Final Project Report

# Flights Route Analysis:

Link Prediction and Optimization

Group 26

# Group Member

———— Group 26 ————

M11015018 M11015080 M11015064

陳彦家 何昆霖

## Outlines

- Dataset
- Method
- Results
- Conclusion

### Dataset

- OpenFlight https://openflights.org/data.html

Routes Airports Airlines 59036 3209 531

## Dataset



### Dataset - OpenFlight

#### - Routes.dat Contains the routes of airlines

Airline, AID, Source, SID, Desitination, DID, codeshare, stops, equipments

|   | Airline | AID | Source | SID  | Desitination | DID  | codeshare | stops | equipments |
|---|---------|-----|--------|------|--------------|------|-----------|-------|------------|
| 0 | 2B      | 410 | AER    | 2965 | KZN          | 2990 | NaN       | 0     | CR2        |
| 1 | 2B      | 410 | ASF    | 2966 | KZN          | 2990 | NaN       | 0     | CR2        |
| 2 | 2B      | 410 | ASF    | 2966 | MRV          | 2962 | NaN       | 0     | CR2        |
| 3 | 2B      | 410 | CEK    | 2968 | KZN          | 2990 | NaN       | 0     | CR2        |
| 4 | 2B      | 410 | CEK    | 2968 | OVB          | 4078 | NaN       | 0     | CR2        |

### Dataset - OpenFlight

#### - Airlines.dat Contains the information of airlines

Airline, Airline ID, Source Airport, Source Airport ID, Dest Airport, Dest Airport ID, Codeshare, Stops, equipment

|    | AirlineID | Name             | Alias | IATA | ICAO | Callsign | Country       | Active |
|----|-----------|------------------|-------|------|------|----------|---------------|--------|
| 0  | -1        | Unknown          | \N    | -    | NaN  | \N       | \N            | Υ      |
| 1  | 1         | Private flight   | \N    | -    | NaN  | NaN      | NaN           | Υ      |
| 3  | 3         | 1Time Airline    | \N    | 1T   | RNX  | NEXTIME  | South Africa  | Υ      |
| 10 | 10        | 40-Mile Air      | \N    | Q5   | MLA  | MILE-AIR | United States | Υ      |
| 13 | 13        | Ansett Australia | \N    | AN   | AAA  | ANSETT   | Australia     | Υ      |

- Airline Metric
- Cost function
- Airline analyze

#### Airline Metric

- number of edges in the airline

- change in effective diameter

$$\Delta g = g(G \cup A) - g(G)$$

- change in the clustering coefficient

$$\Delta Cl = Cl(G \cup A) - Cl(A)$$

- modularity

$$Q = Q(y)$$

- change in the average closeness centrality  $\Delta CC = CC(G \cup A) - CC(A)$ 

- change in the nodes

$$\Delta V = V(G \cup A) - V(G)$$

#### **Cost Function**

• Use CVX to find  $\,C_i\,$ 

$$c(G, A) = \sum_{i=1}^{5} c_i X_i$$

## Algorithm

```
Algorithm 1 Feature Weighting

Input: A = \{A_1, \dots, A_N\} a set of airline graph
```

```
G an alliance graph
for i = 1 to N do
   Remove A_i from G
end for
F = N \times 6 zero matrix
for i = 1 to N do
   for j = 1 to 6 do
      F_{ij} = value of the j^{th} metric with current G and A_i
   end for
   G = G \cup A_i
end for
for j = 1 to 6 do
   Normalize the j^{th} column of F by its column standard deviation \sigma_i
end for
Solve in CVX:
    Let c = (c_1, ..., c_6)
    Solve: F_C > 0
    Subject to: \sum_{i=1}^{6} c_i = 1
```

#### One World

 $c_1, c_2, c_3, c_4, c_5, c_6 = (-0.001, -0.002, -0.133, 1.161, 0.005, -0.029)$ 



#### One World

## 前五推薦加入:

代號: ['7R' 'BE' 'IG' '9E' '9R']

名稱: ['BRA-Transportes Aereos' 'Flybe' 'Meridiana' 'Pinnacle Airlines'

'SATENA']

 $c_1, c_2, c_3, c_4, c_5, c_6 = (-0.001, -0.002, -0.133, 1.161, 0.005, -0.029)$ 

### Skyteam

 $C_1, C_2, C_3, C_4, C_5, C_6 = (0.001, -0.003, 0.148, 0.842, -0.005, 0.018)$ 



### Skyteam

### 前五推薦加入:

代號: ['AA' 'FR' 'US' 'UA' 'CZ']

名稱: ['American Airlines' 'Ryanair' 'US Airways' 'United Airlines'

'China Southern Airlines']

#### Star Alliance

 $c_1, c_2, c_3, c_4, c_5, c_6 = (0.000, 0.000, 1.000, 0.000, -0.000, 0.000)$ 



#### Star Alliance

## 前五推薦加入:

代號: ['AB''GQ''A2''AD''FR']

名稱: ['Air Berlin' 'Big Sky Airlines' 'Cielos Airlines' 'Azul' 'Ryanair']

### Conclusion

- Each case produce the smallest magnitude coefficients
- Some alliance have similar features
- Each alliance had fewer than half of the tested airlines fail

