Case Study 3: Queueing Systems

Alain Jean-Marie
INRIA/LIRMM, Université Montpellier, CNRS
Alain.Jean-Marie@inria.fr

RESCOM Summer School 2019 26 June 2019

Contents

- specifying a queue
- constructing the probability transition matrix
- solving the equilibrium equations in closed form
- extending the model

The simple discrete-time queue

Consider a single-server queue in discrete time. In each slot:

 arrival of a batch of customers with size distributed according to a general probability distribution:

$$\mathbb{P}\{A=k\}=a_k.$$

• service of one customer, if at least one is present.

If the odrer of events is:

- arrival of batches
- departure of customers

Evolution equations

Let Q_n denote the number of customers in queue at time n, just after departures, but before new arrivals.

The evolution of this variable is given by:

$$Q_{n+1} = [Q_n + A_n - 1]^+.$$

Let R_n denote the number of customers in queue at time n, just before departures and new arrivals.

The evolution of this variable is given by:

$$R_{n+1} = [R_n - 1]^+ + A_n.$$

Both are connected by:

$$R_n = Q_n + A_n$$
.

Transition diagram, transition Matrix

For the Markov chain $\{Q_n; n \in \mathbb{N}\}$:

$$\mathbf{P} = \begin{pmatrix} a_0 + a_1 & a_2 & a_3 & \dots \\ a_0 & a_1 & a_2 & \ddots \\ 0 & a_0 & a_1 & \ddots \\ \vdots & \ddots & \ddots & \ddots \end{pmatrix}$$

Transition diagram, transition Matrix

For the Markov chain $\{R_n \ n \in \mathbb{N}\}$:

$$\mathbf{P} \ = \ \begin{pmatrix} a_0 & a_1 & a_2 & \dots \\ a_0 & a_1 & a_2 & \ddots \\ 0 & a_0 & a_1 & \ddots \\ \vdots & \ddots & \ddots & \ddots \end{pmatrix}$$

Solution

Solving for the stationary equations (process $\{R_n\}$):

$$(\pi_0 \quad \pi_1 \quad \pi_2 \quad \dots) = (\pi_0 \quad \pi_1 \quad \pi_2 \quad \dots) \quad \begin{pmatrix} a_0 & a_1 & a_2 & \dots \\ a_0 & a_1 & a_2 & \ddots \\ 0 & a_0 & a_1 & \ddots \\ \vdots & \ddots & \ddots & \ddots \end{pmatrix}$$

$$\pi_0 = a_0 \pi_0 + a_0 \pi_1$$

$$\pi_1 = a_1 \pi_0 + a_1 \pi_1 + a_0 \pi_2$$
...
$$\pi_n = a_n \pi_0 + \sum_{k=1}^{n+1} a_{n+1-k} \pi_k$$

The generating function approach

Recurrences such as

$$\pi_n = a_n \pi_0 + \sum_{k=0}^{n+1} a_{n+1-k} \pi_k, \qquad n \ge 0$$

can be handled with generating functions.

One introduces the probability generating functions:

$$R(z) := \sum_{n=0}^{\infty} \pi_n z^n = \mathbb{E}(z^R)$$
 $A(z) := \sum_{n=0}^{\infty} a_n z^n = \mathbb{E}(z^A)$.

From the recurrence, it is deduced that:

$$R(z) = \pi_0 A(z) \left(1 - \frac{1}{z}\right) + \frac{A(z)}{z} R(z)$$
.

The function R(z) is therefore solution of the equation:

$$R(z) = \pi_0 A(z) \frac{1-z}{A(z)-z}.$$

The generating function approach (ctd.)

The quantity π_0 is unknown in the formula:

$$R(z) = \pi_0 A(z) \frac{1-z}{A(z)-z}.$$

One way to determine it is letting $z \to 1$. For probability generating functions: R(1) = A(1) = 1. Then, using L'Hôpital's rule,

$$1 = \pi_0 a_0 \frac{-1}{A'(1) - 1}$$

and $A'(1) = \mathbb{E}A$. Conclusion:

$$\pi_0 = 1 - \mathbb{E}A$$
.

Or ... directly with Little's formula! Finally:

$$R(z) = (1 - \mathbb{E}A) \frac{A(z)(1-z)}{A(z)-z}$$
.

