1.1 数列的极限

1.1.1 数列极限的定义

定义 1.1.1: 数列极限的定义

设 $|x_n|$ 为一数列,若存在常数 a,对于任意的 $\varepsilon > 0$ (不论它多么小),总存在正整数 N,使得当n > N 时 $|x_n - a| < \varepsilon$ 恒成立,则称数 a 是数列 $|x_n|$ 的极限,或者称数列 $|x_n|$ 收敛于 a,记为

$$\lim_{n\to\infty}x_n=a \, \vec{\boxtimes} x_n\to a(n\to\infty)$$

该定义的 $\varepsilon - N^a$ 语言描述是

$$\lim_{n\to\infty}x_n=a\Leftrightarrow \forall \varepsilon>0, \exists 正整数N, \, { \pm n>N} \text{时}, \, { \bar{\eta}}|x_n,-a|<\varepsilon.$$

 $^a \varepsilon - N$ 几何意义: 对于点 a 的任何 ε 邻域即开区间 $(a-\varepsilon,a+\varepsilon)$ 一定存在 N, 当 n < N 即第 N 项以后的点 x_n 都落在开区间 $(a-\varepsilon,a+\varepsilon)$ 内, 而只有有限个 (最多有 N 个) 在区间之外.

在上面的定义中, $\varepsilon>0$ 的 ε 任意性是非常重要的,只有这样才能表示出<mark>无限接近的意义</mark>. 总存在正整数 N,使得 n>N 这个条件用于表达 $n\to\infty$ 的过程.

注 1.1.1: 数列极限的性质

- 数列收敛 等价于数列极限存在
- 数列的极限值与数列的前有限列无关,只与后面无穷项有关

• 数列的最值只能在前有限项中取得,前有限项有比极限值大的,则数列存在最大值.前有限项有比极限值小的,则数列存在最小值

- 若数列 $\{a_n\}$ 收敛, 则其任何子列 $\{a_{n_k}\}$ 也收敛, 且 $\lim_{k \to \infty} a_{n_k} = \lim_{n \to \infty} a_n{}^b$
- $\bullet \quad \lim_{n \to \infty} x_n = a \Leftrightarrow \lim_{k \to \infty} x_{2k-1} = \lim_{k \to \infty} x_{2k} = a$
- $\lim_{n\to\infty} \sqrt[n]{n} = 1$. $\lim_{n\to\infty} \sqrt[n]{a} = 1(a>0)$
- 关于数列 $(1+\frac{1}{n})^n$ 的结论
 - 单调增加

$$-\lim_{n\to\infty} (1+\frac{1}{n})^n = e$$

题目 1. 已知 $a_n = \sqrt[n]{n} - \frac{(-1)^n}{n} (n = 1, 2, \cdots),$ 则 a_n

- (A) 有最大值, 有最小值 (B) 有最大值, 没有最小值
- (C) 没有最大值, 有最小值 (D) 没有最大值, 没有最小值

解答. $\lim_{n \to \infty} a_n = 1 - 0, a_1 = 2, a_2 = \sqrt{2} - \frac{1}{2}$, 因此 a_n 既有最大值又有最小值

题目 2. 证明:若 $\lim_{n\to\infty}a_n=A$, 则 $\lim_{n\to\infty}|a_n|=|A|$

证明. 已知数列 a_n 极限为 A, 那么 $|a_n-A|<\varepsilon$, 由不等式1可得, $||a_n|-|A||\leqslant |a_n-A|<\varepsilon$, 因此 $\lim_{n\to\infty}|a_n|=|A|$.

题目 2 的注记.

- 1. 此命题反过来则错误, 如取 $a_n = (-1)^n$, 则 $\lim_{n \to \infty} |(-1)^n| = 1$. 但 $\lim_{n \to \infty} (-1)^n$ 不存在.
- 2. 在本题中若 A=0, 则 $||a_n|-|A||=||a_n|-0|=|a_n-0|$, 即有

$$\lim_{n\to\infty}a_n=0\Leftrightarrow \lim_{n\to\infty}|a_n|=0\;,$$

^a区别于级数收敛

b此条定理提供了一个判断数列发散的方法:1. 至少一个子数列发散.2. 两个子数列收敛, 但是收敛值不同.

此结论常用,即若要证明 $\lim_{n\to\infty}a_n=0$,可转换为证明 $\lim_{n\to\infty}|a_n|=0$,由于 $|a_n|\geq 0$,若使用了夹逼准则,只需证明 $|a_n|\leqslant 0$ 即可

3. 此结论对函数亦成立, 即若 $\lim_{x\to x_0} f(x) = A$, 则 $\lim_{x\to x_0} |f(x)| = |A|$.

题目 3. 设 $\lim_{n\to+\infty} a_n = a$, 且 $a \neq 0$, 则当 n 充分大时有

$$(\mathbf{A})\mid a_n\mid>\frac{\mid a\mid}{2}.\quad (\mathbf{B})\mid a_n\mid<\frac{\mid a\mid}{2}.\quad (\mathbf{C})a_n>a-\frac{1}{n}.\quad (\mathbf{D})a_n< a+\frac{1}{n}.$$

解答. 根据结论若 $\lim_{x\to x_0} f(x) = A$, 则 $\lim_{x\to x_0} |f(x)| = |A|$. 可得 $\lim_{n\to\infty} a_n = a \Rightarrow \lim_{n\to\infty} |a_n| = |a|$, 即 $|a_n| > |a| > \frac{|a|}{2}$.

题目 3 的注记. 对于 C,D 选项, 只知道 a_n 的极限是 a, 那么就是说两者之间的距离是无穷小, 但是题目中没有给出两者相距的量级, 因此一定错误的. 反例为 $a_n = a \pm \frac{1}{n^2}$.

题目 4. 设数列 x_n 与 y_n 满足 $\lim_{n\to\infty} x_n y_n = 0$, 则下列命题正确的是

- (A) 若 x_n 发散,则 y_n ,必发散 (B) 若 x_n 无界,则 y_n 必有界
- (C) 若 x_n 有界,则 y_n 必为无穷小 (D) 若 $\frac{1}{x_n}$ 为无穷小,则 y_n 必为无穷小

解答. A 选项: 令
$$x_n = \begin{cases} 0, n$$
为奇数 $y_n \equiv 0$. 显然 x_n 发散,但是 y_n 收敛. n,n 为偶数

$$\mathbf{B}$$
 选项: 令 $x_n = \begin{cases} 0, n$ 为奇数
$$y_n = \begin{cases} n, n$$
为偶数
$$0, n$$
 . 虽然二者都无界,但是也满足题意.
$$0, n$$
为奇数

C 选项: 令
$$x_n \equiv 0, y_n = \begin{cases} n, n$$
为奇数
$$0, n$$
为 。 同理也满足题意,但是 y_n 为无穷大
$$0, n$$
为偶数

D 选项:
$$\lim_{n\to\infty} x_n y_n = \lim_{n\to\infty} \frac{y_n}{\frac{1}{x_n}} = 0 \Rightarrow y_n = o(\frac{1}{x_n})$$

题目 4 的注记. 数列极限概念题一个很好的办法是举反例. 经典反例:(1) 分奇偶.(2) 恒为 0.

题目 5. 设 x_n 与 y_n 为两个数列,则下列说法正确的是

- (A) 若 x_n 与 y_n 无界,则 $x_n + y_n$ 无界
- (B) 若 x_n 与 y_n 无界,则 x_ny_n 无界
- (C) 若 x_n 与 y_n 中, 一个有界, 一个无界, 则 $x_n y_n$ 无界
- (D) 若 x_n 与 y_n 均为无穷大,则 $x_n y_n$ 一定为无穷大

B 选项: 令
$$x_n=\begin{cases} 0,n$$
为奇数
$$,y_n=\begin{cases} n,n$$
为奇数
$$, \text{ 显然 }x_n,y_n \text{ 无界, 但是 }x_ny_n \text{ 有界}\\ 0,n$$
为偶数

B 选项: 令
$$x_n=\begin{cases} 0,n$$
为奇数
$$,y_n=\begin{cases} n,n$$
为奇数
$$0,n$$
为偶数
$$C$$
 选项: 令 $x_n=\begin{cases} 0,n$ 为奇数
$$y_n\equiv 0,$$
 显然 x_n,y_n 无界,但是 x_ny_n 有界
$$x_n=x_n=x_n$$
0,一个有界,一个无界,但是二者相乘为有界

D 选项: 无穷大 × 无穷大 = 无穷力

题目 6. 设 x_n 与 y_n 为两个数列,则下列说法正确的是

- (A) 若 $\lim_{n\to\infty} x_n y_n = 0$, 则必有 $\lim_{n\to\infty} x_n = 0$ 或 $\lim_{n\to\infty} y_n = 0$
- (B) 若 $\lim_{n\to\infty} x_n y_n = \infty$, 则必有 $\lim_{n\to\infty} x_n = \infty$ 或 $\lim_{n\to\infty} y_n = \infty$
- (C) 若 $x_n y_n$ 有界,则必有 x_n 与 y_n 都有界.
- (D) 若 $x_n y_n$ 无界,则必有 x_n 无界或 y_n 无界

解答. A 选项: 令
$$x_n=\begin{cases} 0,n$$
为奇数
$$,y_n=\begin{cases} n,n$$
为奇数
$$,u_n=\begin{cases} n,n$$
为偶数
$$,u_n=\begin{cases} n,n \end{pmatrix}$$
,显然 $x_n\cdot y_n\equiv 0$,但是 x_ny_n 两者都无界。
$$0,n$$
为偶数

解答. A 选项: 令
$$x_n = \begin{cases} 0, n$$
为奇数 $\\ n, n$ 为禹数 $\\ n, n$ 为禹数 $\\ y_n = \begin{cases} n, n$ 为奇数 $\\ 0, n$ 为禹数 , 显然 $x_n \cdot y_n \equiv 0$, 但是 $x_n y_n$ 两者都无界. B 选项: 令 $x_n = \begin{cases} 1, n$ 为奇数 $\\ n, n$ 为禹数 , 显然二者相乘为 ∞ , 但是二者都是无界,没有极限 $\\ 1, n$ 为禹数

C 选项: 同 A 选项

D 选项: 使用逆否命题: 若 x_n 有界且 y_n 有界, 则 $x_n \cdot y_n$ 有界, 显然成立, 有界 × 有界 = 有界

题目 6 的注记. 在证明中, 使用逆否命题可以减少复杂度, 如本题的 D 选项.

题目 7. 设 $\lim_{n\to\infty} a_n$ 与 $\lim_{n\to\infty} b_n$ 均不存在,则下列选项正确的是

- A. 若 $\lim_{n\to\infty}(a_n+b_n)$ 不存在,则 $\lim_{n\to\infty}(a_n-b_n)$ 必不存在
- B. 若 $\lim_{n\to\infty} (a_n + b_n)$ 不存在,则 $\lim_{n\to\infty} (a_n b_n)$ 必存在
- C. 若 $\lim_{n\to\infty}(a_n+b_n)$ 存在,则 $\lim_{n\to\infty}(a_n-b_n)$ 必不存在
- D. 若 $\lim_{n\to\infty}(a_n+b_n)$ 存在,则 $\lim(a_n-b_n)$ 必存在

解答. A 选项: $a_n=e^n,b_n=e^n,$ 显然 $\lim_{n\to\infty}(a_n+b_n)$ 不存在, 但是 $\lim_{n\to\infty}(a_n-b_n)$ 存在

- B 选项: $a_n = e^n, b_n = 2e^n$, 显然 $\lim_{n\to\infty} (a_n + b_n)$ 不存在, 但是 $\lim_{n\to\infty} (a_n b_n)$ 也不存在
- C 选项: 若 $\lim_{n\to\infty}(a_n+b_n)$ 存在,假设 $\lim_{n\to\infty}(a_n-b_n)$ 存在,那么 $\lim_{n\to\infty}[(a_n+b_n)-(a_n-b_n)]$ 也应该存在,但是 $\lim_{n\to\infty}=2b_n$,根据题意可知不存在,因此假设错误
- D 选项: $a_n = e^n, b_n = -e^n$, 显然 $\lim_{n\to\infty} (a_n + b_n)$ 存在, 但是 $\lim_{n\to\infty} (a_n b_n)$ 不存在

1.1.2 收敛数列的性质

唯一性

定义 1.1.2: 数列极限唯一性的定义

如果数列 $\{x_n\}$ 收敛, 那么它的极限唯一

有界性

定义 1.1.3: 数列收敛的有界性的定义

如果数列 $\{x_n\}$ 收敛, 那么数列 $\{x_n\}$ 一定有界 a .

 a 如果数列有界, 但是不一定存在极限, 如数列 $(-1)^{n}$

保号性

定义 1.1.4: 数列极限保号性的定义

如果 $\lim_{n\to\infty} x_n = a$, 且 a>b(或 a<b), 那么存在正整数 N, 当 n>N 时, 都有 $x_n>b$ (或 $x_n< b$.

如果数列 $|x_n|$ 从某项起有 $x_n \ge b$ (或 $x_n \le b$), 且 $\lim_{n\to\infty} x_n = a$, 那么 $a \ge b$ ($a \le b$)^a.

 $[^]a$ 其中 b 可以为任意实数, 常考 b=0 的情况

题目 8. 下列结论中错误的是

- (A) 设 $\lim_{n\to\infty}a_n=a>1$, 则存在 M>1, 当 n 充分大时,有 $a_n>M$
- (B) 设 $a=\lim_{n\to\infty}a_n<\lim_{n\to\infty}b_n=b$, 则当 n 充分大时,有 $a_n< b_n$
- (C) 设 $M \leqslant a_n \leqslant N(n=1,2,\ldots)$, 若 $\lim_{n\to\infty} a_n = a$, 则 $M \leqslant a \leqslant N$
- (D) 若 $\lim_{n\to\infty} a_n = a \neq 0$, 则当 n 充分大时, $a_n > a \frac{1}{n}$

解答. A 选项: 若 $\lim_{n\to\infty}a_n=a$, 那么当 n 充分大时, a_n 的值趋近于 a, 那么肯定存在一个 M, 满足 $a_n=a\geqslant M>1$.

- B 选项: 若 a_n 的极限 $> b_n$ 的极限, 则当 n 充分大时, $a_n > b_n$.
- C 选项: 不等式左右取极限可得 C 选项正确
- D 选项: 题目 3 解析1.1.1出有解释, 同理

题目 8 的注记. 数列极限的保号性可写为:两个数列 a_n 和 b_n , 若 $a_i > b_i$ 恒成立,且 $\lim_{n \to \infty} a_n$ 和 $\lim_{n \to \infty} b_n$ 都存在.则 n 趋于无穷时, a_n 的极限 $\geq b_n$ 的极限.(对不等式取极限时,> 要变成 \geq ,< 要变成 \leq , \geq 不用变, \leq 不用变).

若 a_n 的极限 $> b_n$ 的极限, 则当 n 充分大时, $a_n > b_n$. 1

若 a_n 的极限 $\geq b_n$ 的极限, 则当 n 充分大时, a_n 和 b_n 大小无法确定.

1.2 函数的极限

1.2.1 超实数系

定义 1.2.1: 超实数系的概念

超实数 (Hyperreal number) 是一个包含实数以及无穷大和无穷小的域,它们的绝对值分别大于和小于任何正实数.

 $^{^1}$ 证明如下: 令 $x_n=b_n-a_n$, 则 $\lim_{n\to\infty}x_n=\lim_{n\to\infty}(b_n-a_n)=b-a>0$. 由极限的保号性可知, 当 n 充分大的时候, $x_n>0$, 即 $b_n>a_n$

注 1.2.1

- 超实数集是为了严格处理无穷量 (无穷大量和无穷小量) 而提出的.
- 超实数集,或称为非标准实数集,记为 *ℝ,是实数集 ℝ 的一个扩张.

1.2.2 邻域

2

定义 1.2.2: 邻域的相关概念

• δ 邻域: 设 x_0 是数轴上一个点, δ 是某一正数,则称 $(x_0 - \delta, x_0 + \delta)$ 为点 x_0 的 δ 邻域,记作 $U(x_0, \delta)$,即:

$$U(x_0, \delta) = \{x | x_0 - \delta < x < x_0 + \delta\} = \{x | \, |x - x_0| < \delta\}$$

- 去心 δ 邻域: 定义点 x_0 的去心邻域 $\mathring{U}(x_0,\delta)=\{x|0<|x-x_0|<\delta\}$
- 左, 右 δ 邻域: $\{x|0 < x x_0 < \delta\}$ 称为点 x_0 的右 δ 邻域, 记作 $U^+(x_0,\delta)$; $\{x|0 < x_0 x < \delta\}$ 称为点 x_0 的左 δ 邻域, 记作 $U^-(x_0,\delta)$.

1.2.3 函数极限的定义

函数极限的定义主要分为自变量趋于有限值 $(x \to x_0)$ 时的极限和自变量趋于无穷大时函数的极限 $(x \to \infty)$

自变量趋于有限值时的函数极限

定义 1.2.3: 当自变量趋于有限值时函数极限定义

设函数 f(x) 在点 x_0 的某一去心邻域内有定义. 如果存在常数 A,对于任意给定的正数 ε (不论它多么小) a ,总存在正数 δ ,使得当 x 满足不等式 $0<|x-x_0|<\delta$ 时,对应的函数值 f(x) 都满足不等式

$$|f(x) - A| < \varepsilon$$

 $^{^2}$ 邻域与区间不同,邻域属于区间的范畴. 但是邻域通常表示"一个局部位置". 比如"点 x_0 的 δ "邻域,可以理解为"点 x_0 "的附近,而区间是明确指出在实数系下的范围

那么常数 A 就叫做函数 f(x) 当 $x \to x_0$ 时的极限, 记作:

$$\lim_{x\to x_0} f(x) = A \quad \vec{\boxtimes} f(x) \to A(\stackrel{\omega}{\rightrightarrows} x \to x_0)$$

其 $\varepsilon - N$ 语言为

$$\lim_{x\to x_0}f(x)=A\Leftrightarrow \forall \varepsilon>0, \exists \delta>0, \leqq 0<|x-x_0|<\delta \mbox{\rm if}\ , \not|f(x)-A|<\varepsilon.$$

 $\forall \varepsilon > 0, \exists \delta > 0$ 在证明中, 这两句是白给, 直接写. 后面的才是关键.

 $^{a}\varepsilon$ 用于衡量 |f(x)-A| 的值有多小

注 1.2.2

- 1. 在函数极限中 $x\to\infty$ 指的是 $|x|\to\infty$, 需要 x 趋于正无穷和负无穷, 但在数列中的 $n\to\infty$ 是 $n\to+\infty$
- 2. 函数的极限值只与邻域内的函数值有关, 而与该点的函数值无关.

题目 9. 设
$$\lim_{x\to 1}\frac{f(x)}{\ln x}=1$$
,则:
$$(A)f(1)=0\quad (B)\lim_{x\to 1}f(x)=0\quad (C)f'(1)=1\quad (D)\lim_{x\to 1}f'(x)=1$$

解答. $\lim_{x\to 1} \ln x = 0$,根据极限四则运算法则1.4.1, $\lim_{x\to 1} f(x) = 0$,对于其他选项,需要知道的是函数的极限值与该点的函数值无关,只与邻域内的函数值有关.

单侧极限

定义 1.2.4: 单侧极限的定义

若当 $x \to x_0^-$ 时, f(x) 无限接近于某常数 A, 则常数 A 叫作函数 f(x) 当 $x \to x_0$ 时的左极限, 记为

$$\lim\nolimits_{x\to x_{0}^{-}}f(x)=A \ \ \text{if} \ \ f(x_{0}^{-})=A.$$

若当 $x \to x_0^+$ 时, f(x) 无限接近于某常数 A, 则常数 A 叫作函数 f(x) 当 $x \to x_0$ 时的<mark>右极限</mark>, 记为

$$\lim_{x \to x_0^+} f(x) = A \ \ \vec{\boxtimes} \ f(x_0^+) = A$$

题目 10. 已知
$$\lim_{x\to 0} \left[a \arctan \frac{1}{x} + (1+|x|)^{\frac{1}{x}} \right]$$
存在,求 a 的值

解答. 由于存在 $\arctan = |x|$ 函数,则对于 0 点的极限值需要分左右进行计算.

