CA FINAL PROJECT REPORT

B09901059 彭亞綺

B09901144 李晴暄

Execution cycle

Instruction Set	Execution cycle w/o cache	Execution cycle w/ cache	Speedup
10	75	95	0.79
I1	688	268	2.57
12	201	181	1.11
13	525	381	1.38

• Register table

	evices in proces MUL line 575 i home/raid7_2/us	n file	9059/F	inal_c	ca/01	_RTL,	/CHIP.	v'.		
Register Name	e Type	Width	Bus	MB	AR	A	S SR	SS	ST	Ī
a_reg b_reg state_reg count_reg result_reg	Flip-flop Flip-flop Flip-flop Flip-flop Flip-flop	32 2 7	Y Y Y Y	N N N N	N N Y N N	N N N N				

	ices in process Reg_file line 341 in file ome/raid7_2/userb09/b09059/Final_ca/01_RTL/CHIP.v'.
Register Name	Type Width Bus MB AR AS SR SS ST
mem_reg mem_reg	Flip-flop 995 Y N Y N N N N N N N

In	ferred memory devion in routine Cl	HIP		ίn		00	59/F	ina	al_o	a,	/01_	_R	ΓL/(CH:	[Ρ.\	/¹.				
Ī	Register Name	ı	Туре	I	Width	Ī	Bus	I	MB	I	AR	I	AS	I	SR	I	SS	I	ST	Ī
	PC_reg PC_reg		Flip-flop Flip-flop												N N		N N		N N	

Cache:

Inferred memory device in routine Cac '/home		in file		inal_	ca/01_	_RTL/(CHIP.	v'.		
Register Name	Туре	Width	ı Bus	MB	AR	AS	SR	SS	S	Γ
cache_mem_addr_reg cache_mem_data_reg state_reg valid_reg	Flip-flop Flip-flop Flip-flop Flip-flop	512 3		N N N N	Y Y Y	N N N N	N N N N	N N N N	N N N	

CPU architecture

• Design of jal , jalr , auipc

auipc: 將PC+imm 寫入rd, 繼續讀取下一個instruction

jal:PC跳到PC+imm, 將下一個PC寫入rd

jalr:下一個PC設為rs1+imm

```
5'd0:begin//auipc

next_PC = PC + 4;

r_wdata = PC + imm;
end

5'd1:begin //jal

r_wdata = PC + 4;

next_PC = PC +imm;
end

5'd2:begin //jalr

next_PC = rdata1 +imm;
end
```

 How you handle multi-cycle instructions (mul) 使用HW2寫的來修改.

MUL module

inputs: clock signal,reset signal,two input data,i_vaild

outputs: mul_result,mul_stall

為了handle multi-cycle instructions需要mul_stall, 當運算還未做完時, 將mul_stall訊號拉至1, 使PC停止增加, 直到mul運算完成再將mul_result傳出,mul_stall拉回0, PC繼續增加。

 Briefly describe your cache architecture implement method: direct mapped, 16 blocks 1 word/block

● Describe how your cache improves time performance I0因為沒有重複access同一個memory address, 但是做了cache後每次access memory會多需要一個cycle來判斷是否hit, 所以I0的execution cycle上升。但其他的測資的execution cycle都有降低。

Distribution table

彭亞綺:
Control module
ALU control module
ALU module
MUL module
李晴暄
ImmGen

BranchDecide