STEPAN GORDEEV Texas Christian University

SED 2024 Winter Meeting

· Low-income countries dominated by unproductive agriculture

- · Low-income countries dominated by unproductive agriculture
 - low agricultural productivity critical for cross-country income differences

- · Low-income countries dominated by unproductive agriculture
 - low agricultural productivity critical for cross-country income differences
- Subsistence farming is common

- Low-income countries dominated by unproductive agriculture
 - low agricultural productivity critical for cross-country income differences
- · Subsistence farming is common
 - Malawi: $\frac{3}{4}$ of households cultivate own land, 11% sell most of the output

- · Low-income countries dominated by unproductive agriculture
 - low agricultural productivity critical for cross-country income differences
- Subsistence farming is common
 - Malawi: $\frac{3}{4}$ of households cultivate own land, 11% sell most of the output

What are the implications of subsistence farming for aggregate agricultural productivity?

- · Low-income countries dominated by unproductive agriculture
 - low agricultural productivity critical for cross-country income differences
- Subsistence farming is common
 - Malawi: $\frac{3}{6}$ of households cultivate own land, 11% sell most of the output

What are the implications of subsistence farming for aggregate agricultural productivity?

— what drives the production choices of subsistence farmers?

- · Low-income countries dominated by unproductive agriculture
 - low agricultural productivity critical for cross-country income differences
- Subsistence farming is common
 - Malawi: $\frac{3}{6}$ of households cultivate own land, 11% sell most of the output

What are the implications of subsistence farming for aggregate agricultural productivity?

— what drives the production choices of subsistence farmers?

own nutritional needs + trade frictions

- · Low-income countries dominated by unproductive agriculture
 - low agricultural productivity critical for cross-country income differences
- Subsistence farming is common
 - Malawi: $\frac{3}{6}$ of households cultivate own land, 11% sell most of the output

What are the implications of subsistence farming for aggregate agricultural productivity?

— what drives the production choices of subsistence farmers?

own nutritional needs + trade frictions

 \vee

farm targets family nutrition demand

- · Low-income countries dominated by unproductive agriculture
 - low agricultural productivity critical for cross-country income differences
- Subsistence farming is common
 - Malawi: $\frac{3}{6}$ of households cultivate own land, 11% sell most of the output

What are the implications of subsistence farming for aggregate agricultural productivity?

— what drives the production choices of subsistence farmers?

own nutritional needs + trade frictions \lor farm targets family nutrition demand \lor product choice \ne comparative advantage

- · Low-income countries dominated by unproductive agriculture
 - low agricultural productivity critical for cross-country income differences
- Subsistence farming is common
 - Malawi: $\frac{3}{6}$ of households cultivate own land, 11% sell most of the output

What are the implications of subsistence farming for aggregate agricultural productivity?

— what drives the production choices of subsistence farmers?

own nutritional needs + trade frictions \lor farm targets family nutrition demand \lor product choice \ne comparative advantage \lor agricultural productivity \downarrow

· DATA:

- · DATA:
 - survey of households in Malawi

- · DATA:
 - survey of households in Malawi
 - explore farm-level subsistence, document scale-dependent product choice

- · DATA:
 - survey of households in Malawi
 - explore farm-level subsistence, document scale-dependent product choice
- Model:

▶ literature

- · DATA:
 - survey of households in Malawi
 - explore farm-level subsistence, document scale-dependent product choice
- · MODEL:
 - heterogeneous farm-operating households

· DATA:

- survey of households in Malawi
- explore farm-level subsistence, document scale-dependent product choice

Model:

- heterogeneous farm-operating households
- domestic trade costs

· DATA:

- survey of households in Malawi
- explore farm-level subsistence, document scale-dependent product choice

· MODEL:

- heterogeneous farm-operating households
- domestic trade costs
- explicit caloric needs

- · DATA:
 - survey of households in Malawi
 - explore farm-level subsistence, document scale-dependent product choice
- · MODEL:
 - heterogeneous farm-operating households
 - domestic trade costs
 - explicit caloric needs
- · FARM BEHAVIOR IN MODEL & DATA:

- DATA:
 - survey of households in Malawi
 - explore farm-level subsistence, document scale-dependent product choice
- · MODEL:
 - heterogeneous farm-operating households
 - domestic trade costs
 - explicit caloric needs
- · FARM BEHAVIOR IN MODEL & DATA:
 - smallest farms focus on calories

 \rightarrow specialize in staples

- DATA:
 - survey of households in Malawi
 - explore farm-level subsistence, document scale-dependent product choice
- · MODEL:
 - heterogeneous farm-operating households
 - domestic trade costs
 - explicit caloric needs
- · FARM BEHAVIOR IN MODEL & DATA:
 - smallest farms focus on calories
 - medium farms shift to dietary diversity
- ightarrow specialize in staples
- → diversify production

PRFVIFW

· DATA:

- survey of households in Malawi
- explore farm-level subsistence, document scale-dependent product choice

MODEL:

- heterogeneous farm-operating households
- domestic trade costs
- explicit caloric needs
- FARM BEHAVIOR IN MODEL & DATA:
 - smallest farms focus on calories
 - medium farms shift to dietary diversity
 - large farms shift to manufactured goods

- \rightarrow specialize in staples
- → diversify production
- → produce & sell marketable goods

- DATA:
 - survey of households in Malawi
 - explore farm-level subsistence, document scale-dependent product choice
- Model:
 - heterogeneous farm-operating households
 - domestic trade costs
 - explicit caloric needs
- FARM BEHAVIOR IN MODEL & DATA:
 - smallest farms focus on calories
 - medium farms shift to dietary diversity
 - large farms shift to manufactured goods
- AGGREGATE PRODUCTIVITY:

- \rightarrow specialize in staples
- → diversify production
- \rightarrow produce & sell marketable goods

▶ literature

PRFVIFW

DATA.

- survey of households in Malawi
- explore farm-level subsistence, document scale-dependent product choice

MODEL:

- heterogeneous farm-operating households
- domestic trade costs
- explicit caloric needs

FARM BEHAVIOR IN MODEL & DATA:

- smallest farms focus on calories
- medium farms shift to dietary diversity
- large farms shift to manufactured goods
- \rightarrow specialize in staples
- → diversify production
- → produce & sell marketable goods

AGGREGATE PRODUCTIVITY

- trade costs \downarrow s.t. farm commercialization 16% \rightarrow 50%:

DATA:

- survey of households in Malawi
- explore farm-level subsistence, document scale-dependent product choice

Model:

- heterogeneous farm-operating households
- domestic trade costs
- explicit caloric needs

FARM BEHAVIOR IN MODEL & DATA:

- smallest farms focus on calories
- medium farms shift to dietary diversity
- large farms shift to manufactured goods
- \rightarrow specialize in staples
- → diversify production
- → produce & sell marketable goods

· AGGREGATE PRODUCTIVITY:

- − trade costs \downarrow s.t. farm commercialization 16% → 50%:
- → aggregate agricultural productivity ↑ 47%

PRFVIFW

· DATA:

- survey of households in Malawi
- explore farm-level subsistence, document scale-dependent product choice

MODEL:

- heterogeneous farm-operating households
- domestic trade costs
- explicit caloric needs

FARM BEHAVIOR IN MODEL & DATA:

- smallest farms focus on calories
- medium farms shift to dietary diversity
- large farms shift to manufactured goods
- \rightarrow specialize in staples
- → diversify production
- → produce & sell marketable goods

· AGGREGATE PRODUCTIVITY

- trade costs \downarrow s.t. farm commercialization 16% \rightarrow 50%:
- → aggregate agricultural productivity ↑ 47%
 - $\star \sim$ half due to improved farm product choice

· DATA:

- survey of households in Malawi
- explore farm-level subsistence, document scale-dependent product choice

Model:

- heterogeneous farm-operating households
- domestic trade costs
- explicit caloric needs

· FARM BEHAVIOR IN MODEL & DATA:

- smallest farms focus on calories
- medium farms shift to dietary diversity
- large farms shift to manufactured goods
- \rightarrow specialize in staples
- → diversify production
- → produce & sell marketable goods

· AGGREGATE PRODUCTIVITY:

- − trade costs \downarrow s.t. farm commercialization 16% → 50%:
- → aggregate agricultural productivity ↑ 47%
 - $\star \sim$ half due to improved farm product choice
 - * smallest farmers gain the most

· Survey of households in Malawi (2016–2017)

- · Survey of households in Malawi (2016–2017)
 - nationally representative, 12.5k HHs

- · Survey of households in Malawi (2016–2017)
 - nationally representative, 12.5k HHs
 - 79% operate a farm

- Survey of households in Malawi (2016–2017)
 - nationally representative, 12.5k HHs
 - 79% operate a farm \leftarrow my sample

- · Survey of households in Malawi (2016–2017)
 - nationally representative, 12.5k HHs
 - − 79% operate a farm ← my sample
- Detailed data on HH characteristics and activity

- · Survey of households in Malawi (2016–2017)
 - nationally representative, 12.5k HHs
 - 79% operate a farm ← my sample
- Detailed data on HH characteristics and activity
 - characteristics of family members \rightarrow HH kcal requirements

- Survey of households in Malawi (2016–2017)
 - nationally representative, 12.5k HHs
 - 79% operate a farm ← my sample
- · Detailed data on HH characteristics and activity
 - characteristics of family members \rightarrow HH kcal requirements
 - food consumed (past week) → HH kcal intakes

- · Survey of households in Malawi (2016–2017)
 - nationally representative, 12.5k HHs
 - 79% operate a farm ← my sample
- · Detailed data on HH characteristics and activity
 - characteristics of family members
 - food consumed (past week)

