P1. Weak - stationary

$$2)$$
 $Van(X_t) = const$

Ling log

	12.1) Stationary series:
M =	1,44+ tet MA(~)
0,	ARMA With AR part
	with roots (2 2
	=> ARMA W.11 have stationary
	Solutions
	2) Non-Stationary
	Trend-Stationary: Xt = d+pt+Et
	()
	$f(\chi_t) \neq const$
	$X_0 = 0 \qquad X_1 = X_0 + \varepsilon_1$
	Random Walk: X = X+-1 + Ex X0=0+
	Xt = Et + Et-1 ++E+
	$V_{GI}(X_t) = t \delta^2 \neq const$
	Cov(Xt, Xt-s) =
	Cov (Et + &1, Et-s + + &1) =
	$(t-s) \cdot 6^2 \neq const$

P3.
$$ARII)$$
, $o < \beta < 1$ $X = \beta X_{1-1} + \epsilon t$
 $E(X_0) = \omega$
 $\Rightarrow \delta^2 = \frac{1}{1-\beta_1^2} \cdot \delta^2 \epsilon$

1) $E(X_1) = E(\beta_1 X_0 + \beta_1 \epsilon_1 + \dots + \beta_1 \epsilon_{t-1} \epsilon_t) = 0$

2) $Van(X_1) = \beta_1 Van(X_0) + \beta_1 \cdot \delta_2 + \dots + \delta_2 \epsilon_1$
 $= \frac{\beta_1}{1-\beta_1^2} \cdot \delta^2 \epsilon + \frac{1-\beta_1}{1-\beta_1^2} \cdot \delta^2 \epsilon$
 $= \frac{1}{1-\beta_1^2} \cdot \delta^2 \epsilon$

3) $Cov(X_1, X_1 + \epsilon) = Cov(X_1, \epsilon_1 \epsilon_1 + \epsilon)$
 $= \beta_1 \cdot Van(X_1)$
 $= \beta_1 \cdot Van(X_1)$

Weakly dependent time series:

 $Corr(X_1, X_1 \epsilon_1) = c \cdot var$

TS:

P4. A1 B1
$$Y_t = X + pt + ct$$

P6. $Y_t = X_t + pt + ct$

P7. $Y_t = X_t + pt + ct$

P6. $Y_t = X_t + pt + ct$

P7. $Y_t = X_t + pt + ct$

P6. $Y_t = X_t + pt + ct$

P7. $Y_t = X_t + pt + ct$

P7. $Y_t = X_t + pt + ct$

P8. $Y_t = X_t + pt + ct$

P9. $Y_t = X_t + pt$

P9.