

L76 EVB User Guide

GNSS Module Series

Rev. L76_EVB_User_Guide_V1.1

Date: 2013-04-02

Our aim is to provide customers with timely and comprehensive service. For any assistance, please contact our company headquarter:

Quectel Wireless Solutions Co., Ltd.

Room 501, Building 13, No.99, Tianzhou Road, Shanghai, China, 200233

Tel: +86 21 5108 6236 Mail: info@quectel.com

Or our local office, for more information, please visit:

http://www.quectel.com/quectel_sales_office.html

For technical support, to report documentation errors, please visit:

http://www.quectel.com/tecsupport.aspx

GENERAL NOTES

QUECTEL OFFERS THIS INFORMATION AS A SERVICE TO ITS CUSTOMERS. THE INFORMATION PROVIDED IS BASED UPON CUSTOMERS' REQUIREMENTS. QUECTEL MAKES EVERY EFFORT TO ENSURE THE QUALITY OF THE INFORMATION IT MAKES AVAILABLE. QUECTEL DOES NOT MAKE ANY WARRANTY AS TO THE INFORMATION CONTAINED HEREIN, AND DOES NOT ACCEPT ANY LIABILITY FOR ANY INJURY, LOSS OR DAMAGE OF ANY KIND INCURRED BY USE OF OR RELIANCE UPON THE INFORMATION. ALL INFORMATION SUPPLIED HEREIN ARE SUBJECT TO CHANGE WITHOUT PRIOR NOTICE.

COPYRIGHT

THIS INFORMATION CONTAINED HERE IS PROPRIETARY TECHNICAL INFORMATION OF QUECTEL CO., LTD. TRANSMITTABLE, REPRODUCTION, DISSEMINATION AND EDITING OF THIS DOCUMENT AS WELL AS UTILIZATION OF THIS CONTENTS ARE FORBIDDEN WITHOUT PERMISSION. OFFENDERS WILL BE HELD LIABLE FOR PAYMENT OF DAMAGES. ALL RIGHTS ARE RESERVED IN THE EVENT OF A PATENT GRANT OR REGISTRATION OF A UTILITY MODEL OR DESIGN.

Copyright © Quectel Wireless Solutions Co., Ltd. 2013. All rights reserved.

About the document

History

Revision	Date	Author	Description
1.0	2013-02-25	Dishon ZHOU	Initial
1.1	2013-03-26	Dishon ZHOU	Optimized the contents of Chapter 3.

Contents

Abo	ut the do	cument	2
Con	tents		3
1	Introduct	tion	6
2	Introduct	tion to EVB Kit	7
		/B Top and Bottom View	
	2.2. EV	/B Accessories	8
3	Interface	Application	10
	3.1. US	SB Interface	10
	3.2. UA	ART Interface	11
	3.3. An	tenna Interface	12
	3.4. Sw	vitches and Buttons	13
	3.5. Op	perating Status LEDs	14
	3.6. Tes	st Points	15
4	EVB and	Accessories	17
5	Install De	evice Driver	18
6	Starting I	PowerGPS	19
		x A Reference	

Table Index

TABLE 1: PINS OF UART PORT	.11
TABLE 2: SWITCHES AND BUTTONS	13
TABLE 3: OPERATING STATUS LEDS	14
TABLE 4: PINS OF J106	15
TABLE 5: EXPLANATIONS OF POWERGPS WINDOW	20
TABLE 6: REFERENCE	25
TABLE 7: ABBREVIATIONS	25

Figure Index

FIGURE 1: EVB TOP VIEW	7
FIGURE 2: EVB BOTTOM VIEW	8
FIGURE 3: EVB ACCESSORIES	g
FIGURE 4: MICRO-USB INTERFACE	10
FIGURE 5: UART INTERFACE	
FIGURE 6: ANTENNA INTERFACE	12
FIGURE 7: LNA LAYOUT	
FIGURE 8: SWITCHES AND BUTTONS	13
FIGURE 9: OPERATING STATUS LEDS	14
FIGURE 10: TEST POINTS J106	
FIGURE 11: EVB AND ACCESSORY EQUIPMENTS	17
FIGURE 12: POWERGPS TOOL	
FIGURE 13: MTK COMMAND	
FIGURE 14: STATIC TTFF TESTING	
FIGURE 15: STATIC TTFF TESTING CONFIGURATION OPTIONS	23
FIGURE 16: STATIC TTFF TESTING CONFIGURATION	24

1 Introduction

This document defines and specifies the usage of L76 EVB (Evaluation Board). You can get useful information about L76 EVB and GNSS demo tool from this document.

2 Introduction to EVB Kit

2.1. EVB Top and Bottom View

Figure 1: EVB Top View

Figure 2: EVB Bottom View

- A: UART port
- B: Serial port alternation switch
- C: RESET button
- D: FORCE_ON button
- E: POWER switch
- F: Micro-USB port
- G: Indication LEDs
- H: Antenna interface
- I: L76 Module
- J: STANDBY switch
- K: Test points

2.2. EVB Accessories

Figure 3: EVB Accessories

A: USB cable

B: GNSS active antenna (3.3V)

3 Interface Application

3.1. USB Interface

Figure 4: Micro-USB Interface

The main power is supplied via Micro-USB interface. We provide two ways for data communication: Micro-USB and UART interface which are controlled by alternation switch (S2). Both of RS232 and Micro-USB cable are necessary, if you want to use UART to output NEMA. So the easy way is to use Micro-USB cable which both supplies the power and outputs NEMA. You can make alternation between UART port and Micro-USB interfaces via switch (S2).

NOTE

If you want to use PowerGPS Tool, UART interface is recommended for data communication.

3.2. UART Interface

Figure 5: UART Interface

Table 1: Pins of UART port

Pin	Signal	I/O	Description
2	RXD	I	Receive data
3	TXD	0	Transmit data
5	GND		GND

3.3. Antenna Interface

Figure 6: Antenna Interface

Figure 7: LNA Layout

For choice of external antenna, both of active antenna and passive antenna can be selected. Please note the LNA is installed in the EVB by default, so you have to move C109 to R112 and R118 to R105, when you want to remove the LNA for test.

3.4. Switches and Buttons

Figure 8: Switches and Buttons

Table 2: Switches and Buttons

Part	Name	I/O	Description
S1	POWER	I	Control power supply via Micro-USB.
S2	Serial port alternation switch	I	QUECTEL EVB supplies two communicative ways: Micro-USB and UART which are controlled by switch.
S3	STANDBY	I	The module will enter into standby mode when switching from OFF to ON, and exit from standby

			mode in the opposite operation.
K1	FORCE_ON	I	Press and release the button, the module will be waked up from backup mode.
K2	RESET	I	Press and release this button, then the module will reset.

3.5. Operating Status LEDs

Figure 9: Operating Status LEDs

Table 3: Operating status LEDs

Part	Name	I/O	Description
L1	TXD1	0	Flash: turn on successfully, Micro-USB or UART1 port can output messages. Extinct: fail to turn on the module.
L2	1PPS	0	Flash: fix successfully, the frequency is 1Hz. Extinct: no fix.

3.6. Test Points

Figure 10: Test Points J106

Table 4: Pins of J106

Pin	Signal	I/O	Description
1	32K/DRIN		Reserved
2	AADET_N	I	Active antenna open circuit detection
3	1PPS	0	1 pulse per second
4	STANDBY	I	Enter or exit standby mode

5/10	GND		Ground
6	FORCE_ON		Logic high will force module to be waked up from backup mode. Keep this pin open or pulled low before entering into backup mode. If unused, keep this pin open.
7	RESET	1	System reset
8	TXD1	Ο	Transmit data
9	RXD1	I	Receive data

4 EVB and Accessories

The EVB and its accessories are equipped as shown in Figure 11.

Figure 11: EVB and Accessory Equipments

5 Install Device Driver

Please note that you need to install the driver of Micro-USB, when use Micro-USB for data communication. The driver has been stored in our FTP server. The driver of CP210x also can be download from internet. The download path of our FTP server is as below:

Overseas customer: /d:/FTP/OC/Overseas_Technical/Overseas_Module Official Documents/GNSS Module/Common/04 Tool Kit/ GNSS EVB Micro-USB Driver CP210x.

Domestic customer: /d:/FTP/CC/Domestic_Technical/Domestic_Module Official Documents/GNSS Module/Common/04 Tool Kit/ GNSS_EVB_Micro-USB_Driver_CP210x.

6 Starting PowerGPS

The PowerGPS version is V2.2.0. The PowerGPS tool can help user to view the status of GPS&GLONASS receiver conveniently. When the tool is opened, the following window will be displayed:

Comport setting

Figure 12: PowerGPS Tool

After EVB accessories are assembled, turn on the module and start up the PowerGPS. Select a correct COM port and baud rate (L76 module supports 9600bps by default), then click the button "Create Connection".

From the PowerGPS window, user can view CNR message, time, position, speed, precision and so on. Explanations are listed in Table 5.

Table 5: Explanations of PowerGPS Window

Icon	Explanation
6 <u>5</u> -	SV with PRN 65. If the position of SV is near to the centre of the Sky View, the elevation angle of SV is close to 90°. Dark blue means this satellite is in tracking.
4	Light blue means this satellite is not in tracking.

The CNR of PRN 25 is 31dB/Hz. Light blue column means the navigation data of this satellite is in use.

The CNR of PRN 70 is 32dB/Hz. White column means the navigation data of this satellite is not in use. The range of GLONASS SVID is 65-96.

		UTC time			
UTC Time	08:54:07.000	Latitude degree			
Latitude	31.84580167 N	•			
Longitude	117.19548500 E	longitude degree			
Pos Fix	Valid DGPS	Positing fix			
Sat used	17	Using the number of satellites			
HDOP	0.630	Horizontal Dilution of Precision			
Altitude	16.200 M				
UTC Date	2013-01-11	Altitude based on WGS84 Datum			
		UTC date			
		Fix type: No-Fix, 3D or 2D SPS			
Fixing Mode	3D	21			
Sat Used	18 25 14 21 15 31	Using satellite			
PDOP	1.680	Position Dilution of Precision			
VDOP	1.410	Vertical Dilution of Precision			
Speed (m/s)	0.005				
		Speed of receiver			

PMTK Command

You can send PMTK command by PowerGPS. The format of PMTK command includes only characters between '\$' and '*', for example: PMTK869,0.

Figure 13: MTK Command

Automatic TTFF Testing

This tool allows you to measure the TTFF (Time to First Fix) under different testing conditions. You can choose to test the TTFF from full start, cold start, warm start and hot start and the number of tests can be chosen from 1, 10, 20, 100, 1000 and 10000. Click on the Run button to start the test and it can be stopped by clicking on the Stop button. The configuration is as below:

Start "MTK" menu, and click "Static TTFF Testing", then "Static TTFF Testing" as shown below:

Figure 14: Static TTFF Testing

Click "Set reference point", choose "Reference location". After start positioning, click "Use Mean Position", then click "OK". As shown in the screenshots below:

Figure 15: Static TTFF Testing Configuration Options

Click "Config", set "TTFF Time- out (sec)", then click "OK", shown as below:

In generally, if you choose hot start, "TTFF Time-out (sec)" sets 10s. If you choose warm start, the "TTFF Time-out (sec)" sets 50s. If you choose cold start, the "TTFF Time-out (sec)" sets 100s. "TTFF Time-out (sec)" can help you judge TTFF and save time.

Figure 16: Static TTFF Testing Configuration

The above operation is completed. Click on the Run button to start the test and it can be stopped by clicking Stop button.

After finishing the testing, you can see the testing result charts. Of course, the result also will be stored in the tool installation path, and you can view the corresponding log.

7 Appendix A Reference

Table 6: Reference

SN	Document name	Remark
[1]	L76_Hardware_Design	L76 Hardware Design
[2]	L76_Protocol_Specification	L76 Protocol Specification
[3]	L76_Reference Design	L76 Reference Design

Table 7: Abbreviations

Description	
Carrier-to-Noise Ratio	
Global Positioning System	
Global Navigation Satellite System (The Russian GNSS)	
Global Navigation Satellite System	
Light Emitting Diode	
Pulse Per Second	
Pseudorandom Noise	
Standard Positioning Service	
Satellite Vehicle	
Universal Asynchronous Receiver & Transmitter	
Universal Time Coordinated	
World Geodetic System 1984	