CSCE 5640: Operating System Design Homework-2

Name: Kishan Kumar Zalavadia

EUID: 11685261

3. (40) Consider the following set of processes, with the length of the CPU burst time given in milliseconds:

Process	Burst Time	Priority
<i>P</i> 1	2	2
P2	1	1
<i>P</i> 3	9	4
P4	4	2
<i>P</i> 5	6	3

The processes are assumed to have arrived in the order P1, P2, P3, P4, P5, all at time 0.

- a. Draw four Gantt charts that illustrate the execution of these processes using the following scheduling algorithms: FCFS, SJF, nonpreemptive priority (a smaller priority number implies a higher priority), and RR (quantum = 2).
- b. What is the turnaround time of each process for each of the scheduling algorithms in part a?
- c. What is the waiting time of each process for each of these scheduling algorithms?
- d. Which of the algorithms results in the minimum average waiting time (over all processes)?

Λ	n	c.
_	•••	э.

a.

b) Turn arrand time = Completion Time - Arrival Time.

	PI	P2	P3	PU	P.5.	1 65	19
FCFS	2	3	12	16	22	2 3	0
SJF	3	1	22	7	13		
Poionity	3	90	22	73	13 49	8 3	100
RR	2	3	22	13	1999	vitam	n-Prec

c) Waiting time = Turnaround time - Burst time.

	PI	P2	P3	P4	(P5p) 9 9
FCFS	200	9 29 1	19 39 8	12/89	1691 92
SJF	1	0	13	3	7
Poisoity	1	O	13	3	7:19
RR /	0	2	13	9.88	13:29 93:37 94:420
					4.1.1.1

RR P3: 3+(9-5)+(15-11)+(19-17)=13

P4: 5+(11-7)=9

Ps: 7+(13-9)+(17-15)=13

FCFS: =
$$0+2+3+12+16 = \frac{33}{5} = 6.6$$
 unit time

$$SJF: 1+0+13+3+7 = \frac{24}{5} = 4.8$$
 unit time

Paiority:
$$1+0+13+3+7 = 24 = 4.8$$
 unit time

RR:
$$0+2+13+9+13 = \frac{37}{5} = 7.2$$
 unit time

Best algorithm with minimum any time are

SJF and Priority

- 4. (20) Consider two processes, P1 and P2, where P1 has a period of p1 = 50 and CPU burst t1 = 30. For P2, the corresponding values are p2 = 75, and t2 = 25.
 - a) Can these two processes be scheduled using rate-monotonic scheduling? Illustrate your answer using a Gantt chart such as the ones in Figure 5.21–Figure 5.24.
 - b) Illustrate the scheduling of these two processes using earliest-deadline-first (EDF) scheduling.

Ans:

a.

The deadline is missed for P2. So, the two processes cannot be scheduled using rate-monotonic scheduling.

b.

