

Modelo de Falhas			
Class of failure	Affects	Description	
Fail-stop	Process	Process halts and remains halted. Other processes may detect this state.	
Crash	Process	Process halts and remains halted. Other processes may not be able to detect this state.	
Omission	Channel	A message inserted in an outgoing message buffer never arrives at the other end's incoming message buffer.	
Send-omission	Process	A process completes a <i>send</i> , but the message is not put in its outgoing message buffer.	
Receive-omission	Process	A message is put in a process's incoming message buffer, but that process does not receive it.	
Arbitrary	Process or channel	Process/channel exhibits arbitrary behaviour: it may send/transmit arbitrary messages at arbitrary times, commit omissions; a process may stop or take an incorrect step.	

Tempo	
Affects	Description
Process	Process's local clock exceeds the bounds on its rate of drift from real time.
Process	Process exceeds the bounds on the interval between two steps.
Channel	A message's transmission takes longer than the stated bound.
	[CDK 01]
	Affects Process Process

Mascarando Falhas

- O serviço mascara uma falha, escondendo-a ou convertendo-a em uma falha aceitável.
- Comunicação confiável definida em termos de:
 - Confiabilidade
 - Validade
 - Números de seqüência detectam mensagens ausentes.
 - Retransmissões de mensagens não entregues.
 - Integridade
 - Checksums mascaram mensagens corrompidas.
 - Números de seqüência detectam mensagens duplicadas.

Profa. Ana Cristina B. Kochem Vendramin DAINF/UTFPR

Mascarando Falhas

- Redundância
 - Redundância de informação: bits extras são adicionados para recuperar bits errados.
 - Redundância de tempo: uma ação é executada e, se necessário, é executada novamente.
 - Redundância física: equipamento extra é adicionado para que o sistema como um todo tolere a falha de um ou outro componente.

Profa. Ana Cristina B. Kochem Vendrami: DAINF/UTFPR

Mascarando Falhas

- Redundância ativa
 - Todos os processadores são usados o tempo todo como servidores (em paralelo) a fim de ocultar falhas completamente.
- Primary backup
 - Apenas um processador (primary) está ativo a cada instante.
 Se este falhar, um outro processador (backup) é ativado para operar em seu lugar.

Profa. Ana Cristina B. Kochem Vendramin.

Modelo de Segurança

- Segurança em processos, canais e objetos encapsulados pelos processos.
 - Direitos de acesso:
 - · Protegem contra acesso não autorizado;
 - Especificam quem tem permissão de operar um objeto ou recurso;
 - Cada invocação ou resposta é associada à autoridade (chamada Principal) que a emitiu.

Profa. Ana Cristina B. Kochem Vendramin DAINF/UTFPR

Modelo de Segurança — O Principal O principal pode ser um processo cliente ou servidor. Cliente e servidor precisam checam a identidade do principal. Servidor deve verificar os direitos de acesso dos clientes antes de executarem operações em objetos. Access rights Object Invocation Principal (user) Network Principal (server)

Modelo de Segurança – O Principal

- Utiliza um computador conectado à rede para executar um programa que lê ou copia mensagens endereçadas a outros computadores;
- Executa um programa que gera mensagens com pedidos falsos fazendo-se passar por um usuário autorizado.

Mecanismos de Segurança

- Alguns mecanismos típicos de segurança incluem:
 - Autenticação: identifica quem (ou qual serviço) está solicitando recursos da rede.
 - Autorização: define o que pode ser feito depois de ter acesso à rede.
 - Contabilidade (auditoria): procedimento de coleta de dados de atividade da rede. Grava acessos ou tentativas.
 - Criptografia de dados

Profa. Ana Cristina B. Kochem Vendrami

Criptografia de Dados

- Processo para "embaralhar" os dados antes de colocá-los na rede de modo a protegê-los contra a leitura de qualquer pessoa que não seja o receptor pretendido.
- Consiste de duas partes:
 - Algoritmo de criptografia e chave de criptografia.
- As chaves consistem de dois tipos bem conhecidos:
 - Chave simétrica chave secreta compartilhada
 - Ex.: DES (Data Encryption Standard).
 - Chave assimétrica
 - Ex.: Chave pública/privada.

Profa. Ana Cristina B. Kochem Vendramin. DAINF/UTFPR

1

Criptografia de Dados

- Na chave simétrica, o remetente e o destinatário possuem a mesma chave secreta.
- Na chave pública/privada: tudo que for codificado pela senha pública só é decodificado com a senha privada e viceversa
- Dois recursos são possíveis:
 - Preservação do caráter confidencial dos dados.
 - Mecanismo de autenticação (assinatura digital).

Profa, Ana Cristina B. Kochem Vendramin

13

Ameaças e Formas de Ataque

- Ameaças de segurança recaem em três classes:
 - Leakage (Vazamento)
 - Aquisição de informações por recipientes não autorizados;
 - Tampering
 - Alteração não autorizada da informação;
 - Vandalism (Vandalismo)
 - Interferência na operação do sistema sem ganho para o infrator.

Profa. Ana Cristina B. Kochem Vendramin. DAINF/UTFPR

Ameaças e Formas de Ataque

- Eavesdropping (escutar às escondidas)
 - Ameaça à privacidade das informações → obter cópias de mensagens sem autorização.
- Masquerading
 - Enviar ou receber mensagens usando a identidade de outro sem a autorização do mesmo.

Profa. Ana Cristina B. Kochem Vendramin

Ameaças e Formas de Ataque

Replaying

- Ameaça à integridade das informações que trafegam na rede.
- Salva cópias de mensagens para enviá-las depois.
- Não precisa possuir a chave secreta para causar esse tipo de ataque.

Denial of service (DoS)

 Invocações excessivas nos serviços ou grandes transmissões de mensagens na rede resultando em recursos sobrecarregados.

