C05 – **Separation Logic & SAT solvers**

Program Verification

FMI · Denisa Diaconescu · Spring 2021

Separation Logic

Adding the heap

We extend our programming language with:

- Heap reads: $x := [\mathbb{E}]$ (dereferencing) • Heap writes: $[\mathbb{E}_1] := \mathbb{E}_2$ (update heap)
- Heap allocation: $x := cons(\mathbb{E}_1, ... \mathbb{E}_n)$
- ullet Heap deallocation: dispose ${\mathbb E}$

The state is now represented by a pair of type $Store \times Heap$, denoted (σ, h) , where

$$\sigma \in \mathit{Store}$$
, where $\mathit{Store} \triangleq \mathit{Var} \rightarrow \mathit{Val}$
 $h \in \mathit{Heap}$, where $\mathit{Heap} \triangleq \mathit{Loc} \rightarrow \mathit{Val}$

where $Loc \subseteq Val$.

Note that we consider $dom(h_1)$ always be finite. By this, we ensure that cons commands will never fail.

Evaluating expressions in the store of a state

Strictly speaking, the store gives values to variables only.

But we need a way to say "value of an expression in a store" so we will abuse notation and use $\sigma(\mathbb{E})$ for this as below:

- $\sigma(n) = n$ where n is a number is just its usual value
- $\sigma(x + n) = \sigma(x) + \sigma(n)$ where *n* is a number and *x* is a variable

Extra connectives in separation logic

```
\begin{array}{ccc} & \text{emp} & \text{empty heap} \\ \mathbb{E}_1 \mapsto \mathbb{E}_2 & \text{points to} \\ P * Q & \text{separating conjunction} \end{array}
```

```
\sigma \triangleq Var \rightarrow Val
h \triangleq Loc \rightarrow Val
(\sigma, h) \models emp \text{ if } dom(h) = \emptyset
```

- emp is an atomic formula for checking if the heap is empty
- ullet a state (σ,h) makes the formula emp true if the heap is empty

```
\sigma \triangleq Var \rightarrow Val
h \triangleq Loc \rightarrow Val
(\sigma, h) \models \mathbb{E}_1 \mapsto \mathbb{E}_2 \text{ if } dom(h) = {\sigma(\mathbb{E}_1)} \text{ and } h(\sigma(\mathbb{E}_1)) = \sigma(\mathbb{E}_2)
```

- a state (σ, h) makes the formula $\mathbb{E}_1 \mapsto \mathbb{E}_2$ true if the heap is a singleton and maps the location $\sigma(\mathbb{E}_1)$ to the value $\sigma(\mathbb{E}_2)$
- ullet $\sigma(\mathbb{E})$ is the value of an expression in a store as explained before

$$\sigma \triangleq Var \rightarrow Val$$
 $h \triangleq Loc \rightarrow Val$
 $(\sigma, h) \models P * Q$ if h can be partitioned into two disjoint heaps h_1 and h_2 , and $(\sigma, h_1) \models P$ and $(\sigma, h_2) \models Q$

Note that two heaps are disjoint if the intersection of their domains is empty.

$$\sigma \triangleq Var \rightarrow Val$$
 $h \triangleq Loc \rightarrow Val$
 $(\sigma, h) \models P * Q$ if h can be partitioned into two disjoint heaps h_1 and h_2 , and $(\sigma, h_1) \models P$ and $(\sigma, h_2) \models Q$

Note that two heaps are disjoint if the intersection of their domains is empty.

$$(\sigma,h) \models P_1 * P_2 * ... * P_n$$
 if h can be partitioned into n disjoint heaps h_1,h_2,\ldots,h_n and $(\sigma,h_i) \models P_i$ for any $i \in \{1,\ldots,n\}$

Example

 σ

х	0xAB
У	0×DD

0xAB	3
0×AC	0×DD
0×DD	4
0×DE	0×AB

Example

 σ

х	0xAB
У	0×DD

0xAB	3
0×AC	0×DD
0×DD	4
0×DE	0xAB

Satisfies the statement:

$$(x \mapsto 3) * (x + 1 \mapsto y) * (y \mapsto 4) * (y + 1 \mapsto x)$$

$$(\sigma,h) \models P_1 * P_2 * \dots * P_n$$
 if h can be partitioned into n distinct heaps h_1,h_2,\dots,h_n and $(\sigma,h_i) \models P_i$ for any $i \in \{1,\dots,n\}$

