Варианты решения задач III тура Всеукраинской олимпиады по физике среди старшеклассников Харьковской области (2009 г.)

Решения задач для 10 класса

1. Закопченную монетку толщиной h=2 мм положили на снег плотностью ρ =500 кг/м³. Солнце находится на высоте α =20° над горизонтом и освещает монету. За какое время монета погрузится в снег на глубину 2h? Считать, что вся солнечная энергия, поглощаемая монеткой, идет на плавление льда под ней. Плотность потока солнечной энергии (мощность, идущая через единичную площадь, перпендикулярную потоку) I=1,4 кВт/м². Удельная теплота плавления снега та же, что и льда: λ =3,4·10⁵ Дж/кг. Радиус монетки много больше ее толщины.

Решение: Солнечная энергия E_1 поглощаемая монеткой за время t, равна: $E_1 = IS\sin(\alpha)t$,

где S – площадь монетки.

Энергия, необходимая для плавления слоя льда площадью S и высотой 2h, равна: $E_2 = \lambda \rho S2h$.

Считая, что вся солнечная энергия, поглощаемая монеткой, идет на плавление льда, приравниваем эти энергии: $E_1 = E_2$.

Отсюда находим искомое время t: $t = \frac{2\lambda\rho h}{I\sin(\alpha)} \, .$

Ответ: $t = \frac{2\lambda\rho h}{I\sin(\alpha)}$.

2. В первом эксперименте материальная точка брошена под углом α к горизонту с начальной скоростью величиной v_0 . Во втором эксперименте эта же точка начинает двигаться вверх с такой же начальной скоростью по абсолютно гладкой наклонной плоскости, угол наклона которой равен α . Длина наклонной плоскости равна L. В каком случае материальная точка поднимется выше и на какую высоту? Сопротивлением воздуха пренебречь.

Решение:

В первом эксперименте высота подъема определяется исходя, например, из закона сохранения энергии, который можно применить для вертикальной составляющей скорости $v_v = v \sin(\alpha)$:

$$h = \frac{v_0^2 \sin^2(\alpha)}{2\sigma} \cdot (1)$$

Во втором эксперименте при движении по наклонной плоскости

$$s = \frac{v_0^2 - v^2}{2g\sin(\alpha)},$$
 (2)

где s – координата вдоль плоскости, а v – текущая скорость.

Если наклонная плоскость достаточно длинная,

$$L \ge \frac{v_0^2}{2g\sin(\alpha)}, (3)$$

(т.е. длина плоскости L больше, чем длина пути до точки остановки), то высота подъема h равна

$$h = \frac{v_0^2}{2g} \cdot (4)$$

Варианты решения задач III тура Всеукраинской олимпиады по физике (2009 г.) среди старшеклассников Харьковской области. Олимпиада состоялась 7 февраля 2009 года в Харьковском национальном университете на базе физико-технического факультета. Адрес: XHУ имени В.Н.Каразина, пл. Свободы, 4, Харьков, 61077. http://www-htuni.univer.kharkov.ua

10 класс стр. 1 из 4

Соотношение (4) получаем из (2) как $h = s \sin(\alpha)$ при v = 0.

Если наклонная плоскость короткая,

$$L < \frac{v_0^2}{2g\sin(\alpha)}, (5)$$

(т.е. длина плоскости L меньше, чем длина пути до точки остановки), то высота подъема h складывается из высоты подъема по плоскости, $L\sin(\alpha)$ и высоты свободного подъема,

$$\frac{v_1^2 \sin^2(\alpha)}{2g}$$
, где из (2) находим $v_1^2 = v_0^2 - 2gL \sin(\alpha)$. В итоге получаем для высоты подъема в

случае короткой наклонной плоскости

$$h = \frac{v_0^2 \sin^2(\alpha)}{2g} + L \sin(\alpha) \cos^2(\alpha).$$
 (6)

