

Europäisches Patentamt European Patent Office Office européen des brevets

(11) EP 1 170 021 A2

(12)

EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:

09.01.2002 Patentblatt 2002/02

(51) Int Cl.7: A61K 49/00

(21) Anmeldenummer: 01250164.9

(22) Anmeldetag: 14.05.2001

(84) Benannte Vertragsstaaten:

AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR
Benannte Erstreckungsstaaten:

AL LT LV MK RO SI

(30) Priorität: 15.05.2000 US 571407

(71) Anmelder: Shering Aktiengesellschaft 13353 Berlin (DE)

(72) Erfinder:

- Bauer, Michael, Dr. 13503 Berlin (DE)
- Becker, Andreas, Dr. 85570 Markt Schwaben (DE)

- Licha, Kai, Dr.
- 14612 Falkensee (DE)
- Bornhop, Darryl, Dr. Lubbock, Texas 79413 (US)
- Platzek, Johannes, Dr. 12621 Berlin (DE)

Bemerkungen:

Das Sequenzprotokoll, das als Anlage zu den Anmeldungsunterlagen mitveröffenlicht ist, ist nach dem Anmeldetag eingereicht worden. Der Anmelder hat erklärt, dass dieses nicht über den Inhalt der Anmeldung in der ursprünglich eingereichten Fassung hinausgeht.

- (54) Konjugate von Peptiden und Lanthanid-Chelaten für die Fluoreszenzdiagnostik
- (57) Die Erfindung betrifft neue Verbindungen zur

Fluoreszenzdiagnostik, die Verwendung dieser Verbindungen sowie ein Verfahren zu deren Herstellung.

Beschreibung

10

25

35

45

50

55

[0001] Die Erfindung liegt auf dem Gebiet der Fluoreszenzdiagnostik und betrifft neue Verbindungen, welche in den Patentansprüchen definiert sind. Die Erfindung betrifft weiterhin die Verwendung dieser Verbindungen sowie ein Verfahren zu deren Herstellung.

[0002] Die Verwendung von Lanthanid-Chelaten in der endoskopischen Diagnostik wurde bereits beschrieben (Houlne et al., Journal of Biomedical Optics, April 1998, Vol. 3, No. 2, Seite 145 ff.; WO 97/40055). Insbesondere Terbium-und Europiumkomplexe mit Tri- und Tetraazamakrocyclischen Chelatoren wurden bereits erfolgreich als fluoreszierende in vitro- oder in vivo-Diagnostika eingesetzt. Werden die Verbindungen mit Licht geeigneter Wellenlänge bestrahlt, senden sie eine langlebige Fluoreszenz im sichtbaren Bereich aus. Dies gilt auch für die in WO 99/46600 beschriebenen Europiumkomplexe.

[0003] Für eine medizinische Anwendung ist es jedoch nicht nur notwendig, daß ein Fluoreszenzdiagnostikum Licht bestimmter Wellenlänge absorbiert und Licht anderer Wellenlänge emittiert. Vielmehr ist die Gewebeselektivität der Substanz eine Grundvoraussetzung dafür, daß der behandelnde Arzt eine sichere Diagnose stellen kann. Dies ist insbesondere bei der Tumorerkennung eine wichtige Anforderung an ein Diagnostikum, um falschpositive Resultate zu vermeiden. Die bekannten Verbindungen des Standes der Technik weisen noch keine ausreichende Gewebeselektivität auf. Verbesserungen betreffend die selektive Anreicherung einer fluoreszierenden Substanz in erkranktem Gewebe sind daher wünschenswert.

[0004] Aufgabe der Erfindung ist es daher, Verbindungen bereitzustellen, die sich selektiv in erkranktem Gewebe anreichern und nach Anregung mit Licht bestimmter Wellenlänge eine langlebige Fluoreszenz aussenden.

[0005] Diese Aufgabe wird dadurch gelöst, daß Konjugate aus Komplexverbindungen und rezeptorbindenden Peptiden bereitgestellt werden. Die rezeptorbindenden Peptide reichern sich selektiv in erkranktem Gewebe an.

[0006] Die neuen Verbindungen sind Verbindungen der allgemeinen Formel (I)

$$A^1 - L^1 - (X)_m - L^2 - A^2$$
 (I)

worin

 30 X für eine beliebige α, β oder γ-Aminosäure mit D- oder L-Konfiguration und

m für eine Zahl von 5 bis 30 steht,

wobei die resultierende Aminosäuresequenz (X)_m, welche aus beliebigen aneinandergereihten Aminosäuren X besteht, geradkettiger Natur oder über eine Disulfidbrücke zwischen zwei Cysteinen oder Homocysteinen oder amidisch zwischen N- und C-Terminus cyclisiert sein kann und für die Aminosäuresequenz des vasoaktiven intestinalen Peptids (VIP), des Somatostatins oder des Neurotensins, oder für Fragmente, Teilsequenzen, Derivate oder Analoga des VIP, des Somatostatins oder des Neurotensins steht,

40 A¹ für ein Wasserstoffatom, eine offenkettige oder cyclische Polyaminopolycarbonsäure oder Polyaminopolycarbonsäure steht, welche eine Arylgruppe oder einen Heteroaromaten enthält und ein Metallatom der Ordnungszahlen 57 bis 83 komplexiert.

L¹ und L² unabhängig voneinander einen Acetylrest oder einen Alkylrest mit bis zu 10 C-Atomen, der gegebenenfalls mit 1 bis 3 Carboxygruppen und/oder 1 bis 6 Hydroxygruppen und/oder 1 bis 6 Amidgruppen substituiert sein kann, oder einen Poly(oxyethylen)rest mit 2 bis 30 -CH₂CH₂O-Einheiten darstellen,

für eine Hydroxygruppe, eine Aminogruppe, eine offenkettige oder cyclische Polyaminopolycarbonsäure oder Polyaminopolyphosphonsäure steht, welche eine Arylgruppe oder einen Heteroaromaten enthält und ein Metallatom der Ordnungszahlen 57 bis 83 komplexiert,

unter der Bedingung, daß mindestens einer der Reste A¹ oder A² eine offenkettige oder cyclische Polyaminopolycarbonsäure oder Polyaminopolyphosphonsäure darstellt, welche eine Arylgruppe oder einen Heteroaromaten enthält und ein Metallatom der Ordnungszahlen 57 bis 83 komplexiert,

wobei für den Fall, daß A¹ und/oder A² eine offenkettige oder cyclische Polyaminopolycarbonsäure oder Polyaminopolyphosphonsäure darstellen, welche eine Arylgruppe oder einen Heteroaromaten enthält und ein Metallatom der Ordnungszahlen 57 bis 83 komplexiert, A¹ an die N-terminale Aminogruppe und A² an eine Aminogruppe der Amino-

säure Lysin oder an eine Hydroxygruppe der Aminosäure Serin oder an die Mercaptogruppe der Aminosäure Cystein oder Homocystein in beliebiger Position innerhalb der Aminosäuresequenz (X)_m geknüpft ist, und deren physiologisch verträgliche Salze.

[0007] Der Begriff "Aminosäure" im Sinne dieser Erfindung steht für eine Carbonsäure mit einer oder mehreren Aminogruppen im Molekül sowie für cyclisierte Aminosäuren wie z.B. Pyroglutaminsäure.

[0008] Bevorzugte Chelatoren (Komplexbildner) sind Derivate der Diethylentriaminpentaessigsäure (DTPA) und des 1,4,7,10-Tetraazacyclododecans (DOTA).

[0009] Von den DTPA-Derivaten sind solche der allgemeinen Formeln (II), (III) und (IV) bevorzugt:

10

20

15

30

45

worin Z unabhängig voneinander für ein Wasserstoffatom oder ein Metallionenäquivalent eines Elementes der Ordnungszahlen 57 bis 83 steht, und worin R für einen offenkettigen oder cyclischen, verzweigten oder unverzweigten C₁-C₁₀-Alkylrest steht, welcher mindestens einen aromatischen Ring sowie gegebenenfalls 1 bis 5 Sauerstoffatome, 1 bis 3 Carboxygruppen und/oder 1 bis 3 Amidgruppen enthält, oder worin R einen der folgenden Reste darstellt:

55

$$-(CH_2)_p$$
 O
 T
 (V)

$$-(CH2)p T (VI)$$

$$-(CH_2)_n - N$$

$$O$$

$$T$$

$$(VII)$$

worin T jeweils die Verknüpfungsstelle mit dem Peptid darstellt, p für eine Zahl 0 oder 1 steht und n für eine Zahl zwischen 2 und 6 steht.

[0010] Von den DOTA-Derivaten sind solche der allgemeinen Formel (IX) bevorzugt:

(IX)

worin R¹ einen Rest — CHR⁵-COM darstellt, worin M für eine OZ-Gruppe steht, mit Z in der obengenannten Bedeutung, oder die Verknüpfung zum Peptid darstellt, und worin R⁵ für einen Rest (VIII) oder

für eine C_1 - C_{20} -Alkylgruppe steht, welche mindestens eine Arylgruppe oder einen Heteroaromaten, welche gegebenenfalls mit einem Halogenatom substituiert sein können, und mindestens eine weitere COOH-Gruppe oder eine Isothiocyanatgruppe enthält, und welche gegebenenfalls 1 bis 3 Sauerstoffatome und/oder 1 bis 3 Amidgruppen enthält, und worin R^2 bis R^4 unabhängig voneinander einen Rest CH_2COOZ , einen Phosphonsäurerest oder eine Gruppe — $(CH_2)_p$ -Y darstellen, in der p für 0 oder 1 steht und Y einen gegebenenfalls substituierten Heteroaromaten darstellt. **[0011]** Weitere bevorzugte Komplexbildner sind die folgenden Verbindungen der allgemeinen Formel (X):

10

 $R^7 - N \qquad N - R^8$ $R^6 \qquad (X)$

20

15

worin R⁶ einen Rest—CHR⁹-COM darstellt, worin M für eine OZ-Gruppe steht oder die Verknüpfung zum Peptid darstellt, und worin R⁹ für einen Rest (VIII) oder eine C₁-C₆-Alkylgruppe steht, welche gegebenenfalls eine weitere COOH-Gruppe oder eine Isothiocyanatgruppe enthält, und welche gegebenenfalls 1 bis 2 Sauerstoffatome und/oder 1 bis 2 Amidgruppen enthält,

und worin R⁷ und R⁸ unabhängig voneinander einen Rest CH₂COOZ oder einen Phosphonsäurerest darstellen.

[0012] Die Metallkomplexe enthalten bevorzugt ein Terbium- oder Europiumkation.

[0013] Die rezeptorbindenden Peptide sind das native vasoaktive intestinale Peptid (VIP), das Somatostatin oder das Neurotensin sowie Fragmente, Teilsequenzen, Derivate oder Analoga des VIP, des Somatostatins oder des Neurotensins.

[0014] Das native VIP wird durch die Aminosäuresequenz

35

30

HSDAVFTDNYTRLRKQMAVKKYLNSILN

beschrieben.

[0015] Das Somatostatin wird durch die Aminosäuresequenz

45

40

AGCKNFFWKTFTSC

beschrieben.

[0016] Das Neurotensin wird durch die Aminosäuresequenz

50

55

Pyroglutaminsäure-LYENKPRRPYIL

beschrieben.

[0017] Als Fragmente, Teilsequenzen, Derivate oder Analoga des VIP seien beispielhaft die folgenden Verbindungen genannt:

	RLRKQMAVKKYLNSILN	RLRKQMAVKKYLNSIL	RLRKQMAVKKYLNSI
5	LRKQMAVKKYLNSILN	LRKQMAVKKYLNSIL	LRKQMAVKKYLNSI
	RKQMAVKKYLNSILN	RKQMAVKKYLNSIL	RKQMAVKKYLNSI
	KQMAVKKYLNSILN	KQMAVKKYLNSIL	KQMAVKKYLNSI
10	QMAVKKYLNSILN	QMAVKKYLNSIL	QMAVKKYLNSI
	MAVKKYLNSILN	MAVKKYLNSIL	MAVKKYLNSI
15	AVKKYLNSILN	AVKKYLNSIL	AVKKYLNSI
15			
	RLRKQMAVKKYLNS	RLRKQMAVKKYLN	RLRKQMAVKKYL
20	LRKQMAVKKYLNS	LRKQMAVKKYLN	LRKQMAVKKYL
	RKQMAVKKYLNS	RKQMAVKKYLN	RKQMAVKKYL
	KQMAVKKYLNS	KQMAVKKYLN	KQMAVKKYL
25	QMAVKKYLNS	QMAVKKYLN	QMAVKKYL
	MAVKKYLNS	MAVKKYLN	MAVKKYL
30	AVKKYLNS	AVKKYLN	AVKKYL
<i>35</i>	[0018] Weitere Beispiele für Fragmente, Tedungen:	eilsequenzen, Derivate oder Analo	ga des VIP sind die folgenden Verbin-
	rlrkqmavkkylnsiln	rlrkqmavkkylnsil	rlrkqmavkkylnsi
40	lrkqmavkkylnsiln	lrkqmavkkylnsil	lrkqmavkkylnsi
	rkqmavkkylnsiln	rkqmavkkylnsil	rkqmavkkylnsi
	kqmavkkylnsiln	kqmavkkylnsil	kqmavkkylnsi
45	qmavkkylnsiln	qmavkkylnsil	qmavkkylnsi
	mavkkylnsiln	mavkkylnsil	mavkkylnsi
50			
<i>55</i>	avkkylnsiln	avkkylnsil	avkkylnsi

	RLRKQMAvKKyLNSILN	RLRKQMAvKKyLNSIL	RLRKQMAvKKyLNSI
	LRKQMAvKKyLNSILN	LRKQMAvKKyLNSIL	LRKQMAvKKyLNSI
5	RKQMAvKKyLNSILN	RKQMAvKKyLNSIL	RKQMAvKKyLNSI
	KQMAvKKyLNSILN	KQMAvKKyLNSIL	KQMAvKKyLNSI
	QMAvKKyLNSILN	QMAvKKyLNSIL	QMAvKKyLNSI
10	MAvKKyLNSILN	MAvKKyLNSIL	MAvKKyLNSI
	AvKKyLNSILN	AvKKyLNSIL	AvKKyLNSI

[0019] Weiter können 1 bis m Aminosäuren unabhängig voneinander gegen ihre jeweilige D-Aminosäure oder gegen andere L- oder D-Aminosäuren ausgetauscht sein, wobei m die oben angegebene Bedeutung hat. Sämtliche Aminosäuren (X)_m können auch gegen ihre jeweilige D-Aminosäure ausgetauscht sein. Als Fragmente, Teilsequenzen, Derivate oder Analoga des vasoaktiven intestinalen Peptides können auch retrosynthetische Aminosäuresequenzen ausgewählt sein. Bei diesen retrosynthetischen Aminosäuresequenzen können 1 bis m Aminosäuren gegen die jeweilige D-Aminosäure ausgetauscht sein.

[0020] Ferner seien im folgenden weitere Beispiele für VIP-Analoga aufgeführt:

	FSDAVFTDNY TRLRKQMAVK KYLNSILN
25	ISDAVFTDNY TRLRKQMAVK KYLNSILN
	LSDAVFTDNY TRLRKQMAVK KYLNSILN
	HFDAVFTDNY TRLRKQMAVK KYLNSILN
30	HHDAVFTDNY TRLRKQMAVK KYLNSILN
	HIDAVFTDNY TRLRKQMAVK KYLNSILN
35	HLDAVFTDNY TRLRKQMAVK KYLNSILN
35	HMDAVFTDNY TRLRKQMAVK KYLNSILN
	HQDAVFTDNY TRLRKQMAVK KYLNSILN
40	HTDAVFTDNY TRLRKQMAVK KYLNSILN

	HVDAVFIDNY IRLKKUMAVK KILNSILN
5	HWDAVFTDNY TRLRKQMAVK KYLNSILN
5	HYDAVFTDNY TRLRKQMAVK KYLNSILN
	HSAAVFTDNY TRLRKQMAVK KYLNSILN
10	HSEAVFTDNY TRLRKQMAVK KYLNSILN
	HSFAVFTDNY TRLRKQMAVK KYLNSILN
	HSHAVFTDNY TRLRKQMAVK KYLNSILN
15	HSIAVFTDNY TRLRKQMAVK KYLNSILN
	HSLAVFTDNY TRLRKQMAVK KYLNSILN
	HSMAVFTDNY TRLRKQMAVK KYLNSILN
20	HSWAVFTDNY TRLRKQMAVK KYLNSILN
	HSDFVFTDNY TRLRKQMAVK KYLNSILN
	HSDGVFTDNY TRLRKQMAVK KYLNSILN
25	HSDMVFTDNY TRLRKQMAVK KYLNSILN
	HSDQVFTDNY TRLRKQMAVK KYLNSILN
	HSDSVFTDNY TRLRKQMAVK KYLNSILN
30	HSDWVFTDNY TRLRKQMAVK KYLNSILN
	HSDYVFTDNY TRLRKQMAVK KYLNSILN
	HSDAFFTDNY TRLRKQMAVK KYLNSILN
35	HSDAIFTDNY TRLRKQMAVK KYLNSILN
	HSDALFTDNY TRLRKQMAVK KYLNSILN
	HSDAMFTDNY TRLRKQMAVK KYLNSILN
40	HSDATFTDNY TRLRKQMAVK KYLNSILN
	HSDAWFTDNY TRLRKQMAVK KYLNSILN
	HSDAYFTDNY TRLRKQMAVK KYLNSILN
45	HSDAVKTDNY TRLRKQMAVK KYLNSILN
	HSDAVFVDNY TRLRKQMAVK KYLNSILN
50	HSDAVFWDNY TRLRKQMAVK KYLNSILN
50	HSDAVFTDNW TRLRKQMAVK KYLNSILN
	HSDAVFTDNY TRRRKQMAVK KYLNSILN
55	HSDAVFTDNY TRWRKQMAVK KYLNSILN

	HSDAVFTDNY TRLRFQMAVK KYLNSILN
5	HSDAVFTDNY TRLRLQMAVK KYLNSILN
	HSDAVFTDNY TRLRMQMAVK KYLNSILN
	HSDAVFTDNY TRLRRQMAVK KYLNSILN
10	HSDAVFTDNY TRLRKAMAVK KYLNSILN
	HSDAVFTDNY TRLRKFMAVK KYLNSILN
	HSDAVFTDNY TRLRKIMAVK KYLNSILN
15	HSDAVFTDNY TRLRKKMAVK KYLNSILN
	HSDAVFTDNY TRLRKLMAVK KYLNSILN
	HSDAVFTDNY TRLRKMMAVK KYLNSILN
20	HSDAVFTDNY TRLRKRMAVK KYLNSILN
	HSDAVFTDNY TRLRKVMAVK KYLNSILN
	HSDAVFTDNY TRLRKWMAVK KYLNSILN
25	HSDAVFTDNY TRLRKYMAVK KYLNSILN
	HSDAVFTDNY TRLRKQFAVK KYLNSILN
	HSDAVFTDNY TRLRKQIAVK KYLNSILN
30	HSDAVFTDNY TRLRKQKAVK KYLNSILN
	HSDAVFTDNY TRLRKQLAVK KYLNSILN
	HSDAVFTDNY TRLRKQQAVK KYLNSILN
35	HSDAVFTDNY TRLRKQRAVK KYLNSILN
	HSDAVFTDNY TRLRKQWAVK KYLNSILN
	HSDAVFTDNY TRLRKQMFVK KYLNSILN
40	HSDAVFTDNY TRLRKQMIVK KYLNSILN
	HSDAVFTDNY TRLRKQMKVK KYLNSILN
	HSDAVFTDNY TRLRKQMLVK KYLNSILN
45	HSDAVFTDNY TRLRKQMMVK KYLNSILN
	HSDAVFTDNY TRLRKQMQVK KYLNSILN
50	HSDAVFTDNY TRLRKQMRVK KYLNSILN
50	HSDAVFTDNY TRLRKQMVVK KYLNSILN
	HSDAVFTDNY TRLRKQMWVK KYLNSILN
55	HSDAVFTDNY TRLRKQMYVK KYLNSILN

HSDAVFTDNY TRLRKQMAAK KYLNSILN HSDAVFTDNY TRLRKOMAIK KYLNSILN 5 HSDAVFTDNY TRLRKQMALK KYLNSILN HSDAVFTDNY TRLRKQMAVR KYLNSILN HSDAVFTDNY TRLRKOMAVK RYLNSILN 10 HSDAVFTDNY TRLRKQMAVK WYLNSILN HSDAVFTDNY TRLRKQMAVK KFLNSILN 15 HSDAVFTDNY TRLRKQMAVK KWLNSILN HSDAVFTDNY TRLRKQMAVK KYLASILN HSDAVFTDNY TRLRKQMAVK KYLFSILN 20 HSDAVFTDNY TRLRKQMAVK KYLISILN HSDAVFTDNY TRLRKQMAVK KYLMSILN HSDAVFTDNY TRLRKQMAVK KYLSSILN 25 HSDAVFTDNY TRLRKQMAVK KYLVSILN HSDAVFTDNY TRLRKQMAVK KYLWSILN HSDAVFTDNY TRLRKQMAVK KYLNNILN 30 HSDAVFTDNY TRLRKQMAVK KYLNRILN HSDAVFTDNY TRLRKQMAVK KYLNWILN HSDAVFTDNY TRLRKQMAVK KYLNYILN 35 HSDAVFTDNY TRLRKQMAVK KYLNSLLN HSDAVFTDNY TRLRKQMAVK KYLNSSLN 40 HSDAVFTDNY TRLRKQMAVK KYLNSWLN HSDAVFTDNY TRLRKQMAVK KYLNSYLN HSDAVFTDNY TRLRKQMAVK KYLNSIFN 45 HSDAVFTDNY TRLRKQMAVK KYLNSIIN HSDAVFTDNY TRLRKQMAVK KYLNSIWN HSDAVFTDNY TRLRKQMAVK KYLNSILW 50

[0021] Weiter können VIP-Analoga verwendet werden, die durch die folgende Formel beschrieben werden:

HSDAVFTX¹X²Y X³RLRKQMAVK KYLNSILN,

worin X^1 , X^2 und X^3 jede beliebige Aminosäure darstellen können.

