5.0 微積分函數分類

1. 單變數函數: $\mathbb{R} \to \mathbb{R}$

2. 向量値函數: $\mathbb{R} \to \mathbb{R}^n$, n > 1 (5.2)

3. 多變數函數: $\mathbb{R}^n \to \mathbb{R}$, n > 1 (5.3)

4. 多變數向量值函數: $\mathbb{R}^n \to \mathbb{R}^m$, m, n > 1

5.1 空間向量

定義 (符號). • 向量: a, x

• 分量形: $\mathbf{a} = \langle a_1, a_2, a_3 \rangle, a_1, a_2, a_3 \in \mathbb{R};$

• 長度: $|\mathbf{a}| = |\langle a_1, a_2, a_3 \rangle| = \sqrt{a_1^2 + a_2^2 + a_3^2}$.

• 三維直角座標系單位向量: $\hat{\imath} = \langle 1, 0, 0 \rangle$, $\widehat{\mathbf{j}} = \langle 0, 1, 0 \rangle, \, \widehat{\mathbf{k}} = \langle 0, 0, 1 \rangle$

• $\mathbf{a} = \langle a_1, a_2, a_3 \rangle \equiv a_1 \hat{\mathbf{i}} + a_2 \hat{\mathbf{j}} + a_3 \hat{\mathbf{k}}$

• $\mathbf{0} = \langle 0, 0, \dots, 0 \rangle$

定義 (内積 / 點積). 給定 n $(n\geqslant 2)$ 維向量 $\mathbf{a}=\langle a_1,\,a_2,\,\dots,\,a_n\rangle,\,\mathbf{b}=\langle b_1,\,b_2,\,\dots,\,b_n\rangle,\,$ 則 \mathbf{a} 與 \mathbf{b} 的内積 / 點 積 (inner product / dot product) 定義為 $\mathbf{a} \cdot \mathbf{b} = \sum_{i=1}^{n} a_i b_i$.

性質. 給定 $\mathbf{a}, \mathbf{b}, \mathbf{c} \in \mathbb{R}^n, n \geqslant 2, s \in \mathbb{R}$. 則

• $\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \theta, \ 0 \le \theta \le \pi$ 為 \mathbf{a} 與 \mathbf{b} 的夾角.

且

1.
$$\mathbf{a} \cdot \mathbf{a} = |\mathbf{a}|^2$$

2.
$$\mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a}$$

3.
$$(s\mathbf{a}) \cdot \mathbf{b} = s(\mathbf{a} \cdot \mathbf{b})$$

4.
$$\mathbf{0} \cdot \mathbf{a} = 0$$

5.
$$\mathbf{a} \cdot \mathbf{b} = 0 \iff \mathbf{a} = \mathbf{0} \lor \mathbf{b} = \mathbf{0} \lor \mathbf{a} \perp \mathbf{b}$$

6.
$$\mathbf{a} \cdot (\mathbf{b} + \mathbf{c}) = \mathbf{a} \cdot \mathbf{b} + \mathbf{a} \cdot \mathbf{c}, (\mathbf{a} + \mathbf{b}) \cdot \mathbf{c} = \mathbf{a} \cdot \mathbf{c} + \mathbf{b} \cdot \mathbf{c}$$

證. 由上圖, $|\mathbf{a} - \mathbf{b}|^2 = (|\mathbf{b}| - |\mathbf{a}| \cos \theta)^2 + (|\mathbf{a}| \sin \theta)^2 = |\mathbf{b}|^2 - 2|\mathbf{a}| |\mathbf{b}| \cos \theta + |\mathbf{a}|^2 \cos^2 \theta + |\mathbf{a}|^2 \sin^2 \theta = |\mathbf{b}|^2 - 2|\mathbf{a}| |\mathbf{b}| \cos \theta + |\mathbf{a}|^2, \ \mathbf{Z} \ |\mathbf{a} - \mathbf{b}|^2 = (\mathbf{a} - \mathbf{b}) \cdot (\mathbf{a} - \mathbf{b}) = \mathbf{a} \cdot \mathbf{a} - \mathbf{a} \cdot \mathbf{b} - \mathbf{b} \cdot \mathbf{a} - \mathbf{b} \cdot \mathbf{b} = |\mathbf{a}|^2 + |\mathbf{b}|^2 - 2\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}|^2 + |\mathbf{a}|^2 + |\mathbf{b}|^2 - 2\mathbf{a} \cdot \mathbf{b} = |$ $|\mathbf{b}|^2 - 2|\mathbf{a}||\mathbf{b}|\cos\theta + |\mathbf{a}|^2$, $\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}||\mathbf{b}|\cos\theta$.

定義 (投影). 給定向量 \mathbf{a} , \mathbf{b} , 則 \mathbf{a} 在 \mathbf{b} 方向上的投影 (projection) $\operatorname{proj}_{\mathbf{b}}\mathbf{a}$ 定義為 $\operatorname{proj}_{\mathbf{b}}\mathbf{a} = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{b}|^2}\mathbf{b}$.

定義 (外積 / 叉積). 給定三維向量 $\mathbf{a} = \langle a_1, a_2, a_3 \rangle$, $\mathbf{b} = \langle b_1, b_2, b_3 \rangle$, 則 \mathbf{a} 與 \mathbf{b} 的外積 / 叉積 (outer product / cross product) 定義為 $\mathbf{a} \times \mathbf{b} = \begin{vmatrix} \widehat{\boldsymbol{\imath}} & \widehat{\boldsymbol{\jmath}} & \widehat{\mathbf{k}} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} = \langle a_2b_3 - a_3b_2, a_3b_1 - a_1b_3, a_1b_2 - a_2b_1 \rangle$.

性質. 令 $\mathbf{a}, \mathbf{b}, \mathbf{c} \in \mathbb{R}^3, s \in \mathbb{R},$

- $|\mathbf{a} \times \mathbf{b}| = |\mathbf{a}| |\mathbf{b}| \sin \theta$, $0 \le \theta \le \pi$ 為 \mathbf{a} 與 \mathbf{b} 的夾角; $|\mathbf{a} \times \mathbf{b}|$ 為 \mathbf{a} 與 \mathbf{b} 張成之平行四邊形面積.
- $\mathbf{a} \times \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \sin \theta \, \hat{\mathbf{n}}, \, 0 \leq \theta \leq \pi \,$ 為 \mathbf{a} 與 \mathbf{b} 的夾角, $(\mathbf{a}, \mathbf{b}, \hat{\mathbf{n}})$ 滿足右手定則且 $|\hat{\mathbf{n}}| = 1, \, \hat{\mathbf{n}} \perp \mathbf{a}, \, \hat{\mathbf{n}} \perp \mathbf{b}$.
- |a ⋅ (b × c)| 為 a, b, c 張成之平行六面體體積.

1.
$$\mathbf{a} \times \mathbf{b} \perp \mathbf{a}, \mathbf{a} \times \mathbf{b} \perp \mathbf{b}$$

2.
$$\widehat{\imath} \times \widehat{\jmath} = \widehat{\mathbf{k}}, \widehat{\jmath} \times \widehat{\mathbf{k}} = \widehat{\imath}, \widehat{\mathbf{k}} \times \widehat{\imath} = \widehat{\jmath}$$

3.
$$\mathbf{a} \times \mathbf{b} = \mathbf{0} \iff \mathbf{a} = \mathbf{0} \lor \mathbf{b} = \mathbf{0} \lor \mathbf{a} \parallel \mathbf{b}$$

4.
$$\mathbf{a} \times \mathbf{b} = -\mathbf{b} \times \mathbf{a}$$

5.
$$(s\mathbf{a}) \times \mathbf{b} = \mathbf{a} \times (s\mathbf{b}) = s(\mathbf{a} \times \mathbf{b})$$

6.
$$\mathbf{a} \times (\mathbf{b} + \mathbf{c}) = \mathbf{a} \times \mathbf{b} + \mathbf{a} \times \mathbf{c}$$

7.
$$(\mathbf{a} + \mathbf{b}) \times \mathbf{c} = \mathbf{a} \times \mathbf{c} + \mathbf{b} \times \mathbf{c}$$

8.
$$\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = \mathbf{b} \cdot (\mathbf{c} \times \mathbf{a}) = \mathbf{c} \cdot (\mathbf{a} \times \mathbf{b})$$

9.
$$\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = \mathbf{b} (\mathbf{a} \cdot \mathbf{c}) - \mathbf{c} (\mathbf{a} \cdot \mathbf{b})$$
 (baccab 規則)

證.

- $|\mathbf{a} \times \mathbf{b}|^2 = (\mathbf{a} \times \mathbf{b}) \cdot (\mathbf{a} \times \mathbf{b}) = (a_2b_3 a_3b_2)^2 + (a_3b_1 a_1b_3)^2 + (a_1b_2 a_2b_1)^2 = a_2^2b_3^2 2a_2b_3a_3b_2 + a_3^2b_2^2 + a_3^2b_1^2 2a_3b_1a_1b_3 + a_1^2b_3^2 + a_1^2b_2^2 2a_1b_2a_2b_1 + a_2^2b_1^2$, $\overrightarrow{\mathbf{m}} |\mathbf{a}|^2 |\mathbf{b}|^2 \sin^2 \theta = |\mathbf{a}|^2 |\mathbf{b}|^2 (1 \cos^2 \theta) = |\mathbf{a}|^2 |\mathbf{b}|^2 (\mathbf{a} \cdot \mathbf{b})^2 = a_2^2b_3^2 a_2b_3a_3b_2 + a_3^2b_2^2 + a_3^2b_1^2 a_3b_1a_1b_3 + a_1^2b_3^2 + a_1^2b_2^2 2a_1b_2a_2b_1 + a_2^2b_1^2 + \overline{\mathbf{m}} |\mathbf{a}|^2 |\mathbf{b}|^2 + \overline{\mathbf{m}} |\mathbf{a}|^2 + \overline{\mathbf{m}} |\mathbf{a}|^2 + a_1^2b_2^2 + \overline{\mathbf{m}} |\mathbf{a}|^2 + \overline{\mathbf{m}} |\mathbf{a}|^2$ $\left(a_{1}^{2}+a_{2}^{2}+a_{3}^{2}\right)\left(b_{1}^{2}+b_{2}^{2}+b_{3}^{2}\right)-\left(a_{1}b_{1}+a_{2}b_{2}+a_{3}b_{3}\right)^{2}=a_{1}^{2}b_{2}^{2}+a_{1}^{2}b_{3}^{2}+a_{2}^{2}b_{1}^{2}+a_{2}^{2}b_{3}^{2}+a_{3}^{2}b_{1}^{2}+a_{3}^{2}b_{2}^{2}-\left(2a_{1}b_{1}a_{2}b_{2}+a_{3}b_{3}^{2}+a_{3}^{2}b_{1}^{2}+a_{3}^{2}b_{2}^{2}+a_{3}^{2}b_{2}^{2}+a_{3}^{2}b_{2}^{2}+a_{3}^{2}b_{1}^{2}+a_{3}^{2}b_{2}^{$ $2a_1b_1a_3b_3 + 2a_2b_2a_3b_3$, $\not to |\mathbf{a} \times \mathbf{b}| = |\mathbf{a}| |\mathbf{b}| \sin \theta$.
- $\mathbf{a} \cdot (\mathbf{a} \times \mathbf{b}) = a_1(a_2b_3 a_3b_2) + a_2(a_3b_1 a_1b_3) + a_3(a_1b_2 a_2b_1) = 0,$ $\mathbf{b} \cdot (\mathbf{a} \times \mathbf{b}) = b_1(a_2b_3 - a_3b_2) + b_2(a_3b_1 - a_1b_3) + b_3(a_1b_2 - a_2b_1) = 0$
- $\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = \langle a_1, a_2, a_3 \rangle \cdot \langle b_2 c_3 b_3 c_2, b_3 c_1 b_1 c_3, b_1 c_2 b_2 c_1 \rangle = a_1 b_2 c_3 a_1 b_3 c_2 + a_2 b_3 c_1 a_2 b_1 c_3 + a_2 b_3 c_1 a_2 b_1 c_3 + a_3 b_2 c_2 a_1 b_3 c_2 + a_2 b_3 c_1 a_2 b_1 c_3 + a_2 b_3 c_1 a_2 b_1 c_3 + a_2 b_3 c_1 a_2 b_1 c_3 + a_3 b_2 c_1 a_2 b_1 c_3 + a_3 b_2 c_1 a_2 b_1 c_2 + a_2 b_3 c_1 a_2 b_1 c_3 + a_3 b_2 c_1 a_2 b_1 c_2 + a_2 b_2 c_1 a_2 b_1 c_3 + a_3 b_2 c_1 a_2 b_1 c_2 + a_3 b_2 c_1 a_2 b_1 c_2 + a_3 b_2 c_1 a_2 b_1 c_2 + a_3 b_2 c_1 a_3 b_2 c_2 + a_3 b_3 c_1 a_2 b_1 c_3 + a_3 b_2 c_1 a_3 b_2 c_2 + a_3 b_3 c_2 + a_3 b_3 c_1 a_3 b_2 c_2 + a_3 b_3 c_2 + a_3 b_3 c_2 + a_3 b_3 c_1 a_3 b_3 c_2 + a_3 b_3 c_2 + a_3 b_3 c_2 + a_3 b_3 c_3 + a_3 b_3 c_2 + a_3 b_3 c_3 + a_3 b$ $a_3b_1c_2 - a_3b_2c_1$, ∇ (**a** × **b**) · **c** = $\langle a_2b_3 - a_3b_2, a_3b_1 - a_1b_3, a_1b_2 - a_2b_1 \rangle$ · $\langle c_1, c_2, c_3 \rangle = a_2b_3c_1 - a_3b_2c_1 + a_3b_3c_1$ $a_3b_1c_2-a_1b_3c_2+a_1b_2c_3-a_2b_1c_3$.

另證:
$$\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = \langle a_1, a_2, a_3 \rangle \cdot \det \begin{vmatrix} \widehat{\mathbf{i}} & \widehat{\mathbf{j}} & \widehat{\mathbf{k}} \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} = a_1 \det \begin{vmatrix} b_2 & b_3 \\ c_2 & c_3 \end{vmatrix} - a_2 \det \begin{vmatrix} b_1 & b_3 \\ c_1 & c_3 \end{vmatrix} + a_3 \det \begin{vmatrix} b_1 & b_2 \\ c_1 & c_2 \end{vmatrix}$$

另語:
$$\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = \langle a_1, a_2, a_3 \rangle \cdot \det \begin{vmatrix} \widehat{\mathbf{i}} & \widehat{\mathbf{j}} & \widehat{\mathbf{k}} \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} = a_1 \det \begin{vmatrix} b_2 & b_3 \\ c_2 & c_3 \end{vmatrix} - a_2 \det \begin{vmatrix} b_1 & b_3 \\ c_1 & c_3 \end{vmatrix} + a_3 \det \begin{vmatrix} b_1 & b_2 \\ c_1 & c_2 \end{vmatrix}$$

$$= \det \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}, \quad \overline{\mathbf{m}} \quad (\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c} = \det \begin{vmatrix} \widehat{\mathbf{i}} & \widehat{\mathbf{j}} & \widehat{\mathbf{k}} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} \cdot \langle c_1, c_2, c_3 \rangle = c_1 \det \begin{vmatrix} a_2 & a_3 \\ b_2 & b_3 \end{vmatrix} - c_2 \det \begin{vmatrix} a_1 & a_3 \\ b_1 & b_3 \end{vmatrix} +$$

$$\begin{vmatrix} c_3 \det \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} = \det \begin{vmatrix} c_1 & c_2 & c_3 \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix},$$
故 $\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}.$

• $\mathbf{b} \times \mathbf{c} = (b_2c_3 - b_3c_2)\hat{\imath} - (b_1c_3 - b_3c_1)\hat{\jmath} + (b_1c_2 - b_2c_1)\hat{\mathbf{k}}$, $\exists \mathbf{x} \ \mathbf{a} \times (\mathbf{b} \times \mathbf{c})$ $= \det \begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{\mathbf{k}} \\ a_1 & a_2 & a_3 \\ b_2c_3 - b_3c_2 & -b_1c_3 + b_3c_1 & b_1c_2 - b_2c_1 \end{vmatrix} = \hat{\imath} \left(a_2(b_1c_2 - b_2c_1) - a_3(-b_1c_3 + b_3c_1) \right) - \hat{\jmath} \left(a_1(b_1c_2 - b_2c_1) - a_3(b_2c_3 - b_3c_2) \right) + \hat{\mathbf{k}} \left(a_1(-b_1c_3 + b_3c_1) - a_2(b_2c_3 - b_3c_2) \right). \quad \exists \mathbf{b} \ (\mathbf{a} \cdot \mathbf{c}) - \mathbf{c} \ (\mathbf{a} \cdot \mathbf{b}) = (a_1c_1 + a_2c_2 + a_3c_3)(b_1\hat{\imath} + b_2\hat{\jmath} + b_3\hat{\mathbf{k}}) - (a_1b_1 + a_2b_2 + a_3b_3)(c_1\hat{\imath} + c_2\hat{\jmath} + c_3\hat{\mathbf{k}}) = \hat{\imath} \left(a_1b_1c_1 + a_2b_1c_2 + a_3b_1c_3 - a_1b_1c_1 - a_2b_2c_1 - a_3b_3c_1 \right) + \hat{\jmath} \left(a_1b_2c_1 + a_2b_2c_2 + a_3b_2c_3 - a_1b_1c_2 - a_2b_2c_2 - a_3b_3c_2 \right) + \hat{\mathbf{k}} \left(a_1b_3c_1 + a_2b_3c_2 + a_3b_3c_3 - a_1b_1c_3 - a_2b_2c_3 - a_3b_3c_3 \right) = \hat{\imath} \left(a_2b_1c_2 + a_3b_1c_3 - a_2b_2c_1 - a_3b_3c_1 \right) + \hat{\jmath} \left(a_1b_2c_1 + a_3b_2c_3 - a_1b_1c_2 - a_3b_3c_2 \right) + \hat{\mathbf{k}} \left(a_1b_3c_1 + a_2b_3c_2 - a_1b_1c_3 - a_2b_2c_3 \right), \quad \exists \mathbf{b} \ \mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = \mathbf{b} \ (\mathbf{a} \cdot \mathbf{c}) - \mathbf{c} \ (\mathbf{a} \cdot \mathbf{b}).$

例. 令 \mathbf{a} , \mathbf{b} , \mathbf{c} , $\mathbf{d} \in \mathbb{R}^3$,

1.
$$\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) + \mathbf{b} \times (\mathbf{c} \times \mathbf{a}) + \mathbf{c} \times (\mathbf{a} \times \mathbf{b}) = 0$$
 3. $(\mathbf{a} \times \mathbf{b}) \cdot ((\mathbf{b} \times \mathbf{c}) \times (\mathbf{c} \times \mathbf{a})) = (\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}))^2$

2.
$$(\mathbf{a} \times \mathbf{b}) \cdot (\mathbf{c} \times \mathbf{d}) = (\mathbf{a} \cdot \mathbf{c}) (\mathbf{b} \cdot \mathbf{d}) - (\mathbf{a} \cdot \mathbf{d}) (\mathbf{b} \cdot \mathbf{c})$$

解.

