数学 II 学習ノート

図形と方程式 (点と直線)

1年____組 氏名_____

1 復習

1.1 2点間の距離を求めよう

(1) 2点 A(3), B(5) 間の距離 AB

よって, AB=____

(2) 2点 A(-3), B(4) 間の距離 AB

よって, AB=_____

(3) 2点 A(3,4), B(2,1) 間の距離 AB

よって, AB=_____

(4) 2点 A(3,2), B(-1,-1) 間の距離 AB

よって, AB=____

- 1.2 次を満たすような点の座標を求めよう.
- (1) A(4), B(0) において, AB を 3:1 に内分するような点 P

よって, 点 P の座標は_____

(2) A(1), B(-2) において, AB を 2:1 に外分するような点 Q

よって, 点 Q の座標は_____

(3) A(1), B(-2) において, AB を 1:2 に外分するような点 R

よって, 点 R の座標は_____

1.3 重心

(1) 下の三角形 ABC の重心 G を見つけよ.

(2) G を重心とする. AG : GM = _____ : ____

1.4 直線の方程式を求めよう

(1) 方程式 y=2x+1 の表す図形を下図に描け.

(2) 方程式 2x + y - 4 = 0 の表す図形を下図に描け.

(3) 方程式 y-2=0 の表す図形と x+3=0 の表す図形を下図に描け.

(4) 下の直線の方程式を求めよ.

求める直線の方程式は_

(5) 下の直線の方程式を求めよ.

求める直線の方程式は_

(6) 2点 (-3,0), (0,1) を通る直線を下図に描き、その方程式を求め よ.

求める直線の方程式は___

2 内分・外分

- 目標 -----

点 P の座標を a,b,m,n を用いて表したい.

2.1 内分の一般化をしよう

AB を m:n に内分する点を P とする.

AP で 2 点 A, P の間の長さを表すとする. p, a, b を用いて, AP, BP を表すと,

$$AP = \underline{\hspace{1cm}}, BP = \underline{\hspace{1cm}}$$

と書ける. AP:BP=m:n なので、

AP : BP = m : n

特に、ABを1:1に内分する点P(p)は、

$$p =$$

と書ける.

- 線分の内分点 ———

2点 A(a), B(b) を結ぶ線分 AB を m:n に内分する点を P とする.

内分点 P の座標は _____

特に、線分 AB の中点の座標は

例題. 2 点 A(-3), B(3) を結ぶ線分 AB を 2:1 に内分する点 P の座標を求めよ.

例題. 2 点 A(-4), B(2) を結ぶ線分 AB の中点 M の座標を求めよ.

2.2 外分の一般化をしよう

AB を m:n に外分する点を P とする. (m>n のパターン)

$$\begin{array}{cccc} & & & & & & & \\ \hline \dot{a} & & & \dot{b} & & \dot{p} & \\ \end{array} \rightarrow x$$

APで2点A,Pの間の長さを表すとする.

$$AP = \underline{\hspace{1cm}}, BP = \underline{\hspace{1cm}}$$

と書ける. AP:BP=m:n なので、

$$AP : BP = m : n$$

次に、AB を m:n に外分する点を P とする. (m < n のパターン)

$$\begin{array}{cccc} & \mathbf{P} & \mathbf{A} & \mathbf{B} \\ & \vdots & \vdots & \vdots \\ p & & a & b \end{array} \rightarrow x$$

$$\therefore p =$$

- 線分の外分点 -----

2点 A(a), B(b) を結ぶ線分 AB を m:n に外分する点を P とする.

内分点 P の座標は _____

例題. 2点 A(-1), B(3) を結ぶ線分 AB を 2:1 に外分する点 P の座標を求めよ.

例題. 2点 A(-1), B(3) を結ぶ線分 AB を 1:2 に外分する点 P の座標を求めよ.

2.3 平面で考えてみる (内分)

線分 ABを2:1に内分する点Pの座標を求めよ.

点 P の座標は (,)

2.4 一般化しよう

点 $A(x_1,y_1)$, 点 $B(x_2,y_2)$ を結ぶ線分 AB を m:n に内分する点 P の座標を求めよう.

x座標について, AP: PB = m:n なので,

CE : ED = :

つまり、点 E は線分 CD を : に内分する点である. つまり、

x =

同様に

y =

よって, 以下のようになる.

- 線分の内分点 ---

2点 $\mathbf{A}(x_1,y_1),\,\mathbf{B}(x_2,y_2)$ を結ぶ線分 AB を m:n に内分する点を P とする.

