

AUDIT REPORT

DojoSwap Injera Contract

Prepared by SCV-Security

On 12th July 2024

Table of Contents

Table of Contents	2
Introduction	3
Scope Functionality	3
Submitted Codebase	
Revisions Codebase	
Methodologies	4
Code Criteria	
Findings Summary	6
Findings Technical Details	7
1. The first depositor can inflate the utilization rate to steal funds	7
2. Deprecated to_binary and from_binary functions are used	8
3. Unneeded migration features	9
Document Control	10
Appendices	
A. Appendix - Risk assessment methodology	
B. Appendix - Report Disclaimer	12

Introduction

SCV has been engaged by Dojo Trading to conduct a comprehensive security review with the goal of identifying potential security threats and vulnerabilities within the codebase. The purpose of this audit is to evaluate the security posture of the codebase and provide actionable recommendations to mitigate any identified risks. This report presents an overview of the findings from our security audit, outlining areas of concern and proposing effective measures to enhance the codebase's security.

Scope Functionality

The Red Bank contract is a decentralized lending protocol that allows users to perform deposit and borrow operations. If an account is unhealthy, liquidators can liquidate the borrower to ensure the protocol's solvency.

Submitted Codebase

red-bank		
Repository	https://github.com/dojo-trading/injera	
Commit	edc74bf1ba4d9de53728bc155355f6f21720f4c1	
Contract	<u>red-bank</u>	
Branch	master	

Revisions Codebase

red-bank		
Repository	https://github.com/dojo-trading/injera	
Commit	20cae65e4beb13c766fd40b84b7c6198a679a14d	
Contract	<u>red-bank</u>	
Branch	master	

Methodologies

SCV performs a combination of automated and manual security testing based on the scope of testing. The testing performed is based on the extensive experience and knowledge of the auditor to provide the greatest coverage and value to Dojo Trading. Testing includes, but is not limited to, the following:

- Understanding the application and its functionality purpose.
- Deploying SCV in-house tooling to automate dependency analysis and static code review.
- Analyse each line of the code base and inspect application security perimeter.
- Review underlying infrastructure technologies and supply chain security posture.

Code Criteria

This section provides an evaluation of specific criteria aspects as described below:

- **Documentation:** Evaluating the presence and comprehensiveness of publicly available or provided explanatory information, diagram flowcharts, comments, and supporting documents to enhance code understanding.
- **Coverage:** Evaluating whether the code adequately addresses all necessary cases and scenarios, ensuring that the intended functionality or requirements are sufficiently covered.
- **Readability:** Assessing how easily the code can be understood and maintained, considering factors such as code structure, naming conventions, and overall organisation.
- **Complexity:** Evaluating the complexity of the code, including factors such as, number of lines, conditional statements, and nested structures.

The status of each criteria is categorised as either **SUFFICIENT** or **NOT-SUFFICIENT** based on the audit assessment. This categorisation provides insights to identify areas that may require further attention and improvement.

Criteria	Status	Notes
Documentation	SUFFICIENT	N/A
Coverage	SUFFICIENT	N/A
Readability	SUFFICIENT	N/A
Complexity	SUFFICIENT	N/A

Findings Summary

Summary Title	Risk Impact	Status
The first depositor can inflate the utilization rate to steal funds	CRITICAL	RESOLVED
Deprecated to_binary and from_binary functions are used	INFO	ACKNOWLEDGED
Unneeded migration features	INFO	ACKNOWLEDGED

Findings Technical Details

 The first depositor can inflate the utilization rate to steal funds

RISK IMPACT: CRITICAL	STATUS: RESOLVED
RISK IMPACT: CRITICAL	STATUS: RESOLVED

Description

The update_interest_rates function in contracts/red-bank/src/interest_rates.rs:102-116 does not limit the utilization rate below 100%. This is problematic because the first depositor can transfer funds directly to the contract and borrow them, causing the borrowing ratio to exceed the lending ratio, thereby inflating the utilization rate and profiting from the abnormally high lending interest.

An example attack flow:

- 1. The attacker becomes the first depositor when a new market (e.g., INJ) is created.
- 2. The attacker deposits 1 INJ to the contract.
- 3. The attacker donates 1000 INJ to the contract.
- 4. The attacker deposits sufficient collateral with another account to borrow all the donated funds.
- 5. With another account, the attacker receives a high lending interest accrued to their account.

This could happen when a new market is being created. To reproduce this issue, the SCV-Security team provides the following PoC, which is available here.

Recommendation

Consider performing a min() check to ensure the utilization rate does not exceed 100%.

2. Deprecated to_binary and from_binary functions are used

RISK IMPACT: INFORMATIONAL	STATUS: ACKNOWLEDGED
RISK IMPACT. INFORMATIONAL	STATUS, ACKNOWLEDGED

Description

The to_binary and from_binary functions are implemented in several instances of the codebase. However, these functions are unsupported and deprecated.

Recommendation

Consider removing the deprecated functions and using the to_json_binary and from_json functions instead.

3. Unneeded migration features

RISK IMPACT: INFORMATIONAL STATUS: ACKNOWLEDGED

Description

The migrate entry point in contracts/red-bank/src/contract.rs:262-265 implements a migration feature for the previous version of the contract to be migrated into a newer version. Since this is a new contract to be deployed on Injective, there are no existing deployments, which means the migration feature is unneeded.

This also includes the UpdateAssetCollateralStatus message and the MIGRATION_GUARD state in contracts/red-bank/src/contract.rs:133-136 and contracts/red-bank/src/state.rs:18.

Recommendation

Consider removing the unneeded migration features.

Document Control

Version	Date	Notes
-	12th June 2024	Security audit commencement date.
0.1	28th June 2024	Initial report with identified findings delivered.
0.5	12th July 2024	Fixes remediations implemented and reviewed.
1.0	12th July 2024	Audit completed, final report delivered.

Appendices

A. Appendix - Risk assessment methodology

SCV-Security employs a risk assessment methodology to evaluate vulnerabilities and identified issues. This approach involves the analysis of both the LIKELIHOOD of a security incident occurring and the potential IMPACT if such an incident were to happen. For each vulnerability, SCV-Security calculates a risk level on a scale of 5 to 1, where 5 denotes the highest likelihood or impact. Consequently, an overall risk level is derived from combining these two factors, resulting in a value from 10 to 1, with 10 signifying the most elevated level of security risk

Risk Level	Range
CRITICAL	10
SEVERE	From 9 to 8
MODERATE	From 7 to 6
LOW	From 5 to 4
INFORMATIONAL	From 3 to 1

LIKELIHOOD and **IMPACT** would be individually assessed based on the below:

Rate	LIKELIHOOD	IMPACT
5	Extremely Likely	Could result in severe and irreparable consequences.
4	Likely	May lead to substantial impact or loss.
3	Possible	Could cause partial impact or loss on a wide scale.
2	Unlikely	Might cause temporary disruptions or losses.
1	Rare	Could have minimal or negligible impact.

B. Appendix - Report Disclaimer

This report should not be regarded as an "endorsement" or "disapproval" of any specific project or team. These reports do not indicate the economics or value of any "product" or "asset" created by a team or project that engages SCV-Security for a security review. The audit report does not make any statements or warranties about the code's utility, safety, suitability of the business model, regulatory compliance of the business model, or any other claims regarding the fitness of the implementation for its purpose or its bug-free status. The audit documentation is intended for discussion purposes only. The content of this audit report is provided "as is," without representations and warranties of any kind, and SCV-Security disclaims any liability for damages arising from or in connection with this audit report. Copyright of this report remains with SCV-Security.

THANK YOU FOR CHOOSING

- scv.services
- contact@scv.services