プロジェクト研究A VerilogとDE10-nanoを用いた CPU制作

1W192324

藤田 智也

目次

- □研究背景と研究目的
- □中間報告までに行ったこと
- □制作したCPUについて
- ■動作確認について
- □工夫・苦労した点
- □まとめ
- □参考文献

研究背景と研究目的

□研究背景

- ■個人でデスクトップPCを組み立てた際に、 CPU内部がどのようになっているか興味がわ いた
- ■授業での実習を通して、CPUの構造を学んだ ため、制作してみたいと考えた

□研究目的

■実際にCPUを制作することで、CPUの内部構造について理解を深める

3

中間報告までに行ったこと

- □環境構築
 - QuartusのUbuntuへのインストール
 - ■シリアル通信に用いるminicomの導入
- ■Verilog-HDLの書き方の習得
- □DE-10nanoの使い方の習得
 - LEDを光らせる回路の作成
- Laboratory Exercise
 - ■SRラッチ、Dラッチ、Dフリップフロップの作成
 - 全加算器の作成

制作した単一サイクルCPU

- □実装した命令
 - 加減算やシフト演算などの単一サイクル 算術命令
 - 4つの分岐命令
 - ロード・ストア命令
- □作成したモジュール
 - 8本の16bitレジスタ
 - ALU
 - プログラムカウンタ
 - 命令メモリ、データメモリ
 - 各モジュールをつなぐデータパス
 - トップレベルモジュールなど周辺回路

動作確認

- ■動作確認環境
 - FPGA: DE10-nano
 - 周波数: 50MHz
- □動作確認方法
 - メモリ上に保存された データを、 スライドスイッチと LEDを用いて表示
 - FPGA上にある8つの LEDに加えて、ピンから8つのLEDにつなげ、 動作確認を行った

工夫した点

- □ブロック図を用いた制作物の整理
 - ■ブロック図を書くことで、必要なモジュールや制作物の配線などが整理でき、具体的な方針が立てやすかった
- ■Moduleごとの動作確認
 - ■全体での動作確認時に、各moduleに不具合があった場合、修正が難しくなる
 - Moduleごとに動作確認を行うことで、全体での動作確認時に不具合が発生した場合でも、 修正しやすくなった

苦労した点

- □ハードウェア記述言語の仕様の理解
- □作成したmodule全体の動作確認での 動作しない原因の分析
- □実機上での動作確認時、光らないはずの LEDが暗く光ってしまう原因の究明

ハードウェア記述言語の仕様の理解

- ■wireやregの使い分け
- □ハードウェア記述言語の同時実行仕様
 - C/C++などの手続き型言語と異なり、複数の 行が並列に同時実行される
 - ■手続き型言語のように考えてしまうと、意図 しない動きになってしまう

作成したmodule全体の動作確認での 動作しない原因の分析

- □初めて全体での動作確認をmodel simにより行った際には、ほとんどの出力が不定やハイインピーダンスなどであった
- □1つ1つ修正し、動作するものを完成させた。 修正箇所については、以下のような箇所であった
 - プログラムカウンタが不定になっていたため、プログラムカウンタを0で初期化した
 - UnClockプロセスをClockプロセスに修正した
 - レジスタ宣言時に、 "reg [15:0]rgstr[2:0]" と宣言しており、8個ではなく3個しか宣言できていなかったため、8個に修正した

実機上での動作確認時、光らないはずの LEDが暗く光ってしまう原因の究明

- □○ has unsafe befavior という Warning について修正したところ、LED が正しく出力された
 - ALUの出力である、outを決めるcase文の default文が記述されていなかった
 - →default文を追加した
 - RAMや動作確認用メモリで、Unclockプロセスを用いていた

11

→Clockプロセスに修正した

まとめ

- 16bitCPUを制作し、FPGAやLEDを用いて動作確認した
- □工夫したこと
 - ブロック図の作成を行い、制作物について整理した
 - moduleごとに動作確認し、全体の動作確認での修正の負担を軽減した
- □制作したCPUの今後の展望
 - 32bit化
 - 実装命令を増やす
 - マルチサイクル命令の実装
 - パイプライン化

参考文献

□渡波 郁,CPUの創りかた,マイナビ出版,2003

□コンピュータアーキテクチャA, 実習用簡易CPU,RISC-V

詳しい報告内容 (以下レポートです)

- □制作したCPUの仕様
- □各種モジュールの説明
- □実機での動作確認

制作したCPUの仕様

- □実装した命令
- ロエンコード方法について
- □命令列の割り当てについて

実装した命令(R命令)

命令	演算内容
add	rs0 = rs1 + rs2
sub	rs0 = rs1 - rs2
xor	rs0 = rs1 ^ rs2
or	rs0 = rs1 or rs2
and	rs0 = rs1 & rs2
sll	rs0 = rs1 << rs2
srl	rs0 = rs1 >> rs2
slt	rs0 = (rs1 < rs2) ? 1:0

