

Intelligence Artificielle pour les systèmes autonomes (IAA)

Introduction au cours IAA

Prof. Yann Thoma - Prof. Marina Zapater

Février 2024

Basé sur le cours du Prof. A. Geiger

Yann Thoma, YTA

Coordonnées

- → Bureau A11, niveau A
- → E-mail: <u>yann.thoma@heig-vd.ch</u>
- → Professeur à l'institut REDS depuis Février 2009
- → Répartition de mes activités:
 - 40% enseignement
 - 60% recherche

Mon parcours

- → 2001: Diplôme d'ingénieur en informatique de l'EPFL
- → 2005: Doctorat EPFL (systèmes reconfigurables)
- → 2005-2009: Chargé d'enseignement à l'EIG (hepia) (systèmes numériques)
- → 2006-2008: Ingénieur pour le Groupe de Physique Appliquée de l'UniGe
- → 2009-????: Professeur à l'institut REDS
 - FPGA
 - Informatique embarquée
 - Informatique
- → 2015-2018: Directeur de l'institut REDS
- → 2018-2019: Professeur visiteur à l'Université de New South Whale (Sydney)

Enseignement

Du matériel au logiciel

- → Systèmes logiques
- → Architecture des processeurs
- → Conception avancée de systèmes sur FPGA
- → Vérification des systèmes embarqués
- → Programmation concurrente
- → Programmation temps réel
- → (Un peu de dispositif médical)

Quelques projets en lien avec le sujet du cours

SpikeOnChip

Detecting neural network activity (yes, real ones)

SpikeOnChip

MOVABLE-H3PoC

Quantification of malaria infection degree

- → Low-cost system for Plasmodium Falciparum (resp. malaria) detection
- → Diagnosis based on machine learning technics
- → Embedded camera on a microscope to democratize access to advanced diagnostic technologies

Tucuxi

Dosage adaptation based on Bayesian maximum likelihood

AI4Drugs

Intelligent Platform for Drug Response in Precision Oncology

Support de cours

Outils

- → Cyberlearn:
 - 23-24_HEIG-VD_Inteligence artificielle pour les systèmes autonomes (IAA)
 - Clé: 2024-IAA
- **→ Teams: IAA 2024**
 - Clé du groupe: n6ucx5y
- → Gitlab pour les rendus des labos

Cours IAA

Objectifs d'apprentissage

Cours

- → Comprendre les principes des véhicules autonomes (drones, voitures, robots)
- → Méthodes et algorithmes d'IA nécessaires pour la conduite autonome
- → Constraintes des systemes embarqués
 - Et de ceux basés sur RISC-V

Labo

→ Appliquer les connaissances apprises en cours afin de faire voler un drone ©

Cours IAA

Fiche d'unité et évaluation

- → Connaissances préalables:
 - C++, systèmes exploitation, réseaux neuronaux, architecture processeur
- → 64 périodes
- → 32 périodes cours + 32 périodes labo
- → 2 tests / travaux individuel
- → 6 laboratoires en binôme
 - Notés ou non, mais sera annoncé
- → Pas d'examen!
- → Note finale: moyenne cours x 0.67 + moyenne laboratoire x 0.33

Quelques règles de participation...

- Etre présent aux cours et aux laboratoires. La présence est OBLIGATOIRE!
 Un taux d'absence supérieur à 15% peut invalider votre module.
- 2. Si vous allez être absent, essayez de prévenir à l'avance (par e-mail!).
- 3. Ne pas arriver en retard aux cours ou aux laboratoires, svp.

 Les informations importantes sont toujours données au début du cours.
- La participation est la bienvenue tout comme l'interactivité.
 N'ayez pas peur de répondre, au contraire!!
- → Et les questions sont bienvenues

Utilisation de l'IA pour le cours IAA

"Al policy"

- → Utilisation de github coPilot et chatGPT encouragé
 - Ça existe, oui → parlez avec vos collègues si vous ne le connaissez pas
 - Vous allez l'utiliser dans l'avenir, sûrement...
- → Mais je vous demande de:
 - Lors de rendus, si vous utilisez chatGPT, <u>vous devez clairement l'écrire.</u> Vous devez me fournir un paragraphe indicant:
 - · Pour quelles parties vous l'avez utilisé
 - Prompts utilisés
 - chatGPT fait des bons commentaires pour le code et de la bonne doc ;)
 - Si possible, j'aimerais avoir un retour: Utilité? Limitations?
- → Beware!
 - IMHO: "Minimum-effort prompts lead to low-quality results"
 - Don't trust anything it says. Facts need to be double-checked.

