# **Bundesliga Pythagorean Prediction\***

Estimating league-specific coefficients (2010/11-2023/24) and prospective PiT accuracy in 2024/25

John Zhang

October 13, 2025

We study a four-parameter Pythagorean points model for the German Bundesliga. Match-level CSVs are cleaned and standardized, season tables are constructed, and end-of-season (EoS) team totals are pooled across 2010/11–2023/24. We estimate league-specific coefficients (a, b, c, d) by minimizing mean absolute error (MAE) using a multi-start Nelder–Mead procedure. Generalization is evaluated with leave-one-season-out (LOSO) validation, summarizing accuracy by the median MAE and Pearson correlation between predicted and realized EoS points. Using the fitted coefficients, we generate "points-in-table" (PiT) forecasts for 2024/25 at 9, 18, and 27 rounds by combining realized points to date with Pythagorean-based projections for remaining fixtures. We report accuracy at each checkpoint, visualize predicted vs. actual points, and highlight the largest over- and under-performers. All code is reproducible from the project scripts, and intermediate/summary artifacts are written to the output/ directory.

#### Table of contents

| 1 | Introduction                              |
|---|-------------------------------------------|
|   | Methodology                               |
|   | 2.1 Model                                 |
|   | 2.2 Data and Measurement                  |
| 3 | Results                                   |
|   | 3.1 Fitted coefficients (2010/11–2023/24) |
|   | 3.1.1 In-sample diagnostics               |
|   | 3.1.2 Leave-one-season-out (LOSO)         |

 $<sup>^*</sup>$ Code and data:  $https://github.com/Clearsky21z/Bundesliga_Pythagorean_Prediction$ 

| 4 | Discu | ıssion |                                          | 7 |
|---|-------|--------|------------------------------------------|---|
|   |       | 3.2.2  | Biggest over/under at Round 27           | 7 |
|   |       | 3.2.1  | Visual comparisons (predicted vs actual) | 6 |
|   | 3.2   | Prospe | ective 2024/25 PiT                       | 5 |

#### 1 Introduction

Forecasting league tables from scoring profiles is a long-standing idea in sports analytics. This paper tailors a **four-parameter Pythagorean model** to the Bundesliga, fits the parameters on seasons **2010/11–2023/24**, and evaluates *prospective* accuracy on **2024/25** using "points-in-table" (PiT) projections at Round 9, 18, and 27.

We proceed as follows. Section (ref?)(sec-methods) formalizes the model and the reproducible pipeline used to clean raw CSVs, construct season tables, estimate coefficients, and perform validation. Section (ref?)(sec-results) reports fitted coefficients, in-sample diagnostics (Table Table 1), LOSO validation (Table Table 3), and prospective PiT performance for 2024/25 (Table Table 5; Figures Figure 1–Figure 3). Section (ref?)(sec-discussion) interprets the findings, limitations, and extensions. All artifacts are read from the output/ directory.

### 2 Methodology

#### 2.1 Model

For team–season observation i, with goals for  $GF_i$ , goals against  $GA_i$ , and matches played  $PLD_i$ , we use

$$\operatorname{frac}_i = \frac{GF_i^b}{GF_i^c + GA_i^d}, \qquad \widehat{PTS}_i = a \cdot \operatorname{frac}_i \cdot PLD_i.$$

Here a > 0 scales the expected fraction to the 3-points-per-win system, and b, c, d > 0 control curvature and the relative impact of scoring vs conceding.

**Estimation.** Let  $y_i$  be realized EoS points and  $\hat{y}_i(a,b,c,d)$  the model prediction. We choose (a,b,c,d) to minimize mean absolute error (MAE) across the pooled team–season set (2010/11–2023/24) using **Nelder–Mead** with multiple starts.

**Validation.** We perform **leave-one-season-out** (LOSO) validation: for each season s, refit on all other seasons and evaluate on s. We summarize performance by median MAE and median Pearson correlation r across held-out seasons.

#### 2.2 Data and Measurement

Raw match CSVs for each season (e.g., D1\_2018\_2019.csv) are cleaned to standardize columns, repair result codes from the recorded goals, and parse date/time. For each season we construct an EoS table (played, goals for/against, goal difference, points); these are also stacked into a pooled dataset used for estimation. Variables are all game-level primitives or simple teamlevel aggregates. The full pipeline lives in script/ and writes all analysis-ready artifacts to output/.

## 3 Results

## 3.1 Fitted coefficients (2010/11-2023/24)

The pooled Bundesliga coefficients are a=2.4177, b=1.2318, c=1.1785, d=1.2174 (see output/bundesliga\_coefs\_pooled.csv).

#### 3.1.1 In-sample diagnostics

• **MAE**: 2.98

• Correlation (r): 0.968

Table 1: In-sample metrics by season (2010/11–2023/24). Lower MAE and higher r are better.

Table 2: In-sample metrics by season (2010/11-2023/24).

| Season               | MAE  | r     |
|----------------------|------|-------|
| D1_2010_2011.csv     | 3.67 | 0.931 |
| D1_2011_2012.csv     | 2.98 | 0.976 |
| D1_2012_2013.csv     | 2.94 | 0.971 |
| D1_2013_2014.csv     | 3.58 | 0.969 |
| $D1\_2014\_2015.csv$ | 2.89 | 0.973 |
| D1_2015_2016.csv     | 1.64 | 0.992 |
| D1_2016_2017.csv     | 3.66 | 0.950 |
| D1_2017_2018.csv     | 2.95 | 0.971 |
| D1_2018_2019.csv     | 2.80 | 0.975 |
| $D1\_2019\_2020.csv$ | 2.62 | 0.977 |
| D1_2020_2021.csv     | 2.84 | 0.973 |
| D1_2021_2022.csv     | 2.94 | 0.966 |
| $D1\_2022\_2023.csv$ | 3.62 | 0.952 |
| D1_2023_2024.csv     | 2.61 | 0.986 |

### 3.1.2 Leave-one-season-out (LOSO)

Overall across held-out seasons:

Median MAE: 3.00
Median r: 0.972

Table 3: LOSO per-season holdout performance (train on all-but-one, test on the held-out season).

Table 4: LOSO per-season holdout performance.

| Season               | a        | b        | c        | d        | MAE  | r     |
|----------------------|----------|----------|----------|----------|------|-------|
| D1_2010_2011.csv     | 2.401115 | 1.227495 | 1.170509 | 1.212918 | 3.70 | 0.931 |
| $D1\_2011\_2012.csv$ | 2.490733 | 1.232563 | 1.186197 | 1.226450 | 3.00 | 0.975 |
| $D1\_2012\_2013.csv$ | 2.133682 | 1.162348 | 1.071932 | 1.120948 | 3.20 | 0.969 |
| $D1_2013_2014.csv$   | 2.225726 | 1.201309 | 1.126899 | 1.165948 | 3.72 | 0.968 |
| D1_2014_2015.csv     | 2.751209 | 1.240201 | 1.216807 | 1.260475 | 3.07 | 0.973 |
| D1_2015_2016.csv     | 2.286555 | 1.226001 | 1.157699 | 1.198718 | 1.69 | 0.992 |
| $D1\_2016\_2017.csv$ | 2.403808 | 1.227016 | 1.170236 | 1.212843 | 3.70 | 0.951 |
| D1_2017_2018.csv     | 2.402950 | 1.233615 | 1.178997 | 1.217211 | 2.95 | 0.971 |
| $D1\_2018\_2019.csv$ | 2.471014 | 1.226372 | 1.177819 | 1.218519 | 2.82 | 0.975 |
| D1_2019_2020.csv     | 2.175335 | 1.230578 | 1.151851 | 1.189216 | 2.68 | 0.976 |
| D1_2020_2021.csv     | 2.492685 | 1.274063 | 1.230646 | 1.263104 | 2.99 | 0.972 |
| $D1\_2021\_2022.csv$ | 2.487198 | 1.222908 | 1.175689 | 1.217528 | 2.99 | 0.966 |
| $D1_2022_2023.csv$   | 2.296429 | 1.254117 | 1.190680 | 1.222013 | 3.70 | 0.951 |
| D1_2023_2024.csv     | 2.403005 | 1.233461 | 1.178837 | 1.217079 | 2.62 | 0.986 |

## 3.2 Prospective 2024/25 PiT

PiT projects the final table using realized points to date plus Pythagorean projections for remaining fixtures under the fitted coefficients.

Table 5: Bundesliga 2024/25 PiT summary after 9, 18, and 27 rounds.

Table 6: Bundesliga 2024/25 PiT summary after 9, 18, and 27 rounds.

| Rounds | r     | MAE  |
|--------|-------|------|
| 9      | 0.833 | 6.91 |
| 18     | 0.942 | 4.13 |
| 27     | 0.960 | 3.32 |

## 3.2.1 Visual comparisons (predicted vs actual)



Figure 1: Predicted vs actual EoS points using PiT after Round 9 (2024/25).



Figure 2: Predicted vs actual EoS points using PiT after Round 18 (2024/25).



Figure 3: Predicted vs actual EoS points using PiT after Round 27 (2024/25).

#### 3.2.2 Biggest over/under at Round 27

Table 7: Top-5 absolute deviations between predicted total (after Round 27) and final EoS points, 2024/25.

| Table 8: | Top-5 | absolute | deviations | at | Round | 27. |
|----------|-------|----------|------------|----|-------|-----|
|----------|-------|----------|------------|----|-------|-----|

| Team          | Predicted_Total | Actual_PTS | Error | Abs_Error | Direction                               |
|---------------|-----------------|------------|-------|-----------|-----------------------------------------|
| Dortmund      | 48.5            | 57         | -8.5  | 8.5       | Under (pred <actual)< td=""></actual)<> |
| M'gladbach    | 53.2            | 45         | 8.2   | 8.2       | Over (pred>actual)                      |
| Werder Bremen | 44.3            | 51         | -6.7  | 6.7       | Under (pred <actual)< td=""></actual)<> |
| Wolfsburg     | 48.8            | 43         | 5.8   | 5.8       | Over (pred>actual)                      |
| Mainz         | 56.9            | 52         | 4.9   | 4.9       | Over (pred>actual)                      |

# 4 Discussion

**Interpretation.** The exponents b, c, d govern curvature and the asymmetric impact of scoring vs conceding; a maps expected fractions to points. The fitted values track Bundesliga totals closely across the modern era.

**Generalization.** LOSO medians (MAE 3.00, r 0.972) indicate stable transportability within 2010/11-2023/24.

**Prospective accuracy.** On 2024/25, error shrinks with more rounds observed (Table 5; Figures Figure 1–Figure 3). By Round 27, correlation is \$0.96 with MAE \$3.3 points—useful for table-level forecasting.

**Limitations & extensions.** PiT assumes future match expectation depends only on current GF/GA, not schedule strength, injuries, or tactical change. Extensions include opponent-adjusted projections, hierarchical priors, alternative robust losses, and uncertainty bands.