

SEQUENCE LISTING

103024-1600P007

<110> Adachi, Kiichi
DeZwaan, Todd M
Lo, Sze Chung C
Montenegro-Chamorro, Maria V
Frank, Sheryl A
Darveaux, Blaise A
Mahanty, Sanjoy K
Heiniger, Ryan W
Skalchunes, Amy R
Pan, Huaqin
Tarpey, Rex
Shuster, Jeffrey R
Tanzer, Matthew M
Hamer, Lisbeth

<120> METHODS FOR THE IDENTIFICATION OF INHIBITORS OF HISTIDINOL-PHOSPHATASE AS ANTIBIOTICS

<130> 2130US

<160> 3

<170> PatentIn version 3.1

<210> 1

<211> 1002

<212> DNA

<213> Magnaporthe grisea

<400> 1
atggcttca caatgcactc gcactccggg caattctgcc cgggcccacgc aaaagaccag 60
ttgaaagacg tcatcctcca tgccatcagc ataggataca agaccatggg tctcagttag 120
cacatgccac ggacccaact gtgcgatcta tatccagaag aacttgtgcc tgacccgcac 180
gcctccctcg cggagctgat gccgcgccac gctgcctaca tgaccgaggg gcgtcggctg 240
caaaaagaagt acgcccgtatcg catcaccctc ctcatcggt tcgagggcga gttcatccgg 300
tccgagtagc ggacactggg gcgctcgctg gccgacggca acggcgaccc ttctacttc 360
cagaacggcg acagcaagct tgtcaccgac gccggcaagg tcgactattt catcggtcg 420
ctgcaccacg gcgccggcg catccccatc gactttgacc gcgcaccta cctacgctcc 480
gttgaggccg ccggcccaa tggcgaggag gatctatttgc tgcactacta cgaccagcag 540
tttgagatgc tccaggccct gaggccaccc atcgctggcc actttgatct gatccgcctg 600
atgagcgagg agcctggcg caatccgagc gcctggtccc cgaaccgcgt ctggccgctc 660
atcaagcgga acctcggtt cgttgcgagc tacggcgct ggctcgagtg caactcgagt 720
gcgcctccgca aggggctcgca cgaaccgtac ccgtgcggc ccatcgcgga ggaatggta 780
aggctggcg gtaagttcac aatgtctgac gacagccacg gcatcgcgca ggttgccaca 840
aactatgtgc gagccctgga ctacctcgag tcgctcgcg tgaacgaggt ctggacgtat 900
gaccgagcta aagagggatc agagcttgt gagaagggtg tgctcggttac agagtttcgc 960
ggttccctga gactcccaac aacggcggtcc aagacatcct ga 1002

<210> 2

<211> 1717

<212> DNA

<213> Magnaporthe grisea

<400> 2
ggccaacggg aattcataga ttgcaccgaa ggcggggctt gcatcaacaa gttttcaata 60
ctgggtgtggc cacctgattt catttaccgg atcaggaagg atatccttagc aagctgccaa 120
cattaatgga gcaagtaaaa cgtattcaag cctccgagga cccagcagcc gccctcgcg 180

EDGAR - NATIONAL LIBRARY OF MEDICAL GENOMICS

cccgaaatac	gcgcgcttc	aggcattgct	tgaggctatc	tttgggtgggg	ttacacttta	240
aaaaaaagttg	ttcctgcgtg	cctcccatcc	aatgcctggc	atccatctta	gctgaggcag	300
gtaccagaca	cctgggtaat	gaatgctaag	agtcaatctc	tcttaggaatt	taacggattt	360
gattggctag	caaacattga	ttgatttttc	ttcgatcatt	tccatgtacg	ccgtatagca	420
ttacaaagag	taaaagcaag	tttggcctca	gttaccctaa	atccagatac	agacagacag	480
acgccctccc	tatctgcctt	gaatgggtga	agtttaata	gccggcatcc	ctccgttcc	540
actcctctct	tcgtcatcat	caggtatcat	ctgacaacct	tagagtcaac	aactcaattt	600
cattttttt	ccatcgaaa	agcaaacaca	cagtcatggc	cttcacaatg	cactcgcact	660
ccgggcaatt	ctgccccggc	cacgcaaaag	accagttgga	agacgtcatac	ctccatgcca	720
tcagcatagg	atacaagacc	atgggtctca	gtgagcacat	gccacggacc	caactgtgcg	780
atctatatcc	agaagaactt	gtgcctgacc	cgcacgcctc	cctcgcggag	ctgatgccgc	840
gccacgctgc	ctacatgacc	gaggcgcgtc	ggctgcaaaa	gaagtacgcc	gatcgcatca	900
ccctcctcat	cggcttcgag	ggcgagttca	tccggtccga	gtacggaca	ctggtgcgct	960
cgctggccga	cgAACCGGC	gacccttcct	acttccagaa	cggcgacagc	aagcttgtca	1020
ccgacgcccgg	caaggtcgac	tatTCATCG	gctcgctgca	ccacggcgcc	ggcggcatcc	1080
ccatcgactt	tgaccgcgc	acctacctac	gctccgttga	ggccgcggc	cccaatggcg	1140
aggaggatct	atttgtgcac	tactacgacc	agcagtttga	gatgctccag	gccctgaggc	1200
cacccatcgt	cggccactt	gatctgatcc	gcctgatgag	cgaggagcct	gggcgcaatc	1260
cgagcgcctg	gtccccgaac	cgcgtctggc	cgctcatcaa	gcggAACCTC	gcgttcgttg	1320
cgagctacgg	cggctggctc	gagtgcact	cgagtgcgt	ccgcaagggg	ctcgccgaac	1380
cgtacccgtg	ccggcccatc	gcggaggaat	gggtaaggct	gggcggtaag	ttcacaatgt	1440
ctgacgacag	ccacggcatc	gcfgcaggttg	ccacaaacta	tgtcgagcc	ctggactacc	1500
tcgagtcgt	cggcgtgaac	gaggcttgg	cgtatgaccg	agctaaagag	ggatcagagc	1560
tttgtggagaa	gggtgtgtcg	tttacagagt	ttcgcggttc	cctgagactc	ccaaacaacgg	1620
cgtccaagac	atcctgatgg	gaagtcagcg	ctcctcctca	taggacatga	ttttcttac	1680
attcctggcc	tagaacttagc	ccctaaggct	tatgaaa			1717

<210> 3

<211> 333

<212> PRT

<213> Magnaporthe grisea

<400> 3

Met Ala Phe Thr Met His Ser His Ser Gly Gln Phe Cys Pro Gly His
1 5 10 15

Ala Lys Asp Gln Leu Glu Asp Val Ile Leu His Ala Ile Ser Ile Gly
20 25 30

Tyr Lys Thr Met Gly Leu Ser Glu His Met Pro Arg Thr Gln Leu Cys
35 40 45

Asp Leu Tyr Pro Glu Glu Leu Val Pro Asp Pro His Ala Ser Leu Ala
50 55 60

Glu Leu Met Pro Arg His Ala Ala Tyr Met Thr Glu Ala Arg Arg Leu
65 70 75 80

Gln Lys Lys Tyr Ala Asp Arg Ile Thr Leu Leu Ile Gly Phe Glu Gly
85 90 95

Glu Phe Ile Arg Ser Glu Tyr Gly Thr Leu Val Arg Ser Leu Ala Asp
100 105 110

Gly Asn Gly Asp Pro Ser Tyr Phe Gln Asn Gly Asp Ser Lys Leu Val
115 120 125

Thr Asp Ala Gly Lys Val Asp Tyr Phe Ile Gly Ser Leu His His Gly
130 135 140

Ala Gly Gly Ile Pro Ile Asp Phe Asp Arg Ala Thr Tyr Leu Arg Ser
145 150 155 160

Val Glu Ala Ala Gly Pro Asn Gly Glu Glu Asp Leu Phe Val His Tyr
165 170 175

Tyr Asp Gln Gln Phe Glu Met Leu Gln Ala Leu Arg Pro Pro Ile Val
180 185 190

Gly His Phe Asp Leu Ile Arg Leu Met Ser Glu Glu Pro Gly Arg Asn
195 200 205

Pro Ser Ala Trp Ser Pro Asn Arg Val Trp Pro Leu Ile Lys Arg Asn
210 215 220

Leu Ala Phe Val Ala Ser Tyr Gly Gly Trp Leu Glu Cys Asn Ser Ser
225 230 235 240

Ala Leu Arg Lys Gly Leu Ala Glu Pro Tyr Pro Cys Arg Pro Ile Ala
245 250 255

Glu Glu Trp Val Arg Leu Gly Gly Lys Phe Thr Met Ser Asp Asp Ser
260 265 270

His Gly Ile Ala Gln Val Ala Thr Asn Tyr Val Arg Ala Leu Asp Tyr
275 280 285

Leu Glu Ser Leu Gly Val Asn Glu Val Trp Thr Tyr Asp Arg Ala Lys
290 295 300

Glu Gly Ser Glu Leu Val Glu Lys Gly Val Ser Phe Thr Glu Phe Arg
305 310 315 320

Gly Ser Leu Arg Leu Pro Thr Thr Ala Ser Lys Thr Ser
325 330