

A Sampling-Based Approach to Spacecraft Autonomous Maneuvering with Safety Specifications

Joseph A. Starek*, Brent W. Barbee[†], Marco Pavone*

* Autonomous Systems Lab
Dept. of Aeronautics & Astronautics
Stanford University

[†] Navigation and Mission Design Branch
Goddard Space Flight Center
NASA

AAS-GNC 2015
February 3rd, 2015

Outline

- Autonomous Vehicle Safety

Sampling-Based
Spacecraft Safety

J. Starek, B.
Barbee, M. Pavone

Autonomous
Vehicle Safety

Spacecraft Safety

Active Safety with
Positively-Invariant Set
Constraints

CWH CAM Policy Design

Numerical
Experiments

Conclusions

Future Goals

Outline

- Autonomous Vehicle Safety
- Spacecraft Safety

Sampling-Based
Spacecraft Safety

J. Starek, B.
Barbee, M. Pavone

Autonomous
Vehicle Safety

Spacecraft Safety

Active Safety with
Positively-Invariant Set
Constraints

CWH CAM Policy Design

Numerical
Experiments

Conclusions

Future Goals

Outline

- Autonomous Vehicle Safety
- Spacecraft Safety
- Safety in CWH Dynamics

Sampling-Based
Spacecraft Safety

J. Starek, B.
Barbee, M. Pavone

Autonomous
Vehicle Safety

Spacecraft Safety

Active Safety with
Positively-Invariant Set
Constraints

CWH CAM Policy Design

Numerical
Experiments

Conclusions

Future Goals

Outline

- Autonomous Vehicle Safety
- Spacecraft Safety
- Safety in CWH Dynamics
- Numerical Experiments

Sampling-Based
Spacecraft Safety

J. Starek, B.
Barbee, M. Pavone

Autonomous
Vehicle Safety

Spacecraft Safety

Active Safety with
Positively-Invariant Set
Constraints

CWH CAM Policy Design

Numerical
Experiments

Conclusions

Future Goals

Outline

- Autonomous Vehicle Safety
- Spacecraft Safety
- Safety in CWH Dynamics
- Numerical Experiments
- Conclusions and Future Work

Sampling-Based
Spacecraft Safety

J. Starek, B.
Barbee, M. Pavone

Autonomous
Vehicle Safety

Spacecraft Safety

Active Safety with
Positively-Invariant Set
Constraints

CWH CAM Policy Design

Numerical
Experiments

Conclusions

Future Goals

The Need for Safe Autonomy

Sampling-Based
Spacecraft Safety

J. Starek, B.
Barbee, M. Pavone

Autonomous
Vehicle Safety

Spacecraft Safety

Active Safety with
Positively-Invariant Set
Constraints

CWH CAM Policy Design

Numerical
Experiments

Conclusions

Future Goals

The Need for Safe Autonomy

- Satellite servicing (DARPA Phoenix Mission)

Sampling-Based
Spacecraft Safety

J. Starek, B.
Barbee, M. Pavone

Autonomous
Vehicle Safety

Spacecraft Safety

Active Safety with
Positively-Invariant Set
Constraints

CWH CAM Policy Design

Numerical
Experiments

Conclusions

Future Goals

The Need for Safe Autonomy

- Satellite servicing (DARPA Phoenix Mission)
- Automated rendezvous

Sampling-Based
Spacecraft Safety

J. Starek, B.
Barbee, M. Pavone

Autonomous
Vehicle Safety

Spacecraft Safety
Active Safety with
Positively-Invariant Set
Constraints
CWH CAM Policy Design

Numerical
Experiments

Conclusions
Future Goals

The Need for Safe Autonomy

- Satellite servicing (DARPA Phoenix Mission)
- Automated rendezvous

Key Question

How do we implement a general, automated spacecraft planning framework with hard safety specifications?

