Day 3: Programming with Python

Advanced Pandas

In this unit we will explore more functionalities of Pandas that we can apply to analyse the data of the DataFrames. We will see how we can select data that meet specific conditions and how we can perform statistical analysis on them.

In the first part we will see how to find and deal with missing values and then we will see how to calculate statistics from the data. We will also explore the functionality of groupby that allows us to split the data into separate groups to perform computations for better analysis.

For this unit we need Pandas.

O. Import pandas and read a file

We will start with importing pandas and reading the file netherlands-population-2021-06-09_missing.csv

```
In [1]:
        import pandas as pd
        df = pd.read csv("../data/netherlands-population-2021-06-09 missing.csv")
        df.info()
        <class 'pandas.core.frame.DataFrame'>
       RangeIndex: 40 entries, 0 to 39
       Data columns (total 2 columns):
            Column
                      Non-Null Count Dtype
                       _____
        0
            date
                      40 non-null
                                      int64
          population 36 non-null
                                     float64
       dtypes: float64(1), int64(1)
       memory usage: 768.0 bytes
In [2]:
        df.head()
        date population
Out[2]:
        0 1980 14148415.0
        1 1981 14223763.0
        2 1982
                    NaN
        3 1983 14365385.0
        4 1984
                    NaN
```

1. Missing values

Key points:

• df.isnull() - Returns a boolean same-sized object indicating if the values are NA

- df.isnull().sum() Returns the number of missing values in the DataFrame per column
- df.dropna() Drops rows which contain missing values
- df.fillna() Fills missing values with the specified method
- df.fillna(method = 'ffill') Fills missing values with forward filling
- df.fillna(method = 'bfill') Fills missing values with backward filling

Pandas gives us functionality to check if there are missing values in the dataset and methods to handle them.

There are different ways to address the missing values. The first is to ignore the missing values and work with the rest of the data if there are enough.

The alternative is to use data imputation. There are different methods that can be used for data imputation. If we are dealing with temporal data we can use the previous or the next value. Another common way is to calculate the mean or median of the existing observations. However, when there are many missing variables, mean or median results can result in a loss of variation in the data.

We will now see how we can handle missing values in Pandas.

The first step is to check if there are any null values in the dataset.

A very useful method is the <code>isnull()</code> that returns the boolean value for every data point. With the <code>sum()</code> we can also see how many missing values we have per column

In [3]: df.isnull()

Out[3]:		date	population
	0	False	False
	1	False	False
	2	False	True
	3	False	False
	4	False	True
	5	False	False
	6	False	False
	7	False	False
	8	False	False
	9	False	False
	10	False	False
	11	False	False
	12	False	False
	13	False	False
	14	False	False
	15	False	True
	16	False	False

17 False

False

	date	population
18	False	False
19	False	False
20	False	False
21	False	False
22	False	False
23	False	True
24	False	False
25	False	False
26	False	False
27	False	False
28	False	False
29	False	False
30	False	False
31	False	False
32	False	False
33	False	False
34	False	False
35	False	False
36	False	False
37	False	False
38	False	False
39	False	False
df	.isnul	l().sum()

```
In [4]:
```

0 Out[4]: date population dtype: int64

Remove with dropna

One way of dealing with the missing data is to remove them. Pandas provides the dropna() function that can drop all of those rows which have any missing data. Let's print the 15 first rows to see the result

```
In [5]:
         df.dropna().head(15)
```

```
date
                  population
Out[5]:
         0 1980 14148415.0
          1 1981 14223763.0
         3 1983 14365385.0
```

	date	population
5	1985	14513949.0
6	1986	14595755.0
7	1987	14682649.0
8	1988	14774038.0
9	1989	14868655.0
10	1990	14965448.0
11	1991	15064519.0
12	1992	15165862.0
13	1993	15268006.0
14	1994	15369120.0
16	1996	15563255.0
17	1997	15655475.0

We observe that some of the rows (e.g., 2, 4) are now missing.

Fillna function

One of the useful functions that Pandas has for working with missing values is the filling function called fillna(). This function takes a number of parameters. You can pass in a single value which is called a scalar value to change all of the missing data to one value.

