Vector

• Consider an n-dimensional vector, x

$$x = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix} \in R^n, \text{ with } v_i \in R$$

• x is usually referred to as a length-n finite duration real-valued signal.

Basis vectors

• Given a signal $x \in \mathbb{R}^n$, we often want to express it as a linear combination of basis vectors (or bases).

$$x \cong c_1 a_1 + c_2 a_2 + \dots + c_m a_m,$$

where $c_i \in R$ are the coefficients and $a_i \in R^n$ are the basis vectors.

Basis vectors

- Choosing the bases or learning them from data is a core problem in many fields:
 - such as signal processing, pattern recognition, and machine learning.

Matrix form

 In matrix form, the basis vectors can be combined in a matrix A, where

$$A = [a_1, a_2, ..., a_m]$$
 is an $n \times m$ matrix.

 The problem of representing a signal x in terms of the bases is therefore written as

$$x = Ac$$

where
$$c = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_m \end{bmatrix}$$
 is the coefficient vector.

The case of m = n

- A typical case is m=n. That is, to represent an n-dimensional signal, we use n basis vectors in the same-dimensional space.
- Finding the coefficients c is equivalent to solving the linear equation systems,

$$x = Ac$$

and the solution is simply $c = A^{-1}x$.

Orthonormal Bases

 Moreover, the bases matrix A is often to be orthonormal (for real-valued matrix), i.e.,

$$A^TA = AA^T = I$$
,

where T' denotes the transpose and I is the identity matrix.

- or A is unitary (for complex-valued matrix), i.e., $A^*A = AA^* = I$, where * denotes the conjugate transpose.
- For orthonormal and unitary matrices, $A^{-1} = A^T$ and $A^{-1} = A^*$, respectively.

Orthonormal or unitary bases

• When the bases A is orthonormal or unitary, given an input signal x, finding the linear combination coefficients to recover x from the bases thus becomes simple,

$$x = Ac \Rightarrow c = A^T x$$

or

$$x = Ac \Rightarrow c = A^*x$$

Example of common orthonormal/unitary bases

- Fourier bases (that is the main and fundamental part of this course), useful for frequency representation.
- A =

```
\begin{pmatrix} 1 & 1 & 1 & 1 & \cdots & 1 \\ 1 & e^{-2\pi j\frac{1}{n}} & e^{-2\pi j\frac{2}{n}} & e^{-2\pi j\frac{3}{n}} & \cdots & e^{-2\pi j\frac{n-1}{n}} \\ 1 & e^{-2\pi j\frac{2}{n}} & e^{-2\pi j\frac{4}{n}} & e^{-2\pi j\frac{6}{n}} & \cdots & e^{-2\pi j\frac{2(n-1)}{n}} \\ 1 & e^{-2\pi j\frac{3}{n}} & e^{-2\pi j\frac{6}{n}} & e^{-2\pi j\frac{9}{n}} & \cdots & e^{-2\pi j\frac{3(n-1)}{n}} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & e^{-2\pi j\frac{n-1}{n}} & e^{-2\pi j\frac{2(n-1)}{n}} & e^{-2\pi j\frac{3(n-1)}{n}} & \cdots & e^{-2\pi j\frac{(n-1)(n-1)}{n}} \end{pmatrix}
```

Example of common orthonormal/unitary bases

- Discrete Cosine Transform (DCT) bases, useful for image data compression.
- \bullet $A^T =$

$$T = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ \cos\frac{\pi}{16} & \cos\frac{3\pi}{16} & \cos\frac{5\pi}{16} & \cos\frac{7\pi}{16} & -\cos\frac{7\pi}{16} & -\cos\frac{5\pi}{16} & -\cos\frac{3\pi}{16} & -\cos\frac{\pi}{16} \\ \cos\frac{\pi}{8} & \cos\frac{3\pi}{8} & -\cos\frac{3\pi}{8} & -\cos\frac{\pi}{8} & -\cos\frac{\pi}{8} & -\cos\frac{\pi}{8} & -\cos\frac{\pi}{8} \\ \cos\frac{3\pi}{16} & -\cos\frac{7\pi}{16} & -\cos\frac{\pi}{16} & -\cos\frac{5\pi}{16} & \cos\frac{\pi}{16} & \cos\frac{\pi}{16} \\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \cos\frac{5\pi}{16} & -\cos\frac{\pi}{16} & \cos\frac{\pi}{16} & \cos\frac{\pi}{16} & -\cos\frac{\pi}{16} \\ \cos\frac{5\pi}{16} & -\cos\frac{\pi}{16} & \cos\frac{\pi}{16} & -\cos\frac{\pi}{16} & -\cos\frac{\pi}{16} \\ \cos\frac{5\pi}{16} & -\cos\frac{\pi}{16} & \cos\frac{\pi}{16} & -\cos\frac{\pi}{16} & -\cos\frac{\pi}{16} \\ \cos\frac{\pi}{16} & -\cos\frac{\pi}{16} & -\cos\frac{\pi}{16} & -\cos\frac{\pi}{16} & -\cos\frac{\pi}{16} \\ \cos\frac{\pi}{16} & -\cos\frac{\pi}{16} & -\cos\frac{\pi}{16} & -\cos\frac{\pi}{16} & -\cos\frac{\pi}{16} \\ \cos\frac{\pi}{16} & -\cos\frac{\pi}{16} & -\cos\frac{\pi}{16} & -\cos\frac{\pi}{16} & -\cos\frac{\pi}{16} \\ \cos\frac{\pi}{16} & -\cos\frac{\pi}{16} & -\cos\frac{\pi}{16} & -\cos\frac{\pi}{16} & -\cos\frac{\pi}{16} \end{bmatrix}$$

9

Example of common orthonormal/unitary bases

- Discrete Wavelet Transform (DWT) bases, useful for feature extraction.
- \bullet $A^T =$

Example: Daubechies-4 wavelet

The case of m < n

- When m < n, the number of bases m is smaller than the signal dimension n.
- In this case, it is impossible to find the coefficients c such that x = Ac.
- We usually find \hat{c} instead that minimizes the squared loss,

$$\hat{c} = \underset{c}{\operatorname{argmin}} \|x - Ac\|^2 .$$

Subspace

That is,

$$\|x - (c_1a_1 + c_2a_2 + \dots + c_ma_m)\|^2$$
 is minimized.

- Let the m-dimensional subspace (or hyperplane) spanned by the vectors $a_1, a_2, ..., a_m$ be denoted as Π_m .
- The problem is equivalently to finding a point \hat{p} lying on the subspace $\Pi_{\rm m}$, such that $\|x \hat{p}\| \le \|x p\|$, $\forall p \in \Pi_{\rm m}$.

Orthogonality principle

Eg., in 3D space,

Figure 4.1: P is the projection of the vector X onto the subspace spanned by Y_1 and Y_2 . That is, X-P is orthogonal to all points in the subspace, and, as seen geometrically, the distance from X to P is smaller than the distance from X to any other point Y in the subspace.

• For the point X, its orthogonal projection P on the plane spanned by Y_1 and Y_2 is also its closest point in that plane.

Orthogonal projection

Hence, the solution of

$$\underset{p \in \Pi_m}{\operatorname{argmin}} \|x - p\|^2$$

is $\hat{p} = proj_{\Pi_m}(x)$, i.e., the orthogonal projection of x on the hyperplane Π_m .

• How to find the orthogonal projection? The projection operator is computed via the pseudo inverse of A (denoted as $A^+ = (A^TA)^{-1}A^T$)

$$proj_{\Pi_m}(x) = AA^+x = A(A^TA)^{-1}A^Tx$$

The optimal coefficient vector is given by

$$\hat{c} = \left(A^T A\right)^{-1} A^T x = A^+ x$$

Orthonormal bases

- For orthonormal bases, i.e., $A^TA = I_m$ (the m-dimensional identity matrix), the pseudo inverse $A^+ = A^T$.
- So, the solution of

$$\underset{c}{\operatorname{argmin}} \|x - Ac\|^2$$

is simply $\hat{c} = A^T x$ when A is orthonormal.

Learning bases from data

- In the above, we consider the problem of finding the coefficients, where the bases are given.
- Learning the bases from data:
 - If the bases are unknown, they could be learned from data.
 - Assume a set of data, called the training data, are available. We learn both the bases and coefficients that represent the training data.
 - Here, we do not assume that the training data have labels; thus it is a kind of unsupervised learning

Dictionary Learning

Problem formulation of dictionary learning:

$$X \cong BC$$

where $X \in \mathbb{R}^{n \times N}$ is the **data matrix** consisting of N training samples with each sample an n-dimensional column vector.

- $X = [x_1 \ x_2 \cdots x_N], x_i \in \mathbb{R}^n, i = 1 \cdots N.$
- $B \in \mathbb{R}^{n \times m}$ is the dictionary (i.e., bases matrix), m < n.
- $C \in \mathbb{R}^{m \times N}$ is the coefficient matrix, m < n.
- Both the dictionary B and the coefficients C are unknown.

Matrix Factorization

$$X \cong BC$$

- The rank of BC is m and the data matrix X is of rank n for the general setting, where m < n.
- The above dictionary learning problem is thus analogous to the problem of low-rank matrix factorization, or simply matrix factorization.
- That is, factorizing the data matrix X (rank n) into two low-rank matrices, B and C (rank m).

Squared-error loss

 We often consider the squared-error loss, i.e., find both the dictionary and coefficients satisfying

$$\underset{B,C}{\operatorname{argmin}} \|X - BC\|_F^2 = \sum_{i=1}^N \|x_i - Bc_i\|^2,$$

where 'F' denotes the Frobenius norm, x_i is the *i*-th column of X and also the *i*-th training sample; c_i consists of the coefficients w.r.t. the bases B.

 The dictionary learned from the training data can then serve as the bases for future data representation.

Infinite solutions of the bases (cont.)

$$\underset{B,C}{\operatorname{argmin}} \|X - BC\|_F^2 \text{ with } m < n$$

• If B, C are solutions, then $\hat{B} = BQ$, and $\hat{C} = Q^{-1}C$ are also solutions, where $Q \in R^{m \times m}$ is an arbitrary matrix satisfying $QQ^{-1} = I$.

 So, the matrix factorization problem has infinite solutions.

Finding the bases: the case of m < n

• When the number of bases m is smaller than the data dimension n, consider the equation

$$\underset{B,C}{\operatorname{argmin}} \sum_{i=1}^{N} ||x_i - Bc_i||^2.$$

- Let b_1, b_2, \dots, b_m be the columns of B.
- Denote the m-dimensional subspace spanned by the bases b_1, b_2, \ldots, b_m (B's columns) as $\Pi_{B:m}$.

According to the orthogonal principle, the problem becomes

$$\underset{B}{\operatorname{argmin}} \sum_{i=1}^{N} ||x_i - proj(x_i, \Pi_{B;m})||^2,$$

i.e., find the m-dimensional hyperplane (m < n) such that the sum of squared distances between the training samples and their projections to that hyperplane is minimized.

Eg., the case of n=2 and m=1 is illustrated as

One solution of this problem can be found by principle component analysis (PCA)

