CS301:: Homework 1

Ryan Magdaleno

September 13, 2023

Problem 1. DFAs

a) Generate the state diagram for a DFA which decides the following language L, $\Sigma = \{0, 1\}$

language L. $\sum = \{0, 1\}$. $L = \{w \in \sum^* : w \text{ does not start with '00' and } w \text{ ends with '01' } \}$

${\bf Solution}::$

b) Give the 5-tuple which represents the DFA from 1a). You may use a table to represent the transition function δ .

${\bf Solution}::$

$$Q = \{q_0, q_1, q_2, q_3, q_4, q_5\}$$

$$\sum_{0} = \{0, 1\}$$

$$q_0 = q_0$$

$$F = \{q_4\}$$

$\delta =$		0	1
	q_0	q_4	q_1
	q_1	q_2	q_1
	q_2	q_2	q_3
	q_3	q_2	q_1
	q_4	q_5	q_3
	q_5	q_5	q_5

Problem 2. NFAs

a) Generate the state-diagram for an NFA which decides the following language L. $\sum=\{0,1\}.$

$$L = (010)^* \cup 1^*(00)^*$$

Solution ::

b) Give the 5-tuple which represents the NFA from 2a). You may use a table to represent the transition function δ .

$$Q = \{q_0, q_1, q_2, q_3, q_4, q_5, q_6\}$$

$$\sum_{0 = \{0, 1\}} q_0 = q_0$$

$$F = \{q_0, q_1, q_3, q_4\}$$

		0	1	ϵ
$\delta =$	q_0	$\{q_2\}$	$\{q_1\}$	$\{q_4\}$
	q_1	$\{q_2\}$	$\{q_1\}$	Ø
	q_2	$\{q_3\}$	Ø	Ø
	q_3	$\{q_2\}$	Ø	Ø
	q_4	$\{q_5\}$	Ø	Ø
	q_5	Ø	$\{q_6\}$	Ø
	q_6	$\{q_4\}$	Ø	Ø

Problem 3. Closure

Given the 5-tuple for an NFA $M_L = (Q, \sum, \delta, q_0, F)$ which decides, L, describe how to produce the 5-tuple for an NFA $M_{L^R} = (Q_R, \sum, \delta_R, q_{0_R}, F_R)$ which decides L^R , the reverse of L.

The reverse, L^R is the recursive operation given below which gives the reverse of a string.

$$e.g. (110)^R = 011$$

- $\epsilon^R = \epsilon$
- For string w and character $a, (wa)^R = a(w^R)$

Solution ::

$$Q^{R} = Q$$
$$\sum_{q_{0R}}^{R} = \sum_{q_{0R}}^{R} F^{R} = q_{0}$$

For the transition function let's use the following string example: $L=1011, L^R$ should become 1011.

L transition function δ :

	1	0
q_0	q_1	Ø
q_1	Ø	q_1
q_2	q_3	Ø
q_3	q_4	Ø
q_4	Ø	Ø

To retrieve the string we need to invert the starting and final state.

(As noted with $q_{0^R} = F$, $F^R = q_0$). After that we must reverse the transition function of $L; \delta$.

One method to reverse δ would be to enter the original starting state, in this example q_0 , and enter each state sort of recursively, so we go:

$$q_0 \rightarrow q_1 \rightarrow q_2 \rightarrow q_3$$

and stop when the next state only has the empty set on all transitions, this would be our base case.

In this example we wold stop at q_3 because q_4 terminates fully. We can now reverse and in the end the L^R transition function δ^R should look like this:

	1	0
q_0	Ø	Ø
q_1	q_0	Ø
q_2	Ø	q_1
q_3	q_2	Ø
q_4	q_3	Ø

The final NFA L^R should now be reverse in all strings cases like so:

Extra note: Doing the steps listed above again should result in the original L, that is:

$$L = (L^R)^R$$