System theory without state-space and transfer functions? Yes, it's possible!

Ivan Markovsky

The distinction between model-based and model-free depends on the notion of model

the classical notion is narrow and fragmented

- convolution model
- state-space model
- transfer function model

(non-parametric)

(parametric)

(can be either)

alternative behavioral notion: set of trajectories

- if any model is allowed, constraints are not imposed
- any method is model-based in the behavioral sense

the key feature of model is complexity restriction

\mathscr{B}_1 less complex than $\mathscr{B}_2 \iff \mathscr{B}_1 \subset \mathscr{B}_2$

in the LTI case, complexity ↔ dimension

complexity: (# inputs, order, lag)

$$\boldsymbol{c}(\mathscr{B}) := \big(\boldsymbol{m}(\mathscr{B}), \boldsymbol{n}(\mathscr{B}), \boldsymbol{l}(\mathscr{B})\big)$$

 \mathscr{L}_c — bounded complexity LTI model class

Data-driven representation (exact data)

restriction of
$$w$$
 and \mathscr{B} to finite interval $[1, L]$
$$w|_L := (w(1), \ldots, w(L)), \quad \mathscr{B}|_L := \{w|_L \mid w \in \mathscr{B}\}$$
 for $w_d = (w_d(1), \ldots, w_d(T))$ and $1 \le L \le T$
$$\mathscr{H}_L(w_d) := \left[(\sigma^0 w_d)|_L \quad (\sigma^1 w_d)|_L \quad \cdots \quad (\sigma^{T-L} w_d)|_L \right]$$

$$(\sigma w)(t) := w(t+1), \quad \sigma \mathscr{B} := \{\sigma w \mid w \in \mathscr{B}\}$$
 define
$$\widehat{\mathscr{B}}|_L := \text{image } \mathscr{H}_L(w_d)$$

Conditions for informativity of the data

$$\mathscr{B}|_L = \operatorname{image} \mathscr{H}_L(w_d)$$
 if and only if

$$\operatorname{rank} \mathscr{H}_L(w_d) = L\mathbf{m}(\mathscr{B}) + \mathbf{n}(\mathscr{B})$$

I. Markovsky and F. Dörfler, Identifiability in the Behavioral Setting, 2020 https://imarkovs.github.io/publications/identifiability.pdf

sufficient conditions ("fundamental lemma"):

- 1. $\mathbf{w}_{d} = \begin{bmatrix} u_{d} \\ y_{d} \end{bmatrix}$
- 2. B controllable
- 3. $\mathcal{H}_{L+\mathbf{n}(\mathcal{B})}(u_d)$ full row rank

J.C. Willems et al., A note on persistency of excitation Systems & Control Letters, (54)325–329, 2005

Generic data-driven problem: trajectory interpolation/approximation

```
given: "data" trajectory w_d \in \mathcal{B}|_T partially specified trajectory w|_{I_{\text{given}}} (w|_{I_{\text{given}}} selects the elements of w, specified by I_{\text{given}})
```

aim: minimize over
$$\widehat{w} \| w |_{I_{given}} - \widehat{w} |_{I_{given}} \|$$
 subject to $\widehat{w} \in \mathcal{B}|_{I}$

solution:
$$\widehat{w} = \mathscr{H}_L(w_d) (\mathscr{H}_L(w_d)|_{I_{given}})^+ w|_{I_{given}}$$

Special cases

simulation

- given data: initial conditions and input
- to-be-found: output (exact interpolation)

smoothing

- given data: noisy trajectory
- ▶ to-be-found: ℓ_2 -optimal approximation

tracking

- given data: to-be-tracked trajectory
- ► to-be-found: ℓ_2 -optimal approximation

Example: predicting free fall trajectory without knowing the laws of physics

goal: given initial conditions, find the trajectory p

- model-based approach:
- 1. physics → model
- 2. model + ini. cond. $\mapsto p$
- data-driven approach:
- data p_d^1, \dots, p_d^N + ini. cond. $\mapsto p$

Data-driven free fall prediction method assuming that the data p_d^1, \dots, p_d^N is exact

informative data condition:

$$rank \underbrace{\left[\begin{matrix} p_d^1 & \cdots & p_d^N \end{matrix} \right]}_{P_d} = 5$$

algorithm:

$$\text{1. solve } \begin{bmatrix} p_{\mathrm{d}}^{1}(0\delta) \cdots p_{\mathrm{d}}^{N}(0\delta) \\ p_{\mathrm{d}}^{1}(1\delta) \cdots p_{\mathrm{d}}^{N}(1\delta) \\ p_{\mathrm{d}}^{1}(2\delta) \cdots p_{\mathrm{d}}^{N}(2\delta) \end{bmatrix} g = \underbrace{\begin{bmatrix} p(0\delta) \\ p(1\delta) \\ p(2\delta) \end{bmatrix}}_{\text{ini. cond.}} \left(\delta - \frac{\mathsf{sampling}}{\mathsf{period}} \right)$$

2. define $p := P_d g$

Generalizations

multiple data trajectories
$$w_d^1, \dots, w_d^N$$

$$\mathscr{B} = \text{image}\left[\mathscr{H}_L(w_d^1) \ \cdots \ \mathscr{H}_L(w_d^N)\right]$$

w_d not exact / noisy

maximum-likelihood estimation

- \leadsto Hankel structured low-rank approximation/completion nuclear norm and ℓ_1 -norm relaxations
- view nonparametric, convex optimization problems

nonlinear systems

results for special classes of nonlinear systems: Volterra, Wiener-Hammerstein, bilinear, . . .

Two ways of doing complexity reduction: constrained optimization and regularization

- 1. imposing the hard constraint: $\mathscr{B} \in \mathscr{L}_c$
 - the complexity c is fixed and given
 - requires parametric representation
 - $ightharpoonup \mathscr{L}_c$ has a manifold structure \leadsto nonconvex optimization
- 2. using soft constraints (*e.g.*, $+\lambda ||g||_1$ term)
 - ▶ uses non-parametric representation (e.g., $w = \mathcal{H}_L(w_d)g$)
 - requires tuning of a hyper-parameter, e.g.,

$$\lambda \uparrow \Longrightarrow \text{ sparser } g \Longrightarrow \text{ simpler model}$$

can be used for other types of priori knowledge