I am going to try to predict the values of Siemens stock price, for the last 30 days, using as a variable, the closing values of the previous 20 days, by training a **Recurrent Neural Network.**

We will use data downloaded from the following link:

https://finance.yahoo.com/quote/SIE.DE/history?period1=1496696400&period2=1528232400&interval=1d&filter=history&frequency=1d

I have downloaded data of the last 5 years.

These are the five first rows, and just by their names it is very clear what they represent

	Date	Open	High	Low	Close	Adj Close	Volume
0	2013-06-06	78.443001	78.743401	76.970001	77.057297	65.381271	2890421
1	2013-06-07	77.328598	78.278198	76.466103	77.842201	66.047241	3312735
2	2013-06-10	77.842201	79.014702	77.658096	78.578598	66.672058	2269863
3	2013-06-11	78.142601	78.665802	77.561096	78.472000	66.581604	2501774
4	2013-06-12	78.384804	78.888702	77.502998	77.822800	66.030785	1937397

Checking each column for missing values

```
Out[6]: Date 0
Open 0
High 0
Low 0
Close 0
Adj Close 0
Volume 0
dtype: int64
```

Here, we can see the type of our variables, all of them are objects, so the "Close" column, must be transformed.

After, all the necessary manipulations, described In the ipynb file, we trained the RNN.

```
Epoch 1/100
       1218/1218 [=
Epoch 2/100
1218/1218 [============== ] - 4s 3ms/step - loss: 0.0114
Epoch 3/100
1218/1218 [===============] - 4s 3ms/step - loss: 0.0090
Epoch 4/100
1218/1218 [=
       ======== - loss: 0.0084
Epoch 5/100
      ======== - loss: 0.0082
1218/1218 [=
1218/1218 [============== ] - 4s 3ms/step - loss: 0.0082
Epoch 7/100
1218/1218 [=
      Epoch 8/100
Epoch 9/100
```

The last part of the training

```
Epoch 94/100
1218/1218 [=
                                       ==] - 4s 3ms/step - loss: 0.0020
Epoch 95/100
1218/1218 [=
                                           - 5s 4ms/step - loss: 0.0019
Epoch 96/100
1218/1218 [==
                              =======] - 4s 3ms/step - loss: 0.0020
Epoch 97/100
1218/1218 [==
                            ========] - 4s 3ms/step - loss: 0.0020
Epoch 98/100
1218/1218 [=====
                        ======== ] - 4s 3ms/step - loss: 0.0019
Epoch 99/100
1218/1218 [==
Epoch 100/100
                           =========] - 4s 3ms/step - loss: 0.0020
1218/1218 [====
                           ======== ] - 4s 3ms/step - loss: 0.0019
```

These are the results. Our line, is smoother than the real, and of course it cannot predict sudden changes like for instance day 6 or day 19. Still, it depicts quite well the "trend" of the stock price.