Cours

Les grands parties de la théorie du cours IAA

- → Introduction
- → Systèmes autonomes embarqués (et processeur RISC-V)
- → End-to-end learning
- → Low-level perception & Actuators
- → Modular pipeline
- → Apprentissage collaboratif

Organisation des cours de théorie

Les bénefices des unités à choix et de la 3ème année ;)

- → Moins de théorie ou d'exos guidés
- → Plus de travail individuel pour vous permettre d'avancer à votre rythme (et choisir ce qui vous intéresse le plus)
 - 1 période de théorie
 - 1 période de travail individuel
- → Je vous laisse le temps de vous épanouir
- → Mais, à vous de choisir ce qui vous intéresse et d'y travailler en profondeur
 - Embarqué vs IA, par exemple!

Labo

Déroulement du labo

- → 6 laboratoires:
 - Lab1: Intro à l'environnement (2 séances pas noté)
 - Lab2: Drone-only end-to-end learning (2 séances)
 - Lab3: GAP8 et AlDeck (2 séances)
 - Lab4: Drone-cloud collaboration (2 séances)
 - Lab5: Model quantization on the drone (2 séances)
 - Lab6: Drone mission planning (3 séances)
- → Rendu code (gitlab) + readme/commentaires
 - Petit rapport (à voir selon labo)
- → Labos en binôme
 - Fortement recomandé de mélanger vos compétences !!
 - Plus proche de l'expérience réelle dans une enterprise
 - Vous permettra d'avancer plus vite

Crazyflie 2.1 Nanodrone

Support humain pour le labo

En A23

- → Guillaume Chacun
 - guillaume.chacun@heig-vd.ch

- → Mehdi Akeddar
 - mehdi.akeddar@heig-vd.ch

- → Thomas Rieder (en support)
 - thomas.rieder@heig-vd.ch

Planning (mis à jour le 16.02.24)

Que nous allons essayer de suivre...

YTA - Groupe A (mardi 15h)					Groupe A (mardi 16h30)			
<u>Semaine</u>		Cours	Dates	Nb périodes	Labos	Dates labos	rendu le	Nb périodes
8	1	Introduction et principes des systèmes autonomes	20/2	4	Deep Learning Recap + Intro Crazyflie	20/2	1	
9	2	Systèmes autonomes embarqués	27/2	2	Lab 1 - Intro à l'environment	27/2		2
10	3	End-to-end Learning & Direct Perception	6/3	2	Lab 1 - Intro à l'environment + Quizz	6/3	1	2
12		CRUNCH	13/3			13/3	3	
11	4	Reinforcement Learning	20/3	2	Lab 2 - End-to-End Learning (IA)	20/3	1	2
13	5	Vehicle dynamics and control	27/3	2	Lab 2 - End-to-End Learning (IA)	27/3	1	2
15		Vacances de pâques	3/4			3/4	ļ.	
14	6	Modular Pipeline: Low-level perception (odometry, SLAM, localization)	10/4	2	Lab 3 - GAP8 et AIDeck	10/4		2
16	7	Modular Pipeline: Low-level perception (odometry, SLAM, localization)	17/4	2	Lab 3 - GAP8 et AIDeck	17/4		2
17	8	TE1	24/4	2	Lab 4 - Drone-cloud collaboration (IA)	24/4		2
18	9	Modular Pipeline: Scene Parsing	1/5	2	Lab 4 - Drone-cloud collaboration (IA)	1/5	6	2
19	10	Modular Pipeline: Object detection and tracking	8/5	2	Lab 5 - Model quantization on the drone	8/5	5	2
20	11	Modular Pipeline: Decision making and Planning	15/5		Lab 5 - Model quantization on the drone	15/5	i	2
21	12	Apprentissage collaboratif et communication V2V	22/5	2	Lab 6 - Drone mission planning	22/5	i	2
22	13		29/5	2	Lab 6 - Drone mission planning	29/5		2
23	14	TE2	5/6	2	Lab 6 - Drone mission planning	5/6	,	2
24	15		12/6	2	Lab 6 - Demo	12/6		2

Questions?

Tour de table !!

- \rightarrow Nom, prénom
- → Orientation
- → Autres cours / sujet TB / Concours robotique
- → "Wishlist" pour le cours IAA

HE TG

REDS
Institut
Reconfigurable
and Embedded

Digital Systems

