

Europäisches Patentamt European Patent Office Office européen des brevets

(11) EP 1 398 032 A1

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication: 17.03.2004 Bulletin 2004/12

(21) Application number: 03020417.6

(22) Date of filing: 10.09.2003

(51) Int CI.⁷: **A61K 31/517**, C07D 239/95, C07D 401/12, C07D 405/12, A61P 3/06

(84) Designated Contracting States:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR
HU IE IT LI LU MC NL PT RO SE SI SK TR
Designated Extension States:

AL LT LV MK

(30) Priority: 10.09.2002 EP 02020255

(71) Applicant: PheneX Pharmaceuticals AG 69120 Heidelberg (DE)

(72) Inventors:

 Kober, Ingo 69251 Gaiberg (DE)

Albers, Michael
 69221 Dossenheim (DE)

 Koegl, Manfred 69214 Eppelheim (DE)

Blume, Beatrix
 69221 Dossenheim (DE)

Deuschle, Ulrich
 69120 Heidelberg (DE)

Kremoser, Claus
 69121 Heidelberg (DE)

(74) Representative: Huhn, Michael, Dr. Isenbruck Bösl Hörschler Wichmann Huhn Patentanwälte Theodor-Heuss-Anlage 12 68165 Mannheim (DE)

(54) 4-Oxo-quinazolines as LXR nuclear receptor binding compounds

(57) The present invention relates to 4-oxo-quinazolines which bind to the Liver X receptors (LXR receptors, LXRalpha/NR1 H3 and LXRbeta/NR1H2) and act as selective agonists of the LXR receptors. The invention further relates to the treatment of diseases and/or conditions through binding of said nuclear receptors and

selective agonistic effects by said compounds and the production of medicaments using said compounds. In particular the compounds are useful in the treatment of hypercholesterimia, obesity or other diseases associated with elevated lipoprotein (LDL) levels.

Description

10

30

35

40

50

[0001] Liver X Receptor (LXR) is a prototypical type 2 nuclear receptor which activates genes upon binding to promoter region of target genes in a prototypical heterodimeric fashion with Retinoid X Receptor (hereinafter RXR, Forman et al., Cell, 81, 687-93, 1995). The term LXR includes all subtypes of this receptor. Specifically LXR includes LXRa (also known as LXRalpha, RLD-1 and NR1H3) and LXRb (also known as LXRbeta, NER, NER1, UR, OR-1, R1P15 and NH1H2) and ligands of LXR should be understood to include ligands of LXRa or LXRb. The relevant physiological ligands of LXR seem to be oxidized derivatives of cholesterol, including 22-hydroxycholesterol and 24,25(S)-epoxycholesterol (Lehmann, et al., Biol. Chem. 272(6), 3137-40, 1997). The oxysterol ligands bound to LXR were found to regulate the expression of several genes that participate in cholesterol metabolism (Janowski, et al., Nature, 383, 728-31, 1996).

[0002] LXR is proposed to be a hepatic oxysterol sensor. Upon activation (e.g. binding of oxysterols) it influences the conversion of dietary cholesterol into bile acids by upregulating the transcription of key genes which are involved in bile acid synthesis such as CYP7A1. Hence, activation of LXR in the liver could result in an increased synthesis of bile acids from cholesterol which could lead to decreased levels of hepatic cholesterol. This proposed LXR function in hepatic cholesterol metabolism was experimentally confirmed using knockout mice. Mice lacking the receptor LXRa lost their ability to respond normally to an increase in dietary cholesterol and did not induce transcription of the gene encoding CYP7A1. This resulted in accumulation of large quantities of cholesterol in the livers and impaired hepatic function (Peet, et al., Cell, 93, 693-704, 1998).

[0003] Besides its important function in liver, LXR plays an important role in the regulation of cholesterol homeostasis in macrophages and intestinal mucosa cells where it upregulates cholesterol transporters from the ABC (=ATP binding cassette) family of membrane proteins (Repa, et al., J Biol Chem. 2002 May 24;277(21):18793-800).

[0004] These transporters are believed to be crucially involved in the uptake of cholesterol from the diet since mutations in their genes leads to diseases such as sitosterolemia (Berge, et al., Science (2000);290(5497):1771-5.).

[0005] Other members of the ABC transporter family seem to be responsible for the efflux of cholesterol from loaded macrophages, a process which is thought to prevent the generation of atherosclerotic lesions. Stimulation of LXR by synthetic ligands might result in an increased cholesterol efflux from macrophages and a decreased building up of cholesterol loaded atherosclerotic plaques (Venkateswaran, et al., PNAS (2000) 24;97(22):12097-102; Sparrow, et al., J Biol Chem (2002) 277(12):10021-7; Joseph, et al., PNAS (2002);99(11):7604-9). Direct evidence that synthetic LXR ligands inhibit the development of atherosclerosis has been provided in two animal models of atherosclerosis: A significant reduction in the formation of atherosclerotic plaques were shown in two studies in animal models using full LXR agonists Joseph et al. PNAS (2002) 99:7604-9 and Terasaka et al. (2003) Terasaka et al. FEBS Lett. (2003) 536: 6-11. In addition, two recent reports have highlighted the potential use of LXR agonists in diabetes (Cao et al., (2003) J Biol Chem. 278:1131-6 and inflammatory disorders (Joseph et al., (2003) Nat Med. 9:213-9.

[0006] However, in animal studies it was observed that activation of LXR in the liver by full agonists like T0901317 does not only increase bile acid synthesis but also stimulates the de novo synthesis of fatty acids and triglycerids through the upregulation of key enzymes such as Fatty Acid Synthase (FAS) or Stearyl-CoA Desaturase (SCD-1) (Schultz, et al., Genes Dev (2000) 14(22):2831-8). Elevation of serum triglyceride levels is an indendent risk factor for atherosclerosis (for review see Miller (1999) Hosp Pract (Off Ed) 34: 67-73.).

[0007] Thus, LXR activity needs to be selectively modulated for therapeutic benefit. In particular, compounds need to be found that stimulate reverse cholesterol transport, but do not significantly increase trigclyceride levels. This might be particular relevant for the usage of such compounds in diabetic patients since a even more severe lopogenic effect was reported for the full agonist T0901317 in db/db mice which serve as an animal model for diabetes (Chisholm et al. (2003) J.Lipid Res (epub August 16)).

[0008] Therefore, an ideal synthetic LXR binding compound should have properties that retain the agonistic activity on hepatic bile acid formation and ABC-transporter-mediated decrease in cholesterol uptake from the diet and increased cholesterol efflux from macrophages. In parallel such a compound should lack the hyperlipidemic potential which is exerted through increased fatty acid and triclyceride synthesis.

[0009] To date only few compounds have been described which bind the LXR receptor and thus show utility for treating diseases or conditions which are due to or influenced by said nuclear receptor (Collins, et al., J Med Chem. (2002) 45(10):1963-6; Schultz, et al., Genes Dev (2000) 14(22):2831-8; Sparrow, et al., J Biol Chem (2002) 277(12): 10021-7). No non-steroidal compounds have so far been described which show selectivity regarding the induction of ABC transporter genes without simultaneous induction of lipogenic genes like FAS and SREBP-1c (Kaneko et al. (2003) J Biol Chem (epub July 7).

[0010] It is thus an object of the invention to provide for compounds which by means of binding the LXR receptor act as partial agonists of said receptor with a selective property regarding the upregulation of genes like the ABC transporters in macrophages and/or other cell types and a stronlgy reduced liability to increase the expression of genes involved in triglyceride synthetic pathways (like FAS and SREBP-1c). These compounds should show utility for treating

diseases or conditions which are due to or influenced by said nuclear receptor.

10

25

30

35

40

45

50

[0011] It is further an object of the invention to provide for compounds that may be used for the manufacture of a medicament for the treatment of cholesterol associated conditions or diseases. It is still a further object of the invention to provide for compounds that lower serum cholesterol and/or increase High Density Lipoproteins (HDL) and/or decrease Low Density Lipoproteins (LDL). It is also an object of the invention to provide for compounds that may be used for the treatment of lipid disorders including hypercholesterolemia, atherosclerosis, Alzheimer's disease, skin disorders, inflammation, obesity and diabetes.

[0012] The present invention provides, inter alia, novel LXR nuclear receptor protein binding compounds according to the general formula (I) shown below. Said compounds are also binders of mammalian homologues of said receptor. Further the object of the invention was solved by providing for amongst the LXR nuclear receptor protein binding compounds according to the general formula (I) such compounds which act as partial agonists or mixed agonists / antagonists of the human LXR receptor or a mammalian homologue thereof. Further the object of the invention was solved by providing for amongst the LXR receptor protein binding compounds according to the general formula (I) such compounds which act as partial agonists of the human LXR receptor resulting therefore in the induction of ABC transporter proteins such as ABCA1 or ABCG1 in cell types such as macrophages but lacking a strong potential to induce genes involved in triglyceride synthetic pathways such as fatty acid synthase (FAS) or SREBP1c.

[0013] The invention provides for LXR agonists that may be used for the manufacture of a medicament for the treatment of cholesterol associated conditions or diseases. In a preferred embodiment compounds are provided that lower serum cholesterol and/or increase High Density lipoproteins (HDL) and/or decrease Low Density Lipoproteins (LDL). Also compounds are provided that may be used for the treatment of lipid disorders including hypercholesterolemia, atherosclerosis, Alzheimer's disease, skin disorders, inflammation, obesity and diabetes.

[0014] The invention provides for a compound of the formula (I), or pharmaceutical acceptable salts or solvates thereof, hereinafter also referred to as the "compounds according to the invention" including particular and preferred embodiments thereof.

Formula (I)

R2 R5 R6

The compounds of the invention can also exist as solvates and hydrates. Thus, these compounds may crystallize with, for example, waters of hydration, or one, a number of, or any fraction thereof of molecules of the mother liquor solvent. The solvates and hydrates of such compounds are included within the scope of this invention.

[0015] In one embodiment of the invention in formula (I) above, R_1 , R_2 , R_3 , R_4 , - independent from each other - H, halogen, hydroxy, protected hydroxy, cyano, nitro, C_1 to C_6 alkyl, C_1 to C_6 substituted alkyl, C_1 to C_7 alkoxy, C_1 to C_7 substituted acyl, C_1 to C_7 acyloxy, carboxy, protected carboxy, carboxymethyl, protected carboxymethyl, protected hydroxymethyl, amino, protected amino, (monosubstituted)amino, protected (monosubstituted)amino, (disubstituted)amino, carboxamide, protected carboxamide, N-(C_1 to C_6 alkyl)carboxamide, protected N-(C_1 to C_6 alkyl)carboxamide, N, N-di(C_1 to C_6 alkyl)carboxamide, trifluoromethyl, N-((C_1 to C_6 alkyl)sulfonyl)amino, N-(phenylsulfonyl)amino or substituted or unsubstituted phenyl, for example a biphenyl,

 R_5 is H, C_1 to C_8 alkyl, C_1 to C_8 substituted alkyl, C_3 to C_8 cycloalkyl, C_3 to C_8 substituted cycloalkyl, aryl, substituted aryl, C1 to C6 alkylphenyl or C_7 to C_{12} substituted phenylalkyl

 R_6 is H, a secondary or a tertiary amine, C_1 to C_8 alkyl, C_1 to C_8 substituted alkyl, C_3 to C_8 cycloalkyl, C_3 to C_8 substituted cycloalkyl, aryl, substituted aryl, C1 to C6 alkylphenyl or C_7 to C_{12} substituted phenylalkyl

3

[0016] Formula (II) shows another embodiment of the invention wherein

Formula (II)

wherein R₇ is C₁ to C₈ alkyl, C₁ to C₈ substituted alkyl, C₃ to C₈ cycloalkyl, C₃ to C₈ substituted cycloalkyl, aryl, substituted aryl, C1 to C6 alkylphenyl or C₇ to C₁₂ substituted phenylalkyl
 [0017] Another embodiment of the invention is described in formula (III)

Formula (III)

20

25

30

35

40

45

50

55

R2 R3 R4 R5 R6 R8 R9(III)

 R_1 , R_2 , R_3 , R_4 , is H, halogen, hydroxy, protected hydroxy, cyano, nitro, C_1 to C_6 alkyl, C_1 to C_6 substituted alkyl, C_1 to C_7 alkoxy, C_1 to C_7 substituted alkoxy, C_1 to C_7 acyloxy, carboxy, protected carboxy, carboxymethyl, protected carboxymethyl, hydroxymethyl, protected hydroxymethyl, amino, protected amino, (monosubstituted)amino, protected (monosubstituted)amino, (disubstituted)amino, carboxamide, protected carboxamide, N-(C_1 to C_6 alkyl)carboxamide, N-(C_1 to C_6 al

 R_5 in formula (III) is H, C_1 to C_8 alkyl, C_1 to C_8 substituted alkyl, C_3 to C_8 cycloalkyl, C_3 to C_8 substituted cycloalkyl, aryl, substituted aryl, C1 to C6 alkylphenyl or C_7 to C_{12} substituted phenylalkyl,

 R_8 in formula (III) is H, C_1 to C_8 alkyl, C_1 to C_8 substituted alkyl, C_3 to C_8 cycloalkyl, C_3 to C_8 substituted cycloalkyl, C_1 to C_7 acyl, C_1 to C_7 substituted acyl, aryl, substituted aryl, C1 to C6 alkylphenyl or C_7 to C_{12} substituted phenylalkyl, carboxamide, protected carboxamide, N-(C_1 to C_6 alkyl)carboxamide, protected N-(C_1 to C_6 alkyl)carboxamide, N, N-di(C_1 to C_6 alkyl)carboxamide, trifluoromethyl, N-((C_1 to C_6 alkyl)sulfonyl)amino, N- (phenylsulfonyl) amino or phenyl.

 R_9 in formula (III) is H, C_1 to C_8 alkyl, C_1 to C_8 substituted alkyl, C_3 to C_8 cycloalkyl, C_3 to C_8 substituted cycloalkyl, C_1 to C_7 acyl, C_1 to C_7 substituted acyl, aryl, substituted aryl, C1 to C6 alkylphenyl or C_7 to C_{12} substituted phenylalkyl, carboxamide, protected carboxamide, N-(C_1 to C_6 alkyl)carboxamide, protected N-(C_1 to C_6 alkyl)carboxamide, N, N-di(C_1 to C_6 alkyl)carboxamide, trifluoromethyl, N-((C_1 to C_6 alkyl)sulfonyl)amino, N- (phenylsulfonyl) amino or phenyl, or

R₈ and R₉ in formula (III) are taken together with the N in formula (III) to form a ring of the following types:

 C_3 to C_8 mono, di- or tri- heteroatom-substituted cycloalkyl such as but not limited to piperidino, morpholino, thiomorpholino, piperazino, or C_1 to C_6 alkyl-, C_1 to C_6 substituted alkyl subtituted- or benzocondensated

derivatives thereof

 C_4 to C_{10} mono, di- or tri- heteroatom-substituted bi- or tricycloalkyl or C_1 to C_6 alkyl-, C_1 to C_6 substituted alkyl subtituted- or benzocondensated derivatives thereof

 C_3 to C_8 mono, di- or tri- heteroatom-substituted heteroaryl such as but not limited to pyrrolo, pyrazolo, oxazolo, thiazolo, pyridino, pyridino, pyrimidino, pyrazino, triazino, indolo, quinolino, quinazolino or C_1 to C_6 alkyl-, C_1 to C_6 substituted alkyl subtituted- or benzocondensated derivatives thereof

[0018] In a preferred embodiment of the invention according to formula (III)

R₁ and R₃ are preferrably H,

10

15

20

25

30

35

40

45

50

 R_2 and R_4 are preferrably H, or a halogen such as iodo, bromo, chloro or fluoro or hydroxy methyl, trifluoromethyl, methoxy, amino, alkylated amino, or nitro R_5 is H, C_1 to C_8 alkyl, preferrably isopropyl, vinyl, 2-isobutyl, or cyclohexyl, C_1 to C_8 substituted alkyl, C_3 to C_8 substituted cycloalkyl, aryl, substituted aryl, C1 to C6 alkylphenyl or C_7 to C_{12} substituted phenylalkyl,

 R_8 and R_9 in formula (III) are taken together with the N in formula (III) to form a ring of the following types:

 C_3 to C_8 mono, di- or tri- heteroatom-substituted cycloalkyl such as but not limited to piperidino, morpholino, thiomorpholino, piperazino, or C_1 to C_6 alkyl-, C_1 to C_6 substituted alkyl subtituted- or benzocondensated derivatives thereof, preferrably a 4-aryl- or 4-heteroaryl- or 4-alkyl-substituted piperazino or a 4-alkyl-substituted piperidino

 C_4 to C_{10} mono, di- or tri- heteroatom-substituted bi- or tricycloalkyl or C_1 to C_6 alkyl-, C_1 to C_6 substituted alkyl subtituted- or benzocondensated derivatives thereof

 C_3 to C_8 mono, di- or tri- heteroatom-substituted heteroaryl such as but not limited to pyrrolo, pyrazolo, oxazolo, thiazolo, pyridino, pyridino, pyrimidino, pyrazino, triazino, indolo, quinolino, quinazolino or C_1 to C_6 alkyl-, C_1 to C_6 substituted alkyl subtituted- or benzocondensated derivatives thereof

[0019] In another preferred embodiment of the invention according to formula (III)

R₁ and R₃ are preferrably H,

 R_2 and R_4 are preferrably H, or a halogen such as iodo, bromo, chloro or fluoro or hydroxy methyl, trifluoromethyl, methoxy, amino, alkylated amino, or nitro

 R_5 is H, C_1 to C_8 alkyl, preferrably isopropyl, vinyl, 2-isobutyl, C_1 to C_8 substituted alkyl, C_3 to C_8 substituted cycloalkyl, aryl, substituted aryl, C1 to C6 alkylphenyl or C_7 to C_{12} substituted phenylalkyl,

 R_8 is a C_1 to C_8 alkyl, C_1 to C_8 substituted alkyl, C_3 to C_8 cycloalkyl, C_3 to C_8 substituted cycloalkyl, C_1 to C_6 alkylphenyl or C_7 to C_{12} substituted phenylalkyl, preferrably benzyl or (furan-2-yl)-methyl or (thiophen-2-yl)-methyl

and R_9 in formula is C_1 to C_8 alkyl, C_1 to C_8 substituted alkyl, C_3 to C_8 cycloalkyl, C_3 to C_8 substituted cycloalkyl, C_1 to C_6 alkylphenyl or C_7 to C_{12} substituted phenylalkyl, preferably, however, (ethyl)-propion-1-yl

[0020] The symbol "H" denotes a hydrogen atom.

[0021] The term " C_1 to C_7 acyl" encompasses groups such as formyl, acetyl, propionyl, butyryl, pentanoyl, pivaloyl, hexanoyl, heptanoyl, benzoyl and the like. Preferred acyl groups are acetyl and benzoyl.

[0022] The term " C_1 to C_7 substituted acyl" denotes the acyl group substituted by one or more, and preferably one or two, halogen, hydroxy, protected hydroxy, oxo, protected oxo, cyclohexyl, naphthyl, amino, protected amino, (monosubstituted)amino, protected (monosubstituted)amino, (disubstituted)amino, guanidino, heterocyclic ring, substituted heterocyclic ring, imidazolyl, indolyl, pyrrolidinyl, C_1 to C_7 alkoxy, C_1 to C_7 acyl, C_1 to C_7 acyloxy, nitro, C_1 to C_6 alkyl ester, carboxy, protected carboxy, carbamoyl, carboxamide, protected carboxamide, N-(C_1 to C_6 alkyl)carboxamide, N,N-di(C_1 to C_6 alkyl)carboxamide, cyano, methylsulfonylamino, thiol, C_1 to C_4 alkylthio or C_1 to C_4 alkylsulfonyl groups. The substituted acyl groups may be substituted once or more, and pref-

erably once or twice, with the same or with different substituents.

40

50

[0023] The term "substituted phenyl" specifies a phenyl group substituted with one or more, and preferably one or two, moieties chosen from the groups consisting of halogen, hydroxy, protected hydroxy, cyano, nitro, C_1 to C_6 alkyl, C_1 to C_6 substituted alkyl, C_1 to C_7 alkoxy, C_1 to C_7 substituted alkoxy, C_1 to C_7 acyloxy, carboxy, protected carboxy, carboxymethyl, protected carboxymethyl, hydroxymethyl, protected hydroxymethyl, amino, protected amino, (monosubstituted)amino, protected (monosubstituted)amino, (disubstituted) amino, carboxamide, protected carboxamide, N-(C_1 to C_6 alkyl)carboxamide, protected N-(C_1 to C_6 alkyl)carboxamide, N, N-di(C_1 to C_6 alkyl)carboxamide, trifluoromethyl, N-((C_1 to C_6 alkyl)sulfonyl)amino, N- (phenylsulfonyl)amino or phenyl, wherein the phenyl is substituted or unsubstituted, such that, for example, a biphenyl results.

[0024] Examples of the term "substituted phenyl" includes a mono- or di(halo)phenyl group such as 2, 3 or 4-chlorophenyl, 2,6-dichlorophenyl, 2,5-dichlorophenyl, 3,4-dichlorophenyl, 2, 3 or 4-bromophenyl, 3,4-dibromophenyl, 3-chloro-4-fluorophenyl, 2, 3 or 4-fluorophenyl and the like; a mono or di(hydroxy)phenyl group such as 2, 3 or 4-hydroxyphenyl, 2,4-dihydroxyphenyl, the protected-hydroxy derivatives thereof and the like; a nitrophenyl group such as 2, 3 or 4-nitrophenyl; a cyanophenyl group, for example, 2, 3 or 4-cyanophenyl; a mono- or di(alkyl)phenyl group such as 2, 3 or 4-methylphenyl, 2,4-dimethylphenyl, 2, 3 or 4-(iso-propyl)phenyl, 2, 3 or 4-ethylphenyl, 2, 3 or 4-(n-propyl) phenyl and the like; a mono or di(alkoxyl)phenyl group, for example, 2,6-dimethoxyphenyl, 2, 3 or 4-methoxyphenyl, 2, 3 or 4-ethoxyphenyl, 2, 3 or 4-(isopropoxy)phenyl, 2, 3 or 4-(t-butoxy)phenyl, 3-ethoxy-4-methoxyphenyl and the like; 2, 3 or 4-trifluoromethylphenyl; a mono- or dicarboxyphenyl or (protected carboxy)phenyl group such as 2, 3 or 4-carboxyphenyl or 2,4-di(protected carboxy)phenyl; a mono-or di(hydroxymethyl)phenyl or (protected hydroxymethyl) phenyl such as 2, 3, or 4-(protected hydroxymethyl)phenyl or 3,4-di(hydroxymethyl)phenyl; a mono- or di(aminomethyl) phenyl or (protected aminomethyl)phenyl such as 2, 3 or 4-(aminomethyl)phenyl or 2,4-(protected aminomethyl)phenyl; or a mono- or di(N-(methylsulfonylamino))phenyl such as 2, 3 or 4-(N-(methylsulfonylamino))phenyl. Also, the term "substituted phenyl" represents disubstituted phenyl groups wherein the substituents are different, for example, 3-methyl-4-hydroxyphenyl, 3-chloro-4-hydroxyphenyl, 2-methoxy-4-bromophenyl, 4-ethyl-2-hydroxyphenyl, 3-hydroxy-4-nitrophenyl, 2-hydroxy 4-chlorophenyl and the like.

[0025] The term "heteroaryl" means a heterocyclic aromatic derivative which is a five-membered or six-membered ring system having from 1 to 4 heteroatoms, such as oxygen, sulfur and/or nitrogen, in particular nitrogen, either alone or in conjunction with sulfur or oxygen ring atoms. Examples of heteroaryls include pyridinyl, pyrimidinyl, and pyrazinyl, pyridazinyl, pyrrolo, furano, thiopheno, oxazolo, isoxazolo, phthalimido, thiazolo and the like.

[0026] The term "substituted heteroaryl" means the above-described heteroaryl is substituted with, for example, one or more, and preferably one or two, substituents which are the same or different which substituents can be halogen, hydroxy, protected hydroxy, cyano, nitro, C_1 to C_6 alkyl, C_1 to C_7 alkoxy, C_1 to C_7 substituted alkoxy, C_1 to C_7 acyloxy, carboxy, protected carboxy, carboxymethyl, protected carboxymethyl, protected carboxymethyl, protected (monosubstituted) amino, protected hydroxymethyl, amino, protected amino, (monosubstituted) amino, protected (monosubstituted) amino, carboxamide, protected carboxamide, N-(C_1 to C_6 alkyl)carboxamide, protected N-(C_1 to C_6 alkyl)carboxamide, N, N-di(C_1 to C_6 alkyl)carboxamide, trifluoromethyl, N-((C_1 to C_6 alkyl)sulfonyl)amino or N-(phenylsulfonyl)amino groups.

[0027] The term "substituted naphthyl" specifies a naphthyl group substituted with one or more, and preferably one or two, moieties either on the same ring or on different rings chosen from the groups consisting of halogen, hydroxy, protected hydroxy, cyano, nitro, C_1 to C_6 alkyl, C_1 to C_7 alkoxy, C_1 to C_7 acyl, C_1 to C_7 acyloxy, carboxy, protected carboxy, carboxymethyl, protected carboxymethyl, hydroxymethyl, protected hydroxymethyl, amino, protected amino, (monosubstituted)amino, protected (monosubstituted)amino, (disubstituted)amino, carboxamide, protected carboxamide, N-(C_1 to C_6 alkyl)carboxamide, protected N-(C_1 to C_6 alkyl)carboxamide, N, N-di(C_1 to C_6 alkyl)carboxamide, trifluoromethyl, N-((C_1 to C_6 alkyl)sulfonyl)amino or N-(phenylsulfonyl)amino.

[0028] Examples of the term "substituted naphthyl" includes a mono or di(halo)naphthyl group such as 1, 2, 3, 4, 5, 6, 7 or 8-chloronaphthyl, 2, 6-dichloronaphthyl, 2, 5-dichloronaphthyl, 3, 4-dichloronaphthyl, 1, 2, 3, 4, 5, 6, 7 or 8-bromonaphthyl, 3, 4-dibromonaphthyl, 3-chloro-4-fluoronaphthyl, 1, 2, 3, 4, 5, 6, 7 or 8-fluoronaphthyl and the like; a mono or di(hydroxy)naphthyl group such as 1, 2, 3, 4, 5, 6, 7 or 8-hydroxynaphthyl, 2, 4-dihydroxynaphthyl, the protected-hydroxy derivatives thereof and the like; a nitronaphthyl group such as 3- or 4-nitronaphthyl; a cyanonaphthyl group, for example, 1, 2, 3, 4, 5, 6, 7 or 8-cyanonaphthyl; a mono- or di(alkyl)naphthyl group such as 2, 3, 4, 5, 6, 7 or 8-methylnaphthyl, 1, 2, 3, 4, 5, 6, 7 or 8-cisopropyl)naphthyl, 1, 2, 3, 4, 5, 6, 7 or 8-ethylnaphthyl, 1, 2, 3, 4, 5, 6, 7 or 8-(n-propyl)naphthyl and the like; a mono or di(alkoxy)naphthyl group, for example, 2, 6-dimethoxynaphthyl, 1, 2, 3, 4, 5, 6, 7 or 8-methoxynaphthyl, 1, 2, 3, 4, 5, 6, 7 or 8-ethoxynaphthyl, 1, 2, 3, 4, 5, 6, 7 or 8-(isopropoxy)naphthyl, 1, 2, 3, 4, 5, 6, 7 or 8-(t-butoxy)naphthyl, 3-ethoxy-4-methoxynaphthyl and the like; 1, 2, 3, 4, 5, 6, 7 or 8-carboxynaphthyl; a mono-or dicarboxynaphthyl or (protected carboxy)naphthyl group such as 1, 2, 3, 4, 5, 6, 7 or 8-carboxynaphthyl or 2, 4-di(-protected carboxy)naphthyl; a mono-or di(hydroxymethyl)naphthyl or (protected hydroxymethyl)naphthyl or 3, 4-di(hydroxymethyl)naphthyl; a mono- or di(amino)naphthyl or (protected amino)naphthyl such as 1, 2, 3, 4, 5, 6, 7 or 8-(amino)

naphthyl or 2, 4-(protected amino)-naphthyl, a mono- or di(aminomethyl)naphthyl or (protected aminomethyl)naphthyl such as 2, 3, or 4-(aminomethyl)naphthyl or 2, 4-(protected aminomethyl)-naphthyl; or a mono- or di-(N-methylsulfonylamino) naphthyl such as 1, 2, 3, 4, 5, 6, 7 or 8-(N-methylsulfonylamino)naphthyl. Also, the term "substituted naphthyl" represents disubstituted naphthyl groups wherein the substituents are different, for example, 3-methyl-4-hydroxynaphth-1-yl, 3-chloro-4-hydroxynaphth-2-yl, 2-methoxy-4-bromonaphth-1-yl, 4-ethyl-2-hydroxynaphth-1-yl, 3-hydroxy-4-nitronaphth-2-yl, 2-hydroxy-4-chloronaphth-1-yl, 2-methoxy-7-bromonaphth-1-yl, 4-ethyl-5-hydroxynaphth-2-yl, 3-hydroxy-8-nitronaphth-2-yl, 2-hydroxy-5-chloronaphth-1-yl and the like.

[0029] The term " C_1 to C_8 alkyl" denotes such radicals as methyl, ethyl, n-propyl, isopropyl, n-butyl, iso-butyl, secbutyl, tert-butyl, amyl, tert-amyl, hexyl, n-heptyl, 2-heptyl, 3-heptyl, 4-heptyl, 2-methyl-1hexyl, 2-methyl-2hexyl, 2-methyl-3-hexyl, n-octyl and the like.

[0030] The term ${}^{"}C_2$ to C_6 alkenyl ${}^{"}$ denotes such radicals as propenyl or butenyl.

30

50

[0031] Examples of the above substituted alkyl groups include the 2-oxo-prop-1-yl, 3-oxo-but-1-yl, cyanomethyl, nitromethyl, chloromethyl, hydroxymethyl, tetrahydropyranyloxymethyl, trityloxymethyl, propionyloxymethyl, amino, methylamino, aminomethyl, dimethylamino, carboxymethyl, allyloxycarbonylmethyl, allyloxycarbonylaminomethyl, methoxymethyl, ethoxymethyl, t-butoxymethyl, acetoxymethyl, chloromethyl, bromomethyl, iodomethyl, trifluoromethyl, 6-hydroxyhexyl, 2,4-dichloro(n-butyl), 2-aminopropyl, 1-chloroethyl, 2-chloroethyl, 1-bromoethyl, 2-chloroethyl, 1-fluoroethyl, 2-iodoethyl, 1-chloropropyl, 2-chloropropyl, 3- chloropropyl, 1-bromopropyl, 2-bromopropyl, 3-bromopropyl, 1-fluoropropyl, 2-fluoropropyl, 3-fluoropropyl, 3-iodopropyl, 2-aminoethyl, 1- aminoethyl, N-benzoyl-2-aminoethyl, N-acetyl-2-aminoethyl, N-benzoyl-1-aminoethyl, N-acetyl-1-aminoethyl, allyloxycarbonyl, 3-oxo-but-1-yl, cyanomethyl, chloromethyl, trityloxymethyl, trityloxymethyl, trityloxymethyl, trityloxymethyl, trityloxymethyl, nethyl, nethy

[0032] The term " C_1 to C_8 substituted alkyl" denotes that the above C_1 to C_8 alkyl groups are substituted by one or more, and preferably one or two, halogen, hydroxy, protected hydroxy, oxo, protected oxo, C_3 to C_7 cycloalkyl, naphthyl, amino, protected amino, (monosubstituted)amino, protected (monosubstituted)amino, (disubstituted)amino, guanidino, protected guanidino, heterocyclic ring, substituted heterocyclic ring, imidazolyl, indolyl, pyrrolidinyl, C_1 to C_7 alkoxy, C_1 to C_7 acyloxy, nitro, carboxy, protected carboxy, carbamoyl, carboxamide, protected carboxamide, N-(C_1 to C_6 alkyl)carboxamide, protected N-(C_1 to C_6 alkyl)carboxamide, N-di(C_1 to C_6 alkyl)carboxamide, cyano, methylsulfonylamino, thiol, C_1 to C_4 alkylthio or C_1 to C_4 alkylsulfonyl groups. The substituted alkyl groups may be substituted once or more, and preferably once or twice, with the same or with different substituents.

[0033] The term " C_7 to C_{12} phenylalkyl" denotes a C_1 to C_6 alkyl group substituted at any position by a phenyl, substituted phenyl, heteroaryl or substituted heteroaryl. Examples of such a group include benzyl, 2-phenylethyl, 3-phenyl(n-propyl), 4-phenylhexyl, 3-phenyl(n-amyl), 3-phenyl(sec-butyl) and the like. Preferred C_7 to C_{12} phenylalkyl groups are the benzyl and the phenylethyl groups.

The term C_7 to C_{12} substituted phenylalkyl denotes a C_7 to C_{12} phenylalkyl group substituted on the C_1 to C_6 alkyl portion with one or more, and preferably one or two, groups chosen from halogen, hydroxy, protected hydroxy, oxo, protected oxo, amino, protected amino, (monosubstituted)amino, protected (monosubstituted)amino, (disubstituted) amino, guanidino, protected guanidino, heterocyclic ring, substituted heterocyclic ring, C₁ to C₆ alkyl, C₁ to C₆ substi $tuted\ alkyl,\ C_1\ to\ C_7\ alkoxy,\ C_1\ to\ C_7\ acyl,\ C_1\ to\ C_7\ acyl,\ C_1\ to\ C_7\ acyloxy,\ nitro,$ carboxy, protected carboxy, carbamoyl, carboxamide, protected carboxamide, N-(C1 to C6 alkyl)carboxamide, protect $ed \ N-(C_1 \ to \ C_6 \ alkyl) carboxamide, \ N, \ N-(C_1 \ to \ C_6 \ dialkyl) carboxamide, \ cyano, \ N-(C_1 \ to \ C_6 \ alkyl) amino, \ thiol, \ normalized the substitution of the$ C₁ to C₄ alkylthio, C₁ to C₄ alkylsulfonyl groups; and/or the phenyl group may be substituted with one or more, and preferably one or two, substituents chosen from halogen, hydroxy, protected hydroxy, cyano, nitro, C₁ to C₆ alkyl, C₁ to C_6 substituted alkyl, C_1 to C_7 alkoxy, C_1 to C_7 substituted alkoxy, C_1 to C_7 acyl, C_1 to C_7 substituted acyl, C_1 to C_7 acyloxy, carboxy, protected carboxy, carboxymethyl, protected carboxymethyl, hydroxymethyl, protected hydroxymethyl, amino, protected amino, (monosubstituted)amino, protected (monosubstituted)amino, (disubstituted)amino, carboxamide, protected carboxamide, N-(C₁ to C₆ alkyl) carboxamide, protected N-(C₁ to C₆ alkyl) carboxamide, N, N-di $(C_1 \text{ to } C_6 \text{ alkyl})$ carboxamide, trifluoromethyl, N- $((C_1 \text{ to } C_6 \text{ alkyl})$ sulfonyl)amino, N-(phenylsulfonyl)amino, cyclic $C_2 \text{ to } C_6 \text{ alkyl}$ C₇ alkylene or a phenyl group, substituted or unsubstituted, for a resulting biphenyl group. The substituted alkyl or phenyl groups may be substituted with one or more, and preferably one or two, substituents which can be the same or different.

[0034] Examples of the term "C₇ to C₁₂ substituted phenylalkyl" include groups such as 2-phenyl-1-chloroethyl, 2-(4-methoxyphenyl)ethyl, 4-(2,6-dihydroxy phenyl)n-hexyl, 2-(5-cyano-3-methoxyphenyl)n-pentyl, 3-(2,6-dimethyl-phenyl)n-propyl, 4-chloro-3-aminobenzyl, 6-(4-methoxyphenyl)-3-carboxy(n-hexyl), 5-(4-aminomethylphenyl)-3-(aminomethyl)n-pentyl, 5-phenyl-3-oxo-n-pent-1-yl and the like.

[0035] The term "heterocycle" or "heterocyclic ring" denotes optionally substituted five-membered to eight-membered rings that have 1 to 4 heteroatoms, such as oxygen, sulfur and/or nitrogen, in particular nitrogen, either alone or in conjunction with sulfur or oxygen ring atoms. These five-membered to eight-membered rings may be saturated, fully unsaturated or partially unsaturated, with fully saturated rings being preferred. Preferred heterocyclic rings include morpholino, piperidinyl, piperazinyl, 2-amino-imidazoyl, tetrahydrofurano, pyrrolo, tetrahydrothiophen-yl, hexylmethyl-

eneimino and heptylmethyleneimino.

50

[0036] The term "substituted heterocycle" or "substituted heterocyclic ring" means the above-described heterocyclic ring is substituted with, for example, one or more, and preferably one or two, substituents which are the same or different which substituents can be halogen, hydroxy, protected hydroxy, cyano, nitro, C_1 to C_{12} alkyl, C_1 to C_{12} alkoxy, C_1 to C_{12} substituted alkoxy, C_1 to C_{12} acyl, C_1 to C_{12} acyloxy, carboxy, protected carboxy, carboxymethyl, protected carboxymethyl, hydroxymethyl, protected hydroxymethyl, amino, protected amino, (monosubstituted)amino, protected (monosubstituted)amino, (disubstituted)amino carboxamide, protected carboxamide, N-(C_1 to C_{12} alkyl)carboxamide, protected N-(C_1 to C_{12} alkyl)carboxamide, N, N-di(C_1 to C_{12} alkyl)carboxamide, trifluoromethyl, N-((C_1 to C_{12} alkyl) sulfonyl)amino, N-(phenylsulfonyl)amino, heterocycle or substituted heterocycle groups.

[0037] The term " C_1 to C_8 alkoxy" as used herein denotes groups such as methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, t-butoxy and like groups. A preferred alkoxy is methoxy. The term " C_1 to C_8 substituted alkoxy" means the alkyl portion of the alkoxy can be substituted in the same manner as in relation to C_1 to C_8 substituted alkyl.

[0038] The term ${}^{\circ}C_1$ to C_8 aminoacyl encompasses groups such as formyl, acetyl, propionyl, butyryl, pentanoyl, pivaloyl, hexanoyl, heptanoyl, octanoyl, benzoyl and the like.

[0039] The term " C_1 to C_8 substituted aminoacyl" denotes the acyl group substituted by one or more, and preferably one or two, halogen, hydroxy, protected hydroxy, oxo, protected oxo, cyclohexyl, naphthyl, amino, protected amino, (monosubstituted)amino, protected (monosubstituted)amino, (disubstituted)amino, guanidino, heterocyclic ring, substituted heterocyclic ring, imidazolyl, indolyl, pyrrolidinyl, C_1 to C_{12} alkoxy, C_1 to C_{12} acyl, C_1 to C_{12} acyloxy, nitro, C_1 to C_{12} alkyl ester, carboxy, protected carboxy, carbamoyl, carboxamide, protected carboxamide, N-(C_1 to C_{12} alkyl)carboxamide, protected C_1 0 alkylthio or C_1 1 to C_1 2 alkyl)carboxamide, C_1 1 to C_1 3 alkylthio or C_1 4 to C_1 5 alkylsulfonyl groups. The substituted acyl groups may be substituted once or more, and preferably once or twice, with the same or with different substituents.

[0040] Examples of C₁ to C₈ substituted acyl groups include 4-phenylbutyroyl, 3-phenylbutyroyl, 3-phenylpropanoyl, 2-cyclohexanylacetyl, cyclohexanecarbonyl, 2-furanoyl and 3-dimethylaminobenzoyl.

[0041] This invention also provides a pharmaceutical composition comprising an effective amount of a compound according to the invention. Such pharmaceuticals compositions can be administered by various routes, for example oral, subcutaneous, intramuscular, intravenous or intracerebral. The preferred route of administration would be oral at daily doses of the compound for adult human treatment of about 0.01-5000 mg, preferably 1-1500 mg per day. The appropriate dose may be administered in a single dose or as divided doses presented at appropriate intervals for example as two, three four or more subdoses per day.

[0042] For preparing pharmaceutical compositions containing compounds of the invention, inert, pharmaceutically acceptable carriers are used. The pharmaceutical carrier can be either solid or liquid. Solid form preparations include, for example, powders, tablets, dispersible granules, capsules, cachets, and suppositories.

[0043] A solid carrier can be one or more substances which can also act as diluents, flavoring agents, solubilizers, lubricants, suspending agents, binders, or tablet disintegrating agents; it can also be an encapsulating material.

[0044] In powders, the carrier is generally a finely divided solid which is in a mixture with the finely divided active component. In tablets, the active compound is mixed with the carrier having the necessary binding properties in suitable proportions and compacted in the shape and size desired.

[0045] For preparing pharmaceutical composition in the form of suppositories, a low-melting wax such as a mixture of fatty acid glycerides and cocoa butter is first melted and the active ingredient is dispersed therein by, for example, stirring. The molten homogeneous mixture is then poured into convenient-sized molds and allowed to cool and solidify.

[0046] Powders and tablets preferably contain between about 5% to about 70% by weight of the active ingredient, preferably comprising (especially consisting of) one or more of the compounds according to this invention. Suitable carriers include, for example, magnesium carbonate, magnesium stearate, talc, lactose, sugar, pectin, dextrin, starch, tragacanth, methyl cellulose, sodium carboxymethyl cellulose, a low-melting wax, cocoa butter and the like.

[0047] The pharmaceutical compositions can include the formulation of the active compound with encapsulating material as a carrier providing a capsule in which the active component (with or without other carriers) is surrounded by a carrier, which is thus in association with it. In a similar manner, cachets are also included. Tablets, powders, cachets, and capsules can be used as solid dosage forms suitable for oral administration.

[0048] Liquid pharmaceutical compositions include, for example, solutions suitable for oral or parenteral administration, or suspensions, and emulsions suitable for oral administration. Sterile water solutions of the active component or sterile solutions of the active component in solvents comprising water, ethanol, or propylene glycol are examples of liquid compositions suitable for parenteral administration.

[0049] Sterile solutions can be prepared by dissolving the active component in the desired solvent system, and then passing the resulting solution through a membrane filter to sterilize it or, alternatively, by dissolving the sterile compound in a previously sterilized solvent under sterile conditions.

[0050] In a preferred embodiment of the invention in the compounds claimed, or the pharmaceutical acceptable salts or solvates thereof, R_1 , R_3 and R_4 are H, R_2 is halogen and preferably iodine over bromine and chlorine and R_5 is H,

 C_1 to C_8 alkyl or C_1 to C_8 substituted alkyl. [0051] For the six preferred compounds as shown in formulae (XIII), (XII), (X), (IX), (VII), and (IV) below it was demonstrated that these compounds may act as a full or partial agonist of LXR

Formula (XIII); MOLNAME LN7181

Formula (XII); MOLNAME LN7179

Formula (X); MOLNAME LN7172

(X)

Formula (IX); MOLNAME LN6672

Formula (VII); MOLNAME LN7031

Formula (IV); MOLNAME LN7033

50

55

(IV)

[0052] It has also been found that the compound according to formula (IV) (MOLNAME LN7033) to be active as partial agonist of the LXR human nuclear receptors with a selective upregulation of the target genes ABCA1 and ABCG1 in THP-1 cells compared to FAS and SREBP-1c in HepG2 cells (see also Fig. 8A and 8B).

[0053] Furthermore, the present invention includes compounds of the following formula: Formula (V), MOLNAME LN7025

20

25

30

5

10

(V)

Formula (VI), MOLNAME LN7184

35

40

45

50

(VI)

Formula (VIII); MOLNAME LN7032

(VIII)

Formula (XI); MOLNAME LN7174

5

15

35

40

45

50

55

20 25 30 (XI)

[0054] In particular the invention relates to a compound as described above wherein said compounds is capable of binding the LXR receptor protein or a portion thereof encoded by a nucleic acid according to SEQ ID NO:1 or NO:2 (Fig. 3) or a mammalian homologue thereof. This compound can bind to the LXR receptor protein or a portion thereof in a mixture comprising 10-200 ng of LXR receptor protein, a fusion protein containing LXR or a portion thereof, preferably the ligand binding domain, fused to a Tag, 5-100 mM Tris/HCl at pH 6,8-8,3; 60-1000 mM KCl; 0-20 mM MgCl2; 100-1000ng/μl BSA in a total volume of preferably about 25 μl).

[0055] A mammalian receptor protein homologue of the protein encoded by a nucleic acid according to SEQ ID NO: 1 or 2, as used herein is a protein that performs substantially the same task as LXR does in humans and shares at least 40% sequence identity at the amino acid level, preferably over 50 % sequence identity at the amino acid level more preferably over 65 % sequence identity at the amino acid level, even more preferably over 75 % sequence identity at the amino acid level and most preferably over 85 % sequence identity at the amino acid level.

[0056] The invention in particular concerns a method for prevention or treatment of a LXR receptor protein or LXR receptor protein homologue mediated disease or condition in a mammal comprising administration of a therapeutically effective amount of a compound according to the invention wherein the prevention or treatment is directly or indirectly accomplished through the binding of a compound according to the invention to the LXR receptor protein or to the LXR receptor protein homologue.

[0057] The term mediated herein means that the physiological pathway in which the LXR receptor protein acts is either directly or indirectly involved in the disease or condition to be treated or prevented. In the case where it is indirectly involved it could be that, e.g. modulating the activity of LXR by a compound according to the invention influences a parameter which has a beneficial effect on a disease or a condition. One such example is that modulation of LXR activity leads to decreased levels of serum cholesterol or certain lipoproteins which in turn have a beneficial effect on the prevention and treatment of atherosclerosis. Herein a condition is a physiological or phenotypic state which is desirably altered. One such example would be obesity which is not necessarily medically harmful but nonetheless a non desirable phenotypic condition. In a preferred embodiment of the invention the method for prevention or treatment of a LXR receptor protein mediated disease or condition is applied to a human. This may be male or female.

[0058] Pharmaceutical compositions generally are administered in an amount effective for treatment or prophylaxis of a specific condition or conditions. Initial dosing in human is accompanied by clinical monitoring of symptoms, such symptoms for the selected condition. In general, the compositions are administered in an amount of active agent of at least about 100 μ g/kg body weight. In most cases they will be administered in one or more doses in an amount not in excess of about 20 mg/kg body weight per day. Preferably, in most cases, doses is from about 100 μ g/kg to about 5 mg/kg body weight, daily.

[0059] For administration particularly to mammals, and particularly humans, it is expected that the daily dosage level of active agent will be 0,1 mg/kg to 10 mg/kg and typically around 1 mg/kg.

[0060] By "therapeutically effective amount" is meant a symptom-alleviating or symptom-reducing amount, a cholesterol-reducing amount, a cholesterol absorption blocking amount, a protein and/or carbohydrate digestion-blocking amount and/or a de novo cholesterol biosynthesis-blocking amount of a compound according to the invention.

10

30

35

40

45

50

[0061] Likewise the invention concerns a method of treating in mammal a disease which is correlated with abnormal cholesterol, triglyceride, or bile acid levels or deposits comprising administering to a mammal in need of such treatment a therapeutically effective amount of a compound according to the invention.

[0062] Accordingly, the compounds according to the invention may also be used in a method of prevention or treatment of mammalian atherosclerosis, gallstone disease, lipid disorders, Alzheimer's disease, skin disorders, inflammation, obesity or cardiovascular disorders such as coronary heart disease or stroke.

[0063] The invention further concerns a method of blocking in a mammal the cholesterol absorption in the intestine in need of such blocking comprising administering to a mammal in need of such treatment a therapeutically effective amount of a compound according to the invention. The invention may also be used to treat obesity in humans.

[0064] The Liver X Receptor alpha is a prototypical type 2 nuclear receptor meaning that it activates genes upon binding to the promoter region of target genes in a heterodimeric fashion with Retinoid X Receptor. The relevant physiological ligands of LXR are oxysterols. The compounds have been demonstrated to have a high binding efficacy (binding coefficients measured as EC50 in the range of $1-5\,\mu\text{M}$) as well as agonistic and/or partial agonistic properties. Consequently they may be applied to regulate genes that participate in bile acid, cholesterol and fatty acid homeostasis as well as other downstream regulated genes. Examples of such genes are but are not limited to lipid absorption, cholesterol biosynthesis, cholesterol transport or binding, bile acid transport or binding, proteolysis, amino acid metabolism, glucose biosynthesis, protein translation, electron transport, and hepatic fatty acid metabolism. LXR often functions in vivo as a heterodimer with the Retinoid X Receptor. Published non-steroidal LXR agonists such as the "Tularik" compound "TO901317" (see figure 5) are known to influence the regulation of various liver genes. Genes found to be regulated by T0901317 can be found in figure 6. Thus, the invention also concerns a method of modulating a gene whose expression is regulated by the LXR receptor in a mammal comprising administration of a therapeutically effective amount of a compound according to the invention to said mammal.

[0065] A number of direct and indirect LXR target genes have been described whose regulated expression contributes to cholesterol homeostasis and lipogenesis. In this respect the direct regulation of Cyp7A, which was shown to be a direct target gene of LXR at least in the rodent lineage is an important aspect of cholesterol removal by increased metabolism of bile acids (Lehmann et al., J Biol.Chem. 272 (6) 3137-3140; 1007). Gupta et al. (Biochem. Biophys Res. Com, 293; 338-343, 2002) showed that LXR α regulation of Cyp7A is dominant over FXR inhibitory effects on Cyp7A transcription.

[0066] A key transcription factor that was also shown to be a direct target gene for the LXR receptor is SREBP-1 C (Repa et al., Genes and Development, 14:2819-2830; 2000: Yoshikawa et al.; Mol.Cell.Biol.21 (9) 2991-3000, 2001). SREBP-1 C itself activates transcription of genes involved in cholesterol and fatty acid synthesis in liver but also other mammalian tissues. Some of the SREBP1c target genes involved in lipogenesis like FAS and SCD have shown to be additionally direct targets of the LXR receptors (Joseph et al.; J Biol Chem. 2002 Mar 29;277(13):11019-25; Liang et al., J Biol Chem. 2002 Mar 15;277(11):9520-8.).

[0067] A primary limitation for the applicability of LXR agonists as e.g. anti-atherosclerotic drugs comes from the observation that compounds with full agonistic activity, e.g. T0901317, not only elevate HDL cholesterol levels but do also increase plasma triglyceride levels in mice (Schultz et al., 2000 Genes Dev. 14:2831-8.). Concommitantly, not only genes that are involved in cholesterol efflux such as the cholesterol transporter ABCA1 (Venkateswaran et al., 2000 PNAS. 97:12097-102.), ABCG1 as well as the lipid binding protein Apoliprotein E (Laffite et al. 2001 PNAS 98: 507-512) are induced by full LXR agonists, but also genes involved in lipogenesis, including the fatty acid synthase FAS (Joseph et al 2002 J Biol Chem. 277:11019-11025), and SREB P-1c (Yoshikawa et al., 2001 Mol Cell Biol. 21: 2991-3000). Elevation of serum triglyceride levels is an indendent risk factor for atherosclerosis (for review see Miller, 1999). Thus, LXR activity needs to be selectively modulated for therapeutic benefit. In particular, compounds need to be found that stimulate reverse cholesterol transport, but do not significantly increase trigclyceride levels.

[0068] Another gene that has been shown to be directly regulated by LXRs is the LPL gene, that codes for a key enzyme that is responsible for the hydrolysis of triglycerides in circulating lipoprotein, releasing free fatty acids to peripheral tissues. (Zhang et al. J Biol Chem. 2001 Nov 16;276(46):43018-24.) This enzyme is believed to promote

uptake of HDL cholesterol in liver, thereby promoting reverse cholesterol transport. A similar functional involvement in HDL clearance is described for the CETP gene product that facilitated the transfer of HDL cholesterol esters from plasma to the liver. LXR response elements were found in the CETP promoter and direct activation of this gene by LXR was demonstrated (Luo and Tall; J Clin Invest. 2000 Feb;105(4):513-20.).

[0069] The regulated transport of cholesterol through biological membranes is an important mechanism in order to maintain cholesterol homeostasis. A pivotal role in these processes in multiple tissues like e.g. macrophages and intestinal mucosa cells is maintained by the ATP-binding cassette transporter proteins (ABC). ABCA1 and ABCG1 were identified as direct LXR target genes (Costet et al.; J Biol Chem. 2000 Sep 8;275(36):28240-5) that mediate cholesterol efflux and prevent thereby e.g. generation of artherogenic plaques in macrophages (Singaraja et al. J Clin Invest. 2002 Jul;110(1):35-42). Other ABC transporters like ABCG5 and ABCG8, primarily expressed in hepatocytes and enterocytes have also been reported to be directly responsive to LXR agonists (Repa et al., J Biol Chem. 2002 May 24;277(21):18793-800. Kennedy et al., J Biol Chem. 2001 Oct 19;276(42):39438-47) and mediate the secretion of sterols from the liver and efflux of dietary sterols from the gut. Apolipoproteins E, C-I, C-II, and C-IV, that fulfill important roles in lipoprotein/lipid homeostasis have also been shown to be direct targets of the LXR receptor (Laffitte et al., Proc Natl Acad Sci U S A. 2001 Jan 16;98(2):507-12; Mak et al.; J Biol Chem. 2002 May 24 [epub ahead of print]). These proteins have been found to be crucial components of chylomicrons, VLDL, IDL, and HDL and are among other things associated with hypertriglyceridemia and arteriosclerosis.

10

30

35

40

45

50

55

[0070] Recently the LXR α itself was shown to be regulated by both LXR receptors in human cell types including macrophages suggesting an autoregulatory amplification event in the response to LXR ligands which could e.g. lead to an enhanced stimulation of LXR target genes like e.g. ABCA1 (Bolten et al.; Mol Endocrinol. 2002 Mar;16(3):506-14.; Laffitte et al., Mol Cell Biol. 2001 Nov;21 (22):7558-68; Whitney et al.; J Biol Chem. 2001 Nov 23;276(47):43509-15). [0071] Besides the important function of LXR receptors in tissues like liver and macrophages it has recently been reported that that stimulation of epidermal differentiation is mediated by Liver X receptors in murine epidermis. Differentiation maker genes like involucrin, loricin and profilaggrin have been shown to be upregulated upon LXR ligand treatment (Kömüves et al.; J Invest Dermatol. 2002 Jan;118(1):25-34.).

[0072] Another recent report describes the regulation of cholesterol homeostasis (primarily the regulation of ABCA1, ABCG1 and SREBP-1C) by the LXR receptors in the central nervous system suggesting that LXRs may prove benefical in the treatment of CNS diseases such as Alzheimer's and Niemann-Pick disease that are known to be accompanied by dysregulation of cholesterol balance (Whitney et al.; Mol Endocrinol. 2002 Jun;16(6):1378-85).

[0073] Activation of LXR by an agonist improves glucose tolerance in a murine model of diet-induced obesity and insulin resistance. Gene expression analysis in LXR agonist-treated mice reveals coordinate regulation of genes involved in glucose metabolism in liver and adipose tissue, e.g. the down-regulation of peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1), phosphoenolpyruvate carboxykinase (PEPCK), and glucose-6-phosphatase expression and induction of glucokinase in liver. In adipose tissue, activation of LXR led to the transcriptional induction of the insulin-sensitive glucose transporter, GLUT4. LXR agonist may limit hepatic glucose output and improve peripheral glucose uptake (Laffitte et al. (2003) PNAS 100:5419-24).

[0074] Therefore one other important embodiment of the invention concerns methods that enhances or suppresses amongst other today yet unknown LXR target genes the above mentioned genes and the associated biological processes and pathways through LXR compounds that are subject of this invention.

[0075] The compounds according to the invention may be used as medicaments, in particular for the manufacture of a medicament for the prevention or treatment of a LXR receptor protein or LXR receptor protein homologue mediated disease or condition in a mammal wherein the prevention or treatment is directly or indirectly accomplished through the binding of the compound according to the invention to the LXR receptor protein or LXR receptor protein homologue. These pharmaceutical compositions contain 0,1 % to 99,5 % of the compound according to the invention, more particularly 0,5 % to 90 % of the compound according to the invention in combination with a pharmaceutically acceptable carrier.

[0076] The invention concerns also the use of a compound according to the invention for the manufacture of a medicament for the prevention or treatment of a LXR receptor protein mediated disease or condition wherein the mammal described above is a human. The medicament may be used for regulating the cholesterol transport system, for regulating levels of cholesterol, triglyceride, and/or bile acid in a mammal preferentially a human by activating the LXR receptor. The medicament may be used for the treatment of atherosclerosis, gallstone disease, lipid disorders, Alzherimer's disease, skin disorders, obesity or a cardiovascular disorder.

[0077] The invention further concerns the use of a compound according to the invention for the manufacture of a medicament capable for blocking in a mammal, preferentially in a human the cholesterol absorption in the intestine. Further the claimed compound may be used for the manufacture of a medicament for treating obesity in humans and for modulating a gene whose expression is regulated by the LXR receptor (see details above and figures).

EXAMPLES

EXAMPLE 1

[0078] In vitro screening for compounds which influence LXR binding to coactivators.

[0079] For screening purposes a GST and 6 x His fusion of the LBD (from amino acids 155 of hLXRalpha to 447) of human LXRalpha is constructed by first cloning a Gateway cassette (Invitrogen) in frame into the Sma I site of the pAGGHLT Polylinker (Pharmingen). Then a PCR fragment specifically amplified from human liver cDNA is cloned into the resulting pACGHLT-GW following the manufacturers instructions for Gateway cloning (Invitrogen) to yield pACGHLT-GW-hLXRalphaLBD.

Primers used for Amplification are:

GGGGACAAGTTTGTACAAAAAAGCAGGCTCGCTTCGCAAATGCCGTCAG

and

GGGGACCACTTTGTACAAGAAAGCTGGGTCCCCTTCTCAGTCTGTTCCACTT.

20

30

35

40

45

50

55

10

15

100 % sequence integrity of all recombinant products is verified by sequencing. Recombinant Baculovirus is constructed from pACGHLT-GW-hLXRalphaLBD using the Pharmingen Baculovirus Expression vector system according to instructions of the manufacturer. Monolayer cultures of SF9 cells are infected by the virus as recommended by Pharmingen or 200ml cultures of 1 x10⁶ cells/ml grown in 2 liter Erlenmeyer flasks on an orbital shaker at 30 rpm are infected by 10ml of same virus stock. In both cases cells are harvested 3 days after infection. All cell growth is performed in Gibco SF900 II with Glutamine (Invitrogen) medium without serum supplementation at 28°C. Since SF9 cells contain significant amounts of endogenous GST, purification is performed via His and not via GST affinity chromatography. To this end instructions of Pharmingen for purification of recombinant His tagged proteins from SF9 cells are followed with the following modifications: All detergents are omitted from the buffers and cells were lysed on ice by 5 subsequent sonication pulses using a sonicator needle at maximum power. All eluates are dialyzed against 20 mM Tris/HCI pH 6,8, 300 mM KCI; 5 mM MgCl₂; 1 mM DTT; 0,2 mM PMSF; 10% Glycerol. A typical dialyzed eluate fraction contains the fusion protein at a purity of more than 80%. Total protein concentration is 0,1-0,3 mg/ml.

For E. coli expression of a NR coactivator, pDest17-hTif2BD expressing a NR interaction domain from amino acids 548-878 of human Tif2 (Acc. No: XM_011633 RefSeq) tagged by 6 N-terminal His residues is constructed. Therefore, a PCR fragment specifically amplified from human liver cDNA is subcloned into pDest 17 (Invitrogen) following the manufacturers instructions for Gateway cloning (Invitrogen). Primers used for Amplification are:

GGGGACAAGTTTGTACAAAAAAGCAGGCTCGTTAGGGTCATCGTTGGCTTCACC

and

GGGGACCACTTTGTACAAGAAAGCTGGGTCTCAAAGTTGCCCTGGTCGTGGGT TA

For E.

