Calcul de la somme d'une série entière (guidé)

 \mathbb{Q} Calcul d'une somme de série entière, en se ramenant à des sommes usuelles : la première question vous aide en cela (mais vous pouvez avoir à y penser spontanément dans un exercice, et il est donc important que vous compreniez, après avoir fait le calcul, pourquoi l'on vous a demandé de faire cette décomposition). Mes documents $M\acute{e}thodes$ (section 2.2) sont prodigues en exemples.

Commentaire sur la programmation de certains corrigés. Parfois, le corrigé ne cherchera pas à regrouper naturellement certains produits de puissances de x, en laissant xx^n au lieu d'écrire x^{n+1} . C'est issu d'un défaut de programmation que je n'ai pas pris le temps de corriger... Un jour, peut-être? En tous les cas, ne cherchez pas une vraie motivation mathématique à cela et n'imitez pas cette façon de faire.

Commentaire général sur le corrigé de ces exercices. Je ne montrerai pas que les sommes apparaissant dans les calculs existent bien pour tout x dans l'intervalle considéré, et ne justifierai pas la légitimité de mes dérivations ou intégrations terme à terme éventuelles; et ce, afin de me concentrer sur la principale difficulté ici, à savoir : la réduction à des sommes de série entière usuelles. Mais dans une rédaction d'examen ou de concours, vous auriez à justifier en détail l'existence des sommes et la validité de vos opérations.

Exercice 1.

1. Déterminer $(a, b) \in \mathbb{R}^2$ tel que:

$$\forall n \in \mathbb{C} \setminus \left\{ -\frac{1}{2}, -2 \right\}, \quad \frac{7n+2}{(2n+1)(n+2)} = \frac{a}{2n+1} + \frac{b}{n+2}.$$

2. En déduire, pour tout $x \in]-66,66[$, la valeur de la somme :

$$\sum_{n=0}^{+\infty} \frac{\left(-\frac{1}{66}\right)^n (7n+2)x^n}{(2n+1)(n+2)}.$$

Exercice 2.

1. Déterminer $(a, b) \in \mathbb{R}^2$ tel que :

$$\forall n \in \mathbb{C} \setminus \left\{-\frac{1}{2}, -2\right\}, \quad \frac{1}{(2n+1)(n+2)} = \frac{a}{2n+1} + \frac{b}{n+2}.$$

2. En déduire, pour tout $x \in]-\sqrt{2}, \sqrt{2}[$, la valeur de la somme :

$$\sum_{n=0}^{+\infty} \frac{\left(-\frac{1}{2}\right)^n x^{2n+1}}{(2n+1)(n+2)}.$$

Exercice 3.

1. Déterminer $(a, b, c) \in \mathbb{R}^3$ tel que : $X^2 - X - 1 = a + bX + cX(X - 1)$.

2. En déduire, pour tout $x \in]-2,2[$, la valeur de la somme :

$$\sum_{n=0}^{+\infty} (n^2 - n - 1) \left(\frac{1}{2}\right)^n x^{n+1}.$$

Exercice 4.

1. Déterminer $(a, b, c) \in \mathbb{R}^3$ tel que:

$$\forall n \in \mathbb{C} \setminus \left\{ -\frac{3}{2}, -3, -1 \right\}, \quad \frac{3}{(2n+3)(n+3)(n+1)} = \frac{a}{2n+3} + \frac{b}{n+3} + \frac{c}{n+1}.$$

2. En déduire, pour tout $x \in \left] - \sqrt{\frac{1}{2}}, \sqrt{\frac{1}{2}} \right[$, la valeur de la somme :

$$\sum_{n=0}^{+\infty} \frac{3 \cdot 2^n x^{2n+1}}{(2n+3)(n+3)(n+1)}.$$

 \rightarrow page 18

 \rightarrow page 18

 \rightarrow page 19

Exercice 5.

 \rightarrow page 20

1. Déterminer $(a, b) \in \mathbb{R}^2$ tel que:

$$\forall n \in \mathbb{C} \setminus \{-2, -1\}, \quad \frac{1}{4(n+2)(n+1)} = \frac{a}{n+2} + \frac{b}{n+1}.$$

2. En déduire, pour tout $x \in]-2,2[$, la valeur de la somme :

$$\sum_{n=0}^{+\infty} \frac{\left(-\frac{1}{2}\right)^n x^{n+1}}{4(n+2)(n+1)}.$$

Exercice 6.

 \rightarrow page 21

- 1. Déterminer $(a, b, c) \in \mathbb{R}^3$ tel que: $31X^2 + 9X 44 = a + b(X+2) + c(X+2)(X+1)$.
- 2. En déduire, pour tout $x \in \mathbb{R}$, la valeur de la somme :

$$\sum_{n=0}^{+\infty} \frac{\left(31 n^2 + 9 n - 44\right) (-1)^n x^{2n+1}}{(n+2)!}.$$

Exercice 7.

 \rightarrow page 21

- 1. Déterminer $(a, b) \in \mathbb{R}^2$ tel que : 4X + 2 = a + b(2X).
- 2. En déduire, pour tout $x \in \mathbb{R}$, la valeur de la somme :

$$\sum_{n=0}^{+\infty} \frac{2(2n+1)x^{2n}}{(2n)!}.$$

Exercice 8.

 \rightarrow page 22

1. Déterminer $(a, b, c) \in \mathbb{R}^3$ tel que:

$$\forall n \in \mathbb{C} \setminus \left\{-\frac{1}{2}, -2, -1\right\}, \quad \frac{n-1}{(2\,n+1)(n+2)(n+1)} = \frac{a}{2\,n+1} + \frac{b}{n+2} + \frac{c}{n+1}.$$

2. En déduire, pour tout $x \in]-1,1[$, la valeur de la somme :

$$\sum_{n=0}^{+\infty} \frac{(n-1)x^{n+1}}{(2n+1)(n+2)(n+1)}.$$

Exercice 9.

 \rightarrow page 22

1. Déterminer $(a, b) \in \mathbb{R}^2$ tel que :

$$\forall n \in \mathbb{C} \setminus \{-2, -1\}, \quad \frac{1}{3(n+2)(n+1)} = \frac{a}{n+2} + \frac{b}{n+1}.$$

2. En déduire, pour tout $x \in \left] -\frac{3}{2}, \frac{3}{2} \right[$, la valeur de la somme :

$$\sum_{n=0}^{+\infty} \frac{\left(\frac{2}{3}\right)^n x^n}{3(n+2)(n+1)}.$$

Exercice 10.

 \rightarrow page 23

1. Déterminer $(a, b) \in \mathbb{R}^2$ tel que:

$$\forall n \in \mathbb{C} \setminus \left\{ -\frac{3}{2}, -2 \right\}, \quad \frac{n-1}{2(2n+3)(n+2)} = \frac{a}{2n+3} + \frac{b}{n+2}.$$

2. En déduire, pour tout $x \in]-1,1[$, la valeur de la somme :

$$\sum_{n=0}^{+\infty} \frac{(n-1)x^{2n}}{2(2n+3)(n+2)}.$$

Exercice 11.

- 1. Déterminer $(a, b, c) \in \mathbb{R}^3$ tel que : $2X^2 + X + 41 = a + bX + cX(X 1)$.
- 2. En déduire, pour tout $x \in \left] -\sqrt{39}, \sqrt{39} \right[$, la valeur de la somme :

$$\sum_{n=0}^{+\infty} \left(2 \, n^2 + n + 41\right) \left(-\frac{1}{39}\right)^n x^{2 \, n}.$$

Exercice 12.

- 1. Déterminer $(a, b) \in \mathbb{R}^2$ tel que : X = a + b(X + 3).
- 2. En déduire, pour tout $x \in \mathbb{R}$, la valeur de la somme :

$$\sum_{n=0}^{+\infty} \frac{\left(-\frac{3}{52}\right)^n nx^{2n+1}}{(n+3)!}.$$

Exercice 13.

1. Déterminer $(a, b) \in \mathbb{R}^2$ tel que :

$$\forall n\in\mathbb{C}\setminus\left\{-2,-1\right\},\quad \frac{5}{3\left(n+2\right)\left(n+1\right)}=\frac{a}{n+2}+\frac{b}{n+1}.$$

2. En déduire, pour tout $x \in]-2,2[$, la valeur de la somme :

$$\sum_{n=0}^{+\infty} \frac{5\left(\frac{1}{4}\right)^n x^{2n+1}}{3(n+2)(n+1)}.$$

Exercice 14.

1. Déterminer $(a, b) \in \mathbb{R}^2$ tel que :

$$\forall n \in \mathbb{C} \setminus \{-2, -1\}, \quad \frac{933}{2(n+2)(n+1)} = \frac{a}{n+2} + \frac{b}{n+1}.$$

2. En déduire, pour tout $x \in \left] -\frac{3}{4}, \frac{3}{4} \right[$, la valeur de la somme :

$$\sum_{n=0}^{+\infty} \frac{933 \left(\frac{4}{3}\right)^n x^{n+1}}{2 (n+2)(n+1)}.$$

Exercice 15.

1. Déterminer $(a, b, c) \in \mathbb{R}^3$ tel que :

$$\forall n \in \mathbb{C} \setminus \left\{ -\frac{3}{2}, -3, -2 \right\}, \quad \frac{3(n+5)}{(2n+3)(n+3)(n+2)} = \frac{a}{2n+3} + \frac{b}{n+3} + \frac{c}{n+2}.$$

2. En déduire, pour tout $x \in \left] -\frac{1}{7}, \frac{1}{7} \right[$, la valeur de la somme:

$$\sum_{n=0}^{+\infty} \frac{3 (-7)^n (n+5) x^{n+1}}{(2 n+3) (n+3) (n+2)}.$$

Exercice 16.

 \rightarrow page 24

 \rightarrow page 24

 \rightarrow page 25

 \rightarrow page 25

- 1. Déterminer $(a, b) \in \mathbb{R}^2$ tel que : 3X = a + b(X + 1).
- 2. En déduire, pour tout $x \in \mathbb{R}$, la valeur de la somme :

$$\sum_{n=0}^{+\infty} \frac{3 n x^n}{(n+1)!}.$$

Exercice 17.

1. Déterminer $(a, b) \in \mathbb{R}^2$ tel que :

$$\forall n \in \mathbb{C} \setminus \left\{ -\frac{1}{2}, -1 \right\}, \quad \frac{n}{6(2n+1)(n+1)} = \frac{a}{2n+1} + \frac{b}{n+1}.$$

2. En déduire, pour tout $x \in]-1,1[$, la valeur de la somme :

$$\sum_{n=0}^{+\infty} \frac{nx^{2n}}{6(2n+1)(n+1)}.$$

Exercice 18.

- 1. Déterminer $(a, b) \in \mathbb{R}^2$ tel que : 11X 1 = a + bX.
- 2. En déduire, pour tout $x \in]-1,1[$, la valeur de la somme :

$$\sum_{n=0}^{+\infty} (11 \, n - 1) x^{2 \, n + 1}.$$

Exercice 19.

1. Déterminer $(a, b) \in \mathbb{R}^2$ tel que :

$$\forall n \in \mathbb{C} \setminus \{-3, -2\}, \quad \frac{1}{(n+3)(n+2)} = \frac{a}{n+3} + \frac{b}{n+2}.$$

2. En déduire, pour tout $x \in \left] -2\sqrt{\frac{38}{3}}, 2\sqrt{\frac{38}{3}} \right[$, la valeur de la somme :

$$\sum_{n=0}^{+\infty} \frac{\left(-\frac{3}{152}\right)^n x^{2n}}{(n+3)(n+2)}.$$

Exercice 20.

- 1. Déterminer $(a, b, c) \in \mathbb{R}^3$ tel que: $X^2 70X + 2 = a + b(2X + 3) + c(2X + 3)(2X + 2)$.
- 2. En déduire, pour tout $x \in \mathbb{R}$, la valeur de la somme :

$$\sum_{n=0}^{+\infty} \frac{\left(n^2 - 70\,n + 2\right)\left(-\frac{1}{2}\right)^n x^{n+1}}{(2\,n + 3)!}.$$

Exercice 21.

- 1. Déterminer $(a, b, c) \in \mathbb{R}^3$ tel que: $X^2 + 10X + 1 = a + b(X+3) + c(X+3)(X+2)$.
- 2. En déduire, pour tout $x \in \mathbb{R}$, la valeur de la somme :

$$\sum_{n=0}^{+\infty} \frac{(n^2 + 10 \, n + 1) 4^n x^{2n}}{(n+3)!}.$$

Exercice 22.

 \rightarrow page 27

 \rightarrow page 28

 \rightarrow page 28

 \rightarrow page 29

1. Déterminer $(a, b) \in \mathbb{R}^2$ tel que :

$$\forall n \in \mathbb{C} \setminus \{-3, -2\} \,, \quad \frac{n+12}{3 \, (n+3)(n+2)} = \frac{a}{n+3} + \frac{b}{n+2}.$$

2. En déduire, pour tout $x \in \left] -\sqrt{2}, \sqrt{2} \right[$, la valeur de la somme :

$$\sum_{n=0}^{+\infty} \frac{\left(-\frac{1}{2}\right)^n (n+12)x^{2n}}{3(n+3)(n+2)}.$$

Exercice 23.

- 1. Déterminer $(a, b) \in \mathbb{R}^2$ tel que : 4X 1 = a + bX.
- 2. En déduire, pour tout $x \in \mathbb{R}$, la valeur de la somme :

$$\sum_{n=0}^{+\infty} \frac{\left(-\frac{31}{2}\right)^n (4n-1)x^{n+1}}{n!}.$$

Exercice 24.

- 1. Déterminer $(a, b, c) \in \mathbb{R}^3$ tel que: $4X^2 6X + 1 = a + bX + cX(X 1)$.
- 2. En déduire, pour tout $x \in [-10,10]$, la valeur de la somme :

$$\sum_{n=0}^{+\infty} \left(4 \, n^2 - 6 \, n + 1\right) \left(-\frac{1}{10}\right)^n x^n.$$

Exercice 25.

- 1. Déterminer $(a, b) \in \mathbb{R}^2$ tel que : X 1 = a + b(X + 2).
- 2. En déduire, pour tout $x \in \mathbb{R}$, la valeur de la somme :

$$\sum_{n=0}^{+\infty} \frac{(n-1)x^{2n+1}}{(n+2)!}.$$

Exercice 26.

1. Déterminer $(a, b) \in \mathbb{R}^2$ tel que :

$$\forall n \in \mathbb{C} \setminus \{-2, -1\}, \quad \frac{2}{(n+2)(n+1)} = \frac{a}{n+2} + \frac{b}{n+1}.$$

2. En déduire, pour tout $x \in]-2,2[$, la valeur de la somme :

$$\sum_{n=0}^{+\infty} \frac{2 \left(-\frac{1}{2}\right)^n x^n}{(n+2)(n+1)}.$$

Exercice 27.

- 1. Déterminer $(a, b) \in \mathbb{R}^2$ tel que : 5X 7 = a + b(2X + 1).
- 2. En déduire, pour tout $x \in \mathbb{R}$, la valeur de la somme :

$$\sum_{n=0}^{+\infty} \frac{\left(-\frac{7}{2}\right)^n (5n-7)x^{2n+1}}{(2n+1)!}.$$

Exercice 28.

 \rightarrow page 32

 \rightarrow page 31

 \rightarrow page 31

 \rightarrow page 32

1. Déterminer $(a, b) \in \mathbb{R}^2$ tel que:

$$\forall n\in\mathbb{C}\setminus\left\{-\frac{1}{2},-1\right\},\quad \frac{1}{6\left(2\,n+1\right)(n+1)}=\frac{a}{2\,n+1}+\frac{b}{n+1}.$$

2. En déduire, pour tout $x \in]-1,1[$, la valeur de la somme :

$$\sum_{n=0}^{+\infty} \frac{(-1)^n x^{2n}}{6(2n+1)(n+1)}.$$

Exercice 29.

- 1. Déterminer $(a, b, c) \in \mathbb{R}^3$ tel que : $24X^2 + 2X 1 = a + bX + cX(X 1)$.
- 2. En déduire, pour tout $x \in]-\sqrt{6}, \sqrt{6}[$, la valeur de la somme :

$$\sum_{n=0}^{+\infty} \left(24 n^2 + 2 n - 1\right) \left(\frac{1}{6}\right)^n x^{2n}.$$

Exercice 30.

1. Déterminer $(a, b) \in \mathbb{R}^2$ tel que :

$$\forall n \in \mathbb{C} \setminus \left\{ -\frac{1}{2}, -1 \right\}, \quad \frac{3}{(2n+1)(n+1)} = \frac{a}{2n+1} + \frac{b}{n+1}.$$

2. En déduire, pour tout $x \in]-1,1[$, la valeur de la somme :

$$\sum_{n=0}^{+\infty} \frac{3 \, \left(-1\right)^n x^{n+1}}{(2 \, n+1)(n+1)}.$$

Exercice 31.

- 1. Déterminer $(a, b) \in \mathbb{R}^2$ tel que : X 1 = a + b(X + 3).
- 2. En déduire, pour tout $x \in \mathbb{R}$, la valeur de la somme :

$$\sum_{n=0}^{+\infty} \frac{(n-1)x^{2n}}{(n+3)!}.$$

Exercice 32.

- 1. Déterminer $(a, b, c) \in \mathbb{R}^3$ tel que: $5X^2 + 5X = a + bX + cX(X 1)$.
- 2. En déduire, pour tout $x \in]-1,1[$, la valeur de la somme :

$$\sum_{n=0}^{+\infty} 5\left(n^2 + n\right) x^{2n}.$$

Exercice 33.

1. Déterminer $(a, b, c) \in \mathbb{R}^3$ tel que :

$$\forall n \in \mathbb{C} \setminus \{-3, -2, -1\}, \quad \frac{1}{(n+3)(n+2)(n+1)} = \frac{a}{n+3} + \frac{b}{n+2} + \frac{c}{n+1}.$$

2. En déduire, pour tout $x \in]-2,2[$, la valeur de la somme :

$$\sum_{n=0}^{+\infty} \frac{\left(\frac{1}{2}\right)^n x^{n+1}}{(n+3)(n+2)(n+1)}.$$

 \rightarrow page 33

 \rightarrow page 34

 \rightarrow page 35

 \rightarrow page 35

Exercice 34.

 \rightarrow page 36

1. Déterminer $(a, b) \in \mathbb{R}^2$ tel que:

$$\forall n \in \mathbb{C} \setminus \{-2, -1\}, \quad \frac{3n+1}{2(n+2)(n+1)} = \frac{a}{n+2} + \frac{b}{n+1}.$$

2. En déduire, pour tout $x \in \left] -\frac{1}{15}, \frac{1}{15} \right[$, la valeur de la somme :

$$\sum_{n=0}^{+\infty} \frac{(-15)^n (3n+1)x^{n+1}}{2(n+2)(n+1)}.$$

Exercice 35.

 \rightarrow page 37

- 1. Déterminer $(a, b, c) \in \mathbb{R}^3$ tel que : $2X^2 89X 1 = a + b(2X + 3) + c(2X + 3)(2X + 2)$.
- 2. En déduire, pour tout $x \in \mathbb{R}$, la valeur de la somme :

$$\sum_{n=0}^{+\infty} \frac{\left(2 n^2 - 89 n - 1\right) \left(-\frac{1}{4}\right)^n x^n}{(2 n + 3)!}.$$

Exercice 36.

 \rightarrow page 37

1. Déterminer $(a, b, c) \in \mathbb{R}^3$ tel que:

$$\forall n \in \mathbb{C} \setminus \left\{ -\frac{3}{2}, -\frac{1}{2}, -1 \right\}, \quad \frac{2\,n^2 + 2\,n - 1}{(2\,n + 3)(2\,n + 1)(n + 1)} = \frac{a}{2\,n + 3} + \frac{b}{2\,n + 1} + \frac{c}{n + 1}.$$

2. En déduire, pour tout $x \in \left] -\frac{1}{4}, \frac{1}{4} \right[$, la valeur de la somme :

$$\sum_{n=0}^{+\infty} \frac{\left(2\,n^2+2\,n-1\right) \left(-4\right)^n x^n}{(2\,n+3) (2\,n+1) (n+1)}.$$

Exercice 37.

 \rightarrow page 38

1. Déterminer $(a, b, c) \in \mathbb{R}^3$ tel que:

$$\forall n \in \mathbb{C} \setminus \{-3, -2, -1\}, \quad \frac{n^2 + 2n - 1}{(n+3)(n+2)(n+1)} = \frac{a}{n+3} + \frac{b}{n+2} + \frac{c}{n+1}.$$

2. En déduire, pour tout $x \in]-1,1[$, la valeur de la somme :

$$\sum_{n=0}^{+\infty} \frac{\left(n^2 + 2n - 1\right) \left(-1\right)^n x^{2n+1}}{(n+3)(n+2)(n+1)}.$$

Exercice 38.

 \rightarrow page 39

- 1. Déterminer $(a, b, c) \in \mathbb{R}^3$ tel que: $5X^2 + 4X + 1 = a + b(X+1) + c(X+1)X$.
- 2. En déduire, pour tout $x \in \mathbb{R}$, la valeur de la somme :

$$\sum_{n=0}^{+\infty} \frac{\left(5 n^2 + 4 n + 1\right) x^{2n}}{(n+1)!}.$$

Exercice 39.

 \rightarrow page 39

1. Déterminer $(a, b) \in \mathbb{R}^2$ tel que :

$$\forall n \in \mathbb{C} \setminus \left\{ -\frac{1}{2}, -1 \right\}, \quad \frac{7}{(2n+1)(n+1)} = \frac{a}{2n+1} + \frac{b}{n+1}.$$

2. En déduire, pour tout $x \in]-\sqrt{3}, \sqrt{3}[$, la valeur de la somme :

$$\sum_{n=0}^{+\infty} \frac{7 \left(\frac{1}{3}\right)^n x^{2n+1}}{(2n+1)(n+1)}.$$

Exercice 40.

- 1. Déterminer $(a, b) \in \mathbb{R}^2$ tel que : 2X 1 = a + bX.
- 2. En déduire, pour tout $x \in]-2,2[$, la valeur de la somme :

$$\sum_{n=0}^{+\infty} \left(\frac{1}{2}\right)^n (2n-1)x^n.$$

Exercice 41.

1. Déterminer $(a, b) \in \mathbb{R}^2$ tel que :

$$\forall n \in \mathbb{C} \setminus \left\{ -\frac{1}{2}, -1 \right\}, \quad \frac{4n}{3(2n+1)(n+1)} = \frac{a}{2n+1} + \frac{b}{n+1}.$$

2. En déduire, pour tout $x \in]-1,1[$, la valeur de la somme :

$$\sum_{n=0}^{+\infty} \frac{4 \, \left(-1\right)^n n x^{2 \, n}}{3 \, (2 \, n+1) (n+1)}.$$

Exercice 42.

1. Déterminer $(a, b) \in \mathbb{R}^2$ tel que :

$$\forall n \in \mathbb{C} \setminus \{-3, -2\}, \quad \frac{n-4}{3(n+3)(n+2)} = \frac{a}{n+3} + \frac{b}{n+2}.$$

2. En déduire, pour tout $x \in \left] -\frac{1}{1161}, \frac{1}{1161} \right[$, la valeur de la somme :

$$\sum_{n=0}^{+\infty} \frac{1161^n (n-4)x^{n+1}}{3(n+3)(n+2)}.$$

Exercice 43.

- 1. Déterminer $(a, b, c) \in \mathbb{R}^3$ tel que: $10X^2 + 30X 1 = a + bX + cX(X 1)$.
- 2. En déduire, pour tout $x \in \left] \sqrt{\frac{1}{3}}, \sqrt{\frac{1}{3}} \right[$, la valeur de la somme :

$$\sum_{n=0}^{+\infty} (10 n^2 + 30 n - 1) (-3)^n x^{2n+1}.$$

Exercice 44.

- 1. Déterminer $(a, b, c) \in \mathbb{R}^3$ tel que: $13X^2 2X 3 = a + b(2X) + c(2X)(2X 1)$.
- 2. En déduire, pour tout $x \in \mathbb{R}$, la valeur de la somme :

$$\sum_{n=0}^{+\infty} \frac{\left(13 \, n^2 - 2 \, n - 3\right) \left(-2\right)^n x^{2 \, n}}{(2 \, n)!}.$$

Exercice 45.

1. Déterminer $(a, b) \in \mathbb{R}^2$ tel que : 2X - 3 = a + bX.

 \rightarrow page 40

 \rightarrow page 40

 \rightarrow page 41

 \rightarrow page 41

 \rightarrow page 43

2. En déduire, pour tout $x \in \left] - \sqrt{\frac{1}{7}}, \sqrt{\frac{1}{7}} \right[$, la valeur de la somme :

$$\sum_{n=0}^{+\infty} 7^n (2n-3) x^{2n+1}.$$

Exercice 46.

1. Déterminer $(a, b, c) \in \mathbb{R}^3$ tel que :

$$\forall n \in \mathbb{C} \setminus \left\{ -\frac{1}{2}, -3, -2 \right\}, \quad \frac{2}{(2\,n+1)(n+3)(n+2)} = \frac{a}{2\,n+1} + \frac{b}{n+3} + \frac{c}{n+2}.$$

2. En déduire, pour tout $x \in]-1,1[$, la valeur de la somme :

$$\sum_{n=0}^{+\infty} \frac{2 \, x^{2 \, n}}{(2 \, n+1)(n+3)(n+2)}.$$

Exercice 47.

1. Déterminer $(a, b) \in \mathbb{R}^2$ tel que :

$$\forall n \in \mathbb{C} \setminus \left\{ -\frac{3}{2}, -1 \right\}, \quad \frac{5n}{4(2n+3)(n+1)} = \frac{a}{2n+3} + \frac{b}{n+1}.$$

2. En déduire, pour tout $x \in]-2,2[$, la valeur de la somme :

$$\sum_{n=0}^{+\infty} \frac{5 \left(\frac{1}{2}\right)^n n x^{n+1}}{4 \left(2 \, n+3\right) (n+1)}.$$

Exercice 48.

1. Déterminer $(a, b) \in \mathbb{R}^2$ tel que : 3X = a + b(2X + 1).

2. En déduire, pour tout $x \in \mathbb{R}$, la valeur de la somme :

$$\sum_{n=0}^{+\infty} \frac{3 (-1)^n n x^{2n+1}}{(2n+1)!}.$$

Exercice 49.

1. Déterminer $(a, b) \in \mathbb{R}^2$ tel que : 2X + 1 = a + bX.

2. En déduire, pour tout $x \in]-2,2[$, la valeur de la somme :

$$\sum_{n=0}^{+\infty} \left(-\frac{1}{4} \right)^n (2n+1) x^{2n+1}.$$

Exercice 50.

1. Déterminer $(a, b, c) \in \mathbb{R}^3$ tel que: $X^2 + X + 3 = a + b(2X + 2) + c(2X + 2)(2X + 1)$.

2. En déduire, pour tout $x \in \mathbb{R}$, la valeur de la somme :

$$\sum_{n=0}^{+\infty} \frac{(n^2+n+3)2^n x^{2n}}{(2n+2)!}.$$

Exercice 51.

1. Déterminer $(a,\,b,\,c)\in\mathbb{R}^3$ tel que : $X^2=a+b(X+3)+c(X+3)(X+2).$

 \rightarrow page 43

 \rightarrow page 44

 \rightarrow page 45

 \rightarrow page 45

 \rightarrow page 45

2. En déduire, pour tout $x \in \mathbb{R}$, la valeur de la somme :

$$\sum_{n=0}^{+\infty} \frac{n^2 x^{2n+1}}{(n+3)!}.$$

Exercice 52.

 \rightarrow page 47

- 1. Déterminer $(a, b, c) \in \mathbb{R}^3$ tel que : $X^2 + 1 = a + b(X + 3) + c(X + 3)(X + 2)$.
- 2. En déduire, pour tout $x \in \mathbb{R}$, la valeur de la somme :

$$\sum_{n=0}^{+\infty} \frac{(n^2+1)6^n x^n}{(n+3)!}.$$

Exercice 53.

 \rightarrow page 47

- 1. Déterminer $(a, b, c) \in \mathbb{R}^3$ tel que: $X^2 2X 1 = a + b(2X + 2) + c(2X + 2)(2X + 1)$.
- 2. En déduire, pour tout $x \in \mathbb{R}$, la valeur de la somme :

$$\sum_{n=0}^{+\infty} \frac{\left(n^2 - 2n - 1\right) \left(\frac{1}{2}\right)^n x^{2n}}{(2n+2)!}.$$

Exercice 54.

\rightarrow page 48

- 1. Déterminer $(a, b, c) \in \mathbb{R}^3$ tel que : $X^2 385X = a + b(2X + 2) + c(2X + 2)(2X + 1)$.
- 2. En déduire, pour tout $x \in \mathbb{R}$, la valeur de la somme :

$$\sum_{n=0}^{+\infty} \frac{(n^2 - 385 \, n) 5^n x^n}{(2 \, n + 2)!}.$$

Exercice 55.

 \rightarrow page 49

1. Déterminer $(a, b, c) \in \mathbb{R}^3$ tel que : $5X^2 - X - 3 = a + b(X+1) + c(X+1)X$.

2. En déduire, pour tout
$$x \in \mathbb{R}$$
, la valeur de la somme :

$$\sum_{n=0}^{+\infty} \frac{\left(5 \, n^2 - n - 3\right) \left(\frac{1}{2}\right)^n \, x^{2 \, n}}{(n+1)!}.$$

Exercice 56.

 \rightarrow page 50

- 1. Déterminer $(a, b) \in \mathbb{R}^2$ tel que : X 2 = a + b(2X + 1).
- 2. En déduire, pour tout $x \in \mathbb{R}$, la valeur de la somme :

$$\sum_{n=0}^{+\infty} \frac{(-1)^n (n-2)x^{2n+1}}{(2n+1)!}.$$

Exercice 57.

 \rightarrow page 50

- 1. Déterminer $(a, b, c) \in \mathbb{R}^3$ tel que: $3X^2 X + 2 = a + b(X + 3) + c(X + 3)(X + 2)$.
- 2. En déduire, pour tout $x \in \mathbb{R}$, la valeur de la somme :

$$\sum_{n=0}^{+\infty} \frac{(3n^2 - n + 2)(-1)^n x^{2n}}{(n+3)!}.$$

Exercice 58.

1. Déterminer $(a, b) \in \mathbb{R}^2$ tel que :

$$\forall n \in \mathbb{C} \setminus \{-2, -1\}, \quad \frac{22}{(n+2)(n+1)} = \frac{a}{n+2} + \frac{b}{n+1}.$$

2. En déduire, pour tout $x \in \left] -\frac{2}{3}, \frac{2}{3} \right[$, la valeur de la somme :

$$\sum_{n=0}^{+\infty} \frac{22 \left(\frac{3}{2}\right)^n x^{n+1}}{(n+2)(n+1)}.$$

Exercice 59.

- 1. Déterminer $(a, b) \in \mathbb{R}^2$ tel que : X 1 = a + bX.
- 2. En déduire, pour tout $x \in \left] -\sqrt{2}, \sqrt{2} \right[$, la valeur de la somme :

$$\sum_{n=0}^{+\infty} \left(\frac{1}{2}\right)^n (n-1)x^{2n}.$$

Exercice 60.

- 1. Déterminer $(a, b, c) \in \mathbb{R}^3$ tel que : $4X^2 2 = a + b(2X + 3) + c(2X + 3)(2X + 2)$.
- 2. En déduire, pour tout $x \in \mathbb{R}$, la valeur de la somme :

$$\sum_{n=0}^{+\infty} \frac{2(2n^2-1)x^{2n+1}}{(2n+3)!}.$$

Exercice 61.

- 1. Déterminer $(a, b, c) \in \mathbb{R}^3$ tel que : $X^2 2X + 1 = a + bX + cX(X 1)$.
- 2. En déduire, pour tout $x \in \mathbb{R}$, la valeur de la somme :

$$\sum_{n=0}^{+\infty} \frac{(n^2 - 2n + 1) (-1)^n x^{n+1}}{n!}.$$

Exercice 62.

- 1. Déterminer $(a, b) \in \mathbb{R}^2$ tel que : X 3 = a + b(2X + 2).
- 2. En déduire, pour tout $x \in \mathbb{R}$, la valeur de la somme :

$$\sum_{n=0}^{+\infty} \frac{(-1)^n (n-3)x^{n+1}}{(2n+2)!}.$$

Exercice 63.

- 1. Déterminer $(a, b, c) \in \mathbb{R}^3$ tel que : $X^2 + X = a + bX + cX(X 1)$.
- 2. En déduire, pour tout $x \in \left] -\frac{3}{2}, \frac{3}{2} \right[$, la valeur de la somme :

$$\sum_{n=0}^{+\infty} (n^2 + n) \left(\frac{2}{3}\right)^n x^{n+1}.$$

Exercice 64.

1. Déterminer $(a, b) \in \mathbb{R}^2$ tel que :

$$\forall n \in \mathbb{C} \setminus \left\{-\frac{1}{2}, -2\right\}, \quad \frac{n+1}{3(2n+1)(n+2)} = \frac{a}{2n+1} + \frac{b}{n+2}.$$

 \rightarrow page 52

 \rightarrow page 52

 \rightarrow page 53

 \rightarrow page 53

 \rightarrow page 54

2. En déduire, pour tout $x \in \left] - \frac{1}{2} \sqrt{5}, \frac{1}{2} \sqrt{5} \right[$, la valeur de la somme :

$$\sum_{n=0}^{+\infty} \frac{\left(-\frac{4}{5}\right)^n (n+1) x^{2n+1}}{3(2n+1)(n+2)}.$$

Exercice 65.

1. Déterminer $(a, b) \in \mathbb{R}^2$ tel que :

$$\forall n \in \mathbb{C} \setminus \{-3, -1\}, \quad \frac{n-1}{2(n+3)(n+1)} = \frac{a}{n+3} + \frac{b}{n+1}.$$

2. En déduire, pour tout $x \in \left] -2\sqrt{\frac{1}{5}}, 2\sqrt{\frac{1}{5}} \right[$, la valeur de la somme :

$$\sum_{n=0}^{+\infty} \frac{\left(\frac{5}{4}\right)^n (n-1)x^{2n}}{2(n+3)(n+1)}.$$

Exercice 66.

1. Déterminer $(a, b) \in \mathbb{R}^2$ tel que :

$$\forall n \in \mathbb{C} \setminus \{-3, -1\}, \quad \frac{4}{3(n+3)(n+1)} = \frac{a}{n+3} + \frac{b}{n+1}.$$

2. En déduire, pour tout $x \in]-1,1[$, la valeur de la somme :

$$\sum_{n=0}^{+\infty} \frac{4 x^{2n}}{3 (n+3)(n+1)}.$$

Exercice 67.

1. Déterminer $(a, b) \in \mathbb{R}^2$ tel que : X - 1 = a + b(X + 1).

2. En déduire, pour tout $x \in \mathbb{R}$, la valeur de la somme :

$$\sum_{n=0}^{+\infty} \frac{(-2)^n (n-1)x^{2n}}{(n+1)!}.$$

Exercice 68.

1. Déterminer $(a, b) \in \mathbb{R}^2$ tel que : 2X + 2 = a + bX.

2. En déduire, pour tout $x \in]-1,1[$, la valeur de la somme :

$$\sum_{n=0}^{+\infty} 2(n+1)x^{2n}.$$

Exercice 69.

1. Déterminer $(a, b) \in \mathbb{R}^2$ tel que : X - 1 = a + bX.

2. En déduire, pour tout $x \in \left] -\frac{1}{2}, \frac{1}{2} \right[$, la valeur de la somme :

$$\sum_{n=0}^{+\infty} (-2)^n (n-1)x^n.$$

Exercice 70.

1. Déterminer $(a,\,b)\in\mathbb{R}^2$ tel que : 6X+3=a+b(2X+3).

 \rightarrow page 55

 \rightarrow page 56

 \rightarrow page 56

 \rightarrow page 56

 \rightarrow page 57

2. En déduire, pour tout $x \in \mathbb{R}$, la valeur de la somme :

$$\sum_{n=0}^{+\infty} \frac{3\left(\frac{1}{7}\right)^n (2n+1)x^{n+1}}{(2n+3)!}.$$

Exercice 71.

1. Déterminer $(a, b) \in \mathbb{R}^2$ tel que :

$$\forall n \in \mathbb{C} \setminus \left\{ -\frac{3}{2}, -1 \right\}, \quad \frac{1}{4(2n+3)(n+1)} = \frac{a}{2n+3} + \frac{b}{n+1}.$$

2. En déduire, pour tout $x \in]-1,1[$, la valeur de la somme :

$$\sum_{n=0}^{+\infty} \frac{x^n}{4(2n+3)(n+1)}.$$

Exercice 72.

1. Déterminer $(a, b) \in \mathbb{R}^2$ tel que :

$$\forall n \in \mathbb{C} \setminus \{-3, -1\}, \quad \frac{n}{6(n+3)(n+1)} = \frac{a}{n+3} + \frac{b}{n+1}.$$

2. En déduire, pour tout $x \in \left] -\sqrt{86}, \sqrt{86} \right[$, la valeur de la somme :

$$\sum_{n=0}^{+\infty} \frac{\left(\frac{1}{86}\right)^n nx^{2n+1}}{6(n+3)(n+1)}.$$

Exercice 73.

1. Déterminer $(a, b) \in \mathbb{R}^2$ tel que : 9X - 3 = a + bX.

2. En déduire, pour tout $x \in]-1,1[$, la valeur de la somme :

$$\sum_{n=0}^{+\infty} 3 (-1)^n (3n-1)x^{2n}.$$

Exercice 74.

1. Déterminer $(a, b, c) \in \mathbb{R}^3$ tel que : $X^2 - 2 = a + bX + cX(X - 1)$.

2. En déduire, pour tout $x \in]-2,2[$, la valeur de la somme :

$$\sum_{n=0}^{+\infty} (n^2 - 2) \left(\frac{1}{4}\right)^n x^{2n}.$$

Exercice 75.

1. Déterminer $(a, b) \in \mathbb{R}^2$ tel que :

$$\forall n \in \mathbb{C} \setminus \{-3, -1\}, \quad \frac{1}{2(n+3)(n+1)} = \frac{a}{n+3} + \frac{b}{n+1}.$$

2. En déduire, pour tout $x \in]-2,2[$, la valeur de la somme :

$$\sum_{n=0}^{+\infty} \frac{\left(\frac{1}{2}\right)^n x^n}{2(n+3)(n+1)}.$$

Exercice 76.

 \rightarrow page 61

 \rightarrow page 58

 \rightarrow page 59

 \rightarrow page 59

 \rightarrow page 60

- 1. Déterminer $(a, b, c) \in \mathbb{R}^3$ tel que: $2X^2 + 2X = a + b(2X) + c(2X)(2X 1)$.
- 2. En déduire, pour tout $x \in \mathbb{R}$, la valeur de la somme :

$$\sum_{n=0}^{+\infty} \frac{2(n^2+n)3^n x^{2n+1}}{(2n)!}.$$

Exercice 77.

 \rightarrow page 61

- 1. Déterminer $(a, b, c) \in \mathbb{R}^3$ tel que: $X^2 X = a + b(2X) + c(2X)(2X 1)$.
- 2. En déduire, pour tout $x \in \mathbb{R}$, la valeur de la somme :

$$\sum_{n=0}^{+\infty} \frac{(n^2 - n)2^n x^n}{(2n)!}.$$

Exercice 78.

 \rightarrow page 62

1. Déterminer $(a, b) \in \mathbb{R}^2$ tel que :

$$\forall n \in \mathbb{C} \setminus \left\{ -\frac{1}{2}, -1 \right\}, \quad \frac{4n+1}{(2n+1)(n+1)} = \frac{a}{2n+1} + \frac{b}{n+1}.$$

2. En déduire, pour tout $x \in \left] - \sqrt{\frac{1}{2}}, \sqrt{\frac{1}{2}} \right[$, la valeur de la somme :

$$\sum_{n=0}^{+\infty} \frac{2^n (4n+1)x^{2n}}{(2n+1)(n+1)}.$$

Exercice 79.

 \rightarrow page 63

1. Déterminer $(a, b, c) \in \mathbb{R}^3$ tel que :

$$\forall n \in \mathbb{C} \setminus \left\{ -\frac{3}{2}, -3, -1 \right\}, \quad \frac{2\,n-1}{2\,(2\,n+3)(n+3)(n+1)} = \frac{a}{2\,n+3} + \frac{b}{n+3} + \frac{c}{n+1}.$$

2. En déduire, pour tout $x \in]-\sqrt{2}, \sqrt{2}[$, la valeur de la somme :

$$\sum_{n=0}^{+\infty} \frac{\left(\frac{1}{2}\right)^n (2n-1)x^{2n+1}}{2(2n+3)(n+3)(n+1)}.$$

Exercice 80.

 \rightarrow page 64

- 1. Déterminer $(a, b, c) \in \mathbb{R}^3$ tel que : $4X^2 X + 1 = a + bX + cX(X 1)$.
- 2. En déduire, pour tout $x \in \left] -\frac{1}{2} \sqrt{\frac{1}{3}}, \frac{1}{2} \sqrt{\frac{1}{3}} \right[$, la valeur de la somme :

$$\sum_{n=0}^{+\infty} (4 n^2 - n + 1) (-12)^n x^{2n+1}.$$

Exercice 81.

 \rightarrow page 64

- 1. Déterminer $(a, b) \in \mathbb{R}^2$ tel que : 3X + 2 = a + bX.
- 2. En déduire, pour tout $x \in \left] -\frac{2}{3}, \frac{2}{3} \right[$, la valeur de la somme :

$$\sum_{n=0}^{+\infty} \left(\frac{3}{2}\right)^n (3n+2)x^n.$$

Exercice 82.

- 1. Déterminer $(a, b, c) \in \mathbb{R}^3$ tel que : $8X^2 + 2X = a + b(2X + 2) + c(2X + 2)(2X + 1)$.
- 2. En déduire, pour tout $x \in \mathbb{R}$, la valeur de la somme :

$$\sum_{n=0}^{+\infty}\frac{2\left(4\,n^2+n\right)\left(\frac{5}{2}\right)^n\,x^{2\,n+1}}{(2\,n+2)!}.$$

Exercice 83.

- 1. Déterminer $(a, b) \in \mathbb{R}^2$ tel que: 9X + 1 = a + bX.
- 2. En déduire, pour tout $x \in]-2,2[$, la valeur de la somme :

$$\sum_{n=0}^{+\infty} \left(-\frac{1}{2} \right)^n (9n+1)x^{n+1}.$$

Exercice 84.

1. Déterminer $(a, b, c) \in \mathbb{R}^3$ tel que:

$$\forall n \in \mathbb{C} \setminus \left\{-\frac{3}{2}, -2, -1\right\}, \quad \frac{n+11}{(2\,n+3)(n+2)(n+1)} = \frac{a}{2\,n+3} + \frac{b}{n+2} + \frac{c}{n+1}.$$

2. En déduire, pour tout $x \in]-\sqrt{29}, \sqrt{29}[$, la valeur de la somme :

$$\sum_{n=0}^{+\infty} \frac{\left(-\frac{1}{29}\right)^n (n+11) x^{2\,n+1}}{(2\,n+3)(n+2)(n+1)}.$$

Exercice 85.

- 1. Déterminer $(a, b) \in \mathbb{R}^2$ tel que : X 1 = a + bX.
- 2. En déduire, pour tout $x \in \left] -\frac{1}{9}, \frac{1}{9} \right[$, la valeur de la somme :

$$\sum_{n=0}^{+\infty} 9^n (n-1) x^n.$$

Exercice 86.

- 1. Déterminer $(a, b) \in \mathbb{R}^2$ tel que : X 3 = a + bX.
- 2. En déduire, pour tout $x \in]-7,7[$, la valeur de la somme :

$$\sum_{n=0}^{+\infty} \left(-\frac{1}{7}\right)^n (n-3)x^n.$$

Exercice 87.

- 1. Déterminer $(a, b, c) \in \mathbb{R}^3$ tel que : $X^2 X 7 = a + bX + cX(X 1)$.
- 2. En déduire, pour tout $x \in]-1,1[$, la valeur de la somme :

$$\sum_{n=0}^{+\infty} (n^2 - n - 7) (-1)^n x^{2n+1}.$$

Exercice 88.

- 1. Déterminer $(a, b) \in \mathbb{R}^2$ tel que : X 1 = a + b(2X + 3).
- 2. En déduire, pour tout $x \in \mathbb{R}$, la valeur de la somme :

$$\sum_{n=0}^{+\infty} \frac{5^n (n-1)x^{2n+1}}{(2n+3)!}.$$

 \rightarrow page 65

 \rightarrow page 66

 \rightarrow page 66

 \rightarrow page 67

 \rightarrow page 67

Exercice 89.

