浙 沙 法 碧 告

实验名称:用霍尔法测直流图线图与或姆霍兹线圆磁场

指导教师:____刘才明

【实验目的】

- 1. 了解用霍尔效应法测量磁场的原理,学报 FB511型霍尔法亥姆霍兹线圈磁场实验仪的使 用方法
- 2.了解最流圆线圈的经向磁场分布情况
- 3. 测量载流圈线圈和发姆霍兹线圈上的轴线上的磁均分布
- 4. 两平行线圈的间距改变为d= 具和 d=2R时, 例定其轴线上的磁物分布

【实验原理】(电学、光学画出原理图)

- 1. 载流、圆线圈与亥姆霍兹线圈的磁场
- (1) 裁流围线圈, 半在为尺, 电流为工的线圈, 其轴线上高中心距离为

×老处的磁感应强度表达式为: B = 16.06.2R· 12.08·4×1/4 上式中心为国线圈匝数,×为轴上某一点到图心0距离,16=42×10-7H/m 图1 最低图线图的磁物流 疏的的分布图如图 [所示,是-条单峰的之于Y轴对称的曲线

本实验取No=400匝, I=0.400A, R=0.100m,在图心0处X=0,可算得磁感促强度为B=1.0053×10-3丁

(2) 玄姬霍玄线圈 两个完全相同的围线围锁此平行且共轴,近从内方向电流工、线圈间距等于 线圈并经尺时从环感应强度分布曲线可从看出;两线圈合磁场在中心轴线上 (两线圈圈心连线)附近段大范围内是均匀的,这样的一对线圈称为或姆霍克 线围,如图2月末。父分布曲线可从看出,在两线圈中心延线一段,出现一个

平台,过说明该处是匀强减场。

图 2 美超霍克线圈的碳的筛

2. 利用霍尔效应闪烁的原理

霍耳之件的作用如图3所示,若电流工徒比厚度为日的延刑半导体博片,且疏 均18每直作用于该半导体,由于济化或力作用电流方向含发生改变,这一观象 称为霍尔敏版,在博片两个横向面a,b之间产生的电势是称为霍尔电势。 该电势同时垂直于电流 1及破的18方向

霍尔电势产主原因,当电流工的过度东元件(假设为户型)时,全大有之个 的课移连度 v,垂直碳的对压功电荷产生-介法企益力: Fi = q·(v×B)--②图3 霍标元件 式中分电子电荷, 洛克兹力使电荷产至横向的偏转, 由于祥品有边界, 所以偏转的最流子将在边界积累起来。 产生一个横向电场E,直到电场对象流子的作用力 FE=9:E与减的作用的治己或力根抵抗为止,即

9. (VXB) = 9.E 这时电荷在样的中流功时不再编程,由此建立霍瓦电势是,如果是从型样的,则接向电场与前者相反 这户型样的的载流于浓度为P,宽度为W,厚度为d,同随这样的的电流为 In= Pq·w·d·v,则全大理 反为 $V = \frac{I_H}{P_SWd}$, 代入(3)式有 $E = |V \times B| = \frac{I_HB}{P_SWd}$ 见明 $U_H = \frac{I_HB}{P_SWd}$ 其中阳= 10克 称为霍尔系数,在应用中一股写成: 此例系数 Ki= Hi= prod 称为霍尔元件的是敬度,单位为mV/mA·T).一般要求以为大多好。Ki 与截临于浓度了成反比, 半导体内截临于浓度区比全属截临于浓度小, 所以都用半导体材料作为 霍尔元件, 以与材料片厚日成反比,为了增大以值,霍尔元件都使得很薄.由②太可得,知道] 霍尔片的灵敏度 kn,只要分别/刘出霍尔电流 Ln 及霍尔电势差 Un 私 Th 算为研的 B 的之本,这就是 常、奴应州是疏向原理

【实验内容】(重点说明)