1.
$$\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) + \mathbf{b} \times (\mathbf{c} \times \mathbf{a}) + \mathbf{c} \times (\mathbf{a} \times \mathbf{b}) = \mathbf{b} (\mathbf{a} \cdot \mathbf{c}) - \mathbf{c} (\mathbf{a} \cdot \mathbf{b}) + \mathbf{c} (\mathbf{b} \cdot \mathbf{a}) - \mathbf{a} (\mathbf{b} \cdot \mathbf{c}) + \mathbf{a} (\mathbf{c} \cdot \mathbf{b}) - \mathbf{b} (\mathbf{c} \cdot \mathbf{a}) = 0$$

2.
$$(\mathbf{a} \times \mathbf{b}) \cdot (\mathbf{c} \times \mathbf{d}) = \mathbf{c} \cdot (\mathbf{d} \times (\mathbf{a} \times \mathbf{b})) = \mathbf{c} \cdot (\mathbf{a} (\mathbf{d} \cdot \mathbf{b}) - \mathbf{b} (\mathbf{d} \cdot \mathbf{a})) = (\mathbf{c} \cdot \mathbf{a}) (\mathbf{d} \cdot \mathbf{b}) - (\mathbf{c} \cdot \mathbf{b}) (\mathbf{d} \cdot \mathbf{a}) = (\mathbf{a} \cdot \mathbf{c}) (\mathbf{b} \cdot \mathbf{d}) - (\mathbf{a} \cdot \mathbf{d}) (\mathbf{b} \cdot \mathbf{c})$$

3.
$$(\mathbf{a} \times \mathbf{b}) \cdot ((\mathbf{b} \times \mathbf{c}) \times (\mathbf{c} \times \mathbf{a})) = (\mathbf{b} \times \mathbf{c}) \cdot ((\mathbf{c} \times \mathbf{a}) \times (\mathbf{a} \times \mathbf{b})) = (\mathbf{b} \times \mathbf{c}) \cdot (\mathbf{a} ((\mathbf{c} \times \mathbf{a}) \cdot \mathbf{b}) - \mathbf{b} ((\mathbf{c} \times \mathbf{a}) \cdot \mathbf{a})) = (\mathbf{b} \times \mathbf{c}) \cdot (\mathbf{a} ((\mathbf{c} \times \mathbf{a}) \cdot \mathbf{b})) = (\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}))^2$$

性質 (常用公式).

• 點
$$p = (p_1, p_2, p_3)$$
 與平面 $ax + by + cz + d = 0$ 距離為 $\frac{|ap_1 + bp_2 + cp_3 + d|}{\sqrt{a^2 + b^2 + c^2}}$.

• 若
$$\mathbf{a} = \langle a_1, a_2, a_3 \rangle$$
, $\mathbf{b} = \langle b_1, b_2, b_3 \rangle$, $\mathbf{c} = \langle c_1, c_2, c_3 \rangle$, $\mathbf{d} = \langle d_1, d_2, d_3 \rangle$, 三維空間中兩直線 $\langle a_1 + b_1 s, a_2 + b_2 s, a_3 + b_3 s \rangle$, $\langle c_1 + d_1 t, c_2 + d_2 t, c_3 + d_3 t \rangle$, $s, t \in \mathbb{R}$ 之距離為 $\frac{|(\mathbf{a} - \mathbf{c}) \cdot (\mathbf{b} \times \mathbf{d})|}{|\mathbf{b} \times \mathbf{d}|}$.

解.

• 平面
$$S: ax + by + cz + d = 0$$
 法向量為 $\mathbf{n} = \langle a, b, c \rangle$; 點 $p = (p_1, p_2, p_3)$ 與投影至平面 S 之點 $o = (x, y, z)$ 所形成之向量平行於 \mathbf{n} , 故 $(x, y, z) = (p_1 + at, p_2 + bt, p_3 + ct)$, $t \in \mathbb{R}$ 為待定常數. 又 o 位於平面 S 上,故 $a(p_1 + at) + b(p_2 + bt) + c(p_3 + ct) + d = 0 \implies t = \frac{-(ap_1 + bp_2 + cp_3 + d)}{a^2 + b^2 + c^2}$, 所求 距離 $\overline{op} = |\langle at, bt, ct \rangle| = \sqrt{a^2 + b^2 + c^2}|t| = \frac{|ap_1 + bp_2 + cp_3 + d|}{\sqrt{a^2 + b^2 + c^2}}$.

• 兩直線點分別為 \mathbf{a} , \mathbf{c} , 方向向量分別為 \mathbf{b} , \mathbf{d} ; $\mathbf{b} \times \mathbf{d}$ 同時垂直於兩直線, 所求距離即為 $|\operatorname{proj}_{\mathbf{b} \times \mathbf{d}}(\mathbf{a} - \mathbf{c})| = \frac{|(\mathbf{a} - \mathbf{c}) \cdot (\mathbf{b} \times \mathbf{d})|}{|\mathbf{b} \times \mathbf{d}|}$.

5.2 向量值函數

定義. 向量値函數 $\mathbf{r}(t): \mathbb{R} \to \mathbb{R}^n, n > 1$, 其微分為

$$\mathbf{r}'(t) = \frac{\mathrm{d}\mathbf{r}}{\mathrm{d}t}(t) = \lim_{h \to 0} \frac{\mathbf{r}(t+h) - \mathbf{r}(t)}{h}$$

$$\mathbf{r}(t+h) - \mathbf{r}(t)$$

$$\mathbf{r}(t+h) - \mathbf{r}(t)$$

若 $\mathbf{r}(t) = x(t)\hat{\mathbf{i}} + y(t)\hat{\mathbf{j}} + z(t)\hat{\mathbf{k}}$, 則 $\mathbf{r}'(t) = x'(t)\hat{\mathbf{i}} + y'(t)\hat{\mathbf{j}} + z'(t)\hat{\mathbf{k}}$.

註.向量值函數多用在空間曲線表示式中: (曲線) ≡ (位置向量).

定理 (微分規則). 令 $\mathbf{a}(t)$, $\mathbf{b}(t)$ 為 $t \in \mathbb{R}$ 可微 \mathbb{R}^n 向量值函數, $\alpha, \beta \in \mathbb{R}$, $\gamma(t)$, s(t) 為 $t \in \mathbb{R}$ 可微實函數, 則

1. (線性)
$$\frac{\mathrm{d}}{\mathrm{d}t} (\alpha \mathbf{a}(t) + \beta \mathbf{b}(t)) = \alpha \mathbf{a}'(t) + \beta \mathbf{b}'(t)$$

2. (乘積)
$$\frac{\mathrm{d}}{\mathrm{d}t} (\gamma(t)\mathbf{b}(t)) = \gamma'(t)\mathbf{b}(t) + \gamma(t)\mathbf{b}'(t)$$

3. (内積)
$$\frac{\mathrm{d}}{\mathrm{d}t} (\mathbf{a}(t) \cdot \mathbf{b}(t)) = \mathbf{a}'(t) \cdot \mathbf{b}(t) + \mathbf{a}(t) \cdot \mathbf{b}'(t)$$

4. (外積)
$$\frac{\mathrm{d}}{\mathrm{d}t} (\mathbf{a}(t) \times \mathbf{b}(t)) = \mathbf{a}'(t) \times \mathbf{b}(t) + \mathbf{a}(t) \times \mathbf{b}'(t)$$

5. (合成)
$$\frac{\mathrm{d}}{\mathrm{d}t}(\mathbf{a}(s(t))) = \mathbf{a}'(s(t)) s'(t)$$

例. 若 $\mathbf{v}(t) = \mathbf{r}(t) \cdot (\mathbf{r}'(t) \times \mathbf{r}''(t))$, 證明 $\mathbf{v}'(t) = \mathbf{r}(t) \cdot (\mathbf{r}'(t) \times \mathbf{r}'''(t))$.

解.
$$\mathbf{v}'(t) = (\mathbf{r}(t) \cdot (\mathbf{r}'(t) \times \mathbf{r}''(t)))' = \mathbf{r}'(t) \cdot (\mathbf{r}'(t) \times \mathbf{r}''(t)) + \mathbf{r}(t) \cdot (\mathbf{r}'(t) \times \mathbf{r}''(t))' = \mathbf{r}(t) \cdot (\mathbf{r}'(t) \times \mathbf{r}''(t)) + \mathbf{r}(t) \cdot (\mathbf{r}'(t) \times \mathbf{r}''(t))' = \mathbf{r}(t) \cdot (\mathbf{r}'(t) \times \mathbf{r}''(t)) + \mathbf{r}'(t) \times \mathbf{r}''(t) \times \mathbf{r}''(t)$$

性質. 給定曲線 $\mathbf{r}(t)$.

- 1. 令 $\widehat{\mathbf{T}}(t)$ 為曲線在點 $\mathbf{r}(t)$ 並指向 t 遞增方向之單位切線向量, 則 $\widehat{\mathbf{T}}(t) = \frac{\mathbf{r}'(t)}{|\mathbf{r}'(t)|}$, $\mathbf{r}'(t) \neq \mathbf{0}$.
- 2. 令 s(t) 為曲線介於點 $\mathbf{r}(0)$ 與 $\mathbf{r}(t)$ 間之弧長, 則

$$\frac{\mathrm{d}s}{\mathrm{d}t}(t) = \left| \frac{\mathrm{d}\mathbf{r}}{\mathrm{d}t}(t) \right|$$
$$s(T) - s(T_0) = \int_{T_0}^T \left| \frac{\mathrm{d}\mathbf{r}}{\mathrm{d}t}(t) \right| \, \mathrm{d}t$$

3. 若以弧長為參數, 亦即 t = s 使得 $\frac{\mathrm{d}t}{\mathrm{d}s} = \frac{\mathrm{d}s}{\mathrm{d}s} = 1$, 則 $\left| \frac{\mathrm{d}\mathbf{r}}{\mathrm{d}s}(s) \right| = 1$, $\widehat{\mathbf{T}}(s) = \mathbf{r}'(s)$.

性質. 給定位置向量 $\mathbf{r}(t) = \langle x(t), y(t), z(t) \rangle$, 則時點 $t \geq$

• 速度
$$\mathbf{v}(t) = \mathbf{r}'(t) = x'(t)\hat{\mathbf{i}} + y'(t)\hat{\mathbf{j}} + z'(t)\hat{\mathbf{k}}$$

• 速率
$$\frac{ds}{dt}(t) = |\mathbf{v}(t)| = |\mathbf{r}'(t)| = \sqrt{(x'(t)^2 + y'(t)^2 + z'(t)^2}$$

• 加速度
$$\mathbf{a}(t) = \mathbf{r}''(t) = \mathbf{v}'(t) = x''(t)\hat{\imath} + y''(t)\hat{\jmath} + z''(t)\hat{k}$$

時點 T_0 與 T 間經過距離為 $s(T) - s(T_0) = \int_{T_0}^T \left| \frac{\mathrm{d} \mathbf{r}}{\mathrm{d} t}(t) \right| \mathrm{d} t = \int_{T_0}^T \sqrt{(x'(t)^2 + y'(t)^2 + z'(t)^2} \, \mathrm{d} t$

例. 圓 $x^2 + y^2 = a^2$ 之曲線表示式為 $\mathbf{r}(\theta) = \langle a\cos\theta, a\sin\theta \rangle, \ 0 \leqslant \theta \leqslant 2\pi. \ \mathbf{r}'(\theta) = \langle -a\sin\theta, a\cos\theta \rangle,$ $\widehat{\mathbf{T}}(\theta) = \frac{\mathbf{r}'(\theta)}{|\mathbf{r}'(\theta)|} = \langle -\sin\theta, \cos\theta \rangle, \ \frac{\mathrm{d}s}{\mathrm{d}\theta}(\theta) = |\mathbf{r}'(\theta)| = a, \ s(\Theta) - s(0) = \int_0^{\Theta} |\mathbf{r}'(\theta)| \, \mathrm{d}\theta = a\Theta.$

例 (螺旋線弧長). 求 $\mathbf{r}(t) = 6\sin 2t \hat{\mathbf{i}} + 6\cos 2t \hat{\mathbf{j}} + 5t \hat{\mathbf{k}}$ 介於 t = 0 與 $t = \pi$ 間弧長.

解.
$$\mathbf{r}(t) = 6\sin 2t\,\hat{\imath} + 6\cos 2t\,\hat{\jmath} + 5t\,\hat{\mathbf{k}} \implies \mathbf{r}'(t) = 12\cos 2t\,\hat{\imath} - 12\sin 2t\,\hat{\jmath} + 5\,\hat{\mathbf{k}}.$$
 則 $\frac{\mathrm{d}s}{\mathrm{d}t}(t) = |\mathbf{r}'(t)| = \sqrt{12^2\cos^2 2t + 12^2\sin^2 2t + 5^2} = \sqrt{12^2 + 5^2} = 13,$ $\mathbf{\hat{T}}(t) = \frac{\mathbf{r}'(t)}{|\mathbf{r}'(t)|} = \frac{12}{13}\cos 2t\,\hat{\imath} - \frac{12}{13}\sin 2t\,\hat{\jmath} + \frac{5}{13}\,\hat{\mathbf{k}},$ $s(\pi) - s(0) = \int_0^{\pi} |\mathbf{r}'(t)| \,\mathrm{d}t = 13\pi.$

例. 求 $\mathbf{r}(t) = \left\langle e^{3t}, e^{-3t}, 3\sqrt{2}t \right\rangle$ 介於 t = 0 與 $t = \frac{1}{3}$ 間弧長.

Proof.
$$\mathbf{r}'(t) = \left\langle 3e^{3t}, -3e^{-3t}, 3\sqrt{2} \right\rangle, s\left(\frac{1}{3}\right) - s(0) = \int_0^{\frac{1}{3}} \left| \mathbf{r}'(t) \right| dt = \int_0^{\frac{1}{3}} \sqrt{9e^{6t} + 9e^{-6t} + 18} dt = 3\int_0^{\frac{1}{3}} \sqrt{e^{6t} + e^{-6t} + 2} dt$$
$$= 3\int_0^{\frac{1}{3}} \sqrt{(e^{3t} + e^{-3t})^2} dt = 3\int_0^{\frac{1}{3}} (e^{3t} + e^{-3t}) dt = e^{3t} - e^{-3t} \Big|_0^{\frac{1}{3}} = e - \frac{1}{e}.$$

例. 求 $\mathbf{r}(t) = \langle t, 2t, t^2 \rangle$ 介於 t = 1 與 t = 3 間弧長.

5.3 極限與微分

定義 (多變數函數). 令 $U \subseteq \mathbb{R}^n$, n > 1, 從 $U \to \mathbb{R}$ 的映射 $f(x_1, x_2, \ldots, x_n) : U \to \mathbb{R}$ 稱為 U 上的 n 變數函數 (real-valued function of n variables), 其中 U 為定義域, f(U) 為值域.

註. 若 $f(x_1, x_2, \ldots, x_n)$ 為 n 變數函數, 可將 f 視為

- n 個實變數 x_1, x_2, \ldots, x_n 的函數
- 向量 $\mathbf{x} = \langle x_1, x_2, \dots, x_n \rangle$ 的函數
- \mathbb{R}^n 中之點 (x_1, x_2, \ldots, x_n) 的函數

定義 (圖形, 等値曲線). 令 f(x,y) 為定義在 U 上的雙變數函數.

- 集合 $\{(x,y,z) \in \mathbb{R}^3 | z = f(x,y), (x,y) \in U\}$ 稱為 f 的圖形 (graph).
- 給定常數 $k \in \mathbb{R}$, 曲線 f(x,y) = k 稱為 f 的等值曲線 (level / contour curve).

若 w = f(x, y, z) 為三變數函數, f(x, y, z) = k 稱為 f 的等值曲面 (level surface).

定義 (極限). 令 f 為 n 變數函數. 若對任意 $\varepsilon>0$ 存在 $\delta>0$ 使得對所有 $\mathbf{x}\in\mathrm{dom}\,f$ 滿足

$$0 < |\mathbf{x} - \mathbf{a}| < \delta \implies |f(\mathbf{x}) - L| < \varepsilon$$

則稱 f 在 a 的極限為 L, 記為 $\lim_{\mathbf{x}\to\mathbf{a}} f(\mathbf{x}) = L$.

性質 (極限運算). 令 $\mathbf{a} \in \mathbb{R}^n, \ c, \ F, \ G \in \mathbb{R}, \ D \subseteq \mathbb{R}^n, \ f, \ g : D \setminus \{\mathbf{a}\} \to \mathbb{R}, \ \gamma : \mathbb{R} \to \mathbb{R}.$ 若 $\lim_{\mathbf{x} \to \mathbf{a}} f(\mathbf{x}) = F, \lim_{\mathbf{x} \to \mathbf{a}} g(\mathbf{x}) = G, \lim_{t \to F} \gamma(t) = \gamma(F),$ 則

1.
$$\lim_{\mathbf{x} \to \mathbf{a}} [f(\mathbf{x}) \pm g(\mathbf{x})] = F \pm G$$
 3. $\lim_{\mathbf{x} \to \mathbf{a}} \frac{f(\mathbf{x})}{g(\mathbf{x})} = \frac{F}{G} \not\equiv G = \mathbf{0}$ 4. $\lim_{\mathbf{x} \to \mathbf{a}} \gamma (f(\mathbf{x})) = \gamma(F)$

$$2. \lim_{\mathbf{x} \to \mathbf{a}} f(\mathbf{x}) g(\mathbf{x}) = FG$$

例. 求
$$\lim_{(x,y)\to(2,3)} \frac{x+\sin y}{x^2y^2+1}$$
.

$$\begin{split} & \underbrace{\textbf{\textit{ff.}}}_{(x,y)\to(2,3)} \left(x+\sin y\right) \ = \ \lim_{(x,y)\to(2,3)} x \ + \ \lim_{(x,y)\to(2,3)} \sin y \ = \ \lim_{(x,y)\to(2,3)} x \ + \ \sin\left(\lim_{(x,y)\to(2,3)} y\right) \ = \ 2 \ + \ \sin 3, \\ & \lim_{(x,y)\to(2,3)} \left(x^2y^2+1\right) = \lim_{(x,y)\to(2,3)} x^2y^2 + \lim_{(x,y)\to(2,3)} 1 \ = \left(\lim_{(x,y)\to(2,3)} x\right) \left(\lim_{(x,y)\to(2,3)} x\right) \left(\lim_{(x,y)\to(2,3)} y\right) \left(\lim_{(x,y)\to(2,3)} y\right) \left(\lim_{(x,y)\to(2,3)} y\right) + \\ & 1 = 2^2 3^2 + 1 = 37, \ \lim_{(x,y)\to(2,3)} \frac{x+\sin y}{x^2y^2+1} = \frac{\lim_{(x,y)\to(2,3)} (x^2y^2+1)}{\lim_{(x,y)\to(2,3)} (x^2y^2+1)} = \frac{2+\sin 3}{37} \end{split}$$

註.

- 單變數函數極限 $\lim_{x\to a} f(x)$ 存在的充要條件為 $\lim_{x\to a-} f(x)$ 與 $\lim_{x\to a+} f(x)$ 均存在且相等.
- 多變數函數極限 $\lim_{\mathbf{x}\to\mathbf{a}}f(\mathbf{x})$ 存在的充要條件為任意趨近 \mathbf{a} 之路徑的極限均存在且相等.
- 求 $\lim_{(x,y)\to(0,0)} f(x,y)$ 常可將 (x,y) 轉成極座標 $x=r\cos\theta,\,y=r\sin\theta$ 後令 $r\to0$ 觀察.

例. 求
$$\lim_{(x,y)\to(0,0)} \frac{x^2y}{x^2+y^2}$$
.

解.
$$\frac{x^2y}{x^2+y^2} = \frac{(r\cos\theta)^2(r\sin\theta)}{r^2} = r\cos^2\theta\sin\theta$$
. 由 $\left|r\cos^2\theta\sin\theta\right| \leqslant r \to 0$ 當 $r \to 0$, $\lim_{(x,y)\to(0,0)} \frac{x^2y}{x^2+y^2} = 0$.

例. 求
$$\lim_{(x,y)\to(0,0)} \frac{x^2-y^2}{x^2+y^2}$$
.

解. 由
$$\frac{x^2-y^2}{x^2+y^2} = \frac{(r\cos\theta)^2-(r\sin\theta)^2}{r^2} = \cos^2\theta-\sin^2\theta = \cos(2\theta), \lim_{(x,y)\to(0,0)}\frac{x^2-y^2}{x^2+y^2} = \text{DNE}$$

例. 求
$$\lim_{(x,y)\to(0,0)} \frac{2xy^2}{x^2+y^4}$$
.

解.

• 結論:
$$\lim_{(x,y)\to(0,0)} \frac{2xy^2}{x^2+y^4} = \text{DNE}$$

例. 求
$$\lim_{(x,y)\to(0,0)} \frac{x^2y^2}{x^2+y^2}$$
.

PR.
$$\exists \frac{x^2y^2}{x^2+y^2} = \frac{(r\cos\theta)^2(r\sin\theta)^2}{r^2} = r^2\cos^2\theta\sin^2\theta \leqslant \frac{r^2}{4}, \lim_{(x,y)\to(0,0)} \frac{x^2y^2}{x^2+y^2} = 0.$$

例. 求 $\lim_{(x,y)\to(0,0)} \frac{x^2y^2}{x^3+y^3}$.

解.

• 由
$$\frac{x^2y^2}{x^3+y^3} = \frac{(r\cos\theta)^2(r\sin\theta)^2}{r^3(\cos^3\theta+\sin^3\theta)} = r\frac{\cos^2\theta\sin^2\theta}{\cos^3\theta+\sin^3\theta}$$
,但 $\frac{\cos^2\theta\sin^2\theta}{\cos^3\theta+\sin^3\theta}$ 非為有界 (取 $\theta = \frac{3\pi}{4}$ 時 $\cos^3\theta+\sin^3\theta=0$), $\lim_{(x,y)\to(0,0)}\frac{x^2y^2}{x^3+y^3} = \lim_{r\to 0}r\frac{\cos^2\theta\sin^2\theta}{\cos^3\theta+\sin^3\theta} = \text{DNE}$.

另解

例. 求 $\lim_{(x,y)\to(0,0)} \frac{x^2y^2}{x^4+y^4}$.

解.

•
$$\boxplus \frac{x^2y^2}{x^4+y^4} = \frac{(r\cos\theta)^2(r\sin\theta)^2}{r^4(\cos^4\theta+\sin^4\theta)} = \frac{\cos^2\theta\sin^2\theta}{\cos^4\theta+\sin^4\theta}, \lim_{(x,y)\to(0,0)} \frac{x^2y^2}{x^4+y^4} = \lim_{r\to 0} \frac{\cos^2\theta\sin^2\theta}{\cos^4\theta+\sin^4\theta} = \text{DNE}.$$

例. 若
$$f(x,y) = \begin{cases} \frac{(2x-y)^2}{x-y}, & x \neq y \\ 0, & x = y \end{cases}$$
,求 $\lim_{(x,y)\to(0,0)} f(x,y)$.

解.

•
$$\Rightarrow$$
 $y = x - ax^2, a \neq 0$: $\lim_{x \to 0} f(x, x - ax^2) = \lim_{x \to 0} \frac{(2x - x + ax^2)^2}{x - x + ax^2} = \lim_{x \to 0} \frac{(x + ax^2)^2}{ax^2} = \lim_{x \to 0} \frac{(1 + ax)^2}{a} = \frac{1}{a}$

• 結論: $\lim_{(x,y)\to(0,0)} f(x,y) = DNE$

定義 (偏導函數, 偏微分, 偏導數).

•
$$f(x,y)$$
 的 x -偏導函數定義為 $\frac{\partial f}{\partial x}(x,y) = \lim_{h\to 0} \frac{f(x+h,y)-f(x,y)}{h}$; $f(x,y)$ 的 y -偏導函數定義為 $\frac{\partial f}{\partial y}(x,y) = \lim_{h\to 0} \frac{f(x,y+h)-f(x,y)}{h}$.

- 求 f(x,y) 之 x-偏導函數之過程稱作「f(x,y) 對 x 偏微分」.
- f(x,y) 在 (a,b) 的 y-偏導數記為 $\frac{\partial f}{\partial y}(a,b) \equiv \frac{\partial f}{\partial y}\Big|_{(a,b)}$.

註.

•
$$\frac{\partial f}{\partial y}(x,y)$$
 亦可記為 $\frac{\partial f}{\partial y}$, $f_y(x,y)$, f_y , $D_y f(x,y)$, $D_y f$, $D_2 f(x,y)$, $D_2 f$.

- 求 $\frac{\partial f}{\partial y}(x,y)$: 將 f(x,y) 中的 x 視作常數, 然後對 y 微分.
- 求 $\frac{\partial f}{\partial y}(a,b)$: 將 f(x,y) 中的 x 視作常數, 然後對 y 微分並代入 $x=a,\,y=b.$
- 以上符號 / 運算均可直接推廣至維度 > 2 狀況.

例.
$$f(x,y) = x^3 + y^2 + 4xy^2$$
, 則 $\frac{\partial f}{\partial x} = \frac{\partial}{\partial x}(x^3) + \frac{\partial}{\partial x}(y^2) + \frac{\partial}{\partial x}(4xy^2) = 3x^2 + 0 + 4y^2 \frac{\partial}{\partial x}(x) = 3x^2 + 4y^2$, $\frac{\partial f}{\partial y} = \frac{\partial}{\partial y}(x^3) + \frac{\partial}{\partial y}(y^2) + \frac{\partial}{\partial y}(4xy^2) = 0 + 2y + 4x \frac{\partial}{\partial y}(y^2) = 2y + 8xy$, $\frac{\partial f}{\partial x}(1,0) = 3(1)^2 + 4(0)^2 = 3$, $\frac{\partial f}{\partial y}(1,0) = 2(0) + 8(1)(0) = 0$.

例.
$$f(x,y) = y\cos x + xe^{xy}$$
, $\frac{\partial}{\partial x}e^{yx} = ye^{yx}$, $\frac{\partial f}{\partial x}(x,y) = y\frac{\partial}{\partial x}(\cos x) + e^{xy}\frac{\partial}{\partial x}(x) + x\frac{\partial}{\partial x}\left(e^{xy}\right) = -y\sin x + e^{xy} + xye^{xy}$, $\frac{\partial f}{\partial y}(x,y) = \cos x\frac{\partial}{\partial y}(y) + x\frac{\partial}{\partial y}\left(e^{xy}\right) = \cos x + x^2e^{xy}$

例.
$$f(x,y,z,t) = x\sin(y+2z) + t^2e^{3y}\ln z$$
, 則 $\frac{\partial f}{\partial x}(x,y,z,t) = \sin(y+2z)$, $\frac{\partial f}{\partial y}(x,y,z,t) = x\cos(y+2z) + 3t^2e^{3y}\ln z$, $\frac{\partial f}{\partial z}(x,y,z,t) = 2x\cos(y+2z) + \frac{t^2e^{3y}}{z}$, $\frac{\partial f}{\partial t}(x,y,z,t) = 2te^{3y}\ln z$.

例. 若
$$f(x,y) = \begin{cases} \frac{\cos x - \cos y}{x - y} & x \neq y \\ 0 & x = y \end{cases}$$

- $\forall x \neq y, f_x = \frac{-\sin x(x-y) (\cos x \cos y)}{(x-y)^2};$ 無法由此求 $f_x(0,0).$
- 由定義計算 $f_x(0,0)$: $f_x(0,0) = \lim_{h\to 0} \frac{f(0+h,0)-f(0,0)}{h} = \lim_{h\to 0} \frac{\frac{\cos h-1}{h-0}-0}{h} = \lim_{h\to 0} \frac{\cos h-1}{h^2} = \lim_{h\to 0} \frac{-\sin h}{2h} = \lim_{h\to 0} \frac{-$
- 由定義計算 $f_y(0,0)$: $f_y(0,0) = \lim_{h\to 0} \frac{f(0,0+h)-f(0,0)}{h} = \lim_{h\to 0} \frac{\frac{1-\cos h}{-h}-0}{h} = \lim_{h\to 0} \frac{\cos h-1}{h^2} = \lim_{h\to 0} \frac{-\sin h}{2h} = \lim_{h\to 0} \frac{-\sin$
- $\lim_{(x,y)\to(0,0)}\frac{\cos x-\cos y}{x-y}=\lim_{(x,y)\to(0,0)}\frac{-2\sin\frac{x+y}{2}\sin\frac{x-y}{2}}{x-y}=-\lim_{(x,y)\to(0,0)}\sin\frac{x+y}{2}\lim_{(x,y)\to(0,0)}\frac{\sin\frac{x-y}{2}}{\frac{x-y}{2}}=0,$ 故 f(x,y) 在 (0,0) 連續.
- f(x,y) 在 $(a,a), a \neq 0$ 不連續: 由定義 $\lim_{(x,y)\to(a,a)} f(x,y) = \sin a$, 但 f(a,a) = 0.

例. 若 x, y, z 滿足方程式 $z^5 + y^2 e^z + e^{2x} = 0$, 求 $\frac{\partial z}{\partial x}(0,0)$.

解. 局域下 z 為 x,y 之函數; 當 x=y=0,原方程式為 $z(0,0)^5=-1 \implies z(0,0)=-1$. 令 $z\equiv z(x,y)$ 代入原方程式並對 x 偏微分得 $5z(x,y)^4\frac{\partial z}{\partial x}(x,y)+y^2e^{z(x,y)}\frac{\partial z}{\partial x}(x,y)+2e^{2x}=0$; 代入 (x,y)=(0,0) 得 $5z(0,0)^4\frac{\partial z}{\partial x}(0,0)+2=0$,再由 z(0,0)=-1, $\frac{\partial z}{\partial x}(0,0)=-\frac{2}{5z(0,0)^4}=-\frac{2}{5}$.

例. 若 x, y, z 滿足方程式 $x^2 + y^2 + z^2 = 1$, 證明 $x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} = z - \frac{1}{z}$.

解. 局域下 z 為 x,y 之函數; $x^2+y^2+z^2=1$ 對 x 偏微分得 $2x+2z\frac{\partial z}{\partial x}=0 \implies \frac{\partial z}{\partial x}=-\frac{x}{z};$ 對 y 偏微分得 $2y+2z\frac{\partial z}{\partial y}=0 \implies \frac{\partial z}{\partial x}=-\frac{y}{z}.$ 故 $x\frac{\partial z}{\partial x}+y\frac{\partial z}{\partial y}=-\frac{x^2+y^2}{z}=\frac{z^2-1}{z}=z-\frac{1}{z}.$

例. 若 x, y, z 滿足方程式 $x \sin z - z^2 y = 1$, 求 $\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}$.

解. 局域下 z 為 x, y 之函數; $x \sin z - z^2 y = 1$ 對 x 偏微分得 $\sin z + x \cos z \frac{\partial z}{\partial x} - 2yz \frac{\partial z}{\partial x} = 0 \implies \frac{\partial z}{\partial x} = \frac{\sin z}{2yz - x \cos z}$; 對 y 偏微分得 $x \cos z \frac{\partial z}{\partial y} - 2z \frac{\partial z}{\partial y} y - z^2 = 0 \implies \frac{\partial z}{\partial y} = \frac{z^2}{x \cos z - 2yz}$.

定義 (高階偏導函數). 給定可微雙變數函數 f(x,y),

•
$$\frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right) (x, y) = \frac{\partial^2 f}{\partial x^2} (x, y) = f_{xx}(x, y)$$

• $\frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right) (x, y) = \frac{\partial^2 f}{\partial x \partial y} (x, y) = f_{yx}(x, y)$
• $\frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right) (x, y) = \frac{\partial^2 f}{\partial x \partial y} (x, y) = f_{yy}(x, y)$
• $\frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right) (x, y) = \frac{\partial^2 f}{\partial y^2} (x, y) = f_{yy}(x, y)$

例. 令 $f(x,y) = e^{my}\cos(nx)$,則

•
$$f_x = -ne^{my}\sin(nx)$$
 • $f_{xx} = -n^2e^{my}\cos(nx)$ • $f_{yx} = -mne^{my}\sin(nx)$

•
$$f_y = me^{my}\cos(nx)$$
 • $f_{yy} = m^2e^{my}\cos(nx)$ • $f_{xy} = -mne^{my}\sin(nx)$

例. 令 $f(x,y) = e^{\alpha x + \beta y}$, 則

•
$$f_x = \alpha e^{\alpha x + \beta y}$$
 • $f_{xx} = \alpha^2 e^{\alpha x + \beta y}$

•
$$f_y = \beta e^{\alpha x + \beta y}$$
 • $f_{yx} = \beta \alpha e^{\alpha x + \beta y}$

對整數 $m, n \ge 0$, $\frac{\partial^{m+n} f}{\partial x^m \partial y^n} = \alpha^m \beta^n e^{\alpha x + \beta y}$.

例. 令 $f(x,y) = \ln(x^2 + y^2)$, 則

•
$$f_x = \frac{2x}{x^2 + y^2}$$
 • $f_{xx} = \frac{(x^2 + y^2) \cdot 2 - 2x \cdot 2x}{(x^2 + y^2)^2} = \frac{2(y^2 - x^2)}{(x^2 + y^2)^2}$

•
$$f_y = \frac{2y}{x^2 + y^2}$$
 • $f_{yy} = \frac{(x^2 + y^2) \cdot 2 - 2y \cdot 2y}{(x^2 + y^2)^2} = \frac{2(x^2 - y^2)}{(x^2 + y^2)^2}$

f(x,y) 滿足 Laplace 方程式 $f_{xx} + f_{yy} = 0$.

例. 令 $f(x,y) = \tan^{-1} \frac{y}{x}$, 則

•
$$f_x = \frac{1}{1 + (\frac{y}{x})^2} \cdot (\frac{-y}{x^2}) = -\frac{y}{x^2 + y^2}$$
 • $f_{xx} = \frac{y \cdot 2x}{(x^2 + y^2)^2} = \frac{2xy}{(x^2 + y^2)^2}$

•
$$f_y = \frac{1}{1 + (\frac{y}{x})^2} \cdot (\frac{1}{x}) = \frac{x}{x^2 + y^2}$$
 • $f_{yy} = -\frac{x \cdot 2y}{(x^2 + y^2)^2} = -\frac{2xy}{(x^2 + y^2)^2}$

f(x,y) 滿足 Laplace 方程式 $f_{xx} + f_{yy} = 0$.

例. 若 $f(x_1, x_2, x_3, x_4) = x_1^4 x_2^3 x_3^2 x_4$, 則

•
$$\frac{\partial^4 f}{\partial x_1 \partial x_2 \partial x_3 \partial x_4} = \frac{\partial^3}{\partial x_1 \partial x_2 \partial x_3} \left(x_1^4 x_2^3 x_3^2 \right) = \frac{\partial^2}{\partial x_1 \partial x_2} \left(2x_1^4 x_2^3 x_3 \right) = \frac{\partial}{\partial x_1} \left(6x_1^4 x_2^2 x_3 \right) = 24x_1^3 x_2^2 x_3$$

$$\bullet \quad \frac{\partial^4 f}{\partial x_4 \partial x_3 \partial x_2 \partial x_1} = \frac{\partial^3}{\partial x_4 \partial x_3 \partial x_2} \left(4x_1^3 x_2^3 x_3^2 x_4 \right) = \frac{\partial^2}{\partial x_4 \partial x_3} \left(12x_1^3 x_2^2 x_3^2 x_4 \right) = \frac{\partial}{\partial x_4} \left(24x_1^3 x_2^2 x_3 x_4 \right) = 24x_1^3 x_2^2 x_3 x_4$$

定理 (Clairaut). 若 $\frac{\partial^2 f}{\partial x \partial y}$ 與 $\frac{\partial^2 f}{\partial y \partial x}$ 均存在且在 (x_0, y_0) 連續, 則 $\frac{\partial^2 f}{\partial x \partial y}(x_0, y_0) = \frac{\partial^2 f}{\partial y \partial x}(x_0, y_0)$.

5.4 鏈鎖律

定理. 若 f 為 x_1, x_2, \ldots, x_n 的可微函數, 而 x_j 是 t_1, t_2, \ldots, t_m 的可微函數, $n, m \geqslant 1$, 則 f 為 t_1, t_2, \ldots, t_m 的可微函數; 輔助函數 $F(t_1, t_2, \ldots, t_m) \equiv f(x_1(t_1, t_2, \ldots, t_m), x_2(t_1, t_2, \ldots, t_m), \ldots, x_n(t_1, t_2, \ldots, t_m))$, 則

$$\frac{\partial F}{\partial t_i} = \frac{\partial f}{\partial x_1} \frac{\partial x_1}{\partial t_i} + \frac{\partial f}{\partial x_2} \frac{\partial x_2}{\partial t_i} + \dots + \frac{\partial f}{\partial x_n} \frac{\partial x_n}{\partial t_i}$$

例 (n=m=2). 輔助函數 $F(s,t)\equiv f\big(x(s,t),\,y(s,t)\big)$, 則

$$\frac{\partial F}{\partial s}(s,t) = \frac{\partial f}{\partial x} \big(x(s,t), \ y(s,t) \big) \frac{\partial x}{\partial s}(s,t) + \frac{\partial f}{\partial y} \big(x(s,t), \ y(s,t) \big) \frac{\partial y}{\partial s}(s,t)$$

$$\frac{\partial F}{\partial t}(s,t) = \frac{\partial f}{\partial x} \big(x(s,t), \ y(s,t) \big) \frac{\partial x}{\partial t}(s,t) + \frac{\partial f}{\partial y} \big(x(s,t), \ y(s,t) \big) \frac{\partial y}{\partial t}(s,t)$$

例. 若 $f(x,y) = e^{xy}$, x(s,t) = s, $y(s,t) = \cos t$; $F(s,t) \equiv f(x(s,t),y(s,t))$, 求 $\frac{\partial F}{\partial s}$.

解.

•
$$\frac{\partial f}{\partial x} = y e^{xy} = y(s,t) e^{x(s,t)y(s,t)} = \cos t e^{s\cos t}, \quad \frac{\partial f}{\partial y} = x e^{xy} = x(s,t) e^{x(s,t)y(s,t)} = s e^{s\cos t}, \quad \frac{\partial x}{\partial s} = \frac{\partial s}{\partial s} = 1,$$

$$\frac{\partial y}{\partial s} = \frac{\partial \cos t}{\partial s} = 0, \quad \text{ix} \quad \frac{\partial F}{\partial s} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial s} = \cos t e^{s\cos t} \cdot 1 + s e^{s\cos t} \cdot 0 = \cos t e^{s\cos t}.$$

• 直接寫出 F(s,t) 並對 s 偏微分: $F(s,t)=f\big(x(s,t),\,y(s,t)\big)=e^{s\cdot\cos t},\,\frac{\partial F}{\partial s}=e^{s\cdot\cos t}\,\cos t.$

例. 若 $f(x,y) = x^2 - y^2$, $x(t) = \cos t$, $y(t) = \sin t$, 求 $\frac{\mathrm{d}f}{\mathrm{d}t}$.

解. 輔助函數 $F(t) \equiv f(x(t), y(t))$, 則

- $\frac{\partial f}{\partial x} = 2x = 2\cos t$, $\frac{\partial f}{\partial y} = -2y = -2\sin t$, $\frac{\mathrm{d}x}{\mathrm{d}t} = -\sin t$, $\frac{\mathrm{d}y}{\mathrm{d}t} = \cos t$, $\frac{\mathrm{d}F}{\mathrm{d}t} = \frac{\partial f}{\partial x}\frac{\mathrm{d}x}{\mathrm{d}t} + \frac{\partial f}{\partial y}\frac{\mathrm{d}y}{\mathrm{d}t} = (2\cos t)(-\sin t) + (-2\sin t)(\cos t) = -4\sin t\cos t$.
- 直接寫出 F(t) 並對 t 微分: $F(t) = f(x(t), y(t)) = x(t)^2 y(t)^2 = \cos^2 t \sin^2 t$, 故 $F'(t) = 2(\cos t)(-\sin t) 2(\sin t)(\cos t) = -4\sin t \cos t$

例.

1. 令
$$w = xy + z$$
, $x = \cos t$, $y = \sin t$, $z = t$, 求 $\frac{\mathrm{d}w}{\mathrm{d}t}$ 與 $\frac{\mathrm{d}w}{\mathrm{d}t}\Big|_{t=0}$.

2.
$$\Leftrightarrow w = x + 2y + z^2, x = \frac{r}{s}, y = r^2 + \ln s, z = 2r, \ \vec{x} \ \frac{\partial w}{\partial r} \ \not \bowtie \frac{\partial w}{\partial s}.$$

3.
$$\Rightarrow w = x^4y + y^2z^3$$
, $x = rse^t$, $y = rs^2e^{-t}$, $z = r^2s\sin t$, $\Re \left.\frac{\partial w}{\partial s}\right|_{(r, s, t) = (2, 1, 0)}$.

解.

1.
$$\frac{\partial w}{\partial x} = y = \sin t, \ \frac{\partial w}{\partial y} = x = \cos t, \ \frac{\partial w}{\partial z} = 1, \ \frac{\mathrm{d}x}{\mathrm{d}t} = -\sin t, \ \frac{\mathrm{d}y}{\mathrm{d}t} = \cos t, \ \frac{\mathrm{d}z}{\mathrm{d}t} = 1, \ \text{tx} \ \frac{\mathrm{d}w}{\mathrm{d}t} = \frac{\partial w}{\partial x} \frac{\mathrm{d}x}{\mathrm{d}t} + \frac{\partial w}{\partial z} \frac{\mathrm{d}z}{\mathrm{d}t} = (\sin t)(-\sin t) + (\cos t)(\cos t) + (1)(1) = \cos 2t + 1, \ \frac{\mathrm{d}w}{\mathrm{d}t}\Big|_{t=0} = 1 + 1 = 2.$$

2.
$$\frac{\partial w}{\partial x} = 1$$
, $\frac{\partial w}{\partial y} = 2$, $\frac{\partial w}{\partial z} = 2z = 4r$, $\frac{\partial x}{\partial r} = \frac{1}{s}$, $\frac{\partial y}{\partial r} = 2r$, $\frac{\partial z}{\partial r} = 2$, $\frac{\partial x}{\partial s} = -\frac{r}{s^2}$, $\frac{\partial y}{\partial s} = \frac{1}{s}$, $\frac{\partial z}{\partial s} = 0$, $\frac{\partial x}{\partial s} = \frac{\partial w}{\partial s} + \frac{\partial w}{\partial$

3.
$$\frac{\partial w}{\partial x} = 4x^3y, \frac{\partial w}{\partial y} = x^4 + 2yz^3, \frac{\partial w}{\partial z} = 3y^2z^2, \frac{\partial x}{\partial s} = re^t, \frac{\partial y}{\partial s} = 2rse^{-t}, \frac{\partial z}{\partial s} = r^2\sin t.$$
 當 $(r, s, t) = (2, 1, 0), (x, y, z) = (2, 2, 0),$ 故

$$\frac{\partial w}{\partial s}\Big|_{(r,s,t)=(2,1,0)} = \left(\frac{\partial w}{\partial x}\frac{\partial x}{\partial s} + \frac{\partial w}{\partial y}\frac{\partial y}{\partial s} + \frac{\partial w}{\partial z}\frac{\partial z}{\partial s}\right)\Big|_{(r,s,t)=(2,1,0)}
= (4 \cdot 2^3 \cdot 2)(2) + (2^4 + 0)(2 \cdot 2 \cdot 1) + (0)(0) = 192$$

例. 若
$$z = f(x - y)$$
, 證明 $\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = 0$.

解. 令
$$u = x - y$$
, 則 $\frac{\partial z}{\partial x} = \frac{\mathrm{d}z}{\mathrm{d}u} \frac{\partial u}{\partial x} = \frac{\mathrm{d}z}{\mathrm{d}u} (1) = \frac{\mathrm{d}z}{\mathrm{d}u}, \frac{\partial z}{\partial y} = \frac{\mathrm{d}z}{\mathrm{d}u} \frac{\partial u}{\partial y} = \frac{\mathrm{d}z}{\mathrm{d}u} (-1) = -\frac{\mathrm{d}z}{\mathrm{d}u},$ 故 $\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = 0$.

例. 若
$$z = f(x,y), \ x = s + t, \ y = s - t,$$
 證明 $\left(\frac{\partial z}{\partial x}\right)^2 - \left(\frac{\partial z}{\partial y}\right)^2 = \frac{\partial z}{\partial s} \frac{\partial z}{\partial t}$

解.
$$\frac{\partial z}{\partial s} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial s} = \frac{\partial z}{\partial x} + \frac{\partial z}{\partial y}, \frac{\partial z}{\partial t} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial t} = \frac{\partial z}{\partial x} - \frac{\partial z}{\partial y},$$
 故 $\frac{\partial z}{\partial s} \frac{\partial z}{\partial t} = \left(\frac{\partial z}{\partial x}\right)^2 - \left(\frac{\partial z}{\partial y}\right)^2$.

例. 若
$$g(s,t)=f(s^2-t^2,t^2-s^2)$$
 且 f 可微, 證明 $t\frac{\partial g}{\partial s}+s\frac{\partial g}{\partial t}=0$.

解. 令
$$u(s,t)=s^2-t^2,\,v(s,t)=t^2-s^2,\,$$
則 $g(s,t)=f(u(s,t),v(s,t)).$ 由鏈鎖律

$$\frac{\partial g}{\partial s} = \frac{\partial f}{\partial u} \frac{\partial u}{\partial s} + \frac{\partial f}{\partial v} \frac{\partial v}{\partial s} = \frac{\partial f}{\partial u} \cdot (2s) + \frac{\partial f}{\partial v} \cdot (-2s)$$

$$\frac{\partial g}{\partial t} = \frac{\partial f}{\partial u} \frac{\partial u}{\partial t} + \frac{\partial f}{\partial v} \frac{\partial v}{\partial t} = \frac{\partial f}{\partial u} \cdot (-2t) + \frac{\partial f}{\partial v} \cdot (2t)$$

故
$$t \frac{\partial g}{\partial s} + s \frac{\partial g}{\partial t} = t \left(\frac{\partial f}{\partial u} \cdot (2s) + \frac{\partial f}{\partial v} \cdot (-2s) \right) + s \left(\frac{\partial f}{\partial u} \cdot (-2t) + \frac{\partial f}{\partial v} \cdot (2t) \right) = 0.$$

例. 若函數 f(x,y) 滿足 $f(tx,ty)=t^nf(x,y),\,t\neq 0,\,n\in\mathbb{N},$ 稱 f(x,y) 為 n 次齊次函數; 證明

1.
$$x\frac{\partial f}{\partial x} + y\frac{\partial f}{\partial y} = nf$$
.
2. $x^2\frac{\partial^2 f}{\partial x^2} + 2xy\frac{\partial^2 f}{\partial x \partial y} + y^2\frac{\partial^2 f}{\partial y^2} = n(n-1)f$.

解. 令 u(x,y,t) = tx, v(x,y,t) = ty, 則 $f(u(x,y,t),v(x,y,t)) = t^n f(x,y)$.

1. 等式
$$f(u(x,y,t),v(x,y,t))=t^nf(x,y)$$
 兩邊對 t 微分 $\Longrightarrow \frac{\partial f}{\partial u}(tx,ty)\frac{\partial u}{\partial t}+\frac{\partial f}{\partial v}(tx,ty)\frac{\partial v}{\partial t}=nt^{n-1}f(x,y)$ $\Longrightarrow x\frac{\partial f}{\partial u}(tx,ty)+y\frac{\partial f}{\partial v}(tx,ty)=nt^{n-1}f(x,y).$ 令 $t=1$ 則 $x\frac{\partial f}{\partial x}+y\frac{\partial f}{\partial y}=nf.$

例. 若
$$u = f(x, y), x = e^s \cos t, y = e^s \sin t$$
, 證明 $\left(\frac{\partial u}{\partial x}\right)^2 + \left(\frac{\partial u}{\partial y}\right)^2 = e^{-2s} \left(\left(\frac{\partial u}{\partial s}\right)^2 + \left(\frac{\partial u}{\partial t}\right)^2\right)$.

解. 由鏈鎖律

$$\frac{\partial u}{\partial s} = \frac{\partial u}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial u}{\partial y} \frac{\partial y}{\partial s} = \frac{\partial u}{\partial x} \cdot (e^s \cos t) + \frac{\partial u}{\partial y} \cdot (e^s \sin t)$$
$$\frac{\partial u}{\partial t} = \frac{\partial u}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial u}{\partial y} \frac{\partial y}{\partial t} = \frac{\partial u}{\partial x} \cdot (-e^s \sin t) + \frac{\partial u}{\partial y} \cdot (e^s \cos t)$$

故

$$\begin{split} \left(\frac{\partial u}{\partial s}\right)^2 + \left(\frac{\partial u}{\partial t}\right)^2 &= \left(\frac{\partial u}{\partial x} \cdot (e^s \cos t) + \frac{\partial u}{\partial y} \cdot (e^s \sin t)\right)^2 + \left(\frac{\partial u}{\partial x} \cdot (-e^s \sin t) + \frac{\partial u}{\partial y} \cdot (e^s \cos t)\right)^2 \\ &= \left(\frac{\partial u}{\partial x}\right)^2 e^{2s} \cos^2 t + 2 \frac{\partial u}{\partial x} \frac{\partial u}{\partial y} e^{2s} \cos t \sin t + \left(\frac{\partial u}{\partial y}\right)^2 e^{2s} \sin^2 t \\ &+ \left(\frac{\partial u}{\partial x}\right)^2 e^{2s} \sin^2 t - 2 \frac{\partial u}{\partial x} \frac{\partial u}{\partial y} e^{2s} \sin t \cos t + \left(\frac{\partial u}{\partial y}\right)^2 e^{2s} \cos^2 t = e^{2s} \left(\left(\frac{\partial u}{\partial x}\right)^2 + \left(\frac{\partial u}{\partial y}\right)^2\right) \end{split}$$

例. 若
$$z = f(x,y), \ x = r\cos\theta, \ y = r\sin\theta,$$
 證明 $\left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2 = \left(\frac{\partial z}{\partial r}\right)^2 + \frac{1}{r^2}\left(\frac{\partial z}{\partial \theta}\right)^2.$

解, 中鏈銷律

$$\frac{\partial z}{\partial r} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial r} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial r} = \frac{\partial z}{\partial x} \cos \theta + \frac{\partial z}{\partial y} \sin \theta$$
$$\frac{\partial z}{\partial \theta} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial \theta} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial \theta} = \frac{\partial z}{\partial x} \cdot (-r \sin \theta) + \frac{\partial z}{\partial y} \cdot (r \cos \theta)$$

故

$$\begin{split} \left(\frac{\partial z}{\partial r}\right)^2 + \frac{1}{r^2} \left(\frac{\partial z}{\partial \theta}\right)^2 &= \left(\frac{\partial z}{\partial x} \cos \theta + \frac{\partial z}{\partial y} \sin \theta\right)^2 + \frac{1}{r^2} \left(\frac{\partial z}{\partial x} \cdot (-r \sin \theta) + \frac{\partial z}{\partial y} \cdot (r \cos \theta)\right)^2 \\ &= \left(\frac{\partial z}{\partial x}\right)^2 \cos^2 \theta + 2 \frac{\partial z}{\partial x} \frac{\partial z}{\partial y} \cos \theta \sin \theta + \left(\frac{\partial z}{\partial y}\right)^2 \sin^2 \theta \\ &+ \left(\frac{\partial z}{\partial x}\right)^2 \sin^2 \theta - 2 \frac{\partial z}{\partial x} \frac{\partial z}{\partial y} \sin \theta \cos \theta + \left(\frac{\partial z}{\partial y}\right)^2 \cos^2 \theta = \left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2 \end{split}$$

例. 若 $z=u(x,y),\ x=r^2+s^2,\ y=2rs,$ 求 $\frac{\partial z}{\partial r},\ \frac{\partial^2 z}{\partial r^2},\ \frac{\partial^2 z}{\partial s\partial r}.$

$$\frac{\partial z}{\partial r} = \frac{\partial u}{\partial x} \frac{\partial x}{\partial r} + \frac{\partial u}{\partial y} \frac{\partial y}{\partial r} = 2r \frac{\partial u}{\partial x} + 2s \frac{\partial u}{\partial y}$$

$$\frac{\partial^2 z}{\partial r^2} = \frac{\partial}{\partial r} \left(2r \frac{\partial u}{\partial x} + 2s \frac{\partial u}{\partial y} \right) = 2 \frac{\partial u}{\partial x} + 2r \frac{\partial}{\partial r} \left(\frac{\partial u}{\partial x} \right) + 2s \frac{\partial}{\partial r} \left(\frac{\partial u}{\partial y} \right)$$

$$\frac{\partial^2 z}{\partial s \partial r} = \frac{\partial}{\partial s} \left(2r \frac{\partial u}{\partial x} + 2s \frac{\partial u}{\partial y} \right) = 2 \frac{\partial u}{\partial y} + 2s \frac{\partial}{\partial s} \left(\frac{\partial u}{\partial y} \right) + 2r \frac{\partial}{\partial s} \left(\frac{\partial u}{\partial x} \right)$$

又

$$\frac{\partial}{\partial r} \left(\frac{\partial u}{\partial x} \right) = \frac{\partial}{\partial x} \left(\frac{\partial u}{\partial x} \right) \frac{\partial x}{\partial r} + \frac{\partial}{\partial y} \left(\frac{\partial u}{\partial x} \right) \frac{\partial y}{\partial r} = \frac{\partial^2 u}{\partial x^2} \cdot (2r) + \frac{\partial^2 u}{\partial y \partial x} \cdot (2s)$$

$$\frac{\partial}{\partial r} \left(\frac{\partial u}{\partial y} \right) = \frac{\partial}{\partial x} \left(\frac{\partial u}{\partial y} \right) \frac{\partial x}{\partial r} + \frac{\partial}{\partial y} \left(\frac{\partial u}{\partial y} \right) \frac{\partial y}{\partial r} = \frac{\partial^2 u}{\partial x \partial y} \cdot (2r) + \frac{\partial^2 u}{\partial y^2} \cdot (2s)$$

$$\frac{\partial}{\partial s} \left(\frac{\partial u}{\partial x} \right) = \frac{\partial}{\partial x} \left(\frac{\partial u}{\partial x} \right) \frac{\partial x}{\partial s} + \frac{\partial}{\partial y} \left(\frac{\partial u}{\partial x} \right) \frac{\partial y}{\partial s} = \frac{\partial^2 u}{\partial x^2} \cdot (2s) + \frac{\partial^2 u}{\partial y \partial x} \cdot (2r)$$

$$\frac{\partial}{\partial s} \left(\frac{\partial u}{\partial y} \right) = \frac{\partial}{\partial x} \left(\frac{\partial u}{\partial y} \right) \frac{\partial x}{\partial s} + \frac{\partial}{\partial y} \left(\frac{\partial u}{\partial y} \right) \frac{\partial y}{\partial s} = \frac{\partial^2 u}{\partial x \partial y} \cdot (2s) + \frac{\partial^2 u}{\partial y \partial x} \cdot (2r)$$

故

$$\begin{split} \frac{\partial^2 z}{\partial r^2} &= 2 \, \frac{\partial u}{\partial x} + 2r \, \frac{\partial}{\partial r} \left(\frac{\partial u}{\partial x} \right) + 2s \, \frac{\partial}{\partial r} \left(\frac{\partial u}{\partial y} \right) \\ &= 2 \, \frac{\partial u}{\partial x} + 2r \, \left(\frac{\partial^2 u}{\partial x^2} \cdot (2r) + \frac{\partial^2 u}{\partial y \partial x} \cdot (2s) \right) + 2s \, \left(\frac{\partial^2 u}{\partial x \partial y} \cdot (2r) + \frac{\partial^2 u}{\partial y^2} \cdot (2s) \right) \\ &= 2 \, \frac{\partial u}{\partial x} + 4r^2 \, \frac{\partial^2 u}{\partial x^2} + 8rs \, \frac{\partial^2 u}{\partial x \partial y} + 4s^2 \, \frac{\partial^2 u}{\partial y^2} \\ \frac{\partial^2 z}{\partial s \partial r} &= 2 \, \frac{\partial u}{\partial y} + 2s \, \frac{\partial}{\partial s} \left(\frac{\partial u}{\partial y} \right) + 2r \, \frac{\partial}{\partial s} \left(\frac{\partial u}{\partial x} \right) \\ &= 2 \, \frac{\partial u}{\partial y} + 2s \, \left(\frac{\partial^2 u}{\partial x \partial y} \cdot (2s) + \frac{\partial^2 u}{\partial y^2} \cdot (2r) \right) + 2r \, \left(\frac{\partial^2 u}{\partial x^2} \cdot (2s) + \frac{\partial^2 u}{\partial y \partial x} \cdot (2r) \right) \\ &= 2 \, \frac{\partial u}{\partial y} + 4rs \, \frac{\partial^2 u}{\partial x^2} + 4(r^2 + s^2) \, \frac{\partial^2 u}{\partial x \partial y} + 4rs \, \frac{\partial^2 u}{\partial y^2} \end{split}$$

例. 若 z = u(x, y), x = g(s, t), y = h(s, t), 證明

$$\frac{\partial^2 z}{\partial t^2} = \frac{\partial z}{\partial x} \frac{\partial^2 x}{\partial t^2} + \frac{\partial z}{\partial y} \frac{\partial^2 y}{\partial t^2} + \frac{\partial^2 z}{\partial x^2} \left(\frac{\partial x}{\partial t}\right)^2 + 2 \frac{\partial^2 z}{\partial x \partial y} \frac{\partial x}{\partial t} \frac{\partial y}{\partial t} + \frac{\partial^2 z}{\partial y^2} \left(\frac{\partial y}{\partial t}\right)^2$$

解. 令 $z=U(s,t)=u(x(s,t),\,y(s,t)),$ 由鏈鎖律

$$\begin{split} \frac{\partial U}{\partial t} &= \frac{\partial u}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial u}{\partial y} \frac{\partial y}{\partial t} \\ \frac{\partial^2 U}{\partial t^2} &= \frac{\partial}{\partial t} \left(\frac{\partial u}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial u}{\partial y} \frac{\partial y}{\partial t} \right) = \frac{\partial u}{\partial x} \frac{\partial^2 x}{\partial t^2} + \frac{\partial x}{\partial t} \frac{\partial}{\partial t} \left(\frac{\partial u}{\partial x} \right) + \frac{\partial u}{\partial y} \frac{\partial^2 y}{\partial t^2} + \frac{\partial y}{\partial t} \frac{\partial}{\partial t} \left(\frac{\partial u}{\partial y} \right) \end{split}$$

又

$$\frac{\partial}{\partial t} \left(\frac{\partial u}{\partial x} \right) = \frac{\partial}{\partial x} \left(\frac{\partial u}{\partial x} \right) \frac{\partial x}{\partial t} + \frac{\partial}{\partial y} \left(\frac{\partial u}{\partial x} \right) \frac{\partial y}{\partial t} = \frac{\partial^2 u}{\partial x^2} \frac{\partial x}{\partial t} + \frac{\partial^2 u}{\partial y \partial x} \frac{\partial y}{\partial t}$$
$$\frac{\partial}{\partial t} \left(\frac{\partial u}{\partial y} \right) = \frac{\partial}{\partial x} \left(\frac{\partial u}{\partial y} \right) \frac{\partial x}{\partial t} + \frac{\partial}{\partial y} \left(\frac{\partial u}{\partial y} \right) \frac{\partial y}{\partial t} = \frac{\partial^2 u}{\partial x \partial y} \frac{\partial x}{\partial t} + \frac{\partial^2 u}{\partial y^2} \frac{\partial y}{\partial t}$$

$$\begin{split} \frac{\partial^2 U}{\partial t^2} &= \frac{\partial u}{\partial x} \frac{\partial^2 x}{\partial t^2} + \frac{\partial x}{\partial t} \left(\frac{\partial^2 u}{\partial x^2} \frac{\partial x}{\partial t} + \frac{\partial u}{\partial y} \frac{\partial^2 y}{\partial t^2} + \frac{\partial^2 u}{\partial y \partial x} \frac{\partial y}{\partial t} \right) + \frac{\partial y}{\partial t} \left(\frac{\partial^2 u}{\partial x \partial y} \frac{\partial x}{\partial t} + \frac{\partial^2 u}{\partial y^2} \frac{\partial y}{\partial t} \right) \\ &= \frac{\partial u}{\partial x} \frac{\partial^2 x}{\partial t^2} + \frac{\partial u}{\partial y} \frac{\partial^2 y}{\partial t^2} + \frac{\partial^2 u}{\partial x^2} \left(\frac{\partial x}{\partial t} \right)^2 + 2 \frac{\partial^2 u}{\partial x \partial y} \frac{\partial x}{\partial t} \frac{\partial y}{\partial t} + \frac{\partial^2 u}{\partial y^2} \left(\frac{\partial y}{\partial t} \right)^2 \end{split}$$

例. 若 f(x,t) = g(x+at) + h(x-at), 其中 g, h 可二次微分, 證明 f 滿足波動方程式 $\frac{\partial^2 f}{\partial t^2} = a^2 \frac{\partial^2 f}{\partial x^2}$.

解. 令
$$u(x,t)=x+at,\,v(x,t)=x-at,\,f\big(u(x,t),v(x,t)\big)=g(u(x,t))+h(v(x,t)).$$
 由鏈鎖律

$$\begin{split} \frac{\partial f}{\partial t} &= \frac{\partial f}{\partial u} \frac{\partial u}{\partial t} + \frac{\partial f}{\partial v} \frac{\partial v}{\partial t} \\ &= g'(u(x,t)) \cdot a + h'(v(x,t)) \cdot (-a) = a \, g'(x+at) - a \, h'(x-at) = a \, g'(u(x,t)) - a \, h'(v(x,t)) \\ \frac{\partial^2 f}{\partial t^2} &= \frac{\partial}{\partial t} \left(\frac{\partial f}{\partial t} \right) \\ &= \frac{\partial}{\partial u} \left(a \, g'(u) - a \, h'(v) \right) \left(u(x,t), v(x,t) \right) \frac{\partial u}{\partial t} + \frac{\partial}{\partial v} \left(a \, g'(u) - a \, h'(v) \right) \left(u(x,t), v(x,t) \right) \frac{\partial v}{\partial t} \\ &= a \, g''(u(x,t)) \cdot a - a \, h''(v(x,t)) \cdot (-a) \\ &= a^2 \left(g''(x+at) + h''(x-at) \right) \\ \frac{\partial f}{\partial x} &= \frac{\partial f}{\partial u} \frac{\partial u}{\partial x} + \frac{\partial f}{\partial v} \frac{\partial v}{\partial x} \\ &= g'(u(x,t)) \cdot 1 + h'(v(x,t)) \cdot (1) = g'(x+at) + h'(x-at) = g'(u(x,t)) + h'(v(x,t)) \\ \frac{\partial^2 f}{\partial x^2} &= \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right) \\ &= \frac{\partial}{\partial x} \left(g'(u) + h'(v) \right) \left(u(x,t), v(x,t) \right) \frac{\partial u}{\partial x} + \frac{\partial}{\partial v} \left(g'(u) + h'(v) \right) \left(u(x,t), v(x,t) \right) \frac{\partial v}{\partial x} \\ &= g''(u(x,t)) \cdot 1 + h''(v(x,t)) \cdot 1 \\ &= g''(x+at) + h''(x-at) \end{split}$$

故
$$\frac{\partial^2 f}{\partial t^2} = a^2 \frac{\partial^2 f}{\partial x^2}.$$

例. 若
$$u = f(x,y), \ x = e^s \cos t, \ y = e^s \sin t,$$
 證明 $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = e^{-2s} \left(\frac{\partial^2 u}{\partial s^2} + \frac{\partial^2 u}{\partial t^2} \right).$

解. 由鏈鎖律

$$\frac{\partial u}{\partial s} = \frac{\partial u}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial u}{\partial y} \frac{\partial y}{\partial s} = \frac{\partial u}{\partial x} \cdot (e^s \cos t) + \frac{\partial u}{\partial y} \cdot (e^s \sin t)$$
$$\frac{\partial u}{\partial t} = \frac{\partial u}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial u}{\partial y} \frac{\partial y}{\partial t} = \frac{\partial u}{\partial x} \cdot (-e^s \sin t) + \frac{\partial u}{\partial y} \cdot (e^s \cos t)$$

$$\frac{\partial^2 u}{\partial s^2} = \frac{\partial}{\partial s} \left(\frac{\partial u}{\partial s} \right) = \frac{\partial}{\partial s} \left(\frac{\partial u}{\partial x} \cdot (e^s \cos t) + \frac{\partial u}{\partial y} \cdot (e^s \sin t) \right)$$

$$= \frac{\partial}{\partial s} \left(\frac{\partial u}{\partial x} \right) \cdot (e^s \cos t) + \frac{\partial u}{\partial x} \cdot (e^s \cos t) + \frac{\partial}{\partial s} \left(\frac{\partial u}{\partial y} \right) \cdot (e^s \sin t) + \frac{\partial u}{\partial y} \cdot (e^s \sin t)$$

$$\frac{\partial^2 u}{\partial t^2} = \frac{\partial}{\partial t} \left(\frac{\partial u}{\partial t} \right) = \frac{\partial}{\partial t} \left(\frac{\partial u}{\partial x} \cdot (-e^s \sin t) + \frac{\partial u}{\partial y} \cdot (e^s \cos t) \right)$$

$$= \frac{\partial}{\partial t} \left(\frac{\partial u}{\partial x} \right) \cdot (-e^s \sin t) + \frac{\partial u}{\partial x} \cdot (-e^s \cos t) + \frac{\partial}{\partial t} \left(\frac{\partial u}{\partial y} \right) \cdot (e^s \cos t) + \frac{\partial u}{\partial y} \cdot (-e^s \sin t)$$

$$\frac{\partial}{\partial s} \left(\frac{\partial u}{\partial x} \right) = \frac{\partial}{\partial x} \left(\frac{\partial u}{\partial x} \right) \frac{\partial x}{\partial s} + \frac{\partial}{\partial y} \left(\frac{\partial u}{\partial x} \right) \frac{\partial y}{\partial s} = \frac{\partial^2 u}{\partial x^2} \cdot (e^s \cos t) + \frac{\partial^2 u}{\partial y \partial x} \cdot (e^s \sin t)$$

$$\frac{\partial}{\partial s} \left(\frac{\partial u}{\partial y} \right) = \frac{\partial}{\partial x} \left(\frac{\partial u}{\partial y} \right) \frac{\partial x}{\partial s} + \frac{\partial}{\partial y} \left(\frac{\partial u}{\partial y} \right) \frac{\partial y}{\partial s} = \frac{\partial^2 u}{\partial x \partial y} \cdot (e^s \cos t) + \frac{\partial^2 u}{\partial y^2} \cdot (e^s \sin t)$$

$$\frac{\partial}{\partial t} \left(\frac{\partial u}{\partial x} \right) = \frac{\partial}{\partial x} \left(\frac{\partial u}{\partial x} \right) \frac{\partial x}{\partial t} + \frac{\partial}{\partial y} \left(\frac{\partial u}{\partial x} \right) \frac{\partial y}{\partial t} = \frac{\partial^2 u}{\partial x^2} \cdot (-e^s \sin t) + \frac{\partial^2 u}{\partial y \partial x} \cdot (e^s \cos t)$$

$$\frac{\partial}{\partial t} \left(\frac{\partial u}{\partial y} \right) = \frac{\partial}{\partial x} \left(\frac{\partial u}{\partial y} \right) \frac{\partial x}{\partial t} + \frac{\partial}{\partial y} \left(\frac{\partial u}{\partial y} \right) \frac{\partial y}{\partial t} = \frac{\partial^2 u}{\partial x \partial y} \cdot (-e^s \sin t) + \frac{\partial^2 u}{\partial y^2} \cdot (e^s \cos t)$$

故

$$\begin{split} \frac{\partial^2 u}{\partial s^2} &= \frac{\partial}{\partial s} \left(\frac{\partial u}{\partial x} \right) \cdot \left(e^s \cos t \right) + \frac{\partial u}{\partial x} \cdot \left(e^s \cos t \right) + \frac{\partial}{\partial s} \left(\frac{\partial u}{\partial y} \right) \cdot \left(e^s \sin t \right) + \frac{\partial u}{\partial y} \cdot \left(e^s \sin t \right) \\ &= \left(\frac{\partial^2 u}{\partial x^2} \cdot \left(e^s \cos t \right) + \frac{\partial^2 u}{\partial y \partial x} \cdot \left(e^s \sin t \right) \right) \cdot \left(e^s \cos t \right) + \frac{\partial u}{\partial x} \cdot \left(e^s \cos t \right) \\ &+ \left(\frac{\partial^2 u}{\partial x \partial y} \cdot \left(e^s \cos t \right) + \frac{\partial^2 u}{\partial y^2} \cdot \left(e^s \sin t \right) \right) \cdot \left(e^s \sin t \right) + \frac{\partial u}{\partial y} \cdot \left(e^s \sin t \right) \\ &= \frac{\partial^2 u}{\partial t} \left(\frac{\partial u}{\partial x} \right) \cdot \left(-e^s \sin t \right) + \frac{\partial u}{\partial x} \cdot \left(-e^s \cos t \right) + \frac{\partial}{\partial t} \left(\frac{\partial u}{\partial y} \right) \cdot \left(e^s \cos t \right) + \frac{\partial u}{\partial y} \cdot \left(-e^s \sin t \right) \\ &= \left(\frac{\partial^2 u}{\partial x^2} \cdot \left(-e^s \sin t \right) + \frac{\partial^2 u}{\partial y \partial x} \cdot \left(e^s \cos t \right) \right) \cdot \left(-e^s \sin t \right) + \frac{\partial u}{\partial x} \cdot \left(-e^s \cos t \right) \\ &+ \left(\frac{\partial^2 u}{\partial x \partial y} \cdot \left(-e^s \sin t \right) + \frac{\partial^2 u}{\partial y^2} \cdot \left(e^s \cos t \right) \right) \cdot \left(e^s \cos t \right) + \frac{\partial u}{\partial y} \cdot \left(-e^s \sin t \right) \end{split}$$

可得
$$\frac{\partial^2 u}{\partial s^2} + \frac{\partial^2 u}{\partial t^2} = e^{2s} \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right).$$

例. 若
$$z = u(x,y), x = r\cos\theta, y = r\sin\theta,$$
求 $\frac{\partial^2 z}{\partial\theta\partial r}, \frac{\partial^2 z}{\partial r\partial\theta}$

解.

