Exercise 1. Inversion Lemma [15 pts]

$$\frac{\Gamma \Longrightarrow A \supset B}{\Gamma, A \Longrightarrow A \supset B} \text{ weak } \frac{\overline{\Gamma, A \supset B, A \Longrightarrow A} \text{ init } \overline{\Gamma, A \supset B, A, B \Longrightarrow B}}{\Gamma, A \supset B, A \Longrightarrow B} \text{ cut}$$

Exercise 2. New Connective (Nor) [35 pts]

Part 1. Conversion into sequent calculus [10 pts]

$$\frac{\Gamma, u: A, v: B \Longrightarrow p}{\Gamma \Longrightarrow A \overline{\wedge} B} \; \overline{\wedge} R \qquad \frac{\Gamma, A \overline{\wedge} B, A, B \Longrightarrow C}{\Gamma, A \overline{\wedge} B \Longrightarrow C} \; \overline{\wedge} L$$

Part 2. Invertibility [20 pts]

Yes, $\overline{\wedge}R$ is invertible

Lemma 1. $\Gamma \Longrightarrow A \overline{\wedge} B \Rightarrow \Gamma, u: A, v: B \Longrightarrow p$

$$Proof. \xrightarrow{\overbrace{\Gamma, u: A, v: B \Longrightarrow A \overline{\wedge} B}} \xrightarrow{hypothesis} \overline{\Gamma, u: A, v: B \Longrightarrow A} \xrightarrow{init} \overline{\Gamma, u: A, v: B \Longrightarrow B} \xrightarrow{\overline{\wedge} L} \overline{\Gamma, u: A, v: B \Longrightarrow D}$$

However, $\overline{\wedge}L$ is not invertible.

Counter-example: Γ empty, $C = \top$, $A = \bot$, $B = \top$

Clearly, we have $\Gamma \Longrightarrow A\overline{\wedge}B$

However, we cannot prove $\Gamma \Longrightarrow A$

Part 3. Focusing [5 pts]

Since the right rule is invertible, it will go in the Asynchronous phase. Since the left rule is non-invertible, it will go in the Synchronous phase.

Exercise 3. Reducibility [50 pts]

Part 1. Definition [10 pts]

 $\mathcal{R}_{A \times B} = \{ M \mid \mathtt{fst}(M) \in \mathcal{R}_A \text{ and } \mathtt{snd}(M) \in \mathcal{R}_B \}$

Part 2. Backwards closed lemma [20 ps]

Lemma 2. Backwards Lemma (Part 1)

If $M \longrightarrow M'$ and $M' \in \mathcal{R}_C$, then $M \in \mathcal{R}_C$

Proof. By induction on the structure of C.

Case. $C = A \times B \ M \longrightarrow M'$	by assumption
$M' \in \mathcal{R}_{A \times B}$	by assumption
$\mathtt{fst}(M')\in\mathcal{R}_A$	by definition of $\mathcal{R}_{A\times B}$
$\mathtt{snd}\:(M')\in\mathcal{R}_B$	by definition of $\mathcal{R}_{A\times B}$
$\mathtt{fst}\left(M ight)\longrightarrow\mathtt{fst}\left(M' ight)$	by fst rules
$\mathtt{fst}(M)\in\mathcal{R}_A$	by i.h.
$\mathtt{snd}(M) \longrightarrow \mathtt{snd}(M')$	by snd rules
$\mathtt{snd}(M)\in\mathcal{R}_{B}$	by i.h.
$M \in \mathcal{R}_{A \times B}$	by definition of $\mathcal{R}_{A\times B}$

Part 3. Fundamental lemma [20 pts]

Lemma 3. Fundamental Lemma If $\mathcal{D}: \Gamma \vdash M: A \ and \ \mathcal{E}: \sigma \in \mathcal{R}_{\Gamma}$, then $[\sigma]M \in \mathcal{R}_A$

Proof. By structural induction on the derivation \mathcal{D}

$$\begin{array}{lll} \mathbf{Case.} & \mathcal{D} = \frac{\Gamma \vdash M : A & \Gamma \vdash N : B}{\Gamma \vdash < M, N > : A \times B} \\ [\sigma]M \in \mathcal{R}_A & \text{by i.h.} \\ [\sigma]N \in \mathcal{R}_B & \text{by i.h.} \\ [\sigma]\text{fst} < M, N > \longrightarrow M & \text{by redux reduction} \\ [\sigma]\text{snd} < M, N > \longrightarrow N & \text{by redux reduction} \\ [\sigma]\text{fst} < M, N > \in \mathcal{R}_A & \text{by Backwards Lemma} \\ [\sigma]\text{snd} < M, N > \in \mathcal{R}_B & \text{by Backwards Lemma} \\ \text{fst} [\sigma] < M, N > = [\sigma]\text{fst} < M, N > & \text{by substitution} \\ \text{snd} [\sigma] < M, N > \in \mathcal{R}_A & \text{by substitution} \\ \text{snd} [\sigma] < M, N > \in \mathcal{R}_A & \text{by above} \\ \text{snd} [\sigma] < M, N > \in \mathcal{R}_B & \text{by above} \\ \text{followed for each of the model of the mode$$

$$\begin{aligned} \mathbf{Case.} \quad \mathcal{D} &= \frac{\Gamma \vdash M : A \times B}{\Gamma \vdash \mathsf{fst} \, M : A} \\ [\sigma] M &\in \mathcal{R}_{A \times B} \end{aligned} \qquad \text{by i.h.}$$

 $extsf{fst} [\sigma] M \in \mathcal{R}_A \ [\sigma] extsf{fst} M = extsf{fst} [\sigma] M \ [\sigma] extsf{fst} M \in \mathcal{R}_A$

by definition of $\mathcal{R}_{A\times B}$ by substitution by above

 $\begin{array}{l} \mathbf{Case.} \quad \mathcal{D} = \frac{\Gamma \vdash M : A \times B}{\Gamma \vdash \mathsf{snd}\ M : B} \\ [\sigma] M \in \mathcal{R}_{A \times B} \\ \mathsf{snd}\ [\sigma] M \in \mathcal{R}_{B} \\ [\sigma] \mathsf{snd}\ M = \mathsf{snd}\ [\sigma] M \\ [\sigma] \mathsf{snd}\ M \in \mathcal{R}_{B} \end{array}$

by i.h. by definition of $\mathcal{R}_{A\times B}$ by substitution by above