- MAC地址是以太网的MAC子层所使用的地址。
- IP地址是TCP/IP体系结构网际层使用的地址。
- ARP协议属于TCP/IP体系结构的网际层,其作用是已知设备所分配到的IP地址,使用ARP协议可通过该IP地址获取到设备的MAC地址。

# MAC地址

在每个主机发送的**帧中必须携带标识发送主机和接收主机的地址**。由于这类地址是用于媒体接入控制 MAC,因此这类地址被称为MAC地址。

MAC地址是对于网络上各接口的唯一标识,而不是对网络上各设备的唯一标识。

IEEE 802局域网的MAC地址格式

扩展的唯一标识符EUI

|      | _  |                                |       |         |    |       |       |              |         |      |                              |       |       |       |       |         |      |       |       |       |       |       |        |         | _  |
|------|----|--------------------------------|-------|---------|----|-------|-------|--------------|---------|------|------------------------------|-------|-------|-------|-------|---------|------|-------|-------|-------|-------|-------|--------|---------|----|
|      |    | 组织唯一标识符OUI<br>(由IEEE的注册管理机构分配) |       |         |    |       |       |              |         |      | 网络接口标识符<br>(由获得OUI的厂商自行随意分配) |       |       |       |       |         |      |       |       |       |       |       |        |         |    |
|      | Г  | 角                              | 一字节   | 5       | -  | 舅     | 二字    | <del>ا</del> |         | 角    | 第三字节                         | ÷ ÷   |       | 第     | 四字    | †       |      | 第     | 五字节   | 5     |       | 1     | 第六字    | 带       | ╗  |
|      | b7 | b6 b5                          | b4 b3 | b2 b1 b | b7 | b6 b5 | b4 b3 | b2 b1        | ь0 b7 l | 6 b5 | b4 b3                        | b2 b1 | b0 b7 | b6 b5 | b4 b3 | b2 b1 t | о 67 | b6 b5 | b4 b3 | b2 b1 | b0 b7 | b6 b5 | 5 b4 b | 3 b2 b1 | b0 |
| 十六进制 | -  | Х                              | -     | Х       |    | Х     | 1     | Х            | !       | Χ    |                              | Χ     | -     | Х     | -     | Х       | -    | Х     | -     | Х     | -     | Х     |        | Х       | -  |

其他表示法: XX:XX:XX:XX:XX:XX 🚇 🗯 🖷 例如: 00:0C:CF:93:8C:92



| 第一字节的<br>b1位 | 第一字节的<br>b0位 | MAC地址类型                                                                   | 地址数量<br>占比 | 总地址数量                         |
|--------------|--------------|---------------------------------------------------------------------------|------------|-------------------------------|
| 0            | 0            | 全球管理 单播地址 厂商生产网络设备(网卡,交换机,路由器)时固化                                         | 1/4        |                               |
| 0            | 1            | 全球管理 多播地址 标准网络设备所支持的多播地址,用于特定功能                                           | 1/4        | $2^{48}$ =281,474,976,710,656 |
| 4            | 0            | 本地管理 单播地址 由网络管理员分配,覆盖网络接口的全球管理单播地址                                        | 1/4        | (二百八十多万亿)                     |
| 1            | 1            | 本地管理 多播地址 用户对主机进行软件配置,以表明其属于哪些多描组<br>注意:剩余46位全为1时,就是广播地址FF-FF-FF-FF-FF-FF | 1/4        |                               |

### 多播MAC地址

该位十六进制数不能整除2 (1,3,5,7,9, B, D, F) , 即为多播地址。



# IP地址

IP地址是因特网上的主机和路由器所使用的地址,用于标识两部分信息:

• 网络编号: 标识因特网上数以百万计的网络

• 主机编号:标识同一网络上不同主机 (或路由器各接口)



- 数据包在转发过程中,源IP地址和目的IP地址保持不变
- 数据包在转发过程中,源MAC地址和目的MAC地址逐个链路或逐个网络改变

### ARP协议

通过目的主机的IP地址获取它的MAC地址。

**只能在一段链路或一个网络上使用**,不能跨网络使用。

ARP高速缓存表:记录IP地址和MAC地址的对应关系。

表中的记录分为两种类型:

• 动态:自动获取,生命周期默认为两分钟

• 静态: 手工设置, 不同操作系统下的生命周期不同。

ARP请求报文被封装在MAC帧中发送,目的地址为广播地址



#### 总结

