

Привод SN74HC595 4 цифровой трубки

74НС595 Введение

74HC595 - сдвиговый регистр CMOS с 8-битным последовательным входом и параллельным выходом с открытым стоком. Сдвиговый регистр предоставляет данные в регистр с выходом из трех состояний. Сдвиговый регистр и регистр хранения имеют раздельные тактовые импульсы. Сдвиговый регистр 74HC595 имеет прямую клемму сброса с наивысшим приоритетом (SRCLR), а клемма последовательного входа (DS) используется для каскадирования предыдущего последовательного выхода. Конец, когда клемма разрешения выхода (ОЕ) имеет высокий уровень, параллельный выход 74HC595 находится в состоянии высокого импеданса, и низкий уровень предназначен для включения параллельного выхода.

Независимо от того, является ли это синхроимпульсным регистром SHCP или тактовым регистром хранения STCP, оно срабатывает по переднему фронту.

Пин-информация

Пин описание

Symbol	Pin	Description
Q0	15	parallel data output 0
Q1	1	parallel data output 1
Q2	2	parallel data output 2
Q3	3	parallel data output 3
Q4	4	parallel data output 4
Q5	5	parallel data output 5
Q6	6	parallel data output 6
Q7	7	parallel data output 7
GND	8	ground(0V)
Q7S	9	serial data output
MR	10	master reset(active low)
SHCP	11	shift register clock input
STCP	12	storage register clock input
OE	13	output enable input(active low)
DS	14	serial data input
Vcc	16	supply voltage

Цельэксперимента

Эксперимент, который мы провели в этот раз, состоял в том, чтобы использовать Arduino для вывода последовательного выхода на 74HC595, а затем подключить обычную отрицательную четырехзначную цифровую трубку к параллельному порту 74HC595. Затем Arduino непосредственно управляет выводом выбора позиции цифровой трубки.В этом эксперименте восемь резисторов 220 Ом используются для ограничения тока, так что число динамических дисплеев цифровой трубки уменьшается с 9 до 0.

Компоненты, необходимые для этого эксперимента

- ♦ Материнская плата Keywish Arduino UNO R3 * 1
- Четыре общих катодных цифровых трубки * 1
- ◆ SN74HC595 * 1
- Сопротивление 220 Ом * 8
- Несколько проводов

Принципиальная схема этого эксперимента

Схема подключения для этого эксперимента

arduino Uno	SN74HC595
2	12 STCP
3	11 SHCP
4	14 DS

arduino Uno	7 Segment nixie tube
5	12
6	9
7	8
8	6

SN74HC595	7 Segment nixie tube
15	11
1	7
2	5
3	2
4	1
5	10
6	5
7	3

Программа

```
#include "SegmentDisplay.h"
#define LED A
              13
                     // define Arduino GPIO1 for led a
#define LED B 2
                      // define Arduino GPIO2 for led b
                      // define Arduino GPIO3 for led c
#define LED C 3
#define LED D 4
                      // define Arduino GPIO4 for led d
#define LED E 5
                     // define Arduino GPIO5 for led e
                      // define Arduino GPIO6 for led f
#define LED F 6
#define LED G 7
                      // define Arduino GPIO7 for led g
#define LED H 8
                      // define Arduino GPIO8 for led h
#define LED D1 9
#define LED D2 10
#define LED D3 11
#define LED D4 12
SegmentDisplay _4Bit_7SegmentDisplay(LED_A, LED_B, LED_C, LED_D, LED_E, LED_F, LED_G,
```



```
LED_H, LED_D1, LED_D2, LED_D3, LED_D4);
 int ShowTime = 60, count = 0;
void setup()
{
   Serial.begin(9600);
   _4Bit_7SegmentDisplay.TurnOffAllLed();
}
void loop()
   if (count++ > 50)
      ShowTime-- ;
      count = 0;
      Serial.println(ShowTime);
   _4Bit_7SegmentDisplay.DisplayChar((int)ShowTime);
   delay(5);
   if (ShowTime == 0) {
      _4Bit_7SegmentDisplay.TurnOffAllLed();
      while(1);
   }
```


Результаты эксперимента

Программа графического программирования Mixly

Программа графического программирования MagicBlock

```
74HCS95 digital tube distinction BIT_CHOICE_1 5 * BIT_CHOICE_2 6 * BIT_CHOICE_3 7 * BIT_CHOICE_4 8 * STCP_PIN 2 * SHCP_PIN 3 * DATA_PIN 4 * Creater global * variable type int * variable name ShowTime

Set variable ShowTime Value 60

Creater global * variable bype int * variable name oldTime

Set variable (NowTime) Value 0

Creater global * variable bype int * variable name oldTime

Set variable (NowTime) Value 0

T-4HCS95 digital fulse display (Cet variable Value ShowTime)

If ShowTime 0 in the companies of the
```