Redes neuronales y algoritmos genéticos

Mario Valdemaro García Roque

Manuel Reyes Sánchez

Índice

- Algoritmos genéticos
- Codificando un algoritmo genético
- Mezclar algoritmos genéticos y retropropagación
- Redes neuronales y algoritmos genéticos juntos
- Costes
- Datos utilizados. Proceso de preparacion
- Resultados
 - Análisis
 - Calidad de predicciones frente a retropropagación
 - Tiempo de entrenamiento

Tratan de imitar:

- La manera de transmitir infórmación entre generaciones de especies biológicas.
- El proceso de adaptación al medio de las especies.
- Procesos como la selección natural, mutaciones o combinación genética.

Supervivencia del individuo mas apto:

- Solo un individuo, que compite con el resto.
- Cuanto mas adaptado esté mas probabilidad de sobrevivir.
- Se recombinan partes de los individuos mas aptos.

Supervivencia coevolutiva:

- Varios individuos que viven en simbiosis.
- Conjunto de clasificadores.
- Cuanto mas adaptados estén mas probabilidad de sobrevivir.
- Recombinacion mas imaginativa, mezclando poblaciones, mezclando individuos, ambas, etc.

Coevolucion:

Codificando un algoritmo genético

Distintas maneras de codificar un genoma:

- Problemas de lógica: se pueden codificar de manera binaria.

Casillas: 00(vacia), 01(círculo) o 10(equis)

Resultados: 00(empate), 01(ganan círculos), 10(ganan

equis)

Redes neuronales y algoritmos genéticos juntos

Tenemos diversas alternativas:

- Un individuo tiene una sola red neuronal
 - Los pesos de las conexiones son los genes
 - Las distitnas neuronas son los genes
- Individuos de varias redes
 - Todas las redes son topológicamente iguales
 - Redes diferentes
 - Los genes son distintos clasificadores

Redes neuronales y algoritmos genéticos juntos

Cuando utilizar un algoritmo genético:

- Inicializar pesos para retropropagación
 - En la incializacion para intentar conseguir una red que no sea mínimo local.
- Individuos de varias redes
 - Comunidades de redes entrenadas por retropropagación que compiten y se mezclan entre ellas.

Coste de retropropagación

Problemas de utilizar varias redes:

```
-Coste computacional retropropagación:
Iniciar pesos;
De 1 a Épocas:
De 1 a NumDatos:
Actualización de la red; // (N_entr*N_int)+(N_int*N_sal)+N_sal
Actualización de los pesos; // N_sal+N_int +(N_int*N_sal)+(N_int*N_sal)
```

```
Coste O (Épocas * NumDatos * (N_ent*N_int + N_int*N_sal))
```

Coste de nuestra versión del algoritmo genético

Problemas de utilizar varias redes:

```
-Coste computacional retropropagación:
    Iniciar pesos;
    De 1 a Épocas:
    De 1 a NumDatos:
    De 1 a NumIndiv:
        Actualización de la red; // (N_entr*N_int)+(N_int*N_sal)+N_sal
        Recombinaciones;
```

Coste O (NumIndiv * Épocas * NumDatos * (N_ent*N_int + N_int*N_sal))

- 1. Delimitamos la intensidad del color
- 2. Seleccionamos cada uno de los números
- 3. Transformamos los datos

Números: genético vs retropropagación

Retro:

10,000 etapas

Error medio = 31.216931216931215 %

1:47.24 elapsed

Genético:

50 indvs 500 etapas

Error medio = 57.67195767195767 %

2:01.21 elapsed

Datos sobre credito bancario.

http://archive.ics.uci.edu/ml/machine-learning-databases/credit-screening/

Credit Approval: genético vs retropropagación

Retro:

10,000 etapas

Error medio = 18.672199170124482 %

0:24.86 elapsed

Genético:

200 indvs 1000 etapas

Error medio = 13.278008298755188 %

3:36.76 elapsed

Referencias

- Combining Genetic Algorithms and Neural Networks: The Encoding Problem (Philipp Koehn, 1994)
- Training Feedforward Neural Networks Using Genetic Algorithms (David J. Montana and Lawrence Davis)
- -http://www.alanzucconi.com/2016/04/06/evolutionary-coputation-1/

Agradecimientos

- Gonzalo Martínez Muñoz

¿Preguntas?