# સંકલનનો એક ઉપયોગ

4

Music is the pleasure the human soul experiences from counting without being aware that it is counting.

- Gottfried Wilhelm

There are no deep theorems - only theorems that we have not understood very well.

- Nicholas Goodman

## 4.1 પ્રાસ્તાવિક

સંકલન અને વિકલન એ કલનશાસ્ત્રનાં વિજ્ઞાન અને ઈજનેરીશાસ્ત્રમાં જેના સંખ્યાબંધ ઉપયોગો થતા હોય તેવાં પાયાનાં સાધનો છે. ઘણા વ્યાવહારિક ઉપયોગોમાં સંકલન દષ્ટિગોચર થાય છે.

જો કોઈ મકાનને ત્રિકોણીય આકારનો અથવા અર્ધવર્તુળાકાર આકારનો અથવા લંબચોરસ આકારનો કમાનવાળો પ્રવેશદ્વાર હોય અને જો આ પ્રવેશદ્વારમાં કાચ બેસાડવાના હોય તો ભૂમિતિના પ્રાથમિક સૂત્રોની મદદથી જરૂરી કાચનું ક્ષેત્રફળ નક્કી કરી શકાય; પરંતુ જો મકાનને ઉપવલયના અંશ જેવા આકારનો કમાનવાળો પ્રવેશદ્વાર હોય તો આપણે સંકલનની મદદથી જરૂરી કાચનું ક્ષેત્રફળ શોધી શકીએ.



આકૃતિ 4.1

આ હેતુ માટે આપણે વક્કથી આવૃત્ત થયેલ પ્રદેશનું ક્ષેત્રફળ જાણવું જરૂરી છે. સંકલનનો વિકાસ થયો તે પહેલા સન્નિકટ ક્ષેત્રફળ શોધી શકાતું હતુ. ગ્રીકવાસીઓ આ પ્રકારની રીત જાણતા હતા. ગ્રીક ગણિતશાસ્ત્રી આર્કિમીડીઝે વર્તુળના ક્ષેત્રફળનું આસન્ન મૂલ્ય શોધી કાઢ્યું હતું. કોઈ પણ પ્રદેશનું ક્ષેત્રફળ શોધવું એ નિયત સંકલનનો એક મૂળભૂત ઉપયોગ છે. સંકલનની વિભાવનાનો વિકાસ ન્યૂટન અને લાઈબ્નીટ્ઝે કર્યો હતો.

# 4.2 સાદા વક્રથી આવૃત્ત પ્રદેશનું ક્ષેત્રફળ

અગાઉના પ્રકરણમાં આપણે સરવાળાના લક્ષ તરીકે નિયત સંકલનની કિંમત કેવી રીતે શોધી શકાય તે શીખી ગયાં. હવે આપણે સાદા વક્ષ્યી આવૃત્ત પ્રદેશ જેમ કે રેખા અને વર્તુળનું ચાપ, પરવલય કે ઉપવલયથી ઘેરાયેલ પ્રદેશનું ક્ષેત્રફળ શોધવા માટે સંકલનનો કેવી રીતે ઉપયોગ થાય છે તેનો અભ્યાસ કરીએ. આપણે બે વક્રો વડે આવૃત્ત પ્રદેશના ક્ષેત્રફળની પણ ચર્ચા કરીશું.

સંવૃત અંતરાલ ઉપર વ્યાખ્યાયિત થયેલ સતત વિધેયનો એ ગુણધર્મ છે કે તે સંવૃત અંતરાલના કોઈ બિંદુ ઉપર વિધેયનું ન્યૂનતમ મૂલ્ય મળે તથા તે જ અંતરાલના કોઈ બિંદુ ઉપર વિધેયનું મહત્તમ મૂલ્ય મળે. આ હકીકત આપણે અહીં સાબિતી આપ્યા વગર સ્વીકારીશું.

વિકલ્પ 1 : X-અક્ષની ઉપરના અર્ધતલમાં હોય તેવો વક્ર :

ધારો કે વિધેય f એ [a, b] પર વ્યાખ્યાયિત સતત વિધેય છે. ધારો કે  $f(x) \geq 0, \ \forall \ x \in [a, b].$  આપણે



વક y = f(x), રેખાઓ x = a, x = b તથા X-અક્ષ વડે આવૃત્ત પ્રદેશનું ક્ષેત્રફળ A શોધવું છે. (આકૃતિ 4.2(a) અને 4.2(b)માં દર્શાવેલ રંગીન પ્રદેશ)

સૌપ્રથમ આપણે બિંદુઓ  $a=x_0,x_1,x_2,...,x_n=b$  દ્વારા અંતરાલ [a,b]ને n ઉપઅંતરાલોમાં વિભાજિત કરીશું. અંતરાલ [a,b] ના સંવૃત ઉપઅંતરાલો  $[x_{i-1},x_i],\ i=1,2,...n$  ઉપર વિધય f(x) સતત છે. તેથી તે દરેક ઉપઅંતરાલમાં આપણને એક બિંદુ  $x_i'$  મળશે જેના ઉપર વિધય f(x) ને ન્યૂનતમ મૂલ્ય હોય તથા એક બિંદુ  $x_i^*$  એવું મળશે કે જેના ઉપર વિધય f(x) ને મહત્તમ મૂલ્ય હોય એટલે કે  $f(x_i')$  અંતરાલ  $[x_{i-1},x_i]$  માં ન્યૂનતમ છે તથા  $f(x_i^*)$  અંતરાલ  $[x_{i-1},x_i]$  માં મહત્તમ છે તથા  $f(x_i^*)$  અંતરાલ  $[x_{i-1},x_i]$  માં મહત્તમ છે.

આકૃતિ 4.3માં  $f(x_i')$  લંબાઈ તથા  $\Delta x_i = x_i - x_{i-1}$  પહોળાઈ ધરાવતા લંબચોરસો (i = 1, 2, ... n માટે) દર્શાવ્યા છે. સ્પષ્ટ છે કે આ તમામ લંબચોરસના ક્ષેત્રફળનો સરવાળો માંગેલ ક્ષેત્રફળ કરતાં ઓછો છે.

એટલે કે 
$$\sum_{i=1}^{n} f(x_i') \Delta x_i \leq A$$
 (i)

આ સરવાળા  $\sum\limits_{i=1}^n f(x^i_i)$   $\Delta x_i$  ને અધઃસરવાળો (Lower Sum) કહે છે.

આકૃતિ 4.4માં  $f(x_i^*)$  લંબાઈ તથા  $\Delta x_i = x_i - x_{i-1}$  પહોળાઈ ધરાવતા લંબચોરસો  $(i=1,\,2,\,...\,n$  માટે) દર્શાવ્યા છે. સ્પષ્ટ છે કે આ તમામ લંબચોરસના ક્ષેત્રફળનો સરવાળો માંગેલ ક્ષેત્રફળ કરતાં વધુ છે.

એટલે કે 
$$\sum_{i=1}^{n} f(x_i^*) \Delta x_i \ge A$$
 (ii)

આ સરવાળા  $\sum\limits_{i=1}^n f(x_i^*) \; \Delta x_i$  ને ઊર્ધ્વસરવાળો (Upper Sum) કહે છે. આમ (i) અને (ii) પરથી

$$\sum_{i=1}^{n} f(x_i^*) \Delta x_i \le A \le \sum_{i=1}^{n} f(x_i^*) \Delta x_i$$

જો આપણે વિભાજન બિંદુઓ અમર્યાદિત રીતે વધારતા જઈએ અને મહત્તમ  $\Delta x_i o 0$  તથા જો અધઃસરવાળા અને ઊર્ધ્વસરવાળાને સામાન્ય લક્ષ મળે તો માંગેલ ક્ષેત્રફળ એ અધઃસરવાળા કે ઊર્ધ્વસરવાળાનું લક્ષ થશે. તેને નીચે મુજબ લખી શકાય.







આકૃતિ 4.4

$$A = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i^i) \Delta x_i = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i^*) \Delta x_i$$

અગાઉના પ્રકરણમાં ચર્ચા કર્યા મુજબ ઉપરનાં બંને પદ  $\int\limits_a^b f(x)\,dx$  થશે.

આમ, ક્ષેત્રફળ  $A = \int_a^b f(x) dx$ .

# વિકલ્પ 2 : X-અક્ષની નીચેના અર્ધતલમાં આવેલો વક :

આકૃતિ 4.5 માં દર્શાવ્યા પ્રમાણે જો વિચારણામાં લીધેલ વક X- અક્ષની નીચેના ભાગમાં હોય તો x=a થી x=bમાં f(x)<0 થાય. આથી (i) અને (ii) દ્વારા વ્યાખ્યાયિત સરવાળો ઋણ થશે; પરંતુ વક y=f(x) રેખાઓ x=a, x=b તથા X-અક્ષ વડે આવૃત પ્રદેશનું ક્ષેત્રફળ ધન હોવાથી આપણે સંકલનથી મળતી કિંમતનો માનાંક લઈશું.એટલે કે, b  $|\int f(x) dx|$  ને ક્ષેત્રફળ તરીકે લઈશું.



આકૃતિ 4.5

આમ, ક્ષેત્રફળ A = |I| જયાં  $I = \int_{a}^{b} f(x) dx$ .

# વિકલ્પ 3 : વક X-અક્ષને ફક્ત એક જ બિંદુએ છેદતો હોય



આકૃતિ 4.6

ધારો કે વક y=f(x) એ X-અક્ષને ફક્ત (c,0) બિંદુએ છેદે છે, જ્યાં a< c< b. ધારો કે  $\forall x\in [a,\,c],\,f(x)\geq 0$ , અને  $\forall x\in [c,\,b],\,f(x)\leq 0$ . આથી વક  $y=f(x),\,x=a,\,x=b$  અને X-અક્ષ દ્વારા આવૃત્ત પ્રદેશનું ક્ષેત્રફળ  $A=\mid I_1\mid +\mid I_2\mid$ 

જ્યાં 
$$I_1 = \int_{0}^{c} f(x) dx$$
,  $I_2 = \int_{0}^{b} f(x) dx$ .

