Week 3

Operating Systemsand Containers

Agenda

What is an Operating System? (operating system/OS)

What is an operating system?

System software on the computer

Sample tasks:

- Taking care of the user interface
- Enable multiple applications to run simultaneously
- Allocation of CPU and memory to applications
- Taking care of data storage
- Taking care of network communication
- Taking care of access control

What is an operating system?

- Runs directly on the hardware of the computer
- Makes the computer user-friendly.
- All applications run on the operating system
- Ensures that programs work properly and don't crash.

Most common OSes

Computers

- Windows 10/11
- Windows Server (2019, 2022 ..)
- MacOS
- Ubuntu (Linux)
- Debian (Linux)
- Centos (Linux)
- Redhat (Linux)
- Etc.

Phone

- Android OS
- iOS (Apple)
- Tizen (Linux)
- Etc.

Desktop vs Server

Desktop vs Server

Desktop	Server
Client computers (desktop or laptop)	Server computers
Runs applications	 Provides services that can be accessed by clients through the network such as: Data storage (file server) Access control and management of client computers (LDAP/Active Directory) Mail server
Example: Windows 10/11	Example: Windows Server 2019, Windows Server 2022

Roles of a server

- LDAP/Active Directory: The central database in a network.
- **DNS**: Conversion of names to IP addresses in the network.
- **DHCP**: Distributes IP addresses.
- **File sharing**: Allows users to share files together.
- **Print Services**: Centralizes control of all network printers and places all print jobs in a queue.

Windows architecture

User Mode

- Shielded mode where the user runs programs
- **Executive environment** is a link between the applications in user mode and the kernel functions.

Kernel mode

- The kernel mode has full access to hardware and computer system resources. It executes code in a protected memory area.
- takes care of the main functions of the operating system

Linux

- Multiple distributions use the same Linux kernel.

- The kernel manages the hardware

 Linux is open source. So, it is free to download and adapt to your own taste and environment.

- Ubuntu, Debian, CentOS and RedHat are all unix-like

operating systems. (distributions)

Linux Architecture

- Kernel:
 part of the OS that has direct access to the hardware
- Shell:Program to issue commands to the OS.
- Applications:
 Other applications that may be present (such as browser, editor, compilers etc)

Shell and applications run in user space.

Ubuntu Desktop vs Ubuntu Server (Linux OS)

Ubuntu Desktop	Ubuntu Server
Has Graphical User Interface (GUI)	Does not have a Graphical User Interface (GUI)
Applications like editors, browser, openoffice etc.	Software for e.g. email server, file server, web server etc.

Both use the same kernel: Linux 6.8.0 on Ubuntu 24.04

Applications

Most operating systems like Windows and MacOS also come with built-in programs called applications.

Applications are also called apps, programs or software.

For example, programs for:

- Word Processing
- Photo Management
- E-mail
- Video playback
- Web surfing
- etc.

Types of applications

- Some applications are only developed for certain operating systems
- Cross-platform applications can be used on multiple operating systems.

Important requirements running applications:

- The operating system must be up to date. Windows
- Drivers must be installed correctly and in the correct version in the operating system.

Configure OS

Setting up and configuring the OS via:

- 1. Graphical User Interface (GUI)
- 2. Commandline
- GUI: user-friendly; however, often many mouse clicks are required.
- The command line: often more possibilities.
 Often used by system administrators and IT specialists.

1. Graphical User Interface (GUI)

```
D:\Temp>commandline -v --numbers 1 2 a
Cannot parse argument 'a' for option '--numbers' as expected type System.Int32.

Usage:
    CommandLine [options]

Options:
    -v, --verbose
    --numbers \( \text{numbers} \) \( \text{--version} \) Show version information
    -?, -h, --help Show help and usage information

D:\Temp>
```


Windows Commandline

Windows PowerShell: more powerful and advanced.

```
Windows PowerShell

Windows PowerShell

Copyright (C) Microsoft Corporation. All rights reserved.

Try the new cross-platform PowerShell https://aka.ms/pscore6

PS C:\Users\las>
```

Linux Commandline

Installing Windows software

- Frequent license fees
- Install file manually (MSI file or exe file)
- Possibly downloaded from a specific location on the internet.

