Matplot

Libraries

```
In [1]:
    ...: import matplotlib.pyplot as plt
    ...: import numpy as np
    ...: import pandas as pd
```


matplotlib. colors

- b : blue.
- g:green.
- r : red.
- · c: cyan.
- m : magenta.
- y : yellow.
- k : black.
- · w : white.

matplotlib.org > api > colors_api

colors — Matplotlib 2.0.2 documentation

	black	l.	_	dimgray		dimgrey
		K				
_	gray	grey		darkgray		darkgrey
_	silver	lightgray		lightgrey		gainsboro
_	whitesmoke	W	_	white		snow
	rosybrown	lightcoral		indianred		brown
	firebrick	maroon		darkred		r
	red	mistyrose		salmon		tomato
	darksalmon	coral		orangered		lightsalmon
	sienna	seashell		chocolate		saddlebrown
	sandybrown	peachpuff		peru		linen
	bisque	darkorange		burlywood		antiquewhite
	tan	navajowhite		blanchedalmond		papayawhip
	moccasin	orange		wheat		oldlace
	floralwhite	darkgoldenrod		goldenrod		cornsilk
	gold	lemonchiffon		khaki		palegoldenrod
	darkkhaki	ivory		beige		lightyellow
	lightgoldenrodyellow	olive		у		yellow
	olivedrab	yellowgreen		darkolivegreen		greenyellow
	chartreuse	lawngreen		honeydew		darkseagreen
	palegreen	lightgreen		forestgreen		limegreen
	darkgreen	g		green		lime
	seagreen	mediumseagreen		springgreen	_	mintcream
	mediumspringgreen	mediumaquamarine		aquamarine		turquoise
	lightseagreen	mediumturquoise		azure	_	lightcyan
_	paleturquoise	darkslategray		darkslategrey		teal
	darkcyan	C		aqua		cyan
	darkturquoise	cadetblue		powderblue		lightblue
	deepskyblue	skyblue		lightskyblue		steelblue
	aliceblue	dodgerblue				lightslategrey
				lightslategrey lightsteelblue		cornflowerblue
	slategray	slategrey		lavender		
	royalblue	ghostwhite				midnightblue
	navy	darkblue		mediumblue		b
	blue	slateblue		darkslateblue		mediumslateblue
	mediumpurple	rebeccapurple		blueviolet		indigo
	darkorchid	darkviolet		mediumorchid		thistle
	plum	violet		purple		darkmagenta
	m	fuchsia		magenta		orchid
	mediumvioletred	deeppink		hotpink		lavenderblush
	palevioletred	crimson		pink		lightpink

To plot symbols rather than lines, provide an additional string argument.

symbols	-,-,,,,,,o,^,v,<,>,s,+,x,D,d,1,2,3,4,h,H,p, ,_
colors	b, g, r, c, m, y, k, w

Color codes

Character	Color
ʻb'	Blue
ʻg'	Green
'r'	Red
'b'	Blue
'c'	Cyan
'm'	Magenta
'y'	Yellow
'k'	Black
ʻb'	Blue
'w'	White

Marker codes

Character	Description
. ,	Point marker
ʻo'	Circle marker
ʻx'	X marker
'D'	Diamond marker
'H'	Hexagon marker
's'	Square marker
·+'	Plus marker

Line styles

Character	Description
	Solid line
··	Dashed line
''	Dash-dot line
.,	Dotted line
'H'	Hexagon marker

Line Chart

```
6  x = [1,2,3,4,5,6,7] # days
7  y = [25, 32, 45, 21, 39, 52, 45] # sales
8  plt.plot(x,y)
```

```
In [2]: x = [1,2,3,4,5,6,7] \# days
In [3]: y = [25, 32, 45, 21, 39, 52, 45] # sales
In [4]: plt.plot(x,y)
Out[4]: [<matplotlib.lines.Line2D at 0x196306a9e08>]
50
45
40
35
30
25
20
```

Line Chart

Line Chart

```
20  #_____colors
21  x = [1,2,3,4,5,6,7] # days
22  y = [25, 32, 45, 21, 39, 52, 45] # sales
23  plt.plot(x,y, 'm') # magneta
24  plt.xlabel("Days")
25  plt.ylabel("Sales")
26  plt.title('Sales per Day')
27  plt.show()
```

```
In [6]:
    ...: x = [1,2,3,4,5,6,7] # days
    ...: y = [25, 32, 45, 21, 39, 52, 45] # sales
    ...: plt.plot(x,y, 'm') # magneta
    ...: plt.xlabel("Days")
    ...: plt.ylabel("Sales")
    ...: plt.title('Sales per Day')
    ...: plt.show()
```



```
In [7]:
    ...: x = [1,2,3,4,5,6,7] # days
    ...: y = [25, 32, 45, 21, 39, 52, 45] # sales
    ...: plt.plot(x,y, 'gD') # green dotted --, hat ^, filled circle'o',
diamond D
    ...: plt.xlabel("Days")
    ...: plt.ylabel("Sales")
    ...: plt.title('Sales per Day')
    ...: plt.show()
```


Diamond

```
# line style
    x = [1,2,3,4,5,6,7] # days
    y = [25, 32, 45, 21, 39, 52, 45] # sales
    plt.plot(x,y, 'gD') # green dotted --, hat ^, filled circle'o', diamond D
    plt.xlabel("Days")
    plt.ylabel("Sales")
    plt.title('Sales per Day')
    plt.show()
```

```
In [8]:
    ...: x = [1,2,3,4,5,6,7] # days
    ...: y = [25, 32, 45, 21, 39, 52, 45] # sales
    ...: z = [18, 30, 28, 18, 29, 47, 35] # sold on credit
    ...: plt.plot(x,y, 'g--')
    ...: plt.plot(x,z, 'r')
    ...: plt.xlabel("Days")
    ...: plt.ylabel("Sales & Credit")
    ...: plt.title('Sales & Credit per Day')
    ...: plt.legend(labels = ('sales', 'credit sales'), loc = 'upper left')
    ...: plt.show()
```

More Line Charts


```
38  #____multilines
39  x = [1,2,3,4,5,6,7] # days
40  y = [25, 32, 45, 21, 39, 52, 45] # sales
41  z = [18, 30, 28, 18, 29, 47, 35] # sold on credit
42  plt.plot(x,y, 'g--')
43  plt.plot(x,z, 'r')
44  plt.xlabel("Days")
45  plt.ylabel("Sales & Credit")
46  plt.title('Sales & Credit per Day')
47  plt.legend(labels = ('sales', 'credit sales'), loc = 'upper left')
48  plt.show()
```

```
In [9]:
    ...: x = [1,2,3,4,5,6,7] # days
    ...: y = [25, 32, 45, 21, 39, 52, 45] # sales
    ...: z = [18, 30, 28, 18, 29, 47, 35] # sold on credit
    ...: plt.figure(figsize=(6, 4))
    ...: fig, (ax1, ax2)= plt.subplots(1, 2)
    ...: ax1.plot(x,y, 'g--')
    ...: ax2.plot(x,z, 'r')
    ...: plt.show()
<Figure size 432x288 with 0 Axes>
```

Sub Plots

```
50 - 45 - 40 - 40 - 40 - 35 - 30 - 25 - 20 - 2 4 6
```

```
# sub plots
x = [1,2,3,4,5,6,7] # days
y = [25, 32, 45, 21, 39, 52, 45] # sales
z = [18, 30, 28, 18, 29, 47, 35] # sold on credit
plt.figure(figsize=(6, 4))
fig, (ax1, ax2)= plt.subplots(1, 2)
ax1.plot(x,y, 'g--')
ax2.plot(x,z, 'r')
plt.show()
```

```
In [10]:
    . . . :
    \dots: x = [1,2,3,4,5,6,7] \# days
    ...: y = [25, 32, 45, 21, 39, 52, 45] # sales
    ...: z = [18, 30, 28, 18, 29, 47, 35] # sold on credit
    ...: plt.figure(figsize=(6, 4))
    ...: fig, (ax1, ax2)= plt.subplots(1, 2)
    \dots: ax1.plot(x,y, 'g--')
    ...: ax1.set_title('Sales vs Days')
    ...: ax2.plot(x,z, 'r')
    ...: ax2.set_title('Credit vs Days')
    ...: plt.show()
```