 - agricultural inputs & outputs

- \rightarrow HH kcal requirements
- \rightarrow HH kcal intakes
- \rightarrow HH output & sales

DATA

- Survey of households in Malawi (2016–2017)
 - nationally representative, 12.5k HHs
 - 79% operate a farm ← my sample
- Detailed data on HH characteristics and activity
 - characteristics of family members
 - food consumed (past week)
 - agricultural inputs & outputs
 - employment and non-farm enterprises
 - ▶ food ▶ output

- \rightarrow HH kcal requirements
- $\rightarrow \mathsf{HH} \; \textbf{kcal intakes}$
- \rightarrow HH output & sales
- ightarrow HH non-farm income

DATA

- Survey of households in Malawi (2016–2017)
 - nationally representative, 12.5k HHs
 - 79% operate a farm ← my sample
- · Detailed data on HH characteristics and activity
 - characteristics of family members \rightarrow HH **kcal** r
 - food consumed (past week)
 - agricultural inputs & outputs
 - employment and non-farm enterprises
 ▶ food ▶ output

- ightarrow HH kcal requirements
- $\rightarrow \mathsf{HH} \text{ kcal intakes}$
- ightarrow HH output & sales
- \rightarrow HH non-farm income
- · Rescale HH kcal intake, output, income by HH kcal requirement
 - ightarrow "per capita" measures, weighted by energy needs

• Farming is important for HH consumption:

- Farming is important for HH consumption:
 - kcal self-produced: 36%

- Farming is important for HH consumption:
 - kcal self-produced: 36%
- $\frac{1}{2}$ of farms **sell none** of their output

- Farming is important for HH consumption:
 - kcal self-produced: 36%
- $\frac{1}{2}$ of farms **sell none** of their output
 - $-\,$ avg share of output sold: 16%

Farm Size $\uparrow \rightarrow$ Shift Farm From Maize to Diversity, Commercialize

Farm Size $\uparrow \rightarrow$ Shift Farm From Maize to Diversity, Commercialize

Farm Size $\uparrow \rightarrow$ Shift Farm From Maize to Diversity, Commercialize

MODEL

- heterogeneous households and agricultural products, solve GE ► details
- HH h consumes n foods $\{c_{h,i}\}_{i=1}^n$ and a manufactured good $c_{h,m}$

- · heterogeneous households and agricultural products, solve GE ▶ details
- HH h consumes n foods $\{c_{h,i}\}_{i=1}^n$ and a manufactured good $c_{h,m}$
- for each food *i*, HH *h* can

▶ details

- · heterogeneous households and agricultural products, solve GE ▶ details
- HH h consumes n foods $\{c_{h,i}\}_{i=1}^n$ and a manufactured good $c_{h,m}$

- heterogeneous households and agricultural products, solve GE ➤ details
- HH h consumes n foods $\{c_{h,i}\}_{i=1}^n$ and a manufactured good $c_{h,m}$

• for each food i, HH h can $\begin{cases} \text{produce it on its land endowment} \\ \text{purchase it at the market, subject to trade cost } d_h \end{cases}$

- heterogeneous households and agricultural products, solve GE ➤ details
- HH h consumes n foods $\{c_{h,i}\}_{i=1}^n$ and a manufactured good $c_{h,m}$

• for each food i, HH h can $\begin{cases} \text{produce it on its land endowment} \\ \text{purchase it at the market, subject to trade cost } d_h \\ \text{sell it at the market, subject to trade cost } d_h \end{cases}$

- heterogeneous households and agricultural products, solve GE ▶ details
- HH h consumes n foods $\{c_{h,i}\}_{i=1}^n$ and a manufactured good $c_{h,m}$ for each food i, HH h can $\begin{cases} \text{produce it on its land endowment} \\ \text{purchase it at the market, subject to trade cost } d_h \\ \text{sell it at the market, subject to trade cost } d_h \end{cases}$
- HH funds purchases of food and $c_{h,m}$ with food sales and exogenous non-farm income

- heterogeneous households and agricultural products, solve GE ▶ details
- HH h consumes n foods $\{c_{h,i}\}_{i=1}^n$ and a manufactured good $c_{h,m}$

• for each food i, HH h can $\begin{cases} \text{produce it on its land endowment} \\ \text{purchase it at the market, subject to trade cost } d_h \\ \text{sell it at the market, subject to trade cost } d_h \end{cases}$

• HH funds purchases of food and $c_{h,m}$ with food sales and exogenous non-farm income

$$\max\left((1-\varphi_m)\left(\sum_{i=1}^n\varphi_i\varepsilon_{h,i}^{\frac{\sigma-1}{\sigma}}\right)^{\frac{\sigma}{\sigma-1}\frac{\gamma-1}{\gamma}}+\varphi_m\varepsilon_{h,m}^{\frac{\gamma-1}{\gamma}}\right)^{\frac{\gamma}{\gamma-1}}$$

- heterogeneous households and agricultural products, solve GE ▶ details
- HH h consumes n foods $\{c_{h,i}\}_{i=1}^n$ and a manufactured good $c_{h,m}$
- for each food i, HH h can $\begin{cases} \text{produce it on its land endowment} \\ \text{purchase it at the market, subject to trade cost } d_h \\ \text{sell it at the market, subject to trade cost } d_h \end{cases}$
- HH funds purchases of food and $c_{h,m}$ with food sales and exogenous non-farm income

$$\max\left((1-\varphi_m)\left(\sum_{i=1}^n\varphi_i\varepsilon_{h,i}^{\frac{\sigma-1}{\sigma}}\right)^{\frac{\sigma}{\sigma-1}\frac{\gamma-1}{\gamma}}+\varphi_m\varepsilon_{h,m}^{\frac{\gamma-1}{\gamma}}\right)^{\frac{\gamma}{\gamma-1}}$$

• foods differ in kcal content k_i

- heterogeneous households and agricultural products, solve GE ▶ details
- HH h consumes n foods $\{c_{h,i}\}_{i=1}^n$ and a manufactured good $c_{h,m}$
- for each food i, HH h can $\begin{cases} \text{produce it on its land endowment} \\ \text{purchase it at the market, subject to trade cost } d_h \\ \text{sell it at the market, subject to trade cost } d_h \end{cases}$
- HH funds purchases of food and $c_{h,m}$ with food sales and exogenous non-farm income

$$\max\left((1-\varphi_m)\left(\sum_{i=1}^n\varphi_i\varsigma_{h,i}^{\frac{\sigma-1}{\sigma}}\right)^{\frac{\sigma}{\sigma-1}\frac{\gamma-1}{\gamma}}+\varphi_m\varsigma_{h,m}^{\frac{\gamma-1}{\gamma}}\right)^{\frac{1}{\gamma-1}}$$

- · foods differ in kcal content k_i
- HH prefers $\sum_{i=1}^{n} c_{h,i} k_i \approx \underbrace{K_{req,h}}_{\text{caloric}}$

- heterogeneous households and agricultural products, solve GE ▶ details
- HH h consumes n foods $\{c_{h,i}\}_{i=1}^n$ and a manufactured good $c_{h,m}$
- for each food i, HH h can $\begin{cases} \text{produce it on its land endowment} \\ \text{purchase it at the market, subject to trade cost } d_h \\ \text{sell it at the market, subject to trade cost } d_h \end{cases}$
- HH funds purchases of food and $c_{h,m}$ with food sales and exogenous non-farm income

$$\max\left((1-\varphi_m)\left(\sum_{i=1}^n\varphi_i\mathsf{C}_{h,i}^{\frac{\sigma-1}{\sigma}}\right)^{\frac{\sigma}{\sigma-1}\frac{\gamma-1}{\gamma}}+\varphi_m\mathsf{C}_{h,m}^{\frac{\gamma-1}{\gamma}}\right)^{\frac{\gamma}{\gamma-1}}-\underbrace{f\left(\sum_{i=1}^n\mathsf{C}_{h,i}\mathsf{k}_i,\ \mathsf{K}_{\mathsf{req},h}\right)}_{\mathsf{kcal deviation penalty}}$$

• foods differ in kcal content k_i

• HH prefers $\sum_{i=1}^{n} c_{h,i} k_i \approx \underbrace{K_{req,h}}_{caloric}$

CALORIC DEVIATION PENALTY f

· caloric deviation penalty fn (▶ properties):

$$f\left(\sum_{i} c_{h,i} k_{i}, K_{req,h}\right) = \psi\left(\frac{\sum_{i} c_{h,i} k_{i} - K_{req,h}}{K_{req,h}}\right)^{2} \frac{K_{req,h}}{\sum_{i} c_{h,i} k_{i}}$$

$$\downarrow \text{The properties of the properties of the$$

FARM BEHAVIOR IN MODEL AND DATA

log kcal intake **food diversity** ▶ *def* ▶ *nutrients* log output log non-farm income Ν Adi. R² * p < 0.1, ** p < 0.05, *** p < 0.01

	log kcal intake	food diversity ► <i>def</i> ► <i>nutrients</i>
	model: CES-only	
log output	0.810 (0.001)	
log non-farm income	0.216 (0.001)	
N Adj. R ²	71,040 0.951	

^{*} p < 0.1, ** p < 0.05, *** p < 0.01

- \cdot CES-only ($\psi=0$): relative consumptions invariant to size/income
 - $-\,$ kcal intake \uparrow proportionally to total shadow income, diversity constant

	log kcal intake	food diversity ▶ def ▶ nutrients		
	model:	model:		
	CES-only	CES-only		
log output	0.810	-0.058		
	(0.001)	(0.001)		
log non-farm	0.216	0.012		
income	(0.001)	(0.001)		
N	71,040	71,040		
Adj. R ²	0.951	0.036		

^{*} p < 0.1, ** p < 0.05, *** p < 0.01

- \cdot CES-only ($\psi=0$): relative consumptions invariant to size/income
 - $-\,$ kcal intake \uparrow proportionally to total shadow income, diversity constant

	log kcal intake		food diversity ▶ def ▶ nutrients		
	model:	model:	model:		
	CES-only	benchmark	CES-only		
log output	0.810	0.109	-0.058		
	(0.001)	(0.001)	(0.001)		
log non-farm	0.216	0.089	0.012		
income	(0.001)	(0.001)	(0.001)		
N	71,040	70,750	71,040		
Adj. R ²	0.951	0.395	0.036		

^{*} p < 0.1, ** p < 0.05, *** p < 0.01

- CES-only ($\psi = 0$): relative consumptions invariant to size/income
 - $-\,$ kcal intake \uparrow proportionally to total shadow income, diversity constant
- $\psi > 0$ (benchmark): reallocate resources from calories to diversity as size/income \uparrow
 - small: focus consumption on obtaining calories to reduce caloric deviation penalty

	log kcal intake		food diversity ▶ def ▶ nutrients		
	model:	model:	model:	model:	
	CES-only	benchmark	CES-only	benchmark	
log output	0.810	0.109	-0.058	0.445	
	(0.001)	(0.001)	(0.001)	(0.001)	
log non-farm	0.216	0.089	0.012	0.425	
income	(0.001)	(0.001)	(0.001)	(0.002)	
N	71,040	70,750	71,040	70,750	
Adj. R ²	0.951	0.395	0.036	0.758	

^{*} p < 0.1, ** p < 0.05, *** p < 0.01

- CES-only ($\psi=0$): relative consumptions invariant to size/income
 - kcal intake ↑ proportionally to total shadow income, diversity constant
- \cdot ψ > 0 (benchmark): reallocate resources from calories to diversity as size/income \uparrow
 - small: focus consumption on obtaining calories to reduce caloric deviation penalty
 - large: caloric requirement largely satisfied → diversify diet
 details ➤ comparison to Stone-Geary

	log kcal intake			food diversity ▶ def ▶ nutrients		
	model: CES-only	model: benchmark	data	model: CES-only	model: benchmark	
log output	0.810 (0.001)	0.109 (0.001)	0.091*** (0.005)	-0.058 (0.001)	0.445 (0.001)	
log non-farm income	0.216 (0.001)	0.089 (0.001)	0.063*** (0.004)	0.012 (0.001)	0.425 (0.002)	
N Adj. R ²	71,040 0.951	70,750 0.395	8,674 0.063	71,040 0.036	70,750 0.758	

^{*} p < 0.1, ** p < 0.05, *** p < 0.01

- CES-only ($\psi = 0$): relative consumptions invariant to size/income
 - $-\,$ kcal intake \uparrow proportionally to total shadow income, diversity constant
- $\psi > 0$ (benchmark): reallocate resources from calories to diversity as size/income \uparrow
 - small: focus consumption on obtaining calories to reduce caloric deviation penalty
 - large: caloric requirement largely satisfied → diversify diet
 details ➤ comparison to Stone-Geary

	log kcal intake			food diversity ▶ def ▶ nutrients		
	model: CES-only	model: benchmark	data	model: CES-only	model: benchmark	data
log output	0.810	0.109	0.091***	-0.058	0.445	0.395***
	(0.001)	(0.001)	(0.005)	(0.001)	(0.001)	(0.034)
log non-farm	0.216	0.089	0.063***	0.012	0.425	0.857***
income	(0.001)	(0.001)	(0.004)	(0.001)	(0.002)	(0.033)
N	71,040	70,750	8,674	71,040	70,750	8,675
Adj. R ²	0.951	0.395	0.063	0.036	0.758	0.131

^{*} p < 0.1, ** p < 0.05, *** p < 0.01

- CES-only ($\psi=0$): relative consumptions invariant to size/income
 - kcal intake ↑ proportionally to total shadow income, diversity constant
- $\psi > 0$ (benchmark): reallocate resources from calories to diversity as size/income \uparrow
 - small: focus consumption on obtaining calories to reduce caloric deviation penalty
 - $\,$ large: caloric requirement largely satisfied \rightarrow diversify diet

▶ details ▶ comparison to Stone-Geary

SELLING BEHAVIOR: MODEL & DATA

LARGE FARMS ARE MORE ACTIVE SELLERS ▶ details

- MODEL & DATA: farm size $\uparrow \rightarrow$ sell bigger fraction of output
- \cdot model mechanism: size $\uparrow \to$ reallocate cons. to diversity, manuf. \to need revenue

SELLING BEHAVIOR: MODEL & DATA

LARGE FARMS ARE MORE ACTIVE SELLERS ▶ details

- MODEL & DATA: farm size $\uparrow \rightarrow$ sell bigger fraction of output
- \cdot model mechanism: size $\uparrow \rightarrow$ reallocate cons. to diversity, manuf. \rightarrow need revenue

SALES ARE SPECIALIZED ▶ *details*

- MODEL & DATA: sales are specialized compared to overall production
- model mechanism: sell only the most revenue-productive good, but can produce others for own consumption

SMALL SPECIALIZE, MEDIUM DIVERSIFY, LARGE COMMERCIALIZE: MODEL

SMALL SPECIALIZE, MEDIUM DIVERSIFY, LARGE COMMERCIALIZE: MODEL

SMALL SPECIALIZE, MEDIUM DIVERSIFY, LARGE COMMERCIALIZE: MODEL

SMALL SPECIALIZE, MEDIUM DIVERSIFY, LARGE COMMERCIALIZE: DATA

SMALL SPECIALIZE, MEDIUM DIVERSIFY, LARGE COMMERCIALIZE: DATA

SMALL SPECIALIZE, MEDIUM DIVERSIFY, LARGE COMMERCIALIZE: DATA

- Model: nutrition demand + trade costs \rightarrow explain behavior of subsistence farmers
 - scale-dependence of consumption, production, selling

- \cdot Model: nutrition demand + trade costs o explain behavior of subsistence farmers
 - scale-dependence of consumption, production, selling
- · How relevant is it for aggregate agricultural productivity?

- \cdot Model: nutrition demand + trade costs o explain behavior of subsistence farmers
 - scale-dependence of consumption, production, selling
- · How relevant is it for aggregate agricultural productivity?
- Conduct counterfactual reductions in domestic agricultural trade costs ($d\downarrow$)

- Model: nutrition demand + trade costs → explain behavior of subsistence farmers
 scale-dependence of consumption, production, selling
- · How relevant is it for aggregate agricultural productivity?
- Conduct counterfactual reductions in domestic agricultural trade costs ($d \downarrow$)

- Model: nutrition demand + trade costs → explain behavior of subsistence farmers
 scale-dependence of consumption, production, selling
- · How relevant is it for aggregate agricultural productivity?
- Conduct counterfactual reductions in domestic agricultural trade costs ($d \downarrow$)

 $d\downarrow$ s.t. avg share sold **16%** \rightarrow **50%**:

aggr. productivity ↑ 47% ► details

- ullet MODEL: nutrition demand + trade costs o explain behavior of subsistence farmers
 - scale-dependence of consumption, production, selling
- · How relevant is it for aggregate agricultural productivity?
- Conduct counterfactual reductions in domestic agricultural trade costs ($d\downarrow$)

- aggr. productivity ↑ 47% ► details
 - $-\frac{1}{2}$ due to smaller mechanical losses from d

- \cdot Model: nutrition demand + trade costs o explain behavior of subsistence farmers
 - scale-dependence of consumption, production, selling
- · How relevant is it for aggregate agricultural productivity?
- Conduct counterfactual reductions in domestic agricultural trade costs ($d\downarrow$)

- aggr. productivity ↑ 47% ► details
 - $-\frac{1}{2}$ due to smaller mechanical losses from d
 - $-\frac{1}{2}$ due to changing product choice

- Model: nutrition demand + trade costs \rightarrow explain behavior of subsistence farmers
 - scale-dependence of consumption, production, selling
- How relevant is it for aggregate agricultural productivity?
- Conduct counterfactual reductions in domestic agricultural trade costs ($d\downarrow$)

- aggr. productivity ↑ 47% ► details
 - $-\frac{1}{2}$ due to smaller mechanical losses from d
 - $-\frac{1}{2}$ due to changing product choice
 - ightarrow subsistence farmers' production decisions important for aggregate productivity

- Model: nutrition demand + trade costs \rightarrow explain behavior of subsistence farmers
 - scale-dependence of consumption, production, selling
- · How relevant is it for aggregate agricultural productivity?
- Conduct counterfactual reductions in domestic agricultural trade costs $(d \downarrow)$

- aggr. productivity ↑ 47% ► details
 - $-\frac{1}{2}$ due to smaller mechanical losses from d
 - $-\frac{1}{2}$ due to changing product choice
 - → subsistence farmers' production decisions important for aggregate productivity
- heterogeneous effects: ► details

- Model: nutrition demand + trade costs \rightarrow explain behavior of subsistence farmers
 - scale-dependence of consumption, production, selling
- · How relevant is it for aggregate agricultural productivity?
- Conduct counterfactual reductions in domestic agricultural trade costs $(d \downarrow)$

- aggr. productivity ↑ 47% ► details
 - $-\frac{1}{2}$ due to smaller mechanical losses from d
 - $-\frac{1}{2}$ due to changing product choice
 - → subsistence farmers' production decisions important for aggregate productivity
- heterogeneous effects: ► details
 - farm productivity: **small** \uparrow the most, **large** \uparrow the least

- Model: nutrition demand + trade costs \rightarrow explain behavior of subsistence farmers
 - scale-dependence of consumption, production, selling
- · How relevant is it for aggregate agricultural productivity?
- Conduct counterfactual reductions in domestic agricultural trade costs $(d \downarrow)$

- aggr. productivity ↑ 47% ► details
 - $-\frac{1}{2}$ due to smaller mechanical losses from d
 - $-\frac{1}{2}$ due to changing product choice
 - → subsistence farmers' production decisions important for aggregate productivity
- heterogeneous effects: ► details
 - farm productivity: small ↑ the most, large ↑ the least
- · productivity gain in non-caloric models is smaller, but not drastically

- Model: nutrition demand + trade costs \rightarrow explain behavior of subsistence farmers
 - scale-dependence of consumption, production, selling
- · How relevant is it for aggregate agricultural productivity?
- Conduct counterfactual reductions in domestic agricultural trade costs ($d\downarrow$)

- aggr. productivity ↑ 47% ► details
 - $-\frac{1}{2}$ due to smaller mechanical losses from d
 - $-\frac{1}{2}$ due to changing product choice
 - → subsistence farmers' production decisions important for aggregate productivity
- heterogeneous effects: ► details
 - farm productivity: small ↑ the most, large ↑ the least
- productivity gain in non-caloric models is smaller, but not drastically
 - − ▶ plot

- Model: nutrition demand + trade costs \rightarrow explain behavior of subsistence farmers
 - scale-dependence of consumption, production, selling
- · How relevant is it for aggregate agricultural productivity?
- Conduct counterfactual reductions in domestic agricultural trade costs ($d\downarrow$)

- aggr. productivity ↑ 47% ► details
 - $-\frac{1}{2}$ due to smaller mechanical losses from d
 - $-\frac{1}{2}$ due to changing product choice
 - → subsistence farmers' production decisions important for aggregate productivity
- heterogeneous effects: ► details
 - farm productivity: small \uparrow the most, large \uparrow the least
- productivity gain in non-caloric models is smaller, but not drastically
 - − ▶ plot
 - \rightarrow subsistence matters more for macro, nutrition matters for micro

CONCLUSION

Subsistence farmer nutrition demand

Farm production decisions

Aggregate agricultural productivity ↓

- smallest farms specialize in calories
- medium farms diversify diet & production
- largest farms become market-oriented
- if partially leave subsistence ightarrow agric. productivity \uparrow
- half because improved product choice
- calories matter less than subsistence itself

 \cdot Analyze government programs targeting smallholder farmers

- Analyze government programs targeting smallholder farmers
 - smallholder farmer support is central to public policy in poor countries

- Analyze government programs targeting smallholder farmers
 - smallholder farmer support is central to public policy in poor countries
 - existing & proposed policies: encourage staples, biodiversity, or cash crops?

- Analyze government programs targeting smallholder farmers
 - smallholder farmer support is central to public policy in poor countries
 - existing & proposed policies: encourage staples, biodiversity, or cash crops?
 - framework well suited for predicting nutritional, economic outcomes

economics literature:

SUBSISTENCE FARMING &
AGRICULTURAL PRODUCTIVITY

economics literature:

SUBSISTENCE FARMING & AGRICULTURAL PRODUCTIVITY

- Gollin and Rogerson (2014), Rivera-Padilla (2020), Sotelo (2020), Kebede (2020)
 - region/village-level subsistence
 - remote regions trade little
 - → subsistence depresses agricultural productivity

economics literature:

SUBSISTENCE FARMING &

AGRICULTURAL PRODUCTIVITY

- Gollin and Rogerson (2014), Rivera-Padilla (2020), Sotelo (2020), Kebede (2020)
 - region/village-level subsistence
 - remote regions trade little
 - → subsistence depresses agricultural productivity

THIS PAPER:

explore farm-level subsistence, document scale-dependent product choice

economics literature:

SUBSISTENCE FARMING &

AGRICULTURAL PRODUCTIVITY

- Gollin and Rogerson (2014), Rivera-Padilla (2020), Sotelo (2020), Kebede (2020)
 - region/village-level subsistence
 - remote regions trade little
 - → subsistence depresses agricultural productivity

- explore farm-level subsistence, document scale-dependent product choice
- build model with nutrition demand driven by caloric needs as explanation

economics literature:

SUBSISTENCE FARMING &

AGRICULTURAL PRODUCTIVITY

- Gollin and Rogerson (2014), Rivera-Padilla (2020), Sotelo (2020), Kebede (2020)
 - region/village-level subsistence
 - remote regions trade little
 - → subsistence depresses agricultural productivity

- explore farm-level subsistence, document scale-dependent product choice
- build model with nutrition demand driven by caloric needs as explanation
- show importance of farm-level subsistence for aggr. agricultural productivity

economics literature:

SUBSISTENCE FARMING & AGRICULTURAL PRODUCTIVITY

- Gollin and Rogerson (2014), Rivera-Padilla (2020), Sotelo (2020), Kebede (2020)
 - region/village-level subsistence
 - remote regions trade little
 - → subsistence depresses agricultural productivity

nutrition literature:

SUBSISTENCE FARMING & NUTRITION

- explore farm-level subsistence, document scale-dependent product choice
- build model with nutrition demand driven by caloric needs as explanation
- show importance of farm-level subsistence for aggr. agricultural productivity

economics literature:

SUBSISTENCE FARMING & AGRICULTURAL PRODUCTIVITY

- Gollin and Rogerson (2014), Rivera-Padilla (2020), Sotelo (2020), Kebede (2020)
 - region/village-level subsistence
 - remote regions trade little
 - → subsistence depresses agricultural productivity

nutrition literature:

SUBSISTENCE FARMING & NUTRITION

- Jones (2017), Sibhatu et al. (2015)
 - smallholder farm biodiversity related to dietary diversity
 - especially with poor market access
 - → farm characteristics matter for nutritional outcomes

- explore farm-level subsistence, document scale-dependent product choice
- build model with nutrition demand driven by caloric needs as explanation
- show importance of farm-level subsistence for aggr. agricultural productivity

Food consumption

- Food consumption
 - HH-product consumption in past week

- Food consumption
 - HH-product consumption in past week
- Food composition

- Food consumption
 - HH-product consumption in past week
- Food composition
 - product nutritional contents from Malawian and Tanzanian food composition tables

- Food consumption
 - HH-product consumption in past week
- Food composition
 - product nutritional contents from Malawian and Tanzanian food composition tables
 - → obtain HH-level calorie and nutrient intakes

- Food consumption
 - HH-product consumption in past week
- Food composition
 - product nutritional contents from Malawian and Tanzanian food composition tables
 - → obtain HH-level calorie and nutrient intakes
- Nutritional needs

- Food consumption
 - HH-product consumption in past week
- Food composition
 - product nutritional contents from Malawian and Tanzanian food composition tables
 - → obtain HH-level calorie and nutrient intakes
- Nutritional needs
 - kcal requirement for each individual (age, sex) from FAO's Human Energy Requirements

- Food consumption
 - HH-product consumption in past week
- Food composition
 - product nutritional contents from Malawian and Tanzanian food composition tables
 - → obtain HH-level calorie and nutrient intakes
- Nutritional needs
 - kcal requirement for each individual (age, sex) from FAO's Human Energy Requirements
 - nutrient daily recommended allowances from Dietary Guidelines for Americans

- Food consumption
 - HH-product consumption in past week
- Food composition
 - product nutritional contents from Malawian and Tanzanian food composition tables
 - → obtain HH-level calorie and nutrient intakes
- Nutritional needs
 - kcal requirement for each individual (age, sex) from FAO's Human Energy Requirements
 - nutrient daily recommended allowances from Dietary Guidelines for Americans
 - → obtain HH-level calorie and nutrient requirements

OUTPUT & INCOME

- Farm output
 - HH-product output in past year
 - sales if any
 - total farm output: quantities weighted by median sale price

OUTPUT & INCOME

- · Farm output
 - HH-product output in past year
 - sales if any
 - total farm output: quantities weighted by median sale price
- · Non-farm income
 - income from employment and non-farm enterprises

$$\max\left((1-\varphi_m)\left(\sum_{i=1}^n\varphi_ic_{h,i}\frac{\sigma^{-1}}{\sigma}\right)^{\frac{\sigma}{\sigma-1}\frac{\gamma-1}{\gamma}}+\varphi_mc_{h,m}\frac{\gamma-1}{\gamma}\right)^{\frac{\gamma}{\gamma-1}}$$

• HH h consumes n foods $\{c_{h,i}\}_{i=1}^n$ and a manufactured good $c_{h,m}$

$$\max\left((1-\varphi_m)\left(\sum_{i=1}^n\varphi_i\varsigma_{h,i}\frac{\sigma^{-1}}{\sigma}\right)^{\frac{\sigma}{\sigma-1}\frac{\gamma-1}{\gamma}}+\varphi_m\varsigma_{h,m}^{\frac{\gamma-1}{\gamma}}\right)^{\frac{\gamma}{\gamma-1}}$$

• HH h consumes n foods $\{c_{h,i}\}_{i=1}^n$ and a manufactured good $c_{h,m}$

$$\max\left((1-\varphi_m)\left(\sum_{i=1}^n\varphi_ic_{h,i}\frac{\sigma^{-1}}{\sigma}\right)^{\frac{\sigma}{\sigma-1}\frac{\gamma-1}{\gamma}}+\varphi_mc_{h,m}\frac{\gamma-1}{\gamma}\right)^{\frac{\gamma}{\gamma-1}}$$

