

Processing tables with Python

Marcelo L. Zoccoler

With materials from
Robert Haase, PoL – TU Dresden

Pandas

• pandas is a library providing high-performance, easy-to-use data structures and data analysis tools for the Python programming language.

conda install pandas

Processing tables with pandas

- Typical use-case:
 - You get data from a colleague in form of a table
 - You get a table as output of a function and save it to disk
 - Using pandas, you can analyze it in python.
- Loading a table in python using pandas:

```
import pandas as pd

data_frame = pd.read_csv("Measurements_ImageJ.csv", delimiter=',')

data_frame
```

		Area	Mean	Circ.	AR	Round	Solidity
0	1	2610	96.920	0.773	1.289	0.776	1.0
1	2	2100	90.114	0.660	2.333	0.429	1.0
2	3	27	110.222	0.108	27.000	0.037	1.0

Display just the 5 first rows of a table:

Display just the 5 last rows of a table:

Processing tables with pandas

- Typical use-case:
 - You get data from a colleague in form of a table
 - You get a table as output of a function and save it to
 - Using pandas, you can analyze it in python.

How do we get a row from the table?

		Area	Mean	Circ.	AR	Round	Solidity
0	1	2610	96.920	0.773	1.289	0.776	1.0
1	2	2100	90.114	0.660	2.333	0.429	1.0
2	3	27	110.222	0.108	27.000	0.037	1.0

- Accessing a column
 - data_frame["Mean"]

 0 96.920
 1 90.114
 2 110.222
 Name: Mean, dtype: float64

- Determining mean of a column
- import numpy as np np.mean(data_frame["Mean"])

Accessing an individual cell

1.28900000000000001

```
data_frame.loc[0, "Mean"]
```

data_frame.iloc[0, 2]

Processing tables with pandas

Creating tables with pandas

Creating a new table

```
header = ['A', 'B', 'C']

data = [
     [1, 2, 3], # this will later be colum A
     [4, 5, 6], # B
     [7, 8, 9] # C
]

# convert the data and header arrays in a pandas data frame data_frame = pd.DataFrame(data, header)

# show it data_frame
```

• Rotate a table

A B C

0 1 4 7

1 2 5 8

2 3 6 9

```
# rotate/flip it
data_frame = data_frame.transpose()

# show it
data_frame
```

• Save it to disc

```
# save a dataframe to a CSV data_frame.to_csv("output.csv")
```


Selecting rows and columns

Selecting columns

	City	Country	Population	Area_km2
0	Tokyo	Japan	13515271	2191
1	Delhi	India	16753235	1484
2	Shanghai	China	24183000	6341
3	Sao Paulo	Brazil	12252023	1521
4	Mexico City	Mexico	9209944	1485

Selecting rows

-			
1	r	ш	
		u	_

- 1 False
- 2 True
- 3 False
- 4 False

Name: Area_km2, dtype: bool

	City	Country	Population	Area_km2
0	Tokyo	Japan	13515271	2191
2	Shanghai	China	24183000	6341

Citv	Countr

		-
0	Tokyo	Japan
1	Delhi	India
2	Shanghai	China
3	Sao Paulo	Brazil
4	Mexico City	Mexico

Combining similar tables

countries1

Country

Japan

Population

127202192

India 1352642280

China 1427647786

insights.

If tables have the same columns

countries1['Survey	ID']	= 26
countries1		

	Country	Population	Survey ID
0	Japan	127202192	26
1	India	1352642280	26
2	China	1427647786	26

countries2['Survey	ID']	= 73
countries2		

	Country	Population	Survey ID
0	Brazil	209489323	73
1	Mexico	126190788	73

	Country	Population	Survey ID
0	Japan	127202192	26
1	India	1352642280	26
2	China	1427647786	26
0	Brazil	209489323	73
1	Mexico	126190788	73

Country		Population
0	Brazil	209489323
1	Mexico	126190788

	Country	Population
0	Japan	127202192
1	India	1352642280
2	China	1427647786
0	Brazil	209489323
1	Mexico	126190788

Combining different tables

• The big art in data science is the ability of combining information from multiple sources to gain new insights.

		Country	Population			City	Country	Population	4
	0	Japan	127202192		0	Tokyo	Japan	13515271	
	1	India	1352642280		1	Delhi	India	16753235	
	2	China	1427647786		2	Shanghai	China	24183000	
	3	Brazil	209469323		3	Sao Paulo	Brazil	12252023	
	4	Mexico	126190788		4	Mexico City	Mexico	9209944	
ombi ombi		= countr	ries.merge(c	ties, on='Country'	, 9	suffixes=['	_country'	', '_city'])

	Country	Population_country	City	Population_city	Area_km2
0	Japan	127202192	Tokyo	13515271	2191
1	India	1352642280	Delhi	16753235	1484
2	China	1427647786	Shanghai	24183000	6341
3	Brazil	209469323	Sao Paulo	12252023	1521
4	Mexico	126190788	Mexico City	9209944	1485

```
# compute ratio
combined['City_Country_population_ratio'] = combined['Population_city'] / combined['Population_country']
# only show selected columns
combined[['City', 'City_Country_population_ratio']]
```

	City	City_Country_population_ratio
0	Tokyo	0.106250
1	Delhi	0.012386
2	Shanghai	0.016939
3	Sao Paulo	0.058491
4	Mexico City	0.072984

Handling NaNs

- Sometimes tables may contains NaNs (Not a Number). These values may come from missing experimental data or from missing data when merging tables.
- They can introduce errors to calculations with tables.
- The easiest way to drop them is to use the ".dropna" method. This will drop any rows that contain NaN.

```
data_no_nan = data.dropna(how="any")
data_no_nan
```

• But be careful, do not drop NaNs carelessly. Try to investigate first why they are there. Also, you may accidentally discard useful data from other columns.

Tidy-Data

- Tidy data frames follow the rules:
 - Each variable is a column.
 - Each observation is a row.
 - Each type of observation has its own separate data frame.

df['intensity_mean'] > 200

Which of these data is tidy?

		Before		After
	channel_1	channel_2	channel_1	channel_2
0	13.250000	21.000000	15.137984	42.022776
1	44.954545	24.318182	43.328836	48.661610
2	13.590909	18.772727	11.685995	37.926184
3	85.032258	19.741935	86.031461	40.396353

df['intensit	y_mean']	> 200
--------------	----------	-------

	time	label	intensity_mean	area
0	0	1	233.5	20
1	0	2	403.0	40
2	0	3	255.3	30
3	1	1	244.5	20
4	1	2	402.0	40
5	1	3	256.7	30
6	2	1	278.9	20
7	2	2	401.2	40
8	2	3	255.1	30

- Tidy data frames follow the rules:
 - Each variable is a column.
 - Each observation is a row.
 - Each type of observation has its own separate data frame.

Using pd.melt may help tidying data

		Before		After
	channel_1	channel_2	channel_1	channel_2
0	13.250000	21.000000	15.137984	42.022776
1	44.954545	24.318182	43.328836	48.661610
2	13.590909	18.772727	11.685995	37.926184
3	85.032258	19.741935	86.031461	40.396353

df.melt()

	variable_0	variable_1	value
0	Before	channel_1	13.250000
1	Before	channel_1	44.954545
2	Before	channel_1	13.590909
3	Before	channel_1	85.032258
4	Before	channel_1	10.731707
99	After	channel_2	73.286439
100	After	channel_2	145.900739

Split-Apply-Combine

Pol Physics of Life TU Dresden	
--------------------------------------	--

	area	intensity_mean	major_axis_length	minor_axis_length	aspect_ratio	file_name	round
0	139	96.546763	17.504104	10.292770	1.700621	20P1_POS0010_D_1UL	False
1	360	86.613889	35.746808	14.983124	2.385805	20P1_POS0010_D_1UL	False
2	43	91.488372	12.967884	4.351573	2.980045	20P1_POS0010_D_1UL	False
3	140	73.742857	18.940508	10.314404	1.836316	20P1_POS0010_D_1UL	False
4	144	89.375000	13.639308	13.458532	1.013432	20P1_POS0010_D_1UL	True

- compute the median "intensity_mean"
- of round objects

grouped = df.groupby('round')

Apply (calculate median):

df_median = grouped.median()

df_median.reset_index()

	round	area	intensity_mean	major_axis_length	minor_axis_length	aspect_ratio
0	False	270.0	92.788345	21.459495	15.858324	1.412849
1	True	291.0	100.256000	20.155547	18.352287	1.101700

Descriptive [Bio-] statistics

Marcelo L. Zoccoler

With material from

Robert Haase, PoL – TU Dresden

Aldo Acevedo Toledo, Biotec, TU Dresden

Martin J. Bland and Douglas G. Altman

Convenience Sampling

- Select the most accessible and available subjects in target population
- Inexpensive, less time consuming, but sample is nearly always non-representative of target population

Random Sampling

- Select subjects at random from the target population
- Need to identify all in target population first
- Provides representative sample frequently

Systematic Sampling

- Identify all in target population
- Select every nth item as a subject

Stratified Sampling

- Identify important sub-groups in your target population. Sample from these groups randomly or by convenience
- Ensures that important sub-groups are included in sample
- May not be representative

- Raw individual measurements are limited regarding
 - Interpretability
 - Generalization
 - Convincing other scientists

 $700\;\mu m^3$

Cell volume V

 $600 \, \mu m^3$

 $\Delta V = 80 \ \mu m^3$

 $500~\mu m^3$

- Raw individual measurements are result of
 - a stochastic process (cell life-cycle, biology)
 - an experiment (sample-preparation, microscopy)
 - a measurement procedure (e.g. bio-image analysis workflow)

Cell volume V

- Repetitive experiments allow
 - a closer view
 - application of descriptive statistics

Cell volume V

- Repetitive experiments allow
 - a closer view
 - application of descriptive statistics

Cell volume V

Descriptive statistics

- Repetitive experiments allow
 - a closer view

Descriptive statistics

- Descriptive statistics enables summarizing data
 - Abstract models
 - Histograms

Measures of central tendency

• "Where" in parameter space are my samples located?

Measures of central tendency

"Where" in parameter space are my samples located?

Measurement x

Measures of spread

How do my samples vary in parameters space?

Measurement x

Graph adapted from: Aldo Acevedo Toledo, Biotec, TU Dresden Graph adapted from: M. W. Toews - Own work, based (in concept) on figure by Jeremy Kemp, on 2005-02-09, CC BY 2.5, https://commons.wikimedia.org/w/index.php?curid=1903871

Measures of spread

- Percentiles
 - The value under which a given percentage of our samples lie

Measures of spread

Full width at half maximum (FWHM)

