San Francisco Taxi Cabs

Pavel Troshenkov May 2022

Data and Tasks

- 537 files with taxi mobility traces
- 11 million records with 5 weeks of history
- Only latitude, longitude, occupancy and time are known
- Data provided for a period from 2008-05-17 2008-06-10

	latitude	longitude	occupancy	time	filename
0	37.75153	-122.39447	0.0	1.211034e+09	new_abboip.txt
1	37.75149	-122.39447	0.0	1.211034e+09	new_abboip.txt
2	37.75149	-122.39447	0.0	1.211034e+09	new_abboip.txt
3	37.75149	-122.39446	0.0	1.211034e+09	new_abboip.txt
4	37.75144	-122.39449	0.0	1.211035e+09	new_abboip.txt

There are 3 tasks:

- 1. To calculate the potential for a yearly reduction in CO2 emissions caused by the taxi cabs roaming without passengers
- 2. To build a predictor for taxi drivers, predicting the next place a passenger will hail a cab.
- 3. Identify clusters of taxi cabs that you find being relevant from the taxi cab company point of view.

Raw Data Brief Overview

Total number of traces

Total traces distribution by occupancy

Raw Data Brief Overview

Data Processing

Key assumptions

- trip is defined as a period with same sequential positive occupancy status
- there is always a break between trips thus we are excluding cases when next trips starts immediately after the previous one ends
- outliers ignored
- trip distance was calculated by haversine formula ignoring real landscape

In this way raw data was reduced from 11kk to 900k records

	filename	trip_number	occupancy	latitude_start	latitude_end	longitude_start	longitude_end	start_time	end_time	trip_distance
0	new_abboip.txt	0	0.0	37.74978	37.75153	-122.39709	-122.39446	1.211034e+09	1.211036e+09	0.347694
1	new_abboip.txt	1	1.0	37.74831	37.75552	-122.41438	-122.39724	1.211036e+09	1.211036e+09	2.246390
2	new_abboip.txt	2	0.0	37.75042	37.76523	-122.42291	-122.41441	1.211036e+09	1.211037e+09	3.578681
3	new_abboip.txt	3	1.0	37.75053	37.75206	-122.43101	-122.42086	1.211037e+09	1.211038e+09	0.996433
4	new_abboip.txt	4	0.0	37.74833	37.77219	-122.43172	-122.41402	1.211038e+09	1.211039e+09	5.123720

- Most of the trips lay down inside 10 km range and withing 30 minutes
- There are some outliers that can be ignored (~2% of records)

- Latitude and longitude changes seem to be close to normal distribution
- It makes sense to predict changes of coordinates instead of absolute values

- Most of the trips happen between 3pm 5am on weekends
- Trips are longer during busy hours which makes sense (traffic jams, people are going home/work, etc.)

Total number of occupied trips

• Most of the trips located around the city center

Task 1. The potential for a yearly reduction in CO2 emissions

We have 3 complete weeks of data for 500 cars

· We can calculate total mileage by

- We know that number of gasoline cars drops by 15% per month
- Also, we can consider that number of drivers grows by 1% in the pessimistic scenario¹
- Another important assumption is how we are considering gaps between trips lasting more that 1 hour

The formula to follow:

$$M_t = M_{t-1} \times GrowthRate \times (1 - ReductionRate)$$

where

M – is a monthly CO2 emission, Growth Rate – 0% or 1% (depends on scenario), Reduction Rate – 15% based on this task

 $^{^1 -} https://www.statista.com/statistics/943496/number-of-taxi-drivers-united-states/\\$

Task 1. The potential for a yearly reduction in CO2 emissions

Example

For complete weeks 21, 22, 23 the average mileage is 77,942 miles with the low emission scenario. Monthly mileage = $4 \times 77,942 = 311,769$ miles

Given this starting point we can predict CO2 reduction for one month as:

311,769 x (1 - 0.85) x 404 (CO2 grams) = 18.9 tones of CO2

Key assumptions

- trip is a sequence of records with the same occupancy status
- driver's shift is a sequence of records separated by more than 5 hours gap
- ML predicts a delta of two sequences with occupancy = 1 status separated by a sequence with occupancy status = 0

What we want to predict

- Longitude change between dropoff and pickup locations
- Latitude change between dropoff and pickup locations

What we want to change

E.g. we can hope that CO2 emission will be lower if drivers would use ML-based routing

Features

- Latitude/longitude-based features
 - Previous pickup/drop-off coordinates
 - Previous trip duration / distance in different slices
- Driver's features
 - Average statistics
 - Number of trips before the current one
- Date and time
 - Week
 - Day of Week
 - Hour

Validation scheme

Time-series validation

Loss

RMSE

Business Impact

• Distance to get new passenger, in kilometers

- Longitude residuals are equally distributed across 0
- Latitude is harder to predict

Feature Importance

Potential reduction of empty mileage is about 7% (based on predictions for trips after 2008-06-08)

Areas for improvement

- Try RNN models
- More feature engineering
- External data (e. g. geo services to analyze routes based on real geographical landscape)
- Get more information for mobile traces, not just naive aggregation

• KMeans clustering based on latitude and longitude (both pickup and drop-off) for all trips by 4 clusters

- Every driver has 4 clusters
- But 90% of trips by driver belong to only one cluster
- This one cluster can be used as a main one in each case

filename	cluster	occupancy	occupancy_share	rank
new_abboip.txt	0	0.0	0.000000	4.0
new_abboip.txt	1	3.0	0.003135	3.0
new_abboip.txt	2	893.0	0.933124	1.0
new_abboip.txt	3	61.0	0.063741	2.0

Clusters based on average trip distance and duration

Areas for improvement

- Look at the drivers' characteristics across clusters
- Another ways of clustering. E. g. embeddings from RNN

Questions

Thank you!