· 64 ooseyse . troeor

	>-			j.						
GGGCTGAAAC CCCGACTTTG	CACGGCCCAG :GTGCCGGGTC HişGlyProGly	CTGAGTCTGC GACTCAGACG laGluSerAla	ACACCATATC TGTGGTATAG YHISHISIle	AGGTGTGATT TCCACACTAA ArgCysAspSer	AGATGTGCCG TCTACACGGC lumetCysarg	CATCATCATA GTAGTAGTAT Ylleileile	ATCTGCTCAG TAGACGAGTC IleCysserGly	AGCCCACCCA TCGGGTGGGT InProThrGln	ACCGGCAGAA TGGCCGTCTT uProalaglu	GACTTGGTGC CTGAACCACG AspLeuvalpro
TCTACTTTAA AGATGAAATT	CCGGAAAAGG GGCCTTTTCC aArgLysArg	TTGGTCTCAG AACCAGAGTC LeuValsera	GTCCACCTGG CAGGTGGACC ysProProGl	GCGCTGCACC CGCGACGTGG uArgCysThr	GATTCTCCTG CTAAGAGGAC AspSerProG	AAGAÁTCAGG TTCTTAGTCC YSGluSerGl	CCTGAAAGGC GGACTTTCCG rLeulyscly	AGTATCTTGC TCATAGAACG SerlleLeuG	ATCTGCTGGA TAGACGACCT isleuleugl	TGACTTTGCA ACTGAAACGT PASPPheAla
CGATGCCCGA GCTACGGGCT	CTTCGGGGGC GAAGCCCCCG laSerGlyAl	GGTCCTGCTG CCAGGACGAC aValLeuLeu	GAGGGATTGT CTCCCTAACA GluGlyLeuC	TTTTCTGCTT AAAAGACGAA euPheCysLe	CCGGGAAGAA GGCCCTTCTT eArgGluGlu	TGTGTCCACA ACACAGGTGT Cysvalhisl	TCCTTCCTTA AGGAAGGAAT AlleuProTy	TGAGATCGTG ACTCTAGCAC nGluileval	GAGTCAGAGC CTCAGTCTCG GluserGluH	AGTGCTTCGA TCACGAAGCT InCysPheAs
AATACACCGA TTATGTGGCT	GCCCCGCCC CGGGCCGGC AlaProAlaA	TTGTCGCCGC AACAGCGGCG	CAGCCCCTCA GTCGGGGAGT rSerProser	AATGACCTCC TTACTGGAGG AsnAspLeuL	AAGGCACCTT TTCCGTGGAA luGlyThrPh	TGACATCGAA ACTGTAGCTT rAspileglu	TGGAAGAAAG ACCTTCTTTC TrpLysLysV	ATGTCCTCAA TACAGGAGTT snValleuAs	GTCCCCCGGG CAGGGGGCCC uSerProGly	ACTCTGAGAC TGAGACTCTG ThrLeuargG
GCGCCCACAA CCCCGGGTGTT	GGGACAGAAC CCCTGTCTTG GGlyGlnAsn	CTTGTGCTCG GAACACGAGC LeuvalLeuv	AAAAGAGGTC TTTTCTCCAG lnLysArgSe	CACTCACTGG GTGAGTGACC rThrHisTrp	CAGTGCGAAG GTCACGCTTC GlnCysGluG	CACCCTGGAG GTGGGACCTC hrProTrpse	GTCTTTACTG CAGAAATGAC sSerLeuLeu	GCTGAGGACA CGACTCCTGT AlaGluAspA	TCAACATGTT AGTTGTACAA alasnMetLe	TGCCACTGAG AGGGTGACTC PProthrGlu