内分点 P の座標は (,)

例題. 2 点 A(1,3), B(4,9) を結ぶ線分 AB を 2:1 に内分する点 P の 座標を求めよ.

2.5 平面で考えてみる (外分)

線分 AB を 2:1 に外分する点 P の座標を求めよ.

点 P の座標は (,)

2.6 一般化しよう

点 $A(x_1,y_1)$, 点 $B(x_2,y_2)$ を結ぶ線分 AB を m:n に外分する点 P の座標を求めよう.

x 座標について, AP: PB = m:n なので,

CD : ED = :

つまり, 点 D は線分 CE を : に外分する点である. つまり,

x =

同様に

y =

よって, 以下のようになる.

- 線分の外分点 ---

2点 A $(x_1,y_1),$ B (x_2,y_2) を結ぶ線分 AB を m:n に外分する点を P とする.

内分点 P の座標は (,)

例題. 2点 A(1,3), B(4,9) を結ぶ線分 AB を 2:1 に外分する点 P の 座標を求めよ.

2.7 重心

これまで学んだ内分・外分を用いて、重心の座標を求めよう. 3 点 A(-4,-1), B(8,1), C(-1,6) を結んでできる三角形 ABC の重心 G の座標を求めよ.

重心 G の座標は (,)

2.8 重心の座標を一般化しよう

3点 $A(x_1,y_1)$, $B(x_2,y_2)$, $C(x_3,y_3)$ を結んでできる三角形 ABC の 重心 G の座標 (x,y,z) を求めよう.

線分 BC の中点を M とすると, M(,) と表せる.

また、AG:GM= : なので、

点 G の座標は次の通り.

- 三角形の重心の座標 -----

3点 $\mathbf{A}(x_1,y_1)$, $\mathbf{B}(x_2,y_2)$, $\mathbf{C}(x_3,y_3)$ を結んでできる三角形 ABC の重心 G の座標は,

(,)

例題. 3 点 A(1,5), B(-1,-2), C(3,3) を結んでできる三角形 ABC の重心の座標を求めよ.

3 思考問題

3.1 等距離問題

(1) 2 点 A(-1,2), B(4,3) から等距離にあるような x 軸上の点 P の 座標を求めよう.

- アイデア —

点 P の座標を (x,0) として, AP の長さと BP の長さを表してみよう。そこからは三平方の定理で \cdots

(2) 2 点 A(-4,2), B(1,-1) から等距離にあるような x 軸上の点 P の座標を求めよう.

3.2 証明問題

(1) △ABC において, 辺 BC の中点を M とする. 以下の等式を示せ.

$$AB^2 + AC^2 = 2(AM^2 + BM^2)$$

< 証明 >

図のように, 辺 BC を x 軸上におき, その中点 M が原点に来るようにする.

すると,

$$A(a, b), B(-c, 0), C(c, 0)$$

と表せる. さて,

よって, $AB^2 + AC^2 = 2(AM^2 + BM^2)$ が成立.

(2) \triangle ABC において、辺 BC を 1:2 に内分する点を D とする. 以下 の等式を示せ.

$$2AB^{2} + AC^{2} = 3(AD^{2} + 2BD^{2})$$

3.3 点に関する対称点

(1) 点 A(2,1) に関して、点 P(-2,3) と対称な点 Q の座標を求めよ.

点 Q の座標を (x,y) とおく.

線分_____の中点が____であることから,

$$\frac{}{2} = 2, \quad \frac{}{2} = 1$$

これを解くと、 $x = _____, y = ____.$ よって、点 Q の座標は (6,-1).

(2)点 A(-3,2) に関して、点 P(0,-4) と対称な点 Q の座標を求めよ.

4 直線の方程式

4.1 傾きと通る1点がわかっている

点 (2,2) を通り、傾き $\frac{1}{2}$ の直線の方程式を求めよ.

4.2 一般化しよう

 (x_1,y_1) を通る傾き m の直線の方程式を求めよう.

傾きmの直線を

$$y = mx + n$$

とおく. この直線は (x_1, y_1) を通るので,

$$y_1 = mx_1 + n$$

2式からnを消去して、以下が得られる.

- 直線の方程式 —

点 (x_1,y_1) を通り、傾き m の直線の方程式は、

$$y - \underline{\hspace{1cm}} = \underline{\hspace{1cm}} (x - \underline{\hspace{1cm}})$$

例. 点 (2,-4) を通り、傾きが3の直線の方程式を求めよ.