Итак, в первом эксперименте при свободном полете высота подъема равна

$$h = \frac{v_0^2 \sin^2(\alpha)}{2g} \,. \tag{7}$$

Во втором эксперименте с наклонной плоскостью высота подъема равна

$$h = \begin{cases} \frac{v_0^2 \sin^2(\alpha)}{2g} + L \sin(\alpha) \cos^2(\alpha), L < \frac{v_0^2}{2g \sin(\alpha)}, \\ \frac{v_0^2}{2g}, L \ge \frac{v_0^2}{2g \sin(\alpha)}. \end{cases}$$
(8)

Видим, что всегда, когда есть наклонная плоскость, высота подъема будет больше. И понятно почему.

3. Найти электрическое сопротивление схемы между точками A и B.

Решение:

Пусть ток втекающий в точку A извне схемы равен I, а ток на участке $AC-I_1$. Тогда ток на участке AD равен $(I-I_1)$ (первый закон Кирхгофа). Из симметрии схемы следует, что ток на участке DB равен току на участке AC, т.е. равен I_1 . A ток на участке CB - $(I-I_1)$.

Тогда ток на участке CD равен $(2I_1-I)$.

Применяя закон Ома для контура АСD (второй закон Кирхгофа), получаем:

$$rI_1+r(2I_1-I)-R(I-I_1)=0$$
.

Отсюда находим ток I_1 : $I_1 = \frac{r+R}{3r+R}I$.

Падение напряжения между точками А и В равно, например,

$$U_{AB} = U_{AC} + U_{CD} = rI_1 + R(I - I_1) = \frac{r(r+3R)}{(3r+R)}I$$
.

Отсюда получаем для сопротивления между точками AB: $\frac{r(r+3R)}{(3r+R)}$.

Ответ:
$$\frac{r(r+3R)}{(3r+R)}$$
.

Варианты решения задач III тура Всеукраинской олимпиады по физике (2009 г.) среди старшеклассников Харьковской области. Олимпиада состоялась 7 февраля 2009 года в Харьковском национальном университете на базе физико-технического факультета. Адрес: XHУ имени В.Н.Каразина, пл. Свободы, 4, Харьков, 61077. http://www-htuni.univer.kharkov.ua

10 класс стр. 2 из 4

4. На твердую горизонтальную поверхность налили достаточно большой объем жидкости. Найти толщину слоя жидкости h. Известен краевой угол θ , плотность жидкости ρ , поверхностное натяжение σ и ускорение свободного падения g.

Решение:

Условие равновесия жидкости, заключенной в объеме АВС, дает

$$\sigma\cos\theta + F_h = \sigma$$
.

Здесь мы спроектировали силы, действующие на объем ABC, на горизонтальное направление. В правой части равенства σ - это сила поверхностного натяжения, приложенная к единице длины прямой линии, проекция которой на рисунке есть точка С. Аналогично для точки А. F_h - это сила суммарного гидростатического давления, приложенного к CB. В точке С гидростатическое давление равно нулю, а в точке В равно ρ gh. Поскольку давление меняется линейно с глубиной, то среднее значение давления - ρ gh/2. Тогда суммарная сила гидростатического давления F_h равна: $F_h = h \frac{\rho gh}{2}$.

Из этих двух соотношений находим толщину слоя жидкости h: $h = 2\sin\left(\frac{\theta}{2}\right)\sqrt{\frac{\sigma}{\rho g}} \ .$

Условие достаточно большого объема жидкости нужно для того, чтобы можно было бы пренебречь второй кривизной, в частности на краю A по сравнению с кривизной линии AC в точке A.

Ответ:
$$h = 2\sin\left(\frac{\theta}{2}\right)\sqrt{\frac{\sigma}{\rho g}}$$
.

5. Твердая полусфера покоится в начальный момент на абсолютно гладкой горизонтальной поверхности. С верхней точки полусферы с нулевой начальной скоростью соскальзывает без трения материальная точка с массой совпадающей с массой полусферы. Найти угол отрыва материальной точки от полусферы.

