Boosting R Code Performance

Kun Ren

About Me

- Hedge fund quant researcher in Shanghai, China
- Low frequency and high frequency trading of equity and futures
- Financial data analysis, predictive statistical modeling, etc.
- Creator of several R packages: formattable, rlist, and pipeR
- Author of Learning R Programming

Performance of R

- R is designed for easiness of use rather than performance
- R is interpreted, dynamic scripting language
- R can be much slower compared with C++ but fast enough for most of its purposes

When performance is important?

- Scenario 1: When data is of billions of rows
- Scenario 2: When an operation needs to be repeated many times
- Scenario 3: When the computing time is limited

Understanding performance in general

```
1 [||||||||100.0%]
                      11 [||||||||100.0%]
                                            21 [||||||||100.0%]
                                                                  31 [||||||||100.0%]
                                                                  32 [||||||||100.0%]
  [||||||||||100.0%]
                      12 [|||||||||100.0%]
                                            22 [|||||||||100.0%]
   [||||||||||100.0%]
                      13 [||||||||100.0%]
                                            23 [||||||||100.0%]
                                                                  33 [|||||||||100.0%]
  [||||||||||100.0%]
                      14 [||||||||100.0%]
                                            24 [||||||||100.0%]
                                                                  34 [||||||||100.0%]
  [||||||||||100.0%]
                      15 [||||||||100.0%]
                                            25 [||||||||100.0%]
                                                                  35 [||||||||100.0%]
                      16 [|||||||||100.0%]
                                            26 [||||||||100.0%]
  [||||||||||100.0%]
                                                                  36 [|||||||||100.0%]
                      17 [|||||||100.0%]
                                            27 [||||||||100.0%]
                                                                  37 [||||||||100.0%]
  [||||||||||100.0%]
  [||||||||||100.0%]
                      18 [|||||||||100.0%]
                                            28 [|||||||||100.0%]
                                                                  38 [|||||||||100.0%]
  [||||||||||100.0%]
                      19 [||||||||100.0%]
                                            29 [||||||||100.0%]
                                                                  39 [||||||||100.0%]
10 [|||||||100.0%]
                      20 [||||||||100.0%]
                                            30 [||||||||100.0%]
                                                                  40 [||||||||100.0%]
                                            Tasks: 122, 70 thr; 41 running
35.8G/504G
                                111M/357G
                                            Load average: 29.05 14.30 7.76
Swp 1
                                            Uptime: 21 days, 17:27:19
```

Limited resources

CPU-bound

Memory-bound

I/O-bound

Network-bound

Why can R be slow?

- R as an interpreted, dynamic scripting language
- Overhead of function calling
- Inefficient use of data structures
- Frequent copy of data: growing vectors, converting between data frame and matrix, etc

A road map to speed up R code

A rolling regression problem

date [‡]	ret [‡]	mret [‡]
1	-0.560475647	-0.4941738794
2	-0.230177489	1.1275934662
3	1.558708314	-1.1469495486
4	0.070508391	1.4810185971
5	0.129287735	0.9161912125
6	1.715064987	0.3351310171
7	0.460916206	0.5746753285
8	-1.265061235	0.2036196619
9	-0.686852852	-0.4470411920
10	-0.445661970	-0.3435259276
11	1.224081797	-0.6038357965
12	0.359813827	1.2386725185
13	0.400771451	0.5994920533
14	0.110682716	-0.1087337576
15	-0.555841135	-1.1388569648

```
1  set.seed(123)
2  n <- 250 * 20
3  data <- data.frame(date = 1:n, ret = rnorm(n), mret = rnorm(n))</pre>
```

• For each date, estimate the linear coefficients for the recent 250 days

•
$$r = \alpha + \beta r_m + \epsilon$$

• lm(ret ~ mret)

An initial solution

```
output <- data.frame(date = integer(), alpha = numeric(), beta = numeric())
for (i in 250:n) {
    d <- data[(i - 249):i,]
    m <- lm(ret ~ mret, data = d)
    coef <- coef(m)
    new_row <- data.frame(date = data$date[[i]], alpha = coef[[1]], beta = coef[[2]])
    output <- rbind(output, new_row)
}</pre>
```

Profiling initial solution (6880ms)

Replace 1m with 1m.fit

```
output <- data.frame(date = integer(), alpha = numeric(), beta = numeric())
for (i in 250:n) {
    d <- data[(i - 249):i,]
    m <- lm.fit(cbind(1, d$mret), d$ret)
    coef <- coef(m)
    new_row <- data.frame(date = data$date[[i]], alpha = coef[[1]], beta = coef[[2]])
    output <- rbind(output, new_row)
}</pre>
```

Replace 1m with 1m.fit (3180ms)

