

1. Tutorium Mengen, Abbildungen, Relationen

Grundbegriffe der Informatik, Tutorium #25 Stephan Bohr | 21. Oktober 2017

Roadmap

Roadmap

Euer Tutor

Name: Stephan Bohr

Alter: 20 Jahre

Studiengang: Bachelor Informatik, 3. Semester

Euer Tutor

Name: Stephan Bohr

Alter: 20 Jahre

Studiengang: Bachelor Informatik, 3. Semester

Kontakt: stephan.bohr@student.kit.edu

Infos zum Tutorium

- Name: Stephan Bohr
- Tutoriumsnummer: 25
- Dienstags, 5. Block (15:45-17:15), SR -119

Infos zum Tutorium

Tutorium ist...

- Wiederholung der Vorlesung
- Gemeinsames Üben des aktuellen Stoffes
- Erste Anlaufstelle für Fragen
- Ausgabestelle der korrigierten Übungsblätter

Infos zum Tutorium

Tutorium ist...

- Wiederholung der Vorlesung
- Gemeinsames Üben des aktuellen Stoffes
- Erste Anlaufstelle für Fragen
- Ausgabestelle der korrigierten Übungsblätter

Tutorium ist nicht...

- Ersatz für die Vorlesung
- Lösen des kommenden Übungsblattes

Mitarbeit ist erwünscht!

Ausgabe: Mittwochs im ILIAS-Forum

Ausgabe: Mittwochs im ILIAS-Forum

Abgabe:

- Donnerstags, 16 Uhr, 2 Wochen nach Ausgabe
- Briefkasten im Infobau-UG

Ausgabe: Mittwochs im ILIAS-Forum

Abgabe:

- Donnerstags, 16 Uhr, 2 Wochen nach Ausgabe
- Briefkasten im Infobau-UG
- einzeln und handschriftlich bearbeitet, Abschreiben führt zu Nichtbestehen des Scheines
- Blätter getackert

Ausgabe: Mittwochs im ILIAS-Forum

Abgabe:

- Donnerstags, 16 Uhr, 2 Wochen nach Ausgabe
- Briefkasten im Infobau-UG
- einzeln und handschriftlich bearbeitet, Abschreiben führt zu Nichtbestehen des Scheines
- Blätter getackert

Rückgabe: Im Tutorium

Modul GBI

Übungsschein

- Erhält, wer mind. 50% aller möglichen Punkte auf den Übungsblättern erzieht
- Ist keine Voraussetzung für die Teilnahme an der Klausur
- Übungsschein wird zum Bestehen des Moduls benötigt

Modul GBI

Übungsschein

- Erhält, wer mind. 50% aller möglichen Punkte auf den Übungsblättern erzieht
- Ist keine Voraussetzung für die Teilnahme an der Klausur
- Übungsschein wird zum Bestehen des Moduls benötigt

Klausur

- Datum: 08.03.18, 14-16 Uhr
- Nebenklausur nach dem SS
- Klausurnote = Modulnote
- Klausur wird zum Bestehen des Moduls benötigt

Orientierungsprüfung!

Roadmap

Nachricht, Information, ...

Nachricht

Mitteilung, bei der vom Medium und den Einzelheiten der Signale abstrahiert wird.

Nachricht, Information, ...

Nachricht

Mitteilung, bei der vom Medium und den Einzelheiten der Signale abstrahiert wird.

Information

Bedeutung, die einer Nachricht zugeordnet wird (kontextabhängig!).

Nachricht, Information, ...

Nachricht

Mitteilung, bei der vom Medium und den Einzelheiten der Signale abstrahiert wird.

Information

Bedeutung, die einer Nachricht zugeordnet wird (kontextabhängig!).

Informationsgehalt

Anzahl der Elemente...

Naturalis: log_e Hartley: log₁₀ Shannon: log₂

Roadmap

Def.: Menge

Eine **Menge** ist eine Zusammenfassung wohlunterschiedener Objekte zu einer Gesamtheit.

Die leere Menge wird mit \emptyset bezeichnet.

Def.: Menge

Eine **Menge** ist eine Zusammenfassung wohlunterschiedener Objekte zu einer Gesamtheit.

