This list of exercises simulates an exam for the course *Natuurlijke Taalmodellen en Interfaces*. Answer the questions in the spaces provided. If you run out of space for an answer, continue on the back of the page.

Mobile phones, tablets, computers, e-readers, and other electronic equipments are not allowed. They must be switched off and stored away. Basic calculators (not scientific ones) are allowed, but not required, neither necessary.

## Contents

| 1 | Random variables and rules of probabilities | 2  |
|---|---------------------------------------------|----|
| 2 | Categorical distributions                   | 3  |
| 3 | Markov models                               | 4  |
| 4 | Hidden Markov models                        | 9  |
| 5 | Probabilistic context-free grammars         | 14 |
| 6 | Deductive systems                           | 18 |
| 7 | Misc                                        | 21 |

#### **Points**

| Question: | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | Total |
|-----------|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|----|----|----|----|-------|
| Points:   | 1 | 1 | 3 | 1 | 2 | 1 | 4 | 3 | 3 | 2  | 1  | 2  | 2  | 3  | 1  | 1  | 2  | 4  | 6  | 2  | 45    |

#### Random variables and rules of probabilities 1

1. (1 point) Let X be a random variable whose sample space is the English vocabulary  $\Sigma$  and whose mapping to  $\mathbb{R}$  is realised by an arbitrary enumeration of  $\Sigma$ . Given the partial definitions of X below, mark those that are definitely **invalid**?

$$\bigcirc X(\omega) = \begin{cases} 1 & \text{if } \omega = \{\text{the}\} \\ 2 & \text{if } \omega = \{\text{the}\} \\ 3 & \text{if } \omega = \{\text{cat}\} \\ 4 & \text{if } \omega = \{\text{dog}\} \\ \dots \end{cases}$$

$$\bigcirc X(\omega) = \begin{cases} 1 & \text{if } \omega = \{\text{the}\} \\ 1 & \text{if } \omega = \{\text{a}\} \\ 2 & \text{if } \omega = \{\text{cat}\} \\ 3 & \text{if } \omega = \{\text{dog}\} \end{cases}$$

$$\bigcirc X(\omega) = \begin{cases} 1 & \text{if } \omega = \{\text{the, a}\} \\ 2 & \text{if } \omega = \{\text{cat}\} \\ 3 & \text{if } \omega = \{\text{dog}\} \end{cases}$$

$$\bigcirc X(\omega) = \begin{cases} 1 & \text{if } \omega = \{\text{the}\} \\ 1 & \text{if } \omega = \{\text{a}\} \\ 2 & \text{if } \omega = \{\text{cat}\} \\ 3 & \text{if } \omega = \{\text{dog}\} \\ \dots \end{cases}$$

$$\bigcirc X(\omega) = \begin{cases} 1 & \text{if } \omega = \{\text{the}\} \\ 2 & \text{if } \omega = \{\text{a}\} \\ 3 & \text{if } \omega = \{\text{cat}\} \\ 4 & \text{if } \omega = \{\text{dog}\} \\ \dots \end{cases}$$

2. (1 point) Number the identities on the right according to the concepts on the left.

$$P_{A|B}(a|b) = \frac{P_{AB}(a,b)}{P_{B}(b)}$$

$$(\underline{\hspace{1cm}}) \quad P_A(a) = \sum_{b \in \mathcal{B}} P_{AB}(a,b)$$

$$P_{AB}(a,b) = P_B(b)P_{A|B}(a|b)$$

(\_\_\_\_\_\_) 
$$P_{A}(a) = \sum_{b \in \mathcal{B}} P_{AB}(a, b)$$
  
(\_\_\_\_\_\_\_)  $P_{AB}(a, b) = P_{B}(b)P_{A|B}(a|b)$   
(\_\_\_\_\_\_\_)  $P_{B|A}(b|a) = \frac{P_{B}(b)P_{A|B}(a|b)}{P_{A}(a)}$ 