જો વક્ક X-અક્ષને સાંત સંખ્યાનાં બિંદુઓ  $c_{\mathrm{l}},\ c_{2},...,\ c_{n},$  માં છેદતો હોય તો ક્ષેત્રફળ  $=\sum\limits_{k=0}^{n}\mid\mathrm{I}_{k}\mid$ ,

wei 
$$I_k = \int_{c_k}^{c_{k+1}} f(x)dx$$
  $(c_0 = a, c_{n+1} = b)$ 

ઉપરની જેમ,

(1) ધારો કે x=g(y) એ  $[c,\ d]$  પર સતત છે અને  $g(y)\geq 0$  અથવા  $g(y)\leq 0,\ \forall y\in [c,\ d].$  વક  $x=g(y),\ y=c,\ y=d$  અને Y-અક્ષ દ્વારા આવૃત્ત પ્રદેશનું ક્ષેત્રફળ  $A=|\ I\ |,\ \infty$ યાં  $I=\int\limits_{0}^{d}xdy=\int\limits_{0}^{d}g(y)\,dy.$ 





આકૃતિ 4.7

જયાં 
$$I_1 = \int\limits_c^e g(y)\,dy$$
 અને 
$$I_2 = \int\limits_e^d g(y)\,dy.$$

(3) જો વક અને તેનાથી આવૃત્ત પ્રદેશ X-અક્ષ પરત્વે સંમિત હોય તથા એક અર્ધ ખંડ X-અક્ષના ઉપરના અર્ધતલમાં હોય અને બીજો એક અર્ધ ખંડ X-અક્ષની નીચેના અર્ધતલમાં હોય, તો એક અર્ધતલમાંના પ્રદેશનું ક્ષેત્રફળ શોધી તેને બમણું કરવાથી આવા પ્રદેશનું ક્ષેત્રફળ મળે. આ જ રીત Y-અક્ષને સાપેક્ષ સંમિત પ્રદેશનું ક્ષેત્રફળ શોધવા માટે પણ વાપરી શકાય.





(4) જો વક્ર અને તેનાથી આવૃત્ત થયેલ પ્રદેશ બંને અક્ષ પરત્વે સંમિત હોય, તો પ્રથમ ચરણમાં રહેલા ખંડનું ક્ષેત્રફળ મેળવી તેને ચારગણું કરવાથી આખા પ્રદેશનું ક્ષેત્રફળ મળે.



વર્ત્ળ અને ઉપવલયથી આવૃત્ત પ્રદેશનાં ક્ષેત્રફળ આ પ્રકારનાં ઉદાહરણો છે.

ઉદાહરણ 1: સંકલનની મદદથી વક્ક 2y = -x + 8, X-અક્ષ અને રેખાઓ x = 2 અને x = 4 વડે આવૃત્ત પ્રદેશનું ક્ષેત્રફળ શોધો.

ઉકેલ : માંગેલ ક્ષેત્રફળ A = |I| જયાં,

$$I = \int_{2}^{4} y dx$$

$$= \int_{2}^{4} \left(\frac{-x}{2} + 4\right) dx$$

$$= \left[\frac{-x^{2}}{4} + 4x\right]_{2}^{4}$$

$$= \left[\frac{-(4)^{2}}{4} + 16\right] - \left[\frac{-(2)^{2}}{4} + 8\right]$$

$$= (-4 + 16) - (-1 + 8)$$

$$= 12 - 7$$

$$= 5$$



આકૃતિ 4.11

મોંધ: સમલંબ ચતુષ્કોણ ABCDનું ક્ષેત્રફળ 
$$= \frac{1}{2} \text{ (સમાંતર બાજુઓ વચ્ચેનું લંબઅંતર) (સમાંતર બાજુઓની લંબાઈનો સરવાળો)}$$
$$= \frac{1}{2}(4-2)(3+2) = 5$$

ઉદાહરણ 2 : વક  $y=4-x^2$ , X-અક્ષ અને રેખાઓ x=0 તથા x=2 વડે આવૃત્ત પ્રદેશનું ક્ષેત્રફળ શોધો ઉકેલ : અહીં  $y=4-x^2$ 

 $\therefore A = 5$ 

∴  $x^2 = -(y - 4)$  પરવલય દર્શાવે છે. પરવલયનું શીર્ષ (0, 4) છે અને તે નીચે તરફ ખુલશે. માંગેલ ક્ષેત્રફળ A = |I|, જ્યાં

$$I = \int_{0}^{2} y dx$$

$$= \int_{0}^{2} (4 - x^{2}) dx$$

$$= \left[ 4x - \frac{x^{3}}{3} \right]_{0}^{2}$$

$$= 8 - \frac{8}{3} = \frac{16}{3}$$



$$\therefore A = \frac{16}{3}$$

ઉદાહરણ 3: વક  $y=x^2-1$ , X-અક્ષ અને રેખા y=8 વડે આવૃત્ત પ્રદેશનું ક્ષેત્રફળ શોધો.

ઉકેલ: અહીં વક  $y=x^2-1$  એ Y-અક્ષ પરત્વે સંમિત છે, તેથી પહેલા ચરણમાં આવેલ પ્રદેશનું ક્ષેત્રફળ મેળવી 2 વડે ગુણતાં માંગેલા પ્રદેશનું ક્ષેત્રફળ મેળવી શકાય.

હવે 
$$y = x^2 - 1$$
. તેથી  $x^2 = y - (-1)$  અને

તે પરવલય દર્શાવે છે. તેનું શીર્ષ (0,-1) છે અને તે ઉપરની તરફ ખુલશે. પ્રથમ ચરણમાં વક અને Y-અક્ષથી આવૃત્ત પ્રદેશની સીમાઓ y=0 અને y=8 છે.

જ્યાં I = 
$$\int_{0}^{8} x \, dy$$
  
=  $\int_{0}^{8} \sqrt{y+1} \, dy$   
=  $\frac{2}{3} \left[ (y+1)^{\frac{3}{2}} \right]_{0}^{8}$   
=  $\frac{2}{3} \left( (9)^{\frac{3}{2}} - 1 \right) = \frac{52}{3}$ 

$$A = 2 |I| = 2(\frac{52}{3}) = \frac{104}{3}$$



આકૃતિ 4.13

(પ્રથમ ચરણમાં x > 0)

ઉદાહરણ 4 : ઉપવલય  $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$  થી આવૃત્ત પ્રદેશનું ક્ષેત્રફળ શોધો.

ઉકેલ : ઉપવલય એ X-અક્ષ અને Y-અક્ષ પ્રત્યે સંમિત છે.

માંગેલ ક્ષેત્રફળ  $A = 4 \times પ્રથમ ચરણમાં આવેલ પ્રદેશ OABનું ક્ષેત્રફળ.$ 

$$= 4 \mid I \mid, \ \text{sui} \ I = \int_{0}^{a} y dx$$

હવે 
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

$$\therefore \quad \frac{y^2}{b^2} = 1 - \frac{x^2}{a^2} = \frac{a^2 - x^2}{a^2}$$

$$\therefore y = \pm \frac{b}{a} \sqrt{a^2 - x^2}$$

પ્રથમ ચરણમાં y > 0

$$\therefore \quad y = \frac{b}{a} \sqrt{a^2 - x^2}$$

$$\therefore \quad I = \int_{0}^{a} \frac{b}{a} \sqrt{a^2 - x^2} \ dx$$

$$= \frac{b}{a} \left[ \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{-1} \frac{x}{a} \right]_0^a$$

$$= \frac{b}{a} \left[ \left( \frac{a}{2} \times 0 + \frac{a^2}{2} \sin^{-1} 1 \right) - (0 + 0) \right]$$

$$= \frac{b}{a} \left[ \frac{a^2}{2} \sin^{-1} 1 \right] = \frac{b}{a} \left[ \frac{a^2}{2} \cdot \frac{\pi}{2} \right] = \frac{\pi a b}{4}$$



 $\therefore$  માંગેલ ક્ષેત્રફળ  $A = 4 \times \frac{\pi ab}{4} = \pi ab$ 

નોંધ : આ જ પ્રશ્ન આપણે  $x^2+y^2=r^2$  લઈને ગણીએ તો વર્તુળના ક્ષેત્રફળનું પ્રચલિત સૂત્ર  $\pi r^2$  મળે.

# સ્વાધ્યાય 4.1

- **1.** વક  $y = x^2 + 2$ , X-અક્ષ અને રેખાઓ x = 1 અને x = 2 વડે આવૃત્ત પ્રદેશનું ક્ષેત્રફળ શોધો.
- 2. વક  $y = x^2 4$ , X-અક્ષ અને રેખાઓ x = -1 તથા x = 2 વડે આવૃત્ત પ્રદેશનું ક્ષેત્રફળ શોધો.
- 3. વક  $y=x^2$ , x=-2 અને x=1 વડે આવૃત્ત પ્રદેશનું ક્ષેત્રફળ શોધો.
- 4. વક  $y = \sqrt{x-1}$ , Y-અક્ષ અને રેખાઓ y = 1 તથા y = 5 વડે આવૃત્ત પ્રદેશનું ક્ષેત્રફળ શોધો.
- 5. પરવલય  $y = -x^2 + 4$  તથા X-અક્ષ વડે આવૃત્ત પ્રદેશનું ક્ષેત્રફળ શોધો.
- 6. પરવલય  $y = 9 x^2$  તથા X-અક્ષ વડે આવૃત્ત પ્રદેશનું ક્ષેત્રફળ શોધો.
- 7. વર્તુળ  $x^2 + y^2 = a^2$  વડે આવૃત્ત પ્રદેશનું ક્ષેત્રફળ શોધો.
- **8.** પરવલય  $y = x^2$  અને રેખા y = 4 વડે આવૃત્ત પ્રદેશનું ક્ષેત્રફળ મેળવો.

# 4.3 બે વક્કો વડે આવૃત્ત પ્રદેશનું ક્ષેત્રફળ

આ વિભાગમાં આપણે રેખા અને વર્તુળ, રેખા અને પરવલય, રેખા અને ઉપવલય, વર્તુળ અને પરવલય, બે વર્તુળ વગેરે દ્વારા આવૃત્ત પ્રદેશનાં ક્ષેત્રફળ શોધીશું.

બે છેદતાં વકો વડે આવૃત્ત પ્રદેશનું ક્ષેત્રફળ કેવી રીતે મેળવી શકાય તેનો સાહજિક વિચાર કરીએ. અગાઉ ચર્ચા કર્યા મુજબ વક  $y=f_1(x),\ x=a,\ x=b$  અને X-અક્ષ વડે આવૃત્ત પ્રદેશનું ક્ષેત્રફળ,  $A_1=|I_1|$  જ્યાં  $I_1=\int\limits_a^b f_1(x)\,dx$ . અહીં.  $I_1\geq 0$  કારણ કે આપણે  $f_1(x)\geq 0$  ધારેલ છે. (જુઓ આકૃતિ 4.15)



В

B

આકૃતિ 4.14

0

**→** X

આકૃતિ 4.16 માં દર્શાવ્યા મુજબ વક્ર  $y=f_2(x)$ ,  $x=a,\,x=b$  અને X-અક્ષ વડે આવૃત્ત પ્રદેશનું ક્ષેત્રફળ,

$$A_2 = | I_2 | \text{ sui } I_2 = \int_a^b f_2(x) dx.$$

અહીં  $f_2(x) \ge 0$  હોવાથી  $I_2 \ge 0$  થશે.

જો બે વક્કો  $y=f_1(x)$  અને  $y=f_2(x)$  પરસ્પર માત્ર બે બિંદુઓમાં છેદે અને તેમના x યામ a અને b  $(a\neq b)$  હોય, તો આ બે વક્કો વડે આવૃત્ત પ્રદેશનું ક્ષેત્રફળ  $\mathbf{A}=\mid \mathbf{I}\mid$ 

જ્યાં 
$$I = I_1 - I_2 = \int_a^b f_1(x) dx - \int_a^b f_2(x) dx$$
  
$$= \int_a^b (f_1(x) - f_2(x)) dx$$

જો બે વક્કો  $x=g_1(y)$  અને  $x=g_2(y)$  પરસ્પર માત્ર બે બિંદુઓમાં છેદે અને તેમના y યામ c અને d  $(c\neq d)$  હોય તો આ બે વક્કો વડે આવૃત્ત પ્રદેશનું ક્ષેત્રફળ  $\mathbf{A}=|\mathbf{I}|.$ 

જ્યાં I = 
$$\int_{c}^{d} (g_1(y) - g_2(y)) dy$$
.

અહીં આપણે ધારી લઈએ છીએ કે  $g_1(y) \geq 0,$   $g_2(y) \geq 0.$ 









આપેલ પ્રદેશમાં જો બંને વક્કો એક વખત એકબીજાને ઓળંગી પસાર થતા હોય તો આકૃતિ 4.19માં દર્શાવ્યા મુજબ આપેલ પ્રદેશના બે ભાગ કરવા પડે. ધારો કે x=a અને x=b વચ્ચે આવૃત્ત વક્કો  $y=f_1(x)$  અને  $y=f_2(x)$  નું ક્ષેત્રફળ શોધવું

છે તથા ધારો કે વક્કો a તથા b વચ્ચે c આગળ એકબીજાને છેદે છે તો ક્ષેત્રફળ  $\mathbf{A}=\mid\mathbf{I_1}\mid+\mid\mathbf{I_2}\mid$ .

જ્યાં 
$$I_1 = \int_a^c (f_1(x) - f_2(x)) dx$$
,  $I_2 = \int_c^b (f_1(x) - f_2(x)) dx$ 

ઉદાહરણ 5 : ઉપવલય  $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$  અને રેખા  $\frac{x}{a} + \frac{y}{b} = 1$  વડે આવૃત્ત બે પ્રદેશમાંથી નાના પ્રદેશનું ક્ષેત્રફળ શોધો.

ઉકેલ : રેખા 
$$\frac{x}{a} + \frac{y}{b} = 1$$

અને ઉપવલય 
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
 આપેલ છે.

સ્પષ્ટ છે કે આપેલ રેખા ઉપવલયને A(a, 0) અને B(0, b)માં છેદે છે. માંગેલ પ્રદેશ આકૃતિ 4.20માં રંગીન પ્રદેશ તરીકે દર્શાવેલ છે.

ઉપવલય માટે 
$$y = \frac{b}{a} \sqrt{a^2 - x^2}$$
 (પ્રથમ ચરણમાં)

હવે, 
$$\Delta AOB$$
નું ક્ષેત્રફળ =  $\frac{1}{2}OA \cdot OB$  =  $\frac{1}{2}ab$ 

(ii) Y
B(0, b)
X'
O
A(a, 0)
Y
Oilin 4.20

વળી, પ્રથમ ચરણમાં આવૃત્ત ઉપવલયનું ક્ષેત્રફળ

$$\int_{0}^{a} y dx = \int_{0}^{a} \frac{b}{a} \sqrt{a^{2} - x^{2}} dx$$

$$= \frac{b}{a} \left[ \frac{x}{2} \sqrt{a^{2} - x^{2}} + \frac{a^{2}}{2} \sin^{-1} \frac{x}{a} \right]_{0}^{a}$$

$$= \frac{b}{a} \left[ \frac{a^{2}}{2} \sin^{-1} 1 \right] = \frac{\pi a b}{4}$$
(iv)

∴ (iii) અને (iv) પરથી

માંગેલ ક્ષેત્રફળ = 
$$\left| \frac{\pi ab}{4} - \frac{1}{2}ab \right| = \left| \frac{(\pi - 2)ab}{4} \right| = \frac{(\pi - 2)ab}{4}$$
 કારણ કે  $\pi > 2$ .

બીજી રીત : માંગેલ ક્ષેત્રફળ = |I|

અહીં I = 
$$\int_{0}^{a} (f_{1}(x) - f_{2}(x)) dx, \text{ wit } f_{1}(x) = \frac{b}{a} \sqrt{a^{2} - x^{2}} \text{ અને } f_{2}(x) = b \left(1 - \frac{x}{a}\right)$$

$$= \int_{0}^{a} \left[\frac{b}{a} \sqrt{a^{2} - x^{2}} - b \left(1 - \frac{x}{a}\right)\right] dx$$

$$= \left[\frac{b}{a} \left(\frac{x}{2} \sqrt{a^{2} - x^{2}} + \frac{a^{2}}{2} \sin^{-1} \frac{x}{a}\right) - b \left(x - \frac{x^{2}}{2a}\right)\right]_{0}^{a}$$

$$= \left[\frac{b}{a} \left(0 + \frac{a^{2}}{2} \sin^{-1} 1\right) - b \left(a - \frac{a}{2}\right)\right] - (0)$$

$$= \frac{\pi a b}{4} - \frac{a b}{2}$$

$$=\frac{(\pi-2)ab}{4}$$

$$\therefore \quad \mathbf{A} = \left| \frac{(\pi - 2)ab}{4} \right| = \frac{(\pi - 2)ab}{4} \text{ sizes } \pi > 2.$$

ઉદાહરણ 6 : વર્તુળ  $x^2+y^2=4$ , રેખા  $x-y\sqrt{3}=0$  અને X-અક્ષ દ્વારા આવૃત્ત પ્રથમ ચરણમાં આવેલ પ્રદેશનું ક્ષેત્રફળ શોધો

ઉકેલ : આપેલ વક્રો  $x^2 + y^2 = 4$  અને  $x - y\sqrt{3} = 0$  છે.

:. 
$$x^2 + y^2 = 4$$
 Hi  $y = \frac{x}{\sqrt{3}}$  Headi,  
 $x^2 + \frac{x^2}{3} = 4$ 

$$4x^2 = 12$$

$$\therefore x = \pm \sqrt{3}$$

પ્રથમ ચરણમાં  $x=\sqrt{3}$  અને તેથી  $y=\frac{x}{\sqrt{3}}=1.$ 

∴ વર્તુળ અને રેખાનું પ્રથમ ચરણનું છેદબિંદુ  $P(\sqrt{3}, 1)$  મળે.

 $\overline{ ext{PM}}$   $\bot$  X-અક્ષ અને M( $\sqrt{3}$ , 0) એ લંબપાદ છે



ત્રભવાદ છ

માંગેલ વૃત્તાંશ OPAનું ક્ષેત્રફળ

=  $\Delta {
m OPM}$ નું ક્ષેત્રફળ + વર્તુળ  $x^2+y^2=4$ , X-અક્ષ અને રેખા  $x=\sqrt{3}$  અને x=2 વડે આવૃત્ત પ્રદેશનું ક્ષેત્રફળ

$$\therefore$$
 A = A<sub>1</sub> + A<sub>2</sub>

$$A_1 = \Delta OPM$$
નું ક્ષત્રફળ 
$$= \frac{1}{2}OM \times PM$$
$$= \frac{1}{2}\sqrt{3} \times 1 = \frac{\sqrt{3}}{2}$$
 (i)

$$A_2 = |I|$$

જ્યાં 
$$I = \int_{\sqrt{3}}^{2} y dx = \int_{\sqrt{3}}^{2} \sqrt{4 - x^2} dx$$
 (પ્રથમ ચરણમાં  $y > 0$ )
$$= \left[ \frac{x}{2} \sqrt{4 - x^2} + \frac{4}{2} \sin^{-1} \frac{x}{2} \right]_{\sqrt{3}}^{2}$$

$$= \left( 0 + 2 \sin^{-1} 1 \right) - \left( \frac{\sqrt{3}}{2} + 2 \sin^{-1} \frac{\sqrt{3}}{2} \right)$$

$$= \pi - \frac{\sqrt{3}}{2} - \frac{2\pi}{3} = \frac{\pi}{3} - \frac{\sqrt{3}}{2}$$

$$\therefore A_2 = \left| \frac{\pi}{3} - \frac{\sqrt{3}}{2} \right| = \frac{\pi}{3} - \frac{\sqrt{3}}{2}$$
 (ii)

 $\left[\pi > 3$  હોવાથી  $\frac{\pi}{3} > 1$  અને  $\sqrt{3} < 2$  હોવાથી  $\frac{\sqrt{3}}{2} < 1$ . આથી,  $\frac{\pi}{3} - \frac{\sqrt{3}}{2} > 0\right]$ 

:. માંગેલ ક્ષેત્રફળ A = 
$$\frac{\sqrt{3}}{2}$$
 +  $\frac{\pi}{3}$  -  $\frac{\sqrt{3}}{2}$  =  $\frac{\pi}{3}$ 

જયાં 
$$I = \int_0^1 (g_1(y) - g_2(y)) dy$$
, જયાં  $g_1(y) = \sqrt{4 - y^2}$  અને  $g_2(y) = \sqrt{3}y$ 

$$= \int_0^1 \left(\sqrt{4 - y^2} - \sqrt{3}y\right) dy$$

$$= \left[\frac{y}{2}\sqrt{4 - y^2} + \frac{4}{2}\sin^{-1}\frac{y}{2} - \frac{\sqrt{3}}{2}y^2\right]_0^1$$

$$= \frac{\sqrt{3}}{2} + 2\sin^{-1}\frac{1}{2} - \frac{\sqrt{3}}{2} = 2 \cdot \frac{\pi}{6} = \frac{\pi}{3}$$

$$\therefore A = \frac{\pi}{3}$$

નોંધ : 
$$y = \frac{x}{\sqrt{3}}$$
 નો અર્થ એ કે  $y = mx$ , જ્યાં  $m = tan\theta = \frac{1}{\sqrt{3}}$  અને  $\theta = m\angle POM$ 

આથી  $m\angle POM = \frac{\pi}{6}$ .

$$\therefore$$
 વૃત્તાંશનું ક્ષેત્રફળ =  $\frac{1}{2}r^2\theta = \frac{1}{2}\cdot 4\cdot \frac{\pi}{6} = \frac{\pi}{3}$ 

આપણને લાગશે કે કલનશાસ્ત્ર કરતાં ભૌમિતિક રીતે ક્ષેત્રફળ શોધવું સહેલું છે. પરંતુ વૃત્તાંશનું ક્ષેત્રફળ  $\frac{1}{2}r^2\theta$  પણ સંકલનના ઉપયોગથી જ મળે છે.

