CSE 847: Machine Learning Assignment #3

Instructor: Prof. Jun Wu Out: Oct. 31, 2024; Due: Nov. 27, 2024

Submit electronically for Assignment #3, a file named

yourFirstName-yourLastName.pdf containing your solution to this assignment (a.doc or.docx file is also acceptable, but.pdf is preferred).

1 Gaussian Mixture Model and EM Algorithm [30 points]

Given a 1-dimensional data set: $\{-67, -48, 6, 8, 14, 16, 23, 24\}$, consider using a Gaussian Mixture Model with 2 components (k = 2) to fit your data.

1.1 Parameters [10 points]

How many independent parameters are there in this GMM? Please justify your answer.

1.2 EM Algorithm [20 points]

What will your parameters be after 1 iteration of EM? Show your major calculations in both the E-step and the M-step. Only giving out the final results will NOT grant you any score. Feel free to initialize your parameters in any way you prefer.

2 Graphical Models [20 points]

Figure 1: DAG for Question 2

2.1 Joint Distribution [10 points]

Based on the graphical model in Figure 1, what is the joint distribution P(Y, X1, X2, X3, X4, X5, X6)?

2.2 Conditional Independence [10 points]

Please justify whether the following variables are conditionally independent or not:

- (1) $X2 \perp X5 \mid X3$
- (2) $X6 \perp Y \mid X5$

3 K-Means [50 points]

You are given a data set consisting of 4 samples a = (3,3), b = (7,9), c = (9,7), d = (5,3) in 2-dimensional space. You will assign the 4 samples into 2 clusters using the K-Means algorithm with **Euclidean distance**. The initialization of centroids is given by $c_1 = (6,5)$ and $c_2 = (6,6)$.

3.1 K-means Steps [10 points]

Show the steps of the K-Means algorithm until convergence, including each cluster centroid and the cluster membership of each example after each iteration. Only giving out the final results will NOT grant you any score.

3.2 Potential Function [10 points]

What is the value of the K-Means loss function $\mathcal{L}(K)$ (see Eq. (1) below) upon convergence?

3.3 Implementation [30 points]

For this problem, please download the breast-cancer-wisconsin data from the following link: https://archive.ics.uci.edu/dataset/15/breast+cancer+wisconsin+original

The data set contains 11 columns, separated by a comma. The first column is the example id, and you should ignore it. The **second to tenth columns are the 9 features**, based on which you should run your K-means algorithm. The last column is the class label, and you should ignore it as well.

- Please implement the K-Means algorithm on this data set with K=2,3,4,5,6,7,8. For each K value, you need to first run the K-Means algorithm and then compute the function as follows:

$$\mathcal{L}(K) = \sum_{i=1}^{N} \sum_{j=1}^{K} m_{ij} ||\mathbf{x}_i - \mathbf{c}_j||^2$$

$$\tag{1}$$

where N is the number of samples, \mathbf{x}_i denotes the feature vector for i^{th} sample, \mathbf{c}_j refers to the centroid of the j^{th} cluster, and m_{ij} denotes whether \mathbf{x}_i belongs to the j^{th} cluster.

- Please explain your implementation of K-Means with **pseudo code** and **plot the curve** of $\mathcal{L}(K)$ vs. K value. If you were to pick the optimal value of K based on this curve, would you pick the one with the lowest value of the potential function? Why?

Hint: if you find an empty cluster in a certain iteration, please drop the empty cluster and then randomly split the largest cluster into two clusters to maintain the total number of clusters at K.