CGCAATCTCT GCGTTAGAGA	TGGAACAACG ACCTTGTTGC etGluGlnAr	CCCCAAGACC GGGGTTCTGG lProLysThr	GCCCACAAC CGGGGTGTTG AlaProGlnG	AGGACTATAG TCCTGATATC lnaspTyrse	CACAGTGTGT GTGTCACACA nThrvalcys	GGTGATTGTA CCACTAACAT Glyaspcyst	TTGTTTGCAA AACAAACGTT hevalcysly	ACGACCTGGG TGCTGGACCC nArgProGly	CCAACAGGTG GGTTGTCCAC ProThrGlyV	ATGAAGGTGA TACTTCCACT BNGluGlyAs
CGGAGAACCC	CCTACCGCCA GGATGGCGGT	GGCTCCGGGT CCGAGGCCCA lyLeuArgva	GCAGAGAGCG CGTCTCTCGC nGlnArgAla	AAATATGGAC TTTATACCTG LysTyrGlyG	CGACCAGAAA GCTGGTCTTT hrThrArgAs	GGTCAAGGTC CCAGTTCCAG tValLysVal	GTGGCTGTGT CACCGACACA ValalaValP	CAAGCTCACA CTTCGAGTGT rgsersergl	GCCAGCAGAG CGGTCGTCTC uProalaglu	GTTCCAGCAA CAAGGTCGTT ValProAlaA
AGCACGCGC TCGTGCGCCG	AAGAGCGTTC TTCTCGCAAG	GCCAGGCCTG CGGTCCGGAC AlaargProG	TAGCTCCCCA ATCGAGGGGT euAlaProGl	CATCTCCTGC GTAGAGGACG slleserCys	CCCTGCACCA GGGACGTGGT ProCysThrT	CCAGAGGGAT GGTCTCCCTA roargGlyMe	AGTCTTGATT TCAGAACTAA lValLeuile	CGTGTGGACA GCACACCTGT Argvalaspa	AAGTCCAGGA TTCAGGTCCT luvalgingi	GAGGCTGCTG CTCCGACGAC gArgleuleu
CGCATAAATC GCGTATTTÄG	CTCTCTGATA	GGCGCGGGGA CCGCGCCCT UAlaArgGly	CAACAAGACC GINGILCIGG GlnGlnAspL	GTAGAGATTG CATCTCTAAC lyargaspCy	GGAGCTAAGT CCTCGATTCA lGluLeuser	ACAGGGTGTC TGTCCCACAG ThrGlyCysP	TTGCAGCCGT AACGTCGGCA alalaalava	GGACCCTGAG CCTGGGACTC YASPProGlu	CAGGAAATGG GTCCTTTACC GlnGluMetG	CTCAGAGGAG GAGTCTCCTC erGlnArgAr
1 CCCACGCGTC GGGTGCGCAG	CCACGGCCT GGTGCCCGGA	CTGGGTCCCT	TCTGATCACC AGACTAGTGG	TCAGAAGACG AGTCTTCTGC SerGluAspG	CAGGTGAAGT GTCCACTTCA GlyGluVa	GAAGTGCGG CTTCACGGCG LysCysArg	GGAGTCACAG CCTCAGTGTC Glyvalthrv	Greerecrec CACCACCACC GlyclyGl	GGTCCCTGAG CCAGGGACTC ValProglu	GCTGAAAGGT CGACTTTCCA Alagluargs
	101	201	301	401	501	601	701	801	901	1001

GACCCTCGGC GAGTACTCCT TCAACCCGGA GTACGTGTTA GTGTATTTGC ACCGAACTTGG ACTCCGTCGC CCGGTGTCCC TGTGGAACAT TTTPG1uPro LeuMetArgt ysLeuGlyLe uMetAspAsh GluileLysV alalabysAl aclualaala GlyHsArga spThrLeuTyr lyGluArgle uAlaLysGln TAAGAGAGT CCTTCACTCT ACCGIGITAA CAGIGIACIG GCCAIGACCI ICITIGAGAG ACGGTTCGTC GGAAGTGAGA GATACCTTTA ATTATTAT TGCCAAGCAG CGGTACTGGA AGAAACTCTG GGCCACAGGG ACACCTTGTA TAAATAATA CCGCCGCCC TGAGATCTCA GCTGGACGTC TTCGAACCGG CGGTACCGG ATTCTCTTCA GAGAGAGACT CTCTCTCTGA TTATTCCTGT TCGTGAAAA ATAGGATTAC ATTTACGAAA GGCGCCGCG ACTCTAGAGT CGACCTGCAG AAGCTTGGCC TAAATGCTTT AATAAGGACA AlaserValH isThrLeule uAspAlaLeu GluThrLeuG CCTAAGIGIG GGATTCACAC GAGACGCIGG GTCACATGAC CTCATGAGGA AGTIGGGGCT CATGGACAAT GAGATAAAGG TGGCTAAAGC TGAGGCAGCG CTCTGCGACC TATCCTAATG TCAATCTCAT ACTTACACTA SerAlaXqqS eroG* GCCTCTGTCC ACACCCTGCT GGATGCCTTG TCTGCCWTGT AGACGGAACA TCCCACAATT CCTACGGAAC TTTTATAAGC AACCGTAATA AAAATATTCG AGCACTTTTT TGTGGGACGA TAATGCAGAC ATTACGTCTG yAsnAlaAsp AGTAGGAAAG TIGITTICAC TCATCCTTTC TIGGCATTAT AACAAAAGTG GACTCCAGTC ATCTAGAAGG TAGATCTTCC yrLeuGluGl CGGAGACAGG CTGAGGTCAG ACCCTACAGT TTCACTGCAC AAGTGACGTG TGGGATGTCA AAAAAAAAG TTTTTTTC CGGGCGAGAIT rGlyArgAsp AAGTTCATGT GCCCGCTCTA TTCAAGTACA LysPheMetT AGCCCAACTG AAAAAAAAA TCGGGTTGAC CCTGTAACTT AGATTTGGTT GGACATTGAA TCTAAACCAA TCAACAAAAC TTCTGGAAAA alAsnLysTh GAGCTCTGGA uSerSerGly AAATGGAAAA AAGACCTTTT GATGGAACAT AGTICITITE CTCGAGACCT CTACCTTGTA GCGTACTTTG CATCTACAAA CGCATGAAAC GTAGATGTTT CTGGGAGCCG IleLysTrpV TTTACCTTTT TICCGITIGI ATAAAGTGGG TATITICACCC AACCCGATGT AACATTCTAG ACCACTTGTT TCACCCAGIG TIGGGCTACA TIGIAAGAIC TGGTGAACAA spHisLeuLe AGTGGGTCAC AAGGCAAACA Pheaspaa 1101 CCTTTGACTC GGAAACTGAG ThrMetLeu CACGATICCTC 1301 AAGATTGAGG Lysileglua GGTAGGTTGT CÁGACCTAGT TTCTAACTCC CCTTCCCTGG GTCTGGATCA GTCCTACGAC GGAAGGGACC CCATCCAACA 355 1601 388 1401 1501 1701

The state of the s

1

Fig. 1 (cont.)

Fig.

LAPQQRAAPQQKRSSPSEGLCPPGHHISEDGRDCISCKYGQDXSTHWNDLLFCLRCTRCD SGEVELSPCTTTRNTVCQCEÉGTFRÉEDSPEMCRKCRTGCPRGMVKVGDCTPWSDIECVE KESGIIIGVTVAAVVLIVAVEVCKSLLMKKVLPYLKGICSGGGDPERVDRSSQRPGAED nvenetvstloptovpeoemevoepaeptgvmmlspgesehllepaeaersorrrlivpa <u>meorgonapaasgarkrigpgpreargarpglrvpktlvlvvaavlllvsaesalitqod</u> NEGDPTETTROCFDDFADIVPFD<u>SWEPIMRKIGIMDNEIKVAKABAAGHRDTLYTMLIKW</u> VNKTGRDASVHTLLDALETLGERLAKQKIEDHLISSGKFMYLEGNADSALS 121 181 241 301

--6BRDTE --GPGDRD --FRDQQ FDSWEPLMEKIGHMENKINAKAEAA - - GHROTE FDSMDQLMEQEDNTKNETDVVRAGTA - - GPGDAN ARRWKEEVRTEGTREAETEAVEVETGT - - FRDQO PLRMKERWREEUSDHEIDRLELONGR - CLRERO LSQVKGEVRKNGVNEAKIDEIKNDNVODTAEOKV INGVATISOV VVENCEPLR EADI MANI VMDA Apo3/DR3 Fas/Apol TNFRI Apo2 DR4

RD-ASVETTIDADETLGEBLAROKÎED RN-ASIETLIDADERMEEREAKEKIOD ----AGEGAVYAALERNGEDGCVEDLRS PREATEETGRVERDMDILGCLEDEE KKEAY-DELIKDEKKANICILAEKIOT YAMLMENWAKEGEN-A-AG TEHLKRHROOOF-A-AG YSKUATHRRRIPERE Apo3/DR3 Fas/Apol TNFRI Apo2 DR4

下9.

SB B

> nlabelled probe Labelled probe Antt-p65

EodA

SoqA PAG

Vector

SogA 4AG EogA

Vector

*. реэц prain placenta նսոլ liver ek muscle **Kjquqe** pancreas ableen i estate i sumydt eitest οναιγ sm intest colon ьвг

> nisrd ճսոլ liver Kiquqeλ

Fig. GB

Fig. 7

ì

Fig. 8

Fig. 9

Fig: 10

1

 $\{1\}$

Fig. 11

ì

Fig. 12A

Fig. 12B

Fig. 12C

Fig. 13C

ATGACCATGA TTACGCCAAG CTTTGGAGCC TTTTTTTTGG AGATTTTCAA 50 CGTGAAAAAA TTATTATTCG CAATTCCTTT AGTTGTTCCT TTCTATGCGG 100 CCCAGCCGGC CATGGCCGAG GTGCAGCTGG TGCAGTCTGG GGGAGGTGTG 150 GAACGGCCGG GGGGGTCCCT GAGACTCTCC TGTGCAGCCT CTGGATTCAC 200 CTTTGATGAT TATGGCATGA GCTGGGTCCG CCAAGCTCCA GGGAAGGGGC 250 TGGAGTGGGT CTCTGGTATT AATTGGAATG GTGGTAGCAC AGGATATGCA 300 GACTCTGTGA AGGGCCGAGT CACCATCTCC AGAGACACG CCAAGAACTC 350 CCTGTATCTG CAAATGAACA GCCTGAGAGC CGAGGACACG GCCGTATATT 400 ACTGTGCGAA AATCCTGGGT GCCGGACGGG GCTGGTACTT CGATCTCTGG 450 GGGAAGGGGA CCACGGTCAC CGTCTCGAGT GGTGGAGGCG GTTCAGGCGG 500 AGGTGGCAGC GGCGGTGGCG GATCGTCTGA GCTGACTCAG GACCCTGCTG 550 TGTCTGTGGC CTTGGGACAG ACAGTCAGGA TCACATGCCA AGGAGACAGC 600 CTCAGAAGCT ATTATGCAAG CTGGTACCAG CAGAAGCCAG GACAGGCCCC 650 TGTACTTGTC ATCTATGGTA AAAACAACCG GCCCTCAGGG ATCCCAGACC 700 GATTCTCTGG CTCCAGCTCA-GGAAACACAG CTTCCTTGAC CATCACTGGG 750 GCTCAGGCGG AAGATGAGGC TGACTATTAC TGTAACTCCC GGGACAGCAG 800 TGGTAACCAT GTGGTATTCG GCGGAGGGAC CAAGCTGACC GTCCTAGGTG 850 CGGCCGCACA TCATCATCAC CATCACGGGG CCGCAGAACA AAAACTCATC 900 TCAGAAGAG ATCTGAATGG GGCCGCATAG 930

Fig. 15A

ATGACCATGA TTACGCCAAG CTTTGGAGCC TTTTTTTTGG AGATTTTCAA 50 CGTGAAAAA TTATTATTCG CAATTCCTTT AGTTGTTCCT TTCTATGCGG 100 CCCAGCCGGC CATGGCCGGG GTGCAGCTGG TGGAGTCTGG GGGAGGCTTG 150 GTCCAGCCTG GGGGGTCCCT GAGACTCTCC TGTGCAGCCT CTGGATTCAC 200 CTTTAGTAGC TATTGGATGA GCTGGGTCCG CCAGGCTCCA GGGAAGGGGC 250 TGGAGTGGGT GGCCAACATA AAGCAAGATG GAAGTGAGAA ATACTATGTG 300 GACTCTGTGA AGGGCCGATT CACCATCTCC AGAGACACG CCAAGAACTC 350 ACTGTATCTG CAAATGAACA GCCTGAGAGC CGAGGACACG GCTGTGTATT: 400 ACTGTGCGAG AGATCTTTTA AAGGTCAAGG GCAGCTCGTC TGGGTGGTTC 450 GACCCCTGGG GGAGAGGGAC CACGGTCACC GTCTCGAGTG GTGGAGGCGG 500 TTCAGGCGGA GGTGGTAGCG GCGGTGGCGG ATCGTCTGAG CTGACTCAGG 550 ACCCTGCTGT GTCTGTGGCC TTGGGACAGA CAGTCAGGAT CACATGCCAA 600 GGAGACAGCC TCAGAAGCTA TTATGCAAGC TGGTACCAGC AGAAGCCAGG 650 ACAGGCCCCT GTACTTGTCA TCTATGGTAA AAACAACCGG CCCTCAGGGA 700 TCCCAGACCG ATTCTCTGGC TCCAGCTCAG GAAACACAGC TTCCTTGACC 750 ATCACTGGGG CTCAGGCGGA AGATGAGGCT GACTATTACT GTAACTCCCG 800 GGACAGCAGT GGTAACCATG TGGTATTCGG CGGAGGGACC AAGCTGACCG 850 TCCTAGGTGC GGCCGCACAT CATCATCACC ATCACGGGGC CGCAGAACAA 900 AAACTCATCT CAGAAGAGGA TCTGAATGGG GCCGCATAG 939

Fig. 158

ATGACCATGA TTACGCCAAG CTTTGGAGCC TTTTTTTTGG AGATTTTCAA 50 CGTGAAAAA TTATTATTCG CAATTCCTTT AGTTGTTCCT TTCTATGCGG 100 CCCAGCCGGC CATGGCCCAG GTGCAGCTGG TGCAGTCTGG GGGAGGCGTG 150 GTCCAGCCTG GGCGGTCCCT GAGACTCTCC TGTGCAGCTT CTGGGTTCAT 200 TTTCAGTAGT TATGGGATGC ACTGGGTCCG CCAGGCTCCA GGCAAGGGGC 250 TGGAGTGGGT GGCAGGTATT TTTTATGATG GAGGTAATAA ATACTATGCA 300 GACTCCGTGA AGGGCCGATT CACCATCTCC AGAGACAATT CCAAGAACAC 350 GCTGTATCTG CAAATGAACA GCCTGAGAGC TGAGGACACG GCTGTGTATT 400 ACTGTGCGAG AGATAGGGGC TACTACTACA TGGACGTCTG GGGCAAAGGG 450 ACCACGGTCA CCGTCTCCTC AGGTGGAGGC GGTTCAGGCG GAGGTGGCTC 500 TGGCGGTGGC GGATCGCAGT CTGTGTTGAC GCAGCCGCCC TCAGTGTCTG 550 GGGCCCCAGG ACAGAGGGTC ACCATCTCCT GCACTGGGAG AAGCTCCAAC 600 ATCGGGGCAG GTCATGATGT ACACTGGTAC CAGCAACTTC CAGGAACAGC 650 CCCCAAACTC CTCATCTATG ATGACAGCAA TCGGCCCTCA GGGGTCCCTG 700 ACCGATTCTC TGGCTCCAGG TCTGGCACCT CAGCCTCCCT GGCCATCACT 750 GGGCTCCAGG CTGAAGATGA GGCTGATTAT TACTGCCAGT CCTATGACAG 800 CAGCCTGAGG GGTTCGGTAT TCGGCGGAGG GACCAAGGTC ACTGTCCTAG 850 GTGCGGCCGC ACATCATCAT CACCATCACG GGGCCGCAGA ACAAAAACTC 900 ATCTCAGAAG AGGATCTGAA TGGGGCCGCA TAG 933

Fig. 15C

	Apo-2.16E2.his Apo-2.20E6.his Apo-2.24C4.his	signal Heavy chain 1 MIMITPSFGAFFLEIFNVKKLLFAIPLVVPFYAAQPAMAEVQLVQSGGV 1 MIMITPSFGAFFLEIFNVKKLLFAIPLVVPFYAAQPAMAGVQLVESGGU 1 MIMITPSFGAFFLEIFNVKKLLFAIPLVVPFYAAQPAMAQVQLVQSGGV
	Apo-2.16E2.his Apo-2.20E6.his Apo-2.24C4.his	CDR1 CDR2 51 ERPGGSLRLSCAASGFTFDDYGMSWRQAPGKGLEWSGINMNGGSTGYA 51 VQPGGSLRLSCAASGFTFSSYWMSWRQAPGKGLEWANIKODGSEKYYV 51 VQPGRSLRLSCAASGFIFSSYGMHWRQAPGKGLEWAGIFYDGGNKYYA
4 1 1 1	Apo-2.16E2.his Apo-2.20E6.his Apo-2.24C4.his	CDR3 101 <u>DSVKCRVTISRDNAKNSLYLQMNSLRAEDTAVYYCAK ILGACRGWY</u> 101 <u>DSVKCRFTISRDNAKNSLYLQMNSLRAEDTAVYYCAR DLLKVKGSSSGW-</u> 101 <u>DSVKCRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAR DRGYY</u>
	Apo-2.16E2.his Apo-2.20E6.his Apo-2.24C4.his	Light chain 147 <u>F-DL</u> WGKGTTVIVSSGGGGSGGGGGGGGGGGGGGGGGGGGGGGGGGG
	Apo-2.16E2.his Apo-2.20E6.his Apo-2.24C4.his	CDR1 CDR2 195 TCQGDSLRSYYASWYQQKPGQAPVLVTYGKNNRPSGIPDRFSGSSSG 198 TCQGDSLRSYYASWYQQKPGQAPVLVTYGKNNRPSGIPDRFSGSSSG 193-SETGRSSNTGAGHDVHWYQQLPGTAPKLLTYDDSNRPSGVPDRFSGSRSG
	Apo-2.16E2.his Apo-2.20E6.his Apo-2.24C4.his	CDR3 242 NTASLTTTGAQAEDEADYYCNSRDSSCNHVVFGGGTKLTVLGAAAHHHHH 245 NTASLTTTGAQAEDEADYYCNSRDSSCNHVVFGGGTKLTVLGAAAHHHHH 243 TSASLATTGLQAEDEADYYCOSYDSSLRGSVFGGGTKVTVLGAAAHHHHH
	Apo-2.16E2.his Apo-2.20E6.his Apo-2.24C4.his	292 HGAAEQKLISEEDLNGAA 295 HGAAEQKLISEEDLNGAA 293 HGAAEQKLISEEDLNGAA

Fig. 16