Profa. Ana Cristina B. Kochem Vendramin. DAINF/UTFPR

Ameaças e Formas de Ataque

• Message tampering

- Intercepta mensagens e altera seus conteúdos antes de enviálas ao destino.
- Ataque man-in-the-middle:
 - Atacante intercepta a primeira mensagem da troca de chaves criptografadas.
- Substitui as chaves por outras que permitem que ele decodifique as mensagens subsequentes antes de codificá-las novamente com as chaves corretas e enviá-las.

Profa. Ana Cristina B. Kochem Vendramin. DAINF/UTFPR

11

Ameaças de Códigos Móveis

- Várias linguagens têm sido desenvolvidas para permitir que programas oriundos de servidores remotos sejam baixados e executados localmente (exemplo: java).
- Cada aplicação Java tem seu próprio ambiente de execução.
- Cada ambiente tem um gerente de segurança que determina quais recursos estão disponíveis para a aplicação.
- Ex.: o gerente de segurança pode não permitir que a aplicação leia ou escreva em arquivos ou oferecer a ela um acesso limitado a conexões de rede.

Profa. Ana Cristina B. Kochem Vendramir

...

Vazamento de Informações

- Se a transmissão de uma mensagem entre dois processos pode ser observada, algumas informações podem ser recolhidas pela simples existência da mensagem.
- Exemplo
 - Uma inundação de mensagens para um acionista em um mercado de ações pode indicar um alto nível de negociações naquela bolsa.

Profa. Ana Cristina B. Kochem Vendramin. DAINF/UTFPR 20

Cenário 1 – Comunicação autenticada por um servidor

- Alice quer acessar arquivos mantidos por Bob em um servidor na rede local onde ela trabalha
- Sara é um servidor de autenticação que é gerenciado de forma segura
- Sara cria usuários com senhas e mantém chaves secretas para todos os principais no sistema que ela serve
- Por exemplo:
 - Sara conhece a chave secreta de Alice KA e Bob KB

Profa. Ana Cristina B. Kochem Vendramin DAINF/UTFPR 21

Comunicação autenticada por um servidor

- Alice envia uma mensagem n\u00e3o criptografada para Sara, identificando-se e requisitando um ticket para acessar Bob.
- Sara envia uma resposta para Alice criptografada em KA consistindo de um ticket criptografado em KB (para ser enviado a Bob em cada requisição de acesso a arquivo) e uma nova chave secreta KAB para uso enquanto estiver na mesma seção de comunicação com Bob.
 - Então, a resposta que Alice recebe aparece assim:
 - {{Ticket}KB, KAB}KA

Profa. Ana Cristina B. Kochem Vendramin

-

Comunicação autenticada por um servidor

- Alice decodifica a resposta usando seu KA.
 - Se o recipiente não for Alice, então ele não saberá a senha de Alice e não será capaz de decifrar a mensagem.
 - Alice não pode decifrar ou modificar o ticket porque ele está criptografado com KB.
- Alice envia o ticket para Bob juntamente com a sua identidade e uma requisição R para acessar um arquivo:
 - {Ticket}KB, Alice, R.

Profa, Ana Cristina B. Kochem Vendramin DAINF/UTFPR Comunicação autenticada por um servidor

- O ticket originalmente criado por Sara é: {KAB, Alice}KB.
 - Bob decifra o ticket usando sua chave KB.
 - Então, Bob consegue a identidade autêntica de Alice e uma nova chave compartilhada secreta KAB para uso quando for interagir com Alice (chamada de session key porque pode ser usada seguramente por Alice e Bob em uma seqüência de interações).

Profa. Ana Cristina B. Kochem Vendramii DAINF/UTFPR

Cenário 2 – Uso de chave pública para distribuir chaves privadas compartilhadas

- Bob e Alice estabelecendo uma chave secreta KAB:
- Alice acessa um serviço de distribuição de chaves para obter o certificado de chave pública de Bob.
 - É chamado de certificado porque é assinado por uma autoridade de confiança (trusted authority) - uma pessoa ou organização que é amplamente conhecida como confiável.
 - Após verificar a assinatura, Alice lê a chave pública de Bob KBpub do certificado.

Profa. Ana Cristina B. Kochem Vendramir

Uso de chave pública para distribuir chaves privadas compartilhadas

- Alice cria uma nova chave compartilhada KAB e a codifica usando KBpub.
 - Ela manda a mensagem para Bob juntamente com um nome que identifica unicamente o par de chaves pública/privada (visto que Bob deva possuir várias chaves públicas).
 - Então, Alice envia para Bob:
 - keyname, {KAB}KBpub
- Bob seleciona a chave privada correspondente KBpriv para decifrar KAB.

Profa. Ana Cristina B. Kochem Vendramin. DAINF/UTFPR 20

Controle de Acesso aos Recursos

- Servidores recebem requisições na forma <op,principal,recurso>
- Onde:
 - op: operação requisitada;
 - principal: identidade do principal fazendo o pedido;
 - recurso: identifica o recurso na qual a operação será aplicada.
- Para cada requisição, o servidor autentica o principal e verifica se o mesmo possui direitos de acesso necessários para realizar a operação desejada no recurso especificado.

Profa. Ana Cristina B. Kochem Vendramir DAINF/UTFPR 1

Referências Bibliográficas

- Coulouris, George; Dollimore, Jean; Kindberg, Tim. Distributed Systems: concepts and design. Third Edition. Addison-Wesley 2001.
- Coulouris, George; Dollimore, Jean; Kindberg, Tim; tradução João Tortello. Sistemas Distribuídos: conceitos e projeto. 4. ed. Bookman 2007.

Profa. Ana Cristina B. Kochem Vendramin. DAINF/UTFPR 28