Package 'Neoantimon'

January 5, 2018

Title Neoantimon: An R package for automatic identification of tumor-

Type Package

specific neoantigens from sequencing data
Version 1.2
Date 2018-01-04
Author Takanori Hasegawa
Maintainer Takanori Hasegawa <t-hasegw@ims.u-tokyo.ac.jp></t-hasegw@ims.u-tokyo.ac.jp>
Description This Package is develoed to calculate candidates neoantigens from Mutation Data (.vcf) requiring netMHCpan3.0, netMHCIIpan3.1, human refMrna, and refFlat. If you do not have some of these files, see README.md.
License MIT + file LICENSE
VignetteBuilder knitr
Suggests knitr, rmarkdown
LazyData FALSE
Imports utils
RoxygenNote 6.0.1
R topics documented:
InstallRefFlat
InstallRefMrnaFile
InstallSampleFiles
InstallSamtools
MainINDELClass1
MainINDELClass2
MainMergeINDELSVClass1
MainMergeINDELSVClass2
MainMergeSNVClass1
MainMergeSNVClass2
MainSNVClass1
MainSNVClass2
MainSVFUSIONClass1
MainSVFUSIONClass2 19 sample_copynum 21
sample_copynum

2 InstallRefMrnaFile

	sample_hla_table_c2	
	sample_result_INDEL_CLASS1_ALL	
	sample_result_INDEL_CLASS2_ALL	
	sample_result_SNV_CLASS1_ALL	
	sample_result_SNV_CLASS2_ALL	
	sample_rna_exp	
	sample_sv_bnd	
	sample_vcf	
	TestAnalysis	4
Index	2	5

InstallRefFlat

Get refFlat file

Description

Get refFlat file

Usage

```
InstallRefFlat(url = NA, export_dir = "lib")
```

Arguments

url Url for getting the corresponding refFlat.txt.gz

(Default = "http://hgdownload.soe.ucsc.edu/goldenPath/hg19/database/refFlat.txt.gz").

export_dir Export directory (Default = "lib").

Value

void

InstallRefMrnaFile Get refMrna file

Description

Get refMrna file

Usage

```
InstallRefMrnaFile(url = NA, export_dir = "lib")
```

Arguments

url Url for getting the corresponding refMrna.fa.gz

(Default = "http://hgdownload.cse.ucsc.edu/goldenPath/hg19/bigZips/refMrna.fa.gz").

export_dir Export directory (Default = "lib").

Value

void

InstallSampleFiles 3

 ${\tt InstallSampleFiles}$

Get Sample Files for Neoantimon

Description

Get Sample Files for Neoantimon

Usage

```
InstallSampleFiles(export_dir = "lib")
```

Arguments

```
export_dir Export directory (Default = "lib").
```

Value

void

InstallSamtools

Install Samtools

Description

Install Samtools

Usage

```
InstallSamtools(url = NA, export_dir = "lib")
```

Arguments

url Url for getting samtools

(Default = "https://github.com/hase62/Neoantimon/raw/master/lib/samtools-0.1.19.tar.bz2").

export_dir Export directory (Default = "lib").

Value

void

MainINDELClass1

Calculate Neoantigen Candidates on Indels for MHC Class1

Description

Calculate Neoantigen Candidates on Indels for MHC Class1

Usage

```
MainINDELClass1(input_file, hla_file, file_name_in_hla_table = input_file, refflat_file = paste(hmdir, "lib/refFlat.txt", sep = "/"), refmrna_file = paste(hmdir, "lib/refMrna.merge.fa", sep = "/"), hmdir = getwd(), job_id = "NO_job_id", export_dir = paste("result", file_name_in_hla_table, job_id, sep = "."), rnaexp_file = NA, rnabam_file = NA, cnv_file = NA, purity = 1, netMHCpan_dir = paste(hmdir, "lib/netMHCpan-3.0/netMHCpan", sep = "/"), refdna_file = NA, samtools_dir = NA, bcftools_dir = NA, chr_column = NA, mutation_start_column = NA, mutation_end_column = NA, mutation_ref_column = NA, mutation_alt_column = NA, nm_id_column = NA, depth_normal_column = NA, depth_tumor_column = NA, ambiguous_between_exon = 0, ambiguous_codon = 0, peptide_length = c(8, 9, 10, 11, 12, 13))
```

Arguments

input_file (Required) An input vcf file annotated by,

 $e.g., ANNOVAR\ (http://annovar.openbioinformatics.org/en/latest/)\ or\ other\ soft-defined by the control of the control of$

wares.

See by data(sample_vcf); sample_vcf;

hla_file (Required) A tab separated file indicating HLA types. The 1st column is in-

put_file name, and the following columns indicate HLA types.

See by data(sample_hla_table_c1); sample_hla_table_c1;

file_name_in_hla_table

If the name (1st column) in HLA table is not the same as input_file, indicate the

corresponding name (Default=input_file).

refflat_file refFlat file to be used in constructing peptide. (Default=paste(hmdir, "lib/refFlat.txt",

sep="").

See "https://github.com/hase62/Neoantimon"

refmrna_file refMrna file to be used in constructing peptide (Default=paste(hmdir, "lib/refMrna.fa",

sep="").

See "https://github.com/hase62/Neoantimon"

hmdir Home directory for the analysis (Default = getwd()).

job_id Job-Id to be attached in output files (Default = "NO_job_id").

export_dir The directory will be stored results (Default = "paste("result", file_name_in_hla_table,

job_id, sep=".")")

rnaexp_file A file including RNA expressions (Default=NA). The 1st, 2nd and 3rd columns

are "GeneSymbol Chr:Exonstart-Exonend (locus) ExpressionAmount", respec-

tively. The 1st row should be any header.

See by data(sample_rna_exp); sample_rna_exp;

rnabam_file RNA bam file to calculate variant allele frequency of RNA at each mutation (Default=NA). A file including copy number variation to calculate cancer cell fraction probcnv_file ability (CCFP) (Default=NA). The format is according to ASCAT output files. The columns are "SNPName Chromosome Position LogR segmentedLogR BAF segmentedBAF CopyNumber MinorAllele RawCopyNumber" The 1st row should be the above header. See data(sample_copynum); sample_copynum; purity Tumor purity or tumor contents ratio required to calculate CCFP (Default=1). netMHCpan_dir The file directory to netMHCpan (Default="lib/netMHCpan-3.0/netMHCpan"). refdna_file refdna_file information to be used to calculate RNA VAF (Default=NA). See "https://github.com/hase62/Neoantimon" samtools_dir The file directory to samtools 0 x x (Default="samtools"). It shouled be indicated when you indicate RNA-bam and try to calculate RNA VAF. The file directory to netMHCpan (Default="bcftools"). It shouled be indicated bcftools_dir when you indicate RNA-bam and try to calculate RNA VAF. samtools 0_x_x includes beftools in the directory. chr_column The column number describing chromosome number in input file (Default=NA, but will automatically search "Chr" in header). mutation_start_column The column number describing mutation start Position in input_file (Default=NA, but will automatically search "Start" in header). mutation_end_column The column number describing mutation end Position in input file (Default=NA, but will automatically search "End" in header). mutation_ref_column The column number describing mutation Ref in input_file (Default=NA, but will automatically search "Ref" in header). mutation_alt_column The column number describing mutation Alt in input_file (Default=NA, but will automatically search "Alt" in header). (Required) The column number describing NM IDs in input_file such as nm_id_column "SLCO1C1:NM_001145944:exon7:c.692_693insG:p.L231fs" (Default=NA).

depth_normal_column

The column number describing the read count from normal cells (Default = NA). depth_tumor_column

The column number describing the read count from tumor cells (Default = NA). $\verb"ambiguous_between_exon"$

> The maximum number to permit the differences between Exon-Lengths from refFlat and refMrna (Default=0).

ambiguous_codon

The maximum number to permit the differences between inputfile- and refMrnaoriented translation start/end position (Default=0).

peptide_length Peptide Length to be generated (Default = 8,9,10,11,12,13).

Value

void (Calculated Neoantigen Files will be generated as .tsv files.)

MainINDELClass2

Calculate Neoantigen Candidates on Indels for MHC Class2

Description

Calculate Neoantigen Candidates on Indels for MHC Class2

Usage

```
MainINDELClass2(input_file, hla_file, file_name_in_hla_table = input_file, refflat_file = paste(hmdir, "lib/refFlat.txt", sep = "/"), refmrna_file = paste(hmdir, "lib/refMrna.merge.fa", sep = "/"), hmdir = getwd(), job_id = "NO_job_id", export_dir = paste("result", file_name_in_hla_table, job_id, sep = "."), rnaexp_file = NA, rnabam_file = NA, cnv_file = NA, purity = 1, netMHCIIpan_dir = paste(hmdir, "lib/netMHCIIpan-3.1/netMHCIIpan", sep = "/"), refdna_file = NA, samtools_dir = NA, bcftools_dir = NA, chr_column = NA, mutation_start_column = NA, mutation_end_column = NA, mutation_ref_column = NA, mutation_alt_column = NA, nm_id_column = NA, depth_normal_column = NA, depth_tumor_column = NA, ambiguous_between_exon = 0, ambiguous_codon = 0, peptide_length = c(15))
```

Arguments

<pre>input_file</pre>	(Required) An input vcf file annotated by,			
	e.g., ANNOVAR (http://annovar.openbioinformatics.org/en/latest/) or other softwares.			
	See by data(sample_vcf); sample_vcf;			
hla_file	(Required) A tab separated file indicating HLA types. The 1st column is input_file name, and the following columns indicate HLA types.			
	See by data(sample_hla_table_c2); sample_hla_table_c2;			
file_name_in_hla_table				
	If the name (1st column) in HLA table is not the same as input_file, indicate the corresponding name (Default=input_file).			
refflat_file	refFlat file to be used in constructing peptide. (Default=paste(hmdir, "lib/refFlat.txt", sep="").			
	See "https://github.com/hase62/Neoantimon"			
refmrna_file	refMrna file to be used in constructing peptide (Default=paste(hmdir, "lib/refMrna.fa", sep="").			
	See "https://github.com/hase62/Neoantimon"			
hmdir	Home directory for the analysis (Default = getwd()).			
job_id	Job-Id to be attached in output files (Default = "NO_job_id").			
export_dir	The directory will be stored results (Default = "paste("result", file_name_in_hla_table, job_id, sep=".")")			
rnaexp_file	A file including RNA expressions (Default=NA). The 1st, 2nd and 3rd columns			

are "GeneSymbol Chr:Exonstart-Exonend (locus) ExpressionAmount", respec-

tively. The 1st row should be any header.
See by data(sample_rna_exp); sample_rna_exp;

rnabam_file RNA bam file to calculate variant allele frequency of RNA at each mutation (Default=NA). A file including copy number variation to calculate cancer cell fraction probcnv_file ability (CCFP) (Default=NA). The format is according to ASCAT output files. The columns are "SNPName Chromosome Position LogR segmentedLogR BAF segmentedBAF CopyNumber MinorAllele RawCopyNumber" The 1st row should be the above header. See data(sample_copynum); sample_copynum; Tumor purity or tumor contents ratio required to calculate CCFP (Default=1). purity netMHCIIpan_dir The file directory to netMHCpan (Default="lib/netMHCIIpan-3.1/netMHCpan"). refdna_file information to be used to calculate RNA VAF (Default=NA). refdna_file See "https://github.com/hase62/Neoantimon" The file directory to samtools_0_x_x (Default="samtools"). It shouled be indisamtools_dir cated when you indicate RNA-bam and try to calculate RNA VAF. bcftools_dir The file directory to netMHCpan (Default="bcftools"). It shouled be indicated when you indicate RNA-bam and try to calculate RNA VAF. samtools 0_x_x includes beftools in the directory. The column number describing chromosome number in input_file (Default=NA, chr_column but will automatically search "Chr" in header). mutation_start_column The column number describing mutation start Position in input_file (Default=NA, but will automatically search "Start" in header). mutation_end_column The column number describing mutation end Position in input_file (Default=NA, but will automatically search "End" in header). mutation_ref_column The column number describing mutation Ref in input file (Default=NA, but will automatically search "Ref" in header). mutation_alt_column The column number describing mutation Alt in input_file (Default=NA, but will automatically search "Alt" in header). nm_id_column (Required) The column number describing NM IDs in input_file such as "SLCO1C1:NM 001145944:exon7:c.692 693insG:p.L231fs" (Default=NA). depth_normal_column depth_tumor_column

The column number describing the read count from normal cells (Default = NA).