For E. coli expression plasmid DNA is transformed into chemically competent E. coli BL21 (Invitrogen, USA) and cells are grown to an OD600 of 0.4-0.7 before expression was induced by addition of 0,5 mM IPTG according instructions of the manufacturer (Invitrogen). After induction for 8 hours at 30°C cells are harvested by centrifugation for 10 minutes at 5000 x g. Fusion proteins are affinity purified using Ni-NTA Agarose (QIAGEN) according to the instructions of the manufacturer. Recombinant Tif2 construct is dialyzed against 20 mM Tris/HCL pH 7.9; 60 mM KCl; 5 mM MgCl₂; 1 mM DTT, 0,2 mM PMSF; 10% glycerol. A typical dialyzed eluate fraction contains the fusion protein at a purity of more than 80%. Total protein concentration is 0,1-0,3 mg/ml.

The TIF2 fragment is subsequently biotinylated by addition of 5-40µl/ml Tif2 fraction of a Biotinamidocaproate N-Hydroxysuccinimide-ester (Sigma) solution (20 mg/ml in DMSO). Overhead rotating samples are incubated for 2 hours at room temperature. Unincorporated label is then separated using G25 Gel filtration chromatography (Pharmacia Biotech, Sweden). Protein containing fractions from the column are pooled and tested for activity in the assay as

described below.

[0080] For screening of compound libraries as provided for by the methods shown below in the examples for substances which influence the LXR/Tif 2 interaction, the Perkin Elmer LANCE technology is applied. This method relies on the binding dependent energy transfer from a donor to an acceptor fluorophore attached to the binding partners of interest. For ease of handling and reduction of background from compound fluorescence LANCE technology makes use of generic fluorophore labels and time resoved detection (for detailed description see Hemmilä I, Blomberg K and Hurskainen P, Time-resolved resonance energy transfer (TR-FRET) principle in LANCE, Abstract of Papers Presented at the 3 rd Annual Conference of the Society for Biomolecular Screening, Sep., California (1997))

For screening, 20-200 ng of biotinylated Tif 2 fragment and 10-200 ng of GST-LXR fragment are combined with 0.5-2 nM LANCE Eu-(W1024) labelled anti-GST antibody (Perkin Elmer) and 0,1-0,5 μ g of highly fluorescent APC-labelled streptavidin (Perkin Elmer, AD0059) in the presence of 50 μ M of individual compounds to be screened in a total volume of 25 μ l of 20 mM Tris /HCl pH 6,8; 300 mM KCl; 5 mM MgCl2; 100-1000 ng/ μ l/ BSA DMSO content of the samples is kept below 4%. Samples are incubated for a minimum of 60 minutes in the dark at room temperature in FIA-Plates black 384well med. binding (Greiner).

[0081] The LANCE signal is detected by a Perkin Elmer VICTOR2V™ Multilabel Counter applying the detection parameters listed in Fig. 2. The results are visualized by plotting the ratio between the emitted light at 665 nm and at 615 nm. For every batch of recombinant proteins amount of proteins, including BSA and labeling reagents giving the most sensitive detection of hits is determined individually by analysis of dose response curves for 22R Hydroxycholesterol and TO 901317

EXAMPLE 2

10

25

30

35

40

45

55

[0082] Experimental procedure for the preparation of the compounds according to the invention.

o-AZIDOBENZOIC ACID SYNTHESIS (2)

[0083] The anthranilic acid (1, 1 eq., 0.5-1 M) is suspended in 6 M HCl, containing enough AcOH (0-20% dependent upon the anthranilic acid) to facilitate dissolution of the anthranilic acid and/or the intermediate diazonium salt, and cooled to 0 °C. NaNO $_2$ (1.1 eq., 1.3-2.5 M) dissolved in H $_2$ O is added to the anthranilic acid solution at a rate such that the temperature of the reaction solution remains below 5 °C. The resulting homogeneous solution of the diazonium salt is slowly filtered through a sintered glass funnel into a solution of NaN $_3$ (1.1 eq., 0.7-1.1 M) and NaOAc (12 eq.) in H $_2$ O. The reaction mixture is stirred/shaken for 30-60 min following cessation of vigorous N $_2$ evolution. Following acidification of the reaction mixture to pH 1 with concentrated HCl, the mixture was cooled to 0 °C to encourage complete precipitation of the o-azidobenzoic acid. The precipitate is collected by filtration and washed with 6 M HCl (2x) and H $_2$ O (2x). The o-azidobenzoic acid product (2) is dried *in vacuo* (500 mtorr, 30°C).

ACYLATION OF HYDROXYMETHYL RESIN (4)

[0084] To hydroxymethyl resin (1.0 eq., 1.3 mmol/g) and the *o*-azidobenzoic acid (1, 2.5 eq.) is added DMF (to give 400 mM *o*-azidobenzoic acid ,1), CsCO₃ (2.0 eq.) and Kl (2.0 eq.). Following agitation of the reaction mixture for 36-48 h, the resin-bound *o*-azidobenzoic acid (4) is washed with MeOH (2 cycles), CH₂Cl₂ (3 cycles), MeOH (3 cycles), DMF (3 cycles), MeOH (3 cycles) and CH₂Cl₂ (3 cycles), and dried *in vacuo*.

AZA-WITTIG FORMATION (5)

[0085] To the resin-bound o-azidobenzoic acid (4,1.0 eq.) is added a solution of PPh₃ (THF, 500 mM, 5.0 eq.). After 6 h, the resin is washed with 3 cycles of the following: THF (3 cycles), toluene (3 cycles), CH₂Cl₂ (3 cycles) and hexanes (3 cycles). Followed by drying *in vacuo* to afford resin bound iminophosphorane (5)

50 CARBODIIMIDE FORMATION (6)

[0086] To the resin-bound iminophosphorane (5, 1 eq.) is added isocyanate (9, 5 eq., 450 mM) dissolved in CICH₂CH₂CI. The compounds are shaken at ambient temperature for 16 h, washed with 3 cycles of the following: THF (3 cycles), toluene (3 cycles), CH₂CI₂ (3 cycles) and hexanes (3 cycles), and dried *in vacuo* to afford carbodiimide (6).

GUANIDINE FORMATION / CYCLIZATION

[0087] To the carbodiimide functionalized resin (6) is added secondary amine (10, 0.6 eq., 500 mM) dissolved in

CICH₂CH₂CI. The reaction mixture is heated to 50 °C in an incubator for 12-72 h to afford 2-aminoquinazoline (8). **[0088]** All of the final products are analyzed using an Evaporative Light Scattering Detector (ELSD) detection to determine purity.

5 EXAMPLE 3

10

25

30

35

40

45

50

55

[0089] This example illustrates that compounds according to the invention (experiments shown were done with MOL-STRUCTURE LN0000007033 (see formulas (9)) activate luciferase reporter gene expression in a dose dependent manner mediated through GAL4-LXRa-LBD or GAL4-LXRb-LBD constructs in HEK293 cells. LN0000007033 does activate LXR beta LBD truct mediated luciferase activity much stronger than with LXR alpha construct which is in contrast to the similar activation of both LXR alpha and LXR beta LBD containing constructs with T0901317 (see Fig. 7). [0090] HEK293 cells are grown in 96 well plates and co-transfected with pFR-luc (Stratagene) and pC-MV-BD-LXRa-LBD or pCMV-BD-LXRb-LBD (each 100 ng of plasmid DNA per well). Transfection is carried using Lipfectamine 2000 (Gibco-BRL) according to the manufacturers protocol. The ligand binding domains (LBD) of LXRa and LXRb are cloned into the pCMV-BD-GW (the Gateway Reading Frame Cassette B is cloned as an EcoRV fragment into Smal site of pCMV-BD) applying the manufacturer protocols for the Gateway™ system (Invitrogen). Luciferase reporter activity is measured in triplicates from extracts of cells after incubating cells in culture medium (DMEM [Gibco-BRL] + 10% FCS [PAA laboratories]) for 16 hours (5% CO₂, 37°C) containing 0,5% DMSO (control) or 0,5% DMSO with increasing concentrations of LN0000007033. The type of assay used here is a mammalian one hybrid (M1H) assay that is known to those skilled in the art.

[0091] Dose-dependent luciferase activities originating from pFR-luc demonstrate the relative activities of the compounds with the LXRa or LXRb LBDs in this mammalian one hybrid type approach.

EXAMPLE 4

[0092] This example shows that described compounds can increase the abundance of mRNA of LXR target genes like ABCA1 and ABCG1 in THP-1 cells which are treated with TPA or FAS and SREBP-1c in HepG2 cells as shown in Fig 8A and Fig. 8B.

[0093] THP-1 cells are seeded in 24 well plates at 3 x10⁵ cells per well in RPMI 1640 medium containing 10 % FCS and 100 nM TPA for 24 h. HepG2 cells are seeded in poly-L-Lysine coated 24well plates at 1x10⁶ cells per well in EMEM medium containing 10 % FCS until they are appr. 60% confluent.

Before treatment with LXR compounds, the growth medium is changed to medium containing 10% charcoal/dextranstripped FCS for 12 h. Treatment is done for 12h (THP-1 cells) and 24h (HepG2 cells), respectively, in medium containing 10% charcoal/dextran-stripped FCS (and 100 nM PMA in the case of THP-1 cells).

LXR compounds are dissolved in DMSO, with the final solvent concentration never exceeding 0.125%. All treatments are done in triplicates and experiments repeated twice. Total RNA is extracted using the Qiagen Rneasy Mini Kit and treated with DNase (DNAfree kit, Ambion). RNA is reverse transcribed with Oligo(dT) primer and real-time reverse transcription PCR (TaqMan) is performed using the ABI Prism 7900HT Sequence Detection System and reagents supplied by Applied Biosystems. mRNA steady state levels are normalised to H3 histone (H3F3A) expression levels. The sequences of forward primers, reverse primers and TaqMan probes are as follows:

FAS: CTGAGACGGAGGCCATATGCT, GCTGCCACACGCTCCTCTAG, FAM-CAGCAGTTCACGGACATGGAGCACAA-TAMRA

ABCA1:TCCTGTGGTGTTTCTGGATGAAC, CTTGACAACACTTAGGGCACAATTC, FAM- ACCACAGGCATGGATCCCAAAGCC-TAMRA

EXAMPLE 5

[0094] LN0000007033 causes a marked increase in cholesterol export in differentated THP-1 macrophages (see Figure 9 A).

Strikingly, the compound T0901317 causes a marked increase in triyglyceride mass in HepG2 liver cells, while compounds like LN0000007033 and LN0000007025 do not cause a significant increase in triglyceride mass.

This behavior is similar to the selective transcriptional effect of compounds like LN0000007033 and LN0000007025

on the LXR target genes in HepG2 versus THP-1 cells (see Fig 8A and 8B).

[0095] Methods: Cultures of the monocyte-macrophage cell line and the hepatocytes HepG2 are obtained from the American Type tissue Culture Collection, Rockville, MD and were grown in RPMI 1640 medium supplemented with 10% fetal bovine serum, 10 mM HEPES, 2 mM Pyruvat, 50 μ M β -Mercaptoethanol (THP-1) and Minimum essential medium (Eagle) with 2 mM L-glutamine and Earle's BSS supplemented with 10% fetal bovine serum, 2 mM glutamine, 0.1 mM non-essential amino acids, 1 mM sodium pyruvate (HepG2), respectively, at 37°C in 5% CO2.

THP-1 cells are differentiated into macrophages by addition of 100 nM Phorbol 12-Myristate 13-Acetate (PMA; Sigma P8139) and PMA included in the medium of all subsequent experiments to maintain differentiation.

For cholesterol efflux measurements and triglyceride analysis cells are seeded in 6well plates at 1.8x106 cells (THP-1) and 1x106 cells (HepG2) per well, respectively.

CHOLESTEROL EFFLUX

10

20

30

35

45

50

[0096] THP-1 cells are seeded in 6well plates at $1x10^6$ cells per well in RPMI 1640 medium containing 10 % FCS and 100 nM TPA for 72 h. After washing with PBS cells are incubated 24 h with fresh in RPMI 1640 medium containing 10 % FCS and 100 nM TPA. Cells are washed twice with PBS and RPMI 1640 medium containing 0.15% BSA and 100 nM TPA is added for further 24 h. Treatment with LXR compounds is done for 24 h in RPMI 1640 medium containing 0.15% BSA, 100 nM TPA and 40 μ g/mI ApoA1 (Calbiochem # 178452). Medium is collected, centrifuged to remove cell debris and assayed for cholesterol using a commercial fluorometric kit (Molecular Probes A-12216). The remaining cellular proteins are lysed with 0.3 N NaOH and protein content measured with the Biorad Bradford reagent.

TRIGLYCERIDE ASSAY

[0097] HepG2 cells are seeded in poly-L-Lysine coated 6well plates at 1x10⁶ cells per well in EMEM medium containing 10 % FCS until they were appr. 60% confluent. Before treatment with LXR compounds growth medium is changed to medium containing 10% charcoal/dextran-stripped FCS for 12 h. Treatment is done for 24h in medium containing 10% charcoal/dextran-stripped FCS. Cells are washed twice with ice-cold PBS/0.2% BSA and twice with cold PBS and all liquid carefully removed. Triglyceride are extracted with with 1.5 ml hexane/ isopropanol = 3:2 per well with gentle shaking for 2-3 h at RT according to Pan et al. (2002) JBC 277, 4413-4421 and Goti et al. (1998) Biochem J, 332, 57-65. The extraction solution is collected, dried under vacuum and redissolved in isopropanol/ 1.5% triton. The remaining cellular proteins are lysed with 0.3 N NaOH and protein content measured with the Biorad Bradford reagent.

Triglyceride levels are measured as esterified glycerol using a commercial enzymatic colorimetric kit (Sigma 343-25P). In a preliminary assay it is checked by omitting the lipase enzyme that contribution of free glycerol is negligible.

FIGURE CAPTIONS

FIG. 1

40 [0098] Fig. 1 shows the synthesis of the compounds according to the invention as also described in Example 2.

FIG. 2

[0099] Fig. 2 shows the measurement parameters employed by the Wallace VICTOR2V™ Multilabel Counter which was used for measuring the EC₅₀ values

FIG. 3

[0100] Shows a table with the accession numbers for the key genes

FIG. 4

[0101] Fig. 4 shows the internal molecular name used by the applicant (MOLNAME) as well as the corresponding structures of preferred compounds according to the invention. The figure further shows their respective EC₅₀ values (EC50 AVG) as established according to the Example 1 in multiple experiments (see above), as well as their respective average efficacy (% activity relative to TO901317 control agonist).

FIG. 5

[0102] Figure 5 shows various known LXR ligands. The compound T0901317 is used as a reference compound here. It is apparent from their structures that the inventors have identified novel compounds which are structurally not related to these known ligands.

FIG. 6

[0103] Figure 6 shows various genes that have been found to be regulated through binding of an LXR agonist to the LXR protein.

FIG. 7

[0104] Fig 7 shows a dose dependence of LN0000007033 with LXR beta LBD containing constructs in mammalian one hybrid (M1H) type assays. The respective μM concentrations of the compounds are given on the x-axis and the relative light units (RLU) are depicted on the y-axis.

Fig. 8 A and B

[0105] Analysis of mRNA content of the indicated genes (LXRalpha, ABCA1, ABCG1, FAS and SREBP-1 c) in total RNA isolated from THP-1 cells (8A, LXRalpha, ABCA1, ABCG1) or HepG2 cells (8B, FAS and SREBP-1 c) treated for 12 or 24 hours with 10 μM on x-axis of T0901317 and LN0000007033. The relative fold induction is depicted on the y-axis and the value depicted with * for ABCG1 has to be multiplicated by a factor of 10.

²⁵ Fig. 9

[0106] Analysis of relative fold increase in total cholesterol from supernatants of cultivated THP-1 cells (indicated on the y-axis) incubated with ApoA1 and with or without $10\mu M$ of the compounds T0901317, LN0000007033 and LN0000007025 as indicated on the X-axis of Fig 9A.

30 Analysis of relative levels of total triglyceride (TG) content in HepG2 cells (indicated on the y-axis) treated with 25μM of the indicated compounds T0901317, LN0000007033 and LN0000007025 (indicated on the x-axis).

35

40

45

50

SEQUENCE LISTING

5	<110>	Phen	ex Pharmace	euticals AG				
10	<120> agonis	Nove tic p	l selective roperties	LXR Nuclea	ar Receptor	Binding C	ompounds with	partial
	<130>	PX62	425EP					
15	<160>	22						
20	<170>	Pate	ntIn versio	on 3.1				
	<210>	1						
	<211>	2010						
25	<212>	DNA						
	<213>	Homo	sapiens					
								•
30	<400> caagaa	1 gtgg (cgaagttacc	tttgagggta	tttgagtagc	ggcggtgtg	t caggggctaa	60
	agagga	ggac (gaagaaaagc	agagcaaggg	aacccagggc	aacaggagt	a gttcactccg	120
<i>35</i>	cgagag	gccg	tccacgagac	ccccgcgcgc	aggcatgagc	cccgccccc	c acgcatgagc	180
	cccgcc	cccc (gctgttgctt	ggagaggggc	gggacctgga	gagaggctg	c tccgtgaccc	240
	caccat	gtcc	tctcctacca	cgagttccct	ggataccccc	ctgcctgga	a atggcccccc	300
40	tcagcc	tggc (gccccttctt	cttcacccac	tgtaaaggag	gagggtccg	g agccgtggcc	360
	cggggg	tccg (gaccctgatg	tcccaggcac	tgatgaggcc	agctcagcc	t gcagcacaga	420
	ctgggt	catc (ccagatcccg	aagaggaacc	agagcgcaag	cgaaagaag	g gcccagcccc	480
45	gaagat	gctg	ggccacgagc	tttgccgtgt	ctgtggggac	aaggcctcc	g gcttccacta	540
	caacgt	gctc a	agctgcgaag	gctgcaaggg	cttcttccgg	cgcagtgtg	g tccgtggtgg	600
	ggccag	gcgc	tatgcctgcc	ggggtggcgg	aacctgccag	atggacgct	t tcatgcggcg	660
50	caagtg	ccag	cagtgccggc	tgcgcaagtg	caaggaggca	gggatgagg	g agcagtgcgt	720
	cctttc	tgaa 🤉	gaacagatcc	ggaagaagaa	gattcggaaa	cagcagcag	c aggagtcaca	780
	gtcaca	gtcg	cagtcacctg	tggggccgca	gggcagcagc	agctcagcc	t ctgggcctgg	840
<i>55</i>	ggcttc	ccct (ggtggatctg	aggcaggcag	ccagggctcc	ggggaaggc	g agggtgtcca	900
	qctaaca	agca (octcaagaac	taatqatcca	acaattaata	ocoocccaa	c tocaotocaa	960

	caaacgctcc	ttctccgacc	agcccaaagt	cacgccctgg	cccctgggcg	cagaccccca	1020
	gtcccgagat	gcccgccagc	aacgctttgc	ccacttcacg	gagctggcca	tcatctcagt	1080
5	ccaggagatc	gtggacttcg	ctaagcaagt	gcctggtttc	ctgcagctgg	gccgggagga	1140
	ccagatcgcc	ctcctgaagg	catccactat	cgagatcatg	ctgctagaga	cagccaggcg	1200
	ctacaaccac	gagacagagt	gtatcacctt	cttgaaggac	ttcacctaca	gcaaggacga	1260
10	cttccaccgt	gcaggcctgc	aggtggagtt	catcaacccc	atcttcgagt	tctcgcgggc	1320
	catgcggcgg	ctgggcctgg	acgacgctga	gtacgccctg	ctcatcgcca	tcaacatctt	1380
	ctcggccgac	cggcccaacg	tgcaggagcc	gggccgcgtg	gaggcgttgc	agcagcccta	1440
15	cgtggaggcg	ctgctgtcct	acacgcgcat	caagaggccg	caggaccagc	tgcgcttccc	1500
,,,	gcgcatgctc	atgaagctgg	tgagcctgcg	cacgctgagc	tctgtgcact	cggagcaggt	1560
	cttcgccttg	cggctccagg	acaagaagct	gccgcctctg	ctgtcggaga	tctgggacgt	1620
20	ccacgagtga	ggggctggcc	acccagcccc	acagccttgc	ctgaccaccc	tccagcagat	1680
20	agacgccggc	accccttcct	cttcctaggg	tggaaggggc	cctgggcgag	cctgtagacc	1740
	tatcggctct	catcccttgg	gataagcccc	agtccaggtc	caggaggctc	cctccctgcc	1800
	cagcgagtct	tccagaaggg	gtgaaagggt	tgcaggtccc	gaccactgac	ccttcccggc	1860
25	tgccctccct	ccccagctta	cacctcaagc	ccagcacgca	gcgtaccttg	aacagaggga	1920
	ggggaggacc	catggctctc	ccccctagc	ccgggagacc	aggggccttc	ctcttcctct	1980
	gcttttattt	aataaaaata	aaaacagaaa				2010
30	<210> 2						
	<210> 2 <211> 1528	,					
	<211> 1326 <212> DNA						
35		sapiens					
	VZIJV HOME	Japrens					
	<400> 2						
40		gtaatgacca	gggctccaga	aagagatgtc	cttgtggctg	ggggcccctg	60
	tgcctgacat	tcctcctgac	tctgcggtgg	agctgtggaa	gccaggcgca	caggatgcaa	120
	gcagccaggc	ccagggaggc	agcagctgca	tcctcagaga	ggaagccagg	atgccccact	180
45	ctgctggggg	tactgcaggg	gtggggctgg	aggctgcaga	gcccacagcc	ctgctcacca	240
	gggcagagcc	cccttcagaa	cccacagaga	tccgtccaca	aaagcggaaa	aaggggccag	300
	ccccaaaat	gctggggaac	gagctatgca	gcgtgtgtgg	ggacaaggcc	tcgggcttcc	360
50	actacaatgt	tctgagctgc	gagggctgca	agggattctt	ccgccgcagc	gtcatcaagg	420
	gagcgcacta	catctgccac	agtggcggcc	actgccccat	ggacacctac	atgcgtcgca	480
	agtgccagga	gtgtcggctt	cgcaaatgcc	gtcaggctgg	catgcgggag	gagtgtgtcc	540
55	tgtcagaaga	acagatccgc	ctgaagaaac	tgaagcggca	agaggaggaa	caggctcatg	600

	ccacatcctt	gccccccagg	cgttcctcac	cccccaaat	cctgccccag	ctcagcccgg	000
	aacaactggg	catgatcgag	aagctcgtcg	ctgcccagca	acagtgtaac	cggcgctcct	720
5	tttctgaccg	gcttcgagtc	acgccttggc	ccatggcacc	agatccccat	agccgggagg	780
	cccgtcagca	gcgctttgcc	cacttcactg	agctggccat	cgtctctgtg	caggagatag	840
	ttgactttgc	taaacagcta	cccggcttcc	tgcagctcag	ccgggaggac	cagattgccc	900
10	tgctgaagac	ctctgcgatc	gaggtgatgc	ttctggagac	atctcggagg	tacaaccctg	960
	ggagtgagag	tatcaccttc	ctcaaggatt	tcagttataa	ccgggaagac	tttgccaaag	1020
	cagggctgca	agtggaattc	atcaacccca	tcttcgagtt	ctccagggcc	atgaatgagc	1080
15	tgcaactcaa	tgatgccgag	tttgccttgc	tcattgctat	cagcatcttc	tctgcagacc	1140
	ggcccaacgt	gcaggaccag	ctccaggtgg	agaggctgca	gcacacatat	gtggaagccc	1200
	tgcatgccta	cgtctccatc	caccatcccc	atgaccgact	gatgttccca	cggatgctaa	1260
20	tgaaactggt	gagcctccgg	accctgagca	gcgtccactc	agagcaagtg	tttgcactgc	1320
	gtctgcagga	caaaaagctc	ccaccgctgc	tctctgagat	ctgggatgtg	cacgaatgac	1380
	tgttctgtcc	ccatattttc	tgttttcttg	gccggatggc	tgaggcctgg	tggctgcctc	1440
25	ctagaagtgg	aacagactga	gaagggcaaa	cattcctggg	agctgggcaa	ggagatcctc	1500
	ccgtggcatt	aaaagagagt	caaagggt				1528
	<210> 3						
30	<211> 287	7					
	<212> DNA						
	<213> Homo	o sapiens					
35							
	<400> 3 gtggcatcct	tccctttcta	atcagagatt	ttcttcctca	gagattttgg	cctagatttg	60
40	caaaatgatg	accacatctt	tgatttgggg	gattgctata	gcagcatgct	gttgtctatg	120
40	gcttattctt	ggaattagga	gaaggcaaac	gggtgaacca	cctctagaga	atggattaat	180
	tccatacctg	ggctgtgctc	tgcaatttgg	tgccaatcct	cttgagttcc	tcagagcaaa	240
45	tcaaaggaaa	catggtcatg	ttttacctg	caaactaatg	ggaaaatatg	tccatttcat	300
45	cacaaatccc	ttgtcatacc	ataaggtgtt	gtgccacgga	aaatattttg	attggaaaaa	360
	atttcacttt	gctacttctg	cgaaggcatt	tgggcacaga	agcattgacc	cgatggatgg	420
50	aaataccact	gaaaacataa	acgacacttt	catcaaaacc	ctgcagggcc	atgccttgaa	480
	ttccctcacg	gaaagcatga	tggaaaacct	ccaacgtatc	atgagacctc	cagtctcctc	540
	taactcaaag	accgctgcct	gggtgacaga	agggatgtat	tctttctgct	accgagtgat	600
55	gtttgaagct	gggtatttaa	ctatctttgg	cagagatctt	acaaggcggg	acacacagaa	660
55	agcacatatt	ctaaacaatc	ttgacaactt	caagcaattc	nacaaantct	ttccanccct	720

	ggtagcaggc	ctccccattc	acatgttcag	gactgcgcac	aatgcccggg	agaaactggc	780
	agagagcttg	aggcacgaga	acctccaaaa	gagggaaagc	atctcagaac	tgatcagcct	840
5	gcgcatgttt	ctcaatgaca	ctttgtccac	ctttgatgat	ctggagaagg	ccaagacaca	900
	cctcgtggtc	ctctgggcat	cgcaagcaaa	caccattcca	gcgactttct	ggagtttatt	960
	tcaaatgatt	aggaacccag	aagcaatgaa	agcagctact	gaagaagtga	aaagaacatt	1020
10	agagaatgct	ggtcaaaaag	tcagcttgga	aggcaatcct	atttgtttga	gtcaagcaga	1080
	actgaatgac	ctgccagtat	taaatagtat	aatcaaggaa	tcgctgaggc	tttccagtgc	1140
	ctccctcaac	atccggacag	ctaaggagga	tttcactttg	caccttgagg	acggttccta	1200
15	caacatccga	aaagatagca	tcatagctct	ttacccacag	ttaatgcact	tagatccaga	1260
	aatctaccca	gaccctttga	cttttaaata	tgataggtat	cttgatgaaa	acgggaagac	1320
	aaagactacc	ttctattgta	atggactcaa	gttaaagtat	tactacatgc	cctttggatc	1380
20	gggagctaca	atatgtcctg	gaagattgtt	cgctatccac	gaaatcaagc	aatttttgat	1440
	tctgatgctt	tcttattttg	aattggagct	tatagagggc	caagctaaat	gtccaccttt	1500
	ggaccagtcc	cgggcaggct	tgggcatttt	gccgccattg	aatgatattg	aatttaaata	1560
25	taaattcaag	catttgtgaa	tacatggctg	gaataagagg	acactagatg	atattacagg	1620
	actgcagaac	accctcacca	cacagtccct	ttggacaaat	gcatttagtg	gtggtagaaa	1680
	tgattcacca	ggtccaatgt	tgttcaccag	tgcttgcttg	tgaatcttaa	cattttggtg	1740
30	acagtttcca	gatgctatca	cagactctgc	tagtgaaaag	aactagtttc	taggagcaca	1800
	ataatttgtt	ttcatttgta	taagtccatg	aatgttcata	tagccaggga	ttgaagttta	1860
	ttattttcaa	aggaaaacac	ctttatttta	tttttttca	aaatgaagat	acacattaca	1920
35	gccaggtgtg	gtagcaggca	cctgtagtct	tagctactcg	agaggccaaa	gaaggaggat	1980
	ggcttgagcc	caggagttca	agaccagcct	ggacagctta	gtgagatccc	gtctccgaag	2040
	aaaagatatg	tattctaatt	ggcagattgt	tttttcctaa	ggaaactgct	ttatttttat	2100
40	aaaactgcct	gacaattatg	aaaaaatgtt	caaattcacg	ttctagtgaa	actgcattat	2160
	ttgttgacta	gatggtgggg	ttcttcgggt	gtgatcatat	atcataaagg	atatttcaaa	2220
	tgattatgat	tagttatgtc	ttttaataaa	aaggaaatat	ttttcaactt	cttctatatc	2280
45	caaaattcag	ggctttaaac	atgattatct	tgatttccca	aaaacactaa	aggtggtttt	2340
	attttccctt	catgttttaa	cttattgttg	ctgaaaactc	tatgtccggc	tttaactatc	2400
	ttctctatat	ttttatttca	ttcacattaa	tgagaagagt	tttctcagag	attaaaaaag	2460
50	gtagttttc	tgtcattgtt	aaatacacat	tatcactgaa	aaaatgtagc	ttttatgatg	2520
	tatgttttaa	agttaaaact	ggatggaaat	agccatttgg	aagctttggt	tatgaaacat	2580
	gtggagtgta	ttaagtgcag	cttgacatta	tgttttattt	aaatgctttt	tatcgctaaa	2640
<i>55</i>	tgacttgcag	atgaaaaaaa	ctaaggtgac	tcgagtgttt	aaatgcctgt	gtacaacaat	2700
	gctttgataa	aatattttaa	ggtatgagtt	atcagctcta	tgtcaattga	tatttctgtg	2760