ઉદાહરણ 7 : પરવલય  $y=x^2$  અને કિરણો y=|x| વડે આવૃત્ત પ્રદેશનું ક્ષેત્રફળ શોધો.

ઉકેલ : વક્રો 
$$y = x^2$$

અને 
$$y = |x|$$
 આપેલ છે.

આપેલ બંને વક્કો જે બિંદુમાં છેદે ત્યાં  $x^2 = |x|$  થાય.

$$\therefore |x|^2 - |x| = 0$$

$$(x^2 = |x|^2)$$

$$|x|(|x|-1)=0$$

$$\therefore$$
  $x = 0$  or  $x = \pm 1$ 

જો 
$$x = 0$$
 હોય તો  $y = 0$  અને

જો 
$$x = \pm 1$$
 હોય તો  $y = 1$  થાય.

આમ, આપેલ બંને વક્ર બિંદુઓ (-1, 1),





આપણે આપેલ બંને વક્રો વડે આવૃત્ત પ્રદેશનું ક્ષેત્રફળ શોધવું છે અને તેને આકૃતિ 4.22માં રંગીન પ્રદેશ વડે દર્શાવેલ છે. બંને વક્રો Y-અક્ષ પરત્વે સંમિત હોવાથી,

માંગેલ ક્ષેત્રફળ A = 2(પ્રથમ ચરણમાં દર્શાવેલ રંગીન પ્રદેશનું ક્ષેત્રફળ)

= 2 | I | જ્યાં I = 
$$\int_{0}^{1} (f_{1}(x) - f_{2}(x)) dx$$
, જ્યાં  $f_{1}(x) = |x|$  અને  $f_{2}(x) = x^{2}$ 

$$I = \int_{0}^{1} (|x| - x^{2}) dx$$
$$= \int_{0}^{1} (x - x^{2}) dx$$

$$([0, 1]$$
  $|x| = x)$ 

$$= \left[\frac{x^2}{2} - \frac{x^3}{3}\right]_0^1$$
$$= \left[\frac{1}{2} - \frac{1}{3}\right] = \frac{1}{6}$$

 $\therefore$  માંગેલ ક્ષેત્રફળ  $A=2\times\frac{1}{6}=\frac{1}{3}$ 

ઉદાહરણ 8 : પરવલય  $x^2=4y$  તથા વર્તુળ  $x^2+y^2=rac{9}{4}$  દ્વારા ઘેરાયેલ પ્રદેશનું ક્ષેત્રફળ શોધો.

ઉકેલ : વર્તુળ 
$$x^2 + y^2 = \frac{9}{4}$$
.

અને પરવલય 
$$x^2 = 4y$$
 આપેલ છે.

બંને વક્રો જે બિંદુમાં છેદે ત્યાં  $4y = \frac{9}{4} - y^2$ 

$$16y = 9 - 4y^2$$

$$4y^2 + 16y - 9 = 0$$

$$\therefore$$
  $(2y-1)(2y+9)=0$ 

$$\therefore y = \frac{1}{2} \text{ agal } y = -\frac{9}{2}$$

પરંતુ 
$$y \not = 0$$
, (કેમ

આથી બંને વક્કો જે બિંદુમાં છેદે ત્યાં  $y=\frac{1}{2}.$ 

$$\therefore x^2 = 4y = 4 \times \frac{1}{2} = 2$$

$$\therefore x = \pm \sqrt{2}$$

$$\therefore$$
 બંને વક્કો  $\left(-\sqrt{2}\,,\,\frac{1}{2}\right)$  અને  $\left(\sqrt{2}\,,\,\frac{1}{2}\right)$  બિંદુઓમાં છેદશે.

બંને વક્રો Y-અક્ષ પરત્વે સંમિત હોવાથી.

$$\begin{split} &\text{wii} \quad \mathrm{I} = \int\limits_0^{\sqrt{2}} \left( f_1(x) - f_2(x) \right) \, dx, \, \, \text{wii} \, f_1(x) = \sqrt{\frac{9}{4} - x^2} \, \, \, \text{wit} \, f_2(x) = \frac{x^2}{4}. \\ &= \int\limits_0^{\sqrt{2}} \left( \sqrt{\frac{9}{4} - x^2} \, - \frac{x^2}{4} \right) \, dx \\ &= \left[ \frac{x}{2} \sqrt{\frac{9}{4} - x^2} \, + \frac{\left(\frac{3}{2}\right)^2}{2} \, sin^{-1} \, \frac{x}{\frac{3}{2}} - \frac{x^3}{12} \right]_0^{\sqrt{2}} \\ &= \left[ \frac{\sqrt{2}}{2} \sqrt{\frac{9}{4} - 2} \, + \frac{9}{8} \, sin^{-1} \left( \frac{2\sqrt{2}}{3} \right) - \frac{2\sqrt{2}}{12} \right] \\ &= \left[ \frac{\sqrt{2}}{4} \, + \frac{9}{8} \, sin^{-1} \left( \frac{2\sqrt{2}}{3} \right) - \frac{\sqrt{2}}{6} \right] \\ &= \frac{\sqrt{2}}{12} \, + \frac{9}{8} \, sin^{-1} \left( \frac{2\sqrt{2}}{3} \right) \end{split}$$



(બંનેની કિંમત  $x^2$  છે.)

આકૃતિ 4.23

∴ માંગેલ ક્ષેત્રફળ = 
$$2\left[\frac{\sqrt{2}}{12} + \frac{9}{8}\sin^{-1}\left(\frac{2\sqrt{2}}{3}\right)\right]$$
  
=  $\frac{\sqrt{2}}{6} + \frac{9}{4}\sin^{-1}\left(\frac{2\sqrt{2}}{3}\right)$ 

ઉદાહરણ 9 : જેનાં શિરોબિંદુઓ (4, 1), (6, 6) અને (8, 4) હોય તેવા ત્રિકોણને સંગત ત્રિકોણીય પ્રદેશનું ક્ષેત્રફળ સંકલનના ઉપયોગથી શોધો.

ઉકેલ ઃ ધારો કે A(4, 1), B(6, 6) અને C(8, 4) એ ત્રિકોણ ABC નાં શિરોબિંદુઓ છે. (જુઓ આકૃતિ 4.24)



આકૃતિ 4.24

 $\stackrel{\longleftrightarrow}{AB}$ નું સમીકરણ  $\frac{y-1}{6-1} = \frac{x-4}{6-4}$  છે.

$$\therefore y-1=\frac{5}{2}(x-4)$$

$$\therefore y-1=\frac{5}{2}x-10$$

$$\therefore \quad y = \frac{5}{2} x - 9$$

તે જ રીતે  $\overleftrightarrow{\mathrm{BC}}$ નું સમીકરણ y=-x+12 તથા  $\overleftarrow{\mathrm{AC}}$ નું સમીકરણ  $y=\frac{3}{4}x-2$  થશે.

ધારો કે A, B, C માંથી X-અક્ષ પર દોરેલ લંબના લંબપાદ અનુક્રમે L, M, N છે.

હવે  $\triangle ABC$  નું ક્ષેત્રફળ = પ્રદેશ ALMBનું ક્ષેત્રફળ + પ્રદેશ BMNCનું ક્ષેત્રફળ - પ્રદેશ ALNCનું ક્ષેત્રફળ.

$$= |I_{1}| + |I_{2}| - |I_{3}|$$

$$= \left| \int_{4}^{6} \left( \frac{5}{2}x - 9 \right) dx \right| + \left| \int_{6}^{8} (-x + 12) dx \right| - \left| \int_{4}^{8} \left( \frac{3}{4}x - 2 \right) dx \right|$$

$$= \left| \left[ \frac{5x^{2}}{4} - 9x \right]_{4}^{6} \right| + \left| \left[ -\frac{x^{2}}{2} + 12x \right]_{6}^{8} \right| - \left| \left[ \frac{3x^{2}}{8} - 2x \right]_{4}^{8} \right|$$

$$= \left| \left[ \left( \frac{5}{4}(36) - 54 \right) - \left( \frac{5}{4}(16) - 36 \right) \right] \right| + \left| \left[ \left( -\frac{64}{2} + 96 \right) - \left( -\frac{36}{2} + 72 \right) \right] \right|$$

$$- \left| \left[ \left( \frac{3}{8}(64) - 16 \right) - \left( \frac{3}{8}(16) - 8 \right) \right] \right|$$

$$= |(-9 + 16)| + |(64 - 54)| - |(8 + 2)|$$
  
= 7 + 10 - 10

∴ માંગેલ ક્ષેત્રફળ = 7

નોંધ : ત્રિકોણનું ક્ષેત્રફળ 
$$\Delta = \frac{1}{2} \mid D \mid$$
  
જયાં  $D = \begin{vmatrix} 4 & 1 & 1 \\ 6 & 6 & 1 \\ 8 & 4 & 1 \end{vmatrix}$   
=  $4(2) - 1(-2) + 1(-24) = -14$   
 $\therefore \qquad \Delta = \frac{1}{2} \mid -14 \mid = 7$ 

ઉદાહરણ 10 : વર્તુળ  $x^2 + y^2 - 2ax = 0$  અને પરવલય  $y^2 = ax$ , a > 0 વડે પ્રથમ ચરણમાં આવૃત્ત પ્રદેશનું ક્ષેત્રફળ શોધો.

ઉકેલ : સમીકરણ  $x^2 + y^2 - 2ax = 0$  ને  $(x - a)^2 + y^2 = a^2$  તરીકે લખી શકાય. આ સમીકરણ (a, 0) કેન્દ્રવાળુ તથા a ત્રિજ્યાવાળું વર્તુળ દર્શાવે છે. વક્ર,  $y^2 = ax$  એ પરવલય છે અને તેનું શીર્ષ (0, 0) અને તેનો અક્ષ X-અક્ષ છે.

