In Vivo Measurement of Changes in Ultrasonic Backscattered Energy for Homogeneous (Water Bath) and Heterogeneous (SAHUS) Heating

William L. Straube², R. Martin Arthur¹, Jason W. Trobaugh¹, Jesse Parry², Yuzheng Guo¹, and Eduardo G. Moros³

¹Electrical & Systems Engineering

²Radiation Oncology

Washington University in St. Louis.

St. Louis, MO, 63130, USA

³Radiation Oncology, University of Arkansas

Supported by NIH Grants R21 CA90531, R01 CA107558 and the Wilkinson Trust at Washington University

Objective of Ultrasonic Thermometry

To develop a method to produce 3D temperature maps in soft tissue during hyperthermia cancer treatment non-invasively, conveniently at low cost

with a single view from standard equipment

with at least 0.5°C accuracy & 1 cm³ resolution

Our Approach to Ultrasonic Thermometry

Take a single backscatter view with standard

imaging equipment

Use the change in backscattered energy (CBE) as a temperature-dependent parameter

Track and correct for motion to minimize its effect on CBE

Configuration for In Vitro Experiments

For 3D studies images were taken at 0.6 mm intervals in elevation at each temperature

Previous Hand Segmentation of 1D Signals

A-Mode Echo Analysis

CBE of Single Scatterers

Arthur, Straube, et al., Medical Physics, 30:1021-1029, 2003

Measurement of Backscattered Images

Terason 2000 (Teratech, Corp., Burlington, MA) laptop phased-array imaging system

- 128 Element 7 MHz Linear Array
- Laptop control of temperature and image acquisition with AutoIt®
- Access to RF signals

Ultrasonic Image of Bovine Liver

- Focal zone at arrow
- > 128-element, 7 MHz linear array (10L5)
- > Temperatures from 37 to 50 in 0.5°C steps

Compensation for Apparent Motion

- ➤ Radio-frequency images of bovine liver at 37 (left) and 50°C (center & right)
- Features in the fixed, highlighted region appear to have moved both axially and laterally at 50 compared to positions at 37°C
- ➤ 2D cross-correlation maximized at adjacent temperatures used to correct for apparent motion of features in the image at 50°C (right)

Arthur, Trobaugh, et al., I J Hyperthermia, 21:589-600, 2005

CBE with Temperature *In Vitro*

1D 2D

- CBE is nearly monotonic with temperature
- Calibration of CBE may enable temperature imaging

Arthur, Trobaugh, et al., IEEE Trans. on UFFC, 52, pp. 1644-1652, 2005.

CBE In Vivo

Added Problems for *in vivo* application of CBE temperature estimation include

- CBE in living tissue
- Perfusion effects
- Added motion

In vivo Experimental Configuration

In Vivo Studies

Washington University in St. Louis

- Performed on nude mice
 - attached to submerged angled traybilaterally implanted HT29 tumors

 - → RTD thermistor in contralateral tumor
- > In vitro procedure followed
 - from 37.0 to 45.0°C in 0.5°C steps
 - for an experiment of 0.5 hours
- Mice euthanized without recovery
- Images analyzed in a manner similar to that for in vitro experiments

W. L. Straube 11 of 20

STM Bethesda, MD 4/7/06

Change in Backscattered Energy in Motion-Compensated Images

Images after Non-Rigid Motion Compensation

CBE Increasing – Red Decreasing - Blue

CBE with Temperature *In Vivo*

Measured CBE in mice

Predicted CBE in subwavelength scatterers

CBE with Temperature

- CBE is nearly monotonic with temperature
- Calibration of CBE may enable temperature imaging

Small Animal Hyperthermia Ultrasound System

Ultrasonic Transducer Holder Mounted On The Body Of The Applicator

SAHUS Acrylic Body applicator

Temperature probes

Non -heated tumor Heated tumor

Coupling gel

Animal

Washington University in St. Louis

W. L. Straube 15 of 20

STM

Ultrasound Images Generated by the Terason Before Ultrasound Heating with the SAHUS

Ultrasound Images Generated by the Terason During Ultrasound Heating with the SAHUS

400 mW

800 mW

1600 mW

Ultrasound Images Generated by the Terason Before & After Ultrasound Heating with the SAHUS

Before

After

Washington University in St. Louis

W. L. Straube 18 of 20

STM Bethesda, MD 4/7/06

Summary & Conclusions

Measured changes in backscattered energy (CBE) from 37 to 45°C in motion-compensated images were consistent with CBE in our model of single sub-wavelength scatterers and in simulations of collections of scatterers

CBE varied nearly monotonically with temperature in *in vivo* mice just as it did in *in vitro* beef liver, turkey breast & pork muscle

Because CBE is nearly monotonic with temperature, we expect calibration of CBE to enable temperature imaging

Measurement of CBE with animal heating devices such as the SAHUS should be possible after eliminating noise.

Future Directions for Thermometry Based on Ultrasonic CBE

Refinement of the CBE model

- Histological study of scatterer distribution
- Evaluation of images & CBE using simulation

Estimation of temperature from simulations and measurements

Development of clinically relevant heating and measurement systems, such as

- Small Animal Hyperthermia with Ultrasound
- Scanning Ultrasound Reflector Linear Array
- Other Clinical Hyperthermia Systems