Решение:

Законы сохранения горизонтальной составляющей импульса и энергии дают

$$mv_x + MV_x = 0, (1)$$

$$\frac{MV_x^2}{2} + \frac{mv_x^2}{2} + \frac{mv_y^2}{2} = mgR(1 - \cos\theta), \quad (2)$$

где m - масса материальной точки, M - масса полусферы, v_x и v_y - проекции на оси х и у скорости материальной точки, а V_x - проекция на ось х скорости полусферы.

Поскольку масса m движется по окружности, то из закона сложения скоростей находим

Варианты решения задач III тура Всеукраинской олимпиады по физике (2009 г.) среди старшеклассников Харьковской области. Олимпиада состоялась 7 февраля 2009 года в Харьковском национальном университете на базе физико-технического факультета. Адрес: XHУ имени В.Н.Каразина, пл. Свободы, 4, Харьков, 61077. http://www-htuni.univer.kharkov.ua

10 класс стр. 3 из 4

$$v_x = V_x + R\omega\cos\theta, (3)$$
$$v_y = -R\omega\sin\theta, (4)$$

где
$$\omega = \frac{\Delta \theta}{\Delta t}$$
 - угловая скорость.

В принципе, уравнений (1)-(4) достаточно, чтобы найти, проинтегрировав, $\theta(t)$ до самого отрыва. Но нас тут интересует лишь угол отрыва. Рассмотрим условие отрыва.

В момент отрыва сила реакции N=0. В системе отсчета, связанной с полусферой, масса m до самого отрыва движется по окружности радиуса R. Начиная с момента отрыва система связанная с полусферой является инерциальной системой отсчета. Поэтому для нормального

ускорения массы *m* в момент отрыва можем написать: $a_n = \frac{\tilde{v}^2}{R}$, (5)

где $\tilde{v}^2 = \omega^2 R^2$ - квадрат скорости материальной точки в системе покоя полусферы.

(Отметим, что как следует из (3)-(4) $\tilde{v}^2 = (v_x - V_x)^2 + v_y^2$).

Поскольку в момент отрыва сила реакции N=0, то это нормальное ускорение массе m сообщает лишь нормальная составляющая силы тяжести, $g\cos\theta$.

Таким образом, условие отрыва можно записать в виде: $\omega^2 R = g \cos \theta$. (6)

В (6) под θ понимается уже фиксированное значение угла отрыва.

Исключая алгебраически из уравнений (1)-(4) и (6) величины V_{x} , v_{x} , v_{y} и ω , получим

кубическое уравнение: $\cos^3 \theta - 3p \cos \theta + 2p = 0$, (7),

где
$$p=1+\frac{M}{m}$$
.

В предельном случае m <<М ($p = \infty$) получаем известный результат $\cos \theta = \frac{2}{3}$. А если m >>М

(p=1) получаем очевидный результат $\cos\theta=1$, т.е. $\theta=0$.

В нашем случае $m = M \ (p = 2)$ уравнение (7) принимает вид

$$\cos^{3}\theta - 6\cos\theta + 4 = (\cos\theta - 2)(\cos^{2}\theta + 2\cos\theta - 2) = 0.$$
 (8)

Откуда получаем единственный пригодный корень

$$\cos\theta = \sqrt{3} - 1.$$

Ответ: угол отрыва равен $\cos \theta = \sqrt{3} - 1$.

10 класс стр. 4 из 4

Варианты решения задач III тура Всеукраинской олимпиады по физике (2009 г.) среди старшеклассников Харьковской области. Олимпиада состоялась 7 февраля 2009 года в Харьковском национальном университете на базе физико-технического факультета. Адрес: XHУ имени В.Н.Каразина, пл. Свободы, 4, Харьков, 61077. http://www-htuni.univer.kharkov.ua