15.3 Dining Philosophers: In the famous dining philosophers problem, a bunch of philosophers are sitting around a circular table with one chopstick between each of them. A philosopher needs both chopsticks to eat, and always picks up the left chopstick before the right one. A deadlock could potentially occur if all the philosophers reached for the left chopstick at the same time. Using threads and locks, implement a simulation of the dining philosophers problem that prevents deadlocks.

Hints: #419, #437

pg 449

15.4 Deadlock-Free Class: Design a class which provides a lock only if there are no possible deadlocks.

Hints: #422, #434

pg 452

15.5 Call In Order: Suppose we have the following code:

```
public class Foo {
  public Foo() { ... }
  public void first() { ... }
  public void second() { ... }
  public void third() { ... }
}
```

The same instance of Foo will be passed to three different threads. ThreadA will call first, threadB will call second, and threadC will call third. Design a mechanism to ensure that first is called before second and second is called before third.

Hints: #417, #433, #446

pg 456

15.6 Synchronized Methods: You are given a class with synchronized method A and a normal method B. If you have two threads in one instance of a program, can they both execute A at the same time? Can they execute A and B at the same time?

Hints: #429

_pg 458

15.7 FizzBuzz: In the classic problem FizzBuzz, you are told to print the numbers from 1 to n. However, when the number is divisible by 3, print "Fizz". When it is divisible by 5, print "Buzz". When it is divisible by 3 and 5, print "FizzBuzz". In this problem, you are asked to do this in a multithreaded way. Implement a multithreaded version of FizzBuzz with four threads. One thread checks for divisibility of 3 and prints "Fizz". Another thread is responsible for divisibility of 5 and prints "Buzz". A third thread is responsible for divisibility of 3 and 5 and prints "FizzBuzz". A fourth thread does the numbers.

Hints: #414, #439, #447, #458

pg 458

Hints start on page 676.

Moderate

16.1 Number Swapper: Write a function to swap a number in place (that is, without temporary variables). Hints: #492, #716, #737 pg 462 16.2 Word Frequencies: Design a method to find the frequency of occurrences of any given word in a book. What if we were running this algorithm multiple times? Hints: #489, #536 pq 463 16.3 Intersection: Given two straight line segments (represented as a start point and an end point), compute the point of intersection, if any. Hints: #465, #472, #497, #517, #527 pg 464 16.4 **Tic Tac Win:** Design an algorithm to figure out if someone has won a game of tic-tac-toe. Hints: #710, #732 pg 466 16.5 **Factorial Zeros:** Write an algorithm which computes the number of trailing zeros in n factorial. Hints: #585, #711, #729, #733, #745 pg 473 16.6 Smallest Difference: Given two arrays of integers, compute the pair of values (one value in each

array) with the smallest (non-negative) difference. Return the difference.

EXAMPLE

Input: {1, 3, 15, 11, 2}, {23, 127, 235, 19, 8}

Output: 3. That is, the pair (11, 8).

Hints: #632, #670, #679

pg 474

16.7 Number Max: Write a method that finds the maximum of two numbers. You should not use if-else or any other comparison operator.

Hints: #473, #513, #707, #728

oq 475

16.8 English Int: Given any integer, print an English phrase that describes the integer (e.g., "One Thousand, Two Hundred Thirty Four").

Hints: #502, #588, #688

pg 477

16.9 Operations: Write methods to implement the multiply, subtract, and divide operations for integers. The results of all of these are integers. Use only the add operator.

Hints: #572, #600, #613, #648

pg 478

16.10 Living People: Given a list of people with their birth and death years, implement a method to compute the year with the most number of people alive. You may assume that all people were born between 1900 and 2000 (inclusive). If a person was alive during any portion of that year, they should be included in that year's count. For example, Person (birth = 1908, death = 1909) is included in the counts for both 1908 and 1909.

Hints: #476, #490, #507, #514, #523, #532, #541, #549, #576

pg 482

16.11 Diving Board: You are building a diving board by placing a bunch of planks of wood end-to-end. There are two types of planks, one of length shorter and one of length longer. You must use exactly K planks of wood. Write a method to generate all possible lengths for the diving board.

Hints: #690, #700, #715, #722, #740, #747

pg 486

16.12 XML Encoding: Since XML is very verbose, you are given a way of encoding it where each tag gets mapped to a pre-defined integer value. The language/grammar is as follows:

Element --> Tag Attributes END Children END

Attribute --> Tag Value

END

--> 0

Tag

--> some predefined mapping to int

Value

--> string value

For example, the following XML might be converted into the compressed string below (assuming a mapping of family -> 1, person ->2, firstName -> 3, lastName -> 4, state -> 5).

```
<family lastName="McDowell" state="CA">
```

Becomes:

1 4 McDowell 5 CA 0 2 3 Gayle 0 Some Message 0 0

Write code to print the encoded version of an XML element (passed in Element and Attribute objects).

