x(Tx\implies Px) \text{ que podemos leer literalmente como}$ 

- Para todo x, si x es un león o un tigre, entonces x es peligroso
- Para todo x, si x es un león entonces es peligroso. Y además, para todo x, si x es un tigre entonces es peligroso.

No podríamos agrupar  $\forall x(Lx \wedge Tx)$  porque esto significaría que x es un tigre y también un león, y lo que estaríamos diciendo tendría que ser verdad para todos aquellos x que son tigres-leones.

- Algunos compositores son poetas  $\Rightarrow \exists x (Cx \land Px)$
- Todos aman a alguien  $\Rightarrow \forall x \exists y (Lxy)$
- Existe un número primo menor a  $7 \Rightarrow \exists x (Px \land (x < 7))$

- Todos los hombres hablan más que Charles Chaplin
- Si un triángulo tiene un ángulo recto, entonces no es equilátero

- Algunos compositores son poetas  $\Rightarrow \exists x (Cx \land Px)$
- Todos aman a alguien  $\Rightarrow \forall x \exists y (Lxy)$
- Existe un número primo menor a  $7 \Rightarrow \exists x (Px \land (x < 7))$

- Todos los hombres hablan más que Charles Chaplin
- Si un triángulo tiene un ángulo recto, entonces no es equilátero

- Algunos compositores son poetas  $\Rightarrow \exists x (Cx \land Px)$
- Todos aman a alguien  $\Rightarrow \forall x \exists y (Lxy)$
- Existe un número primo menor a  $7 \Rightarrow \exists x (Px \land (x < 7))$

- Todos los hombres hablan más que Charles Chaplin
- Si un triángulo tiene un ángulo recto, entonces no es equilátero

- Algunos compositores son poetas  $\Rightarrow \exists x (Cx \land Px)$
- Todos aman a alguien  $\Rightarrow \forall x \exists y (Lxy)$
- Existe un número primo menor a  $7 \Rightarrow \exists x (Px \land (x < 7))$

- Todos los hombres hablan más que Charles Chaplin
- Si un triángulo tiene un ángulo recto, entonces no es equilátero

- Algunos compositores son poetas  $\Rightarrow \exists x (Cx \land Px)$
- Todos aman a alguien  $\Rightarrow \forall x \exists y (Lxy)$
- Existe un número primo menor a  $7 \Rightarrow \exists x (Px \land (x < 7))$

- Todos los hombres hablan más que Charles Chaplin
- Si un triángulo tiene un ángulo recto, entonces no es equilátero

- Algunos compositores son poetas  $\Rightarrow \exists x (Cx \land Px)$
- Todos aman a alguien  $\Rightarrow \forall x \exists y (Lxy)$
- Existe un número primo menor a  $7 \Rightarrow \exists x (Px \land (x < 7))$

- Todos los hombres hablan más que Charles Chaplin
- Si un triángulo tiene un ángulo recto, entonces no es equilátero

- Algunos compositores son poetas  $\Rightarrow \exists x (Cx \land Px)$
- Todos aman a alguien  $\Rightarrow \forall x \exists y (Lxy)$
- Existe un número primo menor a  $7 \Rightarrow \exists x (Px \land (x < 7))$

- Todos los hombres hablan más que Charles Chaplin
- Si un triángulo tiene un ángulo recto, entonces no es equilátero

Formalización de la lógica

#### Como el Ying Yang, existe cierta dualidad de los cuantificadores

- $\bullet \neg \forall x(\alpha) \equiv \exists x(\neg \alpha)$
- $\forall x(\alpha) \equiv \neg \exists x(\neg \alpha)$
- $\bullet \ \exists x(\alpha) \equiv \neg \forall x(\neg \alpha)$

El caso especial  $\exists ! x(\alpha)$  hace referencia a  $\exists x[\alpha \land \forall y(\alpha \implies x=y)]$  si no existe algo que cumpla, significa que para todos no se cumple algo . . .

$$\forall x \neg [\alpha \land \forall y (\alpha \implies x = y)]$$

$$\forall x [\neg \alpha \vee \exists y (\neg \alpha)]$$

Formalización de la lógica

#### Como el Ying Yang, existe cierta dualidad de los cuantificadores

- $\bullet \neg \exists x(\alpha) \equiv \forall x(\neg \alpha)$
- $\forall x(\alpha) \equiv \neg \exists x(\neg \alpha)$
- $\exists x(\alpha) \equiv \neg \forall x(\neg \alpha)$