55

[0022] Als Fragmente, Teilsequenzen, Derivate oder Analoga des Somatostatins können folgende Sequenzen aus-

gewählt sein:

25

50

55

5	AGCKNFFWKTFTSC	AGCKNFFWKTFTSC
	$\mathtt{AGCKNFFwKTFTSC}$	AGCKNFFWKTFTSC
	CKNFFWKTFTSC	ÇKNFFWKTFTSC
10	ffYwKVFT	
	fçfwkVçT	fçFwKVÇT
	fÇYwKVÇT	fçYwKVÇT
15	fÇFwKTÇT	fçFwKTÇT
	fCYwKTCT	fçYwKTÇT
20	D-NaI-ÇYwKVÇ	D-NaI-çYwKVÇ
20	fÇywK-Abu-Ç-NaI	fçywK-Abu-Ç-NaI

[0023] Als Fragmente, Teilsequenzen, Derivate oder Analoga des Neurotensins können folgende Sequenzen ausgewählt sein:

	pGlu-LYQNKPRRPI	FIL pGlu-LYI	ENKPRRPYI	
30	pGlu-LYENKPRRPy	IL pGlu-LY	QNKPRRPfIL	pGlu-LYENKPRRPY
	pGlu-LYQNKPRRPY	YIL pGlu-LYI	ENKPRRPWIL	pGlu-LYENKPRRP
	pGlu-LYQNKPRRPy	yIL pGlu-LYI	ENKPRRPwIL	pGlu-LYENKPRR
35	pGlu-LYENKPRRPF	FIL pGlu-LY(QNKPRRPWIL	pGlu-LYENKPR
	pGlu-LYENKPRRPf	IL pGlu-LY(QNKPRRPwIL	pGlu-LYENKP
40	NKPRRPYIL	NKPRRPyIL	NKPRRPfIL	NKPRRPwIL
	KPRRPYIL	KPRRPyIL	KPRRPfIL	KPRRPwIL
45	PRRPYIL	PRRPyIL	PRRPfIL	PRRPwIL
45	RRPYIL	RRPyIL	RRPfIL	RRPwIL

[0024] Die Terbiumkomplexe emittieren nach Einstrahlung von nicht sichtbarem Licht der Wellenlänge 250 bis 450 nm eine langlebige Fluoreszenz im Millisekundenbereich, welche Wellenlängen im Bereich von 480 bis 600 nm aufweist. In diesem Wellenlängenbereich ist das menschliche Auge am empfindlichsten. Die langlebige Fluoreszenz der erfindungsgemäßen Verbindungen überdauert die bei der endoskopischen Untersuchung auftretende Autofluoreszenz des Gewebes. Die endoskopische Diagnostik von oberflächlichen Tumoren wird durch die erfindungsgemäßen Verbindungen wesentlich erleichtert. Ähnliche Vorteile ergeben sich durch die Möglichkeit der topischen Applikation (z.B. durch Versprühen).

[0025] Eine Anreicherung im krankhaften Gewebe wird auch durch i.v.-Applikation erreicht. Werden die erfindungsgemäßen Substanzen während einer Operation interstitiell appliziert, reichern sie sich in den sogenannten "Wächter-

Lymphknoten" an. Der Chirurg kann dadurch diesen Lymphknoten durch seine Fluoreszenz besser erkennen und entsprechende therapierelevante Entscheidungen treffen.

[0026] Die erfindungsgemäßen Substanzen sind daher besonders geeignet zur In-vivo-Diagnostik von Tumoren, anderen erkrankten Gewebebereichen oder Adenomen mittels optischer Detektionsverfahren, oder zur In-vivo-Fluoreszenzdiagnostik von Tumoren, Tumorzellen und/oder entzündlichen Geweben mittels endoskopischer Verfahren im Gastrointestinaltrakt, Oesophagus, Bronchialtrakt, der Blase oder der Zervix.

[0027] Ein weiterer Gegenstand der Erfindung ist ein Verfahren zur endoskopischen In-vivo-Fluoreszenzdiagnostik unter Verwendung der erfindungsgemäßen Verbindungen, wobei dem Patienten die Verbindungen topisch durch Versprühen im Gastrointestinaltrakt, Oesophagus, der Blase, oder durch Inhalation den Bronchien zugeführt werden. Im Falle des Versprühens im Gastrointestinaltrakt, im Oesophagus und der Blase wird der nicht gebundene, überschüssige Anteil der Verbindung anschließend durch Waschen entfernt. Schließlich wird die endoskopische Untersuchung durch örtliche Anregung mit einer aus dem Spektralbereich von 250 bis 450 nm ausgewählten Anregungswellenlänge und durch ortsabhängige Detektion der spezifischen, von der Verbindung emittierten Fluoreszenzstrahlung durchgeführt. [0028] Die Synthese der Verbindungen erfolgt nach den dem Fachmann bekannten Verfahren. Detaillierte Synthesevorschriften befinden sich in den nachfolgenden Beispielen. Eine besonders vorteilhafte Möglichkeit der Synthese der Konjugate ergibt sich durch den Einbau einer Essigsäureeinheit an den Aromaten des Metallkomplexes. Diese Carbonsäure, die sich außerhalb des Metallkomplexes befindet, ist besonders gut aktivierbar, wobei die Stabilität des Komplexes durch die Aktivierung nicht beeinflußt wird. Dadurch kann der Metallkomplex unter besonders milden Reaktionsbedingungen an ein Peptid gekoppelt werden. Der Vorteil nur einer aktivierbaren Gruppe, wie z.B. einer Carboxylgruppe, oder einer bereits aktivierten Gruppe, wie z.B. einem Isothiocyanat, einer Halogenalkylgruppe oder einer Halogenacetylgruppe, besteht darin, daß eine chemisch einheitliche Kopplung erfolgen kann. Die Halogenacetylgruppe hat den besonderen Vorteil, daß eine chemisch einheitliche Kopplung an die Mercaptogruppe des Cysteins oder Homocysteins erfolgt. Diese Kopplung kann in Lösung an das ungebundene und von Schutzgruppen befreite Peptid erfolgen. Durch die aktivierten Gruppen ist eine Kopplung an Peptide möglich, ohne daß Nebenreaktionen auftreten. Bei dem neuen Herstellungsverfahren wird demnach zunächst ein Metallkomplex hergestellt, welcher anschließend durch Aminolyse des entsprechenden Aktivesters an ein Peptid gekoppelt wird.

[0029] Gegenstand der Erfindung ist auch ein optisches Diagnostikum zur in-vivo-Diagnostik erkrankter Gewebebereiche, welches mindestens eine erfindungsgemäße Verbindung zusammen mit den üblichen Hilfs- und/oder Trägerstoffen sowie Verdünnungsmitteln enthält. Derartige galenische Zubereitungen werden vorteilhafterweise durch Sterilfiltration der entsprechenden Lösungen hergestellt.

[0030] Erfindungsgemäße Verbindungen, die paramagnetische Metallatome enthalten, sind darüber hinaus für die Magnetresonanz-Bildgebung und — Spektroskopie geeignet.

[0031] Die nachfolgenden Beispiele erläutern die Erfindung.

35 Beispiel 1

30

10

[0032] N-Terminal verknüpftes Peptid-Konjugat mit dem Terbiumkomplex des Dinatriumsalzes von N,N-Bis-{2-[N', N'-bis-(carboxymethyl)-amino]-ethyl}-L-3-[(4-carboxymethoxy)-phenyl]-alanin

40 a) N,N-Bis-{2-[N',N'-bis-(benzyloxycarbonyl-methyl)-amino]-ethyl}-L-3-[(4-benzyloxycarbonylmethoxy)-phenyl]-alaninbenzylester

[0033] 1,9 g (2 mmol) N,N-Bis-{2-[N',N'-bis-(benzyloxycarbonyl-methyl)-amino]-ethyl}-L-tyrosinbenzylester (WO 96/26180, Beispiel 1a) werden in 10 ml wasserfreiem N,N-Dimethylformamid gelöst und bei 0°C unter Argon mit 53 mg (2,2 mmol) Natriumhydriddispersion (60 % in Mineralöl) versetzt. Man läßt den Ansatz 15 Minuten rühren, gibt dann 0,5 g (2,3 mmol) Bromessigsäurebenzylester zu, läßt die Reaktionsmischung auf Raumtemperatur kommen und rührt weitere sechs Stunden. Zur Aufarbeitung wird der Ansatz in Toluol aufgenommen und mehrmals gegen wässrige Natriumhydrogencarbonatlösung ausgeschüttelt. Die organische Phase wird abgetrennt, über Magnesiumsulfat getrocknet, filtriert und eingedampft. Der ölige Rückstand wird an Kieselgel chromatographiert, die produkthaltigen Fraktionen werden vereint und eingedampft.

Ausbeute: 2,0 g (91 % d. Th.) farbloses Öl.

Analyse (bezogen auf lösungsmittelfreie Substanz):								
ber.	C 71,09	H 6,15	N 3,83	O 18,94				
gef.	C 71,01	H 6,28	N 3,67					

55

45

b) N,N-Bis-{2-[N',N'-bis-(carboxymethyl)-amino]-ethyl}-L-3-[(4-carboxymethoxy)-phenyl]-alanin

[0034] Eine Lösung von 1,9 g (1,7 mmol) N,N-Bis-{2-[N',N'-bis-(benzyloxycarbonylmethyl)-amino]-ethyl}-L-3-[(4-benzyloxycarbonylmethoxy)-phenyl]-alaninbenzylester (Beispiel 1a) in 15 ml Methanol wird mit 0,2 g Palladium auf Aktiv-kohle (10 % Pd) versetzt und unter Wasserstoffatmosphäre über Nacht kräftig gerührt. Anschließend wird filtriert und das Filtrat im Vakuum eingedampft.

Ausbeute: 0,9 g (95 % d. Th.) farbloses Öl.

10

15

20

25

30

40

45

50

Analyse (bezogen auf lösungsmittelfreie Substanz):								
ber.	C 49,55	H 5,60	N 7,54	O 37,31				
gef.	C 49,37	H 5,72	N 7,40					

c) Terbiumkomplex des Dinatriumsalzes von N,N-Bis-{2-[N',N'-bis-(carboxymethyl)-amino]-ethyl}-L-3-[(4-carboxymethoxy)-phenyl]-alanin

[0035] 0,8 g (1,4 mmol) N,N-Bis-{2-[N',N'-bis-(carboxymethyl)-amino]-ethyl}-L-3-[(4-carboxymethoxy)-phenyl]-alanin (Beispiel 1b) werden zusammen mit 0,7 g (1,4 mmol) Terbiumcarbonat in 10 ml Wasser vier Stunden bei 50°C gerührt. Anschließend wird filtriert, eingedampft und an Kieselgel RP-18 chromatographisch (Wasser/Acetonitril) gereinigt.

Ausbeute: 1,0 g (94 % der Theorie) farbloser Feststoff.

Analyse (bezogen auf lösungsmittelfreie Substanz):							
ber.	C 36,48	H 3,46	N 5,55	Na 6,07	Tb 20,98	O 27,46	
	C 36,24						

d) N-Terminal verknüpftes Peptid-Konjugat mit dem Terbiumkomplex des Dinatriumsalzes von N,N-Bis-{2-[N',N'-bis-(carboxymethyl)-amino]-ethyl}-L-3- [(4-carboxymethoxy)-phenyl]-alanin

[0036] 0,3 g (0,4 mmol) Terbiumkomplex des Dinatriumsalzes von N,N-Bis-{2-[N',N'-bis-(carboxymethyl)-amino]-ethyl}-L-3- [(4-carboxymethoxy)-phenyl]-alanin (Beispiel 1c) werden in 2 ml Dimethylsulfoxid gelöst und bei 60°C mit 50 mg (0,45 mmol) N-Hydroxysuccinimid und 93 mg (0,45 mmol) Dicyclohexylcarbodiimid umgesetzt. Nach einer Stunde kühlt man auf Raumtemperatur ab und setzt mit 35 mg (0,03 mmol) dPhe-cyclo-[Cys-Phe-dTrp-Z-Lys-Thr-Cys]-Thr-OH um. Nach 4 Stunden fällt man das Produkt mit Ether, saugt die Fällung ab und wäscht den Feststoff mehrmals mit Ether. Das Zwischenprodukt wird in Wasser/Methanol aufgenommen und an Palladium auf Aktivkohle hydriert. Nach drei Stunden bei Raumtemperatur wird filtriert und das Filtrat gefriergetrocknet. Das Terbiumkomplex-Peptid-Konjugat kann zur Reinigung dialysiert werden oder per HPLC chromatographiert werden. Ausbeute: 36 mg (68 % der Theorie).

Analyse (bezogen auf lösungsmittelfreie Substanz):							
ber.	C 48,79	H 5,00	N 10,27	Na 2,59	Tb 8,97	S 3,62	O 20,76
gef.	C 48,62	H 4,88	N 9,98	Na 2,31	Tb 8,82	S 3,50	

Beispiel 2

[0037] Europiumkomplex des Dinatriumsalzes der 3,6,9-Triaza-3,6,9-tris-(carboxymethyl)-4-(4-carboxymethoxybenzyl)-undecandisäure

a) 3,6,9-Triaza-3,6,9-tris-(tert.-butoxycarbonylmethyl)-4-(4-tert.-butoxycarbonylmethoxybenzyl)-undecandisäure-ditert.-butylester

[0038] 1,56 g (2 mmol) N,N-Bis-{2-[N',N'-bis-(tert.-butyloxycarbonyl-methyl)-amino]-ethyl}-L-tyrosintert.-butylester (DOS 3710730) werden in 8 ml wasserfreiem N,N-Dimethylformamid gelöst und bei 0°C unter Argon mit 53 mg (2,2 mmol) Natriumhydriddispersion (60 % in Mineralöl) versetzt. Man läßt den Ansatz 20 Minuten rühren, gibt dann 0,45 g (2,3 mmol) Bromessigsäure-tert.-butylester zu, läßt die Reaktionsmischung auf Raumtemperatur kommen und rührt weitere fünf Stunden. Zur Aufarbeitung wird der Ansatz in Toluol aufgenommen und mehrmals gegen wässrige Natri-

umhydrogencarbonatlösung ausgeschüttelt. Die organische Phase wird abgetrennt, über Magnesiumsulfat getrocknet, filtriert und eingedampft. Der ölige Rückstand wird an Kieselgel chromatographiert, die produkthaltigen Fraktionen werden vereint und eingedampft.

Ausbeute: 1,6 g (89 % d. Th.) farbloses Öl.

5

10

20

25

30

35

40

45

50

Analyse (bezogen auf lösungsmittelfreie Substanz):								
ber.	C 63,13	H 8,91	N 4,70	O 23,26				
gef.	C 62,94	H 9,03	N 4,58					

b) 3,6,9-Triaza-3,6,9-tris-(carboxymethyl)-4-(4-carboxymethoxybenzyl)-undecandisäure

[0039] 1,5 g (1,7 mmol) 3,6,9-Triaza-3,6,9-tris-(tert.-butoxycarbonylmethyl)-4-(4-tert.-butoxycarbonylmethoxyben-zyl)-undecandisäure-di-tert.-butylester (Beispiel 2a) werden in 0,8 ml (11 mmol) Trifluoressigsäure gelöst und 12 Stunden bei Raumtemperatur gerührt. Zur Aufarbeitung verdünnt man mit Wasser und dampft zur Trockne ein. Dieser Vorgang wird mehrmals wiederholt. Anschließend wird eine wäßrige Lösung des Produktes über eine Anionenaustauschersäule gereinigt und die produkthaltigen Fraktionen eingedampft.

Ausbeute: 0,8 g (83 % d. Th.) farbloses Öl.

Analys	Analyse (bezogen auf lösungsmittelfreie Substanz):								
ber.	C 49,55	H 5,60	N 7,54	O 37,31					
gef.	C 49,39	H 5,72	N 7,63						

c) Europiumkomplex des Dinatriumsalzes der 3,6,9-Triaza-3,6,9-tris-(carboxymethyl)-4-(4-carboxymethoxybenzyl)undecandisäure

[0040] 0,7 g (1,2 mmol) 3,6,9-Triaza-3,6,9-tris-(carboxymethyl)-4-(4-carboxymethoxybenzyl)-undecandisäure (Beispiel 2b) werden in 5 ml Wasser gelöst und mit 290 mg (0,6 mmol) Europiumcarbonat versetzt. Man addiert 0,5 ml Essigsäure und refluxiert über Nacht. Nach beendeter Komplexierung reinigt man das Rohprodukt über eine Ionenaustauschersäule und lyophilisiert die produkthaltigen Fraktionen.

Ausbeute: 0,8 g (94 % der Theorie) farbloses Lyophilisat.

Analyse (bezogen auf wasserfreie Substanz):								
ber.	C 39,10	H 4,00	N 5,95	Eu 21,51	O 29,44			
gef.	C 38,98	H 4,13	N 5,76	Eu 21,43				

[0041] Die Umsetzung von Beispiel 2c zum Europiumkomplex-Peptid-Konjugat erfolgt analog zu Beispiel 1d.

Beispiel 3

[0042] Terbiumkomplex des Dinatriumsalzes von N,N-Bis-{2-[N',N'-bis-(carboxymethyl)-amino]-ethyl}-N'-(2-carboxynaphthylcarbonyl)-L-lysin

 $a)\ N, N-Bis-\{2-[N',N'-bis-(tert.-butyloxycarbonylmethyl)-amino]-ethyl\}-N'-(benzyloxycarbonyl)-L-lysin-tert.-butylester$

[0043] 1,2 g (3,3 mmol) H-Lys(Z)-OtBu*HCl (Bachem) und 2,6 g (7,3 mmol) N,N-Bis-[(tert.-butyloxycarbonyl)-methyl]-2-bromethylamin (M. Williams und H. Rapoport, J. Org. Chem. 58, 1151 (1993)) werden in 15 ml Acetonitril vorgelegt und mit 3 ml 2 n Phosphatpufferlösung (pH 8,0) versetzt. Der Ansatz wird bei Raumtemperatur 20 Stunden kräftig gerührt, wobei die wäßrige Phosphatpufferphase nach 2 und 8 Stunden gegen frische Pufferlösung ausgetauscht wird. Dann wird die organische Phase im Vakuum eingedampft und der Rückstand an Kieselgel mit Hexan/Essigsäureethylester/Triethylamin chromatographiert. Die produkthaltigen Fraktionen werden im Vakuum eingedampft. Ausbeute: 2,5 g (86 % d. Th.) farbloses Öl.

Analyse (bezogen auf lösungsmittelfreie Substanz):						
ber.	C 62,85	H 8,94	N 6,37	O 21,84		

(fortgesetzt)

Analys	se (bezogen	auf lösung	smittelfreie Substanz):
gef.	C 62,69	H 9,02	N 6,44

5

b) N,N-Bis-{2-[N',N'-bis-(tert.-butyloxycarbonylmethyl)-amino]-ethyl}-L-lysin-tert.-butylester

[0044] 2,3 g (2,6 mmol) N,N-Bis-{2-[N',N'-bis-(tert.-butyloxycarbonylmethyl)-amino]-ethyl}-N'-(benzyloxycarbonyl)-L-lysin-tert.-butylester (Beispiel 3a) werden in 20 ml Ethanol gelöst und nach Zugabe von 0,1 g Palladium auf Aktivkohle (10% Palladium) bis zur beendeten Wasserstoffaufnahme hydriert. Anschließend wurde filtriert und das Filtrat vollständig eingedampft.

Ausbeute: 1,9 g (98 % d. Th.) farbloses Öl.

15

20

Analyse (bezogen auf lösungsmittelfreie Substanz):								
ber.	C 61,26	H 9,74	N 7,52	O 21,48				
gef.	C 61,12	H 9,65	N 7,39					

c) N,N-Bis-{2-[N',N'-bis-(tert.-butyloxycarbonylmethyl)-amino]-ethyl}-N'-(2-carboxynaphthylcarbonyl)-L-lysin-tert.-butylester

[0045] 1,52 g (2 mmol) N,N-Bis-{2-[N',N'-bis-(tert.-butyloxycarbonylmethyl)-amino]-ethyl}-L-lysin-tert.-butylester (Beispiel 3b) werden in 15 ml Dioxan gelöst, mit 0,56 ml (4 mmol) Triethylamin und 420 mg (2 mmol) Naphthalsäure-anhydrid versetzt. Man rührt 20 Stunden bei Raumtemperatur, dampft zur Trockne ein und extrahiert den Rückstand mehrmals mit tert.-Butylmethylether. Der Extrakt wird eingeengt und das Rohprodukt an Kieselgel chromatographiert. Ausbeute: 1,4 g (74 % d. Th.)

30

Analyse (bezogen auf lösungsmittelfreie Substanz):								
ber.	C 63,67	H 8,34	N 5,94	O 22,05				
gef.	C 63,49	H 8,26	N 6,08					

d) N,N-Bis-{2-[N',N'-bis-(carboxymethyl)-amino]-ethyl}-N'-(2-carboxynaphthylcarbonyl)-L-lysin

[0046] 1,3g(1,4 mmol) N,N-Bis-{2-[N',N'-bis-(tert.-butyloxycarbonylmethyl)-amino]-ethyl}-N'-(2-carboxynaphthylcarbonyl)-L-lysin-tert.-butylester (Beispiel 3c) werden in 0,7 ml (9 mmol) Trifluoressigsäure gelöst und 6 Stunden bei Raumtemperatur gerührt. Zur Aufarbeitung verdünnt man mit Wasser und dampft zur Trockne ein. Dieser Vorgang wird mehrmals wiederholt. Anschließend wird eine wäßrige Lösung des Produktes über eine Anionenaustauschersäule gereinigt und die produkthaltigen Fraktionen eingedampft.

40 Ausbeute: 0,75 g (81 % d. Th.) farbloser Feststoff.

Analyse (bezogen auf lösungsmittelfreie Substanz):								
ber.	C 54,38	H 5,78	N 8,45	O 31,39				
gef.	C 54,21	H 5,86	N 8,61					

45

- e) Terbiumkomplex des Dinatriumsalzes von N,N-Bis-{2-[N',N'-bis-(carboxymethyl)-amino]-ethyl -N'-(2-carboxynaphthylcarbonyl)-L-lysin
- [0047] 0,6 g (0,9 mmol) N,N-Bis-{2-[N',N'-bis-(carboxymethyl)-amino]-ethyl}-N'-(2-carboxynaphthylcarbonyl)-L-lysin (Beispiel 3d) werden zusammen mit 225 mg (0,45 mmol) Terbiumcarbonat in 5 ml Wasser fünf Stunden bei 45°C gerührt. Anschließend wird filtriert, eingedampft und an Kieselgel RP-18 chromatographisch (Wasser/Acetonitril) gereinigt.

Ausbeute: 690 mg (89 % der Theorie) farbloser Feststoff.

Analy	Analyse (bezogen auf lösungsmittelfreie Substanz):							
ber.	C 41,78	H 3,86	N 6,50	Na 5,33	Tb 18,43	O 24,11		

(fortgesetzt)

Analyse (bezogen auf lösungsmittelfreie Substanz):						
gef.	C 41,59	H 3,97	N 6,34	Na 5,50	Tb 18,26	

[0048] Die Verknüpfung mit einem erfindungsgemäßen Peptid erfolgt analog zu Beispiel 1d.