Installing Linux software

- Is done usingPackage Manager
- Differs per Linux version

Linux version	Packagemanager
Ubuntu	apt (aptitude package manager)
Debian	dpkg (Debian Package Manager)
Centos, Redhat	yum (Yellow Dog Updater Modified)

- Example commands apt:
 - apt update Updating the package database
 apt upgrade Upgrading the installed packages
 apt install < packagename> Install new package (e.g. Firefox)
- Open Source so free!
- Execute centrally via the command line

Note:

apt was originally apt-get, however, builds since 2014/16 allow apt

Installing Linux software

- Often 'root rights' are needed. Someone who is an administrator user can do that:
 - o run command as root: put sudo in front of the command (super user do;)
 - first switch to root: command su (switch user)

Windows and Linux Commands


```
Click
                                                                                        ver b, d=this, e=this
                                                 To them
                                                                                                         .a(document.)
                                                                                                 router.select
                                                                undelegateEver
                                                                                                      sed").toggle()....
                                                         wy **reviewDeviceButton
                                                                               weyEvent: function
maybeRequestFile
                                   - Wiewiexter
                                       c.collection
                                                                                                       , c. announce Sea
                                                       TINCTION ( ) OVER
                                          rende for the second se
                                                                                              ecthie render
```

Difference file structure Windows and Linux

- Windows knows C: and/or D: disk.
- Linux not: file system is 1 "tree" (there can be multiple disks but they are merged)
- Pathname in **Windows**:

c:\Users\Pieter\myfile

Pathname in Linux:

/home/jono/work/myfile

Difference file structure Windows and Linux

Important!

- Linux: difference between uppercase and lowercase letters
- Windows: no difference

Commands Windows - Linux

Commands	Windows	Linux
List all files and directories in the current directory	dir	Is (Is -I gives extra information (- I = long))
Create directory	mkdir <dirname></dirname>	mkdir < dirname>
Query current directory name	cd	pwd

Create and view text file

Commands	Windows	Linux
Create file with editor	notepad <filename></filename>	nano <filename></filename>
View file content	type <filename></filename>	cat <filename></filename>

Directory

Commands	Windows	Linux
Create directory	mkdir < dirname>	
Remove directory	rmdir < dirname>	
Change directory	cd (go up 1) cd < path> (go to < path>)	

Copy files

Command	Windows	Linux
File Copy	copy <file1> <file2></file2></file1>	cp <file1> <file2></file2></file1>
	 Example with full pathname: 	 Example with full pathname:
	copy c:\etc\test c:\etc\test2	cp /etc/test /etc/test2
	Windows is not case sensitive (!!)	Linux is case sensitive (!!)

Change file or directory name

Command	Windows	Linux
Change the name of the file or directory	rename < oldname> <newname></newname>	<pre>mv < oldname> <newname> (mv stands for move)</newname></pre>

delete files

Command	Windows	Linux
Remove	del <filename></filename>	 rm <filename></filename> rm stands for remove Powerful: rm -r <directoryname> Removes directory with all contents and underlying directories.</directoryname>

Time retrieval

- Windows:

- Linux:

Command time is for performance measurement on Linux:

- time Is (measures how long Is lasts).

```
C:\>time
Huidige tijd: 12:13:58,63
Voer de nieuwe tijd in:
C:\>_
```

```
lansink@ubuntu:~$ date
Mon Sep 9 12:13:31 CEST 2013
lansink@ubuntu:~$
```

```
lansink@ubuntu:~$ time ls

Desktop Downloads homes Pictures Templates tt

Documents examples.desktop Music Public test Videos

real 0m0.004s
user 0m0.008s
sys 0m0.000s
lansink@ubuntu:~$
```


Wildcards Windows

- Wildcards are characters to complete names.
- Windows:
 - ? Replaces 1 character
 - * replaces any number of characters but does not replace .
- Suppose we have three files:
 - o file1, file2 and file3
- del file? Deletes all three files.
- del? ile? likewise.

Windows wildcards

- Suppose we have the files fileaap.txt, filenoot.txt and filemies.txt
- del file*. txt deletes all 3 files
- del *. txt likewise
- The * works to the next point or to the end if there is no point.

Linux wildcard

- * and ?
- ? Replaces 1 character (as in windows)
- * is different now:
 Replaces arbitrarily many characters including .
- Suppose we have the files fileaap.txt.v1, filenoot.txt.v1 and filemies.txt.v1
- rm file* removes all 3 files
- rm *.v1 likewise

What processes are running?

