Question	Answer	Marks	Guidance
5(a)	Attempt correct process for solving 3-term quadratic equation in \sqrt{x}	M1	Accept $8y^2 - 6y - 9 \rightarrow (2y - 3)(4y + 3)$, if $y = \sqrt{x}$ specified.
	Obtain at least $2\sqrt{x} - 3 = 0$ or equivalent		Ignore $4\sqrt{x} + 3 = 0$. SC B1 for $\sqrt{x} = \frac{3}{2}$ with no method shown for
			solving the 3-term quadratic.
	Conclude $x = \frac{9}{4}$ ignore $\frac{9}{16}$	A1	SC B1 if no method shown for solving the 3-term quadratic.
	Alternative Method for Q5(a)		
	$3\sqrt{x} = 4x - \frac{9}{2} \rightarrow 16x^2 - 45x + \frac{81}{4}$ o.e and attempt correct process to solve	М1	
	Obtain $x = \frac{9}{4}$ or $\frac{9}{16}$	A1	SC B1 if no method shown for solving the 3-term quadratic.
	$x = \frac{9}{4} \text{ ignore } \frac{9}{16}$	A1	SC B1 if no method shown for solving the 3-term quadratic.
		3	

rublished

Question	Answer	Marks	Guidance
5(b)	Integrate to obtain form $k_1 x^2 + k_2 x^{\frac{3}{2}} + k_3 x$ where $k_1 k_2 k_3 \neq 0$	М1	
	Obtain correct $2x^2 - 2x^{\frac{3}{2}} + x$ or equivalent	A1	Allow unsimplified.
	Substitute $x = 4$ and $y = 11$ to attempt value of c	M1	Dependent on at least 2 correct terms involving x.
	Obtain $y = 2x^2 - 2x^{\frac{3}{2}} + x - 9$	A1	Must be simplified. Allow 'f(x) = '. Allow y missing if y appears previously.
		4	

Question	Answer	Marks	Guidance
7(a)	Differentiate to obtain form $k_1(2x+1)^{\frac{4}{3}}$	М1	
	Obtain correct $-8(2x+1)^{-\frac{4}{3}}$ or unsimplified equivalent	A1	
	Attempt equation of tangent at $\left(\frac{7}{2}, 6\right)$ with numerical gradient	М1	Gradient must come from a differentiated expression.
	Obtain $y = -\frac{1}{2}x + \frac{31}{4}$ or equivalent of requested form	A1	
		4	

Question	Answer	Marks	Guidance
7(b)	Integrate to obtain form $k_2(2x+1)^{\frac{2}{3}}$	М1	
	Obtain correct $9(2x+1)^{\frac{2}{3}}$ or unsimplified equivalent	A1	
	Use correct limits correctly to find area	M1	Substitute correct limits into an integrated expression. 36 – 9 minimum working required.
	Obtain 27	A1	SC B1 if M1 A1 M0 scored.
		4	

LODDIDITED

Question	Answer	Marks	Guidance
7(a)	$-2((x \pm p)^2 \pm q) \text{ or } -2(x \pm p)^2 \pm q$	M1*	$p \neq 0$.
	$-2((x-2)^2 \pm q)$ or $-2(x-2)^2 \pm q$	DM1	
	$-2(x-2)^2+19$ and (2, 19)	A1	Accept $x = 2, y = 19$ or 2, 19.
		3	

.

Question	Answer	Marks	Guidance	
7(b)	Method 1			
	$[x=]\pm 1$	B1*	Both x co-ordinates for the points of intersection.	
	Subtract and attempt to integrate	M1*		
	$\left[\int (-2x^2 + 2) dx \right] - \frac{2}{3}x^3 + 2x$	B1*	Both terms correct.	
	$\left(-\frac{2}{3}+2\right)-\left(\frac{2}{3}-2\right)$	М1	Apply <i>their</i> limits, one positive and one negative, obtained from equating the line and the curve to their integrated expression.	
	$=\frac{8}{3} \cdot 2\frac{2}{3}$	DB1	AWRT 2.67 WWW. Condone $\frac{-8}{3} \rightarrow \frac{8}{3}$.	
			SC B1 for mistaking triangle for trapezium leading to $\frac{11}{3}$, i.e.	
			a total of 2/5.	
	Method 2			
	$[x=]\pm 1$	B1*	Both x co-ordinates for the points of intersection.	
	Attempt to integrate and subtract	M1*	The second integral can be replaced with what is clearly their area of a trapezium.	
	$\left\{ \frac{-2x^3}{3} + \frac{8}{2}x^2 + 11x \right\} \left[-\right] \left\{ \frac{8}{2}x^2 + 9x \right\}$	B1*	OE All terms correct. The second integral can be replaced by $\frac{1}{2}(1+17)\times 2$ OE.	

LOPUSHED

Question	Answer	Marks	Guidance	
7(b)	$\left\{ \left(\frac{-2}{3} + 4 + 11 \right) - \left(\frac{2}{3} + 4 - 11 \right) \right\} \left[- \right] \left\{ (4 + 9) - (4 - 9) \right\}$	М1	Apply their limits, one positive and one negative, obtained from equating the line and the curve, to their integrated expressions. If the trapezium has been used, the second integral can be replaced by their 18.	
	$=\frac{8}{3}$, $2\frac{2}{3}$	DB1	AWRT 2.67 WWW. Condone $\frac{-8}{3} \rightarrow \frac{8}{3}$.	
			SC B1 for mistaking triangle for trapezium leading to $\frac{11}{3}$, i.e.	
			a total of 2/5.	
	Method 3			
	$[x=]\pm 1$	B1*	Both x co-ordinates for the points of intersection.	
	Subtract and attempt to integrate	M1*		
	$-\frac{2}{3}(x-2)^3 - \frac{8}{2}x^2 + 10x$	B1*	All terms correct.	
	$\left(\frac{2}{3}-4+10\right)-\left(18-4-10\right)$	M1	Apply <i>their</i> limits, one positive and one negative, obtained from equating the line and the curve, to <i>their</i> integrated expression.	
	$=\frac{8}{3}, 2\frac{2}{3}$	DB1	AWRT 2.67 WWW.	

PUBLISHED

Question	Answer	Marks	Guidance
7(b)	Method 4		
	$[x=]\pm 1$	B1*	Both x co-ordinates for the points of intersection.
	Attempt to integrate and subtract	M1*	The second integral can be replaced with what is clearly <i>their</i> area of a trapezium.
	$\left\{ -\frac{2}{3}(x-2)^3 + 19x \right\} \left[-\right] \left\{ \frac{8}{2}x^2 + 9x \right\}$	B1*	All terms correct.
			The second integral can be replaced with $\frac{1}{2}(1+17)\times 2$ OE.
	$\left\{ \left(\frac{2}{3} + 19\right) - (18 - 19) \right\} \left[-\right] \left\{ (4 + 9) - (4 - 9) \right\}$	М1	Apply <i>their</i> limits, one positive and one negative, obtained from equating the line and the curve, to <i>their</i> integrated expression. If the trapezium has been used the second integral can be replaced with <i>their</i> 18 OE.
	$=\frac{8}{3}$, $2\frac{2}{3}$	DB1	AWRT 2.67 WWW.
	3 3		Condone $\frac{-8}{3} \rightarrow \frac{8}{3}$.
			SC B1 for mistaking triangle for trapezium leading to $\frac{11}{3}$, i.e.
			a total of 2/5.
		5	

Question	Answer	Marks	Guidance
9(a)	$y = x^3 - 3x + 3$ and $y = 2x^3 - 4x^2 + 3 \Rightarrow x^3 - 4x^2 + 3x = 0$	М1	Reducing to 3-term cubic or quadratic if x cancelled.
	[x](x-1)(x-3)[=0]	DM1	Factorising the cubic or quadratic.
	$x = 0$, 1 and 3 $\{x = 0 \text{ may be seen in the working}\}$	A1	SC B1 for $x = 1$, 3 only, with no M marks awarded.
		3	

	PUBLISHED				
Question	Answer	Marks	Guidance		
9(b)	Attempt at integration of both functions. Can be before or after subtraction of the functions or integrals	М1	Expect integration of $\int ((x^3 - 3x + 3) - (2x^3 - 4x^2 + 3)) dx$ or		
			$\int \left(-x^3 + 4x^2 - 3x\right) \mathrm{d}x.$		
			At this stage, subtraction can be done either way.		
	$= \pm \left(-\frac{x^4}{4} + \frac{4x^3}{3} - \frac{3x^2}{2} \right) \text{ or } \pm \left\{ \left(\frac{x^4}{4} - \frac{3}{2}x^2 + 3x \right) - \left(\frac{2}{4}x^4 - \frac{4}{3}x^3 + 3x \right) \right\}$	A1	OE ± covers A1 being awarded to those who subtract the 'other' way.		
	$= \left[\left(-\frac{81}{4} + \frac{108}{3} - \frac{27}{2} \right) - \left(-\frac{1}{4} + \frac{4}{3} - \frac{3}{2} \right) \right],$	DM1	OE		
	$\begin{bmatrix} -\frac{1}{4} & \frac{1}{3} & \frac{1}{2} \end{bmatrix} - \begin{bmatrix} -\frac{1}{4} & \frac{1}{3} & \frac{1}{2} \end{bmatrix},$		Minimum required is $\left(\frac{63}{4} - \frac{7}{4}\right) - \left(\frac{27}{2} - \frac{13}{6}\right)$, i.e. four fractions.		
	$\left(\frac{81}{4} - \frac{27}{2} + 9\right) - \left(\frac{1}{4} - \frac{3}{2} + 3\right) - \left\{ \left(\frac{81}{2} - \frac{108}{3} + 9\right) - \left(\frac{1}{2} - \frac{4}{3} + 3\right) \right\}$		Correctly apply limits <i>their</i> 1 and 3. Do not allow if $x = 0$ used.		
	$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$		Need at least one correct substitution in every bracket.		
			If two integrals, need to see substitution into both. Allow one sign error only in each expression, if brackets are not shown.		
	$=\frac{8}{3}$	A1	Accept if this comes from use of limits $f(1) - f(3)$ or		
	3		$\int \left(x^3 - 4x^2 + 3x\right) dx, \text{ if } \left \frac{-8}{3}\right \text{ used.}$		
			Only dependent on the first method mark. Accept AWRT 2.67.		
		4			