 \rightarrow page 68

- 1. Déterminer $(a, b, c) \in \mathbb{R}^3$ tel que : $X^2 + X + 27 = a + bX + cX(X 1)$.
- 2. En déduire, pour tout $x \in]-3,3[$, la valeur de la somme :

$$\sum_{n=0}^{+\infty} \left(n^2 + n + 27 \right) \left(-\frac{1}{3} \right)^n x^{n+1}.$$

Exercice 90.

 \rightarrow page 69

- 1. Déterminer $(a, b) \in \mathbb{R}^2$ tel que : X 1 = a + b(2X + 1).
- 2. En déduire, pour tout $x \in \mathbb{R}$, la valeur de la somme :

$$\sum_{n=0}^{+\infty} \frac{(-1)^n (n-1)x^{2n+1}}{(2n+1)!}.$$

Exercice 91.

 \rightarrow page 70

- 1. Déterminer $(a, b, c) \in \mathbb{R}^3$ tel que: $X^2 + X + 2 = a + b(X+3) + c(X+3)(X+2)$.
- 2. En déduire, pour tout $x \in \mathbb{R}$, la valeur de la somme :

$$\sum_{n=0}^{+\infty} \frac{\left(n^2 + n + 2\right) \left(-2\right)^n x^{n+1}}{(n+3)!}.$$

Exercice 92.

 \rightarrow page 70

- 1. Déterminer $(a, b, c) \in \mathbb{R}^3$ tel que : $X^2 + X + 1 = a + bX + cX(X 1)$.
- 2. En déduire, pour tout $x \in]-1,1[$, la valeur de la somme :

$$\sum_{n=0}^{+\infty} (n^2 + n + 1) (-1)^n x^{2n+1}.$$

Exercice 93.

 \rightarrow page 71

- 1. Déterminer $(a, b) \in \mathbb{R}^2$ tel que : X 1 = a + b(X + 3).
- 2. En déduire, pour tout $x \in \mathbb{R}$, la valeur de la somme :

$$\sum_{n=0}^{+\infty} \frac{(-2)^n (n-1)x^n}{(n+3)!}.$$

Exercice 94.

 \rightarrow page 71

- 1. Déterminer $(a, b, c) \in \mathbb{R}^3$ tel que : $2X^2 + 186 = a + bX + cX(X 1)$.
- 2. En déduire, pour tout $x \in \left] \sqrt{\frac{5}{2}}, \sqrt{\frac{5}{2}} \right[$, la valeur de la somme :

$$\sum_{n=0}^{+\infty} 2 \left(n^2 + 93\right) \left(-\frac{2}{5}\right)^n x^{2n+1}.$$

Exercice 95.

 \rightarrow page 72

1. Déterminer $(a, b) \in \mathbb{R}^2$ tel que :

$$\forall n \in \mathbb{C} \setminus \left\{ -\frac{1}{2}, -2 \right\}, \quad \frac{5}{2(2n+1)(n+2)} = \frac{a}{2n+1} + \frac{b}{n+2}.$$

2. En déduire, pour tout $x \in]-2,2[$, la valeur de la somme :

$$\sum_{n=0}^{+\infty} \frac{5 \, \left(-\frac{1}{2}\right)^n x^{n+1}}{2 \, (2 \, n+1) (n+2)}.$$

Exercice 96.

- 1. Déterminer $(a, b, c) \in \mathbb{R}^3$ tel que : $2X^2 X 1 = a + b(2X) + c(2X)(2X 1)$.
- 2. En déduire, pour tout $x \in \mathbb{R}$, la valeur de la somme :

$$\sum_{n=0}^{+\infty} \frac{(2n^2 - n - 1)(-1)^n x^{2n+1}}{(2n)!}.$$

Exercice 97.

1. Déterminer $(a, b) \in \mathbb{R}^2$ tel que :

$$\forall n \in \mathbb{C} \setminus \{-3, -2\}, \quad \frac{n}{(n+3)(n+2)} = \frac{a}{n+3} + \frac{b}{n+2}.$$

2. En déduire, pour tout $x \in \left] -\sqrt{2}, \sqrt{2} \right[$, la valeur de la somme :

$$\sum_{n=0}^{+\infty} \frac{\left(\frac{1}{2}\right)^n nx^{2n+1}}{(n+3)(n+2)}.$$

Exercice 98.

1. Déterminer $(a, b) \in \mathbb{R}^2$ tel que :

$$\forall n \in \mathbb{C} \setminus \left\{ -\frac{1}{2}, -1 \right\}, \quad \frac{n-1}{2(2n+1)(n+1)} = \frac{a}{2n+1} + \frac{b}{n+1}.$$

2. En déduire, pour tout $x \in \left] -\frac{1}{2}, \frac{1}{2} \right[$, la valeur de la somme :

$$\sum_{n=0}^{+\infty} \frac{(-2)^n (n-1) x^{n+1}}{2 (2 n+1) (n+1)}.$$

Exercice 99.

1. Déterminer $(a, b) \in \mathbb{R}^2$ tel que :

$$\forall n\in\mathbb{C}\setminus\left\{-3,-1\right\},\quad \frac{5}{6\left(n+3\right)(n+1)}=\frac{a}{n+3}+\frac{b}{n+1}.$$

2. En déduire, pour tout $x \in]-1,1[$, la valeur de la somme :

$$\sum_{n=0}^{+\infty} \frac{5 (-1)^n x^{n+1}}{6 (n+3)(n+1)}.$$

Exercice 100.

1. Déterminer $(a, b) \in \mathbb{R}^2$ tel que : 7X + 25 = a + bX.

2. En déduire, pour tout $x \in \left] - \sqrt{\frac{2}{5}}, \sqrt{\frac{2}{5}} \right[$, la valeur de la somme :

$$\sum_{n=0}^{+\infty} \left(\frac{5}{2}\right)^n (7n+25)x^{2n+1}.$$

 \rightarrow page 73

 \rightarrow page 74

 \rightarrow page 74

 \rightarrow page 75

Corrigé 1.

 \leftarrow page 1

1. C'est une décomposition en éléments simples, tout ce qu'il y a de plus classique. Il suffit de multiplier l'égalité par chacun des dénominateurs possibles du membre de droite, et de faire tendre la variable n vers leurs racines. Cela permet d'éliminer toutes les inconnues sauf une, et de les déterminer. On obtient alors :

$$\forall n \in \mathbb{C} \setminus \left\{ -\frac{1}{2}, -2 \right\}, \quad \frac{7\,n+2}{(2\,n+1)(n+2)} = -\frac{1}{2\,n+1} + \frac{4}{n+2}.$$

2. Soit $x \in]-66,66[$. On a, d'après la question précédente :

$$\sum_{n=0}^{+\infty} \frac{\left(-\frac{1}{66}\right)^n (7n+2)x^n}{(2n+1)(n+2)} = 4\sum_{n=0}^{+\infty} \frac{(-1)^n \left(\frac{1}{66}x\right)^n}{n+2} - \sum_{n=0}^{+\infty} \frac{(-1)^n \left(\frac{1}{66}x\right)^n}{2n+1}$$
$$= 4\sum_{n=1}^{+\infty} \frac{(-1)^{n-1} \left(\frac{1}{66}x\right)^{n-1}}{n+1} - \sum_{n=0}^{+\infty} \frac{(-1)^n \left(\frac{1}{66}x\right)^n}{2n+1}$$

après changement d'indice. On reconnaît alors le développement en série entière en 0 du logarithme et de l'arc tangente (à condition d'écrire $x = (\sqrt{x})^2$ si x est positif, pour faire apparaître une puissance paire; si x est négatif alors nous écrirons $x = -(-x) = -(\sqrt{-x})^2$ et il faudra encore un peu travailler). (attention à bien prendre x non nul pour diviser ci-dessous; le cas x = 0 étant de toute façon trivial considéré à part):

$$\sum_{n=0}^{+\infty} \frac{\left(-\frac{1}{66}\right)^n (7n+2)x^n}{(2n+1)(n+2)} = -\frac{17424}{x^2} \sum_{n=1}^{+\infty} \frac{\left(-1\right)^n \left(\frac{1}{66}x\right)^{n+1}}{n+1} - \frac{66\sqrt{\frac{1}{66}}}{\sqrt{x}} \sum_{n=0}^{+\infty} \frac{\left(-1\right)^n \left(\sqrt{\frac{1}{66}}\sqrt{x}\right)^{2n+1}}{2n+1}$$
$$= -\frac{17424}{x^2} \ln\left(\frac{1}{66}x+1\right) - \frac{66\sqrt{\frac{1}{66}}}{\sqrt{x}} \arctan\left(\sqrt{\frac{1}{66}}\sqrt{x}\right) + \left(\frac{264}{x}\right),$$

d'où le résultat si x est positif. Si x est négatif, on écrit $x = -(-x) = -(\sqrt{-x})^2$, et un raisonnement analogue à celui ci-dessus aboutit à:

$$\sum_{n=0}^{+\infty} \frac{\left(-\frac{1}{66}\right)^n (7n+2)x^n}{(2n+1)(n+2)} = -\frac{17424}{x^2} \ln\left(\frac{1}{66}x+1\right) - \frac{66\sqrt{\frac{1}{66}}}{\sqrt{-x}} \frac{1}{2} \ln\left(-\frac{\sqrt{\frac{1}{66}\sqrt{-x}}+1}{\sqrt{\frac{1}{66}\sqrt{-x}}-1}\right) + \left(\frac{264}{x}\right),$$

d'où le résultat.

Remarque. Pour calculer $\sum_{n=0}^{+\infty} \frac{x^{2n+1}}{2n+1}$ pour tout $x \in]-1,1[$, on remarque qu'on obtient cette somme en

intégrant terme à terme $x \mapsto \sum_{n=0}^{+\infty} x^{2n}$ (ce qui est possible parce qu'il s'agit d'une somme de série entière de rayon de convergence 1):

$$\sum_{n=0}^{+\infty} \frac{x^{2n+1}}{2n+1} = \sum_{n=0}^{+\infty} \int_0^x t^{2n} \mathrm{d}t = \int_0^x \sum_{n=0}^{+\infty} t^{2n} \mathrm{d}t = \int_0^x \frac{\mathrm{d}t}{1-t^2} = \frac{1}{2} \int_0^x \left(\frac{1}{1-t} + \frac{1}{1+t}\right) \mathrm{d}t = \frac{1}{2} \ln \left(\frac{1+x}{1-x}\right).$$

Corrigé 2.

 $\leftarrow \text{page 1}$

1. C'est une décomposition en éléments simples, tout ce qu'il y a de plus classique. Il suffit de multiplier l'égalité par chacun des dénominateurs possibles du membre de droite, et de faire tendre la variable n vers leurs racines. Cela permet d'éliminer toutes les inconnues sauf une, et de les déterminer. On obtient alors:

$$\forall n \in \mathbb{C} \setminus \left\{-\frac{1}{2}, -2\right\}, \quad \frac{1}{(2\,n+1)(n+2)} = \frac{2}{3\,(2\,n+1)} - \frac{1}{3\,(n+2)}.$$

2. Soit $x \in]-\sqrt{2}, \sqrt{2}[$. On a, d'après la question précédente :

$$\sum_{n=0}^{+\infty} \frac{\left(-\frac{1}{2}\right)^n x^{2n+1}}{(2n+1)(n+2)} = -\frac{1}{3} \sum_{n=0}^{+\infty} \frac{(-1)^n \left(\frac{1}{2}x^2\right)^n x}{n+2} + \frac{2}{3} \sum_{n=0}^{+\infty} \frac{(-1)^n \left(\sqrt{\frac{1}{2}}x\right)^{2n} x}{2n+1}$$
$$= -\frac{1}{3} \sum_{n=1}^{+\infty} \frac{(-1)^{n-1} \left(\frac{1}{2}x^2\right)^{n-1} x}{n+1} + \frac{2}{3} \sum_{n=0}^{+\infty} \frac{(-1)^n \left(\sqrt{\frac{1}{2}}x\right)^{2n} x}{2n+1}$$

après changement d'indice. On reconnaît alors le développement en série entière en 0 du logarithme et de l'arc tangente (attention à bien prendre x non nul pour diviser ci-dessous; le cas x=0 étant de toute façon trivial considéré à part):

$$\sum_{n=0}^{+\infty} \frac{\left(-\frac{1}{2}\right)^n x^{2n+1}}{(2n+1)(n+2)} = \frac{4}{3x^3} \sum_{n=1}^{+\infty} \frac{\left(-1\right)^n \left(\frac{1}{2}x^2\right)^{n+1}}{n+1} + \frac{4}{3} \sqrt{\frac{1}{2}} \sum_{n=0}^{+\infty} \frac{\left(-1\right)^n \left(\sqrt{\frac{1}{2}}x\right)^{2n+1}}{2n+1}$$
$$= \frac{4}{3x^3} \ln\left(\frac{1}{2}x^2 + 1\right) + \frac{4}{3} \sqrt{\frac{1}{2}} \arctan\left(\sqrt{\frac{1}{2}}x\right) + \left(-\frac{2}{3x}\right),$$

d'où le résultat.

Corrigé 3.

1. Tout d'abord, l'existence de $(a,b,c) \in \mathbb{R}^3$, vérifiant la décomposition de l'énoncé, est assurée par le fait que la famille (1,X,X(X-1)) soit échelonnée en degré : c'est donc une base de $\mathbb{R}_2[X]$ (et en particulier X^2-X-1 , qui appartient à cet espace vectoriel, est combinaison linéaire des polynômes de cette base). Pour déterminer ces scalaires, nul besoin de développer comme un cochon (et je vous le déconseille fortement) : il suffit d'évaluer l'égalité en des racines des polynômes du membre de droite, c'est-à-dire successivement en 0,1. Si l'on évalue l'égalité $X^2-X-1=a+bX+cX(X-1)$ en 0, on obtient directement : a=-1. Et ainsi de suite. Pour déterminer c, une évaluation en des racines ne simplifie pas la tâche, mais on peut par exemple le déterminer en comparant les coefficients dominants dans chaque membre de l'égalité : c'est moins calculatoire que si on voulait l'exprimer à l'aide des coefficients précédemment déterminés. Cette idée donne ici : 1=c. En conclusion, on a :

$$X^{2} - X - 1 = -1 + X(X - 1).$$

2. Soit $x \in]-2,2[$. On a, d'après la question précédente :

$$\sum_{n=0}^{+\infty} (n^2 - n - 1) \left(\frac{1}{2}\right)^n x^{n+1} = -\sum_{n=0}^{+\infty} \left(\frac{1}{2}\right)^n x^{n+1} + \sum_{n=0}^{+\infty} n(n-1) \left(\frac{1}{2}\right)^n x^{n+1}$$

$$= -x \sum_{n=0}^{+\infty} \left(\frac{1}{2}x\right)^n + x \sum_{n=2}^{+\infty} n(n-1) \left(\frac{1}{2}x\right)^n$$

$$= -x \sum_{n=0}^{+\infty} \left(\frac{1}{2}x\right)^n + \frac{1}{4}x^3 \sum_{n=2}^{+\infty} n(n-1) \left(\frac{1}{2}x\right)^{n-2}$$

On reconnaît alors le développement en série entière en 0 de l'application $x \mapsto \frac{1}{1-x} = \sum_{n=0}^{+\infty} x^n$, qu'on a dérivée terme à terme et évaluée en $\frac{1}{2}x$. Plus précisément, pour tout $x \in]-1,1[$, on a:

$$\frac{1}{1-x} = \sum_{n=0}^{+\infty} x^n, \quad \frac{1}{(1-x)^2} = \sum_{n=1}^{+\infty} nx^{n-1}, \quad \frac{2}{(1-x)^3} = \sum_{n=2}^{+\infty} n(n-1)x^{n-2}.$$

On en déduit :

$$\sum_{n=0}^{+\infty} \left(n^2 - n - 1\right) \left(\frac{1}{2}\right)^n x^{n+1} = -\frac{x}{1 - \frac{1}{2}x} + \frac{\frac{1}{2}x^3}{\left(1 - \frac{1}{2}x\right)^3},$$

d'où le résultat.

Corrigé 4.

1. C'est une décomposition en éléments simples, tout ce qu'il y a de plus classique. Il suffit de multiplier l'égalité par chacun des dénominateurs possibles du membre de droite, et de faire tendre la variable n vers leurs racines. Cela permet d'éliminer toutes les inconnues sauf une, et de les déterminer. On obtient alors:

$$\forall n \in \mathbb{C} \setminus \left\{ -\frac{3}{2}, -3, -1 \right\}, \quad \frac{3}{(2n+3)(n+3)(n+1)} = -\frac{4}{2n+3} + \frac{1}{2(n+3)} + \frac{3}{2(n+1)}.$$

 \leftarrow page 1

 \leftarrow page 2

2. Soit $x \in \left] - \sqrt{\frac{1}{2}}, \sqrt{\frac{1}{2}} \right[$. On a, d'après la question précédente :

$$\sum_{n=0}^{+\infty} \frac{3 \cdot 2^n x^{2n+1}}{(2n+3)(n+3)(n+1)} = \frac{1}{2} \sum_{n=0}^{+\infty} \frac{\left(2 x^2\right)^n x}{n+3} + \frac{3}{2} \sum_{n=0}^{+\infty} \frac{\left(2 x^2\right)^n x}{n+1} - 4 \sum_{n=0}^{+\infty} \frac{\left(\sqrt{2} x\right)^{2n} x}{2n+3}$$
$$= \frac{1}{2} \sum_{n=2}^{+\infty} \frac{\left(2 x^2\right)^{n-2} x}{n+1} + \frac{3}{2} \sum_{n=0}^{+\infty} \frac{\left(2 x^2\right)^n x}{n+1} - 4 \sum_{n=1}^{+\infty} \frac{\left(\sqrt{2} x\right)^{2n-2} x}{2n+1}$$

après changement d'indice. On reconnaît alors le développement en série entière en 0 du logarithme et d'une somme de série entière non usuelle, mais qu'on sait calculer en intégrant terme à terme une $x = x^{-1}$

série géométrique; nous le faisons en remarque plus bas, et admettons provisoirement que $\sum_{n=0}^{+\infty} \frac{x^{2n+1}}{2n+1} =$

 $\frac{1}{2}\ln\left(\frac{1+x}{1-x}\right) \text{ pour tout } x \in]-1,1[\text{. Alors (attention à bien prendre } x \text{ non nul pour diviser ci-dessous}; \text{ le } \cos x = 0 \text{ étant de toute façon trivial considéré à part)}:$

$$\sum_{n=0}^{+\infty} \frac{3 \cdot 2^n x^{2n+1}}{(2n+3)(n+3)(n+1)} = \frac{1}{16x^5} \sum_{n=2}^{+\infty} \frac{\left(2x^2\right)^{n+1}}{n+1} + \frac{3}{4x} \sum_{n=0}^{+\infty} \frac{\left(2x^2\right)^{n+1}}{n+1} - \frac{\sqrt{2}}{x^2} \sum_{n=1}^{+\infty} \frac{\left(\sqrt{2}x\right)^{2n+1}}{2n+1}$$

$$= -\left(\frac{3}{4x} + \frac{1}{16x^5}\right) \ln\left(-2x^2 + 1\right) - \frac{\sqrt{2}}{x^2} \frac{1}{2} \ln\left(-\frac{\sqrt{2}x + 1}{\sqrt{2}x - 1}\right) + \left(\frac{15}{8x} - \frac{1}{8x^3}\right),$$

d'où le résultat.

Remarque. Pour calculer $\sum_{n=0}^{+\infty} \frac{x^{2n+1}}{2n+1}$ pour tout $x \in]-1,1[$, on remarque qu'on obtient cette somme en intégrant terme à terme $x \mapsto \sum_{n=0}^{+\infty} x^{2n}$ (ce qui est possible parce qu'il s'agit d'une somme de série entière de rayon de convergence 1):

$$\sum_{n=0}^{+\infty} \frac{x^{2n+1}}{2n+1} = \sum_{n=0}^{+\infty} \int_0^x t^{2n} dt = \int_0^x \sum_{n=0}^{+\infty} t^{2n} dt = \int_0^x \frac{dt}{1-t^2} = \frac{1}{2} \int_0^x \left(\frac{1}{1-t} + \frac{1}{1+t} \right) dt = \frac{1}{2} \ln \left(\frac{1+x}{1-x} \right).$$

Corrigé 5.

1. C'est une décomposition en éléments simples, tout ce qu'il y a de plus classique. Il suffit de multiplier l'égalité par chacun des dénominateurs possibles du membre de droite, et de faire tendre la variable n vers leurs racines. Cela permet d'éliminer toutes les inconnues sauf une, et de les déterminer. On obtient alors:

$$\forall n \in \mathbb{C} \setminus \{-2, -1\}, \quad \frac{1}{4(n+2)(n+1)} = -\frac{1}{4(n+2)} + \frac{1}{4(n+1)}.$$

2. Soit $x \in]-2,2[$. On a, d'après la question précédente :

$$\sum_{n=0}^{+\infty} \frac{\left(-\frac{1}{2}\right)^n x^{n+1}}{4(n+2)(n+1)} = -\frac{1}{4} \sum_{n=0}^{+\infty} \frac{\left(-1\right)^n \left(\frac{1}{2}x\right)^n x}{n+2} + \frac{1}{4} \sum_{n=0}^{+\infty} \frac{\left(-1\right)^n \left(\frac{1}{2}x\right)^n x}{n+1}$$
$$= -\frac{1}{4} \sum_{n=1}^{+\infty} \frac{\left(-1\right)^{n-1} \left(\frac{1}{2}x\right)^{n-1} x}{n+1} + \frac{1}{4} \sum_{n=0}^{+\infty} \frac{\left(-1\right)^n \left(\frac{1}{2}x\right)^n x}{n+1}$$

après changement d'indice. On reconnaît alors le développement en série entière en 0 du logarithme, et on en déduit (attention à bien prendre x non nul pour diviser ci-dessous; le cas x=0 étant de toute façon trivial considéré à part):

$$\sum_{n=0}^{+\infty} \frac{\left(-\frac{1}{2}\right)^n x^{n+1}}{4(n+2)(n+1)} = \frac{1}{x} \sum_{n=1}^{+\infty} \frac{\left(-1\right)^n \left(\frac{1}{2}x\right)^{n+1}}{n+1} + \frac{1}{2} \sum_{n=0}^{+\infty} \frac{\left(-1\right)^n \left(\frac{1}{2}x\right)^{n+1}}{n+1}$$
$$= \left(\frac{1}{x} + \frac{1}{2}\right) \ln\left(\frac{1}{2}x + 1\right) + \left(-\frac{1}{2}\right),$$

d'où le résultat.

Corrigé 6.

 \leftarrow page 2

1. Tout d'abord, l'existence de $(a,b,c) \in \mathbb{R}^3$, vérifiant la décomposition de l'énoncé, est assurée par le fait que la famille (1,(X+2),(X+2)(X+1)) soit échelonnée en degré : c'est donc une base de $\mathbb{R}_2[X]$ (et en particulier $31X^2+9X-44$, qui appartient à cet espace vectoriel, est combinaison linéaire des polynômes de cette base). Pour déterminer ces scalaires, nul besoin de développer comme un cochon (et je vous le déconseille fortement) : il suffit d'évaluer l'égalité en des racines des polynômes du membre de droite, c'est-à-dire successivement en -2, -1. Si l'on évalue l'égalité $31X^2+9X-44=a+b(X+2)+c(X+2)(X+1)$ en -2, on obtient directement : a=62. Et ainsi de suite. Pour déterminer c, une évaluation en des racines ne simplifie pas la tâche, mais on peut par exemple le déterminer en comparant les coefficients dominants dans chaque membre de l'égalité : c'est moins calculatoire que si on voulait l'exprimer à l'aide des coefficients précédemment déterminés. Cette idée donne ici : 31=c. En conclusion, on a :

$$31X^2 + 9X - 44 = 62 - 84(X+2) + 31(X+2)(X+1).$$

2. Soit $x \in \mathbb{R}$. On a, d'après la question précédente :

$$\sum_{n=0}^{+\infty} \frac{\left(31 \, n^2 + 9 \, n - 44\right) \left(-1\right)^n x^{2 \, n + 1}}{(n+2)!} = 62 \sum_{n=0}^{+\infty} \frac{1}{(n+2)!} \left(-1\right)^n x^{2 \, n + 1} - 84 \sum_{n=0}^{+\infty} \frac{(n+2)}{(n+2)!} \left(-1\right)^n x^{2 \, n + 1}$$

$$+ 31 \sum_{n=0}^{+\infty} \frac{(n+2)(n+1)}{(n+2)!} \left(-1\right)^n x^{2 \, n + 1}$$

$$= 62 \sum_{n=0}^{+\infty} \frac{\left(-1\right)^n x^{2 \, n + 1}}{(n+2)!} - 84 \sum_{n=0}^{+\infty} \frac{\left(-1\right)^n x^{2 \, n + 1}}{(n+1)!} + 31 \sum_{n=0}^{+\infty} \frac{\left(-1\right)^n x^{2 \, n + 1}}{n!}$$

$$= 62 \sum_{n=2}^{+\infty} \frac{\left(-1\right)^{n-2} x^{2 \, n - 3}}{n!} - 84 \sum_{n=1}^{+\infty} \frac{\left(-1\right)^{n-1} x^{2 \, n - 1}}{n!} + 31 \sum_{n=0}^{+\infty} \frac{\left(-1\right)^n x^{2 \, n + 1}}{n!}$$

après changement d'indice. On reconnaît alors le développement en série entière en 0 de l'exponentielle, après factorisation convenable (attention à bien prendre x non nul pour diviser ci-dessous; le cas x=0 étant de toute façon trivial considéré à part):

$$\sum_{n=0}^{+\infty} \frac{\left(31 \, n^2 + 9 \, n - 44\right) \left(-1\right)^n \, x^{2 \, n + 1}}{(n+2)!} = \frac{62}{x^3} \sum_{n=2}^{+\infty} \frac{\left(-x^2\right)^n}{n!} + \frac{84}{x} \sum_{n=1}^{+\infty} \frac{\left(-x^2\right)^n}{n!} + 31 \, x \sum_{n=0}^{+\infty} \frac{\left(-x^2\right)^n}{n!}$$

$$= \left(\frac{62}{x^3} + \frac{84}{x} + 31 \, x\right) \sum_{n=0}^{+\infty} \frac{\left(-x^2\right)^n}{n!} + \left(-\frac{84}{x} + \frac{62 \left(x^2 - 1\right)}{x^3}\right)$$

$$= \left(\frac{62}{x^3} + \frac{84}{x} + 31 \, x\right) e^{\left(-x^2\right)} + \left(-\frac{22}{x} - \frac{62}{x^3}\right),$$

d'où le résultat.

Corrigé 7.

 $\leftarrow \text{page } 2$

1. Tout d'abord, l'existence de $(a, b) \in \mathbb{R}^2$, vérifiant la décomposition de l'énoncé, est assurée par le fait que la famille (1, (2X)) soit échelonnée en degré : c'est donc une base de $\mathbb{R}_1[X]$ (et en particulier 4X + 2, qui appartient à cet espace vectoriel, est combinaison linéaire des polynômes de cette base). Une identification immédiate (en commençant par comparer les coefficients dominants) permet de démontrer qu'on a : b = 2, puis : a = 2. En conclusion, on a :

$$4X + 2 = 2 + 2(2X)$$
.

2. Soit $x \in \mathbb{R}$. On a, d'après la question précédente :

$$\begin{split} \sum_{n=0}^{+\infty} \frac{2 \left(2 \, n+1\right) x^{2 \, n}}{(2 \, n)!} &= 2 \sum_{n=0}^{+\infty} \frac{1}{(2 \, n)!} x^{2 \, n} + 2 \sum_{n=0}^{+\infty} \frac{(2 \, n)}{(2 \, n)!} x^{2 \, n} \\ &= 2 \sum_{n=0}^{+\infty} \frac{x^{2 \, n}}{(2 \, n)!} + 2 \sum_{n=1}^{+\infty} \frac{x^{2 \, n}}{(2 \, n-1)!} \\ &= 2 \sum_{n=0}^{+\infty} \frac{x^{2 \, n}}{(2 \, n)!} + 2 \sum_{n=0}^{+\infty} \frac{x^{2 \, n+2}}{(2 \, n+1)!} \end{split}$$

après changement d'indice. On reconnaît alors le développement en série entière en 0 de fonctions trigonométriques, après factorisation convenable:

$$\sum_{n=0}^{+\infty} \frac{2(2n+1)x^{2n}}{(2n)!} = 2\sum_{n=0}^{+\infty} \frac{x^{2n}}{(2n)!} + 2x\sum_{n=0}^{+\infty} \frac{x^{2n+1}}{(2n+1)!}$$
$$= 2\cosh(x) + 2x\sinh(x),$$

d'où le résultat.

Corrigé 8.

1. C'est une décomposition en éléments simples, tout ce qu'il y a de plus classique. Il suffit de multiplier l'égalité par chacun des dénominateurs possibles du membre de droite, et de faire tendre la variable n vers leurs racines. Cela permet d'éliminer toutes les inconnues sauf une, et de les déterminer. On obtient alors :

$$\forall n \in \mathbb{C} \setminus \left\{-\frac{1}{2}, -2, -1\right\}, \quad \frac{n-1}{(2\,n+1)(n+2)(n+1)} = -\frac{2}{2\,n+1} - \frac{1}{n+2} + \frac{2}{n+1}.$$

2. Soit $x \in]-1,1[$. On a, d'après la question précédente :

$$\sum_{n=0}^{+\infty} \frac{(n-1)x^{n+1}}{(2n+1)(n+2)(n+1)} = -\sum_{n=0}^{+\infty} \frac{x^{n+1}}{n+2} + 2\sum_{n=0}^{+\infty} \frac{x^{n+1}}{n+1} - 2\sum_{n=0}^{+\infty} \frac{x^{n+1}}{2n+1}$$
$$= -\sum_{n=0}^{+\infty} \frac{x^n}{n+1} + 2\sum_{n=0}^{+\infty} \frac{x^{n+1}}{n+1} - 2\sum_{n=0}^{+\infty} \frac{x^{n+1}}{2n+1}$$

après changement d'indice. On reconnaît alors le développement en série entière en 0 du logarithme et d'une somme de série entière non usuelle, mais qu'on sait calculer en intégrant terme à terme une série géométrique; nous le faisons en remarque plus bas, et admettons provisoirement que $\sum_{n=0}^{+\infty} \frac{x^{2n+1}}{2n+1} = \frac{1}{2n+1}$

 $\frac{1}{2}\ln\left(\frac{1+x}{1-x}\right) \text{ pour tout } x \in]-1,1[\text{. Alors (attention à bien prendre } x \text{ non nul pour diviser ci-dessous; le } \cos x = 0 \text{ étant de toute façon trivial considéré à part):}$

$$\sum_{n=0}^{+\infty} \frac{(n-1)x^{n+1}}{(2n+1)(n+2)(n+1)} = -\frac{1}{x} \sum_{n=1}^{+\infty} \frac{x^{n+1}}{n+1} + 2\sum_{n=0}^{+\infty} \frac{x^{n+1}}{n+1} - 2\sqrt{x} \sum_{n=0}^{+\infty} \frac{\sqrt{x^{2}}^{n+1}}{2n+1}$$

$$= -\left(-\frac{1}{x} + 2\right) \ln\left(-x + 1\right) - 2\sqrt{x} \frac{1}{2} \ln\left(-\frac{\sqrt{x} + 1}{\sqrt{x} - 1}\right) + (1),$$

d'où le résultat si x est positif. Si x est négatif, on écrit $x=-(-x)=-(\sqrt{-x})^2$, et un raisonnement analogue à celui ci-dessus aboutit à:

$$\sum_{n=0}^{+\infty} \frac{(n-1)x^{n+1}}{(2n+1)(n+2)(n+1)} = -\left(-\frac{1}{x} + 2\right) \ln\left(-x + 1\right) - \frac{2x}{\sqrt{-x}} \arctan\left(\sqrt{-x}\right) + (1),$$

d'où le résultat.

Remarque. Pour calculer $\sum_{n=0}^{+\infty} \frac{x^{2n+1}}{2n+1}$ pour tout $x \in]-1,1[$, on remarque qu'on obtient cette somme en

intégrant terme à terme $x \mapsto \sum_{n=0}^{\infty} x^{2n}$ (ce qui est possible parce qu'il s'agit d'une somme de série entière de rayon de convergence 1):

$$\sum_{n=0}^{+\infty} \frac{x^{2n+1}}{2n+1} = \sum_{n=0}^{+\infty} \int_0^x t^{2n} dt = \int_0^x \sum_{n=0}^{+\infty} t^{2n} dt = \int_0^x \frac{dt}{1-t^2} = \frac{1}{2} \int_0^x \left(\frac{1}{1-t} + \frac{1}{1+t} \right) dt = \frac{1}{2} \ln \left(\frac{1+x}{1-x} \right).$$

Corrigé 9.

 $\leftarrow \text{page 2}$

1. C'est une décomposition en éléments simples, tout ce qu'il y a de plus classique. Il suffit de multiplier l'égalité par chacun des dénominateurs possibles du membre de droite, et de faire tendre la variable n vers leurs racines. Cela permet d'éliminer toutes les inconnues sauf une, et de les déterminer. On obtient alors:

$$\forall n \in \mathbb{C} \setminus \{-2, -1\}, \quad \frac{1}{3(n+2)(n+1)} = -\frac{1}{3(n+2)} + \frac{1}{3(n+1)}.$$

2. Soit $x \in \left] -\frac{3}{2}, \frac{3}{2} \right[$. On a, d'après la question précédente

$$\sum_{n=0}^{+\infty} \frac{\left(\frac{2}{3}\right)^n x^n}{3(n+2)(n+1)} = -\frac{1}{3} \sum_{n=0}^{+\infty} \frac{\left(\frac{2}{3}x\right)^n}{n+2} + \frac{1}{3} \sum_{n=0}^{+\infty} \frac{\left(\frac{2}{3}x\right)^n}{n+1}$$
$$= -\frac{1}{3} \sum_{n=1}^{+\infty} \frac{\left(\frac{2}{3}x\right)^{n-1}}{n+1} + \frac{1}{3} \sum_{n=0}^{+\infty} \frac{\left(\frac{2}{3}x\right)^n}{n+1}$$

après changement d'indice. On reconnaît alors le développement en série entière en 0 du logarithme, et on en déduit (attention à bien prendre x non nul pour diviser ci-dessous; le cas x=0 étant de toute façon trivial considéré à part):

$$\sum_{n=0}^{+\infty} \frac{\left(\frac{2}{3}\right)^n x^n}{3(n+2)(n+1)} = -\frac{3}{4x^2} \sum_{n=1}^{+\infty} \frac{\left(\frac{2}{3}x\right)^{n+1}}{n+1} + \frac{1}{2x} \sum_{n=0}^{+\infty} \frac{\left(\frac{2}{3}x\right)^{n+1}}{n+1}$$
$$= -\left(\frac{1}{2x} - \frac{3}{4x^2}\right) \ln\left(-\frac{2}{3}x + 1\right) + \left(\frac{1}{2x}\right),$$

d'où le résultat.

Corrigé 10.

 \leftarrow page 2

1. C'est une décomposition en éléments simples, tout ce qu'il y a de plus classique. Il suffit de multiplier l'égalité par chacun des dénominateurs possibles du membre de droite, et de faire tendre la variable n vers leurs racines. Cela permet d'éliminer toutes les inconnues sauf une, et de les déterminer. On obtient alors :

$$\forall n \in \mathbb{C} \setminus \left\{-\frac{3}{2}, -2\right\}, \quad \frac{n-1}{2(2n+3)(n+2)} = -\frac{5}{2(2n+3)} + \frac{3}{2(n+2)}.$$

2. Soit $x \in]-1,1[$. On a, d'après la question précédente :

$$\sum_{n=0}^{+\infty} \frac{(n-1)x^{2n}}{2(2n+3)(n+2)} = \frac{3}{2} \sum_{n=0}^{+\infty} \frac{\left(x^2\right)^n}{n+2} - \frac{5}{2} \sum_{n=0}^{+\infty} \frac{x^{2n}}{2n+3}$$
$$= \frac{3}{2} \sum_{n=1}^{+\infty} \frac{\left(x^2\right)^{n-1}}{n+1} - \frac{5}{2} \sum_{n=1}^{+\infty} \frac{x^{2n-2}}{2n+1}$$

après changement d'indice. On reconnaît alors le développement en série entière en 0 du logarithme et d'une somme de série entière non usuelle, mais qu'on sait calculer en intégrant terme à terme une

série géométrique; nous le faisons en remarque plus bas, et admettons provisoirement que $\sum_{n=0}^{+\infty} \frac{x^{2n+1}}{2n+1} =$

 $\frac{1}{2}\ln\left(\frac{1+x}{1-x}\right)$ pour tout $x \in]-1,1[$. Alors (attention à bien prendre x non nul pour diviser ci-dessous; le cas x=0 étant de toute façon trivial considéré à part):

$$\sum_{n=0}^{+\infty} \frac{(n-1)x^{2n}}{2(2n+3)(n+2)} = \frac{3}{2x^4} \sum_{n=1}^{+\infty} \frac{\left(x^2\right)^{n+1}}{n+1} - \frac{5}{2x^3} \sum_{n=1}^{+\infty} \frac{x^{2n+1}}{2n+1}$$
$$= -\frac{3}{2x^4} \ln\left(-x^2+1\right) - \frac{5}{2x^3} \frac{1}{2} \ln\left(-\frac{x+1}{x-1}\right) + \left(\frac{1}{x^2}\right),$$

d'où le résultat.

Remarque. Pour calculer $\sum_{n=0}^{+\infty} \frac{x^{2n+1}}{2n+1}$ pour tout $x \in]-1,1[$, on remarque qu'on obtient cette somme en

intégrant terme à terme $x \mapsto \sum_{n=0}^{+\infty} x^{2n}$ (ce qui est possible parce qu'il s'agit d'une somme de série entière de rayon de convergence 1):

$$\sum_{n=0}^{+\infty} \frac{x^{2n+1}}{2n+1} = \sum_{n=0}^{+\infty} \int_0^x t^{2n} dt = \int_0^x \sum_{n=0}^{+\infty} t^{2n} dt = \int_0^x \frac{dt}{1-t^2} = \frac{1}{2} \int_0^x \left(\frac{1}{1-t} + \frac{1}{1+t} \right) dt = \frac{1}{2} \ln \left(\frac{1+x}{1-x} \right).$$

Corrigé 11.

 \leftarrow page 3

1. Tout d'abord, l'existence de $(a,b,c) \in \mathbb{R}^3$, vérifiant la décomposition de l'énoncé, est assurée par le fait que la famille (1,X,X(X-1)) soit échelonnée en degré : c'est donc une base de $\mathbb{R}_2[X]$ (et en particulier $2X^2+X+41$, qui appartient à cet espace vectoriel, est combinaison linéaire des polynômes de cette base). Pour déterminer ces scalaires, nul besoin de développer comme un cochon (et je vous le déconseille fortement) : il suffit d'évaluer l'égalité en des racines des polynômes du membre de droite, c'est-à-dire successivement en 0,1. Si l'on évalue l'égalité $2X^2+X+41=a+bX+cX(X-1)$ en 0, on obtient directement : a=41. Et ainsi de suite. Pour déterminer c, une évaluation en des racines ne simplifie pas la tâche, mais on peut par exemple le déterminer en comparant les coefficients dominants dans chaque membre de l'égalité : c'est moins calculatoire que si on voulait l'exprimer à l'aide des coefficients précédemment déterminés. Cette idée donne ici : 2=c. En conclusion, on a :

$$2X^2 + X + 41 = 41 + 3X + 2X(X - 1).$$

2. Soit $x \in \left] -\sqrt{39}, \sqrt{39} \right[$. On a, d'après la question précédente :

$$\begin{split} \sum_{n=0}^{+\infty} \left(2\,n^2 + n + 41\right) \left(-\frac{1}{39}\right)^n x^{2\,n} &= 41 \sum_{n=0}^{+\infty} \left(-\frac{1}{39}\right)^n x^{2\,n} + 3 \sum_{n=0}^{+\infty} n \left(-\frac{1}{39}\right)^n x^{2\,n} + 2 \sum_{n=0}^{+\infty} n(n-1) \left(-\frac{1}{39}\right)^n x^{2\,n} \\ &= 41 \sum_{n=0}^{+\infty} \left(-\frac{1}{39}\,x^2\right)^n + 3 \sum_{n=1}^{+\infty} n \left(-\frac{1}{39}\,x^2\right)^n + 2 \sum_{n=2}^{+\infty} n(n-1) \left(-\frac{1}{39}\,x^2\right)^n \\ &= 41 \sum_{n=0}^{+\infty} \left(-\frac{1}{39}\,x^2\right)^n - \frac{1}{13}\,x^2 \sum_{n=1}^{+\infty} n \left(-\frac{1}{39}\,x^2\right)^{n-1} + \frac{2}{1521}\,x^4 \sum_{n=2}^{+\infty} n(n-1) \left(-\frac{1}{39}\,x^2\right)^{n-2} \end{split}$$

On reconnaît alors le développement en série entière en 0 de l'application $x \mapsto \frac{1}{1-x} = \sum_{n=0}^{+\infty} x^n$, qu'on a dérivée terme à terme et évaluée en $-\frac{1}{30}x^2$. Plus précisément, pour tout $x \in]-1,1[$, on a :

$$\frac{1}{1-x} = \sum_{n=0}^{+\infty} x^n, \quad \frac{1}{(1-x)^2} = \sum_{n=1}^{+\infty} nx^{n-1}, \quad \frac{2}{(1-x)^3} = \sum_{n=2}^{+\infty} n(n-1)x^{n-2}.$$

On en déduit:

$$\sum_{n=0}^{+\infty} \left(2 n^2 + n + 41\right) \left(-\frac{1}{39}\right)^n x^{2n} = \frac{41}{1 + \frac{1}{39}x^2} - \frac{\frac{1}{13}x^2}{\left(1 + \frac{1}{39}x^2\right)^2} + \frac{\frac{4}{1521}x^4}{\left(1 + \frac{1}{39}x^2\right)^3},$$

d'où le résultat.

Corrigé 12.

 \leftarrow page 3

1. Tout d'abord, l'existence de $(a, b) \in \mathbb{R}^2$, vérifiant la décomposition de l'énoncé, est assurée par le fait que la famille (1, (X+3)) soit échelonnée en degré : c'est donc une base de $\mathbb{R}_1[X]$ (et en particulier X, qui appartient à cet espace vectoriel, est combinaison linéaire des polynômes de cette base). Une identification immédiate (en commençant par comparer les coefficients dominants) permet de démontrer qu'on a : b=1, puis : a=-3. En conclusion, on a :

$$X = -3 + (X + 3).$$

2. Soit $x \in \mathbb{R}$. On a, d'après la question précédente :

$$\begin{split} \sum_{n=0}^{+\infty} \frac{\left(-\frac{3}{52}\right)^n n x^{2\,n+1}}{(n+3)!} &= -3 \sum_{n=0}^{+\infty} \frac{1}{(n+3)!} \left(-\frac{3}{52}\right)^n x^{2\,n+1} + \sum_{n=0}^{+\infty} \frac{(n+3)}{(n+3)!} \left(-\frac{3}{52}\right)^n x^{2\,n+1} \\ &= -3 \sum_{n=0}^{+\infty} \frac{\left(-\frac{3}{52}\right)^n x^{2\,n+1}}{(n+3)!} + \sum_{n=0}^{+\infty} \frac{\left(-\frac{3}{52}\right)^n x^{2\,n+1}}{(n+2)!} \\ &= -3 \sum_{n=3}^{+\infty} \frac{\left(-\frac{3}{52}\right)^{n-3} x^{2\,n-5}}{n!} + \sum_{n=2}^{+\infty} \frac{\left(-\frac{3}{52}\right)^{n-2} x^{2\,n-3}}{n!} \end{split}$$

après changement d'indice. On reconnaît alors le développement en série entière en 0 de l'exponentielle, après factorisation convenable (attention à bien prendre x non nul pour diviser ci-dessous; le cas x=0 étant de toute façon trivial considéré à part):

$$\begin{split} \sum_{n=0}^{+\infty} \frac{\left(-\frac{3}{52}\right)^n nx^{2\,n+1}}{(n+3)!} &= \frac{140608}{9\,x^5} \sum_{n=3}^{+\infty} \frac{\left(-\frac{3}{52}\,x^2\right)^n}{n!} + \frac{2704}{9\,x^3} \sum_{n=2}^{+\infty} \frac{\left(-\frac{3}{52}\,x^2\right)^n}{n!} \\ &= \left(\frac{140608}{9\,x^5} + \frac{2704}{9\,x^3}\right) \sum_{n=0}^{+\infty} \frac{\left(-\frac{3}{52}\,x^2\right)^n}{n!} + \left(\frac{52\left(3\,x^2 - 52\right)}{9\,x^3} - \frac{26\left(9\,x^4 - 312\,x^2 + 5408\right)}{9\,x^5}\right) \\ &= \left(\frac{140608}{9\,x^5} + \frac{2704}{9\,x^3}\right) e^{\left(-\frac{3}{52}\,x^2\right)} + \left(-\frac{26}{3\,x} + \frac{5408}{9\,x^3} - \frac{140608}{9\,x^5}\right), \end{split}$$

d'où le résultat.

