USB_DEVTRSAC

User guide

author: Maksim Shaklunov

email: maxseeking@ya.ru

1 Pins

Name	Dir	Description	
System			
clk_4xrate	input	Clock. Frequency must be 48 MHz for full-speed device and must be 6 MHz for low-speed device.	
rst0_async	input	0: asynchronous reset. 1: idle.	
rst0_sync	input	0: synchronous reset. It can be used by software reset. 1: idle.	
Transceiver			
drx_plus	input	Receiver single-ended D+ signal.	
drx_minus	input	Receiver single-ended D- signal.	
drx	input	Receiver differential signal.	
dtx_plus	output	Transmitter single-ended D+ signal	
dtx_minus	output	Transmitter single-ended D- signal	
dtx_oe	output	0: idle. 1: transmitter output enable.	
		Transaction (synchronous with clk_4xrate)	
trsac_req	output	Host request. 0: OK. Transaction is successful completed. 1: ACTIVE. USB_DEVTRSAC received or need to send data for particular endpoint. trsac_ep, trsac_type have valid values. 2: FAIL. Transaction failed.	
trsac_reply	input	Device reply. 0: ACK/DATA. USB_DEVTRSAC sends ACK packet at OUT/SETUP transaction and sends DATA packet at IN transaction. 1: NAK. USB_DEVTRSAC sends NAK packet. 2: STALL. USB_DEVTRSAC sends STALL packet.	
trsac_ep	output	Endpoint address.	
trsac_type	output	Transaction type. 0: SETUP. 1: OUT. 2: IN.	
rfifo_rd	input	RFIFO is place where USB_DEVTRSAC save data received from host. RFIFO is two bytes length. 0: idle. 1: RFIFO read enable.	
rfifo_empty	output	0: RFIFO is not empty. 1: RFIFO is empty.	
rfifo_rdata	output	RFIFO data byte.	
wfifo_wr	input	RFIFO is place where USB_DEVTRSAC read data which will be sent to host. WFIFO is two bytes length. 0: idle. 1: WFIFO write enable.	
wfifo_full	output	0: WFIFO is not full. 1: WFIFO is full.	
wfifo_wdata	input	WFIFO data byte.	

Name	Dir	Description	
Endpoint (synchronous with clk_4xrate)			
ep_enable	input	Bus has 15 lines each line from 1 to 15 correspond endpoint from 1 to 15. 0: disable transactions and reset toggle bit for particular endpoint. 1: enable transactions for particular endpoint.	
ep_isoch	input	Bus has 15 lines each line from 1 to 15 correspond endpoint from 1 to 15. 0: idle. 1: enable isochronous transaction behavior for particular endpoint.	
ep_intnoretry	input	Bus has 15 lines each line from 1 to 15 correspond endpoint from 1 to 15. 0: idle. 1: enable interrupt with no retry transaction behavior for particular endpoint.	
Start of frame (synchronous with clk_4xrate)			
sof_tick	output	0: idle. 1: USB_DEVTRSAC received SOF packet. High pulse duration is one clock cycle.	
sof_value	output	Latched 11-bit SOF value.	
Device (synchronous with clk_4xrate)			
device_state	output	b_000: POWERED state. b_001: DEFAULT state. b_010: ADDRESSED state. b_011: CONFIGURED state. b_1xx: SUSPENDED state.	
device_addr_wr	input	0: idle. 1: write device address. High pulse duration is one clock cycle.	
device_addr	input	Device address.	
device_config_wr	input	0: idle. 1: write device configuration. High pulse duration is one clock cycle.	
device_config	input	Device configuration.	
device_speed	input	0: low-speed. 1: full-speed.	
device_wakeup	input	0: idle. 1: enable wakeup signaling.	

2 Purpose

USB_DEVTRSAC accelerates USB Full/Low-speed peripheral development. It covers USB protocol up to transaction level:

- USB device states control;
- transaction control;
- data toggle bit managing;
- packet encoding/decoding;
- remote wakeup signaling.

Using USB_DEVTRSAC, device designer focuses on transfers and requests processing without implementing transaction level of USB protocol.

The figure 2 demonstrates functional parts of the abstract device, which use USB_DEVTRSAC: device specific logic (endpoints set, standard/class-specific request processing and etc.), USB_DEVTRSAC, transceiver.

Figure 2 – USB device.

3 Transaction control

All USB transfers consist of one or multiple transactions. Transactions can be divided in three general types: IN, OUT, SETUP.

In all transactions, USB_DEVTRSAC manages endpoints toggle bit by itself. However, USB_DEVTRSAC does not process any standard requests. Because of that, device specific logic has to reset toggle bits after SetConfiguration(), SetInterface(), ClearFeature(EP_HALT) with **ep enable** bus: to make low pulse at line that correspond to endpoint.

3.1 IN transaction

Next phases take place in IN transaction of control, bulk, interrupt transfers:

- host sends TOKEN IN packet;
- device sends DATA packet. If endpoint is unable to send data device sends NAK packet, if endpoint halted device sends STALL packet;
- host sends ACK packet if it has received DATA packet.

The figure 3.1 demonstrates example of the IN transaction.

Figure 3.1 – IN transaction.

At the first phase USB_DEVTRSAC receives TOKEN IN packet and validates token address versus device address. If it is successful, USB_DEVTRSAC sets:

- **trsac_req=ACTIVE** indicating beginning of transaction;
- **trsac_ep=EP_ADDR** indicating endpoint address;
- **trsac_ep=IN** indicating transaction type.

At the second phase device specific logic has to answer with **trsac_reply** during 30 clock cycles after **trsac_req=ACTIVE**:

• trsac_reply=ACK/DATA, USB_DEVTRSAC begins to send DATA packet. Device specific logic has to write first byte to WFIFO during 50 clock cycles after trsac_req=ACTIVE and continue writing till end of data. When WFIFO becomes empty USB_DEVTRSAC end DATA packet. If WFIFO never had data, zero length DATA packet will be sent. At the third phase USB_DEVTRSAC waits ACK packet from host. And if USB_DEVTRSAC receives packet, it sets trsac_req=OK; if does not, it sets trsac_req=FAIL;

- **trsac_reply=NAK**, USB_DEVTRSAC sends NAK packet. After that USB_DEVTRSAC sets **trsac_req=OK**;
- **trsac_reply=STALL**, USB_DEVTRSAC sends STALL packet. After that USB_DEVTRSAC sets **trsac_req=OK**.

Next phases take place in IN transaction of the isochronous transfer:

- host sends TOKEN IN packet;
- device sends DATA packet.

Difference from previous transfers is that isochronous transfer has no handshake. So device specific logic must always answer with **trsac_reply=ACK/DATA**.

3.2 OUT transaction

Next phases take place in IN transaction of control, bulk, interrupt transfers:

- host sends TOKEN OUT packet;
- host sends DATA packet;
- device sends ACK packet. If endpoint is unable to receive data device sends NAK packet, if endpoint halted device sends STALL packet.

The figure 3.2 demonstrates example of the OUT transaction.

Figure 3.2 – OUT transaction.

At the first phase USB_DEVTRSAC receives TOKEN OUT packet and validates token address versus device address.

At the second phase USB DEVTRSAC begins to receive DATA packet and sets:

- **trsac_req=ACTIVE** indicating beginning of transaction;
- **trsac_ep=EP_ADDR** indicating endpoint address;
- **trsac ep=OUT** indicating transaction type.

Device specific logic has to answer with **trsac_reply** during 30 clock cycles after **trsac_req=ACTIVE**:

• **trsac_reply=ACK/DATA**, device specific logic reads data from RFIFO. When USB_DEVTRSAC receives DATA packet with no error, it sends ACK packet. After that USB_DEVTRSAC sets **trsac_req=OK**. When USB_DEVTRSAC receives DATA packet with error, it sends nothing. After that USB_DEVTRSAC sets **trsac_req=FAIL**.

- When overflow occurs in RFIFO, USB_DEVTRSAC sends nothing. After that USB_DEVTRSAC sets **trsac_req=FAIL**;
- **trsac_reply=NAK**, when USB_DEVTRSAC receives DATA packet, it sends NACK packet. After that USB_DEVTRSAC sets **trsac_req=OK**;
- **trsac_reply=STALL** when USB_DEVTRSAC receives DATA packet, it sends NACK packet. After that USB_DEVTRSAC sets **trsac_req=OK**.

Next phases take place in IN transaction of the isochronous transfer:

- host sends TOKEN IN packet;
- host sends DATA packet.

Difference from previous transfers is that isochronous transfer has no handshake. So device specific logic just read data from the RFIFO.

3.3 SETUP transaction

Setup transaction can only be in the control transfer:

- host sends TOKEN SETUP packet;
- host sends DATA packet;
- device always sends ACK packet if it had no packet errors.

USB_DEVTRSAC has same behavior as in OUT transaction.

4 Standard/class-specific requests and enumeration

USB_DEVTRSAC does not process any standard/class-specific requests, it is task for device specific logic.

While enumeration process, USB_DEVTRSAC indicates device state with **device_state** signal:

- After system reset USB_DEVTRSAC goes to POWERED state.
- After USB reset USB_DEVTRSAC goes to DEFAULT state. Now it can process endpoint 0 transaction.
- After SetAddress() request device specific logic has to set device address with device_addr_wr, device_addr. Then USB_DEVTRSAC goes to ADDRESSED state and filter next transactions with new address.
- After SetConfiguration() request device specific logic have to set device configuration with **device_config_wr**, **device_config**. Then USB_DEVTRSAC goes to CONFIGURED state. Now it can process transactions for endpoints from 1 to 15. Device specific logic must setup next signals for endpoints 1-15:
 - **ep_enable**[15:1]. USB_DEVTRSAC enable/disable corresponded endpoint transactions;
 - **ep_isoch**[15:1]. USB_DEVTRSAC apply isochronous transaction behavior for corresponded endpoint.
 - **ep_intnoretry**[15:1]. USB_DEVTRSAC apply interrupt transaction behavior with no retry mechanism for corresponded endpoint. USB_DEVTRSAC always toggle DATA PID in spite of receiving ACK from host. This is for IN interrupt endpoint only.

5 Remote wakeup

The figure 5 demonstrates remote wakeup signaling. When bus idle continues ~5.5 ms USB_DEVTRSAC goes in SUSPENDED state. Then if USB_DEVTRSAC detects **device_wakeup=1**, it generate ~3 ms K state on USB lines. High pulse duration of the **device_wakeup** must be at least one clock cycle.

Figure 5 – Remote wakeup signaling.

6 Start of frame

The figure 6 demonstrates SOF packet receiving. High pulse duration of the **sof_tick** is one clock cycle.

Figure 6 – SOF packet receiving.