4.3 2点を通る直線

(1) 2点 (3,2), (5,6) を通る直線の方程式を求めよう. この直線の傾きは________なので,

求める直線の方程式は_____

(2) 2点 (-1,4),(2,-2) を通る直線の方程式を求めよ.

(3) 2点 (1,2), (3,-4) を通る直線の方程式を求めよ.

(4) 2 点 (2,-1),(1,-1) を通る直線の方程式を求めよ.

4.4 2 直線の関係 (平行)

y = 2x + 1 を描き、この直線と平行な直線を 1 本引こう.

引いた直線の式を求めよ.

さて,2つの式がどのようなときに,平行になるだろうか.

____とき.

4.5 2 直線の関係 (垂直)

y=2x と垂直な直線を引き、方程式を求めよ.

y = x + 2と垂直な直線を引き、方程式を求めよ.

気づくこと....

- 垂直 -

 $y=m_1x+n_1$ と $y=m_2x+n_2$ が垂直

 $\iff m_1 \times m_2 =$

4.6 練習問題

(1) y=2x に平行な直線と垂直な直線の方程式を 1 つずつ答えよ.

(2) 3x + 4y + 3 = 0 に平行な直線と垂直な直線の方程式を 1 つずつ 答えよ.

(3) 点 A(2,1) を通り、直線 2x+3y+4=0 に平行な直線と垂直な直線をそれぞれ求めよ.

5 点と直線の距離 (通称: 点直)

5.1 直線に対し対称な点

直線 l:2x-y-3=0 に関して、点 A(1,4) と対称な点を B とする. 下グラフに図を書き入れ、B を求めよう.

点 B の座標を (p,q) とする.

直線 l の傾きは _____, 直線 AB の傾きは ______.

AB $\perp l$ なので、_____ = -1 式変形して、p + 2q - 9 = 0 ···(1)

 $2 \cdot ___ - 3 = 0$

すなはち, 2p - q - 8 = 0 ···(2)

(1),(2) を連立して $p = ____, q = ____$

練習. 直線 l:x-2y+10=0 に関して, 点 $\mathrm{A}(2,1)$ と対称な点 B の 座標を求めよ.

5.2 点直

点 P から直線 l に降ろした垂線を PH とする. この PH の長さが点 $\mathrm{P}(x_1,y_1)$ と直線 l の距離である.

- 点と直線の距離 —

点 (x_1, y_1) と直線 l: ax + by + c = 0 の距離 d は

$$d = \frac{|ax_1 + by_1 + c|}{\sqrt{a^2 + b^2}}$$

< 証明 $>(a \neq 0, b \neq 0$ のとき. 一方が 0 でも同様) H の座標を (x_2, y_2) とおく. 点 P と点 H の距離 d は

$$d = PH = \underline{\hspace{1cm}} \cdots (1)$$

ここで、直線l の傾きは______、直線 PH の傾きは_____ であり、2 直線は垂直なので、

変形して, $\frac{x_2-x_1}{a}=\frac{y_2-y_1}{b}$ となり, これを k とおくと,

$$x_2 - x_1 =$$
, $y_2 - y_1 =$ $\cdots (2)$

これを (1) に代入.

$$d = \sqrt{()^2 + ()^2} = \sqrt{()k^2} \cdots (3)$$

また、(2) から、 $x_2 = x_1 + ak$ 、 $y_2 = y_1 + bk$ ··· (4) ここで、点 $H(x_2, y_2)$ は直線 l 上にあるから、

$$ax_2 + by_2 + c = 0$$

これに (4) を代入し, $a(x_1 + ak) + b(y_1 + bk) + c = 0$ よって,

これを(3)に代入.

$$d = \sqrt{(a^2 + b^2) \cdot \frac{(ax_1 + by_1 + c)^2}{(a^2 + b^2)}}$$
$$= \sqrt{\frac{(ax_1 + by_1 + c)^2}{a^2 + b^2}} = \frac{|ax_1 + by_1 + c|}{\sqrt{a^2 + b^2}}$$

練習. 点 (1,2) と直線 3x-4y-1=0 の距離を求めよ.

5.3 2 直線の交点を通る直線

2直線の交点を通る直線について考える.

2 直線 x+2y-4=0, x-y-1=0 は 1 点で交わり、その交点を A とする.

