# Chapter 11

Limitations of Algorithm Power





### **Decision Trees**

<u>Decision tree</u> — a convenient model of algorithms involving comparisons in which:

- **Q** internal nodes represent comparisons
- **Q** leaves represent outcomes (or input cases)

#### Decision tree for 3-element insertion sort



## **Decision Trees and Sorting Algorithms**

- **Any comparison-based sorting algorithm can be represented** by a decision tree (for each fixed n)
- **Q** Number of leaves (outcomes)  $\geq n!$
- **Q** Height of binary tree with n! leaves  $\geq \lceil \log_2 n! \rceil$
- Minimum number of comparisons in the worst case  $\geq \lceil \log_2 n! \rceil$  for any comparison-based sorting algorithm, since the longest path represents the worst case and its length is the height
- $\{ \{ \{ \{ \{ \} \} \} \} \}$  ≈  $n \log_2 n$  (by Sterling approximation)
- **Q** This lower bound is tight (mergesort or heapsort)
  - Ex. Prove that 5 (or 7) comparisons are necessary and sufficient for sorting 4 keys (or 5 keys, respectively).

### Class P



<u>P</u>: the class of decision problems that are solvable in O(p(n)) time, where p(n) is a polynomial of problem's input size n

#### **Examples:**

**Q** searching

**Q** element uniqueness

**Q** graph connectivity

**Q** graph acyclicity



### Class NP



<u>NP</u> (<u>nondeterministic polynomial</u>): class of decision problems whose proposed solutions can be verified in polynomial time = solvable by a nondeterministic polynomial algorithm

- A <u>nondeterministic polynomial algorithm</u> is an abstract two-stage procedure that:
- **Q** generates a solution of the problem (on some input) by guessing
- **Q** checks whether this solution is correct in polynomial time
- By definition, it solves the problem if it's capable of generating and verifying a solution on one of its tries

#### Why this definition?

**Q** led to development of the rich theory called "computational complexity"

## **Backtracking**



- **Q** n- Queens Problem
- $\mathbf{o}$  n= 1  $\rightarrow$  trivial solution
- $\mathfrak{g}$  n=2 & n=3  $\rightarrow$  no solution
- **A** Hamiltonian Circuit Problem
- **3** Starts and ends with same vertex
- **Q** Visits exactly once



### Continued.....



- **Q** Subset-Sum Problem
- **Q** Find a subset of a given set  $S = \{1,2,5,6,8\}$  with sum d=9



### **Branch-and-Bound**



#### **Assignment Problem** –(lower bound)

|          | Job1 | Job2 | Job3 | Job4 |
|----------|------|------|------|------|
| Person a | 9    | 2    | 7    | 8    |
| Person b | 6    | 4    | 3    | 7    |
| Person c | 5    | 8    | 1    | 8    |
| Person d | 7    | 6    | 9    | 4    |

### 

| Item | Weight | Value | Value/Weight |
|------|--------|-------|--------------|
| 1    | 4      | 40    | 10           |
| 2    | 7      | 42    | 6            |
| 3    | 5      | 25    | 5            |
| 4    | 3      | 12    | 4            |

W=10

## Continued.....



ub = v + (W-w)(vi+1/wi+1)

### **Q** Travelling Salesman Problem (lower bound)

