Maximizing the Time of Invariance for Large Collections of Switched Systems

Petter Nilsson, Necmiye Ozay

2017 IEEE Conference on Decision and Control Melbourne, Australia December 13, 2017

Formal methods in control

- Fundamental problem in synthesis and verification: curse of dimensionality
- Need to exploit structure and symmetry
- Find an appropriate problem abstraction
- Common abstraction: state-space discretization
- This work: control large collections of heterogeneous subsystems
- Time domain abstraction to "abstract away" heterogeneity

Thermostatically Controlled Load (TCL) Scheduling

- A TCL can be in mode on or off
- (Local) state constraints: Each TCL should maintain temperature within a desired temperature range
- (Global) counting constraint: Aggregate electricity consumption should be controlled over time
- The flexibility in individual specifications can be leveraged to control aggregate demand to for instance mitigate fluctuations

How to schedule on/off cycles to meet both local and global constraints?

TCL Mode-Counting Problem

lacksquare N (heterogeneous) subsystems $x^i \in \mathbb{R}$ with switched dynamics

$$\frac{\mathrm{d}}{\mathrm{d}t}x^{i}(t) = \begin{cases} f_{\mathtt{off}}^{i}\left(x^{i}(t)\right) & \text{if } \sigma^{i}(t) = \mathtt{off}, \\ f_{\mathtt{on}}^{i}\left(x^{i}(t)\right) & \text{if } \sigma^{i}(t) = \mathtt{on}, \end{cases}$$

Local (heterogeneous) state constraints:

$$\underline{a}^{i} \le x^{i}(t) \le \overline{a}^{i} \quad \forall t \ge 0$$
 (1)

Global counting constraint:

$$\underline{K}_{on} \le \sum_{i: \, \sigma^{i}(t) = on} 1 \le \overline{K}_{on} \quad \forall t \ge 0$$
 (2)

• Objective: find switching strategy $\{\sigma^i(\cdot)\}_{i=1}^N$ that enforces (1)-(2).

Problem Illustration

 \blacksquare Assumption: $f_{\mathtt{on}}^i$ strictly negative, $f_{\mathtt{off}}^i$ strictly positive

Previous work on counting problems

- HSCC'17: complete analytic solution of infinite-horizon TCL mode-counting problem
 - Main result: problem has solution if and (almost) only if

$$\sum_{i=1}^{N} \frac{\mathcal{L}_{\texttt{off}}^{i} T_{\texttt{on}}^{i}(\underline{a}^{i})}{1 + \mathcal{L}_{\texttt{off}}^{i} T_{\texttt{on}}^{i}(\underline{a}^{i})} > \underline{K}_{\texttt{on}}, \quad \sum_{i=1}^{N} \frac{\mathcal{L}_{\texttt{on}}^{i} T_{\texttt{off}}^{i}(\overline{a}^{i})}{1 + \mathcal{L}_{\texttt{on}}^{i} T_{\texttt{off}}^{i}(\overline{a}^{i})} > N - \overline{K}_{\texttt{on}}$$

- Resulted in aggregate flexibility $(323-250)/1000 \approx 7\%$ in case study. In practice aggregate flexibility upwards of 60% may be required but for short durations
- Here: solution to finite-horizon TCL mode-counting problem

Finite-horizon TCL Mode-Counting Problem

Local (heterogeneous) state constraints:

$$\underline{a}^{i} \le x^{i}(t) \le \overline{a}^{i} \quad \forall t \in [0, T_{I}]$$
(3)

Global counting constraint:

$$\underline{K}_{\text{on}} \le \sum_{i: \ \sigma^{i}(t) = \text{on}} 1 \le \overline{K}_{\text{on}} \quad \forall t \in [0, T_{I}]$$
(4)

- Objective: find switching strategy $\{\sigma^i(\cdot)\}_{i=1}^N$ that enforces (3)-(4) and s.t. T_I is maximized
- **Time of Invariance** T_I will be a function of initial condition
- Previous results [HSCC'17] identify when $T_I = +\infty$
- Only one bound relevant at a time, we consider $\leq \overline{K}_{on}$

Outline

- 1 Introduction
 - Background
 - Problem Statement
- 2 Contribution
 - Outline of Approach
 - Main Results
 - Numerical Examples
- 3 Summary

Reformulation as Optimal Control Problem I

"Convexified" subsystem dynamics:

$$\frac{\mathrm{d}}{\mathrm{d}t}x^{i}(t) = (1 - \alpha^{i}(t))f_{\mathtt{off}}^{i}\left(x^{i}(t)\right) + \alpha^{i}(t)f_{\mathtt{on}}^{i}\left(x^{i}(t)\right).$$

