Fonction exponentielle et logarithme népérien

Analyse - Cours

I Généralités sur la fonction exponentielle

Définition:

Il existe une unique fonction f dérivable sur \mathbb{R} telle que f'=f et f(0)=1. Cette fonction est appelée fonction exponentielle et se note exp. Ainsi, pour tout réel x, on a $\exp'(x)=\exp(x)$ et $\exp(0)=1$.

I. 1 Propriétés algébriques

1. Propriété (lemme):

Pour tout réel x, on a $\exp(x) \neq 0$.

2. Propriétés :

Pour tous réels x et y, on a :

(i)
$$\exp(x+y) = \exp(x) \times \exp(y)$$
 (appelé relation fonctionnelle)

(ii)
$$\exp(-x) = \frac{1}{\exp(x)}$$

(iii)
$$\exp(x - y) = \frac{\exp(x)}{\exp(y)}$$

(iv)
$$\exp(nx) = \exp(x)^n$$

I. 2 La notation de l'exponentielle

Définition:

L'image de 1 par la fonction exp est le nombre noté e, appelé constante d'Euler. Ainsi, $\exp(1) = e$.

Remarques:

- La fonction exp possède les mêmes propriété algébriques que les fonctions puissances. On notera donc $\exp(x) = e^x$.
- $-e \approx 2,71828182845904...$

3. Propriétés:

Pour tous réels x et y, on a :

(i)
$$e^{x+y} = e^x \times e^y$$

(iii)
$$e^{x-y} = \frac{e^x}{e^y}$$

(ii)
$$e^{-x} = \frac{1}{e^x}$$

$$(iv) (e^x)^n = e^{nx}$$

II Étude et applications de la fonction exponentielle

II. 1 Signe et variations de la fonction exponentielle

4. Propriété:

La fonction exp est strictement positive sur \mathbb{R} . Autrement dit : pour tout nombre réel $x, e^x > 0$.

5. Propriété:

La fonction exp est strictement croissante sur \mathbb{R} .

II. 2 Fonctions définies avec l'exponentielle

6. Propriété:

Soit $a \in \mathbb{R}$. Soit la fonction $f(x) = e^{ax}$.

- (i) Pour a > 0, la fonction f est strictement croissante sur \mathbb{R} .
- (ii) Pour a < 0, la fonction f est strictement décroissante sur \mathbb{R} .

7. Propriété:

Soient a et b deux réels. La fonction f définie sur \mathbb{R} par $f(x) = e^{ax+b}$ est dérivable sur \mathbb{R} et pour tout réel x, $f'(x) = a \times e^{ax+b}$.

II. 3 Équations et inéquations

8. Propriété:

Pour tous réels a et b, on a :

(i)
$$e^a = e^b \Leftrightarrow a = b$$

(ii)
$$e^a < e^b \Leftrightarrow a < b$$

(iii)
$$e^a \le e^b \Leftrightarrow a \le b$$

III Généralités sur la fonction logarithme népérien

9. Propriété (lemme) :

Pour tout réel a > 0, il existe un unique réel b tel que $a = e^b$.

III. 1 Définition et notation

Définition :

On appelle logarithme népérien d'un réel a > 0, le nombre réel b tel que $e^b = a$. On le note $\ln(a) = b$.

Remarques:

- $\ln(0)$ n'existe pas. En effet, $e^x \neq 0$ pour tout $x \in \mathbb{R}$
- Pour tout entier $n \geq 2$, $\ln(n)$ n'est pas rationel.

Exemples:

$$-\ln(1) = 0 \text{ (car } e^0 = 1)$$

$$-\ln(e) = 1 \text{ (car } e^1 = e)$$

III. 2 Propriétés algébriques

10. Propriété:

Pour tout réel x > 0, y > 0 et pour tout entier relatif n:

- (i) $e^{\ln(x)} = x$
- (ii) $\ln(e^x) = x$
- (iii) ln(xy) = ln(x) + ln(y)
- (iv) $\ln(\frac{x}{y}) = \ln(x) \ln(y)$
- (v) $\ln(x^n) = n \ln(x)$

IV Propriétés graphiques

IV. 1 Symétrie des courbes représentatives

Dans un repère orthonormé, on note d la droite d'équation x=y.

La symétrie axiale par rapport à la droite d a pour effet d'échanger les abscisses et les ordonnées, c'est à dire qu'elle transforme tout point de coordonnées (x; y) en un point de coordonnées (x; y).

1. Théorème:

Les courbes représentatives de la fonction exp et ln sont symétriques l'une de l'autre par rapport à la droite d.

IV. 2 Dérivation de la fonction logarithme

11. Propriété:

Si pour tout réel x > 0, $f(x) = \ln(x)$ alors f est dérivable, et pour tout x > 0: $f'(x) = \frac{1}{x}$

12. Propriétés (corrolaires):

- La fonction ln(x) est strictement croissante sur $]0; +\infty[$.
- Pour tous réels a et b strictements positifs, $\ln(a) < \ln(b) \Leftrightarrow a < b$.

V Compléments sur le logarithme décimal

Soit n un entier et en posant $x = 10^n$, on a $\ln(x) = n \times \ln(10)$ donc $n = \frac{\ln(x)}{\ln(10)}$.

Le nombre n est appelé le logarithme décimal de x noté $\log_1 0(x)$ ou plus simplement $\log(x)$. On peut généraliser cette définition pour tout réel strictement positif :

Définition:

Pour tout réel a > 0, on définit le logarithme décimal de a par $\log(a) = \frac{\ln(a)}{\ln(10)}$.

13. Propriétés:

Pour tous réels x > 0, y > 0 et pour tout entier relatif n, on a :

(i)
$$\log(10^n) = n$$

(iii)
$$\log\left(\frac{x}{y}\right) = \log(x) - \log(y)$$

(ii)
$$\log(x \times y) = \log(x) + \log(y)$$

(iv)
$$\log(x^n) = n \times \log(n)$$

Remarque : Tout nombre réel x peut s'écrire sous la forme $x = a \times 10^n$ avec $a \in [1; 10[$ (c'est ce qu'on appelle l'écriture scientifique de x). Dans ce cas, l'entier n est égal à la partie entière de $\log(x)$. **Exemple :**

Soit $x=123, 4=1, 234\times 10^2.$ La partie entière de $\log(x)$ est égal à 2, c'est à dire que $2\leq \log(x)<3.$