The column number describing the read count from tumor cells (Default = NA). ambiguous_between_exon

> The maximum number to permit the differences between Exon-Lengths from refFlat and refMrna (Default=0).

ambiguous_codon

The maximum number to permit the differences between inputfile- and refMrnaoriented translation start/end position (Default=0).

peptide_length Peptide Length to be generated (Default = 15 in HLA Class2).

Value

void (Calculated Neoantigen Files will be generated as .tsv files.)

MainMergeINDELSVClass1

Merge Results from MainINDELClass1.R or MainSVFUSION-Class1.R

Description

Merge Results from MainINDELClass1.R or MainSVFUSIONClass1.R

Usage

```
MainMergeINDELSVClass1(hmdir = getwd(), annotation_file, input_dir,
  file_prefix)
```

Arguments

hmdir Home directory for the analysis (Default=getwd()).

annotation_file

The result annotation file (\$vcf.\$job_id.peptide.txt) generated by MainINDEL-

Class1() or MainSVFUSIONClass1(). For example, sample_vcf.txt.NO_job_id.peptide.txt.

input_dir (Required) Directory storing netMHCpan Results.

file_prefix (Required) File prefix of netMHCpan Results.

If you have "sample_annovar.txt.NO_JOB_ID.HLACLASS1.1.peptide.txt", please

set "sample_annovar.txt.NO_JOB_ID".

Value

void (Calculated Neoantigen Files will be generated as .tsv files.):

HLA: HLA type used to calculate neoantigen.

Pos: The position of the fraction of peptide used to be evaluated from the full-length peptide.

Gene: Gene symbol used to be evaluated in NetMHCpan.

Evaluated_Mutant_Peptide_Core: The core peptide of the mutant peptide to be evaluated in NetMHC-pan.

Evaluated_Mutant_Peptide: The mutant peptide to be evaluated.

Mut IC50: IC50 value for evaluated mutant peptide.

Mut_Rank: Rank value for evaluated mutanat peptide.

Chr: Chromosome Number of the mutation.

NM_ID: NM_ID used to construct peptides from the mutation.

Change: The annotation to be described in .vcf file.

Ref: reference type nucleic acid base.

Alt: alternative type nucleic acid base.

Prob: A probability of reference nucleic acid base described in .vcf file.

Mutation_Prob: A probability of alternative nucleic acid base described in .vcf file.

Exon_Start: The exon start position of the corrsponding NM_ID.

Exon_End: The exon end position of the corrsponding NM_ID.

Mutation_Position: The mutation position of the corrsponding NM_ID.

Total_Depth: The depth of the reference nucleic acid base.

Tumor_Depth: The depth of the alternative nucleic acid base.

Wt_Peptide: The full-length of the wild-type peptide.

Mutant Peptide: The full-length of the mutant peptide.

Total_RNA: The expression amount of the corresponding RNA.

Tumor_RNA_Ratio: The variant allele frequency of the corresponding RNA.

Tumor_RNA: The modified amount of the corresponding RNA level based on RNA Reads.

Tumor_RNA_based_on_DNA: The modified amount of the corresponding RNA level based on DNA Reads.

MutRatio: The mean value of the cancer cell fraction probability.

MutRatio_Min: The 1% percentile of the cancer cell fraction probability. MutRatio_Max: The 99% percentile of the cancer cell fraction probability.

MainMergeINDELSVClass2

Merge Results from MainINDELClass2.R or MainSVFUSION-Class2.R

Description

Merge Results from MainINDELClass2.R or MainSVFUSIONClass2.R

Usage

```
MainMergeINDELSVClass2(hmdir = getwd(), annotation_file, input_dir,
  file_prefix)
```

Arguments

 $\label{eq:hmdir} \mbox{Home directory for the analysis (Default=getwd()).}$

annotation_file

The result annotation file (\$vcf.\$job_id.peptide.txt) generated by MainINDEL-

Class2() or MainSVFUSIONClass2(). For example, sample_vcf.txt.NO_job_id.peptide.txt.

input_dir (Required) Directory storing netMHCpan Results.

file_prefix (Required) File prefix of netMHCpan Results.

 $If you \ have \ "sample_annovar.txt.NO_JOB_ID.HLACLASS 2.1.peptide.txt", please$

set "sample_annovar.txt.NO_JOB_ID".

Value

void (Calculated Neoantigen Files will be generated as .tsv files.):

HLA: HLA type used to calculate neoantigen.

Pos: The position of the fraction of peptide used to be evaluated from the full-length peptide.

Gene: Gene symbol used to be evaluated in NetMHCpan.

Evaluated_Mutant_Peptide_Core: The core peptide of the mutant peptide to be evaluated in NetMHC-pan.

Evaluated_Mutant_Peptide: The mutant peptide to be evaluated.

Mut_IC50: IC50 value for evaluated mutant peptide.

Mut_Rank: Rank value for evaluated mutanat peptide.

Chr: Chromosome Number of the mutation.

NM ID: NM ID used to construct peptides from the mutation.

Change: The annotation to be described in .vcf file.

Ref: reference type nucleic acid base.

Alt: alternative type nucleic acid base.

Prob: A probability of reference nucleic acid base described in .vcf file.

Mutation_Prob: A probability of alternative nucleic acid base described in .vcf file.

Exon_Start: The exon start position of the corrsponding NM_ID.

Exon_End: The exon end position of the corrsponding NM_ID.

Mutation_Position: The mutation position of the corrsponding NM_ID.

Total_Depth: The depth of the reference nucleic acid base.

Tumor Depth: The depth of the alternative nucleic acid base.

Wt_Peptide: The full-length of the wild-type peptide.

Mutant_Peptide: The full-length of the mutant peptide.

Total_RNA: The expression amount of the corresponding RNA.

Tumor_RNA_Ratio: The variant allele frequency of the corresponding RNA.

Tumor_RNA: The modified amount of the corresponding RNA level based on RNA Reads.

Tumor_RNA_based_on_DNA: The modified amount of the corresponding RNA level based on DNA Reads.

MutRatio: The mean value of the cancer cell fraction probability.

MutRatio_Min: The 1% percentile of the cancer cell fraction probability.

MutRatio_Max: The 99% percentile of the cancer cell fraction probability.