Hints: #466

pg 489

16.13 Bisect Squares: Given two squares on a two-dimensional plane, find a line that would cut these two squares in half. Assume that the top and the bottom sides of the square run parallel to the x-axis.

Hints: #468, #479, #528, #560

16.14 Best Line: Given a two-dimensional graph with points on it, find a line which passes the most number of points.

Hints: #491, #520, #529, #563

on 492

16.15 Master Mind: The Game of Master Mind is played as follows:

The computer has four slots, and each slot will contain a ball that is red (R), yellow (Y), green (G) or blue (B). For example, the computer might have RGGB (Slot #1 is red, Slots #2 and #3 are green, Slot #4 is blue).

You, the user, are trying to guess the solution. You might, for example, guess YRGB.

When you guess the correct color for the correct slot, you get a "hit." If you guess a color that exists but is in the wrong slot, you get a "pseudo-hit." Note that a slot that is a hit can never count as a pseudo-hit.

For example, if the actual solution is RGBY and you guess GGRR, you have one hit and one pseudo-hit. Write a method that, given a guess and a solution, returns the number of hits and pseudo-hits.

Hints: #639, #730

og 494

16.16 Sub Sort: Given an array of integers, write a method to find indices m and n such that if you sorted elements m through n, the entire array would be sorted. Minimize n - m (that is, find the smallest such sequence).

EXAMPLE

Input: 1, 2, 4, 7, 10, 11, 7, 12, 6, 7, 16, 18, 19

Output: (3, 9)

Hints: #482, #553, #667, #708, #735, #746

pg 496

16.17 Contiguous Sequence: You are given an array of integers (both positive and negative). Find the contiguous sequence with the largest sum. Return the sum.

EXAMPLE

Input: 2, -8, 3, -2, 4, -10

Output:5 (i.e., {3, -2, 4})

Hints: #531, #551, #567, #594, #614

og 498

16.18 Pattern Matching: You are given two strings, pattern and value. The pattern string consists of just the letters a and b, describing a pattern within a string. For example, the string catcatgocatgo matches the pattern aabab (where cat is a and go is b). It also matches patterns like a, ab, and b. Write a method to determine if value matches pattern.

Hints: #631, #643, #653, #663, #685, #718, #727

16.19 Pond Sizes: You have an integer matrix representing a plot of land, where the value at that location represents the height above sea level. A value of zero indicates water. A pond is a region of water connected vertically, horizontally, or diagonally. The size of the pond is the total number of connected water cells. Write a method to compute the sizes of all ponds in the matrix.

EXAMPLE

Input:

0210

0101

1101

0101

Output: 2, 4, 1 (in any order)

Hints: #674, #687, #706, #723

pg 503

16.20 T9: On old cell phones, users typed on a numeric keypad and the phone would provide a list of words that matched these numbers. Each digit mapped to a set of 0 - 4 letters. Implement an algorithm to return a list of matching words, given a sequence of digits. You are provided a list of valid words (provided in whatever data structure you'd like). The mapping is shown in the diagram below:

1	2 abc	3 def
4 ghi	5 jkl	6 mno
7 pqrs	8 tuv	9 wxyz
	0	

EXAMPLE

Input:

8733

Output:

tree, used

Hints: #471, #487, #654, #703, #726, #744

pg 505

16.21 Sum Swap: Given two arrays of integers, find a pair of values (one value from each array) that you can swap to give the two arrays the same sum.

EXAMPLE

Input: {4, 1, 2, 1, 1, 2} and {3, 6, 3, 3}

Output: {1, 3}

Hints: #545, #557, #564, #571, #583, #592, #602, #606, #635

- **16.22 Langton's Ant:** An ant is sitting on an infinite grid of white and black squares. It initially faces right. At each step, it does the following:
 - (1) At a white square, flip the color of the square, turn 90 degrees right (clockwise), and move forward one unit.
 - (2) At a black square, flip the color of the square, turn 90 degrees left (counter-clockwise), and move forward one unit.

Write a program to simulate the first K moves that the ant makes and print the final board as a grid. Note that you are not provided with the data structure to represent the grid. This is something you must design yourself. The only input to your method is K. You should print the final grid and return nothing. The method signature might be something like void printKMoves(int K).

