Data Science and Machine Learning in Python

Stephan Weyers

Topics covered in the online lectures

Part 1: Data Science

	Date	Topics covered	
1	Apr 13 th	Course introduction Data Science motivation How to use Jupyter Notebook Python types and lists Loops, if/else, functions	
2	Apr 20 th	Python tuples, lists, dictionaries Functions Numpy basics, operations Image processing	
3	Apr 27 th	Pandas Series, DataFrame Pandas basic operations Import/export files	
4	May 4 th	Principles of data visualization Data cleaning and preparation Join, combine and reshape data	
5	May 11 th	Volkswohl Bund dataset Data visualization in Python How to write Data Science reports Data aggregation and grouping	

Part 2: Machine Learning

	Date	Topics covered	
6	Jun 1 st	Introduction to supervised learning Classification and regression scikit-learn k-Nearest Neighbors Linear regression (ridge and lasso)	
7	Jun 8 th	Linear classification models Decision trees Random forests and gradient boosting	
8	Jun 15 th	Kernel support vector machines Neural networks	
9	Jun 22 nd	Introduction to unsupervised learning Preprocessing and scaling Dimensionality reduction Principal component analysis	
10	Jun 29 th	k-means clustering Hierarchical clustering DBSCAN	
11	Jul 6 th	Representing data Engineering features Model evaluation and improvement Text data analysis	

Deadlines for Submission and Distribution of Grading

Student task	Deliverables	Deadline	Work	Share of grade
W01 Assignment	Code and results	Apr 26 th	Team A	5.0%
W02 Case Study	Code / presentation slides	May 22 nd	Team B	18.0%
W02 Case Study	Peer review*	May 31st	Individual	2.0%
W03 Assignment	Code and results	May 29th	Team B	5.0%
W04 Assignment	Code and results	Jun 12 th	Team C	10.0%
W05 Assignment	Code and results	Jun 28 th	Team D	7.0%
W06 Assignment	Code and results	Jul 8 th	Team D	13.0%
W07 Case Study	Code / presentation slides	Jul 17 th	Team D	22.0%
W07 Case Study	Peer review*	Jul 31st	Individual	3.0%
DataCamp 1	Finish course	May 9 th	Individual	2.5%
DataCamp 2	Finish course	May 30 th	Individual	2.5%
DataCamp 3	Finish course	Jun 20 th	Individual	2.5%
DataCamp 4	Finish course	Jul 11 th	Individual	2.5%

^{*} Peer review is mandatory. Quality of peer review itself is graded. Not providing peer review at all would result in high point deduction

Teams for assignment W05-W07

Team	Univ.	Name		
D1	UV	Paula Piña		
D1	UBA	Facundo Ignacio Zanalda		
D1	UBA	Manuel Cabeza Galucci		
D1	FHDO	Daniel Tobien		
D2	UV	Adonis Nicola Cruz Navarrete		
D2	UBA	Manuel Durán		
D2	UBA	Lucas Trabanco		
D2	FHDO	Bedirhan Abaz		
D3	UV	Felipe Galdames		
D3	UBA	Victoria Marquez		
D3	FHDO	Minh Quan Dinh		
D3	ESAN	Juan Jose A. Velasquez Leon		
D4	UBA	Gian Franco Lancioni		
D4	UBA	Kevin Michalewicz		
D4	FHDO	Mohamed Elbaraka		
D4	ESAN	Nayely Mayli Ore Ichpas		
D5	UV	Nilari Berger Díaz		
D5	UBA	Daniel Kundro		
D5	UBA	Belen Ticona		
D5	FHDO	Celine Cramer		
D6	UBA	Francisco Rossi		
D6	FHDO	René Frackmann		
D6	FHDO	Jessica Heilig		
D6	FHDO	Marius Meiners		
D7	UV	Valentina Andrea Acuña Ponce		
D7	UBA	Sofía Nieva		
D7	FHDO	Fabian Herberholt		
D7	FHDO	Arnold Urbanio Olympio		

Univ.	Name		
UV	Manuel Orellana Hinojosa		
UV	Dian Arriagada		
UGTO	Abraham Morales Iturriaga		
ESAN	María Ximena Latorre Guzmán		
UV	Luis Martinez		
UV	Paula Riquelme		
UDEM	Jordana L.M. Apolinario Simon		
FHDO	Robin Drabon		
UV	Jaime Godoy		
UDEM	Mariana Gómez Gómez		
UBA	Francisco Alan Luna		
FHDO	Marco Vom Bovert		
UV	Joel Santana		
UV	Paula Toro		
UBA	Lucía Ailén Kasman		
UBA	Rocío Palacín Roitbarg		
FHDO	Intissar Boudi		
UV	Marcelo Leiton		
UV	Emmanuel Cuevas Parra		
UBA	Matías Nicolás Pereyra		
FHDO	Mamadama Cherif		
ESAN	Luiggy Johan Zea Guzman		
UV	Dietrich Ganz		
UV	Rodrigo Llano Orellana		
UBA	Juan Cruz Camacho		
FHDO	Justin Skupsch		
FHDO	Marco Kusnierek		
	UV UV UGTO ESAN UV UV UDEM FHDO UV UDEM UBA FHDO UV UV UBA FHDO UV UV UV UBA FHDO UV UV UBA FHDO UV UV UBA FHDO ESAN UV UV UBA FHDO		

Team	Univ.	Name		
D14	UV	Jorge Rodriguez		
D14	UV	Alejandra Valencia		
D14	UTTEC	Hugo Isaac Vázquez Gutiérrez		
D14	UDEM	Dilan Stiven Correa López		
D14	UBA	Andrómeda P. Ovalles Castro		
D15	UV	Diego Del Rio		
D15	UV	Franco Garrido		
D15	UTTEC	José Luís Godínez Vázquez		
D15	FHDO	Tegar Fathir Muhammad		
D15	ESAN	Jhossy J. Vargas Saldaña		
D16	UV	Jose Ignacio Meneses Castillo		
D16	UV	Benjamin Serra		
D16	UV	Sofia Contreras Figueroa		
D16	UGTO	Andrea Rodriguez Sotelo		
D16	FHDO	Jakub Bogusz		
D17	UV	Amaya Arroyo		
D17	UV	Catalina Escobar		
D17	UGTO	Frida Martinez Flores		
D17	UBA	Victoria Cambriglia		
D17	FHDO	Jannick Bröring		
D18	UV	Maximiliano Arancibia Santana		
D18	UV	Fernando Parada		
D18	UGTO	Andrea Ortiz Alvarado		
D18	UBA	Joaquin Ceppi		
D18	ESAN	Angela Karin Paredes Solano		

Agenda for online lecture 10

Session	Topic	Mode	Materials used	Minutes	End
14:30-16:00	Organizational questions	Q&A		10	14:40
	k-means	Lecture / Q&A	Lecture slides	25	15:05
	Hierarchical Clustering	Lecture / Q&A	Lecture slides	20	15:25
	Animals clustering	Lecture / Q&A	Lecture 10a notebook	10	15:35
	Questions to ponder	Team work in break-out rooms	Lecture 10a notebook	20	15:55
16:10-17:40	Olivetti Faces	Lecture / Q&A	Lecture 10b notebook	15	16:25
	DBSCAN	Lecture / Q&A	Lecture slides	5	16:30
	MNIST Exercises	Team work in break-out rooms	Lecture 10c notebook	40	17:10
	OCEAN Big Five	Lecture / Q&A	Lecture 10d notebook	10	17:20
	Organizational questions	Q&A		10	17:30
18:00-20:00	Germany vs. England EURO 2020 Round of 16	Individual choice	TV, snacks, beverages		

Types of problems

Supervised Approaches

- Labeled data
- Target values known

Classification

Predict category

Regression

Predict numeric value

Unsupervised Approaches

- Unlabeled data
- No target value provided

Cluster Analysis

Organize similar cases into segments

Dimensionality reduction

Reduce number of features

k-means algorithm

k-means - 3 clusters / initialization 1

k-means - 3 clusters / initialization 2

k-means - 4 clusters / initialization 1

k-means – 4 clusters / initialization 2

Hierarchical Clustering

Hierarchical Clustering – Linkage Methods

Single linkage

$$\mathsf{dist}(C,C') = \min_{x \in C, x' \in C'} \|x - x'\|$$

Complete linkage

$$\mathsf{dist}(\mathit{C},\mathit{C}') = \max_{x \in \mathit{C},x' \in \mathit{C}'} \|x - x'\|$$

Hierarchical Clustering – Single Linkage

Hierarchical Clustering – Complete Linkage

Hierarchical Clustering – Linkage Methods

1 Average pairwise distance between points in the two clusters

$$\mathsf{dist}(C,C') = \frac{1}{|C| \cdot |C'|} \sum_{x \in C} \sum_{x' \in C'} \|x - x'\|$$

2 Distance between cluster centers

$$dist(C, C') = ||mean(C) - mean(C')||$$

3 Ward's method: increase in k-means cost from merging the clusters

$$\mathsf{dist}(C,C') = \frac{|C| \cdot |C'|}{|C| + |C'|} \|\mathsf{mean}(C) - \mathsf{mean}(C')\|^2$$

Hierarchical Clustering – Animal example

Questions for discussion based on animal notebook

1. Multiple runs of k-means: The k-means algorithm potentially returns a different solution each time it is run. Is there any reason to run it more than once? For instance, is there a sensible way of combining the information from several runs, of interpreting the similarities and differences?

2. Sensitivity to the choice of features: Both clustering methods are highly sensitive to the choice of features. How would you feel if the results changed dramatically when just one or two features were dropped?

3. Criteria for success: This is clearly an application in which we are hoping that clustering will discover 'natural groups' in the data. To what extent do the algorithms succeed at this? Are the clusters mostly reasonable? Can we, in general, hope that the clustering will perfectly capture what we want? Under what conditions would we be pleased with the clustering?

DBSCAN

The algorithm works by picking an arbitrary point to start with. It then finds all points with distance eps or less from that point. If there are less than min_samples points within distance eps of the starting point, this point is labeled as noise, meaning that it doesn't belong to any cluster. If there are more than min_samples points within a distance of eps, the point is labeled a core sample and assigned a new cluster label.

Then, all neighbors (within eps) of the point are visited. If they have not been assigned a cluster yet, they are assigned the new cluster label that was just created. If they are core samples, their neighbors are visited in turn, and so on. The cluster grows until there are no more core samples within distance eps of the cluster. Then another point that hasn't yet been visited is picked, and the same procedure is repeated.

In the end, there are three kinds of points: core points, points that are within distance eps of core points (called boundary points), and noise. When the DBSCAN algorithm is run on a particular dataset multiple times, the clustering of the core points is always the same, and the same points will always be labeled as noise. However, a boundary point might be neighbor to core samples of more than one cluster. Therefore, the cluster membership of boundary points depends on the order in which points are visited. Usually there are only few boundary points, and this slight dependence on the order of points is not important.