题目 10 的注记. 由于自变量趋向的双向性,以下类型的函数因此需要进行特殊讨论:

- 形如 $f(x) = max\{h(x), g(x)\}$ 此类函数也需要注意在函数变化点的自变量取值问题
- $\lim_{x\to\infty} e^x : \lim_{x\to+\infty} e^x = +\infty, \lim_{x\to-\infty} e^x = 0$
- $\bullet \ \, \lim_{x \to 0} \frac{\sin x}{|x|} : \! \lim_{x \to 0^+} = \frac{\sin x}{x} = 1, \! \lim_{x \to 0^-} = \frac{\sin x}{-x} = -1$
- $\bullet \ \lim_{x\to\infty}\arctan x: \lim_{x\to+\infty}\arctan x = \frac{\pi}{2}, \lim_{x\to-\infty}\arctan x = -\frac{\pi}{2}$
- $\lim_{x\to 0} [x]: \lim_{x\to 0^+} [x] = 0, \lim_{x\to 0^-} [x] = -1$

自变量趋于无穷大时函数的极限

定义 1.2.5: 自变量趋于无穷大时函数极限定义

设函数 f(x) 在点 x_0 的某一去心邻域内有定义. 如果存在常数 A,对于任意给定的正数 ε .(不论它多么小),总存在正数 δ ,使得当 x 满足不等式 $0<|x-x_0|<\delta$ 时,对应的函数值 f(x) 都满足不等式

$$|f(x) - A| < \varepsilon$$

那么常数 A 叫做函数 f(x) 当 $x \to x_0$ 的极限, 记作:

$$\lim_{x \to x_0} f(x) = A \vec{\boxtimes} f(x) \to A(\vec{\boxtimes} x \to x_0)$$

其 $\varepsilon - N$ 语言为

$$\lim_{x\to x_0}f(x)=A\Leftrightarrow \forall \varepsilon>0, \exists \delta>0, \leqq 0<|x-x_0|<\delta \text{ ft}, \not|f(x)-A|<\varepsilon.$$

 $\forall \varepsilon > 0, \exists \delta > 0$ 在证明中, 这两句是白给, 直接写. 后面的才是关键.

需要注意的是趋向的值不同时, $\varepsilon-N$ 写法不同,不能照抄. 其 $\varepsilon-N$ 的表达为如下表格:

	$f(x) \to A$	$f(x) \to \infty$	$f(x) \to +\infty$	$f(x) \to -\infty$
$x \to x_0$	$\forall \varepsilon > 0, \exists \delta > 0,$	$\forall M>0, \exists \delta>0,$	$\forall M > 0, \exists \delta > 0,$	$\forall M > 0, \exists \delta > 0,$
	使当0 < x - x ₀	使当0 < x - x ₀	使当 $0 < x - x_0 $	使当0 < x - x ₀
	< δ 时, 即有	$<\delta$ 时,即有	< δ时, 即有	< δ 时, 即有
	$ f(x) - A < \varepsilon.$	f(x) > M	f(x) > M.	f(x) < -M
$x \to x_0^+$	$\forall \varepsilon > 0, \exists \delta > 0,$	$\forall M>0, \exists \delta>0,$	$\forall M > 0, \exists \delta > 0,$	$\forall M > 0, \exists \delta > 0,$
	$ 使当0 < x - x_0 < $	使当 $0 < x - x_0 <$	使当 $0 < x - x_0 <$	使当 $0 < x - x_0 < \delta$
	δ时,即有	δ 时,即有	δ时,即有	时,即有
	$ f(x) - A < \varepsilon.$	f(x) > M.	f(x) > M.	f(x) < -M
$x \to x_0^-$	$\forall \varepsilon > 0, \exists \delta > 0,$	$\forall M>0, \exists \delta>0,$	$\forall M > 0, \exists \delta > 0,$	$\forall M > 0, \exists \delta > 0,$
	使当 $0 > x - x_0 >$	使当 $0 > x - x_0 >$	使当 $0 > x - x_0 >$	使当 $0 > x - x_0 >$
	$-\delta$ 时,即有	$-\delta$ 时,即有	$-\delta$ 时,即有	$-\delta$ 时,即有
	$ f(x) - A < \varepsilon.$	f(x) > M.	f(x) > M	f(x) < -M
$x \to \infty$	$\forall \varepsilon > 0, \exists X > 0,$	$\forall M > 0, \exists X > 0,$	$\forall M > 0, \exists X > 0,$	$\forall M > 0, \exists X > 0,$
	使当 $ x > X$ 时,	使当 x > X	使当 x > X	使当 x >X 时,
	即有	时,即有	时,即有	即有
	$ f(x) - A < \varepsilon.$	f(x) > M	f(x) > M	f(x) < -M.
$x \to +\infty$	$\forall \varepsilon > 0, \exists X > 0,$	$\forall M>0, \exists X>0,$	$\forall M > 0, \exists X > 0,$	$\forall M > 0, \exists X > 0,$
	使当 x>X 时,	使当 $x > X$ 时,	使当 $x > X$ 时,	使当 x>X 时,
	 即有 	即有	即有	即有
	$ f(x) - A < \varepsilon.$	f(x) > M	f(x) > M.	f(x) < -M
$x \to -\infty$	$\forall \varepsilon > 0, \exists X > 0,$	$\forall M > 0, \exists X > 0,$	$\forall M > 0, \exists X > 0,$	$\forall M \sim 0 \; \exists V \sim 0 \; \Leftrightarrow$
	使当 $x < -X$ 时,	使当 $x < -X$	使当 $x < -X$	$\forall M > 0, \exists X > 0,$ 使
	即有	时,即有	时,即有	
	$ f(x) - A < \varepsilon.$	f(x) > M	f(x) > M	f(x) < -M.

注 1.2.3: 上表的部分解释

• 以 $\lim_{x\to x_0}f(x)=A$ 为例: 不管 f(x) 与 A 的距离多近 ($\forall \varepsilon>0$), 总有 x 不断靠近 x_0 , 使得 $|f(x)-A|<\varepsilon$.

• 以 $\lim_{x\to\infty}f(x)=\infty$ 为例: 不管 M 多大, 总有当 $x>\infty$ 时, 使得 |f(x)>M|, 即满足 $\lim_{x\to\infty}f(x)=\infty$.

1.2.4 函数极限的性质

唯一性

定理 1.2.1

如果 $\lim_{x \to x_0} f(x)$ 存在, 那么极限唯一

注 1.2.4: 关于唯一性的说明

- 对于 $x \to \infty$, 意味着 $x \to +\infty$ 且 $x \to -\infty$
- 对于 $x \to x_0$, 意味着 $x \to x_0^+$ 且 $x \to x_0^-$

对于上述问题, 我们称为自变量取值的"双向性". 以下有一些常见的问题:

- $-\lim_{x\to\infty}e^x \ \text{不存在}, \lim_{x\to0}\frac{\sin x}{|x|} \ \text{不存在}, \lim_{x\to\infty}\arctan x \ \text{不存在}, \lim_{x\to x_0}[x] \ \text{不存在}.$
- 其不存在的原因均为分段函数分段点极限表达式不同, 需要分别求左右极限.

注 1.2.5: 极限存在的充要条件

$$\lim_{x\to x_0}f(x)=A\Leftrightarrow \lim_{x\to x_0^-}f(x)=A, \coprod \lim_{x\to x_0^+}f(x)=A^a$$

$$\lim_{x\to x_0}f(x)=A\Leftrightarrow f(x)=A+\alpha(x), \lim_{x\to x_0}\alpha(x)=0(无穷小量\alpha(x)=0)^b$$

a左右极限都存在且相等

 $[^]b$ 对于此概念, 如果引入超实数系的解释应为 A 是 f(x) 的标准实数部分, 而 f(x) 的值是超实数系下的值, 因此其值应为 $f(x) = A + \alpha(x)$

注 1.2.6: 极限不存在的情况

- 函数在该点附近趋于无穷
- 函数在该点的左右极限只存在一个,或两者都存在但不相等
- 函数在该点附近不停地震荡
- 该点是函数无定义点的聚点

局部有界性

定理 1.2.2

若极限 $\lim_{x\to x_0} f(x)$ 存在^a, 则 f(x) 在点 x_0 某去心邻域内有界.

^a对局部有界性的描述需要指明是在那个区间上

注 1.2.7: 局部有界性的性质

- 极限存在必有界, 有界函数极限不一定存在.
- 若 y = f(x) 在 [a,b] 上为连续函数, 则 f(x) 在 [a,b] 上必有界.
- 若 f(x) 在 (a,b) 内为连续函数,且 $\lim_{x\to a^+} f(x)$ 与 $\lim_{x\to b^-} f(x)$ 都存在,则 f(x) 在 (a,b) 内必定 有界.
- 有界函数与有界函数的和, 差, 积仍为有界函数 ...

a
商不是有界函数,因为: $y_{1}=1,y_{2}=0,rac{y_{1}}{y_{2}}=\infty$

题目 11. 在下列区间内, 函数
$$f(x) = \frac{x \sin(x-3)}{(x-1)(x-3)^2}$$
 有界的是:

A:(-2,1) B:(-1,0) C:(1,2) D:(2,3)

解答. 又题意可知,函数的分段点为 x = 3,0,1,对上述三点求极限,分析可得,当 x = 3,1 时,函数极限为 ∞ ,因此函数在上述两点的极限不存在,因此根据局部有界性的性质可得,含这两个点的区间无界,因此排除 A,C,D. 答案为 B.

局部保号性

定理 1.2.3

如果 $\lim_{x\to x_0}f(x)=A$,且 A>0(或 A<0),那么存在常数 $\delta>0$,使得当 $0<|x-x_0|<\delta$ 时有 $f(x)>0(f(x)<0)^a.$

如果在 x_0 的某去心邻域内 $f(x) \geqslant 0$ (或 $f(x) \leqslant 0$), 而且 $\lim_{x \to x_0} f(x) = A$, 那么 $A \leqslant 0$ 或 $(A \le 0)^b$.

 a 如果函数在 x_0 附近的极限值为正, 那么 x_0 附近的函数值为正

对上述定理中,为什么一个可以等于 0,一个不能等于 0?其解释如下: 如果第一个定理中 $A \le 0, f(x) \le 0$,那么以函数 $f(x) = x^2$ 为例,虽然 $\lim_{x\to 0} f(x) = 0$,但是邻域内的函数值都大于 0. 对于第二个定理中如果 f(x) < 0, A < 0,那么以函数 $f(x) = -x^2$ 为例,虽然邻域内的函数值都小于 0,但是 $\lim_{x\to 0} f(x) = 0$.

注 1.2.8

由保号性可推出保序性: 设 $\lim_{x\to x_0} f(x) = A, \lim_{x\to x_0} g(x) = B,$ 则:

- 2. 若 $\exists \delta > 0$, 当 $x \in \mathring{U}(x_0, \delta)$ 时, $f(x) \geqslant g(x) \Rightarrow A \geqslant B$.

推论 1.2.1: 局部保号性的推论

如果 $\lim_{x\to x_0}f(x)=A>0$ $(A\neq 0)$,那么就存在 x_0 的某一去心邻域 $\mathring{U}(x_0)$,当 $x\in U^\circ(x_0)$ 时,就有 $|f(x)|>\frac{|A|}{2}$

保号性推论的证明. 如果 $\lim_{x\to x_0}f(x)=A>0,$ 所以, 取 $\varepsilon=\frac{A}{2}>0,$ $\exists \delta>0$ 当 $0<|x-x_0|<\delta$ 时, 有

$$|f(x) - A| < \frac{A}{2} \Rightarrow f(x) > A - \frac{A}{2} = \frac{A}{2} > 0.$$

1.2.5 函数极限与数列极限的关系(海涅定理)

需要知道一点,数列极限不可以直接使用洛必达法则,但是可以使用拉格朗日中值定理,泰勒公式,等价无穷小. 如果想使用洛必达法则,则需要使用海涅定理将数列极限改写为函数极限的形式. 即x改写成n,考研数

 $^{^{}b}$ 如果函数在 x_{0} 附近的函数值 ≤ 0 , 那么 x_{0} 此处的极限值 ≤ 0

学中默认 n 为非负整数, 所以 n 趋于无穷要改写成 x 趋于正无穷.

定理 1.2.4: 海涅定理

设 f(x) 在 $\mathring{U}(x_0, \delta)$ 内有定义,则 $\lim_{x \to x_0} f(x) = A$ 存在 \Leftrightarrow 对任何 $\mathring{U}(x_0, \delta)$ 内以 x_0 为极限的数列 $\{x_n\}$ $(x_n \neq x_0)$,极限 $\lim_{n \to \infty} f(x_n) = A$ 存在.

把这个定理简化一下, 主要意思就是

其不同之处在于是离散的趋近还是连续的趋近

除此之外,f(x) 和 $f(a_n)$ 的函数图像如下所示

如上图所示 $f(a_n)$ 其实是 f(x) 的抽样

16

用海涅定理求它的极限

需要注意的是,是所有的数列(抽样)才能完全代表整体.不能说我选了某个数列有极限就代表函数有极限.总结:海涅定理表述了离散与连续、数列极限与函数极限的关系.

题目 12. 求极限 $\lim_{n\to\infty} n(\arctan n - \frac{\pi}{2})$

解答.

原式 =
$$\lim_{n \to \infty} \frac{\arctan n - \frac{\pi}{2}}{\frac{1}{n}}$$
= $\lim_{x \to +\infty} \frac{\arctan x - \frac{\pi}{2}}{\frac{1}{x}}$
= $\lim_{x \to +\infty} \frac{\frac{1}{1+x^2}}{-\frac{1}{x^2}}$
= -1

题目 12 的注记. 数列极限不可以直接使用洛必达法则, 若要使用洛必达法则, 则需要使用海涅定理进行替换.

题目 13. 求极限
$$\lim_{n\to\infty}\left[\frac{\left(1+\frac{1}{n}\right)^n}{\mathrm{e}}\right]^n$$

解答.

原式 =
$$\lim_{n \to \infty} \left[\frac{e^{n \ln(1 + \frac{1}{n})}}{e} \right]^n$$

$$\begin{split} &= \lim_{n \to \infty} \frac{\mathrm{e}^{n^2 \ln \left(1 + \frac{1}{n}\right)}}{\mathrm{e}^{\mathrm{n}}} \\ &= \lim_{n \to \infty} e^{n^2 \ln \left(1 + \frac{1}{n}\right) - n} \end{split}$$

对 $\lim_{n\to\infty} n^2 \ln(1+\frac{1}{n}) - n$ 求极限得:

原式 =
$$\lim_{n \to \infty} \left[n - n^2 \ln \left(1 + \frac{1}{n} \right) \right]$$

= $\lim_{n \to \infty} n^2 \left[\frac{1}{n} - \ln \left(1 + \frac{1}{n} \right) \right]$
= $\lim_{n \to \infty} n^2 \cdot \frac{1}{2} \left(\frac{1}{n} \right)^2$
= $\frac{1}{2}$

综上函数极限为 $e^{-\frac{1}{2}}$

题目 13 的注记. 数列极限可以直接使用等价无穷小和泰勒公式

题目 14.
$$\underline{求极限}\lim_{n\to\infty}\tan^n\left(\frac{\pi}{4}+\frac{2}{n}\right)$$

解答.

原式 =
$$\lim_{n \to \infty} e^{n \ln(\tan(\frac{\pi}{4} + \frac{2}{n}))}$$

= $\lim_{n \to \infty} e^{n \cdot (\tan(\frac{\pi}{4} + \frac{2}{n}) - 1)}$
= $\lim_{n \to \infty} e^{n \cdot (\tan(\frac{\pi}{4} + \frac{2}{n}) - \tan(\frac{\pi}{4})}$
= $\lim_{n \to \infty} e^{n \cdot \sec^2 \varepsilon \cdot \frac{2}{n}} \quad \varepsilon \in (\frac{\pi}{4}, \frac{\pi}{4} + \frac{2}{n})$
= e^4

题目 14 的注记. 数列极限可以使用拉格朗日中值定理

1.3 无穷小与无穷大

1.3.1 无穷小

定义 1.3.1: 无穷小的定义

如果函数 f(x) 当 $x \to x_0$ (或 $x \to \infty$) 时的极限为零, 那么称函数 f(x) 为当 $x \to x_0$ (或 $x \to \infty$) 时的无穷小.

f(x) 是可以本身为 0 或者无限趋近于零, 其中 0 可以作为无穷小唯一常数.

注 1.3.1: 无穷小与函数极限的关系 (脱帽法)

 $\lim_{x\to \cdot} f(x) = A \Leftrightarrow f(x) = A + \alpha$, 其中 $\lim_{x\to \cdot} f(x)$ 为超实数值, 其实数部分为 A, 函数 f(x) 的函数值为 $A+\alpha$

无穷小的性质

1 有限个无穷小的和是无穷小3

证明. 设 α_1 和 α_2 为无穷小量. 则 $0 \leq |\alpha_1 + \alpha_2| \leq |\alpha_1| + |\alpha_2|, |\alpha_1| + |\alpha_2|$ 的极限为 0. 证明完毕.

2 有界函数与无穷小的乘积是无穷小4

证明. $|\alpha_1| \leqslant M, \alpha_2$ 是无穷小量. 那么 $0 \leqslant |\alpha_1 \times \alpha_2| = |\alpha_1| \times |\alpha_2| \leqslant M \times |\alpha_2|$ 证明完毕.

3 有限个无穷小的乘积是无穷小5

无穷小的比阶

定义 1.3.2: 不同无穷小的比阶

- 如果 $\lim \frac{\beta}{\alpha} = 0$, 那么就说 β 是比 α 高阶的无穷小, 记作 $\beta = o(\alpha)$;
- 如果 $\lim_{\alpha} \frac{\beta}{\alpha} = \infty$, 那么就说 β 是比 α 低阶的无穷小;
- 如果 $\lim_{\alpha} \frac{\beta}{\alpha} = c \neq 0$, 那么就说 β 与 α 是同阶无穷小;

 $^{^3}$ 无穷个无穷小的和不一定是无穷小,如 $\lim_{n \to \infty} = (\frac{1}{n+1} + \frac{1}{n+2} + \frac{1}{n+3} \cdots + \frac{1}{n+n}) = \ln 2$

⁴无界函数 × 无穷小量不一定是无穷小, 如 $\lim_{x\to\infty} x \times \frac{1}{x} = 1$

⁵这个地方虽然张宇老师给出了证明, 但是好像存在一定的争议性

- 如果 $\lim \frac{\beta}{\alpha^k} = c \neq 0, k > 0$, 那么就说 β 是关于 α 的 k 阶无穷小 a ;
- 如果 $\lim \frac{\beta}{\alpha} = 1$, 那么就说 β 与 α 是等价无穷小, 记作 $\alpha \sim \beta$

"不是相等, 超实数系下没有加减运算, 只可以进行替换运算

前三个定义解释: $\lim \frac{\beta}{\alpha} = 0$ 是指分子趋于 0 的速度比分母快, $\lim \frac{\beta}{\alpha} = \infty$ 是指分子趋于 0 的速度比分母慢, $\lim \frac{\beta}{\alpha} = c \neq 0$ 是指趋于 0 的速度一样. 同时需要注意的是,并不是任意两个无穷小都可进行比阶的⁶.

对 o(x) 的理解: 它是一个无穷小,但是它趋向于 0 的速度比 x 要快,也就是 $\lim_{x\to 0} \frac{o(x)}{x} = 0$,也就是精度更高. 举一个实际的例子: $\tan x = x + \frac{1}{3}x^3 + \frac{2}{15}x^5 + o(x^5)$,那么就应该知道 $\tan x - x - \frac{1}{3}x^3 - \frac{2}{15}x^5 = o(x^5)$,也就是这玩意趋于 0 的速度非常之快!速度相当于 x^5 ,这给我们的精度分析提供了一些帮助.由此可以解释加减法不推荐用等价无穷小,例如 $\lim_{x\to 0} \frac{\tan x - x}{x^3} \neq \lim_{x\to 0} \frac{x-x}{x^3}$ 等价无穷小本身就是一种近似替换,直接把 $\tan x$ 近似成 x 显然精度太低(毕竟分母可是以 x^3 的速度趋于 0),那么我们就需要更高精度的近似了,也就是 $\lim_{x\to 0} \frac{\tan x - x}{x^3} = \lim_{x\to 0} \frac{x + \frac{1}{3}x^3 + o(x^3) - x}{x^3}$,这样我们就得到 $\lim_{x\to 0} \frac{\tan x - x}{x^3} = \frac{1}{3} + \lim_{x\to 0} \frac{o(x^5)}{x^3}$,显然,后者分子趋于 0 的速度大概是 x^5 级别比分母更快所以忽略不计.

