Lehrstuhl für INFORMATIONSTECHNISCHE REGELUNG

Prof. Dr.-Ing. Sandra Hirche

Lehrstuhl für STEUERUNGS- UND REGELUNGSTECHNIK

Prof. Dr.-Ing./Univ. Tokio Martin Buss

Technische Universität München

DYNAMISCHE SYSTEME

0. Übung

1. Aufgabe: Regelkreisstruktur

Gegeben sei ein mechanisches System, das durch die Übertragungsfunktion $G_s(s)$ beschrieben wird. Das System wird durch den Aktor $G_a(s)$ angetrieben.

$$G_s(s) = \frac{y}{\tau} = \frac{1}{(1+sT_2)(1+sT_3)}; \qquad G_a(s) = \frac{\tau}{u} = \frac{K_a}{1+sT_1}$$

1.1 Zeichnen Sie das Blockschaltbild des geregelten Systems mit Führungsgröße w bei Verwendung eines PID-Reglers mit G_{PID} und einer Vorsteuerung G_v , wobei gilt:

$$u = u_1 + u_2$$
; $G_{PID} = \frac{u_1}{e} = \frac{u_1}{w - y}$; $G_v = K_a(1 + sT_1)(1 + sT_2)(1 + sT_3) = \frac{u_2}{w}$

1.2 Zeichnen Sie das Blockschaltbild des geregelten Systems bei Verwendung einer Zustandsrückführung und der Führungsgröße \tilde{w} : $u=\tilde{w}-\underline{k}^T\underline{x}$. (Hinweis: Der Ausgang eines PT₁-Blocks ist ein Zustand.)

2. Aufgabe: Übertragungsfunktion

Das System aus Aufgabe 1 mit G_s und G_a soll nun mit einem P-Regler $u=K_P(w-y)$ geregelt werden.

- 2.1 Geben Sie die Übertragungsfunktion des offenen und des geschlossenen Regelkreises an
- 2.2 Der Aktor kann nur in einem begrenzten Bereich Stellsignale erzeugen. Daher wird der P-Regler mit einer Sättigung versehen:

$$\tilde{u} = f(e) = \begin{cases} u_{\text{max}} & e > \frac{u_{\text{max}}}{K_P} \\ u_{\text{min}} & e < \frac{u_{\text{min}}}{K_P} \\ K_p \cdot e & \text{sonst} \end{cases}$$

Welche Übertragungsfunktion des Regelkreises lässt sich nun noch aufstellen?

$\underline{3. Aufgabe} : \ Laplace-Transformation$

Überführen Sie die Übertragungsfunktion des PID-Reglers $G_{PID}=\frac{u}{e}=\frac{K_D s^2+K_P s+K_I}{s}$ in den Zeitbereich.

4. Aufgabe: Übergangsfunktion / Sprungantwort

Leiten Sie aus der Übertragungsfunktion G_a aus Aufgabe 1 die Differentialgleichung des PT₁-Gliedes her. Verwenden Sie die homogene Lösung $(u(t) \equiv 0)$; $\tau_h(t) = c \cdot e^{-t/T_1}$, um die Lösung $\tau(t)$ der DGL bei Sprunganregung $u(t) = \sigma(t)$ zu bestimmen. Skizzieren Sie den Verlauf von $\tau(t)$.

5. Aufgabe: PT_2 / PT_1

Die allgemeine DGL eines PT $_2$ lautet: $\ddot{y} + 2D\omega_0\dot{y} + \omega_0^2y = K\omega_0^2u$. Für welche Bereiche von D>0 sind qualitativ verschiedene Sprungantworten zu beobachten?