Better Online Deterministic Packet Routing on Grids

Számítógép-hálózatok és osztott rendszerek

Kádár Tamás Csaba, Kedves Nándor November 22, 2016

Tartalomjegyzék

- 1. Bevezetés
- 2. Rács Modell
- 3. Elements
- 4. Conclusion

Bevezetés

Modell

Modellje:

- G = (V, E) irányított gráf
- B buffer méret, c élek kapacitása, ahol B, c > 0

A hálózat topológiája irányított egyenes, amely n vertexből áll $V = \{v_0, v_1, \dots, v_{n-1}\}, E = \{(v_{i-1}, v_i) \mid 0 < i < n\}$

Figure 1: Lineáris hálózatmodell

Kérés (Request)

A kérést egy számhármassal adhatjuk meg, $r = (a_i, b_i, t_i)$

- ai a forrás csomópont
- b_i a cél csomópont
- t_i az időpont amikor a kérés érkezik

, ahol $a_i, b_i \in V, t_i \in \mathbb{N}$

Minden time stepben, a routing algoritmus:

- törli a célba érkezett csomagokat
- minden más csomagra, beleértve az éppen beérkezőket is eldönti, hogy:
 - törli
 - tárolja az aktuális csomópont bufferjében
 - továbbküldi a következő vertexnek

Rács Modell

Az egyenes modelltől a rácsmodellig

Kiindulunk a már említett modellből és a következő modellt építjük fel:

- $G^{st}=(V^{st},E^{st})$ irányított aciklikus végtelen gráf, amiben $c^{st}(e)$ az élek kapacitása. $V^{st}:=V\times\mathbb{N}$, ahol minden $v\in V$ vertexnek végtelen számú másolata van a G^{st} -ben, melyet a $(v,t)\in V^{st}$ azonosít. $E^{st}:=E_0\cup E_1$, ahol az E_0 tartalmazza a csomópontok közötti éleket, melyek c kapacitással rendelkeznek és a E_1 a ugyanazon csomópont time steppek közötti élét tartalmazza, mely kapacitása B
- a kérés a következőképpen alakul $r_i^{st} = ((a_i, t_i), row(b_i))$, ahol a $row(b_i)$, a cél csomópont sorát jelöli

Az egyenes modelltől a rácsmodellig

Figure 2: Rácsos hálózatmodell

Small caps

This frame uses the smallcaps titleformat.

Potential Problems

Be aware, that not every font supports small caps. If for example you typeset your presentation with pdfTeX and the Computer Modern Sans Serif font, every text in smallcaps will be typeset with the Computer Modern Serif font instead.

all small caps

This frame uses the allsmallcaps titleformat.

Potential problems

As this titleformat also uses smallcaps you face the same problems as with the smallcaps titleformat. Additionally this format can cause some other problems. Please refer to the documentation if you consider using it.

As a rule of thumb: Just use it for plaintext-only titles.

ALL CAPS

This frame uses the allcaps titleformat.

Potential Problems

This titleformat is not as problematic as the allsmallcaps format, but basically suffers from the same deficiencies. So please have a look at the documentation if you want to use it.

Elements

Typography

The theme provides sensible defaults to \emph{emphasize} text, \alert{accent} parts or show \textbf{bold} results.

becomes

The theme provides sensible defaults to *emphasize* text, accent parts or show **bold** results.

Font feature test

- Regular
- Italic
- SMALLCAPS
- Bold
- Bold Italic
- Bold SmallCaps
- Monospace
- Monospace Italic
- Monospace Bold
- Monospace Bold Italic

Lists

Items

- Milk
- Eggs
- Potatos

Enumerations

- 1. First,
- 2. Second and
- 3. Last.

Descriptions

PowerPoint Meeh.

Beamer Yeeeha.

• This is important

- This is important
- Now this

- This is important
- Now this
- And now this

- This is really important
- Now this
- And now this

Figures

Figure 3: Rotated square from texample.net.

Tables

Table 1: Largest cities in the world (source: Wikipedia)

City	Population
Mexico City	20,116,842
Shanghai	19,210,000
Peking	15,796,450
Istanbul	14,160,467

Blocks

Three different block environments are pre-defined and may be styled with an optional background color.

Default

Block content.

Alert

Block content.

Example

Block content.

Default

Block content.

Alert

Block content.

Example

Block content.

Math

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n$$

Line plots

Bar charts

Quotes

Veni, Vidi, Vici

Frame footer

metropolis defines a custom beamer template to add a text to the footer. It can be set via

\setbeamertemplate{frame footer}{My custom footer}

My custom footer 20

References

Some references to showcase [allowframebreaks] [4, 2, 5, 1, 3]

Conclusion

Summary

Get the source of this theme and the demo presentation from

github.com/matze/mtheme

The theme *itself* is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Backup slides

Sometimes, it is useful to add slides at the end of your presentation to refer to during audience questions.

The best way to do this is to include the appendixnumberbeamer package in your preamble and call \appendix before your backup slides.

metropolis will automatically turn off slide numbering and progress bars for slides in the appendix.

References I

P. Erdős.

A selection of problems and results in combinatorics.

In Recent trends in combinatorics (Matrahaza, 1995), pages 1–6. Cambridge Univ. Press, Cambridge, 1995.

R. Graham, D. Knuth, and O. Patashnik.

Concrete mathematics.

Addison-Wesley, Reading, MA, 1989.

G. D. Greenwade.

The Comprehensive Tex Archive Network (CTAN).

TUGBoat, 14(3):342–351, 1993.

D. Knuth.

Two notes on notation.

Amer. Math. Monthly, 99:403-422, 1992.

References II

H. Simpson.

Proof of the Riemann Hypothesis.

preprint (2003), available at

http://www.math.drofnats.edu/riemann.ps, 2003.