Поля

В кольцах операции "+" и "· " называются сложением и умножением соответственно. Кольцо $\mathcal F$ такое, что $\mathcal F\setminus\{0\}$ – абелева группа по умножению, называется полем. В дальнейшем, если речь будет идти о кольце или поле, знак умножения будем для краткости опускать.

- 1. Определите, какие из колец $(\mathbb{Z},+,\cdot)$, $(\mathbb{Q}_n,+,\cdot)$, $(\mathbb{R}_n,+,\cdot)$, $(\mathbb{Z}_n,+,\cdot)$, являются полями, а какие нет.
- 2. Докажите, что $\mathbb{Q}[i\sqrt{3}]$, определённое по аналогии с $\mathbb{Z}[i\sqrt{3}]$, поле.

Факториальность колец многочленов

Пусть \mathcal{F} – поле, например, \mathbb{Q} или \mathbb{R} . Поскольку для многочленов из $\mathcal{F}[x]$ определено деление с остатком, то $\mathcal{F}[x]$ – евклидово кольцо с нормой deg. В частности, $\mathcal{F}[x]$ всегда факториально. Хотя кольцо $\mathbb{Z}[x]$ и не евклидово, однако оно факториально, как показывает задача 4.

- 3. Лемма Гаусса. Содержанием многочлена $p \in \mathbb{Z}[x]$ называется наибольший общий делитель его коэффициентов, обозначение: $\operatorname{cont}(p)$. Докажите тождество $\operatorname{cont}(pq) = \operatorname{cont}(p) \cdot \operatorname{cont}(q)$.
- 4. Докажите, что многочлен $p \in \mathbb{Z}[x]$ приводи́м в $\mathbb{Q}[x]$ тогда и только тогда, когда он приводи́м в $\mathbb{Z}[x]$.

Поле отношений целостного кольца $\mathcal K$ строится так же, как $\mathbb Q$ строилось из $\mathbb Z$. А именно, рассмотрим множество дробей $\frac{a}{b}$, где $a,b\in\mathcal K,b\neq 0$. При этом, дроби $\frac{a}{b}$ и $\frac{c}{d}$ отождествим, если ad=bc, а действия с дробями определим привычным образом.

5. Докажите, что поле отношений, действительно, является полем.

Пусть \mathcal{K} ещё и факториально. Одновременно с $\mathcal{K}[x]$ полезно рассматривать $\mathcal{L}[x]$, где \mathcal{L} – поле отношений кольца K.

- 6. Объясните, почему кольца $\mathcal{L}[x]$ и $\mathcal{K}[x]$ факториальны.
- 7. Докажите, что кольцо $\mathcal{K}[x_1, x_2, \dots, x_n]$ факториально.

Из результата последней задачи в частности следует факториальность кольца $\mathcal{F}[x_1, x_2, \dots, x_n]$, для произвольного поля \mathcal{F} .

Теорема Виета

Многочлен, не изменяющийся при любых перестановках своих переменных называется симметрическим. Зафиксируем натуральное число n и для каждого k от 1 до n построим многочлен σ_k от n переменных: x_1, x_2, \ldots, x_n , равный сумме всех произведений по k переменных.

8. **Теорема Виета.** Многочлен $a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0$ имеет n корней с учётом кратности: x_1, x_2, \ldots, x_n . Докажите равенства $\sigma_1 = -a_{n-1}/a_n, \sigma_2 = a_{n-2}/a_n, \ldots, \sigma_n = (-1)^n a_0/a_n$.

Рассмотрим $nekcukorpa \phi uvecku u$ порядок на множестве многочленов: одночлен $ax_1^{\alpha_1}x_2^{\alpha_2}\dots x_n^{\alpha_n}$ старше одночлена $bx_1^{\beta_1}x_2^{\beta_2}\dots x_n^{\beta_n},\ a,b\neq 0,$ если

Поля и факториальность

для некоторого номера $k, 0 \le k \le n$, выполнено неравенство $\alpha_k > \beta_k$, а также $\alpha_s = \beta_s$ при всех s < k.

- 9. Можно ли выписать бесконечную последовательность одночленов от n переменных, в которой каждый следующий младше предыдущего?
- 10. Докажите, что любой симметрический многочлен представим в виде многочлена от элементарных симметрических многочленов.

Ещё немного о полях

 $Xарактеристикой поля называется наименьшее <math>n \in \mathbb{N}$ такое, что $\underbrace{1+1+\ldots+1}_{n \text{ раз}}=0$. Если такого числа не существует, то говорят, что

поле имеет характеристику нуль.

- 11. Докажите, что ненулевая характеристика поля простое число.
- В некотором смысле, поля \mathbb{F}_p и \mathbb{Q} минимальны. Изоморфизмом полей K и L называется такая биекция $\varphi\colon K\to L$, что для любых $a,b\in K$ верны равенства $\varphi(a+_Kb)=\varphi(a)+_L\varphi(b)$ и $\varphi(a\cdot_Kb)=\varphi(a)\cdot_L\varphi(b)$.
- 12. K поле характеристики p. Докажите, что в K есть подполе, изоморфное \mathbb{Z}_p .
- 13. K поле характеристики 0. Докажите, что в K есть подполе, изоморфное \mathbb{Q} .

Результат задачи 12 оправдывает единое обозначение \mathbb{F}_p для всех полей простой характеристики p.

Упражнения

- 14. **Критерий Эйзенштейна.** Пусть $f(x) = a_n x^n + \ldots + a_0 \in \mathbb{Z}[x]$ и для некоторого простого числа p все коэффициенты, кроме a_n , делятся на p, а свободный член не делится на p^2 . Докажите, что многочлен f(x) неприводим над \mathbb{Z} .
- 15. Пусть p простое число. Докажите, что многочлен деления круга $x^{p-1} + x^{p-1} + \ldots + x + 1$ неприводим.
- 16. Найдите все числа $a \in \mathbb{N}$, для которых найдётся многочлен $p \in \mathbb{Z}[x]$, удовлетворяющий равенствам $p(\sqrt{2}+1)=2-\sqrt{2}$ и $p(\sqrt{2}+2)=a$.
- 17. **Тождества Ньютона.** Пусть x_1,\ldots,x_n вещественные числа. Для каждого натурального m обозначим $S_m=x_1^m+\ldots+x_n^m$. При всех m>n положим $\sigma_m=0$. Для каждого m>1 докажите равенство $S_m=\sigma_1S_{m-1}-\sigma_2S_{m-2}+\ldots+(-1)^m\sigma_{m-1}S_1+(-1)^{m+1}m\sigma_m$. 18. Многочлен $ax^n-ax^{n-1}+c_2x^{n-2}+\ldots+c_{n-2}x^2-n^2bx+b$ имеет ровно n
- 18. Многочлен $ax^n ax^{n-1} + c_2x^{n-2} + \ldots + c_{n-2}x^2 n^2bx + b$ имеет ровно n положительных корней. Докажите, что все корни равны между собой.
- 19. Найдите наибольшее число C, при котором для любой тройки вещественных чисел (x,y,z) такой, что x+y+z=-1, верно неравенство $C\cdot |x^3+y^3+z^3+1|\leqslant |x^5+y^5+z^5+1|$.