CHE 361 Bioprocess Engineering

Lecture 1: Introduction

Outline

- Course Structure
- Course Objectives
- Course Outline & Timetable
- Introduction:
- The Central Dogma of Molecular Biology
- > The Concept of Bioprocess

Course Structure

Instructor: **Prof. David Simakov**

E6-2020, dsimakov@uwaterloo.ca

Teaching Assistant: Danny Kang

E6-4118, danny.kang@uwaterloo.ca

Schedule:

Lectures: Tuesday, 01:30 – 03:20 PM, E6 2024

Thursday, 01:30 – 02:20 PM, E6 2024

Tutorials: Thursday, 02:30 – 03:20 PM, E6 2024

Course Structure

Lecture Notes & Assignments:

UWaterloo LEARN (https://learn.uwaterloo.ca/)

Recommended Textbooks:

M.L. Shuler, F. Kargi, M. Delisa, Bioprocess Engineering. Basic Concepts, Prentice Hall, 2017; ISBN: 978-0-13-706270-6

H.W. Blanch, D.S. Clark, Biochemical Engineering, CRC Press, 1997; ISBN: 978-0-8247-0099-7

Grading Scheme:

Homework 20%

Midterm 30%

Final Exam 50%

Course Objectives

- This course reviews first basic aspects of biochemistry and molecular biology focusing on gene expression and metabolic regulation.
- Biological systems for the commercial production of pharmaceuticals, chemicals, fuels, biomaterials etc. are introduced. Biosafety and sustainability are discussed.
- After that the course introduces the concepts of *enzyme* catalysis and *microbial growth* and apply these concepts to the *design of bioreactors*.

Course Objectives: Topics

Topics include *enzyme kinetics, cell growth kinetics, and bioreactor design & analysis*.

- Biochemical reaction kinetics are derived and material balances are developed for bioreactors operated in different modes including batch, fed-batch, continuous stirred-tank reactor, recycle and perfusion.
- Transport (mass and heat) transfer considerations for bioreactors are introduced.
- Downstream processing associated with biological systems and recovery of biological products are discussed.

Learning Outcomes

At the end of the course, a student should be able to:

- 1. Demonstrate competence in the fundamental concepts of Biochemical Engineering
- 2. Demonstrate competence in the concepts of enzyme catalysis and microbial growth
- 3. Apply these concepts to design and analysis of bioreactors

Course Outline & Tentative Timetable

Week 1: Introduction & Basic Principles

Week 2: Gene Expression & Metabolic Regulation

Week 3: Enzyme Kinetics

Week 4: Enzymatic Reactor Design

Week 5: Microbial Growth

Week 6: Bioreactor Design: Stoichiometry & Mass

Balances

Course Outline & Tentative Timetable

Week 7: Batch & CSTR

Week 8: Chemostat

Week 9: Fed-Batch & Perfusion

Week 10: Transport in Bioreactors

Week 11: Bioprocess Design

Week 12: Bioprocess Design

Basic Principles

- Biochemical Engineering using the concepts from Biology, but focuses more on Engineering
- The focus is more on the development of equations and their analysis
- Biochemical Engineers heavily rely on Biology but use Biology more as a tool, less as a subject of investigation
- Biochemical Engineers want to describe biological processes using mathematical representation
- The ultimate goal is to perform a biological process in a confined, controllable environment (a bioreactor) and to produce the desirable product on a large scale

CHE 361 10

The Central Dogma of Molecular Biology

 The central dogma of molecular biology describes the two-step process, transcription and translation, by which the information in genes flows into proteins: DNA → RNA → protein.

The Central Dogma (Cont'd)

- Information is stored in the DNA molecule
- This information can be directly replicated to form an identical DNA molecule
- Segments of the DNA molecule is transcribed to yield RNAs
- The information decoded in RNAs is translated into proteins
- The proteins perform a <u>structural</u> or <u>enzymatic</u> role

CHE 361

12

Special Transfers

The Central Dogma: More details

The Concept of Bioprocess

- Purposes:
- Biomanufacturing
- Waste treatment
- Feedstocks (substrates):
- Raw materials
- Wastes
- Bioproducts (high value):
- Ribosomal products (proteins & peptides)
- Non-ribosomal products (metabolites)

General Bioprocess Flowsheet

Bioreaction

- Bioreaction (also known as biotransformation or bioconversion) is an essential part of any bioprocess
- Bioreactions are mediated/catalyzed by biocatalysts, either enzymes or living cells
- Bioreactions are conducted in bioreactors, in a confined environment under well-controlled conditions

Types of Bioproducts

Products derived from bioprocess:

- Cells, Proteins, DNAs
- Metabolites (amino acids, organic acids, antibiotics, solvents, etc.)
- Can be intracellular or extracellular
- Often diluted in a fermentation broth
- Can be structurally unstable (e.g., proteins)

Examples of Bioreactions/Bioproducts

- Value-added: 6-Aminopenicillanic acid (6-APA) production (in vitro, one-step)
- Metabolites: ethanol, butanol, amino acid production (in vivo, multi-step)
- Recombinant proteins: production of industrial enzymes and therapeutic proteins (in vivo, multi-step)

Biocatalysts

- Enzyme biocatalyst
 - ✓ Free enzymes
 - ✓ Immobilized enzymes
- Whole-cell biocatalyst
 - ✓ Cell suspensions
 - ✓ Immobilized cells

Enzymatic vs. Cell Catalysis

	Enzymatic	Cells
Specificity	single-step	multi-step
Byproducts	less (or none)	more
Transformation	only reaction	reaction + cell growth
Processing time	short	long

Cell Factory

CHE 361 22

Examples of Cell Factories

- Prokaryotic cells: bacteria (e.g., Escherichia coli, Bacillus, Clostridia)
- Eukaryotic cells: yeast (e.g., Saccharomyces cerevisiae), fungi, (micro)algae, insects, animals (Chinese hamster ovary), plants

Cell Engineering

- Genetic manipulation of host cell to improve its practical applications
- Gene overexpression (plasmid); gene knockout (genome); gene knock-in (genome); gene knock-down (antisense RNA); gene editing (genome)
- Prerequisite for a new host cell system: gene transformation

Bioreactor (Stirred Tank)

Bioprocess (Ethanol PFD)

26

Bioprocess Stages

- Upstream: construction of biological strains (molecular biological tools are required to derive host/vector systems)
- Midstream: cultivation and bioreaction
- Downstream: bioseparation and purification (representing the major cost, easily more than 50%, for the overall bioprocess)

Separations

- Approach: physical vs. chemical
- Separation factors: molecular/particle size, intermolecular force (e.g., ionic strength, hydrophobic interaction, affinity, etc.), physical/chemical properties (e.g., density, diffusivity, solubility, etc.)
- Purpose: analytical or preparative

Separation Methods

CHE 361

29

Bioseparations

- Traditional unit operations for physical separation: distillation, absorption, extraction, evaporation, crystallization, filtration, centrifugation
- Preparative chromatography: affinity, ionexchange, hydrophobic interaction

Purification & Separation Example

Any questions so far?