Corrigé 13.

1. C'est une décomposition en éléments simples, tout ce qu'il y a de plus classique. Il suffit de multiplier l'égalité par chacun des dénominateurs possibles du membre de droite, et de faire tendre la variable n vers leurs racines. Cela permet d'éliminer toutes les inconnues sauf une, et de les déterminer. On obtient alors :

$$\forall n \in \mathbb{C} \setminus \{-2, -1\}, \quad \frac{5}{3(n+2)(n+1)} = -\frac{5}{3(n+2)} + \frac{5}{3(n+1)}.$$

2. Soit $x \in]-2,2[$. On a, d'après la question précédente :

$$\sum_{n=0}^{+\infty} \frac{5\left(\frac{1}{4}\right)^n x^{2n+1}}{3(n+2)(n+1)} = -\frac{5}{3} \sum_{n=0}^{+\infty} \frac{\left(\frac{1}{4}x^2\right)^n x}{n+2} + \frac{5}{3} \sum_{n=0}^{+\infty} \frac{\left(\frac{1}{4}x^2\right)^n x}{n+1}$$
$$= -\frac{5}{3} \sum_{n=1}^{+\infty} \frac{\left(\frac{1}{4}x^2\right)^{n-1} x}{n+1} + \frac{5}{3} \sum_{n=0}^{+\infty} \frac{\left(\frac{1}{4}x^2\right)^n x}{n+1}$$

après changement d'indice. On reconnaît alors le développement en série entière en 0 du logarithme, et on en déduit (attention à bien prendre x non nul pour diviser ci-dessous; le cas x=0 étant de toute façon trivial considéré à part):

$$\sum_{n=0}^{+\infty} \frac{5\left(\frac{1}{4}\right)^n x^{2n+1}}{3(n+2)(n+1)} = -\frac{80}{3x^3} \sum_{n=1}^{+\infty} \frac{\left(\frac{1}{4}x^2\right)^{n+1}}{n+1} + \frac{20}{3x} \sum_{n=0}^{+\infty} \frac{\left(\frac{1}{4}x^2\right)^{n+1}}{n+1}$$
$$= -\left(\frac{20}{3x} - \frac{80}{3x^3}\right) \ln\left(-\frac{1}{4}x^2 + 1\right) + \left(\frac{20}{3x}\right)$$

d'où le résultat.

Corrigé 14.

1. C'est une décomposition en éléments simples, tout ce qu'il y a de plus classique. Il suffit de multiplier l'égalité par chacun des dénominateurs possibles du membre de droite, et de faire tendre la variable n vers leurs racines. Cela permet d'éliminer toutes les inconnues sauf une, et de les déterminer. On obtient alors :

$$\forall n \in \mathbb{C} \setminus \{-2, -1\}, \quad \frac{933}{2(n+2)(n+1)} = -\frac{933}{2(n+2)} + \frac{933}{2(n+1)}.$$

 $\leftarrow \text{page } 3$

 $\leftarrow \text{page } 3$

 \leftarrow page 3

2. Soit $x \in \left] -\frac{3}{4}, \frac{3}{4} \right[$. On a, d'après la question précédente:

$$\sum_{n=0}^{+\infty} \frac{933 \left(\frac{4}{3}\right)^n x^{n+1}}{2 (n+2)(n+1)} = -\frac{933}{2} \sum_{n=0}^{+\infty} \frac{\left(\frac{4}{3}x\right)^n x}{n+2} + \frac{933}{2} \sum_{n=0}^{+\infty} \frac{\left(\frac{4}{3}x\right)^n x}{n+1}$$
$$= -\frac{933}{2} \sum_{n=1}^{+\infty} \frac{\left(\frac{4}{3}x\right)^{n-1} x}{n+1} + \frac{933}{2} \sum_{n=0}^{+\infty} \frac{\left(\frac{4}{3}x\right)^n x}{n+1}$$

après changement d'indice. On reconnaît alors le développement en série entière en 0 du logarithme, et on en déduit (attention à bien prendre x non nul pour diviser ci-dessous; le cas x=0 étant de toute façon trivial considéré à part):

$$\begin{split} \sum_{n=0}^{+\infty} \frac{933 \, \left(\frac{4}{3}\right)^n x^{n+1}}{2 \, (n+2)(n+1)} &= -\frac{8397}{32 \, x} \sum_{n=1}^{+\infty} \frac{\left(\frac{4}{3} \, x\right)^{n+1}}{n+1} + \frac{2799}{8} \sum_{n=0}^{+\infty} \frac{\left(\frac{4}{3} \, x\right)^{n+1}}{n+1} \\ &= -\left(-\frac{8397}{32 \, x} + \frac{2799}{8}\right) \ln \left(-\frac{4}{3} \, x + 1\right) + \left(\frac{2799}{8}\right), \end{split}$$

d'où le résultat.

Corrigé 15.

1. C'est une décomposition en éléments simples, tout ce qu'il y a de plus classique. Il suffit de multiplier l'égalité par chacun des dénominateurs possibles du membre de droite, et de faire tendre la variable n vers leurs racines. Cela permet d'éliminer toutes les inconnues sauf une, et de les déterminer. On obtient alors:

$$\forall n \in \mathbb{C} \setminus \left\{ -\frac{3}{2}, -3, -2 \right\}, \quad \frac{3(n+5)}{(2n+3)(n+3)(n+2)} = \frac{14}{2n+3} + \frac{2}{n+3} - \frac{9}{n+2}.$$

2. Soit $x \in \left] -\frac{1}{7}, \frac{1}{7} \right[$. On a, d'après la question précédente:

$$\sum_{n=0}^{+\infty} \frac{3 \, \left(-7\right)^n \, (n+5) x^{n+1}}{(2 \, n+3) (n+3) (n+2)} = 2 \sum_{n=0}^{+\infty} \frac{\left(-1\right)^n \, \left(7 \, x\right)^n x}{n+3} - 9 \sum_{n=0}^{+\infty} \frac{\left(-1\right)^n \, \left(7 \, x\right)^n x}{n+2} + 14 \sum_{n=0}^{+\infty} \frac{\left(-1\right)^n \, \left(7 \, x\right)^n x}{2 \, n+3}$$

$$= 2 \sum_{n=0}^{+\infty} \frac{\left(-1\right)^{n-2} \, \left(7 \, x\right)^{n-2} x}{n+1} - 9 \sum_{n=0}^{+\infty} \frac{\left(-1\right)^{n-1} \, \left(7 \, x\right)^{n-1} x}{n+1} + 14 \sum_{n=0}^{+\infty} \frac{\left(-1\right)^{n-1} \, \left(7 \, x\right)^{n-1} x}{2 \, n+1}$$

après changement d'indice. On reconnaît alors le développement en série entière en 0 du logarithme et de l'arc tangente (à condition d'écrire $x = (\sqrt{x})^2$ si x est positif, pour faire apparaître une puissance paire; si x est négatif alors nous écrirons $x = -(-x) = -(\sqrt{-x})^2$ et il faudra encore un peu travailler). (attention à bien prendre x non nul pour diviser ci-dessous; le cas x = 0 étant de toute façon trivial considéré à part):

$$\sum_{n=0}^{+\infty} \frac{3(-7)^n (n+5) x^{n+1}}{(2n+3)(n+3)(n+2)} = \frac{2}{343 x^2} \sum_{n=2}^{+\infty} \frac{(-1)^n (7 x)^{n+1}}{n+1} + \frac{9}{49 x} \sum_{n=1}^{+\infty} \frac{(-1)^n (7 x)^{n+1}}{n+1} - \frac{2\sqrt{7}}{7\sqrt{x}} \sum_{n=1}^{+\infty} \frac{(-1)^n (\sqrt{7} \sqrt{x})^{2n+1}}{2n+1}$$

$$= \left(\frac{9}{49 x} + \frac{2}{343 x^2}\right) \ln(7 x + 1) - \frac{2\sqrt{7}}{7\sqrt{x}} \arctan\left(\sqrt{7} \sqrt{x}\right) + \left(-\frac{2}{49 x} + \frac{6}{7}\right),$$

d'où le résultat si x est positif. Si x est négatif, on écrit $x=-(-x)=-(\sqrt{-x})^2$, et un raisonnement analogue à celui ci-dessus aboutit à :

d'où le résultat.

Remarque. Pour calculer $\sum_{n=0}^{+\infty} \frac{x^{2n+1}}{2n+1}$ pour tout $x \in]-1,1[$, on remarque qu'on obtient cette somme en

intégrant terme à terme $x \mapsto \sum_{n=0}^{+\infty} x^{2n}$ (ce qui est possible parce qu'il s'agit d'une somme de série entière de rayon de convergence 1):

$$\sum_{n=0}^{+\infty} \frac{x^{2n+1}}{2n+1} = \sum_{n=0}^{+\infty} \int_0^x t^{2n} dt = \int_0^x \sum_{n=0}^{+\infty} t^{2n} dt = \int_0^x \frac{dt}{1-t^2} = \frac{1}{2} \int_0^x \left(\frac{1}{1-t} + \frac{1}{1+t} \right) dt = \frac{1}{2} \ln \left(\frac{1+x}{1-x} \right).$$

Corrigé 16.

 \leftarrow page 3

1. Tout d'abord, l'existence de $(a, b) \in \mathbb{R}^2$, vérifiant la décomposition de l'énoncé, est assurée par le fait que la famille (1, (X+1)) soit échelonnée en degré : c'est donc une base de $\mathbb{R}_1[X]$ (et en particulier 3X, qui appartient à cet espace vectoriel, est combinaison linéaire des polynômes de cette base). Une identification immédiate (en commençant par comparer les coefficients dominants) permet de démontrer qu'on a : b=3, puis : a=-3. En conclusion, on a :

$$3X = -3 + 3(X + 1).$$

2. Soit $x \in \mathbb{R}$. On a, d'après la question précédente :

$$\sum_{n=0}^{+\infty} \frac{3 n x^n}{(n+1)!} = -3 \sum_{n=0}^{+\infty} \frac{1}{(n+1)!} x^n + 3 \sum_{n=0}^{+\infty} \frac{(n+1)}{(n+1)!} x^n$$

$$= -3 \sum_{n=0}^{+\infty} \frac{x^n}{(n+1)!} + 3 \sum_{n=0}^{+\infty} \frac{x^n}{n!}$$

$$= -3 \sum_{n=1}^{+\infty} \frac{x^{n-1}}{n!} + 3 \sum_{n=0}^{+\infty} \frac{x^n}{n!}$$

après changement d'indice. On reconnaît alors le développement en série entière en 0 de l'exponentielle, après factorisation convenable (attention à bien prendre x non nul pour diviser ci-dessous; le cas x=0 étant de toute façon trivial considéré à part):

$$\sum_{n=0}^{+\infty} \frac{3 n x^n}{(n+1)!} = -\frac{3}{x} \sum_{n=1}^{+\infty} \frac{x^n}{n!} + 3 \sum_{n=0}^{+\infty} \frac{x^n}{n!}$$
$$= \left(-\frac{3}{x} + 3\right) \sum_{n=0}^{+\infty} \frac{x^n}{n!} + \left(\frac{3}{x}\right)$$
$$= \left(-\frac{3}{x} + 3\right) e^x + \left(\frac{3}{x}\right),$$

d'où le résultat.

Corrigé 17.

 \leftarrow page 4

1. C'est une décomposition en éléments simples, tout ce qu'il y a de plus classique. Il suffit de multiplier l'égalité par chacun des dénominateurs possibles du membre de droite, et de faire tendre la variable n vers leurs racines. Cela permet d'éliminer toutes les inconnues sauf une, et de les déterminer. On obtient alors :

$$\forall n \in \mathbb{C} \setminus \left\{ -\frac{1}{2}, -1 \right\}, \quad \frac{n}{6 \left(2 \, n + 1 \right) (n + 1)} = -\frac{1}{6 \left(2 \, n + 1 \right)} + \frac{1}{6 \left(n + 1 \right)}.$$

2. Soit $x \in]-1,1[$. On a, d'après la question précédente :

$$\sum_{n=0}^{+\infty} \frac{nx^{2n}}{6(2n+1)(n+1)} = \frac{1}{6} \sum_{n=0}^{+\infty} \frac{\left(x^2\right)^n}{n+1} - \frac{1}{6} \sum_{n=0}^{+\infty} \frac{x^{2n}}{2n+1}$$

On reconnaît alors le développement en série entière en 0 du logarithme et d'une somme de série entière non usuelle, mais qu'on sait calculer en intégrant terme à terme une série géométrique; nous le faisons en

remarque plus bas, et admettons provisoirement que $\sum_{n=0}^{+\infty} \frac{x^{2n+1}}{2n+1} = \frac{1}{2} \ln \left(\frac{1+x}{1-x} \right)$ pour tout $x \in]-1,1[$.

Alors (attention à bien prendre x non nul pour diviser ci-dessous ; le cas x=0 étant de toute façon trivial considéré à part) :

$$\sum_{n=0}^{+\infty} \frac{nx^{2n}}{6(2n+1)(n+1)} = \frac{1}{6x^2} \sum_{n=0}^{+\infty} \frac{\left(x^2\right)^{n+1}}{n+1} - \frac{1}{6x} \sum_{n=0}^{+\infty} \frac{x^{2n+1}}{2n+1}$$
$$= -\frac{1}{6x^2} \ln\left(-x^2+1\right) - \frac{1}{6x} \frac{1}{2} \ln\left(-\frac{x+1}{x-1}\right),$$

d'où le résultat.

Remarque. Pour calculer $\sum_{n=0}^{+\infty} \frac{x^{2n+1}}{2n+1}$ pour tout $x \in]-1,1[$, on remarque qu'on obtient cette somme en

intégrant terme à terme $x \mapsto \sum_{n=0}^{+\infty} x^{2n}$ (ce qui est possible parce qu'il s'agit d'une somme de série entière de ravon de convergence 1):

$$\sum_{n=0}^{+\infty} \frac{x^{2n+1}}{2n+1} = \sum_{n=0}^{+\infty} \int_0^x t^{2n} dt = \int_0^x \sum_{n=0}^{+\infty} t^{2n} dt = \int_0^x \frac{dt}{1-t^2} = \frac{1}{2} \int_0^x \left(\frac{1}{1-t} + \frac{1}{1+t}\right) dt = \frac{1}{2} \ln\left(\frac{1+x}{1-x}\right).$$

Corrigé 18.

 \leftarrow page 4

- 1. On a trivialement a = -1 et b = 11.
- 2. Soit $x \in]-1,1[$. On a, d'après la question précédente :

$$\sum_{n=0}^{+\infty} (11n - 1)x^{2n+1} = -\sum_{n=0}^{+\infty} x^{2n+1} + 11\sum_{n=0}^{+\infty} nx^{2n+1}$$
$$= -x\sum_{n=0}^{+\infty} (x^2)^n + 11x\sum_{n=1}^{+\infty} n(x^2)^n$$
$$= -x\sum_{n=0}^{+\infty} (x^2)^n + 11x^3\sum_{n=1}^{+\infty} n(x^2)^{n-1}$$

On reconnaît alors le développement en série entière en 0 de l'application $x \mapsto \frac{1}{1-x} = \sum_{n=0}^{+\infty} x^n$, qu'on a dérivée terme à terme et évaluée en x^2 . Plus précisément, pour tout $x \in]-1,1[$, on a:

$$\frac{1}{1-x} = \sum_{n=0}^{+\infty} x^n, \quad \frac{1}{(1-x)^2} = \sum_{n=1}^{+\infty} nx^{n-1}.$$

On en déduit :

$$\sum_{n=0}^{+\infty} (11 n - 1) x^{2n+1} = -\frac{x}{1 - x^2} + \frac{11 x^3}{(1 - x^2)^2},$$

d'où le résultat.

Corrigé 19.

 \leftarrow page 4

1. C'est une décomposition en éléments simples, tout ce qu'il y a de plus classique. Il suffit de multiplier l'égalité par chacun des dénominateurs possibles du membre de droite, et de faire tendre la variable n vers leurs racines. Cela permet d'éliminer toutes les inconnues sauf une, et de les déterminer. On obtient alors :

$$\forall n \in \mathbb{C} \setminus \{-3, -2\}, \quad \frac{1}{(n+3)(n+2)} = -\frac{1}{n+3} + \frac{1}{n+2}.$$

2. Soit $x \in \left] -2\sqrt{\frac{38}{3}}, 2\sqrt{\frac{38}{3}} \right[$. On a, d'après la question précédente :

$$\begin{split} \sum_{n=0}^{+\infty} \frac{\left(-\frac{3}{152}\right)^n x^{2n}}{(n+3)(n+2)} &= -\sum_{n=0}^{+\infty} \frac{(-1)^n \left(\frac{3}{152} x^2\right)^n}{n+3} + \sum_{n=0}^{+\infty} \frac{(-1)^n \left(\frac{3}{152} x^2\right)^n}{n+2} \\ &= -\sum_{n=2}^{+\infty} \frac{\left(-1\right)^{n-2} \left(\frac{3}{152} x^2\right)^{n-2}}{n+1} + \sum_{n=1}^{+\infty} \frac{\left(-1\right)^{n-1} \left(\frac{3}{152} x^2\right)^{n-1}}{n+1} \end{split}$$

après changement d'indice. On reconnaît alors le développement en série entière en 0 du logarithme, et on en déduit (attention à bien prendre x non nul pour diviser ci-dessous; le cas x=0 étant de toute façon trivial considéré à part):

$$\sum_{n=0}^{+\infty} \frac{\left(-\frac{3}{152}\right)^n x^{2n}}{(n+3)(n+2)} = -\frac{3511808}{27 x^6} \sum_{n=2}^{+\infty} \frac{\left(-1\right)^n \left(\frac{3}{152} x^2\right)^{n+1}}{n+1} - \frac{23104}{9 x^4} \sum_{n=1}^{+\infty} \frac{\left(-1\right)^n \left(\frac{3}{152} x^2\right)^{n+1}}{n+1}$$
$$= \left(-\frac{23104}{9 x^4} - \frac{3511808}{27 x^6}\right) \ln\left(\frac{3}{152} x^2 + 1\right) + \left(\frac{76}{3 x^2} + \frac{23104}{9 x^4}\right),$$

d'où le résultat.

Corrigé 20.

 \leftarrow page 4

1. Tout d'abord, l'existence de $(a,b,c) \in \mathbb{R}^3$, vérifiant la décomposition de l'énoncé, est assurée par le fait que la famille (1,(2X+3),(2X+3)(2X+2)) soit échelonnée en degré : c'est donc une base de $\mathbb{R}_2[X]$ (et en particulier $X^2-70X+2$, qui appartient à cet espace vectoriel, est combinaison linéaire des polynômes de cette base). Pour déterminer ces scalaires, nul besoin de développer comme un cochon (et je vous le déconseille fortement) : il suffit d'évaluer l'égalité en des racines des polynômes du membre de droite, c'est-à-dire successivement en $-\frac{3}{2}$, -1. Si l'on évalue l'égalité $X^2-70X+2=a+b(2X+3)+c(2X+3)(2X+2)$ en $-\frac{3}{2}$, on obtient directement : $a=\frac{437}{4}$. Et ainsi de suite. Pour déterminer c, une évaluation en des racines ne simplifie pas la tâche, mais on peut par exemple le déterminer en comparant les coefficients dominants dans chaque membre de l'égalité : c'est moins calculatoire que si on voulait l'exprimer à l'aide des coefficients précédemment déterminés. Cette idée donne ici : 1=4c, et on en déduit $c=\frac{1}{4}$. En conclusion, on a :

$$X^{2} - 70X + 2 = \frac{437}{4} - \frac{145}{4}(2X+3) + \frac{1}{4}(2X+3)(2X+2).$$

2. Soit $x \in \mathbb{R}$. On a, d'après la question précédente :

$$\begin{split} \sum_{n=0}^{+\infty} \frac{\left(n^2 - 70\,n + 2\right) \left(-\frac{1}{2}\right)^n x^{n+1}}{(2\,n + 3)!} &= \frac{437}{4} \sum_{n=0}^{+\infty} \frac{1}{(2\,n + 3)!} \left(-\frac{1}{2}\right)^n x^{n+1} - \frac{145}{4} \sum_{n=0}^{+\infty} \frac{(2\,n + 3)}{(2\,n + 3)!} \left(-\frac{1}{2}\right)^n x^{n+1} \\ &+ \frac{1}{4} \sum_{n=0}^{+\infty} \frac{(2\,n + 3)(2\,n + 2)}{(2\,n + 3)!} \left(-\frac{1}{2}\right)^n x^{n+1} \\ &= \frac{437}{4} \sum_{n=0}^{+\infty} \frac{\left(-\frac{1}{2}\right)^n x^{n+1}}{(2\,n + 3)!} - \frac{145}{4} \sum_{n=0}^{+\infty} \frac{\left(-\frac{1}{2}\right)^n x^{n+1}}{(2\,n + 2)!} + \frac{1}{4} \sum_{n=0}^{+\infty} \frac{\left(-\frac{1}{2}\right)^n x^{n+1}}{(2\,n + 1)!} \\ &= \frac{437}{4} \sum_{n=1}^{+\infty} \frac{\left(-\frac{1}{2}\right)^{n-1} x^n}{(2\,n + 1)!} - \frac{145}{4} \sum_{n=1}^{+\infty} \frac{\left(-\frac{1}{2}\right)^{n-1} x^n}{(2\,n)!} + \frac{1}{4} \sum_{n=0}^{+\infty} \frac{\left(-\frac{1}{2}\right)^n x^{n+1}}{(2\,n + 1)!} \end{split}$$

après changement d'indice. On reconnaît alors le développement en série entière en 0 de fonctions trigonométriques, après factorisation convenable, où nous supposons d'abord $x \ge 0$ afin de pouvoir écrire $x = (\sqrt{x})^2$ et faire apparaître un exposant pair:

$$\sum_{n=0}^{+\infty} \frac{\left(n^2 - 70\,n + 2\right)\left(-\frac{1}{2}\right)^n x^{n+1}}{(2\,n + 3)!} = -\frac{437\,\sqrt{\frac{1}{2}}}{\sqrt{x}} \sum_{n=1}^{+\infty} \frac{\left(-1\right)^n \left(\sqrt{\frac{1}{2}}\sqrt{x}\right)^{2\,n + 1}}{(2\,n + 1)!} + \frac{145}{2} \sum_{n=1}^{+\infty} \frac{\left(-1\right)^n \left(\sqrt{\frac{1}{2}}\sqrt{x}\right)^{2\,n}}{(2\,n)!} + \frac{1}{2}\,\sqrt{\frac{1}{2}}\sqrt{x} \sum_{n=0}^{+\infty} \frac{\left(-1\right)^n \left(\sqrt{\frac{1}{2}}\sqrt{x}\right)^{2\,n + 1}}{(2\,n)!} + \left(-\frac{437\,\sqrt{\frac{1}{2}}}{\sqrt{x}} + \frac{1}{2}\,\sqrt{\frac{1}{2}}\sqrt{x}\right) \sum_{n=0}^{+\infty} \frac{\left(-1\right)^n \left(\sqrt{\frac{1}{2}}\sqrt{x}\right)^{2\,n + 1}}{(2\,n + 1)!} + \left(-\frac{437\,\sqrt{\frac{1}{2}}}{\sqrt{x}} + \frac{1}{2}\,\sqrt{\frac{1}{2}}\sqrt{x}\right) \sin\left(\sqrt{\frac{1}{2}}\sqrt{x}\right) + \left(\frac{437}{2}\,\sqrt{\frac{1}{2}} - \frac{145}{2}\right)$$

d'où le résultat si x est positif. Si x est négatif, on écrit $x=-(-x)=-(\sqrt{-x})^2$, et un raisonnement analogue à celui ci-dessus aboutit à:

$$\sum_{n=0}^{+\infty} \frac{\left(n^2 - 70\,n + 2\right)\left(-\frac{1}{2}\right)^n x^{n+1}}{(2\,n + 3)!} = \frac{145}{2} \sum_{n=0}^{+\infty} \frac{\left(\sqrt{\frac{1}{2}}\sqrt{-x}\right)^{2\,n}}{(2\,n)!} + \left(-\frac{437\,\sqrt{\frac{1}{2}}}{\sqrt{-x}} + \frac{\sqrt{\frac{1}{2}}x}{2\,\sqrt{-x}}\right) \sum_{n=0}^{+\infty} \frac{\left(\sqrt{\frac{1}{2}}\sqrt{-x}\right)^{2\,n+1}}{(2\,n + 1)!} + \left(\frac{437}{2}\,\sqrt{2}\sqrt{\frac{1}{2}}\right) \left(\frac{1}{2}\sqrt{-x}\right) \left(\frac{1}{2}\sqrt{-x}\right) + \left(-\frac{437\,\sqrt{\frac{1}{2}}}{\sqrt{-x}} + \frac{\sqrt{\frac{1}{2}}x}{2\,\sqrt{-x}}\right) \sinh\left(\sqrt{\frac{1}{2}}\sqrt{-x}\right) + \left(\frac{437}{2}\,\sqrt{2}\sqrt{\frac{1}{2}} - \frac{147}{2}\sqrt{\frac{1}{2}}\right) \left(\frac{1}{2}\sqrt{-x}\right) \left(\frac{$$

d'où le résultat.

Corrigé 21.

 $\leftarrow \text{page } 4$

1. Tout d'abord, l'existence de $(a, b, c) \in \mathbb{R}^3$, vérifiant la décomposition de l'énoncé, est assurée par le fait que la famille (1, (X+3), (X+3)(X+2)) soit échelonnée en degré : c'est donc une base de $\mathbb{R}_2[X]$ (et en particulier $X^2+10X+1$, qui appartient à cet espace vectoriel, est combinaison linéaire des polynômes de cette base). Pour déterminer ces scalaires, nul besoin de développer comme un cochon (et je vous le

déconseille fortement): il suffit d'évaluer l'égalité en des racines des polynômes du membre de droite, c'està-dire successivement en -3, -2. Si l'on évalue l'égalité $X^2 + 10X + 1 = a + b(X+3) + c(X+3)(X+2)$ en -3, on obtient directement: a = -20. Et ainsi de suite. Pour déterminer c, une évaluation en des racines ne simplifie pas la tâche, mais on peut par exemple le déterminer en comparant les coefficients dominants dans chaque membre de l'égalité: c'est moins calculatoire que si on voulait l'exprimer à l'aide des coefficients précédemment déterminés. Cette idée donne ici: 1 = c. En conclusion, on a:

$$X^{2} + 10X + 1 = -20 + 5(X+3) + (X+3)(X+2).$$

2. Soit $x \in \mathbb{R}$. On a, d'après la question précédente :

$$\begin{split} \sum_{n=0}^{+\infty} \frac{\left(n^2 + 10\,n + 1\right)4^n x^{2\,n}}{(n+3)!} &= -20 \sum_{n=0}^{+\infty} \frac{1}{(n+3)!} 4^n x^{2\,n} + 5 \sum_{n=0}^{+\infty} \frac{(n+3)}{(n+3)!} 4^n x^{2\,n} \\ &+ \sum_{n=0}^{+\infty} \frac{(n+3)(n+2)}{(n+3)!} 4^n x^{2\,n} \\ &= -20 \sum_{n=0}^{+\infty} \frac{4^n x^{2\,n}}{(n+3)!} + 5 \sum_{n=0}^{+\infty} \frac{4^n x^{2\,n}}{(n+2)!} + \sum_{n=0}^{+\infty} \frac{4^n x^{2\,n}}{(n+1)!} \\ &= -20 \sum_{n=3}^{+\infty} \frac{4^{n-3} x^{2\,n-6}}{n!} + 5 \sum_{n=2}^{+\infty} \frac{4^{n-2} x^{2\,n-4}}{n!} + \sum_{n=1}^{+\infty} \frac{4^{n-1} x^{2\,n-2}}{n!} \end{split}$$

après changement d'indice. On reconnaît alors le développement en série entière en 0 de l'exponentielle, après factorisation convenable (attention à bien prendre x non nul pour diviser ci-dessous; le cas x=0étant de toute façon trivial considéré à part):

$$\begin{split} \sum_{n=0}^{+\infty} \frac{\left(n^2 + 10\,n + 1\right)4^n x^{2\,n}}{(n+3)!} &= -\frac{5}{16\,x^6} \sum_{n=3}^{+\infty} \frac{\left(4\,x^2\right)^n}{n!} + \frac{5}{16\,x^4} \sum_{n=2}^{+\infty} \frac{\left(4\,x^2\right)^n}{n!} + \frac{1}{4\,x^2} \sum_{n=1}^{+\infty} \frac{\left(4\,x^2\right)^n}{n!} \\ &= \left(-\frac{5}{16\,x^6} + \frac{5}{16\,x^4} + \frac{1}{4\,x^2}\right) \sum_{n=0}^{+\infty} \frac{\left(4\,x^2\right)^n}{n!} + \left(-\frac{1}{4\,x^2} - \frac{5\left(4\,x^2 + 1\right)}{16\,x^4} + \frac{5\left(8\,x^4 + 4\,x^2 + 1\right)}{16\,x^6}\right) \\ &= \left(-\frac{5}{16\,x^6} + \frac{5}{16\,x^4} + \frac{1}{4\,x^2}\right) e^{\left(4\,x^2\right)} + \left(\frac{1}{x^2} + \frac{15}{16\,x^4} + \frac{5}{16\,x^6}\right), \end{split}$$

d'où le résultat.

Corrigé 22.

 \leftarrow page 4

1. C'est une décomposition en éléments simples, tout ce qu'il y a de plus classique. Il suffit de multiplier l'égalité par chacun des dénominateurs possibles du membre de droite, et de faire tendre la variable n vers leurs racines. Cela permet d'éliminer toutes les inconnues sauf une, et de les déterminer. On obtient alors :

$$\forall n \in \mathbb{C} \setminus \{-3, -2\}, \quad \frac{n+12}{3(n+3)(n+2)} = -\frac{3}{n+3} + \frac{10}{3(n+2)}.$$

2. Soit $x \in \left] - \sqrt{2}, \sqrt{2} \right[$. On a, d'après la question précédente :

$$\sum_{n=0}^{+\infty} \frac{\left(-\frac{1}{2}\right)^n (n+12)x^{2n}}{3(n+3)(n+2)} = -3\sum_{n=0}^{+\infty} \frac{\left(-1\right)^n \left(\frac{1}{2}x^2\right)^n}{n+3} + \frac{10}{3}\sum_{n=0}^{+\infty} \frac{\left(-1\right)^n \left(\frac{1}{2}x^2\right)^n}{n+2}$$
$$= -3\sum_{n=2}^{+\infty} \frac{\left(-1\right)^{n-2} \left(\frac{1}{2}x^2\right)^{n-2}}{n+1} + \frac{10}{3}\sum_{n=1}^{+\infty} \frac{\left(-1\right)^{n-1} \left(\frac{1}{2}x^2\right)^{n-1}}{n+1}$$

après changement d'indice. On reconnaît alors le développement en série entière en 0 du logarithme, et on en déduit (attention à bien prendre x non nul pour diviser ci-dessous; le cas x=0 étant de toute façon trivial considéré à part):

$$\sum_{n=0}^{+\infty} \frac{\left(-\frac{1}{2}\right)^n (n+12) x^{2n}}{3 (n+3) (n+2)} = -\frac{24}{x^6} \sum_{n=2}^{+\infty} \frac{\left(-1\right)^n \left(\frac{1}{2} x^2\right)^{n+1}}{n+1} - \frac{40}{3 x^4} \sum_{n=1}^{+\infty} \frac{\left(-1\right)^n \left(\frac{1}{2} x^2\right)^{n+1}}{n+1}$$

$$= \left(-\frac{40}{3 x^4} - \frac{24}{x^6}\right) \ln \left(\frac{1}{2} x^2 + 1\right) + \left(\frac{11}{3 x^2} + \frac{12}{x^4}\right),$$

d'où le résultat.

Corrigé 23. \leftarrow page 5

- 1. On a trivialement a = -1 et b = 4.
- 2. Soit $x \in \mathbb{R}$. On a, d'après la question précédente :

$$\sum_{n=0}^{+\infty} \frac{\left(-\frac{31}{2}\right)^n (4n-1)x^{n+1}}{n!} = -\sum_{n=0}^{+\infty} \frac{1}{n!} \left(-\frac{31}{2}\right)^n x^{n+1} + 4\sum_{n=0}^{+\infty} \frac{n}{n!} \left(-\frac{31}{2}\right)^n x^{n+1}$$

$$= -\sum_{n=0}^{+\infty} \frac{\left(-\frac{31}{2}\right)^n x^{n+1}}{n!} + 4\sum_{n=1}^{+\infty} \frac{\left(-\frac{31}{2}\right)^n x^{n+1}}{(n-1)!}$$

$$= -\sum_{n=0}^{+\infty} \frac{\left(-\frac{31}{2}\right)^n x^{n+1}}{n!} + 4\sum_{n=0}^{+\infty} \frac{\left(-\frac{31}{2}\right)^{n+1} x^{n+2}}{n!}$$

après changement d'indice. On reconnaît alors le développement en série entière en 0 de l'exponentielle, après factorisation convenable:

$$\sum_{n=0}^{+\infty} \frac{\left(-\frac{31}{2}\right)^n (4n-1)x^{n+1}}{n!} = -x \sum_{n=0}^{+\infty} \frac{\left(-\frac{31}{2}x\right)^n}{n!} - 62x^2 \sum_{n=0}^{+\infty} \frac{\left(-\frac{31}{2}x\right)^n}{n!}$$
$$= \left(-x - 62x^2\right) e^{\left(-\frac{31}{2}x\right)},$$

d'où le résultat.

Corrigé 24.

 $\leftarrow \text{page 5}$

1. Tout d'abord, l'existence de $(a,b,c) \in \mathbb{R}^3$, vérifiant la décomposition de l'énoncé, est assurée par le fait que la famille (1,X,X(X-1)) soit échelonnée en degré : c'est donc une base de $\mathbb{R}_2[X]$ (et en particulier $4X^2-6X+1$, qui appartient à cet espace vectoriel, est combinaison linéaire des polynômes de cette base). Pour déterminer ces scalaires, nul besoin de développer comme un cochon (et je vous le déconseille fortement) : il suffit d'évaluer l'égalité en des racines des polynômes du membre de droite, c'est-à-dire successivement en 0,1. Si l'on évalue l'égalité $4X^2-6X+1=a+bX+cX(X-1)$ en 0, on obtient directement : a=1. Et ainsi de suite. Pour déterminer c, une évaluation en des racines ne simplifie pas la tâche, mais on peut par exemple le déterminer en comparant les coefficients dominants dans chaque membre de l'égalité : c'est moins calculatoire que si on voulait l'exprimer à l'aide des coefficients précédemment déterminés. Cette idée donne ici : 4=c. En conclusion, on a :

$$4X^2 - 6X + 1 = 1 - 2X + 4X(X - 1).$$

2. Soit $x \in]-10,10[$. On a, d'après la question précédente :

$$\begin{split} \sum_{n=0}^{+\infty} \left(4\,n^2 - 6\,n + 1\right) \left(-\frac{1}{10}\right)^n x^n &= \sum_{n=0}^{+\infty} \left(-\frac{1}{10}\right)^n x^n - 2\sum_{n=0}^{+\infty} n\left(-\frac{1}{10}\right)^n x^n + 4\sum_{n=0}^{+\infty} n(n-1)\left(-\frac{1}{10}\right)^n x^n \\ &= \sum_{n=0}^{+\infty} \left(-\frac{1}{10}\,x\right)^n - 2\sum_{n=1}^{+\infty} n\left(-\frac{1}{10}\,x\right)^n + 4\sum_{n=2}^{+\infty} n(n-1)\left(-\frac{1}{10}\,x\right)^n \\ &= \sum_{n=0}^{+\infty} \left(-\frac{1}{10}\,x\right)^n + \frac{1}{5}\,x\sum_{n=1}^{+\infty} n\left(-\frac{1}{10}\,x\right)^{n-1} + \frac{1}{25}\,x^2\sum_{n=2}^{+\infty} n(n-1)\left(-\frac{1}{10}\,x\right)^{n-2} \end{split}$$

On reconnaît alors le développement en série entière en 0 de l'application $x\mapsto \frac{1}{1-x}=\sum_{n=0}^{+\infty}x^n$, qu'on a

dérivée terme à terme et évaluée en $-\frac{1}{10}x$. Plus précisément, pour tout $x \in]-1,1[$, on a :

$$\frac{1}{1-x} = \sum_{n=0}^{+\infty} x^n, \quad \frac{1}{(1-x)^2} = \sum_{n=1}^{+\infty} nx^{n-1}, \quad \frac{2}{(1-x)^3} = \sum_{n=2}^{+\infty} n(n-1)x^{n-2}.$$

On en déduit:

$$\sum_{n=0}^{+\infty} \left(4n^2 - 6n + 1\right) \left(-\frac{1}{10}\right)^n x^n = \frac{1}{1 + \frac{1}{10}x} + \frac{\frac{1}{5}x}{\left(1 + \frac{1}{10}x\right)^2} + \frac{\frac{2}{25}x^2}{\left(1 + \frac{1}{10}x\right)^3},$$

d'où le résultat.

Corrigé 25.

 \leftarrow page 5

1. Tout d'abord, l'existence de $(a, b) \in \mathbb{R}^2$, vérifiant la décomposition de l'énoncé, est assurée par le fait que la famille (1, (X+2)) soit échelonnée en degré : c'est donc une base de $\mathbb{R}_1[X]$ (et en particulier X-1, qui appartient à cet espace vectoriel, est combinaison linéaire des polynômes de cette base). Une identification immédiate (en commençant par comparer les coefficients dominants) permet de démontrer qu'on a : b=1, puis : a=-3. En conclusion, on a :

$$X - 1 = -3 + (X + 2).$$

2. Soit $x \in \mathbb{R}$. On a, d'après la question précédente :

$$\sum_{n=0}^{+\infty} \frac{(n-1)x^{2n+1}}{(n+2)!} = -3\sum_{n=0}^{+\infty} \frac{1}{(n+2)!} x^{2n+1} + \sum_{n=0}^{+\infty} \frac{(n+2)}{(n+2)!} x^{2n+1}$$

$$= -3\sum_{n=0}^{+\infty} \frac{x^{2n+1}}{(n+2)!} + \sum_{n=0}^{+\infty} \frac{x^{2n+1}}{(n+1)!}$$

$$= -3\sum_{n=2}^{+\infty} \frac{x^{2n-3}}{n!} + \sum_{n=1}^{+\infty} \frac{x^{2n-1}}{n!}$$

après changement d'indice. On reconnaît alors le développement en série entière en 0 de l'exponentielle, après factorisation convenable (attention à bien prendre x non nul pour diviser ci-dessous; le cas x=0 étant de toute façon trivial considéré à part):

$$\begin{split} \sum_{n=0}^{+\infty} \frac{(n-1)x^{2\,n+1}}{(n+2)!} &= -\frac{3}{x^3} \sum_{n=2}^{+\infty} \frac{\left(x^2\right)^n}{n!} + \frac{1}{x} \sum_{n=1}^{+\infty} \frac{\left(x^2\right)^n}{n!} \\ &= \left(-\frac{3}{x^3} + \frac{1}{x}\right) \sum_{n=0}^{+\infty} \frac{\left(x^2\right)^n}{n!} + \left(-\frac{1}{x} + \frac{3\left(x^2 + 1\right)}{x^3}\right) \\ &= \left(-\frac{3}{x^3} + \frac{1}{x}\right) e^{\left(x^2\right)} + \left(\frac{2}{x} + \frac{3}{x^3}\right), \end{split}$$

d'où le résultat.

Corrigé 26.

 $\leftarrow \text{page 5}$

1. C'est une décomposition en éléments simples, tout ce qu'il y a de plus classique. Il suffit de multiplier l'égalité par chacun des dénominateurs possibles du membre de droite, et de faire tendre la variable n vers leurs racines. Cela permet d'éliminer toutes les inconnues sauf une, et de les déterminer. On obtient alors:

$$\forall n \in \mathbb{C} \setminus \{-2, -1\}, \quad \frac{2}{(n+2)(n+1)} = -\frac{2}{n+2} + \frac{2}{n+1}.$$

2. Soit $x \in]-2,2[$. On a, d'après la question précédente :

$$\sum_{n=0}^{+\infty} \frac{2\left(-\frac{1}{2}\right)^n x^n}{(n+2)(n+1)} = -2\sum_{n=0}^{+\infty} \frac{(-1)^n \left(\frac{1}{2}x\right)^n}{n+2} + 2\sum_{n=0}^{+\infty} \frac{(-1)^n \left(\frac{1}{2}x\right)^n}{n+1}$$
$$= -2\sum_{n=1}^{+\infty} \frac{(-1)^{n-1} \left(\frac{1}{2}x\right)^{n-1}}{n+1} + 2\sum_{n=0}^{+\infty} \frac{(-1)^n \left(\frac{1}{2}x\right)^n}{n+1}$$

après changement d'indice. On reconnaît alors le développement en série entière en 0 du logarithme, et on en déduit (attention à bien prendre x non nul pour diviser ci-dessous; le cas x=0 étant de toute façon trivial considéré à part):

$$\sum_{n=0}^{+\infty} \frac{2\left(-\frac{1}{2}\right)^n x^n}{(n+2)(n+1)} = \frac{8}{x^2} \sum_{n=1}^{+\infty} \frac{(-1)^n \left(\frac{1}{2}x\right)^{n+1}}{n+1} + \frac{4}{x} \sum_{n=0}^{+\infty} \frac{(-1)^n \left(\frac{1}{2}x\right)^{n+1}}{n+1}$$
$$= \left(\frac{4}{x} + \frac{8}{x^2}\right) \ln\left(\frac{1}{2}x + 1\right) + \left(-\frac{4}{x}\right),$$

d'où le résultat.

Corrigé 27.

1. Tout d'abord, l'existence de $(a,b) \in \mathbb{R}^2$, vérifiant la décomposition de l'énoncé, est assurée par le fait que la famille (1,(2X+1)) soit échelonnée en degré : c'est donc une base de $\mathbb{R}_1[X]$ (et en particulier 5X-7, qui appartient à cet espace vectoriel, est combinaison linéaire des polynômes de cette base). Une identification immédiate (en commençant par comparer les coefficients dominants) permet de démontrer qu'on a : $b=\frac{5}{2}$, puis : $a=-\frac{19}{2}$. En conclusion, on a :

$$5X - 7 = -\frac{19}{2} + \frac{5}{2}(2X + 1).$$

2. Soit $x \in \mathbb{R}$. On a, d'après la question précédente :

$$\sum_{n=0}^{+\infty} \frac{\left(-\frac{7}{2}\right)^n (5 \, n - 7) x^{2 \, n + 1}}{(2 \, n + 1)!} = -\frac{19}{2} \sum_{n=0}^{+\infty} \frac{1}{(2 \, n + 1)!} \left(-\frac{7}{2}\right)^n x^{2 \, n + 1} + \frac{5}{2} \sum_{n=0}^{+\infty} \frac{(2 \, n + 1)}{(2 \, n + 1)!} \left(-\frac{7}{2}\right)^n x^{2 \, n + 1}$$

$$= -\frac{19}{2} \sum_{n=0}^{+\infty} \frac{\left(-\frac{7}{2}\right)^n x^{2 \, n + 1}}{(2 \, n + 1)!} + \frac{5}{2} \sum_{n=0}^{+\infty} \frac{\left(-\frac{7}{2}\right)^n x^{2 \, n + 1}}{(2 \, n)!}$$

On reconnaît alors le développement en série entière en 0 de fonctions trigonométriques, après factorisation convenable:

$$\sum_{n=0}^{+\infty} \frac{\left(-\frac{7}{2}\right)^n (5 n - 7) x^{2 n + 1}}{(2 n + 1)!} = -\frac{19}{7} \sqrt{\frac{7}{2}} \sum_{n=0}^{+\infty} \frac{\left(-1\right)^n \left(\sqrt{\frac{7}{2}}x\right)^{2 n + 1}}{(2 n + 1)!} + \frac{5}{2} x \sum_{n=0}^{+\infty} \frac{\left(-1\right)^n \left(\sqrt{\frac{7}{2}}x\right)^{2 n}}{(2 n)!}$$
$$= \frac{5}{2} x \cos\left(\sqrt{\frac{7}{2}}x\right) - \frac{19}{7} \sqrt{\frac{7}{2}} \sin\left(\sqrt{\frac{7}{2}}x\right),$$

d'où le résultat.

Corrigé 28.

1. C'est une décomposition en éléments simples, tout ce qu'il y a de plus classique. Il suffit de multiplier l'égalité par chacun des dénominateurs possibles du membre de droite, et de faire tendre la variable n vers leurs racines. Cela permet d'éliminer toutes les inconnues sauf une, et de les déterminer. On obtient alors:

$$\forall n \in \mathbb{C} \setminus \left\{ -\frac{1}{2}, -1 \right\}, \quad \frac{1}{6(2n+1)(n+1)} = \frac{1}{3(2n+1)} - \frac{1}{6(n+1)}.$$

2. Soit $x \in]-1,1[$. On a, d'après la question précédente :

$$\sum_{n=0}^{+\infty} \frac{\left(-1\right)^{n} x^{2 \, n}}{6 \, (2 \, n+1) (n+1)} = -\frac{1}{6} \sum_{n=0}^{+\infty} \frac{\left(-1\right)^{n} \left(x^{2}\right)^{n}}{n+1} + \frac{1}{3} \sum_{n=0}^{+\infty} \frac{\left(-1\right)^{n} x^{2 \, n}}{2 \, n+1}$$

On reconnaît alors le développement en série entière en 0 du logarithme et de l'arc tangente (attention à bien prendre x non nul pour diviser ci-dessous; le cas x=0 étant de toute façon trivial considéré à part):

$$\sum_{n=0}^{+\infty} \frac{(-1)^n x^{2n}}{6(2n+1)(n+1)} = -\frac{1}{6x^2} \sum_{n=0}^{+\infty} \frac{(-1)^n (x^2)^{n+1}}{n+1} + \frac{1}{3x} \sum_{n=0}^{+\infty} \frac{(-1)^n x^{2n+1}}{2n+1}$$
$$= -\frac{1}{6x^2} \ln (x^2+1) + \frac{1}{3x} \arctan (x),$$

d'où le résultat.

Corrigé 29.

1. Tout d'abord, l'existence de $(a, b, c) \in \mathbb{R}^3$, vérifiant la décomposition de l'énoncé, est assurée par le fait que la famille (1, X, X(X-1)) soit échelonnée en degré : c'est donc une base de $\mathbb{R}_2[X]$ (et en particulier $24X^2 + 2X - 1$, qui appartient à cet espace vectoriel, est combinaison linéaire des polynômes de cette base). Pour déterminer ces scalaires, nul besoin de développer comme un cochon (et je vous le déconseille fortement) : il suffit d'évaluer l'égalité en des racines des polynômes du membre de droite, c'est-à-dire successivement en 0,1. Si l'on évalue l'égalité $24X^2 + 2X - 1 = a + bX + cX(X - 1)$ en 0, on obtient directement : a = -1. Et ainsi de suite. Pour déterminer c, une évaluation en des racines ne simplifie pas la tâche, mais on peut par exemple le déterminer en comparant les coefficients dominants dans chaque membre de l'égalité : c'est moins calculatoire que si on voulait l'exprimer à l'aide des coefficients précédemment déterminés. Cette idée donne ici : 24 = c. En conclusion, on a :

$$24X^2 + 2X - 1 = -1 + 26X + 24X(X - 1).$$

 \leftarrow page 5

2. Soit $x \in]-\sqrt{6}, \sqrt{6}[$. On a, d'après la question précédente :

$$\begin{split} \sum_{n=0}^{+\infty} \left(24\,n^2 + 2\,n - 1\right) \left(\frac{1}{6}\right)^n x^{2\,n} &= -\sum_{n=0}^{+\infty} \left(\frac{1}{6}\right)^n x^{2\,n} + 26\sum_{n=0}^{+\infty} n \left(\frac{1}{6}\right)^n x^{2\,n} + 24\sum_{n=0}^{+\infty} n(n-1) \left(\frac{1}{6}\right)^n x^{2\,n} \\ &= -\sum_{n=0}^{+\infty} \left(\frac{1}{6}\,x^2\right)^n + 26\sum_{n=1}^{+\infty} n \left(\frac{1}{6}\,x^2\right)^n + 24\sum_{n=2}^{+\infty} n(n-1) \left(\frac{1}{6}\,x^2\right)^n \\ &= -\sum_{n=0}^{+\infty} \left(\frac{1}{6}\,x^2\right)^n + \frac{13}{3}\,x^2\sum_{n=1}^{+\infty} n \left(\frac{1}{6}\,x^2\right)^{n-1} + \frac{2}{3}\,x^4\sum_{n=2}^{+\infty} n(n-1) \left(\frac{1}{6}\,x^2\right)^{n-2} \end{split}$$

On reconnaît alors le développement en série entière en 0 de l'application $x \mapsto \frac{1}{1-x} = \sum_{n=0}^{+\infty} x^n$, qu'on a

dérivée terme à terme et évaluée en $\frac{1}{6}x^2$. Plus précisément, pour tout $x \in]-1,1[$, on a:

$$\frac{1}{1-x} = \sum_{n=0}^{+\infty} x^n, \quad \frac{1}{(1-x)^2} = \sum_{n=1}^{+\infty} nx^{n-1}, \quad \frac{2}{(1-x)^3} = \sum_{n=2}^{+\infty} n(n-1)x^{n-2}.$$

On en déduit:

$$\sum_{n=0}^{+\infty} \left(24 n^2 + 2 n - 1\right) \left(\frac{1}{6}\right)^n x^{2n} = -\frac{1}{1 - \frac{1}{6} x^2} + \frac{\frac{13}{3} x^2}{\left(1 - \frac{1}{6} x^2\right)^2} + \frac{\frac{4}{3} x^4}{\left(1 - \frac{1}{6} x^2\right)^3},$$

d'où le résultat.

Corrigé 30.

1. C'est une décomposition en éléments simples, tout ce qu'il y a de plus classique. Il suffit de multiplier l'égalité par chacun des dénominateurs possibles du membre de droite, et de faire tendre la variable n vers leurs racines. Cela permet d'éliminer toutes les inconnues sauf une, et de les déterminer. On obtient alors :

$$\forall n \in \mathbb{C} \setminus \left\{-\frac{1}{2}, -1\right\}, \quad \frac{3}{(2n+1)(n+1)} = \frac{6}{2n+1} - \frac{3}{n+1}.$$

2. Soit $x \in]-1,1[$. On a, d'après la question précédente :

$$\sum_{n=0}^{+\infty} \frac{3 \, \left(-1\right)^n x^{n+1}}{(2 \, n+1)(n+1)} = -3 \sum_{n=0}^{+\infty} \frac{\left(-1\right)^n x^{n+1}}{n+1} + 6 \sum_{n=0}^{+\infty} \frac{\left(-1\right)^n x^{n+1}}{2 \, n+1}$$

On reconnaît alors le développement en série entière en 0 du logarithme et de l'arc tangente (à condition d'écrire $x = (\sqrt{x})^2$ si x est positif, pour faire apparaître une puissance paire; si x est négatif alors nous écrirons $x = -(-x) = -(\sqrt{-x})^2$ et il faudra encore un peu travailler).

$$\sum_{n=0}^{+\infty} \frac{3 (-1)^n x^{n+1}}{(2 n+1)(n+1)} = -3 \sum_{n=0}^{+\infty} \frac{(-1)^n x^{n+1}}{n+1} + 6 \sqrt{x} \sum_{n=0}^{+\infty} \frac{(-1)^n \sqrt{x}^{2n+1}}{2 n+1}$$
$$= -3 \ln(x+1) + 6 \sqrt{x} \arctan(\sqrt{x}),$$

d'où le résultat si x est positif. Si x est négatif, on écrit $x=-(-x)=-(\sqrt{-x})^2$, et un raisonnement analogue à celui ci-dessus aboutit à:

$$\sum_{n=0}^{+\infty} \frac{3 (-1)^n x^{n+1}}{(2n+1)(n+1)} = -3 \ln(x+1) + \frac{6x}{\sqrt{-x}} \frac{1}{2} \ln\left(-\frac{\sqrt{-x}+1}{\sqrt{-x}-1}\right),$$

d'où le résultat.

Remarque. Pour calculer $\sum_{n=0}^{+\infty} \frac{x^{2n+1}}{2n+1}$ pour tout $x \in]-1,1[$, on remarque qu'on obtient cette somme en

intégrant terme à terme $x \mapsto \sum_{n=0}^{+\infty} x^{2n}$ (ce qui est possible parce qu'il s'agit d'une somme de série entière de rayon de convergence 1):

$$\sum_{n=0}^{+\infty} \frac{x^{2n+1}}{2n+1} = \sum_{n=0}^{+\infty} \int_0^x t^{2n} dt = \int_0^x \sum_{n=0}^{+\infty} t^{2n} dt = \int_0^x \frac{dt}{1-t^2} = \frac{1}{2} \int_0^x \left(\frac{1}{1-t} + \frac{1}{1+t} \right) dt = \frac{1}{2} \ln \left(\frac{1+x}{1-x} \right).$$

Corrigé 31.

 \leftarrow page 6

1. Tout d'abord, l'existence de $(a, b) \in \mathbb{R}^2$, vérifiant la décomposition de l'énoncé, est assurée par le fait que la famille (1, (X+3)) soit échelonnée en degré : c'est donc une base de $\mathbb{R}_1[X]$ (et en particulier X-1, qui appartient à cet espace vectoriel, est combinaison linéaire des polynômes de cette base). Une identification immédiate (en commençant par comparer les coefficients dominants) permet de démontrer qu'on a : b=1, puis : a=-4. En conclusion, on a :

$$X - 1 = -4 + (X + 3).$$

2. Soit $x \in \mathbb{R}$. On a, d'après la question précédente:

$$\sum_{n=0}^{+\infty} \frac{(n-1)x^{2n}}{(n+3)!} = -4\sum_{n=0}^{+\infty} \frac{1}{(n+3)!}x^{2n} + \sum_{n=0}^{+\infty} \frac{(n+3)}{(n+3)!}x^{2n}$$

$$= -4\sum_{n=0}^{+\infty} \frac{x^{2n}}{(n+3)!} + \sum_{n=0}^{+\infty} \frac{x^{2n}}{(n+2)!}$$

$$= -4\sum_{n=3}^{+\infty} \frac{x^{2n-6}}{n!} + \sum_{n=2}^{+\infty} \frac{x^{2n-4}}{n!}$$

après changement d'indice. On reconnaît alors le développement en série entière en 0 de l'exponentielle, après factorisation convenable (attention à bien prendre x non nul pour diviser ci-dessous; le cas x=0 étant de toute façon trivial considéré à part):

$$\begin{split} \sum_{n=0}^{+\infty} \frac{(n-1)x^{2n}}{(n+3)!} &= -\frac{4}{x^6} \sum_{n=3}^{+\infty} \frac{\left(x^2\right)^n}{n!} + \frac{1}{x^4} \sum_{n=2}^{+\infty} \frac{\left(x^2\right)^n}{n!} \\ &= \left(-\frac{4}{x^6} + \frac{1}{x^4}\right) \sum_{n=0}^{+\infty} \frac{\left(x^2\right)^n}{n!} + \left(-\frac{x^2+1}{x^4} + \frac{2\left(x^4+2\,x^2+2\right)}{x^6}\right) \\ &= \left(-\frac{4}{x^6} + \frac{1}{x^4}\right) e^{\left(x^2\right)} + \left(\frac{1}{x^2} + \frac{3}{x^4} + \frac{4}{x^6}\right), \end{split}$$

d'où le résultat.

Corrigé 32.

 \leftarrow page 6

1. Tout d'abord, l'existence de $(a,b,c) \in \mathbb{R}^3$, vérifiant la décomposition de l'énoncé, est assurée par le fait que la famille (1,X,X(X-1)) soit échelonnée en degré : c'est donc une base de $\mathbb{R}_2[X]$ (et en particulier $5X^2+5X$, qui appartient à cet espace vectoriel, est combinaison linéaire des polynômes de cette base). Pour déterminer ces scalaires, nul besoin de développer comme un cochon (et je vous le déconseille fortement) : il suffit d'évaluer l'égalité en des racines des polynômes du membre de droite, c'est-à-dire successivement en 0,1. Si l'on évalue l'égalité $5X^2+5X=a+bX+cX(X-1)$ en 0, on obtient directement : a=0. Et ainsi de suite. Pour déterminer c, une évaluation en des racines ne simplifie pas la tâche, mais on peut par exemple le déterminer en comparant les coefficients dominants dans chaque membre de l'égalité : c'est moins calculatoire que si on voulait l'exprimer à l'aide des coefficients précédemment déterminés. Cette idée donne ici : 5=c. En conclusion, on a :

$$5X^2 + 5X = 10X + 5X(X - 1)$$
.

2. Soit $x \in]-1,1[$. On a, d'après la question précédente :

$$\sum_{n=0}^{+\infty} 5(n^2 + n)x^{2n} = 10\sum_{n=0}^{+\infty} nx^{2n} + 5\sum_{n=0}^{+\infty} n(n-1)x^{2n}$$
$$= 10x^2\sum_{n=1}^{+\infty} n(x^2)^{n-1} + 5x^4\sum_{n=2}^{+\infty} n(n-1)(x^2)^{n-2}$$

On reconnaît alors le développement en série entière en 0 des dérivées de l'application $x\mapsto \frac{1}{1-x}=\sum_{n=0}^{+\infty}x^n$

évaluée en x^2 . Plus précisément, pour tout $x \in]-1,1[$, on a :

$$\frac{1}{1-x} = \sum_{n=0}^{+\infty} x^n, \quad \frac{1}{(1-x)^2} = \sum_{n=1}^{+\infty} nx^{n-1}, \quad \frac{2}{(1-x)^3} = \sum_{n=2}^{+\infty} n(n-1)x^{n-2}.$$

On en déduit:

$$\sum_{n=0}^{+\infty} 5(n^2 + n)x^{2n} = \frac{10x^2}{1 - x^2} + \frac{10x^4}{(1 - x^2)^3},$$

d'où le résultat.

Corrigé 33.

 \leftarrow page 6

1. C'est une décomposition en éléments simples, tout ce qu'il y a de plus classique. Il suffit de multiplier l'égalité par chacun des dénominateurs possibles du membre de droite, et de faire tendre la variable n vers leurs racines. Cela permet d'éliminer toutes les inconnues sauf une, et de les déterminer. On obtient alors :

$$\forall n \in \mathbb{C} \setminus \{-3, -2, -1\}, \quad \frac{1}{(n+3)(n+2)(n+1)} = \frac{1}{2(n+3)} - \frac{1}{n+2} + \frac{1}{2(n+1)}.$$

2. Soit $x \in]-2,2[$. On a, d'après la question précédente :

$$\sum_{n=0}^{+\infty} \frac{\left(\frac{1}{2}\right)^n x^{n+1}}{(n+3)(n+2)(n+1)} = \frac{1}{2} \sum_{n=0}^{+\infty} \frac{\left(\frac{1}{2}x\right)^n x}{n+3} - \sum_{n=0}^{+\infty} \frac{\left(\frac{1}{2}x\right)^n x}{n+2} + \frac{1}{2} \sum_{n=0}^{+\infty} \frac{\left(\frac{1}{2}x\right)^n x}{n+1}$$
$$= \frac{1}{2} \sum_{n=2}^{+\infty} \frac{\left(\frac{1}{2}x\right)^{n-2} x}{n+1} - \sum_{n=1}^{+\infty} \frac{\left(\frac{1}{2}x\right)^{n-1} x}{n+1} + \frac{1}{2} \sum_{n=0}^{+\infty} \frac{\left(\frac{1}{2}x\right)^n x}{n+1}$$

après changement d'indice. On reconnaît alors le développement en série entière en 0 du logarithme, et on en déduit (attention à bien prendre x non nul pour diviser ci-dessous; le cas x=0 étant de toute façon trivial considéré à part):

$$\sum_{n=0}^{+\infty} \frac{\left(\frac{1}{2}\right)^n x^{n+1}}{(n+3)(n+2)(n+1)} = \frac{4}{x^2} \sum_{n=2}^{+\infty} \frac{\left(\frac{1}{2}x\right)^{n+1}}{n+1} - \frac{4}{x} \sum_{n=1}^{+\infty} \frac{\left(\frac{1}{2}x\right)^{n+1}}{n+1} + \sum_{n=0}^{+\infty} \frac{\left(\frac{1}{2}x\right)^{n+1}}{n+1}$$
$$= -\left(-\frac{4}{x} + \frac{4}{x^2} + 1\right) \ln\left(-\frac{1}{2}x + 1\right) + \left(-\frac{2}{x} + \frac{3}{2}\right),$$

d'où le résultat.

Corrigé 34.

 $\leftarrow \text{page } 7$

1. C'est une décomposition en éléments simples, tout ce qu'il y a de plus classique. Il suffit de multiplier l'égalité par chacun des dénominateurs possibles du membre de droite, et de faire tendre la variable n vers leurs racines. Cela permet d'éliminer toutes les inconnues sauf une, et de les déterminer. On obtient alors :

$$\forall n \in \mathbb{C} \setminus \{-2, -1\}, \quad \frac{3n+1}{2(n+2)(n+1)} = \frac{5}{2(n+2)} - \frac{1}{n+1}.$$

2. Soit $x \in \left] -\frac{1}{15}, \frac{1}{15} \right[$. On a, d'après la question précédente :

$$\sum_{n=0}^{+\infty} \frac{(-15)^n (3n+1)x^{n+1}}{2(n+2)(n+1)} = \frac{5}{2} \sum_{n=0}^{+\infty} \frac{(-1)^n (15x)^n x}{n+2} - \sum_{n=0}^{+\infty} \frac{(-1)^n (15x)^n x}{n+1}$$
$$= \frac{5}{2} \sum_{n=1}^{+\infty} \frac{(-1)^{n-1} (15x)^{n-1} x}{n+1} - \sum_{n=0}^{+\infty} \frac{(-1)^n (15x)^n x}{n+1}$$

après changement d'indice. On reconnaît alors le développement en série entière en 0 du logarithme, et on en déduit (attention à bien prendre x non nul pour diviser ci-dessous; le cas x=0 étant de toute façon trivial considéré à part):

$$\sum_{n=0}^{+\infty} \frac{(-15)^n (3 n + 1) x^{n+1}}{2 (n+2)(n+1)} = -\frac{1}{90 x} \sum_{n=1}^{+\infty} \frac{(-1)^n (15 x)^{n+1}}{n+1} - \frac{1}{15} \sum_{n=0}^{+\infty} \frac{(-1)^n (15 x)^{n+1}}{n+1}$$
$$= \left(-\frac{1}{90 x} - \frac{1}{15}\right) \ln (15 x + 1) + \left(\frac{1}{6}\right),$$

d'où le résultat.

Corrigé 35.

 \leftarrow page 7

1. Tout d'abord, l'existence de $(a,b,c) \in \mathbb{R}^3$, vérifiant la décomposition de l'énoncé, est assurée par le fait que la famille (1,(2X+3),(2X+3)(2X+2)) soit échelonnée en degré : c'est donc une base de $\mathbb{R}_2[X]$ (et en particulier $2X^2-89X-1$, qui appartient à cet espace vectoriel, est combinaison linéaire des polynômes de cette base). Pour déterminer ces scalaires, nul besoin de développer comme un cochon (et je vous le déconseille fortement) : il suffit d'évaluer l'égalité en des racines des polynômes du membre de droite, c'est-à-dire successivement en $-\frac{3}{2}$, -1. Si l'on évalue l'égalité $2X^2-89X-1=a+b(2X+3)+c(2X+3)(2X+2)$ en $-\frac{3}{2}$, on obtient directement : a=137. Et ainsi de suite. Pour déterminer c, une évaluation en des racines ne simplifie pas la tâche, mais on peut par exemple le déterminer en comparant les coefficients dominants dans chaque membre de l'égalité : c'est moins calculatoire que si on voulait l'exprimer à l'aide des coefficients précédemment déterminés. Cette idée donne ici : 2=4c, et on en déduit $c=\frac{1}{2}$. En conclusion, on a :

$$2X^{2} - 89X - 1 = 137 - 47(2X + 3) + \frac{1}{2}(2X + 3)(2X + 2)$$

2. Soit $x \in \mathbb{R}$. On a, d'après la question précédente :

$$\begin{split} \sum_{n=0}^{+\infty} \frac{\left(2\,n^2 - 89\,n - 1\right)\,\left(-\frac{1}{4}\right)^n\,x^n}{(2\,n + 3)!} &= 137 \sum_{n=0}^{+\infty} \frac{1}{(2\,n + 3)!} \left(-\frac{1}{4}\right)^n\,x^n - 47 \sum_{n=0}^{+\infty} \frac{(2\,n + 3)}{(2\,n + 3)!} \left(-\frac{1}{4}\right)^n\,x^n \\ &+ \frac{1}{2} \sum_{n=0}^{+\infty} \frac{(2\,n + 3)(2\,n + 2)}{(2\,n + 3)!} \left(-\frac{1}{4}\right)^n\,x^n \\ &= 137 \sum_{n=0}^{+\infty} \frac{\left(-\frac{1}{4}\right)^n\,x^n}{(2\,n + 3)!} - 47 \sum_{n=0}^{+\infty} \frac{\left(-\frac{1}{4}\right)^n\,x^n}{(2\,n + 2)!} + \frac{1}{2} \sum_{n=0}^{+\infty} \frac{\left(-\frac{1}{4}\right)^n\,x^n}{(2\,n + 1)!} \\ &= 137 \sum_{n=1}^{+\infty} \frac{\left(-\frac{1}{4}\right)^{n-1}\,x^{n-1}}{(2\,n + 1)!} - 47 \sum_{n=1}^{+\infty} \frac{\left(-\frac{1}{4}\right)^{n-1}\,x^{n-1}}{(2\,n)!} + \frac{1}{2} \sum_{n=0}^{+\infty} \frac{\left(-\frac{1}{4}\right)^n\,x^n}{(2\,n + 1)!} \end{split}$$

après changement d'indice. On reconnaît alors le développement en série entière en 0 de fonctions trigonométriques, après factorisation convenable (attention à bien prendre x non nul pour diviser ci-dessous; le cas x=0 étant de toute façon trivial considéré à part), où nous supposons d'abord $x\geqslant 0$ afin de pouvoir écrire $x=(\sqrt{x})^2$ et faire apparaître un exposant pair:

$$\begin{split} \sum_{n=0}^{+\infty} \frac{\left(2\,n^2 - 89\,n - 1\right)\,\left(-\frac{1}{4}\right)^n\,x^n}{(2\,n + 3)!} &= -\frac{1096}{x^{\frac{3}{2}}} \sum_{n=1}^{+\infty} \frac{\left(-1\right)^n\left(\frac{1}{2}\,\sqrt{x}\right)^{2\,n + 1}}{(2\,n + 1)!} + \frac{188}{x} \sum_{n=1}^{+\infty} \frac{\left(-1\right)^n\left(\frac{1}{2}\,\sqrt{x}\right)^{2\,n}}{(2\,n)!} + \frac{1}{\sqrt{x}} \sum_{n=0}^{+\infty} \frac{\left(-1\right)^n\left(\frac{1}{2}\,\sqrt{x}\right)^{2\,n + 1}}{(2\,n + 1)!} \\ &= \frac{188}{x} \sum_{n=0}^{+\infty} \frac{\left(-1\right)^n\left(\frac{1}{2}\,\sqrt{x}\right)^{2\,n}}{(2\,n)!} + \left(-\frac{1096}{x^{\frac{3}{2}}} + \frac{1}{\sqrt{x}}\right) \sum_{n=0}^{+\infty} \frac{\left(-1\right)^n\left(\frac{1}{2}\,\sqrt{x}\right)^{2\,n + 1}}{(2\,n + 1)!} + \left(\frac{360}{x}\right) \\ &= \frac{188}{x} \cos\left(\frac{1}{2}\,\sqrt{x}\right) + \left(-\frac{1096}{x^{\frac{3}{2}}} + \frac{1}{\sqrt{x}}\right) \sin\left(\frac{1}{2}\,\sqrt{x}\right) + \left(\frac{360}{x}\right), \end{split}$$

d'où le résultat si x est positif. Si x est négatif, on écrit $x = -(-x) = -(\sqrt{-x})^2$, et un raisonnement analogue à celui ci-dessus aboutit à:

$$\sum_{n=0}^{+\infty} \frac{\left(2\,n^2 - 89\,n - 1\right)\left(-\frac{1}{4}\right)^n\,x^n}{(2\,n + 3)!} = \frac{188}{x} \sum_{n=0}^{+\infty} \frac{\left(\frac{1}{2}\,\sqrt{-x}\right)^{2\,n}}{(2\,n)!} + \left(-\frac{1096}{\sqrt{-x}x} + \frac{1}{\sqrt{-x}}\right) \sum_{n=0}^{+\infty} \frac{\left(\frac{1}{2}\,\sqrt{-x}\right)^{2\,n + 1}}{(2\,n + 1)!} + \left(\frac{360}{x}\right) = \frac{188}{x} \cosh\left(\frac{1}{2}\,\sqrt{-x}\right) + \left(-\frac{1096}{\sqrt{-x}x} + \frac{1}{\sqrt{-x}}\right) \sinh\left(\frac{1}{2}\,\sqrt{-x}\right) + \left(\frac{360}{x}\right),$$

d'où le résultat.

Corrigé 36.

 \leftarrow page 7

1. C'est une décomposition en éléments simples, tout ce qu'il y a de plus classique. Le fait d'avoir un numérateur de degré 2 au numérateur ne change rien à la méthode. Il suffit de multiplier l'égalité par chacun des dénominateurs possibles du membre de droite, et de faire tendre la variable n vers leurs racines. Cela permet d'éliminer toutes les inconnues sauf une, et de les déterminer. On obtient alors:

$$\forall n \in \mathbb{C} \setminus \left\{-\frac{3}{2}, -\frac{1}{2}, -1\right\}, \quad \frac{2\,n^2 + 2\,n - 1}{(2\,n + 3)(2\,n + 1)(n + 1)} = \frac{1}{2\,(2\,n + 3)} - \frac{3}{2\,(2\,n + 1)} + \frac{1}{n + 1}.$$

2. Soit $x \in \left] -\frac{1}{4}, \frac{1}{4} \right[$. On a, d'après la question précédente :

$$\sum_{n=0}^{+\infty} \frac{\left(2\,n^2 + 2\,n - 1\right)\left(-4\right)^n\,x^n}{(2\,n + 3)(2\,n + 1)(n + 1)} = \sum_{n=0}^{+\infty} \frac{\left(-1\right)^n\left(4\,x\right)^n}{n + 1} + \frac{1}{2}\sum_{n=0}^{+\infty} \frac{\left(-1\right)^n\left(4\,x\right)^n}{2\,n + 3} - \frac{3}{2}\sum_{n=0}^{+\infty} \frac{\left(-1\right)^n\left(4\,x\right)^n}{2\,n + 1}$$
$$= \sum_{n=0}^{+\infty} \frac{\left(-1\right)^n\left(4\,x\right)^n}{n + 1} + \frac{1}{2}\sum_{n=1}^{+\infty} \frac{\left(-1\right)^{n-1}\left(4\,x\right)^{n-1}}{2\,n + 1} - \frac{3}{2}\sum_{n=0}^{+\infty} \frac{\left(-1\right)^n\left(4\,x\right)^n}{2\,n + 1}$$

après changement d'indice. On reconnaît alors le développement en série entière en 0 du logarithme et de l'arc tangente (à condition d'écrire $x=(\sqrt{x})^2$ si x est positif, pour faire apparaître une puissance paire; si x est négatif alors nous écrirons $x=-(-x)=-(\sqrt{-x})^2$ et il faudra encore un peu travailler). (attention à bien prendre x non nul pour diviser ci-dessous; le cas x=0 étant de toute façon trivial considéré à part):

$$\begin{split} \sum_{n=0}^{+\infty} \frac{\left(2\,n^2 + 2\,n - 1\right)\left(-4\right)^n x^n}{(2\,n + 3)(2\,n + 1)(n + 1)} &= \frac{1}{4\,x} \sum_{n=0}^{+\infty} \frac{\left(-1\right)^n \left(4\,x\right)^{n+1}}{n + 1} - \frac{1}{16\,x^{\frac{3}{2}}} \sum_{n=1}^{+\infty} \frac{\left(-1\right)^n \left(2\,\sqrt{x}\right)^{2\,n + 1}}{2\,n + 1} - \frac{3}{4\,\sqrt{x}} \sum_{n=0}^{+\infty} \frac{\left(-1\right)^n \left(2\,\sqrt{x}\right)^{2\,n + 1}}{2\,n + 1} \\ &= \frac{1}{4\,x} \ln\left(4\,x + 1\right) + \left(-\frac{3}{4\,\sqrt{x}} - \frac{1}{16\,x^{\frac{3}{2}}}\right) \arctan\left(2\,\sqrt{x}\right) + \left(\frac{1}{8\,x}\right), \end{split}$$

d'où le résultat si x est positif. Si x est négatif, on écrit $x = -(-x) = -(\sqrt{-x})^2$, et un raisonnement analogue à celui ci-dessus aboutit à :

$$\sum_{n=0}^{+\infty} \frac{\left(2\,n^2+2\,n-1\right) \left(-4\right)^n x^n}{(2\,n+3)(2\,n+1)(n+1)} = \frac{1}{4\,x} \ln\left(4\,x+1\right) + \left(-\frac{3}{4\,\sqrt{-x}} - \frac{1}{16\,\sqrt{-x}x}\right) \frac{1}{2} \, \ln\left(-\frac{2\,\sqrt{-x}+1}{2\,\sqrt{-x}-1}\right) + \left(\frac{1}{8\,x}\right),$$

d'où le résultat.

Remarque. Pour calculer $\sum_{n=0}^{+\infty} \frac{x^{2n+1}}{2n+1}$ pour tout $x \in]-1,1[$, on remarque qu'on obtient cette somme en

intégrant terme à terme $x \mapsto \sum_{n=0}^{+\infty} x^{2n}$ (ce qui est possible parce qu'il s'agit d'une somme de série entière de ravon de convergence 1):

$$\sum_{n=0}^{+\infty} \frac{x^{2n+1}}{2n+1} = \sum_{n=0}^{+\infty} \int_0^x t^{2n} dt = \int_0^x \sum_{n=0}^{+\infty} t^{2n} dt = \int_0^x \frac{dt}{1-t^2} = \frac{1}{2} \int_0^x \left(\frac{1}{1-t} + \frac{1}{1+t} \right) dt = \frac{1}{2} \ln \left(\frac{1+x}{1-x} \right).$$

Corrigé 37.

 \leftarrow page 7

1. C'est une décomposition en éléments simples, tout ce qu'il y a de plus classique. Le fait d'avoir un numérateur de degré 2 au numérateur ne change rien à la méthode. Il suffit de multiplier l'égalité par chacun des dénominateurs possibles du membre de droite, et de faire tendre la variable n vers leurs racines. Cela permet d'éliminer toutes les inconnues sauf une, et de les déterminer. On obtient alors:

$$\forall n \in \mathbb{C} \setminus \{-3, -2, -1\}, \quad \frac{n^2 + 2n - 1}{(n+3)(n+2)(n+1)} = \frac{1}{n+3} + \frac{1}{n+2} - \frac{1}{n+1}.$$

2. Soit $x \in]-1,1[$. On a, d'après la question précédente :

$$\sum_{n=0}^{+\infty} \frac{\left(n^2 + 2n - 1\right)(-1)^n x^{2n+1}}{(n+3)(n+2)(n+1)} = \sum_{n=0}^{+\infty} \frac{\left(-1\right)^n \left(x^2\right)^n x}{n+3} + \sum_{n=0}^{+\infty} \frac{\left(-1\right)^n \left(x^2\right)^n x}{n+2} - \sum_{n=0}^{+\infty} \frac{\left(-1\right)^n \left(x^2\right)^n x}{n+1}$$

$$= \sum_{n=2}^{+\infty} \frac{\left(-1\right)^{n-2} \left(x^2\right)^{n-2} x}{n+1} + \sum_{n=1}^{+\infty} \frac{\left(-1\right)^{n-1} \left(x^2\right)^{n-1} x}{n+1} - \sum_{n=0}^{+\infty} \frac{\left(-1\right)^n \left(x^2\right)^n x}{n+1}$$

après changement d'indice. On reconnaît alors le développement en série entière en 0 du logarithme, et on en déduit (attention à bien prendre x non nul pour diviser ci-dessous; le cas x=0 étant de toute façon trivial considéré à part):

$$\sum_{n=0}^{+\infty} \frac{\left(n^2 + 2n - 1\right)(-1)^n x^{2n+1}}{(n+3)(n+2)(n+1)} = \frac{1}{x^5} \sum_{n=2}^{+\infty} \frac{\left(-1\right)^n \left(x^2\right)^{n+1}}{n+1} - \frac{1}{x^3} \sum_{n=1}^{+\infty} \frac{\left(-1\right)^n \left(x^2\right)^{n+1}}{n+1} - \frac{1}{x} \sum_{n=0}^{+\infty} \frac{\left(-1\right)^n \left(x^2\right)^{n+1}}{n+1} = \left(-\frac{1}{x} - \frac{1}{x^3} + \frac{1}{x^5}\right) \ln\left(x^2 + 1\right) + \left(\frac{3}{2x} - \frac{1}{x^3}\right),$$

d'où le résultat.

Corrigé 38.

 \leftarrow page 7

1. Tout d'abord, l'existence de $(a,b,c) \in \mathbb{R}^3$, vérifiant la décomposition de l'énoncé, est assurée par le fait que la famille (1,(X+1),(X+1)X) soit échelonnée en degré : c'est donc une base de $\mathbb{R}_2[X]$ (et en particulier $5X^2+4X+1$, qui appartient à cet espace vectoriel, est combinaison linéaire des polynômes de cette base). Pour déterminer ces scalaires, nul besoin de développer comme un cochon (et je vous le déconseille fortement): il suffit d'évaluer l'égalité en des racines des polynômes du membre de droite, c'est-à-dire successivement en -1,0. Si l'on évalue l'égalité $5X^2+4X+1=a+b(X+1)+c(X+1)X$ en -1, on obtient directement : a=2. Et ainsi de suite. Pour déterminer c, une évaluation en des racines ne simplifie pas la tâche, mais on peut par exemple le déterminer en comparant les coefficients dominants dans chaque membre de l'égalité : c'est moins calculatoire que si on voulait l'exprimer à l'aide des coefficients précédemment déterminés. Cette idée donne ici : 5=c. En conclusion, on a :

$$5X^2 + 4X + 1 = 2 - (X + 1) + 5(X + 1)X.$$

2. Soit $x \in \mathbb{R}$. On a, d'après la question précédente :

$$\begin{split} \sum_{n=0}^{+\infty} \frac{\left(5\,n^2 + 4\,n + 1\right)x^{2\,n}}{(n+1)!} &= 2\sum_{n=0}^{+\infty} \frac{1}{(n+1)!}x^{2\,n} - \sum_{n=0}^{+\infty} \frac{(n+1)}{(n+1)!}x^{2\,n} \\ &+ 5\sum_{n=0}^{+\infty} \frac{(n+1)n}{(n+1)!}x^{2\,n} \\ &= 2\sum_{n=0}^{+\infty} \frac{x^{2\,n}}{(n+1)!} - \sum_{n=0}^{+\infty} \frac{x^{2\,n}}{n!} + 5\sum_{n=1}^{+\infty} \frac{x^{2\,n}}{(n-1)!} \\ &= 2\sum_{n=1}^{+\infty} \frac{x^{2\,n-2}}{n!} - \sum_{n=0}^{+\infty} \frac{x^{2\,n}}{n!} + 5\sum_{n=0}^{+\infty} \frac{x^{2\,n+2}}{n!} \end{split}$$

après changement d'indice. On reconnaît alors le développement en série entière en 0 de l'exponentielle, après factorisation convenable (attention à bien prendre x non nul pour diviser ci-dessous; le cas x=0 étant de toute façon trivial considéré à part):

$$\sum_{n=0}^{+\infty} \frac{(5n^2 + 4n + 1)x^{2n}}{(n+1)!} = \frac{2}{x^2} \sum_{n=1}^{+\infty} \frac{(x^2)^n}{n!} - \sum_{n=0}^{+\infty} \frac{(x^2)^n}{n!} + 5x^2 \sum_{n=0}^{+\infty} \frac{(x^2)^n}{n!}$$
$$= \left(\frac{2}{x^2} - 1 + 5x^2\right) \sum_{n=0}^{+\infty} \frac{(x^2)^n}{n!} + \left(-\frac{2}{x^2}\right)$$
$$= \left(\frac{2}{x^2} - 1 + 5x^2\right) e^{(x^2)} + \left(-\frac{2}{x^2}\right),$$

d'où le résultat.

Corrigé 39.

 \leftarrow page 7

1. C'est une décomposition en éléments simples, tout ce qu'il y a de plus classique. Il suffit de multiplier l'égalité par chacun des dénominateurs possibles du membre de droite, et de faire tendre la variable n vers leurs racines. Cela permet d'éliminer toutes les inconnues sauf une, et de les déterminer. On obtient alors :

$$\forall n \in \mathbb{C} \setminus \left\{ -\frac{1}{2}, -1 \right\}, \quad \frac{7}{(2n+1)(n+1)} = \frac{14}{2n+1} - \frac{7}{n+1}.$$

2. Soit $x \in]-\sqrt{3}, \sqrt{3}[$. On a, d'après la question précédente :

$$\sum_{n=0}^{+\infty} \frac{7\left(\frac{1}{3}\right)^n x^{2n+1}}{(2n+1)(n+1)} = -7\sum_{n=0}^{+\infty} \frac{\left(\frac{1}{3}x^2\right)^n x}{n+1} + 14\sum_{n=0}^{+\infty} \frac{\left(\sqrt{\frac{1}{3}}x\right)^{2n} x}{2n+1}$$

On reconnaît alors le développement en série entière en 0 du logarithme et d'une somme de série entière non usuelle, mais qu'on sait calculer en intégrant terme à terme une série géométrique; nous le faisons en

remarque plus bas, et admettons provisoirement que $\sum_{n=0}^{+\infty} \frac{x^{2n+1}}{2n+1} = \frac{1}{2} \ln \left(\frac{1+x}{1-x} \right)$ pour tout $x \in]-1,1[$.

Alors (attention à bien prendre x non nul pour diviser ci-dessous ; le cas x=0 étant de toute façon trivial considéré à part) :

$$\sum_{n=0}^{+\infty} \frac{7 \left(\frac{1}{3}\right)^n x^{2n+1}}{(2n+1)(n+1)} = -\frac{21}{x} \sum_{n=0}^{+\infty} \frac{\left(\frac{1}{3}x^2\right)^{n+1}}{n+1} + 42\sqrt{\frac{1}{3}} \sum_{n=0}^{+\infty} \frac{\left(\sqrt{\frac{1}{3}}x\right)^{2n+1}}{2n+1}$$
$$= \frac{21}{x} \ln\left(-\frac{1}{3}x^2 + 1\right) + 42\sqrt{\frac{1}{3}} \frac{1}{2} \ln\left(-\frac{\sqrt{\frac{1}{3}}x + 1}{\sqrt{\frac{1}{3}}x - 1}\right),$$

d'où le résultat.

Remarque. Pour calculer $\sum_{n=0}^{+\infty} \frac{x^{2n+1}}{2n+1}$ pour tout $x \in]-1,1[$, on remarque qu'on obtient cette somme en intégrant terme à terme $x \mapsto \sum_{n=0}^{+\infty} x^{2n}$ (ce qui est possible parce qu'il s'agit d'une somme de série entière de rayon de convergence 1):

$$\sum_{n=0}^{+\infty} \frac{x^{2n+1}}{2n+1} = \sum_{n=0}^{+\infty} \int_0^x t^{2n} dt = \int_0^x \sum_{n=0}^{+\infty} t^{2n} dt = \int_0^x \frac{dt}{1-t^2} = \frac{1}{2} \int_0^x \left(\frac{1}{1-t} + \frac{1}{1+t} \right) dt = \frac{1}{2} \ln \left(\frac{1+x}{1-x} \right).$$

Corrigé 40.

 \leftarrow page 8

- 1. On a trivialement a = -1 et b = 2.
- 2. Soit $x \in]-2,2[$. On a, d'après la question précédente :

$$\sum_{n=0}^{+\infty} \left(\frac{1}{2}\right)^n (2n-1)x^n = -\sum_{n=0}^{+\infty} \left(\frac{1}{2}\right)^n x^n + 2\sum_{n=0}^{+\infty} n \left(\frac{1}{2}\right)^n x^n$$

$$= -\sum_{n=0}^{+\infty} \left(\frac{1}{2}x\right)^n + 2\sum_{n=1}^{+\infty} n \left(\frac{1}{2}x\right)^n$$

$$= -\sum_{n=0}^{+\infty} \left(\frac{1}{2}x\right)^n + x\sum_{n=1}^{+\infty} n \left(\frac{1}{2}x\right)^{n-1}$$

On reconnaît alors le développement en série entière en 0 de l'application $x \mapsto \frac{1}{1-x} = \sum_{n=0}^{+\infty} x^n$, qu'on a dérivée terme à terme et évaluée en $\frac{1}{2}x$. Plus précisément, pour tout $x \in]-1,1[$, on a:

$$\frac{1}{1-x} = \sum_{n=0}^{+\infty} x^n, \quad \frac{1}{(1-x)^2} = \sum_{n=1}^{+\infty} nx^{n-1}.$$

On en déduit :

$$\sum_{n=0}^{+\infty} \left(\frac{1}{2}\right)^n (2n-1)x^n = -\frac{1}{1-\frac{1}{2}x} + \frac{x}{\left(1-\frac{1}{2}x\right)^2},$$

d'où le résultat.

Corrigé 41.

← page 8

1. C'est une décomposition en éléments simples, tout ce qu'il y a de plus classique. Il suffit de multiplier l'égalité par chacun des dénominateurs possibles du membre de droite, et de faire tendre la variable n vers leurs racines. Cela permet d'éliminer toutes les inconnues sauf une, et de les déterminer. On obtient alors:

$$\forall n \in \mathbb{C} \setminus \left\{-\frac{1}{2}, -1\right\}, \quad \frac{4\,n}{3\,(2\,n+1)(n+1)} = -\frac{4}{3\,(2\,n+1)} + \frac{4}{3\,(n+1)}.$$

2. Soit $x \in]-1,1[$. On a, d'après la question précédente :

$$\sum_{n=0}^{+\infty} \frac{4 \, (-1)^n \, nx^{2n}}{3 \, (2 \, n+1)(n+1)} = \frac{4}{3} \sum_{n=0}^{+\infty} \frac{\left(-1\right)^n \left(x^2\right)^n}{n+1} - \frac{4}{3} \sum_{n=0}^{+\infty} \frac{\left(-1\right)^n x^{2n}}{2 \, n+1}$$

On reconnaît alors le développement en série entière en 0 du logarithme et de l'arc tangente (attention à bien prendre x non nul pour diviser ci-dessous; le cas x = 0 étant de toute façon trivial considéré à part):

$$\sum_{n=0}^{+\infty} \frac{4 (-1)^n nx^{2n}}{3 (2n+1)(n+1)} = \frac{4}{3 x^2} \sum_{n=0}^{+\infty} \frac{(-1)^n (x^2)^{n+1}}{n+1} - \frac{4}{3 x} \sum_{n=0}^{+\infty} \frac{(-1)^n x^{2n+1}}{2 n+1}$$
$$= \frac{4}{3 x^2} \ln (x^2+1) - \frac{4}{3 x} \arctan (x),$$

d'où le résultat.

Corrigé 42.

1. C'est une décomposition en éléments simples, tout ce qu'il y a de plus classique. Il suffit de multiplier l'égalité par chacun des dénominateurs possibles du membre de droite, et de faire tendre la variable n vers leurs racines. Cela permet d'éliminer toutes les inconnues sauf une, et de les déterminer. On obtient alors :

$$\forall n \in \mathbb{C} \setminus \{-3, -2\}, \quad \frac{n-4}{3(n+3)(n+2)} = \frac{7}{3(n+3)} - \frac{2}{n+2}.$$

2. Soit $x \in \left] -\frac{1}{1161}, \frac{1}{1161} \right[$. On a, d'après la question précédente :

$$\sum_{n=0}^{+\infty} \frac{1161^n (n-4)x^{n+1}}{3(n+3)(n+2)} = \frac{7}{3} \sum_{n=0}^{+\infty} \frac{(1161x)^n x}{n+3} - 2 \sum_{n=0}^{+\infty} \frac{(1161x)^n x}{n+2}$$
$$= \frac{7}{3} \sum_{n=2}^{+\infty} \frac{(1161x)^{n-2} x}{n+1} - 2 \sum_{n=1}^{+\infty} \frac{(1161x)^{n-1} x}{n+1}$$

après changement d'indice. On reconnaît alors le développement en série entière en 0 du logarithme, et on en déduit (attention à bien prendre x non nul pour diviser ci-dessous; le cas x=0 étant de toute façon trivial considéré à part):

$$\begin{split} \sum_{n=0}^{+\infty} \frac{1161^n (n-4) x^{n+1}}{3 \left(n+3\right) (n+2)} &= \frac{7}{4694808843 \, x^2} \sum_{n=2}^{+\infty} \frac{\left(1161 \, x\right)^{n+1}}{n+1} - \frac{2}{1347921 \, x} \sum_{n=1}^{+\infty} \frac{\left(1161 \, x\right)^{n+1}}{n+1} \\ &= - \left(-\frac{2}{1347921 \, x} + \frac{7}{4694808843 \, x^2} \right) \ln \left(-1161 \, x+1 \right) + \left(-\frac{7}{4043763 \, x} + \frac{5}{6966} \right), \end{split}$$

d'où le résultat.