Sampling-Based
Spacecraft Safety

J. Starek, B.
Barbee, M. Pavone

Autonomous
Vehicle Safety

Spacecraft Safety
Active Safety with
Positively-Invariant Set
Constraints
CWH CAM Policy Design

Numerical
Experiments

Conclusions
Future Goals

Our work:

1. Establishes a **provably-correct framework** for the *systematic* encoding of safety specifications into the spacecraft trajectory generation process
2. Derives an efficient **one-burn escape maneuver policy** for proximity operations near circular orbit

ISS026E030181

Sampling-Based
Spacecraft Safety

J. Starek, B.
Barbee, M. Pavone

Autonomous
Vehicle Safety

Spacecraft Safety

Active Safety with
Positively-Invariant Set
Constraints

CWH CAM Policy Design

Numerical
Experiments

Conclusions

Future Goals

Spacecraft rendezvous approaches with explicit characterizations of safety:

- Kinematic path optimization [*Jacobsen, Lee, et al., 2002*]
- Artificial potential functions [*Roger and McInnes, 2000*]
- MILP formulations [*Breger and How, 2008*]
- Safety ellipses [*Gaylor and Barbee, 2007*] [*Naasz, 2005*]
- Motion planning [*Frazzoli, 2003*]
- Robust Model-Predictive Control [*Carson, Aćikmeşe, et al., 2008*]
- Forced equilibria [*Weiss, Baldwin, et al., 2013*]

Sampling-Based
Spacecraft Safety

J. Starek, B.
Barbee, M. Pavone

Autonomous
Vehicle Safety

Spacecraft Safety

Active Safety with
Positively-Invariant Set
Constraints

CWH CAM Policy Design

Numerical
Experiments

Conclusions

Future Goals

Sampling-Based
Spacecraft Safety

J. Starek, B.
Barbee, M. Pavone

Autonomous
Vehicle Safety

Spacecraft Safety

Active Safety with
Positively-Invariant Set
Constraints

CWH CAM Policy Design

Numerical
Experiments

Conclusions
Future Goals

- **Passive Trajectory Protection:** Constrain coasting trajectories to avoid collisions up to a given horizon time
- **Active Trajectory Protection:** Implement an *actuated escape maneuver* to save/abort a mission

Design Choice

We emphasize *active safety* as it is the less-conservative approach

Definition (Trajectory Safety Problem)

For all possible failure times $t_{\text{fail}} \in \mathcal{T}_{\text{fail}}$ and failure modes $\mathcal{U}_{\text{fail}}(\mathbf{x}(t_{\text{fail}}))$, we seek a sequence of admissible actions $\mathbf{u}(\tau) \in \mathcal{U}_{\text{fail}}(\mathbf{x}(t_{\text{fail}}))$ from $\mathbf{x}(t_{\text{fail}})$ such that the remaining trajectory is safe.

Examples:

- **Rovers/Land vehicles:** Come to a complete stop
- **Manipulators:** Return to previous configuration, disengage, or execute emergency plan
- **UAV's:** Enter a safe loiter pattern
- **Spacecraft:** Less straightforward; generally require mission-specific solutions (with human oversight)

Sampling-Based
Spacecraft Safety

J. Starek, B.
Barbee, M. Pavone

Autonomous
Vehicle Safety

Spacecraft Safety

Active Safety with
Positively-Invariant Set
Constraints

CWH CAM Policy Design

Numerical
Experiments

Conclusions

Future Goals

Definition (Trajectory Safety Problem)

For all possible failure times $t_{\text{fail}} \in \mathcal{T}_{\text{fail}}$ and failure modes $\mathcal{U}_{\text{fail}}(\mathbf{x}(t_{\text{fail}}))$, we seek a sequence of admissible actions $\mathbf{u}(\tau) \in \mathcal{U}_{\text{fail}}(\mathbf{x}(t_{\text{fail}}))$ from $\mathbf{x}(t_{\text{fail}})$ such that the remaining trajectory is safe.