Example

 σ

h

x	0×AB
у	0×DD

0×AB	3
0×AC	0×DD
0×DD	4
0×DE	0×AB

We want to show that

$$(\sigma, h) \models (\mathtt{x} \mapsto \mathtt{3}) * (\mathtt{x} + \mathtt{1} \mapsto \mathtt{y}) * (\mathtt{y} \mapsto \mathtt{4}) * (\mathtt{y} + \mathtt{1} \mapsto \mathtt{x})$$

$$(\sigma, h) \models P_1 * P_2 * \dots * P_n$$
 if h can be partitioned into n distinct heaps h_1, h_2, \dots, h_n and $(\sigma, h_i) \models P_i$ for any $i \in \{1, \dots, n\}$

Example

 σ

h

x	0×AB
У	0×DD

0×AB	3
0×AC	0×DD
0×DD	4
0×DE	0xAB

We want to show that

$$(\sigma,h) \models (\mathtt{x} \mapsto \mathtt{3}) * (\mathtt{x} + \mathtt{1} \mapsto \mathtt{y}) * (\mathtt{y} \mapsto \mathtt{4}) * (\mathtt{y} + \mathtt{1} \mapsto \mathtt{x})$$

We can partition h into 4 distinct heaps:

 σ

h₁

ho

hз

h₄

x 0xAB y 0xDD 0xAB 3

0xAC 0xDD

0xDD 4

$$(\sigma, h) \models P_1 * P_2 * \dots * P_n$$
 if h can be partitioned into n distinct heaps h_1, h_2, \dots, h_n and $(\sigma, h_i) \models P_i$ for any $i \in \{1, \dots, n\}$

Example

 σ

h

х	0×AB
у	0×DD

0×AE	3
0×AC	0xDD
0×DE) 4
0×DF	0×AB

We want to show that

$$(\sigma, h) \models (\mathtt{x} \mapsto 3) * (\mathtt{x} + 1 \mapsto \mathtt{y}) * (\mathtt{y} \mapsto 4) * (\mathtt{y} + 1 \mapsto \mathtt{x})$$

We can partition h into 4 distinct heaps:

~

h₁

ho

hз

hд

 x
 0xAB

 y
 0xDD

0xAB 3

0xAC 0xDD

0xDD 4

0xDE 0xAB

We must show that

$$(\sigma, h_1) \models x \mapsto 3$$

 $(\sigma, h_2) \models x + 1 \mapsto y$

$$(\sigma, h_3) \models y \mapsto 4$$

 $(\sigma, h_4) \models y + 1 \mapsto x$

$$(\sigma,h) \models \mathbb{E}_1 \mapsto \mathbb{E}_2 \text{ if } dom(h) = \{\sigma(\mathbb{E}_1)\} \text{ and } h(\sigma(\mathbb{E}_1)) = \sigma(\mathbb{E}_2)$$

Example

 σ

 h_1

 h_2

 h_3

 h_4

x 0хАВ у 0хDD 0xAB 3

0xAC 0xDD

0xDD 4

$$(\sigma,h) \models \mathbb{E}_1 \mapsto \mathbb{E}_2 \text{ if } dom(h) = \{\sigma(\mathbb{E}_1)\} \text{ and } h(\sigma(\mathbb{E}_1)) = \sigma(\mathbb{E}_2)$$

Example

 σ

 h_1

 h_2

 h_3

 h_4

x 0хАВ у 0хDD

	0xAB	3
--	------	---

0×AC	0xDD

$$(\sigma, h_1) \models x \mapsto 3$$

- $dom(h_1) = 0 \times AB = \sigma(x)$
- $h_1(0 \times AB) = 3$

$$(\sigma, h) \models \mathbb{E}_1 \mapsto \mathbb{E}_2 \text{ if } dom(h) = {\sigma(\mathbb{E}_1)} \text{ and } h(\sigma(\mathbb{E}_1)) = \sigma(\mathbb{E}_2)$$

Example

 σ

 h_1

 h_2

 h_3

 h_4

x 0хАВ у 0хDD 0xAB 3

0xAC 0xDD

0xDD 4

$$(\sigma, h_1) \models x \mapsto 3$$

- $dom(h_1) = 0 \times AB = \sigma(x)$
- $h_1(0 \times AB) = 3$

$$(\sigma, h_2) \models x + 1 \mapsto y$$

- $dom(h_2) = 0 \times AC = \sigma(x + 1)$
- $h_2(0 \times AC) = 0 \times DD = \sigma(y)$

$$(\sigma, h) \models \mathbb{E}_1 \mapsto \mathbb{E}_2 \text{ if } dom(h) = {\sigma(\mathbb{E}_1)} \text{ and } h(\sigma(\mathbb{E}_1)) = \sigma(\mathbb{E}_2)$$

