TABLE I
SUMMARY OF THE HYPERPARAMETER SEARCH SPACE USED FOR THE XGBOOST REGRESSOR, WHEN RUNNING SMAC3 [39] AND THE SELECTED CONFIGURATION FOR ALL INPUT COMBINATIONS.

Hyperparameters	Our XGBoost Regressor										
пуреграгашется	Search Space	Input 1	Input 2	Input 3	Input 4	Input 5	Input 6	Input 7	Input 8		
eta	Uniform Float $\in [0.0001, 0.5]$	0.0431	0.06818	0.04942	0.04457	0.07178	0.06647	0.04901	0.04798		
gamma	Uniform Integer $\in [0, 10]$	1	7	2	1	7	3	3	2		
number estimate	umber estimate $Uniform Integer \in [100, 1000]$		155	932	880	230	913	715	949		
max depth	Uniform Integer ∈ [1, 10]	10	10	10	10	10	10	10	10		
min child weight	Uniform Integer ∈ [1, 100]	95	6	87	67	59	83	84	84		
max delta step	Uniform Integer $\in [0, 10]$	7	10	0	1	5	3	10	1		
subsample	Uniform Float $\in [0.5, 1]$	0.647	0.9632	0.5042	0.5068	0.6114	0.5486	0.507	0.5038		
colsample bytree	Uniform Float $\in [0.5, 1]$	0.9825	0.9517	0.8671	0.868	0.7449	0.8242	0.9927	0.7814		
colsample bylevel	Uniform Float $\in [0.5, 1]$	0.9819	0.9223	0.8572	0.839	0.9264	0.7642	0.9479	0.8407		
colsample bynode	Uniform Float $\in [0.5, 1]$	0.8042	0.9155	0.6173	0.7416	0.9802	0.924	0.8621	0.9989		

TABLE II
TABLE SUMMARIZING THE HYPERPARAMETER SEARCH SPACE USED FOR THE FEED-FORWARD DEEP NEURAL NETWORK, WHEN RUNNING SMAC3 [39]
AND THE SELECTED CONFIGURATION FOR ALL INPUT COMBINATIONS.

Hyperparameters	Our Feed-Forward Neural Network											
пуреграгашенств	Search Space	Input 1	Input 2	Input 3	Input 4	Input 5	Input 6	Input 7	Input 8			
Batch Size	Categorical [256, 512]	256	512	256	512	512	512	512	512			
Learning Rate	$\begin{array}{c} \text{Categorical} \\ a \times e^{-c} \\ \text{for } a \in \mathbb{N}^+ \text{ and } \in [1,9] \\ c \in \mathbb{N}^+ \text{ and } \in [2,5] \end{array}$	0.0003	0.0002	0.0005	0.0006	0.0003	0.0006	0.0004	0.0005			
Number of Layers (L)	Uniform Int Lower: 4 Upper: 12	7	10	7	7	7	9	7	8			
Numebr of Neurons in Layer i for $i \in [0, L]$	Uniform Int Lower: 50 Upper: 1000 Step: 10	[860, 670, 160, 580, 900, 1000, 440]	[590,300, 820,520, 90,670, 850,120, 330,570]	[620, 470, 120, 620, 830, 890, 350]	[730, 390, 120, 630, 770, 720, 380]	[820,740, 190,740, 1000,850, 430]	[580,710, 600,170, 270,350, 70,780, 690]	[580,580, 160,450, 920,920, 380]	[470,600, 440,830, 790,900, 190,270]			
Activation function in Layer i for $i \in [0, L]$	Categorical [sigmoid, relu, hardtanh, tanh, leakyrelu, elu]	leakyrelu, relu,	naratann, eiu, leakyrelu relu	elu, leakyrelu, leakyrelu,	sigmoid,	[tanh, relu, elu, leakyrelu, elu, relu, leakyrelu]	ieakyreiu,	leakyrelu, hardtanh, sigmoid, relu,	[tanh, relu, elu, leakyrelu, hardtanh, leakyrelu, elu, leakyrelu]			
Negative Slope for Leakyrelu	Categorical $a \times e^{-1}$ for $a \in \mathbb{N}^+$ and $\in [1, 9]$	0.5	0.7	0.4	0.2	0.1	0.4	0.3	0.6			

TABLE III

TABLE SUMMARIZING THE HYPERPARAMETER SEARCH SPACE USED FOR THE TRANSFORMER ENCODER, WHEN RUNNING SMAC3 [39] AND THE SELECTED CONFIGURATION FOR ALL INPUT COMBINATIONS.

