Assignment 1- Group 6

Importing and review the data frame

```
In [1]:
         import pandas as pd
         import numpy as np
         import re
         #Load data (bostonhousing csv file)
         df1 = pd.read_excel ("BostonHousing.xls", sheet_name="Data")
         df1.sample(10)
                                                                DIS RAD TAX PTRATIO
                        ZN INDUS CHAS NOX
                                                  RM
                                                        AGE
Out[1]:
                CRIM
                                                5.713
          30 0.13081
                        0.0
                              8.14
                                        0 0.538
                                                        94.1
                                                               4.233
                                                                           307
                                                                                      21
         156 0.09103
                                                7.155
                        0.0
                               2.46
                                          0.488
                                                        92.2 2.7006
                                                                           193
                                                                                     17.8
          39 0.02763
                      75.0
                              2.95
                                          0.428
                                                 6.595
                                                        21.8 5.4011
                                                                           252
                                                                        3
                                                                                     18.3
          56 0.02055
                      85.0
                                                 6.383
                                                        35.7 9.1876
                              0.74
                                            0.41
                                                                           313
                                                                                     17.3
         141 1.62864
                        0.0
                              21.89
                                          0.624
                                                 5.019
                                                       100.0 1.4394
                                                                        4
                                                                           437
                                                                                     21.2
          93 0.02875
                     28.0
                              15.04
                                          0.464
                                                 6.211
                                                        28.9 3.6659
                                                                           270
                                                                                     18.2
         154 0.06588
                                        0 0.488 7.765
                                                                           193
                        0.0
                              2.46
                                                        83.3
                                                               2.741
                                                                                     17.8
                                                                        3
         100 0.14866
                        0.0
                              8.56
                                           0.52 6.727
                                                        79.9 2.7778
                                                                        5
                                                                           384
                                                                                    Alina
          22 0.23247
                        0.0
                                          0.538 6.142
                                                        91.7 3.9769
                                                                           307
                                                                                     15.2
                              8.14
                                                                        4
          53 0.04981 21.0
                               5.64
                                        0 0.439 5.998
                                                        21.4 7.3197
                                                                           243
                                                                                     16.8
         df1["PTRATIO"].describe()
In [2]:
                    167.0
         count
Out[2]:
         unique
                     36.0
         top
                     17.8
         freq
                     21.0
         Name: PTRATIO, dtype: float64
         df1['INDUS'] = df1['INDUS'].astype(str)
In [3]:
         df1['PTRATIO'] = df1['PTRATIO'].astype(str)
```

df1.dtypes

In [4]:

```
CRIM
                    float64
Out[4]:
                    float64
        ΖN
        INDUS
                     object
        CHAS
                      int64
        NOX
                     object
        RM
                    float64
        AGE
                    float64
        DIS
                     object
        RAD
                      int64
                      int64
        TAX
        PTRATIO
                     object
        dtype: object
```

Highlight Missing cells In Yellow:

Part B.1 - Highlight Missing Cells In yellow

```
In [5]: #Making a new data frame object with data type as string
    df = df1.applymap(str)

In [6]: # Defining a function to Highlight Non numeric Values in Yellow.

def highlight_cells(data):
    result = re.findall('\d+\\\d+|\d+', data)
    color = 'yellow' if not result else ''
    return 'background-color: {}'.format(color)

In [7]: result = df.drop(['PTRATIO'], axis=1).style.applymap(highlight_cells)

In [8]: result
```

