

Introdução à Programação

Eduardo Silva Lira XLVIII Programa de Verão do IME-USP São Paulo - SP, Jan 2019

- Repetir um bloco de código
 - Já possui uma estrutura para controle
- Laço for
 - Sintaxe:

```
for([expInit]; [expControl]; [expInc]){
    /*Seu codigo aqui sera repetido*/
}
```

- explnit: inicialização de variável
 - Definir um valor inicial para a variável de controle
- expControl: expressão de controle
 - Determina quando parar de repetir
- explnc: expressão de incremento
 - Um novo valor para a variável de controle a cada passo

```
for([expInit]; [expControl]; [expInc]) {
    /*Seu codigo aqui sera repetido*/
}
```

- Crie um programa para ler n valores inteiros e encontrar o maior deles.
 - Solicite ao usuário quantos valores serão digitados

Encontrar o maior - simulação

maior ?

Criar variável maior para guardar o maior valor encontrado

Encontrar o maior - simulação

maior começa valendo zero. Funciona apenas para naturais!

Encontrar o maior - simulação

maior 0

A cada valor digitado, compare com a variável maior.
Troque sempre que encontrar um novo maior valor.

Encontrar o maior - simulação

maior

3

Troca!

A cada valor digitado, compare com a variável maior.
Troque sempre que encontrar um novo maior valor.

Encontrar o maior - simulação

A cada valor digitado, compare com a variável maior.
Troque sempre que encontrar um novo maior valor.

maior

Não 1

Encontrar o maior - simulação

maior

15

Troca!

A cada valor digitado, compare com a variável maior.
Troque sempre que encontrar um novo maior valor.

Encontrar o maior - simulação

A cada valor digitado, compare com a variável maior.
Troque sempre que encontrar um novo maior valor.

maior

Troca!

Encontrar o maior - simulação

A cada valor digitado, compare com a variável maior. Troque sempre que encontrar um novo

maior valor.

maior

Não 1

Encontrar o maior - simulação

A cada valor digitado, compare com a variável maior.
Troque sempre que encontrar um novo maior valor.

maior

Troca!

Encontrar o maior - simulação

A cada valor digitado, compare com a variável maior.
Troque sempre que encontrar um novo maior valor.

maior

Troca!

Encontrar o maior - simulação

A cada valor digitado, compare com a variável maior.
Troque sempre que encontrar um novo maior valor.

maior

Não 1

Encontrar o maior - simulação

maior 218

A cada valor digitado, compare com a variável maior.
Troque sempre que encontrar um novo maior valor.

Encontrar o maior - simulação

Usuário digita

Não 1

A cada valor digitado, compare com a variável maior.
Troque sempre que encontrar um novo maior valor.

Encontrar o maior - simulação

Após ler o último valor, na variável maior deve estar guardado o maior valor digitado pelo usuário!

maior

Não

- Crie um programa que calcule o preço médio de fechamento de uma ação.
 - Solicitar a quantidade de dias
 - Ler todos os preços e calcular a média

- Exercício: Faça um programa para ler um natural n que representará o número de pessoas.
- Leia a idade dessas n pessoas e classifique nas faixas:
- Exiba a quantidade de pessoas em cada faixa.

Classe	Faixa idade	Quantidade
Criança	[0,10]	?
Adolescente]10,18[?
Jovem	[18, 30]	?
Adulto]30, 65]	?
Idoso]65, Infinito]	?

Crie um programa para ler dois naturais a e b.

Em seguida, calcule a **b**-ésima potência de **a**.

For, while ou do while?

Loop infinito!

```
#include<stdio.h>
int main(){
   for(;;){
       printf("Esse nao para nunca!\n");
    return 0;
```

Dúvidas?

Leia 1 valor inteiro N (2 < N < 1000). A seguir, mostre a tabuada de N: $1 \times N = N$ $2 \times N = 2N$... $10 \times N = 10N$

Entrada

A entrada contém um valor inteiro N (2 < N < 1000).

Saída

Imprima a tabuada de N, conforme o exemplo fornecido.

Exemplo de Entrada	Exemplo de Saída
140	1 x 140 = 140
	$2 \times 140 = 280$
	$3 \times 140 = 420$
	$4 \times 140 = 560$
	$5 \times 140 = 700$
	6 x 140 = 840
	$7 \times 140 = 980$
	8 x 140 = 1120
	9 x 140 = 1260
	10 x 140 = 1400

Escreva um algoritmo que leia 2 valores inteiros X e Y calcule a soma dos números que não são múltiplos de 13 entre X e Y, incluindo ambos.

Entrada

O arquivo de entrada contém 2 valores inteiros quaisquer, não necessariamente em ordem crescente.

Saída

Imprima a soma de todos os valores não divisíveis por 13 entre os dois valores lidos na entrada, inclusive ambos se for o caso.

Sample Input	Sample Output
100	13954
200	