Sub Plots

```
<Figure size 432x288 with 0 Axes>
```



```
60
    # subplot with titles
    x = [1,2,3,4,5,6,7] \# days
62
     v = [25, 32, 45, 21, 39, 52, 45] # sales
    z = [18, 30, 28, 18, 29, 47, 35] # sold on credit
63
     plt.figure(figsize=(6, 4))
64
     fig, (ax1, ax2)= plt.subplots(1, 2)
65
66
     ax1.plot(x,y, 'g--')
67
     ax1.set_title('Sales vs Days')
     ax2.plot(x,z, 'r')
68
     ax2.set title('Credit vs Days')
69
     plt.show()
70
```

```
In [11]:
    ...: x = [1,2,3,4,5,6,7] # days
    ...: y = [25, 32, 45, 21, 39, 52, 45] # sales
    ...: plt.plot(x,y, 'r') # red
    ...: plt.xlabel("Days")
    ...: plt.ylabel("Sales")
    ...: plt.title('Sales per Day')
    ...: plt.grid(True)
    ...: plt.show()
```

Grid


```
#____plot with default grid

x = [1,2,3,4,5,6,7] # days

y = [25, 32, 45, 21, 39, 52, 45] # sales

plt.plot(x,y, 'r') # red

plt.xlabel("Days")

plt.ylabel("Sales")

plt.title('Sales per Day')

plt.grid(True)

plt.show()
```

```
In [12]:
    ...: x = [1,2,3,4,5,6,7] # days
    ...: y = [25, 32, 45, 21, 39, 52, 45] # sales
    ...: plt.plot(x,y, 'r', lw = 2) # red
    ...: plt.xlabel("Days")
    ...: plt.ylabel("Sales")
    ...: plt.title('Sales per Day')
    ...: plt.grid(color='b', ls = '-.', lw = 0.35)
    ...: plt.show()
```

Grid


```
#____plot with custom grid, line width = 2

x = [1,2,3,4,5,6,7] # days

y = [25, 32, 45, 21, 39, 52, 45] # sales

plt.plot(x,y, 'r', lw = 2) # red

plt.xlabel("Days")

plt.ylabel("Sales")

plt.title('Sales per Day')

plt.grid(color='b', ls = '-.', lw = 0.35)

plt.show()
```

```
In [15]:
    ...: fig,ax = plt.subplots(1,1)
    ...: a = np.array([22,87,5,43,56,73,55,54,11,20,51,5,79,31,27])
    ...: ax.hist(a, bins = [0,25,50,75,100])
    ...: ax.set_title("histogram of result")
    ...: ax.set_xticks([0,25,50,75,100])
    ...: ax.set_xlabel('marks')
    ...: ax.set_ylabel('no. of students')
    ...: plt.show()
Histogram
```



```
histogram
      fig,ax = plt.subplots(1,1)
      a = np.array([22,87,5,43,56,73,55,54,11,20,51,5,79,31,27])
      ax.hist(a, bins = [0,25,50,75,100])
100
      ax.set_title("histogram of result")
101
102
      ax.set_xticks([0,25,50,75,100])
103
      ax.set_xlabel('marks')
104
      ax.set ylabel('no. of students')
105
      plt.show()
106
```

```
In [16]: fig,ax = plt.subplots(1,1)
    ...: a = np.array([22,87,5,43,56,73,55,54,11,20,51,5,79,31,27])
    ...: ax.hist(a, bins = [0,10,20,30,40,50,60,70,80,90,100], facecolor =
'm')
    ...: ax.set_title("histogram of result")
    ...: ax.set_xticks([0,25,50,75,100])
    ...: ax.set_xtlabel('marks')
    ...: ax.set_ylabel('no. of students')
    ...: plt.show()
Histogram
```



```
In [17]:
    ...: fig,ax = plt.subplots(1,1)
    ...: a = np.array([22,87,5,43,56,73,55,54,11,20,51,5,79,31,27])
    ...: ax.hist(a, bins = [0,20,40,60,80,100], facecolor =
'mediumspringgreen')
    ...: ax.set_title("histogram of result")
    ...: ax.set_xticks([0,25,50,75,100])
    ...: ax.set_xlabel('marks')
    ...: ax.set_ylabel('no. of students')
    ...: plt.show()
```