	tagtatttat	atttaaatta	tatttacctt	tttgcttatt	ttacaaatat	taagaaaata	2820
	ttctaacatt	tgataatttt	gaaatgattc	atctttcaga	aataaaagta	tgaatct	2877
5	<210> 4						
	<211> 8461	<u> </u>					
	<212> DNA	-					
10		sapiens					
	<400> 4						
15				gcctccctct			60
	gctccgccgc	gctccagcct	cgctctccgc	cgcccgcacc	gccgcccgcg	ccctcaccag	120
	agcagccatg	gaggaggtgg	tgattgccgg	catgtccggg	aagctgccag	agtcggagaa	180
20	cttgcaggag	ttctgggaca	acctcatcgg	cggtgtggac	atggtcacgg	acgatgaccg	240
	tcgctggaag	gcggggctct	acggcctgcc	ccggcggtcc	ggcaagctga	aggacctgtc	300
	taggtttgat	gcctccttct	tcggagtcca	ccccaagcag	gcacacacga	tggaccctca	360
25	gctgcggctg	ctgctggaag	tcacctatga	agccatcgtg	gacggaggca	tcaacccaga	420
	ttcactccga	ggaacacaca	ctggcgtctg	ggtgggcgtg	agcggctctg	agacctcgga	480
	ggccctgagc	cgagaccccg	agacactcgt	gggctacagc	atggtgggct	gccagcgagc	540
30	gatgatggcc	aaccggctct	ccttcttctt	cgacttcaga	gggcccagca	tcgcactgga	600
	cacagcctgc	tcctccagcc	tgatggccct	gcagaacgcc	taccaggcca	tccacagcgg	660
	gcagtgccct	gccgccatcg	tggggggcat	caatgtcctg	ctgaagccca	acacctccgt	720
35	gcagttcttg	aggctgggga	tgctcagccc	cgagggcacc	tgcaaggcct	tcgacacagc	780
	ggggaatggg	tactgccgct	cggagggtgt	ggtggccgtc	ctgctgacca	agaagtccct	840
	ggcccggcgg	gtgtacgcca	ccatcctgaa	cgccggcacc	aatacagatg	gcttcaagga	900
40	gcaaggcgtg	accttcccct	caggggatat	ccaggagcag	ctcatccgct	cgttgtacca	960
	gtcggccgga	gtggcccctg	agtcatttga	atacatcgaa	gcccacggca	caggcaccaa	1020
	ggtgggcgac	ccccaggagc	tgaatggcat	cacccgagcc	ctgtgcgcca	cccgccagga	1080
45	gccgctgctc	atcggctcca	ccaagtccaa	catggggcac	ccggagccag	cctcggggct	1140
,,,	ggcagccctg	gccaaggtgc	tgctgtccct	ggagcacggg	ctctgggccc	ccaacctgca	1200
	cttccatagc	cccaaccctg	agatcccagc	gctgttggat	gggcggctgc	aggtggtgga	1260
50	ccagcccctg	cccgtccgtg	gcggcaacgt	gggcatcaac	tcctttggct	tcgggggctc	1320
30	caacgtgcac	atcatcctga	ggcccaacac	gcagccgccc	cccgcacccg	ccccacatgc	1380
	caccctgccc	cgtctgctgc	gggccagcgg	acgcacccct	gaggccgtgc	agaagctgct	1440
55	ggagcagggc	ctccggcaca	gccaggacct	ggctttcctg	agcatgctga	acgacatcgc	1500
<i>55</i>	ggctgtcccc	gccaccgcca	tgcccttccg	tggctacgct	gtgctgggtg	gtgagcgcgg	1560

	tggcccagag	gtgcagcagg	tgcccgctgg	cgagcgcccg	ctctggttca	tctgctctgg	1620
	gatgggcaca	cagtggcgcg	ggatggggct	gagcctcatg	cgcctggacc	gcttccgaga	1680
5	ttccatccta	cgctccgatg	aggctgtgaa	gccattcggc	ctgaaggtgt	cacagctgct	1740
	gctgagcaca	gacgagagca	cctttgatga	catcgtccat	tcgtttgtga	gcctgactgc	1800
	catccagata	ggcctcatag	acctgctgag	ctgcatgggg	ctgaggccag	atggcatcgt	1860
10	cggccactcc	ctgggggagg	tggcctgtgg	ctacgccgac	ggctgcctgt	cccaggagga	1920
	ggccgtcctc	gctgcctact	ggaggggaca	gtgcatcaaa	gaagcccatc	tcccgccggg	1980
	cgccatggca	gccgtgggct	tgtcctggga	ggagtgtaaa	cagcgctgcc	ccccggcggt	2040
15	ggtgcccgcc	tgccacaact	ccaaggacac	agtcaccatc	tcgggacctc	aggccccggt	2100
	gtttgagttc	gtggagcagc	tgaggaagga	gggtgtgttt	gccaaggagg	tgcggaccgg	2160
	cggtatggcc	ttccactcct	acttcatgga	ggccatcgca	ccccactgc	tgcaggagct	2220
20	caagaaggtg	atccgggagc	cgaagccacg	ttcagcccgc	tggctcagca	cctctatccc	2280
	cgaggcccag	tggcacagca	gcctggcacg	cacgtcctcc	gccgagtaca	atgtcaacaa	2340
	cctggtgagc	cctgtgctgt	tccaggaggc	cctgtggcac	gtgcctgagc	acgcggtggt	2400
25	gctggagatc	gcgccccacg	ccctgctgca	ggctgtcctg	aagcgtggcc	tgaagccgag	2460
	ctgcaccatc	atccccctga	tgaagaagga	tcacagggac	aacctggagt	tcttcctggc	2520
	cggcatccgg	aggctgcacc	tctcaggcat	cgacgccaac	cccaatgcct	tgttcccacc	2580
30	tgtggagttc	ccagctcccc	gaggaactcc	cctcatctcc	ccactcatca	agtgggacca	2640
	cagcctggcc	tgggacgtgc	cggccgccga	ggacttcccc	aacggttcag	gttcccctc	2700
	agccgccatc	tacaacatcg	acaccagctc	cgagtctcct	gaccactacc	tggtggacca	2760
<i>35</i>	caccctcgac	ggtcgcgtcc	tcttccccgc	cactggctac	ctgagcatag	tgtggaagac	2820
	gctggcccga	cccctgggcc	tgggcgtcga	gcagctgcct	gtggtgtttg	aggatgtggt	2880
	gctgcaccag	gccaccatcc	tgcccaagac	tgggacagtg	tccctggagg	tacggctcct	2940
40	ggaggcctcc	cgtgccttcg	aggtgtcaga	gaacggcaac	ctggtagtga	gtgggaaggt	3000
	gtaccagtgg	gatgaccctg	accccaggct	cttcgaccac	ccggaaagcc	ccaccccaa	3060
	ccccacggag	cccctcttcc	tggcccaggc	tgaagtttac	aaggagctgc	gtctgcgtgg	3120
45	ctacgactac	ggccctcatt	tccagggcat	cctggaggcc	agcctggaag	gtgactcggg	3180
	gaggctgctg	tggaaggata	actgggtgag	cttcatggac	accatgctgc	agatgtccat	3240
	cctgggctcg	gccaagcacg	gcctgtacct	gcccacccgt	gtcaccgcca	tccacatcga	3300
50	ccctgccacc	cacaggcaga	agctgtacac	actgcaggac	aaggcccaag	tggctgacgt	3360
	ggtggtgagc	aggtggctga	gggtcacagt	ggccggaggc	gtccacatct	ccgggctcca	3420
	cactgagtcg	gccccgcggc	ggcagcagga	gcagcaggtg	cccatcctgg	agaagttttg	3480
55	cttcactccc	cacacggagg	aggggtgcct	gtctgagcgc	gctgccctgc	aggaggagct	3540
	gcaactgtgc	aaggggctgg	tgcaggcact	gcagaccaag	gtgacccagc	aggggctgaa	3600

	gatggtggtg	cccggactgg	atggggccca	gatcccccgg	gacccctcac	agcaggaact	3660
	gccccggctg	ttgtcggctg	cctgcaggct	tcagctcaac	gggaacctgc	agctggagct	3720
5	ggcgcaggtg	ctggcccagg	agaggcccaa	gctgccagag	gaccctctgc	tcagcggcct	3780
	cctggactcc	ccggcactca	aggcctgcct	ggacactgcc	gtggagaaca	tgcccagcct	3840
	gaagatgaag	gtggtggagg	tgctggccgg	ccacggtcac	ctgtattccc	gcatcccagg	3900
10	cctgctcagc	ccccatcccc	tgctgcagct	gagctacacg	gccaccgacc	gccaccccca	3960
	ggccctggag	gctgcccagg	ccgagctgca	gcagcacgac	gttgcccagg	gccagtggga	4020
	tcccgcagac	cctgccccca	gcgccctggg	cagcgccgac	ctcctggtgt	gcaactgtgc	4080
15	tgtggctgcc	ctcggggacc	cggcctcagc	tctcagcaac	atggtggctg	ccctgagaga	4140
	agggggcttt	ctgctcctgc	acacactgct	ccgggggcac	ccctcgggac	atgtggcctt	4200
	cctcacctcc	actgagccgc	agtatggcca	gggcatcctg	agccaggacg	cgtgggagag	4260
20	cctcttctcc	agggtgtccg	tgcgcctggt	gggcctgaag	aagtccttct	acggctccac	4320
	gctcttcctg	tgccgccggc	ccaccccgca	ggacagcccc	atcttcctgc	cggtggacga	4380
	taccagcttc	cgctgggtgg	agtctctgaa	gggcatcctg	gctgacgaag	actcttcccg	4440
25	gcctgtgtgg	ctgaaggcca	tcaactgtgc	cacctcgggc	gtggtgggct	tggtgaactg	4500
	tctccgccga	gagcccggcg	gaacgctccg	gtgtgtgctg	ctctccaacc	tcagcagcac	4560
	ctcccacgtc	ccggaggtgg	acccgggctc	cgcagaactg	cagaaggtgt	tgcagggaga	4620
30	cctggtgatg	aacgtctacc	gcgacggggc	ctggggggct	ttccgccact	tcctgctgga	4680
	ggaggacaag	cctgaggagc	cgacggcaca	tgcctttgtg	agcaccctca	cccgggggga	4740
	cctgtcctcc	atccgctggg	tctgctcctc	gctgcgccat	gcccagccca	cctgccctgg	4800
35	cgcccagctc	tgcacggtct	actacgcctc	cctcaacttc	cgcgacatca	tgctggccac	4860
	tggcaagctg	tcccctgatg	ccatcccagg	gaagtggacc	tcccaggaca	gcctgctagg	4920
	tatggagttc	tcgggccgag	acgccagcgg	caagcgtgtg	atgggactgg	tgcctgccaa	4980
40	gggcctggcc	acctctgtcc	tgctgtcacc	ggacttcctc	tgggatgtgc	cttccaactg	5040
	gacgctggag	gaggcggcct	cggtgcctgt	cgtctacagc	acggcctact	acgcgctggt	5100
	ggtgcgtggg	cgggtgcgcc	ccggggagac	gctgctcatc	cactcgggct	cgggcggcgt	5160
45	gggccaggcc	gccatcgcca	tcgccctcag	tctgggctgc	cgcgtcttca	ccaccgtggg	5220
	gtcggctgag	aagcgggcgt	acctccaggc	caggttcccc	cagctcgaca	gcaccagctt	5280
	cgccaactcc	cgggacacat	ccttcgagca	gcatgtgctg	tggcacacgg	gcgggaaggg	5340
50	cgttgacctg	gtcttgaact	ccttggcgga	agagaagctg	caggccagcg	tgaggtgctt	5400
	ggctacgcac	ggtcgcttcc	tggaaattgg	caaattcgac	ctttctcaga	accacccgct	5460
	cggcatggct	atcttcctga	agaacgtgac	attccacggg	gtcctactgg	atgcgttctt	5520
55	caacgagagc	agtgctgact	ggcgggaggt	gtgggcgctt	gtgcaggccg	gcatccggga	5580
	tggggtggta	cggcccctca	agtgcacggt	gttccatggg	gcccaggtgg	aggacgcctt	5640

	ccgctacatg	gcccaaggga	agcacattgg	caaagtcgtc	gtgcaggtgc	ttgcggagga	5700
	gccggaggca	gtgctgaagg	gggccaaacc	caagctgatg	tcggccatct	ccaagacctt	5760
5	ctgcccggcc	cacaagagct	acatcatcgc	tggtggtctg	ggtggcttcg	gcctggagtt	5820
	ggcgcagtgg	ctgatacagc	gtggggtgca	gaagctcgtg	ttgacttctc	gctccgggat	5880
	ccggacaggc	taccaggcca	agcaggtccg	ccggtggagg	cgccagggcg	tacaggtgca	5940
10	ggtgtccacc	agcaacatca	gctcactgga	gggggcccgg	ggcctcattg	ccgaggcggc	6000
	gcagcttggg	cccgtgggcg	gcgtcttcaa	cctggccgtg	gtcttgagag	atggcttgct	6060
	ggagaaccag	accccagagt	tcttccagga	cgtctgcaag	cccaagtaca	gcggcaccct	6120
15	gaacctggac	agggtgaccc	gagaggcgtg	ccctgagctg	gactactttg	tggtcttctc	6180
	ctctgtgagc	tgcgggcgtg	gcaatgcggg	acagagcaac	tacggctttg	ccaattccgc	6240
	catggagcgt	atctgtgaga	aacgccggca	cgaaggcctc	ccaggcctgg	ccgtgcagtg	6300
20	gggcgccatc	ggcgacgtgg	gcattttggt	ggagacgatg	agcaccaacg	acacgatcgt	6360
	cagtggcacg	ctgccccagc	gcatggcgtc	ctgcctggag	gtgctggacc	tcttcctgaa	6420
	ccagccccac	atggtcctga	gcagctttgt	gctggctgag	aaggctgcgg	cctataggga	6480
25	cagggacagc	cagcgggacc	tggtggaggc	cgtggcacac	atcctgggca	tccgcgactt	6540
	ggctgctgtc	aacctggaca	gctcactggc	ggacctgggc	ctggactcgc	tcatgagcgt	6600
	ggaggtgcgc	cagacgctgg	agcgtgagct	caacctggtg	ctgtccgtgc	gcgaggtgcg	6660
30	gcaactcacg	ctccggaaac	tgcaggagct	gtcctcaaag	gcggatgagg	ccagcgagct	6720
	ggcatgcccc	acgcccaagg	aggatggtct	ggcccagcag	cagactcagc	tgaacctgcg	6780
	ctccctgctg	gtgaacccgg	agggccccac	cctgatgcgg	ctcaactccg	tgcagagctc	6840
35	ggagcggccc	ctgttcctgg	tgcacccaat	cgagggctcc	accaccgtgt	tccacagcct	6900
	ggcctcccgg	ctcagcatcc	ccacctatgg	cctgcagtgc	acccgagctg	cgccccttga	6960
	cagcatccac	agcctggctg	cctactacat	cgactgcatc	aggcaggtgc	agcccgaggg	7020
40	cccctaccgc	gtggccggct	actcctacgg	ggcctgcgtg	gcctttgaaa	tgtgctccca	7080
	gctgcaggcc	cagcagagcc	cagcccccac	ccacaacagc	ctcttcctgt	tcgacggctc	7140
	gcccacctac	gtactggcct	acacccagag	ctaccgggca	aagctgaccc	caggctgtga	7200
45	ggctgaggct	gagacggagg	ccatatgctt	cttcgtgcag	cagttcacgg	acatggagca	7260
	caacagggtg	ctggaggcgc	tgctgccgct	gaagggccta	gaggagcgtg	tggcagccgc	7320
	cgtggacctg	atcatcaaga	gccaccaggg	cctggaccgc	caggagctga	gctttgcggc	7380
50	ccggtccttc	tactacaagc	tgcgtgccgc	tgagcagtac	acacccaagg	ccaagtacca	7440
	tggcaacgtg	atgctactgc	gcgccaagac	gggtggcgcc	tacggcgagg	acctgggcgc	7500
	ggactacaac	ctctcccagg	tatgcgacgg	gaaagtatcc	gtccacgtca	tcgagggtga	7560
<i>55</i>	ccaccgcacg	ctgctggagg	gcagcggcct	ggagtccatc	atcagcatca	tccacagctc	7620
	cctggctgag	ccacgcgtga	gcgtgcggga	gggctaggcc	cgtgcccccg	cctgccaccg	7680

	gaggtcactc caccatcccc accccacccc accccacccc	7740
	gggtcctgcc ggtgggaccc tgtccggccc agtgccactg cccccgagg ctgctagacg	7800
5	taggtgttag gcatgtccca cccacccgcc gcctcccacg gcacctcggg gacaccagag	7860
	ctgccgactt ggagactcct ggtctgtgaa gagccggtgg tgcccgtgcc cgcaggaact	7920
	gggctgggcc tcgtgcgccc gtggggtctg cgcttggtct ttctgtgctt ggatttgcat	7980
10	atttattgca ttgctggtag agacccccag gcctgtccac cctgccaaga ctcctcaggc	8040
	agcgtgtggg tcccgcactc tgcccccatt tccccgatgt cccctgcggg cgcgggcagc	8100
	cacccaagcc tgctggctgc ggccccctct cggccaggca ttggctcagc ccgctgagtg	8160
15	gggggtcgtg ggccagtccc cgaggagctg ggcccctgca caggcacaca gggcccggcc	8220
	acacccagcg gccccccgca cagccacccg tggggtgctg cccttatgcc cggcgccggg	8280
	caccaactcc atgtttggtg tttgtctgtg tttgtttttc aagaaatgat tcaaattgct	8340
20	gcttggattt tgaaatttac tgtaactgtc agtgtacacg tctggacccc gtttcatttt	8400
	tacaccaatt tggtaaaaat gctgctctca gcctcccaca attaaaccgc atgtgatctc	8460
	c	8461
25	<210> 5	
	<211> 1444	
	<212> DNA	
30	<213> Homo sapiens	
	ALLES Homo Suprems	
	<400> 5	
35	acggtcaccc gttgccagct ctagccttta aattcccggc tcggggacct ccacgcaccg	60
	cggctagcgc cgacaaccag ctagcgtgca aggcgccgcg gctcagcgcg taccggcggg	120
	cttcgaaacc gcagtcctcc ggcgaccccg aactccgctc cggagcctca gccccctgga	180
40	aagtgatccc ggcatccgag agccaagatg ccggcccact tgctgcagga cgatatctct	240
	agctcctata ccaccaccac caccattaca gcgcctccct ccagggtcct gcagaatgga	300
	ggagataagt tggagacgat gcccctctac ttggaagacg acattcgccc tgatataaaa	360
45	gatgatatat atgaccccac ctacaaggat aaggaaggcc caagccccaa ggttgaatat	420
	gtctggagaa acatcatcct tatgtctctg ctacacttgg gagccctgta tgggatcact	480
	ttgattccta cctgcaagtt ctacacctgg ctttgggggg tattctacta ttttgtcagt	540
50	gccctgggca taacagcagg agctcatcgt ctgtggagcc accgctctta caaagctcgg	600
	ctgcccctac ggctctttct gatcattgcc aacacaatgg cattccagaa tgatgtctat	660
	gaatgggctc gtgaccaccg tgcccaccac aagttttcag aaacacatgc tgatcctcat	720
55	aattcccgac gtggcttttt cttctctcac gtgggttggc tgcttgtgcg caaacaccca	780
	gctgtcaaag agaaggggag tacgctagac ttgtctgacc tagaagctga gaaactggtg	840

	atgttccaga ggaggtacta caaacctggc ttgctgatga tgtgcttcat cctgcccacg	900
	cttgtgccct ggtatttctg gggtgaaact tttcaaaaca gtgtgttcgt tgccactttc	960
5	ttgcgatatg ctgtggtgct taatgccacc tggctggtga acagtgctgc ccacctcttc	1020
	ggatatcgtc cttatgacaa gaacattagc ccccgggaga atatcctggt ttcacttgga	1080
	gctgtgggtg agggcttcca caactaccac cactcctttc cctatgacta ctctgccagt	1140
10	gagtaccgct ggcacatcaa cttcaccaca ttcttcattg attgcatggc cgccctcggt	1200
	ctggcctatg accggaagaa agtctccaag gccgccatct tggccaggat taaaagaacc	1260
	ggagatggaa actacaagag tggctgagtt tggggtccct caggttcctt tttcaaaaac	1320
15	cagccaggca gaggttttaa tgtctgttta ttaactactg aataatgcta ccaggatgct	1380
	aaagatgatg atgttaaccc attccagtac agtattcttt taaaattcaa aagtattgaa	1440
	agcc	1444
20	<210> 6	
	<211> 4154	
	<212> DNA	
25	<213> Homo sapiens	
	12237 Hollio Supreiis	
	<400> 6	
30	taacgaggaa cttttcgccg gcgccgggcc gcctctgagg ccagggcagg acacgaacgc	60
	gcggagcggc ggcggcgact gagagccggg gccgcggcgg cgctccctag gaagggccgt	120
	acgaggcggc gggcccggcg ggcctcccgg aggaggcggc tgcgccatgg acgagccacc	180
35	cttcagcgag gcggctttgg agcaggcgct gggcgagccg tgcgatctgg acgcggcgct	240
	gctgaccgac atcgaagaca tgcttcagct tatcaacaac caagacagtg acttccctgg	300
	cctatttgac ccaccctatg ctgggagtgg ggcagggggc acagaccctg ccagccccga	360
40	taccagctcc ccaggcagct tgtctccacc tcctgccaca ttgagctcct ctcttgaagc	. 420
	cttcctgagc gggccgcagg cagcgccctc acccctgtcc cctccccagc ctgcacccac	480
	tccattgaag atgtacccgt ccatgcccgc tttctcccct gggcctggta tcaaggaaga	540
45	gtcagtgcca ctgagcatcc tgcagacccc caccccacag cccctgccag gggccctcct	600
	gccacagagc ttcccagccc cagccccacc gcagttcagc tccacccctg tgttaggcta	660
	ccccagccct ccgggaggct tctctacagg aagccctccc gggaacaccc agcagccgct	720
50	gcctggcctg ccactggctt ccccgccagg ggtcccgccc gtctccttgc acacccaggt	780
	ccagagtgtg gtccccagc agctactgac agtcacagct gccccacgg cagccctgt	840
	aacgaccact gtgacctcgc agatccagca ggtcccggtc ctgctgcagc cccacttcat	900
<i>55</i>	caaggcagac tcgctgcttc tgacagccat gaagacagac ggagccactg tgaaggcggc	960
	aggtctcagt cccctggtct ctggcaccac tgtgcagaca gggcctttgc cgaccctggt	1020

	gagtggcgga	accatcttgg	caacagtccc	actggtcgta	gatgcggaga	agctgcctat	1080
	caaccggctc	gcagctggca	gcaaggcccc	ggcctctgcc	cagagccgtg	gagagaagcg	1140
5	cacagcccac	aacgccattg	agaagcgcta	ccgctcctcc	atcaatgaca	aaatcattga	1200
	gctcaaggat	ctggtggtgg	gcactgaggc	aaagctgaat	aaatctgctg	tcttgcgcaa	1260
	ggccatcgac	tacattcgct	ttctgcaaca	cagcaaccag	aaactcaagc	aggagaacct	1320
10	aagtctgcgc	actgctgtcc	acaaaagcaa	atctctgaag	gatctggtgt	cggcctgtgg	1380
	cagtggaggg	aacacagacg	tgctcatgga	gggcgtgaag	actgaggtgg	aggacacact	1440
	gaccccaccc	ccctcggatg	ctggctcacc	tttccagagc	agccccttgt	cccttggcag	1500
15	caggggcagt	ggcagcggtg	gcagtggcag	tgactcggag	cctgacagcc	cagtctttga	1560
	ggacagcaag	gcaaagccag	agcagcggcc	gtctctgcac	agccggggca	tgctggaccg	1620
	ctcccgcctg	gccctgtgca	cgctcgtctt	cctctgcctg	tcctgcaacc	ccttggcctc	1680
20	cttgctgggg	gcccgggggc	ttcccagccc	ctcagatacc	accagcgtct	accatagccc	1740
	tgggcgcaac	gtgctgggca	ccgagagcag	agatggccct	ggctgggccc	agtggctgct	1800
	gccccagtg	gtctggctgc	tcaatgggct	gttggtgctc	gtctccttgg	tgcttctctt	1860
25	tgtctacggt	gagccagtca	cacggcccca	ctcaggcccc	gccgtgtact	tctggaggca	1920
	tcgcaagcag	gctgacctgg	acctggcccg	gggagacttt	gcccaggctg	cccagcagct	1980
	gtggctggcc	ctgcgggcac	tgggccggcc	cctgcccacc	tcccacctgg	acctggcttg	2040
30	tagcctcctc	tggaacctca	tccgtcacct	gctgcagcgt	ctctgggtgg	gccgctggct	2100
	ggcaggccgg	gcagggggcc	tgcagcagga	ctgtgctctg	cgagtggatg	ctagcgccag	2160
	cgcccgagac	gcagccctgg	tctaccataa	gctgcaccag	ctgcacacca	tggggaagca	2220
35	cacaggcggg	cacctcactg	ccaccaacct	ggcgctgagt	gccctgaacc	tggcagagtg	2280
	tgcaggggat	gccgtgtctg	tggcgacgct	ggccgagatc	tatgtggcgg	ctgcattgag	2340
	agtgaagacc	agtctcccac	gggccttgca	ttttctgaca	cgcttcttcc	tgagcagtgc	2400
40	ccgccaggcc	tgcctggcac	agagtggctc	agtgcctcct	gccatgcagt	ggctctgcca	2460
	ccccgtgggc	caccgtttct	tcgtggatgg	ggactggtcc	gtgctcagta	ccccatggga	2520
	gagcctgtac	agcttggccg	ggaacccagt	ggaccccctg	gcccaggtga	ctcagctatt	2580
45	ccgggaacat	ctcttagagc	gagcactgaa	ctgtgtgacc	cagcccaacc	ccagccctgg	2640
	gtcagctgat	ggggacaagg	aattctcgga	tgccctcggg	tacctgcagc	tgctgaacag	2700
	ctgttctgat	gctgcggggg	ctcctgccta	cagcttctcc	atcagttcca	gcatggccac	2760
50	caccaccggc	gtagacccgg	tggccaagtg	gtgggcctct	ctgacagctg	tggtgatcca	2820
	ctggctgcgg	cgggatgagg	aggcggctga	gcggctgtgc	ccgctggtgg	agcacctgcc	2880
	ccgggtgctg	caggagtctg	agagacccct	gcccagggca	gctctgcact	ccttcaaggc	2940
<i>55</i>	tgcccgggcc	ctgctgggct	gtgccaaggc	agagtctggt	ccagccagcc	tgaccatctg	3000
55	tgagaaggcc	agtgggtacc	tgcaggacag	cctggctacc	acaccagcca	gcagctccat	3060

	tgacaaggcc	gtgcagctgt	tcctgtgtga	cctgcttctt	gtggtgcgca	ccagcctgtg	3120
	gcggcagcag	cagcccccgg	cccggcccc	agcagcccag	ggcaccagca	gcaggcccca	3180
5	ggcttccgcc	cttgagctgc	gtggcttcca	acgggacctg	agcagcctga	ggcggctggc	3240
	acagagcttc	cggcccgcca	tgcggagggt	gttcctacat	gaggccacgg	cccggctgat	3300
	ggcgggggcc	agccccacac	ggacacacca	gctcctcgac	cgcagtctga	ggcggcgggc	3360
10	aggccccggt	ggcaaaggag	gcgcggtggc	ggagctggag	ccgcggccca	cgcggcggga	3420
	gcacgcggag	gccttgctgc	tggcctcctg	ctacctgccc	cccggcttcc	tgtcggcgcc	3480
	cgggcagcgc	gtgggcatgc	tggctgaggc	ggcgcgcaca	ctcgagaagc	ttggcgatcg	3540
15	ccggctgctg	cacgactgtc	agcagatgct	catgcgcctg	ggcggtggga	ccactgtcac	3600
	ttccagctag	accccgtgtc	cccggcctca	gcacccctgt	ctctagccac	tttggtcccg	3660
	tgcagcttct	gtcctgcgtc	gaagctttga	aggccgaagg	cagtgcaaga	gactctggcc	3720
20	tccacagttc	gacctgcggc	tgctgtgtgc	cttcgcggtg	gaaggcccga	ggggcgcgat	3780
	cttgacccta	agaccggcgg	ccatgatggt	gctgacctct	ggtggccgat	cggggcactg	3840
	caggggccga	gccattttgg	ggggcccccc	tccttgctct	gcaggcacct	tagtggcttt	3900
25	tttcctcctg	tgtacaggga	agagaggggt	acatttccct	gtgctgacgg	aagccaactt	3960
	ggctttcccg	gactgcaagc	agggctctgc	cccagaggcc	tctctctccg	tcgtgggaga	4020
	gagacgtgta	catagtgtag	gtcagcgtgc	ttagcctcct	gacctgaggc	tcctgtgcta	4080
30	ctttgccttt	tgcaaacttt	attttcatag	attgagaagt	tttgtacaga	gaattaaaaa	4140
	tgaaattatt	tata					4154
	<210> 7						
35	<211> 1041	12					
	<212> DNA						
		sapiens					
40		, , , , , , , , , , , , , , , , , , ,					
	<400> 7						
	gtaattgcga	gcgagagtga	gtggggccgg	gacccgcaga	gccgagccga	cccttctctc	60
45	ccgggctgcg	gcagggcagg	gcggggagct	ccgcgcacca	acagagccgg	ttctcagggc	120
	gctttgctcc	ttgtttttc	cccggttctg	ttttctcccc	ttctccggaa	ggcttgtcaa	180
	ggggtaggag	aaagagacgc	aaacacaaaa	gtggaaaaca	gttaatgacc	agccacggcg	240
50	tccctgctgt	gagctctggc	cgctgccttc	cagggctccc	gagccacacg	ctgggggtgc	300
	tggctgaggg	aacatggctt	gttggcctca	gctgaggttg	ctgctgtgga	agaacctcac	360
	tttcagaaga	agacaaacat	gtcagctgct	gctggaagtg	gcctggcctc	tatttatctt	420
<i>55</i>	cctgatcctg	atctctgttc	ggctgagcta	cccaccctat	gaacaacatg	aatgccattt	480
	tccaaataaa	gccatgccct	ctgcaggaac	acttccttgg	gttcagggga	ttatctgtaa	540

	tgccaacaac	ccctgtttcc	gttacccgac	tcctggggag	gctcccggag	ttgttggaaa	600
	ctttaacaaa	tccattgtgg	ctcgcctgtt	ctcagatgct	cggaggcttc	ttttatacag	660
5	ccagaaagac	accagcatga	aggacatgcg	caaagttctg	agaacattac	agcagatcaa	720
	gaaatccagc	tcaaacttga	agcttcaaga	tttcctggtg	gacaatgaaa	ccttctctgg	780
	gttcctgtat	cacaacctct	ctctcccaaa	gtctactgtg	gacaagatgc	tgagggctga	840
10	tgtcattctc	cacaaggtat	ttttgcaagg	ctaccagtta	catttgacaa	gtctgtgcaa	900
	tggatcaaaa	tcagaagaga	tgattcaact	tggtgaccaa	gaagtttctg	agctttgtgg	960
	cctaccaagg	gagaaactgg	ctgcagcaga	gcgagtactt	cgttccaaca	tggacatcct	1020
15	gaagccaatc	ctgagaacac	taaactctac	atctcccttc	ccgagcaagg	agctggctga	1080
	agccacaaaa	acattgctgc	atagtcttgg	gactctggcc	caggagctgt	tcagcatgag	1140
	aagctggagt	gacatgcgac	aggaggtgat	gtttctgacc	aatgtgaaca	gctccagctc	1200
20	ctccacccaa	atctaccagg	ctgtgtctcg	tattgtctgc	gggcatcccg	agggaggggg	1260
	gctgaagatc	aagtctctca	actggtatga	ggacaacaac	tacaaagccc	tctttggagg	1320
	caatggcact	gaggaagatg	ctgaaacctt	ctatgacaac	tctacaactc	cttactgcaa	1380
25	tgatttgatg	aagaatttgg	agtctagtcc	tctttcccgc	attatctgga	aagctctgaa	1440
	gccgctgctc	gttgggaaga	tcctgtatac	acctgacact	ccagccacaa	ggcaggtcat	1500
	ggctgaggtg	aacaagacct	tccaggaact	ggctgtgttc	catgatctgg	aaggcatgtg	1560
30	ggaggaactc	agccccaaga	tctggacctt	catggagaac	agccaagaaa	tggaccttgt	1620
	ccggatgctg	ttggacagca	gggacaatga	ccacttttgg	gaacagcagt	tggatggctt	1680
	agattggaca	gcccaagaca	tcgtggcgtt	tttggccaag	cacccagagg	atgtccagtc	1740
35	cagtaatggt	tctgtgtaca	cctggagaga	agctttcaac	gagactaacc	aggcaatccg	1800
	gaccatatct	cgcttcatgg	agtgtgtcaa	cctgaacaag	ctagaaccca	tagcaacaga	1860
	agtctggctc	atcaacaagt	ccatggagct	gctggatgag	aggaagttct	gggctggtat	1920
40	tgtgttcact	ggaattactc	caggcagcat	tgagctgccc	catcatgtca	agtacaagat	1980
	ccgaatggac	attgacaatg	tggagaggac	aaataaaatc	aaggatgggt	actgggaccc	2040
	tggtcctcga	gctgacccct	ttgaggacat	gcggtacgtc	tgggggggct	tcgcctactt	2100
45	gcaggatgtg	gtggagcagg	caatcatcag	ggtgctgacg	ggcaccgaga	agaaaactgg	2160
	tgtctatatg	caacagatgc	cctatccctg	ttacgttgat	gacatctttc	tgcgggtgat	2220
	gagccggtca	atgcccctct	tcatgacgct	ggcctggatt	tactcagtgg	ctgtgatcat	2280
50	caagggcatc	gtgtatgaga	aggaggcacg	gctgaaagag	accatgcgga	tcatgggcct	2340
	ggacaacagc	atcctctggt	ttagctggtt	cattagtagc	ctcattcctc	ttcttgtgag	2400
	cgctggcctg	ctagtggtca	tcctgaagtt	aggaaacctg	ctgccctaca	gtgatcccag	2460
55	cgtggtgttt	gtcttcctgt	ccgtgtttgc	tgtggtgaca	atcctgcagt	gcttcctgat	2520
	tagcacactc	ttctccagag	ccaacctggc	agcagcctgt	gggggcatca	tctacttcac	2580

	gctgtacctg	ccctacgtcc	tgtgtgtggc	atggcaggac	tacgtgggct	tcacactcaa	2640
	gatcttcgct	agcctgctgt	ctcctgtggc	ttttgggttt	ggctgtgagt	actttgccct	2700
5	ttttgaggag	cagggcattg	gagtgcagtg	ggacaacctg	tttgagagtc	ctgtggagga	2760
	agatggcttc	aatctcacca	cttcggtctc	catgatgctg	tttgacacct	tcctctatgg	2820
	ggtgatgacc	tggtacattg	aggctgtctt	tccaggccag	tacggaattc	ccaggccctg	2880
10	gtattttcct	tgcaccaagt	cctactggtt	tggcgaggaa	agtgatgaga	agagccaccc	2940
	tggttccaac	cagaagagaa	tatcagaaat	ctgcatggag	gaggaaccca	cccacttgaa	3000
	gctgggcgtg	tccattcaga	acctggtaaa	agtctaccga	gatgggatga	aggtggctgt	3060
15	cgatggcctg	gcactgaatt	tttatgaggg	ccagatcacc	tccttcctgg	gccacaatgg	3120
	agcggggaag	acgaccacca	tgtcaatcct	gaccgggttg	ttccccccga	cctcgggcac	3180
	cgcctacatc	ctgggaaaag	acattcgctc	tgagatgagc	accatccggc	agaacctggg	3240
20	ggtctgtccc	cagcataacg	tgctgtttga	catgctgact	gtcgaagaac	acatctggtt	3300
	ctatgcccgc	ttgaaagggc	tctctgagaa	gcacgtgaag	gcggagatgg	agcagatggc	3360
	cctggatgtt	ggtttgccat	caagcaagct	gaaaagcaaa	acaagccagc	tgtcaggtgg	3420
25	aatgcagaga	aagctatctg	tggccttggc	ctttgtcggg	ggatctaagg	ttgtcattct	3480
	ggatgaaccc	acagctggtg	tggaccctta	ctcccgcagg	ggaatatggg	agctgctgct	3540
	gaaataccga	caaggccgca	ccattattct	ctctacacac	cacatggatg	aagcggacgt	3600
30	cctgggggac	aggattgcca	tcatctccca	tgggaagctg	tgctgtgtgg	gctcctccct	3660
	gtttctgaag	aaccagctgg	gaacaggcta	ctacctgacc	ttggtcaaga	aagatgtgga	3720
	atcctccctc	agttcctgca	gaaacagtag	tagcactgtg	tcatacctga	aaaaggagga	3780
35	cagtgtttct	cagagcagtt	ctgatgctgg	cctgggcagc	gaccatgaga	gtgacacgct	3840
	gaccatcgat	gtctctgcta	tctccaacct	catcaggaag	catgtgtctg	aagcccggct	3900
	ggtggaagac	atagggcatg	agctgaccta	tgtgctgcca	tatgaagctg	ctaaggaggg	3960
40	agcctttgtg	gaactctttc	atgagattga	tgaccggctc	tcagacctgg	gcatttctag	4020
	ttatggcatc	tcagagacga	ccctggaaga	aatattcctc	aaggtggccg	aagagagtgg	4080
	ggtggatgct	gagacctcag	atggtacctt	gccagcaaga	cgaaacaggc	gggccttcgg	4140
45	ggacaagcag	agctgtcttc	gcccgttcac	tgaagatgat	gctgctgatc	caaatgattc	4200
	tgacatagac	ccagaatcca	gagagacaga	cttgctcagt	gggatggatg	gcaaagggtc	4260
	ctaccaggtg	aaaggctgga	aacttacaca	gcaacagttt	gtggcccttt	tgtggaagag	4320
50	actgctaatt	gccagacgga	gtcggaaagg	attttttgct	cagattgtct	tgccagctgt	4380
	gtttgtctgc	attgcccttg	tgttcagcct	gatcgtgcca	ccctttggca	agtaccccag	4440
	cctggaactt	cagccctgga	tgtacaacga	acagtacaca	tttgtcagca	atgatgctcc	4500
55	tgaggacacg	ggaaccctgg	aactcttaaa	cgccctcacc	aaagaccctg	gcttcgggac	4560
	ccgctgtatg	gaaggaaacc	caatcccaga	cacgccctgc	caggcagggg	aggaagagtg	4620

	gaccactgcc	ccagttcccc	agaccatcat	ggacctcttc	cagaatggga	actggacaat	4680
	gcagaaccct	tcacctgcat	gccagtgtag	cagcgacaaa	atcaagaaga	tgctgcctgt	4740
5	gtgtccccca	ggggcagggg	ggctgcctcc	tccacaaaga	aaacaaaaca	ctgcagatat	4800
	ccttcaggac	ctgacaggaa	gaaacatttc	ggattatctg	gtgaagacgt	atgtgcagat	4860
	catagccaaa	agcttaaaga	acaagatctg	ggtgaatgag	tttaggtatg	gcggcttttc	4920
10	cctgggtgtc	agtaatactc	aagcacttcc	tccgagtcaa	gaagttaatg	atgccatcaa	4980
	acaaatgaag	aaacacctaa	agctggccaa	ggacagttct	gcagatcgat	ttctcaacag	5040
	cttgggaaga	tttatgacag	gactggacac	caaaaataat	gtcaaggtgt	ggttcaataa	5100
15	caagggctgg	catgcaatca	gctctttcct	gaatgtcatc	aacaatgcca	ttctccgggc	5160
	caacctgcaa	aagggagaga	accctagcca	ttatggaatt	actgctttca	atcatcccct	5220
	gaatctcacc	aagcagcagc	tctcagaggt	ggctctgatg	accacatcag	tggatgtcct	5280
20	tgtgtccatc	tgtgtcatct	ttgcaatgtc	cttcgtccca	gccagctttg	tcgtattcct	5340
	gatccaggag	cgggtcagca	aagcaaaaca	cctgcagttc	atcagtggag	tgaagcctgt	5400
	catctactgg	ctctctaatt	ttgtctggga	tatgtgcaat	tacgttgtcc	ctgccacact	5460
25	ggtcattatc	atcttcatct	gcttccagca	gaagtcctat	gtgtcctcca	ccaatctgcc	5520
	tgtgctagcc	cttctacttt	tgctgtatgg	gtggtcaatc	acacctctca	tgtacccagc	5580
	ctcctttgtg	ttcaagatcc	ccagcacagc	ctatgtggtg	ctcaccagcg	tgaacctctt	5640
30	cattggcatt	aatggcagcg	tggccacctt	tgtgctggag	ctgttcaccg	acaataagct	5700
	gaataatatc	aatgatatcc	tgaagtccgt	gttcttgatc	ttcccacatt	tttgcctggg	5760
	acgagggctc	atcgacatgg	tgaaaaacca	ggcaatggct	gatgccctgg	aaaggtttgg	5820
<i>35</i>	ggagaatcgc	tttgtgtcac	cattatcttg	ggacttggtg	ggacgaaacc	tcttcgccat	5880
	ggccgtggaa	ggggtggtgt	tcttcctcat	tactgttctg	atccagtaca	gattcttcat	5940
	caggcccaga	cctgtaaatg	caaagctatc	tcctctgaat	gatgaagatg	aagatgtgag	6000
40	gcgggaaaga	cagagaattc	ttgatggtgg	aggccagaat	gacatcttag	aaatcaagga	6060
	gttgacgaag	atatatagaa	ggaagcggaa	gcctgctgtt	gacaggattt	gcgtgggcat	6120
	tcctcctggt	gagtgctttg	ggctcctggg	agttaatggg	gctggaaaat	catcaacttt	6180
45	caagatgtta	acaggagata	ccactgttac	cagaggagat	gctttcctta	acaaaaatag	6240
	tatcttatca	aacatccatg	aagtacatca	gaacatgggc	tactgccctc	agtttgatgc	6300
	catcacagag	ctgttgactg	ggagagaaca	cgtggagttc	tttgcccttt	tgagaggagt	6360
50	cccagagaaa	gaagttggca	aggttggtga	gtgggcgatt	cggaaactgg	gcctcgtgaa	6420
	gtatggagaa	aaatatgctg	gtaactatag	tggaggcaac	aaacgcaagc	tctctacagc	6480
	catggctttg	atcggcgggc	ctcctgtggt	gtttctggat	gaacccacca	caggcatgga	6540
55	tcccaaagcc	cggcggttct	tgtggaattg	tgccctaagt	gttgtcaagg	aggggagatc	6600
55	agtagtgctt	acatctcata	gtatggaaga	atgtgaagct	ctttgcacta	ggatggcaat	6660

	catggtcaat	ggaaggttca	ggtgccttgg	cagtgtccag	catctaaaaa	ataggtttgg	6720
	agatggttat	acaatagttg	tacgaatagc	agggtccaac	ccggacctga	agcctgtcca	6780
5	ggatttcttt	ggacttgcat	ttcctggaag	tgttctaaaa	gagaaacacc	ggaacatgct	6840
	acaataccag	cttccatctt	cattatcttc	tctggccagg	atattcagca	tcctctccca	6900
	gagcaaaaag	cgactccaca	tagaagacta	ctctgtttct	cagacaacac	ttgaccaagt	6960
10	atttgtgaac	tttgccaagg	accaaagtga	tgatgaccac	ttaaaagacc	tctcattaca	7020
	caaaaaccag	acagtagtgg	acgttgcagt	tctcacatct	tttctacagg	atgagaaagt	7080
	gaaagaaagc	tatgtatgaa	gaatcctgtt	catacggggt	ggctgaaagt	aaagaggaac	7140
15	tagactttcc	tttgcaccat	gtgaagtgtt	gtggagaaaa	gagccagaag	ttgatgtggg	7200
	aagaagtaaa	ctggatactg	tactgatact	attcaatgca	atgcaattca	atgcaatgaa	7260
	aacaaaattc	cattacaggg	gcagtgcctt	tgtagcctat	gtcttgtatg	gctctcaagt	7320
20	gaaagacttg	aatttagttt	tttacctata	cctatgtgaa	actctattat	ggaacccaat	7380
	ggacatatgg	gtttgaactc	acacttttt	tttttttt	gttcctgtgt	attctcattg	7440
	gggttgcaac	aataattcat	caagtaatca	tggccagcga	ttattgatca	aaatcaaaag	7500
25	gtaatgcaca	tcctcattca	ctaagccatg	ccatgcccag	gagactggtt	tcccggtgac	7560
	acatccattg	ctggcaatga	gtgtgccaga	gttattagtg	ccaagttttt	cagaaagttt	7620
	gaagcaccat	ggtgtgtcat	gctcactttt	gtgaaagctg	ctctgctcag	agtctatcaa	7680
30	cattgaatat	cagttgacag	aatggtgcca	tgcgtggcta	acatcctgct	ttgattccct	7740
	ctgataagct	gttctggtgg	cagtaacatg	caacaaaaat	gtgggtgtct	ccaggcacgg	7800
	gaaacttggt	tccattgtta	tattgtccta	tgcttcgagc	catgggtcta	cagggtcatc	7860
35	cttatgagac	tcttaaatat	acttagatcc	tggtaagagg	caaagaatca	acagccaaac	7920
00	tgctggggct	gcaagctgct	gaagccaggg	catgggatta	aagagattgt	gcgttcaaac	7980
	ctagggaagc	ctgtgcccat	ttgtcctgac	tgtctgctaa	catggtacac	tgcatctcaa	8040
40	gatgtttatc	tgacacaagt	gtattatttc	tggctttttg	aattaatcta	gaaaatgaaa	8100
40	agatggagtt	gtattttgac	aaaaatgttt	gtacttttta	atgttatttg	gaattttaag	8160
	ttctatcagt	gacttctgaa	tccttagaat	ggcctctttg	tagaaccctg	tggtatagag	8220
45	gagtatggcc	actgccccac	tatttttatt	ttcttatgta	agtttgcata	tcagtcatga	8280
45	ctagtgccta	gaaagcaatg	tgatggtcag	gatctcatga	cattatattt	gagtttcttt	8340
	cagatcattt	aggatactct	taatctcact	tcatcaatca	aatattttt	gagtgtatgc	8400
50	tgtagctgaa	agagtatgta	cgtacgtata	agactagaga	gatattaagt	ctcagtacac	8460
	ttcctgtgcc	atgttattca	gctcactggt	ttacaaatat	aggttgtctt	gtggttgtag	8520
	gagcccactg	taacaatact	gggcagcctt	ttttttttt	tttttaattg	caacaatgca	8580
55	aaagccaaga	aagtataagg	gtcacaagtc	taaacaatga	attcttcaac	agggaaaaca	8640
	gctagcttga	aaacttgctg	aaaaacacaa	cttgtgttta	tggcatttag	taccttcaaa	8700

	taattggctt	tgcagatatt	ggatacccca	ttaaatctga	cagtctcaaa	tttttcatct	8760
	cttcaatcac	tagtcaagaa	aaatataaaa	acaacaaata	cttccatatg	gagcatttt	8820
5	cagagttttc	taacccagtc	ttatttttct	agtcagtaaa	catttgtaaa	aatactgttt	8880
	cactaatact	tactgttaac	tgtcttgaga	gaaaagaaaa	atatgagaga	actattgttt	8940
	ggggaagttc	aagtgatctt	tcaatatcat	tactaacttc	ttccactttt	tccagaattt	9000
10	gaatattaac	gctaaaggtg	taagacttca	gatttcaaat	taatctttct	atattttta	9060
	aatttacaga	atattatata	acccactgct	gaaaaagaaa	aaaatgattg	ttttagaagt	9120
	taaagtcaat	attgatttta	aatataagta	atgaaggcat	atttccaata	actagtgata	9180
15	tggcatcgtt	gcattttaca	gtatcttcaa	aaatacagaa	tttatagaat	aatttctcct	9240
	catttaatat	ttttcaaaat	caaagttatg	gtttcctcat	tttactaaaa	tcgtattcta	9300
	attcttcatt	atagtaaatc	tatgagcaac	tccttacttc	ggttcctctg	atttcaaggc	9360
20	catattttaa	aaaatcaaaa	ggcactgtga	actattttga	agaaaacaca	acattttaat	9420
	acagattgaa	aggacctctt	ctgaagctag	aaacaatcta	tagttataca	tcttcattaa	9480
	tactgtgtta	ccttttaaaa	tagtaatttt	ttacattttc	ctgtgtaaac	ctaattgtgg	9540
25	tagaaatttt	taccaactct	atactcaatc	aagcaaaatt	tctgtatatt	ccctgtggaa	9600
20	tgtacctatg	tgagtttcag	aaattctcaa	aatacgtgtt	caaaaatttc	tgcttttgca	9660
	tctttgggac	acctcagaaa	acttattaac	aactgtgaat	atgagaaata	cagaagaaaa	9720
30	taataagccc	tctatacata	aatgcccagc	acaattcatt	gttaaaaaac	aaccaaacct	9780
30	cacactactg	tatttcatta	tctgtactga	aagcaaatgc	tttgtgacta	ttaaatgttg	9840
	cacatcattc	attcactgta	tagtaatcat	tgactaaagc	catttgtctg	tgttttcttc	9900
<i>35</i>	ttgtggttgt	atatatcagg	taaaatattt	tccaaagagc	catgtgtcat	gtaatactga	9960
33	accactttga	tattgagaca	ttaatttgta	cccttgttat	tatctactag	taataatgta	10020
	atactgtaga	aatattgctc	taattctttt	caaaattgtt	gcatccccct	tagaatgttt	10080
40	ctatttccat	aaggatttag	gtatgctatt	atcccttctt	ataccctaag	atgaagctgt	10140
40	ttttgtgctc	tttgttcatc	attggccctc	attccaagca	ctttacgctg	tctgtaatgg	10200
	gatctatttt	tgcactggaa	tatctgagaa	ttgcaaaact	agacaaaagt	ttcacaacag	10260
45	atttctaagt	taaatcattt	tcattaaaag	gaaaaaagaa	aaaaaatttt	gtatgtcaat	10320
45	aactttatat	gaagtattaa	aatgcatatt	tctatgttgt	aatataatga	gtcacaaaat	10380
	aaagctgtga	cagttctgtt	ggtctacaga	aa			10412
	210						

₅₀ <210> 8

<211> 3473

<212> DNA

55 <213> Homo sapiens

	<400> 8 ttctttccaa	gggtctctgg	gtgaggcccg	tgaccttccc	aagcctctcc	ctgtcttgtg	60
5	aaacctgggc	gtgatatacc	tcccttttag	ggctgctgcg	atcatttagg	cagattaaac	120
Ü	ctcataagtg	gtttcccata	caagaaagat	gctagcagtg	caacagacag	aacacttacc	180
	tgcctgccct	cccgccagga	ggtggtcttc	caacttttgc	ccggagtcta	cagagggtgg	240
10	gccctctctg	ctggggctcc	gggacatggt	caggagaggt	tggtctgtct	gtaccgccat	300
70	tctcttggcc	agactgtggt	gtctggtccc	tactcacacc	ttcctgtcag	agtatccaga	360
	ggccgcagag	tatccacacc	ctggctgggt	gtactggcta	cagatggctg	tggctccagg	420
15	tcacctgcgt	gcctgggtga	tgagaaataa	tgtcacaaca	aatatcccat	ctgcattctc	480
,,,	tgggacactg	acccatgaag	agaaagcagt	tctcacagtt	tttacaggca	cagccacagc	540
	cgtgcatgta	caggtggcag	ctttagcttc	tgctaaactg	gagagctcag	tgtttgtgac	600
20	agactgcgtg	tcctgcaaaa	tcgaaaatgt	ctgtgattca	gctcttcagg	gaaaaagggt	660
20	gccgatgtct	ggcctacagg	gctcaagcat	tgtcatcatg	ccccatcca	accgtccact	720
	cgccagtgcg	gcatcctgca	cgtggtcagt	ccaagtccag	ggagggcccc	atcacctggg	780
25	ggtggtcgct	atcagtggca	aagtcttgtc	agcagctcat	ggggcaggaa	gggcctatgg	840
20	ttgggggttt	cctggcgatc	ccatggagga	aggatacaag	accctcctga	aaggaatttc	900
	cgggaagttc	aatagtggtg	agttggtggc	cattatgggt	ccttccgggg	ccgggaagtc	960
30	cacgctgatg	aacatcctgg	ctggatacag	ggagacgggc	atgaaggggg	ccgtcctcat	1020
50	caacggcctg	ccccgggacc	tgcgctgctt	ccggaaggtg	tcctgctaca	tcatgcagga	1080
	tgacatgctg	ctgccgcatc	tcactgtgca	ggaggccatg	atggtgtcgg	cacatctgaa	1140
<i>35</i>	gcttcaggag	aaggatgaag	gcagaaggga	aatggtcaag	gagatactga	cagcgctggg	1200
00	cttgctgtct	tgcgccaaca	cgcggaccgg	gagcctgtca	ggtggtcagc	gcaagcgcct	1260
	ggccatcgcg	ctggagctgg	tgaacaaccc	tccagtcatg	ttcttcgatg	agcccaccag	1320
40	cggcctggac	agcgcctcct	gcttccaggt	ggtctcgctg	atgaaagggc	tcgctcaagg	1380
40	gggtcgctcc	atcatttgca	ccatccacca	gcccagcgcc	aaactcttcg	agctgttcga	1440
	ccagctttac	gtcctgagtc	aaggacaatg	tgtgtaccgg	ggaaaagtct	gcaatcttgt	1500
45	gccatatttg	agggatttgg	gtctgaactg	cccaacctac	cacaacccag	cagattttgt	1560
40	catggaggtt	gcatccggcg	agtacggtga	tcagaacagt	cggctggtga	gagcggttcg	1620
	ggagggcatg	tgtgactcag	accacaagag	agacctcggg	ggtgatgccg	aggtgaaccc	1680
50	ttttctttgg	caccggccct	ctgaagaggt	aaagcagaca	aaacgattaa	aggggttgag	1740
30	aaaggactcc	tcgtccatgg	aaggctgcca	cagcttctct	gccagctgcc	tcacgcagtt	1800
	ctgcatcctc	ttcaagagga	ccttcctcag	catcatgagg	gactcggtcc	tgacacacct	1860
55	gcgcatcacc	tcgcacattg	ggatcggcct	cctcattggc	ctgctgtact	tggggatcgg	1920
55	gaacgaagcc	aagaaggtct	tgagcaactc	cggcttcctc	ttcttctcca	tgctgttcct	1980

	catgttcgcg	gccctcatgc	ctactgttct	gacatttccc	ctggagatgg	gagtctttct	2040
	tcgggaacac	ctgaactact	ggtacagcct	gaaggcctac	tacctggcca	agaccatggc	2100
5	agacgtgccc	tttcagatca	tgttcccagt	ggcctactgc	agcatcgtgt	actggatgac	2160
	gtcgcagccg	tccgacgccg	tgcgctttgt	gctgtttgcc	gcgctgggca	ccatgacctc	2220
	cctggtggca	cagtccctgg	gcctgctgat	cggagccgcc	tccacgtccc	tgcaggtggc	2280
10	cactttcgtg	ggcccagtga	cagccatccc	ggtgctcctg	ttctcggggt	tcttcgtcag	2340
	cttcgacacc	atccccacgt	acctacagtg	gatgtcctac	atctcctatg	tcaggtatgg	2400
	gttcgaaggg	gtcatcctct	ccatctatgg	cttagaccgg	gaagatctgc	actgtgacat	2460
15	cgacgagacg	tgccacttcc	agaagtcgga	ggccatcctg	cgggagctgg	acgtggaaaa	2520
	tgccaagctg	tacctggact	tcatcgtact	cgggattttc	ttcatctccc	tccgcctcat	2580
	tgcctatttt	gtcctcaggt	acaaaatccg	ggcagagagg	taaaacacct	gaatgccagg	2640
20	aaacaggaag	attagacact	gtggccgagg	gcacgtctag	aatcgaggag	gcaagcctgt	2700
	gcccgaccga	cgacacagag	actcttctga	tccaacccct	agaaccgcgt	tgggtttgtg	2760
	ggtgtctcgt	gctcagccac	tctgcccagc	tgggttggat	cttctctcca	ttcccctttc	2820
25	tagctttaac	taggaagatg	taggcagatt	ggtggttttt	tttttttaa	catacagaat	2880
	tttaaatacc	acaactgggg	cagaatttaa	agctgcaaca	cagctggtga	tgagaggctt	2940
	cctcagtcca	gtcgctcctt	agcaccaggc	accgtgggtc	ctggatgggg	aactgcaagc	3000
30	agcctctcag	ctgatggctg	cacagtcaga	tgtctggtgg	cagagagtcc	gagcatggag	3060
	cgattccatt	ttatgactgt	tgtttttcac	attttcatct	ttctaaggtg	tgtctctttt	3120
	ccaatgagaa	gtcatttttg	caagccaaaa	gtcgatcaat	cgcattcatt	ttaagaaatt	3180
35	ataccttttt	agtacttgct	gaagaatgat	tcagggtaaa	tcacatactt	tgtttagaga	3240
	ggcgaggggt	ttaaccgagt	cacccagctg	gtctcataca	tagacagcac	ttgtgaagga	3300
	ttgaatgcag	gttccaggtg	gagggaagac	gtggacacca	tctccactga	gccatgcaga	3360
40	catttttaaa	agctatacaa	aaaattgtga	gaagacattg	gccaactctt	tcaaagtctt	3420
	tctttttcca	cgtgcttctt	attttaagcg	aaatatattg	tttgtttctt	cct	3473
	<210> 9						
45	<211> 2740)					
	<212> DNA						
	<213> Homo	sapiens					
50							
	<400> 9						
				cggggtcagg			60
55				gggagggtcc			120
	agctttgctg	cctattaacc	atogotoacc	tctcatcttt	gacccccgga	agatccatag	180

