TD 9: Processus markovien de sauts

Exercice 1:

Soit $(Z_n)_{n\geqslant 0}$ une chaîne de Markov sur E de probabilité de transition Q indépendante d'un processus de Poisson $(N_t)_{t\geqslant 0}$ de paramètre $\lambda>0$. On suppose que Q vérifie $\forall i\in E,\,Q(i,i)=0$, et on définit

$$\forall t \geqslant 0, \quad X_t = Z_{N_t}.$$

1. Montrer que $(X_t)_{t\geqslant 0}$ est un processus markovien de sauts de noyaux de transition $(P_t)_{t\geqslant 0}$ définis par

$$\forall t \geqslant 0, (i,j) \in E^2, \quad e^{\lambda t(Q-I)}(i,j) = \sum_{n=0}^{+\infty} e^{-\lambda t} \frac{(\lambda t)^n Q^n(i,j)}{n!}.$$

2. Déterminer le générateur infinitésimal A du processus $(X_t)_{t\geq 0}$.

Exercice 2:

Soit $(N_t)_{t\geqslant 0}$ un processus de Poisson de paramètre $\lambda>0$ et d'instants de sauts $(T_n)_{n\geqslant 1}$. On définit le processus $(X_t)_{t\geqslant 0}$ appelé processus du télégraphe par

$$\forall t \in [T_n, T_{n+1}], \quad X_t = 1 - X_{T_{n-1}}, \quad X_0 \sim \mathscr{B}(p),$$

où $p \in]0,1[$ et $T_0 = 0.$

1. Montrer que $(X_t)_{t\geq 0}$ est à valeurs dans $\{0,1\}$ et que

$$X_{t+s} - X_s = \begin{cases} 0 & \text{si } N_{t+s} - N_s = 0 \mod 2 & \text{(nombre pair de sauts entre } s \text{ et } t+s) \\ 1 - 2X_s & \text{si } N_{t+s} - N_s = 1 \mod 2 & \text{(nombre impair de sauts entre } s \text{ et } t+s) \end{cases}$$

2. Montrer que $(X_t)_{t\geq 0}$ est un processus markovien de sauts de noyaux de transition $(P_t)_{t\geq 0}$ définis par

$$P_t(0,1) = P_t(1,0) = e^{-\lambda t} \sum_{k \ge 0} \frac{(\lambda t)^{2k+1}}{(2k+1)!},$$

$$P_t(0,0) = P_t(1,1) = e^{-\lambda t} \sum_{k>0} \frac{(\lambda t)^{2k}}{(2k)!}$$

3. Déterminer le générateur infinitésimal A du processus $(X_t)_{t\geq 0}$.

Exercice 3:

Soit $(X_t)_{t\geqslant 0}$ un processus markovien de saut sur $E=\{1,2,3\}$ de loi initiale μ et de générateur

$$A = \left(\begin{array}{rrr} -2 & 1 & 1\\ 3 & -7 & 4\\ 0 & 0 & 0 \end{array}\right)$$

On note $(T_n)_{n\geqslant 1}$ les instants de sauts de $(X_t)_{t\geqslant 0}$ et $(S_n)_{n\geqslant 1}$ les durées entre les sauts $S_n=T_n-T_{n-1}$ (avec $T_0=0$).

- 1. Déterminer le noyau Q de la chaîne de Markov induite $(X_{T_n})_{n\geqslant 0}$ notée $(Y_n)_{n\geqslant 0}$.
- 2. Déterminer la loi de (S_1, \ldots, S_n) conditionnellement à (Y_0, \ldots, Y_{n-1}) .
- 3. Montrer qu'on peut représenter $(X_t)_{t\geqslant 0}$ de la façon suivante : soit $(\xi_n)_{n\geqslant 0}$ une μ -Q chaîne de Markov sur E et $(U_n)_{n\geqslant 1}$ une suite i.i.d. de loi exponentielle de paramètre 1, alors

$$X_t = \sum_{n=0}^{+\infty} \xi_n \mathbf{1}_{[V_n, V_{n+1}[}(t),$$

avec
$$V_n = \sum_{k=1}^n \frac{U_k}{\lambda(\xi_{k-1})}$$
 (avec la convention $1/0 = +\infty$).

4. Classer les états du processus $(X_t)_{t\geq 0}$.

Exercice 4:

Une bactérie se divise en deux bactéries identiques après un temps aléatoire de loi exponentielle de paramètre $\lambda > 0$, qui se divisent elles-mêmes de la même façon indépendamment les unes des autres, etc. Soit X_t le nombre de bactéries au temps t et on suppose $X_0 = 1$ et $\mu : \mathbf{R}_+ \mapsto \mathbf{R}_+$ définie par $\mu(t) = \mathbf{E}[X_t]$.

- 1. Prouver que $(X_t)_{t\geqslant 0}$ est un processus markovien de saut
- 2. Soit $T = \inf\{t \ge 0, X_t = 2\}$. Montrer que $\mathbf{E}[X_t] = \int_0^t \lambda e^{-\lambda s} \mathbf{E}[X_t \mid T = s] ds + e^{-\lambda t}$.
- 3. Pour tout $t \ge s$ exprimer $\mathbf{E}[X_t \mid T = s]$ en fonction de μ (utiliser la propriété de Markov forte).
- 4. Montrer que μ vérifie l'équation intégrale

$$\forall t \geqslant 0, \quad \mu(t) = \int_0^t 2\lambda e^{-\lambda s} \mu(t-s) ds + e^{-\lambda t}.$$

En déduire la valeur de $\mathbf{E}[X_t]$ pour tout $t \ge 0$.

5. On note ϕ_t la fonction génératrice des moments de X_t i.e. $\phi(t,z) = \mathbf{E}\left[z^{X_t}\right]$. On fixe $z \in \mathbf{R}$ et on note $\phi_z(t) = \phi(t, z)$. Montrer que

$$\forall t \geqslant 0, \quad \phi_z(t) = ze^{-\lambda t} + \int_0^t \lambda e^{-\lambda s} \phi_z(t-s)^2 ds$$

6. En déduire que $\phi'_z = \lambda \phi_z(\phi_z - 1)$ et calculer $\mathbf{P}[X_t = n]$ pour tout $n \ge 1$.

Exercice 5:

Soit $(X_t)_{t\geq 0}$ un processus markovien de saut sur **Z** de générateur A défini par $A(i,i+1)=\lambda q_i$ et $A(i,i-1)=\mu q_i$ avec $\lambda + \mu = 1$ et $A(i, i) = -q_i$ avec $q_i > 0$.

- 1. Déterminer le noyau de transition de la chaîne de Markov induite.
- 2. Supposons $\mu = 0$. Montrer que $(X_t)_{t \ge 0}$ n'explose pas si et seulement si $\sum_{i=1}^{+\infty} \frac{1}{q_i} = +\infty$.
- 3. Supposons $\mu \neq 0$. Montrer que $(X_t)_{t\geq 0}$ n'explose pas sous l'une des conditions suivantes :

 - $-\lambda = \mu$ $-\lambda > \mu \text{ et } \sum_{i=1}^{+\infty} \frac{1}{q_i}$ $-\lambda < \mu \text{ et } \sum_{i=1}^{+\infty} \frac{1}{q_{-i}}$

(en fait, ces conditions sont aussi nécessaires).