1. Emlékeztető

1.1. Definíció: Súlyfüggvény

Legyen (X, Ω, μ) mértéktér, $f \in L^+$ egy adott függvény. Ekkor a

$$\mu_f: \Omega \to [0, +\infty], \qquad \mu_f(A) \coloneqq \int_A f \,\mathrm{d}\mu \coloneqq \int f \cdot \chi_A \,\mathrm{d}\mu$$

leképezést súlyfüggvénynek nevezzük.

Megjegyzések:

- i) Könnyen igazolható, hogy μ_f mérték.
- ii) Amennyiben az $A \in \Omega$ halmaz nullamértékű, akkor

$$f \cdot \chi_A = 0 \ \mu\text{-m.m.} \implies \mu_f(A) = \int f \cdot \chi_A \, \mathrm{d}\mu = 0.$$

1.2. Definíció: Abszolút folytonosság

Legyen (X,Ω) mérhető tér, valamint $\mu,\nu:\Omega\to[0,+\infty]$ két mérték.

Azt mondjuk, hogy ν abszolút folytonos μ -re nézve (jelben $\nu \ll \mu$), ha

$$\mu(A) = 0 \implies \nu(A) = 0 \quad (A \in \Omega).$$

1.3. Lemma

Legyen (X,Ω) mérhető tér, $\mu,\nu:\Omega\to[0,+\infty]$ két mérték, ahol ν véges.

Ekkor $\nu \ll \mu$ azzal ekvivalens, hogy bármely $\varepsilon > 0$ -hoz van olyan $\delta > 0$:

$$\mu(A) < \delta \implies \nu(A) < \varepsilon \qquad (A \in \Omega).$$

2. Radon–Nikodym-tétel

Korábban megjegyeztük, hogy amennyiben (X, Ω, μ) mértéktér és $f \in L^+$, akkor igaz a

$$\mu(A) = 0 \implies \mu_f(A) = 0 \qquad (A \in \Omega)$$

implikáció, vagyis a μ_f mérték abszolút folytonos a μ mértékre. A most tárgyalásra kerülő Radon–Nikodym-tétel azt állítja, hogy amennyiben a μ szigma-véges mérték, akkor μ_f az egyetlen olyan mérték, ami eleget tesz ennek.

1

2.1. Tétel: Radon–Nikodym-tétel

Legyen (X,Ω) mérhető tér, valamint $\mu,\nu:\Omega\to[0,+\infty)$ mérték. Ekkor

$$\nu \ll \mu \iff \exists f \in L^+, \text{ hogy } \nu = \mu_f.$$

Bizonyítás. Tehát feltesszük, hogy a μ, ν mértékek végesek. Legyen

$$\mathcal{L} := \{ g \in L^+ \mid \mu_g \le \nu \} \neq \emptyset.$$

Könnyen belátható módon fennállnak az alábbi állítások.

- 1. Tetszőleges $g, h \in \mathcal{L}$ függvény esetén $\max\{g, h\} \in \mathcal{L}$.
- 2. Létezik az alábbi véges "integrál-szuprémum"

$$\gamma := \sup \left\{ \int g \, \mathrm{d}\mu \mid g \in \mathcal{L} \right\} < +\infty.$$

Az 1 és 2 állítások alapján megadható olyan (f_n) függvénysorozat, hogy

$$f_n \in \mathcal{L}, \quad f_n \le f_{n+1}, \quad \lim_{n \to \infty} \int f_n \, \mathrm{d}\mu = \gamma \qquad (n \in \mathbb{N}).$$

Ekkor a Beppo Levi-tétel miatt elmondható, hogy az (f_n) konvergens, azaz

$$f := \lim(f_n) \in L^+$$
.

Továbbá bármilyen $A \in \Omega$ halmaz esetén az $(f_n \cdot \chi_A)$ sorozat monoton növő és L^+ -beli, ezért szintén a Beppo Levi-tétel felhasználásával kapjuk, hogy

$$\lim_{n \to \infty} (f_n \cdot \chi_A) = f \cdot \chi_A \in L^+.$$

Továbbá a határátmenet és az integrálás felcseresével

$$\mu_f(A) = \int f \cdot \chi_A \, \mathrm{d}\mu = \lim_{n \to \infty} \int f_n \cdot \chi_A \, \mathrm{d}\mu = \lim_{n \to \infty} \mu_{f_n}(A) \le \nu(A).$$

Speciálisan megmutattuk, hogy $\mu_f \leq \nu$.

