

The VC Dimension

Xuyuan Liu

May 29, 2024

Table of Contents

1 Review

► Review

VC-Dimension
 Infinite-Size Classes
 What is VC dimension
 VC-Dimension & PAC Learning

Discussion

Statistical Learning Framework

1 Review

Learner's Input:

- Domain Set: the set of objects that we wish to label, shown by X.
- Label Set: Set of all possible labels, shown by \mathcal{Y} .
- Training Data: $S = ((x_1, y_1) \dots (x_m, y_m))$ is a finite sequence of pairs in $\mathcal{X} \times \mathcal{Y}$: that is, a sequence of labeled domain points.

Output:

• **Hypothesis(Predictor)** The output is a mapping function $h: \mathcal{X} \to \mathcal{Y}$ that predicts labels for new domain points. The hypothesis learned from training data S is denoted by $h_S: x \mapsto y$.

To measure the success of a model, define the *error of classifier* as the probability that it incorrectly predicts the label on a random data point from the underlying distribution.

Assuming a "correct" labeling function $f: \mathcal{X} \to \mathcal{Y}$ where $\gamma_i = f(x_i)$, and given a probability distribution \mathcal{D} over $\mathcal{X} \times \mathcal{Y}$, the likelihood of an error by classifier h is assessed when points are drawn randomly from \mathcal{D} . The **true error (risk)** of h is thus defined as $\mathbb{P}_{(x,y)\sim\mathcal{D}}[h(x)\neq\gamma]$, which can also be expressed as:

$$L_{\mathcal{D},f}(h) = \mathbb{P}_{\mathbf{x} \sim \mathcal{D}}[h(\mathbf{x}) \neq f(\mathbf{x})] = \mathcal{D}(\{\mathbf{x} : h(\mathbf{x}) \neq f(\mathbf{x})\}).$$

Empirical Risk Minimization (ERM)

1 Review

This learning paradigm - coming up with a predictor h that minimizes the train error(empirical risk) $L_S(h)$ — is called Empirical Risk Minimization(ERM).

$$L_{\mathcal{S}}(h) \stackrel{\mathsf{def}}{=} \frac{|\{i \in [m] : h(x_i) \neq y_i\}|}{m}$$

where $[m] = \{1, ..., m\}$

And let h_S denote a result of applying ERM_H to S,

$$h_{\mathcal{S}} \in \underset{h \in \mathcal{H}}{\operatorname{argmin}} L_{\mathcal{S}}(h).$$

PAC Learning

1 Review

DEFINITION 3.1 (PAC Learnability) A hypothesis class \mathcal{H} is PAC learnable if there exist a function $m_{\mathcal{H}}: (0,1)^2 \to \mathbb{N}$ and a learning algorithm with the following property: For every $\epsilon, \delta \in (0,1)$, for every distribution \mathcal{D} over \mathcal{X} , and for every labeling function $f: \mathcal{X} \to \{0,1\}$, if the realizable assumption holds with respect to $\mathcal{H}, \mathcal{D}, f$, then when running the learning algorithm on $m \geq m_{\mathcal{H}}(\epsilon, \delta)$ i.i.d. examples generated by \mathcal{D} and labeled by f, the algorithm returns a hypothesis h such that, with probability of at least $1 - \delta$ (over the choice of the examples), $L_{(\mathcal{D}, f)}(h) \leq \epsilon$.

• ϵ quantifies the algorithm's accuracy, while δ indicates the likelihood of achieving this accuracy.

PAC Learning

1 Review

DEFINITION 3.1 (PAC Learnability) A hypothesis class \mathcal{H} is PAC learnable if there exist a function $m_{\mathcal{H}}: (0,1)^2 \to \mathbb{N}$ and a learning algorithm with the following property: For every $\epsilon, \delta \in (0,1)$, for every distribution \mathcal{D} over \mathcal{X} , and for every labeling function $f: \mathcal{X} \to \{0,1\}$, if the realizable assumption holds with respect to $\mathcal{H}, \mathcal{D}, f$, then when running the learning algorithm on $m \geq m_{\mathcal{H}}(\epsilon, \delta)$ i.i.d. examples generated by \mathcal{D} and labeled by f, the algorithm returns a hypothesis h such that, with probability of at least $1 - \delta$ (over the choice of the examples), $L_{(\mathcal{D},f)}(h) \leq \epsilon$.