# 2 Categorical distributions

| . Let | X be a Categorical random variable:                                                                                                                                        |       |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
|       | $X \sim \operatorname{Cat}(\theta_1, \dots, \theta_v)$                                                                                                                     |       |
| (a)   | (½ point) What is the support ${\mathcal X}$ of the random variable?                                                                                                       |       |
| (b)   | (½ point) What is the value of $P_X(x)$ ?                                                                                                                                  |       |
| (c)   | (1 point) What conditions apply to valid parameters $\langle \theta_1, \dots, \theta_v \rangle$ ?                                                                          |       |
|       | (1 point) Given a data set of $n$ i.i.d. observations, what is the maximum likelihood estimate of $\theta_x$ ?                                                             |       |
|       |                                                                                                                                                                            |       |
|       | Total for Question                                                                                                                                                         | on 3: |
| ` -   | oint) Select, out of the list below, vector(s) that constitute(s) <b>valid</b> categorical parameters a categorical random variable that may take on one out of 7 classes. |       |
|       | $\bigcirc \langle 0.1, 0.1, 0.1, 0.1, 0.1, 0.2, 0.3 \rangle$<br>$\bigcirc \langle 0.1, 0.1, 0.1, 0.1, 0.1, 0.5 \rangle$                                                    |       |
|       | $\bigcirc \ \langle 0.2, 0.2, 0.1, 0.1, 0.1, 0.2, 0.2 \rangle$                                                                                                             |       |

# 3 Markov models

6.

| 5. | Consider th | e probability | of a sentence | e as given | by the | following | factorisation |
|----|-------------|---------------|---------------|------------|--------|-----------|---------------|
|    |             |               |               |            |        |           |               |

$$P_S(x_1^n) = P_N(n)P_{S|N}(x_1^n|n)$$

$$= P_N(n) \prod_{i=1}^n P_{X|H}(x_i|x_{< i})$$

| $= P_N(n) \prod_{i=1} P_{X H}(x_i x_{< i})$                                                                                                                                                                                                              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| where $S$ is a random sentence, $N$ a random length, $X$ a random word, and $H$ a random history.                                                                                                                                                        |
| (a) $\binom{1}{2}$ point) Select appropriate descriptions for $x_1^n$                                                                                                                                                                                    |
| $\bigcirc$ an outcome of $S$                                                                                                                                                                                                                             |
| $\bigcirc$ a sequence of $n$ random words                                                                                                                                                                                                                |
| $\bigcirc$ n outcomes of S                                                                                                                                                                                                                               |
| (b) ( $\frac{1}{2}$ point) Select appropriate descriptions for $n$                                                                                                                                                                                       |
| ○ a random length                                                                                                                                                                                                                                        |
| a random noun                                                                                                                                                                                                                                            |
| $\bigcirc$ the length of the outcome of $S$                                                                                                                                                                                                              |
| (c) ( $\frac{1}{2}$ point) Select appropriate descriptions for $x_i$                                                                                                                                                                                     |
| ○ a random word                                                                                                                                                                                                                                          |
| $\bigcirc$ the <i>i</i> th element of the outcome of $S$                                                                                                                                                                                                 |
| $\bigcirc$ the <i>i</i> th random sequence                                                                                                                                                                                                               |
| (d) ( $\frac{1}{2}$ point) Select appropriate descriptions for $x_{i}$                                                                                                                                                                                   |
| $\bigcirc$ a word if $i=2$                                                                                                                                                                                                                               |
| o a random sequence                                                                                                                                                                                                                                      |
| $\bigcirc$ the <i>i</i> th random history                                                                                                                                                                                                                |
| Total for Question 5: 2                                                                                                                                                                                                                                  |
| (1 point) Let $x_1^n$ be the outcome of a random sentence $S$ , and let $P_{S N}(x_1^n n)$ denote its probability value (given length $n$ ) under a <b>unigram</b> language model. Write down the expression that corresponds to this probability value. |
|                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                          |

| 7. | Answer questions | about the | graphical | model | below, | where | X | is a | $\operatorname{random}$ | variable | over | exactly |
|----|------------------|-----------|-----------|-------|--------|-------|---|------|-------------------------|----------|------|---------|
|    | v English words. |           |           |       |        |       |   |      |                         |          |      |         |



(a) (½ point) Which language model (LM) is this?