• HH h consumes n foods $\{c_{h,i}\}_{i=1}^n$ and a manufactured good $c_{h,m}$

$$\max\left((1-\varphi_m)\left(\sum_{i=1}^n\varphi_i\mathsf{c}_{h,i}^{\frac{\sigma-1}{\sigma}}\right)^{\frac{\sigma}{\sigma-1}\frac{\gamma-1}{\gamma}}+\varphi_m\mathsf{c}_{h,m}^{\frac{\gamma-1}{\gamma}}\right)^{\frac{1}{\gamma-1}}$$

- HH h consumes n foods $\{c_{h,i}\}_{i=1}^n$ and a manufactured good $c_{h,m}$
 - foods differ in kcal content k;

$$\max\left((1-\varphi_m)\left(\sum_{i=1}^n\varphi_i\mathsf{c}_{h,i}^{\frac{\sigma-1}{\sigma}}\right)^{\frac{\sigma}{\sigma-1}\frac{\gamma-1}{\gamma}}+\varphi_m\mathsf{c}_{h,m}^{\frac{\gamma-1}{\gamma}}\right)^{\frac{\gamma}{\gamma-1}}$$

- HH h consumes n foods $\{c_{h,i}\}_{i=1}^n$ and a manufactured good $c_{h,m}$ foods differ in kcal content k;

• HH prefers
$$\sum_{i=1}^{n} c_{h,i} k_i \approx \underbrace{K_{req,h}}_{caloric}$$

$$\max\left((1-\varphi_m)\left(\sum_{i=1}^n\varphi_ic_{h,i}^{\frac{\sigma-1}{\sigma}}\right)^{\frac{\sigma}{\sigma-1}\frac{\gamma-1}{\gamma}}+\varphi_mc_{h,m}^{\frac{\gamma-1}{\gamma}}\right)^{\frac{\gamma}{\gamma-1}}-\underbrace{f\left(\sum_{i=1}^nc_{h,i}k_i,\ K_{req,h}\right)}_{\text{kcal deviation penalty}}$$

- HH h consumes n foods $\{c_{h,i}\}_{i=1}^n$ and a manufactured good $c_{h,m}$
 - foods differ in kcal content k;

• HH prefers
$$\sum_{i=1}^{n} c_{h,i} k_i \approx \underbrace{K_{req,h}}_{caloric}$$

$$\max\left((1-\varphi_m)\left(\sum_{i=1}^n\varphi_ic_{h,i}^{\frac{\sigma-1}{\sigma}}\right)^{\frac{\sigma}{\sigma-1}\frac{\gamma-1}{\gamma}}+\varphi_mc_{h,m}^{\frac{\gamma-1}{\gamma}}\right)^{\frac{\gamma}{\gamma-1}}-\underbrace{f\left(\sum_{i=1}^nc_{h,i}k_i,\ K_{req,h}\right)}_{\text{kcal deviation penalty}}$$

- HH h consumes n foods $\{c_{h,i}\}_{i=1}^n$ and a manufactured good $c_{h,m}$
 - foods differ in kcal content k;
- HH prefers $\sum_{i=1}^{n} c_{h,i} k_i \approx \underbrace{K_{req,h}}_{caloric}$
- For each good i, HH h can $\left\{\right.$

$$\max\left((1-\varphi_m)\left(\sum_{i=1}^n\varphi_i c_{h,i}^{\frac{\sigma-1}{\sigma}}\right)^{\frac{\sigma}{\sigma-1}\frac{\gamma-1}{\gamma}}+\varphi_m c_{h,m}^{\frac{\gamma-1}{\gamma}}\right)^{\frac{\gamma}{\gamma-1}}-\underbrace{f\left(\sum_{i=1}^nc_{h,i}k_i,\ K_{\text{req},h}\right)}_{\text{kcal deviation penalty}}$$

- HH *h* consumes *n* foods $\{c_{h,i}\}_{i=1}^n$ and a manufactured good $c_{h,m}$ foods differ in kcal content *k*
- HH prefers $\sum_{i=1}^{n} c_{h,i} k_i \approx \underbrace{K_{req,h}}_{caloric}$
- For each good *i*, HH *h* can $\begin{cases} \text{produce } x_{h,i} \text{ with productivity } z_{h,i} \end{cases}$

$$\max\left((1-\varphi_m)\left(\sum_{i=1}^n\varphi_ic_{h,i}\frac{\sigma^{-1}}{\sigma}\right)^{\frac{\sigma}{\sigma-1}\frac{\gamma-1}{\gamma}}+\varphi_mc_{h,m}\frac{\gamma-1}{\gamma}\right)^{\frac{\gamma}{\gamma-1}}-\underbrace{f\left(\sum_{i=1}^nc_{h,i}k_i,\ K_{req,h}\right)}_{\text{kcal deviation penalty}}$$

$$\sum_{i=1}^n\frac{x_{h,i}}{z_{h,i}}\leq L_h$$

$$\sum_{i=1}^nx_{h,i}^pp_id_h+p_mc_{h,m}\leq\sum_{i=1}^nx_{h,i}^s\frac{p_i}{d_h}+wN_h$$

- HH *h* consumes *n* foods $\{c_{h,i}\}_{i=1}^n$ and a manufactured good $c_{h,m}$ foods differ in kcal content k_i
- HH prefers $\sum_{i=1}^{n} c_{h,i} k_i \approx \underbrace{K_{req,h}}_{\text{caloric}}$
- For each good *i*, HH *h* can $\begin{cases} \text{produce } x_{h,i} \text{ with productivity } z_{h,i} \\ \text{purchase } x_{h,i}^p \text{ or sell } x_i^s \text{ at } p_i \text{ with trade cost } d_h > 1 \end{cases}$

$$f(\sum_{i} c_{i}k_{i}, K_{req})$$
 PROPERTIES

Properties:

1.
$$f(bK_{in}, bK_{req}) = f(K_{in}, K_{req})$$

2.
$$f(bK_{req}, K_{req}) = f\left(\frac{K_{req}}{b}, K_{req}\right)$$

3.
$$\min_{K_{in}>0} f(K_{in}, K_{req}) = f(K_{req}, K_{req}) = 0$$

4.
$$f_{11}(K_{in}, K_{req}) = \frac{2\psi K_{req}}{K_i^3} > 0$$

(homogeneity of deg. 0)

(symmetry around K_{req} in ratios)

(minimum and zero if eat K_{req})

(convex in intake)

- · Consider the problem of a household
- Suppose $\psi = 0$ (CES-only)

$$MU_i^{CES}(c_i) = MC_i$$
 (c_i FOC)

- · Consider the problem of a household
- Suppose $\psi > 0$ (benchmark)

$$MU_i^{CES}(c_i) - k_i f_1\left(\sum_i c_i k_i, K_{req}\right) = MC_i$$
 (c_i FOC)

- · Consider the problem of a household
- Suppose $\psi > 0$ (benchmark), $\sum_i c_i k_i < K_{req}$

$$MU_i^{CES}(c_i) - \underbrace{k_i f_1\left(\sum_i c_i k_i, K_{req}\right)}_{\leq 0} = MC_i$$
 (c_i FOC)

- · Consider the problem of a household
- Suppose $\psi > 0$ (benchmark), $\sum_i c_i k_i < K_{req}$

$$MU_i^{CES}(c_i) - \underbrace{k_i f_1\left(\sum_i c_i k_i, K_{req}\right)}_{\leq 0} = MC_i$$
 (c_i FOC)

$$\cdot k_i = 0 \rightarrow k_i f_1 \left(\sum_i c_i k_i, K_{req} \right) = 0$$

- · Consider the problem of a household
- Suppose $\psi > 0$ (benchmark), $\sum_i c_i k_i < K_{req}$

$$MU_i^{CES}(c_i) - \underbrace{k_i f_1\left(\sum_i c_i k_i, K_{req}\right)}_{\leq 0} = MC_i$$
 (c_i FOC)

$$\cdot k_i = 0 \rightarrow k_i f_1 \left(\sum_i c_i k_i, K_{req} \right) = 0$$

•
$$k_i > 0$$

- · Consider the problem of a household
- Suppose $\psi > 0$ (benchmark), $\sum_i c_i k_i < K_{req}$

$$MU_i^{CES}(c_i) - \underbrace{k_i f_1\left(\sum_i c_i k_i, K_{req}\right)}_{\leq 0, \downarrow} = MC_i$$
 (c_i FOC)

$$\cdot k_i = 0 \rightarrow k_i f_1 \left(\sum_i c_i k_i, K_{req} \right) = 0$$

·
$$k_i > 0 \rightarrow k_i f_1 \left(\sum_i c_i k_i, K_{req} \right) \downarrow$$

- · Consider the problem of a household
- Suppose $\psi > 0$ (benchmark), $\sum_i c_i k_i < K_{req}$

$$\underbrace{MU_{i}^{CES}(c_{i})}_{\downarrow} - \underbrace{k_{i}f_{1}\left(\sum_{i}c_{i}k_{i}, K_{req}\right)}_{\leq 0, \downarrow} = MC_{i}$$
 (c_i FOC)

$$\cdot k_i = 0 \rightarrow k_i f_1 \left(\sum_i c_i k_i, K_{req} \right) = 0$$

·
$$k_i > 0 \rightarrow k_i f_1 \left(\sum_i c_i k_i, \ K_{req} \right) \downarrow \rightarrow MU_i^{CES} \downarrow \rightarrow \ c_i \uparrow$$

- · Consider the problem of a household
- Suppose $\psi > 0$ (benchmark), $\sum_i c_i k_i < K_{req}$

$$\underbrace{MU_{i}^{CES}(c_{i})}_{\downarrow} - \underbrace{k_{i}f_{1}\left(\sum_{i}c_{i}k_{i}, K_{req}\right)}_{\leq 0, \downarrow} = MC_{i}$$
 (c_i FOC)

- $\cdot k_i = 0 \rightarrow k_i f_1 \left(\sum_i c_i k_i, K_{req} \right) = 0$
- $\cdot k_i > 0 \rightarrow k_i f_1(\sum_i c_i k_i, K_{req}) \downarrow \rightarrow MU_i^{CES} \downarrow \rightarrow c_i \uparrow$
- When energy intake < requirement, consume more efficient sources of calories

- · Consider the problem of a household
- Suppose $\psi > 0$ (benchmark), $\sum_i c_i k_i < K_{req}$

$$\underbrace{MU_{i}^{CES}(c_{i})}_{\downarrow} - \underbrace{k_{i}f_{1}\left(\sum_{i}c_{i}k_{i}, K_{req}\right)}_{\leq 0, \downarrow} = MC_{i}$$
 (c_i FOC)

- $\cdot k_i = 0 \rightarrow k_i f_1(\sum_i c_i k_i, K_{req}) = 0$
- $\cdot k_i > 0 \rightarrow k_i f_1 \left(\sum_i c_i k_i, K_{req} \right) \downarrow \rightarrow MU_i^{CES} \downarrow \rightarrow c_i \uparrow$
- When energy intake < requirement, consume more efficient sources of calories
- · Why these non-homothetic preferences?

