

Arquitectura del Software

Lab. 05

Automatización de la construcción:

Maven, Gradle, npm,...

José Emilio Labra Gayo Pablo González Irene Cid **Cristian Augusto Alonso**

Construcción de Software

- Tareas
 - Compilación
 - De código fuente a código binario
 - Empaquetado
 - · Gestión de dependencias e integración
 - También llamado enlace (linking)
 - Ejecución de pruebas
 - Despliegue
 - Crear documentación/release notes

Automatización de la construcción

- Automatizar tareas de construcción
- Objetivos:
 - Evitar errores (minimizar "malas construcciones")
 - Eliminar tareas redundantes y repetitivas
 - Gestionar complejidad
 - Mejorar calidad de producto
 - Tener un histórico de construcciones y releases
 - Integración continua
 - Ahorro de tiempo y dinero

Herramientas de automatización

- Makefile (mundo C)
- Ant (Java)
- Maven (Java)
- SBT (Scala, lenguajes JVM)
- Gradle (Groovy, lenguajes JVM)
- rake (Ruby)
- npm (Node.js)
- cargo (Rust)
- etc.

Maven - Introducción

Herramienta de automatización de construcción **en Java**

- Predefine cómo construir el software
- Describe dependencias del software
- Principio: Convención sobre configuración

Maven provee de un comportamiento por defecto para el proyecto, con las siguientes fases de construcción cíclicas:

```
Validate, compile, test, package, integration-test, verify, install, deploy Otras fases independientes:
```

```
clean, site
```

Se pueden añadir más fases configuradas (goal)

Maven - Configuración

¿ Como se identifica cada módulo?

3 coordenadas: Group, Artifact, Version

Dependencias entre modules

Configuracion: XML file (Project Object Model)

pom.xml

Maven

Almacenes de artefactos - repositorios

Guardan diferentes tipo de artefactos Ficheros JAR, EAR, WAR, ZIP, plugins, etc.

Todas las interacciones a través del repositorio

Sin caminos relativos

Compartir módulos entre equipos de desarrollo

Configuración repositorios local: settings.xml

School of Computer Science, University of Oviedo

Maven

Fichero POM (pom.xml)

XML syntax

Describe a project

Versión y nombre de cada módulo

Tipo de artefacto (jar, pom, ...)

Localizaciónd el código fuente

Dependencias

Plugins

Profiles

Alternativas de configurar la construccción

Maven - Versionado

Identificación de proyecto

G A V (Grupo, artefacto, versión)

GrupoId: Identificador de agrupamiento

ArtefactId: Nombre del proyecto

Versión: Formato {Mayor}.{Menor}.{Mantenimiento}

Se puede añadir "-SNAPSHOT" (en desarrollo)

Maven - Archetipos

- Plantilla de Estructura de directorios
 - Por defecto Maven utiliza una estructura convencional
 - src/main
 - src/main/java
 - src/main/webapp
 - src/main/resources
 - src/test/
 - src/test/java
 - src/test/resources
- Otros archetypes:
 - · maven-archetype-webapp,
 - maven-archetype-j2ee-simple

Maven - Ejecución

Diferentes fases del ciclo de desarrollo

```
validate
compile
test
package
integration-test
install
deploy
clean
```

Invocación:

```
mvn clean
mvn compile
mvn clean compile
mvn compile install
```

• • •

School of Computer Science. University of Oxiec

Maven - Dependencias

Automáticamente gestiona dependencias

Identificación a través de su GAV

```
Entorno
compile
test
provided
Tipo
jar, pom, war,...
```


Maven - Dependencias

Gestión automática de dependencias

Las dependencias son descargadas

Alojadas en repositorio local

Pueden crearse repositorios intermedios (proxies)

Ejemplo: artefactos comunes de una empresa

Transitividad

B depende de C

A depende de $B \Rightarrow C$ también se descarga

Maven - Herencia

Múltiples módulos

Proyectos grandes pueden descomponerse

Cada proyecto crea un artefacto

Tiene su propio fichero pom.xml

El proyecto padre agrupa los módulos

Maven-Ejecuciones conocidas

Otros arquetipos y ejecuciones

```
archetype:generate - Genera esqueleto de un proyecto
eclipse:eclipse - Genera proyecto eclipse
site - Genera sitio web del proyecto
site:run - Genera sitio web y arranca servidor
javadoc:javadoc - Generar documentación
cobertura:cobertura - Informe del código ejecutado en pruebas
checkstyle:checkstyle - Chequear el estilo de codificación
```


