GUANARY: Efficient Buffer Overflow Detection In Virtualized Clouds Using Intel EPT-based Sub-Page Write Protection Support

Stella Bitchebe 1 , Yves Kone 2 , Pierre Olivier 3 , Jalil Boukhobza 4 , Yérom-David Bromberg 5 , Daniel Hagimont 2 , Alain Tchana 6

Stella blichebe, ives Kone, Pierre Olivier, jaili boukhobza, i eroin-David bromberg, Daniel Hagimont, Alam ichan

¹Université Côte d'Azur, ²University of Toulouse, ³University of Manchester, ⁴ENSTA Bretagne, ⁵University of Rennes, ⁶Grenoble INP

1. CONTEXT AND MOTIVATION

- Buffer overflow was reported as the top vulnerability in 2022, according to the CWE (Common Weakness Enumeration) [1].
- Secure Allocators (e.g., Slimguard [2], Guarder [3], etc.) generally use *safety guards* located after a buffer to prevent and detect overflows.
- State-of-the-art safety guards:

GRENOBLE

INP

- Canary: 1-byte magic values checked to detect overflow => Modest memory overhead + Asynchronous detection (see Figure 2).
- **Guard Page**: unmapped pages in the virtual address space that trigger a fault if the page is hit by an overflow => Significant memory overhead + Synchronous detection (see Figures 2 and 1).

Figure 1: Memory over-consumption that Slimguard would incur for PARSEC applications if all the allocated buffers are placed at the boundary of a guard page (worse case).

Figure 2: Canary, Guard pages, and GuaNary illustration. For the two latter, buffers are aligned with the lower boundary of the (sub)page.

3. INTEL SPP: SUB-PAGE WRITE PERMISSION

SPP [4] is a recent Intel hardware virtualization feature that allows the hypervisor to write-protect guest's memory at a sub-page (128B) granularity instead of 4KB (see Figure 6). SPP builds on top of the Extended Page Table (EPT) [5], introduced long ago to facilitate memory virtualization.

Figure 6: Overview of SPP functioning.

2. DILEMMA: SYNCHRONUOUS DECTECTION VS. MEMORY OVERHEAD

- Security distance: for a vulnerable buffer b, the security distance is the number of bytes separating b from a safety guard. A zero security distance allows catching overflow attempts immediately. Protecting all the buffers with a zero security distance is not practical for most existing allocators, as it would result in considerable memory overhead (like in Figure 1).
- Protection frequency: F is called the protection frequency if a safety guard is placed after every F-allocated buffers.
- Memory overhead is a real conundrum for users who sacrifice security for better memory utilization or vice versa. To this end, they

can configure F for better memory consumption and security trade-off (See Figure 3).

Figure 3: Memory overhead and average security distances for PARSEC-blackscholes when varying the protection frequency from 2 to 50. The intersection between the two curves gives the optimal frequency, i.e., the one providing the best memory overhead and security tradeoff. The allocator is Slimguard.

4. GUARNARY AND LEANGUARD

Using SPP, we introduce **GuarNary**, a novel type of safety guard that is midway between Guard page and caNary, thus providing the advantages of both solutions: synchronous buffer overflow detection and modest memory consumption (see Figure 2).

We also propose **LeanGuard** (see Figure 4), a software stack for GuarNary usage from inside virtual machines by new secure allocators.

Figure 5 shows that for the same number of protected buffers, LeanGuard consumes $8.3 \times less$ memory than SlimGuard. Further, for the same memory consumption, LeanGuard allows protecting $25 \times less$ more buffers than SlimGuard.

Figure 4: Architecture of LeanGuard.

Figure 5: Memory consumption of each allocator configuration for PARSEC applications while varying the protection frequency.

REFERENCES

- [1] Cwe/sans top 25 most dangerous software errors. https://www.sans.org/top25-software-errors, 2022.
- [2] Beichen Liu et al. Slimguard: A secure and memory-efficient heap allocator. *Middleware*, 2019.
- [3] Sam Silvestro et al. Guarder: A tunable secure allocator. In 27th USENIX Security Symposium (USENIX Security 18), pages 117–133, Baltimore, MD, August 2018. USENIX Association.
- [4] Intel ept-based sub-page write protection support. https://lwn.net/Articles/736322/, Oct 2017.

CONTACT

bitchebe@i3s.unice.fr

alain.tchana@grenoble-inp.fr

[5] Intel. volume 3C. 2022.