1. 测量截流圆线圈轴线上磁场的分布

(1) 按载流圈线圈的要求,把FB511型霍尔法家避霍兹线圈磁物实验仪与测试架正确区接 调节电流使励磁电流 1=0.000A, 再在线圈磁场强度为0的条件下把微特斯拉计调度。 从也把使特斯拉什技准好,值像他强的和美饱环境要散干扰码的及不平衡电势的影响

(2) FB511型破场实验仪测试架左边的线圈为围定线圈,固定在刻度尺层点(即Ocm处),把左边的可

动线圈移动列合造函位置(中心作为坐标原品)

3)使励磁电流 1=0.400A,以固电流线圈中心为全标原点,盖隔1.0cmi则一个B值、测量过程中 注意保持励砝电流值不变

(4) 把测试数据记录到表1中,在扩张几点出B~X曲线。

2. 测量或好度或低圆轴线上磁均分布

(1)参照上面多3聚,移动线圈使二线圈间距d=R(即R处(ocm),这时两个图线图中心连线的几何中 1.在测试至台水平到度尺5(m处

四把两个国电流线圈串联起来(注意效性不要接反),接到磁场测试仪的输出端扭。洞市电流输出 便励磁电流 I=0.400A。以两个圆线圈中心连线上的中点为全核原发,是隔1.0cm间一个B值

(3) 把测试数据记录到表2中。在才格纸上画出 Bm×曲线。

3.测量载流图线圈沿"狂向"的磁场分布: 按实验内容上的要求, 把任然器投头移动到一只线圈中心, 轴线 D的美角为0°, 经向移动投头, 每移动1.0cm间量一个数据,按正反方向测到6cm为止,把数据记录到表3,作出磁均分布 B-Y曲线图.

4. 改支线圈间距,重复多骤上3.(区段)

【实验器材及注意事项】

实验仪器: 1. FB511型霍尔法亥姆霍兹线圈磁场实验仪器

2. 测试架 1台

注意事项:1.是变仪器的集成霍尔传感器探长与微特斯拉计是编号的,出厂已配对闷好,不 可互调,否则会造成测量结果不准确

2.在励磁电流等于0多段下,通过补偿电位器,对微特斯拉升进行补偿调节。

3.浏量或好度在线圈轴线上路的分布时,把两个圆电流线固串联起来时往重极性 不要接反

4.实验室中破场仪器较多,为避免相互影响,应注意不要靠太近

5. 测量过程中注意保持励磁电流值不变

【数据处理与结果】

1. 我晚周线围轴线上破场分布的测量数据记录 表一载流图单线圈轴线上减的分布的数据

			-		•		7 1 4.7	\sim 10.			
到底足液数(10-tm)	2'0	6.0	7.0	8.0	9.0	10.0		12,0	13.0	14.0	15.0
辅用能衡X (10-1m)	-10.0	-9.0	-8.0	-7.0	-6.0	- S.o	-40	-3.0			0.0
研察后强度B(MT)	0.435	0.489	0.553	0.615				- 0			1.075
理论研发应38度B(NT)	0.355	0.413	6,479	0.553	0.614	0.719	0.805	0.5%1	0 443	990	1.0/2
相对没是为	22.5	18.4	15.5	13.1	11.6	-		8.2		7.7	
刘尼尺没数(p-m)	16.0	17.6		_			32.0		7.5	<i>i</i> ./	6.8
到1月 86年 × (10-1m)	1.0	W	30	4.0		<u> </u>		250		25.0	
る名名に必要 B(MT)	1.062	Mark Section	-		\$,0		7,0	8.0	9.0	10.0	
TEINTALEILEDINT		- W		0.800	0.795	0.707	0.626	0556			
相对注意%		0.948				0.654	0.553	0.479	0.413	0.355	
はたっちいかりまいると	173	1.7	8.0	-	Noz	11.9	132	16.0	18.4	21.7	
UR 75 4 3 (91 1/12 36 16 16 1			_ , ,							. /	

将发达问得数据填入表中,前田 岛 人名加汉 计算得理论研究后张度

再由 E=180-81×10% 计算相对泛差、填入麦中、由结果和图列等单广散选图绘图改动方布之于Y轴对称,且中心处观的最大,向两端造减、且容影曲线与理论曲线大致存货、相对

2. 友健育交线圈轴线上的碳的分布的测量数据记录。

* 12 0 's \$ 1	7	A IF ST	77194	ゆっくとほ	Mose 22).	ንጥ እጳ	36				
到限人区及(10-1-14)	5.0	6.0	7.0	8.0	4.0	10.0	110	120	11.2	140	10.0
5阳可能为 X (10-1m)	-100	-90	[- 0/v	1.0	-h.0	-6.0	-460	1 4-1	-1 -	1 - 1-1	
MEARE SER GIMI)	0.937	1.047	11/53	1.254	1.340	1.400	1.446	1.473	1 440	1 4.01	1,000
7.5.5.5.4	16.0	17.0	18.0	19.0	20.0	2/,0	22.0			25.0	
「自向に為x(トート)	1,0	2.0	3.0	4.0	5.0	6.0	7.0	X a	9.0	10	
玩多左强度B(nT)	1.487	1.487	1.479	1.468	1.420	1.358	1.274	1 18/	1085	10.0	
治定的组织和北方。	4 4	4 40	(1) /5				1 7	1.100	1.202	_u·/6/	

川肯家盆门得数据顶入墓中,由数据和图像发现,其多预期相符,且其碌的分布之于Y平田 功效、两线圈是破场在中心处最大、且在一定范围内约引,胜者距离要查文、破场强度向南端通流。

3. 沟量载度线围轮向磁场流

一包与"教徒团众图中心军面内经向路的冷放报记录

		20 -1-1		(1 PE)	1 18/	77219	DE 09).	<i>T</i> Tr 🗪 3	BIUTU,				
	作的记载Y(10-1x)	-5.0	-4.0	-3.0	\-3.0	-1.0	0.0	1.0	12.0	7.0	40		ı
	B (MT)	1-287	1.183	1.118	1.081	1.064	1.958	1.065	1.084	1111	/ 201	3.0	ł
·	1542 In 1 10 \$ 10 18 3		7.40			-		1. 03	1. 0	1.126	[1.24]	(<i>1.3</i> 17)	ſ

将发强测得数据填入表中,由数据和图像发现,其多预期大双相称,且其破场分布充于Y细 对好,西线中心处码约最小,码均随着任何能高的绝对值的情况而增大

【误差分析】实验判得数据分析做用像与预期之致行。但仍有一定没意义是分析。

1. 地球强场会对确本实验造成干扰,即使将微特斯拉计同零后、仍未排除在不同位置处地及 场的干扰.

2 人为该数存在设是,在该代向实轴向距离时径,定的位置由于观测原因存在设差

3. 实验仪器的问量设差. 仍存在一定的偏差. 由理论曲线和实际曲线可以看出存在特色的偏差的能 4. 在我们成分分布不够下格左右对称。可能受到其他仪器设备的开扰,或者像面线图 使意

本身并不是严格对称,仍存在一定的过度,这个可由实验了看出,X轴左侧数据普遍比如时,

5.由实验1和对泛差可以看出,在中心处相对泛差较小可见在磁的强度大的地方,泛差对 安运的影响小

6. 秋明常是战国两个线国中心并不严格在同一条水平线上,这个可能产生没意。

【实验心得及思考题】

实验心得。

本文实验让我了解了霍尔处应测量磁的的原理,开实际测量了截流图线图的破场分布 与交通食花战国的环的分布。虽然此实验的实际操作并不复杂、但其与理论知识和联 美,加定了我对路线围,强的分布的理解与认识,同时在简单实验中,我们也要胆大心 细.尽可能也避免因人为,成小沙量设差.同时要学习作用从及分析设差产生的原因 凤奏题.

*1.因为他环球的是一个恒定的直流磷的、会对磷场线圈产生的磁均进行干扰,且因为教徒 线圈产生的码的相对地球硬的来说较小,所以地球破场的影响不可忽略

2. 氨流磷线圈轴线上距离中心越区,磁场强度越水,且碳的分布关于OY轴中心对称.

中心处磁的最大 向两端追减

3. 数据霍交线圈由两个相同的平行且共轭的线圈组成,通从相同方向的电流。当线圈间记 等一线图半化时,两个最流线圈的点磁场在轴的中心点附近较大范围内是均匀的。处 变两圆线圈间距后,当间距增大、则破场分布将出现两个峰,间距减小时则中心位置

不会出现均匀无发化的破场分布

4. 舒松沟器探头与硫份方向垂直时示数最大

5. 霍尔元件的安装不精确,使用时间世长和云对结果产生没差。同时环境中也可能存在于 托的强约

【数据记录及草表】	走! 最选图单线圈轴线上码均分布的数据记录
	是 我们到于我到现代一个的,

			~ 1	4,000	1 7 -						_
到度尺法数(10-1m)	5.0	6.0	7.0	8.0	9.0	10.0	[].0	12.0	13.0	14.0	15.0
朝日的能為 X (10-1m)	-10.0	- 9.0	-8.0	-7.0	-6.0	-5.0	-40	-3.0	-1.0	-1.0	0.0
研究应张度B(MT)	0.435	0.489	0.553	0.625	0.707	0.790	0.877	0.955	1.017	1.060	1.073
理论解及后张度B(MT)	0.355	0.413	0.479	0.553	0.634	•.719	0.805	0.333	0.948	0.170	1.005
相对性表 %		18.4	15.5	13.1	11.6	9.9	9.0	3.1	7.3	7.3	18
刻度尺浅数(lotim)	16.0	1).0	18.0	19.0	20.0	2/.0	21.0	13.0	140	25.0	
神自河飞高 X (10 m)	1.0	2.0	3.0	4.0	5.0	6.0	7.0	8.0	9.0	10.0	
双总在没在B(MT)	1.062	1.017	0.953	0.880	0.773	0.7.9	0.626	0.556	0.489	0.452	
理论被象应是度B(mT)	0.770	0.748	0.883	0.805	0.719	0.659	0.553	0.479	0.413	0.355	
排对没先%	7.3	7.3	8.0	9.4	10.3	11.9	13.2	16.0	18.4	21.7	
										_	

表上 为规范或线周轴线上磁场分布数据记录

到底尺法数(1-4円)	5.0	6.0	7.0	8,0	9.0	(0.0	11.0	12.0	150	140	(5.0
轴向战者 X (1· 14)	⊣0.0	-9.0	-8.0	-7.0	4.0	-5.0	-47	ھڌ-	-70	- 1.0	0.0
政策总统度 B(NT)	0.937	1.047	1.153	1.256	1.340	1.400	1.446	1.473	1.480	1.486	[.48]
制度人作效 (10 4m)	16.0	17.•	18.0	19.0	79.0	21.0	24.0	23.0	140	25.0	
新的能像 x (10~m)	1.0		3.0						9.0		_
万在然后该度B(mT)	1.487	1.487	1.47	1.45	1.420	1.358	1.279	1.186	1.085	0.87	

表了最临国族国中心平面内征向环场分布数据记录

经同距离Y(10-2m)											
B (MT)	1.28)	1.187	1.118	1.081	h064	1.058	1. %5	1.084	1.136	1.20}	1.317

教师签字: 2

载流圆线圈轴线上的磁场分布

亥姆霍兹线圈轴线上的磁场分布

载流圆线圈沿径向的磁场分布曲线