Corrigé 43.

1. Tout d'abord, l'existence de (a, b, c) ∈ R³, vérifiant la décomposition de l'énoncé, est assurée par le fait que la famille (1, X, X(X − 1)) soit échelonnée en degré: c'est donc une base de R₂[X] (et en particulier 10X² + 30X − 1, qui appartient à cet espace vectoriel, est combinaison linéaire des polynômes de cette base). Pour déterminer ces scalaires, nul besoin de développer comme un cochon (et je vous le déconseille fortement): il suffit d'évaluer l'égalité en des racines des polynômes du membre de droite, c'est-à-dire successivement en 0,1. Si l'on évalue l'égalité 10X² + 30X − 1 = a + bX + cX(X − 1) en 0, on obtient directement: a = −1. Et ainsi de suite. Pour déterminer c, une évaluation en des racines ne simplifie pas la tâche, mais on peut par exemple le déterminer en comparant les coefficients dominants dans chaque membre de l'égalité: c'est moins calculatoire que si on voulait l'exprimer à l'aide des coefficients précédemment déterminés. Cette idée donne ici: 10 = c. En conclusion, on a:

$$10X^2 + 30X - 1 = -1 + 40X + 10X(X - 1).$$

 \leftarrow page 8

2. Soit $x \in \left] - \sqrt{\frac{1}{3}}, \sqrt{\frac{1}{3}} \right[$. On a, d'après la question précédente :

$$\begin{split} \sum_{n=0}^{+\infty} \left(10\,n^2 + 30\,n - 1\right) \left(-3\right)^n x^{2\,n+1} &= -\sum_{n=0}^{+\infty} \left(-3\right)^n x^{2\,n+1} + 40 \sum_{n=0}^{+\infty} n\left(-3\right)^n x^{2\,n+1} + 10 \sum_{n=0}^{+\infty} n(n-1)\left(-3\right)^n x^{2\,n+1} \\ &= -x \sum_{n=0}^{+\infty} \left(-3\,x^2\right)^n + 40\,x \sum_{n=1}^{+\infty} n\left(-3\,x^2\right)^n + 10\,x \sum_{n=2}^{+\infty} n(n-1)\left(-3\,x^2\right)^n \\ &= -x \sum_{n=0}^{+\infty} \left(-3\,x^2\right)^n - 120\,x^3 \sum_{n=1}^{+\infty} n\left(-3\,x^2\right)^{n-1} + 90\,x^5 \sum_{n=2}^{+\infty} n(n-1)\left(-3\,x^2\right)^{n-2} \end{split}$$

On reconnaît alors le développement en série entière en 0 de l'application $x \mapsto \frac{1}{1-x} = \sum_{n=0}^{+\infty} x^n$, qu'on a dérivée terme à terme et évaluée en $-3x^2$. Plus précisément, pour tout $x \in]-1,1[$, on a :

$$\frac{1}{1-x} = \sum_{n=0}^{+\infty} x^n, \quad \frac{1}{(1-x)^2} = \sum_{n=1}^{+\infty} nx^{n-1}, \quad \frac{2}{(1-x)^3} = \sum_{n=2}^{+\infty} n(n-1)x^{n-2}.$$

On en déduit :

$$\sum_{n=0}^{+\infty} \left(10 \, n^2 + 30 \, n - 1 \right) \left(-3 \right)^n x^{2 \, n + 1} = -\frac{x}{1 + 3 x^2} - \frac{120 \, x^3}{\left(1 + 3 x^2 \right)^2} + \frac{180 \, x^5}{\left(1 + 3 x^2 \right)^3},$$

d'où le résultat.

Corrigé 44.

1. Tout d'abord, l'existence de $(a,b,c) \in \mathbb{R}^3$, vérifiant la décomposition de l'énoncé, est assurée par le fait que la famille (1,(2X),(2X)(2X-1)) soit échelonnée en degré : c'est donc une base de $\mathbb{R}_2[X]$ (et en particulier $13X^2-2X-3$, qui appartient à cet espace vectoriel, est combinaison linéaire des polynômes de cette base). Pour déterminer ces scalaires, nul besoin de développer comme un cochon (et je vous le déconseille fortement) : il suffit d'évaluer l'égalité en des racines des polynômes du membre de droite, c'est-à-dire successivement en $0, \frac{1}{2}$. Si l'on évalue l'égalité $13X^2-2X-3=a+b(2X)+c(2X)(2X-1)$ en 0, on obtient directement : a=-3. Et ainsi de suite. Pour déterminer c, une évaluation en des racines ne simplifie pas la tâche, mais on peut par exemple le déterminer en comparant les coefficients dominants dans chaque membre de l'égalité : c'est moins calculatoire que si on voulait l'exprimer à l'aide des coefficients précédemment déterminés. Cette idée donne ici : 13=4c, et on en déduit $c=\frac{13}{4}$. En conclusion, on a :

$$13X^{2} - 2X - 3 = -3 + \frac{9}{4}(2X) + \frac{13}{4}(2X)(2X - 1).$$

2. Soit $x \in \mathbb{R}$. On a, d'après la question précédente :

$$\begin{split} \sum_{n=0}^{+\infty} \frac{\left(13\,n^2 - 2\,n - 3\right)\left(-2\right)^n x^{2\,n}}{(2\,n)!} &= -3\sum_{n=0}^{+\infty} \frac{1}{(2\,n)!} \left(-2\right)^n x^{2\,n} + \frac{9}{4} \sum_{n=0}^{+\infty} \frac{(2\,n)}{(2\,n)!} \left(-2\right)^n x^{2\,n} \\ &+ \frac{13}{4} \sum_{n=0}^{+\infty} \frac{(2\,n)(2\,n - 1)}{(2\,n)!} \left(-2\right)^n x^{2\,n} \\ &= -3\sum_{n=0}^{+\infty} \frac{(-2)^n \, x^{2\,n}}{(2\,n)!} + \frac{9}{4} \sum_{n=1}^{+\infty} \frac{(-2)^n \, x^{2\,n}}{(2\,n - 1)!} + \frac{13}{4} \sum_{n=1}^{+\infty} \frac{(-2)^n \, x^{2\,n}}{(2\,n - 2)!} \\ &= -3\sum_{n=0}^{+\infty} \frac{(-2)^n \, x^{2\,n}}{(2\,n)!} + \frac{9}{4} \sum_{n=0}^{+\infty} \frac{(-2)^{n+1} \, x^{2\,n+2}}{(2\,n + 1)!} + \frac{13}{4} \sum_{n=0}^{+\infty} \frac{(-2)^{n+1} \, x^{2\,n+2}}{(2\,n)!} \end{split}$$

après changement d'indice. On reconnaît alors le développement en série entière en 0 de fonctions trigonométriques, après factorisation convenable :

$$\sum_{n=0}^{+\infty} \frac{\left(13\,n^2 - 2\,n - 3\right)\left(-2\right)^n x^{2\,n}}{(2\,n)!} = -3\sum_{n=0}^{+\infty} \frac{\left(-1\right)^n \left(\sqrt{2}x\right)^{2\,n}}{(2\,n)!} - \frac{9}{4}\,\sqrt{2}x\sum_{n=0}^{+\infty} \frac{\left(-1\right)^n \left(\sqrt{2}x\right)^{2\,n+1}}{(2\,n+1)!} - \frac{13}{2}\,x^2\sum_{n=0}^{+\infty} \frac{\left(-1\right)^n \left(\sqrt{2}x\right)^{2\,n}}{(2\,n)!}$$

$$= \left(-3 - \frac{13}{2}\,x^2\right)\sum_{n=0}^{+\infty} \frac{\left(-1\right)^n \left(\sqrt{2}x\right)^{2\,n}}{(2\,n)!} - \frac{9}{4}\,\sqrt{2}x\sum_{n=0}^{+\infty} \frac{\left(-1\right)^n \left(\sqrt{2}x\right)^{2\,n+1}}{(2\,n+1)!}$$

$$= \left(-3 - \frac{13}{2}\,x^2\right)\cos\left(\sqrt{2}x\right) - \frac{9}{4}\,\sqrt{2}x\sin\left(\sqrt{2}x\right),$$

d'où le résultat.

Corrigé 45.

 \leftarrow page 8

- 1. On a trivialement a = -3 et b = 2.
- 2. Soit $x \in \left] \sqrt{\frac{1}{7}}, \sqrt{\frac{1}{7}} \right[$. On a, d'après la question précédente :

$$\sum_{n=0}^{+\infty} 7^n (2n-3) x^{2n+1} = -3 \sum_{n=0}^{+\infty} 7^n x^{2n+1} + 2 \sum_{n=0}^{+\infty} n 7^n x^{2n+1}$$

$$= -3 x \sum_{n=0}^{+\infty} (7x^2)^n + 2 x \sum_{n=1}^{+\infty} n (7x^2)^n$$

$$= -3 x \sum_{n=0}^{+\infty} (7x^2)^n + 14 x^3 \sum_{n=1}^{+\infty} n (7x^2)^{n-1}$$

On reconnaît alors le développement en série entière en 0 de l'application $x \mapsto \frac{1}{1-x} = \sum_{n=0}^{+\infty} x^n$, qu'on a dérivée terme à terme et évaluée en $7x^2$. Plus précisément, pour tout $x \in]-1,1[$, on a:

$$\frac{1}{1-x} = \sum_{n=0}^{+\infty} x^n, \quad \frac{1}{(1-x)^2} = \sum_{n=1}^{+\infty} nx^{n-1}.$$

On en déduit :

$$\sum_{n=0}^{+\infty} 7^n (2n-3) x^{2n+1} = -\frac{3x}{1-7x^2} + \frac{14x^3}{(1-7x^2)^2},$$

d'où le résultat.

Corrigé 46.

 \leftarrow page 9

1. C'est une décomposition en éléments simples, tout ce qu'il y a de plus classique. Il suffit de multiplier l'égalité par chacun des dénominateurs possibles du membre de droite, et de faire tendre la variable n vers leurs racines. Cela permet d'éliminer toutes les inconnues sauf une, et de les déterminer. On obtient alors :

$$\forall n \in \mathbb{C} \setminus \left\{-\frac{1}{2}, -3, -2\right\}, \quad \frac{2}{(2\,n+1)(n+3)(n+2)} = \frac{8}{15\,(2\,n+1)} + \frac{2}{5\,(n+3)} - \frac{2}{3\,(n+2)}.$$

2. Soit $x \in]-1,1[$. On a, d'après la question précédente :

$$\sum_{n=0}^{+\infty} \frac{2 x^{2n}}{(2n+1)(n+3)(n+2)} = \frac{2}{5} \sum_{n=0}^{+\infty} \frac{\left(x^2\right)^n}{n+3} - \frac{2}{3} \sum_{n=0}^{+\infty} \frac{\left(x^2\right)^n}{n+2} + \frac{8}{15} \sum_{n=0}^{+\infty} \frac{x^{2n}}{2n+1}$$

$$= \frac{2}{5} \sum_{n=2}^{+\infty} \frac{\left(x^2\right)^{n-2}}{n+1} - \frac{2}{3} \sum_{n=1}^{+\infty} \frac{\left(x^2\right)^{n-1}}{n+1} + \frac{8}{15} \sum_{n=0}^{+\infty} \frac{x^{2n}}{2n+1}$$

après changement d'indice. On reconnaît alors le développement en série entière en 0 du logarithme et d'une somme de série entière non usuelle, mais qu'on sait calculer en intégrant terme à terme une série géométrique; nous le faisons en remarque plus bas, et admettons provisoirement que $\sum_{n=0}^{+\infty} \frac{x^{2n+1}}{2n+1} = \frac{1}{2n+1}$

 $\frac{1}{2}\ln\left(\frac{1+x}{1-x}\right)$ pour tout $x\in]-1,1[$. Alors (attention à bien prendre x non nul pour diviser ci-dessous; le cas x=0 étant de toute façon trivial considéré à part):

$$\sum_{n=0}^{+\infty} \frac{2 x^{2 n}}{(2 n+1)(n+3)(n+2)} = \frac{2}{5 x^6} \sum_{n=2}^{+\infty} \frac{\left(x^2\right)^{n+1}}{n+1} - \frac{2}{3 x^4} \sum_{n=1}^{+\infty} \frac{\left(x^2\right)^{n+1}}{n+1} + \frac{8}{15 x} \sum_{n=0}^{+\infty} \frac{x^{2 n+1}}{2 n+1}$$

$$= -\left(-\frac{2}{3 x^4} + \frac{2}{5 x^6}\right) \ln\left(-x^2+1\right) + \frac{8}{15 x} \frac{1}{2} \ln\left(-\frac{x+1}{x-1}\right) + \left(\frac{7}{15 x^2} - \frac{2}{5 x^4}\right),$$

d'où le résultat.

Remarque. Pour calculer $\sum_{n=0}^{+\infty} \frac{x^{2n+1}}{2n+1}$ pour tout $x \in]-1,1[$, on remarque qu'on obtient cette somme en intégrant terme à terme $x \mapsto \sum_{n=0}^{+\infty} x^{2n}$ (ce qui est possible parce qu'il s'agit d'une somme de série entière de rayon de convergence 1):

$$\sum_{n=0}^{+\infty} \frac{x^{2n+1}}{2n+1} = \sum_{n=0}^{+\infty} \int_0^x t^{2n} dt = \int_0^x \sum_{n=0}^{+\infty} t^{2n} dt = \int_0^x \frac{dt}{1-t^2} = \frac{1}{2} \int_0^x \left(\frac{1}{1-t} + \frac{1}{1+t} \right) dt = \frac{1}{2} \ln \left(\frac{1+x}{1-x} \right).$$

Corrigé 47.

1. C'est une décomposition en éléments simples, tout ce qu'il y a de plus classique. Il suffit de multiplier l'égalité par chacun des dénominateurs possibles du membre de droite, et de faire tendre la variable n vers leurs racines. Cela permet d'éliminer toutes les inconnues sauf une, et de les déterminer. On obtient alors :

$$\forall n \in \mathbb{C} \setminus \left\{ -\frac{3}{2}, -1 \right\}, \quad \frac{5\,n}{4\,(2\,n+3)(n+1)} = \frac{15}{4\,(2\,n+3)} - \frac{5}{4\,(n+1)}.$$

2. Soit $x \in]-2,2[$. On a, d'après la question précédente :

$$\sum_{n=0}^{+\infty} \frac{5\left(\frac{1}{2}\right)^n nx^{n+1}}{4\left(2n+3\right)(n+1)} = -\frac{5}{4} \sum_{n=0}^{+\infty} \frac{\left(\frac{1}{2}x\right)^n x}{n+1} + \frac{15}{4} \sum_{n=0}^{+\infty} \frac{\left(\frac{1}{2}x\right)^n x}{2n+3}$$
$$= -\frac{5}{4} \sum_{n=0}^{+\infty} \frac{\left(\frac{1}{2}x\right)^n x}{n+1} + \frac{15}{4} \sum_{n=1}^{+\infty} \frac{\left(\frac{1}{2}x\right)^{n-1} x}{2n+1}$$

après changement d'indice. On reconnaît alors le développement en série entière en 0 du logarithme et d'une somme de série entière non usuelle, mais qu'on sait calculer en intégrant terme à terme une série géométrique; nous le faisons en remarque plus bas, et admettons provisoirement que $\sum_{n=0}^{+\infty} \frac{x^{2n+1}}{2n+1} = \frac{1}{2n+1} = \frac{1}{2$

 $\frac{1}{2}\ln\left(\frac{1+x}{1-x}\right)$ pour tout $x \in]-1,1[$. Alors (attention à bien prendre x non nul pour diviser ci-dessous; le cas x=0 étant de toute façon trivial considéré à part):

$$\sum_{n=0}^{+\infty} \frac{5\left(\frac{1}{2}\right)^n nx^{n+1}}{4\left(2n+3\right)(n+1)} = -\frac{5}{2} \sum_{n=0}^{+\infty} \frac{\left(\frac{1}{2}x\right)^{n+1}}{n+1} + \frac{15\sqrt{\frac{1}{2}}}{\sqrt{x}} \sum_{n=1}^{+\infty} \frac{\left(\sqrt{\frac{1}{2}}\sqrt{x}\right)^{2n+1}}{2n+1}$$

$$= \frac{5}{2} \ln\left(-\frac{1}{2}x+1\right) + \frac{15\sqrt{\frac{1}{2}}}{\sqrt{x}} \frac{1}{2} \ln\left(-\frac{\sqrt{\frac{1}{2}}\sqrt{x}+1}}{\sqrt{\frac{1}{2}}\sqrt{x}-1}\right) + \left(-\frac{15}{2}\sqrt{2}\sqrt{\frac{1}{2}}\right),$$

d'où le résultat si x est positif. Si x est négatif, on écrit $x=-(-x)=-(\sqrt{-x})^2$, et un raisonnement analogue à celui ci-dessus aboutit à:

$$\sum_{n=0}^{+\infty} \frac{5 \left(\frac{1}{2}\right)^n n x^{n+1}}{4 \left(2 \, n+3\right) (n+1)} = \frac{5}{2} \ln \left(-\frac{1}{2} \, x+1\right) + \frac{15 \sqrt{\frac{1}{2}}}{\sqrt{-x}} \arctan \left(\sqrt{\frac{1}{2}} \sqrt{-x}\right) + \left(-\frac{15}{2} \, \sqrt{2} \sqrt{\frac{1}{2}}\right),$$

d'où le résultat.

Remarque. Pour calculer $\sum_{n=0}^{+\infty} \frac{x^{2n+1}}{2n+1}$ pour tout $x \in]-1,1[$, on remarque qu'on obtient cette somme en

intégrant terme à terme $x \mapsto \sum_{n=0}^{\infty} x^{2n}$ (ce qui est possible parce qu'il s'agit d'une somme de série entière de rayon de convergence 1):

$$\sum_{n=0}^{+\infty} \frac{x^{2n+1}}{2n+1} = \sum_{n=0}^{+\infty} \int_0^x t^{2n} \mathrm{d}t = \int_0^x \sum_{n=0}^{+\infty} t^{2n} \mathrm{d}t = \int_0^x \frac{\mathrm{d}t}{1-t^2} = \frac{1}{2} \int_0^x \left(\frac{1}{1-t} + \frac{1}{1+t}\right) \mathrm{d}t = \frac{1}{2} \ln \left(\frac{1+x}{1-x}\right).$$

Corrigé 48.

← page 9

1. Tout d'abord, l'existence de $(a, b) \in \mathbb{R}^2$, vérifiant la décomposition de l'énoncé, est assurée par le fait que la famille (1, (2X + 1)) soit échelonnée en degré : c'est donc une base de $\mathbb{R}_1[X]$ (et en particulier 3X, qui appartient à cet espace vectoriel, est combinaison linéaire des polynômes de cette base). Une identification immédiate (en commençant par comparer les coefficients dominants) permet de démontrer qu'on a : $b = \frac{3}{2}$, puis : $a = -\frac{3}{2}$. En conclusion, on a :

$$3X = -\frac{3}{2} + \frac{3}{2}(2X + 1).$$

2. Soit $x \in \mathbb{R}$. On a, d'après la question précédente :

$$\sum_{n=0}^{+\infty} \frac{3(-1)^n nx^{2n+1}}{(2n+1)!} = -\frac{3}{2} \sum_{n=0}^{+\infty} \frac{1}{(2n+1)!} (-1)^n x^{2n+1} + \frac{3}{2} \sum_{n=0}^{+\infty} \frac{(2n+1)}{(2n+1)!} (-1)^n x^{2n+1}$$
$$= -\frac{3}{2} \sum_{n=0}^{+\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!} + \frac{3}{2} \sum_{n=0}^{+\infty} \frac{(-1)^n x^{2n+1}}{(2n)!}$$

On reconnaît alors le développement en série entière en 0 de fonctions trigonométriques, après factorisation convenable :

$$\sum_{n=0}^{+\infty} \frac{3 \, (-1)^n \, n x^{2\,n+1}}{(2\,n+1)!} = -\frac{3}{2} \sum_{n=0}^{+\infty} \frac{(-1)^n \, x^{2\,n+1}}{(2\,n+1)!} + \frac{3}{2} \, x \sum_{n=0}^{+\infty} \frac{(-1)^n \, x^{2\,n}}{(2\,n)!}$$
$$= \frac{3}{2} \, x \cos\left(x\right) - \frac{3}{2} \sin\left(x\right),$$

d'où le résultat.

Corrigé 49.

 $\leftarrow \text{page } 9$

- 1. On a trivialement a = 1 et b = 2.
- 2. Soit $x \in]-2,2[$. On a, d'après la question précédente :

$$\begin{split} \sum_{n=0}^{+\infty} \left(-\frac{1}{4} \right)^n (2n+1) x^{2n+1} &= \sum_{n=0}^{+\infty} \left(-\frac{1}{4} \right)^n x^{2n+1} + 2 \sum_{n=0}^{+\infty} n \left(-\frac{1}{4} \right)^n x^{2n+1} \\ &= x \sum_{n=0}^{+\infty} \left(-\frac{1}{4} x^2 \right)^n + 2 x \sum_{n=1}^{+\infty} n \left(-\frac{1}{4} x^2 \right)^n \\ &= x \sum_{n=0}^{+\infty} \left(-\frac{1}{4} x^2 \right)^n - \frac{1}{2} x^3 \sum_{n=1}^{+\infty} n \left(-\frac{1}{4} x^2 \right)^{n-1} \end{split}$$

On reconnaît alors le développement en série entière en 0 de l'application $x \mapsto \frac{1}{1-x} = \sum_{n=0}^{+\infty} x^n$, qu'on a dérivée terme à terme et évaluée en $-\frac{1}{4}x^2$. Plus précisément, pour tout $x \in]-1,1[$, on a:

$$\frac{1}{1-x} = \sum_{n=0}^{+\infty} x^n, \quad \frac{1}{(1-x)^2} = \sum_{n=1}^{+\infty} nx^{n-1}.$$

On en déduit :

$$\sum_{n=0}^{+\infty} \left(-\frac{1}{4} \right)^n (2\,n+1) x^{2\,n+1} = \frac{x}{1+\frac{1}{4}x^2} - \frac{\frac{1}{2}\,x^3}{\left(1+\frac{1}{4}x^2\right)^2},$$

d'où le résultat.

Corrigé 50.

 \leftarrow page 9

1. Tout d'abord, l'existence de $(a, b, c) \in \mathbb{R}^3$, vérifiant la décomposition de l'énoncé, est assurée par le fait que la famille (1, (2X+2), (2X+2)(2X+1)) soit échelonnée en degré : c'est donc une base de $\mathbb{R}_2[X]$ (et en particulier $X^2 + X + 3$, qui appartient à cet espace vectoriel, est combinaison linéaire des polynômes de cette base). Pour déterminer ces scalaires, nul besoin de développer comme un cochon (et je vous le

déconseille fortement): il suffit d'évaluer l'égalité en des racines des polynômes du membre de droite, c'est-à-dire successivement en $-1, -\frac{1}{2}$. Si l'on évalue l'égalité $X^2+X+3=a+b(2X+2)+c(2X+2)(2X+1)$ en -1, on obtient directement: a=3. Et ainsi de suite. Pour déterminer c, une évaluation en des racines ne simplifie pas la tâche, mais on peut par exemple le déterminer en comparant les coefficients dominants dans chaque membre de l'égalité: c'est moins calculatoire que si on voulait l'exprimer à l'aide des coefficients précédemment déterminés. Cette idée donne ici: $1=4\,c$, et on en déduit $c=\frac{1}{4}$. En conclusion, on a :

$$X^{2} + X + 3 = 3 - \frac{1}{4}(2X + 2) + \frac{1}{4}(2X + 2)(2X + 1).$$

2. Soit $x \in \mathbb{R}$. On a, d'après la question précédente :

$$\begin{split} \sum_{n=0}^{+\infty} \frac{\left(n^2+n+3\right)2^n x^{2\,n}}{(2\,n+2)!} &= 3\sum_{n=0}^{+\infty} \frac{1}{(2\,n+2)!} 2^n x^{2\,n} - \frac{1}{4} \sum_{n=0}^{+\infty} \frac{(2\,n+2)}{(2\,n+2)!} 2^n x^{2\,n} \\ &+ \frac{1}{4} \sum_{n=0}^{+\infty} \frac{(2\,n+2)(2\,n+1)}{(2\,n+2)!} 2^n x^{2\,n} \\ &= 3\sum_{n=0}^{+\infty} \frac{2^n x^{2\,n}}{(2\,n+2)!} - \frac{1}{4} \sum_{n=0}^{+\infty} \frac{2^n x^{2\,n}}{(2\,n+1)!} + \frac{1}{4} \sum_{n=0}^{+\infty} \frac{2^n x^{2\,n}}{(2\,n)!} \\ &= 3\sum_{n=1}^{+\infty} \frac{2^{n-1} x^{2\,n-2}}{(2\,n)!} - \frac{1}{4} \sum_{n=0}^{+\infty} \frac{2^n x^{2\,n}}{(2\,n+1)!} + \frac{1}{4} \sum_{n=0}^{+\infty} \frac{2^n x^{2\,n}}{(2\,n)!} \end{split}$$

après changement d'indice. On reconnaît alors le développement en série entière en 0 de fonctions trigonométriques, après factorisation convenable (attention à bien prendre x non nul pour diviser ci-dessous; le cas x=0 étant de toute façon trivial considéré à part):

$$\sum_{n=0}^{+\infty} \frac{(n^2 + n + 3)2^n x^{2n}}{(2n+2)!} = \frac{3}{2x^2} \sum_{n=1}^{+\infty} \frac{(\sqrt{2}x)^{2n}}{(2n)!} - \frac{\sqrt{2}}{8x} \sum_{n=0}^{+\infty} \frac{(\sqrt{2}x)^{2n+1}}{(2n+1)!} + \frac{1}{4} \sum_{n=0}^{+\infty} \frac{(\sqrt{2}x)^{2n}}{(2n)!}$$

$$= \left(\frac{3}{2x^2} + \frac{1}{4}\right) \sum_{n=0}^{+\infty} \frac{(\sqrt{2}x)^{2n}}{(2n)!} - \frac{\sqrt{2}}{8x} \sum_{n=0}^{+\infty} \frac{(\sqrt{2}x)^{2n+1}}{(2n+1)!} + \left(-\frac{3}{2x^2}\right)$$

$$= \left(\frac{3}{2x^2} + \frac{1}{4}\right) \cosh\left(\sqrt{2}x\right) - \frac{\sqrt{2}}{8x} \sinh\left(\sqrt{2}x\right) + \left(-\frac{3}{2x^2}\right),$$

d'où le résultat.

Corrigé 51.

1. Tout d'abord, l'existence de $(a,b,c) \in \mathbb{R}^3$, vérifiant la décomposition de l'énoncé, est assurée par le fait que la famille (1,(X+3),(X+3)(X+2)) soit échelonnée en degré : c'est donc une base de $\mathbb{R}_2[X]$ (et en particulier X^2 , qui appartient à cet espace vectoriel, est combinaison linéaire des polynômes de cette base). Pour déterminer ces scalaires, nul besoin de développer comme un cochon (et je vous le déconseille fortement) : il suffit d'évaluer l'égalité en des racines des polynômes du membre de droite, c'est-à-dire successivement en -3, -2. Si l'on évalue l'égalité $X^2 = a + b(X+3) + c(X+3)(X+2)$ en -3, on obtient directement : a = 9. Et ainsi de suite. Pour déterminer c, une évaluation en des racines ne simplifie pas la tâche, mais on peut par exemple le déterminer en comparant les coefficients dominants dans chaque membre de l'égalité : c'est moins calculatoire que si on voulait l'exprimer à l'aide des coefficients précédemment déterminés. Cette idée donne ici : 1 = c. En conclusion, on a :

$$X^{2} = 9 - 5(X+3) + (X+3)(X+2).$$

2. Soit $x \in \mathbb{R}$. On a, d'après la question précédente :

$$\begin{split} \sum_{n=0}^{+\infty} \frac{n^2 x^{2\,n+1}}{(n+3)!} &= 9 \sum_{n=0}^{+\infty} \frac{1}{(n+3)!} x^{2\,n+1} - 5 \sum_{n=0}^{+\infty} \frac{(n+3)}{(n+3)!} x^{2\,n+1} \\ &+ \sum_{n=0}^{+\infty} \frac{(n+3)(n+2)}{(n+3)!} x^{2\,n+1} \\ &= 9 \sum_{n=0}^{+\infty} \frac{x^{2\,n+1}}{(n+3)!} - 5 \sum_{n=0}^{+\infty} \frac{x^{2\,n+1}}{(n+2)!} + \sum_{n=0}^{+\infty} \frac{x^{2\,n+1}}{(n+1)!} \\ &= 9 \sum_{n=3}^{+\infty} \frac{x^{2\,n-5}}{n!} - 5 \sum_{n=2}^{+\infty} \frac{x^{2\,n-3}}{n!} + \sum_{n=1}^{+\infty} \frac{x^{2\,n-1}}{n!} \end{split}$$

 $\leftarrow \text{page } 9$

après changement d'indice. On reconnaît alors le développement en série entière en 0 de l'exponentielle, après factorisation convenable (attention à bien prendre x non nul pour diviser ci-dessous; le cas x=0 étant de toute façon trivial considéré à part):

$$\begin{split} \sum_{n=0}^{+\infty} \frac{n^2 x^{2\,n+1}}{(n+3)!} &= \frac{9}{x^5} \sum_{n=3}^{+\infty} \frac{\left(x^2\right)^n}{n!} - \frac{5}{x^3} \sum_{n=2}^{+\infty} \frac{\left(x^2\right)^n}{n!} + \frac{1}{x} \sum_{n=1}^{+\infty} \frac{\left(x^2\right)^n}{n!} \\ &= \left(\frac{9}{x^5} - \frac{5}{x^3} + \frac{1}{x}\right) \sum_{n=0}^{+\infty} \frac{\left(x^2\right)^n}{n!} + \left(-\frac{1}{x} + \frac{5\left(x^2 + 1\right)}{x^3} - \frac{9\left(x^4 + 2\,x^2 + 2\right)}{2\,x^5}\right) \\ &= \left(\frac{9}{x^5} - \frac{5}{x^3} + \frac{1}{x}\right) e^{\left(x^2\right)} + \left(-\frac{1}{2\,x} - \frac{4}{x^3} - \frac{9}{x^5}\right), \end{split}$$

d'où le résultat.

Corrigé 52.

1. Tout d'abord, l'existence de $(a,b,c) \in \mathbb{R}^3$, vérifiant la décomposition de l'énoncé, est assurée par le fait que la famille (1,(X+3),(X+3)(X+2)) soit échelonnée en degré : c'est donc une base de $\mathbb{R}_2[X]$ (et en particulier X^2+1 , qui appartient à cet espace vectoriel, est combinaison linéaire des polynômes de cette base). Pour déterminer ces scalaires, nul besoin de développer comme un cochon (et je vous le déconseille fortement) : il suffit d'évaluer l'égalité en des racines des polynômes du membre de droite, c'est-à-dire successivement en -3, -2. Si l'on évalue l'égalité $X^2+1=a+b(X+3)+c(X+3)(X+2)$ en -3, on obtient directement : a=10. Et ainsi de suite. Pour déterminer c, une évaluation en des racines ne simplifie pas la tâche, mais on peut par exemple le déterminer en comparant les coefficients dominants dans chaque membre de l'égalité : c'est moins calculatoire que si on voulait l'exprimer à l'aide des coefficients précédemment déterminés. Cette idée donne ici : 1=c. En conclusion, on a :

$$X^{2} + 1 = 10 - 5(X + 3) + (X + 3)(X + 2).$$

2. Soit $x \in \mathbb{R}$. On a, d'après la question précédente :

$$\begin{split} \sum_{n=0}^{+\infty} \frac{\left(n^2+1\right) 6^n x^n}{(n+3)!} &= 10 \sum_{n=0}^{+\infty} \frac{1}{(n+3)!} 6^n x^n - 5 \sum_{n=0}^{+\infty} \frac{(n+3)}{(n+3)!} 6^n x^n \\ &+ \sum_{n=0}^{+\infty} \frac{(n+3)(n+2)}{(n+3)!} 6^n x^n \\ &= 10 \sum_{n=0}^{+\infty} \frac{6^n x^n}{(n+3)!} - 5 \sum_{n=0}^{+\infty} \frac{6^n x^n}{(n+2)!} + \sum_{n=0}^{+\infty} \frac{6^n x^n}{(n+1)!} \\ &= 10 \sum_{n=0}^{+\infty} \frac{6^{n-3} x^{n-3}}{n!} - 5 \sum_{n=0}^{+\infty} \frac{6^{n-2} x^{n-2}}{n!} + \sum_{n=1}^{+\infty} \frac{6^{n-1} x^{n-1}}{n!} \end{split}$$

après changement d'indice. On reconnaît alors le développement en série entière en 0 de l'exponentielle, après factorisation convenable (attention à bien prendre x non nul pour diviser ci-dessous; le cas x=0 étant de toute façon trivial considéré à part):

$$\begin{split} \sum_{n=0}^{+\infty} \frac{\left(n^2+1\right) 6^n x^n}{(n+3)!} &= \frac{5}{108 \, x^3} \sum_{n=3}^{+\infty} \frac{\left(6 \, x\right)^n}{n!} - \frac{5}{36 \, x^2} \sum_{n=2}^{+\infty} \frac{\left(6 \, x\right)^n}{n!} + \frac{1}{6 \, x} \sum_{n=1}^{+\infty} \frac{\left(6 \, x\right)^n}{n!} \\ &= \left(\frac{5}{108 \, x^3} - \frac{5}{36 \, x^2} + \frac{1}{6 \, x}\right) \sum_{n=0}^{+\infty} \frac{\left(6 \, x\right)^n}{n!} + \left(\frac{5}{36 \, x^2} - \frac{1}{6 \, x} - \frac{5}{108 \, x^3} - \frac{5}{108 \, x^3}\right) \\ &= \left(\frac{5}{108 \, x^3} - \frac{5}{36 \, x^2} + \frac{1}{6 \, x}\right) e^{(6 \, x)} + \left(-\frac{1}{6 \, x} - \frac{5}{36 \, x^2} - \frac{5}{108 \, x^3}\right), \end{split}$$

d'où le résultat.

Corrigé 53.

1. Tout d'abord, l'existence de $(a, b, c) \in \mathbb{R}^3$, vérifiant la décomposition de l'énoncé, est assurée par le fait que la famille (1, (2X + 2), (2X + 2)(2X + 1)) soit échelonnée en degré : c'est donc une base de $\mathbb{R}_2[X]$ (et en particulier $X^2 - 2X - 1$, qui appartient à cet espace vectoriel, est combinaison linéaire des polynômes

de cette base). Pour déterminer ces scalaires, nul besoin de développer comme un cochon (et je vous le déconseille fortement): il suffit d'évaluer l'égalité en des racines des polynômes du membre de droite, c'est-à-dire successivement en -1, $-\frac{1}{2}$. Si l'on évalue l'égalité $X^2-2X-1=a+b(2X+2)+c(2X+2)(2X+1)$ en -1, on obtient directement: a=2. Et ainsi de suite. Pour déterminer c, une évaluation en des racines ne simplifie pas la tâche, mais on peut par exemple le déterminer en comparant les coefficients dominants dans chaque membre de l'égalité: c'est moins calculatoire que si on voulait l'exprimer à l'aide des coefficients précédemment déterminés. Cette idée donne ici: $1=4\,c$, et on en déduit $c=\frac{1}{4}$. En conclusion, on a :

$$X^{2} - 2X - 1 = 2 - \frac{7}{4}(2X + 2) + \frac{1}{4}(2X + 2)(2X + 1).$$

2. Soit $x \in \mathbb{R}$. On a, d'après la question précédente :

$$\begin{split} \sum_{n=0}^{+\infty} \frac{\left(n^2 - 2n - 1\right) \left(\frac{1}{2}\right)^n x^{2n}}{(2n+2)!} &= 2 \sum_{n=0}^{+\infty} \frac{1}{(2n+2)!} \left(\frac{1}{2}\right)^n x^{2n} - \frac{7}{4} \sum_{n=0}^{+\infty} \frac{(2n+2)}{(2n+2)!} \left(\frac{1}{2}\right)^n x^{2n} \\ &+ \frac{1}{4} \sum_{n=0}^{+\infty} \frac{(2n+2)(2n+1)}{(2n+2)!} \left(\frac{1}{2}\right)^n x^{2n} \\ &= 2 \sum_{n=0}^{+\infty} \frac{\left(\frac{1}{2}\right)^n x^{2n}}{(2n+2)!} - \frac{7}{4} \sum_{n=0}^{+\infty} \frac{\left(\frac{1}{2}\right)^n x^{2n}}{(2n+1)!} + \frac{1}{4} \sum_{n=0}^{+\infty} \frac{\left(\frac{1}{2}\right)^n x^{2n}}{(2n)!} \\ &= 2 \sum_{n=1}^{+\infty} \frac{\left(\frac{1}{2}\right)^{n-1} x^{2n-2}}{(2n)!} - \frac{7}{4} \sum_{n=0}^{+\infty} \frac{\left(\frac{1}{2}\right)^n x^{2n}}{(2n+1)!} + \frac{1}{4} \sum_{n=0}^{+\infty} \frac{\left(\frac{1}{2}\right)^n x^{2n}}{(2n)!} \end{split}$$

après changement d'indice. On reconnaît alors le développement en série entière en 0 de fonctions trigonométriques, après factorisation convenable (attention à bien prendre x non nul pour diviser ci-dessous; le cas x=0 étant de toute façon trivial considéré à part):

$$\sum_{n=0}^{+\infty} \frac{\left(n^2 - 2n - 1\right) \left(\frac{1}{2}\right)^n x^{2n}}{(2n+2)!} = \frac{4}{x^2} \sum_{n=1}^{+\infty} \frac{\left(\sqrt{\frac{1}{2}x}\right)^{2n}}{(2n)!} - \frac{7\sqrt{\frac{1}{2}}}{2x} \sum_{n=0}^{+\infty} \frac{\left(\sqrt{\frac{1}{2}x}\right)^{2n+1}}{(2n+1)!} + \frac{1}{4} \sum_{n=0}^{+\infty} \frac{\left(\sqrt{\frac{1}{2}x}\right)^{2n}}{(2n)!}$$

$$= \left(\frac{4}{x^2} + \frac{1}{4}\right) \sum_{n=0}^{+\infty} \frac{\left(\sqrt{\frac{1}{2}x}\right)^{2n}}{(2n)!} - \frac{7\sqrt{\frac{1}{2}}}{2x} \sum_{n=0}^{+\infty} \frac{\left(\sqrt{\frac{1}{2}x}\right)^{2n+1}}{(2n+1)!} + \left(-\frac{4}{x^2}\right)$$

$$= \left(\frac{4}{x^2} + \frac{1}{4}\right) \cosh\left(\sqrt{\frac{1}{2}x}\right) - \frac{7\sqrt{\frac{1}{2}}}{2x} \sinh\left(\sqrt{\frac{1}{2}x}\right) + \left(-\frac{4}{x^2}\right),$$

d'où le résultat.

Corrigé 54.

1. Tout d'abord, l'existence de $(a,b,c) \in \mathbb{R}^3$, vérifiant la décomposition de l'énoncé, est assurée par le fait que la famille (1,(2X+2),(2X+2)(2X+1)) soit échelonnée en degré : c'est donc une base de $\mathbb{R}_2[X]$ (et en particulier X^2-385X , qui appartient à cet espace vectoriel, est combinaison linéaire des polynômes de cette base). Pour déterminer ces scalaires, nul besoin de développer comme un cochon (et je vous le déconseille fortement) : il suffit d'évaluer l'égalité en des racines des polynômes du membre de droite, c'est-à-dire successivement en $-1, -\frac{1}{2}$. Si l'on évalue l'égalité $X^2-385X=a+b(2X+2)+c(2X+2)(2X+1)$ en -1, on obtient directement : a=386. Et ainsi de suite. Pour déterminer c, une évaluation en des racines ne simplifie pas la tâche, mais on peut par exemple le déterminer en comparant les coefficients dominants dans chaque membre de l'égalité : c'est moins calculatoire que si on voulait l'exprimer à l'aide des coefficients précédemment déterminés. Cette idée donne ici : 1=4c, et on en déduit $c=\frac{1}{4}$. En conclusion, on a :

$$X^{2} - 385X = 386 - \frac{773}{4}(2X+2) + \frac{1}{4}(2X+2)(2X+1).$$

2. Soit $x \in \mathbb{R}$. On a, d'après la question précédente :

$$\begin{split} \sum_{n=0}^{+\infty} \frac{\left(n^2 - 385\,n\right)5^n x^n}{(2\,n+2)!} &= 386 \sum_{n=0}^{+\infty} \frac{1}{(2\,n+2)!} 5^n x^n - \frac{773}{4} \sum_{n=0}^{+\infty} \frac{(2\,n+2)}{(2\,n+2)!} 5^n x^n \\ &\quad + \frac{1}{4} \sum_{n=0}^{+\infty} \frac{(2\,n+2)(2\,n+1)}{(2\,n+2)!} 5^n x^n \\ &= 386 \sum_{n=0}^{+\infty} \frac{5^n x^n}{(2\,n+2)!} - \frac{773}{4} \sum_{n=0}^{+\infty} \frac{5^n x^n}{(2\,n+1)!} + \frac{1}{4} \sum_{n=0}^{+\infty} \frac{5^n x^n}{(2\,n)!} \\ &= 386 \sum_{n=1}^{+\infty} \frac{5^{n-1} x^{n-1}}{(2\,n)!} - \frac{773}{4} \sum_{n=0}^{+\infty} \frac{5^n x^n}{(2\,n+1)!} + \frac{1}{4} \sum_{n=0}^{+\infty} \frac{5^n x^n}{(2\,n)!} \end{split}$$

après changement d'indice. On reconnaît alors le développement en série entière en 0 de fonctions trigonométriques, après factorisation convenable (attention à bien prendre x non nul pour diviser ci-dessous; le cas x=0 étant de toute façon trivial considéré à part), où nous supposons d'abord $x\geqslant 0$ afin de pouvoir écrire $x=(\sqrt{x})^2$ et faire apparaître un exposant pair :

$$\sum_{n=0}^{+\infty} \frac{\left(n^2 - 385\,n\right)5^n x^n}{(2\,n+2)!} = \frac{386}{5\,x} \sum_{n=1}^{+\infty} \frac{\left(\sqrt{5}\sqrt{x}\right)^{2\,n}}{(2\,n)!} - \frac{773\,\sqrt{5}}{20\,\sqrt{x}} \sum_{n=0}^{+\infty} \frac{\left(\sqrt{5}\sqrt{x}\right)^{2\,n+1}}{(2\,n+1)!} + \frac{1}{4} \sum_{n=0}^{+\infty} \frac{\left(\sqrt{5}\sqrt{x}\right)^{2\,n}}{(2\,n)!}$$

$$= \left(\frac{386}{5\,x} + \frac{1}{4}\right) \sum_{n=0}^{+\infty} \frac{\left(\sqrt{5}\sqrt{x}\right)^{2\,n}}{(2\,n)!} - \frac{773\,\sqrt{5}}{20\,\sqrt{x}} \sum_{n=0}^{+\infty} \frac{\left(\sqrt{5}\sqrt{x}\right)^{2\,n+1}}{(2\,n+1)!} + \left(-\frac{386}{5\,x}\right)$$

$$= \left(\frac{386}{5\,x} + \frac{1}{4}\right) \cosh\left(\sqrt{5}\sqrt{x}\right) - \frac{773\,\sqrt{5}}{20\,\sqrt{x}} \sinh\left(\sqrt{5}\sqrt{x}\right) + \left(-\frac{386}{5\,x}\right),$$

d'où le résultat si x est positif. Si x est négatif, on écrit $x = -(-x) = -(\sqrt{-x})^2$, et un raisonnement analogue à celui ci-dessus aboutit à:

$$\sum_{n=0}^{+\infty} \frac{\left(n^2 - 385\,n\right)5^n x^n}{(2\,n+2)!} = \left(\frac{386}{5\,x} + \frac{1}{4}\right) \sum_{n=0}^{+\infty} \frac{\left(-1\right)^n \left(\sqrt{5}\sqrt{-x}\right)^{2\,n}}{(2\,n)!} - \frac{773\,\sqrt{5}}{20\,\sqrt{-x}} \sum_{n=0}^{+\infty} \frac{\left(-1\right)^n \left(\sqrt{5}\sqrt{-x}\right)^{2\,n+1}}{(2\,n+1)!} + \left(-\frac{386}{5\,x}\right) \\ = \left(\frac{386}{5\,x} + \frac{1}{4}\right) \cos\left(\sqrt{5}\sqrt{-x}\right) - \frac{773\,\sqrt{5}}{20\,\sqrt{-x}} \sin\left(\sqrt{5}\sqrt{-x}\right) + \left(-\frac{386}{5\,x}\right),$$

d'où le résultat.