Sampling-Based
Spacecraft Safety

J. Starek, B.
Barbee, M. Pavone

Autonomous
Vehicle Safety

Spacecraft Safety

Active Safety with
Positively-Invariant Set
Constraints

CWH CAM Policy Design

Numerical
Experiments

Conclusions

Future Goals

Definition (Trajectory Safety Problem)

For all possible failure times $t_{\text{fail}} \in \mathcal{T}_{\text{fail}}$ and failure modes $\mathcal{U}_{\text{fail}}(\mathbf{x}(t_{\text{fail}}))$, we seek a sequence of admissible actions $\mathbf{u}(\tau) \in \mathcal{U}_{\text{fail}}(\mathbf{x}(t_{\text{fail}}))$ from $\mathbf{x}(t_{\text{fail}})$ such that the remaining trajectory is safe.

Sampling-Based
Spacecraft Safety

J. Starek, B.
Barbee, M. Pavone

Autonomous
Vehicle Safety

Spacecraft Safety

Active Safety with
Positively-Invariant Set
Constraints

CWH CAM Policy Design

Numerical
Experiments

Conclusions

Future Goals

Definition (Trajectory Safety Problem)

For all possible failure times $t_{\text{fail}} \in \mathcal{T}_{\text{fail}}$ and failure modes $\mathcal{U}_{\text{fail}}(\mathbf{x}(t_{\text{fail}}))$, we seek a sequence of admissible actions $\mathbf{u}(\tau) \in \mathcal{U}_{\text{fail}}(\mathbf{x}(t_{\text{fail}}))$ from $\mathbf{x}(t_{\text{fail}})$ such that the remaining trajectory is safe.

Sampling-Based
Spacecraft Safety

J. Starek, B.
Barbee, M. Pavone

Autonomous
Vehicle Safety

Spacecraft Safety

Active Safety with
Positively-Invariant Set
Constraints

CWH CAM Policy Design

Numerical
Experiments

Conclusions

Future Goals

Definition (Trajectory Safety Problem)

For all possible failure times $t_{\text{fail}} \in \mathcal{T}_{\text{fail}}$ and failure modes $\mathcal{U}_{\text{fail}}(\mathbf{x}(t_{\text{fail}}))$, we seek a sequence of admissible actions $\mathbf{u}(\tau) \in \mathcal{U}_{\text{fail}}(\mathbf{x}(t_{\text{fail}}))$ from $\mathbf{x}(t_{\text{fail}})$ such that the remaining trajectory is safe.

Sampling-Based
Spacecraft Safety

J. Starek, B.
Barbee, M. Pavone

Autonomous
Vehicle Safety

Spacecraft Safety

Active Safety with
Positively-Invariant Set
Constraints

CWH CAM Policy Design

Numerical
Experiments

Conclusions

Future Goals

Definition (Trajectory Safety Problem)

For all possible failure times $t_{\text{fail}} \in \mathcal{T}_{\text{fail}}$ and failure modes $\mathcal{U}_{\text{fail}}(\mathbf{x}(t_{\text{fail}}))$, we seek a sequence of admissible actions $\mathbf{u}(\tau) \in \mathcal{U}_{\text{fail}}(\mathbf{x}(t_{\text{fail}}))$ from $\mathbf{x}(t_{\text{fail}})$ such that the remaining trajectory is safe.

Sampling-Based
Spacecraft Safety

J. Starek, B.
Barbee, M. Pavone

Autonomous
Vehicle Safety

Spacecraft Safety

Active Safety with
Positively-Invariant Set
Constraints

CWH CAM Policy Design

Numerical
Experiments

Conclusions

Future Goals

Definition (Trajectory Safety Problem)

For all possible failure times $t_{\text{fail}} \in \mathcal{T}_{\text{fail}}$ and failure modes $\mathcal{U}_{\text{fail}}(\mathbf{x}(t_{\text{fail}}))$, we seek a sequence of admissible actions $\mathbf{u}(\tau) \in \mathcal{U}_{\text{fail}}(\mathbf{x}(t_{\text{fail}}))$ from $\mathbf{x}(t_{\text{fail}})$ such that the remaining trajectory is safe.