- $lacksquare lpha^i(t) \in [0,1]$ instead of hybrid on/off system
- Aggregate dynamics in vector notation:

$$\begin{split} &\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{x}(t) = (\mathbf{1}_N - \alpha(t)) \odot \mathbf{f}_{\mathsf{off}}(\mathbf{x}(t)) + \alpha(t) \odot \mathbf{f}_{\mathsf{on}}(\mathbf{x}(t)), \\ &\mathbf{x}(0) = \mathbf{x}_0, \\ &\alpha: \mathbb{R}^+ \to \Delta_N\left(\overline{K}_{\mathsf{on}}\right), \end{split}$$

 \blacksquare Aggregate safe set: $S = \prod_i [\underline{a}^i, \overline{a}^i]$

Reformulation as Optimal Control Problem I

"Convexified" subsystem dynamics:

$$\frac{\mathrm{d}}{\mathrm{d}t}x^{i}(t) = (1 - \alpha^{i}(t))f_{\mathtt{off}}^{i}\left(x^{i}(t)\right) + \alpha^{i}(t)f_{\mathtt{on}}^{i}\left(x^{i}(t)\right).$$

- $lacksquare lpha^i(t) \in [0,1]$ instead of hybrid on/off system
- Aggregate dynamics in vector notation:

$$\begin{split} \frac{\mathrm{d}}{\mathrm{d}t}\mathbf{x}(t) &= (\mathbf{1}_N - \alpha(t)) \odot \mathbf{f}_{\mathrm{off}}(\mathbf{x}(t)) + \alpha(t) \odot \mathbf{f}_{\mathrm{on}}(\mathbf{x}(t)), \\ \mathbf{x}(0) &= \mathbf{x}_0, \\ \alpha : \mathbb{R}^+ \to \Delta_N\left(\overline{K}_{\mathrm{on}}\right), \qquad \left\{\alpha : \sum_i \alpha_i = \overline{K}_{\mathrm{on}}, 0 \leq \alpha_i \leq 1\right\} \end{split}$$

• Aggregate safe set: $S = \prod_i [\underline{a}^i, \overline{a}^i]$

Reformulation as Optimal Control Problem II

Want to maximize time of constraint satisfaction:

$$V^*(\mathbf{x}_0) = \sup_{\alpha(\cdot)} \left\{ \int_0^\infty \mathbb{1}_S(\mathbf{x}(s)) \; \mathrm{d} s \; \text{s.t. aggregate dynamics} \right\}.$$

- Obvious that optimal TOI $T_I^*(\mathbf{x}_0) \leq V^*(\mathbf{x}_0)$. We conjecture equality.
- $lackbox{ }V^*(\mathbf{x}_0)$ viscosity solution to HJB PDE

$$\max_{\alpha \in \Delta_N\left(\overline{K}_{\text{on}}\right)} \sum_{i \in [N]} \frac{\partial V(\mathbf{x})}{\partial x^i} \begin{bmatrix} (1-\alpha^i) f_{\text{off}}^i(x^i) \\ +\alpha^i f_{\text{on}}^i(x^i) \end{bmatrix} = -\mathbb{1}_S(\mathbf{x}).$$

Control extraction:

$$\alpha^*(\mathbf{x}) \in \underset{\alpha \in \Delta_N(\overline{K}_{on})}{\arg \max} \sum_{i \in [N]} \alpha^i \frac{\partial V^*(\mathbf{x})}{\partial x^i} (f_{on}^i(x^i) - f_{off}^i(x^i)).$$

Method Outline

Control extraction:

$$\alpha^*(\mathbf{x}) \in \underset{\alpha \in \Delta_N(\overline{K}_{on})}{\arg \max} \sum_{i \in [N]} \alpha^i \frac{\partial V^*(\mathbf{x})}{\partial x^i} (f_{on}^i(x^i) - f_{off}^i(x^i)).$$
 (5)

- I Construct an analytical under-approximation $T_I^-(\mathbf{x})$ of the optimal time of invariance $T_I^*(\mathbf{x})$.
- 2 Substitute $T_I^-(\mathbf{x})$ for $V^*(\mathbf{x})$ in (5) to construct a strategy C which achieves an unknown TOI $T_I^C(\mathbf{x}) > T_I^-(\mathbf{x})$.
- 3 Analytically bound the optimality gap between $V^*(\mathbf{x})$ and $T_I^-(\mathbf{x})$.

Time to Exit

Definition

Given a set S, for $x \in S$ and some f, the **time to exit** $T_f(x)$ is the time it takes for the flow of f starting in x to reach ∂S :

$$T_f(x) = \inf \{ \tau : \phi_f(x, \tau) \in \partial S \}.$$

For $x \in S$ and f, the **exit point** $U_f(x)$ is $U_f(x) = \phi_f\left(x, T_f(x)\right)$.