 $x^2 + y^2 - 2ax = 0$  માં  $y^2 = ax$  મૂકતાં બંને વક્કોનાં છેદબિંદુ મળે

$$x^2 + ax - 2ax = 0$$

$$\therefore x^2 - ax = 0$$

$$\therefore x(x-a)=0$$



આકૃતિ 4.25

∴ બંને વક્રો O(0, 0), A(a, a) અને B(a, -a) બિંદુઓમાં છેદે છે.

$$\therefore$$
  $x^2+y^2=2ax$  પરથી  $y=\sqrt{2ax-x^2}$  અને  $y^2=ax$  પરથી  $y=\sqrt{ax}$  ( $y\geq 0$ ) માંગેલ ક્ષેત્રફળ  $=|\mathrm{I}|$ 

$$\begin{split} & \mathrm{I} \, = \, \int\limits_0^a \left( f_1(x) \, - \, f_2(x) \right) \, dx, \, \, \text{જ્યાં} \, f_1(x) \, = \, \sqrt{2ax - \, x^2} \, \, \, \, \text{તથા} \, f_2(x) \, = \, \sqrt{ax} \, . \\ & = \, \int\limits_0^a \, \left( \sqrt{2ax - \, x^2} \, - \, \sqrt{ax} \right) \, dx \\ & = \, \int\limits_0^a \, \left( \sqrt{a^2 - (x - a)^2} \, - \, \sqrt{a} \, \sqrt{x} \right) \, dx \\ & = \, \left[ \left( \frac{x - a}{2} \right) \sqrt{a^2 - (x - a)^2} \, + \, \frac{a^2}{2} \, \sin^{-1} \left( \frac{x - a}{a} \right) \, - \, \sqrt{a} \, \frac{x^{\frac{3}{2}}}{\frac{3}{2}} \, \right]_0^a \end{split}$$

$$= \left[ -\frac{2}{3} \sqrt{a} \cdot a^{\frac{3}{2}} - \frac{a^2}{2} \sin^{-1}(-1) \right]$$

$$I = -\frac{2}{3} a^2 + \frac{a^2 \pi}{4} = \left(\frac{3\pi - 8}{12}\right) a^2$$

$$\therefore A = \left(\frac{3\pi - 8}{12}\right) a^2$$

ઉદાહરણ 11 : પરવલય  $y=x^2+2$  તથા રેખાઓ  $y=x,\,x=3$  અને x=0 વડે આવૃત્ત પ્રદેશનું ક્ષેત્રફળ શોધો

ઉકેલ : અહીં 
$$y = x^2 + 2$$

 $\therefore$   $x^2 = y - 2$ , પરવલય છે અને તેનું શીર્ષ (0, 2) છે તથા તે ઉપરની તરફ ખુલે છે.

આપણે પરવલય  $y=x^2+2$ , રેખાઓ y=x, x=3 અને x=0 વડે આવૃત્ત પ્રદેશનું આલેખન કરીએ.

માંગેલ ક્ષેત્રફળ A = |I| જયાં,

I = 
$$\int_{0}^{3} (f_{1}(x) - f_{2}(x)) dx$$
,  
which  $f_{1}(x) = x^{2} + 2$  then  $f_{2}(x) = x$ .  
=  $\int_{0}^{3} (x^{2} + 2 - x) dx$   
=  $\left[\frac{x^{3}}{3} + 2x - \frac{x^{2}}{2}\right]_{0}^{3}$   
=  $9 + 6 - \frac{9}{2}$   
=  $\frac{21}{2}$ 



આકૃતિ 4.26

$$\therefore$$
 A =  $\frac{21}{2}$ 

ઉદાહરણ 12 : વક  $y=4-x^2$ , x=0, x=3 અને X-અક્ષ વડે આવૃત્ત પ્રદેશનું ક્ષેત્રફળ શોધો.

ઉકેલ : અહીં 
$$y = 4 - x^2$$

આથી, 
$$x^2 = 4 - y$$

 $x^2 = -(y - 4)$  પરવલય દર્શાવે છે. તેનું શીર્ષ (0, 4) છે અને તે નીચેની તરફ ખુલે છે. તેના X-અક્ષ સાથેનાં છેદબિંદુઓ શોધવા y = 0 લેતાં,

$$4 - x^2 = 0$$

$$\therefore x = \pm 2$$

તેથી વક્રનાં X-અક્ષ સાથેનાં છેદબિંદુઓ (2, 0) અને (-2, 0).

અહીં વક્ર અને X-અક્ષથી આવૃત્ત પ્રદેશની સીમાઓ x = 0 અને x = 3 છે. વક (0, 0) અને (3, 0) વચ્ચેના બિંદુ (2, 0) આગળ X-અક્ષને છેદે છે.



આકૃતિ 4.27

આથી, 
$$A = |I_1| + |I_2|$$

જ્યાં 
$$I_1 = \int_0^2 y \, dx$$
,  $I_2 = \int_2^3 y \, dx$ 

$$I_1 = \int_0^2 (4 - x^2) dx = \left[ 4x - \frac{x^3}{3} \right]_0^2 = 8 - \frac{8}{3} = \frac{16}{3}$$

$$I_2 = \int_2^3 (4 - x^2) dx = \left[4x - \frac{x^3}{3}\right]_2^3 = (12 - 9) - \left(8 - \frac{8}{3}\right)$$

$$=3-\frac{16}{3}=-\frac{7}{3}$$

:. માંગેલ ક્ષેત્રફળ A = 
$$\left| \frac{16}{3} \right| + \left| -\frac{7}{3} \right| = \frac{16}{3} + \frac{7}{3} = \frac{23}{3}$$

ઉદાહરણ 13: q + y = cosx + 1 x = 0 અને  $x = 2\pi$  વચ્ચે આવૃત્ત પ્રદેશનું ક્ષેત્રફળ શોધો.

ઉકેલ:



આકૃતિ 4.28

આકૃતિ 4.28 પરથી માંગેલ ક્ષેત્રફળ = પ્રદેશ OABOનું ક્ષેત્રફળ + પ્રદેશ BCDBનું ક્ષેત્રફળ + પ્રદેશ DEFDનું ક્ષેત્રફળ

∴ માંગેલ ક્ષેત્રફળ 
$$= \begin{vmatrix} \frac{\pi}{2} \\ \int_0^2 \cos x \ dx \end{vmatrix} + \begin{vmatrix} \frac{3\pi}{2} \\ \int_{\frac{\pi}{2}}^2 \cos x \ dx \end{vmatrix} + \begin{vmatrix} 2\pi \\ \int_{\frac{3\pi}{2}}^2 \cos x \ dx \end{vmatrix}$$

$$= \begin{vmatrix} [\sin x]_0^{\frac{\pi}{2}} \end{vmatrix} + \begin{vmatrix} [\sin x]_{\frac{\pi}{2}}^{2\pi} \end{vmatrix} + \begin{vmatrix} [\sin x]_{\frac{3\pi}{2}}^{2\pi} \end{vmatrix}$$

$$= |(1-0)| + |(-1-1)| + |(0+1)|$$

$$= 1 + 2 + 1 = 4$$

ઉદાહરણ 14 : વક્ક y = sinx, y = cosx,  $x = \frac{\pi}{2}$  અને Y-અક્ષ વડે આવૃત્ત પ્રદેશનું ક્ષેત્રફળ શોધો.

ઉકેલ : પ્રથમ આપણે માંગેલ પ્રદેશનું આલેખન કરીએ.



હવે, આપણે માંગેલ ક્ષેત્રફળ શોધવા માટે બે સંકલન કરવા પડશે તેવું આકૃતિ પરથી સ્પષ્ટ જોઈ શકાય છે. બંને વકો  $y=\sin\!x \ \ \text{who } y=\cos\!x \ \ \text{જે બિંદુમાં છેદે ત્યાં } \sin\!x=\cos\!x, \ \ x\in \left[0,\frac{\pi}{2}\right] \ \ \text{who } \ \ \text{dho } \ \ \text{hind} \ \ x=\frac{\pi}{4} \ \ \text{છ}. \ \ \ \text{(an Hind)} \ \ \text{(an Hind)}$  માંગેલ ક્ષેત્રફળ  $A=|I_1|+|I_2|$ 

જ્યાં 
$$I_1 = \int_0^{\frac{\pi}{4}} (f_1(x) - f_2(x)) dx$$
, જ્યાં  $f_1(x) = \cos x$  અને  $f_2(x) = \sin x$ .
$$= \int_0^{\frac{\pi}{4}} (\cos x - \sin x) dx$$

$$= [\sin x + \cos x]_0^{\frac{\pi}{4}}$$

$$= [\left(\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}\right) - (0+1)\right] = \sqrt{2} - 1$$
(i)
$$I_2 = \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} (f_1(x) - f_2(x)) dx$$

$$= \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} (\cos x - \sin x) dx$$

$$= [\sin x + \cos x]_{\frac{\pi}{4}}^{\frac{\pi}{2}}$$

$$= [(1+0) - \left(\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}\right)]$$

$$= 1 - \sqrt{2} < 0$$
(ii)
$$|I_2| = \sqrt{2} - 1$$

(i) અને (ii) પરથી માંગેલ ક્ષેત્રફળ A =  $|I_1| + |I_2| = \sqrt{2} - 1 + \sqrt{2} - 1 = 2(\sqrt{2} - 1)$ 

### સ્વાધ્યાય 4.2

- પરવલય  $4y = 3x^2$  અને રેખા 2y = 3x + 12 વડે આવૃત્ત પ્રદેશનું ક્ષેત્રફળ શોધો.
- પરવલય  $y=2x-x^2$  અને રેખા y=-x વડે આવૃત્ત પ્રદેશનું ક્ષેત્રફળ શોધો. 2.
- વક  $f(x) = \cos \pi x$  નું X-અક્ષ સાથે આવૃત પ્રદેશનું ક્ષેત્રફળ શોધો, જ્યાં  $x \in [0, 2]$ .
- પરવલય  $f(x) = 4 x^2$  અને  $g(x) = x^2 4$  વચ્ચે આવૃત્ત પ્રદેશનું ક્ષેત્રફળ શોધો.
- રેખા  $y=x,\ y=1$  અને પરવલય  $y=\frac{x^2}{4}$  દ્વારા પ્રથમ ચરણમાં આવૃત્ત પ્રદેશનું ક્ષેત્રફળ શોધો.
- રેખાઓ x=-2 અને x=0 વચ્ચે પરવલય  $y=x^2+5x$  તથા  $y=3-x^2$  વડે આવૃત્ત પ્રદેશનું ક્ષેત્રફળ શોધો.
- 7. પરવલય  $y = x^2$ , રેખા y = 2 x અને રેખા y = 1 થી ઉપરના આવૃત્ત પ્રદેશનું ક્ષેત્રફળ શોધો.
- પરવલય  $y = 2x^2 + 10$  અને રેખા y = 4x + 16 વડે આવૃત્ત પ્રદેશનું ક્ષેત્રફળ શોધો.
- 9. સંકલનના ઉપયોગથી નીચે આપેલ બાજુઓનાં સમીકરણથી રચાતા ત્રિકોણીય પ્રદેશનું ક્ષેત્રફળ શોધો : y = 2x + 1, y = 3x + 1 અને x = 4.
- 10. સંકલનની મદદથી આપેલ શિરોબિંદુઓથી રચાતા ત્રિકોણના ત્રિકોણીય પ્રદેશનું ક્ષેત્રફળ શોધો : (–1, 1), (0, 5) અને (3, 2).
- 11. વર્તુળ  $x^2 + y^2 = 32$ , X-અક્ષ અને રેખા y = x દ્વારા પ્રથમ ચરણમાં આવૃત્ત પ્રદેશનું ક્ષેત્રફળ મેળવો.
- 12. પરવલય  $y = 5 x^2$ , X-અક્ષ અને રેખાઓ x = 2 તથા x = 3 વડે આવૃત્ત પ્રદેશનું ક્ષેત્રફળ શોધો.

#### અસમતાઓ દ્વારા રચાતો પ્રદેશ

 $\{(x, y) \mid 0 \le y \le x^2\}$  નો વિચાર કરીએ.

આકૃતિ 4.30માં દર્શાવ્યા પ્રમાણે જો આપણે  $\overline{AB}$  પર કોઈ પણ બિંદુ P(x, y) લઈએ તો  $y \ge 0$  અને  $y \le x^2$  થાય. આમ, જો પરવલય પર કોઈ પણ બિંદુ B  $(x, x^2)$  અને X-અક્ષ પર કોઈ પણ બિંદુ A એવું હોય જ્યાં  $\overline{AB} \perp$ X-અક્ષ તો કોઈ પણ બિંદુ  $P(x, y) \in \overline{AB}$  એ  $0 \le y \le x^2$ નું પાલન કરશે.

હવે,  $\{(x, y) \mid 0 \le y \le x^2, \ 0 \le y \le x + 2, \ x \ge 0\}$  નો વિચાર કરીએ.





આકૃતિ 4.31માં દર્શાવ્યા મુજબ જો આપણે  $\overline{RS}$  પર કોઈ પણ બિંદુ P(x, y) લઈએ તો  $y \ge 0, y \le x^2$  અને  $y \le x + 2$  થશે. તેજ રીતે  $\overline{R'S'}$  પરના કોઈપણ બિંદુ માટે પણ મળશે.

આવા દરેક બિંદુ P દ્વારા આપેલ ગણની અસમતાઓનું સમાધાન થાય તેવી આકૃતિ 4.31માં રંગીન પ્રદેશ દ્વારા દર્શાવેલ છે.

# પ્રકીર્ણ ઉદાહરણો :

ઉદાહરણ 15 :  $\{(x, y) \mid 0 \le y \le x^2, \ 0 \le y \le x + 2, \ 0 \le x \le 3\}$  થી રચાતા પ્રદેશનું ક્ષેત્રફળ શોધો.

ઉક્રેલ : પ્રથમ આપણે જે પ્રદેશનું ક્ષેત્રફળ શોધવું છે તે પ્રદેશનું આલેખન કરીએ.

અહીં, 
$$0 \le y \le x^2$$

$$0 \le y \le x + 2 \tag{ii}$$

$$0 \le x \le 3 \tag{iii}$$

વક  $y = x^2$  પરવલય છે અને તેનું શીર્ષ ઊગમબિંદુ છે.

રેખા y=x+2 તથા પરવલય  $y=x^2$  જે બિંદુમાં છેદે

ત્યાં 
$$x + 2 = x^2$$

$$x^2 - x - 2 = 0$$

$$\therefore (x-2)(x+1)=0$$

$$\therefore x = 2, -1$$

$$x = 2$$
 માટે  $y = 4$  અને  $x = -1$  માટે  $y = 1$ 

આમ, 
$$y = x^2$$
 અને  $y = x + 2$  નાં છેદબિંદુઓ

P(2, 4) અને M(-1, 1) છે.

 $0 \le x \le 3$  હોવાથી આકૃતિ 4.32માં માંગેલ પ્રદેશ



આકૃતિ 4.32

OPQRSO થશે.

માંગેલ ક્ષેત્રફળ A = પ્રદેશ OPSOનું ક્ષેત્રફળ + પ્રદેશ SPQRSનું ક્ષેત્રફળ

પ્રદેશ OPSO એ વક  $y = x^2$ , x = 0, x = 2 અને X-અક્ષ દ્વારા આવૃત્ત છે.

જ્યારે પ્રદેશ SPQRS એ રેખા y = x + 2, x = 2, x = 3 અને X-અક્ષ દ્વારા આવૃત્ત છે.

∴ માંગેલ ક્ષેત્રફળ = 
$$\int_0^2 x^2 dx + \int_2^3 (x+2) dx$$
  
=  $\left[\frac{x^3}{3}\right]_0^2 + \left[\frac{x^2}{2} + 2x\right]_2^3$   
=  $\left(\frac{8}{3} - 0\right) + \left(\frac{9}{2} + 6\right) - (2+4)$   
=  $\frac{43}{6}$ 

ઉદાહરણ 16 : બે વર્તુળો  $x^2+y^2=1$  અને  $(x-1)^2+y^2=1$  વડે આવૃત્ત સામાન્ય પ્રદેશનું ક્ષેત્રફળ શોધો.

ઉકેલ : અહીં,  $x^2 + y^2 = 1$ 

$$\therefore y^2 = 1 - x^2$$

$$(x-1)^2 + y^2 = 1$$

$$\therefore y^2 = 1 - (x - 1)^2$$

બંને વર્તુળના છેદબિંદુ માટે,  $1 - x^2 = 1 - (x - 1)^2$ 

$$\therefore -x^2 = -x^2 + 2x - 1$$

$$\therefore x = \frac{1}{2}$$

$$\therefore y = \pm \sqrt{1 - x^2} = \pm \sqrt{1 - \frac{1}{4}} = \pm \frac{\sqrt{3}}{2}$$

આમ, બંને વર્તુળ A  $\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$  તથા, B  $\left(\frac{1}{2}, \frac{-\sqrt{3}}{2}\right)$  બિંદુમાં છેદે છે.



માંગેલ ક્ષેત્રફળ = પ્રદેશ OACBOનું ક્ષેત્રફળ બંને વક્ર X-અક્ષ પરત્વે સંમિત હોવાથી ક્ષેત્રફળ

= 2(પ્રદેશ OACDOનું ક્ષેત્રફળ)

= 2(પ્રદેશ OADOનું ક્ષેત્રફળ + પ્રદેશ DACDનું ક્ષેત્રફળ)

પ્રદેશ OADO એ વર્તુળ  $(x-1)^2 + y^2 = 1$  એટલે કે,

 $y = \sqrt{1-(x-1)^2}$  (પ્રથમ ચરણ) તથા રેખાઓ  $x = 0, x = \frac{1}{2}$  અને X-અક્ષ વડે આવૃત્ત છે. પ્રદેશ DACD એ વર્તુળ  $x^2 + y^2 = 1$  એટલે કે  $y = \sqrt{1 - x^2}$  તથા રેખાઓ  $x = \frac{1}{2}, x = 1$  અને X-અક્ષ વડે આવૃત્ત છે.

માંગેલ ક્ષેત્રફળ બે ક્ષેત્રફળના સરવાળાથી મળશે.

માંગેલ ક્ષેત્રફળ = 
$$2\left[\int_{0}^{\frac{1}{2}}\sqrt{1-(x-1)^{2}}\,dx + \int_{\frac{1}{2}}^{1}\sqrt{1-x^{2}}\,dx\right]$$
  $\left(\mid I_{1}\mid +\mid I_{2}\mid \right)$  કેમ નહીં ?)
$$= 2\left[\frac{1}{2}(x-1)\sqrt{1-(x-1)^{2}} + \frac{1}{2}sin^{-1}(x-1)\right]_{0}^{\frac{1}{2}} + 2\left[\frac{x}{2}\sqrt{1-x^{2}} + \frac{1}{2}sin^{-1}x\right]_{\frac{1}{2}}^{1}$$

$$= 2\left[\frac{1}{2}\left(-\frac{1}{2}\right)\frac{\sqrt{3}}{2} + \frac{1}{2}sin^{-1}\left(-\frac{1}{2}\right) - 0 - \frac{1}{2}sin^{-1}(-1)\right] +$$

$$2\left[0 + \frac{1}{2}sin^{-1}1 - \frac{1}{4}\cdot\frac{\sqrt{3}}{2} - \frac{1}{2}sin^{-1}\frac{1}{2}\right]$$

$$= 2\left(-\frac{\sqrt{3}}{8} - \frac{\pi}{12} + \frac{\pi}{4}\right) + 2\left(\frac{\pi}{4} - \frac{\sqrt{3}}{8} - \frac{\pi}{12}\right)$$

$$= 2\left(-\frac{\sqrt{3}}{4} - \frac{\pi}{6} + \frac{\pi}{2}\right) = 2\left[\frac{\pi}{3} - \frac{\sqrt{3}}{4}\right]$$

#### બીજી રીત :

માંગેલ ક્ષેત્રફળ = | I | જ્યાં,

$$I = \int_{\frac{-\sqrt{3}}{2}}^{\frac{\sqrt{3}}{2}} (g_1(y) - g_2(y)) dy$$

જયાં 
$$g_1(y) = \sqrt{1-y^2}$$
 અને  $g_2(y) = 1 - \sqrt{1-y^2}$ 

$$I = \int_{-\frac{\sqrt{3}}{2}}^{\frac{\sqrt{3}}{2}} \left[ \sqrt{1-y^2} - \left(1 - \sqrt{1-y^2}\right) \right] dy$$

$$= 2 \int_{0}^{\frac{\sqrt{3}}{2}} \left( 2\sqrt{1-y^2} - 1 \right) dy$$

$$= 4 \int_{0}^{\frac{\sqrt{3}}{2}} \left( \sqrt{1-y^2} - \frac{1}{2} \right) dy$$

$$= 4 \left[ \frac{y}{2} \sqrt{1-y^2} + \frac{1}{2} \sin^{-1}y - \frac{y}{2} \right]_{0}^{\frac{\sqrt{3}}{2}}$$

$$= 4 \left[ \frac{\sqrt{3}}{4} \sqrt{1-\frac{3}{4}} + \frac{1}{2} \sin^{-1}\frac{\sqrt{3}}{2} - \frac{\sqrt{3}}{4} \right]$$

$$= 4 \left[ \frac{\sqrt{3}}{4} \cdot \frac{1}{2} + \frac{1}{2} \times \frac{\pi}{3} - \frac{\sqrt{3}}{4} \right] = 2 \left[ \frac{\pi}{3} - \frac{\sqrt{3}}{4} \right]$$

$$\therefore \text{ માંગેલ ક્ષેત્રફળ = } 2 \left( \frac{\pi}{3} - \frac{\sqrt{3}}{4} \right)$$

નોંધ : આકૃતિ 4.34 પરથી OM =  $\frac{1}{2}$ , AM =  $\frac{\sqrt{3}}{2}$  આથી  $m\angle$ AOM =  $\frac{\pi}{3}$ 

