Véletlen fizikai folyamatok, első házi feladat

Horváth Bendegúz

2018. február 13.

2. feladat

A feladat szövege

Feldobott érme leesése után egyenlő valószínűséggel fej (F) vagy írás (I).

- (a) Dobjuk fel az érmét kétszer. Milyen valószínűséggel kapunk két fejet (FF), illetve fej-írás (FI) sorrendet? Ugyanaz a két valószínűség?
- (b) Játsszuk a következő játékot! Addig dobálunk, amíg vagy két fej (FF én nyerek), vagy fej-írás (FI te nyersz) jön ki. Igazságos ez a játék?

A feladat megoldása

(a) Két kimenetelű rendszernek tekinthető a feldobott érme rendszere, egyforma valószínűségű végkimenetelekkel, így $P(F)=\frac{1}{2}$ a fej valószínűsége, és $P(I)=\frac{1}{2}$ az írás valószínűsége. Két dobás kimenetele a valószínűségek szorzata:

$$P(F,F) = P(F) \cdot P(F) = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}$$

$$P(F,I) = P(F) \cdot P(I) = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}$$

$$P(I,I) = P(I) \cdot P(I) = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}$$

$$P(I,F) = P(I) \cdot P(F) = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}$$

A valószínűség $P=\frac{\text{kedvező elemi események száma}}{\text{összes elemi események száma}}$ értelmezésével az elemi események FF, IF, FI, II, kijön az előbbi végeredmény, hogy a két valószínűség egyforma, értékük $\frac{1}{4}$.

(b) A dobások kimenetelei nem függnek az előző dobás végeredményétől. Az játékban az első fej kimenetel után a következő dobással valaki nyer, vagy FI vagy FF sorozat lesz belőle. Mind a kettőnek 0.5 a valószínűsége,mind a kettőnknek ugyanannyi esélye van nyerni, így igazságos a játék.

3. feladat

A feladat szövege

Egydimenziós mozgást végző részecske τ időközönként véletlen irányú erő hatására előző helyzetétől l távolságra ugrik (egyenlő $p_+ = p_- = \frac{1}{2}$ valószínűséggel jobbra vagy balra). A részecske az $x_0 = 0$ pontból indul. Határozzuk meg a $t = N\tau$ idő alatti elmozdulás és az elmozdulás négyzetének átlagát, $\langle x_t \rangle$ -t és $\langle x_t^2 \rangle$ -t! Vizsgáljuk a fenti problémát $p_+ = 3p_-$ esetre és számítsuk ki az $\langle x_t \rangle$, $\langle x_t^2 \rangle$, és $\langle x_t^2 \rangle - \langle x_t \rangle^2$ átlagokat!

A feladat megoldása