- ϵ quantifies the algorithm's accuracy, while δ indicates the likelihood of achieving this accuracy.
- $m_{\mathcal{H}}(\epsilon, \delta)$ (sample complexity) is the minimal integer that satisfies the requirement:

$$m_{\mathcal{H}}(\epsilon, \delta) \le \left\lceil \frac{\log(|\mathcal{H}|/\delta)}{\epsilon} \right\rceil$$

there is not always a fixed labeling function f

DEFINITION 3.3 (Agnostic PAC Learnability) A hypothesis class \mathcal{H} is agnostic PAC learnable if there exist a function $m_{\mathcal{H}}: (0,1)^2 \to \mathbb{N}$ and a learning algorithm with the following property: For every $\epsilon, \delta \in (0,1)$ and for every distribution \mathcal{D} over $\mathcal{X} \times \mathcal{Y}$, when running the learning algorithm on $m \geq m_{\mathcal{H}}(\epsilon, \delta)$ i.i.d. examples generated by \mathcal{D} , the algorithm returns a hypothesis h such that, with probability of at least $1 - \delta$ (over the choice of the m training examples),

$$L_{\mathcal{D}}(h) \le \min_{h' \in \mathcal{H}} L_{\mathcal{D}}(h') + \epsilon.$$

• Define relative to some benchmark hypothesis class

Uniform Convergence

1 Review

A hypothesis class $\mathcal H$ has the uniform convergence property iff there is a function $m_{\mathcal H}^{\mathrm{UC}}:(0,1)^2\to\mathbb N$ such that, for every probability distribution $\mathcal D$ over $\mathcal X\times\mathcal Y$, every gap $\epsilon\in(0,1)$ and every confidence level $\delta\in(0,1)$, if $|S|\geq m_{\mathcal H}^{\mathrm{UC}}(\epsilon,\delta)$, then with probability at least $1-\delta$ over the choice of S, the inequality $|\ell_S(h)-\ell_D(h)|\leq \epsilon$ holds for all $h\in\mathcal H$

 As the training set size increases, a learning algorithm's performance converges to its expected performance across all training sets.

Uniform Convergence

1 Review

A hypothesis class $\mathcal H$ has the uniform convergence property iff there is a function $m_{\mathcal H}^{\mathrm{UC}}:(0,1)^2\to\mathbb N$ such that, for every probability distribution $\mathcal D$ over $\mathcal X\times\mathcal Y$, every gap $\epsilon\in(0,1)$ and every confidence level $\delta\in(0,1)$, if $|S|\geq m_{\mathcal H}^{\mathrm{UC}}(\epsilon,\delta)$, then with probability at least $1-\delta$ over the choice of S, the inequality $|\ell_S(h)-\ell_D(h)|\leq \epsilon$ holds for all $h\in\mathcal H$

- As the training set size increases, a learning algorithm's performance converges to its expected performance across all training sets.
- $m_{\mathcal{H}}^{\mathrm{UC}}$ measures the (minimal) sample complexity to obtain the uniform convergence property.

$$m_{\mathcal{H}}^{ extit{UC}}(\epsilon,\delta) \leq \left\lceil rac{\log(2|\mathcal{H}|/\delta)}{2\epsilon^2}
ight
ceil$$

Fundamental Theorem

Summary

Let \mathcal{H} be a hypothesis class of functions from a domain \mathcal{X} to $\{0,1\}$ and let the loss function be the O-1 loss. Then, the following are equivalent:

- ${\cal H}$ is agnostic PAC learnable.
- \mathcal{H} is PAC learnable.
- \mathcal{H} has the uniform convergence property.
- Any ERM rule is a successful PAC learner for \mathcal{H} .

For finite-size class \mathcal{H} , we conclude sample complexity with:

$$m_{\mathcal{H}}(\epsilon, \delta) \leq m_{\mathcal{H}}^{\mathit{UC}}(\epsilon/2, \delta) \leq \left\lceil \frac{2 \log(2|\mathcal{H}|/\delta)}{\epsilon^2}
ight
ceil$$

A finite-size class is PAC learnable, what about an infinite-size class?

Table of Contents

2 VC-Dimension

▶ Review

► VC-Dimension
Infinite-Size Classes
What is VC dimension
VC-Dimension & PAC Learning

▶ Discussior

2 VC-Dimension

Let \mathcal{H} be the set of threshold functions over the real line, namely, $\mathcal{H}=\{h_a:a\in\mathbb{R}\}$, where $h_a:\mathbb{R}\to\{0,1\}$ is a function such that $h_a(x)=1_{[x< a]}$, and $h_a(x)=0_{[x> a]}$

Clearly, \mathcal{H} is of infinite size.

However, \mathcal{H} is PAC learnable, using the ERM rule, with sample complexity of $m_{\mathcal{H}}(\epsilon, \delta) \leq \lceil \log(2/\delta)/\epsilon \rceil$.

2 VC-Dimension

\mathcal{H} is PAC learnable with sample complexity of $m_{\mathcal{H}}(\epsilon, \delta) \leq \lceil \log(2/\delta)/\epsilon \rceil$

Proof:

Given distribution \mathcal{D}_x and a threshold a^* where the hypothesis $h^*(x) = 1_{[x < a^*]}$ achieves $L_{\mathcal{D}}(h^*) = 0$, consider $a_0 < a^* < a_1$:

$$\underset{\mathtt{x} \sim \mathcal{D}_{\mathtt{x}}}{\mathbb{P}}\left[\mathtt{x} \in (a_0, a^\star)\right] = \underset{\mathtt{x} \sim \mathcal{D}_{\mathtt{x}}}{\mathbb{P}}\left[\mathtt{x} \in (a^\star, a_1)\right] = \epsilon$$

2 VC-Dimension

\mathcal{H} is PAC learnable with sample complexity of $m_{\mathcal{H}}(\epsilon, \delta) \leq \lceil \log(2/\delta)/\epsilon \rceil$

Proof:

Let $b_0 = \max\{x \in \mathcal{S}\}$ and $b_1 = \min\{x \in \mathcal{S}\}$ (\mathcal{S} is training set). So the threshold corresponding to an ERM hypothesis $b_{\mathcal{S}} \in (b_0, b_1)$. Therefore, a sufficient condition for $L_{\mathcal{D}}(h_{\mathcal{S}}) \geq \epsilon$ is that either $b_0 \leq a_0$ or $b_1 \geq a_1$.

$$\begin{split} \underset{\mathcal{S} \sim D^{m}}{\mathbb{P}}\left[L_{\mathcal{D}}\left(h_{\mathcal{S}}\right) > \epsilon\right] &\leq \underset{\mathcal{S} \sim D^{m}}{\mathbb{P}}\left[b_{0} < a_{0} \lor b_{1} > a_{1}\right] \\ &\leq \underset{\mathcal{S} \sim \mathcal{D}^{m}}{\mathbb{P}}\left[b_{0} < a_{0}\right] + \underset{\mathcal{S} \sim \mathcal{D}^{m}}{\mathbb{P}}\left[b_{1} > a_{1}\right] \end{split}$$

2 VC-Dimension

\mathcal{H} is PAC learnable with sample complexity of $m_{\mathcal{H}}(\epsilon, \delta) \leq \lceil \log(2/\delta)/\epsilon \rceil$

Proof: The event $b_0 < a_0$ happens only if all samples in S are outside the interval (a_0, a^*) with mass ϵ , leading to:

$$\mathbb{P}_{\mathcal{S} \sim \mathcal{D}^m}[b_0 < a_0] = (1 - \epsilon)^m \leq e^{-\epsilon m}$$

Given $m>rac{\log(2/\delta)}{\epsilon}$, $\mathbb{P}_{\mathcal{S}\sim D^m}[b_0< a_0]\leq rac{\delta}{2}.$ Hence:

$$\mathbb{P}_{\mathcal{S} \sim D^m}[L_{\mathcal{D}}(h_{\mathcal{S}}) > \epsilon] \leq \delta$$

Thus, \mathcal{H} is PAC learnable.

The example illustrates that while a finite \mathcal{H} suffices for learnability, it is not necessary. Instead of the number of \mathcal{H} , maybe some type of learn-ability be more important.

Restriction

2 VC-Dimension

Definition: (Restriction of \mathcal{H} to \mathcal{C}) Let \mathcal{H} be a class of functions from \mathcal{X} to $\{0,1\}$ and let $\mathcal{C}=\{c_1,\ldots,c_m\}\subset\mathcal{X}$. The restriction of \mathcal{H} to \mathcal{C} is the set of functions from \mathcal{C} to $\{0,1\}$ that can be derived from \mathcal{H} . That is,

$$\mathcal{H}_{\mathcal{C}} = \{(h\left(c_{1}\right), \ldots, h\left(c_{m}\right)) : h \in \mathcal{H}\}$$

For example, we consider the threshold functions on C, we get:

$$H_{c} = \left\{ \left(C_{1}, C_{2}, C_{3} \right) \right\} = \left\{ \left(1, 1, 1 \right) \left(0, 0, 0 \right) \\ \left(1, 1, 0 \right) \\ \left(1, 0, 0 \right) \right\}$$

Thus,
$$|\mathcal{H}_{\mathcal{C}}| = 4$$

Definition: (Shattering) A hypothesis class \mathcal{H} shatters a finite set $\mathcal{C} \subset \mathcal{X}$ if the restriction of \mathcal{H} to \mathcal{C} is the set of all functions from \mathcal{C} to $\{0,1\}$. That is, $|\mathcal{H}_{\mathcal{C}}|=2^{|\mathcal{C}|}$.

$$\begin{array}{c|c}
C, C_2 \\
H_c = \{(C, 1)\} = \{(0, 1)\} \\
(1, 1)\}
\end{array}$$

$$\begin{array}{c|c}
C, C_2 \\
H_c = \{(1, 0)\} \\
(1, 0)\}
\end{array}$$

$$\begin{array}{c|c}
H_c = \{(1, 0)\} \\
(1, 1)\}
\end{array}$$

$$\begin{array}{c|c}
H_c = 3 < 2^2$$
Shattering

Not Shattering

Definition: (VC-dimension) The VC-dimension of a hypothesis class \mathcal{H} , denoted $\mathrm{VCdim}(\mathcal{H})$, is the maximal size of a set $\mathcal{C} \subset \mathcal{X}$ that can be shattered by \mathcal{H} . If \mathcal{H} can shatter sets of arbitrarily large size we say that \mathcal{H} has infinite VC-dimension.

Notes

To show that $\operatorname{VCdim}(\mathcal{H}) = d$ we need to show that

- 1. There **exists** a set C of size d that is shattered by \mathcal{H} .
- 2. **Every set** C of size d+1 is not shattered by \mathcal{H} .

Imagine a following game between two players α and β :

Imagine a following game between two players α and β :

• First, player α plots d=4 points on a piece of paper. She may place the points however she likes.

What is VC dimension?

2 VC-Dimension

Imagine a following game between two players α and β :

- First, player α plots d=4 points on a piece of paper. She may place the points however she likes.
- Next, player β marks several of the drawn points.

What is VC dimension?

2 VC-Dimension

Imagine a following game between two players α and β :

- First, player α plots d=4 points on a piece of paper. She may place the points however she likes.
- Next, player β marks several of the drawn points.
- Finally, player α should draw a circle such that all the marked points are inside a circle, and all the unmarked points are outside.

What is VC dimension?

2 VC-Dimension

Imagine a following game between two players α and β :

- First, player α plots d=4 points on a piece of paper. She may place the points however she likes.
- Next, player β marks several of the drawn points.
- Finally, player α should draw a circle such that all the marked points are inside a circle, and all the unmarked points are outside.

