Ex. 1.

Montrer que l'idéal $I = \langle X^2 + 1 \rangle$ est un idéal maximal de $\mathbb{R}[X]$.

Corrigé de l'exercice 1

Notons $I = \langle X^2 + 1 \rangle$ et considérons un idéal J tel que $I \subset J \subset \mathbb{R}[X]$ et $I \neq J$.

Soit $P \in J - I$. Écrivons la division euclidienne de P par $X^2 + 1$. Il existe $Q \in \mathbb{R}[X]$ ainsi que $(a, b) \neq (0, 0)$ tels que

$$P(X) = (X^{2} + 1)Q(x) + aX + b.$$

Alors $aX + b = P(X) - (X^2 + 1)Q(X) \in J$ car $P \in J$ et $(X^2 + 1)Q(X) \in I \subset J$. Alors $a^2X - b^2 = (aX + b)(aX - b) \in J$ et donc

$$(aX^{2} - b^{2}) - a^{2}(X^{2} + 1) = -(a^{2} + b^{2}) \in J.$$

Comme $a^2 + b^2 \neq 0$ car $(a, b) \neq (0, 0)$, J contient $a^2 + b^2$ un inversible de $\mathbb{R}[X]$, et donc $1 \in J$, $J = \mathbb{R}[X]$. Tout idéal J contenant strictement I étant égal à $\mathbb{R}[X]$, I est bien un idéal maximal de $\mathbb{R}[X]$.