

X・Y・Z3軸加速度センサー

 $\pm 2g \cdot \pm 4g \cdot \pm 8g \cdot \pm 16g$

LIS3DH

MEMS digital output motion sensor ultra low-power high performance 3-axes "nano" accelerometer

★STマイクロ社の超小型3軸加速度センサーを使いやすい14ピンDIPモジュール化にしました。

★ I 2 C インターフェース、SP I インターフェイス両対応です。(どちらかを選択)

★X、Y、Z3軸の加速度gが12ビットデータで読み取れます。

★マイコンを使った測定、制御などに最適です。 ★A/D コンバータ入力(3CH)もあります。

■電源電圧: DC3. 3V(動作範囲: DC1. 71V~DC3. 6V)

■消費電流:1mA(Vdd 3V)

■インターフェース: | 2C、SP | のどちらかを選択できます

■ピン説明■

番号	名 称	I2Cの場合の機能	SPIの場合の機能					
1、7	VDD	電源入力 DC1.71V~3.6V	電源入力 DC1. 71V~3. 6V					
2,10,14	GND	GND	GND					
3	SCL/SPC	SCL シリアルクロック	SPC シリアルポートクロック					
4	SDA/SDI	SDA シリアルデータ	SDI シリアルデータインプット					
5	SDO/SAO	SAO スレーブアドレスの下位ビット選択	SDO シリアルデータアウトプット					
6	CS	半田ジャンパAを半田付すると I 2 Cになる	CS チップセレクト					
8	INT2	インターラプト2	インターラプト2					
9	INT1	インターラプト1	インターラプト1					
11	ADC3	A/Dコンバータ入力1	A/Dコンバータ入力1					
12	ADC2	A/Dコンバータ入力2	A/Dコンバータ入力2					
13	ADC1	A/Dコンバータ入力3	A/Dコンバータ入力3					

■半田ジャンパー■

基板裏面に3箇所の半田ジャンパーがあります。それぞれ必要に応じて半田付けしてください。

A:CSプルアップ	I 2C・SPIを選択します。半田付けをするとI2C、半田付けしないとSPIになります。
B:SCL/SDA プル アップ	I 2 C 時、半田付けをすると、SCL 信号と SDA 信号が抵抗でプルアップされます。 SPI時は、半田付けしないしないください。
C:SAO プルダウン	I 2 C 時 S A O (スレーブアドレスの L S B) は、必ず「1」または「0」にする必要があります。半田つけすると「0」になります。「1」にするには、ジャンパーは半田付けしないで、5番ピン (SDA/SAO) をVDDに接続します。SPI時は半田付けしないしないください。

■ I 2 C インターフェイスでの接続■

- 1、通常は半田ジャンパー「A」「B」「C」を半田付けします。その場合は「A」で I 2 Cが 選択され、「B」で I 2 CのS C L と S D Aがプルアップされます。 「C」でスレーブアドレスが、WR I T E アドレス O x 3 O (00110000)、R E A D アドレス O x 3 1 (00110001)になります。
- 2、マイコンとの接続は、3番ピン(SCL)、4番ピン(SDA)の2線で接続します。
- ■SPIインターフェイスでの接続■
 - 1、半田ジャンパー「A」「B」「C」は、すべて半田付けしません。
 - 2、SPC(3番ピン)、SDI(4番ピン)、SDO(5番ピン)、CS(6番ピン)の4線で接続します。
 - 3、 CS=Lでアクテイブ、クロックアイドル時=H、クロック立ち上がりでデータ読み込みです。

■レジスタ表■

••		Register address			
Name	Туре	Hex	Binary	Default	Comment
Reserved (do not modify)		00 - 06			
STATUS_REG_AUX	r	07	000 0111		
OUT_ADC1_L	r	08	000 1000	output	
OUT_ADC1_H	r	09	000 1001	output	
OUT_ADC2_L	r	0 A	000 1010	output	
OUT_ADC2_H	r	0В	000 1011	output	
OUT_ADC3_L	r	ос	000 1100	output	
OUT_ADC3_H	r	0D	000 1101	output	
INT_COUNTER_REG	r	0E	000 1110		
WHO_AM_I	r	OF	000 1111	00110011	Dummy register
Reserved (do not modify)		10 - 1E			Reserved
TEMP_CFG_REG	rw	1F	001 1111		
CTRL_REG1	rw	20	010 0000	00000111	
CTRL_REG2	rw	21	010 0001	00000000	
CTRL_REG3	rw	22	010 0010	00000000	
CTRL_REG4	rw	23	010 0011	00000000	
CTRL_REG5	rw	24	010 0100	00000000	
CTRL_REG6	rw	25	010 0101	00000000	
REFERENCE	rw	26	010 0110	00000000	
STATUS_REG2	r	27	010 0111	00000000	
OUT_X_L	r	28	010 1000	output	
OUT_X_H	r	29	010 1001	output	
OUT_Y_L	r	2A	010 1010	output	
OUT_Y_H	r	2B	010 1011	output	
OUT_Z_L	r	2C	010 1100	output	
OUT_Z_H	r	2D	010 1101	output	
FIFO_CTRL_REG	rw	2E	010 1110	00000000	
FIFO_SRC_REG	r	2F	010 1111		
INT1 CFG	rw	30	011 0000	00000000	
INT1_SOURCE	r	31	011 0001	00000000	
INT1_THS	rw	32	011 0010	00000000	
INT1_DURATION	rw	33	011 0011	00000000	
Reserved	rw	34-37		00000000	
CLICK_CFG	rw	38	011 1000	00000000	
CLICK_SRC	r	39	011 1001	00000000	
CLICK_THS	rw	ЗА	011 1010	00000000	
TIME_LIMIT	rw	3B	011 1011	00000000	
TIME_LATENCY	rw	3C	011 1100	00000000	
TIME_WINDOW	rw	3D	011 1101	00000000	

はじめに「WHO_AM_I」
(OxOF)を読みます。
「WHO_AM_I」は、
LIS3DHと正しく通信出来ているか、確認する為のレジスタです。
正しく通信出来ている場合、
O×33が読み取れます。

パワーダウンをOFFにして、X軸 Y軸Z軸をイネーブルにする為に、 「CTRL_REG1」(OX2O) にO×7Fを書き込みます。

「OUT_X_L」(0x28)、 「OUT_X_H」(0x29)、 「OUT_Y_L」(0x2A)、 「OUT_Y_H」(0x2B)、 「OUT_Z_L」(0x2C)、 「OUT_Z_H」(0x2D)で 各軸の値を読み込みます。

詳しくは弊社ホームページの メーカー資料をごらんください。