Image Segmentation

Ying Wu

Electrical Engineering and Computer Science Northwestern University Evanston, IL 60208

http://www.ece.northwestern.edu/~yingwu yingwu@ece.northwestern.edu

Where are we?

Outline

- Motivation
- Region-based representations
 - Array representation
 - Hierarchical representation
 - Symbolic representation
 - RAG (region adjacency graph)
- Region-based segmentation
 - Region-growing
 - Region-splitting
- The "watershed" segmentation algorithm

A simple approach

- We've learnt the histogram-based thresholding method for segmentation
 - E.g., color segmentation
- Advantages:
 - Fast
 - Easy to implement
- Disadvantages
 - Difficult to find the best thresholds
- What is missing?
 - It throws away the spatial information among the pixels!

How do we represent a region?

Let's discuss

Array representation

- A region is represented by a region mask (an array)
- Hard masks vs. soft masks
 - Soft mask are weighted masks
 - Soft masks may overlap (also called supporting maps)

• Advantages:

fast, hardware support → widely used

• Disadvantages:

low-level,

not much geometric information (e.g, who is close to whom?)

Hierarchical Representation

- Motivation:
 - Human visual perception is quite complex.
 It is still a mysterious thing for scientific research.
 - E.g.,

Symbolic representation

- Describing the characteristics of a region
- Symbolic characteristics
 - Shape
 - ✓ Boundary box
 - ✓ Centroid
 - ✓ Moments
 - ✓ Euler number
 - Intensity
 - ✓ Mean/variance of the intensities
 - ✓ Approximated intensity surfaces

RAG

- The relations among regions
- Region adjacency graph (RAG)
 - A vertex → a region
 - A edge \rightarrow the adjacency
 - ✓ if the two regions adjuncts, connect the two nodes

Formulation of Segmentation

- A process that partitions image R into subregions $\{R_1, R_2, ..., R_n\}$, s.t.,
 - $(a) \qquad \bigcup_{k=1}^{n} R_{k} = R$
 - (b) R_k is a connected region
 - (c) $R_i \cap R_j = \varphi$, $\forall i \neq j$
 - (d) $P(R_k) = \text{true}, \forall k$
 - (e) $P(R_i \cup R_j) = \text{false}, \ \forall i \neq j$ where, $P(\cdot)$ is a logical predicate

Thoughts

- The thresholding method is not good for segmentation, since
 - It is pixel-based, not region-based, no connectivity
 - Optimal thresholds may not exist
- So?
- Using regions/connectivity/neighborhood
- Basic idea:

```
If a pixel x \in R_k,
Check its neighbor N(x)
If P(N(x))=true,
then N(x) should also be in R_k.
```

Region Growing

- Basic idea
 - Group/grow pixels of subregions into larger regions based on predefined criteria.
- Grouping pixels
 - Selecting seeds
 - Selecting a merging criterion (this is critical)
 - ✓ intensity?
 - ✓ color?
 - ✓ texture?
 - **√** ...?
 - The stop criterion
- Grouping subregions
 - Constructing RAG
 - Merging criteria?

A formal method

- There are two sets of pixels from two regions
 - R1, $\{x_1, x_2, ..., x_n\}$
 - $R2, \{x_{1}, x_{2}, ..., x_{m}\}$
- For two regions, we need to test two hypotheses
 - H0: they belong to the same region, i.e., the intensities are drawn from a Gaussian density, $N(\mu_0, \sigma_0)$
 - H1: they don't, and the intensities are drawn from two Gaussian densities: $R_1 \sim N(\mu_1, \sigma_1)$, and $R_2 \sim N(\mu_2, \sigma_2)$.
- Which hypothesis is more likely?
 - Check the data likelihood

Hypothesis testing

$$p(g_1^1, \dots, g_n^1, g_1^2, \dots, g_m^2 | H_0) = \prod_{k=1}^{n+m} p(g_k | H_0) = \frac{1}{(\sqrt{2\pi} \sigma_0)^{n+m}} e^{-\frac{(m+n)}{2}}$$

$$p(g_1^1, \dots, g_n^1, g_1^2, \dots, g_m^2 | H_1) = \frac{1}{(\sqrt{2\pi} \sigma_1)^n} e^{-\frac{n}{2}} \frac{1}{(\sqrt{2\pi} \sigma_2)^m} e^{-\frac{m}{2}}$$

$$L = \frac{p(g_1^1, \dots, g_n^1, g_1^2, \dots, g_m^2 | H_1)}{p(g_1^1, \dots, g_n^1, g_1^2, \dots, g_m^2 | H_0)} = \frac{\sigma_0^{n+m}}{\sigma_1^n \sigma_2^m}$$

Likelihood ratio

if L>t, we accept H_1 else we accept H_0

Region Splitting

- Region growing is from bottom-up
- Region splitting is from top-down
- The quad tree is a simple example
- Splitting&Merging Algorithm
 - Split region into 4 disjoint quadrants using quad tree algorithm, s.t, $\forall R_k$, $P(R_k)$ =true;
 - Merge any adjacent region R_i and R_k , if $P(R_i \cup R_k)$ =true;
 - Stop when no further merging or splitting is possible

17

Watershed Segmentation

- Basic idea
 - We can visualize an image in 3-D (topographic surface)
 - We have
 - ✓ A. regional minimum
 - ✓ B. catchment basin or watershed
 - ✓ C. divide lines or watershed lines

Watershed line

Watershed

Regional Regional minimum minimum minimum

Regional minimum minimum

Regional minimum minimum minimum

A trick

- How can we use this idea?
- Can we perform it directly on the original image?
 - No!
 - We need to perform it on image gradient, i.e., the change of image intensities

23

A real example

Original image

Image gradient

Watersh ed lines

Watersh ed lines

A Problem

- Watershed may end up with too many regions, called over-segmentation
 - Since the noise in image produces too many regional minima
 - While each regional minimum corresponds to a region
- Solution?
 - We can smooth the image to reduce the noise
 - Then use masks to specify the minima

25

A solution

- Smooth image (pre-processing)
- Use threshold to get the markers
 - A marker is a region that is surrounded by points of higher altitude
 - S.t., points in the region form a connect component
 - All the points in the component have the same intensity
- Apply watershed to the smoothed image

Initial markers

27

Segmentation by Graph Cut

- Represent the set of data $\{X_1,...,X_n\}$ by a graph $G = \{V, E\}$
- Each vertex: an individual data point
- Each edge: the adjacency of two data points
- Edge weight: the affinity of the two points

- e.g.
$$A_{ij} = \exp\left\{-rac{||\mathbf{x}_i - \mathbf{x}_j||^2}{2\sigma^2}
ight\}$$

- Thus, the data set can be viewed as a weight adjacency graph
- More importantly, it can also be viewed as an affinity matrix A.

Block-diagonalization: Idea

- If the data are grouped, then the affinity matrix is pretty much block-diagonalized
- Now, clustering can be treated as the task of finding the best re-permutation to blockdiagonalize A
- More specifically, the summation of the affinity values of those off-diagonal block matrices is minimized
- Or the sum of diagonal block matrices is maximized

Formulation

Introduce an association vector (i.e., a projection) for each cluster component \mathbf{w}_k ,

$$\mathbf{w}_{k} = [w_{k1}, w_{k2}, ..., w_{kn}]^{T}$$

where w_{ki} is the association of x_i to the cluster k

- Positive w_{ki} indicates that x_i is in cluster k to some extent, and negative otherwise
- Usually, such projection vector is normalized, or

$$\mathbf{w}_k^T \mathbf{w}_k = 1, \quad \forall k = 1, \dots, K$$

Now, we can formulate the problem as:

$$\mathbf{w}_k^* = \underset{w_k}{\operatorname{arg \, max}} \mathbf{w}_k^T \mathbf{A} \mathbf{w}_k$$
 $s.t. \mathbf{w}_k^T \mathbf{w}_k = 1$

Solution

- The solution is easy
- Let's see the Lagrangian

$$L = \mathbf{w}_k^T \mathbf{A} \mathbf{w}_k + \lambda (1 - \mathbf{w}_k^T \mathbf{w}_k)$$

It is clear that

$$\frac{\partial L}{\partial \mathbf{w}_k} = 2\mathbf{A}\mathbf{w}_k - 2\lambda\mathbf{w}_k = 0 \quad \Rightarrow \mathbf{A}\mathbf{w}_k = \lambda\mathbf{w}_k$$

lacktriangle w_k , an eigenvector, indicates the association of data with cluster k

An Issue

- Ideally, we can check the values of w_{ki} for grouping
- But there is an complication
- Suppose A has two identical (repeated) eigenvalues

$$\mathbf{A}\mathbf{w}_1 = \lambda \mathbf{w}_1$$
, and $\mathbf{A}\mathbf{w}_2 = \lambda \mathbf{w}_2$

- It is easy to see that any linear combination of w₁ and w₂ also gives a valid eigenvector
- $\mathbf{A}(a_1\mathbf{w}_1+a_2\mathbf{w}_2)=\lambda(a_1\mathbf{w}_1+a_2\mathbf{w}_2)$
- This means that we cannot simply use the values of $w=a_1w_1+a_2w_2$ for grouping
- Instead of using the 1-D subspace, we need to go to the 2D subspace spanned by {w₁,w₂}