

uniqueness of measures extended from a $\pi\text{-system}$

 ${\bf Canonical\ name} \quad {\bf UniquenessOf Measures Extended From Apisystem}$

Date of creation 2013-03-22 18:33:08 Last modified on 2013-03-22 18:33:08

Owner gel (22282)Last modified by gel (22282)

Numerical id 8

Author gel (22282) Entry type Theorem Classification msc 28A12

Related topic LebesgueMeasure Related topic DynkinsLemma The following theorem allows measures to be uniquely defined by specifying their values on a http://planetmath.org/PiSystem π -system instead of having to specify the measure of every possible measurable set. For example, the collection of open intervals $(a,b) \subseteq \mathbb{R}$ forms a π -system generating the http://planetmath.org/BorelSigmaAlgebraBorel σ -algebra and consequently the Lebesgue measure μ is uniquely defined by the equality $\mu((a,b)) = b-a$.

Theorem. Let λ , μ be measures on a measurable space (X, \mathcal{A}) . Suppose that A is a π -system on X generating \mathcal{A} such that $\lambda = \mu$ on A and that there exists a sequence $S_n \in A$ with $\bigcup_{n=1}^{\infty} S_n = X$ and $\lambda(S_n) < \infty$. Then, $\lambda = \mu$.

Proof. Choose any $T \in A$ such that $\lambda(T) < \infty$ and set $\mathcal{B} = \{S \in \mathcal{A} : \lambda(S \cap T) = \mu(S \cap T)\}$. For any $S \in A$, $S \cap T \in A$ and the requirement that λ, μ agree on A gives $S \in \mathcal{B}$, so \mathcal{B} contains A. We show that \mathcal{B} is a Dynkin system in order to apply Dynkin's lemma. It is clear that $X \in \mathcal{B}$. Suppose that $S_1 \subseteq S_2$ are in \mathcal{B} . Then, the additivity of λ and μ gives

$$\lambda\left((S_2\setminus S_1)\cap T\right) = \lambda(S_2\cap T) - \lambda(S_1\cap T) = \mu(S_2\cap T) - \mu(S_1\cap T) = \mu\left((S_2\setminus S_1)\cap T\right)$$

and therefore $S_2 \setminus S_1 \in \mathcal{B}$. Now suppose that S_n is an increasing sequence of sets in \mathcal{B} increasing to $S \subseteq X$. Then, monotone convergence of λ and μ gives

$$\lambda(S \cap T) = \lim_{n \to \infty} \lambda(S_n \cap T) = \lim_{n \to \infty} \mu(S_n \cap T) = \lambda(S \cap T),$$

so $S \in \mathcal{B}$ and \mathcal{B} is a Dynkin system containing A. By Dynkin's lemma this shows that \mathcal{B} contains $\sigma(A) = \mathcal{A}$.

We have shown that $\lambda(S \cap T) = \mu(S \cap T)$ for any $S \in \mathcal{A}$ and $T \in A$ with $\lambda(T) < \infty$. In the particular case where $X \in A$ and λ, μ are finite measures then it follows that $\lambda(S) = \mu(S)$ simply by taking T = X. More generally, choose a sequence of sets $T_n \in A$ satisfying $\lambda(T_n) < \infty$ and $\bigcup_n T_n = X$. For any $S \in \mathcal{A}$, $S_n \equiv (S \cap T_n) \setminus \bigcup_{m=1}^{n-1} T_m$ is a pairwise disjoint sequence of sets in \mathcal{A} with $S_n \subseteq T_n$ and $\bigcup_n S_n = S$. So, $\lambda(S_n) = \mu(S_n)$ and the countable additivity of λ and μ gives

$$\lambda(S) = \sum_{n} \lambda(S_n) = \sum_{n} \mu(S_n) = \mu(S).$$