无穷小比阶的结论: 若 f(x) 在 x=0 的某邻域内连续, 且当 $x\to 0$ 时 f(x) 是 x 的 m 阶无穷小, $\varphi(x)$ 是 x 的 n 阶无穷小, 则当 $x\to 0$ 时 $F(x)=\int_0^{\varphi(x)}f(t)\mathrm{d}t$ 是 x 的 n(m+1) 阶无穷小

题目 15. 把 $x \to 0^+$ 时的无穷小 $a = \int_0^x \cos t^2 dt$, $\beta = \int_0^{x^2} \tan \sqrt{t} dt$, $\gamma = \int_0^{\sqrt{x}} \sin t^3 dt$ 进行排序,使排在后面的是前一个的高阶无穷小,则正确的排列顺序是

解答. $\alpha: n=1, \lim_{x\to 0}\cos x^2=1$,因此 m=0,那么 n(m+1)=1; $\beta: n=2, m=\frac{1}{2}$,那么 $n(m+1)=3.\gamma: m=\frac{1}{2}x, n=2$,那么 n(m+1)=2. 因此顺序为 $\alpha\gamma\beta$

题目 16. 当 $x \to 0$ 时, 下列无穷小中最高阶的是:

$$(A) \left(2 + \tan x\right)^{x} - 2^{x} \qquad (B) \left(\cos x^{2}\right)^{\frac{1}{x}} - 1 \qquad (C) \int_{0}^{1 - \cos x} e^{x} \sin t^{2} dt \qquad (D) \int_{\sin x}^{1 - \sqrt{\cos x}} \ln(1 + t^{3}) dt$$

解答. A 选项: $2^x[(1+\frac{\tan x}{2})^x-1]=\frac{\tan x}{2}\times x=\frac{1}{2}x^2$.

 $^{^6}$ 例如,当 $x \to 0$ 时, $x \sin \frac{1}{x}$ 与 x^2 虽然都是无穷小,但是却不可以比阶,也就是说既无高低阶之分,也无同阶可言,因为 $\lim_{x\to 0} \frac{x \sin \frac{1}{x}}{x^2} = \lim_{x\to 0} \frac{1}{x} \sin \frac{1}{x}$ 不存在,其值为 ∞ 和 0

B 选项:
$$-\frac{x^4}{2x} = -\frac{x^3}{2}$$
.

C 选项: $n = \frac{1}{2}x^2, m = x^2$ 那么 n(m+1) = 6.

D 选项: $\int_{\sin x}^{1-\sqrt{\cos x}} \ln(1+t^3) dt = \int_{\sin x}^{0} \ln(1+t^3) dt + \int_{0}^{1-\sqrt{\cos x}} \ln(1+t^3) dt = \int_{0}^{1-\sqrt{\cos x}} \ln(1+t^3) dt - \int_{0}^{\sin x} \ln(1+t^3) dt + \int_{0}^{1-\sqrt{\cos x}} \ln(1+t^3) dt = \int_{0}^{1-\sqrt{\cos x}} \ln(1+t^3) dt + \int_{0}^{\sin x} \ln(1+t^3) dt + \int_{0}^{\cos x} \ln(1+t^3) dt + \int_{0}^{\cos$

题目 16 的注记. D 选项: 如果为变上下限的形式,则转化为变上限的形式,然后使用结论进行计算,之后按照无穷小的运算法则计算即可.

题目 17. 设 $p(x) = a + bx + cx^2 + dx^3$. 当 $x \to 0$ 时,若 $p(x) - \tan x$ 是比 x^3 高阶的无穷小,则下列结论中错误的是:

$$(A)a = 0$$
 $(B)b = 1$ $(C)c = 0$ $(D)d = \frac{1}{6}$

解答. 对 $\frac{p(x)-\tan x}{x^3}$ 泰勒展开可得: $\frac{p(x)-(x+\frac{1}{3}x^3+\frac{2}{15}x^5)}{x^3}=\frac{a+bx+cx^2+dx^3-x-\frac{1}{3}x^3-\frac{2}{15}x^5}{x^3}$ 综上易知: $a=0,b=1,c=0,d=\frac{1}{3}$. 因此,D 选项是错误的.

题目 18. 当 $x \to 0^+$ 时,下列无穷小量中最高阶的是

$$(A) \int_0^{x^2} \ln(1+\sqrt{t}) \mathrm{d}t \qquad (B) \int_{x^3}^{x^2} \sqrt{1-\sqrt{\cos t}} \, \mathrm{d}t \qquad (C) \int_x^{2\sin x} \sin t^2 \mathrm{d}t \qquad (D) \int_x^{\sin x} (\mathrm{e}^{t^2}-1) \mathrm{d}t$$

解答. A: $\ln(1 + \sqrt{x}) \sim \sqrt{x}$, 其 n(m+1) = 3.

B: $\sqrt{1 - \sqrt{\cos t}} = \frac{1}{2}x$, 其 n(m+1) 的最小值为 4.

C: 使用积分中值定理可得: $\sin^2 \varepsilon \times (2\sin x - x), \varepsilon \in (2\sin x, x)$, 使用等价无穷小可得: $2\sin x - x \sim x, \sin^2 \varepsilon \sim \varepsilon^2 \sim x^2$, 那么其最终化为 x^3 .

D 选项: $(\sin x - x)(e^{\varepsilon^2} - 1), \varepsilon \in (\sin x, x)$. 使用等价无穷小可得: $(-\frac{1}{6}x^5 \times \varepsilon) \sim x^6$. 最终选择 D 选项.

题目 18 的注记. 如果上下限同阶的情况,如本题的 C,D 选项,则不可进行拆分,需要使用积分中值定理1.4.7进行计算.

无穷小的运算

 7 设 m,n 为无穷小,则

1.
$$o(x^m) \pm o(x^n) = o(x^l), l = \min\{m, n\}$$

2.
$$o(x^m) \cdot o(x^n) = o(x^{m+n}), x^m \cdot o(x^n) = o(x^{m+n})$$

3.
$$o(x^m) = o(kx^m) = k \cdot o(x^m), k \neq 0$$

题目 19. 若当 $x \to 0$ 时, $\alpha(x)$, $\beta(x)$ 是非零无穷小量,则以下的命题中正确的是:

A. 若
$$\alpha(x) \sim \beta(x)$$
, 则 $\alpha^2(x) - \beta^2(x)$; B. 若 $\alpha^2(x) \sim \beta^2(x)$, 则 $\alpha(x) \sim \beta(x)$;

C. 若
$$\alpha(x) \sim \beta(x)$$
, 则 $\alpha(x) - \beta(x) = o(\alpha(x))$; D. 若 $\alpha(x) \sim \beta(x) = o(\alpha(x))$, 则 $\alpha(x) - \beta(x)$

解答.

1.
$$\lim_{x\to 0} \frac{\alpha(x)}{\beta(x)} = 1$$
,那么 $\lim_{x\to 0} [\frac{\alpha(x)}{\beta(x)}]^2 = 1$

$$2. \ \lim_{x \to 0} \frac{\alpha(x)^2}{\beta(x)^2} = 1 \Rightarrow \lim_{x \to 0} \frac{\alpha(x)}{\beta(x)} = \pm 1$$

3.
$$\lim_{x\to 0} \frac{\alpha(x) - \beta(x)}{\beta(x)} = 0$$

4.
$$\lim_{x\to 0} \frac{\alpha(x) - \beta(x)}{\beta(x)} = 1$$

题目 19 的注记. 若 $\alpha(x) \sim \beta(x)$, 那么 $\lim_{x \to 0} \frac{\alpha(x)}{\beta(x)} = 1 \Leftrightarrow \lim_{x \to 0} \frac{\beta(x)}{\alpha(x)}$

题目 20. 设对任意的 x 总有 $\varphi(x) \leqslant f(x) \leqslant g(x)$,且 $\lim_{x \to \infty} [g(x) - \varphi(x)] = 0$,则 $\lim_{x \to \infty} f(x)$

(A) 存在且等于零. (B) 存在但不一定为零. (C) 一定不存在. (D) 不一定存在

题目 20 的注记. 遇见 \leq,\geq 的形式, 可以一律取 =

⁷此处多用于泰勒公式的应用中,会对上述高阶无穷小的运算提出要求

1.3.2 无穷大

定义 1.3.3: 无穷大的定义

设函数 f(x) 在 x_0 的某一去心邻域内有定义 (或 |x| 大于来一正数时有定义). 如果对于任意给定的正数 M(不论它多么大),总存在正数 $\delta($ 或数 X),只要 x 适合不等式 $0<|x-x_0|<\delta($ 或过 |x|>X),对应的函数值 f(x) 总满足不等式

那么称函数 f(x) 是当 $x \to x_0$ (或 $x \to \infty^a$) 时的无穷大. $b \notin \varepsilon - N$ 语言为

$$\lim_{x\to x_0}f(x)=\infty \Leftrightarrow \forall M>0, \exists \delta>0, \leqq 0<|x-x_0|<\delta \mathrm{id}, \not|f(x)|>M.$$

无穷大的比阶

- $\exists x \to +\infty$ $\exists h, \ln^a x \ll x^\beta \ll a^x, \exists h = \alpha > 0, \beta > 0, \alpha > 1.8$
- $\exists n \to \infty$ $\text{III}, \ln^a n \ll n^\beta \ll a^n \ll n! \ll n^n, \text{ <math>\exists \vdash \alpha > 0, \beta > 0, a > 1.$

无穷大的性质

- 两个无穷大量的积仍未无穷大量
- 无穷大量与有界变量的和仍是无穷大量

无穷大与无界变量的关系

无穷大量一定是无界变量,但无界变量不一定是无穷大量.9

 $[^]a$ 等价于 $x \to -\infty$ 同时 $x \to +\infty$

⁶无穷大一定无界, 但无界不一定是无穷大量,与无穷小相同, 都是一个极限过程, 因此无穷大也是一个极限, 所以无界不一定是无穷大量

⁸由洛必达公式证明

 $^{^{9}}$ 如数列 $x_n = egin{cases} n, n \text{ 为奇数} \\ 0, n \text{ 为偶数} \end{cases}$,是无界变量,但不是无穷大. 无穷大是一个极限

1.3.3 无穷大与无穷小的关系

在自变量的同一变化过程中, 若 f(x) 是无穷大, 则 $\frac{1}{f(x)}$ 是无穷小; 若 f(x) 是无穷小, 且 $f(x) \neq 0$, 则 $\frac{1}{f(x)}$ 是无穷大.

函数极限的运算 1.4

极限的四则运算法则 1.4.1

利用极限的四则运算法则求极限

10 如果极限不存在, 那么极限属于超实数系的范畴, 在超实数系下不可以进行代数运算, 只可以进行替换 运算.但是如果极限均存在,那么可以进行代数计算.那么就可以使用下面的运算法则:

若 $\lim f(x) = A, \lim g(x) = B$, 那么

- $\lim[kf(x) \pm lg(x)] = k \lim f(x) \pm l \lim g(x) = kA \pm lB$, 其中 k, l 为常数
- $\lim[f(x)\cdot g(x)]=\lim f(x)\cdot \lim g(x)\equiv A\cdot B$,特别的,若 $\lim f(x)$ 存在,n 为正整数,则 $\lim[f(x)]^n=\lim f(x)$ $\left[\lim f(x)\right]^n$
- $\lim \frac{f(x)}{g(x)} = \frac{\lim f(x)}{\lim g(x)} = \frac{A}{B}(B \neq 0)$

注 1.4.1: 常用结论

存在
$$\pm$$
不存在 $=$ 不存在 \pm 不不存在 \pm 不不定

题目 21.

1. 证明: $\lim f(x) = A \neq 0 \Rightarrow \lim f(x)g(x) = A \lim g(x)$

 $[^]a$ 只有这一个是不存在,其余都是不一定或者存在 b 反例: $\lim_{x\to 0}(\sin\frac{1}{x}-\sin\frac{1}{x})=0$

¹⁰ 易错, 在计算中往往容易忽视极限不存在的情况

- 2. 证明: $\lim \frac{f(x)}{g(x)}$ 存在, $\lim g(x) = 0 \Rightarrow \lim f(x) = 0$
- 3. 证明: 若 $\lim_{x\to x_0} g(x) = A, \lim_{x\to A} f(x) = B$, 能否推出 $\lim_{x\to x_0} f(g(x)) = B$, 若不能, 则满足什么条件可以推出该结论?

证明. 1.
$$\lim f(x) = \lim \frac{f(x)}{g(x)} \cdot g(x) = \lim \frac{f(x)}{g(x)} \cdot \lim g(x) = A \cdot 0 = 0.$$

2. 由于
$$g(x) = \frac{f(x)}{\frac{f(x)}{g(x)}}$$
,则 $\lim g(x) = \lim \frac{f(x)}{\frac{f(x)}{g(x)}} = \frac{\lim f(x)}{\lim \frac{f(x)}{g(x)}} = \frac{0}{A} = 0$

3. 无法推出, 有如下反例

•
$$g(x) = x \sin \frac{1}{x}, f(x) = \begin{cases} x, x \neq 0 \\ 1, x = 0 \end{cases}$$
 , $\lim_{x \to 0} g(x) = 0$, $\lim_{x \to 0} f(x) = 0$, 但是当 $x \to 0$ 时, $g(x) = 0$

 $x\sin\frac{1}{x}$ 不仅趋于 0,同时还能在 $\frac{1}{n\pi}$ 这样的点处严格等于 0.此时 $\lim_{x\to 0}f(g(x))=1$,所以 $\lim_{x\to 0}f(g(x))$ 不存在,其极限值在 (0,1) 之间反复横跳.

•
$$g(x) \equiv 0, f(x) = \begin{cases} x, x \neq 0 \\ 1, x = 0 \end{cases}$$
, $\lim_{x \to 0} g(x) = 0, \lim_{x \to 0} f(x) = 0$. 但 $\lim_{x \to 0} f(g(x)) = 1$

因此结论不成立. 若要成立, 则应改为:

- 若 $\lim_{x \to x_0} g(x) = A, \lim_{x \to A} f(x) = B,$ 且 $g(x) \neq A^{11}$,则 $\lim_{x \to x_0} f(g(x)) = B$
- 若 $\lim_{x\to x_0}g(x)=A,\lim_{x\to A}f(x)=B,$ 即 f(x) 在 x=A 处连续 12,则 $\lim_{x\to x_0}f(g(x))=B$

题目 21 的注记. 此题的三个证明是常用结论

题目 22. 求
$$\lim_{x\to+\infty} \frac{e^x}{\left(1+\frac{1}{x}\right)^{x^2}}$$
. 极限

解答. 由于该极限的分子 e^x 的极限为无穷大, 无穷大属于极限中的不存在情况, 因此不可以使用极限的四则

¹¹从根本上排除了常值函数和振荡间断点的反例

¹²不管内函数能否取到极限值, 只要外函数连续, 复合之后极限一定存在

运算法则1.4.1,也不可以对分母使用两个重要无穷小进行化简.只能使用等价变换进行求解.即

原式 =
$$\lim_{x \to +\infty} \frac{e^x}{e^{x^2 \ln(1+\frac{1}{x})}}$$

= $\lim_{x \to +\infty} e^{x-x^2 \ln(1+\frac{1}{x})}$
 $\stackrel{\text{\textstyle =}}{=} \lim_{x \to +\infty} \lim_{x \to +\infty} e^{x-x+\frac{1}{2}}$
= $e^{\frac{1}{2}}$

题目 23. 已知
$$f(0) = f'(0) = 0, f''(0) \neq 0, 求 \lim_{x \to 0} \frac{\frac{f(x)}{x}}{f'(x)}$$

解答. 如果想把分子写 $x\to 0$ 时的导数形式,然后进行计算,即 $\lim_{x\to 0}\frac{\frac{f(x)-f(0)}{x-0}}{f'(0)}=\frac{f'(0)}{f'(0)}=1$ 进行运算,则不满足极限四则运算法则1.4.1,因为其分母为 0,违背了极限的四则运算法则,因此不可这样计算,需要对其进行恒等变形计算. 即

原式 =
$$\lim_{x\to 0} \frac{\frac{f(x)}{x^2}}{\frac{f'(x)-f'(0)}{x}}$$
 = $\frac{1}{f''(0)} \lim_{x\to x_0} \frac{f(x)}{x^2}$ = $\frac{\frac{8 \text{ 必达法则}}{f''(0)} \lim_{x\to 0} \frac{1}{2} \frac{f'(x)-f'(0)}{x}}{\frac{1}{2} \frac{f'(x)-f'(0)}{x}}$ (易错: 此处的处理不可再次使用洛必达,因为二阶导在此不连续) = $\frac{1}{f''(0)} \frac{1}{2} f''(0)$ = $\frac{1}{2}$

题目 23 的注记. 使用极限运算法则的注意事项:在求分式这种形式的极限时,一定要注意分子的极限是不是无穷,如果极限为无穷则不可以使用极限运算法则对极限进行拆分计算,同时还要注意分母的极限是不是 0,如果是 0,则也不可以使用极限运算法则计算,只能进行等价替换进行运算.

题目 24. 求
$$\lim_{x\to 0} (\frac{1}{x^2} - \cot^2 x)$$

解答.

原式 =
$$\lim_{x \to 0} \left(\frac{1}{x^2} - \frac{1}{\tan^x x} \right)$$

= $\frac{(\tan x + x)(\tan x - x)}{x^2 \times \tan^2 x}$
= $\frac{2x \times \frac{1}{3}x^3}{x^4}$
= $\frac{2}{3}$

题目 24 的注记. 本题的有另一个解法, 但是相较上面的解法相比有些复杂, 但是记录一个常见的错误, 即什么时候可以用等价无穷小的问题, 其写法为:

原式 =
$$\lim_{x \to 0} (\frac{1}{x^2} - \cot^2 x) = (\frac{1}{x^2} - \frac{\cos^2 x}{\sin^2 x})$$

= $\lim_{x \to 0} \frac{\sin^2 x - x^2 \cos^2 x}{x^2 \sin^2 x}$
= $\lim_{x \to 0} (\frac{\sin^2 x - x^2 \cos^2 x}{x^4})$

此处有一个常见的错误, 就是能不能把 $\cos^2 x$ 代换为 1, 其实是不能的, 即使最后答案正确, 此时 $x\to 0$ 时, 分母也趋于 0, 如果进行替换, 则违背了极限的运算法则, 因此不能进行替换

原式 =
$$\lim_{x \to 0} \frac{(\sin x - x \cos x)(\sin x + x \cos x)}{x^4}$$
 = 泰勒公式 $\frac{2}{3}$

1.4.2 泰勒公式

泰勒公式的目的是提高精确度,用更高次的多项式来逼近函数

带拉格朗日余项的 n 阶泰勒展开式

如果函数 f(x) 在 x_0 的某个邻域 $U(x_0)$ 内具有 (n+1) 阶导数, 那么对任一 $x \in U(x_0)$, 有

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \frac{f^{(n)}\left(x_0\right)}{n!}\left(x - x_0\right)^n + \frac{f^{(n+1)}(\xi)}{(n+1)!}(x - x_0)^{n+1}$$

带佩亚诺余项的 n 阶泰勒展开式

如果函数 f(x) 在 x_0 处具有 n 阶导数, 那么存在 x_0 的一个邻域, 对于该邻域内的任一 x, 有

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + o\left((x - x_0)^n\right)^n$$

带有佩亚诺余项的麦克劳林公式

对带有佩亚诺余项的泰勒公式取 $x_0 = 0$,则可以得到带有佩亚诺余项的麦克劳林公式 13

$$f(x) = f(0) + f'(0)x + \dots + \frac{f^{(n)}(0)}{n!}x^n + o(x^n)$$

当 $x \to 0$ 时, 由带有佩亚诺余项的麦克劳林公式可得, 有以下结论

$$\begin{aligned} \sin x &= x - \frac{x^3}{3!} + o(x^3) & \cos x &= 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + o(x^4) \\ \arcsin x &= x + \frac{x^3}{3!} + o(x^3) & \arccos x &= \frac{\pi}{2} - \arcsin x &= \frac{\pi}{2} - x - \frac{1}{3!}x^3 + o(x^3) \\ \arctan x &= x - \frac{x^3}{3} + o(x^3) & \tan x &= x + \frac{x^3}{3} + o(x^3) \\ e^x &= 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + o(x^3) & (1 + x)^a &= 1 + \alpha x + \frac{\alpha(\alpha - 1)}{2!}x^2 + o(x^2) \\ \frac{1}{1 + x} &= 1 - x + x^2 - \dots + (-1)^n x^n + o(x^n) & \frac{1}{1 - x} &= 1 + x + x^2 + \dots + x^n + o(x^n) \\ \ln(x + \sqrt{1 + x^2}) &= x - \frac{1}{6}x^3 + \frac{3}{40}x^5 + \dots^1 & \ln(1 + x) &= x - \frac{x^2}{2} + \frac{x^3}{3} + o(x^3) \end{aligned}$$

 $^{^{13}}$ 此处有一个易被忽略的地方,只有函数在 x_0 处,n 阶导数存在,才可以展开到 n 阶

¹该函数为反双曲正弦函数

注 1.4.2: 泰勒公式应用时的展开原则

• $\frac{A}{B}$ 型, 适用于"上下同阶"原则: 具体来说, 如果分母或者分子是 x 的 k 次幂, 则应把分子或分母 展开到 x 的 k 次幂. 如: $\lim_{x\to 0} \frac{x-\ln(1+x)}{x^2}$, 此处 $\ln(1+x)$ 应展开为 $x-\frac{x^2}{2}+o(x^2)$

• A-B 型, 适用"幂次最低"原则:将 A,B 分别展开到他们系数不相等的 x 的最低次幂为止.如:已知当 $x\to 0$ 时, $\cos x-e^{\frac{x^2}{2}}$ 与 ax^b 为等价无穷小,求 a,b.则应展开为 $\cos x=1-\frac{x^2}{2!}+\frac{x^4}{4!}+o(x^4), \mathrm{e}^{-\frac{x^2}{2}}=1-\frac{x^2}{2}+\frac{1}{2!}\frac{x^4}{4}+o(x^4).$

注 1.4.3: 泰勒公式的解题技巧

- 1. 泰勒公式构建了函数与其高阶导之间的联系, 因此看见高阶导数, 要条件反射的想到泰勒公式
- 2. 奇函数的泰勒展式只有奇数次幂, 偶函数的泰勒展式只有偶数次幂。
- 3. 极限当中,用佩亚诺余项 O(x 的 n 次幂),证明题中,用拉格朗日余项,找提供信息最多的点作为展开点
- 4. 等价无穷小的本质是泰勒的低精度形式, 加减法不建议使用等价无穷小, 建议直接泰勒
- 5. 加项减项的本质也是泰勒^b

a如 $\sin x$ 和 $\cos x$

 $b \notin \ln(x) = \ln(1+x-1) \sim x-1$

题目 25.
$$\lim_{x\to 0} \frac{\ln(1+x+x^2)-x}{x^2}$$

解答. 对等式进行泰勒展开即:

$$\frac{\ln(1+x+x^2)-x}{x^2} = \frac{(x+x^2-\frac{1}{2}(x+x^2)^2-x)}{x^2} = \lim_{x\to 0} \frac{x^2-\frac{1}{2}x^2}{x^2} = \frac{1}{2}$$

题目 26.
$$f(x)$$
 在 $x=0$ 处二阶可导且满足 $\lim_{x\to 0} \frac{f(x)\sin x + \ln(1+x)}{x^3} = 0$,求 $f(0), f'(0), f''(0)$

解答. 对原式中 f(x) 和 $\sin x$ 和 $\ln(1+x)$ 各项进行泰勒展开得:

$$\begin{split} &\lim_{x\to 0} \frac{f(x)\sin x + \ln(1+x)}{x^3} = 0 \\ &= \lim_{x\to 0} \frac{(f(x) = f(0) + f'(0)x + \frac{f''(0)}{2}x^2)(x - \frac{1}{6}x^3) - (x - \frac{1}{6}x^3) + (x - \frac{x^2}{2} + \frac{x^3}{3})}{x^3} = 0 \\ &= \frac{(f(0) + 1)x + (f''(0) - \frac{1}{2})x^2 + (-\frac{1}{6}f(0) + \frac{f''(0)}{2} + \frac{1}{3})x^3 + o(x^3)}{x^3} = 0. \end{split}$$

可以得到的是,分子的极限一定为 0,那么 $\begin{cases} f(0)+1=0 \\ f'(0)-\frac{1}{2}=0 \\ -\frac{1}{6}f(0)+\frac{f''(0)}{2}+\frac{1}{3}=0 \end{cases} \implies \begin{cases} f(0)=-1 \\ f'(0)=\frac{1}{2} \\ f''(0)=-1 \end{cases}$

题目 26 的注记. 看见各阶导数应想到泰勒公式

题目 27. 已知函数 f(x) 在 x=0 的某邻域内连续,且 $\lim_{x\to 0}(\frac{\sin x}{x^2}+\frac{f(x)}{x})=2$,试求 f(0),f'(0)

解答. 对原式进行通分然后对 $\sin x$ 进行泰勒展开:

$$\lim_{x \to 0} \frac{\sin x + xf(x)}{x^2} = 2$$

$$= \lim_{x \to 0} \frac{x + xf(x) + o(x^2)}{x^2} = 2$$

根据函数极限与无穷小的关系1.3.1可知,1 + f(x) = 2x + o(x),f(x) = 2x - 1 + o(x) 因为函数在 x = 0 上连续, 因此 $f(0) = \lim_{x \to 0} f(x)$,f(x) = 2x - 1 + o(x) 的表达式是 $x \to 0$ 时的表达式,将 x = 0 带入可得 f(0) = -1, 使用导数定义求得 f(x) 在点 0 处的导数,即 $f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \frac{2x + o(x)}{x} = 2$

题目 27 的注记. 看见此类问题,第一步应先通分,然后将具体函数的泰勒进行展开(因为此题中的条件是连续而不是可导,如果是可导的话可以全部进行展开),然后把 f(x) 的表达式给求出来

题目 28. 设函数 $f(x) = \sec x$ 在 x = 0 处的 2 次泰勒多项式为 $1 + ax + bx^2$, 则

$$(A)a = 1, b = \frac{1}{2} \qquad (B)a = 1.b = \frac{1}{2} \qquad (C)a = 0, b = -\frac{1}{2} \qquad (D)a = 0, b = \frac{1}{2}$$

解答. $f(x) = \sec x = \frac{1}{\cos x}$, 该函数为偶函数, 因此泰勒展开只有偶数次幂, 那么 a = 0, 该函数一定大于 0, 因此 $b \ge 0$, 排除 C,A,B.

题目 28 的注记. 本题也可以将 $\sec x$ 展开, 但是较为麻烦, 可以采用上述的方法进行运算.

题目 29. 设函数
$$f(x)=\frac{\sin x}{1+x^2}$$
 在 $x=0$ 处的 3 次泰勒多项式为 $ax+bx^2+cx^3$,则 $(A)a=1,b=0,c=-\frac{7}{6}$ $(B)a=1,b=0,c=\frac{7}{6}$ $(C)a=-1,b=-1,c=-\frac{7}{6}$ $(D)a=-1,b=-1,c=\frac{7}{6}$

解答. 法 1: 对分子进行泰勒展开, 然后使用整式除法

$$\begin{array}{c|c}
x - \frac{7}{6}x^3 \\
x - \frac{7}{6}x^3 + \frac{1}{120}x^5 \\
\hline
x + x^3 \\
\hline
-\frac{7}{6}x^3 + \frac{1}{120}x^5 \\
\hline
-\frac{7}{6}x^3 - \frac{7}{6}x^5
\end{array}$$

法 2: 对整式进行泰勒展开与等价无穷小替换 $f(x)=(x-\frac{x^3}{6})(1-x^2)=x-\frac{7}{6}x^3$ 法 3: 对整式进行泰勒展开计算可得 $x-\frac{7}{6}x^3$

题目 29 的注记. 遇见此类问题,解题方法的优先级为长除法,利用等价替换,使用定义(利用泰勒公式直接所有项都展开)

1.4.3 洛必达法则

定义 1.4.1: 洛必达法则定义

- $\lim_{x\to x_0} f(x) = \lim_{x\to x_0} g(x) = 0(\infty)$
- f(x) 和 g(x) 在 x_0 的某去心邻域内可导, 且 $g'(x) \neq 0$

•
$$\lim_{x\to x_0} \frac{f'(x)}{g'(x)}$$
 存在 (或 ∞)

则
$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}$$

需要注意的是使用过洛必达法则之后的极限必须存在, 即 $\lim_{x \to x_0} \frac{f'(x)}{g'(x)}$ 必须存在.

题目 30. 求
$$\lim_{x\to 0} \frac{x^2 \times \sin\frac{1}{x}}{\sin x}$$

解答. 该函数也是 $\frac{0}{0}$ 型,但是如果使用洛必达法则,则 $2x \times \sin\frac{1}{x} - \cos\frac{1}{x}$,极限显然不存在,因此不可以使用洛必达法则.则正确求法为 $\lim_{x\to 0} \frac{x^2 \times \sin\frac{1}{x}}{x} = \lim_{x\to 0} x \times \sin\frac{1}{x} = 0$.

注 1.4.4: 洛必达可以洛到几阶

- n 阶导连续,则最多可以洛到 n 阶.
- n 阶导存在/n 阶邻域内可导,则最多能洛到 n-1 阶.
- 实际上,n 阶等连续,不一定能够洛到 n 阶 a . 结论如下:

 $\lim_{x\to x_0} \frac{f(x)}{(x-x_0)^m}$ 到底能用多少次洛必达法则假设 m 和 n 均为正整数,并且 $f(x_0)=f'(x_0)=\cdots=f^{(n)}(x_0)=0$.

- 1. 如果 f(x) 在 x_0 的 n 阶导数连续, 则:
 - (a) 若 $m \leqslant n$, 则 $\lim_{x \to x_0} \frac{f(x)}{(x x_0)^m}$ 可以用 m 次洛必达 $\lim_{x \to x_0} \frac{f^{(m)}(x)}{m!} = \frac{f^{(m)}(x_0)}{m!}$
 - (b) 若 m > n, 则 $\lim_{x \to x_0} \frac{f(x)}{(x x_0)^m}$ 则一次都不能用洛必达.
- 2. 如果 f(x) 在 x_0 有 n 阶导数 (没说 n 阶导函数连续), 则:

(a) 若
$$m \leqslant n-1$$
, 则 $\lim_{x \to x_0} \frac{f(x)}{\left(x-x_0\right)^m}$ 可以用 m 次洛必达 $\lim_{x \to x_0} \frac{f^{(m)}(x)}{m!} = \frac{f^{(m)}(x_0)}{m!}$

(b) 若 m=n , 则 $\lim_{x\to x_0} \frac{f(x)}{x^m}$ 可以用 m-1 次洛必达出现 $\lim_{x\to x_0} \frac{f^{(m-1)}(x)}{m!(x-x_0)}$, 然后利用导数 定义 $f^{(n)}(x_0)=\lim_{x\to x_0} \frac{f^{(n-1)}(x)-f^{(n-1)}(x_0)}{x-x_0}$ 进一步计算

(c) 若
$$m \ge n+1$$
, 则 $\lim_{x \to x_0} \frac{f(x)}{\left(x-x_0\right)^m}$ 一次都不能用洛必达

题目 31. 设 f(x) 有二阶连续导数,并且 f(0)=0, f'(0)=0, f''(0)=0, 并且 $\lim_{x\to 0} \frac{f(x)}{x^3}=1$, 问 $\frac{f(x)}{x^3}$ 是否可以进行洛必达法则? 如果可以请求出 f'''(0); 如果不存在,请说明理由.

解答. 看到此题的二阶导数连续,一般都认为可以进行洛必达,但是其实该方程式一次洛必达都不可以进行,假设函数 f(x) 表达式为

$$f(x) = \begin{cases} x^{\frac{28}{9}} \sin \frac{1}{\sqrt[3]{x}} + x^3, x \neq 0\\ 0, x = 0 \end{cases}$$

那么

$$f'(x) = \begin{cases} \frac{28}{9} x^{\frac{19}{9}} \sin \frac{1}{\sqrt[3]{x}} - \frac{1}{3} x^{\frac{16}{9}} \cos \frac{1}{\sqrt[3]{x}} + 3x^2, x \neq 0\\ 0, x = 0 \end{cases}$$

二阶导为

$$f''(x) = \begin{cases} \frac{532}{82} x^{\frac{10}{9}} \sin \frac{1}{\sqrt[3]{x}} - \frac{44}{27} x^{\frac{7}{9}} \cos \frac{1}{\sqrt[3]{x}} - \frac{1}{9} x^{\frac{4}{9}} \sin \frac{1}{\sqrt[3]{x}} + 6x, x \neq 0\\ 0, x = 0 \end{cases}$$

可知函数 f'(0)=0,且 f''(0)=0,该函数完全满足题意,但是对 $\frac{f(x)}{x^3}$ 使用第一次洛必达时,为

$$1 = \lim_{x \to 0} \frac{f(x)}{x^3} = \lim_{x \to 0} \frac{f'(x)}{3x^2} = \lim_{x \to 0} \frac{\frac{28}{9}x^{\frac{19}{9}}\sin\frac{1}{3\sqrt{x}} - \frac{1}{3}x^{\frac{16}{9}}\cos\frac{1}{3\sqrt{x}} + 3x^2}{3x^2}$$

洛必达之后的极限显然不存在, 因此该情况下不可以使用洛必达法则.

[&]quot;但是考研中这点没有难为过人,因此可以粗略的认为上述两条是成立的

题目 31 的注记. 本题需要注意, 不是所有的条件下都可以进行洛必达法则, 由此可以抽象出来一个样例:

$$f\left(x\right) = \begin{cases} x^{a} \sin \frac{1}{\sqrt[b]{x}} + x^{c}, x \neq 0 \\ 0, x = 0 \end{cases}$$

题目 32. 已知函数 f(x) 在 x=0 的某邻域内可导,且 $\lim_{x\to 0}(\frac{\sin x}{x^2}+\frac{f(x)}{x})=2$,试求 f(0),f'(0) 以及 $\lim_{x\to 0}\frac{x}{f(x)+e^x}$

解答. 本题中未说明 f(x) 在邻域内连续可导,只说明一阶导存在,因此一阶都不可以进行洛必达法则,但是可以使用泰勒公式对上述式子进行泰勒展开,因此上述式子的解法为对原式进行通分然后对 $\sin x$ 进行泰勒展开:

$$\lim_{x \to 0} \frac{\sin x + x f(x)}{x^2} = 2$$

$$= \lim_{x \to 0} \frac{x + x f(x) + o(x^2)}{x^2} = 2$$

根据函数极限与无穷小的关系1.3.1可知,1+f(x)=2x+o(x), f(x)=2x-1+o(x) 因为函数在 x=0 上连续, 因此 $f(0)=\lim_{x\to 0}f(x), f(x)=2x-1+o(x)$ 的表达式是 $x\to 0$ 时的表达式,将 x=0 带入可得 f(0)=-1,使用导数定义求得 f(x) 在点 0 处的导数,即 $f'(0)=\lim_{x\to 0}\frac{f(x)-f(0)}{x-0}=\frac{2x+o(x)}{x}=2$,然后带入极限 $\lim_{x\to 0}\frac{x}{f(x)+e^x}=\frac{x}{-1+2x+e^x}=\frac{1}{3}$

题目 32 的注记. 看见此类问题, 第一步应先通分, 然后将具体函数的泰勒进行展开 (因为此题中的条件是连续而不是可导, 如果是可导的话可以全部进行展开), 然后把 f(x) 的表达式给求出来

题目 33. 求极限 $\lim_{x\to+\infty}x(e^{\frac{\pi}{2}+\arctan x}-e^{\pi})$

解答. (1) 拉格朗日中值定理:

原式 =
$$\lim_{x \to +\infty} x \times e^{(\varepsilon)} (\arctan x - \frac{\pi}{2})$$

= $e^{\pi} \lim_{x \to +\infty} \frac{\arctan x - \frac{\pi}{2}}{\frac{1}{x}}$
= $\lim_{x \to +\infty} \frac{\frac{1}{1+x^2}}{-\frac{1}{n^2}}$

$$=-e^{\pi}$$

(2) 提后项:

原式 =
$$\lim_{x \to +\infty} e^{\pi} (e^{\arctan \frac{\pi}{2}} - 1)$$

= $\lim_{x \to +\infty} e^{\pi} \times \arctan \frac{-\pi x}{2}$
= $-e^{\pi}$

(3) 直接洛:

原式 =
$$\lim_{x \to +\infty} \frac{e^{\frac{\pi + \arctan x}{2}} - e^{\pi}}{\frac{1}{x}}$$
=
$$\frac{e^{\frac{\pi}{2} + \arctan x} \times \frac{1}{1 + x^2}}{-\frac{1}{x^2}}$$
=
$$-e^{\pi}$$

题目 33 的注记. 该形式为无穷大乘以无穷小,可以构造无穷大比无穷大,或无穷小比无穷小,之后进行洛必达. 方法多了,往往会忽视洛必达,但有时洛必达反而会简单一些.

题目 34. 设 y = f(x) 是方程 $y'' + 2y' + y = e^{3x}$ 的解, 且满足 y(0) = y'(0) = 0, 则当 $x \to 0$ 时, 与 y(x) 为 等价无穷小的是 ()

(A).
$$\sin x^2$$
 (B). $\sin x$ (C). $\ln(1+x^2)$ (D). $\ln \sqrt{1+x^2}$

解答. 等价无穷小具有传递性,因此 $\sin x^2 \sim x^2, \sin x \sim x, \ln(1+x^2) \sim x^2, \ln(\sqrt{1+x^2}) \sim \frac{1}{2}x^2$. 若与 y(x) 为 等价无穷小,那么 $\lim_{x\to 0} \frac{y(x)}{f(x)} = 1$. 对 y(x) 进行泰勒展开 $y(x) = y(0) + y'(0)x + \frac{y''(0)}{2}x^2$. 当 x = 0 时,有 y''(0) = 1,易知一阶导是连续的,对函数形式进行分析,可知函数在二阶导也是连续的,那么就可以展开到二 阶,那么 $y(x) = \frac{1}{2}x^2$.

除此之外, 还可以这样解决, 已知二阶导连续, 那么对 $\frac{y(x)}{A/B/C/D}$ 进行洛必达可知 D 选项正确.

1.4.4 等价替代求极限

两个重要极限

$$\lim_{\Box \to \infty} (1 + |\Box|)^{\frac{1}{\Box}} = e^{|\Box|\frac{1}{\Box}} \qquad \lim_{\Box \to 0} \frac{\sin \Box}{\Box} = 1$$

等价无穷小

等价无穷小的本质是泰勒的低精度形式

关于等价无穷小,有以下两个定理

定义 1.4.2: 等价无穷小的充要条件

β与α是等价无穷小的充分必要条件为

$$\beta = \alpha + o(\alpha)$$

定义 1.4.3: 等价无穷小的替换准则

设
$$\alpha \sim \tilde{\alpha}, \beta \sim \tilde{\beta}$$
, 且 $\lim \frac{\tilde{\beta}}{\tilde{\alpha}}$ 存在, 则

$$\lim \frac{\beta}{\alpha} = \lim \frac{\tilde{\beta}}{\tilde{\alpha}}.$$

等价无穷小的本质还是在做恒等替换, 所以一般情况下整式的乘除法可以直接用等价无穷小替换, 分子及分母都可用等价无穷小来代替. 但是需要遵循以下代换原则^a

- 乘除关系可以换: 若 $\alpha \sim \alpha_1, \beta \sim \beta_1,$ 则 $\lim \frac{\alpha}{\beta} = \lim \frac{\alpha_1}{\beta} = \lim \frac{\alpha}{\beta_1} = \lim \frac{\alpha_1}{\beta_1}$
- 加减关系一定条件下可以换^b

- 若
$$\alpha \sim \alpha_1, \beta \sim \beta_1$$
, 且 $\lim \frac{\alpha_1}{\beta_1} = A \neq 1$, 则 $\alpha - \beta \sim \alpha_1 - \beta_1$

- 若
$$\alpha \sim \alpha_1, \beta \sim \beta_1,$$
且 $\lim \frac{\alpha_1}{\beta_1} = A \neq -1,$ 则 $\alpha + \beta \sim \alpha_1 + \beta_1$

加减关系代换准则证明如下:

证明.

$$\lim \frac{\alpha-\beta}{\alpha_1-\beta_1} = \lim \frac{\beta(\frac{\alpha}{\beta}-1)}{\beta_1(\frac{\alpha_1}{\beta_1}-1)} = 1$$

36

"其实没有什么替换原则,本质其实是因为超实数系下不能进行实数运算,只能进行替换运算

^b这样的形式其实不经常用,看见加减最好使用泰勒公式进行替换运算

以下为常用等价无穷小

当 $x \rightarrow 0$ 时,有

1.

 $x \sim \sin x \sim \tan x \sim \arcsin x \sim \arctan x$

$$\sim \ln(1+x)$$

$$\sim e^x - 1$$

2.

$$\begin{vmatrix} (1+x)^a \sim 1 + ax \\ a^x - 1 \sim x \ln a \\ 1 - \cos^\alpha x \sim \frac{\alpha}{2} x^2$$

$$a^x - 1 \sim x \ln a$$

$$1 - \cos^{\alpha} x \sim \frac{\alpha}{2} x^2$$

3. 上述结论的推广:

当
$$x \to 0$$
 时, 若

$$(1+x)^a - 1 \sim ax,$$

则

$$\alpha(x) \to 0, \alpha(x)\beta(x) \to 0,$$

那么

$$[1+\alpha(x)]^{\beta(x)}-1\sim\alpha(x)\beta(x)$$

4.

$$\frac{1}{2}x^2 \sim \sec x - 1 \sim x - \ln(1+x)$$

5.

$$\left| \frac{1}{6}x^3 \sim x - \sin x \sim \arcsin x - x \right|$$

6.

$$\boxed{\frac{1}{3}x^3 \sim x - \arctan x \sim \tan x - x}$$

7. $x \to 1$ 时, $\ln x \sim x - 1$, 因为 $\ln(1 + x - 1) \sim x - 1$

8. 当
$$A \to 0, B \to 0$$
 时, $e^A - e^B \sim A - B$, 因为 $e^B (e^{A-B} - 1) \sim A - B$

题目 35. 假设 $\lim_{x\to 0} \frac{f(x)}{1-\cos x}$ 存在

解答. 若 $\lim_{x\to 0} \frac{f(x)}{1-\cos x}$ 存在, 那么构造恒等变形:

原式 =
$$\lim_{x\to 0} \left(\frac{f(x)}{\frac{1}{2}x^2} \times \frac{\frac{1}{2}x^2}{1-\cos x}\right)$$

$$\frac{\text{等价无穷小}}{x\to 0} \lim_{x\to 0} \frac{f(x)}{\frac{1}{2}x^2}$$

题目 35 的注记. 整体的乘除法本质是构造恒等变形

等价无穷小替换的本质是构造恒等变形.需要谨记: 在使用等价无穷小时, 需要按照上述步骤进行编写, 不可以省去恒等变形步骤, 如果省去则可能导致错误. 如下题

解答. 由常用不等式1.5.2的 $x \to 0$, $|\sin x| \le |x|$, 那么

$$\left|\frac{\sin(x^2\sin\frac{1}{x})}{x}\right| \le \left|\lim_{x\to 0}\frac{x^2\sin\frac{1}{x}}{x}\right|$$

由夹逼准则得:

$$0 \leqslant \lim_{x \to 0} \left| \frac{\sin(x^2 \sin \frac{1}{x})}{x} \right| \leqslant \lim_{x \to 0} \left| \frac{x^2 \sin \frac{1}{x}}{x} \right|$$

左右极限都为 0, 因此 $\lim_{x\to 0} \frac{\sin(x^2\sin\frac{1}{x})}{x}$ 极限为 0

题目 36 的注记. 本题有一个常见的错误做法,就是直接把 $\lim_{x\to 0} \frac{\sin(x^2\sin\frac{1}{x})}{x}$ 进行等价无穷小替代,写为 $\lim_{x\to 0} \frac{x^2\sin\frac{1}{x}}{x}$,但是这是错误的,如果这样写,那么 $\lim_{x\to 0} \frac{\sin(x^2\sin\frac{1}{x})}{x^2\sin\frac{1}{x}} \times \frac{x^2\sin\frac{1}{x}}{x}$,在 $\lim_{x\to 0} \frac{\sin(x^2\sin\frac{1}{x})}{x^2\sin\frac{1}{x}}$ 的分母中,存在 $x=\frac{1}{n\pi}$ 的间断点,根据极限定义,极限如果存在,那么去心邻域一定要有定义,那这样写就违背了极限的存在准则,因此极限 $\lim_{x\to 0} \frac{x^2\sin\frac{1}{x}}{x}$ 不存在,不可以这样写.

抽象函数使用等价无穷小求极限

抽象函数等价的条件是 $f(x) \to 0$ 只有 $f(x) \neq 0$, 才能将 $\sin(f(x)) \sim f(x)$,

题目 37. 设 $\lim_{x\to 0} \varphi(x) = 0$, 则下列命题中正确的个数为

$$(1)\lim_{x\to 0}\frac{\sin\varphi(x)}{\varphi(x)}=1$$

(2)
$$\lim_{x\to 0} (1 + \varphi(x))^{\frac{1}{\varphi(x)}} = e.$$

$$(3) 若 f'(x_0) = A, 則 \lim_{x \to 0} \frac{f(x_0 + \varphi(x)) - f(x_0)}{\varphi(x)} = A$$

解答. 这三个都是错的,因为 $\varphi(x)$ 在分母上,都可能为 0. 比如函数 $\varphi(x)=x\times\sin\frac{1}{x}$,其极限为 0, 但是又存在 $x=\frac{1}{n\pi}$ 的无定义点.

积分等价替换求极限

定义 1.4.4: 积分等价替换法则

设 f(x) 和 g(x) 在 x = 0 的某邻域内连续,且 $\lim_{x \to 0} \frac{f(x)}{g(x)} = 1$,则 $\int_0^x f(t) dt \sim \int_0^x g(t) dt$.

定义 1.4.5: 变限积分求导公式

设 $F(x)=\int_{\varphi_1(x)}^{\varphi_2(x)}f(t)\mathrm{d}t$,其中 f(x) 在 [a,b] 上连续,可导函数 $\varphi_1(x)$ 和 $\varphi_2(x)$ 的值域在 [a,b] 上,则在函数 $\varphi_1(x)$ 和 $\varphi_2(x)$ 的公共定义域上,有

$$F'(x) = \frac{\mathrm{d}}{\mathrm{d}x} \left[\int_{\varphi_1(x)}^{\varphi_2(x)} f(t) \mathrm{d}t \right] = f[\varphi_2(x)] \varphi_2'(x) - f[\varphi_1(x)] \varphi_1'(x).$$

题目 38. 求
$$\lim_{x\to+\infty} \frac{\int_0^x (1+t^2)e^{t^2}dt}{xe^{x^2}+x^2}$$

解答: 看见变上限积分类型计算题应首先想到洛必达法则,对原式进行进行洛必达法则得:

原式 =
$$\lim_{x \to +\infty} \frac{e^{x^2} + x^2 e^{x^2}}{e^{x^2} + 2x^2 e^{x^2} + 2x}$$

$$= \frac{1 + x^2}{1 + 2x^2 + \frac{2x}{e^{x^2}}}$$

对极限取大头可得

$$\lim_{x \to +\infty} \frac{1+x^2}{1+2x^2+\frac{2x}{e^{x^2}}} = \frac{1}{2}$$

题目 38 的注记: 在极限中, 处理变上限积分的最好办法是洛必达. 能洛则洛, 不能洛的话就换元之后再洛.

题目 39. 若
$$\lim_{x\to 0} \frac{\int_0^x \frac{t^2}{\sqrt{a^2+t^2}}dt}{bx-\sin x} = 1$$
, 求 a,b, 其中 a,b 为正数

原式 =
$$\frac{\frac{x^2}{\sqrt{a^2 + x^2}}}{b - \cos x}$$
$$= \frac{1}{a} \cdot \lim_{x \to 0} \frac{x^2}{b - \cos x}$$

若分子趋近于零, 但是该等式的极限为 1, 那么该分母的极限一定趋近于 0, 那么 b 一定为 1

原式 =
$$\frac{1}{a} \cdot \lim_{x \to 0} \frac{x^2}{\frac{1}{2}x^2}$$

$$a = 2$$

综上所述 a = 2, b = 1

题目 39 的注记. 对于本题, 还可以可被积函数进行等价运算1.4.4, 但是这不是通法, 因此应当对此类问题首先进行洛必达. 以下为使用被积函数等价运算计算过程: 由于当 $t\to 0$ 时, $\frac{t^2}{\sqrt{a^2+t^2}}\sim \frac{t^2}{a^2}$

原式 =
$$\lim_{x \to 0} \frac{\int_0^x \frac{t^2}{\sqrt{a^2 + t^2}} dt}{bx - \sin x}$$

= $\lim_{x \to 0} \frac{\int_0^x \frac{t^2}{a} dt}{bx - \sin x}$
= $\frac{1}{3a} \lim_{x \to 0} \frac{x^3}{bx - \sin x} \xrightarrow{b \neq 1} \frac{1}{3a} \lim_{x \to 0} \frac{x^3}{bx - x} = 0$

等式矛盾, 因此 b=1, 对上式进行泰勒展开得:

$$1 = \frac{1}{3a} \lim_{x \to 0} \frac{x^3}{x - \sin x} = \frac{1}{3a} \lim_{x \to 0} \frac{x^3}{\frac{x^3}{6}} = \frac{2}{a}$$

综上所述 a = 2, b = 1

题目 40. 求极限
$$\lim_{x\to 0} \frac{x \int_0^x \ln{(1+t^2)} dt}{x^2 - \sin^2{x}}$$

原式 =
$$\lim_{x \to 0} \frac{x \int_0^x \ln(1+t^2)dt}{(x-\sin x)(x+\sin x)}$$
$$= \lim_{x \to 0} \frac{x \int_0^x \ln(1+t^2)dt}{2x \times \frac{1}{6}x^3}$$

$$= \frac{\ln(1+x^2)}{r^2} = 1$$

题目 40 的注记. 看见形如 $x^2 - \sin x^2$ 的形式, 就应当想到 $(x + \sin x)(x - \sin x)$ 的展开, 然后可以通过泰勒 展开进行计算

题目 41. 设函数
$$f(x)$$
 连续, 且 $f(0) \neq 0$, 求极限 $\lim_{x\to 0} \frac{\int_0^x (x-t) f(t) dt}{x \int_0^x f(x-t) dt}$

解答. 由于分母有两个变量,因此不好进行洛必达,那么此时就要对分母进行换元,换元过程如下: \diamondsuit (x-t) = u, 对等式两边求微分得:d(-t) = du.

首先,对分子展开,对分母换元得:

原式 =
$$\lim_{x \to 0} \frac{x \int_0^x f(t) dt - \int_0^x t f(t) dt}{x \int_0^x f(t) dt}$$

对原式进行进行洛必达法则得

原式 =
$$\lim_{x \to 0} \frac{\int_0^x f(t) \mathrm{d}t + x f(x) - x f(x)}{\int_0^x f(t) \mathrm{d}t + x f(x)}$$
 =
$$\lim_{x \to 0} \frac{\int_0^x f(t) \mathrm{d}t}{\int_0^x f(t) \mathrm{d}t + x f(x)}$$

如果此时还要进行洛必达,那么分母则会出现 f'(x),那么最后是不可计算的,因此此时应进行积分中值定理,则 $\int_0^x f(t)dt = xf(\varepsilon)(\varepsilon \in (0,x))^{14}$

原式 =
$$\lim_{x\to 0} \frac{xf(c)}{xf(c) + xf(x)}$$

¹⁴这个地方一定要可以夹起来,如果夹起来的极限不一样,那么则不可以使用积分中值定理

$$=\frac{f(0)}{f(0)+f(0)}=\frac{1}{2}$$

题目 41 的注记. 如果出现两个变量则换元之后再洛,如果实在洛不了的话,再考虑使用积分中值定理.积分中值定理和拉格朗日中值定理中出现的 ε ,最后一步想说明最终结果时,严格来说需要夹逼准则.(卷面上可以不体现出来,但脑子里必须把这些事情想明白)

本题也可以积分替换进行计算, 但是不推荐, 写法如下:

原式 =
$$\lim_{x\to 0} \frac{x \int_0^x f(t) dt - \int_0^x t f(t) dt}{x \int_0^x f(t) dt}$$
.

= $1 - \lim_{x\to 0} \frac{\int_0^x t f(t) dt}{x \int_0^x f(t) dt}$.

= $1 - \lim_{x\to 0} \frac{\frac{f(0)}{x} x^2}{\frac{f(0)}{f(0)} x^2}$.

= $\frac{1}{2}$

1.4.5 抓大头和抓小头

本质是同时处以最高阶/最低阶

$$\lim_{x \to \infty} \frac{a_0 x^m + a_1 x^{m-1} + \dots + a_m}{b_0 x^n + b_1 x^{n-1} + \dots + b_n} = \begin{cases} 0 \ , \ \stackrel{\omega}{\rightrightarrows} n > m \\ \\ \frac{a_0}{b_0}, \ \stackrel{\omega}{\rightrightarrows} n = m \\ \\ \infty \ , \ \stackrel{\omega}{\rightrightarrows} n < m \end{cases}$$

还有一个重要的等价为 $\lim_{n\to\infty} \sqrt[n]{n!} \sim e^{-1} \times n$ 该等价由斯特林公式 $\lim_{n\to\infty} \frac{n!}{\sqrt{2\pi n} \left(\frac{n}{e}\right)^n} = 1$ 而来,又可写为 $\lim_{n\to\infty} \frac{\sqrt[n]{n!}}{n!} = e^{-1}$

题目 42. 求
$$\lim_{x\to\infty} \frac{4x^3+x^2+3x+10}{3x^3+2x+7}$$

解答. 对等式上下同除以
$$x^3$$
 得 $\lim_{x\to\infty}\frac{4+\frac{1}{x}+\frac{3}{x^2}+\frac{10}{x^3}}{3+\frac{2}{x^2}+\frac{7}{x^3}}=\frac{4}{3}$

题目 43. 求
$$\lim_{x\to 0} \frac{x+2x^2+3x^4}{2x+4x^3+x^5}$$

解答. 上下同除以
$$x$$
 得 $\lim_{x\to 0} \frac{1+2x+3x^3}{2+4x^2+x^4} = \frac{1}{2}$

1.4.6 利用函数性质求极限

幂指函数性质求极限

一般主要是使用幂指函数的性质进行恒等变换,即 $a^b=e^{b\ln a}$. 如果两个函数的指数相同,则可以提后项/前项.

除此之外,还有一个常用的结论:对于 $\forall a,b>0$ 均有: $\lim_{x\to 0^+}x^a(\ln x)^b=0$,证明如下:

证明.

原式 =
$$\lim_{x \to 0^+} x^a \cdot \ln^b x$$

= $\lim_{x \to 0^+} \frac{\ln^b x}{x^{-a}}$
= $\lim_{x \to 0^+} \frac{b \ln^{b-1} x \cdot \frac{1}{x}}{-ax^{-a-1}}$

每洛一次,分子次数-1. 分母次数不变,一直洛下去,分子次数要么洛到 0(即 $\lim_{x\to 0^+}\frac{c}{x^{-a}}=\lim_{x\to o^+}cx^a=0$),要么洛成负数 $(\lim_{x\to 0^+}c\frac{\ln^m x}{x^{-a}}=0)$,最终结果都是 0

题目 44. 求极限 $\lim_{x\to 0^+} x^{(x^x-1)}$

原式 =
$$\lim_{x \to 0^+} x^{e^{x \ln x} - 1}$$

= $\lim_{x \to 0^+} x^{x \ln x}$
= $\lim_{x \to 0^+} e^{x \ln^2 x} = 1$

题目 45. 求极限 $\lim_{x\to 0} (\cos 2x + 2x \sin x)^{\frac{1}{x^4}}$

解答.

原式 =
$$\lim_{x \to 0} e^{\frac{1}{x^4} \ln(\cos 2x + 2x \sin x)}$$

= $e^{\lim_{x \to 0} \frac{1}{x^4} \ln((1 - \frac{4x^2}{2} + \frac{(2x)^4}{24}) + x - \frac{x^3}{6})}$
= $e^{\lim_{x \to 0} \frac{\frac{2}{3}x^4 - \frac{1}{3}x^4}{x^4}}$
= $e^{\frac{1}{3}}$

题目 46. <u>求极限</u> $\lim_{x\to 0^+} \frac{x^x - (\sin x)^x}{x^2 \ln(1+x)}$

解答. 本题方法较多, 因此分阶段进行分析:

原式 =
$$\lim_{x \to 0} \frac{e^{x \ln x} - e^{x \ln \sin x}}{x^2 \ln(1+x)}$$
$$= \frac{e^{x \ln x} - e^{x \ln \sin x}}{x^3}$$

接下来,可以对上述式子进行中值定理计算或者使用提后项的方法:中值定理:

原式 =
$$\lim_{x \to 0} \frac{e^{\varepsilon}(x \ln x - x \ln \sin x)}{x^3}$$

= $\frac{\ln x - \ln \sin x}{x^2}$

提后项:

原式 =
$$\lim_{x \to 0} \frac{e^{x \ln \sin x} (e^{x \ln x - x \ln \sin x} - 1)}{x^3}$$
$$= \lim_{x \to 0} \frac{(e^{x \ln x - x \ln \sin x} - 1)}{x^3}$$

$$= \frac{\ln x - \ln \sin x}{x^2}$$

然后对于 $\frac{\ln x - \ln \sin x}{x^2}$ 可使用中值定理和对数运算法则进行计算:

拉格朗日中值定理:

原式 =
$$\lim_{x\to 0} \frac{\frac{1}{\varepsilon}(x-\sin x)}{x^2}$$
 $(x<\varepsilon<\sin x)$ = $\lim_{x\to 0} \frac{x-x+\frac{1}{6}x^3}{x^2\varepsilon}$ = $\frac{1}{6}$

对数运算法则:

原式 =
$$\lim_{x \to 0} \frac{\ln(\frac{x}{\sin x})}{x^2}$$
=
$$\frac{\ln(1 + \frac{x}{\sin x} - 1)}{x^2}$$
=
$$\frac{\frac{x}{\sin x} - 1}{x^2}$$
=
$$\frac{x - \sin x}{x^2 \sin x}$$
=
$$\frac{1}{6}$$

题目 47. 求极限
$$\lim_{x\to 0} \frac{(3+x)^{\sin x} - 3^{\sin x}}{x^2}$$

原式 =
$$\lim_{x \to 0} \frac{3^{\sin x} \left[\left(1 + \frac{x}{3} \right)^{\sin x} - 1 \right]}{x^2}$$

$$= \lim_{x \to 0} \frac{\frac{x}{3} \sin x}{x^2}$$

$$= \frac{1}{3}$$

对数函数性质求极限

极限当中, 见到 $\ln A$, A 趋于 1 时, 优先想到构造成 $\ln(1+ 无穷小)$ 的形式, 如果这个式子本身进行恒等变形之后的结果过于复杂, 则要想到利用对数运算法则构造 $\ln(1+ 无穷小)$.

题目 48. 已知当
$$x \to 0$$
 时, $f(x) = \ln \frac{1+x}{1-x} - 2\ln(x+\sqrt{1+x^2})$ 是 x 的 n 阶无穷小, 则 $n =$

解答.

原式 =
$$\lim_{x \to 0} (\ln(1+x) - \ln(1-x) - 2\ln(x+\sqrt{1+x^2}))$$

= $\lim_{x \to 0} (x - \frac{x^2}{2} + \frac{x^3}{3} + x + \frac{x^2}{2} + \frac{x^3}{3} - 2x + \frac{1}{3}x^3)$
= x^3

综上易知:n=3

题目 49. 求极限
$$\lim_{x\to 0} \frac{\ln(\sin^2 x + e^x) - x}{\ln(e^{2x} - x^2) - 2x}$$

原式 =
$$\lim_{x \to 0} \frac{\ln(\sin^2 x + e^x) - \ln e^x}{\ln(e^{2x} - x^2) - \ln e^{2x}}$$

= $\lim_{x \to 0} \frac{\ln \frac{\sin^2 x + e^x}{e^x}}{\ln \frac{e^{2x} - x^2}{e^{2x}}}$

= $\lim_{x \to 0} \frac{\ln(1 + \frac{\sin^2 x}{e^x})}{\ln(1 - \frac{x^2}{e^{2x}})}$

= $\lim_{x \to 0} \frac{\frac{\sin^2 x}{e^x}}{\frac{x^2}{e^{2x}}}$

= $\lim_{x \to 0} e^x = 1$

题目 50. 已知
$$\lim_{x\to 0}\frac{2\arctan x-\ln\frac{1+x}{1-x}}{x^p}=c\neq 0$$
 A. $p=3,c=-\frac{4}{3}$ B. $p=-3,c=\frac{4}{3}$ C. $p=\frac{4}{3},c=3$ D. $p=-\frac{4}{3},c=-3$

解答.

原式 =
$$\lim_{x\to 0} \frac{2\arctan x - \ln(1+x) + \ln(1-x)}{x^p} = c$$

$$= \lim_{x\to 0} \frac{2x - \frac{2x^3}{3} - x + \frac{x^2}{2} - \frac{x^3}{3} - x - \frac{x^2}{2} - \frac{x^3}{3}}{x^p}$$

$$= \lim_{x\to 0} \frac{-\frac{4}{3}x^3}{x^p}$$

综上易知: $p = 3, c = -\frac{4}{3}$

题目 51.
$$\lim_{x\to+\infty} \left(x^{\frac{1}{x}}-1\right)^{\frac{1}{\ln x}}$$

解答.

题目 51 的注记. 注意: $a^b = e^{b \ln a}$ 在这个题中非常易错

1.4.7 中值定理求极限

中值定理求极限通常和夹逼准则配合求极限

夹逼准则

定义 1.4.6: 函数极限夹逼准则

如果

• $\exists x \in U^{\circ}(x_0, r) (\overrightarrow{y} |x| > M)$ 时

$$g(x) \leqslant f(x) \leqslant h(x)$$

 $\bullet \ \lim\nolimits_{x\to x_0(x\to\infty)}g(x)=A, \lim\nolimits_{x\to x_0(x\to\infty)}h(x)=A$

那么 $\lim_{x\to x_0(x\to\infty)} f(x)$ 存在, 且等于 A.

积分中值定理

定义 1.4.7

若函数 f(x) 在闭区间 [a,b] 上连续,则在积分区间 [a,b] 上至少存在一个点 ε ,使下式成立

$$\int_{a}^{b} f(x) dx = f(\varepsilon) (b - a)$$

其中,a、b、 ε 满足: $a \le \varepsilon \le b$

拉格朗日中值定理求极限

如果两个函数的形式一样,那么可以使用拉格朗日中值定理进行计算,但是处理之后的 ε 需要可以使用夹逼准则.

题目 52.
$$\lim_{x\to+\infty} x^2 \left(a^{\frac{1}{x}} - a^{\frac{1}{x+1}}\right) (a>0)$$

解答. 该题存在相近的函数形式,使用拉格朗日中值定理进行解析 $a^{\frac{1}{x}}-a^{\frac{1}{x+1}}=a^{\frac{1}{\varepsilon}}\ln a^{\frac{1}{\varepsilon^2}}, \varepsilon\in(x,x+1)$

原式 =
$$x^2 a^{\frac{1}{\varepsilon}} \ln a \frac{1}{\varepsilon^2}$$

当 $\varepsilon \to x+1$ 时,原式的极限为 $x^2 a^{\frac{1}{x+1}} \ln a \frac{1}{(x+1)^2} = \ln a$ 当 $\varepsilon \to x$ 时,原式的极限为 $x^2 a^{\frac{1}{x}} \ln a \frac{1}{x^2} = \ln a$

综上, 函数极限为 ln a

题目 53.
$$\lim_{n\to\infty} n^2 \left(\arctan \frac{a}{n} - \arctan \frac{a}{n+1}\right) (a>0)$$

解答. 该题存在相近的函数形式,使用拉格朗日中值定理进行解析 $\arctan\frac{a}{n} - \arctan\frac{a}{a+1} = -\frac{a}{\varepsilon^2 + a^2}$

原式 =
$$\lim_{n \to \infty} n^2 (-\frac{a}{\varepsilon^2 + a^2}), (\varepsilon \in (n, n+1))$$

当 $\varepsilon \to n+1$ 时,原式的极限为 $\lim_{n \to \infty} n^2 (-\frac{a}{(n+1)^2+a^2}) = a$ 当 $\varepsilon \to n$ 时,原式的极限为 $\lim_{n \to \infty} n^2 (-\frac{a}{(n)^2+a^2}) = a$ 综上,函数极限为 a

题目 **54.**
$$\lim_{x\to 0} \frac{\cos(2x) - \cos x}{x^2}$$

解答. 对分子进行泰勒展开得:

原式 =
$$\frac{1 - \frac{4}{2}x^2 - 1 + \frac{x^2}{2} + o(x^2)}{x^2}$$
$$= -\frac{3}{2}$$

题目 54 的注记. 本题看似可以存在两个形式相同的函数形式, 但是如果对其使用拉格朗日中值定理解析, 则 $\sin \varepsilon$, $\varepsilon \in (x, 2x)$, 此时 $\sin \varepsilon$ 的极限不可以通过夹逼准则得到, 因此不可以使用这种方法, 只可以使用泰勒展开.

1.4.8 七种未定式的计算

主要有以下类型
$$\frac{0}{0}, \frac{\infty}{\infty}, 0 \times \infty, \infty - \infty, \infty^0, 1^\infty$$

形如
$$\frac{0}{0}, \frac{\infty}{\infty}, 0 \times \infty$$

$$\frac{0}{0}, \frac{\infty}{\infty}, 0 \times \infty$$
 可以直接计算或者简单转换可以直接计算.

题目 55. 设函数
$$f(x) = \lim_{n\to\infty} \frac{x^2 + nx(1-x)\sin^2 \pi x}{1 + n\sin^2 \pi x}$$
, 则 $f(x) =$

解答. 分情况讨论, 当 $\sin^2 \pi x = 0$ 和 $\sin^2 \pi x \neq 0$ 时进行讨论.

原式 =
$$x^2$$

当 $\sin^2 \pi x \neq 0$ 时:

原式 =
$$\lim_{n \to \infty} \frac{\frac{x^2}{n} + x(1 - x)\sin^2 \pi x}{\frac{1}{n} + \sin^2 \pi x}$$
$$= \frac{x(1 - x)\sin^2 \pi x}{\sin^2 \pi x}$$
$$= x(1 - x)$$

综上 f(x) 表达式为:

$$f(x) = \begin{cases} x^2, & x = 0, \pm 1, \pm 2, \cdots \\ x(1-x), & x$$
取其他值.

题目 56. 求极限
$$\lim_{x\to -\infty} \frac{\sqrt{4x^2+x-1}+x+1}{\sqrt{x^2+\sin x}}$$

原式 =
$$\lim_{x \to -\infty} \frac{\sqrt{4 + \frac{1}{x} - \frac{1}{x^2}} - \frac{1}{x} - 1}{\sqrt{1 + \frac{\sin x}{x^2}}}$$

$$= \frac{2 - 1}{1}$$
= 1

题目 56 的注记. 这个题直接用抓大头会错, 因为后面还有一个同阶的 x, 然后还有就是下面是趋于 $-\infty$

形如 $\infty - \infty$

分式类型的 $\infty - \infty$, 直接通分:

题目 57.
$$\lim_{x\to 0} \left(\frac{1}{x^2} - \frac{1}{\sin^2 x}\right)$$

解答.

原式 =
$$\lim_{x \to 0} \frac{(\sin x + x)(x - \sin x)}{x^2 \times \sin^2 x}$$
$$= \frac{(x + x - \frac{x^3}{6})(x - x + \frac{x^3}{6})}{x^4}$$
$$= \frac{1}{3}$$

非分式的 $\infty - \infty$:

- 1. 通法:<mark>提最高阶无穷,构造无穷大乘以无穷小</mark>. 之后可以对后面的无穷小进行等价/泰勒,或者把无穷大乘以无穷小改造成无穷小比无穷小,或无穷大比无穷大,之后洛必达. 提最高阶无穷之前,能算的极限要先算出来.
- 2. 见到两个根式相减,可以考虑有理化. 但注意只能是平方根, 立方根就不适用了.
- 3. 看见函数形式相同, 可以考虑使用拉格朗日中值定理.

题目 58. 求极限
$$\lim_{x\to 0} \left(\frac{e^x + xe^x}{e^x - 1} - \frac{1}{x} \right)$$

原式 =
$$\lim_{x \to 0} \left(\frac{x(e^x + xe^x) - e^x + 1}{x(e^x - 1)} \right)$$

= $\lim_{x \to 0} \frac{xe^x + x^2e^x - e^x + 1}{x^2}$

$$= \lim_{x \to 0} \frac{e^x(x + x^2 - 1) + 1}{x^2}$$

$$= \lim_{x \to 0} \frac{3xe^x + x^2e^x}{2x}$$

$$= \lim_{x \to 0} \frac{3e^x + xe^x}{2}$$

$$= \frac{3}{2}$$

题目 58 的注记. 本题可能上去第一步就把 $e^x - 1$ 直接给替换, 但是不能这样写, 因为等价无穷小不可以进行 部分替代

题目 59. 求极限
$$\lim_{x\to+\infty}(\sqrt{x+\sqrt{x+\sqrt{x}}}-\sqrt{x})$$

解答.

原式 =
$$\lim_{x \to +\infty} \sqrt{x} \left(\sqrt{1 + \sqrt{\frac{1}{x} + \sqrt{\frac{1}{x\sqrt{x}}}}} - 1 \right)$$

= $\lim_{x \to +\infty} \sqrt{x} \times \frac{1}{2} \sqrt{\frac{1}{x} + \frac{1}{x\sqrt{x}}}$
= $\lim_{x \to +\infty} \frac{1}{2} \sqrt{1 + \frac{1}{\sqrt{x}}}$
= $\frac{1}{2}$

题目 59 的注记. 上述解法为通法, 即提最高阶无穷 \sqrt{x} . 除此之外, 还可以使用有理化进行通分:

原式 =
$$\lim_{x \to +\infty} \frac{\sqrt{x + \sqrt{x}}}{\sqrt{x + \sqrt{x + \sqrt{x}}} + \sqrt{x}}$$

$$= \lim_{x \to +\infty} \frac{\sqrt{1 + \frac{1}{\sqrt{x}}}}{\sqrt{1 + \sqrt{\frac{1}{x}} + \frac{1}{x\sqrt{x}}} + 1}$$

$$= \frac{1}{2}$$

 $^{^1}$ 此处不能把后面的极限算出来的原因是 $\frac{1}{x}$ 极限为不存在,因此如果拆分计算则违背了极限的运算法则

题目 60.
$$\lim_{x\to+\infty} x^{3/2} \left(\sqrt{1+x} + \sqrt{x-1} - 2\sqrt{x} \right)$$

解答.

原式 =
$$\lim_{x \to +\infty} x^2 (\sqrt{1 + \frac{1}{x}} + \sqrt{1 - \frac{1}{x}} - 2)$$

= $\left[1 + \frac{1}{2x} + \frac{\frac{1}{2}(\frac{1}{2} - 1)}{2!} \frac{1}{x^2} + 1 - \frac{1}{2x} + \frac{\frac{1}{2}(\frac{1}{2} - 1)}{2!} (-\frac{1}{x})^2 + 0(\frac{1}{x^2}) - 2\right]$
= $\lim_{x \to +\infty} x^2 \cdot \left[-\frac{1}{4} \frac{1}{x^2} + o(\frac{1}{x^2}) \right]$
= $\frac{1}{4}$

题目 60 的注记. 本题有一个错误的做法:

原式 =
$$x^{\frac{3}{2}} \cdot \sqrt{x}(\sqrt{\frac{1}{x}+1} + \sqrt{1-\frac{1}{x}} - 2)$$

= $x^2(1+1-2)$
= 0

此处不能把后面的极限算出来的原因与上题一样也是 $\frac{1}{x}$ 极限为不存在,因此如果拆分计算则违背了极限的运算法则

题目 61. 设
$$\lim_{n\to\infty}\frac{n^{2023}}{n^{\alpha}-(n-1)^{\alpha}}=\beta\neq 0$$
, 求 α 及 β

原式 =
$$\lim_{n \to \infty} \frac{n^{2023}}{n^{\alpha}(1 - (1 - \frac{1}{n})^{\alpha})}$$
= $\lim_{n \to \infty} \frac{n^{2023}}{-n^{\alpha}((1 - \frac{1}{n})^{\alpha} - 1)}$
= $\lim_{n \to \infty} \frac{n^{2023}}{\frac{a}{n}}$

综上可知: $\alpha = 2023, \beta = \frac{1}{2023}$

解答.

原式 =
$$\lim_{x \to +\infty} \left[\frac{x}{\left(1 + \frac{1}{x}\right)^x} - \frac{x}{e} \right]$$
= $\lim_{x \to +\infty} \frac{x \left[e - \left(1 + \frac{1}{x}\right)^x \right]}{e \left(1 + \frac{1}{x}\right)^x}$
= $\frac{1}{e^2} \lim_{x \to +\infty} \frac{e - \left(1 + \frac{1}{x}\right)^x}{\frac{1}{x}}$
= $\frac{-1}{e^2} \lim_{t \to 0^+} \frac{\left(1 + t\right)^{\frac{1}{t}} - e}{t}$
= $\frac{-1}{e^2} \lim_{t \to 0^+} \frac{e^{\frac{\ln(1+t)}{t}} - e}{t}$
= $-\frac{1}{e} \lim_{t \to 0^+} \frac{e^{\frac{\ln(1+t)-t}{t}} - 1}{t}$
= $-\frac{1}{e} \lim_{t \to 0^+} \frac{\ln(1+t) - t}{t^2}$
= $-\frac{1}{e} \lim_{t \to 0^+} \frac{-\frac{1}{2}t^2}{t^2} = \frac{1}{2e}$

形如 $\infty^0, 0^0$

 ∞^0 与 0^0 通常使用 $u^v = e^{v \ln u}$ 来计算

形如 1∞

 1^{∞} 通常使用 $\lim u^v = e^{\lim(u-1)v}$ 来计算 15 . 之后将 (u-1)v 摘出,然后使用替换法则或者泰勒公式进行求解

题目 63. 设 n 为正整数, 则
$$\lim_{x\to\infty} [\frac{x^n}{(x-1)(x-2)\cdots(x-n)}]^x$$

 $^{^{15}}$ 其实本质还是使用了幂指函数的性质进行计算,因为 $\lim u^v = e^{\lim v \ln(u)} = e^{\lim v \ln(1+u-1)} = e^{\lim v (u-1)}$

解答.

原式 =
$$\lim_{x \to \infty} \left[\frac{x^n}{(x-1)(x-2)\cdots(x-n)} \right]^x$$
= $\lim_{x \to \infty} \left(\frac{x}{x-1} \right)^x \left(\frac{x}{x-2} \right)^x \cdots \left(\frac{x}{x-n} \right)^x$
= $\lim_{x \to \infty} \left(\frac{x-1}{x} \right)^{-x} \left(\frac{x-2}{x} \right)^{-x} \cdots \left(\frac{x-n}{x} \right)^{-x}$
= $\lim_{x \to \infty} \left(1 - \frac{1}{x} \right)^{-x} \left(1 - \frac{2}{x} \right)^{-x} \cdots \left(1 - \frac{n}{x} \right)^{-x}$
= $\operatorname{e} \cdot \operatorname{e}^2 \cdots \operatorname{e}^n = \operatorname{e} \frac{n(n+1)}{2}$

题目 64. 已知曲线 y = f(x) 在点 (0,0) 处的切线过点 (1,2), 则 $\lim_{x\to 0} \left(\cos x + \int_0^x f(t) dt\right)^{\frac{1}{x^2}}$

解答. 已知 f(0) = 0, f'(0) = 2

原式 =
$$\lim_{x \to 0} e^{\frac{\ln\left(\cos x + \int_0^x f(t)dt\right)}{x^2}}$$

$$= \lim_{x \to 0} e^{\frac{\cos x - 1 + \int_0^x f(t)dt}{x^2}}$$

$$= \lim_{x \to 0} e^{\frac{\int_0^x f(t)dt}{x^2} - \frac{1}{2}}$$

$$= \lim_{x \to 0} e^{\frac{f(x)}{2x} - \frac{1}{2}}$$

$$= \lim_{x \to 0} e^{\frac{1}{2}}$$

题目 65. <u>求极限</u> $\lim_{x\to 0} \left(\frac{e^x + e^{2x} + e^{3x}}{3}\right)^{\frac{e}{x}}$.

原式 =
$$\lim_{x \to 0} e^{\frac{e}{x} \ln \frac{e^x + e^{2x} + e^{3x}}{3}}$$

$$=\lim_{x\to 0}e^{\frac{e}{x}(\frac{e^x+e^{2x}+e^{3x}}{3}-1)}$$

把分子摘出来:

$$\begin{split} \frac{e}{3}\lim_{x\to 0}(\frac{e^x+e^{2x}+e^{3x}}{x}-3) &= \frac{e}{3}\lim_{x\to 0}(\frac{e^x-1}{x}+\frac{e^{2x}-1}{x}+\frac{e^{3x}-1}{x})\\ &= \lim_{x\to 0}\frac{e^x-1}{x}+\lim_{x\to 0}\frac{e^{2x}-1}{x}+\lim_{x\to 0}\frac{e^{3x}-1}{x} \end{split}$$

综上原式为 $e^{\frac{\epsilon}{3}(1+2+3)}=e^{2e}$

题目 66. 求极限
$$\lim_{x\to\infty}\left(\frac{x^2}{(x-a)(x+b)}\right)^x$$

解答.

原式 =
$$e^{x \ln\left(\frac{x^2}{(x-a)(x-b)}\right)}$$

$$= e^{x\left(\frac{x^2}{(x-a)(x-b)^{-1}}\right)}$$

$$= e^{\frac{ax^2 - bx^2 + abx}{x^2 - ax + bx}}$$

$$= e^{\frac{2ax - 2bx + ab}{2x + b - a}}$$

$$= e^{a-b}$$

原式 =
$$\lim_{n \to \infty} \frac{e^{n^2 \ln(1 + \frac{1}{n})}}{e^n}$$

$$= \lim_{n \to \infty} e^{n^2 \ln(1 + \frac{1}{n}) - n}$$

$$= e^{\lim_{n \to \infty} -n^2 \left[\frac{1}{n} - \ln(1 + \frac{1}{n})\right]}$$

$$= e^{\lim_{n \to \infty} -n^2 \cdot \frac{1}{2} \left(\frac{1}{n}\right)^2}$$

$$= e^{-\frac{1}{2}}$$

题目 67 的注记. 本题易错点,一是直接把 $(1+\frac{1}{n})^n$ 直接替换成 e,二是在计算 $\frac{e^{n^2\ln(1+\frac{1}{n})}}{e^n}$ 时,替换成 $\frac{e^{n^2\frac{1}{n}}}{e^n}$,这两个错误的点都是在计算时进行了部分替代.

题目 68.
$$\underline{求极限} \mathrm{lim}_{x \rightarrow 0} \left(\frac{a_1^x + a_2^x + \cdots + a_n^x}{n} \right)^{\frac{n}{x}},$$
 其中 $a_i > 0, i = 1, 2, \cdots, n.$

解答. 已知 $\lim_{x\to 0} a_i^x = 1$, 则函数形式为 1^∞ 型

原式 =
$$\lim_{x \to 0} e^{\frac{n}{x}(\frac{a_1^x + a_2^x + a_3^x + \dots + a_n^x}{n} - 1)}$$

$$= e^{\left\{\lim_{x \to 0} \frac{a_1^x - 1}{x} + \lim_{x \to 0} \frac{a_2^x - 1}{x} + \dots + \lim_{x \to 0} \frac{a_n^x - 1}{x}\right\}}$$

$$= e^{\lim_{x \to 0} a_1^x \ln a_1 + a_2^x \ln a_2 + \dots + a_n^x \ln a_n}$$

$$= a_1 a_2 a_3 \dots a_n$$

题目 68 的注记. 本题需注意的是 $\lim_{x\to 0}a_i^x=1$,然后可以观察出该极限类型为 1^∞ 型,之后可以利用等价无穷小替换求的极限

1.5 数列极限的运算

1.5.1 n 项数列极限求解

n 项连加的数列极限

常用结论:

放缩技巧:

$$\begin{cases} n \times u_{\min} \leqslant u_1 + u_2 + \dots + u_n \leqslant n \times u_{\max}, \\ \\ \exists u_i \geqslant 0 \\ \exists i, 1 \times u_{\max} \leqslant u_1 + u_2 + \dots + u_n \leqslant n \times u_{\max}. \end{cases}$$

处理手法:

- 1. 优先看变化部分16的最大值是主体部分17的同量级或次量级
 - 次量级使用夹逼进行求解
 - 同量级使用定积分定义进行求解18
- 2. 放缩的通用手法是分子/分母取最大的或最小的, 即取两头

题目 69. 求极限
$$\lim_{n\to\infty} \left(\frac{n}{n^2+1} + \frac{n}{n^2+2} + \dots + \frac{n}{n^2+n} \right)$$

解答. 对原式进行放缩可得:

$$\frac{n^2}{n^2 + n} \leqslant \left(\frac{n}{n^2 + 1} + \frac{n}{n^2 + 2} + \dots + \frac{n}{n^2 + n}\right) \leqslant \frac{n^2}{n^2 + 1}$$

¹⁶分母中随项的变化而变化, 称其为变化部分

 $^{^{17}}$ 不随项的变化而变化,称其为主体部分 18 可爱因子 $\frac{1}{n}$,然后构造形如 $\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n-c} f(\frac{\varepsilon}{n}) = \int_0^1 f(x) dx$ 的表达式进行求解,其中 C 为任意常数, $\varepsilon \in [k-1,k]$.

对不等式两侧取极限可得:

$$\lim_{n\to\infty}\frac{n^2}{n^2+n}\leqslant \lim_{n\to\infty}\left(\frac{n}{n^2+1}+\frac{n}{n^2+2}+\cdots+\frac{n}{n^2+n}\right)\leqslant \lim_{n\to\infty}\frac{n^2}{n^2+1}$$

易知左右两侧不等式极限均为 1, 解得不等式极限为 1

题目 69 的注记. 对本题的分析: 主体部分与变化部分的最大值是次量级关系. 即 n^2 与 n 不是同一个变化量级. 那么就可以使用夹逼准则进行夹逼运算出最大值

题目 70. 求极限
$$\lim_{n\to\infty} \left(\frac{n}{n^2+1^2} + \frac{n}{n^2+2^2} + \dots + \frac{n}{n^2+n^2}\right)$$
.

解答.

原式 =
$$\lim_{n \to \infty} \frac{1}{n} \left(\frac{1}{1 + (\frac{1}{n})^2} + \frac{1}{1 + (\frac{2}{n})^2} + \dots + \frac{1}{1 + (\frac{n}{n})^2} \right)$$

= $\lim_{n \to \infty} \sum_{1}^{n} f(\frac{\varepsilon}{n}) \quad f(x)$ 函数表达式为 $\frac{1}{1 + x^2}$
= $\int_{0}^{1} \frac{1}{1 + x^2} dx = \frac{\pi}{4}$

题目 70 的注记. 主体部分与变化部分的最大值是同量级关系. 即 n^2 与 n^2 不是同一个变化量级. 那么就可以使用夹逼准则进行夹逼运算出最大值

题目 71. 求极限
$$\lim_{n\to\infty} \left(\frac{e}{e^n+1^2} + \frac{e^2}{e^n+2^2} + \dots + \frac{e^n}{e^n+n^2} \right)$$

解答.

$$\lim_{n \to \infty} \frac{\frac{e - e^{n+1}}{1 - e}}{e^n + n^2} \leqslant \lim_{n \to \infty} \left(\frac{e}{e^n + 1^2} + \frac{e^2}{e^n + 2^2} + \dots + \frac{e^n}{e^n + n^2} \right) \leqslant \lim_{n \to \infty} \frac{\frac{e - e^{n+1}}{1 - e}}{e^n + 1^2}$$

根据抓大头的思路可化为

$$\frac{-e}{1-e}\leqslant \lim_{n\to\infty}\left(\frac{e}{e^n+1^2}+\frac{e^2}{e^n+2^2}+\cdots+\frac{e^n}{e^n+n^2}\right)\leqslant \frac{-e}{1-e}$$

可知原式极限为 $\frac{-e}{1-e}$

解答.

$$\frac{\frac{n(n+1)(2n+1)}{6}}{\sqrt{n^6+n^2}} \leqslant \Big(\frac{1}{\sqrt{n^6+n}} + \frac{2^2}{\sqrt{n^6+2n}} + \dots + \frac{n^2}{\sqrt{n^6+n^2}}\Big) \leqslant \frac{\frac{n(n+1)(2n+1)}{6}}{\sqrt{n^6+n}}$$

取极限得:

$$\begin{split} &\lim_{n \to \infty} \frac{\frac{n(n+1)(2n+1)}{6}}{\sqrt{n^6 + n^2}} \leqslant \lim_{n \to \infty} \Bigl(\frac{1}{\sqrt{n^6 + n}} + \frac{2^2}{\sqrt{n^6 + 2n}} + \dots + \frac{n^2}{\sqrt{n^6 + n^2}}\Bigr) \leqslant \lim_{n \to \infty} \frac{\frac{n(n+1)(2n+1)}{6}}{\sqrt{n^6 + n}} \\ &\frac{2n^3 + 3n^2 + n}{\sqrt{n^6 + n^2}} \leqslant \lim_{n \to \infty} \Bigl(\frac{1}{\sqrt{n^6 + n}} + \frac{2^2}{\sqrt{n^6 + 2n}} + \dots + \frac{n^2}{\sqrt{n^6 + n^2}}\Bigr) \leqslant \frac{2n^3 + 3n^2 + n}{\sqrt{n^6 + n}} \end{split}$$

根据抓大头的思路可知原式极限为 $\frac{1}{2}$

题目 73. 求极限
$$\lim_{n\to\infty} \left(\frac{1}{\sqrt{n^2+1^2}} + \frac{1}{\sqrt{n^2+2^2}} + \dots + \frac{1}{\sqrt{n^2+n^2}} \right)$$

原式 =
$$\lim_{n \to \infty} \frac{1}{n} \left(\frac{1}{\sqrt{1 + (\frac{1}{n})^2}} + \frac{1}{\sqrt{1 + (\frac{2}{n})^2}} + \dots + \frac{1}{\sqrt{1 + (\frac{n}{n})^2}} \right)$$

= $\int_0^1 \frac{1}{\sqrt{1 + x^2}} dx$
= $\ln(x + \sqrt{1 + x^2})|_0^1$
= $\ln(1 + \sqrt{2})$

解答.

原式 =
$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \frac{k}{n} \ln \left(1 + \frac{k}{n} \right)$$

= $\int_{0}^{1} x \ln(1+x) dx$
= $\frac{1}{2} \int_{0}^{1} \ln(1+x) dx^{2}$
= $\frac{x^{2}}{2} \ln(1+x) \Big|_{0}^{1} - \frac{1}{2} \int_{0}^{1} \frac{x^{2}}{1+x} dx$
= $\frac{1}{4}$

解答. 首先对等式进行化简,使用夹逼准则可以得到:

$$\lim_{n\to\infty}\frac{\sum_1^k\sin\frac{k\pi}{n}}{n+1}\leqslant\lim_{n\to\infty}\left(\frac{\sin\frac{\pi}{n}}{n+1}+\frac{\sin\frac{2\pi}{n}}{n+\frac{1}{2}}+\cdots+\frac{\sin\frac{n\pi}{n}}{n+\frac{1}{n}}\right)\leqslant\lim_{n\to\infty}\frac{\sum_1^k\sin\frac{k\pi}{n}}{n+\frac{1}{n}}$$

等式左右两侧可等价为如下形式:

$$\lim_{n\to\infty}\frac{\sum_1^k\sin\frac{k\pi}{n}}{n}\leqslant\lim_{n\to\infty}\left(\frac{\sin\frac{\pi}{n}}{n+1}+\frac{\sin\frac{2\pi}{n}}{n+\frac{1}{2}}+\cdots+\frac{\sin\frac{n\pi}{n}}{n+\frac{1}{n}}\right)\leqslant\frac{\sum_1^k\sin\frac{k\pi}{n}}{n}$$

左右两侧使用定积分定义可得:

$$\int_0^1 \sin(\pi x) dx \leqslant \lim_{n \to \infty} \left(\frac{\sin \frac{\pi}{n}}{n+1} + \frac{\sin \frac{2\pi}{n}}{n+\frac{1}{2}} + \dots + \frac{\sin \frac{n\pi}{n}}{n+\frac{1}{n}} \right) \leqslant \int_0^1 \sin(\pi x) dx$$

其中 $\int_0^1 \sin(\pi x) dx = \frac{2}{\pi}$, 综上, 等式极限为 $\frac{2}{\pi}$

题目 75 的注记. 本题分析, 首先看到分母的变化部分的最大值与主体部分是次量级关系的, 那么如果想使用

夹逼进行计算,那么就会发现分子的大小无法计算,没有一个等差或者等比数列的公式可以计算出分子的各项和,因此应该最终应该使用定积分定义进行计算.

题目 76. 求极限
$$\lim_{n\to\infty} \left(\frac{n+1}{1^2+n^2} + \frac{n+\frac{1}{2}}{2^2+n^2} + \dots + \frac{n+\frac{1}{n}}{n^2+n^2} \right)$$

解答.
$$\diamondsuit$$
 $\lim_{n \to \infty} \left(\frac{n+1}{1^2+n^2} + \frac{n+\frac{1}{2}}{2^2+n^2} + \dots + \frac{n+\frac{1}{n}}{n^2+n^2} \right) = I$

$$\lim_{n \to \infty} (n + \frac{1}{n}) (\frac{1}{1 + n^2} + \frac{1}{2^2 + n^2} + \ldots + \frac{1}{n^2 + n^2}) \leqslant \lim_{n \to \infty} I \leqslant \lim_{n \to \infty} (n + 1) (\frac{1}{1 + n^2} + \frac{1}{2^2 + n^2} + \ldots + \frac{1}{n^2 + n^2})$$

$$\lim_{n\to\infty}\frac{1}{n^2}(n+\frac{1}{n})(\frac{1}{1+\frac{1^2}{n^2}}+\frac{1}{1+\frac{2^2}{n^2}}+\ldots+\frac{1}{1+\frac{n^2}{n^2}})\leqslant \lim_{n\to\infty}I\leqslant \lim_{n\to\infty}\frac{1}{n^2}(n+1)(\frac{1}{1+\frac{1}{n^2}}+\frac{1}{1+\frac{2^2}{n^2}}+\ldots+\frac{1}{1+\frac{n^2}{n^2}})$$

左右两侧等价得:

$$\lim_{n \to \infty} \frac{1}{n} (\frac{1}{1 + \frac{1^2}{n^2}} + \frac{1}{1 + \frac{2^2}{n^2}} + \ldots + \frac{1}{1 + \frac{n^2}{n^2}}) \leqslant \lim_{n \to \infty} I \leqslant \lim_{n \to \infty} \frac{1}{n} (\frac{1}{1 + \frac{1}{n^2}} + \frac{1}{1 + \frac{2^2}{n^2}} + \ldots + \frac{1}{1 + \frac{n^2}{n^2}})$$

使用定积分定义可得:

$$\int_{0}^{1} \frac{1}{1+x^{2}} dx \leqslant \lim_{n \to \infty} I \leqslant \int_{0}^{1} \frac{1}{1+x^{2}} dx$$

$$\int_0^1 \frac{1}{1+x^2} dx = \frac{\pi}{4}$$
, 综上, 等式极限为 $\frac{\pi}{4}$

题目 77. 已知
$$\frac{1}{n+1} < \ln(1+\frac{1}{n}) < \frac{1}{n}$$
,设 $a_n = 1 + \frac{1}{2} + \ldots + \frac{1}{n} - \ln n (n=1,2,\ldots)$,证明数列 $\{a_n\}$ 收敛

解答.
$$\Leftrightarrow a_{n+1} - a_n$$
 得 $(\frac{1}{n+1} - \ln(1 + \frac{1}{n})) < 0$

$$\begin{split} a_n &= 1 + \frac{1}{2} + \frac{1}{2} + \ldots + \frac{1}{n} - \ln n \\ &> \ln(1+1) + \ln(1+\frac{1}{2}) + \ldots + \ln(1+\frac{1}{n}) - \ln n \\ &= \ln(2 \times \frac{3}{2} \times \frac{4}{3} \times \ldots \times \frac{n+1}{n}) - \ln n \\ &= \ln(1+n) - \ln n > 0 \end{split}$$

综上所诉, 由于数列单调递减且有下界, 因此收敛

题目 77 的注记. 此题的方法为非常规的方法,需要考虑上下问,结合进行分析.

n 项连乘的数列极限

主要有以下两种方法:

- 1. 夹逼准则
- 2. 取对数化为 n 项和¹⁹

题目 78. 极限
$$\lim_{n\to\infty} \frac{\sqrt{1+\sqrt{2}+\cdots+\sqrt{n}}}{\sqrt{n(1+2+\cdots+n)}}$$

解答.

原式 =
$$\lim_{n \to \infty} \frac{\sqrt{1} + \sqrt{2} + \dots + \sqrt{n}}{\sqrt{\frac{n^2(n+1)}{2}}}$$

= $\sqrt{2} \lim_{n \to \infty} \sqrt{\frac{n}{n+1}} \cdot \frac{1}{n} \left(\sqrt{\frac{1}{n}} + \sqrt{\frac{2}{n}} + \dots + \sqrt{\frac{n}{n}} \right)$
= $\sqrt{2} \int_0^1 \sqrt{x} dx = \frac{2\sqrt{2}}{3}$

题目 79. 设
$$x_n = \left(1 + \frac{1}{n^2}\right) \left(1 + \frac{2}{n^2}\right) \cdots \left(1 + \frac{n}{n^2}\right)$$
,则 $\lim_{n \to \infty} x_n = \frac{1}{n^2}$

解答. 对原式取对数可知: $\ln x_n = \ln(1+\frac{1}{n^2}) + \ln(1+\frac{2}{n^2}) + \dots + \ln(1+\frac{n}{n^2})$ 当 x>0 时, $\frac{x}{1+x} < \ln(1+x) < x$, 则

$$\frac{k}{n^2 + n} \leqslant \frac{k}{n^2 + k} = \frac{\frac{k}{n^2}}{1 + \frac{k}{n^2}} < \ln\left(1 + \frac{k}{n^2}\right) < \frac{k}{n^2}$$

$$\lim_{n \to \infty} \sum_{k=1}^{n} \frac{k}{n^2} = \lim_{n \to \infty} \frac{\frac{1}{2}n(n+1)}{n^2} = \frac{1}{2}, \lim_{n \to \infty} \sum_{k=1}^{n} \frac{k}{n^2 + n} = \lim_{n \to \infty} \frac{\frac{1}{2}n(n+1)}{n^2 + n} = \frac{1}{2}$$

¹⁹通法

 $\text{for } \lim_{n\to\infty} \ln x_n = \frac{1}{2}, \lim_{n\to\infty} x_n = \mathrm{e}^{\frac{1}{2}}$

题目 80. 设函数 f(x) 在 [a,b] 上连续, $x_1,x_2,...,x_n$ 是 [a,b] 上的一个点列,求 $\lim_{n\to\infty} \sqrt[n]{\frac{1}{n}\sum_{k=1}^n e^{f(x_k)}}$

解答. f(x) 在 [a,b] 上连续,已知 $e^{f(x)}$ 在 [a,b] 上非负连续,且 $0 < m \leqslant e^{f(x)} \leqslant M$,其中 M,m 分别是 $e^{f(x)}$ 在 [a,b] 上的最大值和最小值,于是 $0 < m \leqslant \frac{1}{n} \sum_{k=1}^n e^{f(x)} \leqslant M$,故 $\sqrt[n]{m} \leqslant \sqrt[n]{\frac{1}{n} \sum_{k=1}^n e^{f(x_k)}} \leqslant \sqrt[n]{M}$,又 $\lim_{n \to \infty} \sqrt[n]{m} = \lim_{n \to \infty} \sqrt[n]{M} = 1^{20}$,根据夹逼准则,得 $\lim_{n \to \infty} \sqrt[n]{\frac{1}{n} \sum_{k=1}^n e^{f(x_k)}} = 1$

题目 81.
$$\underline{\vec{x}}a_n = \sqrt[n]{\frac{1}{2} \times \frac{3}{4} \times \cdots \times \frac{2n-1}{2n}},$$
 求极限 $\lim_{n \to \infty} a_n$

解答. 显然 $a_n \leq 1$, 又

$$a_n = \sqrt[n]{\frac{1}{2} \times \frac{3}{4} \times \dots \times \frac{2n-1}{2n}} = \sqrt[n]{\frac{3}{2} \times \frac{5}{4} \times \dots \times \frac{2n-1}{2n-2} \times \frac{1}{2n}} \geqslant \sqrt[n]{\frac{1}{2n}}$$

又

$$\lim_{n\to\infty} \sqrt[n]{\frac{1}{2n}} = \lim_{n\to\infty} \frac{1}{\sqrt[n]{2} \cdot \sqrt[n]{n}} = 1$$

则 $\lim_{n\to\infty} a_n = 1$

题目 81 的注记. 这题的方法不是常规方法,如果按照一般的处理方法,应该写为

$$\begin{split} \lim_{n \to \infty} \ln a_n &= \lim_{n \to \infty} \frac{1}{n} \ln (\frac{1}{2} \times \frac{3}{4} \times \ldots \times \frac{2n-1}{2n}) \\ &= \lim_{n \to \infty} \frac{1}{n} [\ln \frac{1}{2} + \ln \frac{3}{4} + \ldots + \ln \frac{2n-1}{2n}] \\ &= \lim_{n \to \infty} \frac{\ln \frac{1}{2}}{n} + \lim_{n \to \infty} \frac{\ln \frac{3}{4}}{n} + \ldots + \lim_{n \to \infty} \frac{\ln \frac{2n-1}{2n}}{n} \\ &= 0 + 0 + 0 + \ldots + 0 \\ &= 0 \end{split}$$

但是这显然是错误的, 无穷多个无穷小相加, 结果仍是未定式.

²⁰写成幂函数形式配合泰勒公式即可看出,来自此处数列的性质:1.1.1

题目 82.
$$\underline{\vec{x}}\lim_{n\to\infty}\frac{1}{n}\sqrt[n]{(n+1)(n+2)\cdots(n+n)}$$

$$\begin{split} \lim_{n \to \infty} \ln a_n &= \lim_{n \to \infty} \{ \ln \frac{1}{n} + \frac{1}{n} \ln[(n+1)(n+2) \cdots (n+n)] \} \\ &= \lim_{n \to \infty} \frac{1}{n} \ln[(n+1)(n+2) \cdots (n+n)] - \ln n \\ &= \lim_{n \to \infty} \frac{1}{n} [\ln(n+1) + \ln(n+2) + \dots + \ln(n+n) - n \ln n] \\ &= \lim_{n \to \infty} [\ln(1+\frac{1}{n}) + \ln(1+\frac{2}{n}) + \dots + \ln(1+\frac{n}{n})] \\ &= \int_0^1 \ln(1+x) dx \\ &= \int_0^1 \ln(1+x) d(x+1) \\ &= (x+1) \ln(1+x) |_0^1 - 1 \\ &= 2 \ln 2 - 1 \end{split}$$

综上
$$\lim_{n\to\infty} a_n = e^{2\ln 2 - 1} = \frac{4}{e}$$

题目 83. 证明 $\lim_{n\to\infty} \sqrt[n]{n!} \sim e^{-1} \times n$

$$\begin{split} a_n &= \frac{\sqrt[n]{n!}}{n} \Rightarrow \lim_{n \to \infty} \ln a_n = \lim_{n \to \infty} \frac{1}{n} \ln(n \times (n-1) \times \ldots \times 1) - \ln n \\ &= \lim_{n \to \infty} [\ln n + \ln(n-1) + \ldots + \ln 1 - n \ln n] \\ &= \lim_{n \to \infty} \frac{1}{n} [\ln \frac{n}{n} + \ln \frac{n-1}{n} + \ldots + \ln \frac{1}{n}] \\ &= \int_0^1 \ln x dx \\ &= x \ln x |_0^1 - 1 = -1 \end{split}$$

يَّةُ لَا
$$\lim_{n \to \infty} a_n = e^{-1} \Rightarrow \lim_{n \to \infty} \sqrt[n]{n!} \sim e^{-1} \cdot n$$

常用不等式 1.5.2

• 利用如下重要不等式

1. 设 a, b 为实数, 则 $|a+b| \le |a| + |b|$; |a| - |b| $| \le |a-b|$ ²¹

$$2. \ \sqrt{ab} \leqslant \frac{a+b}{2} \leqslant \sqrt{\frac{a^2+b^2}{2}} (a,b > 0)^{22}$$

3.
$$\sqrt[3]{abc} \leqslant \frac{a+b+c}{3} \leqslant \sqrt{\frac{a^2+b^2+c^2}{3}}(a,b,c>0)$$

6.
$$\sin x < x < \tan x \left(0 < x < \frac{\pi}{2} \right)$$

7.
$$\sin x < x(x > 0)$$

8.
$$\pm 0 < x < \frac{\pi}{4}$$
 $\exists x < \tan x < \frac{4}{\pi}$

9.
$$\stackrel{\text{def}}{=} 0 < x < \frac{\pi}{2} \text{ ft}, \sin x > \frac{2}{\pi}x$$

10. $\arctan x \leqslant x \leqslant \arcsin x (0 \leqslant x \leqslant 1)$

11.
$$e^x \ge x + 1(\forall x)^{24}$$

12.
$$x-1 \ge \ln x (x > 0)^{25}$$

13.
$$\frac{1}{1+x} < \ln(1+\frac{1}{x}) < \frac{1}{x}(x>0) \implies \frac{x}{1+x} < \ln(1+x) < x(x>0)^{26}$$

14. 在处理如下数列时,可以在前面加一个减项,如
$$(1+\frac{1}{2^2})(1+\frac{1}{2^{2^2}})...(1+\frac{1}{2^{2^n}})$$
,可化为 $(1-\frac{1}{4})(1+\frac{1}{2^2})(1+\frac{1}{2^{2^2}})...(1+\frac{1}{2^{2^n}})$,可化为 $(1-\frac{1}{4})(1+\frac{1}{2^2})(1+\frac{1}{2^{2^n}})...(1+\frac{1}{2^{2^n}})$

15. 关于重要数列
$$\left\{ \left(1 + \frac{1}{n}\right)^n \right\}$$
 的重要结论:

 $^{^{21}}$ 可以将上述式子推广为 n 个实数的情况: $|a_1\pm a_2\pm\cdots\pm a_n|\leqslant |a_1|+|a_2|+\cdots+|a_n|.$ 22 还有一个不等式是 $|ab|\leqslant \frac{a^2+b^2}{2}$

 $^{^{23}}$ 当 $n\pi < x < (n+1)\pi, 2n < S(x) < 2(n+1)$ 时, $\frac{2n}{(n+1)\pi} < \frac{S(x)}{x} < \frac{2(n+1)}{n\pi}$.

- 单调递增

$$-\lim_{n\to\infty} \left(1 + \frac{1}{n}\right)^n = e$$

1.5.3 递推关系式 $x_{n+1} = f(x_n)$ 数列极限

1. 单调有界 (先证明极限存在, 之后对 $x_{n+1} = f(x_n)$ 两端取极限)

定理 1.5.1: 数列的单调有界准则

单调有界数列必有极限, 即若数列 $\{x_n\}$ 单调增加 (减少) 且有上界 (下界), 则 $\lim_{n\to\infty}x_n$ 存在

证明数列单调性的方法:

(a)
$$x_{n+1} - x_n > 0$$
 或 $\frac{x_{n+1}}{x_n} > 1$ (同号)

(b) 利用数学归纳法

定义 1.5.1: 第一数学归纳法的定义

第一数学归纳法是证明当 n 等于任意一个自然数时某命题成立. 证明分下面两步:

- i. 证明: 当 n=1 时命题成立. a
- ii. 证明: 若假设在 n=m 时命题成立, 可推导出在 n=m+1 时命题成立.

这种方法的原理在于: 首先证明在某个起点值时命题成立, 然后证明从一个值到下一个值的过程有效. 当这两点都已经证明, 那么任意值都可以通过反复使用这个方法推导出来.

"选择数字 1 因其作为自然数中的最小值

- (c) 利用重要不等式
- (d) $x_n x_{n-1}$ 与 $x_{n-1} x_{n-2}$ 同号,则 x_n 单调
- (e) 利用结论: 对 $x_{n+1}=f(x_n)(n=1,2,\ldots),x_n\in$ 区间I
 - 若 $f'(x)>0, x\in$ 区间I,则数列 $\{x_n\}$ 单调,且 $= \begin{cases} \exists x_2>x_1 \text{时,数列}\,\{x_n\} \text{单调增加} \\ \\ \exists x_2< x_1 \text{时,数列}\,\{x_n\} \text{单调减少} \end{cases}$

证明. 若 f(x) 单调增加, 且 $x_1 < x_2$, 则数列单增的图像是这样的:

若 f(x) 单调增加,且 $x_1 > x_2$,则数列单增的图像是这样的

• 若 $f'(x) < 0,x \in$ 区间 I, 则数列 $\{x_n\}$ 不单调

证明. 若 f(x) 单调递减, 且 $x_1 < x_2$ 时, 则图像为

2. 利用压缩映射 (先斩后奏): 先令 $\lim_{n\to\infty} x_n = A$, 然后等式 $x_{n+1} = f(x_n)$ 两端取极限解得 A, 得到极限初步结果,最后再证明 $\lim_{n\to\infty} x_n = A$.核心是用 $x_n = f(x_{n-1})$ 证明一个递推不等式 $|x_n - a| \le A|x_{n-1} - a|$, 其中 0 < A < 1

题目 84. 设 $0 < x_1 < 3, x_{n+1} = \sqrt{x_n (3 - x_n)} (n = 1, 2, ...)$, 证明: 数列 x_n 极限存在并求此极限

解答. 由 $0 < x_1 < 3, x_{n+1} = \sqrt{x_n(3-x_n)}$ 可得:

$$x_{n+1} = \sqrt{x_n(3-x_n)} \leqslant \frac{3}{2}$$

可知数列 x_n 存在上界, 令 $x_{n+1} - x_n$ 可得:

$$\begin{split} x_{n+1} - x_n &= \sqrt{x_n(3 - x_n)} - x_n \\ &= \frac{x_n(3 - x_n) - x_n^2}{\sqrt{x_n(3 - x_n)} + x_n} \\ &= \frac{x_n(3 - 2x_n)}{\sqrt{x_n(3 - x_n)} + x_n} \geqslant 0 \end{split}$$

故 x_n 单调递增,根据数列单调有界定理,该数列极限存在,因此设 $\lim_{x_n}=a$,对等式 $x_{n+1}=\sqrt{x_n(3-x_n)}$ 左右两边取极限得: $a=\sqrt{a(3-a)}$. 解得 $a=\frac{3}{2}$ 综上,数列极限为 $\frac{3}{2}$

题目 84 的注记. 出现本题的形式 $x_{n+1} = \sqrt{x_n(3-x_n)}$ 可以使用常用不等式1.5.2, 对不等式放缩计算极限.

题目 85. 设
$$x_1 = \sqrt{6}, x_2 = \sqrt{6 + \sqrt{6}}, \dots, x_n = \sqrt{6 + \sqrt{6 + \sqrt{6 + \dots + \sqrt{6}}}}$$
, 求极限 $\lim_{n \to \infty} x_n$

解答. 由题意可知,讲数列的表达式可抽象为 $x_{n+1} = \sqrt{6+x_n}$,其函数表达式为 $f(x) = \sqrt{6+x}$,对其求导可得: $f'(x) = \frac{1}{2\sqrt{6+x}} > 0$,由于 $x_1 < x_2$ 因此数列单调递增. 又因为 $x_1 = \sqrt{6} < 3$,若 $x_n < 3$,则 $x_{n+1} = \sqrt{6+x_n} < 3$,从而 $x_n < 3$,即数列 x_n 有上界,则 $\lim_{n \to \infty} x_n$ 存在,设 $\lim_{n \to \infty} x_n = a$,由于 $0 < x_n < 3$,故由极限的保序性可得: $0 \le a \le 3.x_{n+1} = \sqrt{6+x_n}$,两侧取极限得: $a = \sqrt{6+a}$,解得 a = 3,综上数列极限为 $\lim_{n \to \infty} x_n = 3$

题目 85 的注记. 除此之外, 本题还可以使用压缩映射进行求解:

解答. 直接证明 $\lim_{n\to\infty} x_n = 3$, 由 $x_{n+1} = \sqrt{6+x_n}$ 知:

原式 =
$$|x_n - 3| = |\sqrt{6 + x_{n-1}} - 3|$$

对于此处的运算, 我们可以使用拉格朗日中值定理进行化简, 即

原式 =
$$|\sqrt{6+x_{n-1}}-3|$$

= $|\sqrt{6+x_{n-1}}-\sqrt{9}|$
= $\frac{1}{2\sqrt{\varepsilon}}|x_{n-1}-3|<\frac{1}{2}|x_{n-1}-3|<\frac{1}{2^2}|x_{n-2}-3|<\ldots<\frac{1}{2^{n-1}}|x_1-3|\to 0 \quad (n\to\infty)$

则 $\lim_{n\to\infty}x_n=3$

当然也可以使用有理化进行化简:

$$\text{ \mathbb{R}} \vec{\mathbb{X}} = \frac{|x_{n-1}-3|}{\sqrt{6+x_{n-1}}+3} < \frac{1}{3} \mid x_{n-1}-3 \mid < \frac{1}{3^2} \mid x_{n-2}-3 \mid < \cdots < \frac{1}{3^{n-1}} \mid x_1-3 \mid \to 0 \quad (n \to \infty)$$

综上

$$0\leqslant \lim_{n\to\infty}|x_n-3|\leqslant \lim_{n\to\infty}\frac{1}{3^{n-1}}|x_1-3|$$

使用夹逼准则可以得到 $\lim_{n\to\infty} x_n = 3$

题目 86. 设
$$x_1=2, x_{n+1}=2+\frac{1}{x_n}(n=1,2,...),$$
 求极限 $\lim_{n\to\infty}x_n$

解答. 令 $f(x) = 2 + \frac{1}{x}$, 则 $x_{n+1} = f(x_n)$, 显然 f(x) 在 $(0, +\infty)$ 上单调减,故 $\{x_n\}$ 不具有单调性,因此只能使用压缩映射.

令
$$\lim_{n \to \infty} x_n = a$$
,则 $\lim_{n \to \infty} x_{n+1} = 2 + \frac{1}{\lim_{n \to \infty} x_n} \Rightarrow a = 2 + \frac{1}{a}$,解得 $a = 1 \pm \sqrt{2}$. 由题设知 $x_n \geq 2$,故由极限的保号性知, $a \geq 2$,从而 $a = 1 \pm \sqrt{2}$,以下证明 $\lim_{n \to \infty} x_n = 1 + \sqrt{2}$
$$\mid x_n - a \mid = \left| \left(2 + \frac{1}{x_{n-1}} \right) - \left(2 + \frac{1}{a} \right) \right| = \left| \frac{x_{n-1} - a}{ax_{n-1}} \right| \leqslant \frac{|x_{n-1} - a|}{2a} \leqslant \frac{|x_{n-1} - a|}{2} \leqslant \frac{|x_{n-2} - a|}{2} \leqslant \cdots \leqslant \frac{|x_{n-1} - a|}{2^{n-1}} \to 0$$

题目 86 的注记. 需要切记的是在压缩映射中,极限值为根式时,要用极限时的等式对极限值进行替换,比如 在本题中在证明数列极限为 $1+\pm\sqrt{2}$ 中,应写为 $|x_n-a|$,而不是 $|x_n-1-\sqrt{2}|$

题目 87. 设 $x_1 = \sqrt{a}(a > 0), x_{n+1} = \sqrt{a + x_n}$, 证明: $\lim_{n \to \infty} x_n$ 存在, 并求其值.

本题有四种方法,下面依次给出求解:

解答. 法 1: 数学归纳法找上界: 数列形式可写为 $f(x) = \sqrt{a+x}$, 则 $f'(x) = \frac{1}{2\sqrt{a+x}} > 0$, 因此 f(x) 单增,

又 $x_1 = \sqrt{a}, x_2 = \sqrt{a + \sqrt{a}}, x_2 > x_1$, 因此 x_n 单增.

假设 $\lim_{n\to\infty} x_n = A = \frac{1+\sqrt{1+4a}}{2}$. 由第一数学归纳法可得:

验证 $x_1 = \sqrt{a} < \frac{1 + \sqrt{1 + 4a}}{2}$,即证:

$$2\sqrt{a} < 1 + \sqrt{1 + 4a}$$

$$4a < 2 + 4a + 2\sqrt{1 + 4a}$$

假设 $x_n < \frac{1+\sqrt{1+4a}}{2}$ 成立, 验证 $x_{n+1} < \frac{1+\sqrt{1+4a}}{2}$ 即证:

$$2\sqrt{a+x_n} < 1 + \sqrt{1+4a}$$

$$4a + 4x_n < 2 + 4a + 2\sqrt{1 + 4a}$$

$$4x_n<2+2\sqrt{1+4a}$$

即证: $x_n < \frac{1+\sqrt{1+4a}}{2}$,显然成立.

综上: $x_n<\frac{1+\sqrt{1+4a}}{2}$,且 x_n 单增,那么 $\lim_{n\to\infty}x_n$ 存在,令 $\lim_{n\to\infty}x_n=A$,则 $A=\sqrt{a+A}$,解得 $A=\frac{1+\sqrt{1+4a}}{2}$

综上 $\lim_{n\to\infty} x_n = \frac{1+\sqrt{1+4a}}{2}$

解答. 法 2: 对方法一进行化简 (最佳): 数列形式可写为 $f(x) = \sqrt{a+x}$, 则 $f'(x) = \frac{1}{2\sqrt{a+x}} > 0$, 因此 f(x)

单增, 又 $x_1=\sqrt{a}, x_2=\sqrt{a+\sqrt{a}}, x_2>x_1$, 因此 x_n 单增.

设 $A=\sqrt{a+A}$ 假设 $\lim_{n\to\infty}x_n=A=\frac{1+\sqrt{1+4a}}{2}$. 由第一数学归纳法可得:

验证 $x_1 < A$, 即证:

$$x_1=\sqrt{a}, A=\sqrt{a+A}$$

$$\sqrt{a} < \sqrt{a+A} \Rightarrow x_1 < A$$

假设 $x_n < A$ 成立, 验证 $x_{n+1} < A$ 即证:

$$x_{n+1} = \sqrt{x + x_n} < \sqrt{a + A} = A$$

即证: $x_n < A$, 显然成立.

综上: $x_n < A$, 且 x_n 单增, 那么 $\lim_{n \to \infty} x_n$ 存在, 令 $\lim_{n \to \infty} x_n = M$, 则 $M = \sqrt{a+M}$, 解得 $M = \frac{1+\sqrt{1+4a}}{2}$

解答. 法 3: 构造不等式进行放缩 27 易知 x_n ,单调递增,且 $x_n>0$ ⇒ $\begin{cases} x_{n+1}>x_n>...>x_1=\sqrt{a} \\ \frac{x_n}{x_{n+1}}<1 \end{cases}$

$$\begin{split} x_{n+1} &= \sqrt{a + x_n} \\ \Rightarrow x_{n+1}^2 &= a + x_n \\ \Rightarrow \frac{a}{x_{n+1}} + \frac{x_n}{x_{n+1}} \\ \Rightarrow x_{n+1} &< \frac{a}{x_{n+1}} + 1 \end{split}$$

 x_n 单增且有上界,因此 $\lim_{n\to\infty}x_n$ 存在.设 $\lim_{n\to\infty}x_n=A$,则 $A=\sqrt{a+A}$,解得 $A=\frac{1+\sqrt{1+4a}}{2}$ 综上 $\lim_{n\to\infty}x_n=\frac{1+\sqrt{1+4a}}{2}$

解答. 法 4: 压缩映射 + 有理化

$$\begin{split} |x_n - A| &= |\sqrt{a + x_{n+1}} - \sqrt{a + A}| \\ &= \frac{|x_{n-1} - A|}{\sqrt{a + x_{n-1}} + \sqrt{a + A}} \leqslant \frac{1}{2\sqrt{a}} |x_{n+1} - A| \end{split}$$

题目 88. 设数列 $\{x_n\}$ 满足 $: x_1 > 0, x_n e^{x_{n+1}} = e^{x_n} - 1 (n = 1, 2, \cdots)$. 证明 $\{x_n\}$ 收敛, 并求 $\lim_{n \to \infty} x_n$

解答.

$$x_{n+1}-x_n=\ln\biggl(\frac{\mathrm{e}^{x_n}-1}{x_n}\biggr)-x_n=\ln\biggl(\frac{\mathrm{e}^{x_n}-1}{x_n\mathrm{e}^{x_n}}\biggr).$$

令 $f(x) = e^x - 1 - xe^x$, 则 $f'(x) = -xe^x$. 当 x > 0 时, f(x) 在 $[0, +\infty)$ 上单调减少, 于是, f(x) < f(0) = 0. 从

²⁷其实不好放缩, 但是可以硬往条件上凑

而, 当 x > 0 时

$$\frac{e^x - 1}{xe^x} - 1 = \frac{e^x - 1 - xe^x}{xe^x} < 0$$

即 $\frac{e^x-1}{xe^x} < 1$ 又因为对所有的正整数 n,都有 $x_n > 0$,所以 $\ln\left(\frac{e^{x_n}-1}{x_ne^{x_n}}\right) < \ln 1 = 0$,即 $x_{n+1}-x_n < 0$. 因此,数列 $|x_n|$ 单调减少.

由单调有界准则可知,数列 $|x_n|$ 收敛. 由于对所有的正整数 n,都有 $x_n>0$,故 $\lim_{n\to\infty}x_n=a\geqslant 0$. 对 $x_n\mathrm{e}^{x_n+1}=\mathrm{e}^{x_n}-1$ 两端同时令 $n\to\infty$,可得 $a\mathrm{e}^n=\mathrm{e}^a-1$,由前面的结果可知,x=0 是 $f(x)=e^x-1-xe^x$ 在 $[0,+\infty)$ 上的唯一零点,因此,a=0,即 $\lim_{n\to\infty}x_n=0$.