

Table of Contents

第一章	载入数据	3
1.1	创建 DataFrame	3
1.2	读取数据	4
第二章	Pandas 的基本操作	7
2.1	设置索引	7
2.2	概览数据	7
2.3	选择观测值和变量	10
2.4	.loc 方法	11
2.5	.iloc 方法	13
2.6	根据条件筛选	16
第三章	apply 方法	19
第四章	检测和处理缺失值	23
4.1	删除缺失值	26
4.2	数值填充	27
4.3	插值法(Interpolation)	30
4.4	应用:长期经济增长	32
第五章	异常值	37
5.1	异常值的检测	37
5.2	缩尾处理	39
第六章	观测值排序	41

6.1	根据索引排序	41
6.2	根据值排序	42
第七章	数据集合并	43
7.1	pd.concat()	44
7.2	Merge	45
第八章	多级索引	55
8.1	选择数据	56
8.2	按索引排序	59
8.3	pd.merge	60
8.4	stack 和 unstack	61
第九章	Pandas 中的分组计算(groupby)	65
9.1	转换方法(Transformation Methods)	68
9.2	过滤方法(Filtration Methods)	69
9.3	应用方法(Application Methods)	70

iv

Pandas 是数据分析最常用的包,从基本的数据处理到更复杂的统计功能,如 statsmodels 和 scikit-learn 库,都是建立在 pandas 基础上的。

这一部分应用Penn World Table介绍应用 Pandas 处理原始数据的一些常用方法。该数据集当前版本为 PWT 10.01, 包含 183 个国家 1950-2019 年的收入、产出、投入和生产率等指标,详细介绍可参见User Guide to PWT 10.0 data files。数据背后的方法、理论及使用建议,可参见 Feenstra, Inklaar, and Timmer [1]。

同样,在进行进一步操作之前,先载入必要的库:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
plt.rcParams["figure.figsize"] = (8, 6)
import wbgapi as wb
```

第一章 载入数据

1.1 创建 DataFrame

可以由数组、列表、字典、序列等创建数据框。例如,使用 Numpy 生成两列服从正态分布的随机数:

	X1	X2
0	1.743740	3.317564
1	1.110697	2.173292
2	0.828833	0.245482
3	1.168131	1.282188
4	0.217240	2.459049

下面来看字典的例子。定义字典常采用两种方式:

• **面向列的字典**,字典的键代表表格的列名,而每个值是一个包含该列 所有数据的列表。当使用 pd.DataFrame(data) 创建 DataFrame 时, 会直接将这些键作为列名,值作为列数据:

	地区	人口 (万人)	人均国内生产总值(元)
0	江苏省	8526	150487
1	浙江省	6627	125043
2	上海市	2487	19032

• 面向行的字典,将每一行数据定义为一个独立的字典,然后将这些字典放入一个列表中。每个字典的键是列名,值是该行对应的数据。

	地区	人口 (万人)	人均国内生产总值(元)
0	江苏省	8526	150487
1	浙江省	6627	125043
2	上海市	2487	19032

1.2 读取数据

Pandas 提供了广泛的导入数据的命令,当前主要软件存储格式的文件,csv,excel, stata, html, json,sql等,几乎都可以识别。网站提供了 Stata 和 Excel 格式数据,假设数据保存在当前路径的 datasets 子文件中。Excel 格式数据使

1.2 读取数据 5

用 pd.read_excel() 函数读取数据,有多个表单需要用参数 sheet_name 指明表单名称:

注意其中的几个参数, io 是文件路径; header 表明列标题行, 这里是第一行; sheet_name 是数据所在表单名; 将载入的数据赋值给 pwt 数据框。

如果下载了 Stata 格式, 使用 pd.read_stata() 函数读取数据:

```
pwt = pd.read_stata(filepath_or_buffer="datasets/pwt1001.dta")
```

Pandas 中的 Series 基于 Numpy 数组,支持许多类似运算,可以看作一"列"数据:

```
pop = pwt['pop']
type(pop)
```

pandas.core.series.Series

序列与 Numpy 数组一样有许多方法运算,读者可以参阅pandas.Series。数据处理中主要对象是 DataFrame,类似 Excel 表单每一列对应一个变量。索引(index)对应行,变量列名(columns)对应列。

Penn World Table 数据本身是一个面板数据(Panel Data),"国家-年"唯一识别一个观测值。我们从截面数据入手先只保留 2019 年数据,然后再看多索引的情况。这里.copy() 拷贝了原数据生成一个新的数据框,这样即使改变数据也不影响初始的数据框。另外,变量 cor_exp 在 2019 年全部为缺失值,这里直接删除了。

```
pwt2019 = pwt[pwt['year'] == 2019].copy().drop(labels='cor_exp', axis=1)
```

第二章 Pandas 的基本操作

2.1 设置索引

先为 pwt2019 数据框设置索引 (index) 变量,这里使用国家名代码变量 (countrycode), inplace=True 选项原地改变数据框,不需要另外赋值:

```
pwt2019.set_index('countrycode', inplace=True)
```

2.2 概览数据

可以 df.info() 概率数据集,或者使用 df.head()或 df.tail()查看头部和尾部观测值:

```
pwt2019.info()
pwt2019.head()
```

<class 'pandas.core.frame.DataFrame'>

Index: 183 entries, ABW to ZWE
Data columns (total 50 columns):

#	Column	Non-Null Count	Dtype
0	country	183 non-null	object
1	currency_unit	183 non-null	object
2	year	183 non-null	int16
3	rgdpe	183 non-null	float32

4	rgdpo	183 non-null	float32
5	pop	183 non-null	float64
6	emp	177 non-null	float32
7	avh	66 non-null	float64
8	hc	145 non-null	float32
9	ccon	183 non-null	float32
10	cda	183 non-null	float32
11	cgdpe	183 non-null	float32
12	cgdpo	183 non-null	float32
13	cn	180 non-null	float32
14	ck	137 non-null	float32
15	ctfp	118 non-null	float32
16	cwtfp	118 non-null	float32
17	rgdpna	183 non-null	float32
18	rconna	183 non-null	float32
19	rdana	183 non-null	float32
20	rnna	180 non-null	float32
21	rkna	137 non-null	float32
22	rtfpna	118 non-null	float32
23	rwtfpna	118 non-null	float32
24	labsh	138 non-null	float32
25	irr	137 non-null	float32
26	delta	180 non-null	float32
27	xr	183 non-null	float64
28	pl_con	183 non-null	float32
29	pl_da	183 non-null	float32
30	pl_gdpo	183 non-null	float32
31	i_cig	183 non-null	category
32	i_xm	183 non-null	category
33	i_xr	183 non-null	category
34	i_outlier	183 non-null	category
35	i_irr	137 non-null	category
36	statcap	127 non-null	float64

2.2 概览数据 9

37	csh_c	183 non-null	float32
38	csh_i	183 non-null	float32
39	csh_g	183 non-null	float32
40	csh_x	183 non-null	float32
41	csh_m	183 non-null	float32
42	csh_r	183 non-null	float32
43	pl_c	183 non-null	float32
44	pl_i	183 non-null	float32
45	pl_g	183 non-null	float32
46	pl_x	183 non-null	float32
47	pl_m	183 non-null	float32
48	pl_n	180 non-null	float32
49	pl_k	137 non-null	float32

dtypes: category(5), float32(38), float64(4), int16(1), object(2)

memory usage: 39.2+ KB

	country	currency_unit	year	rgdpe	rgdpo	pop
countrycode						
ABW	Aruba	Aruban Guilder	2019	3921.261230	3467.299561	0.10
AGO	Angola	Kwanza	2019	228151.015625	227855.718750	31.8
AIA	Anguilla	East Caribbean Dollar	2019	376.634979	225.680527	0.01
ALB	Albania	Lek	2019	35890.019531	36103.042969	2.88
ARE	United Arab Emirates	UAE Dirham	2019	681525.812500	645956.250000	9.77

默认显示 5 条观测值,如果希望看到更多观测值,可以使用 df.tail(n=10) 修改数值。

可以应用.shape,.ndim,.columns 等属性查看基本信息,可以看到数据集包含 51 个变量共 183 个观测值。

print(pwt2019.shape)
print(pwt2019.columns)

(183, 50)

df.describe()函数报告数值型变量基本的描述统计量,如观测值数、最小/大值等:

pwt2019.describe()

	year	rgdpe	rgdpo	pop	emp	avh	hc
count	183.0	1.830000e+02	1.830000e+02	183.000000	177.000000	66.000000	145.00
mean	2019.0	6.856771e + 05	6.845371e + 05	41.425665	18.736708	1849.981084	2.7092
std	0.0	2.326857e + 06	2.326577e + 06	150.991398	72.598854	269.239240	0.7028
min	2019.0	9.919158e + 01	7.769418e + 01	0.004989	0.002537	1380.607643	1.2249
25%	2019.0	2.542229e+04	2.496249e + 04	2.148923	0.966091	1650.921776	2.1570
50%	2019.0	8.906167e + 04	8.964218e + 04	8.955102	4.235073	1818.281597	2.7764
75%	2019.0	4.438705e+05	4.277259e + 05	29.763979	11.694400	2061.049973	3.2594
max	2019.0	2.086051e+07	2.059584e + 07	1433.783686	798.807739	2474.911893	4.3513

2.3 选择观测值和变量

应用中经常需要对某些观测值或特定子样本进行操作,就需要选择观测值和变量。

选择特定的行,在 Python 中最基本的方法是采用数组切片(slicing)方式。例如,选择第3至5个观测值,注意索引对应的是 [2:5]:

pwt2019[2:5]

2.4 .LOC 方法 11

	country	currency_unit	year	rgdpe	rgdpo	pop
countrycode						
AIA	Anguilla	East Caribbean Dollar	2019	376.634979	225.680527	0.01
ALB	Albania	Lek	2019	35890.019531	36103.042969	2.88
ARE	United Arab Emirates	UAE Dirham	2019	681525.812500	645956.250000	9.77

要选择列,可以用包含列名字的列表指定:

```
vars_selected = ['country', 'rgdpe', 'rgdpo', 'pop', 'emp', 'cgdpe', 'cgdpo', 'ctfp']
pwt2019_sub = pwt2019[vars_selected]
pwt2019_sub.head()
```

	country	rgdpe	rgdpo	pop	emp	cgdpe
countrycode						
ABW	Aruba	3921.261230	3467.299561	0.106314	0.047601	3912.334717
AGO	Angola	228151.015625	227855.718750	31.825295	16.644962	227771.6093
AIA	Anguilla	376.634979	225.680527	0.014869	NaN	375.136444
ALB	Albania	35890.019531	36103.042969	2.880917	1.075898	35808.34375
ARE	United Arab Emirates	681525.812500	645956.250000	9.770529	5.808834	678241.1875

2.4 .loc 方法

.loc 是基于标签(label-based)的数据选择方法。这意味着你使用行和列的实际标签名来选择数据,而不是它们的整数位置。

在之前我们将 ISO 国家代码设置位索引,因此选择列时可以用索引标签进行。例如,要选择金砖国家(BRICKS)的观测值:

```
bricks = ['CHN', 'BRA', 'RUS', 'IND', 'ZAF']
pwt2019.loc[bricks]
```

	country	currency_unit	year	rgdpe	rgdpo	pop
countrycode						
CHN	China	Yuan Renminbi	2019	20056066.0	2.025766e + 07	1433.7
BRA	Brazil	Brazilian Real	2019	3089273.5	3.080048e+06	211.04
RUS	Russian Federation	Russian Ruble	2019	4197222.5	4.161194e + 06	145.87
IND	India	Indian Rupee	2019	8945547.0	9.170555e + 06	1366.4
ZAF	South Africa	Rand	2019	748940.0	7.340944e + 05	58.558

或者选择列指定列标签(名),效果与不使用.loc()只使用变量名效果一样。

	country	rgdpe	pop
countrycode			
ABW	Aruba	3921.261230	0.106314
AGO	Angola	228151.015625	31.825295
AIA	Anguilla	376.634979	0.014869
ALB	Albania	35890.019531	2.880917
ARE	United Arab Emirates	681525.812500	9.770529
		•••	
VNM	Viet Nam	750726.750000	96.462106
YEM	Yemen	50052.933594	29.161922
ZAF	South Africa	748940.000000	58.558270
ZMB	Zambia	57956.183594	17.861030
ZWE	Zimbabwe	42296.062500	14.645468

或者同时指定行和列:

pwt2019.loc[bricks, variables]

	country	rgdpe	pop
countrycode			
CHN	China	20056066.0	1433.783686
BRA	Brazil	3089273.5	211.049527
RUS	Russian Federation	4197222.5	145.872256
IND	India	8945547.0	1366.417754
ZAF	South Africa	748940.0	58.558270

等价于

pwt2019.loc[bricks] [variables]

	country	rgdpe	pop
countrycode			
CHN	China	20056066.0	1433.783686
BRA	Brazil	3089273.5	211.049527
RUS	Russian Federation	4197222.5	145.872256
IND	India	8945547.0	1366.417754
ZAF	South Africa	748940.0	58.558270

2.5 .iloc 方法

相应的,.iloc 是使用行和列的整数位置 (从 0 开始)来选择数据。这里需要注意 Python 中索引位置,进行切片(slicing)操作时,语法类似 [start:end],要注意:

- start: 切片的起始索引,对应的元素会被包含。
- end: 切片的结束索引,对应的元素不会被包含。例如:

选择第2行数据(索引位置为1),结果得到一个序列:

pwt2019.iloc[1]

country	Angola
currency_unit	Kwanza
year	2019
rgdpe	228151.015625
rgdpo	227855.71875
pop	31.825295
emp	16.644962
avh	NaN
hc	1.481984
ccon	155943.71875
cda	198750.421875
cgdpe	227771.609375
cgdpo	223289.3125
cn	1299231.5
ck	0.016624
ctfp	0.387996
cwtfp	0.332153
rgdpna	222151.0625
rconna	155270.703125
rdana	198864.734375
rnna	1300951.0
rkna	1.005457
rtfpna	0.936524
rwtfpna	0.916698
labsh	0.331142
irr	0.11585
delta	0.043606
xr	364.825805
pl_con	0.381504
pl_da	0.373184
pl_gdpo	0.380675

2.5 .ILOC 方法 15

i_cig	Extrapolated
i_xm	Extrapolated
i_xr	Market-based
i_outlier	Regular
i_irr	Regular
statcap	48.8889
csh_c	0.49867
csh_i	0.19171
csh_g	0.199723
csh_x	0.344351
csh_m	-0.113983
csh_r	-0.12047
pl_c	0.438169
pl_i	0.342872
pl_g	0.240024
pl_x	0.476486
pl_m	0.611627
pl_n	0.211084
pl_k	0.396034

Name: AGO, dtype: object

选择第1行(索引为0)、第3行(索引为2)和第5行(索引为4)

pwt2019.iloc[[0, 2, 4]]

	country	currency_unit	year	rgdpe	rgdpo	pop
countrycode						
ABW	Aruba	Aruban Guilder	2019	3921.261230	3467.299561	0.10
AIA	Anguilla	East Caribbean Dollar	2019	376.634979	225.680527	0.01
ARE	United Arab Emirates	UAE Dirham	2019	681525.812500	645956.250000	9.77

选择前5行、第4至第6列观测值

pwt2019.iloc[:5, 3:6]

	rgdpe	rgdpo	pop
countrycode			
ABW	3921.261230	3467.299561	0.106314
AGO	228151.015625	227855.718750	31.825295
AIA	376.634979	225.680527	0.014869
ALB	35890.019531	36103.042969	2.880917
ARE	681525.812500	645956.250000	9.770529

2.6 根据条件筛选

除了根据索引或位置选择数据外,也可以利用条件来筛选观测值。例如,根据人口变量(pop,单位:百万)选择 2019 年总人口超过 2 亿的观测值:

pwt2019[pwt2019['pop'] >= 200]

	country	currency_unit	year	rgdpe	rgdpo	pop
countrycode						
BRA	Brazil	Brazilian Real	2019	3.089274e + 06	3.080048e+06	211.04952
CHN	China	Yuan Renminbi	2019	2.005607e + 07	2.025766e + 07	1433.7836
IDN	Indonesia	Rupiah	2019	3.104439e + 06	3.137931e + 06	270.62556
IND	India	Indian Rupee	2019	8.945547e + 06	9.170555e + 06	1366.417
NGA	Nigeria	Naira	2019	9.834982e+05	1.001537e + 06	200.96359
PAK	Pakistan	Pakistan Rupee	2019	1.036800e + 06	1.088502e + 06	216.5653
USA	United States	US Dollar	2019	2.086051e+07	$2.059584e{+07}$	329.0649

注意,条件 pwt2019['pop'] >= 200 的结果是一列布林值,然后 pwt2019[] 选择返回取值为 True 的观测值。

再例如,下面的代码包含了两个条件:

• 国家名属于金砖国家。注意这里使用了 Pandas 中的 df.isin() 函数;

• 2019 年人口超过 10 亿。

当有不止一个条件时, 我们用 &, | 表示 and 和 or 运算符;

BRICKS = ['China', 'Brazil', 'Russian Federation', 'India', 'South Africa']
#
pwt2019[(pwt2019['country'].isin(BRICKS)) & (pwt2019['pop'] > 1000)]

	country	currency_unit	year	rgdpe	rgdpo	pop	emp	avh
countrycode								
CHN	China	Yuan Renminbi	2019	20056066.0	20257660.0	1433.783686	798.807739	2168
IND	India	Indian Rupee	2019	8945547.0	9170555.0	1366.417754	497.615723	2122

更复杂的情况,可以在条件语句中加入数学表达式。例如,下面的代码筛选了人均实际 GDP 超过 2 万美元和人口超过 5000 万的国家的观测值,这里人均实际 GDP 是购买力平价调整后支出法衡量的实际 GDP 与人口的比值:

pwt2019[(pwt2019['rgdpe']/pwt2019['pop'] > 20000) & (pwt2019['pop'] > 50)]

countrycode	ountry	currency_unit	11007	_			
countrycode			year	rgdpe	rgdpo	pop	eı
DEU Ge	ermany	Euro	2019	4.308862e+06	4275312.00	83.517045	4
FRA Fr	rance	Euro	2019	3.018885e+06	2946958.25	67.351247	28
GBR Ur	nited Kingdom	Pound Sterling	2019	3.118991e+06	2989895.50	67.530172	32
ITA Ita	aly	Euro	2019	2.508404e+06	2466327.50	60.550075	2
JPN Ja	apan	Yen	2019	5.028348e+06	5036891.00	126.860301	69
KOR Re	epublic of Korea	Won	2019	2.090946e+06	2162705.25	51.225308	20
RUS Ru	ussian Federation	Russian Ruble	2019	4.197222e+06	4161194.50	145.872256	7
TUR Tu	urkey	New Turkish Lira	2019	2.227538e + 06	2248225.75	83.429615	28
USA Ur	nited States	US Dollar	2019	$2.086051\mathrm{e}{+07}$	20595844.00	329.064917	1

注意,当用 Pandas 进行数据筛选时,需要使用 &(|) 而不是 and(or) 来连接多个条件。

& 和 | 是 NumPy 的按位运算符,Pandas 借用了它们来实现元素级的逻辑运算:

- & (按位与):对两个布尔系列中的每个对应元素进行 AND 运算。只有 当两个对应元素都为 True 时,结果才为 True。
- I(按位或):对两个布尔系列中的每个对应元素进行 OR 运算。只要其中一个对应元素为 True,结果就为 True。

第三章 apply 方法

Pandas 中一个广泛应用的方法是 df.apply(), 它将一个函数应用到每一行/列,返回一个序列;

函数可以是内嵌的(built in)也可以是自定义的,例如,计算每一列的最大值,这里使用了 Numpy 库的 max 函数:

pwt2019_sub.apply(np.max, axis=0)

country Zimbabwe rgdpe 20860506.0 rgdpo 20595844.0 1433.783686 pop 798.807739 empcgdpe 20791364.0 cgdpo 20566034.0 ctfp 1.276913

dtype: object

或者, 自定义一个函数 range(x) 计算极差:

```
def range(x):
    return np.max(x) - np.min(x)
pwt2019_sub.select_dtypes(np.number).apply(range)
```

rgdpe 2.086041e+07 rgdpo 2.059577e+07 pop 1.433779e+03 emp 7.988052e+02 cgdpe 2.079126e+07 cgdpo 2.056595e+07 ctfp 1.222178e+00

dtype: float64

再例如,归一化(normalization)经常使用 minmax 方法:

$$Y = \frac{X_i - \min(X_i)}{\max(X_i) - \min(X_i)}$$

我们定义一个函数 minmax(), 然后应用 apply() 方法:

```
def minmax(S):
    return (S-S.min())/(S.max() - S.min())
pwt2019[['pop','rgdpe', 'emp']].apply(minmax)
```

	pop	rgdpe	emp
countrycode			
ABW	0.000071	0.000183	0.000056
AGO	0.022193	0.010932	0.020834
AIA	0.000007	0.000013	NaN
ALB	0.002006	0.001716	0.001344
ARE	0.006811	0.032666	0.007269
VNM	0.067275	0.035983	0.063091
YEM	0.020336	0.002395	0.006922
ZAF	0.040838	0.035898	0.023335
ZMB	0.012454	0.002774	0.006538
ZWE	0.010211	0.002023	0.008548

经常将 lambda 函数方法与 df.apply() 方法相结合。例如,数据集中有 4 个指标度量 GDP,分别是 ['rgdpe', 'rgdpo', 'cgdpe', 'cgdpo'],假设我们希望计算一个加权平均数,权重为 (0.3, 0.2, 0.3, 0.2):

```
variables = ['rgdpe', 'rgdpo','cgdpe','cgdpo']
pwt2019[variables].apply(lambda row:
    row['rgdpe']*0.3 + row['rgdpo']*0.2 + row['cgdpe']*0.3 + row['cgdpo']*0.2,
    axis=1)
countrycode
ABW
         3736.787109
AGO
       227005.796875
AIA
          318.944458
ALB
       35987.785156
ARE
       664187.937500
       739027.375000
VNM
        50759.292969
YEM
ZAF
       742988.125000
ZMB
        57414.339844
ZWE
       41768.011719
Length: 183, dtype: float32
```

注意,选项 axis = 1,将函数应用至每一行,默认值为 0。

第四章 检测和处理缺失值

数据集不可避免会遇到存在缺失值的情况。在 @sec-reading_data 部分导入数据时,Pandas 中最常用的缺失值表示是 NaN (Not a Number)。可以使用 isnull() 或 isna() 函数检测缺失值,返回一个布尔型的 DataFrame,其中 True 表示缺失值:

```
#pwt2019.isnull()
pwt2019.isna().sum()
```

country	0
currency_unit	0
year	0
rgdpe	0
rgdpo	0
pop	0
emp	6
avh	117
hc	38
ccon	0
cda	0
cgdpe	0
cgdpo	0
cn	3
ck	46
ctfp	65
cwtfp	65

rgdpna	0
rconna	0
rdana	0
rnna	3
rkna	46
rtfpna	65
rwtfpna	65
labsh	45
irr	46
delta	3
xr	0
pl_con	0
pl_da	0
pl_gdpo	0
i_cig	0
i_xm	0
i_xr	0
i_outlier	0
i_irr	46
statcap	56
csh_c	0
csh_i	0
csh_g	0
csh_x	0
csh_m	0
csh_r	0
pl_c	0
pl_i	0
pl_g	0
pl_x	0
pl_m	0
pl_n	3
pl_k	46

dtype: int64

下面的的代码计展示了 Pandas 中链式操作的强大功能,仅用一行命令实现了:

- 计算了缺失值的数量
- 除以样本容量得到缺失值比例
- 按照降序排序
- 并将比例最高的前 15 个变量绘制柱形图:

```
fig, ax = plt.subplots()
(pwt2019.isna().sum()/pwt2019.shape[0] * 100).sort_values(ascending=False)[:15].plot(kind='tax.set_ylabel("%")
plt.show()
```


另一种图示的方法是类似矩阵绘图的方式,将缺失值标记出来,missingno 库有简单的命令实现:

```
import missingno as msno
fig, ax = plt.subplots(figsize=(12,6))
msno.matrix(pwt2019,sparkline=False, ax=ax)
ax.set_xlabel("Missing Values Matrix")
plt.tight_layout()
plt.show()
```


4.1 删除缺失值

处理缺失值的方法有很多种,选择哪种方法取决于你的数据特性、缺失原因以及分析目标。最直接的方法是使用 df.dropna() 函数删除包含缺失值的行或列:

```
# 删除含缺失值的行
pwt2019.dropna()
# 删除含缺失值的列
pwt2019.dropna(axis=1)
```

	country	$\operatorname{currency_unit}$	year	rgdpe	rgdpo
countrycode					
ABW	Aruba	Aruban Guilder	2019	3921.261230	3467.2995

4.2 数值填充 27

	country	currency_unit	year	rgdpe	rgdpo	pop
countrycode						
AGO	Angola	Kwanza	2019	228151.015625	227855.718750	31.8
AIA	Anguilla	East Caribbean Dollar	2019	376.634979	225.680527	0.01
ALB	Albania	Lek	2019	35890.019531	36103.042969	2.88
ARE	United Arab Emirates	UAE Dirham	2019	681525.812500	645956.250000	9.77
						•••
VNM	Viet Nam	Dong	2019	750726.750000	724123.375000	96.4
YEM	Yemen	Yemeni Rial	2019	50052.933594	51828.058594	29.1
ZAF	South Africa	Rand	2019	748940.000000	734094.375000	58.5
ZMB	Zambia	Kwacha	2019	57956.183594	56783.714844	17.8
ZWE	Zimbabwe	US Dollar	2019	42296.062500	40826.570312	14.6

上面的命令并没有改变原数据框,可以通过赋值方式保存删除后数据,或者使用 df.dropna(inplace=True),即在原数据框中生效。

4.2 数值填充

数值型变量缺失值处理中最简单的是用某个值进行填充,df.fillna()是核心函数。

在 Penn World Data 中有几个变量是分类变量,如 i_icg, i_xm 等,参见数据集 Excel 表中"Data information variables"的说明。如果简单使用 pwt2019.fillna(0)的命令会报错。我们小需要只对数值型列的缺失值(NaN)进行填充,而其他非数值型列(如分类变量、文本等)则保持原样。下面的链式命令需要简单的说明:

- .select_dtypes(np.number) 筛选出所有数据类型为数值型(numeric)的列变量;
- .fillna(0) 对筛选后的数据框上,用 0 填充缺失值;
- .combine_first(pwt2019), 是整个命令中最关键的一步。com-

bine_first 是一个强大的方法,它将两个 DataFrame 按索引和列名进行合并。它的工作原理是:

- 对于每一个位置(即索引和列),它首先查看调用者(也就是.fillna(0)之后得到的那个填充了 0 的数值型 DataFrame)的值。
- 如果调用者的值不是缺失值(NaN),就使用这个值。
- 如果调用者的值是缺失值 (NaN), 它就会去使用参数 pwt2019 中对应位置的值。

由于第一步已经将非数值型列移除了,因此在 .fillna(0) 之后的 DataFrame 中,这些被移除的列全部变成了 NaN,就会使用 pwt2019 中对 应位置的值。-最后按照初始变量 pwt2019.columns 的顺序重新排列数据。

pwt2019.select_dtypes(np.number).fillna(0).combine_first(pwt2019)[pwt2019.columns]

	country	currency_unit	year	rgdpe	rgdpo
countrycode					
ABW	Aruba	Aruban Guilder	2019	3921.261230	3467.2995
AGO	Angola	Kwanza	2019	228151.015625	227855.71
AIA	Anguilla	East Caribbean Dollar	2019	376.634979	225.68052
ALB	Albania	Lek	2019	35890.019531	36103.042
ARE	United Arab Emirates	UAE Dirham	2019	681525.812500	645956.25
VNM	Viet Nam	Dong	2019	750726.750000	724123.37
YEM	Yemen	Yemeni Rial	2019	50052.933594	51828.058
ZAF	South Africa	Rand	2019	748940.000000	734094.37
ZMB	Zambia	Kwacha	2019	57956.183594	56783.714
ZWE	Zimbabwe	US Dollar	2019	42296.062500	40826.570

除了 0 值外,常使用平均值或中位数来进行数值填充。下面的命令在计算均值/中位数时,使用了 numeric_only=True 参数只对数值型变量进行操作:

4.2 数值填充 29

pwt2019.select_dtypes(np.number).fillna(pwt2019.mean(numeric_only=True)).combine_first(pwt2019.select_dtypes(np.number).fillna(pwt2019.median(numeric_only=True)).combine_first(pwt2019.select_dtypes(np.number).fillna(pwt2019.median(numeric_only=True)).combine_first(pwt2019.select_dtypes(np.number).fillna(pwt2019.median(numeric_only=True)).combine_first(pwt2019.select_dtypes(np.number).fillna(pwt2019.median(numeric_only=True)).combine_first(pwt2019.select_dtypes(np.number).fillna(pwt2019.select_dtypes(np.number).fillna(pwt2019.select_dtypes(np.number)).combine_first(pwt2019.select_dtypes(np.number)).fillna(pwt2019.select_dtypes(np.number)).combine_first(pwt2019.select_dtypes(np.number)).fillna(pwt2019.select_dtypes(np.number)).combine_first(pwt2019.select_dtypes(np.number)).fillna(pwt2019.select_dtypes(np.number)).combine_first(pwt2019.select_dtypes(np.number)).fillna(pwt2019.select_dtypes(np.number)).combine_first(pwt2019.select_dtypes(np.number)).fillna(pwt2019.select_dtypes(np.number)).combine_first(pwt2019.select_dtypes(np.number)).fillna(pwt2019.select_dtypes(np.number)).combine_first(pwt2019.select_dtypes(np.number)).fillna(pwt2019.select_dtypes(np.number)).combine_first(pwt2019.select_dtypes(np.number)).fillna(pwt2019.select_dtypes(np.number)).combine_first(pwt2019.select_dtypes(np.number)).fillna(pwt2019.select_dtypes(np.number)).combine_first(pwt2019.select_dtypes(np.number)).fillna(pwt2019.select_dtypes(np.number)).combine_first(pwt2019.select_dtypes(np.number)).combine_first(pwt2019.select_dtypes(np.number)).combine_first(pwt2019.select_dtypes(np.number)).combine_first(pwt2019.select_dtypes(np.number)).combine_first(pwt2019.select_dtypes(np.number)).combine_first(pwt2019.select_dtypes(np.number)).combine_first(pwt2019.select_dtypes(np.number)).combine_first(pwt2019.select_dtypes(np.number)).combine_first(pwt2019.select_dtypes(np.number)).combine_first(pwt2019.select_dtypes(np.number)).combine_first(pwt2019.select_dtypes(np.number)).combine_first(pwt2019.select_dtypes(np.number)).combine_first(pwt2

	avh	ccon	cda	cgdpe	cgdpo	ck	cı
countrycode							
ABW	1849.981084	3023.694824	3877.659668	3912.334717	3466.241943	0.000209	1.
AGO	1849.981084	155943.718750	198750.421875	227771.609375	223289.312500	0.016624	1.
AIA	1849.981084	438.470032	509.044983	375.136444	241.384537	0.046314	2.
ALB	1849.981084	33399.167969	40868.316406	35808.343750	36288.328125	0.046314	2.
ARE	1849.981084	306771.156250	515623.312500	678241.187500	635332.812500	0.046314	4.
VNM	2131.968232	582677.062500	758821.937500	747853.750000	723142.687500	0.046314	1.
YEM	1849.981084	49266.472656	67992.531250	49937.042969	51983.429688	0.046314	5.
ZAF	2191.363362	623669.562500	741675.937500	748245.937500	735067.062500	0.033228	2.
ZMB	1849.981084	38698.402344	56536.863281	57695.066406	56811.105469	0.004523	2.
ZWE	1849.981084	43961.839844	47128.785156	42325.117188	41081.722656	0.000733	5.

也可以使用向后填充(backward fill),即用一个观测值向其后面(更低索引位置)的缺失值来填充这个缺失值,或向前填充(forward fill)

```
#pwt2019.fillna(method='ffill')
pwt2019.fillna(method='bfill')
```

C:\Users\admin\AppData\Local\Temp\ipykernel_5972\1604694572.py:2: FutureWarning: DataFrame.f pwt2019.fillna(method='bfill')

	country	currency_unit	year	rgdpe	rgdpo	pop
countrycode						
ABW	Aruba	Aruban Guilder	2019	3921.261230	3467.299561	0.10
AGO	Angola	Kwanza	2019	228151.015625	227855.718750	31.8
AIA	Anguilla	East Caribbean Dollar	2019	376.634979	225.680527	0.01
ALB	Albania	Lek	2019	35890.019531	36103.042969	2.88
ARE	United Arab Emirates	UAE Dirham	2019	681525.812500	645956.250000	9.77

	country	currency_unit	year	rgdpe	rgdpo
countrycode					
	•••				
VNM	Viet Nam	Dong	2019	750726.750000	724123.37
YEM	Yemen	Yemeni Rial	2019	50052.933594	51828.058
ZAF	South Africa	Rand	2019	748940.000000	734094.37
ZMB	Zambia	Kwacha	2019	57956.183594	56783.714
ZWE	Zimbabwe	US Dollar	2019	42296.062500	40826.570

另外, .fillna() 函数可以根据定义的字典, 不同的列用不同的值填充。

```
values = {"pop":0.01, 'emp':0.005, "ctfp": 0.1,}
pwt2019_sub.fillna(values)
```

	country	rgdpe	rgdpo	pop	emp
countrycode					
ABW	Aruba	3921.261230	3467.299561	0.106314	0.047601
AGO	Angola	228151.015625	227855.718750	31.825295	16.644962
AIA	Anguilla	376.634979	225.680527	0.014869	0.005000
ALB	Albania	35890.019531	36103.042969	2.880917	1.075898
ARE	United Arab Emirates	681525.812500	645956.250000	9.770529	5.808834
VNM	Viet Nam	750726.750000	724123.375000	96.462106	50.399563
YEM	Yemen	50052.933594	51828.058594	29.161922	5.531877
ZAF	South Africa	748940.000000	734094.375000	58.558270	18.642710
ZMB	Zambia	57956.183594	56783.714844	17.861030	5.225448
ZWE	Zimbabwe	42296.062500	40826.570312	14.645468	6.831017

4.3 插值法(Interpolation)

除了填充给定值以外,也有更复杂的插值法。例如线性插值法。

Figure 4.1: 线性插值法

假设已知两个点 (x_0,y_0) 和 x_1,y_1 ,线性插值法意味着满足方程:

$$\frac{y - y_0}{x - x_0} = \frac{y_1 - y_0}{x_1 - x_0}$$

s = pd.Series([0, 1, np.nan, 3])

s.interpolate()

0.0

1 1.0

2 2.0

3 3.0

dtype: float64

将其应用至数值型变量:

pwt2019.select_dtypes(np.number).interpolate(method="linear")

	year	rgdpe	rgdpo	pop	emp	avh	hc
countrycode							
ABW	2019	3921.261230	3467.299561	0.106314	0.047601	NaN	Na
AGO	2019	228151.015625	227855.718750	31.825295	16.644962	NaN	1.4
AIA	2019	376.634979	225.680527	0.014869	8.860430	NaN	2.2
ALB	2019	35890.019531	36103.042969	2.880917	1.075898	NaN	2.9
ARE	2019	681525.812500	645956.250000	9.770529	5.808834	NaN	2.7
•••		•••	•••			•••	
VNM	2019	750726.750000	724123.375000	96.462106	50.399563	2131.968232	2.8
YEM	2019	50052.933594	51828.058594	29.161922	5.531877	2161.665797	1.8
ZAF	2019	748940.000000	734094.375000	58.558270	18.642710	2191.363362	2.9
ZMB	2019	57956.183594	56783.714844	17.861030	5.225448	2191.363362	2.6
ZWE	2019	42296.062500	40826.570312	14.645468	6.831017	2191.363362	2.7

4.4 应用:长期经济增长

Maddison Project Database 2023是基于经济史学家 Angus Maddison 的研

究构建的长期经济增长数据库,主要包含人均 GDP (gdppc) 和人口 (pop)数据,最早至公元 1 年,中间有大量的缺失值。

我们下载并载入数据,来绘制一幅:

```
mpd = pd.read_excel("datasets/mpd2023_web.xlsx", sheet_name="Full data")
gdp_pc = mpd.set_index(['countrycode', 'year'])['gdppc'].unstack('countrycode')
gdp_pc.tail()
```

countrycode	AFG	AGO	ALB	ARE	ARG	ARM	ΑŪ
year							
2018	1888.813928	7180.355235	11426.920105	74206.484938	18460.869009	11490.368687	49
2019	2031.737349	6886.954136	11715.306318	74396.143863	17912.635765	12399.231837	498
2020	1928.454683	6279.929085	11372.541421	70188.272728	15975.838773	11546.175310	48
2021	1485.547006	6137.003845	12455.916554	72460.040688	17470.682415	12242.477472	50
2022	1357.987823	6118.904897	12978.100729	77203.670241	18292.317825	13837.577589	520

由于中间有缺失值,绘制的图形出现大段的空白,因此,我们用线性插值法 补充,用虚线表示:

更复杂的方法涉及到模型估计问题,如 KNN 预测等。Scikit-learn 库有专门的方法,这里就不多涉及。

```
from sklearn.impute import SimpleImputer
imputer_mean = SimpleImputer(strategy='mean')
pd.DataFrame(imputer_mean.fit_transform(pwt2019.select_dtypes(np.number)), columns
```

	year	rgdpe	rgdpo	pop	emp	avh	hc
0	2019.0	3921.261230	3467.299561	0.106314	0.047601	1849.981084	2.709271
1	2019.0	228151.015625	227855.718750	31.825295	16.644962	1849.981084	1.481984
2	2019.0	376.634979	225.680527	0.014869	18.736708	1849.981084	2.709271
3	2019.0	35890.019531	36103.042969	2.880917	1.075898	1849.981084	2.964992
4	2019.0	681525.812500	645956.250000	9.770529	5.808834	1849.981084	2.746695
				•••	•••		
178	2019.0	750726.750000	724123.375000	96.462106	50.399563	2131.968232	2.869998
179	2019.0	50052.933594	51828.058594	29.161922	5.531877	1849.981084	1.842989
180	2019.0	748940.000000	734094.375000	58.558270	18.642710	2191.363362	2.908202

4.4 应用:长期经济增长

	year	rgdpe	rgdpo	pop	emp	avh	hc	ccon
181	2019.0	57956.183594	56783.714844	17.861030	5.225448	1849.981084	2.686845	38698.4023
182	2019.0	42296.062500	40826.570312	14.645468	6.831017	1849.981084	2.713408	43961.8398

35

第五章 异常值

异常值的存在可能对数据运算结果产生较大的影响。

5.1 异常值的检测

可以计算统计量或图形的方法来检测是否存在异常值。这里介绍常用的 Z-Score 方法:

$$Z = \frac{x - \mu}{\sigma}$$

它度量了一个数据点与均值之间以标准差为单位的距离,当数据近似正态分布的时候适合使用。将 Z-Score 超过某个阈值(如 2 或 3)的数据点,视为异常值。

如果是对数据框操作,可以应用 apply() 函数:

```
pd.options.display.float_format = '{:.3f}'.format
zscore = pwt2019.select_dtypes(np.number).apply(lambda x: (x-x.mean(axis=0))/x.std(axis=0))
pwt2019[zscore['pop']>3]['pop']
```

countrycode

CHN 1433.784 IND 1366.418

Name: pop, dtype: float64

另外一种方法是根据四分位距(Interquartile Range,IQR),令 $IQR=Q_3-Q_1$,在 $Q_1-1.5\cdot IQR$ 或 $Q_3+1.5\cdot IQR$ 范围之外的数据点是异常值。

38 第五章 异常值

```
def iqr_outlier(ser):
    Q1 = ser.quantile(0.25)
    Q3 = ser.quantile(0.75)
    IQR = Q3 - Q1
    lower_bound = Q1 - 1.5 * IQR
    upper_bound = Q3 + 1.5 * IQR
    outlier = (ser < lower_bound) | (ser > upper_bound)
    return outlier

pwt2019[iqr_outlier(pwt2019['pop'])][['country', 'pop']]
```

	country	pop
countrycode		
BGD	Bangladesh	163.046
BRA	Brazil	211.050
CHN	China	1433.784
COD	D.R. of the Congo	86.791
DEU	Germany	83.517
EGY	Egypt	100.388
ETH	Ethiopia	112.079
IDN	Indonesia	270.626
IND	India	1366.418
IRN	Iran (Islamic Republic of)	82.914
JPN	Japan	126.860
MEX	Mexico	127.576
NGA	Nigeria	200.964
PAK	Pakistan	216.565
PHL	Philippines	108.117
RUS	Russian Federation	145.872
TUR	Turkey	83.430
USA	United States	329.065
VNM	Viet Nam	96.462

5.2 缩尾处理 39

通常 IQR 方法是采用箱形图的形式展示的,如图所示,位于 Q_3 上方 1.5 倍 IQR 的观测值,以散点的形式展现出来。

```
fig, ax = plt.subplots()
ax.boxplot(x=pwt2019['pop'])
plt.show()
```


5.2 缩尾处理

应用中,常需要对异常值进行一定的处理,其中一种方法是缩尾处理(Winsorize),将极端值替换为某个百分位数的值,例如,将上限设为 99 百分位数,下限设为 1 百分位数。

可以使用 df.clip() 函数实现,例如全要素生产率水平 ctfp:

```
q95 = pwt2019['ctfp'].quantile(0.95)
q05 = pwt2019['ctfp'].quantile(0.05)
```

40 第五章 异常值

```
pwt2019['ctfp'].dropna().clip(lower=q05, upper=q95, inplace=False)
```

```
countrycode
AGO
      0.388
ARG
      0.829
ARM
      0.838
AUS
      0.838
AUT
      0.829
       . . .
USA
      1.000
VEN
      0.267
ZAF
      0.548
ZMB
      0.267
ZWE
      0.375
```

Name: ctfp, Length: 118, dtype: float32

第六章 观测值排序

有时候需要对数据集进行一定的排序,Pandas 中可以按索引 (df.sort_index)和值(df.sort_values)排序。

6.1 根据索引排序

例如,将索引按降序排序,这里的索引是国家代码,因此升序/降序是按照字母顺序:

pwt2019.sort_index(ascending=False)

	country	currency_unit	year	rgdpe	rgdpo	pop	en
countrycode							
ZWE	Zimbabwe	US Dollar	2019	42296.062	40826.570	14.645	6.
ZMB	Zambia	Kwacha	2019	57956.184	56783.715	17.861	5.
ZAF	South Africa	Rand	2019	748940.000	734094.375	58.558	18
YEM	Yemen	Yemeni Rial	2019	50052.934	51828.059	29.162	5.
VNM	Viet Nam	Dong	2019	750726.750	724123.375	96.462	50
				•••			
ARE	United Arab Emirates	UAE Dirham	2019	681525.812	645956.250	9.771	5.
ALB	Albania	Lek	2019	35890.020	36103.043	2.881	1.
AIA	Anguilla	East Caribbean Dollar	2019	376.635	225.681	0.015	Ν
AGO	Angola	Kwanza	2019	228151.016	227855.719	31.825	16
ABW	Aruba	Aruban Guilder	2019	3921.261	3467.300	0.106	0.

6.2 根据值排序

来看 df.sort_values 的例子,假设我们希望按 2019 年的人均 GDP (PPP 链式调整后)降序(令 ascending=False)排列:

pwt2019['rgdp_per'] = pwt2019['rgdpe']/pwt2019['pop']
pwt2019.sort_values(by='rgdp_per', ascending=False)

	country	currency_unit	year	rgdpe	rgdp
countrycode					
LUX	Luxembourg	Euro	2019	69541.328	5571
MAC	China, Macao SAR	Pataca	2019	67463.125	5987
QAT	Qatar	Qatari Rial	2019	292963.531	3231
IRL	Ireland	Euro	2019	499741.094	5010
SGP	Singapore	Singapore Dollar	2019	514376.312	4779
MWI	Malawi	Kwacha	2019	20362.393	2163
COD	D.R. of the Congo	Franc Congolais	2019	89061.672	8867
CAF	Central African Republic	CFA Franc BEAC	2019	4532.561	4642
BDI	Burundi	Burundi Franc	2019	8664.988	9109
VEN	Venezuela (Bolivarian Republic of)	Bolivar Fuerte	2019	7166.572	7160

第七章 数据集合并

在 Pandas 中,数据集合并是一个非常常见的操作,它允许你将多个 DataFrame 或 Series 根据某种关系组合成一个新的数据结构。Pandas 提供 了几个强大的函数来处理数据合并,如 Table 7.1 所示,它们各有侧重,适 用于不同的场景,更多详细内容参见官方文档Merge, join, concatenate and compare。

Table 7.1: 数据集的合并

			主要	
		默认连接方	对齐	
函数	主要功能	式	方式	典型用途
concat	()按轴堆叠,	按行	索引	拼接多个 DataFrame,例
	合并	(axis=0),		如将多个文件的数据读入
		outer		后合并
merge()根据键连接	inner	键(列	根据共同的列将两个或多
			名)	个 DataFrame 关联起来,
				类似于 SQL JOIN
.join()	根据索引连	left	索引	基于索引的快速连接,通常
	接			用于连接有相同索引的数
				据集

7.1 pd.concat()

concat()函数主要用于按轴(行或列)堆叠数据,它不对数据进行智能对 齐,而是简单地将两个或多个 DataFrame 或 Series 沿着指定的轴拼接起来。

