Package 'RSEIS'

September 13, 2024

Type Package								
Title Seismic Time Series Analysis Tools								
Version 4.2-4								
Date 2024-09-12								
Depends R (>= 3.0)								
Imports RPMG, Rwave, stats								
Suggests GEOmap								
Author Jonathan M. Lees [aut, cre], Jake Anderson [ctb], Leonard Lisapaly [ctb], Dave Harris [aut, cph]								
Maintainer Jonathan M. Lees <jonathan.lees@unc.edu></jonathan.lees@unc.edu>								
Description Multiple interactive codes to view and analyze seismic data, via spectrum analysis, wavelet transforms, particle motion, hodograms. Includes general time-series tools, plotting, filtering, interactive display.								
License GPL (>= 2)								
Copyright see inst/COPYRIGHTS								
NeedsCompilation yes								
Repository CRAN								
Date/Publication 2024-09-12 22:10:28 UTC								
Contents								
RSEIS-package addpoints.hodo addtix addWPX applytaper ASCII.SEISN attime12 AUGMENTbutfilt	10 11 12 13 14							

autoreg	 	 	 	 	 	 	16
brune.doom	 	 	 	 	 	 	17
brune.func	 	 	 	 	 	 	18
brune.search	 	 	 	 	 	 	19
butfilt	 	 	 	 	 	 	20
BUTREPLOT							22
catWPX							24
CE1							25
checkWPX							25
choosfilt							26
CHOP.SEISN							28
circ							29
							29 29
cleanpickfile							
cleanWPX							30
colorwig							31
combineSEIS							32
comp.env							33
Comp1Dvel	 	 	 	 	 	 	34
Comp1Dvels	 	 	 	 	 	 	35
complex.hodo	 	 	 	 	 	 	36
COMPorder	 	 	 	 	 	 	37
contwlet							38
convert2Rseis							39
convertATT							40
correct.moveout							41
DAYSperYEAR						• •	42
DECIMATE.SEISN						• •	42
deconinst							44
deleteWPX							45
detail.pick							46
detrend							47
							48
DISPLACE.SEISN							
distseisnXY							49
DISTxsec							50
DO.PMOT.ARR							52
doGABOR.AR							53
doGABOR.MTM							54
doMYBUTTS							56
DOsgram	 	 	 	 	 	 	57
dowiggles	 	 	 	 	 	 	58
downsample	 	 	 	 	 	 	59
editDB	 	 	 	 	 	 	60
EmptyPickfile	 	 	 	 	 	 	62
EmptySEIS							63
envelope							63
EPOCHday							64
EPOCHyear							65
ETECTG							66
				 	 	 	$-\omega \omega$

evolAR											67
evolfft											69
evolMTM	 	 	 	 	 	 					70
FAKEDATA											72
filedatetime	 	 	 	 	 	 					74
FILT.SEISN	 	 	 	 	 	 					75
FILT.spread	 	 	 	 	 	 					76
filterstamp	 	 	 	 	 	 					77
finteg	 	 	 	 	 	 					79
fixcompname	 	 	 	 	 	 					80
$fix comps \ . \ . \ . \ .$	 	 	 	 	 	 					80
$fixNA \ \dots \ \dots$	 	 	 	 	 	 					81
fix UW stas LL . .	 	 	 	 	 	 					83
fromjul	 	 	 	 	 	 					83
$FRWDft\ .\ .\ .\ .\ .$	 	 	 	 	 	 					84
gaddtix	 	 	 	 	 	 					85
$GAZI \ \dots \ \dots$	 	 	 	 	 	 					86
genrick	 	 	 	 	 	 					87
get.corner	 	 	 	 	 	 					88
GET.seis	 	 	 	 	 	 					89
get.slepians	 	 	 	 	 	 					92
Get1Dvel	 	 	 	 	 	 					94
GETARAIC	 	 	 	 	 	 					95
getb1b2	 	 	 	 	 	 					96
getEcard	 	 	 	 	 	 					97
getFcard	 	 	 	 	 	 					98
getGHtime	 	 	 	 	 	 					99
getHcard	 	 	 	 	 	 				. 1	100
getIRIS	 	 	 	 	 	 				. 1	101
getjul	 	 	 	 	 	 				. 1	102
getmoday	 	 	 	 	 	 				. 1	103
getNcard	 	 	 	 	 	 				. 1	104
getPDEcsv	 	 	 	 	 	 				. 1	104
getpfile	 	 	 	 	 	 				. 1	105
getphaselag2	 	 	 	 	 	 				. 1	106
getrdpix	 	 	 	 	 	 				. 1	107
getseis24	 	 	 	 	 	 				. 1	108
GH	 	 	 	 	 	 				. 1	112
ghstamp	 	 	 	 	 	 				. 1	114
GLUE.GET.seis.	 	 	 	 	 	 				. 1	115
GLUEseisMAT .											
gpoly											
GreatDist											
grotseis											
hilbert											
hilow											
hodogram											

V 1											
idpoints.hodo											
info.seis	 	 	 	 		 			 		125
infoDB	 	 	 	 		 			 		125
insertNAs	 	 	 	 		 			 		127
INSTFREQS	 	 	 	 		 			 		128
INSTresponse	 	 	 	 		 			 		129
integ1	 	 	 	 		 			 		130
INVRft	 	 	 	 		 			 		131
j2posix	 	 	 	 		 			 		132
jadjust.length	 	 	 	 		 			 		133
JBLACK	 	 	 	 		 			 		133
JGRAY	 	 	 	 		 			 		134
jitter.lab	 	 	 	 		 			 		135
ilegend											
jpolyval											
JSAC.seis											
jstats											
Jtim											
KH											
lagplot											
leests											
legitpix											
letter.it											
LocalUnwrap											
logspace											
longfft											
makeDB											
makefreq											
markseis24 .											
matsquiggle .											
Mine.seis											
mirror.matrix											
Mmorlet											
mtapspec											
MTM.drive											
MTMdisp											
MTMgabor											
C											
MTMplot											
NEW.getUWST											
NEWPLOT.WF											
next2											
ОН											
one											
P2GH											
parse.pde											
parseFN2STA											
partmotnet											174

PDE2list	 175
peaks	
PICK.DOC	 177
pickgeninfo	 178
pickhandler	 178
pickit	 179
pickseis24	 181
plocator	 183
PLOT.ALLPX	 184
PLOT.MATN	 185
PLOT.SEISN	
PLOT.TTCURVE	
Plot1Dvel	
plotarrivals	
plotDB	
plotevol	
plotGH	
plotJGET	
plotseis24	
plotwlet	
plt.MTM0	
PLTpicks	
PMOT.drive	
posix2RSEIS	
PPIX	
preplwig	
prepSEIS	
PreSet.Instr	
PSTLTcurve	
Put1Dvel	
pwlet2freqs	
rangedatetime	
Ray.time1D	
rdistaz	
rDUMPLOC	
read1segy	
ReadInstr	
ReadSet.Instr	
readUW.OSTAS	
recdate	
repairWPX	
replaceWPX	
rseis2segy	
rseis2ts	
rsspec.taper	
ruler	
save.wpix	
saveWPX	
DWIVIII 1	

scal2freqs									
screens									
SEARCHPIX		 	 	 	 		 	 	 234
ecdif		 	 	 	 		 	 	 235
ecdifL		 	 	 	 		 	 	 236
ecdifv									
gy2rseis									
EIS2list									
eiscols									
EISNtime									
isorder									
IAPX									
ELBUT									
lpgen		 	 	 	 		 	 	 245
ELSTA		 	 	 	 		 	 	 245
lstas		 	 	 	 		 	 	 246
ENSORsensitivity	·	 	 	 	 		 	 	 247
tPrePix		 	 	 	 		 	 	 248
tstas									
tupDB									
welch									
tweien									
WPX									
typx									
nowdatetime									
gconv									
gconvGR		 	 	 	 		 	 	 260
NET.drive									
PECT.drive		 	 	 	 		 	 	 262
pectrum		 	 	 	 		 	 	 264
STALTA		 	 	 	 		 	 	 265
TLTcurve		 	 	 	 		 	 	 266
wig		 	 	 	 		 	 	 268
wig.ALLPX									
ymshot1									
ysinfo									
12.pix									27
-		 	 	 	 • •	• •	 	 	
APER.SEISN									
Thresh.J									
OCART									
ojul									
omo.colors									
apz		 	 	 	 		 	 	 279
avel.time1D		 	 	 	 		 	 	280
ung.pulse		 	 	 	 		 	 	 281
inpackAcard									
uwpfile2ypx									
arsquig									

-nackage Saismic Analysis and Display	
3	2 3
ZOOM.SEISN	21
zlocator	20
Zdate	19
YRsecdif	17
YPIX	15
yeardate	14
XTR	12
xprod	11
xcor2	10
X2SAC	09
X2RSEIS	08
writeUWpickfile	07
writeUW.OSTAScard	
writeUW.Ncard	
writeUW.Hcard	06
writeUW.Fcard	
writeUW.Ecard	05
writeUW.DOTcard	
writeUW.Commentcard	04
writeUW.Acard	
wlet.drive	01
winseis24	
winmark	
varsquiggle	07
	winseis24 2 wlet.do 2 wlet.drive 3 writelsegy 3 writeUW.Acard 3 writeUW.Commentcard 3 writeUW.DOTcard 3 writeUW.Fcard 3 writeUW.Hcard 3 writeUW.Nosrd 3 writeUW.pickfile 3 X2RSEIS 3 X2SAC 3 xcor2 3 xprod 3 XTR 3 xtract.trace 3 yeardate 3 YPIX 3 YRsecdif 3 Zdate 3 zlocator 3 ZOOM.SEISN 3

Description

Multiple interactive codes to view and analyze seismic data, via spectrum analysis, wavelet transforms, particle motion, hodograms. Includes general time-series tools, plotting, filtering, interactive display.

8 addpoints.hodo

Note

Seismic Sections JGET.seis view.seis swig Mine.seis VELOCITY.SEISN DISPLACE.SEISN ZOOM.SEISN wlet.drive SENSORsensitivity PLOT.MATN PLOT.SEISN PLOT.TTCURVE PLOT.ALLPX plotevol MTMdisp MTMplot NEW.getUWSTAS NEWPLOT.WPX INSTFREQS INSTresponse GLUE.GET.seis GLUEseisMAT FILT.SEISN FILT.spread CHOP.SEISN get.corner grotseis

Velocity-Travel Time: Put1Dvel Ray.time1D setLQUAKE selAPX Get1Dvel Comp1Dvels travel.time1D

Particle Motion: hodogram PMOT.drive complex.hodo addpoints.hodo idpoints.hodo DO.PMOT.ARR partmotnet prep1wig prepSEIS EmptySEIS GAZI

Time series: xcor2 wlet.drive wlet.do wiggle.env plotwlet STLTcurve SPECT.drive rsspec.taper evolfft GETARAIC PSTLTcurve getphaselag2 envelope hilbert LocalUnwrap lagplot applytaper autoreg butfilt choosfilt MTM.drive

Date-Time Functions: yeardate YRsecdif Zdate recdatel recdate tojul getjul getmoday secdifL secdif secdifv JtimL Jtim fromjul

Graphics: plocator ilocator meshgrid ymarginfo zlocator winmark vline screens RESCALE pwlet2freqs addtix circle circ letter.it jpostscript JBLACK JGRAY HOZscale gaddtix Gcols jlegend tomo.colors

Misc: BKpfile2ypx brune.doom brune.func brune.search comp.env contwlet deconinst detail.pick rdistaz rDUMPLOC EmptyPickfile ETECTG finteg fixcompname fixcomps fixUWstasLL fmod FRWDft getb1b2 getNcard getpfile getseisinfo getvertsorder gpoly GreatDist gwpix2ypx hilow hypot integ1 INVRft itoxyz jadjust.length jpolyval jstats local.file logspace makefreq mirror.matrix Mmorlet mtapspec peaks PICK.DOC pickit plt.MTM0 PLTpicks PPIX Pre-Set.Instr ReadSet.Instr readUW.OSTAS scal2freqs SEARCHPIX setstas setwelch shade.col SNET.drive T12.pix Thresh.J TOCART trapz tung.pulse unpackAcard uwpfile2ypx

Author(s)

Jonathan M. Lees<jonathan.lees.edu> Maintainer:Jonathan M. Lees<jonathan.lees.edu>

See Also

RPGM, RFOC

Examples

data("GH")
swig(GH)

addpoints.hodo

Add points to a hodogram plot

Description

Add points to a hodogram plot

addtix 9

Usage

```
addpoints.hodo(nbaz, dt, sx, flag = 1:10, pch = 3, col = 1)
```

Arguments

nbaz matrix 3 by n dt sample interval, s

sx x vector

flag output of idpoints.hodo

pch plot character col color for plotting

Value

Graphical Side Effect

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

See Also

PMOT.drive, idpoints.hodo

addtix

add tix to plot

Description

Add tick marks to edge of plot

Usage

```
addtix(side = 3, pos = 0, tck = 0.005, at = c(0, 1), labels = FALSE, col = 2, ...)
```

Arguments

col

side side of plot 1-4

pos position relative to side

tck tick size

at locations along axis labels labels for tics

... graphical parameters, par

color for ticks

10 addWPX

Value

Graphical Side Effect

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

See Also

par

addWPX

Add one pick to WPX file

Description

Add one pick to WPX file

Usage

```
addWPX(WPX, ppx)
```

Arguments

WPX WPX list ppx WPX list

Details

Adds one pick to end of list.

Value

WPX list

Note

Uses, the last pick as a reference.

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

catWPX

applytaper 11

Examples

```
s1 <- setWPX(name="HI", yr=2011, jd=231, hr=4, mi=3, sec = runif(5))
s2 <- setWPX(name="HI", yr=2011, jd=231, hr=4, mi=3, sec = runif(1))
s3 <- addWPX(s1, s2)</pre>
```

applytaper

Apply taper to seismic trace

Description

Apply taper to ends of a time series for spectrum analysis.

Usage

```
applytaper(f, p = 0.05)
```

Arguments

f signal

p percent taper

Details

10 percent taper is 5 percent on each end.

Value

Tapered time series.

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

```
data(CE1)
Xamp <- CE1$y[CE1$x>5.443754 & CE1$x<5.615951]
Tamp <- applytaper(Xamp, p = 0.05)</pre>
```

12 ASCII.SEISN

ASCI	Т	CEI	LCN
ASCI	т.	\mathcal{I}	LンN

ASCII RSEIS data dump

Description

Write RSEIS list to a file in ASCII format.

Usage

```
ASCII.SEISN(GH, sel = 1, HEAD = TRUE, destdir='.')
```

Arguments

GH	RSEIS	list

sel vector, select which ttraces to write

HEAD logical, TRUE will put a header in the file destdir character, path to folder to deposit output file

Details

Used for data exchange for users who do not want to use RSEIS. The header consists of one line start date (yr, jd, hr, min, sec) and sample rate (dt).

Value

Side effects - files are created.

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

```
## Not run:
##### this example creates an ascii version of the
##### seismic data for exchange purposes
data("GH")
tempd = tempdir()
sel <- which(GH$COMPS == "V" & GH$STNS=="CE1" )
ASCII.SEISN(GH, sel = 1, HEAD = TRUE, destdir=tempd)
## End(Not run)</pre>
```

attime12 13

attime12

Epoch Time Window

Description

Set a time window in Epoch days for extraction from a DB file

Usage

```
attime12(t1, t2 = t1, origyr = 1972, pre = 0, post = 0)
```

Arguments

t1 list date-time 1 t2 list date-time 2 origyr origin year

pre seconds before time 1 post seconds afer time 2

Details

If t2 is missing, t1=t2.

Value

```
vector c(t1, t2)
```

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

```
j1 <- list(yr = 2005, jd= 214 , hr= 7 , mi= 1 ,sec= 0.5235)
j2 <- list(yr=2005, jd= 214 , hr= 7 , mi= 1 ,sec= 0.5235+6)
at <- attime12(j1, t2=j1, origyr=2005, pre=100, post=100)
### given an RSEIS format list
data(GH)
AT = SEISNtime(GH)
ats = attime12(AT[[1]], t2 = AT[[2]],
    origyr =AT[[1]]$yr , pre = 0, post= 0)</pre>
```

14 AUGMENTbutfilt

Description

Design and apply butterworth low/high/band pass filters with augmentation of the signal on either end to suppress edge effects.

Usage

```
AUGMENTbutfilt(a, fl = 0, fh = 0.5, deltat = 1, type = "BP", proto = "BU", npoles = 5, chebstop = 30, trbndw = 0.3, RM = FALSE, zp = TRUE, pct = 0.1)
```

Arguments

a	vector signal
fl	low frequency cut-off, default=0
fh	high frequency cut-off, DEFAULT= (1/2dt)
deltat	sample rate, s, deFAULT=1
type	type of filter, one of c("LP", "HP", "BP" , "BR"), DEFAULT="BP" $$
proto	prototype, c("BU", "BE", "C1", "C2"), DEFAULT="BU"
npoles	number of poles or order, DEFAULT=5
chebstop	Chebyshev stop band attenuation, DEFAULT=30.0
trbndw	Chebyshev transition bandwidth, DEFAULT=0.3
RM	Remove mean value from trace, default=FALSE
zp	zero phase filter, default=TRUE
pct	Percent augmentation applied to each side, default=0.1

Details

Creation of butfilt is a described by the following arguments:

```
LP low passHP high passBP band passBR band rejectBU ButterworthBE Bessel
```

C1 Chebyshev type 1

C2 Chebyshev type 2

AUGMENTbutfilt 15

Arguments chebstop, trbndw are ignored for non-chebyshev filters. LP and HP filters are seet by specifying fl for HP filters and fh for LP filters, the other argumentin each case is ignored.

Mean values should be removed prior to calling this function, and then set RM=FALSE. This is true especially if tapering is applied prior to filtering.

Zero phase filter is achived by running filter back and forth. Otherwise a single pass is returned. This should be equivalent to package signal filtfilt (from MATLAB).

Augmentation involves copying the first and last percent of the signal, reversing the time and adding to the signal on each end. This is then filtered, and removed after filter is complete. It is assumed that the important part of the signal is in the center of the time series and the edges are less critical. Then the augmented part has the same statistical content as the edges of the signal (presumably noise) and will not affect the filtered signal considerably. This is then thrown away prior to return.

Value

Filtered time series with the augmentation removed after filter.

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

See Also

butfilt

```
data(CE1)
ts1 <- CE1$y
zz <- AUGMENTbutfilt(ts1, fl=1, fh=15, deltat=CE1$dt, type="LP", proto="BU",
npoles=5)
##############
                  second example with plotting
data(KH, package ='RSEIS' )
w = KH\$JSTR[[1]]
dt = KH dt[1]
x = seq(from=0, by=dt, length=length(w));
plot(x,w, type='1')
par(mfrow=c(2,1) )
       fl = 1/50
fh= 1/2
       ftype = 'BP'
       ######## normal band pass filter
```

16 autoreg

```
zz = butfilt(w, fl, fh, dt, ftype , "BU")
    f.stamp = filterstamp(fl=fl, fh=fh, type=ftype)

plot(x, zz, type='l', xlab='s', ylab='amp', main= f.stamp)
title(sub='butfilt')

    ####

zz1 = AUGMENTbutfilt(w, fl, fh, dt, type=ftype , proto="BU", zp=TRUE, pct=0.2 )
    f.stamp = filterstamp(fl=fl, fh=fh, type=ftype)
plot(x, zz1, type='l', xlab='s', ylab='amp', main= f.stamp)
title(sub='AUGMENTbutfilt')
```

autoreg

Auto-Regressive Spectrum Estimate

Description

Auto-Regressive Spectrum Estimate

Usage

```
autoreg(a, numf = 1024, pord = 100, PLOT = FALSE, f1 = 0.01, f2 = 50)
```

Arguments

a	signal
numf	number of frequency points to calculate
pord	order
PLOT	logical, TRUE=plot
f1	low frequency
f2	high frequency

Value

LIST:

 $\begin{array}{ll} \text{amp} & \text{amplitudes} \\ \text{freq} & \text{frequencies, Hz} \end{array}$

brune.doom 17

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

See Also

```
fft, mtapspec, plt.MTM0
```

Examples

```
data(CE1)
Xamp <- CE1$y[CE1$x>5.443754 & CE1$x<5.615951]
ZIM <- autoreg(Xamp , numf=length(Xamp) , pord = 100, PLOT=FALSE, f1=.01, f2=50)</pre>
```

brune.doom

Brune Modeling

Description

Modeling the Brune spectrum with Graphical Diagnostics

Usage

```
brune.doom(amp, dt = 1, f1 = 0.01, f2 = 15, PLOTB = FALSE, tit = "")
```

Arguments

amp	signal
dt	deltaT
f1	low frequency for modeling
f2	high frequency for modeling
PLOTB	logical, TRUE=show diagnostic plots
tit	title for plot

Value

List:

SUCCESS (0,1) for success or failure of modeling flag = "OK"WARN tstar0 tstar0 gamma gamma omega0 omega0 fc fc alpha alpha chisqrd chi-squared misfit over region of fitting 18 brune.func

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

References

Lees, J. M. and G. T. Lindley (1994): Three-dimensional Attenuation Tomography at Loma Prieta:Inverting t* for Q, J. Geophys. Res., 99(B4), 6843-6863.

Examples

```
data(CE1)
plot(CE1$x, CE1$y, type='1')
Xamp = CE1$y[CE1$x>5.443754 & CE1$x<5.615951]
BF = brune.doom( Xamp, CE1$dt ,f1=.5, f2=12 , PLOTB = TRUE)</pre>
```

brune.func

Brune Earquake Model

Description

Calculate Forward Brune model

Usage

```
brune.func(freq, omega0, tstar0, fc, alpha, gamma)
```

frequency vector

Arguments

freq

·	
omega0	low freq asymptote
tstar0	T-star value
fc	corner frequency
alpha	alpha parameter
gamma	gamma parameter

Details

Brune model.

Value

returns displacement spectrum from given parameters

brune.search 19

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

References

Lees, J. M. and G. T. Lindley (1994): Three-dimensional Attenuation Tomography at Loma Prieta:Inverting t* for Q, J. Geophys. Res., 99(B4), 6843-6863.

See Also

brune.doom

brune.search

Search for Brune fit to displacement spectrum

Description

Model of the spectrum of a seismic arrival. Uses Brune's Model.

Usage

```
brune.search(infreq, inspec, f1, f2, omega0, fcorn, tstar0, gamma)
```

Arguments

infreq vector of frequencies inspec spectrum

f1 low frequency, Hz f2 high frequency, Hz

omega0 initial starting low frequency asymptote

fcorn initial starting corner frequency

tstar0 initial starting t*
gamma initial starting gamma

Details

see paper by Lees and Lindley

Value

list(omega0=omega0,tstar0=tstar3[3], fc=fcorn, alpha=0, gamma=gam3[3])

omega0 low frequency asymptote

fc corner frequency

tstar0 t*

gamma gamma

alpha alpha parameter

chisqrd chi-squared misfit over region of fitting

20 butfilt

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

References

Lees and Lindley

See Also

MTM

Examples

butfilt

Butterworth filter

Description

Design and apply butterworth low/high/band pass filters.

Usage

```
butfilt(a, fl=0, fh=0.5, deltat=1, type="BP", proto="BU",
    npoles=5, chebstop=30.0, trbndw=0.3, RM=FALSE, zp=TRUE)
```

butfilt 21

Arguments

a vector signal

fl low frequency cut-off, default=0

fh high frequency cut-off, DEFAULT= (1/2dt)

deltat sample rate, s, deFAULT=1

type type of filter, one of c("LP", "HP", "BP", "BR"), DEFAULT="BP"

proto prototype, c("BU", "BE", "C1", "C2"), DEFAULT="BU"

npoles number of poles or order, DEFAULT=5

chebstop Chebyshev stop band attenuation, DEFAULT=30.0
trbndw Chebyshev transition bandwidth, DEFAULT=0.3
RM Remove mean value from trace, default=FALSE

zp zero phase filter, default=TRUE

Details

Creation of butfilt is a described by the following arguments:

LP low pass

HP high pass

BP band pass

BR band reject

BU Butterworth

BE Bessel

C1 Chebyshev type 1

C2 Chebyshev type 2

Arguments chebstop, trbndw are ignored for non-chebyshev filters. LP and HP filters are seet by specifying fl for HP filters and fh for LP filters, the other argumentin each case is ignored.

Mean values should be removed prior to calling this function, and then set RM=FALSE. This is true especially if tapering is applied prior to filtering.

Zero phase filter is achived by running filter back and forth. Otherwise a single pass is returned. This should be equivalent to package signal filtfilt (from MATLAB).

Value

Filtered time series.

Author(s)

originally written in FORTRAN by David Harris, converted to C and modified by Jonathan M. Lees<jonathan.lees@unc.edu>

22 BUTREPLOT

References

Harris, D., 1990: XAPiir: A recursive digital filtering package. United States: N. p., Web. doi:10.2172/6416972.

See Also

AUGMENTbutfilt

Examples

```
data(CE1)
ts1 <- CE1$y
zz <- butfilt(ts1, fl=1, fh=15, deltat=CE1$dt, type="LP" , proto="BU",</pre>
npoles=5 )
### try plotting:
### the above, by default, is zero phase.
##### next filter with non-zero-phase
z2 <- butfilt(ts1, fl=1, fh=15, deltat=CE1$dt, type="LP", proto="BU",</pre>
npoles=5, zp=FALSE )
ex = seq(from=0, by=CE1$dt, length=length(ts1))
plot(ex, ts1, type='l')
lines(ex, zz, col='red')
lines(ex, z2, col='blue')
plot(ex[ex<0.5], ts1[ex<0.5], type='1')
lines(ex[ex<0.5], zz[ex<0.5], col='red')
lines(ex[ex<0.5], z2[ex<0.5], col='blue')
```

BUTREPLOT

Replot Function for SELBUT

Description

Replot Function for SELBUT

Usage

```
BUTREPLOT(opts, ncol = 5, HOZ = TRUE, TOP = TRUE, cols = "white", main = "", xlim = c(0, 1), ylim = c(0, 1), newplot = TRUE)
```

BUTREPLOT 23

Arguments

opts	character list of options
ncol	number of columns
HOZ	logical, TRUE=plot horizontally
TOP	logical, TRUE=plot top-down
cols	colors
main	character title
xlim	x-limits in plotting region (user coordinates)
ylim	y-limits in plotting region (user coordinates)
newplot	logical, new plot?

Details

Used internally in SELBUT as a replotting function

Value

list

М	x,y matrix of grid
dx	delta x
dy	delta y
rx	range of x
ry	range of y

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

```
SELBUT, swig
```

24 catWPX

catWPX

Concatenate two WPX lists

Description

Concatenate (combine) two WPX lists.

Usage

```
catWPX(WPX, ppx)
```

Arguments

WPX WPX list ppx WPX list

Details

Adds second list to the end of the first list.

Value

WPX list

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

addWPX, setWPX, checkWPX, cleanWPX, clusterWPX, repairWPX, saveWPX

```
s1 <- setWPX(name="HI", yr=2011, jd=231, hr=4, mi=3, sec = runif(5))
s2 <- setWPX(name="BYE", yr=2011, jd=231, hr=4, mi=3, sec = runif(5))
s3 <- catWPX(s1, s2)</pre>
```

CE1 25

CE1

Single Seismogram

Description

Single Seismogram from Coso California

Usage

```
data(CE1)
```

Format

```
list(x=0, y=0, dt=0, name ="", Tpick=0, mark ="", deltat=0)
```

References

Lees, J.M., 2004. Scattering from a fault interface in the Coso geothermal field. Journal of Volcanology and Geothermal Research, 130(1-2): 61-75.

Examples

```
data(CE1)
plot(CE1$x, CE1$y, type='l')
```

checkWPX

Check WPX

Description

Check and verify WPX list for compliance.

Usage

```
checkWPX(wpx)
```

Arguments

wpx

WPX list

Details

Perform several checks on completeness, length of components, station names, component names and date-times of the WPX lists.

26 choosfilt

Value

- 0 no problems
- 1 list incomplete
- 2 names incomplete
- 3 components incomplete
- 4 dates incomplete

Note

No action taken in the event an error occurs - see repairWPX to fix problems.

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

```
addWPX,catWPX, saveWPX,cleanWPX,clusterWPX,repairWPX,setWPX
```

Examples

```
s1 <- setWPX(name="HI", yr=2011, jd=231, hr=4, mi=3, sec = runif(5))
s1$col=NULL</pre>
```

 ${\tt choosfilt}$

INteractive CHoice of Filter

Description

Choose Butterworth filter from a selection

Usage

```
choosfilt(thefilts = thefilts, ncol = 5)
```

Arguments

thefilts list of filter parameters ncol number of columns

Details

Used for interactive choices in swig. See example below.

choosfilt 27

Value

filter parameter list:

```
ON logical, TRUE=filter is on

fl low frequency cut-off

fh high frequency cut-off

type type of filter, one of c("LP", "HP","BP", "BR")

proto prototype, c("BU", "BE", "C1", "C2")
```

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

See Also

butfilt, RPMG

```
thefilts <-
         list(flo=
               c(0.02, 0.02, 0.02, 0.02, 0.02,
                                                 0.02,
                 0.02, 0.02, 0.02, 0.02, 0.02, 0.02,
                 0.02,
                 1/2, 1/50,1/100, 1/100,1,1,
                 0.2, 15, 5, 2,1,
                 100),
               fhi=
               c(1/10, 1/6, 1/5, 1/4, 1/3, 1/2,
                 0.2, 0.5, 1.0, 2.0, 3.0, 4.0,
                 8, 1/2.0,1/5.0,1/10.0,10,5,
                 7.0, 100, 100, 100, 10,
                 100),
               c("LP","LP", "LP", "LP", "LP", "LP",
                 "LP", "LP", "LP", "LP", "LP",
                 "LP"
                 "BP", "BP", "BP", "BP", "BP", "BP",
                 "HP", "HP", "HP", "HP", "HP",
                 "None"))
if(interactive() ) choosfilt(thefilts = thefilts, ncol = 5)
```

28 CHOP.SEISN

CHOP.SEISN

CHOP SEISmic structure

Description

Take a seismic structure and return a time limited version

Usage

```
CHOP.SEISN(GH, sel = 1:4, WIN = NULL)
```

Arguments

GH	Seismic trace structure
sel	selection of traces
WIN	time window $c(0,1)$

Value

Seismic trace structure

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

See Also

swig

```
data("GH")
sel <- which(GH$COMPS=="V")

KF <- CHOP.SEISN(GH, sel=sel, WIN = c(0 , 5) )
swig(KF, SHOWONLY=0)</pre>
```

circ 29

circ

Draw a circle

Description

Draw a circle

Usage

circ()

Details

Draw a circle on new plot.

Value

Graphical Side Effect

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

See Also

net

Examples

circ()

cleanpickfile

Clean up Pickfile structure

Description

Given a pickfile, clean out stations that do not ocnform

Usage

cleanpickfile(P)

Arguments

Р

Pickfile list

30 cleanWPX

Details

stations with name="" are removed

Value

Ρ

Pickfile list

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

See Also

EmptyPickfile

Examples

```
P <- EmptyPickfile()
cleanpickfile(P)</pre>
```

cleanWPX

Clean WPX

Description

Return an empty (clean) WPX.

Usage

cleanWPX()

Details

Returns an empty list with NA's and 0's

Value

WPX list

Note

Used internally.

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

colorwig 31

See Also

```
addWPX, catWPX, checkWPX,repairWPX,clusterWPX,saveWPX, setWPX
```

Examples

```
s0 <- cleanWPX()
```

colorwig

Plot a seimic trace colored in time

Description

Plot a seimic trace colored in time. useful for coordinating other plots to specific times along a seismic trace.

Usage

```
colorwig(x1, y1, COL = rainbow(100))
```

Arguments

x1 x-coordinate (time)

y1 y-coordinate (amplitude)

COL color palette

Value

Graphical Side Effects

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

```
data(KH)
x <- KH$ex[KH$ex>95& KH$ex<125]
y <- KH$JSTR[[1]][KH$ex>95& KH$ex<125]

colorwig(x , y , rainbow(100))</pre>
```

32 combineSEIS

combineSEIS

Combine SEIS lists

Description

Combine 2 SEIS format lists into one list suitable for swig.

Usage

```
combineSEIS(IH, IV)
```

Arguments

```
IH SEIS list (swig input)

IV SEIS list (swig input)
```

Details

This will take two SEIS lists and merge them into one.

Value

SEIS list suitable for swig.

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

```
swig, Mine.seis, prepSEIS
```

```
####### say you have 2 databases - extract from each:
####GH = Mine.seis(at1, at2, DB1, grepsta, grepcomp, kind = -1)
####JH = Mine.seis(at1, at2, DB2, grepsta, grepcomp, kind = -1)
#### merge the 2 structures

data(KH)

MH = KH

BH = combineSEIS(KH, MH)
###### plot and interact
swig(BH, SHOWONLY=TRUE)
```

comp.env 33

CC	٦m	n	Δ	n	1/

Compare Envelopes

Description

calculate and plot signal envelopes.

Usage

```
comp.env(ex, Y, PLOT = TRUE, stamps = stamps)
```

Arguments

ex	x-axis

Y matrix of Y values
PLOT logical, TRUE=plot
stamps character vectors of ids

Details

Takes in an common x predictor and compares the envelopes of each column in the Y matrix. All the Y's must have the same length as ex.

Value

Graphical Side effects. returns envelope series.

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

See Also

swig

```
data("GH")

temp <- cbind(GH$JSTR[[1]], GH$JSTR[[2]], GH$JSTR[[3]])

atemp <- temp[1168:1500, ]
ex <- seq(from=0,length=length(temp[1168:1500, 1]), by=GH$dt[1])

comp.env(ex, atemp, PLOT = TRUE, stamps = c("1","2", "3") )</pre>
```

34 Comp1Dvel

Comp1Dvel

Compare a pair of 1D models

Description

plot a pair of 1D velocity Models for comparison

Usage

```
Comp1Dvel(v, v2, col=c('blue', 'brown'), ...)
```

Arguments

V	List structure for model 1
v2	List structure for model 2
col	2-colors for P and swave
	other graphical parameters (e.g. lty, lwd)

Value

Graphical Side Effects

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

Plot1Dvel, Get1Dvel, travel.time1D

```
VEL <- list()
VEL$'zp' <- c(0,0.25,0.5,0.75,1,2,4,5,10,12)
VEL$'vp' <- c(1.1,2.15,3.2,4.25,5.3,6.25,6.7,6.9,7,7.2)
VEL$'ep' <- c(0,0,0,0,0,0,0,0,0)
VEL$'zs' <- c(0,0.25,0.5,0.75,1,2,4,5,10,12)
VEL$'vs' <- c(0.62,1.21,1.8,2.39,2.98,3.51,3.76,3.88,3.93,4.04)
VEL$'es' <- c(0,0,0,0,0,0,0,0,0)
VEL$'name' <- '/data/wadati/lees/Site/Hengil/krafla.vel'

VELNish <- list()
VELNish$'zp' <- c(0,0.1,0.6,1.1,21.1)
VELNish$'vp' <- c(2.8,3.4,4.1,4.7,4.7)
VELNish$'ep' <- c(0,0,0,0,0)
VELNish$'zs' <- c(0,0.1,0.6,1.1,21.1)
VELNish$'vs' <- c(1.6,2,2.4,2.7,2.7)
VELNish$'vs' <- c(1.6,2,2.4,2.7,2.7)
VELNish$'es' <- c(0,0,0,0,0)
```

Comp1Dvels 35

```
VELNish$'name' <- 'Nish'
Comp1Dvel(VEL, VELNish)</pre>
```

Comp1Dvels

Compare 1D models

Description

Plot 1D velocity Models for comparison.

Usage

```
Comp1Dvels(INV, depth = 1:50)
```

Arguments

INV vector of velocity models in memory

depth depth range for plotting

Details

takes several velocity models, finds the range of all, makes a plot so that all models fit on figure.

Value

Graphical Side Effects

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

Plot1Dvel, Comp1Dvel, Get1Dvel

36 complex.hodo

```
VELNish$'zp' <- c(0,0.1,0.6,1.1,21.1)
VELNish$'vp' <- c(2.8,3.4,4.1,4.7,4.7)
VELNish$'ep' <- c(0,0,0,0,0)
VELNish$'zs' <- c(0,0.1,0.6,1.1,21.1)
VELNish$'vs' <- c(1.6,2,2.4,2.7,2.7)
VELNish$'es' <- c(0,0,0,0,0)
VELNish$'name' <- 'Nish'</pre>
Comp1Dvels(c("VEL", "VELNish"))
```

complex.hodo

HodoGram Plot

Description

HodoGram Plot

Usage

```
complex.hodo(nbaz, dt = dt, labs = c("Vertical", "North", "East"),
COL = rainbow(100), STAMP = "")
```

Arguments

nbaz n by 3 matrix
dt time sample rate

labs labels for the components

COL color palette

STAMP character stamp for identification

Value

sx = list graphical side effect

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

COMPorder 37

Examples

```
data("GH")

temp <- cbind(GH$JSTR[[1]][1168:1500], GH$JSTR[[2]][1168:1500],
GH$JSTR[[3]][1168:1500])

pmolabs <- c("Vertical", "North", "East")

sx <- complex.hodo(temp, dt=GH$dt[1] ,labs=pmolabs,
STAMP="Example", COL=rainbow(100) )</pre>
```

COMPorder

Seismic Component Order

Description

Set seismic component order

Usage

```
COMPorder(STNS, COMPS)
```

Arguments

STNS stations
COMPS components

Details

Sets up components so they are ordered according to V, N, E. used internally in swig.

Value

order vector

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

38 contwlet

contwlet
COLLCIVECE

Contour Wavelet Transform

Description

Contour Wavelet Transform

Usage

```
contwlet(baha, Ysig, dt, clev = 0.75, NLEV = 12,
  zscale = 1, zbound = NULL, col = col, ygrid = FALSE,
  WUNITS = "Volts", PEAX = NULL)
```

Arguments

baha	Output of wavelet transform (image)
Ysig	input signal to wavelet transform
dt	DeltaT, sample rate
clev	levels for contours
NLEV	number of levels
zscale	scale of amplitudes
zbound	bounds for scale of interest
col	color for contour lines
ygrid	logical, TRUE=add grid lines
WUNITS	Units of wavelet transform
PEAX	peaks structure

Value

Graphical Side Effect

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

See Also

plotwlet, wlet.do, wlet.drive

convert2Rseis 39

|--|

Description

Convert Seismic in SAC or SEGY format to RSEIS native format.