定数kを用いて、

$$k(x+2y-4) + (x-y-1) = 0 \cdots (1)$$

について考える. (1) はkについての恒等式と考えると、

$$x + 2y - 4 = 0$$
, かつ $x - y - 1 = 0$

つまり ,(1) は 2 直線 x+2y-4=0, x-y-1=0 の交点を通る図形を表す.

また, (1) を式変形すると,

$$(k+1)x + (2k-1)y - 4k - 1 = 0$$

となり、直線を表すことがわかる.

よって、(1) は 2 直線 x+2y-4=0、 x-y-1=0 の交点を通る直線を表す.

ただし, x + 2y - 4 = 0 は表せない.

上の図に、2 直線 x+2y-4=0、 x-y-1=0 を描き入れ、(1) の式の k に好きな数字を入れた直線を数本描こう.

練習問題.

(1) 2 直線 x+2y-4=0, x-y-1=0 の交点と,点 (0,3) を通る直線の方程式を求めよう.

< Ans. >

2 直線 x+2y-4=0, x-y-1=0 の交点を通る直線は k(x+2y-4)+(x-y-1)=0 と書ける. これが (0,3) を通るので、代入して、

$$k(0+2\cdot 3-4)+(0-3-1)=0$$

よって, k=2. ゆえに, 求める直線は 2(x+2y-4)+(x-y-1)=0 整理して, x+y-3=0

(2) 2 直線 2x - y + 1 = 0, x + y - 4 = 0 の交点と, 点 (-2, 1) を通る直線の方程式を求めよ.

6 練習問題	(4) 2 点 A(−1, 4), B(3, 2) から等距離にあるような x 軸上の点 P の
6.1 基本問題 (点に関する問題) (1) 2 点 A(-1,2), B(5,-4) を 1:2 に内分する点 P の座標を求めよ.	座標を求めよ.
(2) 2 点 A(-1,2), B(2,-1) を 1:2 に外分する点 P の座標を求めよ.	(5) 3 点 A(-2,-1), B(1,3), C(3,-1) を頂点とするような三角形ABC は, どのような三角形か.
(3) 3 点 A(-2,3), B(4,-1), C(1,-5) を結んでできる三角形 ABC の重心を求めよ.	(6) 点 A(1,2) に関して点 P(−2, −4) と対称な点 Q の座標を求めよ.

c 0	++6665	/ /
0.2	奉本问思	(直線に関する問題)

- (1) 傾き 3 で、点 (-2,4) を通る直線の方程式を求めよ.
- (4) 2y + x 4 = 0 に関して、点 A(4,10) と対称な点 B の座標を求めた

- (2) 2点 (-1,1), (3,-2) を通る直線の方程式を求めよ.
- (5) y = 2x + 2 と点 (6, -1) の距離を求めよ.

- (3) 点 (2,3) を通り, y = 3x + 5 と平行な直線と垂直な直線の方程式をそれぞれ求めよ.
- (6) y-2x-1=0 と y+x-4=0 の交点と, 点 (-1,1) を通る直線の方程式を求めよ.

6.3 問題

- (1) 3 点 A(a,b), $B(-\sqrt{3},0)$, $C(\sqrt{3},2)$ を頂点とする三角形が正三角形になるように a,b の値を求めよ.
- (3) 3 点 A(3,-1), B(5,3), C(7,0) について、以下の問いに答えよ. (a) 直線 BC の方程式を求めよ.

(b) 線分 BC の長さを求めよ.

- (2) 3 点 A(6,-2), B(4,2), C(0,-4) を頂点とする平行四辺形の残り の頂点 D の座標を求めよ.
- (c) 点 A と直線 BC の距離を求めよ.

(d) 三角形 ABC の面積を求めよ.

6.4 発展問題

- (1) A(4,1), B(6,3) とする. 直線 y-2x-1=0 上に点 P をとり, AP+PB を最小にする点 P の座標を求めよ.
- (2) 放物線 $y=x^2$ と直線 y=x-1 がある。直線と放物線の距離が最小となるような放物線上の点の座標と、その距離の最小値を求めよ。

6.5 挑戦 1

1 個のサイコロを 3 回投げ、出た目を順に a,b,c とする.座標平面上に 3 点 $\mathbf{A}(a,1)$, $\mathbf{B}(-b,0)$, $\mathbf{C}(c,0)$ を定め、それらを頂点とする $\triangle \mathbf{ABC}$ を考える.以下の問いに答えよ.

