Série d'exercices n° 2

Exercice 1

Soit A l'ensemble des fonctions $f: \mathbb{C} \to \mathbb{C}$ de la forme

$$f(z) = \alpha z + \beta \overline{z}$$
 $(\alpha, \beta \in \mathbb{C})$

 $(A, +, \circ)$ est-il un anneau?

Exercice 2

- 1. Trouver tous les sous-anneaux de $(\mathbb{Z}, +, \times)$.
- 2. Trouver tous les morphismes d'anneaux de $(\mathbb{Z}, +, \times)$.

Exercice 3

Soit D l'ensemble des nombres décimaux :

$$\mathbb{D} = \left\{ \frac{a}{10^n} \mid a \in \mathbb{Z}, \ n \in \mathbb{N} \right\}$$

Montrer que $(\mathbb{D},+,\times)$ est un anneau. Déterminer le groupe des unités de $\mathbb{D}.$

Exercice 4

On considère l'ensemble

$$A=\{m+n\sqrt{6}\mid m,n\in\mathbb{Z}\}$$

- Montrer que (A, +, ×) est un anneau intègre.
- 2. Montrer que l'application

$$\phi: \quad \begin{array}{ccc} A & \rightarrow & A \\ m + n\sqrt{6} & \mapsto & m - n\sqrt{6} \end{array}$$

est un automorphisme d'anneaux.

3. Soit $x \in A$. On pose $N(x) = x\phi(x)$. Etablir que

$$\forall x, y \in A \quad N(x \times y) = N(x) \times N(y)$$

- 4. Montrer que x est inversible dans A si et seulement si $N(x)=\pm 1$ (Remarquer que $N(x)\in \mathbb{Z}$).
- 5. Vérifier que $5 + 2\sqrt{6}$ est inversible dans A et calculer son inverse.

Exercice 5

Soit $(A, +, \times)$ un anneau intègre fini. Montrer que A est un corps.

Exercice 6

1. Soient $(A,+,\times)$ un anneau commutatif, et I et J deux idéaux de A. Montrer que $I\cap J$ et I+J sont des idéaux de A.

2. On pose $A = \mathbb{Z}$, $I = a\mathbb{Z}$, et $J = b\mathbb{Z}$, où $a, b \in \mathbb{N}$. Montrer que

$$I + J = d\mathbb{Z}$$
 avec $d = a \wedge b$

$$I \cap J = m\mathbb{Z}$$
 avec $m = a \vee b$

Exercice 7 (Caractéristique d'un corps)

Soit $(K, +, \times)$ un corps commutatif. On considère le morphisme d'anneaux suivant :

$$f: (\mathbb{Z}, +, \times) \rightarrow (K, +, \times)$$

 $m \mapsto m1_K$

Alors, $\ker(f) = \{m \in \mathbb{Z} \mid m1_K = 0_K\}$ est un sous-groupe de $(\mathbb{Z}, +)$. D'après l'Exercice 3 de la Série 1, il existe un unique $n \in \mathbb{N}$ tel que $\ker(f) = n\mathbb{Z}$. L'entier n est appelé la **caractéristique** du corps K.

- 1. Quelle est la valeur de n lorsque $K = \mathbb{R}$?
- 2. On suppose que le corps K est fini. Montrer que n est un nombre premier.

Exercice 8 (Anneau $(\mathbb{Z}/n\mathbb{Z}, +, \times)$)

On considère le groupe $(\mathbb{Z}/n\mathbb{Z},+)$ (voir l'Exercice 7 de la Série 1), où $n \in \mathbb{N}^*$. On munit l'ensemble quotient $\mathbb{Z}/n\mathbb{Z}$ d'une deuxième loi de composition interne :

$$\overline{a} \times \overline{b} = \overline{ab}, \qquad \forall \overline{a}, \ \overline{b} \in \mathbb{Z}/n\mathbb{Z}$$

- 1. Montrer que $(\mathbb{Z}/n\mathbb{Z}, +, \times)$ est un anneau.
- 2. Montrer que $(\mathbb{Z}/n\mathbb{Z}, +, \times)$ est un corps si et seulement si n est premier.