:. વૃતાંશ OACનું ક્ષેત્રફળ = 
$$\frac{1}{2}(1)^2 \frac{\pi}{3} = \frac{\pi}{6}$$

$$\therefore \quad \Delta AOM - i \quad \Re A \approx 0 = \frac{1}{2} \times \frac{\sqrt{3}}{2} \times \frac{1}{2} = \frac{\sqrt{3}}{8}$$

$$\therefore A_2 = \frac{\pi}{6} - \frac{\sqrt{3}}{8}$$

તે જ રીતે 
$$A_1 = \frac{\pi}{6} - \frac{\sqrt{3}}{8}$$

$$\therefore$$
 માંગેલ ક્ષેત્રફળ  $=2\left[\left(\frac{\pi}{6}-\frac{\sqrt{3}}{8}\right)+\left(\frac{\pi}{6}-\frac{\sqrt{3}}{8}\right)\right]$   $=\frac{2\pi}{3}-\frac{\sqrt{3}}{2}$ 



- 1. વક  $y = x^2 x 6$  અને X-અક્ષ વડે આવૃત્ત પ્રદેશનું ક્ષેત્રફળ શોધો.
- 2. વક  $y = x^2 + 2$ , રેખા y = 3 અને Y-અક્ષ વડે પ્રથમ ચરણમાં આવૃત્ત પ્રદેશનું ક્ષેત્રફળ શોધો.
- 3. વક y = (x-1)(x-2)નું X-અક્ષ વડે આવૃત્ત પ્રદેશનું ક્ષેત્રફળ શોધો.
- 4. વર્તુળ  $x^2+y^2=3$ , રેખા  $x-y\sqrt{3}=0$  અને X-અક્ષ વડે પ્રથમ ચરણમાં આવૃત્ત પ્રદેશનું ક્ષેત્રફળ શોધો.

સ્વાધ્યાય 4

5. વકો  $y^2 = x + 1$  અને  $y^2 = -x + 1$  વડે આવૃત્ત પ્રદેશનું ક્ષેત્રફળ શોધો.

| 6.  | પરવલય :                                                                                                               | ાલય $x^2=4y$ અને રેખા $x=4y-2$ વડે આવૃત્ત પ્રદેશનું ક્ષેત્રફળ શોધો.                                                                        |                       |                       |                       |            |  |  |  |  |  |
|-----|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------------|-----------------------|------------|--|--|--|--|--|
| 7.  | વર્તુળ $x^2$                                                                                                          | ળ $x^2+y^2=8x$ , પરવલય $y^2=4x$ અને X-અક્ષથી પ્રથમ ચરણમાં આવૃત્ત પ્રદેશનું ક્ષેત્રફળ શોધો.                                                 |                       |                       |                       |            |  |  |  |  |  |
| 8.  | રેખા <i>y</i> =                                                                                                       | y=3x+2, X-અક્ષ અને રેખાઓ $x=-1$ તથા $x=1$ વડે આવૃત્ત પ્રદેશનું ક્ષેત્રફળ શોધો.                                                             |                       |                       |                       |            |  |  |  |  |  |
| 9.  |                                                                                                                       | ખેત કરો કે પરવલય $y^2=4x$ અને $x^2=4y$ એ રેખાઓ $x=0,x=4,y=4$ અને $y=0$ થી રચાતા ચોરસનું સમક્ષેત્ર ભાગમાં વિભાજન કરે છે.                    |                       |                       |                       |            |  |  |  |  |  |
| 10. | $\{(x, y) \mid$                                                                                                       | $y)\mid 0\leq y\leq x^2+1,\; 0\leq y\leq x+1,\; 0\leq x\leq 2\}$ થી રચાતા પ્રદેશનું ક્ષેત્રફળ શોધો.                                        |                       |                       |                       |            |  |  |  |  |  |
| 11. | વર્તુળો $x^2$                                                                                                         | ળો $x^2 + y^2 = 4$ અને $x^2 + y^2 = 4x$ વડે આવૃત્ત પ્રદેશનું ક્ષેત્રફળ શોધો.                                                               |                       |                       |                       |            |  |  |  |  |  |
| 12. | પરવલય 🤈                                                                                                               | લય $y^2=8x$ અને રેખા $x+y=0$ વડે આવૃત્ત પ્રદેશનું ક્ષેત્રફળ શોધો.                                                                          |                       |                       |                       |            |  |  |  |  |  |
| 13. | સંકલનના                                                                                                               | તનના ઉપયોગથી $ x + y =1$ વડે આવૃત્ત પ્રદેશનું ક્ષેત્રફળ શોધો.                                                                              |                       |                       |                       |            |  |  |  |  |  |
| 14. | સંકલનના                                                                                                               | કલનના ઉપયોગથી $\{(x,\ y)\ \big \  x-1 \leq y\leq \sqrt{5-x^2}\}$ થી રચાતા પ્રદેશનું ક્ષેત્રફળ શોધો.                                        |                       |                       |                       |            |  |  |  |  |  |
| 15. | પરવલય $y^2=x$ અને $x+y=2$ વડે આવૃત્ત પ્રદેશનું ક્ષેત્રફળ શોધો.                                                        |                                                                                                                                            |                       |                       |                       |            |  |  |  |  |  |
| 16. | . પરવલય $y=x^2+1$ , રેખાઓ $y=x$ , $x=0$ અને $y=2$ વડે આવૃત્ત પ્રદેશનું ક્ષેત્રફળ શોધો.                                |                                                                                                                                            |                       |                       |                       |            |  |  |  |  |  |
| 17. | . નીચે આપેલું દરેક વિધાન સાચું બને તે રીતે આપેલા વિકલ્પો (a), (b), (c), (d)માંથી યોગ્ય વિકલ્પ પસંદ કરીને<br>માં લખો : |                                                                                                                                            |                       |                       |                       |            |  |  |  |  |  |
|     | (1) રેખાઓ $y = x, y = 1, y = 3$ અને Y-અક્ષ વડે આવૃત્ત પ્રદેશનું ક્ષેત્રફળ છે.                                         |                                                                                                                                            |                       |                       |                       |            |  |  |  |  |  |
|     | (a)                                                                                                                   | 2                                                                                                                                          | (b) $\frac{9}{2}$     | (c) 4                 | (d) $\frac{3}{2}$     |            |  |  |  |  |  |
|     | (2) વક                                                                                                                | 2) વક $y = 2x - x^2$ અને X-અક્ષ વડે આવૃત્ત પ્રદેશનું ક્ષેત્રફળ છે.                                                                         |                       |                       |                       |            |  |  |  |  |  |
|     | (a)                                                                                                                   | <u>8</u> 5                                                                                                                                 | (b) 2                 | (c) 8                 | (d) $\frac{4}{3}$     |            |  |  |  |  |  |
|     | (3) વક                                                                                                                | ) વક $y=cosx, -\frac{\pi}{2} \le x \le \frac{\pi}{2}$ અને X-અક્ષ વડે આવૃત્ત પ્રદેશનું ક્ષેત્રફળ છે.                                        |                       |                       |                       |            |  |  |  |  |  |
|     | (a)                                                                                                                   | 1                                                                                                                                          | (b) 4                 | (c) 2                 | (d) π                 |            |  |  |  |  |  |
|     | (4) વક                                                                                                                | ) વક $y=sinx$ , $\pi \leq x \leq 2\pi$ અને X-અક્ષ વડે આવૃત્ત પ્રદેશનું ક્ષેત્રફળ છે.                                                       |                       |                       |                       |            |  |  |  |  |  |
|     | (a)                                                                                                                   | π                                                                                                                                          | (b) 2                 | (c) -2                | (d) 0                 |            |  |  |  |  |  |
|     |                                                                                                                       | ) પરવલય $y=x^2$ , X-અક્ષ અને રેખા $x=4$ વડે આવૃત્ત પ્રદેશના ક્ષેત્રફળના રેખા $x=a$ દ્વારા બે સમક્ષેત્ર ભાગ થતા હોય તો $a$ છે. $\hfill\Box$ |                       |                       |                       |            |  |  |  |  |  |
|     | (a)                                                                                                                   | 2                                                                                                                                          | (b) $2^{\frac{4}{3}}$ | (c) $2^{\frac{5}{3}}$ | (d) 4                 |            |  |  |  |  |  |
|     |                                                                                                                       | ນ x = 2y + 3<br>ຮຸທ છે.                                                                                                                    | અને રેખાઓ $y$ =       | 1, y = -1  dal        | Y-અક્ષ વડે આવૃત્ત પ્ર | દેશનું<br> |  |  |  |  |  |
|     | (a)                                                                                                                   | 4                                                                                                                                          | (b) $\frac{3}{2}$     | (c) 6                 | (d) 8                 |            |  |  |  |  |  |
|     | (7) <b>પર</b> લ                                                                                                       | 7) પરવલય $y^2 = 4ax$ અને તેના નાભિલંબ વડે આવૃત્ત પ્રદેશનું ક્ષેત્રફળ છે.                                                                   |                       |                       |                       |            |  |  |  |  |  |
|     | (a)                                                                                                                   | $\frac{4}{3}a^2$                                                                                                                           | (b) $\frac{8}{3}a^2$  | (c) $\frac{16}{3}a^2$ | (d) $\frac{32}{3}a^2$ |            |  |  |  |  |  |