Gradle - Introducción

- Diseñado inicialmente para proyectos basados en Java, está basado en Groovy (también ahora en Kotlin) + DSL (Domain Specific Language) y resulta más facil que Maven para crear tareas necesarias en la construcción
- Puede utilizarse para otros lenguajes:
 Kotlin, C++

Gradle -Conceptos básicos

Proyecto: Es algo que construimos (por ejemplo ficheros jar) o que hacemos (desplegar nuestra aplicación en producción)

```
Ej creación proyecto
$ gradle init
Task :wrapper
Select type of project to generate:
1: basic
2: application
3: library
4: Gradle plugin Enter selection (default: basic) [1..4]
Select build script DSL:
1: Groovy
2: Kotlin
```

Tarea: Es una unidad atómica que se realiza durante la construcción (por ejemplo compilar nuestro proyecto o lanzar tests)

Gradle - Tareas

- Ventaja frente a Maven: Un sistema sencillo para codificar tareas y reutilizarlas
- Scripts se salvan en el build.gradle.
- El siguiente ejemplo define una tarea llamada "hello" el cual se usa para imprimir por pantalla "ASW"

• Ejecución:

C:\> gradle -q hello

Gradle -Tareas

• Añadir <u>dependencias a las tareas</u>: Una tarea solo se ejecutada cuando se acabe de ejecutar de la que dependa

```
task taskY << {
        println 'taskY' }
task taskX << {
        println 'taskX' }
taskY.dependsOn taskX
```

Resultado Ejecución:

```
C:\> gradle -q taskY taskX taskY
```


Gradle - Dependencias

• Al igual que para Maven las librerías que se usarán se deberán descargar de <u>algún</u> repositorio (puede ser incluso un repositorio para Maven)

```
apply plugin: 'java'
repositories {
  mavenCentral()
}
dependencies {
  compile group: 'org.hibernate', name: 'hibernate-core', version: '3.6.7.Final'
  testCompile group: 'junit', name: 'junit', version: '4.+'
}
```


Gradle - Ciclo de vida

- Un proyecto -> un fichero build.gradle
- BasePlugin define pocas tareas que luego son implementadas por otro plugin específico (ej: Java Plugin)
 - clean
 - check
 - assemble
 - build

Gradle - Plugins

- Plugin: Conjunto de tareas:
 - Extienden el modelo básico Gradle
 - Configura el proyecto
 - Aplican configuraciones específicas.
- Dos tipos:
 - Scripts: Pueden ser aplicados de forma local o remota.
 - Binarios: Identificados por un plugin id.

apply from: 'other.gradle'

apply plugin: JavaPlugin

```
plugins {
  id "com.jfrog.bintray" version
"0.4.1"}
```


npm

- Node.js Package Manager
 - Creado inicialmente por Isaac Schlueter
 - Posteriormente empresa: Npm Inc.
- 3 cosas
 - 1. Sitio web (https://www.npmjs.com/)
 Gestión de usuarios y organizaciones
 - 2. Almacén de software Paquetes públicos/privados
 - 3. Aplicación en línea de comandos Gestión tareas y dependencias Fichero configuración: package.json

Configuración npm: package.json

- Fichero cofiguración: package.json
 - npm init crea un esqueleto simple
 - Campos:

```
"name": "...obligatorio...",
"version": "...obligatorio...",
"description": "...opcional...",
"keywords": "...",
"repository": {...},
"author": "...",
"license": "...",
       { . . . } ,
"bugs":
"homepage": "http://. . .",
       "index.js",
"main":
"devDependencies": { ... },
"dependencies": { ... }
"scripts": { "test": " ... " },
      {...},
"bin":
```

Nota: Yeoman proporciona esqueletos completos

Paquetes npm

Almacén: http://npmjs.org Instalación de paquetes: Guarda dependencia en the package.json 2 opciones: Solo para desarrollo Local npm install <packageName> --save (--save-dev) Descarga los contenidos de <packageName> en node modules Global npm install -g <packageName>

Dependencias npm

Gestión dependencias

Paquetes locales son guardados en node_modules Acceso a través de: require('...')