Sampling-Based
Spacecraft Safety

J. Starek, B.
Barbee, M. Pavone

Autonomous
Vehicle Safety

Spacecraft Safety

Active Safety with
Positively-Invariant Set
Constraints

CWH CAM Policy Design

Numerical
Experiments

Conclusions

Future Goals

Challenge: Infinite-Horizon Safety

Finite-horizon safety guarantees can ultimately violate constraints:

Sampling-Based
Spacecraft Safety

J. Starek, B.
Barbee, M. Pavone

Autonomous
Vehicle Safety

Spacecraft Safety

Active Safety with
Positively-Invariant Set
Constraints

CWH CAM Policy Design

Numerical
Experiments

Conclusions

Future Goals

Idea: Positively-Invariant Sets

Definition (Positively-Invariant Set)

A set $\mathcal{X}_{\text{invariant}}$ is positively invariant with respect to $\dot{\mathbf{x}} = f(\mathbf{x})$ if and only if

$$\mathbf{x}(t_0) \in \mathcal{X}_{\text{invariant}} \implies \mathbf{x}(t) \in \mathcal{X}_{\text{invariant}}, t \geq t_0$$

Sampling-Based
Spacecraft Safety

J. Starek, B.
Barbee, M. Pavone

Autonomous
Vehicle Safety

Spacecraft Safety

Active Safety with
Positively-Invariant Set
Constraints

CWH CAM Policy Design

Numerical
Experiments

Conclusions

Future Goals

Idea: Positively-Invariant Sets

Sampling-Based
Spacecraft Safety

J. Starek, B.
Barbee, M. Pavone

Autonomous
Vehicle Safety

Spacecraft Safety

Active Safety with
Positively-Invariant Set
Constraints

CWH CAM Policy Design

Numerical
Experiments

Conclusions

Future Goals

Finite-Time Trajectory Safety

Sampling-Based
Spacecraft Safety

J. Starek, B.
Barbee, M. Pavone

Autonomous
Vehicle Safety

Spacecraft Safety

Active Safety with
Positively-Invariant Set
Constraints

CWH CAM Policy Design

Numerical
Experiments

Conclusions
Future Goals

$$\begin{aligned} & \underset{t_f, \mathbf{x}(t), \mathbf{u}(t)}{\text{minimize}} \quad J(\mathbf{x}, \mathbf{u}, t) \\ \text{subject to} \quad & \dot{\mathbf{x}}(t) = f(\mathbf{x}(t), \mathbf{u}(t), t) \quad (\text{Dynamics}) \\ & \mathbf{x}(t_0) = \mathbf{x}_0 \quad (\text{Initial Condition}) \\ & \mathbf{x}(t_f) \in \mathcal{X}_{\text{invariant}} \quad (\text{Invariant Termination}) \\ & \mathbf{u}(t) \in \mathcal{U}_{\text{fail}}(\mathbf{x}_0) \quad (\text{Control Admissibility}) \\ & g_i(\mathbf{x}, \mathbf{u}) \leq 0, i = [1, \dots, p] \quad (\text{Inequality Constraints}) \\ & h_j(\mathbf{x}, \mathbf{u}) = 0, j = [1, \dots, q] \quad (\text{Equality Constraints}) \end{aligned}$$

Challenge: Solving the Finite-Time Safety Problem under Failures

For a K -fault tolerant spacecraft with N control components (thrusters, momentum wheels, CMG's, etc), this yields:

$$N_{\text{fail}} = \sum_{k=0}^K \binom{N}{k} = \sum_{k=0}^K \frac{N!}{k!(N-k)!}$$

total optimization problems (one for each $\mathcal{U}_{\text{fail}}$) for each failure time t_{fail} .

Sampling-Based Spacecraft Safety

J. Starek, B. Barbee, M. Pavone

Autonomous Vehicle Safety

Spacecraft Safety

Active Safety with Positively-Invariant Set Constraints

CWH CAM Policy Design

Numerical Experiments

Conclusions

Future Goals

Theorem (Sufficient Fault-Tolerant Active Safety)

1. From each $\mathbf{x}(t_{fail})$, prescribe a Collision-Avoidance Maneuver $\Pi_{CAM}(\mathbf{x})$ that gives a horizon T and escape sequence \mathbf{u} that satisfies $\mathbf{x}(T) \in \mathcal{X}_{invariant}$ and $\mathbf{u}(\tau) \subset \mathcal{U}$ for all $t_{fail} \leq \tau \leq T$.
2. For each failure mode $\mathcal{U}_{fail}(\mathbf{x}(t_{fail})) \subset \mathcal{U}(\mathbf{x}(t_{fail}))$ up to tolerance K , check if $\mathbf{u} = \Pi_{CAM}(\mathbf{x}) \subset \mathcal{U}_{fail}$.

Sampling-Based
Spacecraft Safety

J. Starek, B.
Barbee, M. Pavone

Autonomous
Vehicle Safety

Spacecraft Safety

Active Safety with
Positively-Invariant Set
Constraints

CWH CAM Policy Design

Numerical
Experiments

Conclusions

Future Goals

Theorem (Sufficient Fault-Tolerant Active Safety)

1. From each $\mathbf{x}(t_{fail})$, prescribe a Collision-Avoidance Maneuver $\Pi_{CAM}(\mathbf{x})$ that gives a horizon T and escape sequence \mathbf{u} that satisfies $\mathbf{x}(T) \in \mathcal{X}_{invariant}$ and $\mathbf{u}(\tau) \subset \mathcal{U}$ for all $t_{fail} \leq \tau \leq T$.
2. For each failure mode $\mathcal{U}_{fail}(\mathbf{x}(t_{fail})) \subset \mathcal{U}(\mathbf{x}(t_{fail}))$ up to tolerance K , check if $\mathbf{u} = \Pi_{CAM}(\mathbf{x}) \subset \mathcal{U}_{fail}$.

Key Simplifications

Removes decision variables \mathbf{u} , reducing to:

- a test of escape control feasibility under failure(s)
- numerical integration for satisfaction of dynamics
- an *a posteriori* check of constraints g_i and h_j

Sampling-Based
Spacecraft Safety

J. Starek, B.
Barbee, M. Pavone

Autonomous
Vehicle Safety

Spacecraft Safety

Active Safety with
Positively-Invariant Set
Constraints

CWH CAM Policy Design

Numerical
Experiments

Conclusions

Future Goals

Solution is in exact form required for sampling-based motion planning.

Incorporating Safety Constraints:

- Add CAM policy generation to sampling algorithm
- Include CAM-trajectory collision-checking in tests of sample feasibility

Sampling-Based
Spacecraft Safety

J. Starek, B.
Barbee, M. Pavone

Autonomous
Vehicle Safety

Spacecraft Safety

Active Safety with
Positively-Invariant Set
Constraints

CWH CAM Policy Design

Numerical
Experiments

Conclusions

Future Goals

Example: CAM Policy Design Using CWH Set Invariance for CAMs

Sampling-Based
Spacecraft Safety

J. Starek, B.
Barbee, M. Pavone

Autonomous
Vehicle Safety

Spacecraft Safety

Active Safety with
Positively-Invariant Set
Constraints

CWH CAM Policy Design

Numerical
Experiments

Conclusions

Future Goals

Example: CAM Policy Design

Using CWH Set Invariance for CAMs

Circular Clohessy-Wiltshire-Hill (CWH) CAM policy:

1. Coast from $\mathbf{x}(t)$ to some new $T > t$ such that $\mathbf{x}(T^-)$ lies at a position in $\mathcal{X}_{\text{invariant}}$.
2. Circularize the orbit at $\mathbf{x}(T)$ such that $\mathbf{x}(T^+) \in \mathcal{X}_{\text{invariant}}$
3. Coast along the new orbit (horizontal drift along the in-track axis) in $\mathcal{X}_{\text{invariant}}$

Sampling-Based
Spacecraft Safety

J. Starek, B.
Barbee, M. Pavone

Autonomous
Vehicle Safety

Spacecraft Safety

Active Safety with
Positively-Invariant Set
Constraints

CWH CAM Policy Design

Numerical
Experiments

Conclusions

Future Goals

Example: CAM Policy Design

Choosing the Circularization Time, T

CWH Finite-Time Safety Problem:

Given: $\mathbf{x}(t), \mathbf{u}(\tau) = \mathbf{0}, t \leq \tau < T$

$$\underset{T}{\text{minimize}} \quad \Delta v_{\text{circ}}^2(T)$$

- subject to
- $\dot{\mathbf{x}}(\tau) = f(\mathbf{x}(\tau), \mathbf{0}, \tau)$ (Dynamics)
 - $\mathbf{x}(\tau) \notin \mathcal{X}_{\text{KOZ}}$ (KOZ Avoidance)
 - $\mathbf{x}(T^+) \in \mathcal{X}_{\text{invariant}}$ (Invariant Termination)

Sampling-Based
Spacecraft Safety

J. Starek, B.
Barbee, M. Pavone

Autonomous
Vehicle Safety

Spacecraft Safety

Active Safety with
Positively-Invariant Set
Constraints

CWH CAM Policy Design

Numerical
Experiments

Conclusions

Future Goals

Key Result

Can be reduced to an analytical expression that is
solvable in milliseconds

Scenario

- Simulates an automated approach to LandSat-7 (e.g., for servicing) between pre-specified waypoints
- Calls on the Fast Marching Tree (FMT*) algorithm for implementation

Sampling-Based
Spacecraft Safety

J. Starek, B.
Barbee, M. Pavone

Autonomous
Vehicle Safety

Spacecraft Safety

Active Safety with
Positively-Invariant Set
Constraints

CWH CAM Policy Design

Numerical
Experiments

Conclusions

Future Goals

- Simulates an automated approach to LandSat-7 (e.g., for servicing) between pre-specified waypoints
- Calls on the Fast Marching Tree (FMT*) algorithm for implementation

Assumptions:

- Begins at insertion into a coplanar circular orbit sufficiently close to the target
- The target is nadir-pointing
- The chaser is nominally nadir-pointing, or executes a “turn-burn-turn” along CAMs

- Simulates an automated approach to LandSat-7 (e.g., for servicing) between pre-specified waypoints
- Calls on the Fast Marching Tree (FMT*) algorithm for implementation

Constraints:

- **Plume impingement:** No exhaust plume impingement
- **Collision avoidance:** Clearance of an elliptic Keep-Out Zone (KOZ)
- **Target communication:** Target comm lobe avoidance
- **Safety:** Two-fault tolerance to stuck-off failures

Motion Planning Problem

Motion planning query:

Sampling-Based
Spacecraft Safety

J. Starek, B.
Barbee, M. Pavone

Autonomous
Vehicle Safety

Spacecraft Safety

Active Safety with
Positively-Invariant Set
Constraints

CWH CAM Policy Design

Numerical
Experiments

Conclusions
Future Goals

Motion Plan Comparison

Motion planning solutions:

Sampling-Based
Spacecraft Safety

J. Starek, B.
Barbee, M. Pavone

Autonomous
Vehicle Safety

Spacecraft Safety

Active Safety with
Positively-Invariant Set
Constraints

CWH CAM Policy Design

Numerical
Experiments

Conclusions
Future Goals

Motion Plan Comparison

Motion planning solutions:

Sampling-Based
Spacecraft Safety

J. Starek, B.
Barbee, M. Pavone

Autonomous
Vehicle Safety

Spacecraft Safety

Active Safety with
Positively-Invariant Set
Constraints

CWH CAM Policy Design

Numerical
Experiments

Conclusions
Future Goals

Success Rate Comparison

Success comparison as a function of thruster failure probability, computed over 50 trials:

