Correction

1.a Soit
$$u, v \in E$$
. $\forall n \in \mathbb{N}, (u \star v)(n) = \sum_{k=0}^{n} u(k)v(n-k) = \sum_{\ell=n-k}^{n} u(n-\ell)v(\ell) = \sum_{k=0}^{n} v(k)u(n-k) = (v \star u)(n)$.

Par suite $u \star v = v \star u$ et on peut conclure que \star est commutative.

Soit
$$u, v, w \in E$$
. $\forall n \in \mathbb{N}, [(u \star v) \star w](n) = \sum_{k=0}^{n} (u \star v)(k)w(n-k) = \sum_{k=0}^{n} \sum_{\ell=0}^{k} u(\ell)v(k-\ell)w(n-k)$ et

$$\left[u \star (v \star w) \right](n) = \sum_{k=0}^{n} u(k) \sum_{\ell=0}^{n-k} v(\ell) w(n-k-\ell) = \sum_{k=0}^{n} \sum_{\ell=0}^{n-k} u(k) v(\ell) w(n-k-\ell) \; .$$

Pour identifier les deux expressions, plusieurs démarches sont possibles :

(1)
$$[(u \star v) \star w](n) = \sum_{n+n+r=n} u(p)v(q)w(r) = [u \star (v \star w)](n)$$
.

$$(2) \begin{bmatrix} u \star (v \star w) \end{bmatrix}(n) = \sum_{k=0}^{n} \sum_{\ell=0}^{n-k} u(k)v(\ell)w(n-k-\ell) \underset{\ell'=n-k-\ell}{=} \sum_{k=0}^{n} \sum_{\ell'=0}^{n-k} u(k)v(n-k-\ell')w(\ell') \\ = \sum_{\ell'=0}^{n} \sum_{k=0}^{n-\ell'} u(k)v(n-k-\ell')w(\ell') \underset{\ell'=n-\ell}{=} \sum_{\ell=0}^{n} \sum_{k=0}^{\ell} u(k)v(\ell-k)w(n-\ell) = [(u \star v) \star w](n)$$

1.b Soit
$$u \in E$$
. $\forall n \in \mathbb{N}, (u \star \varepsilon)(n) = \sum_{k=0}^{n} u(k)\varepsilon(n-k) = 0 + \dots + 0 + u(n) = u(n)$ donc $u \star \varepsilon = u$.

Par commutativité, on aussi $\varepsilon \star u = u$ et on peut donc conclure que ε est élément neutre.

1.c Soit $u, v, w \in E$. $\forall n \in \mathbb{N}$ on a:

$$[u \star (v+w)](n) = \sum_{k=0}^{n} u(k)(v+w)(n-k) = \sum_{k=0}^{n} u(k)(v(n-k) + w(n-k))$$
$$= \sum_{k=0}^{n} u(k)v(n-k) + \sum_{k=0}^{n} u(k)w(n-k) = (u \star v)(n) + (u \star w)(n) = [(u \star v) + (u \star w)](n)$$

Par suite $u \star (v+w) = (u \star v) + (u \star w)$ et par commutativité : $(v+w) \star u = (v \star u) + (w \star u)$.

Finalement \star est distributive sur +.

- 1.d $(E,+,\star)$ est un anneau commutatif de nulle la suite nulle et d'élément unité la suite ε .
- 2.a Cherchons $v \in E$ tel que $u \star v = \varepsilon$ i.e. tel que $(u \star v)(0) = 1$ et $\forall n \in \mathbb{N}^*, (u \star v)(n) = 0$ $(u \star v)(0) = u(0)v(0) = 1$ impose v(0) = 1.

$$(u \star v)(1) = u(0)v(1) + u(1)v(0) = v(1) + \rho = 0$$
 impose $v(1) = -\rho$.

$$(u \star v)(2) = u(0)v(2) + u(1)v(1) + u(2)v(0) = v(2) - \rho^2 + \rho^2 = 0$$
 impose $v(2) = 0$ et ainsi de suite.

Suite à cette étude nous visualisons quel doit être l'inverse de $\,u$, il ne reste plus qu'à vérifier que « ça marche » :

Soit v la suite définie par v(0) = 1, $v(1) = -\rho$ et $\forall n \ge 2, v(n) = 0$.

On a
$$(u \star v)(0) = u(0)v(0) = 1$$
, $(u \star v)(1) = u(0)v(1) + v(1)u(0) = v(1) + \rho = 0$ et $\forall n \ge 2$:

$$(u \star v)(n) = \sum_{k=0}^{n} u(k)v(n-k) = 0 + \dots + 0 + \rho^{n-1} \times (-\rho) + \rho^{n} \times 1 = 0.$$

Finalement $u \star v = \varepsilon$ et par commutativité $v \star u = \varepsilon$. Ainsi u est inversible et d'inverse v.

2.b $F \subset E$.

