高二知识点整理7

1、有丝分裂的发生部位、具体过程,各时期变化特点

有丝分裂使多细胞生物体细胞增殖的主要方式

间期:时间最长

- G1: DNA 合成前期, 合成一定数量的 RNA 和蛋白质
- S:DNA 合成期, DNA 精确复制, 复制后染色体数目不变, DNA 分子加倍。
- G2: DNA 合成后期,主要合成组装纺锤体的蛋白质,完成细胞分裂所必须的物质准备和能量准备

前期:

核仁、核膜消失;

有丝前期染色质螺旋化缩短变粗形成染色体;

出现纺锤丝,形成纺锤体(动物细胞由中心粒发出,植物细胞从两极发出);

中期:

染色体的着丝粒在纺锤丝牵引下排列在细胞中央(赤道面),数目和形态比较清晰,便于观察。

后期:

着丝粒分裂,染色单体分开,成为两个染色体。在纺锤丝牵引下分别向细胞两极移动,形成两组相同的染色体。染色体数目暂时加倍。

末期:

纺锤体消失:

染色体螺旋打开成为染色质;

核仁核膜重新出现,形成两个新的细胞核。

(植物细胞在中央出现细胞板,动物细胞膜向内凹陷)最终形成两个新的子细胞。特点:染色体复制一次,平均分配到两个子细胞中,所以分裂后子细胞染色体形态数目结构不变,保持遗传特性的稳定性和连续性。

有丝分裂中染色体、染色单体、DNA分子数的变化

	间期	前期	中期	后期	末期
染色体 行为	染色体 复制	染色质变 成染色体	着丝粒排 列在赤道 面上	着丝粒分裂: 子染色体向 两极移动	染色体恢复 成丝状(形成两个子细 胞)
DNA	$4 \rightarrow 8$ $2N \rightarrow 4N$	8 4N	8 4N	8 4N	4 2N
染色体	$4 \rightarrow 4$ $2N$	4 2N	4 2N	8 4N	4 2N
染色单体	0 →8 0— 4N	8 4N	8 4N	9intab, <mark>9</mark> n∋? 0	0

有丝分裂过程:

2、有丝分裂中染色质变成染色体的时期和意义;染色体变成染色质的时期和意义

染色质变成染色体的时期: 前期

染色质变成染色体的意义: 便于染色体平均分配

染色体变成染色质的时期: 末期

染色体变成染色质的意义: 为下一次复制转录做准备

3、纺锤体出现的时期、作用、意义

前期:动物细胞的纺锤丝由中心体释放。植物细胞的纺锤丝由细胞两极发出。与染色体的着丝粒相连,牵引染色体移动,使染色单体分离或同源染色体分离,

保证细胞分裂时染色体的平均分配。

4、有丝分裂的意义

保证亲代、子代之间遗传性状的稳定性和连续性

5、什么是细胞周期?细胞周期各时期名称和变化特点 概念 指细胞一次分裂结束到下一次分裂结束所经 历的过程。

6、细胞分裂后的三种状态

7、精子形成过程

8、卵的形成过程

9、精子和卵形成的异同

精子和卵的形成异同					
比较项目	精子形成	卵细胞形成			
细胞质分裂是否均等	均等	不均等			
成熟的子细胞数目	4个	11			
是否需变形	变形	不变形			
相同点	染色体的行为和数 国 变化规律相同				

10、减数分裂和受精作用的意义

11、减数分裂的发生部位、具体过程,各时期变化特点

减数分裂是形成生殖细胞的特殊细胞分裂,DNA 复制一次,连续分裂两次,产生四个单倍体生殖细胞。

减数第一次分裂:

前期:同源染色体两两配对,有<mark>联会</mark>现象。可能发生<mark>交叉互换</mark>,导致基因重组, 是后代变异的原因之一。

中期:成对的同源染色体排列在赤道面。

后期:<mark>同源染色体分离</mark>,非同源染色体自由组合。也是导致基因重组,是后代变异的原因之一。

末期:分裂成两个子细胞,子细胞染色体数目已减半,子细胞已无同源染色体(对二倍体生物来说)

减数第二次分裂:与有丝分裂特点相同

前期:染色体排列无规则

中期:染色体的着丝粒排列在赤道面

后期:着丝粒分裂,染色单体分离

末期:形成子细胞,染色体数目没有再减半。

12、区分染色体、染色单体、染色体组

染色体组:细胞中的一组非同源染色体,它们在形态和功能上各不相同,但是携带着控制一种生物生长发育、遗传和变异的全部信息,这样的一组染色体,叫做一个染色体组。

12、有丝分裂和减数分裂的异同

有丝分裂与减数分裂比较							
比较	项目	有丝分裂	减数分裂				
不同点	发生部位	分生组织	生殖器官				
	同源染色体行为	不联会、交换、分离	联会、交换、分离				
	细胞分裂次数	1	2				
	子细胞数量	2	4				
	子细胞染色体数目	与亲本一样	减半				
	子细胞遗传物质	与亲本一样	有变异				
	子细胞类型	体细胞	生殖细胞				
相同点	DNA复制一次,出现纺锤丝						

13、细胞分化的概念、特点

概念:同一来源的细胞逐渐发生形态结构、生理功能和蛋白质合成上的差异,这 个过程称为细胞分化。

特点:稳定的、不可逆的

14、细胞分化和细胞分裂的区别

细胞分裂:细胞数目增加 细胞分裂:细胞类型增加