Sampling-Based
Spacecraft Safety

J. Starek, B.
Barbee, M. Pavone

Autonomous
Vehicle Safety

Spacecraft Safety

Active Safety with
Positively-Invariant Set
Constraints

CWH CAM Policy Design

Numerical
Experiments

Conclusions
Future Goals

Success Rate Comparison

Success comparison as a function of thruster failure probability, computed over 50 trials:

Sampling-Based
Spacecraft Safety

J. Starek, B.
Barbee, M. Pavone

Autonomous
Vehicle Safety

Spacecraft Safety

Active Safety with
Positively-Invariant Set
Constraints

CWH CAM Policy Design

Numerical
Experiments

Conclusions

Future Goals

Key Ideas

1. Use termination constraints inside safe, stable, positively-invariant sets for infinite-horizon maneuver safety
2. Embed invariant-set constraints into sampling-based algorithms for safety-constrained planning

Synopsis

- Demonstrated the idea for failure-tolerant circular CWH planning
- CAM policies can be precomputed offline for more efficient online computation

Sampling-Based
Spacecraft Safety

J. Starek, B.
Barbee, M. Pavone

Autonomous
Vehicle Safety

Spacecraft Safety

Active Safety with
Positively-Invariant Set
Constraints

CWH CAM Policy Design

Numerical
Experiments

Conclusions

Future Goals

Future Work

Future Goals

- Extend to thruster stuck-on and mis-allocation failures
- Account for localization uncertainty
- Apply these notions to small-body proximity operations

Sampling-Based
Spacecraft Safety

J. Starek, B.
Barbee, M. Pavone

Autonomous
Vehicle Safety

Spacecraft Safety

Active Safety with
Positively-Invariant Set
Constraints

CWH CAM Policy Design

Numerical
Experiments

Conclusions

Future Goals

Thank you!

Joseph A. Starek, Brent W. Barbee, and
Marco Pavone

Aeronautics & Astronautics Navigation and Mission Design

Stanford University

NASA GSFC

jstarek@stanford.edu

Clohessy-Wiltshire-Hill (CWH) Equations

- Motion is linearized about a moving reference point in circular orbit:

$$\mathbf{x} = [\delta x, \delta y, \delta z, \delta \dot{x}, \delta \dot{y}, \delta \dot{z}]^T$$

$$\mathbf{u} = \frac{1}{m} [F_x, F_y, F_z]^T$$

- Yields LTI dynamics:
 $\dot{\mathbf{x}} = \mathbf{Ax} + \mathbf{Bu}$

$$\mathbf{A} = \begin{bmatrix} 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 3n_{\text{ref}}^2 & 0 & 0 & 0 & 2n_{\text{ref}} & 0 \\ 0 & 0 & 0 & -2n_{\text{ref}} & 0 & 0 \\ 0 & 0 & -n_{\text{ref}}^2 & 0 & 0 & 0 \end{bmatrix} \quad \mathbf{B} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Sampling-Based
Spacecraft Safety

J. Starek, B.
Barbee, M. Pavone

Dynamics

Sampling-Based
Motion Planning

Optimal Motion Planning
FMT*

Definition (Optimal Motion Planning Problem)

Given \mathcal{X} , \mathcal{X}_{obs} , $\mathcal{X}_{\text{free}}$, and J , find an action trajectory $\mathbf{u} : [0, T] \rightarrow \mathcal{U}$ yielding a feasible path $\mathbf{x}(t) \in \mathcal{X}_{\text{free}}$ over *time horizon* $t \in [0, T]$, which reaches the *goal region* $\mathbf{x}(T) \in \mathcal{X}_{\text{goal}}$ and *minimizes* the cost functional $J = \int_0^T c(\mathbf{x}(t), \mathbf{u}(t)) dt$.

