IP - Adressierung - Intro Netzwerkgrundlagen (NWG2)

Markus Zeilinger¹

¹FH Oberösterreich Department Sichere Informationssysteme

Sommersemester 2023

Wichtiger Hinweis

Alle Materialien, die im Rahmen dieser LVA durch den LVA-Leiter zur Verfügung gestellt werden, wie zum Beispiel Foliensätze, Audio-Aufnahmen, Übungszettel, Musterlösungen, ... dürfen ohne explizite Genehmigung durch den LVA-Leiter NICHT weitergegeben werden!

Internetschicht in der TCP/IP Protokollfamilie

Aufgabe der Internetschicht

Paketvermittelnder, verbindungsloser und unzuverlässiger Internetwork-Dienst ("best effort"), abstrahiert von Eigenschaften der Netzwerktechnologien darunter.

- Kernaufgaben der Internetschicht und damit von IP
 - ► Logische, hierarchische Adressierung (IP Adressen)
 - Routing (Wegefindung) und Forwarding (Weiterleitung)
 - ► Fragmentierung und Defragmentierung (Reassembly)
- ▶ Protokolle: Internet Protocol (IP) in Version 4 (RFC 791 [1]) und 6 (RFC 8200 [2])

- Logische Adressen, weltweit eindeutige Identifikation von Netzwerk Interfaces.
 - ▶ IPv4: 32 Bit Adresse ($\rightarrow \approx$ 4.3 Mrd Adressen)
 - ► IPv6: 128 Bit Adresse (→≈ 340 Trillionen Trillionen Adressen)
- Manuelle/Statische Netzwerkkonfiguration = Benutzer muss notwendige Informationen manuell am System eintragen → stark abhängig vom OS.
- Automatische/Dynamische Netzwerkkonfiguration
 - Dynamic Host Configuration Protocol (DHCP) für IPv4 (RFC 2131) und IPv6 (RFC 8415)
 - ► Stateless Address Autoconfiguration (SLAAC) für IP6 (RFC 4862)
 - Zeroconf-Techniken (RFC 3927): Microsoft APIPA (Automatic Private IP Addressing), Apple Bonjour, ...

IP Adressierung

Repräsentation

► IPv4: Dotted Decimal Notation = Trennung 4 dezimaler Oktette durch Punkte (.) (z. B. 185.252.72.10).

() (3 1	6 2	4	32
Binär	10111001	11111100	01001000	00001010	
Hexadezimal	b9	fc	48	0a	
Dotted Decimal	185	252	72	10	

► IPv6: Colon Hexadecimal Notation = Trennung 8 hexadezimaler Wörter durch Doppelpunkte (:) (z. B. 2a0c:2345:3013::38).

() 1	.6 3	2	48	64	80	96	112	128
Binär	00101010 00001100	00100011 01000101	00110000 00010011	00000000	00000000	00000000 00000000	00000000 00000000	00000000 00111000	
Colon Hexadecimal	2a0c	2345	3013	0000	0000	0000	0000	0038	
Zero-Compressed	2a0c	2345	3013	er er			38		

Netz-/Host-Anteil I

- ▶ Jede IP Adresse besteht aus zwei Teilen (hierarchische Strukturierungsmöglichkeit).
 - 1. Netz-Anteil (Network ID) = Netzwerk, in dem sich das Interface befindet.
 - Host-Anteil (Host ID bzw. Interface ID [IPv6]) = Identifikation des Interfaces innerhalb des Netzwerks.
- Vergleich Postwesen: Netz-Anteil == Postleitzahl, Host-Anteil bzw. Interface ID == Strasse + Hausnummer
- Router verwenden Netz-Anteil zur Wegefindung (Routing).

Netz-/Host-Anteil II

► IPv4 Netz-/Host-Anteil Teilung Beispiel 1 (Teilung an Oktett-Grenze):

Netz-Anteil (alle Host-Bits = 0)

Host-Anteil (alle Netz-Bits = 0)

Netz-/Host-Anteil III

▶ IPv4 Netz-/Host-Anteil Teilung Beispiel 2 (Teilung mitten in einem Oktett):

Netz-Anteil (alle Host-Bits = 0)

Host-Anteil (alle Netz-Bits = 0)

IP Adressierung

Netz-/Host-Anteil IV

► IPv6 Netz-Anteil/Interface Identifier (ID) Teilung Beispiel (für Global Unicast Adressen, Interface ID 64 Bit):

Netz-Anteil (Interface Identifier = 0)

Referenzen I

- [1] J. Postel, "Internet Protocol," Sep. 1981, S. 45. DOI: 10.17487/rfc0791. Adresse: https://www.rfc-editor.org/info/rfc0791.
- [2] S. Deering und R. Hinden, "Internet Protocol, Version 6 (IPv6) Specification," Juli 2017, S. 42. DOI: 10.17487/RFC8200. Adresse: https://www.rfc-editor.org/info/rfc8200.