Hyperparameters	Our Transformer Encoder											
Hyperparameters	Search Space	Input 1	Input 2	Input 3	Input 4	Input 5	Input 6	Input 7	Input 8			
Batch Size	Categorical [256, 512]	512	512	512	256	512	256	512	256			
Learning Rate	$\begin{array}{c} \text{Categorical} \\ a \times e^{-c} \\ \text{for } a \in \mathbb{N}^+ \text{ and } \in [1,9] \\ c \in \mathbb{N}^+ \text{ and } \in [2,5] \end{array}$	0.00009	0.00004	0.00009	0.0004	0.004	0.0003	0.00004	0.002			
Number of Layers (L)	Uniform Int Lower: 2 Upper: 8	3	8	3	2	7	4	7	2			
Number of Multi-Heads	Categorical [1, 2, 4, 8]	4	8	4	8	1	4	1	8			
Dropout Rate	Categorical [0.0, 0.1, 0.2, 0.3, 0.4, 0.5]	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			
Embedding Dimensions	Categorical [32, 64, 128, 256, 512, 1024]	128	128	128	128	64	32	128	64			
Hidden Dimension	Categorical [64, 128, 256, 512, 1024]	512	512	512	512	128	256	128	256			

TABLE IV

RESULTS OF ALL TRAINED NETWORKS OVER ALL 10 FOLDS FOR ALL INPUT COMBINATIONS. THE VALUE IN PARENTHESES REPRESENTS THE STANDARD DEVIATION. THE METRICS ARE CALCULATED OVER ALL CHANNELS AND OVER ALL ELECTRODES. MAE IS CALCULATED ON THE OUTPUT VALUES IN THE ORIGINAL SCALE. NORM. MAE IS CALCULATED ON THE NORMALIZED OUTPUT OF THE NETWORK; THE LOWER, THE BETTER.

		Nb.	MSE	Norm. MSE	MSE	Norm. MSE
			Over all Channels		Electrod	
		806K	18.977	0.228	17.147	0.232
	1		(1.719)	(0.022)	(1.642)	(0.023)
		0051/	23.220	0.237	18.941	0.239
	2	805K	(1.403)	(0.018)	(1.458)	(0.020)
0	3	804K	25.739	0.245	19.012	0.240
Ruppel et al. [10]	3	004K	(1.539)	(0.019)	(1.498)	(0.021)
t al	4	807K	21.944	0.233	19.003	0.240
e e	4	00/K	(1.514)	(0.019)	(1.473)	(0.020)
)ddı	5	819K	21.809	0.234	19.194	0.242
Ru		0171	(1.548)	(0.020)	(1.529)	(0.021)
	6	812K	22.319	0.234	19.038	0.240
	0	012K	(1.469)	(0.019)	(1.468)	(0.021)
	7	809K	22.497	0.234	18.811	0.238
	'		(1.466)	(0.019)	(1.449)	(0.020)
	8	822K	21.555	0.231	18.927	0.239
			(1.504)	(0.019)	(1.489)	(0.020)
	1	1584K	13.368	0.150	11.446	0.150
		1364K	(1.340)	(0.015)	(1.204)	(0.015)
	2	1041K	14.372	0.159	12.002	0.158
			(1.446)	(0.016)	(1.298)	(0.016)
	3	1209K	15.994	0.168	12.373	0.163
our XGBoost Regressor]	1209K	(1.622)	(0.017)	(1.340)	(0.017)
3B(4	1694K	13.275	0.152	11.638	0.153
ur XGBoc Regressor	-	10741	(1.430)	(0.016)	(1.335)	(0.016)
Juc R	5	840K	13.407	0.153	11.774	0.154
	Ĺ	0401	(1.393)	(0.015)	(1.277)	(0.016)
	6	1046K	13.785	0.156	11.866	0.156
	0	10401	(1.385)	(0.015)	(1.277)	(0.016)
	7	1239K	13.299	0.150	11.375	0.150
	Ľ	12371	(1.330)	(0.015)	(1.182)	(0.015)
	8	1331K	12.873	0.148	11.385	0.150
		1331K	(1.255)	(0.014)	(1.156)	(0.014)

