Decision tree with Map Reduce

Yuting Mei

Introduction

This is a project for implementing and designing decision tree classification model built from scratch and use map reduce strategy for a prediction task on 'Adult'dataset. Possible scenario for model is assumed and model performance under certain setting is measured

Methods

- 1. Tree structure design
- 2. Map Reduce Parallel

Methods – General Tree flow chart

Stopping Criteria (either one is meet) :

- Tree Depth < maximum depth
- Samples in Node >= minimum number of samples

Goal:

Find best splits at each node which get informative and effective tree in unseen dataset

- maximize info gain(overall reduction in uncertainty)
- minimize impurity of each node with accurate label(homogeneous subsets)

Impurity measure: gini, variance

Methods – Missing value

Removing NA first ->

Missing value imputation strategy: Inspired from C4.5

- Recursive imputation(bracketing)
- Mean imputation(not for categorical)
- Median imputation(not for categorical)

$$X_i >= 2.5$$

$$X_i >= 4.5$$

Impute NA in $X_i = 4.5$

Methods – Best split

Partition strategy for different variable:

Categorical variable: Bool type

Discrete variable: moving average with two time window if under threshold else threshold

Continuous variable:

- Bin method for partition(bin numbers, outlier handing):
- Number of bins specify method:
 - User customized bin number
 - (X info based)Sturges 'Rule (log_2 n + 1)
 - (X info based)Scott's Rule (related to the standard deviation(σ) of the data)
 - (Y info based) activation functions for shrinking (tanh, logistic)

Bin method outlier(based on if outlier can give useful info for classification):

Toy candidates eg without outlier [1,2,3,4,5,7,9,12, 10, 6, 7] ->

Toy candidates eg with outlier: [100,2,3,4,5,7,9,5000, 1, 0, 3] ->

- •Data explanation
- Model result

Result

Result – Data explanation

- Imbalanced categorical data
- significant amount of outliers in numerical data

Result – Data explanation

 Quantile transformation for helping reduce impact on outliers

Result – comparison under certain settings of tree model

- Repeated stratified K fold
- Take categorical data as bool type
- Comparison of outlier handling

n_splits = 10, n_repeats = 2, traverse_threshold = 25, min_samples_split = 1850, max_depth = 11, info_method = 'variance', na_method = 'recursive', bins = 'tanh'

Parameter setting	Maximum precision score	Mean precision score	Time(second) per fold
Moving outliers	0.746	0.712 (std=0.026)	65.64
Without moving outliers	0.810	0.769(std = 0.022)	78.35

Result – comparison under certain settings of tree model

Comparison of different bin number generation criteria

n_splits = 10, n_repeats = 1, traverse_threshold = 25, min_samples_split = 1850, \
max_depth = 11, info_method = 'variance', na_method = 'recursive', outlier_ = False

Parameter setting	Maximum precision score	Mean precision score	Time(second) per fold
sturges	0.776	0.727 (std=0.032)	104.33
scott	0.789	0.769 (std = 0.022)	61.45
tanh	0.810	0.769 (std = 0.022)	78.35
User specified = 30	0.783	0.740 (std = 0.024)	64.90

Result – comparison under certain settings of tree model

 Comparison of different traverse_threshold(basically controls the least number of bins for continuous variable)

```
n_splits = 10, n_repeats = 1, min_samples_split = 1850, \
max_depth = 11, info_method = 'variance', na_method = 'recursive', bins = 'tanh', outlier_ = False'
```

Parameter setting (Traverse_threshol d)	Maximum precision score	Mean precision score	Time(second) per fold
15	0.737	0.699 (std=0.022)	63.24
25	0.810	0.769 (std = 0.022)	78.35
35	0.802	0.761 (std = 0.016)	83.06

Result – comparison of map reduce

 Comparison of model performance in map reduce using 1000 data points, due to limited sample size, the precision is not so solid

min_samples_split=600, max_depth=11, info_method=method, method = 'bin', num_bins = 15, threshold = 10

Subset samples number	Group size S	Mean computation time(seconds)	Mean precision	Impurity function
1000	50	110.418	0.853	variance
1000	100	118.424	0.857	variance
1000	500	128.934	0.842	variance
1000	50	154.352	0.848	gini
1000	100	165.996	0.854	gini
1000	500	176.675	0.851	gini

• Slow computing speed in map reduce than in raw tree: Time cost step by step in map reduce:

1. initialize Pool takes ~0.5 seconds in each iteration at feature f value v (the most time consuming step!);

2. map: ~ 0.05 seconds for getting statistics from subgroups;

3. reduce: ~e^(-5)

• For tree model partitioning continuous variable, increasing partition of candidate points to traverse lead more accurate precision, but there's trade off between computational time

Conclusions

R

Limitations

Thanks for listening!