CSI 5387 Data Mining and Concept Learning Assignment 2

Lingfeng Zhang 300134245

February 2020

In this assignment, I used Python to handle it.

 $\label{lem:com/RichardChangCA/CSI-5387-Data-Mining-and-Concept-Learning/tree/master/Assignment_2$

1 A. Data Preprocessing

1.1 1.

About the missing value, I used sklearn.inpute.SimpleImputer to impute the missing value. For the strategy attribute, I chose the most frequent value, which means the mode value for each attributes, to impute.

Central measure of tendency used in handling missing data: mode value

1.2 2.

Neural network can perform well when the input data are scaled in the same range because some attribute values will be dominant without scaling.

In this assignment, I used sklearn. preprocessing. MinMaxScalar to scale the input data.

Method of re-scaling the data with a normalizing: min-max normalization

2 B. Model Development

2.1 Single Layer

2.1.1 1.

In this section, I used TensorFlow version 2.0 deep learning framework combined with Keras to build up neural network models. Dense layers in Keras represent fully-connected layers.

In the single node model, there are 1 unit in the dense layer, which output dimension is 1 value and input dimension is 8, because it is a binary classification task and meaningful attributes have 8 columns. There are several hyper-parameters I set:

bias usage: True

activation function: Sigmoid

Optimizer: SGD(Stochastic gradient descent)

learning rate: 0.01

Loss function: binary cross-entropy

Training epoch: 100

The loss plot is shown below, and decreasing loss value means the model is learning.

epoch_loss

2.1.2 2.

The neural network plot is shown below.

There are 9 parameters in total, where 8 parameters are weights and 1 parameter is the bias.

2.1.3 3. Model Performance

accuracy: 0.59375

some predictions:

- 1. $X=[[0.11764706\ 0.39354839\ 0.6557377\ 0.41304348\ 0.22576832\ 0.31697342\ 0.27028181\ 0.13333333]],$ prediction=[[0]], actual=1
- 2. $X=[[0.29411765\ 0.41935484\ 0.50819672\ 0.36956522\ 0.15248227\ 0.3599182\ 0.18616567\ 0.06666667]],$ prediction=[[0]], actual=1
- 3. $X=[[0.23529412\ 0.70967742\ 0.59016393\ 0.23913043\ 0.14893617\ 0.26789366\ 0.11101623\ 0.26666667]], prediction=[[0]], actual=0$
- 4. $X=[[0.35294118\ 0.39354839\ 0.57377049\ 0.27173913\ 0.08037825\ 0.25766871\ 0.01878736\ 0.26666667]], prediction=[[0]], actual=0$

5. $X=[[0.70588235\ 0.36129032\ 0.68852459\ 0.2826087\ 0.12411348\ 0.24130879\ 0.17506405\ 0.41666667]], prediction=[[0]], actual=0$

2.1.4 4. Confusion Matrix

Prediction outcome

2.2 Multi-Layer

2.2.1 1.

The image below is the structure of multi-layer perceptron, which has 5 hidden nodes and 2 hidden layers. In this case, I maintained the same hyper-parameter as the single node perceptron.

The accuracy is also 0.59375 because the model predicts all tuples are negative. Both single node perceptron and multi-layer perceptron fail to perform well without fine-tuning.

The loss plot is shown below.

epoch_loss

2.2.2 2.

Activation function, learning rate, training epochs and bias existence are hyperparameter we can fine-tune.

In this assignment, I chose several values for these hyper-parameters and get various results.

Activation function: sigmoid, relu, tanh

Learning rate: 0.1, 0.01, 0.001 Training epochs: 50, 100, 200 Bias existence: True, False

The results are shown in the appendix.

The loss plot of the multi-layer perceptron with the highest accuracy in shown in below.

epoch_loss

The hyper-parameters of the highest accuracy multi-layer perceptron are:

Activation function: sigmoid

Learning rate: 0.1 Training epochs: 200 Bias existence: True

2.3 C. Model Comparison

SVM results are shown below:

accuracy:0.75520833333333334

TP:35

TN:110

FP:4

FN:43

sensitivity:0.44871794871794873 specificity:0.9649122807017544

2.4 D. Model Evaluation

2.4.1 1.

Multi-layer perceptron:

 ${\it accuracy:} 0.59375$

sensitivity:0.0

specificity:1.0

Multi-layer perceptron with fine-tuning:

accuracy:0.75520833333333334

sensitivity:0.47435897435897434

specificity: 0.9473684210526315

SVM:

 ${\it accuracy:} 0.755208333333333333$

 $\begin{array}{c} {\rm sensitivity:} 0.44871794871794873 \\ {\rm specificity:} 0.9649122807017544 \end{array}$

2.4.2 2.

