

Outline for the day

- -Workflow overview
- -Case study
- -Tutorial

Typical UAS imagery collection and processing workflow

- Project planning:
 Experimental design, hardware/sensor requirements
- 2) Mission/flight planning
- 3) Imagery collection
- 4) Imagery processing
- 5) Post-processing and analysis

Project planning: Choosing the right sensor

- RGB
- Thermal
- Multispectral
- Hyperspectral
- Lidar

Project planning: Compatibility

Check software and hardware compatibility from workflow's start to finish:

-UAS + camera/sensor + guidance system

-Imagery type + processing service

Project planning: Choosing the right UAV

Main constraint: UAS-sensor compatibility

Variable flight times, stability, ease of use

-particularly notable differences between fixed-wing aircraft and copters

-consumer drones with RGB cameras can be very powerful at <\$1000

Ground Control Points

- Should be visible and recognizable
- Location should be carefully referenced
 - High accuracy GPS; less than .5 meter error
 - We use the app KoBo to track data
- Should have at least 4, but no more than ~10
 - o 3D models need closer to 9
 - Depends on topography of the area and spread of GCPs

Ground Control Points

- Pix4D likes the following formats
 - label,latitude[decimal degrees],longitude[decimal degrees],altitude[meter]
 - label,latitude[decimal degrees],longitude[decimal degrees],altitude[meter],Accuracy
 Horz [meter],Accuracy Vert [meter]

Must be saved as either .csv or .txt

 Using a mission planning app facilitates uniform image spacing

• Several options are available, consider which is best for your needs

- Considerations before choosing an app
 - Compatibility with device, UAS, cameras
 - Mission resume, repeatability
 - Flexibility vs. ease of use
 - Probability of error
- Most are free or inexpensive, try several

- Trade-offs
 - Higher altitude=more area/time, but lower resolution.

Altitude: 40m; Overlap: 75/85; Time: 9m

Altitude: 80m; Overlap: 75/85; Time: 4m

- Trade-offs
 - Higher overlap increases stitching quality, but reduces area/time
 - Ideal overlap depends on mapped surface

Altitude: 80m; Overlap: 75/85; Time: 4m

Altitude: 80m; Overlap: 70/70; Time: 3m

Imagery collection

Imagery processing

- -Pix4D
- -Agisoft Photoscan
- -DroneDeploy, Maps Made Easy, Precision Mapper, others
- -OpenDroneMap, MicMac
- -Many others

Post-processing and analysis

```
GIS software:
    -ArcGIS
    -QGIS
    -ENVI and
Imagery manipulation:
    -Photoshop
    -GIMP
Point cloud analysis tools
R
```

Case study: Genetics of early season growth rate

2016 Project

DJI Phantom 3 Pro

Map Pilot

Raw images:

Last min mum Green RGB volus:

Visual comparison (42 DAP)

Orca **Black Nightfall**

planting

After correcting for the number emerging!

growth.per.plant.1

Expected $-\log_{10}(p)$

growth.per.plant.1

3D modeling

Anova: Single Factor, HEIGHT BASED ON DRONE IMAGERY (8-18)							Anova: Single Factor, HAND- MEASURED HEIGHT (9-12)						
SUMMARY							SUMMARY						
Groups	Count	Sum	Average	Variance			Groups	Count	Sum	Average	Variance		
Column 1	6	282.6559	47.10932	7.301282			Column 1	6	247.65	41.275	2.41935		
Column 2	6	245.3834	40.89723	48.97779			Column 2	6	232.41	38.735	13.38707		
Column 3	6	288.7727	48.12878	121.144			Column 3	6	247.65	41.275	17.25803		
Column 4	5	257.9092	51.58184	21.14039			Column 4	5	220.345	44.069	2.338705		
Column 5	7	393.3417	56.19167	22.34569			Column 5	7	304.8	43.54286	11.13669		
Column 6	6	267.1747	44.52912	24.72147			Column 6	6	283.21	47.20167	18.97846		
Column 7	6	432.8275	72.13792	77.83961			Column 7	6	293.37	48.895	10.80643		
Column 8	6	305.0202	50.8367	75.25917			Column 8	6	229.87	38.31167	26.07522		
ANOVA							ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit	Source of				_		
Between							Variation	SS	df	MS	F	P-value	F crit
Groups	3862.203	7	551.7433	11.06334	1.1E-07	2.249024	Between Groups	598.4793	7	85.49704	6.566621	3.48E-05	2.249024
Within								330.4733	<i>'</i>	05.45704	0.300021	3.40L 03	2.243024
Groups	1994.852	40	49.87131				Within Groups	520.7977	40	13.01994			
							o a po	320377	.0	20.02551			
Total	5857.056	47					Total	1119.277	47				

 $R^2 = 0.66$

Drone-based model may be better at separating height by genotype than hand-measurement

 $R^2 = 0.53$

Thermal model

Uploading Data into Pix4D and Georeferencing Demo

Using your tif in QGIS

- Useful for adding vector layers on top of your output
- Can be used to georeference other imagery through Tie Points
- Can convert your tiff into other file types

Your Turn!

Feel free to also explore Pix4d Example sets!

Download

Example Data - RGB Images - quick download

Emily - Pix4D Post Processing Instructions. .docx

OR

Using Pix4d Cloud Instructions