

Named Entity Recognition (NER) Using BiLSTM

Objective: Automatically identify and classify named entities within text to enable more precise and meaningful text analysis.

Team Members

- Mervat Mohammed Hassan ID: 20210892
- Roa'a waleed Ahmed ID: 20210345
- Nada Salah Ahmed ID: 20210998
- Mirna Sherif Zayed ID: 20210981
- Mohamed Ismail Hassan ID: 20210741
- Mina Nadi Farag ID: 20210986

Project Tools & Libraries

Python

Primary programming language for development

NumPy & Pandas

Data manipulation and preprocessing libraries

Scikit-learn

For preprocessing and model evaluation

TensorFlow & Keras

Deep learning frameworks for model building

Plotly & Matplotlib

Libraries for data visualization and analysis

Livelossplot & TensorBoard

Libraries for tracking model performance

Dataset Overview

Dataset Files

- Train File (train.txt)
- Validation File (val.txt)
- Test File (test.txt)

Dataset Format

Each line in the dataset contains a word along with its associated tag. Sentences are separated by special tokens like . and \$#\$. For example:

```
John B-PER
Doe I-PER
went O
to O
Cairo B-LOC
```

Where:

- B-PER stands for Beginning of Person Entity
- I-PER stands for Inside of Person Entity
- O stands for Other (non-entity word)
- **B-LOC** stands for Beginning of Location Entity

Dataset Characteristics

Sentence Length Distribution

Diverse range of sentence lengths (25-75 words)

Requires specialized preprocessing and modeling to handle variability in input size.

Named Entity Distribution

Broad spectrum of entity types (PERSON, ORGANIZATION, LOCATION, etc.)

Diverse entity distribution provides a robust dataset for training a high-quality NER model.

Preprocessing Steps for NER

Model Architecture Overview

Embedding Layer

Transforms words into dense vector representations.

Evaluation Metrics

Measured by accuracy and ROC-AUC scores to assess performance.

Bidirectional LSTM Layer

Captures past and future context for better sequence understanding.

Dropout Layers

Spatial and recurrent dropout reduce overfitting with a rate of 0.1.

Optimization & Loss

Uses Adam optimizer and sparse categorical crossentropy loss.

Training Configuration

- **Epochs:** 30 cycles for model convergence
- Batch Size: 32 samples per gradient update
- Validation Split: 20% of data reserved for validation
- EarlyStopping: Patience set to 7 to prevent overfitting
- ModelCheckpoint: Automatically saves the best performing model
- Callbacks: Includes LiveLossPlot and TensorBoard for monitoring progress

Training Performance Metrics

	Training	Test Accuracy
Accuracy	97.5%	93%
Loss	0.18	0.48 (overfitting after epoch 20)
Optimizer	Adam optimizer	
Loss Function	Sparse categorical crossentropy	
Batch Size	32	
EarlyStopping	Patience set to 3 epochs to prevent overfitting	

ROC-AUC Curve Performance

 The ROC-AUC scores provide insights into the model's performance across different classes, allowing for better understanding of its predictive capabilities.

Limitations of the BiLSTM Model

Data Imbalance: Bias towards frequent entities like Person

Model Complexity:
Struggles with long
dependencies and
overfitting

Arabic Language:
Morphological and
syntactic challenges

Entity Boundaries:
Hard to detect
boundaries in long or
nested entities

Next Steps & Improvements

Enhance Model

Explore advanced architectures and hyperparameter tuning

Expand Dataset

Include more entity types and larger annotated data

Deploy & Monitor

Integrate model into applications and track real-world performance