ASSIGNMENT -2 Python Programming

Question-1:

1. Importing Required Package

Solution:

```
import pandas as pd
import seaborn as sns
import numpy as np
from matplotlib import pyplot as plt
%matplotlib inline
```

Question-2:

2. Loading the Dataset Solution:

```
df = pd.read csv("/content/Churn Modelling.csv") df
```

Output:

3. Visualizations Question-3:

3.1 Univariate Analysis Solution:

```
sns.displot(df.Tenure)
```

Output:

3.2 Bi-Variate Analysis Solution:

df.plot.line()

Output:

3.3 Multi - Variate Analysis Solution:

sns.lmplot("Age", "NumOfProducts", df, hue="NumOfProducts", fit_reg=False);

4. Perform descriptive statistics on the dataset. Question-4:

Solution:

df.describe()

Output:

5. Handle the Missing values. Question-5:

Solution:

```
data = pd.read_csv("Churn_Modelling.csv")
pd.isnull(data["Gender"])
```

Question-6:

6. Find the outliers and replace the outliers.

Solution:

```
df["Tenure"] = np.where(df["Tenure"] >10, np.median,df["Tenure"])
df["Tenure"]
```

Output:

```
C+ 0 2 1 1 1 2 8 3 3 1 4 2 ... 9995 5 9996 10 9997 7 9998 3 9999 4 Name: Tenure, Length: 10000, dtype: object
```

Question-7:

7. Check for Categorical columns and perform encoding.

Solution:

```
pd.get_dummies(df, columns=["Gender", "Age"], prefix=["Age",
"Gender"] ).head()
Output:
```

	RowNumber	CustomerId	Surname	CreditScore	Geography	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	• • •	Gender_78
0	1	15634602	Hargrave	619	France	2	0.00	1	1	1		0
1	2	15647311	Hill	608	Spain	1	83807.86	1	0	1		0
2	3	15619304	Onio	502	France	8	159660.80	3	1	0		0
3	4	15701354	Boni	699	France	1	0.00	2	0	0		0
4	5	15737888	Mitchell	850	Spain	2	125510.82	1	1	1		0

Output:

C+	HasCrCard	IsActiveMember		Gender_78	Gender_79	Gender_80	Gender_81	Gender_82	Gender_83	Gender_84	Gender_85	Gender_88	Gender_92
	1	1		0	0	0	0	0	0	0	0	0	0
	0	1	100	0	0	0	0	0	0	0	0	0	0
	1	0		0	0	0	0	0	0	0	0	0	0
	0	0	1999	0	0	0	0	0	0	0	0	0	0
	1	1	144	0	0	0	0	0	0	0	0	0	0
	4												>

Question-8:

- 8. Split the data into dependent and independent variables
- 8.1 Split the data into Independent variables.

Solution:

```
X = df.iloc[:, :-2].values
print(X)
```

Output:

```
[1 15634602 'Hargrave' ... 1 1 1]
[2 15647311 'Hill' ... 1 0 1]
[3 15619304 'Onio' ... 3 1 0]
...
[9998 15584532 'Liu' ... 1 0 1]
[9999 15682355 'Sabbatini' ... 2 1 0]
[10000 15628319 'Walker' ... 1 1 0]]
```

8.2 Split the data into Dependent variables.

Solution:

```
Y = df.iloc[:, -1].values print(Y)
```

```
[+ [1 0 1 ... 1 1 0]
```

Question-9:

9. Scale the independent variables Solution:

```
import pandas as pd from sklearn.preprocessing import
MinMaxScaler scaler = MinMaxScaler() df[["RowNumber"]] =
scaler.fit transform(df[["RowNumber"]]) print(df)
```

Output:

Question-10:

10. Split the data into training and testing Solution:

```
(8000, 13)
(8000,)
(1000, 13)
(1000,)
(1000, 13)
(1000,)
(1000, 13)
(1000,)
(None, None)
```