A. unigram LM B. bigram LM C. hidden Markov LM

(b)  $(\frac{1}{2} \text{ point})$  How many conditional probability distributions (cpds) are there in the model (ignore the *length* distribution)?

A. one B. two C. n D. v

- (c) (½ point) Is  $P_{X|X_{prev}=x_{prev}}$  a tabular cpd or an inferred distribution? A. tabular B. inferred
- (d) ( $\frac{1}{2}$  point) Is  $P_{S|N=n}$  a tabular cpd or an inferred distribution? A. tabular B. inferred

| (e) | Write dovate padding | pression o | f the pro | bability | value | $P_S(x_1^n)$ | (you | may | assume |
|-----|----------------------|------------|-----------|----------|-------|--------------|------|-----|--------|
|     |                      |            |           |          |       |              |      |     |        |
|     |                      |            |           |          |       |              |      |     |        |
|     |                      |            |           |          |       |              |      |     |        |
|     |                      |            |           |          |       |              |      |     |        |

(f) ( $\frac{1}{2}$  point) Assume that the probability value  $P_{X|X_{prev}}(x|x_{prev})$  can be assessed in constant time. Express the complexity of computing  $P_{S|n}(x_1^n|n)$  as a function of sentence length (use big-O-notation).

| g) | $(\frac{1}{2})$ point) Suppose we have exactly $v$ words in the vocabulary, and we use a Categorical |
|----|------------------------------------------------------------------------------------------------------|
|    | distribution for each cpd in the model. What is the representation cost of this model (use           |
|    | big-O-notation)?                                                                                     |
|    |                                                                                                      |
|    |                                                                                                      |
|    |                                                                                                      |
|    |                                                                                                      |
|    |                                                                                                      |
|    |                                                                                                      |

Total for Question 7: 4

| 8. | Consider the following unigram language mod | del, where EoS is a | special symbol | deterministically  |
|----|---------------------------------------------|---------------------|----------------|--------------------|
|    | added to the end of every sentence, and ans | swer the questions  | below. In this | s exercise you are |

| X            | $\operatorname{Cat}(x \boldsymbol{\theta})$                 |
|--------------|-------------------------------------------------------------|
| a            | $\theta_{ m a}$                                             |
| b            | $\mid 	heta_{ m b}^{ m a} \mid$                             |
| $\mathbf{c}$ | $egin{pmatrix} 	heta_{ m c} \ 	heta_{ m d} \ \end{pmatrix}$ |
| d            | $	heta_{ m d}$                                              |
| EoS          | $	heta_{ m EoS}$                                            |

expected to pad sentences with a BoS token, which **is not** modelled, and an EoS token, which **is** modelled.

- (a) (½ point) What is the probability of the sentence <u>a b c a d</u> given its length?
- (b) (½ point) What is the probability of the sentence <u>a b b d c a a f</u>?
- (c) (1 point) What is the role of smoothing?
- (d) (1 point) Answer true (T) or false (F).
  - i. \_\_\_\_ The sentence  $\underline{a} \underline{a} \underline{b} \underline{c}$  has the same probability as the sentence  $\underline{a} \underline{b} \underline{a} \underline{c}$ .
  - ii. \_\_\_\_ The unigram language model is sensitive to word order.
  - iii. \_\_\_\_ A smoothed unigram language model has infinite support.
  - iv. \_\_\_ Without smoothing, and without taking padding into account, the support of the unigram language model above is the set of strings in  $\{a, b, c, d\}^*$ .

