Teoria de la Probabilitat

Continguts

2	Variables Aleatòries		4
	2.1	Definició de variable aleatòria. Llei d'una v.a	4
		Definició (Fdp)	
	2.2	Moments d'una v.a. Desigualtats de Markov i Chebyshev	
		Teorema (Desigualtat de Markov)	
		Teorema (Desigualtat de Chebyshev)	
	2.3	Vectors de variables aleatòries. Independència de v.a	

2 Variables Aleatòries

2.1 Definició de variable aleatòria. Llei d'una v.a.

Sigui $(\Omega, \mathcal{A}, \beta)$ un espai de probabilitat. Volem estudiar funcions de Ω amb imatge en \mathbb{R} .

Definició 2.1.1

Una variable aleatòria és una funció $X: \Omega \to \mathbb{R}$ tal que per tot borelià $B \in \mathcal{B}, X^{-1}(B) \in \mathcal{A}$.

Per tant, una variable aleatòria és una funció mesurable entre els espais de mesura (Ω, \mathcal{A}, p) i $(\mathbb{R}, \mathcal{B}, \lambda)$.

Exemple 2.1.2

(1) Les funcions constants són variables aleatòries:

$$\begin{array}{ccc} X \colon \Omega \to \mathbb{R} & \\ \omega \mapsto c & \end{array} \text{ Si prenem } B \in \mathcal{B}, \, X^{-1}(B) = \begin{cases} \emptyset & \text{si } \mathbf{c} \notin B \\ \Omega & \text{si } \mathbf{c} \in B \end{cases}$$

(2) Variables aleatòries indicadores:

Sigui
$$A \in \mathcal{A}$$
, definim $\mathbb{1}_A \colon \Omega \to \mathbb{R}$ on $\mathbb{1}_A(\omega) = \begin{cases} 0 & \text{si } \omega \notin A \\ 1 & \text{si } \omega \in A \end{cases}$

Aleshores,
$$B \in \mathcal{B}, \mathbb{1}_A^{-1}(B) = \begin{cases} \emptyset & \text{si } \{0,1\} \nsubseteq B \\ A & \text{si } 1 \in B, \quad 0 \notin B \\ \overline{A} & \text{si } 1 \notin B, \quad 0 \in B \\ \Omega & \text{si } \{0,1\} \not\subseteq B \end{cases}$$

(3) Si X i Y són v.a., aleshores X + Y, $X \cdot Y$, |X|, etc. són v.a. En general, si $q \colon \mathbb{R}^2 \to \mathbb{R}$ és una funció mesurable, aleshores g(X,Y) és una v.a.

Estem dient que $\forall B \in \mathcal{B}, \{\omega \in \Omega : X(\omega) \in B\}$ és un succés i, per tant, podem calcular $P(\{\omega \in \Omega : X(\omega) \in B\}) \equiv P(X \in B)$.

Exemple 2.1.3

$$P(X \le 1) = P(\{\omega \in \Omega \colon X(\omega) \in (-\infty, 1)\})$$

Les v.a. permeten traslladar l'estructura d'espai de probabilitat de (Ω, \mathcal{A}, p) en $(\mathbb{R}, \mathcal{B})$, donant lloc a mesures que no provenen de la mesura de Lebesgue.

2

Definició 2.1.4

Siguin (Ω, \mathcal{A}, p) un espai de probabilitat i X una v.a.

La mesura de probabilitat induïda per X és una mesura de probabilitat sobre $(\mathbb{R}, \mathcal{B})$ definida per

$$p_X \colon \mathcal{B} \to \mathbb{R}$$

 $B \mapsto p_X = P(\{\omega \in \Omega \colon X(\omega) \in B\})$

Observació 2.1.5 $(\mathbb{R}, \mathcal{B}, p_X)$ és un espai de probabilitat.

De teoria de la mesura, és equivalent veure que $[\forall B \in \mathcal{B}, X^{-1}(B) \text{ \'es } de \mathcal{A}]$ a veure que $[l'antiimatge de qualsevol interval \in \mathcal{A}].$

Per tant, per saber si una funció és una v.a. només cal veure si l'antiimatge dels intervals són de A.

La següent definició dóna una funció en \mathbb{R} que codifica molta informació de X:

Definició (Fdp) (2.1.6)

Donada X v.a., la funció de distribució de probabilitat de X és:

$$F_X \colon \mathbb{R} \to [0,1]$$

 $x \mapsto P(X \le x)$

Propietats 2.1.7

(i) Si
$$x_1 \le x_2 \implies F_X(x_1) \le F_X(x_2)$$

(ii)
$$\lim_{x \to -\infty} F_X(x) = 0$$
, $\lim_{x \to +\infty} F_X(x) = 1$

(iii)
$$F_X(x)$$
 és contínua per la dreta: $\forall x, \lim_{h\to 0^+} F_X(x+h) = F_X(x)$

Observació 2.1.8

•
$$P(X > x) = 1 - P(X \le x) = 1 - F_X(x)$$

•
$$P(x_1 < X \le x_2) = P(X \le x_2) - P(X \le x_1) = F_X(x_2) - F_X(x_1)$$

Observació 2.1.9 Les propietats (i), (ii), (iii) de $F_X(x)$ són de fet suficients. Si una funció F(x) satisfà (i), (ii), (iii), aleshores és funció de probabilitat d'una variable

aleatòria.