- · Consider the problem of a household
- Suppose $\psi > 0$ (benchmark), $\sum_i c_i k_i < K_{req}$

$$\underbrace{MU_{i}^{CES}(c_{i})}_{\downarrow} - \underbrace{k_{i}f_{1}\left(\sum_{i}c_{i}k_{i}, K_{req}\right)}_{\leq 0, \downarrow} = MC_{i}$$
 (c_i FOC)

- $\cdot k_i = 0 \rightarrow k_i f_1(\sum_i c_i k_i, K_{req}) = 0$
- · $k_i > 0 \rightarrow k_i f_1 (\sum_i c_i k_i, K_{req}) \downarrow \rightarrow MU_i^{CES} \downarrow \rightarrow c_i \uparrow$
- · When energy intake < requirement, consume more efficient sources of calories
- · Why these non-homothetic preferences?
 - endogenous predictions on allocation across agricultural goods

- · Consider the problem of a household
- Suppose $\psi > 0$ (benchmark), $\sum_i c_i k_i < K_{req}$

$$\underbrace{MU_{i}^{CES}(c_{i})}_{\downarrow} - \underbrace{k_{i}f_{1}\left(\sum_{i}c_{i}k_{i}, K_{req}\right)}_{\leq 0, \downarrow} = MC_{i}$$
 (c_i FOC)

- $\cdot k_i = 0 \rightarrow k_i f_1(\sum_i c_i k_i, K_{req}) = 0$
- · $k_i > 0 \rightarrow k_i f_1 \left(\sum_i c_i k_i, K_{req} \right) \downarrow \rightarrow MU_i^{CES} \downarrow \rightarrow c_i \uparrow$
- · When energy intake < requirement, consume more efficient sources of calories
- · Why these non-homothetic preferences?
 - endogenous predictions on allocation across agricultural goods
 - produces structural transformation forces across sectors and within agriculture

- · Consider the problem of a household
- Suppose $\psi > 0$ (benchmark), $\sum_i c_i k_i < K_{req}$

$$\underbrace{MU_{i}^{CES}(c_{i})}_{\downarrow} - \underbrace{k_{i}f_{1}\left(\sum_{i}c_{i}k_{i}, K_{req}\right)}_{\leq 0, \downarrow} = MC_{i}$$
 (c_i FOC)

- $\cdot k_i = 0 \rightarrow k_i f_1(\sum_i c_i k_i, K_{req}) = 0$
- · $k_i > 0 \rightarrow k_i f_1 (\sum_i c_i k_i, K_{req}) \downarrow \rightarrow MU_i^{CES} \downarrow \rightarrow c_i \uparrow$
- When energy intake < requirement, consume more efficient sources of calories
- · Why these non-homothetic preferences?
 - endogenous predictions on allocation across agricultural goods
 - produces structural transformation forces across sectors and within agriculture
 - ightarrow predictions on kcal-diversity tradeoff in consumption and on farm product choice

Agricultural Goods

 $\boldsymbol{\cdot}$ 6 agricultural goods commonly produced and consumed

▶ list

- 6 agricultural goods commonly produced and consumed
 - ▶ list
- · Heterogeneous in

- 6 agricultural goods commonly produced and consumed
 - ▶ list
- · Heterogeneous in
 - 1. taste weight φ_i

- 6 agricultural goods commonly produced and consumed
 - ▶ list
- · Heterogeneous in
 - 1. taste weight φ_i
 - 2. kcal density ki

- · 6 agricultural goods commonly produced and consumed
 - ▶ list
- · Heterogeneous in
 - 1. taste weight φ_i
 - 2. kcal density ki
 - 3. distribution of productivity across households $Z_{h,i}$

- · 6 agricultural goods commonly produced and consumed
 - ▶ list
- · Heterogeneous in
 - 1. taste weight φ_i
 - 2. kcal density ki
 - 3. distribution of productivity across households $Z_{h,i}$
- Solve for market-clearing prices ► *GE details*

Agricultural Goods

- · 6 agricultural goods commonly produced and consumed
 - ▶ list
- · Heterogeneous in
 - 1. taste weight φ_i
 - 2. kcal density ki
 - 3. distribution of productivity across households $Z_{h,i}$
- Solve for market-clearing prices ► *GE details*

Households

Agricultural Goods

- 6 agricultural goods commonly produced and consumed
 - ▶ list
- · Heterogeneous in
 - 1. taste weight φ_i
 - 2. kcal density ki
 - 3. distribution of productivity across households $Z_{h,i}$
- Solve for market-clearing prices ► *GE details*

Households

· Heterogeneous in

Agricultural Goods

- 6 agricultural goods commonly produced and consumed
 - ▶ list
- · Heterogeneous in
 - 1. taste weight φ_i
 - 2. kcal density ki
 - 3. distribution of productivity across households $Z_{h,i}$
- Solve for market-clearing prices ► *GE details*

- Heterogeneous in
 - 1. Non-farm income wNh

Agricultural Goods

- · 6 agricultural goods commonly produced and consumed
 - ▶ list
- · Heterogeneous in
 - 1. taste weight φ_i
 - 2. kcal density ki
 - 3. distribution of productivity across households $Z_{h,i}$
- Solve for market-clearing prices ► *GE details*

- Heterogeneous in
 - 1. Non-farm income wN_h
 - 2. Land L_h

Agricultural Goods

- 6 agricultural goods commonly produced and consumed
 - ▶ list
- · Heterogeneous in
 - 1. taste weight φ_i
 - 2. kcal density ki
 - 3. distribution of productivity across households $Z_{h,i}$
- · Solve for market-clearing prices ▶ GE details

- Heterogeneous in
 - 1. Non-farm income wNh
 - 2. Land L_h
 - 3. Good productivity $Z_{h,i}$

Agricultural Goods

- · 6 agricultural goods commonly produced and consumed
 - ▶ list
- · Heterogeneous in
 - 1. taste weight φ_i
 - 2. kcal density ki
 - 3. distribution of productivity across households $Z_{h,i}$
- · Solve for market-clearing prices ▶ GE details

- Heterogeneous in
 - 1. Non-farm income wN_h
 - 2. Land L_h
 - 3. Good productivity $Z_{h,i}$
 - 4. Trade cost d_h

Agricultural Goods

- 6 agricultural goods commonly produced and consumed
 - ▶ list
- · Heterogeneous in
 - 1. taste weight φ_i
 - 2. kcal density ki
 - 3. distribution of productivity across households $Z_{h,i}$
- · Solve for market-clearing prices ▶ GE details

- · Heterogeneous in
 - 1. Non-farm income wN_h
 - 2. Land L_h
 - 3. Good productivity $Z_{h,i}$
 - 4. Trade cost d_h
- ► Calibration: parameters & moments

AGRICULTURAL GOODS USED IN CALIBRATION

- · Selected goods:
 - 1. maize
 - 2. pigeonpea
 - 3. groundnut
 - 4. tomato
 - 5. soybean
 - 6. tobacco
- · These goods account for, on average,
 - 70% of HH output market value
 - 43% of HH food consumption market value

$$\sum_{h} \frac{1}{d_h} X_{h,i}^s = \sum_{h} d_h X_{h,i}^p \quad \forall i$$

• Solve for agricultural prices $\{p_i\}_i$ s.t. edible good markets clear:

$$\sum_{h} \frac{1}{d_h} X_{h,i}^{s} = \sum_{h} d_h X_{h,i}^{p} \quad \forall i$$

· Tobacco market doesn't need to clear

$$\sum_{h} \frac{1}{d_h} x_{h,i}^{s} = \sum_{h} d_h x_{h,i}^{p} \quad \forall i$$

- · Tobacco market doesn't need to clear
 - data: tobacco accounts for 60% of Malawi's exports

$$\sum_{h} \frac{1}{d_h} x_{h,i}^{\mathsf{s}} = \sum_{h} d_h x_{h,i}^{\mathsf{p}} \quad \forall i$$