Corrigé 55.

 \leftarrow page 10

1. Tout d'abord, l'existence de $(a,b,c) \in \mathbb{R}^3$, vérifiant la décomposition de l'énoncé, est assurée par le fait que la famille (1,(X+1),(X+1)X) soit échelonnée en degré : c'est donc une base de $\mathbb{R}_2[X]$ (et en particulier $5X^2-X-3$, qui appartient à cet espace vectoriel, est combinaison linéaire des polynômes de cette base). Pour déterminer ces scalaires, nul besoin de développer comme un cochon (et je vous le déconseille fortement): il suffit d'évaluer l'égalité en des racines des polynômes du membre de droite, c'est-à-dire successivement en -1,0. Si l'on évalue l'égalité $5X^2-X-3=a+b(X+1)+c(X+1)X$ en -1, on obtient directement : a=3. Et ainsi de suite. Pour déterminer c, une évaluation en des racines ne simplifie pas la tâche, mais on peut par exemple le déterminer en comparant les coefficients dominants dans chaque membre de l'égalité : c'est moins calculatoire que si on voulait l'exprimer à l'aide des coefficients précédemment déterminés. Cette idée donne ici : 5=c. En conclusion, on a :

$$5X^2 - X - 3 = 3 - 6(X+1) + 5(X+1)X.$$

2. Soit $x \in \mathbb{R}$. On a, d'après la question précédente :

$$\begin{split} \sum_{n=0}^{+\infty} \frac{\left(5\,n^2-n-3\right) \left(\frac{1}{2}\right)^n x^{2\,n}}{(n+1)!} &= 3 \sum_{n=0}^{+\infty} \frac{1}{(n+1)!} \left(\frac{1}{2}\right)^n x^{2\,n} - 6 \sum_{n=0}^{+\infty} \frac{(n+1)}{(n+1)!} \left(\frac{1}{2}\right)^n x^{2\,n} \\ &+ 5 \sum_{n=0}^{+\infty} \frac{(n+1)n}{(n+1)!} \left(\frac{1}{2}\right)^n x^{2\,n} \\ &= 3 \sum_{n=0}^{+\infty} \frac{\left(\frac{1}{2}\right)^n x^{2\,n}}{(n+1)!} - 6 \sum_{n=0}^{+\infty} \frac{\left(\frac{1}{2}\right)^n x^{2\,n}}{n!} + 5 \sum_{n=1}^{+\infty} \frac{\left(\frac{1}{2}\right)^n x^{2\,n}}{(n-1)!} \\ &= 3 \sum_{n=1}^{+\infty} \frac{\left(\frac{1}{2}\right)^{n-1} x^{2\,n-2}}{n!} - 6 \sum_{n=0}^{+\infty} \frac{\left(\frac{1}{2}\right)^n x^{2\,n}}{n!} + 5 \sum_{n=0}^{+\infty} \frac{\left(\frac{1}{2}\right)^{n+1} x^{2\,n+2}}{n!} \end{split}$$

après changement d'indice. On reconnaît alors le développement en série entière en 0 de l'exponentielle, après factorisation convenable (attention à bien prendre x non nul pour diviser ci-dessous; le cas x=0 étant de toute façon trivial considéré à part):

$$\sum_{n=0}^{+\infty} \frac{\left(5 n^2 - n - 3\right) \left(\frac{1}{2}\right)^n x^{2n}}{(n+1)!} = \frac{6}{x^2} \sum_{n=1}^{+\infty} \frac{\left(\frac{1}{2} x^2\right)^n}{n!} - 6 \sum_{n=0}^{+\infty} \frac{\left(\frac{1}{2} x^2\right)^n}{n!} + \frac{5}{2} x^2 \sum_{n=0}^{+\infty} \frac{\left(\frac{1}{2} x^2\right)^n}{n!}$$

$$= \left(\frac{6}{x^2} - 6 + \frac{5}{2} x^2\right) \sum_{n=0}^{+\infty} \frac{\left(\frac{1}{2} x^2\right)^n}{n!} + \left(-\frac{6}{x^2}\right)$$

$$= \left(\frac{6}{x^2} - 6 + \frac{5}{2} x^2\right) e^{\left(\frac{1}{2} x^2\right)} + \left(-\frac{6}{x^2}\right),$$

d'où le résultat.

Corrigé 56.

1. Tout d'abord, l'existence de $(a, b) \in \mathbb{R}^2$, vérifiant la décomposition de l'énoncé, est assurée par le fait que la famille (1, (2X+1)) soit échelonnée en degré : c'est donc une base de $\mathbb{R}_1[X]$ (et en particulier X-2, qui appartient à cet espace vectoriel, est combinaison linéaire des polynômes de cette base). Une identification immédiate (en commençant par comparer les coefficients dominants) permet de démontrer qu'on a : $b=\frac{1}{2}$, puis : $a=-\frac{5}{2}$. En conclusion, on a :

$$X - 2 = -\frac{5}{2} + \frac{1}{2}(2X + 1).$$

2. Soit $x \in \mathbb{R}$. On a, d'après la question précédente :

$$\sum_{n=0}^{+\infty} \frac{(-1)^n (n-2)x^{2n+1}}{(2n+1)!} = -\frac{5}{2} \sum_{n=0}^{+\infty} \frac{1}{(2n+1)!} (-1)^n x^{2n+1} + \frac{1}{2} \sum_{n=0}^{+\infty} \frac{(2n+1)}{(2n+1)!} (-1)^n x^{2n+1}$$
$$= -\frac{5}{2} \sum_{n=0}^{+\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!} + \frac{1}{2} \sum_{n=0}^{+\infty} \frac{(-1)^n x^{2n+1}}{(2n)!}$$

On reconnaît alors le développement en série entière en 0 de fonctions trigonométriques, après factorisation convenable:

$$\sum_{n=0}^{+\infty} \frac{(-1)^n (n-2)x^{2n+1}}{(2n+1)!} = -\frac{5}{2} \sum_{n=0}^{+\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!} + \frac{1}{2} x \sum_{n=0}^{+\infty} \frac{(-1)^n x^{2n}}{(2n)!}$$
$$= \frac{1}{2} x \cos(x) - \frac{5}{2} \sin(x),$$

d'où le résultat.

Corrigé 57.

1. Tout d'abord, l'existence de $(a, b, c) \in \mathbb{R}^3$, vérifiant la décomposition de l'énoncé, est assurée par le fait que la famille (1, (X+3), (X+3)(X+2)) soit échelonnée en degré : c'est donc une base de $\mathbb{R}_2[X]$ (et en particulier $3X^2 - X + 2$, qui appartient à cet espace vectoriel, est combinaison linéaire des polynômes de cette base). Pour déterminer ces scalaires, nul besoin de développer comme un cochon (et je vous le

 \leftarrow page 10

 $\leftarrow \text{page } 10$

déconseille fortement): il suffit d'évaluer l'égalité en des racines des polynômes du membre de droite, c'est-à-dire successivement en -3, -2. Si l'on évalue l'égalité $3X^2 - X + 2 = a + b(X+3) + c(X+3)(X+2)$ en -3, on obtient directement: a = 32. Et ainsi de suite. Pour déterminer c, une évaluation en des racines ne simplifie pas la tâche, mais on peut par exemple le déterminer en comparant les coefficients dominants dans chaque membre de l'égalité: c'est moins calculatoire que si on voulait l'exprimer à l'aide des coefficients précédemment déterminés. Cette idée donne ici: 3 = c. En conclusion, on a:

$$3X^2 - X + 2 = 32 - 16(X+3) + 3(X+3)(X+2)$$

2. Soit $x \in \mathbb{R}$. On a, d'après la question précédente :

$$\sum_{n=0}^{+\infty} \frac{\left(3 \, n^2 - n + 2\right) \left(-1\right)^n x^{2 \, n}}{(n+3)!} = 32 \sum_{n=0}^{+\infty} \frac{1}{(n+3)!} \left(-1\right)^n x^{2 \, n} - 16 \sum_{n=0}^{+\infty} \frac{(n+3)}{(n+3)!} \left(-1\right)^n x^{2 \, n}$$

$$+ 3 \sum_{n=0}^{+\infty} \frac{(n+3)(n+2)}{(n+3)!} \left(-1\right)^n x^{2 \, n}$$

$$= 32 \sum_{n=0}^{+\infty} \frac{\left(-1\right)^n x^{2 \, n}}{(n+3)!} - 16 \sum_{n=0}^{+\infty} \frac{\left(-1\right)^n x^{2 \, n}}{(n+2)!} + 3 \sum_{n=0}^{+\infty} \frac{\left(-1\right)^n x^{2 \, n}}{(n+1)!}$$

$$= 32 \sum_{n=3}^{+\infty} \frac{\left(-1\right)^{n-3} x^{2 \, n-6}}{n!} - 16 \sum_{n=2}^{+\infty} \frac{\left(-1\right)^{n-2} x^{2 \, n-4}}{n!} + 3 \sum_{n=1}^{+\infty} \frac{\left(-1\right)^{n-1} x^{2 \, n-2}}{n!}$$

après changement d'indice. On reconnaît alors le développement en série entière en 0 de l'exponentielle, après factorisation convenable (attention à bien prendre x non nul pour diviser ci-dessous; le cas x=0 étant de toute façon trivial considéré à part):

$$\begin{split} \sum_{n=0}^{+\infty} \frac{\left(3\,n^2 - n + 2\right)\left(-1\right)^n \,x^{2\,n}}{(n+3)!} &= -\frac{32}{x^6} \sum_{n=3}^{+\infty} \frac{\left(-x^2\right)^n}{n!} - \frac{16}{x^4} \sum_{n=2}^{+\infty} \frac{\left(-x^2\right)^n}{n!} - \frac{3}{x^2} \sum_{n=1}^{+\infty} \frac{\left(-x^2\right)^n}{n!} \\ &= \left(-\frac{32}{x^6} - \frac{16}{x^4} - \frac{3}{x^2}\right) \sum_{n=0}^{+\infty} \frac{\left(-x^2\right)^n}{n!} + \left(\frac{3}{x^2} - \frac{16\left(x^2 - 1\right)}{x^4} + \frac{16\left(x^4 - 2\,x^2 + 2\right)}{x^6}\right) \\ &= \left(-\frac{32}{x^6} - \frac{16}{x^4} - \frac{3}{x^2}\right) e^{\left(-x^2\right)} + \left(\frac{3}{x^2} - \frac{16}{x^4} + \frac{32}{x^6}\right), \end{split}$$

d'où le résultat.

Corrigé 58.

1. C'est une décomposition en éléments simples, tout ce qu'il y a de plus classique. Il suffit de multiplier l'égalité par chacun des dénominateurs possibles du membre de droite, et de faire tendre la variable n vers leurs racines. Cela permet d'éliminer toutes les inconnues sauf une, et de les déterminer. On obtient alors :

$$\forall n \in \mathbb{C} \setminus \{-2, -1\}, \quad \frac{22}{(n+2)(n+1)} = -\frac{22}{n+2} + \frac{22}{n+1}.$$

2. Soit $x \in \left] -\frac{2}{3}, \frac{2}{3} \right[$. On a, d'après la question précédente :

$$\sum_{n=0}^{+\infty} \frac{22 \left(\frac{3}{2}\right)^n x^{n+1}}{(n+2)(n+1)} = -22 \sum_{n=0}^{+\infty} \frac{\left(\frac{3}{2}x\right)^n x}{n+2} + 22 \sum_{n=0}^{+\infty} \frac{\left(\frac{3}{2}x\right)^n x}{n+1}$$
$$= -22 \sum_{n=1}^{+\infty} \frac{\left(\frac{3}{2}x\right)^{n-1} x}{n+1} + 22 \sum_{n=0}^{+\infty} \frac{\left(\frac{3}{2}x\right)^n x}{n+1}$$

après changement d'indice. On reconnaît alors le développement en série entière en 0 du logarithme, et on en déduit (attention à bien prendre x non nul pour diviser ci-dessous; le cas x=0 étant de toute façon trivial considéré à part):

$$\sum_{n=0}^{+\infty} \frac{22 \left(\frac{3}{2}\right)^n x^{n+1}}{(n+2)(n+1)} = -\frac{88}{9x} \sum_{n=1}^{+\infty} \frac{\left(\frac{3}{2}x\right)^{n+1}}{n+1} + \frac{44}{3} \sum_{n=0}^{+\infty} \frac{\left(\frac{3}{2}x\right)^{n+1}}{n+1}$$
$$= -\left(-\frac{88}{9x} + \frac{44}{3}\right) \ln\left(-\frac{3}{2}x + 1\right) + \left(\frac{44}{3}\right),$$

d'où le résultat.

Corrigé 59. \leftarrow page 11

- 1. On a trivialement a = -1 et b = 1.
- 2. Soit $x \in]-\sqrt{2}, \sqrt{2}[$. On a, d'après la question précédente :

$$\sum_{n=0}^{+\infty} \left(\frac{1}{2}\right)^n (n-1)x^{2n} = -\sum_{n=0}^{+\infty} \left(\frac{1}{2}\right)^n x^{2n} + \sum_{n=0}^{+\infty} n \left(\frac{1}{2}\right)^n x^{2n}$$

$$= -\sum_{n=0}^{+\infty} \left(\frac{1}{2}x^2\right)^n + \sum_{n=1}^{+\infty} n \left(\frac{1}{2}x^2\right)^n$$

$$= -\sum_{n=0}^{+\infty} \left(\frac{1}{2}x^2\right)^n + \frac{1}{2}x^2 \sum_{n=1}^{+\infty} n \left(\frac{1}{2}x^2\right)^{n-1}$$

On reconnaît alors le développement en série entière en 0 de l'application $x \mapsto \frac{1}{1-x} = \sum_{n=0}^{+\infty} x^n$, qu'on a dérivée terme à terme et évaluée en $\frac{1}{2}x^2$. Plus précisément, pour tout $x \in]-1,1[$, on a :

$$\frac{1}{1-x} = \sum_{n=0}^{+\infty} x^n, \quad \frac{1}{(1-x)^2} = \sum_{n=1}^{+\infty} nx^{n-1}.$$

On en déduit :

$$\sum_{n=0}^{+\infty} \left(\frac{1}{2}\right)^n (n-1)x^{2n} = -\frac{1}{1 - \frac{1}{2}x^2} + \frac{\frac{1}{2}x^2}{\left(1 - \frac{1}{2}x^2\right)^2},$$

d'où le résultat.

Corrigé 60.

it ζ] es

 \leftarrow page 11

1. Tout d'abord, l'existence de $(a, b, c) \in \mathbb{R}^3$, vérifiant la décomposition de l'énoncé, est assurée par le fait que la famille (1, (2X+3), (2X+3)(2X+2)) soit échelonnée en degré : c'est donc une base de $\mathbb{R}_2[X]$ (et en particulier $4X^2-2$, qui appartient à cet espace vectoriel, est combinaison linéaire des polynômes de cette base). Pour déterminer ces scalaires, nul besoin de développer comme un cochon (et je vous le déconseille fortement) : il suffit d'évaluer l'égalité en des racines des polynômes du membre de droite, c'est-à-dire successivement en $-\frac{3}{2}$, -1. Si l'on évalue l'égalité $4X^2-2=a+b(2X+3)+c(2X+3)(2X+2)$ en $-\frac{3}{2}$, on obtient directement : a=7. Et ainsi de suite. Pour déterminer c, une évaluation en des racines ne simplifie pas la tâche, mais on peut par exemple le déterminer en comparant les coefficients dominants dans chaque membre de l'égalité : c'est moins calculatoire que si on voulait l'exprimer à l'aide des coefficients précédemment déterminés. Cette idée donne ici : 4=4c, et on en déduit c=1. En conclusion, on a :

$$4X^2 - 2 = 7 - 5(2X + 3) + (2X + 3)(2X + 2)$$

2. Soit $x \in \mathbb{R}$. On a, d'après la question précédente :

$$\sum_{n=0}^{+\infty} \frac{2(2n^2 - 1)x^{2n+1}}{(2n+3)!} = 7\sum_{n=0}^{+\infty} \frac{1}{(2n+3)!}x^{2n+1} - 5\sum_{n=0}^{+\infty} \frac{(2n+3)}{(2n+3)!}x^{2n+1} + \sum_{n=0}^{+\infty} \frac{(2n+3)(2n+2)}{(2n+3)!}x^{2n+1}$$

$$= 7\sum_{n=0}^{+\infty} \frac{x^{2n+1}}{(2n+3)!} - 5\sum_{n=0}^{+\infty} \frac{x^{2n+1}}{(2n+2)!} + \sum_{n=0}^{+\infty} \frac{x^{2n+1}}{(2n+1)!}$$

$$= 7\sum_{n=1}^{+\infty} \frac{x^{2n-1}}{(2n+1)!} - 5\sum_{n=1}^{+\infty} \frac{x^{2n-1}}{(2n)!} + \sum_{n=0}^{+\infty} \frac{x^{2n+1}}{(2n+1)!}$$

après changement d'indice. On reconnaît alors le développement en série entière en 0 de fonctions trigonométriques, après factorisation convenable (attention à bien prendre x non nul pour diviser ci-dessous ;

le cas x = 0 étant de toute façon trivial considéré à part):

$$\begin{split} \sum_{n=0}^{+\infty} \frac{2 \left(2 \, n^2 - 1\right) x^{2 \, n + 1}}{(2 \, n + 3)!} &= \frac{7}{x^2} \sum_{n=1}^{+\infty} \frac{x^{2 \, n + 1}}{(2 \, n + 1)!} - \frac{5}{x} \sum_{n=1}^{+\infty} \frac{x^{2 \, n}}{(2 \, n)!} + \sum_{n=0}^{+\infty} \frac{x^{2 \, n + 1}}{(2 \, n + 1)!} \\ &= -\frac{5}{x} \sum_{n=0}^{+\infty} \frac{x^{2 \, n}}{(2 \, n)!} + \left(\frac{7}{x^2} + 1\right) \sum_{n=0}^{+\infty} \frac{x^{2 \, n + 1}}{(2 \, n + 1)!} + \left(-\frac{2}{x}\right) \\ &= -\frac{5}{x} \cosh\left(x\right) + \left(\frac{7}{x^2} + 1\right) \sinh\left(x\right) + \left(-\frac{2}{x}\right), \end{split}$$

d'où le résultat.

Corrigé 61.

 \leftarrow page 11

1. Tout d'abord, l'existence de $(a,b,c) \in \mathbb{R}^3$, vérifiant la décomposition de l'énoncé, est assurée par le fait que la famille (1,X,X(X-1)) soit échelonnée en degré : c'est donc une base de $\mathbb{R}_2[X]$ (et en particulier X^2-2X+1 , qui appartient à cet espace vectoriel, est combinaison linéaire des polynômes de cette base). Pour déterminer ces scalaires, nul besoin de développer comme un cochon (et je vous le déconseille fortement) : il suffit d'évaluer l'égalité en des racines des polynômes du membre de droite, c'est-à-dire successivement en 0,1. Si l'on évalue l'égalité $X^2-2X+1=a+bX+cX(X-1)$ en 0, on obtient directement : a=1. Et ainsi de suite. Pour déterminer c, une évaluation en des racines ne simplifie pas la tâche, mais on peut par exemple le déterminer en comparant les coefficients dominants dans chaque membre de l'égalité : c'est moins calculatoire que si on voulait l'exprimer à l'aide des coefficients précédemment déterminés. Cette idée donne ici : 1=c. En conclusion, on a :

$$X^{2} - 2X + 1 = 1 - X + X(X - 1).$$

2. Soit $x \in \mathbb{R}$. On a, d'après la question précédente :

$$\sum_{n=0}^{+\infty} \frac{\left(n^2 - 2n + 1\right) \left(-1\right)^n x^{n+1}}{n!} = \sum_{n=0}^{+\infty} \frac{1}{n!} \left(-1\right)^n x^{n+1} - \sum_{n=0}^{+\infty} \frac{n}{n!} \left(-1\right)^n x^{n+1} + \sum_{n=0}^{+\infty} \frac{n(n-1)}{n!} \left(-1\right)^n x^{n+1}$$

$$= \sum_{n=0}^{+\infty} \frac{\left(-1\right)^n x^{n+1}}{n!} - \sum_{n=1}^{+\infty} \frac{\left(-1\right)^n x^{n+1}}{(n-1)!} + \sum_{n=2}^{+\infty} \frac{\left(-1\right)^n x^{n+1}}{(n-2)!}$$

$$= \sum_{n=0}^{+\infty} \frac{\left(-1\right)^n x^{n+1}}{n!} - \sum_{n=0}^{+\infty} \frac{\left(-1\right)^{n+1} x^{n+2}}{n!} + \sum_{n=0}^{+\infty} \frac{\left(-1\right)^{n+2} x^{n+3}}{n!}$$

après changement d'indice. On reconnaît alors le développement en série entière en 0 de l'exponentielle, après factorisation convenable:

$$\sum_{n=0}^{+\infty} \frac{\left(n^2 - 2n + 1\right)(-1)^n x^{n+1}}{n!} = x \sum_{n=0}^{+\infty} \frac{\left(-x\right)^n}{n!} + x^2 \sum_{n=0}^{+\infty} \frac{\left(-x\right)^n}{n!} + x^3 \sum_{n=0}^{+\infty} \frac{\left(-x\right)^n}{n!}$$
$$= \left(x + x^2 + x^3\right) e^{\left(-x\right)},$$

d'où le résultat.

Corrigé 62.

← page 11

1. Tout d'abord, l'existence de $(a, b) \in \mathbb{R}^2$, vérifiant la décomposition de l'énoncé, est assurée par le fait que la famille (1, (2X+2)) soit échelonnée en degré : c'est donc une base de $\mathbb{R}_1[X]$ (et en particulier X-3, qui appartient à cet espace vectoriel, est combinaison linéaire des polynômes de cette base). Une identification immédiate (en commençant par comparer les coefficients dominants) permet de démontrer qu'on a : $b=\frac{1}{2}$, puis : a=-4. En conclusion, on a :

$$X - 3 = -4 + \frac{1}{2}(2X + 2).$$

2. Soit $x \in \mathbb{R}$. On a, d'après la question précédente :

$$\sum_{n=0}^{+\infty} \frac{(-1)^n (n-3)x^{n+1}}{(2n+2)!} = -4 \sum_{n=0}^{+\infty} \frac{1}{(2n+2)!} (-1)^n x^{n+1} + \frac{1}{2} \sum_{n=0}^{+\infty} \frac{(2n+2)}{(2n+2)!} (-1)^n x^{n+1}$$

$$= -4 \sum_{n=0}^{+\infty} \frac{(-1)^n x^{n+1}}{(2n+2)!} + \frac{1}{2} \sum_{n=0}^{+\infty} \frac{(-1)^n x^{n+1}}{(2n+1)!}$$

$$= -4 \sum_{n=1}^{+\infty} \frac{(-1)^{n-1} x^n}{(2n)!} + \frac{1}{2} \sum_{n=0}^{+\infty} \frac{(-1)^n x^{n+1}}{(2n+1)!}$$

après changement d'indice. On reconnaît alors le développement en série entière en 0 de fonctions trigonométriques, après factorisation convenable, où nous supposons d'abord $x \ge 0$ afin de pouvoir écrire $x = (\sqrt{x})^2$ et faire apparaître un exposant pair:

$$\sum_{n=0}^{+\infty} \frac{(-1)^n (n-3)x^{n+1}}{(2n+2)!} = 4 \sum_{n=1}^{+\infty} \frac{(-1)^n \sqrt{x^{2n}}}{(2n)!} + \frac{1}{2} \sqrt{x} \sum_{n=0}^{+\infty} \frac{(-1)^n \sqrt{x^{2n+1}}}{(2n+1)!}$$

$$= 4 \sum_{n=0}^{+\infty} \frac{(-1)^n \sqrt{x^{2n}}}{(2n)!} + \frac{1}{2} \sqrt{x} \sum_{n=0}^{+\infty} \frac{(-1)^n \sqrt{x^{2n+1}}}{(2n+1)!} + (-4)$$

$$= 4 \cos(\sqrt{x}) + \frac{1}{2} \sqrt{x} \sin(\sqrt{x}) + (-4),$$

d'où le résultat si x est positif. Si x est négatif, on écrit $x = -(-x) = -(\sqrt{-x})^2$, et un raisonnement analogue à celui ci-dessus aboutit à:

$$\sum_{n=0}^{+\infty} \frac{(-1)^n (n-3)x^{n+1}}{(2n+2)!} = 4 \sum_{n=0}^{+\infty} \frac{\sqrt{-x^2}^n}{(2n)!} + \frac{x}{2\sqrt{-x}} \sum_{n=0}^{+\infty} \frac{\sqrt{-x^2}^{n+1}}{(2n+1)!} + (-4)$$
$$= 4 \cosh\left(\sqrt{-x}\right) + \frac{x}{2\sqrt{-x}} \sinh\left(\sqrt{-x}\right) + (-4),$$

d'où le résultat.

Corrigé 63.

1. Tout d'abord, l'existence de $(a,b,c) \in \mathbb{R}^3$, vérifiant la décomposition de l'énoncé, est assurée par le fait que la famille (1,X,X(X-1)) soit échelonnée en degré : c'est donc une base de $\mathbb{R}_2[X]$ (et en particulier X^2+X , qui appartient à cet espace vectoriel, est combinaison linéaire des polynômes de cette base). Pour déterminer ces scalaires, nul besoin de développer comme un cochon (et je vous le déconseille fortement) : il suffit d'évaluer l'égalité en des racines des polynômes du membre de droite, c'est-à-dire successivement en 0,1. Si l'on évalue l'égalité $X^2+X=a+bX+cX(X-1)$ en 0, on obtient directement : a=0. Et ainsi de suite. Pour déterminer c, une évaluation en des racines ne simplifie pas la tâche, mais on peut par exemple le déterminer en comparant les coefficients dominants dans chaque membre de l'égalité : c'est moins calculatoire que si on voulait l'exprimer à l'aide des coefficients précédemment déterminés. Cette idée donne ici : 1=c. En conclusion, on a :

$$X^2 + X = 2X + X(X - 1).$$

2. Soit $x \in \left] -\frac{3}{2}, \frac{3}{2} \right[$. On a, d'après la question précédente :

$$\sum_{n=0}^{+\infty} (n^2 + n) \left(\frac{2}{3}\right)^n x^{n+1} = 2 \sum_{n=0}^{+\infty} n \left(\frac{2}{3}\right)^n x^{n+1} + \sum_{n=0}^{+\infty} n(n-1) \left(\frac{2}{3}\right)^n x^{n+1}$$

$$= 2 x \sum_{n=1}^{+\infty} n \left(\frac{2}{3}x\right)^n + x \sum_{n=2}^{+\infty} n(n-1) \left(\frac{2}{3}x\right)^n$$

$$= \frac{4}{3} x^2 \sum_{n=1}^{+\infty} n \left(\frac{2}{3}x\right)^{n-1} + \frac{4}{9} x^3 \sum_{n=2}^{+\infty} n(n-1) \left(\frac{2}{3}x\right)^{n-2}$$

On reconnaît alors le développement en série entière en 0 des dérivées de l'application $x \mapsto \frac{1}{1-x} = \sum_{n=0}^{+\infty} x^n$

évaluée en $\frac{2}{3}\,x.$ Plus précisément, pour tout $x\in]-1,1[,$ on a :

$$\frac{1}{1-x} = \sum_{n=0}^{+\infty} x^n, \quad \frac{1}{(1-x)^2} = \sum_{n=1}^{+\infty} nx^{n-1}, \quad \frac{2}{(1-x)^3} = \sum_{n=2}^{+\infty} n(n-1)x^{n-2}.$$

On en déduit:

$$\sum_{n=0}^{+\infty} \left(n^2 + n\right) \left(\frac{2}{3}\right)^n x^{n+1} = \frac{\frac{4}{3}x^2}{1 - \frac{2}{3}x} + \frac{\frac{8}{9}x^3}{\left(1 - \frac{2}{3}x\right)^3},$$

d'où le résultat.

Corrigé 64.

 \leftarrow page 11

1. C'est une décomposition en éléments simples, tout ce qu'il y a de plus classique. Il suffit de multiplier l'égalité par chacun des dénominateurs possibles du membre de droite, et de faire tendre la variable n vers leurs racines. Cela permet d'éliminer toutes les inconnues sauf une, et de les déterminer. On obtient alors :

$$\forall n \in \mathbb{C} \setminus \left\{-\frac{1}{2}, -2\right\}, \quad \frac{n+1}{3(2n+1)(n+2)} = \frac{1}{9(2n+1)} + \frac{1}{9(n+2)}.$$

2. Soit $x \in \left] -\frac{1}{2}\sqrt{5}, \frac{1}{2}\sqrt{5} \right[$. On a, d'après la question précédente :

$$\sum_{n=0}^{+\infty} \frac{\left(-\frac{4}{5}\right)^n (n+1)x^{2n+1}}{3(2n+1)(n+2)} = \frac{1}{9} \sum_{n=0}^{+\infty} \frac{\left(-1\right)^n \left(\frac{4}{5}x^2\right)^n x}{n+2} + \frac{1}{9} \sum_{n=0}^{+\infty} \frac{\left(-1\right)^n \left(2\sqrt{\frac{1}{5}}x\right)^{2n} x}{2n+1}$$
$$= \frac{1}{9} \sum_{n=1}^{+\infty} \frac{\left(-1\right)^{n-1} \left(\frac{4}{5}x^2\right)^{n-1} x}{n+1} + \frac{1}{9} \sum_{n=0}^{+\infty} \frac{\left(-1\right)^n \left(2\sqrt{\frac{1}{5}}x\right)^{2n} x}{2n+1}$$

après changement d'indice. On reconnaît alors le développement en série entière en 0 du logarithme et de l'arc tangente (attention à bien prendre x non nul pour diviser ci-dessous; le cas x=0 étant de toute façon trivial considéré à part):

$$\sum_{n=0}^{+\infty} \frac{\left(-\frac{4}{5}\right)^n (n+1)x^{2n+1}}{3(2n+1)(n+2)} = -\frac{25}{144x^3} \sum_{n=1}^{+\infty} \frac{\left(-1\right)^n \left(\frac{4}{5}x^2\right)^{n+1}}{n+1} + \frac{5}{18}\sqrt{\frac{1}{5}} \sum_{n=0}^{+\infty} \frac{\left(-1\right)^n \left(2\sqrt{\frac{1}{5}}x\right)^{2n+1}}{2n+1}$$
$$= -\frac{25}{144x^3} \ln\left(\frac{4}{5}x^2 + 1\right) + \frac{5}{18}\sqrt{\frac{1}{5}} \arctan\left(2\sqrt{\frac{1}{5}}x\right) + \left(\frac{5}{36x}\right),$$

d'où le résultat.

Corrigé 65.

 \leftarrow page 12

1. C'est une décomposition en éléments simples, tout ce qu'il y a de plus classique. Il suffit de multiplier l'égalité par chacun des dénominateurs possibles du membre de droite, et de faire tendre la variable n vers leurs racines. Cela permet d'éliminer toutes les inconnues sauf une, et de les déterminer. On obtient alors :

$$\forall n \in \mathbb{C} \setminus \{-3, -1\}, \quad \frac{n-1}{2(n+3)(n+1)} = \frac{1}{n+3} - \frac{1}{2(n+1)}.$$

2. Soit $x\in\left]-2\sqrt{\frac{1}{5}},2\sqrt{\frac{1}{5}}\right[$. On a, d'après la question précédente :

$$\sum_{n=0}^{+\infty} \frac{\left(\frac{5}{4}\right)^n (n-1)x^{2n}}{2(n+3)(n+1)} = \sum_{n=0}^{+\infty} \frac{\left(\frac{5}{4}x^2\right)^n}{n+3} - \frac{1}{2} \sum_{n=0}^{+\infty} \frac{\left(\frac{5}{4}x^2\right)^n}{n+1}$$
$$= \sum_{n=2}^{+\infty} \frac{\left(\frac{5}{4}x^2\right)^{n-2}}{n+1} - \frac{1}{2} \sum_{n=0}^{+\infty} \frac{\left(\frac{5}{4}x^2\right)^n}{n+1}$$

après changement d'indice. On reconnaît alors le développement en série entière en 0 du logarithme, et on en déduit (attention à bien prendre x non nul pour diviser ci-dessous; le cas x=0 étant de toute façon trivial considéré à part):

$$\sum_{n=0}^{+\infty} \frac{\left(\frac{5}{4}\right)^n (n-1)x^{2n}}{2(n+3)(n+1)} = \frac{64}{125x^6} \sum_{n=2}^{+\infty} \frac{\left(\frac{5}{4}x^2\right)^{n+1}}{n+1} - \frac{2}{5x^2} \sum_{n=0}^{+\infty} \frac{\left(\frac{5}{4}x^2\right)^{n+1}}{n+1}$$

$$= -\left(-\frac{2}{5x^2} + \frac{64}{125x^6}\right) \ln\left(-\frac{5}{4}x^2 + 1\right) + \left(-\frac{2}{5x^2} - \frac{16}{25x^4}\right),$$

d'où le résultat.

Corrigé 66.

 \leftarrow page 12

1. C'est une décomposition en éléments simples, tout ce qu'il y a de plus classique. Il suffit de multiplier l'égalité par chacun des dénominateurs possibles du membre de droite, et de faire tendre la variable n vers leurs racines. Cela permet d'éliminer toutes les inconnues sauf une, et de les déterminer. On obtient alors :

$$\forall n \in \mathbb{C} \setminus \{-3, -1\}, \quad \frac{4}{3(n+3)(n+1)} = -\frac{2}{3(n+3)} + \frac{2}{3(n+1)}.$$

2. Soit $x \in]-1,1[$. On a, d'après la question précédente :

$$\sum_{n=0}^{+\infty} \frac{4x^{2n}}{3(n+3)(n+1)} = -\frac{2}{3} \sum_{n=0}^{+\infty} \frac{(x^2)^n}{n+3} + \frac{2}{3} \sum_{n=0}^{+\infty} \frac{(x^2)^n}{n+1}$$
$$= -\frac{2}{3} \sum_{n=2}^{+\infty} \frac{(x^2)^{n-2}}{n+1} + \frac{2}{3} \sum_{n=0}^{+\infty} \frac{(x^2)^n}{n+1}$$

après changement d'indice. On reconnaît alors le développement en série entière en 0 du logarithme, et on en déduit (attention à bien prendre x non nul pour diviser ci-dessous; le cas x=0 étant de toute façon trivial considéré à part):

$$\sum_{n=0}^{+\infty} \frac{4 x^{2 n}}{3 (n+3)(n+1)} = -\frac{2}{3 x^{6}} \sum_{n=2}^{+\infty} \frac{\left(x^{2}\right)^{n+1}}{n+1} + \frac{2}{3 x^{2}} \sum_{n=0}^{+\infty} \frac{\left(x^{2}\right)^{n+1}}{n+1}$$

$$= -\left(\frac{2}{3 x^{2}} - \frac{2}{3 x^{6}}\right) \ln\left(-x^{2} + 1\right) + \left(\frac{1}{3 x^{2}} + \frac{2}{3 x^{4}}\right),$$

d'où le résultat.

Corrigé 67.

 $\leftarrow \text{page } 12$

1. Tout d'abord, l'existence de $(a, b) \in \mathbb{R}^2$, vérifiant la décomposition de l'énoncé, est assurée par le fait que la famille (1, (X+1)) soit échelonnée en degré : c'est donc une base de $\mathbb{R}_1[X]$ (et en particulier X-1, qui appartient à cet espace vectoriel, est combinaison linéaire des polynômes de cette base). Une identification immédiate (en commençant par comparer les coefficients dominants) permet de démontrer qu'on a : b=1, puis : a=-2. En conclusion, on a :

$$X - 1 = -2 + (X + 1).$$

2. Soit $x \in \mathbb{R}$. On a, d'après la question précédente :

$$\sum_{n=0}^{+\infty} \frac{(-2)^n (n-1)x^{2n}}{(n+1)!} = -2\sum_{n=0}^{+\infty} \frac{1}{(n+1)!} (-2)^n x^{2n} + \sum_{n=0}^{+\infty} \frac{(n+1)}{(n+1)!} (-2)^n x^{2n}$$

$$= -2\sum_{n=0}^{+\infty} \frac{(-2)^n x^{2n}}{(n+1)!} + \sum_{n=0}^{+\infty} \frac{(-2)^n x^{2n}}{n!}$$

$$= -2\sum_{n=1}^{+\infty} \frac{(-2)^{n-1} x^{2n-2}}{n!} + \sum_{n=0}^{+\infty} \frac{(-2)^n x^{2n}}{n!}$$

après changement d'indice. On reconnaît alors le développement en série entière en 0 de l'exponentielle, après factorisation convenable (attention à bien prendre x non nul pour diviser ci-dessous; le cas x=0 étant de toute façon trivial considéré à part):

$$\sum_{n=0}^{+\infty} \frac{(-2)^n (n-1)x^{2n}}{(n+1)!} = \frac{1}{x^2} \sum_{n=1}^{+\infty} \frac{(-2x^2)^n}{n!} + \sum_{n=0}^{+\infty} \frac{(-2x^2)^n}{n!}$$
$$= \left(\frac{1}{x^2} + 1\right) \sum_{n=0}^{+\infty} \frac{(-2x^2)^n}{n!} + \left(-\frac{1}{x^2}\right)$$
$$= \left(\frac{1}{x^2} + 1\right) e^{(-2x^2)} + \left(-\frac{1}{x^2}\right),$$

d'où le résultat.

Corrigé 68.

- 1. On a trivialement a = 2 et b = 2.
- 2. Soit $x \in]-1,1[$. On a, d'après la question précédente :

$$\sum_{n=0}^{+\infty} 2(n+1)x^{2n} = 2\sum_{n=0}^{+\infty} x^{2n} + 2\sum_{n=0}^{+\infty} nx^{2n}$$
$$= 2\sum_{n=0}^{+\infty} (x^2)^n + 2x^2\sum_{n=1}^{+\infty} n(x^2)^{n-1}$$

On reconnaît alors le développement en série entière en 0 de l'application $x \mapsto \frac{1}{1-x} = \sum_{n=0}^{+\infty} x^n$, qu'on a dérivée terme à terme et évaluée en x^2 . Plus précisément, pour tout $x \in]-1,1[$, on a :

$$\frac{1}{1-x} = \sum_{n=0}^{+\infty} x^n, \quad \frac{1}{(1-x)^2} = \sum_{n=1}^{+\infty} nx^{n-1}.$$

On en déduit:

$$\sum_{n=0}^{+\infty} 2(n+1)x^{2n} = \frac{2}{1-x^2} + \frac{2x^2}{(1-x^2)^2},$$

d'où le résultat.

Corrigé 69.

- 1. On a trivialement a = -1 et b = 1.
- 2. Soit $x \in \left] -\frac{1}{2}, \frac{1}{2} \right[$. On a, d'après la question précédente :

$$\sum_{n=0}^{+\infty} (-2)^n (n-1)x^n = -\sum_{n=0}^{+\infty} (-2)^n x^n + \sum_{n=0}^{+\infty} n (-2)^n x^n$$
$$= -\sum_{n=0}^{+\infty} (-2x)^n + \sum_{n=1}^{+\infty} n (-2x)^n$$
$$= -\sum_{n=0}^{+\infty} (-2x)^n - 2x \sum_{n=1}^{+\infty} n (-2x)^{n-1}$$

On reconnaît alors le développement en série entière en 0 de l'application $x \mapsto \frac{1}{1-x} = \sum_{n=0}^{+\infty} x^n$, qu'on a dérivée terme à terme et évaluée en -2x. Plus précisément, pour tout $x \in]-1,1[$, on a :

$$\frac{1}{1-x} = \sum_{n=0}^{+\infty} x^n, \quad \frac{1}{(1-x)^2} = \sum_{n=1}^{+\infty} nx^{n-1}.$$

On en déduit :

$$\sum_{n=0}^{+\infty} (-2)^n (n-1)x^n = -\frac{1}{1+2x} - \frac{2x}{(1+2x)^2},$$

d'où le résultat.

Corrigé 70.

1. Tout d'abord, l'existence de $(a, b) \in \mathbb{R}^2$, vérifiant la décomposition de l'énoncé, est assurée par le fait que la famille (1, (2X+3)) soit échelonnée en degré : c'est donc une base de $\mathbb{R}_1[X]$ (et en particulier 6X+3, qui appartient à cet espace vectoriel, est combinaison linéaire des polynômes de cette base). Une identification immédiate (en commençant par comparer les coefficients dominants) permet de démontrer qu'on a : b=3, puis : a=-6. En conclusion, on a :

$$6X + 3 = -6 + 3(2X + 3).$$

 \leftarrow page 12

2. Soit $x \in \mathbb{R}$. On a, d'après la guestion précédente:

$$\begin{split} \sum_{n=0}^{+\infty} \frac{3 \, \left(\frac{1}{7}\right)^n (2 \, n + 1) x^{n+1}}{(2 \, n + 3)!} &= -6 \sum_{n=0}^{+\infty} \frac{1}{(2 \, n + 3)!} \left(\frac{1}{7}\right)^n x^{n+1} + 3 \sum_{n=0}^{+\infty} \frac{(2 \, n + 3)}{(2 \, n + 3)!} \left(\frac{1}{7}\right)^n x^{n+1} \\ &= -6 \sum_{n=0}^{+\infty} \frac{\left(\frac{1}{7}\right)^n x^{n+1}}{(2 \, n + 3)!} + 3 \sum_{n=0}^{+\infty} \frac{\left(\frac{1}{7}\right)^n x^{n+1}}{(2 \, n + 2)!} \\ &= -6 \sum_{n=1}^{+\infty} \frac{\left(\frac{1}{7}\right)^{n-1} x^n}{(2 \, n + 1)!} + 3 \sum_{n=1}^{+\infty} \frac{\left(\frac{1}{7}\right)^{n-1} x^n}{(2 \, n)!} \end{split}$$

après changement d'indice. On reconnaît alors le développement en série entière en 0 de fonctions trigonométriques, après factorisation convenable, où nous supposons d'abord $x \ge 0$ afin de pouvoir écrire $x = (\sqrt{x})^2$ et faire apparaître un exposant pair :

$$\sum_{n=0}^{+\infty} \frac{3 \left(\frac{1}{7}\right)^n (2 n + 1) x^{n+1}}{(2 n + 3)!} = -\frac{294 \sqrt{\frac{1}{7}}}{\sqrt{x}} \sum_{n=1}^{+\infty} \frac{\left(\sqrt{\frac{1}{7}} \sqrt{x}\right)^{2 n + 1}}{(2 n + 1)!} + 21 \sum_{n=1}^{+\infty} \frac{\left(\sqrt{\frac{1}{7}} \sqrt{x}\right)^{2 n}}{(2 n)!}$$

$$= 21 \sum_{n=0}^{+\infty} \frac{\left(\sqrt{\frac{1}{7}} \sqrt{x}\right)^{2 n}}{(2 n)!} - \frac{294 \sqrt{\frac{1}{7}}}{\sqrt{x}} \sum_{n=0}^{+\infty} \frac{\left(\sqrt{\frac{1}{7}} \sqrt{x}\right)^{2 n + 1}}{(2 n + 1)!} + \left(42 \sqrt{7} \sqrt{\frac{1}{7}} - 21\right)$$

$$= 21 \cosh\left(\sqrt{\frac{1}{7}} \sqrt{x}\right) - \frac{294 \sqrt{\frac{1}{7}}}{\sqrt{x}} \sinh\left(\sqrt{\frac{1}{7}} \sqrt{x}\right) + \left(42 \sqrt{7} \sqrt{\frac{1}{7}} - 21\right),$$

d'où le résultat si x est positif. Si x est négatif, on écrit $x=-(-x)=-(\sqrt{-x})^2$, et un raisonnement analogue à celui ci-dessus aboutit à :

$$\sum_{n=0}^{+\infty} \frac{3\left(\frac{1}{7}\right)^n (2n+1)x^{n+1}}{(2n+3)!} = 21 \sum_{n=0}^{+\infty} \frac{(-1)^n \left(\sqrt{\frac{1}{7}}\sqrt{-x}\right)^{2n}}{(2n)!} - \frac{294\sqrt{\frac{1}{7}}}{\sqrt{-x}} \sum_{n=0}^{+\infty} \frac{(-1)^n \left(\sqrt{\frac{1}{7}}\sqrt{-x}\right)^{2n+1}}{(2n+1)!} + \left(42\sqrt{7}\sqrt{\frac{1}{7}} - 21\right)$$

$$= 21 \cos\left(\sqrt{\frac{1}{7}}\sqrt{-x}\right) - \frac{294\sqrt{\frac{1}{7}}}{\sqrt{-x}} \sin\left(\sqrt{\frac{1}{7}}\sqrt{-x}\right) + \left(42\sqrt{7}\sqrt{\frac{1}{7}} - 21\right),$$

d'où le résultat.

