Arithmetic for Computers

Lecture 3 September 20th, 2023

Jae W. Lee (jaewlee@snu.ac.kr)
Computer Science and Engineering
Seoul National University

Slide credits: [CS:APP3e] slides from CMU; [COD:RV2e] slides from Elsevier Inc.

Where Are We?

Abstraction Layers in Modern Systems

^{*} Sources: CS 252 lecture notes from Prof. Kubiatowicz (UC Berkeley).

Coursera lecture notes for HW/SW Interface from Profs. Borriello and Ceze (Univ. of Washington).

Introduction

Bits are just bits

- No inherent meaning: conventions define relationship between bits and numbers
- n-bit binary numbers: 0 ~ 2ⁿ-1 decimal numbers

Of course it gets more complicated

- Numbers are finite (overflow)
- Negative numbers
- Fractions and real numbers
- Precision and accuracy
- Error propagation, ...

Arithmetic for Computers: An Overview

Operations on integers

- Textbook: COD 3.1-3.4
- Addition and subtraction
- Multiplication and division
- Dealing with overflow

Floating-point real numbers

- Textbook: P&H 3.5
- Representation and operations

Subword parallelism

Textbook: P&H 3.6

Integer Addition

■ Example: 7 + 6

Overflow if result out of range

- Adding +ve and –ve operands, no overflow
- Adding two +ve operands
 - Overflow if result sign is 1
- Adding two –ve operands
 - Overflow if result sign is 0

Integer Subtraction

- Add negation of second operand
- **Example:** 7 6 = 7 + (-6)

```
+7: 0000 0000 ... 0000 0111
```

-6: 1111 1111 ... 1111 1010

+1: 0000 0000 ... 0000 0001

Overflow if result out of range

- Subtracting two +ve or two –ve operands, no overflow
- Subtracting +ve from –ve operand
 - Overflow if result sign is 0
- Subtracting –ve from +ve operand
 - Overflow if result sign is 1

Simple Adder

n-bit ripple-carry adder

Arithmetic for Multimedia

- Graphics and media processing operates on vectors of 8bit and 16-bit data
 - Use 64-bit adder, with partitioned carry chain
 - Operate on 8×8-bit, 4×16-bit, or 2×32-bit vectors
 - SIMD (single-instruction, multiple-data)
- Saturating operations
 - On overflow, result is largest representable value
 - cf. 2s-complement modulo arithmetic
 - e.g., clipping in audio, saturation in video

Multiplication

Start with long-multiplication approach

Multiplication Hardware

Optimized Multiplier

Perform steps in parallel: add/shift

- One cycle per partial-product addition
 - That's ok, if frequency of multiplications is low

Faster Multiplier

- Uses multiple adders
 - Cost/performance tradeoff

Can be pipelined

Several multiplication performed in parallel

RISC-V Multiplication

Four multiply instructions:

- mul: multiply
 - Gives the lower 64 bits of the product
- mulh: multiply high
 - Gives the upper 64 bits of the product, assuming the operands are signed
- mulhu: multiply high unsigned
 - Gives the upper 64 bits of the product, assuming the operands are unsigned
- mulhsu: multiply high signed/unsigned
 - Gives the upper 64 bits of the product, assuming one operand is signed and the other unsigned
- Use mulh result to check for 64-bit overflow

Division

n-bit operands yield *n*-bit quotient and remainder

Check for 0 divisor

Long division approach

- If divisor ≤ dividend bits
 - 1 bit in quotient, subtract
- Otherwise
 - 0 bit in quotient, bring down next dividend bit

Restoring division

 Do the subtract, and if remainder goes < 0, add divisor back

Signed division

- Divide using absolute values
- Adjust sign of quotient and remainder as required

Division Hardware

Optimized Divider

- One cycle per partial-remainder subtraction
- Looks a lot like a multiplier!
 - Same hardware can be used for both

Faster Division

- Can't use parallel hardware as in multiplier
 - Subtraction is conditional on sign of remainder
- Faster dividers (e.g. SRT devision) generate multiple quotient bits per step
 - Still require multiple steps

