UNIVERSIDAD DE CONCEPCION

FACULTAD DE CIENCIAS

FISICAS Y MATEMATICAS

DEPARTAMENTO DE INGENIERIA MATEMATICA

ALGEBRA Y ALGEBRA LINEAL 520142 Listado 11 (Matrices)

1. Considere las matrices:

$$A = \begin{pmatrix} 3 & 2 \\ 1 & 0 \end{pmatrix}; \qquad B = \begin{pmatrix} 2 & 1 \\ 2 & 1 \end{pmatrix}; \qquad C = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}; \qquad D = \begin{pmatrix} 1 & 1 & 3 \\ 1 & 1 & -2 \end{pmatrix}.$$

- a) Calcule $AB, BA, (DD^t C) \vee (AC^2 I)$.
- b) Resuelva las ecuaciones matriciales:

(En práctica b) iii))

i)
$$-2X + C = B$$
, ii) $(A - \frac{2}{3}X)^t = 2C$, iii) $2C + XA = B^2$.

- 2. Considere las siguientes definiciones:
 - M se dice antisimétrica si $M^t = -M$. M se dice ortogonal si $M^{-1} = M^t$.

Demuestre las siguientes proposiciones:

(En práctica g))

- a) Si A es una matriz cuadrada, entonces $A + A^t$ es una matriz simétrica y $A A^t$ es una matriz antisimétrica.
- b) Toda matriz cuadrada es suma de una matriz simétrica y otra antisimétrica.
- c) Las matrices AA^t y A^tA son simétricas.
- d) Si A y B son matrices ortogonales, entonces AB es una matriz ortogonal.
- e) Si A es una matriz simétrica y H es una matriz ortogonal, entonces $H^{-1}AH$ s una matriz simétrica.
- f) Si $A \in \mathcal{M}_{n \times n}$ es simétrica y $B \in \mathcal{M}_{n \times m}$, entonces $B^t A B$ es una matriz simétrica.
- g) Si A y B son matrices simétricas, puede que AB no sea simétrica.
- 3. Sea $P \in \mathcal{M}_n(\mathbb{C})$ una matriz cuadrada compleja, se define la matriz transpuesta conjugada de P como $P^* = (\bar{P})^t$, donde $\bar{P} = (\bar{p}_{ij})$. Demuestre que si $A, B \in \mathcal{M}_n(\mathbb{C})$, entonces:
 - a) $(A^*)^* = A$,

c) $(AB)^* = B^*A^*$, (En Práctica c))

b) $(A+B)^* = A^* + B^*$,

- $d) (A^*)^{-1} = (A^{-1})^*.$
- 4. Una matriz A se dice hermitiana si $A^* = A$.
 - a) Muestre que $A = \begin{pmatrix} 1 & 2+i & 3-2i \\ 2-i & 2 & -1+3i \\ 3+2i & -1-3i & -4 \end{pmatrix}$ es hermitiana.
 - b) Calcule la forma de las matrices hermitianas de 2×2 y de 3×3 .

5. Una matriz A se dice unitaria si $A^*A = AA^* = I$.

(En práctica)

- a) Muestre que $A=\frac{1}{4}\left(\begin{array}{cc} 1+i & -1+i \\ 1+i & 1-i \end{array}\right)$ es una matriz unitaria,
- b) Calcule la forma de las matrices unitarias de 2×2 .
- 6. Sea $A = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$. Demuestre que $\forall n \in \mathbb{N}, n \geq 3$:

$$A^{2p} = pA^2 - (p-1)I.$$

 $A^{2p+1} = pA^2 + A - pI.$

- 7. Sea $\theta \in \mathbb{R}$ y $A(\theta) = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}$. Pruebe que:
 - a) $A(\theta)$ es ortogonal.
 - b) $(A(\theta))^n = A(n\theta), \forall n \in \mathbb{N}.$
- 8. Calcule la inversa de las siguientes matrices, donde $a \in \mathbb{R}$.

(En práctica f))

a)
$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$
, b) $B = \begin{pmatrix} 1 & 4 \\ 0 & 2 \end{pmatrix}$, c) $C = \begin{pmatrix} 2 & 0 \\ 0 & 4 \end{pmatrix}$,

b)
$$B = \begin{pmatrix} 1 & 4 \\ 0 & 2 \end{pmatrix}$$
,

c)
$$C = \begin{pmatrix} 2 & 0 \\ 0 & 4 \end{pmatrix}$$
,

d)
$$D = \begin{pmatrix} 1 & -a & 1 \\ 0 & 1 & -a \\ 0 & 0 & 1 \end{pmatrix}$$
, e) $E = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6 \end{pmatrix}$, f) $F = \begin{pmatrix} 1 & 0 & 2 \\ 2 & -1 & 3 \\ 4 & 1 & 8 \end{pmatrix}$.

e)
$$E = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6 \end{pmatrix}$$
,

f)
$$F = \begin{pmatrix} 1 & 0 & 2 \\ 2 & -1 & 3 \\ 4 & 1 & 8 \end{pmatrix}$$

- 9. Sea $A = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 3 & 4 \\ -1 & 0 & -2 \end{pmatrix}$. Muestre que $A^{-1} = -\frac{1}{3}(A^2 2A 4I)$.
- 10. Sea $A \in M_{m \times n}(\mathbb{R})$ tal que $A^t A$ es invertible, y sea $B = I A(A^t A)^{-1} A^t$.
 - a) Pruebe que $B^2 = B$.
 - b) Muestre que $BA = \theta$.
 - c) Pruebe que B es una matriz simétrica.

(En práctica c))

11. Sea
$$A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

- a) Calcule los números reales a y b, tales que: $A^2 + aA + bI = \theta$.
- b) De la ecuación anterior calcule una expresión para la inversa de A.
- c) Usando la expresión obtenida en (b) calcule la inversa de A.
- d) Compruebe el resultado obtenido.