16-Steps Sequencer and Synthesizer

Zhuowen Lin & Jinyue Guo 11510818 & 11510478 Information Engineering, SUSTech

Speech Outline

- Inputs & Outputs
- Components of the circuit
- Result demonstration
- Further enhancements

Inputs & Outputs

Inputs

Switches

- Each of the 16 switches is assigned to a note at a specific time.
- When the time passes it, a note of the selected frequency will play.

Buttons

- BTNR: Save: assign any switch that is in the on position with the current frequency.
- BTNU: Switch frequency: rotate through the 16 frequencies.
- BTNC: Play/Pause
- BTNL: Reset: erase all assigned tones.

Outputs

LEDs

- LEDs above each switch.
- Light up when a tone is playing on that particular switch.

Seven Segment Display

- Show which frequency is being worked with.
- Rotate from 0 to F.

Speaker

Sound wave at different frequencies.

Components of the Circuit

Button Toggle – Play & Pause

FSM

Toggle between two states exactly one time when the button is pressed

Finite State Machine - Button Toggle

Button Debouncer

- Button bounce
 - Switch between states in FSM
- Debouncer
 - By Scott Larson of Digi-key
 - 10.5 ms stable input time

Clock Dividor - BPM setting

- Convert 100 MHz to lower frequencies
 - Used to set BPM

Counter – Tone / Switch Tracker

- Keep track of the tone
 - Speaker knows which tone to be played
 - Seven segment display knows which number to be displayed
- Keep track of the switch
 - Speaker knows which switch position to be played
 - Counter increasing speed: BPM
- T flip-flop
 - □ 4 bits $\leftarrow \rightarrow$ 4 T flip-flops
 - Least significant bit: toggle each time
 - The other bits: toggle when all of bits below them are equal to one.

D Flip-Flop

Remember the tone of 16 switches

Seven Segment Display

- Course Lab 3
 - Hexadecimal number

Square Wave Generator

Change frequency dividing factor

Number	Tone	Max Count	Number	Tone	Max Count
0	0	0	8	d2	85131
1	а	227272	9	e2	75843
2	c1	191114	10	g2	63776
3	d1	170262	11	a2	56818
4	e1	150372	12	c3	47778
5	g1	127552	13	d3	42566
6	a1	113636	14	e3	37922
7	c2	95556	15	g3	31888

Sine Wave Generator

- Waveform dictionary
 - 512-length arrays
 - Respective frequencies
- Value loader
 - Index: read value
 - Different max values

Sine Wave Generator - frequency

- Octave freq. divider
 - Save memory space
 - Use only Five distinct dictionaries
- Physical freq. divider
 - Divides oscillator clk into real sine wave clk

440.00		
466.16		
493.88		
523.25		
554.37		
587.33		
622.25		
659.25		
698.46		
739.99		
783.99		
830.61		
880.00		

Sine Wave Generator - Structure

- Waveform dictionary
- Physical freq. divider
- Pre-loader
 - Input tone (4bit)
 - Load dictionary
 - Maximum index
 - Octave div coefficient
- Octave freq. divider
- Output value loader

- Input:
 - Clk: std_logic
 - Tone: std_logic_vector (3 downto 0)
- Output:
 - Wave_out: std_logic_vector(7 downto 0)

Sine Wave Generator - Structure

- Why having two freq. dividers?
- Separate the waveform generating process
- Easier to create new dictionaries

Sine Wave Generator

PWM Encoder

 Nexys 4 DDR has a built-in PWM (Pulse Width Modulation) decoder, which is a low-pass filter.

Figure 29. Sallen-Key Butterworth Low-Pass 4th Order Filter.

PWM Encoder

- Input: wave_in : std_logic_vector (7 downto 0)
- Calculate Duty Cycle threshold, according to PWM frequency
- Counter: smaller than threshold, output '1'; else '0'
- Output: std_logic

Figure 32. Representation of a PWM integrator producing an output voltage by integrating the pulse train.

PWM Encoder

Connecting Components

Result Demonstration

Further Development

- Better volume/ DA output solution
- Beats synthesizer
- Synchronization ports
- Selectable timbre (square, sine, toothsaw, etc.)
- Changeable BPM

Reference

- Frequencies for equal-tempered scale, A4 = 440 Hz http://pages.mtu.edu/~suits/notefreqs.html
- Nexys 4 DDR Reference Manual https://reference.digilentinc.com/reference/programmablelogic/nexys-4-ddr/reference-manual
- PWM Audio Tutorial using a FPGA https://www.youtube.com/watch?v=4byHVqXD-UI
- Class Slides

Q&A

GitHub Page

 https://github.com/CharlesThaCat/FPGA-Sequencer-and-Synthesizer

Thank You!