Student Information

Name : Gürhan İlhan Adıgüzel

ID: 2448025

Answer 1

b)

c)

State / Alphabet	а	b
-> q ₀	q ₀ , q ₁	q ₀ , q ₅
q ₁	q ₂	-
q ₂	q_2	q ₂ , q ₃
q ₃	-	Q 4
*q ₄	q ₄	q ₄
q ₅	-	q ₆
q ₆	q ₆ , q ₇	Q 6
q ₇	q ₈	-

State / Alphabet	а	b
-> q ₀	{ q ₀ , q ₁ }	{ q ₀ , q ₅ }
{ q ₀ , q ₁ }	{ q ₀ , q ₁ , q ₂ }	{ q ₀ , q ₅ }
{ q ₀ , q ₅ }	{ q ₀ , q ₁ }	{ q ₀ , q ₅ , q ₆ }
{ q ₀ , q ₁ , q ₂ }	{ q ₀ , q ₁ , q ₂ }	{ q ₀ , q ₂ , q ₃ , q ₅ }
{ q ₀ , q ₅ , q ₆ }	{ q ₀ , q ₁ , q ₆ , q ₇ }	{ q ₀ , q ₅ , q ₆ }
{ q ₀ , q ₂ , q ₃ , q ₅ }	{ q ₀ , q ₁ , q ₂ }	{ q ₀ , q ₂ , q ₃ , q ₄ , q ₅ , q ₆ }
{ q ₀ , q ₁ , q ₆ , q ₇ }	$\{q_0, q_1, q_2, q_4, q_6, q_7\}$	{ q ₀ , q ₅ , q ₆ }
{ q ₀ , q ₂ , q ₃ , q ₄ , q ₅ , q ₆ }	{ q ₀ , q ₁ , q ₂ , q ₄ , q ₆ , q ₇ }	{ q ₀ , q ₂ , q ₃ , q ₄ , q ₅ , q ₆ }
$\{q_0, q_1, q_2, q_4, q_6, q_7\}$	$\{q_0, q_1, q_2, q_4, q_6, q_7\}$	$\{q_0, q_2, q_3, q_4, q_5, q_6\}$

Equivalent DFA

For Deterministic Finite Automata

$$(q_0, bbabb) \qquad \vdash_{M} \qquad (\{q_0, q_5\}, babb) \\ \vdash_{M} \qquad (\{q_0, q_5, q_6\}, abb) \\ \vdash_{M} \qquad (\{q_0, q_1, q_6, q_7\}, bb) \\ \vdash_{M} \qquad (\{q_0, q_5, q_6\}, b) \\ \vdash_{M} \qquad (\{q_0, q_5, q_6\}, e)$$

Since (q_0 , bbabb) \vdash_{M^*} ({ q_0 , q_5 , q_6 }, e), and so there is no acceptance state in last step "bbabb" is not accepted by DFA.

For Non-Deterministic Finite Automata

(q0, bbabb)

$$\vdash_M$$
 (q0, babb)
 \vdash_M
 (q5, babb)

 \vdash_M
 (q0, abb)
 \vdash_M
 (q6, abb)

 \vdash_M
 (q0, bb)
 \vdash_M
 (q6, bb)

 \vdash_M
 (q0, b)
 \vdash_M
 (q6, b)

 \vdash_M
 (q0, abb)
 \vdash_M
 (q0, babb)

 \vdash_M
 (q0, abb)
 \vdash_M
 (q0, abb)

 \vdash_M
 (q0, b)
 \vdash_M
 (q0, abb)

 \vdash_M
 (q5, e)
 \vdash_M
 (q6, e)

(q0, bbabb)

(q0, abb)

(q0,

Since a string is not accepted by a nondeterministic finite automaton, there is no one sequence of moves leading to a final state, it follows that "bbabb" $\notin L(M)$.

Answer 2

a) Assume that L_1 is regular and let 'p' be the pumping length such that any string $w \in L$ where $w = a^m b^n$ when m > n and $|w| \ge p$ should satisfy these conditions:

i.
$$w = xy^{\alpha}z \in L$$
 for every $\alpha \ge 0$

ii.
$$|y| > 0$$

iii.
$$|xy| \le p$$

aa.....aaab.....bb where
$$x = a^i$$
, $y = a^j$, $z = a^k b^p$

such that i + j + k = p+1, and j > 0.

We pump with $\alpha = 0$ and get the word $xz = a^iz = a^ia^kb^p$.

Since i + j + k = p+1 and j > 0, then $i + k \le p$.

So there is a contradiction. $xy^0z \notin L_1$.

Therefore, L_1 is not a regular language.

Assume L₂ is A regular language, if $L_2=\overline{L_1}$, then $\overline{L_1}$ should be a regular language.

By Complementation Theorem, complement of regular language must be regular.

So,
$$\overline{(\overline{L_1})}$$
 should be regular. Since $\overline{(\overline{L_1})} = L_1$, $\overline{(\overline{L_1})}$ cannot be regular.

As a result, there is a contradiction. L_2 is not a regular language.

$$L_4 = \{ a^n b^n \mid n \in \mathbb{N}^+ \}$$

$$L_5 = \{ a^m b^n \mid m, n \in \mathbb{N} \}$$

$$L_6 = b^* a (ab^*a)^*$$

When we look at the L_5 m and n valus can take all the natural number values, but for the L_4 n can take only the positive natural numbers. When we set the both m and n values to n in L_5 , we can observe L_4 is a subset of L_5 .

Since L_4 is the subset of L_5 , let $L = L_4$ U $L_5 = L_5$. Then, we can say that L should be regular because L_5 is regular.

As we already know, if we can write language in the form of a regular expression, this language is a regular language. So, L₆ is a regular language.

According to the theorem , for any regular languages A and B, then A \cup B should be regular.

As a result L U $L_6 = L_4$ U L_5 U L_6 should be regular.