Usage

```
convert2Rseis(FLS, NEWDIR = ".", kind = 1, Iendian = "little", BIGLONG =
FALSE, NEWsta = "", NEWcomp = "")
```

Arguments

FLS	array of File names
NEWDIR	Destination directory path
kind	an integer 1, 2, 3; $0=R(DAT)$, $1 = segy$, $2 = sac$, $3 = AH$.
Iendian	Endian-ness of the data: 1,2,3: "little", "big", "swap". Default = 1 (little)
BIGLONG	logical, TRUE=long=8 bytes
NEWsta	character vector, stations associated with the vector of files
NEWcomp	character vector, component name associated with the vector of files

Details

Converts the data to R format so it can be loaded with the load command. After this conversion, files should be loaded in subsequent calls by using kind=0.

Value

Side effects - creates new files on local system

Note

JGET.seis extracts digital seismic data from binary files stored in the file system. The program uses readBin for I/O and passes data back to R. Currently SAC, SEGY formats are installed but it is easy to extend. AH format is available for LINUX systems, but there were problems compiling in WINDOWS and MACOS so this feature was removed. A filter for mseed format is currently being developed.

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

```
JGET.seis, JSAC.seis, Mine.seis
```

40 convertATT

Examples

```
Iendian = .Platform$endian
data(GH)

########## create some SAC files:
apath = tempdir()
J = rseis2sac(GH, sel = 1:5, path = apath, BIGLONG =FALSE )
#### get SAC file file names:
Lname <- list.files(path=J , pattern='SAC', full.names=TRUE)

##### convert each file to a saved RSEIS file, saved in apath
#### reading in SAC files, kind=2
convert2Rseis(Lname, NEWDIR = apath, kind = 2, Iendian = Iendian, BIGLONG =
FALSE )
#### check if files are there
list.files(path=apath)</pre>
```

convertATT

DateHour to List

Description

Convert a julian day+time to an RSEIS date list.

Usage

```
convertATT(at1, yr)
```

Arguments

```
at1 julian day in Year, plus (hr+minutes+seconds)
yr Year
```

Details

Calculates the data-list that RSEIS uses in calculations. The Month and Day-of-month are also returned.

Value

List with date and time

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

correct.moveout 41

See Also

recdate, recdatel, dateList, dateStamp, filedatetime, rangedatetime, yeardate, Zdate, as.POSIXct

Examples

```
yr = 2014
j = 233.1234
convertATT(j, yr)
```

correct.moveout

Moveout Correction

Description

Shift traces accoring to given moveout times

Usage

```
correct.moveout(GH, sel = 1, tims = 0)
```

Arguments

GH	RSEIS structure	list

sel index of which traces to be shifted

tims time shifts for each trace

Details

Each trace listed in sel gets shifted forward or backward according to time in tims. This is useful for shifting traces according to a given moveout curve.

Value

RSEIS list structure returned with adjusted traces

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

42 DECIMATE.SEISN

DAYSperYEAR

Days per Year

Description

Calculate the number of days per calendar year

Usage

```
DAYSperYEAR(yr)
```

Arguments

yr year

Value

days

integer number of days for a given year

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

Examples

```
years <- seq(from=1850, to=2010, by=1)
DAYSperYEAR(years)</pre>
```

DECIMATE.SEISN

Decimate a set of traces

Description

Decimate, or reduce the sample rate of a set of traces stored in event RSEIS format

Usage

```
DECIMATE.SEISN(TH, sel=1:length(TH$JSTR), dec=5 ,
  type="LP", proto="BU" , fl=2, fh=10, RM=FALSE, zp=TRUE )
```

DECIMATE.SEISN 43

Arguments

TH	RSEIS list
sel	numeric, which traces to select
dec	numeric, number of samples to skip
type	type of filter (see butfilt), or FALSE for no filter
proto	filter proto type
fl	low pass frequency cut off
fh	high pass frequency cut off
RM	Remove mean value from trace, default=FALSE
zp	zero phase filter, default=TRUE

Details

Reduces the number of samples by skipping every "dec" sample.

To achieve smoothing prior to sampling, low pass filter may be applied to avoid spikes or other sampling issues.

If type is FALSE, no filter is applied and samples are taken from the input.

Value

an RSEIS list.

Note

The dt, n and t2 are modified in info.

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

butfilt, downsample

Examples

```
data(GH)

dec = 250/50

##### resample all traces by reducing from 250 to 50 samples/s
DH = DECIMATE.SEISN(GH, sel=1:length(GH$JSTR), dec=dec ,
    type="LP", proto="BU" , fl=2, fh=50, RM=FALSE, zp=TRUE )

##### compare

##### times in
```

44 deconinst

```
### starting second should be the same
GH$info$sec[1:5] - DH$info$sec[1:5]
#### number of samples should be reduced
cbind(GH$info$n[1:5] , DH$info$n[1:5] )
### ending seconds should be close but not identical
cbind(GH$info$t2[1:5] , DH$info$t2[1:5] )

cbind(GH$info$dt[1:5] , DH$info$dt[1:5] )

cbind( sapply(GH$JSTR, 'length'), sapply(DH$JSTR, 'length') )

#### for visual comparison:
### par(mfrow=c(2,1) )
## g = swig(GH, sel=which(GH$COMPS=="V" ), SHOWONLY=0 )
## d = swig(DH, sel=which(DH$COMPS=="V" ), SHOWONLY=0 )
```

deconinst

Deconvolve instrument response from seismic data

Description

Deconvolve instrument response from seismic data

Usage

```
deconinst(data, sintr, KAL, key, Calibnew, waterlevel = 1e-08)
```

Arguments

data Real vector of data sintr sample interval

KAL Kalibrated response list key number of instrument

Calibnew new instrument, complex vector or waterlevel waterlevel for low frequency division

Details

To avoid problems with dividing by very small numbers, water level is set =1.e-8

Value

deconvolved signal

deleteWPX 45

Note

Calibnew(1)==3 then use a cos (hanning) taper

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

See Also

PreSet.Instr, ReadSet.Instr, INSTresponse

Examples

```
Kal <- PreSet.Instr()
amp <- rnorm(1024)
Calibnew <- c(1,1.0, 0.0 )

dy <- deconinst(amp, 0.008, Kal,1, Calibnew, waterlevel=1.e-8)</pre>
```

deleteWPX

Delete picks to WPX file

Description

Delete pick to WPX file

Usage

```
deleteWPX(WPX, ind=1)
```

Arguments

WPX WPX list

ind integer, index to delete

Details

Deletes one pick to end of list.

Value

WPX list

detail.pick

Note

Uses, the last pick as a reference.

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

```
addWPX, catWPX
```

Examples

```
s1 <- setWPX(name="HI", yr=2011, jd=231, hr=4, mi=3, sec = runif(5))
s2 <- setWPX(name="HI", yr=2011, jd=231, hr=4, mi=3, sec = runif(1))
s3 <- addWPX(s1, s2)
s4 <- deleteWPX(s3, ind=2:3)</pre>
```

detail.pick

Detail Pick on 3-component seismogram

Description

Pops up three components and prepares menu items for picking

Usage

```
detail.pick(y, ex, dt, TIT = "")
```

Arguments

У	signal amplitudes
ex	x-axis
dt	deltaT, sample rate,
TIT	title

Details

Creates interactive session for picking seismograms. Is called from swig.

Value

```
KSAVE = list(x=xsave, y=ysave)
```

detrend 47

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

See Also

swig

Examples

```
data(CE1)
  detail.pick(CE1$y, CE1$x, CE1$dt, TIT = "")
```

detrend

Remove trend from time series signal

Description

Remove trend from time series signal

Usage

detrend(x)

Arguments

Χ

vector

Details

Removes the trend from a signal.

Value

vector with linear trend removed.

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

mean

48 DISPLACE.SEISN

Examples

```
dt <- 0.001
  t <- seq(0, 6, by=0.001)

y <- 5*sin(2*pi*10*t)

plot(t,y, type='l')

y <- y + 3 * t
 plot(t,y, type='l')

dy <- detrend(y)

plot(t,dy, type='l')</pre>
```

DISPLACE.SEISN

Displacement seismogram

Description

Removes seismic instrument response and integrates to displacement.

Usage

```
DISPLACE.SEISN(TH, sel = 1:length(TH$JSTR), inst = 1,
Kal = Kal,waterlevel = 1e-08, FILT = list(ON = FALSE,
fl = 1/30, fh = 7, type = "HP", proto = "BU",RM=FALSE, zp=TRUE))
```

Arguments

TH	list structure of seismic traces
sel	select which tracesin list to deconvolve
inst	index to instrument in Kal list for calibration and instrument response
Kal	list of instrument responses
waterlevel	waterlevel for low frequency division
FILT	filter output, after instrumentation, see butfilt

Details

Instrument responses are lists of poles and zeros for each instrument defined.

Value

Same as input list with new traces representing displacement versus velocity

distseisnXY 49

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

VELOCITY.SEISN, deconinst, butfilt

Examples

```
data(KH)

Kal <- PreSet.Instr()

DH <- DISPLACE.SEISN(KH, sel = 1 , inst = 1,
    Kal = Kal, FILT = list(ON = FALSE, fl = 1/200, fh = 7,
    type = "BP", proto = "BU"))

if(interactive()){
    SOUT <- swig(DH, PADDLAB=c("CENTER", "fspread", "HALF", "PREV") )
}</pre>
```

distseisnXY

Distances from an RSEIS list

Description

Calculate euclidian distances from an RSEIS seismic data list, stations and event location.

Usage

```
\label{eq:distseisnXY(GH, sta=list(nam="", x=0 , y=0 , z=0) , LOC=list(x=0, y=0 , z=0))} \\
```

Arguments

GH	Rseis list structure
sta	station $list(x,y,z)$
LOC	$location \ list(x,y,z)$

Value

d vector of distances in km, matching the stations in the RSEIS list.

Note

Locations of stations and source should be projected.

50 DISTxsec

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

Examples

DISTxsec

Distance Cross section

Description

Plot time series vertically at specified distances. Produces a seismic cross section with correct spacing between traces.

Usage

```
DISTxsec(GH, dist, TIM.WIN = c(0, 3600), sel, trace.width = 10, col = "black", text.col = "blue", text.font = 2, text.size = 0.8, add = FALSE, plot = TRUE)
```

Arguments

GH	RSEIS seismic trace structure, output of prepSEIS used in swig
dist	distance for each station along x-axis
TIM.WIN	time window for cross section
sel	numeric, index of selected traces to plot.
trace.width	Width of each trace in plot. Should be in same units as x-axis
col	color for traces. If vector, each trace is plotted with assigned color.
text.col	color for text identifying each trace.
text.font	font for text identifying each trace.
text.size	size of text for identifying each trace.
add	logical, Whether to add traces, or just set up the figure
plot	logical, whether to plotthe traces.

DISTxsec 51

Details

Distances should be a vector for each trace in the RSEIS list.

Value

vector of x-y coordinates of the plot.

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

swig, prepSEIS

Examples

```
#### example using data in the RSEIS package
data(GH)
#### get the source location
lat.org = GH$pickfile$LOC$lat
lon.org = GH$pickfile$LOC$lon
#### get the station locations
g1 =GH$stafile
#### find the distance to each station
gd = rdistaz(lat.org, lon.org, g1$lat, g1$lon )
##### optional, filter the data
sel= which( GH$COMPS == 'V')
### filter traces
Fdef <- list(ON=TRUE, fl=1, fh=1, type="HP", proto="BU", RM=TRUE, zp=TRUE)
KF <- FILT.SEISN(GH, FILT=Fdef)</pre>
### match the stations in GH to the station distances
m1 = match(GH$STNS , g1$name)
dist.GH = gd$dist[m1]
TIM.WIN = range(GH$ex)
###### prepare plot, but do not add traces
A = DISTxsec(KF, dist.GH, TIM.WIN, sel, trace.width = 0.5, add=FALSE,
plot=FALSE )
##### add traces
B = DISTxsec(KF, dist.GH, TIM.WIN, sel, trace.width = 0.5, add=TRUE,
plot=TRUE, col='black' , text.col='red', text.size=1 )
```

DO.PMOT.ARR

DO.PMOT.ARR

Particle Motion Analysis with arrows

Description

Plot particle motion arrows

Usage

```
DO.PMOT.ARR(E, N)
```

Arguments

E East component
N East Component

Value

Graphical Side Effects

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

See Also

PMOT.drive

Examples

```
data(GH)
XLIM = c(1226, 1322 )
e = GH$JSTR[[1]][XLIM[1]:XLIM[2]]
n = GH$JSTR[[2]][XLIM[1]:XLIM[2]]

xx = range(e, na.rm =TRUE)
    yy = range(n, na.rm =TRUE)
sx = range(c(xx, yy))

x = RPMG::RESCALE(e, 0, 1, sx[1], sx[2])
    y = RPMG::RESCALE(n, 0, 1, sx[1], sx[2])

plot(range(x), range(y), type='n')
lines(x, y, col=grey(0.8))
DO.PMOT.ARR(x, y)
```

doGABOR.AR 53

Gabor Transform with AR spectrum method

Description

Gabor Transform with AR spectrum method

Usage

```
doGABOR.AR(Xamp, DT = 0.008, multi = 1, scale.def = 0, TWIN = 2, TSKIP =
0.2, PCTTAP = 0.05, pord=100, PLOT=TRUE)
```

Arguments

Xamp signal

DT sample rate interval (s)

multi Multiples of time window estimate

scale.def scaling flag for plotting (0=raw, 1=log, 2=sqrt)

TWIN time for window TSKIP time for skip

PCTTAP percent of taper to apply to individual windows

pord order for the AR process (default=100)

PLOT logical, TRUE=plot to device

Details

This is a spectrogram function similar to the Gabor Transform but uses the AR method for spectrum estimation.

Value

list

sig input signal dt deltat

numfreqs Number of frequencies output

wpars input parameters list(Nfft=numfreqs, Ns=Ns, Nov=Nov, fl=fl, fh=fh)

DSPEC spectrum image

HIMAT matrix with high values of F-test at 90 percent confidence

freqs output frequencies (y axis)
tims output times (x-axis)

54 doGABOR.MTM

Note

The main difference between this and other similar calls is the way the windows are determined.

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

References

Lees, J. M. and Park, J., 1995: Multiple-taper spectral analysis: A stand-alone C-subroutine, *Computers and Geology*, 21(2), 199-236.

Percival, Donald B., Walden, Andrew T. (1993): Spectral Analysis for Physical Applications, Cambridge University Press, Cambridge, 583p.

See Also

evolfft, evolMTM, MTM.drive, GETARAIC, doGABOR.AR, DOsgram, doGABOR.MTM

Examples

```
data(KH)
### swig(KH)

Xamp <- KH$JSTR[[1]]
Xamp <- Xamp[57914:72989]

EV <- doGABOR.AR(Xamp, DT = KH$dt[1] , multi = 1, scale.def = 0,
TWIN = 2, TSKIP = 0.2, PCTTAP = 0.05)</pre>
```

doGABOR.MTM

Evolutive MTM Spectrum

Description

Time varying Auto-Regressive Spectrum (Gabor Transform) using MTM. This is a driver for MT-Mgabor.

Usage

```
doGABOR.MTM(Xamp, DT = 0.008, ppoint=95 , multi = 1,
   scale.def = 0, TWIN = 2, TSKIP = 0.2, PCTTAP = 0.05, PLOT=TRUE)
```

doGABOR.MTM 55

Arguments

Xamp signal

DT sample rate interval (s)

ppoint percent confidence for F-test (default=95)

multi Multiples of time window estimate

scale.def scaling flag for plotting (0=raw, 1=log, 2=sqrt)

TWIN time for window TSKIP time for skip

PCTTAP percent of taper to apply to individual windows

PLOT logical, TRUE=plot to device

Details

This is a spectrogram function similar to the Gabor Transform but uses the MTM (multi-taper method) for spectrum estimation. This is a non-interactive version of MTM.drive.

Value

list output of MTMgabor:

sig input signal

dt deltat

numfreqs Number of frequencies output

wpars input parameters list(Nfft=numfreqs, Ns=Ns, Nov=Nov, fl=fl, fh=fh)

DSPEC spectrum image

HIMAT matrix with high values of F-test at 90 percent confidence

DOFMAT Matrix image of degrees of freedom

FVMAT Matrix image of F-test values

kdof test degrees of freedom=2*nwin-2

ppoint percentage point for confidence bounds

freqs output frequencies (y axis)

tims output times (x-axis)

Note

The main difference between this and other similar calls is the way the windows are determined.

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

56 doMYBUTTS

References

Lees, J. M. and Park, J., 1995: Multiple-taper spectral analysis: A stand-alone C-subroutine, *Computers and Geology*, 21(2), 199-236.

Percival, Donald B., Walden, Andrew T. (1993): Spectral Analysis for Physical Applications, Cambridge University Press, Cambridge, 583p.

See Also

MTMgabor, evolfft, evolMTM, MTM.drive, GETARAIC, doGABOR.AR, DOsgram

Examples

```
data(KH)
### swig(KH)

Xamp = KH$JSTR[[1]]
Xamp = Xamp[57914:64914]

EV = doGABOR.MTM(Xamp, DT = KH$dt[1], multi = 1, scale.def = 0,
TWIN = 1, TSKIP = .1, PCTTAP = 0.05)
```

doMYBUTTS

Dummy Button Function

Description

This is a dummy button function showing how buttons can be created on the fly

Usage

```
doMYBUTTS(butt = "", clicks = NULL, x = NULL)
```

Arguments

butt character vector

clicks clicks
x locations

DOsgram 57

DOsgram Gabor transform

Description

Gabor transform with simple spectrum

Usage

```
DOsgram(Xamp, DT = 0.008, multi = 1, scale.def = 0,
  TWIN = 2, TSKIP = 0.2, PCTTAP = 0.05, PLOT=TRUE)
```

Arguments

Xamp	signal
DT	sample rate interval (s)
multi	Multiples of time window estimate
scale.def	scaling flag for plotting (0=raw, 1=log, 2=sqrt)
TWIN	time for window
TSKIP	time for skip
PCTTAP	percent of taper to apply to individual windows
PLOT	logical, TRUE=plot to device

Details

This is a non-interactive version of SPECT.drive.

Value

list

sig input signal dt deltat

numfreqs Number of frequencies output

wpars input parameters list(Nfft=numfreqs, Ns=Ns, Nov=Nov, fl=fl, fh=fh)

DSPEC spectrum image

freqs output frequencies (y axis)
tims output times (x-axis)

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

58 dowiggles

References

Lees, J. M. and Park, J., 1995: Multiple-taper spectral analysis: A stand-alone C-subroutine, *Computers and Geology*, 21(2), 199-236.

See Also

```
evolMTM, evolfft, evolAR, plotevol
```

Examples

```
data(KH)
### swig(KH)

Xamp <- KH$JSTR[[1]]
Xamp <- Xamp[57914:72989]

Nfft <- 1024  ### fft length
Ns <- 512  ### number of samples in a window
Nov <- 480  ### number of samples of overlap per window
fl <- 0  ### low frequency to return
fh <- 12  ### high frequency to return

EV <- DOSgram(Xamp, DT = 0.008, multi = 1, scale.def = 0,
TWIN = 2, TSKIP = 0.2, PCTTAP = 0.05)</pre>
```

dowiggles

Plot wiggles

Description

Plot wiggles

Usage

```
dowiggles(AMAT, dt, dx)
```

Arguments

AMAT N	Matrix of	seismic	time se	ries
--------	-----------	---------	---------	------

dt time interval, sec

dx x-spacing

downsample 59

Value

graphical side effects

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

wiggleimage, matsquiggle

Examples

```
S1 = symshot1()
dowiggles(S1$smograms,S1$dt, S1$x)
```

downsample

Interpolate time series at higher sample rate.

Description

Interpolate a times series with a higher/lower sample rate for processes that are sensitive to low samples.

Usage

```
downsample(sig, dt=0.001, newdt=0.01, PLOT=FALSE )
```

Arguments

sig time series vector

dt sample rate s/sample

newdt New, lower sample rate

PLOT logical, plot both traces, default=FALSE

Details

Linear interpolation is performed between samples. If the newdt is an integer multiple of the old dt, The samples will not be modified.

Value

time series vector with new sample rate.

60 editDB

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

Examples

```
data(KH)
sig = KH$JSTR[[1]]
##### reduce samples from 125 (0.008) to 25Hz (0.04)
newdt = KH$dt[1]*5
sig2 = downsample(sig, dt = KH$dt[1], newdt = newdt )

L0 = length(sig)
L1 = length(sig2)

op <- par(no.readonly = TRUE)
par(mfrow=c(2,1) )
    plot.ts(ts(sig, deltat=KH$dt[1]), xlab='s',
ylab='Amplitude', main=paste('Orignal', L0) )
grid()
    plot.ts(ts(sig2, deltat=newdt), xlab='s',
ylab='Amplitude', main=paste('Downsample', L1) )
grid()
par(op)</pre>
```

editDB

Edit Data Base

Description

Edit, or remove items from an RSEIS data base after it has been read in.

Usage

```
editDB(DB, w)
pathDB(DB, path1="", path2="")
```

Arguments

DB RSEIS data base

w vector of index items to remove

path1 character for old path

path2 character for new path to replace old path

Details

The DB is a list. The program cycles through the elements of the list and removes all lnes that correspond to the idecies given in w.

editDB 61

Value

Returns a DB list

Note

A problem arises if the makeDB program reads in, or tries to read in files that have not data base header information. This program can eliminate these from the data base.

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

makeDB, infoDB

Examples

```
######## create a data set and a DB
tdir = tempdir()
data(GH)
DD = data.frame(GH$info)
WV = which(GH$COMPS=='V')
L1 = length(WV)
######
GIVE = vector(mode='list')
for(j in 1:L1)
 i = WV[j]
AA = DD[i,]
GIVE[[j]] = list(fn = AA$fn, sta =GH$STNS[i] , comp = GH$COMP[i],
            dt = AA$dt, DATTIM = AA, N = AA$n1, units = NA,
            coords = NA, amp = GH$JSTR[[i]] )
}
###### save files in the tempdir
for(i in 1:length(GIVE) )
    sig = GIVE[[i]]
  d1 = dateStamp(sig$DATTIM)
   nam1 = paste(d1,sig$sta, sig$comp, sep='_')
    nam2 = paste0(nam1, '.RDS')
    nam3 = paste(tdir, nam2, sep='/')
    saveRDS(file=nam3, sig)
    }
```

62 EmptyPickfile

```
LF = list.files(path=tdir,pattern='.RDS', full.names=TRUE)
####### make the database
cosoDB = FmakeDB(LF, kind=-1)
###### change the DB path:
path1<-tdir
path2<-"."
####### change the path name of the trace files
newDB <- pathDB(cosoDB, path1, path2)</pre>
```

EmptyPickfile

Create an empty RSEIS pickfile structure

Description

Creates a structure list with no data

Usage

```
EmptyPickfile(GH)
```

Arguments

GH

RSEIS list structure

Value

RSEIS pickfile list

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

See Also

EmptySEIS

Examples

```
data(GH)
EmptyPickfile(GH)
```

EmptySEIS 63

 ${\tt EmptySEIS}$

Create an empty RSEIS structure

Description

Creates a structure list with no data

Usage

EmptySEIS()

Value

RSEIS list

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

See Also

EmptyPickfile

Examples

EmptySEIS()

envelope

Envelope Function with Hilbert Transform

Description

Envelope Function with Hilbert Transform

Usage

envelope(x)

Arguments

Х

signal vector

Details

Uses the hilbert transform to get the envelope function.

EPOCHday

Value

vector of the absolute of the hilbert transform

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

Examples

```
data(CE1)
ev <- envelope(CE1$y)
plot(CE1$x, CE1$y, type='l')
lines(CE1$x,ev, col='red')</pre>
```

EPOCHday

Epoch Day

Description

Number of days since Origin Year

Usage

```
EPOCHday(yr, jd = 1, origyr = 1972)
```

Arguments

yr year jd Julian Day

origin year, default=1972

Details

Either jd or mo, dom can be provided

Value

List:

jday number of days since the start of origin year

origyr origin year used

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

EPOCHyear 65

See Also

EPOCHyear, recdate

Examples

```
tyears <- 1973:2009
E1 <- EPOCHday(tyears, jd=1, origyr=1972 )
EPOCHyear(E1$jday, origyr=1972 )</pre>
```

EPOCHyear

Epoch Year

Description

Get year and julian day given number of days since origin

Usage

```
EPOCHyear(iday, origyr = 1972)
```

Arguments

iday Number of days since origin origyr origin year, default=1972

Value

List:

yr Year

jd Julian day in Year

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

See Also

EPOCHday, recdate

66 ETECTG

Examples

```
tyears <- 1973:2009
E1 <- EPOCHday(tyears, jd=1, origyr=1972 )
EPOCHyear(E1$jday, origyr=1972 )
####### here is an example using year Month and day of month
### use March 19 for each year:
ii <- tojul(tyears, 3, 19)-tojul(tyears, 1, 1)
E1 <- EPOCHday(tyears, jd=ii, origyr=1972 )
EPOCHyear(E1$jday, origyr=1972 )</pre>
```

ETECTG

Event Detection

Description

Event Detection for a seismic section

Usage

```
ETECTG(GH, sel = sel, FRWD = 8, BKWD = 8, sbef = 1, saft = 6, DFRWD = 0.5, DBKWD = 0.5, thresh = 2, Tthresh2 = 7, stretch = 1000, flo = 0.1, fhi = 5, PLOT = FALSE, Kmin = 7, perc = 0.05, kind = 1, DOARAIC = FALSE)
```

Arguments

GH	Seismic Structure
sel	select traces
FRWD	forward window, s
BKWD	backward window
sbef	seconds before
saft	seconds after
DFRWD	seconds before
DBKWD	seconds after
thresh	threshold 1
Tthresh2	threshold 2

evolAR 67

stretch	stretch factor
flo	low frequency for BP filter
fhi	low frequency for BP filter
PLOT	logical, TRUE=plot diagnostics
Kmin	min number of picks per window
perc	percentage of Kmin allowed
kind	kind of picking
DOADATO	TDITE—do outo magaina AIC moth

DOARAIC TRUE=do auto-regressive AIC method

Details

Very complicated picking routine - designed for volcanic regions with emergent arrivals. Works with lots of tuning.

Value

sel input selection

JJ index
PPTIM p-arrivals
PP all arrivals

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

evolAR	Evolutive Auto-Regressive Spectrum

Description

Time varying Auto-Regressive Spectrum (Gabor Transform)

Usage

```
evolAR(a, dt = 0, numf = 1024, pord = 100, Ns = 0, Nov = 0, fl = 0, fh = 10)
```

Arguments a

•
sample rate interval (s)
Number of frequencies
Order for Auto-regressive calculation
Number of sample in sub-window
Number of sample to overlap
low frequency to display
high frequency to display

signal

68 evolAR

Details

This is a spectrogram function similar to the Gabor Transform but uses the Auto-Regressive method for spectrum estimation.

Value

List

sig input signal

dt deltat

wpars input parameters

DSPEC spectrum image

freqs output frequencies (y axis)

tims output times (x-axis)

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

evolfft, evolMTM, MTM.drive, GETARAIC

Examples

```
data(KH)
###
     swig(KH)
Xamp <- KH$JSTR[[1]]</pre>
dt <- KH$dt[1]
plot(seq(from=0, length=length(Xamp), by=dt), Xamp, type='l')
## limit the trace, somewhat
Xamp <- Xamp[12670:22669]</pre>
plot(seq(from=0, length=length(Xamp), by=dt), Xamp, type='l')
Nfft<-1024 ### fft length
Ns<-512
            ### number of samples in a window
            ### number of samples of overlap per window
Nov<-480
f1<-0
            ### low frequency to return
fh<-12
           ### high frequency to return
EV <- evolAR(Xamp, dt = dt, numf =Nfft , pord = 100, Ns = Ns,
       Nov = Nov, fl = fl, fh = fh)
PE <- plotevol(EV, log=1, fl=0.01, fh=fh,
      col=rainbow(100), ygrid=FALSE,
```

evolfft 69

```
STAMP="", STYLE="ar")
```

evolfft	Spectrogram fft	
---------	-----------------	--

Description

Spectrogram using simple fft (Gabor Transform)

Usage

```
evolfft(a, dt = 0, Nfft = 0, Ns = 0, Nov = 0, fl = 0, fh = 10, pcttap = 0.05, adjust=TRUE)
```

Arguments

а	signal
dt	sample rate interval (s)
Nfft	Number of points in fft
Ns	NUmber of sample in sub-window
Nov	number of sample to overlap
fl	low frequency to display
fh	high frequency to display
pcttap	Percent cosine taper for each window
adjust	logical, if TRUE adjust the parameters so the plot looks good (DEFAULT). If FALSE, keep user parameters.

Details

This is a duplication of the spectrogram function in matlab which applies Welsh's Method. Each mini-window is tapered with a cosine window.

Value

List

sig input signal

dt deltat

wpars input parameters

DSPEC spectrum image

freqs output frequencies (y axis)

tims output times (x-axis)

70 evolMTM

Note

Parameter adjust is by default TRUE so that the choice of Ns, Nov, and kcol will be optimized, more or less. Set this logical to FALSE to force the function to use user input parameters.

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

See Also

evolMTM, evolAR, MTM.drive

Examples

```
data(CE1)
#### plot signals
plot(CE1$x, CE1$y, type='l')
### set parameters
Nfft<-1024 ### fft length
Ns<-250 ### number of samples in a window
Nov<-240 ### number of samples of overlap per window
f1<-0
          ### low frequency to return
fh<-1/(2*CE1$dt)
                    ### high frequency to return
####### calculate the evolutive fft (Gabor Transform)
EV <- evolfft(CE1$y, dt =CE1$dt , Nfft = Nfft, Ns =Ns , Nov =Nov , f1 =f1
, fh = 25)
### plot image, but it does not look too interesting
image(EV$DSPEC)
### plot Gabor transform with special function
PE <- plotevol(EV, log=0, fl=0.01, fh=100, col=rainbow(100), ygrid=FALSE,
STAMP="", STYLE="fft")
```

evolMTM

Evolutive Multi-taper Spectrum

Description

Time varying Multi-taper Spectrum (Gabor Transform)

evolMTM 71

Usage

```
evolMTM(a, dt = 0, numf = 1024, Ns = 0, Nov = 0, fl = 0, fh = 10)
```

Arguments

a	Signal
dt	Sample rate interval (s)
numf	Number of points in fft
Ns	Number of sample in sub-window
Nov	Number of sample to overlap
fl	low frequency to display
fh	high frequency to display

Details

This is a spectrogram function similar to the Gabor Transform but uses the MTM method for spectrum estimation.

Value

List

input signal sig

deltat dt

input parameters wpars DSPEC spectrum image

freqs output frequencies (y axis) output times (x-axis) tims

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

References

Lees, J. M. and Park, J., 1995: Multiple-taper spectral analysis: A stand-alone C-subroutine, Computers and Geology, 21(2), 199-236.

See Also

evolfft, MTM.drive

72 FAKEDATA

Examples

```
data(KH)
###
     swig(KH)
Xamp <- KH$JSTR[[1]]</pre>
dt <- KH$dt[1]
plot(seq(from=0, length=length(Xamp), by=dt), Xamp, type='l')
## limit the trace, somewhat
Xamp <- Xamp[12670:22669]
plot(seq(from=0, length=length(Xamp), by=dt), Xamp, type='l')
Nfft<-4096 ### fft length
Ns<-512
           ### number of samples in a window
Nov<-480 ### number of samples of overlap per window
f1<-0
           ### low frequency to return
fh<-12 ### high frequency to return
EV <- evolMTM(Xamp, dt = dt, numf = Nfft, Ns = Ns, Nov = Nov, fl = fl, fh
= fh)
PE <- plotevol(EV, log=1, fl=0.01, fh=fh, col=rainbow(100), ygrid=FALSE,
STAMP="", STYLE="ar")
     compare with:
## EVf <- evolfft(Xamp, dt = dt, Nfft =Nfft , Ns =Ns , Nov =Nov , fl =fl, fh = fh)
## PE <- plotevol(EVf, log=1, fl=fl, fh=fh, col=rainbow(100), ygrid=FALSE,STAMP="", STYLE="fft")
```

FAKEDATA

Fake Data for Examples.

Description

Create a list of artifical seismic traces to illustrate examples that require a database or long sequences.

Usage

```
FAKEDATA(amp, OLDdt = 0.01, newdt = 0.1, yr = 2000, JD = 5, mi = 0, sec = 0, Ntraces = 48, seed = 200, noise.est = c(1, 100), verbose = FALSE)
```

FAKEDATA 73

Arguments

amp vector, some signal that will be repeated

OLDdt Orignal sample rate

newdt New sample rate, usually less than the original

yr year

JD starting Julian day
mi starting minute
sec starting second
Ntraces number of traces
seed random seed

noise.est 2-vector, starting and ending sample to estimate noise level of trace

verbose logical, message feed back

Details

The input signal can be any time series, or even a made up signal. This is just to give the look of the result something like real data. The noise level is extracted from the man and std of the real data at the samples indicated by noise.est.

The sampling rate (dt, sec/sample) is increased mainly for speed and plotting. This may be skipped for certain functions involving spectrum analysis.

The signal is distributed randomly in each hour along the total span of the requested period, i.e. each hour has one instance of the signal.

The date is arbitrary, of course.

Value

List of data in a format similar to the output of GET.seis.

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

GET.seis

```
##### get a time series
data(KH)

amp = KH$JSTR[[1]]
OLDdt = KH$dt[1]
#### downsample to:
newdt = 0.1
```

74 filedatetime

filedatetime

Create a character string from a date

Description

Create a character string from a date for naming unique output files.

Usage

```
filedatetime(orgtim, tims=0, datesep="-", timesep="_", secsep="_")
```

Arguments

```
orgtim time vector of length 5: c(yr, jd, hr, mi, sec)
tims seconds to add to orgtim, default=0
datesep character, seperater for the date
timesep character, seperator for the time
secsep character, seperator for the seconds
```

Value

filename character string

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

FILT.SEISN 75

Examples

```
data(GH)
g1 <- getGHtime(GH)
g2 <- unlist(g1)
filedatetime(g2, 1)</pre>
```

FILT.SEISN

Filter Traces

Description

Filter Traces in a seismic structure

Usage

```
FILT.SEISN(TH, sel = 1:length(TH$JSTR),
FILT = list(ON = TRUE, fl = 0.5, fh = 7, type = "HP",
proto = "BU", RM=FALSE, zp=TRUE), TAPER = 0.1, POSTTAPER = 0.1, AUGMENT=FALSE)
```

Arguments

TH	Seismic structure	
sel	selection of traces	
FILT	filter definition	
TAPER	filter taper	
POSTTAPER	taper after filter	
AUGMENT	Logical, FALSE	

Details

RSEIS Seismic structure is filtered, trace by trace. If AUGMENT is TRUE, traces are augmented at beginning and end, filtered and then truncated to suppress edge effects. In that case no tapering is applied post fitler.

Value

RSEIS Seismic structure, traces are filtered and a proc is added to the trace history.

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

76 FILT.spread

See Also

butfilt

Examples

```
## Fdef = choosfilt()
Fdef <- list(ON=FALSE, fl=0.5, fh=7.0, type="BP", proto="BU", RM=FALSE, zp=TRUE )
data("GH")
sel <- which(GH$COMPS=="V")

sel <- 1:3
KF <- FILT.SEISN(GH, sel = sel, FILT=Fdef)
swig(KF, sel=sel, SHOWONLY=0)</pre>
```

FILT.spread

Filter trace with a spread of filters

Description

Show a time series and a spread of user defined filters to show signal at a variety of bandwidths.

Usage

```
FILT.spread(x, y, dt, f1 = f1, fh = fh, sfact = 1,
WIN = NULL, PLOT = TRUE, TIT = NULL, TAPER = 0.05,
POSTTAPER=0.05, RM=FALSE, zp=TRUE )
```

Arguments

X	x-axis
У	y-amplitude
dt	delta-t, sec
fl	vector of low frequency cut offs
fh	vector of high frequency cut offs
sfact	scale factor, 0,1
WIN	xlimits to constrain plotting
PLOT	logical, plotting
TIT	title
TAPER	taper data prior to filter, percent cosine, default=NULL
POSTTAPER	taper output after filter, percent cosine, default=0.05
RM	Remove mean value from trace, default=FALSE
zp	zero phase filter, default=TRUE

filterstamp 77

Details

Use the TAPER and POSTTAPER to reduce the edge effects prior to and after filtering.

Value

list:

FMAT matrix of time series filtered

Notes Notes for filter of each element of FMAT

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

butfilt, PLOT.MATN

Examples

```
data(KH)
dt <- KH$dt[1]

y <- KH$JSTR[[1]]

x <- seq(from=0, by=dt, length=length(y))

fl <- rep(1/100, 5)
fh <- 1/c(1,2,5,10,20)

FILT.spread(x, y, dt, fl = fl, fh = fh, sfact = 1,
    WIN = NULL, PLOT = TRUE, TIT = NULL, TAPER = 0.05)</pre>
```

filterstamp

Make Filter Stamp

Description

Create an text stamp describing a filter

Usage

```
filterstamp(fl=1/2, fh=10, type="BP")
```

78 filterstamp

Arguments

fl vector, low frequency

fh vector, high frequency

type vector, type of filter

Details

If the frequency is less than 1, the period is displayed. For now only 3 digits are displayed. If the first argument, fl, is a list the parameters are extracted from the list and the other arguments are ignored.

Value

stamps text strings

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

FILT.spread

```
fl <- c(0.01, 2)
fh <- c(10, 20)
type <- "BP"
filterstamp(fl, fh, type)

FILT<-list(ON=TRUE, fl=1/2, fh=12, type="HP", proto="BU")
filterstamp(FILT)

FILT<-list(ON=TRUE, fl=1/2, fh=12, type="BP", proto="BU")
filterstamp(FILT)

FILT<-list(ON=TRUE, fl=1/2, fh=12, type="LP", proto="BU")
filterstamp(FILT)</pre>
```

finteg 79

finteg

Integration in Frequency Domain

Description

Integration of seismic signal in Frequency Domain. Used for converting velocity seismogram to displacement.

Usage

```
finteg(data, dt)
```

Arguments

data time series

dt sample interval

Value

Integrated time series signal

Note

To avoid problems with dividing by very small numbers, water level is set =1.e-8

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

```
## waterlevel=1.e-8

dfor5 <- rnorm(1000)

idfor5 <- finteg(dfor5, 0.008)</pre>
```

80 fixcomps

fixcompname

Fix component names for uniformity

Description

Fix component names for uniformity

Usage

```
fixcompname(comp)
```

Arguments

comp

4, "SHV"

Details

Translate the component names to something uniform that can be used for sorting and other functions.

Value

```
one of "V", "N", "E"
```

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

Examples

```
fixcompname("SHV")
fixcompname("SHE")
```

fixcomps

Fix Station Component Names

Description

Convert components to common names: V N E

Usage

```
fixcomps(oldcomps, SEGY = FALSE)
```

fixNA 81

Arguments

oldcomps vector of compnents

SEGY logical, TRUE= segy data with compnents 4,5,6 or 1,2,3

Details

Attemps to convert irregular component names to common format for later processing.

Value

character vector

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

See Also

fixcompname

Examples

```
comp <- c("v", "e")
fixcomps(comp)</pre>
```

fixNA

Fix NA values.

Description

Replace NA values in a time series with mean values between end points of missing segments, or first and last real values in case the NA's are at the beginning or ends of traces.

Usage

fixNA(y)

Arguments

У

numeric vector

Details

fixNA searches for stretches of NA 's in a time series and replaces the NA values with numeric values based ont he two end points of each section.

Value

numeric vector with no NA values.

fixNA

Note

function is used primarily in filter applications.

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

butfilt

```
## source("~/Site/TA_DATA/CODE/fixNA.R")
### last samples are NA
zig = rnorm(25)
zig[10:15] = NA
noNA = fixNA(zig)
### first samples are NA
zig = rnorm(25)
zig[1:5] = NA
noNA = fixNA(zig)
zig = rnorm(25)
zig[1:5] = NA
zig[21:25] = NA
noNA = fixNA(zig)
zig = rnorm(25)
zig[1] = NA
zig[21:25] = NA
zig[10:12] = NA
noNA = fixNA(zig)
cbind(zig, noNA)
```

fixUWstasLL 83

 ${\sf fixUWstasLL}$

fixUWstasLL

Description

Matches station locations to pickfile stations

Usage

```
fixUWstasLL(STAS, stafile)
```

Arguments

STAS

structure of station lat, lon, z

stafile

station file

Details

Matches station locations to pickfile stations

Value

```
structure of station lat, lon, z
```

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

fromjul

given julian day and year get month/day

Description

given julian day and year get month/day

Usage

```
fromjul(jul, yy)
```

Arguments

jul	Julian Day	
VV	year	

FRWDft FRWDft

Value

```
list(mo=mm, dom=dd)
```

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

See Also

tojul

Examples

```
iyear <- 2001
  jul <- 233
inine <- tojul(iyear,1,1);
ijul <- inine + jul - 1;
fromjul( ijul, iyear);</pre>
```

FRWDft

Forward fourier Transform

Description

Forward fourier Transform

Usage

```
FRWDft(g, n, tstart, dt)
```

Arguments

g	input signal
n	number of points
tstart	start of trace
dt	sample interval, s

Value

G	fourier compnents
f	frequency vector
t	time vector

gaddtix 85

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

See Also

INVRft

Examples

```
zil <- rnorm(300)
fss <- FRWDft( zil, length(zil), 0, 0.004)</pre>
```

gaddtix

add tic marks

Description

Add tic marks to plot

Usage

```
gaddtix(side = 3, pos = 0, tck = 0.005, at = c(0, 1), labels = NULL, col = 2, addline = FALSE, ...)
```

Arguments

side side = 1, 2, 3, 4

pos relative to axis

tck tic length

at vector of positions labels vector of labels col color for plotting

addline add lines

... graphical parameters from par

Value

Graphical side effect

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

86 GAZI

See Also

par

Examples

```
\label{eq:plot} $\operatorname{plot}(c(\emptyset,1),\ c(\emptyset,1),\ type='n',\ ann=FALSE,\ axes=FALSE)$ $$ $\operatorname{gaddtix}(side=1,\ pos=0,\ tck=-0.01,\ at=seq(from=0,\ to=.5,\ by=.2)\ , $$ $\operatorname{labels=seq}(from=0,\ to=.5,\ by=.2),\ col=1)$ $$
```

GAZI

Get azimuthal particle motion

Description

Do particle motion analysis

Usage

```
GAZI(ADAT, dt = 1, ex = seq(0, 100),

comp = c(4, 5, 6), sta = "ZZZ", az = 0,

len = 50, shift = 10, prev = 1, fileid = "", picks = NA, labs = NA)
```

Arguments

ADAT	Matrix of 3 component seismic data
dt	delta T (s)
ex	x-axis vector
comp	component names
sta	station name
az	azimuth of station orientation
len	length of time series
shift	amount to shift per window
prev	length of buffer at beginning of trace
fileid	character string to put on plot
picks	arrival times for annotation
labs	labels for arrival times for annotation

Value

list(aex=aex[1:jall], rateig=rateig[1:jall], aaz=aaz[1:jall], ai=ai[1:jall], figaz=figaz, azpar=azpar, incpar=incpar)

genrick 87

Examples

```
data("GH")

temp <- cbind(GH$JSTR[[4]], GH$JSTR[[5]], GH$JSTR[[6]])

pmolabs <- c("Vertical", "North", "East")

G <- GAZI(temp, dt =GH$dt[4] , comp = pmolabs, sta = GH$STNS[4] ,
az = 0, len =75, shift = 10, prev = 1)</pre>
```

genrick

Ricker Wavelet

Description

Generate a ricker wavelet of a specfied frequency and length

Usage

```
genrick(freq, dt, nw)
```

Arguments

freq frequency of ricker wavelet

dt Time sample rate (s) nw length of wavelet.

Value

ricker wavelet as a vector.

Note

Original code by Leonard Lisapaly (leonardl@fisika.ui.ac.id), converted to R by J.M. Lees.

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

88 get.corner

Examples

```
dt <- 0.01
freq <- 16
nlen <- 35

G <- genrick(freq, dt, nlen)

tee <- seq(from=0, by=dt, length=length(G))
plot(tee, G, type='l')</pre>
```

get.corner

Get Corner Frequency: Linear Model

Description

Search for low frequency asymptote, corner frequency, and fall off slope of seismic spectrum.

Usage

```
get.corner(INfreq, INspec, dt, f1, f2, PLOT = FALSE, VERBOSE = FALSE)
```

Arguments

INfreq	frequency vector
INspec	spectrum
dt	deltaT
f1	low frequency for modeling, Hz
f2	High frequency for modeling, Hz
PLOT	logical, TRUE=plot
VERBOSE	TRUE=diagnostics

Details

This routine does not assume any particular mathematical model. It searches for a three parameters that describe two lines that mimic the displacement spectrum. The search is done via least squares.

Value

Model of 3 parameters, best fit.

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

GET.seis 89

See Also

brune.doom

Examples

```
data(CE1)
## set frequency range for modeling for this high frequency data
## we use f2 = 50, but for volcano data should be f2<15

f1 <- 0.01
f2 <- 50.0

## set up data and parameters
amp <- CE1$y
len2 <- 2*next2(length(amp))
a <- list(y=amp, dt=CE1$dt)

Spec <- MTMdisp(a, f1=f1, f2=f2, len2=len2, PLOT=FALSE )

lspec <- Spec$displ

### get initial estimate of parameters
xc <- get.corner( Spec$f , lspec, CE1$dt, f1, f2, PLOT=FALSE)</pre>
```

GET.seis

Reads various seismic file formats

Description

This fuction calls binary routines to read in 'segy', 'sac'.

Usage

```
GET.seis(fnames, kind = 1, Iendian=1, BIGLONG=FALSE ,
HEADONLY=FALSE, PLOT = -1, RAW=FALSE)

JGET.seis(fnames, kind = 1, Iendian=1, BIGLONG=FALSE ,
HEADONLY=FALSE, PLOT = -1, RAW=FALSE)
```

Arguments

```
fnames list of file names.   
kind an integer -1, 0, 1, 2; 0="RDATA", -1="RDS", 0="RDATA", 1 = "segy", 2 = "sac", see notes below
```

90 GET.seis

Iendian vector, Endian-ness of the data: 1,2,3: "little", "big", "swap". Default = 1 (little)

BIGLONG logical, TRUE=long=8 bytes

HEADONLY logical, TRUE= header information only; not seismic trace will be returned (runs

a little faster).

PLOT integer, <0 no plot; 0 interactive; >0 number of seconds to sleep

RAW logical, default=FALSE(convert to volts), TRUE (return counts intead of volts)

Details

"kind" can be numeric or character: options are 'RDS', 'RDATA', 'SEGY', 'SAC', corresponding to (-1, 0, 1, 2).

Uses readBin to extract data in SAC/SEGY format. User must know what kind of machine the data was created on for I/O purposes.

If data was created on a little endian machine but is being read on big endian machine, need to call the endian "swap" for swapping.

Iendian can be a vector if input files have different endian-ness.

If data was created on a machine with LONG=4 bytes, be sure to call the program with BIG-LONG=FALSE.

The data returned is a list of lists, each element is one trace not necessarily related to the other traces in the list.

Once the data is read in, use prepSEIS to reformat the data into a list more amenable to further analysis in RSEIS.

See examples below for different cases.

Value

List containing the seismic data and header information. Each trace consists of a list with:

fn original file name
sta station name
comp compnent

dt delta t in seconds

DATTIM time list
yr year
jd julian day
mo month

dom day of month

hr hour minute sec sec

msec milliseconds
dt delta t in seconds

GET.seis 91

t1	time start of trace
t2	time end of trace
off	off-set
N	number of points in trace
units	units
amp	vector of trace values

Note

The easiext way to process datais to convert the data to an R-format type, using either save (kind=0) or saveRDS (kind=-1). If these are used then I/O is simple.

OLDER:

Information in the file names is ignored, so be sure to modify headers prior to using this method of extracting meta-data. (Or modify the meta data from the file names after reading in the data.)

For SEGY files, in LINUX-UNIX, use: rename, segymod (PASSCAL) to modify the headers

JGET.seis extracts digital seismic data from binary files stored in the file system. The program uses readBin for I/O and passes data back to R. Currently SAC, SEGY formats are installed but it is easy to extend. AH format is available for LINUX systems, but there were problems compiling in WINDOWS and MACOS so this feature was removed.

A filter for mseed format is currently being developed. Could use package 'IRISSeismic'

Author(s)

Jonathan M. Lees <jonathan.lees@unc.edu>

See Also

```
plotJGET, JSAC.seis, prepSEIS, Mine.seis
```

92 get.slepians

```
coords = NA, amp = GH$JSTR[[i]] )
#### par(mfrow=c(length(GIVE) , 1) )
  for(i in 1:length(GIVE) ) { plotGH(GIVE[[i]])
tdir = tempdir()
for(i in 1:length(GIVE) )
    sig = GIVE[[i]]
 d1 = dateStamp(sig$DATTIM, sep='_')
  nam1 = paste(d1,sig$sta, sig$comp, sep='_')
   nam2 = paste0(nam1, '.RDS')
   nam3 = paste(tdir, nam2, sep='/')
   saveRDS(file=nam3, sig)
######################## Now read files and make the DataBase:
LF = list.files(path=tdir,pattern='.RDS', full.names=TRUE)
Gseis = GET.seis(LF, kind = -1, Iendian=1, BIGLONG=FALSE ,
HEADONLY=FALSE, PLOT = -1, RAW=FALSE)
zed <- prepSEIS(Gseis)</pre>
#### plot the data, and interact with the data
swig(zed, sel=which(zed$COMPS=='V'), SHOWONLY=0)
if(interactive()){ plotJGET(Gseis) }
###
     for data created on UNIX (SUN) but read on linux:
###
     S1 <- GET.seis(Lname, kind = 1, Iendian="swap", BIGLONG=FALSE, PLOT = -1)
###
     for data created on linux (32 bit) but read on linux 64 bit:
        <- GET.seis(Lname, kind = 1, Iendian="little", BIGLONG=FALSE, PLOT = -1)</pre>
    for SEGY data created on linux (64 bit) but read on linux 32 bit:
### S1 <- GET.seis(Lname, kind = 1, Iendian="little", BIGLONG=TRUE, PLOT = -1)
     for SAC data created on MAC-OS (64 bit) but read on linux 32 bit:
###
### S1 <- GET.seis(Lname, kind = 2, Iendian="swap", BIGLONG=TRUE, PLOT = -1)
```

get.slepians

Get Slepian Tapers

Description

Return a matrix of Slepian tapers

get.slepians 93

Usage

```
get.slepians(npoints = 900, nwin = 5, npi = 3)
```

Arguments

npoints Number of points to return

nwin Number of windows (default =5)

npi Pi-Prolate numerber (3)

Details

This function only ureturns the tapers for inspection. To apply the tapers use the function mtapspec.

Value

Matrix: nwin vectors of npoints Slepian tapers

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

References

Lees, J. M. and Park, J., 1995: Multiple-taper spectral analysis: A stand-alone C-subroutine, *Computers and Geology*, 21(2), 199-236.

See Also

mtapspec

```
nwin <- 5
npi <- 3
npoints <- 900
sleps <- get.slepians(npoints, nwin, npi)

matplot(sleps, type='l', xlab="Index", ylab="Taper Amplitude")
legend('topleft', legend=1:nwin, lty=1:nwin, col=1:nwin)</pre>
```

94 Get1Dvel

e	T
	e

Read 1D velocity model

Description

Read in a velocity model

Usage

```
Get1Dvel(infile, PLOT = TRUE)
```

Arguments

infile Path to ascii-text model PLOT logical, TRUE=plot

Details

Reads Velocity model from a text file

Value

LIST:

zp	vector of Tops of Layers, P-wave, (km)
vp	vector of velocities of Layers, P-wave,(km/s)
ер	errors for velocities, P-wave,(km/s)
ZS	vector of Tops of Layers, S-wave, (km)
VS	vector of velocities of Layers, S-wave,(km/s)
es	errors for velocities, S-wave,(km/s)
name	character, name of model
descriptor	character vector description of model
es name	errors for velocities, S-wave,(km/s) character, name of model

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

See Also

Plot1Dvel, Comp1Dvels, travel.time1D

```
data(VELMOD1D)

Get1Dvel(VELMOD1D, PLOT=TRUE)
```

GETARAIC 95

GETARAIC

Auto-Regressive AIC estimate of arrival time

Description

Auto-Regressive AIC for arrival estimate, signal detection

Usage

```
GETARAIC(z4, DT = 0.008, Mar = 8, O1 = 2, O2 = 0.2, WW = 2, T1 = 1, PLOT = FALSE)
```

Arguments

z4	signal time series
DT	sample rate,s
Mar	AR Model Order
01	window before, s
02	window after, s
WW	window length, s
T1	initial guess, number of samples from beginning of trace
PLOT	logical, TRUE =plot

Details

Method of Sleeman for automatic phase determination.

Value

Taic Arrival time of wave

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

References

Sleeman

See Also

PSTLTcurve

96 getb1b2

Examples

```
data(CE1)
plot(CE1$x, CE1$y, type='l')

Xamp = CE1$y[CE1$x>4.443754 & CE1$x<6.615951]
Mar=8
z4 = Xamp
DT = CE1$dt
T1 = 50

01 = 10*DT
02 = 10*DT
WW = 10*DT
WW = 10*DT
Nz4 = length(z4)</pre>
araict = GETARAIC(Xamp, DT=CE1$dt, Mar=8, T1=T1, 01=01, 02=02, WW=WW, PLOT=TRUE)
```

getb1b2

Event Detection

Description

Used for event detection

Usage

```
getb1b2(J, L, zwin, maxx, max2)
```

Arguments

J Thresh.J L Thresh.J

zwin maximum of forwd and bakwrd windows

maxx max number of points

max2 all points

Value

```
vector c(b1,b2)
```

Note

Used for thresholding on event detection.

getEcard 97

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

See Also

Thresh.J, ETECTG

getEcard Error Card

Description

Location Error Card

Usage

getEcard(ECARD)

Arguments

ECARD error card from Lquake

Value

LOC character, location
rms root mean square error

meanres mean residual

sdres standard deviation of residuals

sdmean standard error of mean

sswres sum squares

ndf number degrees of freedom

fixflgs flags for inversion
sterrx error in x-direction
sterry error in y-direction
sterrz error in z-direction
sterrt error in origin time

mag mag

sterrmag error for mag

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

98 getFcard

getFcard

Parse UW F Card

Description

get F-card information

Usage

getFcard(FCARD)

Arguments

FCARD Error Ellipsoid card

Value

List:

azim1 angle, degrees plunge1 angle, degrees

val1 value

azim2 angle, degrees plunge2 angle, degrees

val2 value

azim3 angle, degrees plunge3 angle, degrees

val3 value herr error

verr vertical error

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

getGHtime 99

	~		
get	-(¬H	Ť٦	me

Get Seismic reference time

Description

Extract the times of all traces relative to a reference trace on a seismic RSEIS list.

Usage

```
getGHtime(GH, wi = 1, pix = NULL)
```

Arguments

GH	RSEIS	seismic	data	list

wi which event to use as a reference baseline

pix list of time to difference

Value

list: times relative to reference time:

yr year
jd julian day
hr hour
mi minute
sec second

spix seconds after reference

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

```
secdifL, secdif
```

Examples

```
data(GH)
```

getGHtime(GH)

100 getHcard

getHcard
_

Parse UW Hires location Card

Description

Extract High resolution information from H-card

Usage

```
getHcard(hcard)
```

Arguments

hcard ascii h-card

Value

List:

yr Year mo Month

dom Day of Month

hr Hour
mi minute
sec second
lat latitude
lon longitude
z depth

Author(s)

mag

Jonathan M. Lees<jonathan.lees.edu>

magnitude

See Also

EmptyPickfile

getIRIS 101

getIRIS	get Hypocenters from IRIS web site	

Description

Convert hypocenters from the IRIS website and prepare for plotting in GEOmap

Usage

```
getIRIS(fn, skip=0)
getANSS(fn, skip=2)
```

Arguments

fn character, file path name

skip numeric, number of lines to skip (e.g. for the header)

Details

Reads in a file dumped out by the website selection box.

Value

list:

yr vector year

dom vector, day of month

mo vector, mo
hr vector, hour
mi vector, minute
sec vector, sec
lat vector, latitude
lon vector, longitude
z vector, depth
mag vector, magnitude

Note

Be careful about headers and lines that need to be skipped.

for IRIS: http://www.iris.washington.edu/data/event/eventsearch.htm

For ANSS: http://www.quake.geo.berkeley.edu/anss/catalog-search.html

For NEIC (yet to be added) http://earthquake.usgs.gov/earthquakes/eqarchives/epic/epic_global.php

102 getjul

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

getjul

Examples

getjul

Get Julian day

Description

Get Julian day

Usage

```
getjul(year, month, day)
```

Arguments

year year
month month
day day of month

Value

Julian Day

getmoday 103

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

See Also

getmoday

Examples

```
getjul(2003, 11, 13)
```

getmoday

Get Month Day

Description

Get month day from julian day and year

Usage

```
getmoday(jul, iyear)
```

Arguments

jul julian day iyear Year

Value

mo Month

dom day of month

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

```
getmoday(234, 2005)
```

104 getPDEcsv

getNcard

Parse Name Card

Description

extract name from N-card

Usage

```
getNcard(ncard)
```

Arguments

ncard

ncard from UW-pickfile

Value

Neard

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

See Also

EmptyPickfile

getPDEcsv

Unpack PDE file

Description

Unpack PDE file as CSV file or ascii screen dump

Usage

```
getPDEcsv(pde = 'filename')
getPDEscreen(pde = 'filename' )
```

Arguments

pde

character, file name

getpfile 105

Details

Download pde from: http://neic.usgs.gov/neis/epic/epic.html. csv version uses comma separated values. screen versions uses the screen dump and a parser

Value

list of locations, times and magnitude

Note

if using screen dump, may need to clean up file a bit first.

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

References

http://neic.usgs.gov/neis/epic/epic.html

Examples

```
######
       copy/paste from the screen dump at the NEIC web site
fn <- tempfile()</pre>
K = c(
' PDE-Q 2008 12 31 053408.80 40.11 -77.00
                                            1 2.4 LgGS
' PDE-Q 2008 12 31 084757.50 46.75 154.41 14 4.9 mbGS
' PDE-Q 2008 12 31 090228 44.53 -110.36
                                                           ... ...... ',
                                           4 3.6 MLSLC
' PDE-Q 2008 12 31 110505 33.94 -118.78 14 3.1 MLPAS 2F. ......',
' PDE-Q 2008 12 31 113957.56 4.91 127.43 77 5.4 MwGS
                                                           ..M ...... ',
' PDE-Q 2008 12 31 140227.55 -25.35 -177.61 154 5.3 MwGS
                                                           ..M ...... ')
cat(file=fn, K, sep='\n')
### check: z = scan(file=fn, what='', sep='\n')
g <- getPDEscreen(pde = fn)
```

getpfile

Get Pick File

Description

Read Pick File to R

106 getphaselag2

Usage

```
getpfile(uwpickfile, stafile = NULL)
```

Arguments

uwpickfile pick file
stafile station file

Details

University of washington Format pickfiles are used. See EmptyPickfile for the structure stored.

Value

pickfile structure

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

See Also

EmptyPickfile

getphaselag2 Phase Lag

Description

Use MTM spectrum to estimate phase lag between two signals.

Usage

```
getphaselag2(y1, y2, DT = 0.008, frange = c(0, 20),
PLOT = FALSE, PLOT1 = FALSE, PLOT2 = FALSE)
```

Arguments

y1	vector times series one
y2	vector times series two
DT	deltaT sample rate, s

frange vector, frequency bounds for analysis

PLOT logical, TRUE=diagnostic plot PLOT1 logical, TRUE=diagnostic plot PLOT2 logical, TRUE=diagnostic plot getrdpix 107

Details

uses the slope of the cross spectrum to estimate the phase lag.

Value

```
phase lag, seconds
```

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

See Also

mtapspec

Examples

```
data("GH")
Xamp1<-GH$JSTR[[1]]</pre>
Xamp1<-Xamp1[1123:2000]</pre>
Xamp2<- GH$JSTR[[4]]</pre>
Xamp2<-Xamp2[1123:2000]</pre>
plot(Xamp1,type='1')
lines(Xamp2, type='l', col='red')
 pshift <- getphaselag2(Xamp1, Xamp2, DT=GH$info$dt[1],</pre>
 frange=c(5, 15), PLOT=TRUE)
```

getrdpix

get read picks

Description

```
get read picks
```

Usage

```
getrdpix(zloc, zenclick, sel, NH)
```

Arguments

zloc	location list
zenclick	number of picks
sel	sel vector in swig
NH	RSEIS list

108 getseis24

Details

Used internally in swig

Value

list: rd: date/times of picks for stations and comps

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

swig

getseis24

Get 24 Hours of Seismic Data

Description

Get 24 Hours of Seismic Data

Usage

```
getseis24(DB, iyear = 2009, iday = 1, usta = "",
acomp = "", kind = 1, Iendian=1, BIGLONG=FALSE)
```

Arguments

DB	Data base of meta-data about the seismic trace files
iyear	Year for extraction
iday	Julian day for extraction
usta	station to show
acomp	component to show
kind	kind of data, default=1, 0="RDATA" , -1="RDS", 0="RDATA", 1 = "segy", 2 = "sac"
Iendian	Endian-ness of the data: 1,2,3: "little", "big", "swap". Default = 1 (little)
BIGLONG	logical, TRUE=long=8 bytes

getseis24 109

Details

The DB file consists of a list of information on where to find the data and what times are covered. DB is

fn full path to file

yr year

jd julian day

hr hour

mi minute

sec second

dur duration, seconds

origyr origin time for epoch calculations

Value

yr	start year
jd	start julian day
t1	start t1 (with epoch)
t2	start t2 (with epoch day)
ed	epoch day
hr	start hour
mi	start minute
sec	start seconds
gamp	Amplitude of each trace
gdt	delta-t, sample interval, in seconds
gnam	station name
gfile	file information
sigs	List of time series
zna	List of NA values in each time series

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

setupDB, plotseis24

110 getvertsorder

```
data(KH)
amp = KH\$JSTR[[1]]
OLDdt = KH$dt[1]
newdt = 0.1
yr = 2000
GIVE = FAKEDATA(amp, OLDdt=0.01, newdt = 0.1, yr = 2000,
        JD = 4, mi = 12, sec = 0, Ntraces = 24*3,
seed=200, noise.est=c(1, 100) , verbose=TRUE )
#### each trace in a separate file
tdir = tempdir()
for(i in 1:length(GIVE) )
    sig = GIVE[[i]]
  d1 = dateStamp(sig$DATTIM, sep='_')
  nam1 = paste(d1,sig$sta, sig$comp, sep='_')
   nam2 = paste0(nam1, '.RDS')
   nam3 = paste(tdir, nam2, sep='/')
    saveRDS(file=nam3, sig)
################### Now read files and make the DataBase:
LF = list.files(path=tdir, pattern='.RDS', full.names=TRUE)
DB = FmakeDB(LF, kind=-1)
IDB = infoDB(DB)
START = list(yr =yr , jd= 5 , hr= 0 , mi= 0 ,sec= 0)
END = list(yr =yr , jd= 7 , hr= 0 , mi= 0 ,sec= 0)
h = getseis24(DB, iyear = 2000, iday = 5, usta = IDB$usta,
                     acomp = IDB$ucomp, kind = -1, Iendian=1, BIGLONG=FALSE)
  pjj <- plotseis24(h, dy=1/18, FIX=24, SCALE=1,
     FILT=list(ON=FALSE, fl=0.05, fh=20.0, type="BP", proto="BU"),
    RCOLS=c(rgb(0.2, .2, 1), rgb(.2, .2, .2)) )
```

getvertsorder 111

Description

Uses a Pickfile and the Waveform file, and creates a vector ordering the waveforms by P-wave arrival.

Usage

```
getvertsorder(P, GU)
```

Arguments

P Pickfile Structure
GU Waveform structure

Details

Waveforms structure may already have pickfile, but this is overridden by input pickfile P.

Value

list:

sel index of traces in order of first P-wave arrival

win vector, c(1,2), time window from the first arrival to the last

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

See Also

swig

```
data(GH)
vertord <- getvertsorder(GH$pickfile, GH)
swig(GH, sel=vertord$sel, WIN=vertord$win, SHOWONLY=TRUE)</pre>
```

112 GH

GH

Earthquake Seismic Data

Description

Example of seismic data structure. Geothermal Earthquake.

Usage

data(GH)

Format

List, consisting of:

JSTR list of digital seismic data traces

STNS vector of stations

dir directory

ifile original file names

COMPS Component names, V N E, e.g.

OCOMPS Old Component names

dt vector of delta-t, sampling time intervals

KNOTES Notes for plotting on panels

info List, detailed information about traces, including

dat not used

nn Number of traces

ex time axis for plotting

pcol colors for plotting

ok which traces are okay

wintim window span time, seconds

ftime alphanumeric time stamp

pickfile pickfile, see below

velfile velocity model list

stafile station information list including lat, lon, z

aname source name for loading

UWFILEID event ID number

The info list consists of:

fn file name

name identification name

GH 113

yr start year

jd start julianday

mo month

dom day of month

hr hour

mi minute

sec second

msec millisecond

dt delta-t

t1 time 1

t2 time 2

off offset

n1 number of samples

n2 not used

n3 not used

n number of samples

The pickfile consists of:

LOC list(yr, jd, mo, dom, hr, mi, sec, lat, lon, z, mag, gap, delta, rms, hozerr)

MC list(az1, dip1, az2, dip2, dir, rake1, dipaz1, rake2, dipaz2, F=list(az, dip), G=list(az, dip), U=list(az, dip), V=list(az, dip), P=list(az, dip), T=list(az,dip),sense,M=list(az1, d1, az2, d2, uaz, ud, vaz, vd, paz, pd, taz, td), UP=TRUE, icol=1, ileg, fcol='red', CNVRG, LIM =c(0,0,0,0))

STAS list(tag, name, comp, c3, phase, sec, err, pol, flg, res)

LIP vector, length=6

H list(yr,mo,dom,hr,mi,sec,lat,lon,z,mag)

N name card

E list(rms,meanres,sdres,sdmean, sswres,ndf,fixflgs,sterrx,sterry,sterrz,sterrt,mag,sterrmag)

filename file name

PICKER Name of Picker

UWFILEID numeric ID

winID1 win format ID

comments Vector of comments

OSTAS Old station names

References

Lees, J.M., 2004. Scattering from a fault interface in the Coso geothermal field. Journal of Volcanology and Geothermal Research, 130(1-2): 61-75.

Examples

data(GH)

114 ghstamp

${\tt ghstamp}$

Identification stamp for RSEIS data

Description

Prepare a character string stamp for identification of plots of of signals in swig.

Usage

```
ghstamp(GH, sel, WIN = c(485, 600))
```

Arguments

GH RSEIS list structure

sel numeric index vector, selection of traces

WIN time window within a trace

Details

The character string can be used as a stamp on plots for unique identification. Uses the info list in the RSEIS list. This function combines Zdate with the window time information.

Value

character array for each component in the sel vector.

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

```
Zdate, MTM.drive, plotwlet
```

```
data(KH)
ghstamp(KH)

data(GH)
ghstamp(GH, sel=1:3)
```

GLUE.GET.seis 115

GLUE.GET.seis

GLUE.GET.seis

Description

Once a database has been mined this program re-arranges the seismograms and creates a structure used in other programs.

Usage

```
GLUE.GET.seis(GG)
```

Arguments

GG

list of seismograms with headers

Value

structure of seismograms glued together

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

See Also

Mine.seis

GLUEseisMAT

GLUEseisMAT

Description

Find duplicated stations in a matrix and fill in the traces that are continuations, return the new matrix and the vector duplicates

Usage

```
GLUEseisMAT(GFIL)
```

Arguments

GFIL

list of data and headers, with duplicated stations glued

Value

New List of data and headers with same sensors/components glued together

gpoly gpoly

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

See Also

Mine.seis

gpoly

Convert Poles and Zeros to Polynomial

Description

Get Polynomial from Poles and Zeros

Usage

```
gpoly(x)
```

Arguments

Х

complex vector of poles or zeros

Value

vector of coefficients

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

```
K <- PreSet.Instr()
## convert zeros to polynomial coefficients
gpoly(K[[1]]$zeros)</pre>
```

GreatDist 117

GreatDist Distance A	Along Great Circle Arc
----------------------	------------------------

Description

Distance Along Great Circle Arc in degrees, kilometers

Usage

```
GreatDist(LON1, LAT1, LON2, LAT2, EARTHRAD= 6371)
```

Arguments

LON1	Longitude, point1
LAT1	Latitude, point1
LON2	Longitude, point2
LAT2	Latitude, point2

EARTHRAD optional earth radius, default = 6371

Value

LIST:

drad distance in radians
ddeg distance in degrees
dkm distance in kilometers

Author(s)

Jonathan M. Lees <jonathan.lees@unc.edu>

```
### get distance between London, England and Santiago, Chile
london <- c(51.53333, -0.08333333)
santiago <- c(-33.46667, -70.75)
GreatDist(london[2], london[1], santiago[2], santiago[1])</pre>
```

118 grotseis

~	~~	+ /	~~	÷	_
2	ro	1.3	`⊢		.>

Get seismic rotation matrix

Description

Set up a rotation matrix for a seismic trace. Rotation matrix is 3D, although this rotation only creates a rotation for conversion to radial-transverse orientation.

Usage

```
grotseis(ang, flip = FALSE)
```

Arguments

ang Angle to rotate horizontal components, degrees from North flip Logical, TRUE=flip the vertical axis, default=FALSE

Details

Returns a 3 by 3 matrix used for rotationg a 3-component seismic record, usually stored as an N by 3 matrix.

Only the N-E components are rotated, although the vertical component can be flipped.

It is important to note the order components are introduced in the rotation matrix. Here we assume East is X (to the right), and North is Y (to the top).

For data that has (V,N,E) as (1,2,3) need to switch components (1,3,2)

For data with (V,E,N) use the normal (1,2,3)

If Back-Azimuth is used, radial is directed towards the source. If azimuth is used, radial is directed away from the source.

Value

3 by 3 rotation matrix.

Note

Positive radial is away from the source (direction of wave propagation). Positive transverse is to the right when facing the direction of wave propagation.

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

rdistaz

grotseis 119

```
#### simple case:
vecs <- rbind(c(0,0,1), c(0,1,0))
rbaz <- grotseis(21.76, flip=FALSE)</pre>
bvec <- vecs %*% rbaz
plot(c(-2,2), c(-2,2), asp=1, xaxs="r", yaxs="r", type='n')
  arrows(0, 0, 0+bvec[,2], 0+bvec[,3],
     col=c("red", "blue"), length=.08)
  arrows(0, 0, vecs[,2], vecs[,3],
     col=c("red", "blue"), length=.08, lty=2)
text(0+bvec[1,2], 0+bvec[1,3], labels='radial', pos=3)
text(0+bvec[2,2], 0+bvec[2,3], labels='transverse', pos=4)
text(0+vecs[1,2], 0+vecs[1,3], labels='North', pos=3)
text(0+vecs[2,2], 0+vecs[2,3], labels='East', pos=4)
#### realistic case:
STAXY<-list()</pre>
STAXY$'x'<-c(-2.9162198461534,-2.49599248511068,
-2.85909405321704, -1.96135073099434,
-6.50413342506259, 2.64026676599765,
-3.95701139503518, -2.84082134537436,
-0.0457817300378462, -2.74214190991955)
STAXY$'y'<-c(-7.83435541676815,-4.46180337254565,
-6.46036190991833, -5.01212763828746,
-2.56091416028758,
5.31173503708142,2.10545324503380,-0.87490923667824,
-0.172422188354707, -1.52055218789877)
STAXY$'lat'<-c(14.685621984127,14.7159182222222,
14.6979647030651,14.710975070028,
14.7329873333333,14.8037143111518
,14.7749104943935,14.7481391460905,
14.7544511215933,14.7423394025875)
STAXY$'lon'<-c(268.420918730159,268.424817925926,
268.421447725096, 268.429783940243, 268.387586722222,
268.472531954619, 268.41123843527, 268.421611351166,
268.447574716981, 268.422528671994)
STAXY$'z'<-c(0.92522857142857,1.48225333333333,
1.14740517241379, 1.4423781512605, 1.51148,
2.53268681318681,2.70014678899083,2.04094444444444,
2.90827547169811, 2.31817123287671)
```

120 hilbert

```
STAXY$'cen'<-c(14.756,-91.552)
STAXY$name<-c('OBS','CAR','MAR','CAS','MTB','STA','STE','MOT','SUM','DOM')
sguitoXY<-list()</pre>
sguitoXY$'x'<-c(-1.78551922571555)
sguitoXY$'y'<-c(-1.80850340813817)
sguitoXY$'lat'<-c(14.7397535236)
sguitoXY$'lon'<-c(268.4314147874)
sguitoXY$'z'<-c(2.501)
DAZ <- rdistaz( sguitoXY$lat, sguitoXY$lon , STAXY$lat, STAXY$lon)
STAXY$az <- DAZ$baz
#### plotting
plot(STAXY$x, STAXY$y, asp=1, xaxs="r" , yaxs="r" )
text(STAXY$x, STAXY$y,STAXY$name, pos=3)
points(0,0, pch=3)
points(sguitoXY$x,sguitoXY$y , pch=8)
segments(sguitoXY$x, sguitoXY$y, STAXY$x, STAXY$y, col="green", lty=2)
#### be aware of the convention used: (V-N-E) or (V-E-N)
### here first vector is east, second vector is north
### if you use the V-N-E convention
vecs <- rbind( c(0,1,0), c(0,0,1))
for( i in 1:length(STAXY$x))
 {
rbaz <- grotseis(STAXY$az[i], flip=FALSE)</pre>
bvec <- vecs %*% rbaz
########## red is north, blue east
######## red is radial positive away or toward source, blue is transverse
######## blue is positive rotated to the right of red
arrows(STAXY$x[i],STAXY$y[i], STAXY$x[i]+bvec[,2], STAXY$y[i]+bvec[,3],
col=c("red", "blue"), length=.08)
}
```

hilbert

Hilbert Transform

Description

Hilbert transform

hilow 121

Usage

```
hilbert(x)
```

Arguments

Χ

time series vector

Details

Returns the hilbert transform. Used for calculating the envelope function.

Value

vector

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

See Also

fft, envelope

Examples

```
x <- rnorm(100)
y <- hilbert(x)</pre>
```

hilow

Find Maxima and Minima

Description

Search for Extrema along time series

Usage

hilow(y)

Arguments

У

time series

Value

LIST:

hi indexes to peaks
lo indexes to valleys

hodogram

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

See Also

peaks

Examples

```
ex <- seq(from=0, to=4*pi, length = 200)
y <- sin(ex)
plot(ex, y, type='l')

peakval <- hilow(y)

abline(v=ex[peakval$hi], col='green')
abline(v=ex[peakval$lo], col='red')</pre>
```

hodogram

HodoGram Plot

Description

HodoGram Plot

Usage

```
hodogram(nbaz, dt = dt, labs = c("Vertical", "North", "East"), COL = rainbow(140)[1:100] , STAMP = "")
```

Arguments

nbaz n by 3 matrix dt time sample rate

labs labels for the components

COL color palette

STAMP character stamp for identification

Value

```
sx = list graphical side effect
```

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

hypot 123

Examples

```
data("GH")

temp <- cbind(GH$JSTR[[1]][1168:1500], GH$JSTR[[2]][1168:1500],
GH$JSTR[[3]][1168:1500])

pmolabs <- c("Vertical", "North", "East")

sx <- hodogram(temp, dt=GH$dt[1] ,labs=pmolabs,
STAMP="Example", COL=rainbow(100))</pre>
```

hypot

Hypot

Description

length of line connecting two points in a plane

Usage

```
hypot(x1, y1, x2, y2)
```

Arguments

x1	x-location point 1
y1	y-location point 1
x2	x-location point 2
y2	y-location point 2

Details

Euclidean distance

Value

numeric distance

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

```
hypot(34, 12, 56, 89)
```

idpoints.hodo

idpoints.ho	nr

ID points on Hodogram

Description

Identification of points on a hodogram

Usage

```
idpoints.hodo(nbaz, sx, X, Y)
```

Arguments

nbaz	matrix 3 by n
sx	x vector
Χ	x-coordinates to id
Υ	y-coordinates to id

Details

Used in conjunction with other interative plots.

