# Linux x86\_64 Paging

#### What are pages?

- Chunks of virtual memory assigned a frame (chunk of physical memory of the same size)
- Pages allow noncontiguous memory allocation
- Page/frame size between 512 bytes and 16 Mbytes
  - x86\_64 Linux kernel uses 4096 bytes per page
  - Each page entry is 512 bytes
    - 8 entries per page

## Linux x86\_64

- 4096 bytes
- 512 Bytes x 8 Entries
- Heirarchical
  - 4 level
    - 40 bit userspace
  - 5 level introduced
    - 56 bit userspace

# How Do Linux x86\_64 Releases Handle Paging?















### How does Linux allocate pages?

- Demand paging
  - Record of free frames
- Global page-replacement
  - Similar to LRU-approximation
- Two lists:
  - active\_list
    - Record of pages in use
    - "accessed" bit
  - Inactive\_list
    - Record of pages not in use
  - kswapd

