Net Present Value (NPV)

Discoint rate r: you're indifferent between receiving \$1 today and $\$\frac{1}{1+r}$ in one period.

Present Value (PV):
$$PV(CF_t) = \frac{CF_t}{(1+r)^t}$$
 how

much a cash flow (CF) at time t is worth at time 0 (today). Computing a PV is often called "discounting".

NPV:
$$NPV = \sum_{t=0}^{T} \frac{CF_t}{(1+r)^t}$$
 summs over PVs of all cash flows in a project.

• Scalability: $\stackrel{\circ}{NPV}(\alpha CF_1, \dots, \alpha CF_T) = \alpha NPV(CF_1, \dots, CF_T)$

• Additivity: $NPV(X_1 + Y_1, ..., X_T + Y_T) = NPV(X_1, ..., X_T) + NPV(Y_1, ..., Y_T)$

• Breaking up by time: $NPV(CF_1, ..., CF_T) = NPV(CF_1, ..., CF_j) + NPV(CF_{j+1}, ..., CF_T)$

Future Value (FV):
$$FV_T(CF_0) = CF_0(1+r)^T$$

how much a cash flow at time 0 (today) is worth in T periods.

Perpetuity:

• Constant recurring cash flow A forever starting 1 period from now: $PV = \frac{A}{r}$

• Growing perpetuity starting 1 period from now with cash flow A, growth rate g:

$$PV = \frac{A}{r-g}(r > g)$$

Annuity:

• <u>Constant</u> recurring cash flow A for T periods starting 1 period from now: (E.g. a loan)

$$PV = \frac{A}{r} \left(1 - \frac{1}{(1+r)^T} \right)$$

$$FV = PV \cdot (1+r)^T = A \frac{(1+r)^T - 1}{r}$$

• Growing annuity starting 1 period from now with cash flow A, growth rate g for T periods.

- If
$$r \neq g \left[PV = \frac{A}{r-g} \left(1 - \frac{(1+g)^T}{(1+r)^T} \right) \right];$$

$$FV = A \left(\frac{(1+r)^T - (1+g)^T}{r-g} \right)$$
- If $r = g \left[PV = T \left(\frac{A}{1+r} \right) \right];$

$$FV = T \cdot A \cdot (1+r)^{T-1}$$

Annual Percentage Rate (APR) & Effective

Annual Rate (EAR):

$$(1 + EAR) = (1 + \frac{APR}{k})^k = (1 + r)^k$$
 where k is the number of compounding periods per year and r is the per-period (e.g. monthly) interest rate.

• APR = $r \cdot k$

• EAR i.e. Annual Percentage Yield (APY)

Mortgage-related terms

Principal: the amount of \$borrowed in a lending agreement. E.g. Buy a \$1,000,000 house with a 20% down payment, the principal is \$800,000.

Interest:

- Fixed rate: No matter what happens to interest rates around the world, you would still be charged interest at this same rate.
- Adjustable rate (ARM): E.g. an adjustable rate of 3% above the federal funds rate (the Fed's benchmark rate). If this rate is around 4.5%, you would be charged a 7.5% interest rate. If in the next month the Fed raises to 5%, you would be charged an 8% interest rate.

Amortization schedule: sequence of payments made through the loan's lifetime. A part of the payments goes to reduce (i.e. amortize) the

principal owed, and the rest goes to pay the interest on the loan.

TODO: Mortgage Example needed

Collateral: An asset offered by the borrower as a guarantee in a loan. If you fail to make payments, the bank can take the collateral.

Refinancing: Paying off an existing loan with a new loan that has better terms. E.g. lower interest rate, lower monthly payment, shorter loan term.

Inflation *i*: the change in CPI $1 + i_{t+1} = \frac{CPI_{t+1}}{CPI_t}$

- "Nominal": not adjusted for inflation
- "Real": adjusted for inflation

Real rate of return:
$$r_{\text{real}} = \frac{1 + r_{\text{nominal}}}{1 + i} - 1$$

$$r_{\text{real}} \approx r_{\text{nominal}} - i$$

Treat inflation consistently for NPV:

$$PV(CF_T) = \frac{CF_{\text{nominal},T}}{(1+r_{\text{nominal},T})^T} = \frac{CF_{\text{real},T}}{(1+r_{\text{real},T})^T} \left[(",T")^T \right]$$

denotes the cash flow at time T)