- (1) $\triangle ABC$ の面積の値が整数になる確率を求めよ.
- (2) $\triangle ABC$ が直角三角形になる確率を求めよ.
- (3) △ABC が二等辺三角形になる確率を求めよ.

6.6 挑戦 2

- (1) △ABC の面積の値が整数になる確率を求めよ.
- (2) $\triangle ABC$ が直角三角形になる確率を求めよ.
- (3) △ABC が二等辺三角形になる確率を求めよ.

数学 II 学習ノート

図形と方程式 (円)

2年____組 氏名_____

1 円の方程式

1.1 円の方程式

中心 (1,2) 半径 4 の円の方程式を求めよう.

まずは、絵を描こう.

点 P(x,y) を円の上の点とする.

中心 A(1,2) と P を結ぶ線分を斜辺とする直角三角形を考える. 三平方の定理が常に成立するので,

$$($$
 $)^2 + ($ $)^2 = r^2$

これが円の方程式そのもの.

- 円の方程式 ---

中心 (a,b), 半径 r の円の方程式は,

=

つまり、中心と半径さえ分かれば、円の方程式が求まる.

- (1) 中心(1,3)半径3の円の方程式を求めよ.
- (2) 中心 (-2,2) 半径 $\sqrt{3}$ の円の方程式を求めよ.
- (3) $(x-2)^2 + (y+1)^2 = 2$ はどのような図形か.
- (4) $(x-2)^2 + (y+1)^2 = -2$ を満たす図形は存在するか.

1.2 $x^2 + y^2 + ax + by + c = 0$ について $x^2 + y^2 - 10x + 6y + 18 = 0$ はどのような図形だろうか.

- アイデア

 $x^2+y^2-10x+6y+18=0$ を $(x-a)^2+(y-b)^2=r^2$ の形に 変形してみよう.

< Ans. >

(1) $x^2 + y^2 + 4x - 2y - 4 = 0$ はどのような図形だろうか.

1.3 3点通る円

3点 A(-1,7), B(2,-2), C(6,0) を通る円を下図に描き入れ, 方程式を求めよう.

< Ans >

求める円の方程式を $x^2+y^2+ax+by+c=0$ とおく. 3 点 A(-1,7), B(2,-2), C(6,0) を通るので,

1 /	公田以
1.4	冰米中

(1) 3点 A(1,1), B(2,1), C(-1,0) を通る円の方程式を求めよう.

(2) 方程式 $x^2 + y^2 + 4x - 2y + 4 = 0$ はどのような図形を表すか.

(3) 2 点 A(3,4), B(-1,2) を結ぶ線分 AB が直径になるような円の 方程式を求めよ.

よって,

求める円の方程式は_____であり、

2 円と直線

2.1 復習

y=x+1と y=2x-3 の交点を求めよ.

$$\begin{cases} y = x+1 \\ y = 2x-3 \end{cases}$$
を解くと、

$$(x,y) = (\qquad , \qquad)$$

このことから,

- 連立方程式を解くとは -----

連立方程式を解く ⇔ 共通部分を求める

2.2 円と直線

円 $x^2 + y^2 = 5$ と直線 y = x - 1 の共有点の座標を求めよ.

円 $x^2 + y^2 = 5$ と直線 y = 2x + 5 の共有点の座標を求めよ.

2.3 直線が動く

円 $x^2 + y^2 = 5$ と直線 y = 2x + m について, 以下の問いに答えよ.

(1) 円と直線が共有点を持つとき、定数 m の範囲を求めよ.

(2) 円と直線が接するとき、定数 m の値と接点の座標を求めよ.

2.4 円の半径が動く

半径 r の円 $x^2 + y^2 = r^2$ と直線 3x + y - 10 = 0 について考えよう.

- (1) 円と直線が接するとき、半径 r と、中心と直線の距離 d の関係は どうなるだろうか.
- (2) 円と直線が共有点を 2 個持つとき、半径 r と、中心と直線の距離 d の関係はどうなるだろうか.
- (3) 円と直線が共有点を持たないとき、半径 r と、中心と直線の距離 d の関係はどうなるだろうか.
- (4) 円と直線が接するとき、半径rの値を求めよ.

(5) 円と直線が共有点を持たないとき、半径rの値の範囲を求めよ.

3 円の接線

3.1 円上の点を通る接線

問題

(1) 円 $x^2 + y^2 = 5^2$ 上の点 (3,4) における接線 l の方程式を求めよ.

