Module V: Knowledge Graph Inference and Applications

2:05 pm - 3:10 pm

Module 5 Overview

KG Inference and Applications

Knowledge Graph Inference

- What & Why
- How
 - Problem formulation & Overview
 - Knowledge Graph Embedding

Knowledge Graph Applications

Entity Recommendation

<u>Lab 5 – Paper Recommendation in *MAG*</u>

- ► Knowledge Base is largely incomplete
- ► Need systematic and scalable approaches to complete knowledge graph

Relation	Percentage unknown	
	All 3M	<i>Top 100K</i>
PROFESSION	68%	24%
PLACE OF BIRTH	71%	13%
NATIONALITY	75%	21%
EDUCATION	91%	63%
SPOUSES	92%	68%
PARENTS	94%	77%
CHILDREN	94%	80%
SIBLINGS	96%	83%
ETHNICITY	99%	86%

Incompleteness of Freebase for some relations that apply to entities of type PERSON. Left: all 3M Freebase PERSON entities. Right: only the 100K most frequent PERSON entities.

$$Y_{ijk} = \begin{cases} 1, & \text{if the triple } (e_i, r_k, e_j) \text{ exists;} \\ 0, & \text{otherwise.} \end{cases}$$

Element-wise

$$Y \in \{0, 1\}^{Ne \times Ne \times Nr}$$

adjacency tensor (adjacency matrix)

Estimate the joint-distribution

Predict <u>unobserved</u> triples

PROBLEM FORMULATION -- STATISTICAL RELATIONAL LEARNING

- ▶ Within existing KG
 - Graph feature model
 - "Similar" entities
 - ► Local common neighbors
 - ► Global random walk
 - ► Quasi-local random walk with bounded length
 - Latent feature model
- ► Use external sources / information
 - QnA system

Graph

|N|: Number of Nodes in Grap

Knowledge Graph

|E|: Number of Entities in Knowledge Graph

|R|: Number of Relations in Knowledge Graph

LATENT FEATURE MODELS

► *Entity* Representation

- Low dimensional vector: e_i
- Initialization
 - Random
 - ullet Average word vector with pre-trained vectors ($V_{
 m word}$), e.g.

$$e_{homo\ sapiens} = 0.5 \times (V_{homo} + V_{sapiens})$$

► *Relation type* representation

- Each relation type as matrix:
 - W_k : bilinear weight matrix
 - ullet A_k : linear feature map
- Each relation type as **vector**: r_k

► *Entity-Relation* interaction

- Linear : $A_k e_i$
- Bilinear: $e_i^T W_k e_j$

▶ Scoring function

- Margin-based ranking loss $\sum_{(s,r,o) \in T} \sum_{(s',r,o') \in Tr(s,r,o)} \max(0,1+f(s',r,o')-f(s,r,o))$
- Negative sampling loss Negative log-likelihood of the correct triples & sampled corrupted triples $-\sum_{(s,r,o)\in T} (\log\sigma(f(s,r,o)) + \sum_{(s',r,o')\in T'(s,r,o)} \log\sigma(-f(s',r,o')))$

Graph

|N|: Number of Nodes in Graph

k: Dimensionality

Knowledge Graph

|E|: Number of Entities in Knowledge Graph

|R|: Number of Relations in Knowledge Graph

: Dimensionality

LATENT FEATURE MODELS - MILESTONES

LATENT FEATURE MODELS - SCALABILITY

Knowledge Graph Applications

Entity Recommendations

Network based features for paper recommendation

Advantages:

- Uses citation network (co-citation count)
- Similar to human behavior
- High user satisfaction

Disadvantages:

Low Coverage due to incomplete citation information

$$cc_{i,j} = \sum_{k=1}^{n} c_{k,i} c_{k,j}$$

 $c_{x,y} = 1$ denotes paper-x cites paper-y

Entity Recommendations

Content based features for paper recommendation

Advantages:

- Uses available paper metadata (titles, abstracts, etc)
- Very high coverage; Embeddings for all English papers
- Highly scalable leverages topic hierarchy for classification

Disadvantages:

Low precision compared to co-citation based approach

Entity Recommendations

...Combining both approaches

- Need to map co-citation counts to range [0, 1]
- Tunable logistic function

$$\sigma(cc_{i,j}) = \frac{1}{1 + e^{\theta(\tau - cc_{i,j})}}$$

- θ controls slope. Tuned using co-citation mean
- τ controls x-offset. Turned using co-citation variance
- Tuning both parameters can balance novel vs authoritative recommendations

Paper Recommendation Pipeline

Content Labeling & Language Similarity

Learning word and topic embeddings from the knowledge graph

- Leverage our topic (field of study) ontology and paper topic labels to learn topic content embeddings
 - External data: Wikipedia content for topics
 - Knowledge graph data: Paper information (titles + abstracts) from papers in topic
- Topic embeddings encode more technical information using paper data
- Topic embeddings can be used to label arbitrary text

Lab 5: Knowledge Graph Applications

- 1. Content Labeling & Language Similarity
- 2. Network and Content based Paper Recommendation