| . Consider | the generati   | ve story below                                    | v                               |                           |        |                  |                |
|------------|----------------|---------------------------------------------------|---------------------------------|---------------------------|--------|------------------|----------------|
|            |                | $N \sim P_N$                                      |                                 |                           |        |                  |                |
|            | $X_i X_{i-1}$  | $=x_{i-1}\sim \mathrm{Cat}$                       | $(\theta_1^{(x_{i-1})},\ldots)$ | $,	heta_{v}^{(x_{i-1})})$ | fe     | for $i=1,\ldots$ | , n            |
| is a speci | ial token to w | y distribution<br>which we map<br>and of strings. | all unseen v                    |                           | -      |                  | -              |
| (a) (1 p   | point) Draw t  | the graphical                                     | model using                     | g plate nota              | tion.  |                  |                |
|            |                |                                                   |                                 |                           |        |                  |                |
|            |                |                                                   |                                 |                           |        |                  |                |
|            |                |                                                   |                                 |                           |        |                  |                |
|            |                |                                                   |                                 |                           |        |                  |                |
|            |                |                                                   |                                 |                           |        |                  |                |
|            |                |                                                   |                                 |                           |        |                  |                |
|            |                |                                                   |                                 |                           |        |                  |                |
| . ,        |                | e <u>a b c a b</u> and<br>st its bigrams          |                                 |                           | below. |                  |                |
|            |                |                                                   |                                 |                           |        |                  |                |
|            |                |                                                   |                                 |                           |        |                  |                |
|            |                |                                                   |                                 |                           |        |                  |                |
|            |                |                                                   |                                 |                           |        |                  |                |
|            |                |                                                   |                                 |                           |        |                  |                |
|            |                |                                                   |                                 |                           |        |                  |                |
|            |                |                                                   |                                 |                           |        |                  |                |
| ii.        |                | hat is the prol<br>ms of the para                 |                                 |                           |        |                  | ress probabili |
|            |                |                                                   |                                 |                           |        |                  |                |

Total for Question 9: 3

### 4 Hidden Markov models

The hidden Markov model (HMM) extends the Markov model with word categories. The graphical model below specifies the conditional independence assumptions of the HMM, where



X is a random word from a vocabulary of v words and C is a random word category (or tag) from a vocabulary of t tags. There are two types of cpds in the HMM. Transition distributions used to generate a tag given the tag of the previous word:

$$C|C_{\text{prev}} = c_{\text{prev}} \sim \text{Cat}(\lambda_1^{(c_{\text{prev}})}, \dots \lambda_t^{(c_{\text{prev}})})$$

And emission distributions used to generate a word given its tag:

$$X|C = c \sim \operatorname{Cat}(\theta_1^{(c)}, \dots, \theta_n^{(c)})$$

The joint probability for a sentence  $x_1^n$  and tag-sequence  $c_1^n$  given length N=n factorises

$$P_{X_1^n C_1^n | N}(x_1^n, c_1^n | n) = P_{X_1^n C_1^n | N}(x_1^n, c_1^n | n)$$

$$= \prod_{i=1}^n P_{C|C_{\text{prev}}}(c_i | c_{i-1}) P_{X|C}(x_i | c_i)$$

in terms of transition and emission probabilities.

Assessing the probability of a sentence, regardless of tag sequence, requires marginalisation

$$P_{X_1^n|N}(x_1^n|n) = \sum_{c_1=1}^t \cdots \sum_{c_n=1}^t P_{X_1^n C_1^n|N}(x_1^n, c_1^n|n)$$

$$= \prod_{i=1}^n \sum_{c_{i-1}=1}^t \sum_{c_{i=1}}^t P_{C|C_{\text{prev}}}(c_i|c_{i-1}) P_{X|C}(x_i|c_i)$$

