Глава 2.

Упражнение 12.

$$G = (I_k \quad P) \Rightarrow H = (P^T \quad I_r)$$

А) {00, 01, 10, 11}, базис {01, 10}

$$G = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = (I_2) \Rightarrow H$$
 — не определена

Б) {000, 001, 010, 011, 100, 101, 110, 111}, базис {001, 010, 100}

$$G = egin{pmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{pmatrix} = (I_3) \Rightarrow H$$
 — не определена

В) {000, 011, 101, 110}, базис {011, 101}

$$G = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix} = \begin{pmatrix} I_2 & 1 \\ 1 & 1 \end{pmatrix} \Rightarrow H = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix}$$

Г) {000, 111}, базис {111}

$$G = (1 \quad 1 \quad 1) = (I_1 \quad 1 \quad 1) \Rightarrow H = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$

Задача 1.

1)
$$n = 6, k = 1$$

 $d \le n - k + 1 = 6 \Rightarrow G = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \end{pmatrix}$

2)
$$n = 6, k = 2$$
 $d \le 5$

Пусть d=5, тогда любые 4 столбца H ЛНЗ и есть набор из 5 ЛЗ столбцов. Пусть $c_5=\sum_{i=1}^4 \alpha_i c_i$ и $\forall \alpha_i=1$, иначе набор из 4 столбцов не будет ЛНЗ. Аналогичные рассуждения для c_6 . Получается, что не любые 4 столбца ЛНЗ. Значит, наше утверждение не верно и $d\neq 5 \Rightarrow d=4$.

$$H = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 \end{pmatrix} \xrightarrow{\text{B CИСТЕМАТИЧЕСКОЙ}} \begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 \end{pmatrix}$$

$$\Longrightarrow G=\begin{pmatrix}1&0&1&0&1&1\\0&1&1&1&0&1\end{pmatrix}$$

3) n = 6, k = 3

Аналогично пункту 2 получаем d = 3.

$$H = \begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 & 0 \end{pmatrix} \Rightarrow G = \begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 & 0 \end{pmatrix}$$

4) n = 6, k = 4d = 2

$$H = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 & 0 & 0 \end{pmatrix} \xrightarrow{\text{В систематической}} \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 1 & 1 \end{pmatrix} \Rightarrow G = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 \end{pmatrix}$$

5) n = 6, k = 5

Минимальное расстояние 2, по границе Синглтона ≤ 2 .

$$G = \begin{pmatrix} 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

6) n = 6, k = 6

Минимальное расстояние 1, по границе Синглтона ≤ 1 .

$$G = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

Задача 3, 7 (Вариант 77).

Дана проверочная матрица:

$$\begin{pmatrix} 0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 1 & 1 \end{pmatrix}$$

Поменяем местами II и IV строки:

$$\begin{pmatrix} 0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 \end{pmatrix}$$

III + I:

$$\begin{pmatrix} 0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 \end{pmatrix}$$

Поменяем IV и IX столбцы местами:

$$\begin{pmatrix} 0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 \end{pmatrix}$$

II + IV:

$$\begin{pmatrix} 0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 \end{pmatrix}$$

I + II:

$$\begin{pmatrix} 1 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 \end{pmatrix}$$

Получили матрицу вида $(P^T \quad I_r) \Longrightarrow G' = (I_k \quad P)$

$$G' = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 1 \end{pmatrix}$$

Вернем столбцы назад (IV и IX):

$$G = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \end{pmatrix}$$

Скорость кода равна $R = \frac{k}{n} = \frac{6}{10}$

Минимальное расстояние кода равно 3.

Таблица синдромного декодирования (код программы в приложении к письму Task7):

0000	000000000
0001	0000000010
0010	0001000000
0011	0010000000
0100	1000000000
0101	0000000001
0110	0000011000
0111	0000100000
1000	0001001000
1001	0100000000
1010	0000001000
1011	0000000100
1100	0000010000
1101	0000010010
1110	0000000101
1111	0000001001

Задача 9.

$$G = \begin{pmatrix} 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 \end{pmatrix}$$

Строки матрицы G ЛН3, следовательно, это порождающая матрица (7,4)-кода. Докажем, что код, который порождается G — циклический. Пусть кодовое слово $c=(a_1,a_2,a_3,a_4)\cdot G=a_1c_1+a_2c_2+a_3c_3+a_4c_4$ и его циклический сдвиг c'.

$$c = (a_1, a_1 + a_2, a_2 + a_3, a_1 + a_3 + a_4, a_2 + a_4, a_3, a_4)$$

$$c' = (a_4, a_1, a_1 + a_2, a_2 + a_3, a_1 + a_3 + a_4, a_2 + a_4, a_3)$$

Тогда координатный вектор, для того чтобы получить c' равен $(a_1 + a_2, a_1 + a_4, a_4, a_1)$, ч. т. д.

Минимальное расстояние кода d = 3.

Если $k \le 4$, то d = 3.

Если k > 4 (на примере k = 5), n = 7:

$$G = egin{pmatrix} 1 & 1 & 0 & 1 & 0 & 0 & 0 \ 0 & 1 & 1 & 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 1 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 & 1 & 0 & 1 \ 1 & 0 & 0 & 0 & 1 & 1 & 0 \end{pmatrix}$$
 , $I+II+III+V-0$ вектор \Rightarrow не является пораждающей матрицей

Если k > 4, n > 7:

$$G = \begin{pmatrix} 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 \end{pmatrix}, I + II + III + V - w = 2 \ \Rightarrow d \leq 2$$

Задача 10.

Таблица посчитана программно (Task10).

k∖n	5	6	7	8	9	10
1	4	4	4	4	4	4
2	2	4	4	4	4	4
3	2	2	4	4	4	4
4	2	2	-	2	2	2
5	-	2	-	2	2	2

$$d = 4: \begin{cases} k = 1, n \ge 5 \\ k = 2, n \ge 6 \\ k = 3, n > 7 \end{cases}$$

Задача 11.

Пример такого кода, посчитан программно (Task11):

$$G = \begin{pmatrix} 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 \end{pmatrix}, n = 10, k = 3, d = 5$$

Получен из $g = (0 \quad 0 \quad 1 \quad 0 \quad 0 \quad 1 \quad 0 \quad 1 \quad 1 \quad 1)$ с помощью трех циклических сдвигов.

Задача 12.

Для всех кодов из упражнения справедливо $n = length + 2(k-1) \Rightarrow R = \frac{k}{length + 2(k-1)}$

Минимальное расстояние посчитано программно (Task12).

A)
$$R = \frac{k}{4+2(k-1)} = \frac{k}{2k+2}$$
, $d = 3$

A)
$$R = \frac{k}{4+2(k-1)} = \frac{k}{2k+2}$$
, $d = 3$
B) $R = \frac{k}{6+2(k-1)} = \frac{k}{2k+4}$, $d = 4$

C)
$$R = \frac{k}{6+2(k-1)} = \frac{k}{2k+4}$$
, $d = 5$

Задача 13.

Пусть c=2, так как $R=\frac{1}{2}$ \Rightarrow n=2k.

Минимальное расстояние посчитано программно (Task13).

A)
$$d = \begin{bmatrix} 2 & k = 2 \\ 3 & k > 2 \end{bmatrix}$$

B)
$$d = \begin{bmatrix} 2 & k \in [2,3] \\ 4 & k > 3 \end{bmatrix}$$

C)
$$d = \begin{bmatrix} 2 & k \in [2, 4] \\ 3 & k \in [5, 6] \\ 4 & k \in [7, 8] \\ 5 & k > 8 \end{bmatrix}$$

Задача 14.

Радиус покрытия посчитан программно (Task14), с помощью формулы (2.16) из свойства 2.2

$$\rho = \max_{s} \rho(s)$$

- 1) $\rho = 3$
- 2) $\rho = 3$
- 3) $\rho = 2$
- 4) $\rho = 2$
- 5) $\rho = 1$
- 6) $\rho = 0$