El caso especial  $\exists ! x(\alpha)$  hace referencia a  $\exists x[\alpha \land \forall y(\alpha \implies x=y)]$  si no existe algo que cumpla, significa que para todos no se cumple algo . . .

$$\forall x \neg [\alpha \land \forall y (\alpha \implies x = y)]$$

$$\forall x [\neg \alpha \vee \exists y (\neg \alpha)]$$

Formalización de la lógica

#### Como el Ying Yang, existe cierta dualidad de los cuantificadores

- $\bullet \neg \exists x(\alpha) \equiv \forall x(\neg \alpha)$
- $\forall x(\alpha) \equiv \neg \exists x(\neg \alpha)$
- $\exists x(\alpha) \equiv \neg \forall x(\neg \alpha)$

El caso especial  $\exists ! x(\alpha)$  hace referencia a  $\exists x[\alpha \land \forall y(\alpha \implies x=y)]$  si no existe algo que cumpla, significa que para todos no se cumple algo . . .

$$\forall x \neg [\alpha \land \forall y (\alpha \implies x = y)]$$

$$\forall x [\neg \alpha \vee \exists y (\neg \alpha)]$$

Formalización de la lógica

#### Como el Ying Yang, existe cierta dualidad de los cuantificadores

- $\bullet \neg \forall x(\alpha) \equiv \exists x(\neg \alpha)$
- $\bullet \neg \exists x(\alpha) \equiv \forall x(\neg \alpha)$
- $\forall x(\alpha) \equiv \neg \exists x(\neg \alpha)$
- $\exists x(\alpha) \equiv \neg \forall x(\neg \alpha)$

El caso especial  $\exists ! x(\alpha)$  hace referencia a  $\exists x[\alpha \land \forall y(\alpha \implies x=y)]$  si no existe algo que cumpla, significa que para todos no se cumple algo . . .

$$\forall x \neg [\alpha \land \forall y (\alpha \implies x = y)]$$

$$\forall x [\neg \alpha \vee \exists y (\neg \alpha)]$$

Formalización de la lógica

#### Como el Ying Yang, existe cierta dualidad de los cuantificadores

- $\bullet \neg \exists x(\alpha) \equiv \forall x(\neg \alpha)$
- $\forall x(\alpha) \equiv \neg \exists x(\neg \alpha)$
- $\exists x(\alpha) \equiv \neg \forall x(\neg \alpha)$

El caso especial  $\exists ! x(\alpha)$  hace referencia a  $\exists x[\alpha \land \forall y(\alpha \implies x=y)]$  si no existe algo que cumpla, significa que para todos no se cumple algo . . .

$$\forall x \neg [\alpha \land \forall y (\alpha \implies x = y)]$$

$$\forall x [\neg \alpha \vee \exists y (\neg \alpha)]$$

Formalización de la lógica

#### Como el Ying Yang, existe cierta dualidad de los cuantificadores

- $\bullet \neg \exists x(\alpha) \equiv \forall x(\neg \alpha)$
- $\forall x(\alpha) \equiv \neg \exists x(\neg \alpha)$
- $\exists x(\alpha) \equiv \neg \forall x(\neg \alpha)$

El caso especial  $\exists ! x(\alpha)$  hace referencia a  $\exists x[\alpha \land \forall y(\alpha \implies x=y)]$  si no existe algo que cumpla, significa que para todos no se cumple algo . . .

$$\forall x \neg [\alpha \land \forall y (\alpha \implies x = y)]$$

$$\forall x [\neg \alpha \vee \exists y (\neg \alpha)]$$

Formalización de la lógica

#### Como el Ying Yang, existe cierta dualidad de los cuantificadores

- $\bullet \neg \exists x(\alpha) \equiv \forall x(\neg \alpha)$
- $\forall x(\alpha) \equiv \neg \exists x(\neg \alpha)$
- $\exists x(\alpha) \equiv \neg \forall x(\neg \alpha)$

El caso especial  $\exists ! x(\alpha)$  hace referencia a  $\exists x[\alpha \land \forall y(\alpha \implies x = y)]$  si no existe algo que cumpla, significa que para todos no se cumple algo . . .

