DL Methods for Motion Deblurring

Objective of Motion Deblurring

Blurred Image

Clean Image

Motion blur Model

(b) Point-spread function in the latent image

Interpretation 1: As a Sum of Warped Images

Interpretation 2: As Space-variant Convolution

Y-axis rotation of the camera

Z-axis rotation of the camera

Arbitrary sequence of rotations

Formation of Point Spread Function (PSF)

Interpretation 2: As Space-variant Convolution

Y-axis rotation of the camera

*

Z-axis rotation of the camera

Arbitrary sequence of rotations

Clean Image

PSF

Blurred Image

Approach 1

Central Idea: Harnesses classification capabilities of CNN

Deep learning for Non-uniform Motion Blur Removal. Jian Sun, Cao, Xu, Jean Ponce. CVPR 2015.

Central Idea: Harnesses classification capabilities of CNN

Problem 1: Only 36 classes of Kernels (too small).

Solution: Only 36 classes of Kernels (too small).

Analysis of Kernel Extension:

Approximation with 36 Kernels

Approximation with **361** Kernels

Results:

Approach 2

Blurry image

Deep Multi-scale Convolutional Neural Network for Dynamic Scene Deblurring Seungjun Nah, Tae Hyun Kim, and Kyoung Mu Lee, CVPR 2017

Deep Multi-scale Convolutional Neural Network for Dynamic Scene Deblurring Seungjun Nah, Tae Hyun Kim, and Kyoung Mu Lee, CVPR 2017

More Details

Resblock

Modified Resblock

- 1. Coarsest level operates on 64X64 image patches
- 2. MSE Loss in all scales
- 3. Training data obtained using GoPro cameras.

Output

Input