Node-wise Localization of Graph Neural Networks

Zemin Liu¹, Yuan Fang¹, Chenghao Liu², Steven C.H. Hoi^{1,2}

¹ Singapore Management University, Singapore; ² Salesforce Research Asia, Singapore

- Problem
- Proposed model: LGNN
- Experiments
- Conclusions

Problem: graph neural networks

• Graph neural networks (GNNs) [1, 2, 3]

$$\mathbf{h}_v^l = \sigma\left(\operatorname{AGGR}\left(\left\{\mathbf{W}^l\mathbf{h}_u^{l-1}: orall u \in C_v
ight\}
ight)
ight)$$
 Aggregation function

Node classification

- [1] Kipf, T. N., et al. 2017. Semi-supervised classification with graph convolutional networks. ICLR.
- [2] Veličković, P., et al. 2018. Graph attention networks. ICLR.
- [3] Xu K, et al. 2019. How powerful are graph neural networks? ICLR.

Problem: limitation of GNNs

- Different local context of each node
 - bio: v_1
 - bioinf: v_2
 - Cs: v_3

Can we allow each node to be parameterized by its own weight matrix?

Problem: Our Idea

- Localization
 - Localize the global model for each node
- Significance
 - Global vs.local
 - Node- and edge-level

- Problem
- Proposed model: LGNN
- Experiments
- Conclusions

Proposed Model: Localization

- General formulation of Localization
 - Localized model

- Local context of node v on graph G = (V, E)

$$C_v = \{v\} \cup \{u \in V : \langle v, u \rangle \in E\}$$

Proposed Model: Node-level Localization

Global model: Conventional GNNs

$$\mathbf{h}_{v}^{l} = \sigma\left(\operatorname{AGGR}\left(\left\{\mathbf{W}^{l}\mathbf{h}_{u}^{l-1} : \forall u \in C_{v}\right\}\right)\right)$$
Aggregation function Weight matrix

Node-level localization

$$\mathbf{W}_v^l = \mathbf{W}^l \odot \left[\left(\mathbf{a}_v^l \right)_{ imes d_l} \right]^{\!\! op} + \left[\left(\mathbf{b}_v^l \right)_{ imes d_l} \right]^{\!\! op}$$
 Localize the weight matrix $\mathbf{c}_v^l = \mathbf{M} \mathrm{EAN} \left(\left\{ \mathbf{h}_u^{l-1} : \forall u \in C_v
ight\}
ight)$ Local context $\mathbf{a}_v^l = \sigma \left(\mathbf{M}_a^l \mathbf{c}_v^l \right) + \mathbf{1}, \quad \mathbf{b}_v^l = \sigma \left(\mathbf{M}_b^l \mathbf{c}_v^l \right)$ Scaling and shifting factors

Proposed Model: Edge-level Localization

- Localization of GNNs
 - Edge-level localization

$$\mathbf{c}_{u,v}^{l} = extsf{Concat}\left(\mathbf{h}_{v}^{l-1}, \mathbf{h}_{u}^{l-1}
ight)$$
 Local context

$$\mathbf{h}_v^l = \sigma \big(\mathrm{AGGR} \big(\! \big\{ \mathbf{W}_v^l \mathbf{h}_u^{l-1} \odot \! \big(\! \mathbf{a}_{u,v}^l \! \big) \! + \! \! \big(\! \mathbf{b}_{u,v}^l \! \big) \! \! : \forall u \in C_v \big\} \big) \big) \quad \text{Aggregation}$$

$$\mathbf{a}_{u,v}^l = \sigma\left(\mathbf{N}_a^l\mathbf{c}_{u,v}^l\right) + \mathbf{1}, \quad \mathbf{b}_{u,v}^l = \sigma\left(\mathbf{N}_b^l\mathbf{c}_{u,v}^l\right)$$
 Scaling and shifting factors

Proposed Model: Loss

Semi-supervised node classification

$$\mathbf{z}_{v,k} = ext{Softmax}\left(\mathbf{h}_{v,k}^{\ell}
ight) = rac{\exp\left(\mathbf{h}_{v,k}^{\ell}
ight)}{\sum_{k'=1}^{K} \exp\left(\mathbf{h}_{v,k'}^{\ell}
ight)}$$

Overall loss

Parameters set of localization Parameters set of global GNN $-\sum_{v \in V_Y} \sum_{k=1}^K Y_{v,k} \ln \mathbf{z}_{v,k} + \lambda_G \|\Theta_G\|_2^2 + \lambda_L \|\Theta_L\|_2^2$ $+\lambda \left(\|A-1\|_2^2/|A|+\|B\|_2^2/|B|\right)$

- Problem
- Proposed model: LGNN
- Experiments
- Conclusions

Datasets, evaluation and baselines

•	Datasets	Dataset	# Nodes	# Edges	# Classes	# Features
•		Cora	2,708	5,429	7	1,433
	Evaluation	Citeseer	3,327	4,732	6	3,703
		Amazon	13,381	245,778	10	767
	 Accuracy, micro-F 	Chameleon	2,277	36,101	5	2,325

Baselines

- Embedding models: DeepWalk [1], Planetoid [2]
- GNN models: GCN [3], GAT [4], GIN [5]
- GNN-FiLM [6]: GCN-FiLM, GAT-FiLM, GIN-FiLM
- [1] Perozzi B, et al. 2014. Deepwalk: Online learning of social representations. KDD.
- [2] Yang Z, et al. 2016. Revisiting semi-supervised learning with graph embeddings. ICML.
- [3] Kipf, T. N., et al. 2017. Semi-supervised classification with graph convolutional networks. ICLR.
- [4] Veličković, P., et al. 2018. Graph attention networks. ICLR.
- [5] Xu K, et al. 2019. How powerful are graph neural networks? ICLR.
- [6] Brockschmidt M. 2020. Gnn-film: Graph neural networks with feature-wise linear modulation. ICML.

Node classification

- LGNN consistently achieves significant performance boosts
- GAT-based models generally attain better performance than GCN- and GIN-based models
- Increasing the number of parameters alone cannot achieve the effect of localization

Methods	# Params	Cora		Citeseer		Amazon		Chameleon	
	(Cora)	Accuracy	Micro-F	Accuracy	Micro-F	Accuracy	Micro-F	Accuracy	Micro-F
DeepWalk	693K	73.8±0.3	74.9±0.1	61.6±0.2	60.5±1.0	80.1±1.6	77.3±1.3	41.2±1.3	40.1±1.1
Planetoid	345K	66.1±0.4	64.5 ± 0.5	64.5±0.3	62.9 ± 0.4	69.8±1.7	64.5 ± 1.5	39.3±1.8	37.7 ± 1.7
GCN	11K	81.5±0.7	80.8±0.5	70.4±0.5	68.3±0.7	81.9±0.5	81.0±0.8	46.7±4.3	46.4±2.4
GCN-64	92K	82.0 ± 0.3	80.9 ± 0.3	71.1 ± 0.3	69.2 ± 0.4	82.1±0.5	81.2 ± 0.8	48.3 ± 3.3	46.3 ± 1.8
GCN-96	138K	81.9 ± 0.2	80.8 ± 0.3	71.3 ± 0.4	69.4 ± 0.5	82.2±0.4	81.5 ± 0.7	45.5 ± 2.4	43.8 ± 2.5
GCN-FiLM	35K	78.1 ± 0.6	76.9 ± 0.5	69.8 ± 1.1	67.9 ± 1.0	79.2 ± 1.0	77.1 ± 1.5	42.8 ± 1.1	39.9 ± 1.3
LGCN	104K	83.5 ±0.3	82.1 ± 0.4	72.2 ±0.4	70.2 \pm 0.4	83.7 ±1.5	82.3 ± 2.0	50.9 ±1.1	49.7 ±0.7
(improv.)	-	(1.8%)	(1.5%)	(1.3%)	(1.2%)	(1.8%)	(1.0%)	(5.4%)	(7.1%)
GAT	92K	82.9±0.6	82.0±0.6	72.4±0.7	70.4±0.8	82.4±1.3	80.1±1.9	47.2±1.1	46.2±2.1
GAT-64	738K	83.1±0.4	81.9 ± 0.6	71.6 ± 1.5	69.8 ± 1.6	83.0±0.9	81.2 ± 1.4	51.2 ± 1.5	50.2 ± 1.3
GAT-96	1108K	83.2±0.6	81.9 ± 0.6	71.4 ± 0.9	69.6 ± 0.9	83.1±1.0	81.5 ± 1.4	51.9 ± 1.2	50.2 ± 1.8
GAT-FiLM	277K	82.0±0.5	80.6 ± 0.6	71.2 ± 1.0	69.2 ± 1.1	83.3±0.6	81.9 ± 0.8	46.8 ± 5.7	45.1 ± 5.2
LGAT	836K	83.6 ±0.4	82.3 ± 0.4	72.8 ±0.4	70.8 \pm 0.5	83.7 ±0.7	82.3 ± 0.8	52.6 ±1.0	51.1 ±0.9
(improv.)	-	(0.5%)	(0.4%)	(0.6%)	(0.6%)	(0.5%)	(0.5%)	(1.3%)	(1.8%)
GIN	11K	80.2±0.5	78.8±0.3	68.5±0.7	66.5±1.0	79.6±1.7	78.5±2.6	45.8±3.0	41.2±4.0
GIN-64	92K	80.3 ± 1.1	79.1 ± 1.0	67.8 ± 1.5	66.1 ± 1.1	79.8 ± 1.1	79.0 ± 1.4	45.7 ± 4.5	40.7 ± 5.7
GIN-96	138K	79.9 ± 1.1	78.9 ± 1.0	68.6 ± 1.4	66.6 ± 1.6	80.2 ± 2.1	79.0 ± 3.2	45.9 ± 3.5	41.5 ± 4.1
GIN-FiLM	35K	79.8 ± 0.7	$78.5 {\pm} 0.5$	67.7±1.4	65.8 ± 1.5	78.6 ± 2.8	77.2 ± 3.3	38.8 ± 2.6	34.2 ± 2.9
LGIN	126K	82.6 ±0.8	81.6 \pm 0.8	71.3 ±0.4	69.5 \pm 0.5	84.0 ±1.2	82.7 \pm 1.7	48.3 ±1.9	47.3 ±1.9
(improv.)	_	(2.9%)	(3.2%)	(3.9%)	(4.4%)	(4.7%)	(4.7%)	(5.2%)	(14.0%)

Ablation study

- Utilizing only one module consistently outperforms the global model
- The node-level localization tends to perform better than edge-level localization.
- Modeling both jointly results in the best performance

- Problem
- Proposed model: LGNN
- Experiments
- Conclusions

Conclusions

- Motivation
 - We identified the need to **localize GNNs** for different nodes
- Proposed model: LGNN
 - Encode graph-level general patterns using a global weight matrix
 - Node-level and edge-level localization
- Experiments
 - Extensive experiments demonstrate that LGNN significantly outperforms state-of-the-art GNNs.

Thanks!

Paper, code, data... www.yfang.site

Node-wise Localization of Graph Neural Networks.

Zemin Liu, Yuan Fang, Chenghao Liu, Steven C.H. Hoi.

In Proceeding of 30th International Joint Conference on Artificial Intelligence (IJCAI-21) 21st -26th August, 2021