Project evolutionFrom university to commerce

Agnieszka Suchwałko, QuantUp, Bioavlee

Why R 2018, 2.07.2018, Wrocław

Diversity within bacteria species

Diversity between bacteria species

What is it all about?!

The experiment workflow

Microbiology

What was done in optics

Igor invented an optical device for light diffraction on bacterial colonies (it was patented)

Optical system 2008-2012

Optical system 2018

Analytics

The analytical part was mostly about the idea!

But the results needed years of work...

What was done in analytics

Workflow consisted of modules with packages:

- image processing (pixmap, rtiff, imager)
- feature extraction (moments)
- feature selection (survey, pamr, ggplot2, sets)
- predictive modeling (ipred, e1071, tree, klaR)
- performance assessment (MASS, xtable, Multiclasstesting)

Image processing

Diffraction patterns must be comparable between each other.

Feature extraction

Example of empirical density of most discriminant feature.

Feature selection

Identification of bacteria species (or strains)

Number of methods was tested:

- LDA, QDA (to start with)
- neural networks (numerical features and raw images)
- SVM
- random forest
- other

Identification process was...

...far from automated or repeatable!

Human assistance was needed:

- whole laboratory process handling
- whole registration processing
- detection of borders of diffraction patterns
- analysis handling
- summary of results

Performance assessment from 2013

CV error estimation with 10 fold stratified sampling for best fitted classification models after ANOVA feature selection for normalized data of 7 laboratory bacteria species.

	LDA	QDA	SVM
features	sd.4 + sd.3 + mean.5 + mean.4 + sd.2 + sd.5 + sd.1 + mean.1 + mean.7 + mean.3 + mean.2 + mean.6 + mean.10 + mean.8 + mean.9 + sd.9	sd.4 + sd.3 + mean.5 + mean.4 + sd.2 + sd.5 + sd.1 + mean.1 + mean.7 + mean.3 + mean.2 + mean.6 + mean.10	sd.4 + sd.3 + mean.5 + mean.4 + sd.2 + sd.5 + sd.1 + mean.1 + mean.7 + mean.3 + mean.2 + mean.6 + mean.10 + mean.8 + mean.9 + sd.9
CV error	5.11%	1.42%	2.27%

Changes over time – analytics and UI

Some novelties came over the years:

- coding standards (dplyr, magrittr, lazyeval, tidyverse, rlang, reshape2)
- UI (Shiny, DT, openxlsx)
- reporting (Rmarkdown, knitr, kableExtra, flextable, wrapr)
- documentation (roxygen)

And then **XGBoost** came and stayed for good :)

Changes over time

BIOAVLEE

- professionals working on every aspect of the method
- a few prototypes (now it's a pre-production prototype)
- tests on environmental and lab bacterial species
- number of strains for each species
- repeatability tests for devices and microbiological conditions
- automation of registration elimination of human bias
- · dedicated modifications of algorithms

https://bioavlee.com

Exemplary results 2018 I

XGBoost with SNR feature selection for random division of data into test and teach sets of 4 environmental bacteria species.

Up to date algorithms include detection of *unknown* species and adaptive threshold determination for acceptation of results dependent on percentage match level.

Real	Identified	Count
Candida albicans	Candida albicans	121
Candida albicans	Unknown	4
Escherichia coli	Escherichia coli	113
Escherichia coli	Unknown	12
Pseudomonas aeruginosa	Pseudomonas aeruginosa	119
Pseudomonas aeruginosa	Unknown	6
Staphylococcus aureus	Staphylococcus aureus	123
Staphylococcus aureus	Unknown	2

Exemplary results 2018 II

Summary of results obtained on environmental data and over 2000 diffraction patterns from two diffrent devices after applying all the changes.

ACC	Sensitivity	Specificity
1.00	0.98	1.00
0.95	NaN	0.95
0.99	0.95	1.00
0.98	0.90	1.00
0.99	0.97	1.00
0.99	0.95	1.00
	1.00 0.95 0.99 0.98 0.99	1.00 0.98 0.95 NaN 0.99 0.95 0.98 0.90 0.99 0.97

Why R?

Because:

- it is suitable for image processing
- irreplaceable for predictive analysis of numerical data
- perfect for applications with analytical background
- extremely convenient for reporting analytical results

It is decided to use R and Shiny for MVP.

How I've managed to change the world

- Together with Igor Buzalewicz, I developed a method for identifying bacteria species – faster, cheaper and very accurate
- World acquired a Doctor of Technical Sciences
- A Bioavlee company was created that gives work to about 10 people

Soon our method will enter the market and the time of next, much bigger changes will come

Agnieszka Suchwałko, Ph.D.

Professionally:

- Associate & Data Scientist at QuantUp
- Data Scientist at Bioavlee
- graduate of Wroclaw University of Technology (M.Sc. and Ph.D.)
- over 10 years of experience
- agnieszka@quantup.pl

Privatelly:

- mother of Two (3,5 year and 6 months)
- dog lover (especially my own Gonzo the beagle)
- wife and partner (come and listen to his talk tommorow)