	gtctccaagt	aaacagaggc	tcccagagct	ccctggaggg	ggctcctgcc	accgccccgg	240
	agcctcacag	cctgggcatc	ctccatgcct	cctacagcgt	cagccaccgc	gtgaggccct	300
5	ggtgggacat	cacatcttgc	cggcagcagt	ggaccaggca	gatcctcaaa	gatgtctcct	360
	tgtacgtgga	gagcgggcag	atcatgtgca	tcctaggaag	ctcaggctcc	gggaaaacca	420
	cgctgctgga	cgccatgtcc	gggaggctgg	ggcgcgcggg	gaccttcctg	ggggaggtgt	480
10	atgtgaacgg	ccgggcgctg	cgccgggagc	agttccagga	ctgcttctcc	tacgtcctgc	540
	agagcgacac	cctgctgagc	agcctcaccg	tgcgcgagac	gctgcactac	accgcgctgc	600
	tggccatccg	ccgcggcaat	cccggctcct	tccagaagaa	ggtggaggcc	gtcatggcag	660
15	agctgagtct	gagccatgtg	gcagaccgac	tgattggcaa	ctacagcttg	gggggcattt	720
	ccacgggtga	gcggcgccgg	gtctccatcg	cagcccagct	gctccaggat	cctaaggtca	780
	tgctgtttga	tgagccaacc	acaggcctgg	actgcatgac	tgctaatcag	attgtcgtcc	840
20	tcctggtgga	actggctcgc	aggaaccgaa	ttgtggttct	caccattcac	cagccccgtt	900
	ctgagctttt	tcagctcttt	gacaaaattg	ccatcctgag	cttcggagag	ctgattttct	960
	gtggcacgcc	agcggaaatg	cttgatttct	tcaatgactg	cggttaccct	tgtcctgaac	1020
25	attcaaaccc	ttttgacttc	tatatggacc	tgacgtcagt	ggatacccaa	agcaaggaac	1080
	gggaaataga	aacctccaag	agagtccaga	tgatagaatc	tgcctacaag	aaatcagcaa	1140
	tttgtcataa	aactttgaag	aatattgaaa	gaatgaaaca	cctgaaaacg	ttaccaatgg	1200
30	ttcctttcaa	aaccaaagat	tctcctggag	ttttctctaa	actgggtgtt	ctcctgagga	1260
	gagtgacaag	aaacttggtg	agaaataagc	tggcagtgat	tacgcgtctc	cttcagaatc	1320
	tgatcatggg	tttgttcctc	cttttcttcg	ttctgcgggt	ccgaagcaat	gtgctaaagg	1380
35	gtgctatcca	ggaccgcgta	ggtctccttt	accagtttgt	gggcgccacc	ccgtacacag	1440
	gcatgctgaa	cgctgtgaat	ctgtttcccg	tgctgcgagc	tgtcagcgac	caggagagtc	1500
	aggacggcct	ctaccagaag	tggcagatga	tgctggccta	tgcactgcac	gtcctcccct	1560
40	tcagcgttgt	tgccaccatg	attttcagca	gtgtgtgcta	ctggacgctg	ggcttacatc	1620
	ctgaggttgc	ccgatttgga	tatttttctg	ctgctctctt	ggccccccac	ttaattggtg	1680
	aatttctaac	tcttgtgcta	cttggtatcg	tccaaaatcc	aaatatagtc	aacagtgtag	1740
45	tggctctgct	gtccattgcg	ggggtgcttg	ttggatctgg	attcctcaga	aacatacaag	1800
	aaatgcccat	tccttttaaa	atcatcagtt	attttacatt	ccaaaaatat	tgcagtgaga	1860
	ttcttgtagt	caatgagttc	tacggactga	atttcacttg	tggcagctca	aatgtttctg	1920
50	tgacaactaa	tccaatgtgt	gccttcactc	aaggaattca	attcattgag	aaaacctgcc	1980
	caggtgcaac	atctagattc	acaatgaact	ttctgatttt	gtattcattt	attccagctc	2040
	ttgtcatcct	aggaatagtt	gttttcaaaa	taagggatca	tctcattagc	aggtagtgaa	2100
55	agccatggct	gggaaaatgg	aagtgaagct	gccgactgtg	catgactgct	ctgaacgtct	2160
	gaaatgagag	tgccatgtat	ttctttcttg	acaggacatc	tcaagtcttt	taaccattaa	2220

	gactccattt	gtgcctcttg	gatccaagca	ggccttgaat	gcaatggaag	tggtttatag	2280
	tcccttgctc	ttacaacttg	cagggacatg	tggttatttg	gaaattgtga	ctgagcggac	2340
5	ccaagaatgt	aaataatatt	cataaaccta	tgggagactc	gtgtgactat	ttttttcct	2400
	tgttctaggc	acagaaaaaa	ataggtcagc	ttaaaaatat	gtttacattg	gataaaggat	2460
	taggcaaaaa	taaaatgttt	caaggattcc	tgaccataag	tgacagagaa	agagagttgt	2520
10	gggtttagat	gaagcaaggt	tatcatgcag	aattgggtaa	gaatgcttct	gttcctggaa	2580
	gacccagagt	taaatgcaga	tgtccacacg	aggggtcgga	gttacctgat	cacatcgaga	2640
	gagtgctggg	cagatggatg	gtgagcacca	ctgctacaga	gcacccagtg	attttactga	2700
15	ggattaaaat	aaaaaaccgt	aggaatgggc	tcaacagtga			2740
	<210> 10	•					
	<211> 2679	9					
20	<212> DNA						
		sapiens					
		•					
25	<400> 10						
	ctccaggaaa	cagagtgaag	acactggccc	tggcaggcag	cagctgggtc	taagagagct	60
	gcagcccagg	gtcacagacc	tgtgggcccc	atggccggga	aggcggcaga	ggagagaggg	120
30	ctgccgaaag	gggccactcc	ccaggatacc	tcgggcctcc	aggatagatt	gttctcctct	180
	gaaagtgaca	acagcctgta	cttcacctac	agtggccagc	ccaacaccct	ggaggtcaga	240
	gacctcaact	gccaggtgga	cctggcctct	caggtccctt	ggtttgagca	gctggctcag	300
35	ttcaagatgc	cctggacatc	tcccagctgc	cagaattctt	gtgagctggg	catccagaac	360
	ctaagcttca	aagtgagaag	tgggcagatg	ctggccatca	tagggagctc	aggttgtggg	420
	agagcctcct	tgctagatgt	gatcactggc	cgaggtcacg	gcggcaagat	caagtcaggc	480
40	cagatctgga	tcaatgggca	gcccagctcg	cctcagctgg	tgaggaagtg	tgtggcccac	540
	gtgcgccagc	acaaccagct	gctccccaac	ttgactgtgc	gagagacctt	ggccttcatt	600
	gcccagatgc	ggctgcccag	aaccttctcc	caggcccagc	gtgacaaaag	ggtggaggac	660
45		agctgcggct					720
	cgggggttgt	cggggggtga	gcgcaggaga	gtcagcattg	gggtgcagct	cctgtggaac	780
	ccaggaatcc	ttattctcga	cgaacccacc	tctgggctcg	acagcttcac	agcccacaac	840
50	ctggtgaaga	ccttgtccag	gctggccaaa	ggcaaccggc	tggtgctcat	ctccctccac	900
	cagcctcgct	ctgacatctt	caggctgttt	gatctggtcc	tcctgatgac	gtctggcacc	960
	cccatctact	taggggcggc	ccagcacatg	gtccagtatt	tcacagccat	cggctacccc	1020
55	tgtcctcgct	acagcaatcc	tgctgacttc	tatgtggacc	tgaccagcat	tgacaggcgc	1080
	agcagagagc	aggaattggc	caccagggag	aaggctcagt	cactcgcagc	cctgtttcta	1140

	gaaaaagtgc	gtgacttaga	tgactttcta	tggaaagcag	agacgaagga	tcttgacgag	1200
	gacacctgtg	tggaaagcag	cgtgacccca	ctagacacca	actgcctccc	gagtcctacg	1260
5	aagatgcctg	gggcggtgca	gcagtttacg	acgctgatcc	gtcgtcagat	ttccaacgac	1320
	ttccgagacc	tgcccaccct	cctcatccat	ggggcggagg	cctgtctgat	gtcaatgacc	1380
	atcggcttcc	tctattttgg	ccatgggagc	atccagctct	ccttcatgga	tacagccgcc	1440
10	ctcttgttca	tgatcggtgc	tctcatccct	ttcaacgtca	ttctggatgt	catctccaaa	1500
	tgttactcag	agagggcaat	gctttactat	gaactggaag	acgggctgta	caccactggt	1560
	ccatatttct	ttgccaagat	cctcggggag	cttccggagc	actgtgccta	catcatcatc	1620
15	tacgggatgc	ccacctactg	gctggccaac	ctgaggccag	gcctccagcc	cttcctgctg	1680
	cacttcctgc	tggtgtggct	ggtggtcttc	tgttgcagga	ttatggccct	ggccgccgcg	1740
	gccctgctcc	ccaccttcca	catggcctcc	ttcttcagca	atgccctcta	caactccttc	1800
20	tacctcgccg	ggggcttcat	gataaacttg	agcagcctgt	ggacagtgcc	cgcgtggatt	1860
	tccaaagtgt	ccttcctgcg	gtggtgtttt	gaagggctga	tgaagattca	gttcagcaga	1920
	agaacttata	aaatgcctct	cgggaacctc	accatcgcgg	tctcaggaga	taaaatcctc	1980
25	agtgccatgg	agctggactc	gtaccctctc	tacgccatct	acctcatcgt	cattggcctc	2040
	agcggtggct	tcatggtcct	gtactacgtg	tccttaaggt	tcatcaaaca	gaaaccaagt	2100
	caagactggt	gattcacgcc	agacgtctgc	ccgctggtgg	gggacctgag	cagacccttc	2160
30	aactgcactc	cctcctcagg	agccccttcc	tggggacagt	gaggacaatg	accctacaga	2220
	tgctcagcta	catccggccc	agggtgctgc	ggtggcacag	accagccaca	ggatggcagt	2280
	agaataaaga	cagtcgaaag	ggatttctgc	tcactggcag	gagactgcga	tgactgggag	2340
35	aaaacctgca	ctcggtggca	cctacaacgt	tgctaattta	tttccttttg	atatgcattt	2400
55	atataggcaa	ctcgatatag	gatgggagca	aactaggaat	gaattgggta	gctagactgt	2460
	gcaggaattg	ttggaacctg	gagggaacaa	taacagtacc	tagcagattt	ggcttcatct	2520
40	tccaggggcc	ccacactccg	tggtgagcca	ccatcaatac	agaaagtgac	ctaagatgta	2580
40	ccagcaagat	gccatccctt	ctttttgtgt	ggggtcatgg	gctccaaaag	ccaacgtgaa	2640
	caattaaaaa	tgtattgagc	atctaaaaaa	aaaaaaaa			2679
45	<210> 11						
,0	<211> 115	6					
	<212> DNA	O					
50		o sapiens					
50	YETS/ HUIII	o sapiciis					
	<400> 11						
55		gtgaaggacg	tccttcccca	ggagccgact	ggccaatcac	aggcaggaag	60
55	atgaaggttc	tgtgggctgc	gttgctggtc	acattcctgg	caggatgcca	ggccaaggtg	120

	gagcaagcgg	tggagacaga	gccggagccc	gagctgcgcc	agcagaccga	gtggcagagc	180
	ggccagcgct	gggaactggc	actgggtcgc	ttttgggatt	acctgcgctg	ggtgcagaca	240
5	ctgtctgagc	aggtgcagga	ggagctgctc	agctcccagg	tcacccagga	actgagggcg	300
	ctgatggacg	agaccatgaa	ggagttgaag	gcctacaaat	cggaactgga	ggaacaactg	360
	accccggtgg	cggaggagac	gcgggcacgg	ctgtccaagg	agctgcaggc	ggcgcaggcc	420
10	cggctgggcg	cggacatgga	ggacgtgtgc	ggccgcctgg	tgcagtaccg	cggcgaggtg	480
	caggccatgc	tcggccagag	caccgaggag	ctgcgggtgc	gcctcgcctc	ccacctgcgc	540
	aagctgcgta	agcggctcct	ccgcgatgcc	gatgacctgc	agaagcgcct	ggcagtgtac	600
15	caggccgggg	cccgcgaggg	cgccgagcgc	ggcctcagcg	ccatccgcga	gcgcctgggg	660
	cccctggtgg	aacagggccg	cgtgcgggcc	gccactgtgg	gctccctggc	cggccagccg	720
	ctacaggagc	gggcccaggc	ctggggcgag	cggctgcgcg	cgcggatgga	ggagatgggc	780
20	agccggaccc	gcgaccgcct	ggacgaggtg	aaggagcagg	tggcggaggt	gcgcgccaag	840
	ctggaggagc	aggcccagca	gatacgcctg	caggccgagg	ccttccaggc	ccgcctcaag	900
	agctggttcg	agcccctggt	ggaagacatg	cagcgccagt	gggccgggct	ggtggagaag	960
25	gtgcaggctg	ccgtgggcac	cagcgccgcc	cctgtgccca	gcgacaatca	ctgaacgccg	1020
	aagcctgcag	ccatgcgacc	ccacgccacc	ccgtgcctcc	tgcctccgcg	cagcctgcag	1080
	cgggagaccc	tgtccccgcc	ccagccgtcc	tcctggggtg	gaccctagtt	taataaagat	1140
30	tcaccaagtt	tcacgc					1156
	<210> 12						
	<211> 417						
<i>35</i>	<212> DNA						
		sapiens					
	10111	Supremo					
40	<400> 12						
, ,		caagccctcc	agcaaggatt	caggagtgcc	cctcgg gcct	cgccatgagg	60
	ctcttcctgt	cgctcccggt	cctggtggtg	gttctgtcga	tcgtcttgga	aggcccagcc	120
45	ccagcccagg	ggaccccaga	cgtctccagt	gccttggata	agctgaagga	gtttggaaac	180
,,	acactggagg	acaaggctcg	ggaactcatc	agccgcatca	aacagagtga	actttctgcc	240
	aagatgcggg	agtggttttc	agagacattt	cagaaagtga	aggagaaact	caagattgac	300
50	tcatgaggac	ctgaagggtg	acatccagga	ggggcctctg	aaatttccca	caccccagcg	360
30	cctgtgctga	ggactcccgc	catgtggccc	caggtgccac	caataaaaat	cctaccg	417
	<210> 13						
E E	<211> 753						
55	<211> 733						
	YETEN DINA						

<213> Homo sapiens

5	.400. 13						
	<400> 13 gttgtggctg	tggagcggaa	gtgggtctca	accactataa	atcctctctg	tgcccgtccg	60
	gagctggtga	ggacagcctg	ccagagtctg	gtctctggac	actatgggca	cacgactcct	120
10	cccagctctg	tttcttgtcc	tcctggtatt	gggatttgag	gtccagggga	cccaacagcc	180
,,	ccagcaagat	gagatgccta	gcccgacctt	cctcacccag	gtgaaggaat	ctctctccag	240
	ttactgggag	tcagcaaaga	cagccgccca	gaacctgtac	gagaagacat	acctgcccgc	300
15	tgtagatgag	aaactcaggg	acttgtacag	caaaagcaca	gcagccatga	gcacttacac	360
,,	aggcatttt	actgaccaag	ttctttctgt	gctgaaggga	gaggagtaac	agccagaccc	420
	cccatcagtg	gacaagggga	gagtccccta	ctcccctgat	ccccaggtt	cagactgagc	480
20	tccccttcc	cagtagctct	tgcatcctcc	tcccaactct	agcctgaatt	cttttcaata	540
	aaaaatacaa	ttcaagttgc	ttctcatgga	tggcactgct	tttctgagga	ctcaagggcc	600
	aagatggagg	ggctgactca	gtccagccaa	catttaatga	gcacctactt	tatgtatgga	660
<i>25</i>	gctctaaccc	atgggtccat	gggaataaag	cagtgaatag	taacaataaa	taatcgtaac	720
20	aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	aaa			753
	<210> 14						
30	<211> 595	n					
00	<211> 393						
		_					
<i>35</i>	CZISZ HOM	o sapiens					
55	<400> 14						
		ggacatctgt	tgcgcaccta	ctgtgctcac	gctggggcct	ctgggatgga	60
40	caggattctg	ccaaggcaga	catctgggtc	aagacagtcc	tgcacagttg	ttcaggttgt	120
40	ggccaaggtt	gcgtttgcag	atttgccatg	taaaaataca	ggatgctcag	ttacatttga	180
	atttcagatt	aatagcaaaa	aaaacttttt	ggtataattc	tgaaatattt	catgggacat	240
45	atttatacta	aaacgtcatg	cactgttgat	ttgaaattca	aatgtaattg	ggcctcctct	300
43	atttcgtctg	gcaagcgtag	acaaaagaat	ccagtccagg	ccaggcgcag	tggctcaagc	360
	ctgtaatccc	agcactttgg	gaggccgagg	cgggcggatc	acgaggtcag	gagatcgaga	420
50	ccatcctggc	taacacggtg	aaaccccgtc	tctactaaaa	atacaaaaaa	ttagctgggc	480
50	gtggtggcgg	gtgcctgtag	tcccagctac	tcgggaggct	gaggcaggag	aatggcgtga	540
	acctgggagg	cggagcttgc	agtgagccga	gatcgcgcca	cagcactcca	gcctgggcga	600
EE	cagagccaga	ctctgtctca	aaaaaaaaa	aaagaatcca	gtccatagtc	ccctgagcca	660
55	tgtgccctgg	ggtgcagctg	ggtccttcag	gagaaaaatg	ctctatttct	ggcactggga	720

	ccgagcctga	tgtgggtttt	ttgttggttt	ttgttgttgt	tattgttttt	gagacaaggt	780
	ctcgctccac	cacacccggc	taatttttgt	atttttagta	gagacggggt	ttcactacgt	840
5	tggccaggct	ggtcttgaac	tcctgacctc	aagtgagccg	cctgcctcgg	cctcccaaag	900
	tgctgggatt	acaggtggga	gccaccgccc	tggccctggg	cctgatgttg	atgacctcct	960
	actatgtgca	cctgcagctc	tcctgcatag	gcctcagccg	tcctgcatga	ggacactggg	1020
10	aggcaggtgc	tccctatcaa	ccccgtgtta	cagttgaaca	aactgagccc	cagaaaagaa	1080
	aacgtatttg	cccaggtcac	acggtgaaga	agtgagggat	tcgaagccca	ggtccatctg	1140
	aagccagagt	cacccagagg	agaaagagtt	ggaattgaga	actcaaggaa	tgcttggaag	1200
15	tgatcgggct	cgagcccacc	taggaagaaa	cagaggctgg	agacatgaga	ctgtgttgct	1260
	atttcctctc	atcaaccctt	gggccctatt	gaggccctac	cacaagcctg	gccctgcagc	1320
	ccagtgacta	ggagaaatta	gacacaagat	aataataaca	gcaatgatct	tttttttt	1380
20	tctgagacgg	agtcttgctc	tttcgcccag	gctggactgc	agtggcgcga	tctcggctca	1440
	atgcaagctc	cacctcccag	gttcacgcca	ttctcctgcc	tcagcctccc	gagtagctag	1500
	gactacaggc	gcctgccacc	acgcctggct	aatttttcat	atttttagta	gagatggggt	1560
25	ttcaccgtgt	tagccaagat	ggtctcaatc	tcctgacctc	gtgatccgcc	tgcctcggcc	1620
	tcccaaagtg	ttggggttac	aggcatgagc	caccgcgcct	ggccaacagc	aatgatcttt	1680
	gagcacctat	attgccagtc	tccacggtaa	gagctttctt	cattttttgt	tttgttttgt	1740
30	ttcaagacag	agtcttgctc	tgtcacccag	gctggagtgc	agtggtgtga	tcgcggctca	1800
	ctgcagcctt	cacttcccgg	gttcaagcca	ttctcctgcc	tcagcctccc	aagtagctgg	1860
	gattacaggc	acgcatcact	acttctggct	aatttttgta	tttttagtag	ggacagggtt	1920
35	tttcaccatg	ttggccaggt	tggtctcaaa	ctcctggcct	catatgatct	gcccacctcg	1980
55	gcctcccaaa	gtgctgggat	tacaggcgtg	agccactgcg	cctttctttg	tatttgttca	2040
	agtaatatac	tgaaatatgt	actgtgcctc	ccactttatg	gaggaggaaa	ctgaggccag	2100
40	caaatgaggc	tgtcatggga	ggtggagaca	ggatttgaac	ctgcctcagt	gcaggaggct	2160
40	caagagcctc	tgtcttctct	cagggcactg	tgtgggaggg	tgagaaggag	ggaggcccac	2220
	agaggcatga	cctctgattg	ccactgtcac	ctgggccctg	ctctctgaag	tctctgccaa	2280
45	gcggggaggt	ggccggggga	gggccctgct	ctgtgcagcc	tccctcccc	cggcccgcag	2340
45	agttgagcac	agagggacag	aggcacggaa	ccccagaaa	tgtccctcct	cagaaacagg	2400
	ctccaggccc	tgcctgccct	gtgcctctgc	gtgctggtcc	tggcctgcat	tgggggtgag	2460
50	aagaagtggg	tggagggatg	tggggcccac	acctggtggg	tgtgagtgtg	gctgtgtgtc	2520
50	ctgtggctct	gtagccacgt	gagacatgag	tacggagtgt	gtgcgtttca	tggcgtgcgt	2580
	atgcatgtgc	gtgtcgggga	gtgtgtgtgt	cggtggctga	gagtgaagtg	tgaatgtcac	2640
	attggtacaa	actgggatca	tctgtgtgtg	tgcacgtgcg	tgcgtggaag	tgggagtatg	2700
55	cagtcgtggt	aaaaaagtgc	atgtctgtgt	gcatatgtgt	atttgtgtgc	acctgtctct	2760

	ctgtggggta	tgtgtgtgca	aaatatttga	gtgtgtggac	atgtgtgagg	gggtgagtgt	2820
	gtgctggtgt	gtacgtctgt	gttttgcata	tgcattttt	tttttttt	ttagacggag	2880
5	tctcactctg	tcacccaggc	tggagtgcag	tggtagcagt	ggtgcgatct	tggctcactg	2940
	catcatccgc	ctacccgttt	caagggattc	tcctgcctca	gtcttcagag	tatttgggac	3000
	tacagacaca	cgccaccatg	cctggctaat	tttttttt	tgagacggag	tctcgctctg	3060
10	ttacccaggc	tggagtgcag	tggcgtgatc	ttggctcact	gcaagctccg	cctcccgggt	3120
	tcacgccatt	ctcctgcctc	agcctcccga	gtagctggga	ctacaggagc	ccaccaccac	3180
	gcctggctaa	ttttttgtat	ttttactaga	gacggggttt	cgccgtgtta	gccaggatgg	3240
15	tctccatatc	ctgacctcgt	gatccgcctg	cctcggcctt	ccaaagtgct	aggattatag	3300
	gcgtgagcca	ctgcgcctgg	ccaatgcctg	gctaatttt	ttatatttt	ggtagagaca	3360
	gggttttgcc	atgttgccca	ggctggtctt	gaaatcctga	cctcaggtga	tccgcccgcc	3420
20	ttggcctccc	aaagtgctgg	gattacaggc	atgagccacc	acgcccggcc	atgtacttta	3480
	tgttaaaatg	ggatcatatt	ctagatcagc	attatccagt	agaaatttaa	atttttaata	3540
	cagggccagg	cacggtggct	catgcctgta	atcccagcac	tttcggaggc	cgaggcgggt	3600
25	ggatcgcaag	gtcaggagat	ttgagatcat	cctggctaac	agatgggtaa	aaacccatct	3660
	ctactaaaaa	tacaaaaaat	tagccatgca	tggtggcatg	cgcctgtagt	cccagctact	3720
	cgggaggctg	aggccggaga	atcacttgaa	cccgggaggc	agaggttgca	gtgagccgag	3780
30	atcgcgccac	tgcattccaa	cctgggtgac	agagcgagac	tccgtctgaa	aaaaaaaaa	3840
	aatttaacac	gtatgtagac	aatgtgcaag	gcaccattcc	atgtgcatcg	tatgtagtaa	3900
	ctcttaattc	tcacgataac	cctgaggtag	atattattac	cccgttctac	aaaaggagaa	3960
35	acagtcctgg	ggagacagga	taagtcaccg	gccaaggcac	acagctagct	acatgtggcc	4020
	cccgcgtgac	ggctggtctc	tgtaggcgag	gctttgtcca	gatgcgtggg	tagaaggtct	4080
	ggcccggaaa	gaggaactga	cagcaaggct	aagccaatgt	ctgcccctgg	gggcagaaag	4140
40	tcacctcctg	ctctccctcc	actgtccaca	gaggtagctc	agacagggtg	ggggtcacag	4200
	gagaacgaag	ggagaagggg	gtagttcctg	ggcagcaaaa	tcaggtggtg	aagggaggca	4260
	tcagaggatg	gcaattagag	aggccattag	aggggaacca	caggcagaca	gggtgacagg	4320
45	agggactact	gacacaaggt	gaagagatgg	cccagccgga	cggggtggct	cacatctgta	4380
	atcccagcat	tttgggagcc	cgaggtgggt	ggatcacttg	aggtcaggag	ttcgaggccc	4440
	caacatggca	aaaccccatc	tcttctaaaa	atacaaaaat	tagccgggca	tgatggcaga	4500
50	tgcctgtaat	ccctgctact	cgggaggctg	aggcaggaaa	attgcctgaa	tccaggaggt	4560
	ggaggttgca	atgagacgag	atcatgacac	tgcactccac	cctgggcaac	agagcaagag	4620
	actgactctg	tctcataaaa	aaaaagaaaa	aagaaaaaa	aaaagagatg	gctgatggtt	4680
<i>55</i>	aaagaggggt	tagcggtcag	gggacacata	agggtaaagg	caggaggcaa	gaggactggc	4740
	agggggctgc	ccctgggcca	ccgggagcga	cacaggatga	gcatggaggg	aaagggagaa	4800

	ggggattcta	gggtcccagc	ctacccaagt	tgccctctgg	ttccacctag	catgccagcc	4860
	agaggcccag	gaaggaaccc	tgagcccccc	accaaagcta	aagatgagtc	gctggagcct	4920
5	ggtgaggggc	aggatgaagg	agctgctgga	gacagtggtg	aacaggacca	gagacgggtg	4980
	gcaatggttc	tggtgagggt	gtgctggcct	gggtggtggg	aggggactcc	tgggtctgag	5040
	ggaggagggg	ctggggcctg	gacccctgag	tctcagggag	gaggaaaggg	tgggagtggg	5100
10	gctgtgaccc	ctaggtctgg	gaggagtgga	gggttagagc	tgagagcagg	aactcctagg	5160
	tcacagagag	gagcggataa	atggggcaga	gaacacctgg	ggagagctgg	ggcctccact	5220
	gtgatgtcct	ctctcctgta	ggagcccgag	caccttccgg	ggcttcatgc	agacctacta	5280
15	tgacgaccac	ctgagggacc	tgggtccgct	caccaaggcc	tggttcctcg	aatccaaaga	5340
	cagcctcttg	aagaagaccc	acagcctgtg	ccccaggctt	gtctgtgggg	acaaggacca	5400
	gggttaaaat	gttcataaaa	gccaggtgtg	gttgtggcgg	gtgcctgtag	tcccagctac	5460
20	tcaggaggct	gaggtaggat	gatggcttga	gcccaggagt	tcgagaccag	cctgggcaac	5520
	acagcgagat	ctcttggggg	taaaacaaaa	agaaaaaaaa	aagttcatac	ttctccaata	5580
	aataaagtct	cacctgtgtc	cctgtctgga	tccttcccca	gtgtggccag	aaaaaaaccc	5640
25	accccactgc	ctcccaggaa	tcaatgagta	gaagaggtga	cacctgatgg	ggaaggaaga	5700
	gtagggaggt	cgggaagggt	atcaaggaat	aacaccctat	tgtgggcttg	cggagaatgg	5760
	gggacttcaa	ggcgtgtcag	tttcaggagg	gtgagggcag	gagcgtgggt	ggagtcagca	5820
30	ggtccccatg	atggccctca	ctgagagctt	cgcccttgtc	tcctacaagc	tctgactcca	5880
	ttcccagtgg	gcacccagca	cctccaaccc	ctccacagcc	cccaacccag	cctctgtcgg	5940
	aggcgaattc						5950
35	<210> 15						
	<211> 3549)					
	<212> DNA						
40	<213> Homo	sapiens					
	<400> 15						60
45				cccacttcta			60
				gctccagccc			120
				tcctccagag			180
50				gtgtggctcc			240
				gattttatcg			300
				acttgccacc			360
55				agcaaaacct			420
	acggtaacag	gaatgtatga	gagttgggtg	ccaaaacttg	tggccgccct	gtacaagaga	480

	gaaccagact	ccaatgtcat	tgtggtggac	tggctgtcac	gggctcagga	gcattaccca	540
	gtgtccgcgg	gctacaccaa	actggtggga	caggatgtgg	cccggtttat	caactggatg	600
5	gaggaggagt	ttaactaccc	tctggacaat	gtccatctct	tgggatacag	ccttggagcc	660
	catgctgctg	gcattgcagg	aagtctgacc	aataagaaag	tcaacagaat	tactggcctc	720
	gatccagctg	gacctaactt	tgagtatgca	gaagccccga	gtcgtctttc	tcctgatgat	780
10	gcagattttg	tagacgtctt	acacacattc	accagagggt	cccctggtcg	aagcattgga	840
	atccagaaac	cagttgggca	tgttgacatt	tacccgaatg	gaggtacttt	tcagccagga	900
	tgtaacattg	gagaagctat	ccgcgtgatt	gcagagagag	gacttggaga	tgtggaccag	960
15	ctagtgaagt	gctcccacga	gcgctccatt	catctcttca	tcgactctct	gttgaatgaa	1020
	gaaaatccaa	gtaaggccta	caggtgcagt	tccaaggaag	cctttgagaa	agggctctgc	1080
	ttgagttgta	gaaagaaccg	ctgcaacaat	ctgggctatg	agatcaataa	agtcagagcc	1140
20	aaaagaagca	gcaaaatgta	cctgaagact	cgttctcaga	tgccctacaa	agtcttccat	1200
	taccaagtaa	agattcattt	ttctgggact	gagagtgaaa	cccataccaa	tcaggccttt	1260
	gagatttctc	tgtatggcac	cgtggccgag	agtgagaaca	tcccattcac	tctgcctgaa	1320
25	gtttccacaa	ataagaccta	ctccttccta	atttacacag	aggtagatat	tggagaacta	1380
	ctcatgttga	agctcaaatg	gaagagtgat	tcatacttta	gctggtcaga	ctggtggagc	1440
	agtcccggct	tcgccattca	gaagatcaga	gtaaaagcag	gagagactca	gaaaaaggtg	1500
30	atcttctgtt	ctagggagaa	agtgtctcat	ttgcagaaag	gaaaggcacc	tgcggtattt	1560
	gtgaaatgcc	atgacaagtc	tctgaataag	aagtcaggct	gaaactgggc	gaatctacag	1620
	aacaaagaac	ggcatgtgaa	ttctgtgaag	aatgaagtgg	aggaagtaac	ttttacaaaa	1680
<i>35</i>	catacccagt	gtttggggtg	tttcaaaagt	ggattttcct	gaatattaat	cccagcccta	1740
	cccttgttag	ttattttagg	agacagtctc	aagcactaaa	aagtggctaa	ttcaatttat	1800
	ggggtatagt	ggccaaatag	cacatcctcc	aacgttaaaa	gacagtggat	catgaaaagt	1860
40	gctgttttgt	cctttgagaa	agaaataatt	gtttgagcgc	agagtaaaat	aaggctcctt	1920
	catgtggcgt	attgggccat	agcctataat	tggttagaac	ctcctatttt	aattggaatt	1980
	ctggatcttt	cggactgagg	ccttctcaaa	ctttactcta	agtctccaag	aatacagaaa	2040
45	atgcttttcc	gcggcacgaa	tcagactcat	ctacacagca	gtatgaatga	tgttttagaa	2100
	tgattccctc	ttgctattgg	aatgtggtcc	agacgtcaac	caggaacatg	taacttggag	2160
	agggacgaag	aaagggtctg	ataaacacag	aggttttaaa	cagtccctac	cattggcctg	2220
50	catcatgaca	aagttacaaa	ttcaaggaga	tataaaatct	agatcaatta	attcttaata	2280
	ggctttatcg	tttattgctt	aatccctctc	tccccttct	tttttgtctc	aagattatat	2340
	tataataatg	ttctctgggt	aggtgttgaa	aatgagcctg	taatcctcag	ctgacacata	2400
55	atttgaatgg	tgcagaaaaa	aaaaagatac	cgtaatttta	ttattagatt	ctccaaatga	2460
50	ttttcatcaa	tttaaaatca	ttcaatatct	gacagttact	cttcagtttt	aggcttacct	2520

