Devoir maison 9 - Etude de suites

Soient a et b des réels tels que $0 \le a < b \le 1$.

- 1. Soit $M = \begin{pmatrix} a & 1-a \\ 1-b & b \end{pmatrix} \in \mathscr{M}_2(\mathbb{R}).$
 - a. Montrer qu'il existe deux suites réelles (a_n) et (b_n) telles que

$$\forall n \in \mathbb{N}, \qquad M^n = a_n M + b_n \mathbf{I}_2$$

Pour $n \in \mathbb{N}$, on note $P_n : \exists (a_n, b_n) \in \mathbb{R}^2, M^n = a_n M + b_n I_2$.

 P_0 est vérifiée car $M^0 = 0 \times M + 1 \times I_2$;

 P_1 est vérifiée car $M^1 = 1 \times M + 0 \times I_2$;

 P_2 est vérifiée car $M^2 = (a+b) \times M + (1-a-b) \times I_2$.

Soit $n \geq 2$; on suppose que P_n est vérifiée. On a :

$$M^{n+1} = M^n \times M = (a_n M + b_n I_2) M = a_n M^2 + b_n M = a_n ((a+b)M + (1-a-b)I_2) + b_n M = (a_n (a+b) + b_n) M + a_n (1-a-b) Id_2.$$

En notant $a_{n+1} = a_n(a+b) + b_n$ et $b_{n+1} = a_n(1-a-b)$ on a P_{n+1} vérifiée.

Par principe de récurrence P_n est vérifiée pour tout n.

b. Déterminer a_n et b_n .

D'après le résultat précédent, (a_n) et (b_n) sont définies par :

$$a_0 = 0, b_0 = 1, \text{ et } \forall n \in \mathbb{N} : \begin{cases} a_{n+1} = a_n(a+b) + b_n \\ b_{n+1} = a_n(1-a-b) \end{cases}$$

On a donc $a_0 = 0$, $a_1 = 1$, et $\forall n \in \mathbb{N} : a_{n+2} = (a+b)a_{n+1} + (1-a-b)a_n$.

La suite (a_n) est une suite récurrente linéaire d'ordre 2, d'équation caractéristique :

$$r^{2} - (a+b)r + (a+b-1) = 0.$$

Le discriminant est $\Delta = (a+b)^2 - 4(a+b-1) = (a+b)^2 - 4(a+b) + 4 = (a+b-2)^2$.

Les solutions de l'équation caractéristique sont 1 et a+b-1.

L'hypothèse $0 \le a < b \le 1$ assure que les deux solutions sont distinctes.

A l'aide des premiers termes, on obtient :

$$\forall n \in \mathbb{N}, a_n = \frac{1}{2-a-b} (1-(a+b-1)^n) \text{ et par suite } b_n = \frac{1}{2-a-b} ((a+b-1)^n - (a+b-1)).$$

2. On considère les suites (u_n) et (v_n) définies par

$$(u_0, v_0) \in \mathbb{R}^2$$
 et $\forall n \in \mathbb{N} : \begin{cases} u_{n+1} = au_n + (1-a)v_n \\ v_{n+1} = (1-b)u_n + bv_n \end{cases}$

a. Donner la forme explicite de u_n et v_n . Pour $n \in \mathbb{N}$, on note $U_n = \begin{pmatrix} u_n \\ v_n \end{pmatrix}$; on a donc $U_0 = \begin{pmatrix} u_0 \\ v_0 \end{pmatrix}$ et pour $n \in \mathbb{N}$, $U_{n+1} = MU_n$.

Une récurrence immédiate donne : $\forall n \in \mathbb{N}, \quad U_n = M$

D'après la question $\mathbf{1}$, on a pour tout n

Dappers in question 1., on a pour tout
$$n \in \mathbb{N}$$
:
$$M^{n} = \frac{1}{2-a-b} \left((1-(a+b-1)^{n}) \begin{pmatrix} a & 1-a \\ 1-b & b \end{pmatrix} + ((a+b-1)^{n} - (a+b-1)) \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \right) = \frac{1}{2-a-b} \left((a+b-1)^{n} (1-a) + 1-b & (1-(a+b-1)^{n}) (1-a) \\ (1-(a+b-1)^{n}) (1-b) & (a+b-1)^{n} (1-b) + 1-a \end{pmatrix}$$

$$D'où, \forall n \in \mathbb{N} : \begin{cases} u_{n} = \frac{1}{2-a-b} \left((a+b-1)^{n} (1-a) (u_{0}-v_{0}) + (1-b) u_{0} + (1-a) v_{0} \right) \\ v_{n} = \frac{1}{2-a-b} \left((a+b-1)^{n} (1-b) (v_{0}-u_{0}) + (1-b) u_{0} + (1-a) v_{0} \right) \end{cases}$$

b. Étudier la convergence de
$$(u_n)$$
 et (v_n) .
 $0 \le a < b \le 1$ donc $-1 < a + b - 1 < 1$ donc $\lim_{n \to +\infty} (a + b - 1)^n = 0$ et par suite, $(1 - b)u_0 + (1 - a)v_0$

$$\lim_{n \to +\infty} u_n = \lim_{n \to +\infty} v_n = \frac{(1-b)u_0 + (1-a)v_0}{2-a-b}.$$