

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID

EVALUACIÓN PARA EL ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO

Curso 2016-2017

MATERIA: FÍSICA

INSTRUCCIONES GENERALES Y CALIFICACIÓN

Después de leer atentamente todas las preguntas, el alumno deberá escoger **una** de las dos opciones propuestas y responder a las cuestiones de la opción elegida.

CALIFICACIÓN: Cada pregunta se valorará sobre 2 puntos (1 punto cada apartado).

TIEMPO: 90 minutos.

OPCIÓN A

Pregunta 1.- Se desea situar un satélite de 120 kg de masa en una órbita circular, alrededor de la Tierra, a 150 km de altura.

- a) Determine la velocidad inicial mínima requerida para que alcance dicha altura.
- b) Una vez alcanzada dicha altura, calcule la energía adicional necesaria para que orbite. Datos: Radio de la Tierra, $R_T = 6.37 \cdot 10^6$ m; Constante de Gravitación Universal, $G = 6.67 \cdot 10^{-11}$ N m² kg⁻²; Masa de la Tierra, $M_T = 5.97 \cdot 10^{24}$ kg.

Pregunta 2.- Una onda armónica transversal de amplitud A = 0.2 m, longitud de onda $\lambda = 0.1$ m y frecuencia f = 15 kHz se propaga en el sentido positivo del eje X. En el origen, x = 0, y en el instante inicial, t = 0, la velocidad de oscilación es máxima con sentido negativo. Determine:

- a) La expresión matemática de la onda.
- b) La elongación del punto x = 0.3 m en el instante t = 2 s.

Pregunta 3.- En el semiespacio definido por $z \ge 0$ existe un campo eléctrico uniforme dado por $\vec{E} = 5000 \ \vec{k} \ \text{N C}^{-1}$. Determine:

- a) La diferencia de potencial entre los puntos $P_1(1, 2, 3)$ m y $P_2(2, 4, 3)$ m.
- b) El trabajo requerido para llevar una carga $q = 5 \mu C$, desde el punto $P_2(2, 4, 3)$ m al $P_3(1, 1, 1)$ m.

Pregunta 4.- En una lente delgada convergente:

- a) ¿Dónde hay que situar un objeto para obtener su imagen a 3 cm de la lente, 2 veces mayor e invertida? ¿Cuánto vale la distancia focal de la lente?
- b) Trace el diagrama de rayos para un objeto situado a una distancia de la lente menor que su distancia focal.

Pregunta 5.-

- a) ¿Qué energía cinética, expresada en keV, tiene que tener un protón para que la longitud de onda asociada sea $\lambda = 4.10^{-13}$ m?
- b) ¿Cuál tendría que ser la longitud de onda de un fotón que en el vacío tuviera la misma energía que el protón?

Datos: Constante de Planck, $h = 6.63 \cdot 10^{-34} \, \mathrm{J} \, \mathrm{s}$; Valor absoluto de la carga del electrón, $e = 1.6 \cdot 10^{-19} \, \mathrm{C}$; Masa del protón, $m_p = 1.67 \cdot 10^{-27} \, \mathrm{kg}$; Velocidad de propagación de la luz en el vacío, $c = 3 \cdot 10^8 \, \mathrm{m \ s^{-1}}$.

OPCIÓN B

Pregunta 1.- Considérese una masa M = 50 kg situada en el origen de coordenadas. Bajo la acción del campo gravitatorio creado por dicha masa, determine:

- a) El trabajo requerido para mover una masa $m_1 = 2$ kg desde $P_1 = (1, 0, 0)$ m a $P_2 = (3, 4, 0)$ m.
- b) La energía cinética de una partícula de masa $m_2 = 3$ kg que, partiendo del reposo, se mueve desde el punto $P_3 = (9/2, 6, 0)$ m al punto P_2 .

Dato: Constante de Gravitación Universal, $G = 6.67 \cdot 10^{-11} \text{ N m}^2 \text{ kg}^{-2}$.

Pregunta 2.- Para determinar la profundidad de una cueva se emite una onda sonora esférica de 10 W y se observa que al cabo de 3 s se escucha el eco. Admitiendo que la cueva es suficientemente amplia para despreciar las reflexiones en las paredes laterales, determine, despreciando los efectos de la absorción:

- a) La profundidad de la cueva.
- b) La intensidad de la onda sonora al llegar al fondo de la cueva.

Dato: Velocidad del sonido en el aire, $v = 340 \,\mathrm{m \ s^{-1}}$.

Pregunta 3.- Dos hilos indefinidos y paralelos separados una distancia *d* transportan corrientes de igual intensidad *l* y en el mismo sentido. Determine:

- a) El módulo, dirección y sentido de los campos magnéticos que cada uno de los hilos crea en el otro e ilústrelos en una figura.
- b) La distancia d a la que deben estar los hilos para que la fuerza por unidad de longitud entre ellos sea de 10^{-5} N m⁻¹ sabiendo que la intensidad que circula por los hilos es I = 5 A.

Dato: Permeabilidad magnética del vacío, $\mu_o = 4\pi \cdot 10^{-7} \text{ N A}^{-2}$.

Pregunta 4.- Un haz de luz incide desde un medio con índice de refracción n_1 = 1,8 sobre la superficie plana de separación con otro medio de índice de refracción n_2 = 1,5. Si la longitud de onda en el primer medio es de 500 nm:

- a) Determine la velocidad de propagación y la frecuencia del haz en ambos medios así como la longitud de onda en el segundo.
- b) ¿Cuál tendría que ser el ángulo de incidencia para que no hubiera refracción? Dato: Velocidad de propagación de la luz en el vacío, $c = 3 \cdot 10^8$ m s⁻¹.

Pregunta 5.- Una onda electromagnética de 280 nm incide sobre un metal cuyo trabajo de extracción es $W_0 = 4,08$ eV. Determine:

- a) La energía cinética máxima con la que pueden ser emitidos los electrones.
- b) El potencial eléctrico requerido para frenar a todos los electrones emitidos.

Datos: Constante de Planck, $h = 6.63 \cdot 10^{-34} \, \mathrm{J} \, \mathrm{s}$; Valor absoluto de la carga del electrón: $e = 1.60 \cdot 10^{-19} \, \mathrm{C}$; Velocidad de propagación de la luz en el vacío, $c = 3 \cdot 10^8 \, \mathrm{m \, s}^{-1}$.

CRITERIOS ESPECÍFICOS DE CORRECCIÓN

FÍSICA

- * Las preguntas deben contestarse razonadamente, valorando en su resolución una adecuada estructuración y el rigor en su desarrollo.
- * Se valorará positivamente la inclusión de pasos detallados, así como la realización de diagramas, dibujos y esquemas.
- * En la corrección de las preguntas se tendrá en cuenta el proceso seguido en la resolución de las mismas, valorándose positivamente la identificación de los principios y leyes físicas involucradas.
- * Se valorará la destreza en la obtención de resultados numéricos y el uso correcto de las unidades en el Sistema Internacional.
- * Cada pregunta, debidamente justificada y razonada con la solución correcta, se calificará con un máximo de 2 puntos.
- * En las preguntas que consten de varios apartados, la calificación máxima será la misma para cada uno de ellos (desglosada en múltiplos de 0,25 puntos).