			*	↓	*				
Ry 4 + Rag 02 + Fam of = 0 Ray + Fam = 0	That point Ar	100 mm C 20 mm	Pyranids - struces ru	Theoretical analyses equal note here.	factor of safety ones * account for defects	Solid Mechanics ->	design stress under certain	Strength, stiffness and	External is Mechanical loading
Ry and Ry	- Ac	& X	remain some thoughout	and experimental	ered in the main egra		in conditions	Elastic Mod	rading.
5 9 + 3 a	boutes	tong = box = 0-3	4	phaenrations have	itself	aterial liene	and other factors)	elus	Pego: 03 Date 02/08/22

s' and se Jotal Saformation		* *		*	Rigid down
8=8'+8e	- supermation substitute of super jour street of super jour street at street of super jour	entimally boaded to joints speed up solcilations. semi-rively also get bending boads, since they are not used for heavy boading [cost us STRENGTH]	Triangulas design ensures that it sensing non- rollograble there we join diagonals to sultimately form triangles. (yes force mention needed to improve stability.	we do not remider any bunding look while solving trues.	Ax=40, Ay=0, Cx=-40, Cy=-36 Fab = 40, Fac = 50 (7) [Gab = FMB] -> 20:37 MPL All point 80 8: (4) Gab = FMB] -> 20:37 MPL

P.7.0 ·	
Txx, Try, Tx= (depending on cross -	
be a result of internal resistance.	
Atrus is a point function.	*
e gives average atress, but atress warries from point	
account for internal forces.	
expose the	
CONCEPT OF STRESS -	
Nounal atters and about attess Cauchy atters Bernoulli etiss (sunding)	* *
Resilience and fracture energy	
is obsissipated as heat.	
the presence of random or	

	BN BN	The state of the s	7		on to	steri two	JECTORS, VECTORS	user) (est order ten	homogin	(wood is non-homogeneous	(spatial coordinate)(0)	Monogurity and isotropy	* No discontinuity : voids	* Thomogeneous and inothopic	disumptions:		beam - concrete + mi			las a cutting flance	(point where shack starts)	atheres are higher than	* That part of the body is likely to fail where the	merany of force
the surface	as it has a	Sim OF = 9 TRACTION	AND	magnitude and die	information	n+1 pieces of information	non order tinace atores	TENCORS	nt so ariset	a but instropic [rings]		by do not imply each other.	as hales	sic cross- section directions	- properties independent of	streams different for	netal	entire atructure is safe	this is safe,	to budiet the point		are higher than the surrounding ones	eixely to fail where the	Date 05 os 22

Spaced on symmetry [of ; = Gira Exa] E	i= unit normal is defined j= the directic	Consider a subical element in the body. Ste face will have remals along the coordinate axes. Order of terms determines indices for description.	Totality of traction to the state of abien. The	Timesters of components of sensor and sensor and sensor of sensor

A san f = Barre on some of some on some of the some of the sort of

= 186 + 180 = 360	
= [60x+20x2]3	
ton. = (60+40 x) dx	cross-section.
force at B: Jw dn 3.14	the cross
3 × 3, 14	
$= n(3)^{2} = 9 \times 10 \times 3.1$	
AK B. M= 60+40(3) 7 60+120=186 Ry = 0 M=0	
force per unit W = 60 - 40 n W = 60 - 40 n AT POINT	Ques:
SE 2-50 SIE = 0 -50 + P-100 - 00 = D -70 + P-100 - 00 = D	
	The second second

	A A A A A A A A A A A A A A A A A A A	4 - Wo + W.	cross - section	& Marie Control of the Control of th
= (d/A) = Achyb)	$\begin{cases} (An) = w_1 \cdot w_1 \\ \delta (An + dAn) = \\ \delta (dAn) = (An dn) \end{cases}$	1 = Wo A A A A A A A A A A A A A A A A A A A	and be the shape of the ion has uniform attemption of the promption of the	
A A X	$w_0 \neq \omega_1 + (A_{\infty} d_{\infty}) \times$		the bose .	migst per unit senger

Lume uniform derrity of winder and the winty of winder du derrity of win	1	f (Ax - 8Ax) = f + 89	da dala	$\frac{1}{A_{x}} \frac{M+W_{1}}{A_{x}} = \frac{M+W_{1}+SW}{A_{x}+dn}$ $\frac{A_{x}}{A_{x}} \frac{SW}{SW} = \frac{(SA_{x}+dn)}{SA_{x}+dn}$ $\frac{A_{x}}{A_{x}} \frac{M+W_{1}}{A_{x}+dn} = \frac{M+W_{1}+SW}{A_{x}+dn}$	denity of the
--	---	-----------------------	---------	--	---------------

*									egg.
single and deuble	2	F Committee Theraille	Area resisting the	O ₄	2	DA, f (Antda	f (Ag-da) =	Andx Andx	f = wow to dis
sheet due (atres is less)	The Park of the Pa	F compressive	force should	Ax = A	[f loge An] = egn	20	W. W. A. W.		dissipate evergy.
to oliabilitien	SHEPR		fellow from the confidence	+ K.B.S.	* * * * * * * * * * * * * * * * * * * *	gg dn		An	Date WAR

