

Final Task Project-based Internship

Loan Repayment Success Prediction

Fitria Zusni Farida

Github

Overview

<u>Goal</u>

Machine Learning Modeling

Explanatory Data Analysis (EDA)

Model Evaluation

Data Preprocessing

Predicting Loan Repayment Success and Minimizing Risk

The goal of this research is to analyze and predict customer behavior related to loan repayments, with a focus on ensuring that creditworthy customers are not turned down and that loans are structured in a way that maximizes the likelihood of successful repayments. This will help optimize loan offerings, reduce defaults, and enhance financial inclusivity.

Datasets

Credit Bureau

Application data from previous loan that clients got from other institutions and that were reported to Credit Bureau.

QInsights:

• Longer credit duration showed higher overdue amounts, indicating risk.

Recommendations:

- Stricter Risk Assessment for Long-Term Loans: Introduce more stringent creditworthiness checks for applicants seeking long-term loans.
- **Dynamic Credit Limits**: Consider implementing dynamic repayment structures, like higher initial payments or balloon payments toward the end.
- Periodic Financial Health Checks: Regularly assess the borrower's financial health during the loan tenure to detect early warning signs of default.
- Offer Financial Planning Support: Provide resources or consultations to help borrowers plan long-term repayments effectively.

Credit Bureau

Application data from previous loan that clients got from other institutions and that were reported to Credit Bureau.

QInsights:

• Bad debt significantly has high percentage of overdue credit among other credit status (active, closed, and sold).

Recommendation:

- Early Intervention Programs: Proactively monitor signs of overdue payments and engage borrowers early to prevent defaults.
- Restructure Loan Terms for At-Risk Accounts: Offer renegotiated repayment terms to reduce overdue risk.
- Focus on Active Loan Management: Shift resources to actively monitor and manage at-risk borrowers before they fall into bad debt.
- Limit Credit Access to High-Risk Borrowers: Implement tighter credit controls for applicants with a history of overdue debts.

Previous Application

Application data from clients previous loans in Home Credit.

QInsights:

- Highest Approved Loan Purpose: XAP (likely an internal code for a specific loan product or purpose).
- Highest Refused Loan Purpose: Payment on Other Loans (indicating concerns about existing debt obligations).

Recommendations:

- For XAP Loans: Identify key factors contributing to their high approval rates and replicate these criteria across other loan purposes where feasible.
- For Payment on Other Loans: Conduct a deeper risk analysis to understand why these applications are frequently refused. Consider offering tailored financial counseling or restructuring options to improve approval rates.

Previous Application

Application data from clients previous loans in Home Credit.

QInsights:

- Amortized debt shows the largest increase in overdue days (SK_DPD) over time, followed by Demand loans.
- This indicates that amortized loans, which are repaid in fixed installments, may have higher overdue risks as time progresses compared to other loans.

Recommendation:

 Loan repayment plans for amortized debts may need closer monitoring and intervention (e.g., restructuring or financial counseling) to prevent defaults, especially in the later stages of repayment.

Previous Application

Application data from clients previous loans in Home Credit.

QInsights:

- At approximately 100 installments, there was a sudden and sharp increase in overdue days (DAYS_ENTRY_PAYMENT - DAYS_INSTALMENT), peaking at around 20 days overdue before sharply decreasing.
- Between 200 and 250 installments, the trend became highly unstable, showing large fluctuations and even dipping into negative values, indicating early payments or irregular payment behavior.

Recommendation:

- Investigate the root cause of the spike at 100 installments to understand if it's tied to policy changes or borrower behavior.
- For the 200–250 installment range, further analysis is needed to determine if the issue stems from borrower financial stress or systematic data recording issues.

*Data Preprocessing

1. Target Analysis

QInsights

• There is significant class imbalanced with 91.93% clients' application were rejected and only 8.07% client's application were approved.

Actions

• Use resampling techniques (oversampling or undersampling)

2. Descriptive Analysis (numerical features)

	count	mean	std	min
AMT_INCOME_TOTAL	307511.0	168797.919297	237123.146279	25650.00000
AMT_CREDIT	307511.0	599025.999706	402490.776996	45000.00000
AMT_ANNUITY	307499.0	27108.573909	14493.737315	1615.50000
AMT_GOODS_PRICE	307233.0	538396.207429	369446.460540	40500.00000
REGION_POPULATION_RELATIVE	307511.0	0.020868	0.013831	0.00029

outliers (%)	variance	kurtosis	skewness	max	75%	50%	25%
4.564064	5.622739e+10	191786.554381	391.559654	1.170000e+08	202500.000000	147150.00000	112500.000000
2.133907	1.619988e+11	1.934041	1.234778	4.050000e+06	808650.000000	513531.00000	270000.000000
2.440238	2.100684e+08	7.707320	1.579777	2.580255e+05	34596.000000	24903.00000	16524.000000
4.789422	1.364907e+11	2.431916	1.349000	4.050000e+06	679500.000000	450000.00000	238500.000000
2.735512	1.913043e-04	3.260065	1.488009	7.250800e-02	0.028663	0.01885	0.010006

