Q1. A wire is stretched by 0.1 mm under a force. If the strain produced in the wire is 5×10^{-4} ,	what is the
original length of the wire?	

- A. 5 cm
- B. 10 cm
- C. 20 cm
- D. 0.2 m

Answer: D Explanation:

Strain = $\Delta L / L$

 \Rightarrow L = Δ L / strain = 0.1 × 10⁻³ / 5 × 10⁻⁴ = 0.2 m

- Q2. The ratio of stress to strain in a material in the linear region of the stress-strain curve is called:
- A. Elastic Limit
- B. Poisson's Ratio
- C. Modulus of Elasticity
- D. Yield Strength

Answer: C

Explanation:

Modulus of elasticity = stress / strain in the linear region (Hooke's law).

- Q3. A 1 m long copper wire has a cross-sectional area of 1 mm^2 . If it is stretched by 1 mm under a force, find the Young's modulus.
- A. 10^7 N/m^2
- B. 108 N/m²
- C. 10⁹ N/m²
- D. 10^{10} N/m^2

Answer: D

Explanation:

 $Y = stress / strain = (F/A) / (\Delta L/L) = (F \times L) / (A \times \Delta L)$

Since values are not complete, assume units:

 $\Delta L = 1 \text{ mm} = 10^{-3} \text{ m}, L = 1 \text{ m}, A = 1 \text{ mm}^2 = 10^{-6} \text{ m}^2$

 $Y = (F \times 1) / (10^{-6} \times 10^{-3}) = F / 10^{-9} \rightarrow If F = 10 N, Y = 10^{10} N/m^{2}$

Q4. The maximum stress that a material can withstand without permanent deformation is called:
A. Breaking stress
B. Elastic limit
C. Yield point
D. Ultimate strength
Answer: B
Explanation:
Elastic limit is the maximum stress up to which material returns to original shape when load is removed.
Q5. In a wire, if the length is doubled and radius is halved, how will Young's modulus be affected?
A. Doubled
B. Halved
C. Quadrupled
D. Remains the same
Answer: D
Explanation:
Young's modulus depends only on material, not on length or area.
Q6. A metal wire of length 2 m and area 1 mm 2 is stretched by 1 mm. If Young's modulus is 2 × 10 11 N/m 2 , what is the force applied?
A. 100 N
B. 200 N
C. 400 N
D. 500 N
Answer: A
Explanation:
$Y = (F \times L) / (A \times \Delta L)$
$F = (Y \times A \times \Delta L) / L$
= $(2 \times 10^{11} \times 10^{-6} \times 10^{-3}) / 2 = 1 \times 10^{2} = 100 \text{ N}$

Q7. The stress-strain curve of a material is linear. It means:

A. It obeys Hooke's law B. It is brittle C. It is ductile D. It is elastic
Answer: A Explanation: Linear stress-strain curve in the initial region means it follows Hooke's law.
Q8. The strain produced in a body is 0.001 when a stress of 100 N/m^2 is applied. What is the modulus of elasticity?
A. 10 ⁴ N/m ² B. 10 ⁵ N/m ² C. 10 ⁶ N/m ² D. 10 ⁷ N/m ²
Answer: B Explanation: $Y = stress / strain = 100 / 0.001 = 10^5 N/m^2$
Q9. A wire breaks when a force of 400 N is applied. If its cross-sectional area is 0.5 mm², what is its breaking stress?
A. $8 \times 10^7 \text{ N/m}^2$ B. $8 \times 10^6 \text{ N/m}^2$ C. $2 \times 10^8 \text{ N/m}^2$ D. $4 \times 10^8 \text{ N/m}^2$
Answer: A Explanation: Area = $0.5 \text{ mm}^2 = 0.5 \times 10^{-6} \text{ m}^2$ Breaking stress = F / A = $400 / 0.5 \times 10^{-6} = 8 \times 10^8 \text{ N/m}^2$
Q10. Poisson's ratio is defined as:
A. Lateral strain / longitudinal strain

B. Longitudinal strain / lateral strainC. Stress / strainD. Strain / stress
Answer: A Explanation: Poisson's ratio = lateral strain / longitudinal strain
Q11. A wire of length L and area A is stretched by a force F. If it is replaced by another wire of same material, length 2L and area 2A, the extension will be:
A. Half B. Same C. Double D. Four times
Answer: B Explanation: $\Delta L = (F \times L) / (A \times Y)$ New wire: $\Delta L \propto (2L)/(2A) = same$
Q12. Which quantity has the unit N/m ² ?
A. Strain B. Stress C. Young's modulus D. Both B and C
Answer: D Explanation: Stress and modulus both have unit N/m²; strain is dimensionless
Q13. The breaking point of a wire is determined by:
A. Young's modulus B. Elastic limit C. Ultimate stress D. Yield strength

Answer: C Explanation:
Ultimate stress corresponds to the maximum stress before breaking
Q14. Bulk modulus is related to:
A. Volume strain
B. Linear strain
C. Shearing strain
D. None
Answer: A
Explanation:
Bulk modulus = - ($\Delta P / (\Delta V/V)$) \Rightarrow related to volume strain
Q15. The ratio of longitudinal stress to longitudinal strain is:
A. Young's modulus
B. Bulk modulus
C. Shear modulus
D. Poisson's ratio
Answer: A
Explanation:
Young's modulus = longitudinal stress / longitudinal strain
Q16. Two wires of the same material and length, but one with double the radius of the other, are stretched by
the same force. The ratio of strain in the thinner wire to the thicker wire is:
A. 1:1
B. 2:1
C. 4:1
D. 8:1
Answer: C
Explanation:
Strain = stress / Young's modulus, and stress = F/A
Area $\propto r^2$, so thinner wire has 1/4th area \Rightarrow stress is 4x

⇒ Strain ratio = 4:1

Q17. A steel wire of length 2 m and cross-sectional area 1 mm² is stretched by 1 mm. What is the energy stored in it? (Y = $2 \times 10^{11} \text{ N/m}^2$)

A. 0.1 J

B. 0.2 J

C. 0.05 J

D. 1.0 J

Answer: B Explanation:

Energy = $\frac{1}{2}$ × stress × strain × volume

Strain = $\Delta L/L = 1$ mm / 2m = 0.0005

Stress = $Y \times strain = 2 \times 10^{11} \times 0.0005 = 10^{8}$

Volume = $A \times L = 10^{-6} \times 2 = 2 \times 10^{-6}$

Energy = $\frac{1}{2} \times 10^8 \times 0.0005 \times 2 \times 10^{-6} = 0.05 \text{ J}$

Q18. A cube is subjected to equal compressive forces on all faces. The change produced is described by:

- A. Shear modulus
- B. Young's modulus
- C. Bulk modulus
- D. Poisson's ratio

Answer: C

Explanation:

Bulk modulus governs volume change due to uniform pressure.

Q19. Assertion (A): A rubber band stretches more than a copper wire under same force.

Reason (R): Rubber has a lower Young's modulus than copper.

- A. Both A and R are true, and R is the correct explanation.
- B. Both A and R are true, but R is not the correct explanation.
- C. A is true, R is false.
- D. A is false, R is true.

Answer: A

Explanation:
Lower Young's modulus ⇒ more strain (stretching) for same stress.
Q20. The unit of Young's modulus in SI is:
A. Pascal B. N/m
C. N/m ²
D. No unit
Answer: C
Explanation: Young's modulus = stress / strain = N/m ²
Q21. A copper wire is stretched by 2 mm under a tension. What will be the strain if its original length is 2 m?
A. 0.001
B. 0.002
C. 0.01
D. 0.02
Answer: B
Explanation:
Strain = $\Delta L / L = 2 \text{ mm} / 2 \text{ m} = 0.002$
Q22. What is the effect on Young's modulus if the length and radius of a wire are both doubled?
A. It becomes double
B. It becomes one-fourth
C. It becomes half
D. No change
Answer: D
Explanation:
Young's modulus depends only on material, not geometry.

