YData: An Introduction to Data Science

Lecture 35: Classifiers

Jessi Cisewski-Kehe Statistics & Data Science, Yale University Spring 2020

Credit: data8.org

Announcements

Classification

Classification Example

Classifiers

Training a Classifier

Nearest Neighbor Classifier

The Google Science Fair

- Brittany Wenger, a 17-year-old high school student in 2012
- Won by building a breast cancer classifier with 99% accuracy

Distance

Rows of Tables

Each row contains all the data for one individual

- t.row(i) evaluates to ith row of table t
- t.row(i).item(j) is the value of column j in row i
- If all values are numbers, then np.array([t.row(i)])[0]
 evaluates to an array of all the numbers in the row.
- To consider each row individually, use for row in t.rows:
 ... row.item(j) ...

Distance Between Two Points

Two attributes x and y:

$$D = \sqrt{(x_0 - x_1)^2 + (y_0 - y_1)^2}$$

• Three attributes x, y, and z:

$$D = \sqrt{(x_0 - x_1)^2 + (y_0 - y_1)^2 + (z_0 - z_1)^2}$$

and so on ...

Nearest Neighbors

Finding the *k* Nearest Neighbors

To find the k nearest neighbors of an example:

- Find the distance between the example and each example in the training set
- Augment the training data table with a column containing all the distances
- Sort the augmented table in increasing order of the distances
- Take the top k rows of the sorted table

The Classifier

To classify a point:

- Find its k nearest neighbors
- Take a majority vote of the k nearest neighbors to see which of the two classes appears more often
- Assign the point the class that wins the majority vote

Evaluation

Accuracy of a Classifier

The accuracy of a classifier on a labeled data set is the proportion of examples that are labeled correctly

Need to compare classifier predictions to true labels

If the labeled data set is sampled at random from a population, then we can infer accuracy on that population

