Universidad Politécnica de Cataluña Facultad de Matemáticas y Estadística MAMMEE

Discrete and Algorithmic Geometry

Geometric thickness of complete graphs

Manuel Gijón Agudo

M. Dillencourt, D. Eppstein, D. S, Hirschberg

Index

- Motivation and first definitions
- 2 Results
 - Good news
 - Upper and lower bounds
 - K₁₅
 - Bipartite graphs
 - To sum up
- Conclusions and open questions

An economic motivation

Suposse we have to print a circuit into a circuit board. Is more

efficient to use uninsulated wires.

Problem: avoid dead shorts. Solution: separe the wires in different layers. This problem is equivalent to mimimize the number of layers.

Improve the display of a graph

Now we imagine that we want to display information in a graph-shape.

The concept of the thickness of a graph is related with the number of colors we need to separate oll the edges.

4 / 23

Thickness of a graph \mathcal{G}

Theorical Thickness $\theta(\mathcal{G})$

Minimum number of planar graphs into a which a graph can be descomposed.

Thickness of a graph ${\cal G}$

Theorical Thickness $\theta(\mathcal{G})$

Minimum number of planar graphs into a which a graph can be descomposed.

Geometric Thickness $\bar{\theta}(\mathcal{G})$

Smallest value of k such that we can assign a planar point locations to the vertices of \mathcal{G} , represent each edge of \mathcal{G} as a line segment, and assign each edge to one of k layers so that no two edges on the same layer cross.

Thickness of a graph

Key difference

Geometric thickness requires that the vertex placements be consistent at all layers and that straight-line adges be used, whereas graph-theorical thickness imposes no consistency requirement between layers.

Graph-theorical thickness for all complete graphs

$$\theta(K_n) = \begin{cases} 1, & 1 \le n \le 4 \\ 2, & 5 \le n \le 8 \\ 3, & 9 \le n \le 10 \\ \lceil \frac{n+2}{6} \rceil, & n > 10 \end{cases}$$

Graph-theorical thickness for all complete graphs

Upper Bounds

Theorem 1

$$\bar{\theta}(k_n) \leq \lceil n/4 \rceil$$

Upper Bounds

Theorem 1

$$\bar{\theta}(k_n) \leq \lceil n/4 \rceil$$

Roadmap to the proof:

• Assume that n is multiple of four, n = 2k with (k even), show that n vertices can be arranged in two "rings" of k vertices, so K_n can be embedded using k/2 layers and with no edges on the same layer crossing.

Upper Bounds

- Use the vertices of the inner ring to form a regular *k*-gon and considerer the opposite vertices con create a zigzag path. This path has exactly one diagonal connecting diametrically opposite points.
- By continuity, we can replace by a suitably chosen common end points the infinite end points of a collection of parellel rays.
 Thus forming an outer ring of k vertices.
- The figure can be perturbed by moving slightly the inner ring.
 None of the diagonals of the polygon comprising the outher ring intersect the polygon comprising the inner ring.
- It's straighforward to verify that this is indeed a descomposition of the edges of k_n into k/2 = n/4 layers.

Lower Bounds

Theorem 2

For all $n \geq 1$

$$\bar{\theta}(k_n) \ge \max_{1 \le x \le n/2} \frac{\binom{n}{2} - 2\binom{x}{2} - 3}{3n - 2x - 7}$$

Lower Bounds

Theorem 2

For all $n \ge 1$

$$\bar{\theta}(k_n) \ge \max_{1 \le x \le n/2} \frac{\binom{n}{2} - 2\binom{x}{2} - 3}{3n - 2x - 7}$$

In particular, for $n \ge 12$

$$\bar{\theta}(k_n) \ge \left\lceil \frac{3 - \sqrt{7}}{2}n + 0.342 \right\rceil \ge \left\lceil \frac{n}{5.646} + 0.342 \right\rceil$$

Theorem 3

$$\bar{\theta}(k_{15})=4$$

Theorem 3

$$\bar{\theta}(k_{15})=4$$

Proof: We divide the proof in 3 cases.

- Case I: 3 points in the convex hull. Let \mathcal{A}, \mathcal{B} and \mathcal{C} convex hull points and let $\mathcal{A}_1, \mathcal{B}_1$ and \mathcal{C}_1 be the point furtherst from edge \mathcal{BC} (respectively $\mathcal{AC}, \mathcal{AB}$ within triangle \mathcal{ABC}).
 - **Lemma 1:** The edge $\mathcal{A}\mathcal{A}_1$ will appear in every triangulation of \mathcal{S} .

Let A_2, B_2 and C_2 be the point next furtherst from edge BC (respectively AC, AB within triangle ABC.

• **Lemma 2:** At least one of the edges A_1A_2 or AA_2 will appear in every triangulation of S.

Theorem 3

$$\bar{\theta}(k_{15})=4$$

Proof: We divide the problem in 3 cases.