MainMergeSNVClass1 Merge Results from MainSNVClass1.R

Description

Merge Results from MainSNVClass1.R

Usage

```
MainMergeSNVClass1(hmdir = getwd(), annotation_file, input_dir, file_prefix)
```

Arguments

hmdir Home directory for the analysis (Default=getwd()).

annotation_file

The result annotation file (\$vcf.\$job_id.peptide.txt) generated by MainSNVClass1().

For example, sample_vcf.txt.NO_job_id.peptide.txt.

input_dir (Required) Directory storing netMHCpan Results.

file_prefix (Required) File prefix of netMHCpan Results.

If you have "sample_annovar.txt.NO_JOB_ID.HLACLASS1.1.peptide.txt", please

set "sample_annovar.txt.NO_JOB_ID".

Value

void (Calculated Neoantigen Files will be generated as .tsv files.):

HLA: HLA type used to calculate neoantigen.

Pos: The position of the fraction of peptide used to be evaluated from the full-length peptide.

Gene: Gene symbol used to be evaluated in NetMHCpan.

Evaluated_Mutant_Peptide: The mutant peptide to be evaluated.

Mut_IC50: IC50 value for evaluated mutant peptide.

Mut_Rank: Rank value for evaluated mutanat peptide.

Evaluated_Wt_Peptide: The wild-type peptide to be evaluated.

Wt_IC50: IC50 value for evaluated wild-type peptide.

Wt_Rank: Rank value for evaluated wild-type peptide.

Chr: Chromosome Number of the mutation.

NM_ID: NM_ID used to construct peptides from the mutation.

Change: The annotation to be described in .vcf file.

Ref: reference type nucleic acid base.

Alt: alternative type nucleic acid base.

Prob: A probability of reference nucleic acid base described in .vcf file.

Mutation_Prob: A probability of alternative nucleic acid base described in .vcf file.

Exon_Start: The exon start position of the corrsponding NM_ID.

Exon_End: The exon end position of the corrsponding NM_ID.

Mutation_Position: The mutation position of the corrsponding NM_ID.

Total Depth: The depth of the reference nucleic acid base.

Tumor_Depth: The depth of the alternative nucleic acid base.

Wt_Peptide: The full-length of the wild-type peptide.

Mutant Peptide: The full-length of the mutant peptide.

Total_RNA: The expression amount of the corresponding RNA.

Tumor_RNA_Ratio: The variant allele frequency of the corresponding RNA.

Tumor_RNA: The modified amount of the corresponding RNA level based on RNA Reads.

Tumor_RNA_based_on_DNA: The modified amount of the corresponding RNA level based on DNA Reads.

MutRatio: The mean value of the cancer cell fraction probability.

MutRatio_Min: The 1% percentile of the cancer cell fraction probability. MutRatio_Max: The 99% percentile of the cancer cell fraction probability.

MainMergeSNVClass2

Merge Results from MainSNVClass2.R

Description

Merge Results from MainSNVClass2.R

Usage

MainMergeSNVClass2(hmdir = getwd(), annotation_file, input_dir, file_prefix)

Arguments

hmdir Home directory for the analysis (Default=getwd()).

annotation_file

The result annotation file (\$vcf.\$job_id.peptide.txt) generated by MainSNVClass2().

For example, sample_vcf.txt.NO_job_id.peptide.txt.

input_dir (Required) Directory storing netMHCpan Results.

file_prefix (Required) File prefix of netMHCpan Results.

If you have "sample_annovar.txt.NO_JOB_ID.HLACLASS2.1.peptide.txt", please

set "sample_annovar.txt.NO_JOB_ID".

Value

void (Calculated Neoantigen Files will be generated as .tsv files.):

HLA: HLA type used to calculate neoantigen.

Pos: The position of the fraction of peptide used to be evaluated from the full-length peptide.

Gene: Gene symbol used to be evaluated in NetMHCpan.

Evaluated_Mutant_Peptide: The mutant peptide to be evaluated.

Mut_IC50: IC50 value for evaluated mutant peptide.

Mut_Rank: Rank value for evaluated mutanat peptide.

Evaluated_Wt_Peptide: The wild-type peptide to be evaluated.

Wt_IC50: IC50 value for evaluated wild-type peptide.

Wt_Rank: Rank value for evaluated wild-type peptide.

Chr: Chromosome Number of the mutation.

NM_ID: NM_ID used to construct peptides from the mutation.

Change: The annotation to be described in .vcf file.

Ref: reference type nucleic acid base.

Alt: alternative type nucleic acid base.

Prob: A probability of reference nucleic acid base described in .vcf file.

Mutation_Prob: A probability of alternative nucleic acid base described in .vcf file.

Exon_Start: The exon start position of the corrsponding NM_ID.

MainSNVClass1 13

Exon_End: The exon end position of the corrsponding NM_ID.

Mutation_Position: The mutation position of the corrsponding NM_ID.

Total_Depth: The depth of the reference nucleic acid base.

Tumor_Depth: The depth of the alternative nucleic acid base.

Wt_Peptide: The full-length of the wild-type peptide.

Mutant Peptide: The full-length of the mutant peptide.

Total_RNA: The expression amount of the corresponding RNA.

Tumor_RNA_Ratio: The variant allele frequency of the corresponding RNA.

Tumor_RNA: The modified amount of the corresponding RNA level based on RNA Reads.

Tumor_RNA_based_on_DNA: The modified amount of the corresponding RNA level based on DNA Reads.

MutRatio: The mean value of the cancer cell fraction probability.

MutRatio Min: The 1% percentile of the cancer cell fraction probability.

MutRatio_Max: The 99% percentile of the cancer cell fraction probability.

MainSNVClass1

Calculate Neoantigen Candidates on SNVs for MHC Class1

Description

Calculate Neoantigen Candidates on SNVs for MHC Class1

Usage

```
MainSNVClass1(input_file, hla_file, file_name_in_hla_table = input_file,
  refflat_file = paste(hmdir, "lib/refFlat.txt", sep = "/"),
  refmrna_file = paste(hmdir, "lib/refMrna.merge.fa", sep = "/"),
  hmdir = getwd(), job_id = "NO_job_id", export_dir = paste("result",
  file_name_in_hla_table, job_id, sep = "."), rnaexp_file = NA,
  rnabam_file = NA, cnv_file = NA, purity = 1,
  netMHCpan_dir = paste(hmdir, "lib/netMHCpan-3.0/netMHCpan", sep = "/"),
  refdna_file = NA, samtools_dir = NA, bcftools_dir = NA,
  chr_column = NA, mutation_start_column = NA, mutation_end_column = NA,
  mutation_ref_column = NA, mutation_alt_column = NA, nm_id_column = NA,
  depth_normal_column = NA, depth_tumor_column = NA,
  ambiguous_between_exon = 0, ambiguous_codon = 0, peptide_length = c(8,
  9, 10, 11, 12, 13))
```

Arguments

input_file (Required) An input vcf file annotated by,

e.g., ANNOVAR (http://annovar.openbioinformatics.org/en/latest/) or other softwares.

