Determining What Kind of Car to Import

Importing Datas

Car Sales Data ¶

```
import pandas as pd
In [1]:
        import numpy as np
        import matplotlib.pyplot as plt
        import seaborn as sns
        car = pd.read_csv('Car.csv')
        car
```

Out[1]:

	Make	Model	Туре	Origin	DriveTrain	MSRP	Invoice	EngineSize	Cylinders	Horsepower M	١
0	Hyundai	Accent 2dr hatch	Sedan	Asia	Front	\$10,539	\$10,107	1.6	4.0	103.0	-
1	Toyota	Echo 2dr manual	Sedan	Asia	Front	\$10,760	\$10,144	1.5	4.0	108.0	
2	Saturn	lon1 4dr	Sedan	USA	Front	\$10,995	\$10,319	2.2	4.0	140.0	
3	Toyota	Echo 4dr	Sedan	Asia	Front	\$11,290	\$10,642	1.5	4.0	108.0	
4	Kia	Rio 4dr auto	Sedan	Asia	Front	\$11,155	\$10,705	1.6	4.0	104.0	
426	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
427	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
428	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
429	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
430	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
431 rows × 15 columns											

Ownership Trend Data

```
In [2]: trend_car = pd.read_csv('cartrend.csv')
trend_car
```

Out[2]:

	year	make	number
0	2005	ALFA ROMEO	914
1	2005	ALPINA	0
2	2005	ASTON MARTIN	23
3	2005	AUDI	2025
4	2005	AUSTIN	137
1069	2017	VOLKSWAGEN	27644
1070	2017	VOLVO	10539
1071	2017	WULING	41
1072	2017	ZOTYE	43
1073	2017	OTHERS	81

1074 rows × 3 columns

Data Cleaning

Out[3]:

	Make	Model	Type	Origin	DriveTrain	MSRP	Invoice	EngineSize	Cylinders	Horsepov
0	Hyundai	Accent 2dr hatch	Sedan	Asia	Front	\$10,539	\$10,107	1.6	4.0	10
1	Toyota	Echo 2dr manual	Sedan	Asia	Front	\$10,760	\$10,144	1.5	4.0	10
2	Saturn	lon1 4dr	Sedan	USA	Front	\$10,995	\$10,319	2.2	4.0	14
3	Toyota	Echo 4dr	Sedan	Asia	Front	\$11,290	\$10,642	1.5	4.0	10
4	Kia	Rio 4dr auto	Sedan	Asia	Front	\$11,155	\$10,705	1.6	4.0	10
418	Jaguar	XKR convertible 2dr	Sports	Europe	Rear	\$86,995	\$79,226	4.2	8.0	39
419	Acura	NSX coupe 2dr manual S	Sports	Asia	Rear	\$89,765	\$79,978	3.2	6.0	29
420	Mercedes- Benz	S500 4dr	Sedan	Europe	All	\$86,970	\$80,939	5.0	8.0	30
421	Mercedes- Benz	SL500 convertible 2dr	Sports	Europe	Rear	\$90,520	\$84,325	5.0	8.0	30
422	Mercedes- Benz	CL500 2dr	Sedan	Europe	Rear	\$94,820	\$88,324	5.0	8.0	30

421 rows × 15 columns

In [4]: #Converting MSRP and Invoice into strings containing only numbers
 msrp = car_clean['MSRP']
 car_clean['MSRP_Value'] = msrp.str[1:3] + msrp.str[4:]
 invoice = car_clean['Invoice']

car_clean['Invoice_Value'] = invoice.str[1:3] + invoice.str[4:]

```
In [5]: #Converting into integers
    car_clean['MSRP_Value'] = car_clean['MSRP_Value'].astype(int)
    car_clean['Invoice_Value'] = car_clean['Invoice_Value'].astype(int)
    car_clean
```

Out[5]:

	Make	Model	Туре	Origin	DriveTrain	MSRP	Invoice	EngineSize	Cylinders	Horsepov
0	Hyundai	Accent 2dr hatch	Sedan	Asia	Front	\$10,539	\$10,107	1.6	4.0	10
1	Toyota	Echo 2dr manual	Sedan	Asia	Front	\$10,760	\$10,144	1.5	4.0	10
2	Saturn	lon1 4dr	Sedan	USA	Front	\$10,995	\$10,319	2.2	4.0	14
3	Toyota	Echo 4dr	Sedan	Asia	Front	\$11,290	\$10,642	1.5	4.0	10
4	Kia	Rio 4dr auto	Sedan	Asia	Front	\$11,155	\$10,705	1.6	4.0	10
418	Jaguar	XKR convertible 2dr	Sports	Europe	Rear	\$86,995	\$79,226	4.2	8.0	39
419	Acura	NSX coupe 2dr manual S	Sports	Asia	Rear	\$89,765	\$79,978	3.2	6.0	29
420	Mercedes- Benz	S500 4dr	Sedan	Europe	All	\$86,970	\$80,939	5.0	8.0	30
421	Mercedes- Benz	SL500 convertible 2dr	Sports	Europe	Rear	\$90,520	\$84,325	5.0	8.0	30
422	Mercedes- Benz	CL500 2dr	Sedan	Europe	Rear	\$94,820	\$88,324	5.0	8.0	30

421 rows × 17 columns

 \blacksquare

Out[6]:

	Make	Model	Туре	Origin	DriveTrain	MSRP	Invoice	EngineSize	Cylinders	Horsepov
0	Hyundai	Accent 2dr hatch	Sedan	Asia	Front	\$10,539	\$10,107	1.6	4.0	10
1	Toyota	Echo 2dr manual	Sedan	Asia	Front	\$10,760	\$10,144	1.5	4.0	10
2	Saturn	lon1 4dr	Sedan	USA	Front	\$10,995	\$10,319	2.2	4.0	14
3	Toyota	Echo 4dr	Sedan	Asia	Front	\$11,290	\$10,642	1.5	4.0	10
4	Kia	Rio 4dr auto	Sedan	Asia	Front	\$11,155	\$10,705	1.6	4.0	10
418	Jaguar	XKR convertible 2dr	Sports	Europe	Rear	\$86,995	\$79,226	4.2	8.0	39
419	Acura	NSX coupe 2dr manual S	Sports	Asia	Rear	\$89,765	\$79,978	3.2	6.0	29
420	Mercedes- Benz	S500 4dr	Sedan	Europe	All	\$86,970	\$80,939	5.0	8.0	30
421	Mercedes- Benz	SL500 convertible 2dr	Sports	Europe	Rear	\$90,520	\$84,325	5.0	8.0	30
422	Mercedes- Benz	CL500 2dr	Sedan	Europe	Rear	\$94,820	\$88,324	5.0	8.0	30
421 r	ows × 18 co	olumns								
4										•

Separation into Origins

```
In [7]: #Finding the count of cars from each origin
    all_origins = car_clean['Origin'].unique()

sales = car_clean['Origin'].value_counts()
    sales = sales[all_origins]
    print(sales)
```

Asia 155 USA 147 Europe 119

Name: Origin, dtype: int64

```
In [8]: #Plotting the number of cars for each origin of car

sns.countplot(car_clean['Origin'])
sns.countplot(car_clean['Origin']).set_xticklabels

fig = plt.gcf()
fig.set_size_inches(5,5)
plt.xlabel('Origin')
plt.ylabel('Sales')
plt.title('Count of Sales')
plt.show()
```



```
In [9]: #Separating data based on origins
    asia = car_clean.loc[car_clean['Origin'] == 'Asia']
    usa = car_clean.loc[car_clean['Origin'] == 'USA']
    europe = car_clean.loc[car_clean['Origin'] == 'Europe']

    print(asia)
    print(usa)
    print(europe)
```