154 ગણિત 12 - IV

| (8)                                                                                                    | ) પરવલય $y=2x^2,$ $X$ -અક્ષ અને રેખા $x=1$ વડે આવૃત્ત પ્રદેશનું ક્ષેત્રફળ છે |                                                   |                             |                       |  |  |  |  |
|--------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------|-----------------------------|-----------------------|--|--|--|--|
|                                                                                                        | (a) 2                                                                        | <b>(b)</b> 1                                      | (c) $\frac{1}{3}$           | (d) $\frac{2}{3}$     |  |  |  |  |
| (9)                                                                                                    | વક $y = x  x , X$ -અદ                                                        | ત અને રેખાઓ $x=-1$                                | તથા $x=1$ વડે આવૃત્ત $y$    | ાદેશનું ક્ષેત્રફળ છે. |  |  |  |  |
|                                                                                                        | (a) 0                                                                        | (b) $\frac{1}{3}$                                 | (c) $\frac{2}{3}$           | (d) $\frac{4}{3}$     |  |  |  |  |
| (10) વક $y = cosx, y = sinx, Y$ -અસ અને $0 \le x \le \frac{\pi}{4}$ વડે આવૃત્ત પ્રદેશનું ક્ષેત્રફળ છે. |                                                                              |                                                   |                             |                       |  |  |  |  |
|                                                                                                        | (a) $2(\sqrt{2} - 1)$                                                        | (b) $\sqrt{2} - 1$                                | (c) $\sqrt{2} + 1$          | (d) $\sqrt{2}$        |  |  |  |  |
| (11) રેખા $y = 3 - x$ તથા X-અક્ષ વડે અંતરાલ $[0, 3]$ માં ઘેરાયેલ પ્રદેશનું ક્ષેત્રફળ છે.               |                                                                              |                                                   |                             |                       |  |  |  |  |
|                                                                                                        | (a) $\frac{9}{2}$                                                            | (b) 4                                             | (c) 5                       | (d) $\frac{11}{2}$    |  |  |  |  |
| (12) પરવલય $y = x^2$ અને $x = y^2$ વડે આવૃત્ત પ્રદેશનું ક્ષેત્રફળ છે.                                  |                                                                              |                                                   |                             |                       |  |  |  |  |
|                                                                                                        | (a) $\frac{1}{6}$                                                            | (b) $\frac{1}{3}$                                 | (c) $\frac{1}{12}$          | (d) 1                 |  |  |  |  |
| (13)                                                                                                   | વક $y = sinx$ તથા $x$                                                        | $= 0$ અને $x = 2\pi$ વડે                          | આવૃત્ત પ્રદેશનું ક્ષેત્રફળ  | છે.                   |  |  |  |  |
|                                                                                                        | (a) 1                                                                        | (b) 2                                             | (c) 3                       | (d) 4                 |  |  |  |  |
| (14)                                                                                                   | વક y = 3 cosx, 0 ≤                                                           | $\leq x \leq \frac{\pi}{2}, \ y = 0 \ \ $ q $ > $ | બાવૃત્ત પ્રદેશનું ક્ષેત્રફળ | છે.                   |  |  |  |  |
|                                                                                                        | (a) 3                                                                        | <b>(b)</b> 1                                      | (c) $\frac{3}{2}$           | (d) $\frac{1}{2}$     |  |  |  |  |
| (15)                                                                                                   | વક $y=cos^2x$ તથા $x=0$ અને $x=\pi$ વડે આવૃત્ત પ્રદેશનું ક્ષેત્રફળ છે.       |                                                   |                             |                       |  |  |  |  |
|                                                                                                        | (a) π                                                                        | (b) $\frac{\pi}{2}$                               | (c) 2π                      | (d) 2                 |  |  |  |  |
| (16)                                                                                                   | વક $y = 2\sqrt{x}$ તથા                                                       | રેખાઓ $x=0$ અને $x=$                              | 1 વડે આવૃત્ત પ્રદેશનું ક્ષે | ત્રફળ છે.             |  |  |  |  |
|                                                                                                        | (a) $\frac{4}{3}$                                                            | (b) $\frac{2}{3}$                                 | (c) 1                       | (d) $\frac{8}{3}$     |  |  |  |  |
| (17)                                                                                                   | $\mathbf{q}_{\mathbf{f}} \ y = 2x - x^2  \mathbf{d}_{\mathbf{f}}$            | X-અક્ષ વડે આવૃત્ત પ્રદેશ                          | ાનું ક્ષેત્રફળ છે.          |                       |  |  |  |  |
|                                                                                                        | (a) $\frac{1}{3}$                                                            | (b) $\frac{2}{3}$                                 | (c) 1                       | (d) $\frac{4}{3}$     |  |  |  |  |
| (18)                                                                                                   | રેખા $y = 3x$ , X-અક્ષ                                                       | . અને રેખાઓ $x=1$ , $x$                           | = 3 વડે આવૃત્ત પ્રદેશનું    | ક્ષેત્રફળ છે.         |  |  |  |  |
|                                                                                                        | (a) 3                                                                        | (b) 6                                             | (c) 12                      | (d) 36                |  |  |  |  |
| (19)                                                                                                   | $45 y =  x - 5 , \Sigma$                                                     | X-અક્ષ અને રેખાઓ $x=$                             | 0, x = 1 वर्डे आवृत्त प्र   | દેશનું ક્ષેત્રફળ છે.  |  |  |  |  |
|                                                                                                        | (a) $\frac{9}{2}$                                                            | (b) $\frac{7}{2}$                                 | (c) 9                       | (d) 5                 |  |  |  |  |
| (20)                                                                                                   |                                                                              | ને રેખા $x=3$ વચ્ચે આવ                            |                             | _                     |  |  |  |  |
|                                                                                                        | (a) 4√3                                                                      | (b) 8√3                                           | (c) $16\sqrt{3}$            | (d) $5\sqrt{3}$       |  |  |  |  |

સંકલનનો એક ઉપયોગ 155

#### SHELEN.

આ પ્રકરણમાં આપણે નીવેના મુદ્દાઓનો અભ્યાસ કર્યો :

- 1. 45 y = f(x), X-wa well for with x = a, x = b all out x = a and x = |x| for x = |x| sat  $x = \int_{-\infty}^{b} f(x) dx$ .
- 2. 48 x = g(y), Y-Ma અને રેખાઓ y = c, y = d વડે આવૃત્ત પ્રદેશનું લેબકળ A = |I| જ્યાં  $I = \int\limits_{-\infty}^{d} g(y) \, dy$ .
- 3. We use y = f(x) with X-ward seed (c, 0) [Signal 1988, while a < c < b, all use y = f(x), x = a, x = b and X-war all surjust where  $A = |I_1| + |I_2|$  with  $I_1 = \int_a^b f(x) \, dx$ ,  $I_2 = \int_a^b f(x) \, dx$ .
- 4. જો બે વક  $y = f_1(x)$  અને  $y = f_2(x)$  પરસ્પર માત્ર x = a અને x = b  $(a \neq b)$ , માટે છેલ્તાં હોય, તો આ બે વકો વડે આવૃત્ત પ્રદેશનું કેઝફળ A = |I| જ્યાં  $I = \int\limits_{-1}^{b} (f_1(x) f_2(x)) dx$ .
- 5. જો બે વકો  $x=g_1(y)$  અને  $x=g_2(y)$  પરસ્પર માત્ર y=c અને y=d  $(c\neq d)$  માટે છેલ્તાં હોય, તો આ બે વકો વડે આવૃત્ત પ્રદેશનું શૈત્રફળ A=|I| જ્યાં  $I=\int\limits_{-\infty}^d (g_1(y)-g_2(y))\,dy$ .

#### BHASKARACHARYA

He was born in a village of Mysore district.

He was the first to give that any number divided by 0 gives infinity.

He has written a lot about zero, surds, permutation and combination.

He wrote, "The hundredth part of the circumference of a circle seems to be straight. Our earth is a big sphere and that's why it appears to be flat."

He gave the formulae like  $\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$ 



# વિકલ સમીકરણો

5

Mathematics is the art of giving the same name to different things.

- Jules Henri

#### 5.1 પ્રાસ્તાવિક

જો વિધેય y એ ચલ x નું વિધેય હોય તો તેને y = f(x) વડે દર્શાવવામાં આવે છે. અહીં x ને સ્વતંત્ર ચલ (Independent Variable) અને y ને અવલંબી ચલ (Dependent Variable) તરીકે ઓળખવામાં આવે છે.  $\frac{dy}{dx}$  કે f'(x) શોધવાની વિવિધ રીતો આપણે અગાઉ શીખી ગયા. વળી સમીકરણ f'(x) = g(x) એટલે કે  $\frac{dy}{dx} = g(x)$  આપેલ હોય તો તે પરથી અનિયત સંકલન દ્વારા વિધેય f શોધવાની રીત પણ આપણે શીખી ગયા.

સમીકરણ  $\frac{dy}{dx} = g(x)$  માં સ્વતંત્ર ચલ x અને y નું x ને સાપેક્ષ વિકલિત આપેલા છે. આવા પ્રકારનાં સમીકરણને વિકલ સમીકરણ તરીકે ઓળખવામાં આવે છે. વિકલ સમીકરણની ગાણિતીક અર્થસભર વ્યાખ્યા હવે પછીથી આપીશું.

વિવિધ ક્ષેત્રોના વિવિધ પ્રકારના પ્રશ્નોના ઉકેલમાં વિકલ સમીકરણનો ઉપયોગ ખૂબ જ અગત્યનો પૂરવાર થયો છે; જેમ કે ભૌતિક શાસ્ત્ર, રસાયણ વિજ્ઞાન, જૈવિકશાસ્ત્ર, ઈજનેરી વિજ્ઞાન વગેરે. આપણે વિકલ સમીકરણની પાયાની સંકલ્પના, વિકલ સમીકરણના ઉકેલ અને પ્રથમ કક્ષાના એક પરિમાણી વિકલ સમીકરણના ઉકેલ તથા ઉપયોગોનો અભ્યાસ કરીશું.

નોંધ : જો વિષય y=f(x) એ ચલ x નું વિકલનીય વિષય હોય, તો તેના પ્રથમ કક્ષાના વિકલિત ને  $\frac{dy}{dx}$ ,  $y_1$ , y' કે f'(x) વડે દર્શાવવામાં આવે છે. જો f'(x) પણ ચલ x નું વિકલનીય વિષય હોય, તો વિષય y=f(x) ના દ્વિતીય કક્ષાના વિકલિતને  $\frac{d^2y}{dx^2}$ ,  $y_2$ , y'' કે f''(x) વડે દર્શાવવામાં આવે છે. આ જ રીતે તૃતીય કક્ષાનાં, ચતુર્થ કક્ષાનાં વગેરે... વિકલિતો મેળવી શકાય છે. વ્યાપક રીતે વિષય y=f(x) ના n માં વિકલિતને  $\frac{d^ny}{dx^n}$ ,  $y_n$ ,  $y^{(n)}$  કે  $f^{(n)}(x)$  વડે દર્શાવવામાં આવે છે. અહીં  $y_n=\frac{d}{dx}(y_{n-1})$ .

## 5.2 વિકલ સમીકરણ

સ્વતંત્ર ચલ, અવલંબી ચલ અને સ્વતંત્ર ચલને સાપેક્ષ અવલંબી ચલના વિકલિતો ને સમાવતા સમીકરણને વિકલ સમીકરણ (Differential equation) કહે છે.

x સ્વતંત્ર ચલ હોય, x પર અવલંબી ચલ y હોય એટલે કે y=f(x) અથવા G(x,y)=0 અને y ના x પ્રત્યેના વિકલિતો  $\frac{dy}{dx}$ ,  $\frac{d^2y}{dx^2}$ ,  $\frac{d^3y}{dx^3}$ ,... હોય તો વિધેયાત્મક સંબંધ  $F\left(x,y,\frac{dy}{dx},\frac{d^2y}{dx^2},\frac{d^3y}{dx^3},...,\frac{d^ny}{dx^n}\right)=0$  ને વિકલ સમીકરણ કહે છે. (સમીકરણમાં વિકલિતનું અસ્તિત્વ હોવુ જરૂરી છે)