直線 OP の傾きは _____

 $OP \perp l$ なので、直線 l の傾きは である.

直線lは点(,)を通るので,

直線 l の方程式は _____

整理すると, _____

(2) 円 $x^2 + y^2 = 4$ 上の点 $(1, \sqrt{3})$ における接線の方程式を求めよ.

(3) 円 $x^2 + y^2 = 4$ 上の点 (0, -2) における接線の方程式を求めよ.

(4) 円 $(x-1)^2 + (y-2)^2 = 25$ 上の点 (5,-1) における接線の方程式を求めよ.

3.2 円の外部の点からの接線

- ポイント -----

接点を求めて方程式へ.

問題

点 (3,1) から円 $x^2+y^2=5$ に引いた接線 l の方程式と、接点の座標を求めよ.

<まず, 図を描こう >

< Ans. > 接点を $P(x_1, y_1)$ とおく.

接点 P は円上にあるので,

$$=5 \cdots (1)$$

直線 OP の傾きは であり、

 $OP \perp l$ なので、直線 l の傾きは _____ である.

なので、P における接線の方程式は

(2) の直線は点(3,1)を通るので、

$$\underline{\hspace{1cm}} = \underline{5} \quad \cdots (3)$$

(1), (3) を連立して解くと,

$$(x_1, y_1) = (\underline{\hspace{1cm}}, \underline{\hspace{1cm}}), (\underline{\hspace{1cm}}, \underline{\hspace{1cm}})$$

よって、接線の方程式と接点は、

接線 _____ のとき 接点(,)

接線 _____ のとき 接点(,)

3.3 練習問題

- (1) 点 (1,2) から円 $x^2+y^2=1$ に引いた接線の方程式と接点の座標を求めよ.
- (3) 円 $x^2 + y^2 = 4$ の接線が, x + y + 1 = 0 と平行であるとき, その接線の方程式と接点の座標を求めよ.

- (2) 点 (3,1) から円 $x^2+y^2=5$ に引いた接線の方程式と接点の座標を求めよ.
- (4) 円 $x^2 + y^2 = 1$ と直線 y = x + k の共有点の個数が 2 個であるとき, k の値の範囲を求めよ.

4 2つの円

4.1 位置関係

円 $(x-4)^2 + (y-3)^2 = 9$ を描こう.

上の図に、以下の円のグラフを描き、位置関係を調べよう.

$$(1) \ x^2 + y^2 = 4$$

$$(2) \ x^2 + y^2 = 36$$

(3)
$$x^2 + y^2 = 100$$

(4) 中心が点 (6,3) である円 C と, 円 $x^2+y^2=20$ が外接するよう に図を描き, 方程式を求めよ.

(5) 中心が点 (-3,4) である円 C と、円 $x^2+y^2=1$ が内接する.円 C の方程式を求めよ.

4.2 2 つの円の共有点

アイデア

まずは, 2 つの円の方程式から x^2, y^2 を消去して, x, y の 1 次方程式を作る.

その式を、片方に代入して、x,y の値を求める.

- (1) 円 $x^2 + y^2 = 5$ と円 $x^2 + y^2 6x 2y + 5 = 0$ の共有点の座標を求めよ.
- (2) 円 $x^2+y^2=10$ と円 $x^2+y^2-2x-y-5=0$ の共有点の座標を求めよ.

図も描いて、求めた値が正しそうか確認しよう.

4.3 2 つの円の交点を通る直線

- (1) 円 $x^2 + y^2 = 4$ と円 $x^2 + y^2 + 4x 2y + 4 = 0$ の共有点の座標 を求め F
- (3) 円 $x^2 + y^2 = 4$ と円 $x^2 + y^2 + 4x 2y + 4 = 0$ の共有点と、点 (0,0) を通る円の方程式を求めよ.

(2) 円 $x^2+y^2=4$ と円 $x^2+y^2+4x-2y+4=0$ の共有点を通る直線の方程式を求めよ.

図も描いて、求めた式が正しそうか確認しよう.

4.4 2 つの円の交点を通る直線 (発展)

2つの円 $x^2+y^2=4$ と $x^2+y^2+4x-2y+4=0$ の共有点を通る図形の方程式を,

のようにかける.

(1) 円 $x^2+y^2=4$ と円 $x^2+y^2+4x-2y+4=0$ の共有点を通る直線の方程式を求めよ.

(2) 円 $x^2+y^2=4$ と円 $x^2+y^2+4x-2y+4=0$ の共有点と、点 (0,0) を通る円の方程式を求めよ.