Beispiel 4

5

10

15

25

40

- [0049] N-Terminal verknüpftes Peptid-Konjugat mit dem Gadoliniumkomplex des Dinatriumsalzes von N,N-Bis-{2-[N',N'-bis-(carboxymethyl)-amino]-ethyl}-L-3-[(4-thiocarbonylamino)-phenyl]-alanin
- $a)\ N, N-Bis-\{2-[N',N'-bis-(carboxymethyl)-amino]-ethyl\}-L-3-[(4-isothiocyanato)-phenyl]-alanin$
- [0050] 155 mg (0,31 mmol) N,N-Bis-{2-[N',N'-bis-(carboxymethyl)-amino]-ethyl}-3-(4-aminophenyl)-alanin (JOC 58, 1151, 1993) werden in 5 ml Methanol gelöst und mit einer 0,2 normalen Lösung von Thiophosgen in Chloroform (1,7 ml, 0,34 mmol) versetzt und eine Stunde bei Raumtemperatur gerührt. Anschließend wird die Reaktionsmischung zur Trockne eingedampft, in Methanol aufgenommen und mit Aceton gefällt. Der Feststoff wird mit Aceton gewaschen und im Vakuum getrocknet.
- Ausbeute: 0,16 g (95 % d. Th.) schwachgelber Feststoff.

Analyse (bezogen auf lösungsmittelfreie Substanz):								
ber.	C 48,88	H 5,22	N 10,36	S 5,93	O 31,39			
gef.	C 48,65	H 5,34	N 10,23	S 5,76				

- b) Gadoliniumkomplex des Dinatriumsalzes von N,N-Bis-{2-[N',N'-bis-(carboxymethyl)-amino]-ethyl-L-3-[(4-isothiocyanato)-phenyl]-alanin
- [0051] 100 mg (0,18 mmol) N,N-Bis-{2-[N',N'-bis-(carboxymethyl)-amino]-ethyl}-L-3-[(4-isothiocyanato)-phenyl]-alanin (Beispiel 4a) werden in 3 ml Methanol gelöst und mit 66 mg (0,18 mmol) Gadoliniumchlorid in 3 ml Methanol versetzt. Nach 30 Minuten neutralisiert man mit 0,1 normaler NaOH in Methanol, rührt weitere 30 Minuten und dampft anschließend zur Trockne ein. Der Rückstand wird in Methanol aufgenommen und mit Aceton gefällt. Die Fällung wird mit Aceton gewaschen, in Wasser aufgenommen, filtriert und lyophilisiert.
- Ausbeute: 0,12 g (90 % d. Th.) farbloser Feststoff.

Analyse (bezogen auf lösungsmittelfreie Substanz):								
ber.	C 35,77	H 3,14	N 7,58	S 4,34	Gd 21,29	Na 6,22	O 21,66	
gef.	C 35,59	H 2,96	N 7,45	S 4,19	Gd 21,11	Na 5,96		

- c) N-Terminal verknüpftes Peptid-Konjugat mit dem Gadoliniumkomplex des Dinatriumsalzes von N,N-Bis-{2-[N',N'-bis-(carboxymethyl)-amino]-ethyl}-L-3-[(4-thiocarbonylamino)-phenyl]-alanin
- [0052] 74 mg (0,1 mmol) Gadoliniumkomplex des Dinatriumsalzes von N,N-Bis-{2-[N',N'-bis-(carboxymethyl)-amino]-ethyl}-L-3-[(4-isothiocyanato)-phenyl]-alanin (Beispiel 4b) werden in 1 ml Dimethylsulfoxid gelöst und bei 50°C mit 12 mg (0,01 mmol) dPhe-cyclo-[Cys-Phe-dTrp-Z-Lys-Thr-Cys]-Thr-OH umgesetzt. Nach drei Stunden fällt man das Produkt mit Ether, saugt die Fällung ab und wäscht den Feststoff mehrmals mit Ether. Das Zwischenprodukt wird in Wasser/Methanol aufgenommen und an Palladium auf Aktivkohle hydriert. Nach drei Stunden bei Raumtemperatur wird filtriert und das Filtrat gefriergetrocknet. Das Gadoliniumkomplex-Peptid-Konjugat kann zur Reinigung dialysiert werden oder per HPLC chromatographiert werden.
 - Ausbeute: 15 mg (85 % der Theorie).

Analys	Analyse (bezogen auf wasserfreie Substanz):							
ber.	C 48,13	H 4,95	N 11,07	Na 2,59	Gd 8,87	S 5,43	O 18,96	
gef.:	C 48,01	H 4,79	N 10,86	Na 2,43	Gd 8,74	S 5,30		

Beispiel 5

10

20

25

30

35

40

45

50

55

[0053] N-Terminal verknüpftes Peptid-Konjugat mit dem Bismuthkomplex des Dinatriumsalzes von N,N-Bis-{2-[N', N'-bis-(carboxymethyl)-amino]-ethyl}-L-glycin-4-(thiocarbonylamino)-benzylamid

a) N,N-Bis-{2-[N',N'-bis-(tert.-butyloxycarbonylmethyl)-amino]-ethyl}-L-glycin-4-nitrobenzylamid

[0054] 0,98 g (1,6 mmol) N,N-Bis-{2-[N',N'-bis-(tert.-butyloxycarbonylmethyl)-amino]-ethyl}-L-glycin (US 5514810) werden in 3 ml N,N-Dimethylformamid gelöst und 200mg (1,74 mmol) N-Hydroxysuccinimid zugegeben. Man kühlt auf 0°C ab und addiert 360 mg (1,74 mmol) Dicyclohexylcarbodiimid. Es wird eine Stunde bei 0°C und vier Stunden bei Raumtemperatur gerührt. Man kühlt auf 0°C ab und tropft innerhalb von 10 Minuten eine Lösung aus 300 mg (1,74 mmol) 4-Nitrobenzylamin in 2 ml N,N-Dimethylformamid zu. Man rührt eine Stunde bei 0°C und anschließend über Nacht bei Raumtemperatur. Es wird zur Trockne eingedampft und der Rückstand in 20 ml Essigsäureethylester aufgenommen. Man filtriert vom ausgefallenen Harnstoff ab und wäscht das Filtrat mit 20 ml 5-proz. wäßriger Sodalösung. Die organische Phase wird über Magnesiumsulfat getrocknet und imVakuum zur Trockne eingedampft. Zur Reinigung wird an Kieselgel chromatographiert.

Ausbeute: 0,95 g (79 % d. Th.)

Analys	Analyse (bezogen auf lösungsmittelfreie Substanz):										
ber.	C 59,10	H 8,18	N 9,31	O 23,41							
gef.	C 58,96	H 8,27	N 9,19								

b) N,N-Bis-{2-[N',N'-bis-(tert.-butyloxycarbonylmethyl)-amino]-ethyl}-L-glycin-4-aminobenzylamid

[0055] 0,8 g (1,1 mmol) N,N-Bis-{2-[N',N'-bis-(tert.-butyloxycarbonylmethyl)-amino]-ethyl}-L-glycin-4-nitrobenzyl-amid (Beispiel 5a) werden in 5 ml Ethanol gelöst und nach Zugabe von 0,08 g Palladium auf Aktivkohle (10% Palladium) bis zur beendeten Wasserstoffaufnahme hydriert. Anschließend wurde filtriert und das Filtrat vollständig eingedampft. Ausbeute: 0,75 g (95 % d. Th.) gelbliches Öl.

Analys	Analyse (bezogen auf lösungsmittelfreie Substanz):									
ber.	C 61,56	H 8,80	N 9,70	O 19,95						
gef.	C 61,39	H 8,91	N 9,54							

c) N,N-Bis-{2-[N',N'-bis-(carboxymethyl)-amino]-ethyl}-L-glycin-4-aminobenzylamid

[0056] 0,7 g (0,97 mmol) N,N-Bis-{2-[N',N'-bis-(tert.-butyloxycarbonylmethyl)-amino]-ethyl}-L-glycin-4-aminobenzyl-amid (Beispiel 5b) werden in 0,35 ml (5 mmol) Trifluoressigsäure gelöst und 10 Stunden bei Raumtemperatur gerührt. Zur Aufarbeitung verdünnt man mit Wasser und dampft zur Trockne ein. Dieser Vorgang wird mehrmals wiederholt. Anschließend wird eine wäßrige Lösung des Produktes über eine Anionenaustauschersäule gereinigt und die produkthaltigen Fraktionen eingedampft.

Ausbeute: 0,4 g (83 % d. Th.) farbloser Feststoff.

Analyse (bezogen auf lösungsmittelfreie Substanz):									
ber.	C 50,70	H 6,28	N 14,08	O 28,94					
gef.	C 50,58	H 6,34	N 13,89						

d) N,N-Bis-{2-[N',N'-bis-(carboxymethyl)-amino]-ethyl}-L-glycin-4-(isothiocyanato)-benzylamid

[0057] 310 mg (0,61 mmol) N,N-Bis-{2-[N',N'-bis-(carboxymethyl)-amino]-ethyl}-L-glycin-4-aminobenzylamid (Beispiel 5c) werden in 10 ml Methanol gelöst und mit einer 0,2 normalen Lösung von Thiophosgen in Chloroform (3,4 ml, 0,68 mmol) versetzt und zwei Stunden bei Raumtemperatur gerührt. Anschließend wird die Reaktionsmischung zur Trockne eingedampft, in Methanol aufgenommen und mit Aceton gefällt. Der Feststoff wird mit Aceton gewaschen und im Vakuum getrocknet.

Ausbeute: 0,28 g (85 % d. Th.) schwachgelber Feststoff.

Analyse (bezogen auf lösungsmittelfreie Substanz):									
ber.	C 48,97	H 5,42	N 12,98	S 5,94	O 26,69				
gef.	C 48,76	H 5,55	N 13,06	S 5,81					

e) Bismuthkomplex des Dinatriumsalzes von N,N-Bis-{2-[N',N'-bis-(carboxymethyl)-amino]-ethyl -L-glycin-4-(isothiocyanato)-benzylamid

[0058] 200 mg (0,37 mmol) N,N-Bis-{2-[N',N'-bis-(carboxymethyl)-amino]-ethyl}-L-glycin-4-(isothiocyanato)-benzyl-amid (Beispiel 5d) werden in 8 ml Methanol gelöst und mit 117 mg (0,37 mmol) Bismuthchlorid in 8 ml Methanol versetzt. Nach 45 Minuten neutralisiert man mit 0,1 normaler NaOH in Methanol, rührt 20 Minuten und dampft anschließend zur Trockne ein. Der Rückstand wird in Methanol aufgenommen und mit Aceton gefällt. Die Fällung wird mit Aceton gewaschen, in Wasser aufgenommen, filtriert und lyophilisiert.

Ausbeute: 0,26 g (91,5 % d. Th.) farbloser Feststoff.

Analy	Analyse (bezogen auf lösungsmittelfreie Substanz):										
ber.	C 34,43	H 3,28	N 9,12	S 4,18	Bi 27,23	Na 3,00	O 18,76				
gef.	C 34,31	H 3,19	N 8,98	S 4,10	Bi 27,07	Na 2,76					

f) N-Terminal verknüpftes Peptid-Konjugat mit dem Bismuthkomplex des Dinatriumsalzes von N,N-Bis-{2-[N',N'-bis-(carboxymethyl)-amino]-ethyl}-L-glycin-4-(thiocarbonylamino)-benzylamid

[0059] 77 mg (0,1 mmol) Bismuthkomplex des Dinatriumsalzes von N,N-Bis-{2-[N',N'-bis-(carboxymethyl)-amino]-ethyl }-L-glycin-4-(isothiocyanato)-benzylamid (Beispiel 5e) werden in 1 ml Dimethylsulfoxid gelöst und bei 45°C mit 12 mg (0,01 mmol) dPhe-cyclo-[Cys-Phe-dTrp-Z-Lys-Thr-Cys]-Thr-OH umgesetzt. Nach vier Stunden fällt man das Produkt mit Ether, saugt die Fällung ab und wäscht den Feststoff mehrmals mit Ether. Das Zwischenprodukt wird in Wasser/Methanol aufgenommen und an Palladium auf Aktivkohle hydriert. Nach fünf Stunden bei Raumtemperatur wird filtriert und das Filtrat gefriergetrocknet. Das Gadoliniumkomplex-Peptid-Konjugat kann zur Reinigung dialysiert werden oder per HPLC chromatographiert werden.

Ausbeute: 14 mg (78 % der Theorie).

Analy	Analyse (bezogen auf wasserfreie Substanz):										
				Na 1,28			O 17,77				
gef.	C 47,22	H 5,07	N 11,73	Na 0,99	Bi 11,40	S 5,22					

Beispiel 6

[0060] N-Terminal verknüpftes Peptid-Konjugat mit dem Europiumkomplex des Natriumsalzes von 1,4,7,10-Tetraa-zacyclododecan-1-[4-(carboxymethoxy)-phenyl]-essigsäure-4,7,10-triessigsäure

a) 4-[O-(Ethoxycarbonylmethyl)-hydroxy]-phenylessigsäuremethylester

[0061] Zu 22,2 g (133 mmol) 4-Hydroxyphenylessigsäuremethylester in 150 ml Aceton addiert man 23,5 g (170 mmol) Kaliumcarbonat und versetzt unter Rückfluß mit 26,8 g (160 mmol) Bromessigsäureethylester. Nach einer Stunde gibt man 5,9 g (42,5 mmol) Kaliumcarbonat und 5,5 g (33 mmol) 4-Hydroxyphenylessigsäuremethylester zu und rührt anschließend weitere zwei Stunden am Rückfluß. Man filtriert den Feststoff ab, dampft das Lösemittel ab und destilliert den Rückstand im Vakuum.

Ausbeute: 29,5 g (88 % d. Th.) farbloses Öl.

Analyse	Analyse (bezogen auf lösungsmittelfreie Substanz):									
ber.	C 61,90	H 6,39	O 31,71							
gef.	C 61,73	H 6,47								

55

5

15

20

35

40

45

b) 4-[O-(Ethoxycarbonylmethyl)-hydroxy]-phenyl-2-brom-essigsäuremethylester

[0062] 14,0 g (55 mmol) 4-[O-(Ethoxycarbonylmethyl)-hydroxy]-phenylessigsäuremethylester (Beispiel 6a) werden in 70 ml Tetrachlorkohlenstoff vorgelegt, mit 9,9 g (55 mmol) N-Bromsuccinimid und 100 mg (0,2 mmol) Benzoylperoxid versetzt. Nach fünfstündigem Kochen unter Rückfluß wird die Reaktionsmischung auf Raumtemperatur abgekühlt, zweimal mit gesättigter Natriumhydrogencarbonatlösung extrahiert, mit Wasser gewaschen und über Natriumsulfat getrocknet. Nach Filtration und Eindampfen erhält man das Produkt als schwachgelbes Öl. Ausbeute: 18,1 g (99 % d. Th.)

Analyse (bezogen auf lösungsmittelfreie Substanz):

ber. C 47,15 H 4,57 Br 24,13 O 24,16
gef. C 47,03 H 4,68 Br 23,96

15 c) 1,4,7,10-Tetraazacyclododecan-1-[4-(ethoxycarbonylmethoxy)-phenyl]-essigsäuremethylester

[0063] 17,6 g (53 mmol) 4-[O-(Ethoxycarbonylmethyl)-hydroxy]-phenyl-2-bromessigsäuremethylester (Beispiel 6b) werden in 120 ml Chloroform gelöst und unter Eiskühlung mit 27,4 g (159 mmol) Cyclen versetzt. Man rührt über Nacht bei Raumtemperatur, wäscht viermal mit Wasser, trocknet die organische Phase, filtriert und dampft zur Trockne ein. Ausbeute: 21,6 g (96 % d. Th.)

Analys	Analyse (bezogen auf lösungsmittelfreie Substanz):									
ber.	C 59,70	H 8,11	N 13,26	O 18,93						
gef.	C 59,58	H 8,05	N 13,39							

d) 1,4,7,10-Tetraazacyclododecan-1-[4-(ethoxycarbonylmethoxy)-phenyl]-essigsäuremethylester-4,7,10-triessigsäure-tert.-butylester

[0064] 21,0 g (50 mmol) 1,4,7,10-Tetraazacyclododecan-1-[4-(ethoxycarbonylmethoxy)-phenyl]-essigsäuremethylester (Beispiel 6c) werden in 160 ml Acetonitril gelöst. Man gibt 18,2 g (170 mmol) Natriumcarbonat hinzu und addiert tropfenweise 33,5 g (170 mmol) Bromessigsäure-tert.-butylester. Nach drei Stunden Rühren bei 60°C saugt man ab, engt die Lösung ein und chromatographiert den Rückstand an Kieselgel.

Ausbeute: 23,9 g (62 % d. Th.)

Analyse (bezogen auf lösungsmittelfreie Substanz):									
ber.	C 61,24	H 8,43	N 7,32	O 23,01					
gef.	C 61,14	H 8,50	N 7,18						

e) 1,4,7,10-Tetraazacyclododecan-1-[4-(ethoxycarbonylmethoxy)-phenyl]-essigsäuremethylester-4,7,10-triessigsäure

[0065] 13,8 g (18 mmol) 1,4,7,10-Tetraazacyclododecan-1-[4-(ethoxycarbonylmethoxy)-phenyl]-essigsäuremethylester-4,7,10-triessigsäure-tert.-butylester (Beispiel 6d) werden in 80 ml Anisol mit 200 ml Trifluoressigsäure umgesetzt. Man rührt über Nacht bei Raumtemperatur und zwei Stunden bei 60°C. Anschließend engt man ein und destilliert mehrmals mit Wasser nach.

Ausbeute: 9,8 g (92 % d. Th.)

10

25

35

40

45

50

55

Analyse (bezogen auf lösungsmittelfreie Substanz):									
ber.	C 54,72	H 6,12	N 9,45	O 29,70					
gef.	C 54,83	H 6,07	N 9,36						

f) 1,4,7,10-Tetraazacyclododecan-1-[4-(carboxymethoxy)-phenyl]-essigsäure-4,7,10-triessigsäure, Pentakaliumsalz

[0066] 9,5 g (16 mmol) 1,4,7,10-Tetraazacyclododecan-1-[4-(ethoxycarbonylmethoxy)-phenyl]-essigsäuremethyle-ster-4,7,10-triessigsäure (Beispiel 6e) werden in 30 ml Methanol gelöst, mit 4,5 g Kaliumhydroxid in 30 ml Wasser

gelöst versetzt und vier Stunden bei Raumtemperatur gerührt. Anschließend kocht man drei Stunden am Rückfluß. Man zieht das Methanol ab und setzt das Rohprodukt in die nächste Stufe ohne weiteren Reinigungsschritt ein. Rohausbeute: 11,8 g (99 % d. Th.)

5 g) Europiumkomplex des Natriumsalzes von 1,4,7,10-Tetraazacyclododecan-1-[4-(carboxymethoxy)-phenyl]-essigsäure-4,7,10-triessigsäure

[0067] 10,4 g (14 mmol) 1,4,7,10-Tetraazacyclododecan-1-[4-(carboxymethoxy)-phenyl]-essigsäure-4,7,10-triessigsäure, Pentakaliumsalz (Beispiel 6f) werden in 40 ml Wasser gelöst und mit 3,4 g (7 mmol) Europiumcarbonat versetzt. Man addiert 5,7 ml Essigsäure und refluxiert über Nacht. Nach beendeter Komplexierung neutralisiert man mit zweinormaler Natronlauge, reinigt das Rohprodukt über eine Ionenaustauschersäule und Iyophilisiert die produkthaltigen Fraktionen.

Ausbeute: 9,8 g (94 % der Theorie) farbloses Lyophilisat.

Analy	Analyse (bezogen auf wasserfreie Substanz):									
ber.	C 38,57	H 3,91	N 7,50	Na 6,15	Eu 20,33	O 23,55				
gef.	C 38,43	H 4,02	N 7,28	Na 5,97	Eu 20,21					

20 h) N-Terminal verknüpftes Peptid-Konjugat mit dem Europiumkomplex des Natriumsalzes von 1,4,7,10-Tetraazacyclo-dodecan-1-[4-(carboxymethoxy)-phenyl]-essigsäure-4,7,10-triessigsäure

[0068] 0,1 g (0,13 mmol) Europiumkomplex des Natriumsalzes von 1,4,7,10-Tetraazacyclododecan-1-[4-(carboxymethoxy)-phenyl]-essigsäure-4,7,10-triessigsäure (Beispiel 6g) werden in 1 ml Dimethylsulfoxid gelöst und bei 50°C mit 48 mg (0,15 mmol) O-(Benzotriazol-1-yl)-N,N,N',N'-tetramethyluroniumtetrafluoroborat (TBTU) umgesetzt. Nach einer Stunde kühlt man auf Raumtemperatur ab und setzt mit 9,5 mg (5 μmol) Ala-Gly-cyclo-[Cys-Z-Lys-Asn-Phe-Phe-Trp-Z-Lys-Thr-Phe-Thr-Ser-Cys]-OH um. Nach 3 Stunden fällt man das Produkt mit Ether, saugt die Fällung ab und wäscht den Feststoff mehrmals mit Ether. Das Zwischenprodukt wird in Wasser/Methanol aufgenommen und an Palladium auf Aktivkohle hydriert. Nach drei Stunden bei Raumtemperatur wird filtriert und das Filtrat gefriergetrocknet. Das Europiumkomplex-Peptid-Konjugat kann zur Reinigung dialysiert werden oder per HPLC chromatographiert werden. Ausbeute: 10,6 mg (90 % der Theorie)

Analy	Analyse (bezogen auf wasserfreie Substanz):									
ber.	C 48,79	H 5,00	N 10,27	Na 2,59	Eu 8,97	S 3,62	O 20,76			
gef.	C 48,62	H 4,88	N 9,98	Na 2,31	Eu 8,82	S 3,50				

Beispiel 7

[0069] Cystein-verknüpftes Peptid-Konjugat mit dem Terbiumkomplex der 1,4,7,10-Tetraazacyclododecan-1-[4-(4-aza-6-thio-5-oxo-hexylaminocarbonylmethoxy)-phenyl]-essigsäure-4,7,10-triessigsäure

a) [3-[N-(tert.-Butoxycarbonyl)amino]propyl]-N'-(bromacetyl)-amid

[0070] 2,5 g (14,4 mmol) [3-[N-(tert.-Butoxycarbonyl)amino]propyl]amin werden in 15 ml Dioxan gelöst und nach Zugabe von 4,4 ml Triethylamin bei 0°C mit 3,2 g (16 mmol) Bromacetylbromid versetzt. Man rührt über Nacht bei Raumtemperatur und addiert anschließend weitere 320 mg Bromacetylbromid. Nach zwei Stunden bei Raumtemperatur wird der Niederschlag abgesaugt, die Lösung eingeengt und der Rückstand in Essigsäureethylester aufgenommen. Man wäscht mit Wasser und trocknet die organische Phase über Natriumsulfat.

50 Ausbeute: 3,2 g (75 % d. Th.)

1			ıngsmittelfre		
ber.	C 40,69	H 6,49	Br 27,07	N 9,49	O 16,26
gef.	C 40,50	H 6,37	Br 27,07 Br 26,89	N 9,58	

55

10

15

30

b) [3-[N-(Bromacetyl)amino]propyl]amin, Hydrochlorid

[0071] 3,1 g (10,5 mmol) [3-[N-(tert.-Butoxycarbonyl)amino]propyl]-N'-(bromacetyl)-amid (Beispiel 7a) werden mit 50 mmol 1M Salzsäure in Essigsäureethylester für fünf Stunden bei Raumtemperatur gerührt. Man saugt das Produkt ab und wäscht den Feststoff mit Essigsäureethylester nach.

Ausbeute: 2,3 g (95 % d. Th.)

10

15

25

30

40

45

50

55

Analy	/se (bezoge	en auf löst	ungsmittelfre	eie Substan	z):	
ber.	C 25,94	H 5,22	CI 15,31	Br 34,51	N 12,10	O 6,91
gef.	C 25,76	H 5,41	CI 15,55	Br 34,34	N 11,97	

c) Terbiumkomplex der 1,4,7,10-Tetraazacyclododecan-1-[4-(4-aza-6-brom-5-oxohexylaminocarbonylmethoxy)-phenyl]-essigsäure-4,7,10-triessigsäure

[0072] 1,5 g (1,95 mmol) Terbiumkomplex des Natriumsalzes von 1,4,7,10-Tetraazacyclododecan-1-[4-(carboxymethoxy)-phenyl]-essigsäure-4,7,10-triessigsäure (hergestellt in Analogie zu Beispiel 6g) werden in 10 ml Dimethylsulfoxid gelöst und bei 60°C mit 720 mg (2,25 mmol) O-(Benzotriazol-1-yl)-N,N,N',N'-tetramethyluronium-tetrafluoroborat (TBTU) umgesetzt. Nach einer Stunde kühlt man auf Raumtemperatur ab und versetzt mit 522 mg (2,25 mmol) [3-[N-(Bromacetyl)amino]propyl]amin, Hydrochlorid (Beispiel 7b) und 0,63 ml (4,5 mmol) Triethylamin. Nach sechs Stunden fällt man das Produkt mit Ether, saugt die Fällung ab und wäscht den Feststoff mehrmals mit Ether. Ausbeute: 1,3 g (75 % der Theorie)

Analyse (bezogen auf wasserfreie Substanz):

ber. C 39,25 H 4,54 Br 9,00 N 9,47 Tb 17,91 O 19,83
gef. C 39,09 H 4,66 Br 8,83 N 9,54 Tb 17,68

d) Cystein-verknüpftes Peptid-Konjugat mit dem Terbiumkomplex der 1,4,7,10-Tetraazacyclododecan-1-[4-(4-aza-6-thio-5-oxo-hexylaminocarbonylmethoxy)-phenyl]-essigsäure-4,7,10-triessigsäure

[0073] 0,33 mg (0,1 μ mol) H-His-Ser-Asp-Ala-Val-Phe-Tyr-Asp-Asn-Tyr-Thr-Arg-Leu-Arg-Lys-Glu-Cys-Ala-Val-Lys-Lys-Tyr-Leu-Asn-Ser-Ile-Leu-Asn-OH werden in 0,1 ml wasserfreiem N,N-Dimethylformamid gelöst und mit 0,244 mg (0,75 μ mol) Cäsiumcarbonat versetzt. Nach zehn Minuten gibt man 0,887 mg (1 μ mol) Terbiumkomplex der 1,4,7,10-Te-traazacyclododecan-1-[4-(4-aza-6-brom-5-oxohexylaminocarbonylmethoxy)-phenyl]-essigsäure-4,7,10-triessigsäure (Beispiel 7c) hinzu und läßt eine Stunde bei 40°C rühren. Das Terbiumkomplex-Peptid-Konjugat kann zur Reinigung dialysiert werden oder per HPLC chromatographiert werden.

Ausbeute: 0,29 mg (71 % der Theorie)

Analy	/se (bezoge	en auf was	sserfreie Su	ıbstanz):		
ber.	C 50,92	H 6,70	N 17,06	Tb 3,87	S 0,78	O 20,66
gef.	C 50,86	H 6,81	N 16,92	Tb 3,59	S 0,64	

Example 8

Synthesis of ligands

General Material and methods

[0074] All reagents were obtained from commercial suppliers and used without further purification. NMR spectra were recorder on Bruker Ac-200 MHz or 500 MHz spectrometer equipped with a multi-nuclear quad probe (1 H, 13 C, 31 P and 19 F) at 297° K. 1 H spectra in D₂O were recorded by employing solvent suppression pulse sequence. Melting points were determined by capillary melt methods and were uncorected.

Synthetic procedures

[0075] 1,7-Bis(benzyloxycarbonyl)-1,4,7,10-tetraazacyclododecane (1) and 1,7-Bis(benzyloxycarbonyl)-

1,4,7,10-tetraazacyclododecane-bis(methanephosphonic acid diethyl ester) (2) were prepared according to the literature.¹

a) Synthesis of 1,4,7,10-Tetraazacyclododecane-1,7-bis-(methanephosphonic acid diethyl ester)

[0076] A solution of 5g (6.75 mmol) of 1,7-Bis(benzyloxycarbonyl)-1,4,7,10-tetraazacyclododecane bis(methane-phosphonic acid diethyl ester) in absolute ethanol was mixed with 6.84 ml (67.50 mmol) cyclohexene and 1g of 5% Pd/C catalyst was added. The mixture was stirred under reflux 2h, filtered from catalyst washed with ethanol, and the combined filtrates were evaporated under vaccum. The residue is a pale yellow oil; 3.18g, 100%.

¹H NMR and ¹³C NMR conformable to literature. ¹

10

15

20

30

35

40

45

50

55

b) Synthesis of 1-(6-Fluoro-2-quinolinemethyl)-1,4,7,10-tetraazacyclododecane-4,10-bis(methanephosphonic acid diethyl ester)

[0077] 1,4,7,10-Tetraazacyclodoecane-1,7-bis(methanephosphonic acid diethyl ester) (10mmole) was dissolved in 150 ml of dry acetonitrile and solution of 2-Chloromethylene-6-fluoro-quinoline (10 mmole) in acetonitrile was added dropwise. The mixture was stirred at 40 C for two days. Solvent was removed under vacuum. The residue was purified on silica gel column using solvent system (10:2:1) dioxane: methanol: ammonium hydroxide. Yield 25% of monoalkylated.

 1 H NMR (500MHz, CDCl₃) δ: 1.16 (t, J= 7.00 Hz, 3H, CH₃), 2.74 (br d,J=8.41 Hz,12H, NCH₂CH₂N), 2.89 (br, 8H, NCH₂CH₂N and PCH₂N), 3.86 (d, J-2.41 Hz, 4H, CH₂Ar), 3.93 (q, J=7.03 Hz, 8H, OCH₂), 7.24-7.42 (m, 4H, Ar), 7.84 (d J=8.62 Hz 2H, Ar), 8.05-8.09 (m, 4H, Ar); 13 C NMR (300MHz, CDCl₃) δ: 162.04 (Ar), 158.76 (Ar), 144.72 (Ar), 135.58 (d, J=20.04 Hz, Ar), 131.52 (d, J=35.70 Hz, Ar), 128.05 (d, J= 39.28 Hz Ar), 122.51 (Ar), 119.13 (d, J=102.30 Hz, Ar), 110.54 (d, J= 86.1 Hz, Ar), 61.63 (POCH₂), 60.10 (CH₂Ar), 53.63 (d, J=23.39 Hz, PCH₂N), 52.02 (NCH₂CH₂N), 49.98 (NCH₂CH₂N), 16.46 (CH₃); 31 P NMR (300MHz, CDCl₃) δ: 26.26.

c) 1-(6-Fluoro-2-quinolinemethyl)-7-(methanecarboxylic acid ethyl ester)-1,4,7,10-tetraazacyclododecane-4,10-bis(methanephosphonic acid diethyl ester)

[0078] 1-(6-Fluoro-2-quinolinemethyl)-1,4,7,10-tetraazacyclododecane-4,10-bis(methanephosphonic acid diethyl ester) (10 mmol) was dissolved in dry acetonitrile and ethyl bromoacetate (10% excess) and anhydrous K_2CO_3 (11 mmole) were added. The solution was stirred at 40 C a few hours. Subsequently the solvent was removed under vacuum. The residue was dissolved in dichloromethane and purified on silica gel column eluting with dioxane: methanol: ammonium hydroxide (10:2:1). After concentration of eluent, the product was isolated as a thick pale yellow liquid. Yield 78%.

 $^{1}\text{H NMR } (500\text{MHz}, \text{CDCl}_{3}) \, \delta : 1.14 - 1.19 \, (\text{m}, 15\text{H}, \text{CH}_{3}), 2.71 - 2.88 \, (\text{br } 20\text{H}, \text{NCH}_{2}\text{CH}_{2}\text{N}, \text{PCH}_{2}\text{N}), 3.42 \, (\text{s}, 2\text{H}, \text{NCH}_{2}\text{CO}), 3.76 \, 9\text{s}, 2\text{H}, \text{CH}_{2}\text{Ar}), 3.98 \, (\text{m}, 10\text{H}, \text{OCH}_{2}), 7.32 - 7.45 \, (\text{m}, 2\text{H}, \text{Ar}), 7.78 \, (\text{d}, J=8.02 \, \text{Hz} \, 1\text{H}, \text{Ar}), 7.96 - 8.08 \, (\text{m}, 2\text{H}, \text{Ar}); ^{13}\text{C} \, \text{NMR } (300\text{MHz}, \text{CDCl}_{3}) \, \delta : 171.57 \, (\text{COOEt}), 162.03 \, (\text{Ar}), 158.75 \, (\text{Ar}), 144.71 \, (\text{Ar}), 135.58 \, (\text{d}, J=20.04 \, \text{Hz}, \text{Ar}), 131.52 \, (\text{d}, J=60.01 \, \text{Hz}, \text{Ar}), 128.05 \, (\text{d}, J=39.60 \, \text{Hz}, \text{Ar}), 122.84 \, (\text{Ar}), 119.36 \, (\text{d}, J=102.30 \, \text{Hz}, \text{Ar}), 110.53 \, (\text{d}, J=86.41 \, \text{Hz}, \text{Ar}), 62.48 \, (\text{CH}_{2}\text{Ar}), 61.62 \, (\text{d}, J=30.01 \, \text{Hz}, \text{OCH2}) \, 60.10 \, (\text{OCH}_{2}), 55.63 \, (\text{d}, J=23.39 \, \text{Hz}, \text{PCH}_{2}\text{N}), 52.71 \, (\text{NCH}_{2}\text{CH}_{2}\text{N}), 52.02 \, (\text{NCH}_{2}\text{CH}_{2}\text{N}), 49.97 \, (\text{NCH}_{2}\text{CH}_{2}\text{N}), 16.46 \, (\text{d}, J=22.08 \, \text{Hz}, \text{CH}_{3}); \, ^{31}\text{P NMR} \, (300\text{MHz}, \text{CDCl}_{3}) \, \delta : 26.26. \, (\text{CH}_{2}\text{CH}_{2}\text{N}), 26.26 \, (\text{CH}_{2}\text{CH}_{2}\text{CH}_{2}\text{N}), 26.26 \, (\text{CH}_{2}\text{CH}_{2}\text{N}), 26.26 \, (\text{CH}_{2}\text{CH}_{2}\text{N}), 26.26$

d) Synthesis of 1-(6-Fluor-2-quinolinemethyl)-7-(methanecarboxylic acid)-1,4,7,10-tetraazacyclododecane-4,10-bis(methanephosphonic acid)

[0079] 1-(6-Fluor-2-quinolinemethyl)-7-(methanecarboxylic acid ethyl ester)-4,10-bis(methylenephosphonic acid diethyl ester)-1,4,7,10-tetraazacyclododecane (5 mmol) was dissolved in 6M hydrochloric acid. The solution was refluxed for two days. Hydrochloric acid was removed under vacuum by azeotropic destillation. The residue was purified on anion-exchange column Q- Sepharosc, Meluting first with deionized water, then with 1M hydrochloric acid. Follow freeze-drying of the eluent, the product was isolated as white solid and further characterized by:

¹H NMR

13C NMR

31P NMR

Yield 96%

¹ Z. Kovacs, A.D. Sherry, *Synthesis, 759,* (1996)Z. Kovacs and A.D. Sherry, *J. Chem. Soc. Chem. Commun.*, 185, (1995)

e) Synthesis of 1-(6-Chloro-2-quinolinemethyl)-4,10-bis(benzyloxycarbonyl)-1,4,7,10-tetraazacyclododecane

[0080] 1,7-Bis-(benzyloxycarbonyl)-1,4,7,10-tetraazacyclododecane (10mmole) was dissolved in 150 ml of dry acetonitrile and solution of 6-Chloro-2-chloromethylene-quinoline (2-Chloromethylene-6-fluoro-quinoline) (10 mmole) in acetonitrile was added dropwise. The mixture was stirred at 40 C for three days. Solvent was removed under vacuum. The residue was purified on silica gel column using solvent system 10:4:1 (ethyl acetate: Methanol: ammonium hydroxide). Yield 75%.

¹H NMR (500MHz, CDCl₃) δ: 3.07-3.47 (br 8H, NCH₂CH₂N), 3.58-3.74 (br, 4H, NCH₂CH₂N), 3.98-4.06 (br, 4H, NCH₂CH₂N), 4.13 (s, 2H, CH₂Ar), 4.27-4.49 (br, 4H, OCH₂Ar), 6.95-7.23 (m, 7H, Ar), 7.27-7.38 (m, 4H, Ar), 7.52-7.57 (m. 1H, Ar), 7.64-7.75 (m, 2H, Ar), 7.90-7.96 (m, 1H, Ar); ¹³C NMR (500MHz, CDCl₃) δ: 167.63 (Ar), 159.59 (Ar), 156.10 (m, NCOO), 145.96 (d, J=30.15 Hz, Ar), 135.75-135.29 (m, Ar), 130.47 (d J=16.49 Hz, Ar), 128.48 (d, J= 29.49 Hz, Ar), 128.30 (Ar), 128.12 (d, J=51.49 Hz, Ar), 127.83 (d, J=115.47 Hz, Ar), 127.49 (d, J= 33.02 Hz Ar), 126.30 (Ar), 121.68 (Ar), 67.25 (d, J=66.06 Hz, OCH₂Ar), 66.13 (CH₂Ar), 52.86 (NCH₂CH₂N), 48.15 (NCH₂CH₂N), 45.06 (HNCH₂CH₂N).

f) 1-(6-Chloro-2-quinolinemethyl)-4,10-bis(benzyloxycarbonyl)-7-(methanecarboxylic acid ethyl ester)-1,4,7,10-tetraazacyclododecane

[0081] 1,7-Bis(benzyloxycarbonyl)-4-(6-chloro-2-quinolinemethyl)-1,4,7,10-tetraazacyclododecane was dissolved in dry acetonitrile and ethyl bromoacetate and di-ipropyle-ethylamine was added. The solution was stirred at 40 C a few houres. The mixture was evaporated to dryness. The residue was dissolved in ethyl acetate. After a few minutes di-ipropyle-ethylamine hydrochloride was filtered off, washed with ethyl acetate. After evaporation of the solvent under vacuum, the residue was purified on silica gel column eluting with ethyl acetate. Yield 78%.

¹H NMR (500MHz, CDCl₃) δ: 1.14-1.19 (m, 15H, CH₃), 2.71-2.88 (br, 20H, NCH₂CH₂N, PCH₂N), 3.42 (s,2H, NCH₂CO), 3.7 (br, 4H, NCH₂CH₂N), 3.98-4.06 (br, 4H, NCH₂CH₂N), 4.13 (s, 2H, CH₂Ar), 4.27-4.49 (br, 4H, OCH₂Ar), 6.95-7.23 (m, 7H, Ar), 7.27-7.38 (m, 4H, Ar), 7.52-7.57 (m. 1H, Ar), 7.64-7.75 (m, 2H, Ar), 7.90-7.96 (m, 1H, Ar); ¹³C NMR (500MHz, CDCl₃) δ: 167.63 (Ar), 159.59 (Ar), 156.10 (m, NCOO), 145.96 (d, J=30.15 Hz, Ar), 135.75-135.29 (m, Ar), 130.47 (d J=16.49 Hz, Ar), 128.48 (d, J= 29.49 Hz, Ar), 128.30 (Ar), 128.12 (d, J=51.49 Hz, Ar), 127.83 (d, J=115.47 Hz, Ar), 127.49 (d, J= 33.02 Hz Ar), 126.30 (Ar), 121.68 (Ar), 67.25 (d, J=66.06 Hz, OCH₂Ar), 66.13 (CH₂Ar), 52.86 (NCH₂CH₂N), 48.15 (NCH₂CH₂N), 45.06 (HNCH₂CH₂N).

g) 1-(6-Chloro-2-quinolinemethyl)-7-(methanecarboxylic acid ethyl ester)-1,4,7,10-tetraazacyclododecane

[0082] 1,7-Bis(benzyloxycarbonyl)-4-(6-chloro-2-quinolinemethy)-10-(ethyl methanecarboxylic acid)-1,4,7,10-tetraazacyclododecane was dissolved in ethanole, and 5% Pd/C and cyclohexene were added. Mixture was stirring under reflux for one hour. The catalyst was filtered off and washed with ethanol. The solvent was removed under vacuum. Yield 80%

¹H NMR (500 MHz, CDCl₃) δ: 1.17 (t, J=7.20 Hz, 3H, CH₃)2.64 (br, 9H, HNCH₂CH₂NH), 2.82 (br, 9H, NCH₂CH₂N), 3.46 (s, 2H, NCH₂CO), 3.98 (s, 2H, CH₂Ar), 4.06 (q, J=7.22 Hz, 2H, OCH₂), 7.40 (t, J=8.02 Hz, 1H, Ar), 7.54-7.62 (m, 1H, Ar), 7.69 (d, J=7.20 Hz, 1H, Ar), 7.91 (d J=8.20 Hz, 1H, Ar), 8.02 (d, J= 8.46 Hz, 1H, Ar); ¹³C NMR (500 MHz, CDCl₃) δ: 171.48 (COOEt), 159.87,147.21, 136.29, 129.29, 128.74,127.41, 127.14, 126.10, 121.35 (quinoline carbones), 63.47 (OCH₂), 60.35 (CH₂Ar), 56.14 (NCH₂CO), 52.37 (NCH₂CH₂N), 51.42 (NCH₂CH₂N), 46.79 (d, J=69.5 Hz, HNCH₂CH₂N)

[0083] Alkylation: 1-(6-Chloro-2-quinolinemethyl)-7-(ethyl methanecarboxylic acid)-1,4,7,10-tetraazacyclododecane was dissolved in triethyl phosphite and paraformaldehyde was added. The mixture was stirred for three days. The volatile impurities were removed under vacuum. The residue was purified on silica gel column. Yield 64%.

[0084] Hydrolysis: 1-(6-Chloro-2-quinolinemethyl)-7-(ethyl methanecarboxylic acid)-4,10-bis(methylenephosphonic acid diethyl ester)-1,4,7,10-tetraazacyclododecane was dissolved in 6M hydrochloric acid. The solution was refluxed for two days.

50 [0085] Hydrochloric acid was removed under vacuum by azeotropic destillation. The residue was purified on ion-exchange column. Yield 96%.

55

15

30

Annex to the application documents-subsequently filed sequences listing

[0086]

```
SEQUENCE LISTING
                     <110> BAUER, MICHAEL
                            BECKER, ANDREAS
                            LICHA, KAI
10
                            BORNHOP, DARRYL
                            PLATZEK, JOHANNES
                     <120> NEW COMPOUNDS FOR FLUORESCENCE DIAGNOSIS
                     <130> SCH-1755
15
                     <140> 09/571,407
                     <141> 2000-05-15
                     <160> 241
20
                     <170> PatentIn Ver. 2.1
                     <210> 1
                     <211> 28
                     <212> PRT
                     <213> Unknown Organism
25
                     <223> Description of Unknown Organism: Naturally
                           occuring VIP
                     <400> 1
30
                     His Ser Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln
                                             10
                     Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn
                                  20
35
                     <210> 2
                     <211> 14
                     <212> PRT
                     <213> Unknown Organism
40
                     <220>
                     <223> Description of Unknown Organism: Naturally
                           occuring somatostatin
45
                     Ala Gly Cys Lys Asn Phe Phe Trp Lys Thr Phe Thr Ser Cys
                                       5
                     <210> 3
                     <211> 12
50
                     <212> PRT
                     <213> Unknown Organism
                     <220>
                     <223> Description of Unknown Organism: Naturally
                           occuring neurotensin
55
                     <400> 3
                     Leu Tyr Glu Asn Lys Pro Arg Arg Pro Tyr Ile Leu
```

	1		5			10					
5	<210><211><211><212><213>	17	Sequence								
10	<220> <223>	Descriptio peptide	n of Arti	ficial	Sequ	ence:	Synth	etic			
15	<400> Arg Le 1	4 eu Arg Lys	Gln Met A	la Val	Lys :	Lys Ty 10	r Leu	Asn	Ser	Ile 15	Leu
20	<210><211><211><212><213>	16	Sequence								
25	<220> <223>	Description peptide	n of Arti	ficial	Seque	ence:	Synth	etic			
30	<400> Leu Ar 1	5 fg Lys Gln 1	Met Ala Va 5	al Lys	Lys 1	ryr Le 10	u Asn	Ser	Ile	Leu 15	Asn
05	<210><211><212><213>	15	Sequence								
<i>35</i>	<220>	Description peptide		Eicial	Seque	ence:	Synthe	etic			
40		6 's Gln Met 1	_	ys Lys				Ile	Leu	Asn 15	
45	<210><211><212><213>	14	Sequence								
50		Description peptide	n of Artif	Eicial	Seque	ence:	Synthe	etic			
	<400> Lys Gl	7 n Met Ala V	/al Lys Ly 5	/s Tyr	Leu A	Asn Se 10	r Ile	Leu	Asn		
55	-		-			-					

```
<210> 8
              <211> 13
              <212> PRT
              <213> Artificial Sequence
5
              <220>
              <223> Description of Artificial Sequence: Synthetic
                    peptide
10
              Gln Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn
                                5
              <210> 9
15
              <211> 12
              <212> PRT
              <213> Artificial Sequence
              <220>
20
              <223> Description of Artificial Sequence: Synthetic
                    peptide
              <400> 9
              Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn
25
              <210> 10
              <211> 11
              <212> PRT
              <213> Artificial Sequence
30
              <220>
              <223> Description of Artificial Sequence: Synthetic
                    peptide
35
              <400> 10
              Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn
                               5
              <210> 11
40
              <211> 16
              <212> PRT
              <213> Artificial Sequence
              <223> Description of Artificial Sequence: Synthetic
45
                    peptide
              <400> 11
              Arg Leu Arg Lys Gln Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu
                                5
                                                    10
50
              <210> 12
              <211> 15
              <212> PRT
              <213> Artificial Sequence
55
```

5	<220> <223> Description of Artificial Sequence: Synthetic peptide
	<pre><400> 12 Leu Arg Lys Gln Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu 1 5 10 15</pre>
10	<210> 13 <211> 14 <212> PRT
	<213> Artificial Sequence
15	<220> <223> Description of Artificial Sequence: Synthetic peptide
20	<pre><400> 13 Arg Lys Gln Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu 1 5 10</pre>
	<210> 14
	<211> 13
25	<212> PRT <213> Artificial Sequence
	<220>
	<223> Description of Artificial Sequence: Synthetic
30	peptide
	<400> 14 Lys Gln Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu 1 5 10
<i>35</i>	
	<210> 15
	<211> 12 <212> PRT
	<213> Artificial Sequence
40	<220> <223> Description of Artificial Sequence: Synthetic peptide
	<400> 15
45	Gln Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu 1 5 10
	<210> 16
50	<211> 11 <212> PRT
	<213> Artificial Sequence
	<220>
	<pre><223> Description of Artificial Sequence: Synthetic peptide</pre>
55	F-E-0100

	<pre><400> 16 Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu 1 5 10</pre>
5	
	<210> 17 <211> 10 <212> PRT <213> Artificial Sequence
10	12137 Attititat bequence
	<220> <223> Description of Artificial Sequence: Synthetic peptide
15	<400> 17 Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu 1 5 10
20	<210> 18 <211> 15 <212> PRT <213> Artificial Sequence
25	<220> <223> Description of Artificial Sequence: Synthetic peptide
	<400> 18 Arg Leu Arg Lys Gln Met Ala Val Lys Lys Tyr Leu Asn Ser Ile 1 5 10 15
30	
<i>35</i>	<210> 19 <211> 14 <212> PRT <213> Artificial Sequence
	<223> Description of Artificial Sequence: Synthetic peptide
40	<400> 19 Leu Arg Lys Gln Met Ala Val Lys Lys Tyr Leu Asn Ser Ile 1 5 10
45	<210> 20 <211> 13 <212> PRT <213> Artificial Sequence
50	<pre><220> <223> Description of Artificial Sequence: Synthetic peptide</pre>
	<400> 20 Arg Lys Gln Met Ala Val Lys Lys Tyr Leu Asn Ser Ile 1 5 10
55	

```
<210> 21
                  <211> 12
                  <212> PRT
5
                  <213> Artificial Sequence
                  <220>
                  <223> Description of Artificial Sequence: Synthetic
                        peptide
10
                  <400> 21
                  Lys Gln Met Ala Val Lys Lys Tyr Leu Asn Ser Ile
                                   5
                   1
15
                  <210> 22
                  <211> 11
                  <212> PRT
                  <213> Artificial Sequence
20
                  <223> Description of Artificial Sequence: Synthetic
                        peptide
                  <400> 22
                  Gln Met Ala Val Lys Lys Tyr Leu Asn Ser Ile
25
                  <210> 23
                  <211> 10
                  <212> PRT
30
                  <213> Artificial Sequence
                  <223> Description of Artificial Sequence: Synthetic
                        peptide
35
                  <400> 23
                  Met Ala Val Lys Lys Tyr Leu Asn Ser Ile
                  <210> 24
40
                  <211> 9
                  <212> PRT
                  <213> Artificial Sequence
45
                  <223> Description of Artificial Sequence: Synthetic
                        peptide
                  Ala Val Lys Lys Tyr Leu Asn Ser Ile
50
                  <210> 25
                  <211> 14
                  <212> PRT
                  <213> Artificial Sequence
55
```

	<220> <223> Description of Artificial Sequence: Synthetic peptide
5	<400> 25 Arg Leu Arg Lys Gln Met Ala Val Lys Lys Tyr Leu Asn Ser 1 5 10
10	<210> 26 <211> 13 <212> PRT <213> Artificial Sequence
15	<220> <223> Description of Artificial Sequence: Synthetic peptide
20	<pre><400> 26 Leu Arg Lys Gln Met Ala Val Lys Lys Tyr Leu Asr Ser 1 5 10</pre>
25	<210> 27 <211> 12 <212> PRT <213> Artificial Sequence
	<220> <223> Description of Artificial Sequence: Synthetic peptide
30	<400> 27 Arg Lys Gln Met Ala Val Lys Lys Tyr Leu Asn Ser 1 5 10
35	<210> 28 <211> 11 <212> PRT <213> Artificial Sequence
40	<220> <223> Description of Artificial Sequence: Synthetic peptide
45	<pre><400> 28 Lys Gln Met Ala Val Lys Lys Tyr Leu Asn Ser 1 5 10</pre>
50	<210> 29 <211> 10 <212> PRT <213> Artificial Sequence
55	<220> <223> Description of Artificial Sequence: Synthetic peptide
55	<400> 29

	Gln Met Ala Val Lys Lys Tyr Leu Asn Ser
	1 5 10
_	
5	<210> 30 <211> 9
	<211> 9 <212> PRT
	<213> Artificial Sequence
10	<pre><220> <223> Description of Artificial Sequence: Synthetic</pre>
	peptide
	<400> 30
15	Met Ala Val Lys Lys Tyr Leu Asn Ser 1 5
	•
	<210> 31 <211> 8
	<212> PRT
20	<213> Artificial Sequence
	<220>
	<pre><220> <223> Description of Artificial Sequence: Synthetic</pre>
	peptide
25	.400 . 24
	<400> 31 Ala Val Lys Lys Tyr Leu Asn Ser
	1 5
30	<210> 32
30	<210> 32 <211> 13
30	<211> 13 <212> PRT
30	<211> 13
	<211> 13 <212> PRT
<i>35</i>	<pre><211> 13 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic</pre>
	<211> 13 <212> PRT <213> Artificial Sequence <220>
	<pre><211> 13 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic</pre>
	<211> 13 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic peptide <400> 32 Arg Leu Arg Lys Gln Met Ala Val Lys Lys Tyr Leu Asn
	<211> 13 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic peptide <400> 32
35	<211> 13 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic peptide <400> 32 Arg Leu Arg Lys Gln Met Ala Val Lys Lys Tyr Leu Asn
35	<pre><211> 13 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic peptide <400> 32 Arg Leu Arg Lys Gln Met Ala Val Lys Lys Tyr Leu Asn</pre>
35	<pre><211> 13 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic peptide <400> 32 Arg Leu Arg Lys Gln Met Ala Val Lys Lys Tyr Leu Asn</pre>
35	<pre><211> 13 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic peptide <400> 32 Arg Leu Arg Lys Gln Met Ala Val Lys Lys Tyr Leu Asn</pre>
<i>35 40</i>	<pre><211> 13 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic peptide <400> 32 Arg Leu Arg Lys Gln Met Ala Val Lys Lys Tyr Leu Asn</pre>
<i>35 40</i>	<pre><211> 13 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic peptide <400> 32 Arg Leu Arg Lys Gln Met Ala Val Lys Lys Tyr Leu Asn</pre>
<i>35 40</i>	<pre><211> 13 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic peptide <400> 32 Arg Leu Arg Lys Gln Met Ala Val Lys Lys Tyr Leu Asn</pre>
35 40 45	<pre><211> 13 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic peptide <400> 32 Arg Leu Arg Lys Gln Met Ala Val Lys Lys Tyr Leu Asn</pre>
<i>35 40</i>	<pre><211> 13 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic peptide <400> 32 Arg Leu Arg Lys Gln Met Ala Val Lys Lys Tyr Leu Asn 1 5 10 <210> 33 <211> 12 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic peptide</pre> <2400> 33
35 40 45	<pre><211> 13 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic peptide <400> 32 Arg Leu Arg Lys Gln Met Ala Val Lys Lys Tyr Leu Asn</pre>
35 40 45	<pre><211> 13 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic peptide <400> 32 Arg Leu Arg Lys Gln Met Ala Val Lys Lys Tyr Leu Asn 1 5 10 <210> 33 <211> 12 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic peptide</pre> <2400> 33
35 40 45	<pre><211> 13 <212> PRT <213> Artificial Sequence </pre> <pre><220> <223> Description of Artificial Sequence: Synthetic</pre>
35 40 45	<pre><211> 13 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic peptide <400> 32 Arg Leu Arg Lys Gln Met Ala Val Lys Lys Tyr Leu Asn</pre>

```
<211> 11
                   <212> PRT
                   <213> Artificial Sequence .
5
                   <223> Description of Artificial Sequence: Synthetic
                        peptide
                   <400> 34
10
                   Arg Lys Gln Met Ala Val Lys Lys Tyr Leu Asn
                   1
                  <210> 35
15
                  <211> 10
                  <212> PRT
                  <213> Artificial Sequence
                  <220>
                  <223> Description of Artificial Sequence: Synthetic
20
                       peptide
                  <400> 35
                  Lys Gln Met Ala Val Lys Lys Tyr Leu Asn
                              5
25
                  <210> 36
                  <211> 9
                  <212> PRT
                  <213> Artificial Sequence
30
                  <223> Description of Artificial Sequence: Synthetic
                        peptide
                  <400> 36
35
                  Gln Met Ala Val Lys Lys Tyr Leu Asn
                  <210> 37
                  <211> 8
40
                  <212> PRT
                  <213 > Artificial Sequence
                  <220>
                  <223> Description of Artificial Sequence: Synthetic
45
                        peptide
                  <400> 37
                  Met Ala Val Lys Lys Tyr Leu Asn
50
                  <210> 38
                  <211> 7
                  <212> PRT
                  <213> Artificial Sequence
55
                  <220>
```

```
<223> Description of Artificial Sequence: Synthetic
                          peptide
                    <400> 38
5
                   Ala Val Lys Lys Tyr Leu Asn
                     1
                   <210> 39
10
                    <211> 12
                   <212> PRT
                   <213> Artificial Sequence
                   <220>
                   <223> Description of Artificial Sequence: Synthetic
15
                         peptide
                   <400> 39
                   Arg Leu Arg Lys Gln Met Ala Val Lys Lys Tyr Leu
20
                   <210> 40
                   <211> 11
                   <212> PRT
                   <213> Artificial Sequence
25
                   <220>
                   <223> Description of Artificial Sequence: Synthetic
                         peptide
                   <400> 40
30
                   Leu Arg Lys Gln Met Ala Val Lys Lys Tyr Leu
                   <210> 41
                   <211> 10
35
                   <212> PRT
                   <213> Artificial Sequence
                   <220>
                   <223> Description of Artificial Sequence: Synthetic
40
                         peptide
                   <400> 41
                   Arg Lys Gln Met Ala Val Lys Lys Tyr Leu
                                      5
45
                   <210> 42
                   <211> 9
                   <212> PRT
                   <213> Artificial Sequence
50
                   <220>
                   <223> Description of Artificial Sequence: Synthetic
                         peptide
                   <400> 42
55
                   Lys Gln Met Ala Val Lys Lys Tyr Leu
```

	1 5
5	<210> 43 <211> 8 <212> PRT <213> Artificial Sequence
10	<220> <223> Description of Artificial Sequence: Synthetic peptide
15	<400> 43 Gln Met Ala Val Lys Lys Tyr Leu 1 5
20	<210> 44 <211> 7 <212> PRT <213> Artificial Sequence
25	<220> <223> Description of Artificial Sequence: Synthetic peptide
25	<400> 44 Met Ala Val Lys Lys Tyr Leu 1 5
30	<210> 45 <211> 6 <212> PRT <213> Artificial Sequence
35	<220> <223> Description of Artificial Sequence: Synthetic peptide
40	<400> 45 Ala Val Lys Lys Tyr Leu 1 5
45	<210> 46 <211> 17 <212> PRT <213> Artificial Sequence
50	<220> <223> Description of Artificial Sequence: Synthetic peptide
	<pre><400> 46 Arg Leu Arg Lys Gln Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu 1 5 10 15</pre>
55	Asn

```
<210> 47
               <211> 16
               <212> PRT
5
               <213> Artificial Sequence
               <220>
               <223> Description of Artificial Sequence: Synthetic
10
               <400> 47
               Leu Arg Lys Gln Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn
                                                    10
                          5
15
               <210> 48
               <211> 15
               <212> PRT
               <213> Artificial Sequence
               <220>
20
               <223> Description of Artificial Sequence: Synthetic
                     peptide
               <400> 48
               Arg Lys Gln Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn
                                                     1.0
25
               <210> 49
               <211> 14
               <212> PRT
30
               <213> Artificial Sequence
               <220>
               <223> Description of Artificial Sequence: Synthetic
                     peptide
35
               <400> 49
               Lys Gln Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn
                               5
                                                    10
               <210> 50
40
               <211> 13
               <212> PRT
               <213> Artificial Sequence
               <220>
45
               <223> Description of Artificial Sequence: Synthetic
                     peptide
               Gln Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn
50
               <210> 51
               <211> 12
               <212> PRT
               <213> Artificial Sequence
55
```

```
<220>
               <223> Description of Artificial Sequence: Synthetic
                     peptide
5
               <400> 51
               Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn
                                 5
10
               <210> 52
               <211> 16
               <212> PRT
               <213> Artificial Sequence
15
               <223> Description of Artificial Sequence: Synthetic
                     peptide
               <400> 52
               Arg Leu Arg Lys Gln Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu
20
              <210> 53
               <211> 15
25
               <212> PRT
               <213> Artificial Sequence
               <223> Description of Artificial Sequence: Synthetic
                     peptide
30
               <400> 53
              Leu Arg Lys Gln Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu
35
               <210> 54
               <211> 14
               <212> PRT
              <213> Artificial Sequence
              <220>
40
               <223> Description of Artificial Sequence: Synthetic
                    peptide
              <400> 54
              Arg Lys Gln Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu
45
                                 5
              <210> 55
              <211> 13
              <212> PRT
50
              <213> Artificial Sequence
              <220>
              <223> Description of Artificial Sequence: Synthetic
                     peptide
55
```

```
<400> 55
               Lys Gln Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu
5
               <210> 56
               <211> 12
               <212> PRT
               <213> Artificial Sequence
10
               <220>
               <223> Description of Artificial Sequence: Synthetic
                     peptide
               <400> 56
15
               Gln Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu
               <210> 57
20
               <211> 11
               <212> PRT
               <213> Artificial Sequence
               <220>
               <223> Description of Artificial Sequence: Synthetic
25
                     peptide
               <400> 57
               Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu
                1
30
               <210> 58
               <211> 15
               <212> PRT
               <213> Artificial Sequence
35
               <223> Description of Artificial Sequence: Synthetic
                    peptide
               <400> 58
40
               Arg Leu Arg Lys Gln Met Ala Val Lys Lys Tyr Leu Asn Ser Ile
                                                    10
               <210> 59
               <211> 14
45
               <212> PRT
              <213> Artificial Sequence
               <223> Description of Artificial Sequence: Synthetic
50
                   peptide
              Leu Arg Lys Gln Met Ala Val Lys Lys Tyr Leu Asn Ser Ile
                                5
                                                    10
55
```

```
<210> 60
               <211> 13
               <212> PRT
5
               <213> Artificial Sequence
               <220>
               <223> Description of Artificial Sequence: Synthetic
                     peptide
10
               <400> 60
               Arg Lys Gln Met Ala Val Lys Lys Tyr Leu Asn Ser Ile
                       5
15
               <210> 61
               <211> 12
               <212> PRT
               <213> Artificial Sequence
               <220>
20
               <223> Description of Artificial Sequence: Synthetic
                     peptide
               <400> 61
               Lys Gln Met Ala Val Lys Lys Tyr Leu Asn Ser Ile
25
               <210> 62
               <211> 11
               <212> PRT
30
               <213> Artificial Sequence
               <220>
               <223> Description of Artificial Sequence: Synthetic
                     peptide
35
               <400> 62
               Gln Met Ala Val Lys Lys Tyr Leu Asn Ser Ile
                                 5
               <210> 63
40
               <211> 10
               <212> PRT
               <213> Artificial Sequence
45
               <223> Description of Artificial Sequence: Synthetic
                    peptide
               <400> 63
               Met Ala Val Lys Lys Tyr Leu Asn Ser Ile
50
               <210> 64
               <211> 11
               <212> PRT
               <213> Artificial Sequence
55
```

```
<220>
                <223> Description of Artificial Sequence: Synthetic
                      peptide
5
                <400> 64
                Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn
                                  5
10
                <210> 65
                <211> 10
                <212> PRT
                <213> Artificial Sequence
                <220>
15
                <223> Description of Artificial Sequence: Synthetic
                      peptide
                <400 > 65
                Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu
20
                     5
                <210> 66
                <211> 9
                <212> PRT
25
                <213> Artificial Sequence
                <223> Description of Artificial Sequence: Synthetic
                     peptide
30
                <400> 66
                Ala Val Lys Lys Tyr Leu Asn Ser Ile
                <210> 67
35
                <211> 17
                <212> PRT
                <213> Artificial Sequence
                <220>
40
                <223> Description of Artificial Sequence: Synthetic
                     peptide
                <400> 67
                Arg Leu Arg Lys Gln Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu
                  1
                                  5
                                                     10
45
                Asn
                <210> 68
50
                <211> 16
                <212> PRT
                <213> Artificial Sequence
                <220>
55
                <223> Description of Artificial Sequence: Synthetic
```

peptide <400> 68 5 Leu Arg Lys Gln Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn 10 <210> 69 <211> 15 10 <212> PRT <213> Artificial Sequence <223> Description of Artificial Sequence: Synthetic peptide 15 <400> 69 Arg Lys Gln Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn 10 20 <210> 70 <211> 14 <212> PRT <213> Artificial Sequence 25 <223> Description of Artificial Sequence: Synthetic peptide <400> 70 Lys Gln Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn 30 <210> 71 <211> 13 35 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic peptide 40 <400> 71 Gln Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn 45 <210> 72 <211> 12 <212> PRT <213> Artificial Sequence 50 <220> <223> Description of Artificial Sequence: Synthetic peptide Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn 55

```
<210> 73
            <211> 11
            <212> PRT
            <213> Artificial Sequence
5
            <220>
            <223> Description of Artificial Sequence: Synthetic
                  peptide
10
            <400> 73
            Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn
            <210> 74
15
            <211> 16
            <212> PRT
            <213> Artificial Sequence
20
            <223> Description of Artificial Sequence: Synthetic
                  peptide
            <400> 74
            Arg Leu Arg Lys Gln Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu
                                                  10
25
            <210> 75
            <211> 15
            <212> PRT
30
            <213> Artificial Sequence
            <220>
            <223> Description of Artificial Sequence: Synthetic
                  peptide
35
            <400> 75
            Leu Arg Lys Gln Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu
                              5
                                                  10
40
            <210> 76
            <211> 14
            <212> PRT
            <213> Artificial Sequence
45
            <223> Description of Artificial Sequence: Synthetic
                  peptide
            <400> 76
            Arg Lys Gln Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu
50
            <210> 77
            <211> 13
55
            <212> PRT
```

```
<213> Artificial Sequence
               <220>
5
               <223> Description of Artificial Sequence: Synthetic
                     peptide
               <400> 77
               Lys Gln Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu
10
               <210> 78
               <211> 12
               <212> PRT
               <213> Artificial Sequence
15
               <220>
               <223> Description of Artificial Sequence: Synthetic
                     peptide
20
               <400> 78
               Gln Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu
                                 5
                 1
               <210> 79
25
               <211> 11
               <212> PRT
               <213> Artificial Sequence
               <223> Description of Artificial Sequence: Synthetic
30
                     peptide
               <400> 79
               Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu
35
               <210> 80
               <211> 10
               <212> PRT
               <213> Artificial Sequence
40
               <220>
               <223> Description of Artificial Sequence: Synthetic
                    peptide
               <400> 80
45
               Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu
               <210> 81
               <211> 15
50
               <212> PRT
               <213> Artificial Sequence
               <223> Description of Artificial Sequence: Synthetic
                     peptide
55
```

```
<400> 81
             Arg Leu Arg Lys Gln Met Ala Val Lys Lys Tyr Leu Asn Ser Ile
                               5
5
             <210> 82
             <211> 14
             <212> PRT
             <213> Artificial Sequence
10
             <223> Description of Artificial Sequence: Synthetic
             <400> 82
15
             Leu Arg Lys Gln Met Ala Val Lys Lys Tyr Leu Asn Ser Ile
                               5
             <210> 83
20
             <211> 13
             <212> PRT
             <213> Artificial Sequence
             <220>
             <223> Description of Artificial Sequence: Synthetic
25
                   peptide
             Arg Lys Gln Met Ala Val Lys Lys Tyr Leu Asn Ser Ile
                               5
30
             <210> 84
             <211> 12
             <212> PRT
             <213> Artificial Sequence
35
             <223> Description of Artificial Sequence: Synthetic
                   peptide
40
             <400> 84
             Lys Gln Met Ala Val Lys Lys Tyr Leu Asn Ser Ile
                               5
                                                   10
               1
             <210> 85
45
             <211> 11
             <212> PRT
             <213> Artificial Sequence
             <223> Description of Artificial Sequence: Synthetic
50
                   peptide
             <400> 85
             Gln Met Ala Val Lys Lys Tyr Leu Asn Ser Ile
                               5
55
```

```
<210> 86
             <211> 10
             <212> PRT
             <213> Artificial Sequence
5
             <220>
             <223> Description of Artificial Sequence: Synthetic
                   peptide
             <400> 86
10
             Met Ala Val Lys Lys Tyr Leu Asn Ser Ile
             <210> 87
15
             <211> 9
             <212> PRT
             <213> Artificial Sequence
             <220>
             <223> Description of Artificial Sequence: Synthetic
20
                   peptide
             <400> 87
             Ala Val Lys Lys Tyr Leu Asn Ser Ile
25
             <210> 88
             <211> 28
             <212> PRT
             <213> Artificial Sequence
30
             <220>
             <223> Description of Artificial Sequence: Synthetic
                  peptide
35
             <400> 88
             Phe Ser Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln
                              5
                                                  10
                                                                       1.5
             Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn
                          20
40
             <210> 89
             <211> 28
             <212> PRT
45
             <213> Artificial Sequence
            <220>
             <223> Description of Artificial Sequence: Synthetic
                  peptide
50
             <400> 89
             Ile Ser Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln
            Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn
55
                          20
                                               25
```

