KW_VIP 과제3

2017741009 로봇학부 장우현

*과제 목표

Assignment3와 같은 데이터셋인 개미와 벌의 학습을 Pretrained된 resnet18 Strategy1 & 3 방법으로 학습시키고, 결과를 Assignment3에서 만든 나만의 네트워 크와 비교해보자

*구현 방법

데이터셋을 로드하는 파트와 트레이닝 함수 파트는 나만의 네트워크와 동일하다.

```
model_conv = torchvision.models.resnet18(pretrained=True)

model_conv = model_conv.to(device)

criterion = nn.CrossEntropyLoss()

optimizer_conv = optim.SGD(model_conv.parameters(), lr=0.001, momentum=0.9)

exp_lr_scheduler = lr_scheduler.StepLR(optimizer_conv, step_size=7, gamma=0.1)

model_conv = train_model(model_conv, criterion, optimizer_conv, exp_lr_scheduler, num_epochs=20)
```

Strategy 1을 먼저 살펴보면, model_conv라는 이름으로 pretrained된 resnet18을 불러와서 conv파트와 classifiar파트 모두 training 시킬 것 이므로, 어느 부분도 freeze 하지 않고 그대로 최적화를 진행, 바로 training 함수에 대입하여 학습시킨다.

```
model_conv = models.resnet18(pretrained=True)

for param in model_conv.parameters():
    param.requires_grad = False

fc_input = 32*4*4
model_conv.fc = nn.Linear(fc_input, 2)

model_conv =model_conv.to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model_conv.fc.parameters(), lr=0.01 ,momentum=0.9)
exp_lr_schelduler = lr_scheduler.StepLR(optimizer, step_size=7, gamma=0.1)

model_conv = train_model(model_conv, criterion, optimizer, exp_lr_schelduler, num_epochs=20)
```

위의 코드는 strategy 3인데, 여기서 strategy 1과 다른 점은, strategy 3은 conv파트는 다시 학습시키지 않게 하기위해서 해당 부분을 for문을 통하여 freeze한다는 것 이다. 그리고 model_conv.fc에 resnet18의 classifiar를 따로 불러와서, freeze를 안한 파트인 fc만 최적화를하고 이를 training 함수에 대입하여 학습시킨다.

