1 Attention

Motivation: One of the core mechanisms inside of current LLMs.

Warning: Convolution takes in a single node, while attention takes in all nodes.

1.1 Transformer Architecture

Notes:

- Transformer Layer:
 - Attention mechanism (multi-headed)
 - Positional encodings
- With massive unsupervised datasets:
 - Masked self-supervised training
 - Contrastive training

Figure 1: LS: Encoder, RS: Decoder

1.1.1 Transformer Layer

Summary:

Figure 2

Component	Description	
Positional encoding	Learn to map integer positions into a vectorized representation.	
	$PE_{(pos,i)} = \begin{cases} \sin\left(\frac{pos}{10000\frac{i}{d_{model}}}\right) & \text{if } i \text{ is even} \\ \cos\left(\frac{pos}{10000\frac{i-1}{d_{model}}}\right) & \text{if } i \text{ is odd} \end{cases}$	
Multi-Head Attention	Computes attention scores for each token in the sequence.	
LayerNorm	Stabilizes activations and accelerates training.	
Residual Connection	Preserve information and enable deeper networks.	
FFN/MLP	Increases the expressive power of the learned representation, often using GELU activations.	

1.2 Transformers are GNNs

Summary: Transformers are a special case of GNN

	GNN	Transformer
Connectivity (Adjacency)	Sparse	Full
Edge Learning	Yes	No (Implicitly)
Message Computation	$M(n_i, n_j, e_{ij})$	$\langle n_i, n_j angle$
Communication per step	# Number of Neighboring nodes	$\sim \#$ Number of Heads
Data requirements	Low	High
Computation	Slow due to gather operations	Fast, Optimizable \sim Matrix Multiplications
Training	Straightforward	Pre-training is needed

Attention Mechanism

Process:

- 1. **Inputs:** Tokens tensor, Mask
 - Tokens: Inputs for Transformer/Attention Layers, which is a numerical representation of pieces of data.
 - Mask: A binary matrix that indicates which tokens to give attention to.
- 2. Preprocessing: Linear maps Tokens into Queries, Keys, and Values.
 - $Q = \text{Tokens} \cdot W_Q$: Represents the current token's context.
 - $K = \text{Tokens} \cdot W_K$: Represents the context of all tokens.
 - $V = \text{Tokens} \cdot W_V$: Represents the information to be passed on.
- 3. Attention scores: Scores = $\frac{QK^T}{\sqrt{d_k}}$ · Mask
 - $\operatorname{score}_{ij} = \frac{(q_i \cdot k_j)m_{ij}}{\sqrt{d_k}}$
- 4. **Attention Normalization:** Attention Weights = softmax(scores)
- $\operatorname{score}_{ij}^{\operatorname{normalized}} = \frac{\exp(\operatorname{score}_{ij})}{\sum_{k=1}^{n} \exp(\operatorname{score}_{ik})}$ 5. Value update: New Values = Attention Weights · V
- - $v_i^{\text{new}} = \sum_{j=1}^n \text{score}_{ij}^{\text{normalized}} v_j$
- 6. **Post Processing:** Apply LayerNorm, Residual connections, and a FFN.
- 7. Outputs: Updated tokens tensor

$$\operatorname{Attention}(Q, K, V, M) = \operatorname{softmax}\left(\frac{QK^{T}M}{\sqrt{d_{k}}}\right)V \tag{1}$$

Attention Maps: Visualizing Where the Model Attends

Notes: Softmax bias:

- Values between 0 and 1
- Categorical like
- Attend to one token at a time

Figure 3

1.3.2 Self-Attention vs. Cross-Attention

Notes:

• Self-Attention: Attention allows connections between the same sequence without masking.

$$\begin{aligned} \text{Self-Attention}(x, \text{mask}) &= \text{Attention}(\text{Linear}(x), \text{Linear}(x), \text{Linear}(x), \text{mask}) \\ &= \text{Attention}(Q(x), K(x), V(x), \text{mask}) \end{aligned}$$

• Cross-Attention: Attention allows connections between different sequences.

Cross-Attention
$$(x, x', \text{mask})$$
 = Attention $(\text{Linear}(x), \text{Linear}(x'), \text{Linear}(x'), \text{mask})$
= Attention $(Q(x), K(y), V(x), \text{mask})$

1.3.3 Multi-Headed Attention

Notes: Multiple attention mechanisms in parallel, each with different linear maps.

- Ensemble-like approach.
- \bullet Same compute and # of parameters.
- Strategy: Expand and contract tensors to new axis: number of heads.

Figure 4

1.4 Examples

1.4.1 Tokens

1.4.2 Positional Encoding

1.4.3 Cross-Attention

2 LLMs

Notes:

- $\bullet\,$ Transformers on large text-like datasets.
- Transformers on "tokens" (discretized data)
- Foundational models

2.1 Transformers & LLMs

Description	
Scale significantly impacts LLM's performance.	
Many tasks can be framed as text-to-text problems.	
Predicting masked tokens in a sequence.	
Tokenizing Text & Embedding Layers	
Auto-Regressive Decoding of Tokens Decoding one token at a time, using previous outputs	

2.2 Scaling LLMs

 ${\bf Motivation:}$

2.2.1 Techniques

Summary: Table format

${\bf 2.2.2}\quad {\bf High\text{-}Level\ Impacts}$

Summary: