Introduction to Commutative Algebra and affine algebraic varieties

Amal M

February 10, 2021

- Introduction
 - 2 min
- 2 Algebraic Varieties
 - 3 min
- Nullstellensatz
 - 5 min
- Commutative Algebra
 - 2 min
- Zariski Topology
 - 3 min
- 6 Presheaf and Sheaf
 - 4 min
- Applications

- Introduction
 - 2 min
- 2 Algebraic Varieties
 - 3 min
- Nullstellensatz
 - 5 min
- 4 Commutative Algebra
 - 2 min
- 5 Zariski Topology
 - 3 min
- 6 Presheaf and Shear
 - 4 min
- Applications
- a 1 min

Introduction

The Plan

- Study undergraduate algebraic geometry
- Read and do the exercies from Atiyah-Macdonald, Introduction to Commutative Algebra
- Read first chapter of Hartshorne's Algebraic Geometry

- Introduction
 - 2 min
- 2 Algebraic Varieties
 - 3 min
- Nullstellensatz
 - 5 min
- Commutative Algebra
 - 2 min
- Zariski Topology
 - 3 min
- 6 Presheaf and Sheaf
 - 4 min
- Applications
 - a 1 min

Curves

 $y^2=x^33x+5$ is a polynomial in $\mathbb{R}[x,y]$. The set of zeros of this polynomial looks like this

Polynomial Ring

Given a algebraicaly closed field k we can form the polynomial ring in n indeterminants

$$k[x_1,\cdots,x_n]$$

Every polynomial $p(x_1, \dots, x_n) \in k[x_1, \dots, x_n]$ can be thought of as a mapping from $k^n \to k$. We call k^n the affine n-space and denote it by \mathbb{A}^n_k .

Affine Algebraic Varieties

S is a set of polynomial in $k[x_1, \dots, x_n]$. V(S) is points in \mathbb{A}^n_k at which every polynomial in S vanishes. V(S) is called the *affine* algebraic variety.

- Introduction
 - 2 min
- 2 Algebraic Varieties
 - 3 min
- Nullstellensatz
 - 5 min
- 4 Commutative Algebra
 - 2 min
- Zariski Topology
 - 3 min
- Presheaf and Sheaf
 - 4 min
- Applications
 - a 1 min

The Coordinate Ring

Given a variety V in \mathbb{A}^n_k the *ideal of a variety* is the ideal I(V) which consists of all polynomials in $k[x_1, \dots, x_n]$ that vanish on V. The Coordinate ring of a variety is the ring

$$P(X) = k[x_1, \cdots, x_n]/I(X)$$

Hilbert's Nullstellensatz

Nullstellensatz means the theorem of zeros.

Algebra
$$k[x_1, \cdots, x_n]$$

 $I(V)$ Geometry
 $\mathbb{A}^n_k \cong k^n$
 $V(I)$
the point (a_1, \cdots, a_n)

5 min

Algebraic - Geometry

There is a connection between geometric objects such as curves and the algebraical objects like a ring.

5 min

Regular mappings

Explain polynomial mapping/regular mapping between varieties

- Introduction
 - 2 min
- 2 Algebraic Varieties
 - 3 min
- Nullstellensatz
 - 5 min
- Commutative Algebra
 - 2 min
- Zariski Topology
 - 3 min
- Presheaf and Sheaf
 - 4 min
- Applications
 - a 1 min

What sort of Commutative Algebra do we use?

What sort of commutative algebra machinery do we use: (Do not explain any of these. Point out where you use them instead)

- Modules
- Tensor products
- Exact sequnces
- Oirect Limits

- Introduction
 - 2 min
- 2 Algebraic Varieties
 - 3 min
- Nullstellensatz
 - 5 min
- 4 Commutative Algebra
 - 2 min
- 5 Zariski Topology
 - 3 min
- 6 Presheaf and Sheat
 - 4 min
- Applications
 - a 1 min

3 min

Zariski

Talk about the prime spectrum and the Zariski Topology what sort of machinery would that use?

3 min

Constructible Topology

You can have another topology called the Constructible Topology

- Introduction
 - 2 min
- 2 Algebraic Varieties
 - 3 min
- Nullstellensatz
 - 5 min
- 4 Commutative Algebra
 - 2 min
- Zariski Topology
 - 3 min
- 6 Presheaf and Sheaf
 - 4 min
- Applications
 - a 1 min

4 min

Presheaf and Sheaf

Definiton of a Presheaf and Sheaf

- Introduction
 - 2 min
- 2 Algebraic Varieties
 - 3 min
- Nullstellensatz
 - 5 min
- 4 Commutative Algebra
 - 2 min
- Zariski Topology
 - 3 min
- 6 Presheaf and Sheat
 - 4 min
- Applications

Applications of Algebraic Geometry

Do you really want applications? You could mention in passing string theory, arithmetic geometry, proof of the Fermat's last theorem etc...

- Introduction
 - 2 min
- 2 Algebraic Varieties
 - 3 min
- Nullstellensatz
 - 5 min
- 4 Commutative Algebra
 - 2 min
- Zariski Topology
 - 3 min
- Opening Presheaf and Sheaf
 - 4 min
- Applications
 - a 1 min

Acknowledgement

Hwey Lewis Borat