| paramete             | The HMM hasrs, it also contains _rs, and therefore, |              | emission d              | istributions,             | each of which h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nas                |
|----------------------|-----------------------------------------------------|--------------|-------------------------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| paramete             | rs, it also contains $\_$                           |              | emission d              | istributions,             | each of which h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nas                |
| paramete             | rs, it also contains $\_$                           |              | emission d              | istributions,             | each of which h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nas                |
| paramete             | rs, it also contains $\_$                           |              | emission d              | istributions,             | each of which h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nas                |
| paramete             | rs, it also contains $\_$                           |              | emission d              | istributions,             | each of which h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nas                |
| paramete<br>paramete | rs, it also contains $\_$                           | the total re | emission depresentation | istributions, cost of the | each of which he had he | nas<br>O-notation) |
| paramete<br>paramete | rs, it also contains _<br>rs, and therefore, ·<br>  | the total re | emission depresentation | istributions, cost of the | each of which he had he | nas<br>O-notation) |
| paramete<br>paramete | rs, it also contains _<br>rs, and therefore, ·<br>  | the total re | emission depresentation | istributions, cost of the | each of which he had he | nas<br>O-notation) |
| paramete<br>paramete | rs, it also contains _<br>rs, and therefore, ·<br>  | the total re | emission depresentation | istributions, cost of the | each of which he had he | nas<br>O-notation) |

13. (2 points) Consider the following transition and emission distributions.

|       | X = 1            | X = 2            | X = 3            | <br>X = v            |       | i = 1                                | i = 2 | i = 3 |
|-------|------------------|------------------|------------------|----------------------|-------|--------------------------------------|-------|-------|
| C = 1 | $\theta_1^{(1)}$ | $\theta_2^{(1)}$ | $\theta_3^{(1)}$ | <br>$\theta_v^{(1)}$ | C = 1 | $\lambda_1^{(0)} \theta_{x_1}^{(1)}$ | ?     |       |
| C = 2 | $\theta_1^{(2)}$ | $\theta_2^{(2)}$ | $\theta_3^{(2)}$ | <br>$\theta_v^{(2)}$ | C = 2 | $\lambda_2^{(0)} \theta_{x_1}^{(2)}$ |       |       |
| C = 3 | $\theta_1^{(3)}$ | $\theta_2^{(3)}$ | $\theta_3^{(3)}$ | <br>$\theta_v^{(3)}$ | C = 3 | $\lambda_3^{(0)} \theta_{x_1}^{(3)}$ |       |       |

Transition distributions (left) and emission distributions (right)

We can use an HMM model defined with these cpds to find the best possible way to tag an input sentence  $\langle x_1, x_2, x_3 \rangle$ . The table below shows 3 cells used to compute the Viterbi recursion  $\alpha(i, j)$ . What is the value of the Viterbi entry  $\alpha(i = 2, j = 1)$ ?

|       | i = 1                                | i = 2 | i = 3 |
|-------|--------------------------------------|-------|-------|
| C = 1 | $\lambda_1^{(0)} \theta_{x_1}^{(1)}$ | ?     |       |
| C=2   | $\lambda_2^{(0)} \theta_{x_1}^{(2)}$ |       |       |
| C = 3 | $\lambda_3^{(0)} \theta_{x_1}^{(3)}$ |       |       |

Viterbi table  $\alpha(i, j)$ : assume j = 0 to correspond to the BoS tag.

| - |  |  |
|---|--|--|
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |

14. Consider the tagged sequences below where the first sequence occurs  $n_1$  times, the second sequence occurs  $n_2$  times, and the third sequence occurs  $n_3$  times.



(a) (1 point) Estimate by maximum likelihood the transition distribution given that the previous category is 'A'.

(b) (1 point) Estimate by maximum likelihood the emission distribution given that the category is 'A'.

| (c) | (1 point) What is the probability of the second sequence pair, given its length, as a function of maximum likelihood estimates? |
|-----|---------------------------------------------------------------------------------------------------------------------------------|
|     |                                                                                                                                 |
|     |                                                                                                                                 |
|     |                                                                                                                                 |
|     |                                                                                                                                 |
|     |                                                                                                                                 |
|     |                                                                                                                                 |
|     |                                                                                                                                 |
|     |                                                                                                                                 |

Total for Question 14: 3

## 5 Probabilistic context-free grammars

Let  $\mathfrak{G} = \langle \Sigma, \mathcal{V}, S, \mathcal{R} \rangle$  be a context-free grammar (CFG) where

- $\Sigma$  is the set of terminals
- ullet  $\mathcal V$  is the set of nonterminals
- $S \in \mathcal{V}$  is the start symbol
- ullet R is a set of context-free rules

and also assume that the most complex rule has a sequence of a symbols on its right-hand side (RHS).

| 15. | ` -       | oint) What is the general form of a context-free rule in $\mathcal{R}$ ? Make sure to formally specify set to which left-hand side (LHS) and RHS belong. |
|-----|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| 16. | (1 poin R | oint) If we know that $\mathfrak{G}$ is in Chomsky normal form (CNF), what can we say about rules?                                                       |
|     |           |                                                                                                                                                          |
| 17. | A pr      | robabilistic CFG (PCFG) extends a CFG with a probability distribution over derivations.                                                                  |
|     | (a)       | $(\frac{1}{2} \text{ point})$ Define a random rule.                                                                                                      |
|     |           |                                                                                                                                                          |
|     |           |                                                                                                                                                          |
|     | (b)       | $(\frac{1}{2}$ point) Define a random derivation.                                                                                                        |
|     |           |                                                                                                                                                          |
|     |           |                                                                                                                                                          |

| (c) | (1 point) Write down the probability distribution of a derivation $r_1^m$ given its length as a function of the factor $P_{\rm RHS LHS}$ . |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------|
|     |                                                                                                                                            |
|     |                                                                                                                                            |

Total for Question 17: 2

18. Consider the treebank below where the first tree occurs  $n_1$  times, the second tree occurs  $n_2$  times, and the third tree occurs  $n_3$  times.



(a) (1 point) Use this tree bank to derive the minimal set of context-free rules that could reconstruct it.

(b) (1 point) Consider we extend this grammar to a PCFG, write down the maximum likeli-

hood estimates for all pre-terminal rules.

(c) (1 point) Write down a derivation (as an ordered sequence of rule applications) for the second tree.

| (1 point) What is the probability of the second tree under a PCFG estimated via maximum likelihood using the given treebank. |
|------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                              |
|                                                                                                                              |
|                                                                                                                              |
|                                                                                                                              |
|                                                                                                                              |
|                                                                                                                              |
|                                                                                                                              |

Total for Question 18: 4

## 6 Deductive systems

19. In the HMM model we often need to represent the space of all possible analyses of a sentence  $x_1^n$ , for example, we need that space of options in order to characterise the marginal probability  $P_{X_1^n}(x_1^n)$  as well as in order to find the best tag sequence. Below, we have a deductive system that compactly represents the weighted set of all possible analyses.

INPUT tagset 
$$\{1,\ldots,t\}$$
 and sentence  $x_1^n$ 
ITEM  $[c,i]$  where  $c\in\{1,\ldots,t\}\cup\{\mathrm{BoS},\mathrm{EoS}\}$  and  $i\in\{0,n+1\}$ 
GOAL  $[\mathrm{EoS},n+1]$ 
AXIOMS  $[\mathrm{BoS},0]$ 
TAG  $\frac{[c,i]}{[c',i+1]}$   $i< n$  and  $c'\in\{1,\ldots,t\}$ 
CONCLUDE  $\frac{[c,n]}{[\mathrm{EoS},n+1]}$ 

In this program an item [c, i] refers to word  $x_i$  being tagged with tag c. We augment the tag set  $\{1, \ldots, t\}$  with two special symbols  $\{BoS, EoS\}$  that helps us track the beginning and the end of the tag sequence.

