ME231: Solid Mechanics-I

Forces and Moments Transmitted by Slender Members

A large number of engineering structures has slender members as load carrying-members.

A slender member has a **relatively higher length** (at least five time or more) than the other two (cross-sectional) dimensions.

Beams, columns, shafts, rods, struts, and links can be classified as slender members. A hoop or coil is also considered as slender structure as they are form by a long thin rod.

In general, a slender member can have axial, torsion or bending loads.

If a slender member is in equilibrium, all the sub-systems isolated by assuming a hypothetical cuts/sections at the point of interest will also be in equilibrium. Considering equilibrium of these sub-systems, forces and moments at each cross-section will be determined.

 F_{xx} – Axial force in x-direction (also denoted as F_x), F_{xy} , F_{xz} – Shear forces at x-plane (also denoted as V_y , V_z), M_{xx} – Twisting moment (also denoted as M_t or T), M_{xy} , M_{xz} – Bending moment (also denoted as M_{by} , M_{bz}).

Sign conventions

The cross-sectional face will be called

- positive when the outward normal points in the positive direction (magenta colored face)
- negative when the outward normal points in the negative direction (green colored face)

The force or moment component are positive when

- acting on a positive face in a positive direction
- acting on a negative face in a negative direction

For a two-dimensional case positive components of force and moments are shown

Axial Loading

Uniaxial loading and deformation

One of the most basic loading, which can be considered on structures like bar or rod is the load applied along their axis. For such a loading load vs. deformation curve for a given specimen can be plotted.

When the load (P) - deformation (δ) curves are re-plotted as (P/A) - (δ/L) curves, then it is observed that curves obtained for specimens of different dimensions overlap.

This suggests that the new curves are independent of specimen dimensions.

Thus, they represent load-elongation characteristics of a particular material.

For materials having a linear uni-axial load-deformation characteristics, we define $\mathbf{modulus}$ of $\mathbf{elasticity}$ as the slope of load-deformation curve, which is generally denoted as E. Thus,

$$E = \frac{P/A}{\delta/L}. \quad \dots (1)$$

Dimensions of E is same as that of P/A, (denominator is unitless), which is N/m^2 (Pa) in SI Units.

Material	E, psi	$E, kN/m^2$
Tungsten carbide	$60-100 \times 10^6$	$410-690 \times 10^6$
Tungsten	58×10^{6}	400×10^{6}
Molybdenum	40×10^{6}	275×10^{6}
Aluminum oxide	47×10^{6}	325×10^{6}
Steel and iron	$28 - 30 \times 10^6$	$194-205 \times 10^6$
Brass	15×10^{6}	103×10^{6}
Aluminum	10×10^{6}	69×10^{6}
Glass	10×10^{6}	69×10^{6}
Cast iron	$10-20 \times 10^6$	$69-138 \times 10^6$
Wood	$1-2 \times 10^{6}$	$6.9 - 13.8 \times 10^6$
Nylon, epoxy, etc.	$4-8 \times 10^4$	$27.5 - 55 \times 10^4$
Collagen	$2-15 \times 10^{3}$	$13.8 - 103 \times 10^3$
Soft rubber	$2-8 \times 10^{2}$	$13.8 - 55 \times 10^2$
Smooth muscle	2–150	13.8-1034
Elastin	50-100	345–690

 $^{1 \}text{ N/m}^2 = \text{pascal (Pa)}$

Materials having nonlinear uni-axial load-deformation characteristics can not be characterized by just one constant; in-fact actual curve is required to specify the load-deformation behaviour. Therefore for non-linear materials analytical work become complicated and materials showing small amount of non-linearity are approximated as linear materials.

For most materials, elongation under uni-axial tensile load is same as the shortening or compression under the compressive load. Hence, (1) is assumed to be applicable under compression also.

Example 1

For the below rod, let us determine the various quantities such as axial force and axial deflection with respect to the left end 1, in terms of x. Also draw a diagram showing the distribution of axial force in the member with respect to x (axial force diagram).

AFD:

Example 2

A triangular frame supporting a load of 20 kN. Our aim is to estimate the displacement at the point D due to the 20-kN load carried by the chain hoist.

