

DT:
$$y[n] = \sum_{k=-\infty}^{+\infty} x[k] h[n-k]$$

CT: $y(t) = \int_{-\infty}^{+\infty} x(t) h(t-t) dt$

Commutative property $x(t) * h(t) = h(t) * x(t)$

proof: $x(t) * h(t) = \int_{-\infty}^{+\infty} x(t) h(t-t) dt$
 $t-t = in$
 $t = t-m$

of $t = -din$

This property means:

 $x(t) = \int_{-\infty}^{+\infty} x(t-m) h(m) - dm$

This property means:

 $x(t) = \int_{-\infty}^{+\infty} h(m) x(t-m) dm$
 $x(t) = \int_{-\infty}^{+\infty} h(m) x(t-m) dm$
 $x(t) = \int_{-\infty}^{+\infty} h(m) x(t-m) dm$
 $x(t) = \int_{-\infty}^{+\infty} h(m) x(t-m) dm$