Statistics descriptive of numerical features (displayed only 5 features)

QInsights

- There are features with highly skewed distribution (eg. AMT_INCOME_TOTAL, AMT_CREDIT, AMT_ANNUITY, REGION_POPULATION_RELATIVE, etc)
- There are features with very low variance (eg. REGION_POPULATION_RELATIVE, BASEMENTAREA_AVG, YEARS_BEGINEXPLUATATION_AVG, etc)

Actions

- Handle highly skewed features by winsorizing to remove outliers and feature transformation (standardization and scaling).
- Drop low variance features as they don't give significant information to the model.

2. Descriptive Analysis (categorical features)

Insights

- There exist time-based features.
- There exist features with significant cardinality.
- There exist features with significant imbalance.

PActions

- Drop time-based features to reduce complexity.
- Do context-based transformation to reduce the number of dimension of the feature.

3. Correlation Analysis

Insights

• There exist pairs of features with high correlation (0.7)

Actions

• Drop or do feature engineering to combine multiple features into one new feature.

Handle missing values

Insights

- There exist feature with high number of missing values (>18%).
- There exist feature with low number of missing values (<=18%)
- Some features don't have missing values.

XActions

- Drop feature with high number of missing values (>18%).
- Fill the missing value with the median value for feature with low number of missing values (<=18%)

	Feature	Missing Count	Missing Percentage (%)
0	EXT_SOURCE_3	60965	19.825307
1	EXT_SOURCE_2	660	0.214626
2	AMT_GOODS_PRICE	278	0.090403
3	AMT_ANNUITY	12	0.003902
4	CNT_FAM_MEMBERS	2	0.000650

Features with missing values

Handle duplicated data

₽Insights

• There are only 9 duplicated data.

XActions

• Drop the duplicated data and keep the first data.

Drop duplicates

Number of duplicate rows: 0

```
# Remove duplicates
new_train_app_df = new_train_app_df.drop_duplicates(keep='first')

# Detect duplicate rows based on the 'features' list
duplicate_rows = new_train_app_df.duplicated(keep='first')

# Count the number of duplicates
num_duplicates = duplicate_rows.sum()
print(f"Number of duplicate rows: {num_duplicates}")
```

Outliers handling

₽Insights

• CNT_CHILDREN, CNT_FAM_MEMBERS, AMT_ANNUITY, AMT_GOOD_PRICE have outliers, with <5% of them are below lower threshold (Q1–1.5*IQR) or above upper threshold (Q3+1.5*IQR).

XActions

• Do winsorizing technique, to cap the data with outliers with the threshold.

	outlier_count	outliers (%)
CNT_CHILDREN	4272	1.389259
CNT_FAM_MEMBERS	4007	1.303081
AMT_ANNUITY	7504	2.440309
AMT_GOODS_PRICE	14728	4.789562
EXT_SOURCE_2	0	0.000000
Outliers in t	he numerical features	

Feature Transformation

1. Dimensionality reduction (high cardinality categorical data)

Insights

- CODE_GENDER has three categories (F, M, XNA), with XNA significantly underrepresented.
- ORGANIZATION_TYPE has 23 categories with imbalance distribution across categories.
- NAME_INCOME_TYPE and NAME_EDUCATION_TYPE have significant imbalance across categories.

XActions

- CODE_GENDER: replace XNA with the modus of the data (F)
- ORGANIZATION_TYPE: perform context-based grouping. That is, grouping multiple categories into one categories.
- NAME_INCOME_TYPE and NAME_EDUCATION_TYPE: group rare categories into one category callend 'Other'.

Feature Transformation

2. Feature Encoding (categorical data)

PInsights

- Features with two categories: CODE_GENDER,
 NAME_CONTRACT_TYPE, FLAG_OWN_CAR,
 FLAG_OWN_REALTY, FLAG_EMP_PHONE,
 FLAG_WORK_PHONE, FLAG_PHONE,
 REG_CITY_NOT_LIVE_CITY, REG_CITY_NOT_WORK_CITY,
 LIVE_CITY_NOT_WORK_CITY, FLAG_DOCUMENT_3,
 FLAG_DOCUMENT_6
- Features with more than two categories:
 NAME_INCOME_TYPE, NAME_EDUCATION_TYPE,
 NAME_FAMILY_STATUS, NAME_HOUSING_TYPE,
 ORGANIZATION_TYPE

XActions

- Binary label encoding for features with two categories.
- One-hot encoding for features with more than two categories.

