PHYSICAL DESIGN AND DESIGN FOR TEST HIRE AND TRAIN PROGRAM (EDGE)

Final Project Report

Project Title : ALU with Shifter Design

Name : Tanvir Hoque Rizve

Team ID : Team 14

Company : THiNK Silicon

The Block diagram of the ALU with Shifter is:

Fig. 1: Block diagram of ALU with shifter.

Functionality of the ALU is given in the below Table:

(Control Signal			F	Cout				
S2	S 1	S0	Cin						
0	0	0	0	F=A	Cout=0				
0	0	0	1	F=A-1	$Cout = 1 \text{ IF } A \neq 0$				
0	0	1	0	F=A-B-1	Cout = 1 IF A>B				
0	0	1	1	F=A+B+1	Cout=1 if $(A+B) > = 2^4-1$				
0	1	0	0	F=A+1	$Cout=1 if A=2^4-1$				
0	1	0	1	F=A+B	Cout=1 if $(A+B) > = 2^4$				
0	1	1	0	F=A-B	$Cout=1 \text{ if } A=2^4-1$				
0	1	1	1	F=A	Cout=1				
1	0	0	1	F=A OR B	Cout=0				
1	0	1	1	F=A`	Cout=0				
1	1	0	1	F=A XOR B	Cout=0				
1	1	1	1	F=A AND B	Cout=0				

H1	H0	Operation	Function
0	0	O=F	Transfer (no shift)
0	1	O = SHR(F)	Shift 1-bit right
1	0	O = SHL(F)	Shift 1-bit left
1	1	O = 0	Transfer 0

Write the verilog code of the ALU and test the ALU by designing a testbench in Verilog:

The Design devided into Three module. Two submodules are ALU.v and SHIFTER.v. TOP.v is the top module of the design.

```
module TOP (
        input [3:0] A,
        input [3:0] B,
        input [2:0] S,
        input Cin,
        input clk,
        input reset,
        input [1:0] H,
        output [3:0] O,
        output Cout
        );
wire [3:0] W,
ALU alu_inst (
        .A(A),
        .B(B),
        .S(S),
        .Cin(Cin),
        .clk(clk),
        .reset(reset),
        .Cout(Cout),
        .F(W)
        );
SHIFTER shifter_inst (
        .F(W),
        .H(H),
        .0(0)
endmodule
```

```
module SHIFTER(F,H,O);
input [3:0]F;
input[1:0]H;
output reg O;

always@*
begin
case(H)
2'b00:O=F;
2'b01:O=F>>1;
2'b11:O=0;
endcase
end
endmodule
```

```
module ALU(A,B,S,Cin,clk,reset,F,Cout);
input [3:0]A,B;
 input [2:0]S;
 input Cin,clk,reset;
 output reg [3:0]F;
 output reg Cout;
 always@(posedge clk or posedge reset)
  begin
if(reset==1)
begin
          F=4'b0000;
          Cout=0;
end
else
          begin
case({S,Cin})
//Operation 1 (F=A,Cout=0)
  4'b0000:
begin
   F=A:
   Cout=0;
//Operation 7 (F=A-1,Cout=1 on condition)
  4'b0001:
begin
  F=A-1;
  if(A!=0)
          Cout=1;
  else
          Cout=0;
end
//Operation 5 (F=A-B-1,Cout=1 on
condition)
  4'b0010:
begin
   F=A-B-1;
  if((A>B))
  Cout=1;
  else
          Cout=0;
end
//Operation 4
  4'b0011:
begin
  F=A+B+1:
   if((A+B)>=15)
    Cout=1:
   else
          Cout=0:
end
//Operation 2
  4'b0100:
begin
    F=A+1;
   if(A==15)
    Cout=1;
   else
          Cout=0;
```

end

```
//Operation 3
  4'b0101:
begin
    F=A+B;
   if((A+B)>=16)
    Cout=1;
          Cout=0;
//Operation 6
  4'b0110:
begin
    F=A-B;
   if((A>=B))
    Cout=1;
          else
          Cout=0;
//Operation 8
  4'b0111:
    F=A;
    Cout=1;
//Operation 9
  4'b1001:
   F= A | B;
   Cout=0;
//Operation 12
  4'b1011:
begin
   F= ~A;
   Cout=0;
end
//Operation 10
  4'b1101:
begin
   F= A ^ B;
   Cout=0;
end
//Operation 11
  4'b1111:
begin
   F=A & B;
   Cout=0;
end
default:
begin
Cout=0;
F=4'b0000;
end
   endcase
end
end
endmodule
```


Fig:Block Diagram of DUT

Fig: Output Waveform

Logical Equivalence Check (LEC):

Synthesis

Now synthesis the design in gpdk045 in cadence Genus. Use the following files:

File Name	Uses
slow_vdd1v0_basicCells.lib	Standard cell library for slow corner operation (setup
	check)
fast_vdd1v0_basicCells.lib	Standard cell library for fast corner operation (hold
	check)
gsclib045_tech.lef	Process technology .lef file for 45nm tech node
gsclib045_macro.lef	Standard cell physical information for 45nm tech node

Timing report After synthesis

legacy_genus:/>

legacy_genus:/> report_timing Warning: Possible timing problems have been detected in this design. [TIM-11] : The design is 'TOP'. Generated by: Genus(TM) Synthesis Solution 16.13-s036_1
Generated on: Jun 13 2023 09:30:02 am
Module: TOP
Technology libraries: stow vddIv0 1.0
Genating conditions: Vireload mode: enclosed
Area mode: timing library Pin Fanout Load Slew Delay Arrival Type (fF) (ps) (ps) (clock func_clk) (TOP.sdc_line_17_2_1) launch ext delay 4400 4 1.3 0 +0 A[1] alu_inst/A[1] g3755/A g3755/Y in port 400 F INVX1 9 3.2 73 +45 809 1025 F 1679 F 1679 1731 R (clock func clk) 5000 R Cost Group : 'func_clk' (path_group 'func_clk')
Timing slack : 3121ps
Start-point : A[1]
End-point : alu_inst/Cout_reg/D

power consumption report:

```
legacy_genus:/> report_power
  Generated by:
                          Genus(TM) Synthesis Solution 16.13-s036 1
                          Jun 13 2023 09:26:59 am
  Generated on:
 Module:
                          slow vddlv0 1.0
  Technology libraries:
                         fast_vddlv0 1.0
PVT_0P9V_125C (balanced_tree)
  Operating conditions:
                          enclosed
  Wireload mode:
                          timing library
  Area mode:
                     Leakage Dynamic Total
  Instance Cells Power(nW) Power(nW) Power(nW)
TOP
                 152
                         5.931 18719.206 18725.137
                         5.513 16624.631 16630.143
                 139
  alu_inst
  shifter_inst 13
                       0.419 1142.720 1143.138
legacy_genus:/>
```

Mapping report:

Generate Generate Module:		Genus(TM) Synthesis Solution 16.13-s036_1 Jun 13 2023 09:36:04 am TOP							
Technolo	gy libraries:		vddlv0 1.0						
			vddlv0 1.0						
	g conditions:		P9V_125C (balanced_tree)						
Wireload		enclo							
Area mod	le:	timin	ig library						
Gate	Instances	Area	Library						
AND2X1	1	1.368	slow_vddlv0						
A021XL	1	2.394	slow_vddlv0						
A0I211XL	2	4.104	slow_vddlv0						
A0I21X1	3	5.130	slow vddlv0						
A0I221X1		14.364	slow vddlv0						
A0I222X1	2	6.156	slow_vdd1v0						
A0I22X1	7	14.364	slow vddlv0						
DFFRHQX1	5	30.780	slow vddlv0						
INVX1	29	19.836	slow_vddlv0						
MXI2XL	1	2.394	slow vddlv0						
NAND2BX1	5	6.840	slow_vddlv0						
NAND2X1	15	15.390	slow vddlv0						
NAND3X1	1	1.710	slow vddlv0						
NAND4XL	1	1.710	slow_vdd1v0						
NOR2BX1	3	4.104	slow_vddlv0						
NOR2X1	17	17.442	slow vddlv0						
NOR2XL	1	1.026	slow_vddlv0						
NOR3X1	1	1.710	slow_vddlv0						
NOR4X1	1	1.710	slow_vddlv0						
0A21X1	2	4.104	slow_vddlv0						
0A22X1	1	2.394	slow vddlv0						
0AI211X1	6	10.260	slow_vddlv0						
0AI21X1	4	6.840	slow_vddlv0						
0AI221X1	5	11.970	slow vddlv0						
0AI222X1	4	10.944	slow_vddlv0						
0AI22X1	11	22.572	slow_vddlv0						
OAI2BB1X1	4	6.840	slow_vddlv0						
OAI32X1	1	2.394	slow_vddlv0						
OR2X1	5	6.840	slow_vddlv0						
XNOR2X1	6	14.364	slow_vdd1v0						
XOR2X1	1	2.736	slow vddlv0						

legacy_genus:/> report gates

Type	Instances	Area	Area %
sequential	5	30.780	12.1
inverter	29	19.836	7.8
logic	118	204.174	80.1
physical_cells	0	0.000	0.0
total	152	254.790	100.0

