Assignment 1

- Name: Alaa Ibrahim Amin
- ID:20-01771
- Centre : Hurghada
- Course Name: Numerical methods
- Course code: GEN207
- Academic Year: 2021-2022
- Semester :2

f(a) f(b)	ith a =	$(0) - (0) \times (0) = (0) \times (0) = (0) \times (0) $	e (60) -	. 1	()-xex-0
, N	lumbar	a	bindi	C	f(c)
	1 2 3 4 5 6 7 8 9	0,5 0,5 0,5 0,5 0,5 0,515625 0,515625	0.53125 0.5234375 0.51953	0.5 0.625 0.625 0.5625 0.515625 0.515625 0.5234375 0.1953125 0.517588	5. U.S. 18 X10-1
	$\hat{y} = 0$	517578		Sol.	tion installed

(3) Find Using the fixed point iterat	tive method + 0'1
	Garage with
100000 10111.	
f(a) = 4(0) -2 (0) -1=-1 =	
f(b) = 4(1) - 2(1) - 1 = 5.6	
1st method:	2nd method:
1/X5 - SX+1	4x2+2x-1
-X3 = -X +	4x2+2x=1
2 4	x (4x+2) =1
= - 2X +1	X = 1
4	4x+2
$x = \pm \sqrt{-1-2x}$	X1=0.16667
- NOI VENEVANI	X ₂ = 0.37500375
	Xz= 0.28571
	Xy= 0.31818
	XG= 0.305555
(1)	X= 0.310 3448
	X7 = 0.3085108
(415) 514 0.2	Solution
(4) Find a solution of x3+1=0 by NO	enton method for x = 2 0 1
$F(X) = X^3 + 1 \qquad f(X) =$	3x2 E = 0.05.
$f_{X_{n+1}} = X_{k} - f(X_{n})$	0.10).
$x = \frac{1}{2} (x_n)$	X4= -1.01240206
$X_1 = -3 - (-3)^3 + 1 = -2.03703$	x5=-1.000157311
3(-3) 2	ACI + :
12 = -2.037 _ (-2.037)3+1 = -1.643	835 ASolution!
3(-2,037)	-1.000151311
X3 = -1.4383552₹	

(5) find the equation f(x) = e-x - x = 0 Find the root of the Function by using Fixed Point iteration mothed with to =0.5 and E=5%. $F(x) = e^{-x} - x$ requation: X = e X2 = 0.54 5239 x, = 0.60 6530. Xy = 0.56 00084 62 (X3=0-579703 (6) consider finding the root of f(x) = x2 - 3 and start with the interval [1,2] with N=3 iterations. $f(a) = (1)^2 - 3 = -2 (-1)$ F(b) = (2/2-3-1 (+) f(d) f(b) € €. Number EEC) 1.5 -0.75 1.75 0.0626 1.75 1.625 -0.3593 1.625 1.75 1.6875 -0.15234

(7) use weston's method to find the root of X4-5X3+9X+3=0 accurate to 6 decimal places in the interval [4,6]. F(X) = X4-5X3+9X+3 $\xi(x) = x - 5x^2 + 9$ $\chi_0 = a + b - 4 + 6 = 5$ $X_1 = B - \frac{(5)^4 - 5(5)^3 + 9(5) + 3}{4(5)^3 - 15(5)^2 + 9} - 4.64179$ X2 = 4.64179 - (4.64)4-1564,64)+9(4.64)+3 4 (4.64)3-15 (4.64)2+9 x3 = 4.53 - (4.53) 4 - 5(4.53) 3+9(4.53) +3 -4.52 891796 4 (4.53)3 - 15(4.53)2+9 Solution (8) (a) Put (1160101.1101) à single Breaision IEEE 754 (11900/01·1101) 1.00101101 x 2 7+ exporent. Exporent = 7+127 - 134 134 67 33 10000 110. 16 0 Solution ? 0 1000 100 1011 1010 0000 0000 000

	Find IEEE 754 single Recision 13 of 85.125				
(8) (6)	2 1 0.125 X2 - 0.25 O				
85	2 0 0.125 x 2 - 0.15 0				
42	0123 1 2 - 0 3				
10	$\frac{2}{2}$ 0 0.5 x 2 - 1 $\frac{1}{2}$				
5	2 1				
2	2 0 1010101.001				
1	2 1				
	1.060101001 X 2 6				
Expon	ent = 6 + 127 = 133				
133	2 1				
- 66	2 0				
- 33	2 1				
16	2 0 10000 101				
-8	2 0				
2	2 0				
1	2 0				
7	2 1				
Solution	we would like to 14)				
	0 1000 6101 0101 along and				
(9) Styros	we would like to determine the minimum no of iterations Elogic bo-a)				
needed in	A Bisaction when to determine the				
11	El algorithm given to as a minimum no of iterations				
needed in Bisection algorithm given to $a_0 = 3$, $b_0 = 4.5$ and $\epsilon = 10^{-5}$.					
	10 (E)				
$N \ge = \{ \log_{10}(4.5 - 3) - \log_{10}(10^{-5}) \} = 17.1941$					
- 310(4.5-3) - log. (10-51)					
	(0) 10 (5)				
	~ 17.1946				
	~ 17 iterations				

(10) (a) Determine the absolute error and relative error sub- approximating P by when $P = 1.32 \times 10^2$ a, $P^* = 1.35 \times 10^2$
Absolute error = $1P - P \times 1 = 11.32 \times 10^2 - 1.35 \times 10^2 $ Relative error = $1P - P \times 1 = \frac{11.32 \times 10^2 - 1.35 \times 10^2}{1.32 \times 10^2}$ = $0.0227 \sim 2.2727 \%$
(10)(b) what is the decimal number represented by we set 1000 0001 0100 0000 0000 0000 0000 00
Form '- $(-1)^{5} 2^{e-127}$ 1. Mantisa. = $(-1)^{1} (2^{2}) (1.25) = -5$