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

See Also

PMOT.drive

```
data("GH")
sel<- which(GH$STNS == "CE1")

temp <- cbind(GH$JSTR[[sel[1]]][1168:1500],
   GH$JSTR[[sel[2]]][1168:1500], GH$JSTR[[sel[3]]][1168:1500])
dt <- GH$dt[ sel[1] ]
STAMP <- "GH"

PMOT.drive(temp, dt,
   pmolabs = c("Vertical", "North", "East"), STAMP = STAMP)

## ids <- idpoints.hodo(temp, sx, zloc$x[sn1], zloc$y[sn1])</pre>
```

info.seis 125

info.seis

Information on a Seismic record

Description

Retrieve information on a seismic record

Usage

```
info.seis(GH)
```

Arguments

GH

RSEIS seismic record list

Details

Prints summary infromation on the traces in the seismic record

Value

Side Effects

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

Examples

```
data(KH)
info.seis(KH)
```

infoDB

Print information about the seismic database

Description

Print information about the seismic database

Usage

```
infoDB(DB, verbose=TRUE)
```

126 infoDB

Arguments

DB Database list

verbose logical, print information to screen, default=TRUE

Value

list(

usta Unique station names
ucomp Unique component names

start starting date end ending date

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

makeDB

```
######## to illustrate, we make a set of individual seismograms
data(GH)
L1 = length(GH$JSTR)
DD = data.frame(GH$info)
GIVE = vector(mode='list')
for(i in 1:L1)
AA = DD[i,]
GIVE[[i]] = list(fn = AA$fn, sta =GH$STNS[i] , comp = GH$COMP[i],
            dt = AA$dt, DATTIM = AA, N = AA$n1, units = NA,
            coords = NA, amp = GH$JSTR[[i]] )
}
######## save the seismic data in a temporary directory
#### each trace in a separate file
tdir = tempdir()
for(i in 1:length(GIVE) )
    sig = GIVE[[i]]
  d1 = dateStamp(sig$DATTIM, sep='_')
   nam1 = paste(d1,sig$sta, sig$comp, sep='_')
   nam2 = paste0(nam1, '.RDS')
   nam3 = paste(tdir, nam2, sep='/')
   saveRDS(file=nam3, sig)
    }
```

insertNAs 127

```
################################ Now read files and make the DataBase:
LF = list.files(path=tdir, pattern='.RDS', full.names=TRUE)
DB = FmakeDB(LF, kind=-1)
IDB = infoDB(DB)
```

insertNAs

Insert NA in a vector at given break points

Description

Insert NA in a vector at given break points

Usage

```
insertNAs(v, w)
```

Arguments

v original vector w break points

Details

Used for plotting lines that wrap around.

Value

vector with NA inserted

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

```
a <- 1:20
b <- insertNAs(a, c(5, 12))
```

128 INSTFREQS

INSTFREQS

Instrument Frequencies

Description

Vector of frequencies

Usage

```
INSTFREQS(b, a, w)
```

Arguments

b	numerator, zeros	
а	denominator, poles	
W	frequency	

Details

```
h = jpolyval(b,s) / jpolyval(a,s)
```

Value

```
h = jpolyval(b,s) / jpolyval(a,s)
```

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

```
K <- PreSet.Instr()
b <- K[[1]]$zeros
a <- K[[1]]$poles
INSTFREQS(b, a, 2*pi*12)</pre>
```

INSTresponse 129

INSTresponse	Instrument Respnse Function	

Description

Extract Instrument Response from Poles and Zeros

Usage

```
INSTresponse(Kal, key, ff, tt = tt, plotkey = NULL)
```

Arguments

Kal Ca	alibration
key in	dex to list of instruments
ff fre	equency vector
tt tin	me vector
plotkey T	RUE = plot

Details

response is fourier transform of delta function run through the filter

Value

List:

transfer transfer function
aa a coeficients
bb b coeficients

resp real part of response

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

References

Adapted from Ken Creager's Matseis

See Also

deconinst

integ1

Examples

```
######## set list of possible instruments:
Kal <- PreSet.Instr()
### get instrument reponse for first in list:
resp1 <- INSTresponse(Kal, 1, c(0,100) , tt=c(1,0.008), plotkey=TRUE)
### plots amplitude and phase</pre>
```

integ1

Integrate seismogram

Description

integrate under the curve of a pulse

Usage

```
integ1(x, y, dm = -Inf, hm = +Inf)
```

Arguments

```
x x-axis vectory y-axis vectordm lower boundhm upper bound
```

Value

vector: c(osum,cista) one with the bottom triangle included one without

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

INVRft 131

INVRft

Inverse Fourier Transform

Description

Inverse Fourier Transform

Usage

```
INVRft(G, n, tstart, dt)
```

Arguments

G	Input fourier transform
n	length of time vector
tstart	time series starts at tstart
dt	Delta t, sample rate

Details

G is a vector spectrum evaluated at positive and negative frequencies as defined by makefreq. tstart, dt and n define the output time vector as described above.

g is the Inverse Fourier Transform of G scaled by dt. time shift theorem has been used to account for time not starting at t=0.

Value

```
g truncate time vector to N points
```

f frequencies t times

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

See Also

```
makefreq, FRWDft, INSTresponse
```

```
zil <- rnorm(300)
fss <- FRWDft( zil, length(zil), 0, 0.004)
INVRft(fss$G, length(zil), 0, 0.004)</pre>
```

j2posix

j2posix

Convert RSEIS date list to Posix

Description

Convert RSEIS date list to a cmpatable date/time for calculating dates and times with base R codes.

Usage

```
j2posix(timeinput)
```

Arguments

timeinput

RSEIS date-time list

Details

Code here converts to posix, but works only down to the second, i.e. fractions of a second are dropped.

Value

POSIX compatable date time structure.

Note

If you need to preserve the fractional seconds (as we do in seismology) it is recommended to cut them off and add them later.

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

recdate, recdatel, dateList, dateStamp, filedatetime, rangedatetime, yeardate, Zdate, as.POSIXct

```
yr = 2014
j = 233.1234
A = convertATT(j, yr)
j2posix(A)
### note fractional seconds are truncated.
```

jadjust.length 133

jadjust.length

Zero Padding

Description

Add zeros to the end of the data if necessary so that its length is a power of 2. It returns the data with zeros added if nessary and the length of the adjusted data.

Usage

```
jadjust.length(inputdata)
```

Arguments

inputdata

either a text file or an S object containing data

Value

Zero-padded 1D array.

References

See discussions in the text of "Practical Time-Frequency Analysis".

JBLACK

Gray scale Color Palette

Description

generate a gray scale color palette

Usage

```
JBLACK(n, acol=rgb(0,0,0))
```

Arguments

n number of colors to produce

acol RGB color

Details

Creates a black color palette suitable for replacing rainbow for B/W color plots. This is inserted in case user needs to completely elliminate color from a plot that uses color palettes for fixing colors.

JGRAY

Value

n characters used for color palette

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

See Also

shade.col, rainbow, colors

Examples

```
pal <- JBLACK(100)
```

JGRAY

Gray scale Color Palette

Description

generate a gray scale color palette

Usage

JGRAY(n)

Arguments

n

number of colors to produce

Details

Creates a grey scale color palette suitable for replacing rainbow for grey shade plots.

Value

n characters used for color palette

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

See Also

shade.col, rainbow, colors

jitter.lab

Examples

```
pal <- JGRAY(100)
data(volcano)
image(volcano, col=pal)</pre>
```

jitter.lab

Jitter a set of labels

Description

Jitter a set of labels so they do not overlap

Usage

```
jitter.lab(x, w)
```

Arguments

x X-positions

w widths of the labels

Details

New label positions are computed such that they do not overlap. They are shifted up or down. Works only on horizontal labels.

Value

vector of integer shifts.

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu> Jake Anderson<ajakef@gmail.com>

See Also

textrect

```
APAL <-
c('tan2','red2','lightpink3','chocolate4','blue3','thistle4','lightcyan4',
'orangered1','purple4','darkred','dodgerblue1','gold3','chartreuse','sienna4',
'aquamarine3','mistyrose4','sienna1','darkkhaki','darkgoldenrod4','magenta4',
'pink3','orangered','darkslategray4','red3','goldenrod3','palegreen4','deepskyblue3',
'turquoise3','seagreen4','springgreen4','gold4','lightsalmon4','limegreen','orchid4',
'darkseagreen4','chartreuse3','goldenrod4','salmon2','deeppink3','forestgreen',
```

ilegend jlegend

```
'lightskyblue4', 'mediumorchid3', 'deepskyblue2', 'chocolate2', 'violetred4', 'blue1',
    'honeydew4', 'darkgreen', 'royalblue1', 'lightseagreen')
s <- sort(sample.int(100,25))</pre>
plot(c(1,110),c(0,8),col='white') #### set up plot area
PplusPHASE <- c( "P-up","P","Pdiff","PKP","PKiKP","PcP",</pre>
"pP", "pPdiff", "pPKP", "pPKiKP", "sP", "sPdiff", "sPKP", "sPKiKP")
SplusPHASE <- c("S-up","S","Sdiff","SKS","sS",</pre>
"sSdiff", "sSKS", "pS", "pSdiff", "pSKS")
basic1 <- c("ScP", "SKP", "PKKP", "SKKP", "PP", "PKPPKP")</pre>
basicPHASE <- c(PplusPHASE,SplusPHASE, basic1)</pre>
PHS <- basicPHASE[1:25]
x <- s
y <- rep(0, length(x))
            RPMG::textrect(x,y, PHS, xpd=TRUE, add=FALSE, font=1, cex=.8 )
RMAT <-
    newjitx <- jitter.lab(RMAT[,1] , RMAT[,3]-RMAT[,1])</pre>
    y <- y+newjitx*(RMAT[,4]-RMAT[,2])</pre>
MCOL <- length(PHS)</pre>
    PASTCOL <- APAL[1:MCOL]
    RMAT <- RPMG::textrect(x,y, PHS, xpd=TRUE,</pre>
            add=TRUE, textcol=PASTCOL, font=1, cex=.8 )
```

jlegend

plot a legend

Description

Add legend to side of figure

Details

Rewrite of the legend function for easier manipulation.

Value

See legend() for details on input

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

jpolyval 137

See Also

legend

Examples

jpolyval

Polynomial Value

Description

Polynomila value

Usage

```
jpolyval(p, x)
```

Arguments

p coefficientsx input value

Value

Sum of polynomial: $p_1 + p_2 * x^1 + p_3 * x^2...$

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

```
jpolyval(c(2,3,5), 7)
```

JSAC.seis

Description

Read SEGY/SAC format binary data

Usage

```
JSAC.seis(fnames, Iendian = 1 , HEADONLY=FALSE,
BIGLONG=FALSE, PLOT = -1, RAW=FALSE)
JSEGY.seis(fnames, Iendian = 1 , HEADONLY=FALSE,
BIGLONG=FALSE, PLOT = -1, RAW=FALSE)
```

Arguments

fnames	vector of file names to be extracted and converted.

Iendian vector, Endian-ness of the data: 1,2,3: "little", "big", "swap". Default = 1 (little)

HEADONLY logical, TRUE= header information only

BIGLONG logical, TRUE=long=8 bytes

PLOT integer, <0 no plot; 0 interactive; >0 number of seconds to sleep

RAW logical, default=FALSE(convert to volts), TRUE (return counts intead of volts)

Details

Uses readBin to extract data in SAC format. user must know what kind of machine the data was created on for I/O purposes.

For SEGY data the program is the same, although SEGY data does not have the problem of the BIGLONG so that is ignored.

For either code, a full header is returned, although the header for each format may be different.

Value

List containing the seismic data and header information. Each trace consists of a list with:

fn original file name
sta station name
comp compnent
dt delta t in seconds
DATTIM time list

yr year
jd julian day
mo month

JSAC.seis 139

dom	day of month
hr	hour
mi	minute
sec	sec
msec	milliseconds
dt	delta t in seconds
t1	time start of trace
t2	time end of trace
off	off-set
N	number of points in trace
units	units
amp	vector of trace values
HEAD	Full header as a data-frame of values (mixture of float and character strings)
N	Number of samples in trace
units	Units of samples, possibly: counts, volts, s, m/s, Pa, etc

Note

ΙO

SAC created on PC (windows) or LINUX machines typically will be in little endian format. SAC created on a SUN will be in big endian format. If you want to swap endian-ness, choose swap.

list: kind, Iendian, BIGLONG flags for I/O

MAC uses different convention.

Iendian can be a vector if input files have different endian-ness.

SAC inserts -12345 for no data.

There are other issues regarding the size of long.

The units are often questionable and depend on the processing. The user should be careful and check to see that the proper conversions and multipliers have been applied.

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

Mine.seis, rseis2sac

```
##### make some SAC files, then read them in
data(GH)
apath = tempdir()
## setwd(apath)
## apath = 'TEMP'
J = rseis2sac(GH, sel =1:5, path = apath, BIGLONG =FALSE)
```

jstats

```
####### next read them in
Lname <- list.files(path=J , pattern='SAC', full.names=TRUE)

S1 <- JSAC.seis(Lname, Iendian = .Platform$endian, BIGLONG =FALSE , PLOT = -1)

#### check just the first one
i = 1
   plotGH(S1[[i]])</pre>
```

jstats

statistics of a vector

Description

returns relevant stats

Usage

jstats(d)

Arguments

d

vector

Details

Program calls R routines to gather important statistics for later use.

Value

list:

mean walue

std standard deviation

med median

qdist quartile distance
bstats boxplot quantiles
mstats vector of mean and std
N number of points

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

Jtim 141

See Also

boxplot, mean, median

Examples

```
x <- rnorm(100, m=43)
jstats(x)</pre>
```

Jtim

Decimal Julian Day

Description

convert JD, HR, MIN SEC to Decimal Julian Day

Usage

```
Jtim(jj, hr = hr, mi = mi, sec = sec, yr=NULL, origyr=NULL)
JtimL(j)
```

Arguments

jj	Julian day
hr	Hour
mi	Minute
sec	Second
yr	year, default = NULL
origyr	default = NULL
or	
j	list of the above

Details

Using a NULL value for yr gives the fractional julian day in a year. If yr is a legitimate year, and the origyr is provided, then the EPOCH number of days from origyr are added onto the fractional julian day. The default for origyr is 1972 for most of seismology.

If the dates span a new year, sometimes it is useful to use the earliest year as the origyr.

Value

Julian day

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

142 KH

See Also

secdif

Examples

```
Jtim( 9 , hr= 14 , mi= 53 ,sec= 16.7807606880087 )
Jtim( 9 , hr= 14 , mi= 53 ,sec= 16.7807606880087, yr=2019, origyr=1972 )
#########  or,
j = list(jd=9 , hr= 14 , mi= 53 ,sec= 16.7807606880087)
JtimL(j)
```

ΚH

Volcano Seismic Data

Description

Seismic data from erupting Reventador Volcano. Vertical component only.

PICKER="", UWFILEID="", winID1="", comments="", OSTAS="")

Usage

data(KH)

Format

```
KH = list( LOC=list(yr=0, jd=0, mo=0, dom=0, hr=0, mi=0, sec=0, lat=0, lon=0, z=0, mag=0, gap=0, delta=0, rms=0, hozerr=0), MC=list(az1=0, dip1=0, az2=0, dip2=0, dir=0, rake1=0, dip2=0, V=list(az=0, dip2=0, V=list(az=0, dip2=0), V=list(az=0, dip2=0), V=list(az=0, dip2=0), V=list(az=0, dip2=0), V=list(az=0, dip2=0), V=list(az=0, dip2=0), dip2=0, dip
```

lagplot 143

References

Lees, J. M., J. B. Johnson, M. Ruiz, L. Troncoso, M. Welsh, Reventador Volcano 2005: Eruptive Activity Inferred from Seismo-Acoustic Observation *Journal of Volcanology and Geothermal Research* in Press, 2007.

Examples

```
data(KH)
###### set SHOWONLY=FALSE for interactive
swig(KH, SHOWONLY=0)
```

lagplot

Plot phase lags

Description

Shift a times series by a specified phase lag.

Usage

```
lagplot(y1, dt, lag, PLOT = FALSE)
```

Arguments

y1 seismic signal
dt DeltaT, s
lag lag, s

PLOT logical, TRUE=plot

Value

Graphical Side Effects.

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

See Also

getphaselag2

leests leests

Examples

```
data(KH)

ts1 = KH$JSTR[[1]]

lagplot(ts1, KH$dt[1], 300, PLOT=TRUE )
```

leests

Time Series Structure

Description

return time series structure

Usage

```
leests(a, dt = 0.008)
```

Arguments

a vector signaldt sample rate

Value

```
list(y=y, dt=dt)
```

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

```
x <- rnorm(10)
leests(x, dt = 0.01)</pre>
```

legitpix 145

legitpix

Legitimate picks in swig

Description

Legitimate picks in swig (used internally)

Usage

```
legitpix(sel, zloc, zenclick)
```

Arguments

sel seleceted traces in swig

zloc location list

zenclick number of legitimate picks

Value

list: ypick, ppick

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

swig

letter.it

Add letters to the corners of plots in multiple figures

Description

Add letters to the corners of plots in multiple figures

Usage

```
letter.it(a, corn = 1)
```

Arguments

a character letter for marking figure

corn corner to put letter in

146 LocalUnwrap

Details

Can use uppercase or lower case letters, or roman numerals.

Value

Graphical Side Effects

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

Examples

```
par(mfrow=c(2,2))
for(i in 1:4)
{
    x <- 1:10
    y <- rnorm(10)
    plot(x,y)
letter.it(letters[i], 2)
}</pre>
```

LocalUnwrap

Unwrap spectrum phase

Description

unwrap the phase spectrum so it does not wrap around

Usage

```
LocalUnwrap(p, cutoff = cutoff)
```

Arguments

```
p phase spectrum
cutoff cut off angle = pi
```

Value

Unwrapped spectrum

Note

Algorithm minimizes the incremental phase variation by constraining it to the range [-pi,pi]

logspace 147

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

Examples

```
x <- 1:512
amp <- sin(1*2*pi*x/16) + sin(2*2*pi*x/16) + sin(3*2*pi*x/16)

spc <- fft(amp)
plot(Mod(spc), type='l')
angle <- Arg(spc)
plot(angle, type='l')
unang <- LocalUnwrap(angle, cutoff =pi )
plot(unang, type='l')</pre>
```

logspace

Logarithm

Description

Logarithmically spaced vector

Usage

```
logspace(d1, d2, n = n)
```

Arguments

d1 lower frequencyd2 upper frequencyn number of frequencies

Details

generates a row vector of n logarithmically equally spaced points between decades 10^{X1} and 10^{X2}

Value

vector

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

longfft

Examples

```
f <- logspace(1, 25)</pre>
```

longfft

Long FFT Spectrogram

Description

Creates hourly spectrograms, either alternating seismic and infrasound data or sequences of one component.

Usage

```
longfft(DB, DAYS = c(233, 234), HRS = 1:24, sta = "KR1", comp = c("V",
"I"), NPP = 6, CSCALE = FALSE, pal = rainbow(100), PS = FALSE, kind = 1,
Iendian = 1, BIGLONG = FALSE)
longreset(NPP, PS)
longpstart(NPP = 6, asta = "", acomp = "", theday = 1, hr = 0)
```

Arguments

DB	RSEIS Data base
DAYS	vector of Days to display
HRS	vector of hours to display
sta	stations to extract
comp	component to extract
NPP	Number of plot strips per page, default = 6
CSCALE	scaling
pal	palettes to use (given two will alternate these)
PS	logical, TRUE postscript output
kind	data type, an integer -1, 0, 1, 2 ; 0=R(DAT) , -1=RDS, 0=RDATA, 1 = segy, 2 = sac
Iendian	Endian-ness of binary data
BIGLONG	logical, TRUE=long is 8 bytes
asta	character, one station
acomp	character, one component
theday	one day
hr	one hour

longfft 149

Details

Extracts dats from the DB data base and plots strips of spectrograms for perusal.

longpstart, longreset are auxilliary codes used to set up the postscript files and initialize the plotting.

Value

Graphical Side effects

Note

Program is set for data being ready from external sources in binary (SAC, SEGY) format. If data is in R-format already, the code may not work.

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

SPECT.drive

Examples

```
if(interactive()){
 ##### get a time series
    data(KH)
     amp = KH\$JSTR[[1]]
    OLDdt = KH$dt[1]
     #### downsample to:
     newdt = 0.1
     JK = FAKEDATA(amp, OLDdt=OLDdt, newdt = 0.1, yr = 2000,
              JD = 4, mi = 12, sec = 0, Ntraces = 24,
seed=200, noise.est=c(1, 100) , verbose=TRUE )
tdir = tempdir()
for(i in 1:length(JK) )
    sig = JK[[i]]
  d1 = dateStamp(sig$DATTIM, sep='_')
  nam1 = paste(d1,sig$sta, sig$comp, sep='_')
   nam2 = paste0(nam1, '.RDS')
   nam3 = paste(tdir, nam2, sep='/')
    saveRDS(file=nam3, sig)
    }
LF = list.files(path=tdir,pattern='.RDS', full.names=TRUE)
DB = FmakeDB(LF, kind=-1)
IDB = infoDB(DB)
```

150 makeDB

```
p1 <- RPMG::Gcols(plow=5, phi=0, N=100, pal="topo.colors", mingray=0.8)
    p2 <- RPMG::Gcols(plow=5, phi=0, N=100, pal="rainbow", mingray=0.8)

longfft(DB, DAYS=5, HRS=1:24,
    sta=IDB$usta, comp=IDB$ucomp, NPP=6, CSCALE=FALSE,
    pal = list(p1=p1, p2=p2), PS=FALSE, kind = -1,
    Iendian=1, BIGLONG=TRUE)
}</pre>
```

makeDB

Create a seismic Waveform Database

Description

Create a seismic Waveform Database

Usage

```
makeDB(path=".", pattern="R", dirs="", kind = 1,
Iendian=1, BIGLONG=FALSE)
FmakeDB(LF2, kind =1, Iendian=1, BIGLONG=FALSE)
```

Arguments

path	character, Path to directory where files and directories exist
pattern	character, pattern for listing of files
dirs	character, vector of directories to be scanned
kind	kind of data: RDS=-1, R(DAT)=0, segy=1; sac=2
Iendian	default=1, Endian-ness of the data: 1,2,3: "little", "big", "swap". Default = 1 (little)
BIGLONG	logical, TRUE means long=8 bytes
LF2	list of files

Details

The files are typically located in a directory structure created by programs like ref2segy, a PASS-CAL program for downloading data in the field. Each file contains one seismogram, with a header. makeDB reads in all the headers and creates a list of meta-data for later use in RSEIS.

"kind" can be numeric or character: options are 'RDS', 'RDATA', 'SEGY', 'SAC', corresponding to (-1, 0, 1, 2).

makeDB 151

Uses readBin to extract data in SAC format. user must know what kind of machine the data was created on for I/O purposes.

If data was created on a little endian machine but is being read on big endian machine, need to call the endian "swap" for swapping.

If data was created on a machine with LONG=4 bytes, be sure to call the program with BIG-LONG=FALSE.

If the base directory, or the subdirectories, contain files that are not seismic data then care must be taken. Perhaps use FmakeDB to explicitly names the files for the DataBase.

If using FmakeDB a simple vector of files (full path names) should be provided.

The origin year, used for getting the Epoch year, is stored as attribute origyr.

Value

file name
year
julian day
hour
minute
second
duration, seconds
time 1 in Epoch days
time 2 in Epoch days
station name
component name
sample rate, seconds

Note

Epoch times are used to accomodate problems where julian days cross year end boundaries, so that day 366 comes before day 1 of the next year.

The origyr, kind, Iendian, BIGLONG are stored as attributes in the Database.

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

```
setupDB, Mine.seis, getseis24, plotseis24, EPOCHday, swig
```

makefreq

Examples

```
######## to illustrate, we make a set of individual seismograms
L1 = length(GH$JSTR)
DD = data.frame(GH$info)
GIVE = vector(mode='list')
for(i in 1:L1)
AA = DD[i,]
GIVE[[i]] = list(fn = AA$fn, sta =GH$STNS[i] , comp = GH$COMP[i],
            dt = AA$dt, DATTIM = AA, N = AA$n1, units = NA,
            coords = NA, amp = GH$JSTR[[i]] )
}
######## save the seismic data in a temporary directory
#### each trace in a separate file
tdir = tempdir()
for(i in 1:length(GIVE) )
    sig = GIVE[[i]]
  d1 = dateStamp(sig$DATTIM, sep='_')
  nam1 = paste(d1,sig$sta, sig$comp, sep='_')
   nam2 = paste0(nam1, '.RDS')
   nam3 = paste(tdir, nam2, sep='/')
   saveRDS(file=nam3, sig)
######################### Now read files and make the DataBase:
LF = list.files(path=tdir,pattern='.RDS', full.names=TRUE)
DB = FmakeDB(LF, kind=-1)
```

makefreq

Make Frequency

Description

Create a frequency value for integration and differentiation

Usage

```
makefreq(n, dt)
```

Arguments

```
n number of freqs
dt deltat
```

markseis24 153

Value

vector of frequencies

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

See Also

INVRft

Examples

```
N <- 256
dt <- 0.008
f <- makefreq(N,dt)</pre>
```

markseis24

Mark 24 hour seismic display

Description

Mark a 24 hour seismic display

Usage

```
markseis24(pjj, pix = list(yr = 2009, jd = 1, hr = 0, mi = 0, sec = 0, dur = 0), col = "red", LEGON = 3, BARON = TRUE, ARROWS = TRUE, lwd=1)
```

Arguments

pjj	Output information from plotseis24 (x,y, yr, jd)
pix	list: date list consisting of: yr, jd, hr, mi, sec, dur)
col	Color, specified as color index, character string or rgb
LEGON	plotting flag for legs: 0=no legs, 1=left leg, 2=right leg, 3=both legs(def ault)
BARON	logical:plotting flag for bar
ARROWS	logical: plot arrows FALSE=no arrows
lwd	numeric, graphical parameter, line width

Details

the LEGON parameter controls the small marks at the ends: Either left(1) right(2) both(3) or no legs(0) are plotted. window bars should wrap around the ends of the hour to the next hour below. The durations of the windows are supplied in seconds. If no duration is supplied, it is set to 0. If one duration is supplied it is copied to all other windows.

154 markseis24

Value

Graphical Side effects

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

winmark, getseis24, plotseis24

Examples

```
data(KH)
amp = KH\$JSTR[[1]]
OLDdt = KH$dt[1]
newdt = 0.1
yr = 2000
GIVE = FAKEDATA(amp, OLDdt=0.01, newdt = 0.1, yr = 2000,
        JD = 4, mi = 12, sec = 0, Ntraces = 24*3,
seed=200, noise.est=c(1, 100) , verbose=TRUE )
tdir = tempdir()
for(i in 1:length(GIVE) )
   sig = GIVE[[i]]
  d1 = dateStamp(sig$DATTIM, sep='_')
  nam1 = paste(d1,sig$sta, sig$comp, sep='_')
   nam2 = paste0(nam1, '.RDS')
   nam3 = paste(tdir, nam2, sep='/')
    saveRDS(file=nam3, sig)
########################## Now read files and make the DataBase:
LF = list.files(path=tdir, pattern='.RDS', full.names=TRUE)
DB = FmakeDB(LF, kind=-1)
IDB = infoDB(DB)
START = list(yr =yr , jd= 5 , hr= 0 , mi= 0 ,sec= 0)
END = list(yr = yr , jd = 7 , hr = 0 , mi = 0 , sec = 0)
h = getseis24(DB, iyear = 2000, iday = 5, usta = IDB$usta,
                     acomp = IDB$ucomp, kind = -1, Iendian=1, BIGLONG=FALSE)
  pjj <- plotseis24(h, dy=1/18, FIX=24, SCALE=1,
```

matsquiggle 155

```
FILT=list(ON=FALSE, fl=0.05 , fh=20.0, type="BP", proto="BU"),
   RCOLS=c(rgb(0.2, .2, 1), rgb(.2, .2, .2)) )

### set up pix
WINS2 <- list(hr = c(12.5, 12.7) )

Apix <- WINS2$hr[seq(from=1, to=length(WINS2$hr), by=2) ]
dur <- (WINS2$hr[seq(from=2, to=length(WINS2$hr), by=2) ]-Apix)*3600

## dur <- rep(0, times=length(Apix))

## mark the 24 hour plot

pix =list(yr=rep(pjj$yr, length(Apix)),
   jd=rep(pjj$jd, length(Apix)) , hr=Apix, mi=rep(0, length(Apix)),
   sec=rep(0, length(Apix)), dur=dur)

markseis24(pjj, pix=pix, col='red', ARROWS=TRUE )</pre>
```

matsquiggle

Matrix Seismic Record

Description

Plot a matrix of time series as a var-squiggle display (filled in half traces)

Usage

```
matsquiggle(XMAT, dt1, dist = NULL, thick = 1,
FLIP = FALSE, filcol='blue', tracecol="black", add=FALSE, PLOT=TRUE,xpd=TRUE, plotdir=1)
```

Arguments

XMAT	matrix of traces
dt1	sample interval, s
dist	distance for each trace in the matrix
thick	thickness for each trace to be plotted
FLIP	logical, FALSE (default) plot horizontal, TRUE=plot vertical
filcol	color for shading
tracecol	color for trace
add	add traces to existing plot
PLOT	whether to create a new plotting region
xpd	logical, set xpd parameter (see par)
plotdir	1=left to right, 0=right to left (default=1)

156 matsquiggle

Details

see varsquiggle for more details

Value

side effects.

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

varsquiggle, varsquig

Examples

```
data(GH)
m <- match( GH$STNS, GH$stafile$name)</pre>
LATS <- GH$stafile$lat[m]
LONS <- GH$stafile$lon[m]
dees <- rdistaz( GH$pickfile$LOC$lat, GH$pickfile$LOC$lon, LATS, LONS)</pre>
sel <- which(GH$COMPS=="V")</pre>
sel <- sel[order(dees$dist[sel])]</pre>
### plot normal way:
### swig(GH, sel=sel, WIN=c(5,10), SHOWONLY=TRUE)
### plot with varsquiggle
### varsquiggle(GH, sel=sel, WIN=c(5,10))
ex <- seq(from=0, by=GH$dt[sel[1]], length=length(GH$JSTR[[sel[1]]]))</pre>
wx <- ex>=5 & ex<=10
XMAT <- matrix(ncol=length(sel), nrow=length(which(wx)))</pre>
for(i in 1:length(sel))
XMAT[,i] <- GH$JSTR[[sel[i]]][wx]</pre>
}
matsquiggle(XMAT, GH$dt[sel[1]] , dist = dees$dist[sel] , thick = 1,
FLIP = FALSE)
axis(1)
axis(2)
title(xlab="Time, s", ylab="Distance, km")
```

Mine.seis 157

Mine.seis	Mine a seismic data base to extract secions of time limited data

Description

Mine a seismic data base to extract secions of time limited data

Usage

```
Mine.seis(at1, at2, DB, grepsta, grepcomp, kind = 1, Iendian=1,
BIGLONG=FALSE, CHOP=TRUE, verbose=FALSE, chtoken=NULL, statoken=NULL, RAW=FALSE)
```

Arguments

at1	time 1 in julian days
at2	time 2 in julian days
DB	data base structure to searcth through that provides the files where data is to extracted from
grepsta	which stations to extract
grepcomp	which components to extract
kind	kind of data, -1="RDS", 0="RDATA", 0="RDATA", 1 = "segy", 2 = "sac"
Iendian	Endian-ness of the data: 1,2,3: "little", "big", "swap". Default = 1 (little)
BIGLONG	logical, TRUE=long=8 bytes
CHOP	cut the data to a window using CHOP.SEISN
verbose	print out intermediate information for debugging
chtoken	channel token for selecting channels (NULL)
statoken	station token for selecting stations (NULL)
RAW	logical, default=FALSE(convert to volts) , TRUE (return counts intead of volts)

Details

The data base is a list or dataframe containing the files names, the beginning time (t1) and ending time (t2) for each file in the data base. Mine seis uses grep on the file names to extract specific files from the DB list.

Mine.seis needs to know what format the data was created in: little/big endian and the size of the LONG.

If data was created on a little endian machine but is being read on big endian machine, need to call the endian "swap" for swapping.

If data was created on a machine with LONG=4 bytes, be sure to call the program with BIG-LONG=FALSE.

Use sysinfo to findout the system parameters for the local system. You need to know, however, what machine the binary files were created on.

In some situation the chanel name and the station name are not embedded in the file headers - in that case use the token from the file name.

Mine.seis

Value

List of seismograms cut from the database

Note

The headers in the digital (segy or SAC) data files may not necessarily match the file names. Note that program JGET.seis extracts the station name and component name from the digital header and does not use the file name. It may be prudent to force the file names and header files to match prior to using Mine.seis. For SEGY files, in LINUX-UNIX, use: rename, segymod (PASSCAL) to modify the headers.

For SAC files, use sac software.

For R-based codes save the files in a format that has the relevant information (DAT format).

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

See Also

makeDB, GLUEseisMAT, JGET.seis, JSAC.seis, JSEGY.seis, sysinfo

Examples

```
data(GH)
DD = data.frame(GH$info)
#### get only vertical traces
WV = which( GH$COMPS=='V' )
L1 = length(WV)
GIVE = vector(mode='list')
for(j in 1:L1 )
    i = WV[j]
   AA = DD[i,]
   GIVE[[j]] = list(fn = AA$fn, sta =GH$STNS[i] , comp = GH$COMP[i],
                     dt = AA$dt, DATTIM = AA, N = AA$n1, units = NA,
                     coords = NA, amp = GH$JSTR[[i]] )
}
#### par(mfrow=c(length(GIVE) , 1) )
  for(i in 1:length(GIVE) ) { plotGH(GIVE[[i]])
tdir = tempdir()
for(i in 1:length(GIVE) )
    sig = GIVE[[i]]
  d1 = dateStamp(sig$DATTIM, sep='_')
  nam1 = paste(d1,sig$sta, sig$comp, sep='_')
   nam2 = paste0(nam1, '.RDS')
```

mirror.matrix 159

```
nam3 = paste(tdir, nam2, sep='/')
   saveRDS(file=nam3, sig)
   }
###################### Now read files and make the DataBase:
LF = list.files(path=tdir,pattern='.RDS', full.names=TRUE)
DB = FmakeDB(LF, kind=-1)
IDB = infoDB(DB)

SAMPseis <- Mine.seis(IDB$at1, IDB$at2, DB, IDB$usta[1:3], IDB$ucomp[1], kind = -1 )
w <- swig(SAMPseis, SHOWONLY=0)</pre>
```

mirror.matrix

mirror matrix

Description

mirrored representation of image matrix

Usage

```
mirror.matrix(x)
```

Arguments

Χ

matrix

Details

Used for flipping the output of the wavelet transform for more convenient plotting.

Value

matrix

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

References

Rwave, plotwlet, wlet.do, wlet.drive

160 Mmorlet

Examples

```
xy <- matrix(rnorm(100), ncol=10)
mirror.matrix(xy)</pre>
```

Mmorlet

Morlet Wavelet

Description

Make Morlet Wavelet

Usage

```
Mmorlet(UB = -4, LB = 4, N = 256, plot = FALSE)
```

Arguments

UB upper bound
LB lower bound
N number of points
plot logical, TRUE=plot

Details

create a morlet function based on the matlab style routines

Value

time series list:

 $\begin{array}{ccc} xval & x\text{-output} \\ \text{morl} & y\text{-output} \end{array}$

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

See Also

scal2freqs, Rwave

Examples

```
mm <- Mmorlet(-8, 8, 256)
```

mtapspec 161

mtapspec	MTM spectrum
----------	--------------

Description

Multi-tape Method Spectrum

Usage

```
mtapspec(a, dt, klen = length(a), MTP = NULL)
```

Arguments

a vector time series
dt sample rate
klen length of fft

MTP MTM parameters, list:

kind kind of taper averagenwin number of windows

npi number of Pi-prolate functions

inorm normalization flag

Details

MTP represent parameters that control the multi-tape pi-prolate functions used by mtapspec. See reference for details.

Value

LIST

dat input data dt sample rate

spec Estimated power spectrum

dof degrees of freedom for each frequency

Fv F-values for each frequency
Rspec real part of complex spectrum

Ispec imaginary part of complex spectrum

freq frequencies
df delta frequency

numfreqs number of frequencies klen length used in fft

mtm input MTM parameters, see above

162 MTM.drive

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

References

Lees, J. M. and Park, J., 1995: Multiple-taper spectral analysis: A stand-alone C-subroutine, *Computers and Geology*, 21(2), 199-236.

See Also

fft

Examples

MTM.drive

Interactive MTM driver

Description

MTM analysis of signals

Usage

```
MTM.drive(a, f1 = f1, f2 = f2, len2 = 1024, COL = 2, PLOT = FALSE, PADDLAB = NULL, GUI = TRUE)
```

Arguments

a	list(y=time series amp, dt=delta-ts, stamps=text stamps)
f1	low frequency
f2	high frequency
len2	power of two length
COL	colors
PLOT	logical PLOT=TRUE
PADDLAB	vector of buttons
GUI	Whether to be in GUI (interactive) mode

Value

Graphical Side effect

MTMdisp 163

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

References

Lees, J. M. and Park, J., 1995: Multiple-taper spectral analysis: A stand-alone C-subroutine, *Computers and Geology*, 21(2), 199-236.

See Also

plt.MTM0

Examples

```
data("GH")
sel <- which(GH$COMPS=="V")

amp <- list()
dees <- list()
for( i in 1:3)
{
   amp[[i]] <- GH$JSTR[[sel[i]]]
   dees[i] <- GH$dt[sel[i]]
stamps[i] <- paste(GH$STNS[sel[i]], GH$COMPS[sel[i]])
}

a <- list(y=amp, dt=dees, stamps=stamps)

f1 <- 0.1

f2 <- floor(0.33*(1/a$dt[[1]]))
speccol <- c('red', 'blue', 'purple')</pre>
MTM.drive(a, f1, f2, COL=speccol, PLOT=TRUE)
```

MTMdisp

MTMdisp

Description

Display MTM displacement spectrum.

164 MTMdisp

Usage

```
MTMdisp(a, f1 = f1, f2 = f2, len2 = 1024, PLOT = FALSE)
```

Arguments

а	seismic velocity trace, as a ts structure (list(y=trace, dt=sample rate)
f1	low frequency
f2	high frequency
len2	length of fft
PLOT	logical, TRUE=plot

Details

Uses Multi-taper estimate of spectrum and divides the spectrum by 1/(2*pi*f) to get integration of velocity seismogram.

Value

Returns displacement spectrum. Graphical Side effect.

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

References

Lees, J. M. and Park, J., 1995: Multiple-taper spectral analysis: A stand-alone C-subroutine, *Computers and Geology*, 21(2), 199-236.

See Also

mtapspec

Examples

```
data(CE1)
xvel <- list(y=CE1$y[CE1$x>5.443754 & CE1$x<5.615951], dt=CE1$dt)
len2 <- next2(length(xvel$y))
Spec <- MTMdisp(xvel, f1=.01, f2=25, len2=len2, PLOT=FALSE )</pre>
```

MTMgabor 165

MTMgabor Evolutive MTM Spectrum	
---------------------------------	--

Description

Time varying Auto-Regressive Spectrum (Gabor Transform) using MTM

Usage

```
MTMgabor(a, dt = 0, ppoint=95, numf = 1024, Ns = 0, Nov = 0, fl = 0, fh = 10)
```

Arguments

a signal
dt sample rate interval (s)
ppoint percent confidence for F-test (default=95)
numf Number of frequencies
Ns Number of sample in sub-window
Nov Number of sample to overlap
f1 low frequency to display

high frequency to display

Details

fh

This is a spectrogram function similar to the Gabor Transform but uses the MTM (multi-taper method) for spectrum estimation. This is a non-interactive version of MTM.drive.

Value

List

sig input signal dt deltat

numfreqs Number of frequencies output

wpars input parameters list(Nfft=numfreqs, Ns=Ns, Nov=Nov, fl=fl, fh=fh)

DSPEC spectrum image

HIMAT matrix with high values of F-test at 90 percent confidence

DOFMAT Matrix image of degrees of freedom

FVMAT Matrix image of F-test values
kdof test degrees of freedom=2*nwin-2
ppoint percentage point for confidence bounds

freqs output frequencies (y axis)
tims output times (x-axis)

166 MTMplot

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

References

Percival and Walden;

Lees, J. M. and Park, J., 1995: Multiple-taper spectral analysis: A stand-alone C-subroutine, *Computers and Geology*, 21(2), 199-236.

Percival, Donald B., Walden, Andrew T. (1993): Spectral Analysis for Physical Applications, Cambridge University Press, Cambridge, 583p.

See Also

evolfft, evolMTM, MTM.drive, GETARAIC, doGABOR.AR, DOsgram, doGABOR.MTM

Examples

```
data(KH)
###
     swig(KH)
Xamp <- KH$JSTR[[1]]</pre>
Nfft <- 1024 ### fft length
Ns <- 512
            ### number of samples in a window
Nov <- 480 ### number of samples of overlap per window
fl <- 0
            ### low frequency to return
fh <- 12 ### high frequency to return
 dt <- KH$dt[1]
#### shorten the signal here, just for speed on the example:
sig = Xamp[37501:75001]
EV \leftarrow MTMgabor(sig, dt = dt, numf = Nfft, Ns = Ns, Nov = Nov, fl = fl, fh = fh)
   <- plotevol(EV, log=1, fl=0.01, fh=fh, col=rainbow(100),</pre>
             ygrid=FALSE, STAMP="", STYLE="ar")
```

MTMplot

Plot Multi-taper Spectrum

Description

Plots output of MTM specturm

MTMplot 167

Usage

```
MTMplot(a, f1 = f1, f2 = f2, len2 = 1024, PLOT = FALSE, PADDLAB = NULL, GUI = TRUE)
```

Arguments

а signal

lower frequency f1 upper frequency f2

len2 number of points in spectrum

PLOT logical, TRUE=plot **PADDLAB** Labels for buttons

GUI use a GUI to display for other interactions

Details

Uses Lees' MTM code.

Value

list(len2=len2, f=f, f1=f1, f2=f2, displ=displ, ampsp=amp, flag=flag)

len2 next power of 2 for fft calculation

f frequencies f1 lower freq f2 upper freq displ kind of display amplitude spectrum ampsp

flag

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

See Also

MTM.drive, MTMdisp, plt.MTM0

168 NEWPLOT.WPX

 ${\tt NEW.getUWSTAS}$

get UW station file

Description

Match Picks with stations and return station structure

Usage

NEW.getUWSTAS(PICS)

Arguments

PICS

Picks in pickfile

Details

matches Picks with stations

Value

STAS structure

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

NEWPLOT.WPX

Plot Window Picks (WPX)

Description

adds picks to existing seismic section

Usage

NEWPLOT.WPX(t0, STNS, COMPS, YPX, FILL = FALSE, FORCE = TRUE, cex = cex, srt = srt)

next2 169

Arguments

t0 starting time for window

STNS stations to match

COMPS components to match

YPX list of picks
FILL fill color

FORCE logical, TRUE=plot picks on all traces

cex character expansion srt string rotation angle

Details

Used in conjunction with swig program

Value

Graphical Side Effects

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

See Also

swig

Examples

####### no example available now

next2

Next Power of Two

Description

Return next power of two greater than n

Usage

next2(x)

Arguments

x length of vector

170 OH

Value

integer value

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

Examples

```
k <- 1236
next2(k)</pre>
```

OH

Delta-O18 isotpe record

Description

Data from Delta-O18 Isotope record of climate change. Periodicities of this data show the Milancovic cycles.

Usage

data(OH)

Format

```
OH = list( LOC=list(yr=0, jd=0, mo=0, dom=0, hr=0, mi=0, sec=0, lat=0, lon=0, z=0, mag=0, gap=0, delta=0 , rms=0, hozerr=0), MC=list(az1=0, dip1=0, az2=0, dip2=0, dip2=0, dir=0, rake1=0, dipaz1=0, rake2=0, dipaz2=0, F=list(az=0, dip=0), G=list(az=0, dip=0), U=list(az=0, dip=0), V=list(az=0, dip=0), P=list(az=0, dip=0), T=list(az=0, dip=0), sense=0, M=list(az1=0, d1=0, az2=0, d2=0, uaz=0, ud=0, vaz=0, vd=0, paz=0, pd=0, taz=0, td=0), UP=TRUE, icol=1, ileg="", fcol='red', CN-VRG="", LIM =c(0,0,0,0)),
```

STAS=list(tag="", name="", comp="", c3="", phase="", sec=0, err=0, pol="", flg=0, res=0),

LIP=vector(length=6),

H=list(yr=0,mo=0,dom=0,hr=0,mi=0,sec=0,lat=0,lon=0,z=0,mag=0),

N=list(name=""),

E=list(rms=0,meanres=0,sdres=0,sdmean=0,sswres=0,ndf=0, fixflgs=0,sterrx=0,sterry=0,sterrz=0,

PICKER="", UWFILEID="", winID1="", comments="", OSTAS="")

Note

The sample unit here is set to 0.3 which is 10000 times the correct sample rat.

one 171

References

Lees, J. M. and J. Park (1995): Multiple-taper spectral analysis: A stand-alone C-subroutine: Computers & Geology: 21, 199-236.

Examples

```
data(OH)
xx <- swig( OH, sel=which(OH$COMPS == "V"), SHOWONLY=0)</pre>
```

one

one plotting region

Description

change from multiple R-screens to one

Usage

one()

Examples

```
par(mfrow=c(2,1))
plot(rnorm(10), rnorm(10) )
plot(rnorm(10), rnorm(10) )
one()
plot(rnorm(10), rnorm(10) )
```

P2GH

XTR button to RSEIS

Description

Convert output of XTR button to RSEIS list.

Usage

```
P2GH(P1)
```

parse.pde

Arguments

Ρ1

Output of swig after clicking XTR

Details

Running swig out after a selection of a window and the XTR button, one can create an RSEIS structure for further use in swig.

Value

RSEIS list

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

See Also

```
swig, prepSEIS
```

Examples

```
if(interactive()){
data(GH)

#### click twice and select the XTR button
P1 <- swig(GH)

LH <- P2GH(P1)
L1 <- swig(LH)
}</pre>
```

parse.pde

Parse PDE file

Description

Parse and Extact information from a screen dump of PDE (preliminary earthquake estimates) from the internet,

Usage

```
parse.pde(card)
```

Arguments

card

character, one line from the PDE file

parseFN2STA 173

Details

Parsing is done by column specification. Uses screen dump format. see http://neic.usgs.gov/neis/epic/epic.html

Value

Time, Location and Magnitude: list(yr, jd, mo, dom, hr, mi, sec, lat, lon, depth, z, mag)

Note

May try using the CSV version of the dump.

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

References

http://neic.usgs.gov/neis/epic/epic.html

See Also

```
getPDEcsv, getPDEscreen
```

Examples

```
###### copy/paste from the screen dump at the NEIC web site

K = c(
' PDE-Q 2008 12 31 053408.80 40.11 -77.00 1 2.4 LgGS ......',
' PDE-Q 2008 12 31 084757.50 46.75 154.41 14 4.9 mbGS .....')

G = parse.pde(K[1])
```

parseFN2STA

get station from file name

Description

station and component are assumed to be the last elements of a file name - this function returns a list with these text strings.

Usage

```
parseFN2STA(fn, ista, icomp, sep="\\.", dir=0 )
```

174 partmotnet

Arguments

fn	text file name
ista	index of station name counting from the end of the file name
icomp	index of station name counting from the end of the file name
sep	separator token in file name
dir	integer, default=0, direction for counting. see details

Details

Some seismic data formats store the station in the file name rather than the seismic header. The default (dir=0) assumes that the station name and the component name are the last items on the file name seperated by a period. So ista and icomp are computed from the end of the file name, i.e. ista=1 and icomp=0. If (dir=1) the counting is from the beginning of the string and the count starts at 1. Remember to count double tokens, they return a blank.

Value

```
list(sta='text station name', comp='compname')
```

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

Examples

```
parseFN2STA('/data/wadati/bourbon/GUATEMALA/SEGY/R009.01/07.009.22.25.34.CAS.E')
fn <- "2011-11-06-0637-21S.SI01__003_SI01__SH_N_SAC"

parseFN2STA(fn, 4, 1, sep="_" )
### or:
parseFN2STA(fn, 4, 7, sep="_", dir=1 )</pre>
```

partmotnet

Particle Motion on Stereonet

Description

Show Particle Motion on Stereonet

Usage

```
partmotnet(temp, LINES = FALSE, STAMP = STAMP, COL = rainbow(100))
```

PDE2list 175

Arguments

temp matrix of 3-component seismic data

LINES logical, TRUE=draw lines

STAMP identification stamp

COL color palette

Details

Show seismic particle motion on a sphere color coded by time.

Value

graphical side effect

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

Examples

```
data("GH")

temp = list(x=GH$JSTR[[1]][1168:1500],
y=GH$JSTR[[2]][1168:1500], z=GH$JSTR[[3]][1168:1500])

sx = partmotnet(temp, STAMP="Example",
LINES=TRUE, COL=rainbow(100))
```

PDE2list

Convert PDEs to List

Description

Converta list of individual PDE events to a list of lat, lon, z...etc

Usage

```
PDE2list(PDF)
```

Arguments

PDF

list of individual events

176 peaks

Details

uses getmem

Value

list

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

getmem, getPDEcsv, parse.pde,getPDEscreen

peaks

Peaks

Description

Find peak amplitudes in a time series signal.

Usage

```
peaks(series, span = 3, do.pad = TRUE)
```

Arguments

series signal

span span for window

do.pad padding

Details

This function originated in a note from Brian Ripley.

Value

vector of peak indexes

Author(s)

Brian Ripley

PICK.DOC 177

Examples

```
data(CE1)
plot(CE1$x, CE1$y, type='l')

pp <- seq(from=53, to=80, by=1)

plot(CE1$x[pp], CE1$y[pp], type='l')

aa <- peaks(CE1$y[pp], span=3)

abline(v=CE1$x[pp[aa]], col='red')</pre>
```

PICK.DOC

Documentation for swig

Description

Prints brief documentation for buttons in swig

Usage

```
PICK.DOC(w)
```

Arguments

W

vector of buttons needed

Details

Buttons are defined in advance

Value

printed side effect

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

See Also

swig

178 pickhandler

Examples

```
if(interactive() ) PICK.DOC(6:23)
```

pickgeninfo

print swig information

Description

print swig information to screen

Usage

```
pickgeninfo()
```

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

swig

Examples

```
pickgeninfo()
```

pickhandler

Handle Pick in RSEIS

Description

Update the WPX (pick data frame) list with a new pick.

Usage

```
pickhandler(i1 = 1, ppick = 0, kzap = "Y", err = NA, res=0, ycol = rgb(0, 0, 1), pol=0, flg=0, onoff=1, NPX = 1, WPX = WPX, NH)
```

pickit 179

Arguments

i1	Index of trace
ppick	time for pick in seconds
kzap	character label of pick
err	error for pick
res	residual(or duration)
ycol	color for pick
pol	polarity of pick
flg	flag for pick
onoff	turn or off for pick
NPX	index of pick in WPX
WPX	Pick data frame
NH	List of traces

Value

Returns WPX data frame with new pick added (or replaced).

Note

If WPX is missing, it is created. If NH is missing (no seismic traces) program returns NULL.

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

swig, YPIX, WPIX, NOPIX, REPIX, PickWin, pADDPIX, Ppic, POLSWITCH, Pup

pickit

Automatic Picking Algorithm

Description

Automatic Picking Algorithm

Usage

```
pickit(ay, deltat = 0.008, MED = 225, FRWD = 8, BKWD = 8,
  sbef = 1, saft = 6, thresh = 2, Tthresh2 = 7,
  stretch = 1000, flo = 0.1, fhi = 5, Kmin = 7,
  dthresh = 0.01, threshbot = 1.01)
```

pickit pickit

Arguments

ay signal

deltat sample rate

MED use median smoothing?

FRWD forward window, s
BKWD backward window

sbef seconds before

saft seconds after

thresh threshold 1

Tthresh2 threshold 2

stretch stretch factor

flo low frequency for BP filter fhi low frequency for BP filter

Kmin min number of picks per window

dthresh delta threshold

threshbot threshold bottom limit

Details

used internally. This code uses several methods for getting best pick.

Value

 $list(RAT=A\$rat, x=x, ay=ay, fy=fy, deltat=deltat, J=J\$J \,, Z=Z, a1=a1, a2=a2, thresh=thresh, Tthresh2=Tthresh2, Kmin=Kmin)$

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

See Also

ETECTG

pickseis24

pickseis24 Pick zooms on 24 hour display	
--	--

Description

Pick zooms on 24 hour display.

Usage

Arguments

W	picking windows from output of plotseis24 and winseis24
DB	Database of seismic trace meta data
usta	stations to extract
ucomp	components to extract
kind	an integer -1, 0, 1, 2 ; 0="RDATA" , -1="RDS", 0="RDATA", 1 = "segy", 2 = "sac", see notes below
Iendian	vector, Endian-ness of the data: 1,2,3: "little", "big", "swap". Default = 1 (little)
BIGLONG	logical, TRUE=long=8 bytes

Details

Use sequence of 2 clicks per zoom window on the plotseis24 display.

Value

Graphical Side effects. Program starts swig

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

```
swig, winseis24, plotseis24, getseis24
```

182 pickseis24

```
if(interactive())
data(KH)
amp = KH\$JSTR[[1]]
OLDdt = KH$dt[1]
newdt = 0.1
yr = 2000
GIVE = FAKEDATA(amp, OLDdt=0.01, newdt = 0.1, yr = 2000,
        JD = 4, mi = 12, sec = 0, Ntraces = 24*3,
seed=200, noise.est=c(1, 100) , verbose=TRUE )
tdir = tempdir()
for(i in 1:length(GIVE) )
   sig = GIVE[[i]]
 d1 = dateStamp(sig$DATTIM, sep='_')
  nam1 = paste(d1,sig$sta, sig$comp, sep='_')
   nam2 = paste0(nam1, '.RDS')
   nam3 = paste(tdir, nam2, sep='/')
   saveRDS(file=nam3, sig)
LF = list.files(path=tdir, pattern='.RDS', full.names=TRUE)
DB = FmakeDB(LF, kind=-1)
IDB = infoDB(DB)
START = list(yr = yr, jd = 5, hr = 0, mi = 0, sec = 0)
END = list(yr = yr , jd = 7 , hr = 0 , mi = 0 , sec = 0)
h = getseis24(DB, iyear = 2000, iday = 5, usta = IDB$usta,
                    acomp = IDB$ucomp, kind = -1, Iendian=1, BIGLONG=FALSE)
 pjj <- plotseis24(h, dy=1/18, FIX=24, SCALE=1,
    FILT=list(ON=FALSE, fl=0.05, fh=20.0, type="BP", proto="BU"),
    RCOLS=c(rgb(0.2, .2, 1), rgb(.2, .2, .2)) )
w = winseis24(pjj)
dev.new()
pickseis24(w, DB, IDB$usta[1], IDB$ucomp[1] )
}
```

plocator 183

-		
n	locato	r

Specialized Locator function

Description

Locator function with set parameters

Usage

```
plocator(COL = 1, NUM = FALSE, YN = NULL, style = 0)
```

Arguments

COL color

NUM number of points

YN number of windows to span for lines

style 0,1,2 for differnt style of plotting vertical lines

Details

if the window is divided into YN horizontal regions, style =2 will plot segments only within regions based on y-value of locator().

Value

list:

x x-locationsy y-locationsn number of points

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

See Also

locator

```
plot(c(0,1), c(0,1), type='n')
for(i in 1:5) { abline(h=i/6) }

if(interactive()) plocator(COL = 1, NUM = 4, YN = 6, style = 2)
```

184 PLOT.ALLPX

PL	.OT	. Al	_L	PX

plot all phase arrival picks

Description

plot all phase arrival picks

Usage

```
PLOT.ALLPX(t0, STNS, COMPS, YPX, PHASE = NULL, POLS = TRUE, FILL = FALSE, FORCE = TRUE, cex = cex, srt = srt)
```

Arguments

t0	time for start of window, s
STNS	station names to plot
COMPS	components to plot
YPX	y-picks (times)
PHASE	Phases to plot
POLS	polaritiy information (up, down)
FILL	fill color
FORCE	logical, force all phases plotted on all traces
cex	character expansion
srt	string rotation angle, degrees

Details

for use in conjunction with PLOT.SEISN program

Value

Graphical Side Effect

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

See Also

PLOT.SEISN, swig

PLOT.MATN 185

Examples

```
data(GH)

WPX = data.frame(GH$pickfile$STAS)

T0 = data.frame(GH$info)[1,]

sel = which(GH$COMPS=='V')
    PLOT.SEISN(GH, sel=sel)

PLOT.ALLPX(T0, GH$STNS, GH$COMPS, WPX, PHASE='P',FORCE=TRUE)
```

PLOT.MATN

plot a matrix of several seismograms

Description

Matrix of several seismograms

Usage

```
PLOT.MATN(ascd, tim=1, dt=1, T1=0, WIN=c(0,1), labs="", notes=notes, sfact=1,ampboost=0, shift=NULL, LOG="", COL='red', add=1, AXES=1, units=NULL, VS=FALSE)
```

Arguments

ascd	N by K matrix of seismograms where
tim	time values fo x-axis
dt	sample interval, seconds
T1	Time for starting sample (default=0)
WIN	vector, time window for zoom
labs	vector of labels for each panel
notes	vector of notes for each panel
sfact	scaling factor, 1=window, 2=trace
ampboost	increase each amplitude by this multiplier
shift	vector, shift each trace by these time
LOG	log x-axis
COL	vector of colors or indexes to colors

186 PLOT.MATN

add	numeric, to existing plot. add = 1,2,3 if add=1 plot and add traces, add =2 plot, but no traces, add = 3 no plot, but add traces. DEFAULT=1
AXES	numeric, 0,1,2,3,4; default=1
units	label for units of Y-axis
VS	var-squiggle display

Details

Plots a matrix of seismograms that each have the same starting time. For the AXES argument, 0 = no axes, AXES=1 plot scale for largest amplitude band and a multiplier for all others, AXES=2 left side, AXES=3 right side, AXES=4 alternate sides

Value

Graphical side effects and,

```
n matrix of n rows, with columns=(window Y min, window Y max, user Y min, user Y max)
```

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

swig, matsquiggle, dowiggles, varsquiggle

```
dt <- 0.001
  t <- seq(0, 6, by=0.001)

thefreqs <- seq(from=10, to=100, by=10)
theamps <- runif(length(thefreqs))

# sample rate is 1000 Hz, 0.001 seconds 601 samples
  x <- NULL

for(i in 1:length(thefreqs))
{
  x <- cbind(x, theamps[i]*sin(2*pi*thefreqs[i]*t))
}

PLOT.MATN(x, dt = dt)</pre>
```

PLOT.SEISN 187

PLOT.SEISN	Plot Seismic Section

Description

Seismic traces are plotted on a panel horizontally.

Usage

```
PLOT.SEISN(GH, tim = 1, dt = 1, sel =c(1:4) , WIN =c(1,0) , labs=c("CE1") , notes = "CE1.V", subnotes=NA, tags ="CE1.V" , sfact = 1, LOG = "", COL = 'red', add = 1, pts = FALSE, YAX = 1, TIT = NULL, SHIFT = NULL, COLLAPSE=FALSE, rm.mean = TRUE, UNITS = "volts", MARK = TRUE, xtickfactor = 1, vertline=NA )
```

Arguments

GH	RSEIS data structure
tim	tim axis vector, seconds
dt	deltaT, sample rate
sel	select which traces from GH
WIN	initial time window for plot
labs	character string vector, labels for units on y-axes, depends on YAX
notes	character string vector, labels on upper right of each panel
subnotes	character string vector, labels on lower-right of each panel
tags	character string vector, labels next to right end of trace (usually numbers)
sfact	scaling flag, 1=scale individually(DEFAULT), 2 = scale by window
LOG	log for x-axis
COL	color vector for plotting traces
add	integer: add to plot=1,2,3, add=1 plot and add traces, add =2 plot, but no traces, add = 3 no plot, but add traces
pts	add points
YAX	type of Yaxis label, 1,2,3 DEFAULT=1 only one y-axis others scaled; 2=all y-axes are plotted on left; 3=all y-axes plotted, alternating left and right
TIT	title
SHIFT	vector, shift each trace along x-axis by associated moveout time
COLLAPSE	logical, Collapse all traces onto one panel, default=FALSE
,	
rm.mean	remove mean from traces

188 PLOT.SEISN

UNITS character, units of traces (see labs)
MARK character marking for earthquake

xtickfactor Factor for multiplying the x-axis tick markers (default=1; for minutes=60, hrs=3600,

days=24*3600)

vertline time list (yr, jd, hr, mi sec) for plotting vertical lines on window. Default=NA

Details

panel of N traces are plotted. For YAX, default is YAX=1, plot an axis with no units label and scale all the traces to

Value

```
Graphical Side effect. list(n=nn, dy=dy, minS=minS, maxS=maxS, meanS=meanS, DX=range(tim[tflag]) )
```

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

See Also

swig

```
data("GH")
m <- match( GH$STNS,</pre>
                           GH$stafile$name)
LATS <- GH$stafile$lat[m]
LONS <- GH$stafile$lon[m]
dees <- rdistaz( GH$pickfile$LOC$lat, GH$pickfile$LOC$lon, LATS, LONS)</pre>
sel <- which(GH$COMPS=="V")</pre>
sel <- sel[order(dees$dist[sel])]</pre>
      set up good colors
###
pcols <- seiscols(GH)</pre>
### select only vertical components
PLOT.SEISN(GH, sel=sel)
GH$units <- rep("m/s", times=length(GH$KNOTES))</pre>
GH$pcols <- pcols
##### simple plot of GH structure
YN <- PLOT.SEISN(GH, WIN=c(5,12))
###### a color must be provided for all traces.
```

PLOT.TTCURVE 189

```
###### simple plot of GH structure, with selection and colors
YN <- PLOT.SEISN(GH, WIN=c(5,12), sel=sel, COL=rainbow(length(sel)))
#### alternating Y axes
YN <- PLOT.SEISN(GH, WIN=c(5,12), dt=GH$dt[sel], sel=sel, sfact=1, notes=GH$KNOTES[sel], YAX =3, UNITS = TRUE, labs = GH$units[sel],
COL=pcols , TIT="test")
#### Y axes on same side
YN <- PLOT.SEISN(GH, WIN=c(5,12), dt=GH$dt[sel], sel=sel, sfact=1, notes=GH$KNOTES[sel], YAX =2, UNITS = TRUE, labs = GH$units[sel],
COL=pcols , TIT="test")</pre>
```

PLOT.TTCURVE

Plot Seismic Section, travel time curve

Description

Seismic traces are plotted on a panel horizontally, with spacing according to distance from source.

Usage

```
PLOT.TTCURVE(GH, STAXY = NULL, DIST = c(0, 10), DY = 0.1, tim = 1, dt = 1, sel = c(1:4), WIN = c(1, 0), labs = c("CE1"), notes = "CE1.V", tags = "CE1.V", sfact = 1, COL = "red", add = 1, pts = FALSE, YAX = FALSE, TIT = NULL, SHIFT = NULL, rm.mean = TRUE, UNITS = "volts", MARK = TRUE)
```

Arguments

GH	Seismic data Structure
STAXY	Station Locations and distances in KM
DIST	Distance range, km
DY	height of each wiggle
tim	time span for plotting
dt	sample interval, seconds

190 PLOT.TTCURVE

sel	select which traces to plot
WIN	vector, time window for zoom
labs	vector of labels for each panel
notes	vector of notes for each panel

tags character string vector, labels

sfact scaling flag
COL col vector
add add to plot
pts add points
YAX Yaxis label

TIT title

SHIFT shift traces

rm.mean remove mean from traces
UNITS character, units of traces

MARK character marking for earthquake

Value

Graphical Side effect.

```
list(n=nn,\,dy=dy,\,minS=minS,\,maxS=maxS,\,meanS=meanS,\,DX=range(tim[tflag]),\,DY=DY,\,DIST=DIST\,)
```

Note

This program is similar to PLOT.SEISN but traces are plotting with increasing distance from a set point. The distances are calculated prior to execution and passed as a vector or structure.

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

PLOT.SEISN

Plot1Dvel 191

	Dvel

Plot 1D Velocity Model

Description

Plot 1D velocity model showing P-wave and S-wave layered models.

Usage

```
Plot1Dvel(v, tit = NULL, col=c('blue', 'brown'), ...)
```

Arguments

V	Velocity models
tit	Title for plot (character)
col	2-colors for P and swave
	other graphical parameters (e.g. lty, lwd)

Details

Velocity model consists of a list of P and S depths and layer velocity values. See example below.

Value

Graphical Side effect

Note

Errors are not required, although future versions may include the plotting of error bars.

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

Get1Dvel, Comp1Dvels, travel.time1D

192 plotarrivals

```
VEL$'name' <- '/data/wadati/lees/Site/Hengil/krafla.vel'
Plot1Dvel(VEL, tit = 'This is an Example')</pre>
```

plotarrivals

plot theoretical arrival times for a seismic section

Description

plot theoretical arrival times for a seismic section

Usage

```
plotarrivals(x, THEORY, add = FALSE)
```

Arguments

x matrix of wigglesTHEORY theoretical arrivals

add logical, if TRUE=Add to existing plot

Details

plots go from top of page down

Value

graphical side effect

Note

Used for adding information to wiggle plots.

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

```
symshot1, wiggleimage
```

plotDB 193

Examples

```
S1 <- symshot1()
wiggleimage(S1$smograms , dt=(-S1$dt), dx=S1$dx)
plotarrivals(S1$x, S1$THEORY, add = TRUE)</pre>
```

plotDB

Plot a time line of a DB set in RSEIS

Description

makes a plot of the data base files stored on disk.

Usage

```
plotDB(DB)
```

Arguments

DB

List, Data Base created by makeDB or setupDB

Value

Graphical Side effects

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

```
makeDB, setupDB
```

```
######### to illustrate, we make a set of individual seismograms
data(GH)
L1 = length(GH$JSTR)
DD = data.frame(GH$info)

GIVE = vector(mode='list')

for(i in 1:L1)
{
```

194 plotevol

```
AA = DD[i,]
GIVE[[i]] = list(fn = AA$fn, sta =GH$STNS[i] , comp = GH$COMP[i],
           dt = AA$dt, DATTIM = AA, N = AA$n1, units = NA,
           coords = NA, amp = GH$JSTR[[i]] )
}
######## save the seismic data in a temporary directory
#### each trace in a separate file
tdir = tempdir()
for(i in 1:length(GIVE) )
   sig = GIVE[[i]]
 d1 = dateStamp(sig$DATTIM, sep='_')
  nam1 = paste(d1,sig$sta, sig$comp, sep='_')
   nam2 = paste0(nam1, '.RDS')
   nam3 = paste(tdir, nam2, sep='/')
   saveRDS(file=nam3, sig)
   }
################### Now read files and make the DataBase:
LF = list.files(path=tdir, pattern='RDS', full.names=TRUE)
DB = FmakeDB(LF, kind=-1)
## IDB = infoDB(DB)
plotDB(DB)
```

plotevol

Plot Spectrogram

Description

Plot Spectrogram

Usage

```
plotevol(DEVOL, log = 0, fl = 0, fh = 10, col = col, ylog = FALSE, ygrid
= FALSE, AXE = c(1, 2, 3, 4), CSCALE = FALSE, WUNITS = "Volts", STAMP =
NULL, STYLE = "fft")

plotevol2(DEVOL, log = 0, fl = 0, fh = 10, col = col, ylog = FALSE, ygrid
= FALSE, AXE = c(1, 2, 3, 4), CSCALE = FALSE, WUNITS = "Volts", STAMP =
NULL, STYLE = "fft", add=FALSE, IMAGE=TRUE, WIG=TRUE)

blankevol(DEVOL, log=0, fl=0, fh=10, col=col, ylog=FALSE, ygrid=FALSE,
AXE=c(1,2,3,4),
CSCALE=FALSE, WUNITS="Volts", STAMP=NULL, STYLE="fft", WIG=TRUE)
```

plotevol 195

Arguments

DEVOL spectrogram structure log scale by logarithm f1 low frequency fh high frequency col color palette ylog scale Y-axis by log logical, TRUE=add grid ygrid AXE sides to add axis logical, TRUE=add color scale **CSCALE** character string for units WUNITS STAMP character string for identification Plotting style. Default, "fft"=plot half the spectrum image, else plot whole STYLE spectrum logical, add to existing plot, default=FALSE add **IMAGE** logical, whether to plot the image or not WIG logical, whether to plot the wiggle or not

Details

Plot Spectrogram. Because the fft function returns positive and negative frequencies, ff STYLE="fft" then the image matrix is reduced IMAT = t(DSPEC[1:(numfreqs/2),]) otherwise IMAT = t(DSPEC).

plotevol2 is used to add secondary spectra to ones already plotted, or to manage graphical paramters, or create other plots that match the graphical presentation of the spectrogram (plots of frequency versus time, but not images)

Value

Graphical Side Effects

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

See Also

evolfft

196 plotGH

Examples

```
data(CE1)
Xamp <- CE1$y
DT <- CE1$dt
 tsecs <- DT*(length(Xamp)*.02)</pre>
    multi <- 2
scale.def <- 1
  TWOSEC <- tsecs*(1/DT)
  NS <- floor(multi*TWOSEC)</pre>
  NOV <- floor(multi*(TWOSEC-.2*TWOSEC))
    Nfft<-4096
    pal <- rainbow(100)</pre>
    fl <- 0
   fh <- 1/(2*DT)
  flshow <- .5
   fhshow <- 120
  DEV \leftarrow evolfft(Xamp,DT, Nfft=Nfft, Ns=NS, Nov=NOV, fl=fl, fh=fh)
  PE <- plotevol(DEV, log=scale.def, fl=flshow, fh=fhshow,
                 col=pal, ygrid=FALSE, STAMP="HITHERE", STYLE="fft")
```

plotGH

Plot a seismic trace.

Description

Quick and dirty plot of a seismic trace as recorded and save using stream2GHnosens or other RSEIS savers.

Usage

```
plotGH(h)
```

plotJGET 197

Arguments

h

This is a standard GH object as defined in RSEIS

Details

The input is a list that has, as a minimum the following items: 'amp', 'dt', 'sta', 'comp', 'DATTIM'. Item 'amp', a time series vector is converted to a ts object.

Value

Side effects

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

RSEIS::prepSEIS, RSEIS::prep1wig, RSEIS::PLOT.SEISN, RSEIS::swig

Examples

plotJGET

Plot JGET output

Description

Plot JGET output using interactive swig

Usage

```
plotJGET(J, SHOWONLY = FALSE)
```

198 plotseis24

Arguments

J list, output of JGETseis
SHOWONLY logical, if SHOWONLY== TRUE, no interaction

Details

Program combines prepSEIS and swig

Value

GH list ready for use in other RSEIS programs. See prepSEIS for details

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

JGET.seis, prepSEIS, swig

Examples

```
data(GH)
  Iendian = .Platform$endian
apath = tempdir()
## setwd(apath)
##
  Iendian = .Platform$endian
## apath = './TEMP'
### dir.create(apath)

J = rseis2sac(GH, sel = 1:5, path = apath, BIGLONG =FALSE )

Lname <- list.files(path=J , pattern='SAC', full.names=TRUE)

J <- JGET.seis(Lname,kind=2,BIGLONG=FALSE,HEADONLY=FALSE,Iendian=Iendian,PLOT=0)

if(interactive()) { plotJGET(J) }</pre>
```

plotseis24

Plot 24 hours of seismic data

Description

Plot 24 hours of seismic data using output of getseis24.

plotseis24

Usage

```
plotseis24(JJ, dy = 1/18, FIX = 24, SCALE = 0, FILT = list(ON = FALSE, f1 = 0.05, fh = 20, type = "BP", proto = "BU"), RCOLS = c(rgb(0.2, 0.2, 1), rgb(0.2, 0.2, 0.2)), add=FALSE)
```

Arguments

output list of getseis24
Delta-y in percentage of trace
Fix 24 hour plot. If FIX is less than 24, the plot will show only that number of hours.
scale, 0=scale each trace, 1=scale window
filter data
colors
logical, if TRUE, add to existing plot (i.e. do not issue a plot command)

Details

Plots full 24 hours of data. The list returned can be used by winseis24 to get picks and windows for zooming.

The FIX argument is currently not available.

Value

list:

```
x x-axis
y y-axis
yr year
jd julian day
```

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

```
getseis24, winseis24
```

```
data(KH)
amp = KH$JSTR[[1]]
OLDdt = KH$dt[1]
newdt = 0.1
```

200 plotwlet

```
yr = 2000
GIVE = FAKEDATA(amp, OLDdt=0.01, newdt = 0.1, yr = 2000,
        JD = 4, mi = 12, sec = 0, Ntraces = 24*3,
seed=200, noise.est=c(1, 100) , verbose=TRUE )
tdir = tempdir()
for(i in 1:length(GIVE) )
    sig = GIVE[[i]]
  d1 = dateStamp(sig$DATTIM, sep='_')
  nam1 = paste(d1,sig$sta, sig$comp, sep='_')
   nam2 = paste0(nam1, '.RDS')
   nam3 = paste(tdir, nam2, sep='/')
    saveRDS(file=nam3, sig)
    }
######################### Now read files and make the DataBase:
LF = list.files(path=tdir, pattern='.RDS', full.names=TRUE)
DB = FmakeDB(LF, kind=-1)
IDB = infoDB(DB)
START = list(yr = yr, jd = 5, hr = 0, mi = 0, sec = 0)
END = list(yr = yr , jd = 7 , hr = 0 , mi = 0 , sec = 0)
h = getseis24(DB, iyear = 2000, iday = 5, usta = IDB$usta,
                     acomp = IDB$ucomp, kind = -1, Iendian=1, BIGLONG=FALSE)
  pjj <- plotseis24(h, dy=1/18, FIX=24, SCALE=1,
     FILT=list(ON=FALSE, fl=0.05, fh=20.0, type="BP", proto="BU"),
     RCOLS=c(rgb(0.2, .2, 1), rgb(.2, .2, .2)) )
```

plotwlet

Plot Wavelet Transform

Description

Plot Wavelet Transform

Usage

```
plotwlet(baha, Ysig, dt, zscale = 1, zbound = NULL,
col = rainbow(100), ygrid = FALSE,
STAMP = "", xlab="Time, s", units="", scaleloc=c(0.4,0.95))
```

plotwlet 201

Arguments

baha Output of wlet.do
Ysig signal processed
dt sample rate
zscale scale of image
zbound limits on scale
col color palette

ygrid add grid

STAMP character string for identification
xlab character, label for the x-axis
units character, units on signal

scaleloc 2-vector, percentatge of bottom margin for the color scale

Details

This function plots the wavelet transform in a way that is similar to the spectogram plots.

Value

list(y=, why=why, yBounds=c(0,perc), x=x, yat=raxspec)

y input signal why scaled image

yBounds vector of boundaries

x x axis

yat y axis tic marks

Graphical side effects.

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

See Also

cwt, pwlet2freqs, wlet.do, wlet.drive

202 plt.MTM0

nlt	MTM0	
DIL		

Plot MTM structure

Description

Plot MTM structure

Usage

```
plt.MTM0(frange, prange, plxy, M, freqs, amp, a, dof = dof, Fv = Fv, COL = 2)
```

Arguments

frange frequency range
prange point range
plxy log x,y axes

M structure from MTM

freqs frequencies amp amplitude

a list(y=original data, dt=deltat)

dof degrees of freedom

Fv F-values
COL color

Value

Graphical Side Effect

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

References

Lees, J. M. and Park, J., 1995: Multiple-taper spectral analysis: A stand-alone C-subroutine, *Computers and Geology*, 21(2), 199-236.

See Also

MTM.drive

PLTpicks 203

Examples

```
data(CE1)
plot(CE1$x, CE1$y, type='1')
len <- length(CE1$y)</pre>
    len2 <- 2*next2(len)
    \label{lem:mapspec} \mbox{\sc CE1$y, CE1$dt, klen=len2, MTP=list(kind=1,nwin=5, klen=len2, klen2, klen2, klen=len2, klen=len2, klen=len2, klen=len2, klen=len2
                                                                    npi=3,inorm=0) )
f<-Mspec$freq
M <- 1
    f1 <- 0.01
f2 <- 100
    plxy <- ''
    flag <- f>=f1 & f <= f2;
                 freqs <- list(f[flag])</pre>
    mydof <- NULL
                          myFv <- NULL
    amp <- Mspec$spec[1:length(f)]</pre>
                           amp <- list(amp[flag])</pre>
a <- list(y=CE1$y, dt=CE1$dt)
frange <- range(freqs, na.rm = TRUE)</pre>
   prange <- range(amp , na.rm = TRUE)</pre>
### plot(freqs[[1]], amp[[1]])
    plt.MTM0(frange, prange, plxy, M, freqs, amp, a,
                                     dof=mydof, Fv=myFv, COL=4)
```

PLTpicks

Plot picks on seismic record

Description

Add lines at phase arrival times

Usage

```
PLTpicks(picks, labs = NA, cols = NA)
```

204 PMOT.drive

Arguments

picks	vector of times relative to the start of the plot
labs	labels for picks
cols	colors for picks

Details

```
picks = vector of times relative to the start of the plot (seismogram)
```

Value

Graphical Side Effects

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

Examples

```
ex <- seq(from=0, to=4*pi, length = 200)

y <- sin(ex)
picks = c(0.5*pi, 2.3*pi)
plot(ex, y, type='l')

PLTpicks(picks, labs =c("P","P") , cols =c('red','green') )

PLTpicks(picks+2, labs =c("S","PKIKP") , cols ='blue' )</pre>
```

PMOT.drive

Interactive Particle Motion Plot

Description

Plot Hodogram and show seismic particle motion

Usage

```
PMOT.drive(temp, dt, pmolabs = c("Vertical", "North", "East"), STAMP = "", baz = 0)
```

Arguments

temp	matrix of 3-component seismic signal
dt	sample interval (delta-T, seconds)

pmolabs labels for traces

STAMP Character string Identification stamp

baz Back Azimuth, degrees

posix2RSEIS 205

Details

Input matrix should V, N, E. Baz is not implemented yet.

Value

Graphical Side Effect.

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

Examples

```
data("GH")
sel <- which(GH$STNS == "CE1")

YMAT <- cbind(GH$JSTR[[sel[1]]][1168:1500],
GH$JSTR[[sel[2]]][1168:1500],
GH$JSTR[[sel[3]]][1168:1500])

dt <- GH$dt[ sel[1] ]
ftime <- Zdate(GH$info, sel[1], 1)

if(interactive()){
PMOT.drive(YMAT, dt, pmolabs = c("Vertical", "North", "East"),
STAMP =ftime )
}</pre>
```

posix2RSEIS

Posix to RSEIS DATE/TIME

Description

Reformat posix time stamp to RSEIS list

Usage

```
posix2RSEIS(p)
```

Arguments

p posix time, either lt or ct

Value

returns a list of data/time in format RSEIS understands

206 PPIX

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

j2posix

Examples

```
### make up a time:
P1 = as.POSIXct(Sys.time(), "America/New_York")  # in New York
R1 = posix2RSEIS(P1)
## also
unlist( as.POSIXlt(P1))
```

PPIX

P-picking

Description

Add Pick Marks and Labels

Usage

```
PPIX(zloc, YN = NULL, col = 1, lab = "")
```

Arguments

zloc	locator output
YN	number of panels
col	color for picks
lab	labels for picks

Value

Side Effects

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

prep1wig 207

prep1wig	Prepare structure for RSEIS	

Description

Takes list of traces and prepares new list for analysis in RSEIS

Usage

```
prep1wig(wig=vector(), dt=1, sta="STA", comp="CMP",
units="UNITS", starttime=list(yr=0, jd=1,mo=1,dom=1,
hr=1,mi=1,sec=0) )
```

Arguments

wig	vector of time series
dt	sample interval
sta	character, station name
comp	character,component name
units	character, units of signal
starttime	list(yr=1972, jd=1,mo=1,dom=1,hr=1,mi=1,sec=0)

Details

```
prep1wig is offered to reformat a time series
for input to program swig()
```

amplitude

Value

amp

Rsac output list

```
dt
                  sample rate
nzyear
                  year
nzhour
                  hour
nzmin
                  minutes
                  seconds
nzsec
nzmsec
                  msec
b
                  sac stuff
                  sac stuff
е
                  sac stuff
0
fn
                  character, file name
```

208 prep1wig

```
sta character
comp character
```

DATTIM list of date and time
N number of points

units character

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

See Also

swig, prepSEIS

```
data(sunspots)
AA <- attributes(sunspots)
starttime<-list(yr=AA$tsp[1], jd=1,mo=1,dom=1,hr=0,mi=0,sec=0)
ES <- prep1wig(wig=sunspots, dt=1/12, sta="STA", comp="CMP",
units="UNITS", starttime=starttime
EH<-prepSEIS(ES)
STDLAB <- c("DONE", "zoom out", "refresh", "restore",
 "XTR", "SPEC", "SGRAM", "WLET")
###### set SHOWONLY=FALSE for interactive
xx <- swig( EH, STDLAB = STDLAB, SHOWONLY=0)
#####################
######################
###################
                      example with multiple signals
dt <- 0.001
t <- seq(0, 6, by=0.001)
          sample rate = 1000 Hz, 0.001 seconds 601 samples
### set up the fequencies and amplitudes for signals that have 2 frequencies
afreqs1 <- c(50, 40, 10, 5)
amps1 < -c(6, 2, 3, 2)
####
afreqs2 <- c(120,30,20, 30 )
amps2 < -c(10,5, 9, 2)
 x \leftarrow cbind(amps1[1]*sin(2*pi*afreqs1[1]*t) +
amps2[1]* sin(2*pi*afreqs2[1]*t),
amps1[2]*sin(2*pi*afreqs1[2]*t) + amps2[2]* sin(2*pi*afreqs2[2]*t),
amps1[3]*sin(2*pi*afreqs1[3]*t) + amps2[3]*sin(2*pi*afreqs2[3]*t),
amps1[4]*sin(2*pi*afreqs1[4]*t) + amps2[4]* sin(2*pi*afreqs2[4]*t))
```

prepSEIS 209

```
d <- dim(x)
####### names of signals
mysta<-c("R1", "R2", "R3", "R4")
MYLIST <- list()
starttime <- list(yr=2008, jd=1,mo=1,dom=1,hr=0,mi=0,sec=0)
######### set up the initial list of wiggles
for(i in 1:d[2])
A <- prep1wig(wig =x[,i], sta=mysta[i], dt=dt, comp="D0",
units= "amp", starttime=starttime)
A[[1]]$DATTIM$yr <- 2000
MYLIST <- c(MYLIST, A)
}
### reorganize into RSEIS format:
PH1 <- prepSEIS(MYLIST)
STDLAB <- c("DONE", "zoom out", "refresh", "restore",
"XTR", "SPEC", "SGRAM", "WLET")
swig(PH1, STDLAB = STDLAB)
```

prepSEIS

Prepare structure for RSEIS

Description

Takes list of traces and prepares new list for analysis in RSEIS

Usage

```
prepSEIS(GG)
```

Arguments

GG

Output list of Rsac function GET.seis

Details

prepSEIS is offered to reformat the output of a list of seismic traces (or other time series) for inpout to program swig()

210 PreSet.Instr

Value

RSEIS list

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

See Also

```
swig, JGET.seis, GET.seis(package="Rsac"), Package:Rsac
```

Examples

PreSet.Instr

Set up Standard Instrument Responses

Description

A set of standard known instrument responses.

Usage

```
PreSet.Instr()
```

Value

List of instrument responses. Each is a list:

	NI1
np	Number of poles
poles	complex vector of poles
nz	number of zeros
zeros	complex vector of zeros
Knorm	normalization factor
Sense	sensitivity factor

PSTLTcurve 211

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

See Also

ReadSet.Instr

Examples

```
MYset <- PreSet.Instr()
MYset[[1]]</pre>
```

PSTLTcurve

Short Term/Long Term curve

Description

ST/LT ratio curve for sutomated picking routines

Usage

```
PSTLTcurve(y, dt = 0.008, fwlen = 125, bwlen = 125, perc = 0.05, stretch = 1000, MED = 255, PLOT = FALSE)
```

Arguments

y signal
dt deltaT (s)
fwlen forward window
bwlen backward window
perc percent cut-off
stretch stretch curve

MED Median smoothing parameter

PLOT logical, TRUE=PLOT

Value

list(flag=1, ind=ix, eye=eye, mix=mix, SNR=SNR, s2=s2, rat=therat)

flag	flag on success
ind	index of pick estimate 1
eye	index of pick estimate 2
mix	index of pick estimate 3
SNR	Signal/Noise ratio
s2	sum squared
rat	ratio curve

Put1Dvel

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

Examples

```
require(stats)

data(CE1)
plot(CE1$x, CE1$y, type='l')

z <- CE1$y[ CE1$x>5.352622 & CE1$x<5.589836]

x <- CE1$x[ CE1$x>5.352622 & CE1$x<5.589836]

G <- PSTLTcurve(z, dt = CE1$dt, fwlen = 10, bwlen = 10, perc = 0.05, stretch = 10, MED = 11, PLOT = FALSE)

### get time from beginning of trace tpick <- x[G$ind]
abline(v=x[G$ind], col='red', lty=2)</pre>
```

Put1Dvel

Dump a velocity model to an ascii file

Description

Dump a velocity model to an ascii file

Usage

```
Put1Dvel(vel, outfile)
```

Arguments

vel Velocity Model Structure outfile File name

Value

Side Effects

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

Get1Dvel, travel.time1D

pwlet2freqs 213

Convert Wavelet Axis to Frequency

Description

Convert Wavelet Axis to Frequency

Usage

```
pwlet2freqs(noctave, nvoice, dt, flip = TRUE,
tab.FREQ, plot = FALSE, perc = 0.85)
```

Arguments

noctave number of octives
nvoice number of voices
dt sample rate (s)

flip logical, whether to flip the orientation

tab.FREQ vector of frequencies

plot logical, TRUE=add to plot perc percent of range to consider

Details

This function is used to add a y-axis to a wavelet transform plot.

Value

list:

why y-axis coordinate on wavelet transform

Iat location efs frequencies

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

See Also

wlet.do

214 rangedatetime

Examples

```
pfreqs <- c(0.5, 1, 2,3,4,5, 10, 14)
zp <- pwlet2freqs(noctave= 6, nvoice= 20, 0.004,
flip = TRUE, pfreqs, plot = FALSE, perc = 0.85)</pre>
```

rangedatetime

Range of Date Time

Description

Return the range of dates and times for any list with a date/time list

Usage

```
rangedatetime(D)
```

Arguments

D info list from RSEIS seismic data list

Value

min date time list
max date time list

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

```
data(GH)
rangedatetime(GH$info)
```

Ray.time1D 215

Ray.time1D	Seismic 1D Travel Time and raypath	

Description

Travel time and raypath from source to reciever in 1D local model.

Usage

```
Ray.time1D(indelta, inhpz, instaz, inlay, ztop, vel)
```

Arguments

indelta	distance in KM
inhpz	depth of hypocenter, km
instaz	elevation of station
inlay	number of layers
ztop	vector, tops of layers
vel	vector, velocities in layers

Details

Uses local 1D velocity model, not appropriate for spherical earth.

Value

list:

dtdr derivative of t w.r.t. horizontal distance

dtdz derivative of t w.r.t. z, depth angle incidence angle, degrees

tt travel time, s
nnod number of nodes
znod node depths, km

rnod node offset distances, km

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

See Also

travel.time1D, Get1Dvel

216 rdistaz

Examples

```
data(VELMOD1D)
v <- VELMOD1D
indelta=23.;
inhpz=7.;
instaz=0.;
nz = length(v$zp)
tees <- travel.time1D(indelta, inhpz, instaz, nz , v$zp , v$vp)</pre>
rays <- Ray.time1D(indelta, inhpz, instaz, nz , v$zp , v$vp)</pre>
plot(rays$rnod[1:rays$nnod] , -rays$znod[1:rays$nnod],type="n",
xlab="distance, km" , ylab="Depth, km")
abline(h=-v$zp, lty=2, col=grey(0.80))
points(rays\$rnod[1:rays\$nnod] \ , \ -rays\$znod[1:rays\$nnod], \ pch=8, \ col='green')
lines(rays\$rnod[1:rays\$nnod] \ , \ -rays\$znod[1:rays\$nnod])
points(rays$rnod[rays$nnod] , -rays$znod[rays$nnod], pch=6, col='red', cex=2)
\#\#\#\# to coordinate this in space, need to rotate about
#####
         the line between source and receiver locations
```

rdistaz

Distance and Azimuth from two points

Description

Calculate distance, Azimuth and Back-Azimuth from two points on Globe.

Usage

```
rdistaz(olat, olon, tlat, tlon)
```

Arguments

olat	origin latitude, degrees
olon	origin longitude, degrees
tlat	target latitude, degrees
tlon	target longitude, degrees

rdistaz 217

Details

The azimuth is returned in degrees from North.

Program is set up for one origin (olat, olon) pair and many target (tlat, tlon) pairs given as vectors.

If multiple olat and olon are given, the program returns a list of outputs for each.

If olat or any tlat is greater than 90 or less than -90, NA is returned and error flag is 0.

If any tlat and tlon is equal to olat and olon, the points are coincident. In that case the distances are set to zero, but the az and baz are NA, and the error flag is set to 0.

Value

List:

del Delta, angle in degrees

az Azimuth, angle in degrees

baz Back Azimuth, angle in degrees from target to origin

dist Distance in km

or or 1, error flag. 0=error, 1=no error, see details

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

along.great, getgreatarc

rDUMPLOC

```
rdistaz(org[1], org[2], targ[,1], targ[,2])
#### put in erroneous latitude data
targ[3,1] <- -91.3
rdistaz(org[1], org[2], targ[,1], targ[,2])
###########
### New York and Chapel Hill
NY =list(lat=40.6698, lon=286.0562)
CH = list(lat=35.92761, lon=280.9594)
      h = GEOmap::distaz(CH$lat, CH$lon, NY$lat, NY$lon)
h = rdistaz(CH$lat, CH$lon, NY$lat, NY$lon)
###### get great circle ray path
RAY = GEOmap::getgreatarc(CH$lat, CH$lon, NY$lat, NY$lon, 100)
#### get great circle through north pole
Nor1 = GEOmap::getgreatarc(CH$lat, CH$lon, 90, CH$lon,
                                                          100)
PROJ = GEOmap::setPROJ(2, CH$lat, CH$lon)
RAY.XY = GEOmap::GLOB.XY(RAY$lat, RAY$lon, PROJ)
Nor1.XY = GEOmap::GLOB.XY(Nor1$lat, Nor1$lon, PROJ)
 VEE1 = c(Nor1.XY$x[2]-Nor1.XY$x[1], Nor1.XY$y[2]-Nor1.XY$y[1])
     VEE2 = c(RAY.XY$x[2]-RAY.XY$x[1], RAY.XY$y[2]-RAY.XY$y[1])
     VEE1 = VEE1/sqrt(sum(VEE1^2) )
VEE2 = VEE2/sqrt(sum(VEE2^2) )
###### get angle from north:
ANG =
         acos( sum(VEE1*VEE2)
                                  ) *180/pi
#### compare with h
print(paste(h$az, ANG, h$az-ANG) )
```

rDUMPLOC

DUMP vectors to screen in list format

Description

For saving vectors to a file after the locator function has been executed.

Usage

```
rDUMPLOC(zloc, dig = 12)
```

Arguments

zloc x,y list of locator positions dig number of digits in output

read1segy 219

Value

Side effects: print to screen

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

Examples

```
 \begin{split} & \mathsf{G} <- \ \mathsf{list}() \\ & \mathsf{G\$x} <- \ \mathsf{c}(-1.0960, -0.9942, -0.8909, -0.7846, -0.6738, -0.5570, -0.4657, -0.3709, \\ & -0.2734, -0.1740, -0.0734, \ 0.0246, \ 0.1218, \ 0.2169, \ 0.3086, \ 0.3956, \ 0.4641, \\ & 0.5293, \ 0.5919, \ 0.6530, \ 0.7131) \\ & \mathsf{G\$y} <- \ \mathsf{c}(-0.72392, -0.62145, -0.52135, -0.42599, -0.33774, -0.25896, -0.20759, \\ & -0.16160, -0.11981, -0.08105, -0.04414, -0.00885, \ 0.02774, \ 0.06759, \ 0.11262, \\ & 0.16480, \ 0.21487, \ 0.27001, \ 0.32895, \ 0.39044, \ 0.45319) \\ & \mathsf{g} <- \ \mathsf{G} \\ & \mathsf{rDUMPLOC}(\mathsf{g}, \ \mathsf{dig} = 5) \end{aligned}
```

read1segy

Read one SEGY/SAC file

Description

Read one SEGY/SAC file

Usage

```
read1segy(fname, Iendian = 1, HEADONLY = FALSE, BIGLONG = FALSE)
read1sac(fname, Iendian = 1, HEADONLY = FALSE, BIGLONG = FALSE)
```

Arguments

fname character, file name

Iendian Endian of the input file name

HEADONLY logical, TRUE=return only header (default=FALSE)

BIGLONG logical, indicating whether long is 8 or 4 bytes.

Details

Segy format files are in integer format. The time series ususally represents counts recorded in a data acquisition system. The header includes meta-data and other identifying information.

SAC data is stored as floats, typically volts.

220 ReadInstr

Value

list of header and times series

Note

The Endian-ness of the input files is set by the system that created them. If the read1segy or read1sac does not make sense, try a different endian or BIGLONG setting.

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

write1sac, write1segy, sac2rseis, segy2rseis, prepSEIS

Examples

ReadInstr

Read Instrument Response in IRIS SEED format

Description

Read Instrument Response, poles and zeros, in IRIS SEED format.

Usage

```
ReadInstr(fn)
```

Arguments

fn

File name with Poles and Zeros

Details

RSEIS currently has a function (ReadSet.Instr) to read pole/zero files, but it seems to expect a format different from what one gets from IRIS. This one is compatible with pole/zero files produced by rdseed when converting seed files from the DMC to SAC files.

ReadSet.Instr 221

Value

List of poles and zeros compatible for swig decon

Author(s)

Jake Anderson<ajakef@gmail.com>

See Also

ReadSet.Instr

Examples

```
###### create a SAC format response file:
temp.file= tempfile("PZ")
cat(file=temp.file, c(
"ZEROS 4",
"-999.0260 0.0000",
"POLES 6",
"-0.1480 0.1480",
"-0.1480 -0.1480",
"-314.1600 0.0000",
"-9904.8000 3786.0000",
"-9904.8000 -3786.0000",
"-12507.0000 0.0000",
"CONSTANT 4.540182e+20"), sep='\n')

RESP <- ReadInstr(temp.file)
```

ReadSet.Instr

Read Instrument Response file

Description

Read in an instrument response file, or

Usage

```
ReadSet.Instr(file)
```

Arguments

file

name of file to read, or vector of character strings from the file

222 readUW.OSTAS

Details

If file is a path to a file it is read in and processed. If file is a vector of character strings from a file that has already been read in, the file is processed directly. The tag names (ZEROS, POLES, SENSE, CONSTANT) can be upper,lower or mixed case. Alternative to SENSE = sensitivity, and CONSTANT=norm or knorm.

Value

list:

np Number of poles

poles complex vector of poles

nz number of zeros

zeros complex vector of zeros
Knorm normalization factor
Sense sensitivity factor

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

Examples

```
### in this case a file has already been read in:

CMG <- c(
    "ZEROS 2",
    "0.0000E+00 0.0000E+00",
    "0.0000E+00 0.0000E+00",
    "POLES 3",
    "-0.1480E+00 0.1480E+00",
    "-0.1480E+00 -0.1480E+00",
    "50.0 0.0",
    "CONSTANT 1.0",
    "SENSE 800")

ReadSet.Instr(CMG)
```

readUW.OSTAS

Parse UW O-Cards

Description

PArse out UW O-cards from Pickfile

Usage

```
readUW.OSTAS(OS1)
```

recdate 223

Arguments

OS1 cards starting with O

Value

vector of station names not picked

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

recdate	Rectify	Date
---------	---------	------

Description

Rectify a date that may be out of wack.

Usage

```
recdate(jd=0, hr=0, mi=0, sec=0, yr=0)
recdatel(X)
```

Arguments

jd	Julian Day
hr	hours
mi	minutes
sec	seconds
yr	year
or	
Χ	list of date

Details

Returns date with correct numbers. So if number of seconds is greater than 60, will add to minutes...

Value

```
jd Julian Day
hr hours
mi minutes
sec seconds
yr year
```

224 repairWPX

Note

Default value for jd is 1, the rest are 0. This function now should successfully span year breaks. Leap years are correctly accounted for too.

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

See Also

showdatetime, DAYSperYEAR, fromjul, getjul, tojul, getmoday

Examples

repairWPX

Repair WPX

Description

Repair a WPX list that may be deficient in one or more of its components.

Usage

```
repairWPX(wpx)
```

Arguments

wpx

Pick information, dataframe

Details

Program checks a few of the elelments and tries to fix potential problems.

replaceWPX 225

Value

WPX dataframe

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

```
addWPX, catWPX, checkWPX, cleanWPX, clusterWPX, saveWPX, setWPX\\
```

Examples

```
s1 <- setWPX(name="HI", yr=2011, jd=231, hr=4, mi=3, sec = runif(5))
s1$col <- NULL
s2 <- repairWPX(s1)</pre>
```

replaceWPX

Replace picks in WPX file

Description

Replace pick in WPX file

Usage

```
replaceWPX(WPX, onepx , ind=1)
```

Arguments

WPX WPX list

onepx WPX list with one pick ind integer, index to replace

Details

Replaces one pick at index provided.

Value

WPX list

226 rseis2segy

Note

Replaces in the location provided. No test is made to determine if there is a pick already there. Maybe future versions will allow multiple replacements.

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

```
addWPX, catWPX, deleteWPX, selWPX
```

Examples

```
s1 <- setWPX(name="HI", yr=2011, jd=231, hr=4, mi=3, sec = runif(5))
s2 <- setWPX(name="HI", yr=2011, jd=231, hr=4, mi=3, sec = runif(1))
s4 <- replaceWPX(s1,s2, ind=4)</pre>
```

rseis2segy

Convert RSEIS to SEGY/SAC format

Description

Convert RSEIS to SEGY/SAC format

Usage

```
rseis2segy(GH, sel = 1, win = c(0, 1), path = ".", BIGLONG = FALSE) rseis2sac(GH, sel = 1, win = c(0, 1), path = ".", BIGLONG = FALSE)
```

Arguments

GH	RSEIS format list
sel	select traces to convert
win	vector, t1 and t2 window each trace
path	path to directory where files are created
BIGLONG	logical, indicating whether long is 8 or 4 bytes

Details

This is the converse of the segy2rseis routine.

Segy format files are in integer format. The time series ususally represents counts recorded in a data acquisition system. The header includes meta-data and other identifying information.

rseis2ts 227

Value

Side effects in file system

Note

The Endian-ness of the output file will be the native endian-ness of the system.

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

write1segy, write1sac, read1sac, read1segy, sac2rseis, segy2rseis

Examples

```
data(KH)
apath = tempdir()

J = rseis2segy(KH, sel=1, path=apath, BIGLONG=FALSE )
L = list.files(path=J, full.names=TRUE)
Z = read1segy(L[1], Iendian = 1, HEADONLY = FALSE, BIGLONG = FALSE)

# data(KH)
# apath = tempdir()
J = rseis2sac(KH, sel = 1, win = c(0, 1), path = apath, BIGLONG = FALSE)

L = list.files(path=J, full.names=TRUE)
Z = read1sac(L[1], Iendian = 1, HEADONLY = FALSE, BIGLONG = FALSE)
```

rseis2ts

Convert RSEIS to TS

Description

Convert one trace from an RSEIS seismic list to a ts time-series object.

Usage

```
rseis2ts(GH, sel = 1, notes = "")
```

228 rsspec.taper

Arguments

GH List structure of seismic traces from RSEIS

sel numeric index of one trace.
notes character string of notes

Details

Function extracts one trace and associated information from an RSEIS structure and returns a ts, time-series, object.

Value

ts object

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

Examples

```
data(GH)
H = rseis2ts(GH, 1, notes='Coso Trace 1')
plot(H)
title(main=attr(H, 'info')$notes)
```

rsspec.taper

Taper spectrum

Description

Taper function for spectrum analysis

Usage

```
rsspec.taper(x, p = 0.1)
```

Arguments

x time series trace
p percent taper

Details

Cosine taper at ends of trace.

ruler 229

Value

tapered trace is returned.

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

Examples

```
data(CE1)
Xamp <- CE1$y[CE1$x > 5.443754 & CE1$x<5.615951]
### 10% cosine taper:
xtap <- rsspec.taper(Xamp, p = 0.1)</pre>
```

ruler

Column Ruler

Description

Column Ruler for determining columns to read.

Usage

```
ruler(a = "")
```

Arguments

а

character string, optional

Details

This routine is set up to help get the columns for specific column oriented data. The ruler is dumped out below the character string for comparison. If no string is provided, just the rule is dumped. Use routine substr to extract the data from the columns.

Value

Side effects

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

substr

230 save.wpix

Examples

```
aa <- paste(runif(n=5), collapse='-')
aa = substr(aa, 1, 72)
ruler(aa)</pre>
```

save.wpix

Save WPIX from swig output

Description

Save WPIX from swig output

Usage

```
save.wpix(KOUT, fn = "wpix.out")
```

Arguments

KOUT List output from swig fn file name for saving.

Details

Takes the output list from swig, specifically the WPX component and writes a table to the file system. This function is embedded in view.seis.

Value

Side effects: file is created and appended to.

Note

User must have write permission to the file.

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

view.seis, swig

saveWPX 231

saveWPX Save WPX

Description

Save a WPX list to a file on the local file system.

Usage

```
saveWPX(twpx, destdir = ".")
```

Arguments

twpx WPX list

destdir character, destination directory, default=getwd()

Details

Creates a file with the list as in native binary format. This file can be loaded with the standard load function in R. The name of the file is created by using the minimum time extracted from the WPX list. The suffix on the file name is RDATA. When reading in, the object created is named "twpx" for further processing.

Value

Side effects on file system. The name of the output file is returned.

Note

User must have write access to the destination directory.

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

```
addWPX, catWPX, checkWPX, cleanWPX, clusterWPX, repairWPX, setWPX
```

```
tdir = tempdir()
s1 <- setWPX(name="HI", yr=2011, jd=231, hr=4, mi=3, sec = runif(5))
hh <- saveWPX(s1, destdir = tdir )
### read in the data
load(hh)</pre>
```

232 scal2freqs

```
data.frame(twpx)
```

scal2freqs

Wavelet Frequency Scale

Description

Get frequencies associated with the wavelet transform.

Usage

```
scal2freqs(octs, dt, plot = FALSE)
```

Arguments

octs number of octaves
dt sample rate, s
plot logical, TRUE=plot

Details

Use morelet wavelet to estimate frequency from wavelet transform.

Value

frequency values

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

See Also

Mmorlet, fft

```
noctave <- 6
nvoice <- 20
dt <- 0.004
i1 <- sort(rep(c(1:noctave), times=nvoice))
    jj <- rep(c(0:(nvoice-1)), times=noctave)

sa <- 2^(i1+jj/nvoice)

efs <- scal2freqs(sa, dt)</pre>
```

screens 233

screens

screens

Description

Open n devices for plotting.

Usage

screens(n)

Arguments

n

number of devices required

Details

If k screens are open and $k \ge n$, nothing is done.

Value

Graphical Side Effect

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

See Also

devices

```
if(interactive() ) screens(2)
```

234 SEARCHPIX

SEARCHPIX

Search Pix

Description

Search through pick strucutre to select phase arrivals

Usage

```
SEARCHPIX(KPX, IPX, tol = 0.5)
```

Arguments

KPX user locator pix

IPX set of pix in memory

tol tolerance, s

Details

```
returns index vector of picks that satisfy: wn = which( abs(t2-t1) < tol)
```

Value

index vector

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

```
data(GH, package='RSEIS')
IPX = data.frame( uwpfile2ypx(GH$pickfile ) )
####### take for example on pick
KPX = IPX[6, ]
SEARCHPIX(KPX, IPX, tol = 0.5)
```

secdif 235

secdif

Return difference in seconds

Description

Difference between two Date/Times (Julian Day)

Usage

```
secdif(jd1, hr1, mi1, sec1, jd2, hr2, mi2, sec2)
```

Arguments

jd1	Julian Day
hr1	hour
mi1	minute
sec1	second
jd2	Julian Day
hr2	hour
mi2	minute
sec2	second

Details

Returns T2-T1. Year is not included.

Value

numeric

seconds

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

See Also

secdifL

```
T1 <- list(jd=12, hr=13, mi=23, sec=21)
T2 <- list(jd=14, hr=23, mi=23, sec=2)
secdif(T1$jd, T1$hr, T1$mi, T1$sec, T2$jd, T2$hr, T2$mi, T2$sec)
```

236 secdifL

 ${\sf secdifL}$

Seconds Difference

Description

Given two date/time lists, return seconds diffrence

Usage

```
secdifL(T1, T2)
```

Arguments

```
T1 list(jd, hr, mi, sec)
T2 list(jd, hr, mi, sec)
```

Details

Year is not included in this calculation.

Value

```
numeric seconds
```

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

See Also

secdif

```
T1 <- list(jd=12, hr=13, mi=23, sec=21)
T2 <- list(jd=14, hr=23, mi=23, sec=2)
secdifL(T1, T2)
```

secdify 237

secdifv

Seconds Difference

Description

Given two date/time vectors, return seconds diffrence

Usage

```
secdifv(T1, T2)
```

Arguments

```
T1 c(jd, hr, mi, sec)

T2 c(jd, hr, mi, sec)
```

Details

Year is not included in this calculation.

Value

numeric

seconds

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

See Also

secdif

```
T1 <- c(12, 13, 23, 21)
T2 <- c(14, 23, 23, 2)
secdifv(T1, T2)
```

238 segy2rseis

segy2rseis Read in a	multiple segy files.
----------------------	----------------------

Description

Read in multiple segy files, and create a list of seismic traces.

Usage

```
segy2rseis(fnames, Iendian = 1, HEADONLY = FALSE, BIGLONG = FALSE, PLOT
= -1, RAW = FALSE)
sac2rseis(fnames, Iendian = 1, HEADONLY = FALSE,
BIGLONG = FALSE, PLOT = -1, RAW = FALSE)
```

Arguments

fnames	character vector of file names.
Iendian	Endian-ness of the files
HEADONLY	logical, TRUE=read only the header information. default=FALSE
BIGLONG	logical, indicating whether long is 8 or 4 bytes.
PLOT	logical, TRUE = plot traces
RAW	logical, TRUE=do not convert data to volts

Details

Segy format files are in integer format. The time series ususally represents counts recorded in a data acquisition system. The header includes meta-data and other identifying information.

Value

List of seismic traces.

Note

The Endian-ness of the input files is set by the system that created them. If the read1segy or read1sac does not make sense, try a different endian or BIGLONG setting.

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

```
read1sac, read1segy, sac2rseis, prepSEIS
```

SEIS2list 239

Examples

```
##### make some SAC files, then read them in
data(GH)
apath = tempdir()
## setwd(apath)
## apath = 'TEMP'
J = rseis2sac(GH, sel =1:5, path = apath, BIGLONG =FALSE )
Iendian = .Platform$endian
####### next read them in
Lname <- list.files(path=J , pattern='SAC', full.names=TRUE)

H = sac2rseis(Lname , Iendian =Iendian , HEADONLY = FALSE,
BIGLONG = FALSE, PLOT = -1, RAW = FALSE)

#### should have 5 traces, look at elements of the first one:
names(H[[1]])
plotGH(H[[1]])</pre>
```

SEIS2list

Convert a SEIS list to a list of seismograms

Description

Convert a SEIS list to a list of seismograms each independent.

Usage

```
SEIS2list(GH)
```

Arguments

GH

SEIS list (swig input)

Details

The list returned is useful for editing or modifying the seismic data prior to swig.

Value

List of seismograms.

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

240 seiscols

See Also

```
plotGH, swig
```

Examples

```
data(GH)
gg = SEIS2list(GH)
## for(i in 1:length(gg) )
i = 1
{
plotGH(gg[[i]]); Sys.sleep(0.2)
}
```

seiscols

Set colors for seismic display

Description

Given an RSEIS list of seismic data return a set of colors associated with the structure that colors each trace and its components the same color.

Usage

```
seiscols(GH, acols="black", M="STNS")
```

Arguments

GH Seismic RSEIS list

acols vector of colors to choose from

M character, "STNS" = stations, "COMPS" = components

Value

colors alpha/numeric vector of colors

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

SEISNtime 241

Examples

```
data(GH)
GH$pcol <- seiscols(GH)
swig(GH, sel=which(GH$COMPS=="V"), WIN=c(3, 10), SHOWONLY=TRUE)
xcol <- seiscols(GH, acols=c("black", "darkmagenta", "forestgreen"))
GH$pcol <- xcol
swig(GH, sel=which(GH$COMPS=="V"), , SHOWONLY=TRUE)</pre>
```

SEISNtime

Minimum time in an RSEIS list

Description

Return date/time of trace with earliest date/time.

Usage

```
SEISNtime(GH)
```

Arguments

GH RSEIS seismic list

Value

```
yr year
jd julian day
hr hour
mi minute
sec second
```

w1 which one, index to GH

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

```
data(GH)
SEISNtime(GH)
```

242 seisorder

seisoro	lor

Order seismic traces

Description

Use RSEIS structure to get convenient ordering of seismic data

Usage

```
seisorder(GH, ORD, VNE = c("V", "N", "E"))
```

Arguments

ORD predetermined ordering, list(name, dist)

VNE Order, for components, default=c("V", "N", "E")

Details

Uses information about the location of the stations to determine appropriate order. Order can be determined from the location of the stations, or from the travel times.

Value

Vector of indeces of GH in correct order

Note

If ORD is provided from travel times, it uses this instead

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

JGET.seis

selAPX 243

```
### dist
staf$dist <- d1$dkm

sorder <- seisorder(GH, staf, VNE= c("V", "N", "E"))

if(interactive()){
    swig(GH, sel=sorder)
}</pre>
```

selAPX

Select Picks

Description

select a subset of picks from a larger data base

Usage

```
selAPX(APX, ista = NULL, icomp = c("V", "N", "E"))
selWPX(APX, ind=NULL, ista = NULL, icomp = c("V", "N", "E"))
```

Arguments

APX	Pick Data Frame
ista	vector of stations to select
icomp	vector of components
ind	index of picks to select (negitive values imply omission)

Value

returns subset list

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

244 SELBUT

SELBUT

Select Buttons

Description

Select buttons interactively.

Usage

```
SELBUT(OPTS, onoff = 1, ocols = "white", default = "opt")
```

Arguments

```
OPTS character list of buttons
onoff which buttons are active
ocols colors for plotting
default default list of buttons
```

Details

Used in swig. OPtions can be added, subtracted, deleted, or completely filled out based on interactive choice.

Value

character list of chosen options.

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

swig

```
if(interactive()){
STDLAB <- c("DONE", "QUIT", "zoom.out", "zoom.in", "SELBUT",
"FILT","UNFILT", "PSEL", "SGRAM", "WLET", "SPEC", "XTR" )
onoff = rep(0, length(STDLAB))
onoff[1:5] <- 1
SELBUT(STDLAB, onoff=onoff)
}</pre>
```

selpgen 245

Pick stations and components interactively

Description

Pick stations and components interactively. This is a routine used in swig.

Usage

```
selpgen(MH, newdev = TRUE, STAY = FALSE)
```

Arguments

MH RSEIS list

newdev logical, whether to create a new device.

STAY logical, whether to keep device active.

Value

vector of index to list of stations and components

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

swig

SFI	LST	-Δ
\sim	$ \cup$	

Pick stations and components interactively

Description

Pick stations and components interactively. This is a routine used in swig.

Usage

```
SELSTA(GH, sel=1, newdev = TRUE, STAY = FALSE)
```

Arguments

GH	RSEIS 1	ist

sel vector of index to selected traces

newdev logical, whether to create a new device.

STAY logical, whether to keep device active.

246 selstas

Value

vector of index to list of stations and components

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

swig

Examples

```
data(GH)
SELSTA(GH, sel=1:7 , newdev = TRUE, STAY = FALSE)
```

selstas

Select Stations

Description

Extract a set of stations from a longer station file.

Usage

```
selstas(sta, ind)
```

Arguments

sta station list (name, lat, lon, z)

ind index to station list = positive is select, negative is remove

Value

station list with those indeces either removed or save.

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

SENSORsensitivity 247

SENSORsensitivity

Sensor Sensitivity from a known set of seismo/acoustic sensor

Description

From published sensitivities of seismic and acoustic sensors.

Usage

```
SENSORsensitivity(K = 1)
```

Arguments

Κ

number of sensor from list

Value

Sensitivity

Note

```
Current choices are: c("40T", "3T", "L28", "LD", "EL", "MC", "EL(SANGAY)")
```

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

References

Johnson, J.B., R.C. Aster, M.C. Ruiz, S.D. Malone, P.J. McChesney, J.M. Lees, and P.R. Kyle, Interpretation and utility of infrasonic records from erupting volcanoes, J. Volc. Geoth. Res., 121 (1-2), 15-63, 2003.

```
SENSORsensitivity(3)
SENSORsensitivity(5)
```

248 setPrePix

setPrePix

Set list of arrival times for swig.

Description

Prepare a set of arrival picks for swig plotting.

Usage

```
setPrePix(R1, tt, name, flag = "K", col = "blue")
```

Arguments

R1 Location and time of event source. (list)

tt Vector of travel times, seconds.

name Station names

flag Phase Identifier, character

col Color

Value

List of picks suitable for swig plotting.

Note

R1 should have yr, jp, hr, mi, sec at the least.

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

setWPX

```
T1 = as.POSIXct("2020-08-20 06:30:17.15 UTC", "UTC")
     R1 = posix2RSEIS(T1)

name = c("MERT", "KRN", "KUA")
tt = c(1,2,3)
wpx = setPrePix(R1, tt, name, flag = "K", col = "blue")
```

setstas 249

setstas

Set Station information

Description

Read station information and set in list

Usage

```
setstas(stafile)
```

Arguments

stafile

character, station file name path

Details

reads in ASCII data file.

Value

LIST

name character, station name
lat numeric, decimal degrees
lon numeric, decimal degrees
z numeric, decimal degrees

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

```
data(GH)

tsta = GH$stafile

tfile = tempfile()

write.table(file=tfile, tsta, row.names=FALSE, col.names=FALSE)

sta <- setstas(tfile)</pre>
```

250 setupDB

		_	_	
Se.	tıı	nΠ	R	

Set up a seismic data base

Description

Set up a data base storing the location and times for a set of seismic data.

Usage

```
setupDB(DB, token = TRUE, split = "\\.")
```

Arguments

DB **fn** full path to file

yr yearjd julian dayhr hourmi minutesec second

dur duration, seconds

origyr origin time for epoch calculations

token logical, use tokens in the file names of the fn's to extract station and component

names for selection. default=TRUE

split character string to split if using token, default is a period.

Details

If token is FALSE, then the station name and component are selected using substr, i.e. by column number.

Value

DB with epoch time and station information appended,

t1 epoch start time

t2 expoch end time = t1+nsamps*sample rate n seconds

sta station comp component

Note

Program attaches station identification used for grepping.

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

setwelch 251

See Also

EPOCHday, T12.pix, Mine.seis

Examples

```
######## to illustrate, we make a set of individual seismograms
data(GH)
L1 = length(GH$JSTR)
DD = data.frame(GH$info)
GIVE = vector(mode='list')
for(i in 1:L1)
AA = DD[i,]
GIVE[[i]] = list(fn = AA$fn, sta =GH$STNS[i] , comp = GH$COMP[i],
            dt = AA$dt, DATTIM = AA, N = AA$n1, units = NA,
            coords = NA, amp = GH$JSTR[[i]] )
}
######## save the seismic data in a temporary directory
#### each trace in a separate file
tdir = tempdir()
for(i in 1:length(GIVE) )
    sig = GIVE[[i]]
  d1 = dateStamp(sig$DATTIM)
  nam1 = paste(d1,sig$sta, sig$comp, sep='_')
   nam2 = paste0(nam1, '.RDS')
   nam3 = paste(tdir, nam2, sep='/')
   saveRDS(file=nam3, sig)
######################### Now read files and make the DataBase:
LF = list.files(path=tdir, pattern='.RDS', full.names=TRUE)
DB = FmakeDB(LF, kind=-1)
## IDB = infoDB(DB)
plotDB(DB)
```

setwelch

Set up Matrix of fft for Welch method

Description

Prepares a matrix for estimation of power spectrum via Welch's method. Also, is can be used for spectrogram.

252 setwelch

Usage

```
setwelch(X, win = min(80, floor(length(X)/10)),
inc = min(24, floor(length(X)/30)), coef = 64, wintaper=0.05)
```

Arguments

X Time series vector
win window length
inc increment
coef coefficient for fft

coci cocincient for fit

wintaper percent taper window taper

Value

List:

values Matrix of fft's staggered along the trace

windowsize window length used increment increment used

wintaper percent taper window taper

Author(s)

originally written by Andreas Weingessel, modified Jonathan M. Lees<jonathan.lees@unc.edu>

References

Welch, P.D. (1967) The use of Fast Fourier Transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms IEEE Trans. Audio Electroacoustics 15, 70-73.