Out[8]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX
0	0.00632	18.0	2.31	0	0.538	6.575	65.2	4.09	1	296
1	0.02731	0.0	7.07	0	0.469	6.421	78.9	4.9671	2	242
2	0.02729	0.0	7.07	0	0.469	7.185	61.1	4.9671	2	242
3	0.03237	0.0	2.18	0	0.458	6.998	45.8	6.0622	3	222
4	0.06905	0.0	7.07	0	0.458	7.147	54.2		3	222
5	0.02985	0.0	****	0	0.458	6.43	58.7	6.0622	3	222
6	0.08829	12.5	7.07	0	0.524	6.012	66.6	5.5605	5	311
7	0.14455	12.5	****	0	0.524	6.172	96.1	5.9505	5	311
8	0.21124	12.5	7.87	0	0.524	5.631	100.0	6.0821	5	311
9	0.17004	12.5	****	0	0.524	6.004	85.9	6.5921	5	311
10	0.22489	12.5	7.87	0	0.524	6.377	94.3	6.3467	5	311
11	0.11747	12.5	nan	0	0.524	6.009	82.9	6.2267	5	311
12	0.09378	12.5	7.87	0	0.524	5.889	39.0	5.4509	5	311
13	0.62976	0.0	8.14	0	nan	5.949	61.8	4.7075	4	307
14	0.63796	0.0	8.14	0	0.538	6.096	84.5	4.4619	4	307
15	0.62739	0.0	8.14	0	0.538	5.834	56.5	4.4986	4	307
16	0.05393	0.0	8.14	0	0.538	5.935	29.3	4.4986	4	307
17	0.7842	0.0	8.14	0	0.538	5.99	81.7	4.2579	4	307
18	0.80271	0.0	8.14	0	0.538	5.456	36.6	3.7965	4	307
19	0.7258	0.0	8.14	0	0.538	5.727	69.5	3.7965	4	307
20	1.25179	0.0	8.14	0	0.538	5.57	98.1	3.7979	4	307
21	0.85204	0.0	8.14	0	0.538	5.965	89.2	4.0123	4	307
22	0.23247	0.0	8.14	0	0.538	6.142	91.7	3.9769	4	307
23	0.98843	0.0	8.14	0	0.538	5.813	100.0	4.0952	4	307
24	0.75026	0.0	nan	0	0.538	5.924	94.1	4.3996	4	307
25	0.84054	0.0	8.14	0	0.538	5.599	85.7	4.4546	4	307
26	0.67191	0.0	8.14	0	0.538	5.813	90.3	4.682	4	307
27	0.95577	0.0	8.14	0	0.538	6.047	88.8	4.4534	4	307
28	0.77299	0.0	8.14	0	0.538	6.495	94.4	4.4547	4	307
29	0.10245	0.0	Sara	0	0.538	6.674	87.3	4.239	4	307
30	0.13081	0.0	8.14	0	0.538	5.713	94.1	4.233	4	307
31	1.35472	0.0	8.14	0	0.538	6.072	100.0	4.175	4	307
32	0.138799	0.0	8.14	0	0.538	5.95	82.0	3.99	4	307

						ŭ	_	•		
	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX
33	0.15172	0.0	8.14	0	0.538	5.701	95.0	3.7872	4	307
34	1.61282	0.0	8.14	0	0.538	6.096	96.9	3.7598	4	307
35	0.06417	0.0	5.96	0	0.499	5.933	68.2	3.3603	5	279
36	0.09744	0.0	5.96	0	0.499	5.841	61.4	3.3779	5	279
37	0.08014	0.0	nan	0	0.499	5.85	41.5	3.9342	5	279
38	0.17505	0.0	nan	0	0.499	5.966	30.2	3.8473	5	279
39	0.02763	75.0	2.95	0	0.428	6.595	21.8	5.4011	3	252
40	0.03359	75.0	nan	0	0.428	7.024	15.8	5.4011	3	252
41	0.12744	0.0	2.95	0	0.448	6.77	2.9	5.7209	3	233
42	0.1415	0.0	6.91	0	0.448	6.169	6.6	5.7209	3	233
43	0.15936	0.0	6.91	0	0.448	6.211	6.5	5.7209	3	233
44	0.12269	0.0	6.91	0	0.448	6.069	40.0	5.7209	3	233
45	0.17142	0.0	6.91	0	0.448	5.682	33.8	5.1004	3	233
46	0.18836	0.0	6.91	0	0.448	5.786	33.3	5.1004	3	233
47	0.22927	0.0	6.91	0	0.448	6.03	85.5	5.6894	3	233
48	0.25387	0.0	6.91	0	0.448	5.399	95.3	5.87	3	233
49	0.21977	0.0	6.91	0	0.448	5.602	62.0	6.0877	3	233
50	0.08873	21.0	nan	0	0.439	5.963	45.7	6.8147	4	243
51	0.04337	21.0	5.64	0	0.439	6.115	63.0	6.8147	4	243
52	0.0536	21.0	5.64	0	0.439	6.511	21.1	6.8147	4	243
53	0.04981	21.0	5.64	0	0.439	5.998	21.4	7.3197	4	243
54	0.0136	75.0	4	0	0.41	5.888	47.6	7.3197	3	469
55	0.01311	90.0	1.22	0	0.403	7.249	21.9	8.6966	5	226
56	0.02055	85.0	0.74	0	0.41	6.383	35.7	9.1876	2	313
57	0.01432	100.0	1.32	0	0.411	6.816	40.5	8.3248	5	256
58	0.15445	25.0	5.13	0	0.453	6.145	29.2	7.8148	8	284
59	0.10328	25.0	nan	0	0.453	5.927	47.2	6.932	8	284
60	0.14932	25.0	****	0	0.453	5.741	66.2	7.2254	8	284
61	0.17171	25.0	nan	0	0.453	5.966	93.4	6.8185	8	284
62	0.11027	25.0	5.13	0	0.453	6.456	67.8	7.2255	8	284
63	0.1265	25.0	5.13	0	0.453	6.762	43.4	7.9809	8	284
64	0.01951	17.5	1.38	0	0.4161	7.104	59.5	9.2229	3	216
65	0.03584	80.0	3.37	0	0.398	6.29	17.8	6.6115	4	337
66	0.04379	80.0	3.37	0	0.398	5.787	31.1	6.6115	4	337

