Curves and surfaces — Gnuplot

Denis Potapov

March 3, 2015

Contents

1	Ellipse	2
2	Hyperbola	3
3	Ellipsoid	4
4	Hyperboloid of one sheet	5
5	Hyperboloid of two sheets	6
6	Elliptic paraboloid	7
7	Hyperbolic paraboloid	8
8	Elliptic cone	9
9	Torus	10

1 Ellipse

Canonical implicit form:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

Canonical parametric form:

$$\begin{cases} x = a \cos t \\ y = b \sin t \end{cases}, \quad t \in [-\pi, \pi]$$

```
gnuplot> set parametric
gnuplot> unset border
gnuplot> set xtics axis
gnuplot> set ytics axis
gnuplot> set xzeroaxis
gnuplot> set yzeroaxis
gnuplot> plot [-pi:pi] 2*cos(t), sin(t)
```


2 Hyperbola

Canonical implicit form:

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

Canonical parametric form:

$$\begin{cases} x = \pm a \cosh t \\ y = b \sinh t \end{cases}, \quad t \in \mathbb{R}$$

```
gnuplot> set parametric
gnuplot> unset border
gnuplot> set xtics axis
gnuplot> set ytics axis
gnuplot> set xzeroaxis
gnuplot> set yzeroaxis
gnuplot> plot [-2:2] 2*cosh(t), sinh(t), -2*cosh(t), sinh(t)
```


3 Ellipsoid

Ellipsoid – Google Search

Canonical implicit form:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$

Canonical parametric form:

$$\begin{cases} x = a \cos u \cos v \\ y = b \sin u \cos v & u \in [-\pi, \pi], v \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]. \\ z = c \sin v \end{cases}$$

Gnuplot:

```
gnuplot> set parametric
gnuplot> set isosamples 50
gnuplot> splot [-pi:pi][-pi/2:pi/2] cos(u)*cos(v), 2*sin(u)*cos(v), 3*sin(v)
```

 $\cos(u)*\cos(v), 2*\sin(u)*\cos(v), 3*\sin(v)$

4 Hyperboloid of one sheet

Hyperboloid of one sheet – Google Search

Canonical implicit form:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$$

Canonical parametric form:

$$\begin{cases} x = a \cos u \cosh v \\ y = b \sin u \cosh v & u \in [-\pi, \pi], v \in \mathbb{R}. \\ z = c \sinh v \end{cases}$$

```
gnuplot> set parametric
gnuplot> set isosamples 50
gnuplot> splot [-pi:pi][-1.5:1.5] cos(u)*cosh(v), sin(u)*cosh(v), sinh(v)
```


5 Hyperboloid of two sheets

Hyperboloid of two sheets – Google Search

Canonical implicit form:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = -1$$

Canonical parametric form:

$$\begin{cases} x = a \cos u \sinh v \\ y = b \sin u \sinh v \quad u \in [-\pi, \pi], \quad v \in \mathbb{R}_+. \\ z = \pm c \cosh v \end{cases}$$

```
gnuplot> set parametric
gnuplot> set isosamples 50
gnuplot> set view equal
gnuplot> splot [-pi:pi][-2.5:2.5] cos(u)*sinh(v), sin(u)*sinh(v), cosh(v); \
cos(u)*sinh(v), sin(u)*sinh(v), -cosh(v)
```


6 Elliptic paraboloid

Elliptic Paraboloid – Google Search

Canonical form:

$$\frac{z}{c} = \frac{y^2}{b^2} + \frac{x^2}{a^2}$$

Gnuplot:

gnuplot> splot [-2:2][-2:2] y**2 + x**2

7 Hyperbolic paraboloid

Hyperbolic Paraboloid – Google Search

Canonical form:

$$\frac{z}{c} = \frac{y^2}{b^2} - \frac{x^2}{a^2}$$

Gnuplot:

gnuplot> splot [-2:2][-2:2] y**2 - x**2

8 Elliptic cone

Elliptic Cone – Google Search

Canonical implicit form:

$$\frac{z^2}{c^2} = \frac{y^2}{b^2} + \frac{x^2}{a^2}$$

Canonical parametric form:

$$\begin{cases} x = v \cos u \\ y = v \sin u & u \in [-\pi, \pi], v \in \mathbb{R}. \\ z = v \end{cases}$$

```
gnuplot> set parametric
gnuplot> set isosamples 50
gnuplot> splot [-pi:pi][-5:5] v*cos(u), v*sin(u), v
```


9 Torus

Torus – Google Search

Canonical parametric form:

$$\begin{cases} x = (R + r \cos u) \cos v \\ y = (R + r \cos u) \sin v & u, v \in [-\pi, \pi]. \\ z = r \sin u \end{cases}$$

```
gnuplot> set parametric
gnuplot> set isosamples 50
gnuplot> splot [-pi:pi][-pi:pi] (5 + cos(u))*cos(v), (5 + cos(u))*sin(v), sin(u)
```