The player α wins if she can draw such a circle at step #3. The player β wins if making such circle is impossible.

What is VC dimension

2 VC-Dimension

It turns out that β has a winning strategy:

However, for d=3 points, it turns out that α has a winning strategy.

What is VC dimension

2 VC-Dimension

It turns out that β has a winning strategy:

However, for d=3 points, it turns out that α has a winning strategy.

- The largest number d at which the game is winnable by player α is called the VC dimension of our classification set.

What is VC dimension

2 VC-Dimension

It turns out that β has a winning strategy:

However, for d=3 points, it turns out that α has a winning strategy.

- The largest number d at which the game is winnable by player α is called the VC dimension of our classification set.
- Here, "circles" are our classification set.

Let \mathcal{H} be the class of axis aligned rectangles, consider $|\mathcal{C}|=4$:

The VC dimension of the rectangle function class is at least 4. In fact, one can prove that when |C|=5, C can not be shattered by \mathcal{H} .

•

Let ${\cal H}$ still be the class of axis aligned rectangles, what if the 4 points are arranged like this?

•

Let \mathcal{H} still be the class of axis aligned rectangles, what if the 4 points are arranged like this?

Notes

To show that $\operatorname{VCdim}(\mathcal{H}) = d$ we need to show that

1. There **exists** a set C of size d that is shattered by \mathcal{H} .

Infinite VC Dimension

2 VC-Dimension

Let \mathcal{H} be the class of sine functions: $\{t \mapsto \sin(\omega t) : \omega \in \mathbb{R}\}$.

Figure 3.5 An example of a sine function (with $\omega=50)$ used for classification.

we can prove that $\mathit{VCdim}(\mathcal{H}) = +\infty$

Let \mathcal{H} be a class of infinite VC-dimension. Then, \mathcal{H} is not PAC learnable.

- Infinite Shattering: Any finite dataset can be shattered by \mathcal{H} in infinitely many ways.
- No Constraints: The hypothesis class can perfectly fit all data, including noise and outliers.
- **Generalization Failure**: Even with large samples, some hypotheses perfectly fit training data but fail on new data.

Let \mathcal{H} be a finite class, For any set \mathcal{C} we have $|\mathcal{H}_{\mathcal{C}}| \leq |\mathcal{H}|$ and thus \mathcal{C} cannot be shattered if $|\mathcal{H}| < 2^{|\mathcal{C}|}$. This implies that $\mathrm{VCdim}(\mathcal{H}) \leq \log_2(|\mathcal{H}|)$.

Remark

- A finite class implies a finite VC-dimension, but a finite VC-dimension does not guarantee a finite class.
- An infinite class does not guarantee an infinite VC-dimension, and vice versa.

For finite-size class \mathcal{H} , we conclude sample complexity with:

$$m_{\mathcal{H}}(\epsilon, \delta) \leq \left\lceil rac{2 \log(2|\mathcal{H}|/\delta)}{\epsilon^2}
ight
ceil$$

Can we incorporate VC-Dimension into this formula for an infinite class?

(Growth Function) Let \mathcal{H} be a hypothesis class. Then the growth function of \mathcal{H} , denoted $\tau_{\mathcal{H}}: \mathbb{N} \to \mathbb{N}$, is defined as

$$\tau_{\mathcal{H}}(m) = \max_{C \subset \mathcal{X}: |C| = m} |\mathcal{H}_C|.$$

we still consider the threshold functions on C, we get:

$$\frac{C_{1}}{H_{c} = \{(C_{1})\}^{2} = \{(C_{1})\}^{2} = \{(C_{1}, C_{2})\}^{2} = \{(C_{1}, C_{2})\}^{2} = \{(C_{1}, C_{2})\}^{2} = \{(C_{1}, C_{2}, C_{3})\}^{2} = \{(C_{1}, C_{2}, C_{3})\}^{2} = \{(C_{1}, C_{1}, C_{2})\}^{2} = \{(C_{1}, C_{2}, C_{3})\}^{2} = \{(C_{1$$

If $\operatorname{VCdim}(\mathcal{H}) = d$, when $m \leq d$ we have $\tau_{\mathcal{H}}(m) = 2^m$. In such cases, \mathcal{H} induces all possible functions from C to $\{0,1\}$.

But What if m increase, will this function still increases exponentially?

Sauer's Lemma

Let $\mathcal H$ be a hypothesis class with $\operatorname{VCdim}(\mathcal H) \leq d < \infty$. Then, for all $m, au_{\mathcal H}(m) \leq \sum_{i=0}^d \binom{m}{i}$. In particular, if m > d+1 then $au_{\mathcal H}(m) \leq (em/d)^d \ll 2^m$.

Given the definitions of the growth function and the uniform convergence property, we can demonstrate:

Let \mathcal{H} be a class and let $\tau_{\mathcal{H}}$ be its growth function. Then, for every \mathcal{D} and every $\delta \in (0,1)$, with probability of at least $1-\delta$ over the choice of $\mathcal{S} \sim \mathcal{D}^m$ we have

$$|L_{\mathcal{S}}(h) - L_{\mathcal{D}}(h)| \leq rac{4 + \sqrt{\log\left(au_{\mathcal{H}}(2m)
ight)}}{\delta\sqrt{2m}}$$

From Sauer's lemma, we know that for m>d, it holds that $au_{\mathcal{H}}(2m)\leq (2em/d)^d$, thus, for

$$|L_{\mathcal{S}}(h) - L_{\mathcal{D}}(h)| \leq rac{4 + \sqrt{\log\left(au_{\mathcal{H}}(2m)
ight)}}{\delta\sqrt{2m}}$$

we can get:

$$|L_{\mathcal{S}}(h) - L_{\mathcal{D}}(h)| \leq rac{1}{\delta} \sqrt{rac{2d \log(2em/d)}{m}} = O\left(\sqrt{rac{\log(m/d)}{(m/d)}}
ight)$$

$$|L_{\mathcal{S}}(h) - L_{\mathcal{D}}(h)| \leq rac{1}{\delta} \sqrt{rac{2d \log(2em/d)}{m}} = O\left(\sqrt{rac{\log(m/d)}{(m/d)}}
ight)$$

Notes

- 1. If ${\cal H}$ has small effective size(finite VC-Dimension) then it enjoys the uniform convergence property.
- 2. How the ratio of m/d effect for generalization

Let \mathcal{H} be a hypothesis class of functions from a domain \mathcal{X} to $\{0,1\}$ and let the loss function be the O-1 loss. Then, the following are equivalent:

- \mathcal{H} is agnostic PAC learnable.
- \mathcal{H} is PAC learnable.
- \mathcal{H} has the uniform convergence property.
- Any ERM rule is a successful PAC learner for \mathcal{H} .
- \mathcal{H} has a finite VC-dimension.

Fundamental Theorem(Quantitative Version)

Summary

Let $\mathcal H$ be a hypothesis class of functions from a domain $\mathcal X$ to $\{0,1\}$ and let the loss function be the 0-1 loss. Assume that $\operatorname{VCdim}(\mathcal H)=d<\infty$. Then, there are absolute constants $\mathcal C_1,\mathcal C_2$ such that:

ullet H is agnostic PAC learnable with sample complexity

$$C_1 \frac{d + \log(1/\delta)}{\epsilon^2} \le m_{\mathcal{H}}(\epsilon, \delta) \le C_2 \frac{d + \log(1/\delta)}{\epsilon^2}$$

• \mathcal{H} is PAC learnable with sample complexity

$$C_1 \frac{d + \log(1/\delta)}{\epsilon} \leq m_{\mathcal{H}}(\epsilon, \delta) \leq C_2 \frac{d \log(1/\epsilon) + \log(1/\delta)}{\epsilon}$$

Table of Contents

3 Discussion

▶ Review

VC-Dimension
 Infinite-Size Classes
 What is VC dimension
 VC-Dimension & PAC Learning

▶ Discussion