	tggtcatgct tcagttgtac ttccagtgcg tctcttttgt tcctggcttt gacatgaaaa	2580
	gataggtttg agttcaaatt ttgcattgtg tgagcttcta cagattttag acaaggaccg	2640
5	tttttactaa gtaaaagggt ggagaggttc ctggggtgga ttcctaagca gtgcttgtaa	2700
	accatcgcgt gcaatgagcc agatggagta ccatgagggt tgttatttgt tgtttttaac	2760
	aactaatcaa gagtgagtga acaactattt ataaactaga tctcctattt ttcagaatgc	2820
10	tcttctacgt ataaatatga aatgataaag atgtcaaata tctcagaggc tatagctggg	2880
	aacccgactg tgaaagtatg tgatatctga acacatacta gaaagctctg catgtgtgtt	2940
	gtccttcagc ataattcgga agggaaaaca gtcgatcaag ggatgtattg gaacatgtcg	3000
15	gagtagaaat tgttcctgat gtgccagaac ttcgaccctt tctctgagag agatgatcgt	3060
	gcctataaat agtaggacca atgttgtgat taacatcatc aggcttggaa tgaattctct	3120
	ctaaaaataa aatgatgtat gatttgttgt tggcatcccc tttattaatt cattaaattt	3180
20	ctggatttgg gttgtgaccc agggtgcatt aacttaaaag attcactaaa gcagcacata	3240
	gcactgggaa ctctggctcc gaaaaacttt gttatatata tcaaggatgt tctggcttta	3300
	cattttattt attagctgta aatacatgtg tggatgtgta aatggagctt gtacatattg	3360
25	gaaaggtcat tgtggctatc tgcatttata aatgtgtggt gctaactgta tgtgtcttta	3420
	tcagtgatgg tctcacagag ccaactcact cttatgaaat gggctttaac aaaacaagaa	3480
	agaaacgtac ttaactgtgt gaagaaatgg aatcagcttt taataaaatt gacaacattt	3540
30	tattaccac	3549
	210 16	
	<210> 16	
<i>35</i>	<211> 1790	
33	<212> DNA	
	<213> Homo sapiens	
40	400 45	
40	<pre><400> 16 gtgaatctct ggggccagga agaccctgct gcccggaaga gcctcatgtt ccgtgggggc</pre>	60
	tgggcggaca tacatatacg ggctccaggc tgaacggctc gggccactta cacaccactg	120
45	cctgataacc atgctggctg ccacagtcct gaccctggcc ctgctgggca atgcccatgc	180
43	ctgctccaaa ggcacctcgc acgaggcagg catcgtgtgc cgcatcacca agcctgccct	240
	cctggtgttg aaccacgaga ctgccaaggt gatccagacc gccttccagc gagccagcta	300
50	cccagatatc acgggcgaga aggccatgat gctccttggc caagtcaagt	360
50	caacatccag atcagccact tgtccatcgc cagcagccag gtggagctgg tggaagccaa	420
	gtccattgat gtctccattc agaacgtgtc tgtggtcttc aaggggaccc tgaagtatgg	480
55	ctacaccact gcctggtggc tgggtattga tcagtccatt gacttcgaga tcgactctgc	540
55	cattgacctc cagatcaaca cacagctgac ctgtgactct ggtagagtgc ggaccgatgc	600

	ccctgactgc	tacctgtctt	tccataagct	gctcctgcat	ctccaagggg	agcgagagcc	660
	tgggtggatc	aagcagctgt	tcacaaattt	catctccttc	accctgaagc	tggtcctgaa	720
5	gggacagatc	tgcaaagaga	tcaacgtcat	ctctaacatc	atggccgatt	ttgtccagac	780
	aagggctgcc	agcatccttt	cagatggaga	cattggggtg	gacatttccc	tgacaggtga	840
	tcccgtcatc	acagcctcct	acctggagtc	ccatcacaag	ggtcatttca	tctacaagaa	900
10	tgtctcagag	gacctccccc	tccccacctt	ctcgcccaca	ctgctggggg	actcccgcat	960
	gctgtacttc	tggttctctg	agcgagtctt	ccactcgctg	gccaaggtag	ctttccagga	1020
	tggccgcctc	atgctcagcc	tgatgggaga	cgagttcaag	gcagtgctgg	agacctgggg	1080
15	cttcaacacc	aaccaggaaa	tcttccaaga	ggttgtcggc	ggcttcccca	gccaggccca	1140
	agtcaccgtc	cactgcctca	agatgcccaa	gatctcctgc	caaaacaagg	gagtcgtggt	1200
	caattcttca	gtgatggtga	aattcctctt	tccacgccca	gaccagcaac	attctgtagc	1260
20	ttacacattt	gaagaggata	tcgtgactac	cgtccaggcc	tcctattcta	agaaaaagct	1320
	cttcttaagc	ctcttggatt	tccagattac	accaaagact	gtttccaact	tgactgagag	1380
	cagctccgag	tccatccaga	gcttcctgca	gtcaatgatc	accgctgtgg	gcatccctga	1440
25	ggtcatgtct	cggctcgagg	tagtgtttac	agccctcatg	aacagcaaag	gcgtgagcct	1500
	cttcgacatc	atcaaccctg	agattatcac	tcgagatggc	ttcctgctgc	tgcagatgga	1560
	ctttggcttc	cctgagcacc	tgctggtgga	tttcctccag	agcttgagct	agaagtctcc	1620
30	aaggaggtcg	ggatggggct	tgtagcagaa	ggcaagcacc	aggctcacag	ctggaaccct	1680
	ggtgtctcct	ccagcgtggt	ggaagttggg	ttaggagtac	ggagatggag	attggctccc	1740
	aactcctccc	tatcctaaag	gcccactggc	attaaagtgc	tgtatccaag		1790
35	<210> 17						
		•					
		•					
40		n canions					
	<213> Homo	o sapiens					
	<400> 17						
45		ggaggttctg	ccaccaagca	cggccttccc	actgggaaca	caaacttgct	60
	ggcgggaaga	gcccggaaag	aaacctgtgg	atctcccttc	gagatcatcc	aaagagaaga	120
	aaggtgacct	cacattcgtg	ccccttagca	gcactctgca	gaaatgcctc	ctcagctgca	180
50	aaacggcctg	aacctctcgg	ccaaagttgt	ccagggaagc	ctggacagcc	tgccccaggc	240
	agtgagggag	tttctcgaga	ataacgctga	gctgtgtcag	cctgatcaca	tccacatctg	300
	tgacggctct	gaggaggaga	atgggcggct	tctgggccag	atggaggaag	agggcatcct	360
55	caggcggctg	aagaagtatg	acaactgctg	gttggctctc	actgacccca	gggatgtggc	420
	caggatcgaa	agcaagacgg	ttatcgtcac	ccaagagcaa	agagacacag	tgcccatccc	480

	caaaacaggc	ctcagccagc	tcggtcgctg	gatgtcagag	gaggattttg	agaaagcgtt	540
	caatgccagg	ttcccagggt	gcatgaaagg	tcgcaccatg	tacgtcatcc	cattcagcat	600
5	ggggccgctg	ggctcgcctc	tgtcaaagat	cggcatcgag	ctgacggatt	caccctacgt	660
	ggtggccagc	atgcggatca	tgacgcggat	gggcacgccc	gtcctggaag	cactgggcga	720
	tggggagttt	gtcaaatgcc	tccattctgt	ggggtgccct	ctgcctttac	aaaagccttt	780
10	ggtcaacaac	tggccctgca	acccggagct	gacgctcatc	gcccacctgc	ctgaccgcag	840
	agagatcatc	tcctttggca	gtgggtacgg	cgggaactcg	ctgctcggga	agaagtgctt	900
	tgctctcagg	atggccagcc	ggctggccaa	ggaggaaggg	tggctggcag	agcacatgct	960
15	ggttctgggt	ataaccaacc	ctgagggtga	gaagaagtac	ctggcggccg	catttcccag	1020
	cgcctgcggg	aagaccaacc	tggccatgat	gaaccccagc	ctcccgggt	ggaaggttga	1080
	gtgcgtcggg	gatgacattg	cctggatgaa	gtttgacgca	caaggtcatt	taagggccat	1140
20	caacccagaa	aatggctttt	tcggtgtcgc	tcctgggact	tcagtgaaga	ccaaccccaa	1200
	tgccatcaag	accatccaga	agaacacaat	ctttaccaat	gtggccgaga	ccagcgacgg	1260
	gggcgtttac	tgggaaggca	ttgatgagcc	gctagcttca	ggtgtcacca	tcacgtcctg	1320
25	gaagaataag	gagtggagct	cagaggatgg	ggaaccttgt	gcccacccca	actcgaggtt	1380
	ctgcacccct	gccagccagt	gccccatcat	tgatgctgcc	tgggagtctc	cggaaggtgt	1440
	tcccattgaa	ggcattatct	ttggaggccg	tagacctgct	ggtgtccctc	tagtctatga	1500
30	agctctcagc	tggcaacatg	gagtctttgt	gggggcggcc	atgagatcag	aggccacagc	1560
	ggctgcagaa	cataaaggca	aaatcatcat	gcatgacccc	tttgccatgc	ggcccttctt	1620
	tggctacaac	ttcggcaaat	acctggccca	ctggcttagc	atggcccagc	acccagcagc	1680
35	caaactgccc	aagatcttcc	atgtcaactg	gttccggaag	gacaaggaag	gcaaattcct	1740
	ctggccaggc	tttggagaga	actccagggt	gctggagtgg	atgttcaacc	ggatcgatgg	1800
	aaaagccagc	accaagctca	cgcccatagg	ctacatcccc	aaggaggatg	ccctgaacct	1860
40	gaaaggcctg	gggcacatca	acatgatgga	gcttttcagc	atctccaagg	aattctggga	1920
	gaaggaggtg	gaagacatcg	agaagtatct	ggaggatcaa	gtcaatgccg	acctcccctg	1980
	tgaaatcgag	agagagatcc	ttgccttgaa	gcaaagaata	agccagatgt	aatcagggcc	2040
45	tgagtgcttt	acctttaaaa	tcattccctt	tcccatccat	aaggtgcagt	aggagcaaga	2100
	gagggcaagt	gttcccaaat	tgacgccacc	ataataatca	tcaccacacc	gtgagcagat	2160
	ctgaaaggca	cactttgatt	tttttaagga	taagaacçac	agaacactgg	gtagtagcta	2220
50	atgaaattga	gaagggaaat	cttagcatgc	ctccaaaaat	tcacatccaa	tgcatagttt	2280
	gttcaaattt	aaggttactc	aggcattgat	cttttcagtg	ttttttcact	ttagctatgt	2340
	ggattagcta	gaatgcacac	caaaaaaata	cttgagctgt	atatatat	gtgtgtgtgt	2400
55	gtgtgtgtgt	gtgtgtgtgt	gtgtgcatgt	atgtgcacat	gtgtctgtgt	ggtatatttg	2460
	tgtatgtgta	tttgtatgta	ctgttattga	aaatatattt	aatacctttg	gaaaaatctt	2520

	gggcaagatg	acctactagt	tttccttgaa	aaaaagttgc	tttgttatta	atattgtgct	2580
	taaattattt	ttatacacca	ttgttcctta	cctttacata	attgcaatat	ttccccctta	2640
5	ctacttcttg	gaaaaaaatt	acaaaatgaa	gttttataga	aaagatgg		2688
	210 10						
	<210> 18	-					
10	<211> 3095)					
	<212> DNA						
	<213> Homo	sapiens					
15							
	<400> 18 tagcagagca	atcaccacca	agcctggaat	aactgcaagg	gctctgctga	catcttcctg	60
	aggtgccaag	gaaatgagga	tggaggaagg	aatgaatgtt	ctccatgact	ttgggatcca	120
20	gtcaacacat	tacctccagg	tgaattacca	agactcccag	gactggttca	tcttggtgtc	180
	cgtgatcgca	gacctcagga	atgccttcta	cgtcctcttc	cccatctggt	tccatcttca	240
	ggaagctgtg	ggcattaaac	tcctttgggt	agctgtgatt	ggagactggc	tcaacctcgt	300
25	ctttaagtgg	attctctttg	gacagcgtcc	atactggtgg	gttttggata	ctgactacta	360
	cagcaacact	tccgtgcccc	tgataaagca	gttccctgta	acctgtgaga	ctggaccagg	420
	gagcccctct	ggccatgcca	tgggcacagc	aggtgtatac	tacgtgatgg	tcacatctac	480
30	tctttccatc	tttcagggaa	agataaagcc	gacctacaga	tttcggtgct	tgaatgtcat	540
	tttgtggttg	ggattctggg	ctgtgcagct	gaatgtctgt	ctgtcacgaa	tctaccttgc	600
	tgctcatttt	cctcatcaag	ttgttgctgg	agtcctgtca	ggcattgctg	ttacagaaac	660
35	tttcagccac	atccacagca	tctataatgc	cagcctcaag	aaatattttc	tcattacctt	720
	cttcctgttc	agcttcgcca	tcggatttta	tctgctgctc	aagggactgg	gtgtagacct	780
	cctgtggact	ctggagaaag	cccagaggtg	gtgcgagcag	ccagaatggg	tccacattga	840
40	caccacaccc	tttgccagcc	tcctcaagaa	cctgggcacg	ctctttggcc	tggggctggc	900
	tctcaactcc	agcatgtaca	gggagagctg	caaggggaaa	ctcagcaagt	ggctcccatt	960
	ccgcctcagc	tctattgtag	cctccctcgt	cctcctgcac	gtctttgact	ccttgaaacc	1020
45	cccatcccaa	gtcgagctgg	tcttctacgt	cttgtccttc	tgcaagagtg	cggtagtgcc	1080
	cctggcatcc	gtcagtgtca	tcccctactg	cctcgcccag	gtcctgggcc	agccgcacaa	1140
	gaagtcgttg	taagagatgt	ggagtcttcg	gtgtttaaag	tcaacaacca	tgccagggat	1200
50	tgaggaggac	tactatttga	agcaatgggc	actggtattt	ggagcaagtg	acatgccatc	1260
	cattctgccg	tcgtggaatt	aaatcacgga	tggcagattg	gagggtcgcc	tggcttattc	1320
	ccatgtgtga	ctccagcctg	ccctcagcac	agactctttc	agatggaggt	gccatatcac	1380
55	gtacaccata	tgcaagtttc	ccgccaggag	gtcctcctct	ctctacttga	atactctcac	1440
3-5	aagtagggag	ctcactccca	ctggaacagc	ccattttatc	tttgaatggt	cttctgccag	1500

	cccattttga	ggccagaggt	gctgtcagct	caggtggtcc	tcttttacaa	tcctaatcat	1560
	attgggtaat	gtttttgaaa	agctaatgaa	gctattgaga	aagacctgtt	gctagaagtt	1620
5	gggttgttct	ggattttccc	ctgaagactt	acttattctt	ccgtcacata	tacaaaagca	1680
	agacttccag	gtagggccag	ctcacaagcc	caggctggag	atcctaactg	agaattttct	1740
	acctgtgttc	attcttaccg	agaaaaggag	aaaggagctc	tgaatctgat	aggaaaagaa	1800
10	ggctgcctaa	ggaggagttt	ttagtatgtg	gcgtatcatg	caagtgctat	gccaagccat	1860
	gtctaaatgg	ctttaattat	atagtaatgc	actctcagta	atgggggacc	agcttaagta	1920
	taattaatag	atggttagtg	gggtaattct	gcttctagta	tttttttac	tgtgcataca	1980
15	tgttcatcgt	atttccttgg	atttctgaat	ggctgcagtg	acccagatat	tgcactaggt	2040
	caaaacattc	aggtatagct	gacatctcct	ctatcacatt	acatcatcct	ccttataagc	2100
	ccagctctgc	tttttccaga	ttcttccact	ggctccacat	ccaccccact	ggatcttcag	2160
20	aaggctagag	ggcgactctg	gtggtgcttt	tgtatgtttc	aattaggctc	tgaaatcttg	2220
20	ggcaaaatga	caaggggagg	gccaggattc	ctctctcagg	tcactccagt	gttactttta	2280
	attcctagag	ggtaaatatg	actcctttct	ctatcccaag	ccaaccaaga	gcacattctt	2340
25	aaaggaaaag	tcaacatctt	ctctctttt	tttttttt	gagacagggt	ctcactatgt	2400
20	tgcccaggct	gctcttgaat	tcctgggctc	aagcagtcct	cccaccctac	cacagcgtcc	2460
	cgcgtagctg	gcatacaggt	gcaagccact	atgtccagct	agccaactcc	tccttgcctg	2520
30	cttttctttt	tttttctttt	tttgagacgg	cgcacctatc	acccaggctg	gagtggagtg	2580
30	gcacgatctt	ggctcactgc	aacctcttcc	tcctggttca	agcgattctc	atgtctcagc	2640
	ctcctcagta	gctaggacta	ccggcgtgca	ccaccatgcc	aggctaattt	ttatattttt	2700
25	agaattttag	aagagatggg	atttcatcat	gttggccagg	ctggtctcga	actcctgacc	2760
35	tcaagtgatc	cacctgcctt	ggcctcccaa	ggtgctagga	ttacaggcat	gagccaccgc	2820
	accgggccct	ccttgcctgt	ttttcaatct	catctgatat	gcagagtatt	tctgccccac	2880
10	ccacctaccc	cccaaaaaaa	gctgaagcct	atttatttga	aagtccttgt	ttttgctact	2940
40	aattatatag	tataccatac	attatcattc	aaaacaacca	tcctgctcat	aacatctttg	3000
	aaaagaaaaa	tatatatgtg	cagtatttta	ttaaagcaac	attttattta	agaataaagt	3060
45	cttgttaatt	actatatttt	agatgcaatg	tgatc			3095
	<210> 19						
	<211> 2128	3					
50	<212> DNA						
	<213> Homo	sapiens					
<i>55</i>	<400> 19						
		tcgggcccgc	cctcgcacgt	cactccggga	ccccgcggc	ctccgcaggt	60

	tctgcgctcc	aggccggagt	cagagactcc	aggatcggtt	ctttcatctt	cgccgcccct	120
	gcgcgtccag	ctcttctaag	acgagatgcc	gtcgggcttc	caacagatag	gctccgaaga	180
5	tggggaaccc	cctcagcagc	gagtgactgg	gaccctggtc	cttgctgtgt	tctctgcggt	240
	gcttggctcc	ctgcagtttg	ggtacaacat	tggggtcatc	aatgcccctc	agaaggtgat	300
	tgaacagagc	tacaatgaga	cgtggctggg	gaggcagggg	cctgagggac	ccagctccat	360
10	ccctccaggc	accctcacca	ccctctgggc	cctctccgtg	gccatctttt	ccgtgggcgg	420
	catgatttcc	tccttcctca	ttggtatcat	ctctcagtgg	cttggaagga	aaagggccat	480
	gctggtcaac	aatgtcctgg	cggtgctggg	gggcagcctc	atgggcctgg	ccaacgctgc	540
15	tgcctcctat	gaaatgctca	tccttggacg	attcctcatt	ggcgcctact	cagggctgac	600
	atcagggctg	gtgcccatgt	acgtggggga	gattgctccc	actcacctgc	ggggcgccct	660
	ggggacgctc	aaccaactgg	ccattgttat	cggcattctg	atcgcccagg	tgctgggctt	720
20	ggagtccctc	ctgggcactg	ccagcctgtg	gccactgctc	ctgggcctca	cagtgctacc	780
	tgccctcctg	cagctggtcc	tgctgccctt	ctgtcccgag	agcccccgct	acctctacat	840
	catccagaat	ctcgaggggc	ctgccagaaa	gagtctgaag	cgcctgacag	gctgggccga	900
25	tgtttctgga	gtgctggctg	agctgaagga	tgagaagcgg	aagctggagc	gtgagcggcc	960
	actgtccctg	ctccagctcc	tgggcagccg	tacccaccgg	cagcccctga	tcattgcggt	1020
	cgtgctgcag	ctgagccagc	agctctctgg	catcaatgct	gttttctatt	attcgaccag	1080
30	catcttcgag	acagcagggg	taggccagcc	tgcctatgcc	accataggag	ctggtgtggt	1140
	caacacagtc	ttcaccttgg	tctcggtgtt	gttggtggag	cgggcggggc	gccggacgct	1200
	ccatctcctg	ggcctggcgg	gcatgtgtgg	ctgtgccatc	ctgatgactg	tggctctgct	1260
35	cctgctggag	cgagttccag	ccatgagcta	cgtctccatt	gtggccatct	ttggcttcgt	1320
	ggcattttt	gagattggcc	ctggccccat	tccttggttc	atcgtggccg	agctcttcag	1380
	ccagggaccc	cgcccggcag	ccatggctgt	ggctggtttc	tccaactgga	cgagcaactt	1440
40	catcattggc	atgggtttcc	agtatgttgc	ggaggctatg	gggccctacg	tcttccttct	1500
	atttgcggtc	ctcctgctgg	gcttcttcat	cttcaccttc	ttaagagtac	ctgaaactcg	1560
	aggccggacg	tttgaccaga	tctcagctgc	cttccaccgg	acaccctctc	ttttagagca	1620
45	ggaggtgaaa	cccagcacag	aacttgagta	tttagggcca	gatgagaacg	actgaggggc	1680
	caggcagggg	tgggagagcc	agctctctct	acccggccca	gagacccctt	cctttcctct	1740
	gcagcacttt	aaccctctct	tccctattat	ttccgggtgg	aaaagaatcc	ctgcagcctg	1800
50	gtagaattgg	gaagctgggg	gaagggtggt	ctgagcaccc	cctcattccc	ctcgtgtgac	1860
	tctcttggat	tatttatgtg	ttgtggtttg	gccgtggcca	tcagggtggg	ccactctccc	1920
	ctccctcttc	cttcccccat	cccctttcct	ccccaccttc	cccagactca	gctccagaat	1980
<i>55</i>	accttcttcg	ctgctagaga	agggggattg	gagggaagac	aggtctagac	tttctcagtg	2040
	ggacaaacca	gagcagagag	caggacagga	gacaagaaat	ccagtttccc	accaccttgg	2100

	actcct	ccca	caatctggga	ctttcact				2128
	<210>	20						
5	<211>	1496	5					
	<212>	DNA						
	<213>	Homo	sapiens					
10								
	<400>	20	2221622021	222240110	2622112266	tccttcttt	tattattoot	60
								120
15						ttgattctct		180
						tagccaatgg		
						gccaaattaa		240
20						cgctgcaaac		300
		_				tacaagtcaa		360
			_			gcctcctaga		420
25	ctactte	caac	aaaaagtgaa	atatttagaa	gagcaactaa	ctaacttaat	tcaaaatcaa	480
						cttttgtaga		540
	aatagc	atca	aagaccttct	ccagaccgtg	gaagaccaat	ataaacaatt	aaaccaacag	600
30	catagt	caaa	taaaagaaat	agaaaatcag	ctcagaagga	ctagtattca	agaacccaca	660
	gaaatt	tctc	tatcttccaa	gccaagagca	ccaagaacta	ctccctttct	tcagttgaat	720
	gaaataa	agaa	atgtaaaaca	tgatggcatt	cctgctgaat	gtaccaccat	ttataacaga	780
35	ggtgaa	cata	caagtggcat	gtatgccatc	agacccagca	actctcaagt	ttttcatgtc	840
	tactgt	gatg	ttatatcagg	tagtccatgg	acattaattc	aacatcgaat	agatggatca	900
	caaaac	ttca	atgaaacgtg	ggagaactac	aaatatggtt	ttgggaggct	tgatggagaa	960
40	ttttgg	ttgg	gcctagagaa	gatatactcc	atagtgaagc	aatctaatta	tgttttacga	1020
,,	attgag	ttgg	aagactggaa	agacaacaaa	cattatattg	aatattcttt	ttacttggga	1080
	aatcac	gaaa	ccaactatac	gctacatcta	gttgcgatta	ctggcaatgt	ccccaatgca	1140
45	atcccg	gaaa	acaaagattt	ggtgttttct	acttgggatc	acaaagcaaa	aggacacttc	1200
45	aactgt	ccag	agggttattc	aggaggctgg	tggtggcatg	atgagtgtgg	agaaaacaac	1260
	ctaaat	ggta	aatataacaa	accaagagca	aaatctaagc	cagagaggag	aagaggatta	1320
	tcttgg	aagt	ctcaaaatgg	aaggttatac	tctataaaat	caaccaaaat	gttgatccat	1380
50	ccaaca	gatt	cagaaagctt	tgaatgaact	gaggcaaatt	taaaaggcaa	taatttaaac	1440
	attaac	ctca	ttccaagtta	atgtggtcta	ataatctggt	attaaatcct	taagag	1496
55	<210>	21						
	<211>	1419	5					

<212> DNA <213> Homo sapiens

5

	<400> 21						
		gagagagaga	agagaagaaa	aagaaaaaag	aacatcaata	aaaagaagtc	60
10	agatttgttc	gaaatcttga	ggagtcttca	ggccagctcc	ctgtcggatg	gcttttatga	120
10	aaaaatatct	cctccccatt	ctggggctct	tcatggccta	ctactactat	tctgcaaacg	180
	aggaattcag	accagagatg	ctccaaggaa	agaaagtgat	tgtcacaggg	gccagcaaag	240
	ggatcggaag	agagatggct	tatcatctgg	cgaagatggg	agcccatgtg	gtggtgacag	300
15	cgaggtcaaa	agaaactcta	cagaaggtgg	tatcccactg	cctggagctt	ggagcagcct	360
	cagcacacta	cattgctggc	accatggaag	acatgacctt	cgcagagcaa	tttgttgccc	420
	aagcaggaaa	gctcatggga	ggactagaca	tgctcattct	caaccacatc	accaacactt	480
20	ctttgaatct	ttttcatgat	gatattcacc	atgtgcgcaa	aagcatggaa	gtcaacttcc	540
	tcagttacgt	ggtcctgact	gtagctgcct	tgcccatgct	gaagcagagc	aatggaagca	600
	ttgttgtcgt	ctcctctctg	gctgggaaag	tggcttatcc	aatggttgct	gcctattctg	660
25	caagcaagtt	tgctttggat	gggttcttct	cctccatcag	aaaggaatat	tcagtgtcca	720
	gggtcaatgt	atcaatcact	ctctgtgttc	ttggcctcat	agacacagaa	acagccatga	780
	aggcagtttc	tgggatagtc	catatgcaag	cagctccaaa	ggaggaatgt	gccctggaga	840
30	tcatcaaagg	gggagctctg	cgccaagaag	aagtgtatta	tgacagctca	ctctggacca	900
	ctcttctgat	cagaaatcca	tgcaggaaga	tcctggaatt	tctctactca	acgagctata	960
	atatggacag	attcataaac	aagtaggaac	tccctgaggg	ctgggcatgc	tgagggattt	1020
35	tgggactgtt	ctgtctcatg	tttatctgag	ctcttatcta	tgaagacatc	ttcccagagt	1080
	gtccccagag	acatgcaagt	catgggtcac	acctgacaaa	tggaaggagt	tcctctaaca	1140
40	tttgcaaaat	ggaaatgtaa	taataatgaa	tgtcatgcac	cgctgcagcc	agcagttgta	1200
40	aaattgttag	taaacatagg	tataattacc	agatagttat	attaaattta	tatcttatat	1260
	ataataatat	gtgatgatta	atacaatatt	aattataata	aaggtcacat	aaactttata	1320
45	aattcataac	tggtagctat	aacttgagct	tattcaggat	ggtttcttta	aaaccataaa	1380
45	ctgtacaaat	gaaattttc	aatatttgtt	tctta			1415

