network access points (NAPs)

node simplex mode performance star topology

physical topology syntax

point-to-point connection telecommunication

protocol throughput receiver timing

regional ISP Transmission Control Protocol!
reliability Internetworking Protocol (TCPIIP)

sender

Request for Comment (RFC) transmission medium

ROB Unicode video

security wide area network (WAN)

semantics YCM

1.7 SUMMARY

- O Data communications are the transfer of data from one device to another via some form of transmission medium.
- O A data communications system must transmit data to the correct destination in an accurate and timely manner.
- O The five components that make up a data communications system are the message, sender, receiver, medium, and protocol.
- O Text, numbers, images, audio, and video are different forms of information.
- **O** Data flow between two devices can occur in one of three ways: simplex, half-duplex, or full-duplex.
- O A network is a set of communication devices connected by media links.
- O In a point-to-point connection, two and only two devices are connected by a dedicated link. In a multipoint connection, three or more devices share a link.
- O Topology refers to the physical or logical arrangement of a network. Devices may be arranged in a mesh, star, bus, or ring topology.
- O A network can be categorized as a local area network or a wide area network.
- O A LAN is a data communication system within a building, plant, or campus, or between nearby buildings.
- O A WAN is a data communication system spanning states, countries, or the whole world.
- O An internet is a network of networks.
- **O** The Internet is a collection of many separate networks.
- **O** There are local, regional, national, and international Internet service providers.
- **O** A protocol is a set of rules that govern data communication; the key elements of a protocol are syntax, semantics, and timing.

- **O** Standards are necessary to ensure that products from different manufacturers can work together as expected.
- **O** The ISO, ITD-T, ANSI, IEEE, and EIA are some of the organizations involved in standards creation.
- **O** Forums are special-interest groups that quickly evaluate and standardize new technologies.
- **O** A Request for Comment is an idea or concept that is a precursor to an Internet standard.

1.8 PRACTICE SET

Review Questions

- 1. Identify the five components of a data communications system.
- 2. What are the advantages of distributed processing?
- 3. What are the three criteria necessary for an effective and efficient network?
- 4. What are the advantages of a multipoint connection over a point-to-point connection?
- 5. What are the two types of line configuration?
- 6. Categorize the four basic topologies in terms of line configuration.
- 7. What is the difference between half-duplex and full-duplex transmission modes?
- 8. Name the four basic network topologies, and cite an advantage of each type.
- 9. For *n* devices in a network, what is the number of cable links required for a mesh, ring, bus, and star topology?
- 10. What are some of the factors that determine whether a communication system is a LAN or WAN?
- 11. What is an internet? What is the Internet?
- 12. Why are protocols needed?
- 13. Why are standards needed?

Exercises

- 14. What is the maximum number of characters or symbols that can be represented by Unicode?
- 15. A color image uses 16 bits to represent a pixel. What is the maximum number of different colors that can be represented?
- 16. Assume six devices are arranged in a mesh topology. How many cables are needed? How many ports are needed for each device?
- 17. For each of the following four networks, discuss the consequences if a connection fails.
 - a. Five devices arranged in a mesh topology
 - b. Five devices arranged in a star topology (not counting the hub)
 - c. Five devices arranged in a bus topology
 - d. Five devices arranged in a ring topology

- 18. You have two computers connected by an Ethernet hub at home. Is this a LAN, a MAN, or a WAN? Explain your reason.
- 19. In the ring topology in Figure 1.8, what happens if one of the stations is unplugged?
- 20. **In** the bus topology in Figure 1.7, what happens if one of the stations is unplugged?
- 21. Draw a hybrid topology with a star backbone and three ring networks.
- 22. Draw a hybrid topology with a ring backbone and two bus networks.
- 23. Performance is inversely related to delay. When you use the Internet, which of the following applications are more sensitive to delay?
 - a. Sending an e-mail
 - b. Copying a file
 - c. Surfing the Internet
- 24. When a party makes a local telephone call to another party, is this a point-to-point or multipoint connection? Explain your answer.
- 25. Compare the telephone network and the Internet. What are the similarities? What are the differences?

Research Activities

- 26. Using the site \\iww.cne.gmu.edu/modules/network/osi.html, discuss the OSI model.
- 27. Using the site www.ansi.org, discuss ANSI's activities.
- 28. Using the site www.ieee.org, discuss IEEE's activities.
- 29. Using the site www.ietf.org/, discuss the different types of RFCs.

Network Models

A network is a combination of hardware and software that sends data from one location to another. The hardware consists of the physical equipment that carries signals from one point of the network to another. The software consists of instruction sets that make possible the services that we expect from a network.

We can compare the task of networking to the task of solving a mathematics problem with a computer. The fundamental job of solving the problem with a computer is done by computer hardware. However, this is a very tedious task if only hardware is involved. We would need switches for every memory location to store and manipulate data. The task is much easier if software is available. At the highest level, a program can direct the problem-solving process; the details of how this is done by the actual hardware can be left to the layers of software that are called by the higher levels.

Compare this to a service provided by a computer network. For example, the task of sending an e-mail from one point in the world to another can be broken into several tasks, each performed by a separate software package. Each software package uses the services of another software package. At the lowest layer, a signal, or a set of signals, is sent from the source computer to the destination computer.

In this chapter, we give a general idea of the layers of a network and discuss the functions of each. Detailed descriptions of these layers follow in later chapters.

2.1 LAYERED TASKS

We use the concept of layers in our daily life. As an example, let us consider two friends who communicate through postal mail. The process of sending a letter to a friend would be complex if there were no services available from the post office. Figure 2.1 shows the steps in this task.

Receiver Sender The letter is picked up, The letter is written, Higher layers removed from the put in an envelope, and envelope, and read. dropped in a mailbox. The letter is carried The letter is carried Middle layers from the post office from the mailbox to a post office. to the mailbox. The letter is delivered The letter is delivered to a carrier by the post Lower layers from the carrier office. to the post office. The parcel is carried from

Figure 2.1 Tasks involved in sending a letter

Sender, Receiver, and Carrier

In Figure 2.1 we have a sender, a receiver, and a carrier that transports the letter. There is a hierarchy of tasks.

the source to the destination.

At the Sellder Site

Let us first describe, in order, the activities that take place at the sender site.

- O Higher layer. The sender writes the letter, inserts the letter in an envelope, writes the sender and receiver addresses, and drops the letter in a mailbox.
- O Middle layer. The letter is picked up by a letter carrier and delivered to the post office.
- O Lower layer. The letter is sorted at the post office; a carrier transports the letter.

011 the Way

The letter is then on its way to the recipient. On the way to the recipient's local post office, the letter may actually go through a central office. In addition, it may be transported by truck, train, airplane, boat, or a combination of these.

At the Receiver Site

- **O** Lower layer. The carrier transports the letter to the post office.
- O Middle layer. The letter is sorted and delivered to the recipient's mailbox.
- O Higher layer. The receiver picks up the letter, opens the envelope, and reads it.

Hierarchy

According to our analysis, there are three different activities at the sender site and another three activities at the receiver site. The task of transporting the letter between the sender and the receiver is done by the carrier. Something that is not obvious immediately is that the tasks must be done in the order given in the hierarchy. At the sender site, the letter must be written and dropped in the mailbox before being picked up by the letter carrier and delivered to the post office. At the receiver site, the letter must be dropped in the recipient mailbox before being picked up and read by the recipient.

Services

Each layer at the sending site uses the services of the layer immediately below it. The sender at the higher layer uses the services of the middle layer. The middle layer uses the services of the lower layer. The lower layer uses the services of the carrier.

The layered model that dominated data communications and networking literature before 1990 was the Open Systems Interconnection (OSI) model. Everyone believed that the OSI model would become the ultimate standard for data communications, but this did not happen. The TCPIIP protocol suite became the dominant commercial architecture because it was used and tested extensively in the Internet; the OSI model was never fully implemented.

In this chapter, first we briefly discuss the OSI model, and then we concentrate on TCPIIP as a protocol suite.

2.2 THE OSI MODEL

Established in 1947, the International Standards Organization (ISO) is a multinational body dedicated to worldwide agreement on international standards. An ISO standard that covers all aspects of network communications is the Open Systems Interconnection model. It was first introduced in the late 1970s. An open system is a set of protocols that allows any two different systems to communicate regardless of their underlying architecture. The purpose of the OSI model is to show how to facilitate communication between different systems without requiring changes to the logic of the underlying hardware and software. The OSI model is not a protocol; it is a model for understanding and designing a network architecture that is flexible, robust, and interoperable.

ISO is the organization. OSI is the model.

The OSI model is a layered framework for the design of network systems that allows communication between all types of computer systems. It consists of seven separate but related layers, each of which defines a part of the process of moving information across a network (see Figure 2.2). An understanding of the fundamentals of the OSI model provides a solid basis for exploring data communications.

 71
 Application

 61
 Presentation

 51
 Session

 41
 Transport

 31
 Network

 21
 Data link

 Physical

Figure 2.2 Seven layers of the OSI model

Layered Architecture

The OSI model is composed of seven ordered layers: physical (layer 1), data link (layer 2), network (layer 3), transport (layer 4), session (layer 5), presentation (layer 6), and application (layer 7). Figure 2.3 shows the layers involved when a message is sent from device A to device B. As the message travels from A to B, it may pass through many intermediate nodes. These intermediate nodes usually involve only the first three layers of the OSI model.