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX
67	0.05789	12.5	3.4	0	0.409	5.878	21.4	6.498	4	345
68	0.13554	12.5	****	0	0.409	5.594	36.8	6.498	4	345
69	0.12816	12.5	****	0	0.409	5.885	33.0	6.498	4	345
70	0.08826	0.0	10.81	0	0.413	6.417	6.6	5.2873	4	305
71	0.15876	0.0	10.81	0	0.413	5.961	17.5	5.2873	4	305
72	0.09164	0.0	10.81	0	0.413	6.065	7.8	5.2873	4	305
73	0.19539	0.0	10.81	0	0.413	6.245	6.2	5.2873	4	305
74	0.07896	0.0	12.83	0	0.437	6.273	6.0	4.2515	5	398
75	0.09512	0.0	12.83	0	0.437	6.286	45.0	4.5026	5	398
76	0.10153	0.0	nan	0	0.437	6.279	74.5	4.0522	5	398
77	0.08707	0.0	nan	0	0.437	6.14	45.8	4.0905	5	398
78	0.05646	0.0	12.83	0	0.437	6.232	53.7	5.0141	5	398
79	0.08387	0.0	12.83	0	0.437	5.874	36.6	4.5026	5	398
80	0.04113	25.0	4.86	0	0.426	6.727	33.5	5.4007	4	281
81	0.04462	25.0	4.86	0	0.426	6.619	70.4	5.4007	4	281
82	0.03659	25.0	4.86	0	0.426	6.302	32.2	5.4007	4	281
83	0.03551	25.0	nan	0	0.426	6.167	46.7	5.4007	4	281
84	0.05059	0.0	nan	0	****	6.389	48.0	4.7794	3	247
85	0.05735	0.0	4.49	0	0.449	6.63	56.1	4.4377	3	247
86	0.05188	0.0	4.49	0	0.449	6.015	45.1	4.4272	3	247
87	0.07151	0.0	4.49	0	0.449	6.121	56.8	3.7476	3	247
88	0.0566	0.0	3.41	0	0.489	7.007	86.3	nan	2	270
89	0.05302	0.0	3.41	0	0.489	7.079	63.1	3.4145	2	270
90	0.04684	0.0	3.41	0	0.489	6.417	66.1	3.0923	2	270
91	0.03932	0.0	3.41	0	0.489	6.405	73.9	3.0921	2	270
92	0.04203	28.0	15.04	0	0.464	6.442	53.6	3.6659	4	270
93	0.02875	28.0	15.04	0	0.464	6.211	28.9	3.6659	4	270
94	0.04294	28.0	15.04	0	0.464	6.249	77.3	3.615	4	270
95	0.12204	0.0	2.89	0	0.445	6.625	57.8	3.4952	2	276
96	0.11504	0.0	2.89	0	****	6.163	69.6	3.4952	2	276
97	0.12083	0.0	2.89	0	0.445	8.069	76.0	3.4952	2	276
98	0.08187	0.0	2.89	0	0.445	7.82	36.9	3.4952	2	276
99	0.0686	0.0	2.89	0	0.445	7.416	62.5	3.4952	2	276
100	0.14866	0.0	8.56	0	0.52	6.727	79.9	2.7778	5	384

	CDINA	711	INIBUIG	CUAC	NOV	D14	465	, DIC	DAD	TAV
	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX
101	0.11432	0.0	8.56	0	0.52	6.781	71.3	2.8561	5	384
102	0.22876	0.0	nan	0	0.52	6.405	85.4	2.7147	5	384
103	0.21161	0.0	8.56	0	0.52	6.137	87.4	2.7147	5	384
104	0.1396	0.0	8.56	0	0.52	6.167	90.0	2.421	5	384
105	0.13262	0.0	8.56	0	0.52	5.851	96.7	2.1069	5	384
106	0.1712	0.0	8.56	0	0.52	5.836	91.9	2.211	5	384
107	0.13117	0.0	8.56	0	0.52	6.127	85.2	2.1224	5	384
108	0.12802	0.0	8.56	0	0.52	6.474	97.1	2.4329	5	384
109	0.26363	0.0	8.56	0	0.52	6.229	91.2	2.5451	5	384
110	0.10793	0.0	nan	0	0.52	6.195	54.4	2.7778	5	384
111	0.10084	0.0	10.01	0	****	6.715	81.6	2.6775	6	432
112	0.12329	0.0	10.01	0	0.547	5.913	92.9	2.3534	6	432
113	0.22212	0.0	10.01	0	0.547	6.092	95.4	2.548	6	432
114	0.14231	0.0	10.01	0	0.547	6.254	84.2	2.2565	6	432
115	0.17134	0.0	10.01	0	0.547	5.928	88.2	2.4631	6	432
116	0.13158	0.0	10.01	0	0.547	6.176	72.5	2.7301	6	432
117	0.15098	0.0	10.01	0	0.547	6.021	82.6	2.7474	6	432
118	0.13058	0.0	****	0	0.547	5.872	73.1	2.4775	6	432
119	0.14476	0.0	10.01	0	0.547	5.731	65.2	2.7592	6	432
120	0.06899	0.0	25.65	0	0.581	5.87	69.7	2.2577	2	188
121	0.07165	0.0	25.65	0	0.581	6.004	84.1	2.1974	2	188
122	0.09299	0.0	25.65	0	0.581	5.961	92.9	2.0869	2	188
123	0.15038	0.0	25.65	0	0.581	5.856	97.0	1.9444	2	188
124	0.09849	0.0	nan	0	0.581	5.879	95.8	2.0063	2	188
125	0.16902	0.0	nan	0	0.581	5.986	88.4	1.9929	2	188
126	0.38735	0.0	25.65	0	0.581	5.613	95.6	1.7572	2	188
127	0.25915	0.0	21.89	0	0.624	5.693	96.0	1.7883	4	437
128	0.32543	0.0	21.89	0	0.624	6.431	98.8	1.8125	4	437
129	0.88125	0.0	nan	0	0.624	5.637	94.7	1.9799	4	437
130	0.34006	0.0	21.89	0	0.624	6.458	98.9	nan	4	437
131	1.19294	0.0	21.89	0	0.624	6.326	97.7	2.271	4	437
132	0.59005	0.0	21.89	0	0.624	6.372	97.9	2.3274	4	437
133	0.32982	0.0	21.89	0	0.624	5.822	95.4	2.4699	4	437
134	0.97617	0.0	21.89	0	0.624	5.757	98.4	2.346	4	437

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX
135	0.55778	0.0	21.89	0	0.624	6.335	98.2	2.1107	4	437
136	0.32264	0.0	21.89	0	0.624	5.942	93.5	1.9669	4	437
137	0.35233	0.0	21.89	0	0.624	6.454	98.4	1.8498	4	437
138	0.2498	0.0	21.89	0	0.624	5.857	98.2	1.6686	4	437
139	0.54452	0.0	21.89	0	0.624	6.151	97.9	1.6687	4	437
140	0.2909	0.0	21.89	0	0.624	6.174	93.6	1.6119	4	437
141	1.62864	0.0	21.89	0	0.624	5.019	100.0	1.4394	4	437
142	3.32105	0.0	19.58	1	888	5.403	100.0	1.3216	5	403
143	4.0974	0.0	19.58	0	0.871	5.468	100.0	1.4118	5	403
144	2.77974	0.0	19.58	0	0.871	4.903	97.8	1.3459	5	403
145	2.37934	0.0	19.58	0	0.871	6.13	100.0	1.4191	5	403
146	0.13914	0.0	4.05	0	0.51	5.572	88.5	2.5961	5	296
147	0.09178	0.0	nan	0	0.51	6.416	84.1	2.6463	5	296
148	0.08447	0.0	4.05	0	0.51	5.859	68.7	2.7019	5	296
149	0.06664	0.0	4.05	0	0.51	6.546	33.1	3.1323	5	296
150	0.07022	0.0	4.05	0	0.51	6.02	47.2	3.5549	5	296
151	0.05425	0.0	4.05	0	0.51	6.315	73.4	3.3175	5	296
152	0.06642	0.0	4.05	0	0.51	6.86	74.4	2.9153	5	296
153	0.0578	0.0	2.46	0	0.488	6.98	58.4	2.829	3	193
154	0.06588	0.0	2.46	0	0.488	7.765	83.3	2.741	3	193
155	0.06888	0.0	nan	0	0.488	6.144	62.2	2.5979	3	193
156	0.09103	0.0	2.46	0	0.488	7.155	92.2	2.7006	3	193
157	0.10008	0.0	2.46	0	0.488	6.563	95.6	2.847	3	193
158	0.08308	0.0	2.46	0	0.488	5.604	89.8	2.9879	3	193
159	0.06047	0.0	2.46	0	0.488	6.153	68.8	3.2797	3	193
160	0.05602	0.0	2.46	0	nan	7.831	53.6	nan	3	193
161	0.07875	45.0	3.44	0	0.437	6.782	41.1	3.7886	5	398
162	0.12579	45.0	3.44	0	0.437	6.556	29.1	4.5667	5	398
163	0.0837	45.0	3.44	0	0.437	7.185	38.9	4.5667	5	398
164	0.09068	45.0	nan	0	0.437	6.951	21.5	6.4798	5	398
165	0.06911	45.0	3.44	0	0.437	6.739	30.8	6.4798	5	398
166	0.08664	45.0	3.44	0	0.437	7.178	26.3	6.4798	5	398

In [9]: df1.drop(['PTRATIO'], axis=1)

Out[9]:		CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX
	0	0.00632	18.0	2.31	0	0.538	6.575	65.2	4.09	1	296
	1	0.02731	0.0	7.07	0	0.469	6.421	78.9	4.9671	2	242
	2	0.02729	0.0	7.07	0	0.469	7.185	61.1	4.9671	2	242
	3	0.03237	0.0	2.18	0	0.458	6.998	45.8	6.0622	3	222
	4	0.06905	0.0	7.07	0	0.458	7.147	54.2		3	222
	•••	•••									
	162	0.12579	45.0	3.44	0	0.437	6.556	29.1	4.5667	5	398
	163	0.08370	45.0	3.44	0	0.437	7.185	38.9	4.5667	5	398
	164	0.09068	45.0	nan	0	0.437	6.951	21.5	6.4798	5	398
	165	0.06911	45.0	3.44	0	0.437	6.739	30.8	6.4798	5	398
	166	0.08664	45.0	3.44	0	0.437	7.178	26.3	6.4798	5	398

167 rows × 10 columns

Part B.2.2): Outliers in PTRATIO:

```
In [10]:
              display (df1['PTRATIO'][pd.to_numeric(df1['PTRATIO'], errors='coerce').isnull()])
         100
                Alina
         110
                   ##
         117
                 Adam
         Name: PTRATIO, dtype: object
         #substituting cells with numeric value:
In [11]:
          df1.at[110,'PTRATIO']=0
          df1.at[100,'PTRATIO']=0
          df1.at[117,'PTRATIO']=0
          df1['PTRATIO'].sample(10)
         89
                17.8
Out[11]:
         101
                 20.9
         110
         151
                16.6
         132
                 21.2
         118
                17.8
         145
                50.3
         27
                   21
         63
                19.7
         134
                 21.2
         Name: PTRATIO, dtype: object
In [12]: #finding more outliers using plots :
          df1['PTRATIO'] = df1['PTRATIO'].astype(float)
          df1['PTRATIO'].plot()
         <AxesSubplot:>
Out[12]:
```


As we can see from the graph above, there are a 2 outlier values in the PTRATIO Column

```
df1['PTRATIO'].describe()
In [13]:
         count
                   167.000000
Out[13]:
         mean
                    20.562515
         std
                    16.451836
         min
                     0.000000
         25%
                    17.800000
         50%
                    18.600000
         75%
                    20.900000
                   177.000000
         max
         Name: PTRATIO, dtype: float64
         sorted(df1['PTRATIO'], reverse=True)
In [14]:
```

```
[177.0,
Out[14]:
            137.0,
            51.3,
            50.3,
            47.0,
            46.0,
            44.0,
            21.2,
            21.2,
            21.2,
            21.2,
            21.2,
            21.2,
            21.2,
            21.2,
            21.2,
            21.2,
            21.2,
            21.2,
            21.2,
            21.2,
            21.2,
            21.0,
            21.0,
            21.0,
            21.0,
            21.0,
            21.0,
            21.0,
            21.0,
            21.0,
            21.0,
            21.0,
            21.0,
            21.0,
            21.0,
            21.0,
            20.9,
            20.9,
            20.9,
            20.9,
            20.9,
            20.9,
            20.9,
            20.9,
            20.9,
            19.7,
            19.7,
            19.7,
            19.7,
            19.7,
            19.7,
            19.2,
            19.2,
            19.2,
            19.2,
            19.2,
            19.2,
            19.2,
            19.2,
```

- 19.2,
- 19.1,
- 19.1,
- 19.1,
- 19.1,
- 19.1,
- 19.1,
- 19.1,
- 19.0,
- 19.0,
- 19.0,
- 19.0,
- 19.0,
- 18.9,
- 18.9,
- 18.9,
- 18.7,
- 18.7,
- 18.7,
- 18.7,
- 18.7,
- 18.7,
- 18.7,
- 18.6,
- 18.5,
- 18.5,
- 18.5,
- 18.5,
- 18.5,
- 18.3,
- 18.3,
- 18.2,
- 18.2,
- 18.2,
- 18.0,
- 18.0,
- 18.0,
- 18.0,
- 18.0,
- 17.9,
- 17.9,
- 17.9,
- 17.9, 17.9,
- 17.9,
- 17.9,
- 17.9,
- 17.9,
- 17.9,
- 17.8,
- 17.8,
- 17.8, 17.8,
- 17.8,
- 17.8,
- 17.8,
- 17.8,
- 17.8,
- 17.8,
- 17.8,

17.8, 17.8, 17.8, 17.8, 17.8, 17.8, 17.8, 17.8, 17.8, 17.8, 17.3, 16.8, 16.8, 16.8, 16.8, 16.6, 16.6, 16.6, 16.6, 16.6, 16.6, 16.6, 16.1, 16.1, 15.3, 15.2, 15.2, 15.2, 15.2, 15.2, 15.2, 15.2, 15.2, 15.2, 15.2, 15.2, 15.2, 15.2, 15.2, 15.1, 14.7, 14.7, 2.11, 0.23, 0.0, 0.0,

values 177 and 137 appear to be outliers from the PTRATIO column these might be because of a decimal error or a genuine one

Python Code to Implement Omission and Imputation:

Part C.1

0.0]

```
df1.replace(" ", np.nan, inplace=True)
In [15]:
          df1.head()
               CRIM
                      ZN INDUS CHAS
                                         NOX
                                                      AGE
                                                              DIS
                                                                   RAD
                                                                        TAX PTRATIO
Out[15]:
                                                 RM
          0 0.00632
                      18.0
                             2.31
                                                6.575
                                                      65.2 4.0900
                                                                         296
                                         0.538
                                                                                   15.3
          1 0.02731
                       0.0
                             7.07
                                       0 0.469
                                                6.421
                                                      78.9
                                                           4.9671
                                                                         242
                                                                                  17.8
          2 0.02729
                      0.0
                             7.07
                                               7.185
                                                                         242
                                                                                  17.8
                                        0.469
                                                      61.1
                                                           4.9671
            0.03237
                       0.0
                             2.18
                                       0 0.458
                                               6.998
                                                     45.8
                                                           6.0622
                                                                         222
                                                                                  18.7
          4 0.06905
                             7.07
                                                                         222
                      0.0
                                       0 0.458 7.147 54.2
                                                             NaN
                                                                      3
                                                                                  18.7
          print('Number of cells after replacing blanks with Nan: ')
In [16]:
          df1.isna().sum()
          Number of cells after replacing blanks with Nan:
          CRIM
Out[16]:
          ΖN
                      0
          INDUS
                      0
          CHAS
                      0
          NOX
                      2
          RM
          AGE
          DIS
          RAD
          TAX
          PTRATIO
          dtype: int64
```

Python code for Omission:

Part c.2

```
In [17]: reduced_df = df1.dropna()
    print('Number of rows after removing rows with missing values: ', len(reduced_df))
    Number of rows after removing rows with missing values: 162
```

Python Code for Imputation

```
# displaying the null values for columns where they exist:
display (df1['INDUS'][pd.to_numeric(df1['INDUS'], errors='coerce').isnull()])
display (df1['DIS'][pd.to_numeric(df1['DIS'], errors='coerce').isnull()])
display (df1['NOX'][pd.to_numeric(df1['NOX'], errors='coerce').isnull()])
```

```
5
        ****
7
        ****
9
11
         nan
24
         nan
29
        Sara
37
         nan
38
         nan
40
         nan
50
         nan
59
         nan
        ***
60
61
         nan
68
        ***
        ****
69
76
         nan
77
         nan
83
         nan
84
         nan
102
         nan
110
         nan
118
       ****
124
         nan
125
         nan
129
         nan
147
         nan
155
         nan
164
         nan
Name: INDUS, dtype: object
4
      NaN
88
      NaN
130
      NaN
160
      NaN
Name: DIS, dtype: float64
13
84
96
       ****
       ****
111
142
         &&&
160
         NaN
Name: NOX, dtype: object
df1['INDUS'].replace("*****", np.NaN, inplace=True)
df1['INDUS'].replace("****", np.NaN, inplace=True)
df1['INDUS'].replace("Sara", np.NaN, inplace=True)
df1['INDUS'].replace("nan", np.NaN, inplace=True)
display (df1['INDUS'][pd.to_numeric(df1['INDUS'], errors='coerce').isnull()])
```

In [19]:

```
5
                 NaN
          7
                 NaN
          9
                 NaN
          11
                 NaN
          24
                 NaN
          29
                 NaN
          37
                 NaN
          38
                 NaN
          40
                 NaN
          50
                 NaN
          59
                 NaN
          60
                 NaN
          61
                 NaN
          68
                 NaN
          69
                 NaN
          76
                 NaN
          77
                 NaN
          83
                 NaN
          84
                 NaN
          102
                 NaN
          110
                 NaN
          118
                 NaN
          124
                 NaN
          125
                 NaN
          129
                 NaN
          147
                 NaN
          155
                 NaN
          164
                 NaN
          Name: INDUS, dtype: object
          df1['INDUS'] = df1['INDUS'].astype(float)
In [20]:
         # imputation of NaN cells with mean Values:
In [21]:
          df1['INDUS'].mean()
          df1['INDUS']=df1['INDUS'].fillna(df1['INDUS'].mean())
          df1['INDUS'].sample(20)
                  9.122878
Out[21]:
          54
                  4.000000
          129
                  9.122878
          97
                  2.890000
          123
                 25.650000
          30
                  8.140000
          59
                  9.122878
          19
                  8.140000
          26
                  8.140000
          113
                 10.010000
          53
                  5.640000
          115
                 10.010000
          9
                  9.122878
          116
                 10.010000
          7
                  9.122878
          80
                  4.860000
          72
                 10.810000
          106
                  8.560000
          149
                  4.050000
                  7.070000
          2
          Name: INDUS, dtype: float64
```