Overall Notation for EconTeX

- A End-of-period t assets
- B Middle-of-period t balances (= R_tK_t); bequests in Ricardian equivalence analysis
- C Consumption
- D Outstanding government debt/bonds
- e Labor effort exerted
- F Production function
- G Growth factor for labor income
- H Human wealth, Habit Stock
- I Investment
- J Adjustment costs
- K Capital/beginning of period nonhuman assets
- L Labor
- ℓ individual level labor supply
- M Market resources (capital, capital income, and labor income)
- N Population growth factor
- O Net wealth including human wealth
- P Permanent labor income
- Q Hayashi/Abel Q
 - Ratio of actual to perceived income (EpiOfC)
- R Interest factor
- S Aggregate State
- T Taxes
- U Utility
- V Value
- W Wages
- X Expenditures (as distinct from consumption)
- Y Labor income
- Z Taxes minus expenditures (positive means gov taking more than giving)
 - LeiZure in consumption/leisure tradeoff
 - End-of-period capital (in q model)
- \mathcal{R} Within-period interest factor $(1 + F_K)$
- R Between period interest factor $((1 + F_K) \mathbb{k})$
 - r Between-period interest rate ($\approx F_K \delta$)
- \mathfrak{R}_{t+1} Between-period Blanchard-adjusted but not growth-adjusted interest factor $(\mathcal{R}_{t+1} \mathbb{k}/\Omega)$
- \mathbb{R}_{t+1} Between-period growth-adjusted interest factor $(\mathcal{R}_{t+1} \mathbb{k}/\Omega \Psi_{t+1})$

Non-Roman characters (mainly Greek)

- α General purpose constant
- β Discount factor
- δ Depreciation rate
- \neg Depreciation factor = (1δ) or $1/(1 + \delta)$ or $e^{-\delta}$
- ϵ An iid shock
- ε Share of K in Cobb-Douglas pdn fcn; (CurlyEpsilon in Mathematica)
- μ Marginal utility
- θ Transitory shock to income
- κ Marginal propensity to konsume (after m realized)
- \varkappa Marginal propensity to have consumed (at end of period, after consumption)
- λ Marginal propensity to save (leave unkonsumed; BSTheory)
- o Hayashi/Abel q
- ν Beginning-of-period value function
- π probability
- ρ Coefficient of relative risk aversion
- ϑ time preference rate
- ψ idiosyncratic permanent shock
- Ψ aggregate permanent shock
- Ψ underlying ('underline') permanent growth rate
- Ξ Population growth factor
- ξ Population growth rate
- Ω Probability of living from one period to the next
- $U = 1 \Omega$ Probability of dying
 - t tax rate individual basis (GA models); corporate tax rate (q model)
 - φ log return on equity/risky investment
 - $\hat{\varphi}$ $= \varphi \mathbf{r} = \log \text{ equity premium}$
 - Φ taxes collected from all individuals
 - Return factor on risky investment, where Φ/\mathbf{R} is the premium
 - ϱ investment tax credit rate
 - ξ expenditures on investment (i+j) times tax terms (q model)
 - Ξ transitory shock excluding zero-income events (Endgenous Gridpoints paper)
 - φ probability of zero-income events (Endogenous Gridpoints/TractableBufferStock)
 - ω adjustment cost parameter (q model)
 - χ consumption growth rate (= $(R\beta)^{1/\rho}$)
 - $\varsigma j_t^i j_t^k \text{ in } q \text{ model}$
 - portfolio share in risky assets in portfolio models
 - ℵ Capital/Output Ratio

Operators

- \mathbb{P}_s^t Present discounted value between s and t
- \mathbb{P}_t Present discounted value between t and end of horizon
- \mathbb{E} Expectations

Commands That Produce Variables

```
\Eprem - \hat{\mathbf{R}} = \mathbf{R}/\mathsf{R}
 \text{eprem - } \hat{\mathbf{r}} = \mathbf{r} - \mathbf{r}
 \Estdr -
                   \sigma_{\mathbf{r}}
 \Evarr - \sigma_{f r}^2
\PopGro - ∃
 \lambda labor - \ell
\popGro - \xi \Risky - \mathbf R
 \risky - r
 \Rfree -
                    R
 \rdent r
   \util - u
   \WMkt - m{M}
   \dot{ackslash}WHum - oldsymbol{H}
   \Wall - O
   \backslash \mathtt{wAll} - o
```