- · Tobacco market doesn't need to clear
 - data: tobacco accounts for 60% of Malawi's exports
 - tobacco traded internationally at exogenous \bar{p}_t

$$\bar{p}_{\text{tobacco}} \left(\sum_{h} \frac{1}{d_{h}} x_{h, \text{tobacco}}^{s} - \sum_{h} d_{h} x_{h, \text{tobacco}}^{p} \right) \\
\underline{tobacco \text{ exports}}$$

$$\sum_{h} \frac{1}{d_h} x_{h,i}^{s} = \sum_{h} d_h x_{h,i}^{p} \quad \forall i$$

- Tobacco market doesn't need to clear
 - data: tobacco accounts for 60% of Malawi's exports
 - tobacco traded internationally at exogenous \bar{p}_t
 - some manufactured good is imported to balance the trade:

$$\underline{\bar{p}_{\text{tobacco}}\left(\sum_{h} \frac{1}{d_{h}} x_{h,\text{tobacco}}^{\text{S}} - \sum_{h} d_{h} x_{h,\text{tobacco}}^{p}\right)} = \underbrace{p_{m}\left(\sum_{h} c_{h,m} - Y_{m}\right)}_{\text{manuf. good imports}}$$

· Model: each farm sells at most one good

- · Model: each farm sells at most one good
 - the revenue-maximizing one: $arg max_i p_i z_{h,i}$

- · Model: each farm sells at most one good
 - the revenue-maximizing one: $arg max_i p_i z_{h,i}$
 - $-\,$ can produce more goods for own consumption

- · Model: each farm sells at most one good
 - the revenue-maximizing one: $arg max_i p_i z_{h,i}$
 - can produce more goods for own consumption
- DATA: sales are specialized compared to overall production

- · Model: each farm sells at most one good
 - the revenue-maximizing one: $arg max_i p_i z_{h,i}$
 - $-\,$ can produce more goods for own consumption
- DATA: sales are specialized compared to overall production
 - 69% sell just 1 good, only 9% produce just 1 good

- · Model: each farm sells at most one good
 - the revenue-maximizing one: $arg max_i p_i z_{h,i}$
 - can produce more goods for own consumption
- DATA: sales are specialized compared to overall production
 - 69% sell just 1 good, only 9% produce just 1 good
 - on avg, top good accounts for 91% in sales but 67% in output

Lower Trade Costs ightarrow All Specialize: Model & Data

- Model: $d_h \downarrow \rightarrow$ specialize production
 - below some cutoff \tilde{d}_h , HH h only produces the revenue-maximizing good

Lower Trade Costs ightarrow All Specialize: Model & Data

- MODEL: $d_h \downarrow \rightarrow$ specialize production
 - below some cutoff $ilde{d}_h$, HH h only produces the revenue-maximizing good
- DATA:
 - HHs with better market access specialize production
 - ▶ table

· Larger farms are more active sellers:

output quartile	sold output share
1	
4	

· Larger farms are more active sellers:

output	sold output share
quartile	model
1	<1%
4	67%

• Larger farms are more active sellers:

output quartile	sold output share	
	model da	ata
1	<1% 13	3%
4	67% 31	L%

• Larger farms are more active sellers:

output	sold output share		
quartile	model	data	
1	<1%	13%	
4	67%	31%	

- Pure CES Model: no scale dependence in selling behavior

• Larger farms are more active sellers:

output	sold output share		
quartile	model	data	
1	<1%	13%	
4	67%	31%	

- Pure CES Model: no scale dependence in selling behavior
- Model mechanism:

· Larger farms are more active sellers:

output	sold output share		
quartile	model	data	
1	<1%	13%	
4	67%	31%	

- Pure CES Model: no scale dependence in selling behavior
- Model mechanism:

size ↑

· Larger farms are more active sellers:

output	sold output share		
quartile	model	data	
1	<1%	13%	
4	67%	31%	

- Pure CES Model: no scale dependence in selling behavior
- Model mechanism:

$$\mathsf{size} \uparrow \ \longrightarrow \ \mathsf{energy} \ \mathsf{intake} \uparrow$$

· Larger farms are more active sellers:

output	sold output share		
quartile	model	data	
1	<1%	13%	
4	67%	31%	

- Pure CES Model: no scale dependence in selling behavior
- Model mechanism:

size ↑ → energy intake ↑

· Larger farms are more active sellers:

output	sold output share		
quartile	model	data	
1	<1%	13%	
4	67%	31%	

- Pure CES Model: no scale dependence in selling behavior
- Model mechanism:

size ↑ ——→ energy intake ↑

need revenue

· Larger farms are more active sellers:

output	sold output share		
quartile	model	data	
1	<1%	13%	
4	67%	31%	

- Pure CES Model: no scale dependence in selling behavior
- Model mechanism:

size $\uparrow \longrightarrow$ energy intake \uparrow

· Larger farms are more active sellers:

output	sold output share		
quartile	model	data	
1	<1%	13%	
4	67%	31%	

- Pure CES Model: no scale dependence in selling behavior
- · Model mechanism:

size $\uparrow \longrightarrow$ energy intake \uparrow

CUTOFF TRADE COST \bar{d}

$$\bar{d}_h = \sqrt{\frac{\max_i p_i z_{h,i}}{\min_i p_i / k_i \cdot \max_i k_i z_{h,i}}}$$

FOOD DIVERSITY

Food Diversity = Inverse Simpson Index

Food Diversity_h =
$$\left(\sum_{i=1}^{n} \left(\frac{\text{food quantity}_{h,i} \times \text{median purchase price}_i}{\sum_{j=1}^{n} \text{food quantity}_{h,j} \times \text{median purchase price}_j}\right)^2\right)^{-\frac{1}{2}}$$

where h is the HH index, n is the total number of distinct foods in the dataset.

- · Simpson Index: sum of squared food shares within HH's consumption
 - same as HHI
 - interpretation: probability that two random dollars of (shadow) food expenditure come from the same product
- Inverse Simpson Index = $\frac{1}{SI}$, commonly used in measuring species diversity

NUTRIENT RICHNESS

	NRF9		NRF9.3	
_	(1)	(2)	(3)	(4)
log output	17.046***	5.695***	-13.296***	-13.400***
	(0.964)	(0.724)	(3.326)	(3.358)
log non-farm income	10.285***	2.441***	-7.257**	-7.305**
	(0.792)	(0.603)	(3.898)	(3.548)
log kcal intake		124.025*** (2.282)		0.550 (26.234)
N	8,675	8,674	8,675	8,674
Adj. R ²	0.054	0.451	0.002	0.002

^{*} p < 0.1, ** p < 0.05, *** p < 0.01

- NRF9: sum of daily intakes (relative to recommended level) of 9 nutrients
- NRF9.3: subtracts the relative excessive consumption of 3 disqualifying nutrients

LOWER TRADE COSTS → ALL SPECIALIZE: DATA

production diversity

Ν

Adj. R²

* p < 0.1, ** p < 0.05, *** p < 0.01

NOTE. Controls: log output, log non-farm income.

LOWER TRADE COSTS → ALL SPECIALIZE: DATA

production diversity

sold output share

Ν

Adj. R²

* p < 0.1, ** p < 0.05, *** p < 0.01

NOTE. Controls: log output, log non-farm income.

Lower Trade Costs \rightarrow All Specialize: Data

	production diversity
sold output share	-0.044*** (0.016)

N	4,042
Adj. R ²	0.025
+ 0.4	*** ***

^{*} p < 0.1, ** p < 0.05, *** p < 0.01

NOTE. Controls: log output, log non-farm income.

Lower Trade Costs ightarrow All Specialize: Data

	production diversity
sold output share	-0.044***
	(0.016)

1 [good mkt access]

N	4,042
Adj. R ²	0.025
* n < 0.1	** n < 0.0E *** n < 0.01

^{*} p < 0.1, ** p < 0.05, *** p < 0.01

NOTE. Controls: log output, log non-farm income.

LOWER TRADE COSTS → ALL SPECIALIZE: DATA

	production diversity				
sold output share	-0.044*** (0.016)				
1[good mkt access]		-0.164*** (0.018)			
N	4,042	8,675			
Adj. R ²	0.025	0.099			
* p < 0.1, ** p < 0.05, *** p < 0.01					

NOTE. Controls: log output, log non-farm income.

PRODUCT FREQUENCY BY SIZE: DATA

parameter	value	moment/source	data n	model
	value	moment/source	moment	moment

parameter	value	moment/source	data moment	model moment
Distributions				
$\mathbb{E}\left(\log L_h ight)$	-14.9	avg $K_{in,h}/K_{req,h}$	1.036	0.904

parameter	value	moment/source	data moment	model moment
Distributions				
$\mathbb{E}\left(\log L_h\right)$	-14.9	avg $K_{in,h}/K_{req,h}$	1.036	0.904
$V(\log L_h)$	1.68	V (log output _h)	1.528	1.546

parameter	value	moment/source	data moment	model moment
Distributions				
$\mathbb{E}\left(\log L_h ight)$	-14.9	avg $K_{in,h}/K_{req,h}$	1.036	0.904
$V(\log L_h)$	1.68	V (log output _h)	1.528	1.546
$P(N_h=0)$	0.112	P (non-farm income _h = 0)	0.112	0.113

parameter	value	moment/source	data moment	model moment
Distributions				
$\mathbb{E}\left(\log L_h\right)$	-14.9	avg $K_{in,h}/K_{req,h}$	1.036	0.904
$V(\log L_h)$	1.68	V (log output _h)	1.528	1.546
$P(N_h=0)$	0.112	P (non-farm income _h = 0)	0.112	0.113
$V(\log N_h \mid N_h > 0)$	2.103	V(log non-farm income _h)	2.103	1.940