| (a) | (1 point) | How many | items can | we prove fo | $\mathbf{r}$ an input $x$ | $_{1}^{n}$ (use big-O- | -notation)? |  |
|-----|-----------|----------|-----------|-------------|---------------------------|------------------------|-------------|--|
|     |           |          |           |             |                           |                        |             |  |
|     |           |          |           |             |                           |                        |             |  |
|     |           |          |           |             |                           |                        |             |  |

| 1 point) | How many | inferences        | are valid fo                 | or an input                               | $x_1^n$ (use big                                    | g-O-notation)                                                        |                                                                                  |
|----------|----------|-------------------|------------------------------|-------------------------------------------|-----------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------|
|          |          |                   |                              |                                           |                                                     |                                                                      |                                                                                  |
|          |          |                   |                              |                                           |                                                     |                                                                      |                                                                                  |
|          |          |                   |                              |                                           |                                                     |                                                                      |                                                                                  |
|          |          |                   |                              |                                           |                                                     |                                                                      |                                                                                  |
| _        | l point) | I point) How many | I point) How many inferences | I point) How many inferences are valid to | I point) How many inferences are valid for an input | I point) How many inferences are valid for an input $x_1^n$ (use big | I point) How many inferences are valid for an input $x_1^n$ (use big-O-notation) |

(d) (2 points) Each path of execution of the deductive system corresponds to one complete analysis, we can call it a *derivation* since it stands for a way to *derive* or *prove* the goal item. We can easily extend the system to assign a weight to each inference. Let us assume a parameterisation of our HMM generative story

$$C_i|C_{i-1} = c_{i-1} \sim \text{Cat}(\lambda_1^{(c_{i-1})}, \dots, \lambda_t^{(c_{i-1})})$$
  
 $X_i|C_i = c_i \sim \text{Cat}(\theta_1^{(c_i)}, \dots, \theta_v^{(c_i)})$ 

in terms of transition and emission distributions (ignoring length). An AXIOM is a trivial inference, thus we give it a dummy weight (not to interfere with the total)

Axioms 
$$[BoS, 0] : \bar{1}$$

CONCLUDE is an inference which serves the purpose of ending the tag sequence and the word sequence with special EoS tokens positioned at i = n + 1. This requires a transition to EoS and an emission of EoS, thus the weight is

Conclude 
$$\frac{[c,n]}{[\text{EoS},n+1]:\lambda_{\text{EoS}}^{(c)}\times\theta_{\text{EoS}}^{(\text{EoS})}}$$

What is the weight of the TAG rule?



Total for Question 19: 6

| _ | Т /Г    |
|---|---------|
| 7 | 11/1166 |
|   | TATION  |
|   | Misc    |

| _ | quantities s | <br>_ | esentation, ar<br>argmax. | id aigoritiiiii | c complexity | or assess |
|---|--------------|-------|---------------------------|-----------------|--------------|-----------|
|   |              |       |                           |                 |              |           |
|   |              |       |                           |                 |              |           |
|   |              |       |                           |                 |              |           |
|   |              |       |                           |                 |              |           |
|   |              |       |                           |                 |              |           |
|   |              |       |                           |                 |              |           |
|   |              |       |                           |                 |              |           |
|   |              |       |                           |                 |              |           |
|   |              |       |                           |                 |              |           |
|   |              |       |                           |                 |              |           |
|   |              |       |                           |                 |              |           |
|   |              |       |                           |                 |              |           |
|   |              |       |                           |                 |              |           |

## Assessment

| Question | Points | Score |
|----------|--------|-------|
| 1        | 1      |       |
| 2        | 1      |       |
| 3        | 3      |       |
| 4        | 1      |       |
| 5        | 2      |       |
| 6        | 1      |       |
| 7        | 4      |       |
| 8        | 3      |       |
| 9        | 3      |       |
| 10       | 2      |       |
| 11       | 1      |       |
| 12       | 2      |       |
| 13       | 2      |       |
| 14       | 3      |       |
| 15       | 1      |       |
| 16       | 1      |       |
| 17       | 2      |       |
| 18       | 4      |       |
| 19       | 6      |       |
| 20       | 2      |       |
| Total:   | 45     |       |
|          |        |       |