5	<210> 90 <211> 28 <212> PRT <213> Artificial Sequence
	<pre><220> <223> Description of Artificial Sequence: Synthetic peptide</pre>
10	<pre><400> 90 Leu Ser Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln 1 5 10 15</pre>
15	Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn 20 25
20	<210> 91 <211> 28 <212> PRT <213> Artificial Sequence
95	<220> <223> Description of Artificial Sequence: Synthetic peptide
25	<pre><400> 91 His Phe Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln 1 5 10 15</pre>
30	Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn 20 25
35	<210> 92 <211> 28 <212> PRT <213> Artificial Sequence
40	<220> <223> Description of Artificial Sequence: Synthetic peptide
	<pre><400> 92 His His Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln 1</pre>
45	Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn 20 25
50	<210> 93 <211> 28 <212> PRT <213> Artificial Sequence
55	<220> <223> Description of Artificial Sequence: Synthetic peptide

5	<pre><400> 93 His Ile Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln 1 5 10 15</pre>
	Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn 20 25
10	<210> 94 <211> 28 <212> PRT <213> Artificial Sequence
15	<220> <223> Description of Artificial Sequence: Synthetic peptide
20	<pre><400> 94 His Leu Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln 1</pre>
	Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn 20 25
25	<210> 95 <211> 28 <212> PRT <213> Artificial Sequence
30	<220> <223> Description of Artificial Sequence: Synthetic peptide
35	<pre><400> 95 His Met Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln 1 5 10 15</pre>
	Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn 20 25
40	<210> 96 <211> 28 <212> PRT <213> Artificial Sequence
45	<220> <223> Description of Artificial Sequence: Synthetic peptide
50	<pre><400> 96 His Gln Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln 1 5 10 15</pre>
	Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn 20 25
55	<210> 97

	<211> 28 <212> PRT <213> Artificial Sequence
5	<220> <223> Description of Artificial Sequence: Synthetic peptide
10	<pre><400> 97 His Thr Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln 1</pre>
	Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn 20 25
15	<210> 98 <211> 28 <212> PRT <213> Artificial Sequence
20	<220> <223> Description of Artificial Sequence: Synthetic peptide <400> 98
25	His Val Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln 1 5 10 15
	Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn 20 25
30	<210> 99 <211> 28 <212> PRT <213> Artificial Sequence
35	<220> <223> Description of Artificial Sequence: Synthetic peptide
40	<pre><400> 99 His Trp Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln 1</pre>
	Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn 20 25
45	<210> 100 <211> 28 <212> PRT <213> Artificial Sequence
50	<220> <223> Description of Artificial Sequence: Synthetic peptide
55	<400> 100 His Tyr Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln

	1	5	10	15
5	Met Ala Val Lys 20	= =	Ser Ile Leu Asn 25	
10	<210> 101 <211> 28 <212> PRT <213> Artificia	l Sequence		
	<220> <223> Descripti peptide	on of Artificial	Sequence: Synthet	tic
15	<400> 101 His Ser Ala Ala 1	Val Phe Thr Asp	Asn Tyr Thr Arg l	Leu Arg Lys Gln 15
20	Met Ala Val Lys 20		Ser Ile Leu Asn 25	
25	<210> 102 <211> 28 <212> PRT <213> Artificia	l Sequence		
	<220> <223> Descripti peptide	on of Artificial	Sequence: Synthet	iic
30	<400> 102 His Ser Glu Ala 1	Val Phe Thr Asp	Asn Tyr Thr Arg I	Leu Arg Lys Gln 15
35	Met Ala Val Lys 20	Lys Tyr Leu Asn	Ser Ile Leu Asn 25	
40	<210> 103 <211> 28 <212> PRT <213> Artificia	l Sequence		
	<220> <223> Descripti peptide	on of Artificial	Sequence: Synthet	zic
45	<400> 103 His Ser Phe Ala	Val Phe Thr Asp	Asn Tyr Thr Arg I	Leu Arg Lys Gln 15
50	Met Ala Val Lys 20		Ser Ile Leu Asn 25	
55	<210> 104 <211> 28 <212> PRT <213> Artificia	l Sequence		
-				

	<220> <223> Description of Artificial Sequence: Synthetic peptide
5	<400> 104 His Ser His Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln 1 5 10 15
10	Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn 20 25
15	<210> 105 <211> 28 <212> PRT <213> Artificial Sequence
20	<220> <223> Description of Artificial Sequence: Synthetic peptide
20	<pre><400> 105 His Ser Ile Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln 1</pre>
25	Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn 20 25
30	<210> 106 <211> 28 <212> PRT <213> Artificial Sequence
<i>35</i>	<220> <223> Description of Artificial Sequence: Synthetic peptide
	<pre><400> 106 His Ser Leu Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln 1</pre>
40	Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn 20 25
45	<210> 107 <211> 28 <212> PRT <213> Artificial Sequence
50	<220> <223> Description of Artificial Sequence: Synthetic peptide
	<pre><400> 107 His Ser Met Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln 1</pre>
55	Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn

20 25 <210> 108 5 <211> 28 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic 10 peptide <400> 108 His Ser Trp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln 10 15 Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn <210> 109 20 <211> 28 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic 25 peptide <400> 109 His Ser Asp Phe Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln 10 30 Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn 20 <210> 110 35 <211> 28 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic 40 peptide <400> 110 His Ser Asp Gly Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln 45 Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn 20 25 <210> 111 50 <211> 28 <212> PRT <213> Artificial Sequence

<223> Description of Artificial Sequence: Synthetic

55

	peptide
5	<400> 111 His Ser Asp Met Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln 1 5 10 15
	Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn 20 25
10	
	<210> 112 <211> 28 <212> PRT <213> Artificial Sequence
15	<220> <223> Description of Artificial Sequence: Synthetic peptide
20	<pre><400> 112 His Ser Asp Gln Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln 1 5 10 15</pre>
	Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn 20 25
25	<210> 113 <211> 28 <212> PRT <213> Artificial Sequence
30	<220> <223> Description of Artificial Sequence: Synthetic peptide
35	<400> 113 His Ser Asp Ser Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln 1 5 10 15
	Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn 20 25
40	<210> 114 <211> 28 <212> PRT <213> Artificial Sequence
45	<220> <223> Description of Artificial Sequence: Synthetic peptide
50	<400> 114 His Ser Asp Trp Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln 1 5 10 15
	Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn 20 25

```
<210> 115
              <211> 28
              <212> PRT
              <213> Artificial Sequence
5
              <223> Description of Artificial Sequence: Synthetic
                    peptide
10
              <400> 115
              His Ser Asp Tyr Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln
                                                     10
              Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn
15
              <210> 116
              <211> 28
              <212> PRT
              <213> Artificial Sequence
20
              <220>
              <223> Description of Artificial Sequence: Synthetic
                    peptide
              <400> 116
25
              His Ser Asp Ala Phe Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln
              Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn
                                                2.5
                           2.0
30
              <210> 117
              <211> 28
              <212> PRT
              <213> Artificial Sequence
35
              <223> Description of Artificial Sequence: Synthetic
                    peptide
              <400> 117
40
              His Ser Asp Ala Ile Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln
              Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn
                           20
                                                25
45
              <210> 118
              <211> 28
              <212> PRT
              <213> Artificial Sequence
50
              <223> Description of Artificial Sequence: Synthetic
                    peptide
              <400> 118
55
```

	His Ser Asp Ala Leu Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln 1 5 10 15
5	Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn 20 25
10	<210> 119 <211> 28 <212> PRT <213> Artificial Sequence
15	<220> <223> Description of Artificial Sequence: Synthetic peptide
	<pre><400> 119 His Ser Asp Ala Met Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln 1 5 10 15</pre>
20	Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn 20 25
25	<210> 120 <211> 28 <212> PRT <213> Artificial Sequence
30	<220> <223> Description of Artificial Sequence: Synthetic peptide
	<pre><400> 120 His Ser Asp Ala Thr Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln 1 5 10 15</pre>
35	Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn 20 25
40	<210> 121 <211> 28 <212> PRT <213> Artificial Sequence
45	<220> <223> Description of Artificial Sequence: Synthetic peptide
	<400> 121 His Ser Asp Ala Trp Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln 1 5 10 15
50	Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn 20 25
55	<210> 122 <211> 28 <212> PRT

	<213> Artificial Sequence
5	<220> <223> Description of Artificial Sequence: Synthetic peptide
10	<pre>Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn 20</pre> Asn Tyr Thr Arg Leu Arg Lys Gln 1
15	<210> 123 <211> 28 <212> PRT <213> Artificial Sequence
20	<220> <223> Description of Artificial Sequence: Synthetic peptide
25	<pre>Met Ala Val Lys Tyr Leu Asn Ser Ile Leu Asn 20</pre> Thr Arg Leu Arg Lys Gln 1
30	<210> 124 <211> 28 <212> PRT <213> Artificial Sequence
35	<220> <223> Description of Artificial Sequence: Synthetic peptide
40	<pre><400> 124 His Ser Asp Ala Val Phe Val Asp Asn Tyr Thr Arg Leu Arg Lys Gln</pre>
45	<210> 125 <211> 28 <212> PRT <213> Artificial Sequence
50	<220> <223> Description of Artificial Sequence: Synthetic peptide <400> 125
	His Ser Asp Ala Val Phe Trp Asp Asn Tyr Thr Arg Leu Arg Lys Gln 1 5 10 15
55	

	Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn 20 25
5	
3	<210> 126 <211> 28 <212> PRT <213> Artificial Sequence
10	<220> <223> Description of Artificial Sequence: Synthetic peptide
15	<pre><400> 126 His Ser Asp Ala Val Phe Thr Asp Asn Trp Thr Arg Leu Arg Lys Gln 1</pre>
	Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn 20 25
20	
	<210> 127 <211> 28 <212> PRT <213> Artificial Sequence
25	<220> <223> Description of Artificial Sequence: Synthetic peptide
	<400> 127
30	His Ser Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Arg Arg Lys Gln 1 10 15
	Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn 20 25
35	
	<210> 128 <211> 28 <212> PRT <213> Artificial Sequence
40	<220> <223> Description of Artificial Sequence: Synthetic peptide
	<400> 128
45	His Ser Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Trp Arg Lys Gln 1 5 10 15
	Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn 20 25
50	<210> 129 <211> 28 <212> PRT <213> Artificial Sequence
55	<220>

	<223> Description of Artificial Sequence: Synthetic peptide
5	<pre><400> 129 His Ser Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Phe Gln 1 5 10 15</pre>
10	Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn 20 25
15	<210> 130 <211> 28 <212> PRT <213> Artificial Sequence
	<pre><220> <223> Description of Artificial Sequence: Synthetic peptide</pre>
20	<400> 130 His Ser Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Leu Gln $1 \ 5 \ 10 \ 15$
05	Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn 20 25
25	
30	<210> 131 <211> 28 <212> PRT <213> Artificial Sequence
	<220> <223> Description of Artificial Sequence: Synthetic peptide
35	<400> 131 His Ser Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Met Gln 1 5 15
	Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn 20 25
40	
	<210> 132 <211> 28 <212> PRT <213> Artificial Sequence
45	<220> <223> Description of Artificial Sequence: Synthetic peptide
50	<pre><400> 132 His Ser Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Arg Gln 1</pre>
	Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn 20 25
55	

5	<210> 133 <211> 28 <212> PRT <213> Artificial Sequence
10	<220> <223> Description of Artificial Sequence: Synthetic peptide
	<pre><400> 133 His Ser Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Ala 1</pre>
15	Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn 20 25
20	<210> 134 <211> 28 <212> PRT <213> Artificial Sequence
25	<220> <223> Description of Artificial Sequence: Synthetic peptide
25	<400> 134 His Ser Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Phe 1 5 10 15
30	Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn 20 25
35	<210> 135 <211> 28 <212> PRT <213> Artificial Sequence
	<220> <223> Description of Artificial Sequence: Synthetic peptide
40	<400> 135 His Ser Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Ile 1 5 10 15
45	Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn 20 25
50	<210> 136 <211> 28 <212> PRT <213> Artificial Sequence
	<220> <223> Description of Artificial Sequence: Synthetic peptide
55	

5	<pre><400> 136 His Ser Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Lys 1</pre>
10	<210> 137 <211> 28 <212> PRT <213> Artificial Sequence
15	<220> <223> Description of Artificial Sequence: Synthetic peptide
20	<pre> 400> 137 His Ser Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Leu 1</pre>
25	<210> 138 <211> 28 <212> PRT <213> Artificial Sequence
30	<220> <223> Description of Artificial Sequence: Synthetic peptide
35	<pre>400> 138 His Ser Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Met 1</pre>
40	<210> 139 <211> 28 <212> PRT <213> Artificial Sequence
45	<220> <223> Description of Artificial Sequence: Synthetic peptide
50	<pre>Add > 139 His Ser Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Arg 1</pre>
55	<210> 140 <211> 28

	<212> PRT <213> Artificial Sequence
5	<220> <223> Description of Artificial Sequence: Synthetic peptide
10	<pre><400> 140 His Ser Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Val 1 5 10 15</pre>
	Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn 20 25
15	<210> 141 <211> 28 <212> PRT <213> Artificial Sequence
20	<220> <223> Description of Artificial Sequence: Synthetic peptide
25	<pre><400> 141 His Ser Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Trp</pre>
	Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn 20 25
30	<210> 142 <211> 28 <212> PRT <213> Artificial Sequence
35	<220> <223> Description of Artificial Sequence: Synthetic peptide
40	<pre><400> 142 His Ser Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Tyr 1</pre>
	Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn 20 25
45	<210> 143 <211> 28 <212> PRT <213> Artificial Sequence
50	<220> <223> Description of Artificial Sequence: Synthetic peptide
55	<pre><400> 143 His Ser Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln 1</pre>

5	Phe Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn 20 25
10	<210> 144 <211> 28 <212> PRT <213> Artificial Sequence
	<220> <223> Description of Artificial Sequence: Synthetic peptide
15	<pre><400> 144 His Ser Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln 1</pre>
20	Ile Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn 20 25
25	<210> 145 <211> 28 <212> PRT <213> Artificial Sequence
	<220> <223> Description of Artificial Sequence: Synthetic peptide
30	<pre><400> 145 His Ser Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln 1</pre>
35	Lys Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn 20 25
40	<210> 146 <211> 28 <212> PRT <213> Artificial Sequence
40	<220> <223> Description of Artificial Sequence: Synthetic peptide
45	<400> 146 His Ser Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln 1 5 10 15
50	Leu Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn 20 25
	<210> 147 <211> 28 <212> PRT
55	<213> Artificial Sequence

	<220> <223> Description of Artificial Sequence: Synthetic peptide
5	<pre><400> 147 His Ser Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln 1</pre>
10	Gln Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn 20 25
15	<210> 148 <211> 28 <212> PRT <213> Artificial Sequence
	<220> <223> Description of Artificial Sequence: Synthetic peptide
20	<400> 148 His Ser Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln 1 5 10 15
25	Arg Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn 20 25
30	<210> 149 <211> 28 <212> PRT <213> Artificial Sequence
	<220> <223> Description of Artificial Sequence: Synthetic peptide
35	<400> 149 His Ser Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln 1 5 10 15
40	Trp Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn 20 25
45	<210> 150 <211> 28 <212> PRT <213> Artificial Sequence
· ·	<220> <223> Description of Artificial Sequence: Synthetic peptide
50	<pre><400> 150 His Ser Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln 1</pre>
55	Met Phe Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn 20 25

```
<210> 151
                <211> 28
                <212> PRT
                <213> Artificial Sequence
                <220>
10
                <223> Description of Artificial Sequence: Synthetic
                      peptide
                <400> 151
                His Ser Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln
                                                     10
15
               Met Ile Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn
                             2.0
               <210> 152
20
               <211> 28
               <212> PRT
               <213> Artificial Sequence
               <220>
               <223> Description of Artificial Sequence: Synthetic
25
                     peptide
               <400> 152
               His Ser Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln
                                                     10
30
               Met Lys Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn
                             20
                                                 25
               <210> 153
35
               <211> 28
               <212> PRT
               <213> Artificial Sequence
               <220>
               <223> Description of Artificial Sequence: Synthetic
40
                     peptide
               <400> 153
               His Ser Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln
45
               Met Leu Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn
                             20
                                                25
               <210> 154
               <211> 28
50
               <212> PRT
               <213> Artificial Sequence
               <223> Description of Artificial Sequence: Synthetic
55
                     peptide
```

5	<pre><400> 154 His Ser Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln 1 5 10 15</pre>
	Met Met Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn 20 25
10	<210> 155 <211> 28 <212> PRT <213> Artificial Sequence
15	<220> <223> Description of Artificial Sequence: Synthetic peptide
20	<pre><400> 155 His Ser Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln 1 5 10 15</pre>
	Met Gln Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn 20 25
25	<210> 156 <211> 28 <212> PRT <213> Artificial Sequence
30	<220> <223> Description of Artificial Sequence: Synthetic peptide
35	<pre><400> 156 His Ser Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln 1</pre>
	Met Arg Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn 20 25
40	<210> 157 <211> 28 <212> PRT <213> Artificial Sequence
45	<220> <223> Description of Artificial Sequence: Synthetic peptide
50	<pre><400> 157 His Ser Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln</pre>
	20 25
55	<210> 158

5	<211> 28 <212> PRT <213> Artificial Sequence
	<220> <223> Description of Artificial Sequence: Synthetic peptide
10	<pre><400> 158 His Ser Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln 1 5 10 15</pre>
15	Met Trp Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn 20 25
20	<210> 159 <211> 28 <212> PRT <213> Artificial Sequence
20	<220> <223> Description of Artificial Sequence: Synthetic peptide
25	<pre><400> 159 His Ser Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln 1</pre>
	Met Tyr Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn 20 25
30	
	<210> 160 <211> 28 <212> PRT <213> Artificial Sequence
35	<220> <223> Description of Artificial Sequence: Synthetic peptide
40	<pre><400> 160 His Ser Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln 1</pre>
	Met Ala Ala Lys Lys Tyr Leu Asn Ser Ile Leu Asn 20 25
45	
	<210> 161 <211> 28 <212> PRT <213> Artificial Sequence
50	<220> <223> Description of Artificial Sequence: Synthetic peptide
55	<400> 161 His Ser Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln

	1	5			10			15
5	Met Ala Ile	Lys Lys 20	Tyr Leu	Asn S	Ser Ile 25	Leu As	n	
10	<210> 162 <211> 28 <212> PRT <213> Artifi	cial Sec	quence					
15	<220> <223> Descripeption	le			-	_		
	His Ser Asp	5		_	10			g Lys Gln 15
20	Met Ala Leu	20	ryr neu	ASH S	25	Leu As.	u	
25	<210> 163 <211> 28 <212> PRT <213> Artifi	cial Seç	quence					
30	<220> <223> Descri peptid	_	E Artific	cial S	Sequence	e: Syntl	netic	
	<400> 163 His Ser Asp 1	Ala Val 5	Phe Thr	Asp A	asn Tyr 10	Thr Arg	g Leu Arg	g Lys Gln 15
35	Met Ala Val	Arg Lys 20	Tyr Leu	Asn S	er Ile 25	Leu Ası	n	
40	<210> 164 <211> 28 <212> PRT <213> Artifi	cial Seq	quenc e					
45	<220> <223> Descri peptid	_	Artific	cial S	equence	: Syntl	netic	
	<400> 164 His Ser Asp 1	Ala Val	Phe Thr	Asp A	sn Tyr 10	Thr Arg	J Leu Arg	Lys Gln 15
50	Met Ala Val	Lys Arg 20	Tyr Leu		er Ile 25	Leu Asr	n.	
	<210> 165 <211> 28							
55	<212> PRT <213> Artifi	cial Seq	uence					

5	<220> <223> Description of Artificial Sequence: Synthetic peptide
	<400> 165 His Ser Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln 1 5 10 15
10	Met Ala Val Lys Trp Tyr Leu Asn Ser Ile Leu Asn 20 25
15	<210> 166 <211> 28 <212> PRT <213> Artificial Sequence
20	<220> <223> Description of Artificial Sequence: Synthetic peptide
	<pre><400> 166 His Ser Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln 1</pre>
25	Met Ala Val Lys Lys Phe Leu Asn Ser Ile Leu Asn 20 25
30	<210> 167 <211> 28 <212> PRT <213> Artificial Sequence
35	<220> <223> Description of Artificial Sequence: Synthetic peptide
	<pre><400> 167 His Ser Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln 1 5 10 15</pre>
40	Met Ala Val Lys Lys Trp Leu Asn Ser Ile Leu Asn 20 25
45	<210> 168 <211> 28 <212> PRT <213> Artificial Sequence
50	<220> <223> Description of Artificial Sequence: Synthetic peptide
	<pre><400> 168 His Ser Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln 1 5 10 15</pre>
55	Met Ala Val Lys Lys Tyr Leu Ala Ser Ile Leu Asn

		20			25					
5	<210> 169 <211> 28 <212> PRT <213> Artifi	cial Sec	quence							
10	<220> <223> Descri peptid		f Artifi	cial S	3equ e nc	e: Sy	nthetic	:		
15	<400> 169 His Ser Asp 1	5		_	10		_	ı Arg	Lys 15	Gln
	Met Ala Val	Lys Lys 20	Tyr Leu	Phe S	Ser Ile 25	Leu .	Asn			
20	<210> 170 <211> 28 <212> PRT <213> Artifi	cial Sec	quence							
25	<220> <223> Descri peptid	-	E Artifi	cial S	Sequence	e: Sy:	nthetic	:		
30	<400> 170 His Ser Asp	Ala Val 5	Phe Thr	Asp A	Asn Tyr 10	Thr	Arg Leu	Arg	Lys 15	Gln
	Met Ala Val	Lys Lys	Tyr Leu	Ile S	Ser Ile 25	Leu i	Asn			
35	<210> 171 <211> 28 <212> PRT <213> Artifi	cial Sec	quence							
40	<220> <223> Descri peptid		: Artific	cial S	Sequence	e: Sy	nthetic			
45	<400> 171 His Ser Asp 1	Ala Val 5	Phe Thr	Asp A	Asn Tyr 10	Thr i	Arg Leu	Arg	Lys 15	Gln
	Met Ala Val	Lys Lys 20	Tyr Leu	Met S	er Ile 25	Leu i	Asn			
50	<210> 172 <211> 28 <212> PRT <213> Artifi	cial Sec	quence							
55	<220> <223> Descri	ption of	Artific	cial S	Sequence	e: Sy	nthetic			

	peptide
5	<400> 172 His Ser Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln 1 5 10 15
10	Met Ala Val Lys Lys Tyr Leu Ser Ser Ile Leu Asn 20 25
15	<210> 173 <211> 28 <212> PRT <213> Artificial Sequence
	<220> <223> Description of Artificial Sequence: Synthetic peptide
20	<400> 173 His Ser Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln 1 5 10 15
25	Met Ala Val Lys Lys Tyr Leu Val Ser Ile Leu Asn 20 25
	<210> 174 <211> 28 <212> PRT
30	<213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic peptide
35	<400> 174 His Ser Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln 1 5 10 15
40	Met Ala Val Lys Lys Tyr Leu Trp Ser Ile Leu Asn 20 25
	<210> 175 <211> 28 <212> PRT <213> Artificial Sequence
45	<pre><220> <223> Description of Artificial Sequence: Synthetic peptide</pre>
50	<pre><400> 175 His Ser Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln 1</pre>
	Met Ala Val Lys Lys Tyr Leu Asn Asn Ile Leu Asn 20 25
55	