			MSE	Norm. MSE	MSE	Norm. MSE	
		Param.	Over all	Channels	Flectrod	es Only	
	1		14.693	0.168	12.724	0.169	
	1	2233K	(1.386)	(0.015)	(1.252)	(0.016)	
			15.624	0.173	12.965	0.171	
	2	2881K	(1.536)	(0.017)	(1.388)	(0.018)	
٦			17.010	0.181	13.265	0.175	
war	3	1701K	(1.314)	(0.014)	(1.105)	(0.014)	
Our Feed-Forward Neural Network			14.712	0.171	13.109	0.173	
두 호	4	1478K	(1.317)	(0.015)	(1.247)	(0.016)	
Fee			14.056	0.166	12.721	0.169	
our Ne	5	2554K	(1.213)	(0.013)	(1.100)	(0.014)	
•			14.476	0.167	12.676	0.168	
	6	1124K	(1.150)	(0.013)	(1.043)	(0.013)	
		1794K	15.231	0.177	13.351	0.178	
	7		(1.344)	(0.016)	(1.242)	(0.016)	
			14.517	0.172	13.204	0.175	
	8	2490K	(1.450)	(0.017)	(1.404)	(0.017)	
			13.760	0.156	11.736	0.155	
	1	599K	(1.400)	(0.016)	(1.280)	(0.016)	
	2		14.534	0.162	12.102	0.160	
		203K	(1.482)	(0.017)	(1.374)	(0.017)	
			15.229	0.160	11.595	0.154	
.me	3	598K	(1.617)	(0.017)	(1.328)	(0.017)	
Our Transformer Encoder	<u> </u>		13.204	0.152	11.564	0.153	
Transfo	4	401K	(1.363)	(0.016)	(1.266)	(0.016)	
T T	_	2251	13.441	0.155	11.824	0.156	
0	5	237K	(1.241)	(0.014)	(1.147)	(0.015)	
		11477	13.669	0.155	11.719	0.155	
	6	114K	(1.505)	(0.018)	(1.376)	(0.018)	
	7	7011/	13.927	0.158	11.838	0.157	
	7	701K	(1.614)	(0.019)	(1.468)	(0.019)	
	0	1021/	12.984	0.149	11.334	0.150	
	8	103K	(1.552)	(0.018)	(1.473)	(0.019)	

TABLE V

Extended Significance Test with the corrected paired t-test [33] conducted on different input combinations for all networks. The first value depicts the paired normalized MAE difference in percent over the ten folds, the second value represents t-statistic, and the third value between parenthesis represents the p-value.

	1 vs 2	1 vs 3	1 vs 4	1 vs 5	1 vs 6	7 vs 1	8 vs 1	5 vs 6	8 vs 5
	-0.893%	-1.763%	-0.513%	-0.630%	-0.655%	0.578%	0.353%	-0.025%	-0.277%
Ruppel et al. [10]	(0.004)	(0.000)	(0.044)	(0.009)	(0.013)	(0.967)	(0.915)	(0.398)	(0.007)
Our XGBoost	-0.859%	-1.773%	-0.113%	-0.282%	-0.539%	-0.055%	-0.208%	-0.258%	-0.490%
Regressor	(0.000)	(0.000)	(0.129)	(0.001)	(0.000)	(0.190)	(0.009)	(0.009)	(0.001)
Our Feed-Forward	-0.441%	-1.267%	-0.324%	0.217%	0.133%	0.862%	0.402%	-0.084%	0.620%
Neural Network	-2.222	-5.436	-2.184	0.589	0.373	1.995	0.729	-0.226	1.296
	(0.027)	(0.000)	(0.028)	(0.715)	(0.641)	(0.961)	(0.758)	(0.413)	(0.886)
Our Transformer	-0.587%	-0.391%	0.385%	0.077%	0.083%	0.188%	-0.662%	0.007%	-0.585%
Encoder	-2.479	-1.400	1.074	0.344	0.438	0.461	-1.870	0.019	-1.537
	(0.018)	(0.097)	(0.845)	(0.631)	(0.664)	(0.672)	(0.047)	(0.507)	(0.079)

