

XPU-Point: Simulator-Agnostic Sample Selection Methodology for Heterogeneous CPU-GPU Applications

Alen Sabu, Harish Patil, Wim Heirman, Changxi Liu, Trevor E. Carlson

Parallel Architectures and Compilation Techniques (PACT)

November 06, 2025

Complex Architectures → Unrealistic Simulation Times

Estimated Simulation Times: gem5 (CPU portion) and AccelSim (GPU portion) heterogeneous CPU-GPU benchmarks SPEChpc 2021 and PyTorch/inference

Modern architectures require smarter simulation techniques

Simulation: Key Questions

Where to Simulate?

Unit of Work/Simulation

- Repeatable across runs
- Microarchitecture-independent

How to Simulate?

- Trace-driven/Checkpoint-driven
- System-level/User-level

Are Simulation Regions Representative?

Compute Sampling Error

- Using simulation
- Using native execution (simulator-agnostic)

Projection Methodology

Instead of all regions...

BBV₁ BBV₂ BBV₃ BBV₄ BBV₅ BBV₆ BBV₇ BBV₈ BBV₉ BBV₁₀ BBV₁₁ BBV₁₂

...simulate only selected regions

Project performance using weights

Speedup = 12/3 = 4

Simulation Region Validation With Simulation

Are Simulation Regions Representative?

Compute Performance Stats & Sampling Error

Sampling Error
$$= \left| 1 - \frac{\text{Extrapolated Perf}}{\text{Actual Perf}} \right|$$

Challenge:

Whole-program simulation is very slow

Workarounds:

- Use short workloads
- Use a fast, less accurate simulator

Simulation Region Validation With Native Execution

Are Simulation Regions Representative?

Run natively: Gather TSC/performance counters

Compute Performance Stats & Sampling Error

Sampling Error
$$= \left| 1 - \frac{\text{Extrapolated Perf}}{\text{Actual Perf}} \right|$$

Simulator-agnostic:

- Using native system as the simulator
- Much faster

Challenge:

Precisely gathering region performance

Simulation Region Selection at Intel: Past 20 years

Methodology	Scope	Regions (Unit of Work/Simulation)	Sample Validation Technique	Comment
PinPoints (MICRO 2004)	Single-threaded/ Itanium	Fixed instructions	[simulator-agnostic] Pin (JIT) + perfmon	Fixed-length intervals only
Cross-binary Simulation Points (ISPASS 2007, 2015)	Single-threaded, multiple binaries/x86	Fixed instructions (binary 1)	CMP\$IM: Fast Pin- based cache simulator	Less detailed simulator used
GT-PinPoints (IISWC 2015)	OpenCL: GPU- only/Intel GPUs	GPU kernels	[simulator-agnostic] CoFluent	GPU-only
LoopPoint (HPCA 2022)	Multi- threaded/x86	Loop iterations	Sniper: Pin/SDE-based simulator	SPEC 'train' runs used
XPU-Point (PACT 2025)	Heterogeneous CPU-GPU	GPU kernel: end to end	[simulator-agnostic] Pin (probe) + GT-Pin & NVBit	Co-analysis of CPU and GPU

Why Heterogeneous Architectures?

- Multi-cores aren't scaling well¹ power and thermal constraints
- XPU: Heterogeneous system w/ CPU, GPU, and memory co-packaged

Simulation of Heterogeneous Architectures

Heterogeneous CPU-GPU simulation is extremely challenging

Simulation Slowdowns

CPU simulation >10,000 × slowdown¹
GPU simulation >1,000,000,000 × slowdown²

Phase-based CPU-GPU Region Selection

- Modern CPU-GPU workloads are co-operative (Ex. GROMACS)
- Need CPU and GPU co-analysis for combined phase detection

Challenge: No framework for simultaneous CPU and GPU analysis

XPU-Pin: Framework for Co-Analysis of Heterogeneous Execution

Support for generic accelerators: Need instrumentation tool as shared library

XPU-Point: End-to-End Workflow

Sampling Error =
$$1 - \frac{\text{Extrapolated Perf}}{\text{Actual Perf}}$$

Unit of Work for XPU-Point

XPU-Profiler: CPU-GPU BBV Generation

Challenge: Overhead of profiling \rightarrow Be selective (shared libraries)

XPU-BBVs: CPU-GPU BBV Concatenation

CPU BBV GPU BBV (kernel name_{i-1}, count_{i-1}) ($kernel\ name_{i-1}$, $count_{i-1}$) $\overline{\mathrm{BBV}_{\mathrm{t0}}}$ $\mathrm{BBV}_{\mathrm{w0}}$ $\overline{\mathrm{BBV}_{\mathrm{w1}}}$ BBV_{tN} (kernel name_i, count_i) (kernel name_i, count_i) ---- *Concatenate* ----(kernel $name_{i-1}$, $count_{i-1}$) **XPU-BBV**

(kernel name_i, count_i)

XPU-Timer: Time Stamps for CPU-GPU Regions

Experimental Setup

- CPUs
 - Multiple Intel Client/Server CPUs
- GPUs
 - Intel: Iris Xe (Integrated), Discrete Graphics 2 (DG2), Ponte Vecchio (PVC)
 - NVIDIA: A100, GeForce GTX 1080, Titan XP
- Compilers
 - Intel OneAPI, GNU, NVCC

Results Reported

1. Sampling Error

Sampling Error =
$$1 - \frac{\text{Extrapolated Perf}}{\text{Actual Perf}}$$

2. Speedup

$$Speedup = \frac{Number\ of\ Total\ Regions}{Number\ of\ Simulation\ Regions}$$

- Base analysis
 - BBV generation and error measurement on the same machine
- Cross analysis
 - Profiling (Machine₁ /GPU₁) -> Measurement (Machine₂ / GPU₂)

Results: SPECaccel2023

XPU slices:

Combined CPU-GPU phase detection

Results: SPECaccel2023

XPU slices:

Combined CPU-GPU phase detection

GPU slices:

GPU-only phase detection

Focusing on GPU-only evaluation could lead to inaccurate decisions

Results: SPEChpc2021

Results: SPEChpc2021

GROMACS: Various Configurations

Type	nb	pme	pmefft	bonded	update	#slices
A	GPU	CPU	CPU	CPU	CPU	305
В	GPU	CPU	CPU	GPU	CPU	506
С	GPU	GPU	CPU	CPU	CPU	707
D	GPU	GPU	CPU	GPU	CPU	908
E	GPU	GPU	GPU	CPU	CPU	3730
F	GPU	GPU	GPU	GPU	CPU	3931

The classification of GROMACS based on the offloading device for the execution of each calculation. We also use -nsteps 200 with -notunepme for all types.

Results: GROMACS

Results: GROMACS

PyTorch Inference Workloads: Overheads

PyTorch Inference runs evaluated on platform with Intel Sapphire Rapids CPU and Intel Ponte Vecchio GPU

Challenge: Overhead of profiling \rightarrow Be selective (shared libraries)

Results: PyTorch Inference

PyTorch Inference (selective profiling) runs evaluated on Intel Ponte Vecchio GPU

Results: PyTorch Inference

PyTorch Inference (selective profiling) runs evaluated on Intel Ponte Vecchio GPU

Summary

- XPU-Point is the first to enable accelerated heterogeneous simulation through CPU-GPU co-sampling
- Works for both Intel- and NVIDIA-based CPU-GPU platforms
- XPU-Point tools are open-sourced on GitHub
 - https://github.com/nus-comparch/xpupoint
- Acknowledgments
 - Roland Schulz, Edward Mascarenhas, Aleksandr Bobyr, Intel GTPin Team