parameter	value	moment/source	data moment	model moment
Distributions				
$\mathbb{E}\left(\log L_h\right)$	-14.9	avg $K_{in,h}/K_{req,h}$	1.036	0.904
$V(\log L_h)$	1.68	V (log output _h)	1.528	1.546
$P(N_h=0)$	0.112	P (non-farm income _h = 0)	0.112	0.113
$V(\log N_h \mid N_h > 0)$	2.103	V (log non-farm income _h)	2.103	1.940
ā (median trade cost)	1.75	avg share sold	0.159	0.199

parameter	value	moment/source	data moment	model moment
Distributions				
$\mathbb{E}\left(\log L_h\right)$	-14.9	avg $K_{in,h}/K_{req,h}$	1.036	0.904
$V(\log L_h)$	1.68	V (log output _n)	1.528	1.546
$P(N_h=0)$	0.112	P (non-farm income _h = 0)	0.112	0.113
$V(\log N_h \mid N_h > 0)$	2.103	V(log non-farm income _h)	2.103	1.940
ā (median trade cost)	1.75	avg share sold	0.159	0.199
σ_d^2 (s.d. of log trade cost)	0.01	variance of share sold	0.061	0.091

parameter	value	moment/source	data moment	model moment
Distributions				
$\mathbb{E}\left(\log L_h\right)$	-14.9	avg $K_{in,h}/K_{req,h}$	1.036	0.904
$V(\log L_h)$	1.68	V (log output _n)	1.528	1.546
$P(N_h=0)$	0.112	P (non-farm income _h = 0)	0.112	0.113
$V(\log N_h \mid N_h > 0)$	2.103	V(log non-farm income _h)	2.103	1.940
d (median trade cost)	1.75	avg share sold	0.159	0.199
σ_d^2 (s.d. of log trade cost)	0.01	variance of share sold	0.061	0.091

Parameters

parameter	value	moment/source	data moment	model moment
Distributions				
$\mathbb{E}\left(\log L_h\right)$	-14.9	avg $K_{in,h}/K_{req,h}$	1.036	0.904
$V(\log L_h)$	1.68	V (log output _h)	1.528	1.546
$P(N_h=0)$	0.112	P (non-farm income _h = 0)	0.112	0.113
$V(\log N_h \mid N_h > 0)$	2.103	V(log non-farm income _h)	2.103	1.940
d (median trade cost)	1.75	avg share sold	0.159	0.199
σ_d^2 (s.d. of log trade cost)	0.01	variance of share sold	0.061	0.091
Parameters				
σ (EoS across foods)	0.75	estimated	_	_

parameter	value	moment/source	data moment	model moment
Distributions				
$\mathbb{E}\left(\log L_{h}\right)$	-14.9	avg $K_{in,h}/K_{req,h}$	1.036	0.904
$V(\log L_h)$	1.68	V (log output _n)	1.528	1.546
$P(N_h=0)$	0.112	P (non-farm income _h = 0)	0.112	0.113
$V(\log N_h \mid N_h > 0)$	2.103	V(log non-farm income _h)	2.103	1.940
d (median trade cost)	1.75	1.75 avg share sold		0.199
σ_d^2 (s.d. of log trade cost)	0.01	variance of share sold	0.061	0.091
Parameters				
σ (EoS across foods)	0.75	estimated	_	_
γ (EoS between food & manuf.)	1	_	_	_

parameter	value	moment/source	data moment	model moment
Distributions				
$\mathbb{E}\left(\log L_h\right)$	-14.9	avg $K_{in,h}/K_{req,h}$	1.036	0.904
$V(\log L_h)$	1.68 $V(\log \operatorname{output}_h)$		1.528	1.546
$P(N_h=0)$	$N_h = 0$) 0.112 P (non-farm income _h = 0)		0.112	0.113
$V(\log N_h \mid N_h > 0)$	2.103			1.940
d (median trade cost)	1.75	1.75 avg share sold		0.199
σ_d^2 (s.d. of log trade cost)	0.01	0.01 variance of share sold		0.091
Parameters				
σ (EoS across foods)	0.75	estimated	_	_
γ (EoS between food & manuf.)	1	_	_	_
ψ (kcal deviation penalty)	0.5	output elasticity of K _{in}	0.091	0.109

parameter	value	moment/source	data moment	model moment
Distributions				
$\mathbb{E}\left(\log L_h ight)$	-14.9	avg $K_{in,h}/K_{req,h}$	1.036	0.904
$V(\log L_h)$	1.68	V(log output _h)	1.528	1.546
$P(N_h=0)$	0.112	P (non-farm income _h = 0)	0.112	0.113
$V(\log N_h \mid N_h > 0)$	2.103	V(log non-farm income _h)	2.103	1.940
\bar{d} (median trade cost)	1.75	avg share sold	0.159	0.199
σ_d^2 (s.d. of log trade cost)	0.01	variance of share sold	0.061	0.091
Parameters				
σ (EoS across foods)	0.75	estimated	_	_
γ (EoS between food & manuf.)	1	_	_	_
ψ (kcal deviation penalty)	0.5	output elasticity of K _{in}	0.091	0.109

Good characteristics

parameter	value	moment/source	data moment	model moment
Distributions				
$\mathbb{E}\left(\log L_h\right)$	-14.9	avg $K_{in,h}/K_{req,h}$	1.036	0.904
$V(\log L_h)$	1.68	V(log output _h)	1.528	1.546
$P(N_h=0)$	0.112	P (non-farm income _h = 0)	0.112	0.113
$V(\log N_h \mid N_h > 0)$	2.103	V(log non-farm income _h)	2.103	1.940
d (median trade cost)	1.75	avg share sold	0.159	0.199
σ_d^2 (s.d. of log trade cost)	0.01	variance of share sold	0.061	0.091
Parameters				
σ (EoS across foods)	0.75	estimated	_	_
γ (EoS between food & manuf.)	1	_	_	_
ψ (kcal deviation penalty)	0.5	output elasticity of K _{in}	0.091	0.109
Good characteristics φ_m (manuf. taste weight)	0.36	aggr. non-farm income aggr. farm output	1.539	1.554

parameter	value	moment/source	data moment	model moment
Distributions				
$\mathbb{E}\left(\log L_h\right)$	-14.9	avg $K_{in,h}/K_{req,h}$	1.036	0.904
$V(\log L_h)$	1.68	V (log output _h)	1.528	1.546
$P(N_h=0)$	0.112	P (non-farm income _h = 0)	0.112	0.113
$V(\log N_h \mid N_h > 0)$	2.103	V(log non-farm income _h)	2.103	1.940
d (median trade cost)	1.75	avg share sold	0.159	0.199
σ_d^2 (s.d. of log trade cost)	0.01	variance of share sold	0.061	0.091
Parameters				
σ (EoS across foods)	0.75	estimated	_	_
γ (EoS between food & manuf.)	1	_	_	_
ψ (kcal deviation penalty)	0.5	output elasticity of K_{in}	0.091	0.109
Good characteristics				
$arphi_{m}$ (manuf. taste weight)	0.36	aggr. non-farm income aggr. farm output	1.539	1.554
$\bar{p}_{tobacco}/p_{maize}$	5.25	aggr. tobacco output share	0.091	0.092

- Compare "farm-gate" production to final consumption ("aggregate productivity")
 - farm production only accounts for product choice changes

- · Compare "farm-gate" production to final consumption ("aggregate productivity")
 - farm production only accounts for product choice changes
 - final consumption also accounts for mechanical losses from d

 $d \rightarrow 1$:

- Compare "farm-gate" production to final consumption ("aggregate productivity")
 - farm production only accounts for product choice changes
 - final consumption also accounts for mechanical losses from d

aggr. productivity \uparrow 85% ($\frac{1}{3}$ due to product choice)

- · Compare "farm-gate" production to final consumption ("aggregate productivity")
 - farm production only accounts for product choice changes
 - final consumption also accounts for mechanical losses from d

- aggr. productivity \uparrow 85% ($\frac{1}{3}$ due to product choice)
- $d \downarrow$ s.t. avg share sold 16% \rightarrow 50%: aggr. productivity \uparrow 47% ($\frac{1}{2}$ due to product choice)

AGGREGATE AGRICULTURAL PRODUCTIVITY ACROSS MODELS

Trade Costs $\downarrow \rightarrow$ Heterogeneous Effects in Farm Size

• $d \downarrow$ s.t. avg share sold 16% \rightarrow 50%:

Trade Costs $\downarrow \rightarrow$ Heterogeneous Effects in Farm Size

- $d \downarrow$ s.t. avg share sold 16% \rightarrow 50%:
 - farm productivity: small ↑ the most, large ↑ the least

Trade Costs $\downarrow \rightarrow$ Heterogeneous Effects in Farm Size

- $d \downarrow$ s.t. avg share sold 16% \rightarrow 50%:
 - farm productivity: small ↑ the most, large ↑ the least
 - consumption: small \uparrow the most, medium \uparrow the least

FARM SIZE AND FOOD CONSUMPTION: STONE-GEARY

Household food consumption vs farm size: Stone-Geary vs baseline model and data

		log kcal intake	;		food diversity	
	(1)	(2)	(3)	(4)	(5)	(6)
	model : Stone-Geary	model : baseline	data	model : Stone-Geary	model : baseline	data
log output	0.233	0.109	0.091***	-0.100	0.445	0.395***
	(0.001)	(0.001)	(0.005)	(0.001)	(0.001)	(0.034)
log non-farm	0.203	0.089	0.063***	0.012	0.425	0.857***
income	(0.001)	(0.001)	(0.004)	(0.001)	(0.002)	(0.033)
N	70,793	70,750	8,674	70,793	70,750	8,675
Adj. R ²	0.762	0.395	0.063	0.134	0.758	0.131

^{*} p < 0.1, ** p < 0.05, *** p < 0.01