Let's fill the missing values with 0

```
In [6]:
    df1 = df.fillna(0)
    df1.head(12)
```

```
date
                  population
Out[6]:
         0 1980 14148415.0
          1 1981
                 14223763.0
         2 1982
                         0.0
         3 1983 14365385.0
         4 1984
                         0.0
         5 1985 14513949.0
         6 1986 14595755.0
         7 1987 14682649.0
         8 1988 14774038.0
         9 1989 14868655.0
         10 1990 14965448.0
         11 1991 15064519.0
```

The fillna() method can also take values that indicate if we want to fill the missing values with the values of the previous or the next item row.

ffill() is for forward filling and it updates an na value for a particular cell with the value from the previous row. bfill() for backward filling which fills the missing values with the next valid value.

We can set the parameter method to ffil(). We will make a new dataframe df1 for that.

```
In [7]:
    df1 = df.fillna(method = 'ffill')
    df1.head()
```

```
      Out[7]:
      date
      population

      0
      1980
      14148415.0

      1
      1981
      14223763.0

      2
      1982
      14223763.0

      3
      1983
      14365385.0

      4
      1984
      14365385.0
```

Now we can set the parameter method to \mbox{bfill} . We will make a new dataframe $\mbox{df1}$ for that.

```
In [8]: df1 = df.fillna(method = 'bfill')
    df1.head(10)
```

Out[8]:		date	population
	0	1980	14148415.0
	1	1981	14223763.0
	2	1982	14365385.0
	3	1983	14365385.0
	4	1984	14513949.0
	5	1985	14513949.0
	6	1986	14595755.0
	7	1987	14682649.0
	8	1988	14774038.0
	9	1989	14868655.0

2. Descriptive statistics

Key points:

- df.describe() Generates descriptive statistics of the DataFrame
- df[col_name].describe() Generates descriptive statistics of a column
- df[col_name].mean() Returns the mean of a column
- df[col_name].sum() Returns the sum of a column
- df.col_name1[df['col_name2'] > < = x].mean() Returns the mean of a column based on a condition

There is a large number of methods for computing descriptive statistics and other related operations on Series and DataFrames. Most of these are aggregations like sum(), mean(), and quantile().

The function describe()

The describe() function generates a range of descriptive statistics of a dataset's distribution. With describe() we can view the count, mean, std, min, max and quartiles of the numerical data of the DataFrame.

Let's first load some data for that. We will use the supermarket_sales.csv file for that. Let's read the file and print some basic statistics

```
In [9]:
    df = pd.read_csv('../data/supermarket_sales.csv')
    df.head()
```

Out[9]:		Invoice ID	Branch	City	Customer type	Gender	Product line	Unit price	Quantity	Tax 5%	
	0	750- 67- 8428	А	Yangon	Member	Female	Health and beauty	74.69	7	26.1415	548
	1	226- 31- 3081	С	Naypyitaw	Normal	Female	Electronic accessories	15.28	5	3.8200	80
	2	631- 41- 3108	А	Yangon	Normal	Male	Home and lifestyle	46.33	7	16.2155	340
	3	123- 19- 1176	А	Yangon	Member	Male	Health and beauty	58.22	8	23.2880	489.
	4	373- 73- 7910	А	Yangon	Normal	Male	Sports and travel	86.31	7	30.2085	634

```
In [10]: df.describe()
```

Out[10]:		Unit price	Quantity	Tax 5%	Total
	count	1000.000000	1000.000000	1000.000000	1000.000000
	mean	55.672130	5.510000	15.379369	322.966749
	std	26.494628	2.923431	11.708825	245.885335
	min	10.080000	1.000000	0.508500	10.678500
	25%	32.875000	3.000000	5.924875	124.422375
	50%	55.230000	5.000000	12.088000	253.848000
	75%	77.935000	8.000000	22.445250	471.350250
	max	99.960000	10.000000	49.650000	1042.650000

If we want the descriptive statistics of only one column (e.g., Quantity), we can first get the data of the column and then apply the describe() function:

```
Out[11]: count
                   1000.000000
                     5.510000
         mean
                      2.923431
         std
         min
                      1,000000
         2.5%
                      3,000000
         50%
                      5,000000
                      8.000000
         75%
                     10.000000
         max
         Name: Quantity, dtype: float64
```

There are also functions that can be used to get a specific statistic of a set of data. For example, if we want to calculate the mean of the Quantity we can do it with the mean () function:

```
Out[12]: df.Quantity.mean()

Out[12]: 5.51

Or if we want to get the sum of the Quantity we do it with the sum() function:
```

```
In [13]: df.Quantity.sum()
```

Out[13]: 5510

Conditional statistics

In [11]: | df.Quantity.describe()

We can also put some boolean expressions to apply the function on data that meet a spcific condition. Let's say we want to calculate the mean Quantity bought from customers that have bought at least 5 items.

```
In [14]: df.Quantity[df['Quantity'] > 6].mean()
Out[14]: 8.57286432160804
```

3. Group by

Key points:

- df.groupby('col_name') Splits the data into groups based on a column
- df.groupby('col_name').groups Returns the groups created after groupby
- df_product.get_group('group_name').head() Prints the first rows of a specific group
- df.groupby('col_name').size() Prints the size of groups
- **df.groupby(['col_name'])['col_name'].mean()** Returns the mean of a specific column after groupby operation
- df.groupby(['col_name','col_name'])['col_name'].describe() Returns descriptive statistics of of a specific column after groupby operation

The Groupby operation that is undoubtedly one of the most powerful functionalities of Pandas . Groupby allows adopting a split-apply-combine approach to a data set. This approach is often used to slice and dice data in such a way that a data analyst can answer a specific question.

On a high-level groupby allows to:

- 1. Split the data based on column(s)/condition(s) into groups;
- 2. Apply a function/transformation to all the groups and
- 3. Combine the results into an output

![groupBy.png]

Product	Quantity					
Sports	10	10	0		٦,	
Sports	8	8		9		
Fashion	2	7	,			9
Fashion	3			3		3
Fashion	4	4	ı ,			

Let's say we are interested to split the data based on their product line. We can do that with the group by operation.

```
In [15]: df_product = df.groupby('Product line')
    df_product.groups
```

Out[15]: {'Electronic accessories': [1, 5, 6, 11, 12, 20, 23, 37, 45, 48, 55, 59, 73, 7 5, 95, 97, 102, 105, 109, 120, 133, 136, 156, 172, 173, 194, 201, 202, 206, 20 9, 210, 217, 220, 222, 227, 228, 231, 238, 246, 248, 256, 258, 259, 260, 290, 291, 292, 295, 296, 303, 304, 305, 308, 314, 317, 329, 335, 338, 340, 346, 34 8, 351, 354, 358, 366, 369, 370, 379, 381, 392, 399, 419, 421, 432, 439, 450, 451, 454, 457, 458, 469, 474, 477, 479, 481, 496, 505, 513, 520, 532, 543, 54 9, 553, 554, 560, 562, 563, 600, 610, 617, ...], 'Fashion accessories': [10, 2 6, 27, 30, 49, 52, 53, 67, 71, 76, 77, 86, 100, 101, 106, 112, 115, 116, 117, 124, 127, 130, 135, 146, 150, 152, 167, 177, 180, 191, 195, 208, 218, 223, 23 0, 233, 237, 239, 242, 247, 251, 255, 261, 262, 275, 277, 278, 300, 309, 311, 323, 332, 336, 345, 350, 352, 356, 365, 371, 373, 375, 378, 388, 390, 391, 40 3, 404, 407, 409, 422, 423, 424, 425, 430, 433, 434, 443, 447, 455, 472, 486, 487, 490, 491, 494, 501, 512, 515, 526, 527, 531, 536, 538, 546, 550, 551, 55 6, 564, 567, 568, ...], 'Food and beverages': [9, 13, 18, 28, 34, 43, 47, 50, 51, 70, 72, 78, 81, 82, 83, 87, 98, 103, 108, 118, 128, 143, 153, 155, 160, 16 2, 164, 168, 171, 174, 176, 178, 181, 185, 192, 199, 211, 219, 221, 224, 240, 249, 250, 267, 288, 293, 302, 312, 315, 316, 320, 326, 327, 331, 333, 339, 34 3, 355, 360, 361, 362, 364, 382, 383, 384, 386, 389, 396, 400, 406, 420, 427, 431, 438, 440, 446, 452, 456, 459, 460, 461, 463, 464, 468, 480, 497, 507, 52 4, 528, 533, 539, 544, 557, 558, 561, 565, 572, 573, 576, 577, ...], 'Health a nd beauty': [0, 3, 8, 14, 16, 21, 29, 33, 38, 44, 46, 57, 64, 65, 66, 69, 79, 80, 89, 93, 94, 96, 104, 111, 134, 141, 142, 145, 147, 149, 158, 165, 170, 17 9, 183, 196, 198, 203, 205, 226, 232, 234, 236, 241, 271, 274, 283, 284, 285, 294, 301, 313, 318, 319, 321, 322, 328, 341, 342, 349, 387, 394, 395, 398, 41 0, 412, 415, 417, 418, 426, 445, 448, 453, 466, 473, 475, 492, 508, 516, 523, 530, 541, 552, 578, 579, 581, 585, 589, 590, 595, 627, 635, 636, 646, 651, 66 7, 668, 672, 673, 678, ...], 'Home and lifestyle': [2, 7, 19, 22, 25, 39, 40, 41, 54, 56, 58, 61, 74, 90, 99, 113, 114, 119, 123, 125, 137, 144, 148, 157, 1 66, 175, 186, 187, 188, 189, 190, 193, 197, 204, 207, 212, 215, 229, 243, 244, 245, 253, 254, 257, 266, 268, 269, 272, 273, 276, 280, 281, 286, 289, 297, 29 8, 299, 307, 324, 330, 347, 353, 363, 367, 372, 374, 376, 397, 401, 402, 408, 414, 416, 429, 437, 442, 470, 483, 488, 489, 493, 502, 509, 511, 517, 518, 52 1, 522, 534, 535, 537, 540, 545, 555, 559, 570, 591, 599, 605, 622, ...], 'Spo rts and travel': [4, 15, 17, 24, 31, 32, 35, 36, 42, 60, 62, 63, 68, 84, 85, 8 8, 91, 92, 107, 110, 121, 122, 126, 129, 131, 132, 138, 139, 140, 151, 154, 15 9, 161, 163, 169, 182, 184, 200, 213, 214, 216, 225, 235, 252, 263, 264, 265, 270, 279, 282, 287, 306, 310, 325, 334, 337, 344, 357, 359, 368, 377, 380, 38 5, 393, 405, 411, 413, 428, 435, 436, 441, 444, 449, 462, 465, 467, 471, 476, 478, 482, 484, 485, 495, 498, 499, 500, 503, 504, 506, 510, 514, 519, 525, 52 9, 542, 547, 548, 566, 569, 571, ...]}

We can access one of the groups with the <code>get_group()</code> method. Let's see the five first items of the Fashion accessories group:

In [16]: df_product.get_group('Fashion accessories').head()

Out[16]:		Invoice ID	Branch	City	Customer type	Gender	Product line	Unit price	Quantity	Tax 5%	
	10	351- 62- 0822	В	Mandalay	Member	Female	Fashion accessories	14.48	4	2.8960	6(
	26	649- 29- 6775	В	Mandalay	Normal	Male	Fashion accessories	33.52	1	1.6760	3٤
	27	189- 17- 4241	А	Yangon	Normal	Female	Fashion accessories	87.67	2	8.7670	18,
	30	871- 79- 8483	В	Mandalay	Normal	Male	Fashion accessories	94.13	5	23.5325	494
	49	574- 22- 5561	С	Naypyitaw	Member	Female	Fashion accessories	82.63	10	41.3150	86 ⁻

Let's also see the how many items there are per product line group. We can do that with the size()

```
In [17]: df_product.size()
```

Out[17]: Product line
Electronic accessories 170
Fashion accessories 178
Food and beverages 174
Health and beauty 152
Home and lifestyle 160
Sports and travel 166
dtype: int64

Let's say we want to get the mean Quantity per product line. Then we can do it by first grouping by adding the column name after the grouping

```
In [18]: df_product['Quantity'].mean()
```

```
Out[18]: Product line
Electronic accessories 5.711765
Fashion accessories 5.067416
Food and beverages 5.471264
Health and beauty 5.618421
Home and lifestyle 5.693750
Sports and travel 5.542169
Name: Quantity, dtype: float64
```

And then we want to get all the general statistics of Quantity per Customer type and per

Gender.

```
In [19]:
           df.groupby(['Customer type','Gender'])['Quantity'].describe()
                                count
                                         mean
                                                    std min 25% 50% 75% max
Out[19]:
          Customer type Gender
               Member Female
                                261.0 5.716475 2.937175
                                                         1.0
                                                              3.0
                                                                   6.0
                                                                         8.0 10.0
                          Male
                               240.0 5.387500 2.984593
                                                         1.0
                                                              3.0
                                                                   5.0
                                                                         8.0 10.0
                Normal Female 240.0 5.737500 2.836155
                                                         1.0
                                                             4.0
                                                                         8.0 10.0
                                                                   6.0
                          Male 259.0 5.204633 2.914914
                                                         1.0
                                                              3.0
                                                                   5.0
                                                                         7.0 10.0
```

4. Map and apply a function

Key points:

- df['col_name'].map({}) Substitutes each value in a Series with another value
- **df['col_name'].apply(function)** Applies a given function to each item of the given column
- df['col_name'].apply(lambda) Applies a lambda function to each item of the given column

Map is used for substituting each value in a series with another value, that may be derived from a function.

Let's say we want to create an additional column to our DataFrame that will contain the value 0 for females and 1 for males. The new column is called Gender_num.

```
In [20]:
           df['Gender_num'] = df['Gender'].map({'Female':0, 'Male':1})
In [21]:
           df[['Gender', "Gender num"]].head()
             Gender Gender_num
Out[21]:
          0
             Female
                              0
           1
             Female
                              0
          2
               Male
          3
               Male
          4
               Male
                               1
```

With the apply() function we can apply a function along a row or a column of the DataFrame.

```
In [22]:
    def freeItems(x):
        if x <= 5:
            x = x +1
        else:
            x = x + 2
        return x</pre>
```

```
In [23]: df['New_Quantity'] = df['Quantity'].apply(freeItems)
    df.loc[0:4, ['Quantity', "New_Quantity"]]
```

Out[23]:		Quantity	New_Quantity
	0	7	9
	1	5	6
	2	7	9
	3	8	10
	4	7	9

A lambda function is a small function containing a single expression. Lambda functions can also act as anonymous functions where they don't require any name. These are very helpful when we have to perform small tasks with less code.

Let's see how we can do the above example without an additional function.

Out[24]:		Quantity	New_Quantity
	0	7	9
	1	5	6
	2	7	9
	3	8	10
	4	7	9

5. Correlations

Key points:

- df['column1'].corr(df['column2']) Calculates correlation between column1 and column2
- df1.corr(df2, method='spearman') Calculates spearman correlation between column1 and column2
- **df.corr(method ='pearson')** Calculates pearson correlation among all numerical columns of df

Correlation coefficients quantify the association between variables or features of a dataset. Python has great tools that you can use to calculate them.

Pearson r correlation is the most widely used correlation statistic to measure the degree of the relationship between linearly related variables. For example, in the stock market, if we want to measure how two stocks are related to each other, Pearson r correlation is used to measure the degree of relationship between the two.

Spearman rank correlation is a non-parametric test that is used to measure the degree of association between two variables. The Spearman rank correlation test does not carry any assumptions about the distribution of the data and is the appropriate correlation analysis when the variables are measured on a scale that is at least ordinal.

Let's say we want to calculate the correlation between Unit price and Quantity

```
In [25]: df['Quantity'].corr(df['Unit price'])
```

Out[25]: 0.010777564342497298

Or the correlation between Branch and Total

```
In [26]: df['Branch'].corr(df['Total'], method='spearman')
```

Out[26]: 0.019624351879191697

It is also possible to get the correlation among all the numerical columns of a DataFrame

```
In [27]: df.corr(method ='pearson')
```

Out[27]:		Unit price	Quantity	Tax 5%	Total	Gender_num	New_Quantity
	Unit price	1.000000	0.010778	0.633962	0.633962	0.015445	0.014053
	Quantity	0.010778	1.000000	0.705510	0.705510	-0.074258	0.997260
	Tax 5%	0.633962	0.705510	1.000000	1.000000	-0.049451	0.705720
	Total	0.633962	0.705510	1.000000	1.000000	-0.049451	0.705720
	Gender_num	0.015445	-0.074258	-0.049451	-0.049451	1.000000	-0.071323
	New_Quantity	0.014053	0.997260	0.705720	0.705720	-0.071323	1.000000

Summary

In this unit, we explored functions that can be used on the data of Pandas Series and DataFrames.

First, we explored ways to deal with missing values in the DataFrames. Next, we worked with group by that splits that data based on values that a column contains. Also, we applied methods on the data with map and apply functions.

Finally, we calculated the correlation between two different variables/features that can also be part of a DataFrame.

Exercises

1. Read the file winemag-data_first50k.csv and print some of the information of the DataFrame to get familiar with it

```
df = pd.read_csv("../data/winemag-data_first50k.csv")
df.head()
```

Out[28]:		Unnamed:	country	description	designation	points	price	province	region_1	region_2
	0	0	US	This tremendous 100% varietal wine hails from	Martha's Vineyard	96	235.0	California	Napa Valley	Napa
	1	1	Spain	Ripe aromas of fig, blackberry and cassis are	Carodorum Selección Especial Reserva	96	110.0	Northern Spain	Toro	Nat
	2	2	US	Mac Watson honors the memory of a wine once ma	Special Selected Late Harvest	96	90.0	California	Knights Valley	Sonoma
	3	3	US	This spent 20 months in 30% new French oak, an	Reserve	96	65.0	Oregon	Willamette Valley	Willamette Valle ₎
	4	4	France	This is the top wine from La Bégude, named aft	La Brûlade	95	66.0	Provence	Bandol	NaN

In [29]: df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 49999 entries, 0 to 49998
Data columns (total 11 columns):
```

Data	COLUMNS (COL	at if Columns):			
#	Column	Non-Null Count	Dtype		
0	Unnamed: 0	49999 non-null	int64		
1	country	49997 non-null	object		
2	description	49999 non-null	object		
3	designation	35657 non-null	object		
4	points	49999 non-null	int64		
5	price	45430 non-null	float64		
6	province	49997 non-null	object		
7	region_1	41879 non-null	object		
8	region_2	19744 non-null	object		
9	variety	49999 non-null	object		
10	winery	49999 non-null	object		
<pre>dtypes: float64(1), int64(2), object(8)</pre>					
memory usage: 4.2+ MB					

2. Print the number of missing values per column

```
In [30]:
         df.isnull().sum()
```

Out[30]: Unnamed: 0 0 country

```
description
                   0
designation
               14342
points
                   0
price
                4569
province
                  2
region_1
                8120
region_2
               30255
variety
                   0
winery
                   0
dtype: int64
```

3. Drop the rows that have missing values in province and check that they have been dropped

```
In [31]:
          df.shape
Out[31]: (49999, 11)
In [32]:
          df = df.dropna(subset=["province"])
          df.shape
Out[32]: (49997, 11)
In [33]:
          df.isnull().sum()
Out[33]: Unnamed: 0
                             0
         country
                             0
         description
                             0
         designation
                         14342
         points
                          4569
         price
         province
                             0
                          8118
         region 1
         region 2
                         30253
         variety
                             0
         winery
                             0
         dtype: int64
```

4. Drop columns designation, region_1 and region_2 and save the new DataFrame to df. Print the columns of the new DataFrame to check whether they have been dropped

5. Get the first ten rows of price that have null price value

```
Out[35]: df[df.price.isnull()].head(10)

Unnamed: country description points price province variety winery
```

	Unnamed: 0	country	description	points	price	province	variety	winery
32	32	Italy	Underbrush, scorched earth, menthol and plum s	90	NaN	Tuscany	Sangiovese	Abbadia Ardenga
56	56	France	Delicious while also young and textured, this 	90	NaN	Loire Valley	Sauvignon Blanc	Domaine Vacheron
72	72	Italy	This offers aromas of red rose, wild berry, da	91	NaN	Piedmont	Nebbiolo	Silvano Bolmida
82	82	Italy	Berry, baking spice, dried iris, mint and a hi	91	NaN	Piedmont	Nebbiolo	Ceste
116	116	Spain	Aromas of brandied cherry and crème de cassis	86	NaN	Levante	Monastrell	Casa de la Ermita
242	242	France	A tight and herbaceous wine that is crisp, min	88	NaN	Bordeaux	Bordeaux- style White Blend	Château Ferran
261	261	France	This fresh and fruity sparkling wine is crisp 	88	NaN	Loire Valley	Chenin Blanc- Chardonnay	Musset- Roullier
282	282	France	The estate wine from Château du Cèdre is anyth	92	NaN	Southwest France	Malbec	Château du Cèdre
294	294	France	A ripe, wood- aged wine, it's richly smoky and	91	NaN	Southwest France	Gros and Petit Manseng	Lionel Osmin & Cie
323	323	Spain	Ripe pure black-fruit aromas are touched up by	94	NaN	Northern Spain	Red Blend	Matarromera

6. Find the mean price for the wines that have at least 87 points

In [36]: df.price[df['points'] > 86].mean()

7. Group the DataFrame by points and return the mean price per group