The generating function approach (end)

From the generating function, one recovers the moments of π , the distributions of R and Q:

$$\begin{split} \mathbb{E}Q &= \frac{\mathbb{E}A^2 - \mathbb{E}A}{2(1 - \mathbb{E}A)} \\ \mathbb{E}R &= \mathbb{E}Q + \mathbb{E}A \\ \mathbb{E}Q^2 &= \frac{3(\mathbb{E}A^2)^2 - 9\mathbb{E}A^2\mathbb{E}A + 6(\mathbb{E}A)^2 + 2\mathbb{E}A^3 - 2\mathbb{E}A^3\mathbb{E}A + 3\mathbb{E}A^2 - 3\mathbb{E}A}{6(1 - \mathbb{E}A)^2} \\ \mathbb{E}R^2 &= \mathbb{E}Q^2 + 2\mathbb{E}Q\mathbb{E}A + (\mathbb{E}A)^2 \ . \end{split}$$

and for specific distributions of A, the distribution of Q. For instance, if $A \sim \text{Geom}(\rho)$:

$$\pi_k = (1-2\rho) \frac{\rho^k}{(1-\rho)^{k+1}}, \quad k \ge 1, \qquad \pi_0 = \frac{1-2\rho}{1-\rho}.$$

Model variant #1: finite capacity

New rules:

- Buffer capacity K
- Partial batches accepted up to capacity.

New diagram, new $(K+1) \times (K+1)$ matrix:

$$\mathbf{P} = \begin{pmatrix} a_0 & a_1 & a_2 & \dots & a_{K-1} & a_K + a_{K+1} + \dots \\ a_0 & a_1 & a_2 & \dots & a_{K-1} & a_K + a_{K+1} + \dots \\ 0 & a_0 & a_1 & \ddots & & & & \\ \vdots & \ddots & \ddots & \ddots & & & \\ 0 & \dots & & & a_0 & a_1 + a_2 + \dots \end{pmatrix}$$

Model variant #2: services of geometric duration

The geometric law is memoryless: if $G \sim \text{Geom}(\rho)$ (on the set $\{1,2,\ldots\}$),

$$\mathbb{P}\{G \geq n + m | G \geq n\} = \mathbb{P}\{G \geq m\} .$$

Another way of looking at it: if $G \sim \text{Geom}(\rho)$,

- with probability 1ρ , G = 1
- with probability ρ , G=1+G' with $G'\sim \text{Geom}(\rho)$.

So, transitions from a queue size n > 0 are now:

- with probability $(1-\rho)a_i$, to n-1+i
- with probability ρa_i , to n+i.

Model variant #3: deterministic services

Assume now that services last s slots. The process $\{R_n\}$ is not Markovian anymore.

How to fix this? Two main ideas

- adding variables to the state space: the "method of phases" of "method of the supplementary variable"
- or embedding the process at specific times such that the resulting process is now Markovian.

Both methods of phases and embedding can be generalized to general service distributions.

The method of phases

Let S_n be the amount of service given to the customer in service, at the beginning of slot n, just after arrivals.

Then the process $(R_n, S_n) \in \mathbb{N} \times \{0, 1, \dots, s-1\}$ is a Markov Chain. Its diagram (s=3):

The method of embedding

Let $\{B_m\}$ be the process of the number of customers in queue when:

- either some service begins
- some slot begins if no customer in service

This is a Markov chain with transitions

- for n > 0: $n \to n + a 1$ with probability $\mathbb{P}\{A_1 + A_2 + A_3 = a\}$
- for n = 0: $n \to n + a$ with probability $\mathbb{P}\{A = a\}$.

Model variant #4: Batch_services

Assume that there are B servers that work in parallel. The evolution equation is now:

$$R_{n+1} = [R_n - B]^+ + A_n$$
.

Transition matrix for B = 2:

$$\mathbf{P} = egin{pmatrix} a_0 & a_1 & a_2 & \dots \ a_0 + a_1 & a_2 & a_3 & \ddots \ a_0 & a_1 & a_2 & \ddots \ 0 & a_0 & a_1 & \ddots \ dots & \ddots & \ddots & \ddots \end{pmatrix}$$

Model variant #5: Arrivals with phases

It may happen that the arrival process undergoes phases: e.g. some with high arrival rate, some with low arrival rate.