See Also

stft

```
dt <- 0.001

t <- seq(0, 6, by=dt)
x <- 6*sin(2*pi*50*t) + 10* sin(2*pi*120*t)
y <- x + rnorm(length(x), mean=0, sd=10)

plot(t,y, type='l')

title('sin(2*pi*50*t) + sin(2*pi*120*t)+ rnorm')</pre>
```

setwelch 253

```
Y <- fft(y)
Pyy <- Y * Conj(Y)</pre>
N <- length(y)
n <- length(Pyy)/2</pre>
Syy <- (Mod(Pyy[1:n])^2)/N
fn <- 1/(2*dt)
f <- (0:(length(Syy)-1))*fn/length(Syy)</pre>
plot(f, Syy, type='l', log='y', xlim=c(0, 150));
abline(v=c(50, 120),col='blue', lty=2)
plot(f, Syy, type='l', log='y' , xlim=c(0, 150));
abline(v=c(50, 120),col='blue', lty=2)
win <- 1024
inc <- min(24, floor(length(y)/30))</pre>
coef <- 2048
 w <- setwelch(y, win=win, inc=inc, coef=coef, wintaper=0.2)</pre>
    KK <- apply(w$values, 2, FUN="mean")</pre>
fw <- seq(from=0, to=0.5, length=coef)/(dt)</pre>
plot(fw, KK^2, log='', type='l' , xlim=c(0, 150));
abline(v=c(50, 120), col='blue', lty=2)
Wyy <- (KK^2)/w$windowsize</pre>
plot(f, Syy, type='l', log='y', xlim=c(0, 150))
lines(fw,Wyy , col='red')
DBSYY <- 20*log10(Syy/max(Syy))
DBKK <- 20*log10(Wyy/max(Wyy))</pre>
plot(f, DBSYY, type='l' , xlim=c(0, 150), ylab="Db", xlab="Hz")
lines(fw, DBKK, col='red')
title("Compare simple periodogam with Welch's Method")
```

254 setwpix

setw	nix
SELW	hiv

Set Window Pix for swig

Description

Create list of windows picks suitable for plotting in swig.

Usage

```
setwpix(phase = NULL, col = NULL, yr = NULL, jd = NULL,
hr = NULL, mi = NULL, sec = NULL, dur = NULL, name = NULL,
comp = NULL, dispcomp = NULL)
```

Arguments

phase	phase name
col	color for plotting
yr	year
jd	julian day
hr	hour
mi	minute
sec	second
dur	duration
name	name of station
comp	component
dispcomp	display on which component

Details

Some phases should be displayed on only certain components of a station.

Value

list of window picks

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

swig

setWPX 255

Examples

```
data(KH)
orgtim <- c( 2005,214,7,1,10.7313152551651 )
tims <- c( 0,46.7119,102.438451,113.092049,123.54077 )
psecs <- NULL
nam <- NULL
aphases <- NULL
sta <- "9024"
for(j in 1:length(tims))
psecs <- c(psecs, tims[j]+orgtim[5])</pre>
nam <- c(nam, sta)</pre>
aphases <- c(aphases, paste(sep="", "K", j) )</pre>
pp <- setwpix(phase=aphases , col="blue", yr=orgtim[1], jd=orgtim[2],</pre>
hr=orgtim[3], mi=orgtim[4], sec=psecs, dur=0, name=nam , comp="V")
W <- secdifL(KH$info, pp)</pre>
win < c(min(W)-5, max(W)+5
 swig(KH, APIX=pp, WIN=win , SHOWONLY=TRUE)
```

setWPX

Set WPX

Description

Create a WPX list from vector input or relavent parameters.

Usage

```
setWPX(phase = NULL, col = NULL, yr = NULL, jd = NULL,
hr = NULL, mi = NULL, sec = NULL, dur = NULL, name = NULL,
comp = NULL, dispcomp = NULL, onoff = NULL)
```

Arguments

phase

character, phase names

256 setWPX

col	character, colors
yr	numeric, year
jd	numeric, julian day
hr	numeric, hour
mi	numeric, minute
sec	numeric, second
dur	numeric, duration(s)
name	character, station name
comp	character, component
dispcomp	character, display string
onoff	numeric, flag for turning pick on or off

Details

Utility for setting up a WPX list for further processing.

Value

WPX list.

Note

Used internally.

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

addWPX, catWPX, checkWPX, cleanWPX, clusterWPX, repairWPX, saveWPX

```
s1 <- setWPX(name="HI", yr=2011, jd=231, hr=4, mi=3, sec = runif(5))
```

setypx 257

setypx

Create an empty window pick list

Description

Create an empty window pick list. This is used primarily internally.

Usage

```
setypx()
```

Value

List:

tag for identification of station and component

name station name comp component name

c3 compnent name with secondary tags

phase phase err error pol polarity flag flg res residual duration dur year yr month mo

dom day of month jd julian day hr hour

mi minute sec second col color

onoff logical, ON or OFF for plotting

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

setwpix

258 showdatetime

Examples

```
a <- setypx()
print(a)</pre>
```

showdatetime

Print Date/TIME

Description

Print Date and Time as yyyy-mo-do hr:mi:se msec

Usage

```
showdatetime(rd, AMPM = FALSE, verbose=TRUE)
```

Arguments

rd date time list, jd hr mi sec yr

AMPM 24 hour time (AMPM=FALSE) or 12 hour clock (AMPM=TRUE)

verbose logical, print information to screen, default=TRUE

Value

Side Effects

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

sigconv 259

sigconv

Convolve spikes with wavelets

Description

Convolve spikes with wavelets

Usage

```
sigconv(wigmat, wavepulse)
```

Arguments

wigmat matrix, spikes

wavepulse wavelet for convolution

Details

Convolution is done in Frequency domain on each trace

Value

Matrix, waveforms

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

```
wiggleimage, symshot1, genrick
```

```
S1 <- symshot1()
############# S1$THEORY$treflex

d <- dim(S1$smograms)
G1 <- matrix( rep(0, length=d[1]*d[2]), ncol=d[2], nrow=d[1])
########### set up the spike set for reflexions
for(i in 1:3){
p <- round( S1$THEORY$treflex[i,]/S1$dt );
G1[cbind(p , 1:d[2]) ] <- 1
}</pre>
```

260 sigconvGR

sigconvGR

convolve for Ground roll

Description

convolve a set of spikes for extended ground roll. This is a special case of sigconv.

Usage

```
sigconvGR(wigmat, wavepulse, dt)
```

Arguments

wigmat matrix of traces with spikes

wavepulse wavelet

dt sampling interval

Details

This is similar to the sigconv program but it assumes that the ground roll is extrened in time and space as the wave expands.

Value

Matrix, waveforms

Note

the program spreads the sinusoidal wavelet along a band to simulate ground-roll head wave noise.

SNET.drive 261

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

wiggleimage, symshot1, genrick, sigconv

Examples

```
S1 <- symshot1()
dt <- S1$dt
###########
               these are the reflections S1$GRrec
d <- dim(S1$smograms)</pre>
G1 \leftarrow matrix(rep(0, length=d[1]*d[2]), ncol=d[2], nrow=d[1])
      these are the refractions S1$THEORY$trefrac
p <- round( S1$THEORY$trefrac[1,]/S1$dt );</pre>
G1[cbind(p , 1:d[2])] <- 1
#### plot the spikes
wiggleimage(0.1*G1, dt = -S1$dt, dx = S1$x, col = "black")
grlen <- floor(.6/dt)</pre>
fgr <- 10
tape <- applytaper( rep(1, grlen), p = 0.2)
tgr <- seq(from=0, by=dt, length=grlen)</pre>
siggr <- tape*sin(2*pi*fgr*tgr)</pre>
########## convolve the wavelet with the set of spikes
H1 <- sigconvGR(G1, siggr, dt)
######## plot
wiggleimage(0.1*H1, dt = -S1$dt, dx = S1$x, col = "black")
```

SNET.drive

stereonet representation of particle motion

Description

stereonet representation of particle motion

Usage

```
SNET.drive(intempmat, pmolabs = c("Vertical", "North", "East"), STAMP = "")
```

262 SPECT.drive

Arguments

intempmat matrix of 3-component seismogram

pmolabs labels for components
STAMP Identification stamp

Details

Interactive driver for partmotnet.

Value

Graphical Side effect

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

See Also

partmotnet

Examples

```
data("GH")

temp <- cbind(GH$JSTR[[1]], GH$JSTR[[2]], GH$JSTR[[3]])

atemp <- temp[1168:1500, ]
SNET.drive(atemp, pmolabs = c("Vertical", "North", "East"), STAMP = "")</pre>
```

SPECT.drive

Interactive Spectrogram Driver

Description

Interactive Spectrogram Driver

Usage

```
SPECT.drive(Xamp, DT = 0.008, NEW = TRUE, STAMP = NULL ,
freqlim=c(0, 20, 0, 20), winparams=c(4096,256, 204 ))
```

SPECT.drive 263

Arguments

Xamp signal trace

DT deltaT sample interval, s

NEW logical, TRUE=recalculate spectrum
STAMP character stamp for identification

freqlim vector of 4 frequency limits: min max for calculations, min max for display.

Default=see below

winparams vector of 3 window parameters: Number of points for FFT, number of time

samples for window, number of overlap samples: default=see below

Details

Interactive buttons are set internally. The parameters freqlim and winparams can be changed - these are simply the starting parameters for the initial display.

For winparams, the parameters are set to be appropriate for sample rates of typical seismic data, 100-125 samples per second. The number of points in the FFT are initially set to 4096 and the time window is set to 256. The overlap is calculated by subtracting 20 percent of the time window, so the overlap is 80 percent. Of course, the number of samples in a window must be less than the length of input time series.

Value

Graphical Side Effects

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

See Also

plotevol, RPMG

```
data(CE1)
######### Xamp = CE1$y[CE1$x>5.443754 & CE1$x<5.615951]
Xamp = CE1$y
plot(Xamp, type='l')

DT = CE1$dt
if(interactive() ) {
SPECT.drive(Xamp, DT = DT, NEW = TRUE, STAMP = NULL) }</pre>
```

264 Spectrum

Spectrum Calculate Different Spectrum Types in Physical Units

Description

Spectrum is a wrapper function for stats::fft and RSEIS::mtapspec. For a given method (multi-taper spectrum or fft spectrum) and spectrum type (power, energy, amplitude, or phase), it returns the spectrum in physical units (obeying Parseval's theorem) and the corresponding frequency axis.

Usage

```
Spectrum(x, dt, one\_sided = TRUE, type = 1, method = 1)
```

Arguments

x Time series for which a spectrum is to be calculated (assumed to be in volts)

dt Sample interval for x (assumed to be in seconds)

one_sided Logical: should the spectrum be a function of positive frequencies only (f <

nyquist frequency) and spectral density doubled to be consistent with that (TRUE, default), or should the spectrum be provided for all frequencies, positive and

negative?

type Type of spectrum: 1 (default) is power spectrum; 2 is energy spectrum; 3 is

amplitude spectrum; 4 is phase spectrum

method Method used to calculate spectrum. 1 (default) is fft; 2 is multi-taper.

Details

Phase spectrum is currently enabled only for method = 1 (fft). All possible energy and power spectra obey Parseval's relation ($sum(s)*df \sim mean(x^2)$ for power; $sum(s)*df \sim sum(x^2)*dt$ for energy). Parseval's relation may not be exact due to approximations used in making the spectrum one-sided or in the multi-taper method.

Input units are assumed to be volts and seconds; if other input units are used, adjust output units accordingly.

Value

List with following elements.

f frequency axis (Hz; cycles per second, not radians per second)

df interval for frequency axis (Hz)
spectrum spectral values corresponding to f

type spectrum type: Power, Energy, Amplitude, or Phase

units Units of spectrum (assuming that input units are volts and seconds)

STALTA 265

Author(s)

Jake Anderson

See Also

RSEIS::mtapspec stats::fft

Examples

```
## example time series
x = rnorm(1000)
dt = 0.01

## power spectrum, multi-taper method, one-sided
S = Spectrum(x, dt, type = 1, method = 2, one_sided = TRUE)
sum(S$spectrum) * S$df ## frequency-domain power
mean(x^2) ## time-domain power

## energy spectrum, fft method, two-sided
S = Spectrum(x, dt, type = 2, method = 1, one_sided = FALSE)
sum(S$spectrum) * S$df ## frequency-domain energy
sum(x^2) * dt ## time-domain energy
```

STALTA

Short term, long term average ratio

Description

Calculate the short term, long term average ratios of the squared amplitude in a time series.

Usage

```
STALTA(y, fwlen = 125, bwlen = 125)
```

Arguments

y vector, or time series

fwlen forward number of sa

fwlen forward number of samples bwlen backward number of samples

Details

Calculates the ratio of the forward/backard mean square sum.

Value

vector of ratios

266 STLTcurve

Note

All filtering or pre and post analysis should be done outside of ratio curve estimate.

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

STLTcurve, PSTLTcurve

Examples

```
### easy example find P and S-wave arrivals, low noise
data(GH)
i = 6
z = GH$JSTR[[i]]

z.curve = STALTA(z, fwlen = 10, bwlen = 325)

ex = seq(from=0, length=length(z), by=GH$dt[i])
par(mfrow=c(2, 1))
plot(ex, z, type='l')
plot(ex, z.curve, type = 'l')
aa = peaks(z.curve, span = 11, do.pad = TRUE)
wa = which( aa & z.curve>50 )

abline(v=wa*GH$dt[i] , col='red')
par(mfg=c(1,1))
abline(v=wa*GH$dt[i] , col='red')
```

 ${\tt STLTcurve}$

Short-term/Long-term Average curve

Description

Get short-term average long-term verage ratio curve for picking

Usage

```
STLTcurve(y, dt = 0.008, fwlen = 125, bwlen = 125, stretch = 1000, MED = 255, PLOT = FALSE)
```

STLTcurve 267

Arguments

У	signal
dt	sample rate
fwlen	forward window, number of samples
bwlen	back window length, number of samples
stretch	stretch multiplier
MED	median smoother

logical, TRUE=plot diagnostics

Details

PLOT

Uses C-code and fast tanking algorithm written at UW

Value

sample to significant change in ratio curve

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

See Also

PSTLTcurve

```
data(CE1)

y = CE1$y

DT = CE1$dt

sy = STLTcurve(y, dt=DT, fwlen = 25, bwlen = 25, stretch=1000, MED=255, PLOT=FALSE)

par(mfrow=c(2,1))

plot(CE1$x, CE1$y, type='1')
plot(CE1$x,sy$rat, type='1')
```

268 swig

swig	Seismic Wiggle Analysis	

Description

Main Interactive Program for plotting and analyzing seismic waveform data.

Usage

```
swig(GH, sel = 1:length(GH$dt), ORD = NULL, WIN = NULL, APIX = NULL,
PHASE = NULL,
STDLAB = NULL, PADDLAB = NULL, TEMPBUT=NULL,
SHOWONLY = FALSE, CHOP = FALSE, TIT = "",
pts = FALSE, forcepix = FALSE, pcex=0.7, SCALE = 1, ilocstyle=1,
velfile = "", stafile = "", LOC = NULL,
prefilt=list(fl=.2, fh=15, type="HP", proto="BU"), filters=NULL,
YAX = 1 , xtickfactor = 1, vertline=NA, destdir='.')
```

Arguments

GH	Seismic data structure
sel	selection of traces from structure
ORD	order to plot traces
WIN	vector c(t1, t2) for window of traces to be shown
APIX	structure of arrival time picks
PHASE	phase to display, "P", "S", etc
STDLAB	label of buttons
PADDLAB	label of phase-pick buttons
TEMPBUT	temporary, user defined buttons
SHOWONLY	logical, TRUE=non-interactive
CHOP	whether to chop the signal
TIT	title for the top of plot
pts	whether to plot specific points on the plot
forcepix	logical, force all phase picks to be shown on all traces
pcex	Pick label size expansion (cex), default=0.7
SCALE	flag, 1,2= scale according to window or trace (default=1, scale by trace)
ilocstyle	integer, style of click graphic, one of -1, 0, 1, 2, 3, indicating: points, abline, segs, segs+abline, segs+long-abline, default=1 $\frac{1}{2}$
velfile	velocity structure or file name
stafile	station structure or file name
LOC	source location structure (lat, lon, depth)

swig 269

prefilt default filter definition list(fl=.2, fh=15, type="HP", proto="BU")

filters a list of filters for choosfilt, the list consists of 3 vectors: flo, fhi and type defining

the filter choices.

YAX type of Yaxis label, 1,2,3 DEFAULT=1 only one y-axis others scaled; 2=all y-

axes are plotted on left; 3=all y-axes plotted, alternating left and right

xtickfactor Factor for multiplying the x-axis tick markers (default=1; for minutes=60, hrs=3600,

days=24*3600)

vertline time list (yr, jd, hr, mi sec) for plotting vertical lines on window. Default=NA destdir Destination directory(folder) for writing output to disk, default = current directory(folder)

tory

Details

This is the main program that drives the other analysis in RSEIS. GH is a list consisting of header (meta-data) and time series information. See documentation on GH to get complete description.

A set of filters can be defined by the user, see choosfilt

Default Buttons, can be created by: STDLAB = c("DONE", "QUIT", "zoom out", "zoom in", "Left", "Right", "restore", "Pinfo", "WINFO", "XTR", "SPEC", "SGRAM", "WLET", "FILT", "UNFILT", "SCALE", "Postscript")

If the user has defined STDLAB.DEFAULT and PADDLAB.DEFAULT in the .Rprofile or .First commands, these will override the default in the function definition.

Value

Various structures are returned based on interactive selections of the user.

Howeverr, the default return list:

but last button pushed

sloc location of last set of clicks

WPX set of saved WPIX (window picks

BRUNINFO Brune Model information

DETLINFO Detailed information about traces
mark mark (MARK button was pressed
PUSHED list of all buttons pressed prior to exit

Note

If using the filters for button FILT, it is useful to have a "None" in case no filter is desired (i.e. user changes mind).

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

270 swig

See Also

PICK.DOC, GH, RPGM, choosfilt

```
data("GH")
### This loads a structure
STDLAB <- c("DONE", "QUIT","zoom out", "zoom in", "Left",
"Right", "restore", "Pinfo","WINFO",</pre>
"XTR", "SPEC", "SGRAM", "WLET",
"FILT", "UNFILT", "SCALE", "Postscript")
sel <- GH$COMPS=="V"
if(interactive() ) { p <- swig(GH, sel=sel, STDLAB=STDLAB)</pre>
print(p)
if(interactive()) {
p <- swig(GH, sel=sel, WIN=c(4,14) , STDLAB=c("DONE", "LAME", "DAME") )
print(p)
}
############
                example with filter
data(KH)
thefilts <-
list(flo=
c(0.02, 0.02, 0.02, 0.02, 0.02, 0.02,
0.02, 0.02, 0.02, 0.02, 0.02, 0.02,
0.02,
1/2, 1/50,1/100, 1/100,
1/100,1/100,1/100,1,1,
0.2, 15, 5, 2,1,
100),
fhi=
c(1/10, 1/6, 1/5, 1/4, 1/3, 1/2,
0.2, 0.5, 1.0, 2.0, 3.0, 4.0,
8, 1/2.0,1/5.0,1/10.0,
1/20, 1/30,1/40,10,5,
7.0, 100, 100, 100, 10,
100),
type =
c("LP","LP", "LP", "LP", "LP", "LP",
"LP", "LP", "LP", "LP", "LP", "LP",
"LP",
"BP", "BP", "BP", "BP", "BP", "BP",
"BP", "BP", "BP"
"HP", "HP", "HP", "HP", "HP",
"None"))
```

swig.ALLPX 271

```
if(interactive()) {
swig(KH, filters=thefilts)
}else{
swig(KH, filters=thefilts, SHOWONLY=TRUE )
}
```

swig.ALLPX

plot all phase arrival picks

Description

plot all phase arrival picks

Usage

```
swig.ALLPX(t0, STNS, COMPS, YPX, PHASE = NULL, POLS = TRUE,
FILL = FALSE, FORCE = TRUE, cex = cex, srt = srt)
```

Arguments

t0	time for start of window, s
STNS	station names to plot
COMPS	components to plot
YPX	y-picks (times)
PHASE	Phases to plot
POLS	polaritiy information (up, down)
FILL	fill color
FORCE	logical, force all phases plotted on all traces
cex	character expansion
srt	string rotation angle, degrees

Details

for use in conjunction with PLOT.SEISN program

Value

Graphical Side Effect

272 symshot1

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

See Also

```
PLOT.SEISN, swig
```

Examples

```
##### this example needs some work:
data(GH)
WPX = uwpfile2ypx(GH$pickfile)
swig(GH, SHOWONLY=TRUE)
swig.ALLPX(GH$pickfile$LOC , GH$STNS, GH$COMPS, WPX, PHASE='P', FORCE=TRUE)
```

symshot1

Simulate a seismic shot

Description

Simulate an exploration style seismic shot with ground roll, air wave, refractions and reflections.

Usage

```
symshot1(PLOT = FALSE)
```

Arguments

PLOT

logical, TRUE=plot the wiggles. DEFAULT=FALSE

Details

Arrivals are calculated based on geometric considerations with a 1D layered model.

Value

smograms Matrix: columns are individual traces

dt sample interval in time, s

x x locations

dx spacing in X-direction

sysinfo 273

REFL reflection information
REFR refraction image
GRrec ground roll image
AIRrec air wave image

THEORY List of theoretical values trefrac refraction arrival times treflex reflection arrival times

tair Air arrival times

velair velocity for the air wave

mod Layered Model

Note

MOdel is relatively simple:

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

References

Sherrif

See Also

wiggleimage, symshot

Examples

```
S1 <- symshot1()
wiggleimage(S1$smograms, dt = -S1$dt, dx = S1$x, col = "black")
```

sysinfo

System Information

Description

Extract OS system information

Usage

sysinfo()

274 T12.pix

Details

Returns parts of the output of variables .Machine and .Platform.

Endian Problem

these should be used for reading binary data when crossing platforms. If binary files are created on a little-endian platform, but are being read on a big-endian platform, then one should use "swap".

SizeOf Problem

Many older machines use 4 bytes for LONG. Newer 64 bit machines use 8 bytes for LONG = so this is a big problem.

Value

```
A=.Machine, B=.Platform
```

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

.Machine, .Platform

Examples

sysinfo()

T12.pix

Get T1, T2

Description

Modify opick data frame and add T2=T1+dur

Usage

```
T12.pix(A)
```

Arguments

Α

pick data.frame

Details

Given t1 and duration, returns to structure, t2=t1+dur.

TAPER.SEISN 275

Value

pick data.frame with t2 as a member.

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

TAPER.SEISN

Taper Traces

Description

Taper traces in a seismic structure using a cosine function on the ends.

Usage

```
TAPER.SEISN(TH, sel = 1:length(TH$JSTR), TAPER = 0.1)
```

Arguments

TH Seismic structure sel selection of traces

TAPER filter taper, percent cosine taper

Details

Seismic structure

Value

Seismic structure

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

See Also

butfilt

276 Thresh.J

Examples

```
data("GH")
sel <- which(GH$COMPS=="V")

sel <- 1:3
   KF <- TAPER.SEISN(GH, sel = sel, TAPER=0.1)
swig(KF, sel=sel, SHOWONLY=0)</pre>
```

Thresh.J

Threshold Adjuster

Description

determine cut off for ratio curve

Usage

```
Thresh.J(y, thresh)
```

Arguments

y signal

thresh inital threshold

Details

Attempts to automatically optimize the threshold for automated picking. Used deep in picking algorithm.

Value

```
list(J=J, L=L)
```

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

TOCART 277

TOCART

Convert to Cartesian coordinates

Description

Convert to cartesian coordinates

Usage

```
TOCART(az, nadir)
```

Arguments

az	degrees, azimuth
nadir	degrees, dip

Value

LIST

x x-coordinate
 y y-coordinate
 z z-coordinate
 az degrees, azimuth
 nadir degrees, dip

Author(s)

Jonathan M. Lees <jonathan.lees@unc.edu>

See Also

to cart L

```
TOCART(132, 69)
```

278 tomo.colors

tojul Julian Day

Description

Convert to Julian Day. Used for calculations.

Usage

```
tojul(year, month, day)
```

Arguments

year year month month day day

Value

Julian Days

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

Examples

```
tojul(1953, 3, 19)
```

tomo.colors

Tomography Colors

Description

Color Palette ranging from red to blue through black.

Usage

```
tomo.colors(n, alpha = 1)
```

Arguments

n number of colors alpha hsv color parameter trapz 279

Value

color palette

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

See Also

rainbow, colors, hsv

Examples

```
tomo.colors(25, alpha = 1)
```

trapz

Integrate using trapezoidal rule

Description

Integrate using trapezoidal rule

Usage

```
trapz(y, dt, rm.mean=TRUE)
```

Arguments

y Input signal

dt sample interval time, seconds

rm.mean logical, whether to remove the mean prior to integration (TRUE)

Value

vector: Integrated signal

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

```
x <- rnorm(100)
trapz(x, 0.01)</pre>
```

280 travel.time1D

.time1D Seismic Travel Time 1D
ie id Seismic Travel Time ID

Description

Travel time from source to reciever in 1D local model.

Usage

```
travel.time1D(indelta, inhpz, instaz, inlay, ztop, vel)
many.time1D(indelta, inhpz, instaz, inlay, ztop, vel)
```

Arguments

indelta	distance in KM
inhpz	depth of hypocenter, km
instaz	elevation of station
inlay	number of layers
ztop	vector, tops of layers
vel	vector, velocities in layers

Details

Uses local 1D velocity model, not appropriate for spherical earth. The many.time1D version will take a vector of distances (indelta) and either one station elevation or a vector.

The station elevation should be referenced to the top of the velocity model, not necessarily sea level. Usually this is set to zero and a station correction is used to take into account the topographic and other geologic effects.

Value

list:

dtdr derivative of t w.r.t. horizontal distance

dtdz derivative of t w.r.t. z, depth angle incidence angle, degrees

tt travel time, s

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

tung.pulse 281

See Also

Ray.time1D, Get1Dvel

Examples

tung.pulse

Volcanic Pulse Analysis

Description

Given a seiries of pulses, do analysis on each one

Usage

```
tung.pulse(r, q, dt)
```

Arguments

r x-coordinates q y-coordinates

dt deltat, sample interval

Details

Calculates, min, max of edges and center, then models the pulse with a triangular pulse and integrates.

Value

vector=c(Ex[1], Ex[2], Ey[1], Ey[2], Cx, Cy, ar2, DefInt[1], DefInt[2], sum0) where:

Ex left minimum

Ey right minimum

Cx, Cy center (max?)

ar2 area of triangle

DefInt[1] integral under curve

DefInt[2] integral under curve (bottom triangle removed)

sum0 RMS amplitude

282 unpackAcard

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

See Also

peaks

Examples

```
if(interactive()){
data(CE1)

ex <- CE1$x[CE1$x>5.453291 &CE1$x< 5.507338]
why <- CE1$y[CE1$x>5.453291 &CE1$x< 5.507338]
plot(ex, why, type='l')

tung.pulse(ex, why, CE1$dt)
}</pre>
```

unpackAcard

Parse Acard from UW-format pickfile

Description

Parse Acard from UW-format pickfile

Usage

```
unpackAcard(AC)
```

Arguments

AC

ascii acard

Details

Reads and Parses A-cards from UW foprmatted data.

uwpfile2ypx 283

Value

List:

yr Year mo Month

dom Day of Month

hr Hour
mi minute
sec second
lat latitude
lon longitude
z depth
mag magnitude

gap gap in station coverage
delta distance to nearest station
rms root mean square residual

hozerr horizontal error

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

Description

Read in ASCII version of pickfile. This is the output list used to plot picks on swig, often called WPX or YPX in other functions.

Usage

uwpfile2ypx(P)

Arguments

P pickfile

284 varsquig

Value

list:

STAS input structure year yr month mo day of month dom julian day jd hour hr mi minute second sec col color

onoff logical, TRUE plot trace

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

Examples

```
data("GH")
WW = RSEIS::uwpfile2ypx(GH$pickfile)
vertord <- getvertsorder(GH$pickfile, GH)
R1 = rangedatetime(WW)
R2 = rangedatetime(GH$info)
S1 = secdifL(R2$min, R1$min)</pre>
swig(GH, sel=vertord$sel, APIX=WW, WIN=c(S1-1, 15), SHOWONLY=0)
```

varsquig

Var-Squiggle plot

Description

Plot one seismogram in Var-Squiggle mode - like on an exploration record section with half the wiggled shaded.

Usage

```
varsquig(x, y, L = locator(2), FLIP = FALSE, filcol="blue",
tracecol="red", var = 0, xpd=TRUE )
```

varsquig 285

Arguments

Х	X (time axis) coordinates
у	Y amplitudes
L	rectangular region on plot where plotting occurs
FLIP	logical - whether to flip the amplitudes by -1
filcol	color for shading
tracecol	color for trace
var	logical, whether to shade
xpd	logical, set xpd parameter (see par)

Details

A set of traces can be plotted after the plotting region has been set.

Value

Graphical Side Effects

Note

varsquig is meant to be used within other program not as a stand alone routine. The plotting region must be set up prior to plotting. The time series is scaled to fitt in the rectangular region defined by L.

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

varsquiggle

```
data(KH)

x <- KH$ex[KH$ex>95& KH$ex<125]

y <- KH$JSTR[[1]][KH$ex>95& KH$ex<125]

plot(x , y , type='l')

u <- par('usr')
L <- list(x=c(u[1], u[2]), y = c(u[3], u[4]))

plot(L$x, L$y, type='n')
  varsquig(x, y, L=L , FLIP=FALSE, filcol="blue", tracecol="blue", var=TRUE)</pre>
```

286 varsquiggle

```
plot(L$x, L$y, type='n')
  varsquig(x, y, L=L , FLIP=FALSE, filcol="red", tracecol="blue", var=FALSE)
```

varsquiggle

Var-Squiggle Plot

Description

Plot A seismic section using Var-Squiggle, like an exploration seismic record.

Usage

```
varsquiggle(GH, sel = c(1, 2), WIN = c(0, 1), dist=NULL, thick=1 , FLIP=FALSE, filcol='blue', tracecol='blue', xpd=TRUE, plotdir=1 )
```

Arguments

GH	Seismic List
sel	selection of seismic traces
WIN	time window
dist	distance from the source
thick	thickness of plotting region per trace
FLIP	logical, whether to plot vertical or horizontal, default FALSE, TRUE = vertical $$
filcol	color for shading
tracecol	color for trace
xpd	logical, set xpd parameter (see par)
plotdir	1=left to right, 0=right to left (default=1)

Details

Traces are plotted and scaled each with its own window. The distance vector provides the location on the seismic record.

Value

Graphical Side effects

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

VELMOD1D 287

See Also

```
matsquiggle, varsquig
```

Examples

VELMOD1D

Sample Velocity Model

Description

Seismic Velocity Model for Coso California

Usage

```
data(VELMOD1D)
```

Format

```
LIST:
```

- zp vector of Tops of Layers, P-wave, (km)
- vp vector of velocities of Layers, P-wave,(km/s)
- ep errors for velocities, P-wave,(km/s)
- zs vector of Tops of Layers, S-wave, (km)
- vs vector of velocities of Layers, S-wave,(km/s)
- es errors for velocities, S-wave,(km/s)

name character, name of model

descriptor character vector description of model

288 VELOCITY.SEISN

Details

Velocity model from a text file

References

Wu, H., and J. M. Lees (1999), Three-dimensional P- and S-wave velocity structures of the Coso Geothermal Area, California, from microseismic traveltime data, J. Geophys. Res. 104, 13,217-13,233.

Examples

```
data(VELMOD1D)
Get1Dvel(VELMOD1D, PLOT=TRUE)
```

VELOCITY.SEISN

Velocity Seismogram

Description

Removes seismic instrument response and corrects for sensitivity of seismoc instrument, returning units of m/s rather than volts.

Usage

```
VELOCITY.SEISN(TH, sel = 1:length(TH$JSTR), inst = 1,
Kal = Kal,waterlevel = 1e-08, FILT = list(ON = FALSE,
fl = 1/30, fh = 7, type = "HP", proto = "BU"))
```

Arguments

TH list structure of seismic traces

sel select which tracesin list to deconvolve

inst index to instrument in Kal list for calibration and instrument response

Kal list of instrument responses

waterlevel waterlevel for low frequency division
FILT filter output, after instrumentation

Details

Instrument responses are lists of poles and zeros for each instrument defined.

Value

Same as input list with new traces representing velocity versus volts

view.seis 289

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

DISPLACE.SEISN, deconinst

Examples

```
Kal <- PreSet.Instr()
data(KH)

inst <- rep(0, length(KH$STNS))

VH <- VELOCITY.SEISN(KH, sel = 1, inst = 1,
Kal = Kal, FILT = list(ON = FALSE, fl = 1/30, fh = 7,
type = "HP", proto = "BU"))</pre>
```

view.seis

Veiw seismic data window

Description

Veiw seismic data (segy) window on an hourly basis.

Usage

```
view.seis(aday, ihour, inkhour, SAVEFILE, days,
DB, usta, acomp,
STDLAB =c("QUIT", "NEXT", "PREV", "HALF"),
kind = -1, Iendian=1, BIGLONG=FALSE,
TZ=NULL)
```

Arguments

aday index of which day to use in vector days

ihour hour to start

inkhour increment in hours for viewing panel

SAVEFILE file to save window picks in days vector of days to select from

DB data base list of file names and start-times and durations

usta stations to select acomp compnents to select

290 view.seis

```
vector of buttons, DEFAULT = c("QUIT", "NEXT", "PREV", "HALF", "WPIX", "zoom out", "refresh", "restore", "SPEC", "SGRAM", "WLET", "FILT", "Pinfo", "WINFO")

kind an integer -1, 0, 1, 2; 0="RDATA", -1="RDS", 0="RDATA", 1 = "segy", 2 = "sac", see notes below

Iendian vector, Endian-ness of the data: 1,2,3: "little", "big", "swap". Default = 1 (little)

BIGLONG logical, TRUE=long=8 bytes

TZ Number of hours to add to GMT to get local time
```

Details

The program view.seis assumes the data is stored in files accessable by the user and that the DB list has been scanned in and parsed.

"kind" can be numeric or character: options are 'RDS', 'RDATA', 'SEGY', 'SAC', corresponding to (-1, 0, 1, 2)

Value

Graphical side effects and save.wpix stores appended picks.

Note

On LINUX systems I wrote these (non-R) programs to set up the data base for segy data:FLS.prl, segydatabase. To get these contact me directly. TZ is (-6) for Guatemala.

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

```
swig, save.wpix
```

Examples

vlen 291

```
{
    sig = GIVE[[i]]
  d1 = dateStamp(sig$DATTIM, sep='_')
  nam1 = paste(d1,sig$sta, sig$comp, sep='_')
   nam2 = paste0(nam1, '.RDS')
   nam3 = paste(tdir, nam2, sep='/')
   saveRDS(file=nam3, sig)
########################### Now read files and make the DataBase:
LF = list.files(path=tdir, pattern='.RDS', full.names=TRUE)
DB = FmakeDB(LF, kind=-1)
IDB = infoDB(DB)
pday <- 5
SAVEFILE <- tempfile()</pre>
ihour <- 15
inkhour <- .5
 ### days is a list of days (and associated years) that are in teh DB
     days <- list(jd=c(4, 5, 6), yr=c(2000, 2000, 2000) )</pre>
     aday = which(pday == days$jd)
####
       aday refers to one of the days listed in the days structure
view.seis(aday, ihour, inkhour, SAVEFILE, days, DB, IDB$usta, IDB$ucomp, TZ=(-6))
}
```

vlen

vector length

Description

calculate euclidian vector length

Usage

vlen(A1)

Arguments

Α1

vector

292 vline

Value

Euclidian Length

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

Examples

```
vlen(c(23, 43))
```

vline

vertical line on trace panel

Description

add vertical line on trace panel

Usage

```
vline(x, per = 1, COL = 1, NUM = FALSE, LAB = 1:length(x), lwd = 0, lty = 1)
```

Arguments x

per	percent of window
COL	color
NUM	number lines
LAB	character labels
lwd	line width

line type

vector of x-locations

Details

lty

adds vertical lines to plot

Value

Graphical side Effects

Author(s)

wiggle.env 293

See Also

plocator

Examples

```
plot(c(0,1), c(0,1), type='n')
vline(runif(4), COL ='red')
```

wiggle.env

Plot time series envelope

Description

Gets an envelope and lpots on a time series

Usage

```
wiggle.env(x, y)
```

Arguments

x x-coordinate y y-coordinate

Details

Uses Peaks and smooth.pline to estimate envelope

Value

list

structure from smooth.spline

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

See Also

smooth.spline, peaks, hilbert

294 wiggleimage

Examples

```
## data("CE1.Example.RDATA")
## load("CE1.Example.RDATA")
data(CE1)
plot(CE1$x, CE1$y, type='l')
wiggle.env(CE1$x, CE1$y)
we = wiggle.env(CE1$x, CE1$y)
lines(we$x, we$y, col='red')
```

wiggleimage

Seismic section

Description

Plot a seismic section as shot record

Usage

```
wiggleimage(Arot, dt = 1, dx = 1, col = "black")
```

Arguments

Arot	Matrix: columns are individual traces
dt	Sample rate, seconds
dx	spacing in x-direction. If a vector is given, it is used instead and dx is taken from the difference of the first to elements.
col	color for plotting wiggles

Details

Plot is arranged with time going down the page

Value

Graphical side effects

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

matsquiggle, varsquiggle

WINGH 295

Examples

```
S1 = symshot1()
wiggleimage(S1$smograms, dt = -S1$dt, dx = S1$x, col = "black")
```

WINGH

Window a GH structure and extract data

Description

Window a time slice of seismic data and extract from a GH structure.

Usage

```
WINGH(GH, sel = 1, WIN = c(0,1))
```

Arguments

GH RSEIS seismic list

sel Select which traces to extract

WIN Time window to extract (seconds from the beginning of the first trace.)

Details

Preserves the data structure of the GH list. The purpose of this function is to extract a small subset of data from a larger data set (or longer time series) for subsequent processing.

Value

New GH structure.

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

swig

296 winmark

Examples

```
if(interactive()){
data(GH)

swig(GH, sel=which(GH$COMPS=="V" ))

jh = WINGH(GH, sel = which(GH$COMPS=="V" ), WIN = c(3.821281, 12.861820) )

swig(jh)
## compare with:
swig(GH, sel=which(GH$COMPS=="V" ), WIN = c(3.821281, 12.861820))

}
```

winmark

Window Mark

Description

Add Mark up to current seismic trace with a bar desgnating a window selection.