Example

 σ

 h_1

 h_2

 h_3

 h_4

0xAB 3

0xAC 0xDD

0xDD 4

$$(\sigma, h_1) \models x \mapsto 3$$

•
$$dom(h_1) = 0 \times AB = \sigma(x)$$

•
$$h_1(0 \times AB) = 3$$

$$(\sigma, h_3) \models y \mapsto 4$$

•
$$dom(h_3) = 0 \times DD = \sigma(y)$$

•
$$h_3(0 \times DD) = 4$$

$$(\sigma, h_2) \models x + 1 \mapsto y$$

•
$$dom(h_2) = 0 \times AC = \sigma(x+1)$$

•
$$h_2(0 \times AC) = 0 \times DD = \sigma(y)$$

$$(\sigma,h) \models \mathbb{E}_1 \mapsto \mathbb{E}_2 \text{ if } dom(h) = \{\sigma(\mathbb{E}_1)\} \text{ and } h(\sigma(\mathbb{E}_1)) = \sigma(\mathbb{E}_2)$$

Example

 σ

 h_1

 h_2

 h_3

 h_4

0xAB 3

0xAC 0xDD

0xDD 4

$$(\sigma, h_1) \models x \mapsto 3$$

- $dom(h_1) = 0 \times AB = \sigma(x)$
- $h_1(0 \times AB) = 3$

$$(\sigma, h_2) \models x + 1 \mapsto y$$

- $dom(h_2) = 0 \times AC = \sigma(x+1)$
- $h_2(0 \times AC) = 0 \times DD = \sigma(y)$

$$(\sigma, h_3) \models y \mapsto 4$$

- $dom(h_3) = 0 \times DD = \sigma(y)$
- $h_3(0 \times DD) = 4$

$$(\sigma, h_4) \models y + 1 \mapsto x$$

- $dom(h_4) = 0 \times DE = \sigma(y+1)$
- $h_4(0 \times DE) = 0 \times AB = \sigma(x)$

Example

 σ

h

х	0xAB
У	0xDD

0xAB	3
0×AC	0×DD
0xDD	4
0×DE	0×AB

Doest not satisfy the statement $x\mapsto 3$

Example

 σ

h

х	0xAB
у	0×DD

0×AB	3
0×AC	0×DD
0xDD	4
0×DE	0xAB

Doest not satisfy the statement $x \mapsto 3$

- $(\sigma, h) \models \mathbb{E}_1 \mapsto \mathbb{E}_2$ if $dom(h) = {\sigma(\mathbb{E}_1)}$ and $h(\sigma(\mathbb{E}_1)) = \sigma(\mathbb{E}_2)$
- $dom(h) = \{0xAB, 0xAC, 0xDD, 0xDE\}$
- $\sigma(x) = 0xAB$
- $h(\sigma(x)) = 3$

Store assignment axiom for separation logic

```
Hoare axiom: \{Q[x/\mathbb{E}]\} x := \mathbb{E} \{Q\}
```

Floyd axiom:
$$\{x = v\} \ x := \mathbb{E} \{x = \mathbb{E}[x/v]\}$$

where v is an auxiliary variable which does not occur in \mathbb{E} .

Store assignment axiom for separation logic

Hoare axiom: $\{Q[x/\mathbb{E}]\}$ x := \mathbb{E} $\{Q\}$

Floyd axiom: $\{x = v\} \ x := \mathbb{E} \{x = \mathbb{E}[x/v]\}$

where v is an auxiliary variable which does not occur in \mathbb{E} .

Store assignment axiom for Separation logic:

$$\{x = v \land emp\} \ x := \mathbb{E} \{x = \mathbb{E}[x/v] \land emp\}$$

where v is an auxiliary variable which does not occur in $\mathbb E$

New:

- atomic formula emp to say that the "heap is empty"
- we want to track the smallest amount of heap information

Store assignment axiom for separation logic

Store assignment axiom for Separation logic:

$$\{x = v \land emp\} \ x := \mathbb{E} \{x = \mathbb{E}[x/v] \land emp\}$$

where v is an auxiliary variable which does not occur in $\mathbb E$

Example

```
 \left\{ \textbf{x} = \textbf{v} \land \texttt{emp} \right\} \ \textbf{x} \ := \ \textbf{1} \ \left\{ \textbf{x} = \textbf{1} \land \texttt{emp} \right\}  If we want the precondition \textbf{1} = \textbf{1} (i.e. \top) then instantiate \textbf{v} to \textbf{x}  \left\{ \textbf{x} = \textbf{x} \land \texttt{emp} \right\} \ \textbf{x} \ := \ \textbf{1} \ \left\{ \textbf{x} = \textbf{1} \land \texttt{emp} \right\}
```

Heap reads axiom

Heap reads axiom:

$$\{\mathtt{x} = \mathsf{v}_1 \wedge \mathbb{E} \mapsto \mathsf{v}_2\} \ \mathtt{x} \ := \ [\mathbb{E}] \ \{\mathtt{x} = \mathsf{v}_2 \wedge \mathbb{E}[\mathtt{x}/\mathsf{v}_1] \mapsto \mathsf{v}_2\}$$

where v_1 and v_2 are auxiliary variables which do not occur in $\mathbb E$

Heap reads axiom

Heap reads axiom:

$$\{\mathbf{x} = \mathbf{v}_1 \wedge \mathbb{E} \mapsto \mathbf{v}_2\} \ \mathbf{x} := [\mathbb{E}] \ \{\mathbf{x} = \mathbf{v}_2 \wedge \mathbb{E}[\mathbf{x}/\mathbf{v}_1] \mapsto \mathbf{v}_2\}$$

where v_1 and v_2 are auxiliary variables which do not occur in $\mathbb E$

σ y 0xAB x 2

0xAB 1

h x := [y]

h 0xAB 1

Heap reads axiom

Heap reads axiom:

$$\{\mathbf{x} = \mathbf{v}_1 \wedge \mathbb{E} \mapsto \mathbf{v}_2\} \ \mathbf{x} := [\mathbb{E}] \ \{\mathbf{x} = \mathbf{v}_2 \wedge \mathbb{E}[\mathbf{x}/\mathbf{v}_1] \mapsto \mathbf{v}_2\}$$

where v_1 and v_2 are auxiliary variables which do not occur in $\mathbb E$

Heap read axiom instance:

$$\{\mathtt{x} = \mathtt{2} \land \mathtt{y} \mapsto \mathtt{1}\} \ \mathtt{x} \ := \ [\mathtt{y}] \ \{\mathtt{x} = \mathtt{1} \land \mathtt{y} \mapsto \mathtt{1}\}$$

Heap writes axiom

Heap writes axiom:

$$\{\mathbb{E}_1 \mapsto -\} \ [\mathbb{E}_1] := \mathbb{E}_2 \ \{\mathbb{E}_1 \mapsto \mathbb{E}_2\}$$

where $(\mathbb{E}_1\mapsto -)$ abbreviates $(\exists z.\mathbb{E}_1\mapsto z)$ and z does no occur in \mathbb{E}_1

Heap writes axiom

Heap writes axiom:

$$\{\mathbb{E}_1 \mapsto -\} \ [\mathbb{E}_1] := \mathbb{E}_2 \ \{\mathbb{E}_1 \mapsto \mathbb{E}_2\}$$

where $(\mathbb{E}_1\mapsto -)$ abbreviates $(\exists z.\mathbb{E}_1\mapsto z)$ and z does no occur in \mathbb{E}_1

Heap assignment semantics:

- evaluate expression \mathbb{E}_1 to get location I
- fault if location / is not in the current heap
- ullet otherwise make the contents of location / the value of expression \mathbb{E}_2

Heap writes axiom

Heap writes axiom:

$$\{\mathbb{E}_1 \mapsto -\} \ [\mathbb{E}_1] := \mathbb{E}_2 \ \{\mathbb{E}_1 \mapsto \mathbb{E}_2\}$$

where $(\mathbb{E}_1\mapsto -)$ abbreviates $(\exists z.\mathbb{E}_1\mapsto z)$ and z does no occur in \mathbb{E}_1

Heap assignment semantics:

- evaluate expression \mathbb{E}_1 to get location I
- fault if location / is not in the current heap
- ullet otherwise make the contents of location / the value of expression \mathbb{E}_2

Example

Heap allocation axiom

Heap allocation axiom:

```
\{x = v \land emp\}\ x := cons(\mathbb{E}_1, ... \mathbb{E}_n)\ \{x \mapsto \mathbb{E}_1[x/v], ..., \mathbb{E}_n[x/v]\}
where v is a variable diff. from x and not appearing in \mathbb{E}_1, ..., \mathbb{E}_n
```

Heap allocation assignment axiom means: if $\sigma(\mathbf{x}) = v$ and the heap is empty then executing $\mathbf{x} := \operatorname{cons}(\mathbb{E}_1, ... \mathbb{E}_n)$ gives a heap consisting of n new consecutive locations, where location $\sigma(\mathbf{x}) + i$ contains $\sigma(\mathbb{E}_{i+1}[\mathbf{x}/v])$

Heap allocation axiom

Heap allocation axiom:

$$\{\mathtt{x} = \mathtt{v} \wedge \mathtt{emp}\} \ \mathtt{x} := \mathtt{cons}\big(\mathbb{E}_1, \ldots \mathbb{E}_n\big) \ \{\mathtt{x} \mapsto \mathbb{E}_1[\mathtt{x}/\mathtt{v}], \ldots, \mathbb{E}_n[\mathtt{x}/\mathtt{v}]\}$$

where v is a variable diff. from x and not appearing in $\mathbb{E}_1, \ldots, \mathbb{E}_n$

Heap allocation assignment axiom means: if $\sigma(\mathbf{x}) = v$ and the heap is empty then executing $\mathbf{x} := \operatorname{cons}(\mathbb{E}_1, ... \mathbb{E}_n)$ gives a heap consisting of n new consecutive locations, where location $\sigma(\mathbf{x}) + i$ contains $\sigma(\mathbb{E}_{i+1}[\mathbf{x}/v])$

σ		
х	0xAB	
У	7	

h	
0xAB	5
0×AC	8

Heap allocation axiom

Heap allocation axiom:

$$\{\mathtt{x} = \mathtt{v} \land \mathtt{emp}\} \ \mathtt{x} := \mathtt{cons}(\mathbb{E}_1, \ldots \mathbb{E}_n) \ \{\mathtt{x} \mapsto \mathbb{E}_1[\mathtt{x}/\mathtt{v}], \ldots, \mathbb{E}_n[\mathtt{x}/\mathtt{v}]\}$$

where v is a variable diff. from x and not appearing in $\mathbb{E}_1, ..., \mathbb{E}_n$

Heap allocation assignment axiom means: if $\sigma(\mathbf{x}) = v$ and the heap is empty then executing $\mathbf{x} := \operatorname{cons}(\mathbb{E}_1, ... \mathbb{E}_n)$ gives a heap consisting of n new consecutive locations, where location $\sigma(\mathbf{x}) + i$ contains $\sigma(\mathbb{E}_{i+1}[\mathbf{x}/v])$

$$\begin{array}{ccc} \sigma & h & \mathtt{x} := \mathtt{cons}(5, \mathtt{y} + 1) \\ \hline \begin{array}{ccc} \mathtt{x} & - \\ \mathtt{y} & 7 \end{array}$$

σ		
х	0xAB	
У	7	

h	
0xAB	5
0×AC	8

$$\begin{split} & x \mapsto \mathbb{E}_1[x/\nu], \dots, \mathbb{E}_n[x/\nu] \text{ abbreviates} \\ & x \mapsto \mathbb{E}_1[x/\nu] \ * \ (x+1) \mapsto \mathbb{E}_2[x/\nu] \ * \dots * \ (x+n-1) \mapsto \mathbb{E}_n[x/\nu] \end{split}$$

Heap deallocation axiom

```
Heap deallocation axiom: \{\mathbb{E}\mapsto -\} dispose \mathbb{E} \{\text{emp}\} where (\mathbb{E}\mapsto -) abbreviates (\exists z.\mathbb{E}\mapsto z) and z does no occur in \mathbb{E}
```

Heap deallocation axiom

```
Heap deallocation axiom: \{\mathbb{E}\mapsto -\} dispose \mathbb{E} \{\text{emp}\} where (\mathbb{E}\mapsto -) abbreviates (\exists z.\mathbb{E}\mapsto z) and z does no occur in \mathbb{E}
```

Heap deallocation: dispose ${\mathbb E}$

- ullet evaluate $\mathbb E$ to get location I
- fault if location / is not in the current heap
- otherwise remove location / from the heap

Heap deallocation axiom means: if the heap is a singleton with domain $\sigma(\mathbb{E})$ then executing dispose \mathbb{E} results in the empty heap.

Separation logic axioms - recap

Store assignment axiom:

$$\{x = v \land emp\} \ x := \mathbb{E} \{x = \mathbb{E}[x/v] \land emp\}$$

where v is an auxiliary variable which does not occur in $\mathbb E$

Heap reads axiom:

$$\{\mathtt{x} = \mathsf{v}_1 \wedge \mathbb{E} \mapsto \mathsf{v}_2\} \ \mathtt{x} \ := \ [\mathbb{E}] \ \{\mathtt{x} = \mathsf{v}_2 \wedge \mathbb{E}[\mathtt{x}/\mathsf{v}_1] \mapsto \mathsf{v}_2\}$$

where v_1 and v_2 are auxiliary variables which do not occur in $\mathbb E$

Heap writes axiom:
$$\{\mathbb{E}_1 \mapsto -\}[\mathbb{E}_1] := \mathbb{E}_2\{\mathbb{E}_1 \mapsto \mathbb{E}_2\}$$

where $(\mathbb{E}_1\mapsto -)$ abbreviates $(\exists z.\mathbb{E}_1\mapsto z)$ and z does no occur in \mathbb{E}_1

Heap allocation axiom:

$$\{\mathbf{x} = \mathbf{v} \wedge \mathtt{emp}\} \ \mathbf{x} := \mathtt{cons}\big(\mathbb{E}_1, \ldots \mathbb{E}_n\big) \ \{\mathbf{x} \mapsto \mathbb{E}_1[\mathbf{x}/\mathbf{v}], \ldots, \mathbb{E}_n[\mathbf{x}/\mathbf{v}]\}$$

where v is a variable diff. from x and not appearing in $\mathbb{E}_1,...,\mathbb{E}_n$

Heap deallocation axiom: $\{\mathbb{E} \mapsto -\}$ dispose \mathbb{E} $\{\mathtt{emp}\}$

where $(\mathbb{E}\mapsto -)$ abbreviates $(\exists z.\mathbb{E}\mapsto z)$ and z does no occur in \mathbb{E}

The frame rule

Frame rule:

$$\frac{\{P\} \ \mathbb{C} \ \{Q\}}{\{P*R\} \ \mathbb{C} \ \{Q*R\}}$$

where no variables modified by \mathbb{C} appears free in R.

The Frame rule means that $\{P\}$ \mathbb{C} $\{Q\}$ is restricted to the variables and parts of the heap that are actually used by \mathbb{C} .

The frame rule

Frame rule:

$$\frac{\{P\} \ \mathbb{C} \ \{Q\}}{\{P*R\} \ \mathbb{C} \ \{Q*R\}}$$

where no variables modified by \mathbb{C} appears free in R.

Example

Is the following instance a legal instance of the Frame rule? If so, why and if not, why not?

$$\frac{\{\texttt{emp}\} \; \texttt{x} := \texttt{cons}(\texttt{1}) \; \{\texttt{x} \mapsto \texttt{1}\}}{\{\texttt{emp} \; * \; \texttt{x} \mapsto \texttt{1}\} \; \texttt{x} := \texttt{cons}(\texttt{1}) \; \{\texttt{x} \mapsto \texttt{1} \; * \; \texttt{x} \mapsto \texttt{1}\}}$$

The frame rule

Frame rule:

$$\frac{\{P\} \mathbb{C} \{Q\}}{\{P*R\} \mathbb{C} \{Q*R\}}$$

where no variables modified by \mathbb{C} appears free in R.

Example

Is the following instance a legal instance of the Frame rule? If so, why and if not, why not?

$$\frac{\{\texttt{emp}\} \; \texttt{x} := \texttt{cons}(\texttt{1}) \; \{\texttt{x} \mapsto \texttt{1}\}}{\{\texttt{emp} \; * \; \texttt{x} \mapsto \texttt{1}\} \; \texttt{x} := \texttt{cons}(\texttt{1}) \; \{\texttt{x} \mapsto \texttt{1} \; * \; \texttt{x} \mapsto \texttt{1}\}}$$

No, the command modifies x and R contains a free occurrence of x.

Propositional Logic

Formulas are defined by

$$\varphi ::= p \mid \top \mid \bot \mid \neg \varphi \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \varphi \rightarrow \varphi$$

starting from propositional variables (atoms).

Interpretations assign truth values to propositional variables (true/false).

Further, we can compute the truth value of any formula (e.g., using truth tables).

A formula is satisfiable if there exists an interpretation which makes the formula true.

A formula is valid if is it true under all interpretations.

Satisfiability and Validity of formulas


```
valid = not falsifiable
satisfiable = not unsatisfiable
```

Satisfiability and Validity of formulas

The SAT problem

The SAT problem:

Given a propositional formula with n variables, can we find an interpretation to make the formula true?

Is the formula satisfiable? If so, how?

The SAT problem

The SAT problem:

Given a propositional formula with n variables, can we find an interpretation to make the formula true?

Is the formula satisfiable? If so, how?

The first known NP-complete problem, as proved by Stephen Cook in 1971.

The SAT problem

The SAT problem:

Given a propositional formula with n variables, can we find an interpretation to make the formula true?

Is the formula satisfiable? If so, how?

The first known NP-complete problem, as proved by Stephen Cook in 1971.

Since SAT is NP-complete, is there hope?

A SAT solver is a program that automatically decides whether a propositional formula is satisfiable (i.e, answers the SAT problem).

If it is satisfiable, a SAT solver will produce an example of an interpretation that satisfies the formula.

A SAT solver is a program that automatically decides whether a propositional formula is satisfiable (i.e, answers the SAT problem).

If it is satisfiable, a SAT solver will produce an example of an interpretation that satisfies the formula.

Naive algorithm: enumerate all assignments to the n variables in the formula $(2^n \text{ assignments!})$

Worst case complexity is exponential (for all known algorithms).

A SAT solver is a program that automatically decides whether a propositional formula is satisfiable (i.e, answers the SAT problem).

If it is satisfiable, a SAT solver will produce an example of an interpretation that satisfies the formula.

Naive algorithm: enumerate all assignments to the n variables in the formula $(2^n \text{ assignments!})$

Worst case complexity is exponential (for all known algorithms).

Perhaps surprisingly, many efficient SAT solvers exist!

- average cases encountered in practice can be handled (much) faster
- real problem instances will not be random: exploit implicit structure
- some variables will be tightly correlated with other variables
- some variables will be irrelevant for the difficult parts of the search

- There are plenty of SAT solvers:
 - MiniSAT, PicoSAT
 - RelSAT
 - GRASP
 - ...
- There are also online SAT solvers:
 - Logictools
 - ...

- There are plenty of SAT solvers:
 - MiniSAT, PicoSAT
 - RelSAT
 - GRASP
 - ...
- There are also online SAT solvers:
 - Logictools
 - ...
- SAT competition
 - The First International SAT Competition in 1992, followed by 1993, 1996, since 2002 every year, affiliated with the SAT conference

- There are plenty of SAT solvers:
 - MiniSAT, PicoSAT
 - RelSAT
 - GRASP
 - ...
- There are also online SAT solvers:
 - Logictools
 - ...
- SAT competition
 - The First International SAT Competition in 1992, followed by 1993, 1996, since 2002 every year, affiliated with the SAT conference
- Early 90's: 100 variables, 200 clauses
- Today: 1,000,000 variables and 5,000,000 clauses.

Applications

Where can we find SAT technology today?

- Formal methods
 - Hardware model checking
 - Software model checking
 - Termination analysis of term-rewrite systems
 - Test pattern generation (testing of software & hardware)
 - ...
- Artificial intelligence
 - Planning
 - Knowledge representation
 - Games (n-queens, sudoku, ...)

Applications

Where can we find SAT technology today?

- Bioinformatics
 - Haplotype inference
 - Pedigree checking
 - ...

Design automation

- Equivalence checking
- Fault diagnosis
- Noise analysis
- ...

Security

- Cryptanalysis
- · Inversion attacks on hash functions
- ...

Applications

Where can we find SAT technology today?

- Computationally hard problems
 - Graph coloring
 - Traveling salesperson
 - ...
- Mathematical problems
 - van der Waerden numbers
 - Quasigroup open problems
 - . . .
- Core engine for other solvers
- Integrated into theorem provers
 - HOL
 - Isabelle
 - ...

An example - Pythagorean Triples

Is it possible to assign to each integer 1, 2, ..., n one of two colors such that if $a^2 + b^2 = c^2$ then a, b, and c do not all have the same color?

An example - Pythagorean Triples

Is it possible to assign to each integer 1, 2, ..., n one of two colors such that if $a^2 + b^2 = c^2$ then a, b, and c do not all have the same color?

- Solution: nope
- for n = 7825 it is not possible
- the proof obtained by a SAT solver has 200 Terrabytes
- the largest Math proof ever (see the article)

An example - Pythagorean Triples

Is it possible to assign to each integer 1, 2, ..., n one of two colors such that if $a^2 + b^2 = c^2$ then a, b, and c do not all have the same color?

- Solution: nope
- for n = 7825 it is not possible
- the proof obtained by a SAT solver has 200 Terrabytes
- the largest Math proof ever (see the article)

How to encode this problem?

- for each integer i we have a Boolean variable x_i
- $x_i = 1$ if the color of i is 1 and $x_i = 0$ otherwise
- for each a, b, c such that $a^2 + b^2 = c^2$ we have two clauses:

$$(x_a \lor x_b \lor x_c) \sim \neg(\neg x_a \land \neg x_b \land \neg x_c)$$
$$(\neg x_a \lor \neg x_b \lor \neg x_c) \sim \neg(x_a \land x_b \land x_c)$$

- A literal is a propositional variable or its negation
 - example: $p, \neg q$
 - \bullet For a literal / we write \sim / for the negation of / cancelling double negations

- A literal is a propositional variable or its negation
 - example: $p, \neg q$
 - \bullet For a literal / we write \sim / for the negation of / cancelling double negations
- A clause is a disjunction of literals
 - example: $p \lor \neg q \lor r$
 - Since ∨ is associative, we can represent clauses as lists of literals.
 - The empty clause (0 disjuncts) is defined to be ⊥
 - A unit clause is a clause consisting of exactly one literal.

- A literal is a propositional variable or its negation
 - example: $p, \neg q$
 - For a literal / we write ~ / for the negation of / cancelling double negations
- A clause is a disjunction of literals
 - example: $p \lor \neg q \lor r$
 - Since ∨ is associative, we can represent clauses as lists of literals.
 - The empty clause (0 disjuncts) is defined to be ⊥
 - A unit clause is a clause consisting of exactly one literal.
- A formula is in CNF if it is a conjuction of clauses
 - example: $(p \lor \neg q \lor r) \land (\neg p \lor s \lor t \lor \neg u)$
 - Since ∧ is associative, we can represent formulas in CNF as lists of clauses.
 - ullet The empty conjunction is defined to be \top

CNF

We can represent CNF formulas as vectors of vectors of literals, which are often integers.