5 練習問題

5.1 基本問題

- (1) 円 $x^2 + y^2 + 2x + 4y = 0$ について、中心と半径を求めよ.
- (4) 点 (2,1) を中心とし、直線 x+2y+1=0 に内接する円の方程式を求めよ.

(2) (1) で求めた円と同じ中心を持ち, (1,-2) を通る円の方程式を求めよ.

(5) 中心が y=x+1 上にあり, x 軸に接し, 点 (3,2) を通る円の方程 式を求めよ.

(3) 3 点 A(-2,1), B(1,4), A(0,5) を頂点とする $\triangle ABC$ の外接円の 半径と, 外心の座標を求めよ.

- (6) 直線 y = x 2 と, 円 $x^2 + y^2 = 10$ の共有点の座標を求めよ.
- (9) 円 $(x+1)^2 + (y-3)^2 = r^2$ が、円 $(x-2)^2 + (y+1)^2 = 49$ の内 部にあるように、r の値の範囲を求めよ.

(7) 直線 y = x - 2 と、円 $x^2 + y^2 = 10$ の共有点間の距離を求めよ.

(8) 円 $x^2 + y^2 = 5$ と直線 x + 3y + c = 0 が、異なる 2 点で交わるように c の値の範囲を求めよ.

5.2 普通の問題

めよ.

- (1) 点 A(4,6) と, 円 $(x-1)^2 + (y-2)^2 = 9$ 上の点 P を考える.
 - (a) 2 点間 A, P の距離の最小値と, そのときの P の座標を求めよ.

(b) 2 点間 A, P の距離の最大値と, そのときの P の座標を求

- (2) a を実数とする. $x^2 + y^2 + 4ax 2ay + 10a 10 = 0$ について、以下の問いに答えよ.
 - (a) 中心と半径を求めよ.

(b) a の値が変化するとき、半径の最小値とそのときの円の中心の座標を求めよ.

(c)この円は, a の値に関わらず, 定点を通る. その定点の座標を

求めよ.

5.3 挑戦問題 2

(1) 2 つの円 $x^2 + y^2 = 4$ と $(x - 4)^2 + y^2 = 1$ の双方に接する直線の方程式を全て求めよ.

数学 II 学習ノート

図形と方程式 (軌跡と領域)

2年____組 氏名_____

1 軌跡と方程式

1.1 軌跡って...?

y = x を満たす点の集まりを描こう.

- 2 2 U.M I-M. D. 1	
できた曲線の方程式は	
しるた曲がパンカガモエいる	

OP = 3 を満たす点 P の集まりを描こう.

		y			
					ar.
	0			,	x

できた曲線の方程式は_	
できた曲線の方程式は_	

これらのことから,	曲線はある条件を満たす	の集まり

- 軌跡

与えられた条件を満たす_____全体の集合を, その条件を満たす点の軌跡という.

1.2 座標平面上の点の軌跡

2点 A(0,2), B(4,0) に対し, AP=BP を満たす点 P の軌跡を求めよ.

(1) まず図を描こう.

(2) 予想しよう.

(3) 予想が正しいことを計算で確かめよう. 点 P の座標を (x,y) とおく.

条件より AP=BP

すなはち, $AP^2 = BP^2$ を満たす.

$$x^2 + ($$
 $)^2 = ($ $)^2 + y^2$

整理すると,

よって, AP=BP を満たす点 P は

直線_____

上にある.

逆に、この直線上にある点が全て AP=BP を満たすことを示す.

点 P は直線______から,

 $AP^2 =$

 $BP^2 =$

よって AP=BP.

以上から, 点 P の軌跡は, 直線______

1.3 アポロニウスの

2点 $O(0,0),\,A(3,0)$ からの距離の比が 1:2 である点 P の軌跡を求めよ.

(1) まず, 図を描こう.

(2) 予想しよう.

(3) 予想が正しいことを計算で確かめよう. 点 P の座標を (x,y) とおく.

条件より, OP:PA= ____:___

i.e.___OP

すなはち $__$ AP $^2 = __$ OP 2

ここで,

 $AP^2 =$

 $OP^2 =$

なので,

____=__

整理してまとめると,

よって, 点 P は______上にある.

逆に、この_____上のすべての点 P(x,y) は条件を満たす.

よって、求める軌跡は

問題

2点 $A(-3,0),\,B(2,0)$ からの距離の比が 3:2 である点 P の軌跡を求めよ.