Histogram


```
bin size = 20
118
      fig,ax = plt.subplots(1,1)
119
      a = np.array([22,87,5,43,56,73,55,54,11,20,51,5,79,31,27])
120
      ax.hist(a, bins = [0,20,40,60,80,100], facecolor = 'mediumspringgreen')
121
122
      ax.set_title("histogram of result")
123
      ax.set_xticks([0,25,50,75,100])
124
      ax.set xlabel('marks')
125
      ax.set ylabel('no. of students')
      plt.show()
126
```

```
In [18]:
    ...: cs2m = pd.read_csv("C:/Users/Dr Vinod/Desktop/DataSets1/cs2m.csv")
    ...: cs2m = pd.DataFrame(cs2m)
    ...:
    ...: fig,ax = plt.subplots(1,1)
    ...: ax.hist(cs2m.Age, bins = [0,20,40,60,80,100], facecolor = 'deeppink')
    ...: ax.set_title("Histogram of Age")
    ...: ax.set_xticks([0,25,50,75,100])
    ...: ax.set_xlabel('Age')
    ...: ax.set_ylabel('Counts ladies')
    ...: plt.show()
```



```
hist of Age file cs2m
128
      cs2m = pd.read csv("C:/Users/Dr Vinod/Desktop/DataSets1/cs2m.csv")
129
      cs2m = pd.DataFrame(cs2m)
130
131
      fig,ax = plt.subplots(1,1)
132
      ax.hist(cs2m.Age, bins = [0,20,40,60,80,100], facecolor = 'deeppink')
133
      ax.set title("Histogram of Age")
134
135
      ax.set_xticks([0,25,50,75,100])
      ax.set_xlabel('Age')
136
      ax.set ylabel('Counts ladies')
137
138
      plt.show()
139
```

```
In [19]:
    ...: import matplotlib.pyplot as plt
    ...: import numpy as np
    ...: # Creating dataset
    ...: np.random.seed(10)
    ...: data = np.random.normal(100, 20, 200)
    ...: fig = plt.figure(figsize =(10, 7))
    ...: # Creating plot
    ...: plt.boxplot(data)
    ...: # show plot
    ...: plt.show()
```



```
140
                 Box Plots
141
142
              one boxplot
143
      import matplotlib.pyplot as plt
144
      import numpy as np
145
      # Creating dataset
146
      np.random.seed(10)
      data = np.random.normal(100, 20, 200)
147
      fig = plt.figure(figsize =(10, 7))
148
149
      # Creating plot
      plt.boxplot(data)
150
151
      # show plot
      plt.show()
152
```

```
In [20]:
    ...: data_1 = np.random.normal(100, 10, 200)
    ...: data_2 = np.random.normal(90, 20, 200)
    ...: data_3 = np.random.normal(80, 30, 200)
    ...: data_4 = np.random.normal(70, 40, 200)
    ...: data = [data_1, data_2, data_3, data_4]
    ...: fig = plt.figure(figsize =(10, 7))
    ...: # Creating axes instance
    ...: ax = fig.add_axes([0, 0, 1, 1])
    ...: # Creating plot
    ...: bp = ax.boxplot(data, vert = False)
    ...: # show plot
    ...: plt.show()
```


More Box Plots

```
154
            many boxplots
      data_1 = np.random.normal(100, 10, 200)
155
      data 2 = np.random.normal(90, 20, 200)
156
      data_3 = np.random.normal(80, 30, 200)
157
158
      data 4 = np.random.normal(70, 40, 200)
159
      data = [data 1, data 2, data 3, data 4]
160
      fig = plt.figure(figsize =(10, 7))
161
      # Creating axes instance
162
      ax = fig.add_axes([0, 0, 1, 1])
      # Creating plot
163
164
      bp = ax.boxplot(data, vert = False )
165
      # show plot
      plt.show()
166
```

```
#_____Age, cs2m
Age = cs2m['Age']

#__making colorful
props2 = {'boxes': 'red', 'whiskers': 'green', 'medians': 'black', 'caps': 'blue'}
Age.plot.box(color=props2)
```

```
In [21]: Age = cs2m['Age']
In [22]: #__making colorful
In [23]: props2 = {'boxes': 'red', 'whiskers': 'green', 'medians': 'black',
'caps': 'blue'}
In [24]: Age.plot.box(color=props2)
Out[24]: <matplotlib.axes._subplots.AxesSubplot at 0x19630890e08>
80
70
                                                            Box Plot
60
50
40
30
```

20

Age

```
Age.plot.box(color=props2, patch_artist = True, vert = True)
175
```

```
In [25]: Age.plot.box(color=props2, patch_artist = True, vert = True)
Out[25]: <matplotlib.axes._subplots.AxesSubplot at 0x1963080a348>
```



```
Age.plot.box(color=props2, patch_artist = True, vert = False)
177
```

```
In [26]: Age.plot.box(color=props2, patch_artist = True, vert = False)
Out[26]: <matplotlib.axes._subplots.AxesSubplot at 0x19630703bc8>
```



```
cs2m.boxplot(color = props2, patch_artist = True)
179
```



```
pie chart
242
243
244
      # Creating dataset
245 ▼ cars = ['AUDI', 'BMW', 'FORD',
              'TESLA', 'JAGUAR', 'MERCEDES']
246
247
248
      data = [23, 17, 35, 29, 12, 41]
249
     # Creating plot
     fig = plt.figure(figsize =(10, 7))
250
     plt.pie(data, labels = cars)
251
252 # show plot
253
      plt.show()
```

Pie Chart


```
#_____pie from df grades
grades = pd.read_csv("C:/Users/Dr Vinod/Desktop/DataSets1/grades.csv")
grades = pd.DataFrame(grades)
grades.ethnicity.value_counts()
ethnicity = ['Australians', 'Brazilians', 'Americans', 'Chinese', 'Russians']
data = [5,11,20,24,45]
plt.pie(data, labels = ethnicity)
```

```
In [37]: #_____pie from df grades
In [38]: grades = pd.read_csv("C:/Users/Dr Vinod/Desktop/DataSets1/grades.csv")
In [39]: grades = pd.DataFrame(grades)
In [40]: grades.ethnicity.value counts()
Out[40]:
    45
    24
    20
    11
Name: ethnicity, dtype: int64
In [41]: ethnicity = ['Australians', 'Brazilians', 'Americans', 'Chinese', 'Russians']
In [42]: data = [5,11,20,24,45]
In [43]: plt.pie(data, labels = ethnicity)
```


Scatter Plot

```
263
            scatter plot
4, 11, 12, 9, 6]
265
   \nabla y =[99, 86, 87, 88, 100, 86,
266
        103, 87, 94, 78, 77, 85, 86]
267
268
     plt.scatter(x, y, c ="blue")
     # To show the plot
269
     plt.show()
270
271
```

```
In [44]: #
                        scatter plot
In [45]: x = [5, 7, 8, 7, 2, 17, 2, 9,
    ...: 4, 11, 12, 9, 6]
In [46]: y =[99, 86, 87, 88, 100, 86,
    ...: 103, 87, 94, 78, 77, 85, 86]
In [47]: plt.scatter(x, y, c ="blue")
    ...: # To show the plot
    ...: plt.show()
100 -
 90
                  10
                      12
                              16
```

In [48]: mtcars = pd.read_csv("C:/Users/Dr Vinod/Desktop/DataSets1/ mtcars.csv")

In [49]: mtcars = pd.DataFrame(mtcars)

```
In [50]: mtcars.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 32 entries, 0 to 31
Data columns (total 12 columns):
    Column
                Non-Null Count
 #
                                Dtype
    Unnamed: 0 32 non-null
                                object
                32 non-null
                                float64
    mpg
                                int64
                32 non-null
    cyl
    disp
                32 non-null
                                float64
                32 non-null
                                int64
    hp
                32 non-null
                              float64
    drat
                32 non-null
    wt
                              float64
                32 non-null
                             float64
    qsec
                32 non-null
                                int64
    ٧s
                32 non-null
                                int64
    am
                32 non-null
                                int64
    gear
                32 non-null
                                int64
    carb
dtypes: float64(5), int64(6), object(1)
memory usage: 3.1+ KB
```

```
In [51]: plt.scatter(mtcars.mpg, mtcars.hp, c = 'r')
Out[51]: <matplotlib.collections.PathCollection at 0x19631a9e588>
```

```
mtcars = pd.read_csv("C:/Users/Dr Vinod/Desktop/DataSets1/mtcars.csv")
mtcars = pd.DataFrame(mtcars)
mtcars.info()
plt.scatter(mtcars.mpg, mtcars.hp, c = 'r')
```

