Avaliação 4

Solução numérica para EDOs

Paulo Ricardo Seganfredo Campana

1 de junho de 2023

O código fonte desta prova está disponível no Github

https://github.com/PauloCampana/UFPB/blob/main/P4/numérico/prova4/prova4.qmd

A função PVI definida a seguir, cria uma tabela das iterações dos métodos de Euler e Runge-Kutta para solução de problemas de valor inicial, aqui, o método de Euler é representado como ordem = 1, pois o mesmo é um caso específico dos métodos de Runge-Kutta.

```
library(dplyr)
PVI <- function(EDO, ordem, inicial, objetivo, h) {
    ac <- case_when(</pre>
        ordem == 1 \sim list(c(0,
                                      0, 0), c(1, 0,
                                                                  0)),
        ordem == 2 \sim list(c(1/2,
                                     0, 0), c(1/2, 1/2,
                                                                  0)),
        ordem == 3 \sim list(c(1/2, 1, 0), c(1/6, 2/3, 1/6,
                                                                  0)),
        ordem == 4 \sim list(c(1/2, 1/2, 1), c(1/6, 1/3, 1/3, 1/6)),
    )
    a <- ac[[1]]
    c <- ac[[2]]
    x <- seq(inicial[1], objetivo, by = h)</pre>
    y <- inicial[2]</pre>
    for(n in 1:(length(x) - 1)) {
              <- EDO(x[n]
                                     , y[n]
        K[2] \leftarrow EDO(x[n] + h * a[1], y[n] + h * a[1] * K[1])
        K[3] \leftarrow EDO(x[n] + h * a[2], y[n] + h * a[2] * K[2])
        K[4] \leftarrow EDO(x[n] + h * a[3], y[n] + h * a[3] * K[3])
        y[n+1] <- y[n] + h * sum(c * K)
    data.frame(n = seq_along(x) - 1, x, y)
}
```

Questão 1.

1) Usando os métodos de Euler e Runge-Kutta de 3ª ordem com h=0.2 calcule y(1) sabendo que y(x) é solução de

$$\begin{cases} 2x + yy' = y^2 \\ y(0) = 1 \end{cases}$$

Sabendo que a solução exata do PVI acima é $\sqrt{2x+1}$ calcule para os dois métodos o erro absoluto cometido na aproximação de y(1).

Isolando y' na EDO temos:

$$2x + yy' = y^2$$
 \Longrightarrow $y' = y - \frac{2x}{y}$

```
ED01 <- function(x, y) y - 2*x / y
```

```
PVI1_ordem_1 <- PVI(
    ED01,
    ordem = 1,
    inicial = c(0,1),
    objetivo = 1,
    h = 0.2
)
PVI1_ordem_3 <- PVI(
    ED01,
    ordem = 3,
    inicial = c(0,1),
    objetivo = 1,
    h = 0.2
)
PVI1_ordem_1</pre>
```

Tabela 1: Método de Euler

n	X	У
0	0.0	1.000000
1	0.2	1.200000
2	0.4	1.373333
3	0.6	1.531495
4	0.8	1.681085
5	1.0	1.826948

Tabela 2: Runge-Kutta de 3^{a} ordem

n	X	У
0	0.0	1.000000
1	0.2	1.183947
2	0.4	1.343141
3	0.6	1.485673
4	0.8	1.616110
5	1.0	1.737384

Sendo $\sqrt{2x+1}$ a solução exata da EDO, temos que $y(1)=\sqrt{3}$, com isso podemos comparar os erros absolutos dos dois métodos.

O método de Euler apresenta um erro absoluto de 9% enquanto o Runge-Kutta de 3^a ordem tem erro de meio porcento.

Questão 2.

Seja P(t) o número de indivíduos de uma certa população medido em anos. Se a taxa de nascimentos é constante b e a taxa de mortalidade d é proporcional ao tamanho da população, então o crescimento da população é dado pela equação logística

$$\frac{dP(t)}{dt} = bP(t) - k(P(t))^2$$

Onde d = kP(t). Suponha que P(0) = 50976, $b = 2.9 \times 10^{-2}$ e $k = 1.4 \times 10^{-7}$. Encontre a população estimada depois de 5 anos utilizando Runge-Kutta de ordem 4.

Portanto, desejamos obter y(5) a partir da EDO $y'=(2.9\times 10^{-2})y-(1.4\times 10^{-7})y^2$ e condição inicial y(0)=50976, seja h=0.5:

```
ED02 <- function(x, y) 2.9e-2 * y - 1.4e-7 * y^2
PVI(ED02, ordem = 4, inicial = c(0,50976), objetivo = 5, h = 0.5)
```

n	X	У
0	0.0	50976.00
1	0.5	51535.30
2	1.0	52098.69
3	1.5	52666.16
4	2.0	53237.69
5	2.5	53813.25
6	3.0	54392.84
7	3.5	54976.44
8	4.0	55564.02
9	4.5	56155.56
10	5.0	56751.04

Temos que a população estimada depois de 5 anos é de 56751 habitantes.