Predicates and Quantifiers

Predicate denotes the property that the subject of the statement can have.

Proposi	tion a	A declarative sentence which is true or false but not bo	
χ²≥10			P(x) Propositional function
	2 ≥ 10 False, 2 > 10 False,	Parpasition Proposition	
By	ansigning	a ralue 1 200 XeE Kal ing Through	b Variable OBE Polling -> Not Perposition
R (Niv	edila Rai): To	rue	Proposition

Q10. Let P(x) denote the statement " $x \le 4$ ", then truth value of

Q10. Let P(x) denote the statement " $x \le 4$ ", then truth value of

OII. Stale the value of x after the statement if P(x) then x:=1 is executed, where P(x) is the statement "x>1", If the value of x when this statement is reached in (A) x=0 And 0 x=1 Third value 0 (B) x=1 And 1 x=1 Then x:=1 x=1 (C) x=2 And 1 x=1 x=1 x=1 x=1

Quantifier

Quantification expresses the extent to which a predicate is true over a range of elements.

all, many, few, some, none $x \in KROBE$ P(x): x is able to do questions on Truth Tables.

L(x): x re mon m on Sucre All students of K20BE are alle to do O(x): x is able to do questions involving equivalence Some students are able to do

Universal Quantifier

It tells us that the predicate is true for every element under consideration. If a property is true for all values of a variable in a particular domain, called domain of discourse or universe of discourse. Such a statement is expressed using universal quantifier.

read as for all x, f(x) is tous for every or everyone or for arbitrary, given any Universal quantifier Example: The value of x for which briferly is not brue, is known as Counter Example.

Existential Quantifier

It tells us that there is one or more element under consideration for which the predicate is true. If a property is true for few elements.

Some/ Pew/ at least one more

Q11. Determine the truth values of each of these statements if the domain consists of all real numbers

0 = -0 True

(B)
$$\forall x (x^2 \geqslant x)$$

Counter example

$$(C) \exists x (x^4 < x^2)$$

- XIstenhal Quantifier

True.

$$(E) \exists x (x^2 \neq x)$$

2 + 2

And for True

This