

Optics Image Formation by Refracting Surfaces

Lana Sheridan

De Anza College

June 11, 2018

Last time

- images formed by spherical mirrors
- refracting surfaces

Overview

- images formed by refraction
- lenses

Images Formed by Refraction

$$\frac{n_1}{p} + \frac{n_2}{q} = \frac{n_2 - n_1}{R}$$

Flat Refracting Surfaces

(Like a rectangular fish tank.)

The image is virtual and on the same side of the surface as the object.

In this case $R \to \infty$.

$$\frac{n_1}{p} + \frac{n_2}{q} = 0$$

And so

$$q=-\frac{n_2}{n_1}p$$

Flat Refracting Surfaces Example (Problem 30)

A cubical block of ice 50.0 cm on a side is placed over a speck of dust on a level floor. Find the location of the image of the speck as viewed from above. The index of refraction of ice is 1.309.

Flat Refracting Surfaces Example (Problem 30)

A cubical block of ice 50.0 cm on a side is placed over a speck of dust on a level floor. Find the location of the image of the speck as viewed from above. The index of refraction of ice is 1.309.

$$\frac{n_1}{p} + \frac{n_2}{q} = \frac{n_2 - n_1}{R} , R \to \infty$$

$$\Rightarrow q = -\frac{n_2}{n_1} p$$

Flat Refracting Surfaces Example (Problem 30)

A cubical block of ice 50.0 cm on a side is placed over a speck of dust on a level floor. Find the location of the image of the speck as viewed from above. The index of refraction of ice is 1.309.

$$\frac{n_1}{p} + \frac{n_2}{q} = \frac{n_2 - n_1}{R}, R \to \infty$$

$$\Rightarrow q = -\frac{n_2}{n_1} p$$

$$= -\frac{1}{1.309} (50.0 \text{ cm})$$

$$= -38.2 \text{ cm}$$

The image will appear <u>38.2 cm</u> below the surface of the ice.

Sign Conventions for Refracting Surfaces!

$$\frac{n_1}{p} + \frac{n_2}{q} = \frac{n_2 - n_1}{R}$$

Variable	is Positive	is Negative
р	object in front of surface	[virtual object] ¹
q	image behind surface (real)	image in front of surface (virtual)
h' (and M)	image upright	image inverted
R	object faces convex surf. (C behind surface)	object faces concave surf. (C in front of surface)

C is the center of curvature.

$$M = \frac{h'}{h} = -\frac{n_1 q}{n_2 p}$$

¹Will be useful in derivations.

Quick Quiz 36.4 In the figure, what happens to the image point I as the object point O is moved to the right from very far away to very close to the refracting surface?

- (A) It is always to the right of the surface.
- (B) It is always to the left of the surface.
- (C) It starts off to the left, and at some position of *O*, *I* moves to the right of the surface.
- (D) It starts off to the right, and at some position of *O*, *I* moves to the left of the surface.

¹Serway & Jewett, page 1102.

Quick Quiz 36.4 In the figure, what happens to the image point I as the object point O is moved to the right from very far away to very close to the refracting surface?

- (A) It is always to the right of the surface.
- (B) It is always to the left of the surface.
- (C) It starts off to the left, and at some position of O, I moves to the right of the surface.
- (D) It starts off to the right, and at some position of *O*, *I* moves to the left of the surface. ←

¹Serway & Jewett, page 1102.

Quick Quiz 36.5 In the figure, what happens to the image point I as the object point O moves toward the right-hand surface of the material of index of refraction n_1 ?

- (A) It always remains between O and the surface, arriving at the surface just as O does.
- (B) It moves toward the surface more slowly than O so that eventually O passes I.
- (C) It approaches the surface and then moves to the right of the surface.

 $n_1 > n_2$ n_1 n_2 n_2

¹Serway & Jewett, page 1102.

Quick Quiz 36.5 In the figure, what happens to the image point I as the object point O moves toward the right-hand surface of the material of index of refraction n_1 ?

- (A) It always remains between *O* and the surface, arriving at the surface just as *O* does. ←
- (B) It moves toward the surface more slowly than O so that eventually O passes I.
- (C) It approaches the surface and then moves to the right of the surface.

¹Serway & Jewett, page 1102.

Refracting Surface Example (Problem 34)

A curved refracting surface separates a material with index of refraction n_1 from a material with index n_2 . Prove that the magnification is given by $M = -\frac{n_1q}{n_2p}$.

Refracting Surface Example (Problem 34)

A curved refracting surface separates a material with index of refraction n_1 from a material with index n_2 . Prove that the magnification is given by $M = -\frac{n_1q}{n_2p}$.

Hint: For paraxial rays, we assume θ_1 and θ_2 are small, so we may write Snell's Law as $n_1 \tan \theta_1 = n_2 \tan \theta_2$.

Refracting Surface Example (Problem 34)

A curved refracting surface separates a material with index of refraction n_1 from a material with index n_2 . Prove that the magnification is given by $M = -\frac{n_1q}{n_2p}$.

Hint: For paraxial rays, we assume θ_1 and θ_2 are small, so we may write Snell's Law as $n_1 \tan \theta_1 = n_2 \tan \theta_2$.

For small angles:

$$n_1 \tan \theta_1 = n_2 \tan \theta_2$$

$$n_1 \frac{h}{p} = n_2 \frac{(-h')}{q} \Rightarrow M = \frac{h'}{h} = -\frac{n_1 q}{n_2 p}$$

Images Formed by Thin Lenses

We will derive the **thin lens equation**

$$\frac{1}{f} = \frac{1}{p} + \frac{1}{q}$$

(Notice it is the same as the mirror equation!)

And the lens maker's equation

$$\frac{1}{f} = (n-1)\left(\frac{1}{R_1} - \frac{1}{R_2}\right)$$

We do this by considering each side of the lens as a refracting surface.

Summary

- images formed by refraction
- lenses

Collected Homework! due Monday, June 18.

Final Exam 9:15-11:15am, Tuesday, June 26.

Homework Serway & Jewett:

- Carefully read all of Chapter 36.
- Ch 36, onward from page 1123. OQs: 1, 3, 5, 11; CQs: 5, 9, 11; Probs: 39, 43, 53, 71