Chamblandes 2007 — Exercice 3

a) L'aire d'un losange vaut la moitié du produit de ses diagonales.

Par conséquent, l'aire de ce losange est donnée par $\frac{1}{2}(2x)(2y) = 2xy$.

Puisque le périmètre mesure 12 cm et que tous les côtés d'un los ange sont égaux, chaque côté du los ange mesure $\frac{12}{4}=3$ cm.

Le théorème de Pythagore implique $3^2=x^2+y^2,$ d'où l'on tire que $y=\sqrt{9-x^2}$.

En définitive, l'aire du losange vaut $2 x y = 2 x \sqrt{9 - x^2}$.

b) Il s'agit de déterminer le maximum de la fonction

$$f(x) = (2x\sqrt{9-x^2})^2 = 4x^2(9-x^2) = 36x^2 - 4x^4$$

sur l'intervalle [0;3]. En effet, les conditions $x \ge 0$ et $y \ge 0$ imposent $x \in [0;3]$.

$$f'(x) = (36 x^{2} - 4 x^{4})'$$

$$= 72 x - 16 x^{3}$$

$$= 8 x (9 - 2 x^{2})$$

$$= 8 x (3 + \sqrt{2} x) (3 - \sqrt{2} x)$$

	_3	$\frac{\sqrt{2}}{2}$ () 3.	$\frac{\sqrt{2}}{2}$
8x	_	_ (+	+
$3+2\sqrt{x}$	- (+	+	+
$3-2\sqrt{x}$	+	+	+ () —
f'	+ (, – (+ () —
f	✓ m	ax \ m	in / m	ax 🔪

$$f(0) = 36 \cdot 0^2 - 4 \cdot 0^4 = 0$$

$$f\left(\frac{\sqrt{3}}{2}\right) = 36 \cdot \left(\frac{\sqrt{3}}{2}\right)^2 - 4 \cdot \left(\frac{\sqrt{3}}{2}\right)^4 = 36 \cdot \frac{9}{2} - 4 \cdot \frac{81}{4} = 81$$

$$f(3) = 36 \cdot 3^2 - 4 \cdot 3^4 = 0$$

On conclut que le carré de l'aire du los ange est maximal si $x = \frac{3\sqrt{2}}{2}$.