If "5" means x_5 , then "-5" means $\neg x_5$.

Example

$$[[2, -1], [3, -2, 1]]$$

is the representation of the CNF formula

$$(x_2 \vee \neg x_1) \wedge (x_3 \vee \neg x_2 \vee x_1)$$

DIMACS Format

Example The input

- the most common input format for SAT solvers
- a way to encode CNF formulas

```
c This is a comment
c This is another comment
p cnf 6 3
1 -2 3 0
2 4 5 0
4 6 0
```

represents the CNF formula $(x_1 \lor \neg x_2 \lor x_3) \land (x_2 \lor x_4 \lor x_5) \land (x_4 \lor x_6)$

DIMACS Format

- At the beginning there can exist one or more comment line.
- Comment lines start with a c
- The following lines are information about the expression itself
- the Problem line starts with a p:

p FORMAT VARIABLES CLAUSES

- FORMAT should always be cnf
- VARIABLES is the number of variables in the expression
- CLAUSES is the number of clauses in the expression

Example

p cnf 6 3 expresses that there are 6 variables and 3 clauses

DIMACS Format

- The next CLAUSES lines are for the clauses themselves
- Variables are enumerated from 1 to VARIABLES
- A negation is represented by —
- Each variable information is separated by a blank space
- A 0 is added at the end to mark the end of the clause

Example

1 -2 3 0 expresses the clause $(x_1 \lor \neg x_2 \lor x_3)$

Example

Scheduling a meeting considering the following constraints:

- Adam can only meet on Monday and Wednesday
- Bridget cannot meet on Wednesday
- Charles cannot meet on Friday
- Darren can only meet on Thursday or Friday

Example

Scheduling a meeting considering the following constraints:

- Adam can only meet on Monday and Wednesday
- Bridget cannot meet on Wednesday
- Charles cannot meet on Friday
- Darren can only meet on Thursday or Friday

We represent week day Monday, Tuesday, ... as variables $x_1, x_2, ...$

Example

Scheduling a meeting considering the following constraints:

- Adam can only meet on Monday and Wednesday
- Bridget cannot meet on Wednesday
- Charles cannot meet on Friday
- Darren can only meet on Thursday or Friday

We represent week day Monday, Tuesday, ... as variables $x_1, x_2, ...$

We obtain the following formula in CNF:

$$\varphi = (x_1 \lor x_3) \land (\neg x_3) \land (\neg x_5) \land (x_4 \lor x_5) \land AtMostOne$$

Example (cont.)

$$AtMostOne = (\neg x_1 \lor \neg x_2) \land (\neg x_1 \lor \neg x_3) \land (\neg x_1 \lor \neg x_4) \land (\neg x_1 \lor \neg x_5) \land (\neg x_2 \lor \neg x_3) \land (\neg x_2 \lor \neg x_4) \land (\neg x_2 \lor \neg x_5) \land (\neg x_3 \lor \neg x_4) \land (\neg x_3 \lor \neg x_5) \land (\neg x_4 \lor \neg x_5)$$

Example (cont.)

```
\varphi = (x_1 \lor x_3) \land (\neg x_3) \land (\neg x_5) \land (x_4 \lor x_5) \land AtMostOne
AtMostOne = (\neg x_1 \lor \neg x_2) \land (\neg x_1 \lor \neg x_3) \land (\neg x_1 \lor \neg x_4) \land (\neg x_1 \lor \neg x_5) \land (\neg x_2 \lor \neg x_3) \land (\neg x_2 \lor \neg x_4) \land (\neg x_2 \lor \neg x_5) \land (\neg x_3 \lor \neg x_4) \land (\neg x_3 \lor \neg x_5) \land (\neg x_4 \lor \neg x_5)
```

DIMACS Format c Planning a meeting

p cnf 5 14

1 3 0

-3 0

-5 0

450

-1 -2 0

-1 -2 (

-1 -3 0

-1 -4 0

-1 -5 0

-2 -3 0

-2 -4 0

-2 -5 0

-3 -4 0

-3 -4 U

-3 -5 0

-4 -5 0

Quiz time!

https://www.questionpro.com/t/AT4NiZrmaJ

References – Separation logic

- Lecture Notes on "Formal Methods for Software Engineering", Australian National University, Rajeev Goré.
- John Reynolds, "Introduction to Separation Logic (Preliminary Draft)", parts 1-4.
- Peter W. O'Hearn, "Resources, Concurrency and Local Reasoning", Theoretical Computer Science, Volume 375, Issue 1-3, Pages 271-307, 2007.