Die leere Menge wird mit ∅ bezeichnet.

- Aus der Schule kennen wir $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}$ $\mathbb{N}_+, \mathbb{N}_0$.
- Menge der natürlichen positven Zahlen $\mathbb{N}_+ = \{1, 2, 3, \dots\}$
- Menge d. Star-Wars-Filme: $SW := \{4, 5, 6, 1, 2, 3, 7, RO\} = \{1, 2, 3, RO, 4, 5, 6, 7\}$

Def.: Element

Ein Objekt x, dass in einer Menge M enthalten ist, heißt **Element** von M. Man schreibt $x \in M$ (bzw. falls nicht: $x \notin M$).

Def.: Teilmenge

Sind alle Elemente einer Menge A auch in einer Menge B enthalten, so heißt A **Teilmenge** von B. Man schreibt $A \subseteq B$.

Es gilt für jede Menge $M: \emptyset \subseteq M$ und $M \subseteq M$.

Def.: Element

Ein Objekt x, dass in einer Menge M enthalten ist, heißt **Element** von M. Man schreibt $x \in M$ (bzw. falls nicht: $x \notin M$).

Def.: Teilmenge

Sind alle Elemente einer Menge A auch in einer Menge B enthalten, so heißt A **Teilmenge** von B. Man schreibt $A \subseteq B$.

Es gilt für jede Menge $M: \emptyset \subseteq M$ und $M \subseteq M$.

set comprehension

Eine **set comprehension** ist eine Möglichkeit, eine Menge mit Bedingungen zu definieren:

 $\{x \in SW \mid x \text{ ist ein guter Star-Wars-Film}\} = \{2, 3, RO, 4, 5, 6\} \subseteq SW.$

Def.: Kardinalität

Unter **Kardinalität** einer Menge M versteht man die Anzahl der Elemente der Menge. Man schreibt |M|.

Def.: Kardinalität

Unter **Kardinalität** einer Menge M versteht man die Anzahl der Elemente der Menge. Man schreibt $\mid M \mid$.

- | *SW* | =
- $|\emptyset| =$
- | {1,2,2,3} | =

Def.: Kardinalität

Unter **Kardinalität** einer Menge M versteht man die Anzahl der Elemente der Menge. Man schreibt $\mid M \mid$.

- |SW| = 8
- $|\emptyset| =$
- | {1,2,2,3} | =

Def.: Kardinalität

Unter **Kardinalität** einer Menge M versteht man die Anzahl der Elemente der Menge. Man schreibt $\mid M \mid$.

- |SW| = 8
- $|\emptyset| = 0$
- | {1,2,2,3} | =

Def.: Kardinalität

Unter **Kardinalität** einer Menge M versteht man die Anzahl der Elemente der Menge. Man schreibt $\mid M \mid$.

- |SW| = 8
- $|\emptyset| = 0$
- $| \{1,2,2,3\} | = 3$

Def.: Vereinigung

Die **Vereinigung** $A \cup B$ der Mengen A und B ist die Menge aller Elemente, die Elemente der Menge A oder der Menge B sind:

$$A \cup B = \{x \mid x \in A \text{ oder } x \in B\}.$$

Def.: Vereinigung

Die **Vereinigung** $A \cup B$ der Mengen A und B ist die Menge aller Elemente, die Elemente der Menge A oder der Menge B sind: $A \cup B = \{x \mid x \in A \text{ oder } x \in B\}.$

Def.: Vereinigung

Die **Vereinigung** $A \cup B$ der Mengen A und B ist die Menge aller Elemente, die Elemente der Menge A oder der Menge B sind: $A \cup B = \{x \mid x \in A \text{ oder } x \in B\}.$

- Für jede Menge M gilt: $M \cup \emptyset =$

Def.: Vereinigung

Die **Vereinigung** $A \cup B$ der Mengen A und B ist die Menge aller Elemente, die Elemente der Menge A oder der Menge B sind: $A \cup B = \{x \mid x \in A \text{ oder } x \in B\}.$

- Für jede Menge M gilt: $M \cup \emptyset = M$

Def.: Vereinigung

Die **Vereinigung** $A \cup B$ der Mengen A und B ist die Menge aller Elemente, die Elemente der Menge A oder der Menge B sind: $A \cup B = \{x \mid x \in A \text{ oder } x \in B\}.$

- Für jede Menge M gilt: $M \cup \emptyset = M$

Def.: Schnitt

Der (Durch-)**Schnitt** $A \cap B$ der Mengen A und B ist die Menge aller Elemente, die sowohl Elemente der Menge A als auch der Menge B sind: $A \cap B = \{x \mid x \in A \text{ und } x \in B\}.$

Zwei Mengen heißen disjunkt, wenn ihr Schnitt leer ist, also $A \cap B = \emptyset$

Def.: Schnitt

Der (Durch-)**Schnitt** $A \cap B$ der Mengen A und B ist die Menge aller Elemente, die sowohl Elemente der Menge A als auch der Menge B sind: $A \cap B = \{x \mid x \in A \text{ und } x \in B\}.$

Zwei Mengen heißen disjunkt, wenn ihr Schnitt leer ist, also $A \cap B = \emptyset$

Beispiele

Def.: Schnitt

Der (Durch-)**Schnitt** $A \cap B$ der Mengen A und B ist die Menge aller Elemente, die sowohl Elemente der Menge A als auch der Menge B sind: $A \cap B = \{x \mid x \in A \text{ und } x \in B\}.$

Zwei Mengen heißen disjunkt, wenn ihr Schnitt leer ist, also $A \cap B = \emptyset$

Beispiele

- Für jede Menge M gilt: $M \cap \emptyset = \emptyset$

Def.: Schnitt

Der (Durch-)**Schnitt** $A \cap B$ der Mengen A und B ist die Menge aller Elemente, die sowohl Elemente der Menge A als auch der Menge B sind: $A \cap B = \{x \mid x \in A \text{ und } x \in B\}.$

Zwei Mengen heißen disjunkt, wenn ihr Schnitt leer ist, also $A \cap B = \emptyset$

Beispiele

- Für jede Menge M gilt: $M \cap \emptyset = \emptyset$

Def.: Differenz

Die **Differenz** der Mengen *A* und *B* sind die Elemente, die in *A* sind, aber nicht in *B*.

$$A \setminus B = \{x \mid x \in A \text{ und } x \notin B\}$$

Def.: Differenz

Die **Differenz** der Mengen *A* und *B* sind die Elemente, die in *A* sind, aber nicht in *B*.

$$A \setminus B = \{x \mid x \in A \text{ und } x \notin B\}$$

Beispiele

 $\{1,2,3\} \setminus \{1\} =$

Def.: Differenz

Die **Differenz** der Mengen *A* und *B* sind die Elemente, die in *A* sind, aber nicht in *B*.

$$A \setminus B = \{x \mid x \in A \text{ und } x \notin B\}$$

Beispiele

Aufgabe

$$A \cup B =$$

$$A \cap C =$$

$$A \setminus C =$$

$$B \setminus A =$$

$$A \cup (B \setminus C) =$$

$$(A \setminus C) \cup B =$$

$$A \cap B =$$

Aufgabe

$$A \cup B = \{1, 2, 3\}$$

$$A \cap C =$$

$$A \setminus C =$$

$$B \setminus A =$$

$$A \cup (B \setminus C) =$$

$$(A \setminus C) \cup B =$$

$$A \cap B =$$

Aufgabe

$$A \cup B = \{1, 2, 3\}$$

$$A \cap C = \{1\}$$

$$A \setminus C =$$

$$B \setminus A =$$

$$A \cup (B \setminus C) =$$

$$(A \setminus C) \cup B =$$

$$A \cap B =$$

Aufgabe

$$A \cup B = \{1, 2, 3\}$$

$$A \cap C = \{1\}$$

$$A \setminus C = \{2\}$$

$$B \setminus A =$$

$$A \cup (B \setminus C) =$$

$$(A \setminus C) \cup B =$$

$$A \cap B =$$

Aufgabe

$$A \cup B = \{1, 2, 3\}$$

$$A \cap C = \{1\}$$

$$A \setminus C = \{2\}$$

$$B \setminus A = \{3\}$$

$$A \cup (B \setminus C) = (A \setminus C) \cup B = A \cap B = A \cap B = A \cap B$$

Aufgabe

$$A \cup B = \{1, 2, 3\}$$

$$A \cap C = \{1\}$$

$$A \setminus C = \{2\}$$

$$B \setminus A = \{3\}$$

$$A \cup (B \setminus C) = \{1, 2\}$$

$$(A \setminus C) \cup B =$$

$$A \cap B =$$

Aufgabe

$$A \cup B = \{1, 2, 3\}$$

$$A \cap C = \{1\}$$

$$A \setminus C = \{2\}$$

$$B \setminus A = \{3\}$$

$$A \cup (B \setminus C) = \{1, 2\}$$

$$(A \setminus C) \cup B = \{2, 3\}$$

$$A \cap B =$$

Aufgabe

$$A \cup B = \{1, 2, 3\}$$

$$A \cap C = \{1\}$$

$$A \setminus C = \{2\}$$

$$B \setminus A = \{3\}$$

$$A \cup (B \setminus C) = \{1, 2\}$$

$$(A \setminus C) \cup B = \{2, 3\}$$

$$A \cap B = \emptyset$$

Es gelten das Assoziativ-

- $\bullet (A \cup B) \cup C = A \cup (B \cap C)$
- $(A \cap B) \cap C = A \cap (B \cap C)$

und Distributivgesetz:

- $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
- $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

Def.: Potenzmenge

Die **Potenzmenge** 2^M oder auch $\mathcal{P}(M)$ ist die Menge aller möglicher Teilmengen von M. Es gilt also

$$2^M = \{N \mid N \subseteq M\}$$

Def.: Potenzmenge

Die **Potenzmenge** 2^M oder auch $\mathcal{P}(M)$ ist die Menge aller möglicher Teilmengen von M. Es gilt also

$$2^{M} = \{ N \mid N \subseteq M \}$$

Beispiel

Betrachten wir nun $M = \{1, 2, 0\}$.

Dann gilt

$$2^{M} = \{\emptyset, \{0\}, \{1\}, \{2\}, \{0, 1\}, \{0, 2\}, \{1, 2\}, \{0, 1, 2\}\}\$$

Beachte: Es gilt immer $M \in 2^M$ und $\emptyset \in 2^M$

Aufgabe

Es sei $M := \{2, fish, 5\}$. Bilde $\mathcal{P}(M)$.

Aufgabe

Es sei $M := \{2, fish, 5\}$. Bilde $\mathcal{P}(M)$.

$$\mathcal{P}(M) = \{\emptyset, \{2\}, \{fish\}, \{5\}, \{2, fish\}, \{2, 5\}, \{fish, 5\}, \{2, fish, 5\}\}$$

Aufgabe

Es sei $M := \{2, fish, 5\}$. Bilde $\mathcal{P}(M)$.

$$\mathcal{P}(M) = \{\emptyset, \{2\}, \{fish\}, \{5\}, \{2, fish\}, \{2, 5\}, \{fish, 5\}, \{2, fish, 5\}\}$$

Aufgabe

Wie viele Elemente enthält $\mathcal{P}(M)$?

Aufgabe

Es sei $M := \{2, fish, 5\}$. Bilde $\mathcal{P}(M)$.

$$\mathcal{P}(\textit{M}) = \{\emptyset, \{2\}, \{\textit{fish}\}, \{5\}, \{2, \textit{fish}\}, \{2, 5\}, \{\textit{fish}, 5\}, \{2, \textit{fish}, 5\}\}$$

Aufgabe

Wie viele Elemente enthält $\mathcal{P}(M)$?

 $2^{|M|}$

Fragen?

Vielen Dank für eure Aufmerksamkeit. Bis zum nächsten Mal¹:)

¹Nächste Woche bitte wg. Feiertag ein anderes Tutorium besuchen

Credits

An der Erstellung des Foliensatzes haben mitgewirkt:

Moritz Laupichler Katharina Wurz Thassilo Helmold Philipp Basler Nils Braun Dominik Doerner Ou Yue