5	<210> 176 <211> 28 <212> PRT <213> Artificial Sequence
10	<pre><220> <223> Description of Artificial Sequence: Synthetic peptide <400> 176 His Ser Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln 1</pre>
15	Met Ala Val Lys Lys Tyr Leu Asn Arg Ile Leu Asn 20 25
20	<210> 177 <211> 28 <212> PRT <213> Artificial Sequence
25	<pre><223> Description of Artificial Sequence: Synthetic peptide <400> 177 His Ser Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln</pre>
30	Met Ala Val Lys Lys Tyr Leu Asn Trp Ile Leu Asn 20 25
35	<210> 178 <211> 28 <212> PRT <213> Artificial Sequence <220>
40	<pre><223> Description of Artificial Sequence: Synthetic peptide <400> 178 His Ser Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln</pre>
45	Met Ala Val Lys Lys Tyr Leu Asn Tyr Ile Leu Asn 20 25
50	<210> 179 <211> 28 <212> PRT <213> Artificial Sequence <220>
55	<223> Description of Artificial Sequence: Synthetic peptide <400> 179

	His Ser Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln 1 5 10 15
5	Met Ala Val Lys Lys Tyr Leu Asn Ser Leu Leu Asn 20 25
10	<210> 180 <211> 28 <212> PRT <213> Artificial Sequence
15	<220> <223> Description of Artificial Sequence: Synthetic peptide
	<400> 180 His Ser Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln 1 5 10 15
20	Met Ala Val Lys Lys Tyr Leu Asn Ser Ser Leu Asn 20 25
25	<210> 181 <211> 28 <212> PRT <213> Artificial Sequence
30	<220> <223> Description of Artificial Sequence: Synthetic peptide
	<400> 181 His Ser Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln 1 5 10 15
35	Met Ala Val Lys Lys Tyr Leu Asn Ser Trp Leu Asn 20 25
40	<210> 182 <211> 28 <212> PRT <213> Artificial Sequence
45	<220> <223> Description of Artificial Sequence: Synthetic peptide
	<pre><400> 182 His Ser Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln 1</pre>
50	Met Ala Val Lys Lys Tyr Leu Asn Ser Tyr Leu Asn 20 25
55	<210> 183 <211> 28 <212> PRT

	<213> Artificial Sequence
5	<220> <223> Description of Artificial Sequence: Synthetic peptide
10	<pre><400> 183 His Ser Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln 1</pre>
15	<pre><210> 184 <211> 28 <212> PRT <213> Artificial Sequence</pre>
20	<220> <223> Description of Artificial Sequence: Synthetic peptide
25	<pre><400> 184 His Ser Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln 1</pre>
30	20 25 <210> 185 <211> 28 <212> PRT
35	<2213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic peptide
40	<pre>4400> 185 His Ser Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln 1</pre>
45	<210> 186 <211> 28 <212> PRT <213> Artificial Sequence
50	<220> <223> Description of Artificial Sequence: Synthetic peptide
55	<pre><400> 186 His Ser Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln 1</pre>

```
Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Trp
                           20
5
              <210> 187
              <211> 28
              <212> PRT
              <213> Artificial Sequence
10
              <223> Description of Artificial Sequence: Formula
                    sequence
              <220>
15
              <221> MOD_RES
              <222> (8)
              <223> Any amino acid
              <220>
20
              <221> MOD RES
              <222> (9)
              <223> Any amino acid
              <220>
              <221> MOD_RES
25
              <222> (11)
              <223> Any amino acid
              <400> 187
              His Ser Asp Ala Val Phe Thr Xaa Xaa Tyr Xaa Arg Leu Arg Lys Gln
                                                    10
30
              Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn
              <210> 188
35
              <211> 14
              <212> PRT
              <213> Artificial Sequence
              <220>
40
              <223> Description of Artificial Sequence: Synthetic
                    peptide
              <400> 188
              Ala Gly Cys Lys Asn Phe Phe Trp Lys Thr Phe Thr Ser Cys
                                5
45
              <210> 189
              <211> 14
              <212> PRT
              <213> Artificial Sequence
50
              <223> Description of Artificial Sequence: Synthetic
                    peptide
              <400> 189
55
              Ala Gly Cys Lys Asn Phe Phe Trp Lys Thr Phe Thr Ser Cys
```

```
10
                1
                                5
5
              <210> 190
              <211> 12
              <212> PRT
              <213> Artificial Sequence
10
              <223> Description of Artificial Sequence: Synthetic
                    peptide
              <400> 190
              Cys Lys Asn Phe Phe Trp Lys Thr Phe Thr Ser Cys
15
                                5
              <210> 191
              <211> 8
              <212> PRT
20
              <213> Artificial Sequence
              <223> Description of Artificial Sequence: Synthetic
                  peptide
25
              <400> 191
              Phe Phe Tyr Trp Lys Val Phe Thr
30
              <210> 192
              <211> 8
              <212> PRT
              <213> Artificial Sequence
35
              <223> Description of Artificial Sequence: Synthetic
                   peptide
              <400> 192
              Phe Cys Phe Trp Lys Val Cys Thr
               1
40
              <210> 193
              <211> 8
              <212> PRT
45
              <213> Artificial Sequence
              <220>
              <223> Description of Artificial Sequence: Synthetic
                   peptide
50
              <400> 193
              Phe Cys Tyr Trp Lys Val Cys Thr
                                5
              <210> 194
55
              <211> 8
```

```
<212> PRT
              <213> Artificial Sequence
5
              <223> Description of Artificial Sequence: Synthetic
                   peptide
              <400> 194
              Phe Cys Phe Trp Lys Thr Cys Thr
10
                                5
               1
              <210> 195
              <211> 8
              <212> PRT
15
              <213> Artificial Sequence
              <223> Description of Artificial Sequence: Synthetic
                   peptide
20
              <400> 195
              Phe Cys Tyr Trp Lys Thr Cys Thr
25
              <210> 196
              <211> 6
              <212> PRT
              <213> Artificial Sequence
30
              <223> Description of Artificial Sequence: Synthetic
                    peptide
              <400> 196
              Cys Tyr Trp Lys Val Cys
35
              <210> 197
              <211> 7
              <212> PRT
              <213> Artificial Sequence
40
              <223> Description of Artificial Sequence: Synthetic
                    peptide
45
              <220>
              <221> MOD RES
              <222> (6)
              <223> Abu
              <400> 197
50
              Phe Cys Tyr Trp Lys Xaa Cys
               1
              <210> 198
              <211> 14
55
```

```
<212> PRT
              <213> Artificial Sequence
5
              <223> Description of Artificial Sequence: Synthetic
                    peptide
              <400> 198
              Ala Gly Cys Lys Asn Phe Phe Trp Lys Thr Phe Thr Ser Cys
10
              <210> 199
              <211> 14
15
              <212> PRT
              <213> Artificial Sequence
              <220>
              <223> Description of Artificial Sequence: Synthetic
                   peptide
20
              <400> 199
              Ala Gly Cys Lys Asn Phe Phe Trp Lys Thr Phe Thr Ser Cys
                                5
                                                   10
25
              <210> 200
              <211> 12
              <212> PRT
              <213> Artificial Sequence
30
              <223> Description of Artificial Sequence: Synthetic
                   peptide
              <400> 200
              Cys Lys Asn Phe Phe Trp Lys Thr Phe Thr Ser Cys
35
              <210> 201
              <211> 8
              <212> PRT
40
             <213> Artificial Sequence
              <220>
              <223> Description of Artificial Sequence: Synthetic
                   peptide
45
              <400> 201
              Phe Cys Phe Trp Lys Val Cys Thr
               1
50
             <210> 202
              <211> 8
              <212> PRT
              <213> Artificial Sequence
55
             <223> Description of Artificial Sequence: Synthetic
```

```
peptide
               <400> 202
5
               Phe Cys Tyr Trp Lys Val Cys Thr
                1
                                 5
              <210> 203
10
              <211> 8
              <212> PRT
              <213> Artificial Sequence
              <223> Description of Artificial Sequence: Synthetic
15
                    peptide
              <400> 203
              Phe Cys Phe Trp Lys Thr Cys Thr
               1
20
              <210> 204
              <211> 8
              <212> PRT
              <213> Artificial Sequence
25
              <220>
              <223> Description of Artificial Sequence: Synthetic
                    peptide
              <400> 204
30
              Phe Cys Tyr Trp Lys Thr Cys Thr
              <210> 205
              <211> 6
35
              <212> PRT
              <213> Artificial Sequence
              <223> Description of Artificial Sequence: Synthetic
                    peptide
40
              <400> 205
              Cys Tyr Trp Lys Val Cys
45
              <210> 206
              <211> 7
              <212> PRT
              <213> Artificial Sequence
50
              <220>
              <223> Description of Artificial Sequence: Synthetic
                    peptide
              <220>
              <221> MOD RES
55
              <222> (6)
```

```
<223> Abu
5
               <400> 206
               Phe Cys Tyr Trp Lys Xaa Cys
               <210> 207
10
               <211> 13
               <212> PRT
               <213> Artificial Sequence
               <220>
               <223> Description of Artificial Sequence: Synthetic
15
                    peptide
               <400> 207
               Glu Leu Tyr Gln Asn Lys Pro Arg Arg Pro Phe Ile Leu
20
              <210> 208
              <211> 13
               <212> PRT
              <213> Artificial Sequence
25
              <220>
              <223> Description of Artificial Sequence: Synthetic
                    peptide
              <400> 208
30
              Glu Leu Tyr Glu Asn Lys Pro Arg Arg Pro Tyr Ile Leu
                                5
                                                    10
                1
              <210> 209
               <211> 13
35
               <212> PRT
              <213> Artificial Sequence
               <223> Description of Artificial Sequence: Synthetic
40
                    peptide
               <400> 209
              Glu Leu Tyr Gln Asn Lys Pro Arg Arg Pro Tyr Ile Leu
                                 5
45
              <210> 210
              <211> 13
              <212> PRT
              <213> Artificial Sequence
50
              <220>
               <223> Description of Artificial Sequence: Synthetic
                    peptide
               <400> 210
              Glu Leu Tyr Gln Asn Lys Pro Arg Arg Pro Tyr Ile Leu
55
                                               10
```

```
<210> 211
5
              <211> 13
               <212> PRT
               <213> Artificial Sequence
              <220>
              <223> Description of Artificial Sequence: Synthetic
10
                    peptide
              <400> 211
              Glu Leu Tyr Glu Asn Lys Pro Arg Arg Pro Phe Ile Leu
                                5
                1
                                                     10
15
              <210> 212
              <211> 13
              <212> PRT
              <213> Artificial Sequence
20
              <223> Description of Artificial Sequence: Synthetic
                    peptide
              <400> 212
25
              Glu Leu Tyr Glu Asn Lys Pro Arg Arg Pro Phe Ile Leu
                                                    10
              <210> 213
30
              <211> 12
              <212> PRT
              <213> Artificial Sequence
              <220>
              <223> Description of Artificial Sequence: Synthetic
35
                    peptide
              <400> 213
              Glu Leu Tyr Glu Asn Lys Pro Arg Arg Pro Tyr Ile
                                5
                                                    10
40
              <210> 214
              <211> 13
              <212> PRT
              <213> Artificial Sequence
45
              <223> Description of Artificial Sequence: Synthetic
                    peptide
              <400> 214
50
              Glu Leu Tyr Gln Asn Lys Pro Arg Arg Pro Phe Ile Leu
                                                    10
              <210> 215
              <211> 13
55
              <212> PRT
```

```
<213> Artificial Sequence
5
               <220>
               <223> Description of Artificial Sequence: Synthetic
                     peptide
               <400> 215
              Glu Leu Tyr Glu Asn Lys Pro Arg Arg Pro Trp Ile Leu
10
                                 5
               <210> 216
               <211> 13
               <212> PRT
15
              <213> Artificial Sequence
              <220>
               <223> Description of Artificial Sequence: Synthetic
                     peptide
20
              <400> 216
              Glu Leu Tyr Glu Asn Lys Pro Arg Arg Pro Trp Ile Leu
                                                     10
              <210> 217
25
              <211> 13
              <212> PRT
              <213> Artificial Sequence
              <220>
30
              <223> Description of Artificial Sequence: Synthetic
                    peptide
              <400> 217
              Glu Leu Tyr Gln Asn Lys Pro Arg Arg Pro Trp Ile Leu
                                 5
                                                    10
35
              <210> 218
              <211> 13
              <212> PRT
              <213> Artificial Sequence
40
              <220>
              <223> Description of Artificial Sequence: Synthetic
                    peptide
45
              <400> 218
              Glu Leu Tyr Gln Asn Lys Pro Arg Arg Pro Trp Ile Leu
                                5
                                                    10
              <210> 219
50
              <211> 11
              <212> PRT
              <213> Artificial Sequence
              <220>
              <223> Description of Artificial Sequence: Synthetic
55
                    peptide
```

```
<400> 219
               Glu Leu Tyr Glu Asn Lys Pro Arg Arg Pro Tyr
5
                                 5
               <210> 220
               <211> 10
10
               <212> PRT
               <213> Artificial Sequence
               <220>
               <223> Description of Artificial Sequence: Synthetic
                    peptide
15
               <400> 220
               Glu Leu Tyr Glu Asn Lys Pro Arg Arg Pro
                1
                                5
                                                     10
20
               <210> 221
               <211> 9
               <212> PRT
               <213> Artificial Sequence
25
               <223> Description of Artificial Sequence: Synthetic
                    peptide
               <400> 221
              Glu Leu Tyr Glu Asn Lys Pro Arg Arg
30
              <210> 222
              <211> 8
              <212> PRT
35
              <213> Artificial Sequence
              <223> Description of Artificial Sequence: Synthetic
                    peptide
40
              <400> 222
              Glu Leu Tyr Glu Asn Lys Pro Arg
                1
                                5
              <210> 223
45
              <211> 7
              <212> PRT
              <213> Artificial Sequence
50
              <223> Description of Artificial Sequence: Synthetic
                    peptide
              <400> 223
              Glu Leu Tyr Glu Asn Lys Pro
55
```

```
<210> 224
              <211> 9
5
              <212> PRT
              <213> Artificial Sequence
              <223> Description of Artificial Sequence: Synthetic
10
                     peptide
              Asn Lys Pro Arg Arg Pro Tyr Ile Leu
15
              <210> 225
              <211> 8
              <212> PRT
              <213> Artificial Sequence
20
              <223> Description of Artificial Sequence: Synthetic
                    peptide
              <400> 225
25
              Lys Pro Arg Arg Pro Tyr Ile Leu
              <210> 226
              <211> 9
30
              <212> PRT
              <213> Artificial Sequence
              <223> Description of Artificial Sequence: Synthetic
                    peptide
35
              <400> 226
              Asn Lys Pro Arg Arg Pro Tyr Ile Leu
                                 5
40
              <210> 227
              <211> 8
              <212> PRT
              <213> Artificial Sequence
45
              <223> Description of Artificial Sequence: Synthetic
                    peptide
              <400> 227
              Lys Pro Arg Arg Pro Tyr Ile Leu
50
              <210> 228
              <211> 9
              <212> PRT
55
              <213> Artificial Sequence
```

```
<220>
               <223> Description of Artificial Sequence: Synthetic
5
                    peptide
               <400> 228
               Asn Lys Pro Arg Arg Pro Phe Ile Leu
               1
10
               <210> 229
               <211> 8
               <212> PRT
               <213> Artificial Sequence
15
               <220>
               <223> Description of Artificial Sequence: Synthetic
                    peptide
               <400> 229
20
               Lys Pro Arg Arg Pro Phe Ile Leu
                                 5
               <210> 230
25
               <211> 9
               <212> PRT
               <213> Artificial Sequence
               <220>
               <223> Description of Artificial Sequence: Synthetic
30
                    peptide
               <400> 230
               Asn Lys Pro Arg Arg Pro Trp Ile Leu
35
               <210> 231
               <211> 8
               <212> PRT
               <213> Artificial Sequence
40
               <223> Description of Artificial Sequence: Synthetic
                    peptide
               <400> 231
45
              Lys Pro Arg Arg Pro Trp Ile Leu
              <210> 232
              <211> 7
50
              <212> PRT
              <213> Artificial Sequence
              <220>
              <223> Description of Artificial Sequence: Synthetic
                    peptide
55
```

```
<400> 232
              Pro Arg Arg Pro Tyr Ile Leu
5
                     5
              <210> 233
              <211> 6
              <212> PRT
10
              <213> Artificial Sequence
              <220>
              <223> Description of Artificial Sequence: Synthetic
                    peptide
15
              <400> 233
              Arg Arg Pro Tyr Ile Leu
20
              <210> 234
              <211> 7
              <212> PRT
              <213> Artificial Sequence
25
              <223> Description of Artificial Sequence: Synthetic
                    peptide
              <400> 234
              Pro Arg Arg Pro Tyr Ile Leu
30
              <210> 235
              <211> 6
              <212> PRT
35
              <213> Artificial Sequence
              <223> Description of Artificial Sequence: Synthetic
                    peptide
40
              <400> 235
              Arg Arg Pro Tyr Ile Leu
                1
              <210> 236
45
              <211> 7
              <212> PRT
              <213> Artificial Sequence
              <223> Description of Artificial Sequence: Synthetic
50
                    peptide
              <400> 236
              Pro Arg Arg Pro Phe Ile Leu
                                5
                1.
55
```

```
<210> 237
               <211> 6
5
               <212> PRT
               <213> Artificial Sequence
               <223> Description of Artificial Sequence: Synthetic
                    peptide
10
               <400> 237
               Arg Arg Pro Phe Ile Leu
15
               <210> 238
               <211> 7
               <212> PRT
               <213> Artificial Sequence
20
              <220>
               <223> Description of Artificial Sequence: Synthetic
                    peptide
               <400> 238
              Pro Arg Arg Pro Trp Ile Leu
25
              <210> 239
              <211> 6
              <212> PRT
30
              <213> Artificial Sequence
              <223> Description of Artificial Sequence: Synthetic
                    peptide
35
              <400> 239
              Arg Arg Pro Trp Ile Leu
40
              <210> 240
              <211> 14
              <212> PRT
              <213> Artificial Sequence
              <220>
45
              <223> Description of Artificial Sequence: Synthetic
                    cyclo peptide
              <400> 240
              Ala Gly Cys Lys Asn Phe Phe Trp Lys Thr Phe Thr Ser Cys
                                5
50
              <210> 241
              <211> 28
              <212> PRT
              <213> Artificial Sequence
55
```

15

20

25

30

Patentansprüche

1. Verbindungen der allgemeinen Formel (I)

 $A^1 - L^1 - (X)_m - L^2 - A^2$ (I)

worin

X für eine α , β oder γ -Aminosäure mit D oder L-Konfiguration und

m für eine Zahl von 5 bis 30 steht,

wobei die resultierende Aminosäuresequenz (X)_m geradkettiger Natur oder über eine Disulfidbrücke zwischen zwei Cysteinen oder Homocysteinen oder amidisch zwischen N- und C-Terminus cyclisiert sein kann und für die Aminosäuresequenz des vasoaktiven intestinalen Peptids (VIP), des Somatostatins oder des Neurotensins, oder für Fragmente, Teilsequenzen, Derivate oder Analoga des VIP, des Somatostatins oder des Neurotensins steht,

A¹ 35 für ein Wasserstoffatom, eine offenkettige oder cyclische Polyaminopolycarbonsäure oder Polyaminopolyphosphonsäure steht, welche eine Arylgruppe oder einen Heteroaromaten enthält und ein Metallatom der Ordnungszahlen 57 bis 83 komplexiert,

L¹ und L²

unabhängig voneinander einen Acetylrest oder einen Alkylrest mit bis zu 10 C-Atomen, der gegebenenfalls mit 1 bis 3 Carboxygruppen und/oder 1 bis 6 Hydroxygruppen und/oder 1 bis 6 Amidgruppen substituiert sein kann, oder einen Poly(oxyethylen)rest mit 2 bis 30 -CH₂CH₂O-Einheiten darstellen,

 A^2

für eine Hydroxygruppe, eine Aminogruppe, eine offenkettige oder cyclische Polyaminopolycarbonsäure oder Polyaminopolyphosphonsäure steht, welche eine Arylgruppe oder einen Heteroaromaten enthält und ein Metallatom der Ordnungszahlen 57 bis 83 komplexiert,

45

40

unter der Bedingung, daß mindestens einer der Reste A¹ oder A² eine offenkettige oder cyclische Polyaminopolycarbonsäure oder Polyaminopolyphosphonsäure darstellt, welche eine Arylgruppe oder einen Heteroaromaten enthält und ein Metallatom der Ordnungszahlen 57 bis 83 komplexiert,

50 nop

wobei für den Fall, daß A¹ und/oder A² eine offenkettige oder cyclische Polyaminopolycarbonsäure oder Polyaminopolyphosphonsäure darstellen, welche eine Arylgruppe oder einen Heteroaromaten enthält und ein Metallatom der Ordnungszahlen 57 bis 83 komplexiert, A¹ an die N-terminale Aminogruppe und A² an eine Aminogruppe der Aminosäure Lysin oder an eine Hydroxygruppe der Aminosäure Serin oder an die Mercaptogruppe der Aminosäure Cystein oder Homocystein in beliebiger Position innerhalb der Aminosäuresequenz (X)_m geknüpft ist, und deren physiologisch verträgliche Salze.

55

Verbindungen nach Anspruch 1, dadurch gekennzeichnet, daß die offenkettige Polyaminopolycarbonsäure, welche eine Arylgruppe oder einen Heteroaromaten enthält und ein Metallatom der Ordnungszahlen 57 bis 83 kom-

plexiert, ein Derivat der Diethylentriaminpentaessigsäure (DTPA) ist.

5

10

15

20

25

- 3. Verbindungen nach Anspruch 1, dadurch gekennzeichnet, daß die cyclische Polyaminopolycarbonsäure, welche eine Arylgruppe oder einen Heteroaromaten enthält und ein Metallatom der Ordnungszahlen 57 bis 83 komplexiert, ein Derivat von 1,4,7,10-Tetraazacyclododecan (DOTA) ist.
- 4. Verbindungen nach Anspruch 1, dadurch gekennzeichnet, daß die offenkettige Polyaminopolycarbonsäure ein Molekül gemäß allgemeiner Formel (II) ist:

worin Z unabhängig voneinander für ein Wasserstoffatom oder ein Metallionenäquivalent eines Elementes der Ordnungszahlen 57 bis 83 und R für einen offenkettigen oder cyclischen, verzweigten oder unverzweigten C₁-C₁₀-Alkylrest steht, welcher mindestens einen aromatischen Ring sowie gegebenenfalls 1 bis 5 Sauerstoffatome, 1 bis 3 Carboxygruppen und/oder 1 bis 3 Amidgruppen enthält.

5. Verbindungen nach Anspruch 4, dadurch gekennzeichnet, daß R für einen der folgenden Reste steht:

$$(CH2)p$$

$$(V)$$

$$(VI)$$

$$-(CH_2)_n - H O O T$$
55 (VII)

- worin T jeweils die Verknüpfungsstelle mit dem Peptid darstellt, p für eine Zahl 0 oder 1 und n für eine Zahl zwischen 2 und 6 steht.
 - 6. Verbindungen nach Anspruch 1, dadurch gekennzeichnet, daß die offenkettige Polyaminopolycarbonsäure ein Molekül gemäß allgemeiner Formel (III) ist:

(III)

- worin Z unabhängig voneinander für ein Wasserstoffatom oder ein Metallionenäquivalent eines Elementes der Ordnungszahlen 57 bis 83 und R für einen offenkettigen oder cyclischen, verzweigten oder unverzweigten C₁-C₁₀-Alkylrest steht, welcher mindestens einen aromatischen Ring sowie gegebenenfalls 1 bis 5 Sauerstoffatome, 1 bis 3 Carboxygruppen und/oder 1 bis 3 Amidgruppen enthält.
- 7. Verbindungen nach Anspruch 6, dadurch gekennzeichnet, daß der Rest R für einen der folgenden Reste steht:

$$-(CH_2)_{\rho}$$

$$T$$

$$(V)$$

$$H$$

$$-(CH2)p T (VI)$$

55

15

20

25

30

$$-(CH_2)_n - N = 0$$

$$(VII)$$

- worin T jeweils die Verknüpfungsstelle mit dem Peptid darstellt, p für eine Zahl 0 oder 1 und n für eine Zahl zwischen 2 und 6 steht.
 - 8. Verbindungen nach Anspruch 1, dadurch gekennzeichnet, daß die offenkettige Polyaminopolycarbonsäure ein Molekül gemäß allgemeiner Formel (IV) ist:

- worin Z unabhängig voneinander für ein Wasserstoffatom oder ein Metallionenäquivalent eines Elementes der Ordnungszahlen 57 bis 83 und R für einen offenkettigen oder cyclischen, verzweigten oder unverzweigten C₁-C₁₀-Alkylrest steht, welcher mindestens einen aromatischen Ring sowie gegebenenfalls 1 bis 5 Sauerstoffatome, 1 bis 3 Carboxygruppen und/oder 1 bis 3 Amidgruppen enthält.
- 45 9. Verbindungen nach Anspruch 8, dadurch gekennzeichnet, daß R für einen der Reste

$$-(CH_2)_p$$
 O
 T
 (V)

$$-(CH2)p T (VI)$$

$$-(CH_2)_n - N O O T$$

$$(VII)$$

steht, worin T jeweils die Verknüpfungsstelle mit dem Peptid darstellt, p für eine Zahl 0 oder 1 und n für eine Zahl zwischen 2 und 6 steht.

1

worin R^1 einen Rest — CHR 5 -COM darstellt, worin M für eine OZ-Gruppe steht, mit Z in der Bedeutung von Anspruch 4, oder die Verknüpfung zum Peptid darstellt, und worin R^5 für einen Rest (VIII) oder für eine C_1 - C_{20} -Alkylgruppe steht, welche mindestens eine Arylgruppe oder einen Heteroaromaten, welche gegebenenfalls mit einem Halogenatom substituiert sein können, und mindestens eine weitere COOZ-Gruppe oder eine Isothiocyanatgruppe enthält, und welche gegebenenfalls 1 bis 3 Sauerstoffatome und/oder 1 bis 3 Amidgruppen enthält, und worin R^2 bis R^4 unabhängig voneinander einen Rest CH_2COOZ , einen Phosphonsäurerest oder eine Gruppe — $(CH_2)_p$ -Y darstellen, in der p für 0 oder 1 steht und Y einen gegebenenfalls substituierten Heteroaromaten

darstellt.

11. Verbindungen nach Anspruch 1, dadurch gekennzeichnet, daß die cyclischen Polyaminopolycarbonsäuren Verbindungen der allgemeinen Formel (X) sind:

5

10

15

worin R⁶ einen Rest -CHR⁹-COM darstellt, worin M für eine OZ-Gruppe steht, mit Z in der Bedeutung von Anspruch 4, oder die Verknüpfung zum Peptid darstellt,

(X)

und worin R^9 für einen Rest (VIII) oder eine C_1 - C_6 -Alkylgruppe steht, welche gegebenenfalls eine weitere COOH-Gruppe oder eine Isothiocyanatgruppe enthält, und welche gegebenenfalls 1 bis 2 Sauerstoffatome und/oder 1 bis 2 Amidgruppen enthält,

und worin R⁷ und R⁸ unabhängig voneinander einen Rest CH₂COOZ oder einen Phosphonsäurerest darstellen.

25

20

12. Verbindungen nach Anspruch 1, **dadurch gekennzeichnet, daß** (X)_m für die Aminosäuresequenz des nativen vasoaktiven intestinalen Peptides entsprechend

30

HSDAVFTDNYTRLRKQMAVKKYLNSILN

35

oder für Fragmente, Teilsequenzen, Derivate oder Analoga des vasoaktiven intestinalen Peptides, bestehend aus 5 bis 30 Aminosäuren, steht.

13. Verbindungen nach Anspruch 1, dadurch gekennzeichnet, daß (X)_m für die Aminosäuresequenz des Somatostatins entsprechend

40

AGCKNFFWKTFTSC

45

oder für Fragmente, Teilsequenzen, Derivate oder Analoga des Somatostatins, bestehend aus 5 bis 20 Aminosäuren, steht.

14. Verbindungen nach Anspruch 1, **dadurch gekennzeichnet, daß** (X)_m für die Aminosäuresequenz des Neurotensins entsprechend

50

Pyroglutaminsäure-LYENKPRRPYIL

_

oder für Fragmente, Teilsequenzen, Derivate oder Analoga des Neurotensins, bestehend aus 5 bis 20 Aminosäuren, steht.

55

15. Verbindungen nach Anspruch 12, **dadurch gekennzeichnet, daß** als Fragmente, Teilsequenzen, Derivate oder Analoga des vasoaktiven intestinalen Peptides folgenden Aminosäuresequenzen ausgewählt sind:

DI DECNAMENTALI NI DI DECNAMENTALI DI DECMAMENTALI NI DI

	RLRKQMAVKKYLNSILN	RLRKQMAVKKYLNSIL	RLRKQMAVKKYLNSI
5	LRKQMAVKKYLNSILN	LRKQMAVKKYLNSIL	LRKQMAVKKYLNSI
3	RKQMAVKKYLNSILN	RKQMAVKKYLNSIL	RKQMAVKKYLNSI
	KQMAVKKYLNSILN	KQMAVKKYLNSIL	KQMAVKKYLNSI
	QMAVKKYLNSILN	QMAVKKYLNSIL	QMAVKKYLNSI
10	MAVKKYLNSILN	MAVKKYLNSIL	MAVKKYLNSI
	AVKKYLNSILN	AVKKYLNSIL	AVKKYLNSI
15			
	RLRKQMAVKKYLNS	RLRKQMAVKKYLN	RLRKQMAVKKYL
	LRKQMAVKKYLNS	LRKQMAVKKYLN	LRKQMAVKKYL
20	RKQMAVKKYLNS	RKQMAVKKYLN	RKQMAVKKYL
20	KQMAVKKYLNS	KQMAVKKYLN	KQMAVKKYL
	QMAVKKYLNS	QMAVKKYLN	QMAVKKYL
	MAVKKYLNS	MAVKKYLN	MAVKKYL
25	AVKKYLNS	AVKKYLN	AVKKYL

16. Verbindungen nach mindestens einem der vorhergehenden Ansprüche, **dadurch gekennzeichnet**, **daß** 1 bis m Aminosäuren unabhängig voneinander gegen ihre jeweilige D-Aminosäure oder gegen andere L- oder D-Aminosäuren ausgetauscht sein können, wobei m die oben angegebene Bedeutung hat.

- **17.** Verbindungen nach mindestens einem der vorhergehenden Ansprüche, **dadurch gekennzeichnet**, **daß** sämtliche Aminosäuren (X)_m gegen ihre jeweilige D-Aminosäure ausgetauscht sind.
- 35 18. Verbindungen nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß als Fragmente, Teilsequenzen, Derivate oder Analoga des vasoaktiven intestinalen Peptides retrosynthetische Aminosäuresequenzen ausgewählt sind.
- 19. Verbindungen nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß als Fragmente, Teilsequenzen, Derivate oder Analoga des vasoaktiven intestinalen Peptides retrosynthetische Aminosäuresequenzen, bei denen 1 bis m Aminosäuren gegen die jeweilige D-Aminosäure ausgetauscht sind, ausgewählt sind, wobei m die oben angegebene Bedeutung hat.
- **20.** Verbindungen nach Anspruch 12, **dadurch gekennzeichnet, daß** als Fragmente, Teilsequenzen, Derivate oder Analoga des vasoaktiven intestinalen Peptides folgende Aminosäuresequenzen ausgewählt sind:

	rlrkqmavkkylnsiln	rlrkqmavkkylnsil	rlrkqmavkkylnsi
50	lrkqmavkkylnsiln	lrkqmavkkylnsil	lrkqmavkkylnsi
	rkqmavkkylnsiln	rkqmavkkylnsil	rkqmavkkylnsi
	kqmavkkylnsiln	kqmavkkylnsil	kqmavkkylnsi
	qmavkkylnsiln	qmavkkylnsil	qmavkkylnsi
55	mavkkylnsiln	mavkkylnsil	mavkkylnsi
	avkkylnsiln	avkkylnsil	avkkylnsi

	RLRKQMAvKKyLNSILN	RLRKQMAvKKyLNSIL	RLRKQMAvKKyLNSI
	LRKQMAvKKyLNSILN	LRKQMAvKKyLNSIL	LRKQMAvKKyLNSI
5	RKQMAvKKyLNSILN	RKQMAvKKyLNSIL	RKQMAvKKyLNSI
	KQMAvKKyLNSILN	KQMAvKKyLNSIL	KQMAvKKyLNSI
	QMAvKKyLNSILN	QMAvKKyLNSIL	QMAvKKyLNSI
10	MAvKKyLNSILN	MAvKKyLNSIL	MAvKKyLNSI
	AvKKyLNSILN	AvKKyLNSIL	AvKKyLNSI

21. Verbindungen nach Anspruch 12, **dadurch gekennzeichnet**, **daß** als Analoga des VIP Peptide aus der folgenden Gruppe von Sequenzen ausgewählt sind:

FSDAVFTDNY TRLRKQMAVK KYLNSILN
ISDAVFTDNY TRLRKQMAVK KYLNSILN
LSDAVFTDNY TRLRKQMAVK KYLNSILN
HFDAVFTDNY TRLRKQMAVK KYLNSILN
HHDAVFTDNY TRLRKQMAVK KYLNSILN
HIDAVFTDNY TRLRKQMAVK KYLNSILN
HLDAVFTDNY TRLRKQMAVK KYLNSILN
HMDAVFTDNY TRLRKQMAVK KYLNSILN
HQDAVFTDNY TRLRKQMAVK KYLNSILN
HTDAVFTDNY TRLRKQMAVK KYLNSILN
HVDAVFTDNY TRLRKQMAVK KYLNSILN
HWDAVFTDNY TRLRKQMAVK KYLNSILN
HYDAVFTDNY TRLRKQMAVK KYLNSILN
HSAAVFTDNY TRLRKQMAVK KYLNSILN
HSEAVFTDNY TRLRKQMAVK KYLNSILN
HSFAVFTDNY TRLRKQMAVK KYLNSILN
HSHAVFTDNY TRLRKQMAVK KYLNSILN
HSIAVFTDNY TRLRKQMAVK KYLNSILN
HSLAVFTDNY TRLRKQMAVK KYLNSILN
HSMAVFTDNY TRLRKQMAVK KYLNSILN
HSWAVFTDNY TRLRKQMAVK KYLNSILN
HSDFVFTDNY TRLRKQMAVK KYLNSILN
${\tt HSDGVFTDNY} \ {\tt TRLRKQMAVK} \ {\tt KYLNSILN}$
HSDMVFTDNY TRLRKQMAVK KYLNSILN
${\tt HSDQVFTDNY} \ {\tt TRLRKQMAVK} \ {\tt KYLNSILN}$
HSDSVFTDNY TRLRKQMAVK KYLNSILN
HSDWVFTDNY TRLRKQMAVK KYLNSILN
HSDYVFTDNY TRLRKQMAVK KYLNSILN
HSDAFFTDNY TRLRKQMAVK KYLNSILN
HSDAIFTDNY TRLRKQMAVK KYLNSILN
HSDALFTDNY TRLRKQMAVK KYLNSILN

	HSDAMFTDNY TRLRKQMAVK KYLNSILN
5	HSDATFTDNY TRLRKQMAVK KYLNSILN
	HSDAWFTDNY TRLRKQMAVK KYLNSILN
	HSDAYFTDNY TRLRKQMAVK KYLNSILN
10	HSDAVKTDNY TRLRKQMAVK KYLNSILN
10	HSDAVFVDNY TRLRKQMAVK KYLNSILN
	HSDAVFWDNY TRLRKQMAVK KYLNSILN
	HSDAVFTDNW TRLRKQMAVK KYLNSILN
15	HSDAVFTDNY TRRRKQMAVK KYLNSILN
	HSDAVFTDNY TRWRKQMAVK KYLNSILN
	HSDAVFTDNY TRLRFQMAVK KYLNSILN
20	HSDAVFTDNY TRLRLQMAVK KYLNSILN
	HSDAVFTDNY TRLRMQMAVK KYLNSILN
	HSDAVFTDNY TRLRRQMAVK KYLNSILN
	HSDAVFTDNY TRLRKAMAVK KYLNSILN
25	HSDAVFTDNY TRLRKFMAVK KYLNSILN
	HSDAVFTDNY TRLRKIMAVK KYLNSILN
	HSDAVFTDNY TRLRKKMAVK KYLNSILN
30	HSDAVFTDNY TRLRKLMAVK KYLNSILN
	HSDAVFTDNY TRLRKMMAVK KYLNSILN
	${\tt HSDAVFTDNY\ TRLRKRMAVK\ KYLNSILN}$
35	${\tt HSDAVFTDNY\ TRLRKVMAVK\ KYLNSILN}$
	HSDAVFTDNY TRLRKWMAVK KYLNSILN
	HSDAVFTDNY TRLRKYMAVK KYLNSILN
	HSDAVFTDNY TRLRKQFAVK KYLNSILN
40	HSDAVFTDNY TRLRKQIAVK KYLNSILN
	HSDAVFTDNY TRLRKQKAVK KYLNSILN
	HSDAVFTDNY TRLRKQLAVK KYLNSILN
45	HSDAVFTDNY TRLRKQQAVK KYLNSILN
	HSDAVFTDNY TRLRKQRAVK KYLNSILN
	HSDAVFTDNY TRLRKQWAVK KYLNSILN
50	HSDAVFTDNY TRLRKQMFVK KYLNSILN
	HSDAVFTDNY TRLRKQMIVK KYLNSILN
	HSDAVFTDNY TRLRKQMKVK KYLNSILN
	HSDAVFTDNY TRLRKQMLVK KYLNSILN
55	HSDAVFTDNY TRLRKQMMVK KYLNSILN

	HSDAVFTDNY TRLRKQMQVK KYLNSILN
	HSDAVFTDNY TRLRKQMRVK KYLNSILN
5	HSDAVFTDNY TRLRKQMVVK KYLNSILN
	HSDAVFTDNY TRLRKQMWVK KYLNSILN
	HSDAVFTDNY TRLRKQMYVK KYLNSILN
10	HSDAVFTDNY TRLRKQMAAK KYLNSILN
	HSDAVFTDNY TRLRKQMAIK KYLNSILN
	HSDAVFTDNY TRLRKQMALK KYLNSILN
15	HSDAVFTDNY TRLRKQMAVR KYLNSILN
	HSDAVFTDNY TRLRKQMAVK RYLNSILN
	HSDAVFTDNY TRLRKQMAVK WYLNSILN
20	HSDAVFTDNY TRLRKQMAVK KFLNSILN
20	HSDAVFTDNY TRLRKQMAVK KWLNSILN
	HSDAVFTDNY TRLRKQMAVK KYLASILN
	HSDAVFTDNY TRLRKQMAVK KYLFSILN
25	HSDAVFTDNY TRLRKQMAVK KYLISILN
	HSDAVFTDNY TRLRKQMAVK KYLMSILN
	HSDAVFTDNY TRLRKQMAVK KYLSSILN
30	HSDAVFTDNY TRLRKQMAVK KYLVSILN
	HSDAVFTDNY TRLRKQMAVK KYLWSILN
	HSDAVFTDNY TRLRKQMAVK KYLNNILN
35	HSDAVFTDNY TRLRKQMAVK KYLNRILN
	HSDAVFTDNY TRLRKQMAVK KYLNWILN
	HSDAVFTDNY TRLRKQMAVK KYLNYILN
40	HSDAVFTDNY TRLRKQMAVK KYLNSLLN
	HSDAVFTDNY TRLRKQMAVK KYLNSSLN
	HSDAVFTDNY TRLRKQMAVK KYLNSWLN
	HSDAVFTDNY TRLRKQMAVK KYLNSYLN
45	HSDAVFTDNY TRLRKQMAVK KYLNSIFN
	HSDAVFTDNY TRLRKQMAVK KYLNSIIN
	HSDAVFTDNY TRLRKQMAVK KYLNSIWN
50	HSDAVFTDNY TRLRKQMAVK KYLNSILW

22. Verbindungen nach Anspruch 12, **dadurch gekennzeichnet, daß** als Analogon des VIP eine Verbindung gemäß folgender Formel ausgewählt ist:

HSDAVFTX¹X²Y X³RLRKQMAVK KYLNSILN,

worin X¹, X² und X³ jede beliebige Aminosäure darstellen können.

5

40

50

23. Verbindungen nach Anspruch 13, **dadurch gekennzeichnet, daß** als Fragmente, Teilsequenzen, Derivate oder Analoga des Somatostatins folgende Aminosäuresequenzen ausgewählt sind:

AGCKNFFWKTFTSC AGCKNFFWKTFTSC

AGCKNFFWKTFTSC AGCKNFFWKTFTSC

CKNFFWKTFTSC CKNFFWKTFTSC

fFYWKVFT

fCFWKVCT fCFWKVCT

fCFWKVCT fCYWKVCT

fCFWKTCT fCFWKTCT

D-Nai-CYWKVC D-Nai-cYWKVC

fCYWK-Abu-C-Nai fcywK-Abu-C-Nai

24. Verbindungen nach Anspruch 14, **dadurch gekennzeichnet, daß** als Fragmente, Teilsequenzen, Derivate oder Analoga des Neurotensins folgende Aminosäuresequenzen ausgewählt sind:

30 pGlu-LYQNKPRRPFIL pGlu-LYENKPRRPYI pGlu-LYENKPRRPyIL pGlu-LYQNKPRRPfIL pGlu-LYENKPRRPY pGlu-LYQNKPRRPYIL pGlu-LYENKPRRPWIL pGlu-LYENKPRRP 35 pGlu-LYQNKPRRPyIL pGlu-LYENKPRRPwIL pGlu-LYENKPRR pGlu-LYENKPRRPFIL pGlu-LYQNKPRRPWIL pGlu-LYENKPR pGlu-LYENKPRRPfIL pGlu-LYQNKPRRPwIL pGlu-LYENKP

NKPRRPYIL NKPRRPyIL **NKPRRPfIL NKPRRPwIL KPRRPyIL** KPRRPYIL **KPRRPfIL KPRRPwIL** 45 PRRPYIL **PRRPyIL** PRRPfIL **PRRPwIL RRPYIL RRPyIL RRPfIL RRPwIL**

- **25.** Verbindungen nach einem der vorangegangenen Ansprüche, **dadurch gekennzeichnet, daß** die Verbindungen ein Terbium- oder Europiumkation enthalten.
- 26. Verwendung der Verbindungen nach mindestens einem der vorangehenden Ansprüche zur In-vivo-Diagnostik von Tumoren, anderen erkrankten Gewebebereichen oder Adenomen mittels optischer Detektionsverfahren, oder zur In-vivo-Fluoreszenzdiagnostik von Tumoren, Tumorzellen und/oder entzündlichen Geweben mittels endoskopischer Verfahren im Gastrointestinaltrakt, Oesophagus, Bronchialtrakt, der Blase oder der Zervix.

27. Verfahren zur endoskopischen In-vivo-Fluoreszenzdiagnostik unter Verwendung der Verbindungen nach Anspruch 1, dadurch gekennzeichnet, daß dem Patienten die Verbindungen topisch durch Versprühen im Gastrointestinaltrakt, Oesophagus, der Blase, oder durch Inhalation den Bronchien zugeführt werden, der nicht gebundene, überschüssige Anteil der Verbindung gegebenenfalls anschließend durch Waschen entfernt 5 wird. und schließlich die endoskopische Untersuchung durch örtliche Anregung mit einer aus dem Spektralbereich von 250 bis 450 nm ausgewählten Anregungswellenlänge und durch ortsabhängige Detektion der spezifischen, von der Verbindung emittierten Fluoreszenzstrahlung durchgeführt wird. 10 28. Optisches Diagnostikum zur In-vivo-Diagnostik erkrankter Gewebebereiche, dadurch gekennzeichnet, daß es mindestens eine Verbindung nach Anspruch 1 zusammen mit den üblichen Hilfs- und/oder Trägerstoffen sowie Verdünnungsmitteln enthält. 29. Verfahren zur Herstellung von Verbindungen gemäß Anspruch 1, dadurch gekennzeichnet, daß zunächst ein 15 Metallkomplex hergestellt wird, welcher durch Aminolyse des entsprechenden Aktivesters an ein Peptid gekoppelt wird. 20 25 30 35 40 45 50