See by data(sample_vcf); sample_vcf;

hla_file (Required) A tab separated file indicating HLA types. The 1st column is in-

put_file name, and the following columns indicate HLA types.

See by data(sample_hla_table_c1); sample_hla_table_c1;

14 MainSNVClass1

file_name_in_hla_table If the name (1st column) in HLA table is not the same as input file, indicate the corresponding name (Default=input file). refflat_file refFlat file to be used in constructing peptide. (Default=paste(hmdir, "lib/refFlat.txt", sep=""). See "https://github.com/hase62/Neoantimon" refmrna_file refMrna file to be used in constructing peptide (Default=paste(hmdir, "lib/refMrna.fa", See "https://github.com/hase62/Neoantimon" hmdir Home directory for the analysis (Default = getwd()). job_id Job-Id to be attached in output files (Default = "NO_job_id"). The directory will be stored results (Default = "paste("result", file_name_in_hla_table, export_dir job_id, sep=".")") A file including RNA expressions (Default=NA). The 1st, 2nd and 3rd columns rnaexp_file are "GeneSymbol Chr:Exonstart-Exonend (locus) ExpressionAmount", respectively. The 1st row should be any header. See by data(sample_rna_exp); sample_rna_exp; RNA bam file to calculate variant allele frequency of RNA at each mutation rnabam_file (Default=NA). cnv_file A file including copy number variation to calculate cancer cell fraction probability (CCFP) (Default=NA). The format is according to ASCAT output files. The columns are "SNPName Chromosome Position LogR segmentedLogR BAF segmentedBAF CopyNumber MinorAllele RawCopyNumber" The 1st row should be the above header. See data(sample copynum); sample copynum; purity Tumor purity or tumor contents ratio required to calculate CCFP (Default=1).

refdna_file Tumor purity or tumor contents ratio required to calculate CCFP (Default=1).

The file directory to netMHCpan (Default="lib/netMHCpan-3.0/netMHCpan").

refdna_file information to be used to calculate RNA VAF (Default=NA).

See "https://github.com/hase62/Neoantimon"

samtools_dir The file directory to samtools_0_x_x (Default="samtools"). It shouled be indicated when you indicate RNA-bam and try to calculate RNA VAF.

bcftools_dir The file directory to netMHCpan (Default="bcftools"). It shouled be indicated when you indicate RNA-bam and try to calculate RNA VAF . samtools 0_x_x includes bcftools in the directory.

chr_column The column number describing chromosome number in input_file (Default=NA, but will automatically search "Chr" in header).

mutation_start_column

The column number describing mutation start Position in input_file (Default=NA, but will automatically search "Start" in header) .

mutation_end_column

The column number describing mutation end Position in input_file (Default=NA, but will automatically search "End" in header).

mutation_ref_column

The column number describing mutation Ref in input_file (Default=NA, but will automatically search "Ref" in header).

mutation_alt_column

The column number describing mutation Alt in input_file (Default=NA, but will automatically search "Alt" in header).

MainSNVClass2 15

```
nm_id_column
                 (Required) The column number describing NM IDs in input file such as
                 "SLCO1C1:NM_001145944:exon7:c.692_693insG:p.L231fs" (Default=NA).
depth_normal_column
                 The column number describing the read count from normal cells (Default = NA).
depth_tumor_column
                 The column number describing the read count from tumor cells (Default = NA).
ambiguous_between_exon
                 The maximum number to permit the differences between Exon-Lengths from
                 refFlat and refMrna (Default=0).
ambiguous_codon
                 The maximum number to permit the differences between inputfile- and refMrna-
```

oriented translation start/end position (Default=0).

peptide_length Peptide Length to be generated (Default = 8,9,10,11,12,13).

Value

void (Calculated Neoantigen Files will be generated as .tsv files.)

MainSNVClass2

Calculate Neoantigen Candidates on SNVs for MHC Class2

Description

Calculate Neoantigen Candidates on SNVs for MHC Class2

Usage

```
MainSNVClass2(input_file, hla_file, file_name_in_hla_table = input_file,
  refflat_file = paste(hmdir, "lib/refFlat.txt", sep = "/"),
  refmrna_file = paste(hmdir, "lib/refMrna.merge.fa", sep = "/"),
 hmdir = getwd(), job_id = "NO_job_id", export_dir = paste("result",
  file_name_in_hla_table, job_id, sep = "."), rnaexp_file = NA,
  rnabam_file = NA, cnv_file = NA, purity = 1,
  netMHCIIpan_dir = paste(hmdir, "lib/netMHCIIpan-3.1/netMHCIIpan", sep =
  "/"), refdna_file = NA, samtools_dir = NA, bcftools_dir = NA,
  chr_column = NA, mutation_start_column = NA, mutation_end_column = NA,
 mutation_ref_column = NA, mutation_alt_column = NA, nm_id_column = NA,
  depth_normal_column = NA, depth_tumor_column = NA,
  ambiguous_between_exon = 0, ambiguous_codon = 0, peptide_length = c(15))
```

Arguments

input_file

e.g., ANNOVAR (http://annovar.openbioinformatics.org/en/latest/) or other softwares. See by data(sample_vcf); sample_vcf;

(Required) An input vcf file annotated by,

hla_file (Required) A tab separated file indicating HLA types. The 1st column is input_file name, and the following columns indicate HLA types. See by data(sample_hla_table_c2); sample_hla_table_c2;

16 MainSNVClass2

file_name_in_hla_table If the name (1st column) in HLA table is not the same as input file, indicate the corresponding name (Default=input file). refFlat file to be used in constructing peptide. (Default=paste(hmdir, "lib/refFlat.txt", refflat_file sep=""). See "https://github.com/hase62/Neoantimon" refMrna file to be used in constructing peptide (Default=paste(hmdir, "lib/refMrna.fa", refmrna_file See "https://github.com/hase62/Neoantimon" Home directory for the analysis (Default = getwd()). hmdir Job-Id to be attached in output files (Default = "NO_job_id"). job_id The directory will be stored results (Default = "paste("result", file_name_in_hla_table, export_dir job_id, sep=".")") A file including RNA expressions (Default=NA). The 1st, 2nd and 3rd columns rnaexp_file are "GeneSymbol Chr:Exonstart-Exonend (locus) ExpressionAmount", respectively. The 1st row should be any header. See by data(sample_rna_exp); sample_rna_exp; RNA bam file to calculate variant allele frequency of RNA at each mutation rnabam_file (Default=NA). cnv_file A file including copy number variation to calculate cancer cell fraction probability (CCFP) (Default=NA). The format is according to ASCAT output files. The columns are "SNPName Chromosome Position LogR segmentedLogR BAF segmentedBAF CopyNumber MinorAllele RawCopyNumber" The 1st row should be the above header. See data(sample_copynum); sample_copynum; Tumor purity or tumor contents ratio required to calculate CCFP (Default=1). purity netMHCIIpan_dir The file directory to netMHCpan (Default="lib/netMHCIIpan-3.1/netMHCpan").

refdna_file refdna_file information to be used to calculate RNA VAF (Default=NA). See "https://github.com/hase62/Neoantimon"

The file directory to samtools_0_x_x (Default="samtools"). It shouled be indisamtools_dir cated when you indicate RNA-bam and try to calculate RNA VAF.

bcftools_dir The file directory to netMHCpan (Default="bcftools"). It shouled be indicated when you indicate RNA-bam and try to calculate RNA VAF . samtools 0_x_x includes beftools in the directory.

chr_column The column number describing chromosome number in input_file (Default=NA, but will automatically search "Chr" in header).

mutation_start_column

The column number describing mutation start Position in input_file (Default=NA, but will automatically search "Start" in header).

mutation_end_column

The column number describing mutation end Position in input_file (Default=NA, but will automatically search "End" in header).

mutation_ref_column

The column number describing mutation Ref in input_file (Default=NA, but will automatically search "Ref" in header).

MainSVFUSIONClass1 17

mutation_alt_column

The column number describing mutation Alt in input_file (Default=NA, but will automatically search "Alt" in header).

nm_id_column

(Required) The column number describing NM IDs in input_file such as "SLCO1C1:NM_001145944:exon7:c.692_693insG:p.L231fs" (Default=NA).

depth_normal_column

 $\label{thm:column} The \ column \ number \ describing \ the \ read \ count \ from \ normal \ cells \ (Default=NA).$ $\ depth_tumor_column$

 $\label{eq:continuous} The \ column \ number \ describing \ the \ read \ count \ from \ tumor \ cells \ (Default=NA).$ $\ ambiguous_between_exon$

The maximum number to permit the differences between Exon-Lengths from refFlat and refMrna (Default=0).

ambiguous_codon

The maximum number to permit the differences between inputfile- and refMrnaoriented translation start/end position (Default=0).

peptide_length Peptide Length to be generated (Default=15 in HLA Class2).

Value

void (Calculated Neoantigen Files will be generated as .tsv files.)

MainSVFUSIONClass1

Calculate Neoantigen Candidates on SV fusions for MHC Class1

Description

Calculate Neoantigen Candidates on SV fusions for MHC Class1

Usage

```
MainSVFUSIONClass1(input_file, hla_file, file_name_in_hla_table = input_file,
  refflat_file = paste(hmdir, "lib/refFlat.txt", sep = "/"),
  refmrna_file = paste(hmdir, "lib/refMrna.merge.fa", sep = "/"),
  hmdir = getwd(), job_id = "NO_job_id", export_dir = paste("result",
  file_name_in_hla_table, job_id, sep = "."), rnaexp_file = NA,
  rnabam_file = NA, cnv_file = NA, purity = 1,
  netMHCpan_dir = paste(hmdir, "lib/netMHCpan-3.0/netMHCIIpan", sep = "/"),
  refdna_file = NA, samtools_dir = NA, bcftools_dir = NA,
  chr_column = NA, mutation_start_column = NA, mutation_end_column = NA,
  mutation_ref_column = NA, mutation_alt_bnd_column = NA,
  depth_normal_column = NA, depth_tumor_column = NA, nm_id_column = NA,
  ambiguous_between_exon = 0, ambiguous_codon = 0, peptide_length = c(8,
  9, 10, 11, 12, 13), gene_symbol_column = NA, mate_id_column = NA)
```

Arguments

input_file

(Required) An input vcf file (BND format) annotated by,

e.g., ANNOVAR (http://annovar.openbioinformatics.org/en/latest/) or other soft-

See by data(sample_sv_bnd); sample_sv_bnd;

18 MainSVFUSIONClass1

hla_file (Required) A tab separated file indicating HLA types. The 1st column is input_file name, and the following columns indicate HLA types.

See by data(sample hla table c1); sample hla table c1;

file_name_in_hla_table

If the name (1st column) in HLA table is not the same as input_file, indicate the corresponding name (Default=input_file).

 $refflat_file \qquad refFlat \ file \ to \ be \ used \ in \ constructing \ peptide. \ (Default=paste(hmdir, "lib/refFlat.txt", sep="").$

See "https://github.com/hase62/Neoantimon"

refmrna_file refMrna file to be used in constructing peptide (Default=paste(hmdir, "lib/refMrna.fa",

sep="").

See "https://github.com/hase62/Neoantimon"

hmdir Home directory for the analysis (Default = getwd()).

job_id Job-Id to be attached in output files (Default = "NO_job_id").

export_dir The directory will be stored results (Default = "paste("result", file_name_in_hla_table,

job_id, sep=".")")

rnaexp_file A file including RNA expressions (Default=NA). The 1st, 2nd and 3rd columns

are "GeneSymbol Chr:Exonstart-Exonend (locus) ExpressionAmount", respec-

tively. The 1st row should be any header.

See by data(sample_rna_exp); sample_rna_exp;

rnabam_file RNA bam file to calculate variant allele frequency of RNA at each mutation

(Default=NA).

cnv_file A file including copy number variation to calculate cancer cell fraction prob-

ability (CCFP) (Default=NA). The format is according to ASCAT output files. The columns are "SNPName Chromosome Position LogR segmentedLogR BAF segmentedBAF CopyNumber MinorAllele RawCopyNumber" The 1st row should

be the above header.

See data(sample_copynum); sample_copynum;

purity Tumor purity or tumor contents ratio required to calculate CCFP (Default=1).

netMHCpan_dir The file directory to netMHCpan (Default="lib/netMHCpan-3.0/netMHCpan").

refdna_file (Required) refdna_file information to be used to create SVs Region (Default=NA).

See "https://github.com/hase62/Neoantimon"

samtools_dir The file directory to samtools_0_x_x (Default="samtools"). It shouled be indi-

cated when you indicate RNA-bam and try to calculate RNA VAF.

bcftools_dir The file directory to netMHCpan (Default="bcftools"). It shouled be indicated

when you indicate RNA-bam and try to calculate RNA VAF . samtools 0_x_x

includes beftools in the directory.

chr_column The column number describing chromosome number in input_file (Default=NA,

but will automatically search "Chr" in header).

mutation_start_column

The column number describing mutation start Position in input_file (Default=NA, but will automatically search "Start" in header).

mutation_end_column

The column number describing mutation end Position in input_file (Default=NA, but will automatically search "End" in header).

mutation_ref_column

The column number describing mutation Ref in input_file (Default=NA, but will automatically search "Ref" in header).

MainSVFUSIONClass2

mutation_alt_bnd_column

The column number describing mutation Alt (BND format) in input_file (Default=NA, but will automatically search "Alt" in header).

depth_normal_column

The column number describing the read count from normal cells (Default = NA).

depth_tumor_column

The column number describing the read count from tumor cells (Default = NA).

nm_id_column

(Required if gene_symbol_column = NA) The column number describing NM IDs in input_file such as

"SLCO1C1:NM_001145944:exon7:c.692_693insG:p.L231fs" (Default=NA).

ambiguous_between_exon

The maximum number to permit the differences between Exon-Lengths from refFlat and refMrna (Default=0).

ambiguous_codon

The maximum number to permit the differences between inputfile- and refMrnaoriented translation start/end position (Default=0).

peptide_length Peptide Length to be generated (Default = 8,9,10,11,12,13).

gene_symbol_column

(Required if nm_id_column = NA) The column number describing gene symbol in input_file (Default=NA).

mate_id_column (Required) The column indicating mateIDs or svIDs such as "SVMERGE1_1" (Default=NA).

Value

void (Calculated Neoantigen Files will be generated as .tsv files.)

MainSVFUSIONClass2

Calculate Neoantigen Candidates on SV fusions for MHC Class2

Description

Calculate Neoantigen Candidates on SV fusions for MHC Class2

Usage

```
MainSVFUSIONClass2(input_file, hla_file, file_name_in_hla_table = input_file,
  refflat_file = paste(hmdir, "lib/refFlat.txt", sep = "/"),
  refmrna_file = paste(hmdir, "lib/refMrna.merge.fa", sep = "/"),
  hmdir = getwd(), job_id = "NO_job_id", export_dir = paste("result",
  file_name_in_hla_table, job_id, sep = "."), rnaexp_file = NA,
  rnabam_file = NA, cnv_file = NA, purity = 1,
  netMHCIIpan_dir = paste(hmdir, "lib/netMHCIIpan-3.1/netMHCIIpan", sep =
  "/"), refdna_file = NA, samtools_dir = NA, bcftools_dir = NA,
  chr_column = NA, mutation_start_column = NA, mutation_end_column = NA,
  mutation_ref_column = NA, mutation_alt_bnd_column = NA,
  ambiguous_between_exon = 0, ambiguous_codon = 0, peptide_length = c(15),
  gene_symbol_column = NA, mate_id_column = NA)
```

20 MainSVFUSIONClass2

Arguments

input_file (Required) An input vcf file (BND format) annotated by,

 $e.g., ANNOVAR\ (http://annovar.openbioinformatics.org/en/latest/)\ or\ other\ soft-new and the soft-new an$

wares.

See by data(sample_sv_bnd); sample_sv_bnd;

hla_file (Required) A tab separated file indicating HLA types. The 1st column is in-

 put_file name, and the following columns indicate HLA types.

See by data(sample_hla_table_c1); sample_hla_table_c1;

file_name_in_hla_table

If the name (1st column) in HLA table is not the same as input_file, indicate the

corresponding name (Default=input_file).

refflat_file refFlat file to be used in constructing peptide. (Default=paste(hmdir, "lib/refFlat.txt",sep="").

See "https://github.com/hase62/Neoantimon"

refmrna_file refMrna file to be used in constructing peptide (Default=paste(hmdir, "lib/refMrna.fa",

sep="").

See "https://github.com/hase62/Neoantimon"

hmdir Home directory for the analysis (Default = getwd()).

job_id Job-Id to be attached in output files (Default = "NO_job_id").

export_dir The directory will be stored results (Default = "paste("result", file_name_in_hla_table,

job_id, sep=".")")

rnaexp_file A file including RNA expressions (Default=NA). The 1st, 2nd and 3rd columns

are "GeneSymbol Chr:Exonstart-Exonend (locus) ExpressionAmount", respec-

tively. The 1st row should be any header.

See by data(sample_rna_exp); sample_rna_exp;

rnabam_file RNA bam file to calculate variant allele frequency of RNA at each mutation

(Default=NA).

cnv_file A file including copy number variation to calculate cancer cell fraction prob-

ability (CCFP) (Default=NA). The format is according to ASCAT output files. The columns are "SNPName Chromosome Position LogR segmentedLogR BAF segmentedBAF CopyNumber MinorAllele RawCopyNumber" The 1st row should

be the above header.

See data(sample_copynum); sample_copynum;

purity Tumor purity or tumor contents ratio required to calculate CCFP (Default=1).

netMHCIIpan_dir

The file directory to netMHCpan (Default="lib/netMHCIIpan-3.1/netMHCpan").

refdna_file (Required) refdna_file information to be used to create SVs Region (Default=NA).

See "https://github.com/hase62/Neoantimon"

samtools_dir The file directory to samtools_0_x_x (Default="samtools"). It shouled be indi-

cated when you indicate RNA-bam and try to calculate RNA VAF.

bcftools_dir The file directory to netMHCpan (Default="bcftools"). It shouled be indicated

when you indicate RNA-bam and try to calculate RNA VAF . samtools 0_x_x

includes beftools in the directory.

chr_column The column number describing chromosome number in input_file (Default=NA,

but will automatically search "Chr" in header).

mutation_start_column

The column number describing mutation start Position in input_file (Default=NA,

but will automatically search "Start" in header).

sample_copynum 21

mutation_end_column

The column number describing mutation end Position in input_file (Default=NA, but will automatically search "End" in header).

mutation_ref_column

The column number describing mutation Ref in input_file (Default=NA, but will automatically search "Ref" in header).

mutation_alt_bnd_column

The column number describing mutation Alt (BND format) in input_file (Default=NA, but will automatically search "Alt" in header).

depth_normal_column

The column number describing the read count from normal cells (Default = NA).

depth_tumor_column

The column number describing the read count from tumor cells (Default = NA).

nm_id_column

(Required if gene_symbol_column = NA) The column number describing NM IDs in input_file such as

"SLCO1C1:NM_001145944:exon7:c.692_693insG:p.L231fs" (Default=NA).

ambiguous_between_exon

The maximum number to permit the differences between Exon-Lengths from refFlat and refMrna (Default=0).

ambiguous_codon

The maximum number to permit the differences between inputfile- and refMrna-oriented translation start/end position (Default=0).

peptide_length Peptide Length to be generated (Default = 15 in HLA Class2).

gene_symbol_column

(Required if nm_id_column = NA) The column number describing gene symbol in input_file (Default=NA).

 $\label{lem:mate_id_column} \begin{array}{ll} \text{mate_id_column} & \text{(Required) The column indicating mateIDs or svIDs such as "SVMERGE1_1"} \\ & \text{(Default=NA)}. \end{array}$

Value

void (Calculated Neoantigen Files will be generated as .tsv files.)

sample_copynum

A Format / Sample file for Copy Number Information

Description

A dataset containing the copy number information obtained by, e.g., ASCAT.

Usage

data(sample_copynum)

Format

A data frame with 7 rows and 9 variables

Description

A dataset containing the HLA types of patients in each row.

Usage

```
data(sample_hla_table_c1)
```

Format

A data frame with 3 rows and at most 7 variables

Description

A dataset containing the HLA types of patients in each row.

Usage

```
data(sample_hla_table_c2)
```

Format

A data frame with at least 3 row and at most 10 variables

sample_result_INDEL_CLASS1_ALL

Analyzed Result for INDEL CLASS1

Description

Analyzed Result for INDEL CLASS1

Usage

```
data(sample_result_INDEL_CLASS1_ALL)
```

```
sample_result_INDEL_CLASS2_ALL

Analyzed Result for INDEL CLASS2
```

Description

Analyzed Result for INDEL CLASS2

Usage

```
data(sample_result_INDEL_CLASS2_ALL)
```

```
sample_result_SNV_CLASS1_ALL

Analyzed Result for SNV CLASS1
```

Description

Analyzed Result for SNV CLASS1

Usage

```
data(sample_result_SNV_CLASS1_ALL)
```

```
sample\_result\_SNV\_CLASS2\_ALL\\ Analyzed\ Result\ for\ SNV\ CLASS2
```

Description

Analyzed Result for SNV CLASS2

Usage

```
data(sample_result_SNV_CLASS2_ALL)
```

sample_rna_exp

A Format / Sample file for RNA Expression Information

Description

A dataset containing the RNA expression amount of patient for each gene.

Usage

```
data(sample_rna_exp)
```

Format

A data frame with 22 rows and 3 variables

24 TestAnalysis

sample_sv_bnd

A Format / Sample file for Annotated vcf file.

Description

A dataset containing the variant information of a patient.

Usage

```
data(sample_sv_bnd)
```

Format

A data frame with 9 rows and variables including "Chr" "Start" "End" "Ref" "Alt (BND format)" "Func.refGene (exonic, intron, intergenic, ...)" "ExonicFunc.refGene (exonic nonsynonymous, synonymous, insertion, ...)" "mateID (e.g., SVMERGE1_1)"

sample_vcf

A Format / Sample file for Annotated vcf file.

Description

A dataset containing the variant information of a patient.

Usage

```
data(sample_vcf)
```

Format

A data frame with 9 rows and variables including "Chr" "Start" "End" "Ref" "Alt" "Func.refGene (exonic, intron, intergenic, ...)" "ExonicFunc.refGene (exonic nonsynonymous, synonymous, insertion, ...)" "AAChange.refGene (e.g., SLCO1C1:NM_001145944:exon7:c.692_693insG:p.L231fs ...)"

TestAnalysis

Execute Sample Analysis

Description

Execute Sample Analysis

Usage

TestAnalysis()

Value

void

Index

```
*Topic datasets
    sample_copynum, 21
    sample_hla_table_c1, 22
    sample_hla_table_c2, 22
    sample_rna_exp, 23
    sample_sv_bnd, 24
    sample_vcf, 24
*Topic result
    sample_result_INDEL_CLASS1_ALL, 22
    sample_result_INDEL_CLASS2_ALL, 23
    sample_result_SNV_CLASS1_ALL, 23
    sample_result_SNV_CLASS2_ALL, 23
InstallRefFlat, 2
InstallRefMrnaFile, 2
InstallSampleFiles, 3
InstallSamtools, 3
MainINDELClass1,4
MainINDELClass2, 6
MainMergeINDELSVClass1,8
MainMergeINDELSVClass2,9
{\tt MainMergeSNVClass1}, {\tt 10}
MainMergeSNVClass2, 12
MainSNVClass1, 13
MainSNVClass2, 15
MainSVFUSIONClass1, 17
MainSVFUSIONClass2, 19
sample_copynum, 21
sample_hla_table_c1, 22
sample_hla_table_c2, 22
{\tt sample\_result\_INDEL\_CLASS1\_ALL, \textcolor{red}{22}}
{\tt sample\_result\_INDEL\_CLASS2\_ALL, \textcolor{red}{23}}
sample_result_SNV_CLASS1_ALL, 23
sample_result_SNV_CLASS2_ALL, 23
sample_rna_exp, 23
sample_sv_bnd, 24
sample_vcf, 24
TestAnalysis, 24
```