- Sometimes it is useful to see what processes are running.
- Windows<CTRL><ALT>task manager
- Linux:ps or ps -axtop or htop

Linux vs Windows commands in a row

Linux cmd	Windows cmd	Meaning
cat < filename>	type < filename>	Show file contents
cd < path> cd	cd < path> cd	Go to directory; to parent directory
cp <file1> <file2></file2></file1>	copy <file1> <file2></file2></file1>	Copy <file1> to <file2></file2></file1>
ls, ls -l	dir	List files and directories (-I = additional info)
mkdir < dirname>	mkdir < dirname>	Make directory < dirname>
mv <file1> <file2></file2></file1>	rename <file1> <file2></file2></file1>	rename <file1> to <file2></file2></file1>
nano <file1> pwd ps -ax, top, htop rm <file1> rmdir <dir1></dir1></file1></file1>	notepad <file1> cd <ctl><alt task list del <file1> rmdir <dir1></dir1></file1></alt</ctl></file1>	Edit <file1> Show path of current directory Show current processes Delete <file1>. Delete dir1 if empty</file1></file1>

- 1. Open the Linux Terminal
- 2. Show the pathname of the directory you are currently in.
- 3. Create a directory "myfiles"
- 4. Go to this directory
- 5. Make a file "myfile" with the content "This is the first line".
- 6. Make 2 copies of the file "myfile" and name them "myfile.cp1" and "myfile.cp2".

- 7. View the contents of the file "myfile.cp2".
- 8. Change the name of the file "myfile" to "myfile.org".
- 9. Discard both copies with one command.
- 10. Throw away the file "myfile.org".
- 11. Go up a directory.
- 12. Discard the directory "myfiles".

Scripting (combine commands in file)

Why scripting?

Suppose we have to issue many commands in succession (and again several times on e.g. different virtual machines).

Disadvantage of doing that all the time:

- Frequent typos
- Takes a lot of effort

Solution:

- Put all the commands together in a file (we call it a script or batch script).
- Run that script with just 1 command.

Example:

sudo apt update
sudo apt upgrade
sudo apt install <package1>
sudo apt install <package2>

Windows (BAT or CMD file)

- In windows this is a file with name ending in .bat or . cmd
 - (cmd is the updated version and is used for Windows NT systems)
- Example: myfirstbatfile.cmd
 - o cd c:\users\pieter
 - o mkdir myfiles
 - o cd myfiles
 - 0
- Can be started immediately:

.\myfirstbatfile.cmd

BASH (LINUX) SHELL

File createfiles.sh

```
#!/bin/bash
mkdir myfiles
cd myfiles
echo "This is the first line" > file1.txt
cp file1.txt file2.txt
cp file2.txt file3.txt
cp file3.txt file4.txt
cd ..
ls
```

 Make it executable: chmod +x createfiles.sh

Then start it:./createfiles.sh

- 1. In the Ubuntu VM, create the bash file shown on the previous slide using the nano-editor.
- 2. Make the file executable and run it as instructed.
- 3. Check that the output is what you expect.
- 4. Clean up the created files and directory afterwards.

Containers

docker

Containers

Containers:

Containers are lightweight, portable units that **package** an **application** and its dependencies together, allowing it to run consistently across different computing environments.

Unlike traditional virtualization methods that use virtual machines (VMs) with their own operating systems, containers share the host operating system's kernel while maintaining isolation between applications. This makes containers more efficient in terms of resource utilization and startup time.

Docker is a popular container runtime that facilitates the creation and management of containers.

VMs vs Containers

VMs or Containers:

When choosing between virtual machines (VMs) and containers, it's essential to understand their strengths and ideal use cases.

VMs provide a robust solution for scenarios requiring strong isolation and support for multiple operating systems, making them suitable for legacy applications with specific configurations.

Containers excel in environments focused on microservices architecture and rapid development, as they offer lightweight, fast startup times and efficient resource utilization by **sharing the host OS kernel**. Containers ensure a consistent environment across development and production, making them perfect for situations where scalability and resource optimization are key.

VMs vs Containers

Type 2 virtualization

Container-based virtualization

Working on the case

Do the assignments of week 3

Please consult the assignments document and the template report for more details.

Any questions?

