Binary Trees (cont.)

Instructor: Dr. Sunho Lim (Ph.D., Assistant Professor)

Lecture II

sunho.lim@ttu.edu

Adapted partially from Data Structures and Algorithms in C++, Adam Drozdek, 4th Edition, Cengage Learning; and Algorithms and Data Structures, Douglas Wilhelm Harder, Mmath

CS2413: Data Structures, Fall 2021

1

Heaps

- A heap, a special type of binary tree
 - the value of each node is **greater than or equal** to the values stored in its **children**
 - the tree is perfectly balanced, and the leaves in the last level are leftmost in the tree

Ŧ

Heaps (cont.)

Different heaps constructed with the same elements

CS2413: Data Structures, Fall 2021

3

Heaps (cont.)

- A max heap;
 - the value of each node is greater than or equal to the values stored in its children
 - the root of a max heap, the largest element
- A min heap
 - the value of each node is less than or equal to the values stored in its children
 - the root of a min heap, the smallest element

CS2413: Data Structures, Fall 2021

Heaps (cont.)

- Delete a node in max heap (cont.)
 - always deleted from the root of the heap
 - replace the root node with the last node

C32 113. Data Structures, run 2

9

Heaps (cont.)

- Heaps as Priority Queues
 - perfectly balanced trees, the inherent efficiency of searching such structures makes them more useful
 - enqueue and dequeue operations
 - enqueue,
 - add at the end of the heap as the last leaf
 - may need restructure the heap

heapEnqueue (el)

```
put el at the end of the heap;
while el is not in the root and el > parent(el)
    swap el with its parent;
```

CS2413: Data Structures, Fall 2021

- dequeue
 - remove the root (since it is the largest value) and replace it by the last leaf
 - need restructure the heap

heapDequeue()

```
extract the element from the root;
  put the element from the last leaf in its place;
  remove the last leaf;
// both subtrees of the root are heaps
  p = the root;
  while p is not a leaf and p < any of its children
      swap p with the larger child;
```

CS2413: Data Structures, Fall 2021

