1、利用基本逻辑门设计一个3输入多数表决器。

(1). 电路原理图

(2). 真值表

XYZ	F
000	0
001	0
010	0
011	1
100	0
101	1
110	1
111	1

(3). 仿真检测图

000	0
001	0
010	0
011	1
100	0
101	1
110	1
111	1

(4). 步骤

1. 添加逻辑门: 3 输入 1 输出 3 与门 1 或门并添加标签

2. 连接线路

2. 利用 CMOS 晶体管构建两输入或门,并验证其功能。

(1). 电路原理图

(2). 真值表

XY	Z
00	0
01	1
10	1
11	1

(3). 步骤

1. 添加逻辑门:

2 输入 1 输出并添加标签

2. 添加晶体管:

3个 PMOS 晶体管漏极朝下、3个 NMOS 晶体管漏极朝上并添加标签

3. 连接线路

4. 仿真检测图

真值表

XY	Z
00	0
01	1
10	1
11	1

5. 利用晶体管和传输门,实现2选1多路选择器;并封装成子电路,实现4选1 多路选择器。

(1). 电路原理图

(2). 实现电路, 仿真检测, 真值表

S D0 D1		D1	Υ
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

- (3). 新建 4-1MUX 并引入 2-1MUX
- (4). 构建 4 选 1 多路选择器

(5). 编辑子电路外观为梯形并修改引脚位置以及主程序中的线路

4. 遇到的问题:

- 1. 错把传输门看成了 PMOS 管
- 2. 引入子电路一直出错

4. 实现 4位二进制数奇偶校验电路。

(1). 电路原理

(2). 真值表

(2).		
XYZW	S(奇数)	~S(偶数)
0001	1	0
0010	1	0
0011	0	1
0100	1	0
0101	0	1
0110	0	1
0111	1	0
1000	1	0
1001	0	1
1010	0	1
1011	1	0
1100	0	1
1101	1	0
1110	1	0
1111	0	1
0000	0	1

(5). 步骤:

1. 添加逻辑门, 并添加标签 4输入1输出3异或门

3.仿真检测

真值表

XYZW	S(奇数)	~S(偶数)
0001	1	0
0010	1	0
0011	0	1
0100	1	0
0101	0	1
0110	0	1
0111	1	0
1000	1	0
1001	0	1
1010	0	1
1011	1	0
1100	0	1
1101	1	0
1110	1	0
1111	0	1
0000	0	1

思考题

- 1. Logisim 中有哪几种生成逻辑电路图的方式?
 - a) 根据真值表生成
 - b) 手动生成
 - c) 使用逻辑表达式生成
 - d) 根据卡诺图生成
- 2. Logisim 中可以通过什么方式生成一个复杂的电路?
 - a) 封装子电路
 - b) 在主电路中引入子电路
- 3. Logisim 中提供了哪几种输出组件?
 - a) 输出引脚
 - b) 发光二极管
 - c) 数字示波器
- 4. 如何利用 4 选 1 多路选择器级联实现 8 选 1 多路选择器? 同 2 选 1 实现 4 选 1