Usage

```
winmark(a1, a2, side = 1, bar = NULL,
leg = NULL, col = col, lwd = 1, lty = 1,
arrows = FALSE, alen = 0.1, leglen = 0.15,
LEGON = 3, BARON = TRUE)
```

Arguments

a1	x1-location
a2	x2-location
side	side where bar is drawn, as in axes: 1=bottom,2=left,3=top,4=right
bar	location of bar
leg	location of leg
col	color
lwd	line width
lty	line type
arrows	logical, add arrows to ends of legs
alen	length of arrow heads, inches, default=0.125
leglen	length of arrows aas percent of usr("par"), default=0.125
LEGON	plotting flag for legs: 0=no legs, 1=left leg, 2=right leg, 3=both legs(default)
BARON	logical:plotting flag for bar

winmark 297

Details

Used for marking seismic traces. The window marker looks like a staple, three segments are drawn, a bar and two legs. The thickness of the legs are determined by bar and leg, unless these are missing if they are missing parameter side is used to set the locations, and leglen determines the length of the legs. If either bar or leg are missing the parameters are derived from par("usr") and are applied to whole window. side switches the orientation of the staple mark, with the legs pointing according away from named the axis.

Value

Graphical Side Effect

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

Examples

```
plot(c(0,1), c(0,1), type='n', xlab='', ylab='')
winmark(.3, .7,
                     side=3, col='brown', arrows=TRUE, leglen=.4)
winmark(.3, .7,
                     side=1, col='blue', arrows=TRUE, leglen=.5)
winmark(.3, .7,
                      side=2, col='green',
arrows=TRUE, alen=.05, leglen=.4)
winmark(.3, .7,
                    leg=.65, bar=.6,
side=4, col='orange', arrows=TRUE, alen=.1, leglen=.125)
winmark(.3, .7,
                    bar=.65, leg=.6,
side=4, col='seagreen', arrows=TRUE, alen=.1, leglen=.125)
########## examples with different legs showing
plot(c(0,1), c(0,1), type='n', xlab='', ylab='')
winmark(.3, .7,
                     side=3, col='brown',
arrows=TRUE, leglen=.4, LEGON=1)
winmark(.3, .4, side=1, col='brown',
arrows=TRUE, leglen=.4, LEGON=2)
winmark(.7, .9,
                 side=1, col='blue',
arrows=TRUE, leglen=.4, LEGON=0)
```

298 winseis24

winseis24

Locator for plotseis24

Description

Locator for plotseis24

Usage

```
winseis24(pjj, pch = 3, col = "red")
```

Arguments

nii	out put of plotseis24
p.j.j	out put of protects24

pch plotting character when clicking col color for plotting when clicking

Details

After extracting 24 hours and plotting with plotseis24, use winseis24 to click on the plot and return times for further analysis or zooming.

Value

list:

hr hours picked

yr year jd julian day

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

```
plotseis24, getseis24
```

Examples

```
if(interactive()){
data(KH)

amp = KH$JSTR[[1]]
OLDdt = KH$dt[1]
newdt = 0.1
yr = 2000
GIVE = FAKEDATA(amp, OLDdt=0.01, newdt = 0.1, yr = 2000,
```

wlet.do 299

```
JD = 4, mi = 12, sec = 0, Ntraces = 24*3,
seed=200, noise.est=c(1, 100) , verbose=TRUE )
tdir = tempdir()
for(i in 1:length(GIVE) )
    sig = GIVE[[i]]
  d1 = dateStamp(sig$DATTIM, sep='_')
  nam1 = paste(d1,sig$sta, sig$comp, sep='_')
   nam2 = paste0(nam1, '.RDS')
   nam3 = paste(tdir, nam2, sep='/')
    saveRDS(file=nam3, sig)
    }
######################### Now read files and make the DataBase:
LF = list.files(path=tdir, pattern='.RDS', full.names=TRUE)
DB = FmakeDB(LF, kind=-1)
IDB = infoDB(DB)
START = list(yr = yr, jd = 5, hr = 0, mi = 0, sec = 0)
END = list(yr = yr , jd = 7 , hr = 0 , mi = 0 , sec = 0)
h = getseis24(DB, iyear = 2000, iday = 5, usta = IDB$usta,
                     acomp = IDB$ucomp, kind = -1, Iendian=1, BIGLONG=FALSE)
  pjj <- plotseis24(h, dy=1/18, FIX=24, SCALE=1,</pre>
     FILT=list(ON=FALSE, fl=0.05, fh=20.0, type="BP", proto="BU"),
     RCOLS=c(rgb(0.2, .2, 1), rgb(.2, .2, .2))
##### here is the picking:
wpicks = winseis24(pjj)
}
```

wlet.do

Return Wavelet transform

Description

Wavelet transform

Usage

```
wlet.do(why, dt, noctave = 6, nvoice = 20, w0=5,
```

300 wlet.do

```
flip = TRUE, ploty = TRUE, zscale = 1,
col = terrain.colors(100), STAMP = STAMP, units="", scaleloc=c(0.4,0.95))
```

Arguments

why signal

dt sample rate (s)

noctave number of octaves, default=6 nvoice number of voices, nvoice = 20

w0 central frequency for morlet wavelet, default=5

flip logical, whether to flip the orientation

ploty logical, whether to plot y

zscale scale of the image col color palette

col color palette

STAMP cahracter stamp for identification units character, units to put on plot

scaleloc 2-vector, percentatge of bottom margin for the color scale

Details

This function uses the cwt (package:Rwave) code to calculate the continuous wavelet transform, but plots it differently. Morelet wavelet is used by default. The cwt produces an image, the modulus of the transform, which is passed on to wlet.do along with the number of octaves and the number of voices. Plotting parameters are passed to the function so that replotting can be accomplished (use plotwlet) without having to recalculate the transform.

Plotting parameters are passed on to the plotting function, plotwlet.

Value

baha list: wavelet transform image, noctave = number of octaves, nvoice = num-

ber of voices, w0= central freq, flip = logical, whether image is flipped (de-

fault=TRUE)

PE plotting information list: why=y-axis, dt=time series sample, interval, zscale=(1,2,3)

image scaling, col=color map, ygrid = logical(default=FALSE), STAMP = char-

acter string

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

See Also

Rwave, cwt, plotwlet, contwlet, pwlet2freqs, wlet.drive

wlet.drive 301

Examples

```
data(CE1)
plot(CE1$x, CE1$y, type='l')
require(Rwave)
out <- wlet.do(CE1$y, CE1$dt, flip = FALSE, ploty = TRUE)</pre>
```

wlet.drive

Interactive wavelet transform driver

Description

interactive wavelet transform driver

Usage

```
wlet.drive(Xamp, DT = 0.008, noctave = 6, nvoice = 20, w0=5, STAMP = NULL)
```

Arguments

Xamp vector of signal
DT sample interval (s)

noctave number of octaves, default=6 nvoice number of voices, nvoice = 20

w0 central frequency for morlet wavelet, default=5

STAMP character string for identification

Value

Graphical Side Effects

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

See Also

RPGM, plotwlet, wlet.do

302 write1segy

Examples

```
data(CE1)
plot(CE1$x, CE1$y, type='l')
if(interactive() ) wlet.drive(CE1$y, CE1$dt, STAMP=CE1$name)
```

write1segy

Write One segy/sac file

Description

Write out one segy binary format file.

Usage

```
write1segy(alist, fn = NULL, BIGLONG = FALSE)
write1sac(alist, fn = NULL, BIGLONG = FALSE)
```

Arguments

alist list of traces with segy/sac header and an integer/real format time series

fn Output file name

BIGLONG logical, indicating whether long is 8 or 4 bytes.

Details

Segy format files are in integer format. The time series ususally represents counts recorded in a data acquisition system. The header includes meta-data and other identifying information.

Value

Side effects in the file system.

Note

The Endian-ness of the output file will be the native endian-ness of the system.

Author(s)

writeUW.Acard 303

See Also

rseis2segy, read1sac, read1segy

Examples

```
## Not run:
 theENDIAN = .Platform$endian
BIGLONG = FALSE
### write1segy is in rseis2segy
data(KH)
apath = tempdir()
J = rseis2segy(KH, sel=1, path=apath, BIGLONG=BIGLONG )
L = list.files(path=J, full.names=TRUE)
Z = read1segy(L[1], Iendian = theENDIAN, HEADONLY = FALSE, BIGLONG = BIGLONG)
plot(Z$amp, type='1')
#########
            same with SAC files:
J = rseis2sac(KH, sel = 1, win = c(0, 1), path = apath, BIGLONG = BIGLONG)
L = list.files(path=J, pattern='.SAC', full.names=TRUE)
Z = read1sac(L[1], Iendian = theENDIAN, HEADONLY = FALSE, BIGLONG = BIGLONG)
plot(Z$amp, type='l')
## End(Not run)
```

writeUW.Acard

writeUW.Acard

Description

write UW pickfile

Usage

```
writeUW.Acard(LOC)
```

Arguments

LOC

location structure

Value

Side Effects

304 writeUW.DOTcard

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

writeUW.Commentcard

write UW. Comment card

Description

write UW pickfile

Usage

writeUW.Commentcard(comments)

Arguments

comments

comment vector

Value

Side Effects

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

writeUW.DOTcard

write UW.DOT card

Description

write UW pickfile

Usage

writeUW.DOTcard(STAS)

Arguments

STAS

station structure

Value

Side Effects

Author(s)

writeUW.Ecard 305

writeUW.Ecard

writeUW.Ecard

Description

write UW pickfile

Usage

writeUW.Ecard(E)

Arguments

Ε

Ecard

Value

Side Effects

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

writeUW.Fcard

writeUW.Fcard

Description

write UW pickfile

Usage

writeUW.Fcard(F)

Arguments

F

F-card info

Value

Side Effects

Author(s)

306 writeUW.Ncard

writeUW.Hcard

writeUW.Hcard

Description

write UW pickfile

Usage

writeUW.Hcard(H)

Arguments

Н

H-card

Value

Side Effects

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

writeUW.Ncard

writeUW.Ncard

Description

write UW pickfile

Usage

writeUW.Ncard(N)

Arguments

Ν

Name

Value

Side Effects

Author(s)

writeUW.OSTAScard 307

writeUW.OSTAScard

writeUW.OSTAScard

Description

write UW pickfile

Usage

writeUW.OSTAScard(OSTAS)

Arguments

OSTAS

OSTAS

Value

Side Effects

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

writeUWpickfile

UW formatted ascii pickfile

Description

Write UW formatted ascii pickfile

Usage

```
writeUWpickfile(A, output = "")
```

Arguments

A Pickfile structure

output output file

Value

Side Effects. Used to save ASCII versions of pickfiles for other processing.

Author(s)

308 X2RSEIS

See Also

EmptyPickfile

X2RSEIS

Extract data to RSEIS file

Description

swig Button Extract seismic data in RSEIS and save in GH format for exchange.

Usage

```
X2RSEIS(nh, g)
```

Arguments

nh RSEIS seismic data format g swig parameters

Details

This function is used internally in RSEIS as a button in swig. The program should be run in a directory that has write permission.

The data is saved as a GH list.

Value

No value, writes to disk

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

```
XTR, X2SAC, swig
```

Examples

X2SAC 309

X2SAC

Extract Data to SAC format

Description

swig Button Extract seismic data in RSEIS and save in SAC format for exchange.

Usage

```
X2SAC(nh, g)
```

Arguments

nh RSEIS seismic data format

g swig parameters

Details

This function is used internally in RSEIS as a button in swig. The program should be run in a directory that has write permission.

Value

No value, writes to disk

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

```
XTR, X2RSEIS, swig
```

Examples

310 xcor2

xcor2 Cra	oss Correlation
-----------	-----------------

Description

Cross correlation of two signals

Usage

```
xcor2(a1, a2, DT, PLOT = FALSE, LAG = 100)
```

Arguments

a1	input signal 1
a2	input signal 1
DT	deltaT in seconds
PLOT	logical TRUE=plot
LAG	time lag for correlation function

Details

Illustrates the cross correlation of two time series.

Value

ccf	Return list from function ccf
mlag	maximum lag in time
mccx	value of ccf at max lag mlag
mlag2	maximum absolute value lag
mccx2	value of ccf at mlag2

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

See Also

 ccf

xprod 311

Examples

```
data(CE1)

ts1 <- CE1$y[CE1$x>5.443754 & CE1$x<5.615951]

ts2 <- CE1$y[CE1$x>5.760959]
ts2 <- ts2[1:length(ts1)]

ts1 <- ts1-mean(ts1)
ts2 <- ts2-mean(ts2)

xc <- xcor2(ts1, ts2, CE1$dt , PLOT = TRUE)</pre>
```

xprod

Vector Cross Product

Description

Cross product of two vectors

Usage

```
xprod(A1, A2)
```

Arguments

A1 3 component vector of x,y,z
A2 3 component vector of x,y,z

Value

3 component vector of A1 cross A2

Author(s)

Jonathan M. Lees <jonathan.lees@unc.edu>

Examples

```
B1 <- c(4,9,2)
B2 <- c(2,-5,4)
xprod(B1, B2)
```

312 XTR

XTR

Buttons for swig

Description

defining functions for swig

Usage

```
XTR(nh, g)
NEXT(nh, g)
PREV(nh, g)
HALF(nh, g)
MARK(nh, g)
DOC(nh, g)
REFRESH(nh, g)
RESTORE(nh, g)
ZOOM.out(nh, g)
ZOOM.in(nh, g)
RIGHT(nh, g)
LEFT(nh, g)
SCALE(nh, g)
PSEL(nh, g)
FLIP(nh, g)
PTS(nh, g)
FILT(nh, g)
UNFILT(nh, g)
SPEC(nh, g)
WWIN(nh, g)
SGRAM(nh, g)
WLET(nh, g)
XTR(nh, g)
Pinfo(nh, g)
TSHIFT(nh, g)
RMS(nh, g)
LocStyle(nh, g)
CENTER(nh, g)
fspread(nh, g)
Xwin(nh, g)
```

Arguments

nh waveform list for RSEIS
g plotting parameter list for interactive program

xtract.trace 313

Details

Buttons can be defined on the fly.

Value

The return value depends on the nature of the function as it is returned to the main code swig. Choices for returning to swig are: break, replot, revert, replace, donothing, exit.

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

swig

Examples

xtract.trace

Extract trace

Description

Extract one time series trace from an RSEIS data list

Usage

```
xtract.trace(GH, sel = 1, WIN = c(0, 1))
```

314 yeardate

Arguments

GH RSEIS list

sel select trace index

WIN time window on trace, relative to start

Details

An attribute of dt (sample time interval) is attached to the time series for use in plotting.

Value

vector amplitudes

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

Examples

```
data(GH)
x1 <- xtract.trace(GH, sel = 1, WIN = c(0, 1))
plot(x1, type='l')</pre>
```

yeardate

time in decimal years

Description

contract a date to decimal years

Usage

```
yeardate(yr, jd, hr, mi, sec)
```

Arguments

yr year
jd julian day
hr hour
mi minute
sec second

Value

decimal time

YPIX 315

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

See Also

secdif

Examples

```
yeardate(2005, 98, 12, 16, 32)
```

YPIX

PICK Buttons for swig

Description

defining functions for swig

Usage

```
YPIX(nh, g)
WPIX(nh, g)
NOPIX(nh, g)
REPIX(nh, g)
DELpix(nh, g)
PickWin(nh, g)
pADDPIX(nh, g, phase)
Ppic(nh, g)
Spic(nh, g)
Apic(nh, g)
POLSWITCH(nh, g, dir)
Pup(nh, g)
Pnil(nh, g)
Pdown(nh, g)
FILLPIX(nh, g)
RIDPIX(nh, g)
SEEPIX(nh, g)
ROT.RT(nh, g)
JustV(nh, g)
JustE(nh, g)
JustN(nh, g)
JustF(nh, g)
SHOW3(nh, g)
```

316 YPIX

Arguments

nh waveform list for RSEIS

g plotting parameter list for interactive program

phase phase name (P, S, A, etc...)

dir vertical up, down or nil

Details

Buttons can be defined on the fly.

YPIX Multiple picks on a panel

WPIX window picks (start and end)

NOPIX remove the picks

REPIX un-remove the picks

DELpix Delete pix near clicks

PickWin Pick window for 3 component picking

pADDPIX add picks

Ppic P-wave arrival (only one per station)

Spic S-wave arrival (only one per station)

Apic acoustic-wave arrival (only one per station)

POLSWITCH flip polarity

Pup Polarity Up

Pnil Polarity nil

Pdown Polarity down

FILLPIX Fill the pick from bottom to top of panel

RIDPIX remove pick

SEEPIX print current picks to screen

ROT.RT Rotate to radial and transverse (need event and station locations

JustV Display only vertical components

JustE Display only east components

JustN Display only north components

JustF Display only infrasound (F) components

SHOW3 Display All 3 components

iNEXT Used internally in PickWin to move to next station

Value

The return value depends on the nature of the function as it is returned to the main code swig. Choices for returning to swig are: break, replot, revert, replace, donothing, exit.

YRsecdif 317

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

```
swig, XTR
```

Examples

```
if(interactive()){

MYFUNC<-function(nh, g)
    {
        print("pressed MYFUNC")
        d <- data.frame(list(stations=nh$STNS, components=nh$COMPS))

print(d)
        g$action <- "replot"
        invisible(list(global.vars=g))
    }

STDLAB <- c("DONE", "QUIT", "SELBUT", "MYFUNC")
data(GH)

JJ <- swig(GH, sel=1:10, STDLAB=STDLAB)
}</pre>
```

YRsecdif

Return difference in seconds

Description

Difference between two Date/Times (Julian Day)

Usage

```
YRsecdif(jd1, hr1, mi1, sec1, jd2, hr2, mi2, sec2, yr1 = 0, yr2 = 0)
YRsecdifL(T1, T2)
```

Arguments

```
jd1 Julian Dayhr1 hourmi1 minute
```

YRsecdif YRsecdif

sec1	second
jd2	Julian Day
hr2	hour
mi2	minute
sec2	second
yr1	year 1
yr2	year 2
T1	list 1 with date time
T2	list 2 with date time

Details

Returns T2-T1, year is used.

Value

```
numeric seconds
```

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

See Also

```
secdifL, secdif
```

Examples

```
T1 <- list(jd=12, hr=13, mi=23, sec=21, yr=1964 )
T2 <- list(jd=14, hr=23, mi=23, sec=2, yr=1976)

YRsecdif(T1$jd, T1$hr, T1$mi, T1$sec, T2$jd, T2$hr, T2$mi, T2$sec, 1964, 1976)

#### or

YRsecdifL(T1, T2)
```

Zdate 319

|--|

Description

Make character vector from dates

Usage

```
Zdate(info, sel=1, t1=0, sep='_')
dateList(datevec)
dateStamp(datelist, sep='_')
```

Arguments

info	info structure from trace structure
sel	selection of which ones to extract, default=1:length(info\$jd)
t1	time offset, seconds, default=0
sep	character for separating the components in the string, default=":"
datevec	vector with yr, jd, mo, day, hr, mi, sec
datelist	output of dateList

Details

Format date stamp for plotting and identification. Used for STAMP.

Value

character strings

Note

If using Zdate to create a file name, becareful about the separator. A colon in the file name on PC and MAC systems can be confusing for the OS.

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

See Also

swig, dateStamp, ghstamp, filedatetime

320 zlocator

Examples

```
data("GH")
sel <- which(GH$COMPS == "V")
ftime <- Zdate(GH$info, sel[1:5], 1)
dvec <- c(2009, 134, 5, 14, 10, 32, 24.5, 0)
A <- dateList(dvec)
dateStamp(A, sep=".")
dateStamp(A, sep=".")</pre>
```

zlocator

zlocator

Description

Locator function with set parameters

Usage

```
zlocator(COL = 1, ID = FALSE, NUM = FALSE, YN = NULL, style = 0)
```

Arguments

COL color

ID logical, identify points
NUM number of points

YN number of windows to span for lines

style 0,1,2 for differnt style of plotting vertical lines

Details

if the window is divided into YN horizontal regions, style =2 will plot segments only within regions based on y-value of locator().

Value

list:

x x-locationsy y-locationsn number of points

ZOOM.SEISN 321

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

See Also

plocator, locator

Examples

ZOOM.SEISN

ZOOM SEISMIC Panel

Description

Zoom interactively on Seismic panel data.

Usage

```
ZOOM.SEISN(GH, sel = 1:length(GH$dt), WIN = NULL)
```

Arguments

GH Seismic trace structure sel selection of traces WIN time window c(0,1)

Value

Seismic trace structure

Author(s)

Jonathan M. Lees<jonathan.lees.edu>

See Also

swig

322 ZOOM.SEISN

Examples

```
data("GH")
sel <- which(GH$COMPS=="V")

KF <- ZOOM.SEISN(GH, sel=sel, WIN = c(0, 5) )

if(interactive()){    swig(KF)
}</pre>
```

Index

* MISC P2GH, 171 * aplot addpoints.hodo, 8 addtix, 9 comp.env, 33 contwlet, 38 D0.PMOT.ARR, 52 gaddtix, 85 jlegend, 136 letter.it, 145 NEWROLOGY MERCAL TO
*aplot
addpoints.hodo, 8 addtix, 9 partmotnet, 174 comp.env, 33 pLOT.MATN, 185 contwlet, 38 pLOT.SEISN, 187 pO.PMOT.ARR, 52 plotevol, 194 gaddtix, 85 plegend, 136 plt.MTM0, 202 lagplot, 143 letter.it, 145 MTMplot, 166 partmotnet, 174 plot June June June June June June June June
addtix, 9 partmotnet, 174 comp.env, 33 PLOT.MATN, 185 contwlet, 38 PLOT.SEISN, 187 DO.PMOT.ARR, 52 plotevol, 194 gaddtix, 85 plotwlet, 200 jlegend, 136 plt.MTM0, 202 lagplot, 143 PSTLTcurve, 211 letter.it, 145 SNET.drive, 261
comp.env, 33 PLOT.MATN, 185 contwlet, 38 PLOT.SEISN, 187 DO.PMOT.ARR, 52 plotevol, 194 gaddtix, 85 plotwlet, 200 jlegend, 136 plt.MTM0, 202 lagplot, 143 PSTLTcurve, 211 letter.it, 145 SNET.drive, 261
contwlet, 38 PLOT.SEISN, 187 DO.PMOT.ARR, 52 plotevol, 194 gaddtix, 85 plotwlet, 200 jlegend, 136 plt.MTM0, 202 lagplot, 143 PSTLTcurve, 211 letter.it, 145 SNET.drive, 261
DO.PMOT.ARR, 52 plotevol, 194 gaddtix, 85 plotwlet, 200 jlegend, 136 plt.MTM0, 202 lagplot, 143 PSTLTcurve, 211 letter.it, 145 SNET.drive, 261
gaddtix, 85 plotwlet, 200 jlegend, 136 plt.MTM0, 202 lagplot, 143 PSTLTcurve, 211 letter.it, 145 SNET.drive, 261
jlegend, 136 plt.MTM0, 202 lagplot, 143 PSTLTcurve, 211 letter.it, 145 SNET.drive, 261
lagplot, 143 PSTLTcurve, 211 letter.it, 145 SNET.drive, 261
letter.it, 145 SNET.drive, 261
NEWPLOT.WPX, 168 varsquig, 284
PLOT.ALLPX, 184 varsquiggle, 286
PLTpicks, 203 wlet.do, 299
PPIX, 206 Z00M. SEISN, 321
pwlet2freqs, 213 * iplot
swig.ALLPX, 271 choosfilt, 26
vline, 292 detail.pick, 46
winmark, 296 idpoints.hodo, 124
* datasets MTM. drive, 162
CE1, 25 plocator, 183
GH, 112 plotJGET, 197
KH, 142 PMOT.drive, 204
OH, 170 SNET.drive, 261
VELMOD1D, 287 SPECT.drive, 262
* hplot swig, 268
autoreg, 16 tung.pulse, 281
brune.doom, 17 wlet.drive, 301
circ, 29 zlocator, 320
Comp1Dvel, 34 * math
Comp1Dvels, 35 Spectrum, 264
complex.hodo, 36 * misc
contwlet, 38 addpoints.hodo, 8
FILT. spread, 76 addWPX, 10
GAZI, 86 applytaper, 11
get.corner, 88 ASCII.SEISN, 12
GETARAIC, 95 attime12, 13
hodogram, 122 AUGMENTbutfilt, 14

autoreg, 16	finteg, 79
brune.doom, 17	fixcompname, 80
brune.func, 18	fixcomps, 80
brune.search, 19	fixNA, 81
butfilt, 20	fixUWstasLL, 83
BUTREPLOT, 22	fromjul, 83
catWPX, 24	FRWDft, 84
checkWPX, 25	gaddtix, 85
CHOP.SEISN, 28	genrick, 87
cleanpickfile, 29	get.corner,88
cleanWPX, 30	GET.seis,89
colorwig, 31	get.slepians, 92
combineSEIS, 32	Get1Dvel, 94
complex.hodo, 36	GETARAIC, 95
COMPorder, 37	getb1b2, 96
convert2Rseis, 39	getEcard, 97
convertATT, 40	getFcard, 98
correct.moveout, 41	getGHtime, 99
DAYSperYEAR, 42	getHcard, 100
DECIMATE.SEISN, 42	getIRIS, 101
deconinst, 44	getjul, 102
deleteWPX, 45	getmoday, 103
detail.pick,46	getNcard, 104
detrend, 47	getPDEcsv, 104
DISPLACE.SEISN, 48	getpfile, 105
distseisnXY,49	getphaselag2, 106
DISTxsec, 50	getrdpix, 107
DO.PMOT.ARR, 52	getseis24, <u>108</u>
doGABOR.AR, 53	getvertsorder, 110
dogabor.mtm, 54	ghstamp, 114
doMYBUTTS, 56	GLUE.GET.seis, 115
DOsgram, 57	GLUEseisMAT, 115
dowiggles, 58	gpoly, <u>116</u>
downsample, 59	GreatDist, 117
editDB, 60	grotseis, 118
EmptyPickfile, 62	hilbert, 120
EmptySEIS, 63	hilow, 121
envelope, 63	hodogram, 122
EPOCHday, 64	hypot, 123
EPOCHyear, 65	idpoints.hodo, 124
ETECTG, 66	info.seis, 125
evolAR, 67	infoDB, 125
evolfft, 69	insertNAs, 127
evolMTM, 70	INSTFREQS, 128
FAKEDATA, 72	INSTresponse, 129
filedatetime, 74	integ1, <u>130</u>
FILT.SEISN, 75	INVRft, 131
filterstamp, 77	j2posix, 132

jadjust.length, 133	Put1Dvel, 212
JBLACK, 133	pwlet2freqs, 213
JGRAY, 134	rangedatetime, 214
jitter.lab, 135	Ray.time1D, 215
jpolyval, 137	rdistaz, 216
JSAC.seis, 138	rDUMPLOC, 218
jstats, 140	read1segy, 219
Jtim, 141	ReadInstr, 220
leests, 144	ReadSet.Instr, 221
legitpix, 145	readUW.OSTAS, 222
LocalUnwrap, 146	recdate, 223
logspace, 147	repairWPX, 224
longfft, 148	replaceWPX, 225
makeDB, 150	rseis2segy, 226
makefreq, 152	rseis2ts, 227
markseis24, 153	rsspec.taper, 228
Mine.seis, 157	ruler, 229
mirror.matrix, 159	save.wpix, 230
Mmorlet, 160	saveWPX, 231
mtapspec, 161	scal2freqs, 232
MTM. drive, 162	screens, 233
MTMgabor, 165	SEARCHPIX, 234
MTMplot, 166	secdif, 235
NEW.getUWSTAS, 168	secdifL, 236
NEWPLOT. WPX, 168	secdify, 237
next2, 169	segy2rseis, 238
one, 171	SEIS2list, 239
parse.pde, 172	seiscols, 240
parseFN2STA, 173	SEISNtime, 241
PDE2list, 175	seisorder, 242
peaks, 176	selAPX, 243
PICK.DOC, 177	SELBUT, 244
pickgeninfo, 178	selpgen, 245
pickhandler, 178	SELSTA, 245
pickit, 179	selstas, 246
pickseis24, 181	SENSORsensitivity, 247
PLOT.TTCURVE, 189	setPrePix, 248
Plot1Dvel, 191	setstas, 249
plotarrivals, 192	setupDB, 250
plotDB, 193	setwelch, 251
plotGH, 196	setwpix, 254
plotseis24, 198	setWPX, 255
PMOT.drive, 204	setypx, 257
posix2RSEIS, 205	showdatetime, 258
prep1wig, 207	sigconv, 259
prepSEIS, 209	sigconvGR, 260
PreSet.Instr, 210	STALTA, 265
PSTLTcurve, 211	STLTcurve, 266
·	,

1 14 272	10 10
symshot1, 272	attime12, 13
sysinfo, 273	AUGMENTbutfilt, 14
T12.pix, 274	autoreg, 16
TAPER. SEISN, 275	17 1 7 7 1 1 104
Thresh. J, 276	blankevol (plotevol), 194
TOCART, 277	brune.doom, 17
tojul, 278	brune.func, 18
tomo.colors, 278	brune.search, 19
trapz, <u>279</u>	butfilt, 20
travel.time1D, 280	BUTREPLOT, 22
unpackAcard, 282	
uwpfile2ypx, 283	catWPX, 24
VELOCITY.SEISN, 288	CE1, 25
view.seis, 289	CENTER (XTR), 312
vlen, 291	checkWPX, 25
wiggle.env, 293	choosfilt, 26
wiggleimage, 294	CHOP.SEISN, 28
WINGH, 295	circ, 29
winseis24, 298	cleanpickfile, 29
wlet.do, 299	cleanWPX, 30
write1segy, 302	colorwig, 31
writeUW.Acard, 303	combineSEIS, 32
writeUW.Commentcard, 304	comp.env,33
writeUW.DOTcard,304	Comp1Dvel, 34
writeUW.Ecard, 305	Comp1Dvels, 35
writeUW.Fcard, 305	complex.hodo, 36
writeUW.Hcard, 306	COMPorder, 37
writeUW.Ncard, 306	contwlet, 38
writeUW.OSTAScard, 307	convert2Rseis, 39
writeUWpickfile, 307	convertATT, 40
X2RSEIS, 308	correct.moveout, 41
X2SAC, 309	
xcor2, 310	dateList (Zdate), 319
xprod, 311	dateStamp (Zdate), 319
XTR, 312	DAYSperYEAR, 42
xtract.trace, 313	DECIMATE.SEISN, 42
yeardate, 314	deconinst, 44
YPIX, 315	deleteWPX, 45
YRsecdif, 317	DELpix (YPIX), 315
Zdate, 319	detail.pick,46
* package	detrend, 47
RSEIS-package, 7	DISPLACE.SEISN, 48
	distseisnXY,49
addpoints.hodo, 8	DISTxsec, 50
addtix, 9	DO.PMOT.ARR, 52
addWPX, 10	DOC (XTR), 312
Apic (YPIX), 315	doGABOR.AR, 53
applytaper, 11	doGABOR.MTM, 54
ASCII.SEISN, 12	doMYBUTTS, 56

DOsgram, 57	getmoday, 103
dowiggles, 58	getNcard, 104
downsample, 59	getPDEcsv, 104
	getPDEscreen (getPDEcsv), 104
editDB, 60	getpfile, 105
EmptyPickfile, 62	getphaselag2, 106
EmptySEIS, 63	getrdpix, 107
envelope, 63	getseis24, 108
EPOCHday, 64	getvertsorder, 110
EPOCHyear, 65	GH, 112
ETECTG, 66	ghstamp, 114
evolAR, 67	GLUE.GET.seis, 115
evolfft, 69	GLUEseisMAT, 115
evolMTM, 70	gpoly, 116
	GreatDist, 117
FAKEDATA, 72	grotseis, 118
filedatetime, 74	,
FILLPIX (YPIX), 315	HALF (XTR), 312
FILT (XTR), 312	hilbert, 120
FILT. SEISN, 75	hilow, 121
FILT.spread, 76	hodogram, 122
filterstamp, 77	hypot, 123
finteg, 79	
fixcompname, 80	idpoints.hodo, 124
fixcomps, 80	iNEXT (YPIX), 315
fixNA, 81	info.seis, 125
fixUWstasLL, 83	infoDB, 125
FLIP (XTR), 312	insertNAs, 127
FmakeDB (makeDB), 150	INSTFREQS, 128
fromjul, 83	INSTresponse, 129
FRWDft, 84	integ1, 130
fspread (XTR), 312	INVRft, 131
•	
gaddtix, 85	j2posix, 132
GAZI, 86	jadjust.length, 133
genrick, 87	JBLACK, 133
get.corner, 88	JGET.seis(GET.seis), 89
GET.seis, 89	JGRAY, 134
get.slepians, 92	jitter.lab,135
Get1Dvel, 94	jlegend, 136
getANSS (getIRIS), 101	jpolyval, 137
GETARAIC, 95	JSAC.seis, 138
getb1b2, 96	JSEGY.seis(JSAC.seis), 138
getEcard, 97	jstats, 140
getFcard, 98	Jtim, 141
getGHtime, 99	JtimL (Jtim), 141
getHcard, 100	JustE (YPIX), 315
getIRIS, 101	JustF (YPIX), 315
getjul, 102	JustN (YPIX), 315
	1 /1

JustV (YPIX), 315	PICK.DOC, 177
KH, 142	pickgeninfo, 178
, 1.2	pickhandler, 178
lagplot, 143	pickit, 179
leests, 144	pickseis24, 181
LEFT (XTR), 312	PickWin (YPIX), 315
legitpix, 145	Pinfo (XTR), 312
letter.it, 145	plocator, 183
LocalUnwrap, 146	PLOT. ALLPX, 184
LocStyle (XTR), 312	PLOT. MATN, 185
logspace, 147	PLOT. SEISN, 187
longfft, 148	PLOT. TTCURVE, 189
longpstart (longfft), 148	Plot1Dvel, 191
longreset (longfft), 148	plotarrivals, 192
	plotDB, 193
makeDB, 150	plotevol, 194
makefreq, 152	plotevol2 (plotevol), 194
many.time1D(travel.time1D), 280	plotGH, 196
MARK (XTR), 312	plotJGET, 197
markseis24, 153	plotseis24, 198
matsquiggle, 155	plotwlet, 200
Mine.seis, 157	plt.MTM0, 202
mirror.matrix, 159	PLTpicks, 203
Mmorlet, 160	PMOT.drive, 204
mtapspec, 161	Pnil (YPIX), 315
MTM. drive, 162	POLSWITCH (YPIX), 315
MTMdisp, 163	posix2RSEIS, 205
MTMgabor, 165	Ppic (YPIX), 315
MTMplot, 166	PPIX, 206
, , , , , , , , , , , , , , , , , , ,	prep1wig, 207
NEW.getUWSTAS, 168	prepSEIS, 209
NEWPLOT.WPX, 168	PreSet.Instr, 210
NEXT (XTR), 312	PREV (XTR), 312
next2, 169	PSEL (XTR), 312
NOPIX (YPIX), 315	PSTLTcurve, 211
noPS (YPIX), 315	PTS (XTR), 312
	Pup (YPIX), 315
ОН, 170	Put1Dvel, 212
one, 171	pwlet2freqs, 213
P2GH, 171	rangedatetime, 214
pADDPIX (YPIX), 315	Ray.time1D, 215
parse.pde, 172	rdistaz, 216
parseFN2STA, 173	rDUMPLOC, 218
partmotnet, 174	read1sac (read1segy), 219
pathDB (editDB), 60	read1segy, 219
PDE2list, 175	ReadInstr, 220
Pdown (YPIX), 315	ReadSet.Instr, 221
peaks, 176	readUW.OSTAS, 222
	,

recdate, 223	SGRAM (XTR), 312
recdatel (recdate), 223	SHOW3 (YPIX), 315
REFRESH (XTR), 312	showdatetime, 258
repairWPX, 224	sigconv, 259
REPIX (YPIX), 315	sigconvGR, 260
replaceWPX, 225	SNET.drive, 261
RESTORE (XTR), 312	SPEC (XTR), 312
RIDPIX (YPIX), 315	SPECT.drive, 262
RIGHT (XTR), 312	Spectrum, 264
RMS (XTR), 312	Spic (YPIX), 315
ROT.RT (YPIX), 315	STALTA, 265
RSEIS (RSEIS-package), 7	STLTcurve, 266
RSEIS-package, 7	swig, 268
rseis2sac (rseis2segy), 226	swig. ALLPX, 271
rseis2segy, 226	symshot1, 272
rseis2ts, 227	sysinfo, 273
rsspec.taper, 228	- J
ruler, 229	T12.pix, 274
,	TAPER. SEISN, 275
sac2rseis (segy2rseis), 238	Thresh. J, 276
save.wpix, 230	TOCART, 277
saveWPX, 231	tojul, 278
scal2freqs, 232	tomo.colors, 278
SCALE (XTR), 312	trapz, 279
screens, 233	travel.time1D, 280
SEARCHPIX, 234	TSHIFT (XTR), 312
secdif, 235	tung.pulse, 281
secdifL, 236	cang.pa130, 201
secdify, 237	UNFILT (XTR), 312
SEEPIX (YPIX), 315	unpackAcard, 282
segy2rseis, 238	uwpfile2ypx, 283
SEIS2list, 239	p = = = 5 p, = = =
seiscols, 240	varsquig, 284
SEISNtime, 241	varsquiggle, 286
seisorder, 242	VELMOD1D, 287
selAPX, 243	VELOCITY. SEISN, 288
SELBUT, 244	view.seis, 289
selpgen, 245	vlen, 291
SELSTA, 245	vline, 292
selstas, 246	
selWPX (selAPX), 243	wiggle.env, 293
SENSORsensitivity, 247	wiggleimage, 294
setPrePix, 248	WINGH, 295
setstas, 249	winmark, 296
setupDB, 250	winseis24, 298
setwelch, 251	WLET (XTR), 312
setwpix, 254	wlet.do, 299
setWPX, 255	wlet.drive, 301
setypx, 257	WPIX (YPIX), 315
	1

```
write1sac (write1segy), 302
write1segy, 302
writeUW.Acard, 303
writeUW.Commentcard, 304
writeUW.DOTcard, 304
\textit{writeUW}. \textit{Ecard}, 305
writeUW.Fcard, 305
writeUW.Hcard, 306
writeUW.Ncard, 306
writeUW.OSTAScard, 307
write UW pick file, \\ 307
WWIN (XTR), 312
X2RSEIS, 308
X2SAC, 309
xcor2, 310
xprod, 311
XTR, 312
xtract.trace, 313
Xwin (XTR), 312
yeardate, 314
YPIX, 315
YRsecdif, 317
YRsecdifL (YRsecdif), 317
Zdate, 319
zlocator, 320
ZOOM.in (XTR), 312
ZOOM. out (XTR), 312
ZOOM. SEISN, 321
```