实验五 Python数据结构与数据模型

班级: 21计科3

学号: B20230302320

姓名: 彭钰淇

Github地址: ReSakura01/PythonCourse: MyPythonCourse (github.com)

CodeWars地址: <u>ReSakura | Codewars</u>

实验目的

- 1. 学习Python数据结构的高级用法
- 2. 学习Python的数据模型

实验环境

- 1. Git
- 2. Python 3.10
- 3. VSCode
- 4. VSCode插件

实验内容和步骤

第一部分

在Codewars网站注册账号,完成下列Kata挑战:

第一题: 停止逆转我的单词

难度: 6kyu

编写一个函数,接收一个或多个单词的字符串,并返回相同的字符串,但所有5个或更多的字母单词都是相反的(就像这个Kata的名字一样)。传入的字符串将只由字母和空格组成。只有当出现一个以上的单词时,才会包括空格。

例如:

```
spinWords( "Hey fellow warriors" ) => returns "Hey wollef sroirraw"
spinWords( "This is a test") => returns "This is a test"
spinWords( "This is another test" )=> returns "This is rehtona test"
```

代码提交地址:

https://www.codewars.com/kata/5264d2b162488dc400000001

提示:

利用str的split方法可以将字符串分为单词列表例如:

```
words = "hey fellow warrior".split()
# words should be ['hey', 'fellow', 'warrior']
```

- 利用列表推导将长度大于等于5的单词反转(利用切片word[::-1])
- 最后使用str的join方法连结列表中的单词。

第二题: 发现离群的数(Find The Parity Outlier)

难度: 6kyu

给你一个包含整数的数组(其长度至少为3,但可能非常大)。该数组要么完全由奇数组成,要么完全由偶数组成,除了一个整数N。请写一个方法,以该数组为参数,返回这个 "离群 "的N。

例如:

```
[2, 4, 0, 100, 4, 11, 2602, 36]
# Should return: 11 (the only odd number)

[160, 3, 1719, 19, 11, 13, -21]
# Should return: 160 (the only even number)
```

代码提交地址:

https://www.codewars.com/kata/5526fc09a1bbd946250002dc

第三题: 检测Pangram

难度: 6kyu

pangram是一个至少包含每个字母一次的句子。例如,"The quick brown fox jumps over the lazy dog "这个句子就是一个pangram,因为它至少使用了一次字母A-Z(大小写不相关)。

给定一个字符串,检测它是否是一个pangram。如果是则返回 True ,如果不是则返回 False 。忽略数字和标点符号。

代码提交地址:

https://www.codewars.com/kata/545cedaa9943f7fe7b000048

第四题:数独解决方案验证

难度: 6kyu

数独背景

数独是一种在 9x9 网格上进行的游戏。游戏的目标是用 1 到 9 的数字填充网格的所有单元格,以便每一列、每一行和九个 3x3 子网格(也称为块)中的都包含数字 1 到 9。更多信息请访问: http://en.wikipedia.org/wiki/Sudoku

编写一个函数接受一个代表数独板的二维数组,如果它是一个有效的解决方案则返回 true, 否则返回 false。数独板的单元格也可能包含 0,这将代表空单元格。包含一个或多个零的棋盘被认为是无效的解决方案。棋盘总是 9 x 9 格,每个格只包含 0 到 9 之间的整数。

代码提交地址:

https://www.codewars.com/kata/63d1bac72de941033dbf87ae

第五题: 疯狂的彩色三角形

难度: 2kyu

一个彩色的三角形是由一排颜色组成的,每一排都是红色、绿色或蓝色。连续的几行,每一行都比上一行少一种颜色,是通过考虑前一行中的两个相接触的颜色而产生的。如果这些颜色是相同的,那么新的一行就使用相同的颜色。如果它们不同,则在新的一行中使用缺失的颜色。这个过程一直持续到最后一行,只有一种颜色被生成。

例如:

```
Colour here: G G B G R G B R
Becomes colour here: G R B G
```

一个更大的三角形例子:

```
RRGBRGBB
RBRGBRB
GGBRGG
GRGBG
BBRR
BGR
RB
```

你将得到三角形的第一行字符串,你的工作是返回最后的颜色,这将出现在最下面一行的字符串。在上面的例子中,你将得到 "RRGBRGBB",你应该返回 "G"。

限制条件: 1 <= length(row) <= 10 ** 5

输入的字符串将只包含大写字母'B'、'G'或'R'。

例如:

```
triangle('B') == 'B'
triangle('GB') == 'R'
triangle('RRR') == 'R'
triangle('RGBG') == 'B'
triangle('RBRGBRB') == 'G'
triangle('RBRGBRBGGRRRBGBBBGG') == 'G'
```

代码提交地址:

https://www.codewars.com/kata/5a331ea7ee1aae8f24000175

提示: 请参考下面的链接, 利用三进制的特点来进行计算。

https://stackoverflow.com/questions/53585022/three-colors-triangles

第二部分

使用Mermaid绘制程序流程图

安装VSCode插件:

- Markdown Preview Mermaid Support
- Mermaid Markdown Syntax Highlighting

显示效果如下:

查看Mermaid流程图语法-->点击这里

使用Markdown编辑器(例如VScode)编写本次实验的实验报告,包括<u>实验过程与结果</u>、<u>实验考查和实验总结</u>,并将其导出为 **PDF格式** 来提交。

实验过程与结果

请将实验过程与结果放在这里,包括:

- 第一部分 Codewars Kata挑战
- 第二部分 使用Mermaid绘制程序流程图

注意代码需要使用markdown的代码块格式化,例如Git命令行语句应该使用下面的格式:

```
bat
git init
git add .
git status
git commit -m "first commit"
```

显示效果如下:

```
git init
git add .
git status
git commit -m "first commit"
```

如果是Python代码,应该使用下面代码块格式,例如:

```
```python
def add_binary(a,b):
 return bin(a+b)[2:]
```

#### 显示效果如下:

```
def add_binary(a,b):
 return bin(a+b)[2:]
```

代码运行结果的文本可以直接粘贴在这里。

注意:不要使用截图,因为Markdown文档转换为Pdf格式后,截图会无法显示。

### 实验考查

请使用自己的语言并使用尽量简短代码示例回答下面的问题,这些问题将在实验检查时用于提问和答辩以及实际的操作。

1. 集合 (set) 类型有什么特点? 它和列表 (list) 类型有什么区别?

集合 (set) 的特点: 无序性。唯一性。可变性。

与列表 (list) 的区别:列表有序,集合无序。列表允许重复元素,集合不允许。

集合性能更高效用于查找元素是否存在。列表是有序的可变序列,集合是无序的可变集合。

2. 集合 (set) 类型主要有那些操作?

添加元素:使用add和update方法。

移除元素:使用remove、discard、pop和clear方法。

大小和成员检查:使用len来获取集合大小,使用in来检查元素是否存在。

3. 使用 \* 操作符作用到列表上会产生什么效果? 为什么不能使用 \* 操作符作用到嵌套的列表上? 使用简单的代码示例说明。

使用\*操作符作用于列表时,会将列表中的元素重复指定的次数。这操作被称为列表的重复。这个操作符不会直接应用于嵌套的列表,因为它只重复顶层的元素,而不会递归地应用于嵌套的子列表。

```
列表的重复操作
original_list = [1, 2, 3]
repeated_list = original_list * 3 # 重复3次
print(repeated_list)
输出: [1, 2, 3, 1, 2, 3, 1, 2, 3]

被套列表的重复操作
nested_list = [[1, 2], [3, 4]]
repeated_nested_list = nested_list * 2 # 重复2次
print(repeated_nested_list)
输出: [[1, 2], [3, 4], [1, 2], [3, 4]]
```

4. 总结列表,集合,字典的解析 (comprehension) 的使用方法。使用简单的代码示例说明。

列表解析 (List Comprehension):

- 。 用于创建新的列表,通过迭代、过滤和转换现有的可迭代对象。
- 语法: [expression for item in iterable if condition]

```
创建一个包含1到5的平方的列表
squares = [x**2 for x in range(1, 6)]
print(squares) # 输出: [1, 4, 9, 16, 25]
```

#### 集合解析 (Set Comprehension):

- 用于创建新的集合,通过迭代、过滤和转换现有的可迭代对象。
- 语法: {expression for item in iterable if condition}

```
创建一个包含1到10之间偶数的集合
evens = {x for x in range(1, 11) if x % 2 == 0}
print(evens) # 输出: {2, 4, 6, 8, 10}
```

#### 字典解析 (Dictionary Comprehension):

- 用于创建新的字典,通过迭代、过滤和转换现有的可迭代对象的键值对。
- o 语法: {key\_expression: value\_expression for item in iterable if condition}

```
创建一个字典,将1到5的数字映射到它们的平方
squares_dict = {x: x**2 for x in range(1, 6)}
print(squares_dict) # 输出: {1: 1, 2: 4, 3: 9, 4: 16, 5: 25}
```

### 实验总结

总结一下这次实验你学习和使用到的知识,例如:编程工具的使用、数据结构、程序语言的语法、算法、编程技巧、编程思想。

能够熟练地使用python的一些基本数据结构了,比如set,dictionary......