Pre-allocate vectors

```
date <- integer(n - 249)
   alpha <- numeric(n - 249)
                                                                    Pre-allocation of vectors
   beta <- numeric(n - 249)</pre>
 4
 5 for (i in 250:n) {
 6
      d <- data[(i - 249):i,]</pre>
     selector <- (i - 249):i
      m <- lm.fit(cbind(1, d$mret), d$ret)</pre>
     coef <- coef(m)</pre>
10
     date[[i-249]] <- data$date[[i]]
11
                                                                    Avoid copying vectors
      alpha[[i-249]] <- coef[[1]]
      beta[[i-249]] <- coef[[2]]
12
13
14
15
    output <- data.frame(date, alpha, beta)</pre>
```

Pre-allocate vectors (800ms)

Avoid row selection from data.frame (440ms)

Rewrite with data.table

```
library(data.table)

n <- 250 * 20
data <- data.table(date = 1:n, ret = rnorm(n), mret = rnorm(n))

output <- data[, rbindlist(lapply(250:n, function(i) {
    selector <- (i - 249):i
    coef <- coef(lm.fit(cbind(1, mret[selector]), ret[selector]))
    list(date = date[[i]], alpha = coef[[1]], beta = coef[[2]])

}))]</pre>
```

Rewrite with data.table (320ms)

Multi-symbol rolling regression

symbol	÷	date [‡]	ret [‡]	mret [‡]
	1	1	-0.560475647	-0.079625050
	1	2	-0.230177489	0.045941483
	1	3	1.558708314	0.126138891
	1	4	0.070508391	-0.001914877
	1	5	0.129287735	-0.058701079
	1	6	1.715064987	-0.014730471
	1	7	0.460916206	0.014168433
	1	8	-1.265061235	0.028467197
	1	9	-0.686852852	0.083210147
	1	10	-0.445661970	-0.190119626
	1	11	1.224081797	0.033166720
	1	12	0.359813827	0.043090255
	1	13	0.400771451	0.092460001
	1	14	0.110682716	-0.112767268
	1	15	-0.555841135	-0.217610923
	1	16	1.786913137	0.096349661
	1	17	0.497850478	-0.052769189

```
library(data.table)
set.seed(123)
dt <- expand.grid(symbol = 1:100, date = 1:(250 * 20))
setDT(dt, key = c("symbol", "date"))
dt[, ret := rnorm(.N)]
dt[, mret := mean(ret), by = date]</pre>
```

- 100 symbols, 20 years of history
- setDT to transform dt as data.table
- (symbol, date) as key to ensure order
- For each symbol and each date, estimate the linear coefficients for the recent 250 days of that symbol

The data.table solution

```
1 - output <- dt[, {
     rbindlist(lapply(250:.N, function(i) {
3
        selector <- (i - 249):i
        coef <- coef(lm.fit(cbind(1, mret[selector]), ret[selector]))</pre>
        list(date = date[[i]], alpha = coef[[1]], beta = coef[[2]])
6
     }))
      by = symbol]
                                         Rolling by each symbol
                                        Combine with rbindlist
   Use by for group operation
```

The data.table solution (35960ms)

mclapply + data.table solution (8640ms)

```
library(parallel)
    symbols <- dt[, sort(unique(symbol))]</pre>
 3 - output <- mclapply(symbols, function(sym) {</pre>
                                                              Automatically use binary
       dt[symbol == sym, {◀
                                                                search on symbol
 5 🔻
         rbindlist(lapply(250:.N, function(i) {
 6
           selector <- (i - 249):i
           coef <- coef(lm.fit(cbind(1, mret[selector]), ret[selector]))</pre>
 8
           list(date = date[[i]], alpha = coef[[1]], beta = coef[[2]])
 9
         }))
     \}, by = symbol
10
11
    \}, mc.cores = 8)
                                                                      system elapsed
    output <- rbindlist(output)</pre>
12
                                                                52.637
                                                                       2.097
                                                                             8.640
    setkey(output, symbol, date)
13
```

Solutions to R performance issues

- Built-in or lower-level functions (lm -> lm.fit)
- Vectorization (cumsum, cumprod, ...)
- Matrix algebra (%*%, solve, crossprod, ...)
- High performance packages (data.table, fst, RcppRoll, ...)
- Rcpp and Rcpp template packages (RcppArmadillo, RcppEigen, etc.)