Corrigé 71.

 \leftarrow page 13

1. C'est une décomposition en éléments simples, tout ce qu'il y a de plus classique. Il suffit de multiplier l'égalité par chacun des dénominateurs possibles du membre de droite, et de faire tendre la variable n vers leurs racines. Cela permet d'éliminer toutes les inconnues sauf une, et de les déterminer. On obtient alors :

$$\forall n \in \mathbb{C} \setminus \left\{-\frac{3}{2}, -1\right\}, \quad \frac{1}{4\left(2\,n+3\right)(n+1)} = -\frac{1}{2\left(2\,n+3\right)} + \frac{1}{4\left(n+1\right)}.$$

2. Soit $x \in]-1,1[$. On a, d'après la question précédente :

$$\sum_{n=0}^{+\infty} \frac{x^n}{4(2n+3)(n+1)} = \frac{1}{4} \sum_{n=0}^{+\infty} \frac{x^n}{n+1} - \frac{1}{2} \sum_{n=0}^{+\infty} \frac{x^n}{2n+3}$$
$$= \frac{1}{4} \sum_{n=0}^{+\infty} \frac{x^n}{n+1} - \frac{1}{2} \sum_{n=1}^{+\infty} \frac{x^{n-1}}{2n+1}$$

après changement d'indice. On reconnaît alors le développement en série entière en 0 du logarithme et d'une somme de série entière non usuelle, mais qu'on sait calculer en intégrant terme à terme une série géométrique; nous le faisons en remarque plus bas, et admettons provisoirement que $\sum_{n=0}^{+\infty} \frac{x^{2n+1}}{2n+1} = \frac{1}{2n+1}$

 $\frac{1}{2}\ln\left(\frac{1+x}{1-x}\right)$ pour tout $x \in]-1,1[$. Alors (attention à bien prendre x non nul pour diviser ci-dessous; le

cas x = 0 étant de toute façon trivial considéré à part):

$$\sum_{n=0}^{+\infty} \frac{x^n}{4(2n+3)(n+1)} = \frac{1}{4x} \sum_{n=0}^{+\infty} \frac{x^{n+1}}{n+1} - \frac{1}{2x^{\frac{3}{2}}} \sum_{n=1}^{+\infty} \frac{\sqrt{x^{2n+1}}}{2n+1}$$

$$= -\frac{1}{4x} \ln(-x+1) - \frac{1}{2x^{\frac{3}{2}}} \frac{1}{2} \ln\left(-\frac{\sqrt{x}+1}{\sqrt{x}-1}\right) + \left(\frac{1}{2x}\right),$$

d'où le résultat si x est positif. Si x est négatif, on écrit $x = -(-x) = -(\sqrt{-x})^2$, et un raisonnement analogue à celui ci-dessus aboutit à:

$$\sum_{n=0}^{+\infty} \frac{x^n}{4(2n+3)(n+1)} = -\frac{1}{4x} \ln(-x+1) - \frac{1}{2\sqrt{-x}x} \arctan(\sqrt{-x}) + \left(\frac{1}{2x}\right),$$

d'où le résultat.

Remarque. Pour calculer $\sum_{n=0}^{+\infty} \frac{x^{2n+1}}{2n+1}$ pour tout $x \in]-1,1[$, on remarque qu'on obtient cette somme en

intégrant terme à terme $x \mapsto \sum_{n=0}^{+\infty} x^{2n}$ (ce qui est possible parce qu'il s'agit d'une somme de série entière de rayon de convergence 1):

$$\sum_{n=0}^{+\infty} \frac{x^{2n+1}}{2n+1} = \sum_{n=0}^{+\infty} \int_0^x t^{2n} \mathrm{d}t = \int_0^x \sum_{n=0}^{+\infty} t^{2n} \mathrm{d}t = \int_0^x \frac{\mathrm{d}t}{1-t^2} = \frac{1}{2} \int_0^x \left(\frac{1}{1-t} + \frac{1}{1+t}\right) \mathrm{d}t = \frac{1}{2} \ln \left(\frac{1+x}{1-x}\right).$$

Corrigé 72.

1. C'est une décomposition en éléments simples, tout ce qu'il y a de plus classique. Il suffit de multiplier l'égalité par chacun des dénominateurs possibles du membre de droite, et de faire tendre la variable n vers leurs racines. Cela permet d'éliminer toutes les inconnues sauf une, et de les déterminer. On obtient alors :

$$\forall n \in \mathbb{C} \setminus \{-3, -1\}, \quad \frac{n}{6(n+3)(n+1)} = \frac{1}{4(n+3)} - \frac{1}{12(n+1)}.$$

2. Soit $x \in \left] - \sqrt{86}, \sqrt{86} \right[$. On a, d'après la question précédente :

$$\begin{split} \sum_{n=0}^{+\infty} \frac{\left(\frac{1}{86}\right)^n nx^{2\,n+1}}{6\,(n+3)(n+1)} &= \frac{1}{4} \sum_{n=0}^{+\infty} \frac{\left(\frac{1}{86}\,x^2\right)^n x}{n+3} - \frac{1}{12} \sum_{n=0}^{+\infty} \frac{\left(\frac{1}{86}\,x^2\right)^n x}{n+1} \\ &= \frac{1}{4} \sum_{n=2}^{+\infty} \frac{\left(\frac{1}{86}\,x^2\right)^{n-2} x}{n+1} - \frac{1}{12} \sum_{n=0}^{+\infty} \frac{\left(\frac{1}{86}\,x^2\right)^n x}{n+1} \end{split}$$

après changement d'indice. On reconnaît alors le développement en série entière en 0 du logarithme, et on en déduit (attention à bien prendre x non nul pour diviser ci-dessous; le cas x=0 étant de toute façon trivial considéré à part):

$$\begin{split} \sum_{n=0}^{+\infty} \frac{\left(\frac{1}{86}\right)^n n x^{2\,n+1}}{6\,(n+3)(n+1)} &= \frac{159014}{x^5} \sum_{n=2}^{+\infty} \frac{\left(\frac{1}{86}\,x^2\right)^{n+1}}{n+1} - \frac{43}{6\,x} \sum_{n=0}^{+\infty} \frac{\left(\frac{1}{86}\,x^2\right)^{n+1}}{n+1} \\ &= -\left(-\frac{43}{6\,x} + \frac{159014}{x^5}\right) \ln\left(-\frac{1}{86}\,x^2 + 1\right) + \left(-\frac{43}{4\,x} - \frac{1849}{x^3}\right), \end{split}$$

d'où le résultat.

Corrigé 73.

- 1. On a trivialement a = -3 et b = 9.
- 2. Soit $x \in]-1,1[$. On a, d'après la question précédente :

$$\sum_{n=0}^{+\infty} 3 (-1)^n (3n-1)x^{2n} = -3 \sum_{n=0}^{+\infty} (-1)^n x^{2n} + 9 \sum_{n=0}^{+\infty} n (-1)^n x^{2n}$$
$$= -3 \sum_{n=0}^{+\infty} (-x^2)^n + 9 \sum_{n=1}^{+\infty} n (-x^2)^n$$
$$= -3 \sum_{n=0}^{+\infty} (-x^2)^n - 9 x^2 \sum_{n=1}^{+\infty} n (-x^2)^{n-1}$$

 $\leftarrow \text{page } 13$

On reconnaît alors le développement en série entière en 0 de l'application $x \mapsto \frac{1}{1-x} = \sum_{n=0}^{+\infty} x^n$, qu'on a dérivée terme à terme et évaluée en $-x^2$. Plus précisément, pour tout $x \in]-1,1[$, on a :

$$\frac{1}{1-x} = \sum_{n=0}^{+\infty} x^n, \quad \frac{1}{(1-x)^2} = \sum_{n=1}^{+\infty} nx^{n-1}.$$

On en déduit:

$$\sum_{n=0}^{+\infty} 3 (-1)^n (3n-1)x^{2n} = -\frac{3}{1+x^2} - \frac{9x^2}{(1+x^2)^2},$$

d'où le résultat.

Corrigé 74.

1. Tout d'abord, l'existence de $(a,b,c) \in \mathbb{R}^3$, vérifiant la décomposition de l'énoncé, est assurée par le fait que la famille (1,X,X(X-1)) soit échelonnée en degré : c'est donc une base de $\mathbb{R}_2[X]$ (et en particulier X^2-2 , qui appartient à cet espace vectoriel, est combinaison linéaire des polynômes de cette base). Pour déterminer ces scalaires, nul besoin de développer comme un cochon (et je vous le déconseille fortement) : il suffit d'évaluer l'égalité en des racines des polynômes du membre de droite, c'est-à-dire successivement en 0,1. Si l'on évalue l'égalité $X^2-2=a+bX+cX(X-1)$ en 0, on obtient directement : a=-2. Et ainsi de suite. Pour déterminer c, une évaluation en des racines ne simplifie pas la tâche, mais on peut par exemple le déterminer en comparant les coefficients dominants dans chaque membre de l'égalité : c'est moins calculatoire que si on voulait l'exprimer à l'aide des coefficients précédemment déterminés. Cette idée donne ici : 1=c. En conclusion, on a :

$$X^{2}-2=-2+X+X(X-1).$$

2. Soit $x\in \left]-2,2\right[.$ On a, d'après la question précédente :

$$\sum_{n=0}^{+\infty} (n^2 - 2) \left(\frac{1}{4}\right)^n x^{2n} = -2 \sum_{n=0}^{+\infty} \left(\frac{1}{4}\right)^n x^{2n} + \sum_{n=0}^{+\infty} n \left(\frac{1}{4}\right)^n x^{2n} + \sum_{n=0}^{+\infty} n(n-1) \left(\frac{1}{4}\right)^n x^{2n}$$

$$= -2 \sum_{n=0}^{+\infty} \left(\frac{1}{4}x^2\right)^n + \sum_{n=1}^{+\infty} n \left(\frac{1}{4}x^2\right)^n + \sum_{n=2}^{+\infty} n(n-1) \left(\frac{1}{4}x^2\right)^n$$

$$= -2 \sum_{n=0}^{+\infty} \left(\frac{1}{4}x^2\right)^n + \frac{1}{4}x^2 \sum_{n=1}^{+\infty} n \left(\frac{1}{4}x^2\right)^{n-1} + \frac{1}{16}x^4 \sum_{n=2}^{+\infty} n(n-1) \left(\frac{1}{4}x^2\right)^{n-2}$$

On reconnaît alors le développement en série entière en 0 de l'application $x \mapsto \frac{1}{1-x} = \sum_{n=0}^{+\infty} x^n$, qu'on a dérivée terme à terme et évaluée en $\frac{1}{4}x^2$. Plus précisément, pour tout $x \in]-1,1[$, on a :

$$\frac{1}{1-x} = \sum_{n=0}^{+\infty} x^n, \quad \frac{1}{(1-x)^2} = \sum_{n=1}^{+\infty} nx^{n-1}, \quad \frac{2}{(1-x)^3} = \sum_{n=2}^{+\infty} n(n-1)x^{n-2}.$$

On en déduit:

$$\sum_{n=0}^{+\infty} \left(n^2 - 2\right) \left(\frac{1}{4}\right)^n x^{2n} = -\frac{2}{1 - \frac{1}{4}x^2} + \frac{\frac{1}{4}x^2}{\left(1 - \frac{1}{4}x^2\right)^2} + \frac{\frac{1}{8}x^4}{\left(1 - \frac{1}{4}x^2\right)^3},$$

d'où le résultat.

Corrigé 75.

1. C'est une décomposition en éléments simples, tout ce qu'il y a de plus classique. Il suffit de multiplier l'égalité par chacun des dénominateurs possibles du membre de droite, et de faire tendre la variable n vers leurs racines. Cela permet d'éliminer toutes les inconnues sauf une, et de les déterminer. On obtient alors :

$$\forall n \in \mathbb{C} \setminus \{-3, -1\}, \quad \frac{1}{2(n+3)(n+1)} = -\frac{1}{4(n+3)} + \frac{1}{4(n+1)}.$$

 \leftarrow page 13

2. Soit $x \in]-2,2[$. On a, d'après la question précédente :

$$\sum_{n=0}^{+\infty} \frac{\left(\frac{1}{2}\right)^n x^n}{2(n+3)(n+1)} = -\frac{1}{4} \sum_{n=0}^{+\infty} \frac{\left(\frac{1}{2}x\right)^n}{n+3} + \frac{1}{4} \sum_{n=0}^{+\infty} \frac{\left(\frac{1}{2}x\right)^n}{n+1}$$
$$= -\frac{1}{4} \sum_{n=2}^{+\infty} \frac{\left(\frac{1}{2}x\right)^{n-2}}{n+1} + \frac{1}{4} \sum_{n=0}^{+\infty} \frac{\left(\frac{1}{2}x\right)^n}{n+1}$$

après changement d'indice. On reconnaît alors le développement en série entière en 0 du logarithme, et on en déduit (attention à bien prendre x non nul pour diviser ci-dessous; le cas x=0 étant de toute façon trivial considéré à part):

$$\sum_{n=0}^{+\infty} \frac{\left(\frac{1}{2}\right)^n x^n}{2(n+3)(n+1)} = -\frac{2}{x^3} \sum_{n=2}^{+\infty} \frac{\left(\frac{1}{2}x\right)^{n+1}}{n+1} + \frac{1}{2x} \sum_{n=0}^{+\infty} \frac{\left(\frac{1}{2}x\right)^{n+1}}{n+1}$$
$$= -\left(\frac{1}{2x} - \frac{2}{x^3}\right) \ln\left(-\frac{1}{2}x + 1\right) + \left(\frac{1}{4x} + \frac{1}{x^2}\right),$$

d'où le résultat.

Corrigé 76.

1. Tout d'abord, l'existence de $(a,b,c) \in \mathbb{R}^3$, vérifiant la décomposition de l'énoncé, est assurée par le fait que la famille (1,(2X),(2X)(2X-1)) soit échelonnée en degré : c'est donc une base de $\mathbb{R}_2[X]$ (et en particulier $2X^2+2X$, qui appartient à cet espace vectoriel, est combinaison linéaire des polynômes de cette base). Pour déterminer ces scalaires, nul besoin de développer comme un cochon (et je vous le déconseille fortement) : il suffit d'évaluer l'égalité en des racines des polynômes du membre de droite, c'est-à-dire successivement en $0, \frac{1}{2}$. Si l'on évalue l'égalité $2X^2+2X=a+b(2X)+c(2X)(2X-1)$ en 0, on obtient directement : a=0. Et ainsi de suite. Pour déterminer c, une évaluation en des racines ne simplifie pas la tâche, mais on peut par exemple le déterminer en comparant les coefficients dominants dans chaque membre de l'égalité : c'est moins calculatoire que si on voulait l'exprimer à l'aide des coefficients précédemment déterminés. Cette idée donne ici : 2=4c, et on en déduit $c=\frac{1}{2}$. En conclusion, on a :

$$2X^{2} + 2X = \frac{3}{2}(2X) + \frac{1}{2}(2X)(2X - 1).$$

2. Soit $x \in \mathbb{R}$. On a, d'après la question précédente :

$$\sum_{n=0}^{+\infty} \frac{2(n^2+n)3^n x^{2n+1}}{(2n)!} = \frac{3}{2} \sum_{n=0}^{+\infty} \frac{(2n)}{(2n)!} 3^n x^{2n+1} + \frac{1}{2} \sum_{n=0}^{+\infty} \frac{(2n)(2n-1)}{(2n)!} 3^n x^{2n+1}$$

$$= \frac{3}{2} \sum_{n=1}^{+\infty} \frac{3^n x^{2n+1}}{(2n-1)!} + \frac{1}{2} \sum_{n=1}^{+\infty} \frac{3^n x^{2n+1}}{(2n-2)!}$$

$$= \frac{3}{2} \sum_{n=0}^{+\infty} \frac{3^{n+1} x^{2n+3}}{(2n+1)!} + \frac{1}{2} \sum_{n=0}^{+\infty} \frac{3^{n+1} x^{2n+3}}{(2n)!}$$

après changement d'indice. On reconnaît alors le développement en série entière en 0 de fonctions trigonométriques, après factorisation convenable:

$$\sum_{n=0}^{+\infty} \frac{2(n^2+n)3^n x^{2n+1}}{(2n)!} = \frac{3}{2} \sqrt{3}x^2 \sum_{n=0}^{+\infty} \frac{\left(\sqrt{3}x\right)^{2n+1}}{(2n+1)!} + \frac{3}{2} x^3 \sum_{n=0}^{+\infty} \frac{\left(\sqrt{3}x\right)^{2n}}{(2n)!}$$
$$= \frac{3}{2} x^3 \cosh\left(\sqrt{3}x\right) + \frac{3}{2} \sqrt{3}x^2 \sinh\left(\sqrt{3}x\right),$$

d'où le résultat.

Corrigé 77.

1. Tout d'abord, l'existence de $(a, b, c) \in \mathbb{R}^3$, vérifiant la décomposition de l'énoncé, est assurée par le fait que la famille (1, (2X), (2X)(2X-1)) soit échelonnée en degré : c'est donc une base de $\mathbb{R}_2[X]$ (et en particulier $X^2 - X$, qui appartient à cet espace vectoriel, est combinaison linéaire des polynômes de cette base). Pour déterminer ces scalaires, nul besoin de développer comme un cochon (et je vous le déconseille fortement):

← page 13

il suffit d'évaluer l'égalité en des racines des polynômes du membre de droite, c'est-à-dire successivement en $0, \frac{1}{2}$. Si l'on évalue l'égalité $X^2 - X = a + b(2X) + c(2X)(2X - 1)$ en 0, on obtient directement : a = 0. Et ainsi de suite. Pour déterminer c, une évaluation en des racines ne simplifie pas la tâche, mais on peut par exemple le déterminer en comparant les coefficients dominants dans chaque membre de l'égalité : c'est moins calculatoire que si on voulait l'exprimer à l'aide des coefficients précédemment déterminés. Cette idée donne ici : 1 = 4 c, et on en déduit $c = \frac{1}{4}$. En conclusion, on a :

$$X^{2} - X = -\frac{1}{4}(2X) + \frac{1}{4}(2X)(2X - 1).$$

2. Soit $x \in \mathbb{R}$. On a, d'après la question précédente :

$$\begin{split} \sum_{n=0}^{+\infty} \frac{\left(n^2 - n\right)2^n x^n}{(2\,n)!} &= -\frac{1}{4} \sum_{n=0}^{+\infty} \frac{(2\,n)}{(2\,n)!} 2^n x^n + \frac{1}{4} \sum_{n=0}^{+\infty} \frac{(2\,n)(2\,n-1)}{(2\,n)!} 2^n x^n \\ &= -\frac{1}{4} \sum_{n=1}^{+\infty} \frac{2^n x^n}{(2\,n-1)!} + \frac{1}{4} \sum_{n=1}^{+\infty} \frac{2^n x^n}{(2\,n-2)!} \\ &= -\frac{1}{4} \sum_{n=0}^{+\infty} \frac{2^{n+1} x^{n+1}}{(2\,n+1)!} + \frac{1}{4} \sum_{n=0}^{+\infty} \frac{2^{n+1} x^{n+1}}{(2\,n)!} \end{split}$$

après changement d'indice. On reconnaît alors le développement en série entière en 0 de fonctions trigonométriques, après factorisation convenable, où nous supposons d'abord $x \ge 0$ afin de pouvoir écrire $x = (\sqrt{x})^2$ et faire apparaître un exposant pair :

$$\sum_{n=0}^{+\infty} \frac{(n^2 - n)2^n x^n}{(2n)!} = -\frac{1}{4} \sqrt{2} \sqrt{x} \sum_{n=0}^{+\infty} \frac{\left(\sqrt{2} \sqrt{x}\right)^{2n+1}}{(2n+1)!} + \frac{1}{2} x \sum_{n=0}^{+\infty} \frac{\left(\sqrt{2} \sqrt{x}\right)^{2n}}{(2n)!}$$
$$= \frac{1}{2} x \cosh\left(\sqrt{2} \sqrt{x}\right) - \frac{1}{4} \sqrt{2} \sqrt{x} \sinh\left(\sqrt{2} \sqrt{x}\right),$$

d'où le résultat si x est positif. Si x est négatif, on écrit $x = -(-x) = -(\sqrt{-x})^2$, et un raisonnement analogue à celui ci-dessus aboutit à:

$$\sum_{n=0}^{+\infty} \frac{(n^2 - n)2^n x^n}{(2n)!} = \frac{1}{2} x \sum_{n=0}^{+\infty} \frac{(-1)^n \left(\sqrt{2}\sqrt{-x}\right)^{2n}}{(2n)!} - \frac{\sqrt{2}x}{4\sqrt{-x}} \sum_{n=0}^{+\infty} \frac{(-1)^n \left(\sqrt{2}\sqrt{-x}\right)^{2n+1}}{(2n+1)!}$$
$$= \frac{1}{2} x \cos\left(\sqrt{2}\sqrt{-x}\right) - \frac{\sqrt{2}x}{4\sqrt{-x}} \sin\left(\sqrt{2}\sqrt{-x}\right),$$

d'où le résultat.

Corrigé 78.

1. C'est une décomposition en éléments simples, tout ce qu'il y a de plus classique. Il suffit de multiplier l'égalité par chacun des dénominateurs possibles du membre de droite, et de faire tendre la variable n vers leurs racines. Cela permet d'éliminer toutes les inconnues sauf une, et de les déterminer. On obtient alors :

$$\forall n \in \mathbb{C} \setminus \left\{ -\frac{1}{2}, -1 \right\}, \quad \frac{4n+1}{(2n+1)(n+1)} = -\frac{2}{2n+1} + \frac{3}{n+1}.$$

2. Soit $x \in \left] - \sqrt{\frac{1}{2}}, \sqrt{\frac{1}{2}} \right[$. On a, d'après la question précédente :

$$\sum_{n=0}^{+\infty} \frac{2^n (4n+1) x^{2n}}{(2n+1)(n+1)} = 3 \sum_{n=0}^{+\infty} \frac{\left(2 \, x^2\right)^n}{n+1} - 2 \sum_{n=0}^{+\infty} \frac{\left(\sqrt{2} x\right)^{2n}}{2\, n+1}$$

On reconnaît alors le développement en série entière en 0 du logarithme et d'une somme de série entière non usuelle, mais qu'on sait calculer en intégrant terme à terme une série géométrique; nous le faisons en remarque plus bas, et admettons provisoirement que $\sum_{n=0}^{+\infty} \frac{x^{2n+1}}{2n+1} = \frac{1}{2} \ln \left(\frac{1+x}{1-x} \right) \text{ pour tout } x \in]-1,1[.$

Alors (attention à bien prendre x non nul pour diviser ci-dessous; le cas x=0 étant de toute façon trivial

considéré à part):

$$\sum_{n=0}^{+\infty} \frac{2^n (4n+1)x^{2n}}{(2n+1)(n+1)} = \frac{3}{2x^2} \sum_{n=0}^{+\infty} \frac{\left(2x^2\right)^{n+1}}{n+1} - \frac{\sqrt{2}}{x} \sum_{n=0}^{+\infty} \frac{\left(\sqrt{2}x\right)^{2n+1}}{2n+1}$$
$$= -\frac{3}{2x^2} \ln\left(-2x^2+1\right) - \frac{\sqrt{2}}{x} \frac{1}{2} \ln\left(-\frac{\sqrt{2}x+1}{\sqrt{2}x-1}\right),$$

d'où le résultat.

Remarque. Pour calculer $\sum_{n=0}^{+\infty} \frac{x^{2n+1}}{2n+1}$ pour tout $x \in]-1,1[$, on remarque qu'on obtient cette somme en intégrant terme à terme $x \mapsto \sum_{n=0}^{+\infty} x^{2n}$ (ce qui est possible parce qu'il s'agit d'une somme de série entière

$$\sum_{n=0}^{+\infty} \frac{x^{2n+1}}{2n+1} = \sum_{n=0}^{+\infty} \int_0^x t^{2n} dt = \int_0^x \sum_{n=0}^{+\infty} t^{2n} dt = \int_0^x \frac{dt}{1-t^2} = \frac{1}{2} \int_0^x \left(\frac{1}{1-t} + \frac{1}{1+t} \right) dt = \frac{1}{2} \ln \left(\frac{1+x}{1-x} \right).$$

Corrigé 79.

1. C'est une décomposition en éléments simples, tout ce qu'il y a de plus classique. Il suffit de multiplier l'égalité par chacun des dénominateurs possibles du membre de droite, et de faire tendre la variable n vers leurs racines. Cela permet d'éliminer toutes les inconnues sauf une, et de les déterminer. On obtient alors:

$$\forall n \in \mathbb{C} \setminus \left\{ -\frac{3}{2}, -3, -1 \right\}, \quad \frac{2n-1}{2(2n+3)(n+3)(n+1)} = \frac{8}{3(2n+3)} - \frac{7}{12(n+3)} - \frac{3}{4(n+1)}.$$

2. Soit $x \in \left] - \sqrt{2}, \sqrt{2} \right[$. On a, d'après la question précédente :

$$\sum_{n=0}^{+\infty} \frac{\left(\frac{1}{2}\right)^n (2n-1)x^{2n+1}}{2(2n+3)(n+3)(n+1)} = -\frac{7}{12} \sum_{n=0}^{+\infty} \frac{\left(\frac{1}{2}x^2\right)^n x}{n+3} - \frac{3}{4} \sum_{n=0}^{+\infty} \frac{\left(\frac{1}{2}x^2\right)^n x}{n+1} + \frac{8}{3} \sum_{n=0}^{+\infty} \frac{\left(\sqrt{\frac{1}{2}}x\right)^{2n} x}{2n+3}$$

$$= -\frac{7}{12} \sum_{n=2}^{+\infty} \frac{\left(\frac{1}{2}x^2\right)^{n-2} x}{n+1} - \frac{3}{4} \sum_{n=0}^{+\infty} \frac{\left(\frac{1}{2}x^2\right)^n x}{n+1} + \frac{8}{3} \sum_{n=1}^{+\infty} \frac{\left(\sqrt{\frac{1}{2}}x\right)^{2n-2} x}{2n+1}$$

après changement d'indice. On reconnaît alors le développement en série entière en 0 du logarithme et d'une somme de série entière non usuelle, mais qu'on sait calculer en intégrant terme à terme une série géométrique; nous le faisons en remarque plus bas, et admettons provisoirement que $\sum_{n=0}^{+\infty} \frac{x^{2n+1}}{2n+1} = \frac{1}{2n+1}$

 $\frac{1}{2}\ln\left(\frac{1+x}{1-x}\right)$ pour tout $x\in]-1,1[$. Alors (attention à bien prendre x non nul pour diviser ci-dessous; le cas x=0 étant de toute façon trivial considéré à part):

$$\sum_{n=0}^{+\infty} \frac{\left(\frac{1}{2}\right)^n (2n-1)x^{2n+1}}{2(2n+3)(n+3)(n+1)} = -\frac{14}{3x^5} \sum_{n=2}^{+\infty} \frac{\left(\frac{1}{2}x^2\right)^{n+1}}{n+1} - \frac{3}{2x} \sum_{n=0}^{+\infty} \frac{\left(\frac{1}{2}x^2\right)^{n+1}}{n+1} + \frac{32\sqrt{\frac{1}{2}}}{3x^2} \sum_{n=1}^{+\infty} \frac{\left(\sqrt{\frac{1}{2}x}\right)^{2n+1}}{2n+1}$$

$$= -\left(-\frac{3}{2x} - \frac{14}{3x^5}\right) \ln\left(-\frac{1}{2}x^2 + 1\right) + \frac{32\sqrt{\frac{1}{2}}}{3x^2} \frac{1}{2} \ln\left(-\frac{\sqrt{\frac{1}{2}x} + 1}{\sqrt{\frac{1}{2}x} - 1}\right) + \left(-\frac{16\sqrt{2}\sqrt{\frac{1}{2}}}{3x} + \frac{7}{12x} + \frac{7}{12x}\right)$$

d'où le résultat.

Remarque. Pour calculer $\sum_{n=0}^{+\infty} \frac{x^{2n+1}}{2n+1}$ pour tout $x \in]-1,1[$, on remarque qu'on obtient cette somme en

intégrant terme à terme $x \mapsto \sum_{n=0}^{+\infty} x^{2n}$ (ce qui est possible parce qu'il s'agit d'une somme de série entière de rayon de convergence 1):

$$\sum_{n=0}^{+\infty} \frac{x^{2n+1}}{2n+1} = \sum_{n=0}^{+\infty} \int_0^x t^{2n} dt = \int_0^x \sum_{n=0}^{+\infty} t^{2n} dt = \int_0^x \frac{dt}{1-t^2} = \frac{1}{2} \int_0^x \left(\frac{1}{1-t} + \frac{1}{1+t} \right) dt = \frac{1}{2} \ln \left(\frac{1+x}{1-x} \right).$$

Corrigé 80. \leftarrow page 14

1. Tout d'abord, l'existence de $(a,b,c) \in \mathbb{R}^3$, vérifiant la décomposition de l'énoncé, est assurée par le fait que la famille (1,X,X(X-1)) soit échelonnée en degré : c'est donc une base de $\mathbb{R}_2[X]$ (et en particulier $4X^2-X+1$, qui appartient à cet espace vectoriel, est combinaison linéaire des polynômes de cette base). Pour déterminer ces scalaires, nul besoin de développer comme un cochon (et je vous le déconseille fortement) : il suffit d'évaluer l'égalité en des racines des polynômes du membre de droite, c'est-à-dire successivement en 0,1. Si l'on évalue l'égalité $4X^2-X+1=a+bX+cX(X-1)$ en 0, on obtient directement : a=1. Et ainsi de suite. Pour déterminer c, une évaluation en des racines ne simplifie pas la tâche, mais on peut par exemple le déterminer en comparant les coefficients dominants dans chaque membre de l'égalité : c'est moins calculatoire que si on voulait l'exprimer à l'aide des coefficients précédemment déterminés. Cette idée donne ici : 4=c. En conclusion, on a :

$$4X^2 - X + 1 = 1 + 3X + 4X(X - 1).$$

2. Soit $x\in\left]-\frac{1}{2}\sqrt{\frac{1}{3}},\frac{1}{2}\sqrt{\frac{1}{3}}\right[$. On a, d'après la question précédente :

$$\sum_{n=0}^{+\infty} (4n^2 - n + 1) (-12)^n x^{2n+1} = \sum_{n=0}^{+\infty} (-12)^n x^{2n+1} + 3 \sum_{n=0}^{+\infty} n (-12)^n x^{2n+1} + 4 \sum_{n=0}^{+\infty} n (n-1) (-12)^n x^{2n+1}$$

$$= x \sum_{n=0}^{+\infty} (-12x^2)^n + 3x \sum_{n=1}^{+\infty} n (-12x^2)^n + 4x \sum_{n=2}^{+\infty} n (n-1) (-12x^2)^n$$

$$= x \sum_{n=0}^{+\infty} (-12x^2)^n - 36x^3 \sum_{n=1}^{+\infty} n (-12x^2)^{n-1} + 576x^5 \sum_{n=2}^{+\infty} n (n-1) (-12x^2)^{n-2}$$

On reconnaît alors le développement en série entière en 0 de l'application $x \mapsto \frac{1}{1-x} = \sum_{n=0}^{+\infty} x^n$, qu'on a dérivée terme à terme et évaluée en $-12x^2$. Plus précisément, pour tout $x \in]-1,1[$, on a :

$$\frac{1}{1-x} = \sum_{n=0}^{+\infty} x^n, \quad \frac{1}{(1-x)^2} = \sum_{n=1}^{+\infty} nx^{n-1}, \quad \frac{2}{(1-x)^3} = \sum_{n=2}^{+\infty} n(n-1)x^{n-2}.$$

On en déduit:

$$\sum_{n=0}^{+\infty} (4n^2 - n + 1) (-12)^n x^{2n+1} = \frac{x}{1 + 12x^2} - \frac{36x^3}{(1 + 12x^2)^2} + \frac{1152x^5}{(1 + 12x^2)^3},$$

d'où le résultat.

Corrigé 81.

- 1. On a trivialement a = 2 et b = 3.
- 2. Soit $x \in \left] -\frac{2}{3}, \frac{2}{3} \right[$. On a, d'après la question précédente:

$$\sum_{n=0}^{+\infty} \left(\frac{3}{2}\right)^n (3n+2)x^n = 2\sum_{n=0}^{+\infty} \left(\frac{3}{2}\right)^n x^n + 3\sum_{n=0}^{+\infty} n \left(\frac{3}{2}\right)^n x^n$$

$$= 2\sum_{n=0}^{+\infty} \left(\frac{3}{2}x\right)^n + 3\sum_{n=1}^{+\infty} n \left(\frac{3}{2}x\right)^n$$

$$= 2\sum_{n=0}^{+\infty} \left(\frac{3}{2}x\right)^n + \frac{9}{2}x\sum_{n=1}^{+\infty} n \left(\frac{3}{2}x\right)^{n-1}$$

On reconnaît alors le développement en série entière en 0 de l'application $x \mapsto \frac{1}{1-x} = \sum_{n=0}^{+\infty} x^n$, qu'on a dérivée terme à terme et évaluée en $\frac{3}{2}x$. Plus précisément, pour tout $x \in]-1,1[$, on a:

$$\frac{1}{1-x} = \sum_{n=0}^{+\infty} x^n, \quad \frac{1}{(1-x)^2} = \sum_{n=1}^{+\infty} nx^{n-1}.$$

On en déduit:

$$\sum_{n=0}^{+\infty} \left(\frac{3}{2}\right)^n (3n+2)x^n = \frac{2}{1-\frac{3}{2}x} + \frac{\frac{9}{2}x}{\left(1-\frac{3}{2}x\right)^2},$$

d'où le résultat.

Corrigé 82.

1. Tout d'abord, l'existence de $(a,b,c) \in \mathbb{R}^3$, vérifiant la décomposition de l'énoncé, est assurée par le fait que la famille (1,(2X+2),(2X+2)(2X+1)) soit échelonnée en degré : c'est donc une base de $\mathbb{R}_2[X]$ (et en particulier $8X^2+2X$, qui appartient à cet espace vectoriel, est combinaison linéaire des polynômes de cette base). Pour déterminer ces scalaires, nul besoin de développer comme un cochon (et je vous le déconseille fortement) : il suffit d'évaluer l'égalité en des racines des polynômes du membre de droite, c'est-à-dire successivement en $-1, -\frac{1}{2}$. Si l'on évalue l'égalité $8X^2+2X=a+b(2X+2)+c(2X+2)(2X+1)$ en -1, on obtient directement : a=6. Et ainsi de suite. Pour déterminer c, une évaluation en des racines ne simplifie pas la tâche, mais on peut par exemple le déterminer en comparant les coefficients dominants dans chaque membre de l'égalité : c'est moins calculatoire que si on voulait l'exprimer à l'aide des coefficients précédemment déterminés. Cette idée donne ici : 8=4c, et on en déduit c=2. En conclusion, on a :

$$8X^{2} + 2X = 6 - 5(2X + 2) + 2(2X + 2)(2X + 1).$$

2. Soit $x \in \mathbb{R}$. On a, d'après la question précédente :

$$\begin{split} \sum_{n=0}^{+\infty} \frac{2 \left(4 \, n^2+n\right) \left(\frac{5}{2}\right)^n x^{2 \, n+1}}{(2 \, n+2)!} &= 6 \sum_{n=0}^{+\infty} \frac{1}{(2 \, n+2)!} \left(\frac{5}{2}\right)^n x^{2 \, n+1} - 5 \sum_{n=0}^{+\infty} \frac{(2 \, n+2)}{(2 \, n+2)!} \left(\frac{5}{2}\right)^n x^{2 \, n+1} \\ &+ 2 \sum_{n=0}^{+\infty} \frac{(2 \, n+2)(2 \, n+1)}{(2 \, n+2)!} \left(\frac{5}{2}\right)^n x^{2 \, n+1} \\ &= 6 \sum_{n=0}^{+\infty} \frac{\left(\frac{5}{2}\right)^n x^{2 \, n+1}}{(2 \, n+2)!} - 5 \sum_{n=0}^{+\infty} \frac{\left(\frac{5}{2}\right)^n x^{2 \, n+1}}{(2 \, n+1)!} + 2 \sum_{n=0}^{+\infty} \frac{\left(\frac{5}{2}\right)^n x^{2 \, n+1}}{(2 \, n)!} \\ &= 6 \sum_{n=1}^{+\infty} \frac{\left(\frac{5}{2}\right)^n x^{2 \, n-1}}{(2 \, n)!} - 5 \sum_{n=0}^{+\infty} \frac{\left(\frac{5}{2}\right)^n x^{2 \, n+1}}{(2 \, n+1)!} + 2 \sum_{n=0}^{+\infty} \frac{\left(\frac{5}{2}\right)^n x^{2 \, n+1}}{(2 \, n)!} \end{split}$$

après changement d'indice. On reconnaît alors le développement en série entière en 0 de fonctions trigonométriques, après factorisation convenable (attention à bien prendre x non nul pour diviser ci-dessous ; le cas x=0 étant de toute façon trivial considéré à part):

$$\sum_{n=0}^{+\infty} \frac{2(4n^2 + n)(\frac{5}{2})^n x^{2n+1}}{(2n+2)!} = \frac{12}{5x} \sum_{n=1}^{+\infty} \frac{\left(\sqrt{\frac{5}{2}}x\right)^{2n}}{(2n)!} - 2\sqrt{\frac{5}{2}} \sum_{n=0}^{+\infty} \frac{\left(\sqrt{\frac{5}{2}}x\right)^{2n+1}}{(2n+1)!} + 2x \sum_{n=0}^{+\infty} \frac{\left(\sqrt{\frac{5}{2}}x\right)^{2n}}{(2n)!}$$

$$= \left(\frac{12}{5x} + 2x\right) \sum_{n=0}^{+\infty} \frac{\left(\sqrt{\frac{5}{2}}x\right)^{2n}}{(2n)!} - 2\sqrt{\frac{5}{2}} \sum_{n=0}^{+\infty} \frac{\left(\sqrt{\frac{5}{2}}x\right)^{2n+1}}{(2n+1)!} + \left(-\frac{12}{5x}\right)$$

$$= \left(\frac{12}{5x} + 2x\right) \cosh\left(\sqrt{\frac{5}{2}}x\right) - 2\sqrt{\frac{5}{2}} \sinh\left(\sqrt{\frac{5}{2}}x\right) + \left(-\frac{12}{5x}\right),$$

d'où le résultat.

Corrigé 83.

- 1. On a trivialement a = 1 et b = 9.
- 2. Soit $x \in]-2,2[$. On a, d'après la question précédente :

$$\sum_{n=0}^{+\infty} \left(-\frac{1}{2} \right)^n (9n+1)x^{n+1} = \sum_{n=0}^{+\infty} \left(-\frac{1}{2} \right)^n x^{n+1} + 9 \sum_{n=0}^{+\infty} n \left(-\frac{1}{2} \right)^n x^{n+1}$$

$$= x \sum_{n=0}^{+\infty} \left(-\frac{1}{2} x \right)^n + 9 x \sum_{n=1}^{+\infty} n \left(-\frac{1}{2} x \right)^n$$

$$= x \sum_{n=0}^{+\infty} \left(-\frac{1}{2} x \right)^n - \frac{9}{2} x^2 \sum_{n=1}^{+\infty} n \left(-\frac{1}{2} x \right)^{n-1}$$

 \leftarrow page 14

On reconnaît alors le développement en série entière en 0 de l'application $x \mapsto \frac{1}{1-x} = \sum_{n=0}^{+\infty} x^n$, qu'on a dérivée terme à terme et évaluée en $-\frac{1}{2}x$. Plus précisément, pour tout $x \in]-1,1[$, on a :

$$\frac{1}{1-x} = \sum_{n=0}^{+\infty} x^n, \quad \frac{1}{(1-x)^2} = \sum_{n=1}^{+\infty} nx^{n-1}.$$

On en déduit :

$$\sum_{n=0}^{+\infty} \left(-\frac{1}{2} \right)^n (9n+1)x^{n+1} = \frac{x}{1 + \frac{1}{2}x} - \frac{\frac{9}{2}x^2}{\left(1 + \frac{1}{2}x\right)^2},$$

d'où le résultat.

Corrigé 84.

1. C'est une décomposition en éléments simples, tout ce qu'il y a de plus classique. Il suffit de multiplier l'égalité par chacun des dénominateurs possibles du membre de droite, et de faire tendre la variable n vers leurs racines. Cela permet d'éliminer toutes les inconnues sauf une, et de les déterminer. On obtient alors :

$$\forall n \in \mathbb{C} \setminus \left\{ -\frac{3}{2}, -2, -1 \right\}, \quad \frac{n+11}{(2n+3)(n+2)(n+1)} = -\frac{38}{2n+3} + \frac{9}{n+2} + \frac{10}{n+1}.$$

2. Soit $x \in \left] - \sqrt{29}, \sqrt{29} \right[$. On a, d'après la question précédente :

$$\sum_{n=0}^{+\infty} \frac{\left(-\frac{1}{29}\right)^n (n+11) x^{2\,n+1}}{(2\,n+3)(n+2)(n+1)} = 9 \sum_{n=0}^{+\infty} \frac{\left(-1\right)^n \left(\frac{1}{29} \, x^2\right)^n x}{n+2} + 10 \sum_{n=0}^{+\infty} \frac{\left(-1\right)^n \left(\frac{1}{29} \, x^2\right)^n x}{n+1} - 38 \sum_{n=0}^{+\infty} \frac{\left(-1\right)^n \left(\sqrt{\frac{1}{29}} \, x\right)^{2\,n} x}{2\,n+3}$$

$$= 9 \sum_{n=1}^{+\infty} \frac{\left(-1\right)^{n-1} \left(\frac{1}{29} \, x^2\right)^{n-1} x}{n+1} + 10 \sum_{n=0}^{+\infty} \frac{\left(-1\right)^n \left(\frac{1}{29} \, x^2\right)^n x}{n+1} - 38 \sum_{n=1}^{+\infty} \frac{\left(-1\right)^{n-1} \left(\sqrt{\frac{1}{29}} \, x\right)^{2\,n-2} x}{2\,n+1}$$

après changement d'indice. On reconnaît alors le développement en série entière en 0 du logarithme et de l'arc tangente (attention à bien prendre x non nul pour diviser ci-dessous; le cas x=0 étant de toute façon trivial considéré à part):

$$\sum_{n=0}^{+\infty} \frac{\left(-\frac{1}{29}\right)^n (n+11)x^{2n+1}}{(2n+3)(n+2)(n+1)} = -\frac{7569}{x^3} \sum_{n=1}^{+\infty} \frac{\left(-1\right)^n \left(\frac{1}{29} x^2\right)^{n+1}}{n+1} + \frac{290}{x} \sum_{n=0}^{+\infty} \frac{\left(-1\right)^n \left(\frac{1}{29} x^2\right)^{n+1}}{n+1} + \frac{31958 \sqrt{\frac{1}{29}}}{x^2} \sum_{n=1}^{+\infty} \frac{\left(-1\right)^n \left(\sqrt{\frac{1}{29}x}\right)^{n+1}}{2n+1} + \frac{290}{x^2} \sum_{n=1}^{+\infty} \frac{\left(-1\right)^n \left(\frac{1}{29} x^2\right)^{n+1}}{2n+1} + \frac{31958 \sqrt{\frac{1}{29}}}{x^2} \operatorname{arctan}\left(\sqrt{\frac{1}{29}x}\right) + \left(-\frac{1102 \sqrt{29} \sqrt{\frac{1}{29}}}{x} + \frac{261}{x}\right)$$

d'où le résultat.

Corrigé 85.

 $\leftarrow \text{page } 15$

- 1. On a trivialement a = -1 et b = 1.
- 2. Soit $x \in \left] -\frac{1}{9}, \frac{1}{9} \right[$. On a, d'après la question précédente:

$$\sum_{n=0}^{+\infty} 9^n (n-1)x^n = -\sum_{n=0}^{+\infty} 9^n x^n + \sum_{n=0}^{+\infty} n 9^n x^n$$
$$= -\sum_{n=0}^{+\infty} (9x)^n + \sum_{n=1}^{+\infty} n (9x)^n$$
$$= -\sum_{n=0}^{+\infty} (9x)^n + 9x \sum_{n=1}^{+\infty} n (9x)^{n-1}$$

On reconnaît alors le développement en série entière en 0 de l'application $x \mapsto \frac{1}{1-x} = \sum_{n=0}^{+\infty} x^n$, qu'on a dérivée terme à terme et évaluée en 9x. Plus précisément, pour tout $x \in]-1,1[$, on a:

$$\frac{1}{1-x} = \sum_{n=0}^{+\infty} x^n, \quad \frac{1}{(1-x)^2} = \sum_{n=1}^{+\infty} nx^{n-1}.$$

On en déduit :

$$\sum_{n=0}^{+\infty} 9^n (n-1) x^n = -\frac{1}{1-9x} + \frac{9x}{(1-9x)^2},$$

d'où le résultat.

