MP-1 TUTORIAL-7

1. Demonstrate the Initial Basic Solution in Transportation problem using NW method in Linear Programming (U-V method).

NWCR

Transportation cost =

U-V method

5 19	2) 30	50	10	7
70	6) 30	3) 40	60	٩
40	8	生 70	14 20	18
5	8	7	14	•

And the allocations are in independent positions: The problem is non-degenerate

5)19	2 30		50	10	4, = 0
70	30	3	40	60	42=0
40	8	4)	70	14) 20	43=30
V1=19	V2 30	V ₃	- 40	V4=-10	•

$$(1,1)$$
 $u_1 + v_1 = 19$ $v_1 = 19$

$$(1, 2)$$
 $U_1 + V_2 = 30$ $V_2 = 30$ $0 + V_1 = 30$

$$(2,2)$$
 $u_1+v_2=30$ $u_2=0$ $u_1=0$

$$(2,3)$$
 $y_2 + y_3 = 40$ $y_3 = 40$ $y_3 = 40$

$$(3,3)$$
 $u_3 + v_3 = 70$ $u_3 = 30$ $u_3 = 30$

$$(3, 4)$$
 $y_3 + v_4 = 20$ $v_{y} = -10$ $3C + v_{y} = 20$

$$(3,2)$$
 $8 - (U_3 + V_2)$ - 52

If all the cells are non-negative then the solution is optimal.

Here cell evaluation -9, -12 are negative so sol is not optimal

= Entering cell (3,2)

5)19	30	50	10
70	301	3) 40	60
40	08,00	4) 70 40	14) 20

Form a loop starting from (2, L) $\theta = 0$ min $\{4-0, 6-0\} = 0$ 4-0=0

19	2 30	20	10
70	30] 40	60
40	4) 8	70	14 20
		leaving	cell

5)19	2) 3D	(10)	(32)
(1)	2) 30	7 40	(18) 60
(43)	4) 8	(62) 70	14) 20

Here (1,4) cell evaluation 13 -32

: Entering cell (1,4)

. 17

Form a loop starting from the cell (1,4)

2-0 =0

5 19	30	50	10	41 = 0
70	30	2)	60	U, = 32
40	8	70	12) 20	U3=10
V1=19	V2=-2	V3= 8	V4=10	1

value.

$$(2,2)$$
 $U_1 + V_2 = 30$ $U_2 = 32$

CS Scanned with CamScanner

(1,4)

$$(3,2)$$
 $V_3 + V_2 = 8$ $V_{L} = -2$

$$(2,3)$$
 $U_1 + V_3 = 40$ $V_3 = 8$ $V_3 = 8$

519	3D	50	10
(⁴⁾ 70	30	7 40	⁽¹⁸⁾ 60
(1) 40	6) 8	(51) 70	12) 20

Now all the cell evaluations are non-negative

Transportation cost