Right Shift and Division

- Left shift by i places multiplies an integer by 2i
- Right shift divides by 2ⁱ?
 - Only for unsigned integers
- For signed integers
 - Arithmetic right shift: replicate the sign bit
 - e.g., -5 / 4
 - 11111011₂ >> 2 = 111111110₂ = -2
 - Rounds toward -∞
 - c.f. $\frac{1}{11111011_2} >>> 2 = \frac{001}{111110_2} = +62$

RISC-V Division

Four instructions:

- div, rem: signed divide, remainder
- divu, remu: unsigned divide, remainder

Overflow and division-by-zero don't produce errors

- Just return defined results
- Faster for the common case of no error

Arithmetic for Computers: An Overview

Operations on integers

- Textbook: COD 3.1-3.4
- Addition and subtraction
- Multiplication and division
- Dealing with overflow

Floating-point real numbers

- Textbook: P&H 3.5
- Representation and operations

Subword parallelism

Textbook: P&H 3.6

Floating Point

- Representation for non-integral numbers
 - Including very small and very large numbers
- Like scientific notation
- In binary
 - $\pm 1.xxxxxxx_2 \times 2^{yyyy}$
- Types float and double in C

Floating Point Standard

- Defined by IEEE Std 754-1985
- Developed in response to divergence of representations
 - Portability issues for scientific code
- Now almost universally adopted
- Two representations
 - Single precision (32-bit)
 - Double precision (64-bit)

IEEE Floating-Point Format

single: 8 bits single: 23 bits double: 11 bits double: 52 bits

S Exponent Fraction

$$x = (-1)^{S} \times (1 + Fraction) \times 2^{(Exponent-Bias)}$$

- S: sign bit $(0 \Rightarrow \text{non-negative}, 1 \Rightarrow \text{negative})$
- Normalize significand: 1.0 ≤ |significand| < 2.0</p>
 - Always has a leading pre-binary-point 1 bit, so no need to represent it explicitly (hidden bit)
 - Significand is Fraction with the "1." restored
- Exponent: excess representation: actual exponent + Bias
 - Ensures exponent is unsigned
 - Single: Bias = 127; Double: Bias = 1203

Single-Precision Range

Exponents 00000000 and 11111111 reserved

Smallest value

- Exponent: 00000001⇒ actual exponent = 1 - 127 = -126
- Fraction: $000...00 \Rightarrow \text{significand} = 1.0$
- $\pm 1.0 \times 2^{-126} \approx \pm 1.2 \times 10^{-38}$

Largest value

- exponent: 11111110 \Rightarrow actual exponent = 254 - 127 = +127
- Fraction: 111...11 ⇒ significand ≈ 2.0
- $\pm 2.0 \times 2^{+127} \approx \pm 3.4 \times 10^{+38}$

Double-Precision Range

- Exponents 0000...00 and 1111...11 reserved
- Smallest value
 - Exponent: 0000000001⇒ actual exponent = 1 - 1023 = -1022
 - Fraction: $000...00 \Rightarrow \text{significand} = 1.0$
 - $\pm 1.0 \times 2^{-1022} \approx \pm 2.2 \times 10^{-308}$

Largest value

- Fraction: 111...11 ⇒ significand ≈ 2.0
- $\pm 2.0 \times 2^{+1023} \approx \pm 1.8 \times 10^{+308}$

Floating-Point Precision

Relative precision

- all fraction bits are significant
- Single: approximately 2⁻²³
 - Equivalent to $23 \times \log_{10} 2 \approx 23 \times 0.3 \approx 6$ decimal digits of precision
- Double: approximately 2⁻⁵²
 - Equivalent to $52 \times \log_{10} 2 \approx 52 \times 0.3 \approx 16$ decimal digits of precision

Floating-Point Example

- Represent –0.75
 - $-0.75 = (-1)^1 \times 1.1_2 \times 2^{-1}$
 - S = 1
 - Fraction = $1000...00_2$
 - Exponent = -1 + Bias
 - Single: $-1 + 127 = 126 = 011111110_2$
 - Double: $-1 + 1023 = 1022 = 0111111111110_2$
- Single: 1011111101000...00
- Double: 1011111111101000...00

