Digital Circuits: Homeworks #3 Solutions

1. Logic Circuit.

Implement a logic circuit for the following truth table.

A	B	C	X
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Solution: Logic Circuit

It is not hard to show that X = B + AC. We can implement a logic circuit for X using one AND gate and one OR gate. Figure 1 shows K-map and logic circuit.

ABC 0 1
00 0 0 B
01 1 1 AC
10 0 1

Figure 1: Problem 1.

2. Adder and Subtracter.

The circuit shown in Figure 2 is a 4-bit circuit that can add or subtract numbers in a form used in computers (positive numbers in true form; negative numbers in 1's complement form).

- (a) Explain what happens when the $\overline{Add}/Subt$ input is HIGH?
- (b) Explain what happens when the $\overline{Add}/Subt$ input is LOW?

Solution: Adder and Subtracter

When $\overline{Add}/Subt$ is LOW, all B_i 's will be flipped. This implies that the circuit adds

Homework 3 Page 1 of 4

Figure 2: Adder and Subtracter.

 $A = A_3 A_2 A_1 A_0$ and 1's complement of $B = B_3 B_2 B_1 B_0$ which is essentially subtracting B from A.

When $\overline{Add}/Subt$ is HIGH, all B_i 's will remain the same. This implies that the circuit adds $A = A_3 A_2 A_1 A_0$ and $B = B_3 B_2 B_1 B_0$ with $C_{in} = 1$ from the beginning. In other words, it computes A + B + 1.

3. Decoder.

If the input waveforms are applied to the decoding logic as indicated in Figure 3, sketch the output waveform in proper relation to the inputs.

Figure 3: Decoder.

Solution: Decoder

Y = 1 if and only if $A_0 = 0, A_1 = 1, A_2 = 1$, or $A_0 = 1, A_1 = 0, A_2 = 1$, or $A_0 = 0, A_1 = 1, A_2 = 0$. Figure 4 shows the output waveform.

4. Multiplexer.

For the multiplexer in Figure 5, input states are given by $D_0 = 1$, $D_1 = 0$, $D_2 = 0$, $D_3 = 1$. Then, determine the output waveform when the data-select inputs are sequenced as shown by the waveforms in Figure 6.

Homework 3 Page 2 of 4

Figure 5: Multiplexer.

${\bf Solution:} \ {\bf Multiplexer}$

The output will be 1 if and only if $S_0 = S_1 = 1$ or $S_0 = S_1 = 0$. Figure 7 shows the output waveform.

Homework 3 Page 3 of 4

Figure 6: Data-Select Input Waveforms.

Figure 7: Problem 4.

Homework 3 Page 4 of 4