<210> 22

<211> 1405

<212> DNA

<213> Homo sapiens

55

50

<400> 22

	acaattcaga	ggctgctgcc	tgcttaggag	gttgtagaaa	gctctgtagg	ttctctctgt	60
	gtgtcctaca	ggagtcttca	ggccagctcc	ctgtcggatg	gcttttatga	aaaaatatct	120
5	cctccccatt	ctggggctct	tcatggccta	ctactactat	tctgcaaacg	aggaattcag	180
	accagagatg	ctccaaggaa	agaaagtgat	tgtcacaggg	gccagcaaag	ggatcggaag	240
	agagatggct	tatcatctgg	cgaagatggg	agcccatgtg	gtggtgacag	cgaggtcaaa	300
10	agaaactcta	cagaaggtgg	tatcccactg	cctggagctt	ggagcagcct	cagcacacta	360
	cattgctggc	accatggaag	acatgacctt	cgcagagcaa	tttgttgccc	aagcaggaaa	420
	gctcatggga	ggactagaca	tgctcattct	caaccacatc	accaacactt	ctttgaatct	480
15	ttttcatgat	gatattcacc	atgtgcgcaa	aagcatggaa	gtcaacttcc	tcagttacgt	540
	ggtcctgact	gtagctgcct	tgcccatgct	gaagcagagc	aatggaagca	ttgttgtcgt	600
	ctcctctctg	gctgggaaag	tggcttatcc	aatggttgct	gcctattctg	caagcaagtt	660
20	tgctttggat	gggttcttct	cctccatcag	aaaggaatat	tcagtgtcca	gggtcaatgt	720
	atcaatcact	ctctgtgttc	ttggcctcat	agacacagaa	acagccatga	aggcagtttc	780
	tgggatagtc	catatgcaag	cagctccaaa	ggaggaatgt	gccctggaga	tcatcaaagg	840
25	gggagctctg	cgccaagaag	aagtgtatta	tgacagctca	ctctggacca	ctcttctgat	900
	cagaaatcca	tgcaggaaga	tcctggaatt	tctctactca	acgagctata	atatggacag	960
	attcataaac	aagtaggaac	tccctgaggg	ctgggcatgc	tgagggattt	tgggactgtt	1020
30	ctgtctcatg	tttatctgag	ctcttatcta	tgaagacatc	ttcccagagt	gtccccagag	1080
	acatgcaagt	catgggtcac	acctgacaaa	tggaaggagt	tcctctaaca	tttgcaaaat	1140
	ggaaatgtaa	taataatgaa	tgtcatgcac	cgctgcagcc	agcagttgta	aaattgttag	1200
35	taaacatagg	tataattacc	agatagttat	attaaattta	tatcttatat	ataataatat	1260
	gtgatgatta	atacaatatt	aattataata	aaggtcacat	aaactttata	aattcataac	1320
	tggtagctat	aacttgagct	tattcaggat	ggtttcttta	aaaccataaa	ctgtacaaat	1380
40	gaaattttc	aatatttgtt	tctta				1405

45 Claims

1. A compound of the formula (I), or pharmaceutically acceptable salts or solvates thereof,

55

$$R2$$
 $R3$
 $R4$
 $R5$
 $R6$
 $R6$

wherein the substitutents and indices have the following meanings:

10

15

20

25

30

35

40

45

50

55

 R_1 , R_2 , R_3 and R_4 , is H, halogen, hydroxy, protected hydroxy, cyano, nitro, C_1 to C_6 alkyl, C_1 to C_6 substituted alkyl, C_1 to C_7 alkoxy, C_1 to C_7 substituted alkoxy, C_1 to C_7 acyl, C_1 to C_7 substituted acyl, C_1 to C_7 acyloxy, carboxy, protected carboxy, carboxymethyl, protected carboxymethyl, hydroxymethyl, protected hydroxymethyl, amino, protected amino, (monosubstituted)amino, protected (monosubstituted)amino, (disubstituted)amino, carboxamide, protected carboxamide, N- $(C_1$ to C_6 alkyl)carboxamide, protected N- $(C_1$ to C_6 alkyl)carboxamide, N, N-di(C_1 to C_6 alkyl)carboxamide, trifluoromethyl, N-($(C_1$ to C_6 alkyl)sulfonyl)amino, N-(phenylsulfonyl)amino or substituted or unsubstituted phenyl,

 R_5 is H, C_1 to C_8 alkyl, C_1 to C_8 substituted alkyl, C_3 to C_8 cycloalkyl, C_3 to C_8 substituted cycloalkyl, aryl, substituted aryl, C1 to C6 alkylphenyl or C_7 to C_{12} substituted phenylalkyl

 R_6 is H, a secondary or a tertiary amine, C_1 to C_8 alkyl, C_1 to C_8 substituted alkyl, C_3 to C_8 cycloalkyl, C_3 to C_8 substituted cycloalkyl, aryl, substituted aryl, C1 to C6 alkylphenyl or C_7 to C_{12} substituted phenylalkyl

2. A compound according to claim 1, or pharmaceutically acceptable salts or solvates thereof, of formula (II)

$$R2$$
 $R3$
 $R4$
 $R5$
 $R5$
 $R5$
 $R7$
 $R6$
 $R7$
 $R7$

wherein the substitutents and indices have the following meanings:

 R_7 is C_1 to C_8 alkyl, C_1 to C_8 substituted alkyl, C_3 to C_8 cycloalkyl, C_3 to C_8 substituted cycloalkyl, aryl, substituted aryl, C1 to C6 alkylphenyl or C_7 to C_{12} substituted phenylalkyl

3. A compound according to claim 1, or pharmaceutically acceptable salts or solvates thereof, of formula (III)

$$R2$$
 $R3$
 $R4$
 $R5$
 $R8$
 $R9$
(III)

Wherein the substituents and indices have the following meanings:

10

15

20

25

30

35

40

45

50

55

 R_1 , R_2 , R_3 , R_4 , is H, halogen, hydroxy, protected hydroxy, cyano, nitro, C_1 to C_6 alkyl, C_1 to C_6 substituted alkyl, C_1 to C_7 alkoxy, C_1 to C_7 substituted alkoxy, C_1 to C_7 acyl, C_1 to C_7 substituted acyl, C_1 to C_7 acyloxy, carboxy, protected carboxy, carboxymethyl, protected carboxymethyl, hydroxymethyl, protected hydroxymethyl, amino, protected amino, (monosubstituted)amino, protected (monosubstituted)amino, (disubstituted)amino, carboxamide, protected carboxamide, N- $(C_1$ to C_6 alkyl)carboxamide, protected N- $(C_1$ to C_6 alkyl)carboxamide, N, N-di(C_1 to C_6 alkyl)carboxamide, trifluoromethyl, N-($(C_1$ to C_6 alkyl)sulfonyl)amino, N-(phenylsulfonyl)amino or phenyl,

 R_5 in formula (III) is H, C_1 to C_8 alkyl, C_1 to C_8 substituted alkyl, C_3 to C_8 cycloalkyl, C_3 to C_8 substituted cycloalkyl, aryl, substituted aryl, C1 to C6 alkylphenyl or C_7 to C_{12} substituted phenylalkyl,

 R_8 in formula (III) is H, C_1 to C_8 alkyl, C_1 to C_8 substituted alkyl, C_3 to C_8 cycloalkyl, C_3 to C_8 substituted cycloalkyl, C_1 to C_7 acyl, C_1 to C_7 substituted acyl, aryl, substituted aryl, C1 to C6 alkylphenyl or C_7 to C_{12} substituted phenylalkyl, carboxamide, protected carboxamide, N-(C_1 to C_6 alkyl)carboxamide, protected N-(C_1 to C_6 alkyl)carboxamide, N, N-di(C_1 to C_6 alkyl)carboxamide, trifluoromethyl, N-((C_1 to C_6 alkyl)sulfonyl)amino, N- (phenylsulfonyl)amino or phenyl,

 R_9 in formula (III) is H, C_1 to C_8 alkyl, C_1 to C_8 substituted alkyl, C_3 to C_8 cycloalkyl, C_3 to C_8 substituted cycloalkyl, C_1 to C_7 acyl, C_1 to C_7 substituted acyl, aryl, substituted aryl, C1 to C6 alkylphenyl or C_7 to C_{12} substituted phenylalkyl, carboxamide, protected carboxamide, N-(C_1 to C_6 alkyl)carboxamide, protected N-(C_1 to C_6 alkyl)carboxamide, N, N-di(C_1 to C_6 alkyl)carboxamide, trifluoromethyl, N-((C_1 to C_6 alkyl)sulfonyl)amino, N- (phenylsulfonyl)amino or phenyl,

R₈ and R₉ in formula (III) are taken together with the N in formula (III) to form a ring of the following types:

 C_3 to C_8 mono, di- or tri- heteroatom-substituted cycloalkyl, preferably piperidino, morpholino, thiomorpholino, piperazino, or C_1 to C_6 alkyl-, C_1 to C_6 substituted alkyl subtituted- or benzocondensated derivatives thereof,

 C_4 to C_{10} mono, di- or tri- heteroatom-substituted bi- or tricycloalkyl derivatives thereof or C_1 to C_6 alkyl-, C_1 to C_6 substituted alkyl subtituted- or benzocondensated derivatives thereof,

 C_3 to C_8 mono, di- or tri- heteroatom-substituted heteroaryl, preferably pyrrolo, pyrazolo, oxazolo, thiazolo, pyridino, pyridazino, pyrimidino, pyrazino, triazino, indolo, quinolino, quinazolino, or C_1 to C_6 substituted alkyl subtituted- or benzocondensated derivatives thereof

A compound according to claim 3 wherein

R₁ and R₃ are H,

R₂ and R₄ are H, or iodo, bromo, chloro or fluoro or hydroxy methyl, trifluoromethyl, methoxy, amino, alkylated amino, or nitro

 R_5 is H, C_1 to C_8 alkyl, preferrably isopropyl, vinyl, 2-isobutyl, or cyclohexyl, C_1 to C_8 substituted alkyl, C_3 to C_8 cycloalkyl, C_3 to C_8 substituted cycloalkyl, aryl, substituted aryl, C1 to C6 alkylphenyl or C_7 to C_{12} substituted phenylalkyl,

 R_8 and R_9 in formula (III) are taken together with the N in formula (III) to form a ring of the following types:

 C_3 to C_8 mono, di- or tri- heteroatom-substituted cycloalkyl, preferably piperidino, morpholino, thiomorpholino, piperazino, or C_1 to C_6 alkyl- C_1 - C_6 substituted or benzocondensated derivatives thereof, more preferrably a 4-aryl- or 4-heteroaryl- or 4-alkyl-substituted piperazino or a 4-alkyl-substituted piperidino

 C_4 to C_{10} mono, di- or tri- heteroatom-substituted bi- or tricycloalkyl or C_1 to C_6 alkyl-, C_1 - C_6 substituted alkyl substituted- or benzocondensated derivatives thereof

 ${
m C_3}$ to ${
m C_8}$ mono, di- or tri- heteroatom-substituted heteroaryl, preferably pyrrolo, pyrazolo, oxazolo, thiazolo, pyridino, pyridazino, pyrimidino, pyrazino, triazino, indolo, quinolino, quinazolino or ${
m C_1}$ to ${
m C_6}$ substituted alkyl substituted- or benzocondensated derivatives thereof

5. A compound according to any of claims 1 to 3 wherein

R₁ and R₃ are H,

10

15

20

25

30

35

40

45

50

55

 R_2 and R_4 are H, or iodo, bromo, chloro or fluoro or hydroxy methyl, trifluoromethyl, methoxy, amino, alkylated amino, or nitro

 R_5 is H, C_1 to C_8 alkyl, preferrably isopropyl, vinyl, 2-isobutyl, C_1 to C_8 substituted alkyl, C_3 to C_8 cycloalkyl, C_3 to C_8 substituted cycloalkyl, aryl, substituted aryl, C1 to C6 alkylphenyl or C_7 to C_{12} substituted phenylalkyl, C_8 is a C_1 to C_8 alkyl, C_1 to C_8 substituted alkyl, C_3 to C_8 cycloalkyl, C_3 to C_8 substituted cycloalkyl, C_1 to C_6 alkylphenyl or C_7 to C_{12} substituted phenylalkyl, preferrably benzyl or (furan-2-yl)-methyl or (thiophen-2-yl)-methyl

and R_9 in formula is C_1 to C_8 alkyl, C_1 to C_8 substituted alkyl, C_3 to C_8 cycloalkyl, C_3 to C_8 substituted cycloalkyl, C_1 to C_6 alkylphenyl or C_7 to C_{12} substituted phenylalkyl, preferably (ethyl)-propion-1-yl

6. A compound according to any of claims 1 to 5 being

(IV)

7. A compound according to any of claims 1 to 5 being

(V)

8. A compound according to any of claims 1 to 5 being

(VI) 15

9. A compound according to any of claims 1 and 5 being

10. A compound according to any of claims 1 and 5 being

11. A compound according to any of claims 1 and 5 being

12. A compound according to any of claims 1 and 5 being

(X)

35 13. A compound according to any of claims 1 and 5 being

30

55

14. A compound according to any of claims 1 and 5 being

15. A compound according to any of claims 1 and 5 being

20

40

45

50

- 16. A compound according to any of claims 1 to 15 wherein said compound is capable of binding the NR1H3 receptor protein encoded by a nucleic acid comprising SEQID NO:2 or a portion thereof or a mammalian homologue thereof.
- 17. A compound according to any of claims 1 to 15 wherein said compound is capable of binding the NR1H2 receptor protein encoded by a nucleic acid comprising SEQ ID NO:1 or a portion thereof or a mammalian homologue thereof.
- 18. A compound according to any of claims 1 to 15 for use as a medicament.
- 19. A method for prevention or treatment of a NR1H3 and/or NR1H2 receptor protein mediated disease or NR1H3 and/or NR1H2 receptor protein homologue mediated disease or condition in a mammal comprising administration of a therapeutically effective amount of a compound according to claims 1 to 15 wherein the prevention or treatment is directly or indirectly accomplished through the binding of the compound according claims 1 to 15 to the NR1H3 and/or NR1H2 receptor protein proteins or to the NR1H3 and/or NR1H2 receptor protein homologues.
- 20. A method for regulating the cholesterol synthesis or transport in a mammal which comprises activating the NR1H3 and/or NR1H2 receptors with a therapeutically effective amount of a compound according to claims 1 to 15.

- 21. A method of treating in mammal a disease which is affected by cholesterol, triglyceride, bile acid, glucose or glucocorticoid levels comprising administering to a mammal in need of such treatment a therapeutically effective amount of a compound according to claims 1 to 15.
- 22. A method of treating in a mammal Atherosclerosis, Alzheimers disease, Type II diabetes, lipid disorders, obesity, an inflammatory or a cardiovascular disorder comprising administering to a mammal in need of such treatment a therapeutically effective amount of a compound according to claims 1 to 15.
- 23. A method according to any of claims 19 to 22, wherein the expression of one or more of the genes out of the group comprising ABCA1, ABCG1, ABCG5, ABCG8, apolipoprotein-CI, -CII, -CIV, -E, LPL (lipoprotein lipase), CETP (cholesteryl ester transfer protein) or other genes that positively regulate cholesterol homeostasis is increased upon compound administration.
- 24. A method according to any of claims 19 to 22, wherein the expression of one or more of the genes out of the group comprising 11-β-HSD (11-β hydroxysteroid dehydrogenase), PEPCK (phosphoenolpyruvat carboxykinase), G-6-P (glucose-6-phosphatase) is reduced upon compound administration.
 - 25. A method according to any of claims 19 to 22, wherein the expression of one or more of the genes out of the group comprising FAS (Fatty Acid Synthase), SREBP-1c (Sterol-response element binding protein), SCD-1 (Stearoyl-CoA Desaturase), Angiopoietin like protein 3 (Angptl3) or other genes which are relevant for controlling serum triglyceride or glucose levels are not or more weakly increased in liver and or other organs compared to administration of a full agonist like T0901317.

20

30

- 26. A method of blocking in a mammal the cholesterol or fatty acid absorption in the intestine of a mammal in need of such blocking comprising administering to a mammal in need of such treatment a therapeutically effective amount of a compound as defined in any of claims 1 to 15.
 - 27. A method for treating obesity in a mammal comprising administring a therapeutically effective amount of a compound as defined in any of claims 1 to 15.
 - 28. A method of modulating a gene whose expression is regulated by the NR1H3 and/or NR1H2 receptor in a mammal comprising administering a therapeutically effective amount of a compound as defined in any claims 1 to 15.
- 29. A method according to any of claims 19 to 28 wherein the expression of ABCA1 and/or ABCG1 and/or ABCG5 and/or ABCG8 is increased.
 - **30.** Use of a compound as defined in any of claims 1 to 15 in a method according to claims 19 to 29 wherein the mammal is a human.
- 31. Use of a compound as defined in any of claims 1 to 15 for the manufacture of a medicament for the prevention or treatment of a NR1H3 and/or NR1H2 receptor protein or NR1H3 and/or NR1H2 receptor protein homologue mediated disease or condition in a mammal wherein the prevention or treatment is directly or indirectly accomplished through the binding of the compound to the NR1H3 and/or NR1H2 receptor protein or NR1H3 and/or NR1H2 receptor protein homologue.
 - **32.** Use of a compound as defined in any of claims 1 to 15 for the manufacture of a medicament for prevention or treatment of a NR1H3 and/or NR1H2 receptor protein mediated disease or condition wherein the mammal is a human.
- 33. Use of a compound as defined in any of claims 1 to 15 for the manufacture of a medicament for regulating the cholesterol transport system in a mammal by activating the NR1H3 and/or NR1H2 receptor.
 - **34.** Use of a compound as defined in any of claims 1 to 15 for the manufacture of a medicament for regulating levels of cholesterol, triglyceride, and/or bile acid.
 - 35. Use of a compound as defined in any of claims 1 to 15 for the manufacture of a medicament for treating in a mammal atherosclerosis, Alzheimer disease, gallstone disease, lipid disorders, inflammatory disorder, type II diabetis, obesity or a cardiovascular disorder.

- **36.** Use of a compound as defined in any of claims 1 to 15 for the manufacture of a medicament capable for blocking in a mammal the cholesterol and/or fatty acid absorption in the intestine.
- **37.** Use of a compound as defined in any of claims 1 to 15 for the manufacture of a medicament for treating obesity in a mammal.
- **38.** Use of a compound as defined in any of claims 1 to 15 for the manufacture of a medicament for modulating a gene whose expression is regulated by the NR1H3 and/or NR1H2 receptor.
- 39. Use of a compound as defined in any of claims 1 to 15 in a mammal for the selective up-regulation of one or more genes selected from the group comprising ABCA1, ABCG1, ABCG5, ABCG8, apolipoprotein-CI, -CII, -CIV, -E, LPL (lipoprotein lipase), CETP (cholesteryl ester transfer protein) or other genes that positively regulate cholesterol homeostasis are increased and a weaker regulation of one or more of the genes selected from the group comprising FAS and SREBP-1c or other genes that positively regulate lipogenesis, said compound showing a larger difference in regulation of the two groups of genes when compared with the regulatory behaviour of a full agonist like T0901317 on both groups of genes.
 - 40. The use according to any of claims 31 to 39, wherein the mammal is human.

Fig.1

Fig. 2

Number of repeats1
plate: GREINER FIA-Plate black 384 well med. binding
Measurement height 3.50 mm
Label technology TR-F Lance
Emission filter name D615
Emission filter slot A1
Emission aperture Normal
Excitation filter D340
Delay 50 μs
Window time 400 μs
Cycle 1000 μs
Light integrator capacitors 1
Light integrator ref. level 95
Flash energy area High
Flash energy level 223
Flash absorbance measurement No
Beam Normal
Label technology TR-F Lance
Emission filter name D665
Emission filter slot A8
Emission aperture Normal
Excitation filter D340
Delay 50 μs
Window time 400 μs
Cycle 1000 µs
Light integrator capacitors 1
Light integrator ref. level 95
Flash energy area High
Flash energy level 223
Flash absorbance measurement No
Beam Normal

Fig. 3

Gene definition	NCBI Accession number	Corresponding SEQ
	of gene	ID Number
Liver X receptor beta NR1H2	NM_007121	1
Liver X receptor alpha NR1H3	NM 005693	2
Steroid receptor coactivator 1	U90661	3

Fig. 4

MOLNAME	MOLECULE STRUCTURE	EC50 AVG	% EFIC
		[µM]	AVG
TO901317	F ₃ C O CF ₃ N S 0 TO901317	0,1	100
LN0000007033		5	50
LN0000007025	O CH ₃ CH ₃	4	60

LN0000007184		0,5	130
	CH ₂ CCH ₃		
LN000007031		4	50
	CH ₃ CH ₃		
LN000007032		42	150

LN0000006672			
	E CH ₃		
LN0000007172		1,1	21
	CH ₂		
LN0000007174	CH ³ CH ³ S	32	>100

LN0000007179		0,8	127
·	° CH ₃		
LN0000007180		0,16	128
LN0000007181		0,12	89
	CH ₃		

LN0000007182	CH ₃	2,4	108
LN0000007183	CH ₂ CH ₂ CH ₃	2,6	117
LN0000007184	CH ₂	0,55	130

LN0000007185		0,34	142
	O CH ₂		
	CH ₃		
	,, ,,		

Fig. 5

Fig. 6

Protein / Gene Name	NCBI Accession	Corresponding SEQ		
	number of gene	ID number		
Liver X receptor beta, LXRß	NM_007121	1		
Liver X receptor alpha, LXRα	NM_005693	2		
Cholesterol 7 α hydroxylase, Cyp7A1	NM_000780	3		
Fatty Acid Synthase FAS	NM_004104	4		
Stearyl CoA desaturase, SCD	XM_030447	5		
Sterol Response Element Binding	NM_004176	6		
Protein 1C, SREBP-1C				
ATP binding cassette transporter A1;	NM_005502	7		
ABCA1				
ATP binding cassette transporter G1;	XM_032950	8		
ABCG1				
ATP binding cassette transporter G5;	NM_022436	9		
ABCG5				
ATP binding cassette transporter G8;	AF324494	10		
ABCG8				
Apolipoprotein E, apoE	NM_000041	11		
Apolipoprotein C-I, apoC-I	NM_001645	12		
Apolipoprotein C-II apoC-II	NM_000483	13		
Apolipoprotein C-IV, apoC-IV	U32576	14		
Lipoprotein Lipase, LPL	M15856	15		
Cholesteryl Ester Transfer Protein, CETP	NM_000078	16		
Phosphoenolpyruvate carboxykinase 1	NM_002591	17		
(PEPCK)				
Glucose-6-phosphatase (G6P)	NM_000151	18		
Insulin-responsive glucose transporter	M20747	19		
(GLUT4)				
Angiopoietin-like 3, ANGPTL3	NM_01445	20		
11-beta Hydroxysteroid dehydrogenase	NM_181755	21		
HSD11B1 variant 2				
11-beta Hydroxysteroid dehydrogenase	NM_005525	22		
HSD11B1 variant 1				

Fig. 7

Fig. 8A

Fig. 9 A

Fig. 9 B

Fig. 10

- TO901317
- LN0000007033
- LN0000007025

Application Number

which under Rule 45 of the European Patent Convention EP $\,$ 03 $\,$ 02 $\,$ 0417 shall be considered, for the purposes of subsequent proceedings, as the European search report

	DOCUMENTS CONSID	ERED TO BE RELEVANT		
Category		dication, where appropriate,	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int.CI.7)
Х	15 August 2002 (200 * claim 1 *	- page 107, line 6 *	1,3-5, 16-40	A61K31/517 C07D239/95 C07D401/12 C07D405/12 A61P3/06
Х	WO 97/20823 A (CRIS ;YAMAGUCHI YASUCHIK (CH); M) 12 June 19 * page 74; example * page 1, paragraph * claim 12 *	A (CH); CIBA GEIGY AG 97 (1997-06-12) 28 *	1,3,5, 16-40	
Х		12 *	1,3,4, 16-40	
Х	US 3 609 152 A (HES 28 September 1971 (* examples III-X *	S HANS-JURGEN E ET AL) 1971-09-28)	1,3-5, 16-40	TECHNICAL FIELDS SEARCHED (Int.Cl.7)
		-/		C07D A61K A61P
INCO	MPLETE SEARCH		<u> </u>	
not compl be carried Claims se Claims se	th Division considers that the present y with the EPC to such an extent that out, or can only be carried out partial arched completely: arched incompletely:	application, or one or more of its claims, does/c a meaningful search into the state of the art car y, for these claims.	do nnot	
Regran f	or the limitation of the search:			
	sheet C			
	Place of search	Date of completion of the search	1	Examiner
	Munich	10 December 2003	Ko1	lmannsberger, M
X : parti Y : parti docu A : tech	TEGORY OF CITED DOCUMENTS cularly relevant if taken alone cularly relevant if combined with anot ment of the same category nological background written disclosure	L : document cited fo	ument, but public the application rother reasons	shed on, or

EPO FORM 1503 03.82 (P04C07)

INCOMPLETE SEARCH SHEET C

Application Number EP 03 02 0417

Claim(s) searched completely: 6-15

Claim(s) searched incompletely: 1-5, 16-40

Reason for the limitation of the search:

Claims 1-5 encompass a large number of known compounds. Also the use of these compounds in the treatment of diseases as listed e. g. in claim 22 appears to be well known. The initial phase of the search revealed a very large number of documents relevant to the issue of novelty. So many documents were retrieved that it is impossible to determine which parts of the claim(s) may be said to define subject-matter for which protection might legitimately be sought (Article 84 EPC). For these reasons, a meaningful search over the whole breadth of the claims is impossible. Consequently, the search is only complete for:

Compounds according to claim 1 which are explicitly stated in the prior art to have binding affinity to the LXR receptor; compounds as such according to claims 5-16.

Only some documents relevant to other subject-matter of the claims have been cited for illustration.

Application Number

EP 03 02 0417

		APPLICATION (Int.CI.7)	
Category	Citation of document with indication, where appropriate, of relevant passages	Relevant to claim	
Х	WO 01/021598 A (ASTRAZENECA UK LTD; ASTRAZENECA AB (SE)) 29 March 2001 (2001-03-29) * claims 1,10 *	1,3, 16-40	
X	US 6 337 332 B1 (CARPINO PHILIP A) 8 January 2002 (2002-01-08) * column 1 * * examples 1-7 * * tables 1-5 *	1,16-40	
X	HESS, HANS J. ET AL: "Antihypertensive 2-amino-4(3H)-quinazolinones" JOURNAL OF MEDICINAL CHEMISTRY, 11(1), 130-6 CODEN: JMCMAR; ISSN: 0022-2623, 1968, XP002264555 * column 1, paragraph 1 * * page 132 - page 133; table 1 *	1,3-5, 16-40	TECHNICAL FIELDS SEARCHED (Int.Cl.7)
X	GUPTA C M ET AL: "Drugs acting on the central nervous system. Syntheses of substituted quinazolones and quinazolines and triazepino- and triazocinoquinazolones" JOURNAL OF MEDICINAL CHEMISTRY, AMERICAN CHEMICAL SOCIETY. WASHINGTON, US, vol. 11, no. 2, 26 February 1968 (1968-02-26), pages 392-395, XP002156695 ISSN: 0022-2623 * examples 4-7,13-16,20,22,23,38; table 2 *	1-5,18	

82

Application Number

EP 03 02 0417

İ	DOCUMENTS CONSIDERED TO BE RELEVANT	CLASSIFICATION OF THE APPLICATION (Int.CI.7)	
Category	Citation of document with indication, where appropriate, of relevant passages	Relevant to claim	
X	DATABASE CHEMABS [Online] CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US;	2,18	
	ZAIDI, NAFEESA B. ET AL: "Synthesis of some new 4(3H)-quinazolones and their derivatives as possible antitubercular agents"		
	XP002264556 retrieved from STN Database accession no. 1982:616118 * abstract *		
	& ACTA CIENCIA INDICA, CHEMISTRY, 7(1-4), 63-8 CODEN: ACICDV; ISSN: 0253-7338, 1981,		TECHNICAL FIELDS
x	MANABU HORI ET AL: "Novel 4-Substituted 2-Piperazinylquinazolines as potent Anticonvulsive and Antihypoxic Agents" CHEMICAL AND PHARMACEUTICAL BULLETIN, PHARMACEUTICAL SOCIETY OF JAPAN. TOKYO,	1,3-5	SEARCHED (Int.CI.7)
	JP, vol. 38, no. 5, 1990, pages 1286-1291, XP002128282 ISSN: 0009-2363 * examples 3A-3H; table II *		
x	DATABASE CHEMCATS CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; XP002225148 Order Number: TRG10400#07364-D; TRG10400#01891-D; TRG10400#01815-D; TRG10400#01814-D; TRG10400#01812-D; TRG10400#01736-D; TRG10400#01735-D; TRG10400#01732-D; TRG10400#01732-D;	1,3-5	
	TRG10400#01729-D -/		
			:

EPO FORM 1503 03.82 (P04C10)

Application Number

EP 03 02 0417

	DOCUMENTS CONSIDERED TO BE RELEVANT	CLASSIFICATION OF THE APPLICATION (Int.CI.7)	
Category	Citation of document with indication, where appropriate, of relevant passages	Relevant to claim	
	& "Chem.Folio" 15 January 2001 (2001-01-15), LION BIOSCIENCE AG, HEIDELBERG, GERMANY		
x	US 3 867 384 A (SHEERAN PATRICK J ET AL) 18 February 1975 (1975-02-18) * column 1 - page 2 * * column 5; table 1 *	1-5	
х	US 3 755 582 A (BULLOCK G) 28 August 1973 (1973-08-28) * examples 1-6,8,12-14 *	2	
A	WO 02/24632 A (GLAXO GROUP LTD; COLLINS JON LOREN (US); FIVUSH ADAM M (US); MALONEY) 28 March 2002 (2002-03-28) * claims *	1-40	TECHNICAL FIELDS SEARCHED (Int.Cl.7)
		<u> </u>	
į			

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 03 02 0417

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

10-12-2003

cite	Patent document ed in search report		Publication date		Patent family member(s)		Publication date
WO	02062798	A	15-08-2002	CA EP WO CA EP WO US	2436738 1363913 02062798 2436741 1363914 02062799 2002169175	A2 A2 A1 A1 A1	15-08-200 26-11-200 15-08-200 15-08-200 26-11-200 15-08-200 14-11-200
WO	9720823	Α	12-06-1997	AU WO ZA	7692996 9720823 9610020	A2	27-06-199 12-06-199 01 - 06-199
WO	0248152	А	20-06-2002	AU EP WO US	2027602 1347982 0248152 2003036652	A2 A2	24-06-200 01-10-200 20-06-200 20-02-200
US	3609152	Α	28-09-1971	BE DE FR GB GB	678216 1620127 5267 1062357 1174272 1174273	A1 M A A	22-09-196 12-03-197 31-07-196 22-03-196 17-12-196 17-12-196
WO	0121598	A	29-03-2001	AU EP WO JP US	7031500 1218358 0121598 2003509501 6399603	A1 A1 T	24-04-200 03-07-200 29-03-200 11-03-200 04-06-200
US	6337332	B1	08-01-2002	NONE			
US	3867384	Α	18-02-1975	NONE			
US	3755582	Α	28-08-1973	NONE			
WO	0224632	Α	28-03-2002	AU EP WO	1121602 1318976 0224632	A2	02-04-200 18-06-200 28-03-200