人工智能笔记

陈鸿峥

2019.09*

目录

1	简介		1
		概述	1
	1.2	历史	2
2	搜索		2
		无信息搜索	
	2.2	有信息搜索	5
		1 简介	

1.1 概述

- 1997 Deep Blue
- 2011 IBM Watson
- 2016 Google DeepMind

什么是AI?

- 像人类一样思考(thinking humanly): 中文屋子
- 理智思考(thinking rationally)
- 像人类一样行为(acting humanly): 图灵测试(1950)
- 理智行为(acting rationally)

常见术语

• 强AI: 机器像人类一样思考

^{*}Build 20190903

- 弱AI: 机器有智能的行为
- 通用AI(AGI): 能够解决任何问题
- 窄AI: 专注于某一特定任务 不以模拟人类作为实现人工智能的最好方法
- 计算机和人类的体系结构不同:数值计算、视觉、并行处理
- 对人类大脑的了解太少了!

1.2 历史

- 1950-70: Early excitement, great expections
 - Samuel(1952)跳棋程序
 - Newell(1955)逻辑理论家
 - Dartmouth会议(1956): AI诞生
- 1970-90: Knowledge is power
- 1990-: rise of machine learning "AI Spring"
- 2010-: Deep learning

2 搜索

搜索主要包括无信息(uninformed)搜索和有信息搜索。

- 状态空间(state space)
 - 传统搜索: 状态空间可见、动作确定性
 - 非传统搜索: 局部搜索、模拟退火、爬坡
- 动作(action): 不同状态之间的转换
- 初始状态(initial state)
- 目标/期望(goal)

树搜索, 边界集(frontier)是未探索的状态集合

Algorithm 1 Tree Search

- 1: **procedure** TreeSearch((Frontier, Successors, Goal?))
- 2: **if** Frontier is empty **then**
- 3: **return** failure
- 4: Curr = select state from Frontier
- 5: **if** Goal?(Curr) **then**
- 6: **return** Curr
- 7: Frontier' = (Frontier $\{Curr\}$) \cup Successors(Curr)
- 8: **return** TreeSearch(Frontier',Successors,Goal?)

搜索需要关注的几个特性:

- 完备性: 若解存在, 搜索是否总能找到解
- 最优性: 是否总能找到最小代价的解
- 时间复杂性: 最大需要被**生成或展开**¹的结点数
- 空间复杂性: 最大需要被存储在内存中的结点数

2.1 无信息搜索

2.1.1 宽度优先搜索(BFS)

将后继加入边界集的后面,b为最大状态后继数目/分支因子(branching factor),d为最短距离解的行动数(注意是**边数**,而不是层数!)

- 完备性与最优性: 所有短路总在长路前被探索,某一长度只有有限多条路径,最终可以检测所有长度为*d*的路径,从而找到最优解
- 时间复杂度: $1+b+b^2+\cdots+b^d+(b^d-1)b=O(b^{d+1})$,最差情况在最后一层的最后一个节点才探索到最优解,从而前面b个节点都要展开第d+1层
- 空间复杂度: $b(b^d-1) = O(b^{d+1})$, 需要将边界集都存储下来

2.1.2 深度优先搜索(DFS)

将后继加入边界集的前面,即总是展开边界集中最深的节点

- 完备性
 - 无限状态空间: 不能保证
 - 有限状态空间无限路径:不能保证
 - 有限状态空间+路径/重复状态剪枝: 可以保证
- 最优性: 因完备性不能保证, 故最优性也不能保证

¹而不是探索的结点数目

- 时间复杂性: $O(b^m)$, 其中m为状态空间的最长路的长度(若m >> d,则非常糟糕; 但如果有大量解路径,则会快于BFS)
- 空间复杂性: O(bm), **线性空间复杂性**是DFS最大的优点。边界集只包含当前路径的最深节点以及回溯节点(backtrack points为当前路径上节点的未探索的兄弟sibling)

2.1.3 一致代价(Uniform-cost)

一致代价搜索(Uniform cost search, UCS)²的边界集以路径开销升序排序,总是先展开最低开销的路径。如果每一个动作都是一样的代价,则一致代价等价于BFS。

- 完备性与最优性: 假设所有转移都有代价 $\geq \varepsilon > 0$,所有更低代价的路径都在高代价路径之前被展开,只有有限多的路径开销小于最优解的开销,故最终一定会到达最优解
- 时间复杂性: $O(b^{C^*/\varepsilon+1})$,对应着BFS中 $d=C^*/\varepsilon$,其中 C^* 为最优解的开销,最坏情况就是每一层开销都很小为 ε
- 空间复杂性: $O(b^{C^*/\varepsilon+1})$

2.1.4 深度受限搜索(Depth-limited)

执行只在最大深度执行DFS, 因此无穷路径长不会存在问题

- 完备性与最优性: 不能保证, 若解的深度大于L
- 时间复杂度: $O(b^L)$
- 空间复杂度: *O*(*bL*)

2.1.5 迭代加深搜索(Iterative Deepening)

迭代加深搜索(Iterative Deepening Searching, IDS)逐渐增加最大深度L,对每一个L做深度受限搜索

- 完备性: 可以保证
- 最优性: 如果开销一致3,则可以保证
- 时间复杂性: $(d+1)b^0 + db + (d-1)b^2 + \cdots + b^d = O(b^d)$,第0层搜了(d+1)次,可以看到时间复杂度是比**BFS**优的
- 空间复杂性: *O*(*bd*), 同DFS

