ZI 2010/2011, grupa A

1. (4 boda) Zadani su sljedeći podaci o AlČe vodiču:

Nazivni presjek 95/15 mm²	Temperaturni koeficijent naprezanja 1.89 · 10 ⁻⁵ 1/K	
Stvarni presjek 94.4/15.3 mm ²	Modul elastičnosti 7.7 · 10 ⁴ N/mm ²	
Promjer 13.6 mm	k _{led} = 1.8	
Dopušteno naprezanje 100 N/mm ²	$\sigma_{max} = \sigma_{d}$	
Specifična težina 3.45 · 10 ⁻² N/m mm ²	$g = 10 \text{ m/s}^2$	

- a) Izračunaj najveći provjes vodiča pri rasponu od 200m.
- b) Odredite relativni otpust vodiča pri temperaturi ϑ =15°C ukoliko je naprezanje pri toj temperaturi σ =26.3821 N/mm².
- a) f = _____[m]
- b) λ = ____[‰]
- 2. (4 boda) Metodom SGU odredite induktivitete po fazama. Radijus vodiča je r = 14 mm, razmak vodiča u snopu je ds = 40 cm, a udaljenost između faza D = 15m.

3. (4 boda) Zadan je 220 kV vod duljine 300 km s poznatim podacima $Z_1 = 0.08 + j0.41 \,\Omega/\text{km}$, $Y_1 = j2.7\mu\text{S/km}$. Napon na početku voda jednak je nazivnom naponu. Snaga na početku voda je poznata i iznosi $S_1 = 100 - j30 \,\text{MVA}$. Korištenjem prijenosnih jednadžbi odredite gubitke snage u vodu.

4. (4 boda) Zadan je 110 kV vod duljine 70 km s poznatim podacima $Z_1 = 0.19 + j0.43 \,\Omega/\text{km}$, $Y_1 = j2.7\mu\text{S/km}$. Vod je zaključen karakterističnom impedancijom. Napon na početku voda iznosi 115 kV. Korištenjem prijenosnih jednadžbi izračunajte napon (linijski) na kraju voda.

$$U_2 =$$
____[kV]

5. (4 boda) Zadan je sljedeći prijenosni sustav:

Vod	R [Ω/km]	L [H/km]	C [F/km]	l [km]
1-2	0.09	$13.3 \cdot 10^{-4}$	9 · 10 ⁻⁹	300
2-3	0.08	12.2 · 10 ⁻⁴	9.2 · 10 ⁻⁹	300

Vodovi su bez izobličenja. U točki 1 narinut je napon u iznosu 110 kV. Na kraju prijenosnog sustava je spojen otpor R = 300 Ω . Izračunajte iznos napona u točki X koja se nalazi točno na polovini voda 2-3, u vremenima t_1 = 2 ms i t_2 = 3 ms od trenutka priključenja naponskog izvora u točki 1.

a) Za $t_1 = 2$ ms:

$$U_x = \underline{\hspace{1cm}} [kV]$$

b) Za $t_2 = 3$ ms:

$$U_x = \underline{\hspace{1cm}} [kV]$$