

PA3PAБOTKA СИСТЕМЫ СБОРКИ EMBEDDED LINUX

Яшин Александр Павлович, ПИиКТ, Р3402 Научный руководитель: Ключев А. О., к.т.н. доцент

> Санкт-Петербург 2019

Linux во встроенных системах

Цели и задачи

Целью данного дипломного проекта является проектирование и реализация системы сборки Linux дистрибутивов для встроенных систем.

Для достижения поставленной цели необходимо решить следующие задачи:

- провести анализ существующих систем сборки
- определить требования к системе сборки
- спроектировать архитектуру системы сборки
- реализовать программное обеспечение системы сборки в соответствии
- с разработанной архитектурой
- произвести тестирование системы

Система сборки

Система сборки embedded linux - механизм для создания Linux дистрибутивов, обладающий следующими свойствами:

- позволяет указать архитектуру оборудования;
- позволяет интегрировать приложения пользовательского пространства в образ;
- разрешает параллельную сборку;
- включает набор инструментов для кросс-компиляции;

Существующие системы сборки

Недостатки существующих систем

	Yocto	Buildroot	OpenWRT	Адаптации
Расширяемость				
Конфигурируемость				
Порог вхождения				
Доступность пакетов				
Поддержка производителями плат				

Сценарий разработки образа ВС

Архитектура фазы жизненного цикла

Структура проекта

Сборка образов разделена на несколько стадий, а стадии на несколько шагов для логической ясности и модульности.

Система сборки/ Библиотечные файлы системы сборки Функции конфигурации сборки Общие функции для шагов сборки Функции для управления процессом сборки Исходные файлы стадии →00-step/ -files/ Файлы, необходимые для выполнения шагов -01-run, sh →01-step/ → stage1/ ·work/ Рабочая директория для страдии 0 Содержимое rootfs текущей стадии →biuld.log ····· Лог сборки → stage1/ Собранные файлы образов Конфигурационный файл Docker Исполняемый файл системы

→ config · · · · · · Конфигурационный файл системы сборки

Описание реализации

Система реализована с использованием языка командной оболочки bash, средства контейнеризации docker и утилит debootstrap/chroot.

Основными шагами при сборке являются:

- 1. Создание и запуск docker контейнера;
- 2. Установка базовой системы Debian в подкаталог другой, уже установленной системы; Изменения корневого каталога на каталог, созданный на предыдущем шаге;
- 3. Проведение манипуляций с пакетами внутри копии базовой системы;
- 4. Создание .img файла с образом;

Тестирование системы сборки

Для системы сборки проводилось функциональное тестирование по следующему сценарию: создание docker образа - создание и запуск docker контейнера - конфигурирование системы - сборка.

```
user@host$ docker build -t neutis-debian-based-image:$USER -f Dockerfile .

user@host$ docker start -a -i `docker create -t -i --privilegedheutis-debian-based-image:$USER bash`

root@container$ cd neutis-debian-based-image

root@container$ printf "IMG_NAME='Xenial'\nSKIP_STAGES='3'\nEXPORT_STAGES='1:-bootable
2:-server'\nCPU_CORES='16'" > config

root@container$ ./build.sh
```


Результаты

- 1. В ходе работы над дипломным проектом была спроектирована и реализована система сборки Linux дистрибутивов для встроенных систем.
- 2. Система сборки была протестирована сотрудниками компании Emlid.
- 3. Проведена апробация результатов работы системы. Созданная система сборки используется в коммерческом проекте Emlid Neutis-n5.

Спасибо за внимание

ITSMOre than a UNIVERSITY