Q23. The maximum energy stored per unit volume in a stretched wire without permanent deformation is
called:
canca.
A. Elastic limit
B. Strain energy
C. Breaking stress
D. Modulus of resilience
Answer: D
Explanation:
Modulus of resilience is energy stored per unit volume up to elastic limit.
Q24. Two wires have the same length and are stretched by the same force. One is copper, the other is steel.
Which one shows greater extension?
A. Copper
B. Steel
C. Both same
D. Can't be determined
Answer: A
Explanation:
Copper has lower Young's modulus than steel ⇒ more extension
Q25. If the length of a wire increases by 0.05% under a stress of 100 N/m², its Young's modulus is:
A. $2 \times 10^4 \text{ N/m}^2$
B. $2 \times 10^5 \text{ N/m}^2$
$C. 2 \times 10^6 \text{ N/m}^2$
D. $2 \times 10^7 \text{ N/m}^2$
Answer: B

So, Answer: B

Explanation:

Strain = 0.05% = 0.0005

Correction: Correct answer is $2 \times 10^5 \text{ N/m}^2$

Y = stress / strain = $100 / 0.0005 = 2 \times 10^5 \Rightarrow$ typo in options

Q26. Shear modulus relates to:
A. Volume change
B. Shape change
C. Length change
D. None of these
Answer: B
Explanation:
Shear modulus = ratio of tangential stress to shear strain (shape change).
Q27. A wire of Young's modulus Y is stretched by a force F. If the length of wire is L and area A, what is the elongation?
A. FL/A
B. FL/Y
C. FL/AY
D. F/YA
Answer: C
Explanation:
ΔL = FL / AY from Hooke's law formula
Q28. If stress is tripled and strain remains constant, what happens to Young's modulus?
A. Becomes one-third
B. Remains same
C. Becomes three times
D. Becomes nine times
Answer: C
Explanation:
Y = stress / strain ⇒ if strain constant, Y ∝ stress ⇒ 3×
Q29. Which of the following combinations is correct?
A. Pascal – strain
B. Unitless – stress

C. Pascal – Young's modulus D. N – Young's modulus
Answer: C Explanation: Young's modulus and stress both have units of Pascal (N/m²).
Q30. In stress-strain curve, the point beyond which the wire does not return to original shape is called:
A. Yield point B. Elastic limit C. Ultimate point D. Proportional limit
Answer: A Explanation: Yield point is where plastic deformation begins — permanent change occurs.
Q31. The breaking stress for a material is 3×10^8 N/m ² . What is the maximum load a wire of radius 0.5 mm can bear?
A. 235 N B. 236 N C. 240 N D. 250 N
Answer: B Explanation: Breaking force = stress × area $Area = \pi r^2 = \pi (0.5 \times 10^{-3})^2 \approx 7.85 \times 10^{-7} \text{ m}^2$ $F = 3 \times 10^8 \times 7.85 \times 10^{-7} \approx 235.5 \text{ N}$
Q32. A wire is stretched so that its length increases by 1%. What is the percentage decrease in its area assuming volume remains constant?
A. 1% B. 2% C. 3%

D. 2.01%

Answer: D Explanation:

If volume constant:

 $L \times A = constant \Rightarrow \Delta A/A = -\Delta L/L$

 $\Delta A/A = -(1 + x)^{-1} - 1 \approx -2.01\%$ for small elongations

Q33. A wire of length 2 m and area 0.5 mm² is stretched by 1 mm. What is the work done in stretching it if Y = $2 \times 10^{11} \text{ N/m}^2$?

A. 0.025 J

B. 0.05 J

C. 0.1 J

D. 0.2 J

Answer: B Explanation:

Strain = $0.001/2 = 5 \times 10^{-4}$

Stress = $Y \times strain = 10^8$

 $U = \frac{1}{2} \times stress \times strain \times Volume$

Volume = $A \times L = 5 \times 10^{-7} \times 2 = 1 \times 10^{-6}$

 $U = \frac{1}{2} \times 10^8 \times 5 \times 10^{-4} \times 1 \times 10^{-6} = 0.05 \text{ J}$

Q34. In a stress-strain graph, the area under the curve represents:

- A. Force
- B. Work done per unit volume
- C. Stress
- D. Young's modulus

Answer: B

Explanation:

Area under stress-strain curve = strain energy per unit volume.

Q35. Which of the following has the highest Young's modulus?

A. Rubber

B. Steel
C. Copper
D. Brass
Answer: B
Explanation:
Steel has the highest Y among common metals due to its stiffness.
Q36. A metal wire has a Young's modulus of 2×10^{11} N/m ² . If the strain is 0.001, what is the stress?
A. $2 \times 10^8 \text{ N/m}^2$
B. $2 \times 10^7 \text{ N/m}^2$
$C. 2 \times 10^9 \text{ N/m}^2$
D. $2 \times 10^{10} \text{ N/m}^2$
Answer: A
Explanation:
Stress = Y × strain = $2 \times 10^{11} \times 0.001 = 2 \times 10^{8} \text{ N/m}^{2}$
Q37. If Poisson's ratio for a material is 0.5, then the material is:
A. Highly elastic
B. Incompressible
C. Very brittle
D. Perfectly plastic
Answer: B
Explanation:
For incompressible material, Poisson's ratio approaches 0.5
Q38. The elastic limit of a wire is the:
A. Point where it breaks
B. Maximum extension possible
C. Maximum stress without permanent deformation
D. Point of no return
Answer: C

Explanation: Elastic limit = max stress before permanent deformation
Q39. Young's modulus is numerically equal to:
A. Ratio of tensile strain to stress B. Ratio of stress to strain C. Product of stress and strain D. Stress × area
Answer: B Explanation: Y = stress / strain (Hooke's law)
Q40. The strain energy stored in a wire is proportional to:
A. Length of the wire B. Stress ² C. Strain ² D. Both B and C
Answer: D Explanation: $U \propto stress \times strain \Rightarrow if one constant, then \propto the square of the other$
Q41. The stress-strain graph for a material is a straight line. This implies:
A. Material is plastic B. Stress is independent of strain C. Hooke's law is obeyed D. Elastic limit is reached
Answer: C Explanation: Straight line implies stress ∝ strain ⇒ obeys Hooke's law
Q42. If a wire is stretched to double its original length, what is the new strain?

A. 0.5
B. 1.0
C. 2.0
D. 100%
Answer: B
Explanation:
Strain = $\Delta L / L = (2L - L)/L = 1 \Rightarrow strain = 1$
Q43. Two wires of equal length and area are made of different materials. If they are stretched by same force,
which one stretches more?
A. One with higher Y
B. One with lower Y
C. Both equally
D. Can't say
Answer: B
Explanation:
Elongation 1/Y ⇒ lower Y stretches more
Liongation \(\alpha\) 1/1 \(\to\) lower 1 stretches more
Q44. A wire of length 3 m is stretched by 2 mm. What is the strain?
A. 6.7×10^{-3}
B. 0.0002
C. 0.00067
D. 2×10^{-3}
5.2 ~ 10
Arrayan C
Answer: C
Explanation:
Strain = $2 \text{ mm} / 3 \text{ m} = 0.002 / 3 = 0.00067$
Q45. A wire has a Young's modulus of 1×10^{11} N/m ² . What will be the elongation in a 2 m wire with 1 mm ² area
under 100 N?
under 100 it.
A 2
A. 2 mm
R 1 mm

C. 0.2 mm

D. 0.1 mm

Answer: A

Explanation:

 ΔL = FL / AY = (100 × 2) / (1×10⁻⁶ × 1×10¹¹) = 200 / 10⁵ = 0.002 m = 2 mm