*과제 결과

-Strategy 1

Epoch 0/19

train Loss: 1.5893 Acc: 0.6680 val Loss: 0.6602 Acc: 0.8235

Epoch 1/19

train Loss: 0.8338 Acc: 0.6844 val Loss: 0.6952 Acc: 0.7908

Epoch 2/19

train Loss: 0.9124 Acc: 0.7090 val Loss: 0.4957 Acc: 0.8497

Epoch 3/19

train Loss: 0.7938 Acc: 0.7008 val Loss: 0.5382 Acc: 0.7908

Epoch 4/19

train Loss: 0.3972 Acc: 0.8361 val Loss: 0.4019 Acc: 0.8562

Epoch 5/19

train Loss: 0.4209 Acc: 0.8197 val Loss: 0.4542 Acc: 0.8562

Epoch 6/19

train Loss: 0.4960 Acc: 0.7910 val Loss: 0.3941 Acc: 0.8824

Epoch 7/19

train Loss: 0.3959 Acc: 0.8320 val Loss: 0.3423 Acc: 0.8954

Epoch 8/19

train Loss: 0.3827 Acc: 0.8607 val Loss: 0.2885 Acc: 0.9020

Epoch 9/19

train Loss: 0.3072 Acc: 0.8811 val Loss: 0.2788 Acc: 0.9150

Epoch 10/19

train Loss: 0.3846 Acc: 0.8443 val Loss: 0.2709 Acc: 0.9216

Epoch 11/19

train Loss: 0.3277 Acc: 0.8607 val Loss: 0.3000 Acc: 0.9085

Epoch 12/19

train Loss: 0.3764 Acc: 0.8443 val Loss: 0.2824 Acc: 0.9085

Epoch 13/19

train Loss: 0.3877 Acc: 0.8361 val Loss: 0.2581 Acc: 0.9150

Epoch 14/19

train Loss: 0.1919 Acc: 0.9221 val Loss: 0.2699 Acc: 0.9085

Epoch 15/19

train Loss: 0.2546 Acc: 0.8852

val Loss: 0.2760 Acc: 0.9150

Epoch 16/19

train Loss: 0.2200 Acc: 0.9139

val Loss: 0.3110 Acc: 0.8824

Epoch 17/19

train Loss: 0.2235 Acc: 0.9016

val Loss: 0.2692 Acc: 0.9216

Epoch 18/19

train Loss: 0.2239 Acc: 0.8975

val Loss: 0.2664 Acc: 0.9216

Epoch 19/19

train Loss: 0.3493 Acc: 0.8525

val Loss: 0.2697 Acc: 0.9216

Training complete in 10m 18s

Best val Acc: 0.921569

-Strategy 3

Epoch 0/19

train Loss: 1.3404 Acc: 0.7090

val Loss: 1.3450 Acc: 0.7843

Epoch 1/19

train Loss: 3.9455 Acc: 0.6803

val Loss: 0.8960 Acc: 0.9150

Epoch 2/19

train Loss: 3.0158 Acc: 0.7459

val Loss: 0.8757 Acc: 0.9412

Epoch 3/19

train Loss: 2.1782 Acc: 0.8074

val Loss: 1.8963 Acc: 0.8693

Epoch 4/19

train Loss: 3.2030 Acc: 0.7951

val Loss: 2.7817 Acc: 0.7843

Epoch 5/19

train Loss: 6.7757 Acc: 0.6721

val Loss: 2.4163 Acc: 0.8693

Epoch 6/19

train Loss: 3.6134 Acc: 0.7828

val Loss: 1.4556 Acc: 0.9346

Epoch 7/19

train Loss: 2.1886 Acc: 0.7951

val Loss: 1.3045 Acc: 0.9412

Epoch 8/19

train Loss: 1.9702 Acc: 0.8361

val Loss: 1.2606 Acc: 0.9412

Epoch 9/19

train Loss: 2.1540 Acc: 0.7992

val Loss: 1.3703 Acc: 0.9281

Epoch 10/19

train Loss: 1.9083 Acc: 0.8525

val Loss: 1.6289 Acc: 0.8954

Epoch 11/19

train Loss: 1.7673 Acc: 0.8279

val Loss: 1.5629 Acc: 0.8889

Epoch 12/19

train Loss: 1.6134 Acc: 0.8770 val Loss: 1.3732 Acc: 0.9216

Epoch 13/19

train Loss: 2.2306 Acc: 0.8361 val Loss: 1.5314 Acc: 0.9150

Epoch 14/19

train Loss: 1.2033 Acc: 0.9057 val Loss: 1.5464 Acc: 0.9085

Epoch 15/19

train Loss: 2.2308 Acc: 0.8320 val Loss: 1.2503 Acc: 0.9346

Epoch 16/19

train Loss: 1.5247 Acc: 0.8648 val Loss: 1.1432 Acc: 0.9412

Epoch 17/19

train Loss: 1.4838 Acc: 0.8238 val Loss: 1.2564 Acc: 0.9346

Epoch 18/19

train Loss: 2.1759 Acc: 0.8484 val Loss: 1.3674 Acc: 0.9216

Epoch 19/19

train Loss: 2.0671 Acc: 0.8197 val Loss: 1.2074 Acc: 0.9346

Training complete in 5m 1s Best val Acc: 0.941176

- 결과 비교표

Epoch	본인 네트워크		Strategy 1		Strategy 3	
	Val loss	Acc	Val loss	Acc	Val loss	Acc
1	0.6618	0.5882	0.6602	0.8235	1.3450	0.7843
2	0.7695	0.5425	0.6952	0.7908	0.8960	0.9150
3	0.6396	0.6340	0.4957	0.8497	0.8757	0.9412
4	0.6475	0.6078	0.5382	0.7908	1.8963	0.8693
5	0.6485	0.6144	0.4019	0.8562	2.7817	0.7843
6	0.7338	0.5359	0.4542	0.8562	2.4163	0.8693
7	0.6579	0.6013	0.3941	0.8824	1.4556	0.9346
8	0.6553	0.6144	0.3423	0.8954	1.3045	0.9412
9	0.6497	0.6144	0.2885	0.9020	1.2606	0.9412
10	0.6472	0.6209	0.2788	0.9150	1.3703	0.9281
11	0.6472	0.6275	0.2709	0.9216	1.6289	0.8954
12	0.6440	0.6275	0.3000	0.9085	1.5629	0.8889
13	0.6417	0.6275	0.2824	0.9085	1.3732	0.9216
14	0.6442	0.6275	0.2581	0.9150	1.5314	0.9150
15	0.6442	0.6275	0.2699	0.9085	1.5464	0.9085
16	0.6443	0.6275	0.2760	0.9150	1.2503	0.9346
17	0.6445	0.6275	0.3110	0.8824	1.1432	0.9412
18	0.6443	0.6275	0.2692	0.9216	1.2564	0.9346
19	0.6444	0.6275	0.2664	0.9216	1.3674	0.9216
20	0.6443	0.6275	0.2697	0.9216	1.2074	0.9346