A Book of Abstract Algebra (2nd Edition)

Chapter 23, Problem 8EE

Bookmark

Show all steps: (

ON

Problem

Use part 6 to explain why the following are true:

- (a) $a^{19} \equiv a \pmod{133}$.
- (b) $a^{10} \equiv 1 \pmod{66}$, provided a is not a multiple of 2, 3, or 11.
- (c) $a^{13} \equiv a \pmod{105}$.
- (d) $a^{49} \equiv a \pmod{1547}$. (HINT: $1547 = 7 \times 13 \times 17$.)

Step-by-step solution

Step 1 of 4

Consider any two distinct prime numbers p and q. Suppose (p-1)|m and (q-1)|m. Then

$$a^m \equiv 1 \pmod{pq}$$

where $p \nmid a$ and $q \nmid a$. Also

$$a^{m+1} \equiv a \pmod{pq}.$$

for integers a.

Objective is to use this result and prove the following parts:

(a)

Prove that $a^{19} \equiv a \pmod{133}$.

The $133 = 7 \times 19$. Note that, 18 is divisible by (7-1) and (19-1). So, by using the second part of result, it implies that $a^{19} \equiv a \pmod{133}$. The is so because a is some arbitrary integer.

Comment

(b)

Prove that $a^{10} \equiv 1 \pmod{66}$, where a is not a multiple of 2, 3, or 11.

The $66 = 2 \times 3 \times 11$. Note that, 10 is divisible by (2-1), (3-1) and (11-1). So, by using the first part of result, it implies that $a^{10} \equiv 1 \pmod{66}$.

Comment

Step 3 of 4

(c)

Prove that $a^{13} \equiv a \pmod{105}$.

The $105 = 3 \times 5 \times 7$. Note that, 12 is divisible by (3-1), (5-1) and (7-1). So, by using the second part of result, it implies that $a^{13} \equiv a \pmod{105}$. The is so because a is some arbitrary integer.

Comment

Step 4 of 4

(d)

Prove that $a^{49} \equiv a \pmod{1547}$.

The $1547 = 7 \times 13 \times 17$. Note that, 48 is divisible by (7-1), (13-1) and (17-1). So, by using the second part of result, it implies that $a^{49} \equiv a \pmod{1547}$. The is so because a is some arbitrary integer.

Comment