EXERCICE N°1 (Le corrigé)

Écrire les nombres suivants sous la forme $a\sqrt{b}$ où a et b sont deux entiers positifs, b étant le plus petit possible.

$A = \sqrt{32}$	$B = \sqrt{75}$	$C = \sqrt{500}$	$D = \sqrt{80}$	
$A=\sqrt{32}$	$B = \sqrt{75}$	$C = \sqrt{500}$	$D = \sqrt{80}$	
$A = \sqrt{4^2 \times 2}$	$B = \sqrt{5^2 \times 3}$	$C = \sqrt{10^2 \times 5}$	$D = \sqrt{4^2 \times 5}$	
$A = \sqrt{4^2} \times \sqrt{2}$	$B = \sqrt{5^2} \times \sqrt{3}$	$C = \sqrt{10^2} \times \sqrt{5}$	$D = \sqrt{4^2} \times \sqrt{5}$	
$A=4\sqrt{2}$	$B=5\sqrt{3}$	$C = 10\sqrt{5}$	$D=4\sqrt{5}$	
Autre rédaction possible				
$A = \sqrt{32}$	$B = \sqrt{75}$	$C = \sqrt{500}$	$D=\sqrt{80}$	
$A = \sqrt{16 \times 2}$	$B = \sqrt{25 \times 3}$	$C = \sqrt{100 \times 5}$	$D = \sqrt{16 \times 5}$	
$A = \sqrt{16} \times \sqrt{2}$	$B = \sqrt{25} \times \sqrt{3}$	$C = \sqrt{100} \times \sqrt{5}$	$D = \sqrt{16} \times \sqrt{5}$	
$A = 4\sqrt{2}$	$B = 5\sqrt{3}$	$C = 10\sqrt{5}$	$D=4\sqrt{5}$	

EXERCICE N°2 (Le corrigé)

Écrire sous la forme $a\sqrt{b}$ où a et b sont deux entiers, b étant le plus petit possible.

1) $\sqrt{2} \times \sqrt{6}$	$2) \qquad \sqrt{3} \times \sqrt{6}$	$3) \qquad \sqrt{7} \times 3\sqrt{14}$	4) $7\sqrt{2} \times 5\sqrt{70}$
$\sqrt{2}\times\sqrt{6}$	$\sqrt{3}\times\sqrt{6}$	$\sqrt{7} \times 3\sqrt{14}$	$7\sqrt{2}\times5\sqrt{70}$
$=\sqrt{2\times6}$	$=\sqrt{3\times6}$	$=3\sqrt{7\times14}$	$=7\times5\sqrt{2\times70}$
$=\sqrt{12}$	$=\sqrt{18}$	$=3\sqrt{7\times7\times2}$	$=35\sqrt{2\times2\times35}$
$=\sqrt{2^2\times3}$	$=\sqrt{3^2\times2}$	$=3\sqrt{7^2\times2}$	$=35\sqrt{2^2\times35}$
$=\sqrt{2^2}\times\sqrt{3}$	$=\sqrt{3^2}\times\sqrt{2}$	$=3\sqrt{7^2}\times\sqrt{2}$	$=35\sqrt{2^2}\times\sqrt{35}$
$=2\sqrt{3}$	$=3\sqrt{2}$	$=3\times7\times\sqrt{2}$	$=35\times2\sqrt{35}$
		$=21\sqrt{2}$	$= 70 \sqrt{35}$

J'ai détaillé au maximum, vous avez bien sûr le droit d'aller plus vite.

Avec la question 4), on constante que les racines « simplifiées » au maximum peuvent avoir plusieurs chiffres sous le radical.

Pour vous en convaincre, on peut facilement créer un exemple :

$$\sqrt{2\times3\times5\times7\times11\times13}^{2} = \sqrt{30030}$$

On ne prend que des nombres premiers tous distincts

ne peut pas être « simplifiée »

EXERCICE N°3 (Le corrigé)

Sans utiliser de calculatrice, transformer les expressions suivantes de façon à obtenir une fraction irréductible.

1)
$$\frac{\sqrt{147}}{\sqrt{75}}$$
 2) $\frac{8\sqrt{5}}{3\sqrt{20}}$ 3) $\sqrt{\frac{28}{42}} \times \frac{\sqrt{30}}{\sqrt{45}}$

$$= \sqrt{\frac{147}{75}}$$

$$= \sqrt{\frac{147}{75}}$$

$$= \sqrt{\frac{8\sqrt{5}}{3\sqrt{20}}}$$

$$= \sqrt{\frac{28}{42}} \times \sqrt{\frac{30}{45}}$$

$$= \sqrt{\frac{28}{42}} \times \sqrt{\frac{30}{45}}$$

$$= \sqrt{\frac{49 \times 3}{25 \times 3}}$$

$$= -\sqrt{\frac{49}{25}}$$

$$= -\sqrt{\frac{49}{25}}$$

$$= \frac{8}{3} \times \sqrt{\frac{1}{4}}$$

$$= -\frac{8}{3} \times \sqrt{\frac{1}{4}}$$

$$= -\sqrt{\frac{7 \times 4 \times 6 \times 5}{6 \times 7 \times 9 \times 5}}$$

$$= \frac{8}{3} \times \frac{\sqrt{1}}{\sqrt{2^2}}$$

$$= -\frac{8}{3} \times \frac{1}{\sqrt{2^2}}$$

$$= -\frac{8}{3} \times \frac{1}{2}$$

$$= -\frac{4}{3}$$

$$= \frac{4}{3}$$

EXERCICE N°4 (Le corrigé)

mais on n'écrit pas $1\sqrt{2}$

Écrire les expressions suivantes sous la forme $a\sqrt{2}$ ou $a\sqrt{3}$ où a est un entier relatif.

1) $A = 4\sqrt{2} + 2\sqrt{2}$	2) $B = 7\sqrt{3} - 9\sqrt{3}$	3) $C = \sqrt{3} - 8\sqrt{3} + 15\sqrt{3}$
$A = 4\sqrt{2} + 2\sqrt{2}$	$B = 7\sqrt{3} - 9\sqrt{3}$	$C = \sqrt{3} - 8\sqrt{3} + 15\sqrt{3}$
$A = (4+2)\sqrt{2}$ $A = 6\sqrt{2}$	$B = (7-9)\sqrt{3}$ $B = -2\sqrt{3}$	$C = (1 - 8 + 15)\sqrt{3}$ $C = 8\sqrt{3}$
4) $D=3\sqrt{2}-5\sqrt{2}+\sqrt{2}$	5) $E = 4\sqrt{2} - 6\sqrt{2} + 2\sqrt{2}$	$6) F = 5\sqrt{3} - 7\sqrt{3} + 3\sqrt{3}$
$D = 3\sqrt{2} - 5\sqrt{2} + \sqrt{2}$ $D = (3 - 5 + 1)\sqrt{2}$	$E = 4\sqrt{2} - 6\sqrt{2} + 2\sqrt{2}$ $E = (4 - 6 + 2)\sqrt{2}$	$F = 5\sqrt{3} - 7\sqrt{3} + 3\sqrt{3}$ $F = (5 - 7 + 3)\sqrt{3}$
$D = \sqrt{2}$ 3-5+1=1	E = 0 $4 - 6 + 2 = 0 et zéro fois$	$F = \sqrt{3}$ Même remarque que pour le

quelque chose ça fait zéro.

EXERCICE N°5 (Le corrigé)

Simplifier les expressions sous la forme $a\sqrt{b}$ où a et b sont entiers et b le plus petit possible.

$$G = \sqrt{50} + \sqrt{18} - 2\sqrt{8}$$

•
$$\sqrt{50} = \sqrt{25 \times 2} = \sqrt{25} \times \sqrt{2} = 5\sqrt{2}$$

•
$$\sqrt{18} = \sqrt{9 \times 2} = \sqrt{9} \times \sqrt{2} = 3\sqrt{2}$$

$$G = 5\sqrt{2} + 3\sqrt{2} - 2\sqrt{8}$$

$$G=6\sqrt{2}$$

$$H = \sqrt{12} - 7\sqrt{27} + \sqrt{3}$$

$$\sqrt{12} = \sqrt{4 \times 3} = \sqrt{4} \times \sqrt{3} = 2\sqrt{3}$$

•
$$\sqrt{27} = \sqrt{9 \times 3} = \sqrt{9} \times \sqrt{3} = 3\sqrt{3}$$

En remplaçant, on obtient :

$$H = 2\sqrt{3} - 7 \times 3\sqrt{3} + \sqrt{3}$$

$$H = 2\sqrt{3} - 21\sqrt{3} + \sqrt{3}$$

$$H = -18\sqrt{3}$$

EXERCICE N°1

Écrire les nombres suivants sous la forme $a\sqrt{b}$ où a et b sont deux entiers positifs, b étant le plus petit possible.

EXERCICE N°2

Écrire sous la forme $a\sqrt{b}$ où a et b sont deux entiers, b étant le plus petit possible.

1)
$$\sqrt{2} \times \sqrt{6}$$

$$2) \qquad \sqrt{3} \times \sqrt{6}$$

3)
$$\sqrt{7}\times3\sqrt{14}$$

4)
$$7\sqrt{2} \times 5\sqrt{70}$$

EXERCICE N°3

Sans utiliser de calculatrice, transformer les expressions suivantes de façon à obtenir une fraction irréductible.

1)
$$\frac{\sqrt{147}}{\sqrt{75}}$$

2)
$$\frac{8\sqrt{5}}{3\sqrt{20}}$$

3)
$$\sqrt{\frac{28}{42}} \times \frac{\sqrt{30}}{\sqrt{45}}$$

EXERCICE N°4

Écrire les expressions suivantes sous la forme $a\sqrt{2}$ ou $a\sqrt{3}$ où a est un entier relatif.

1)
$$A = 4\sqrt{2} + 2\sqrt{2}$$

2)
$$B = 7\sqrt{3} - 9\sqrt{3}$$

3)
$$C = \sqrt{3} - 8\sqrt{3} + 15\sqrt{3}$$

4)
$$D=3\sqrt{2}-5\sqrt{2}+\sqrt{2}$$

5)
$$E = 4\sqrt{2} - 6\sqrt{2} + 2\sqrt{2}$$
 6) $F = 5\sqrt{3} - 7\sqrt{3} + 3\sqrt{3}$

6)
$$F = 5\sqrt{3} - 7\sqrt{3} + 3\sqrt{3}$$

EXERCICE N°5

Simplifier les expressions sous la forme $a\sqrt{b}$ où a et b sont entiers et b le plus petit possible.