Demo Report

Stephen Brown
Department of Computer Science
Maynooth University
Maynooth
Co. Kildare
IRELAND

May 4, 2016

Abstract

This is a demo report-style document to show what that looks like. Suitable for a dissertation.

Contents

1	Intr	Introduction 3					
	1.1	Lists	3				
	1.2	Alignment	4				
	1.3	Font Styles and Colours	4				
	1.4	Figures	4				
		1.4.1 Useful Tools	5				
		1.4.2 Floats	6				
	1.5	Tables	8				
2	Bac	kground	9				
3	My	Work	10				
	3.1	Maths Mode and Symbols	10				
	3.2	Verbatim	11				
	3.3	Boxes	11				
	3.4	Pictures	11				

	4.1	Experi	rime	ent	al S	Set	up			•				 	•	•	•					13
		4.1.1	Н	arc	lwa	re								 								13
		4.1.2	So	oftv	war	е.						•		 								13
	4.2	Experi	rim€	ent	s .									 								13
5	Res	${ m ults}$																				14
6	Con	clusio	ns	an	d l	Fut	tur	·e	V	V	or	k										15
${f A}$	Exa	mple (Co	de																		17

Introduction

You can include files-e.g. place chapters in separate files, etc.

1.1 Lists

You can find excellent Latex help in the following documents¹:

- 1. The Not So Short Introduction to LATEX ϵ
- 2. LaTeXTutorials A Primer
- 3. LaTeX2 ϵ for authors
- 4. Essential LATEX++
- 5. Short Math Guide for LATEX

Like html, latex supports both numbered (enumerated) and unnumbered (itemized) lists - you can customise these.

- normal,
- tiny,

¹Search for them on the web

- large,
- Huge
- and various other

font sizes.

1.2 Alignment

This text is left-aligned. LaTeX is not trying to make each line the same length.

This text is right-aligned. LATEX is not trying to make each line the same length.

This line is at the centre of the earth

1.3 Font Styles and Colours

You can use **bold**, *italics*, <u>underlining</u>, super scripts and sub $_{scripts}$.

You can colour the font: red, green, blue, etc. Note this requires a package or "stylefile" called color. These packages provides extensions to LaTeX- there is a large collection of them - you can even write your own.

1.4 Figures

Figures and Tables are called "floats" - LaTeXplaces them according to various rules. You can provide hints: (h)ere, (t)op, (b)ottom, and by the float package: (H)ere.

Figure 1.1: Demo Figure

Figure 1.2: Demo Figure-Narrow

Here is a simple figure (see Fig. 1.1).

You can scale and rotate figures (see Figs. 1.2 1.3).

And add borders (see Fig. 1.5).

Note: !htbp means:

! place as early as possible

h place here if can

t otherwise at top of page

b otherwise at bottom of page

p otherwise on a float page.

1.4.1 Useful Tools

Useful figure tools: $gnuplot^2$, xfig, gimp, inkscape, powerpoint, excel.

²Can create LATEXpictures

Figure 1.3: Demo Figure-Wide

1.4.2 Floats

Note that figures are *floats* - Latex decides exactly where to place them: the \mathbf{h} , \mathbf{t} and \mathbf{b} are hints, but \mathbf{H} means Here, even if a page-break is required. If enough figures get queued up, they are all presented at the end of the chapter (or use the \clearpage command).

Figure 1.4: Demo Figure-Rotated

Figure 1.5: Demo Figure-With Border

1.5 Tables

See Table 1.1 for an "example" table. Note the smart-quotes. Note that tables are also floats and are placed automatically, unless you use "H".

Table 1.1: This is a Table

ID	Data	Value					
Line 1	data for line 1	189					
Line 1	data for line 1	88					

You can do all sorts of complex things with tables: multi-row, multi-column, multi-page (with the header rows repeated), etc.

Background

You can reference any label in the document - for example, the tables are shown in Ch. 1.

You can cite works in the reference section [1] and [2].

Note: the bibliography would normally be in a separate 'bibtex' file, except for very small documents. There are various databases and utilities to help with references also-especially useful when a group is building up a shared list.

My Work

3.1 Maths Mode and Symbols

LATEX is excellent at typesetting maths, equations etc. You can reference equations - see Eqn. 3.1.

$$x^2 = y^2 = z^2 (3.1)$$

Or place maths inline: $E = mc^2$, with no equation numbering.

- You can use greek and other letters: $\alpha\beta\delta \in \mathbb{C}$
- There is a large set of maths symbols: $\Rightarrow \bigcirc \iff \overrightarrow{AB} \pm \Pi$, etc.
- Set operators:

$$A \subset B$$

• Sums:

$$x = \sum_{i=0}^{\inf} \left(\frac{1}{i}\right)$$

• Integrals:

$$x = \int_{i=0}^{\infty} \left(\frac{1}{i}\right)$$

• arrays, matrices, etc:

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$
$$|x| = \begin{cases} -x & \text{if } x < 0 \\ 0 & \text{if } x = 0 \\ x & \text{if } x > 0 \end{cases}$$

• And alignment to (for example) the = sign:

$$f(x) = (a + b)(a - b)$$
$$= a2 - ab + ba - b2$$
$$= a2 + b2$$

3.2 Verbatim

Verbatim allows for untranslated text - see Appendix A.

3.3 Boxes

3.4 Pictures

You can also draw lines and other shapes in pictures - these scale really well, as they are vector graphics. Note how figures float, but raw pictures don't.

Figure 3.1: Example Picture

Evaluation

- 4.1 Experimental Setup
- 4.1.1 Hardware
- 4.1.2 Software
- 4.2 Experiments

Results

Conclusions and Future Work

Bibliography

- [1] M. Medina-Melendrez et al. "Overflow analysis in the fixed-point implementation of the first-order Goertzel algorithm for complex-valued input sequences". Circuits and Systems, 2009. MWSCAS '09. 52nd IEEE International Midwest Symposium on, 620–623, 2009.
- [2] M. V. Wilkes *et al.* "The Preparation of Programs for an Electronic Digital Computer", *Addison-Wesley* 1951.

Appendix A

Example Code

```
class Demo {
   private int value;
   public static void main(String args[]) {
       System.out.writeln("Demo");
   }
}
```