1.4 連動して動く点の軌跡

点 Q が円 $x^2+y^2=4$ 上を描くとき, 点 A(4,0) と点 Q を結ぶ線分 AQ の中点 P の軌跡を求めよ.

(1) 図を描こう.

(2) 予想しよう.

(3) 予想が正しいことを計算で確かめよう. 点 P の座標を (x,y), 点 Q の軌跡を (s,t) とする.

点 Q(s, t) は円 $x^2 + y^2 = 4$ 上にあるので、代入して

 ٠.	(a	ı	

また, 点 P は線分 AQ の中点なので,

$$x = \underline{\hspace{1cm}}, \quad y = \underline{\hspace{1cm}}$$

整理して,

$$s = \underline{\hspace{1cm}}, \quad t = \underline{\hspace{1cm}}$$

これを (a) に代入して整理すると

よって, 点 P は______上にある

逆に、この円上のすべての点 P(x,y) は条件を満たす.

したがって, 求める軌跡は_____

問題

点 Q が直線 y=x+2 上を動くとき, 点 A(1,6) と点 Q を結ぶ線分 AQ を 2:1 に内分する点 P の軌跡を求めよ.

2 不等式の表す領域

2.1 領域って...?

 $y \ge x - 1$ を満たす点の集まりを描こう.

x > -1 を満たす点 P の集まりを描こう.

	Ţ	y .			
	0				x

·領域

与えられた条件を満たす_____全体の集合を, その条件を満たす点の領域という.

2.2 さまざまな領域

次の不等式の表す領域を図示せよ.

$$(1) 3x + y - 2 > 0$$

(2)
$$x^2 + y^2 \le 4$$

(3)
$$(x-1)^2 + (y+2)^2 > 1$$

2.3 不等式の表す領域

復習

連立方等式を解く

連立不等式も同じ考え方.

- 連立不等式の表す領域って ----

連立不等式を解く

(1) 次の連立不等式の表す領域を図示せよ.

$$\begin{cases} x+y+1 > 0 \\ x-y < 0 \end{cases}$$

(2) 次の連立不等式の表す領域を図示せよ.

$$\begin{cases} x^2 + y^2 > 1 \\ x - y + 1 \ge 0 \end{cases}$$

(3) 次の連立不等式の表す領域を図示せよ.

$$\begin{cases} x^2 + y^2 & < 9 \\ (x-1)^2 + y^2 & \ge 4 \end{cases}$$

(4) 次の連立不等式の表す領域を図示せよ.

$$\begin{cases} y < x^2 \\ y - x & \ge 0 \end{cases}$$

復習

$$ab < 0 \Longleftrightarrow \left\{ \begin{array}{l} a > 0 \\ b < 0 \end{array} \right. \ \, \sharp \, \hbar \, l \sharp \left\{ \begin{array}{l} a < 0 \\ b > 0 \end{array} \right.$$

 $(1) \ (x-y+1)(x+y-1) < 0$ の満たす領域を図示せよ.

(2) $(x+y+2)(x+y-1) \ge 0$ の満たす領域を図示せよ.

2.4 領域と最大・最小

(1) x,y が 4 つの不等式 $x \ge 0, y \ge 0, 2x + y \le 8, 2x + 3y \le 12$ を満たす. (x,y) の存在する領域を図示せよ.

(2) (x,y) が (1) の領域内に存在するとき, x+y の最大値・最小値を求めよ.

練習問題

(1) x,y が 4 つの不等式 $x \ge 0, y \ge 0, x+3y \le 5, 3x+2y \le 8$ を同時に満たすとき, x-y の最大値・最小値を求めよ.

2.5 領域を利用した証明

復習

2 つの条件 p,q について,

条件 p を満たすもの全体の集合を P 条件 q を満たすもの全体の集合を Q

とする.

次の命題は真か偽か.

$$p \Longrightarrow q$$

(1) x,y は実数とする. 以下を示せ.

$$(x+2)^2 + y^2 < 1 \implies (x+3)^2 + y^2 \le 3$$

(2) x,y は実数とする. 以下を示せ.

$$x^2 + y^2 \le 1 \implies x + y \le \sqrt{2}$$

(3) x, y は実数とする. 次の命題の真偽を判定せよ. また, 真の場合には証明し, 偽の場合には判例をあげよ.

$$x^2 + y^2 \le \sqrt{5} \implies x - y \le \sqrt{5}$$