Scatter Plot

...: plt.show()

```
linewidths, color, marker, edge color,
279
      s = size of marker, alpha = low value, less visibility
280
281
    ▼ plt.scatter(mtcars.hp, mtcars.mpg, c = "red",
                   linewidths = 2,
283
284
                  marker ="o",
285
                  edgecolor ="k",
286
                   s = 200,
                   alpha = 0.8)
287
288
      plt.xlabel("Horse Power")
289
290
      plt.ylabel("Mileage Per Gallon")
      plt.title('MPG vs HP')
291
      plt.grid()
292
293
      plt.show()
294
```

Scatter Plot

```
#____---scatter plot by category
mtcars.info()
mtcars.cyl.value_counts() #4=11, 6=7, 8=14
```

```
In [62]: mtcars.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 32 entries, 0 to 31
Data columns (total 12 columns):
    Column
                Non-Null Count
                               Dtype
    Unnamed: 0 32 non-null
                               object
                32 non-null
                               float64
    mpg
    cyl
                               int64
                32 non-null
    disp
                32 non-null float64
 4
                               int64
    hp
                32 non-null
                              float64
    drat
                32 non-null
                               float64
    wt
                32 non-null
                32 non-null float64
    qsec
                32 non-null
                               int64
    VS
 9
                32 non-null
                               int64
                32 non-null int64
 10
    gear
 11
    carb
                32 non-null
                               int64
dtypes: float64(5), int64(6), object(1)
memory usage: 3.1+ KB
In [63]: mtcars.cyl.value_counts() #4=11, 6=7, 8=14
Out[63]:
    14
    11
Name: cyl, dtype: int64
```

```
296
      # ---scatter plot by category
      mtcars.info()
297
      mtcars.cyl.value_counts() #4=11, 6=7, 8=14
298
                                                               Scatter Plot by
299
300
               simple category wise
                                                               Category
      fig, ax = plt.subplots()
301
      colors = {4:'red', 6:'green', 8:'blue'}
302
      grouped = mtcars.groupby('cvl')
303
304
    ▼ for key, group in grouped:
306
          group.plot(ax=ax, kind='scatter', x= 'hp', y= 'mpg', label=key, color=colors[key])
      plt.xlabel("Horse Power")
307
      plt.ylabel("Mileage Per Gallon")
                                                                         MPG vs HP
308
309
      plt.title('MPG vs HP')
                                                             30
      plt.grid()
310
                                                           Gallon
25
      plt.show()
311
312
                                                           Mileage |
In [64]:
                                                             15
    ...: fig, ax = plt.subplots()
    ...: colors = {4:'red', 6:'green', 8:'blue'}
    ...: grouped = mtcars.groupby('cyl')
                                                                   100
                                                                           200
                                                                               250
                                                                         Horse Power
    ...:
    ...: for key, group in grouped:
             group.plot(ax=ax, kind='scatter', x= 'hp', y= 'mpg', label=key, color=colors[key])
    ...: plt.xlabel("Horse Power")
    ...: plt.ylabel("Mileage Per Gallon")
    ...: plt.title('MPG vs HP')
    ...: plt.grid()
    ...: plt.show()
```

```
315
316
      x = mtcars['hp']
317
      y = mtcars['mpg']
318
      colors = {4: 'red', 6: 'green', 8: 'blue'}
319
320
      plt.scatter(x, y, s=1.25*mtcars['hp'], alpha=0.8,
321
                  c= mtcars['cyl'].map(colors)
322
      plt.xlabel("Horse Power")
323
      plt.ylabel("Mileage Per Gallon")
324
325
      plt.title('MPG vs HP')
      plt.grid()
326
      labels = {4: 'red', 6: 'green', 8: 'blue'}
327
      plt.legend(loc = 'upper right')
328
329
```



```
In [65]:
    ...: x = mtcars['hp']
    ...: y = mtcars['mpg']
    ...: colors = {4:'red', 6:'green', 8:'blue'}
    . . . :
    ...: plt.scatter(x, y, s=1.25*mtcars['hp'], alpha=0.8,
                     c= mtcars['cvl'].map(colors)
    . . . :
    ...: plt.xlabel("Horse Power")
    ...: plt.ylabel("Mileage Per Gallon")
    ...: plt.title('MPG vs HP')
    ...: plt.grid()
    ...: labels = {4:'red', 6:'green', 8:'blue'}
    ...: plt.legend(loc = 'upper right')
No handles with labels found to put in legend.
Out[65]: <matplotlib.legend.Legend at 0x1962ff67308>
```

beautiful

