Leveraging Object Linking and Embedding for Process Control Unified Architecture Standards with Smart Card Technology for Secure Applications and Services

by

Yuankui Wang

Fakultät für Elektrotechnik, Informatik und Mathematik Heinz Nixdorf Institut und Institut für Informatik Fachgebiet Softwaretechnik Warburger Straße 100 33098 Paderborn

Leveraging Object Linking and Embedding for Process Control Unified Architecture Standards with Smart Card Technology for Secure Applications and Services

Master's Thesis

Submitted to the Software Engineering Research Group in Partial Fulfillment of the Requirements for the Degree of Master of Science

by
YUANKUI WANG
Dessauer Str. 4
33106 Paderborn

Thesis Supervisor:
Dr.rer.nat Simon Oberthür
and
Dr. Stefan Sauer

Paderborn, July 2014

Declaration

(Translation from German)

I hereby declare that I prepared this thesis entirely on my own and have not used outside sources without declaration in the text. Any concepts or quotations applicable to these sources are clearly attributed to them. This thesis has not been submitted in the same or substantially similar version, not even in part, to any other authority for grading and has not been published elsewhere.

Original Declaration Text in German:

Erklärung

Ich versichere, dass ich die Arbeit ohne fremde Hilfe und ohne Benutzung anderer als der angegebenen Quellen angefertigt habe und dass die Arbeit in gleicher oder ähnlicher Form noch keiner anderen Prüfungsbehörde vorgelegen hat und von dieser als Teil einer Prüfungsleistung angenommen worden ist. Alle Ausführungen, die wörtlich oder sinngemäß übernommen worden sind, sind als solche gekennzeichnet.

City, Date	Signature

Contents

1	Intr	oductio	on 1
	1.1	Motiv	ation
	1.2	Soluti	on Idea
	1.3	Thesis	Structure
2	Fun	damen	tals 5
	2.1	OPC '	Unified Architecture Structure Overview
		2.1.1	OPC UA Specifications
		2.1.2	OPC UA Client Server Structure
		2.1.3	OPC UA Terminologies
		2.1.4	Standard OPC UA Server
		2.1.5	Standard OPC UA Client
		2.1.6	Secure Channel and Session
		2.1.7	Security Handshake
		2.1.8	OPC UA Communication stack
		2.1.9	Other Competitor
	2.2	Smart	card
		2.2.1	Overview
		2.2.2	Universal integrated Circuit Card
		2.2.3	Smart Card Software Components
		2.2.4	Smart card File Management
		2.2.5	Data Exchange with Smart Card
		2.2.6	Secure Messaging
		2.2.7	Life Cycle
	2.3		Card
		2.3.1	Language Specification
		2.3.2	Transaction Integrity
		2.3.3	Persistent Object and Transient Object
		2.3.4	Java Card Applet
		2.3.5	Javacard Cryptography
	2.4		lPlatform and Remote Application Management
		2.4.1	OPEN - GlobalPlatform Environment
	2.5		MobileAPI
	2.6	Andro	
		2.6.1	Overview
		2.6.2	Android Software Stack 25

		2.6.3 2.6.4	Android, Dalvik and Java	27 29
		2.6.5	Intent	29
3	Stat	e of Aı	rt	31
	3.1	Smart	Home Research	31
		3.1.1	Overview	31
		3.1.2	Smart Home Optimized for Energy Services	31
		3.1.3	Smart Health Home	33
		3.1.4	Agent-based Smart Home	33
		3.1.5	Conclusion	34
	3.2	OPC U	JA Application and Security policy	35
		3.2.1	OPC UA applications	35
		3.2.2	OPC UA secure policies	36
		3.2.3	OPC UA design consideration	36
		3.2.4	Conclusion	37
	3.3	Smart	Card Security	37
		3.3.1	Smart Card in Access Control	38
		3.3.2	Key Management	39
		3.3.3	Threaten and countermeasures	41
		3.3.4	Smart Card Secure Applications	44
		3.3.5	Conclusion	44
	3.4	Secure	Android Design	44
		3.4.1	Android Security Mechanism	45
		3.4.2	Security Design	45
		3.4.3	Conclusion	48
	3.5		lded System Secure Design	48
4	•			49
	4.1			49
	4.2			51
		4.2.1	Client Structure	51
		4.2.2	Server Structure	53
		4.2.3	Implementation Tool Support	56
5	Syst	em De	sign	57
	5.1	UICC	Applet	57
		5.1.1	Classes	57
		5.1.2	Communication Flow	58
		5.1.3	Commands: Interface between Applet and CAD	61
6	Impl	ement	ation	65
7	Syst	om Sou	curity Analysis	67

α			1
CiO	\mathbf{n} 1	Le:	nts

8	Sun	nmary and Future Work	69
	8.1	Summary	69
	8.2	Future Work	69
Bi	bliog	raphy	71

List of Figures

2.1	OPC UA Client Server Structure[OPC12]	6	
2.2	OPC UA Server Structure[OPC12]	8	
2.3	OPC UA Client Structure[OPC12]	8	
2.4	OPC UA Client Server Communication[OPC09a]	9	
2.5	OPC UA Client Server Security Handshake[OPC09a]	10	
2.6	OPC UA Client Server Communication Stack[OPC09a]	11	
2.7	Smart Card Software Components[Sun98]	13	
2.8	the internal structure of a file in smart card file management system[Wo	108]	14
2.9	File Tree on Smart Card[Wol08]	15	
2.10	Communication between Smart card and CAD[Wol08]	15	
	Java Card VM Components[Sun98]	18	
	Javacard Applet Execution States[Wol08]	20	
2.13	APDU command processing[Wol08]	21	
2.14	Card Operation System Architecture[Glo11]	22	
2.15	OpenMobileAPI architecture overview[sim14]	24	
2.16	Android Stack Overview [Mar11]	25	
2.17	Compiling process difference[Mar11]	27	
2.18	Comparison between Java byte code and Dalvik executable file [Dav10] $$	28	
3.1	DER Scheduler in Smart Home optimized for energy[Mic10]	32	
3.2	Overview of Smart Health Home structure[Vin02] (RCC: Remote		
	Control Center)	33	
3.3	MavHome agent architecture[Dia03]	34	
3.4	keys presented in Smart Card Description Language from Morpho	39	
3.5	the PSK key used to configure administration session	39	
3.6	Malware growth in period from August 2010 to October 2011 based		
	on database from paper[Yaj11]	45	
3.7	Detailed Android permission model[Han12]	46	
3.8	Permission required by application $k9mail[Han12]$	47	
4.1	Smart Home	49	
4.2	OPC UA Client Server Structure Example	50	
4.3	Client Structure	52	
4.4	Communication Flow between an AP and corresponding APSD[Glo12]	54	
4.5	Server Structure	55	
5.1	Message Exchange	57	

List of Figures

5.2	Class Diagram .															58
5.3	Class Diagram .															60

List of Tables

2.1	OPC UA specifications
2.2	ISO/IEC 7816[Wol08]
2.3	Command APDU Structure
2.4	Command APDU Structure
2.5	package: javacardx.crypto
2.6	package: javacard.security
2.7	Minimum Android Recommendations[Dav10]
3.1	key data stored in smart card[Wol10]
5.1	SELECT command APDU
5.2	SELECT response APDU 62
5.3	Verify PIN command
5.4	Verify PIN response APDU
5.5	Reset PIN command
5.6	Reset PIN response APDU
5.7	Communication session creation command APDUs 63
5.8	Trigger Session Return Code
5.9	Close Session command APDU
5.10	Close Session Return Code
5.11	Process data command APDUs
5 12	Process data Return Code 64

1 Introduction

Object Linking and Embedding for Process Control Unified Architecture, known as OPC UA is the most recent released industry standard from OPC Foundation, which compared with his predecessors is equipped with a list of charming new features, with whose help OPC UA is capable of developing a common communication interface for devices which participate in automation system. Meanwhile, the technology of smart card is widely used in information security fields of finance, communication, personal and government identification, payment. Therefore it is meaningful and promising to develop OPC UA standard compliant application on embedded smart card secure device, for the purpose of secure remote control, enterprise resource planning and etc. Since the storage and compute capacity of chip card is limited, OPC UA product will consist of two essential parts, namely client/server application code, realized as Android App or other application, and communication stack, realized as Javacard Applet based on Remote Application Management from GlobalPlatform. The implemented demonstration scenarios and corresponding analysis show the possibility of developing OPC UA standard compliant application on devices embedded with smart card to benefit customers.

1.1 Motivation

According to the *Mobile Economy 2013* from *Global System for Mobile Communications Association*, at the end of year 2013 there are over 3.2 billion mobile subscribers in total, which means one half the population of the earth now enjoy the social and economic convenience brought by mobile technology. Moreover by year 2017 700 million new subscribers are expected to be added. And the number of mobile subscriber will reach 4 billion in 2018. Mobil technology opens nowadays a promising market.

Mobile products play an irreplaceable role at the heart of our daily life. With the help of mobile technology, the user's world in many domains such as, education, financial transactions, health and etc. are inter-connected. Mobile users are enjoying the advantages of mobility. Services, like 24/7 monitored home security, full control over the management of home humidity and temperature, exist not only in science fiction film but also could be realized by today's technology.

At the same time, mobility in industry and business world is also a critical assert, which can not only increase efficiency and productivity but also drive new revenue generation and competitive advantage. The most convicting example here is Machine to Machine communication, that is also referred as M2M technology.

In M2M communication, machines which are usually embedded with smart cards exchange gathered data with each other to accomplish common task using wireless or wired networks. M2M technology is widely employed in different industry spheres such as factory automation, remote access control and sensor monitoring. It boosts the efficiency of corresponding processes, offers centralized service support and data management, minimizes system response time.

But in order to enjoy the aforementioned features, two tough issues must be resolved. First, how to achieve a common interface for the devices that build the system. And second how to guarantee system security under different communication environments with various data complexity and customer's requirement.

1.2 Solution Idea

In this master thesis, I am going to address solutions for questions mentioned in section *Introduction and Motivation* and design a smart home system for the purpose of demonstration. In this smart home system, home owner using smart phone is capable of experiencing 24/7 home security service, remotely managing inner home environment parameters and assigning access permissions. This system consists of smart phones with Universal Integrated Circuit Cards (UICC smart card), digital door locks, electronic devices (such as coffee maker) and environment sensors. Moreover each device is equipped with smart card, which acts not only as secure token, that saves user credentials, but also is in charge of communication management with other devices.

In particular, I will introduce the newly released industry automation standards object linking and embedding for processes control unified architecture (OPC UA standards) to build a common communication interface for devices that are mentioned above and design a OPC UA specification compliant communication stack on UICC smart card., whose duties are: creation and management communication between OPC client/server application, entity authentication and secure message exchange.

1.3 Thesis Structure

At first, in the second chapter I will present the fundamental technologies which will be frequently mentioned in this paper. Secondly the state of art, for instances mobile security, home remote control technologies, Remote Application Management from GlobalPlatform will be introduced, which act together as cornerstone for my implementation scenario and give me inspiration materials for my thesis. In the fourth section, namely design phase, I am going to focus on UICC mobile security and base on UICC framework build a OPC UA standards scarifying communication stack as Javacard Applet with the help of GlobalPlatform specifications, moreover the design of Android application which is introduced as OPC

UA client application and a Smart Home web server that acts as Smart Home are going to be presented. In the next implementation chapter, I will present how my demonstration scenario can be realized. As sixth and seventh chapter, test and performance analysis will be describe to show the reliability and security of my proposal.

2 Fundamentals

In this section, i am going to give a brief introduction about technologies and terminologies that are applied in this paper.

2.1 OPC Unified Architecture Structure Overview

Object Linking and Embedding for Process Control Unified Architecture, known as OPC UA is the most recent released industry standards from OPC Foundation, acts nowadays as the most promising candidate in industry M2M automation world, whose major duty is to build a secure communication interface for machines that participate in automation system.

2.1.1 OPC UA Specifications

The whole OPC Unified Architecture specification can be divided into three main parts:

- core specification part, which consists of OPC UA concepts, security model, address space model, services, information model, service mapping and profiles
- access type specification part including data access, alarm and conditions, programs and historical access
- utility specification part covering discovery together with aggregates.

2.1.2 OPC UA Client Server Structure

OPC UA standards apply the classic client server architecture, where server is in charge of managing functionalities provided by a machine as well as data information gathered by that device. Examples of sever functions could be reporting and monitoring temperature data measured by a remotely allocated sensor and the make coffee function offered by a coffee maker. Meanwhile client possesses the ability to query information from server, submit subscription and send command to server.

Figure 2.1 illustrates a typical OPC UA client server architecture and also describes an internal combined server-client structure. The routine communication between client and server consists of requests from client, corresponding responses

Table 2.1: OPC UA specifications

Figure 2.1: OPC UA Client Server Structure[OPC12]

sent by server and notifications which are generated because of client's early subscription.

2.1.3 OPC UA Terminologies

In OPC Unified Architecture on server stored information that can be visited by clients is defined as address space[OPC09b] and there also exits a set of services[OPC09c] which are provided by server and are introduced in order to apply operations on address space. Information in address space is organized as a set of in particular hierarchy structured Objects. Object here could refer to data gathered by sensor, server system parameters and etc. Clients can query and accept information provided by OPC Unified Architecture Servers in two major ways, binary structured data and XML documents, depending on the complexity of exchanged data, network quality and so on. In addition three kinds of transport protocol are already defined to support client server communication. They are: OPC UA TCP, HTTP/SOAP and HTTP. Also the hierarchy structure in which Objects are organized in address space is also various and not only limited to simple single hierarchy.

One of the charming features provided by OPC UA is *Event Notifications*. With the help of *Event Notification*, OPC UA servers are allowed immediately after satisfaction of conditions, which is normally predefined by a client, to publish data to particular client. In this way, clients can for instance discovery failures within client-server-communication quickly and recover that communication as soon as possible, which in return minimizes the lost to the smallest possible amount. Also clients are able to observe the subscribed data more precisely and find the pink elephant as fast as possible.

2.1.4 Standard OPC UA Server

In figure 2.2, the structure of one standard OPC UA Server is described. It includes three main parts, server application, internal API and communication stack. In server application part, functionalities and services which are offered by OPC UA standards are realized, such as *Event Notification*, processing request from connected OPC UA client, data encryption and decryption. Moreover, *Real objects* here refers physical field devices and software applications that are maintained and managed by OPC UA server. *Nodes* in *Address Space* presents abstractly above mentioned *Real Ojbects*. *View*, which is pictured as a part of address space, presents *Objects* that can be browsed by particular clients. The main task for communication stack is to establish communication session based on secure channel between OPC UA client and server. Typically communication messages which are exchanged frequently among clients and servers are, request-, notification- message from client and corresponding response-, publish message from server. At last, an internal API connects the server application and the communication stack.

Figure 2.2: OPC UA Server Structure[OPC12]

2.1.5 Standard OPC UA Client

Figure 2.3: OPC UA Client Structure[OPC12]

Figure 2.3 pictures one simple OPC UA client containing client application, an internal API, isolating the application code from communication stack, and a communication stack that converts API calls into messages and delivers them to OPC UA server.

2.1.6 Secure Channel and Session

Figure 2.4: OPC UA Client Server Communication[OPC09a]

Since some data exchanged between client and server could be extreme precious and should be protected from other malicious third party, OPC UA defines a full set of security model, with which sytem developer can configure the security level of the application to meet the need of reality. In the security model, authentication of client and server, authorization, integrity and confidentiality of client-server-communication, auditability (also known as traceability) and availability of services are guaranteed. Also OPC UA standard provides a set of countermeasures against attacks such as message flooding, eavesdropping, message spoofing, message alteration, message reply, server profiling, session hijacking and so on [OPC09a].

Figure 2.4 pictures the typical communication architecture between OPC UA client and server. As shown in 2.4, the communication between OPC UA client and server is established above a secure channel, which is active during the whole application session and in this session, the state information, such as algorithms used for authentication, user credentials, is maintained. The secure channel is established only after successful validation of both client and server certificates and it provides necessary mechanisms to support confidentiality, message integrity and application authentication. On top of secure channel, is an application level session between OPC UA client and server, whose responsibility is to transmit data information and commands. It should be pointed out that, even a secure channel is out of work for some reasons, the session is still valid and OPC UA client and server involved in aforementioned session can still re-establish the broken secure channel. A secure transport layer is guaranteed by encryption and signatures methods provided by platform that supports OPC UA structure.

Figure 2.5: OPC UA Client Server Security Handshake[OPC09a]

2.1.7 Security Handshake

Security handshake as below explains with some details how secure channel and session are established. Normally OPC UA client initiates the first OpenSecureChannel request and waits the response from server. Messages exchanged during the process of construction secure channel between client and server are encrypted using asymmetric encryption and signature algorithms. But some security protocols that could be applied according to OPC UA standards, are not using an asymmetric message encryption algorithm to encrypt to request/response messages. Instead, they apply AsymmetricKeyWrapAlgorithm to encrypt symmetric keys and use symmetric encryption algorithm with encrypted keys to encrypt messages. After a successful construction of secure channel, OPC UA client sends CreateSession request and waits for server response. Messages transported during this procedure are encrypted with symmetric encryption algorithms and signed with client/server signing key.

2.1.8 OPC UA Communication stack

As described in figure 2.6, according to different responsibility, OPC UA communication stack consists of three parts: application layer, communication layer and transport layer. Even the terminologies of those layers using the same English words as the ones used in ISO model, but they are not equal to layers in ISO model. Figure 2.6 also pictures a precise functionality overview of each component.

UA Application part realizes client or server application. Serialization layer together with secure channel layer build the communication layer and their job is dividing long message into pieces referred as message chunk, encrypting each individual message chunk and forwarding encrypted message chunk to transport

Figure 2.6: OPC UA Client Server Communication Stack[OPC09a]

layer. When receiving message chunk from others, OPC UA message receiver firstly verifies whether this message piece meets the security standard negotiated between OPC UA client and server. If not, message receiver will close the secure channel. After a successful verification of all message chunks, the original OPC UA message will be reconstructed and sent to UA Application Code through API. Each secure message chunk applies the following structure described in figure ??.

2.1.9 Other Competitor

WebSphere Message Broker Message Queuing Telemetry Transport (MQTT)[SID13] is another machine to machine (M2M) communication protocol. Compared with OPC UA standard, MQTT also supports UDP protocol in the transport layer. In OPC UA, only unidirectional, client to server, communication is provided, but in MQTT server to client communication is also possible without server implements client code. Moreover the communication overhead of MQTT is in comparison with OPC UA is relative small.

Even thought MQTT protocol supports communication environment with low bandwidth and high latency, OPC UA provides complex object model and supports more features, including historical data record, alarm, notification, complete security policies and this is reason why OPC UA is more suitable for the application scenario that handles sensitive data with complex structure and needs immediate response.

Another member from Internet of Things is Constrained Application Protocol (CoAP)[Wik] which is designed for the extreme simple electronic devices with less memory and computing power and original CoAP only runs over UDP. Compared with OPC UA, simplicity from CoAP is the advantage, but apparently it should

be considered that in the implementation scenario other transport protocol could be used, like TCP, more functions and services other than pure message exchange between client and server, are requested from users.

2.2 Smart card

2.2.1 Overview

Smart Card, whose characteristic feature is an integrated circuit that is embedded in a chip card, which is capable of performing data process, information storage and message transmitting[Wol08]. The most charming feature of smart card is that, sensitive user's credential data such as certificates, encryption keys, digital signature along with other precious user information can only be accessed though a serial interface, which stands under strict control of the card operation system. This characteristic provides strong protection against unauthorized data access and ensures the confidentiality of on card stored information. Therefor smart cards are widely used in applications that require strong protection.

With sophisticated communication protocol using Application Protocol Data Units(APDU), smart card and Card Accepting Device(CAD) are able to process secure message exchange. Smart card is also able to process cryptographic algorithms on hardware. Nowadays, it supports symmetric key algorithms like DES, triple DES; standard public key cryptography for instance RSA, hash functions such as commonly SHA-1[Wol08]. More powerful microprocessor on chip card is, the speed performance is better.

Table 2.2: ISO/IEC 7816[Wol08]

ISO7816 document	Description
ISO 7816-1	Physical characteristics
ISO 7816-2	Dimensions and location of the contacts
ISO 7816-3	Electronic signals and transmission protocols
ISO 7816-4	Industry commands for interchange
ISO 7816-5	Number system and registration procedure for application identifiers
ISO 7816-6	Interindustry data elements

In ISO/IEC 7816 standards family, the smart card's fundamental properties and functionalities are defined.

2.2.2 Universal integrated Circuit Card

The Universal Integrated Circuit Card is the smart card used in mobile terminals in GSM and UMTS networks. It enables authenticated subscriber to join the network with their mobile terminals and at the same time protects essential user

Figure 2.7: Smart Card Software Components[Sun98]

data. UICC acts also most time as the secure token, which stores and protects subscriber's confidential information. Moreover, as a 32bit processor, UICC is also capable of processing necessary encryption and decryption algorithms[Jea09].

2.2.3 Smart Card Software Components

As illustrated in figure 2.7, one typical smart card software includes Card Operation System, native services such as I/O operation and memory management, Java Card Runtime Environment(JCRE) that consists of Java card Virtual Machine and Framework who is in charge of dispatching APDU as well as applet management, installed applet and at last other optional industry specific extensions[Sun98]

2.2.4 Smart card File Management

One of smart card's characteristics is data storage media. But in contrast with other storage device, the most distinguishing feature of smart card file system is that, there exists no man-machine interface[Wol08], which means all files are addressed with help of hexadecimal codes and every single file process command is strictly based on this shema.

File Structure

As pictured in figure 2.8, files on smart card consist of two parts, the header, which encapsulates administrative information such as, file structure and access

Figure 2.8: the internal structure of a file in smart card file management system[Wol08]

conditions, the body, that stores real user data and is linked with file header using a pointer. This file management mechanism has its own advantage. To be more specifically, since file header and body are separately located, therefore even write/read error occurs in file body, file header, which is under normal circumstances never altered and saves essential access conditions, will not be affected, which in return provides better physical storage security.

File Types

According to ISO/IEC 7816-4 specification, smart card offers two major file types, dedicated file (DF) and elementary file (EF). DF is also described as directory file, which contains lower-level DFs and EFs. And in EF, real user data is stored. Moreover there is a special DF, called master file (MF), which represents root directory of smart card file system and only selected by smart card OS. Figure 2.9 illustrates one possible architecture of smart card file system.

PKCS#15

As already shown, smart card not only is used as storage media but also acts as cryptographic token which offers enhanced security and privacy functionalities for other applications. The PKCS#15 (Public key cryptography standards) specification[RSA99], which was proposed by RSA Inc. and is nowadays worldwide accepted, provide standards, that define how to store credential information such

Figure 2.9: File Tree on Smart Card[Wol08]

as cryptographic keys, certificates on smart card, and how to retrieve specified token with help from PKCS#15 interpreter.

2.2.5 Data Exchange with Smart Card

Figure 2.10: Communication between Smart card and CAD[Wol08]

The communication protocol between smart card and terminal is described as Master-Slave relationship[Wol08], that means terminal device knowns as Master

processes unidirectional control over its slave, namely smart card. Once Master-Slave relationship is established, each communication will be initialized by Master and Slave only reacts based on Master's command.

When a smart card is inserted in a terminal, Master will send its Slave a RESET command which causes smart card to perform a Power-on-Reset behavior. After this Power-on-Reset, smart card informs Master using Answer-to-Rest (ATR) message about card state and communication parameters. In the next step, if necessary terminal will generate a Protocol Type Select (PTS) command, which is used to choose communication protocol and parameters suggested by smart card. After a successful negotiation, smart card and terminal are able to exchange data using Application Protocol Data Unit.

Application Protocol Data Unit, or APDU for short, is used to perform data exchange between smart card and CAD and its structures satisfy ISO 7816-4 specification[Zhi00]. There are two categories of APDU, namely command APDU and response APDU. Command APDU structure and response APDU structure are described in Table 2.3 and Table 2.4 respectively[Wol08].

CLA class byte identifying application mandatory INS instruction byte representing the actual command mandatory Ρ1 parameter 1 used to provide more command information mandatory P2parameter 2 used to provide more command information mandatory Lc field the length of data received by card mandatory data field optional data sent to card Le field the length of data sent by card optional

Table 2.3: Command APDU Structure

Table 2.4: Command APDU Structure

data field	length decided by Le of preceding command APDU	mandatory
SW1	state word 1 also called return code 1	mandatory
SW2	state word 2 also called return code 2	mandatory

2.2.6 Secure Messaging

Since all communication between smart card and terminal is based on digital electrical pulse performed on card I/O line, attacker can easily record all communication information and and recover it. Therefore secure messaging mechanism is proposed and used to protect against aforementioned message eavesdropping, to ensure authenticity and confidentiality of exchanged information.

In secure message mechanism, both message sender and receiver must agree on to be applied message cryptographic algorithms and corresponding pre-shared keys. In telecommunication domain in accordance with ISO/IEC 7816-4[Wol08], TLV(Type-lengthl-valuse)-formed data, which encapsulates relative user information, is used to perform secure messaging as data carrier.

2.2.7 Life Cycle

The typical Life cycle of a smart card is described as following[Nim]:

- Fabrication Phase As the start of smart card life cycle, this process is taken by the card manufactures. One unique fabrication key, KF for short, is applied in order to keep smart card from unauthorized modification.
- Pre-personalization Phase After fabrication phase, smart card chip is gonging to be integrated on plastic frame by card suppliers. Moreover fabrication key, which is derived from manufacturer key in phase one, is replaced by a personalization key, which is also known as KP, for the purpose of secure smart card delivery to card issuer. In order to protect smart card from fraudulent changes, KP is locked by a personalization lock.
- Personalization Phase In this phase, card issuer will write complete data files on the card including card PIN, card holder identity and so on. When card issuer finish this phase, he will add an utilization lock and the life cycle of smart card will come to next phase.
- *Utilization Phase* Card holder will be able to use his smart card in this phase. But the information access still must follow the rules defined by to be visited applications.
- Invalidation Phase Card operation system will block the smart card in this phase. To be more specifically, operation such as writing and update will be disabled. There are two reasons that why a smart card lands this phase. Reason one is because both smart card PIN and smart card unblock PIN reach its limited try counts, which indicates someone is trying to force brute guessing PIN. The other reason is, a particular application adds a invalidation lock on master file of smart card.

Conclusion

From the above described smart card life cycle, it is not hard to find out that from the every begin of smart card manufacturing and deliver process, card manufacturers and issuers have taken it into account, that a secure card production, utilization and delivery must be guaranteed.

2.3 Java Card

Java Card technology not only adopts the distinguishing features from Java, such as productivity, security and portability[Sun98], it also makes Java technology available on smart card, where programmer must be faced with more harsh conditions, like limited memory resource and computer ability.

In contrast with Java VM, Java Card VM consists of two parts, the on-card part, which is in charge of bytecode execution, class as well as object management and secure data exchange, the off-card part, which is the real Java Converter. As illustrated in figure 2.11, a complied Java applet (.cap file) is generated by

Figure 2.11: Java Card VM Components[Sun98]

off-card Converter based on inputed Java class file and executed by on-card Java Card Runtime Environment (JCRE).

2.3.1 Language Specification

Apart from above mentioned Java Card VM, compared with original Java language, Java card has many unique features. Since current smart card does not support multitasking, therefore threads are not backed up in Java Card. Also garbage collection is performed by VM, as a result function finalize() is not supported. Moreover because on smart card, memory space and process ability is limited, as a result programmer can only use three main primitive types, namely byte, short and boolean. Furthermore only one-dimensional array is offered. Nonetheless Java card language supports all features of inheritance and provides all Java

language security features, for example, private access modifiers as well as byte-code verification[Sun98].

2.3.2 Transaction Integrity

One of the most import features of Java Card technology is that Java Card Runtime Environment ensures the integrity of transaction, which means even an unexpected loss of power occurs on smart card, the ongoing transactions' integrity is protected with the help of following schema[Wol08]:

```
// Transaction Starts
JCSystem.beginTranscation();
doSomething
//Transaction Ends
JCSystem.commitTransaction();
```

Only when JCRE finishes running method JCSystem.commitTranscation(), the corresponding transaction will be finished and submitted. Otherwise JCRE will throw transaction exception and reset data that involved in this broken transaction.

2.3.3 Persistent Object and Transient Object

In the realm of Java Card, all objects are preserved in nonvolatile memory, which means this persistent object exits on smart card beyond the execution time of corresponding applet, as long as there exits a reference pointing to it. But also it is allowed to develop transient object on Java card. To be precisely, for instance class array object stays in nonvolatile memory space but in contrast one actual instance of array in stored in volatile memory [Wol08].

2.3.4 Java Card Applet

Java Card Applet refers to the Java Card language programmed code, which extends the class *Applet* from package *javacard.framework*. Meanwhile Java Card Applet should implement following four methods:

- *install()*, this method must be implemented and be used to create an applet instance.
- process(APDU), the implementation of this method is also mandatory and uses APDU as input parameter. In this method applet developer designs how to process APDU sent to this applet and which APDU response should be generated.

- select(), when JCRE detects a SELECT APDU command, which is applied to select one installed applet, JCRE will call this method of to be selected applet.
- deselect(), this method is called by JCRE to inform corresponding applet that it is no longer selected by JCRE.

Figure 2.12: Javacard Applet Execution States [Wol08]

After finishing programming one Applet, it comes to next phase, namely applet installation. This process takes place usually at the factory or office under the control of card issuer. When one applet is installed on smart card, it only directly communicates with JCRE and other installed applet classes. It should be pointed out, this installed Java Card applet is also belongs to *persistent object* and stored in smart card nonvolatile memory space. Every Java Card Applet is assigned one unique Application ID, which is also known as AID and be used by JCRE to *register* and *select* corresponding applet at run time.

Figure 2.12 pictures execution states transaction of Javacard applet. Furthermore figure 2.13 illustrates how JCRE selects and deselects one applet based on input APDU commands.

2.3.5 Javacard Cryptography

Javacard provides a list of APIs to support not only smart card application and data exchange security but also to reinforce other system's security by acting as essential security token. In order to ensure sure messaging between smart card and terminal following three aspects must be considered:

- Entity Authentication: Usually mutual authentication is applied to guarantee the authorities of both communication partners.
- Message Confidentiality: The transferred information is encrypted using algorithms negotiated between two communication entities to ensure data privacy and security.
- Message Integrity: In order to protect exchanged message from unauthorized modification and to provide authenticity assurance, message authentication code (MAC) is calculated based on to be transferred data and integrated in that message.

Figure 2.13: APDU command processing[Wol08]

Packages *javacard.security* and *javacardx.crypto* support aforementioned security mechanism with following class and interfaces[Zhi00]:

Table 2.5: package: javacardx.crypto

Class or Interface	Function Description
Cipher	Abstract class offers cryptographic cipher used for en-
	cryption and decryption
KeyEncryption	Class provides implementation of keys

2.4 GlobalPlatform and Remote Application Management

GlobalPlatform is an international non-profit organization that provides standardized specifications for multiple smart card applications. It is now widely accepted and used as industry standard for managing Java Applet based application on Javacard Operation System in several domains, for instance in communication industries and payment company[Glo11].

Table 2.6: package: javacard.security

Class or Interface	Function Description
Key	Interface for all keys
SecrectKey	Interface for symmetric algorithms' keys
DESKey	Interface for keys used for DES or two-key triple DES
	or three-key triple DES
PrivateKey	Interface for private keys
PublicKey	Interface for public keys
RSAPrivateKey	Interface for keys used by RSA algorithm to sign data
RSAPublicKey	Interface for keys used to verify signatures generated with RSA
DSAKey	Interface for keys used by DSA
DSAPrivateKey	Interface for keys to sign data with DSA algorithm
DSAPublicKey	Interface for keys to verify signatures generated with DSA
KeyBuilder	Factory class implemented to construct key objects
MessageDigest	Abstract class for hashing algorithm
Signature	Abstract class for signature algorithm
RandomData	Abstract class for generation of random data
CrptoException	Exception class

Figure 2.14: Card Operation System Architecture[Glo11]

As shown in figure 2.14, the GlobalPlatform card architecture contains four essential parts. The runtime environment, that provides hardware-neutral API for card application and manages card memory spaces. The on card installed applications, which offers customers various functionalities and services. The security domain (SD), that is usually associated with particular application and known as on-card representatives of off-card authorities. SD is in charge of message encryption as well as decryption, creation and validation of digital signature and handling keys used in cryptographic processes. The last component is OPEN framework[Glo11].

2.4.1 OPEN - GlobalPlatform Environment

OPEN provides various sets of APIs offering functionalities such as entity authentication, remote data exchange, secure channel configuration and remote application management. This framework also performs APDU dispatching as well as is application selection and logical channel management[Glo11]. Logical channel is designed to enable the data exchange between multi applications and one terminal. Each opened logical channel will handle message regard of one application. Moreover the special logic channel named basic channel is always opened. In order to ensure system security, OPEN supports secure mechanisms such as, user authentication , resource availability guarantee and secure channel protocol .

Secure Channel Protocol In particular, GlobalPlatform has designed the secure mechanism: secure channel protocol, to guarantee a secure communication. It ensures confidentiality of exchanged information and offers data integrity check. Moreover Secure Channel Protocol also introduces a cryptographic exchange process to let smart card and off-card entities to perform entity authentication with each other.

2.5 OpenMobileAPI

OpenMobileAPI, provided by SIMalliance, constructs an interface between terminal and chip card, which can be used by on terminal installed mobile application to access recourse stored on smart card as well as call function provided by smart card applet. Moreover OpenMobileAPI offers security mechanisms such as access control, that can be applied for mutual authentication between application and secure element. Figure 2.15 presents an architecture overview of OpenMobileAPI, which consist of three functional layers:

- Transport Layer: This layer is in charge of providing secure elements access control services using APDUs and acts as cornerstone for other two layers.
- Service Layer: Abstract interfaces, that provide various functions such as secure storage, cryptographic services, are offered by this layer.

Figure 2.15: OpenMobileAPI architecture overview[sim14]

• Application Layer: Mobile applications which benefit from OpenMobileAPI lie in this layer.

2.6 Android

2.6.1 Overview

Android is an open source platform based on Linux and modified by Google, which is designed for mobile devices. As a comprehensive platform, android manages to create a separation between hardware and software that runs on it. At the same time being an open source project means its entire stack is open and android developers are able to deploy their androids system on any specific hardwares as well as to learn the system to the fundamental level. [Mar11] Moreover, android system provides a list of attracting software and hardware features to his customers, such as:

- Security: Linux, as the cornerstone of android, has been proved to be a secure system through many harsh tests over the years. Which in return guarantees the android system security. [Mar11]
- Multi-Media: A wide range of media formats are supported by Android. For instance: MPEG4, ACC, PNG, GIF and so on [Fra11]. As a result Android

customers are able to enjoy a more comfortable user experiences and better entertainment functionalities.

- Designed for Online: One outstanding core feature of Android system is the ability to stay Online[And11]. Under various conditions such as Wi-Fi network, GSM/CDMA and so on, android device always provide its end users qualified network connection.
- Variety of applications: As one of the most popular platform, Android, with the help of Android Market and a great number of talent Android application developers, offers its customers the possibility to extend functionalities of their android devices[And11]. Android user is capable of downloading and installing various innovative applications from Android Market and enhancing the user experience.

2.6.2 Android Software Stack

Figure 2.16: Android Stack Overview [Mar11]

Android stack is composed of four different layers as shown in figure 2.16.

Linux kernel:

This fundamental layer separates other three layers from device hardware and provides core functions such as power and hardware driver management.

Libraries:

As second layer of android stack, Libraries layer supports android runtime environment by applying various C/C++ core libs, that offer most of the Java-functionalities. Also in this layer, the for android specific designed virtual machine, namely Dalvik[Mar11] is deployed. There exits two reasons for not using standard Java VM[Mar11]. First of all, since Java VM is general developed virtual machine, therefore some constrains from mobile systems and devices are not concerned, such as limited battery life and processing ability. Secondly, when Android project was being carried out, Java VM didn't belong to the open source projects. For these reasons Dan Bornstein and his group developed the license free and mobile platform specific virtual machine, Dalvik.

Moreover other libraries which provide services to application framework layers are also included in this Libraries layer, for instance:

- OpenGL, library that supports 2D and 3D graphics rendering.
- SSL, the widely applied secure socket layer library.
- SQLite, which provides lightweight SQL database services.
- WebKit, the fast web-rending engine.

Application framework

Application framework layer provides a large amount of application framework components, for instance activity manager which is in charge off managing application life cycles, content providers that controls data exchange between applications.

Application

As the top layer of entire android software stack, application layer with the help of both native and third party reside component from application framework layer, provides various services to end users.

2.6.3 Android, Dalvik and Java

As described above, Dalvik VM compared with general Java virtual machine, takes the constrains that are specific about mobile device into account, which means this android virtual machine concerns the hardware shortcomings including less memory space, low processing power, no swap space as well as short battery lifetime. Minimum recommendations for android device[Dav10] are list in table 2.7.

10010	10010 2 11111111111111111111111111111		
Feature	Minimum Requirement		
Chipset	ARM-based		
Memory	128 MB RAM; 256 Flash External		
Storage	Mini or Micro SD		
Primary Display	QVGA TFT LCD or larger, 16-bit color or better		
Navigation keys	5-way navigation with 5 application keys, power,		
	camera and volume controls		
Camera	2MP CMOS		
USB	Standard mini-B USB interface		
Bluetooth	1.2 or 2,0		

Table 2.7: Minimum Android Recommendations[Dav10]

Figure 2.17: Compiling process difference[Mar11]

When Dalvik virtual machine is applied, the compiling process is different from what is taken by Java VM. Figure 2.17 clearly pictures the difference. In Android

runtime environment, after the first compilation of Java source code, the newly generated Java byte code will be compiled by Dalvik Dex complier, as a result, Dalvik byte code is created, which is going to be executed by Dalvik VM.

As pictured in figure 2.18, compared with .class Java byte code, .dex code adopts shared and type specific constant pools with the main purpose of conserving memory[Dav10]. To be more specifically, the constant pool in Java byte code, which is colored blue in left side of above-mentioned figure, is heterogeneous, which means all kinds of constant pools are included in this heterogeneous constant pool, even if they could be unnecessary. As a consequence, duplication may occur in Java byte code.

Another obvious distinguish between Java VM and Delvik is that, the former one adopts stack-based architecture and the later one uses register-based architecture, that in comparison with stack-based architecture needs on average 32.3% less execution time[Dav10], which is obviously the better choice for the system that runs on mobile devices with limited battery life.

Figure 2.18: Comparison between Java byte code and Dalvik executable file[Dav10]

2.6.4 Android Application Overview

One Android application consist of four components, they are activities, services, content providers and broadcast receivers[Han12]. Let's look into them a little deeper.

- Activities The main responsibility of android activity is provide end user an visual interface, with whose help the user can interact with the application.
- Services Services are the important components that actually provide specific functionalities to the user through the GUI interface.
- Content Providers Content Provider provides standardized and unified interfaces in order to perform shared data exchange among various applications.
- Broadcast Receivers The last component is broadcast receiver, who is in charge of asynchronously communication with android system broadcast and other applications. For example, when the battery life runs almost out, broadcast receiver will then be informed by the android OS.

2.6.5 Intent

For the purpose of inter- and intra- application communications, Android applies *intent*, which is in nature a self-contained object, that includes the target application reference and alternatively the to be shared data. Intent can be also understood as a well-formed message format that builds the Android message passing system[Eri11].

3 State of Art

3.1 Smart Home Research

3.1.1 Overview

The smart home system we discussed about, that is also described as automated home, integrated home systems or intelligent building[Vin], has drawn more and more industry developers' and researchers' attention over the decades. Research groups such as Siemens, IBM, Cisco, Microsoft[Li 04] has already contributed in this domain. A great number of Smart Home application, network protocols as well as gateways[Dim02] have come into world and been applied to benefit their customers.

With the development of Smart Home technology, nowadays' Smart Home is not only in charge of monitoring and controlling lighting and heating inside the building, but also capable of connecting almost every electronic devices, prediction of inhabitant behaviors as well as making scheduler decisions. Functionalities provided by intelligent home are not just limited to turn device on and off, record and report senor data, but include self-adjusting the inner building environment and supporting various predefined patterns, such as energy saving pattern. Especially the concept of Smart Home for elderly[Sib08], which perfectly combines modern remote control and monitoring technologies, with senior-friendly and patient-concerning housing techniques, is welcomed by the market.

Three categories of Smart Home will be introduced in the following as best practice examples, they are Smart Home optimized for energy services , Smart Health Home and Agent-based Smart Home.

3.1.2 Smart Home Optimized for Energy Services

This type of Smart Home put its main goal in the energy saving and monitoring domain, which helps householder to make wiser decisions under the energy crisis background.

The key component in this Smart Home is decision-support tool[Mic10], that applies a scheduling algorithm which offers house owner suggestion based on various parameters such as distributed energy resources(DER), with the prospect of energy and resource saving.

Figure 3.1: DER Scheduler in Smart Home optimized for energy[Mic10]

Decision Support Tool

The decision support tool used in paper [Mic10] consists of two components, they are energy service model which describes the energy service request and distributed energy resource scheduling algorithm, as described in figure 3.1. To be more specifically, energy service model presents the demand for one particular energy resource. For instance the demand aimed at hot water means, the hourly consumption of heated water or the energy that is hourly needed by water heater. According to [Mic10], the heat content of water is also defined as "energy equivalent" and therefore the main goal of decision support tool is to increase "monetary benefit" from every "energy equivalent" unit.

The DER scheduler algorithm, that helps householder to reduce the unnecessary consumption of energy, is in nature one mathematical optimization problem defined by [Mic10].

$$\sum_{t=1}^{T} \sum_{i=1}^{S} [\lambda_{ES,i}(t) \cdot U_{ES,i}(t,x)] - Cost$$

The purpose of DER scheduler, presented as x is, to maximize that above introduced fitness function, where S represents all number of services offered by Smart Home, T stands for the whole simulation time, $\lambda_{ES,i}$ and $U_{ES,i}$ describe the desired monetary benefit for "energy equivalent" and energy demand of the ith service respectively. Cost means the total electricity consumption. Also in paper[Mic10] the choice of DER algorithm is well discussed.

3.1.3 Smart Health Home

Another suitable application domain for Smart Home is the Smart Health Home, which describes the intelligent housing that takes care of patients at home or elder residents.

The charming features of this Smart Home system are the combination of telemedical system with communication technologies and customizing services such as, teleconsulting, telediagnosis, real time imaging as well as distance medical education[Vin02], which together improve the living condition of householder and at the same time build a concerning system that takes care of residents' need. Nine best practice examples are provided and evaluated in paper[Sib08], they provide a guideline for the design of Smart Health Home system and summarizes precious experience.

Figure 3.2: Overview of Smart Health Home structure[Vin02] (RCC: Remote Control Center)

3.1.4 Agent-based Smart Home

Agent-based Smart Home aims to build an intelligent home that based on machine learning, artificial intelligence technology and mobile computing predicts householders' behaviors, makes appropriate decisions. The achieved prediction can help residents to experience more comfortable and convenience living condition. MavHome (Managing An Intelligent Versatile Home) [Dia03] builds the best example.

MavHome architecture

As shown in figure 3.3, agents which are employed by MavHome consist of four different layers. From bottom to top:

- Physical layer, where hardwares that together build Smart Home system are deployed. Moreover, underlaying agents can also act as physical layer for other agents.
- Communication layer, this layer provides communication services for agent by using functionalities offered by physical layer.

Figure 3.3: MavHome agent architecture[Dia03]

- Information layer, as higher layer of Smart Home system, the responsibilities for this layers are gathering and maintaining information which is used by decision layer.
- Decision layer, in this layer agents make decision as well as learn resident's preference and correct the unwanted system behavior.

Prediction algorithm

Prediction algorithm is the core component of MavHome project. Several Strategies are presented on the first IEEE international conference on pervasive computes and communication, they are SHIP algorithm that is based on sequence matching, compression-based prediction algorithm ALZ and Task-based Markov model[Dia03].

3.1.5 Conclusion

Also described above, Smart Home is the representative application which is based on industrial automation, remote control, management and coordination system. Despite the decision making algorithms and application level components from above mentioned smart buildings are different from the other, but they all are integrated upon or connected with housing devices. The management and cooperation with those devices must take place under a secure system environment. None of householders are willing to be monitored by a strange third party using his own camera or to expose their daily life related information to public. Therefore one common request for the design of such intelligent buildings is to ensure the system security.

Based on the fact, that home devices applied by Smart Home are manufactured by various vendors, Smart Home designers also must take it into account, that how to realize the system interoperability. Considered those two requirements, the idea of this thesis applying OPC UA standards with smart card technology came into world.

3.2 OPC UA Application and Security policy

3.2.1 OPC UA applications

OPC UA, as explained in former paragraphs, is understood as a platform independent, well designed, secure concerned, IEC standard compliant, promising industry standards set, which provides a service oriented architecture and is being widely applied in industry application such as critical control system and industrial automation. Application examples are given in following paragraphs, each of which has different focus. To be more specifically, the charming demonstrated characteristics of OPU UA standard set are: secure consideration, real time data exchange and management, scalability.

OPC UA and ICS

With develop of industrial automation, Industrial control system (ICS) has became a hot topic, but most manufactures putted much more effort in designing automation and manufacturing process and neglected the communication security issues. As a consequence, Cyber security of ICS now is drawing more and more attentions from industry. OPC UA offers manufactures who are applying ICS system not only object oriented modeling rules, which can be extremely helpful for developers that design domain specific model and manufacturing process, but also provides them a reliable and robust security model[Ste], that has various secure arrangements in each communication protocol stack layer.

OPC UA and Smart Grid

Smart Grid is now concerned as the future of electricity energy industry and therefor how to achieve an intelligent electricity distribution as well as behavior coordination between customs and suppliers is a hot topic [Seb11]. Electricity industry is searching out for a standardized communication technology to solve aforementioned issues. OPC UA standards set that includes alarm and even model, data

access model as well as historical data access model, is without doubt one the of best candidates. With the help of all these models, the secure real-time peer communication and coordination among stockholders are guaranteed.

Nano OPC UA

Apart from those enterprise level systems, OPC UA is also suitable for lower level field devices, such as field sensor and other resource limited facilities. Recently a German company Lemgo even designed a nano embedded OPC UA server[Jah13], which provides the core OPC UA server service set. adopts TCP binary communication protocol and is implemented on a chip device.

3.2.2 OPC UA secure policies

At the beginning of design phase, the OPC foundation has taken the construction of secure and robust communication protocol as the center and therefore developed a enhanced consistent security model which has clear and definite objectives in each layer of OPC UA transport and communication stack. In present day, OPC UA offers secure messaging mechanisms by applying WS Security with Simple Object Access Protocol (SOAP) and alternatively SSL based Hypertext transfer Protocol Secure (HTTPS) messaging[And13]. Besides secure messaging protocols, authentication mechanisms based on username-password or X.509 certificates are introduced, in order to process mutual authentication among OPC UA applications from different logic levels and hardware devices.

OPC foundation uses the term secure policies [OPC09a] to describe the user authentication, user authorization and application authentication mechanisms proposed by one OPC UA server profile. In this server profile, both secure related requirements and other server functionalities are described. One server is capable of maintaining several profiles in order to provides distinguishing services to different clients, who might have various demands for security. Meanwhile one client can also accept a list of profiles, each of them is assigned by one server with particular security objectives.

3.2.3 OPC UA design consideration

Along with core services set including data read and write services, notification service and etc., OPC UA server also provides discover service[OPC09c], which provides OPC UA clients mechanism to require server secure policy, and secure channel service set[OPC09c], that is used to create and manage secure channel with acknowledgment such as key deviation algorithm and encryption algorithm offered by secure policy.

Also OPC UA specifications provide guide lines for a secure system design[OPC09c].

• appropriate timeout Timeout mechanism is widely employed in systems that adopt client server architecture. With reasonable configured timeout prop-

erty, both client and server can avoid unnecessary resource consumption caused by long time waiting of response from the other, which could be caused by unexpected physical device failure or intentionally server denial of service attack initiated by third party and etc.

- rate control Rate control is considered as one of the most practical approach to prevent denial of service attack. Under rate control mechanism, each client has limited chance over a period to build communication channel, reconstruct this channel, require information from server or send data to sever. Alternatively server can also ban or block the client for a period of time, who is recently trying to flood messages.
- random number generation The generation of random number is required by most encryption, authentication and authorization algorithms. Therefore a secure system must support robust random number generation functions.
- strict message processing, which means the exchanged message between two communication partners must be compliant with predefined message format. Any ill-formed messages must be ignored, which in turn helps to avoid stack overflow attack and enhances system security
- historical data management, this strategy ensures the system traceability and records any behaviors taking place in system. And the recorded data can be used for forensic research, when security related issues happens.

3.2.4 Conclusion

Above pictured OPC UA standards' features and characteristics prove the feasibility of applying OPC UA as communication protocol for Smart Home proposed in this thesis.

3.3 Smart Card Security

Integrated circuit cards, ICCs for short, was firstly designed and patented in Germany[Joh02]. Since then this credit size-, embedded with circuit chip- card is being applied in more and more various industry domains, such as secure information storage media, on-line access token, identification method, small amount payment mechanism and etc. With the development of smart card technologies, nowadays apart from traditional contact smart card, contactless smart card [Nim] has come into market. This contactless smart card is able to communication with card access device without direct physical connection. To be more precisely, it applies radio frequency to contact with CADs. Now matter what categories of smart card, the temper resistant nature always contributes to make them to be one of the most popular secure token medias.

3.3.1 Smart Card in Access Control

In present days, *security* no longer just meant the secure of our homeland borders or the individual personal safety. In this information age, the word *security* also refers to the confidentiality and integrity of users' personal data, the robustness of information system and so on. It is immediately concerned with our daily life. Especially when electronic devices, which can carry sensitive and precious information and could be vulnerable to malicious attackers, are playing irreplaceable roles in our society.

Smart card, as explained in section *fundamental technologies*, is believed as one of the best secure mechanism for access control and user identification.

Traditionally there are three ways to identity a person [Wol08]:

- 1 knowledge about a secret, the secret is normally a password that negotiated early between two identification peers.
- 2 possession of an object, this object could be anything that is predefined. One example could be a key that can open a particular door.
- 3 biometrics identification. First two points have their own limitations, because third part could steal the object, that is used for identification, or copy user's password. Moreover it also can happen, that a password is too complex to remember or identification object is hard to carry with. Compared with them, biometrics identification depends on however the human body characteristics, such as fingerprint, signature and retina recognition.

Based on the above described facts, smart card is the best candidate for user identification and access control. Because when anyone wants to perform identification using smart card, he must possess the card (possession of an object satisfied), input PIN to unlock the card (knowledge about a secret). At the same time, complex passwords for the purpose of peer authentication and authorization can be stored on the smart card, which helps card holder to release the burden of remembering them. Also on the a chip card there usually exit a signature signed by the card holder or a card holder photo, that could be use to perform biometrics identification.

Nowadays with the help of standards such as $GPC_-2.2_B_RAM_over_HTTP$, which is introduced in section fundamental technologies, smart card is also capable of performing on-line identification based on either certificate or TLS protocol.

Personal Identification Number

Whenever an user intends to use one smart card, he must input a personal Identification Number, which is also referred as Card Holder Verification. PIN consists usually of four decimal number from 0 to 9 and tolerates at most 3 times wrong PIN input before a successful verification. PIN is stored in elementary files[CHA] on smart card in order to be kept from unauthorized modification. After 3 times

wrong PIN input, a smart card will be locked until the *unlock PIN* operation is successfully carried out. Moreover if *unlock PIN* operation also fails three times in a roll, the PIN will never be unblocked [CHA].

3.3.2 Key Management

Figure 3.4: keys presented in Smart Card Description Language from Morpho

The above introduce PIN is not the only key that are stored on smart card. In order to perform message encryption as well as decryption, peer authentication and etc. smart card must keep various keys in storage. As shown in figure 3.4, in one *Morpho* smart card product, a list of keys and key sets are used, for example, Card Manager PIN and Administrative keys (*ADM1*, *ADM2*, *ADM5*).

Moreover key data in smart card not only simply record the actual key value but also must provide information such as key version number, the usage of key and so on. Table 3.1 describes a typical key data stored on smart card. Likely the usage of a key also needs more information than just input the actual key value as shown in figure 3.5

Figure 3.5: the PSK key used to configure administration session

Table 3.1: key data stored in smart card[Wol10]

Data object	Remarks
Key number	unique key reference number
Version number	version number used for key derivation
Intended usage	for which purpose this key is introduced
Blocked	used to block a key
Retry counter	wrong key input counter
Maximum retry count	key will be blocked if retry counter reaches this value
Key size	the size of key
Key	Key value

Since different keys play distinguished roles in various system tasks and smart card must handle a huge number of keys, *key management* shows its importance. The core responsibilities of key management is listed as following[Wol10]:

- key generation Key generation is the initial step of key life cycles and uses usually physical random numbers as initial data, in order to generate secure and unique keys.
- key update This process keeps one key from being used for a long period. Because long time service of one key could lead to the compromise of system security.
- key revocation When one key turns out to be compromise, key management system must destruct that key.
- key storage Apparently a competent key management system must know how to safely store its secret.

Key Generation

Derived Key Since smart card can be easily exposed and analyzed by anyone who holds or steals the card, in order to minimize the risk of key compromising, none master keys are present in smart card. As a consequence, keys used in smart card are derived from unique card number, which is given during the card production process, with the help of triple DES and AES cryptographic algorithms [Wol10].

Dynamic Key Dynamic key is normally applied to secure communication between peers and therefore it is also known as session key or temporary key. The generation of dynamic keys begins with generation of a random number that is proposed by one communication partner or unique data which is able to specify one particular session. The rest process may be different and let's take *ANSI X 9.17* standard as an example [Wol10].

$$Key_{i+1} = e(Key_{gen}, e(Key_{gen}, (T_iXORKey_i)))$$

This process described above is one-way process and can not be reserved. To be more specifically, T_i and Key_{gen} are time-,session-independent initialization input parameter and Key generation key respectively. The newly generated key key_i can not only be used for encryption but also to generate other new keys.

3.3.3 Threaten and countermeasures

In this section, potential smart card vulnerabilities, threatens aimed at chip card as well as countermeasures will be discussed. But before we begin the analysis of smart card threatens, the trust environment of smart card based system should be explained. Following five parties are listed[Bru99].

- Cardholder In other word, the owner of smart card, who as customer daily uses smart card for different purpose in various systems. For instance, using SIM card in cell phone to make phone call or using smart card digital wallet to perform smart amount payment like paying the park fee.
- Terminal The card access device that communicates with smart card through smart card I/O.
- Card Manufacturer As the name indicates, card manufacturer is the one who manufactures the card.
- Card Issuer Card Issuer is the party that designs the card OS and initializes the smart card. For example, if we are taking about a cell phone smart card, then card issuer will be the phone company. When it comes to employees' ID cards which are applied as access control tool for a company. Then in this situation card issuer is the employer.
- Software manufacturer This party is the one who designs applications that run on smart card.

Smart card Threatens and vulnerabilities

Since threat modeling for smart card could be extreme complex and also the classification of smart card is various. In this paragraph four representative threaten categories are presented. They are [Hoo11]:

- Logical attacks. Whenever we develop a software, there could exit a bug/bugs. And logical attacks just refer to the attacks that make use of bugs in software implementation[Hoo11]. Two examples are given as follow:
 - Hidden Commands Attack may attempt to abuse some command from initialization phase of smart card life cycle, to modify or retrieve sensitive data from smart card in poorly designed smart card system. The

- abused command should have been inactive but not in above mentioned vulnerable system[Hoo11].
- Malicious Applets Ill-designed smart card software, that attempts to break smart card system and steal information.
- Physical attacks. This type of attack aim to reversed engineer the data and functions that are contained on smart card. Normally expensive and modern lab equipments are required [Hoo11]. Also physical attack is known as *invasive attack* [Phi06]. For instance:
 - Micro-probe station Using Micro-probes, attackers try to construct electrical connection with smart card chip, in order to observer communication between process and memory. With the observed information, attacker is capable of capture sensitive data such as key information and etc[Phi06].
 - Focused Ion Beam. Also it is possible to transmit intentionally generated signals to smart card processor using focused ion beam. As a consequence, it is possible for attacker to reveal data from smart card[Phi06]
 - Chemical Solvents, Etching and Staining Materials. Using aforementioned chemical materials, attacker can observe etching speed difference for some ROM memories and with a step further analyze 0 and 1 in those memories[Hoo11].
- Non-invasive attacks. This kind of attack makes use of smart card runtime environments such as difference in power consumption, processor voltage, clock frequency and etc. to analyze smart card behaviors. For example,
 - Power consumption attacks. The smart card operation execution relays on power provided by terminal. When attacker is able to observe smart card power consumption, which is used by card performing cryptographic algorithms, he may retrieve related keys by applying Differential Power attack or Single Power attack [Phi06].
 - Timing attack on RSA. The computing duration of RSA algorithm runtime depends also on the input key. Therefore there is an opportunity for attacker using observed time gap in key computation to get secret key information[Joh02]
- Other Attacks[Rak14].
 - Denial of service. This kind of attack aims at interrupting normal smart card operation and consuming smart card system recourses to impact the smart card service availability.
 - Eavesdropping. Through eavesdropping exchanged information is catapulted and analyzed.

- Cover transaction. Fake session or session hijacking tries to forge a communication session between smart card and the other connection peer, in order to gain information related with peer authentication, authorization and message exchanged between two partners.

Countermeasures

Logical Attacks Countermeasure In oder to prevent this category of attacks, the number of bugs in smart card application should be minimized. Software and card manufacturers can apply *structure design* by dividing application into small units which are easy to be tested and understood. Alternatively various company related in smart card industry should work together to propose standardized interface and protocols to regulate the application development process[Hoo11].

Physical Attacks Countermeasure Smart card manufacturers have already realized the potential invasive attacks and are enhancing the physical security of smart card by offering:

- Reducing Chip Size. Now the size of smart card internal components can reach 150nm, which makes it significantly hard for attacker to perform physical attack[Phi06].
- Metalization layers, which prevent smart card from atmospheric effects [Phi06].
- Multi-layered chips. Smart card manufactures are now able to build chip card consist of multi layers. vulnerable Components, for instance ROM memory, are built in lowest layer and protected from physical analysis [Phi06].
- Sensors. Smart card is protected by sensors covered with resin and those sensors will disable smart card whenever they detect physical attacks[Ahm11].

Non-invasive Attacks Countermeasure Countermeasures against above described non-invasive attack are:

- Against Timing Attacks by computing *superfluous calculations*, in this way attack are not able to get correct timing gap anymore[Phi06].
- Against Power Consumption Attacks by applying digital noise. Alternatively chips manufacturers can reduce the electromagnetic emissions to make power consumption analysis harder[Phi06].

Other Attacks Countermeasure Other attacks are normal computer security issues and can be avoided by for instance applying message encryption mechanism, building communication session based on secure channel, introducing message transmitting rate control policies and defining appropriate timeout counts.

3.3.4 Smart Card Secure Applications

As given above, smart card is considered as a secure data storage media and a superior tool for information system security. People also describes smart card as the *magic bullet*, that can solve computer security issues, such as access control management, peer identification and so on. Understandably, therefore more and more smart cards are applied in secure applications and products. For instance:

- In Payment System. Recently the concept electronic purses and electronic payment systems become more and more popular. Not only because this newly proposed mean of payment can play a supporting role for traditional payment methods such as credit card, but also because with the integration of smart card electronic purses are able to offer flexible, reliable and secure small amount payment services [Wol10].
- For Peer Identification. Based on the knowledge from section 3.3.1, Smart card holder is capable of performing two factor authentication[Joh02], which requires that at least two of three listed conditions are satisfied. Therefore smart card are suitable for the domain of personal identification and back to December 1999 Finland began to use electronic personal ID cards to replace traditional passports[Wol10].

3.3.5 Conclusion

In conclusion, smart card is now widely used as secure token in various computer secure domains and adds an additional protection layers on the system that adapts smart card. Moreover with the help of industrial standardized protocols which are introduced in section 2.4, card holder can enjoy a secure remote management service and trust the electronic devices which are integrated with smart cards to let those facilities administer his properties.

3.4 Secure Android Design

With the development of smart phone market, more and more subscribers are using this new generation of cell phones with their smart cards. Accordingly an increasing number of attacks aimed at smart phone platforms such as the most popular Android is reported. Figure 3.6 shows a dramatic increasing amount of Malwares that are targeted at Android from 2010 to 2011[Yaj11]. Especially when taken into account that present day's smart phones are also in charge of sensitive users' credentials such as recent visited location and contacts list. And based on a study of Android applications, recherches have found that over 20% applications could have access to user personal data[Han12]. Consequently there exits a pressing requirement for Android application developer to design an android software with large security consideration.

Figure 3.6: Malware growth in period from August 2010 to October 2011 based on database from paper[Yaj11]

3.4.1 Android Security Mechanism

Even though a huge number of third party applications exist on Android market and they could be potential Malwares, but Android platform is not vulnerable and it provides secure as well as robust security mechanisms to protect its customers. Following listed three methods are the most outstanding and efficient approaches.

- Application Isolation Each Android application has its own Linux process and each of this process possesses an isolated virtual machine. In this way, application data is protected from the others[Avi09].
- Access Permissions Permissions are given during the applications' installation time. As illustrated in figure 3.7, Android permission system restricts application's access right to private data of end user as well as of other applications, to smart phone hardwares and to Android OS.
- Authorized Signatures Applications are signed with certificates and the according private keys are protected by application developer. Every time when one application claims his identity, his signatures will be checked, in order to stop potential masquerade attacks[Avi09].

3.4.2 Security Design

With the acknowledgment form previous subsection, we can conclude that Android system is designed with consideration of security, especially in the domain of access control and permission management. But still ill-developed application is vulnerable. For instance, when an application carelessly sends an intent, which

Figure 3.7: Detailed Android permission model[Han12]

has none explicit target, this implicit intent can be intercepted by a Malware. As a result, this malicious application may manage to access to sensitive data and perform attacks such as *activity hijacking* and *service hijacking* [Eri11].

Therefore it it necessary for application developers to apply protection techniques in oder to to protect their application from attacker and revers engineering.

Application Components Secure

In order to restrict the number of applications, which have access rights to our Android application components described in subsection 2.6.4. We should explicitly claim the access control policies in AndroidManifest.xml from our project. In the extreme case that none applications are expected to invoke the secured component, following rule should be add in AndroidManifest.xml [Kei13].

```
<[component name] android:exported='false'>
</[component name]>
```

Custom Permissions for Access Control

As pictured in figure 3.8, Android OS provides a list of default permissions, which service a generic access control management, including such as phone holder data reading and writing, Internet access right and etc. But when it comes to the case of

sharing data between different applications, a more sophisticated and robust custom permission is desired. To be more specifically, following xml snippets should be added for protected components in project's *AndroidManifest.xml* [Kei13].

Default RECEIVE BOOT COMPLETED READ_CONTACTS READ_SYNC_SETTINGS READ_OWNER_DATA GET_ACCOUNTS WRITE_CONTACTS ACCESS_NETWORK_STATE INTERNET VIBRATE WAKE_LOCK WRITE_EXTERNAL_STORAGE READ_KEY_DETAILS Custom READ_ATTACHMENT READ_MESSAGES DELETE_MESSAGES REMOTE_CONTROL

Figure 3.8: Permission required by application *k9mail*[Han12]

```
<permission android:name='android.permission.CUSTOM_PERMISSION'
android:protectionLevel ='dangerous'
android:description = 'Custom Permission Snippet'
android:label = '@string/custom_permission_label''>
```

Moreover four categories of protection level are supported [Kei13]:

- *normal* This the lowest level of permission and usually be applied for non-dangerous permissions.
- dangerous In this kind of permission exists the risks that authorized application would be able to access user credential information and sensitive data.
- *signature* Signature permission means that applications which as signed with the same certificate can access each other.
- signatureOrSystem In addition to signature level, this level of permission will be also automatically granted to the application that is part of system image.

Securing Content Provider

Last secure approach that I want to present is the content provider path secure mechanism. Since content provider handles mostly the exchanged data between

applications, therefor it always becomes the first victim of a system attack. Application developer must ensure the security of content provider especially the content provider path, which is in nature an uniform recourse identifiers that is related to sensitive information such as datasets[Kei13]. Content provide path may look like *content://com.provider.android/account/balance*.

It is highly recommended that application developer explicitly defines the permission rules at path level, to be more specifically [Kei13],

3.4.3 Conclusion

In conclusion Android is a secure-designed platform with sophistical access control mechanisms and other security polices. But still Android application developers should apply security techniques to protect their project from malicious ill-formed applications.

3.5 Embedded System Secure Design

4 Implementation Scenario

Figure 4.1: Smart Home

4.1 Overview

Figure 4.1 describes the basic structure and functionalities provided by implementation scenario Smart Home. In the above-mentioned housing scenario, embedded with UICC smart card sensors which are in charge of monitoring and reporting environment variables, such as, home temperature, luminance and how much water the pet has, as well as embedded UICC smart card electronic device, for instance coffee maker, are deployed. On each this sensor and device an OPC UA server is installed, whose major responsibilities are controlling that corresponding device as well as processing data gathered by it. Moreover each door in this scenario is equipped with a digital lock, that only allows user with enough authority to access. This electronic lock is also integrated an smart card and installed the OPC UA server application. Users in this scenario can be householder or guests of home owner. Using cell phone with UICC smart card and on this mobile terminal installed OPC UA client application, subscriber is capable of configuring sensors and querying data gathered by sensors, remote controlling aforementioned secure

devices, viewing historical information recorded by corresponding facilities. With the help of such services a comfortable living condition is created in an automated way. Moreover the root user, namely the owner of this house, is also able to assign the permission of accessing particular room to other guests. In case of when he/she is taking a vocation and pet cannot get necessary care.

In this implementation scenario, OPC UA clients, namely Universal Integrated Circuit Card (UICC) based phone user communicates with OPC UA server, which is deployed on other secure hard devices, via an OTA server. Smart card that is applied in this scenario acts as security token for both OPC UA client and server and it contains credential information like encryption keys. certificates and digital signature. The communication stack, that manages secure communication between OPC UA client and server application, is also developed and integrated on smart card as a Java Card applet, which means without corresponding UICC card, OPC UA client and server are not able to appropriately finish their work.

Figure 4.2: OPC UA Client Server Structure Example

4.2 Software Structure

Figure 4.2 pictures aforementioned OPC UA client server structure. OP UA Client and Server application communicate with each other with the help of an OTA server. And the communication stack, is in charge of creation and managing the secure communication between OTA server and secure device. Moreover using different chip card, OPC UA client application is able to communicate with OPC UA server application using Short Message Service(SMS) or TCP/IP based web service.

server on secure device provides following services:

- processing client subscription/publishing environment data
- secure message exchange with client
- authority management
- historical data record
- execution client's command

Basic client functions as following are provided:

- submitting subscription/receiving published data
- secure message exchange with server
- sending command/configuration data
- providing user friendly interface

Communication stack is integrated in UICC smart card, whose responsibility is realizing secure channel as well as session management, transporting data to receiver using TCP/IP connections. An internal API translates OPC UA application instructions in to Application Protocol Data Unity (APDU) messages and forwards them to smart card OS, which is eventually in charge of user authentication and processing secure messaging between card application and chip card pair.

Moreover thanks to self-containment structure, smart card itself does not dependent on other external resources, which could be extreme vulnerable to potential secure attack, and therefore provides a better hardware security and OS security.

4.2.1 Client Structure

As described in figure 4.3, the OPC UA client consists of client application code that realizes client application level functions, OPC UA client API that translates client application instructions into APDU and forwards APDU to UICC smart card as well as manages secure communication between smart card and OPC UA

Figure 4.3: Client Structure

client application code, which is realized as Android App. The Communication stack is developed and integrated with UICC card and its main responsibilities are:

- initiate HTTP session based on TLS(proactive)
- trigger HTTP session based on trigger SMS send by OTA server(passive)
- rebuild broken communication channel
- message encryption as well as decryption
- message transmit

The communication flow compliant with the one provided by GlobalPlatform, which provides mechanisms that allow secure information exchanged between a remote entity and a terminal, this process is also known as Remote Application Management(RAM) over HTTP protocol and PSK TLS security. The on card component, which is responsible for connection creation with the remote entity and user/application authentication, is called Security Domain(SD). And the aforementioned remote entity is referred as Remote Administration Server as well. With these concepts, smart card with Security Domain issued by GloablPlatform can act as HTTP client and is capable of packing APDU formate information into HTTP POST message and transmitting HTTP message to OTA server, which will then forward this HTTP message to target receiver.[Glo12]

Figure 4.4 illustrates a typical communication flow between administration server and corresponding security domain (Application Security Domain) on smart card. As can be seen, the request for open communication is usually initialized by security domain, which is also the phone user. After a successful creation of secure handshake, the remote administration server and security domain is able to use HTTP connection to exchange request and response strings, which include APDU instructions. GlobalPlatform has also provided a lists of API used to initialize authentication process, to configure algorithm and keys for message encryption and decryption, to perform message exchange behavior and so on.

4.2.2 Server Structure

Server here refers sensors, electric device as well digital locks that together build up the smart home system. Each server controls exactly one above-mentioned secure device and take subscription as well as publish corresponding notification to authenticated subscriber. The server structure is pictured as figure 4.5 and it consists of OPC UA server application code, which offers basic server like subscription and notification mentioned before, an internal API and a on smart card integrated communication stack.

Figure 4.4: Communication Flow between an AP and corresponding APSD[Glo12]

Figure 4.5: Server Structure

4.2.3 Implementation Tool Support

Morpho presents JACADE with full name, Java Card Applet Develop Environment, which is more than just a IDE but a complex selection of various class API and software modules, that can be applied to design complete Java Card Applet as well as to debug Java source. When it comes to running test with Java Card Applet, apart from using regular cell phone with UICC smart card, on where to be tested applet is installed, Morpho Card Reader (MCR) or Java virtual card together with iCardReader, Universal Test Environment (UTE) can be applied. To be more specifically, iCardReader is a tool developed by Morpho and be used in order to send APDU script to Java virtual card or to real smart card connected with test PC using smart card reader such as MCR reader, and to monitor corresponding response APDU information. Universal Test Environment provided by Morpho uses Java languages developed test cases and test scenarios¹ to simulate user cases and obverse related smart card reactions. In contrast with iCardreader, which can only send APDU command sequence to smart card, UTE integrates more software models that can be used to simulate such as security domain offered by other card application provider, and therefore can provide more sophisticate test environment.

¹Test scenario is a collection of relative test cases.

5 System Design

As described in previous sections, my demonstration system consists of two main parts, namely the on card integrated communication stack and android application. Figure 5.1 illustrates the request and corresponding response message exchange process that occurs in the demonstration system.

Figure 5.1: Message Exchange

5.1 UICC Applet

5.1.1 Classes

My UICC applet is developed on Morpho SC5-01OS07 LTE SAT product. Communication stack includes following classes:

• CommunicationStack, which is the main class of my applet, that implements install, select, deselect as well as process methods provided by javac-

ard.framework.Applet. In order to process remote APDU, this applet is also design as UICC system applet, that extends interface com.orga.javacard.componentinterfaces.J

• AdminTrigger, which implements Globalplatform and toolkitframework interfaces and offers functions for proactive and passive communication session creation with OTA server, cipher suit negotiation and mutual authentication.

Figure 5.2: Class Diagram

5.1.2 Communication Flow

The components involved in this scenario are:

- CommunicationStack applet and associated Security Domain from Globalplatform (APSD for short)
- OTA server which is also known as Remote Administration Server (RAS for short)

The communication between CommunicationStack and Remote Administration Server involves following steps:

- Open Communication Channel and Create Communication Session
- Secure Message Exchange
- Close Communication Session

Communication Session Creation and Message Exchange

This process could be either initiated by Remote Administration Server by sending target applet a trigger SMS or be sponsored by applet itself. In both cases, applet sends the first *OpenChannel Request* message. During the PSK TLS Handshake phase, APSD and remote server will agree on to be used cipher suit and authenticate each other. After a successful PSK TLS Handshake, CommunicationStack and remote OTA server will be able to exchange HTTP message, that encapsulates APDU strings as body, with HTTP header that is in compliance with GlobalPlatform standards.

HTTP Header Format

The HTTP message sent from remote sever to targeted applet uses following schema[Glo11]:

```
HTTP/1.1 200 OK [or HTTP/1.1 204 No Content CRLF]
X-Admin-Protocol: globalplatform-remote-admin/1.0 CRLF
[X-Admin-Next-URI: <next-URI> CRLF]
[Content-Type: application/vnd.globalplatform.card-content-mgt-response;version=1.0 CRLF]
[X-Admin-Targeted-Application: <security-domain-AID> CRLF]
[Content-Length: xxxx CRLF] or [Transfer-Encoding: chunked CRLF]
CRLF
[body]
```

In the field security-domain-AID could be filled the AID of targeted applet.

The HTTP response message sent from applet to remote server uses following schema[Glo11]:

```
POST<URI>HTTP/1.1 CRLF
Host: <Administration Host> CRLF
X-Admin-Protocol: globalplatform-remote-admin/1.0 CRLF
X-Admin-From: <Agent ID> CRLF
[Content-Type: application/vnd.globalplatform.card-content-mgt-response; version=1.0 CRLF]
[Content-Length: xxxx CRLF] or [Transfer-Encoding: chunked CRLF]
[X-Admin-Script-Status: <script-status> CRLF]
[X-Admin-Resume: true]
CRLF
[body]
```

The filed X-Admin-Script-Status could contain following values:

• ok, which means that the previous message is successfully received by applet.

Figure 5.3: Class Diagram

- unknown-application, which stands for the error, that the targeted applet for previous message can not be found.
- not-a-security-domain, this errors occurs when targeted applet is not a Security Domain.
- security-error, as its name indicates, this values is returned if the security of previous message can not be checked.

Close Communication Session

Whenever the communication channel is about to be closed, either because of session security issue, or due to successful finish of communication, remote server will send target applet HTTP message:

- No X-Admin-Next-URI field is present in this HTTP message and message body is empty, which will be recognized as final message from remote server and then the session will be closed.
- No X-Admin-Next-URI filed is present but in this HTTP message body is not empty. The receiver will process the data in body and close the communication session appropriately. But no response message will be generated.

5.1.3 Commands: Interface between Applet and CAD

Before concrete implementation of Javacard applet code, the interface, which in essence is a set of commond APDUs and corresponding response APDUs, between applet and CAD must be well defined. The CommunicationStack support two categories commond APDU:

- The *SELECT* Command APDU, which is used by JCRE to select CommunicationStack applet.
- Other command APDUs, which are introduced in order to provide functionalists such as: trigger communication session, process input APDU and etc. To be more specifically:
 - PIN operation related APDU set
 - Communication session management APDU set
 - Data process APDU set

SELECT APDU

The header of this command APDU is fixed and Lc indicates the length of CommunicationStack AID. In *Data filed* real AID is saved. Two categories of response APDUs are expected, one represents successful processing of SELECT command APDU and the other stands for failure.

Table 5.1: SELECT command APDU

CLA	INS	P1	P2	Lc	Data field	Le
0x00	0xA4	0x04	0x00	Length of AID	AID	N/A

Table 5.2: SELECT response APDU

Optional data	Status word	Description
No data	0x9000	Successful processing
	0x6999	Failed to select CommunicationStack applet

Verify PIN operation

This APDU command and response set is used to let CommunicationStack applet verify identity of terminal user. Moreover the PIN size is set from four to eight and the verify PIN operation try limit is set to three times.

Table 5.3: Verify PIN command

CLA	INS	P1	P2	Lc	Data field	Le
0xA0	0x11	0x00	0x00	length of Data field	PIN	N/A

Three categories of response APDUs are expected.

Table 5.4: Verify PIN response APDU

Optional data	Status word	Description
No data	0x9000	Successful processing
	0x63C0	Verification failed
	0x6983	After 3 times wrong input, pin is block

Reset PIN operation

This APDU command and response set is introduced to offer end user change PIN service.

Table 5.5: Reset PIN command

CLA	INS	P1	P2	Lc	Data field	Le
0xA0	0x12	0x00	0x00	length of Data field	New PIN	N/A

Three categories of response APDUs are expected.

Table 5.6: Reset PIN response APDU

Optional data	Status word	Description
No data	0x9000	Successful processing
	0x6301	Verification is required first
	0x6984	Length of input PIN is wrong

Communication Session Creation

This APDU command and response set is used to let CommunicationStack applet initiate the request to establish communication channel and create communication session above it. Following commands are supported.

Table 5.7: Communication session creation command APDUs

CLA	INS	P1	P2	Lc	Data field	Le	Description
0xA0	0x01	0x00	0x00	data filed length	Session parameter	N/A	create sess
0xA0	0x02	0x00	0x00	data filed length	Session parameter	N/A	set session
0xA0	0x03	0x00	0x00	N/A	N/A	N/A	create com
0xA0	0x04	0x00	0x00	N/A	N/A	length of session state	get session

Following return codes are expected in response APDU:

.

Table 5.8: Trigger Session Return Code

Status word	Description
0x9000	Successful processing
0x66AB	Array Index out of bounds exception
0x665E	Security exception
0x6600	Nullpointer exception
0x6C00	UnKnown exception

Close Communication Session

This APDU command and response set is used to correctly close communication channel.

Following return codes are expected in response APDU:

.

Table 5.9: Close Session command APDU

CLA	INS	P1	P2	Lc	Data field	Le
0xA0	0x50	0x00	0x00	0x00	N/A	N/A

Table 5.10: Close Session Return Code

Status word	Description
0x9000	Successful processing
0x6032	Failed to close session

Process Communication Data

This APDU command and response set is used to provide functionalities to perform command processing between cellphone and other smart home device.

Table 5.11: Process data command APDUs

CLA	INS	P1	P2	Lc	Data field	Le
0xA0	0x20	0x00	0x00	data filed length	desired target's public key	PK length
0xA0	0x21	0x00	0x00	data filed length	command data	response length

Following return codes are expected in response APDU:

.

Table 5.12: Process data Return Code

Status word	Description
0x9000	Successful processing
0x6A80	error in data filed
0x6A81	required device not found
0x6A82	required service not found
0x6A83	required record not found

6 Implementation

7 System Security Analysis

8 Summary and Future Work

The last chapter summarizes your thesis and draws conclusions.

8.1 Summary

This chapter summarizes the content of your thesis.

8.2 Future Work

Unfinished solutions and open questions are discussed in this chapter.

Bibliography

- [Ahm11] Ahmadou A. SERE, Julien Iguchi-Cartigny, Jean-Louis Lanet: Evaluation of Countermeasures Against Fault Attacks on Smart Cards. April,2011
- [And11] Andrew Hoog: Android Forensics: Investigation, Analysis and Mobile Security for Google Android. July 2011
- [And13] Andreas Frejborg, Martti Ojala, Otso Palonen, Jouni Aro: OPC UA Connects your Systems. 2013
- [Avi09] Avik Chaudhuri: Language-Based Security on Android. 2009
- [Bru99] Bruce Schneier, Adam Shostack: Breaking Up Is Hard To Do: Modeling Security Threats for Smart Cards. October, 1999
- [CHA] CHAN, SIU-CHEUNG CHARLES: An Overview of Smart Card Security
- [Dav10] David Ehringer: The Dalvik virtual machine architecture. March 2010
- [Dia03] DIANE J. COOK, MICHAEL YOUNGBLOOD, EDWIN O. HEIERMAN, KARTHIK GOPALRATNAM, SIRA RAO, ANDREY LITVIN, FARHAN KHAWAJA: *MavHome: An Agent-Based Smart Home.* 2003
- [Dim02] DIMITAR VALTCHEV, IVAILO FRANKOV: Service Gateway Architecture for a Smart Home. April 2002
- [Eri11] ERIKA CHIN, ADRIENNE PORTE FELT, KATA GREENWOOD, DAVID WAGNER: Analyzing Inter-Application Communication in Android. June, 2011
- [Fra11] Franke Feinbube from HPI University Postdam: Android. November 2011
- [Glo11] GLOBALPLATFORM: GlobalPlattform Card Specification. January 2011
- [Glo12] GLOBALPLATFORM CARD: Remote Application Management over HTTP Card Specification v2.2 Amendment B. March 2012

- [Han12] HANNAH GOMMERSTADT, DEVON LONG: Android Application Security. 2012
- [Hoo11] Hoon ko and Ronnie D. Caytiles: A Review of Smartcard Security Issues. June, 2011
- [Jah13] JAHANZAIB IMTIAZ, JRGEN JASPERNEITE: Scalability of OPC-UA Down to the Chip Level Enables Ïnternet of Things. July 2013
- [Jea09] JEAN-LOUIS CARRARA, HERV GANEM, JEAN-FRANOIS RUBON, JACQUES SEIF: The role of the UICC in Long Term Evolution all IP networks. January 2009
- [Joh02] JOHN ABBOT: Smart Card: How Secure Are They? March, 2002
- [Kei13] KEITH MAKAN, SCOTT ALEXANDER-BOWN: Android Security Cookbook. December, 2013
- [Li 04] LI JIANG, DA-YOU LIU, BO YANG: SMART HOME RESEARCH. August 2004
- [Mar11] MARKO GARGENTA: Learning Android. March 2011
- [Mic10] MICHAEL ANGELO A. PEDRASA, TED D. SPOONER ,IAIN F. MACGILL: Coordinated Scheduling of Residential Distributed Energy Resource to Optimize Smart Home Energy Services. September 2010
- [Nim] NIMMI KALINATI: A Study of Smart Card and its Security Features
- [OPC09a] OPC FOUNDATION: OPC Unified Architecture Specification Part2 Security Model 1.01. February 6.2009
- [OPC09b] OPC FOUNDATION: OPC Unified Architecture Specification Part3
 Address Space Model 1.01. February 6.2009
- [OPC09c] OPC FOUNDATION: OPC Unified Architecture Specification Part4 Services 1.01. February 6.2009
- [OPC12] OPC FOUNDATION: OPC Unified Architecture Specification Part1 Overview and Concepts 1.02. July 10.2012
- [Phi06] PHILIP KEERSEBLICK, WIM VAHNOUCKE: Smart card (In-)Security. May,2006
- [Rak14] RAKESH KUMAR JANGID, UMA CHOUDHARY, SWAPNESH TATERH: Security Measurement in Secure Smart Cards. May,2014
- [RSA99] RSA LABORATORIES: $PKCS \#15 \ v1.1$: Cryptographic Token Information Syntax Standard. December 1999

- [Seb11] SEBASTIAN LEHNHOFF, WOLFGANG MAHNKE, SEBASTIAN ROHJANS, MATHIAS USLAR: *IEC 61850 based OPC UA Communication* The Future of Smart Grid Automation. August 2011
- [Sib08] SIBYLLE MEYER, EVA SCHULZE: Smart Home fr ltere Menschen. February 2008
- [SID13] SID: MQTT vs OPC-UA: Das HTTP der Industrie 4.0? http://dennisseidel.de/the-http-for-industrie-4-0-mqtt-vs-opc-ua-german.

 Version: 2013
- [sim14] SIMALLIANCE: Open Mobile API specification. February 2014
- [Ste] Stefan-Helmut Leitner, Wolfgang Mahnke, Ragnar Schierholz: Secure Communication in industrial automation by Applying OPC UA
- [Sun98] Sun Microsystems: Java Card Applet Developers' Guide. July 1998
- [Vin] VINCENT RICQUEBOURG, DAVID MENGA, DAVID DURAND, BRUNO MARHIC, LAURENT DELHOCHE, CHRISTOPHE LOGE: The Smart Home Concept: our immediate future
- [Vin02] VINCENT RIALLE, FLORENCE DUCHENE, NORBERT NOURY, LIONEL BAJOLLE, JACQUES DEMONGEOT: Health 'Smart' Home: Information Technology for Patients at Home. Number 2002
- [Wik] WIKIPEDIA CONTRIBUTORS: Constrained Application Protocol. http://en.wikipedia.org/wiki/Constrained_Application_Protocol, . [update;Februray 8,2014]
- [Wol08] Wolfgang Rankl und Wolfgang Effing: Handbuch der Chipkarten - 5. deutsche Auflage. 2008
- [Wol10] WOLFGANG RANKL AND WOLFGANG EFFING: Smart Card Handbook Fourth Edition. 2010
- [Yaj11] Yajin Zhou, Xuxian Jiang: Dissecting Android Malware: Characterization and Evolution. September, 2011
- [Zhi00] Zhiqun Chen: Java Card Technology for Smart Card. June 2000