実装した命令(I命令)

命令	演算内容
addi	rs0 = rs1 + imm
xori	$rs0 = rs1 ^ imm$
ori	rs0=rs1 or imm
andi	rs0 = rs1 & imm

実装した命令(B命令)

命令	演算内容
beq	if(rs1 == rs2) PC = imm
bneq	if(rs1 != rs2) PC = imm
bl	if(rs1 < rs2) PC = imm
ble	$if(rs1 \le rs2) PC = imm$

実装した命令(L命令)

命令	演算内容
lw	rs0 = M[rs1 + imm]
SW	M[rs1 + imm] = rs2

エンコード方法について

□ R命令

15 14	13 11	108	7 5	4 2	1 0
0 0	rs2	rs1	rs0	fct	ор

□ I命令

15 11	108	7 5	4 2	1 0
Imm	rs1	rs0	fct	ор

□ B命令

15 14	13 11	108	7 5	4 2	10
Imm	rs2	rs1	Imm	fct	ор

□ L命令

15 11	108	7 5	4 2	1 0
Imm	rs1	rs0/rs2(sw命令)	fct	ор

□OP

OPコードを以下のように割り当てた

命令タイプ	ор
R	00
I	01
В	10
L	11

fct

fctを以下のように各命令ごとに割り当てた

■R命令

命令タイプ	fct
add	000
sub	001
xor	010
or	011
and	100
sll	101
srl	110
slt	111

■I命令

命令	fct
addi	000
xori	001
ori	010
andi	011

■L命令

命令	fct
lw	000
SW	001

■B命令

命令	fct
beq	000
bneq	001
bl	010
ble	011

各種moduleの説明

- □制作したmodule
 - ■レジスタ
 - alu
 - ■プログラムカウンタ
 - ■デコーダ
 - ■データパス
 - CPUモジュール
 - ■メモリ
 - ■トップレベルモジュール

レジスタ

□register

CPUの演算結果を一時的に保存しておく モジュールである。

今回制作したCPUには8つのレジスタを搭載した。

x0レジスタが呼び出されたときは、必ず0を 渡す仕様になっている。

alu

□alu

CPUの演算を行うモジュールである。 レジスタ1、レジスタ2、aluctlの入力から、 結果であるoutとB命令の真偽を出力する、 btakenを出力する。

プログラムカウンタ

□рс

取り出す機械語命令列の、 命令メモリの番地の管理をする。

B命令の出力が真であれば、 入力された即値の番地へ、 そうでなければ前のプログラムカウンタの 値に1を足す。

デコーダ

□decoder

機械語命令列を受け取り、 他のmoduleに適切な入力となるよう、 デコードし出力する。

データパス

datapath

CPU内のモジュールが正しく動作するよう、 wireなどでデータの受け渡しをする モジュールである。

CPUモジュール

□T16

CPUの各モジュールの中で、最も上にある モジュールである。

トップレベルモジュールと、データパスや プログラムカウンタをつないでいる。

メモリ

□ instmem

機械語命令列を格納しておくメモリモジュールである。 命令列はここから参照される。

datamem

演算結果のデータを格納しておく メモリモジュールである。

データはこのモジュールに保存され、このモジュールから読みだされる。

トップレベルモジュール

□ mycpu.v

クロックと動作確認用のスイッチ、LEDを入出力に持つ、トップレベルモジュールである。

メモリとCPUとのデータのやり取りや、クロック入力などの管理を行う。

動作確認用のデータメモリのコピーがとられる 仕様になっている。

ソースコード

ロソースコードのリンク

https://drive.google.com/drive/folders/ 1epcARoRbP0xg9vLlMI3Li7SBg9S98Lex ?usp=sharing

