Docket No.: 27592-00264-US2

(PATENT)

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Letters Patent of: Robert McCarty Jr.

Patent No.: 7,349,487

Issued: March 25, 2008

For: NYQUIST FILTER AND METHOD

REQUEST FOR CERTIFICATE OF CORRECTION PURSUANT TO 37 CFR 1.322

Attention: Certificate of Correction Branch Commissioner for Patents P.O. Box 1450 Alexandria, VA 22313-1450

Dear Sir:

Upon reviewing the above-identified patent, Patentee noted typographical errors which should be corrected.

In the Claims:

In the formulas appearing in claims 8, 12 and 14, please remove the underlining appearing under the (ω) , as this underlining was merely shown in the amendment filed during prosecution of this application to show the addition of (ω) in those claims.

The errors were not in the application as filed by applicant; accordingly no fee is required.

Transmitted herewith is a proposed Certificate of Correction effecting such amendment.

Patentee respectfully solicits the granting of the requested Certificate of Correction.

Patent No.: 7,349,487 Docket No.: 27592-00264-US2

Applicant believes no fee is due with this request. However, if a fee is due, please charge our Deposit Account No. 22-0185, under Order No. 27592-00264-US2 from which the undersigned is authorized to draw.

Dated: March 31, 2008

Respectfully submitted,

Electronic signature: /Jeffrey W. Gluck/

Jeffrey W. Gluck

Registration No.: 44,457

CONNOLLY BOVE LODGE & HUTZ LLP

1875 Eye Street, NW

Suite 1100

Washington, DC 20006

(202) 331-7111

(202) 293-6229 (Fax)

Attorney for Applicant

UNITED STATES PATENT AND TRADEMARK OFFICE CERTIFICATE OF CORRECTION

Page 1 of 2

PATENT NO.

7.349.487

APPLICATION NO. :

10/657,904

ISSUE DATE

March 25, 2008

INVENTOR(S)

Robert McCarty Jr.

It is certified that an error appears or errors appear in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

Please replace claim 8 with the following:

8. The digital communications receive unit of claim 30 wherein the square root frequency

domain response, $\sqrt{NF(\omega)}$, is represented by the following equations:

$$\begin{split} &\sqrt{NF(\omega)} = \sqrt{T}, \text{ when } |\omega| \leq \frac{\pi}{T}(1-\alpha) \\ &\sqrt{NF(\omega)} = \sqrt{\frac{T}{2}} \bigg(1 - \sin \bigg\{ \frac{\pi}{2} \sin \bigg[\frac{T}{2\alpha} \bigg(|\omega| - \frac{\pi}{T} \bigg) \bigg] \bigg\} \bigg)^{\frac{1}{2}}, \text{ when } \frac{\pi}{T}(1-\alpha) \leq |\omega| \leq \frac{\pi}{T}(1+\alpha) \\ &\sqrt{NF(\omega)} = 0, \text{ when } \frac{\pi}{T}(1+\alpha) \leq |\omega|, \end{split}$$

wherein ω is frequency, T is a time period between symbols, and α is a roll-off factor.

Please replace claim 12 with the following:

12. The integrated circuit of claim 34 wherein the square root frequency domain response.

 $\sqrt{NF(\omega)}$, is represented by the following equations:

$$\begin{split} &\sqrt{NF(\omega)} = \sqrt{T}, \text{ when } |\omega| \leq \frac{\pi}{T}(1-\alpha) \\ &\sqrt{NF(\omega)} = \sqrt{\frac{T}{2}} \bigg(1 - \sin\bigg\{\frac{\pi}{2} \sin\bigg[\frac{T}{2\alpha}\bigg(|\omega| - \frac{\pi}{T}\bigg)\bigg]\bigg\}\bigg)^{\frac{1}{2}}, \text{ when } \frac{\pi}{T}(1-\alpha) \leq |\omega| \leq \frac{\pi}{T}(1+\alpha) \\ &\sqrt{NF(\omega)} = 0, \text{ when } \frac{\pi}{T}(1+\alpha) \leq |\omega|, \end{split}$$

wherein ω is frequency, T is a time period between symbols, and α is a roll-off factor.

Please replace claim 14 with the following:

14. The digital communications transmit unit of claim 36 wherein the square root frequency domain response, $\sqrt{NF(w)}$, is represented by the following equations:

$$\begin{split} \sqrt{NF(\omega)} &= \sqrt{T}, \text{ when } |\omega| \leq \frac{\pi}{T} (1-\alpha) \\ \sqrt{NF(\omega)} &= \sqrt{\frac{T}{2}} \left(1 - \sin \left\{ \frac{\pi}{2} \sin \left[\frac{T}{2\alpha} \left(|\omega| - \frac{\pi}{T} \right) \right] \right\} \right)^{\frac{1}{2}}, \text{ when } \frac{\pi}{T} (1-\alpha) \leq |\omega| \leq \frac{\pi}{T} (1+\alpha) \\ \sqrt{NF(\omega)} &= 0, \text{ when } \frac{\pi}{T} (1+\alpha) \leq |\omega|, \end{split}$$

wherein ω is frequency, T is a time period between symbols, and α is a roll-off factor.

2