Floating-Point Example

What number is represented by the single-precision float

11000000101000...00

- S = 1
- Fraction = $01000...00_2$
- Fxponent = $10000001_2 = 129$
- $x = (-1)^{1} \times (1 + 01_{2}) \times 2^{(129 127)}$ $= (-1) \times 1.25 \times 2^{2}$ = -5.0

Denormal Numbers

■ Exponent = $000...0 \Rightarrow$ hidden bit is 0

$$x = (-1)^{S} \times (0 + Fraction) \times 2^{-Bias}$$

- Smaller than normal numbers
 - allow for gradual underflow, with diminishing precision
- Denormal with fraction = 000...0

$$\mathbf{x} = (-1)^{S} \times (0+0) \times 2^{-Bias} = \pm 0.0$$
Two representations of 0.0!

Infinities and NaNs

- Exponent = 111...1, Fraction = 000...0
 - ±Infinity
 - Can be used in subsequent calculations, avoiding need for overflow check
- Exponent = 111...1, Fraction ≠ 000...0
 - Not-a-Number (NaN)
 - Indicates illegal or undefined result
 - e.g., 0.0 / 0.0
 - Can be used in subsequent calculations

Floating-Point Addition

- Consider a 4-digit decimal example
 - $-9.999 \times 10^{1} + 1.610 \times 10^{-1}$
- 1. Align decimal points
 - Shift number with smaller exponent
 - \bullet 9.999 × 10¹ + 0.016 × 10¹
- 2. Add significands
 - $9.999 \times 10^{1} + 0.016 \times 10^{1} = 10.015 \times 10^{1}$
- 3. Normalize result & check for over/underflow
 - -1.0015×10^2
- 4. Round and renormalize if necessary
 - 1.002×10^2

Floating-Point Addition

- Now consider a 4-digit binary example
 - $1.000_2 \times 2^{-1} + -1.110_2 \times 2^{-2} (0.5 + -0.4375)$
- 1. Align binary points
 - Shift number with smaller exponent
 - $1.000_2 \times 2^{-1} + -0.111_2 \times 2^{-1}$
- 2. Add significands
 - $1.000_2 \times 2^{-1} + -0.111_2 \times 2^{-1} = 0.001_2 \times 2^{-1}$
- 3. Normalize result & check for over/underflow
 - $1.000_2 \times 2^{-4}$, with no over/underflow
- 4. Round and renormalize if necessary
 - $1.000_2 \times 2^{-4}$ (no change) = 0.0625

FP Adder Hardware

- Much more complex than integer adder
- Doing it in one clock cycle would take too long
 - Much longer than integer operations
 - Slower clock would penalize all instructions
- FP adder usually takes several cycles
 - Can be pipelined

FP Adder Hardware

Floating-Point Multiplication

- Consider a 4-digit decimal example
 - $1.110 \times 10^{10} \times 9.200 \times 10^{-5}$
- 1. Add exponents
 - For biased exponents, subtract bias from sum
 - New exponent = 10 + -5 = 5
- 2. Multiply significands
 - $1.110 \times 9.200 = 10.212 \implies 10.212 \times 10^{5}$
- 3. Normalize result & check for over/underflow
 - -1.0212×10^6
- 4. Round and renormalize if necessary
 - 1.021×10^6
- 5. Determine sign of result from signs of operands
 - $+1.021 \times 10^6$

Floating-Point Multiplication

- Now consider a 4-digit binary example
 - $1.000_2 \times 2^{-1} \times -1.110_2 \times 2^{-2} \ (0.5 \times -0.4375)$
- 1. Add exponents
 - Unbiased: -1 + -2 = -3
 - Biased: (-1 + 127) + (-2 + 127) = -3 + 254 127 = -3 + 127
- 2. Multiply significands
 - $1.000_2 \times 1.110_2 = 1.110_2 \implies 1.110_2 \times 2^{-3}$
- 3. Normalize result & check for over/underflow
 - $1.110_2 \times 2^{-3}$ (no change) with no over/underflow
- 4. Round and renormalize if necessary
 - $1.110_2 \times 2^{-3}$ (no change)
- 5. Determine sign: +ve × -ve ⇒ -ve
 - $-1.110_2 \times 2^{-3} = -0.21875$

FP Arithmetic Hardware

- FP multiplier is of similar complexity to FP adder
 - But uses a multiplier for significands instead of an adder
- FP arithmetic hardware usually does
 - Addition, subtraction, multiplication, division, reciprocal, square-root
 - FP → integer conversion
- Operations usually takes several cycles
 - Can be pipelined

FP Instructions in RISC-V

- Separate FP registers: f0, ..., f31
 - double-precision
 - single-precision values stored in the lower 32 bits
- **■** FP instructions operate only on FP registers
 - Programs generally don't do integer ops on FP data, or vice versa
 - More registers with minimal code-size impact
- FP load and store instructions
 - flw, fld
 - fsw, fsd

FP Instructions in RISC-V

Single-precision arithmetic

- fadd.s, fsub.s, fmul.s, fdiv.s, fsqrt.s
 e.g., fadds.s f2, f4, f6
- Double-precision arithmetic
 - fadd.d, fsub.d, fmul.d, fdiv.d, fsqrt.d
 e.g., fadd.d f2, f4, f6
- Single- and double-precision comparison
 - feq.s, flt.s, fle.s
 - feq.d, flt.d, fle.d
 - Result is 0 or 1 in integer destination register
 - Use beg, bne to branch on comparison result
- Branch on FP condition code true or false
 - B.cond

FP Example: °F to °C

C code:

```
float f2c (float fahr) {
  return ((5.0/9.0)*(fahr - 32.0));
}
```

fahr in f10, result in f10, literals in global memory space

Compiled RISC-V code:

```
flw f0,const5(x3) // f0 = 5.0f

flw f1,const9(x3) // f1 = 9.0f

fdiv.s f0, f0, f1 // f0 = 5.0f / 9.0f

flw f1,const32(x3) // f1 = 32.0f

fsub.s f10,f10,f1 // f10 = fahr - 32.0

fmul.s f10,f0,f10 // f10 = (5.0f/9.0f) * (fahr-32.0f)

jalr x0,0(x1) // return
```

FP Example: Array Multiplication

- $\mathbf{C} = \mathbf{C} + \mathbf{A} \times \mathbf{B}$
 - All 32 × 32 matrices, 64-bit double-precision elements
- C code:

Addresses of c, a, b in x10, x11, x12, and i, j, k in x5, x6, x7

FP Example: Array Multiplication

RISC-V code:

```
mm: . . .
      lί
           x28,32 // x28 = 32 (row size/loop end)
      li
           x5,0
                       // i = 0; initialize 1st for loop
    li x6,0
                      // j = 0; initialize 2nd for loop
L1:
L2: 1i x7.0
                      // k = 0; initialize 3rd for loop
      slli x30,x5,5 // x30 = i * 2**5 (size of row of c)
          x30,x30,x6 // x30 = i * size(row) + j
      add
      slli x30,x30,3 // x30 = byte offset of [i][j]
          x30,x10,x30 // x30 = byte address of c[i][j]
      add
      fld
          f0,0(x30) // f0 = c[i][i]
      slli x29,x7,5 // x29 = k * 2**5 (size of row of b)
L3:
          x29,x29,x6 // x29 = k * size(row) + i
      add
      slli x29, x29, 3 // x29 = byte offset of [k][j]
      add
           x29,x12,x29 // x29 = byte address of b[k][j]
      f1d
          f1.0(x29) // f1 = b[k][i]
```

FP Example: Array Multiplication

...

```
slli x29,x5,5 // x29 = i * 2**5 (size of row of a)
add x29, x29, x7 // x29 = i * size(row) + k
slli x29, x29, 3 // x29 = byte offset of [i][k]
add x29,x11,x29 // x29 = byte address of a[i][k]
fld f2,0(x29) // f2 = a[i][k]
fmul.d f1, f2, f1 // f1 = a[i][k] * b[k][j]
fadd.d f0, f0, f1 // f0 = c[i][j] + a[i][k] * b[k][j]
addi x7, x7, 1  // k = k + 1
bltu x7,x28,L3 // if (k < 32) go to L3
fsd f0,0(x30) // c[i][j] = f0
addi x6, x6, 1 // j = j + 1
bltu x6,x28,L2 // if (j < 32) go to L2
addi x5, x5, 1 // i = i + 1
bltu x5,x28,L1 // if (i < 32) go to L1
```

43

Accurate Arithmetic

- IEEE Std 754 specifies additional rounding control
 - Extra bits of precision (guard, round, sticky)
 - Choice of rounding modes
 - Allows programmer to fine-tune numerical behavior of a computation
- Not all FP units implement all options
 - Most programming languages and FP libraries just use defaults
- Trade-off between hardware complexity, performance, and market requirements

Associativity

- Parallel programs may interleave operations in unexpected orders
 - Assumptions of associativity may fail

		(x+y)+z	x+(y+z)
X	-1.50E+38		-1.50E+38
У	1.50E+38	0.00E+00	
Z	1.0	1.0	1.50E+38
		1.00E+00	0.00E+00

 Need to validate parallel programs under varying degrees of parallelism

Who Cares About FP Accuracy?

- Important for scientific code
 - But for everyday consumer use?
 - "My bank balance is out by 0.0002¢!"
- The Intel Pentium FDIV bug
 - The market expects accuracy
 - See Colwell, The Pentium Chronicles

Arithmetic for Computers: An Overview

Operations on integers

- Textbook: COD 3.1-3.4
- Addition and subtraction
- Multiplication and division
- Dealing with overflow

Floating-point real numbers

- Textbook: P&H 3.5
- Representation and operations

Subword parallelism

Textbook: P&H 3.6

Subword Parallellism

- Graphics and audio applications can take advantage of performing simultaneous operations on short vectors
 - Example: 128-bit adder:
 - Sixteen 8-bit adds
 - Eight 16-bit adds
 - Four 32-bit adds
- Also called data-level parallelism, vector parallelism, or Single Instruction, Multiple Data (SIMD)

SIMD Extensions

- Example: Intel MMX (1997)
 - 57 additional 80x86 instructions (1st since 386)
 - similar to Intel 860, Mot. 88110, HP PA-71000LC, UltraSPARC
 - 3 data types: 8 8-bit, 4 16-bit, 2 32-bit in 64bits
 - reuse 8 FP registers (FP and MMX cannot mix)
 - short vector: load, add, store 8 8-bit operands

- Claim: overall speedup 1.5 to 2X for 2D/3D graphics, audio, video, speech, comm., ...
 - use in drivers or added to library routines; no compiler

SIMD Extensions

Example: Intel MMX instructions

- Move 32b, 64b
- Add, Subtract in parallel: 8 8b, 4 16b, 2 32b
 - opt. signed/unsigned saturate (set to max) if overflow
- Shifts (sll,srl, sra), And, And Not, Or, Xor in parallel: 8 8b, 4 16b, 2
 32b
- Multiply, Multiply-Add in parallel: 4 16b
- Compare = , > in parallel: 8 8b, 4 16b, 2 32b
 - sets field to 0s (false) or 1s (true); removes branches
- Pack/Unpack
 - Convert 32b<-> 16b, 16b <-> 8b
 - Pack saturates (set to max) if number is too large

SIMD Extensions

Streaming SIMD Extension 2 (SSE2) (2001)

- Adds 4 × 128-bit registers
 - Extended to 8 registers in AMD64/EM64T
- Can be used for multiple FP operands
 - 2 × 64-bit double precision
 - 4 × 32-bit double precision
 - Instructions operate on them simultaneously
 - Single-Instruction Multiple-Data

Up-to-date version: AVX-512 (2015)

- Advanced Vector Extensions
- 512-bit SIMD registers
- Targets machine learning, high-performance computing, etc.

Concluding Remarks

- Bits have no inherent meaning
 - Interpretation depends on the instructions applied
- Computer representations of numbers
 - Finite range and precision
 - Need to account for this in programs