In *developing* the model, the designers distilled the process of transmitting data to its most fundamental elements. They identified which networking functions had related uses and collected those functions into discrete groups that became the layers. Each layer defines a family of functions distinct from those of the other layers. By defining and localizing functionality in this fashion, the designers created an architecture that is both comprehensive and flexible. Most importantly, the OSI model allows complete interoperability between otherwise incompatible systems.

Within a single machine, each layer calls upon the services of the layer just below it. Layer 3, for example, uses the services provided by layer 2 and provides services for layer 4. Between machines, layer x on one machine communicates with layer x on another machine. This communication is governed by an agreed-upon series of rules and conventions called protocols. The processes on each machine that communicate at a given layer are called peer-to-peer processes. Communication between machines is therefore a peer-to-peer process using the protocols appropriate to a given layer.

Peer-to-Peer Processes

At the physical layer, communication is direct: In Figure 2.3, device A sends a stream of bits to device B (through intermediate nodes). At the higher layers, however, communication must move down through the layers on device A, over to device B, and then

Figure 2.3 The interaction between layers in the OSI model

back up through the layers. Each layer in the sending device adds its own information to the message it receives from the layer just above it and passes the whole package to the layer just below it.

At layer I the entire package is converted to a form that can be transmitted to the receiving device. At the receiving machine, the message is unwrapped layer by layer, with each process receiving and removing the data meant for it. For example, layer 2 removes the data meant for it, then passes the rest to layer 3. Layer 3 then removes the data meant for it and passes the rest to layer 4, and so on.

Interfaces Between Layers

The passing of the data and network information down through the layers of the sending device and back up through the layers of the receiving device is made possible by an interface between each pair of adjacent layers. Each interface defines the information and services a layer must provide for the layer above it. Well-defined interfaces and layer functions provide modularity to a network. As long as a layer provides the expected services to the layer above it, the specific implementation of its functions can be modified or replaced without requiring changes to the surrounding layers.

Organization of the Layers

The seven layers can be thought of as belonging to three subgroups. Layers I, 2, and 3-physical, data link, and network-are the network support layers; they deal with

the physical aspects of moving data from one device to another (such as electrical specifications, physical connections, physical addressing, and transport timing and reliability). Layers 5, 6, and 7-session, presentation, and application-can be thought of as the user support layers; they allow interoperability among unrelated software systems. Layer 4, the transport layer, links the two subgroups and ensures that what the lower layers have transmitted is in a form that the upper layers can use. The upper OSI layers are almost always implemented in software; lower layers are a combination of hardware and software, except for the physical layer, which is mostly hardware.

In Figure 2.4, which gives an overall view of the OSI layers, D7 means the data unit at layer 7, D6 means the data unit at layer 6, and so on. The process starts at layer 7 (the application layer), then moves from layer to layer in descending, sequential order. At each layer, a **header**, or possibly a **trailer**, can be added to the data unit. Commonly, the trailer is added only at layer 2. When the formatted data unit passes through the physical layer (layer 1), it is changed into an electromagnetic signal and transported along a physical link.

Figure 2.4 An exchange using the OS! model

Upon reaching its destination, the signal passes into layer 1 and is transformed back into digital form. The data units then move back up through the OSI layers. As each block of data reaches the next higher layer, the headers and trailers attached to it at the corresponding sending layer are removed, and actions appropriate to that layer are taken. By the time it reaches layer 7, the message is again in a form appropriate to the application and is made available to the recipient.

Encapsulation

Figure 2.3 reveals another aspect of data communications in the OSI model: encapsulation. A packet (header and data) at level 7 is encapsulated in a packet at level 6. The whole packet at level 6 is encapsulated in a packet at level 5, and so on.

In other words, the data portion of a packet at level N-1 carries the whole packet (data and header and maybe trailer) from level N. The concept is called *encapsulation*; level N-1 is not aware of which part of the encapsulated packet is data and which part is the header or trailer. For level N-1, the whole packet coming from level N is treated as one integral unit.

2.3 LAYERS IN THE OSI MODEL

In this section we briefly describe the functions of each layer in the OSI model.

Physical Layer

The physical layer coordinates the functions required to carry a bit stream over a physical medium. It deals with the mechanical and electrical specifications of the interface and transmission medium. It also defines the procedures and functions that physical devices and interfaces have to perform for transmission to Occur. Figure 2.5 shows the position of the physical layer with respect to the transmission medium and the data link layer.

Figure 2.5 Physical layer

The physical layer is responsible for movements of individual bits from one hop (node) to the next.

The physical layer is also concerned with the following:

- O Physical characteristics of interfaces and medium. The physical layer defines the characteristics of the interface between the devices and the transmission medium. It also defines the type of transmission medium.
- O Representation of bits. The physical layer data consists of a stream of bits (sequence of Os or 1s) with no interpretation. To be transmitted, bits must be