2.1.6 双向搜索(Bidirectional)

从源结点和汇结点同时采用BFS,直到两个方向的搜索汇聚到中间。

• 完备性: 由BFS保证

²至于为什么叫Uniform,可以看https://math.stackexchange.com/questions/112734/in-what-sense-is-uniform-cost-search-uniform和https://cs.stackexchange.com/questions/6072/why-is-uniform-cost-search-called-uniform-cost-search,比较合理的解释是到达同一结点的cost都被认为是相同的(寻找最优解时)。一致的算法总是选择边界集中第一个元素。

³若开销不一致,则可以采用代价界(cost bound)来代替:仅仅展开那些路径开销小于代价界的路径,同时要记录每一层深搜的最小代价。这种方式的搜索开销会非常大,有多少种不同路径开销就需要多少次迭代循环。

• 最优性: 若一致代价则可保证

• 时间复杂性: $O(b^{d/2})$

• 空间复杂性: $O(b^{d/2})$

2.1.7 环路/路径检测

• 环路(cycle)检测: 检测当前状态是否与已探索的状态重复(BFS)

• 路径(path)检测: 只检测当前状态是否与该路径上的状态重复(DFS)

注意不能将环路检测运用在BFS上,因为开销太大。

环路检测运用到UCS上依然**可以保证最优性**⁴。因为UCS第一次探索到某一状态的时候已经发现最小 代价路径,因而再次探索该状态不会发现路径比原有的更小。

2.1.8 总结

	BFS	UCS	DFS	Depth-limited	IDS	Bidirectional
完备性	✓	1	X	Х	✓	✓
时间复杂度	$O(b^d)$	$O(b^{\lfloor C^{\star}/\varepsilon \rfloor + 1})$	$O(b^m)$	$O(b^l)$	$O(b^d)$	$O(b^{d/2})$
空间复杂度	$O(b^d)$	$O(b^{\lfloor C^{\star}/\varepsilon \rfloor + 1})$	O(bm)	O(bl)	O(bd)	$O(b^{d/2})$
最优性	✓	✓	×	×	✓	✓

例 1. N个传教士和N个食人族要过河,他们都在河的左岸。现在只有一条船能够运载K个人,要把他们都运往右岸。要满足无论何时何地,传教士的数目都得大于等于食人族的数目,或者传教士数目为0。

分析. 考虑对问题形式化为搜索问题

- 状态(M,C,B), 其中M为左岸传教士数目, C为左岸食人族数目, B=1指船在左岸
- 动作(m,c)指运m个传教士和c个食人族到对岸
- 先决条件: 传教士数目和食人族数目满足限制
- 效果: $(M,C,1) \stackrel{(m,c)}{\Longrightarrow} (M-m,C-c,0)$ $(M,C,0) \stackrel{(m,c)}{\Longrightarrow} (M+m,C+c,1)$

2.2 有信息搜索

在无信息搜索中,我们从不估计边界集中最有期望(promising)获得最优解的结点,而是无区别地选择当前边界集中第一个结点。然而事实上,针对不同问题我们是有对结点的先验知识(apriori knowledge)的,即从当前结点到目标结点的开销有多大。而这就是有信息搜索(informed),或者称为启发式搜索(heuristics)。

关键在于领域特定启发式函数h(n)的设计,它估计了从结点n到目标结点的开销(cost)。注意满足目标状态的结点h(n)=0。

⁴注意这在启发式搜索中不一定成立

2.2.1 贪心最优搜索(Greedy Best-First Search)

直接使用h(n)对边界集进行排序,但这会导致贪心地选择**看上去**离目标结点开销最小的路径。如果存在环路,贪心最优搜索是不完备的,会陷入死循环。

2.2.2 A*搜索

综合考虑当前已走的开销和未来估计的开销。定义一个估值函数

$$f(n) = g(n) + h(n)$$

其中g(n)为路径到节点n的代价,h(n)为从n到目标节点的代价,采用f(n)对边界集内的节点进行排序。 f(n)需要满足下列两个性质。

定义 1 (可采纳的(admissibility)). 假设所有代价 $c(n1 \to n2) \ge \varepsilon > 0$, 令 $h^*(n)$ 为从n到目标节点 ∞ 的最优解 5 , 若

$$\forall n: h(n) \leq h^{\star}(n)$$

则称h(n)是可采纳的。即一个可采纳的启发式函数总是**低估**了当前结点到目标结点的真实开销(这样才能保证最优解不被排除)。

定义 2 (一致性(consistency)/单调性(monotonicity)). 若对于所有的结点 n_1 和 n_2 , h(n)满足(三角不等 式)

$$h(n_1) \le c(n_1 \to n_2)_h(n_2)$$

则称h(n)是单调的。

定理 1. 一致性蕴含可采纳性

分析. 分类讨论

- 当结点n没有到目标结点的路径,则 $h(n) \le h^*(n) = \infty$ 恒成立
- 令 $n=n_1 \to n_2 \to \cdots \to n_k$ 为从结点n到目标结点的最优路径,则可以用数学归纳法证明 $\forall i: h(n_i) \leq h^*(n_i)$,如下从后往前推

$$h(n_i) \le c(n_i \to n_{i+1}) + h(n_{i+1}) \le c(n_i \to n_{i+1}) + h^*(n_{i+1}) = h^(n_i)$$

定理 2. 可采纳性蕴含最优性

分析.

 $^{^{5}}$ 如果没有路径则 $h^{\star}(n) = \infty$