PIN割り当て

□ピンを以下のように割り当てた

All Pins										
Named: [* ▼	Edit: ✓	LED[8]								
Node Name	Direction	Location	I/O Bank	VREF Group	Fitter Location	I/O Standard	Reserved	Current Strength	Slew Rate	D
ut LED[15]	Output	PIN_AH14	4A	B4A_N0	PIN_AH14	2.5 V		12mA (default)	1 (default)	
out LED[14]	Output	PIN_AF7	3B	B3B_N0	PIN_AF7	2.5 V		12mA (default)	1 (default)	
out LED[13]	Output	PIN_AH13	4A	B4A_N0	PIN_AH13	2.5 V		12mA (default)	1 (default)	
out LED[12]	Output	PIN_D8	8A	B8A_N0	PIN_D8	2.5 V		12mA (default)	1 (default)	
out LED[11]	Output	PIN_D11	8A	B8A_N0	PIN_D11	2.5 V		12mA (default)	1 (default)	
out LED[10]	Output	PIN_W12	3B	B3B_N0	PIN_W12	2.5 V		12mA (default)	1 (default)	
out LED[9]	Output	PIN_E8	8A	B8A_N0	PIN_E8	2.5 V		12mA (default)	1 (default)	
ut LED[8]	Output	PIN_V12	3B	B3B_N0	PIN_V12	2.5 V		12mA (default)	1 (default)	
out LED[7]	Output	PIN_AA23	5A	B5A_N0	PIN_AA23	2.5 V		12mA (default)	1 (default)	
out LED[6]	Output	PIN_Y16	5A	B5A_N0	PIN_Y16	2.5 V		12mA (default)	1 (default)	
out LED[5]	Output	PIN_AE26	5A	B5A_N0	PIN_AE26	2.5 V		12mA (default)	1 (default)	
out LED[4]	Output	PIN_AF26	5A	B5A_N0	PIN_AF26	2.5 V		12mA (default)	1 (default)	
out LED[3]	Output	PIN_V15	5A	B5A_N0	PIN_V15	2.5 V		12mA (default)	1 (default)	
out LED[2]	Output	PIN_V16	5A	B5A_N0	PIN_V16	2.5 V		12mA (default)	1 (default)	
ut LED[1]	Output	PIN_AA24	5A	B5A_N0	PIN_AA24	2.5 V		12mA (default)	1 (default)	
out LED[0]	Output	PIN_W15	5A	B5A_N0	PIN_W15	2.5 V		12mA (default)	1 (default)	
in_ clk	Input	PIN_V11	3B	B3B_N0	PIN_V11	2.5 V		12mA (default)		
sw[3]	Input	PIN_W20	5B	B5B_N0	PIN_W20	2.5 V		12mA (default)		
sw[2]	Input	PIN_W21	5B	B5B_N0	PIN_W21	2.5 V		12mA (default)		
in_ sw[1]	Input	PIN_W24	5B	B5B_N0	PIN_W24	2.5 V		12mA (default)		
in_ sw[0]	Input	PIN_Y24	5B	B5B_N0	PIN_Y24	2.5 V		12mA (default)		
< <new node="">></new>										

Model Simによる動作確認

- □実機での動作確認をする前に、 Model Simによる動作確認を行った。
- ■Model Simで確認できる部分で、 正しく動作していないと思われる部分は 修正した。

実機での動作確認

- □16bitCPUの動作確認を行った。
- □DE10-nanoでは、LEDの数が8個と足り ないため、LED8個とブレッドボードを用 いて、動作確認した。

動作確認1のテストコード

□テストコード1

addi x1 x0 1 addi x2 x0 2 add x3 x1 x2 sub x3 x1 x2 xor x3 x1 x2 or x3 x1 x2 and x3 x1 x2 sll x3 x1 x2 sll x3 x1 x2 slt x3 x1 x2 slt x3 x1 x2 xori x4 x1 1 ori x4 x1 1 sw x3 x0 2

andi x5 x1 1 addi x1 x1 1 beq x1 x2 13 sw x1 x0 1 lw x6 x0 1 addi x3 x6 1 addi x2 x2 1 bne x2 x3 18 addi x3 x0 4 addi x2 x2 1 bl x3 x2 21 ble x3 x2 21 sw x3 x0 2

想定される出力 1番地:0000000000000011 2番地:0000000000000111

□1番地

□2番地

1番地:000000000000011

2番地:000000000000111

となり、想定される出力と一致した。

動作確認2のテストコード

ロテストコード2

addi x1 x0 11110 addi x2 x0 11111 add x3 x1 x2 addi x4 x0 3 sll x3 x3 x4 sw x3 x0 0 lw x1 x0 0 addi x3 x0 2 sub x2 x1 x3 addi x2 x2 1 bl x1 x2 9 ble x1 x2 9 addi x3 x0 1 srl x2 x2 x3

and x3 x1 x2 sw x3 x0 x1 or x3 x1 x2 sw x3 x0 2 xor x3 x1 x2 sw x3 x0 3 xori x3 x1 3 sw x3 x0 4 ori x3 x1 3 sw x3 x0 5 andi x3 x1 3 sw x3 x0 6 想定される出力 0番地:00011101 10000000 1番地:00001100 10000000 2番地:00011111 11000000 3番地:00010011 01000000 4番地:00011101 10000011 5番地:00000000 00000000

□0番地

□1番地

□2番地

□3番地

□4番地

□5番地

□6番地

0番地:00011101 10000000

1番地:00001100 10000000

2番地:00011111 11000000

3番地:00010011 01000000

4番地:00011101 10000011

5番地:00011101 10000011

6番地:00000000 00000000

となり、想定される出力と一致した。