Single Factor Models Fitting, SMF

Single Factor Models Fitting Method:

- 1. Regression Method
- 2. IC Method
- 3. Tiered Backtesting Method

Regression Method

1. Data Collection

For example: 2021,01,01 - 2024,05,31; 1h

2. Factor calcualtion

For example: quote_asset_volume, number_of_trades, taker_buy_base_asset_volume, taker_buy_quote_asset_volume and some derivative factors

- Some specific factors
- Tsfresh
- Featuretools
- worldquant Alpha 101
- Guotaijunan Alpha 191

3. Data preprocessing

- Data cleaning: remove or correct missing, erroneous or abnormal data.
 - Median-Based Outlier Removal:
 - Let the value of a factor at time T be D_i.
 - Calculate the median D_M of D_i.
 - Calculate the median absolute deviation |D_i D_M| and denote it as D_M1.
 - For all D_i, if D_i>D_M+5D_M1, then set D_i to D_M+5D_M1; if D_i<D_M-5D_M1, then set D_i to D_M-5D_M1.
 - Missing Value Handling:

- Check if there are missing values in the new series of factor values D_i.
- For missing values, fill them using the overall sample's mean or median. The choice between these methods depends on the distribution characteristics of the data (skewness or normality).
- Data transformation:
 - Z-score Normalization (Standardization)
 - Min-Max Scaling (Normalization)
 - Log Transformation, Box-Cox Transformation, Binarization, Binning (Bucketing)
 - Eg:
 - Standardization:
 - Calculate the mean and standard deviation of the factor values after handling missing values.
 - Subtract the mean from each factor value and divide by the standard deviation, so that the processed series of factor values approximates a standard normal distribution N(0,1).
 - Normalization:
 - Calculate the minimum ⊠min Xmin and maximum ⊠max Xmax values of the factor values after missing value treatment.
 - Normalize each factor value to scale between 0 and 1 using the formula: Xnorm= (X—Xmin)/(Xmax—Xmin)
- Data segmentation:

Train set: 2021,01,01 - 2023,12,31

Test set: 2024,01,01 - 2024,05,31

4. Model Assumptions

- Dependent variable(Y)
 - Forward return

Default: 1h, 4h, 8h, 1d, 3d, 7d, 14d

- Independent variable(X)
 - Default: 1h, 4h, 8h, 1d, 3d, 7d, 14d

5. Model selection

• Linear model:

- Linear Regression
- Lasso Regression
- Ridge Regression

Non-linear model:

- Logistic Regression
- Linear Discriminant Analysis, LDA
- Quadratic Discriminative Analysis, QDA
- Decision Trees Regression
- Random Forest Regression
- XGBoost
- AdaBoost
- Gradient Boosting Machines, GBM
- Support Vector Machine Regression
- Gaussian Processes
- K-Nearest Neighbors, KNN
- Neural Networks
- RNN, LSTM, GRU

6. Model validation

- General Evaluation Criteria:
 - Accuracy
 - Mean Squared Error (MSE) or Root Mean Squared Error (RMSE)
 - R-squared (Coefficient of Determination)
 - Area Under ROC Curve (AUC-ROC)
 - F1-Score
 - Information Coefficient (IC)

7. Backtesting

- Initial Setup
 - Initial Capital: 0
- Signal Generation

- Buy Signal (1): Predicted return exceeds a positive threshold.
- Sell Signal (-1): Predicted return falls below a negative threshold.
- No Action (): Predicted returns are between these thresholds.
- Trading Costs
 - Assuming a transaction cost of 5 basis points (bps).
- Metrics Calculation
 - sharp ratio
 - return/CAGR
 - maximum drawdown
 - calmar ratio
 - a plot of performance curve

8. Outcome Explaination