ADT PLM

Programmer's Learning Machine

Matthieu Nicolas

IJD Seminar, 2016-02-02

Outline

- Presentation of PLM
 - Purposes
 - Demo
 - About PI M
 - Architecture
- Assessment of user's code
 - Challenges
 - Extraction of the execution component
 - Docker
- Result
- 4 Next steps

Outline

- Presentation of PLM
 - Purposes
 - Demo
 - About PLM
 - Architecture
- 2 Assessment of user's code
 - Challenges
 - Extraction of the execution component
 - Docker
- Result
- 4 Next steps

Purposes

• Application to learn programming.

Purposes

- Application to learn programming.
- Allows students to progress at their own speed...

Purposes

- Application to learn programming.
- Allows students to progress at their own speed...
- ... while the teacher helps the ones having trouble.

Purposes

- Application to learn programming.
- Allows students to progress at their own speed...
- ... while the teacher helps the ones having trouble.
- Used at TELECOM Nancy since 2008.

Quick demo

• Available at https://plm.telecomnancy.univ-lorraine.fr

12 lessons, 200 exercises

12 lessons, 200 exercises

12 lessons, 200 exercises

Languages and programming languages

- Available languages:
 - English
 - French
 - Brazilian Portuguese
- Supported programming languages:

Evolution of the project

- Formerly a fat client
 - Written in Java

Evolution of the project

- Formerly a fat client
 - Written in Java
- Switch to a web application
 - Headless version of PLM: PLM-engine
 - Server implemented in Scala using PlayFramework
 - User interface written in Javascript using AngularJS and Foundation

Application's architecture

Outline

- Presentation of PLM
 - Purposes
 - Demo
 - About PLM
 - Architecture
- Assessment of user's code
 - Challenges
 - Extraction of the execution component
 - Docker
- Result
- 4 Next steps

Execution components

• Run on the same machine, same JVM

- Run on the same machine, same JVM
- How to protect ourselves from users' rookie mistakes?
 - Infinite loops

- Run on the same machine, same JVM
- How to protect ourselves from users' rookie mistakes?
 - Infinite loops
- And from more malicious "mistakes"?
 - Infinite thread creation
 - Endless file creation

- Run on the same machine, same JVM
- How to protect ourselves from users' rookie mistakes?
 - Infinite loops
- And from more malicious "mistakes"?
 - Infinite thread creation
 - Endless file creation
- And from System.exit(whatever)?

- Run on the same machine, same JVM
- How to protect ourselves from users' rookie mistakes?
 - Infinite loops
- And from more malicious "mistakes"?
 - Infinite thread creation
 - Endless file creation
- And from System.exit(whatever)?
- Scalability issues

Chosen solution

- Delegate the execution to workers
 - Called *Judges* in the litterature
 - Use PLM-engine as well
 - Execute user's code and send back result to webPLM

Architecture with judges

Implementation

- Distribute workload using message queues
 - One queue for requests
 - One queue per result

Implementation

- Distribute workload using message queues
 - One queue for requests
 - One queue per result
- Let it crash strategy
 - Prevent obvious issues with a security manager
 - Handle timeout and crash

Pros and cons

- Pros:
 - Allow to run code without impacting webPLM's performances
 - Meet the scalability requirements

Pros and cons

- Pros:
 - Allow to run code without impacting webPLM's performances
 - Meet the scalability requirements
- Cons:
 - Make sure to use the right version of PLM
 - Need to deploy them easily
 - Should restart them after each execution
 - Have to restrict their resources usage

Docker

- Lightweight virtualization tool
- Build image of your application
- Run containers based on images

Example of Dockerfile

Dockerfiles describe how to set up the application

- Run docker build -t tag /path/to/Dockerfile to build the image
- Start containers with docker run tag

```
FROM node:latest
MAINTAINER Matthieu Nicolas, matthieu.nicolas@inria.fr
RUN apt-get install -y bzip2
RUN npm install -g grunt-cli
RUN npm install -g bower
ADD package.json /app/package.json
RUN npm install
ADD .bowerrc /app/.bowerrc
ADD bower.json /app/bower.json
RUN bower install --config.interactive=false --allow-root
ENV NODE ENV production
EXPOSE 3000 35729
```