TABLE VI

Extended Significance Test with the corrected paired t-test [33] conducted for all network pairs. The first value depicts the paired normalized MAE difference in percent over the ten folds, the second value represents t-statistic, and the third value between parenthesis represents the p-value.

vs	Our XGBoost	Our FFNN	Our Transformer	Our XGBoost	Our XGBoost	Our Transformer
VS	Ruppel et al. [10]	Ruppel et al. [10]	Ruppel et al. [10]	Our FFNN	Our Transformer	Our FFNN
	-7.740%	-5.962%	-7.209%	-1.778%	-0.531%	-1.247%
1	-9.785	-7.741	-8.670	-5.188	-1.581	-3.690
	(0.000)	(0.000)	(0.000)	(0.000)	(0.074)	(0.002)
	-7.774%	-6.414%	-7.515%	-1.360%	-0.259%	-1.101%
2	-9.962	-8.136	-8.956	-4.284	-0.704	-5.338
	(0.000)	(0.000)	(0.000)	(0.001)	(0.250)	(0.000)
	-7.730%	-6.457%	-8.581%	-1.272%	0.851%	-2.123%
3	-9.936	-8.509	-11.401	-3.623	3.407	-6.570
	(0.000)	(0.000)	(0.000)	(0.003)	(0.996)	(0.000)
	-8.140%	-6.151%	-8.108%	-1.989%	-0.032%	-1.956%
4	-9.546	-7.352	-8.958	-5.653	-0.106	-11.260
	(0.000)	(0.000)	(0.000)	(0.000)	(0.459)	(0.000)
	-8.089%	-6.809%	-7.916%	-1.279%	-0.173%	-1.107%
5	-9.960	-8.364	-10.944	-3.888	-0.477	-3.810
	(0.000)	(0.000)	(0.000)	(0.002)	(0.322)	(0.002)
	-7.856%	-6.750%	-7.947%	-1.106%	0.092%	-1.197%
6	-10.032	-7.725	-9.859	-3.610	0.303	-3.918
	(0.000)	(0.000)	(0.000)	(0.003)	(0.616)	(0.002)
	-8.373%	-5.678%	-7.599%	-2.696%	-0.774%	-1.921%
7	-10.568	-7.579	-7.886	-5.235	-1.347	-5.899
	(0.000)	(0.000)	(0.000)	(0.000)	(0.105)	(0.000)
	-8.301%	-5.912%	-8.224%	-2.389%	-0.077%	-2.312%
8	-10.363	-5.268	-9.773	-4.242	-0.157	-4.004
	(0.000)	(0.000)	(0.000)	(0.001)	(0.439)	(0.002)

TABLE VII

Number of parameters in thousands, inference time in milliseconds, and floating-point operations per second in millions for all neural networks across all input combinations.

		Our XGBoost			Our FFNN		Our Transformer			
	Num. Param.	Inference (ms)	Num. FLOPS	Num. Param.	Inference (ms)	Num. FLOPS	Num. Param.	Inference (ms)	Num. FLOPS	
1	806K	0.628	1.61M	2233K	0.876	4.46M	599K	1.618	5.97M	
2	805K	0.539	1.61M	2881K	1.173	5.75M	203K	2.982	1.63M	
3	804K	0.539	1.61M	1701K	0.741	3.40M	598K	1.396	3.58M	
4	807K	0.555	1.61M	1478K	0.757	2.95M	401K	1.005	5.59M	
5	819K	0.572	1.65M	2554K	0.833	5.10M	237K	2.995	11.64M	
6	812K	0.552	1.62M	1124K	0.613	2.24M	114K	1.427	2.98M	
7	809K	0.572	1.62M	1794K	0.760	3.58M	701K	2.939	9.89M	
8	822K	0.607	1.65M	2490K	1.002	4.98M	103K	0.988	5.30M	