学生フォーミュラの空力開発における 計算資源不足による結果への影響について

~計算条件詳細~

サウサンプトン大学 航空宇宙工学科 田崎 雄大

- 1. CADモデル詳細
- 2. 解析条件
- 3. メッシュ設定
- 4. 境界条件、初期条件
- 5. 乱流モデル、ソルバー
- 6. 計算に用いたハードウェア、ソフトウェア

CADモデル詳細:車高と主要寸法

	L [mm]	Wheelbase [mm]	W [mm]	H [mm]	FRH [mm]	RRH [mm]	Steer [deg]
Dimension	2935	1550	1400	1218	54	54	0

CADモデル詳細:翼後端

CFD向けの翼後端モデリング

- 低圧面に対して垂直に切り落とし
- 小さいほど形状の再現のためにメッシュ数が必要になる
- 今回は翼の大きさに合わせて調整、FWのフラップが最小で1mm

CADモデル詳細:コンタクトパッチモデリング

コンタクトパッチのモデリング

- 以下にコンタクトパッチのモデリング手順を示す
- **このコンタクトパッチに使われたパラメータは現実的ではない
 - 6.4mmの重なりは大きすぎるしR10のフィレットも大きすぎる
 - タイヤのプロファイルは実際フラットではなくて、曲面にすることで さらにコンタクトパッチのサイズは小さくなる

下半分の断面形状

6.4 mm重なった平面を作成

R10のフィレット&トリム

下面縁にR3のフィレット

- 1. CADモデル詳細
- 2. 解析条件
- 3. メッシュ設定
- 4. 境界条件、初期条件
- 5. 乱流モデル、ソルバー
- 6. 計算に用いたハードウェア、ソフトウェア

解析条件

主な解析条件

- 直線 10 m/s (36 kph)
 - 今回は対称境界条件を使用し、車の半分のみを解析
 - 正確にはこの境界条件はドライバーの後流を予測するには不適切
- 密度, rho = 1.21
- (FRH, RRH) = (54 mm, 54 mm)
- ヨー角は0 deg
- 地面は流入速度で移動、タイヤは回転(MRFではなく接線速度を指定)
- 1500 iteration, 流れ場は最後の500iterationを平均

事後コメント

- 対称境界条件、コンタクトパッチの形状を変化させることによるパフォーマンスの差は?
- 1500 iterationでは収束性が不十分 > Githubには2500 iteration, 2000-2500で平均した結果を再アップロード済み

- 1. CADモデル詳細
- 2. 解析条件
- 3. メッシュ設定
- 4. 境界条件、初期条件
- 5. 乱流モデル、ソルバー
- 6. 計算に用いたハードウェア、ソフトウェア

メッシュ:Refinementのサイズと解像度

CADの原点と座標系

計算領域、Refinementの詳細(原点はCAD参照)

	主流方向	高さ方向	スパン方向	空間解像度
計算領域*	(14.55 m, -43.65 m)	(0 m, 12.2 m)	(0 m, 14.1 m)	0.5 m
Refinement 1	(10 m, -30 m)	(0 m, 8 m)	(0 m, 8 m)	0.25 m
Refinement 2	(7.5 m, -25 m)	(0 m, 7.5 m)	(0 m, 7.5 m)	0.15 m
Refinement 3	(5 m, -20 m)	(0 m, 6 m)	(0 m, 6 m)	0.075 m
Refinement 4	(5 m, -15 m)	(0 m, 4 m)	(0 m, 4 m)	0.0375 m
Fwheel Refine	(-0.34 m, -0.85 m)	(0 m, 0.44 m)	(0.4 m, 0.7 m)	0.005 m
Rwheel Refine	(-1.9 m, -2.4 m)	(0 m, 0.44 m)	(0.4 m, 0.7 m)	0.005 m
Contact patch 1	(-0.4 m, -0.8m)	(0 m , 0.05 m)	(0.425 m, 0.7 m)	0.00125 m
Contact patch 2	(-2.0 m, -2.3 m)	(0 m , 0.05 m)	(0.425 m, 0.7 m)	0.00125 m
Aero Refine**	N/A	N/A	N/A	0.0075 m

^{*}Blockage ratioは1%以下

^{**}Aero RefineはFW, SW, UF, RWを囲むブロック

メッシュ:境界層

	レイヤー数	1つ目のレイヤーの高さ	全体のレイヤーの高さ
FW	20	0.01 mm	10 mm
SW	22	0.01 mm	20 mm
RW	20	0.01 mm	20 mm
Chassis	22	0.01 mm	30 mm
Suspension	15	0.01 mm	5 mm
Rollhoop	10	0.01 mm	5 mm
Driver	15	0.01 mm	20 mm
Front/Rear wheel	15	0.01 mm	10 mm
Ground	10	0.01 mm	10 mm

^{*} Chassisは大きな流れの剥離がないのでレイヤー数は15でいい気がする

メッシュ:Volume meshの種類

メッシュ

- Trimmed cell mesh: 立方体のメッシュを使用
 - 各部のサイズ調節が簡単にできる
 - Hexメッシュと比較して生成に時間がかからない (後述のHPC, 120 coreで約30分)
- Volume growth ratio:Very slow(具体的な数値は不明)
- 全体のセル数:69 Million

上記設定でのメッシュ外観

事後コメント

- Chassisの上面のメッシュを粗くしてもっと後流を詳細に分割するべき?
- FWやSWから発生する渦領域のみにRefinementを集中させることで、より効率のいいメッシュ配置ができる?

- 1. CADモデル詳細
- 2. 解析条件
- 3. メッシュ設定
- 4. 境界条件、初期条件
- 5. 乱流モデル、ソルバー
- 6. 計算に用いたハードウェア、ソフトウェア

境界条件と初期条件

Boundary condition Inlet

- Velocity = (0 m/s, 0 m/s, -10 m/s)
- Turbulence Intensity: 5%
- Turbulent Viscosity ratio: 10

Outlet

Pressure outlet

Ground

- Non-slip
- Velocity = (0 m/s, 0 m/s, -10 m/s)

Central Plane

Symmetric wall

Domain wall, Top and Side

- Slip (Symmetricにしているケースもよく見る)

Initial condition

- Velocity = (0 m/s, 0 m/s, -2.5 m/s)
- Pressure = 0 Pa
- Turbulence Intensity: 5%
- Turbulence viscosity ratio: 10
- A

事後メモ

- Turbulence Intensityは1%以下でいい
- Turbulence viscosity ratioは本当に10でいいのか?
- Initial conditionはどれほど結果に影響があるのか?
 - 最終的な解に初期値依存はないはず

- 1. CADモデル詳細
- 2. 解析条件
- 3. メッシュ設定
- 4. 境界条件と初期条件
- 5. 乱流モデルとソルバー
- 6. 計算に用いたハードウェア

乱流モデルソルバー

乱流モデル

- K-Epsilon
 - Realizable K-Epsilon two-layer
 - Two-layer all y+ treatment (Shear driven Wolfstein)
- K-Omega SST
 - All y+ wall treatment
 - A1 = 0.3, Realizability coefficient= 0.6

事後メモ

- K-Omega SSTに関してはa1 = 1.0*, Realizability coefficient = 1.2**が推奨されている
 - a1の変更はRANS特有の剥離領域の過大評価を抑制し、流れ場を安定させる
 - Realizabilityはよどみ点におけるTKEを制限する効果があり、剥離点にも影響がある

*: Evans 2016

**: Chang 2003

ソルバー

16

ソルバー

- Segregated
 - 2次精度(ソフトウェアに記載はないが対流項はおそらく風上差分)
 - SIMPLE (緩和係数: Velocity = 0.7, Pressure = 0.3)
 - AMG max cycle: 30

事後メモ

- Coupledのほうが結果が安定するので、RANSには適している
 - 3方向の速度を1つの行列にして解いているので、より多くのメモリが必要

- 1. CADモデル詳細
- 2. 解析条件
- 3. メッシュ設定
- 4. 境界条件と初期条件
- 5. 乱流モデルとソルバー
- 6. 計算に用いたハードウェア、ソフトウェア

17

計算環境

ハードウェア

- University of Southampton, Iridis5

- CPU: Intel® Xeon® Gold 6138 Processor * 3, 120 cores

- メモリ容量:4GB/core, 480 GB available

ソフトウェア

STARCCM+ R08 17.04