

Ω MEGA

A Mathematics Assistance System and DIALOG: Natural Language-based Interaction with a Mathematics Assistance System

Serge Autexier and Christoph Benzmüller and Martin Pollet

Saarland University, Saarbrücken, Germany

October 20th 2004

Saarbrücken, Germany

Overview

- Mathematics Assistance Environments
- The ΩMEGA Project
 - Mathematics Assistant In-the-small
 - research directions since early 90s -
 - Mathematics Assistant In-the-large
 - novel research directions –
- DIALOG: Natural Language-based Interaction with a Mathematics
 Assistance System

Mathematics Assistance Systems

Integrated Mathematics Assistance Environment

s. 'Pen-and-Paper' Mathematics

Applications

Mathematics research
Mathematics education
Formal methods

Join of ressources necessary

System level: Coq, NuPrl, Research Ne Isabelle/HOL, PVS, Theorema, Calculemus, ΩMEGA, CLam, ... MoWGLI, ...

Research Networks: Calculemus, MKM, Monet, MoWGLI, . . .

Mathematics Assistance System In-the-small

Research directions in the ΩMEGA project since the early 90s

Source: Autexier & Benzmüller & Pollet Saarbrücken, November 26th 2004 – p.

The Ω MEGA Instance

MBASE & OMDOC

MBASE: mathematical knowledge base

- universal syntax for mathematical documents: OMDOC
- mathematical texts in varying degree of formalisation
- query language for OPENMATH formulas

Discussion

- + First step towards system independence
- Version control: concurrent, joint development of mathematical knowledge
- System independent representation formats for proof rules, tactics, methods, and control knowledge

External Specialist Reasoners

External Specialist Reasoners

Usually required in OMEGA:

- white box integration of external specialist reasoners
- tools for extraction and transformation of results

available for:

FOL ATPs (TRAMP), CASs (SAPPER), TPS, constraint solving

External Specialist Reasoners

Discussion

- White-box integration achieved for heterogenous specialist reasoning systems
- Modular system design supports better maintenance and reuse of system components
- + Better join of resources achieved
- Not reached yet: flexible coordination of specialist reasoning systems
- Missing: Intelligent brokering of systems, coordination of systems, ...,
 exploitation of and cooperation with QPQ

Source: Autexier & Benzmüller & Pollet

Saarbrücken, November 26th 2004 - p.

User Interface

LOUI: Lovely OMEGA User Interface

- + Support for different views on proof developments: linearized ND style, proof tree, natural language
- + Navigation through different levels of the PDS
- + Support for interactive proof construction
- What do users really want to see? Which users?
- Missing: optimal, integrated support for other mathematical activities such as publication, authoring, modeling, etc.

Proof Verbalization

P.REX (successor of PROVERB):

- lifting of proofs in the PDS to assertion level
- macro-planning text structure
- micro-planning sentence structure and linguistic realization
- generation of natural language representation
- pre-required: linguistic knowledge
- user-adaptive proof explanation

Saarbrücken, November 26th 2004 – p.

Proof Verbalization

Discussion

- + Flexible, adaptable, non-template based proof verbalization
- Missing: full natural language for tutorial dialogs at assertion level

LEARN MATIC

Hybrid system consisting of learn engine and deduction system.

- More theorems provable, proof search more directed, and shorter proofs
- What other information can be considered for learning?

The Complete Picture

Source: Autexier & Benzmüller & Pollet

Saarbrücken, November 26th 2004 - p.1

 Ω MEGA born in early 90s; inspired by [Bundy88]

paradigm shift from classical FOL ATP to proof planning in HOL

Ω MEGA aspects:

- declarative, domain specific control layer
- strategy = domain specific instantiation of a general proof search algorithm with set of proof methods and control information
- multi-strategy proof planning

soundness guaranteed via . . .

... proof (plan) expansion over ...

Case studies

 ε - δ -proofs: Use of constraint-solver and computer algebra system

Residue class properties: combination of CASs and theory formation system HR, classification of \sim 18.000 structures

Verification of GAP computations on permutation groups: Verification by proof search instead of hard-wired scripts

Discussion

- + Automatic proofs for problem classes in specific domains
- + Coordination of systems
- Brittleness and logic layer dependency

Source: Autexier & Benzmüller & Pollet Saarbrücken, November 26th 2004 – p.13

Applications

- Tactic suggestion mechanism & automated agent-based proving
- Reasoning with external specialist reasoners
- Agent-based search in knowledge bases
- Interactive proof planning

Discussion

- + Suggestion mechanism useful for interactive theorem proving
- + Looking aside and concurrent search
- Resource-guided agent-based reasoning not fully developed yet

Novel Research Directions Mathematics Assistance System In-the-Large

Source: Autexier & Benzmüller & Pollet Saarbrücken, November 26th 2004 – p.14

Current & Future Developments

Theme: Towards a smoother integration into spectrum of typical mathematical activities

- Proof development in-the-large
 - Lifting the level of proof construction
 - Combination/Integration of proof search paradigms
 - Integration of structured mathematical knowledge
- Mathematical Knowledge Management
- Towards typical mathematical activities
 - Writing mathematical publications
 - Tutoring for mathematics students

Assertion Level Reasoning

Theorem 1. $\sqrt{2}$ is irrational.

Proof. (by contradiction)

Assume $\sqrt{2}$ is rational, that is, there exist natural numbers m, n with no common divisor such that $\sqrt{2} = \frac{m}{n}$. Then $n\sqrt{2} = m$, and thus $2n^2 = m^2$. Hence m^2 is even and, since odd numbers square to odds, m is even; say m = 2k. ...

Result:

Tactic-based theorem provers
like PVS, ISABELLE, COQ, etc.
(and OMEGA) can construct a proof –
but not at an adequate level

Proof Planning & The CoRE Calculus

Assertion-level proof sketch

A B Expansion

CORE calculus

- new explicit layer for proof sketches
- easy to add to proof data structure
- proof sketches may be unsound
- verification by expansion to ND

Problem:

- expansion distance to base-layer
- CORE is more natural/abstract-level base calculus for proof assistants
- subsumes old ND base and (parts of) the old tacticlayer
- provides more direct, constructive support for upper layer(s)

Mathemat. Knowledge Management

- 1. Types of knowledge
 - Formalized mathematical theories
 - Structured
 - Domain specific proof knowledge tactics, proof-planning methods, symbol orderings, . . .

Mathemat. Knowledge Management

- 1. Types of knowledge
- 2. Distributed over different physical locations
 - Origin tracking, remote access, . . .

Mathemat. Knowledge Management

- 1. Types of knowledge
- 2. Distributed over different physical locations
- 3. Evolution of mathematical knowledge
 - Management of change
 Benefit from experience with Maya
 - Versioning

Mathematical Activities

Assistance in Preparing Mathematical Documents

Technical Support for Tutoring Tools

DIALOG

Natural Language-based Interaction with a Mathematics Assistance System

Source: Autexier & Benzmüller & Pollet Saarbrücken, November 26th 2004 – p.2

The DIALOG Project

- Joint project (between Coli and CS) as part of the SFB378 on Resource-adaptive cognitive processes
- Selected mathematical domain: naive set theory

Team

- Directly Involved Researchers: Manfred Pinkal (Coli), Jörg Siekmann (CS), Christoph Benzmüller (CS), Ivana Kruijff-Korbayova (Coli), Magdalena Wolska (Coli), Quoc Bao Vo (CS), Armin Fiedler (CS), Dimitra Tsovaltzis (CS)
- Collaborators: Serge Autexier (CS), Malte Gabsdil (Coli), Helmut Horacek (CS), Alexander Koller (Coli), Erica Melis (CS)
- Hiwis and Students: Mark Buckley (CS), Hussain Syed Sajjad (CS), Marvin Schiller, Jochen Setz (CS), Michael Wirth (Coli), Sreedhar Ellisetty (CS), Andrea Schuch (Coli), Beata Biehl (Coli), Oliver Culo (Coli)

Method: Progressive Refinement

Source: Autexier & Benzmüller & Pollet Saarbrücken, November 26th 2004 – p.2

WOZ-Experiment — Own Corpus

- collect data (for analysis of phenomena)
- test coarse grained model of system
- test hinting algorithm

- 24 Subjects:
 - university students
 - varying background
 - varying math knowledge
- Wizard:
 - mathematician with tutoring experience
 - assisted by developers of hinting algorithm
- Experimenter

WOZ-Experiment — Own Corpus

Source: Autexier & Benzmüller & Pollet Saarbrücken, November 26th 2004 – p.2-

Corpus Example

Example: didactic, vp16, dryrun

```
T1: Bitte zeigen Sie : K((A \cup B) \cap (C \cup D)) = (K(A) \cap K(B)) \cup (K(C) \cap K(D))! < s > S1: (correct) nach deMorgan-Regel-2 ist <math>K((A \cup B) \cap (C \cup D)) = (K(A \cup B) \cup K(C \cup D)) < s > S2: (correct) > S3: (correct) > K(A \cup B) = (K(A \cup B) \cup K(C \cup D)) < s > S3: (correct) > K(A \cup B) = (K(A) \cap K(B) < s > S3: (correct) > S3: (correct) = (K(A) \cap K(D) < s > S3: (correct) = (K(A) \cap K(D) < s > S4: (correct) = (K(A) \cap K(B)) = (K(A) \cap K(B)) = (K(A) \cap K(B)) = (K(C) \cap K(D)) > (K
```


Source: Autexier & Benzmüller & Pollet Saarbrücken, November 26th 2004 – p.2

Example Utterance


```
T1: Bitte zeigen Sie : K((A \cup B) \cap (C \cup D)) = (K(A) \cap K(B)) \cup (K(C) \cap K(D)) ! < / s >
S1: (correct ) nach deMorgan-Regel-2 ist K((A \cup B) \cap (C \cup D)) = (K(A \cup B) \cap (C \cup D)) = (K(A \cup B) \cap (C \cup D)) < / s >
T2: Das ist richtig !</s>
```

Source: Autexier & Benzmüller & Pollet
Saarbrücken, November 26th 2004 – p.2

Project Progress: First Phase

- Experiment & WOZ Tool & Corpus
- NL Analysis
- Tutoring Aspects
- Dialog Management
- Proof Manager
- Proof Step Evaluation
- Modeling of System & Demonstrator

Overview, Papers, Corpus, etc.: see

http://www.aps.uni- sb.de/~ dhri s/dia log/

Proof Manager: Tasks

- Resolution of
 - Ambiguities
 - Underspecification
- Proof Step Evaluation
 - Soundness: Can the proof step be verified by a formal inference system?
 - Granularity: Is the granularity (i.e., 'logical size' or 'argumentative complexity') of the proof step acceptable?
 - Relevance: Is the proof step needed or useful in achieving the goal?

Ambiguities and Underspecification

Example	Where does ambiguity arise?	Ambiguity resolution means
$(1) \times \in B$ und somit $\times \subseteq K(B)$ und $\times \subseteq K(A)$ wegen Vorraussetzung	linguistic meaning level;	linguistic means;
(2) A enthaelt B	attachment, coordination	type checking in (2)
(3) $P((A \cup C) \cap (B \cup C)) = PC \cup (A \cap B)$	linguistic meaning level;	type checking for (3);
(4) K((A∪C)∩(B∪C))=KC ∪(A∩B)	informal character of discourse	domain reasoning for (4)
(5) T1: Bitte zeigen Sie: $K((A \cup B) \cap (C \cup D)) = (K(A) \cap K(B)) \cup (K(C) \cap K(D))$!		
S1: nach deMorgan-Regel-2 ist $K((A \cup B) \cap (C \cup D)) = (K(A \cup B) \cup K(C \cup D))$	underspecified proof step	domain reasoning

Source: Autexier & Benzmüller & Pollet Saarbrücken, November 26th 2004 – p.3

Example: Proof Step Evaluation

Assertions already introduced

(A1) $A \wedge B$.

 $(A2) A \Rightarrow C.$

(A3) $C \Rightarrow D$.

 $(A4) F \Rightarrow B.$

(G) D \vee E.

Alternative proof step directives.

- (a) Aus den Annahmen folgt D.
- (b) B gilt.
- (c) Es genügt D zu zeigen.
- (d) Wir zeigen E.

Proof Step Evaluation

Criterion	Task (first approach)	Requirements for theorem prover	
Soundness	E⊢ [?] D∨E	'Yes' or 'No' answer; any theorem prover resp. calculus C	
Granularity	proof-steps($E \vdash_{C}^{?} D \lor E$)	adequate abstract-level theorem prover resp. calculus C; measure 'shortest' proof; take tutorial constraints into account; proof planning or assertion level reasoning?	
Relevance	$A \wedge B$ $A \Rightarrow C$ $C \Rightarrow D \vdash_{C}^{?} E$ $F \Rightarrow B$	recognize detours; compare with other 'shorter' proofs; take tutorial constraints into account; forward case more challenging	

Saarbrücken, November 26th 2004 - p.33

What are the right provers?

???

DIALOG project is (from a cognitive science perspective) a

→ very fascinating, novel application domain for deduction systems.