```
bricks = ['CHN', 'BRA', 'RUS', 'IND', 'ZAF']
europe = ['GBR', 'NOR', 'SWE', 'ESP']
asia = ['JPN', 'KOR', 'SGP']
variables = ['country', 'rgdpe', 'pop']

df1 = pwt2019.loc[bricks, variables]
df2 = pwt2019.loc[europe, variables]
df3 = pwt2019.loc[asia, variables]

pd.concat([df1, df2, df3])
```

	country	rgdpe	pop
countrycode			
CHN	China	20056066.000	1433.784
BRA	Brazil	3089273.500	211.050
RUS	Russian Federation	4197222.500	145.872
IND	India	8945547.000	1366.418
ZAF	South Africa	748940.000	58.558
GBR	United Kingdom	3118991.250	67.530
NOR	Norway	336415.406	5.379
SWE	Sweden	560960.500	10.036
ESP	Spain	1932678.625	46.737
JPN	Japan	5028348.000	126.860
KOR	Republic of Korea	2090945.875	51.225
SGP	Singapore	514376.312	5.804

默认是按列堆叠,即 axis=0。

7.2 MERGE 45

```
variables2 = ['emp','avh']
df4 = pwt2019.loc[bricks, variables2]
pd.concat([df1, df4], axis=1)
```

	country	rgdpe	pop	emp	avh
countrycode					
CHN	China	20056066.000	1433.784	798.808	2168.919
BRA	Brazil	3089273.500	211.050	93.957	1707.795
RUS	Russian Federation	4197222.500	145.872	71.671	1965.000
IND	India	8945547.000	1366.418	497.616	2122.941
ZAF	South Africa	748940.000	58.558	18.643	2191.363

7.2 Merge

实际应用中,数据可能来自不同的来源,经常需要合并数据集。pd.merge()函数是最常用和最强大的合并函数,用于根据一个或多个键(列或索引)将两个 DataFrame 连接起来。

```
help(pd.merge)
```

Help on function merge in module pandas.core.reshape.merge:

```
merge(
   left: 'DataFrame | Series',
   right: 'DataFrame | Series',
   how: 'MergeHow' = 'inner',
   on: 'IndexLabel | AnyArrayLike | None' = None,
   left_on: 'IndexLabel | AnyArrayLike | None' = None,
   right_on: 'IndexLabel | AnyArrayLike | None' = None,
   left_index: 'bool' = False,
   right_index: 'bool' = False,
   sort: 'bool' = False,
```

suffixes: 'Suffixes' = ('_x', '_y'),
copy: 'bool | None' = None,
indicator: 'str | bool' = False,
validate: 'str | None' = None

) -> 'DataFrame'

Merge DataFrame or named Series objects with a database-style join.

A named Series object is treated as a DataFrame with a single named column.

The join is done on columns or indexes. If joining columns on columns, the DataFrame indexes *will be ignored*. Otherwise if joining indexes on indexes or indexes on a column or columns, the index will be passed on. When performing a cross merge, no column specifications to merge on are allowed.

.. warning::

If both key columns contain rows where the key is a null value, those rows will be matched against each other. This is different from usual SQL join behaviour and can lead to unexpected results.

Parameters

left : DataFrame or named Series
right : DataFrame or named Series
Object to merge with.

how : {'left', 'right', 'outer', 'inner', 'cross'}, default 'inner'
Type of merge to be performed.

- * left: use only keys from left frame, similar to a SQL left outer join; preserve key order.
- * right: use only keys from right frame, similar to a SQL right outer join preserve key order.

7.2 MERGE 47

* outer: use union of keys from both frames, similar to a SQL full outer join; sort keys lexicographically.

- * inner: use intersection of keys from both frames, similar to a SQL inner join; preserve the order of the left keys.
- * cross: creates the cartesian product from both frames, preserves the order of the left keys.

on : label or list

Column or index level names to join on. These must be found in both DataFrames. If `on` is None and not merging on indexes then this defaults to the intersection of the columns in both DataFrames.

left_on : label or list, or array-like

Column or index level names to join on in the left DataFrame. Can also be an array or list of arrays of the length of the left DataFrame.

These arrays are treated as if they are columns.

right_on : label or list, or array-like

Column or index level names to join on in the right DataFrame. Can also be an array or list of arrays of the length of the right DataFrame.

These arrays are treated as if they are columns.

left_index : bool, default False

Use the index from the left DataFrame as the join key(s). If it is a MultiIndex, the number of keys in the other DataFrame (either the index or a number of columns) must match the number of levels.

right_index : bool, default False

Use the index from the right DataFrame as the join key. Same caveats as left_index.

sort : bool, default False

Sort the join keys lexicographically in the result DataFrame. If False, the order of the join keys depends on the join type (how keyword).

suffixes : list-like, default is ("_x", "_y")

A length-2 sequence where each element is optionally a string indicating the suffix to add to overlapping column names in `left` and `right` respectively. Pass a value of `None` instead of a string to indicate that the column name from `left` or

`right` should be left as-is, with no suffix. At least one of the values must not be None.

copy : bool, default True

If False, avoid copy if possible.

.. note::

The `copy` keyword will change behavior in pandas 3.0. `Copy-on-Write

<https://pandas.pydata.org/docs/dev/user_guide/copy_on_write.html>`__
will be enabled by default, which means that all methods with a
`copy` keyword will use a lazy copy mechanism to defer the copy and
ignore the `copy` keyword. The `copy` keyword will be removed in a
future version of pandas.

You can already get the future behavior and improvements through enabling copy on write ``pd.options.mode.copy_on_write = True`` indicator : bool or str, default False

If True, adds a column to the output DataFrame called "_merge" with information on the source of each row. The column can be given a different name by providing a string argument. The column will have a Categorical type with the value of "left_only" for observations whose merge key only appears in the left DataFrame, "right_only" for observations whose merge key only appears in the right DataFrame, and "both" if the observation's merge key is found in both DataFrames.

validate : str, optional

If specified, checks if merge is of specified type.

- * "one_to_one" or "1:1": check if merge keys are unique in both left and right datasets.
- * "one_to_many" or "1:m": check if merge keys are unique in left dataset.
- * "many_to_one" or "m:1": check if merge keys are unique in right

7.2 MERGE 49

```
dataset.
    \ast "many_to_many" or "m:m": allowed, but does not result in checks.
Returns
-----
{\tt DataFrame}
    A DataFrame of the two merged objects.
See Also
_____
merge_ordered : Merge with optional filling/interpolation.
merge_asof : Merge on nearest keys.
DataFrame.join : Similar method using indices.
Examples
>>> df1 = pd.DataFrame({'lkey': ['foo', 'bar', 'baz', 'foo'],
                        'value': [1, 2, 3, 5]})
>>> df2 = pd.DataFrame({'rkey': ['foo', 'bar', 'baz', 'foo'],
                        'value': [5, 6, 7, 8]})
>>> df1
    lkey value
   foo
   bar
             2
   baz
             3
3
   foo
             5
>>> df2
   rkey value
   foo
             5
```

1

2

3

bar

baz

foo

6

7

8

Merge df1 and df2 on the lkey and rkey columns. The value columns have the default suffixes, _x and _y, appended.

```
>>> df1.merge(df2, left_on='lkey', right_on='rkey')
  lkey value_x rkey value_y
0 foo
             1 foo
1
  foo
             1 foo
                          8
  bar
             2 bar
                          6
                         7
3
 baz
            3 baz
            5 foo
                          5
4 foo
             5 foo
                          8
 foo
```

Merge DataFrames df1 and df2 with specified left and right suffixes appended to any overlapping columns.

```
>>> df1.merge(df2, left_on='lkey', right_on='rkey',
             suffixes=('_left', '_right'))
 lkey value_left rkey value_right
0 foo
                1 foo
                                 5
1
  foo
                1 foo
                                 8
2 bar
                2 bar
                                 6
                                 7
                3 baz
3
 baz
 foo
                5 foo
                                 5
 foo
                5 foo
                                 8
```

Index(['value'], dtype='object')

Merge DataFrames df1 and df2, but raise an exception if the DataFrames have any overlapping columns.

```
>>> df1.merge(df2, left_on='lkey', right_on='rkey', suffixes=(False, False))
Traceback (most recent call last):
...
ValueError: columns overlap but no suffix specified:
```

7.2 MERGE 51

```
>>> df1 = pd.DataFrame({'a': ['foo', 'bar'], 'b': [1, 2]})
>>> df2 = pd.DataFrame({'a': ['foo', 'baz'], 'c': [3, 4]})
>>> df1
     a b
   foo 1
  bar 2
>>> df2
     a c
  foo 3
1 baz 4
>>> df1.merge(df2, how='inner', on='a')
     a b c
   foo 1 3
>>> df1.merge(df2, how='left', on='a')
     a b c
   foo 1 3.0
1
   bar 2 NaN
>>> df1 = pd.DataFrame({'left': ['foo', 'bar']})
>>> df2 = pd.DataFrame({'right': [7, 8]})
>>> df1
   left
   foo
1
  bar
>>> df2
   right
0
  7
1
   8
>>> df1.merge(df2, how='cross')
```

left right
0 foo 7
1 foo 8
2 bar 7
3 bar 8

其典型语法:

pd.merge(left, right, on=None, how='inner')

- left, right: 要合并的两个 DataFrame。
- on: 用于合并的键,可以是列名或列名列表。如果未指定, merge 会自动寻找两个 DataFrame 中同名的列作为键。如果合并的键不同,可以设定:
 - left_on: 左 DataFrame 合并的键;
 - right_on: 右 DataFrame 合并的键;
 - left_index: 使用左 DataFrame 的索引为合并的键;
 - right_index: 使用右 DataFrame 的索引为合并的键
- how: 指定合并类型,如图 Figure 7.1 所示:
 - 'inner' (默认): 内连接,只保留两个 DataFrame 中键都存在的数据。
 - 'outer': 外连接,保留所有键,缺失值用 NaN 填充。
 - 'left': 左连接,保留左 DataFrame 的所有键,右 DataFrame 中没有对应键的数据用 NaN 填充。
 - 'right': 右连接,保留右 DataFrame 的所有键,左 DataFrame 中 没有对应键的数据用 NaN 填充。

PWT 数据是经过购买力平价调整后的数据,假如我们还需要其他的跨国数据,如通货膨胀率、霍比增长速度等,我们就需要与其他数据集合并。

首先我们从世界银行数据库下载 Inflation, GDP deflator (annual %)、Broad money growth (annual %),两个变量:

```
# import wbgapi as wb
# df_wb = wb.data.DataFrame(series=['NY.GDP.DEFL.KD.ZG', 'FM.LBL.BMNY.ZG'], time='
#df_wb.to_csv("datasets/Inf_M2.csv")
```

7.2 MERGE 53

Figure 7.1: Merge 方法示意图

df_wb = pd.read_csv("datasets/Inf_M2.csv", index_col=0)
df_wb

	FM.LBL.BMNY.ZG	NY.GDP.DEFL.KD.ZG
economy		
ABW	4.398	6.018
AFE	NaN	4.444
AFG	5.704	6.521
AFW	NaN	1.359
AGO	30.114	19.187
XKX	12.571	0.963
YEM	NaN	NaN
ZAF	6.110	4.614
ZMB	12.545	7.633
ZWE	249.835	225.395

我们发现数据集索引变量 economy 使用的同样是 ISO 国家代码,作为练习,我们希望获得国家名称、收入水平等级、首都等信息,可以使用wb.economy.DataFrame()获取一个包含所有国家/地区信息的数据框:

```
country_info = wb.economy.DataFrame(skipAggs=True)[['name', 'incomeLevel','capital
```

现在我们有 3 个数据集,pwt2019、df_wb、country_info,要合并在一起, 我们可以:

- df_wb 和 country_info 数据集索引相同,根据索引首先进行合并;
- 合并后的数据有变量 name,表示国家名称,然后用**变量**作为合并的键进行合并

(156, 13)

默认的是 how='inner',不能合并的数据将被删除。我们发现,合并后观测值有 156 个,这是因为两个数据集中国家名称并不完全一致。推荐使用索引进行合并:

(183, 13)

第八章 多级索引

数据集 Penn World Table 是一个面板数据,"国家-年"对应一个观测值,每个国家都有多个观测值。可以利用 Pandas 的多级索引功能,详见 Pandas 文档MultiIndex / advanced indexing。

		country	currency_ur
countrycode	year		
	2015	Zimbabwe	US Dollar
	2016	Zimbabwe	US Dollar
ZWE	2017	Zimbabwe	US Dollar
	2018	Zimbabwe	US Dollar
	2019	Zimbabwe	US Dollar

多重索引是由多个级别的标签构成的,在 Pandas 内部以元组的形式表示和管理:

('ABW', 1952)],
names=['countrycode', 'year'])

8.1 选择数据

同样,我们可以使用.loc()标签(labels)方法选择需要的数据,例如:

pwt.loc[['CHN', 'USA'], ['rgdpe','pop']]

		rgdpe
countrycode	year	
	1950	NaN
	1951	NaN
CHN	1952	554906.438
	1953	626291.125
	1954	584967.125
	2015	18905122.000
	2016	19285252.000
USA	2017	19754754.000
	2018	20369440.000
	2019	20860506.000

如果需要选择某一年的截面数据,由于有多级索引,可以用一个元组来为每 一级索引提供一个选择器:

pwt.loc[(slice(None), 2015), :]

		country	currency_unit	rgdpe	rgdpo
countrycode	year				
ABW	2015	Aruba	Aruban Guilder	3959.593	3921.183
AGO	2015	Angola	Kwanza	216207.094	224712.609

8.1 选择数据 57

		country	currency_unit	rgdpe	rgdpo	pop	en
countrycode	year						
AIA	2015	Anguilla	East Caribbean Dollar	408.109	249.571	0.014	N
ALB	2015	Albania	Lek	32037.936	33659.422	2.891	0.
ARE	2015	United Arab Emirates	UAE Dirham	632701.188	693186.188	9.263	5.
VNM	2015	Viet Nam	Dong	561821.188	572777.500	92.677	52
YEM	2015	Yemen	Yemeni Rial	62905.148	67143.297	26.498	4.
ZAF	2015	South Africa	Rand	717051.875	716283.250	55.386	17
ZMB	2015	Zambia	Kwacha	51722.648	52037.516	15.879	4.
ZWE	2015	Zimbabwe	US Dollar	40141.617	39798.645	13.815	6.

注意,-这里使用了 slice(None),是 Python 中表示 **"所有"的一种方式,表示:"在第一级索引(例如,国家代码)上,选择所有标签。"-2015表示:"在第二级索引(例如,年份)上,只选择标签为 2015 的行。"-如果想选择多年数据可以列表形式,如 [2001,2015]。

如果是选择 1992 年以后的数据,可以在第二级索引上同样应用 slice(): 年之后的数据

pwt.loc[(slice(None), slice(1992, None)), :]

		country	currency_un
countrycode	year		
	1992	Aruba	Aruban Guil
	1993	Aruba	Aruban Guil
ABW	1994	Aruba	Aruban Guil
	1995	Aruba	Aruban Guil
	1996	Aruba	Aruban Guil
		•••	
	2015	Zimbabwe	US Dollar
	2016	Zimbabwe	US Dollar
ZWE	2017	Zimbabwe	US Dollar

		country	С
countrycode	year		
	2018	Zimbabwe	J
	2019	Zimbabwe	J

上面的例子使用 slice 函数不是那么直观,也可以使用 df.index.get_level_values('year') 提取索引 year 的值,形成一个序列(可以另存为一个变量),然后利用条件表达式生成一个布尔序列,对数据框进行筛选:

```
sec_index = pwt.index.get_level_values('year')
pwt[sec_index > 1992]
```

		country	c
countrycode	year		
	1993	Aruba	A
	1994	Aruba	A
ABW	1995	Aruba	A
	1996	Aruba	A
	1997	Aruba	P
	2015	Zimbabwe	J
	2016	Zimbabwe	J
ZWE	2017	Zimbabwe	Ţ
	2018	Zimbabwe	Ţ
	2019	Zimbabwe	J

当然,可以同时选择指定的变量和年份,例如:

```
pwt.loc[(slice(None), [2016,2019]), ['rgdpe','rgdpo']]
#
pwt.loc[((["CHN", "USA"], [2016,2019])), ['rgdpe','rgdpo']]
```

		rgdpe	rgdpo
countrycode	year		
CHN	2016	18611202.000	18591710.
CHN	2019	20056066.000	20257660.
TICA	2016	19285252.000	19095196.
USA	2019	20860506.000	20595844.

8.2 按索引排序

除了通常的排序以外,由于有了二级索引,如果按索引排序,两级索引变量是同时排序的:

pwt.sort_index(ascending=False)

countrycode year 2019 Zimbabwe U 2018 Zimbabwe U ZWE 2017 Zimbabwe U	
ZWE Zimbabwe U 2019 Zimbabwe U 2018 Zimbabwe U 2017 Zimbabwe U	urrency_u
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
ZWE 2017 Zimbabwe U	JS Dollar
	JS Dollar
2016 Zimbabwe U	JS Dollar
	JS Dollar
2015 Zimbabwe U	JS Dollar
1954 Aruba A	Aruban Gui
1953 Aruba A	Aruban Gui
ABW 1952 Aruba A	Aruban Gui
1951 Aruba A	Aruban Gui
1950 Aruba A	Aruban Gui

可以对两级索引以列表的形式分别设定排序的顺序。例如,先将国家代码按字母升序,然后将年降序:

pwt.sort_index(ascending=[True, False])

		country	c
countrycode	year		
	2019	Aruba	A
	2018	Aruba	A
ABW	2017	Aruba	Α
	2016	Aruba	A
	2015	Aruba	A
	1954	Zimbabwe	J
	1953	Zimbabwe	J
ZWE	1952	Zimbabwe	J
	1951	Zimbabwe	J
	1950	Zimbabwe	J

8.3 pd.merge

假如我们想要把国家有关信息 country_info 数据与 pwt 合并,由于后者是面板数据,需要使用参数 validate = "m:1"。下面的例子在合并之前先将索引名称重命名保持一致,否则会报错:

country_info = country_info.rename_axis('countrycode', axis=0)
pd.merge(pwt, country_info, left_index=True, right_index=True, validate= "m:1")

		country	c
countrycode	year		
	1950	Aruba	A
	1951	Aruba	A
ABW	1952	Aruba	A
	1953	Aruba	P
	1954	Aruba	F

		country	currency_un
countrycode	year		
····			
	2015	Zimbabwe	US Dollar
	2016	Zimbabwe	US Dollar
ZWE	2017	Zimbabwe	US Dollar
	2018	Zimbabwe	US Dollar
	2019	Zimbabwe	US Dollar

8.4 stack 和 unstack

数据有"长(long)"和"宽(wide)"两种组织方式,Penn World Table 是以"长"的形式保存的。有时候需要在两种数据格式之间进行转换,就需要用到 df.stack()和 df.unstack()函数。

注意,df.unstack() 函数的参数 level=,设置为哪一级索引,便生成为列。默认在最后一级索引上转换,即年,因此列便为年,行为国家,反之,列为国家,行为年。如下面例子所示,为了简便只保留了三个国家 5 年的数据:

```
pwt_sub = pwt.loc[(["CHN", "KOR", "USA"], slice(2015, None)), ["rgdpe", "pop"]]
#
pwt_sub_wide = pwt_sub.unstack(level=-1)
# pwt_sub.unstack(level=0)
```

要获得长格式的数据,使用 df.stack()即可:

```
pwt_sub_wide.stack(future_stack=True)
```

		rgdpe	pop
countrycode	year		
	2015	17866282.000	1406.848
	2016	18611202.000	1414.049

CHN

		rgdpe
countrycode	year	
	2017	19501140.000
	2018	19508708.000
	2019	20056066.000
	2015	1928056.875
	2016	1999699.625
KOR	2017	2070935.625
	2018	2102051.500
	2019	2090945.875
	2015	18905122.000
	2016	19285252.000
USA	2017	19754754.000
	2018	20369440.000
	2019	20860506.000

当我们从一些数据库下载数据时,常见形式为列为不同时期相同变量的值。例如,从世界银行下载人均 GDP 和人口数据:

economy	series
ADW	NY.GDP.PCAP.CD
ABW	SP.POP.TOTL
AFE	NY.GDP.PCAP.CD
AFE	SP.POP.TOTL
AFG	NY.GDP.PCAP.CD

		2017
economy	series	

下载的数据 df 索引是 "economy - series",每一年数据一列。我们希望序列成为列变量,时间成为索引。我们可以先对数据进行转置成宽格式的数据,然后再在国家层面堆叠,使其成为索引,再交换索引排序得到通常的情况:

df.T.stack(level=0, future_stack=True).swaplevel().sort_index()

	series	NY.GDP.PCAP.CD	SI
economy			
	2017	28440.052	10
ABW	2018	30082.128	10
	2019	31096.205	10
AFE	2017	1520.212	64
AFE	2018	1538.902	65
ZMB	2018	1463.900	17
ZIVID	2019	1258.986	18
	2017	3448.087	14
ZWE	2018	2271.853	15
	2019	1683.913	15

另外,stack 不是唯一的方法,也可以使用 df.melt() 结合 df.pivot_table() 函数来实现:

```
df_reset = df.reset_index()
df_long = df_reset.melt(id_vars=['economy', 'series'], var_name='year', value_name='value')
df_long.pivot_table(index=['economy', 'year'], columns='series', values='value')
```

	series	NY.GDP.PC
economy	year	
	2017	28440.052
ABW	2018	30082.128
	2019	31096.205
AFE	2017	1520.212
AFE	2018	1538.902
	•••	
ZMB	2018	1463.900
ZiviD	2019	1258.986
	2017	3448.087
ZWE	2018	2271.853
	2019	1683.913

第九章 Pandas 中的分组计算(groupby)

Pandas 的分组(groupby())方法按照"分割-应用-组合(split-apply-combine)"的原理,创建一个 groupby 对象,可以应用各种方法来聚合、转换或过滤数据。更多介绍参见 Pandas 官方文档Group by: split-apply-combine。

选择合适的方法:

- 如果你的操作只是简单的统计(如求和、平均值),优先使用聚合方法, 它们通常效率最高。
- 如果需要返回与原始 DataFrame 相同长度的结果,例如进行组内标准 化,使用转换方法。
- 如果需要根据组的属性来决定保留或丢弃整个组,使用过滤方法。
- 当以上方法都无法满足需求时,或者需要执行更复杂的自定义逻辑时, 使用 apply()方法。

9.0.1 聚合方法(Aggregation Methods)

聚合方法将每个组的数据压缩成一个单一的值,是最常用的 groupby 操作,例 如 mean(),sum(),count(),size(),min(),max(),std(),var(),median() 等常见的统计量,或者 first(),last(),nth(n) 等获取第一个、最好一个或第 n 个值:

索引

例如,根据索引计算世界人口,先在索引上分组,然后使用.sum()函数:

```
pwt.groupby(level=1)['pop'].sum()
```

```
year
1950
       1297.363
1951
      1345.649
1952
      1948.874
1953
       2005.092
1954
       2048.591
2015
      7254.660
2016
       7336.956
2017
       7418.961
2018
       7500.383
2019
       7580.897
Name: pop, Length: 70, dtype: float64
```

avh 变量度量了 "Average annual hours worked by persons engaged", 让我们分组计算平均,得到按年和按国家平均

```
avh = pwt[pwt['avh'].notna()]
fig, ax = plt.subplots(2, 1, figsize=(12, 12))
avh.groupby(level=1)['avh'].mean().sort_values(ascending=False).plot(kind='line',
ax[0].set_xlabel("")
ax[0].set_ylabel("Average annual hours worked by persons engaged")
avh.groupby(level=0)['avh'].mean().sort_values(ascending=False)[:25].plot(kind='balax[1].set_xlabel("")
ax[1].set_ylabel("Average annual hours worked by persons engaged")
plt.show()
```


最常见的是按变量进行分组,例如,按国家名 country 分组,最后一个观测值:

pwt.groupby(by=['country']).last()

Algeria Algerian Dinar 488952.375 507487.562 43.053 11.27							
Albania Lek 35890.020 36103.043 2.881 1.076 Algeria Algerian Dinar 488952.375 507487.562 43.053 11.27		currency_unit	rgdpe	rgdpo	pop	emp	av
Algeria Algerian Dinar 488952.375 507487.562 43.053 11.27	country						
	Albania	Lek	35890.020	36103.043	2.881	1.076	Na
	Algeria	Algerian Dinar	488952.375	507487.562	43.053	11.273	Na
Angola Kwanza 228151.016 227855.719 31.825 16.64	Angola	Kwanza	228151.016	227855.719	31.825	16.645	Na
Anguilla East Caribbean Dollar 376.635 225.681 0.015 0.005	Anguilla	East Caribbean Dollar	376.635	225.681	0.015	0.005	Νε
Antigua and Barbuda East Caribbean Dollar 1986.163 1603.854 0.097 0.038	Antigua and Barbuda	East Caribbean Dollar	1986.163	1603.854	0.097	0.038	Nε

year

	currency_unit	rgdpe	rgdpo	pop
country				
Venezuela (Bolivarian Republic of)	Bolivar Fuerte	7166.572	7160.107	28.516
Viet Nam	Dong	750726.750	724123.375	96.462
Yemen	Yemeni Rial	50052.934	51828.059	29.162
Zambia	Kwacha	57956.184	56783.715	17.861
Zimbabwe	US Dollar	42296.062	40826.570	14.645

9.1 转换方法(Transformation Methods)

- transform(func): 对每个组应用函数,并将结果广播回原始 DataFrame 的形状。
- rank(method='average'): 计算组内排名。
- fillna(value): 在组内填充缺失值。

```
avh.groupby(level=1)['avh'].transform('mean')
avh.groupby(level=1)['avh'].mean()
```

```
1950
       2171.439
1951
       2190.832
1952
       2181.242
       2183.205
1953
1954
       2179.604
         . . .
2015
       1865.221
2016
       1871.138
2017
       1858.543
       1854.066
2018
2019
       1849.981
Name: avh, Length: 70, dtype: float64
```

注意,转换与聚合的区别,转换将生成的值与原数据观测值一样多,这里是3492个,而聚合只有70个。

.transform() 方法可以与 lambda 函数相结合,例如:

pwt.select_dtypes(np.number).groupby(level=0).transform(lambda x: (x - x.mean())/x.std())

		rgdpe	rgdpo	pop	е
countrycode	year				
	1950	NaN	NaN	NaN	N
	1951	NaN	NaN	NaN	N
ABW	1952	NaN	NaN	NaN	N
	1953	NaN	NaN	NaN	N
	1954	NaN	NaN	NaN	ľ
	2015	0.558	0.539	1.363	1
	2016	0.654	0.603	1.423	1
ZWE	2017	0.809	0.787	1.479	1
	2018	0.790	0.738	1.535	1
	2019	0.677	0.595	1.592	1

9.2 过滤方法 (Filtration Methods)

过滤方法会根据每个组的某个条件来排除整个组。

• filter(func): 根据一个返回布尔值的函数来过滤组。如果函数对一个组返回 True,则保留该组;否则,删除该组。

pwt.groupby(level=0).filter(lambda x: x['pop'].mean() > 50)

		country	currency_u
countrycode	year		
	1950	Bangladesh	Taka
	1951	Bangladesh	Taka

BGD

		country
countrycode	year	
	1952	Bangladesh
	1953	Bangladesh
	1954	Bangladesh
	2015	Viet Nam
	2016	Viet Nam
VNM	2017	Viet Nam
	2018	Viet Nam
	2019	Viet Nam

9.3 应用方法(Application Methods)

apply() 方法是最通用的方法,它允许你对每个组应用任何自定义函数。这个函数可以执行聚合、转换或过滤操作,或者任何更复杂的逻辑。

• apply(func): 将一个自定义函数应用于每个组。函数的返回值可以是 Series、DataFrame 或标量。

Bibliography

[1] Robert C Feenstra, Robert Inklaar, and Marcel P Timmer. "The next generation of the Penn World Table". In: *American economic review* 105.10 (2015), pp. 3150–3182.