Московский государственный технический университет им. Н.Э. Баумана

Факультет «Информатика и системы управления» Кафедра ИУ5 «Системы обработки информации и управления»

Курс «Парадигмы и конструкции языков программирования»

Отчет по Домашнему заданию

«Методы оптимизации градиентного спуска»

Выполнил: Проверил:

студент группы ИУ5-33Б

Громов Владислав Гапанюк Ю.Е.

преподаватель каф. ИУ5

Москва, 2024 г.

Постановка задачи

Реализовать несколько методов оптимизации градиентного спуска на линейной модели (SGD, SAG, momentum gradient, adaptive gradient)

Для начала, немного подготовим данные:

```
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.base import *
import numpy as np
import pandas as pd
from math import asin, cos, sqrt, radians
from sklearn.preprocessing import StandardScaler
from typing import Optional, List
from sklearn.metrics import mean_absolute_error, r2_score
import matplotlib.pyplot as plt
data = pd.read_csv('csv/data.csv')
seed = 25
np.random.seed(seed)
test\_size = 0.2
data_train, data_test, Y_train, Y_test = train_test_split(
  data[data.columns.drop("Sale_Price")],
  np.array(data["Sale_Price"]),
  test_size=test_size,
  random_state=seed)
```

```
target column = "Sale Price"
continuous_columns = [key for key in data.keys() if data[key].dtype in ("int64",
"float64")]
continuous_columns.remove(target_column)
def root_mean_squared_logarithmic_error(y_true, y_pred, a_min=1.):
        assert np.all(y_true >= 0)
       y_pred = np.maximum(y_pred, a_min)
       return np.sqrt(np.mean((np.log(y_true) - np.log(y_pred))**2))
class SmartDataPreprocessor(TransformerMixin):
        def __init__(self, needed_columns: Optional[List[str]]=None):
               self.center\_coords = (42.025333, -93.633801)
                self.needed columns = needed columns
               self.scaler = StandardScaler()
               self.median_lot_frontage = None
       # формула гаверсина для нахождения расстояние
        def distance(self, lat1, long1, lat2, long2):
               r = 6371
               long1r = radians(long1)
               lat1r = radians(lat1)
               long2r = radians(long2)
               lat2r = radians(lat2)
               d = 2 * r * asin(sqrt((1-cos(lat2r-lat1r) + cos(lat1r) * cos(lat2r) * (1 - lat1r) + lat1r) 
\cos(\log 2r - \log 1r))/2)
               return round(d, 2)
```

```
def fit(self, X):
     self.median_lot_frontage = np.median(X['Lot_Frontage'])
     X['Distance\_to\_the\_center'] = X.apply(lambda row:
self.distance(row['Latitude'], row['Longitude'], self.center_coords[0],
self.center_coords[1]), axis=1)
     self.scaler.fit(data[self.needed_columns])
    return self
  def transform(self, X):
     X = X[self.needed\_columns]
     X['Lot\_Frontage'] = X['Lot\_Frontage'].replace({0:}
np.NaN}).fillna(self.median_lot_frontage)
     X = self.scaler.transform(X)
     return X
preprocessor = SmartDataPreprocessor(needed columns=continuous columns)
X_train = preprocessor.fit_transform(data_train)
X_{test} = preprocessor.transform(data_test)
```

Так как, нахождение градиента на всей выборке очень затратная операция придумали метод в котором на каждой итерации берется градиент либо одного элемента либо батча из некоторого количества элементов (32, 64, 128), эксперимент показал, что хотя спуск к минимуму не будет таким плавным, тем не менее матожидание стохастического градиентного спуска является несмещенной оценкой полного градиента.

Теперь реализуем SGDlinearregressor с L2регуляризацией

$$\vec{w}, b = argmin_{\vec{w},b}(L); L = \frac{1}{N} \sum (y_i - \hat{y}_i)^2 + \vec{w}^T \vec{w}$$

$$\nabla_b L = \frac{2}{N} \sum (X\vec{w} + b - \vec{y})$$

$$\nabla_{\overrightarrow{w}}L = \frac{2}{N}X^T(X\overrightarrow{w} + b - \overrightarrow{y}) + 2\overrightarrow{w}$$

Класс должен инициализироваться со следующими гиперпараметрами:

- a. lr learning rate. Длина шага градиентного спуска
- b. regularization коэффициент λ из формулы выше
- c. delta_converged устанавливает условие окончание обучение. В тот момент когда норма разности весов на соседних шагах градиентного спуска меньше чем delta_converged алгоритм перкращает обновлять веса
- d. max_steps максимальное число шагов градиентного спуска

e. batch size - размер батча

```
class SGDLinearRegressor(RegressorMixin):
  def __init__(self,
          lr=0.01, regularization=1., delta_converged=1e-3, max_steps=1000,
          batch_size=64, p=0.32):
     self.lr = lr
     self.regularization = regularization
     self.max\_steps = max\_steps
     self.delta_converged = delta_converged
     self.batch_size = batch_size
        self.p = p
     self.W = None
     self.b = None
  def fit(self, X, Y):
     n_samples, n_features = X.shape
     self.w = np.zeros(n_features)
     self.b = 0
     self.SGD(n_samples, n_features, X, Y)
  def SGD(self, n_samples, n_features, X, Y):
     res = [self.w.copy()]
     for step in range(self.max_steps):
       indices = np.arange(n_samples)
       np.random.shuffle(indices) # перемешиваем индексы
       X_{shuffled} = X[indices]
       Y shuffled = Y[indices]
       # создание батчей
       for i in range(0, n_samples, self.batch_size):
          end_inx = i + self.batch_size
          X_batch = X_shuffled[i:end_inx]
          Y_batch = Y_shuffled[i:end_inx]
          # предсказание
          Y_pred = np.dot(X_batch, self.w) + self.b
         f = Y_pred - Y_batch
         # вычисление градиентов
          grad_w = (2 / self.batch_size) * np.dot(X_batch.T, f) + 2 *
self.regularization * self.w
          grad_b = (2 / self.batch_size) * np.sum(f)
```

```
# обновление весов
         self.w = self.lr * np.power((1 / (1 + step)), self.p) * grad_w
         self.b = self.lr * np.power((1 / (1 + step)), self.p) * grad_b
         res.append(self.w.copy())
      if np.linalg.norm(self.lr * grad_w) < self.delta_converged:
         break
  # предсказание
  def predict(self, X):
    return np.dot(X, self.w) + self.b
model = SGDLinearRegressor()ниансы
model.fit(X train, Y train)
prediction = model.predict(X_test)
print("MAE : ", mean absolute error(Y test, prediction2))
print("Mean log: ", root_mean_squared_logarithmic_error(Y_test, prediction2))
print(r2_score(Y_test, prediction2))
                     X['Lot Frontage'] = X['Lot Fron
                  MAE: 23946.081646283772
                  Mean log: 0.21345462646449107
                   0.7291729272386879
```

Реализация SAG похожа на SGD, но есть некоторые нюансы.

Во-первых сначала вычислим средний градиент на всей выборке . Теперь на каждой итерации мы будем обновлять градиент рандомного одного объекта и пересчитывать средний градиент. Практика показывает, что такой метод тоже будет сходиться к минимуму.

```
self.delta converged = delta converged
     self.W = None
  def fit(self, X, Y):
     X = \text{np.hstack}([X, \text{np.ones}([X.\text{shape}[0], 1])])
     n_samples, n_features = X.shape
     self.W = np.zeros(n\_features)
     res = [self.W.copy()]
     self.SAG(n_samples, n_features, X, Y)
  def SAG(self, n_samples, n_features, X, Y):
     # ищем средний градиент по всей выборке
     memgrad = np.zeros((n_samples, n_features))
     for i in range(n samples):
       Y_pred = np.dot(X[i], self.W)
       f = Y \text{ pred - } Y[i]
       memgrad[i] = 2 * X[i] * f
       \# \text{ memgrad}[i] = 2 * X[i] * (X[i].\text{dot(self.w)} - Y[i])
     avg_memgrad = memgrad.mean(axis=0)
     for step in range(self.max_steps):
       # пересчитываю градиент случайного элемента
       i = np.random.randint(0, n_samples)
       Y_pred = np.dot(X[i], self.W)
       f = Y_pred - Y[i]
       memgrad[i] = 2 * X[i] * f
       avg_memgrad = memgrad.mean(axis=0)
       self.W -= self.lr * avg_memgrad
       if np.linalg.norm(self.lr * avg_memgrad) < self.delta_converged:
          break
  # предсказание
  def predict(self, X):
     X = \text{np.hstack}([X, \text{np.ones}([X.\text{shape}[0], 1])])
     return np.dot(X, self.W)
model2 = SAGLinearRegressor()
model2.fit(X train, Y train)
prediction2 = model.predict(X_test)
print("MAE : ", mean_absolute_error(Y_test, prediction2))
print("Mean log: ", root_mean_squared_logarithmic_error(Y_test, prediction2))
print(r2_score(Y_test, prediction2))
```