$$\forall x \neg [\alpha \land \forall y (\alpha \implies x = y)]$$

$$\forall x [\neg \alpha \vee \exists y (\neg \alpha)]$$

Formalización de la lógica

Como el Ying Yang, existe cierta dualidad de los cuantificadores

- $\bullet \neg \exists x(\alpha) \equiv \forall x(\neg \alpha)$
- $\forall x(\alpha) \equiv \neg \exists x(\neg \alpha)$
- $\exists x(\alpha) \equiv \neg \forall x(\neg \alpha)$

El caso especial  $\exists ! x(\alpha)$  hace referencia a  $\exists x[\alpha \land \forall y(\alpha \implies x=y)]$  si no existe algo que cumpla, significa que para todos no se cumple algo . . .

$$\forall x \neg [\alpha \land \forall y (\alpha \implies x = y)]$$

$$\forall x [\neg \alpha \vee \exists y (\neg \alpha)]$$

Formalización de la lógica

Como el Ying Yang, existe cierta dualidad de los cuantificadores

- $\bullet \neg \forall x(\alpha) \equiv \exists x(\neg \alpha)$
- $\bullet \neg \exists x(\alpha) \equiv \forall x(\neg \alpha)$
- $\forall x(\alpha) \equiv \neg \exists x(\neg \alpha)$
- $\exists x(\alpha) \equiv \neg \forall x(\neg \alpha)$

El caso especial  $\exists ! x(\alpha)$  hace referencia a  $\exists x[\alpha \land \forall y(\alpha \implies x=y)]$  si no existe algo que cumpla, significa que para todos no se cumple algo . . .

$$\forall x \neg [\alpha \land \forall y (\alpha \implies x = y)]$$

$$\forall x [\neg \alpha \lor \exists y (\neg \alpha)]$$

### Interpretación

#### Formalización de la lógica

En lógica de primer orden hablamos de fórmulas. Una fórmula A tiene distintos predicados (como Gx) y distintas constantes (como Charles Chaplin).

Una interpretación  $\mathscr{I}_A$  de A es una tripleta  $(D,\{R_1,\ldots,R_m\},\{d_1,\ldots,d_k\})$  donde

- D es un dominio no-vacío
- $R_i$  es una relación  $n_i$ -aria sobre D que se asigna al  $n_i$ -ario predicado de la fórmula A
- $d_i \in D$  es asignado a la constante  $a_i$ .

Por ejemplo, para la fórmula  $A=\forall xp(a,x)$ , tres de sus posibles interpretaciones pueden ser

$$\mathscr{I}_1 = (\mathbb{N}, \{\leq\}, \{0\}) \quad \mathscr{I}_2 = (\mathbb{N}, \{\geq\}, \{5\}) \quad \mathscr{I}_3 = (\mathbb{Z}, \{\leq\}, \{0\})$$

#### Interpretación

#### Formalización de la lógica

En lógica de primer orden hablamos de fórmulas. Una fórmula A tiene distintos predicados (como Gx) y distintas constantes (como Charles Chaplin). Una interpretación  $\mathscr{I}_A$  de A es una tripleta  $(D,\{R_1,\ldots,R_m\},\{d_1,\ldots,d_k\})$  donde

- D es un dominio no-vacío
- $R_i$  es una relación  $n_i$ -aria sobre D que se asigna al  $n_i$ -ario predicado de la fórmula A
- $d_i \in D$  es asignado a la constante  $a_i$ .

Por ejemplo, para la fórmula  $A = \forall x p(a,x)$ , tres de sus posibles interpretaciones pueden ser

$$\mathcal{I}_1 = (\mathbb{N}, \{\leq\}, \{0\})$$
  $\mathcal{I}_2 = (\mathbb{N}, \{\geq\}, \{5\})$   $\mathcal{I}_3 = (\mathbb{Z}, \{\leq\}, \{0\})$ 

#### Interpretación

#### Formalización de la lógica

En lógica de primer orden hablamos de fórmulas. Una fórmula A tiene distintos predicados (como Gx) y distintas constantes (como Charles Chaplin). Una interpretación  $\mathscr{I}_A$  de A es una tripleta  $(D,\{R_1,\ldots,R_m\},\{d_1,\ldots,d_k\})$  donde

- D es un dominio no-vacío
- $R_i$  es una relación  $n_i$ -aria sobre D que se asigna al  $n_i$ -ario predicado de la fórmula A
- $d_i \in D$  es asignado a la constante  $a_i$ .

