re:Invent

NOV. 28 - DEC. 2, 2022 | LAS VEGAS, NV

How Capital One Accelerates Innovation with AWS Databases

Ryan Thurston

Principal Go-To-Market Specialist NoSQL Databases Amazon Web Services

Geetha Gopal

VP of Software Engineering, Head of Cloud & Productivity Engineering US Card, Capital One

Preston Burroughs

Sr. Director of Database and Software Engineering Enterprise Data, Capital One

Meet our speakers

Ryan Thurston

Principal Go-To-Market Specialist
NoSQL Databases
Amazon Web Services

Geetha Gopal

VP of Software Engineering,
Head of Cloud & Productivity Engineering
US Card, Capital One

Preston Burroughs
Sr. Director of Database and
Software Engineering
Enterprise Data, Capital One

Macro trends in industry fueling cloud adoption

Retail

Moving to online sales channels, accelerating retail adoption

Financial Services

Closing physical stores and going digital

Insurance

Digital channels are now the norm, and usagebased models proliferate

Mobile

Rise in contactless payments; buy now, pay later; and instant payments

Benefits of modernization

Business benefits	Modern app characteristics
Improve customer experience	Scales to millions of users
Increase the efficiency of developers	Global availability
Increase agility	Responds in milliseconds
Improve ROI and reduce TCO	Handles petabytes of data

Modern data architecture

From traditional . . . tightly coupled

Web servers

Presentation layers (Web)

Application servers

Business logic

Database servers

Data layer

... to microservices, decoupled architectures

Developers want the right database to meet their application's unique requirements

Purpose-built databases

AWS delivers the right database for the right job

ום עו	ы		n	3	ı
		U		•	L

Referential integrity, ACID transactions, schemaon-write

Key-value Document

MongoDB compatible, flexible schema, reads and writes. ad-hoc gueries & indexing

In-memory

100% open source Redis compatible, microsecond latency

Graph

Quickly and easily create and navigate relationships between data

Time-series

Collect, store, and process data sequenced by time

Blockchain

Execute transactions without the need for trusted, central authority

Wide Column

Scalable, highly available, and managed Apache Cassandracompatible service

AWS Service(s)

High

throughput,

Low latency

endless scale

DynamoDB

DocumentDB

ElastiCache

Neptune

Timestream

Clickstream

AMB

Supply chain, Immutable records

Keyspaces Managed Cassandra

Build low-latency applications, leverage open source, migrate Cassandra to the cloud

Oracle, SQL Server, Common PostgreSQL, Use Cases MySQL, MariaDB

Single millisecond patterns known up front

performance at any scale, query

Content management, personalization, mobile

Caching, Leaderboards. real-time analytics

Fraud detection, social networking, recommendation engine

IoT, DevOps,

Capital One at a glance

Fortune 100 company, founded in 1994

Top 10 US bank, serving over 100M customers

Data and technology pioneer in the financial services industry

Agenda

Why we adopted purpose-built databases

Key steps we took and decisions we made to accelerate adoption

Use cases - Document DB, Aurora Global, Dynamodb

Migration guidance

Conclusion

Thriving on the cloud

We modernized and migrated thousands of workloads

We use modern development practices

We harness innovative cloud services while adhering to regulatory requirements

Our journey is not over – cloud-native, real-time, intelligent

Purpose-built databases have been a big part of our innovation journey

Database management is time consuming

Database management requires specialized skill and knowledge across the DB lifecycle

Database infrastructure

Database maintenance

Database monitoring

Reduce variability

Standardize patterns

Automate lifecycle tasks

We have created paved paths for purpose-built databases that meet majority of our business needs

Database Type	Paved Paths
Relational	Aurora Global, RDS Aurora
Key Value	DynamoDB
Document	DocumentDB
Graph	Neptune
Wide Column	Key Spaces*
Time Series	Timestream*

Our Database Selection Tool guides teams with picking the right database and pattern for their use case

Key considerations

Data model

Data access patterns

Query type

Resiliency requirements

Scalability requirements

Cost

Automate Lifecycle tasks

Cross-Region auto-failover

- Automate regional failure detection
- Trigger alert to engineering teams with one-click auto-failover option

Version upgrades

 Automate near-zero downtime version upgrades

Automated governance

- Access provisioning
- Security and compliance checks/remediation

Automate resiliency testing

Hands-free resiliency testing

DocumentDB

Business use case - Credit decisioning

- Need for near real-time credit product decisioning
- Data from several external data sources form user profiles
- The data structure of these user profiles vary and can result in large documents
- User profiles stored, converted to features, fed to decisioning process
- It is critical to achieve ms read and write latencies to make quick decisions

Our requirements

- Support large documents and support growth in document size
- Millisecond read and write latencies < 100 ms reads, < 20 ms writes
- Fully managed in Capital One VPC, application to DB TLS connection
- Cross-region auto-failover capability with less than 2 Mins RTO and RPO
- Minimal to no application code change (Mongo compatible)
- No downtime migration
- Functional capability Text search, native s3-archival
- Storage growth to 128 TB

Amazon DocumentDB met most of our needs

- Built-in high availability
- · Backups enabled by default
- Durable by default
- Security best practices by default
- Automatic patching
- Monitoring and alerting
- Global Replication
- Scale compute in minutes
- Storage and IO autoscaling
- Storage scales
- Scale out replicas for millions of reads
- Applications, drivers, and tools can be used with Amazon DocumentDB with little or no change
- Supports hundreds of APIs, operators, and stages
- Continually working backward from customers to deliver the capabilities they need

Amazon DocumentDB: Built-for-the-cloud architecture

Amazon DocumentDB – Global clusters

What we did

- We had a nearly 2-month intense DocumentDB engagement starting with immersion day
- Two extensive Proof of Concepts (POCs) with the real-world use case
 - Read/write standard size documents yielding 5x throughput
 - Read/write large documents yielding 5x throughput
- The engagement ended with decisions on what capabilities Capital One would build versus AWS roadmap

Role	Prepare		Execute POC1			Execute POC2			
Kole	Sept	ember	Oct			ober			
Week Ending	28-Oct	4-Nov	11-Nov 18-Nov		25-Nov		2-Dec		
	Compatibility & Sizing Assessment								
		Application changes & query workarounds, as needed		App to cluster connection established					
	DocumentDB Immersion Day								
Dev			Establ connectio Applicati Docume	n from ion to		Wra _l PO	-		
			Execute load test		testing scrip	t			
			Validate against defined success critera				Wrap up		
		Clu Provis	ster sioned			Insert large documents to two identified collections		POC2	
		7	7			Validate against defined success critera			
	Create Cluster and	add users per RBAC							
DBA		Architecture and Security Group Approval							
22.,			Set up Monitoring & Alarms / configure CloudWatch dashboard			_			
							POC Support		

Amazon DocumentDB – Concerns & mitigation

Criteria	Result
Lack of storage compression Use case requires large amount of storage per year	Short term: non-native archival
	Long term: Sharding
Downtime with maintenance operations Can take up to 30 seconds	Short term:
	Non-critical - subscribe to maintenance events Critical - DMS for upgrades
	Long term: Proxy solution will minimize downtime (Roadmap)
Failover time for regional failovers. DB failover is not fully automated and can take several minutes	Short term: Automate global failover process using AWS CLI / SDK
	Long term: Managed failover (Roadmap)

Aurora Global Database

Business use case - Customer transactions

- Tracking customer transactions purchases, reversal, rewards, payments, are critical to providing great spend experience
- Relational, batch data that tracks several parameters for a transaction such as customer, merchant, payment network and so on
- Database is a third party postgres database, provisioned on EC2 instances
- Team spent several hours in database maintenance

We migrated customer transactions database to Aurora Global

- DMS was used to migrate from third party database to Aurora Global
- We developed best practices for relational databases along the way
- We automated life-cycle tasks including developed regional auto-failover capabilities

10x improvement in Batch load times - Database optimization, Aurora performance

Business use case - Payments

- Our payment orchestration service interacts externally with vendor services
- Due to rigid vendor timeout configuration, incomplete transactions can result in inefficient post-remediation processes
- Need for the payment service orchestration system to be highly resilient and configured to near zero data loss to enable transaction retries
- Need a transactional data store to achieve 4 seconds SLA during system issues

We fronted Aurora Global with a Cache layer to meet our business needs

- The solution establishes a new pattern for high resiliency databases within Capital One and creates an "always on" data store by adding a Redis caching layer in front of the data layer
- In the event of a database failure or AWS regional outage, the data layer will perform automatic regional failover while the cache layer serves traffic
- Once the failover is complete, changes made in the cache is flushed back out to the database

Amazon Aurora

Dynamo DB

Use case

Functional need - Low Latency database used to enable real-time experiences.

- Used for "fast" writes and reads of data
 - **Time window**: Streaming
 - Consistency: Real time Eventual
 - Read Perf: ~3-20ms
- Technologies that are highly optimized for specific query types

Use case 1: Fraud

1. Account and transaction data is sent in real time to the streaming platform

- 2. The team built and maintains an EMR cluster for integrating various streams
- 3. The team owns and maintains
 DynamoDB and RDS in their own
 AWS Account
- 4. The team created an API to expose data from DynamoDB and RDS
- 5. The app consumes from the API

The app should retrieve data quick enough that a fraud servicing agent is not delayed while investigating a fraud ring

Use case 2: Bank App for Associates

- 1. Customer activity is captured in streaming platform
- 2. The app built and maintains an ECS cluster for integrating various streams
- 3. The app owns and maintains DynamoDB in it's own AWS Account
- 4. The app created an API to expose data from DynamoDB
- 5. The app consumes from the API

Data migrations

Summary

- There are multiple use cases for massive data movement within Capital One
- AWS DMS has limitations and pre-requisites that need to be met
- We developed an internal Database Migrator tool based on AWS DMS
- The Migrator tool is integrated into capital one tooling and will evolve as we work with AWS to influence their DMS roadmap

DB Migrator analyzes databases for migration readiness and helps migrate with near-zero downtime

- DB Migrator targets database migrations across a wide spectrum of scenarios with near-zero downtime requirements
- The tool guides users at every stage of migration - migration readiness, migration, validation and clean-up
- Creates DMS resources and applies config defaults based on automated analysis of database configuration and usage, thereby taking guesswork out of the picture

DB Migrator bridges several limitations in DMS and makes it easy to use DMS safely and efficiently

Capability	Description
Schema Objects	Schema objects are migrated as part of the process
Logging	Additional logging to enable end-to-end view of migration process
Constraints	Updates instance settings to allow constraints during replication
Replication Instance Sizing	Automatically sized based on the Database volume and usage
DB Utilities	Database version is checked and appropriate DB utilities are used
Data Validations	Data validation can be performed any time during the upgrade process
DMS Resources	Tool launches appropriate AWS resources to handle each stage of the migration process
Database Credentials	Database credentials are retrieved from internal vault during setup process
Resource Cleanup	DB Migrator performs cleanup after successful cutover

Our partnerships with AWS and Engineering Teams are the key to our success

Our database strategies had to evolve – purpose-built databases power our innovative experiences

We built software that helped us accelerate adoption

AWS prioritized features we needed to adopt

NoSQL programs/investments

Program Name	Description	Duration	Cost	Outcome
Cost Analysis	NoSQL sizing questionnaire using your workload metrics to generate a cluster sizing estimate	Self-serve	None	sizing and pricing estimate
Compatibility Assessment	The NoSQL compatibility tool will examine log files from MongoDB to determine if your applications use operators that are not supported in DocumentDB. This tool will report use of unsupported APIs, and output the unsupported log lines into a file for future use.	Self-serve	None	MongoDB -> DocumentDB compatibility report
Immersion Day	NoSQL Immersion Days provide customers with modular content and hands-on labs to learn about use cases, architecture, best practices, migrations, security, monitoring, and more.	1-2 days	None	Enable customers to build NoSQL POC, or implement/migrate workload
Well-Architected Lens	WAL assesses customer workloads with a focus on optimizing performance, reliability, security, cost and operational excellence.	Half day		Well Architected review report with recommendations to optimize workload.
Springboard	Customized migration game plan that begins with decision makers (sponsor) and diverse stakeholders. Includes 1. current state operations & business commitments 2. specific architectural recommendations on AWS 3. proposed milestones 4. follow up action items	Half day	NIANA	Engagement readout that serves as execution plan.
	Data Labs provide technical resources to help customer build tangible deliverables that accelerate data modernization initiatives. Customers who've built NoSQL POCs are given prescriptive architectural guidance, best practices, and technical roadblock removal by AWS Data Lab engineers and NoSQL experts. Customers leave the lab with a well-architected prototype, a path to production, and greater knowledge of NoSQL technologies.	4 days	None	Well architected prototype with path to production
Professional Services	AWS Pro Serve provides hands-on support to review customers' database environments and challenges, requirements, desired outcomes, and success metrics for migrating workloads to NoSQL databases. Suitable use cases are identified, and customer gets experience implementing a demo of their solution using sample data. A documented roadmap proposal with next steps to implement migrations to NoSQL is provided by end of the engagement.	Varies		Hands-on support to guide customer from POC- >assessment->migration

Thank you!

Visit Capital One at booth #2004

Please complete the session survey in the mobile app