Paquetes Global (instalados con opción --global)

Guardados en /usr/local/npm (en Linux)

Paquetes Scoped se marcan con @

Para usar un módulo dentro del proyecto u otro módulo

var uc = require('upper-case');

NPM - Package.json

- Campos de definición del proyecto:
 - name
 - version
 - Author
 - homepage
 - description
 - private
 - Keywords
 - Main
 - Bin
- Dependencias
 - Dependencias
 - devDependencies
 - peerDependencies
 - bundleDependencies

NPM - Package.json

- Elementos del proyecto:
 - Links
 - Licencia
 - Archivos:
 - package.json
 - README
 - CHANGES / CHANGELOG / HISTORY
 - LICENSE / LICENCE
 - □ NOTICE
 - Scripts
 - Ejecutar tareas: npm run <<namespace:>> script_name

NPM - Package.json

- Ejecución:
 - Browser: Si el modulo va a ser ejecutado en el lado del cliente en un navegador, se debe usar este campo en vez de main
 - "browser": "src/App.js,
 - Main:punto de entrada al programa cuando va a ser ejecutado por un interprete javascript
 - "main": "src/App.js,
 - Engines, cpu, os
 - Configuracion target browser.
 Elemento extreno browserlist

NPM -Package.json

• Repository: Especifica donde está el codigo almacenado

```
"repository": {
    "type" : "git",
    "url" : "https://github.com/npm/cli.git"
}

"repository": {
    "type" : "svn",
    "url" :
    "https://v8.googlecode.com/svn/trunk/"
}
```


NPM

• config: Usado para configurar los parámetros usados en los paquetes de scripts que persisten ante las actualizaciones.

```
{
    "name" : "foo",
    "config" : { "port" : "8080" }
}
```

• Más elementos: https://docs.npmjs.com/files/package.json

NPM - Reglas versiones

- Regla para los nombres:
 - 214 caracteres o menos.
 - No puede empezar por punto o guión bajo
 - Los nuevos paquetes no pueden tener letras mayúsculas en los nombres
 - El nombre formará parte de la URL, un argumento de la línea de commando y el nombre de un fichero. Por lo tanto el nombre no puede contener los caracteres no validos en URLs

NPM - Reglas versiones

- Versión del paquete: Debe ser parseable por <u>node-semver</u>, que está empaqueta con npm a través de una dependencia
- Rangos: Conjunto de comparados que especifican versions que satisfacen el rango.
 - Por ejemplo el comparados >=1.2.7 permitiría 1.2.7, 1.2.8, 2.5.3, y
 1.3.9, pero no 1.2.6 o 1.1.0.
 - Más en https://docs.npmjs.com/misc/semver

NPM -Package-lock.json

- Es generado automáticamente cuando se actualizan los módulos del proyecto.
- Describe el árbol exacto de versiones usado, evitando que un usuario instale una version más actual que cuando se probó.

Recuerda: el formato de versiones nos permite definer la más actual, versiones mayores a una determinada...

• Permite ver claramente la resolución de dependencias final, optimizando el proceso.

Task Execution: Grup y Gulp

Ejecutar tareas propias de JavaScript:

- Comprimir imágenes
- Empaquetar los módulos que van a ser usado en un proyecto (webpack)
- Minimizar ficheros js y css
- Ejecutar test
- Transcompilar babel.js

Estas tareas pueden ejecutarse directamente con npm o pueden usarse dos herramientas muy famosas: Gulp y/o Grunt

Task Execution: Grup y Gulp

- Grup:
 - Escrito sobre NodeJS.
 Módulo fs
 - Instalar:

```
npm install -g grunt
npm install -g grunt-cli
```

Configuración package.json

```
{ "name": "ASW",
   "version": "0.1.0",
   "devDependencies": {
       "grunt-contrib-jshint": "~0.10.0",
       "grunt-contrib-nodeunit": "~0.4.1",
       "grunt-contrib-uglify": "~0.5.0"
   }
}
```

- Gulp:
 - Escrito sobre NodeJS:
 módulo stream
 - Instalar:

```
npm install --save-dev gulp
npm install -g gulp-cli
```

Crea un gulpfile.js

```
function defaultTask(cb) {
  // tareas
  cb();
}
exports.default = defaultTask
```

Ejemplos

```
module.exports = function(grunt) {
    // CONFIGURE GRUNT
    grunt.initConfig({
    (pkg.name)
        pkg: grunt.file.readJSON('package.json'),
        });
    grunt.loadNpmTasks('grunt-contrib-uglify');
    grunt.registerTask('default', ['uglify']);
};
```

Wrapper

```
gulp.task(''jpgs, function()
{ return gulp.src('src/images/*.jpg')
.pipe(imagemin({ progressive: true }))
.pipe(gulp.dest('optimized_images')); });
```

Otro Ejemplo

https://github.com/pglez82/npm-tutorial