

kokchun giang

creating a conceptual model of a business requirements is the first step in data modeling

all models are wrong, but some are useful - George Box

railway map is a model with some simplifications

not drawn to scale don't represent exact geographical positions straight lines or fixed angles remove unnecessary details

the data modeling journey for transactional data

business requirements stakeholder interviews, identify key business processes

entities & relationships

define main objects
(entities) in the system and
how they relate to each
other

conceptual model

create high-level entityrelationship diagram (ERD), cardinality is defined

physical model

convert logical model into database structure, choose database engine, define data types, constraints, ...

logical model

add attributes, primary key, foreign keys, normalize the structure

the data modeling journey for transactional data

business requirements stakeholder interviews, identify key business processes

entities & relationships

define main objects
(entities) in the system and
how they relate to each
other

conceptual model

create high-level entityrelationship diagram (ERD), cardinality is defined

physical model

convert logical model into database structure, choose database engine, define data types, constraints, ...

logical model

add attributes, primary key, foreign keys, normalize the structure

the reason for doing conceptual modeling

business requirements for ezecream could look like this

customers should be able to browse and order ice cream flavors online

each order should contain one or more ice cream flavors the system should store order details, including order date and total price

customers should provide their name, contact details, and delivery address each ice cream flavor should have a name, price, and availability status

identify the entities & relationships from the requirements

the system should store order details, including order date and total price

customers should provide their name, contact details, and delivery address each ice cream flavor should have a name, price, and availability status

a conceptual ERD for ezecream using crows foot notation

Customer can place one or more Orders

an Order can be placed by one and only one Customer

an Order contains one or more Products

a Product is contained by 0 or more Orders

lets break down the cardinality symbols in crows foot notation

mapping cardinality between two entities

cardinality is how many instances of one entity that can be associated with how many instances of another entity

one-to-one

one-to-one is uncommon

one-to-many

many-to-many

many-to-many can't be implemented directly

minimum and maximum cardinalities

this is a **one-to-many** relationship

entities, relationships and cardinalities will affect the implementation of the database tables

Customer can place one or more Orders

an Order can be placed by **one and only one** Customer