Time to Exit: Linear Case

■ Dynamics: $\dot{x}^i = (1 - \alpha^i)\gamma^i(-x^i + \overline{b}^i) + \alpha^i\gamma^i(-x^i + \underline{b}^i).$

■ Exact time to exit for $\tilde{b}^i(\alpha^i) = \underline{b}^i \alpha^i + (1 - \alpha^i) \overline{b}^i$:

$$T_{\mathtt{off}}^{i}(x_{0}^{i},\alpha^{i}) = \frac{1}{\gamma^{i}}\log\left(1 + \frac{\overline{a}^{i} - x_{0}^{i}}{\tilde{b}^{i}(\alpha^{i}) - \overline{a}^{i}}\right),$$

■ Lower bound based on inequality $\log(1+x) \ge 2x/(2+x)$:

$$T_{\mathtt{off}}^{i-}(x_0^i,\alpha^i) = \frac{1}{\gamma^i} \left(\frac{2(\overline{a}^i - x_0^i)}{2(\overline{b}^i - \alpha^i(\overline{b}^i - \underline{b}^i)) - \overline{a}^i + x_0^i} \right).$$

Analytic Approximate Value Function

■ **Idea**: select α^i such that

$$T_{\mathtt{off}}^{j-}(x_0^j,\alpha^j) = T_{\mathtt{off}}^{i-}(x_0^i,\alpha^i), \quad \forall i,j \in J$$

This choice gives

$$\forall j, \quad T_{\mathtt{off}}^{j-}(x_0^j, \alpha^j) = T_I^-(\mathbf{x}_0, J) := \frac{\displaystyle\sum_{i \in J} \frac{\overline{a}^i - x_0^i}{\gamma^i \left(\overline{b}^i - \underline{b}^i\right)}}{\displaystyle\sum_{i \in J} \frac{\overline{b}^i - \frac{1}{2} \left(\overline{a}^i + x_0^i\right)}{\overline{b}^i - \underline{b}^i} - \overline{K}_{\mathtt{on}}}.$$

■ Index set $J^*(\mathbf{x_0})$ recursively selected s.t. $\alpha^i \in (0,1]$ for $i \in J^*$ and $\alpha^i = 0$ for $i \notin J^*$:

$$T_I^-(\mathbf{x}_0) := T_I^-(\mathbf{x}_0, J^*(\mathbf{x}_0)).$$

Results

■ Let $T_I^C(\mathbf{x})$ be the TOI achieved by the control strategy induced by $T_I^-(\mathbf{x})$.

Theorem

$$\frac{1 - e^{-\overline{\epsilon}T_I^*(\mathbf{x})}}{\overline{\epsilon}} \le T_I^-(\mathbf{x}) \le T_I^C(\mathbf{x}) \le T_I^*(\mathbf{x}),$$

lacktriangledown Practical issue: achieving TOI $T_I^C(\mathbf{x})$ might require excessive switching

Results

■ Let $T_I^C(\mathbf{x})$ be the TOI achieved by the control strategy induced by $T_I^-(\mathbf{x})$.

Theorem

$$\frac{1 - e^{-\overline{\epsilon}T_I^*(\mathbf{x})}}{\overline{\epsilon}} \le T_I^-(\mathbf{x}) \le T_I^C(\mathbf{x}) \le T_I^C(\mathbf{x}),$$

- Practical issue: achieving TOI $T_I^C(\mathbf{x})$ might require excessive switching
- lacktriangle "Lazy" strategy L achieves TOI $T_I^L(\mathbf{x})$

Theorem

$$T_I^L(\mathbf{x}) \geq \frac{1}{|\epsilon|} \log(1 + |\underline{\epsilon}| T_I^-(\mathbf{x})).$$

Expressions for bounds

$$\overline{\epsilon} = \frac{\frac{1}{2} \left(\sum_{i \in J^*} \gamma^i \frac{\overline{b}^i - \overline{a}^i}{\overline{b}^i - \underline{b}^i} \frac{2 + \gamma^i T_I^-(\mathbf{x}_0)}{2 - \gamma^i T_I^-(\mathbf{x}_0)} - \min_{\alpha \in \Delta_N(\overline{K}_{\text{on}})} \sum_{i \in J^*} \alpha^i \gamma^i \right)}{\sum_{i \in J^*} \frac{\overline{b}^i - \overline{a}^i}{\overline{b}^i - \underline{b}^i} - \overline{K}_{\text{on}}}$$