2.2 Moments d'una v.a. Desigualtats de Markov i Chebyshev

Siguin (Ω, \mathcal{A}, p) uns espai de probabilitat i X una v.a.

Definició 2.2.1

L'esperança de X és:

$$\mathbb{E}[X] = \int_{\Omega} X dp = \int_{\mathbb{R}} x \, dp_X$$

Més en general, si $f: \mathbb{R} \to \mathbb{R}$ és una funció mesurable,

$$\mathbb{E}[f(x)] = \int_{\Omega} f(x)dp = \int_{\mathbb{R}} f(x) dp_X$$

Observació 2.2.2 De teoria de la mesura, cal recordar que una funció g és integrable sii |g| ho és (En general, $\mathbb{E}[f(x)]$ està definida sii $\mathbb{E}[|f(x)|] < +\infty$).

Si particularitzem f:

Definició 2.2.3

 $f(x) = X^r \implies \mathbb{E}[X^r]$ és el moment r-èssim.

Definició 2.2.4

Si $\mathbb{E}[X] = p < +\infty$, $\mathbb{E}[(X - p)^r]$ és el moment normalitzat r-èssim.

En particular, si r = 2, $\mathbb{E}[(X - p)^2] = \mathbb{V}ar[X]$ és la **variància** de X.

Definició 2.2.5

Si $f(x) = x(x-1)\dots(x-r+1) \implies \mathbb{E}[f(x)] = \mathbb{E}[(X)_r]$ és el moment factorial r-èssim.

4

Proposició 2.2.6 (Propietats de l'esperança i la variància)

- Si c és la v.a. constant, $\mathbb{E}[c] = c$ i $\mathbb{V}ar[c] = 0$
- <u>Linealitat</u>: si $a,b \in \mathbb{R}$ i X,Y v.a., $\mathbb{E}[aX+bY]=a\mathbb{E}[X]+b\mathbb{E}[Y]$
- $A \in \mathcal{A}, X = \mathbb{1}_A, \mathbb{E}[\mathbb{1}_A] = P(A)$
- $|\mathbb{E}[X]| \leq \mathbb{E}[|X|]$
- $\mathbb{V}ar[c \cdot X] = c^2 \cdot \mathbb{V}ar[X]$
- $\bullet \ \mathbb{V}ar[c+X] = \mathbb{V}ar[X]$
- $\mathbb{V}ar[X] = \mathbb{E}[X^2] (\mathbb{E}[X])^2$

Observació 2.2.7 Si $\mathbb{E}[|X|^p] < +\infty$, aleshores podem utilitzar tots els resultats de teoria dels espais L_p . Així doncs tenim les següents conseqüències:

- <u>Hölder</u>: p, q > 0, $\frac{1}{p} + \frac{1}{q} = 1$, $\mathbb{E}[|X|^p] < +\infty$, $\mathbb{E}[|Y|^q] < +\infty$ $\Longrightarrow \mathbb{E}[|XY|] \le \mathbb{E}[|X|^p]^{\frac{1}{p}} \cdot \mathbb{E}[|Y|^q]^{\frac{1}{q}} \quad (\mathbb{E}[|XY|]^{pq} \le \mathbb{E}[|X|^p]^q \cdot \mathbb{E}[|Y|^q]^p)$
- Cauchy-Schwartz: si $\mathbb{E}[X^2], \mathbb{E}[Y^2] < +\infty$, aleshores $\mathbb{E}[XY]^2 \leq \mathbb{E}[X^2] \cdot \mathbb{E}[Y^2]$
- Minkowski: si $\mathbb{E}[|X|^p]$, $\mathbb{E}[|Y|^p] < +\infty \implies \mathbb{E}[|X+Y|^p]^{\frac{1}{p}} \le \mathbb{E}[|X|^p]^{\frac{1}{p}} + \mathbb{E}[|Y|^p]^{\frac{1}{p}}$

Teorema (Designaltat de Markov) (2.2.8)

Sigui X un v.a. que pren valors positius i a > 0. Aleshores:

$$P(X \ge a) \le \frac{\mathbb{E}[X]}{a}$$

El següent resultat dóna estimacions quantitatives de quant es dispersa una v.a. en relació a la seva esperança:

Teorema (Designaltat de Chebyshev) (2.2.9)

Sigui X una v.a. en (Ω, \mathcal{A}, p) amb $\mathbb{E}[X], \mathbb{V}ar[X] < +\infty$. Aleshores, $\forall k > 0$

$$P(|X - \mathbb{E}[X]| \ge k \cdot \mathbb{V}ar[X]^{\frac{1}{2}}) \le \frac{1}{k^2}$$

També es pot escriure:

$$P(|X - \mathbb{E}[X]| \ge k) \le \frac{\mathbb{V}ar[X]}{k^2}$$

2.3 Vectors de variables aleatòries. Independència de v.a.

Donat un espai de probabilitat (Ω, \mathcal{A}, p) considerem les v.a. X_1, \ldots, X_n . Cadascuna d'elles defineix una distribució de probabilitat sobre \mathbb{R} .

Aleshores podem considerar el vector $(X_1, \ldots, X_n) \colon \Omega \to \mathbb{R}^n$.

Definició 2.3.1

Un vector $(X_1, \ldots, X_n) \colon \Omega \to \mathbb{R}^n$ és un **vector de variables aleatòries** (o una v.a. multidimensional), si per tot $B \in \mathcal{B}_n$ (Borelians en \mathbb{R}^n), $(X_1, \ldots, X_n)^{-1}(B) \in \mathcal{A}$.

Com $\Pi_i \colon \mathbb{R}^n \to \mathbb{R}$ (projecció en la i-èssima component) és una funció mesurable, aleshores

$$\Pi_i(X_1, \dots, X_n) \colon \Omega \xrightarrow{(X_1, \dots, X_n)} \mathbb{R}^n \xrightarrow{\Pi_i} \mathbb{R}$$

$$\omega \longmapsto (X_1, \dots, X_n)(\omega) \longmapsto X_i(\omega)$$

 $\equiv X_i(\omega)$ és una v.a. (en el sentit unidimensional).

De la mateixa manera que vam fer per les v.a. unidimensionals, podem considerar les antiimatges només en intervals.

Definició 2.3.2

Donat un espai de probabilitat (Ω, \mathcal{A}, p) , i un vector de v.a. $(X_1, \dots, X_n) = \vec{X}$, aleshores la **funció de distribució de probabilitat** de \vec{X} és $F_{\vec{X}}(x_1, \dots, x_n)$ definida per:

$$F_{\vec{X}} \colon \mathbb{R}^n \to [0, 1] \subseteq \mathbb{R}$$
$$(x_1, \dots, x_n) \mapsto P\Big((X_1 \le x_1) \cap (X_2 \le x_2) \cap \dots \cap (X_n \le x_n)\Big) = P\Big(\bigcap_{i=1}^n X_i \le x_i\Big)$$

Vegem propietats de la funció de distribució pel cas n = 2 (Per n > 2, és idèntic):

Lema 2.3.3 (i) Si
$$x_1' \ge x_1, x_2' \ge x_2 \implies F_{\vec{X}}(x_1', x_2') \ge F_{\vec{X}}(x_1, x_2)$$

(ii)
$$\lim_{(x_1, x_2) \to (+\infty, +\infty)} F_{\vec{X}}(x_1, x_2) = 1$$
 $\lim_{(x_1, x_2) \to (-\infty, -\infty)} F_{\vec{X}}(x_1, x_2) = 0$

(iii)
$$\lim_{(h_1,h_2)\to(0^+,0^+)} F_{\vec{X}}(x_1+h_1,x_2+h_2) = F_{\vec{X}}(x_1,x_2)$$
 (contínua "per dalt")

Observació 2.3.4 Aquestes 3 condicions són necessàries i suficients per a definir una v.a. multidimensional.

Observació 2.3.5

• Si tenim $F_{\vec{X}}(x_1, x_2)$ associada a $\vec{X} = (X_1, X_2)$, aleshores

$$\lim_{x_2 \to +\infty} F_{\vec{X}}(x_1, x_2) = \lim_{x_2 \to +\infty} P\Big((X_1 \le x_1) \cap (X_2 \le x_2) \Big) = P(X_1 \le x_1) = F_{\vec{X}}(x_1)$$

A aquesta funció $\Big(\lim_{x_1\to+\infty}F_{\vec{X}}(x_1,x_2)\Big)$ se l'anomena funció de distribució marginal.

• Prenem un rectangle en \mathbb{R}^2 i $\vec{X} = (X, Y)$ v.a. multidimensional:

$$P(a < X \leq b, \, c < Y \leq d) = F_{\vec{X}}(b,d) - F_{\vec{X}}(a,d) - F_{\vec{X}}(b,c) + F_{\vec{X}}(a,c)$$

Definició 2.3.6

Sigui (Ω, \mathcal{A}, p) un espai de probabilitat i $\{x_i\}_{i \in I}$ un conjunt de v.a. Direm que $\{x_i\}_{i \in I}$ és **independent** si: $\forall k, \forall i_1, \ldots, i_k \subseteq I, \forall B_1, \ldots, B_k \in \mathcal{B}$

$$P(X_{i_1} \in B_1, X_{i_2} \in B_2, \dots, X_{i_k} \in B_k) = \prod_{j=1}^k P(X_{i_j} \in B_j)$$

Si ara prenem X_1, \ldots, X_k v.a., aleshores si són independents,

$$F_{X_1,\dots,X_k}(x_1,\dots,x_k) = P(X_1 \le x_1, X_2 \le x_2,\dots,X_k \le x_k) = \prod_{j=1}^k P(X_j \le x_j) = \prod_{j=1}^k F_{X_j}(x_j)$$