0 1	Make Hyundai Toyota		Model 2dr hatch 2dr manual	Sedan Sedan	Asia Asia	DriveTrain Front Front	\$10,539 \$10,760
3 4 5	Toyota Kia Toyota		Echo 4dr o 4dr auto o 2dr auto	Sedan Sedan Sedan	Asia Asia Asia	Front Front Front	\$11,155
383 387	Toyota Lexus		nd Cruiser LS 430 4dr	SUV Sedan	Asia Asia	All Rear	\$54,765 \$55,750
395 396 419	Lexus Lexus Acura	SC 430 conve	LX 470	Sports SUV Sports	Asia Asia Asia	Rear Ali Rear	\$64,800
0	Invoice \$10,107	1.6	Cylinders 4.0	Horsepow	3.0	29.0	G_Highway \ 33.0
1 3	\$10,144 \$10,642	1.5 1.5	4.0 4.0	108 108		35.0 35.0	43.0 43.0
4	\$10,705	1.6	4.0	104		25.0	32.0
5	\$10,896	1.5	4.0	108		33.0	39.0
383	\$47,986	 4.7	8.0	325	5.0	13.0	17.0
387	\$48,583	4.3	8.0	290		18.0	25.0
395 396	\$55,063	4.3 4.7	8.0 8.0	300 235		18.0	23.0 17.0
419	\$56,455 \$79,978	3.2	6.0	290		13.0 17.0	24.0
	Weight	Wheelbase Le	ngth MSRP	_Value I	nvoice_	Value Pr	ice Deviation
0	2255.0		.67 . 0	_varac		10107	-432
1	2035.0		.63.0	10760		10144	-616
3	2055.0		.63.0	11290		10642	-648
4 5	2458.0 2085.0		.67.0 .63.0	11155 11560		10705 10896	-450 -664
		• • •	• • •				• • •
383 387	5390.0		.93.0 .97.0	54765 55750		47986 48583	-6779 -7167
395	3990.0 3840.0		.78.0	55750 63200		55063	-7167 -8137
396	5590.0		.93.0	64800		56455	-8345
419	3153.0	100.0 1	74.0	89765		79978	-9787
[155	rows x 1 Mak	18 columns] ke		Model	Турє	e Origin Dr	riveTrain \
2	Satur			[on1 4dr	Sedar		Front
6 11	Chevrole Chevrole		Aveo LS 40	Aveo 4dr	Sedar Sedar		Front Front
17	For		ocus ZX3 20		Sedar		Front
21	Dodg			n SE 4dr	Sedar		Front
379	 Cadilla Cadilla	ic	Deville	DTS 4dr	Sedar SUV	n USA	Front
384 386	Cadilla			Lade EXT	Truck		Front All
412	Cadilla		LR convert		Sports		Rear
415	Dodg	ge Viper SRT-	10 convert	ible 2dr	Sports	S USA	Rear
	MSRP	Invoice Eng	ineSize Cy	/linders	Horsep	ower MPG_	_City \
2	\$10,995	\$10,319	2.2	4.0		.40.0	26.0
6 11	\$11,690 \$12,585	\$10,965 \$11,802	1.6 1.6	4.0 4.0		.03.0 .03.0	28.0 28.0
17	\$13,270	\$12,482	2.0	4.0		.30.0	26.0
21	\$13,670	\$12,849	2.0	4.0	1	.32.0	29.0
 379	\$50,595	 \$46,362	 4.6	8.0	3	300.0	18.0
384	\$52,795	\$48,377	5.3	8.0		195.0	14.0
386	\$52,975	\$48,541	6.0	8.0		345.0	13.0
412 415	\$76,200 \$81,795	\$70,546 \$74,451	4.6 8.3	8.0 10.0		320.0 500.0	17.0 12.0
	+,,,,,	+· · · · · · · · · ·	0.5		_		

