Lab Report

Name of the Experiment	
Your Name	3
Your ID#	E.
Name of the Lab Partner	
Date	

Instructor's comments:

Data tables:

Table A

Drop Height, H ₁ (m)			First Bo	Mean	Ratio of			
		Trial 1	Trial 2	Trial 3	Trial 4	Trial 5	bounce height, H ₂ (m)	heights, H_1/H_2
Tennis								
Golf	1.0						y 1	
Table Tennis								

Table B

Ball	$PE_1 = mgH_1$ (J)	$v_1 = \sqrt{2gH_1}$ (m/s)	$KE_1 = \frac{1}{2}mv_1^2$ (J)	$(PE_1 or KE_1)$ (J)	$PE_2 = mgH_2$ (J)	$v_2 = \sqrt{2gH_2}$ (m/s)	$KE_2 = \frac{1}{2}mv_2^2$ (J)	$ \begin{array}{c} E_2 \\ (PE_2 or KE_2) \\ (J) \end{array} $	Lost energy (J)	% Energy loss
Tennis		5								
Golf										
Table Tennis										

You have already learned how to calculate standard deviation, σ (see Experiment 1). The standard deviation of a distribution of measurements is defined as follows:

$$\sigma = \sqrt{\frac{1}{N-1}\sum_{i=1}^{N}(H_i - \overline{H})^2}$$
 Where $\overline{H} = \frac{\sum_{i=1}^{N}H_i}{N}$

You can easily do it by using your scientific calculator in STAT mode.

Table C

Drop Height, H ₁ (m)			First B	ounce he	Mean bounce	Standard		
		Trial 1	Trial 2	Trial 3	Trial 4	Trial 5	height, H ₂ (m)	deviation, σ_{H2} (m)
	1.0							20 100
Golf ball	0.9							
	0.8							
	0.7							
	0.6							

Calculations from graph:

Slope⁻¹ (coefficient of bouncing for golf ball) = Interpolated bounce height for example at 0.85 m = Extrapolated bounce height for example at 1.10m =

Results:

Questions:

1.	Which ball was the most efficient? What characteristics does that ball have that you think helped it be efficient?
2.	Why is it impossible for a ball to be 100% efficient?
3.	How did the GPE change with height?
4.	What percentage of the initial potential energy was 'wasted' as the ball was hitting the ground?

Discussion: