Propagation de label

Loïc Maurin & Samuel Rincé

GitHub: https://github.com/samuelrince/labelpropagation

Sommaire

- 1. Problème de propagation de label
- 2. Algorithme
- 3. Implémentation avec Pregel
- 4. Datasets
- 5. Expériences
 - a. Influence de la quantité de labels masqués
 - b. Influence du nombre de noeuds sur le temps de calcul
- 6. Conclusion

Problème de propagation de label

- Classification de caractéristiques (appartenance à un parti, etc.) par relations sur un graphe.
- Apprentissage semi-supervisé
- Méthodes
 - Random Walk
 - o Zhu et al.
 - Classification Bayésienne

Algorithme

- Publication [Zhu et al. 2002]
- Calcul des labels avec par la méthode itérative
- Convergence contrôlée par MAX_ITER

```
compute D_{ii} = \sum_{j} A_{ij}

compute P = D^{-1}A

Y_0 = (Y, 0)

t = 0

while t <= MAX_ITER do

Y^{t+1} \leftarrow PY^t

Y^{t+1} \leftarrow Y^t

end

Y_final = Y^t
```

Implémentation avec Pregel

- Description du graphe :
 - VertexAttribute(degree, isInitialLabel, LabelsArray)
- Vertex Program :
 - Si label initial : Y reste inchangé
 - Sinon: Y = Y / degree
- Send Message :
 - Labels
- Merge Message :
 - sum(Labels[neighbors])

 Converge en un nombre d'itérations de l'ordre de grandeur du diamètre du graphe.

Datasets

- Dataset de test : soc-karate
 - Lien entre des clubs de karaté
 - 34 Noeuds 78 Arêtes
- Dataset d'expérimentation : email-Eu-core
 - 1k Noeuds 25k Arêtes
 - o Lien entre les laboratoires de recherche ayant communiqué par emails en Europe
- Dataset d'expérimentation : com-DBLP
 - 320k Noeuds 1M Arêtes
 - Dataset de lien entre des papiers de recherche scientifique
 - Par manque de RAM nous avons dû l'abandonner

Sommaire

- 1. Problème de propagation de label
- 2. Algorithme
- 3. Implémentation avec Pregel
- 4. Datasets
- 5. Expériences
 - a. Influence de la quantité de labels masqués
 - b. Influence du nombre de noeuds sur le temps de calcul
- 6. Conclusion

Influence de la quantité de labels masqués

- Observé les différences de labellisation en fonction du nombre de noeuds labellisé initialement
- Masquage aléatoire à seed fixé
- Mesure de la performance avec l'accuracy de classification
- Calcul à MAX_ITER constant choisi très grand

Influence du nombre de noeuds sur le temps de calcul

- Sur soc-karate:
 - o 2 s environ
- Pour un graphe initial de 1000 noeuds :
 - O 70 s environ
- Améliorations possibles :
 - Essais sur le nombre d'arêtes
 - Prise en compte du rayon et du diamètre du graphe

Nbr noeuds	Temps de calcul
1000	77 s
750	71 s
500	76 s
250	68 s
100	68 s

Conclusion

- Peu d'expériences ont pu être menées.
- Les variations des hyperparamètre n'impliquent pas de grande variation des résultats
 - Application des algorithmes sur des graphes à trop petite échelle
 - Manque de capacité de calcul pour passer à l'échelle
 - o Optimization de notre algorithme possible
- Difficultés d'implémentations