1.In the case of multi-layer perceptron without fine-tuning:

SVM performs best and multi-layer perceptron performs worst in criteria of accuracy and sensitivity.

Multi-layer perceptron performs best and SVM performs worst in criteria of specificity.

2.In the case of multi-layer perceptron with fine-tuning:

SVM performs same as multi-layer perceptron in criteria of accuracy

SVM performs best and multi-layer perceptron performs worst in criteria of specificity.

Multi-layer perceptron performs best and SVM performs worst in criteria of sensitivity.

In conclusion, various hyper-parameter combinations in multi-layer perceptron performs different.

2.4.3 3.

ROC curve is shown in below.

SVM performs better than single node and multi-layer perceptron because AUC of SVM is greater than others.

ROC curve of fine-tuned multi-layer perceptron and SVM is shown in below and SVM is also the best model.

2.5 Appendix

2.6 bias: False, activation: tanh, lr: 0.001, epochs: 50

TP:2

TN:114

FP:0

FN:76

 ${\it accuracy:} 0.6041666666666666$

```
sensitivity:0.02564102564102564
  specificity:1.0
     bias: True, activation: sigmoid, lr: 0.0001, epochs: 50
TP:0
  TN:114
  FP:0
  FN:78
  accuracy:0.59375
  sensitivity:0.0
  specificity:1.0
2.8
      bias: False, activation: relu, lr: 0.01, epochs: 50
TP:0
  TN:114
  FP:0
  FN:78
  accuracy:0.59375
  sensitivity:0.0
  specificity:1.0
      bias: True, activation: relu, lr: 0.0001, epochs: 50
2.9
TP:2
  TN:113
  FP:1
  FN:76
  accuracy:0.59895833333333334
  sensitivity:0.02564102564102564
  specificity: 0.9912280701754386
2.10
       bias: False, activation: relu, lr: 0.0001, epochs: 100
TP:21
  TN:105
  FP:9
  FN:57
  accuracy:0.65625
```

sensitivity:0.2692307692307692 specificity:0.9210526315789473

```
2.11
       bias: False, activation: tanh, lr: 0.0001, epochs: 100
TP:0
   TN:114
   FP:0
   FN:78
   accuracy:0.59375
   sensitivity:0.0
   specificity:1.0
2.12
       bias: True, activation: tanh, lr: 0.01, epochs: 200
TP:40
   TN:100
   FP:14
   FN:38
   accuracy: 0.72916666666666666
   sensitivity:0.5128205128205128
   specificity:0.8771929824561403
2.13
       bias: True, activation: tanh, lr: 0.001, epochs: 50
TP:14
   TN:111
   FP:3
   FN:64
   accuracy:0.651041666666666
   sensitivity:0.1794871794871795
   specificity: 0.9736842105263158
       bias: True, activation: relu, lr: 0.0001, epochs: 200
2.14
TP:0
   TN:114
   FP:0
   FN:78
   accuracy:0.59375
   sensitivity:0.0
   specificity:1.0
2.15
       bias: True, activation: relu, lr: 0.001, epochs: 100
TP:0
   TN:114
   FP:0
   FN:78
   accuracy:0.59375
```

```
sensitivity:0.0 specificity:1.0
```

2.16 bias: False, activation: relu, lr: 0.001, epochs: 200

TP:21 TN:111 FP:3 FN:57 accuracy:0.6875 sensitivity:0.2692307692307692 specificity:0.9736842105263158

2.17 bias: False, activation: sigmoid, lr: 0.0001, epochs: 200

TP:0 TN:114 FP:0 FN:78 accuracy:0.59375 sensitivity:0.0 specificity:1.0

2.18 bias: False, activation: tanh, lr: 0.01, epochs: 200

TP:42 TN:102 FP:12 FN:36 accuracy:0.75 sensitivity:0.5384615384615384 specificity:0.8947368421052632

2.19 bias: False, activation: sigmoid, lr: 0.001, epochs: 200

TP:0 TN:114 FP:0 FN:78 accuracy:0.59375 sensitivity:0.0 specificity:1.0

```
2.20 bias: False, activation: sigmoid, lr: 0.0001, epochs: 50
```

TP:78
TN:0
FP:114
FN:0
accuracy:0.40625
sensitivity:1.0
specificity:0.0

2.21 bias: True, activation: sigmoid, lr: 0.001, epochs: 100

TP:0 TN:114 FP:0 FN:78 accuracy:0.59375 sensitivity:0.0 specificity:1.0

2.22 bias: False, activation: tanh, lr: 0.01, epochs: 50

TP:38
TN:106
FP:8
FN:40
accuracy:0.75
sensitivity:0.48717948717948717
specificity:0.9298245614035088

2.23 bias: True, activation: sigmoid, lr: 0.001, epochs: 200

TP:0 TN:114 FP:0 FN:78 accuracy:0.59375 sensitivity:0.0 specificity:1.0

```
2.24
       bias: False, activation: tanh, lr: 0.01, epochs: 100
TP:38
  TN:104
  FP:10
  FN:40
  accuracy:0.73958333333333334
  sensitivity:0.48717948717948717
  specificity: 0.9122807017543859
2.25
       bias: False, activation: tanh, lr: 0.001, epochs: 200
TP:33
   TN:107
  FP:7
  FN:45
  accuracy:0.729166666666666
  sensitivity:0.4230769230769231
  specificity: 0.9385964912280702
2.26
       bias: False, activation: tanh, lr: 0.0001, epochs: 200
TP:1
  TN:113
  FP:1
  FN:77
  accuracy:0.59375
  sensitivity:0.01282051282051282
  specificity: 0.9912280701754386
2.27
       bias: True, activation: sigmoid, lr: 0.0001, epochs:
       200
TP:0
  TN:114
  FP:0
  FN:78
  accuracy:0.59375
  sensitivity:0.0
  specificity:1.0
       bias: True, activation: sigmoid, lr: 0.01, epochs: 50
2.28
TP:0
  TN:114
  FP:0
```

```
FN:78
  accuracy:0.59375
  sensitivity:0.0
  specificity:1.0
2.29
       bias: False, activation: relu, lr: 0.001, epochs: 50
TP:0
  TN:114
  FP:0
  FN:78
  accuracy:0.59375
  sensitivity:0.0
  specificity:1.0
2.30
       bias: False, activation: relu, lr: 0.0001, epochs: 200
TP:5
  TN:110
  FP:4
  FN:73
  accuracy:0.59895833333333334
  sensitivity:0.0641025641025641
  specificity: 0.9649122807017544
2.31
       bias: True, activation: tanh, lr: 0.001, epochs: 200
TP:41
  TN:103
  FP:11
  FN:37
  accuracy:0.75
  sensitivity:0.5256410256410257
  specificity: 0.9035087719298246
       bias: True, activation: tanh, lr: 0.0001, epochs: 100
2.32
TP:4
  TN:112
  FP:2
  FN:74
  accuracy:0.604166666666666
  sensitivity:0.05128205128205128
```

specificity: 0.9824561403508771

```
bias: False, activation: sigmoid, lr: 0.001, epochs:
       100
TP:0
  TN:114
  FP:0
  FN:78
  accuracy:0.59375
  sensitivity:0.0
  specificity:1.0
2.34
       bias: True, activation: relu, lr: 0.0001, epochs: 100
TP:0
  TN:114
  FP:0
  FN:78
  accuracy:0.59375
  sensitivity:0.0
  specificity:1.0
2.35
       bias: False, activation: tanh, lr: 0.0001, epochs: 50
TP:0
  TN:113
  FP:1
  FN:78
  accuracy:0.588541666666666
  sensitivity:0.0
  specificity: 0.9912280701754386
2.36
       bias: False, activation: tanh, lr: 0.001, epochs: 100
TP:7
  TN:114
  FP:0
  FN:71
  accuracy:0.63020833333333334
  sensitivity:0.08974358974358974
  specificity:1.0
       bias: False, activation: sigmoid, lr: 0.01, epochs: 50
2.37
TP:0
  TN:114
```

2.33

FP:0

```
accuracy:0.59375
  sensitivity:0.0
  specificity:1.0
2.38
       bias: False, activation: sigmoid, lr: 0.001, epochs: 50
TP:0
  TN:114
  FP:0
  FN:78
  accuracy:0.59375
  sensitivity:0.0
  {\it specificity:} 1.0
2.39
       bias: True, activation: relu, lr: 0.001, epochs: 200
TP:35
  TN:109
  FP:5
  FN:43
  accuracy:0.75
  sensitivity: 0.44871794871794873
  specificity:0.956140350877193
       bias: True, activation: tanh, lr: 0.0001, epochs: 50
2.40
TP:0
  TN:114
  FP:0
  FN:78
  accuracy:0.59375
  sensitivity:0.0
  specificity:1.0
       bias: False, activation: relu, lr: 0.0001, epochs: 50
2.41
TP:0
  TN:114
  FP:0
  FN:78
  accuracy: 0.59375
  sensitivity:0.0
  specificity:1.0
```

FN:78

```
2.42
       bias: True, activation: relu, lr: 0.001, epochs: 50
TP:0
   TN:114
   FP:0
   FN:78
   accuracy:0.59375
   sensitivity:0.0
   specificity:1.0
2.43
       bias: False, activation: relu, lr: 0.01, epochs: 100
TP:59
   TN:82
   FP:32
   FN:19
   accuracy:0.734375
   sensitivity:0.7564102564102564
   specificity:0.7192982456140351
2.44
       bias: True, activation: tanh, lr: 0.0001, epochs: 200
TP:0
   TN:114
   FP:0
   FN:78
   accuracy:0.59375
   sensitivity:0.0
   specificity:1.0
       bias: True, activation: relu, lr: 0.01, epochs: 200
2.45
TP:45
   TN:99
   FP:15
   FN:33
   accuracy:0.75
   sensitivity: 0.5769230769230769
   specificity:0.868421052631579
       bias: False, activation: sigmoid, lr: 0.0001, epochs:
2.46
       100
TP:0
   TN:114
   FP:0
```

```
FN:78
  accuracy:0.59375
  sensitivity:0.0
  specificity:1.0
       bias: False, activation: sigmoid, lr: 0.01, epochs: 100
2.47
TP:0
   TN:114
  FP:0
  FN:78
  accuracy:0.59375
  sensitivity:0.0
  specificity:1.0
2.48
       bias: False, activation: sigmoid, lr: 0.01, epochs: 200
TP:20
  TN:113
  FP:1
  FN:58
  accuracy:0.69270833333333334
  sensitivity:0.2564102564102564
  specificity: 0.9912280701754386
2.49
       bias: True, activation: tanh, lr: 0.01, epochs: 50
TP:38
  TN:103
  FP:11
  FN:40
  accuracy:0.734375
  sensitivity:0.48717948717948717
  specificity: 0.9035087719298246
       bias: True, activation: relu, lr: 0.01, epochs: 100
2.50
TP:34
  TN:106
  FP:8
  FN:44
  accuracy: 0.72916666666666666
  sensitivity:0.4358974358974359
```

specificity: 0.9298245614035088

```
2.51
       bias: True, activation: relu, lr: 0.01, epochs: 50
TP:39
  TN:101
  FP:13
  FN:39
  accuracy: 0.72916666666666666
  sensitivity:0.5
  specificity: 0.8859649122807017
2.52
       bias: True, activation: sigmoid, lr: 0.001, epochs: 50
TP:0
   TN:114
  FP:0
  FN:78
  accuracy:0.59375
  sensitivity:0.0
  specificity:1.0
2.53
       bias: True, activation: tanh, lr: 0.001, epochs: 100
TP:0
  TN:114
  FP:0
  FN:78
  accuracy:0.59375
  sensitivity:0.0
  specificity:1.0
       bias: True, activation: sigmoid, lr: 0.01, epochs: 100
2.54
TP:0
  TN:114
  FP:0
  FN:78
  accuracy:0.59375
  sensitivity:0.0
  specificity:1.0
       bias: True, activation: sigmoid, lr: 0.01, epochs: 200
2.55
TP:37
  TN:108
  FP:6
  FN:41
   accuracy:0.75520833333333334
```

```
\begin{array}{c} {\rm sensitivity:} 0.47435897435897434 \\ {\rm specificity:} 0.9473684210526315 \end{array}
```

2.56 bias: True, activation: tanh, lr: 0.01, epochs: 100

TP:39
TN:100
FP:14
FN:39
accuracy:0.7239583333333334
sensitivity:0.5
specificity:0.8771929824561403

2.57 bias: False, activation: relu, lr: 0.001, epochs: 100

TP:0 TN:114 FP:0 FN:78 accuracy:0.59375 sensitivity:0.0 specificity:1.0

2.58 bias: True, activation: sigmoid, lr: 0.0001, epochs: 100

TP:0 TN:114 FP:0 FN:78 accuracy:0.59375 sensitivity:0.0 specificity:1.0

2.59 bias: False, activation: relu, lr: 0.01, epochs: 200