Hints: #474, #481, #533, #540, #559, #570, #599, #616, #627

pg 512

16.23 Rand7 from Rand5: Implement a method rand7() given rand5(). That is, given a method that generates a random number between 0 and 4 (inclusive), write a method that generates a random number between 0 and 6 (inclusive).

Hints: #505, #574, #637, #668, #697, #720

00518

16.24 Pairs with Sum: Design an algorithm to find all pairs of integers within an array which sum to a specified value.

Hints: #548, #597, #644, #673

pg 520

16.25 LRU Cache: Design and build a "least recently used" cache, which evicts the least recently used item. The cache should map from keys to values (allowing you to insert and retrieve a value associated with a particular key) and be initialized with a max size. When it is full, it should evict the least recently used item.

Hints: #524, #630, #694

na 521

16.26 Calculator: Given an arithmetic equation consisting of positive integers, +, -, * and / (no parentheses), compute the result.

EXAMPLE

Input:

2*3+5/6*3+15

Output:

23.5

Hints: #521, #624, #665, #698

pq 524

Hard

17.1 Add Without Plus: Write a function that adds two numbers. You should not use + or any arithmetic operators.

Hints: #467, #544, #601, #628, #642, #664, #692, #712, #724

pg 530

17.2 Shuffle: Write a method to shuffle a deck of cards. It must be a perfect shuffle—in other words, each of the 52! permutations of the deck has to be equally likely. Assume that you are given a random number generator which is perfect.

Hints: #483, #579, #634

pg 531

17.3 Random Set: Write a method to randomly generate a set of m integers from an array of size n. Each element must have equal probability of being chosen.

Hints: #494, #596

pg 532

17.4 Missing Number: An array A contains all the integers from 0 to n, except for one number which is missing. In this problem, we cannot access an entire integer in A with a single operation. The elements of A are represented in binary, and the only operation we can use to access them is "fetch the jth bit of A[i]," which takes constant time. Write code to find the missing integer. Can you do it in O(n) time?

Hints: #610, #659, #683

pg 533

17.5 Letters and Numbers: Given an array filled with letters and numbers, find the longest subarray with an equal number of letters and numbers.

Hints: #485, #515, #619, #671, #713

pg 536

17.6 Count of 2s: Write a method to count the number of 2s that appear in all the numbers between 0 and n (inclusive).

EXAMPLE

Input: 25

Output: 9 (2, 12, 20, 21, 22, 23, 24 and 25. Note that 22 counts for two 2s.)

Hints: #573, #612, #641

17.7 Baby Names: Each year, the government releases a list of the 10000 most common baby names and their frequencies (the number of babies with that name). The only problem with this is that some names have multiple spellings. For example, "John" and "Jon" are essentially the same name but would be listed separately in the list. Given two lists, one of names/frequencies and the other of pairs of equivalent names, write an algorithm to print a new list of the true frequency of each name. Note that if John and Jon are synonyms, and Jon and Johnny are synonyms, then John and Johnny are synonyms. (It is both transitive and symmetric.) In the final list, any name can be used as the "real" name.

EXAMPLE

Input:

Names: John (15), Jon (12), Chris (13), Kris (4), Christopher (19)

Synonyms: (Jon, John), (John, Johnny), (Chris, Kris), (Chris, Christopher)

Output: John (27), Kris (36)

Hints: #478, #493, #512, #537, #586, #605, #655, #675, #704

pg 541

17.8 Circus Tower: A circus is designing a tower routine consisting of people standing atop one another's shoulders. For practical and aesthetic reasons, each person must be both shorter and lighter than the person below him or her. Given the heights and weights of each person in the circus, write a method to compute the largest possible number of people in such a tower.

EXAMPLE

Input (ht, wt): (65, 100) (70, 150) (56, 90) (75, 190) (60, 95) (68, 110)

Output: The longest tower is length 6 and includes from top to bottom:

(56, 90) (60,95) (65,100) (68,110) (70,150) (75,190)

Hints: #638, #657, #666, #682, #699

pg 546

17.9 Kth Multiple: Design an algorithm to find the kth number such that the only prime factors are 3, 5, and 7. Note that 3, 5, and 7 do not have to be factors, but it should not have any other prime factors. For example, the first several multiples would be (in order) 1, 3, 5, 7, 9, 15, 21.

Hints: #488, #508, #550, #591, #622, #660, #686

pg 549

17.10 Majority Element: A majority element is an element that makes up more than half of the items in an array. Given a positive integers array, find the majority element. If there is no majority element, return -1. Do this in O(N) time and O(1) space.