Characteristics:

- PSPACE-hard (and therefore NP-hard)
- Requires kinodynamic motion planning
- Almost certainly requires approximate algorithms, tailored to the particular application

Sampling-Based
Spacecraft Safety

J. Starek, B.
Barbee, M. Pavone

Dynamics

Sampling-Based
Motion Planning
Optimal Motion Planning
FMT*

Generalized Mover's Problem

ASU

Sampling-Based
Spacecraft Safety

J. Starek, B.
Barbee, M. Pavone

Dynamics

Sampling-Based
Motion Planning

Optimal Motion Planning
FMT*

Generalized Mover's Problem

ASU

Sampling-Based
Spacecraft Safety

J. Starek, B.
Barbee, M. Pavone

Dynamics

Sampling-Based
Motion Planning

Optimal Motion Planning
FMT*

Generalized Mover's Problem

Sampling-Based
Spacecraft Safety

J. Starek, B.
Barbee, M. Pavone

Dynamics

Sampling-Based
Motion Planning

Optimal Motion Planning
FMT*

The FMT* Algorithm

ASU

Sampling-Based
Spacecraft Safety

J. Starek, B.
Barbee, M. Pavone

Dynamics

Sampling-Based
Motion Planning

Optimal Motion Planning
FMT*

The FMT* Algorithm

The FMT* Algorithm

ASU

Sampling-Based
Spacecraft Safety

J. Starek, B.
Barbee, M. Pavone

Dynamics

Sampling-Based
Motion Planning

Optimal Motion Planning
FMT*

The FMT* Algorithm

ASU

Sampling-Based
Spacecraft Safety

J. Starek, B.
Barbee, M. Pavone

Dynamics

Sampling-Based
Motion Planning

Optimal Motion Planning
FMT*

The FMT* Algorithm

ASU

Sampling-Based
Spacecraft Safety

J. Starek, B.
Barbee, M. Pavone

Dynamics

Sampling-Based
Motion Planning

Optimal Motion Planning
FMT*

The FMT* Algorithm

ASU

Sampling-Based
Spacecraft Safety

J. Starek, B.
Barbee, M. Pavone

Dynamics

Sampling-Based
Motion Planning

Optimal Motion Planning
FMT*

The FMT* Algorithm

ASU

Sampling-Based
Spacecraft Safety

J. Starek, B.
Barbee, M. Pavone

Dynamics

Sampling-Based
Motion Planning

Optimal Motion Planning
FMT*

The FMT* Algorithm

The FMT* Algorithm

The FMT* Algorithm

ASU

Sampling-Based
Spacecraft Safety

J. Starek, B.
Barbee, M. Pavone

Dynamics

Sampling-Based
Motion Planning

Optimal Motion Planning
FMT*

The FMT* Algorithm

ASU

Sampling-Based
Spacecraft Safety

J. Starek, B.
Barbee, M. Pavone

Dynamics

Sampling-Based
Motion Planning

Optimal Motion Planning
FMT*

The FMT* Algorithm

ASU

Sampling-Based
Spacecraft Safety

J. Starek, B.
Barbee, M. Pavone

Dynamics

Sampling-Based
Motion Planning

Optimal Motion Planning
FMT*

The FMT* Algorithm

The FMT* Algorithm

The FMT* Algorithm

Sampling-Based
Spacecraft Safety

J. Starek, B.
Barbee, M. Pavone

Dynamics

Sampling-Based
Motion Planning

Optimal Motion Planning
FMT*

The FMT* Algorithm

ASU

Sampling-Based
Spacecraft Safety

J. Starek, B.
Barbee, M. Pavone

Dynamics

Sampling-Based
Motion Planning

Optimal Motion Planning
FMT*

The FMT* Algorithm

ASU

Sampling-Based
Spacecraft Safety

J. Starek, B.
Barbee, M. Pavone

Dynamics

Sampling-Based
Motion Planning

Optimal Motion Planning
FMT*

The FMT* Algorithm

The FMT* Algorithm

The FMT* Algorithm

ASU

Sampling-Based
Spacecraft Safety

J. Starek, B.
Barbee, M. Pavone

Dynamics

Sampling-Based
Motion Planning

Optimal Motion Planning
FMT*