```
In [37]:
          points = df.groupby('points')
          points.groups
          points['price'].mean()
Out[37]: points
                 15.977273
         80
                 17.862191
         81
                 19.245392
         82
                 18.125000
         83
                 18.797662
         84
         85
                 19.755679
                 21.989537
         86
                 24.748044
         87
                 28.221291
         88
                 32.527373
         89
                 37.225691
         90
                 43.488601
         91
                 52.027128
         92
                 66.374562
         93
         94
                 80.196429
         95
                107.958633
         96
                137.594737
         97
                231.738318
         98
                273.225000
         99
                333.437500
         100
                532.571429
         Name: price, dtype: float64
            8. Fill the missing values of prices with the mean value per
            group. Save the result to the price column
In [38]:
          df['price']=df.groupby('points')['price'].apply(lambda x:x.fillna(x.mean()))
            9. Print one of the rows that had missing value in price and
            check the row again
In [39]:
          df.loc[32]
Out[39]: Unnamed: 0
                                                                         32
         country
                                                                     Italy
                        Underbrush, scorched earth, menthol and plum s...
         description
         points
                                                                         90
                                                                 37.225691
         price
         province
                                                                   Tuscany
                                                                Sangiovese
         variety
                                                           Abbadia Ardenga
         winery
         Name: 32, dtype: object
            10. Group by country and check the size per group
In [40]:
          df.groupby('country').size()
Out[40]: country
         Albania
                                        2
         Argentina
                                     1520
```

1015

Australia

Austria	1269
Bosnia and Herzegovina	2
Brazil	7
Bulgaria	27
Canada	92
Chile	1561
China	1
Croatia	22
Cyprus	3
England	9
France	7738
Georgia	11
Germany	1069
Greece	195
Hungary	48
India	7
Israel	279
Italy	8637
Japan	1
Lebanon	14
Lithuania	4
Macedonia	5
Mexico	29
Moldova	25
Montenegro	1
Morocco	11
New Zealand	550
Portugal	2166
Romania	33
Serbia	12
Slovenia	53
South Africa	516
South Korea	2
Spain	2665
Switzerland	2
Turkey	45
US	20321
Ukraine	5
Uruguay	23
dtype: int64	

11. Calculate the correlation between the price and points

```
In [41]: df['points'].corr(df['price'])
```

Out[41]: 0.4396920811930433

12. Calculate the correlation between price and points per country only if the country has 50 items

```
In [43]:
df.groupby('country')[['price','points']].corr(min_periods=50)
```

```
Out[43]:
                                price
                                         points
            country
             Albania
                      price
                                 NaN
                                           NaN
                     points
                                 NaN
                                           NaN
           Argentina
                      price 1.000000 0.555047
                     points 0.555047 1.000000
                     price 1.000000 0.506596
           Australia
```

		price	points
country			
•••	•••		•••
US	points	0.424138	1.000000
Ukraine	price	NaN	NaN
	points	NaN	NaN
Uruguay	price	NaN	NaN
	points	NaN	NaN

84 rows × 2 columns

13. Bonus:

Another widely used statistical test is the t test that tells you how significant the differences between groups are. In other words it lets you know if those differences (measured in means) could have happened by chance. For the t-test we need the scipy library. SciPy is an open-source Python library which is used to solve scientific and mathematical problems.

We want to see if there is any statistical difference in the wine price between Argentina and Chile and then between Italy and Chile. Then: