Power Electronics Fundamentals: - Source Generates power - Power Electronics (Delivers power Source - Load) - Load Consumes power Power Converters: (1) DC Power Vo Ex: Charger (Laptop) these two types of power depending on what source/lond needs Vo Ex: Wall outlet TYPES: 2 DC - DC - Switch Mode"

3 DC-AC - Inverter"

Exists, uncommon

Periodic Waveform (it repeats):

Average: (Mean)
$$V_{avg} = \frac{1}{T} \left(V(t) dt \right)$$

Notation:

$$V_{fms} = \int \frac{1}{T} \int_{0}^{T} V(t)^{2} dt$$

- Power seen over a resistor

$$\langle P \rangle = \langle \frac{V(t)^2}{R} \rangle = \frac{V_{ims}^2}{R}$$

Sine Wave:

Average = 0
$$V(+) = A \sin(\frac{2\pi + 1}{T})$$

RMS = $\frac{A}{J_2}$ $A=V_{pook}$

$$V(+) = A \sin\left(\frac{2\pi + 1}{T}\right)$$

Types of Power:

Volt · Amps

(Watts)

Volt. Amp. Reactive

Power Triangle:

$$V(t) = J_2 V_{RMS} cos(wt)$$
 $i(t) = J_2 T_{RMS} cos(wt - \phi)$
 $\phi = \phi_V - \phi_i$

Instantaneous Power:

$$P(+) = V(+) i(+)$$

$$= V_{RMS} I_{RMS} cos(4) + V_{RMS} I_{RMS} cos(2wt - \phi)$$

$$Oscillation$$

Fourier Series Expansion:

$$I_{RMS} = \int I_0^2 + I_1^2 + I_2^2 \cdots$$

VRMS =
$$\int V_0^2 + V_1^2 + V_2^2 \cdots$$

DC Fendamental Higher-order harmonics

Total Harmonic Distortion:

$$THD = \sqrt{I^2 - I_1^2}$$

TIRMS THRMS

$$THD_{v} = \sqrt{\frac{v^{2} - v^{2}}{v_{i}}}$$

For a perfect Sinusoid:
THD = 0

Ideal Diode:

Conduction Losses:

Single Diade AC-DC Converter:

Diode and Capacitor AC-DC Converter:

4 Diode Rectifier: Full-Bridge Positive Flow: $D_2 \rightarrow D_3$ Negative Flow: $D_4 \rightarrow D_1$ ₹RL **₹** 1 **₹** 1³ Positive Cycle Negative Cycle Vo Vo = 1 Vi |

Full Bridge w/Capacitor: Wave Positive Flow: $D_2 \rightarrow D_3$ Negative Flow: 文1² 文 1⁴ $D_4 \rightarrow D_1$ £ ₹RL Regions: ∑ f' ∑ f³ $0d_2 \rightarrow d_3$ ORC CW (Cap dischage) 3 dy -> d, (cap chage) Vi 4) RC CW ((-p dischage) Vo

Half-Wave Rectifier W/capacitor:

