

Unsupervised Learning-Matrix Completion

STAT 542 Final Project Group 11

Outline

I

- Dataset Introduction
- Models
- Results Comparison (RMSE)
- Difficulties

Dataset Introduction

I

Motivation

- Most of the ratings are 3, and could be due to that the students have not tried the restaurants
- The dataset was collected from students, and we want to obtain a similar dataset from students to work on

Description

- Created an identical survey with the same 15 restaurants and the same rating scale (1 to 5)
- Collected from 50 students of UIUC
- (n, p) = (50, 15)
- Training set: 50% sparsity

KNN

- Compute similarity of the data points
- Define *k* nearest neighbor

I

Similarity Measures

Pearson correlation:

$$m_{Pearson}(X,Y) = \frac{1}{n-1} \sum_{l=1}^{n} (\frac{x_l - \bar{x}}{s_x}) (\frac{y_l - \bar{y}}{s_y})$$
, Similarity $s = \frac{m+1}{2}$

Cosine Similarity:

$$m_{cosine}(X,Y) = \frac{X \cdot Y}{\|X\| \|Y\|}$$
 , Similarity $s = \frac{m+1}{2}$

Euclidean Distance:

$$d(X,Y) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2} , \text{ Similarity } s = \frac{1}{1+d}$$

User-Based Collaborative Filtering Using KNN

User-Based Collaborative Filtering

- Find a neighborhood of similar users:
 - Missing ratings are skipped in the calculation.
 - Compute similarity.
 - Define number k of nearest neighbors (select highest similarity).
- Predict missing ratings by taking the average rating of users in the *k* nearest neighborhood.

User-Based Collaborative Filtering

User-Based CF using KNN

Results

Similarity measure	Optimal K	RMSE	
Pearson	11	0.6640	
Cosine	26	0.6442	
Euclidean	22	0.6415	

Item-Based Collaborative Filtering Using KNN

Item-Based Collaborative Filtering

- Find a neighborhood of similar items:
 - Missing ratings are skipped.
 - Compute similarity.
 - Define number k of nearest neighbors (select highest similarity).

- Predict missing ratings by taking the weighted-average rating of items in the *k* nearest neighborhood.
 - Weight: similarity
 - Rating: user's rating matched similar items

Item-Based Collaborative Filtering

\mathbf{S}	$i_{_I}$	i_2	$i_{_3}$	$i_{_4}$	i_{5}	i_6	i_7	$i_{_8}$	$\hat{r}_{_a}$	k=3
$i_{_I}$	-	0.1	0		0.2	0.4	0	0.1	-	
i_2	0.1	-	0.8	0.9	0	0.2	0.1	0	0.0	
$i_{_3}$	0	0.8	-	0	0.4	0.1	0.3	0.5	4.6	
	0.3	0.9	0	-	0	0.1	0	0.2	3.2	
i_{5}	0.2	0	0.4	0	-	0.1	0.2	0.1	-	
	0.4	0.2	0.1	0.3	0.1	-	0	0.1	2.0	
i ₇	0	0.1	0.3	0	0.2	0	-	0	4.0	
$i_{_{8}}$	0.1	0	0.5	0.2	0.1	0.1	0	-	-	
u_a	2	?	?	?	4	?	?	5		

Item-Based CF using KNN

Results

Similarity measure	Optimal K	RMSE
Pearson	7	0.6829
Cosine	8	0.6338
Euclidean	11	0.6337

Singular Value Decomposition (SVD)

SVD

Methodology

• Singular Value Decomposition (SVD) of a matrix A is a factorization into three matrices U, Σ , and V, with U and V being orthogonal matrices and Σ being a diagonal matrix with singular value entries.

$$A = U\Sigma V^T$$

Iterative SVD

Steps:

- 1. Initial guess for NaN values in the matrix A
- 2. Apply SVD to A
- 3. Apply Low-Rank Matrix Approximation
- 4. Replace the known value in A to get matrix A'
- 5. Repeat the process until the difference between A and A' is less than a pre-determined threshold

*Note that the results highly depend on the initial matrix.

SVD

Results

How NaN values were initialized	RMSE	
3	0.7236	
Row mean	0.6706	
Column mean	0.6417	

What if we used other initial matrices to implement SVD?

KNN+SVD

Steps:

- 1. Use the results from KNN as matrix A
- 2. Apply SVD to A
- 3. Apply Low-Rank Matrix Approximation
- 4. Replace the known value in A to get matrix A'
- 5. Repeat the process until the difference between A and A' is less than a pre-determined threshold

KNN+SVD

Results

KNN	RMSE		
User-Based	0.6516		
Item Based	0.6412		

Results Comparison

	IBCF Using KNN	UBCF Using KNN	SVD	KNN+SVD	
RMSE	0.6337	0.6415	0.6417	0.6412	

Difficulties

Problem 1- Dataset

 We observed that most of the values in the provided dataset contains 3, making google reviews or other ratings online unreliable

Solution:

 We decided to collect our own dataset, in ways that maximizes its similarity with Feedback.csv

Difficulties

Problem 2- User-Based and Item-Based CF

 User rating bias: some users tend to use higher ratings while some tend to use lower ratings

Solution:

Center the rows of user-item rating by doing normalization

$$h(r_{jl}) = r_{jl} - \overline{r_j}$$