Example of Dockerfile

Dockerfiles describe how to set up the application

- Run docker build -t tag /path/to/Dockerfile to build the image
- Start containers with docker run tag

More about docker run

- Can also manage
 - Ports

More about docker run

- Can also manage
 - Ports
 - Volumes

More about docker run

- Can also manage
 - Ports
 - Volumes
 - Links between containers

More about docker run

- Can also manage
 - Ports
 - Volumes
 - Links between containers
 - Environment variables
 - Runtime constraints on resources
 - Restart policies
 - And a lot more

More about docker run

- Can also manage
 - Ports
 - Volumes
 - Links between containers
 - Environment variables
 - Runtime constraints on resources
 - Restart policies
 - And a lot more
- Commands can become guite complex

docker run -p 443:9443 -link plm-accounts:accounts -v ~/webPLM/logs/:/app/webplm-dist/logs webPLM

Docker-compose

Tool to easily deploy multi-containers applications

```
- "8080:3000"
```

Deploy environment with docker-compose up

		GITHUB CLIENT SECRET:
		GOOGLE CLIENT SECRET:-
		PLMACCOUNTS CLIENT SECRET:
		GITHUB ACCESS TOKEN:
		· · · - accounts
	image: rabbitmq:3-management	profiles-
		messagequeue:messageq
		image: plm-accounts-
	· image: webplm-	
	····- "443:9443"¬	image: plm-profiles-
	GITHUB_CLIENT_SECRET:	
	GOOGLE_CLIENT_SECRET:	
	PLMACCOUNTS_CLIENT_SECRET:-	
	GITHUB_ACCESS_TOKEN:-	
	···	
	messagequeue:messageq	
		··· "27017:27017"¬
docker-cor	mpose yml* 49:1	LF UTF-8 YAML Prefactor-lessons-exercises

Docker-compose

Tool to easily deploy multi-containers applications

```
- "8080:3000"
```

Deploy environment with docker-compose up

Docker in our case

- Deploy easily all components
- Restart judges automatically
- Limit users' mischiefs

Outline

- Presentation of PLM
 - Purposes
 - Demo
 - About PLM
 - Architecture
- Assessment of user's code
 - Challenges
 - Extraction of the execution component
 - Docker
- Result
- 4 Next steps

Current architecture

Live-session in TELECOM Nancy

- Used in TELECOM Nancy in September 2015
- 30 hours of live testing with 100 students

Live-session in TELECOM Nancy

- Used in TELECOM Nancy in September 2015
- 30 hours of live testing with 100 students
- Engine is (almost) working fine...
- ... but user experience needs to be improved!

Live-session in TELECOM Nancy

- Scalability issues:
 - Work well with small exercises
 - Can't cope with workload of larger exercises

Live-session in TELECOM Nancy

- Scalability issues:
 - Work well with small exercises
 - Can't cope with workload of larger exercises
- No tools for monitoring set up...

Live-session in TELECOM Nancy

- Scalability issues:
 - Work well with small exercises
 - Can't cope with workload of larger exercises
- No tools for monitoring set up...
- ... so the bottleneck is unknown.

Outline

- Presentation of PLM
 - Purposes
 - Demo
 - About PLM
 - Architecture
- Assessment of user's code
 - Challenges
 - Extraction of the execution component
 - Docker
- Result
- 4 Next steps

Next steps

Refactor the code

- Rushed to release a stable version before September 2015...
- Needed to clean some parts of the code
- Merged local and centralized mode branches

Next steps

Simplify workflow to adapt the content

- Store most of content inside PLM
- Heavy and error prone workflow
- Need to extract the content from PLM's jar
- Allow to implement an exercise editor

Next steps

Solve performance issues

- Set up some monitoring tools
- Perform some load testing to identify the bottleneck

Questions

Thanks for your attention, any questions?

Matthieu Nicolas ADT PLM IJD Seminar, 2016-02-02 34 / 34