- Case II: 4 points in the convex hull.
 - Let A, B, C, D the convex hull vertices.
 - Assume triangle \mathcal{DAB} has at least one point of \mathcal{S} in his interior (if not switch \mathcal{A} and \mathcal{C} and let \mathcal{A}_1 be the point inside furthest from line \mathcal{DB}).
 - By Lemma 2, the edge $\mathcal{A}\mathcal{A}_1$ must appear in every triangulation of \mathcal{S} .
 - Since every triangulation has 38 edges three triangulations can account at most 104 edges.

Theorem 3

$$\bar{\theta}(k_{15})=4$$

Proof: We divide the problem in 3 cases.

- Case III: 5 or more points in the convex hull.
 - Let h be the number of points in the convex hull.
 - A triangulation of S will have 42 h edges, and all hull edges must be in each triangulation.
 - The total number of edges in three triangulatinos is at most 3(42-2h)+h=126-5h, that is at most 101 for $h \ge 5$.

Theorem 4

For the complete bipartite graph $K_{a,b}$

$$\left\lceil \frac{ab}{2a+2b-4} \right\rceil \leq \theta(K_{a,b}) \leq \overline{\theta}(k_{a,b}) \leq \left\lceil \frac{\min(a,b)}{2} \right\rceil$$

Theorem 4

For the complete bipartite graph $K_{a,b}$

$$\left\lceil \frac{ab}{2a+2b-4} \right\rceil \leq \theta(K_{a,b}) \leq \overline{\theta}(k_{a,b}) \leq \left\lceil \frac{\min(a,b)}{2} \right\rceil$$

Proof:

- First inequality: from Euler's formula since a bipartite graph which is planar with a+b vertices can have at most 2a+2b-4 edges
- Second inequality: assume that $a \le b$ and a is even. Draw b vertices in a horizontal line, with a/2 red vertives above the line and a/2 vertices below. Each layer consists of all edges connecting the blue vertices with one red vertex from above the line and one red vertex from below.

Corollary 1:

For any integer b, $\bar{\theta}(k_{a,b}) = \theta(k_{a,b})$ provided:

$$a > egin{cases} rac{(b-2)^2}{2} & ext{if b is even} \\ (b-1)(b-2) & ext{if b is odd} \end{cases}$$

Corollary 1:

For any integer b, $\bar{\theta}(k_{a,b}) = \theta(k_{a,b})$ provided:

$$a> egin{cases} rac{(b-2)^2}{2} & ext{if b is even} \ (b-1)(b-2) & ext{if b is odd} \end{cases}$$

Proof: If a > b, the leftmost and rightmost quantities in the expresion of the last theorem will be equal provided ab/(2a+2b-4) > (b-2)/2 if b is even, or provided ab/(2a+2b-4) > (b-1)/2 f b is odd. By simplifying this inequality holds.

Theorem 5

$$\bar{\theta}(k_{6,8})=3$$

Theorem 5

$$\bar{\theta}(k_{6,8})=3$$

- From the last theorem, second inequality: $\bar{\theta}(k_{6,8}) \leq 3$
- We need to show that $\bar{\theta}(k_{6,8}) > 2$. We proceed by contradiction: we have an embedding of $k_{6,8}$ with geometric thickness 2 and underlying points set S. A graph with 14 edges has at most 24 edges (Euler), so each layer each layer has exactly 24 edges.

Theorem 5

$$\bar{\theta}(k_{6,8})=3$$

- We claim that must be at least one red and one blue vertex on the convex hull of S. Again by contradriction, we suppose that all convex hull vertices are the same color.
 - Use bipartition and the number of vertices in each layer.
 - Contradiction! ⇒ there are at least one red and one blue vertex.

Theorem 5

$$\bar{\theta}(k_{6,8})=3$$

- The claim implies that one of the layers must contain a convex hull edge.
- This edge could be added to the second layer without destroying planarity..
- Since the second layer has already 14 vertices and 24 edges it's imposible, which leads us to a contradiction. $\Rightarrow \bar{\theta}(k_{6,8}) > 2$

The first 100 values of θ

The first 100 values of θ

Some open questions

- To find exact values for $\bar{\theta}(K_n)$, in particular for n=13,14.
- What is the smallest graph (G) such that $\bar{\theta}(G) > \theta(G)$?
- What is the complexity of computing $\bar{\theta}(\mathcal{G})$ for a given graph \mathcal{G} ?.

Bibliography

- D.Dillencourt, D. Eppstein and D.S. Hirschberg, *Geometric thickness of complete graphs*, J. Graph Algorithmss and Applications 4 (3), 5-17, 2000.
- P. Mutzel, T. Odenthal, M. Scharbrodt, *The thickness og graphs:* a survey, Graphs and Combinatorics, March 1998, Volume 14, Issue 1, pp 59–73.