Deep Learning Theory and Applications

Feedforward Networks

CPSC/AMTH 663

Outline

- 1. Feedforward network overview
 - Sigmoid neuron
 - Architecture of a neural network

Handwritten digit recognition

504192

Handwritten digit recognition

Recall a Perceptron

output =
$$\begin{cases} 0 & \text{if } w \cdot x + b \le 0 \\ 1 & \text{if } w \cdot x + b > 0 \end{cases}$$

Logic circuits with perceptrons

- NAND gates can be constructed from perceptrons
- NAND gates are universal for computation
 - Any computation can be built from NAND gates
 - Therefore, perceptrons are universal for computation

Adders

- How do you create an AND?
- How do you create an OR?
- Creating an ADDER

sum: $x_1 \oplus x_2$ x_1x_2

Feedforward Network

- We can create *learning algorithms* that automatically tune the weights and biases
 - Tuning occurs in response to external stimuli and w/o direct intervention
 - Creates a circuit designed for the problem at hand

Learning the weights and biases

- Goal: use a network of perceptrons to learn to solve a problem
- Example: learn the weights and biases in a network to perform handwritten digit recognition

Learning the weights and biases

 Want small changes in weights or biases to result in small changes in output

Learning the weights and biases

- Want small changes in weights or biases to result in small changes in output
- Example: suppose network misclassifies an "8" as a "9"
 - Make small changes in weights and biases to get network a little closer to correct classification
 - Repeat to produce better and better output (i.e. learn)
- Problem: this doesn't happen with perceptron networks
 - Small changes in weights and bias of a single perceptron may cause output to flip (big change)
 - This flip may create complicated changes in the network
 - So even if we now correctly classify the "9", the network behavior on all other images may be drastically different
 - Difficult to learn appropriate weights and biases

Sigmoid Neuron

 A sigmoid neuron is a modified perceptron so that small changes to weights and biases ⇒ small changes in output

- Inputs may be between 0 and 1
 - E.g. 0.638 is a valid input
- Weights w_i for each input and bias b
- Output is $\sigma(w \cdot x + b)$

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

Sigmoid Neuron

 A sigmoid neuron is a modified perceptron so that small changes to weights and biases ⇒ small changes in output

Output is

$$\sigma(w \cdot x + b) = \frac{1}{1 + \exp(-\sum_{j} w_{j} x_{j} - b)}$$

Relationship between sigmoid neuron and perceptrons

$$\bullet \ \sigma(z) = \frac{1}{1 + e^{-z}}$$

- Suppose $z = w \cdot x + b$ is large and positive
 - $e^{-z} \approx 0 \Rightarrow \sigma(z) \approx 1$
 - I.e. if $z = w \cdot x + b$ is large and positive, the sigmoid neuron output is approximately 1 (like a perceptron)
- Suppose $z = w \cdot x + b$ is large and negative
 - $e^{-z} \to \infty \Rightarrow \sigma(z) \approx 0$
 - I.e. if $z = w \cdot x + b$ is large and negative, the sigmoid neuron output is approximately 0 (like a perceptron)
- Some deviation for modest values of $z = w \cdot x + b$

Relationship between sigmoid neuron and perceptrons

- For the perceptron, $\sigma =$ the step function
- Smoothness of the sigmoid function ⇒ small changes in weights and biases produce small change in output

Weights, bias, and output

• Change in weight
$$\Delta w_j$$
, change in bias Δb

$$\Delta \text{output} \approx \sum_{i} \frac{\partial \text{output}}{\partial w_j} \Delta w_j + \frac{\partial \text{output}}{\partial b} \Delta b$$

- Δ output is a *linear function* of the changes Δw_i and Δb in the weights and bias
 - Linearity makes it easier to choose small changes in weights and biases to achieve the desired small change in output
- Thus sigmoid neurons have similar behavior as perceptrons but are easier to use

Activation functions

- If smoothness is what we need, why the sigmoid function σ ?
- Using σ simplifies the algebra
- Other *activation functions* $f(w \cdot x + b)$ are used in practice
 - Depends on the application
 - More on these later in the semester

Classification with sigmoid neurons

- Sigmoid neuron output = any real number between 0 and
 1
- How do we do classification?
- Threshold the final output
 - E.g., a value above 0.5 indicates a "9" while a value below 0.5 does not

Architecture of Neural Networks

- Sometimes called multi-layer perceptron (although sigmoid neurons are used)
- Output from one layer is used as input for the next (feedforward network)

Architecture of Neural Networks

- Input and output layers are easily designed
- Hidden layers are harder
 - Many heuristics exist (which we'll cover later)

Handwritten digit recognition

Two problems

- 1. Segmentation
- 2. Digit recognition

504192

Handwritten digit recognition

Two problems

- 1. Segmentation
- 2. Digit recognition

We'll focus on <u>digit recognition</u>

Image segmentation approach

- Run digit classifier on multiple segmentations
 - High score if classifier is confident in all segments
 - Low score if the classifier fails in one or more segments
- I.e., if the classifier is struggling, it's due to a poor segmentation

A simple network

Number of output neurons

- Why use 10?
- Four bits are enough to encode the answer
 - Using more seems inefficient

- Empirically, 10 works better
 - Why?

Number of output neurons

• Possible heuristic:

Further Reading

- Nielsen, chapter 1
- Goodfellow et al., chapter 6