EXAMPLE

Input:

1 2 5 9 5 9 5 5 5

Output:

5

Hints: #522, #566, #604, #620, #650

≫0 554

17.11 Word Distance: You have a large text file containing words. Given any two words, find the shortest distance (in terms of number of words) between them in the file. If the operation will be repeated many times for the same file (but different pairs of words), can you optimize your solution?

Hints: #486, #501, #538, #558, #633

17.12 BiNode: Consider a simple data structure called BiNode, which has pointers to two other nodes.

```
public class BiNode {
  public BiNode node1, node2;
  public int data;
}
```

The data structure BiNode could be used to represent both a binary tree (where node1 is the left node and node2 is the right node) or a doubly linked list (where node1 is the previous node and node2 is the next node). Implement a method to convert a binary search tree (implemented with BiNode) into a doubly linked list. The values should be kept in order and the operation should be performed in place (that is, on the original data structure).

Hints: #509, #608, #646, #680, #701, #719

pg 560

17.13 Re-Space: Oh, no! You have accidentally removed all spaces, punctuation, and capitalization in a lengthy document. A sentence like "I reset the computer. It still didn't boot!" became "iresetthecomputeritstilldidntboot". You'll deal with the punctuation and capitalization later; right now you need to re-insert the spaces. Most of the words are in a dictionary but a few are not. Given a dictionary (a list of strings) and the document (a string), design an algorithm to unconcatenate the document in a way that minimizes the number of unrecognized characters.

EXAMPLE:

Input: jesslookedjustliketimherbrother

Output: <u>jess</u> looked just like <u>tim</u> her brother (7 unrecognized characters)

Hints: #496, #623, #656, #677, #739, #749

pg 563

17.14 Smallest K: Design an algorithm to find the smallest K numbers in an array.

Hints: #470, #530, #552, #593, #625, #647, #661, #678

pg 567

17.15 Longest Word: Given a list of words, write a program to find the longest word made of other words in the list.

EXAMPLE

Input: cat, banana, dog, nana, walk, walker, dogwalker

Output: dogwalker

Hints: #475, #499, #543, #589

pq 572

17.16 The Masseuse: A popular masseuse receives a sequence of back-to-back appointment requests and is debating which ones to accept. She needs a 15-minute break between appointments and therefore she cannot accept any adjacent requests. Given a sequence of back-to-back appointment requests (all multiples of 15 minutes, none overlap, and none can be moved), find the optimal (highest total booked minutes) set the masseuse can honor. Return the number of minutes.

EXAMPLE

```
Input: {30, 15, 60, 75, 45, 15, 15, 45}
```

Output: 180 minutes ({30, 60, 45, 45}).

Hints: #495, #504, #516, #526, #542, #554, #562, #568, #578, #587, #607

17.17 Multi Search: Given a string b and an array of smaller strings T, design a method to search b for each small string in T.

Hints: #480, #582, #617, #743

pg 578

17.18 Shortest Supersequence: You are given two arrays, one shorter (with all distinct elements) and one longer. Find the shortest subarray in the longer array that contains all the elements in the shorter array. The items can appear in any order.

EXAMPLE

Input: $\{1, 5, 9\} \mid \{7, 5, 9, 0, 2, 1, 3, 5, 7, 9, 1, 1, 5, 8, 8, 9, 7\}$

Output: [7, 10] (the underlined portion above)

Hints: #645, #652, #669, #681, #691, #725, #731, #741

pg 584

17.19 Missing Two: You are given an array with all the numbers from 1 to N appearing exactly once, except for one number that is missing. How can you find the missing number in O(N) time and O(1) space? What if there were two numbers missing?

Hints: #503, #590, #609, #626, #649, #672, #689, #696, #702, #717

pm 591

17.20 Continuous Median: Numbers are randomly generated and passed to a method. Write a program to find and maintain the median value as new values are generated.

Hints: #519, #546, #575, #709

pa 595

17.21 Volume of Histogram: Imagine a histogram (bar graph). Design an algorithm to compute the volume of water it could hold if someone poured water across the top. You can assume that each histogram bar has width 1.

EXAMPLE (Black bars are the histogram. Gray is water.)

Input: {0, 0, 4, 0, 0, 6, 0, 0, 3, 0, 5, 0, 1, 0, 0, 0}

Output: 26

Hints: #629, #640, #651, #658, #662, #676, #693, #734, #742

_pg 596

17.22 Word Transformer: Given two words of equal length that are in a dictionary, write a method to transform one word into another word by changing only one letter at a time. The new word you get in each step must be in the dictionary.

EXAMPLE

Input: DAMP, LIKE

Output: DAMP -> LAMP -> LIMP -> LIME -> LIKE

Hints: #506, #535, #556, #580, #598, #618, #738

D# 602