152 254.790

legacy_genus:/>

XNOR2X1 total

Area

Schamatic Diagram after synthesis

Fig: TOP module

Fig:Sub module -ALU

Fig:Sub module- Shifter

DFT

Create Scan for DFT:

```
Summary of check dft rules
       *****************
       Number of usable scan cells: 48
Clock Rule Violations:
         Internally driven clock net: 0
             Tied constant clock net: 0
                  Undriven clock net: 0
       Conflicting async & clock net: 0
                     Misc. clock net: 0
Async. set/reset Rule Violations:
      -----
       Internally driven async net: 0
             Tied active async net: 0
                Undriven async net: 0
                   Misc. async net: 0
  Total number of DFT violations: 0
  Total number of Test Clock Domains: 1
     DFT Test Clock Domain: clk
       Test Clock 'clk' (Positive edge) has
                                            5 registers
  Number of user specified non-Scan registers:
     Number of registers that fail DFT rules:
                                               0
     Number of registers that pass DFT rules:
                                               5
  Percentage of total registers that are scannable: 100%
legacy_genus:/>
```

There are total 5 FFs and all of them are replaced with scannable FFs.

Placement AND Routing

In placement and routing stage, first of all, we have to import design to the innovous using the TOP_placement.tcl file. After that floorPlaning and PowerPlaning can be done using TOP_floorplan.tcl file.

Fig: FloorPlan and PowerPlan

Placement can be done after powerPlan:

Fig: Placement of the standards cell

```
innovus 21> report_constraint -drv_violation_type max_capacitance -all_violators
Generated by: Cadence Innovus 16.10-p004_1
 Generated on: Tue Jun 13 11:15:02 2023
Design: TOP
Command:
               Linux x86_64(Host ID CadenceServer3.localdomain)
               report_constraint -drv_violation_type max_capacitance -all_violators
# format : frame 1 : split 1
Check type : max_capacitance
No Violations found
innovus 22> report_constraint -drv_violation_type max_transition -all_violators
Generated by: Cadence Innovus 16.10-p004_1
  05:
                Linux x86 64(Host ID CadenceServer3.localdomain)
  Generated on: Tue
Design: TOP
                 Tue Jun 13 11:16:10 2023
                report_constraint -drv_violation_type max_transition -all_violators
  Command:
# format : frame 1 : split 1
Check type : max transition
 No Violations found
innovus 23>
 innovus 23> report_constraint -drv_violation_type max_fanout -all_violators
# Generated by: Cadence Innovus 16.10-p004_1
  05:
                Linux x86 64(Host ID CadenceServer3.localdomain)
                 Tue Jun 13 11:16:43 2023
  Generated on:
#
#
          TOP
  Design:
                 report_constraint -drv_violation_type max_fanout -all_violators
# Command:
# format : frame 1 : split 1
 Check type : max_fanout
 No Violations found
 innovus 24>
```

Fig: Checking DRV violations

After placement, it is necessary to check timing reports before Clock Tree Synthesis:

```
timeDesign Summary
Setup views included:
 func@WC_rcworst125.setup
      Setup mode | all | reg2reg | default |
             WNS (ns): | 2.795 | N/A | 2.795
             TNS (ns): 0.000
                                      N/A
                                              0.000
     Violating Paths: 0
                                      N/A
                                 N/A 15
          All Paths: 15
     DRVs
                   | Nr nets(terms) | Worst Vio | Nr nets(terms)

        max_cap
        0 (0)

        max_tran
        0 (0)

        max_fanout
        0 (0)

        max_length
        0 (0)

                          0 (0)
                                            0.000
                                            0.000
                                                               0 (0)
                                            0
                                                               0 (0)
                                                               0 (0)
Density: 72.364%
Routing Overflow: 0.00% H and 0.00% V
Reported timing to dir ./timingReports
Total CPU time: 0.65 sec
Total Real time: 1.0 sec
Total Memory Usage: 1250.578125 Mbytes
```

Fig: Setup check before CTS

Clock Tree Synthesis (CTS):

A clock tree is needed to be built in the design for balancing clock skew and latency after optimizing the design in the placement stage (pre-CTS stage). It is built using a clock buffer or inverter cells.

Setup Time: the amount of time the data at the input must be stable before the active edge of clock.

Hold Time: the amount of time the data at the input must be stable after the active edge of clock.

A positive slack shows that the timing path meets the timing constraint requirements (setup and hold), whereas a negative slack indicates the timing path violates the setup and hold timing constraints requiring further optimization.

Setup check after CTS:

	 									 	 -	 							
	t	ime	еDe	sig	gn	Su	mn	ıaı	~y										

Setup views included: func@WC_rcworst125.setup

Setup mode	all	reg2reg	default
WNS (ns): TNS (ns): Violating Paths: All Paths:	0.000 0	N/A N/A N/A N/A	2.800 0.000 0 15

DRVs	Real	Total				
	Nr nets(terms)	Worst Vio	Nr nets(terms)			
max_cap max_tran max_fanout max_length	0 (0) 0 (0) 0 (0) 0 (0)	0.000 0.000 0	0 (0) 0 (0) 0 (0) 0 (0)			

Density: 72.909%

Routing Overflow: 0.00% H and 0.00% V

Reported timing to dir ./timingReports

Total CPU time: 0.28 sec Total Real time: 1.0 sec

Total Memory Usage: 1347.75 Mbytes

Hold check After CTS:

timeDesign Summary

Hold views included: func@BC_rcbest0.hold

Hold mode	all		default
WNS (ns): TNS (ns): Violating Paths: All Paths:	0.000 0	N/A N/A N/A N/A	0.013 0.000 0 15

Density: 72.909%

Routing Overflow: 0.00% H and 0.00% V

Reported timing to dir ./timingReports

Total CPU time: 0.25 sec Total Real time: 0.0 sec

Total Memory Usage: 1322.796875 Mbytes

After CTS, we have to perform routing using **TOP_route.tcl** file.

Power consumption:

Total Power										
Total Internal Power: Total Switching Power: Total Leakage Power: Total Power:	0. 0.	00799577 00324466 00000712 01124756	71.0889% 28.8477% 0.0633%							
Group		Internal Power	Power		Total Power	Percentage (%)				
Sequential Macro IO Combinational Clock (Combinational) Clock (Sequential)		0.003344 0 0 0.004652 0	0	6.647e-07 0 0 6.459e-06	0	0 69.45				
Total		0.007996	0.003245	7.124e-06	0.01125	100				
Rail	Voltage	Internal Power	Switching Power	Leakage Power	Total Power	Percentage (%)				
VDD	0.9	0.007996	0.003245	7.124e-06		100				
* Power Distribution Summary: * Highest Average Power: alu_inst/F_reg[3] (DFFRHQX1): 0.0007084 * Highest Leakage Power: FE_ECOC6_reset (BUFX16): 4.904e-07 * Total Cap: 2.2083e-13 F * Total instances in design: 157 * Total instances in design with no power: 0 * Total instances in design with no activty: 0										
* Total	Fillers a	nd Decap:	0							
Ended Static Power Report Generation: (cpu=0:00:00, real=0:00:00, mem(process/total)=1093.75MB/1093.75MB)										

Filler cells is used to fill gaps in the layout after placement and routing is completed.

Filler cell insertion was completed before physical verification can begin.

Fig: Final Design

DRC check:

```
innovus 23> verify_drc

*** Starting Verify DRC (MEM: 1905.8) ***

VERIFY DRC ..... Starting Verification

VERIFY DRC ..... Initializing

VERIFY DRC ..... Deleting Existing Violations

VERIFY DRC ..... Creating Sub-Areas

**WARN: (IMPVFG-1198): The number of CPUs requested 8 is larger than that verify_drc used 1. In Multithreading mode, the nu
mber of CPUs verify_drc used is not larger than the number of subareas.

Use 'setMultiCpuUsage -localCpu' to specify the less cup number if the verify area is not large.

VERIFY DRC ..... Using new threading

VERIFY DRC ..... Sub-Area : 1 of 1

VERIFY DRC ..... Sub-Area : 1 complete 0 Viols.

Verification Complete : 0 Viols.

*** End Verify DRC (CPU: 0:00:00.2 ELAPSED TIME: 0.00 MEM: 126.2M) ****
```

Connectivity Check:

```
innovus 24> verify connectivity
VERIFY_CONNECTIVITY use new engine.

********* Start: VERIFY CONNECTIVITY ********
Start Time: Wed Jun 14 15:56:55 2023

Design Name: TOP
Database Units: 2000
Design Boundary: (0.0000, 0.0000) (26.0000, 26.0300)
Error Limit = 1000; Warning Limit = 50
Check all nets
Multi-CPU acceleration using 8 CPU(s).

Begin Summary
Found no problems or warnings.
End Summary
End Time: Wed Jun 14 15:56:55 2023
Time Elapsed: 0:00:00.0

********* End: VERIFY CONNECTIVITY ********
Verification Complete: 0 Viols. 0 Wrngs.
(CPU Time: 0:00:00.7 MEM: 7.781M)
```

Verify PG short:

Report area:

```
innovus 12> report_area

Depth Name #Inst Area (um^2)

0 TOP 157 281.124

1 alu_inst 143 255.816

1 shifter_inst 13 18.468

1
innovus 13>
```

Exported GDS view on Virtuoso:

