Chapter 9: Transfer Learning & Tokenization

Matthias Aßenmacher

January 13, 2021

Recap: Word vectors

- Information is encoded in (pre-)trained word embeddings
- Embeddings are used for tasks external to the training corpus

What is Transfer Learning?

Wikipedia says:

"Transfer learning is a research problem in machine learning that focuses on storing knowledge gained while solving one problem and applying it to a different but related problem."

How it works with word2vec

- Train word2vec on some "fake task" (DBOW or Skip-gram)
- Extract the stored knowledge (a.k.a. embedding)
 or: Directly download embeddings from the web
- Perform a different (supervised) task using the embeddings

A remark on vocabulary & tokenization

Challenges:

- If no embedding for a word exists, it cannot be represented.
- Workaround:
 - ► Train subword (character n-gram) embeddings
 - Represent OOV word as combination of them
- This is already a special case of Tokenization

Tokenization examples:

- Whitespace tokenization
- N-grams
- Character n-grams
- Characters

Fine-grained tokenization

Difficulties:

- When using embeddings (or other models/methods) for transferring knowledge, one has to stick to this method's tokenization scheme.
- Using words as tokens leads to vocabulary sizes of easily > 100k, which is undesirable.
- Characters as tokens lead to a very small vocabulary size but aggravate capturing meaning.
- Using (sets of) n-grams is kind of heuristic.

Smart alternatives:

- WordPiece → Schuster & Nakajima (2012) → Wu et al. (2016)
- SentencePiece → Kudo et al. (2018)

BytePair encoding (BPE)

Data compression algorithm • Gage (1994)

- Considering data on a byte-level
- Looking at pairs of bytes:
 - Count the occurrences of all byte pairs
 - 2 Find the most frequent byte pair
 - Replace it with an unused byte
- Repeat this process until no further compression is possible

- Translation as an open-vocabulary problem
- Word-level NMT models:
 - Handling out-of-vocabulary word by using back-off dictionaries
 - ▶ Unable to translate or generate previously unseen words
- Subword-level models alleviate this problem

BytePair encoding (BPE)

Adapt BPE for word segmentation Sennrich et al. (2016)

- Goal: Represent an open vocabulary by a vocabulary of fixed size
 - → Use variable-length character sequences
- Looking at pairs of characters:
 - Initialize the the vocabulary with all characters plus end-of-word token
 - ② Count occurrences and find the most frequent character pair, e.g. "A" and "B" (⚠ Word boundaries are not crossed)
 - Replace it with the new token "AB"
- Only one hyperparameter: Vocabulary size (Initial vocabulary + Specified no. of merge operations)
 - \rightarrow Repeat this process until given |V| is reached

WordPiece

Voice Search for Japanese and Korean Schuster & Nakajima (2012)

- Specific Problems:
 - Asian languages have larger basic character inventories compared to Western languages
 - Concept of spaces between words does (partly) not exist
 - Many different pronounciations for each character
- WordPieceModel: Data-dependent + do not produce OOVs
 - Initialize the the vocabulary with basic Unicode characters (22k for Japanese, 11k for Korean)
 - △ Spaces are indicated by an underscore attached before (of after) the respective basic unit or word (increases initial |V| by up to factor 4)
 - 2 Build a language model using this vocabulary
 - Merge word units that increase the likelihood on the training data the most, when added to the model
- Two possible stopping criteria: Vocabulary size or incremental increase of the likelihood

WordPiece

Use for neural machine translation • Wu et al. (2016)

- Adaptions:
 - Application to Western languages leads to a lower number of basic units (~ 500)
 - Add space markers (underscores) only at the beginning of words
 - Final vocabulary sizes between 8k and 32k yield a good balance between accuracy and fast decoding speed (compared to around 200k from ◆ Schuster & Nakajima (2012)

Independent vs. joint encodings for source & target language

- Sennrich et al. (2016) report better results for joint BPE
- Wu et al. (2016) use shared WordPieceModel to guarantee identical segmentation in source & target language in order to facilitate copying rare entity names or numbers

SentencePiece • Kudo et al. (2018b)

No need for Pre-Tokenization

- BPE & WordPiece require a sequence of words as inputs
 - \rightarrow Some sort of (whitespace) tokenization has to be performed before their application
- SentencePiece (as the name already reveals) doesn't need that
 - → Can be applied to "raw" sentences
 - → Consists of Normalizer, Trainer, Encoder & Decoder
 - ightarrow Under the hood, two different algorithms are implemented
 - ▶ byte-pair encoding ▶ Sennrich et al. (2016)
- No language-specific pre-processing
- ⇒ Basically a nice, end-to-end usable system/pipeline

Back to Transfer Learning

Embedding Idea + more complex architectures:

- Naive approach:
 Standard embeddings (like word2vec) are "context-free"
- Better:
 - More complex networks, where the embeddings are trainable parameters of the model
 - Model learns context sensitive embeddings
 - We already encountered this in the Transformer
- More complex networks:
 - Whole network just to learn the embeddings, or
 - Additional embedding-layer as the lowest layer

Contextuality

1st Generation of neural embeddings are "context-free":

- Breakthrough paper by Mikolov et al, 2013 (Word2Vec)
- Followed by Pennington et al, 2014 (GloVe)
- Extension of Word2Vec by Bojanowski et al, 2016 (FastText)

Why "Context-free"?

- Models learn one single embedding for each word
- Why could this possibly be problematic?
 - "The default setting of the function is xyz."
 - ▶ "The probability of *default* is rather high."
- Would be nice to have different embeddings for these two occurrences

Transfer Learning – Further Motivation

Questions/Problems:

- Where in this (deep) model do we achieve contextuality?
 (For sure not in the lowest layer!)
 - \rightarrow Not straightforward to extract them
- The deeper the network ..
 - .. the more expensive to train
 - .. the more data we need
 - → You cannot just train them at home

Transfer Learning

TRANSFER LEARNING

- Train such an architecture on ..
 - .. a fairly general task
 - .. which does not require any labels ("self-supervised")
 - .. using large amounts of data
- Do not extract static embeddings, but use the whole pre-trained architecture
- Replace the final layer used for the general task by a different layer for a specific task at hand

Taxonomy of transfer learning •Ruder, 2019

Source: Sebastian Ruder

Taxonomy of transfer learning ●Ruder, 2019

Transductive Transfer learning

- Domain adaptation:
 - \rightarrow "Transfer knowledge learned from performing task A on labeled data from domain X to performing task A in domain Y."
- Cross-lingual learning:
 - \rightarrow "Transfer knowledge learned from performing task A on labeled data from language X to performing task A in language Y."
- Important: No labeled data in target domain/language Y.

Taxonomy of transfer learning ●Ruder, 2019

Inductive Transfer learning

- Multi-task learning:
 - \rightarrow " Transfer knowledge learned from performing task A on data from domain X to performing multiple (simultaneous) tasks B, C, D, .. in domain Y."
- Sequential transfer learning:
 - \rightarrow "Transfer knowledge learned from performing task A on data from domain X to performing multiple (sequential) tasks B, C, D, .. in domain Y."
- Important: Labeled data only for task(s) from target domain Y.

Feature-based transfer learning

Again: Word Embeddings

- The stored knowledge from the pre-trained model is extracted as is and is not further adapted to the actual domain/task of interest.
- Difficulties:
 - Source & target domain/task might be pretty different
 - No representations for domain-/task-specific words
 - ▶ No contextualization

Enhancement: Embeddings from Language **Mo**dels (ELMo)

- Bidirectional language model (LM)
- Combines a forward LM

$$p(t_1, t_2, ..., t_N) = \prod_{k=1}^{N} p(t_k|t_1, t_2, ..., t_{k-1})$$

and a backward LM

$$p(t_1, t_2, \ldots, t_N) = \prod_{k=1}^{N} p(t_k | t_{k+1}, t_{k+2}, \ldots, t_N)$$

to arrive at the following loglikelihood:

$$\sum_{k=1}^{N} \left(\log p \left(t_{k} | t_{1}, \dots, t_{k-1}; \Theta_{x}, \overrightarrow{\Theta}_{LSTM}, \Theta_{s} \right) + \log p \left(t_{k} | t_{k+1}, \dots, t_{N}; \Theta_{x}, \overleftarrow{\Theta}_{LSTM}, \Theta_{s} \right) \right)$$

ELMo embeddings

Character-based (context-independent) token representations

$$x_k^{LM}$$

- Two-layer biLSTM as main architecture:
 - ▶ Two context-dependent token representations per layer, i.e.

$$\overrightarrow{\mathbf{h}}_{k,j}^{LM}$$
 & $\overleftarrow{\mathbf{h}}_{k,j}^{LM}$ for the k -th token in the j -th layer.

Four context-dependent token representations in total:

$$\left\{\overrightarrow{\mathbf{h}}_{k,j}^{\mathit{LM}},\overleftarrow{\mathbf{h}}_{k,j}^{\mathit{LM}}|j=1,2\right\}$$

Five representations per token in total:

$$\begin{aligned} R_k &= \left\{ \mathbf{x}_k^{LM}, \overrightarrow{\mathbf{h}}_{k,j}^{LM}, \overleftarrow{\mathbf{h}}_{k,j}^{LM} | j = 1, \dots, L \right\} \\ &= \left\{ \mathbf{h}_{k,j}^{LM} | j = 0, 1, 2 \right\} \end{aligned}$$

ELMo – Graphical representation

Source: Carolin Becker

ELMo - Graphical representation

Source: Carolin Becker

ELMo – Task Adaption

Including ELMo in downstream tasks:

• Calculate task-specific weights of all five representations:

$$\mathbf{ELMo}_{k}^{task} = E\left(R_{k}; \Theta^{task}\right) = \gamma^{task} \sum_{j=0}^{L} s_{j}^{task} \mathbf{h}_{k,j}^{LM},$$

where the $\mathbf{h}_{k,i}^{LM}$ are **not trainable** anymore.

- Trainable parameters during the adaption:
 - s_j^{task} are trainable (softmax-normalized) weights
 γ^{task} is a trainable scaling parameter

Advantages over context free-embeddings:

- Task-specific model has access to multiple representations of each token
- Model learns to which degree to use the different representations depending on the task at hand

ELMo - Task Adaption

Source: Carolin Becker

Fine-tuning approach

Shortcomings of ELMo:

- Pre-trained on a general domain corpus, embeddings are not adapted to the domain/task at hand
- Sequential nature of LSTMs:
 - Not fully parallelizable (compared to Transformers)
 - ► Fail to capture long-range dependency during contextualization

Alleviations/Alternatives:

- ULMFiT Howard and Ruder, 2018 is a uni-directional LSTM which is fine-tuned as a whole model on data from the target domain/task.
- GPT Radford et al., 2018 is a Transformer (decoder) which is fine-tuned as a whole model on data from the target domain/task.

ULMFiT • Howard and Ruder, 2018

Source: Carolin Becker

ULMFiT - Architectural Details

- AWD-LSTMs → Merity et al., 2017 as backbone of the architecture

 - Averaged stochastic gradient descent (ASGD) for optimiziation
- Embedding layer + three LSTM layers + Softmax Layer
- LM fine-tuning:
 - Discriminative fine-tuning
- Classifier fine-tuning:
 - Concat Pooling
 - Gradual unfreezing

Source: Radford et al., 2018

GPT - Architectural Details

- Transformer decoder as backbone of the architecture
 - ▶ 12-layer-decoder with masked attention heads
 - ▶ 40k BPE vocabulary
 - Learned positional embeddings (compared to sinusoidal versions)

• Fine-tuning:

- Linear output layer with softmax activation on top
- Auxiliary language modeling objective during fine-tuning
 - ightarrow Improves generalization
 - → Accelerates convegence
- Task-specific input transformations (see previous slide)

GPT - SOTA results

Performance on different benchmarks:

Table 2: Experimental results on natural language inference tasks, comparing our model with current state-of-the-art methods. 5x indicates an ensemble of 5 models. All datasets use accuracy as the evaluation metric.

Method	MNLI-m	MNLI-mm	SNLI	SciTail	QNLI	RTE
ESIM + ELMo [44] (5x)	-	-	89.3	-	-	-
CAFE [58] (5x)	80.2	79.0	89.3	-	-	-
Stochastic Answer Network [35] (3x)	80.6	80.1	-	-	-	-
CAFE [58]	78.7	77.9	88.5	83.3		
GenSen [64]	71.4	71.3	-	-	82.3	59.2
Multi-task BiLSTM + Attn [64]	72.2	72.1	-	-	82.1	61.7
Finetuned Transformer LM (ours)	82.1	81.4	89.9	88.3	88.1	56.0

Table 3: Results on question answering and commonsense reasoning, comparing our model with current state-of-the-art methods.. 9x means an ensemble of 9 models.

Method	Story Cloze	RACE-m	RACE-h	RACE
val-LS-skip [55]	76.5	-	-	-
Hidden Coherence Model [7]	<u>77.6</u>	-	-	-
Dynamic Fusion Net [67] (9x)	-	55.6	49.4	51.2
BiAttention MRU [59] (9x)	-	60.2	50.3	53.3
Finetuned Transformer LM (ours)	86.5	62.9	57.4	59.0

Source: Radford et al. (2018)

Pre-training objectives

Self-Supervision:

- Special case of unsupervised learning
- Labels are generated from the data itself

Self-supervised objectives:

- Skip-gram objective (cf. word2vec ► Mikolov et al. (2013a))
- Language modeling objective (cf. ▶ Bengio et al. (2003))
- Masked language modeling (MLM) objective (cf. chapter 10)
 → Replace words by a [MASK] token and train the model to predict
- Permutation language modeling (PLM) objective (cf. chapter 11)
 → Autoregressive objective of XLNet
- Replaced token detection objective (cf. chapter 11)
 - \rightarrow Requires two models: One performing MLM & the second model to discriminate between actual and the predicted tokens

Pre-training resources

Commonly used (large-scale) data sets for pre-training

- English Wikipedia
- 1B Word Benchmark Chelba et al. (2013)
- BooksCorpus ► Zhu et al. (2015)
- Wikitext-103
 ▶ Merity et al. (2016)

Non-exhaustive list; tbc in the following chapters

Transfer Learning in Computer Vision

ImageNet: Deng et al., 2009

- Large-scale data set (\approx 50 million labeled images)
- Hierarchical data set structured in synsets
- "Diverse coverage of the image world." (Deng et al., 2009)

How it changed learning:

- Quasi-standard to use a model pre-trained on ImageNet
- Achieved SOTA results in various computer vision tasks
- Enable the use of large models to small (labeled) data sets

Summary & Outlook

Pros:

- New and deep architectures enable better representation learning
- Leverage favorable properties of language to create self-supervised tasks
- Use ubiquitous large amounts of unlabeled data available on the web

Cons:

- Pre-Training extremely costly
- Models will have up to over billions parameters
- Only works well for high-resource languages

Further reading

- NLP's ImageNet moment has arrived
- Sebastian Ruder's PhD thesis: Ruder, 2019