Перейдем к momentum grad. Рассмотрим одну проблему: если у нас линии уровня очень вытянуты (а это очень часто бывает) и я делаю град спуск на этих линиях уровня. Т.к градиент ортогонален линиям уровня

Процедура сходимости будет осциллировать. По оси Y у нас осциллирующее движение, а по оси X у нас стабильное. Появилась идея устранить осцилляцию путем сложения или усреднения векторов. Для этого введем дополнительную переменную h0=0 Сначала обновим вектор инерции $h_k=ah_{k-1}+lr\nabla_{\overrightarrow{w}}Q\left(w^{(k-1)}\right)$

Потом обновим вес $w^{(k)} = w^{(k-1)} - h_k$ hk — это затухающее среднее градиентов с прошлых шагов

Реализация:

```
class MomentumGradient(RegressorMixin):
  def __init__(self, learning_rate=0.01, momentum=0.9, max_steps=1000,
delta_converged=1e-5):
     self.learning rate = learning rate # Скорость обучения
     self.momentum = momentum # Параметр момента
     self.max\_steps = max\_steps
     self.delta_converged = delta_converged
    self.w = None
    self.b = None
     self.v = None # Вектор инерции
  def fit(self, X, y):
     X = \text{np.hstack}([X, \text{np.ones}([X.\text{shape}[0], 1])])
    n_samples, n_features = X.shape
     self.w = np.zeros(n\_features)
     self.b = 0
    self.v = np.zeros(n features) # Вектор скорости для коэффициентов и
свободного члена
     for i in range(self.max_steps):
       gradients = self. compute grad(X, y) # Вычисление градиентов
       self.v = self.momentum * self.v + self.learning_rate * gradients #
Обновление вектора скорости
       self.w -= self.v
       # Проверка сходимости
       if np.linalg.norm(self.v) < self.delta_converged:
         break
```

return self

```
def _compute_grad(self, X, y):
    n_samples = X.shape[0]
    y_pred = np.dot(X, self.w) # Предсказание
    error = y_pred - y # Ошибка
    gradients = np.dot(X.T, error) / n_samples # Средний градиент
    return gradients
```

def predict(self, X):

X = np.hstack([X, np.ones([X.shape[0], 1])]) return np.dot(X, self.w) # Предсказание

Адаптивный шаг.

Представим что у нас обучающая выборка где какие-то признаки очень разрежены. Если мы делаем SGD, то мы по очереди высчитываем градиент каждого элемента и по мере прохождения наша длина шага постепенно уменьшается. Частная производная по какому-то весу не нулевая только если признак соответствующий не нулевой. И допустим только на 100 шаге я впервые обновлю вес какого-то разреженного признака, а до этого я уже 100 раз обновил длину шага и она стала маленькой и получается, что этот вес плохо обучится. Возникает идея сделать длину шага свою для каждого веса модели.

Для этого используем новую переменную G0 = 0

Обновляем
$$G_{kj} = G_{k-1,j} + \left(\nabla Q \left(w^{(k-1)} \right) \right)_{j}^{2}$$
 Обновляем вес $w_{j}^{(k)} = w_{j}^{(k-1)} - \frac{lr}{\sqrt{(G_{kj} + epsilon)}} \nabla Q * \left(w^{(k-1)} \right)$

Реализация:

class AdaGradRegressor(RegressorMixin):

def __init__(self, lr=0.1, epsilon=1e-8, max_steps=2000,
delta_converged=1e-3):
 self.lr= lr

```
self.epsilon = epsilon
                 self.max\_steps = max\_steps
                self.delta_converged = delta_converged
                 self.w = None
                 self.b = None
                 self.G = None
        def fit(self, X, y):
                X = \text{np.hstack}([X, \text{np.ones}([X.\text{shape}[0], 1])])
                n samples, n features = X.shape
                self.w = np.zeros(n_features)
                self.G = np.zeros(n_features)
                 self.sum squared gradients = np.zeros(n features)
                for _ in range(self.max_steps):
                         gradients = self.\_compute\_grad(X, y)
                        self.G += gradients**2 # Обновляем накопленную сумму
квадратов градиентов
                         adaptive_lr = self.lr / (np.sqrt(self.G) + self.epsilon)
#адаптивная скорость обучения
                         self.w -= adaptive_lr * gradients
                        if np.linalg.norm(self.lr * gradients) < self.delta_converged:
                                 break
        def _compute_grad(self, X, y):
                 y_pred = np.dot(X, self.w)
                error = y_pred - y_
                gradients = np.dot(X.T, error) / X.shape[0]
                return gradients
        def predict(self, X):
                X = \text{np.hstack}([X, \text{np.ones}([X.\text{shape}[0], 1])])
                return X @ self.w
```