 $\varepsilon \in F$ car la suite ε est nulle à partir du rang 1.

Soit $u, v \in F$. Il existe $p, q \in \mathbb{N}$ tel que $\forall n > p, u(n) = 0$ et $\forall n > q, v(n) = 0$.

D'une part : $\forall n > \max(p,q), (u-v)(n) = 0$ et donc $u-v \in F$.

D'autre part :
$$\forall n > p + q, (u \star v)(n) = \sum_{k=0}^{n} u(k)v(n-k) = \sum_{k=0}^{p} u(k)v(n-k) + \sum_{k=0}^{n} u(k)v(n-k)$$
.

Or
$$\sum_{k=0}^{p} u(k)v(n-k) = 0$$
 car $\forall k \le p$ on a $n-k \ge n-p > q$ donc $v(n-k) = 0$

et
$$\sum_{k=p+1}^{n} u(k)v(n-k) = 0$$
 car $\forall k \ge p+1$ on a $u(k) = 0$. Ainsi $(u \star v)(n) = 0$.

Finalement $u \star v \in F$.

Ainsi F est un sous anneau de $(E, +, \star)$.

2.c Clairement $f(\varepsilon) = \varepsilon$. Soit $u, v \in E$. $\forall n \in \mathbb{N}$ on a

$$[f(u+v)](n) = (-1)^n (u+v)(n) = (-1)^n u(n) + (-1)^n v(n) = [f(u)](n) + [f(v)](n) = [f(u) + f(v)](n)$$

Donc f(u+v) = f(u) + f(v).

$$[f(u \star v)](n) = (-1)^n (u \star v)(n) = (-1)^n \sum_{k=0}^n u(k)v(n-k) = \sum_{k=0}^n (-1)^k u(k)(-1)^{n-k} v(n-k)$$

donc
$$[f(u \star v)](n) = \sum_{k=0}^{n} [f(u)](k)[f(v)](n-k) = [f(u) \star f(v)](n)$$

donc $f(u \star v) = f(u) \star f(v)$.

Finalement f est un endomorphisme de l'anneau $(E, +, \star)$.

De plus $\forall u \in E, \forall n \in \mathbb{N}$ on a $[f(f(u))](n) = (-1)^n f(u)(n) = (-1)^n (-1)^n u(n) = u(n)$ donc

 $(f \circ f)(u) = u$ puis $f = \text{Id}_E$. Ainsi f est une involution. C'est donc une bijection et on peut alors parler d'automorphisme involutif.

3.a Soit $u \in E$ inversible et v sont inverse.

 $u \star v = \varepsilon$ donne $(u \star v)(0) = 1$ i.e. u(0)v(0) = 1. Par suite $u(0) \neq 0$.

3.b Soit $u \in E$ tel que $u(0) \neq 0$. Soit $v \in E$ la suite définie par :

$$v(0) = \frac{1}{u(0)}$$
 et $\forall n \in \mathbb{N}^*, v(n) = -\frac{\sum_{k=1}^{n} u(k)v(n-k)}{u(0)}$.

Cette suite est correctement définie et on a d'une part $(u \star v)(0) = 1$ et d'autre

part $\forall n \in \mathbb{N}^*, (u \star v)(n) = \sum_{k=0}^n u(k)v(n-k) = u(0)v(n) + \sum_{k=1}^n u(k)v(n-k) = 0$ de sorte que $u \star v = \varepsilon$. De

plus par commutativité $v \star u = \varepsilon$ et on peut conclure que u est inversible (et d'inverse v).

4.a $\{n \in \mathbb{N} / u(n) \neq 0\}$ est une partie de \mathbb{N} non vide car $u \neq 0$.

Puisque toute partie non vide de \mathbb{N} possède un plus petit élément, l'existence de p est assurée.

De même pour l'existence de q.

4.b
$$(u \star v)(p+q) = \sum_{k=0}^{p+q} u(k)v(p+q-k) = \sum_{k=0}^{p-1} u(k)v(p+q-k) + u(p)v(q) + \sum_{k=p+1}^{p+q} u(k)v(p+q-k)$$
.

Or
$$\sum_{k=0}^{p-1} u(k)v(p+q-k) = 0$$
 car $\forall k \le p-1$ on a $u(k) = 0$,

$$\text{et } \sum_{k=p+1}^{p+q} u(k) v(p+q-k) = 0 \ \text{ car } \forall k \geq p+1 \ \text{ on a } \ p+q-k \leq q-1 \ \text{donc } \ v(k) = 0 \ .$$

Finalement $(u \star v)(p+q) = u(p)v(q) \neq 0$.

4.c Par le résultat ci-dessus $u \neq 0$ et $v \neq 0 \Rightarrow u \star v \neq 0$.

Par contraposée $u \star v = 0 \Rightarrow u = 0$ ou v = 0.

De plus l'anneau $(E, +, \star)$ est commutatif et non réduit à $\{0\}$, il est donc intègre.