Assume that the switch from H to L occurs according to a Markov Chain:

When the phase:

- is H, batch sizes have probabilities $h_i = \mathbb{P}\{A = i | H\}$
- is L, batch sizes have probabilities $\ell_i = \mathbb{P}\{A = i | L\}$.

Arrivals with phases, ctd.

Transition table:

origin	destination	probability	restriction
(H,0)	(H, n)	ah _n	$n \ge 0$
(H, 0)	(L, n)	$(1-a)h_n$	$n \ge 0$
(L,0)	(L, n)	$b\ell_n$	$n \ge 0$
(L, 0)	(H, n)	$(1-b)\ell_n$	$n \ge 0$
(H, m)	(H,m+n-1)	ah _n	$m > 0, n \ge 0$
(H, m)	(L,m+n-1)	$(1-a)h_n$	$m > 0, n \ge 0$
(L, m)	(L,m+n-1)	$b\ell_n$	$m > 0, n \ge 0$
(L, m)	(H,m+n-1)	$(1-b)\ell_n$	$m>0, n\geq 0$

Model variant #6: Impatient customers

Assume that customers are impatient: with probability α , each of them may leave the queue if not being served.

How to calculate P_{ii} ?

Introduce Z_n , the number of patient customers, remaining after

- service has begun
- impatient customers have left

Then

$$R_{n+1} = Z_n + A_n$$
.

$$P_{ij} = \mathbb{P}\{R_{n+1} = j | R_n = i\}$$

$$= \mathbb{P}\{Z_n + A_n = j | R_n = i\}$$

$$= \sum_{z=0}^{i} \mathbb{P}\{Z_n + A_n = j | Z_n = z\} \ \mathbb{P}\{Z_n = z | R_n = i\}$$

$$= \sum_{z=0}^{i} \mathbb{P}\{A_n = j - z\} \ \mathbb{P}\{Z_n = z | R_n = i\}$$

Impatient customers, ctd.

There remains to compute $\mathbb{P}\{Z_n = z | R_n = i\}$.

If
$$i = 0$$
: $\mathbb{P}\{Z_n = 0 | R_n = 0\} = 1$.

If i > 0, one customer enters service. Impatience among the i - 1 remaining ones:

$$\mathbb{P}\{Z_n = z | R_n = i\} = \mathbb{P}\{z \text{ stay out of } i - 1\}$$
$$= \binom{i-1}{z} \alpha^{z-i+1} (1-\alpha)^z.$$

Finally, for i > 0,

$$P_{ij} = \mathbb{P}\{R_{n+1} = j | R_n = i\}$$

$$= \sum_{z=0}^{i-1} a_{j-z} {i-1 \choose z} \alpha^{z-i+1} (1-\alpha)^z.$$

Model variant #7: service with threshold

Assume that the server does not start before there are at least ν customers in the queue. Add also the buffer capacity K.

- The evolution equations are now • if $R_n < \nu$: $R_{n+1} = \min\{R_n + A_n, K\}$
 - if $R_n > \nu$: $R_{n+1} = \min\{R_n 1 + A_n, K\}$
- The chain now evolves over $\mathcal{E} = \{\nu 1, \nu, \dots, K\}$.

Starting the server has cost C_s .

Losing a customer because buffer capacity is exceeded has cost C_L . What is the best ν ?

Evaluation of the average cost:

$$J_{\nu} = \lim_{n \to \infty} \frac{1}{N} \mathbb{E} \left(\sum_{n=0}^{N-1} (C_s \mathbf{1}_{\{\text{service starts at } n\}} + C_L \# \{\text{customers lost at } n\} \right).$$

Considering this is a Markov reward process, we have:

$$J_{\nu} = C_{s}\pi_{\nu-1}\mathbb{P}\{A_{n} > 0\} + C_{L}\sum_{i=\nu-1}^{K} \pi_{i}\mathbb{E}(A_{n} - (K - i))$$
$$= C_{s}\pi_{\nu-1}(1 - a_{0}) + C_{L}\sum_{i=\nu-1}^{K} \pi_{i}\sum_{j=K-i}^{\infty} ja_{j}.$$

 \rightarrow to be evaluated for each possible ν .

Summary

In this "case study":

- description of the gueue in discrete time; order of the events
- equations of evolution, useful for the
- construction of probability transition matrices
- many variants with service duration, arrival processes, service discipline
- setup of an optimization problem.

More to be done in the Lab!