• 求 $\frac{\partial^2 z}{\partial \theta \partial r}$: 由鏈鎖律

$$\frac{\partial z}{\partial r} = \frac{\partial u}{\partial x} \frac{\partial x}{\partial r} + \frac{\partial u}{\partial y} \frac{\partial y}{\partial r} = \frac{\partial u}{\partial x} \cos \theta + \frac{\partial u}{\partial y} \sin \theta$$

$$\frac{\partial^2 z}{\partial \theta \partial r} = \frac{\partial}{\partial \theta} \left(\frac{\partial u}{\partial x} \cos \theta + \frac{\partial u}{\partial y} \sin \theta \right)$$

$$= \frac{\partial u}{\partial x} (-\sin \theta) + \frac{\partial}{\partial \theta} \left(\frac{\partial u}{\partial x} \right) \cos \theta + \frac{\partial u}{\partial y} \cos \theta + \frac{\partial}{\partial \theta} \left(\frac{\partial u}{\partial y} \right) \sin \theta$$

又

$$\frac{\partial}{\partial \theta} \left(\frac{\partial u}{\partial x} \right) = \frac{\partial}{\partial x} \left(\frac{\partial u}{\partial x} \right) \frac{\partial x}{\partial \theta} + \frac{\partial}{\partial y} \left(\frac{\partial u}{\partial x} \right) \frac{\partial y}{\partial \theta} = \frac{\partial^2 u}{\partial x^2} \left(-r \sin \theta \right) + \frac{\partial^2 u}{\partial y \partial x} \left(r \cos \theta \right)$$
$$\frac{\partial}{\partial \theta} \left(\frac{\partial u}{\partial y} \right) = \frac{\partial}{\partial x} \left(\frac{\partial u}{\partial y} \right) \frac{\partial x}{\partial \theta} + \frac{\partial}{\partial y} \left(\frac{\partial u}{\partial y} \right) \frac{\partial y}{\partial \theta} = \frac{\partial^2 u}{\partial x \partial y} \left(-r \sin \theta \right) + \frac{\partial^2 u}{\partial y^2} \left(r \cos \theta \right)$$

$$\frac{\partial^2 z}{\partial \theta \partial r} = \frac{\partial u}{\partial x} (-\sin \theta) + \frac{\partial}{\partial \theta} \left(\frac{\partial u}{\partial x} \right) \cos \theta + \frac{\partial u}{\partial y} \cos \theta + \frac{\partial}{\partial \theta} \left(\frac{\partial u}{\partial y} \right) \sin \theta
= \frac{\partial u}{\partial x} (-\sin \theta) + \left(\frac{\partial^2 u}{\partial x^2} (-r\sin \theta) + \frac{\partial^2 u}{\partial y \partial x} (r\cos \theta) \right) \cos \theta
+ \frac{\partial u}{\partial y} \cos \theta + \left(\frac{\partial^2 u}{\partial x \partial y} (-r\sin \theta) + \frac{\partial^2 u}{\partial y^2} (r\cos \theta) \right) \sin \theta
= \frac{\partial u}{\partial y} \cos \theta - \frac{\partial u}{\partial x} \sin \theta + r\sin \theta \cos \theta \left(\frac{\partial^2 u}{\partial y^2} - \frac{\partial^2 u}{\partial x^2} \right) + r(\cos^2 \theta - \sin^2 \theta) \frac{\partial^2 u}{\partial x \partial y}$$

• 求 $\frac{\partial^2 z}{\partial r \partial \theta}$: 由鏈鎖律

$$\frac{\partial z}{\partial \theta} = \frac{\partial u}{\partial x} \frac{\partial x}{\partial \theta} + \frac{\partial u}{\partial y} \frac{\partial y}{\partial \theta} = \frac{\partial u}{\partial x} (-r \sin \theta) + \frac{\partial u}{\partial y} (r \cos \theta)$$

$$\frac{\partial^2 z}{\partial r \partial \theta} = \frac{\partial}{\partial r} \left(\frac{\partial u}{\partial x} (-r \sin \theta) + \frac{\partial u}{\partial y} (r \cos \theta) \right)$$

$$= \frac{\partial u}{\partial x} (-\sin \theta) + \frac{\partial}{\partial r} \left(\frac{\partial u}{\partial x} \right) (-r \sin \theta) + \frac{\partial u}{\partial y} \cos \theta + \frac{\partial}{\partial r} \left(\frac{\partial u}{\partial y} \right) (r \cos \theta)$$

又

$$\frac{\partial}{\partial r} \left(\frac{\partial u}{\partial x} \right) = \frac{\partial}{\partial x} \left(\frac{\partial u}{\partial x} \right) \frac{\partial x}{\partial r} + \frac{\partial}{\partial y} \left(\frac{\partial u}{\partial x} \right) \frac{\partial y}{\partial r} = \frac{\partial^2 u}{\partial x^2} \cos \theta + \frac{\partial^2 u}{\partial y \partial x} \sin \theta$$

$$\frac{\partial}{\partial r} \left(\frac{\partial u}{\partial y} \right) = \frac{\partial}{\partial x} \left(\frac{\partial u}{\partial y} \right) \frac{\partial x}{\partial r} + \frac{\partial}{\partial y} \left(\frac{\partial u}{\partial y} \right) \frac{\partial y}{\partial r} = \frac{\partial^2 u}{\partial x \partial y} \cos \theta + \frac{\partial^2 u}{\partial y^2} \sin \theta$$

故

$$\frac{\partial^2 z}{\partial r \partial \theta} = \frac{\partial u}{\partial x} (-\sin \theta) + \frac{\partial}{\partial r} \left(\frac{\partial u}{\partial x} \right) (-r\sin \theta) + \frac{\partial u}{\partial y} \cos \theta + \frac{\partial}{\partial r} \left(\frac{\partial u}{\partial y} \right) (r\cos \theta)
= \frac{\partial u}{\partial x} (-\sin \theta) + \left(\frac{\partial^2 u}{\partial x^2} \cos \theta + \frac{\partial^2 u}{\partial y \partial x} \sin \theta \right) (-r\sin \theta)
+ \frac{\partial u}{\partial y} \cos \theta + \left(\frac{\partial^2 u}{\partial x \partial y} \cos \theta + \frac{\partial^2 u}{\partial y^2} \sin \theta \right) (r\cos \theta)
= \frac{\partial u}{\partial y} \cos \theta - \frac{\partial u}{\partial x} \sin \theta + r\sin \theta \cos \theta \left(\frac{\partial^2 u}{\partial y^2} - \frac{\partial^2 u}{\partial x^2} \right) + r(\cos^2 \theta - \sin^2 \theta) \frac{\partial^2 u}{\partial x \partial y}$$

例. 若
$$z = u(x,y), \ x = r\cos\theta, \ y = r\sin\theta$$
, 證明 $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = \frac{\partial^2 z}{\partial r^2} + \frac{1}{r}\frac{\partial z}{\partial r} + \frac{1}{r^2}\frac{\partial^2 z}{\partial \theta^2}$.

解. 令 $z = U(r, \theta) = u(x(r, \theta), y(r, \theta))$, 由鏈鎖律

$$\begin{split} \frac{\partial U}{\partial r} &= \frac{\partial u}{\partial x} \frac{\partial x}{\partial r} + \frac{\partial u}{\partial y} \frac{\partial y}{\partial r} = \frac{\partial u}{\partial x} \cos \theta + \frac{\partial u}{\partial y} \sin \theta \\ \frac{\partial^2 U}{\partial r^2} &= \frac{\partial}{\partial x} \left(\frac{\partial u}{\partial x} \cos \theta + \frac{\partial u}{\partial y} \sin \theta \right) \frac{\partial x}{\partial r} + \frac{\partial}{\partial y} \left(\frac{\partial u}{\partial x} \cos \theta + \frac{\partial u}{\partial y} \sin \theta \right) \frac{\partial y}{\partial r} \\ &= \frac{\partial}{\partial x} \left(\frac{\partial u}{\partial x} \cos \theta + \frac{\partial u}{\partial y} \sin \theta \right) \cos \theta + \frac{\partial}{\partial y} \left(\frac{\partial u}{\partial x} \cos \theta + \frac{\partial u}{\partial y} \sin \theta \right) \sin \theta \\ &= \frac{\partial^2 u}{\partial x^2} \cos^2 \theta + 2 \frac{\partial^2 u}{\partial x^2 \partial y} \sin \theta \cos \theta + \frac{\partial^2 u}{\partial y^2} \sin^2 \theta \\ \frac{\partial U}{\partial \theta} &= \frac{\partial u}{\partial x} \frac{\partial x}{\partial \theta} + \frac{\partial u}{\partial y} \frac{\partial y}{\partial \theta} = \frac{\partial u}{\partial x} (-r \sin \theta) + \frac{\partial u}{\partial y} (r \cos \theta) \\ &= \frac{\partial^2 U}{\partial x} \left(-r \cos \theta \right) - r \sin \theta \frac{\partial}{\partial \theta} \left(\frac{\partial u}{\partial x} \right) + \frac{\partial u}{\partial y} (-r \sin \theta) + r \cos \theta \frac{\partial}{\partial \theta} \left(\frac{\partial u}{\partial y} \right) \\ &= \frac{\partial u}{\partial x} (-r \cos \theta) + \frac{\partial u}{\partial y} (-r \sin \theta) - r \sin \theta \frac{\partial}{\partial \theta} \left(\frac{\partial u}{\partial x} \right) + r \cos \theta \frac{\partial}{\partial \theta} \left(\frac{\partial u}{\partial y} \right) \\ &= \frac{\partial u}{\partial x} (-r \cos \theta) + \frac{\partial u}{\partial y} (-r \sin \theta) - r \sin \theta \left(\frac{\partial^2 u}{\partial x^2} \frac{\partial x}{\partial \theta} + \frac{\partial^2 u}{\partial y \partial x} \frac{\partial y}{\partial \theta} \right) + r \cos \theta \left(\frac{\partial^2 u}{\partial x \partial y} \frac{\partial x}{\partial \theta} + \frac{\partial^2 u}{\partial y^2} \frac{\partial y}{\partial \theta} \right) \\ &= \frac{\partial u}{\partial x} (-r \cos \theta) + \frac{\partial u}{\partial y} (-r \sin \theta) - r \sin \theta \left(\frac{\partial^2 u}{\partial x^2} \frac{\partial x}{\partial \theta} + \frac{\partial^2 u}{\partial y \partial x} \frac{\partial y}{\partial \theta} \right) + r \cos \theta \left(\frac{\partial^2 u}{\partial x \partial y} \frac{\partial x}{\partial \theta} + \frac{\partial^2 u}{\partial y^2} \frac{\partial y}{\partial \theta} \right) \\ &= \frac{\partial u}{\partial x} (-r \cos \theta) + \frac{\partial u}{\partial y} (-r \sin \theta) - r \sin \theta \left(\frac{\partial^2 u}{\partial x^2} \frac{\partial x}{\partial \theta} + \frac{\partial^2 u}{\partial y \partial x} \frac{\partial y}{\partial \theta} \right) + r \cos \theta \left(\frac{\partial^2 u}{\partial x \partial y} \frac{\partial x}{\partial \theta} + \frac{\partial^2 u}{\partial y^2} \frac{\partial y}{\partial \theta} \right) \\ &= \frac{\partial u}{\partial x} (-r \cos \theta) + \frac{\partial u}{\partial y} (-r \sin \theta) - r \sin \theta \left(\frac{\partial^2 u}{\partial x^2} (-r \sin \theta) + \frac{\partial^2 u}{\partial y \partial x} (r \cos \theta) \right) \\ &+ r \cos \theta \left(\frac{\partial^2 u}{\partial x \partial y} (-r \sin \theta) + \frac{\partial^2 u}{\partial y^2} (r \cos \theta) \right) \\ &= \frac{\partial u}{\partial x} (-r \cos \theta) + \frac{\partial u}{\partial y} (-r \sin \theta) + r^2 \sin^2 \theta \frac{\partial^2 u}{\partial x^2} - 2r^2 \sin \theta \cos \theta \frac{\partial^2 u}{\partial y \partial x} + r^2 \cos^2 \theta \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial y^2} \right) \\ &= \frac{\partial u}{\partial x} (-r \cos \theta) + \frac{\partial u}{\partial y} (-r \sin \theta) + r^2 \sin^2 \theta \frac{\partial^2 u}{\partial x^2} - 2r^2 \sin \theta \cos \theta \frac{\partial^2 u}{\partial y \partial x} + r^2 \cos^2 \theta \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial y^2} \right)$$

曲上,

$$\begin{split} \frac{\partial^2 U}{\partial r^2} + \frac{1}{r} \frac{\partial U}{\partial r} + \frac{1}{r^2} \frac{\partial^2 U}{\partial \theta^2} &= \left(\frac{\partial^2 u}{\partial x^2} \cos^2 \theta + 2 \frac{\partial^2 u}{\partial x \partial y} \sin \theta \cos \theta + \frac{\partial^2 u}{\partial y^2} \sin^2 \theta \right) + \frac{1}{r} \left(\frac{\partial u}{\partial x} \cos \theta + \frac{\partial u}{\partial y} \sin \theta \right) \\ &+ \frac{1}{r^2} \left(\frac{\partial u}{\partial x} (-r \cos \theta) + \frac{\partial u}{\partial y} (-r \sin \theta) + r^2 \sin^2 \theta \frac{\partial^2 u}{\partial x^2} - 2r^2 \sin \theta \cos \theta \frac{\partial^2 u}{\partial y \partial x} + r^2 \cos^2 \theta \frac{\partial^2 u}{\partial y^2} \right) \\ &= \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \end{split}$$

5.5 方向導數與梯度

以下 $S \subseteq \mathbb{R}^n$, 函數 $f: S \to \mathbb{R}$ 可微, $\mathbf{c} \in S$. \mathbb{R}^n 中直角座標系單位向量記為 $\mathbf{e}_1, \mathbf{e}_2, \ldots, \mathbf{e}_n$.

定義 (方向導數,梯度).

- 給定 $\mathbf{u} \in \mathbb{R}^n$, f 在 \mathbf{c} 之 \mathbf{u} 方向導數 (directional derivative) 為 $D_{\mathbf{u}}f(\mathbf{c}) = \lim_{h \to 0} \frac{f(\mathbf{c} + h\mathbf{u}) f(\mathbf{c})}{h}$
- $f \geq \text{Gaiss} f_i(\mathbf{c}) = D_{\mathbf{e}_i} f(\mathbf{c}), i = 1, 2, ..., n.$
- f 在 \mathbf{c} 之梯度 (gradient) 為 $\nabla f(\mathbf{c}) = \langle f_1(\mathbf{c}), f_2(\mathbf{c}), \dots, f_n(\mathbf{c}) \rangle$.

性質. $D_{\mathbf{u}}f(\mathbf{c}) = \nabla f(\mathbf{c}) \cdot \mathbf{u}$.

證. 令 $g(x) = f(\mathbf{c} + x\mathbf{u}) = f(v_1 + xu_1, v_2 + xu_2, \dots, v_n + xu_n), D_{\mathbf{u}}f(\mathbf{c}) = \lim_{h \to 0} \frac{f(\mathbf{c} + h\mathbf{u}) - f(\mathbf{c})}{h} = \lim_{h \to 0} \frac{g(h) - g(0)}{h} = g'(x) \Big|_{x=0}$. 由鏈鎖律, $g'(x) \Big|_{x=0} = \sum_{i=1}^n f_i(\mathbf{c} + x\mathbf{u}) \frac{\mathrm{d}(v_i + xu_i)}{\mathrm{d}x} \Big|_{x=0} = \sum_{i=1}^n f_i(\mathbf{c} + x\mathbf{u}) u_i \Big|_{x=0} = \nabla f(\mathbf{c}) \cdot \mathbf{u}.$

性質. 給定 \mathbb{R}^n 曲面 $G(\mathbf{x}) = 0$. 令 $\mathbf{x}_0 \in \mathbb{R}^n$ 使 $G(\mathbf{x}_0) = 0$ $(\mathbf{x}_0$ 位於 $G(\mathbf{x}) \perp)$,則 $\nabla G(\mathbf{x}_0)$ 在 \mathbf{x}_0 與 $G(\mathbf{x})$ 垂直.

證. 令 \mathbb{R}^n 曲線 $\mathbf{r}(t) = \langle x_1(t), x_2(t), \dots, x_n(t) \rangle$ 位於 $G(\mathbf{x})$ 上且通過 \mathbf{x}_0 , 則 $G(\mathbf{r}(t)) = 0$, 且存在 $t_0 \in \mathbb{R}$ 使 $\mathbf{r}(t_0) = \mathbf{x}_0$. 由鏈鎖律, $G(\mathbf{r}(t)) = 0$ 等式兩邊對 t 微分並代入 $t = t_0$ 得

$$\frac{\mathrm{d}G(\mathbf{r}(t))}{\mathrm{d}t}\bigg|_{t=t_0} = 0 \implies \sum_{i=1}^n G_i(\mathbf{r}(t)) x_i'(t)\bigg|_{t=t_0} = 0 \implies \nabla G(\mathbf{r}(t_0)) \cdot \mathbf{r}'(t_0) = 0$$

例. 求 $z = x^2 + 5xy - 2y^2$ 在 (1, 2, 3) 之切平面方程式.

解. $f(x,y,z) = x^2 + 5xy - 2y^2 - z = 0$, 故 $\nabla f = (2x+5y)\hat{\imath} + (-4y+5x)\hat{\jmath} - \hat{k}$, $\nabla f(1,2,3) = \langle 12, -3, -1 \rangle$, 切平面方程式為 $12(x-1) - 3(y-2) - (z-3) = 0 \implies 12x - 3y - z = 3$.

例. 求 $z^3 + xyz - 2 = 0$ 在 (1,1,1) 之切平面方程式.

解. $f(x,y,z) = z^3 + xyz - 2 = 0$, 故 $\nabla f = yz\hat{\imath} + xz\hat{\jmath} + (3z^2 + xy)\hat{k}$, $\nabla f(1,1,1) = \langle 1,1,4 \rangle$, 切平面方程式為 $(x-1) + (y-1) + 4(z-1) = 0 \implies x + y + 4z = 6$.

5.6 極値問題

定義 (極値定義). 定義 $B(\mathbf{x}, h) \equiv \{\mathbf{y} \in \mathbb{R}^n \mid |\mathbf{y} - \mathbf{x}| < h\},$

- $f \in \mathbf{x}_{M} \in S$ 有最大値 (global maximum) $f(\mathbf{x}_{M})$: $f(\mathbf{x}_{M}) \geqslant f(\mathbf{x}), \ \forall \mathbf{x} \in S$.
- $f \subset \mathbf{x}_m \in S$ 有最小値 (global minimum) $f(\mathbf{x}_m)$: $f(\mathbf{x}_m) \leqslant f(\mathbf{x})$, $\forall \mathbf{x} \in S$.
- f 在 $\mathbf{x}_0 \in S$ 有極大値 (local maximum) $f(\mathbf{x}_0)$: $\exists h_0 > 0$ 使 $f(\mathbf{x}_0) \geqslant f(\mathbf{x}), \ \forall \mathbf{x} \in B(\mathbf{x}_0, h_0) \cap S$.
- $f \in \mathbf{x}_1 \in S$ 有極小値 (local minimum) $f(\mathbf{x}_1)$: $\exists h_1 > 0$ 使 $f(\mathbf{x}_1) \leqslant f(\mathbf{x}), \forall \mathbf{x} \in B(\mathbf{x}_1, h_1) \cap S$.

定理 (極値必要條件). 若 f 在 S 之内點 \mathbf{c} 有極値, 則 $\nabla f(\mathbf{c}) = \mathbf{0}$.

證. 若 $\mathbf{c} = (c_1, c_2, \dots, c_n)$, 令 $g_j(t) \equiv f(c_1, c_2, \dots, c_{j-1}, t, c_{j+1}, \dots, c_n)$, $j = 1, 2, \dots, n$. 因 $f \in \mathbf{c}$ 有極値 $f(\mathbf{c}) = g_j(c_j)$, $g_j \in c_j$ 有極値 $g_j'(t) \big|_{t=c_j} = 0 \implies D_j f(\mathbf{c}) = 0 \ \forall j$, 故 $\nabla f(\mathbf{c}) = \mathbf{0}$.

結論. 若 f 在 $\mathbf{c} \in S$ 有極値, 則 \mathbf{c} 為以下兩情形之一:

- c 為 f 之臨界點 (critical point) : c 為 S 之内點且 $\nabla f(\mathbf{c}) = \mathbf{0}$.
- c 為 S 之邊界點 (boundary).

定義 (Hessian 矩陣). 給定 S 之内點 \mathbf{c} ,

$$\mathbf{H}(f,\mathbf{c}) = \begin{pmatrix} f_{11} & f_{12} & \cdots & f_{1n} \\ f_{21} & f_{22} & \cdots & f_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ f_{n1} & f_{n2} & \cdots & f_{nn} \end{pmatrix}, \qquad f_{ij} = \frac{\partial^2 f}{\partial x_j \partial x_i}(\mathbf{c}), \qquad i, j = 1, 2, \dots, n.$$

定義 (矩陣正 / 負定性). 給定 $n \times n$ 實對稱矩陣 A. 對任意 $\mathbf{v} \in \mathbb{R}^n \neq \mathbf{0}$, 若

• $\mathbf{v}\mathbf{A}\mathbf{v}^{\top} > 0$: **A EE** (positive-definite)

• $\mathbf{v}\mathbf{A}\mathbf{v}^{\top} < 0$: **A** 負定 (negative-definite)

• $\mathbf{v}\mathbf{A}\mathbf{v}^{\top} \geqslant 0$: \mathbf{A} 半正定 (positive-semidefinite)

• $\mathbf{v}\mathbf{A}\mathbf{v}^{\top}\leqslant 0$: **A** 半負定 (negative-semidefinite)

定理 (二階導數判定法). 給定 f 之臨界點 c, 若

• **H**(*f*, **c**) 為正定: *f* 在 **c** 有極小値.

• **H**(f, **c**) 為負定: f 在 **c** 有極大値.

結論. 考慮 2×2 對稱矩陣 $\mathbf{A} = \begin{pmatrix} \alpha & \gamma \\ \gamma & \beta \end{pmatrix}$: 令 $\mathbf{v} = \langle x, y \rangle$, $\mathbf{v} \mathbf{A} \mathbf{v}^{\top} = \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} \alpha & \gamma \\ \gamma & \beta \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = x (\alpha x + \gamma y) + y (\gamma x + \beta y) = \alpha x^2 + 2\gamma xy + \beta y^2 = \alpha \left(x + \frac{\gamma}{\alpha} y \right)^2 + \frac{\alpha \beta - \gamma^2}{\alpha} y^2$. 定義 $D = \det \mathbf{A} = \alpha \beta - \gamma^2$, 若

• D > 0 且 $\alpha > 0$: **A** 為正定.

• D > 0 且 $\alpha < 0$: A 為負定.

結論. 令 $S \subseteq \mathbb{R}^2$, \mathbf{c} 為 f(x,y) 之臨界點, $D = f_{xx}(\mathbf{c}) \cdot f_{yy}(\mathbf{c}) - (f_{xy}(\mathbf{c}))^2$. 若

• D > 0 且 $f_{xx}(\mathbf{c}) > 0$: f 在 \mathbf{c} 有極小値.

• D < 0: c 為鞍點 (saddle point).

• D > 0 且 $f_{xx}(\mathbf{c}) < 0$: $f \in \mathbf{c}$ 有極大値.

例. 求 $f(x,y) = x^3 + xy^2 - 3x^2 - 4y^2 + 4$ 之臨界點並予以分類.

解. 由 $f_x(x,y) = 3x^2 + y^2 - 6x$, $f_y(x,y) = 2xy - 8y$, 臨界點為同時滿足以上二式為零之 (x,y). 故 $\left\{3x^2 + y^2 - 6x = 0\right\} \wedge \left\{y(x-4) = 0\right\} \implies \left\{3x^2 + y^2 - 6x = 0 \wedge y = 0\right\} \vee \left\{3x^2 + y^2 - 6x = 0 \wedge x = 4\right\} \implies \left\{3x^2 - 6x = 0 \wedge y = 0\right\} \vee \left\{3 \cdot 4^2 + y^2 - 6 \cdot 4 = 0 \wedge x = 4\right\}$, 臨界點為 (0,0), (2,0). 又 $f_{xx} = 6x - 6$, $f_{yy} = 2x - 8$, $f_{xy} = f_{yx} = 2y$, 分類如下表:

臨界點	$f_{xx}f_{yy} - f_{xy}^2$	f_{xx}	分類
(0,0)	$(-6) \times (-8) - (0)^2 > 0$	-6	極大値
(2,0)	$6 \times (-4) - 0^2 < 0$		鞍點

例. 求 f(x,y) = xy(5x + y - 15) 之臨界點並予以分類.

解.

$$f_x(x,y) = y(5x + y - 15) + xy(5) = y(5x + y - 15) + y(5x) = y(10x + y - 15)$$

 $f_y(x,y) = x(5x + y - 15) + xy(1) = x(5x + y - 15) + x(y) = x(5x + 2y - 15)$

臨界點為同時滿足以上二式為零之 (x,y). 故 $\{y=0 \lor 10x+y=15\} \land \{x=0 \lor 5x+2y=15\} \Longrightarrow \{y=0 \land x=0\} \lor \{y=0 \land 5x+2y=15\} \lor \{10x+y=15 \land x=0\} \lor \{10x+y=15 \land 5x+2y=15\},$ 臨界點為 (0,0),(3,0),(0,15),(1,5). 又 $f_{xx}=10y,\,f_{yy}=2x,\,f_{xy}=f_{yx}=10x+2y-15,\,$ 分類如下表:

臨界點	$f_{xx}f_{yy} - f_{xy}^2$	f_{xx}	分類
(0, 0)	$0 \times 0 - (-15)^2 < 0$		鞍點
(3,0)	$0 \times 6 - 15^2 < 0$		鞍點
(0, 15)	$150 \times 0 - 15^2 < 0$		鞍點
(1,5)	$50 \times 2 - 5^2 > 0$	50	極小値

例. 求 $f(x,y) = (x+y)e^{-x^2-y^2}$ 在 $S: x^2+y^2 \leqslant 1$ 上的最大値,最小値.

解. 由於 f 可微, 無奇異點; f 之極値發生在臨界點 $(\mathbf{c} \in S, \nabla f(\mathbf{c}) = 0)$ 與 S 之邊界點 $(x^2 + y^2 = 1)$ 上.

- 曲 $f_x(x,y) = e^{-x^2-y^2} + (x+y)e^{-x^2-y^2} (-2x) = (-2x^2 2xy + 1)e^{-x^2-y^2}, f_y(x,y) = e^{-x^2-y^2} + (x+y)e^{-x^2-y^2} (-2y) = (-2y^2 2xy + 1)e^{-x^2-y^2},$ 臨界點 (x,y) 滿足 $2x^2 + 2xy = 1$ 與 $2y^2 + 2xy = 1$,解得 $(x,y) = \left(\frac{1}{2}, \frac{1}{2}\right), \left(-\frac{1}{2}, -\frac{1}{2}\right).$
- 邊界點 $x^2 + y^2 = 1$: 令 $x = \cos t$, $y = \sin t$, $0 \le t \le 2\pi$, 則 f(x,y) 變為 $g(t) \equiv (\cos t + \sin t) e^{-1}$; $g'(t) = (-\sin t + \cos t) e^{-1} = 0$ 解得 $t = \frac{\pi}{4}, \frac{5\pi}{4}$; 又邊界 $t = 0, 2\pi$, 亦即 $(x,y) = (\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}), (-\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}), (1,0)$.

候選點	f(x, y)	分類
$\left(\frac{1}{2},\frac{1}{2}\right)$	$e^{-\frac{1}{2}}$	最大値
$\left(-\frac{1}{2},-\frac{1}{2}\right)$	$-e^{-\frac{1}{2}}$	最小値
$\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$	$\sqrt{2} e^{-1}$	
$\left(-\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right)$	$-\sqrt{2}e^{-1}$	
(1,0)	e^{-1}	

例. 求 $f(x,y) = x^3 + xy^2 - 3x^2 - 4y^2 + 4$ 在 $S: x^2 + y^2 \leq 1$ 上的最大値,最小値.

解. 由於 f 可微, 無奇異點; f 之極値發生在臨界點 $(\mathbf{c} \in S, \nabla f(\mathbf{c}) = 0)$ 與 S 之邊界點 $(x^2 + y^2 = 1)$ 上.

- 由 $f_x(x,y) = 3x^2 + y^2 6x$, $f_y(x,y) = 2xy 8y$, 臨界點 (x,y) 滿足 $3x^2 + y^2 6x = 0$ 與 2xy 8y = 0, 解得 (x,y) = (0,0), (2,0); (2,0) 在 S 外不合.
- 邊界點 $x^2+y^2=1$: $y^2=1-x^2$ 代入則 f(x,y) 變為 $g(x)=x^3+x(1-x^2)-3x^2-4(1-x^2)+4=x+x^2$, $-1\leqslant x\leqslant 1$; g'(x)=1+2x=0 解得 $x=-\frac{1}{2}$, 亦即 g(x) 之極値發生在 $x=\pm 1$ 與 $-\frac{1}{2}$ \Longrightarrow $(x,y)=\left(-\frac{1}{2},\pm\frac{\sqrt{3}}{2}\right)$, (1,0), (-1,0).

候選點	f(x,y)	分類
(0,0)	4	最大値
$\left(-\frac{1}{2},\pm\frac{\sqrt{3}}{2}\right)$	$-\frac{1}{4}$	最小値
(1,0)	2	
(-1,0)	0	

例. 求 $f(x,y)=xy-x^3y^2$ 在 $S:0\leqslant x\leqslant 1,\ 0\leqslant y\leqslant 1$ 上的最大值,最小值.

解. 由於 f 可微, 無奇異點; f 之極値發生在臨界點 $(\mathbf{c} \in S, \nabla f(\mathbf{c}) = 0)$ 與 S 之邊界點上.

- 由 $f_x(x,y) = y 3x^2y^2$, $f_y(x,y) = x 2x^3y$, 臨界點 (x,y) 滿足 $y 3x^2y^2 = y(1 3x^2y) = 0$ 與 $x 2x^3y = x(1 2x^2y) = 0$, 故 $y = 0 \lor 1 3x^2y = 0$ 及 $x = 0 \lor 1 2x^2y = 0$; 解得 (x,y) = (0,0).
- 邊界點由 L_1 : x=0 \wedge $0 \leqslant y \leqslant 1$, L_2 : y=0 \wedge $0 \leqslant x \leqslant 1$, L_3 : x=1 \wedge $0 \leqslant y \leqslant 1$, L_4 : y=1 \wedge $0 \leqslant x \leqslant 1$ 組成.
 - $-L_1$: f(x,y)=0.
 - L_2 : f(x,y) = 0.
 - L_3 : $x=1,\,0\leqslant y\leqslant 1,\,f(x,y)$ 變為 $g(y)=y-y^2,\,g'(y)=1-2y=0$ 解得 $y=\frac{1}{2},\,$ 亦即 g(y) 之極 値發生在 $y=0,\,1,\,\frac{1}{2}$ \Longrightarrow $(x,y)=(1,0),\,(1,1),\,\left(1,\frac{1}{2}\right)$
 - L_4 : $y = 1, 0 \leqslant x \leqslant 1, f(x,y)$ 變為 $h(x) = x x^3, h'(x) = 1 3x^2 = 0$ 解得 $x = \pm \frac{1}{\sqrt{3}}$ (負不合), 亦即 h(x) 之極値發生在 $x = 0, 1, \frac{1}{\sqrt{3}} \implies (x,y) = (0,1), (1,1), \left(\frac{1}{\sqrt{3}},1\right)$.

候選點	f(x,y)	分類
$(0,0 \leqslant y \leqslant 1)$	0	最小値
$(0 \leqslant x \leqslant 1, 0)$	0	最小値
(0, 0)	0	最小値
(1,0)	0	最小値
(1,1)	0	最小値
$\left(1,\frac{1}{2}\right)$	$\frac{1}{4}$	
(0, 1)	0	最小値
$\left(\frac{1}{\sqrt{3}},1\right)$	$\frac{2}{3\sqrt{3}}$	最大値

例. 求 f(x,y) = xy + 2x + y 在由 (0,0), (1,0), (0,2) 形成之三角形區域 S 上的最大值,最小值.

解. 由於 f 可微, 無奇異點; f 之極値發生在臨界點 $(\mathbf{c} \in S, \nabla f(\mathbf{c}) = 0)$ 與 S 之邊界點上.