2	34	5.0 2692.0 1.0 2370.0	9	03.0 08.0	Length 185.0 167.0))	10995 11690	Invoice_Valu 1031 1096	9 5	
11 17		1.0 2348.0		0.8	153.6		12585	1180		
17 21		3.0 2612.0 5.0 2581.0)3.0)5.0	168.6 174.6		13270 13670	1248 1284		
••							•••	•••		
379		5.0 4044.0		.5.0	207.0		50595	4636		
384		3.0 5367.0		6.0	199.0		52795	4837		
386		7.0 5879.0		80.0	221.0		52975	4854		
412 415		5.0 3647.0 0.0 3410.0		06.0 09.0	178.6 176.6		76200 81795	7054 7445		
417	20	J.0 J410.0		75.0	170.0	,	01/00	7443	_	
	Price Dev	/iation								
2		-676								
6		-725 -703								
11 17		-783 -788								
21		-788 -821								
••										
379		-4233								
384		-4418								
386		-4434								
412 415		-5654 7244								
415		-7344								
[147	rows x 18	3 columns]								
_		Make		M	odel	Type	Origin	DriveTrain	MSRP	\
54		MINI			oper	Sedan	•		\$16,999	
74	Volksv	_		Jett		Wagon			\$19,005	
76	Volksv	•		f GLS		Sedan	•		\$18,715	
92 93	Volksv	vagen G MINI	TI 1.8T	Coop		Sedan Sedan	•		\$19,825 \$19,999	
••				СООР		Jeuan	Lui Ope		\$19,999	
417		Audi		RS 6	4dr	Sports	Europe		\$84,600	
418	Ja	aguar XK	R conver	tible		Sports	Europe			
420	Mercedes-			S500		Sedan	-		\$86,970	
421	Mercedes-		0 conver			Sports	•		\$90,520	
422	Mercedes-	-Benz		CL500	2dr	Sedan	Europe	Rear	\$94,820	
	Invoice	EngineSize	Cylind	lers	Horsei	oower	MPG_City	MPG_Highwa	y \	
54	\$15,437	1.6	-	4.0		115.0	28.0		-	
74	\$17,427	2.0		4.0	:	115.0	24.0	30.	0	
76	\$17,478	2.0		4.0		115.0	24.0			
92	\$18,109	1.8		4.0		180.0	24.0			
93	\$18,137	1.6		4.0	-	163.0	25.0			
 417	 \$76,417	4.2		8.0	2	 450.0	 15.0			
418	\$79,226	4.2		8.0		390.0	16.0			
420	\$80,939	5.0		8.0		302.0	16.0			
421	\$84,325	5.0		8.0	3	302.0	16.0	23.	0	
422	\$88,324	5.0		8.0	3	302.0	16.0	24.	0	
	Weight W	Nheelbase	Length	MSRP_	V21	Tovoš	co Val	Price Devi	ation	
54	2524.0	97.0	143.0	_	16999	IIIVOI	15437		-1562	
74	3034.0	99.0	174.0		19005		17427		-1502 -1578	
76	2897.0	99.0	165.0		18715		17478		-1237	
92	2934.0	99.0	168.0		19825		18109		-1716	
93	2678.0	97.0	144.0		19999		18137		-1862	
	4024.0	100.0	101.0				76417			
417 419	4024.0	109.0	191.0		84600		76417 79226		-8183 -7769	
418 420	4042.0 4390.0	102.0 122.0	187.0 203.0		86995 86970		79226 80939		-7769 -6031	
420	4065.0	101.0	179.0		90520		84325		-6195	
400							2.525			

-6496

88324

422 4085.0 114.0 196.0 94820

Origin

Asia 3512296 Europe 4936193 USA 3814553

Name: Invoice_Value, dtype: int64

Analysis for Asian Cars

```
In [11]: #Counts for each make in Asian Cars
    count_make = asia['Make'].value_counts().sort_values(ascending=False)

    plt.figure(figsize=(8,8))
    count_make.plot.bar(color='royalblue')
    plt.xlabel('Brand')
    plt.ylabel('Sales')
    plt.xticks(rotation=45)
    plt.title('Sales count of each Brand')
    plt.show()
```



```
In [12]: #Summing the revenue gotten by the sales of each make of car
         rev_by_make = asia.groupby('Make')['Invoice_Value'].sum()
         print(rev_by_make)
         #Plotting the Revenue of each Make of car
         plt.figure(figsize=(8,8))
         ax=rev_by_make.plot.bar()
         #Countries to highlight
         Top_3 = ['Toyota','Lexus','Nissan']
         for ticks in ax.xaxis.get_major_ticks():
             if ticks.label1.get_text() in Top_3:
                 ax.patches[rev_by_make.index.get_indexer([ticks.label1.get_text()])[0]].set_f
         acecolor('deepskyblue')
             else:
                 ax.patches[rev_by_make.index.get_indexer([ticks.label1.get_text()])[0]].set_f
         acecolor('navy')
         plt.title('Revenue by Brand')
         plt.xlabel('Brand')
         plt.xticks(rotation=45)
         plt.ylabel('Revenue')
         plt.show()
```

Make	
Acura	270136
Honda	331717
Hyundai	192424
Infiniti	263040
Isuzu	49238
Kia	153919
Lexus	426360
Mazda	173144
Mitsubishi	283852
Nissan	390957
Scion	25820
Subaru	256273
Suzuki	127130
Toyota	568286

Name: Invoice_Value, dtype: int64


```
In [13]: #Determining the demand for each type for top 3 brands
is_topa = asia['Make'].isin(['Toyota','Lexus','Nissan'])
topa = asia[is_topa]

plt.figure()
topa_bytype = topa.groupby(['Make','Type'])['Type'].count().unstack('Make')
topa_bytype.plot.bar(stacked=True)
plt.title('Sales by type for top 3 brands', size=15);
plt.show()
```

