USB bridge

Developer's guide

Main functions

USBCDC

- Serial comm
- /MCLR reset
- Whoami

USBHID

ICSP

MICROCHIP

- Self-configuration
- Echo char on CDC

Pinout

Function	Name	Pin#	
3.0 5.5V	V_{DD}	1	0
RX Activity	/RLED	2	0
TX Activity	/TLED	3	
Pull to V_{DD} with $10k\Omega$	/RST	4	
Data from target	RX	5	
Output to target	TX	6	
Target ICSP DT	IDAT	7	

Pin#	Name	Function
14	V _{SS}	GND
13	USB D+	USB
12	USB D-	USB
11	V_{USB}	470nF to GND
10	GP <u>I</u> O	General purpose IO
9	/MCLR	Target ICSP /MCLR
8	ICLK	Target ICSP CK

Logical structure

USB CDC (virtual serial port) interface

- Setting the DTR active will keep target in RESET
- Clearing the DTR will cycle target RESET pin and release RESET
- Setting baud rate ≤1200
 - Mutes HW UART
 - Sends "Who am I?" JSON string
 - Example {"app":"miniFPGA board","USBFW":"0100","meta_cmd":255}
- Setting baud rate >1200
 - Connects HW UART to CDC UART
 - Unmutes HW UART
 - HW baud rate is not affected! (HWBAUD is set by HID commands!)

USB HID reports

- VID:PID = 0x04D8:0xE594
- Usage page: 0xFF00 (Vendor Page 1)
- Usage: 0x0001 (Vendor Usage 1)
- Report ID 0
 - Read data (64bytes)
 - Write data (64bytes)
 - Get_feature (8bytes)
 - Set_feature (8bytes)

HID get_feature - RPTID0

Returns 8 bytes with the following structure

Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7
MCMD_ID	target_state	HWBaud_L	HWBaud_H	HWBaud_U	PORTA	PORTB	PORTC

```
MCMD_ID → Metacommand value
```

target_state → 0 – Running (MCLR_HIGH)

1 – Transitioning from STOP to RUN (MCLR_LOW)

2 – Stopped (MCLR_LOW)

HWBaud → HW UART baud rate = (HWBaud_U << 16) + (HWBaud_H << 8) + HWBaud_L

PORTA → PORTA value at the moment of executing get_feature

PORTB → PORTB value at the moment of executing get_feature

PORTC → PORTC value at the moment of executing get_feature

HID set_feature – RPTID0

- Executes a single metacommand
- Not all meta commands are available via set_feature
- 8byte buffer is interpreted as:
 - Command (1byte) + no parameters
 - Command (1byte) + unsigned byte parameter (1byte)
 - Command (1byte) + unsigned word parameter (2bytes)

Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7
MCMD_ID	× Don't care	× Don't care	× Don't care	× Don't care	× Don't care	× Don't care	× Don't care
Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7
MCMD_ID	Parameter8	× Don't care					
Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7
MCMD_ID	Parameter16 (L:H)		× Don't care				

HID set_feature - RPTID0 ICSP_MCMD_SET_HWUART_BAUD = 1

- Sets the HW UART new Baud rate
- The 100×Word parameter is set as new Baud rate for HW UART
- Word parameter range is 2...1152
- For 9600 baud the Word parameter = 96, for 115200 → 1152
- Example: 57600baud $\rightarrow 57600/100 \rightarrow 576 \rightarrow 0x240 \rightarrow 0x40;0x02$

Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7
0x01	0x40	0x02	× Don't care				

Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7
0x01	<new 10<="" baud="" rate="" th=""><th>00></th><th>× Don't care</th><th>× Don't care</th><th>× Don't care</th><th>× Don't care</th><th>× Don't care</th></new>	00>	× Don't care				

HID set_feature - RPTID0 ICSP_MCMD_SET_METACMD = 2

- Sets the new metacommand value
- The byte parameter is set as new CMD_ID_MCMD

Example: Set metacommand CMD_ID to 186 → 0xBA

Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7
0x02	0xBA	× Don't care					

Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7
0x02	<new cmd_id_mcmd=""></new>	× Don't care					

HID set_feature - RPTID0 ICSP_MCMD_HWUART_ENABLE = 10

- Enables / disables HW UART bridging to USB CDC
- Non-zero byte parameter enables bridging
- Example: Disable HWUART to CDC Bridging: Enable=0 → 0x00

Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7
0x0A	0x00	× Don't care					

Example: Enable HWUART to CDC Bridging: Enable=1 → 0x01

Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7
0x0A	0x01	× Don't care					

Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7
0x0A	<enable bridging=""></enable>	× Don't care					

HID set_feature - RPTID0 ICSP_MCMD_USBCDC_SEND = 11

- Send ASCII character to USB CDC. HW UART is not affected
- Byte parameter is the ASCII value to send to CDC UART
- Used to check if serial port open is connected to this HID device
- Example: Send 'U' to USBCDC 'U'→0x55

Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7
ОхОВ	0x55	× Don't care					

Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7
0x0B	<ascii character=""></ascii>	× Don't care					

HID OUT (write) commands

- USB HID interface is used to send ICSP commands to target
- All commands are 4 bytes in length
- Each command is passed through an internal interpreter
- HID Write always sends 16 commands, 4bytes each
- If less than 16 commands are used, fill rest with "MCMD_NOP"

HID OUT (write) ICSP commands

- An ICSP command consist of a CMD and optionally a Payload
- The CMD & Payload values are in the PIC Programming Specs DS
- {#CMD bits} and {#Data bits} are adjustable (described later)
- The USB bridge will shift out total {#CMD bits} + {#Data bits} bits
- No Payload expected? Set {#Data bits} to 0!

HID ICSP metacommands

- Metacommands not part of the ICSP protocol
- Metacommand if CMD_ID == CMD_ID_MCMD (default 0xFF)
- Usually for setting parameters and control the interpreter
- Example metacommands:
 - Enter / exit LVP mode / reset target
 - Change HW baud
 - Delay X microsec
 - Read data
 - Echo char from HID to CDC
 - Read data from target
 - etc.
- Only transmitting data to the target if specifically noted in doc.

HID ICSP metacommand format

- Only Interpreter decides if command is transmitted over ICSP or treated as metacommand
- All commands where CMD_ID ≠ CMD_ID_MCMD are transmitted to ICLK/IDAT pins
- Metacommand has 0 or 1 parameter (8/16bit)

	Byte0	Byte1	Byte2	Byte3
ICSP CMD	CMD_ID (8bit)		PARAM (24bit)	
Metacmd	> CMD_ID_MCMD	MCMD_ID	× Don	't care
Metacmd	> CMD_ID_MCMD	MCMD_ID	Parameter8	× Don't care
Metacmd	> CMD_ID_MCMD	MCMD_ID	Paramete	er16 (L:H)

HID IN (read) commands

- After execution of a command block, a HID response is sent
- All command responses are 4 bytes in length
- HID Reply always sends 16 responses, 4bytes each
- Most of the responses are equal to the command byte sequence

HID metacommand ICSP_MCMD_NOP = 0

No operation. Used for filling the HID buffer

Example: No operation (CMD_ID_MCMD = 0xFF)

	Byte0	Byte1	Byte2	Byte3
$CMD \rightarrow$	0xFF	0x00	0x00	0x00
Reply \rightarrow	0xFF	0x00	0x00	0x00

	Byte0	Byte1	Byte2	Byte3
\rightarrow	CMD_ID_MCMD	0x00	× Do	on't care
y o	CMD_ID_MCMD	0x00	× Don't care < same of	as CMD Byte2 and Byte3 >

 $CMD \rightarrow Reply \rightarrow$

HID metacommand ICSP_MCMD_SET_HWUART_BAUD = 1

- Sets the HW UART new Baud rate
- The 100×Word parameter is set as new Baud rate for HW UART
- Word parameter range is 2...1152
- For 9600 baud the Word parameter = 96, for 115200 → 1152
- Exact baud baud rate set can be read with HID get_feature
- Example: 57600baud $\rightarrow 57600/100 \rightarrow 576 \rightarrow 0x240 \rightarrow 0x40;0x02$

	Byte0	Byte1	Byte2	Byte3
$CMD \rightarrow$	0xFF	0x01	0x40	0x02
Reply \rightarrow	0xFF	0x01	0x40	0x02
	Byte0	Byte1	Byte2	Byte3
$CMD \rightarrow$	Byte0 CMD_ID_MCMD	0x01		Byte3 aud rate / 100>

HID metacommand

ICSP_MCMD_SET_METACMD = 2

- Sets the new CMD_ID_MCMD
- CMD_ID_MCMD changes only if new CMD_ID_MCMD ≤255
- Example: Set new CMD_ID_MCMD to $100 \rightarrow 0x0064 \rightarrow 0x64;0x00$

	Byte0	Byte1	Byte2	Byte3
$CMD \to$	0xFF	0x02	Ox64	0x00
Reply \rightarrow	0xFF	0x02	0x64	0x00

• Example: Set new CMD_ID_MCMD to 999→0x03E7→0xE7;0x03

	Byte0 Syt	e1 B	yte2		Byte3
$CMD \rightarrow$	0x64)x02		0xE7	0x03
Reply \rightarrow	0x64)x02	→	0x64	0x00
	Byte0	Byte1	Byte2		Byte3
$CMD \to$	CMD_ID_MCMD	0x02		<new c<="" td=""><td>MD_ID_MCMD></td></new>	MD_ID_MCMD>
Reply \rightarrow	Previous CMD_ID_MCMD	0x02		<cmd_id_mcmd effe<="" in="" td=""><td>ct after this command completed></td></cmd_id_mcmd>	ct after this command completed>

HID metacommand ICSP MCMD SET CMD BITS = 3

- Sets # of bits transmitted to target from the ICSP 8bit CMD_ID
- 1 < {#CMD bits} ≤ 8 (Default: =8)

	Byte0	Byte1	Byte2	Byte3
$CMD \to$	0xFF	0x03	Ox06	0x00
Reply \rightarrow	0xFF	0x03	0x06	0x00

• Example: Set new {#CMD bits} to 9999→0x270F→0x0F;0x27

	Byte0	Byte1	Byte2		Byte3
$CMD \rightarrow$	0xFF	0x03		0x0F	0x27
Reply \rightarrow	0xFF	0x03		0x06	0x00
	Byte0	Byte1	Byte2		Byte3
	•	-,			5,005
$CMD \rightarrow$	CMD_ID_MCMD	0x03	Dyte=	<new td="" {<=""><td>#CMD bits} ></td></new>	#CMD bits} >

HID metacommand

ICSP_MCMD_SET_DATA_BITS = 4

- Sets # of bits transmitted to target from the ICSP 24bit PARAM
- 0 ≤ {#Data bits} ≤ 24 (Default: =24)
- Example: Set new $\{\#Data\ bits\}\ to\ 16 \rightarrow 0x0010 \rightarrow 0x10;0x00$

	Byte0	Byte1	Byte2	Byte3
$CMD \to$	0xFF	0x04	Ox10	0x00
Reply \rightarrow	0xFF	0x04	0x10	0x00

• Example: Set new {#Data bits} to 55→0x0037→0x37;0x00

	Byte0	Byte1	Byte2		Byte3
$CMD \rightarrow$	0xFF	0x04		0x37	0x00
Reply \rightarrow	0xFF	0x04		0x10	0x00
	Byte0	Byte1	Byte2		Byte3
CMD →	Byte0 CMD_ID_MCMD	Byte1 0x04	Byte2	<new td="" {<=""><td>Byte3 #Data bits} ></td></new>	Byte3 #Data bits} >

HID metacommand with pin state changes ICSP_MCMD_LVP_ENTER = 5

- Enter low voltage programming mode if possible (takes ≈25ms)
- LVP can be disabled in CONFIG bits (1)
- Factory shipped (blank) devices has LVP enabled
- It is not verified if the target is successfully in LVP
- The command will keep target \overline{MCLR} pin low, ICLK \rightarrow OutputL (Λ)
- Example: Enter LVP with default (MSB first) method

•	Byte0	Byte1	Byte2	Byte3
$CMD \rightarrow$	0xFF	0x05	0x00	0x00
Reply →	0xFF	0x05	0x00	0x00
	Byte0	Byte1	Byte2	Byte3
CMD →	Byte0 CMD_ID_MCMD	Byte1 0x05	•	Byte3 on't care

HID metacommand with pin state changes ICSP_MCMD_LVP_ENTER = 5

- In FW v1.2 alternative method for enter LVP is defined
- Method 1 = 0xFE01
- Valid for devices where LSb must be shifted in first to enter LVP
- Shift direction change affects only the enter LVP key sequence

• Example: Enter LVP with LSB first method \rightarrow 0xFE01 \rightarrow 0x01;0xFE

	Byte0	Byte1	Byte2	Byte3
$CMD \to$	0xFF	0x05	0x01	0xFE
Reply \rightarrow	0xFF	0x05	0x01	0xFE
	Byte0	Byte1	Byte2	Byte3
CMD →	Byte0 CMD_ID_MCMD	Byte1 0x05		Byte3 ethod ID

HID metacommand with pin state changes ICSP MCMD_LVP_EXIT = 6

Set ICLK→Input, IDAT→INPUT, release target MCLR

• Example: Release target MCLR → run the code

	Byte0	Byte1	Byte2	Byte3
CMD o	0xFF	0x06	0x00	0x00
Reply \rightarrow	0xFF	0x06	0x00	0x00

CMD	\rightarrow
-----	---------------

Rep	ly	\rightarrow
-	· /	•

Byte0	Byte1	Byte2	Byte3
CMD_ID_MCMD	0x06	× Don't care	
CMD_ID_MCMD	0x06	× Don't care < same as CMD Byte2 and Byte3 >	

HID metacommand

ICSP_MCMD_DELAY_us = 7

- Immediate delay for <parameter16> μsec
- Delays in a loop⇒<parameter16>×(1µsec + loop instruction exec)
- Maximum delay ≈65.5msec

• Example: Delay $\approx 1 \text{ms} \rightarrow 1000 \rightarrow 0 \times 03E8 \rightarrow 0 \times E8;0 \times 03$

	Byte0	Byte1	Byte2	Byte3
$CMD \to$	0xFF	0x07	0xE8	0x03
Reply \rightarrow	0xFF	0x07	0xE8	0x03

	Byte0	Byte1	Byte2	Byte3
$CMD \to$	CMD_ID_MCMD	0x07	Delay le	ength in μsec
Reply \rightarrow	CMD_ID_MCMD	0x07	Delay le	ength in μsec

HID metacommand with pin state changes ICSP MCMD READ CMD = 8

- Sends RD_CMD_ID ICSP command and reads data response
- Parameter RD_CMD_ID sent according to {#CMD bits}
- Replies zero padded {#Data bits} from device
- Example: Read empty FLASH word from PIC16F13145

Read Data from NVM→ RD_CMD_ID=0xFC Empty FLASH=0x003FFF

	Byte0	Byte1	Byte2	Byte3	
$CMD \rightarrow$	0xFF	0x08	0xFC	0x00	
Reply \rightarrow	0xFC ◆	0xFF	0x3F	0x00	
	0x003FFF				

CMD	\rightarrow
Dank	\

Byte0	Byte1	Byte2	Byte3
CMD_ID_MCMD	0x08	ICSP Read RD_CMD_ID	× Don't care
RD_CMD_ID	DATA_L	DATA_H	DATA_U

HID metacommand ICSP_MCMD_GET_HWUART_BAUD = 9

Get exact HW UART baud rate

Example: HW UART baud?→Exact baud=115213→0x01C20D

	Byte0	Byte1	Byte2	Byte3
$CMD \rightarrow$	0xFF	0x09	0x00	0x00
Reply \rightarrow	0xFF	0x0D	0xC2	0x01

	Byte0	Byte1	Byte2	Byte3
\rightarrow	CMD_ID_MCMD	0x00	× Don't care	
\rightarrow	CMD_ID_MCMD		Exact baud rate	<24bits>

 $CMD \rightarrow Reply \rightarrow$

HID metacommand ICSP MCMD HWUART_ENABLE = 10

- Enables or disables HWUART ←→ CDC bridging
- Useful for avoiding random characters during programming
- Example: Enable HWUART \leftrightarrow CDC bridging \rightarrow 0x0001 \rightarrow 0x01;0x00

	Byte0		Byte2	Byte3
$CMD \to$	0xFF	0x0A	0x01	0x00
Reply →	0xFF	0x0A	0x01	0x00

• Example: Disable HWUART \leftrightarrow CDC bridging \rightarrow 0x00000 \rightarrow 0x00;0x00

	Byte0	Byte1	Byte2	Byte3	
$CMD \rightarrow$	0xFF	0x0A	0x00	0x00	
Reply \rightarrow	0xFF	0x0A	0x00	0x00	
	Byte0	Byte1	Byte2	Byte3	
	C1 1D 1 1 1 1 1 1 D				
$CMD \rightarrow$	CMD_ID_MCMD	0x0A	<non-zero enable<="" td="" to=""><td>HWUART to CDC bridging></td></non-zero>	HWUART to CDC bridging>	

HID metacommand ICSP_MCMD_USBCDC_SEND = 11

- Sends ASCII character to USB UART (USBCDC)
- HWUART not affected!

CI

Re

- Reply contains Success/Fail indication
- Used to match HID to USBCDC
- Example: Send 'U' to USBCDC \rightarrow 0x55 \rightarrow 0x0055 \rightarrow 0x55;0x00

	Byte0		Byte2	Byte3
$CMD \to$	0xFF	0x0B	0x55	0x00
Reply \rightarrow	0xFF	0x0B	0x55	0x01

	Byte0	Byte1	Byte2	Byte3
$MD \rightarrow$	CMD_ID_MCMD	0x0B	ASCII character value to send via USBCDC	× Don't care
eply o	CMD_ID_MCMD	0x0B	ASCII character value	0x00→queue full 0x01→ASCII char queued

ts subsidiaries MICROCHIP

HID metacommand with pin state changes ICSP MCMD GPIO = 12

- Controls IO pins (0=Out, 1=Input, 0=Low, 1=High)
- 1st set direction, 2nd write outputs, 3rd read inputs
- Reply contains digital value on the PIN (0=Low, 1=High)
- Used to blink RX/TX LEDs, add virtual buttons & LEDs
- **A** Setting Pin5 or Pin6 to output, disables HW UART!

 Example: TXLED=off, RXLED=on, other pins=input → 0xFC;0x0

	Byte0		Byte2	Byte3	
$CMD \to$	0xFF	0x0B	0xFC	0x02	
Reply \rightarrow	0xFF	0x0B	0xFE	0x02	
	Byte0	Byte1	Byte2	Byte3	
CMD →	Byte0 CMD_ID_MCMD	Byte1 0x0B	Pin I/O Direction values	Set OUTPUT pins H/L values	

HID metacommand ICSP MCMD_DELAY_ms = 13

- Immediate delay for <parameter16> msec
- Maximum delay ≈1h5min
- Delay will be interrupted on reception of new HID Write packet
- On interrupt ,no reply, new packet will be processed from ICSP0
- Example: Delay $\approx 100 \text{ms} \rightarrow 100 \rightarrow 0 \times 0064 \rightarrow 0 \times 64;0 \times 00$

	Byte0	Byte1	Byte2	Byte3
$CMD \to$	0xFF	0x0D	0x64	0x03
Reply \rightarrow	0xFF	0x0D	0x64	0x03

	Byte0	Byte1	Byte2	Byte3
$CMD \to$	CMD_ID_MCMD	0x0D	Delay le	ength in msec
Reply \rightarrow	CMD_ID_MCMD	0x0D	Delay le	ength in msec

ICSP REVID&DEVID read sequence example

PIC16F13145

Programming Specs: DS40002500B

JS: sendFeatureReport() Win: HidD_SetFeature() PY hidapi: send_feature_report()

byte0	byte1	Comment
0x02	0xFF	HID set feature — RPTIDO: ICSP MCMD SET METACMD = 2 → No 0xFF ICSP cmd, set CMD_ID_MCMD to 0xFF (Pgspec P13, Table 3-1 . ICSP™ Command Set)

JS: write() Win: write() PY hidapi: write()

byte0	byte1	byte2	byte3	Comment
0xFF	0x06	0x00	0x00	<u>ICSP_MCMD_LVP_EXIT = 6</u> \rightarrow LVP Exit (Make sure, chip is able to go in LVP)
0xFF	0x03	0x08	0x00	ICSP MCMD SET CMD BITS = 3 → Set ICSP {#CMD bits} to 8 (Pgspec P12 - 3.2 Program/Verify Commands)
0xFF	0x04	0x18	0x00	ICSP MCMD SET DATA BITS = 4 → Set ICSP {#Data bits} to 24 (Pgspec P12 - 3.2 Program/Verify Commands)
0xFF	0x05	0x00	0x00	ICSP MCMD LVP ENTER = 5 → LVP Enter with MSB first method (Pgspec P11 – 3.1.2 Low-Voltage Programming (LVP) Mode)
0x80	0x0A	0x00	0x01	HID OUT (write) ICSP commands → Set program counter to REVID location(0x8005<<1) (Pgspec P14 - 3.2.1 Load PC Address)
0xFF	0x08	0xFE	0x00	ICSP MCMD READ CMD = 8 → Read location at PC with PC increment \rightarrow REVID (Pgspec P16 - 3.2.5 Read Data from NVM)
0xFF	0x08	0xFC	0x00	<u>ICSP_MCMD_READ_CMD = 8</u> \rightarrow Read location at PC \rightarrow DEVID (Pgspec P16 - 3.2.5 Read Data from NVM)
0xFF	0x06	0x00	0x00	ICSP MCMD LVP EXIT = 6 → LVP Exit
0xFF	0x00	0x00	0x00	ICSP MCMD NOP = 0 → NOP
0xFF	0x00	0x00	0x00	<u>ICSP_MCMD_NOP = 0</u> → NOP
:	÷	÷	÷	
:	:	÷	:	i
0xFF	0x00	0x00	0x00	Sixteenth instruction : $\underline{ICSP MCMD NOP = 0} \rightarrow NOP$

ICSP REVID&DEVID read sequence example

PIC16F1455

Programming Specs: DS41620C

JS: sendFeatureReport() Win: HidD_SetFeature() PY hidapi: send_feature_report()

byte0	byte1	Comment
0x02	0xFF	HID set feature — RPTIDO: ICSP MCMD SET METACMD = 2 → No 0xFF ICSP cmd, set CMD_ID_MCMD to 0xFF (Pgspec P13, Table 4-1 . Command Mapping)

JS: write() Win: write() PY hidapi: write()

byte0	byte1	byte2	byte3	Comment
0xFF	0x06	0x00	0x00	ICSP_MCMD_LVP_EXIT = 6 → LVP Exit (Make sure, chip is able to go in LVP)
0xFF	0x03	0x06	0x00	ICSP_MCMD_SET_CMD_BITS = 3 → Set ICSP {#CMD bits} to 6 (Pgspec P14 - 4.3 Program/Verify Commands)
0xFF	0x04	0x10	0x00	ICSP_MCMD_SET_DATA_BITS = 4 → Set ICSP {#Data bits} to 16 (Pgspec P14 – 4.3 Program/Verify Commands)
0xFF	0x05	0x01	0xFE	ICSP_MCMD_LVP_ENTER = 5 → LVP Enter with LSB first method (Pgspec: P13 – 4.2 Low-Voltage Programming (LVP) Mode)
0x00	0x00	0x00	0x00	HID OUT (write) ICSP commands → Set program counter to CONFIG location (0x8000) (Pgspec P14 - 4.3.1 Load Configuration)
0xFF	0x04	0x18	0x00	ICSP_MCMD_SET_DATA_BITS = 4 → Set ICSP {#Data bits} to 24 → CMD6+4*CMD6bit as parameter = 5×CMD6
0x06	0x18	0x86	0x61	<u>HID OUT (write) ICSP commands</u> \rightarrow send 5×{6bit command} 0x06 \rightarrow 5× Increment pointer \rightarrow PC=0x8005
0xFF	0x04	0x10	0x00	ICSP_MCMD_SET_DATA_BITS = 4 → Set ICSP {#Data bits} to 16 (Pgspec P14 – 4.3 Program/Verify Commands)
0xFF	0x08	0x04	0x00	ICSP_MCMD_READ_CMD = 8 \rightarrow Read location at PC \rightarrow REVID (Pgspec P15 - 3.2.5 Read Data from NVM)
0xFF	0x04	0x00	0x00	ICSP_MCMD_SET_DATA_BITS = 4 → Set ICSP {#Data bits} to 0, Increment address command has no data (Pgspec P14 – 4.3 Program/Verify Commands)
0x06	0x00	0x00	0x00	<u>HID OUT (write) ICSP commands</u> → Increment PC Address → PC=0x8006 (Pgspec P15 – 4.3.4 Increment Address)
0xFF	0x04	0x10	0x00	ICSP MCMD SET DATA BITS = 4 → Set ICSP {#Data bits} to 16 (Pgspec P14 – 4.3 Program/Verify Commands)
0xFF	0x08	0x04	0x00	ICSP_MCMD_READ_CMD = 8 \rightarrow Read location at PC \rightarrow DEVID (Pgspec P15 - 3.2.5 Read Data from NVM)
0xFF	0x06	0x00	0x00	ICSP_MCMD_LVP_EXIT = 6 → LVP Exit (Make sure, chip is able to go in LVP)
0xFF	0x00	0x00	0x00	ICSP_MCMD_NOP = 0 → NOP
0xFF	0x00	0x00	0x00	ICSP_MCMD_NOP = 0 → NOP

