2.12 1) La suite $(u_n)_{n\in\mathbb{N}}$ est croissante.

Initialisation:
$$u_2 = \sqrt{2u_1 + 35} = \sqrt{2 \cdot 0 + 35} = \sqrt{35} > 0 = u_1$$

Hérédité : Supposons que $u_n < u_{n+1}$ pour un certain $n \in \mathbb{N}$.

L'hypothèse de récurrence donne :

$$u_n < u_{n+1}$$

$$2 u_n < 2 u_{n+1}$$

$$2 u_n + 35 < 2 u_{n+1} + 35$$

$$\sqrt{2 u_n + 35} < \sqrt{2 u_{n+1} + 35}$$

$$u_{n+1} < u_{n+2}$$

On a ainsi démontré que la suite $(u_n)_{n\in\mathbb{N}}$ est croissante.

2) La suite $(u_n)_{n\in\mathbb{N}}$ est majorée par 7.

Initialisation:
$$u_1 = 0 < 7$$

Hérédité: Supposons que
$$u_n < 7$$
 pour un certain $n \in \mathbb{N}$.

De l'hypothèse de récurrence, on infère que :

$$u_n < 7$$

 $2 u_n < 14$
 $2 u_n + 35 < 49$
 $\sqrt{2 u_n + 35} < \sqrt{49}$
 $u_{n+1} < 7$

On a donc prouvé que $u_n < 7$ pour tout $n \in \mathbb{N}$.