- 由 $f_x(x,y) = y + 2$, $f_y(x,y) = x + 1$, 臨界點 (x,y) 滿足 y + 2 = 0 與 x + 1 = 0, 故 (x,y) = (-1,-2).
- 邊界點由 $L_1: x=0 \land 0 \leqslant y \leqslant 2, L_2: y=0 \land 0 \leqslant x \leqslant 1, L_3: (1,0) (0,2)$ 組成.
 - $-L_1$: (x,y)=(0,0), (0,2).
 - $-L_2$: (x,y)=(0,0), (1,0).
 - $-L_3$: $y=-2x+2, 0 \leqslant x \leqslant 1, f(x,y)$ 變為 $g(x)=x(-2x+2)+2x+(-2x+2)=-2x^2+2x+2, g'(x)=-4x+2=0$ 解得 $x=\frac{1}{2}$, 亦即 g(x) 之極値發生在 $x=0,1,\frac{1}{2} \Longrightarrow (x,y)=(0,2), (1,0), \left(\frac{1}{2},1\right)$

候選點	f(x,y)	 分類
(0,0)	0	最小値
(0, 2)	2	
(1,0)	2	
$\left(\frac{1}{2},1\right)$	$\frac{5}{2}$	最大値

例. 求 $f(x,y) = xy e^{-\frac{x^2+y^2}{2}}$ 在 $S: \{(x,y) | x^2+y^2 \leqslant 4, \ x\geqslant 0, \ y\geqslant 0\}$ 上的最大値,最小値.

解. 由於 f 可微, 無奇異點; f 之極値發生在臨界點 $(\mathbf{c} \in S, \nabla f(\mathbf{c}) = 0)$ 與 S 之邊界點上.

- 由 $f_x(x,y) = y e^{-\frac{x^2+y^2}{2}} + xy e^{-\frac{x^2+y^2}{2}} (-x) = y(1-x^2) e^{-\frac{x^2+y^2}{2}}, f_y(x,y) = x e^{-\frac{x^2+y^2}{2}} + xy e^{-\frac{x^2+y^2}{2}} (-y) = x(1-y^2) e^{-\frac{x^2+y^2}{2}},$ 臨界點 (x,y) 滿足 $y(1-x^2) = 0$ 與 $x(1-y^2) = 0$,解得 (x,y) = (0,0), (1,1), (1,-1), (-1,1), 僅 (0,0), (1,1) 於 S 内.
- 邊界點由 $L_1: x=0 \land 0 \leqslant y \leqslant 2, L_2: y=0 \land 0 \leqslant x \leqslant 2, L_3: x^2+y^2=4$ 於第一象限所組成.
 - L_1 : f(x,y) = 0.
 - L_2 : f(x,y) = 0.
 - L_3 : 令 $x=2\cos t, y=2\sin t, 0 \leqslant t \leqslant \frac{\pi}{2},$ 則 f(x,y) 變為 $g(t)\equiv 4\cos t\sin t\,e^{-2};$ $g'(t)=\cos 2t\,4e^{-2}=0$ 解得 $t=\frac{\pi}{4};$ 又邊界 $t=0,\frac{\pi}{2},$ 亦即 $(x,y)=(\sqrt{2},\sqrt{2}), \ (2,0), \ (0,2).$

候選點	f(x,y)	分類
(0,0)	0	最小値
(1,1)	e^{-1}	最大値
$(0,0\leqslant y\leqslant 2)$	0	最小値
$(0 \leqslant x \leqslant 2, 0)$	0	最小値
$(\sqrt{2},\sqrt{2})$	$2e^{-2}$	
(2,0)	0	最小値
(0,2)	0	最小値

5.7 Lagrange 乘數法

定理. 給定開集 $S \subseteq \mathbb{R}^n$, 可微函數 $f: S \to \mathbb{R}$ 與 $g_j: S \to \mathbb{R}, \ j=1,2,\ldots,m, \ m < n,$ 及 $X_0 = \{\mathbf{x} \in S \mid g_j(\mathbf{x}) = 0, \ j=1,2,\ldots,m\}$. 若 f 在 $\mathbf{x}_0 \in S \cap X_0$ 有極値且 $\det \left(D_i g_j(\mathbf{x}_0)\right) \neq 0$, 則

$$\exists \lambda_1, \lambda_2, \dots, \lambda_m \quad \text{\'et} \quad D_i f(\mathbf{x}_0) + \sum_{j=1}^m \lambda_j D_i g_j(\mathbf{x}_0) = 0, \quad i = 1, 2, \dots, n$$

註. 令 $\mathcal{L} \equiv f + \sum_{j=1}^m \lambda_j g_j$, 上述充分條件可寫作

$$D_i \mathcal{L}(\mathbf{x}_0) = 0, \quad i = 1, 2, ..., n$$

 $g_j(\mathbf{x}_0) = 0, \quad j = 1, 2, ..., m$

例. 求 $x^2 - 10x - y^2$ 在 $x^2 + 4y^2 = 16$ 上的最大値, 最小値.

解. 令 $\mathcal{L} = x^2 - 10x - y^2 + \lambda (x^2 + 4y^2 - 16)$, 則

$$\frac{\partial \mathcal{L}}{\partial x} = 2x - 10 + 2\lambda x = 0 \implies x - 5 + \lambda x = 0 \tag{1}$$

$$\frac{\partial \mathcal{L}}{\partial y} = -2y + 8\lambda y = 0 \implies -y + 4\lambda y = 0 \tag{2}$$

$$x^2 + 4y^2 - 16 = 0 ag{3}$$

由 (2) $(1-4\lambda)y=0$, 則 y=0 \vee $\lambda=\frac{1}{4}$. 若 y=0, 由 (3) $x=\pm 4$; 若 $\lambda=\frac{1}{4}$, 由 (1) $(1+\lambda)x=5$ \Longrightarrow x=4, 代入 (3) 得 y=0. 故極値點為 (x,y)=(4,0), (-4,0); $x^2-10x-y^2$ 最大値為 56 ((x,y)=(-4,0)), 最小値為 -24 ((x,y)=(4,0)).

例. 求 $x^2 = y^2 + z^2$ 上距離 (0,1,3) 最近的點.

解. 距離平方函數為 $x^2 + (y-1)^2 + (z-3)^2$,限制式為 $x^2 - y^2 - z^2 = 0$. 令 $\mathcal{L} = x^2 + (y-1)^2 + (z-3)^2 + \lambda(x^2 - y^2 - z^2)$,則

$$\frac{\partial \mathcal{L}}{\partial x} = 2x + 2\lambda x = 0 \implies (1 + \lambda)x = 0 \tag{4}$$

$$\frac{\partial \mathcal{L}}{\partial y} = 2(y - 1) - 2\lambda y = 0 \implies (1 - \lambda)y = 1 \tag{5}$$

$$\frac{\partial \mathcal{L}}{\partial z} = 2(z - 3) - 2\lambda z = 0 \implies (1 - \lambda)z = 3 \tag{6}$$

$$x^2 - y^2 - z^2 = 0 (7)$$

由 (4) $(1+\lambda)x=0$,則 x=0 \vee $\lambda=-1$. 若 x=0,由 (7) y=z=0;若 $\lambda=-1$,由 (5) $y=\frac{1}{2}$,由 (6) $z=\frac{3}{2}$,代入 (7) 得 $x=\pm\sqrt{\frac{5}{2}}$. 故極値點為 (x,y,z)=(0,0,0), $\left(\pm\sqrt{\frac{5}{2}},\frac{1}{2},\frac{3}{2}\right)$;距離平方 $x^2+(y-1)^2+(z-3)^2$ 最小 值為 5,當 $(x,y,z)=\left(\pm\sqrt{\frac{5}{2}},\frac{1}{2},\frac{3}{2}\right)$.

例. 求 $f(x,y,z) = (x+z)e^y$ 在 $x^2 + y^2 + z^2 = 6$ 上的最大值, 最小值.

解. 令 $\mathcal{L} = (x+z)e^y + \lambda(x^2 + y^2 + z^2 - 6)$, 則

$$\frac{\partial \mathcal{L}}{\partial x} = e^y + 2\lambda x = 0 \tag{8}$$

$$\frac{\partial \mathcal{L}}{\partial y} = (x+z)e^y + 2\lambda y = 0 \tag{9}$$

$$\frac{\partial \mathcal{L}}{\partial z} = e^y + 2\lambda z = 0 \tag{10}$$

$$x^2 + y^2 + z^2 - 6 = 0 (11)$$

由 (8), (10) $2\lambda(x-z)=0$, 則 $\lambda=0$ \vee x=z. 若 $\lambda=0$, 則由 (8) $e^y=0$ 不合, 故 x=z. 由 (16) $e^y=-2\lambda x$, 代入 (9) $2x(-2\lambda x)+2\lambda y=0 \Longrightarrow y=2x^2$, 代入 (11) 得 $x^2+4x^4+x^2=6 \Longrightarrow (4x^2+6)(x^2-1)=0 \Longrightarrow x=\pm 1$. 故極値點為 (x,y,z)=(1,2,1), (-1,2,-1); $(x+z)\,e^y$ 最大値為 $2e^2$ ((x,y,z)=(1,2,1)), 最小値為 $-2e^2$ ((x,y,z)=(-1,2,-1)).

例. 若 L 為 $z^2 = x^2 + y^2$ 與 x - 2z = 3 相交的曲線, 求 L 上與原點距離最短之點與最短距離.

解. 距離平方函數為 $x^2+y^2+z^2$, 限制式為 $x^2+y^2-z^2=0$ 與 x-2z-3=0. 令 $\mathcal{L}=x^2+y^2+z^2+\lambda_1$ $(x^2+y^2-z^2)+\lambda_2$ (x-2z-3), 則

$$\frac{\partial \mathcal{L}}{\partial x} = 2x + 2\lambda_1 x + \lambda_2 = 0 \implies 2(1 + \lambda_1)x + \lambda_2 = 0 \tag{12}$$

$$\frac{\partial \mathcal{L}}{\partial y} = 2y + 2\lambda_1 y = 0 \implies (1 + \lambda_1)y = 0 \tag{13}$$

$$\frac{\partial \mathcal{L}}{\partial z} = 2z - 2\lambda_1 z - 2\lambda_2 = 0 \implies (1 - \lambda_1)z - \lambda_2 = 0 \tag{14}$$

$$x^2 + y^2 - z^2 = 0 ag{15}$$

$$x - 2z - 3 = 0 ag{16}$$

由 (13) $(1 + \lambda_1)y = 0$, 則 $y = 0 \lor \lambda_1 = -1$. 若 y = 0, 由 (15) $x^2 = z^2 \implies x = \pm z$. 若 x = z, 由 (16) x = z = -3. 若 x = -z, 由 (16) x = 1, z = -1; 若 $\lambda_1 = -1$, 由 (12) $\lambda_2 = 0$, 由 (14) z = 0, 代入 (15) 得 x = y = 0, 與 (16) 不合. 故極値點為 (x, y, z) = (-3, 0, -3), (1, 0, -1); 距離平方 $x^2 + y^2 + z^2$ 最小値為 2 (最短距離為 $\sqrt{2}$),當 (x, y, z) = (1, 0, -1).

例. 求
$$\sum_{k=1}^{n} x_k y_k$$
 在 $\sum_{k=1}^{n} x_k^2 = 1$ 與 $\sum_{k=1}^{n} y_k^2 = 1$ 下之最大値。

解. 目標函數為
$$\sum_{k=1}^{n} x_k y_k$$
, 限制式為 $\sum_{k=1}^{n} x_k^2 = 1$, $\sum_{k=1}^{n} y_k^2 = 1$; 令 $\mathcal{L} = \sum_{k=1}^{n} x_k y_k + \lambda_1 \left(\sum_{k=1}^{n} x_k^2 - 1\right) + \lambda_2 \left(\sum_{k=1}^{n} y_k^2 - 1\right)$,

則
$$\forall i = 1, 2, \ldots, n, \frac{\partial \mathcal{L}}{\partial x_i} = y_i + 2\lambda_1 x_i = 0, \frac{\partial \mathcal{L}}{\partial y_i} = x_i + 2\lambda_2 y_i = 0.$$
 代入限制式得 $1 = \sum_{k=1}^n x_k^2 = \sum_{k=1}^n (-2\lambda_2 y_k)^2 = 0$

$$4\lambda_2^2 \sum_{k=1}^n y_k^2 = 4\lambda_2^2 \implies \lambda_2 = \pm \frac{1}{2} \bowtie 1 = \sum_{k=1}^n y_k^2 = \sum_{k=1}^n (-2\lambda_1 x_k)^2 = 4\lambda_1^2 \sum_{k=1}^n x_k^2 = 4\lambda_1^2 \implies \lambda_1 = \pm \frac{1}{2}. \text{ if } x_i = y_i$$

或
$$x_i = -y_i$$
, $i = 1, 2, \ldots, n \implies \sum_{k=1}^n x_k y_k$ 之最大値為 1.

例.

• 求
$$\sum_{k=1}^{n} x_k y_k$$
 在 $\sum_{k=1}^{n} x_k^2 = 1$ 與 $\sum_{k=1}^{n} y_k^2 = 1$ 下之最大值.

• 證明 Cauchy 不等式:
$$\sum_{k=1}^{n} a_k b_k \leqslant \left(\sum_{k=1}^{n} a_k^2\right)^{\frac{1}{2}} \left(\sum_{k=1}^{n} b_k^2\right)^{\frac{1}{2}}$$
.

解.

• 目標函數為
$$\sum_{k=1}^{n} x_k y_k$$
,限制式為 $\sum_{k=1}^{n} x_k^2 = 1$, $\sum_{k=1}^{n} y_k^2 = 1$;令 $\mathcal{L} = \sum_{k=1}^{n} x_k y_k + \lambda_1 \left(\sum_{k=1}^{n} x_k^2 - 1\right) + \lambda_2 \left(\sum_{k=1}^{n} y_k^2 - 1\right)$,則 $\forall i = 1, 2, \ldots, n$, $\frac{\partial \mathcal{L}}{\partial x_i} = y_i + 2\lambda_1 x_i = 0$, $\frac{\partial \mathcal{L}}{\partial y_i} = x_i + 2\lambda_2 y_i = 0$.代入限制式得 $1 = \sum_{k=1}^{n} x_k^2 = \sum_{k=1}^{n} (-2\lambda_2 y_k)^2 = 4\lambda_2^2 \sum_{k=1}^{n} y_k^2 = 4\lambda_2^2 \implies \lambda_2 = \pm \frac{1}{2}$ 與 $1 = \sum_{k=1}^{n} y_k^2 = \sum_{k=1}^{n} (-2\lambda_1 x_k)^2 = 4\lambda_1^2 \sum_{k=1}^{n} x_k^2 = 4\lambda_1^2$ $\implies \lambda_1 = \pm \frac{1}{2}$.故 $x_i = y_i$ 或 $x_i = -y_i$, $\forall i = 1, 2, \ldots, n \implies \sum_{k=1}^{n} x_k y_k$ 之最大值為 $\sum_{k=1}^{n} x_k^2 = 1$.

例. 求 $\left(\prod_{k=1}^{n} x_{k}\right)^{\frac{1}{n}}$ 在 $\sum_{k=1}^{n} x_{k} = c \boxtimes c > 0, x_{i} > 0, i = 1, 2, ..., n$ 下之最大値。

解. 目標函數為
$$\left(\prod_{k=1}^n x_k\right)^{\frac{1}{n}}$$
,限制式為 $\sum_{k=1}^n x_k - c = 0$;令 $\mathcal{L} = \left(\prod_{k=1}^n x_k\right)^{\frac{1}{n}} + \lambda \left(\sum_{k=1}^n x_k - c\right)$,則 $\forall i = 1, 2, \ldots, n$, $\frac{\partial \mathcal{L}}{\partial x_i} = \frac{1}{n} \left(\prod_{k=1}^n x_k\right)^{\frac{1}{n}-1} \cdot \frac{\prod_{k=1}^n x_k}{x_i} + \lambda = 0 \implies \left(\prod_{k=1}^n x_k\right)^{\frac{1}{n}} + n \lambda x_i = 0 \implies x_1 = x_2 = \cdots = x_n$. 代入限制式,則 $x_1 = x_2 = \cdots = x_n = \frac{c}{n}$, $\left(\prod_{k=1}^n x_k\right)^{\frac{1}{n}}$ 最大值為 $\frac{c}{n}$.

例. 一等腰三角形與長方形合併成之五邊形邊長為 L, 求面積最大之各邊長度.

解. 令 $\mathcal{L} = 2xy + y^2 \tan \theta + \lambda (L - 2x - 2y - 2y \sec \theta)$, 則

$$\frac{\partial \mathcal{L}}{\partial x} = 2y - 2\lambda = 0 \implies y = \lambda \tag{17}$$

$$\frac{\partial \mathcal{L}}{\partial y} = 2x + 2y \tan \theta - 2\lambda - 2\lambda \sec \theta = 0 \tag{18}$$

$$\frac{\partial \mathcal{L}}{\partial \theta} = y^2 \sec^2 \theta - 2y\lambda \sec \theta \tan \theta = 0 \tag{19}$$

$$2x + 2y + 2y \sec \theta = L \tag{20}$$

(17) 代入 (19) 得 $\lambda^2 \sec \theta (\sec \theta - 2 \tan \theta) = 0$; $\lambda \neq 0$ 国 $\sec \theta \neq 0 \implies 1 - 2 \sin \theta = 0 \implies \theta = \frac{\pi}{6}$. 代入 (18), (20) 分別得 $2x + 2y \frac{1}{\sqrt{3}} - 2y - 2y \frac{2}{\sqrt{3}} = 0$, $2x + 2y + 2y \frac{2}{\sqrt{3}} = L$, 解得 $x = \frac{3 - \sqrt{3}}{6}L$, $y = \frac{2 - \sqrt{3}}{2}L$.