Feature Transformation

3. Standardization and Scaling (numerical features)

Insights

• Features with skewed distribution:

AMT_ANNUITY, AMPT_GOODS_PRICE,

EXT_SOURCE_2

XActions

- Normalize the distribution using log-p transformation (p=1).
- Perform Min-Max scaling for better robustness of the model.

Train/Test split

Training set

451,441 samples 80%

Testing set

61,501 samples 20%

The final dataset contains 39 features:

'NAME_CONTRACT_TYPE', 'CODE_GENDER', 'FLAG_OWN_CAR', 'FLAG_OWN_REALTY', 'FLAG_EMP_PHONE', 'FLAG_WORK_PHONE', 'FLAG_PHONE', 'REG_CITY_NOT_LIVE_CITY', 'REG_CITY_NOT_WORK_CITY', 'LIVE_CITY_NOT_WORK_CITY', 'FLAG_DOCUMENT_3', 'FLAG_DOCUMENT_6', 'CNT_CHILDREN', 'CNT_FAM_MEMBERS', 'NAME_INCOME_TYPE_Other', 'NAME_INCOME_TYPE_Pensioner', 'NAME_INCOME_TYPE_State servant', 'NAME_INCOME_TYPE_Working', 'NAME_EDUCATION_TYPE_Incomplete higher', 'NAME_EDUCATION_TYPE_Other', 'NAME_EDUCATION_TYPE_Secondary / secondary special', 'NAME_FAMILY_STATUS_Married', 'NAME_FAMILY_STATUS_Separated', 'NAME_FAMILY_STATUS_Single / not married', 'NAME_FAMILY_STATUS_Widow', 'NAME_HOUSING_TYPE_House / apartment', 'NAME_HOUSING_TYPE_Municipal apartment', 'NAME_HOUSING_TYPE_Municipal apartment', 'NAME_HOUSING_TYPE_Rented apartment', 'NAME_HOUSING_TYPE_With parents', 'ORGANIZATION_TYPE_Education', 'ORGANIZATION_TYPE_Financial/Telecom', 'ORGANIZATION_TYPE_Others', 'ORGANIZATION_TYPE_Private Sector', 'ORGANIZATION_TYPE_Public Sector', 'ORGANIZATION_TYPE_Service Industry', 'ORGANIZATION_TYPE_TRANSPORT', 'AMT_ANNUITY_Log', 'AMT_GOODS_PRICE_Log', 'EXT_SOURCE_2_Log'

Handle class Imbalance

1. Models

- Logistic Regression
- Decision Tree
- **&K-Nearest Neighbors (KNN)**

2. Model Evaluation

	Accı	ıracy	Precision		Recall		F1-score	
Model	Training	Test	Training	Test	Training	Test	Training	Test
Logistic Regression	0.66233	0.67107	0.66738	0.13650	0.64723	0.56511	0.65718	0.219891
Decision Tree	1.0	0.812	1.0	0.115	1.0	0.192	1.0	0.144
KNN	0.87859	0.68856	0.82285	0.10636	0.96493	0.37780	0.88824	0.16599

Training and test performances measured by accuracy, precision, recall, and F1-score.

3. Evaluation and recommendations

✓ Logistic Regression:

- Training and test accuracy are relatively close, but test precision and F1 score are low.
- Issue: Model struggles to identify positive cases correctly.
- Recommendation: Tune hyperparameters.

Decision Tree:

- Training accuracy is perfect, but test performance is significantly lower, indicating severe overfitting.
- Recommendation: Prune the tree, limit its depth, or use ensemble methods like Random Forest or Gradient Boosting.

WKNN:

- Training accuracy is high, but test accuracy and precision are low.
- Issue: Overfitting and poor generalization to unseen data.
- Recommendation: Tune hyperparameters, particularly n_neighbors.

	Accu	ıracy	Precision		
Model	Training	Test	Training	Test	
Logistic Regression	0.66233	0.67107	0.66738	0.13650	
Decision Tree	1.0	0.812	1.0	0.115	
KNN	0.87859	0.68856	0.82285	0.10636	

	Re	call	F1-score		
Model	Training	Test	Training	Test	
Logistic Regression	0.64723	0.56511	0.65718	0.219891	
Decision Tree	1.0	0.192	1.0	0.144	
KNN	0.96493	0.37780	0.88824	0.16599	

Training and test performances measured by accuracy, precision, recall, and F1-score

4. Feature importance

Insights

- Features with the most importance:
 NAM_HOUSING_TYPE,
 EXT_SOURCE_2, FLAG_EMP_PHONE,
 CNT_CHILDREN, NAME_INCOME, and
 ORGANIZATION_TYPE.
- Features with the least importance:
 FLAG_WORK_PHONE,
 FLAG_DOCUMENT_3, and
 FLAG_OWN_REALTY.

Recommendation

• Consider to remove the least important features to reduce model complexity.

Thank you!