

The difference between IMPORTANT same mode everywhere

If a value is emply, put NA

lifeExp array<-with(gapminder,tapply(lifeExp,</pre>

67.69

data.frame(year,country),

54.518

lifeExp array[1:5,1:3] create vector (same mode)

```
country
               Afghanistan Albania Algeria
        year
          1952
                    28.801
                             55.23
                                    43.077
not Column | 1957
                             59.28 45.685
                    30.332
          1962
                    31.997 64.82 48.303
          1967
                    34.020 66.22 51.407
attribut
```

36.088

1704 X 1

dim(lifeExp array)

12 142 [1]

1972

```
[1] 12 142 3
```

```
pecner[1:2,1

work

, , var = lifeExp
          alltogether[1:2,1:2,c(1,3)]
                country
                 Afghanistan Albania
          year
                       28.801
                                55.23
            1952
            1957
                       30.332
                                59.28
          , , var = pop
                country
                 Afghanistan Albania
          year
            1952
                      8425333 1282697
            1957
                      9240934 1476505
```

1) x 142 x3

for each year, var, compute mean

apply(alltogether,c(1,3), mean)

dims that are fixed .

			•					
•	var			_	Z 1 \	average	01/02	11000
year	lifeExp	gdpPercap	pop	\mathcal{O}	667	werage	ores	y eur
1952	49.058	3725.3	16950402		J.			Countr
1957	51.507	4299.4	18763413			. /		
1962	53.609	4725.8	20421007	Ve	ector	of length	5	
1967	55.678	5483.7	22658298					
1972	57.647	6770.1	25189980					
1977	59.570	7313.2	27676379					
1982	61.533	7518.9	30207302					
1987	63.213	7900.9	33038573					
1992	64.160	8158.6	35990917					
1997	65.015	9090.2	38839468					
2002	65.695	9917.8	41457589					
2007	67.007	11680 1	44021220					

```
totalGDP<-alltogether[,, "pop" | talltogether[,, "gdpPercap"]
totalGDP[1:3,2:4]
                            evement-wise
     country
         Albania
                   Algeria
                              Angola
year
 1952 2053669902 2.2726e+10 1.4900e+10
```

1957 2867792398 3.0956e+10 1.7461e+10 1962 3996988985 2.8061e+10 2.0604e+10

```
sort(apply(alltogether[,,"pop"]*alltogether[,,"gdpPercap"](2,sum)/1e12,
     dec=TRUE)[1:4]
```

United States	Japan	China	Germany
76.762	25.435	20.395	19.497

Arrays: permuting dimensions

aperm(alltogether,c(2,3,1))[1:5,1:3,1:2]

```
, , year = 1952
            var
country
             lifeExp gdpPercap
                                   pop
 Afghanistan 28.801
                        779.45 8425333
 Albania
              55.230 1601.06 1282697
 Algeria
              43.077 2449.01 9279525
 Angola
              30.015
                       3520.61 4232095
 Argentina
              62.485
                       5911.32 17876956
, , year = 1957
            var
country
             lifeExp qdpPercap
                                    pop
 Afghanistan 30.332
                        820.85 9240934
 Albania
              59.280 1942.28 1476505
 Algeria
              45.685
                       3013.98 10270856
 Angola
              21 999
                       3277 94 4561361
```

```
Arrays

noid country, van
min_max_array<-apply(alltogether,c(2,3),</pre>
       function(x){
         y < -c(min(x), max(x));
         names(y)<-c("Min", "Max");</pre>
         y})
```

```
min max array[,1:3,c(1:2)]
                   1) x 14 x x 5 -> > x 14 x x 5
, , var = lifeExp
    country
      Afghanistan Albania Algeria
           28.801 55.230 43.077
  Min
  Max
           43.828 76.423 72.301
, , var = gdpPercap
    country
      Afghanistan Albania Algeria
           635.34 1601.1 2449.0
  Min
           978.01 5937.0 6223.4
  Max
```

```
aperm(min_max_array,c(2,3,1))[1:3,,]
```

```
= Min
            var
country
             lifeExp gdpPercap
                                  pop
 Afghanistan 28.801 635.34 8425333
 Albania
              55.230 1601.06 1282697
 Algeria
             43.077 2449.01 9279525
    = Max
            var
country
             lifeExp gdpPercap
                                   pop
 Afghanistan 43.828 978.01 31889923
 Albania
              76.423 5937.03 3600523
 Algeria
              72.301
                      6223.37 33333216
```

```
syph_data<-read_csv(here("Documents/syphilis89d.csv"))
# Random sample of 8 subjects
syph_data[sample(1:nrow(syph_data),8),] %>% kable(.)
```

Sex	Race	Age	
Male	White	30-44	
Male	Other	20-29	
Female	Black	30-44	
Female	White	30-44	
Female	Other	<=19	
Male	Black	30-44	
Female	White	20-29	
Male	Other	20-29	

```
n=n()
syph counts<-syph data %>% group by(Sex, Race, Age) %>% count()
dim(syph counts)
                                                 by defaute n= council)
[1] 24 4
syph counts%>%arrange(desc(n)) %>% head()
# A tibble: 6 x 4
# Groups: Sex, Race, Age [6]
 Sex
        Race Age
                        n
 <chr> <chr> <chr> <int>
1 Male Black 30-44 8311
2 Male Black 20-29 8180
3 Female Black 20-29
                    8093
4 Female Black 30-44
                    4133
5 Male Black 45+
                     2442
6 Female Black <=19 2422
```

```
syph counts%>% group by(Race) %>% summarise(sum(n))
# A tibble: 3 x 2
 Race `sum(n)`
 <chr> <int>
1 Black 35508
2 Other 3956
3 White
        4617
syph counts%>% group_by(Age) %>% summarise(sum(n))
# A tibble: 4 x 2
 Age
     `sum(n)`
 <chr> <int>
1 <=19 4608
2 20-29 20015
3 30-44 15549
4 45+ 3909
```

```
cross tab
syph_counts_array<-xtabs()Sex+Race+Age, data=syph_data)</pre>
[1] 2 3 4
                 · nothing tactor variable court rows add up
                  · variable
                    take sum of that
                    variable by row
                 xtabs Ln > Sex+ Race+ Age, data = Syph_Counts)
                 > 70101 number for Sex, Race, Age.
```

```
syph_counts_array[1:2,1:3,c(2,4)]
```

```
, Age = 20-29
       Race
Sex
        Black Other White
 Female 8093 590
                   908
 Male 8180 1287
                   957
, , Age = 45+
       Race
        Black Other White
Sex
 Female 484
                55
                      79
 Male
         2442
               310
                     539
```

```
apply(syph_counts_array, c(2),sum)

Black Other White
35508 3956 4617

Could also we dimension name
apply(syph_counts_array, c("Race"),sum)

Black Other White
35508 3956 4617
```

```
apply(syph_counts_array, c("Race", "Age"), sum)
```

```
Age
Race <=19 20-29 30-44 45+
Black 3865 16273 12444 2926
Other 386 1877 1328 365
White 357 1865 1777 618
```

```
myplot<-barplot(apply(syph_counts_array, c("Age", "Race"), sum),

col=grey(seq(0,1,length=4))) 4 levels of shading

legend("topright", fill=grey(seq(0,1,length=4)),

legend=levels(factor(syph_data$Age)))

7
```



```
column props <-apply(syph counts array, c("Age", "Race"), sum) %>%
                 prop.table()c(2))
                                  tixed: proportion of different "Age"

group in a "Race".
column props
                        what comes
                        to the PIPE
       Race
                        > array
                                     · could use ccs) ?
Age
           Black
                    Other
  <=19 0.108849 0.097573 0.077323
  20-29 \ 0.458291 \ 0.474469 \ 0.403942  . (1) or nothing \Rightarrow total.
  30-44 0.350456 0.335693 0.384882
  45+ 0.082404 0.092265 0.133853
```


Speed: an example

Convolution of two vectors

$$\vec{a}_{mx1}$$

$$\vec{a} \cdot \vec{b} = \sum_{u} a[u] b[x-u]$$

$$(x+1) (3x^2 + 3x + 3)$$

Convolution of two vectors

Convolution of two vectors

Benchmarking the time

```
Unit: microseconds

expr min lq mean median uq max neval cld
Loop_1 58.367 62.582 68.3741 64.525 66.9390 246.490 1000 b
pracma_conv 4.816 6.242 7.9762 7.482 8.4995 55.488 1000 a
```

Benchmarking the time

```
ggplot(res,aes(x=expr,y=time)) + geom_boxplot() + scale_y_log10()
```



```
convolve_loop_two<-function(vec_1,vec_2){
    ## Compute lengths of both vectors
    n<-length(vec_1)
    m<-length(vec_2)
    ## Pad vectors to avoid boundary issues
    vec_1_star <- c(vec_1,rep(0,n+m-1-n))
    vec_2_star <- c(vec_2,rep(0,n+m-1-m))
    k<-n + m - 1
    new_vec<-rep(0,k)
    for(i in 1:k){
        u<-seq(max(1,i-k+1),min(i,k),by=1)
        new_vec[i]<-sum(vec_1_star[u]*vec_2_star[i-u+1])
    }
        remove the namer loop, vectorize, get sum
    new_vec
}</pre>
```

```
Unit: microseconds
               min
                       lq mean median
                                                     max neval cld
       expr
                                            uq
     Loop 1 59.449 64.752 78.090 67.171 75.942
                                                 240.615
                                                          100
                                                                а
     Loop 2 63.721 68.199 209.738 69.777 78.108 13142.798
                                                          100
                                                                а
pracma conv 5.557 6.922 10.726 8.896 10.668
                                                 38.537
                                                          100
                                                                а
```

```
ggplot(res,aes(x=expr,y=time)) + geom_boxplot() + scale_y_log10() +
    scale_x_discrete(labels=c("Loop 1","Loop 2", "conv"))
```



```
Unit: microseconds
                     min
                               lq
                                      mean
                                             median
                                                               max neval cld
             expr
                                                         uq
           Loop 1 22238.1 23918.32 26263.81 24881.55 27334.3 45665
                                                                     100
better > Loop_2 11840.8 12695.64 16163.61 13287.97 14782.4 169440
                                                                    100 b
                                             406.14
      pracma conv
                    361.3
                           390.42
                                    530.34
                                                      431.4 11670
                                                                     100 a
```

```
ggplot(res,aes(x=expr,y=time)) + geom_boxplot() + scale_y_log10() +
scale_x_discrete(labels=c("Loop 1","Loop 2", "conv"))
```


lapply the outer loop

lapply the outer loop

```
Unit: microseconds
                                        median
       expr
                 min
                          lq
                                 mean
                                                     ua
                                                             max neva
     Loop 1 22539.64 23553.13 24868.68 24125.05 25081.62 38209.50
                                                                   10
     Loop 2 11340.99 12485.10 14230.95 13050.24 13797.26 25332.50
                                                                   10
     Loop 3 12171.85 12861.41 16370.17 13277.77 14634.61 167110.63
                                                                   10
pracma conv
             359.05
                       387.82
                               414.23
                                        403.82
                                                 426.29
                                                           623.61
                                                                   10
cld
 b
 b
```

speed up: convert to motivix mutiplication

DF7