$$\underline{\epsilon} = \frac{\frac{1}{2} \left(\sum_{i \in J^*} \gamma^i \frac{\overline{b}^i - \overline{a}^i}{\overline{b}^i - \underline{b}^i} \frac{-\gamma^i T_i^-(\mathbf{x}_0)}{2 - \gamma^i T_I^-(\mathbf{x}_0)} - \max_{\alpha \in \Delta_N(\overline{K}_{\text{on}})} \sum_{i \in J^*} \alpha^i \gamma^i \right)}{\sum_{i \in J^*} \frac{\overline{b}^i - \overline{a}^i}{\overline{b}^i - \overline{b}^i} - \overline{K}_{\text{on}}}.$$

 Bounds tighter when infinite-horizon problem is far from feasible

Proof idea

- Study derivative of value function $\frac{\mathrm{d}}{\mathrm{d}t}T_I^-(\mathbf{x})$ along different trajectories
 - Close to -1 along optimal trajectories $\Longrightarrow T_I^-(\mathbf{x})$ close to optimal TOI $T_I^*(\mathbf{x})$
 - Close to -1 along L-trajectory \Longrightarrow achieved TOI $T_I^L(\mathbf{x})$ close to $T_I^-(\mathbf{x})$

Myopic Strategy for Nonlinear Case

Proposition [HSCC'17]

$$\mathcal{L}_{f_{\mathtt{off}}^{i}}T_{f_{\mathtt{on}}^{i}}(x) = -\frac{f_{\mathtt{off}}^{i}(x)}{f_{\mathtt{on}}^{i}(x)}, \quad \mathcal{L}_{f_{\mathtt{off}}^{i}}T_{f_{\mathtt{off}}^{i}}(x) = -\frac{f_{\mathtt{on}}^{i}(x)}{f_{\mathtt{off}}^{i}(x)}.$$

$$T_I^{\ominus}(\mathbf{x}) = \frac{\displaystyle\sum_{i \in J^*} \frac{T_{f_{\texttt{off}}^i}(x^i)}{1 + \mathcal{L}_{f_{\texttt{on}}^i} T_{f_{\texttt{off}}^i}(x^i)}}{\displaystyle\sum_{i \in J^*} \frac{1}{1 + \mathcal{L}_{f_{\texttt{on}}^i} T_{f_{\texttt{off}}^i}(x^i)} - \overline{K}_{\texttt{on}}}.$$

 $lackbr{I}_I^\ominus(\mathbf{x})$ equalizes derivatives of times to exit across subsystems in J^* rather than actual times to exit

2D Numerical Example

- Example with two subsystems
- Top: guarantee, bottom: performance
- *M* "myopic" strategy for general nonlinear case.

Large-Scale Numerical Example

10,000 subsystems with randomized parameters, lazy strategy

- Subsystems in J^* left unattended
- Guaranteed TOI: 0.86h, achieved TOI: 0.96h
- TOI achieved with temperature-driven switching (IEEE Power Syst. 30.1): 0.67h

Large-Scale Numerical Example

10,000 subsystems with randomized parameters, lazy strategy

- Subsystems in J* left unattended
- Guaranteed TØI: 0.86h, achieved TOI: 0.96h
- TOI achieved with temperature-driven switching (IEEE Power Syst. 30.1): (0.67h)

Outline

- 1 Introduction
 - Background
 - Problem Statement

- 2 Contribution
 - Outline of Approach
 - Main Results
 - Numerical Examples
- 3 Summary

Summary

- Studied the TCL mode-counting problem
 - Previous work: solved infinite-horizon case
 - This work: analyzed finite-horizon case when infinite-horizon problem infeasible
- Approximate analytical value function gives
 easy-to-implement policy with performance guarantees
- Time to exit as abstraction for decision-making under heterogeneity

Future work

- Use guarantees to make informed decisions in high-level load distribution algorithm, tight conditions for problem generalizations
- lacksquare Obtain bound that are tight for "large" $T_I^*(\mathbf{x})$
 - lacksquare Performance loss for large $T_I^*(\mathbf{x})$ comes from use of inequality

$$\log(1+x) \ge \frac{2x}{2+x}$$

 Trade-off between tight bound and computability of value function

Thank you for your attention

Caltech

Time to exit

Proposition

The Lie derivative of $T_f(x)$ with respect to g, $\mathcal{L}_g T_f(x)$, is

$$-\frac{\left(\hat{n}_{U_f(x)}^S\right)^T \left(\nabla_x \phi_f(x, T_f(x))\right) g(x)}{\left(\hat{n}_{U_f(x)}^S\right)^T f(U_f(x))}.$$