Por ejemplo, para la fórmula  $A=\forall xp(a,x)$ , tres de sus posibles interpretaciones pueden ser

$$\mathscr{I}_1 = (\mathbb{N}, \{\leq\}, \{0\}) \quad \mathscr{I}_2 = (\mathbb{N}, \{\geq\}, \{5\}) \quad \mathscr{I}_3 = (\mathbb{Z}, \{\leq\}, \{0\})$$

Formalización de la lógica

Teniendo una interpretación  $\mathscr{I}_A$ , podemos tener una asignación  $\sigma_{\mathscr{I}_a} \colon \mathscr{V} \to D$  que mapea toda variable libre  $v \in \mathscr{V}$  a un elemento  $d \in D$ .

Esta asignación tiene distintos valores de verdad, dependiendo de qué variables se utilicen. Este valor de verdad se denota como

$$v_{\sigma_{\mathscr{I}_A}}(A)$$

y se lee como el valor de verdad de la fórmula A bajo la interpretación  $\mathscr{I}_A$  y la asignación  $\sigma_{\mathscr{I}_A}.$ 

¿Cuántos posibles valores tiene  $v_{\sigma_{\mathscr{I}_A}}(A)$ 

Formalización de la lógica

Teniendo una interpretación  $\mathscr{I}_A$ , podemos tener una asignación  $\sigma_{\mathscr{I}_a} \colon \mathscr{V} \to D$  que mapea toda variable libre  $v \in \mathscr{V}$  a un elemento  $d \in D$ . Esta asignación tiene distintos valores de verdad, dependiendo de qué variables se utilicen. Este valor de verdad se denota como

$$v_{\sigma_{\mathscr{I}_A}}(A)$$

y se lee como el valor de verdad de la fórmula A bajo la interpretación  $\mathscr{I}_A$  y la asignación  $\sigma_{\mathscr{I}_A}$ .

¿Cuántos posibles valores tiene  $v_{\sigma_{\mathscr{I}_A}}(A)$ ?

Formalización de la lógica

Teniendo una interpretación  $\mathscr{I}_A$ , podemos tener una asignación  $\sigma_{\mathscr{I}_a} \colon \mathscr{V} \to D$  que mapea toda variable libre  $v \in \mathscr{V}$  a un elemento  $d \in D$ . Esta asignación tiene distintos valores de verdad, dependiendo de qué variables se utilizen. Este valor de verdad se denota como

$$v_{\sigma_{\mathscr{I}_{A}}}(A)$$

y se lee como el valor de verdad de la fórmula A bajo la interpretación  $\mathscr{I}_A$  y la asignación  $\sigma_{\mathscr{I}_A}$ .

¿Cuántos posibles valores tiene  $v_{\sigma_{\mathscr{I}_A}}(A)$ ?

Formalización de la lógica

Teniendo una interpretación  $\mathscr{I}_A$ , podemos tener una asignación  $\sigma_{\mathscr{I}_a} \colon \mathscr{V} \to D$  que mapea toda variable libre  $v \in \mathscr{V}$  a un elemento  $d \in D$ . Esta asignación tiene distintos valores de verdad, dependiendo de qué variables se utilizen. Este valor de verdad se denota como

$$v_{\sigma_{\mathscr{I}_{A}}}(A)$$

y se lee como el valor de verdad de la fórmula A bajo la interpretación  $\mathscr{I}_A$  y la asignación  $\sigma_{\mathscr{I}_A}.$ 

¿Cuántos posibles valores tiene  $v_{\sigma_{\mathscr{I}_A}}(A)$ ?

### Validez y Factibilidad

Formalización de la lógica

Toda esta información nos da las herramientas necesarias para poder entender la validez de una fórmula A de lógica de primer orden:

- A es verdad en  $\mathscr{I}$  (o  $\mathscr{I}$  es un modelo para A) si y solo si  $v_{\mathscr{I}}(A) = T$ . La notación que usaremos es  $\mathscr{I} \models A$
- A es válida is para toda interpretación  $\mathscr{I}$ ,  $\mathscr{I} \models A$ . La notación que usaremos es  $\models A$ .
- A es factible (satisfiable) si para alguna interpretación  $\mathscr{I}$ ,  $\mathscr{I} \models A$ .
- ullet A es no factible (unsatisfiable) si no es factible (duh) .
- A es falsificable (falsifiable) si no es válida.