Package for performance: data.table

- Algorithm: Fast merge based on binary search
- OpenMP-powered multi-threaded subsetting
- Control copy behavior: In-place modification (:=)
- High performance helper functions
 - setnames, setcolorder, setkey, setindex, ...
 - rbindlist, dcast, melt, frank, ...
 - %between%, %chin%, ...
 - fread, fwrite
- The data.table cheatsheet by DataCamp

Package for performance: fst

https://github.com/fstpackage/fst: Lightning Fast Serialization of Data Frames for R Chinese Stock Market 1-minute data (2014-2017): 542M+ rows, 23 columns

Function	Compression	File size (GB)	Time (s)
saveRDS	Yes	22	3214
readRDS	Yes	22	341
saveRDS	No	75	166
readRDS	No	75	96
data.table::fwrite	No	73	57
data.table::fread	No	73	1134
fst::write_fst	No	75	42
fst::read_fst	No	75	37
fst::write_fst	100 (40 threads)	25	37
fst::read_fst	100 (40 threads)	25	11

Parallel computing

Use parallel: fork vs. cluster

- Platform dependent:
 - Windows: socket-based master-slave cluster
 - Linux and macOS: mcparallel and mccollect
- Inter-process communication: serialization: slow and high memory peak
- Multi-threading techniques do not work well with fork-based parallelism.
- Use RhpcBLASctl to force number of threads in OpenMP and BLAS to avoid deadlock in fork process

Rcpp

- R data structures + C++ data structures
- Multi-threading by OpenMP
- Template packages: RcppArmadillo, RcppEigen, etc.
- Rcpp now used by 1000+ packages

data.table + Rcpp + RcppArmadillo (3700ms)

```
1 // [[Rcpp::depends(RcppArmadillo)]]
        2 #include <RcppArmadillo.h>
           #include <Rcpp.h>
            using namespace Rcpp;
            // [[Rcpp::export]]
        7 List roll_lm(const IntegerVector& date, const arma::mat& x, const arma::colvec& y, int n) {
              int size = date.size();
        8
             IntegerVector _date(size - n + 1);
              NumericVector alpha(size - n + 1), beta(size - n + 1);
       10
       11 -
              for (int i = n - 1; i < size; i++) {
       12
                const arma::mat& xi = x.rows(i - n + 1, i);
                const arma::colvec& yi = y.subvec(i - n + 1, i);
       13
       14
                const arma::colvec& coef = solve(xi, yi);
       15
                _date[i - n + 1] = date[i];
       16
                alpha[i - n + 1] = coef[0];
       17
                beta\lceil i - n + 1 \rceil = coef \lceil 1 \rceil;
       18
       19
              return List::create(_["date"] = _date, _["alpha"] = alpha, _["beta"] = beta);
       20
                                                                                                    system elapsed
                                                                                            user
R
        10 output <- dt[, roll_lm(date, cbind(1, mret), ret, 250), by = symbol]
                                                                                           3.669
                                                                                                     0.029
                                                                                                               3.700
```

data.table + Rcpp + RcppArmadillo + OpenMP (840ms)

```
1 // [[Rcpp::depends(RcppArmadillo)]]
                                                                                                   Use OpenMP header file
         2 // [[Rcpp::plugins(openmp)]]
         3 #include <omp.h>
                                                                                                  and update compiler flags
         4 #include <RcppArmadillo.h>
           #include <Rcpp.h>
           using namespace Rcpp;
           // [[Rcpp::export]]
         9 List par_roll_lm(const IntegerVector& date, const arma::mat& x, const arma::colvec& y, int n, int threads) {
        10
              int size = y.size();
              IntegerVector _date(size - n + 1);
C++
              NumericVector_alpha(size - n + 1), beta(size - n + 1);
                                                                                                   OpenMP transforms the
            #pragma omp parallel for shared(date, x, y), num_threads(threads)
                                                                                                     for loop into parallel
              for (int i = n - 1; i < size; i++) {
        14 -
        15
                const arma::mat& xi = x.rows(i - n + 1, i);
                const arma::colvec& yi = y.subvec(i - n + 1, i);
        16
        17
                const arma::colvec& coef = solve(xi, yi);
        18
                INTEGER(\_date)[i - n + 1] = date[i];
                                                                                                    Use pointer to update R
        19
                REAL(alpha)[i - n + 1] = coef[0];
                                                                                                            vectors
        20
                REAL(beta)[i - n + 1] = coef[1];
        21
        22
              return List::create(_["date"] = _date, _["alpha"] = alpha, _["beta"] = beta);
        23
                                                                                                              system elapsed
                                                                                                      user
                                                                                                     6.375
                                                                                                               0.065
                                                                                                                        0.840
        output \leftarrow dt[, par_roll_lm(date, cbind(1, mret), ret, 250, threads = 8), by = symbol]
```

Performance summary

Solution	Time	Performance
Initial solution (plain for loop)	6880ms	1x
Replace Im with Im.fit	3180ms	2x
Pre-allocate vectors	800ms	9x
Avoid row selection from data.frame	440ms	16x
Rewrite with data.table	320ms	21x
Increase to 100 symbols	35960ms	21x
mclapply + data.table	8640ms	87x (mc.core = 8)
data.table + Rcpp + RcppArmadillo	3700ms	204x
data.table + Rcpp + RcppArmadillo + OpenMP	840ms	900x (threads = 8)

- Kun Ren < renkun@outlook.com >
- GitHub: renkun-ken
- Twitter: @renkun_ken
- Slides and code: https://github.com/renkun-ken/japan-r-talk-2017