Belátjuk, hogy $\nu = \mu_f$. Ez azzal ekvivalens, hogy

$$\sigma := \nu - \mu_f = 0 \iff \sigma(X) = 0.$$

Ekkor nyilvánvaló, hogy σ egy véges mérték. Továbbá $\sigma \leq \nu$, ezért $\nu \ll \mu$ következtében $\sigma \ll \mu$. Továbbá indirekt módon tegyük fel, hogy

$$\sigma(X) > 0 \implies \mu(X) > 0.$$

Ezt követően bizonyítás nélkül elfogadjuk az alábbi lemmát.

2.2. Lemma: B-lemma

Megadható olyan $Y \in \Omega$ halmaz és $\beta > 0$ szám, amellyel

$$\sigma(Y) > \beta \cdot \mu(Y), \qquad \sigma(A \cap Y) \ge \beta \cdot \mu(A \cap Y) \qquad (A \in \Omega).$$

Az \mathcal{L} halmaz valóban nem üres, mert

$$g \equiv 0 \implies g \in \mathcal{L}.$$

Lásd: $\max\{g,h\} = g \cdot \chi_{\{g \ge h\}} + h \cdot \chi_{\{g < h\}}.$

Ugyanis tetszőleges $g \in \mathcal{L}$ függvényre

$$\int g \, \mathrm{d}\mu = \mu_g(X) \le \nu(X) < +\infty.$$

Tétel (Beppo Levi-tétel). Amennyiben

$$g_n \in L^+, \quad g_n \le g_{n+1} \quad (n \in \mathbb{N}),$$

akkor $g := \lim(g_n)$ szintén L^+ -beli és

$$\int g \, \mathrm{d}\mu = \lim_{n \to \infty} \int g_n \, \mathrm{d}\mu.$$

Hiszen $A \in \Omega$ esetén $A \subseteq X$, ezért

$$0 < \sigma(A) < \sigma(X) = 0.$$

Ha ugyanis $A \in \Omega$, $\mu(A) = 0$, akkor

$$0 \le \sigma(A) \le \nu(A) = 0.$$

Ekkor a B-lemma alapján $\mu(Y)>0$. Ellenkező esetben a $\sigma\ll\mu$ abszolút folytonosság miatt ellentmondanánk az előbb említett lemma első pontjának. Továbbá tekintsük az L^+ -beli

$$F := f + \beta \cdot \chi_Y$$

függvényt. Ekkor tetszőleges $A \in \Omega$ mellett

$$\mu_F(A) = \int F \cdot \chi_A \, d\mu = \int f \cdot \chi_A \, d\mu + \int \beta \cdot \chi_{A \cap Y} \, d\mu$$
$$= \mu_f(A) + \beta \cdot \mu(A \cap Y) \le \mu_f(A) + \sigma(A) = \nu(A).$$

Ezek szerint $F \in \mathcal{L}$, ahonnan az alábbi ellentmondás adódik:

$$\gamma \ge \int F d\mu = \int f d\mu + \beta \cdot \mu(Y) > \gamma.$$

Megjegyzések:

i) A Radon-Nikodym-tétel abban az esetben is igaz marad, amikor a

$$\mu,\nu:\Omega\to[0,+\infty]$$

mértékek végessége helyett azt követeljük meg, hogy μ szigma-véges legyen. Ez utóbbi azt jelenti, hogy létezik olyan $A_n \in \Omega$ $(n \in \mathbb{N})$ páronként diszjunkt mérhető halmazokból álló sorozat, amellyel

$$X = \bigcup_{n=0}^{\infty} A_n \quad \text{\'es} \quad \mu(A_n) < +\infty \qquad (n \in \mathbb{N}).$$

ii) A Radon-Nikodym-tételben bevezetett jelölésekkel az alábbi teljesül.

Tétel. Legyen (X,Ω) mérhető tér, $\mu:\Omega\to[0,+\infty]$ szigma-véges mérték. Ekkor tetszőleges $f, g \in L^+(\mu)$ esetén

$$\mu_f = \mu_g \implies f = g \quad \mu\text{-m.m.}$$