Let $A^3 = I_1(A^3) + I_2(A) - I_3 = 0$ be the shower that $A^3 = I_1(A^3) + I_2(A) - I_3 = 0$ be shower that $A^3 = I_1(A) + I_2(A) + I_3(A) + I_3$

2 Ac
10 = xx + choc + throe + xx60
I take per unit volume. You is also include
246
+ 3024 + 3031 =
ELOCACIA purpume
i I. the limit as Du, Du, Du, Du, - o, and
(me
136 136 1
RO NO
- (31 (0x 0x) =0
(631 + OG31 dry 024 - O11 (042 box) - O21 (02102)
Now York
(on + 0011 dx) D22D23 + (on + 004 dx) 024023 +
0
rial take any value?
* Kan atries at the neighbourhood of point in a
EQUILIBRIUM EQUATIONS-
Date

(TH + DELL DA) DOGS DAS DAS - (FIZ + BEIZ DA) DAS DAS DAS DAS - 54 (02,0x3) 0x2 - (026+3522 0x2) 0x40x3 0x4 + (621 + 3 021 0x1 0x1 0x1 0x3 0x3 + 022 0x1 0x3 0x1 - (032 + 3032 AZ3) DX1 DX2 DX4 + (031 + 3031 DX3) DX07, 013 + (53 x 0 x 1 x 2 x 2) - 5 x 1 0 x 1 0 x 1 x 0 x 2 = 0 Dividing both sides by DX DX2 DX3 (121 + 2521 0x2 - 3532 0x2 - 3531 0x2 = 0 on for a point Dx, Dz, Dz, Dz, ->0 Stress is symmetric for the coordinate axes. PROJECTION THEOREM, G, N. ne = Genery er wine (- - + = 0 | Mine = n m)

> NIN + OUL

ijki' = aip ajqakhars cpqns]	.: Projection plans are outlegonal.	-> 3 Not Most	01,02,163 - Drivepol strus eigen values M, N2, N3 - Spiritod value eigen vector.	dry blose there where stress is along its normal	for 3 real roots - 3 principal dir Care to the first in for a sold water for no real root - 1 principal dir (wiffer) root - infinite principal dir (wiffer) real infinite principal dir (wiffer)	$G_{ij} = G_{ij} G_{12} G_{13}$ $G_{4j} G_{22} G_{23}$ $G_{3j} G_{32} G_{33}$	Was of components = 9	{ or; - or of }	Off = angle 14 w hew i and seld j (only conver) to a	with out.
					5-3-15 0-3-15 0-3-15					

I tensor is a mapping Hw two vectors. Pego: 24
the need a 2 nd earlier tensor to map two vectors.
w = Tv w = Tivy w = Ti'v,
[- d, 1 - d
= aij Tjp Vp $= aij Tjp aqpVq'$ $ui' = aij aqp Tgp Vq'$
No. of the indies Taij' = aip ayq Tpq
wite transporming to principal coordinates, matrice
consists of 124,72, 3
dividady to = 0,100 + 0,2002 + 0,1303 = 0,100

64	2 6	$\frac{1}{(ii)} - \frac{1}{63} = \frac{1}{62} + \frac{1}{62} + \frac{1}{62} - \frac{1}{62} = \frac{1}{62} - \frac{1}{62} = \frac{1}{62$	$N^{2}(\sigma_{1}^{2}-\sigma_{1}\sigma_{2})+n_{1}^{2}(\sigma_{2}^{2}-\sigma_{2}\sigma_{3})=7^{2}+\sigma_{N}^{2}-\sigma_{3}\sigma_{N}$ $=\frac{1}{2}\left[n_{2}^{2}-(7^{2}+\sigma_{N}^{2}-\sigma_{2}\sigma_{3})-n^{2}(\sigma_{1}^{2}-\sigma_{1}\sigma_{3})\right].$	$ \frac{1}{2} 1$

Dates 1
1- (22-10) - (236N) - (22+6N-626N) - 1- 20 03 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 2 1 7
(02 (02 - 63) (03 (03 - 62)
10 - 63 6N + 2 - 50 N OF TE
NS 285 - (2ND+22)
(&-3)
N. W.
m2 (0,-03) (0,-03) = 2"+ (0N-03) (0,-03)
(6-6)(6-6)
tale trad 6, 56, 56.
401 M 2,0
0 5 (EN-62) (EN-63) > 0
If we revide equality
[0=(5-No)(19-No) + 2]
NOHK 'S
CRUE

	$\frac{7^{2} + \left(6_{N} - \frac{5_{1} + f_{3}}{2}\right)^{2}}{2} = \left(\frac{6_{2} - f_{3}}{2}\right)^{2}$ $C: \left(\frac{6_{3} + f_{3}}{2}\right)^{2} + \left(\frac{6_{2} - f_{3}}{2}\right)^{2}$
	1
* * *	Paints on the extremeter of the riscle sepresent the principal planes. [2=0] Lee who the planes is 30°. for a raje design, the point should lie within the riscle.
1 1	On planes are which shear is movinum, normal atters is not o.
0	if the 2006 are 6, 192 = 53
(ii)	if his of a fairt

[aij] = \(\text{cap } \) \(\	
Ti = 0; m cos o + 0 ay win o [m =	haz - 1
Tij = vij vij Tij = vij vij =	4
Ti = 0; my n ces o fing on ces o fing n ces o	1
Ti = 0; mg n ce 0 [1] = 0; mg n ce 0 1 min 0	
(i) = 0; v) (i) = 0; v) (ony cos 0 + 0 ny win 0 (ony cos 0 + 0 ny wi	
[i] = oij rij ong coo o + ong sin o ong coo o + ong ong ong ong coo o + ong ong ong coo o + ong ong ong coo o + ong ong ong ong coo o + ong ong ong ong coo o + ong ong ong ong coo o + ong ong ong	8 802
Tij = Oij nj =	- sin 0
= 6xx 8xy n air 0	Tij = Dij m
= 6 mm cos 0 + 6 sus ain 0 [m] = 7. m = 7. m = 7. m = 7. m = 6 mm cos 0 + 6 sus ain 0 [m] = 7. m = 6 mm cos 0 + 6 sus ain 0 co = 6 mm cos 0 + 6 sus ain 0 co = 6 mm cos 0 + 6 sus ain 0 co = 6 mm cos 0 + 6 sus ain 0 co = 6 mm + 6 mu = 6 mu	
= (mm ces 0 + 6 my sin 0 [m] = 7. nt = 7. nt = 7. nt = 6 my ces 20 + 6 my sin 0 co ony sin o ces 0 + 6 my sin = 6 my sin o ces 0 + 6 my sin + 6 my sin o ces 0 + 6 my sin + 6 my sin 20 + 6 my sin	who kind w
= 6 mm ces 0 + 6 my sin 0 [m] = 7. m = 7. m = 6 my ces 2 + 6 my sin 0 co 6 my res 2 + 6 my sin 0 co 6 my res 2 + 6 my sin 0 co 7 my sin 8 ces 2 + 6 my sin 0 co 7 my sin 8 ces 2 + 6 my sin 7 my sin 8 ces 2 + 6 my sin 7 my sin 8 ces 2 + 6 my sin 7 my sin 8 cin 20 .	47 The
= 7. m = 7. m = 7. m = 6 my res es 4 fy sin 8 ro 6 my res es 4 fy sin 8 ro 6 my res es 6 + 6 yy sin = 6 my res es 6 + 6 yy sin + 6 my res es 6 + 6 yy (4-	Own cas 6 + 6 and 11 to 10
= 7. m	
= 7. m (ai) = 6 m cos 6 + 6 m sin 8 co 6 m cos 6 + 6 m sin 8 co 7 6 m + 6 m + 6 m + 6 m 20.	
= 6 my sin & cos & + 6 my sin & + 6 my & + 6	d
5 on cos 20 + on sin o co 6 ny sin o cos o + oyl sin 5 nx + oyy + (22) + oyy (1- 2 2	
on sin o cos o + oyy sin + on essent) + on sin 20. + on o oin 20.	o buy kes to my sing
5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	4 9
+ one + oyy + oyy (1-	12 + (1+080020) NRS
5 2 4 5 4 4 4 4 4 4 6 44 (1-	20
5 2 dy + (cry - 6 yy) + ory es sin 20.	aim 20 + 644 (1-
4 ory of t (ory - 6 yy)	
my & sin 28.	2 typ + (can - 6yy)
my so sin 20.	
N. C.	D N

= 1-2 single = 1-2 single = 1-2 single There are 3 wireles still but we are not accounting for the 3 component bears simply accounting for the 3 component bears simply Actioning to the 3 component bears simply 4 the Poisson's relation.	0 = 2	(5x-64 sin co + 2my res 20 = 0	for man, abear atress 32 =0 38 53-14 cos 20. 2 - 7 ay air 20. 2 =0 2, tow 20 = 6x-6,	angle = 450 (depends on of mate
, so , ,				

424 69.6 715 Brice Brice 150 32. Strice 50 500 500 52.	Mohr's windle for plane stress:	Normal		Queen Draw the Mars's rivele and then deternine principal	Cod .		SO MIN SOME	5 (29°, 26) 20 1 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2	6,2 = 64+64 I (64-64) 2+242 F	C ± R Small	-16 1 14247625	(σ_2) (σ_1) (σ_2)	64; = -80 25 It = -30	0, = 54.6 0 1, = -30	6, = 54.6 (0, =0) 03 = -84.6	11976
	1	1	1	>>	}	}	}	++	1		1				11	