Corrigé 86.

- 1. On a trivialement a = -3 et b = 1.
- 2. Soit $x \in]-7,7[$. On a, d'après la question précédente :

$$\sum_{n=0}^{+\infty} \left(-\frac{1}{7} \right)^n (n-3) x^n = -3 \sum_{n=0}^{+\infty} \left(-\frac{1}{7} \right)^n x^n + \sum_{n=0}^{+\infty} n \left(-\frac{1}{7} \right)^n x^n$$

$$= -3 \sum_{n=0}^{+\infty} \left(-\frac{1}{7} x \right)^n + \sum_{n=1}^{+\infty} n \left(-\frac{1}{7} x \right)^n$$

$$= -3 \sum_{n=0}^{+\infty} \left(-\frac{1}{7} x \right)^n - \frac{1}{7} x \sum_{n=1}^{+\infty} n \left(-\frac{1}{7} x \right)^{n-1}$$

On reconnaît alors le développement en série entière en 0 de l'application $x \mapsto \frac{1}{1-x} = \sum_{n=0}^{+\infty} x^n$, qu'on a dérivée terme à terme et évaluée en $-\frac{1}{7}x$. Plus précisément, pour tout $x \in]-1,1[$, on a :

$$\frac{1}{1-x} = \sum_{n=0}^{+\infty} x^n, \quad \frac{1}{(1-x)^2} = \sum_{n=1}^{+\infty} nx^{n-1}.$$

On en déduit:

$$\sum_{n=0}^{+\infty} \left(-\frac{1}{7} \right)^n (n-3) x^n = -\frac{3}{1 + \frac{1}{7} x} - \frac{\frac{1}{7} x}{\left(1 + \frac{1}{7} x\right)^2},$$

d'où le résultat.

Corrigé 87.

1. Tout d'abord, l'existence de $(a,b,c) \in \mathbb{R}^3$, vérifiant la décomposition de l'énoncé, est assurée par le fait que la famille (1,X,X(X-1)) soit échelonnée en degré : c'est donc une base de $\mathbb{R}_2[X]$ (et en particulier X^2-X-7 , qui appartient à cet espace vectoriel, est combinaison linéaire des polynômes de cette base). Pour déterminer ces scalaires, nul besoin de développer comme un cochon (et je vous le déconseille fortement) : il suffit d'évaluer l'égalité en des racines des polynômes du membre de droite, c'est-à-dire successivement en 0,1. Si l'on évalue l'égalité $X^2-X-7=a+bX+cX(X-1)$ en 0, on obtient directement : a=-7. Et ainsi de suite. Pour déterminer c, une évaluation en des racines ne simplifie pas la tâche, mais on peut par exemple le déterminer en comparant les coefficients dominants dans chaque membre de l'égalité : c'est moins calculatoire que si on voulait l'exprimer à l'aide des coefficients précédemment déterminés. Cette idée donne ici : 1=c. En conclusion, on a :

$$X^2 - X - 7 = -7 + X(X - 1)$$
.

 \leftarrow page 15

2. Soit $x \in]-1,1[$. On a, d'après la question précédente :

$$\sum_{n=0}^{+\infty} (n^2 - n - 7) (-1)^n x^{2n+1} = -7 \sum_{n=0}^{+\infty} (-1)^n x^{2n+1} + \sum_{n=0}^{+\infty} n(n-1) (-1)^n x^{2n+1}$$

$$= -7 x \sum_{n=0}^{+\infty} (-x^2)^n + x \sum_{n=2}^{+\infty} n(n-1) (-x^2)^n$$

$$= -7 x \sum_{n=0}^{+\infty} (-x^2)^n + x^5 \sum_{n=2}^{+\infty} n(n-1) (-x^2)^{n-2}$$

On reconnaît alors le développement en série entière en 0 de l'application $x \mapsto \frac{1}{1-x} = \sum_{n=0}^{+\infty} x^n$, qu'on a dérivée terme à terme et évaluée en $-x^2$. Plus précisément, pour tout $x \in]-1,1[$, on a :

$$\frac{1}{1-x} = \sum_{n=0}^{+\infty} x^n, \quad \frac{1}{(1-x)^2} = \sum_{n=1}^{+\infty} nx^{n-1}, \quad \frac{2}{(1-x)^3} = \sum_{n=2}^{+\infty} n(n-1)x^{n-2}.$$

On en déduit:

$$\sum_{n=0}^{+\infty} (n^2 - n - 7) (-1)^n x^{2n+1} = -\frac{7x}{1+x^2} + \frac{2x^5}{(1+x^2)^3},$$

d'où le résultat.

Corrigé 88.

1. Tout d'abord, l'existence de $(a, b) \in \mathbb{R}^2$, vérifiant la décomposition de l'énoncé, est assurée par le fait que la famille (1, (2X+3)) soit échelonnée en degré : c'est donc une base de $\mathbb{R}_1[X]$ (et en particulier X-1, qui appartient à cet espace vectoriel, est combinaison linéaire des polynômes de cette base). Une identification immédiate (en commençant par comparer les coefficients dominants) permet de démontrer qu'on a : $b=\frac{1}{2}$, puis : $a=-\frac{5}{2}$. En conclusion, on a :

$$X - 1 = -\frac{5}{2} + \frac{1}{2}(2X + 3).$$

2. Soit $x \in \mathbb{R}$. On a, d'après la question précédente :

$$\begin{split} \sum_{n=0}^{+\infty} \frac{5^n (n-1) x^{2\,n+1}}{(2\,n+3)!} &= -\frac{5}{2} \sum_{n=0}^{+\infty} \frac{1}{(2\,n+3)!} 5^n x^{2\,n+1} + \frac{1}{2} \sum_{n=0}^{+\infty} \frac{(2\,n+3)}{(2\,n+3)!} 5^n x^{2\,n+1} \\ &= -\frac{5}{2} \sum_{n=0}^{+\infty} \frac{5^n x^{2\,n+1}}{(2\,n+3)!} + \frac{1}{2} \sum_{n=0}^{+\infty} \frac{5^n x^{2\,n+1}}{(2\,n+2)!} \\ &= -\frac{5}{2} \sum_{n=1}^{+\infty} \frac{5^{n-1} x^{2\,n-1}}{(2\,n+1)!} + \frac{1}{2} \sum_{n=1}^{+\infty} \frac{5^{n-1} x^{2\,n-1}}{(2\,n)!} \end{split}$$

après changement d'indice. On reconnaît alors le développement en série entière en 0 de fonctions trigonométriques, après factorisation convenable (attention à bien prendre x non nul pour diviser ci-dessous; le cas x=0 étant de toute façon trivial considéré à part):

$$\begin{split} \sum_{n=0}^{+\infty} \frac{5^n (n-1) x^{2\,n+1}}{(2\,n+3)!} &= -\frac{\sqrt{5}}{10\,x^2} \sum_{n=1}^{+\infty} \frac{\left(\sqrt{5}x\right)^{2\,n+1}}{(2\,n+1)!} + \frac{1}{10\,x} \sum_{n=1}^{+\infty} \frac{\left(\sqrt{5}x\right)^{2\,n}}{(2\,n)!} \\ &= \frac{1}{10\,x} \sum_{n=0}^{+\infty} \frac{\left(\sqrt{5}x\right)^{2\,n}}{(2\,n)!} - \frac{\sqrt{5}}{10\,x^2} \sum_{n=0}^{+\infty} \frac{\left(\sqrt{5}x\right)^{2\,n+1}}{(2\,n+1)!} + \left(\frac{2}{5\,x}\right) \\ &= \frac{1}{10\,x} \cosh\left(\sqrt{5}x\right) - \frac{\sqrt{5}}{10\,x^2} \sinh\left(\sqrt{5}x\right) + \left(\frac{2}{5\,x}\right), \end{split}$$

d'où le résultat.

Corrigé 89.

1. Tout d'abord, l'existence de $(a, b, c) \in \mathbb{R}^3$, vérifiant la décomposition de l'énoncé, est assurée par le fait que la famille (1, X, X(X-1)) soit échelonnée en degré : c'est donc une base de $\mathbb{R}_2[X]$ (et en particulier $X^2 + X + 27$, qui appartient à cet espace vectoriel, est combinaison linéaire des polynômes de cette base). Pour déterminer ces scalaires, nul besoin de développer comme un cochon (et je vous le déconseille fortement) : il suffit d'évaluer l'égalité en des racines des polynômes du membre de droite, c'est-à-dire successivement en 0,1. Si l'on évalue l'égalité $X^2 + X + 27 = a + bX + cX(X - 1)$ en 0, on obtient directement : a = 27. Et ainsi de suite. Pour déterminer c, une évaluation en des racines ne simplifie pas la tâche, mais on peut par exemple le déterminer en comparant les coefficients dominants dans chaque membre de l'égalité : c'est moins calculatoire que si on voulait l'exprimer à l'aide des coefficients précédemment déterminés. Cette idée donne ici : 1 = c. En conclusion, on a :

$$X^{2} + X + 27 = 27 + 2X + X(X - 1).$$

2. Soit $x \in]-3,3[$. On a, d'après la question précédente :

$$\begin{split} \sum_{n=0}^{+\infty} \left(n^2 + n + 27\right) \left(-\frac{1}{3}\right)^n x^{n+1} &= 27 \sum_{n=0}^{+\infty} \left(-\frac{1}{3}\right)^n x^{n+1} + 2 \sum_{n=0}^{+\infty} n \left(-\frac{1}{3}\right)^n x^{n+1} + \sum_{n=0}^{+\infty} n(n-1) \left(-\frac{1}{3}\right)^n x^{n+1} \\ &= 27 x \sum_{n=0}^{+\infty} \left(-\frac{1}{3} x\right)^n + 2 x \sum_{n=1}^{+\infty} n \left(-\frac{1}{3} x\right)^n + x \sum_{n=2}^{+\infty} n(n-1) \left(-\frac{1}{3} x\right)^n \\ &= 27 x \sum_{n=0}^{+\infty} \left(-\frac{1}{3} x\right)^n - \frac{2}{3} x^2 \sum_{n=1}^{+\infty} n \left(-\frac{1}{3} x\right)^{n-1} + \frac{1}{9} x^3 \sum_{n=2}^{+\infty} n(n-1) \left(-\frac{1}{3} x\right)^{n-2} \end{split}$$

On reconnaît alors le développement en série entière en 0 de l'application $x \mapsto \frac{1}{1-x} = \sum_{n=0}^{+\infty} x^n$, qu'on a

dérivée terme à terme et évaluée en $-\frac{1}{3}x$. Plus précisément, pour tout $x \in]-1,1[$, on a :

$$\frac{1}{1-x} = \sum_{n=0}^{+\infty} x^n, \quad \frac{1}{(1-x)^2} = \sum_{n=1}^{+\infty} nx^{n-1}, \quad \frac{2}{(1-x)^3} = \sum_{n=2}^{+\infty} n(n-1)x^{n-2}.$$

On en déduit :

$$\sum_{n=0}^{+\infty} \left(n^2 + n + 27\right) \left(-\frac{1}{3}\right)^n x^{n+1} = \frac{27x}{1 + \frac{1}{3}x} - \frac{\frac{2}{3}x^2}{\left(1 + \frac{1}{2}x\right)^2} + \frac{\frac{2}{9}x^3}{\left(1 + \frac{1}{2}x\right)^3},$$

d'où le résultat.

Corrigé 90.

1. Tout d'abord, l'existence de $(a, b) \in \mathbb{R}^2$, vérifiant la décomposition de l'énoncé, est assurée par le fait que la famille (1, (2X+1)) soit échelonnée en degré : c'est donc une base de $\mathbb{R}_1[X]$ (et en particulier X-1, qui appartient à cet espace vectoriel, est combinaison linéaire des polynômes de cette base). Une identification immédiate (en commençant par comparer les coefficients dominants) permet de démontrer qu'on a : $b=\frac{1}{2}$, puis : $a=-\frac{3}{2}$. En conclusion, on a :

$$X - 1 = -\frac{3}{2} + \frac{1}{2}(2X + 1).$$

2. Soit $x \in \mathbb{R}$. On a, d'après la question précédente :

$$\begin{split} \sum_{n=0}^{+\infty} \frac{\left(-1\right)^{n} (n-1) x^{2\, n+1}}{(2\, n+1)!} &= -\frac{3}{2} \sum_{n=0}^{+\infty} \frac{1}{\left(2\, n+1\right)!} \left(-1\right)^{n} x^{2\, n+1} + \frac{1}{2} \sum_{n=0}^{+\infty} \frac{\left(2\, n+1\right)}{\left(2\, n+1\right)!} \left(-1\right)^{n} x^{2\, n+1} \\ &= -\frac{3}{2} \sum_{n=0}^{+\infty} \frac{\left(-1\right)^{n} x^{2\, n+1}}{\left(2\, n+1\right)!} + \frac{1}{2} \sum_{n=0}^{+\infty} \frac{\left(-1\right)^{n} x^{2\, n+1}}{\left(2\, n\right)!} \end{split}$$

On reconnaît alors le développement en série entière en 0 de fonctions trigonométriques, après factorisation convenable:

$$\sum_{n=0}^{+\infty} \frac{(-1)^n (n-1)x^{2n+1}}{(2n+1)!} = -\frac{3}{2} \sum_{n=0}^{+\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!} + \frac{1}{2} x \sum_{n=0}^{+\infty} \frac{(-1)^n x^{2n}}{(2n)!}$$
$$= \frac{1}{2} x \cos(x) - \frac{3}{2} \sin(x),$$

d'où le résultat.

Corrigé 91.

1. Tout d'abord, l'existence de $(a, b, c) \in \mathbb{R}^3$, vérifiant la décomposition de l'énoncé, est assurée par le fait que la famille (1, (X+3), (X+3)(X+2)) soit échelonnée en degré : c'est donc une base de $\mathbb{R}_2[X]$ (et en particulier X^2+X+2 , qui appartient à cet espace vectoriel, est combinaison linéaire des polynômes de cette base). Pour déterminer ces scalaires, nul besoin de développer comme un cochon (et je vous le déconseille fortement) : il suffit d'évaluer l'égalité en des racines des polynômes du membre de droite, c'est-à-dire successivement en -3, -2. Si l'on évalue l'égalité $X^2+X+2=a+b(X+3)+c(X+3)(X+2)$ en -3, on obtient directement : a=8. Et ainsi de suite. Pour déterminer c, une évaluation en des racines ne simplifie pas la tâche, mais on peut par exemple le déterminer en comparant les coefficients dominants dans chaque membre de l'égalité : c'est moins calculatoire que si on voulait l'exprimer à l'aide des coefficients précédemment déterminés. Cette idée donne ici : 1=c. En conclusion, on a :

$$X^{2} + X + 2 = 8 - 4(X + 3) + (X + 3)(X + 2).$$

2. Soit $x \in \mathbb{R}$. On a, d'après la question précédente :

$$\sum_{n=0}^{+\infty} \frac{(n^2+n+2)(-2)^n x^{n+1}}{(n+3)!} = 8 \sum_{n=0}^{+\infty} \frac{1}{(n+3)!} (-2)^n x^{n+1} - 4 \sum_{n=0}^{+\infty} \frac{(n+3)}{(n+3)!} (-2)^n x^{n+1} + \sum_{n=0}^{+\infty} \frac{(n+3)(n+2)}{(n+3)!} (-2)^n x^{n+1}$$

$$+ \sum_{n=0}^{+\infty} \frac{(n+3)(n+2)}{(n+3)!} (-2)^n x^{n+1}$$

$$= 8 \sum_{n=0}^{+\infty} \frac{(-2)^n x^{n+1}}{(n+3)!} - 4 \sum_{n=0}^{+\infty} \frac{(-2)^n x^{n+1}}{(n+2)!} + \sum_{n=0}^{+\infty} \frac{(-2)^n x^{n+1}}{(n+1)!}$$

$$= 8 \sum_{n=3}^{+\infty} \frac{(-2)^{n-3} x^{n-2}}{n!} - 4 \sum_{n=2}^{+\infty} \frac{(-2)^{n-2} x^{n-1}}{n!} + \sum_{n=1}^{+\infty} \frac{(-2)^{n-1} x^n}{n!}$$

après changement d'indice. On reconnaît alors le développement en série entière en 0 de l'exponentielle, après factorisation convenable (attention à bien prendre x non nul pour diviser ci-dessous; le cas x=0 étant de toute façon trivial considéré à part):

$$\sum_{n=0}^{+\infty} \frac{\left(n^2 + n + 2\right) \left(-2\right)^n x^{n+1}}{(n+3)!} = -\frac{1}{x^2} \sum_{n=3}^{+\infty} \frac{\left(-2 \, x\right)^n}{n!} - \frac{1}{x} \sum_{n=2}^{+\infty} \frac{\left(-2 \, x\right)^n}{n!} - \frac{1}{2} \sum_{n=1}^{+\infty} \frac{\left(-2 \, x\right)^n}{n!}$$

$$= \left(-\frac{1}{x^2} - \frac{1}{x} - \frac{1}{2}\right) \sum_{n=0}^{+\infty} \frac{\left(-2 \, x\right)^n}{n!} + \left(-\frac{2 \, x - 1}{x} + \frac{2 \, x^2 - 2 \, x + 1}{x^2} + \frac{1}{2}\right)$$

$$= \left(-\frac{1}{x^2} - \frac{1}{x} - \frac{1}{2}\right) e^{\left(-2 \, x\right)} + \left(-\frac{1}{x} + \frac{1}{x^2} + \frac{1}{2}\right),$$

d'où le résultat.

Corrigé 92.

1. Tout d'abord, l'existence de $(a, b, c) \in \mathbb{R}^3$, vérifiant la décomposition de l'énoncé, est assurée par le fait que la famille (1, X, X(X-1)) soit échelonnée en degré : c'est donc une base de $\mathbb{R}_2[X]$ (et en particulier X^2+X+1 , qui appartient à cet espace vectoriel, est combinaison linéaire des polynômes de cette base). Pour déterminer ces scalaires, nul besoin de développer comme un cochon (et je vous le déconseille fortement) : il suffit d'évaluer l'égalité en des racines des polynômes du membre de droite, c'est-à-dire successivement en 0,1. Si l'on évalue l'égalité $X^2+X+1=a+bX+cX(X-1)$ en 0, on obtient directement : a=1. Et ainsi de suite. Pour déterminer c, une évaluation en des racines ne simplifie pas la tâche, mais on peut par exemple le déterminer en comparant les coefficients dominants dans chaque membre de l'égalité : c'est moins calculatoire que si on voulait l'exprimer à l'aide des coefficients précédemment déterminés. Cette idée donne ici : 1=c. En conclusion, on a :

$$X^2 + X + 1 = 1 + 2X + X(X - 1)$$
.

2. Soit $x \in]-1,1[$. On a, d'après la question précédente :

$$\sum_{n=0}^{+\infty} (n^2 + n + 1) (-1)^n x^{2n+1} = \sum_{n=0}^{+\infty} (-1)^n x^{2n+1} + 2 \sum_{n=0}^{+\infty} n (-1)^n x^{2n+1} + \sum_{n=0}^{+\infty} n (n-1) (-1)^n x^{2n+1}$$

$$= x \sum_{n=0}^{+\infty} (-x^2)^n + 2 x \sum_{n=1}^{+\infty} n (-x^2)^n + x \sum_{n=2}^{+\infty} n (n-1) (-x^2)^n$$

$$= x \sum_{n=0}^{+\infty} (-x^2)^n - 2 x^3 \sum_{n=1}^{+\infty} n (-x^2)^{n-1} + x^5 \sum_{n=2}^{+\infty} n (n-1) (-x^2)^{n-2}$$

On reconnaît alors le développement en série entière en 0 de l'application $x \mapsto \frac{1}{1-x} = \sum_{n=0}^{+\infty} x^n$, qu'on a dérivée terme à terme et évaluée en $-x^2$. Plus précisément, pour tout $x \in]-1,1[$, on a :

$$\frac{1}{1-x} = \sum_{n=0}^{+\infty} x^n, \quad \frac{1}{(1-x)^2} = \sum_{n=1}^{+\infty} nx^{n-1}, \quad \frac{2}{(1-x)^3} = \sum_{n=2}^{+\infty} n(n-1)x^{n-2}.$$

On en déduit :

$$\sum_{n=0}^{+\infty} (n^2 + n + 1) (-1)^n x^{2n+1} = \frac{x}{1+x^2} - \frac{2x^3}{(1+x^2)^2} + \frac{2x^5}{(1+x^2)^3},$$

d'où le résultat.

Corrigé 93.

1. Tout d'abord, l'existence de $(a, b) \in \mathbb{R}^2$, vérifiant la décomposition de l'énoncé, est assurée par le fait que la famille (1, (X+3)) soit échelonnée en degré : c'est donc une base de $\mathbb{R}_1[X]$ (et en particulier X-1, qui appartient à cet espace vectoriel, est combinaison linéaire des polynômes de cette base). Une identification immédiate (en commençant par comparer les coefficients dominants) permet de démontrer qu'on a : b=1, puis : a=-4. En conclusion, on a :

$$X - 1 = -4 + (X + 3).$$

2. Soit $x \in \mathbb{R}$. On a, d'après la question précédente :

$$\sum_{n=0}^{+\infty} \frac{(-2)^n (n-1)x^n}{(n+3)!} = -4 \sum_{n=0}^{+\infty} \frac{1}{(n+3)!} (-2)^n x^n + \sum_{n=0}^{+\infty} \frac{(n+3)}{(n+3)!} (-2)^n x^n$$

$$= -4 \sum_{n=0}^{+\infty} \frac{(-2)^n x^n}{(n+3)!} + \sum_{n=0}^{+\infty} \frac{(-2)^n x^n}{(n+2)!}$$

$$= -4 \sum_{n=3}^{+\infty} \frac{(-2)^{n-3} x^{n-3}}{n!} + \sum_{n=2}^{+\infty} \frac{(-2)^{n-2} x^{n-2}}{n!}$$

après changement d'indice. On reconnaît alors le développement en série entière en 0 de l'exponentielle, après factorisation convenable (attention à bien prendre x non nul pour diviser ci-dessous; le cas x=0 étant de toute façon trivial considéré à part):

$$\begin{split} \sum_{n=0}^{+\infty} \frac{(-2)^n \, (n-1)x^n}{(n+3)!} &= \frac{1}{2 \, x^3} \sum_{n=3}^{+\infty} \frac{(-2 \, x)^n}{n!} + \frac{1}{4 \, x^2} \sum_{n=2}^{+\infty} \frac{(-2 \, x)^n}{n!} \\ &= \left(\frac{1}{2 \, x^3} + \frac{1}{4 \, x^2} \right) \sum_{n=0}^{+\infty} \frac{(-2 \, x)^n}{n!} + \left(\frac{2 \, x-1}{4 \, x^2} - \frac{2 \, x^2 - 2 \, x + 1}{2 \, x^3} \right) \\ &= \left(\frac{1}{2 \, x^3} + \frac{1}{4 \, x^2} \right) e^{(-2 \, x)} + \left(-\frac{1}{2 \, x} + \frac{3}{4 \, x^2} - \frac{1}{2 \, x^3} \right), \end{split}$$

d'où le résultat.

Corrigé 94. \leftarrow page 16

1. Tout d'abord, l'existence de $(a,b,c) \in \mathbb{R}^3$, vérifiant la décomposition de l'énoncé, est assurée par le fait que la famille (1,X,X(X-1)) soit échelonnée en degré : c'est donc une base de $\mathbb{R}_2[X]$ (et en particulier $2X^2+186$, qui appartient à cet espace vectoriel, est combinaison linéaire des polynômes de cette base). Pour déterminer ces scalaires, nul besoin de développer comme un cochon (et je vous le déconseille fortement) : il suffit d'évaluer l'égalité en des racines des polynômes du membre de droite, c'est-à-dire successivement en 0,1. Si l'on évalue l'égalité $2X^2+186=a+bX+cX(X-1)$ en 0, on obtient directement : a=186. Et ainsi de suite. Pour déterminer c, une évaluation en des racines ne simplifie pas la tâche, mais on peut par exemple le déterminer en comparant les coefficients dominants dans chaque membre de l'égalité : c'est moins calculatoire que si on voulait l'exprimer à l'aide des coefficients précédemment déterminés. Cette idée donne ici : 2=c. En conclusion, on a :

$$2X^2 + 186 = 186 + 2X + 2X(X - 1).$$

2. Soit $x \in \left] - \sqrt{\frac{5}{2}}, \sqrt{\frac{5}{2}} \right[$. On a, d'après la question précédente :

$$\begin{split} \sum_{n=0}^{+\infty} 2 \left(n^2 + 93\right) \left(-\frac{2}{5}\right)^n x^{2\,n+1} &= 186 \sum_{n=0}^{+\infty} \left(-\frac{2}{5}\right)^n x^{2\,n+1} + 2 \sum_{n=0}^{+\infty} n \left(-\frac{2}{5}\right)^n x^{2\,n+1} + 2 \sum_{n=0}^{+\infty} n(n-1) \left(-\frac{2}{5}\right)^n x^{2\,n+1} \\ &= 186 \, x \sum_{n=0}^{+\infty} \left(-\frac{2}{5} \, x^2\right)^n + 2 \, x \sum_{n=1}^{+\infty} n \left(-\frac{2}{5} \, x^2\right)^n + 2 \, x \sum_{n=2}^{+\infty} n(n-1) \left(-\frac{2}{5} \, x^2\right)^n \\ &= 186 \, x \sum_{n=0}^{+\infty} \left(-\frac{2}{5} \, x^2\right)^n - \frac{4}{5} \, x^3 \sum_{n=1}^{+\infty} n \left(-\frac{2}{5} \, x^2\right)^{n-1} + \frac{8}{25} \, x^5 \sum_{n=2}^{+\infty} n(n-1) \left(-\frac{2}{5} \, x^2\right)^{n-2} \end{split}$$

On reconnaît alors le développement en série entière en 0 de l'application $x\mapsto \frac{1}{1-x}=\sum_{n=0}^{+\infty}x^n$, qu'on a

dérivée terme à terme et évaluée en $-\frac{2}{5}x^2$. Plus précisément, pour tout $x \in]-1,1[$, on a :

$$\frac{1}{1-x} = \sum_{n=0}^{+\infty} x^n, \quad \frac{1}{(1-x)^2} = \sum_{n=1}^{+\infty} nx^{n-1}, \quad \frac{2}{(1-x)^3} = \sum_{n=2}^{+\infty} n(n-1)x^{n-2}.$$

On en déduit :

$$\sum_{n=0}^{+\infty} 2\left(n^2+93\right) \left(-\frac{2}{5}\right)^n x^{2\,n+1} = \frac{186\,x}{1+\frac{2}{5}x^2} - \frac{\frac{4}{5}\,x^3}{\left(1+\frac{2}{5}x^2\right)^2} + \frac{\frac{16}{25}\,x^5}{\left(1+\frac{2}{5}x^2\right)^3},$$

d'où le résultat.

Corrigé 95.

 $\leftarrow \text{page } 16$

1. C'est une décomposition en éléments simples, tout ce qu'il y a de plus classique. Il suffit de multiplier l'égalité par chacun des dénominateurs possibles du membre de droite, et de faire tendre la variable n vers leurs racines. Cela permet d'éliminer toutes les inconnues sauf une, et de les déterminer. On obtient alors :

$$\forall n \in \mathbb{C} \setminus \left\{-\frac{1}{2}, -2\right\}, \quad \frac{5}{2(2n+1)(n+2)} = \frac{5}{3(2n+1)} - \frac{5}{6(n+2)}.$$

2. Soit $x \in]-2,2[$. On a, d'après la question précédente :

$$\sum_{n=0}^{+\infty} \frac{5\left(-\frac{1}{2}\right)^n x^{n+1}}{2\left(2n+1\right)(n+2)} = -\frac{5}{6} \sum_{n=0}^{+\infty} \frac{\left(-1\right)^n \left(\frac{1}{2}x\right)^n x}{n+2} + \frac{5}{3} \sum_{n=0}^{+\infty} \frac{\left(-1\right)^n \left(\frac{1}{2}x\right)^n x}{2n+1}$$
$$= -\frac{5}{6} \sum_{n=0}^{+\infty} \frac{\left(-1\right)^{n-1} \left(\frac{1}{2}x\right)^{n-1} x}{n+1} + \frac{5}{3} \sum_{n=0}^{+\infty} \frac{\left(-1\right)^n \left(\frac{1}{2}x\right)^n x}{2n+1}$$

après changement d'indice. On reconnaît alors le développement en série entière en 0 du logarithme et de l'arc tangente (à condition d'écrire $x=(\sqrt{x})^2$ si x est positif, pour faire apparaître une puissance paire; si x est négatif alors nous écrirons $x=-(-x)=-(\sqrt{-x})^2$ et il faudra encore un peu travailler). (attention à

bien prendre x non nul pour diviser ci-dessous; le cas x=0 étant de toute façon trivial considéré à part):

$$\sum_{n=0}^{+\infty} \frac{5\left(-\frac{1}{2}\right)^n x^{n+1}}{2\left(2n+1\right)(n+2)} = \frac{10}{3x} \sum_{n=1}^{+\infty} \frac{\left(-1\right)^n \left(\frac{1}{2}x\right)^{n+1}}{n+1} + \frac{10}{3}\sqrt{\frac{1}{2}}\sqrt{x} \sum_{n=0}^{+\infty} \frac{\left(-1\right)^n \left(\sqrt{\frac{1}{2}}\sqrt{x}\right)^{2n+1}}{2n+1}$$
$$= \frac{10}{3x} \ln\left(\frac{1}{2}x+1\right) + \frac{10}{3}\sqrt{\frac{1}{2}}\sqrt{x} \arctan\left(\sqrt{\frac{1}{2}}\sqrt{x}\right) + \left(-\frac{5}{3}\right),$$

d'où le résultat si x est positif. Si x est négatif, on écrit $x=-(-x)=-(\sqrt{-x})^2$, et un raisonnement analogue à celui ci-dessus aboutit à:

$$\sum_{n=0}^{+\infty} \frac{5\left(-\frac{1}{2}\right)^n x^{n+1}}{2\left(2\,n+1\right)(n+2)} = \frac{10}{3\,x} \ln\left(\frac{1}{2}\,x+1\right) + \frac{10\,\sqrt{\frac{1}{2}}x}{3\,\sqrt{-x}} \frac{1}{2} \ln\left(-\frac{\sqrt{\frac{1}{2}}\sqrt{-x}+1}{\sqrt{\frac{1}{2}}\sqrt{-x}-1}\right) + \left(-\frac{5}{3}\right),$$

d'où le résultat.

Remarque. Pour calculer $\sum_{n=0}^{+\infty} \frac{x^{2n+1}}{2n+1}$ pour tout $x \in]-1,1[$, on remarque qu'on obtient cette somme en

intégrant terme à terme $x \mapsto \sum_{n=0}^{+\infty} x^{2n}$ (ce qui est possible parce qu'il s'agit d'une somme de série entière de rayon de convergence 1):

$$\sum_{n=0}^{+\infty} \frac{x^{2n+1}}{2n+1} = \sum_{n=0}^{+\infty} \int_0^x t^{2n} dt = \int_0^x \sum_{n=0}^{+\infty} t^{2n} dt = \int_0^x \frac{dt}{1-t^2} = \frac{1}{2} \int_0^x \left(\frac{1}{1-t} + \frac{1}{1+t} \right) dt = \frac{1}{2} \ln \left(\frac{1+x}{1-x} \right).$$

Corrigé 96.

1. Tout d'abord, l'existence de $(a,b,c) \in \mathbb{R}^3$, vérifiant la décomposition de l'énoncé, est assurée par le fait que la famille (1,(2X),(2X)(2X-1)) soit échelonnée en degré : c'est donc une base de $\mathbb{R}_2[X]$ (et en particulier $2X^2-X-1$, qui appartient à cet espace vectoriel, est combinaison linéaire des polynômes de cette base). Pour déterminer ces scalaires, nul besoin de développer comme un cochon (et je vous le déconseille fortement) : il suffit d'évaluer l'égalité en des racines des polynômes du membre de droite, c'est-à-dire successivement en $0, \frac{1}{2}$. Si l'on évalue l'égalité $2X^2-X-1=a+b(2X)+c(2X)(2X-1)$ en 0, on obtient directement : a=-1. Et ainsi de suite. Pour déterminer c, une évaluation en des racines ne simplifie pas la tâche, mais on peut par exemple le déterminer en comparant les coefficients dominants dans chaque membre de l'égalité : c'est moins calculatoire que si on voulait l'exprimer à l'aide des coefficients précédemment déterminés. Cette idée donne ici : 2=4c, et on en déduit $c=\frac{1}{2}$. En conclusion, on a :

$$2X^{2} - X - 1 = -1 + \frac{1}{2}(2X)(2X - 1).$$

2. Soit $x \in \mathbb{R}$. On a, d'après la question précédente :

$$\begin{split} \sum_{n=0}^{+\infty} \frac{\left(2\,n^2-n-1\right) \left(-1\right)^n \, x^{2\,n+1}}{(2\,n)!} &= -\sum_{n=0}^{+\infty} \frac{1}{\left(2\,n\right)!} \left(-1\right)^n \, x^{2\,n+1} + \frac{1}{2} \sum_{n=0}^{+\infty} \frac{\left(2\,n\right) \left(2\,n-1\right)}{\left(2\,n\right)!} \left(-1\right)^n \, x^{2\,n+1} \\ &= -\sum_{n=0}^{+\infty} \frac{\left(-1\right)^n \, x^{2\,n+1}}{\left(2\,n\right)!} + \frac{1}{2} \sum_{n=1}^{+\infty} \frac{\left(-1\right)^n \, x^{2\,n+1}}{\left(2\,n-2\right)!} \\ &= -\sum_{n=0}^{+\infty} \frac{\left(-1\right)^n \, x^{2\,n+1}}{\left(2\,n\right)!} + \frac{1}{2} \sum_{n=0}^{+\infty} \frac{\left(-1\right)^{n+1} \, x^{2\,n+3}}{\left(2\,n\right)!} \end{split}$$

après changement d'indice. On reconnaît alors le développement en série entière en 0 de fonctions trigonométriques, après factorisation convenable:

$$\sum_{n=0}^{+\infty} \frac{\left(2 n^2 - n - 1\right) \left(-1\right)^n x^{2n+1}}{(2 n)!} = -x \sum_{n=0}^{+\infty} \frac{\left(-1\right)^n x^{2n}}{(2 n)!} - \frac{1}{2} x^3 \sum_{n=0}^{+\infty} \frac{\left(-1\right)^n x^{2n}}{(2 n)!}$$

$$= \left(-x - \frac{1}{2} x^3\right) \sum_{n=0}^{+\infty} \frac{\left(-1\right)^n x^{2n}}{(2 n)!}$$

$$= \left(-x - \frac{1}{2} x^3\right) \cos\left(x\right),$$

d'où le résultat.

 \leftarrow page 17

Corrigé 97.

1. C'est une décomposition en éléments simples, tout ce qu'il y a de plus classique. Il suffit de multiplier l'égalité par chacun des dénominateurs possibles du membre de droite, et de faire tendre la variable n vers leurs racines. Cela permet d'éliminer toutes les inconnues sauf une, et de les déterminer. On obtient alors:

$$\forall n \in \mathbb{C} \setminus \{-3, -2\}, \quad \frac{n}{(n+3)(n+2)} = \frac{3}{n+3} - \frac{2}{n+2}.$$

2. Soit $x \in \left] - \sqrt{2}, \sqrt{2} \right[$. On a, d'après la question précédente :

$$\sum_{n=0}^{+\infty} \frac{\left(\frac{1}{2}\right)^n nx^{2n+1}}{(n+3)(n+2)} = 3\sum_{n=0}^{+\infty} \frac{\left(\frac{1}{2}x^2\right)^n x}{n+3} - 2\sum_{n=0}^{+\infty} \frac{\left(\frac{1}{2}x^2\right)^n x}{n+2}$$
$$= 3\sum_{n=2}^{+\infty} \frac{\left(\frac{1}{2}x^2\right)^{n-2} x}{n+1} - 2\sum_{n=1}^{+\infty} \frac{\left(\frac{1}{2}x^2\right)^{n-1} x}{n+1}$$

après changement d'indice. On reconnaît alors le développement en série entière en 0 du logarithme, et on en déduit (attention à bien prendre x non nul pour diviser ci-dessous; le cas x=0 étant de toute façon trivial considéré à part):

$$\sum_{n=0}^{+\infty} \frac{\left(\frac{1}{2}\right)^n nx^{2n+1}}{(n+3)(n+2)} = \frac{24}{x^5} \sum_{n=2}^{+\infty} \frac{\left(\frac{1}{2}x^2\right)^{n+1}}{n+1} - \frac{8}{x^3} \sum_{n=1}^{+\infty} \frac{\left(\frac{1}{2}x^2\right)^{n+1}}{n+1}$$
$$= -\left(-\frac{8}{x^3} + \frac{24}{x^5}\right) \ln\left(-\frac{1}{2}x^2 + 1\right) + \left(\frac{1}{x} - \frac{12}{x^3}\right),$$

d'où le résultat.

Corrigé 98.

1. C'est une décomposition en éléments simples, tout ce qu'il y a de plus classique. Il suffit de multiplier l'égalité par chacun des dénominateurs possibles du membre de droite, et de faire tendre la variable n vers leurs racines. Cela permet d'éliminer toutes les inconnues sauf une, et de les déterminer. On obtient alors:

$$\forall n \in \mathbb{C} \setminus \left\{ -\frac{1}{2}, -1 \right\}, \quad \frac{n-1}{2(2n+1)(n+1)} = -\frac{3}{2(2n+1)} + \frac{1}{n+1}.$$

2. Soit $x \in \left] -\frac{1}{2}, \frac{1}{2} \right[$. On a, d'après la question précédente:

$$\sum_{n=0}^{+\infty} \frac{(-2)^n (n-1) x^{n+1}}{2 (2 n+1) (n+1)} = \sum_{n=0}^{+\infty} \frac{(-1)^n (2 x)^n x}{n+1} - \frac{3}{2} \sum_{n=0}^{+\infty} \frac{(-1)^n (2 x)^n x}{2 n+1}$$

On reconnaît alors le développement en série entière en 0 du logarithme et de l'arc tangente (à condition d'écrire $x=(\sqrt{x})^2$ si x est positif, pour faire apparaître une puissance paire; si x est négatif alors nous écrirons $x=-(-x)=-(\sqrt{-x})^2$ et il faudra encore un peu travailler).

$$\sum_{n=0}^{+\infty} \frac{(-2)^n (n-1) x^{n+1}}{2 (2 n+1) (n+1)} = \frac{1}{2} \sum_{n=0}^{+\infty} \frac{(-1)^n (2 x)^{n+1}}{n+1} - \frac{3}{4} \sqrt{2} \sqrt{x} \sum_{n=0}^{+\infty} \frac{(-1)^n \left(\sqrt{2} \sqrt{x}\right)^{2 n+1}}{2 n+1}$$
$$= \frac{1}{2} \ln (2 x+1) - \frac{3}{4} \sqrt{2} \sqrt{x} \arctan \left(\sqrt{2} \sqrt{x}\right),$$

d'où le résultat si x est positif. Si x est négatif, on écrit $x = -(-x) = -(\sqrt{-x})^2$, et un raisonnement analogue à celui ci-dessus aboutit à:

$$\sum_{n=0}^{+\infty} \frac{\left(-2\right)^n (n-1) x^{n+1}}{2 \left(2 \, n+1\right) (n+1)} = \frac{1}{2} \ln \left(2 \, x+1\right) - \frac{3 \, \sqrt{2} x}{4 \, \sqrt{-x}} \frac{1}{2} \, \ln \left(-\frac{\sqrt{2} \sqrt{-x}+1}{\sqrt{2} \sqrt{-x}-1}\right),$$

d'où le résultat

Remarque. Pour calculer $\sum_{n=0}^{+\infty} \frac{x^{2n+1}}{2n+1}$ pour tout $x \in]-1,1[$, on remarque qu'on obtient cette somme en

intégrant terme à terme $x \mapsto \sum_{n=0}^{+\infty} x^{2n}$ (ce qui est possible parce qu'il s'agit d'une somme de série entière de rayon de convergence 1):

$$\sum_{n=0}^{+\infty} \frac{x^{2n+1}}{2n+1} = \sum_{n=0}^{+\infty} \int_0^x t^{2n} \mathrm{d}t = \int_0^x \sum_{n=0}^{+\infty} t^{2n} \mathrm{d}t = \int_0^x \frac{\mathrm{d}t}{1-t^2} = \frac{1}{2} \int_0^x \left(\frac{1}{1-t} + \frac{1}{1+t}\right) \mathrm{d}t = \frac{1}{2} \ln \left(\frac{1+x}{1-x}\right).$$

Corrigé 99.

 \leftarrow page 17

1. C'est une décomposition en éléments simples, tout ce qu'il y a de plus classique. Il suffit de multiplier l'égalité par chacun des dénominateurs possibles du membre de droite, et de faire tendre la variable n vers leurs racines. Cela permet d'éliminer toutes les inconnues sauf une, et de les déterminer. On obtient alors :

$$\forall n \in \mathbb{C} \setminus \{-3, -1\}, \quad \frac{5}{6(n+3)(n+1)} = -\frac{5}{12(n+3)} + \frac{5}{12(n+1)}.$$

2. Soit $x \in]-1,1[$. On a, d'après la question précédente :

$$\sum_{n=0}^{+\infty} \frac{5(-1)^n x^{n+1}}{6(n+3)(n+1)} = -\frac{5}{12} \sum_{n=0}^{+\infty} \frac{(-1)^n x^{n+1}}{n+3} + \frac{5}{12} \sum_{n=0}^{+\infty} \frac{(-1)^n x^{n+1}}{n+1}$$
$$= -\frac{5}{12} \sum_{n=2}^{+\infty} \frac{(-1)^{n-2} x^{n-1}}{n+1} + \frac{5}{12} \sum_{n=0}^{+\infty} \frac{(-1)^n x^{n+1}}{n+1}$$

après changement d'indice. On reconnaît alors le développement en série entière en 0 du logarithme, et on en déduit (attention à bien prendre x non nul pour diviser ci-dessous; le cas x=0 étant de toute façon trivial considéré à part):

$$\begin{split} \sum_{n=0}^{+\infty} \frac{5 \, \left(-1\right)^n x^{n+1}}{6 \, (n+3)(n+1)} &= -\frac{5}{12 \, x^2} \sum_{n=2}^{+\infty} \frac{\left(-1\right)^n x^{n+1}}{n+1} + \frac{5}{12} \sum_{n=0}^{+\infty} \frac{\left(-1\right)^n x^{n+1}}{n+1} \\ &= \left(-\frac{5}{12 \, x^2} + \frac{5}{12}\right) \ln \left(x+1\right) + \left(\frac{5}{12 \, x} - \frac{5}{24}\right), \end{split}$$

d'où le résultat.

Corrigé 100.

 \leftarrow page 17

- 1. On a trivialement a = 25 et b = 7.
- 2. Soit $x \in \left] \sqrt{\frac{2}{5}}, \sqrt{\frac{2}{5}} \right[$. On a, d'après la question précédente :

$$\sum_{n=0}^{+\infty} \left(\frac{5}{2}\right)^n (7n+25)x^{2n+1} = 25 \sum_{n=0}^{+\infty} \left(\frac{5}{2}\right)^n x^{2n+1} + 7 \sum_{n=0}^{+\infty} n \left(\frac{5}{2}\right)^n x^{2n+1}$$

$$= 25 x \sum_{n=0}^{+\infty} \left(\frac{5}{2}x^2\right)^n + 7 x \sum_{n=1}^{+\infty} n \left(\frac{5}{2}x^2\right)^n$$

$$= 25 x \sum_{n=0}^{+\infty} \left(\frac{5}{2}x^2\right)^n + \frac{35}{2} x^3 \sum_{n=1}^{+\infty} n \left(\frac{5}{2}x^2\right)^{n-1}$$

On reconnaît alors le développement en série entière en 0 de l'application $x \mapsto \frac{1}{1-x} = \sum_{n=0}^{+\infty} x^n$, qu'on a dérivée terme à terme et évaluée en $\frac{5}{2}x^2$. Plus précisément, pour tout $x \in]-1,1[$, on a :

$$\frac{1}{1-x} = \sum_{n=0}^{+\infty} x^n, \quad \frac{1}{(1-x)^2} = \sum_{n=1}^{+\infty} nx^{n-1}.$$

On en déduit :

$$\sum_{n=0}^{+\infty} \left(\frac{5}{2}\right)^n (7n+25)x^{2n+1} = \frac{25x}{1-\frac{5}{2}x^2} + \frac{\frac{35}{2}x^3}{\left(1-\frac{5}{2}x^2\right)^2},$$

d'où le résultat.