<Figure size 432x288 with 0 Axes>


```
In [14]: #Plotting Invoice and MSRP to find the price deviation for each type
    ax = asia.groupby('Type')[['MPG_City', 'MPG_Highway']].mean().plot.bar(alpha=0.3, fig
    size=(5,5))
    plt.legend(loc='upper left')
    ax.twinx().plot(asia.groupby('Type')[['MSRP_Value', 'Invoice_Value']].mean(), label=
    'Invoice', marker='o')
    plt.legend(['MSRP', 'Invoice'], loc='best');
    plt.title('Asia')
    plt.show()
```


Analysis for USA Cars


```
In [16]: #Summing the revenue gotten by the sales of each make of car
         rev_by_make = usa.groupby('Make')['Invoice_Value'].sum()
         print(rev_by_make)
         #Plotting the Revenue of each Make of car
         plt.figure(figsize=(8,8))
         ax=rev_by_make.plot.bar()
         #Countries to highlight
         Top_3 = ['Chevrolet', 'Ford', 'Chrysler']
         for ticks in ax.xaxis.get_major_ticks():
             if ticks.label1.get_text() in Top_3:
                 ax.patches[rev_by_make.index.get_indexer([ticks.label1.get_text()])[0]].set_f
         acecolor('brown')
             else:
                 ax.patches[rev_by_make.index.get_indexer([ticks.label1.get_text()])[0]].set_f
         acecolor('salmon')
         plt.title('Revenue by Brand')
         plt.xlabel('Brand')
         plt.xticks(rotation=45)
         plt.ylabel('Revenue')
         plt.show()
```

250694
371415
649642
379051
314081
504919
210315
45815
67934
352222
230918
65247
243756
128544

Name: Invoice_Value, dtype: int64


```
In [17]: #Plotting Invoice and MSRP to find the price deviation for each type
    ax = usa.groupby('Type')[['MPG_City', 'MPG_Highway']].mean().plot.bar(alpha=0.3, figs
    ize=(5,5))
    plt.legend(loc='upper left')
    ax.twinx().plot(usa.groupby('Type')[['MSRP_Value', 'Invoice_Value']].mean(), label='I
    nvoice', marker='o')
    plt.legend(['MSRP', 'Invoice'], loc='best');
    plt.title('USA')
    plt.show()
```


Analysis for Europe Cars

```
In [18]: #Counts for each make in Europe Cars
    count_make = europe['Make'].value_counts()

    plt.figure(figsize=(8,8))
    count_make.plot.bar(color='lightseagreen')
    plt.xlabel('Brand')
    plt.ylabel('Sales')
    plt.xticks(rotation=45)
    plt.title('Sales count of each Brand')
    plt.show()
```



```
In [19]: #Summing the revenue gotten by the sales of each make of car
         rev_by_make = europe.groupby('Make')['Invoice_Value'].sum()
         print(rev_by_make)
         #Plotting the Revenue of each Make of car
         plt.figure(figsize=(8,8))
         ax=rev_by_make.plot.bar()
         #Countries to highlight
         Top_3 = ['Mercedes-Benz', 'BMW', 'Audi']
         for ticks in ax.xaxis.get_major_ticks():
             if ticks.label1.get_text() in Top_3:
                 ax.patches[rev_by_make.index.get_indexer([ticks.label1.get_text()])[0]].set_f
         acecolor('powderblue')
             else:
                 ax.patches[rev_by_make.index.get_indexer([ticks.label1.get_text()])[0]].set_f
         acecolor('dodgerblue')
         plt.title('Revenue by Brand')
         plt.xlabel('Brand')
         plt.xticks(rotation=45)
         plt.ylabel('Revenue')
         plt.show()
```

Make	
Audi	747272
BMW	792413
Jaguar	673181
Land Rover	125553
MINI	33574
Mercedes-Benz	1116944
Porsche	342080
Saab	249342
Volkswagen	445240
Volvo	410594

Name: Invoice_Value, dtype: int64


```
In [20]: #Comparing invoice values across brands
plt.figure(figsize=(15,8))
ax = sns.boxplot(europe['Make'], europe['Invoice_Value'], palette='Set3')
plt.xlabel('Brand')
plt.ylabel('Invoice')
plt.title('Invoice across Europe Brands')
plt.show()
```


