Math 212 Quiz 01

M 22 Aug 2016

Your name:		
Honor pledge:		

Exam instructions

Number of exercises: 12

Permitted time : 30 minutes Permitted resources : None

Instructor's note:

• BEFORE SOLVING any exercises, go through the entire quiz and write a "confidence number" 1–5 to the LEFT of each exercise, denoting how confident you are that you can solve the exercise (1 = "Not at all confident", 5 = "Very confident").

1.1	/2	2.1	/2	3.1	/2
1.2	/2	2.2	/2	3.2	/2
1.3	/2	2.3	/2	3.3	/2
1.4	/2	2.4	/2	3.4	/2
Total	/8		/8		/8

Geometry

1.1 Exercise **1.1**

(2 pt) Compute the distance between the points (-2,-1) and (4,7) in ${\bf R}^2.$

1.2 Exercise 1.2

(2 pt) Write the area of a circular sector with radius r and angle θ , where $0 \le \theta \le 2\pi$.

1.3 Exercise **1.3**

(2 pt) Write the area of a parallelogram with adjacent side lengths u, v and enclosed angle θ .

1.4 Exercise **1.4**

(2 pt) Convert the point $(4, \frac{7\pi}{6})$, given in polar coordinates (r, θ) , to rectangular coordinates (x, y).

Single-Variable Calculus

2.1 Exercise **2.1**

(2 pt) Evaluate the integral $\int \cos^2 \theta \, d\theta$.

2.2 Exercise **2.2**

(2 pt) Evaluate the integral $\int \sqrt{2x+1} \, dx$.

2.3 Exercise **2.3**

(2 pt) Let f be a real-valued function defined on the closed interval [a, b], and let f' be continuous on [a, b]. State the length of the curve f(x) from x = a to x = b.

2.4 Exercise 2.4

(2 pt) Let f be a real-valued function defined on a closed interval [a, b] with a < b. Draw a picture depicting a Riemann sum corresponding to the definite integral

$$\int_{a}^{b} f(x) dx.$$

Vector Calculus

3.1 Exercise **3.1**

(2 pt) Let $\mathbf{u} := (2, 0, 1)$ and $\mathbf{v} := (0, -1, 1)$ be vectors in \mathbf{R}^3 .

(a) (1 pt) Compute the inner product (a.k.a. dot product) $\mathbf{u} \cdot \mathbf{v}$.

(b) (1 pt) Compute the cross product $\mathbf{u} \times \mathbf{v}$.

3.2 Exercise **3.2**

(2 pt) Find the absolute maximum and minimum values of the function

$$f(x,y) := x^2 - 2xy + 2y$$

on the closed rectangle

$$D := \{(x, y) \mid 0 \le x \le 3, 0 \le y \le 2\}.$$

3.3 Exercise **3.3**

(2 pt) Evaluate the integral

$$\iint_{\mathbb{R}} e^{\frac{x+y}{x-y}} dA,$$

where R is the trapezoidal region in \mathbb{R}^2 with vertices (1,0),(2,0),(0,-2),(0,-1).

3.4 Exercise **3.4**

(2 pt) Evaluate

$$\iint_{S} \mathbf{F} \cdot d\mathbf{S},$$

where

$$\mathbf{F}(x,y,z) := \left(xy, y^2 + e^{xz^2}, \sin(xy)\right),\,$$

and S is the surface of the region E bounded by the parabolic cylinder $z = 1 - x^2$ and the planes z = 0, y = 0, and y + z = 2.