Analysis of Consumer Ownership

```
In [21]: # trend of top brands
    trend_car[['year']] = trend_car[['year']].astype(int)
    trend_car
```

Out[21]:

	year	make	number
0	2005	ALFA ROMEO	914
1	2005	ALPINA	0
2	2005	ASTON MARTIN	23
3	2005	AUDI	2025
4	2005	AUSTIN	137
1069	2017	VOLKSWAGEN	27644
1070	2017	VOLVO	10539
1071	2017	WULING	41
1072	2017	ZOTYE	43
1073	2017	OTHERS	81

1074 rows × 3 columns

Out[22]:

	year	make	number
415	2010	ALFA ROMEO	924
416	2010	ALPINA	0
417	2010	ASTON MARTIN	134
418	2010	AUDI	7645
419	2010	AUSTIN	152
1069	2017	VOLKSWAGEN	27644
1070	2017	VOLVO	10539
1071	2017	WULING	41
1072	2017	ZOTYE	43
1073	2017	OTHERS	81

659 rows × 3 columns

```
In [23]: #asian cars trend: Nissan, Toyota and Toyota(Lexus)
```

```
nissan_top_trend = cars['make'] == 'NISSAN'
toyota_top_trend = cars['make'] == 'TOYOTA'
nissan_trend = cars.loc[nissan_top_trend]
toyota_trend = cars.loc[toyota_top_trend]

plt.plot(nissan_trend['year'], nissan_trend['number'],marker='.', markerfacecolor='bl
ue', markersize=12, color='skyblue', linewidth=3, label = 'NISSAN')
plt.plot(toyota_trend['year'], toyota_trend['number'],marker='.', markerfacecolor='or
ange', markersize=12, color='red', linewidth=3, label = 'TOYOTA')
plt.xlabel('Year')
plt.ylabel('No. of Asian cars owned')
plt.legend(title='LEGEND', bbox_to_anchor=(1.05, 1), loc='upper left')
plt.show()
```



```
#continental cars trend: BMW, Mercedes Benz, Audi
bmw_top_trend = cars['make'] == 'B.M.W.'
audi_top_trend = cars['make'] == 'AUDI'
mbenz_top_trend = cars['make'] == 'MERCEDES BENZ'
bmw_trend = cars.loc[bmw_top_trend]
audi_trend = cars.loc[audi_top_trend]
mbenz_trend = cars.loc[mbenz_top_trend]
plt.plot(bmw_trend['year'], bmw_trend['number'], marker='.', markerfacecolor='blue',
markersize=12, color='skyblue', linewidth=3, label = 'BMW')
plt.plot(audi_trend['year'], audi_trend['number'], marker='.', markerfacecolor='orang
e', markersize=12, color='red', linewidth=3, label = 'AUDI')
plt.plot(mbenz_trend['year'], mbenz_trend['number'], marker='.', markerfacecolor='gree
n', markersize=12, color='grey', linewidth=3, label = 'MERCEDES BENZ')
plt.xlabel('Year')
plt.ylabel('No. of European cars owned')
plt.legend(title='LEGEND', bbox_to_anchor=(1.05, 1), loc='upper left')
plt.show()
```

In [24]:


```
#American cars trend: Chevrolet, Ford and Chrysler
chevy top trend = cars['make'] == 'CHEVROLET'
ford_top_trend = cars['make'] == 'FORD'
chrysler_top_trend = cars['make'] == 'CHRYSLER'
chevy_trend = cars.loc[chevy_top_trend]
ford_trend = cars.loc[ford_top_trend]
chrysler_trend = cars.loc[chrysler_top_trend]
plt.plot(chevy_trend['year'], chevy_trend['number'], marker='.', markerfacecolor='blu
e', markersize=12, color='skyblue', linewidth=3, label = 'CHEVROLET')
plt.plot(ford_trend['year'], ford_trend['number'], marker='.', markerfacecolor='orang
e', markersize=12, color='red', linewidth=3, label = 'FORD')
plt.plot(chrysler_trend['year'], chrysler_trend['number'], marker='.', markerfacecolor
='green', markersize=12, color='grey', linewidth=3, label = 'CHRYSLER')
plt.xlabel('Year')
plt.ylabel('No. of American cars owned')
plt.legend(title='LEGEND', bbox_to_anchor=(1.05, 1), loc='upper left')
plt.show()
```


In [25]: